A VARIABLE COEFFICIENT MULTI-FREQUENCY LEMMA

SHAOMING GUO AND PAVEL ZORIN-KRANICH

Abstract. We show a variable coefficient version of Bourgain’s multi-frequency lemma. It can be used to obtain major arc estimates for a discrete Stein–Wainger type operator considered by Krause and Roos.

1. Introduction

Bourgain’s multi-frequency lemma, first introduced in [Bou89], allows one to estimate expressions of the type
\[\left\| \sup_{t} |F^{-1}(\sum_{\beta \in \Xi} S(\beta) \sigma_t (\cdot - \beta) \hat{f})| \right\|_2, \]
where \(\Xi \) is a \(\delta \)-separated set of frequencies and \((\sigma_t)_t \) is a family of multipliers supported in a \(\delta \)-neighborhood of zero. Expressions like (1.1) arise when singular or averaging operators on \(\mathbb{Z}^n \) are treated by the circle method. The coefficients \(S(\beta) \) are usually some type of complete exponential sums.

In this note, we address the problem of extending Bourgain’s lemma to a setting in which the coefficients \(S(\beta) \) in (1.1) also depend on \(t \). This situation recently arose in [Kra18; Roo19]. Contrary to the classical case (1.1), the corresponding operator can no longer be easily represented as the composition of two Fourier multipliers. We defer this application to Section 3 and begin with the statement of our multi-frequency lemma.

Let \(n \geq 1 \) and let \(\chi_0 : \mathbb{R}^n \to [0,1] \) be a smooth bump function that is supported on \([-1/2, 1/2]^n \) and equals 1 on \([-1/2, 1/2]^n \). Let \(A \) be a contractive invertible linear map on \(\mathbb{R}^n \) and denote \(\chi(\xi) := \chi_0(A^{-1}\xi) \), so that in particular \(\chi \) equals 1 on \(U := A([-1/2, 1/2]^n) \). Then \(\phi = F^{-1}_\mathbb{R}(\chi) \) is an \(\ell^1 \) normalized bump function, in the sense that \(\|\phi\|_{l^p(\mathbb{Z}^n)} \sim |U|^{-1/p} \). In this article, we write \(A \lesssim B \) if \(A \leq CB \) with a constant \(C \) depending only on the dimension \(n \), unless indicated otherwise by a subscript. We write \(A \sim B \) if \(A \lesssim B \) and \(B \lesssim A \).

For a function \(F \) from a totally ordered set \(T \) to a normed vector space \(H \), we denote the \(r \)-variation seminorm by
\[\|F(t)\|_{V^r_t(H)} = \sup_{t_0 \leq \cdots \leq t_J} \left(\sum_{j=1}^J \|F(t_j) - F(t_{j-1})\|_H^r \right)^{1/r}, \]
where the supremum is taken over all finite increasing sequences in \(T \). The vector space \(H \) may be omitted if it equals \(\mathbb{C} \).

Theorem 1.1. Let \(\Xi \) be a finite set. Let \(g_\beta : \mathbb{Z}^n \to \mathbb{C} \), \(\beta \in \Xi \), be functions such that, for every \(x \in \mathbb{Z}^n \) and every sequence \((c_\beta)_{\beta \in \Xi} \) of complex numbers, we have
\[\| \sum_{\beta \in \Xi} \phi(y) g_\beta(x + y) c_\beta \|_{l^2_\mathbb{Z}^n} \leq A_1 |U|^{1/2} \|c_\beta\|_{l_\beta^2}, \]
for some \(A_1 > 0 \). Let \(T \subseteq \mathbb{R} \) be a finite set and let \((T_t)_{t \in T} \) be a family of translation invariant operators on \(\ell^2(\mathbb{Z}^n) \) such that, for some \(C_1 < \infty \), some \(\eta > 0 \) and every

2010 Mathematics Subject Classification. 42B15, 42B20, 42B25.
Let \(\{f_\beta\}_{\beta \in \Xi} \subset \ell^2(\mathbb{Z}^n) \) be functions with \(\text{supp} \hat{f}_\beta \subset U \) for every \(\beta \). Then, for any \(q \in (2, \infty) \), we have
\[
\left\| \sum_{\beta \in \Xi} g_\beta(x)(T_t f_\beta)(x) \right\|_{\ell^q(\mathbb{Z}^n)} \lesssim \left(\frac{q(\log|\Xi| + 1)}{q - 2} \right)^{q+1} A_1 \left\| f_\beta \right\|_{\ell^q(\mathbb{Z}^n)} \| c_\beta \|_{\ell^q_\beta}. \quad (1.4)
\]

Remark 1.2. The classical multi-frequency lemma corresponds to the case \(g_\beta(x) = e^{2\pi i x \cdot \xi_\beta} \) with some \(U \)-separated frequencies \(\xi_\beta \). In this case, (1.2) holds with \(A_1 \sim 1 \).

Remark 1.3. In (1.4), one can use a different family \((T_t, \beta)_{t \in \mathbb{T}} \) for each \(\beta \in \Xi \), as long as the bound (1.3) is uniform in \(\Xi \).

2. Proof of the Multi-Frequency Estimate

The proof of Theorem 1.1 is based on the arguments introduced in [Bou89] and further developed in [NOT10; Obe13; Kra14; Zor15]. The first point where we deviate from the previous arguments is the following result, which extends [Obe13, Proposition 9.3] and [NOT10, Lemma 3.2].

Lemma 2.1. Let \(\Xi \) be a finite set and \(g_\beta, \beta \in \Xi \), complex-valued measurable functions on some measure space \(Y \). Assume that, for some \(A_0 < \infty \), we have
\[
\left\| \sum_{\beta \in \Xi} g_\beta(y) c_\beta \right\|_{L^q_\beta(Y)} \leq A_0 \| c_\beta \|_{\ell^q_\beta}, \quad (2.1)
\]
for every sequence \((c_\beta)_{\beta \in \Xi} \in \ell^2(\Xi) \). Then, for every \(2 < r < q \), every countable totally ordered set \(T \), and every collection of sequences \(\{(c_{t, \beta})_{\beta \in \Xi}\}_{t \in T} \subset \ell^2(\Xi) \), we have
\[
\left\| \sum_{\beta \in \Xi} g_\beta(y) c_{t, \beta} \right\|_{\ell^r_\beta(Y)} \lesssim \left(\frac{q}{q - r} + \frac{2}{r - 2} \right) A_0 |\Xi|^\frac{1}{2} \left(\frac{1}{q} - \frac{r}{2} \right) \| c_{t, \beta} \|_{\ell^r_\beta(Y)},
\]
where the implicit constant is absolute.

The proof of Lemma 2.1 relies on the following result.

Lemma 2.2 ([Zor15, Lemma 2.6]). Let \(B \) be a normed space with norm \(\| \cdot \|_B \) and \(B' \) the dual space of \(B \). Let \(Y \) be a measure space, and \(q \in L^p(Y, B') \), \(p \geq 1 \). Let also \(c = (c_t)_{t \in \mathbb{T}} \subset B \) with a countable totally ordered set \(\mathbb{T} \), and \(q > p \). Then
\[
\| \langle c, g(y) \rangle \|_{V^p_t(Y)} \lesssim \int_0^\infty \min(M(J_\lambda(c))^\frac{1}{p}, \| g \|_{L^p(Y, B')}(J_\lambda(c))^\frac{1}{q})d\lambda,
\]
where \(J_\lambda(c) \) is the greedy jump counting function for the sequence \(c := (c_t)_{t \in \mathbb{T}} \) at the scale \(\lambda \),
\[
M = \sup_{c \in B, \| c \|_B = 1} \| \langle c, g(y) \rangle \|_{L^p_t(Y)},
\]
and the implicit constant is absolute.

We will not need the definition of \(J_\lambda(c) \), only the fact that
\[
J_\lambda(c) \leq \| c_t \|_{V^p_t(B)}/\lambda^r. \quad (2.3)
\]

Proof of Lemma 2.1. We apply Lemma 2.2 with \(B = B' = \ell^2(\Xi) \), and \(g(y) = (g_\beta(y))_{\beta \in \Xi} \). By the hypothesis (2.1), we have \(M \leq A_0 \), where \(M \) was defined in (2.2). Moreover,
\[
\| g \|_{L^2(Y, B')} = \left(\sum_{\beta \in \Xi} \| g_\beta \|_{L^2}^2 \right)^{1/2} \leq |\Xi|^{1/2} A_0,
\]
where we used (2.1) with \((c_\beta)\) being indicator functions of points. Hence, we obtain
\[
\left\| \sum_{\beta \in \Xi} g_\beta(y) c_{t, \beta} \right\|_{V_\phi^a} \lesssim A_0 \int_0^\infty \min(J_{\lambda/2}^{1/2}, |\Xi|^{1/2} J_{\lambda/2}^{1/2}) d\lambda.
\]
Using (2.3) with \(a := \|c_{t, \beta}\|_{V_\phi^a(\ell_2^n)}\) and splitting the integral at \(\lambda_0 = a |\Xi|^{-1/(2r(1/2-1/q))}\), we obtain
\[
\begin{align*}
\int_0^{\lambda_0} |\Xi|^{1/2} (a^r/\lambda^r)^{1/4} d\lambda + \int_{\lambda_0}^\infty (\lambda')^{1/2} d\lambda \\
= |\Xi|^{1/2} a^r/q(-r/q + 1)^{-1/2} \lambda_0^{-r/q + 1} - a^r/(r/2 + 1)^{-1} \lambda_0^{-r/2 + 1} \\
= a |\Xi|^{1/2} (1 - r/q)^{-1} + (r/2 - 1)^{-1}.
\end{align*}
\]

Proof of Theorem 1.1. From the hypothesis (1.3) and Minkowski’s inequality, it follows that
\[
\left\| \sum_{\beta \in \Xi} \sum_{y \in \mathbb{Z}^n} g_\beta(x) g_\beta(\tilde{\phi}_\beta(x)) \phi(y) g_\beta(y) \right\|_{V_\phi^a(\ell_2^n)} \leq C_1 \left(\frac{r}{r - 2} \right) \|f_\beta\|_{\ell_2^n(\ell_2^n)} \|f_\beta\|_{\ell_2^n(\ell_2^n)},
\]
initially for \(r \in (2, 3)\), but by monotonicity of the variation norms also for \(r \in (2, \infty)\).

We use the Fourier uncertainty principle. Let \(R_y f(x) = f(x - y)\). By the frequency support assumption on \(f_\beta\), we have
\[
f_\beta = f_\beta \ast (\phi \tilde{\phi}),
\]
where \(\phi\) is an \(\ell^\infty\) normalized bump function with \(\text{supp} \phi \subseteq 4U\) such that \(\phi \ast \phi \equiv 1\) on \(U\). It follows that
\[
\text{LHS of (1.4)} = \left\| \sum_{\beta} g_\beta(x) T_x f_\beta(x) \right\|_{V_\phi^a} \lesssim \left\| \sum_{\beta} \phi(y) g_\beta(x) (T_x f_\beta(x)) \right\|_{V_\phi^a}
\]
\[
\leq \left\| \phi(y) \right\|_{\ell_2^n} \left\| \sum_{\beta \in \Xi} g_\beta(x) (T_x f_\beta(x)) \right\|_{V_\phi^a}
\]
\[
\leq \left\| \phi \right\|_{\ell_2^n} \left\| \sum_{\beta \in \Xi} g_\beta(x) (T_x f_\beta(x)) \right\|_{V_\phi^a} \lesssim |U|^{-1/2} \left\| \sum_{\beta \in \Xi} \phi(y) g_\beta(x) (T_x f_\beta(x)) \right\|_{V_\phi^a} \lesssim |U|^{-1/2} \left\| \sum_{\beta \in \Xi} \phi(y) g_\beta(x) (T_x f_\beta(x)) \right\|_{V_\phi^a}.
\]
For each fixed \(x\), we will apply Lemma 2.1 with the functions
\[
g_\beta(y) = \phi(y) g_\beta(x + y).
\]
By the hypothesis (1.2), the estimate (2.1) holds with
\[
A_0 \leq A_1 |U|^{1/2}.
\]
By Lemma 2.1, for any \(2 < r < q\), we obtain
\[
\text{LHS of (1.4)} \lesssim A_1 \left(\frac{q}{q - r} + \frac{2}{r - 2} \right) \left| \Xi \right|^{(1 - \frac{1}{r}) q - \frac{2}{q - r}} \|f_\beta\|_{\ell_2^n(\ell_2^n)} \|f_\beta\|_{\ell_2^n(\ell_2^n)}.
\]
By (2.4), we obtain
\[
\text{LHS of (1.4)} \lesssim C_1 A_1 \left(\frac{q}{q - r} + \frac{2}{r - 2} \right) \left| \Xi \right|^{(1 - \frac{1}{r}) q - \frac{2}{q - r}} \left(\frac{r}{r - 2} \right)^{\eta} \|f_\beta\|_{\ell_2^n(\ell_2^n)} \|f_\beta\|_{\ell_2^n(\ell_2^n)}.
\]
Choosing r such that $r - 2 = (q - 2)(\log|\Xi| + 1)^{-1}$, this implies (1.4). \qed

3. An application

For a function $f : \mathbb{Z}^n \to \mathbb{C}$, consider the operator

$$Cf(x) = \sup_{\lambda \in \mathbb{R}} \left| \sum_{y \in \mathbb{Z}^n \setminus \{0\}} f(x - y)e(\lambda |y|^{2d})K(y) \right|, \quad (x \in \mathbb{Z}^n),$$

(3.1)

where K is a Calderon-Zygmund kernel that satisfies the conditions as in [Roo19] and $e(\lambda) = e^{2\pi i \lambda}$. For instance, one can take K to be the Riesz kernel.

Here we use Theorem 1.1 to estimate the major arc operators arising in the proof of the ℓ_2^2 bounds of C in [Roo19]. We begin by recalling the approach, notation, and some results from [Roo19].

First, we apply a dyadic decomposition to K and write

$$K = \sum_{j \geq 1} K_j,$$

(3.2)

where $K_j := K \cdot \psi_j$ and $\psi_j(\cdot) = \psi(2^{-j} \cdot)$ for some appropriately chosen non-negative smooth bump function ψ which is compactly supported. Define the multiplier

$$m_{j,\lambda}(\xi) := \sum_{y \in \mathbb{Z}^n} e(\lambda |y|^{2d} + \xi \cdot y)K_j(y).$$

(3.3)

For a multiplier $m(\xi)$ defined on T^n, we define

$$m(D)f(x) := \int_{T^n} m(\xi)\hat{f}(\xi)e(x \cdot \xi)d\xi, \quad x \in \mathbb{Z}^n.$$

(3.4)

We also define the continuous version of the multiplier $m_{j,\lambda}$ by

$$\Phi_{j,\lambda}(\xi) = \int_{\mathbb{R}^n} e(\lambda |y|^{2d} + \xi \cdot y)K_j(y)dy.$$

(3.5)

The goal is to prove

$$\left\| \sup_{\lambda \in \mathbb{R}} \left[\sum_{j \geq 1} m_{j,\lambda}(D)f \right] \right\|_{\ell^2} \lesssim \|f\|_{\ell^2}.$$

(3.6)

Define the major arcs (in the variable λ)

$$X_j = \bigcup_{a/q \in \mathbb{Q}, (a,q) = 1} \{ \lambda \in \mathbb{R} : |\lambda - a/q| \leq 2^{-2dj} + \epsilon_1 j \},$$

(3.7)

where $\epsilon_1 > 0$ is a small fixed number that depends only on d. The complement $\mathbb{R} \setminus X_j$ will be called a minor arc.

The contribution of the minor arcs was estimated in [Kra18; Roo19] using a TT^* argument in the spirit of [SW01], the result being that there exists $\gamma > 0$ such that

$$\| \sup_{\lambda \notin X_j} |m_{j,\lambda}(D)f|\|_{\ell^2(\mathbb{Z})} \lesssim 2^{-j\gamma} \|f\|_{\ell^2},$$

(3.8)

holds for every $j \geq 1$.

On the major arcs in the variable λ, we have a good approximation of the discrete multiplier $m_{j,\lambda}$ by the continuous multiplier $\Phi_{j,\lambda}$. For convenience, define

$$\Phi_{j,\lambda'} = \Phi_{j,\lambda'} \cdot 1_{|\lambda'| \leq 2^{-2d} + \epsilon_1 j}.$$

(3.9)

For an integer $1 \leq s \leq \epsilon_1 j$, define

$$\mathcal{R}_s = \{ (a/q, b/q) \in \mathbb{Q} \times \mathbb{Q}^n \mid (a, b, q) = 1, q \in \mathbb{Z} \cap [2^{s-1}, 2^s) \}.$$

(3.10)
For \((\alpha, \beta) \in \mathcal{R}_s\), define a complete Gauss sum
\[
S(\alpha, \beta) = q^{-n} \sum_{r=(r_1, \ldots, r_n) \atop 0 \leq r_1, \ldots, r_n < q} e(\alpha| r |^{2d} + \beta \cdot r).
\] (3.11)

Define \(\chi_s(\cdot) := \chi_0(2^{10s} \cdot)\). Define
\[
L^s_{j, \lambda}(\xi) = \sum_{(\alpha, \beta) \in \mathcal{R}_s} S(\alpha, \beta) \Phi^*_{j, \lambda - \alpha}(\xi - \beta) \chi_s(\xi - \beta).
\] (3.12)

Define the error term
\[
E_{j, \lambda}(\xi) := m_{j, \lambda}(\xi) \cdot 1_{X_j}(\lambda) - \left(\sum_{1 \leq s \leq \epsilon_{1,j}} L^s_{j, \lambda}(\xi) \right).
\] (3.13)

By a Sobolev embedding argument in the spirit of Krause and Lacey [KL17] applied to the sup over \(\lambda\), it was proved in [Roo19, Proposition 3.2] that there exists \(\gamma > 0\) such that
\[
\| \sup_{\lambda \in X_j} |E_{j, \lambda}(D)f| \|_{\ell^2} \lesssim 2^{-\gamma j} \|f\|_{\ell^2}.
\] (3.14)

It remains to bound the contribution from the multiplier
\[
\sum_{j \geq 1} \sum_{1 \leq s \leq \epsilon_{1,j}} L^s_{j, \lambda}(\xi) = \sum_{s \geq 1} \sum_{j \geq \epsilon_{1}^{-1}s} L^s_{j, \lambda}(\xi).
\] (3.15)

To simplify notation, we introduce
\[
L^s_{\lambda} = \sum_{j \geq \epsilon_{1}^{-1}s} L^s_{j, \lambda} \quad \text{and} \quad \Phi^s_{\lambda}(\xi) = \sum_{j \geq \epsilon_{1}^{-1}s} \Phi^*_{j, \lambda}(\xi) \chi_s(\xi).
\] (3.16)

By the triangle inequality applied to the sum over \(s \geq 1\), it suffices to prove that there exists \(\gamma > 0\) such that
\[
\| \sup_{\lambda \in \mathbb{R}} |L^s_{\lambda}(D)f| \|_{\ell^2} \lesssim 2^{-\gamma s} \|f\|_{\ell^2},
\] (3.17)
for every \(s \geq 1\). This estimate is where our variable coefficient multi-frequency lemma, Theorem 1.1, will be useful. The next two lemmas verify its assumptions (1.2) and (1.3), respectively. Let
\[
\mathcal{A}_s = \{ \alpha \in \mathbb{Q} : (\alpha, \beta) \in \mathcal{R}_s \text{ for some } \beta \},
\]
\[
\mathcal{B}_s(\alpha) = \{ \beta \in \mathbb{Q}^n : (\alpha, \beta) \in \mathcal{R}_s \}.
\] (3.18)

Moreover, define
\[
L^s_{\alpha, 2}(\xi) := \sum_{\beta \in \mathcal{B}_s(\alpha)} S(\alpha, \beta) \chi_s(\xi - \beta).
\] (3.19)

We have

Lemma 3.1 ([Roo19, Proposition 3.3]). *There exists \(\gamma > 0\) depending on \(d\) and \(n\) such that*
\[
\| \sup_{\alpha \in \mathcal{A}_s} |L^s_{\alpha, 2}(D)f| \|_{\ell^2} \lesssim 2^{-\gamma s} \|f\|_{\ell^2},
\] (3.20)
for every \(s \geq 1\).

Lemma 3.2. *For every \(r \in (2, 3)\), we have*
\[
\|\|\Phi^s_{\lambda}(D)f\|_{V^{r}_{\lambda \in [0,1]}}\|_{\ell^2} \lesssim d, n (r - 2)^{-1} \|f\|_{\ell^2}.
\] (3.21)
Proof of Lemma 3.2. By the transference principle of Magyar, Stein, and Wainger in [MSW02, Proposition 2.1], it suffices to prove that
\[
\|\Phi^s_t(D)f\|_{L^2(\mathbb{R}^n)} \lesssim d,n \ (r - 2)^{-1}\|f\|_{L^2(\mathbb{R}^n)},
\]
with constants independent of \(s\). This was essentially established in Guo, Roos and Yung [GRY17], with minor changes detailed in Roos [Roo19, Section 7]. \(\square\)

Now we are ready to prove (3.17). We linearize the supremum and aim to prove
\[
\|L^s_{\lambda(x)}(D)f(x)\|_{L^2} \lesssim 2^{-\gamma s}\|f\|_{L^2},
\]
where \(\lambda : \mathbb{Z}^n \to (0, 1]\) is an arbitrary function. For each \(x \in \mathbb{Z}^n\), \(\alpha(x)\) is defined as the unique \(\alpha \in \mathcal{A}_s\) such that \(|\lambda(x) - \alpha| \leq 2^{-3s}\) (say), or as an arbitrary value from the complement of \(\mathcal{A}_s\) if no such \(\alpha\) exists (in this case, \(L^s_{\lambda(x)}(\xi) = 0\)). By definition, the term we need to bound in (3.23) can be written as
\[
\sum_{\beta \in \mathcal{B}_s(\alpha(x))} \int S(\alpha(x), \beta)\Phi^s_{\lambda(x) - \alpha(x)}(\xi - \beta)\hat{F}_\beta(\xi)e(\xi)d\xi,
\]
where
\[
\hat{F}_\beta(\xi) = \hat{f}(\xi)\check{\chi}_s(\xi - \beta),
\]
and \(\check{\chi}_s(\cdot) = \check{\chi}_0(2^{10s}\cdot)\) for some appropriately chosen compactly supported smooth bump function \(\check{\chi}_0\) with \(\check{\chi}_0\check{\chi}_0 = \chi_0\). We apply Theorem 1.1 with
\[
\Xi = \{b/q : b \in \mathbb{Z}^n, q \in \mathbb{Z} \cap [2^{s-1}, 2^s]\},
\]
\(t = \lambda, \phi = \mathcal{F}^{-1}_{\mathbb{Z}^n}(\chi_s), U\) the support of \(\chi_s\), and \(T_1 = \Phi^s_t(D) = \Phi^s_t(D)\), and any fixed \(q\), say, \(q = 3\). The hypothesis (1.3) with \(\eta = 1\) is then given by Lemma 3.2. In (1.4), we take
\[
f_\beta(y) = F_\beta(y)e(-\beta y),
\]
and
\[
g_\beta(x) = 1_{\beta \in \mathcal{B}_s(\alpha(x))} \cdot S(\alpha(x), \beta)e(\beta x).
\]
Since \(\Phi^s_1 = 0\) for all \(s\), the \(V^q\) norm on the left-hand side of (1.4) controls the supremum over \(\lambda\). We apply Theorem 1.1 and bound term (3.24) by
\[
s^2A_1\|f\|_{L^2},
\]
where \(A_1\) is the constant in (1.2) under the above choice of \(g_\beta\). It remains to prove that
\[
A_1 \lesssim 2^{-\gamma s}\text{ for some } \gamma > 0.
\]
To do so, we will apply Lemma 3.1.

Regarding the left hand side of (1.2), we apply a change of variable and write it as
\[
\left\|\sum_{\beta \in \Xi} \phi(y - x)g_\beta(y)c_\beta \right\|_{L^2_x} = \left\|\sum_{\beta \in \mathcal{B}_s(\alpha(y))} \phi(y - x)S(\alpha(y), \beta)e(\beta y)c_\beta \right\|_{L^2_x}.
\]
We write a linearization of the left hand side of (3.20) as
\[
\sum_{\beta \in \mathcal{B}_s(\alpha(y))} \int S(\alpha(y), \beta)\hat{F}_\beta(\xi)e(\xi \gamma)d\xi = \sum_{\beta \in \mathcal{B}_s(\alpha(y))} S(\alpha(y), \beta)\check{F}_\beta(y),
\]
where
\[
\hat{F}_\beta(\xi) = \check{\chi}_s(\xi - \beta)\hat{f}(\xi).
\]
In the end, we just need to pick
\[
\hat{f}(\xi) = \sum_{\beta \in \mathcal{B}_s^c} c_\beta \cdot \check{\chi}_s(\xi - \beta)e(x(\beta - \xi)),
\]

\[\]
The desired estimate (3.30) follows as
\[
\|f\|_{L^2} \sim |U|^{1/2} \|c_\beta\|_{H^2}.
\] (3.35)

This finishes the proof of (3.30), thus the proof of the desired estimate (3.23).

REFERENCES

[Bou89] J. Bourgain. “Pointwise ergodic theorems for arithmetic sets”. In: Inst. Hautes Études Sci. Publ. Math. 69 (1989). With an appendix by the author, Harry Furstenberg, Yitzhak Katznelson and Donald S. Ornstein, pp. 5–45. MR: 1019960 (cit. on pp. 1, 2).

[GRY17] S. Guo, J. Roos, and P.-L. Yung. “Sharp variation-norm estimates for oscillatory integrals related to Carleson’s theorem”. 2017. arXiv: 1710.10988 (cit. on p. 6).

[KL17] B. Krause and M. T. Lacey. “A discrete quadratic Carleson theorem on ℓ^2 with a restricted supremum”. In: Int. Math. Res. Not. IMRN 10 (2017), pp. 3180–3208. arXiv: 1512.06918. MR: 3658135 (cit. on p. 5).

[Kra14] B. Krause. “Polynomial Ergodic Averages Converge Rapidly: Variations on a Theorem of Bourgain”. Preprint, 2014. arXiv: 1402.1803 (cit. on p. 2).

[Kra18] B. Krause. “Discrete Analogues in Harmonic Analysis: Maximally Monomially Modulated Singular Integrals Related to Carleson’s Theorem”. Preprint. 2018. arXiv: 1803.09431 (cit. on pp. 1, 4).

[MSW02] A. Magyar, E. M. Stein, and S. Wainger. “Discrete analogues in harmonic analysis: spherical averages”. In: Ann. of Math. (2) 155.1 (2002), pp. 189–208. MR: 1888798 (cit. on p. 6).

[NOT10] F. Nazarov, R. Oberlin, and C. Thiele. “A Calderón-Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain”. In: Math. Res. Lett. 17.3 (2010), pp. 529–545. arXiv: 0912.3010. MR: 2653686 (cit. on p. 2).

[Obe13] R. Oberlin. “Bounds on the Walsh model for $M^{\ast\ast}$ Carleson and related operators”. In: Rev. Mat. Iberoam. 29.3 (2013), pp. 829–857. arXiv: 1110.1067. MR: 3090139 (cit. on p. 2).

[Roo19] J. Roos. “Discrete analogues of maximally modulated singular integrals of Stein-Wainger type: $\ell^2(Z^n)$ bounds”. 2019. arXiv: 1907.00405v1 (cit. on pp. 1, 4–6).

[SW01] E. M. Stein and S. Wainger. “Oscillatory integrals related to Carleson’s theorem”. In: Math. Res. Lett. 8.5–6 (2001), pp. 789–800. MR: 1879821 (cit. on p. 4).

[Zor15] P. Zorin-Kranich. “Variation estimates for averages along primes and polynomials”. In: J. Funct. Anal. 268.1 (2015), pp. 210–238. arXiv: 1403.4085. MR: 3280058 (cit. on p. 2).

Department of Mathematics, University of Wisconsin-Madison, Madison, WI, USA, and the IAS, Princeton, NJ, USA

E-mail address: shaomingguo@math.wisc.edu

Department of Mathematics, University of Bonn, Bonn, Germany

E-mail address: pzorin@uni-bonn.de