Avian species richness in cities: A review of the Spanish-language literature from the Southern Cone of South America

Catalina B. Muñoz-Pacheco1,2 · Nélida R. Villaseñor1,3

Accepted: 14 October 2021 / Published online: 19 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
South America sustains an important part of the world’s terrestrial biodiversity and its population is highly urbanized. Global syntheses have revealed a paucity of urban ecological research in the region; however, local research might be overlooked due to language barriers. As a contribution to disseminating local knowledge, we conducted a synthesis of Spanish-language literature on bird species richness in the Southern Cone of South America - an area of high diversity, endemism, and more than half of the world’s terrestrial biome types. In this systematic review, we identified patterns and trends in the literature, and the variables that influence bird species richness. Research has focused on national capital cities and green areas (large urban parks). Most studies covered short periods of time (1 year or less) and involved one season only (reproductive). The most studied biomes were temperate grasslands, savannas and shrublands, and Mediterranean and temperate forests, and no studies were found in mountains or deserts. Bird species richness in cities from the Southern Cone was positively influenced by vegetation cover and plant and habitat diversity; whereas variables associated with urban cover and disturbance exhibited negative effects. Important gaps in knowledge include: research in small and medium size cities, in overlooked biomes (deserts, xeric shrublands, and montane grasslands and shrublands), long-term research comprising different seasons, the inclusion of green spaces other than urban parks, and interdisciplinary studies that consider environmental, social, and economic components of urban ecosystems. By filling these key knowledge gaps, researchers from South America can contribute to the development of science-based actions to preserve nature in an urbanizing world.

Keywords Argentina · Birds · Chile · Species richness · Urban parks · Uruguay

Introduction
Urbanization has dramatically transformed landscapes. Urbanization generates ecosystems that are dominated by impervious surfaces (Garaffa et al. 2009), with profound and long-lasting habitat modification (McKinney 2002). This leads to habitat loss and fragmentation for species that cannot cope with rapid land use change (Grimm et al. 2008). Thus, urbanization is one of the main threats to biodiversity, which leads to the extinction of native species and promotes the establishment of exotic species (McKinney 2006). Given the rapid decline of global biodiversity, promoting urban ecological research is important to provide evidence-based action to help conserve biodiversity in the context of increasing urbanization.

Urban ecological research has experienced a rapid growth in the last few decades. Most of the research has emerged from developed countries, especially in temperate regions of the northern hemisphere (US, Canada and Western Europe; Magle et al. 2012; Escobar-Ibáñez and MacGregor-Fors 2017). However, most future urban growth will occur in Latin America, Africa and Asia, which will experience an important decrease in rural population and a rise in urban population (United Nations 2019). The current paucity of urban ecological research in these continents has led to important knowledge gaps that limit sustainable urban development (Ortega-Álvarez and MacGregor-Fors 2011a; Magle et al. 2012).
Latin America is already one of the most urbanized regions in the world. In the last 70 years, urban population exhibited ca. 8-fold increase (United Nations 2019). Currently, about 80% of the human population live in urban areas, and the population of large cities is expected to further increase a 15% by 2030 (United Nations 2015). In the last 40 years, eight medium-sized cities (1-5 million inhabitants) expanded and now are large cities with more than 5 million inhabitants, including four megacities with more than 10 million inhabitants (Santa Cruz 2012; MacGregor-Fors and Escobar-Ibáñez 2017a). Given that in Latin America most people live in cities, cities offer an important place to restore human connection with nature and encourage conservation efforts (Sanderson and Huron 2011).

Conservation can be challenging in this region as cities commonly threaten biodiversity rich areas (Pauchard and Barbosa 2013; Aronson et al. 2014). Latin America contains more than 40% of the Earth’s biodiversity, including 70% percent of vertebrate species in the world, and more than 25% of the world’s forests (UNDP 2010). It also contains 70% of global terrestrial ecoregion and biome types, comprising a large variety of the world’s plants and animals (Olson et al. 2001). In addition, the region presents five of 35 global biodiversity hotspots where conservation actions should be prioritized as they contain high endemism in plants and animals, but where more than 70% of the original vegetation has been lost (Myers et al. 2000; Mittermeier et al. 2011).

The Southern Cone of South America is characterized by endemic species and evolutionary novelties (Ibarguchi 2014), and exhibits a growing urbanization (more than 75% of its population live in urban land; United Nations 2019). It is comprised of three countries: Argentina, Chile, and Uruguay. Chile exhibits high endemism, where ca. 25% of the species are endemic to the country (MMA 2018). Argentina has three ecological regions with the greatest species diversity in South America (i.e. the Paranaense jungle, the Yungas and the Chaco; SAyDS 2015). Uruguay has identified 35% of native species as priority species, with several populations facing a high level of threat (MVOTMA 2014). In addition to the outstanding proportion of endemic species, the region also maintains an important number of species threatened with extinction according to national determinations. For instance in two ecoregions, the Patagonian Steppe has 38 threatened animal species and the Valdivian Temperate Rainforest contains 40 threatened species (Hoekstra et al. 2010). In addition, this region can contribute to a better understanding of biodiversity responses to urbanization in different climates and geological conditions because it contains more than half of the world’s terrestrial biome types (eight of 15 biomes; Henwood 1998).

Previous syntheses of urban ecological literature have either found no studies or a few studies from Chile and Uruguay, whereas Argentina has contributed an important proportion of studies from Latin America (Ortega-Álvarez and MacGregor-Fors 2011a; Beninde et al. 2015; Escobar-Ibáñez and MacGregor-Fors 2017). However, these results might be limited by the search language, where languages other than English are commonly overlooked in scientific reviews. Spanish is the second most widely spoken native language on the planet (after Mandarin Chinese; Lewis et al. 2014). Spanish is important for disseminating local knowledge because it is the main language spoken in the region and several Latin American journals publish articles in Spanish, including ca. 40 Web of Science indexed journals in the fields of ecology and zoology (Neira et al. 2011). In addition, people from countries where the official language is not English are less likely to read and publish in English (Nuñez et al. 2019).

To help disseminate findings from urban ecological research from Latin America, we synthesized the state of knowledge on bird species richness in the Southern Cone (Chile, Argentina and Uruguay). We focused on birds because they are one of the most studied animal groups and are commonly used to study biodiversity patterns in urban ecosystems (McKinney 2008), because they are diverse, form complex communities, respond to changes in habitat conditions, and can be used as bioindicators (Chace and Walsh 2006; MacGregor-Fors and Escobar-Ibáñez 2017a).

We focused on the Spanish-language literature, as this information has been commonly excluded from both global and regional reviews. We evaluated: (1) publication trends and geographical patterns, (2) study design, (3) the origin of the species considered in analyses of bird species richness, and (4) effects of predictive variables on bird species richness. We discuss our findings in the context of urban ecological research and identify knowledge gaps to encourage the development of the field in the region and its global impact.

Methods

Search strategy

We searched for articles that evaluated bird species richness in cities of the Southern Cone of South America on Google Scholar (https://www.scholar.google.com), with help of Publish or Perish software (a software that helps conduct literature reviews and exports search results in different formats; Harzing 2010). We used Google Scholar for our search because it contains papers from any language and a larger number of documents in Spanish than other search engines (e.g. Web of Science or Scopus; Martín-Martin et al. 2018). In addition, it contains peer-reviewed articles in indexed journals as well as grey literature (e.g. papers published in...
non-indexed journals, conference papers, thesis, reports; Falagas et al. 2008). We included grey literature because it represents a large body of knowledge recommended to be considered in systematic reviews (Manterola et al. 2013). Grey literature also reduces publication bias because inconclusive results or those that are contrary to common findings are less likely to be published (González et al. 2011).

The search was conducted on July 24th 2020. As recommended by Pullin and Stewart (2006), we aimed for high sensitivity where the search was sufficiently rigorous and broad for most eligible studies to be identified for inclusion in this review. Thus, our search included the following combination of keywords in Spanish: “species richness” (“riqueza de especies” in Spanish) AND birds (aves) AND city (ciudad) AND (Chile OR Argentina OR Uruguay). The word birds (aves) was considered in the title. Titles and abstracts identified in the search were scrutinized and the entire article was retrieved when studies were likely to fulfill the following inclusion criteria: (1) it reported empirical data on bird species richness, (2) was located in cities from the Southern Cone (i.e. Argentina, Chile, Uruguay), and (3) was written in Spanish. For all papers that met the inclusion criteria, references cited in them were considered to add new documents that were not detected with our search criteria. To further complement the review, we assessed the table of contents of six scientific journals from the three countries that were likely to publish studies on bird species richness in cities. The journals considered were: Revista Chilena de Historia Natural, Revista Chilena de Ornitología, Acta Zoológica Lilloana, Ornitología Neotropical, Revista Achará and Anales del Museo de Historia Natural de Montevideo.

Data extraction and synthesis

We performed a qualitative synthesis and assessment, following the method of other synthesis in urban biodiversity research (e.g. McKinney 2002; Farinha-Marques et al. 2011; Nielsen et al. 2014). For each article that met our inclusion criteria, we extracted information that allowed us to evaluate:

1. Publication trends and geographical patterns: we extracted the year of publication, publication type (e.g. book chapter, journal article, thesis, technical report, conference proceeding; if published in a journal we extracted the journal name), country and city where the investigation took place. To identify the distribution per biome, we located cities on a digital layer (shapefile) of the world’s terrestrial biomes (Albers 2019), and calculated the number of studies per biome. In addition, to see the representation of cities, we calculated the proportion of cities with studies from the total number of provincial capital cities per biome.

2. Study design: we extracted study extent (in years), sampling season, and the land use types where sampling took place. Regarding the land use type, we consider the terminology used in the studies, except for “green area” (land covered by vegetation) that we further separated into: large urban parks (> 2 ha), small parks (< 2 ha), botanical garden, island hills (i.e. hills covered by vegetation that are commonly surrounded by built areas) and vacant lots.

3. Bird species origin: we recorded the origin of bird species included in estimates of species richness (i.e. native, exotic or both). For this, we searched in methods and results whether they calculated species richness separately for native and exotic species or pooled together data independent of species origin. When origin was not declared by the authors, we examined the bird species recorded. This data allowed us to evaluate whether researchers were considering species origin. Since exotic species commonly increase with urbanization, replacing native bird species (McKinney 2008), this is an important factor to consider when aiming to improve the quality of urban lands for local fauna.

4. Effects of predictive variables on species richness: we recorded the independent variables studied and their effects on (or associations with) bird species richness. The effect of independent variables on species richness was classified as positive when a positive coefficient was statistically significant ($P < 0.05$), negative when a negative coefficient was statistically significant ($P < 0.05$), and neutral when no statistical difference was found ($P \geq 0.05$).

Results

We found 497 documents in our search in Google Scholar. Four of these were duplicated records. From the list of references and the targeted search on the table of contents of local journals, another 27 documents were included that were not detected in our original search. After reading the title and abstract of the 520 records, 213 entire documents were assessed. Of these, 37 studies met our inclusion criteria and were considered in our qualitative synthesis (Fig. 1). The other 176 documents were excluded because they did not meet our inclusion criteria: 115 studies did not present empirical data on species richness, 45 were not developed in a city and 16 did not take place in the Southern Cone.

Publication trends and geographical patterns

Among the 37 documents that met our inclusion criteria, only two studies (5% of total) were published between 1980 and 1999, whereas 20 studies (54%) were published between
2000–2009, and 15 studies (41%) were published between 2010–2019 (Fig. 2A). No studies were found in 2020. Most studies (76%) were published in scientific journals, followed by book chapters (11%) and theses (8%. Fig. 2B). Among journals, more studies were published in The Chilean Ornithological Bulletin (25% of total, Boletín Chileno de Ornitología that since 2016 is published under the name of Revista Chilena de Ornitología), followed by El Hornero (18%, published by the Argentinian Birds/La Plata Ornithological Association), and Acta Zoológica Lilloana (18%, published by Fundación Miguel Lillo, also from Argentina, Fig. 2C).

Twenty studies (54% of total) were conducted in Argentina, 15 (41%) in Chile, and two (5%) in Uruguay. They comprised 18 cities, with more studies conducted in the capital cities of Chile (Santiago, seven studies, 19%) and Argentina (Buenos Aires, six studies, 16%, Fig. 3A). All studies comprised a single city, except for two, which included two and three different cities (Díaz et al. 2018; Leveau and Leveau 2006; respectively; Table 1).

Regarding the biomes, 58% of cities studied were in forests and 42% in grasslands (Fig. 3B). No study was found in cities located in montane grasslands and shrublands, nor in desert nor xeric shrublands. Half of studies (50%) were in temperate zones. More studies were performed in temperate grasslands, savannas and shrublands (32%), followed by Mediterranean forests, woodlands and scrub (24%), and temperate broadleaf and mixed forests (18%, Fig. 4A). All biomes the Southern Cone contain cities where research on bird species richness has not yet been conducted. The montane grasslands and shrublands biome contains a single provincial capital city (Putre, Chile), where no study on bird species richness was found (Fig. 4B).

Study design

Most studies (25 studies, 68%) were performed in only one year or less, whereas only four studies (11%) comprised surveys longer than two years (Fig. 5A). Sampling was conducted in spring-summer season in 41% of the studies, 16% sampled in autumn-winter season, while 35% included the four seasons (Fig. 5B).

Most studies (60%) focused in one land use type, with green areas being the most frequent (35% of studies focused only in these areas). They were followed by sampling in two land use types (28%) and along an urban gradient (11%, Fig. 5C). Among the studies that surveyed green areas, the most common were large urban parks, followed by small parks and hills. In addition, there was only one study that included vacant lots and another that included a botanical garden (Fig. 5D).

Bird species origin

To calculate bird species richness, both native and exotic birds were pooled together in 78% of the studies. Four studies (11%) analyzed species richness for native birds, whereas only three studies (8%) analyzed the species richness of native and exotic birds separately. All studies recorded more species of
native than exotic birds. For instance, Echevarría et al. (2011) recorded 70 native species and two exotic species in Tucumán, Argentina; Chiang (2019) recorded 25 native species and five exotic species in Santiago, Chile; whereas Perepelizin and Faggi (2009) recorded 20 native species and four exotic species in Buenos Aires, Argentina; Fig. 6A).

Effect of predictive variables on species richness

Twenty studies evaluated relationships between bird species richness and independent variables. Nearly half studies (55%) investigated environmental variables: ten studies assessed vegetation variables and eight studied land use types (Fig. 6B). Other variables considered were bird attributes (e.g. home range, biological traits, feeding, resting and nesting substrate), season and human-related variables (e.g. vehicle traffic, transit of people, population density and knowledge of birds). Ten studies conducted statistical analyses to evaluate the effect of independent variables on species richness, where we obtained 27 relationships (with reported P-values; Table 2). Most studies found vegetation cover to have a positive influence on bird species richness (e.g. percent cover of different vegetation layers, Normalized Difference Vegetation Index [NDVI]), plant diversity (e.g. diversity of trees and native plants) and habitat diversity (diversity of land cover types; Fig. 6C). In contrast, urban cover (e.g. percent cover of built-up, pavement and residential areas) and urban disturbance (e.g. human and vehicle traffic), exhibited mostly negative effects on bird species richness (Fig. 6C).
Discussion

Publication trends and geographical patterns

In contrast to previous reviews on bird species richness that found no studies from the Southern Cone of South America (e.g. Marzluff et al. 2001; Aronson et al. 2014; Nielsen et al. 2014), we found 37 studies that investigated bird species richness in cities. This difference is undoubtedly due to differences in the language selected (Spanish) and the search criteria used (e.g. the inclusion of grey literature). In fact, literature reviews for Latin America have reported an important increase in the number of studies when they considered documents in Spanish language and grey literature (González-Urrutia 2009; Delgado-Velez and Correa-Hernandez 2013). This finding highlights that local evidence from the Southern Cone has been left out of global reviews, which might lead to important gaps in the global understanding of urban avian ecology.

Only two studies were published before 2000, which is consistent with the time-lag in the development of urban
ecological research in Latin American countries (Ortega-Álvarez and MacGregor-Fors 2011b). Although the number of articles increased in 2000-2009 period, they dropped in the last decade (2010-2019). Ortega-Álvarez and MacGregor-Fors (2011b) found an important increase in publications written in English from Latin American countries since 2005, which might explain the decline of publications in the local language during the last decade. The decline of studies published in Spanish language might be due to growing interest and academic pressures for publishing in international peer-reviewed journals. Academics are commonly assessed by their publications in high-impact international journals because they are perceived to be of greater quality, reach a broader audience, and can lead to networks with international scientists (Guzmán-Valenzuela and Gómez 2019). If publications in international journals continue growing at the expense of publications in Spanish language in local journals, the science-policy gap is likely to increase over time in Latin America. This is because studies that are relevant for local policy and practice commonly need to be written in the local language and published in local

Table 1 Summary table of the 37 publications included in qualitative synthesis (references can be found in Appendix)

Author	Year	Country	City	Biome
Feninger	1983	Argentina	Buenos Aires	Temperate grasslands, savannas and shrublands
Rossetti and Giraudo	2003	Argentina	Santa Fé	Flooded grasslands and savannas
Leveau and Leveau	2004	Argentina	Mar del Plata	Temperate grasslands, savannas and shrublands
Juri and Chani	2005	Argentina	San Miguel de Tucumán	Tropical moist broadleaf forests
Faggi and Perepelizin	2006	Argentina	Buenos Aires	Temperate grasslands, savannas and shrublands
Gómez	2006	Argentina	Mendoza	Temperate grasslands, savannas and shrublands
Krauczek	2006	Argentina	Posadas	Flooded grasslands and savannas
Leveau and Leveau	2006	Argentina	Mar del Plata, Necocoea y Miramar	Temperate grasslands, savannas and shrublands
Germain et al.	2008	Argentina	Buenos Aires	Temperate grasslands, savannas and shrublands
Fernández et al.	2009	Argentina	San Miguel de Tucumán	Tropical moist broadleaf forests
Juri and Chani	2009	Argentina	San Miguel de Tucumán	Tropical moist broadleaf forests
Maraglio et al.	2009	Argentina	Buenos Aires	Temperate grasslands, savannas and shrublands
Perepelizin and Faggi	2009	Argentina	Buenos Aires	Temperate grasslands, savannas and shrublands
Haedo et al.	2010	Argentina	San Miguel de Tucumán	Tropical moist broadleaf forests
Echevarría et al.	2011	Argentina	San Miguel de Tucumán	Tropical moist broadleaf forests
Cavicchia and García	2012	Argentina	Buenos Aires	Temperate grasslands, savannas and shrublands
Leveau	2013	Argentina	Mar del Plata	Temperate grasslands, savannas and shrublands
Navarro and Antelo	2014	Argentina	San Miguel de Tucumán	Tropical moist broadleaf forests
Ramírez et al.	2016	Argentina	Luján	Temperate grasslands, savannas and shrublands
Figini	2019	Argentina	Mendoza	Temperate grasslands, savannas and shrublands
Estades	1995	Chile	Santiago	Mediterranean forests, woodlands and scrub
Urquiza and Mella	2002	Chile	Santiago	Mediterranean forests, woodlands and scrub
Díaz and Armesto	2003	Chile	Santiago	Mediterranean Forests, Woodlands and Scrub
Hinojosa-Sáez et al.	2007	Chile	Concepción	Temperate broadleaf and mixed forests
Mella and Loutit	2007	Chile	Santiago	Mediterranean forests, woodlands and scrub
Cursach and Rau	2008	Chile	Osorno	Temperate broadleaf and mixed forests
Cursach and Rau	2008	Chile	Puerto Montt	Temperate broadleaf and mixed forests
Kusch et al.	2008	Chile	Punta Arenas	Temperate broadleaf and mixed forests
Soto	2014	Chile	Concepción	Temperate broadleaf and mixed forests
Rodríguez et al.	2016	Chile	Coquimbo	Mediterranean forests, woodlands and scrub
Chávez-Villavicencio	2018	Chile	Coquimbo	Mediterranean forests, woodlands and scrub
Díaz et al.	2018	Chile	Valdivia y Santiago	Temperate broadleaf and mixed forests; and Mediterranean forests, woodlands and scrub
Gallaedo et al.	2018	Chile	Llanquihue	Temperate broadleaf and mixed forests
Muñoz et al.	2018	Chile	Santiago	Mediterranean forests, woodlands and scrub
Chiang	2019	Chile	Santiago	Mediterranean forests, woodlands and scrub
Seguí and Caballero-Sadi	2013	Uruguay	Montevideo	Tropical grasslands, savannas and shrublands
Sarroca et al.	2006	Uruguay	Montevideo	Tropical grasslands, savannas and shrublands
journals or reports (Guzmán-Valenzuela and Gómez 2019). Therefore, it is important that scientists remain engaged and interested in providing evidence that is locally relevant and available.

Our findings show that most studies were published in locally-based academic journals, where those led by the Ornithological Associations of Chile (*Boletín/Revista Chilena de Ornitología*) and Argentina (*El Hornero*) are important for disseminating knowledge that is accessible to managers, planners, policy makers and citizens – at least the work is available in the national language, free of charge (open-access). Of course, availability and access to empirical evidence is only one step towards informed policy and practice. Transdisciplinary groups and participatory
decision-making where actors from different sectors engage and collaborate, including scientists, planners, politicians and the local community, are needed to allow to progress towards sustainable cities (e.g. Menegat 2002). By bridging the gap between policy/practice and science, local decisions can be informed so that they promote biodiversity conservation and sustainable urban development.

Chile and Argentina contributed with a similar number of publications. This result disagrees with findings from previous reviews focused on urban birds in Latin America, where the number of publications from Argentina commonly outpaces the number of publications from Chile. This has been recorded in many topics, such as bird community diversity, composition and spatial distribution (seven-fold larger in

Fig. 5 A. Number of studies according to sampling length (in years). B. Number of studies by sampling season. C. Number of studies according to the environment surveyed. D. Number of publications according to the type of green area sampled.
Argentina than in Chile; Ortega-Álvarez and MacGregor-Fors 2011a), bird studies in general (five-fold; Ortega-Álvarez and MacGregor-Fors 2011b), bird species richness and composition (two-fold; MacGregor-Fors and García-Arroyo 2017b), as well as bird demography and population dynamics (two-fold; Leveau and Zuria 2017). The difference between our findings and previous reviews can be explained by the late development of the discipline of urban ecology in Chile. In fact, only recently urban bird studies from Chile are being published in international journals (e.g. Silva et al. 2015; Celis-Diez et al. 2017; Muñoz-Pedreros et al. 2018; Amaya-Espinell et al. 2019; Villaseñor and Escobar 2019; Villaseñor et al. 2020).

Avian ecological research in Latin America focuses on large cities (Escobar-Ibáñez and MacGregor-Fors 2017). Our review evidences that almost half of bird studies from the Southern Cone of South America focused on national capitals: Santiago de Chile (more than 7 million inhabitants), Buenos Aires (more than 17 million inhabitants) and Montevideo (more than 1 million inhabitants). These cities are characterized by unplanned urban growth that followed a Spanish design (Grau and Foguet 2021). Although it is important to generate scientific evidence in national capital cities, it is also relevant to study medium size and small cities, which are expected to concentrate an important part of future urban growth that is likely to be rapid and unplanned (e.g. Merlott et al. 2012; Barton et al. 2013). Scientific evidence can contribute to planning for a sustainable urban growth by helping to implement intentional early conservation actions, such as
limiting land use change, promoting green space within the city, as well as identifying focal conservation areas (Ortega-Álvarez and MacGregor-Fors 2009; Ikin et al. 2015).

The Southern Cone’s cities provide an excellent opportunity to better understand biodiversity responses to urbanization in a variety of climates and geological conditions. However, the focus on a few large cities has led to a gap of knowledge on different biomes. Most research on bird species richness in cities from the Southern Cone of South America has been conducted in temperate grasslands and Mediterranean forests, woodlands and scrub. Global analyses on urban birds have found that studies in temperate regions dominate the literature, with lack of research from tropical forests (Chace and Walsh 2006), where human population will experience an important growth (McDonald et al. 2013).

That we found no studies in desert and xeric shrublands or montane grasslands and shrublands represents an important knowledge gap. Chile contains the Atacama Desert, the driest desert in the world. Few ecological studies have been performed in deserts and xeric shrublands because they present low productivity and low species richness, although they harbor species adapted to such dry conditions that can enrich our understanding on how urbanization influence these ecosystems. Putre is in the montane grasslands and shrublands biome, at 3,500 m.a.s.l., where despite the proximity to the desert, there are diverse plant and animal communities. Tropical Andes is an area highlighted for global conservation efforts (Myers et al. 2000) and where knowledge is needed to inform sustainable development. Although some biomes exhibited a greater number of studies, they are still very few compared to the large number of provincial capitals they contain. For instance, no studies were found in 93% of provincial capitals in Mediterranean forests, woodlands and scrub, a biome that presents high endemism, has lost about 70% of its natural vegetation (Myers et al. 2000) and concentrates most cities and human population of Chile. No studies were found in 96% of provincial capitals located in tropical grasslands, savannas and shrublands, including areas of high value for birds, such as the extensive grasslands in Uruguay and Argentina that sustain the largest bird species

Predictive variables type	Response variable	Predictive variable	Effect	p-value	Reference
Vegetation cover	Diversity index*	Tree cover	Neutral > 0.05	Faggi and Perepelizin (2006)	
Vegetation cover	Diversity index*	Green areas surrounding area	Neutral > 0.05	Faggi and Perepelizin (2006)	
Vegetation cover	Richness of birds	Percentage of vegetation	Positive < 0.005	Mella and Loutit (2007)	
Vegetation cover	Richness of birds	Park size	Positive < 0.05	Muñoz-Pedreros et al. (2018)	
Vegetation cover	Richness of birds	Park area	Positive < 0.05	Urquiza and Mella (2002)	
Vegetation cover	Richness of birds	Native vegetation (%)	Positive < 0.05	Urquiza and Mella (2002)	
Vegetation cover	Richness of birds	Trees and shrubs (%)	Positive < 0.001	Leveau and Leveau (2004)	
Vegetation cover	Richness of birds	Grass (%)	Positive < 0.001	Leveau and Leveau (2004)	
Vegetation cover	Richness of birds	NDVIr	Positive < 0.01	Haedo et al. (2010)	
Vegetation cover	Richness of birds	Tree and shrub cover	Positive < 0.001	Leveau (2013)	
Vegetation cover	Richness of birds	Herbaceous cover	Neutral > 0.05	Chiang (2019)	
Plant diversity	Diversity index*	Tree Biodiversity Index	Neutral > 0.05	Faggi and Perepelizin (2006)	
Plant diversity	Diversity index*	Native plant biodiversity index	Neutral > 0.05	Faggi and Perepelizin (2006)	
Plant diversity	Diversity index**	Plant structure diversity	Positive < 0.05	Estades (1995)	
Plant diversity	Diversity index**	Diversity of plant species	Positive < 0.05	Estades (1995)	
Plant diversity	Richness of birds	Richness native vegetation	Positive < 0.04	Chiang (2019)	
Habitat richness	Diversity index*	Diversity of habitats in green space	Positive < 0.05	Faggi and Perepelizin (2006)	
Bare ground	Richness of birds	Bare ground cover	Neutral > 0.06	Chiang (2019)	
Urban coverage	Diversity index*	Residential use in surrounding area (%)	Negative < 0.05	Faggi and Perepelizin (2006)	
Urban coverage	Diversity index*	Industrial use in surrounding area	Neutral > 0.05	Faggi and Perepelizin (2006)	
Urban coverage	Diversity index*	Services use in surrounding area	Neutral > 0.05	Faggi and Perepelizin (2006)	
Urban coverage	Richness of birds	Buildings (%)	Negative < 0.001	Leveau and Leveau (2004)	
Urban coverage	Richness of birds	Asphalt (%)	Negative < 0.001	Leveau and Leveau (2004)	
Disturbance	Diversity index*	Use of roads in surrounding area	Neutral > 0.05	Faggi and Perepelizin (2006)	
Disturbance	Richness of birds	Automobile traffic (cars/minute)	Negative < 0.01	Germain et al. (2008)	
Disturbance	Richness of birds	Pedestrian circulation (people/minute)	Negative < 0.01	Germain et al. (2008)	

*Diversity index (bird richness/logarithm of the park area); **Shannon-Weaver diversity index (H)*
diversity in the region (Hoekstra et al. 2010) and contain Important Bird Areas (IBAs; Di Giacomo and Krapovickas 2005). This highlights an important gap in our understanding of urban avian ecology in the region.

Study design

Short-term research dominated the literature. The study with the longest duration (six years of surveys, conducted over a decade) examined bird community changes in an urban wetland associated with anthropogenic disturbance (Kusch et al. 2008). It is essential to promote this type of long-term studies in the region to understand the factors driving population, community and ecosystem change, and identifying the actions needed to prevent species extinctions and rescue ecosystems from extinction cascades (Gaiser et al. 2020).

Most urban avian research was conducted in one season (reproductive), providing limited information on seasonal changes and evidence for conservation strategies for a variety of birds (e.g. migratory birds). Studies that evaluated both reproductive and non-reproductive seasons reported changes in species richness of Neotropical birds through the year due to seasonal movements (migrations), as well as cities providing a wintering refuge (e.g. Fernández et al. 2009; Villaseñor and Escobar 2019). Identifying seasonal changes in species richness, as well as changes in community composition, will allow a better understanding of bird interactions and how the urban land is used through the year.

Green areas were the preferred environment to conduct research. This pattern has been reported by authors from Latin America (MacGregor-Fors and García-Arroyo 2017b) and the world (Chamberlain et al. 2009; Nielsen et al. 2014; Beninde et al. 2015). Although, a recent literature review on avian abundance reported a greater number of studies in the wider urban matrix (Leveau and Zuria 2017). Urban parks represent large green areas that support a high variety of birds, allowing researchers to record a greater number of species than built-up areas, which are commonly dominated by a few exotic species (e.g. Díaz and Armesto 2003; Villaseñor et al. 2020). Informal green areas have received limited attention, with only one study reporting greater species richness in vacant lands than in urban parks and residential areas in Santiago de Chile (Chiang 2019). Vacant lands are important to maintain birds in the city (Villaseñor et al. 2020; Zuñiga-Palacios et al. 2020), can support different animals, provide ecosystem services, connect humans with nature and contribute to human health and wellbeing (Riley et al. 2018).

Bird species origin

Most studies pooled together native and exotic birds to estimate bird species richness. Few studies separated species by their origin. This deficit can lead to a poor understanding on bird community changes in urban ecosystems. By studying avian responses of native and exotic birds separately researchers can, for example, identify key elements to control exotic species and improve habitat conditions for native birds (Garaffa et al. 2009; Benito et al. 2019).

Given that exotic species commonly rise with increasing urbanization, if researchers only consider total species richness or abundance, exotic species might mask the loss of native species (Van Heezik et al. 2008; Silva et al. 2015). Although, the number of exotic species is lower than the number of native species in cities from the Southern Cone, exotic species commonly dominate the built environment. Thus, the effect of exotic species is likely to be stronger on total bird abundance and species diversity indices than on species richness (Perepelizin and Faggi 2009; Benito et al. 2019; Villaseñor et al. 2020).

Among the pool of studies reviewed, three of them were particularly notable. Regarding species origin, Díaz and Armesto (2003) found that endemic species were more affected by urban development than other native birds. Chiang (2019) found that informal green spaces, which are commonly overlooked in urban ecological research, provided an important habitat for native birds. Echevarría et al. (2011) surveyed birds in the botanical garden of Miguel Lillo Foundation in the city of San Miguel de Tucumán, Argentina. Although it is a small botanical garden (less than 1 ha in size), it presents greater bird species richness than large city parks because of its high structural and compositional diversity of native plants, which contributes to preserving native birds.

Effect of predictive variables on species richness

The effect of predictive variables on bird species richness in the Southern Cone agrees with general patterns that have emerged from other continents, providing support for the development of a unified theory. Vegetation cover and plant diversity exhibited mostly positive effects on bird species richness (Estades 1995; Urquiza and Mella 2002; Leveau and Leveau 2004). Vegetation cover and diversity benefit a variety of bird species, as it provides feeding, resting and nesting sites (Chace and Walsh 2006; Evans et al. 2009; Leveau 2013; Nielsen et al. 2014; Beninde et al. 2015; Huang et al. 2015). A few studies did not find significant effects of vegetation nor plant diversity on species richness. Faggi and Perepelizin (2006) considered species richness of terrestrial and aquatic birds (pooled together). In that case, bird species richness was more related to water bodies than vegetation. In addition, not all vegetation variables were found to be relevant, such as in Chiang (2019) where native plants had a significant effect on bird species richness, but did not find a similar effect from plant cover. Urban cover, such as built-up area and impervious surfaces, as well as human-disturbance, such as vehicle traffic,
exhibited mainly negative effects on bird species richness (Germain et al. 2008). This might be due to habitat loss and the dominance of exotic species such as *Passer domesticus* and *Columba livia* in urban land (Leveau and Leveau 2004; Germain et al. 2008). These findings are consistent with other literature reviews (e.g. Marzluff et al. 2001; Chace and Walsh 2006; MacGregor-Fors and García-Arroyo 2017b).

The relationship between bird species richness and environmental variables was commonly explored, but no study considered biological interactions, spatial variables (except one), nor socio-economics. Biological interactions (e.g. predation, pollination, competition) and spatial variables (e.g. distance to the urban limit, spatial aggregation of trees) can influence bird species richness (Natuhara and Imai 1999; Silva et al. 2015; Morelli et al. 2015; Villaseñor et al. 2021). South America is characterized by large social, economic and environmental inequities; thus, it is important to investigate how socio-economics influence urban biodiversity. Urban ecology must be considered as an interdisciplinary field that not only considers biological and environmental components, but rather where natural and social science connect (McIntyre et al. 2008). The latest urban ecology paradigm of “ecology for the city” encourages ecologists to work for a sustainable urban future with a variety of specialists from different backgrounds, as well as with urban dwellers, aiming for environmental integrity, social equity and economic viability (Pickett et al. 2016).

Future research

Our review evidences clear knowledge gaps that need to be addressed. Urgently needed research in the Southern Cone of South America includes studies performed in: (1) cities in biomes such as deserts and xeric shrublands, montane grasslands and shrublands, as well as tropical grasslands, savannas and shrublands, and Mediterranean forests, woodlands and scrub; (2) small and medium size cities, especially those that are experiencing rapid and unplanned urban growth; (3) long-term research with seasonality; (4) including green spaces other than urban parks; (5) incorporating spatial, biological interactions and interdisciplinary studies that consider environmental, social and economic components of urban ecosystems.

A problem for the future that we detected from our review is the decline in studies published in the local language, because this is likely to increase the science-policy gap over time. Language barriers faced by Latin American scientists have limited their contribution in international journals, where scientists often declare facing difficulties in English writing, dissatisfaction and anxiety (Hanauer et al. 2019). However, this barrier might be lowering due to greater access to English education, training of scientists overseas and increasing international collaborations (Rodrigues et al. 2016). To ensure scientific evidence is available to local managers, urban planners, policy makers, and local communities, it is important to disseminate findings in the local language. Scientists can contribute by summarizing or synthesizing a compilation of findings from different studies to be published in local journals or magazines, writing books or book chapters, supervising thesis and making them publicly available, as well as contributing to participatory planning and management. Universities should play a leading role, not only in generating local evidence, but also in disseminating the knowledge produced (Martínez 2021), a variable that could be considered when measuring the performance of academics. In our review, open-access journals led by Ornithological Associations of Chile and Argentina have contributed to disseminating knowledge locally and should continue being a platform for urban ecological research. In addition, the development of new mechanisms to inform policy and practice, by promoting transdisciplinary research and participatory decision-making processes will aid sustainable development (Dávalos and Romo-Pérez 2017).

Urban ecology can provide data, principles, concepts, and tools to create livable and sustainable cities (Chace and Walsh 2006). Therefore, it is necessary continue to strengthen our knowledge on the factors influencing biodiversity and implement strategies to better inform management, planning and new public policies for sustainable and biodiverse cities.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s11252-021-01180-w.

Acknowledgments Authors thank scholarship from the Master in Wild Lands and Nature Conservation, from the Faculty of Forestry Sciences and Nature Conservation, Universidad de Chile, granted to CMP. NRV received funding from ANID-FONDECYT 11201045. Authors thank three reviewers for their relevant comments and Trevor Walter for proofreading the manuscript.

Author contributions CMP collected and synthesized the data, elaborated graphs and figures and wrote the manuscript. NRV conceived, designed, and wrote the manuscript.

Funding Master in Wild Lands and Nature Conservation (Faculty of Forestry Sciences and Nature Conservation, Universidad de Chile) granted to CMP. ANID-FONDECYT 11201045 granted to NRV.

Availability of data and materials Data will be made available on request.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication All authors consent to the publication of the manuscript in Urban Ecosystems, should the article be accepted by the Editor-in-Chief upon completion of the refereeing process.
Competing interests The authors declare that they have no conflict of interest.

References

Albers C (2019) Geografía Universal, Geosistemas Naturales, Biomas terrestres. Laboratorio de Geografía, Universidad de la Frontera. http://labgeo.ufrl.cl/catalogos/mundo.html

Amaya-Espinell JD, Hostetler M, Henríquez C, Bonacic C (2019) The influence of building density on Neotropical bird communities found in small urban parks. Landsc Urban Plan 190:103578. https://doi.org/10.1016/j.landurbplan.2019.05.009

Aronson MF, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, Warren PS, Williams NSG, Cilliers S, Clarkson B, Dobbs C, Dolan R, Hedblom M, Klotz S, Kooijmans JL, Kühn I, MacGregor-Fors I, McDonnell M, Mörtberg U, Pyšek P, Siebert S, Sushinsky J, Werner P, Winter M (2014) A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc B Biol Sci 281(1780):20133330. https://doi.org/10.1098/rspb.2013.3330

Barton J, Pozo R, Román Á, Salazar A (2013) Reestructuración urbana de un territorio glocalizado: una caracterización del crecimiento urbano en Colombia: revisión de literatura. Ing Cienc 9:215–1111/j.urbplan.

Benidie J, Veith M, Hochkirch A (2015) Biodiversity in cities needs drivers. Proc R Soc B Biol Sci 282(1780):20133395. https://doi.org/10.1098/rspb.2015.142. https://www.rspb.royalsocietypublishing.org/doi/pdf/10.1093/rspb/rtv350

Chace JF, Pozo R, Román Á, Salazar A (2013) Reestructuración urbana de un territorio glocalizado: una caracterización del crecimiento orgánico en las ciudades de Chiloe, 1979–2008. Rev Geogr Norte Gd 56:121–142. https://doi.org/10.1007/s00717-014-0030-0

Benidie J, Veith M, Hochkirch A (2015) Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol Lett 18(6):581–592. https://doi.org/10.1111/ele.12427

Benito JF, Escobar MAH, Villaseñor NR (2019) Conservación en la ciudad: ¿Cómo influye la estructura del hábitat sobre la abundancia de especies de aves en un metropli latinoamericano? Gayana (Concepción) 83(2):114–125. https://doi.org/10.4067/S0717-65382019000000014

Celis-Diez J, Muñoz C, Abades S, Marquet P, Armesto JJ (2017) Biocultural homogenization in urban settings: public knowledge of birds in City parks of Santiago, Chile. Sustainability. 9(4):485. https://doi.org/10.3390/su9040485

Chace JF, Walsh JJ (2006) Urban effects on native avifauna: a review. Landsc Urban Plan 74(1):46–69. https://doi.org/10.1016/j.landurbplan.2004.08.007

Chamberlain DE, Cannon AR, Toms MP, Leech DI, Hatchwell BJ, Gaston KJ (2009) Avian productivity in urban landscapes: a review and meta-analysis. IBIS 151(1):1–18. https://doi.org/10.1111/j.1477-9219.2008.00899.x

Chiang L (2019) Evaluación de sitios baldíos como espacios de conservación de aves nativas: el caso de Santiago de Chile (Evaluation of vacant sites as spaces for the conservation of native birds: the case of Santiago, Chile). Master Thesis (Doctoral dissertation, Master Thesis. Universidad de Chile, Santiago, Chile)

Dávalos J, Romo-Pérez A (2017) Ciudades sostenibles, inclusivas y resilientes: gobiernos locales y participación ciudadana en la implementación de las agendas globales para el desarrollo. INNOVA Res J 2(10):116–131. https://doi.org/10.33890/innova.v2.n10.2017.441

Delgado-Velez C, Correa-Hernandez, JC (2013) Estudios ornitológicos urbanos en Colombia: revisión de literatura. Ing Cienc 9:215–236. https://iro.uow.edu.au/smhpapers/1735

Di Giacomò AS, Krapivickas S (2005) Conserving the grassland important bird areas (IBAs) of southern South America: Argentina, Uruguay, Paraguay, and Brazil. In: Ralph CJ, Richard TD, editors. 2005. Bird Conservation Implementation and Integration in the Americas: Proceedings of the Third International Partners in Flight Conference. 2002 March 20-24; Asilomar, California, Volume 2 Gen. Tech. Rep. PSW-GTR-191. Albany, CA: US Dept. of Agriculture, Forest Service. Pacific Southwest Research Station: p. 1243–1249 (Vol. 191)

Díaz IA, Armesto JJ (2003) La conservación de las aves silvestres en ambientes urbanos de Santiago. Ambiente y Desarrollo 19(2):31–38

Díaz IA, Chávez C, Godoy-Guínao J (2018) Historia natural y uso del hábitat de las aves de paisajes urbanos en Santiago y Valdivia. Biodiversidad urbana en Chile: El estado del arte y los desafíos futuros 245–281

Echevarría A, Allende IRL, Juri MD, Chani JM, Dowdall JT, Martín E (2011) Composición, estructura y variación estacional de la comunidad de aves del Jardín Botánico de la Fundación Miguel Lillo, Tucumán, Argentina. Acta Zool Lilloana 123–136. http://www.lillo.org.ar/journals/index.php/acta-zoologica-lilloana/article/view/227

Escober-Bíazé JF, MacGregor-Fors I (2017) Chapter 2: What’s New? An Updated Review of Avian Ecology in Latin America. In: MacGregor-Fors I, Escobar-Bíazé JF (Eds.). (2017). Avian ecology in Latin American cityscapes. Springer. https://doi.org/10.1007/978-3-319-63475-3_2

Estades CF (1995) Aves y vegetación urbana, el caso de las plazas. Bol Chir Ornitol 2:7–13

Evans KL, Newson SE, Gaston KJ (2009) Habitat influences on urban avian assemblages. IBIS 151(1):19–39. https://doi.org/10.1111/j.1477-9219.2008.00898.x

Faggi A, Perepelizin P (2006) Riqueza de aves a lo largo de un gradiente de urbanización en la ciudad de Buenos Aires. Rev Mus Argent Cienc Nat Nueva Ser 8(2):289–297

Falagas ME, Pitsouni EI, Maitzitis GA, Pappas G (2008) Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. FASEB J 22(2):338–342. https://doi.org/10.1096/fj.07-9492LSF

Farinha-Marques P, Lameiras JM, Fernandes C, Silva S, Guilherme F (2011) Urban biodiversity: a review of current concepts and contributions to multidisciplinary approaches. Innov Eur J Soc Sci Res 24(3):247–271. https://doi.org/10.1080/13511610.2011.592062

Fernández B, Zulma J, Antelo CM (2009) Composición y variaciones estacionales de la avifauna en un ambiente antropizado (San Pablo, Tucumán, Argentina). Acta Zool Lilloana 98–107. http://www.lillo.org.ar/journals/index.php/acta-zoologica-lilloana/article/view/297

Gaiser EE, Bell DM, Castorani MC, Childers DL, Groffman PM, Jackson CR, Kominoski JS, Peters DPC, Pickett STA, Riplinger J, Zinnert JC (2020) Long-term ecological research and evolving frameworks of disturbance ecology. BioScience 70(2):141–156. https://doi.org/10.1093/biosci/biz162

Garaffa PI, Filloy J, Bellcoq MJ (2009) Bird community responses along urban–rural gradients: does the size of the urbanized area matter? Landsc Urban Plan 90(1–2):33–41. https://doi.org/10.1016/j.landurbplan.2008.10.004

Germain P, Cuevas YA, Sanhueza CDC, Tizón FR, Loydi A, de Villalobos AE, Zapperi GM, Vazquez MB, Pompozzi GA, Piován MJ (2008) Ensemble de aves en zonas con diferente grado de urbanización en la ciudad de Bahía. BioScriba 12:35–45. http://hdl.handle.net/11136/30436

González I, Urrutia G, Alonso-Coeelo P (2011) Revisions sistemáticas y metanálisis: bases conceptuales e interpretación. Rev Esp Cardiol 64(8):688–696. https://doi.org/10.1016/j.recesp.2011.03.029

González-Urrutia M (2009) Avifauna urbana en América latina: estudios de casos. Gestión Ambiental 17:55–68

Grau HR, Foguej J (2021) El legado de la urbanización europea en el cono sur sudamericano: Una aproximación a la historia de las telecomunicaciones sobre la ecología del territorio. Eco Austral 31(1):114–128. https://doi.org/10.25260/EA.21.31.1.01.1230

Grimm NB, Faeth SH, Both NL, Lubchenco J, Weintraub CA (2008) Global change and the ecology of cities. Springer
Guzmán-Valenzuela C, Gómez C (2019) Advancing a knowledge ecology: Changing patterns of higher education studies in Latin America. High Educ 77(1):115–133. https://doi.org/10.1007/s10734-018-0264-z

Haedo J, Blendinger PG, Gasparri NJ (2010) Estructura espacial del ensamble de aves en el gradiente de urbanización de Yerba Buena-San Miguel de Tucumán, noroeste de Argentina. Ecología de una interfase natural—urbana. La sierra de San Javier y el Gran San Miguel de Tucumán. Edited by HR Grau pp 153–166

Hanauer DI, Sheridan CL, Englander K (2019) Linguistic injustice in the writing of research articles in English as a second language: Data from Taiwanese and Mexican researchers. Writ Commun 36(1):136–154. https://doi.org/10.1111/wcon.12180

Harring AW (2010) The publish or perish book. Tarma Software Research Pty Limited, Melbourne, Australia

Henwood WD (1998) Editorial—the world’s temperate grasslands: a beleaguered biome. Parks 8(3):1–2

Hoekstra JM, Molnar JL, Jennings M, Revenga C, Spalding MD, Boucher TM, Robertson JC, Heibel TJ, Ellison K (2010) The Atlas of Global Conservation: Changes, Challenges, and Opportunities to Make a Difference (ed. Molnar JL). Berkeley: University of California Press

Huang Y, Zhao Y, Li S, Von Gadow K (2015) The effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban For Urban Green 14(4):1027–1039. https://doi.org/10.1016/j.ufug.2015.09.010

Ibaruguchi G (2014) From Southern Cone arid lands, across Atacama, to the Atiplano: biodiversity and conservation at the ends of the world. Biodiversity 15(4):255–264. https://doi.org/10.1080/14888386.2014.973446

Ikin K, Le Roux D, Rayner L, Villaseñor N, Eyles K, Gibbons P, Manning A, Lindenmayer D (2015) Key lessons for achieving biodiversity-sensitive cities and towns. Ecol Manag Restor 16(3):206–214. https://doi.org/10.1111/emr.12180

Kusch A, Cárcamo J, Gómez H (2008) Aves acuáticas en el humedal de tres ciudades costeras del sudeste de la provincia de Buenos Aires, Argentina. El Hornero 21(1):25–30.

Leveque CM, Leveque LM (2006) Ensambles de aves en arboledas de tres ciudades costeras del sudeste de la provincia de Buenos Aires, Argentina. El Hornero 21(1):25–30.

Leveque LM (2013) Bird traits in urban-rural gradients: how many functional groups are there? J Ornithol 154:655–662. https://doi.org/10.1007/s10336-012-0928-x

Leveque LM, Leveque CM (2004) Comunidades de aves en un gradiente urbano de la ciudad de Mar del Plata, Argentina. El Hornero 19(1):13–21

Leveque LM, Zuria I (2017) Flocking the city: Avian demography and population dynamics in urban Latin America. In: MacGregor-Fors I, Escobar-Ibáñez JF (Eds.) (2017) Avian ecology in Latin American citiescapes. Springer. https://doi.org/10.1007/978-3-319-63475-3_4

Lewis MP, Simons GF, Fennig CD (2014) Eds. Ethnologue: Languages of the World

MacGregor-Fors I, Escobar-Ibáñez JF (2017a) Birds from Urban Latin America, Where Economic Inequality and Urbanization Meet Biodiversity. In: MacGregor-Fors I, Escobar-Ibáñez JF (Eds.) (2017) Avian ecology in Latin American citiescapes. Springer. https://doi.org/10.1007/978-3-319-63475-3_1

MacGregor-Fors I, García-Arroyo M (2017b). Who is who in the city? Bird species richness and composition in urban Latin America. In: MacGregor-Fors I, Escobar-Ibáñez JF (Eds.) (2017) Avian ecology in Latin American citiescapes. Springer. https://doi.org/10.1007/978-3-319-63475-3_3

Magle SB, Hunt VM, Vernon M, Crooks KR (2012) Urban wildlife research: past, present, and future. Biol Conserv 155:23–32. https://doi.org/10.1016/j.biocon.2012.06.018

Manterola C, Astudillo P, Arias E, Claros N (2013) Revisiones sistemáticas de la literatura. Qué se debe saber acerca de ellas. Cir Esp 91(3):149–155. https://doi.org/10.1016/j.ciresp.2011.07.009

Martín-Martín A, Orduna-Malea E, Thelwall M, López-Cózar ED (2018) Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J Informetr 12(4):1160–1177. https://doi.org/10.1016/j.joi.2018.09.002

Martínez AL (2021) Responsabilidad social universitaria, campus y ciudades inteligentes: la colaboración entre disciplinas y entre instituciones como elementos básicos para una ciudad inteligente y sostenible. Rev Derecho Urban Medio Ambient 55(343):81–115

Marzluff JM, Bowman R, Donnelly R (2001) A historical perspective on urban bird research: trends, terms, and approaches. In: Marzluff JM, Bowman R, Donnelly R (eds) Avian ecology and conservation in an urbanizing world. Springer, New York. https://doi.org/10.1007/978-1-4615-1531-9_1

McDonald RI, Marcotullio PJ, Güneralp B (2013) Urbanization and Global Trends in Biodiversity and Ecosystem Services. In: Elmqvist T. et al. (eds) Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7088-1_3

McIntyre NE, Knowles-Yáñez K, Hope D (2008) Urban Ecology as an Interdisciplinary Field: Differences in the use of “Urban” Between the Social and Natural Sciences. In: Marzluff JM et al. (eds) Urban Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73412-5_4

McKinney ML (2002) Urbanization, Biodiversity, and Conservation: The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bioscience 52(10):883–890. https://doi.org/10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2

McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127(3):247–260. https://doi.org/10.1016/j.biocon.2005.09.005

McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11(2):161–176. https://doi.org/10.1007/s11252-007-0045-4

Mella JE, Loutit A (2007) Ecología comunitaria, estructura, diversidad y reproductiva de aves en cerros islas y parques de Santiago. Boletín Chileno de Ornitología 11(17):13–27

Menegat R (2002) Participatory democracy and sustainable development: integrated urban environmental management in Porto Alegre, Brazil. Environ Urban 14(2):181–206. https://doi.org/10.1007/s10734-002-00030-0

Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C (2011) Global Biodiversity Conservation: The Critical Role of Hotspots. In: Zachos F, Habel J (eds) Biodiversity Hotspots. Springer, Berlin. https://doi.org/10.1007/978-3-642-20992-5_1

Ministerio del Medio Ambiente (MMA) (2018) Biodiversidad de Chile. Patrimonio y Desafíos, 3rd edn, vol I. Santiago de Chile, p 430

Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente (MVOTMA) (2014) V Informe Nacional a la Conferencia de las Partes de las Convenio de Diversidad Biológica. República de Uruguay, p 134

Morelli F, Jiguet F, Reif J, Plexida S, Valli AS, Indykiewicz P, Šimová P, Tichitgh M, Moretti M, Tryjanoowski P (2015) Cuckoo and...
biodiversity: Testing the correlation between species occurrence and bird species richness in Europe. Biol Conserv 190:123–132. https://doi.org/10.1016/j.biocon.2015.06.003

Muñoz-Pedraza A, González-Urrutia M, Encina-Montoya F, Norambuena HV (2018) Effects of vegetation strata and human disturbance on bird diversity in green areas in a city in southern Chile. Avian Res 9(1):38. https://doi.org/10.1186/s40657-018-0130-9

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858. https://doi.org/10.1038/35002501

Natuara Y, Imai C (1999) Prediction of species richness of breeding birds by landscape-level factors of urban woods in Osaka Prefecture, Japan. Biodivers Conserv 8(2):239–253. https://doi.org/10.1023/A:1008869410668

Neira CF, Farias CH, Hernández VS (2011) Las revistas científicas latinoamericanas en el ISI Web of Science: una opción para académicos e investigadores. Ser Bibl Gest Inf 65:1–30

Nielsen AB, Van Den Bosch M, Maruthaveeran S, Van Den Bosch CK (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17(1):305–327. https://doi.org/10.1007/s11252-013-0316-1

Núñez MA, Barlow J, Cadotte M, Lucas K, Newton E, Pettorelli N, Stephens PA (2019) Assessing the uneven global distribution of readership, submissions and publications in applied ecology: obvious problems without obvious solutions. J Appl Ecol 56(1):4–9. https://doi.org/10.1111/1365-2664.13319

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CI, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettenegel WW, Hedao P, Kasem KR (2001) Terrestrial Ecoregions of the World: A New Map of Life on Earth A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51(11):933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Ortega-Álvarez R, MacGregor-Fors I (2009) Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landsc Urban Plan 90(3–4):189–195. https://doi.org/10.1016/j.landurbplan.2008.11.003

Ortega-Álvarez R, MacGregor-Fors I (2011a) Spreading the word: the ecology of urban birds outside the United States, Canada, and Western Europe. Auk 128(2):415–418. https://doi.org/10.1525/auk.2011.100882

Ortega-Álvarez R, MacGregor-Fors I (2011b) Dusting-off the file: A review of knowledge on urban ornithology in Latin America. Landsc Urban Plan 101(1):1–10. https://doi.org/10.1016/j.landurbplan.2010.12.020

Pauchard A, Barbosa O (2013) Regional Assessment of Latin America: Rapid Urban Development and Social Economic Inequity Threaten Biodiversity Hotspots. In: Elmquist T. et al. (eds) Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7088-1_28

Perepelizin PV, Faggi AM (2009) Diversidad de aves en tres barrios de la ciudad de Buenos Aires, Argentina. Multequina 18:71–85

Pickett ST, Cadenasso ML, Childers DL, McDonnell MJ, Zhou W (2016) Evolution and future of urban ecological science: ecology in, of, and for the city. Ecosyst Health Sustain 2(7):e01229. https://doi.org/10.1002/ehs2.1229

Pullin AS, Stewart GB (2006) Guidelines for systematic review in conservation and environmental management. Conserv Biol 20:1647–1656. https://doi.org/10.1111/j.1523-1739.2006.00485.x

Riley CB, Perry KI, Ard K, Gardiner MM (2018) Asset or liability? Ecological and sociological tradeoffs of urban spontaneous vegetation on vacant land in shrinking cities. Sustainability 10(7):2139. https://doi.org/10.3390/su10072139

Rodrigues ML, Nimrichter L, Cordero RJ (2016) The benefits of scientific mobility and international collaboration. FEMS Microbiol Lett 363(21):fnw247. https://doi.org/10.1093/femsle/fnw247

Sanderson EW, Huron A (2011) Conservation in the city. Conserv Biol 25(3):421–423. https://doi.org/10.1111/j.1523-1739.2011.01683.x

Santa Cruz JC (2012) Ciudades a la sombra de un mundo de metrópolis. Papeles de Coyuntura 32:5–7

Secretaría de Ambiente y Desarrollo Sustentable (SADYS) (2015) Quinto Informe Nacional para la Conferencia de las Partes del Convenio sobre la Diversidad Biológica (CBD). República Argentina, p 97

Silva CP, García CE, Estay SA, Barbosa O (2015) Bird richness and abundance in response to urban form in a Latin American city: Valdivia, Chile as a case study. PLoS One 10(9):e0138120. https://doi.org/10.1371/journal.pone.0138120

United Nations (2015) World population 2015. Population Division Department of Economic and Social Affairs United Nations, New York

United Nations (2019) Volume II: Demographic Profiles: World population prospects 2019: Highlights. Population Division Department of Economic and Social Affairs United Nations, New York

UNDP (2010) América Latina y El Caribe: una superpotencia de biodiversidad. Un documento de Política. United Nations Development Programme

Urquiza A, Mella J (2002) Riqueza y diversidad de aves en parques de Santiago durante el período estival. Bol Chil Ornitol 9(1):12–21

Van Heezik Y, Smyth A, Mathieu R (2008) Diversity of native and exotic birds across an urban gradient in a New Zealand city. Landsc Urban Plan 87(3):223–232. https://doi.org/10.1016/j.landurbplan.2008.06.004

Villacoeñor NR, Chiang LA, Hernández HJ, Escobar MAH (2020) Vacant lands as refuges for native birds: An opportunity for biodiversity conservation in cities. Urban For Urban Green 49:126632. https://doi.org/10.1016/j.ufug.2020.126632

Villacoeñor NR, Escobar MAH (2019) Cemeteries and biodiversity conservation in cities: how do landscape and patch-level attributes influence bird diversity in urban park cemeteries? Urban Ecosyst 22(6):1037–1046. https://doi.org/10.1007/s11252-019-00877-3

Villacoeñor NR, Escobar MAH, Hernández HJ (2021) Can aggregated patterns of urban woody vegetation cover promote greater species diversity, richness and abundance of native birds? Urban For Urban Green 61:127102. https://doi.org/10.1016/j.ufug.2021.127102

Zúñiga-Palacios J, Zuria I, Moreno CE, Almazán-Núñez RC, González-Ledesma M (2020) Can small vacant lots become important reservoirs for birds in urban areas? A case study for a Latin American city. Urban For Urban Green 47:126551. https://doi.org/10.1016/j.ufug.2019.126551