Classifying \(k \)-Edge Colouring for \(H \)-free Graphs\(^*\)

Esther Galby\(^1\), Paloma T. Lima\(^2\), Daniël Paulusma\(^3\), and Bernard Ries\(^1\)

\(^1\) Department of Informatics, University of Fribourg, Switzerland, \{esther.galby,bernard.ries\}@unifr.ch
\(^2\) Department of Informatics, University of Bergen, Norway, paloma.lima@uib.no
\(^3\) Department of Computer Science, Durham University, UK, daniel.paulusma@durham.ac.uk

Abstract. A graph is \(H \)-free if it does not contain an induced subgraph isomorphic to \(H \). For every integer \(k \) and every graph \(H \), we determine the computational complexity of \(k \)-Edge Colouring for \(H \)-free graphs.

1 Introduction

A graph \(G = (V,E) \) is \(k \)-edge colourable for some integer \(k \) if there exists a mapping \(c : E \rightarrow \{1, \ldots, k\} \) such that \(c(e) \neq c(f) \) for any two edges \(e \) and \(f \) of \(G \) that have a common end-vertex. The chromatic index of \(G \) is the smallest integer \(k \) such that \(G \) is \(k \)-edge colourable. Vizing proved the following classical result.

Theorem 1 ([27]). The chromatic index of a graph \(G \) with maximum degree \(\Delta \) is either \(\Delta \) or \(\Delta + 1 \).

The Edge Colouring problem is to decide if a given graph \(G \) is \(k \)-edge colourable for some given integer \(k \). Note that \((G,k)\) is a yes-instance if \(G \) has maximum degree at most \(k-1 \) by Theorem 1 and that \((G,k)\) is a no-instance if \(G \) has maximum degree at least \(k+1 \). If \(k \) is fixed, that is, \(k \) is not part of the input, then we denote the problem by \(k \)-Edge Colouring. It is trivial to solve this problem for \(k = 2 \). However, the problem is NP-complete if \(k \geq 3 \), as shown by Holyer for \(k = 3 \) and by Leven and Galil for \(k \geq 4 \).

Theorem 2 ([14, 20]). For \(k \geq 3 \), \(k \)-Edge Colouring is NP-complete even for \(k \)-regular graphs.

Due to the above hardness results we may wish to restrict the input to some special graph class. A natural property of a graph class is to be closed under vertex deletion. Such graph classes are called hereditary and they form the focus of our paper. To give an example, bipartite graphs form a hereditary graph class, and it is well-known that they have chromatic index \(\Delta \). Hence, Edge Colouring is polynomial-time solvable for bipartite graphs, which are perfect and triangle-free. In contrast, Cai and Ellis [4] proved that for every \(k \geq 3 \), \(k \)-Edge Colouring is NP-complete for \(k \)-regular comparability graphs, which are also perfect. They also proved the following two results, the first one of which shows that Edge Colouring is NP-complete for triangle-free graphs (the graph \(C_s \) denotes the cycle on \(s \) vertices).

Theorem 3 ([4]). Let \(k \geq 3 \) and \(s \geq 3 \). Then \(k \)-Edge Colouring is NP-complete for \(k \)-regular \(C_s \)-free graphs.

Theorem 4 ([4]). Let \(k \geq 3 \) be an odd integer. Then \(k \)-Edge Colouring is NP-complete for \(k \)-regular line graphs of bipartite graphs.

It is also known that Edge Colouring is polynomial-time solvable for chordless graphs [22], series-parallel graphs [16], split-indifference graphs [26] and for graphs of treewidth at most \(k \) for any constant \(k \) [1].

It is not difficult to see that a graph class \(\mathcal{G} \) is hereditary if and only if it can be characterized by a set \(\mathcal{F}_G \) of forbidden induced subgraphs (see, for example, [17]). Malyshev determined the complexity of 3-Edge Colouring for every hereditary graph class \(\mathcal{G} \), for which \(\mathcal{F}_G \) consists of graphs that each have at most five vertices, except perhaps two graphs that may contain six vertices [23]. Malyshev performed a

\(^*\) The second author was supported by the Research Council of Norway via the project CLASSIS. The third author was supported by the Leverhulme Trust (RPG-2016-258).
similar complexity study for Edge Colouring for graph classes defined by a family of forbidden (but not necessarily induced) graphs with at most seven vertices and at most six edges [24].

We focus on the case where \(F_G \) consists of a single graph \(H \). A graph \(G \) is \(H \)-free if \(G \) does not contain an induced subgraph isomorphic to \(H \). We obtain the following dichotomy for \(H \)-free graphs.

Theorem 5. Let \(k \geq 3 \) be an integer and \(H \) be a graph. If \(H \) is a linear forest, then \(k \)-Edge Colouring is polynomial-time solvable for \(H \)-free graphs. Otherwise \(k \)-Edge Colouring is \textsc{NP}-complete even for \(k \)-regular \(H \)-free graphs.

We obtain Theorem 5 by combining Theorems 3 and 4 with two new results. In particular, we will prove a hardness result for \(k \)-regular claw-free graphs for even integers \(k \) (as Theorem 4 is only valid when \(k \) is odd).

2 Preliminaries

The graphs \(C_n \), \(P_n \) and \(K_n \) denote the path, cycle and complete graph on \(n \) vertices, respectively. A set \(I \) is an independent set of a graph \(G \) if all vertices of \(I \) are pairwise nonadjacent in \(G \). A graph \(G \) is bipartite if its vertex set can be partitioned into two independent sets \(A \) and \(B \). If there exists an edge between every vertex of \(A \) and every vertex of \(B \), then \(G \) is complete bipartite. The claw \(K_{1,3} \) is the complete bipartite graph with \(|A| = 1 \) and \(|B| = 3 \).

Let \(G_1 \) and \(G_2 \) be two vertex-disjoint graphs. The join operation \(\times \) adds an edge between every vertex of \(G_1 \) and every vertex of \(G_2 \). The disjoint union operation \(+ \) merges \(G_1 \) and \(G_2 \) into one graph without adding any new edges, that is, \(G_1 + G_2 = (V(G_1) \cup V(G_2), E(G_1) \cup E(G_2)) \). We write \(rG \) to denote the disjoint union of \(r \) copies of a graph \(G \).

A forest is a graph with no cycles. A linear forest is a forest of maximum degree at most 2, or equivalently, a disjoint union of one or more paths. A graph \(G \) is a cograph if \(G \) can be generated from \(K_1 \) by a sequence of join and disjoint union operations. A graph is a cograph if and only if it is \(P_4 \)-free (see, for example, [3]). The following well-known lemma follows from this equivalence and the definition of a cograph.

Lemma 1. Every connected \(P_4 \)-free graph on at least two vertices has a spanning complete bipartite subgraph.

Let \(G = (V,E) \) be a graph. For a subset \(S \subseteq V \), the graph \(G[S] = (S, \{uv \in E \mid u, v \in S\}) \) denotes the subgraph of \(G \) induced by \(S \). We say that \(S \) is connected if \(G[S] \) is connected. Recall that a graph \(G \) is \(H \)-free for some graph \(H \) if \(G \) does not contain \(H \) as an induced subgraph. A subset \(D \subseteq V(G) \) is dominating if every vertex of \(V(G) \setminus D \) is adjacent to at least one vertex of \(D \). We will need the following result of Camby and Schaudt.

Theorem 6 ([5]). Let \(t \geq 4 \) and \(G \) be a connected \(P_t \)-free graph. Let \(X \) be any minimum connected dominating set of \(G \). Then \(G[X] \) is either \(P_{t-2} \)-free or isomorphic to \(P_{t-2} \).

Let \(G = (V,E) \) be some graph. The degree of a vertex \(u \in V \) is equal to the size of its neighbourhood \(N(u) = \{v \mid uv \in E\} \). The graph \(G \) is \(r \)-regular if every vertex of \(G \) has degree \(r \). The line graph of \(G \) is the graph \(L(G) \), which has vertex set \(E \) and an edge between two distinct vertices \(e \) and \(f \) if and only if \(e \) and \(f \) have a common end-vertex in \(G \).

3 The Proof of Theorem 5

To prove our dichotomy, we first consider the case where the forbidden induced subgraph \(H \) is a claw. As line graphs are claw-free, we only need to deal with the case where the number of colours \(k \) is even due to Theorem 4. For proving this case we need another result of Cai and Ellis, which we will use as a lemma. Let \(c \) be a \(k \)-edge colouring of a graph \(G = (V,E) \). Then a vertex \(u \in V \) misses colour \(i \) if none of the edges incident to \(u \) is coloured \(i \).
Lemma 2 ([4]). For even $k \geq 2$, the complete graph K_k has a k-edge colouring with the property that $V(K_k)$ can be partitioned into sets $\{u_i, u'_i\}$ ($1 \leq i \leq \frac{k}{2}$), such that for $i = 1, \ldots, \frac{k}{2}$, vertices u_i and u'_i miss the same colour, which is not missed by any of the other vertices.

We use Lemma 2 to prove the following result, which solves the case where k is even and $H = K_{1,3}$.

Lemma 3. Let $k \geq 4$ be an even integer. Then k-Edge Colouring is NP-complete for k-regular claw-free graphs.

Proof. Recall that k-Edge Colouring for k-regular graphs is NP-complete for every integer $k \geq 4$ due to Theorem 2. Consider an instance (G,k) of k-Edge Colouring, where G is k-regular for some even integer $k = 2\ell \geq 4$. From G we construct a graph G' as follows. First we replace every vertex v in G by the gadget $H(v)$ shown in Figure 1. Next we connect the different gadgets in the following way. Every gadget $H(v)$ has exactly k pendant edges, which are incident with vertices $v_1, \ldots, v_{\ell}, v_{\ell+1}, \ldots, v_{2\ell}$, respectively. As G is k-regular, every vertex has k neighbours in G. Hence, we can identify each edge uv of G with a unique edge u_hv_i in G', which is a pendant edge of both $H(u)$ and $H(v)$. It is readily seen that G' is k-regular and claw-free.

![Fig. 1. The gadget $H(v)$ where $K_i(v)$ is a complete graph of size 2ℓ for $i = 1, 2$. Note that edges inside $K_1(v)$ and $K_2(v)$ are not drawn.](image)

First suppose that G is k-edge colourable. Let c be a k-edge colouring of G. Consider a vertex $v \in V(G)$. For every neighbour u of v in G, we colour the pendant edge in $H(v)$ corresponding to the edge uv with colour $c(uv)$. As c assigned different colours to the edges incident to v, the 2ℓ pendant edges of $H(v)$ will receive pairwise distinct colours, which we denote by $x_1, \ldots, x_{\ell}, y_1, \ldots, y_{\ell}$. By Lemma 2, we can colour the edges of $K_1(v)$ in such a way that for $i = 1, \ldots, \ell$, v_i and v'_i miss colour x_i. For $i = 1, \ldots, \ell$, we can therefore assign colour x_i to edge v_iw. Similarly, we may assume that for $i = 1, \ldots, \ell$, $v_{\ell+i}$ and $v'_{\ell+i}$ miss colour y_i. For $i = 1, \ldots, \ell$, we can therefore assign colour y_i to edge $v'_{\ell+i}w$. Recall that the colours $x_1, \ldots, x_{\ell}, y_1, \ldots, y_{\ell}$ are all different. Hence, doing this procedure for each vertex of G yields a k-edge colouring c' of G'.

Now suppose that G' is k-edge colourable. Let c' be a k-edge colouring of G'. Consider some $v \in V(G)$. Denote the pendant edges of $H(v)$ by e_i for $i = 1, \ldots, 2\ell$, where e_i is incident to v_i (and to some vertex u_h in a gadget $H(u)$ for each neighbour u of v in G). Suppose that c' gave colour x to an edge wv'_i for some $1 \leq i \leq \ell$, say to wv'_1, but not to any edge e_i for $i = 1, \ldots, \ell$. Note that wv'_2, \ldots, wv'_ℓ cannot be coloured x. As every vertex of G' has degree $k = 2\ell$, every v_i with $1 \leq i \leq \ell$ and every v'_j with $2 \leq j \leq \ell$ is incident to some edge coloured x. x is neither the colour of e_1, \ldots, e_{ℓ} nor the colour of wv'_2, \ldots, wv'_ℓ, the complete graph $K_1(v) - v'_1$ contains a perfect matching all of whose edges have colour x. However, $K_1(v) - v'_1$ has odd size $2\ell - 1$. Hence, this is not possible. We conclude that each of the (pairwise distinct) colours of wv'_1, \ldots, wv'_ℓ, which we denote by x_1, \ldots, x_{ℓ}, is the colour of an edge e_i for some $1 \leq i \leq \ell$.

3
Let y_1, \ldots, y_{ℓ} be the (pairwise distinct) colours of $uv_{t+1}', \ldots, uv_{2\ell}'$, respectively. By the same arguments as above, we find that each of those colours is also the colour of a pendant edge of $H(v)$ that is incident to a vertex v_{t+i} for some $1 \leq i \leq \ell$. Note that $x_1, \ldots, x_{\ell}, y_1, \ldots, y_{\ell}$ are 2ℓ pairwise distinct colours, as they are colours of edges incident to the same vertex, namely vertex w. Hence, we can define a k-colouring c of G by setting $c(uv) = c'(u_kv_i)$ for every edge $uv \in E(G)$ with corresponding edge $u_kv_i \in E(G')$.

We note that the graph G' in the proof of Lemma 3 is not a line graph, as the gadget $H(v)$ is not a line graph: the vertices v_1', v_2', v_1, w form a diamond and by adding the pendant edge incident to v_1 and the edge uv_{t+1}' we obtain an induced subgraph of $H(v)$ that is not a line graph.

To handle the case where the forbidden induced subgraph H is a path, we make the following observation.

Observation 1 If a graph G of maximum degree k has a dominating set of size at most p, then G has at most $p(k+1)$ vertices.

We use Observation 1 to prove the following lemma.

Lemma 4. Let $k \geq 0$ and $t \geq 1$. Every connected P_t-free graph of maximum degree k has at most $f(k,t)$ vertices for some function f that only depends on k and t.

Proof. Let G be a connected P_t-free graph of maximum degree at most k. We use induction on t.

First suppose $t = 4$ (and observe that if the claim holds for $t = 4$, it also holds for $t \leq 3$). As G is connected, G has a dominating set of size 2 due to Lemma 1. Hence, by Observation 1, we find that G has at most $f(k,2) = 2(k+1)$ vertices.

Now suppose $t \geq 5$. Let X be an arbitrary minimum connected dominating set of G. By Theorem 6, $G[X]$ is either P_{t-2}-free or isomorphic to P_{t-2}. In the first case we use the induction hypothesis to conclude that $G[X]$ has at most $f(k,t-2)$ vertices. Hence, G has at most $f(k,t-2)(k+1)$ vertices by Observation 1.

In the second case, we find that G has at most $(t-2)(k+1)$ vertices. We set $f(k,t) = \max\{f(k,t-2)(k+1), (t-2)(k+1)\}$.

We use Lemma 4 to prove our next lemma.

Lemma 5. Let $k \geq 3$ and $t \geq 1$. Then k-Edge Colouring is linear-time solvable for P_t-free graphs.

Proof. Let G be a P_t-free graph. We compute the set of connected components of G in linear time. For each connected component Δ_D of G we do as follows. We first compute in linear time the maximum degree Δ_D of D. If $\Delta_D \leq k-1$, then D is k-edge colourable by Theorem 1. If $\Delta_D \geq k+1$, then D is not k-edge colourable. Hence, we may assume that $\Delta_D = k$. By Lemma 4, D has at most $f(k,t)$ vertices for some function f that only depends on k and t. As we assume that k and t are constants, this means that we can now check in constant time if D is k-edge colourable. Note that G is k-edge colourable if and only if every connected component of G is k-edge colourable. Hence, by using the above procedure, deciding if G is k-edge colourable takes linear time.

We are now ready to prove Theorem 5, which we restate below.

Theorem 5. (restated) Let $k \geq 3$ be an integer and H be a graph. If H is a linear forest, then k-Edge Colouring is linear-time solvable for H-free graphs. Otherwise k-Edge Colouring is NP-complete even for k-regular H-free graphs.

Proof. First suppose that H contains a cycle C_s for some $s \geq 3$. Then the class of H-free graphs is a superclass of the class of C_s-free graphs. This means that we can apply Theorem 3. From now on assume that H contains no cycle, so H is a forest. Suppose that H contains a vertex of degree at least 3. Then the class of H-free graphs is a superclass of the class of $K_{1,3}$-free graphs, which in turn forms a superclass of the class of line graphs. Hence, if k is odd, then we apply Theorem 4, and if k is even, then we apply Lemma 3. From now on assume that H contains no cycle and no vertex of degree at least 3. Then H is a linear forest, say with ℓ connected components. Let $t = \ell|V(H)|$. Then the class of H-free graphs is contained in the class of P_t-free graphs. Hence we may apply Lemma 5. This completes the proof of Theorem 5.

4
4 Conclusions

We gave a complete complexity classification of k-Edge COLOURING for H-free graphs, showing a dichotomy between linear-time solvable cases and NP-complete cases. We saw that this depends on H being a linear forest or not. It would be interesting to prove a dichotomy result for Edge COLOURING restricted to H-free graphs. Note that due to Theorem 5 we only need to consider the case where H is a linear forest. However, even determining the complexity for small linear forests H, such as the cases where $H = 2P_2$ and $H = P_4$, turns out to be a difficult problem. In fact, the computational complexity of Edge COLOURING for split graphs, or equivalently, $(2P_2, C_4, C_5)$-free graphs [10] and for P_4-free graphs has yet to be settled, despite the efforts towards solving the problem for these graph classes [6, 8, 21].

On a side note, a graph is k-edge colourable if and only if its line graph is k-vertex colourable. In contrast to the situation for Edge COLOURING, the computational complexity of Vertex COLOURING has been fully classified for H-free graphs [19]. However, the computational complexity for k-VERTEX COLOURING restricted to H-free graphs has not been fully classified. It is known that for every $k \geq 3$, k-VERTEX COLOURING on H-free graphs is NP-complete if H contains a cycle [9] or an induced claw [14, 20], but the case where H is a linear forest has not been settled yet. The complexity status of k-VERTEX COLOURING is even still open for P_t-free graphs. More precisely, it is known that the cases $k \leq 2, t \geq 1$ (trivial), $k \geq 3, t \leq 5$ [13], $k = 3, 6 \leq t \leq 7$ [2] and $k = 4, t = 6$ [7] are polynomial-time solvable and that the cases $k = 4, t \geq 7$ [15] and $k \geq 5, t \geq 6$ [15] are NP-complete. However, the remaining cases, that is, the cases where $k = 3$ and $t \geq 8$ are still open. We refer to the survey [11] or some recent papers [12, 18, 25] for further background information.

Acknowledgements

The present work was done when the second author was visiting the University of Fribourg funded by a scholarship of the University of Fribourg.

References

1. H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. *Journal of Algorithms*, 11(4):631–643, 1990.
2. F. Bonomo, M. Chudnovsky, P. Maceli, O. Schaudt, M. Stein, and M. Zhong. Three-coloring and list three-coloring of graphs without induced paths on seven vertices. *Combinatorica*, 38:779–801, 2018.
3. A. Brandstädt, V. B. Le, and J. P. Spinrad. *Graph Classes: A Survey*, SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), 1999.
4. L. Cai and J. A. Ellis. NP-completeness of edge-colouring some restricted graphs. *Discrete Applied Mathematics*, 30(1):15–27, 1991.
5. E. Camby and O. Schaudt. A new characterization of P_t-free graphs. *Algorithmica*, 75(1), 2016.
6. B.-L. Chen, H.-L. Fu, and M. T. Ko. Total chromatic number and chromatic index of split graphs. *Journal of Combinatorial Mathematics and Combinatorial Computing*, 17:137–146, 1995.
7. M. Chudnovsky, S. Spirkl, and M. Zheng. Four-coloring P_t-free graphs. *Proc. SODA 2019*, pages 1239–1256, 2019.
8. S. M. de Almeida, C. P. de Mello, and A. Morgana. Edge-coloring of split graphs. *Ars Combinatoria*, 119:363–375, 2015.
9. T. Emden-Weinert, S. Hougardy, and B. Kreuter. Uniquely colourable graphs and the hardness of colouring graphs of large girth. *Combinatorics, Probability and Computing*, 7(04):375–386, 1998.
10. S. Földes and P. L. Hammer. Split graphs. *Congressus Numerantium*, XIX:311–315, 1977.
11. P. A. Golovach, M. Johnson, D. Paulusma, and J. Song. A survey on the computational complexity of colouring graphs with forbidden subgraphs. *Journal of Graph Theory*, 84(4):331–363, 2017.
12. C. Groenland, K. Okrasa, P. Rzążewski, A. Scott, P. Seymour, and S. Spirkl. H-colouring P_t-free graphs in subexponential time. *CoRR*, 1803.05396, 2018.
13. C. T. Hoang, M. Kamiński, V. V. Lozin, J. Sawada, and X. Shu. Deciding k-colorability of P_5-free graphs in polynomial time. *Algorithmica*, 57(1):74–81, 2010.
14. I. Holyer. The NP-completeness of edge-coloring. *SIAM Journal on Computing*, 10(4):718–720, 1981.
15. S. Huang. Improved complexity results on k-coloring P_t-free graphs. *European Journal of Combinatorics*, 51:336–346, 2016.

16. D. S. Johnson. The NP-completeness column: An ongoing guide. *J. Algorithms*, 6(3):434–451, 1985.

17. S. Kitaev and V. V. Lozin. *Words and Graphs*. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2015.

18. T. Klímošová, J. Malík, T. Masařík, J. Novotná, D. Paulusma, and V. Slírová. Colouring $(P_r + P_s)$-free graphs. *Proc. ISAAC 2018*, LIPIcs, 123:5:1–5:13, 2018.

19. D. Král’, J. Kratochvíl, Zs. Tuza, and G. J. Woeginger. Complexity of coloring graphs without forbidden induced subgraphs. *Proc. WG 2001*, LNCS, 2204:254–262, 2001.

20. D. Leven and Z. Galil. NP completeness of finding the chromatic index of regular graphs. *Journal of Algorithms*, 4(1):35–44, 1983.

21. A. R. C. Lima, G. Garcia, L. Zatesko, and S. M. de Almeida. On the chromatic index of cographs and join graphs. *Electronic Notes in Discrete Mathematics*, 50:433–438, 2015.

22. R. C. S. Machado, C. M. H. de Figueiredo, and N. Trotignon. Edge-colouring and total-colouring chordless graphs. *Discrete Mathematics*, 313(14):1547–1552, 2013.

23. D. S. Malyshev. The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices. *Sib. elektr. matem. izv.*, 11:811–822, 2014.

24. D. S. Malyshev. Complexity classification of the edge coloring problem for a family of graph classes. *Discrete Mathematics and Applications*, 27:97–101, 2017.

25. D. S. Malyshev. The complexity of the vertex 3-colorability problem for some hereditary classes defined by 5-vertex forbidden induced subgraphs. *Graphs and Combinatorics*, 33(4):1009–1022, 2017.

26. C. Ortiz, N. Maculan, and J. L. Szwarcfiter. Characterizing and edge-colouring split-indifference graphs. *Discrete Applied Mathematics*, 82(1-3):209–217, 1998.

27. V. G. Vizing. On an estimate of the chromatic class of a p-graph. *Diskret. Analiz.*, 3:25–30, 1964.