Optimal preconditioners for systems defined by functions of Toeplitz matrices

Sean Hon

Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford, OX2 6GG, United Kingdom

Abstract

We propose several circulant preconditioners for systems defined by some functions g of Toeplitz matrices A_n. In this paper we are interested in solving $g(A_n)x = b$ by the preconditioned conjugate method or the preconditioned minimal residual method, namely in the cases when $g(z)$ are the functions e^z, $\sin z$ and $\cos z$. Numerical results are given to show the effectiveness of the proposed preconditioners.

Keywords: Toeplitz matrices, Functions of matrices, Circulant preconditioners, PCG, PMINRES

MSC: 65F08, 65F10, 65F15, 15A16, 15B05

1. Introduction

Motivated by [16] in which the authors proposed some optimal preconditioners for certain functions of general matrices, we show that $g(c(A_n))$, where $c(A_n)$ is the optimal circulant preconditioner for A_n first proposed in [9], is an effective preconditioner for $g(A_n)$. Specifically we are interested in the cases when $g(z)$ are the trigonometric functions e^z, $\sin z$ and $\cos z$.

A crucial application of e^{A_n}, for example, arises from the discretisation of integro-differential equations with a shift-invariant kernel [17]. Solving those equations is often required in areas such as the option pricing [12, 28]. Related work on computing the exponential of a block Toeplitz matrix arising in approximations of Markovian fluid queues can also be found in [2].
Over the past few decades, preconditioning for Toeplitz matrices with circulant matrices has been extensively studied. Strang [30] and Olkin [22] were the first to propose using circulant matrices as preconditioners in this context. Theoretical results that guarantee fast convergence with circulant preconditioners were later given by [7]. Other circulant preconditioners such as optimal preconditioners [9], Huckle’s preconditioners [14] and superoptimal preconditioners [31] were then developed for certain classes of Hermitian and positive definite Toeplitz matrices generated by positive functions f. The restriction on f was later relaxed for example in [5, 29, 11]. Some work had also been done on preconditioning for Hermitian indefinite Toeplitz systems [6], non-Hermitian Toeplitz systems [15] and nonsymmetric Toeplitz systems [25]. For references on the development of preconditioning of Toeplitz matrices we refer to [20, 4].

Throughout this work we consider the case when f is a 2π-periodic continuous complex-valued function as analysed in [8], thus the corresponding Toeplitz matrix $A_n[f]$ is in general complex and non-Hermitian. Consequently $g(A_n[f])$ is also a non-Hermitian complex matrix. We let $c_n[f]$ be the optimal circulant preconditioner [9] derived from $A_n[f]$. Using $g(c_n[f])$ as the preconditioner, we can then apply CG to the normal equations system

$$[g(c_n[f])^{-1}g(A_n[f])^*g(c_n[f])^{-1}g(A_n[f])]x = [g(c_n[f])^{-1}g(A_n[f])^*g(c_n[f])^{-1}b].$$

We also consider the special case in which we can use MINRES for the Hermitian indefinite $g(A_n[f])$ with the preconditioner $g(c_n[f])$.

Given a circulant matrix C_n, we remark that $g(C_n)$ is also a circulant matrix. By the diagonalisation $C_n = F_n^*A_nF_n$, where F_n is a Fourier matrix [10] in which the entries are given by $[F_n]_{jk} = \frac{1}{\sqrt{n}}e^{-2\pi ijk/n}$ with $j, k = 0, 1, \ldots, n - 1$, we have

$$g(C_n) = F_n^*g(A)F_n.$$

Therefore, for any vector d the product $g(C_n)^{-1}d$ can be efficiently computed by several Fast Fourier Transforms (FFTs) in $O(n \log n)$ operations [3].

It must be noted however that fast matrix vector multiplication with the matrix $g(A_n[f])$ is not readily archived by circulant embedding. For $e^{A_n[f]}$, the matrix vector multiplication can be computed efficiently for example by a fast algorithm in $O(n \log n)$ operations [18].

This paper is outlined as follows. In section 2 we first provide some lemmas on bounds for the spectra of $A_n[f]$ and $c_n[f]$. In section 3 we also give several lemmas on functions of matrices. In section 4 we provide the
main results on the preconditioned matrix \(g(c_n[f])^{-1}g(A_n[f]) \). In section 5 we present numerical results to demonstrate the effectiveness of the proposed preconditioners.

2. Spectra of \(c_n[f] \) and \(A_n[f] \)

Denote by \(C_{2\pi} \) the Banach space of all \(2\pi \)-periodic continuous complex-valued functions equipped with the supremum norm \(\| \cdot \|_\infty \). For all \(f \in C_{2\pi} \), we let

\[
a_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta)e^{-ik\theta} d\theta, \quad k = 0, \pm 1, \pm 2, \ldots,
\]

be the Fourier coefficients of \(f \). Let \(A_n[f] \) be the \(n \)-by-\(n \) complex Toeplitz matrix with the \((j,k)\)-th entry given by \(a_{j-k} \). The function \(f \) is called the generating function of the matrix \(A_n[f] \). We then have

\[
A_n[f] = \begin{bmatrix}
a_0 & a_{-1} & \cdots & a_{-n+2} & a_{-n+1} \\
a_{-1} & a_0 & a_{-1} & \cdots & a_{-n+2} \\
\vdots & a_1 & a_0 & \cdots & \vdots \\
a_{n-2} & \cdots & \cdots & a_1 \\
a_{n-1} & a_{n-2} & \cdots & a_1 & a_0
\end{bmatrix}.
\]

We also let \(c_n[f] \) be the \(n \)-by-\(n \) optimal circulant preconditioner \([9]\) for \(A_n[f] \), namely

\[
c_n[f] = \begin{bmatrix}
c_0 & c_{n-1} & \cdots & c_2 & c_1 \\
c_1 & c_0 & c_{n-1} & \cdots & c_2 \\
\vdots & c_1 & c_0 & \cdots & \vdots \\
c_{n-2} & \cdots & \cdots & c_1 \\
c_{n-1} & c_{n-2} & \cdots & c_1 & c_0
\end{bmatrix}
\]

defined by

\[
c_k = \begin{cases}
(n-k)a_k + ka_{k-n}, & 0 \leq k < n, \\
c_{n+k}, & -n < k < 0.
\end{cases}
\]

Lemma 2.1. \([8, Lemma 1 and 3]\) If \(f \in C_{2\pi} \) we have

\[
\|A_n[f]\|_2 \leq 2\|f\|_\infty \quad \text{and} \quad \|c_n[f]\|_2 \leq 2\|f\|_\infty \quad n = 1, 2, \ldots.
\]
Lemma 2.1 states that the 2-norm of the circulant matrix and that of the Toeplitz matrix generated by \(f \) are bounded by a constant which is independent of \(n \).

Lemma 2.2. [[8, Theorem 1]] Let \(f \in C_{2\pi} \). Then for all \(\epsilon > 0 \) there exists a positive integer \(M > 0 \) such that for \(n > 2M \), we have

\[
c_n[p_M] - A_n[p_M] = U_n - W_n,
\]

where \(p_M \) is a trigonometric polynomial such that \(\|f - p_M\|_\infty < \epsilon \), \(A_n[p_M] \in \mathbb{C}^{n \times n} \) is the Toeplitz matrix generated by \(p_M \), \(c_n[p_M] \in \mathbb{C}^{n \times n} \) is the optimal circulant preconditioner for \(A_n[p_M] \),

\[
\text{rank} \ U_n \leq 2M
\]

and

\[
\|W_n\|_2 \leq \frac{1}{n} M(M + 1)(\epsilon + \|f\|_\infty).
\]

Lemma 2.2 indicates that the difference between the circulant matrix and the Toeplitz matrix generated by a trigonometric approximation to \(f \) can be decomposed into the sum of a matrix of low rank and a matrix of small norm. In the next section, this lemma is used to prove that the difference between the matrix exponential of a circulant matrix and that of a Toeplitz matrix can also be decomposed in a similar fashion.

3. Preliminaries on matrix functions

In this section we introduce the preliminaries that will be used in the following section.

Definition [[13]] For any \(A_n \in \mathbb{C}^{n \times n} \),

\[
e^{A_n} = I_n + A_n + \frac{1}{2!} A_n^2 + \frac{1}{3!} A_n^3 + \cdots,
\]

\[
\cos A_n = I_n - \frac{1}{2!} A_n^2 + \frac{1}{4!} A_n^4 - \frac{1}{6!} A_n^6 + \cdots
\]

and

\[
\sin A_n = A_n - \frac{1}{3!} A_n^3 + \frac{1}{5!} A_n^5 - \frac{1}{7!} A_n^7 + \cdots.
\]
Lemma 3.1. [13, Theorem 10.2] For any $A_n, B_n \in \mathbb{C}^{n \times n}$
\[e^{(A_n+B_n)t} = e^{A_n t} e^{B_n t} \]
for all t if and only if $A_n B_n = B_n A_n$.

Definition [13] Given a vector norm on \mathbb{C}^n, the corresponding \textit{subordinate matrix norm} is defined by
\[\| A_n \| = \max_{x \neq 0} \frac{\| A_n x \|}{\| x \|}. \]

Definition [13] The norm $\| \cdot \|$ is called \textit{consistent} if
\[\| AB \| \leq \| A \| \| B \| \]
for all $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p}$.

Lemma 3.2. [13, Problem 10.3] For any subordinate matrix norm and any $A_n, B_n \in \mathbb{C}^{n \times n}$, we have
\[\| e^{A_n} - e^{B_n} \| \leq \| A_n - B_n \| e^{\max(\| A_n \|, \| B_n \|)}. \]

Lemma 3.3. [13, Theorem 10.1] For $A_n \in \mathbb{C}^{n \times n}$, let
\[P_{r,s} = \sum_{i=0}^{r} \frac{1}{i!} \left(\frac{A_n}{s} \right)^i s. \]

Then for any consistent matrix norm
\[\| e^{A_n} - P_{r,s} \| \leq \| A_n \|^{r+1} \frac{e^{\| A_n \|}}{s^r (r+1)!} \]
and
\[\lim_{r \to \infty} P_{r,s} = \lim_{s \to \infty} P_{r,s} = e^{A_n}. \]

Lemma 3.4. [13, Theorem 10.10] For $A_n \in \mathbb{C}^{n \times n}$ and any subordinate matrix norm,
\[e^{-\| A_n \|} \leq \| e^{A_n} \| \leq e^{\| A_n \|} \quad n = 1, 2, \ldots. \]

Lemma 3.5. [24] For any circulant matrix $C_n \in \mathbb{C}^{n \times n}$, the \textit{absolute value circulant matrix} $|C_n|$ is defined to be
\[|C_n| = (C_n^* C_n)^{\frac{1}{2}} = (C_n C_n^*)^{\frac{1}{2}} = F_n^* |\Lambda_n| F_n, \]
where $|\Lambda_n|$ is the diagonal matrix in the eigenvalue decomposition of C_n with all entries replaced by their magnitudes.
4. Spectra of the preconditioned matrices

In this section, for Hermitian $g(A_n[f])$ we show the preconditioned matrix

$$g(c_n[f])^{-1}g(A_n[f])$$

can be decomposed into the sum of a unitary matrix, a matrix of low rank and a matrix of small norm for sufficiently large n under some assumptions. For non-Hermitian $g(A_n[f])$, we consider its normal equations system and also show that the preconditioned matrix can also be decomposed in a similar way.

4.1. Spectra of $(e^{c_n[f]} - e^{A_n[f]})^{-1}$

We first provide some lemmas concerning to the matrix exponential and then give the main results concerning to the preconditioned matrix $(e^{c_n[f]} - e^{A_n[f]})^{-1}$.

Corollary 4.1. Let $f \in C_{2\pi}$. Let $A_n[f] \in \mathbb{C}^{n \times n}$ be the Toeplitz matrix generated by f and $c_n[f] \in \mathbb{C}^{n \times n}$ be the optimal circulant preconditioner for $A_n[f]$. We have

$$\| (e^{c_n[f]} - 1)^{-1} \|_2 \leq e^{2\|f\|_{\infty}} \quad n = 1, 2, \ldots.$$

Proof By Lemma 3.1, we have

$$e^{c_n[f]}e^{-c_n[f]} = e^{c_n[f] - c_n[f]} = I_n.$$

Thus $e^{-c_n[f]}$ is the inverse of $e^{c_n[f]}$. We then have

$$\| (e^{c_n[f]} - 1)^{-1} \|_2 = \| e^{-c_n[f]} \|_2.$$

Using lemmas 2.1 and 3.4, we have

$$\| e^{-c_n[f]} \|_2 \leq e^{\|c_n(f)\|_2} \leq e^{2\|f\|_{\infty}}.$$

□

We are now ready to give our main results on the spectrum of $(e^{c_n[f]} - 1)e^{A_n[f]}$.

Theorem 4.2. Let $f \in C_{2\pi}$. Let $A_n[f] \in \mathbb{C}^{n \times n}$ be the Toeplitz matrix generated by f and $c_n[f] \in \mathbb{C}^{n \times n}$ be the optimal circulant preconditioner for $A_n[f]$. For all $\epsilon > 0$, there exist positive integers N and M such that for all $n > N$

$$e^{c_n[f]} - e^{A_n[f]} = R_n[f] + E_n[f],$$

where

$$\text{rank } R_n[f] \leq 2M,$$

$$\| E_n[f] \|_2 \leq \epsilon.$$

6
Proof Since \(f \in C_{2\pi} \), by Weierstrass theorem [26, Theorem 6.1], for any \(\epsilon > 0 \) there exists \(M \in \mathbb{N} \) and a trigonometric polynomial

\[
p_M(\theta) = \sum_{k=-M}^{k=M} \rho_k e^{ik\theta}
\]

such that

\[
\| f - p_M \|_{\infty} \leq \epsilon. \tag{1}
\]

For all \(n > 2M \) we decompose

\[
e^{cn[f]} - e^{A_n[f]} = \underbrace{e^{cn[f]} - e^{cn[p_M]}}_{G_1} + \underbrace{e^{cn[p_M]} - e^{A_n[p_M]}}_{B} + \underbrace{e^{A_n[p_M]} - e^{A_n[f]}}_{G_2},
\]

where \(A_n[p_M] \in \mathbb{C}^{n \times n} \) is the Toeplitz matrix generated by \(p_M \) and \(c_n[p_M] \in \mathbb{C}^{n \times n} \) is the optimal circulant preconditioner for \(A_n[p_M] \).

We first want to show that \(G_1 + G_2 \) is of small norm. Using Lemmas 2.1, 3.2 and (1) we have

\[
\| G_1 + G_2 \|_2 \leq \| e^{cn[f]} - e^{cn[p_M]} \|_2 + \| e^{A_n[f]} - e^{A_n[p_M]} \|_2
\]

\[
\leq \| c_n[f] - c_n[p_M] \|_2 e^{\max(\| c_n[f] \|_2, \| c_n[p_M] \|_2)} + \| A_n[f] - A_n[p_M] \|_2 e^{\max(\| A_n[f] \|_2, \| A_n[p_M] \|_2)}
\]

\[
\leq (\| c_n[f] - c_n[p_M] \|_2 + \| A_n[f] - A_n[p_M] \|_2) e^{2\max(\| f \|_{\infty}, \| p_M \|_{\infty})}
\]

\[
\leq (2 \| f - p_M \|_{\infty} + 2 \| f - p_M \|_{\infty}) e^{2\max(\| f \|_{\infty}, \| p_M \|_{\infty})}
\]

\[
\leq (4 e^{2\max(\| f \|_{\infty}, \| p_M \|_{\infty})}) \epsilon. \tag{2}
\]

We further rewrite

\[
B = e^{cn[p_M]} - \sum_{i=0}^{K} \frac{1}{i!} c_n[p_M]^i + \sum_{i=0}^{K} \frac{1}{i!} c_n[p_M]^i - \sum_{i=0}^{K} \frac{1}{i!} A_n[p_M]^i + \sum_{i=0}^{K} \frac{1}{i!} A_n[p_M]^i - e^{A_n[p_M]},
\]

where \(K \) is a positive integer.

We are now to measure the norm of \(B_1 + B_2 \). Using Lemmas 2.1, 3.3 and
we have

\[\| B_1 + B_2 \|_2 \leq \| e^{c_n[pM]} - \sum_{i=0}^{K} \frac{1}{i!} c_n[pM]^i \|_2 + \| \sum_{i=0}^{K} \frac{1}{i!} A_n[pM]^i - e^{A_n[pM]} \|_2 \]

\[\leq \frac{\| c_n[pM] \|_2^{K+1}}{(K+1)!} \epsilon^{\| c_n[pM] \|_2} + \frac{\| A_n[pM] \|_2^{K+1}}{(K+1)!} \epsilon^{\| A_n[pM] \|_2} \]

\[\leq \frac{\| c_n[pM] \|_2^{K+1}}{(K+1)!} + \frac{\| A_n[pM] \|_2^{K+1}}{(K+1)!} \epsilon^{2\| pM \|_\infty} \]

\[\leq \frac{2\| pM \|_\infty^{K+1}}{(K+1)!} 2\epsilon^{2\| pM \|_\infty} =: \epsilon_K \]

which converges to zero as \(K \) goes to infinity. Therefore for a given \(\epsilon_K > 0 \), there exists an integer \(K \) such that

\[\| B_1 + B_2 \|_2 \leq \epsilon_K \leq \epsilon. \] \hspace{1cm} \text{(3)}

We next show that \(D \) can be decomposed into a sum of a matrix of low rank and a matrix of small norm. Firstly, we observe that

\[c_n[pM] - A_n[pM] = U_n - W_n, \]

where

\[
U_n = \begin{bmatrix}
\frac{n-M}{n} \rho_M & \cdots & \frac{n-1}{n} \rho_1 \\
\vdots & \ddots & \vdots \\
\frac{n-M}{n} \rho_{-M} & \cdots & \frac{n-M}{n} \rho_M
\end{bmatrix}
\]
and

\[W_n = \begin{bmatrix}
0 & \frac{1}{n} \rho_{-1} & \cdots & \frac{M}{n} \rho_{-M} \\
\frac{1}{n} \rho_1 & \ddots & \ddots & \cdots \\
\vdots & & \ddots & \ddots \\
\frac{M}{n} \rho_M & \cdots & \cdots & \frac{M}{n} \rho_{-M}
\end{bmatrix}. \]

Rewrite \(D \) as

\[
D = \sum_{i=0}^{K} \frac{1}{i!} c_n[p_M]^i - \sum_{i=0}^{K} \frac{1}{i!} A_n[p_M]^i \\
= \sum_{i=1}^{K} \frac{1}{i!} (c_n[p_M]^i - A_n[p_M]^i) \\
= \sum_{i=1}^{K} \frac{1}{i!} \left(\sum_{j=0}^{i-1} c_n[p_M]^j (U_n - W_n) A_n[p_M]^{i-1-j} \right) \\
= \sum_{i=1}^{K} \frac{1}{i!} \left(\sum_{j=0}^{i-1} c_n[p_M]^j U_n A_n[p_M]^{i-1-j} \right) + \sum_{i=1}^{K} \frac{1}{i!} \left(\sum_{j=0}^{i-1} c_n[p_M]^j W_n A_n[p_M]^{i-1-j} \right).
\]

\[R_n[f] \]
Using Lemmas 2.1 and 2.2, we can estimate the norm of J:

$$
\|J\|_2 = \| \sum_{i=1}^{K} \frac{1}{i!} \sum_{j=0}^{i-1} c_n[p_M]^j W_n A_n[p_M]^{i-1-j} \|_2 \\
\leq \sum_{i=1}^{K} \frac{1}{i!} \| \sum_{j=0}^{i-1} c_n[p_M]^j W_n A_n[p_M]^{i-1-j} \|_2 \\
\leq \| W_n \|_2 \sum_{i=1}^{K} \frac{1}{i!} \sum_{j=0}^{i-1} \| c_n[p_M] \|_2 \| A_n[p_M] \|_2 \|^{i-1-j} \\
\leq \| W_n \|_2 \sum_{i=1}^{K} \frac{1}{i!} \sum_{j=0}^{i-1} (2\|p_M\|_\infty)^j (2\|p_M\|_\infty)^{i-1-j} \\
= \| W_n \|_2 \sum_{i=1}^{K} \frac{1}{(i-1)!} (2\|p_M\|_\infty)^{i-1} \\
\leq \| W_n \|_2 e^{2\|p_M\|_\infty} (\epsilon + \|f\|_\infty) e^{2\|p_M\|_\infty} \\
\leq \frac{1}{n} M (M + 1) (\epsilon + \|f\|_\infty) e^{2\|p_M\|_\infty}. \quad (4)
$$

We now show that rank $R_n[f] \leq 2KM$ by first investigating the structure of $R_n[f]$. Similar to the approach used in the proof of Lemma 3.11 in [21], simple computations show that

$$
c_n[p_M]^{\alpha} U_n A_n[p_M]^{\beta} =
\begin{bmatrix}
\Diamond & \cdots & \Diamond & \cdots & \Diamond \\
\vdots & \Diamond & \cdots & \Diamond & \cdots \\
\Diamond & \cdots & \Diamond & \cdots & \Diamond \\
\end{bmatrix},
$$
where the diamonds represent the non-zero entries which appear only in the four \((\alpha + 1)M\) by \((\beta + 1)M\) blocks in the corners, provided that \(n\) is larger than \(2 \max(\alpha + 1, \beta + 1)M\). Since the rank of
\[
R_n[f] = \sum_{i=1}^{K} \frac{1}{i!} \left(\sum_{j=0}^{i-1} c_n[p_M]^{j} U_n A_n[p_M]^{i-1-j} \right)
\]
is determined by that of \(\sum_{j=0}^{K-1} c_n[p_M]^{j} U_n A_n[p_M]^{K-1-j}\) which is a block matrix with only four non-zero \(KM\) by \(KM\) blocks in its corners, it follows that the rank of \(R_n[f]\) is less than or equal to \(2KM\) if we assume \(n > 2KM\).

Considering (4), we pick
\[
N := \max \{ M(M + 1)(1 + \frac{\|f\|_{\infty}}{\epsilon})e^{2\|p_M\|_{\infty}}, 2KM \},
\]
and it follows that for all \(n > N\) we have \(\|J\|_2 \leq \epsilon\). Further combining this result with (2) and (3), we conclude that for all \(n > N\)
\[
\|E_n[f]\|_2 = \|G_1 + B_1 + J + B_2 + G_2\|_2 \leq (4e^{2\max(\|f\|_{\infty},\|p_M\|_{\infty})} + 2)\epsilon.
\]

\[\square\]

Corollary 4.3. Let \(f \in C_{2\pi}\). Let \(A_n[f] \in \mathbb{C}^{n \times n}\) be the Toeplitz matrix generated by \(f\) and \(c_n[f] \in \mathbb{C}^{n \times n}\) be the optimal circulant preconditioner for \(A_n[f]\). For all \(\epsilon > 0\), there exist positive integers \(N\) and \(M\) such that for all \(n > N\)
\[
(e^{c_n[f]} - 1) e^{A_n[f]} = I_n + \hat{R_n}[f] + \hat{E_n}[f],
\]
where
\[
\text{rank } \hat{R_n}[f] \leq 2M, \\
\|\hat{E_n}[f]\|_2 \leq \epsilon.
\]

Proof By Theorem 4.2, we know that for all \(\epsilon > 0\), there exist positive integers \(N\) and \(M\) such that for all \(n > N\)
\[
e^{c_n[f]} - e^{A_n[f]} = R_n[f] + E_n[f],
\]
where
\[
\text{rank } R_n[f] \leq 2M,
\]

11
\[\|E_n[f]\|_2 \leq \epsilon. \]

By Corollary 4.1 we know that \(\|(e^{cn[f]})^{-1}\|_2\) is uniformly bounded with respect to \(n\), so that we have

\[
(e^{cn[f]})^{-1}e^{An[f]} = I_n + (e^{cn[f])^{-1}(e^{An[f]} - e^{cn[f])} = I_n + (e^{cn[f])^{-1}(-R_n[f]) + (e^{cn[f])^{-1}(-E_n[f]).
\]

The result follows. \(\square\)

Remark Since \(A_n[f]\) is Hermitian when \(f\) is real-valued, we can write \(A_n[f] = Z_n^TD_nZ_n\) where \(D_n\) is a diagonal matrix with real eigenvalues \(d_i\) being the eigenvalues of \(A_n[f]\). We immediately see that \(e^{A_n[f]} = Z_n^Te^{D_n}Z_n\) is positive definite as its eigenvalues are all of the form \(e^{d_i} > 0\). Thus CG can be used in this case.

Next, for the more general case when \(e^{A_n[f]}\) is non-Hermitian, we can use CG for the normal equations system with the preconditioner \(e^{cn[f]}\).

Corollary 4.4. Let \(f \in C_{2\pi}\). Let \(A_n[f] \in \mathbb{C}^{n \times n}\) be the Toeplitz matrix generated by \(f\) and \(c_n[f] \in \mathbb{C}^{n \times n}\) be the optimal circulant preconditioner for \(A_n[f]\). For all \(\epsilon > 0\), there exist positive integers \(N\) and \(M\) such that for all \(n > N\)

\[
[(e^{cn[f])^{-1}e^{A_n[f]}][[(e^{cn[f])^{-1}e^{A_n[f]} = I_n + \tilde{R}_n[f] + \tilde{E}_n[f],
\]

where

\[
\text{rank } \tilde{R}_n[f] \leq 4M,
\]

\[
\|\tilde{E}_n[f]\|_2 \leq \epsilon.
\]

Proof By Corollary 4.3 we know that for all \(\epsilon > 0\) there exist positive integers \(N\) and \(M\) such that for all \(n > N\)

\[
(e^{cn[f]})^{-1}e^{A_n[f]} = I_n + \tilde{R}_n[f] + \tilde{E}_n[f],
\]

where

\[
\text{rank } \tilde{R}_n[f] \leq 2M,
\]

\[
\|\tilde{E}_n[f]\|_2 \leq \epsilon.
\]
We then have
\[
((e^{c_n[f]} - 1)e^{A_n[f]})(e^{c_n[f]} - 1)e^{A_n[f]}
= (I_n + \tilde{R}_n[f] + \tilde{E}_n[f])(I_n + \tilde{R}_n[f] + \tilde{E}_n[f])
\]
\[
= I_n + \tilde{R}_n[f]^*(I_n + \tilde{R}_n[f] + \tilde{E}_n[f]) + (I_n + \tilde{E}_n[f]^*)\tilde{R}_n[f]
+ \tilde{E}_n[f] + \tilde{E}_n[f]^* \tilde{E}_n[f].
\]

It immediately follows that \(\text{rank } \tilde{R}_n[f] \leq 4M\) and \(\|E_n[f]\|_2 \leq \epsilon^2 + 2\epsilon.\)

Since \(((e^{c_n[f]} - 1)e^{A_n[f]})(e^{c_n[f]} - 1)e^{A_n[f]}\) in Corollary 4.4 is Hermitian, by Weyl's theorem we know that its eigenvalues are mostly close to 1 when \(n\) is sufficiently large.

4.2. Spectra of \((\sin c_n[f])^{-1}\sin A_n[f] \text{ and } (\cos c_n[f])^{-1} \cos A_n[f]\)

In this subsection we directly show that similar results hold for \((\sin c_n[f])^{-1}\sin A_n[f] \text{ and } (\cos c_n[f])^{-1} \cos A_n[f]\) using the theorems on \((e^{c_n[f]} - 1)e^{A_n[f]}\).

Theorem 4.5. Let \(f \in C_{2\pi}\). Let \(A_n[f] \in \mathbb{C}^{n \times n}\) be the Toeplitz matrix generated by \(f\) and \(c_n[f] \in \mathbb{C}^{n \times n}\) be the optimal circulant preconditioner for \(A_n[f]\). For all \(\epsilon > 0\), there exist positive integers \(N\) and \(M\) such that for all \(n > N\)

\[\sin c_n[f] - \sin A_n[f] = R_n[f] + E_n[f],\]

where

\[\text{rank } R_n[f] \leq 2M,\]
\[\|E_n[f]\|_2 \leq \epsilon.\]

Proof By Theorem 4.2, we know that for all \(\epsilon > 0\) there exist positive integers \(N\) and \(M\) such that for all \(n > N\)

\[e^{c_n[f]} - e^{A_n[f]} = R_n[f] + E_n[f],\]

where

\[\text{rank } R_n[f] \leq 2M,\]
\[\|E_n[f]\|_2 \leq \epsilon.\]
Using the fact that $\sin A = \frac{e^{iA} - e^{-iA}}{2i}$ for any $A_n \in \mathbb{C}^{n \times n}$, we write

$$
\sin c_n[f] - \sin A_n[f] = \left(\frac{e^{ic_n[f]} - e^{-ic_n[f]}}{2i} - \frac{e^{1A_n[f]} - e^{-1A_n[f]}}{2i}\right)
$$

$$
= \left(\frac{e^{ic_n[f]} - e^{1A_n[f]}}{2i} - \frac{e^{-ic_n[f]} - e^{-1A_n[f]}}{2i}\right)
$$

$$
= \left(\frac{e^{cn[i]} - e^{A_n[i]}}{2i} - \frac{e^{cn[-i]} - e^{A_n[-i]}}{2i}\right)
$$

$$
= \left(\frac{R_n[i] + E_n[i]}{2i}\right) - \left(\frac{R_n[-i] + E_n[-i]}{2i}\right)
$$

$$
= \left(\frac{R_n[i] - R_n[-i]}{2i}\right) + \left(\frac{E_n[i] - E_n[-i]}{2i}\right).
$$

Since $R_n[i]$ and $R_n[-i]$ are both block matrices with only four non-zero M by M blocks in their corners, we see that the rank of $R_n[i]$ is less than or equal to $2M$. Also

$$
\|E_n[f]\|_2 = \left\|\frac{E_n[i] - E_n[-i]}{2i}\right\|_2
$$

$$
\leq \frac{\|E_n[i]\|_2 + \|E_n[-i]\|_2}{2}
$$

$$
\leq \epsilon.
$$

□

Corollary 4.6. Let $f \in C_{2\pi}$. Let $A_n[f] \in \mathbb{C}^{n \times n}$ be the Toeplitz matrix generated by f and $c_n[f] \in \mathbb{C}^{n \times n}$ be the optimal circulant preconditioner for $A_n[f]$. If $\|\sin c_n[f]\|_2^{-1}$ is uniformly bounded with respect to n, then for all $\epsilon > 0$ there exist positive integers N and M such that for all $n > N$

$$
(sinc_n[f])^{-1}(\sin A_n[f]) = I_n + \tilde{R}_n[f] + \tilde{E}_n[f],
$$

where

$$\text{rank} \tilde{R}_n[f] \leq 2M,$$

$$\|\tilde{E}_n[f]\|_2 \leq \epsilon.$$
Proof By Theorem 4.5, we know that for all $\epsilon > 0$, there exist positive integers N and M such that for all $n > N$

$$\sin c_n[f] - \sin A_n[f] = R_n[f] + \mathcal{E}_n[f],$$

where

$$\text{rank } R_n[f] \leq 2M,$$

$$\|\mathcal{E}_n[f]\|_2 \leq \epsilon.$$

By the assumption that $\|(\sin c_n[f])^{-1}\|_2$ is uniformly bounded with respect to n, we have

$$(\sin c_n[f])^{-1} \sin A_n[f] = I_n + (\sin c_n[f])^{-1} (\sin A_n[f] - \sin c_n[f])$$

$$= I_n + (\sin c_n[f])^{-1} (-R_n[f]) + (\sin c_n[f])^{-1} (-\mathcal{E}_n[f]).$$

The result follows. □

Remark From

$$\|(\sin c_n[f])^{-1}\|_2 = \max_i \left| \frac{1}{\sin \lambda_i} \right|$$

we know that $\|(\sin c_n[f])^{-1}\|_2$ could be arbitrarily large since $\sin \lambda_i$ could be close to zero, where λ_i is the i-th eigenvalue of $c_n[f]$. Therefore, we have needed to assume that $\|(\sin c_n[f])^{-1}\|_2$ is uniformly bounded with respect to n.

Consider now the special case when $\sin A_n[f]$ is Hermitian. Unlike the case with the matrix exponential, we cannot use CG for $\sin A_n[f]$ as it is not positive definite in general. By the diagonalisation of $\sin A_n[f] = Z_n^T (\sin D_n) Z_n$ where D_n is a diagonal matrix with real eigenvalues d_i being the eigenvalues of $A_n[f]$, as before, we see that its eigenvalues are all of the form $-1 \leq \sin d_i \leq 1$. Krylov subspace methods like MINRES [23] together with a Hermitian positive definite preconditioner $|\sin c_n[f]|$ should be used [32] Section 5], where $|\sin c_n[f]|$ is the absolute value circulant preconditioner [24] [19] of $\sin c_n[f]$.

Corollary 4.7. Let $f \in C_{2\pi}$ be a real-valued function. Let $A_n[f] \in \mathbb{C}^{n \times n}$ be the Toeplitz matrix generated by f and $c_n[f] \in \mathbb{C}^{n \times n}$ be the optimal circulant preconditioner for $A_n[f]$. If $\|(\sin c_n[f])^{-1}\|_2$ is uniformly bounded with respect
to \(n \), then for all \(\epsilon > 0 \) there exist positive integers \(N \) and \(M \) such that for all \(n > N \)

\[
| \sin c_n[f] |^{-1} \sin A_n[f] = Q_n + \tilde{\mathcal{R}}_n[f] + \tilde{\mathcal{E}}_n[f],
\]

where \(Q_n \) is unitary and Hermitian,

\[
\text{rank } \tilde{\mathcal{R}}_n[f] \leq 2M,
\]

\[
\| \tilde{\mathcal{E}}_n[f] \|_2 \leq \epsilon.
\]

Proof Using a similar approach proposed in [24], we want to show that \(| \sin c_n[f] | \) is an effective Hermitian positive definite preconditioner for \(\sin A_n[f] \) under the assumptions.

As \(\sin c_n[f] \) is a circulant matrix we write \(\sin c_n[f] = F_n^* (\sin \Lambda_n) F_n \) where \(\sin \Lambda_n \) is the diagonal matrix with the eigenvalues of \(\sin c_n[f] \). We then immediately have

\[
| \sin c_n[f] | = F_n^* | \sin \Lambda_n | F_n
\]

\[
= F_n^* (\sin \Lambda_n) F_n F_n^* (\text{sign}(\sin \Lambda_n))^{-1} F_n
\]

\[
= \sin c_n[f] Q_n,
\]

where \(\text{sign}(\sin \Lambda_n) = \text{diag}(\frac{\sin \lambda_i}{|\sin \lambda_i|}) = \text{diag}(\pm 1) \) and \(Q_n \) is both unitary and involutory (i.e. \(Q_n^2 = I_n \)). It is noted that \(| \sin \lambda_i | \neq 0 \) for \(i = 1, 2, \ldots, n \) by the assumption, so that \(\text{sign}(\sin \Lambda_n) \) is well defined.

By Corollary 4.6 we know that for all \(\epsilon > 0 \) there exist positive integers \(N \) and \(M \) such that for all \(n > N \)

\[
(\sin c_n[f])^{-1} (\sin A_n[f]) = I_n + \tilde{\mathcal{R}}_n[f] + \tilde{\mathcal{E}}_n[f],
\]

where

\[
\text{rank } \tilde{\mathcal{R}}_n[f] \leq 2M,
\]

\[
\| \tilde{\mathcal{E}}_n[f] \|_2 \leq \epsilon.
\]

Using (5), we have

\[
| \sin c_n[f] |^{-1} \sin A_n[f] = Q_n \sin c_n[f]^{-1} \sin A_n[f] = Q_n + \underbrace{Q_n \tilde{\mathcal{R}}_n[f]}_{\tilde{\mathcal{R}}_n[f]} + \underbrace{Q_n \tilde{\mathcal{E}}_n[f]}_{\tilde{\mathcal{E}}_n[f]}.
\]
Since Q_n is unitary, we know
\[
\text{rank } \tilde{R}_n[f] = \text{rank}(Q_n \tilde{R}_n[f]) = \text{rank } \tilde{R}_n[f] \leq 2M
\]
and
\[
\|\tilde{E}_n[f]\|_2 = \|Q_n \tilde{E}_n[f]\|_2 = \|\tilde{E}_n[f]\|_2 \leq \epsilon.
\]
The result follows. \hfill \Box

Remark Since $|\sin c_n[f]|$ is also a circulant matrix, $|\sin c_n[f]|^{-1}d$ for any vector d can be efficiently computed by several FFTs in $O(n \log n)$ operations.

For the more general case when $\sin A_n[f]$ is non-Hermitian, we can use CG for the normal equations system with the preconditioner $\sin c_n[f]$.

Corollary 4.8. Let $f \in C_{2\pi}$. Let $A_n[f] \in \mathbb{C}^{n \times n}$ be the Toeplitz matrix generated by f and $c_n[f] \in \mathbb{C}^{n \times n}$ be the optimal circulant preconditioner for $A_n[f]$. If $\|(|\sin c_n[f]|^{-1})\|_2$ is uniformly bounded with respect to n, then for all $\epsilon > 0$ there exist positive integers N and M such that for all $n > N$
\[
(|\sin c_n[f]|^{-1} \sin A_n[f])^* (|\sin c_n[f]|^{-1} \sin A_n[f]) = I_n + \bar{R}_n[f] + \bar{E}_n[f],
\]
where
\[
\text{rank } \bar{R}_n[f] \leq 4M,
\]
\[
\|\bar{E}_n[f]\|_2 \leq \epsilon.
\]

Proof By Corollary 4.6 we know that for all $\epsilon > 0$ there exist positive integers N and M such that for all $n > N$
\[
(|\sin c_n[f]|^{-1} \sin A_n[f])^* (|\sin c_n[f]|^{-1} \sin A_n[f]) = I_n + \tilde{R}_n[f] + \tilde{E}_n[f],
\]
where
\[
\text{rank } \tilde{R}_n[f] \leq 2M,
\]
\[
\|\tilde{E}_n[f]\|_2 \leq \epsilon.
\]
We then have

\[
[(\sin c_n[f])^{-1} \sin A_n[f]]^*[(\sin c_n[f])^{-1} \sin A_n[f]]
= (I_n + \hat{R}_n[f] + \hat{E}_n[f])^*(I_n + \hat{R}_n[f] + \hat{E}_n[f])
\]

\[
= I_n + \hat{R}_n[f] + \hat{E}_n[f] + (I_n + \hat{E}_n[f])^* \hat{R}_n[f] \hat{E}_n[f]
\]

It immediately follows that \(\text{rank } R_n[f] \leq 4M\) and \(\|E_n[f]\|_2 \leq \epsilon^2 + 2\epsilon\). □

Since \([(\sin c_n[f])^{-1} \sin A_n[f]]^*[(\sin c_n[f])^{-1} \sin A_n[f]]\) in Corollary 4.8 is Hermitian, by Weyl's theorem, we know that its eigenvalues are mostly close to 1 when \(n\) is sufficiently large.

Because \(\cos A_n = e^{-iA_n} + e^{iA_n}\) for any \(A_n \in \mathbb{C}^{n \times n}\), we have the following similar theorem and corollaries for \(\cos A_n[f]\).

Theorem 4.9. Let \(f \in C_{2\pi}\). Let \(A_n[f] \in \mathbb{C}^{n \times n}\) be the Toeplitz matrix generated by \(f\) and \(c_n[f] \in \mathbb{C}^{n \times n}\) be the optimal circulant preconditioner for \(A_n[f]\). For all \(\epsilon > 0\), there exist positive integers \(N\) and \(M\) such that for all \(n > N\)

\[
\cos c_n[f] - \cos A_n[f] = R_n[f] + E_n[f],
\]

where

\[
\text{rank } R_n[f] \leq 2M, \quad \|E_n[f]\|_2 \leq \epsilon.
\]

Corollary 4.10. Let \(f \in C_{2\pi}\). Let \(A_n[f] \in \mathbb{C}^{n \times n}\) be the Toeplitz matrix generated by \(f\) and \(c_n[f] \in \mathbb{C}^{n \times n}\) be the optimal circulant preconditioner for \(A_n[f]\). If \(\|\cos c_n[f]\|_2^{-1}\) is uniformly bounded with respect to \(n\), then for all \(\epsilon > 0\) there exist positive integers \(N\) and \(M\) such that for all \(n > N\)

\[
|\cos c_n[f]|^{-1} \cos A_n[f] = Q_n + \tilde{R}_n[f] + \tilde{E}_n[f],
\]

where \(Q_n\) is unitary and Hermitian,

\[
\text{rank } \tilde{R}_n[f] \leq 2M, \quad \|\tilde{E}_n[f]\|_2 \leq \epsilon.
\]
For the more general case when \(\cos A_n[f] \) is non-Hermitian, we can use CG for the normal equations system with the preconditioner \(\cos c_n[f] \).

Corollary 4.11. Let \(f \in C_{2\pi} \). Let \(A_n[f] \in \mathbb{C}^{n \times n} \) be the Toeplitz matrix generated by \(f \) and \(c_n[f] \in \mathbb{C}^{n \times n} \) be the optimal circulant preconditioner for \(A_n[f] \). If \(\| (\cos c_n[f])^{-1} \|_2 \) is uniformly bounded with respect to \(n \), then for all \(\epsilon > 0 \) there exist positive integers \(N \) and \(M \) such that for all \(n > N \)

\[
[(\cos c_n[f])^{-1} \cos A_n[f]]^* [(\cos c_n[f])^{-1} \cos A_n[f]] = I_n + \overline{\mathcal{R}}_n[f] + \mathcal{E}_n[f],
\]

where

\[
\text{rank } \overline{\mathcal{R}}_n[f] \leq 4M,
\]

\[
\| \mathcal{E}_n[f] \|_2 \leq \epsilon.
\]

Since \([(\cos c_n[f])^{-1} \cos A_n[f]]^* [(\cos c_n[f])^{-1} \cos A_n[f]] \) in Corollary 4.11 is Hermitian, by Weyl’s theorem, we know that its eigenvalues are mostly close to 1 when \(n \) is sufficiently large.

5. Extension to analytic functions of Toeplitz matrices

Lemma 5.1. [13, Theorem 1.18] Let \(h \) be analytic on an open subset \(\Omega \subseteq \mathbb{C} \) such that each connected component of \(\Omega \) is closed under conjugation. Consider the corresponding matrix function \(h \) on its natural domain in \(\mathbb{C}^{n \times n} \), the set \(D = \{ A_n \in \mathbb{C}^{n \times n} : \Lambda(A_n) \subseteq \Omega \} \). Then the following are equivalent:

(a) \(h(A_n^*) = h(A_n)^* \) for all \(A_n \in D \).

(b) \(h(A_n) = \overline{h(A_n)} \) for all \(A_n \in D \).

(c) \(h(\mathbb{R}^{n \times n} \cap D) \subseteq \mathbb{R}^{n \times n} \).

(d) \(h(\mathbb{R} \cap \Omega) \subseteq \mathbb{R} \).

Lemma 5.2. [13, Theorem 4.7] Suppose \(h \) has a Taylor series expansion

\[
h(z) = \sum_{k=0}^{\infty} a_k (z - \alpha)^k,
\]

where \(a_k = h^{(k)}(\alpha) k! \), with radius of convergence \(r \). If \(A_n \in \mathbb{C}^{n \times n} \) then \(f(A_n) \) is defined and is given by

\[
h(A_n) = \sum_{k=0}^{\infty} a_k (A_n - \alpha I_n)^k
\]
if and only if the distinct eigenvalues $\lambda_1, \cdots, \lambda_s$ of A_n satisfy one of the conditions

(a) $|\lambda_i - \alpha| < r,$

(b) $|\lambda_i - \alpha| = r$ and the series for $h^{(n_i-1)}(\lambda)$, where n_i is the index of λ_i, is convergent at the point $\lambda = \lambda_i$, $i = 1, \ldots, s$.

Lemma 5.3. \[13, Theorem 4.8\] Suppose h has a Taylor series expansion

$$h(z) = \sum_{k=0}^{\infty} a_k (z - \alpha)^k,$$

where $a_k = \frac{h^{(k)}(\alpha)}{k!}$, with radius of convergence r. If $A_n \in \mathbb{C}^{n \times n}$ with $\rho(A_n - \alpha I_n) < r$ then for any matrix norm $\| \cdot \|$,

$$\| h(A_n) - \sum_{k=0}^{K-1} a_k (A_n - \alpha I_n)^k \| \leq \frac{1}{K!} \max_{0 \leq t \leq 1} \| (A_n - \alpha I_n)^K h^{(K)}(\alpha I_n + t(A_n - \alpha I_n)) \|.$$

We first assume that the condition in Lemma 5.2 is satisfied so $h(A_n)$ can be represented by a Taylor series of A_n. Replacing Lemma 3.3 with Lemma 5.3, we can show that $h(c_n[f]) - h(A_n[f])$ can be decomposed into a sum of a matrix of certain rank and a small norm matrix in a similar manner to theorem 4.2. Further assuming the boundedness of $h(c_n[f])$, we can prove a similar decomposition for $h(c_n[f])^{-1}h(A_n[f])$ or its normal equations matrix.

6. Numerical results

In this section, we demonstrate the effectiveness of our proposed preconditioners $g(c_n[f])$ for the systems $g(A_n[f])x = b$ using CG, MINRES and GMRES [27]. Throughout all numerical tests, $e^{A_n[f]}$ is computed by the MATLAB built-in function expm whilst $\sin A_n[f]$ and $\cos A_n[f]$ are computed by funm. Also, we use the function pcg to solve the Hermitian positive definite systems

$$g(A_n[f])x = b,$$

and

$$g(A_n[f])^*g(A_n[f])x = g(A_n[f])^*b,$$

where b is generated by the function randn(n,1), with the zero vector as the initial guess. For Hermitian indefinite systems, we use the function minres.
As a comparison, GMRES is also used for some systems and it is executed by gmres. The stopping criterion used is

\[\frac{\|r_j\|_2}{\|b\|_2} < 10^{-7}, \]

where \(r_j \) is the residual vector after \(j \) iterations.

Example 1: We first consider \(e^{A_n[f]} \), where \(A_n[f] \) is generated by several functions \(f \) with moderate \(\|f\|_\infty \). Table 1 shows the numbers of iterations needed for \(e^{A_n[f]} \) with \(A_n[f] \) generated by \(f(\theta) = \frac{4}{3} \theta \cos(\theta) \) with or without preconditioners. It is clear that the proposed preconditioner is efficient for speeding up the rate of convergence of CG. In Figure 1 (a) and (b), the contrast between the spectra of the matrices is shown. In Figure 1 (c), we see that the eigenvalues of the preconditioned matrix are highly clustered near 1. By the analysis on the rate of convergence of preconditioned CG for highly clustered spectrum given in [1], the preconditioned matrix can be regarded as having an "efficient" condition number \(b/a \), where \([a, b]\) is the closed interval in which most of the eigenvalues are clustered. Therefore, a fast convergence rate for preconditioned CG is expected due to the cluster of eigenvalues at 1 and the small number of outliers.

Table 1: Numbers of iterations with CG for \(e^{A_n[f]} \) with the generating \(f(\theta) = \frac{4}{3} \theta \cos(\theta) \).

\(n \)	\(I_n \)	\(e^{c_n[f]} \)
128	224	20
256	325	21
512	414	25
1024	491	26

In Figure 2, we further show the spectrum of \(e^{A_n[f]} \) before and after applying the preconditioner \(e^{c_n[f]} \) with different \(n \). We observe that the highly clustered spectra seem independent of \(n \).
Figure 1: The spectrum of (a) $e^{A_n[f]}$ and that of (b) $(e^{c_n[f]} - 1)^{-1} e^{A_n[f]}$. (c) The zoom-in spectrum of (b). $A_n[f]$ is generated by $f(\theta) = \frac{4}{3} \theta \cos(\theta)$ and $n = 512$.

Figure 2: The spectrum of $e^{A_n[f]}$ and that of $(e^{c_n[f]} - 1)^{-1} e^{A_n[f]}$ (a) $n = 256$, (b) $n = 1024$ or (c) $n = 4096$. $A_n[f]$ is generated by $f(\theta) = \frac{4}{3} \theta \cos(\theta)$.
Example 2: Table 2 (a) and (b) show the numerical results using CG and GMRES for the normal equations matrices of $e^{A_n[f]}$ with $A_n[f]$ generated by $f(\theta) = 2\theta \cos(\theta) + \theta i$, respectively. Again, we observe that the preconditioners are efficient for speeding up the rate of convergence.

Table 2: Numbers of iterations with (a) CG for $(e^{A_n[f]}e^{A_n[f]})^*$ and (b) GMRES for $e^{A_n[f]}$ with $A_n[f]$ generated by $f(\theta) = 2\theta \cos(\theta) + \theta i$.

n	I_n	Preconditioner
128	14219	75
256	78645	96
512	>100000	145
1024	>100000	110

n	I_n	Preconditioner
128	128	21
256	248	23
512	477	25
1024	891	27
Example 3: We next consider the matrix sine functions. Table 3 (a) shows the numerical results using MINRES for $\sin A_n[f]$ with $A_n[f]$ generated by $f(\theta) = -(\frac{\theta^2}{2\pi} + \frac{1}{10\pi})$. As the matrix in this case is symmetric negative definite, we also show numerical results using CG as a comparison in Table 3 (b).

Table 3: Numbers of iterations with (a) MINRES and (b) CG for $\sin A_n[f]$ with $A_n[f]$ generated by $f(\theta) = -(\frac{\theta^2}{2\pi} + \frac{1}{10\pi})$.

| n | I_n | $|\sin c_n[f]|$ |
|------|-------|-----------------|
| 128 | 138 | 15 |
| 256 | 227 | 14 |
| 512 | 238 | 11 |
| 1024 | 243 | 10 |

| n | I_n | $|\sin c_n[f]|$ |
|------|-------|-----------------|
| 128 | 138 | 16 |
| 256 | 235 | 14 |
| 512 | 253 | 11 |
| 1024 | 255 | 10 |
Example 4: Table 4 shows the numerical results for $(\sin A_n[f])^* \sin A_n[f]$ with $A_n[f]$ generated by $f(\theta) = -\left(\frac{\theta^2}{2\pi} + \frac{1}{10}\right)$. Since the normalised matrices are highly ill-conditioned, CG without preconditioner requires large numbers of iteration to get the solutions to the desired tolerance. However, the numbers of iterations are reduced significantly with our proposed preconditioner.

Table 4: Numbers of iterations with (a) CG for $(\sin A_n[f])^* \sin A_n[f]$ and (b) GMRES for $\sin A_n[f]$ with $A_n[f]$ generated by $f(\theta) = -\left(\frac{\theta^2}{2\pi} + \frac{1}{10}\right)$.

n	I_n	Preconditioner
(a)		
128	1094	31
256	3238	27
512	4844	22
1024	10152	16

n	I_n	Preconditioner
(b)		
128	128	16
256	255	17
512	384	13
1024	463	10
Example 5: Lastly, we consider the matrix cosine functions. Table 5 and 6 show the numerical results for symmetric matrix $\cos A_n[f]$ with $A_n[f]$ generated by $f(\theta) = (\frac{\pi}{2} - \frac{1}{10\pi}) \cos (\theta^2) - \frac{\pi}{4}$ and for $(\cos A_n[f])^* \cos A_n[f]$ with $A_n[f]$ generated by $f(\theta) = (\frac{\pi}{2} - \frac{1}{10\pi}) \cos (\theta^2) + \frac{2}{\pi} i$, respectively. In Figure 3 (a) and (b), we also show the spectrum of the matrices before and after applying the preconditioner $|\cos A_n[f]|$. In the zoom-in spectrum shown in Figure 3 (c), we observe that the eigenvalues of the preconditioned matrix are mostly ± 1. We conclude that our proposed preconditioners appear effective for these systems defined by matrix cosine functions of Toeplitz matrices.

Table 5: Numbers of iterations with MINRES for $\cos A_n[f]$ with $A_n[f]$ generated by $f(\theta) = (\frac{\pi}{2} - \frac{1}{10\pi}) \cos (\theta^2) - \frac{\pi}{4}$.

| n | I_n | $|\cos c_n[f]|$ |
|------|-------|----------------|
| 128 | 77 | 30 |
| 256 | 139 | 36 |
| 512 | 261 | 38 |
| 1024 | 506 | 42 |

Table 6: Numbers of iterations with (a) CG for $(\cos A_n[f])^* \cos A_n[f]$ and (b) GMRES for $\cos A_n[f]$ with $A_n[f]$ generated by $f(\theta) = (\frac{\pi}{2} - \frac{1}{10\pi}) \cos (\theta^2) + \frac{2}{\pi} i$.

n	I_n	Preconditioner
(a)		
128	191	21
256	435	22
512	973	22
1024	2092	23

n	I_n	Preconditioner
(b)		
128	126	16
256	249	16
512	492	17
1024	972	17
Figure 3: The spectrum of (a) \(\cos A_n[f] \) and that of (b) \(|\cos c_n[f]|^{-1} \cos A_n[f] \). (c) The zoom-in spectrum of (b). \(A_n[f] \) is generated by \(f(\theta) = (\pi/2 - 1/10^4) \cos (\theta^2) - \pi/4 \) and \(n = 512 \).

References

[1] O. Axelsson and G. Lindskog. On the rate of convergence of the preconditioned conjugate gradient method. *Numerische Mathematik*, 48:499–524, 1986.

[2] D. Bini, S. Dendievel, G. Latouche, and B. Meini. Computing the exponential of large block-triangular block-Toeplitz matrices encountered in fluid queues. *Linear Algebra and its Applications*, 502(Supplement C):387–419, 2016. Structured Matrices: Theory and Applications.

[3] E. Brigham. *FFT: schnelle Fourier-Transformation*. Einführung in die Nachrichtentechnik. [Introduction to Information Technology]. R. Oldenbourg Verlag, Munich, 1982. Translated from the English by Seyed Ali Azizi.

[4] R. Chan and X. Jin. *An introduction to iterative Toeplitz solvers*, volume 5 of *Fundamentals of Algorithms*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.

[5] R. Chan and M. Ng. Conjugate gradient methods for Toeplitz systems. *SIAM Rev.*, 38(3):427–482, 1996.

[6] R. Chan, D. Potts, and G. Steidl. Preconditioners for nondefinite Hermitian Toeplitz systems. *SIAM Journal on Matrix Analysis and Applications*, 22(3):647–665, 2001.
[7] R. Chan and G. Strang. Toeplitz equations by conjugate gradients with circulant preconditioner. *SIAM Journal on Scientific and Statistical Computing*, 10(1):104–119, 1989.

[8] R. Chan and M. Yeung. Circulant preconditioners for complex Toeplitz matrices. *SIAM Journal on Numerical Analysis*, 30(4):1193–1207, 1993.

[9] T. Chan. An optimal circulant preconditioner for Toeplitz systems. *SIAM Journal on Scientific and Statistical Computing*, 9(4):766–771, 1988.

[10] P. Davis. *Circulant matrices*. John Wiley & Sons, New York-Chichester-Brisbane, 1979. A Wiley-Interscience Publication, Pure and Applied Mathematics.

[11] F. Di Benedetto. Analysis of preconditioning techniques for ill-conditioned Toeplitz matrices. *SIAM Journal on Scientific Computing*, 16(3):682–697, 1995.

[12] D. Duffy. *Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach*. The Wiley Finance Series. Wiley, 2013.

[13] N. Higham. *Functions of matrices*. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008. Theory and computation.

[14] T. Huckle. Circulant and skewcirculant matrices for solving Toeplitz matrix problems. *SIAM Journal on Matrix Analysis and Applications*, 13(3):767–777, 1992.

[15] T. Huckle, S. Serra Capizzano, and C. Tablino-Possio. Preconditioning strategies for non-Hermitian Toeplitz linear systems. *Numer. Linear Algebra Appl.*, 12(2-3):211–220, 2005.

[16] X. Jin, Z. Zhao, and S. Tam. Optimal preconditioners for functions of matrices. *Linear Algebra and its Applications*, 457:224 – 243, 2014.

[17] D. Kressner and R. Luce. Fast computation of the matrix exponential for a Toeplitz matrix. *ArXiv e-prints*, July 2016.

[18] S. Lee, H. Pang, and H. Sun. Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. *SIAM Journal on Scientific Computing*, 32(2):774–792, 2010.
[19] E. McDonald, S. Hon, J. Pestana, and A. Wathen. *Preconditioning for Nonsymmetry and Time-Dependence*, pages 81–91. Springer International Publishing, Cham, 2017.

[20] M. Ng. *Iterative methods for Toeplitz systems*. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2004.

[21] M. Ng and J. Pan. Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices. *SIAM Journal on Scientific Computing*, 32(3):1442–1464, 2010.

[22] J. Olkin. *Linear and Nonlinear Deconvolution Problems (Optimization)*. PhD thesis, Rice University, Houston, TX, 1986.

[23] C. Paige and M. Saunders. Solution of sparse indefinite systems of linear equations. *SIAM journal on numerical analysis*, 12(4):617–629, 1975.

[24] J. Pestana and A. Wathen. A preconditioned MINRES method for nonsymmetric Toeplitz matrices. *SIAM Journal on Matrix Analysis and Applications*, 36(1):273–288, 2015.

[25] D. Potts and G. Steidl. Optimal trigonometric preconditioners for nonsymmetric Toeplitz systems. *Linear Algebra and its Applications*, 281(1):265 – 292, 1998.

[26] M. Powell. *Approximation theory and methods*. Cambridge University Press, Cambridge-New York, 1981.

[27] Y. Saad and M. Schultz. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. *SIAM J. Sci. Statist. Comput.*., 7(3):856–869, 1986.

[28] E. Sachs and A. Strauss. Efficient solution of a partial integro-differential equation in finance. *Applied Numerical Mathematics*, 58(11):1687 – 1703, 2008.

[29] S. Serra Capizzano. Superlinear PCG methods for symmetric Toeplitz systems. *Math. Comput.*, 68:793–803, 1999.

[30] G. Strang. A proposal for Toeplitz matrix calculations. *Stud. Appl. Math.*, 74(2):171–176, 1986.
[31] E. Tyrtyshnikov. Optimal and superoptimal circulant preconditioners. *SIAM Journal on Matrix Analysis and Applications*, 13(2):459–473, 1992.

[32] A. Wathen. Preconditioning. *Acta Numerica*, 24:329–376, 5 2015.