An important area of study in arithmetic combinatorics is the h-fold sumset. For a set $A \subset \mathbb{Z}^d$, the h-fold sumset is

$$hA = \{a_1 + \cdots + a_h : a_i \in A\}.$$

An important contribution to this area of study is the following theorem due to Khovanskii:

Theorem 1.1. [K] Given a finite set $A \subset \mathbb{Z}^d$, there exists a polynomial $p \in \mathbb{Q}[x]$ of degree at most d such that $|hA| = p(h)$ for all sufficiently large h. Further, if $A - A$ generates all of \mathbb{Z}^d additively, then $\deg p = d$ and the leading coefficient of p is the volume of the convex hull of A.

The proof of this theorem was, however, ineffective, as it yielded no information about the polynomial past its degree and leading term. There have been successes in bounding the integer h_0 such that $|hA| = p(h)$ for $h \geq h_0$ ([GSW], for instance).

However, in a recent paper ([CG]), the cardinality of $|hA|$ has been completely described for all positive integers h, where $A \subset \mathbb{Z}^d$ is a set with $d + 2$ elements, such that $A - A$ additively generates \mathbb{Z}^d.

Definition 1.2. For $A \subset \mathbb{Z}^d$, we will denote the convex hull of A with Δ_A.

The main result of the paper [CG] is

Theorem 1.3. [CG, Theorem 1.2] Suppose $A \subset \mathbb{Z}^d$ consists of $d + 2$ elements, and further that $A - A$ generates \mathbb{Z}^d additively. Then
\[|hA| = \left(\frac{h + d + 1}{d + 1} \right) \] whenever \(0 \leq h < \text{vol}(\Delta_A) \cdot d! \)

and

\[|hA| = \left(\frac{h + d + 1}{d + 1} \right) - \left(\frac{h - \text{vol}(\Delta_A) \cdot d! + d + 1}{d + 1} \right) \] whenever \(h \geq \text{vol}(\Delta_A) \cdot d! \).

The proof in [CG] treats two cases in two different ways. The first case is when \(\Delta_A \) is a simplex with \(d + 1 \) vertices and \((d + 2)\)-nd element of \(A \) is in \(\Delta_A \), and the second case is when \(\Delta_A \) is a polytope with \(d + 2 \) vertices. However, the proof of the second case contained a misstep as noticed in the first version of this paper, (see section 3). In the second version of the paper [CG] this proof is corrected using the same idea as in the original proof.

In this paper we provide a different approach to the proof of [CG, Theorem 1.2] and establish the more general result treating also the sets \(A \) for which the set \(A - A \) does not necessarily generate \(\mathbb{Z}^d \) additively. This is our main result and we show that the theorem from [CG] is its direct corollary. An additional advantage of our approach is that we obtain a shorter and simpler proof which does not treat two cases in different ways but provides a unified proof.

In the last section we briefly discuss the sets \(A \subset \mathbb{Z}^d \) of \(d + 3 \) elements. We want to show that this situation is considerably more complicated, as two such sets with the same convex hull and the same \(d + 2 \) elements could produce different polynomials. So, it might be of some interest to obtain an upper bound for \(hA \) in this case.

2. Lemmas

For \(v = (v_1, \ldots, v_d) \in \mathbb{Z}^d \), we define its lift to be \(\tilde{v} = (v_1, \ldots, v_d, 1) \in \mathbb{Z}^{d+1} \). If \(v = (v_1, \ldots, v_d) \in \mathbb{Z}^d \) and \(h \in \mathbb{N} \), then we write \((v, h)\) instead of \((v_1, \ldots, v_d, h)\), and refer to \(h \) as the height of this point.

Definition 2.1. For a set \(A = \{v_1, \ldots, v_k\} \subset \mathbb{Z}^d \), the cone of \(A \) is

\[C_A := \text{span}_\mathbb{N}(\tilde{v}_1, \ldots, \tilde{v}_k) = \{n_1\tilde{v}_1 + \cdots + n_k\tilde{v}_k : n_1, \ldots, n_k \in \mathbb{N}\}. \]

To the cone \(C_A \), we associate the generating series

\[C_A(t) := \sum_{a \in C_A} t^{\text{height}(a)}. \]

Since the points at height \(h \) form a copy of \(|hA| \) embedded in \(\mathbb{Z}^{d+1} \), we have that

\[C(t) = \sum_{h \geq 0} |hA| t^h. \]
Let A be a $d + 3$ element set in \mathbb{Z}^d such that $A - A$ generates \mathbb{Z}^d additively and Δ_A is a d-simplex. Denote the $d + 1$ vertices of Δ_A by v_1, \ldots, v_{d+1}. These span a lattice $\Lambda = \text{span}_\mathbb{Z}(\tilde{v}_1, \ldots, \tilde{v}_{d+1})$ in \mathbb{Z}^{d+1}. For such a lattice, we denote the set

$$\Pi := \left\{ \sum_{i=1}^{d+1} \lambda_i \tilde{v}_i : 0 \leq \lambda_i < 1 \right\} \cap \mathbb{Z}^{d+1}.$$

In the paper, we will also encounter $\Lambda^+ := \text{span}_\mathbb{N}(\tilde{v}_1, \ldots, \tilde{v}_{d+1})$, and define N_Λ as the cardinality of Π.

We partition C_A into residue classes π (mod Λ), each of which can be represented by an element of Π. For $\pi \in \Pi$, we denote its residue class by S_π. An element $(g, N) \in S_\pi$ is said to be minimal if $(g, N) - \tilde{v}_i$ does not lie in C_A for any i.

From the geometry of numbers, we know that if we have a lattice $\Lambda = \text{span}(\tilde{v}_1, \ldots, \tilde{v}_{d+1})$ in \mathbb{Z}^{d+1} with a fundamental domain of nonzero volume, then \mathbb{Z}^{d+1}/Λ can be identified with the set of lattice points in the fundamental domain of Λ, and that this number is equal to the determinant of the matrix whose columns are the generating vectors \tilde{v}_i. Therefore,

$$N_\Lambda = |\mathbb{Z}^{d+1}/\Lambda| = \text{vol}(\Delta_A)d!.$$

(For this claim, we refer the reader for example to [N, Ch. 6, Sec. 1].)

Lemma 2.2. [CG, Lemma 3.1] If (α, M) is a minimal element of S_π, then

$$M \leq N_\Lambda - 1.$$

Lemma 2.3. Let $v_1, \ldots, v_{d+1} \in \mathbb{Z}^d$ be vectors that generate \mathbb{Z}^d and $\det(\tilde{v}_1, \ldots, \tilde{v}_{d+1}) \neq 0$, and let $w \in \mathbb{Z}^d$ be an integer vector such that $\tilde{w} = a_1 \tilde{v}_1 + \cdots + a_{d+1} \tilde{v}_{d+1}$, where a_i are non-negative coefficients such that $a_1 + \cdots + a_{d+1} = 1$. Then a_i are rational numbers.

Proof. Since $\tilde{v}_1, \ldots, \tilde{v}_{d+1}, \tilde{w}$ are all integer vectors and $\det(\tilde{v}_1, \ldots, \tilde{v}_{d+1}) \neq 0$, by Cramer’s rule coefficients a_i will be rational numbers. \square

We will also need a well known result from Combinatorial geometry, Radon theorem and its extension which we prove here.

Theorem 2.4. Every set S of $d + 2$ points in \mathbb{R}^d, could be split in two disjoint subsets $S = S_1 \cup S_2$ such that the convex hulls of S_1 and S_2 intersect, i.e. $\text{conv}S_1 \cap \text{conv}S_2 \neq \emptyset$.

Actually we need the following extension of this theorem, saying that in generic case (when no $d + 1$ points belong to the same hyperplane), this splitting is unique.

Theorem 2.5. Let $S = \{x_1, x_2, ..., x_{d+2}\}$ be the set of points in \mathbb{R}^d (no $d + 1$ of which belong to the same hyperplane) and let $S = S_1 \cup S_2$ be the splitting satisfying $\text{conv}S_1 \cap \text{conv}S_2 \neq \emptyset$. Then two points $x_i, x_j \in S$ belong to the same of two sets S_1 and S_2 if and only if they belong to different halfspaces determined by the hyperplane spanned by the remaining d points of the set S.
Proof. Let the points \(x_i, x_j \in S \) belong to the same halfspace \(H_+ \) determined by the hyperplane \(H \) spanned by the remaining \(d \) points of \(S \). Then points \(x_i \) and \(x_j \) could not belong to the same of two sets \(S_1 \) and \(S_2 \). Namely, if \(x_i, x_j \in S_1 \), then \(S_2 \subseteq H \) and \(S_1 \subseteq H_+ \). Then \(S_1 \cap S_2 \subseteq H \) and so \(\operatorname{conv}(S_1 \setminus \{x_i, x_j\}) \cap \operatorname{conv}S_2 \neq \emptyset \). This is impossible since the set \(S \setminus \{x_i, x_j\} \) consists of \(d \) points in generic position.

Let the points \(x_i, x_j \in S \) belong to different halfspaces determined by the hyperplane \(H \) spanned by the remaining \(d \) points of \(S \). (For example, let \(x_i \in H_+ \) and \(x_j \in H_- \).) Then points \(x_i \) and \(x_j \) could not belong to different of two sets \(S_1 \) and \(S_2 \). Namely, if \(x_i \in S_1 \) and \(x_j \in S_2 \), then \(S_1 \subseteq H_+ \) and \(S_2 \subseteq H_- \). Then \(S_1 \cap S_2 \subseteq H \) and so \(\operatorname{conv}(S_1 \setminus \{x_i\}) \cap \operatorname{conv}(S_2 \setminus \{x_j\}) \neq \emptyset \). This is impossible since the set \(S \setminus \{x_i, x_j\} \) consists of \(d \) points in generic position. \(\square \)

3. Addressing a misstep in 1.3, non-simplicial case

The approach in [CG] in the non-simplicial case is based on presenting \(\Delta_A \) as the union of two simplices with a common \(d-1 \) face. But, some convex polytopes with \(d+2 \) vertices cannot be split into two simplices. To see this, we will need the extension of Radon’s theorem (see Theorem 2.5): a set \(X \) of \(d+2 \) elements in \(\mathbb{R}^d \) can be split into two disjoint subsets \(X = X_1 \cup X_2 \) such that the convex hulls of \(X_1 \) and \(X_2 \) intersect and this splitting is unique (in a generic case). Namely, we proved that two vertices are in the same set \((X_1 \text{ or } X_2)\) if and only if they belong to different half-spaces determined by the hyperplane spanned by the remaining \(d \) vertices.

Let \(A \) be a set with \(d+2 \) elements that has a convex hull that is split into two \(d \)-simplices with a common \(d-1 \) face. We will denote the set of vertices determined by the common face of these two simplices by \(X_1 \), and set \(X_2 \) will be comprised of the remaining two vertices. Then, the convex hulls of \(X_1 \) and \(X_2 \) will intersect. Therefore, in this situation, one set will always have \(d \) elements, and one will have 2 elements. If a set may be split into two sets which both have at least three elements, and their convex hulls intersect, then the convex hull \(\Delta_A \) cannot be split into two simplices.

An easy example of such a set is \(A = \{P_1(1, 0, 0, 0), P_2(0, 1, 0, 0), P_3(0, 0, 1, 0), Q_1(0, 0, 0, 1), Q_2(0, 0, 0, 0), Q_3(1, 1, 1, -1)\} \). We see that convex hulls of \(X_1 = \{P_1, P_2, P_3\} \) and \(X_2 = \{Q_1, Q_2, Q_3\} \) intersect at common barycenter \((\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0)\). It is easy to see that \(A - A \) generates \(\mathbb{Z}^d \). If \(A \) did have a splitting into two simplices, one set would have 2, and one would have 4 elements, which is not the case here. Since these splittings are unique, we conclude that \(\Delta_A \) does not split into two simplices.

4. The main theorem

We start by an example.

Example 4.1. Let \(d = 2 \) and consider the set of four points \(A = \{(1, 0), (0, 1), (-1, 0), (0, -1)\} \). For any \(h \in \mathbb{N} \) the set \(hA \) contains one point with the first coordinate equal to \(h \) or \(-h\), two points with the first coordinate equal to \(h - 1 \)
or \(-(h - 1)\), three points with the first coordinate equal to \(h - 2\) or \(-(h - 2)\), etc. Finally, the set \(hA\) contains \(h + 1\) points with the first coordinate equal to 0.

Therefore the cardinality of the set \(hA\) is \(|hA| = 2(1 + 2 + \cdots + h) + h + 1 = (h + 1)^2\).

Applying Theorem 1.3 to the set \(A\) would imply that the cardinality of \(hA\) is \(\left(\frac{h + 3}{3} - \frac{h - 1}{3}\right) = 2h^2 + 2\), which is incorrect. This happens since the set \(A\) does not satisfy the assumption of Theorem 1.3 that the set \(A - A\) generates \(\mathbb{Z}^d\) additively.

Here we provide a little bit more general result which contains Theorem 1.3 as a special case, and also treats the sets of points not satisfying the assumption that \(A - A\) generates \(\mathbb{Z}^d\) additively, like in the example above.

Let us consider the set \(A = \{v_1, \ldots, v_{d+2}\}\) of \(d + 2\) points in \(\mathbb{Z}^d\), no \(d + 1\) of which are contained in the same hyperplane. By \(\tilde{v}_i = (v_i, 1)\) we denoted the lifts of these points in \(\mathbb{Z}^{d+1}\), for \(i \in \{1, 2, \ldots, d + 2\}\).

Let us now denote, for \(i \in \{1, 2, \ldots, d + 2\}\), \(D_i = \det(\tilde{v}_1, \ldots, \tilde{v}_{i-1}, \tilde{v}_{i+1}, \ldots, \tilde{v}_{d+2})\), and \(D = \text{GCD}(D_1, \ldots, D_{d+2})\). We state now our main theorem.

Theorem 4.2. Let \(A = \{v_1, \ldots, v_{d+2}\} \subset \mathbb{Z}^d\) be a set of \(d + 2\) points, no \(d + 1\) of which are contained in the same hyperplane. Then

\[
|hA| = \left(\frac{h + d + 1}{d + 1}\right), \quad \text{for } 1 \leq h < \text{Vol}(\Delta_A)d! / D
\]

and

\[
|hA| = \left(\frac{h + d + 1}{d + 1}\right) - \left(\frac{h - \text{Vol}(\Delta_A)d! / D + d + 1}{d + 1}\right), \quad \text{for } h \geq \text{Vol}(\Delta_A)d! / D.
\]

Proof:

Let \(A = \{v_1, \ldots, v_{d+2}\} \subset \mathbb{Z}^d\), and let \(h\) be a positive integer. First we will look for non-trivial solutions of the system of equations in variables \(\alpha_1, \ldots, \alpha_{d+2}\)

\[
\alpha_1 v_1 + \cdots + \alpha_{d+2} v_{d+2} = 0,
\]

\[
\alpha_1 + \cdots + \alpha_{d+2} = 0.
\]

This is equivalent to

\[
\alpha_1 \tilde{v}_1 + \cdots + \alpha_{d+2} \tilde{v}_{d+2} = (0, 0).
\]

Points \(v_1, \ldots, v_{d+2}\) are affine-dependent, so there exists a non-trivial solution \(\mu_1, \ldots, \mu_{d+2}\) of the above system of equations.

By the generic position, \(D_{d+2} = \det(\tilde{v}_1, \ldots, \tilde{v}_{d+1}) \neq 0\), and also \(\mu_{d+2} \neq 0\), since otherwise points \(v_1, \ldots, v_{d+1}\) would be affine-dependent.

Multiplying the equality \(\mu_1 \tilde{v}_1 + \cdots + \mu_{d+2} \tilde{v}_{d+2} = (0, 0)\) by \(1/\mu_{d+2}\), we get the identity

\[
\frac{\mu_1}{\mu_{d+2}} \tilde{v}_1 + \cdots + \frac{\mu_{d+1}}{\mu_{d+2}} \tilde{v}_{d+1} = -\tilde{v}_{d+2}. \tag{4.1}
\]
By Cramer’s rule, we have that

\[
\frac{\mu_i}{\mu_{d+2}} = \frac{\det(\tilde{v}_1, \ldots, \tilde{v}_i, -\tilde{v}_{d+2}, \tilde{v}_{i+1}, \ldots, \tilde{v}_{d+1})}{\det(\tilde{v}_1, \ldots, \tilde{v}_{d+1})}.
\]

Let \(\lambda_i := \det(\tilde{v}_1, \ldots, \tilde{v}_{d+1}) \cdot \frac{\mu_i}{\mu_{d+2}} = \det(\tilde{v}_1, \ldots, \tilde{v}_{i-1}, -\tilde{v}_{d+2}, \tilde{v}_{i+1}, \ldots, \tilde{v}_{d+1}) \in \mathbb{Z} \) for \(1 \leq i \leq d+2 \). Notice that \(\lambda_i = \pm D_i \), i.e. these numbers are equal up to the sign. Multiplying identity (4.1) by \(\det(\tilde{v}_1, \ldots, \tilde{v}_{d+1}) \), we get

\[
\lambda_1 \tilde{v}_1 + \cdots + \lambda_k \tilde{v}_k + \lambda_{k+1} \tilde{v}_{k+1} + \cdots + \lambda_{d+2} \tilde{v}_{d+2} = (0, 0). \tag{4.2}
\]

Now, since the coefficients \(\lambda_i \) are all divisible by \(D \), we could divide this identity by \(D \) and obtain

\[
\frac{\lambda_1}{D} \tilde{v}_1 + \cdots + \frac{\lambda_k}{D} \tilde{v}_k + \frac{\lambda_{k+1}}{D} \tilde{v}_{k+1} + \cdots + \frac{\lambda_{d+2}}{D} \tilde{v}_{d+2} = (0, 0). \tag{4.3}
\]

Notice that all coefficients are integers and that they have no common divisor. Without loss of generality, we may assume that \(\lambda_1, \ldots, \lambda_k \geq 0 \) and \(\lambda_{k+1}, \ldots, \lambda_{d+2} < 0 \).

Let us now denote \(r = \lambda_1 + \cdots + \lambda_k \). On a side note, we can deduce from this equation that the convex hull of \(X_1 = \{ v_1, \ldots, v_k \} \) intersects with the convex hull of \(X_2 = \{ v_{k+1}, \ldots, v_{d+2} \} \). In particular, if \(k = 1 \), then one set of vertices has a \(d \)-simplex as a convex hull, and the other is a vertex contained in the mentioned simplex.

Now, let \(w \in hA \) have two representations (with non-negative coefficients):

\[
\alpha_1 v_1 + \cdots + \alpha_{d+2} v_{d+2} = \beta_1 v_1 + \cdots + \beta_{d+2} v_{d+2}.
\]

Then their difference is 0. Furthermore, the sum of coefficients is \(\sum_{i=1}^{d+2} (\alpha_i - \beta_i) = 0 \). Therefore, the difference has to be a multiple of the left-hand side of (4.3). To each element \(w \in hA \) corresponds exactly one non-negative representation \(\alpha_1 v_1 + \cdots + \alpha_{d+2} v_{d+2} \) for which \(\alpha_i < \lambda_i / D \) for at least one \(1 \leq i \leq k \). Namely, if \(\alpha_i \geq \lambda_i / D \) for \(1 \leq i \leq k \), we can reduce this representation to the also non-negative representation \((\alpha_1 - \lambda_1 / D) \tilde{v}_1 + \cdots + (\alpha_{d+2} - \lambda_{d+2} / D) \tilde{v}_{d+2} \). To obtain other non-negative representations, we can only add a multiple of (4.3). Therefore, to obtain the number of elements in \(hA \), we need to take the number of all non-negative representations for which \(\sum_{i=0}^{d+2} \alpha_i = h \), and reduce it by the number of non-negative representations for which \(\sum_{i=0}^{d+2} \alpha_i = h \) and \(\alpha_i \geq \lambda_i / D \), for all \(1 \leq i \leq k \). Therefore, if \(r / D \leq h \), we have that

\[
|hA| = \binom{d + h + 1}{h} - \binom{d + 1 + h - r / D}{h - r / D} = \binom{d + h + 1}{d + 1} - \binom{d + 1 + h - r / D}{d + 1}.
\]

Otherwise, we have that

\[
|hA| = \binom{d + h + 1}{d + 1}.
\]
Let us now determine \(r \). We will denote the \(d \)-simplex determined by the vertices \(v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{d+2} \) by \(\Delta_i \). Note that \(\lambda_i = \pm \text{vol}(\Delta_i) \cdot d! \).

By the extension of Radon’s theorem (Theorem 2.5), every generic point in \(\Delta_A \) (that is not contained in any \(d - 1 \) dimensional face of these simplices) is contained in exactly two simplices \(\Delta_i \) and \(\Delta_j \), and they are such that the vertices \(v_i \) and \(v_j \) belong to different sets \(X_1 \) and \(X_2 \).

Namely, if \(x \in \Delta_i \), let \(l \) be a half-line starting from \(v_i \) passing through \(x \), and let the final point of intersection of this half-line with the boundary of \(\Delta_i \) belong to the face \((v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{d+2}) \). Then \(\Delta_j \) is the unique other simplex containing the point \(x \). Since the interiors of \(\Delta_i \) and \(\Delta_j \) intersect, vertices \(v_i \) and \(v_j \) belong to the same half-space determined by the hyperplane spanned by the remaining \(d \) vertices. By Radon’s theorem, this means that one of \(v_i \) and \(v_j \) belongs to \(X_1 \), and the other belongs to \(X_2 \).

From this we see that \(\Delta_A \) has a covering:

\[
\Delta_A = \Delta_1 \cup \cdots \cup \Delta_k = \Delta_{k+1} \cup \cdots \cup \Delta_{d+2}.
\]

Since intersections of any two of the simplices \(\Delta_1, \ldots, \Delta_k \) and any two of the simplices \(\Delta_{k+1}, \ldots, \Delta_{d+2} \) have volume 0, and since \(\lambda_1, \ldots, \lambda_k \geq 0 \), we have that

\[
r = \lambda_1 + \cdots + \lambda_k = \text{vol}(\Delta_1) \cdot d! + \cdots + \text{vol}(\Delta_k) \cdot d! = \text{vol}(\Delta_A) \cdot d!.
\]

Now, we want to show that Theorem 1.3 is a direct corollary of Theorem 4.2. First, we prove the following

Proposition 4.3. For a set \(A = \{v_1, \ldots, v_{d+2}\} \) for which the set \(A - A \) generates \(\mathbb{Z}^d \) additively, the determinants \(D_1, \ldots, D_{d+2} \) have no common divisor.

Proof: Suppose, to the contrary, that the determinants \(D_1, \ldots, D_{d+2} \) have common divisor \(m \geq 2 \). Notice that for every \(i \in \{1, 2, \ldots, d + 1\} \), by subtracting the last column from other columns we have

\[
D_i = \begin{vmatrix}
v_1 - v_{d+2} & v_2 - v_{d+2} & \cdots & v_i - v_{d+2} & v_{i+1} - v_{d+2} & \cdots & v_{d+1} - v_{d+2} & v_{d+2} \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 \\
\end{vmatrix}
\]

\[
= \begin{vmatrix}
v_1 - v_{d+2} & v_2 - v_{d+2} & \cdots & v_i - v_{d+2} & v_{i+1} - v_{d+2} & \cdots & v_{d+1} - v_{d+2} & v_{d+2} \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 1 \\
\end{vmatrix}
\]

Since the vectors \(v_1 - v_{d+2}, \ldots, v_{d+1} - v_{d+2} \) generate \(\mathbb{Z}^d \) additively, then the unit vectors \(e_j \) of standard basis could be represented as the linear combinations with integer coefficients of these vectors \(v_i - v_{d+2} \). This implies that the determinant of the identity matrix equals (by linearity) the combination with integer coefficients of determinants, some of which are 0 (if they have two columns equal) and the remaining are divisible by \(m \). This contradiction proves the proposition.
It is easy to see now that Theorem 1.3 is a direct corollary of Theorem 4.2. Namely, if we suppose that $A-A$ generates \mathbb{Z}^d additively, by the above proposition, $D = \gcd(D_1, \ldots, D_{d+2}) = 1$, and the Theorem 1.3 follows.

Let us now turn back to Example 4.1. If we apply Theorem 4.2, we see that $D_1, D_2, D_3, D_4 = 2$ and so $D = 2$. So theorem says

$$hA = \left(\frac{h+3}{3}\right) - \left(\frac{h+3-2\cdot2}{3}\right) = \left(\frac{h+1}{3}\right) = (h+1)^2,$$

as we showed in Example 4.1.

5. Sumsets of a set with $d+3$ elements

In this section we treat the case of the set A of $d+3$ points in \mathbb{Z}^d, especially the case when $d+1$ of them are the vertices of a simplex containing the remaining two points.

Let us start with some examples illustrating the fact that this case is more complicated. In particular, we will see that the value $|hA|$ does not depend only on the convex hull Δ_A of the set A as in the previous case of the sets of d points, but also on the position of two remaining points inside Δ_A. Consequently, it is not a surprise that we do not determine the exact value of $|hA|$, but provide the upper bound for this value.

Example 5.1. Let $d = 1$. We will consider several sets of 4 integers, all of them containing integers 0, 1 and 8 and the fourth integer being one of 2, 3, 4, 5, 6, 7.

Let $A = \{0, 1, 2, 8\}$. It is easy to see that for h large enough, the set hA consists of all integers from 0 to $8h$ (so, $8h+1$ of them) except for the integers $8h-1 = 8(h-1) + 7, 8h-2 = 8(h-1) + 6, 8h-3 = 8(h-1) + 5, 8h-4 = 8(h-1)+4, 8h-5 = 8(h-1)+3, 8h-9 = 8(h-2)+7, 8h-10 = 8(h-2)+6, 8h-11 = h(h-2) + 5, 8h-17 = 8(h-3) + 7$. Therefore, $|hA| = 8h + 1 - 9 = 8h - 8$ in this case.

Similarly, if h is large enough, for the set $A = \{0, 1, 3, 8\}$ we have $|hA| = 8h + 1 - 7 = 8h - 6$; for the set $A = \{0, 1, 4, 8\}$ we have $|hA| = 8h + 1 - 9 = 8h - 8$; for the set $A = \{0, 1, 5, 8\}$ we have $|hA| = 8h + 1 - 5 = 8h - 4$; for the set $A = \{0, 1, 6, 8\}$ we have $|hA| = 8h + 1 - 3 = 8h - 2$; and for the set $A = \{0, 1, 7, 8\}$ we have $|hA| = 8h + 1$.

Just for illustration, for $A = \{0, 1, 6, 8\}$, the set hA consists of all integers from 0 to $8h$ except for the integers $8(h-1) + 3, 8(h-1) + 5, 8(h-1) + 7$. Notice that for the set $A = \{0, 1, 7, 8\}$, the set hA consists of all integers from 0 to $8h$. The convex hull of all these sets is the same, the interval $[0, 8]$, and all of them contain the same integer 1. However, the values of $|hA|$ differ.

Denote the vertices of Δ_A by v_1, \ldots, v_{d+1}, let w be the $(d+2)^{\text{nd}}$ element of A, and suppose that the $(d+3)^{\text{rd}}$ is 0. Set
Λ := span⁡(\tilde{v}_1, \ldots, \tilde{v}_{d+1}),
Λ^+ := span₂(\tilde{v}_1, \ldots, \tilde{v}_{d+1}),
Λ^+_{(0,1)} := span₂((0, 1), \tilde{v}_1, \ldots, \tilde{v}_{d+1}),
N_A := The number of integer points in the fundamental domain of Λ.

Let C_A be the cone over A. It is equal to

\[\bigcup_{m=0}^{\infty} \left((mw, m) + \Lambda^+_{(0,1)} \right). \]

However, vector (w, 1) has finite order in the group \(\mathbb{Z}^{d+1}/\Lambda \), which will be denoted by \(o_w \). It can be seen that \(o_w(w, 1) \in \Lambda^+ \).

To prove this, first note that w belongs in the interior of simplex \(\Delta_A \), which is why \((w, 1) \) belongs to the boundary of the simplex determined by vertices \((0, 0), \tilde{v}_1, \ldots, \tilde{v}_{d+1}\). Therefore, vector \((w, 1)\) has barycentric coordinates \(0 \leq \mu_1, \ldots, \mu_{d+1} \leq 1 \) such that

\[\sum_{i=1}^{d+1} \mu_i \tilde{v}_i = (w, 1). \]

By Lemma 2.3, \(\mu_i \) must be rational, and therefore \(\mu_i = \frac{a_i}{q_i} \) for \(1 \leq i \leq d+1 \), where \(0 \leq a_i \leq q_i \) and \((a_i, q_i) = 1 \). The order \(o_w \) of \((w, 1)\) is the least common container of \(q_1, \ldots, q_{d+1}, lcc(q_1, \ldots, q_{d+1}) \). Since \(o_w \frac{a_i}{q_i} \) are all non-negative integers, \(o_w(w, 1) \in \Lambda^+ \). Therefore,

\[C_A = \bigcup_{m=0}^{o_w-1} \left((mw, m) + \Lambda^+_{(0,1)} \right). \]

This union need not be disjoint. From [CG, Theorem 1.2, simplicial case], we have that \(\Lambda^+_{(0,1)}(t) = \frac{1-t^{\text{Vol}(\Delta_A)d}}{1-t} \). If \(B_A(t) \) is the generating series

\[B_A(t) = \sum_{m=0}^{o_w-1} \sum_{h \geq 0} \binom{h + d + 1}{h} t^h, \]

the generating series \(C_A(t) = \sum_{h \geq 0} |hA| t^h \) will have coefficients \(|hA| \leq b_h \) (If the union in the cone had been disjoint, there would have been an equality instead).

From this we see an upper bound:

\[|hA| \leq \]
\[
\begin{aligned}
\left\{ \begin{array}{ll}
\sum_{m=0}^{h} \binom{m+d+1}{m}, & h \leq o_w - 1 \\
\sum_{m=0}^{o_w-1} \binom{h+d+1-m}{h-m}, & o_w \leq h \leq N_{\Lambda} - 1 \\
\sum_{m=0}^{o_w-1} \binom{h+d+1-m}{h-m} - \sum_{m=0}^{h-N_{\Lambda}} \binom{m+d+1}{m}, & N_{\Lambda} \leq h \leq N_{\Lambda} + o_w - 1 \\
\sum_{m=0}^{o_w-1} \binom{h+d+1-m}{h-m} - \sum_{m=0}^{h-N_{\Lambda}+d+1-m} \binom{h-N_{\Lambda}+d+1-m}{h-N_{\Lambda}-m}, & h \geq N_{\Lambda} + o_w.
\end{array} \right.
\]

Acknowledgement: I would like to thank my graduate thesis advisor Goran Danković for help.

References

[CG] M. J. Curran, L. Goldmakher, Khovanskii’s theorem and effective results on sumset structure, arXiv:2009.02140

[GSW] A. Granville, G. Shakan, A. Walker, Effective results on the size and structure of sumsets, arXiv:2105.09181

[K] A. Khovanskii, The Newton polytope, the Hilbert polynomial and sums of finite sets, Funktsional. Anal. i Prilozhen. 26 (1992), no. 4, pp. 57–63, 96.

[N] M. B. Nathanson, Additive number theory: Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics, 165, Springer-Verlag, New York (1996).

University of Belgrade, Faculty of Mathematics,
Studentski Trg 16, p.p. 550, 11000 Belgrade, Serbia

Email address: ilijav@matf.bg.ac.rs