Supporting Information

New biosourced AA and AB monomers from 1,4:3,6-dianhydrohexitols, I Sorosbide, Isomannide and Isoidide

Asma Saadaoui^{a,c,d}, Raouf Medimagh^a*, Sylvain Marqu^b, Damien Prim^b, Saber Chatti^c, Herve Casabianca^c& Mongia Said Zina^d

^aInstitut National de Recherche et d’Analyse Physico-chimique (INRAP), Laboratoire des Substances Naturelles (LR10INRAP02), Sidi ThabetBiotechpole, Ariana 2020, (Tunisia).

^bUniversité de Versailles-St-Quentin (UVSQ), Institut Lavoisier de Versailles (ILV) UMR CNRS 8180, 45 Avenue des Etats-Unis, 78035 Versailles Cedex, France

^cUniversité de Lyon 1, Institut des Sciences Analytiques, UMR5280, CNRS, ENS-Lyon, 5 rue de la Doua, F-69100 Villeurbanne (France).

^dFaculté des Sciences de Tunis, Université de Tunis El Manar 2092 Tunis (Tunisia).
Figure S1. 300 MHz 2D correlation spectra (A) COSY and (B) HSQC of 11.

Figure S2. 1H spectra of 11 (A), 12 (B) and 13 (C).
Figure S3. 13C spectra of 11 (A), 12 (B) and 13 (C).

Figure S4. 300 MHz correlation spectrum (COSY) of 1b.
Figure S5. 300 MHz correlation spectrum (HSQC) of 1b

Figure S6. Zoom of 500 MHz correlation spectrum (HSQC) of 1h
Figure S7. 1H spectra of 1g (A) and Pe(B) [DMSO-d_6, 500 MHz]