Involvement of Wnt Signaling Pathways in the Metamorphosis of the Bryozoan Bugula neritina

Yue Him Wong¹, Hao Wang¹, Timothy Ravasi², Pei-Yuan Qian¹*

1 KAUST Global Collaborative Research Program, Division of Life Sciences, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China; 2 Department of Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, The Kingdom of Saudi Arabia

Citation: Wong YH, Wang H, Ravasi T, Qian P-Y (2012) Involvement of Wnt Signaling Pathways in the Metamorphosis of the Bryozoan Bugula neritina. PLoS ONE 7(3): e33323. doi:10.1371/journal.pone.0033323

Editor: Henry H. Roehl, University of Sheffield, United Kingdom

Received November 1, 2011; Accepted February 7, 2012; Published March 20, 2012

Copyright: © 2012 Wong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by an award (SA-C0040/UK-C0016) made by KAUST (King Abdullah University of Science and Technology) to PYQ. The webpage of KAUST GCR office: http://www.kaust.edu.sa/research/grc/sap.html?submenuheader = 2. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: boqianpy@ust.hk

Abstract

In this study, we analyzed the metamorphosis of the marine bryozoan Bugula neritina. We observed the morphogenesis of the ancestrula. We defined three distinct pre-ancestrula stages based on the anatomy of the developing polypide and the overall morphology of pre-ancestrula. We then used an annotation based enrichment analysis tool to analyze the B. neritina transcriptome and identified over-representation of genes related to Wnt signaling pathways, suggesting its involvement in metamorphosis. Finally, we studied the temporal-spatial gene expression studies of several Wnt pathway genes. We found that one of the Wnt ligand, BnWnt10, was expressed spatially opposite to the Wnt antagonist BnsFRP within the blastemas, which is the presumptive polypide. Down-stream components of the canonical Wnt signaling pathway were exclusively expressed in the blastemas. Bnβcatenin and BnFz5/8 were exclusively expressed in the blastemas throughout the metamorphosis. Based on the genes expression patterns, we propose that BnWnt10 and BnsFRP may relate to the patterning of the polypide, in which the two genes served as positional signals and contributed to the polarization of the blastemas. Another Wnt ligand, BnWnt6, was expressed in the apical part of the pre-ancestrula epidermis. Overall, our findings suggest that the Wnt signaling pathway may be important to the pattern formation of polypide and the development of epidermis.

Introduction

Life began in oceans and marine invertebrates were the first to evolve [1]. Marine larval metamorphosis is therefore more ancient than terrestrial metamorphosis. Understanding marine larval metamorphosis is the key to unmask the evolutionary history of the animal kingdom [1,2,3,4]. To understand how metamorphosis is evolved in different taxa and ultimately the evolution origin of animals, we need extensive understanding on the molecular mechanisms of development in different marine invertebrate taxa. Yet, comparing to what we know about the terrestrial vertebrates is evolved in different taxa and ultimately the evolution origin of animals, we need extensive understanding on the molecular mechanisms of development in different marine invertebrate taxa. Yet, comparing to what we know about the terrestrial vertebrates. Bryozoans, also known as ectoprocts [5], belong to the protostomal lophophorchozoa clade, which is the third major branch of bilaterian animals [6]. The molecular mechanisms of metamorphosis in Bryozoans are largely unknown. Among the phylum, anatomical changes during the initial metamorphosis in Bugula neritina were previously observed in great detail [7,8,9,10]. B. neritina larvae can be obtained in large numbers and their synchronous metamorphosis can be easily triggered [11,12], making it a good species for study. In addition, during metamorphosis, the polypide, consisting of the lophophore, digestive tract, nerve ganglia and most of the musculature, and the cystid, consisting of the epidermis and a tightly calcified chitinous housing, are built de novo [8,13,14]. These dramatic transformations make B. neritina a good model for the study of morphogenesis in bryozoans.

Recently, our lab generated a transcriptome dataset from various metamorphic stages of B. neritina [15]. Based on the results from GO annotation and KEGG mapping, we suggested that Wnt signaling pathways should play a major role during the metamorphosis of B. neritina. The canonical Wnt pathway is activated by the binding of Wnt ligand to the receptor Frizzled [16]. The Wnt/Frizzled binding inhibits degradation of the key protein β-catenin and leads to the cytoplasmic accumulation of β-catenin, which is translocated into the nucleus [17]. Nucleated β-catenin binds with Tcf/Lef transcription factors and activates target genes that regulate cell proliferation [18,19,20]. In non-canonical signaling pathways, activation of down-stream activities is independent of β-catenin and relies on different signal transduction mechanisms [21,22]. While the non-canonical Wnt pathways were implicated in planar cell polarization [23] and convergent extension in tissue growth [24], the canonical Wnt pathway is broadly used by animals, ranging from vertebrates to planarians, to pattern the primary body axis. In pre-bilaterians such as sponges, hydras and cnidarians, which have an oral-aboral axis with overt radial symmetry about it, the canonical Wnt pathway controls animal-vegetal axial patterning during embryogenesis as well as oral-aboral axial patterning during metamorphosis [24,25]. In bilateralans, the canonical Wnt signaling has been implicated in dorsal-ventral (D-V) axis patterning as well as anterior-posterior...
(A-P) axis specification during embryonic as well as post-
embryonic development in nematodes, planarians and various
vertebrate models [26,27,28,29]. In nearly all examined animals,
Wnts were posteriorly expressed whereas Wnt inhibitors were
expressed in the anterior pole. Such a highly conserved expression
pattern together with the results from gene perturbation
experiments suggested that Wnts may be important universal
posteriorizing factors [30,31]. We wondered whether or not and
how the Wnt pathway regulates axial patterning in bryozoans.
Specifically, we would like to know if Wnts expression also bias
toward the posterior end in bryozoans.

In this study, we firstly studied the anatomy of pre-ancestrula at
different time points by Hematoxylin Eosin (HE) staining and
Toluidine blue staining. We staged the metamorphosis of B. neritina
into different pre-ancestrula stages (the intermediate metamorphic
stages). We then preformed DAVID, an annotation based
enrichment analytical tool, to identify over-represented KEGG
pathways in B. neritina transcriptome. Finally, we profiled the
spatio-temporal expression patterns of two Wnts, the antagonist
FRP, three Frizzleds, β-catenin and GSK3β in different pre-
ancestrula stages.

Results
Histology of pre-ancestrula stages
All the time points discussed below refer to Fig. 1A and Fig. 1B.
A set of portraits (Fig. 1C) modified from [8] and based on the
results from histological staining shows the anatomy of B. neritina at
various pre-ancestrula stages. The detailed histology of B. neritina
larvae was reported in [8] and [9]. In this paper, we will refer to
the primary axis of swimming larva and pre-ancestrula as anterior-
posterior (A-P) axis and apical-basal axis respectively. The larval
A-P axis is defined based on larval swimming direction and is
corresponding to aboral-oral axis used in earlier histological
studies on bryozoans larvae [7,8,9,10]. In marine benthos biology,
the apical-basal axis is generally used to represent the primary axis
of sessile invertebrates such as hydars and sponges [32,33]. The
basal end is referred as the end where organism attached to the
substrate and the apical end is referred as the end furthest from the
attachment. The apical-basal axis of pre-ancestrula should not be
confused with the cellular axis of epithelial cells.

Previous studies described two phases in the metamorphosis of
B. neritina. The first phase is short, characterized by drastic
morphological changes, while the second phase is characterized by
the gradual development of polyplid from the blastemas and the
development of cystid from the internal sac. Here, we divided the
second phase into three stages: the early pre-ancestrula, the mid
pre-ancestrula, and the late pre-ancestrula stages.

The early pre-ancestrula stage (0–4 h post-attachment). In
the early pre-ancestrula stage, continuous proliferation of the apex
of the epidermis results in the elongation of the body of the pre-
ancestrula [9], transforming the pie-shaped pre-ancestrula at 1 h
post-attachment into a tubular body at 4 h post-attachment. At 4 h
post-attachment, a basal adhesion disc, consisting of fibrous
longitudinal cells as shown in both the HE stain and the Toluidine
blue stain, can be identified (highlighted in red boxes in Fig. 1A and
1B). A layer of shell material is also visible outside the epidermis
(indicated by arrows in Fig. 1A and 1B). The blastemas are
internalized during the first phase of metamorphosis, with both the
epidermal and mesodermal blastemas fold inward and the epidermal
blastema interior to the mesodermal blastema. The blastemas
eventually become a U-shaped tissue with an apical-to-basal
orientation (Fig. 1). We divided the blastemas into the apical half
(apical blastemas), which develops into the lophophore, and the basal
half (basal blastemas), which develops into the pharynx and the
stomach. During the early pre-ancestrula stage, there is no obvious
differentiation of the blastemas, except that the whole tissue increases
in length.

The mid pre-ancestrula stage (8–16 h post-attachment). The
beginning and duration of this stage are variable. In this stage, the tubular body continues to elongate until it
reached around 800 μm. The mesodermal blastema and the
internalized larval pallial epithelium differentiate into the tentacle
sheath, a layer of cells that separates the epidermal blastema from
the parenchyme cells. The basal epidermal blastema first
differentiates into a hollow sphere and subsequently into a
hollow tube. Concomitantly, the apical epidermal blastema
undergoes substantial proliferation and differentiation until, at
12 h post-attachment, a structure with finger-like protrusions is
visible.

The late pre-ancestrula stage (24–36 h post-attachment). This
stage is characterized by the presence of coleomic cavity. Parenchyme cells extended from the point where the
polyplid attached to the basal adhesion disc. At this stage, the
length of the body no longer increases. The pharynx is emerging
from the region above the basal epidermal blastema below the
apical epidermal blastema and the basal epidermal blastema are
developing into the stomach. The apical epidermal blastema
develops into a palm-like structure, with a ring of growing
tentacles radiating from the base of the lophophore.

Database for Annotation, Visualization and Integrated
Discovery (DAVID) analysis on B. neritina transcriptome
A list of over-represented KEGG pathways is shown in Table 1.
Majority of the enriched KEGG pathways are related to fatty acid or
amino acid metabolisms. For instance, TCA cycle is found to be
5.99 folds over-represented and was the most enriched KEGG
pathway. Several enriched KEGG pathways, such as RNA
polymerase (5.07 folds enrichment), Aminoacyl-tRNA biosynthesis
(3.11 folds enrichment) and Ribosome (2.93 folds enrichment) are
related to translation and transcription. In term of signal
transduction pathways, Wnt signaling pathways are found to be
over-represented. More than two-folds enrichment is detected. 22
genes in the transcriptome are associated with Wnt signaling
pathways.

RACE and gene orthology
The full-length cDNA of BnWnt6, BnWnt10, BnFz5/8, BnFz1/9/10, BnsFRP, BnGSK3β, and Bnβ-catenin, and the partial cDNA of
BnFz1/2/7 are isolated and sequenced. The gene orthologies of
BnWnt6, BnWnt10, BnFz1/2/7, BnFz5/8/10, BnFz5/8 and BnsFRP
are supported by phylogenetic analysis using Maximum Likeli-
hood method (Fig. S1). The full-length cDNA sequences were
deposited to Genebank. Their NCBI accession numbers and blastx
results are summarized in Table 2. BnWnt6 full length transcript
encoded a 339-aa protein with signal peptide (Fig S2A), 23
conserved Cys residues and two Asn-linked glycosylation sites (Fig.
S3A). BnWnt10 full length transcript encoded a 366-aa protein
with signal peptide (Fig S2B), 24 conserved Cys residues, two Asn-
linked glycosylation sites (Fig. S3B). BnsFRP was also predicted to
have a signal peptide in the N-terminal. (Fig S2C).

Temporal gene expression patterns
The results of qRT-PCR assays are shown in Fig. 2. The gene
expression levels in swimming larvae were taken as the base point
for comparison in each analysis. Among the eight genes, the
temporal gene expression patterns of BnWnt6, BnWnt10, BnFz1/2/7,
BnsFRP, and Bnβ-catenin were similar. Their expression levels

peaked in the early pre-ancestrula stage, decreased in late the pre-ancestrula stage and then increased in the ancestrula stage to the same level as in the early pre-ancestrula stage. The gene expression levels of *BnFz5/8* and *BnFz4/9/10* were more stable, with less than a single-fold fluctuation, during the full metamorphosis.

BnGSK3β was substantially down-regulated during the two pre-ancestrula stages but was up-regulated during the ancestrula stage.

Spatial gene expression patterns

BnuWnt6. The results of *BnuWnt6* Whole mount in situ Hybridization (WISH) and a section of WISH are showed in Fig. 3. *BnuWnt6* was expressed in the dorsal side of the wall region of the internal sac. During the attachment process, *BnuWnt6*-expressing cells become part of the apical epidermis peripheral to the central axis. At 2 h post-attachment, *BnuWnt6* expression was...
restricted to a small patch of cells on the apical epidermis just below the apex.

BnWnt10 and downstream components of the canonical Wnt pathway. The result of WISH (Fig. 4A) and a section of WISH (Fig. 4B) for all genes examined in this study except BnWnt6 were showed in Figure 4. In the larval stage, BnWnt10 was expressed at the intersection between the epidermal and mesodermal blastemas peripheral to the central neural plate. BnsFRP was also expressed in the blastemas, but close to the central neural plate. The three Frizzled receptors, Bnbcatenin and BnGSK3β, were expressed exclusively in the blastemas but not in the central neural plate (Fig. 4C).

Table 1. Enriched KEGG pathways identified by DAVID analysis.

KEGG Term	KEGG pathway name	Count*	P value	Fold Enrichment
cel00020	Citrate cycle (TCA cycle)	6	0.00235	5.99
dre00620	Fatty acid elongation in mitochondria	7	6.60E-04	5.58
mmu03020	RNA polymerase	11	2.41E-05	5.07
dre00670	One carbon pool by folate	7	0.00179	4.79
dre00630	Glyoxylate and dicarboxylate metabolism	6	0.00759	4.42
dre00280	Valine, leucine and isoleucine degradation	18	2.08E-07	4.2
dre00071	Fatty acid metabolism	14	1.15E-05	4.06
dre00660	Glycine, serine and threonine metabolism	12	1.20E-04	3.83
mmu03018	RNA degradation	18	2.64E-06	3.73
dre00640	Propanoate metabolism	12	1.68E-04	3.71
mmu03040	Spliceosome	36	1.36E-11	3.61
has03500	Proteasome	13	4.13E-04	3.24
dre00970	Aminoacyl-tRNA biosynthesis	12	9.54E-04	3.11
mmu00620	Pyruvate metabolism	10	0.00436	3.04
mmu00240	Pyrimidine metabolism	23	4.62E-06	2.98
has03010	Ribosome	21	2.84E-05	2.83
mmu00330	Arginine and proline metabolism	12	0.0027	2.82
mmu04520	Adherens junction	14	0.00677	2.29
mmu04142	Lysozyme	20	0.00268	2.09
mmu04120	Ubiquitin mediated proteolysis	22	0.0025	2.01
mmu00230	Purine metabolism	25	0.00146	1.98
mmu05016	Huntington’s disease	27	0.00274	1.84
mmu04310	Wnt signaling pathway	22	0.00743	1.84
has04144	Endocytosis	27	0.0065	1.72

*number of genes in the B. neritina transcriptome associate with the corresponding KEGG pathway. fold of enrichment (over-represented) compare to the corresponding genomic background.
doi:10.1371/journal.pone.0033323.t001

Table 2. Blastx results in comparison with the full-length cDNA of corresponding genes.

Name	NCBI accession no.	Blastx results	
Accession	Description	E value	
BnWnt6	JN900459	ABY53107.1 Wnt6 [Xenopus laevis]	9E-92
BnWnt10	JN900460	AAC34389.1 Wnt10b [Takifugu rubripes]	1E-74
BnsFRP	JN900461	NP_571933.1 secreted frizzled-related protein 5 [Danio rerio]	1E-54
Bnbcatenin	JN900462	ADI48181.1 beta-catenin [Crepidula fornicata]	0
BnGSK3β	JN900463	XP_003226831.1 PREDICTED: glycogen synthase kinase-3 beta-like isoform 1 [Anolis carolinensis]	4E-173
Bnfz1/2/7	JN900464	NP_001124086.1 frizzled 1-like [Danio rerio]	4E-60
Bnfz9/4/10	JN900465	NP_989429.1 frizzled-10 precursor [Gallus gallus]	1E-113
Bnfz5/8	JN900466	AD261652.1 frizzled receptor 5/8 [Plychrodea flava]	3E-142

doi:10.1371/journal.pone.0033323.t002
Figure 2. Temporal gene expression pattern of Wnts, Frizzled receptors, β-catenin, GSK3β, and sFRP across metamorphosis of *B. neritina*. Gene expression levels at the swimming larval stage was taken as the baseline in every analysis.
doi:10.1371/journal.pone.0033323.g002

Figure 3. Expression *BnWnt6* in the larval and early pre-ancestrula stages. (A) WISH and (B) a representative section of WISH showing *BnWnt6* is originally expressed at the dorsal side of the wall region of the internal sac. *BnWnt6*-expressing cells become part of the epidermis on the apical half after larval attachment. An: anterior; Po: posterior.
doi:10.1371/journal.pone.0033323.g003
In the early pre-ancestrula stage (2 h post-attachment), \textit{BnWnt10} was expressed in the apical blastemas while \textit{BnsFRP} was expressed in the basal tip of the blastemas. Expression of \textit{BnWnt10} decreased following an apical-to-basal gradient. The three Frizzled receptors, \textit{Bn\beta cat}\textit{in} and \textit{BnGSK3\beta} continued to be expressed exclusively in the blastemas.

Starting from 4 h post-attachment, visualization of gene expression in the interior became more difficult. We therefore semi-thin sectioned samples at 4 h (early pre-ancestrula stage), 8 h, 12 h, 16 h (mid pre-ancestrula stage) and 24 h post-attachment (late pre-ancestrula stage) before performing in situ hybridization (refer as Section In Situ Hybridization SISH). Serial SISH sections of \textit{BnsFRP}, \textit{BnFz5/8} and \textit{Bn\beta cat}\textit{in} were shown in Fig. 5 and Fig. 6. \textit{BnFz5/8} and \textit{Bn\beta cat}\textit{in} were expressed exclusively in the blastemas in all stages (Fig. 6). \textit{BnsFRP} was expressed at distinct region within the developing polypide at different pre-ancestrula stages (Fig. 5). At 4 h post-attachment, \textit{BnsFRP} was still expressing at the basal epidermal blastemas. At 8 h post-attachment \textit{BnsFRP} was expressed at the intersection between the apical and basal epidermal blastema. At 16 h post-attachment, when the digestive tract is emerging from the basal epidermal blastema in the mid and late pre-ancestrula stage, \textit{BnsFRP} was expressed in the junction between the apical and basal blastemas and the exterior of the emerging digestive tract and but not in the basal pole of the polypide (Fig. 5). At 24 h post-attachment, \textit{BnsFRP} expression was detectable only at the base of the developing lophophore. The overall gene expression patterns are depicted in Fig. 7.

Discussion

In this study, we aimed at uncovering the molecular mechanisms underlying metamorphosis of \textit{B. neritina} by analyzing genes expression patterns. A basic histological reference map is needed to correctly interpret the spatial gene expression patterns. Reel \textit{et al.} [10] studied morphogenetic movements in the initiation phase of metamorphosis in detail. Woolacott \textit{et al.} [7] divided the metamorphosis into the initial phase and second phase and reported the anatomy of early and advanced (late) pre-ancestrula. In this study, we divided the second phase of the metamorphosis into three pre-ancestrula stages based on the anatomy of the
developing polypide and the overall morphology of pre-ancestrula. The mid-pre-ancestrula stage, when the pharynx and stomach are developing from the basal blastemas, was not described previously. This set up a basic histological reference map for subsequent gene expression studies. In addition, we described a novel structure, the basal adhesion disc which is characterized by elongated and interlocked fibrous cells. We speculate that the adhesion disc may provide mechanical reinforcement to pre-ancestrula. Earlier histological studies on *B. neritina* did not describe this organ.

In our previous study, we sequenced the cDNA generated from various metamorphic stages of *B. neritina* using high-throughput 454 sequencing technology. A large amount of relatively low abundant but very important genes were detected and mapped to different signal transduction pathways such as Wnt signaling pathways, the Mitogen-activated protein kinase (MAPK) pathway and the cell apoptosis pathway. This led us to hypothesize that these signal transduction pathways have major roles during larval metamorphosis in *B. neritina* [15]. Yet, we did not perform any

Figure 5. Expression pattern of BnsFRP in the mid- and late pre-ancestrula stages. (A) Serial sections of SISH of BnsFRP showing the Wnt inhibitor was expressed in distinct regions within the developing polypide. (B) Area highlighted in red box in (A) highlighted were captured using high power (100 x) objective, providing the details of BnsFRP expression in the developing polypide. (C) Portrait depicts the anatomy of the developing polypide and the expression pattern of BnsFRP, which was indicated by blue color. In the early pre-ancestrula stage (4 h post-attachment) BnsFRP was expressed in the basal blastemas. In the mid-pre-ancestrulae stage, BnsFRP is expressed at the intersection between the apical and basal blastemas (8 h post-attachment) as well as in the exterior of the stomach (16 h post-attachment). In the late pre-ancestrula stage, BnsFRP is expressed in the base of the lophophore, but not in the pharynx or stomach.

doi:10.1371/journal.pone.0033323.g005
enrichment analysis to support our prediction. In this study, we analyzed the *B. neritina* transcriptome dataset using the Database for Annotation, Visualization and Integrated Discovery (DAVID) tool. The underlying principle of DAVID enrichment analysis is that, in any biological sample, if a biological process is abnormal in a given study, co-functioning genes or genes in relevant groups should have higher chance to be detected by high throughput screening technologies and hence over-represented in the corresponding gene list [34]. A gene list containing 7183 annotated contigs from the *B. neritina* transcriptome was submitted to DAVID enrichment analysis. We found significant enrichment of KEGG pathways related to energy metabolism and translation and transcription, which suggested intense energy consumption and active cellular proliferation during metamorphosis. This findings are in concert with the results from our previous proteomic analysis, which found substantial up-regulation of

Figure 6. Expression pattern of (A) *BnFz5/8* and (B) *Bnβcat* in the mid- and late pre-ancestrula stages. Both *BnFz5/8* and *Bnβcat* are expressed exclusively in the blastemas during metamorphosis. Gene expressions were indicated by blue color. doi:10.1371/journal.pone.0033323.g006

Figure 7. Overall summary of spatial gene expression patterns. Green: *BnWnt6*; Red: *BnsFRP*; Blue, *BnWnt10*; Purple: *BnFz4/9/10, BnFz5/8* and *Bnβcat*. Note that the purple zone in the mid- and late pre-ancestrula stages did not include *BnFz4/9/10, BnFz5/8, BnWnt10* and *Bnβcat*. doi:10.1371/journal.pone.0033323.g007
proteins directly involved in or indirectly related to energy metabolism and de novo protein synthesis [33]. More importantly, consistent with our prediction, we found that genes related to Wnt signaling pathways were over-represented in the B. neritina transcriptome, suggesting that Wnt pathways may have important functions in the metamorphosis.

The results from the qRT-PCR assay further supported the argument that Wnt pathways are important signal transduction pathways in the metamorphosis of B. neritina. The relative gene expression levels of BnWnt6, BnWnt10, and downstream components BnFz1/2/7, and Bnfcatin, substantially increased during metamorphosis while an opposite trend in the expression level of the negative regulator, Bngsk3β, was observed. Co-expression of BnWnt10 and Bnfcatin in the blastemas suggested that the canonical Wnt signaling pathway is involved in the development of polypide from the blastemas. In the larval stage and the early pre-ancestrula stage (2 h post-attachment), BnWnt10 and BnsFRP expressions were spatially opposite to each other in the blastemas. Throughout metamorphosis, BnsFRP expression was detected in the bottom part of the apical blastema, the upper part of the basal blastema and the exterior of the developing digestive tract. However, it never at the top of the apical blastemas.

Wnt ligands are known morphogens [36,37] while sFRP is one of the antagonists that counteract Wnt signaling [38,39]. The Wnt/B-catenin activity gradient as well as Wnt inhibitors such as sFRP expression act as graded positional cues to establish the primary body axis and latter direct cell specification in embryogenesis, post-embryonic development and development of multiple tissues [36,37,40,41]. For instance, Wnt genes participate in epithelial-mesenchymal signaling and may specify region identity in the anterior foregut in mouse embryo [42]. Based on the spatial gene expression patterns and knowledge on the function of Wnts and sFRP in tissues patterning, we hypothesize that, as early as the larval stage, BnWnt10 and BnsFRP set up a local positional signal in the blastemas. During metamorphosis, local expressions of BnWnt10 and BnsFRP patterned the blastemas. BnWnt10 expression triggers the canonical Wnt pathway and results in the development of lophophore from the apical blastemas. On the other hand, BnsFRP inhibits the canonical Wnt pathway activity, leading to the development of digestive tract from the basal blastemas.

It was proposed that the central role of Wnt signaling is to promote posterior rather than anterior aspects of animal tissues [30,31]. In almost all examined bilaterians, Wnts were expressed in the vegetal pole of embryos or the posterior of larval or post-embryonic forms [30]. The A-P axis, which is the primary axis of bilaterians, defines the mouth as the anterior and the anus as the posterior [43]. Bryozoans have a U-shape digestive tract. The relative gene expression patterns of BnWnt6 and BnsFRP in the emerging lophophore and, at the same time, relate to the differentiation of the pharynx, which is the anterior portion of the digestive tract. Numerous spatial expression studies have pointed out the requirement of sFRP in gut development in both vertebrates and invertebrates [44,45,46]. For instance, sFRP1 and sFRP2 might mediate mesenchymal induction of stomach epithelium in mouse [42]. Inactivation of sFRP1 and sFRP2 leads to a reduction in fore-stomach length in mouse embryos [47]. Negative regulation of Wnt5a signaling by sFRP was suggested to control orientation of cell division and apicobasal polarity in the epithelium of developing gut [47].

The exact functions of BnWnt10 and BnsFRP have to be confirmed by gene perturbation experiments. If BnWnt10 and BnsFRP were indeed patterning the lophophore or the polypide as a whole, perturbation of their expression should give rise to distinct phenotypes. We predict that, for example, knockdown of BnWnt10 will produce ancestrulae with defective lophophores or ectopic digestive tracts, and vice versa for knockdown of BnsFRP. Unfortunately, gene manipulation techniques have not been established in any bryozoan species.

Another Wnt ligand, BnWnt6, was expressed in the apical part of the developing epidermis. The pre-ancestrula epidermis will become the living part of the ancestrula cystid and is responsible for synthesis of the chitinous calcified shell during metamorphosis. In chick embryo, Wnt6 acts through the β-catenin-independent non-canonical pathway. And Wnt6 expression, derived from the ectoderm, is necessary for chick neural crest induction [48]. In this study, we did not detect co-localization of BnWnt6 and Bnfcatin expression, suggesting that BnWnt6 also acts through the β-catenin-independent non-canonical pathway. So far, there is no study reporting the function of that particular apical field of epidermal cells. Whether BnWnt6 expression is related to the axial development of ancestrula or associated with stem cells [49] in the epidermis remains to be elucidated. Additional spatial expression analysis of BnWnt6 on the latter pre-ancestrula and ancestrula stages may give us more hints on the possible role of BnWnt6 in the morphogenesis of ancestrula. Interestingly, Fuch et al. [50] reported that another Wnt ligand, BnWnt1, was expressed in a different region of the internal sac - the neck-wall region junction. Our result could be supportive of their claim that the internal sac is regionalized and its cells might be differentially involved in adult body wall patterning.

To conclude, we have examined the gene expression patterns of various components of Wnt signaling pathways. The results suggested that the canonical Wnt pathway may be involved in the development of polypide. In particular, apical BnWnt10 and basal BnsFRP expression within the blastemas suggested a possible role for the canonical Wnt pathway in patterning the polypide as a whole or only the lophophore. However, BnWnt10 and BnsFRP expression patterns are different from a posterior Wnt and anterior Wnt inhibitors expression patterns observed in other bilaterians. On the other hand, BnWnt6 was expressed in the apical epidermis. We speculate that BnWnt6 acts through non-canonical Wnt pathway and may be associated with the development of the epidermis. This study suggested, for the first time, a possible role of Wnt signaling in pattern formation in bryozoan lophophores/polypides.

Materials and Methods

Larval sample preparation

Adult B. neritina colonies were collected from the floating rafts of a fish farm in Trio Beach, Hong Kong (22°21′19″ N, 114°16′15″E) between February and April, 2010. Permission to collect B. neritina
colonies from the fish farm was given by the fish farm owner. Adult colonies were maintained in a 21°C flow-through seawater system at the Coastal Marine Laboratory (Hong Kong University of Science and Technology) for no more than 7 days before use.

Free-swimming larvae were collected according to the procedures described in our previous study [15]. B. neritina larvae were induced to metamorphose by placing them in the dark for one hour. Larvae that did not attach after one hour were discarded. At different time points after their initial attachment, samples of the various pre-ancestrula stages (intermediate stage of metamorphosis) specified by the number of hour(s) post-attachment and the ancestrula stage (the first zooid or juvenile, 52 h post-attachment) were collected for sectioning or whole mount in situ hybridization. They were then fixed with fixative and then scraped off from the petri-dish, or, for molecular studies, directly scraped off and stored under cryogenic conditions until further use.

Specimen embedding and histological staining

Swimming larvae and pre-ancestrulae at various time points (1 h, 2 h, 4 h, 8 h, 16 h and 24 h post-attachment) were fixed in 4% paraformaldehyde in autoclaved filtered seawater for 1 h at room temperature. Samples were then dehydrated in ethanol and stored at −20°C until further use. Paraffin (McCormick Scientific, Richmond, IL, United States) embedding was performed according to the standard protocol. Semi-thin sections (7 μm) were prepared by a Leica 820II microtome (Leica instruments GmbH, Nussloch, Germany). Around 10 sections were placed on one polylysine coated slide and allowed to dry under a frame hood for 2 h. The sections were then de-waxed in xylene for 5 min and then rehydrated in descending concentrations of ethanol (100%, 95%, 90%, 75%, 50%, MilliQ water), Hematoxylin and Eosin staining and Toluidine blue staining were performed according to the procedures described in our previous study [15]. Histological stained sections were then mounted on a Dpx mounting fluid (Fluka, St. Louis, MO, United States) and visualized with a microscope under a bright-field illumination setting.

DAVID analysis of the Bugula neritina transcriptome

The B. neritina transcriptome was blasted against the newest version of the uniprot database (released in July 2011) in the blastx mode using in-house scripts. With the E value cutoff at 1e−8, a total of 7234 genes had significant matches in the database. This gene list (uniprot accessions numbers provided in the supplementary information) was submitted to the DAVID webpage (DAVID v6.7) [52] for analysis. The detailed procedures and underlying statistics of DAVID can be found in [34] and [53]. The human (Homo sapiens), mouse (Mus musculus), zebrafish (Danio rerio), fruitfly (Drosophila melanogaster), and nematode (Caenorhabditis elegans) genomes were selected as the background, because these genomes have the most detailed annotations available. The results of the enrichment analysis by DAVID were filtered with the enrichment P value cutoff at 0.01 which is more stringent than recommended (≤0.05) [53].

Rapid amplification of cDNA ends (RACE)

Total RNA was isolated from swimming larvae and samples from the early pre-ancestrula (4 h post-attachment), the late pre-ancestrula (24 h post-attachment), and the ancestrula stages using TRIZol Reagent (Invitrogen, Carlsbad, CA, United States). Total RNA extraction and cDNA synthesis procedures for the RACE template are given in [15]. Gene specific primers (GSPs) of Wnt pathway-related genes were designed based on the annotated sequence of the reads from the B. neritina transcriptome (NCBI accession number: SRA010777.2). The sequence of the reads and the corresponding gene-specific primers are listed in Table S1. The cDNA template for the 3’ RACE was prepared by adding an oligo dC tail to the 3’cDNA ends by a terminal deoxynucleotidyl transferase (TdT) (USB, Cleveland, Ohio, United States) reaction. Nested PCR was performed such that the gene-specific 3’RACE1 primer and an oligo(dG)10-adaptor primer were used for the first round of PCR. Gene-specific 5’RACE2 primer and adaptor primer were used for the second round of PCR. The 3’ RACE was the same as the 5’ RACE except that the cDNA template was not modified by the TdT reaction. An oligo(dT) adaptor primer was used instead of an oligo(dG) adaptor primer and gene-specific 3’RACE primers were used. PCR products of both 3’ and 5’ RACE were gel purified and then ligated to the pMD18-simple T vector (TaKaRa Bio Inc., Dalian, China). Transformations, insert screening, and sequencing reactions were performed as described in [15].

Gene orthology assignment and signal peptide prediction

Gene orthology assignments for all genes were determined using the bioinformatics software Mega 5.0 [54]. Reference gene sequences from different organisms were downloaded from the NCBI protein sequence database. Prior to phylogenetic analysis, reference sequences together with the corresponding B. neritina genes were aligned using clusterW according to their amino acid sequences. In Wnt genes orthology assignment, mismatches in the alignment was manually corrected according to the conserved cysteine residues and two Asn-linked glycosylation sites. We used the Maximum likelihood method to conduct phylogenetic analysis. One thousand bootstraps were calculated. Signal peptide prediction was carried out by the SignalP 3.0 Server [55].

Quantitative real-time polymerase chain reaction (qRT-PCR)

To capture the temporal expression patterns during metamorphosis, four stages—swimming larvae, early pre-ancestrulae (4 h post-attachment), late pre-ancestrulae (24 h post-attachment), and ancestrulae were chosen for qRT-PCR analysis. Total RNA extraction and cDNA synthesis procedures were the same as above except that a random hexamer primer was used in cDNA synthesis. The primer sequences are listed in Table S2. qRT-PCR assays for each gene were performed in triplicate. All of the qRT-PCR assays were carried out using iTaqSYBR Green Supermix with ROX (BioRad Life Science, Hercules, CA, United States) and were run on a Stratagene mx3000p PCR machine (Agilent Technologies, Santa Clara, CA, United States). The results were normalized using the housekeeping gene 18S of B. neritina. The relative changes were calculated using the 2−ΔΔCT method [56].

In situ hybridization (whole-mount ISH (WISH) and sections ISH (SISH))

The DNA templates for ISH RNA probe synthesis of each gene were prepared by PCR amplification of the 3’ RACE clone using the gene-specific 3’RACE2 primer and the T7-adaptor primer. Digoxigenin-labeled probes were synthesized from the PCR-product templates according to the protocol supplied with the DIG RNA labeling kit (Roche Diagnostics, Nutley, NJ, USA).

For WISH, swimming larvae and 1 h post-attachment and 2 h post-attachment pre-ancestrulae were fixed in 3.7% formalin in AFSW overnight at 4°C. To collect the pre-ancestrulae samples, swimming larvae were allowed to attach and then fixed on a 90 mm petri dish. Briefly, the fixed samples were dehydrated in 100% methanol at −20°C until further processing. The samples were rehydrated by descending concentrations of methanol in
PBS-0.1% TritonX100 (PBST). The larvae were washed and penetrated by proteinase K (New England Biolabs, Ipswich, MA, USA) treatment. Swimming larvae were incubated for 7 min while samples from the two pre-ancestulae time points were incubated for 15 min. Samples were post-fixed by 4% PFA and washed before pre-hybridization at 36°C for 1 h in a hybridization mix. RNA probe hybridization was conducted at 36°C overnight. In each hybridization, no more than a 30 ng antisense RNA probe was used. The hybridized samples were washed with hybridization mix (without sperm DNA or heparin). The samples were blocked for 1 h and then incubated in 1:5000 antiDIG-AP antibody (Roche Diagnostics, Mannheim, Germany) at 4°C overnight with orbital rotation. They were washed and then treated with alkaline Tris buffer (100 mM Tris-HCl pH 9.5, 100 mM NaCl, 50 mM MgCl2, 0.1% Tween20) before further incubation in AP stain development solution (Roche Diagnostics, Mannheim, Germany) at room temperature in the dark. Staining was stopped by TE buffer when the samples developed a blue or purple color band. The samples were visualized under a microscope (Olympus, Tokyo, Japan) with a dark-field illumination setting. The samples were visualized under a microscope (Olympus, Tokyo, Japan) with a dark-field illumination setting. The samples were visualized under a microscope (Olympus, Tokyo, Japan) with a dark-field illumination setting.

References

1. Ryan F (2010) Metamorphosis: Unmasking the mystery of how life transforms (Oneworld Publications).
2. Bishop CD, Erezylmaaz DF, Flait T, Georgiou CD, Hadfield MG, et al. (2006) What is metamorphosis? Int Comp Biol 46: 651–661.
3. Wilbur HW (1960) Complex life cycles. Annu Rev Ecol Sys 11: 67–93.
4. Marshall DJ, Morgan SG (2011) Ecological and evolutionary consequences of linked life-history stages in the sea. Curr Biol 21: 718–725.
5. Nielsen C (1971) Entoproct life-cycles and the entoproct/ectoproct relationship. Ophelia 9: 203–341.
6. Tesmar-Raible K, Ardelt D (2003) Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. Curr Opin Genet Dev 13: 331–340.
7. Woollacott RM, Zimmer RL (1971) Attachment and Metamorphosis of the Chileo-cestometone Bryozoa Bugula neritina (Linne). J MORPH 134: 351–382.
8. Woollacott RM (1977) Metamorphosis of cellulariid bryozoans. In: Chia FU, Rice ME, eds. Settlement and metamorphosis of marine invertebrate larvae. New York: Elsevier. pp 49–63.
9. Muki H, TeraKado K, Reed CG (1989) Microscopic Anatomy of Invertebrates Lophophorates, Entoprocta, and Ciliophora. In: Harrison FW, Woollacott RM, eds. Chapter 3 Bryozoa. New York: Wiley-Liss. Inc. pp 69–72.
10. Reed CG, Woollacott RM (1982) Mechanisms of rapid morphogenetic movements in the metamorphosis of the bryozoan Bugula neritina (Chordostoma, Cellulariidae). I. Attachment to the substratum. J Morpho 172: 335–348.
11. Marshall DJ, Krough MJ (2005) Variation in the dispersal potential of non-feeding invertebrate larvae: the desperate larva hypothesis and larval size. Mar Ecol Prog Ser 255: 143–153.
12. Lynch WF (1947) The behavior and metamorphosis of the larva of Bugula neritina (Linnaeus): experimental modification of the length of the free-swimming period and the responses of the larvae to light and gravity. Biol Bull 92: 115–150.

Supporting Information

Figure S1 Maximum likelihood phylogenetic orthology assignment of (A) Wnts, (B) Frizzled receptors and (C) secreted Frizzled Related Protein. (1000 bootstrap replicates).

Figure S2 Possession of N-terminal signal peptide as predicted by SignalIP 3.0. (A) BnWnt6, (B) BnWnt10 and (C) BnsFRP.

Figure S3 Alignment of (A) BnWnt6 and (B) BnWnt10 with reference sequences. Conserved cysteine residues were boldered and highlighted in red color. Signal peptides were highlighted in purple. Asn-link glycoxylation sites were highlighted in green.

Table S1 Sequence reads from the Bugula neritina transcriptome (NCBI accession number: SRA010777.2) and the corresponding gene-specific primers.

Table S2 Primers for the qRT-PCR assay.

Acknowledgments

The authors would like to thank Dr. Virginia A. Unkefer, Dr. Kiyotaka Matsumura and Ms. Cherry Kwan for their critical comments and advice. The authors would also like to express their deep gratitude to Ms. Tam Yi Ki from the Coastal Marine Laboratory, HKUST, for her technical support.

Author Contributions

Conceived and designed the experiments: YHW HW TR PYQ. Performed the experiments: YHW. Analyzed the data: YHW TR PYQ. Contributed reagents/materials/analysis tools: YHW PYQ. Wrote the paper: YHW HW TR PYQ.
26. Herman MA, Horvitz HR (1994) The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions. Development 120: 1055–1067.

27. Petersen CP, Reddien PW (2008) Smad-β-catenin-1 is required for anteroposterior blastema polarity in planarian regeneration. Science 319: 237–239.

28. Christian JL, Moon RT (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Gene Dev 7: 13–28.

29. Wiens M, Belikov SL, Kaluzhnaya OV, Krasko A, Schroeder HC, et al. (2006) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357–362.

30. Petersen CP, Reddien PW (2009) Wnt signaling and the polarity of the primary body axis. Cell 139: 1056–1068.

31. Niehrs C (2001) A morphogen gradient of Wnt/β-catenin signaling regulates anteroposterior neural patterning in Xenopus. Development 128: 4189–4201.

32. Petersen CP, Reddien PW (2008) Smed-Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357–362.

33. Grens A, Gee L, Fisher DA, Bode HR (1996) CnNK-2, an NK-2 homeobox gene, has a role in patterning the basal end of the axis in hydra. Deve Biol 180(2): 473–488.

34. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protocol 4: 44–57.

35. Zhang H, Dong YH, Wang H, Chen Z, Arellano SM, et al. (2010) Quantitative proteomics identify molecular targets that are crucial in larval settlement and metamorphosis of Bugula neritina. J Proteome Res 9(1): 349–360.

36. Charron F, Tessier-Lavigne M (2005) Novel brain wiring functions for classical Wnt signaling. J Cell Sci 112: 3815–20.

37. Zecca M, Basler K, Struhl G (1996) Secreted frizzled related protein (FRP) with Wnt ligands and the Frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J Biol Chem 272: 16180–87.

38. Cadigan KM, Fush MP, Rasmussen EJ, Nusse R (1998) Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93: 767–77.

39. Bafico A, Gazit A, Pramila T, Finch PW, Yaniv A, et al. (1999) Interaction of Wingless and β-catenin family members in Xenopus. Dev Dynamics 223(3): 260–270.

40. Herrler SR, Didmann DS, Jensen J, Miller C, Wong G, et al. (2002) Expression patterns of Wnts, Frizzleds, sFRPs, and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Deve Dynamics 223(3): 260–270.

41. Strigini M, Cohen SM (2000) Wingless gradient formation in the Drosophila wing. Curr Biol 10: 293–300.

42. Lickert H, Kispert A, Kutsch S, Kemler R (2001) Wingless gradient formation in the Drosophila wing. Cell 102: 402–408.

43. Lillie RD, Pizzolato P, Donaldson PT (1976) Nuclear stains with soluble metachrome mordant lake dyes. The effect of chemical endgroup blocking reactions and the artificial introduction of acid groups into tissues. Histochemistry 49: 23–35.

44. Heringa B, Vriend G (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 25: 1525–1535.

45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25: 402–408.