PURIFICATION, CHARACTERIZATION AND EXPRESSION, OF RECOMBINANT OUTER MEMBRANE PROTEIN A (OMP A) OF ACINETOBACTER BAUMANNII L1311

Aamal Ghazi Mahdi Al-Saadi 1*, Aalaa Fahim Abbas2

Address(es):
1, 2 University of Al-Qadisiyah, College of Science, Department of Ecology, Al Diwaniyah 58001, Iraq.

*Corresponding author: amal.alssdh@qu.edu.iq

ARTICLE INFO
Received 16. 3. 2020
Revised 29. 6. 2020
Accepted 30. 6. 2020
Published 1. 10. 2020

Regular article
OPEN ACCESS

ABSTRACT
Acinetobacter baumannii is a known hospital acquired pathogenic bacterium that increasingly resists antibiotics treatment. In order to characterize and produce a soluble OmpA protein that can be used to develop Acinetobacter vaccine, polymerase chain reaction (PCR) was used to produce the ompA gene, of A. baumannii strain L1311, which was cloned into the histidine tagged pET19b expression plasmid. Immobilized metal affinity chromatography (IMAC) was utilized to purify the recombinant protein, and amino acid sequences for OmpA protein homologs were attained from the National Center for Biotechnology Information (NCBI) protein resource then analyzed using the blast tool and Jalview program. Protein topology prediction was done using NCBI tools and PREM-TMBB. Analysis of amino acid sequence of OmpA of A. baumannii strain L1311 showed that it has homologies to other clinical Acinetobacter species, including: A. pittii, A. nosocomialis, A. seifertii, A. calcoaceticus, and A. ursingii with identity percentages of 100%, 100%, 96%, 92%, and 91%. Protein topology prediction revealed two conserved domains belonging to OmpA family protein which are beta-barrel domain outer membrane protein (OMP_b) and OmpA-C-like domain, and it is a 10-beta-stranded transmembrane Outer Membrane Protein with a signal peptide at residues 1-22A. A recombinant Histidine tagged OmpA (39.31kDa) was successfully expressed and purified in this study. In conclusion, OmpA protein of A. baumannii strain L131 is highly conserved across clinical species of Acinetobacter, and the soluble recombinant OmpA created in this study can be used to develop a putative vaccine that may prevent infections caused by the clinical species of Acinetobacter.

Keywords: Acinetobacter baumannii, ompA gene, expression, homology, putative vaccine

INTRODUCTION
The Gram-negative genus, Acinetobacter, involves a naturally varied group of aerobic bacteria, non-fastidious, oxidase negative, unable to motile catalase-positive bacilli (Pegel et al., 2008). Although Acinetobacter members are generally depicted as ubiquitous nonpathogenic bacteria, strains of the Acinetobacter baumannii-Acinetobacter calcoaceticus become apparent as important opportunistic pathogenic bacteria to humans (Dijkshoorn et al., 2007; Perez et al., 2007). The capability of A. baumannii to have numerous virulence factors, such as iron gaining mechanisms, motility, and efflux force in unfavorable environmental circumstances helps this bacterium to develop infections. A. baumannii has the ability to survive and resist in hospitals conditions, so it has become one of the highly thriving hospital acquired pathogenic bacterium that can stimulate crucial infections to humans (Howard et al., 2012; Montefour et al., 2008; Pegel et al., 2008). Moreover, this bacterium is implicated in outbreaks happening in rigorous hospital rooms (Bergogne-Berezin and Towner, 1996), and it is frequently a source of pneumonia, blood poisoning, and cytisiss after hospitalization of people with further strict diseases (Cooelho et al., 2004). The potential pathogenicity of A. baumannii includes the surfaces adherence capability, biofilms formation, antimicrobial resistance, and acquisition of genetic materials from distinct genera (Ansley et al., 2002; Howard et al., 2012). As resistance to multiple antibiotics among A. baumannii are increasing (Kuo et al., 2007; Qureshi et al., 2015), prevention and cure of diseases caused by this pathogen have become a major health care threat; therefore, novel approaches to manage and prevent A. baumannii infections are required. Although vaccination signifies the greatest strategy to prevent A. baumannii infections (Mishra et al., 2012; Pachon & McConnell, 2014), no effective vaccine has been developed for this pathogen to date. Antigens that induce immunity against proteins of the bacterial outer membrane are vital antigen candidates because of their ability to interact with the host as well as their position on the cell surface, which make them available for antibody neutralization (McConnell et al., 2011). The potential and viability of immunization have previously been validated through active and passive immunization to the outer membrane protein A(ompA) (Fattahian et al., 2011) (Luo et al., 2012) and a multifunctional trimeric autotransporter (Aata) antigens (Bentancor et al., 2012). Nevertheless, the prevalence and solubility of these antigens represent major obstructions for achievement of a generally protecting vaccine.

The outer membrane proteins (OMPs) in Gram negative bacteria are distinctive classes of essential membrane proteins. These proteins have vital functions for the cell, such as adhesion, nutrients utilization, signaling, secretion of waste as well as serving as a virulence factor in pathogenic strains. OMPs are highly stable in membrane and capable of resisting very severe environments because their β-barrel domains have 8 to 26 strands. The large, expanded loops linking the strands on the extracellular region, while the small loops were found on the periplasmic area (Rollauer et al., 2015). The OMPs possess comparable composition and biological features even though they have diverse sequences (Chaturvedi and Mahalakhmi, 2017). The variety of OMPs sequence is much more at N terminal significantly than C terminal, and proper assembly and folding of OMPs is controlled by the conserved β strands (Gessmann et al., 2014). Nevertheless, the kinds of OMPs in A. baumannii have not been characterized evidently, up to now, and only some reports are exist, including Omp33-36, OmpW, and OmpA (Choi & Lee, 2019). Among them, OmpA is extremely abundant protein on A. baumannii surface, and it is implicated in bacterial growth, virulence, and drugs resistance. Due to the high immunogenic properties of OmpA, it has been previously identified as a putative antigen to develop vaccines as well as passive immunotherapy for diseases caused by this bacterium (Fajardo Bonin et al., 2014; Muriel et al., 2013). Interestingly, OmpA of strain L131 of A. baumannii is found to be a homolog to OmpA of other clinical Acinetobacter species, including, Acinetobacter pittii, Acinetobacter nosocomialis, Acinetobacter seifertii, Acinetobacter ursingii, the possible causes of bacteremia (Kishii et al., 2016; Liu et al., 2017; Loubinoux et al., 2003), Acinetobacter calcoaceticus that causes burns and wounds infections (Pavlica and Tomanovic, 1989). A successful vaccine antigen to A. baumannii infections may be helpful to protect against Acinetobacter species; therefore, the current study aimed to:
1. Create a soluble recombinant OmpA protein that can be used as an antigen candidate in Acinetobacter vaccine through cloning the corresponding ompA open reading frame from A. baumannii strain LI31 into pET19b vector, expressing the histidine tagged OmpA protein, and purifying the fused OmpA using immobilized metal affinity chromatography (IMAC).

2. Analyze the sequence of OmpA amino acid sequence of A. baumannii strain LI31 for topology prediction and conservation.

MATERIAL AND METHODS

Amplification of ompA gene

DNA of Acinetobacter baumannii strain LI31 (standard strain obtained from the central health lab in Baghdad) was elicted using bacterial RTP6 extraction Kit (InVitex- Germany). Primers used for detection of ompA gene were designed using clone manager software based on the published sequence of the gene on NCBI. The sequence of the forward primer including Xhol restriction site was: 5’ GTGAGGGGAATGAAAATGAGG 3’. The sequence of the reverse primer with Bpi restriction site was: 5’ GTGATATTCGCGACAGGTGAGG 3’. The entire ompA code (1002 bps) was synthesized utilizing the PCR Kit, Phusion™ High-Fidelity from Thermo Fisher scientific. PCR testing was executed in a final amount of 50 μL of test combination which contains 0.5 μM for each primer, 25 μL of 2X Phusion Master Mix, 100 ng/50 μL of DNA, and nuclease liberated water. DNA was synthesized to be first denatured for 30 seconds on 98°C then for 10 seconds (30 rounds), annealed at 54°C intended for half a minute, elongated by 72°C for a period of 40 seconds, and last extended on 72°C for a period of 5 minutes. The product was visualized by agarose gel system using 1% gels supplemented with ethidium bromide(0.5 μg/ml). Gels were explicated using clone manager software based on the published sequence of the gene on NCBI.

Creation and validation of recombinant construct

The histidine tagged pET19b and PCR fragment were cut by Fast Digest restriction enzymes (Xhol and Bpi) (Thermo scientific). The cut PCR fragments were then cloned into the digested vector using T4 DNA ligase and ligase buffer. The ligated recombinant vectors were then moved into E. coli strain DH5α (Thermo Fisher Scientific) then cultivated on Luria-Bertani (LB) plates having hundred microgram per milliliter of ampicillin for selection. Clones were chosen randomly and cultivated on 37°C in a test tube having five milliliters of LB broth and ampicillin (100 μg/ml). Constructs were extracted from overnight cultures employing the Gene JETTM Plasmid Mini prep Kit (Thermo scientific). Recombinant vectors were validated by colony PCR, cutting by restriction enzymes, and DNA base Sequencing using a DNA automatic sequencer. For protein production, the created construct was moved to E. coli BL21 (DE3)(NEWENGLAND Biolabs).The creation and validation of our construct was done following the instructions of pET System Manual2 (Novagen).

Omp A protein induction and expression

One colony of the expression E. coli strain having pET19b-ompA, was inoculated in a tube having three milliliters of LB broth supplemented with ampicillin then put in a shaker incubator at 37°C overnight. Samples then were sub-cultured at 1:100 in six milliliters of LB/ampicillin broth then put in an incubator adjusted to 37°C. A spectrophotometer was used to measure the (OD) at 600 nm, and when it was about 0.6-0.8 and before protein production, 500 μL of each sample was taken; then isopropyl-D-thiogalactopyranosid (IPTG) was mixed at 1 mM with the growing cultures. The induced bacterial cells were cultivated in a shaker incubator at 37°C for a period of three hours; a post induction sample (500 μL) was possessed then centrifuged at 13 rpm, 4°C for two minutes. Supernatants were removed and 125 μL of 1X laemmli buffer was mixed with the pellet. Pellets were vortexed and placed in a 90°C hot block for five minutes prior to storage at –20°C. Protein samples were examined utilizing SDS-PAGE and western blotting(10% gels) using Mouse monoclonal IgG anti-His (Millipore) (NEB) primary antibodies and the Goat anti-mouse IgG secondary antibody (Millipore). The blots images were captured using a Bio-Rad (ChemiDoc MP). Protein induction and expression was done following the instructions of pET System Manual2 (Novagen).

Purification of the histidine-tagged OmpA

Immunized metal affinity chromatography (IMAC) (Nickel-chelated) was utilized in order to purify the histidine-tagged OmpA from the expression E. coli strain as described in (Chiang et al., 2015). The fusion histidine-tagged OmpA, was validated using SDS-PAGE as well as western blot.

Sequencing alignments

Amino acid sequences for OmpA protein homologs were attained from (NCBI) protein resource then analyzed utilizing the blast tool (NCBI). Homologs for Omp A protein from other pathogenic Acinetobacter spp were chosen (Accession numbers: ABY47586.1, WP_044100281.1, WP_107972446.1, WP_111034814.1,PMC94806.1, WP_016137162.1) and aligned using clustal Omega website. The color shades were given according to % identity coloring of Jalview.

Topology prediction

Protein topology prediction was done using NCBI tools and PRED-TMBB2(Elofsson et al., 2016).

RESULTS

Topology prediction of OmpA from A. baumannii strain LI31

Sequence analysis of OmpA from A. baumannii strain LI31 revealed two conserved domains belonging to OmpA family protein: OmpA_b-hrl and OmpA_C-like (Figure 1A). These domains are highly conserved across Acinetobacter spp. Results from topology prediction revealed the OmpA peptide as a 10-beta -stranded transmembrane outer membrane protein categorized as the Outer Membrane Protein beta-barrel domain Family(Figure1B).
Creation and validation of recombinant construct

The amplified ompA gene from Acinetobacter baumannii strain LI311 (1018 bp) was cut by XhoI and BspI and ligated into the matching positions of pET19b plasmid digested with the same restriction enzymes. Clones were selected randomly from LB/ Ampicillin plates for PCR verification (Figure 3A). The recombinant plasmid, pET19b-ompA, was also validated by restriction digestion using XhoI and BspI and analyzed by agarose gel electrophoresis (Figure 3B). Sequencing of DNA was utilized using a DNA automatic sequencer in order to ensure there is no mutation. The nucleotide sequence of ompA gene in the created construct of pET19b-ompA was consistent with ompA gene sequence of Acinetobacter baumannii strain LI311 published in the GenBank (Accession: EU332799).

Expression and purification of Hist-tagged OmpA fusion protein

The Hist-tagged OmpA was successfully expressed using 1 mM of IPTG, and purification is done by Nickel-chelated immobilized metal affinity chromatography (Figure 4).

DISCUSSION

Acinetobacter baumannii is a significant microorganism that can affect humans nowadays due to the brisk appearance and dissemination of strains resistant to antibiotics setting aside the bacteria with elevated mortality rates related to their infections(Wang-Lin et al., 2017). Despite that there is no authorized vaccine at present to A. baumannii, immunization approaches are promising as a feasible choice to control multi-resistant infections. One of the most important principles that should be taken for consideration is selecting an antigen from the proteome of a specified pathogen that it has to be ubiquitous and conserved across various strains of A. baumannii (Ahmad et al., 2016; Chen, 2015). OmpA of A. baumannii strain LI31 encodes the polyepptide of 334 amino acids, was selected as a putative vaccine in this study because the blast analysis of OmpA of this bacterium showed that this protein is not only completely conserved across various strains of A. baumannii, but it is also a homolog to OmpA of some clinical Acinetobacter species, among them, A. pittii, A. nosocomialis, A. sefertii, A. calcocaceticus, and A. ursingii with identity percentages of 100%, 99.6%, 92%, 91% respectively. In addition, the OmpA protein of A. baumannii possesses high immunogenic property making it as a putative antigen for vaccines development(Fajardo Bonin et al., 2014). Sequence analysis of OmpA from A. baumannii strain LI31 revealed two conserved domains belonging to OmpA family protein (domain architecture ID 10607194). The first is OmpB, which is identified in a broad range of outer membrane proteins as a membrane bound beta. The second domain is OmpA, which is peptidoglycan binding domain like the carboxyl terminal domain of OmpA (Marchler-Ribet, 2006). To present, confined research were done on A. baumannii to find effective immunization approaches. Among them, active and passive immunization against the biofilm associated protein (Bap)(Fattahian et al., 2011), OmpA(Lu et al., 2012), poly-N-acetyl-(1-6)-gulosamine (PNGA)(Bentancor et al., 2012) and polysaccharide capsule (Russo et al., 2010) were tested. In addition, antigens were determined in the entire species of A. baumannii, which could be utilized as vaccine candidates; among them ompA was considered as one of these possible targets (Moriel et al., 2013) Furthermore, a previous study showed that active and passive immunization can be produced by recombinant OmpA protein after infecting diabetic mice by A. baumannii eventhough sera resistance was not accomplished (Luo et al., 2012). OmpA protein is also demonstrated to be able prevent infections of A. baumannii in mice by trigaring signal pathways of INF-γ and IL-4(Lin et al., 2013). In addition, a recently published study, eukaryotic expression vector pBudCe4.1, was used to clone and express ompA gene of A. baumannii as a DNA vaccine, but the researchers referred to the oncogenic possibility of the created recombinant molecules after an irregular combination with hosts genomes (Ansari et al., 2018).

CONCLUSION

In this report, a soluble recombinant OmpA protein of A. baumannii strain LI31, immensely conserved across clinical species of Acinetobacter, was successfully produced and purified. The outcome of our research can be employed to develop a vaccine candidate for Acinetobacter infections.
the development of Acinetobacter baumannii. *Infection in Critical Care*, 11(4), 1065-1073. https://doi.org/10.1007/s11105-015-0910-9

Choi, U., & Lee, C. R. (2019). Antimicrobial Agents That Inhibit the Outer Membrane Assembly Machines of Gram-Negative Bacteria. *J Microbiol Biotechnol*, 29(1), 1-10. https://doi.org/10.4014/jmb.1804.03051

Coelho, J., Woodford, N., Turton, J., & Livermore, D. M. (2004). Multiresistant acinetobacter in the UK: how big a threat? *J Hosp Infect*, 58(3), 167-169. https://doi.org/10.1016/j.jhinf.2003.12.019

Dijkshoorn, L., Nemeç, A., & Seifert, H. (2007). An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. *Nat Rev Microbiol*, 5(12), 939-951. https://doi.org/10.1038/nrmicro1789

Eloffson, A., Tsirigos, K. D., & Bagos, P. G. (2016). PRED TMBB2: improved prediction of membrane protein location across species. *Proteomics*, 16(8), 1248-1259. https://doi.org/10.1002/pmic.201500133

Fattahian, Y., Rosolli, I., Monsavi Gargar, S. L., Rahbar, M. R., Darvish Alipour Astaneh, S., & Amani, J. (2011). Protection against Acinetobacter baumannii infection via its functional deprivation of biofilm associated protein (Bap). *Microb Pathog*, 51(6), 402-406. https://doi.org/10.1016/j.micpath.2011.09.004

Fournier, P. E., & Retch, H. (2006). The epidemiology and control of Acinetobacter baumannii in health care facilities. *Clin Infect Dis*, 42(5), 692-699. https://doi.org/10.1086/500020

Gessmann, D., Chung, Y. H., Danoff, E. J., Plummer, A. M., Sandlin, C. W., Bauer, K. A., & Bozkurt, C. (2016). Identification of novel vaccine candidates against *Acinetobacter baumannii* using reverse vaccinology. *J Microbiol Biotechnol*, 26(4), 687-698. https://doi.org/10.4014/jmb.1504.03051

Howard, A., O'Donoghue, M., Feneley, A., & Sleator, R. D. (2012). *Acinetobacter baumannii*: An emerging opportunistic pathogen. *Viralzone*, 3(3), 243-250. https://doi.org/10.4161/viru.19700

Ikei, K., Sashida, T., Kurokawa, S., Yamada, K., Arita, K., Fujita, M., & Torizuka, K. (2012). Comparative genomics of *Acinetobacter baumannii* ATCC 19601 and its congeners. *Journal of Bacteriology*, 194(21), 5883-5893. https://doi.org/10.1128/JB.07679-11

Lin, L., Tan, B., Pantapalangkoor, P., Li, X., Chitwood, J. A., & Hujer, A. M. (2017). Acinetobacter baumannii ompA vaccine dose alters immune polarization and immunodominant epitopes. *Vaccine*, 35(12), 313-318. https://doi.org/10.1016/j.vaccine.2016.11.008

Liu, Y.-M., Lee, Y.-T., Kuo, S.-C., Chen, T.-L., Liu, C.-P., & Liu, C.-E. (2017). Comparison between bacteremia caused by *Acinetobacter baumannii* and *Acinetobacter nosocomialis*. *Journal of Microbiology, Immunology and Infection*, 50(1), 62-67. https://doi.org/10.1016/j.jmii.2015.01.001

Loubinoux, I., Mihalia-Amrouche, L., Le Fleche, A., Pigni, E., Hugon, G., Grimont, P. A. D., & Bouvet, A. (2003). Bacteremia Caused by Acinetobacter ursingii. *Journal of Clinical Microbiology*, 41(3), 1337-1338. https://doi.org/10.1128/JCM.41.3.1337-1338.2003

Luo, G., Lin, L., Ibrahim, A. S., Baquiv, B., Pantapalangkoor, P., Bonomo, R. A., Doi, Yoh., Adams, Mark D., Russo, T., Thomas A., Spellberg, B. (2012). Active and Passive Immunization Protects against Lethal, Extreme Drug-Resistant Acinetobacter baumannii Infection. *PLoS One*, 7(1), e29446. https://doi.org/10.1371/journal.pone.0029446

Marchler-Bauer, A., Gmann, D., Liu, Z., Lin, L., Tan, B., Pantapalangkoor, P., Li, X., Chitwood, J. A., & Hujer, A. M. (2017). Active and Passive Immunization Protects against Lethal, Extreme Drug-Resistant Acinetobacter baumannii Infection. *PLoS One*, 7(1), e29446. https://doi.org/10.1371/journal.pone.0029446

McConnell, M. J., Dominguez-Herrera, J., Sanini, Y., Lopez-Rojas, R., Docobo-Perez, F., & Pachon, J. (2011). Vaccination with outer membrane complexes elicits rapid protective immunity to multidrug-resistant Acinetobacter baumannii. *Infect Immun*, 79(1), 518-526. https://doi.org/10.1128/IAI.00741-10

Mishra, R. P., Oviedo-Esta, E., Prachi, P., Rappuoli, R., & Bagmoli, F. (2012). Vaccines and antibiotic resistance. *Curr Opin Microbiol*, 15(5), 596-602. https://doi.org/10.1016/j.mib.2012.08.002

Montefour, K., Frieden, J., Hurst, S., Helmsch, C., Headley, D., Martin, M., & Boyle, D. A. (2008). *Acinetobacter baumannii*: an emerging multidrug-resistant pathogen in critical care. *Crit Care Nurse*, 28(1), 15-25. https://doi.org/10.4037/ccn2008.28.1.15

Moriel, D. G., Beatos, S. A., Wurpel, D. J., Lipman, J., Nimmor, G. R., Paterson, D. L., & Schembri, M. A. (2013). Identification of Novel Vaccine Candidates against Multidrug-Resistant Acinetobacter baumannii. *PloS One*, 8(10), e77651. https://doi.org/10.1371/journal.pone.0077651

Pachon, J., & McConnell, M. J. (2014). Considerations for the development of a prophylactic vaccine for Acinetobacter baumannii. *Vaccine*, 32(22), 2534-2536. https://doi.org/10.1016/j.vaccine.2013.10.064

Pavlica, R., & Tomanovic, B. (1989). *Acinetobacter calcoaceticus* as a cause of infection in wounds and burns. *Srps Arh Celok Lek.*, 117:5-6, 319-324.

Peleg, A., Seifert, H., & Paterson, D. L. (2008). *Acinetobacter baumannii*: emergence of a successful pathogen. *Clin Microbiol Rev*, 21(3), 371-434. https://doi.org/10.1128/CMR.00058-07

Perez, F., Hujer, A. M., Hujer, K. M., Deckter, B. K., Rather, P. N., & Bonomo, R. A. (2007). Global Challenge of Multidrug-Resistant *Acinetobacter baumannii*. *Antimicrob Agents Chemother.*, 51(10), 3471-3484. https://doi.org/10.1128/AAC.01464-06

Qureshi, Z. A., Hittle, L. E., O'Hara, J. A., Rivera, J. J., Syed, A., Shields, R. K., Pascule, A. W., Ernst, R. K., Doi, Y. (2015). Colistin-resistant *Acinetobacter baumannii*: beyond carbapenem resistance. *Clin Infect Dis*, 60(9), 1295-1303. https://doi.org/10.1093/cid/civ124

Rollauger, S. E., Sooroshjani, M. A., Noinaj, N., & Buchanan, S. K. (2015). Outer membrane protein biogenesis in Gram-negative bacteria. *Philos Trans R Soc Lond B Biol Sci*, 370(1679). https://doi.org/10.1098/rspb.2015.0023

Russo, T. A., Luke, N. R., Beaman, J. M., Olson, R., Sauberan, S. L., MacDonald, U., Scholtz, L. W., Umland, T., & Campagnari, A. A. (2010). The K1 capsular polysaccharide of *Acinetobacter baumannii* strain 307-0294 is a major virulence factor. *Infect Immun*, 78(8), 3993-4000. https://doi.org/10.1128/IAI.00366-10

Wang-Lin, S. X., Olson, R., Beaman, J. M., MacDonald, U., Balthasar, J. P., & Russo, T. A. (2017). The Capsular Polysaccharide of *Acinetobacter baumannii* Is an Obstacle for Therapeutic Passive Immunization Strategies. *Infect Immun*, 85(12), e00591-00517. https://doi.org/10.1128/IAI.00591-17