Effect of polymer and plant protectants based seed treatment on crop performance in wheat (*Triticum aestivum* L.)

Anubhav Thakur*, Karam Chand Dhiman and Rajesh Kanwar

Chaudhary Sarwan Kumar Himachal Pradesh, Krishi Vishvavidyalaya, Palampur – 176062 (Himachal Pradesh), India

Abstract

A field experiment was undertaken to extrapolate the effect of different polymer and plant protectants based seed treatment on yield and yield components of wheat (*Triticum aestivum* cv. HPW-155). Results interpret that different polymer based seed treatment had significant effect on tillers per plant, plant height (cm), spike length (cm), spikes per plant, spikelet per spike, seeds per spike, 1000-seed weight (g), seed yield per plot (kg), seed yield (q/ha) except days to 50% flowering and days to 75% maturity which had shown non-significant differences. Treatments, T6 - polymer + Vitavax 200 @ 2 g/Kg of seed and T5 - Vitavax 200 @ 2 g/Kg seed had shown significant superiority for tillers per plant, plant height (cm), spike length (cm), spikes per plant, spikelets per spike, 1000 - seed weight, seed yield per plot (kg), and seed yield (q/ha) over control (T1). Treatment T6 had shown 14.7% gain in seed yield as compared to untreated control (T1).

Keywords: Crop performance, polymer coating, seed, wheat, 1000 seed weight

1. Introduction

Wheat (*Triticum aestivum* L.) is a cereal grass of the gramineae family having its geographical origin in Middle East (Miller, 1987). It is a leading food crop that has been described as the ‘King of Cereals’ because of its acreage, high productivity and the prominent position in the International food grain trade. Wheat provides a large fraction of the dietary protein and total food supply, and is grown throughout the world, in a wide variety of climates. Modern seed production system requires a high degree of precision in crop establishment. The need for high plant population density and uniform plant stand requires high quality wheat seed that will consistently produce rapid and uniform seedlings. The use of high quality seed is among the best practices for obtaining maximum crop yield. These seeds are more likely to achieve a high performance when exposed to different environmental conditions, expressed in a high per centage and speed of emergence, good stand establishment, good initial seedling development and increased final production (Tillmann and Miranda, 2006). It is the seed physiological and sanitary quality which determines their performance in the field i.e. the proper establishment of plants that is essential for satisfactory level of productivity and final product quality (Nascimento, 2011). After sowing, seeds are still exposed to biotic and abiotic environmental factors (Delouche, 2005) and agricultural soils have many pathogenic microorganisms that may interact with seeds and seedlings (Munkvold and O’Mara, 2002) and reduce their performance by causing seed rot, root rot and seedling death (Pinto, 2000). Phytophagous insects in the soil can also damage seedlings (Girolami, 2009) and significantly reduce the plant population. Under these conditions seed treatment with polymer, fungicides and insecticides is an ideal approach for improving seed and seedling performance of wheat under field conditions. Keeping this in the view present research was formulated.
to study the effect polymer based different seed treatment on crop performance in wheat.

2. Materials and Methods

The current study was conducted at Department of Seed Science and Technology, CSKHPKV Palampur. Seed treatment was done manually during December 2018 on carry over seeds of *rabi* 2017-18 seasons and achieved uniform coating of seeds. Ten treatments viz: T1 – untreated control, T2 – polymer coating (Polykote @ 3 ml/Kg) of seed, T3 – flowable Thiram (Royal flow 40SC) @ 2.4 ml/kg, T4 – polymer + flowable Thiram (Royal flow 40 SC) @ 2.4 ml/Kg seed, T5 – polymer + Vitavax 200 (containing Thiram 37.5% and Carboxil 37.5%) @ 2 g/Kg seed, T6 – polymer + Imidacloprid (Gaucho) @ 4 ml/Kg seed, T7 – polymer + flowable Thiram (Royal flow 40 SC) @ 2.4 ml/Kg seed + Imidacloprid (Gaucho) @ 4 ml/Kg seed, T8 – polymer + Vitavax 200 (containing Thiram, 37.5% and Carboxil, 37.5%) @ 2 g/Kg of seed + Imidacloprid (Gaucho) @ 4 ml/Kg seed, T9 – polymer + flowable Thiram (Royal flow 40 SC) @ 2.4 ml/Kg seed + Imidachloprid (Gaucho) @ 4 ml/Kg seed, T10 – polymer + Vitavax 200 (containing Thiram, 37.5% and Carboxil, 37.5%) @ 2 g/Kg of seed + Imidachloprid (Gaucho) @ 4 ml/Kg seed were evaluated in randomized block design (RBD) with three replications after one year of storability. Ten plants from each plot were selected randomly to record the data on days to 50% flowering. Days taken to 50% flowering were significantly influenced by different seed treatments. Significantly higher spike number was observed for the treatment T6 (46.50) followed by T9 (45.50), T4 (45.00), T7 (44.50), T10 (44.00), T3 (43.50), T2 (43.00), T5 (42.50) and T1 (42.25) (Table 1). Similar results were reported by Tiwari et al. (2015) in wheat.

The spike length was significantly influenced by different seed treatments. Significantly higher spike length was recorded for T6 (12.30 cm) followed by T1 (11.73 cm), T2 (11.13 cm), T3 (10.44 cm), T9 (9.83 cm), T7 (9.46 cm), T8 (8.86 cm), T10 (8.57) and T1 (8.28 cm) (Table 1). Significantly higher spikes per plant was observed for the treatment T6 (46.60) followed by T1 (42.20), T9 (38.00), T7 (35.2), T10 (3.20), T3 (2.97), T2 (2.75), T5 (2.54) and T4 (2.33) (Table 1). Similar results are recorded by Tiwari et al. (2015) in wheat.

The number of tillers per plant recorded was significantly influenced by different seed treatments. Significantly higher tillers per plant over T1 - control (2.40) was observed for the treatment T6 - (4.80), followed by T5 - (4.46), T3 - (3.93), T7 - (3.60), T10 - (3.40), T2 - (3.20), T4 - polymer + flowable Thiram @ 3 ml/Kg of seed (3.00), T6 - (2.80) and T1 - (2.65) (Table 1). Similar results are recorded by Tiwari et al. (2015) and Freiberg et al. (2020) in wheat. Plant height varied significantly for all the treatments. Average plant height recorded was 95.54 cm. Significantly higher plant height in comparison to T1 - control (92.00 cm) was recorded for treatment T6 - (98.47 cm) followed by T5 - (98.00 cm), T3 - (97.44 cm), T9 - (96.56 cm), T10 - (95.93 cm), T7 - (95.16 cm), T8 - (94.70 cm), T2 - (94.00) and T4 - (93.23 cm) (Table 1). Similar results were reported by Sumalata et al. (2017) and Sharma et al. (2017) in maize.

The average weight of 1000 seeds recorded for all treatments in comparison to T1 - control (47.92 g) was 49.11 g. Similarly higher 1000 seed weight was recorded for all the treatments in comparison to T1 - control (47.92 g). T6 (51.37 g) of seed exhibited highest 1000 seed weight followed by T5 (50.77 g), T3 (50.22 g), T7 (49.83 g), T10 (49.34 g), T3 (49.00 g), T4 (48.33 g), T9 (47.92 g)
Table. 1 Effect of different seed treatments on crop performance in wheat

Treatments	DAS 50% flowering	Days to 75% maturity	Tillers/plant	Plant height (cm)	Spike length (cm)	Spikes/plant	Spikelets/spike	Seeds/spike	1000 seed weight	Seed yield/plot	Seed yield (q/ha)
T1	126.00	167.00	2.40	92.00	8.00	2.10	16.80	42.00	47.00	1.50	45.45
T2	124.00	165.00	3.00	94.70	8.86	2.75	17.20	43.00	48.33	1.59	48.18
T3	124.00	165.00	3.20	95.16	9.46	2.97	17.40	43.50	49.00	1.61	48.78
T4	126.00	166.00	2.65	93.23	8.28	2.33	16.90	42.25	47.37	1.55	46.96
T5	124.00	165.00	4.46	98.00	11.73	4.20	18.20	45.50	50.77	1.70	51.51
T6	123.00	164.00	4.80	98.47	12.30	4.60	18.60	46.50	51.37	1.72	52.12
T7	124.00	165.00	3.60	96.56	10.44	3.52	17.80	44.50	49.83	1.65	50.00
T8	124.00	165.00	3.93	97.44	11.13	3.80	18.00	45.00	50.22	1.67	50.60
T9	125.00	166.00	2.80	94.00	8.57	2.54	17.00	42.50	47.92	1.57	47.57
T10	124.00	165.00	3.40	95.93	9.93	3.20	17.60	44.00	49.34	1.63	49.39
Mean	125.40	165.40	3.42	95.54	9.87	3.20	17.55	43.87	49.11	1.62	49.06
C.V.	0.881	0.775	3.05	0.27	1.66	4.68	0.35	0.36	0.64	0.31	0.32
SE(m)	0.632	0.740	0.06	0.15	0.09	0.09	0.03	0.09	0.18	0.003	0.093
C.D.	NS	NS	0.18	0.45	0.28	0.20	0.10	0.20	0.54	0.001	0.27

T1 – control (untreated seeds), T2 – polymer coating (polykote @ 3ml/Kg of seed, diluted with 5 ml of water), T3 – flowable Thiram (Royal flow 40 SC) @ 2.4 ml/Kg seed, T4 – polymer + flowable Thiram (Royal flow 40 SC) @ 2.4 ml/Kg seed, T5 – Vitavax 200 (containing Thiram 37.5% and Carboxyl 37.5%) @ 2 g/Kg seed, T6 – polymer + Vitavax 200 (containing Thiram 37.5% and Carboxyl 37.5%) @ 2 g/Kg seed, T7 – Imidacloprid (Gaucho) @ 4 ml/Kg seed, T8 – polymer + Imidacloprid (Gaucho) @ 4 ml/Kg seed, T9 – polymer + flowable Thiram (Royal flow 40 SC) @ 2.4 ml/Kg seed + Imidacloprid @ 4 ml/Kg seed, T10 – polymer + Vitavax 200 (containing Thiram 37.5% and Carboxyl 37.5%) @ 2 g/Kg of seed + Imidacloprid (Gaucho) 4 ml/Kg seed
Effect of polymer and plant protectants in wheat

Average seed yield per plot across various treatments was recorded as 1.62 Kg per plot. Significantly higher seed yield per plot in comparison to T_1 control (1.50 Kg) was recorded for treatment T_6 (1.72 Kg), followed by T_5 (1.70 Kg), T_8 (1.67 Kg), T_7 (1.65 Kg), T_10 (1.63 Kg), T_3 (1.61 Kg), T_2 (1.59 Kg), T_9 (1.57 Kg), and T_4 (1.55 Kg) (Table 1). Similar results were reported by Chikkanna et al. (2000) in groundnut, Shakuntla et al. (2010) in sunflower, Sumalata et al. (2017) in maize, and Sharma et al. (2017) in maize. The seed yield per hectare was computed from the seed yield per plot. Significantly higher seed yield (q/ha) in comparison to T_1 control (45.45 unit q/ha) was recorded in T_6 (52.12 q), followed by T_5 (51.51 q), T_8 (50.60 q), T_7 (49.39 q), T_3 (48.78 q), T_2 (48.18 q), T_9 (47.57 q), and T_4 (46.96 q) (Table 1 & Fig 1). Similar results are reported by Kumar et al. (2014) in pigeon pea, Tiwari et al. (2015) in wheat, Sumalata et al. (2017), Bony et al. (2017) in soybean and Sharma et al. (2017) in maize.

During present study better spikes per plant, spikelets per spike, 1000-seed weight and seed yield (q/ha) was recorded for seed treatments with polymer and fungicides. Therefore, seed treatments with polymer and fungicides could be used to enhancing seed yield of wheat seeds.

4. Conclusion

Results had shown that different polymer based seed treatment had significant effect on tillers per plant, plant height (cm), spike length (cm), spikes per plant, spikelet per spike, seeds per spike, 1000-seed weight (g), seed yield per plot (Kg), seed yield (q/ha) except days to 50% flowering and days to 75% maturity which had shown non-significant differences. Treatment T_6 polymer + Vitavax 200 @ 2 g/Kg of seed and T_3 Vitavax 200 @ 2 g/Kg seed had shown significant superiority for tillers per plant, plant height (cm), spike length (cm), spikes per plant, spikelets per spike, 1000 - seed weight, seed yield per plot (Kg), and seed yield (q/ha) over control (T_1). Polymer based seed treatment (T_6) had shown 14.7% gain in seed yield over control (T_1) followed by 13.3% under treatment T_3 Vitavax 200 @ 2 g/Kg seed (Fig 1).

Acknowledgements

The authors are thankful to the Department of Seed Science and Technology, CSKHPKV, Palampur for providing necessary laboratory facility and support for carrying out the study.

Conflict of Interest

Authors declare that they have no conflict of interests.

Ethical Compliance Statement

NA

Author’s Contribution

Conceptualization of research (AT, KCD, RK); Designing of the experiments (KCD, RK, AT); Contribution of experimental materials (KCD, AT); Execution of field/lab experiments and data collection (AT, KCD, RK); Analysis of data and interpretation (KCD, RK, AT); Preparation of the manuscript (AT, KCD, RK).

5. References

1. Bony RK, B Rajeswari, K Jhansi and K Keshavulu. 2017. Effect of seed coating polymer on biochemical constituent of soybean (Glycine max L.). International Journal of Chemical Studies 5: 1663-166
2. Chikkanna CS, Timmegouda and R Ramesh. 2000. Hydrophilic polymer seed treatment on seed quality and yield in finger millet, cowpea and groundnut. Seeds and Farms 85: 39-45
3. Delouhe JC. 2005. Seed quality and performance. Seed News 9:34-35
4. Freiberg JA, MP Ludwig, L Decarli, E Girotto and L Navarini. 2017. Physiological quality, initial establishment and wheat yield according to the seed treatment method. *Pesquisa Agropecuária Tropical* 47: 448-455. https://doi.org/10.1590/1983-40632017v4749214

5. Girolami V, L Mazzon, A Squartini, N Mori, M Marzaro, A Bernardo, M Greatti, C Giorio and A Tapparo. 2009. Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees. *Journal of Economic Entomology* 5:1808-1815. https://doi.org/10.1093/jee/5.6.1808

6. Miller TE. 1987. Systematics and evolution. In *Wheat breeding* (pp. 1-30). Springer, Dordrecht https://doi.org/10.1007/978-94-009-3131-2_1

7. Munkvold GP and JK O’Mara. 2002. Laboratory and growth chamber evaluation of fungicidal seed treatments for maize seedling blight caused by *Fusarium* species. *Plant Disease* 86:143-15. https://doi.org/10.1094/PDIS.2002.86.2.143

8. Nascimento WM, DCFS Dias and PP Silva. 2011. Seed quality and establishment of Jatroha plants in the field. *Hortalicas: tecnologia de producao de sementes. Embrapa Hortalicas as Bras.* 79-106

9. Raju PK. 2019. Seed treatment and polymer coating effect on germination, seedling vigour, field performance and yield of hybrid maize. MSc thesis, Department of Seed Science and Technology, Acharya N.G. Ranga Agricultural University, Guntur, India.

10. Selvakumar R, MS Saharan, S Kumar, RS Taya and I Sharma. 2015. Efficacy of fungicides as seed treatment and foliar application for managing leaf blight (*Bipolaris sorokiniana*) on wheat (*Triticum aestivum* L). *Journal of Wheat Research* 7 (2):14-18

11. Sharma J, KC Dhiman, JK Sharma, and R Kumar. 2017. Effect of seed coating on seed yield and related parameters in quality protein maize hybrid HQPM 1. *Himachal Journal of Agricultural Research* 43: 68-72

12. Sheoran OP, DS Tonk, LS Kaushik, RC Hasija and RS Pannu. 1998. Statistical Software Package for Agricultural Research Workers. Recent Advances in information theory, Statistics & Computer Applications by DS Hooda & RC Hasija, Department of Mathematics Statistics, CCS HAU, Hisar pp 139-143

13. Sumalata B, Parashivamurthy and R Siddaraju. 2017. Effect of seed coating polymers on growth and yield of maize hybrid Hema. *Mysore Journal of Agricultural Sciences* 51: 108-112

14. Tillmann, MAA and Miranda DM. 2006. Seed analysis. *Seeds: Scientific and Technological Foundations*: 159-255

15. Tiwari TN, kamal D and Singh RK. 2015. Enhancement of seed quality, growth and yield of wheat (*Triticum aestivum* L) through polymer seed coating. *International Journal of Agricultural Sciences* 11: 99-103. DOI : 10.15740/HAS/IJAS/11.1/99-103.