Discovery of an RmlC/D fusion protein in the microalga Prymnesium parvum and its implications for NDP-β-L-rhamnose biosynthesis in microalgae

Ben A. Wagstaff1, Martin Rejzek1, Sakonwan Khuadomlarp1, Lionel Hill1, Ilaria Mascia1, Sergey A. Nepogodiev1, Helge C. Dorfmüller1 and Robert A. Field1,2

From the 1Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom, 2Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom, and 3Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France

Edited by Chris Whitfield

The 6-deoxy sugar L-rhamnose (L-Rha) is found widely in plant and microbial polysaccharides and natural products. The importance of this and related compounds in host–pathogen interactions often means that L-Rha plays an essential role in many organisms. L-Rha is most commonly biosynthesized as the activated sugar nucleotide uridine 5’-diphospho-β-L-rhamnose (UDP-β-L-Rha) or thymidine 5’-diphospho-β-L-rhamnose (TDP-β-L-Rha). Enzymes involved in the biosynthesis of these sugar nucleotides have been studied in some detail in bacteria and plants, but the activated form of L-Rha and the corresponding biosynthetic enzymes have yet to be explored in algae. Here, using sugar-nucleotide profiling in two representative algae, Euglena gracilis and the toxin-producing microalga Prymnesium parvum, we show that levels of UDP- and TDP-activated L-Rha are similar in all organisms. L-Rha production has drawn interest as a potential antimicrobial drug target (9, 10). The activated L-Rha species for carbohydrate polymer biosynthesis are thymidine 5’-diphospho-β-L-rhamnose (TDP-β-L-Rha) and uridine 5’-diphospho-β-L-rhamnose (UDP-β-L-Rha), which are produced biosynthetically from thymidine 5’-diphospho-α-D-glucose (TDP-α-D-Glc) and uridine 5’-diphospho-α-D-glucose (UDP-α-D-Glc), respectively (Fig. 1). In bacteria, many examples have shown that TDP-L-Rha is produced from TDP-α-D-Glc by the action of three independent enzymes (11): RmlB (a 4,6-dehydratase) (PDB entry 1G1A), RmlC (a 3,5-epimerase) (PDB entry 2IXJ), and RmlD (a 4-reductase) (PDB entries 1KBZ and 4WPG). Beyond biopolymer production, RmlB is a central player in natural products biosynthesis; its product, TDP-6-deoxy-α-D-xylono-hexos-4-ulose (see IUPAC-IUBMB nomenclature in Ref. 12), is subject to numerous enzymatic processes that produce diverse sugar nucleotides that serve as substrates for natural product “glycodiversification” (13, 14). The Rml enzymes B–D, have been studied in some detail, with crystal structures of all three having been solved (15–17, 55). More recently, enzymes from plants (18, 19), fungi (8), and even viruses (20) have been shown to synthesize UDP-β-L-Rha from UDP-α-D-Glc. These enzymes are structurally distinct from their bacterial counterparts, with multiple enzymatic activities found in individual proteins. For plants, the dehydratase, epimerase, and reductase activities (Fig. 1) are often found on one large protein (RHM) (18), but there are also instances of the three enzymatic activities being shared over two proteins; a UDP-α-D-Glc 4,6-dehydratase and a bifunctional nucleotide–rhamnose synthase/

This is an open access article under the terms of the Creative Commons CC-BY license. This work was funded by the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant “Molecules from Nature—Products and Pathways” BB/S/E/J/0000PR9790 and the John Innes Foundation. This work was also supported by Grant 109357/Z/15/Z from Wellcome Trust and Royal Society (to H. C. D.). “The authors declare that they have no conflicts of interest with the contents of this article. X Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license.

This article contains Figs. S1–S12 and Tables S1 and S2.

1 These authors contributed equally to this work.
2 To whom correspondence should be addressed. Tel.: 44-1603-450720; E-mail: rob.field@jic.ac.uk.
3 The abbreviations used are: Rha, rhamnose; MRM, multiple reaction monitoring; ESI, electrospray ionization; NRS/ER, nucleotide–rhamnose synthase/epimerase-reductase; HGT, horizontal gene transfer; CCAP, Culture Collection of Algae and Protozoa; EG, Euglena gracilis medium; JM, Jaworski’s medium; MMETSP, Marine Microbial Eukaryote Transcriptome Sequencing Project.

© 2019 Wagstaff et al. Published by The American Society for Biochemistry and Molecular Biology, Inc.
epimerase-reductase (NRS/ER) (19). Fungi and viruses also contain orthologs of the bifunctional epimerase-reductase NRS/ER plant system, often showing substrate specificity for the uridine diphospho sugars over their thymidine counterparts (8, 20). Nonetheless, deciphering the in vitro nucleotide specificity of the bacterial and plant-like enzymes has remained a challenge because of either poor expression of the recombinant enzymes or the instability of enzyme substrates, particularly TDP- and UDP-6-deoxy-D-xylo-hexos-4-ulose, as discussed by Han et al. (19). However, it is generally accepted that the Rml enzymes favor TDP-activated substrates over their UDP counterparts (1, 21), although plant NRS/ER or RHM enzymes favor the UDP-based substrates (8, 18, 20).

Although the biosynthesis of L-Rha has been studied in some detail in bacteria, fungi, and plants, there is little information regarding the diverse algal groups, even though the presence of L-Rha has been noted in structural polysaccharides of macroalgae (22), and in the surface glycans and pellicle of the green microalga Euglena gracilis (23–25). Recent work by O’Neill et al. (26) identified prospective rhamnoside hydrolase genes in E. gracilis, but did not explore the associated biochemical events in any detail. Evolutionarily distinct algae derived from the red algal plastid have also been found to contain L-Rha, with early work identifying the sugar in cell preparations from the haptophytes Isochrysis galbana and Prymnesium parvum (27). Despite the reported occurrence of L-Rha in the algae, it is not known how they produce this sugar, which nucleotides they use to activate L-Rha, or how and where algae acquired their L-Rha biosynthetic machinery in evolutionary terms.

By profiling intracellular sugar nucleotides of a representative euglenid, E. gracilis, and a haptophyte, P. parvum, we first show that E. gracilis contains primarily UDP-β-L-rhamnose whereas P. parvum contains primarily TDP-β-L-rhamnose. We then show that E. gracilis contains sequences orthologous to plant-like NRS/ER whereas P. parvum contains a novel chimeric version of bacterial RmlC and RmlD (referred to hereafter as RmlCD). We go on to biochemically characterize a recombinant form of this RmlCD chimera and show that it produces both TDP-β-L-rhamnose and UDP-β-L-rhamnose from TDP- and UDP-6-deoxy-α-D-xylo-hexos-4-ulose, respectively. Using these new gene sequences, we explore the diversity of NDP-β-L-rhamnose biosynthetic pathways across the algal taxonomic groups. We show that plant-like NRS/ER or RHM sequences are widespread among algae, whereas occurrences of the

![Figure 1. Biosynthesis of NDP-β-L-Rha in bacteria, fungi, viruses and plants.](image-url)
NDP-β-L-rhamnose biosynthesis in algae

Scheme 1. Synthetic approach to TDP-β-L-Rha and UDP-β-L-Rha. Reagents and conditions: a, (i) Ac₂O, HBr/AcOH (33%), 0 to 20 °C, 2.5 h, (ii) AcONa, (iii) ice-water, 1 h, 29%. b, (i) Cl/(OPh)₂, DMAP, CH₂Cl₂, rt; (ii) silica gel column chromatography hexane-ethyl acetate-Et₃N, 5% by vol. c, (i) 5β only, H₂, PdO₂, AcOEt-EtOH; (ii) MeOH-Et₃N-H₂O 2:1:1, 4 °C, 7 d, 83% over two steps. d, TMP-morpholinate, pyridine, 4 °C, 5 d, LH20 and RP C18 purification, 16%. e, UMP-morpholinate, pyridine, 4 °C, 7 d, LH20 and RP C18 purification, 21%.

RmlCD chimera seen in P. parvum can be found primarily in the Haptophyta and Gymnodiniaceae families. Using these findings, we evaluate potential routes for the evolution of nucleoside diphosphate β-1-Rha (NDP-β-1-Rha) pathways among algae.

Results

Sugar-nucleotide profiling

We first sought to investigate the preferences for TDP-β-1-Rha or UDP-β-1-Rha in the euglenid E. gracilis and compare it to that of the haptophyte P. parvum. We also looked at the presence of TDP- and/or UDP-α-ν-Glc, the likely biosynthetic precursors of the corresponding 1-Rha derivatives. To underpin these studies, authentic standards of TDP-β-1-Rha and UDP-β-1-Rha were required. Because of inconsistencies in the published literature on the chemical synthesis of these compounds, we conducted a thorough re-examination of published methods and product characterization and produced both sugar nucleotides unambiguously. The synthetic scheme employed is shown in Scheme 1; full details of this chemical synthesis can be found in the supporting material.

Quantification of intracellular levels of NDP-β-1-Rha in algal cells

Axenic cultures of E. gracilis and P. parvum were grown and harvested between mid- to late-log phase and at the same time of day to avoid differences in sugar-nucleotide levels because of the differences in growth phase. For E. gracilis, this represented ~6 days of growth, whereas for P. parvum late-log phase was usually achieved after ~14 days of growth. Cold ethanol was used to bring about cell lysis and to extract the target metabolites under mild conditions (28), thus minimizing degradation of the labile sugar nucleotides. In addition, ethanol efficiently precipitates and inactivates cytosolic enzymes and prevents undesired enzymatic degradation. After partitioning between water and butan-1-ol, the aqueous layers were then subjected to solid phase extraction using ENVICarb graphitized carbon column (29). This method was previously shown to have extraction recoveries ranging from 68 to 100%. Based on previous work by Pabst and co-workers (30), an LC-MS/MS method was used to analyze and quantify the intracellular sugar nucleotides. A surface-conditioned porous graphitic carbon column (Hypercarb) was used for separation and Xevo TQ-S tandem quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode was used to detect the target analytes. Authentic standards of sugar nucleotides were used to generate MRM transitions and to determine retention times (Table S1). When in doubt, co-injection of samples with standards was used to further confirm analyte identification. Internal standards (guanosine 5’-diphospho-α-d-glucose (GDP-α-d-Glc) for P. parvum, uridine 5’-diphospho-2-acetamido-2-deoxy-α-d-glucuronic acid (UDP-α-d-GlcNAcA) for E. gracilis) were used for data normalization allowing direct comparison of relative sugar nucleotide levels between E. gracilis and P. parvum (Fig. 2).

LC-MS/MS results from biological triplicate show target NDP sugars ranging from low picomole to mid nanomole levels per gram of wet algal cell pellet (Fig. 2). E. gracilis contains ~4-fold more UDP-α-d-Glc than TDP-α-d-Glc, at the mid nanomole range. Although levels of both TDP-α-d-Glc and UDP-α-d-Glc were lower in P. parvum, at the low to high picomole range, levels of TDP-α-d-Glc were significantly lower, with UDP-α-d-Glc ~82-fold more abundant than TDP-α-d-Glc in P. parvum. These results appeared to have little correlation with the levels of activated 1-Rha. E. gracilis contained ~260 times more UDP-β-1-Rha than TDP-β-1-Rha and conversely P. parvum contained almost 6 times more TDP-β-1-Rha than UDP-β-1-Rha. Both organisms contained appreciable levels of both activated forms of 1-Rha ranging from 24 pmol to 6.3 nmol/g pellet. These results suggest that E. gracilis likely contains a plant-like 1-Rha biosynthesis pathway, whereas P. parvum may contain a bacteria-like 1-Rha biosynthesis pathway. The presence of both forms of activated 1-Rha in P. parvum, in particular, suggested multiple biosynthetic pathways or enzyme promiscuity.

Identification of 1-Rha biosynthetic genes in E. gracilis and P. parvum

To identify transcripts from E. gracilis and P. parvum involved in NDP-β-1-Rha biosynthesis, BLASTp searches were carried out against a transcriptome of E. gracilis that we recently reported on (31) and a publicly available transcriptome of P. parvum (Texoma1, Marine Microbial Eukaryote Transcriptome Sequencing Project). Query sequences used in the BLASTp analysis were RmlC (NP_217982.1), NRS/ER (NP_564806.1), and RHM (NP_177978.1). We found that E. gracilis contained a transcript orthologous to NRS/ER (32.3% sequence identity) whereas P. parvum contained a sequence more similar to RmlC at the N terminus of the protein (36.8% sequence identity) and to RmlD (NP_217783.1) at the C termi-
nus of the protein sequence (35.5% sequence identity). These results agree with the above sugar-nucleotide profiling results and suggest that *E. gracilis* contains a plant-like NRS/ER biosynthetic pathway producing primarily UDP-[H9252]-L-Rha, whereas *P. parvum* contains a bacterial RmlCD chimera producing primarily TDP-[H9252]-L-Rha. The lack of an NRS/ER homolog in *P. parvum* combined with the observation that this organism also contains appreciable UDP-[H9252]-L-Rha suggested either a novel UDP-[H9252]-L-Rha biosynthetic pathway, or that the RmlCD chimera was capable of producing both TDP-[H9252]-L-Rha and UDP-[H9252]-L-Rha in vivo.

Recombinant expression and biochemical characterization of P. parvum RmlCD fusion protein synthesizing TDP-[H9252]-L-Rha and UDP-[H9252]-L-Rha

To confirm the activity of the newly discovered *P. parvum* RmlCD chimera (CAMPEP_0191228776) as a bifunctional 3,5-epimerase/4-reductase producing NDP-[H9252]-L-rhamnose, we next sought to clone and biochemically characterize the protein. The recombinant protein originating from *P. parvum* was produced by heterologous expression in *Escherichia coli*. The sequence was codon optimized for expression in *E. coli* and cloned into the pOPINF vector (32). The recombinant plasmid containing the putative *P. parvum* RmlCD fusion sequence was expressed in *E. coli* SoluBL21™ (Genlantis) cells. Using this methodology, reasonable levels of pure protein could be obtained (4 mg liter⁻¹ *E. coli* culture as determined by Bradford assay) (Fig. S2).

For biochemical characterization of *P. parvum* RmlCD, a combination of ¹H NMR and ESI-MS were used. Based on the known activities of the individual enzymes, the enzyme was anticipated to produce TDP-[H9252]-L-Rha starting from TDP-6-deoxy-[H9251]-D-xylo-hexos-4-ulose (Fig. 3A). TDP-6-deoxy-[H9251]-D-xylo-hexos-4-ulose was produced enzymatically using RmlB from *Salmonella enterica* serovar Typhimurium (*S. enterica* Typhimurium) (33) and TDP-α-D-glucose in a buffer containing the cofactors MgCl₂, NAD⁺, and NADPH (required cofactor for RmlCD). The reaction was judged to have gone to completion when the anomeric proton signal of TDP-[H9252]-D-glucose disappeared, as observed by ¹H NMR (Fig. 3B). At this point, *P. parvum* RmlCD was added to the reaction mixture and the reaction was followed by ¹H NMR, whereby formation of the anomeric signal of TDP-[H9252]-L-Rha could be easily followed (Fig. 3B). ESI-MS of the reaction mixture confirmed the presence of the expected mass for TDP-[H9252]-L-Rha (547.0737, 0.2 ppm).

To evaluate the ability of RmlCD to produce UDP-[H9252]-L-Rha, UDP-6-deoxy-[H9251]-D-xylo-hexos-4-ulose was required. This compound is not commercially available and it could not be produced using *S. enterica* Typhimurium RmlB. We therefore employed recombinant viral enzyme ATCV-1 UDP-glucose 4,6-dehydratase, (Fig. S3A). Using identical reaction conditions to those with RmlB, we produced UDP-6-deoxy-[H9251]-D-xylo-hexos-4-ulose using ATCV-1 UDP-glucose 4,6-dehydratase and upon reaction completion we added RmlCD (Fig. S3B). Using this methodology, we were able to monitor the formation of UDP-[H9252]-L-Rha at a similar rate to that of TDP-[H9252]-L-Rha (Fig. S3C) suggesting that RmlCD is likely responsible for production of both TDP-[H9252]-L-Rha and UDP-[H9252]-L-Rha seen in *P. parvum* in the earlier sugar-nucleotide profiling results.

Distribution of L-Rha biosynthetic genes in algae

To evaluate the distribution of the NRS/ER, RHM, and RmlCD pathways among algae, BLAST searches were performed using reference sequences from bacteria and plants that were known to be involved in these pathways. BLASTp searches were carried out against the putative proteins assembled and translated from the algal transcriptomes and genomes using protein sequences for NRS/ER (NP_564806.1), RHM
and the newly discovered RmlCD chimera from \textit{P. parvum} (CAMPEP_0191228776). We found that in most instances the bacterial pathway (represented by RmlCD) and the plant pathway (represented by NRS/ER or RHM) were mutually exclusive, except for nine instances, largely found in the Alveolata superphylum (Fig. 4). In general, our analysis suggests that the plant-like NRS/ER or RHM pathway is more common among algal groups than the bacteria-like RmlCD pathway.

Primary endosymbionts

For the algae derived from primary endosymbiosis (\textit{i.e.} glaucophytes, red algae, and green algae), no orthologs of \textit{P. parvum} RmlCD were found. Of the two glaucophyte transcriptomes examined in this study, both contained one ortholog of NRS/ER, suggesting a plant-like biosynthesis of \(\beta\)-Rha in this phylum. Of the green algae examined, 6 of 13 contained an NRS/ER ortholog, and 6 of the remaining 7 contained an ortholog of the trifunctional RHM. No hits were observed for one \textit{Micromonas} sp. strain examined. The lack of \textit{P. parvum} RmlCD orthologs and abundance of plant NRS/ER or RHM orthologs would also support a plant-like biosynthesis of \(\beta\)-Rha in this taxonomic group. Of the 11 red algae examined, only 3 contained orthologs of NRS/ER, with no orthologs of RmlC or RHM being observed, which may suggest a large-scale loss of \(\beta\)-Rha biosynthesis in this group.

Secondary endosymbionts—green algal plastids

Among algae derived from secondary endosymbiosis with a green algal symbiont (\textit{i.e.} excavates and rhizarians), two of three excavates examined contained NRS/ER orthologs, with no instances of RmlCD orthologs. No hits were observed for \textit{Eutreptiella gymnastica}. This suggests a plant-like \(\beta\)-Rha biosynthesis pathway again. In Rhizaria, an unexpected
Figure 4. Table showing the distribution of L-Rha biosynthesis genes in algae. A total of 151 transcriptomes or genomes were analyzed for the presence of NDP-β-L-rhamnose biosynthetic genes from bacteria-like (RmlCD) or plant-like (NRS/ER or RHM) pathways. Where a transcript was identified for a given gene, a filled circle can be found. For bacteria-like pathways (i.e. RmlCD chimera) circles are filled red. For plant-like pathways (i.e. NRS/ER or RHM) circles are filled blue. When a fusion of bacterial RmlC and plant NRS/ER is observed, circles are filled purple. Multiple mention of the same species name means that different strains have been analyzed. For a full list of transcriptome, genome, and corresponding sequence identifiers, along with strains used in this study, refer to Table S2.

GLAUCOPHYTES	**RmlCD**	**Rml-C/ER**	**NEVER**	**RHM**
Cyanophyceae gloeocystis				
Gloeocystis wittrockiana				

GREEN ALGAE	**RmlCD**	**Rml-C/ER**	**NEVER**	**RHM**
Tetraselmis striata				
Dunaliea tertialecta				
Chlamydomonas reinhardtii				
Micromonas sp.				
Micromonas sp.				
Micromonas sp.				
Micromonas pusilla				
Bathycoccus prasinos				
Ostreococcus tauri				
Pyramimonas pankeae				
Auxenochlorella protothecoides				
Chlorella variabilis				
Phaeocystis salinarum				

RED ALGAE	**RmlCD**	**Rml-C/ER**	**NEVER**	**RHM**
Ceratium光泽化				
Galaxiella uhleri				
Chrysochromulina ericina				
Chrysochromulina brevifilum				
Prymnesium parvum				
Emiliania huxleyi				
Gephyrocapsa oceanica				
Isochrysis sp.				
Isochrysis sp.				
Isochrysis sp.				
Phaeocystis sp.				
Phaeocystis antarctica				
Phaeocystis antarctica				
Phaeocystis carterae				

EXCAVATES	**RmlCD**	**Rml-C/ER**	**NEVER**	**RHM**
Eutreptiella gymnastica				
Eutreptiella gymnastica-like				
Euglena gracis				

RHIZARIA	**RmlCD**	**Rml-C/ER**	**NEVER**	**RHM**
Chlorococcales				
Gymnochloris				
Nothococcus oceana				
Nothococcus gibosa				
Bigelowiella nata				
Bigelowiella nata				
Bigelowiella nata				

CRYPTOPHYTES	**RmlCD**	**Rml-C/ER**	**NEVER**	**RHM**
Cryptomonas paramecium				
Cryptomonas curvata				
Geminigera cryophila				
Geminigera sp.				
Guillandia thea				
Hemsellis anderseni				
Hemsellis anderseni				
Hemsellis tesa				
Hemsellis rufescens				
Hemsellis viresens				
Goniomonas pacifica				
Rhodomonas salina				
Rhodomonas sp.				
Rhodomonas abbrevia				

HAPTOPHYTES	**RmlCD**	**Rml-C/ER**	**NEVER**	**RHM**
Pavlova gya				
Pavlova lutheri				
Pavlova sp.				
Chrysocromulina polyplepis				
Chrysocromulina polyplepis				
Chrysocromulina ericina				
Chrysocromulina brevifilum				
Prymnesium parvum				
Emiliania huxleyi				
Gephyrocapsa oceanica				
Isochrysis sp.				
Isochrysis sp.				
Isochrysis sp.				
Phaeocystis sp.				
Phaeocystis antarctica				
Phaeocystis antarctica				
Phaeocystis carterae				

STRAMENOPILES	**RmlCD**	**Rml-C/ER**	**NEVER**	**RHM**
Amphipora sp.				
Amphora coffeiformis				
Fragilariopsis kerguellaes				
Fragilariopsis kerguellaes				
Nitzschia punctata				
Pseudo-nitzschia australis				
Pseudo-nitzschia fraudulenta				
Chaetoceros debilis				
Chaetoceros neogracile				
Chaetoceros curvisetus				
Chaetoceros affinis				
Corethron minutum				
Ditytum brightwelli				
Ditytum brightwelli				
Ditytum brightwelli				
EXTUBOCOLELLUS spiller				
Thalassiosira rotula				
Thalassiosira oceanica				
Thalassiosira weissfogeli				
Thalassiosira antarctica				
Thalassiosira weissfogeli				
Thalassiosira rotula				
Thalassiosira gravida				
Proiosola alata				
Skeletonema marinoi				
Skeletonema doritini				
Skeletonema menzeli				
Asterionellosis glacialis				
Thalassiosira nitzschkioides				
Thalassiothrix antarctica				
Paraphysomonas Imperforata				
Dinobryon sp.				
Ochroslnum sp.				
Pseudopoleoella elastica				
Nannochloris gaditana				
Aureococcus anophagefferens				
Aureococcus lagoentis				
Pelagococcus subviridis				
Pelagomonas caicelata				
Chattonella subalba				
Heterosigma akashiwo				
Heterosigma akashiwo				
Heterosigma akashiwo				
Vaucheria littera				
Aurantiochytrium limacinum				
Schizochytrium aggregatum				

ALVEOLATA	**RmlCD**	**Rml-C/ER**	**NEVER**	**RHM**
Amphidiun carterae				
Karenia brevis				
Karenia brevis				
Karenia brevis				
Karlodinium micrum				
Durinskia balica				
Glenodinium filicaeum				
Kryptoperidinium filicaeum				
Peridinium aconitiiferum				
Scrippsiella trochoidea				
Scrippsiella hangoel				
Scrippsiella hangoel-like				
Alexandrium monilatum				
Alexandrium fundyense				
Alexandrium tamarense				
Acadinium spinosum				
Coratium fusus				
Cryptochaetodinium cbindii				
Lingulodinium polyedra				
Oxysris marina				
Prorocentrum minimum				
Prorocentrum minimum				
Symbiodinium kawagut				
Symbiodinium sp.				
Perkinsus chesaapeaki				
Perkinsus marinus				

NDP-β-L-rhamnose biosynthesis in algae
recurring transcript was found that appears to be a fusion between RmlC and NRS/ER. Of the seven rhizarians examined, six contained this RmlC/NRS/ER putative fusion protein. In addition to this transcript, Gymnochlorella sp. also contained a stand-alone NRS/ER ortholog. No hits for L-Rha biosynthesis were found for Chlorarachniophytes. Rhizaria therefore appear to combine both bacterial and plant-like machinery for L-Rha biosynthesis.

Secondary endosymbionts—red algal plastids

Among algae derived from secondary endosymbiosis with a red alga (i.e. CASH), the cryptophytes all contained NRS/ER orthologs (15/15). Of these 15, Rhodomonas salina also had an ortholog of *P. parvum* RmlCD. The abundance of NRS/ER orthologs and lack of RmlCD orthologs in this group would suggest a plant-like biosynthesis of L-Rha in the cryptophytes.

Of the 21 haptophytes examined, only 2 contained orthologs of either NRS/ER or RHM. Unexpectedly, 16 of the 21 examined haptophytes contained sequences orthologous to *P. parvum* RmlCD. No hits were found for L-Rha biosynthesis in Pavlova lutheri, Pavlova sp., one strain of Chrysochromulina polyepsis, and Phaeocystis sp. Taken together, this suggests a bacteria-like pathway for L-Rha biosynthesis in the haptophytes, like that seen for *P. parvum*.

The stramenopiles displayed a similar pattern to the cryptophytes, with 42 of the 47 strains examined containing an ortholog of NRS/ER. Of these 42, Amphiprora sp. and Chaetoceros neogracilis also contained a RmlCD fusion ortholog. Five strains examined contained no hits to RmlCD, NRS/ER, or RHM. This consistent abundance of NRS/ER orthologs would also support a plant-like L-Rha biosynthesis pathway in the stramenopiles.

Unlike the other groups, a mix of bacterial and plant-like L-Rha biosynthetic machinery was observed for the alveolates. Of the 32 strains examined, 25 had orthologs of NRS/ER, RHM, or both, suggesting plant-like pathways are present consistently in this superphylum. However, bacterial pathways represented by *P. parvum* RmlCD also appeared, with 6 of 38 strains having an ortholog to *P. parvum* RmlCD. Interestingly, all dinoflagellates examined from the Gymnodiniaceae family (*Amphidinium*, *Karenia*, and *Karlodinium* genera) contained this RmlCD fusion; the possible origin of this fusion protein is discussed later. The dinoflagellates, which make up a subgroup of the alveolates, represent a phylum that has undergone extensive endosymbiotic events, and this may explain the abundance of both bacterial and plant-like L-Rha biosynthesis pathways in this group.

In summary, our findings suggest that most algae use exclusively the plant-like, NRS/ER or RHM pathway for L-Rha biosynthesis. One exception is the haptophytes, which appear to use a variation of the bacterial pathway. A second exception is the Rhizaria, which contain a fusion between bacterial RmlC and plant NRS/ER. Finally, some members of the Alveolata, such as the Gymnodiniaceae family, possess the plant-like pathway as well as the bacterial pathway found in the haptophytes.
Figure 5. Phylogenetic clustering of NDP-\(\beta\)-l-rhamnose biosynthetic machinery. Protein sequences orthologous to RmlCD from \(P.\) parvum are highlighted in red, sequences orthologous to plant NRS/ER or RHM are highlighted blue, and sequences from the Rhizaria orthologous to an RmlC-NRS/ER fusion are highlighted purple. Eight sequences from plants, viruses, and bacteria used for comparison are marked with green stars. Alignment was performed using the default settings of MAFFT (48), and an unrooted maximum-likelihood phylogenetic tree was produced using 143 sequences from algae, bacteria, and plants. The tree was drawn using MEGA7 (49). The final tree was based on 119 ungapped amino acid positions; 100 resampling permutations and branches with bootstrap support \(< 50\%\) are labeled with a black circle. A detailed list of sequences used to create this tree can be found in Table S2.
ble, activities for the alternate nucleotide in each pathway (13, 39). It is important to note that for this analysis, lack of transcripts could be because of lack of expression under the experimental growth conditions and does not necessarily equate to lack of gene in the genome of the organism. Equally with genomic analysis, lack of genes could be because of insufficient read depth during genome sequencing.

We identified that most algal groups utilize primarily a plant-like biosynthesis of l-Rha, with transcripts for NRS/ER and RHM identified throughout the glaucophytes, red algae, green algae, excavates, cryptophytes, alveolates, and stramenopiles. In contrast, we found that the haptophytes show very little evidence for plant-like l-Rha biosynthesis; instead they operate a bacterial-like Rml biosynthesis pathway, with transcripts for a novel fusion of RmlC and RmlD abundant throughout. This fusion protein may represent a good example of gene fusion in early eukaryotes, as discussed by Yin (40). The Rhizaria are also an exception, with an unexpected fusion between bacterial RmlC and plant NRS/ER found throughout, of which the biochemical function is currently unknown. Transcripts corresponding to the trifunctional RHM are more abundant in the Alveolata superphylum. Interestingly, like the haptophytes, the Gymnodiniaceae family of dinoflagellates all contain sequences corresponding to RmlCD chimeric enzymes. This increased genetic diversity in the Alveolata could be because of the presence of tertiary or even quaternary endosymbiosis events found in the Dinoflagellata phylum (41).

To investigate the evolutionary origin of both the plant-like NRS/ER and RHM sequences and bacteria-like P. parvum RmlCD sequences, a maximum likelihood phylogenetic tree was constructed (Fig. 5). The tree shows a clear divergence between RmlCD and NRS/ER or RHM pathways, with the former sequences found exclusively in the Haptophyta and Gymnodiniaceae. With the exception of the Rhizaria and a select few other sequences, this tree supports a broad distribution of NRS/ER or RHM-like sequences among other algal groups, which would support an ancient evolutionary origin of this gene. Conversely, RmlCD sequences from the Haptophyta and Gymnodiniaceae branch closely with bacterial sequences, suggesting a bacterial origin of these sequences and may indicate a case of horizontal gene transfer (HGT) in the haptophytes or Gymnodiniaceae; although we cannot discount the possibility that this gene was present in the last common eukaryotic ancestor and subsequently lost in all other groups of algae (however unlikely this may be). The tree also shows that RmlCD sequences from Gymnodiniaceae branch more closely with the haptophytes than bacteria, suggesting that one instance of HGT occurred, rather than two independent instances to the haptophytes and Gymnodiniaceae. Given that the Gymnodiniaceae plastids are known to have derived from tertiary endosymbiosis with haptophytes (42, 43), it seems likely that endosymbiotic gene transfer of RmlCD has occurred from haptophytes to this family of dinoflagellates. The additional presence of the NRS/ER or RHM biosynthetic machinery in the Gymnodiniaceae supports the previous two propositions. The absence of the plant-like machinery in the haptophytes would suggest the loss of this type of machinery occurred sometime after secondary endosymbiosis established this family (290 to 220 million years ago) (44).
With regard to the RmlC/NRS/ER fusion observed in the Rhizaria, the absence of RmlC in any green algae examined in this study would suggest that an independent HGT event occurred that incorporated RmlC into the genome of the Rhizaria after secondary endosymbiosis. We cannot, however, discount the possibility that the green algal symbiont had obtained this RmlC via HGT prior to secondary endosymbiosis and passed it onto the Rhizaria via endosymbiotic
NDP-β-L-rhamnose biosynthesis in algae

gene transfer. All of these evolutionary propositions are illustrated in Fig. 6.

In conclusion, in this study we show that algae, represented in this study by *E. gracilis* and *P. parvum*, contain significantly different levels of TDP- or UDP-activated L-rhamnose. This difference is likely because of different biosynthetic genes the algae contain for L-Rha biosynthesis, with *E. gracilis* containing a gene orthologous to plant-like NRS/ER and *P. parvum* containing a novel fusion of orthologs of the bacterial RmlC and RmlD enzymes. Strikingly, we provide biochemical evidence of TDP- *P. parvum* RmlCD produces both UDP- and TDP-β-L-Rha from UDP- and TDP-6-deoxy-α-D-xylo-hexos-4-ulose, respectively. Our comprehensive bioinformatics analysis reveals that NRS/ER and RHM sequences are widespread across algae, whereas instances of the RmlCD fusion seen in *P. parvum* are more confined to the Haptophyta and Gymnodiniaceae families. Taking these findings and the knowledge of endosymbiotic events in the algal lineages, we propose that plant-like NRS/ER or RHM sequences were likely present in a common ancestor of the algal lineages, whereas the RmlCD fusion was acquired by the Haptophytes and subsequently passed to the Gymnodiniaceae via endosymbiotic gene transfer. These results not only provide the first biochemical basis for a novel fusion protein, but also add valuable data to the currently underrepresented field of algal glycomics.

Experimental procedures

A full account of the synthetic approach, experimental protocols, a associated analytical and spectroscopic data for the synthesis of TDP-β-L-Rha and UDP-β-L-Rha can be found in the supporting information (Figs. S2–S12). TDP-α-D-Glc, UDP-α-L-Glc, and GDP-α-D-Glc were obtained commercially from Sigma-Aldrich. UDP-α-D-GlcNAcA was synthesized as described previously (45).

Euglena gracilis axenic cell culture

Euglena gracilis var. saccharophila Klebs (strain 1224/7a) was obtained from the Culture Collection of Algae and Protozoa (CCAP) and cultured essentially as described previously (31). Stock culture was treated with antibiotics according to a method suggested by CCAP to produce an axenic culture with small modifications to the antibiotic components (only cefotaxime, carbenicillin, and kanamycin were used). The stock culture was treated with 0, 0.5, and 1% of the antibiotic mixture in the recommended 1 × *Euglena gracilis* medium (EG) + 1 × Jaworski’s medium (JM) for *Euglena gracilis* and subsequently inoculated into fresh 1 × EG + 1 × JM at the following time intervals: 24, 48, and 72 h. The culture was examined by microscopy and plating on 1 × EG + 1 × JM agar to confirm the production of an axenic culture.

Batch cultures (three biological replicates) were grown essentially as described before (31). In brief, cells were grown at 22 °C on a 14:10 light cycle with a light intensity of 100 μmol m⁻² s⁻¹. Midlog phase (*A₅₆₀ = 1.1 in about 6 days) cultures were harvested. Cells were pelleted by centrifugation (6750 × g for 20 min at 4 °C). The pellet was re-suspended in ice-cold PBS (200 ml) and centrifuged again (6750 × g for 20 min at 4 °C). The pellet was transferred into tared centrifuge vial (Oak Ridge) using PBS (25 ml) and centrifuged (6750 × g for 20 min at 4 °C), and the supernatant was carefully decanted before weighing out the wet pellet. UDP-α-D-GlcNAcA was added to the cell pellet as internal standard (1.46 nmol/g wet pellet). The cells were lysed straight away without flash freezing and/or cold storage.

Prymnesium parvum axenic cell culture

P. parvum (strain 946/6) was obtained from the CCAP and maintained in the recommended f/2-Si media. Stock cultures were treated with carbenicillin (100 μg/ml) to obtain axenic cultures, which were judged to be axenic by optical microscopy. Batch cultures (three biological repeats) were grown at 22 °C on a 14:10 light cycle with a light intensity of 100 μmol m⁻² s⁻¹, as described previously (46). Under these conditions, cell densities of −3 × 10⁶ cells ml⁻¹ could be achieved after 12–16 days of growth. Cells were pelleted by centrifugation (6748 × g, 20 min, 4 °C). The pellet was transferred into tared centrifuge vial (Oak Ridge) using ice-cold PBS (20 ml), centrifuged (12,857 × g, 20 min, 4 °C) to give pellet. GDP-α-D-Glc was added (1.54 nmol/g wet pellet). The cells were lysed straight away without flash freezing and/or cold storage.

Bioinformatic analysis

For the identification of NDP-β-L-Rha biosynthetic pathways, BLASTp (47) analysis was first carried out against a recently described transcriptome of *E. gracilis* (31) and a publically available transcriptome of *P. parvum* (Texoma1, MMETSP) (38). This was later expanded to include the transcriptomes (MMETSP) or genomes (NCBI) of representative algae from all algal groups (see Table S2). Protein sequences for RmlC (NP_217982.1), NRS/ER (NP_564806.1), and RHM1 (NP_177978.1) were used as consensus sequences. Hits with E-values ≤ 1E-10 were then manually analyzed for conserved domains before being assigned as a hit.

For phylogenetic analysis of NDP-β-L-Rha biosynthesis hits, multiple sequence alignments were generated using the default settings of MAFFT (48), including additional sequences from bacteria and plants. Regions of poor alignment were inspected for manually and their respective sequences were removed. An unrooted maximum likelihood tree was then generated using MEGA7 (49) with 100 bootstraps. The final tree was based on 119 ungapped amino acid residues and was made up of 143 sequences representing a broad diversity of the algae sequences seen in Fig. 4.

Recombinant protein production

A vector containing UDP-glucose 4,6-dehydratase from ATCV-1 was kindly provided by Professor Michela Tonetti of the Università degli Studi di Genova, Genoa (UNIGE). The protein was expressed as a GST fusion and purified as described previously (20).

P. parvum RmlCD (CAMPEP_0191228776) was codon optimized for expression in *E. coli* using Integrated DNA Technologies (IDT) DNA codon optimization software (https://www.idtdna.com/CodonOpt). The resulting sequence was then synthesized with overhangs for In-Fusion® Cloning into...
pOPINF vector (32) using IDT’s gBlock gene fragment synthesis service. The sequence used for protein expression in this study can be found in the supporting material. The gBlock gene fragment was then cloned into pOPINF using an In-Fusion® Cloning Kit according to the manufacturer’s instructions. The resulting plasmid was then transformed into Stellar competent cells before being propagated and extracted using a miniprep kit (Qiagen, Manchester, UK). Positively transformed plasmids were identified by size comparison to a nontransformed pOPINF control plasmid using agarose gel electrophoresis. A plasmid containing the gBlock sequence was then transformed into SoluBL21™ competent cells (Genlanits) for protein expression. Two liters of E. coli cells were grown to an A_{600} of ~0.5 at 37 °C before being transferred to 18 °C for 1 h. Induction was performed using 0.5 mM IPTG and cells were left at 18 °C overnight. Proteins were extracted in a buffer containing 50 mM Tris-HCl, pH 7.5, 0.5 M NaCl, 20 mM imidazole, protease inhibitor mixture (Sigma) 1/100 v/v, 2 mg DNase. P. parvum RmlCD was purified using nickel affinity chromatography, and fractions judged to be >95% pure by SDS-PAGE were pooled for subsequent biochemical analysis.

Biochemical analyses

To assess the relative activity of P. parvum RmlCD in producing UDP- and TDP-β-L-Rha, we first needed to produce the predicted substrates, UDP- and TDP-6-deoxy-α-D-xyl-o-hexos-4-ulose. Reactions contained 4 mM UDP/TDP-α-d-glucose, 6.4 mM NADPH (RmlCD cofactor), 6.4 mM NAD^+, 60 μg ATCV-1 UGD/200 μg S. enterica Typhimurium RmlB and 2 mM MgCl_2 buffered in 50 mM HEPES, pH 7.5. Addition of NAD^+ was not required for RmlB activity but was included in both reactions for completeness. Reactions were monitored by ^1H NMR until the anomeric signal for UDP- or TDP-α-d-glucose (5.55 ppm) had disappeared, at which point 40 μg of RmlCD was added to the reaction mixtures. The reactions were monitored by ^1H NMR to monitor loss of anomeric signals representing UDP- or TDP-6-deoxy-α-D-xyl-o-hexos-4-ulose (keto, 5.68 ppm; hydrate, 5.48 ppm) and formation of new anomeric signals. Values agreed well with our synthetic TDP-β-L-Rha and also published literature values (52, 53).

Sugar-nucleotide extraction and profiling

A full account of the methodology for sugar-nucleotide profiling can be found in the supporting material. Sugar nucleotides were extracted and profiled essentially as described previously (54). Axenic cultures of algae were grown under standardized conditions. The cells were harvested, and a known amount of internal standard was added. Intracellular sugar nucleotides were extracted using lysis with cold 70% EtOH followed by de-fATTing and solid phase extraction. LC-ESI-MS/MS was used to analyze and quantify the intracellular sugar nucleotides. Separation was achieved on a surface-conditioned porous graphitic carbon column (Hypercarb) and the target analytes were detected by negative electrospray ionization using Xevo TQ-S tandem quadrupole mass spectrometer operated in MRM mode. Authentic standards of sugar nucleotides were used to generate MRM transitions and to determine retention times. A detailed description of the sugar nucleotides extraction and profiling can be found in the supporting information.

Author contributions—B. A. W., M. R., and R. A. F. conceptualization; B. A. W., M. R., S. K., L. H., and I. M. data curation; B. A. W., M. R., S. A. N., H. C. D., and R. A. F. formal analysis; B. A. W. and R. A. F. validation; B. A. W. and M. R. investigation; B. A. W. visualization; B. A. W., M. R., S. K., L. H., and S. A. N. methodology; B. A. W. writing—original draft; B. A. W., M. R., S. K., H. C. D., and R. A. F. writing—review and editing; M. R., S. A. N., H. C. D., and R. A. F. supervision; H. C. D. and R. A. F. resources; H. C. D. and R. A. F. funding acquisition; H. C. D. and R. A. F. project administration.

Acknowledgments—We thank Dr. Gill Malin for useful discussions on algal taxonomy and Dr. Michael Rugen for advice on heterologous expression. We thank Prof. Jim Naismith for provision of the S. enterica Typhimurium RmlB clone and Prof. Michela Tonetti for provision of the ATCV-1 UGD clone.

References

1. Feng, L., Shou, Q., and Butler, R. A. (2016) Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans. Biochem. J. 473, 1507–1521 CrossRef Medline
2. Ma, Y., Stern, R. J., Scherman, M. S., Vissa, V. D., Yan, W., Jones, V. C., Zhang, F., Franzblau, S. G., Lewis, W. H., and McNiel, M. R. (2001) Drug targeting Mycobacterium tuberculosis cell wall synthesis: Genetics of dTDP-rhamnose synthetic enzymes and development of a microtitre plate-based screen for inhibitors of conversion of dTDP-glucose to dTDP-rhamnose. Antimicrob. Agents Chemother. 45, 1407–1416 CrossRef Medline
3. Dong, C., Beis, K., Giraud, M. F., Blankenfeldt, W., Allard, S., Major, L. L., Kerr, I. D., Whitfield, C., and Naismith, J. H. (2003) A structural perspective on the enzymes that convert dTDP-d-glucose into dTDP-β-L-rhamnose. Biochem. Soc. Trans. 31, 532–536 CrossRef Medline
4. Pettolino, F., Sasaki, I., Turbic, A., Wilson, S. M., Bacic, A., Hrmova, M., and Fincher, G. B. (2009) Hyphal cell walls from the plant pathogen Rhynchosporium secalis contain (1,3/1,6)-β-D-glucans, galacto-and rhamnomanans, (1,3; 1,4)-β-D-glucans and chitin. FEBS J. 276, 3496–3509 CrossRef Medline
5. Ridley, B. L., O’Neill, M. A., and Mohnen, D. (2001) Pectins: Structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57, 929–967 CrossRef Medline
6. Piacenti, F., Gaglianone, M., Laugieri, M. E., and Tonetti, M. G. (2015) The autonomous glycosylation of large DNA viruses. Int. J. Mol. Sci. 16, 29315–29328 CrossRef Medline
7. Jiang, X. M., Neal, B., Santiago, F., Lee, S. J., Romana, L. K., and Reeves, P. R. (1991) Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2). Mol. Microbiol. 5, 695–713 CrossRef Medline

J. Biol. Chem. (2019) 294(23) 9172–9185 9183
NDP-β-l-rhamnose biosynthesis in algae

8. Martinez, V., Ingwers, M., Smith, J., Glushka, J., Yang, T., and Bar-Peled, M. (2012) Biosynthesis of UDP-4-keto-6-deoxyglucose and UDP-rhamnose in pathogenic fungi Magnaporthe grisea and Botryotinia fuckeliana. J. Biol. Chem. 287, 879–892 CrossRef Medline

9. Yamashita, Y., Shibata, Y., Nakano, Y., Tsuda, H., Kidó, N., Ohta, M., and Koga, T. (1999) A novel gene required for rhamnose-glucose polysaccharide synthesis in Streptococcus mutans. J. Bacteriol. 181, 6556–6559 Medline

10. Mistou, M. Y., Sutcliffe, I. C., and van Sorge, N. M. (2016) Bacterial glycoside hydrolases that cleave glycerol, a polysaccharide from green seaweeds. CrossRef Medline

11. Nakano, Y., Urade, Y., Urade, R., and Kitaoka, S. (1987) Isolation, purification, and characterization of the pellicle of Euglena gracilis z. J. Biochem. 102, 1053–1063 Medline

12. O'Neill, E. C., Trick, M., Henrisat, B., and Field, R. A. (2015) Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect. Sci. 6, 84–93 CrossRef

13. Markert, A. F. H. (1965) Extracellular carbohydrate liberation in the flagellates Isochrysis galbana and Prymnesium parvum. J. Mar. Biol. Assoc. U. K. 45, 755–772 CrossRef

14. Turnock, D. C., and Ferguson, M. A. (2007) Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Eukaryot. Cell 6, 1450–1463 CrossRef Medline

15. Rabinovich, M., Mąki, M., Savilahti, E. M., Järvinen, N., Penttilä, L., and Renkonen, R. (2001) Analysis of nucleotide sugars from cell lysates by ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography. Glycoconj. J. 18, 799–805 CrossRef Medline

16. Pabst, M., Grass, J., Fischl, R., Léonard, R., Jin, C., Hinterkoöner, G., Borth, N., and Altmann, F. (2010) Nucleotide and nucleotide sugar analysis by solid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Anal. Chem. 82, 9782–9788 CrossRef Medline

17. O'Neill, E. C., Trick, M., Hill, L., Reijzek, M., Dusi, R. G., Hamilton, C. J., Zimba, P. V., Henriissat, B., and Field, R. A. (2015) The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol. Biolast. 11, 2808–2820 CrossRef Medline

18. Berrow, N. S., Alderton, D., Sainsbury, S., Netteship, J., Assenberg, R., Rahman, N., Stuart, D. I., and Owens, R. J. (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35, e45 CrossRef Medline

19. Allard, S. T., Giraud, M. F., Whitfield, C., Graninger, M., and Naismith, J. H. (2001) The crystal structure of TDP-α-glucose 4, 6-dehydratase (RmlB) from Salmonella enterica serovar typhimurium, the second enzyme in the TDP-α-rhamnose pathway. J. Mol. Biol. 307, 283–295 CrossRef Medline

20. Blankenfeldt, W., Kerr, I. D., Giraud, M. F., McMichael, H. J., Leonard, G., Whitfield, C., Messner, P., Graninger, M., and Naismith, J. H. (2002) Variation on a theme of SDR: TDP-α-deoxy-L-lyxo-4-hexulose reductase (RmlD) shows a new Mg²⁺-dependent dimerization mode. Structure 10, 773–786 CrossRef Medline

21. Dong, C., Major, L. L., Srikannathasan, V., Errey, J., Giraud, M. F., Lam, J. S., Graninger, M., Messner, P., McNeil, M. R., Field, R. A., Whitfield, C., and Naismith, J. H. (2007) RmlC, a C3’ and CS’ carbohydrate epimerase, appears to operate via an intermediate with an unusual twist boat conformation. J. Mol. Biol. 365, 146–159 CrossRef Medline

22. Oka, T., Nemoto, T., and Ijichi, Y. (2007) Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-α-glucose to UDP-α-rhamnose conversion. J. Biol. Chem. 282, 5389–5403 CrossRef Medline

23. Han, X., Qian, L., Zhang, L., and Liu, X. (2015) Structural and biochemical insights into nucleotide–rhamnose synthase–epimerase–reductase from Arabidopsis thaliana. Biochim. Biophys. Acta 1854, 1476–1486 CrossRef Medline

24. Parakkothil Chothi, M., Duncam, G. A., Armirotti, A., Abergel, C., Gurnon, J. R., Van Etten, J. L., Bernardi, C., Damonte, G., and Tonetti, M. (2010) Identification of an α-rhamnose synthetic pathway in two nucloeytoplasmic large DNA viruses. J. Virol. 84, 8829–8838 CrossRef Medline

25. Teramoto, M., Zhang, Z., Shizuma, M., Kawasaki, T., Kawai, S., and Nakamura, N. (2012) The thermostable enzyme genes of the TDP-α-rhamnose synthase pathway (rmlBCD) from a thermophilic archaeon. in Advances in Applied Biotechnology (Petre, M., ed.). IntechOpen CrossRef

26. Lahaye, M., and Robic, A. (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8, 1765–1774 CrossRef Medline

27. Barras, D. R., and Stone, B. A. (1965) Chemical composition of pellicle of Euglena gracilis var. Bacillaris. Biochim. J. 97, 14 CrossRef

28. Cogburn, J. N., and Schiff, J. A. (1984) Purification and properties of the mucus of Euglena gracilis (Euglenophyceae). J. Phycol. 20, 533–544 CrossRef

29. Nakano, Y., Urade, Y., Urade, R., and Kitao, S. (1987) Isolation, purification, and characterization of the pellicle of Euglena gracilis z. J. Biochem. 102, 1053–1063 Medline

30. O'Neill, E. C., Trick, M., Henrisat, B., and Field, R. A. (2015) Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry. Perspect. Sci. 6, 84–93 CrossRef
45. Rejzek, M., Mukhopadhyay, B., Wenzel, C. Q., Lam, J. S., and Field, R. A. (2007) Direct oxidation of sugar nucleotides to the corresponding uronic acids: TEMPO and platinum-based procedures. *Carbohydr. Res.* **342**, 460–466 CrossRef Medline

46. Wagstaff, B. A., Vladu, I. C., Barclay, J. E., Schroeder, D. C., Malin, G., and Field, R. A. (2017) Isolation and characterization of a double stranded DNA megavirus infecting the toxin-producing haptophyte *Prymnesium parvum*. *Viruses* **9**, 40 CrossRef Medline

47. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. *J. Mol. Biol.* **215**, 403–410 CrossRef Medline

48. Katoh, K., and Toh, H. (2008) Recent developments in the MAFFT multiple sequence alignment program. *Brief. Bioinform.* **9**, 286–298 CrossRef Medline

49. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* **33**, 1870–1874 CrossRef Medline

50. Stern, R. J., Lee, T. Y., Lee, T. J., Yan, W., Scherman, M. S., Vissa, V. D., Kim, S. K., Wanner, B. L., and McNeil, M. R. (1999) Conversion of dTDP-4-keto-6-deoxyglucose to free dTDP-4-keto-rhamnose by the rmlC gene products of *Escherichia coli* and *Mycobacterium tuberculosis*. *Microbiology* **145**, 663–671 CrossRef Medline

51. Wagstaff, B. A., Rejzek, M., Pesnot, T., Tedaldi, L. M., Caputi, L., O’Neill, E. C., Benini, S., Wagner, G. K., and Field, R. A. (2015) Enzymatic synthesis of nucleobase-modified UDP-sugars: Scope and limitations. *Carbohydr. Res.* **404**, 17–25 CrossRef Medline

52. Nakano, Y., Suzuki, N., Yoshida, Y., Nezu, T., Yamashita, Y., and Koga, T. (2000) Thymidine diphosphate-6-deoxy-4-fuco-4-hexulose reductase synthesizing dTDP-6-deoxy-1-talose from *Actinobacillus actinomycetemcomitans*. *J. Biol. Chem.* **275**, 6806–6812 CrossRef Medline

53. Yoo, H. G., Kwon, S. Y., Karki, S., and Kwon, H. J. (2011) A new route to dTDP-6-deoxy-l-talose and dTDP-l-rhamnose: dTDP-l-rhamnose 4-epimerase in *Burkholderia thailandensis*. *Bioorg. Med. Chem. Lett.* **21**, 3914–3917 CrossRef Medline

54. Rejzek, M., Hill, L., Hems, E. S., Kuhaudomlarp, S., Wagstaff, B. A., and Field, R. A. (2017) Profiling of sugar nucleotides. *Methods Enzymol.* **597**, 209–238 CrossRef Medline

55. van der Beek, S. L., Le Breton, Y., Ferenbach, A. T., Chapman, R. N., van Aalten, D. M., Navratilova, I., Boons, G. J., McIver, K. S., van Sorge, N. M., and Dorfmueller, H. C. (2015) GacA is essential for Group A Streptococcus and defines a new class of monomeric dTDP-4-dehydrorhamnose reductases (RmlD). *Mol. Microbiol.* **98**, 946–962 CrossRef Medline