Effects of Possible $\Delta B = -\Delta Q$ Transitions in Neutral B Meson Decays

G. V. Dass1 and K. V. L. Sarma2

1Department of Physics, Indian Institute of Technology, Powai, Bombay, 400 076, India
2Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay, 400 005, India
(e-mail: kvls@tifrvax.bitnet)

We explore the possibility that the existing data on like-sign dileptons at the $\Upsilon(4S)$ resonance consist of events arising from $B_d^0 - \bar{B}_d^0$ mixing and also from $\Delta B = -\Delta Q$ transitions. The consequences of these nonstandard transitions for certain time-asymmetries which are likely to be measured at the B factories are studied.

PACS numbers: 13.20.-v, 12.15.Ji.

An interesting way in which physics beyond the Standard Model could manifest itself is through violations of the $\Delta B = \Delta Q$ rule in the decays of bottom hadrons. These violations if present in decays of neutral B mesons will have obvious implications for the study of BB mixing because experimentally the bottom flavour is tagged by the decay leptons. It is therefore necessary to examine the effect of possible $\Delta B = -\Delta Q$ transitions on the same-sign dilepton signal which is observed at the $\Upsilon(4S)$ resonance [1, 2, 3]. This is because not all the ‘wrong-sign’ leptons might be originating from $\Delta B = 2$ transitions, $B \leftrightarrow \bar{B}$; some may be coming from decays that do not obey the $\Delta B = \Delta Q$ rule, [4]. In terms of quarks this amounts to postulating the transition $b \rightarrow \beta + W^+$, where β is an exotic quark carrying a charge of $(-4/3)$ units. Such exotic quarks have been envisaged in certain models; for a recent model see, e.g., Ref. [5]. These quarks could lead to the existence of exotic mesons which are doubly charged (e.g., $\beta\bar{u}$), or to a spectacular jump in the e^+e^- annihilation ratio R by $(16/3)$ units. Available data up to LEP energies do not indicate any evidence for such quarks. Also the present data on the semileptonic decays of neutral beons neither require nor forbid $\Delta B = -\Delta Q$ transitions which lie outside the Standard Model.

Recently Kobayashi and Sanda [6] have suggested some tests for checking CPT invariance at the B factories. They assumed the $\Delta B = \Delta Q$ rule of the Standard Model as being valid in semileptonic decays. On the other hand they relaxed CPT invariance for the mass-matrix of the neutral beons, but not for decay amplitudes. In the following we take a complementary approach:
We assume the validity of complete CPT invariance throughout, but allow $\Delta B = -\Delta Q$ transitions. We examine how the $\Delta B = -\Delta Q$ amplitudes could generally affect the dilepton ratios and certain time-asymmetries that are measurable at the B factories. Of particular interest in this context are the time-integrated asymmetries in dilepton events which arise from exclusive semileptonic decays of neutral B’s. We further show that the asymmetries which involve the detection of CP eigenstates in the decays of B and \bar{B}, namely, the well-known CP-violating asymmetries [7, 8, 9] and the y-determining asymmetry [10] are unlikely to be affected much by the $\Delta B = -\Delta Q$ transitions.

Notation - For notational convenience in the following, we drop the superscripts and subscripts on the mesons B_0^d and \bar{B}_0^d, and refer to them simply as B and \bar{B}, respectively. Mixing allows the construction of eigenstates which have definite masses $m_{1,2}$ and inverse lifetimes $\Gamma_{1,2}$ in the usual way,

$$|B_1 >= p|B > + q|\bar{B} > , \quad |B_2 >= p|B > - q|\bar{B} > , \quad (|p|^2 + |q|^2 = 1) ;$$

they evolve in proper time t as

$$|B_k > \rightarrow e^{(-im_k - \frac{1}{2}\Gamma_k)t} |B_k > ; \quad (k = 1, 2) .$$

We assume CPT invariance throughout, and take $|B > = CP|B >$. We define the symbols

$$g \equiv \frac{q}{p}, \quad x = \frac{m_2 - m_1}{\Gamma}, \quad y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}, \quad \Gamma = \frac{\Gamma_1 + \Gamma_2}{2} .$$

For notational brevity we refer to a particular channel of semileptonic b-quark decay merely by the corresponding hadronic state label, and distinguish its CPT-conjugate channel by a ‘tilde’:

$$(i\ell^+) \equiv (X_i + \nu_\ell + \ell^+) , \quad (\tilde{i}\ell^-) \equiv (\bar{X}_i + \bar{\nu}_\ell + \ell^-) ;$$

thus the labels i or \tilde{i} are taken to include the appropriate neutrinos. The decay amplitudes obeying the $\Delta B = \Delta Q$ rule will be denoted by

$$A_i = <i\ell^+| T |B > , \quad \bar{A}_i = <\tilde{i}\ell^-| T |\bar{B} > ;$$

the corresponding amplitudes for $\Delta B = -\Delta Q$ transitions will contain complex multiplicative parameters ρ as follows:

$$\rho_i A_i = <i\ell^+| T |\bar{B} > , \quad \bar{\rho}_i \bar{A}_i = <\tilde{i}\ell^-| T |B > .$$
Neglecting the final-state interactions due to electroweak forces, CPT invariance leads to the relations

$$\bar{A}_i = A_i^*, \quad \bar{\rho}_i = \rho_i^*.$$ \hfill (3)

In the Standard Model, the ρ's are expected to be small since they get contributions from diagrams involving at least two W's; indeed in the case of kaons the ratio of the $\Delta S = -\Delta Q$ and $\Delta S = \Delta Q$ amplitudes is estimated [12] to have a magnitude of order 10^{-7}. In what follows we shall regard the ρ's as small parameters.

Ratio of Dilepton Events - We consider exclusive semileptonic decays of the neutral B mesons into the channels $(i\ell^+) + (j\ell^+)$, where, for instance, i and j could stand for the states $(D^*-\nu_\ell)$ and $(D^-\nu_\ell)$. The numbers of events with same-sign dileptons from the $\Upsilon(4S)$, irrespective of the decay times, are given (apart from an overall constant) by

$$n(i\ell^+, j\ell^+) = C_{ij} \left\{(1-a)|1-r_ir_j|^2 + (1+a)|r_i - r_j|^2\right\},$$ \hfill (4)

$$n(\tilde{i}\ell^-, \tilde{j}\ell^-) = C_{ij} |g|^4 \left\{(1-a)|1-\bar{r}_i\bar{r}_j|^2 + (1+a)|\bar{r}_i - \bar{r}_j|^2\right\},$$ \hfill (5)

$$C_{ij} \equiv \left|\frac{A_iA_j^*}{\sqrt{2}g\Gamma}\right| \frac{1}{1-y^2}, \quad a = \frac{1-y^2}{1+x^2},$$ \hfill (6)

$$r_i = g\rho_i, \quad \tilde{r}_i = (\bar{\rho}_i/g).$$ \hfill (7)

Similarly, the (relative) numbers of events with opposite-sign dileptons, integrated over all times, are given by

$$n(i\ell^+, \tilde{j}\ell^-) = C_{ij} |g|^2 \left\{(1+a)|1-r_i\bar{r}_j|^2 + (1-a)|r_j - \bar{r}_i|^2\right\},$$

$$n(j\ell^+, \tilde{i}\ell^-) = C_{ij} |g|^2 \left\{(1+a)|1-r_i\bar{r}_j|^2 + (1-a)|r_j - \bar{r}_i|^2\right\},$$

where we used $|1-r_i\bar{r}_j| = |1-\bar{r}_i r_j|$.

We next define the ‘exclusive’ dilepton ratio χ_{ij}, as the number of like-sign dilepton events relative to the total number, where all the events originate in either of the two exclusive decays having labels i and j, or their conjugates \tilde{i} and \tilde{j}:

$$\chi_{ij} = \frac{N_{ij}^{++} + N_{ij}^{--}}{N_{ij}^{++} + N_{ij}^{--} + N_{ij}^{+-} + N_{ij}^{-+}},$$ \hfill (8)
\[N_{ij}^{++} \equiv n(\ell^+, \ell^+) + n(\ell^+, j^+) + n(j^+, j^+) , \]
\[N_{ij}^{--} \equiv n(\ell^-, \ell^-) + n(\ell^-, j^-) + n(j^-, j^-) , \]
\[N_{ij}^{+} + N_{ij}^{-} \equiv n(\ell^+, \ell^-) + n(\ell^-, j^+) + n(j^+, j^-) + n(j^+, \ell^-) . \]

In the following we treat \(\rho \) and \(\bar{\rho} \) to be small in magnitude and keep terms up to and including second order in them; for example, we shall write
\[|1 - r_i r_j^*|^2 = |1 - (r_i r_j^* / |g|^2)|^2 \simeq |1 - 2Re (r_i r_j^*)| , \]
where in the last step we ignored the additional correction due to CP violation by setting \(|g| = 1 \) as it is multiplying the quadratically small quantity \(|r_i r_j^*| \).

Thus the modified ratio of like-sign dilepton events arising from either of the two channels \(i \) and \(j \) is
\[\chi_{ij} = \begin{cases} 1 + 4a (Im <r_{ij}>)^2 + \frac{4a}{1 - a} & \left(\frac{|A_i A_j| |r_i - r_j|}{|A_i|^2 + |A_j|^2} \right)^2 \end{cases} \chi . \]
Here \(\chi \) is the usual dilepton ratio for inclusive channels assuming the \(\Delta B = \Delta Q \) rule [13],
\[\chi = \frac{(1 - a)(1 + |g|^4)}{(1 - a)(1 + |g|^4) + 2(1 + a)|g|^2} ; \]
\(Im <r_{ij}> \) is the imaginary part of the weighted average of the ratios \(r_i \) and \(r_j \),
\[<r_{ij}> = \frac{r_i |A_i|^2 + r_j |A_j|^2}{|A_i|^2 + |A_j|^2} , \]
\[r_i = \frac{q}{p} \frac{<\ell^+ | T | B >}{<\ell^+ | T | B >} . \]
We notice that violations of the \(\Delta B = \Delta Q \) rule contribute to the ratio \(\chi_{ij} \) only quadratically. The case of a single channel say, \(i \) (together with \(\tilde{i} \)), is obtained by setting \(A_j = 0 \).

An instructive but perhaps extreme case arises if we consider \(B \leftrightarrow \bar{B} \) mixing to be altogether absent and treat the entire signal of like-sign dileptons to be solely due to the \(\Delta B = -\Delta Q \) transitions. The resulting \(\chi_{ij} \) can also be deduced from the above formulas by taking the limit of vanishing mixing parameters \(x = y = 0 \),
\[\chi_{ij}^{NM} = 2 \left(\frac{|A_i A_j| |\rho_i - \rho_j|}{|A_i|^2 + |A_j|^2} \right)^2 ; \]
the superscript ‘NM’ denotes ‘no mixing’. Since \(|A_i|^2 \) is proportional to the partial width \(\Gamma_i \), and hence to the branching fraction \(f_i = \Gamma_i / \Gamma_{total} \), we see that
\[|\rho_i - \rho_j| = (f_i + f_j) \sqrt{\frac{\chi_{ij}^{NM}}{2 f_i f_j}} . \]
Experimental data on dilepton events grouped in terms of exclusive channels are not available. Present data refer to the ratio of inclusive rates from the ARGUS \[1\] and CLEO \[2, 3\] groups, and we take its average value to be \(\chi_{\text{expt}} = 0.16 \pm 0.04\) . \(\text{(14)}\)

However, the signal from the inclusive semileptonic decay (total branching fraction \(\simeq 10\%\)) seems to be arising only from a few channels;

\[
f(B \rightarrow D^- \ell^+ \nu_\ell) = (1.8 \pm 0.5)\% \quad \text{(Ref. \[14\])}
\]

\[
f(B \rightarrow D^+ \ell^+ \nu_\ell) = (5.2 \pm 0.8)\% \quad \text{(Ref. \[15\])}
\]

Therefore in order to get an estimate of the \(\rho\)'s we may assume that the contribution to \(\chi_{\text{expt}}\) is almost entirely due to the above two decay modes. This allows us to identify them \[16\] with labels \(i\) and \(j\) in Eq. \(\text{(13)}\), and obtain

\[
|\rho_i - \rho_j| = 0.65 \pm 0.10 . \quad \text{(15)}
\]

In other words, if we view the like-sign dilepton signal from \(\Upsilon(4S)\) as being purely due to an admixture of the \(\Delta B = -\Delta Q\) decay amplitudes, we would require their relative magnitudes to be at least \(0.33 \pm 0.05\) [i.e., half the number appearing in Eq.\(\text{(13)}\)]. In comparison, the amplitude ratio \(\rho(K)\) corresponding to \(\Delta S = -\Delta Q\) decays in \(K_0^0\) is known \[14\] to be very small, \(\rho(K) = (0.6 \pm 1.8\%) - i(0.3 \pm 2.6\%)\) .

An interesting ratio that can be constructed out of same-sign dilepton events which emerge from two channels \(i\) and \(j\), is the asymmetry

\[
\alpha_{ij} \equiv \{(N_{ij}^{++} - N_{ij}^{--}) / (N_{ij}^{++} + N_{ij}^{--})\} . \quad \text{(16)}
\]

Keeping terms up to the bilinear ones in \(r_i\) and \(r_j\), we see that

\[
\alpha_{ij} = \frac{1 - |g|^4}{1 + |g|^4} \left\{ 1 + \frac{4}{1 + |g|^4} \left[\text{Re} \left(<r>_{ij} \right)^2 - \frac{|g|^2}{2} \frac{1 + a}{1 - a} \chi_{ij}^{NM} \right] \right\} . \quad \text{(17)}
\]

The terms in the square brackets are indeed the correction terms in expressing the denominator in Eq. \(\text{(16)}\). Thus a nonzero value of \(\alpha_{ij}\) would require not only mixing \((a \neq 1)\) but also \(CP\) violation of the mass-matrix \((|g| \neq 1)\). The well-known inclusive version of \(\alpha_{ij}\) given by Okun \textit{et al} \[13\]...
(which assumes the $\Delta B = \Delta Q$ rule) also has these two requirements. If $\Delta B = -\Delta Q$ transitions were the only source of the like-sign dilepton events, the asymmetry α_{ij} would vanish but not the ratio χ_{ij}. Available data on the CP-violating dilepton asymmetry however refer to the inclusive semileptonic channels and the present experimental value \[\alpha = \frac{(1 - |g|^4)}{(1 + |g|^4)} = (3.1 \pm 9.6 \pm 3.2)\% \]

Time-Asymmetries - Consider the time-asymmetry among the events with same-sign dileptons say, $\ell^+\ell^+$, which result from decays of neutral B's via either of the two channels, labelled i and j :

$$A_{\ell^+\ell^+}(ij) = \frac{[\nu(ij) - \nu(ji)]}{[\nu(ij) + \nu(ji)]}.$$ \hspace{1cm}(18)

The symbol $\nu(ij)$ stands for the number of dilepton events in which the ℓ^+ associated with channel i occurs earlier than the one associated with channel j; this is ensured simply by integrating the rates with respect to the variable $\tau = (t_j - t_i)$ over the range 0 to ∞. We see that

$$A_{\ell^+\ell^+}(ij) = \frac{-2}{1-a} \left[ax \text{ Im} (r_i - r_j) + y \text{ Re} (r_i - r_j) \right];$$ \hspace{1cm}(19)

similarly we also have

$$A_{\ell^-\ell^-}(ij) = \frac{\nu(ij) - \nu(ji)}{\nu(ij) + \nu(ji)} = \frac{2}{1-a} \left[ax \text{ Im} (r_i - r_j) - y \text{ Re} (r_i - r_j) \right].$$ \hspace{1cm}(20)

Obviously these asymmetries vanish in the case of a single channel (namely $i = j$) because the initial state $\Upsilon(4S)$ is antisymmetric under the interchange of the two beons, while the final state is symmetric (when $i = j$).

We next define the time-asymmetry for opposite-sign dilepton events arising from any of the two exclusive channels i and j :

$$A_{\ell^+\ell^-}(ij) = \frac{\nu(ij) + \nu(ji)}{\nu(ij) + \nu(ji)} - \frac{\nu(ij) + \nu(ji)}{\nu(ij) + \nu(ji)} = \frac{4ax}{1+a} \text{ Im} <r>_{ij};$$ \hspace{1cm}(21)

Keeping terms upto the linear ones in r_i and r_j, we obtain this CP-violating asymmetry to be

$$A_{\ell^+\ell^-}(ij) = \frac{4ax}{1+a} \text{ Im} <r>_{ij};$$ \hspace{1cm}(22)

where $<r>_{ij}$ is defined in Eq. (11), and the factor multiplying it is $\simeq 1.1$ (for the typical values $x \simeq 0.67$ and $y \simeq 0$). The case of a single channel was reported earlier by one of us \[17\], and
generalization to more than two channels is straightforward. Notice that this asymmetry, unlike the ones in Eqs. (19,20), does not vanish even if all the \(r_i \)'s are equal. We emphasize that a nonzero value of this asymmetry would establish the presence of \(\Delta B = -\Delta Q \) transitions in decays of neutral \(B \) mesons, [18].

A related asymmetry is the one with respect to ‘channels’, without regard to the leptonic charge; in other words we look at the difference in rates when the decay channels \(j \) and \(\tilde{j} \), follow (or precede) the decay channels \(\tilde{i} \) and \(i \):

\[
A_{\ell^+\ell^-} = \frac{\nu(\tilde{i}\ell^- + \tilde{i}\ell^+)}{\nu(\tilde{i}\ell^+ + \tilde{i}\ell^-)} - \frac{\nu(\tilde{j}i + \tilde{j}i)}{\nu(\tilde{j}i + \tilde{j}i)} = -\frac{2y}{1 + a} \text{Re} (r_i - r_j).
\]

Although this signal is \(CP \)-conserving, in contrast to Eq. (22), it is unfortunately suppressed by the factor \(y \) which could be quite small for the \(B \) mesons.

Decays to \(CP \) Eigenstates- It is now well recognized that at the forthcoming \(B \) factories the main thrust of the experimental effort would be towards measuring the \(CP \)-violating asymmetries. Of special interest are the time-dependent rate asymmetries between \(B \) and \(\bar{B} \) decays to specific \(CP \) eigenstates \(f \) \((= J/\psi K_S, \pi^+\pi^-, ...)\), as they would enable us to test the \(CP \)-violating mechanism of the Standard Model; for a recent review see, e.g., [11]. How do these \(CP \)-violating signals get modified when some of the tag-leptons arise from \(\Delta B = -\Delta Q \) transitions? This is the item we discuss next.

Consider the events wherein the tag-lepton is emitted in an exclusive semileptonic channel \((\tilde{i}\ell^-) \) or \((i\ell^+) \). We express the asymmetry in terms of the rates summed over the channel index \(i \) as follows:

\[
A_f = \frac{\sum_i \left[\nu(\tilde{i}\ell^- f) - \nu(i\ell^+ f) \right]}{\sum_i \left[\nu(\tilde{i}\ell^- f) + \nu(i\ell^+ f) \right]},
\]

where \(\nu(i\ell^+ f) \) represents the number of events arising from \(\Upsilon(4S) \) in which the \(B \) decay to \(f \) occurs at any time later than the related semileptonic \(B \) decay into \((i\ell^+) \). In the Standard Model the formula for this asymmetry is

\[
A_f^{(SM)} = \frac{\alpha}{\Omega} \frac{-2x \text{Im} (u_f) + 1 - |u_f|^2}{1 + |u_f|^2 + 2y \text{Re} (u_f)} - \frac{\Omega}{\alpha} \frac{1 + |u_f|^2 + 2y \text{Re} (u_f)}{1 + |u_f|^2} \Omega \frac{1 + |g|^2}{1 + |g|^2};
\]

\[
u_f \equiv g \frac{<f|T\bar{B}>}{<f|T|B>}, \quad \Omega \equiv <B_2|B_1> \quad = \frac{1 - |g|^2}{1 + |g|^2}.
\]
In the limit of CP conservation we have $\Omega = 0$ and $u_f = \xi_f$, where ξ_f is the CP eigenvalue, $CP|f > = \xi_f |f > = \pm |f >$; thus we see that $A_f^{(SM)} = 0$ in that limit.

Going beyond the Standard Model and retaining the $\Delta B = -\Delta Q$ amplitudes up to first order, i.e., by keeping terms up to linear ones in the parameter r_i, we obtain

$$A_f = \left[1 + \frac{\Re(u_f) + y}{1 + y \Re(u_f)} 2 \Re <r> \right] A_f^{(SM)},$$

(27)

where the correction depends on the weighted average of the ratio of the nonstandard to standard amplitudes,

$$<r> = \frac{\Sigma_i (r_i |A_i|^2)}{\Sigma_i |A_i|^2}.$$

(28)

Since $A_f^{(SM)}$ is already of first order in CP violation, and since $<r>$ is expected to be small, Eq. (27) shows that the CP-violating asymmetry A_f will be hardly affected by the presence of $\Delta B = -\Delta Q$ transitions.

Finally we comment on the interesting asymmetry that provides a direct measure of the parameter y. This needs the same data-base as the CP-violating A_f with the difference that the lepton here serves to fix the ‘zero’ of the time of decay into the CP eigenchannel f. The time-integrated rate for the emission of a lepton of either charge to emerge earlier than the channel f is

$$\nu(\ell, f) \equiv \sum_i \left[\nu(i\ell^+, f) + \nu(i\ell^-, f) \right].$$

(29)

In a similar way let $\nu(f, \ell)$ determine the rate wherein the semileptonic decays occur after the decay to f; it is obtained by integrating with respect to the relative time $\tau = (t_f - t_\ell)$ over negative values. With the help of these quantities we formulate the asymmetry that determines y:

$$A_y = \frac{\nu(\ell, f) - \nu(f, \ell)}{\nu(\ell, f) + \nu(f, \ell)} = \left[\frac{2 \Re(u_f)}{1 + |u_f|^2} \right] \left\{ 1 - 4(\xi_f - \Re u_f) \Re <r> \right\} y.$$

(30)

Thus the value obtainable for y will be hardly modified by the inclusion of $\Delta B = -\Delta Q$ contributions since the parameter $<r>$ of Eq. (28) occurs in multiplication with a CP-violating effect in the decay $B \to f$.

In summary, signals for physics beyond the Standard Model could appear at B factories as nonvanishing time-asymmetries for dilepton events; Eqs. (18-23). Of particular significance is the asymmetry $A_{\ell^+\ell^-}$ of Eq. (22) which is CP-violating and which does not vanish in the limit of
$y = 0$. On the other hand $\Delta B = -\Delta Q$ contributions, enter only bilinearly in the time-integrated dilepton ratios χ_{ij} and α_{ij}, and hardly affect the interesting asymmetries which depend on beon decays to CP eigenstates f.

References

[1] H. Albrecht et al., Phys. Lett. B192, 245 (1987).

[2] M. Artuso et al., Phys. Rev. Lett. 62, 2233 (1989).

[3] J. Bartelt et al., Phys. Rev. Lett. 71, 1680 (1993).

[4] Same-sign dileptons can originate also in decays of B^+B^- pairs by $\Delta B = -\Delta Q$ transitions. However they may in principle be identified by event-reconstruction.

[5] R. Foot et al., Phys. Rev. 47, 4158 (1993).

[6] M. Kobayashi and A. I. Sanda, Phys. Rev. Lett. 69, 3139 (1992).

[7] A. B. Carter and A. I. Sanda, Phys. Rev. Lett. 45, 952, (1980); Phys. Rev. D23, 1567 (1981); I. I. Bigi and A. I. Sanda, Nucl. Phys. B193, 85 (1981); I. Dunietz and J. L. Rosner, Phys. Rev. D34, 1404 (1986).

[8] I. I. Bigi, et al., in CP VIOLATION, ed. C. Jarlskog (World Scientific, 1989), p.175; I. Dunietz, in B DECAYS, ed. S. Stone (World Scientific, 1992), p.393.

[9] Y. Nir and H. R. Quinn, Annu. Rev. Nucl. Part. Sci. 42, 211 (1992).

[10] G. V. Dass and K. V. L. Sarma, Int. J. Mod. Phys. A7, 6081 (1992); (E) A8, 1183 (1993).

[11] As in most phenomenological analyses, we consider only those times t (which are generally experimentally accessible) for which possible departures from the customary exponential behaviour, and any coupling between the states $|B_1>$ and $|B_2>$ are negligibly small. For discussions on these issues one may consult L. A. Khalfin, University of Texas at Austin Preprint, CPT Report 211, 1990 (unpublished); C. B. Chiu and E. C. G. Sudarshan, Phys. Rev. D42, 3712 (1990), and references therein. We thank P. K. Kabir for a discussion on this topic.
[12] C. O. Dib and B. Guberina, Phys. Lett. B255, 113 (1991); P. Heiliger and L. M. Sehgal, Phys. Lett. B265, 410 (1991).

[13] L. B. Okun, V. I. Zakharov and B. M. Pontecorvo, Lett. Nuovo Cim. 13, 218 (1975).

[14] K. Hikasa et al., Phys. Rev. D45, S1 (1992).

[15] H. Albrecht et al., Z. Phys. C57, 533 (1993).

[16] Any such identification is nonunique; see, e.g., the fit of D. Buskulic et al., (ALEPH collaboration), Phys. Lett. B307, 194 (1993), wherein four additional channels contributing about 3% to the total semileptonic branching ratio have been listed.

[17] K. V. L. Sarma, in Proc. of the X DAE Symposium on High Energy Physics, 1992, held at TIFR, Bombay, (to appear in Pramana), TIFR/TH/93-16.

[18] In the case of K meson decays at the φ-factory the asymmetry of Eq. (22) will be suppressed because for kaons one has $a = 0.0036$. For related considerations, see Ref. [19].

[19] M. Hayakawa and A. I. Sanda, Phys. Rev. D48, 1150 (1993).