Plasma leptin and ghrelin concentrations in patients with Crohn’s disease

Yoshito Nishi, Hajime Isomoto, Hiroaki Ueno, Ken Ohnita, Chun Yang Wen, Fuminao Takeshima, Ryosuke Mishima, Masamitsu Nakazato, Shigeru Kohno

INTRODUCTION
Crohn's disease (CD) is characterized by a relapsing inflammatory process throughout the digestive tract[11-12]. CD is frequently accompanied with malnutrition and weight loss[6-10]. Possible explanations for these complications include malabsorption of nutrients, intestinal losses during inflammatory process, and anorexia[1-2]. However, the exact etiology is not completely understood.

Leptin is mainly synthesized by the adipose tissue and plays a crucial role in the homeostasis of the body weight by reducing appetite and increasing energy expenditure[1-2]. Contrary to the initial reports, leptin production is not restricted to adipocytes. It is also detected in the human placenta, muscles, and gastric chief cells[6-10].

Ghrelin is a novel endogenous ligand for growth hormone secretagogue receptor[11-12]. It was originally isolated from the stomach and has been subsequently identified in various tissues including the small and large intestine[11-12]. In addition to its potent growth hormone-releasing activity, ghrelin displays metabolic effects opposed to those of leptin[11-13]. It stimulates food intake, enhances the use of carbohydrates and reduces fat utilization. In fact, circulating ghrelin levels are decreased in obesity and increased in anorexia nervosa or cachexia[1-4].

At present, no data on the interplay of ghrelin and leptin in CD are available. This is the first report to assess the circulating ghrelin and leptin concentrations in patients with CD simultaneously.

MATERIALS AND METHODS

Patients
Twenty-eight consecutive outpatients with CD were enrolled in the study between October 2002 and...
December 2004. The study was approved by Nagasaki University Human Ethics Committee. All samples were obtained with written informed consent of the patients prior to their inclusion, in accordance with the Helsinki Declaration. A diagnosis of CD is based on the generally accepted clinical, radiographic, endoscopic and histologic criteria. The exclusion criteria were age <18 or >80 years, pregnancy, body mass index (BMI) >30 kg/m², diabetes mellitus, systemic infection, thyroid and liver diseases, renal impairment, use of medications against H pylori infection (mean±SD)

Table 1 Plasma leptin and ghrelin levels in patients with CD and controls with or without H pylori infection (mean±SD)

Disease activity	CD	H pylori-infected	H pylori-uninfected
Active (n=5)	220.6±98.8	4.7±4.1	19.9±4.5
Inactive (n=23)	202.3±86.4	3.6±2.4	20.6±2.7

Table 2 Plasma leptin and ghrelin levels in terms of various parameters (mean±SD)

Disease location	Cholecystitis (n=15)	Leptin (ng/mL)	Body mass index
Small intestine	213.4±85.8	4.4±2.5	21.3±0.8 (16.4-28.5)
Large intestine	246.4±83.83	4.2±3.3	20.9±2.4 (15.7-26.7)
Small and large intestine (n=15)	213.4±85.1	4.4±2.5	21.3±0.8 (16.4-28.5)

Plasma leptin and ghrelin concentrations

Blood samples were taken between 9 and 11 a.m. after an overnight fast, transferred into chilled tubes containing ethylenediaminetetraacetic acid-2Na and aprotonin, stored on ice during collection and centrifuged. Then, the plasma was separated, and stored at -80°C until assay. Plasma ghrelin concentrations were measured in duplicate by radioimmunoassay (RIA), as described previously.[17] This assay system employs a rabbit polyclonal antibody against the C-terminal fragment of human ghrelin. Plasma leptin concentrations were measured in duplicate by commercial RIA kit (Linco Research Co., St. Charles, USA), based on the protocol provided by the manufacturer.

Detection of H pylori infection

H pylori status was assessed by anti-H pylori immunoglobulin G antibody (HELP TEST, an enzyme linked immunosorbent assay kit, AMRAD Co., Melbourne, Australia) using the stored plasma and 13C-urea breath test (UBiT, Otsuka Pharmaceutical Co., Tokyo, Japan).

Statistical analysis

Statistical analyses were performed using Fisher's exact, χ^2 Student's t, Mann-Whitney U, Kruskal-Wallis, Spearman's rank, and Wilcoxon signed ranks tests, as appropriate. $p<0.05$ was considered statistically significant. Data were expressed as mean±SD.
RESULTS
There were no significant differences in ghrelin levels between CD patients and H. pylori-negative controls (Table 1). However, circulating ghrelin levels were significantly lower in H. pylori-infected subjects than in CD patients (P<0.01, Table 1) and controls negative for the infection (P<0.05, Table 1). On the other hand, circulating leptin levels were comparable between the groups (Table 1).

Other parameters such as disease activity, localization and medication profile and H. pylori status had no significant impact on circulating ghrelin and leptin levels (Table 2).

There was a significant positive correlation between plasma leptin levels and BMI (r = 0.61, P<0.005). Plasma ghrelin concentrations tended to decrease with increase in BMI, albeit insignificantly. There was no significant correlation between circulating ghrelin and leptin levels.

DISCUSSION
Our results suggest that circulating ghrelin levels are not altered in CD patients who mainly consisted of those with the inactive disease. In our study, plasma concentrations of leptin, the opposing metabolic counterpart of ghrelin[10-13], were not affected by the disease. In addition, there were no significant association of such factors as localization and medication profile with circulating ghrelin and leptin. These findings suggest that alterations in these hormones involved in appetite and energy metabolism are unlikely to mediate nutrition state in CD. However, these results must be interpreted within the context of the limitations in our study. First, the sample size was relatively small. Second, severe patients with wasting symptoms or malnutrition were not enrolled in this study, as it was in the outpatient-based setting. Although our series were not associated with upper gastrointestinal lesions, where ghrelin is primarily produced[10,17], such involvement might have an impact on the circulating ghrelin levels.

Murch et al[20] demonstrated that suppression of growth velocity in children with CD correlates with circulating tumor necrosis factor (TNF) alpha concentrations. In cachectic state, a positive correlation has been found between ghrelin and TNF alpha circulating levels[13]. On the other hand, there is a significant association between serum levels of leptin and TNF receptor 1[20]. We did not measure TNF alpha and TNF receptor 1 levels in the present series of CD, but accumulating evidence indicates that the TNF system is activated in CD[21].

Recently, Suzuki et al[15] demonstrated that H. pylori infection modifies gastric and plasma ghrelin dynamics in Mongolian gerbils. There are contradictory reports on the relationship between H. pylori and ghrelin. A Turkish study reported that H. pylori has no effect on plasma ghrelin levels[21], whereas a British study demonstrated that circulating ghrelin increases following the cure of H. pylori infection[16]. In our series, the principal determinant of circulating ghrelin might be the H. pylori status. The exact reason for such a discrepancy is not clear, but the following factors should be considered: differences in the study populations of diverse races, nutrient status and dietary habits, small sample size and inadequate assessment of H. pylori status, i.e., only by histology, leading to underestimation of infection in their series[21]. In turn, circulating leptin concentrations are not associated with H. pylori status, consistent with previous reports[8,22]. On the other hand, plasma leptin concentrations significantly correlate with BMI, as the primary contributor of circulating leptin is exclusively the adipose tissue[6].

In conclusion, CD itself has no significant influence on the circulating levels of leptin and ghrelin. Further evaluation of a larger population with the active disease or response to medical treatment including parenteral and enteric nutrition and infliximab is warranted. Plasma ghrelin dynamics may be affected by H. pylori status in human beings.

REFERENCES
1 Forbes A. Review article: Crohn's disease--the role of nutritional therapy. Aliment Pharmacol Ther 2002; 16 Suppl 4: 48-52
2 Goh J, O'Morain CA. Review article: nutrition and adult inflammatory bowel disease. Aliment Pharmacol Ther 2003; 17: 307-320
3 Schneeweiss B, Lochs H, Zauner C, Fischer M, Wyatt J, Maier-Dobersberger T, Schneider B. Energy and substrate metabolism in patients with active Crohn's disease. J Nutr 1999; 129: 844-848
4 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425-432
5 Coleman DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 1978; 14: 141-148
6 Faggioni R, Feingold KR, Grunfeld C. Leptin regulation of the immune response and the immunodeficiency of malnutrition. FASEB J 2001; 15: 2565-2571
7 Bado A, Levasseur S, Attoub S, Kermorgant S, Laiguen JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre-Millo M, Le Marchand-Brustel Y, Lewin MJ. The stomach is a source of leptin. Nature 1998; 394: 790-793
8 Azuma T, Sato H, Ito Y, Ohtani M, Dojo M, Kuriyama M, Kato T. Gastric leptin and Helicobacter pylori infection. Gut 2001; 49: 324-329
9 Sobhani I, Bado A, Vissuzaine C, Buyse M, Kermorgant S, Laiguen JP, Attoub S, Lehy T, Fenin D, Mignon M, Lewin MJ. Leptin secretion and leptin receptor in the human stomach. Gut 2000; 47: 178-183
10 Blaser MJ, Atherton JC. Helicobacter pylori persistence: biology and disease. J Clin Invest 2004; 113: 321-333
11 Murray CD, Kamn MA, Bloom SR, Emmanuel AV. Ghrelin for the gastroenterologist: history and potential. Gastroenterology 2003; 125: 1492-1502
12 Selva S, Scaltrini S, Bordoni M, Labatti L, Cristofori GB, Trauzzi R, Meloni G. Methods for protecting the spinal cord in surgery of the thoraco-abdominal aorta. Minerva Anestesiol 1992; 58: 1123-1125
13 Gale SM, Castracane VD, Mantzoros CS. Energy homeostasis, obesity and eating disorders: recent advances in endocrinology. J Nutr 2004; 134: 295-298
14 Beales IL, Calam J. Interleukin 1 beta and tumour necrosis factor alpha inhibit acid secretion in cultured rabbit parietal
cells by multiple pathways. Gut 1998; 42: 227-234

15 Suzuki H, Masaoka T, Hosoda H, Ota T, Minegishi Y, Nomura S, Kangawa K, Ishii H. Helicobacter pylori infection modifies gastric and plasma ghrelin dynamics in Mongolian gerbils. Gut 2004; 53: 187-194

16 Nwokolo CU, Freshwater DA, O’Hare P, Randeva HS. Plasma ghrelin following cure of Helicobacter pylori. Gut 2003; 52: 637-640

17 Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 2000; 141: 4255-4261

18 Murch SH, Lamkin VA, Savage MO, Walker-Smith JA, MacDonald TT. Serum concentrations of tumour necrosis factor alpha in childhood chronic inflammatory bowel disease. Gut 1991; 32: 913-7

19 Nagaya N, Uematsu M, Kojima M, Date Y, Nakazato M, Okumura H, Hosoda H, Shimizu W, Yamagishi M, Oya H, Koh H, Yutani C, Kangawa K. Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors. Circulation 2001; 104: 2034-2038

20 Blanco Quirós A, Arranz Sanz E, Garrote Adriados JA, Oyáguez Ugidos P, Calvo Romero C, Alonso Franck M. The tumor necrosis factor system and leptin in coeliac disease. An Esp Pediatr 2001; 55: 198-204

21 Gokcel A, Gumurdulu Y, Kayaselcuk F, Serin E, Ozer B, Ozsahin AK, Guvener N. Helicobacter pylori has no effect on plasma ghrelin levels. Eur J Endocrinol 2003; 148: 423-426

22 Shimzu T, Satoh Y, Yamashiro Y. Serum leptin and body mass index in children with H pylori infection. Gut 2002; 51: 142