An integrative approach challenges species hypotheses and provides hints for evolutionary history of two Mediterranean freshwater palaemonid shrimps (Decapoda: Caridea)

A. JABŁOŃSKA 1, N. NAVARRO 2,3, R. LAFFONT 3, R. WATTIER 3, V. PEŠIĆ 4, A. ZAWAL 5, J. VUKIĆ 6, & M. GRABOWSKI 1

1Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Łódź, Poland, 2EPHE, PSL University, Paris, France, 3Biogéosciences, UMR 6282, CNRS, University of Burgundy, Dijon, France, 4Department of Biology, University of Montenegro, Podgorica, Montenegro, 5Department of Invertebrate Zoology and Limnology, Center of Molecular Biology and Biotechnology, University of Szczecin, Szczecin, Poland, and 6Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic

(Received 18 March 2021; accepted 5 July 2021)

Abstract

The Mediterranean Region is a biodiversity/endemism hotspot whose freshwater fauna remains largely unexplored. Our integrative study challenges the taxonomic status of two freshwater palaemonid shrimps, Palaemon antennarius and Palaemon minos. Three molecular operational taxonomic units (MOTUs) were defined based on 352 cytochrome oxidase subunit I (COI) sequences and 88 haplotypes. Two belonged to P. antennarius: one inhabiting the Apennine Peninsula and Sicily, and the other from the Balkan Peninsula. Palaemon minos was the third MOTU, found on Crete. The Balkan MOTU of P. antennarius was genetically closer to P. minos than to the other conspecific MOTU. Data from a nuclear marker (Histone 3) is congruent with such a pattern. The carapace shape variation (based on 180 individuals) was mainly explained by the geographical distribution. Balkan and Cretan groups were clearly recovered, while other samples clustered along a shape gradient from Sicily, through the Apennine Peninsula to the Balkans. Our results show that, for taxonomic consistency, the MOTU inhabiting the Balkan Peninsula should be either described as a new separate species or synonymised with P. minos. The third possible option would be treating all the populations as part of P. antennarius. Geometric morphometrics supports the first option, phylogenetic reconstructions point to the second one, yet the low genetic divergence favours the third one, illustrating that even emblematic taxa such as shrimps require an in-depth integrative approach.

Keywords: Species hypothesis, DNA barcode, geometric morphometrics, diversity hotspot, integrative taxonomy

Introduction

The species is considered a fundamental unit in biological systematics and a basic and convenient unit to measure biodiversity. In addition, speciation itself is a key topic in evolutionary biology (Mayr 1976; De Queiroz 2007). However, there is no consensus concerning the definition of species, as it may refer to various properties of organismal biology, but also to evolution and phylogeny (Mayr 1976; Ghiselin 2001; De Queiroz 2005, 2007; Wiens 2007). Thus, despite the important need for delimitation of species, the task encounters a lot of difficulties. To tackle such difficulties, combining methods from various fields of studies, as advocated by the integrative taxonomy approach, is considered to be efficient in eliminating failure in the delimitation process (Dayrat 2005; Padial et al. 2010; Schlick-Steiner et al. 2010; Rajaei 2015).

Anatomical quantification used in taxonomic studies commonly employs either the so-called multivariate traditional morphometrics (e.g. Anastasiadou et al. 2009) or geometric morphometrics (e.g. Torres et al. 2014). A number of works have examined the usefulness of the two methods in tackling the same questions.
and found them to be useful in establishing boundaries between species (e.g. Parsons et al. 2003; Navarro et al. 2004; Fruciano et al. 2011; Schmieder et al. 2015; Ramírez-Sánchez et al. 2016; Lovrenčić et al. 2020). Nonetheless, taxonomic studies supported by geometric morphometrics (i.e. shape variation) remain scarce (e.g. Fruciano et al. 2011; Schmieder et al. 2015; Ramírez-Sánchez et al. 2016; Navarro et al. 2018). In recent years, there has been a tremendous increase in the number of taxonomic studies combining morphological and DNA data (e.g. Grabowski et al. 2017b; Hupalo et al. 2018; Jabłońska et al. 2018; Rudolph et al. 2018). However, combining traditional morphology (including multivariate morphometrics), geometric morphometrics and molecular data seems rare (e.g. Arnoux et al. 2014; Fruciano et al. 2016; Celik et al. 2019), even though it is proven to be very efficient, not only in helping to formally describe nominal species, but also for better understanding of speciation mechanisms, as shown by e.g. Sangster (2018) or Zheng et al. (2020). Nevertheless, in some cases, e.g. Young et al. (2019) on stoneflies, the integration of delimitation methods can actually lead to disproving species hypotheses.

Known for a complex combination of geological and climatic histories, the Mediterranean region is considered to be an ideal area to conduct studies of speciation and biogeography (Myers et al. 2000; Tierno de Figueroa et al. 2013). Past processes, among other things, significantly influenced the evolution and composition of local freshwater fauna. First, the Alpine orogeny, which started in the Mesozoic and reached its greatest intensity in the Paleogene, is considered a factor of main impact on the landform of that area (Skoulikidis et al. 2009). Second, several eustatic fluctuations of sea level might have had a significant impact. Such events included the regression of the Tethys Ocean that severed the connection between the Indian Ocean and the Mediterranean Basin (Bialik et al. 2019); the major evaporation of the proto-Mediterranean Sea during the so-called Messinian Salinity Crisis, which lasted from 5.96 to 5.33 Ma; and the transgression of the neighbouring epicontinental Paratethys Sea, known as the Lago Mare episode (Hsü et al. 1977; Popov et al. 2004; Krijgsman et al. 2018; Bialik et al. 2019). These events caused changes in hydrological conditions, expressed mainly by recurrent salinity alterations and fragmentations/reconnections of inland aquatic ecosystems (Bianco 1990; Skoulikidis et al. 2009).

According to Mittermeier et al. (2011), the Mediterranean Basin itself could be considered the second largest known hotspot for biodiversity and endemism among the 35 most important hotspots recognised worldwide. Furthermore, some more restricted areas within the basin might be of particular interest and considered local hotspots or key biodiversity areas (KBAs), such as lakes (e.g. Lake Ohrid, Lake Skadar) and sites located on Mediterranean islands (e.g. Sicily or Crete) (Eken et al. 2004; Darwall et al. 2014).

The epigeic inland waters of the Mediterranean region are inhabited by a very diverse invertebrate fauna, including many taxa of crustaceans (Balian et al. 2008; Tierno de Figueroa et al. 2013). Among them, two families of freshwater shrimps (Malacostraca: Decapoda: Caridea), Atyidae and Palaemonidae, have attracted a lot of attention during recent years and have undergone intensive taxonomic research. While studies concerning atyids were conducted mostly with integrative methods combining traditional morphology and genetics (Christodoulou et al. 2012; García Muñoz et al. 2014; Jabłońska et al. 2018), palaemonids were investigated mainly based on morphological features (Gottstein Matočec et al. 2006; Anastasiadou et al. 2009; Tzemos & Koukouras 2015), although single specimens with mitochondrial 16S rDNA and/or nuclear Histone H3 markers applied were reported by Ashelby et al. (2012), Cuesta et al. (2012) and Carvalho et al. (2017).

Until recently, it was supposed that there were six species of Palaemon Weber, 1795 inhabiting fresh waters of the Mediterranean, among which P. antennarius H. Milne Edwards, 1837 was believed to have the widest distribution in the region. In their recent study, Tzemos and Koukouras (2015), based on a sampling covering the species range, re-examined morphological variation of P. antennarius and P. migratorius (Heller, 1862), using mostly qualitative features, resulting in the description of two new species: one (P. minus Tzemos & Koukouras 2015) believed to be endemic to Crete, and the other (P. colossus Tzemos & Koukouras 2015) endem- mic to Rhodes Island and Anatolia. Therefore, the most recent review lists nine Palaemon representatives in inland waters of the Mediterranean region (Christodoulou et al. 2016). Palaemon antennarius is thought to occur in Italy, Slovenia, Croatia, Albania, Montenegro and Greece (Christodoulou et al. 2016). Its range covers areas of the Apennine and Balkan peninsulas (including fresh and brackish waters), surrounding the Adriatic part of the Mediterranean, and consequently belongs to the so-called peri-Adriatic region. The region is of particular concern to taxonomists and evolutionary biologists, due to its geological history, which, among other things, promotes
The present study focuses on *P. antennarius* and *P. minos*. Taking into account that: (1) recurrent regressions/transgressions of the Adriatic and the neighbouring seas from Miocene to Holocene may promote speciation in local fresh waters; (2) *P. antennarius* is widely distributed in the peri-Adriatic including the Lake Skadar basin which is known as a local hotspot of biodiversity and endemism (Grabowski et al. 2018), as well as in Sicily, an island known to be associated with endemism for many other taxa (Signorello et al. 2018; Hupało et al. 2021); (3) the species is known to show some phenotypic variation related to sex and habitat (Anastasiadou et al. 2009); and (4) *P. minos* was erected mostly based on qualitative anatomical features (Tzomos & Koukouras 2015), we decided to challenge the species hypotheses for these two taxa using an integrative taxonomy approach, consisting of morphological identification, geometric morphometrics and genetic investigation. We wished to test whether such combined taxonomic methods would be an informative tool to provide consistent results in species recognition of palaemonid shrimps.

Material and methods

Sample collection and identification

A total of 389 individuals of freshwater palaemonid shrimp were examined in this study. All the material was collected in the years 2004–2016 in the Apennine Peninsula (126 individuals from 16 sampling sites), Sicily Island (30 ind., 2 sites), Balkan Peninsula including the Lake Skadar basin (156 ind., 26 sites) and Crete Island (60 ind., 1 site) (Figure 1; Table I). The samples were gathered with the use of a benthic hand-net or dredge. They were sorted on site and immediately fixed in 96% ethanol. Then the shrimp individuals were

![Figure 1. Map of the research area. Sampling sites are indicated with colour dots, for the different MOTUs/haplogroups: yellow – northern APS (Apennine Peninsula and Sicily); red – southern APS; green – BP (Balkan Peninsula); black – CI (Crete Island). The black square is indicating the location of Skadar Lake, an enlarged map of which is inset into the upper right corner of the figure. Small grey dots indicate the sampling sites where palaemonid shrimps were not found.](image-url)
Table I. Data on the examined material with the location of sampling sites. Apennine Peninsula and Sicily (APS), Balkan Peninsula (BP), Crete Island (CI); cytochrome oxidase subunit I (COI), Histone H3 (H3), mitochondrial haplotype (mtH), nuclear haplotype (nH).

site no.	collection date	exact site	habitat type	latitude	longitude	number of individuals	number of individuals with morphometric measure	COI	H3	GenBank accession codes			
1	06 June 2016	Valeggio sul Mincio, northern Italy (APS)	river	N45.3521	E10.7231	3	1	3 individuals: mtH1 (1), mtH5 (1), mtH6 (1)	X		MT517524, MT517642, MT517680	X	
2	14 June 2016	River Tiona, Villaperusta, northern Italy (APS)	river	N45.1473	E11.0329	8	2	8 individuals: mtH1 (2), mtH5 (3), mtH10 (1), mtH34 (2)	X		MT517451-2, MT517580, MT517640, MT517659, MT517672, MT517683, MT517747	X	
3	08 June 2016	River Secchia, Modena, northern Italy (APS)	river	N44.6696	E10.8993	13	6	15 individuals: mtH1 (3), mtH2 (1), mtH5 (3), mtH9 (2), mtH10 (4)	1 individual: nH6		MT517467, MT517487, MT517503, MT517513, MT517522, MT51758-9, MT517602, MT517638, MT517648, MT517665, MT517751, MT517787, MT517806, MT517887, MT517663, MT517698, MT517775	MT517808	
4	16 June 2016	River Lemina, Massagno, northern Italy (APS)	river	N45.6977	E12.8446	5	5	5 individuals: mtH1 (2), mtH5 (1), mtH6 (1), mtH11 (1)	1 individual: nH4		MT517477, MT517482, MT517528, MT517554, MT517790	MT517801	
5	16 June 2016	River Piave, Caposile, northern Italy (APS)	river	N45.5780	E12.5508	5	5	5 individuals: mtH5 (3), mtH6 (1), mtH11 (1)	1 individual: nH5		MT517540, MT517677, MT517716, MT517781	X	
6	13 June 2016	River Bacchiglione, Besana d’Abba, northern Italy (APS)	river	N45.2350	E12.1139	4	0	4 individuals: mtH5 (2), mtH6 (1), mtH9 (1)	X		MT517523, MT517543, MT517569, MT517583, MT517610, MT517688, MT517691, MT517704, MT517707, MT517729, MT517760	X	
7	13 June 2016	Motta, northern Italy (APS)	river, canal	N45.2207	E11.7055	11	1	11 individuals: mtH1 (2), mtH2 (3), mtH5 (1), mtH6 (1), mtH9 (1), mtH10 (1), mtH11 (1), mtH24 (1)	5 individuals: mtH1 (2), mtH2 (1), mtH5 (2)	X		MT517517, MT517532, MT517547, MT517614, MT517789	X
8	12 June 2016	River Lamone, Ravenna, northern Italy (APS)	river	N44.5047	E12.1715	5	2	2	X		MT517484, MT517495, MT517518, MT517544, MT517599, MT517609, MT517671, MT517724, MT517726	MT517800	
9	13 June 2016	River Po, Comacchio, northern Italy (APS)	lagoon, canal	N44.6437	E12.1078	9	0	9 individuals: mtH1 (5), mtH5 (4)	1 individual: nH3		MT517484, MT517495, MT517518, MT517544, MT517599, MT517609, MT517671, MT517724, MT517726	MT517800	

(Continued)
site no.	collection date	exact site	habitat type	latitude	longitude	number of individuals	number of individuals with morphometric measure	COI	H3	GenBank accession codes
10	12 June 2016	River Savio, Castiglione, northern Italy (APS)	river	N44.2697	E12.2650	5	0	5 individuals: mtH5(5)	X	MT517447, MT517531, MT517573, MT517650, MT517655
11	09 June 2016	Bodaccia, northern Italy (APS)	river	N43.6877	E10.3424	1	0	1 individual: mtH4(1)	X	MT517771
12	09 June 2016	River Arno, Zambra, northern Italy (APS)	river	N43.7062	E10.5000	1	1	X	X	X
13	10 June 2016	River Arno, Florence, northern Italy (APS)	river	N43.7659	E11.3038	26	19	14 individuals: mtH1(1), mtH4(1), mtH5(6), mtH6(2), mtH14(1), mtH29(1), mtH44(1)	X	MT517453, MT517481, MT517525, MT517571, MT517576, MT517589, MT517592, MT517629, MT517656, MT517667, MT517700, MT517720, MT517742, MT517769
14	06 September 2016	Bolsano, southern Italy (APS)	lake	N42.6440	E11.9768	11	1	11 individuals: mtH3(1), mtH4(1), mtH5(1), mtH6(1), mtH13(1), mtH14(1)	X	MT517495, MT517476, MT517496, MT517558, MT517631, MT517685, MT517714, MT517719, MT517733, MT517745, MT517777
15	08 September 2016	Terracina, southern Italy (APS)	river	N41.3083	E13.2025	8	2	8 individuals: mtH1(2), mtH5(2), mtH6(2), mtH13(1), mtH38(1), mtH39(1), mtH45(1)	X	MT517578, MT517586, MT517622-3, MT517730, MT517784, MT517793, MT517795
16	08 September 2016	River Garigliano, Suo Terme, southern Italy (APS)	river	N41.3018	E13.8893	11	3	11 individuals: mtH3(2), mtH1(1), mtH2(2), mtH3(1), mtH4(1), mtH28(1), mtH35(1), mtH37(1)	X	MT517450, MT517485, MT517507, MT517511, MT517550, MT517595, MT517597, MT517653, MT517723, MT517727, MT517732

(Continued)
site no.	collection date	exact site	habitat type	latitude	longitude	number of individuals	number of individuals with morphometric measure	Individuals in genetics – haplotype (frequency)	GenBank accession codes
17	17 September 2016	River Simeto, Paterno, Sicily, Italy (APS)	river	N37.6045	E14.8285	11	0	11 individuals: mtH43(3), mtH6(2), mtH7(1), mtH8(1), mtH9(1), mtH50(3), mtH51(2), mtH52(1)	MT517470, MT517478, MT517494, MT517533, MT517537, MT517556, MT517560, MT517661, MT517676, MT517702, MT517774
18	16 September 2016	River Salso, Licata, Sicily, Italy (APS)	river	N37.1578	E13.9264	19	16	17 individuals: mtH7(1), mtH2(12), mtH9(1), mtH27(1), mtH6(1), mtH43(1)	MT517454, MT517461, MT517508-10, MT517529, MT517555, MT517541, MT517567, MT517603, MT517616, MT517632, MT517644, MT517658, MT517670, MT517746, MT517766
19	30 July 2015	Dođoši, Montenegro (BP)	river	N42.3285	E19.1338	5	1	4 individuals: mtH53(4)	MT517475, MT517553, MT517734
20	13 August 2004	Vranjina, Montenegro (BP)	lake	N42.2996	E19.1099	8	4	7 individuals: mtH53(6)	MT517471, MT517551, MT517570, MT517579, MT517645, MT517678, MT517725
21	08 May 2014	Mocel Oto, Montenegro (BP)	sublac. spring	N42.2880	E19.0912	3	1	3 individuals: mtH53(3)	MT517463, MT517479, MT517561
22	02 October 2014	Moraša River, Montenegro (BP)	river	N42.2767	E19.1469	13	8	12 individuals: mtH53(11), mtH69(1)	MT517498, MT517526, MT517539, MT517564, MT517572, MT517607, MT517662, MT517682, MT517694, MT517705, MT517739, MT517764, MT517749, MT517497, MT517462, MT517460, MT517606, MT517615, MT517639, MT517651, MT517679, MT517709, MT517712-3, MT517730, MT517757, MT517767
23	01 October 2014	Plavonica, Montenegro (BP)	sublac. spring	N42.2725	E19.2006	17	9	16 individuals: mtH53(13), mtH54(1), mtH61(1), mtH64(1)	MT517470, MT517478, MT517494, MT517533, MT517537, MT517556, MT517560, MT517661, MT517676, MT517702, MT517774
24	31 July 2015	Soljanaki Potok, Montenegro (BP)	lake	N42.2473	E19.1818	2	0	2 individuals: mtH53(1), mtH64(1)	MT51758, MT517731
25	27 April 2014	Crmnica River, Montenegro (BP)	river	N42.2389	E19.0899	14	8	12 individuals: mtH53(11), mtH70(1)	MT517486, MT517555, MT517566, MT517568, MT517581, MT517584, MT517591, MT517626, MT517692, MT517706, MT517741, MT517743

(Continued)
Table I. (Continued).

site no.	collection date	exact site	habitat type	latitude	longitude	number of individuals	number of individuals with morphometric measure	GenBank accession codes
26	22 August 2012	Donja Sroca, Montenegro (BP)	lake	N42.2250	E19.1623	19	3 individuals: mtH53 (16), mtH56(1), mtH64(1), mtH11 (1)	MT517444, MT517446, MT517448, MT517453, MT517514, MT517527, MT517545, MT517593, MT517611-12, MT517620, MT517635, MT517674, MT517717-8, MT517737, MT517755, MT517786, MT517788, MT517796, MT517727, MT517652, MT517738
26	02 October 2014	06 May 2014					1 individual: sH1	
27	01 October 2014	Dračevica, Montenegro (BP)	lake	N42.1977	E19.2026	4	2 individuals: mtH53 (3), mtH65(1)	X
28	05 October 2014	Donji Murici, Montenegro (BP)	lake	N42.1637	E19.2201	11	7 individuals: mtH53 (9), mtH54(1), mtH60(1), mtH65 (1)	X
29	26 July 2015	Draginje, Montenegro (BP)	river	N42.0105	E19.3438	5	1 individual: mtH53 (4), mtH62(1)	X
30	26 July 2015	Sveti Đorđe, Montenegro (BP)	river	N41.9533	E19.3503	11	0 individuals: mtH53 (10), mtH54(1)	X
31	01 May 2014	Shkodra, Albania (BP)	lake	N42.0536	E19.4792	8	3 individuals: mtH53 (5), mtH57(1), mtH58(1)	X
32	01 May 2014	20 July 2015					7 individuals: mtH53 (11), mtH54(1), mtH59(1), mtH63(1), mtH64(1), mtH66(1), mtH7(1)	X
33	07 October 2014	Baje, Albania (BP)	sublac. spring	N42.2751	E19.3953	1	0 individuals: mtH68 (1)	X
34	01 October 2014	Drume Vitoja, Montenegro (BP)	sublac. spring	N42.3257	E19.3627	1	0 individuals: mtH53 (1)	X
35	01 September 2016	River near Budva, Montenegro (BP)	river	N42.2854	E18.7989	2	0 individuals: mtH64 (1), mtH76(1)	X

(Continued)
Table I. (Continued).

site no.	collection date	exact site	habitat type	latitude	longitude	number of individuals	number of individuals with morphometric measure	GenBank accession codes
36	03 August 2013	Viluni Lagoon in Velipoje, Albania (BP)	lagoon	N41.8753	E19.4325	1	1 individual: mtH73 (1)	MT517546
37	02 July 2013	Vain Lagoon in Lezhe, Albania (BP)	lagoon	N41.7460	E19.5886	4	4 individuals: mtH53 (2), mtH73 (1), mtH77 (1)	MT517502, MT517577, MT517673, MT517783
38	02 July 2013	Patoku Lagoon, Albania (BP)	lagoon	N41.4444	E19.6047	4	4 individuals: mtH73 (2), mtH78 (1), mtH79 (1)	MT517512, MT517604, MT517637, MT517660
39	24 June 2013	River in Bulli, Albania (BP)	river	N41.0472	E19.5335	3	3 individuals: mtH64 (3)	MT517645, MT517684, MT517748
40	25 June 2013	Belsh Lake, Albania (BP)	lake	N40.9771	E19.8932	4	4 individuals: mtH53 (3), mtH73 (1)	MT517515, MT517594, MT517625, MT517772
41	25 June 2013	Dorbi Lake, Albania (BP)	lake	N40.9518	E19.8273	4	4 individuals: mtH53 (4)	MT517516, MT517605, MT517628, MT517756
42	25 June 2013	Costije Lake, Albania (BP)	lake	N40.9159	E19.8607	8	8 individuals: mtH53 (3), mtH64 (1), mtH76 (3), mtH78 (1) 2 individuals: mtH72	MT517472, MT517552, MT517613, MT517621, MT517630, MT517765, MT517782, MT517792, MT517796, MT517804, MT517806
43	01 July 2013	Narta Lagoon, Albania (BP)	lagoon	N40.5578	E19.4439	2	2 individuals: mtH73 (3)	MT517497, MT517697
44	01 July 2013	Stream in Oricum, Albania (BP)	river	N40.3286	E19.4622	2	2 individuals: mtH73 (2)	MT517497, MT517697

(Continued)
site no.	collection date	exact site	habitat type	latitude	longitude	number of individuals	number of individuals with morphometric measure	COI	H3	GenBank accession codes
45	10 October 2015	Kournas Lake, Crete, Greece (CI)	lake	N35.3356	E24.2754	60	60 45 individuals: mtH80 (32), mtH81 (5), mtH82 (1), mtH83 (1), mtH84 (2), mtH85 (1), mtH86 (1), mtH87 (1), mtH88 (1)	COI	H3	MT517459, MT517465, MT517474, MT517480, MT517489, MT517492, MT517499, MT517501, MT517505, MT517521, MT517534, MT517536, MT517557, MT517562, MT517582, MT517598, MT517601, MT517617, MT517619, MT517734, MT517741, MT517747, MT517754, MT517768, MT517775, MT517781, MT517787, MT517790, MT517903, MT517906, MT517701, MT517703, MT517722, MT517735, MT517744, MT517752, MT517759, MT517762, MT517773, MT517778, MT517791, MT517794
morphologically examined under NIKON SMZ 800 stereomicroscope and identified to the species level on the basis of descriptions included in the paper by Tzomos and Koukouras (2015), supported by information from González-Ortegón and Cuesta (2006). In particular, Tzomos and Koukouras (2015) presented the following two features as obvious differences between *P. minos* and *P. antennarius*: (i) the rounded, not pointed, fifth pleuron end of *P. minos* vs. the strongly pointed fifth pleuron end in *P. antennarius*; and (ii) the plumose setae overreaching the inner spines on the distal part of the telson vs. the shorter or equal-length setae in *P. antennarius*. These features were quantified on all specimens in the present study to verify whether they are indeed conserved features. The material has been stored in the permanent collection of the Department of Invertebrate Zoology and Hydrobiology (University of Lodz, Poland).

DNA isolation, sequencing, alignment

The total DNA was isolated from pleopod muscle tissue of 352 individuals by a standard proteinase K and phenol/chloroform extraction (Hillis et al. 1996) or by the Chelex procedure (Casquet et al. 2012).

The cytochrome oxidase subunit I (COI) fragment was amplified in Polymerase Chain Reaction (PCR) with the use of the LCO JJ and HCO JJ primer pair (Astrin & Stüben 2008), according to the protocol provided by Hou et al. (2007). A subset of six specimens for each molecular operational taxonomic unit (MOTU, see below) was used for amplification of Histone H3 nuclear DNA fragments with the use of the primer pair HisH3f and HisH3r (Corrigan et al. 2014). The PCR product was amplified with the initial denaturation at 94°C for 1 min 50 s, followed by 30 cycles of 30 s at 94°C, 30 s at 45°C and 1 min at 72°C. The final extension was conducted for 5 min at 72°C. For both markers, all PCR products were purified with exonuclease I (Exo I) and alkaline phosphatase (FastAP) and then sequenced with BigDye terminator technology by Macrogen Inc., Europe.

The amplified markers were verified as belonging to the genus *Palaemon* against the GenBank resources using BLAST (Altschul et al. 1990). The obtained sequences were aligned and trimmed to the same length of 564 and 310 nucleotides for COI and H3, respectively, using Geneious 10.0.2 software (Kearse et al. 2012). The COI haplotypes, haplotype diversity (Hd) and nucleotide diversity (pi) were defined using DnaSPv5 software (Librado & Rozas 2009). All of the obtained sequences (COI and H3) were deposited in GenBank (Benson et al. 2005) with accession numbers MT517444–MT517795 and MT517796–MT517813 for COI and H3, respectively (Table I), and deposited with BOLD Systems (Ratnasingham & Hebert 2007).

MOTU delimitation

The level of cryptic diversity described by the number of MOTUs was assessed using two distance-based methods: (i) the barcode index numbers (BINs) method (Ratnasingham & Hebert 2013) and (ii) the assemble species by automatic partitioning (ASAP) method based on the Kimura 2-parameter (K2p) model (Puillandre et al. 2020). In addition, between-MOTUs average pairwise K2p genetic distances were calculated in MEGA X software (Kumar et al. 2018).

Phylogenetic relationships among haplotypes

The phylogenetic relationships among the mitochondrial COI haplotypes were explored using the neighbour-net method (Bryant & Moulton 2004) based on the K2p model (default options). The final phylogenetic network was produced and bootstrapped (1000 replicates) with the splits network algorithm method (Dress & Huson 2004). The whole analysis was performed using SplitsTree4 (Huson 1998; Huson & Bryant 2006).

The evolutionary relationships among the nuclear H3 haplotypes were illustrated with the maximum likelihood (ML) tree, based on the K2p model, where the validity of nodes was estimated with the bootstrap test (1000 replicates) (Felsenstein 1985; Saitou & Nei 1987). The analysis was conducted in MEGA X (Kumar et al. 2018). The following sequences were taken from GenBank and used to supplement the tree: *Palaemon antennarius* (acc. no. KP179081), and, as outgroups, *Palaemon adspersus* (acc. no. KP179094) and *Palaemon elegans* (acc. no. KP179102), all deposited by Carvalho et al. (2017).

Defining dataset for geometric morphometrics

A set of 180 individuals, 60 per MOTU, also fitting three defined geographic units (see Results) was chosen for the geometric morphometric analysis (see Table I). These 60 individuals included an equal number of mature males and females, excluding ovigerous females. It should be noted that within these 60 individuals per geographic unit, at least 45
individuals were also DNA barcoded. Although not all individuals processed for morphometrics were also processed for COI, the allopatric distribution of MOTUs combined with our sampling effort implies that a given individual from a given area would belong to the particular MOTU.

Landmark designation

For the landmark-based analysis, the carapace including rostrum was chosen. This part of the body is commonly used in such studies (Ashelby 2012; Zimmermann et al. 2012; Torres et al. 2014; Sganga et al. 2016; De Melo & Masunari 2017) and not only in shrimps (Silva et al. 2010; Simonjuntak & Epriluralahman 2019; Lovrenčič et al. 2020).

Photographs of the right side of the carapace including rostrum were digitised with the use of a Nikon MM60 measuring stereomicroscope (10x magnification), coupled with a Nikon DS-Fi2 (5MPixels) camera. Based on the protocol proposed by Torres et al. (2014), a total of 14 landmarks were used, encompassing the shape of the carapace including the rostrum (Figure 2), and digitised in photographs with the use of tpsDig 2.32 software (Rohlf 2015).

Generalised Procrustes analysis (GPA)

To eliminate the effect of position, size and orientation and to keep only the shape component from individual landmarks recorded, a partial generalised Procrustes analysis (GPA) was performed (Dryden & Mardia 1998), resulting in a set of aligned coordinates.

Principal component analysis (PCA)

The Procrustes-aligned coordinates were projected onto tangent space to the mean shape, and subsequently submitted to principal component analysis (PCA) to summarise the main shape variations in the dataset and also enable the visual exploration of the possible role of factors such as geographic distribution, sex (F, M) and habitat (lagoon, lake, river, spring) in the structure of those variations. Shape variation along PCs was depicted by means of thin-plate spline transformation grids (Bookstein 1991). A single outlier individual (from Crete) was removed from subsequent analysis. To evaluate statistical hypotheses concerning patterns of carapace shape covariation with geography, sex and size, a multivariate analysis of variance (MANOVA) was performed on the complete shape space of 24 dimensions.

Linear discriminant analysis (LDA)

Differences in carapace shape in the three studied geographic units, with the Apennine Peninsula and Sicily additionally subdivided into northern and southern-central parts, following the distribution of haplotype groups within the ASAP-MOTU 1 (see results), were afterwards subjected to linear discriminant analysis (LDA; Xanthopoulos et al. 2013) built on individual PC scores. The classification model quality was evaluated with the use of the “leave-one-out cross-validation” (LOOCV) procedure (Hastie et al. 2009). To test possible biases due to that procedure, we performed the analyses.

Figure 2. Protocol of the 14 landmarks digitised on the lateral view of the carapace: 1 – dorsal posterior carapace margin; 2-5 – four dorsal rostral teeth, starting from the postorbital one; 6 - the tip of the rostrum; 7-8 – two ventral teeth, starting from the posterior one; 9 – orbital margin of the carapace; 10 – branchiostegal spine; 11 – pterygostomial angle; 12 – concavity in the ventral margin of the carapace; 13 – ventral posterior carapace margin; 14 – concavity in the posterior margin of the carapace.
described by Evin et al. (2013) (see also Navarro et al. 2018 for another application). First, the effect of the number of variables (i.e. numbers of PCs) used in the LDA was tested by computing several LDAs based on an increasing number of PCs (from 1 to 24). Each time, the LOOCV procedure was performed, and the associated prediction error rate was computed. Then, we compared our LDA results with a null model where the classification was due only to chance, so that each individual would have the same chance of being classified in any of the three groups. The null model was simulated by randomly reshuffling individuals among geographic units (simulating a null model where the classification would be due to chance) 100 times. Finally, the quality of the classification process was checked based on the posterior probabilities of each individual to belong to their chosen class. As in Evin et al. (2013), the balance of sampling was tested.

Non-supervised mclust analysis

Model-based Gaussian mixture modelling was used as a non-supervised classification method and density estimation (mclust analysis) to test whether the a priori classification based on geographic units that we used for LDA is the only one structuring the shape variation of our sample, or if other groups exist. For this, we performed an mclust analysis based on finite Gaussian mixture modelling (Scrucca et al. 2016). Modeling of the covariance structure and the number of clusters was optimised based on the Bayesian information criterion (BIC). The search was also carried out over the number of included PCs.

Geometric morphometrics data processing

All morphometric and associated statistical analyses were performed in R v. 3.6.1 (R Core Team 2019) with the use of the following packages: geomorph v. 3.1.3 for geometric morphometric analyses of landmark data (Adams et al. 2019), abind v. 1.4–5 for combining multidimensional arrays (Plate & Heiberger 2016), MASS v. 7.3–51.4 for support of functions (Ripley et al. 2019), mclust v. 5.4.5 for non-supervised mclust analysis (Fraley et al. 2019) and rworldmap v. 1.3–6 for country-level mapping (South 2016).

Results

Morphological identification

Among the 389 individuals analysed we found 192 males, 132 females, 29 ovigerous females and 36 juvenile specimens with sex features not clearly developed (Table II). Based on the combination of the morphological features proposed in the key and species descriptions, all 329 individuals from the Apennine Peninsula and Sicily as well as from Balkan Peninsula are classified as Palaemon antennarius, while all 60 individuals from the Crete Island are assigned to P. minos (Table I). Nevertheless, when based on a single feature, assignment is not unambiguous (Table III). For example, no

Table II. Number of shrimps collected from the studied geographic areas according to sex. Apennine Peninsula and Sicily (APS), Balkan Peninsula (BP), Crete Island (CI).

	females	ovigerous females	males	juveniles
APS	45	19	79	13
BP	57	10	83	23
CI	30	-	30	-

Table III. Key morphological features expected to differentiate P. minos from P. antennarius, with the percentage of individuals in our study displaying these features. Apennine Peninsula and Sicily (APS), Balkan Peninsula (BP), Crete Island (CI).

	Palaemon antennarius	Palaemon minos
	this study	this study
Tzomos and Koukouras (2015)	APS	CI
5th pleuron distal end length	strongly pointed	82% 97%
length of plumose setae vs. telson	≤spines	rounded
distal end spines	90% 79%	>spines
		77% 48%
more than 90% of studied *P. antennarius* individuals presented strongly pointed distal ends of both fifth pleurons. Simultaneously, only 77% of *P. minos* had both pleurons rounded.

Genetic diversity. Out of the 352 COI sequences, the overall nucleotide diversity (pi) in our dataset is 0.023. In total, 88 haplotypes were identified, among which 79 (307 individuals) represent *Palaemon antennarius* (mtH1-79) and 9 (45 individuals) belong to *P. minos* (mtH80-88). The BOLD system recognised only one BIN-MOTU (ADI1458) (dx.doi.org/10.5883/BOLD:ADI1458) (but see discussion). On the other hand, the ASAP delimitation method produced three MOTUs (ASAP-MOTU 1–3), each restricted to a particular geographic unit: the Apennine Peninsula and Sicily (APS), the Balkan Peninsula (BP) and Crete Island (CI), respectively (Figures 1 and 3). The nucleotide diversity (pi) and haplotype diversity (Hd) are, respectively, 0.015 and 0.922 for ASAP-MOTU 1, 0.0011 and 0.488 for ASAP-MOTU 2, and 0.0011 and 0.483 for ASAP-MOTU 3. The average K2p genetic distance is 0.037 (SE (standard error) 0.0068) between individuals from APS (ASAP-MOTU 1) and from BP (ASAP-MOTU 2), 0.037 (SE 0.0070) between APS and CI (ASAP-MOTU 3) and 0.021 (SE 0.0056) between BP and CI (Table IV).

Furthermore, within APS two main allopatric haplotype groups were found, the northern group and the southern one (Figure 1(a)), occurring allopatrically in the northern/central part of the AP versus the central/southern AP and Sicily, respectively. Only one haplotype (mtH12) of the southern haplogroup is shared between central AP (site 16) and Sicily. Two Sicilian sampling sites (sites 17 and 18, see Figure 1(a)) also have only one haplotype (mtH43) in common.
Table IV. Mean genetic distance calculated between ASAP-MOTUs/ geographic units for the cytochrome oxidase subunit I (COI) marker. Apennine Peninsula and Sicily (APS), Balkan Peninsula (BP), Crete Island (CI); Kimura 2-parameter (K2p).

	genetic distance	standard error
APS vs. BP	0.0371	0.0068
APS vs. CI	0.0374	0.0070
BP vs. CI	0.0211	0.0056

The 18 individuals (six per ASAP-MOTU) sequenced for H3 belong to six haplotypes. Specimens from APS (ASAP-MOTU 1) are ascribed to four unique haplotypes (nH3–nH6), while the individuals from BP (ASAP-MOTU 2) are represented by nH1 as well as by nH2, the latter haplotype being shared with CI (ASAP-MOTU 3). The K2p distance between APS and BP + CI is very low 0.008 (SE 0.004).

Phylogenetic relationships among haplotypes

The phylogenetic network constructed for COI haplotypes shows three well-distinguished groups congruent with the three ASAP-MOTUs. In the group corresponding with APS (ASAP-MOTU 1), there is also clear separation between the northern and the southern haplogroups (Figure 3(a)). The southern haplogroup appears to be more diverse, possessing a higher number of haplotypes than the northern one. Interestingly, the haplotypes from Sicily do not form a well-defined subgroup, but are intermingled with those from the central Apennine Peninsula.

The phylogenetic tree constructed with the ML method for the H3 marker does not show any supported topology within *P. antennarius*. However, the existence of two groups is suggested, one composed of the haplotypes from APS and the other of haplotypes from BP and CI, with one haplotype being shared. In addition, a haplotype taken from GenBank, representing an individual from the island of Rhodes, Greece, is phylogenetically close to the haplotypes from BP and CI (Figure 3(b)).

Principal component analysis (PCA)

The main patterns of shape variation depicted on the first two PC axes computed on tangent coordinates illustrate mainly variations located in the rostrum (Figure 4). Thus, PC1, which explains 39% of the initial shape variance in our dataset, describes variation linked mainly to the relative positions of teeth on the ventral side of the rostrum. The second PC, explaining 23% of the initial shape variance, is linked to the rostrum length and width, and is associated with a shift of the ventral spikes relative to the dorsal ones. The eigenvectors of the PCs are presented in Supplementary Table S1.

Incorporating information about geographic units on the first two PC planes (Figure 4) shows that the carapace shape variation seems to be explained mainly by geographical distribution. Indeed, the individuals from Crete form a cloud that almost does not overlap with the clouds grouping the other individuals, mainly with negative scores on the first two PCs, thus exhibiting a teeth-armed rostrum. The individuals from APS and BP form the elongated cloud on the right side of the first PC plane (Figure 4). The studied individuals are characterised mainly by differences in rostrum shape and serration. Individuals from those two peninsulas seem a little less distinct than the individuals from CI in terms of the first two PCs. In contrast, specimens from the APS geographic unit constitute two sub-clouds, covering the distribution (with a few exceptions) of the northern and southern haplogroups of the ASAP-MOTU 1 in the PCA plot. Moreover, most of the individuals from the more northern part of the APS show generally greater similarity to BP.

To verify whether the shape variation could be connected to the habitat in which the studied shrimp lived, we added information on the habitats in a duplicated plot of the first PCA, which is included in Figure 4. The BP population, in contrast to two other groups (CI only in Kournas Lake; APS almost only in rivers; see Table I), is represented by shrimp inhabiting various types of waters (rivers, lakes, brackish-water lagoons and sublacustrine springs). Within the BP geographic unit, individuals deriving from different habitats are all mixed together, and no specific distributional gradient is shown.

MANOVA, performed on the individual scores from the first 24 PCs (i.e. the complete set of PCs with non-null eigenvalues) and testing the effects of geographic distribution, sex and centroid size on the carapace shape, shows that all of these effects as well as their interactions have significant effects on the carapace shape, even if the geographic factor has the greater effect (Table V).

Linear discriminant analysis (LDA)

No possible bias associated with the LDA or the LOOCV procedure is found for our dataset. First, the prediction error does not increase with the number of PCs included in the analysis; rather, it exhibits an asymptotic decrease (Figure 5(a), grey curve), quickly reaching an error rate of 2–3%.
The error rate of the null models, whatever the number of included PCs, meets the expected error rate of 0.67 (Figure 5(a), grey confidence interval). Consequently, the LDA is built on the scores from the first 24 PCs. The projections of individuals on the two discriminant axes allow us to distinguish the CI geographic unit from the others on the negative side of the first axis. The individuals deriving from BP and APS form a cloud with a gradient corresponding to the succession of those geographic units, including the division of APS into northern and southern parts (Figure 5(b)). The proportions of the studied individuals well classified within their own groups by the LDA, with posterior probabilities
of at least 0.95, are very high: 100% for CI individuals, over 95% for the southern APS individuals, over 86% for northern APS individuals and over 86% for BP individuals (Figure 5(c)).

Non-supervised mclust analysis

Non-supervised clustering analysis (mclust) points to EEV (meaning the ellipsoidal, mixture model of the equal shape, equal volume and variable orientation) as the best covariance model, according to which three clusters are consistently detected in the mixture model, until the cost of complexity related to the dimensionality become too high when more than 11 PCs are included (Figure 6(a,b)). Nevertheless, those units (distinguished based on posterior probability) are partially different from predefined groups corresponding to three investigated populations. Although BP and CI units appear to be clearly qualified, the APS group is partially included in the BP unit. The distribution of individuals assigned to mclust units is illustrated by pie charts in Figure 6(c), and the numbers of individuals from each population in these units are shown in Table VI.

Discussion

Our study shows that when applying the key features proposed by Tzimos and Koukouras (2015) to the
Table VI. Number of shrimp individuals deriving from the studied populations classified in mclust units. Apennine Peninsula and Sicily (APS), Balkan Peninsula (BP), Crete Island (CI).

Mclust unit 1 (white)	APS	BP	CI
mclust unit 2 (green)	26	1	0
mclust unit 3 (black)	33	59	2

studied material, ascribing a specimen to a given taxa was possible, in many cases, only if the features were combined. In those cases, a single key diagnostic character was not sufficient for indisputable distinction between *P. antennarius* and *P. minos* (see Results, Table III). For example, the presumably discriminative features, such as the angle of the 5th pleuron end, appeared to show substantial overlap in variation between the two species. However, the outcomes of geometric morphometric analyses confirmed the distinction of *P. minos* from *P. antennarius* on the basis of carapace shape variation.

What is more, geometric morphometric methods allowed for further subdivision of the individuals ascribed to *P. antennarius* into two morpho-groups generally fitting the designated geographic units, APS and BP. Also the genetic investigations identified three MOTUs, although the between-MOTU genetic distance did not exceed 0.037, between ASAP-MOTU 1 associated with APS and ASAP-MOTU 2 associated with BP, as well as between ASAP-MOTU 2 and ASAP-MOTU 3 (*P. minos*, endemic to CI). The distance between ASAP-MOTU 2 and ASAP-MOTU 3 was only up to 0.021. So, interestingly, *P. minos* appeared to be genetically closer to *P. antennarius* ASAP-MOTU 2 than the latter was to ASAP-MOTU 1 of the same morphospecies. The fact that all the ASAP-MOTUs belong to only one BIN designated by BOLD is probably associated with the presence of numerous private (i.e. not publicly available) records that are diffusing the barcoding gaps we observe in our dataset. This points to the interest of confronting both genetic and geometric morphometric approaches.

Whilst crustaceans are used as a model system in many different fields of biology, integrative taxonomic investigations of this group remain scarce and their systematics is far from being established. First, some studies combined morphological (but not morphometrics) and genetic approaches. They were mostly used for confirmation or rejection of the morphologically distinguished species, as well as in reference to phylogeography and existing cryptic diversity within nominal species (e.g. Mamos et al. 2016; Jabłońska et al. 2018; Rudolph et al. 2018; Rossi et al. 2020; Wattier et al. 2020). Second, some
works combined with genetics or morphometrics, but only in terms of body measurement and not analysing shape variation. They were often conducted for decapods and were used to examine the length and width of body parts (e.g. carapace, pleon). One example concerning Palaemonidae is the study by Cartaxana (2015), who on the basis of measurements of the body parts and genetic data suggested the fusion of two Palaemon species. Similar linear distance-based morphometric studies of Palaemon antennarius in north-western Greece by Anastasiadou et al. (2009, 2014, 2017) showed some phenotypic plasticity connected with sex and the type of habitat, although their studies were not supported by genetic analyses.

However widely applied in other arthropods (e.g. Ramírez-Sánchez et al. 2016; Lorenz et al. 2017; Ren et al. 2017), geometric morphometrics is much less applied on crustaceans (e.g. Giri & Collins 2004; Accioy et al. 2013; Bissaro et al. 2013; Lovrenčić et al. 2020), and this approach has mainly been used on brachyurans (e.g. Rufino et al. 2004; Silva & Paula 2008; Alencar et al. 2014). For caridean shrimps, such studies are even more scarce, most of them investigating carapace shape variations predominantly in relation to sex (Ashelby 2012; Sganga et al. 2016; De Melo & Masunari 2017) or to habitat (Zimmermann et al. 2012; Torres et al. 2014).

Although geometric morphometric studies combined with genetics have often been conducted on invertebrates, including arthropods (e.g. Silva et al. 2010; Marrone et al. 2013; Zinetti et al. 2013; Marchiori et al. 2014; Kamimura et al. 2020), such an approach has not previously been used on caridean shrimps. Consequently, our study is the first to combine these methods for this group of crustaceans.

Few studies on palaemonid shrimps have tried to relate the carapace shape to environmental factors. While some studies have reported a dependence (e.g. Zimmermann et al. 2012, on Macrobrachium sp.), many others similar to our study have not categorically pointed out such a relation (e.g. Torres et al. (2014) on Macrobrachium sp., or Ashelby (2012) on Palaemon longirostris). Further, our results show that the connection between carapace shape variation and sex is of lower significance than the geographic factor. Sex-related carapace shape variation was previously evidenced for some palaemonids (Zimmermann et al. 2012; Bissaro et al. 2013; Torres et al. 2014; De Melo & Masunari 2017) but not found in others (Ashelby 2012). This suggests that the nature of such relationships is not obvious and should be studied in detail; however, this is beyond the scope of the present paper.

Overview of geographic distribution patterns integrating geometric morphometry and MOTUs

The spatial distribution of shape variation of Palaemon antennarius and P. minos was illustrated by PCA, LDA and mclust plots. The analyses were congruent in terms of showing that (1) the studied shrimps representing each of the three defined geographic units (APS, BP, CI) were generally characterised by distinct carapace shapes, and each population represented a separate ASAP-MOTU; (2) there was a gradual north–south-oriented variation of carapace shape along AP, which coincides with our finding that no COI haplotypes were shared between the more northern and more southern parts of AP; and (3) on a molecular level, the Sicilian population is part of the southern haplogroup of ASAP-MOTU 1.

Geographical gradient. A geographical gradient of morphological variation seems to be a natural pattern of widely distributed species. In crustaceans in general, however, this phenomenon varies depending on the taxon, ranging from its absence, as in the freshwater amphipod Gammarus balcanicus (Mamos et al. 2014) to a large-scale latitudinal gradient, as in the brachyuran Perissarma guttatum along the African coast from Kenya to Mozambique (Silva et al. 2010). Specifically for shrimps, our results are consistent with data provided by Ashelby (2012), who studied carapace shape variation in connection to the geographic range of Palaemon longirostris, and confirmed the existence of the northern and southern/central morpho-groups within that species in European coastal waters. The carapace shape variation of the shrimp Macrobrachium borelli was also explained by geographical distribution (Torres et al. 2014).

Focusing on the peri-Adriatic area and adjacent regions, we cannot find much data reporting distributional gradients in relation to shape, regardless of taxon. To our knowledge, the only study involving comprehensive sampling along the Apennine Peninsula and Sicily is that of Pizzo et al. (2011). Although the subject of their interest was two terrestrial beetles of the genus Onthophagus (Scarabaeidae), the pattern of their distribution was quite consistent with our outcomes, pointing to ongoing speciation. Other studies, e.g. by Zaccara et al. (2019) conducted on the cyprinid fish in the southern Apennine Peninsula, showed that body shape variation may be structured according to the hydrographic division of the area. An extensive study of the white-clawed crayfish (Austropotamobius spp.) species complex in
Europe, by Jelić et al. (2016), conducted on the basis of molecular analyses, showed a mosaic pattern of distribution of phylogenetic lineages occurring in the Apennine and Balkan Peninsulas. Similarly, an investigation of Austrotamobius torrentium by Lovrenčić et al. (2020) revealed that the reported lineages presented a mosaic composition in northern Croatia, possibly due to the anthropogenic transportation of crayfish among water bodies, which in turn was confirmed by linear and geometric morphometrics. Obviously, in contrast to crayfish and marine shrimps, P. antennarius is not of commercial importance, so human-related translocations probably have much less – if any – impact on the spatial distribution of its genetic variability. A notable exception may be the Sicilian population (see below).

Sicilian population

Palaemon antennarius from Sicily Island did not differ from the peninsular individuals in carapace shape. This result is consistent with the work by Pizzo et al. (2011), who on the basis of the same method combined with genetics, questioned the taxonomic status of the beetle *Ontophasus massai*, endemic to Sicily, and suggested that it belongs to the widely distributed *O. fractivornis*. The island underwent complex transformations, and due to tectonic movements its geological structure is heterogeneous and consists of three parts of different origins (Broquet 2016; Di Maggio et al. 2017). The Sicilian material used in our study came from the Apenninic–Maghrebian orogen, which was erected after the collision of Southern Apennines and the African plate. So did the material used in Pizzo et al.’s (2011) study. In contrast, Marrone et al. (2013) observed two lineages of the terrestrial tenebrionid beetle, *Phaleria bimaculata*, but its distribution in Sicily corresponds to the ancient geological division of the island into the African- and European-derived parts. Taking into account the fact that Sicilian shrimps did not differ morphologically from the peninsular ones, it is worth noting that the genetic outcomes of our study reported only one haplotype (mtH12) in common between shrimps collected in central AP (14%) and Sicily (86%). (Figure 1; Table 1). Moreover, there was also only one haplotype, mtH43, shared between two sites in Sicily.

Although islands are considered to promote speciation by the isolation of insular populations from the continental ones, and although we observed morphological and genetic divergence between northern/central and southern/central APS geographic units, we also noted the absence of morphological as well as genetic discrepancies within the southern/central APS, which included Sicily Island. This morphological and genetic uniformity of Sicilian shrimp with those of the southern haplogroup on the Apennine Peninsula points to ongoing speciation and colonisation, which can be probably explained by the very recent past land connections between the Apennine Peninsula (Calabria) and Sicily during Pleistocene glaciations and the related eustatic sea level regressions, e.g. during the Last Glacial Maximum (LGM) (Antonioli et al. 2014; Hupalo et al. 2021).

Additionally, high haplotype diversity within the southern APS haplogroup indicates two possible scenarios corresponding to colonisation processes. The first presupposes one initial Apennine-Sicilian population subsequently fragmented as a result of the Holocene sea-level rise and subjected to the founder effect and genetic drift, while the second implies multiple colonisation events between Sicily and the southern Apennine Peninsula after they were separated by the Messinian Strait in the Holocene. An airborne dispersal by birds over short distances was evidenced for freshwater shrimp, crayfish and amphipods (Banha & Anastácio 2012; Rachalewski et al. 2013; Águas et al. 2014).

Morphological distinctness in Crete

The palaemonid shrimp occurring on Crete Island were recently described as a distinct species, *P. minos*, based on traditional morphology (Tzomos & Koukouras 2015). Our study based on geometric morphometrics confirmed this distinctness. Alongside this, taking into account the genetic data, all *P. minos* individuals were ascribed to a specific ASAP-MOTU: ASAP-MOTU 3. Nevertheless, the low genetic distance between ASAP-MOTU 3 and two other ASAP-MOTUs as well as the H3 haplotype shared between ASAP-MOTU 2 and ASAP-MOTU 3 would suggest a recent or ongoing speciation. Interestingly, the last connection of Crete with the continent was reported from the Miocene, during the Messinian Salinity Crisis (Poulakakis et al. 2015) – thus much earlier than the land connection between the Apennine Peninsula and Sicily. The morphological distinctness but genetic closeness to Balkan population of *P. antennarius*, as well as the absence of a recent land connection to Crete, would suggest an alternative explanation. It is possible that crustaceans could travel between the Greek mainland and islands using water birds as vectors, as has been demonstrated over short distances by Banha and Anastácio (2012), Rachalewski et al. (2013) and Águas et al. (2014). Or, more likely, they could be introduced to new sites by humans (e.g. fisherman or sailors), which has
been suggested by Hupalo et al. (2020), who reported *Gammarus platoesi*, previously considered to be a Cretan endemic (Hupalo et al. 2018), from other Aegean islands of Tinos and Serifos, which are equally far from Crete as the mainland. Jesse et al. (2011), based on genetic methods, suggested distinguishing the Cretan endemic *Potamon kretaion* from *P. potamios* (Decapoda, Brachyura). However, they also pointed to the recent divergence of these crabs, which strengthens the theory of possible alternatives to land connections.

Conclusions

Our study provides the first evidence of shape differentiation of freshwater palaemonid shrimps in the Mediterranean region based on geometric morphometrics. Moreover, we joined the taxonomic method with COI DNA sequences, a technique that has not been used in *Palaemon antennarius* and *P. minos* studies to date. This integrative approach gave us partly conflicting results, which highlighted the need to combine taxonomic methods in species research and provided an approximately holistic view on the given species.

Summarising our results, the geometric morphometrics and the COI genetic analysis show two different patterns of divergence on the two investigated islands. Shrimps from Sicily were neither morphologically nor genetically distinct from those of the Apennine Peninsula, while the shrimps deriving from Crete were morphologically and molecularly different from the Balkan ones. Yet, given that *P. minos* (ASAP-MOTU 3) is genetically closer to the Balkan ASAP-MOTU 2 than the latter is to the Apennine ASAP-MOTU 1, for taxonomic consistency, the MOTU inhabiting the Balkan Peninsula should be either described as a new separate species or synonymised with *P. minos*. The third possible option would be treating all the populations as part of *P. antennarius*. Geometric morphometrics supports the first option, phylogenetic reconstructions point to the second one, while the fact that BOLD recognises only one BIN favours the third one. In our opinion, further studies are required to resolve the issue. These studies should employ more molecular markers and crossing experiments as well as more thorough sampling over the area, and should explore the spatial distribution of morphological traits at finer scales, e.g. to explore the potential issue of spatial autocorrelation.

Our study points to the complexity of the species delimitation process and therefore confirms that taxonomy should be based on an integrative approach.

It also shows that doubts and questions concerning the taxonomy and distribution of species in freshwater faunas remain to be answered, even with shrimps, which are quite emblematic representatives of these faunas.

Acknowledgements

The authors thank Aleksandra Bańkowska, Karolina Bącelsa-Spychalska, Edyta Buczyńska, Piotr Gadawski, Kamil Hupalo, Ioannis Karaouzas, Magdalena Klosowska, Paula Krzywoźniak, Grzegorz Michoński, Wanda and Manolis Plaïtis, Agnieszka Szlauer-Łukaszewska and Anna Wysocka for their help during fieldwork. We also thank Radek Sanda, who provided part of the material used in this study.

Funding

The fieldwork and molecular part of the study were financially supported by the National Science Center, Poland [grant number 2014/15/B/NZ8/ 00266]. Geometric morphometric investigation at the Université Bourgogne Franche-Comté was funded by the National Science Center, Poland [grant number 2018/02/X/NZ8/01762]; the POLONIUM Exchange Program [grant number 42707TH (PPN/BIL/2018/1/00138/U/00012)]; and an internal grant of the Faculty of Biology and Environmental Protection, University of Lodz.

Disclosure statement

No potential conflict of interest was reported by the authors.

Supplementary material

Supplemental data for this article can be accessed here.

ORCID

A. Jabłońska http://orcid.org/0000-0001-6178-8506
N. Navarro http://orcid.org/0000-0001-5694-4201
R. Wattier http://orcid.org/0000-0001-5772-4681
V. Pešić http://orcid.org/0000-0002-9724-345X
A. Zawal http://orcid.org/0000-0002-5838-6060
J. Vukić http://orcid.org/0000-0003-2243-0303
M. Grabowski http://orcid.org/0000-0002-4551-3454
References

Accioly IV, Lima-Filho PA, Santos TL, Barbosa ACA, Santos Campos LB, Souza JV, Araujo WC, Molina WF. 2013. Sexual dimorphism in *Litoportunus vannaei* (Decapoda) identified by geometric morphometrics. Pan-American Journal of Aquatic Sciences 8(4):276–281.

Adams DC, Collery ML, Kalliontzopoulou A. 2019. Geomorph: Software for geometric morphometric analyses. R package version 3.1.3. Available: https://github.com/geomorphR/geomorph

Águas M, Banha F, Marques M, Anastácio PM. 2014. Can recently-hatched crayfish cling to moving ducks and be transported during flight? Limnologica 48:65–70. DOI: 10.1016/j.limno.2014.07.001.

Alencar CERD, Lima-Filho PA, Molina WF, Freire FAM. 2014. Sexual shape dimorphism of the mangrove crab *Ucides cordatus* (Linnaeus, 1763) (Decapoda, Ucidae) accessed through geometric morphometric. The Scientific World Journal 206168. DOI: 10.1155/2014/206168.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215(3):403–410. DOI: 10.1016/S0022-8057(05)80360-2.

Anastasiadou C, Daliri M, Oikonomou A, Vollestad LA. 2017. Length weight relationships, relative weight and relative condition factor of three freshwater shrimps from Greece. International Journal of Fisheries and Aquatic Studies 5:403–406.

Anastasiadou C, Gkenas C, Kagalou I, Leonaridos I. 2014. Shrimps of an ancient Baltic lake: Bionomy and conservation. Biologia 69(7):895–904. DOI: 10.2478/s11756-014-0388-2.

Anastasiadou C, Liasko R, Leonaridos ID. 2009. Biometric analysis of lacustrine and riverine populations of *Palamommae anomarai* (H.Milne-Edwards, 1837) (Crustacea, Decapoda, Palamommaeidae) from north-western Greece. Limnologica 39(3):244–254. DOI: 10.1016/j.limno.2008.07.006.

Antonioli F, Presti VL, Morticelli MG, Bonfiglio L, Mannino MA, Palombo MR, Sammrico G, Ferranti L, Purlani S, Lambeck K, Canese S, Catalano R, Chiocci FL, Mangano G, Scicchitano G, Tionielli R. 2014. Timing of the emergence of the Europe–Sicily bridge (40–17 cal ka BP) and its implications for the spread of modern humans. Geological Society, London, Special Publications 411(1):111–144. DOI: 10.1144/SP411.1.

Arnoux E, Eraud C, Navarro N, Tougard C, Thomas A, Cavallo F, Vetter N, Faivre B, Garnier S. 2014. High levels of phenotypic and genetic differentiation at a very small geographic scale in a bird species, the forest thrush *Turdus thermophilus*. Heredity 113(6):514–525. DOI: 10.1038/hdy.2014.56.

Ashley CW. 2012. Taxonomic, systematic, morphological and biological studies on *Palaeomma* Weber, 1795 (Crustacea: Decapoda: Palamommaeidae). PhD Thesis, University of Hull.

Ashley CW, Page TJ, De Grave S, Hughes JM, Johnson ML. 2012. Regional scale speciation reveals multiple invasions of freshwater in Palamommaeae (Decapoda). Zoologica Scripta 41(3):293–306. DOI: 10.1111/j.1463-6409.2012.05355.x.

Astrin JJ, Stübner PE. 2008. Phylogeny in cryptic weevils: Molecules, morphology and new genera of western Palearctic Cryptorrhynchinae (Coleoptera: Curculionidae). Invertebrate Systematics 22(5):503–522. DOI: 10.1071/IS07057.

Balian EV, Lévêque C, Segers H, Martens K, Eds. 2008. Freshwater animal diversity assessment. Hydrobiologia 595. DOI: 10.1007/978-1-4020-8259-7.

Banha F, Anastacio PM. 2012. Waterbird-mediated passive dispersal of river shrimp *Athyraephrya desmarestii*. Hydrobiologia 694(1):197–204. DOI: 10.1007/s10750-012-1160-7.

Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. 2005. GenBank. Nucleic Acids Research 33:D34–D38. DOI: 10.1093/nar/gki063.

Bialik OM, Frank M, Betzler C, Zammit R, Waldmann ND. 2019. Two-stage closure of the Miocene Indian Ocean gateway to the Mediterranean. Scientific Reports 9(1):8842. DOI: 10.1038/s41598-019-45308-7.

Bianco PG. 1990. Potential role of the palaeohistory of the Mediterranean and Paratethys basins on the early dispersal of Euro-Mediterranean freshwater fishes. Ichthyological Exploration of Freshwaters 1(3):167–184.

Bissaro F, Gomes-Jr D, Di Benedetto A. 2013. Morphometric variation in the shape of the cephalothorax of shrimp *Xiphopenaeus kroyeri* on the east coast of Brazil. Journal of the Marine Biological Association of the United Kingdom 93(3):683–691. DOI: 10.1017/S0025354110004099.

Bookstein FL. 1991. Morphometric tools for landmark data: Geometry and biology. 1st ed. Cambridge: Cambridge University Press.

Broquet P. 2016. Sicily in its Mediterranean geological frame. Boletín Geológico y Minero 127(2/3):547–562.

Bryant D, Moulton V. 2004. Neighbor-net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution 21(2):255–265. DOI: 10.1093/molbev/msi018.

Cartaxana A. 2015. Morphometric and molecular analyses for populations of *Palaeomma longirostris* and *Palaeomma garciacidi* (Crustacea, Palamommaeidae): Evidence for a single species. Estuarine, Coastal and Shelf Science 154:194–204. DOI: 10.1016/j.ecss.2014.12.045.

Carvalho FL, De Grave S, Mantelatto FL. 2017. An integrative approach to the evolution of shrimps of the genus *Palaeomma* (Decapoda, Palamommaeidae). Zoologica Scripta 46(4):473–485. DOI: 10.1111/zsc.12228.

Casquet J, Thebaud C, Gillespie RG. 2012. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Molecular Ecology Resources 12(1):136–141. DOI: 10.1111/j.1755-0998.2011.03073.x.

Celik M, Cascini M, Haouchar D, Van der Burg C, Dodt W, Evans AR, Prentis P, Bunce M, Fruciano C, Phillips MJ. 2019. A molecular and morphometric assessment of the systematics of the Macropus complex clarifies the tempo and mode of kangaroo evolution. Zoological Journal of the Linnean Society 186(3):793–812. DOI: 10.1093/zoolinnean/zbz005.

Christodoulou M, Anastasiadou C, Jugovic J, Tzomos T. 2016. Freshwater Shrimps (Atyidae, Palamommaeidae, Typhlocarididae) in the broader mediterranean region: Distribution, life strategies, threats, conservation challenges and taxonomic issues. In: Kawai T, Cumberlidge N, editors. A global overview of the conservation of freshwater Decapod Crustaceans. Cham: Springer International Publishing. pp. 190–236. DOI: 10.1007/978-3-319-42527-6_7.

Christodoulou M, Antoniou A, Magoulas A, Koulouras A. 2012. Revision of the freshwater genus *Athyraephrya* (Crustacea, Decapoda, Atyidae) based on morphological and molecular data. Zootaxa 229:53–110. DOI: 10.3897/zootaxa.229.3919.

Corrigan LJ, Horton T, Fotherby H, White TA, Hoelzel AR. 2014. Adaptive evolution of deep-sea amphipods from the
superfamily Lysiassanoidea in the North Atlantic. Evolutionary Biology 41(1):154–165. DOI: 10.1007/s11692-013-0255-2.

Cuesta JA, Drake P, Martínez-Rodríguez G, Rodríguez A, Schubart CD. 2012. Molecular phylogeny of the genera *Palaeon* and *Palaeonemotus* (Decapoda, Caridea, Palaeomidae) from a European perspective. Crustacea 85(7):877–888. DOI: 10.1165/165854012X650197.

Darwall W, Carrizo S, Numa C, Barrios V, Freyhof J, Smith K. 2014. Freshwater key biodiversity areas in the mediterranean basin hotspot: Informing species conservation and development planning in freshwater ecosystems. Cambridge, UK and Malaga, Spain: IUCN.

Dayrat B. 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society 85(3):407–415. DOI: 10.1111/j.1095-8312.2005.00503.x.

De Molo M, Masunari S. 2017. Sexual dimorphism in the carapace shape and length of the freshwater palaeonemid shrimp *Macrobrachium potiniae* (Müller, 1880) (Decapoda: Caridea: Palaeomidae): Geometric and traditional morphometric approaches. Animal Biology 67(2):93–103. DOI: 10.1163/15707563-00002522.

De Queiroz K. 2005. Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences 102 (suppl. 1):6600–6607. 10.1073/pnas.0502030102.

De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56(6):879–886. DOI: 10.1080/10635150701701083.

Di Maggio C, Madonna G, Vattano M, Agnesi V, Monteleone S. 2017. Geomorphological evolution of western Italy, Sicily. Geologia Carpathica 68(1):80–93. DOI: 10.1515/geoca-2017-0007.

Dress AWM, Huson DH. 2004. Constructing splits graphs. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(3):109–115. DOI: 10.1109/TCBB.2004.27.

Dryden IL, Mardia KV. 1998. Statistical shape analysis. Chichester: John Wiley and Sons.

Eken G, Bennun L, Brooks TM, Darwall W, Fishpool LDC, Foster M, Knox D, Langhammer P, Matiku P, Radford E, Salaman P, Sechrest W, Smith ML, Spector S, Tordoff A. 2004. Key biodiversity areas as site conservation targets. BioScience 54(12):1110–1118. DOI: 10.1641/0006-3568.

Evin A, Cucchi T, Cardini A, Vidasdottir US, Larson G, Dobney K. 2013. The long and winding road: Identifying pig domestication through molar size and shape. Journal of Archaeological Science 40:735–743. DOI: 10.1016/j.jas.2012.08.005.

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4):783–791. DOI: 10.1111/j.1558-5646.1985.tb00420.x.

Fraley C, Raftery AE, Scrucca L, Murphy TB, Fop M. 2019. Gaussian mixture modelling for model-based clustering, classification, and density estimation. Available: https://mclust.org.github.io/mclust/

Fruciano C, Franchini P, Raffini F, Fan S, Meyer A. 2016. Are sympatrically speciating Midas cichlid fish special? Patterns of morphological and genetic variation in the closely related species *Archoconus constrictus*. Ecology and Evolution 6 (12):4102–4114. DOI: 10.1002/eece.32184.

Fruciano C, Tagano C, Ferrito V. 2011. Traditional and geometric morphometrics detect morphological variation of lower pharyngeal jaw in *Coris julis* (Teleostei, Labridae). Italian Journal of Zoology 78(3):320–327. DOI: 10.1080/11250003.2010.547876.

García Muñoz JE, García Raso JE, Rodríguez A, Cuesta JA. 2014. Cryptic speciation of Greek populations of the freshwater shrimp genus *Atyaephyra* de Brito Capello, 1867 (Crustacea, Decapoda), evidence from mitochondrial DNA. Zootaxa 3790(3):401–424. DOI: 10.11646/zootaxa.3790.3.1.

Ghiselin MT. 2001. Species concepts in: Encyclopedia of life sciences. London, New York: John Wiley and sons. DOI: 10.1038/npg.els.0001744.

Giri F, Collins PA. 2004. A geometric morphometric analysis of two sympatric species of the family Aeglidæ (Crustacea, Decapoda, Anomura) from the La Plata basin. Italian Journal of Zoology 71(1):85–88. DOI: 10.1080/11250004.00935655.

González-Ortégón E, Cuesta J. 2006. An illustrated key to species of *Palaeon* and *Palaeonemotus* (Crustacea: Decapoda: Caridea) from European waters, including the alien species *Palaeonemus macrodactylus*. Journal of the Marine Biological Association of the United Kingdom 86(1):93–102. DOI: 10.1017/S0025315406012896.

Gottstein Matočec S, Kuzman A, Kerovec M. 2006. Life history traits of the grass shrimp *Palaeonemotus antennarius* (Decapoda, Palaeonidae) in the delta of the Neretva River, Croatia. Limnologica 36(1):42–53. DOI: 10.1016/j.limno.2005.10.002.

Grabowski M, Jabłońska A, Wysocka A, Peśić V. 2018. The obscure history of the lake skadar and its biota: A perspective for future research. In: Pešić V, Karaman G, Kostianoy AG, editors. The Skadar/Shkodra lake environment. The Handbook of Environmental Chemistry. Cham: Springer International Publishing. pp. 47–61. DOI: 10.1007/978-3-319-2018.349.

Grabowski M, Mamos T, Bącza-Spychalska K, Rewicz T, Wattier RA. 2017a. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. Peer Journal 5:e3016. DOI: 10.7717/peerj.3016.

Grabowski M, Wysocka A, Mamos T. 2017b. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zoological Journal of the Linnean Society 181 (2):272–285. DOI: 10.1093/zoolinnean/zlw025.

Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning. New York: Springer. DOI: 10.1007/978-0-387-84958-7.

Hillis DM, Moritz C, Mable BK. 1996. Molecular systematic. Sunderland, Massachusetts: Sinauer Associates.

Hou Z, Fu J, Li S. 2007. A molecular phylogeny of the genus *Gammarnus* (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 2:596–611. DOI: 10.1016/j.ympev.2007.06.006.

Hsu KJ, Montaderl L, Bernoulli D, Cita MB, Erickson A, Garrison RE, Kidd RB, Méliérès F, Müller C, Wright R. 1977. History of the Mediterranean salinity crisis. Nature 267(5610):399–403. DOI: 10.1038/267399a0.

Hupalo K, Karaozews I, Mamos T, Grabowski M. 2020. Molecular data suggest multiple origins and diversification times of freshwater gammarids on the Aegean archipelago. Scientific Reports 10(1):19813. DOI: 10.1038/s41598-020-75802-2.

Hupalo K, Mamos T, Wrzesińska W, Grabowski M. 2018. First endemic freshwater *Gammarnus* from Crete and its evolutionary history—an integrative taxonomy approach. Peer Journal 6:e4457. DOI: 10.7717/peerj.4457.

Hupalo K, Stoch F, Karaozews I, Wysocka A, Rewicz T, Mamos T, Grabowski M. 2021. Freshwater Malacostraca of

Integrative approach in palaeonid shrimp 921
Mamos T, Wittwer R, Burzyński A, Grabowski M. 2016. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Molecular Ecology 25 (3):795–810. DOI: 10.1111/mec.13499.

Mamos T, Wittwer R, Majda A, Sket B, Grabowski M. 2014. Morphological vs. molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäfnera, (Crustacea: Amphipoda). Journal of Zoological Systematics and Evolutionary Research 52(3):237–248. DOI: 10.1111/jzs.12062.

Marchiori AB, Bartholomei-Santos ML, Santos S. 2014. Intraspecific variation in Aegla longirostris (Crustacea: Decapoda: Anomura) revealed by geometric morphometrics: Evidence for ongoing speciation? Biological Journal of the Linnean Society 112(1):31–39. DOI: 10.1111/bij.12256.

Marrone F, Deidun A, Curatolo T, Arculeo M, Lo Brutto S. 2013. Species identification of the psammophilous tenebrionid beetles Phaleria acuminata Küster, 1852 and Phaleria bimaculata (Linnaeus, 1767) from central Mediterranean beaches: Geometric morphometrics and molecular insights from species to population level. Zoomorphology 133(1):71–82. DOI: 10.1007/s00435-013-0205-4.

Maye E. 1976. Species concepts and definitions. In: Greene M, Mendelsohn E, editors. Topics in the philosophy of biology. Netherlands: Springer. pp. 353–371.

Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. 2011. Global biodiversity conservation: The critical role of hotspots. In: Zachos F, Habel J, editors. Biodiversity hotspots. Berlin, Heidelberg: Springer. pp. 3–22. DOI: 10.1007/978-3-642-20992-5_1.

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858. DOI: 10.1038/35002501.

Navarro N, Montuiri S, Laffont R, Steinetz E, Onofrei C, Royer A. 2018. Identifying past remains of morphologically similar vole species using molar shapes. Quaternary 1 (3):0020. DOI: 10.3390/quat1003020.

Navarro N, Zatarain X, Montuiri S. 2004. Effects of morphometric descriptor changes on statistical classification and morphospaces. Biological Journal of the Linnean Society 83 (2):243–260. DOI: 10.1111/j.1095-8312.2004.00385.x.

Padian JM, Miralles A, De La Riva I, Vences M. 2010. The integrative future of taxonomy. Frontiers in Zoology 7(1):16. DOI: 10.1186/1742-9994-7-16.

Parsons KJ, Robinson BW, Hrbek T. 2003. Getting into shape: An empirical comparison of traditional truss-based morphometric methods with a newer geometric method applied to new world Cichlids. Environmental Biology of Fishes 67 (4):417–431. DOI: 10.1023/A:1025895317253.

Pizzo A, Mazzone F, Rolando A, Palestini C. 2011. Combination of geometric morphometric and genetic approaches applied to a debated taxonomical issue: The status of Onthophagus massai (Coleoptera, Scarabaeidae) as an endemic species varicarious to Onthophagus fracticornis in Sicily. Zoology 114(4):199–212. DOI: 10.1111/zool.2011.013.003.

Plate T, Heilberger R. 2016. Combining multidimensional arrays. R package abind version 1.4-5. Available: https://cran.r-pro ject.org/web/packages/abind/index.html

Popov SV, Rögl F, Rozanov AV, Steininger FF, Scherba IG, Kovac M. 2004. Lithological paleoecographic maps of paratethys: 10 maps late eocene to pliocene. Courier Forschungsinstutit Senckenberg 250:1–46.

Poulakakis N, Kapli P, Lymberakis P, Trichas A, Vardiniayannis K, Sfenthourakis S, Mylonas M. 2015.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35 (6):1547–1549. DOI: 10.1093/molbev/msy096.

Librado P, Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25 (11):1451–1452. DOI: 10.1093/bioinformatics/btp187.

Lorenz C, Almeida F, Almeida-Lopes F, Louise C, Pereira SN, Petersen V, Vital DO, Virgão F, Suesdek L. 2017. Geometric morphometrics in squamates: What has been measured? Infection, Genetics and Evolution 54:205–215. DOI: 10.1016/j.igev.2016.06.029.

Lovrenčič L, Pavši V, Mainarić S, Abramović L, Jelić M, Maguire I. 2020. Morphological diversity of the stone crayfish – traditional and geometric morphometric approach. Knowledge and Management of Aquatic Ecosystems 421 (421):1. DOI: 10.1051/kmae/2019042.

Kamimura EH, Viana MC, Llismo M, Fontes FHM, Pires-Silva D, Valença-Barbosa C, Carbalj-del-de-Fuente AL, Folly-Ramos E, Sóferin VN, Thyssen PJ, Costa J, Almeida CE. 2020. Drivers of molecular and morphometric variation in Triatoma brasiliensis (Hemiptera: Triatominae): The resolution of microgeographical morphotypes for population structuring on a microgeographical scale. Parasites Vectors 13(1):455. DOI: 10.1186/s13071-020-04340-7.

Krijgsman W, Capella W, Simon D, Hilgen FJ, Kouwenhoven TJ, Meijer PT, Siero FJ, Tulpbre MA, Van den Berg BCJ, Van der Schee M, Fleer R. 2018. The gibraltar corridor: Watergate of the messinian salinity crisis. Marine Geology 403:238–246. DOI: 10.1016/j.margeo.2018.06.008.

Kamimura EH, Viana MC, Llismo M, Fontes FHM, Pires-Silva D, Valença-Barbosa C, Carbalj-del-de-Fuente AL, Folly-Ramos E, Sóferin VN, Thyssen PJ, Costa J, Almeida CE. 2020. Drivers of molecular and morphometric variation in Triatoma brasiliensis (Hemiptera: Triatominae): The resolution of microgeographical morphotypes for population structuring on a microgeographical scale. Parasites Vectors 13(1):455. DOI: 10.1186/s13071-020-04340-7.

Kamimura EH, Viana MC, Llismo M, Fontes FHM, Pires-Silva D, Valença-Barbosa C, Carbalj-del-de-Fuente AL, Folly-Ramos E, Sóferin VN, Thyssen PJ, Costa J, Almeida CE. 2020. Drivers of molecular and morphometric variation in Triatoma brasiliensis (Hemiptera: Triatominae): The resolution of microgeographical morphotypes for population structuring on a microgeographical scale. Parasites Vectors 13(1):455. DOI: 10.1186/s13071-020-04340-7.
A review of phylogeographic analyses of animal taxa from the Aegean and surrounding regions. Journal of Zoological Systematics and Evolutionary Research 53(1):18–32. DOI: 10.1111/jzs.12071.

Puillandre N, Brouillet S, Achaz G. 2020. ASAP: Assemble species by automatic partitioning. Molecular Ecology Resources 21(2):609–620. DOI: 10.1111/1755-0998.13281.

R Core Team. 2019. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Available: http://www.R-project.org/

Rachalewski M, Banha F, Grabowski M, Anastacio P. 2013. Ectozoochory as a possible vector enhancing the spread of an alien amphipod. Crangonyx Pseudogracilis. Hydrobiologia 717 (1):109–117. DOI: 10.1007/s10750-013-1577-7.

Rajaei H. 2015. Integrative taxonomy, a new approach to answer the question in the biosystematics: A case study of the genus Gobiophasma (Geometridae), Entomologica Romana 27:25–35.

Ramírez-Sánchez MM, De Luna E, Cramer C. 2016. Geometric and traditional morphometrics for the assessment of character state identity: Multivariate statistical analyses of character variation in the genus Arrenurus (Acari, Hydrachnidia, Arrenuridae). Zoological Journal of the Linnean Society 177(4):720–749. DOI: 10.1111/zoj.12384.

Rattasingham S, Hebert PDN. 2007. BOLD: The barcode of life data system. Molecular Ecology Notes 7:355–364. DOI: 10.1111/j.1471-8286.2006.01678.x.

Rattasingham S, Hebert PDN. 2013. A DNA-based registry for all animal species: The barcode index number (BIN) system. PLoS ONE 8(8):e66213. DOI: 10.1371/journal.pone.0066213.

Ren J, Bai M, Yang X-K, Zhang R-Z, Ge S-Q. 2017. Geometric morphometrics analysis of the hind wing of leaf beetles: Proximal and distal parts are separate modules. ZooKeys 685:131–149. DOI: 10.3897/zookeys.685.13084.

Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D. 2019. Support functions and datasets for Venables and Ripley’s MASS. R package abind version 1.4-5. Available: http://www.stats.ox.ac.uk/pub/MASS4/

Rohlf FJ. 2015. The tps series of software. Hystrix, the Italian Journal of Mammalogy 26:1–4. DOI: 10.4404/hystrix-26.1.11264.

Rossi N, Célio Magalhães C, Mesquita ER, Mantelatto FL. 2020. Uncovering a hidden diversity: A new species of freshwater shrimp Macrobrachium (Decapoda: Caridea: Palaemonidae) from neotropical region (Brazil) revealed by morphological review and mitochondrial genes analyses. Zootaxa 4732(1):1. DOI: 10.11646/zootaxa.4732.1.9.

Rudolph K, Coleman CO, Mamos T, Grabowski M. 2018. Description and post-glacial demography of Gammarus jazdzejewski sp. nov. (Crustacea: Amphipoda) from Central Europe. Systematics and Biodiversity 16(6):587–603. DOI: 10.1080/14772000.2018.1470118.

Rufino M, Abello P, Yule AB. 2004. Male and female carapace shape differences in Liocarcinus depurator (Decapoda, Brachyura): An application of geometric morphometric analysis to crustaceans. Italian Journal of Zoology 71(1):79–83. DOI: 10.1080/11250004.04935654.

Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425.

Sangster G. 2018. Integrative taxonomy of birds: The nature and delimitation of species. In: Tietze D, editor. Bird species. Fascinating life sciences. Cham: Springer. pp. 9-37. DOI: 10.1007/978-3-319-91689-7_2.

Schlick-Stein BE, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH. 2010. Integrative taxonomy: A multisource approach to exploring biodiversity. Annual Review of Entomology 55(1):421–438. DOI: 10.1146/annurev-ento-112408-085432.

Schmieder DA, Benitez HA, Borissov IM, Fruciano C. 2015. Bat species comparisons based on external morphology: A test of traditional versus geometric morphometric approaches. PLoS ONE 10(5):e0127043. DOI: 10.1371/journal.pone.0127043.

Scurru CA, Fop M, Murphy TB, Raftery AE. 2016. Mrclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal 8(1):205–233. DOI: 10.32614/RJ-2016-021.

Sganga DE, Fernandez Piana LR, López Greco LS. 2016. Sexual dimorphism in a freshwater atyid shrimp (Decapoda: Caridea) with direct development: A geometric morphometrics approach. Zootaxa 4196(1):1. DOI: 10.11646/zootaxa.4196.1.7.

Signorello G, Prato C, Marzo A, Ientile R, Cucuzza G, Scandellaro S, Martínez-López J, Balbi S, Villa F. 2018. Are protected areas covering important biodiversity sites? An assessment of the nature protection network in Sicily (Italy). Land Use Policy 78:593–602. DOI: 10.1016/j.landusepol.2018.07.032.

Silva I, Paula J. 2008. Is there a better chela to use for geometric morphometric differentiation in brachyuran crabs? A case study using Pachygrapsus marmoratus and Carcinus maenas. Journal of the Marine Biological Association of the United Kingdom 88(5):941–953. DOI: 10.1017/S0025315408001483.

Silva IC, Mesquita N, Paula J. 2010. Genetic and morphological differentiation of the mangrove crab Perisesarma guttatum (Brachyura: Sesarmidae) along an East African latitudinal gradient. Biological Journal of the Linnean Society 99(1):28–46. DOI: 10.1111/j.1095-8312.2009.01338.x.

Simanjuntak RG, Erplrubthan R. 2019. Geometric morphometrics analysis of chela and carapace of the freshwater Prawn Macrobrachium Bate, 1868. Biogenesis 7(1):58–66. DOI: 10.24252/bio.v7i1.7803.

Skoulkisidis NT, Economou AN, Gritzalis KC, Zogaris S. 2009. Rivers of the Balkans. In: Tochner K, Uhlinger U, Robinson CT, editors. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Rivers of Europe. Elsevier Academic Press. pp. 421–466.

South A. 2016. Mapping global data. Available: https://github.com/AndySouthworldmap.

Tietze D, Figueroa JMT, López-Rodriguez MJ, Fenoglio S, Sánchez-Castillo P, Fochetti R. 2013. Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia 719:137–186. DOI: 10.1007/s10750-012-1281-z.

Torres MV, Giri F, Collins PA. 2014. Geometric morphometric analysis of the freshwater prawn Macrobrachium borelli (Decapoda: Palaemonidae) at a microgeographical scale in a floodplain system. Ecological Research 29:959–968. DOI: 10.1007/s11157-014-1184-8.

Tzomos T, Koulouras A. 2015. Redescription of Palaemon antennarius H. Milne Edwards, 1837 and Palaemon migratorius (Heller, 1862) (Crustacea, Decapoda, Palaemonidae) and description of two new species of the genus from the circum-Mediterranean area. Zootaxa 3905(1):27–51. DOI: 10.11646/zootaxa.3905.1.2.

Wattier R, Mamos T, Copilas-Ciocianu D, Jelić M, Ollivier A, Chaumot A, Danger M, Felten V, Piscart C, Zganez K, Rewicz T, Wysocka A, Rigaud T, Grabowski M. 2020.
Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon *Gammarus fossarum* (Crustacea, Amphipoda). Scientific Reports 10(1):16536. DOI: 10.1038/s41598-020-73739-0.

Wiens JJ. 2007. Species delimitation: New approaches to discover biodiversity. Systematic Biology 56(6):875–878. DOI: 10.1080/10635150701748506.

Xanthopoulos P, Pardalos PM, Trafalis TB. 2013. Robust data mining. SpringerBriefs in optimization. Linear discriminant analysis. New York: Springer. DOI: 10.1007/978-1-4419-9878-1_4.

Young MK, Smith RJ, Pilgrim KL, Fairchild MP, Schwartz MK. 2019. Integrative taxonomy refutes a species hypothesis: The asymmetric hybrid origin of *Arisapia arapahoe* (Plecoptera, Capniidae). Ecology and Evolution 9(3):1364–1377. DOI: 10.1002/ece3.4852.

Zaccara S, Quadroni S, De Santis V, Vanetti I, Carosi A, Britton R, Lorenzoni M. 2019. Genetic and morphological analyses reveal a complex biogeographic pattern in the endemic barbel populations of the southern Italian peninsula. Ecology and Evolution 9(18):10185–10197. DOI: 10.1002/ece3.5521.

Zheng C, Ye Z, Zhu X, Zhang H, Dong X, Chen P, Bu W. 2020. Integrative taxonomy uncovers hidden species diversity in the rheophilic genus *Potamometra* (Hemiptera: Gerridae). Zoologica Scripta 49(2):174–186. DOI: 10.1111/zsc.1240.

Zimmermann G, Bosc P, Valade P, Cornette R, Améziane N, Debat V. 2012. Geometric morphometrics of carapace of *Macrobrachium australis* (Crustacea: Palaemonidae) from Reunion Island. Acta Zoologica 93(4):492–500. DOI: 10.1111/j.1463-6395.2011.00524.x.

Zinetti F, Dapporto L, Vanni S, Magrini P, Bartolozzi L, Chelazzi G, Ciofi C. 2013. Application of molecular genetics and geometric morphometrics to taxonomy and conservation of cave beetles in central Italy. Journal of Insect Conservation 17(5):921–932. DOI: 10.1007/s10881-013-9573-9.