Schrödinger Algebra and Non-Relativistic Holography

N Aizawa1 and V K Dobrev2

1 Department of Mathematics and Information Sciences, Graduate School of Science, Osaka Prefecture University, Nakamozu Campus, Sakai, Osaka 599-8531, Japan
2 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

Abstract. We give a group-theoretic interpretation of non-relativistic holography as equivalence between representations of the Schrödinger algebra describing bulk fields and boundary fields. The main result is the explicit construction of the boundary-to-bulk operators in the framework of representation theory (without specifying any action). Further we show that these operators and the bulk-to-boundary operators are intertwining operators. In analogy to the relativistic case, we show that each bulk field has two boundary fields with conjugated conformal weights. These fields are related by another intertwining operator given by a two-point function on the boundary. Analogously to the relativistic result of Klebanov-Witten we give the conditions when both boundary fields are physical.

1. Introduction

The role of nonrelativistic symmetries in string theory was always important. In fact, string theory encompasses together relativistic quantum field theory, classical gravity, and certainly, nonrelativistic quantum mechanics.

Thus, it is not a surprise that the Schrödinger group - the group that is the maximal group of symmetry of the Schrödinger equation - is playing more and more a prominent role.

Originally, the Schrödinger group, actually the Schrödinger algebra, was introduced by Niederer and Hagen, as nonrelativistic limit of the vector-field realization of the conformal algebra. In the process, the space components of special conformal transformations decouple from the system. Thus, e.g., in the case of four-dimensional Minkowski space-time from the 15 generators of the conformal algebra we obtain the 12 generators of the Schrödinger algebra.

Recently, Son proposed another method of identifying the Schrödinger algebra in $d+1$ space-time. Namely, Son started from AdS space in $d+3$ dimensional space-time with metric that is invariant under the corresponding conformal algebra $so(d+1,2)$ and then deformed the AdS metric to reduce the symmetry to the Schrödinger algebra. We shall use this description.

In view of the relation of the conformal and Schrödinger algebra there arises the natural question. Is there a nonrelativistic analogue of the AdS/CFT correspondence, in which the conformal symmetry is replaced by Schrödinger symmetry. Indeed, this is to be expected since the Schrödinger equation should play a role both in the bulk and on the boundary.

Thus, we study the nonrelativistic analogue of the AdS/CFT correspondence. First let us remind the two ingredients of the AdS/CFT correspondence \cite{1, 2, 3}:
1. the holography principle, which is very old, and means the reconstruction of some objects in...
the bulk (that may be classical or quantum) from some objects on the boundary;
2. the reconstruction of quantum objects, like 2-point functions on the boundary, from
appropriate actions on the bulk.

Our main focus is put on the first ingredient and we consider the simplest case of the (3+1)-
dimensional bulk. It is shown that the holography principle is established using representation
theory only, that is, we do not specify any action.

For the implementation of the first ingredient we use a method that is used in the
mathematical literature for the construction of discrete series representations of real semisimple
Lie groups, and which method was applied in the physics literature first in [4] in exactly an
AdS/CFT setting, though that term was not used then.

The method utilizes the fact that in the bulk the Casimir operators are not fixed numerically.
Thus, when a vector-field realization of the algebra in consideration is substituted in the Casimir
it turns into a differential operator. In contrast, the boundary Casimir operators are fixed by the
quantum numbers of the fields under consideration. Then the bulk/boundary correspondence
forces an eigenvalue equation involving the Casimir differential operator. That eigenvalue
equation is used to find the two-point Green function in the bulk which is then used to construct
the boundary-to-bulk integral operator. This operator maps a boundary field to a bulk field
similarly to what was done in the conformal context by Witten for the scalar and other simple
cases (and in general in [5]. This is the first main result.

The second main result is that we show that this operator is an intertwining operator, namely,
it intertwines the two representations of the Schrödinger algebra acting in the bulk and on the
boundary. This also helps us to establish that each bulk field has actually two bulk-to-boundary
limits. The two boundary fields have conjugated conformal weights \(\Delta, 3 - \Delta \), and they are
related by a boundary two-point function.

We consider also the second ingredient of the AdS/CFT correspondence in the Schrödinger
context and show how our formalism involving the Casimir differential operator relates to the
case of scalar field theory discussed in [6, 7].

This is a review paper based on [8].

2. Preliminaries
The Schrödinger algebra \(\mathfrak{s}(d) \) in \((d+1)\)-dimensional space-time is generated by:

time translation \(P_t \)
space translation \(P_k \)
Galilei boosts \(G_k, \ k = 1, \ldots, d \)
rotations \(J_{k\ell} = -J_{\ell k} \) (which generate the subalgebra \(\mathfrak{so}(d) \), \(k, \ell = 1, \ldots, d \)
dilatation \(D \)
conformal transformation \(K \)

The non-trivial commutation relations are [9]:

\[
\begin{align*}
[P_t, D] &= 2P_t, \\
[P_t, G_k] &= P_k, \\
[P_t, K] &= D, \\
[P_k, D] &= P_k, \\
[P_k, K] &= G_k, \\
[D, G_k] &= G_k, \\
[D, K] &= 2K, \\
[P_t, J_{k\ell}] &= \delta_{k\ell}P_k - \delta_{ik}P_\ell, \\
[G_i, J_{k\ell}] &= \delta_{k\ell}G_k - \delta_{ik}G_\ell, \\
[J_{ij}, J_{k\ell}] &= \delta_{ik}J_{j\ell} + \delta_{j\ell}J_{ik} - \delta_{i\ell}J_{jk} - \delta_{jk}J_{i\ell}.
\end{align*}
\]
The central extension of the Schrödinger algebra \(\hat{\mathfrak{s}}(d) \) is obtained by adding the central element \(M \) to \(\mathfrak{s}(d) \) which brings the additional non-trivial commutation relations: \([P_k, G_\ell] = \delta_{k\ell}M\).

The Schrödinger algebra has the following notable subalgebras:

1. The generators \(J_{ij}, P_i \) form the \((d + 1)d/2\)-dimensional Euclidean subalgebra \(E(d) \).
2. The generators \(J_{ij}, P_i, D \) form the \(((d + 1)d/2 + 1)\)-dimensional Euclidean Weyl subalgebra \(W(d) \).
3. The subalgebras \(\tilde{E}(d) \) and \(\tilde{W}(d) \) generated by \(J_{ij}, G_i, P_t \) form the \(((d + 1)(d + 2)/2)\)-dimensional Galilei subalgebra \(G(d) \).
4. The subalgebras \(\tilde{G}(d) \) generated by \(J_{ij}, G_i, D \) or \(J_{ij}, G_i, K \) form another \(((d + 1)(d + 2)/2)\)-dimensional subalgebra which is isomorphic to the Galilei subalgebra.
5. The isomorphic pairs mentioned above are conjugated to each other.
6. The generators \(J_{ij}, P_i, G_i, P_t \) form an \(sl(2, \mathbb{R}) \) subalgebra.

For our purposes we now restrict to the 1+1 dimensional case, \(d = 1 \). In this case the centrally extended Schrödinger algebra \(\hat{\mathfrak{s}}(1) \) has six generators:

- time translation: \(H \)
- space translation: \(P \)
- Galilei boost: \(G \)
- dilatation: \(D \)
- conformal transformation: \(K \)
- mass: \(M \)

with the following non-vanishing commutation relations:

\[
[H, D] = 2H, \quad [D, K] = 2K, \quad [H, K] = D, \\
[P, G] = M, \quad [P, K] = G, \quad [H, G] = P, \\
[P, D] = P, \quad [D, G] = G.
\]

For this approach we need the Casimir operator. It turns out that the lowest order nontrivial Casimir operator is the 4-th order one \([10]\): \[
\tilde{C}_4 = (2MD - \{P, G\})^2 - 2\{2MK - G^2, 2MH - P^2\}
\]

In fact, there are many cancellations, and the central generator \(M \) is a common linear multiple.

3. Choice of bulk and boundary

We would like to select as bulk space the four-dimensional space \((x, x_\pm, z)\) introduced by Son:

\[
ds^2 = \frac{2(dx_+)^2}{z^4} + \frac{2dx_+ dx_- + (dx)^2}{z^2} + dz^2
\]
We require that the Schrödinger algebra is an isometry of the above metric. We also need to replace the central element M by the derivative of the variable x_- which is chosen so that $\frac{\partial}{\partial x_-}$ continues to be central. Thus, a vector-field realization of the Schrödinger algebra is given by:

$$
H = \frac{\partial}{\partial x_+}, \quad P = \frac{\partial}{\partial x}, \quad M = \frac{\partial}{\partial x_-},
$$

$$
G = x_+ \frac{\partial}{\partial x} + x \frac{\partial}{\partial x_-},
$$

$$
D = x \frac{\partial}{\partial x} + z \frac{\partial}{\partial z} + 2 x_+ \frac{\partial}{\partial x_+},
$$

$$
K = x_+ \left(x \frac{\partial}{\partial x} + z \frac{\partial}{\partial z} + x_+ \frac{\partial}{\partial x_+} \right) + \frac{1}{2} (x^2 + z^2) \frac{\partial}{\partial x_-}
$$

and it generates an isometry of (2). This vector-field realization of the Schrödinger algebra acts on the bulk fields $\phi(x_\pm, x, z)$.

In this realization the Casimir becomes:

$$
\tilde{C}_4 = M^2 C_4,
$$

$$
C_4 = \tilde{Z}^2 - 4 \tilde{Z} - 4 z^2 \tilde{S},
$$

$$
\tilde{Z} = 2 \partial_- \partial_+ - \partial_z^2,
$$

$$
\tilde{S} = 2 z \partial_z - 1.
$$

Note that (5) is the pro-Schrödinger operator.

Next we consider a well known vector-field realization of the Schrödinger algebra [9]:

$$
H = \frac{\partial}{\partial t}, \quad P = \frac{\partial}{\partial y},
$$

$$
G = t \frac{\partial}{\partial y} + y M,
$$

$$
D = y \frac{\partial}{\partial y} + \Delta + 2 t \frac{\partial}{\partial t},
$$

$$
K = t \left(y \frac{\partial}{\partial y} + \Delta + t \frac{\partial}{\partial t} \right) + \frac{1}{2} y^2 M
$$

where Δ is the conformal weight.

We would like to treat the realization (6) as vector-field realization on the boundary of the chosen bulk. Clearly, this is natural if we first write the generator M as $M = \frac{\partial}{\partial x_-}$ and then identify the variables $x_+ \equiv t, \; x \equiv y$.

Note that (5) is the pro-Schrödinger operator.
Thus, we shall use the above as boundary realization with slight modification of M:

$$
H = \frac{\partial}{\partial x_+}, \quad P = \frac{\partial}{\partial x}, \quad M = \frac{\partial}{\partial x_-},
$$

$$
G = x_+ \frac{\partial}{\partial x} + xM,
$$

$$
D = x \frac{\partial}{\partial x} + \Delta + 2x_+ \frac{\partial}{\partial x_+},
$$

$$
K = x_+ \left(x \frac{\partial}{\partial x} + \Delta + x_+ \frac{\partial}{\partial x_+} \right) + \frac{1}{2} x^2 M
$$

(7)

Obviously, the variable z is the variable distinguishing the bulk, namely, the boundary is obtained when $z = 0$. (The exact map will be displayed below. Heuristically, passing from (3) to (7) one first replaces $z \frac{\partial}{\partial z}$ with Δ and then sets $z = 0$.)

Thus, the vector-field realization of the Schroedinger algebra (7) acts on the boundary field $\phi(x_\pm, x)$ with fixed conformal weight Δ.

In this realization the Casimir becomes:

$$
\tilde{C}_4^0 = M^2 C_4^0,
$$

$$
C_4^0 = (2\Delta - 1)(2\Delta - 5)
$$

As expected C_4^0 is a constant which has the same value if we replace Δ by $3 - \Delta$:

$$
C_4^0(\Delta) = C_4^0(3 - \Delta)
$$

(8)

This already means that the two boundary fields with conformal weights Δ and $3-\Delta$ are related, or in mathematical language, that the corresponding representations are (partially) equivalent. This will be very important also below.

4. Boundary-to-bulk correspondence
As we explained in the Introduction we first concentrate on one aspect of AdS/CFT [2, 3], namely, the holography principle, or boundary-to-bulk correspondence, which means to have an operator which maps a boundary field φ to a bulk field ϕ, cf. [3], also [5]. Mathematically, this means the following. We treat both the boundary fields and the bulk fields as representation spaces of the Schrödinger algebra. The action of the Schrödinger algebra in the boundary, resp. bulk, representation spaces is given by formulae (7), resp. by formulae (3). The boundary-to-bulk operator maps the boundary representation space to the bulk representation space. This will be done within the framework of representation theory without specifying any action.

The fields on the boundary are fixed by the value of the conformal weight Δ, correspondingly, as we saw, the Casimir has the eigenvalue determined by Δ:

$$
C_4^0 \varphi(x_\pm, x) = \lambda \varphi(x_\pm, x),
$$

$$
\lambda = (2\Delta - 1)(2\Delta - 5)
$$

(10)

Thus, the first requirement for the corresponding field on the bulk $\phi(x_\pm, x, z)$ is to satisfy the same eigenvalue equation, namely, we require:

$$
C_4 \phi(x_\pm, x, z) = \lambda \phi(x_\pm, x, z),
$$

$$
\lambda = (2\Delta - 1)(2\Delta - 5)
$$

(11)
where C_4 is the differential operator given in (4). Thus, in the bulk the eigenvalue condition is a differential equation.

The other condition is the behaviour of the bulk field when we approach the boundary:

$$\phi(x_\pm, x, z) \rightarrow z^\alpha \varphi(x_\pm, x), \quad \alpha = \Delta, 3 - \Delta$$

To find the boundary-to-bulk operator we first find the two-point Green function in the bulk solving the differential equation:

$$\left(C_4 - \lambda\right) G(\chi, z; \chi', z') = z'^4 \delta^3(\chi - \chi') \delta(z - z') \quad (13)$$

where $\chi = (x_+, x_-, x)$.

It is important to use an invariant variable which in our case is:

$$u = \frac{4z'}{(x-x')^2 - 2(x_+ - x'_+)(x_- - x'_-)+(z+z')^2}$$

The normalization is chosen so that for coinciding points we have $u = 1$.

In terms of u the Casimir becomes:

$$C_4 = 4u^2(1-u) \frac{d^2}{du^2} - 8u \frac{d}{du} + 5 \quad (14)$$

The eigenvalue equation can be reduced to the hypergeometric equation by the substitution:

$$G(\chi, z; \chi', z') = G(u) = u^\alpha \hat{G}(u)$$

and the two solutions are:

$$\hat{G}(u) = F(\alpha, \alpha - 1; 2(\alpha - 1); u), \quad \alpha = \Delta, 3 - \Delta,$$

where $F = \frac{2}{2}F_1$ is the standard hypergeometric function.

As expected at $u = 1$ both solutions are singular: by [11], they can be recast into:

$$G(u) = \frac{u^\Delta}{1-u} F(\Delta - 2, \Delta - 1; 2(\Delta - 1); u),$$

$$G(u) = \frac{u^{3-\Delta}}{1-u} F(1 - \Delta, 2 - \Delta; 2(2 - \Delta); u).$$

Now the boundary-to-bulk operator is obtained from the two-point bulk Green function by bringing one of the points to the boundary, however, one has to take into account all info from the field on the boundary.

More precisely, we express the function in the bulk with boundary behaviour (12) through the function on the boundary by the formula:

$$\phi(\chi, z) = \int d^3\chi' S_\alpha(\chi - \chi', z) \varphi(\chi'), \quad (15)$$

where $d^3\chi' = dx'_+ dx'_- dx'$ and $S_\alpha(\chi - \chi', z)$ is defined by

$$S_\alpha(\chi - \chi', z) = \lim_{z' \to 0} z'^{-\alpha} G(u) = \left[\frac{4z}{(x-x')^2 - 2(x_+ - x'_+)(x_- - x'_-)+(z+z')^2}\right]^\alpha.$$
5. Intertwining properties

Let us denote by L_α the bulk-to-boundary operator:

$$(L_\alpha \phi)(\chi) = \lim_{z \to 0} z^{-\alpha} \phi(\chi, z), \quad (16)$$

where $\alpha = \Delta, 3 - \Delta$ consistently with (12). The intertwining property is:

$$L_\alpha \circ \hat{X} = \hat{\alpha} L_\alpha, \quad X \in \hat{s}(1),$$

(17)

where \hat{X}_α denotes the action of the generator X on the boundary (7) (with Δ replaced by α from (12)), \hat{X} denotes the action of the generator X in the bulk (3).

Let us denote by \tilde{L}_α the boundary-to-bulk operator in (15):

$$\phi(\chi, z) = (\tilde{L}_\alpha \varphi)(\chi, z) \doteq \int d^3 \chi' S_\alpha(\chi - \chi', z) \varphi(\chi')$$

The intertwining property now is:

$$\tilde{L}_\alpha \circ \tilde{X}_{3-\alpha} = \hat{X} \circ \tilde{L}_\alpha, \quad X \in \hat{s}(1).$$

(18)

Next we check consistency of the bulk-to-boundary and boundary-to-bulk operators, namely, their consecutive application in both orders should be the identity map:

$$L_{3-\alpha} \circ \tilde{L}_\alpha = 1_{\text{boundary}}, \quad (19)$$

$$\tilde{L}_\alpha \circ L_{3-\alpha} = 1_{\text{bulk}}. \quad (20)$$

Checking (19) means:

$$(L_{3-\alpha} \circ \tilde{L}_\alpha \varphi)(\chi) = \lim_{z \to 0} z^{\alpha-3} (L_\alpha \varphi)(\chi, z)$$

$$= \lim_{z \to 0} z^{\alpha-3} \int d^3 \chi' S_\alpha(\chi - \chi', z) \varphi(\chi')$$

$$= \lim_{z \to 0} z^{\alpha-3} \int d^3 \chi' (\frac{4\pi}{A})^\alpha \varphi(\chi'),$$

$$A = (x - x')^2 - 2(x_+ - x'_+)(x_- - x'_-) + z^2$$

For the above calculation we interchange the limit and the integration, and use the following generalized-functions formula:

$$\lim_{z \to 0} z^{\alpha-3} (\frac{4\pi}{A})^\alpha =$$

$$= 2^{2\alpha} \pi^{3/2} \frac{\Gamma(\frac{\alpha-3}{2})}{\Gamma(\alpha)} \delta^3(\chi - \chi'),$$

$$\alpha - 3/2 \notin \mathbb{Z}.$$

Using (21) we obtain:

$$(L_{3-\alpha} \circ \tilde{L}_\alpha \varphi)(\chi) = 2^{2\alpha} \pi^{3/2} \frac{\Gamma(\frac{\alpha-3}{2})}{\Gamma(\alpha)} \varphi(\chi)$$

(22)

Thus, in order to obtain (19) exactly, we have to normalize, e.g., \tilde{L}_α.

We note the excluded values $\alpha - 3/2 \notin \mathbb{Z}$ for which the two intertwining operators are not inverse to each other. This means that at least one of the representations is reducible. This
Reducibility was established in our paper with Professor Doebner [12] for the associated Verma modules with lowest weight determined by the conformal weight Δ.

Checking (20) is now straightforward, but also fails for the excluded values. Note that checking (19) we used (16) for $\alpha \to 3 - \alpha$, i.e., we used one possible limit of the bulk field (15). But it is important to note that this bulk field has also the boundary as given in (16). Namely, we can consider the field:

$$\varphi_0(\chi) \doteq (L_\alpha \phi)(\chi) = \lim_{z \to 0} z^{-\alpha} \phi(\chi, z), \quad (23)$$

where $\phi(\chi, z)$ is given by (15). We obtain immediately:

$$\varphi_0(\chi) = \int d^3 \chi' G_\alpha(\chi - \chi') \varphi(\chi'), \quad (24)$$

where

$$G_\alpha(\chi) = \left[\frac{4}{x^2 - 2x_+ x_-} \right]^\alpha. \quad (25)$$

If we denote by G_α the operator in (24) then we have the intertwining property:

$$\tilde{X}_\alpha \circ G_\alpha = G_\alpha \circ \tilde{X}_{3-\alpha}. \quad (26)$$

Thus, the two boundary fields corresponding to the two limits of the bulk field are equivalent (partially equivalent for $\alpha \in \mathbb{Z} + 3/2$). The intertwining kernel has the properties of the conformal two-point function.

Thus, for generic Δ the bulk fields obtained for the two values of α are not only equivalent - they coincide, since both have the two fields φ_0 and φ as boundaries.

Remark: For the relativistic AdS/CFT correspondence the above analysis relating the two fields in (24) was given in [5]. An alternative treatment relating these two fields via the Legendre transform was given later in [14].

As in the relativistic case there is a range of dimensions when both fields $\Delta, 3 - \Delta$ are physical:

$$\Delta_0^0 \equiv 1/2 < \Delta < 5/2 \equiv \Delta_+^0. \quad (27)$$

At these bounds the Casimir eigenvalue $\lambda = (2\Delta - 1)(2\Delta - 5)$ becomes zero.

1 For more information on the representation theory and related hierarchies of invariant differential operators and equations we refer to other papers, part of which with Professor Doebner [13].
6. Nonrelativistic reduction

In order to connect our approach with that of previous works [6, 7, 15], we consider the action for a scalar field in the background (2):

\[I(\phi) = -\int d^3 \chi dz \sqrt{-g} (\partial^\mu \phi^* \partial_\mu \phi + m_0^2 |\phi|^2). \] (28)

By integrating by parts, and taking into account a non-trivial contribution from the boundary, one can see that \(I(\phi) \) has the following expression:

\[I(\phi) = \int d^3 \chi dz \sqrt{-g} \phi^* (\Box - m_0^2) \phi - \lim_{z \to -0} \int d^3 \chi \frac{1}{z} \phi^* z \partial_z \phi \] (29)

The second term is evaluated using (15). For \(z \to 0 \), one has

\[z \partial_z \phi \sim \alpha (4z)^\alpha \int d^3 \chi' \sqrt{\frac{\varphi(\chi')}{(x-x')^2 - 2(x_+ - x'_+)(x - x'_-)}} + O(z^{\alpha+2}) \]

It follows that

\[\lim_{z \to -0} \int d^3 \chi \frac{1}{z} \phi^* z \partial_z \phi = \lim_{z \to -0} \alpha \int d^3 \chi d^3 \chi' z^{\alpha - 3} \phi^* (\chi, z) (\frac{1}{4})^\alpha \varphi(\chi') \]

\[= 4^\alpha \alpha \int d^3 \chi d^3 \chi' \sqrt{\frac{\varphi(\chi') \varphi(\chi')}{(x-x')^2 - 2(x_+ - x'_+)(x - x'_-)}}^\alpha \]

The equation of motion being read off from the first term in (29) can be expressed in terms of the differential operator (4):

\[\Box - m_0^2 \phi = \left(\frac{C_4}{4} - \frac{5}{4} + 2 \partial^2 - m_0^2 \right) \phi = 0 \] (30)

Now we set an Ansatz for the fields on the boundary: \(\varphi(\chi) = e^{Mx_-} \varphi(x_+, x) \) and restrict the \(x_- \) coordinate: \(x_- \geq 0 \). This leads to a separation of variables for the fields in the bulk in the following way:

\[\phi(\chi, z) = e^{Mx_-} \int dx'_+ dx' \int_0^\infty d\xi \left(\frac{4z}{(x-x')^2 - 2(x_+ - x'_+)\xi + z^2} \right)^\alpha e^{-M\xi} \varphi(x'_+, x') \] (31)

Thus, we are allowed to make the identification \(\partial_- = M \) both in the bulk and on the boundary [6, 7]. We remark that under this identification the operator (5) becomes the Schrödinger operator. Integration over \(\xi \) gives:

\[\phi(\chi, z) = e^{Mx_-} \varphi(x_+, x, z), \] (32)

\[\phi(x_+, x, z) = (-2z)^\alpha M^{\alpha - 1} \Gamma(1 - \alpha) \]

\[\times \int \frac{dx'_+ dx'}{(x_+ - x'_+)^\alpha} \exp \left(-\frac{(x - x')^2 + z^2}{2(x_+ - x'_+)} M \right) \]

\[\times \varphi(x'_+, x'). \] (33)
This formula was obtained first in [15]. The equation of motion (30) now reads

$$\left(\frac{\lambda - 5}{4} - m^2\right) \phi(x_+, x, z) = 0,$$

(34)

where $m^2 = m_0^2 - 2M^2$.

Requiring $\phi(x_+, x, z)$ to be a solution to the equation of motion makes the connection between the conformal weight and mass:

$$\Delta_\pm = \frac{1}{2}(3 \pm \sqrt{9 + 4m^2}).$$

(35)

This result is identical to the relativistic AdS/CFT correspondence [2, 3]. The action (29) evaluated for this classical solutions has the following form ($\alpha = \Delta_\pm$):

$$I(\phi) = -(-2)^\alpha M^{\alpha - 1}\alpha \gamma(1 - \alpha, Ma)$$

$$\times \int dx dx_+ dx'dx_+' \frac{dx_+ dx_-'(x_+ - x_+')^\alpha}{(x_+ - x_+)^\alpha} \exp\left(-\frac{(x - x')^2}{2(x_+ - x_+)^2}M\right)$$

$$\times \varphi(x_+, x)^* \varphi(x_+, x').$$

(36)

The two-point function of the operator dual to ϕ computed from (36) coincides with the result of [6, 7, 16, 17].

We remark that the Ansatz for the boundary fields $\varphi(\chi) = \exp(Mx_+ - \omega x_+ + ikx)$ used in [6, 7] is not necessary to derive (36).

One can also recover the solutions in [6, 7] rather simply in our group theoretical context. We use again the eigenvalue problem of the differential operator (4):

$$C_4 \phi(x_+, x, z) = \lambda \phi(x_+, x, z)$$

(37)

but make separation of variables $\phi(x_+, x, z) = \psi(x_+, x)f(z)$. Then (37) is written as follows:

$$\frac{1}{f(z)} \left(\partial_z^2 - \frac{2}{z} \partial_z + \frac{5 - \lambda}{4z^2}\right) f(z) = \frac{1}{\psi(x_+, x)} \hat{S} \psi(x_+, x) = p^2 \text{ (const)}$$

The Schrödinger part is easily solved:

$$\psi(x_+, x) = \exp(-\omega x_+ + ikx)$$

and that gives

$$p^2 = -2M \omega + k^2.$$
The equation for $f(z)$ now becomes
\[\partial_z^2 f(z) - \frac{2}{z} \partial_z f(z) + \left(2M \omega - k^2 - \frac{m^2}{z^2} \right) f(z) = 0 \]

This is the equation given in [6, 7] for $d = 1$. Thus, solutions to equation (39) are given by modified Bessel functions:
\[f_{\pm}(z) = z^{3/2} K_{\pm \nu}(pz) \] where ν is related to the effective mass m [6, 7]. In our group theoretic approach one can see its relation to the eigenvalue of $C_4 : \nu = \sqrt{\lambda + 4}/2$.

We finish by giving the expression of (36) for the alternate boundary field φ_0. To this end, we again use the Ansatz $\varphi(\chi) = e^{Mx-} \varphi(x_+, x)$ for (24). Then performing the integration over x'_- it is immediate to see that:
\[\varphi_0(x, x_+) \sim e^{Mx-} \int \frac{dx'dx_+}{(x_+-x'_+)^{\nu}} \exp \left(-\frac{(x-x')^2}{2(x_+-x'_+)}M \right) \varphi(x'_+, x') \]

One can invert this relation since $G_{3-\alpha} \circ G_{\alpha} = 1_{\text{boundary}}$.

Substitution of (39) and its inverse in (36) gives the following expression:
\[I(\phi) \sim \int \frac{dx dx_+ dx'dx'_+}{(x_+-x'_+)^{4-\alpha}} \exp \left(-\frac{(x-x')^2}{2(x_+-x'_+)}M \right) \varphi_0(x, x)^* \varphi_0(x_+, x') \]

Acknowledgments

V.K.D. would like to thank the organizers of the VII International Symposium "Quantum Theory and Symmetries" (Prague, 2011) for the invitation to present this lecture at the Special Session in honour of Prof. H.-D. Doebner.

V.K.D. was supported in part by Bulgarian NSF grant DO 02-257.

References

[1] Maldacena J 1998 Adv. Theor. Math. Phys. 2 231
[2] Gubser S S, Klebanov I R and Polyakov A M 1998 Phys. Lett. B 428 105
[3] Witten E 1998 Adv. Theor. Math. Phys. 2 253
[4] Dobrev V K, Mack G, Petkova V B, Petrova S G and Todorov I T 1977, Harmonic Analysis on the n-Dimensional Lorentz Group and Its Applications to Conformal Quantum Field Theory, Lecture Notes in Physics, Vol. 63 (Berlin: Springer)
[5] Dobrev V K 1999 Nucl. Phys. B 553 559
[6] Son D T 2008 Phys. Rev. D 78 046003
[7] Balasubramanian K and McGreevy J 2008 Phys. Rev. Lett. 101 061601
[8] Aizawa N and Dobrev V K 2010 Nucl. Phys. B 828 581
[9] Barut A O and Raczka R 1980 Theory of Group Representations and Applications, (Warszawa: PWN)
[10] Perroud M 1977 Helv. Phys. Acta 50 233
[11] Bateman H and Erdelyi E 1953 Higher Transcendental Functions, Vol. 1 (New-York: McGraw-Hill)
[12] Dobrev V K, Doebner H-D and Mrugalla C 1997 Rep. Math. Phys. 39 201
[13] Dobrev V K, Doebner H-D and Mrugalla C 1996 J. Phys. A 29; 1999 Mod. Phys. Lett. A 14 1113; Aizawa N, Dobrev V K and Doebner H-D 2002, in: Quantum Theory and Symmetries II, Proceedings of the 2nd QTS Symposium, (Cracow, 2001), (Singapore: World Sci) 222; Aizawa N, Dobrev V K, Doebner H-D and Stoimenov S 2008, in: Lie Theory and Its Applications in Physics VII, Proceedings of the VII International Workshop (Varna, 2007), (Sofia: Heron Press) 372; Dobrev V K and Stoimenov S 2010 Physics of Atomic Nuclei 73 (11) 1916.

[14] Klebanov I R and Witten E 1999 Nucl. Phys. B 556 89

[15] Fuertes C A and Moroz S 2009 Phys. Rev. D 79 106004

[16] Henkel M 1994 J. Stat. Phys. 75 1023

[17] Stoimenov S and Henkel M 2006 J. Phys. Conf. Ser. 40 144