Unusual case of severe arrhythmia developed after acute intoxication with tosylchloramide

Vincenzo Lariccia1†, Alessandra Moraca2†, Marco Marini2, Annamaria Assunta Nasti1, Ilaria Battistoni2, Salvatore Amoroso1* and Gian Piero Perna2

Abstract

Background: Drugs not commonly considered to be cardioactive agents may cause prolongation of the QT interval with resultant torsades de pointes and ventricular fibrillation. This form of drug toxicity often causes cardiac arrest or sudden death.

Case presentation: After accidental ingestion of tosylchloramide a caucasian 77-year-old woman, with a family history of cardiovascular disease and hypertension, was admitted to the intensive care unit following episodes of torsades de pointes with a prolonged QT/QTc interval (640/542 ms). The patient received an implantable cardioverter-defibrillator, was discharged from the hospital with normal QT/QTc interval and did not experience additional ventricular arrhythmias during one year of follow-up.

Conclusion: This is the first report concerning an unusual case of torsades de pointes after accidental intoxication by ingestion of tosylchloramide. The pronounced impact of the oxidizing agent tosylchloramide on the activity of some of the ion channels regulating the QT interval was identified as a probable cause of the arrhythmia.

Keywords: Tosylchloramide, Acute intoxication, Arrhythmia, Ventricular fibrillation, Ion channels

Background

Because of its high activity against fungi and bacteria, tosylchloramide is a widely used disinfectant agent for common applications such as household cleaning and swimming pool disinfection. Many case reports describing tosylchloramide intoxication have been already published in the past showing that the chronic exposure to this compound may cause hypersensitivity reactions, such as asthma [1,2], conjunctivitis [3], whereas toxic pneumonitis [4], cardiovascular collapse and myocardial damage may occur in acutely intoxicated patients [5]. Here we report the first case of a severe arrhythmia developed in the context of acute oral intoxication with tosylchloramide.

Case presentation

A 77-year-old woman presenting shoulder girdle pain was admitted to our hospital with suspected coronary syndrome. She had a history of hypertension; treated since 5 years with Perindopril (5 mg once daily) and a family history of cardiovascular disease. Few hours after the admission at the Emergency Room (ER) the patient experienced a cardiac arrest due to a "Torsade de Pointes" (TdP) degenerated into ventricular fibrillation which required DC shock (200 J), as documented by electrocardiogram (ECG) (Figure 1). After specific questioning for drug intake, the patient revealed She had accidentally (non-intentionally) ingested an entire sachet of Euclorina (containing 2.5 g of tosylchloramide) between 5 and 6 hours before TdP.

Surface ECG on admission in ER showed sinus rhythm with pre-existing left bundle branch block (LBBB). Serum potassium was in slightly lower normal range (3.3 mEq/l, before 3.8 mEq/l), while other haematological parameters were in their respective reference intervals (data not shown). On admission to the cardiology Intensive Care Unit (ICU) the ECG disclosed sinus bradycardia (55 bpm) with significant alteration in the QT interval (QT/QTc = 640/543 msec; Figure 2) that was significantly prolonged over a 24-hour period. Thereafter the patient underwent an echocardiography
that revealed concentric left ventricle hypertrophy with a mild reduction in global systolic function (LVEF = 50%) due to LBBB-induced dyssynergy of the interventricular anterior septum wall.

The middle left anterior descending coronary artery (LAD) had a non-significant stenosis (< 50%) as revealed by coronary angiography and IVUS control (Figure 3). A not significant stenosis was detected in a non-dominant right coronary artery (Figure 3). According to the criteria defined in Thygesen et al. [6], myocardial infarction was excluded for the following reasons: a) no symptoms or electrocardiographic changes were detected; b) the peak

Figure 1 TDP with fast degeneration into Ventricular Fibrillation. The ECG-strip pre-TDP (Figure 1A) shows a QT interval of 640 msec (QTc is 542 msec).
CK-MB level was 8.1 ng/ml (the normal reference value in our laboratory is < 5 ng/ml) only after 6 h from DC shock, and normalized (3.2 ng/ml) within the following 6 h; c) the peak Troponin I level was 0.32 ng/ml (the normal reference value in our laboratory is < 0.08 ng/ml) 6 h after DC shock, and normalized (0.06 ng/ml) 6 h later. No signs of liver or kidney derangement were observed (data not shown).

The patient was discharged 7 days after admission, following the placement of an implantable cardioverter-defibrillator (ICD); the ECG at discharge showed a LBBB with a normal QT interval (QT/QTc = 400/430 msec; Figure 4). After 12 and 24 months of follow-up she has been clinically stable, no shock detected at ICD registration and her QT interval was normal (Figure 5).

Discussion

The occurrence of TdP in our patient after tosylchloramide ingestion can be explained considering that this compound acts as a strong oxidant of methionines and cysteines residues in proteins [7]. The activity of some of the ion channels regulating the duration of the QT interval is, indeed, strongly influenced by oxidation of critical methionine residues in channel proteins. In particular, voltage-dependent inactivation of Na+ channels is significantly slowed down when methionine residues located in the so called IMF domain, which is responsible for voltage-dependent channel inactivation, are oxidized [8]. Consistently, tosylchloramide, which has a strong preference in oxidizing methionine residues [9], is one of the most powerful oxidants affecting Na\textsubscript{v} channel inactivation [9,10] and it has been used as a pharmacological tool to abolish voltage-dependent inactivation in studies aiming to determine its contribution in the activity of specific cardiovascular drugs [11]. Tosylchloramide-induced slowing of Na\textsubscript{v} channel inactivation is a quite general phenomenon being observed in the brain, muscle and, importantly, cardiac isoform of these channels [8]. Oxydant-induced impairment of Na\textsubscript{v} voltage-dependent inactivation may per se explain the appearance of TdP in our patient intoxicated with tosylchloramide since it causes a marked increase in persistent I\textsubscript{Na} (I\textsubscript{Na,P}) [12,13], the inactivation-resistant Na+ current which persists in the presence of prolonged membrane depolarization [14]. An increase in I\textsubscript{Na,P} is, indeed, a well documented mechanism of QT prolongation and arrhythmogenesis and a potentially relevant target for treatment and prevention of arrhythmias [15,16]. In addition, an increase in I\textsubscript{Na,P} is considered responsible for arrhythmogenesis in patients affected with the LQT3 syndrome which bear specific mutations in the Na\textsubscript{v}1.5 channel gene [17-19].

Confirming the involvement of I\textsubscript{Na,P} in oxydant-induced arrhythmogenesis, the I\textsubscript{Na,P} blocker ranolazine was effective in preventing QT...
prolongation and early afterdepolarizations induced by the strong oxidant agent \(\text{H}_2\text{O}_2 \) in cultured guinea pig cardiomyocytes [13]. Therefore, it is tempting to speculate that, in our patient, tosylchloramide exposure recapitulated the pathophysiological mechanism of cardiac arrhythmia in LQT3 patients.

hERG is another oxidation-sensitive ion channel that could have been involved in the genesis of TdP in our patient. hERG is the main K\(^+\) current responsible for rapid repolarization of cardiac myocytes in phase III of cardiac action potential [20] and its loss of function is one of the best characterized mechanisms of drug-induced or congenital LQT syndrome [21]. Specifically, mutations causing either loss of function or alterations in trafficking of hERG channels are responsible for the LQT2 syndrome [22,23] whereas mutations in MiRP1, an accessory subunit that coassembles with hERG, have been found in LQT6 patients [24]. Intriguingly, by oxidizing critical methionine residues, tosylchloramide causes an almost complete loss of hERG channel activity \textit{in vitro} [25] thus reproducing the effect of drugs or mutations known to cause TdP. Therefore, it is likely that hERG channel blockade could have played a role in the appearance of TdP in our patient.

Finally, it is worth to remind that several oxidants, including tosylchloramide, may also increase the activity of L-type voltage-gated Ca\(^{2+}\) channels (VGCC), even though, in this case, the specific involvement of methionine residues has not been demonstrated [26,27]. By increasing Ca\(^{2+}\) influx through L-type VGCC, tosylchloramide is expected to prolong the plateau phase of cardiac action potential thus delaying cardiomyocyte repolarization and promoting the appearance of TdP. Intriguingly, an increase in L-type VGCC activity represents the mechanistic base of arrhythmias in LQT8 patients [28-30] bearing the Timothy syndrome mutations which cause an impairment in voltage-dependent Ca\(_V\)1.2 channel inactivation [31].

Conclusion

Oxidative stress has been proposed as one of the upstream events provoking clinical relevant arrhythmic responses [32] and several drugs used in therapy exert antiarrhythmic effects in part via their antioxidative property [33,34]. Here we suggest that severe arrhythmia may occur in the form of TdP after massive exposure to the oxidizing agent tosylchloramide. In fact, tosylchloramide has a pronounced impact on the activity of some of the ion channels regulating the QT interval. Since our patient exhibited no evidence of QT interval alteration after 12 and 24 months of follow-up, this strongly suggests a causal role of tosylchloramide intoxication for the ECG abnormalities occurred during observation in the ICU. Therefore, a strict electrocardiographic monitoring is advised in patients intoxicated with this compound.

Consent

Written informed consent was obtained from the patient prior to publication of this case report and any accompanying images. A copy of the written consent is available for review by the Series Editor of this journal.
Figure 4 ECG at hospital discharge. QT interval measures 400 msec, the QTc interval 430 msec.

Figure 5 ECG at 1-year follow-up shows stable LBBB and normal QT/QTc interval (405/432 msec).
Competing interest
The authors declare that they have no competing interest.

Authors' contributions
AM identified and managed the case; GPP and SA analyzed the data, conceived of the study and helped to draft the manuscript; VL, MM, AAN and IB performed the literature search and wrote the article. All authors read and approved the final manuscript.

Authors' information
Salvatore Amoroso and Gian Piero Perna equally contributed as senior authors and IB performed the literature search and wrote the article. All authors read and conceived of the study and helped to draft the manuscript; VL, MM, AAN and IB identified and managed the case; GPP and SA analyzed the data.

Published: 24 January 2013

References
1. Bissaco A, Joral A, Fuente R, Rodriguez M, Garcia A, Dominguez A: Bronchial asthma due to sensitization to chloramine T. J Investig Allergol Clin Immunol 1992, 2:167–170.
2. Kujala WM, Reijula KE, Ruotsalainen EM, Heikkilä K: Occupational asthma due to chloramine-T solution. Respir Med 1995, 89:693–695.
3. Grant WM. Toxicology of the eye: Springer; 1974.
4. Pascuzzi TA, Storrow AB: Occupational asthma. J Investig Allergol Clin Immunol 1996, 96:825–826.
5. Gonzalez-Castro A, Holanda MS, Canas BS, Morlote JG, Minambres E, Prieto SH: Oxidation of multiple methionine residues in eqhine growth hormone by Chloramine-T. Biochem Pharmacol 1993, 45:1085–1095.
6. Wang GK: Irreversible modification of sodium channel inactivation in toad myelinated nerve fibers by the oxidant chloramine-T. J Physiol 1984, 346:127–141.
7. Quiróñez M, DiFrancesco D, González F: Involvement of methionine residues in the fast inactivation mechanism of the sodium current from toad skeletal muscle fibers. J Membr Biol 1990, 109:149–156.
8. Nakada T, Tanaka Y, Hisatome I, Sasaki N, Ohtahara A, Kotake H, Mashiba H, Sato R: Mechanism of inhibition of the sodium current by bepridil in guinea-pig isolated ventricular cells. Br J Pharmacol 1995, 116:1775–1780.
9. Niemann P, Schmidt-Mayer U, Lubich W: Chloramine-T effect on sodium conductance of neuroblastoma cells as studied by whole-cell clamp and single-channel analysis. Pflugers Arch 1991, 418:129–136.
10. Song Y, Shroyer JC, Wagner S, Maier LS, Belardinelli L: Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp Ther 2006, 318:214–222.
11. Malszewski VA, Sabaath BN, Higgins RS, Silverman N, Lesch M, Undrovinsas AI: Novel, ultrafast inactivating sodium current in human ventricular cardiomyocytes. Circulation 1998, 98:2545–2552.
12. Hasenfus G, Maier LS: Mechanism of action of the new anti-ischemia drug ranolazine. Clin Res Cardiol 2008, 97:222–226.
13. Undrovinsas A, Malszewski VA: Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart. Cardiov Med 2008, 9:459–459.
14. Bennett PB, Yazawa K, Makita N, George AL Jr: Molecular mechanism for an inherited cardiac arrhythmia. Nature 1995, 376:683–685.
15. Christé G, Chahine M, Chevalier P, Pásek M: Changes in action potentials and intracellular ion homeostasis in a ventricular cell model related to a persistent sodium current in SCNSA mutations underlying LQT3. Prog Biophys Mol Biol 2008, 96:281–293.
16. Tian XL, Song Y, Wan X, Wu L, Chung MK, Tchou PJ: Mechanisms by which SCNSA mutation N1325S causes cardiac arrhythmias and sudden death in vivo. Cardiovasc Res 2004, 61:256–267.
17. Tsen GQ: IKr: the hERG channel. J Mol Cell Cardiol 2001, 33:835–849.
18. Sanguinetti MC, Jiang C, Currán ME, Keating MT: A mechanistic link between an inherited and an acquired cardiac arrhythmia: HbR encodes the Ikr potassium channel. Cell 1995, 81:299–307.
19. Currán ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT: A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 1995, 80:795–803.
20. Chiang CE, Roden DM: The long QT syndromes: genetic basis and clinical implications. J Am Coll Cardiol 2000, 36:1–12.
21. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA: MIRP1 forms Ikr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999, 97:175–187.
22. Su Z, Limberis J, Martin RL, Xu R, Kolbe K, Heinemann SH, Hoshi T, Cox BF, Gintant GA: Functional consequences of methionine oxidation of hERG potassium channels. Biochern Pharmacol 2007, 74:701–711.
23. Campbell DL, Stamler JS, Strauss HC: Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrositols. J Gen Physiol 1996, 108:277–293.
24. Yamaoka K, Yakehiro M, Yamaha H, Fujii H, Seyama I: Effect of sulphydryl reagents on the regulatory system of the L-type Ca channel in frog ventricular myocytes. Pflugers Arch 2000, 440:207–213.
25. Sanguinetti MC, Keating MT, Goldstein SA: Dynamic of multiple methionine residues from sodium channel proteins at the N terminus. Proc Natl Acad Sci USA 1988, 85:9677–9700.
26. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Birose R, Napolitano C, Schwartz PJ, Joseph RM, Condiors K, Tager-Flyshburg H, Prion SG, Sanguinetti MC, Keating MT: CAV1.2 calcium channel dysfunction causes a multif System disorder including arrhythmia and autism. Cell 2004, 119:191–31.
27. Splawski I, Timothy KW, Decher N, Kumar P, Sarche FD, Beggs AH, Sanguinetti MC, Keating MT: Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci USA 2005, 102:8089–0096.
28. Lauter CE, Tsien RW: The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of Cav1.2 L-type calcium channels. Proc Natl Acad Sci USA 2008, 105:2157–2162.
29. Jeong EM, Liu M, Steudt M, Gao G, Vargheese DT, Sovani AA, Dudley SC: Metabolic stress, reactive oxygen species, and arrhythmia. J Mol Cell Cardiol 2012, 52:454–483.
30. Liu T, Li G: Antioxidant interventions as novel preventive strategies for postoperative atrial fibrillation. Int J Cardiol 2010, 140:140–142.
31. Naccomelli GV, Lukas MA: The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of Cav1.2 L-type calcium channels. Proc Natl Acad Sci USA 2005, 102:8089–0096.