Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

Anne-Marie Duchêne and Philippe Giegé*

Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France

INTRODUCTION

Mitochondria have arisen from the symbiosis of an a-proteobacteria with the archeal-like ancestor of eukaryotes (Gray, 1992; Lang et al., 1997; Gross and Bhattacharya, 2009). During evolution, massive gene transfer has occurred from the symbiont to its host cell (Gray, 1999). However, reverse genetic material transfer has also taken place as exemplified by the presence of organelar protease-like sequences in mitochondrial genomes of higher plants (Unsold et al., 1997). Nevertheless, modern mitochondrial genomes are all extremely reduced as compared to their bacterial ancestor. They only encode approximately between 10 and 100 protein coding genes (Burger et al., 2003), and most of mitochondrially encoded proteins are nuclear and plastidial (Krause and Krupinska, 2009). A dozen are mitochondrial and peroxisomal (Michaud and Duchêne, 2012), and an additional 10 are plastidial and mitochondrial proteins. It has in particular been very often found for proteins dual targeted to both mitochondria and chloroplasts (Carrie et al., 2009a). For some protein families this dual targeting even seems to be the normal situation (Duchêne et al., 2005). However, it is also emerging that dual localization often takes place as well between organelar proteins and the nucleus (Krause and Krupinska, 2009), in particular as exemplified by the growing list of proteins found in both plant mitochondria and the nucleus. Here, we discuss the function of the identified nucleo-mitochondrial proteins and examine possible dual localization mechanisms and signaling pathways.

DUAL TARGETING IS WIDESPREAD IN PLANTS

Dual-targeted proteins are defined as proteins encoded by a single gene and localized in two cellular compartments. In consequence, the two isoforms have identical sequences in most of their length but can slightly differ in their extremities, due to the presence of targeting sequences. In plant cells, the first dual-targeted protein was identified in 1995. It is a pea glutathione reductase found in both mitochondria and chloroplasts (Carrie et al., 2009a). More than one hundred of them, are plastidial and mitochondrial proteins (Carrie and Small, 2012). A dozen are mitochondrial and peroxisomal (Michaud and Duchêne, 2012), and an additional 10 proteins are nuclear and plastidial (Krause and Krupinska, 2009).

Finally, some proteins have been found in mitochondria and...
plasma membrane, in mitochondria and endoplasmic reticulum (ER), in plastids and ER, or even in mitochondria, chloroplasts, and the cytosol (Michaud and Duclot, 2012).

The mechanisms allowing dual localization are multiple. Most of the dual mitochondriplastidial proteins have ambiguous targeting signals in their N-terminal extremities that are recognized by both mitochondrial and chloroplastic import apparatus. In contrast, distinct sorting sequences were identified in some mitochondriaperoxisome proteins, i.e., a N-terminal mitochondrial targeting sequence (MTS) and a C-terminal peroxisomal targeting signal, respectively (Michaels et al., 2003; Carrie et al., 2009a).

Post-translational modifications were also shown to allow dual targeting, e.g., farnesylation was proposed to control the localization of AtOPT3 to either plastids or the nucleus (Gallici et al., 2008). Re-localization mechanisms have also been suggested. For example, protein transport from the ER to plastids has been proposed for AtGAAH1, and post-translational modifications clearly influence CAH trafficking (Buret et al., 2011).

NUCLEO-MITOCHONDRIAL PROTEINS IN EUKARYOTES

The dual localization of proteins to mitochondria and the nucleus is also a common phenomenon and has been described in several instances. In many eukaryotes, it has become obvious that a higher as previously thought number of mitochondrial proteins have more than one localization. In particular, it has been shown that, up to one third of the mitochondrial proteome of yeast is composed of dual localized proteins (an estimated 316 out of 801 proteins; Ben-Macnach et al., 2011). Among them, a significant proportion of proteins could be localized to both mitochondrial and the nucleus (Yogeve and Pines, 2011).

Examples of nucleo-mitochondrial proteins include LRPPRC, a protein belonging to the pentatricopeptide repeat protein family (Larriu et al., 2004; Schmitt-Linnerweber and Small, 2008). In human, a mutation in this protein was found to be responsible for the French-Canadian type of Leigh syndrome (Mootha et al., 2003; Xu et al., 2004). In mitochondria, LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial messengers (Ruzzenente et al., 2012). However, this protein was first described as part of a ribonucleoprotein complex account- able for the shuttling of mRNAs from the nucleus to the cytosol (Mili and Pinol-Roma, 2003). In addition, LRPPRC has been suggested to be a cofactor of the eukaryotic translation initiation factor 4E (Topoisomic et al., 2009). Finally, in the nucleus, this protein was proposed to regulate the expression of nuclear genes involved in mitochondrial biogenesis (Cooper et al., 2006). Other instances of nucleo-mitochondrial proteins include, e.g., ELAC2, a protein responsible for RNase Z activity, that removes 5′ trailer sequences of rRNA precursors, in both mitochondria and the nucleus in human (Rossmannith, 2011). TERT, the catalytic subunit of telomerase in the nucleus is exported from the nucleus during oxidative stress and imported into mitochondria where it protects the mitochondrial genome from reactive oxygen species (Ahmed et al., 2008). Finally, the nuclear transcription factor p53 involved in apoptosis through the activation or repression of pro- or anti-apoptotic genes, respectively, localizes to mitochondria during stress conditions. In mitochondria it uses its DNA binding domain to form an inhibitory complex with BclXL and Bcl2 (Mibara et al., 2003). Interestingly, all these examples of proteins found in both mitochondria and the nucleus appear to be involved in the control of gene expression or in post-transcriptional processes.

OCCURRENCE OF NUCLEO-MITOCHONDRIAL PROTEINS IN PLANTS

Contrary to other eukaryotes such a yeast or human, very few instances of nucleo-mitochondrial proteins have been described in plants. Here we review the known examples of these dual localized proteins and examine their function (Table 1).

Protein	Mito loc	Nuc loc	Function in Mito	Function in Nuc	Reference
AtTR3	GFP	GFP	RNase Z	RNase Z	Carino et al. (2009)
Atlgl	GFP	GFP	DNA repair?	DNA repair	Sunderland et al. (2008)
PsTnle1	GFP, W, IG	GFP, W, IG	Thiolendon	Oxidation protection of DNA	Marti et al. (2009)
DFR	IG, Act	IG?	Dihydrofolate reductase	Unknown	Lu et al. (1997)
AAtPL	GFP	GFP	Unknown	Unknown	Carino et al. (2009b)
AIPRX1	GFP, W, IG	GFP, W, IG	Translation?	Gene expression negative regulator	Harman et al. (2014a)

At and Ps represent proteins identified in Arabidopsis thaliana and Pseudolium sativum, respectively. “Mito loc” and “Nuc loc” indicate the methods used to localize proteins in mitochondria and the nucleus, respectively. GFP stands for green fluorescent protein fusion visualized by confocal microscopy; W stands for western blot analysis on purified cell fractions; IG stands for immunogold labeling; Act stands for activity assays with purified cell fractions, and IC stand for immunocytology. Envisaged or characterized functions in mitochondria and the nucleus are indicated. Question marks represent speculative location or functions in the respective compartments. It should be noted that many of the dual localizations described here were based on GFP fusion experiments. This technology sometimes leads to unspecific nuclear localizations when the fusion proteins are not large enough to be excluded from passive diffusion through nuclear pores (Gobel et al., 2003). Thus, occurrences of dual localizations of small proteins that were not confirmed by independent methods should be considered with caution.

"fps-03-00221" — 2012/9/24 — 10:52 — page 2 — #2
gene was found to be non-essential. This hints that dual nuclear localization of other RNase Z isoforms in plants might have been overlooked.

Isoforms of the Arabidopsis DNA ligase 1 protein (AtLig1) have been found to localize to both mitochondria and the nucleus by GFP fusion experiments and confocal microscopy (Sunderland et al., 2006). In the two compartments, AtLig1 is expected to be involved in the final step of DNA repair processes (Tomkinson and Mackey, 1998). In the nucleus, this protein was indeed shown to play a crucial role in both DNA replication and excision repair pathways (Taylor et al., 1998). However, in mitochondria its precise molecular function has not yet been confirmed.

PiTrx1, an isoform of thioredoxin in pea, was found in both mitochondria and nuclei by western blot analysis on purified cellular fractions, immunogold labeling as well as GFP fusions experiments (Marti et al., 2009). Thioredoxins are ubiquitous small proteins involved in the reduction of disulfide bonds of proteins. In mitochondria, PiTrx1 is able to activate AOX and is proposed to reduce a number of predicted mitochondrial targets (Marti et al., 2009). Contrary to some mammalian thioredoxins that accumulate in the nucleus under stress conditions (Wei et al., 2000), PiTrx1 is found in the nucleus in normal conditions (Marti et al., 2009). Its function at this location could be related to transcriptional regulation through oxidation protection of heterochromatin as proposed for the mammalian PRDX5 (Krupinska et al., 2006).

The plant mitochondrial dihydrofolate reductase (also found in plastids) was proposed to be present in plant nuclei as well because it was detected in the nucleus of carrot by immunogold labeling (Liao et al., 1997; Krause and Krupinska, 2009). However, other studies in pea leaves clearly fail to identify dihydrofolate reductase activity in the nucleus (Neuburger et al., 1996). The occurrence of this protein as a nucleo-mitochondrial protein thus remains uncertain.

In Arabidopsis, the “altered phloem development” (AtAPL) transcription factor was found dual localized to mitochondria and the nucleus by a high throughput GFP fusion approach (Carrie et al., 2008). This MYB coiled-coil type transcription factor was found dual localized to mitochondria and the nucleus by high throughput GFP fusion experiments (Marti et al., 2009). Its function at this location could be related to transcriptional regulation through oxidation protection of heterochromatin as proposed for the mammalian PRDX5 (Krupinska et al., 2006).

The plant mitochondrial dihydrofolate reductase (also found in plastids) was proposed to be present in plant nuclei as well because it was detected in the nucleus of carrot by immunogold labeling (Liao et al., 1997; Krause and Krupinska, 2009). However, other studies in pea leaves clearly fail to identify dihydrofolate reductase activity in the nucleus (Neuburger et al., 1996). The occurrence of this protein as a nucleo-mitochondrial protein thus remains uncertain.

In Arabidopsis, the altered phloem development (AtAPL) transcription factor was found dual localized to mitochondria and the nucleus by a high throughput GFP fusion approach (Carrie et al., 2008). This MYB coiled-coil type transcription factor was found dual localized to mitochondria and the nucleus by high throughput GFP fusion experiments (Marti et al., 2009). Its function at this location could be related to transcriptional regulation through oxidation protection of heterochromatin as proposed for the mammalian PRDX5 (Krupinska et al., 2006). The plant mitochondrial dihydrofolate reductase (also found in plastids) was proposed to be present in plant nuclei as well because it was detected in the nucleus of carrot by immunogold labeling (Liao et al., 1997; Krause and Krupinska, 2009). However, other studies in pea leaves clearly fail to identify dihydrofolate reductase activity in the nucleus (Neuburger et al., 1996). The occurrence of this protein as a nucleo-mitochondrial protein thus remains uncertain.

In Arabidopsis, the “altered phloem development” (AtAPL) transcription factor was found dual localized to mitochondria and the nucleus by a high throughput GFP fusion approach (Carrie et al., 2008). This MYB coiled-coil type transcription factor was found dual localized to mitochondria and the nucleus by high throughput GFP fusion experiments (Marti et al., 2009). Its function at this location could be related to transcriptional regulation through oxidation protection of heterochromatin as proposed for the mammalian PRDX5 (Krupinska et al., 2006). The plant mitochondrial dihydrofolate reductase (also found in plastids) was proposed to be present in plant nuclei as well because it was detected in the nucleus of carrot by immunogold labeling (Liao et al., 1997; Krause and Krupinska, 2009). However, other studies in pea leaves clearly fail to identify dihydrofolate reductase activity in the nucleus (Neuburger et al., 1996). The occurrence of this protein as a nucleo-mitochondrial protein thus remains uncertain.

In Arabidopsis, the altered phloem development (AtAPL) transcription factor was found dual localized to mitochondria and the nucleus by a high throughput GFP fusion approach (Carrie et al., 2008). This MYB coiled-coil type transcription factor was found dual localized to mitochondria and the nucleus by high throughput GFP fusion experiments (Marti et al., 2009). Its function at this location could be related to transcriptional regulation through oxidation protection of heterochromatin as proposed for the mammalian PRDX5 (Krupinska et al., 2006). The plant mitochondrial dihydrofolate reductase (also found in plastids) was proposed to be present in plant nuclei as well because it was detected in the nucleus of carrot by immunogold labeling (Liao et al., 1997; Krause and Krupinska, 2009). However, other studies in pea leaves clearly fail to identify dihydrofolate reductase activity in the nucleus (Neuburger et al., 1996). The occurrence of this protein as a nucleo-mitochondrial protein thus remains uncertain.

In Arabidopsis, the altered phloem development (AtAPL) transcription factor was found dual localized to mitochondria and the nucleus by a high throughput GFP fusion approach (Carrie et al., 2008). This MYB coiled-coil type transcription factor was found dual localized to mitochondria and the nucleus by high throughput GFP fusion experiments (Marti et al., 2009). Its function at this location could be related to transcriptional regulation through oxidation protection of heterochromatin as proposed for the mammalian PRDX5 (Krupinska et al., 2006). The plant mitochondrial dihydrofolate reductase (also found in plastids) was proposed to be present in plant nuclei as well because it was detected in the nucleus of carrot by immunogold labeling (Liao et al., 1997; Krause and Krupinska, 2009). However, other studies in pea leaves clearly fail to identify dihydrofolate reductase activity in the nucleus (Neuburger et al., 1996). The occurrence of this protein as a nucleo-mitochondrial protein thus remains uncertain.
Duchêne and Giegé

Plant nucleo-mitochondrial proteins

FIGURE 1 | Nucleo-mitochondrial dual targeting of proteins is controlled by different mechanisms. (A) Alternative splicing of APL generates two transcripts that code for different proteins. (B) Alternative initiation of transcription and of translation controls the balance of mitochondrial and nuclear Lig1. (C) The Trx01 pre-protein is imported into both mitochondria and the nucleus, although the control of partition between the two organelles is not yet understood. (D) The nuclear localization of PNM1 can be explained by re-localization of the mitochondrial mature protein into the nucleus.

FIGURE 1 | Nucleo-mitochondrial dual targeting of proteins is controlled by different mechanisms. (A) Alternative splicing of APL generates two transcripts that code for different proteins. (B) Alternative initiation of transcription and of translation controls the balance of mitochondrial and nuclear Lig1. (C) The Trx01 pre-protein is imported into both mitochondria and the nucleus, although the control of partition between the two organelles is not yet understood. (D) The nuclear localization of PNM1 can be explained by re-localization of the mitochondrial mature protein into the nucleus.

the mitochondrial isoform is in accordance with the maturation of the pre-protein after import. The pre-protein is thus imported into both mitochondria and nucleus, although the mechanism of partition between the two compartments is not known.

One unique transcript was detected for PNM1, and no in-frame AUG codon was found close to the initiation codon (Hammani et al., 2011a). Surprisingly, the isoforms of PNM1 detected in both compartments have a MW corresponding to the mature protein. As no alternative translation initiation is suspected, it is tempting to speculate that PNM1 is imported into mitochondria, matured, then partially re-localized into the nucleus (Hammani et al., 2011b). Such a mitochondria to nucleus shuttle had never been shown in plants but had been proposed for yeast fumarase (Singh and Gupta, 2006). Similarly, chloroplast to nucleus shuttling has been proposed for transcription factors such as piltp or Tisp1 (Lagrange et al., 2003; Ham et al., 2006). It is thus imaginable that proteins such as PNM1 might relocate from the mitochondrial surface to the nucleus through a similar mechanism.

ENVISAGED NUCLEO-MITOCHONDRIAL SIGNALING PATHWAYS

Signaling pathways between mitochondria and the nucleus include both anterograde and retrograde regulations. Anterograde control of the nucleus over mitochondria is extensively documented with the incidence of the proteins responsible for mitochondrial gene expression, which are almost all encoded in the nucleus and subsequently targeted to mitochondria, thus enabling a precise control of the nucleus on mitochondrial function (Giegé and Brennicke, 2001).

On the other hand, little information is available on plant mitochondrial retrograde regulation (Pogson et al., 2008). Reactive oxygen species (ROS), that are often regarded as markers of mitochondrial oxidative stress, have been proposed to be involved in mitochondrial retrograde signaling to the nucleus (Rhoads and Subbaiah, 2007), similar to plastidial ones (Nott et al., 2006). In this process, sensors such as ROS scavenging proteins, could participate in the early steps of a signaling pathway that would ultimately lead to gene expression changes in the nucleus (Gray et al., 2004; Giegé, 2007). Other potential participants in mitochondrial retrograde regulation could be proteins belonging to “two-components” pathways. This type of signaling pathways that was until recently believed to be exclusively procaryotic has been found in plants (Grefen and Harter, 2004). It implicates at least two proteins: a signal sensing histidine kinase and a response regulator that elicits the output response. ARR2, a response regulator protein primarily expressed in pollen is localized in the nucleus where it functions as a transcription factor, e.g., ARR2 regulates in vivo the promoter region of a mitochondrial complex I subunit nuclear gene (Lohrmann et al., 2001). Finally, the occurrence of proteins such as PNM1 that seem to be released from mitochondria in order to be re-localized to the nucleus suggests that some nucleo-mitochondrial proteins might act directly as retrograde signaling molecules for the coordination of gene expression in both mitochondria and the nucleus, as required for proper mitochondrial biogenesis.

CONCLUDING REMARKS

The growing list of proteins dual localized to mitochondria and the nucleus in plants, but also in other eukaryotes, shows that many of these proteins have a role in genome maintenance or in gene expression regulation, similar to what is also observed for nucleo-plastidial proteins (Desveaux et al., 2005). It has been hypothesized that the rationale for the occurrence of these proteins in two compartments might be for the sequestration of proteins in one compartment until specific environmental or developmental cues...
Alternatively, proteins might be dual targeted to mitochondria and the nucleus to perform the same functions for the respective genomes expression in the two compartments and thus to act as direct effectors of gene expression coordination. Nonetheless, it is also imaginable that some nucleo-mitochondrial proteins might act as signaling molecules from mitochondria to the nucleus. Overall the analysis of the identified instances of plant proteins localized to both mitochondria and the nucleus, suggests that these proteins have evolved different strategies to achieve dual localization, which enables them to act as regulators for the coordinated expression of the mitochondrial and nuclear genomes.

ACKNOWLEDGMENTS

This work was supported by the French "Centre National de la Recherche Scientifique". Philippe Giegé was supported by an ANR Blanc research grant "PROMA Nase P, ANR 11 BSV 008 01." Philippe Giegé and Marie-Duché were supported by the LabEx consortium "MitoCos."
Michaud, M., and Duchêne, A. M. (2012). “Mitochondrial trafficking to plant mitochondria” in Advances in Botanical Research, Vol. 53, Mitochondrial Genome Evolution, ed. L. Marineau-Drouard (Oxford: Elsevier), 347–421.

Mikura, M., Entrer, S., Zahko, A., Petroussi, O., Chittenden, T., Pencocha, P., and Mill, U. M. (2005). p53 has a direct apoptogenic role at the mitochondria. J. Cell. Biol. 169, 577–590.

Millar, A. H., Heazlewood, J. L., Krisch, M., and Pinol-Roma, S. (2003). Mitochondrial import of human and nuclear RNAs. J. Biol. Chem. 278, 4972–4982.

Mili, S., and Pinol-Roma, S. (2003). LRP39, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. J. Cell Biol. 163, 497–502.

Miotke, A. H., Houweland, S. J., Krutzen, K., Braun, H. F., and Miller, I. M. (2008). The plant mitochondrial proteome. Trends Plant Sci. 13, 605–610.

Mühlenhoff, U., Lepape, D., Miller, K., Bunkenborg, J., Reidhø, M., Hjerrild, M., Villanueva, A., Sládek, R., Xu, P., Mitchell, G. A., Hjerrild, K. I., Robinson, B. H., and Linder, E. S. (2003). Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc. Nat. Acad. Sci. U.S.A. 100, 605–610.

Nordenskiöld, M., Røhfeld, F., Journet, A., Naslund, A., and Lindahl, U. (2004). Mitochondria are a major site for thymidylate and folate synthesis in plants. J. Biol. Chem. 279, 9466–9472.

Nott, A., Jiang, H. S., Kosunen-Kytölä, S., and Choisy, J. (2006). Plant-to-nucleus retrograde signaling. Annu. Rev. Plant Biol. 57, 739–759.

Pogson, B. J., Woo, N. S., Brandl, J., and Small, I. D. (2008). Plant signaling to the nucleus and beyond. Z. Naturforsch. C 63, 662–699.

Rossmanith, W. (2011). Localization of human RNase Z isoforms: dual nuclear/mitochondrial targeting of the ELAC2 gene product by alternative translation initiation. PLoS ONE 6, e19512. doi: 10.1371/journal.pone.0019152.

Russo, B., Metens, M. D., Wendenberg, A., Bratic, A., Park, C. B., Camara, V., Miklosic, D., Zickermann, V., Wilson, R., Hulet, K., Enclau-Bromage, H., Tempst, P., Brandl, U., Newport, J. B., Gautier, C. M., and Larsson, N. G. (2012). LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J. 31, 443–456.

Seitz, M., Lemoine, M., Mardi, S., and Pinol-Roma, S. (2005). Pentatricopeptide repeat proteins: a socket set for organelle protein targeting. Mol. Cell 13, 602–612.

Seneff, N. G. (2012). LRPPRC is necessary for nuclear translation and interaction with ribosome factor 1. J. Biol. Chem. 288, 887–898.

Singh, R. B., and Gupta, R. S. (2006). Apoptosis induced by human and yeast fumarase in live mammalian cells: retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence. Biochem. Biophys. Res. Commun. 346, 911–916.

Sunderland, P. A., West, C. E., Waterworth, W. M., and Bray, C. M. (2006). An evolutionarily conserved translation initiation mechanism regulates nuclear or mitochondrial targeting of DNA ligase I in Arabidopsis thaliana. Plant J. 47, 356–367.

Taylor, R. M., Humze, M. J., Boutamad, J., and Bray, C. M. (1998). Molecular cloning and functional analysis of the Arabidopsis thaliana DNA ligase I homologues. Plant J. 14, 75–81.

Tomkinson, A. E., and Mackey, Z. B. (1998). Structure and function of mammalian DNA ligases. Annu. Rev. Biochem. 67, 1–40.

Tospinovic, I., Sjölin, L., Lapointe, V. L., Font, M., Thibault, P., Bangerter, C., Pinol-Roma, S., and Beren, K. L. (2009). Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. EMBO J. 28, 1087–1098.

Unseld, M., Marzluf, G. F., Brandl, P., and Brummelkamp, T. (1997). The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 396,524 nucleotides. Nat. Genet. 15, 57–61.

Wei, S. J., Botero, A., Hirota, K., Bradbury, C. M., Markward, S., Lanzel, A., Spitz, D. R., Gowan, P. C., Yokoi, J., and Guo, Z. (2009). Thiamine nuclear translation and translocation with interaction between ribosome factor 1 and activator protein-1 transcription factor in response to selenium radiation. Cancer Res. 69, 6868–6875.

Welchen, E., and Gonzalez, D. H. (2007). Transcription and mRNA expression of the Arabidopsis thaliana set of genes encoding chloroplast and mitochondrial proteins. Trends Plant Sci. 12, 60–67.

Yogeve, O., and Pines, O. (2011). Dual targeting of mitochondrial protein: mechanism, regulation and function. Biochem. J. 438, 1012–1020.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 07 August 2012, paper pending publication: 29 August 2012, accepted: 10 September 2012, published online: 25 September 2012.

Cite this: Duchêne A-M and Giegé P. (2012) Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants? Front. Plant Sci. 3, 221. doi: 10.3389/fpls.2012.00221

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2012 Duchêne and Giegé. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in other forums, provided the original authors and source are credited and any copyright notices are retained, including this copyright notice.