Exactly solvable Hamiltonian model of the doubled Ising and \mathbb{Z}_2 toric code topological phases separated by a gapped domain wall via anyon condensation

Yu Zhaoa,b, Shan Huanga,b, Hongyu Wanga,b, Yuting Huc, Yidun Wana,b,1

aState Key Laboratory of Surface Physics, Department of Physics, Center for Field Theory and Particle Physics, and Institute for Nanoelectronic devices and Quantum computing, Fudan University, Shanghai 200433, China

bShanghai Qi Zhi Institute, Shanghai 200030, China

cSchool of Physics, Hangzhou Normal University, Hangzhou 311121, China

E-mail: yuzhao20@fudan.edu.cn, wanghy17@fudan.edu.cn, yuting.phys@gmail.com, ydwan@fudan.edu.cn

Abstract: In this paper, we construct an exactly lattice Hamiltonian model of two topological phases separated by a gapped domain wall via anyon condensation. To be specific, we study the properties of this model in the case of the doubled Ising phase and \mathbb{Z}_2 toric code phase with a gapped domain wall in between. Our model is a concrete spatial counterpart of the phase transition triggered by anyon condensation, in the sense that the algebraically understood phenomena, such as splitting, identification, and confinement, in anyon condensation can be manifested in the spatial wavefunctions of our model. Our model also helps generalize the characteristic properties of a single topological phase: We find that the ground state degeneracy of two topological phases separated by two gapped domain walls on the torus is equal to the number of quasiparticle types in the gapped domain walls; we also find the S and T matrices of our model.
Contents

1 Introduction 1

2 A brief review of the extended Levin-Wen model 3

3 The lattice model with the gapped domain wall between the doubled Ising and \mathbb{Z}_2 toric code phases 4

4 The spectrum of elementary excitation states 6
4.1 Review of the elementary excitation states in the doubled Ising phase 6
4.2 The elementary excitation states of our model 9
 4.2.1 The elementary excitation states with quasiparticle pairs in the toric code domain 9
 4.2.2 The elementary excitation states with inter-domain quasiparticle pairs 11
 4.2.3 The excitation states with domain-wall quasiparticle pairs 13
 4.2.4 The elementary excitation states with doubled-Ising-domain-wall quasi-particle pairs 14
 4.2.5 The elementary excitation states with toric-code-domain-wall quasi-particle pairs 15

5 Correspondence with anyon condensation 16
5.1 The projection-state correspondence 17
 5.1.1 Splitting 18
 5.1.2 Identification 19
 5.1.3 Confinements 19

6 The Bases of the Ground States on the Torus 20
6.1 The domain-wall basis of the ground state subspace 20
6.2 The inter-domain basis of the ground-state subspace 22
6.3 Ground State Degeneracy on the Torus 23

7 The S and T matrices 23
7.1 The S matrix on the torus 23
7.2 The T matrix on the torus 24

A Gauge transformations of the positions of tails 27

B The matrix elements of the doubled-Ising ribbon operators 27
 B.1 Matrix elements of shortest ribbon operators 27
 B.2 Concatenating shorter ribbon operators to a longer ribbon operator 29

C Proof of the commutation in \mathcal{H}_{eff} of P_{eff} and the doubled-Ising ribbon operators 30
1 Introduction

Relations between topological phases can be established via phase transitions\cite{1–11} and via domain walls\cite{9, 12–21}. An interesting type of phase transitions between a topological phase (the parent phase) and another (possibly trivial) topological phase (the child phase) is triggered by certain anyon condensation in the parent phase. As having been extensively studied\cite{1, 6, 8}, interesting phenomena occur during such a phase transition: 1) Certain anyons, including the condensed ones, may split into a few sectors, so more precisely speaking, a condensed anyon may not fully condense but only one or more sectors in its splitting condense. This is analogous to the Higgs boson condensation in breaking the electroweak symmetry, where only a one-dimensional subspace of the two-dimensional space the Higgs boson lives in condenses. 2) Since the condensed sectors become the new vacuum, two types of sectors related by fusing with a condensed anyon in the parent phase can no longer be distinguished in the child phase and thus are identified as the same type of anyons. 3) The anyons that have trivial (nontrivial) braiding statistics with the condensed anyons are unconfined (confined) in the child phase. 4) The child phase is in fact a symmetry-enriched topological phase, with a hidden global symmetry. The hidden symmetry has been made precise in Ref. \cite{11}, which also proves a generalized Goldstone theorem of anyon condensation. Therefore, the phase transition from a parent topological phase to its child phase also belongs to the Landau-Ginzburg paradigm, however in a more general sense \cite{8, 9, 11, 22}.

Such a phase transition is temporal and is believed to correspond to a spatial gapped domain wall between the parent and child phases\cite{9, 18}. Such domain walls have been studied algebraically via category theories\cite{13, 16}. Since the Levin-Wen (LW) model\cite{23},
more specifically its extended version\cite{24, 25} \(^1\), is the most general model of 2-dimensional topological orders, can we possibly build a model that describes a parent phase and child phase with a gapped domain wall in between, based on the extended LW model? Such a Hamiltonian model would make it easy to study the properties of the gapped domain wall, the combined system, and the counterparts of the aforementioned phenomena in anyon condensation in the domain wall picture dynamically, in terms of concrete wavefunctions.

On the other hand, it is profound to see whether the properties of a single topological phase would retain or how they would adapt to a system with two topological phases separated by a gapped domain wall. For example, the number of anyon species in a 2-dimensional topological phase in any topology coincides with the ground-state degeneracy of the topological phase on the torus\cite{23, 26, 27}; the \(S\) and \(T\) matrices of the topological phase relates the basis transformations in the ground-state space to the mutual and self statistics of the anyon species\cite{28–35}. Can we see similar properties in the case with a gapped domain wall?\(^2\) The question can be answered if we have an explicit lattice Hamiltonian model of two topological phases separated by a gapped domain wall.

In this paper, we shall begin with an extended LW model describing a parent phase and trigger the anyon condensation in half of the system to construct an exactly solvable lattice model describing the parent phase and its child phase separated by a gapped domain wall. We can certainly do this in a generic extended LW model. Nevertheless, to make various properties of the model specific and explicit, we shall only write down the model in the case of the doubled Ising and \(\mathbb{Z}_2\) toric code topological phases with a gapped domain wall in between. Our model leads to the following main results.

1. We obtain the spectrum of the elementary excitation states of the system.

2. We explicitly show the correspondence between the transformations of anyons in anyon condensation with the elementary excitation states in our model.

3. We find the ground-state bases of our model on the torus, and show that the ground-state degeneracy (GSD) on the torus equals the number of quasiparticle species in the gapped domain wall.

4. We construct the \(S\) and \(T\) matrices that generate the basis transformations of the ground states on the torus.

Our model has the same input data of the extended LW model that describes the parent phase, without using any extra categorical data, and is thus as simple as the original extended LW model.

\(^{1}\)For our purpose to formulate the anyon condensation, we need the full spectrum of the elementary excitation states including the charge excitations that can not be defined in the original LW model but only in the extended version.

\(^{2}\)A special case—topological phases with gapped boundaries—with these questions has been studied before\cite{15, 36}.
A brief review of the extended Levin-Wen model

Since our model is based on the extended LW model, we first briefly review the extended LW model. To be specific and for our purposes, we consider the model that describes the doubled Ising phase.

The extended LW model is defined on a 2-dimensional honeycomb lattice (see Fig. 1a). Associated with each vertex is a tail, presented as a dangling edge near the vertex. It is arbitrary to choose the edge incident at the vertex to which to attach the tail because all choices are equivalent up to gauge transformations (Appendix A).

The input data of the extended LW model describing the doubled Ising phase is a set $L_{DI} = \{1, \sigma, \psi\}$, equipped with three functions $N : L_{DI}^3 \to \mathbb{N}, d : L_{DI} \to \mathbb{R},$ and $G : L_{DI}^6 \to \mathbb{C}$. Each edge and tail of the lattice is labeled by an element in L_{DI}.

The function N sets the fusion rule and satisfies $N_{ij} = N_{ji} = N_{jk}$, whose nonzero independent elements are

$$N_{11}^1 = N_{\psi\psi}^1 = N_{\sigma\sigma}^1 = N_{\sigma\sigma}^\psi = 1.$$

The Hilbert space \mathcal{H} is spanned by all possible assignments of the values on the edges and tails, subject to the constraint $N_{ij} \neq 0$ on any three incident edges (tails) labeled by $i, j, k \in L_{DI}$.

The function d returns the quantum dimensions of the elements in L_{DI},

$$d_1 = d_{\psi} = 1, \quad d_{\sigma} = \sqrt{2}.$$

The function G has the symmetry $G_{kln}^{ijm} = G_{nkl}^{mij} = G_{ijm}^{kln}$. The nonzero independent components are

$$G_{111}^{111} = G_{\psi\psi\psi}^{111} = G_{1\psi\psi}^{111} = 1, \quad G_{1\sigma\sigma}^{1\sigma\sigma} = G_{\psi\sigma\sigma}^{\psi\sigma\sigma} = -G_{\psi\sigma\sigma}^{\psi\sigma\sigma} = \frac{1}{\sqrt{2}}, \quad G_{\sigma\sigma\sigma}^{1\psi\psi} = G_{\psi\sigma\sigma}^{1\psi\psi} = \frac{1}{\sqrt{2}}.$$

The Hamiltonian of the extended LW model describing the doubled Ising phase reads

$$H_{DI} := -\sum_V Q_V - \sum_P B_{P}^{DI}. \quad (2.1)$$

The vertex operator Q_V acts on the tail associated with vertex V as

$$Q_V \left| \begin{array}{c} V \\ \hline \end{array} \right. \left| \begin{array}{c} p \\ \hline \end{array} \right. = \delta_{p,1} \left| \begin{array}{c} V \\ \hline \end{array} \right. \left| \begin{array}{c} p \\ \hline \end{array} \right.$$,

where δ denotes the Kronecker delta function that $\delta_{p,q} = 1$ if $p = q$ else $\delta_{p,q} = 0$.

The plaquette operator B_{P}^{DI} acting on plaquette P is a sum:

$$B_{P}^{DI} = \frac{d_1 B_1^{1P} + d_{\sigma} B_\sigma^{1P} + d_{\psi} B_\psi^{1P}}{4},$$
The doubled Ising Hamiltonian \((2.1)\) is exactly solvable because all the summands therein are commuting projectors.

3 The lattice model with the gapped domain wall between the doubled Ising and \(\mathbb{Z}_2\) toric code phases

We now construct our model describing a doubled Ising phase and \(\mathbb{Z}_2\) toric code phase separated by a gapped domain wall, via partial anyon condensation explained as follows. We devide the lattice into two halves, left and right. See Fig. 1b. Here, the edges and tails
in the left (right) half are in red (blue); the plaquettes bounded by all red (blue) edges are in light red (blue); the plaquettes bounded by both red and blue edges are in grey. Each edge of the entire lattice still takes value in L_{DI}, so the Hilbert space of our model is still \mathcal{H}. We shall trigger anyon condensation in the right (blue) half, such that the doubled Ising phase therein will become the \mathbb{Z}_2 toric code phase through a phase transition.

Knowing that \mathbb{Z}_2 toric code phase can be obtained by condensing $\bar{\psi}\psi$ anyons in the doubled Ising phase\cite{8, 11, 12}, we are motivated to add to Hamiltonian (2.1) the gapping term

$$\Delta H := -\Lambda \sum_{E \in \text{TC}} W^\psi_{E;1,1}, \quad \Lambda \gg 1,$$

(3.1)

where $E \in \text{TC}$ represents all the blue edges, and $W^\psi_{E;1,1}$ is the creation operator of the $\psi\bar{\psi}$ anyons (to be defined in Appendix B). The term ΔH renders the new ground states of the system the $+1$ eigenstates of the creation operators $W^\psi_{E;1,1}|_{E \in \text{TC}}$, and thus are the superpositions of the states with arbitrary many $\psi\bar{\psi}$ anyons in the right half of the lattice. We say that the $\psi\bar{\psi}$ anyons in the right half of the lattice are condensed. The total Hamiltonian now reads

$$H := -\sum_V Q_V - \sum_P B^\text{DI}_P + \Delta H.$$

(3.2)

By Eq. (D.1), the creation operators $W^\psi_{E;1,1}$ of $\bar{\psi}\psi$ quasiparticle pairs can be written as

$$W^\psi_{E;1,1} = (-1)^{\delta_{j_E,\sigma}}|_{j \psi\bar{\psi}} = (-1)^{\delta_{j_E,\sigma}} \left| \begin{array}{c} j \\ E \\ k \end{array} \right>.$$

(3.3)

where δ is the Kronecker delta function. Hence, any blue edge has to overcome a great energy barrier ($\propto \Lambda$) to take value σ. For $\Lambda \rightarrow \infty$, the blue edges in the right half of the lattice effectively take value only in the input data $L_{\text{TC}} = \{1, \psi\} \subset L_{\text{DI}}$, equipped with the same δ, d, and G functions as that of L_{DI} but restricted to L_{TC}:

$$\delta_{111} = \delta_1 = 1, \quad d_1 = d_\psi = 1, \quad G_{111}^{111} = G_{\psi\psi\psi}^{111} = G_{1\psi\psi}^{1\psi\psi} = 1.$$

The right half of the system therefore describes the \mathbb{Z}_2 toric code phase\cite{23, 25, 26}, as a result of $\bar{\psi}\psi$ condensation.

Due to $\bar{\psi}\psi$ condensation, the effective Hilbert space \mathcal{H}_{eff} of the model is the subspace of \mathcal{H} in which all the blue edges can take value only in $L_{\text{TC}} = \{1, \psi\}$:

$$\mathcal{H}_{\text{eff}} := P_{\text{eff}} \mathcal{H},$$

(3.4)

where P_{eff} is the projector on the blue edges

$$P_{\text{eff}} := \prod_{E \in \text{TC}} (1 - \delta_{j_E,\sigma}) = \prod_{E \in \text{TC}} \frac{I + W^\psi_{E;1,1}}{2}.$$

(3.5)

Hereafter, we refer to the red (blue) edges/plaquettes the DI (TC) edges/plaquettes. The grey plaquettes, bounded by both DI and TC edges, turn out to comprise the domain
wall between the doubled Ising phase and \(Z_2 \) toric code phase, and are thus called the DW plaquettes. Since \(\mathcal{P}_{\text{eff}} B_P^D \mathcal{P}_{\text{eff}} = 0 \) if \(P \) is a TC/DW plaquette, the effective plaquette operators acting on the DW and TC plaquettes in \(\mathcal{H}_{\text{eff}} \) become

\[
B_P^{\text{DW}} := \mathcal{P}_{\text{eff}} B_P^D \mathcal{P}_{\text{eff}} = \frac{B_P^1 + B_P^\psi}{4}, \quad B_P^{\text{TC}} := \mathcal{P}_{\text{eff}} B_P^D \mathcal{P}_{\text{eff}} = \frac{B_P^1 + B_P^\psi}{4}.
\]

The effective Hamiltonian is the projection of the doubled Ising Hamiltonian (2.1):

\[
H_{\text{eff}} := \mathcal{P}_{\text{eff}} H^D \mathcal{P}_{\text{eff}} = -\sum_V Q_V - \sum_{P \in \text{DI}} B_P^D P_{\text{eff}} - \sum_{P \in \text{DW}} B_P^{\text{DW}} P_{\text{eff}} - \sum_{P \in \text{TC}} B_P^{\text{TC}},
\]

which is exactly solvable. The model describes the doubled Ising phase on the left, the \(Z_2 \) toric code phase on the right, and a gapped domain wall in between. We shall refer to \(H_{\text{eff}} \) as the Hamiltonian of our model from now on.

4 The spectrum of elementary excitation states

We now study the spectrum of our model. We assume the sphere topology, in which our model has a unique ground state \(| \Phi \rangle \); nevertheless, the results in this section applies to other topologies. The ground state \(| \Phi \rangle \) is defined by

\[
Q_V | \Phi \rangle = B_P^D | \Phi \rangle = 2 B_P^{\text{TC}} | \Phi \rangle = 2 B_P^{\text{DW}} | \Phi \rangle = | \Phi \rangle,
\]

where the factor 2 arise from the projection. In the ground state \(| \Phi \rangle \), all the tails have to take value 1 \(\in \mathcal{L}_{\text{DI}} \).

An excited state \(| \varphi \rangle \) is an eigenstate, in which \(Q_V | \varphi \rangle = 0 \) or \(B_P^A | \varphi \rangle = 0 \) at one or more vertices \(V \) or plaquettes \(P \). In such a state, there are quasiparticles at vertices \(V \) or plaquettes \(P \). Here, the superscript \(A \) refers to either DW, TC, or DI. We also dub the ground state \(| \Phi \rangle \) the trivial excited state, in which there are trivial quasiparticles.

For our purposes, it suffices to study the excited states with at most two quasiparticles, which we call elementary excitation states. Since in an elementary excitation state all tails take value 1 except the ones where the two quasiparticles are, we can omit the tails irrelevant to these quasiparticles.

4.1 Review of the elementary excitation states in the doubled Ising phase

Since our model stems from the extended LW model describing the doubled Ising phase, we first focus on the elementary excitation states in the parent doubled Ising phase described by Hamiltonian \(H^D \) (2.1). The doubled-Ising ground state \(| \Phi \rangle_{\text{DI}} \in \mathcal{H} \) satisfies

\[
Q_V | \Phi \rangle_{\text{DI}} = B_P^D | \Phi \rangle_{\text{DI}} = | \Phi \rangle_{\text{DI}}
\]

for all vertices \(V \) and plaquettes \(P \). Each doubled-Ising elementary excitation state \(| \varphi \rangle_{\text{DI}} \in \mathcal{H} \) can be obtained by acting a ribbon operator \(W_L \) on the ground state \(| \Phi \rangle_{\text{DI}} [23, 25] \):

\[
| \varphi \rangle_{\text{DI}} = W_L | \Phi \rangle_{\text{DI}}.
\]
Figure 2: Two ribbon operators in the doubled Ising phase. The two ribbon operators both create quasiparticles \((J, p)\) and \((J, q)\) at the ends of their paths, which are homotopic. Hence, they are the same operators although they take very different paths.

The ribbon operator \(W_L\) is defined along a path \(L\), which crosses one or more edges in the lattice, and creates a pair of quasiparticles at the two ends of \(L\) (see Fig. 2). The path \(L\) of a ribbon operator can be homotopically deformed, with its two ends fixed.

We start with the elementary excitation states with a pair of quasiparticles in the two adjacent plaquettes with a common edge \(E\). This state can be generated by ribbon operator \(W_{J_{DI}; p, q}^E\) along the shortest path that crosses only one edge \(E\). This shortest ribbon operator creates in the two adjacent plaquettes a pair of quasiparticles \((J_{DI}, p)\) and \((J_{DI}, q)\), where \(J_{DI}\) labels the anyon species of the quasiparticles, while \(p\) and \(q\) label the charges of the quasiparticles. Namely

\[
|J_{DI}; p, q\rangle_{DI} = (J_{DI}, p)_E |(J_{DI}, q)\rangle_E := W_{J_{DI}; p, q}^E |\Phi\rangle_{DI}.
\]

(4.3)

We only consider the action of ribbon operator \(W_{J_{DI}; p, q}^E\) on the ground state. The action of \(W_{J_{DI}; p, q}^E\) reads

\[
W_{J_{DI}; p, q}^E |\Psi\rangle = \sum_{k \in L_{DI}} \sqrt{\frac{d_k}{d_j}} z_{J_{DI}; k}^{J_{DI}; p, q} |\Psi\rangle_{DI},
\]

where \(j_E \in L_{DI}\) is the label on edge \(E\). The matrix elements \(z_{J_{DI}; u}^{p, q}\) are the components of the tensor \(z_{J_{DI}}\) and are listed in Appendix D.1. The tensor \(z_{J_{DI}}\) satisfies [25]

\[
\frac{\delta_r}{\delta t} z_{pqt}^{J_{DI}; w} = \sum_{ulv \in L_{DI}} z_{lqr}^{J_{DI}; u} z_{plv}^{J_{DI}; u} \cdot d_u d_v G^{rst}_{p_{u}w_{u}} G^{srj}_{q_{v}w_{v}} G^{suv}_{r_{w}w_{v}},
\]

(4.4)
Quasiparticle	Anyon species	Charge
(1T, 1)	1T	1
(1σ, σ)	1σ	σ
(1ψ, ψ)	1ψ	ψ
(σT, σ)	σT	σ
(σσ, 1)	σσ	1
(σσ, ψ)	σσψ	ψ
(ψT, ψ)	ψT	ψ
(ψσ, σ)	ψσ	σ
(ψψ, 1)	ψψ	1

Table 1: The anyon species and the charges of the quasiparticles in the doubled Ising phase.

Figure 3: The doubled-Ising elementary excitation states with anyon species σσ. The charges of quasiparticles can take value in {1, ψ}.

where the anyon species J_{DI} labels different minimal solutions $z^{J_{DI}}$ that cannot be the sum of any other nonzero tensors. There are 9 anyon species:

$$1T, \quad 1\bar{σ}, \quad 1\bar{ψ}, \quad σT, \quad σ\bar{σ}, \quad σ\bar{ψ}, \quad ψT, \quad ψ\bar{σ}, \quad ψ\bar{ψ}.$$

Crossing any edge E in the doubled Ising domain, for each $J_{DI} \neq σ\bar{σ}$ there is only one such ribbon operator $W^{J_{DI}; p, q}_E$ with $p = q$. For $J_{DI} = σ\bar{σ}$, the corresponding charges p and q both can take values in $\{1, ψ\}$ (see Table 1); hence, there are four different such ribbon operators $W^{σ\bar{σ}; p, q}_E$ with $p, q \in \{1, ψ\}$. All told, crossing any edge E, there are 12 shortest ribbon operators.

For $J_{DI} = σ\bar{σ}$, there are four degenerate elementary excitation states $|σ\bar{σ}; p, q\rangle_{DI} = W^{J_{DI}; p, q}_E |Φ\rangle_{DI}$ with $p, q \in \{1, ψ\}$, as shown in Fig. 3. Each state has two quasiparticles, each of which can be either $(σ\bar{σ}, 1)$ or $(σ\bar{σ}, ψ)$. While $σ\bar{σ}$ is a topological observable of these
states, the degenerate charges 1 and ψ cannot be distinguished experimentally [25], as they can be transformed into each other by local operators $B_1^{1\psi\sigma}$ and $B_P^{\psi\sigma}$ in Eq. (E.1). The elementary excitation states in the doubled Ising phase hence are characterized by their anyon species.

Then we study the states with two quasiparticles in two nonadjacent plaquettes, generated by ribbon operators along longer paths. These ribbon operators result from concatenating shorter ribbon operators. For example, in Fig. 4, the two shortest ribbon operators create in plaquette P two identical quasiparticles (J_{DI}, q), which are then annihilated, resulting in a longer ribbon operator $W_{L}^{J_{\text{DI}}; p, r}$, which generates an elementary excitation state $|W_{L}^{J_{\text{DI}}; p, r}|\Phi_{\text{DI}}\rangle$ with two quasiparticles at the end of path L. The matrix elements of such ribbon operators are also given by $z^{|\text{bit}|}$ tensors (see Appendix B).

4.2 The elementary excitation states of our model

Now we study the elementary excitation states of our model. These states belong to the effective Hilbert space \mathcal{H}_{eff} (3.4).

According to Appendix C, the projector (3.5), P_{eff}, commutes with any doubled-Ising ribbon operator $W_{L}^{J_{\text{DI}}; p, q}$ in the effective Hilbert space \mathcal{H}_{eff}:

$$P_{\text{eff}}\left[W_{L}^{J_{\text{DI}}; p, q}, P_{\text{eff}}\right] = 0.$$ \hspace{1cm} (4.5)

Then, together with Eq. (4.2), P_{eff} projects the elementary excitation states $|\varphi\rangle_{\text{DI}}$ and the ribbon operators $W_{L}^{J_{\text{DI}}; p, q}$ of the doubled Ising phase to those of our model. While in the doubled Ising phase, elementary excitations states do not discern the locations of the quasiparticles but only their anyon species, in our model, nevertheless, locations of the quasiparticles do matter because of the domain wall (see Fig. 5). In what follows, we shall study the elementary excitation states of our model in the cases of different quasiparticle locations.

4.2.1 The elementary excitation states with quasiparticle pairs in the toric code domain

Here, we study the elementary excitation states of our model with a pair of quasiparticles in two adjacent plaquettes completely in the toric code domain. These states result from
Figure 5: The projections from the doubled-Ising elementary excitation states to the elementary excitation states in our model. (a) Quasiparticles all in the doubled Ising domain. (b) Quasiparticles all in the toric code domain. (c) Two quasiparticle in respectively the doubled Ising domain and the toric code domain. (d) Quasiparticles all in the gapped domain wall. (e) Two quasiparticle in respectively the doubled Ising domain and the gapped domain wall. (f) Two quasiparticle in respectively the toric code domain and in the gapped domain wall.

projecting the elementary excitation states \(|J_{DI}; p, q\rangle_{DI}\) (4.3) in the doubled Ising phase, i.e.,

\[
|1; 1, 1\rangle := P_{\text{eff}}|1\overline{1}; 1, 1\rangle_{\text{DI}} = P_{\text{eff}}|\psi\overline{\psi}; 1, 1\rangle_{\text{DI}},
\]

\[
|\epsilon; \psi, \psi\rangle := P_{\text{eff}}|\psi\overline{1}; \psi, \psi\rangle_{\text{DI}} = P_{\text{eff}}|1\overline{\psi}; \psi, \psi\rangle_{\text{DI}},
\]

\[
|m; 1, 1\rangle := P_{\text{eff}}|\sigma\overline{\sigma}; 1, 1\rangle_{\text{DI}},
\]

\[
|e; \psi, \psi\rangle := P_{\text{eff}}|\sigma\overline{\sigma}; \psi, \psi\rangle_{\text{DI}},
\]

(4.6)

where we define the four nonvanishing states after the projection as \(|J_{TC}; p, p\rangle\), with \(J_{TC}\) \in \{1, \epsilon, e, m\} the anyon species and \(p \in \{1, \psi\}\) the charges of the quasiparticles. See Fig. 5b. But not all doubled-Ising elementary excitation states are projected to states in \(H_{\text{eff}}\), i.e.,

\[
P_{\text{eff}}|\sigma\overline{\sigma}; \psi, 1\rangle_{\text{DI}} = P_{\text{eff}}|\sigma\overline{\sigma}; 1, \psi\rangle_{\text{DI}} = 0,
\]
\[
\begin{align*}
P_{\text{eff}} |\sigma \bar{1}; \sigma, \sigma \rangle_{\text{DI}} &= 0, \\
P_{\text{eff}} |\sigma \bar{\psi}; \sigma, \sigma \rangle_{\text{DI}} &= 0, \\
P_{\text{eff}} |1 \bar{\sigma}; \sigma, \sigma \rangle_{\text{DI}} &= 0, \\
P_{\text{eff}} |\psi \bar{\sigma}; \sigma, \sigma \rangle_{\text{DI}} &= 0.
\end{align*}
\]

These states are infinitely \((\Lambda \rightarrow \infty)\) gapped by \(\Delta H\), and should not appear in \(\mathcal{H}_{\text{eff}}\).

The four elementary excitation states \(|J_{\text{TC}}; p, p \rangle\) are precisely the known four elementary excitation states in the \(Z_2\) toric code phase. These states are generated by the ribbon operators \(W_{E}^{J_{\text{TC}}; p, p}\) acting on the ground state \(|\Phi \rangle\) of our model

\[
|J_{\text{TC}}; p, p \rangle = W_{E}^{J_{\text{TC}}; p, p} |\Phi \rangle,
\]

where the ribbon operators are the projections

\[
\begin{align*}
W_{E}^{1;1,1} &:= P_{\text{eff}} W_{E}^{1;1,1} P_{\text{eff}} = P_{\text{eff}} W_{E}^{\bar{\psi};1,1} P_{\text{eff}}, \\
W_{E}^{\bar{\psi};\psi} &:= P_{\text{eff}} W_{E}^{\bar{\psi};\psi} P_{\text{eff}} = P_{\text{eff}} W_{E}^{1;\psi;\psi} P_{\text{eff}}, \\
W_{E}^{m;1,1} &:= P_{\text{eff}} W_{E}^{m;1,1} P_{\text{eff}}, \\
W_{E}^{\bar{\psi};\psi} &:= P_{\text{eff}} W_{E}^{\bar{\psi};\psi} P_{\text{eff}}.
\end{align*}
\]

Note that the two plaquettes sharing edge \(E\) must lie within the toric code domain.

These ribbon operators \(W_{E}^{J_{\text{TC}}; p, q}\) read

\[
W_{E}^{J_{\text{TC}}; p, q} = \sum_{k \in L_{\text{TC}}} \sqrt{\frac{d_k}{d_{JE}}} z_{ppjE}^{J_{\text{TC}}; k} |J_{\text{TC}}; k, p \rangle \langle p|.
\]

The components \(z_{ppjE}^{J_{\text{TC}}; k}\) are listed in Appendix D.2 and are precisely those comprising the ribbon operators in the extended LW model describing the \(Z_2\) toric code phase[25].

Ribbon operators defined along longer paths \(L\) crossing edges in the toric code domain can be obtained also by concatenating shorter ribbon operators. We shall not dwell on this.

4.2.2 The elementary excitation states with inter-domain quasiparticle pairs

Now we consider what we call \(\text{inter-domain elementary excitation states}\), each having one quasiparticle \((J_{\text{DI}}, p)\) in the doubled Ising domain and the other \((J_{\text{TC}}, q)\) in the toric code domain. An inter-domain state bears two different topological observables, \(J_{\text{DI}}\) in the doubled Ising domain and \(J_{\text{TC}}\) in the toric code domain. See Fig. 5c. We label inter-domain elementary excitation states as \(|J_{\text{DI}} - J_{\text{TC}}; p, q \rangle\).
Quasiparticle Anyon species Charge

Quasiparticle	Anyon species	Charge
(1, 1)	1	1
(e, ψ)	e	ψ
(m, 1)	m	1
(ε, ψ)	ε	ψ

Table 2: The anyon species and charges of the quasiparticles in the toric code domain.

Elementary excitation state	Doubled Ising quasiparticle	Toric code quasiparticle	
	(11, 1)	(11, 1)	
\(1\uparrow - 1; 1, 1\rangle	(\psi\bar{\psi}, 1)	(1, 1)
\(\psi\bar{\psi} - 1; 1, 1\rangle	(1\uparrow, \psi)	(e, \psi)
\(\psi\uparrow - e; \psi, \psi\rangle	(\psi\bar{\psi}, \psi)	(e, \psi)
\(1\psi\bar{\psi} - e; \psi, \psi\rangle	(1\psi, \psi)	(e, \psi)
\(\sigma\sigma - m; 1, 1\rangle	(\sigma\sigma, 1)	(m, 1)
\(\sigma\sigma - m; \psi, 1\rangle	(\sigma\sigma, \psi)	(m, 1)
\(\sigma\sigma - e; 1, \psi\rangle	(\sigma\sigma, 1)	(e, \psi)
\(\sigma\sigma - e; \psi, \psi\rangle	(\sigma\sigma, \psi)	(e, \psi)

Table 3: The inter-domain elementary excitation states.

There are 8 distinct inter-domain elementary excitation states, as listed in Table 3. These states can be generated by the ribbon operators along paths \(L\) across the gapped domain wall:

\[
|J_{\text{DI}} - J_{\text{TC}}; p, q\rangle = \left|\begin{array}{c}
(1\downarrow, \psi) \\
L \\
E_1 \\
(\psi, \psi)
\end{array}\right| = W_{L}^{|J_{\text{DI}} - J_{\text{TC}}; p, q|}.
\tag{4.7}
\]

The ribbon operators \(W_{L}^{|J_{\text{DI}} - J_{\text{TC}}; p, q|}\) are projected from the doubled-Ising ribbon oper-
ators along same paths L:

$$W_{L}^{J_{DI}^{-} J_{TC}^{-} p, q} := P_{\text{eff}} W_{L}^{J_{DI}^{-} p, q} P_{\text{eff}},$$

and are explicitly written as

$$W_{L}^{J_{DI}^{-} J_{TC}^{-} p, q} = \sum_{j_2, j_3, j_4 \in L_{DI}} \sum_{j'_5, j'_6, j'_7 \in L_{TC}} \frac{J_{DI}^{-} j_2 j_3 j_4}{z_{p j_2 j_3}} \times \frac{J_{TC}^{-} j'_5 j'_6 j'_7}{z_{q j'_5 j'_6}} \cdot \sqrt{d_{j_2} d_{j'_2} d_{j_3} d_{j'_3} d_{j_4} d_{j'_4}} G_{j_5, j_6, j_7} G_{j'_5, j'_6, j'_7} G_{j_1, j_2, j_3} G_{j'_1, j'_2, j'_3}$$

(4.8)

4.2.3 The excitation states with domain-wall quasiparticle pairs

Now we study the domain-wall elementary excitation states, i.e., the elementary excitation states with a pair of quasiparticles in two adjacent plaquettes within the gapped domain wall (see Fig. 5d). These states are projected from the doubled-Ising elementary excitation states with a pair of quasiparticles in the same plaquettes. Namely,

$$|1; 1, 1\rangle := P_{\text{eff}} |1; 1, 1\rangle_{\text{DI}} = P_{\text{eff}} |\psi \bar{\psi}; 1, 1\rangle_{\text{DI}},$$

$$|\epsilon; \psi, \psi\rangle := P_{\text{eff}} |\psi \bar{\psi}; \psi, \psi\rangle_{\text{DI}} = P_{\text{eff}} |\psi \bar{\psi}; 1, 1\rangle_{\text{DI}},$$

$$|\chi; \sigma, \sigma\rangle := P_{\text{eff}} |\sigma \bar{\sigma}; \sigma, \sigma\rangle_{\text{DI}} = P_{\text{eff}} |\sigma \bar{\sigma}; 1, 1\rangle_{\text{DI}},$$

$$|\bar{\chi}; \sigma, \sigma\rangle := P_{\text{eff}} |1 \bar{\sigma}; \sigma, \sigma\rangle_{\text{DI}} = P_{\text{eff}} |\psi \bar{\psi}; \sigma, \sigma\rangle_{\text{DI}},$$

$$|m; 1, 1\rangle := P_{\text{eff}} |\sigma \bar{\sigma}; 1, 1\rangle_{\text{DI}},$$

$$|e; \psi, \psi\rangle := P_{\text{eff}} |\sigma \bar{\sigma}; \psi, \psi\rangle_{\text{DI}},$$

(4.9)

where we define the six nonvanishing states after the projection as $|J_{DW}; p, p\rangle$, with $J_{DW} \in \{1, \epsilon, m, e, \chi, \bar{\chi}\}$ the quasiparticle species and $p \in L_{DI}$ the charges of the quasiparticles. Graphically,

$$|J_{DW}; p, p\rangle = (J_{DW}, p)$$

Although there are 6 distinct domain wall elementary excitation states (4.9), there are 10 different ribbon operators acrossing an edge E in the gapped domain wall:

$$W_{E,1}^{1,1,1} := P_{\text{eff}} W_{E}^{1,1,1} P_{\text{eff}}, \quad W_{E,2}^{1,1,1} := P_{\text{eff}} W_{E}^{\psi \bar{\psi}; 1, 1} P_{\text{eff}},$$

\[-13 - \]
Table 4: The quasiparticle species and charges of the quasiparticles in the gapped domain wall.

Quasiparticle	Anyon species	Charge
$(1, 1)$	1	1
(e, ψ)	e	ψ
$(m, 1)$	m	1
(ϵ, ψ)	ϵ	ψ
(χ, σ)	χ	σ
$(\bar{\chi}, \sigma)$	$\bar{\chi}$	σ

\[
W_{E,1}^{e,\psi,\psi} := P_{\text{eff}} W_{E}^{\psi,\psi} P_{\text{eff}}, \quad W_{E,2}^{e,\psi,\psi} := P_{\text{eff}} W_{E}^{1,\psi,\psi} P_{\text{eff}}, \\
W_{E,1}^{\chi,\sigma,\sigma} := P_{\text{eff}} W_{E}^{\chi,\sigma,\sigma} P_{\text{eff}}, \quad W_{E,2}^{\chi,\sigma,\sigma} := P_{\text{eff}} W_{E}^{\chi,\sigma,\sigma} P_{\text{eff}}, \\
W_{E,1}^{\bar{\chi},\sigma,\sigma} := P_{\text{eff}} W_{E}^{\bar{\chi},\sigma,\sigma} P_{\text{eff}}, \quad W_{E,2}^{\bar{\chi},\sigma,\sigma} := P_{\text{eff}} W_{E}^{\bar{\chi},\sigma,\sigma} P_{\text{eff}}, \\
W_{E}^{m;1,1} := P_{\text{eff}} W_{E}^{m;1,1} P_{\text{eff}}, \\
W_{E}^{e;\psi,\psi} := P_{\text{eff}} W_{E}^{e;\psi,\psi} P_{\text{eff}}. \tag{4.10}
\]

Since E is a DI edge,

\[
W^{J_{\text{DI}} p:p} E,1 \neq W^{J_{\text{DW}} p:p} E,2
\]

for $J_{\text{DW}} = 1, \epsilon, \chi$ and $\bar{\chi}$, but

\[
W_{E,1}^{J_{\text{DW}} p:p} |\Phi\rangle = W_{E,2}^{J_{\text{DW}} p:p} |\Phi\rangle = |J_{\text{DW}} p:p\rangle.
\]

Specifically, \(W_{E,i}^{J_{\text{DW}} p:p} \rangle = \sum_{k \in L_{\text{DI}}} \sqrt{\frac{d_k}{d_{J_{\text{DI}}}}} z_{i p j_{\text{DI}} ; k}^{J_{\text{DW}} p} \rangle \), where the coefficients $z_{i p j_{\text{DI}} ; k}^{J_{\text{DW}} p}$ are listed in Appendix D.3. The indices $p, q, k \in L_{\text{DI}}$, but the index j_{E} is restricted to $L_{\text{TC}} = \{1, \psi\}$ because edge E only takes value in L_{TC} in the ground state (4.1) $|\Phi\rangle$.

4.2.4 The elementary excitation states with doubled-Ising-domain-wall quasiparticle pairs

We now consider the elementary excitation states with one doubled-Ising quasiparticle (J_{DI}, p) and one domain-wall quasiparticle (J_{DW}, q) in the adjacent plaquettes. See Fig.
Elementary excitation state	Doubled Ising quasiparticle	Domain wall quasiparticle	
$	1\overline{1}; 1,1\rangle$	$(1\overline{1}, 1)$	$(1, 1)$
$	\psi\overline{\psi}; 1,1\rangle$	$(\psi\overline{\psi}, 1)$	
$	\psi\overline{1}; \psi, \psi\rangle$	$(\psi\overline{1}, \psi)$	(ϵ, ψ)
$	\overline{1}\psi; \psi, \psi\rangle$	$(\overline{1}\psi, \psi)$	(ϵ, ψ)
$	\sigma\overline{\chi}; \sigma, \sigma\rangle$	$(\sigma\overline{\chi}, \sigma)$	(χ, σ)
$	\overline{\sigma}\chi; \sigma, \sigma\rangle$	$(\overline{\sigma}\chi, \sigma)$	(χ, σ)
$	\sigma\overline{m}; 1,1\rangle$	$(\sigma\overline{m}, 1)$	$(m, 1)$
$	\sigma\overline{e}; \psi, \psi\rangle$	$(\sigma\overline{e}, \psi)$	(e, ψ)

Table 5: The elementary excitation states with one doubled-Ising quasiparticle and one domain-wall quasiparticle.

5e. These elementary excitation states are defined as

$$|J_{\text{DI}} - J_{\text{DW}}; p, q\rangle := W_{E}^{J_{\text{DI}}; p, q} |\Phi\rangle,$$

where $W_{E}^{J_{\text{DI}}; p, q}$ is the ribbon operator across a DI edge E between the doubled Ising domain and the gapped domain wall.

$$W_{E}^{J_{\text{DI}}; p, q} = \sum_{k \in L_{\text{DI}}} \sqrt{d_{k}} \cdot d_{j_{E}} \cdot J_{\text{DI}}; k \rangle \langle p_{q} j_{E} |.\) (4.12)

There are 12 possible distinct elementary excitation states, as in Table 5.

4.2.5 The elementary excitation states with toric-code-domain-wall quasiparticle pairs

We consider the situation in Fig. 5f: the elementary excitation states with one toric code quasiparticle and one domain-wall quasiparticle. These elementary excitation states are defined as

$$|J_{\text{DW}} - J_{\text{TC}}; p, q\rangle := W_{E}^{J_{\text{TC}}; p, q} |\Phi\rangle,$$

(4.13)
Elementary excitation state	Domain wall quasiparticle	Toric code quasiparticle	
\(1; 1; 1, 1\rangle\)	\((1, 1)\)	\((1, 1)\)
\(\epsilon - e; \psi, \psi\rangle\)	\((\epsilon, \psi)\)	\((\epsilon, \psi)\)
\(m - m; 1, 1\rangle\)	\((m, 1)\)	\((m, 1)\)
\(\epsilon - e; \psi, \psi\rangle\)	\((\epsilon, \psi)\)	\((\epsilon, \psi)\)

Table 6: The elementary excitation states with one toric code quasiparticle and one domain-wall quasiparticle.

Figure 6: The correspondence between (a): our model with gapped domain wall between the doubled Ising domain and toric code domain and (b): the anyon condensation from the parent doubled Ising phase to the child toric code phase via an auxiliary intermediate phase.

where \(W_{E}^{J_{TC}; p, q}\) is the ribbon operator across TC edge \(E\) between the toric code domain and the domain wall.

\[
W_{E}^{J_{TC}; p, q} = \sum_{k} \frac{d_{k}}{d_{E}} \sqrt{d_{E}} \cdot z^{J_{TC}; k}_{p, q}\]

(4.14)

There are 4 distinct elementary excitations generated by \(W_{E}^{J_{TC}; p, q}\), as in Table 6. Concatenating the ribbon operator (4.12) and the ribbon operator (4.14) results in the inter-domain ribbon operator (4.8).

5 Correspondence with anyon condensation

As mentioned in the introduction, our model of two topological phases separated by a gapped domain wall can be regarded as a spatial counterpart of the phase transition (which is temporal) from one phase (the parent phase) to the other (the child phase) triggered by anyon condensation. See Fig. 6.
An intermediate phase during the phase transition was introduced as merely a method to study the procedure of anyon condensation[1]. The anyon condensation in a parent phase first leads to an intermediate phase where splitting and identification have completed, while the confinement occurs during the transition from the intermediate phase to the child phase. Interestingly, this auxiliary, virtual intermediate phase corresponds to the physical gapped domain wall between the parent and child phases. Figure 7 records the relations between the quasiparticles in different domains in our model, corresponding to different stages in anyon-condensation-induced phase transition.

In what follows, we shall use our model to interpret the phenomena in the phase transition induced by anyon condensation.

5.1 The projection-state correspondence

Splitting, identification, and confinement are the three main phenomena that occur in a phase transition due to anyon condensation. For the example of $\psi\bar{\psi}$ condensation in the doubled Ising phase (see Fig. 7), these phenomena can find their spatial counterparts in the elementary excitation states of our model. Here, we shall formulate this correspondence rigorously.

In Eq. (4.6), the doubled-Ising elementary excitation states $|J_{\text{DI}}; p, p\rangle_{\text{DI}}$ in the parent phase are projected to the states $|J_{\text{TC}}; p, p\rangle$ with quasiparticles in the toric code domain of our model. On the other hand, any inter-domain elementary excitation state (4.7) $|J_{\text{DI}} - J_{\text{TC}}; p, q\rangle$ bears a pair of topological observables $J_{\text{DI}} - J_{\text{TC}}$. The allowed pairs $J_{\text{DI}} - J_{\text{TC}}$ in the inter-domain elementary excitation states are in one-to-one correspondence with the

J_{DI}	J_{DW}	J_{TC}
$\sigma\bar{\sigma}$	ϵ	ϵ
$\bar{\psi}\psi$	1	1
$\psi\bar{\psi}$	ϵ	ϵ
$\sigma\bar{\psi}$	χ	(confined)
$\bar{\psi}\bar{\sigma}$	$\bar{\chi}$	(confined)

Figure 7: Relations between the quasiparticle species in different domains (phases).
Table 7: The projection-state correspondence in the phenomena of splitting, identification, and confinement in the toric code domain.

5.1.1 Splitting

Seen in Table 7, the originally indistinguishable elementary excitation states $|\sigma\bar{\sigma}; 1, 1\rangle_{\text{DI}}$ and $|\sigma\bar{\sigma}; \psi, \psi\rangle_{\text{DI}}$ are projected to the topological different states $|m; 1, 1\rangle$ and $|e; \psi, \psi\rangle$ via $\psi\bar{\psi}$ condensation. It appears that the anyon species $\sigma\bar{\sigma}$ in the doubled Ising phase 'splits' into two anyon species e and m in the toric code domain. This phenomenon is precisely what is known as splitting in the language of anyon condensation.

The phenomenon of splitting can also be seen spatially in the inter-domain elementary excitation states under the projection-state correspondence. The projection from the doubled-Ising state $|\sigma\bar{\sigma}; 1, 1\rangle_{\text{DI}}$ to the toric code state $|m, 1, 1\rangle$ corresponds to the allowed pair $\sigma\bar{\sigma} - m$ in the inter-domain elementary excitation states

$$|\sigma\bar{\sigma} - m; 1, 1\rangle, |\sigma\bar{\sigma} - m; \psi, 1\rangle,$$

while $P_{\text{eff}}|\sigma\bar{\sigma}; \psi, \psi\rangle_{\text{DI}} = |e, \psi, \psi\rangle$ corresponds to the allowed pair $\sigma\bar{\sigma} - e$ in

$$|\sigma\bar{\sigma} - e; 1, \psi\rangle, |\sigma\bar{\sigma} - e; \psi, \psi\rangle.$$

These four inter-domain states all have $J_{\text{DI}} = \sigma\bar{\sigma}$, but J_{TC} can be m or e. See Fig. 8. This phenomenon is the spatial counterpart of the splitting of anyons in anyon condensation.
Figure 8: The inter-domain elementary excitation states with doubled-Ising topological observable $\sigma \bar{\sigma}$.

Namely, an anyon $\sigma \bar{\sigma}$ in the doubled Ising domain may hop into the toric code domain by crossing the gapped domain wall and become either an anyon e or m.

With our model, splitting can also be understood dynamically as follows. The states $|\sigma \bar{\sigma}; p, q\rangle_{\text{DI}}$ with $p, q \in \{1, \psi\}$ in Fig. 3 are indistinguishable in the doubled Ising phase, as they can be transformed into each other by the local operators (E.1) $B^{\sigma \bar{\sigma} \sigma}$ and $B^{\psi \sigma}$. The local operators $B^{p \sigma q \sigma}$ however do not commute with the condensation term (3.1) in Hamiltonian (3.2). After $\psi \bar{\psi}$ condensation, the charges 1 and ψ can no longer transform into each other by the local operators, and are thus associated with individual topological observables m and e respectively. An infinite energy barrier ($\Lambda \to \infty$) prevents the toric code state $|m; 1, 1\rangle$ and $|e; \psi, \psi\rangle$ from transforming into each other.

5.1.2 Identification

Seen in Table 7, $|1 \bar{\psi}; 1, 1\rangle_{\text{DI}}$ and $|\psi \bar{\psi}; 1, 1\rangle_{\text{DI}}$ in the parent phase are both projected to $|1; 1, 1\rangle$ in our model, while $|\psi \bar{1}; \psi, \psi\rangle_{\text{DI}}$ and $|1 \bar{\psi}; \psi, \psi\rangle_{\text{DI}}$ are both projected to $|e; \psi, \psi\rangle$. This phenomenon is called identification in anyon condensation.

The projections from the elementary excitation states $|1 \bar{\psi}; 1, 1\rangle_{\text{DI}}$ and $|\psi \bar{\psi}; 1, 1\rangle_{\text{DI}}$ in the parent phase to $|1, 1\rangle$ in \mathcal{H}_{eff} in our model individually correspond to the inter-domain elementary excitation states

\[|1 \bar{1} - 1; 1, 1\rangle, \quad |\psi \bar{\psi} - 1; 1, 1\rangle, \]

which have different doubled-Ising topological observables $1 \bar{1}$ and $\psi \bar{\psi}$ but the same toric code topological observables 1. The projections from $|\psi \bar{1}; \psi, \psi\rangle_{\text{DI}}$ and $|1 \bar{\psi}; \psi, \psi\rangle_{\text{DI}}$ to $|e; \psi, \psi\rangle$ respectively correspond to the inter-domain elementary excitation states

\[|\psi \bar{1} - e; \psi, \psi\rangle, \quad |1 \bar{\psi} - e; \psi, \psi\rangle \]

with different doubled-Ising topological observables $\psi \bar{1}$ and $1 \bar{\psi}$ but same toric code topological observable ϵ. It appears that the quasiparticles $(1, 1)$ and $(\psi \bar{\psi}, 1)$ in the doubled Ising domain become the same toric code quasiparticle $(1, 1)$ when hopping into the toric code domain, while $(\psi \bar{1}, 1)$ and $(1 \bar{\psi}, e)$ are identified to be (e, ψ). This phenomenon is the spatial counterpart of identification in anyon condensation.

5.1.3 Confinements

Seen in Table 7, the states $|\sigma \bar{1}; \sigma, \sigma\rangle_{\text{DI}}$, $|\sigma \bar{\psi}; \sigma, \sigma\rangle_{\text{DI}}$, $|1 \bar{\sigma}; \sigma, \sigma\rangle_{\text{DI}}$ and $|\psi \bar{\sigma}; \sigma, \sigma\rangle_{\text{DI}}$ in the parent phase are all projected to 0 in \mathcal{H}_{eff} via $\psi \bar{\psi}$ condensation. This phenomenon is called
Figure 9: Our model on a torus: Two gapped domain walls (grey) separate the doubled Ising domain (red) and the \mathbb{Z}_2 toric code domain (blue).

confinement in anyon condensation. This is because in the toric code domain the edges and tails can not take value σ in the states in \mathcal{H}_{eff}.

Correspondingly, there is no inter-domain elementary excitation states $|J_{\text{DI}} - J_{\text{TC}}; p, q\rangle$ with $J_{\text{DI}} = \sigma \bar{1}, \sigma \bar{\psi}, 1\bar{\sigma},$ or $\psi \bar{\sigma},$ as the quasiparticles $(\sigma \bar{1}, \sigma), (\sigma \bar{\psi}, \sigma), (1\bar{\sigma}, \sigma),$ and $(\psi \bar{\sigma}, \sigma)$ in the doubled Ising domain cannot hop into the toric code domain unless overcoming infinite energy barriers ($\Lambda \to \infty$). This phenomenon is the spatial counterpart of the confinement in anyon condensation.

In anyon condensation, the doubled-Ising anyons $\sigma \bar{1}$ and $\sigma \bar{\psi}$ in the doubled Ising phase become the same quasiparticle χ in the intermediate phase, and $1\bar{\sigma}$ and $\psi \bar{\sigma}$ become $\bar{\chi}$; however, χ and $\bar{\chi}$ in the intermediate phase are confined in the \mathbb{Z}_2 toric code phase because of their nontrivial braiding with the new vacuum in the toric code phase. Now that the gapped domain wall is the spatial counterpart of the intermediate phase, we can see that domain-wall quasiparticles χ and $\bar{\chi}$ also have nontrivial braiding with the the trivial quasiparticle 1 in the gapped domain wall (to be defined in Eq. (7.3)).

6 The Bases of the Ground States on the Torus

The defining properties of a topological phase are usually obtained from the ground states of the topological phase on the torus [23, 26, 27]. For example, on the torus, a topological phase has a ground-state degeneracy, which is a topological quantum number of the topological phase. For instances, on the torus, the doubled Ising phase has GSD $= 9$, while the \mathbb{Z}_2 toric code phase has GSD $= 4$. In this section, we shall find two distinct and typical ground-state bases of our model on the torus (see Fig. 9), using noncontractible loop operators to be constructed shortly. The two ground-state bases will lead us to the characteristic properties of our model, as to be shown in Sections 6.3 and 7.

6.1 The domain-wall basis of the ground state subspace

Sewing the two ends of a ribbon operator results in a loop operator [23, 26]. If the loop path is noncontractible, we have a noncontractible loop operator. On the torus, there are two homotopic classes of noncontractible loops: V loop along the gapped domain wall, and H loop across the gapped domain wall. Here V stands for “vertical” and H “horizontal”. See Fig. 10.
Figure 10: (a) Gapped domain walls and noncontractible loops on the torus. (b) The corresponding lattice picture of (a).

There are 6 loop operators $W^{J_{DI}-J_{TC}}_H$ along H-loop, labeled by the topological observable pairs $J_{DI}-J_{TC}$:

$$W^{J_{DI}-J_{TC}}_H 1^I = I, \quad W^{J_{DI}-J_{TC}}_H ar{\psi} \psi = I, \quad W^{J_{DI}-J_{TC}}_H 1^\epsilon = I, \quad W^{J_{DI}-J_{TC}}_H \bar{\sigma} \sigma = I.$$

(6.1)

Similarly, there are 6 noncontractible loop operators along the V-loop, labeled by J_{DW}:

$$W^J_V = I, \quad W^\epsilon_V = I, \quad W^m_V = I, \quad W^\chi_V = I.$$

(6.2)

All these operators are linearly independent. They generate an algebra denoted by A. See Appendix F.1.

The algebra A generates the entire ground-state subspace H_0 of our model given any ground state:

$$H_0 = A \langle \Phi \rangle, \quad \forall \langle \Phi \rangle \in H_0.$$

(6.3)

We leave the full proof of Eq. (6.3) in Appendix F.2 but sketch the proof as follows. Since P_{eff} commutes with the loop operators of the parent phase in H_{eff}:

$$P_{\text{eff}} \left[W^{J_{DI}}_H, P_{\text{eff}} \right] = P_{\text{eff}} \left[W^{J_{DI}}_V, P_{\text{eff}} \right] = 0,$$

it projects the doubled-Ising loop operators $W^{J_{DI}}_H$ and $W^{J_{DI}}_V$ to $W^{J_{DI}-J_{TC}}_H$ and $W^{J_{DI}}_V$ of our model, and projects the ground-state subspace $H^{J_{DI}}_\text{parent}$ of the parent phase to H_0 of our model. Now that the doubled-Ising loop operators $W^{J_{DI}}_H$ and $W^{J_{DI}}_V$ can generate $H^{J_{DI}}_\text{parent}$ given any ground state of the parent phase, A can generate H_0 of our model given any ground state of our model.

We shall construct a ground-state basis using $W^{J_{DI}}_V$ as follows. There exists a unique state $\langle 1 \rangle_V \in H_0$, such that

$$W^{J_{DI}-J_{TC}}_H \langle \Phi \rangle_V = d_{J_{DI}-J_{TC}} \langle \Phi \rangle_V$$

for all the operators $W^{J_{DI}-J_{TC}}_H$, which generate a largest commutative subalgebra of A. Here $d_{J_{DI}-J_{TC}} = 1$ for all pairs $J_{DI}-J_{TC}$ are the positive eigenvalues of $W^{J_{DI}-J_{TC}}_H$. This common eigenstate can be obtained up to a normalization factor by

$$\langle 1 \rangle_V = P_H \langle \varphi \rangle.$$
given an arbitrary \(|\varphi\rangle \in \mathcal{H}_{\text{eff}} \), and

\[
P_{H} = \frac{I + W_{H}^{\psi^{-1}}}{2} \frac{I + W_{H}^{\bar{\psi}^{-1}}}{2} \frac{I + W_{H}^{\psi^{-1}}}{4} + 2W_{H}^{\bar{\psi}^{-1} - m} \times \frac{I + W_{H}^{\psi^{-1}}}{4} P_{0}.
\]

Here,

\[
P_{0} = \prod_{P \in \text{DI}} B_{P}^{\text{DI}} \prod_{P \in \text{DW}} B_{P}^{\text{DW}} \prod_{P \in \text{TC}} B_{P}^{\text{TC}} \prod_{V} Q_{V},
\]

such that \(P_{0} \mathcal{H}_{\text{eff}} = \mathcal{H}_{0} \), where \(B_{P}^{\text{DI}}, B_{P}^{\text{DW}}, B_{P}^{\text{TC}}, Q_{V} \) are the plaquette operators and vertex operators in the Hamiltonian (3.6) \(H_{\text{eff}} \) of our model.

Since \(|1\rangle_{V} \) is the common eigenstate of all \(W_{H}^{J_{\text{DI}} - J_{\text{TC}}} \), according to Eq. (6.3),

\[
\mathcal{H}_{0} = \text{span}\{ W_{V}^{\text{DW}} |\Phi\rangle_{V} \}.
\]

The states \(W_{V}^{\text{DW}} |\Phi\rangle_{V} \) are orthonormal and thus form a basis of \(\mathcal{H}_{0} \). We define

\[
|J_{\text{DW}}\rangle_{V} := W_{V}^{\text{DW}} |\Phi\rangle_{V}.
\]

We call this basis the \emph{domain-wall basis}, depicted in Fig. 11a.

6.2 The inter-domain basis of the ground-state subspace

The algebra \(A \) has more than one largest commutative subalgebra. The 6 \(V \)-loop operators \(W_{V}^{\text{DW}} \) also generate a largest commutative subalgebra of \(A \) and determine another unique ground state \(|1\rangle_{H} \), such that

\[
W_{V}^{\text{DW}} |\Phi\rangle_{H} = d_{\text{DW}} |\Phi\rangle_{H},
\]

where \(d_{1} = d_{\epsilon} = d_{m} = d_{\epsilon} = 1, d_{\chi} = d_{\bar{\chi}} = \sqrt{2} \). This common eigenstate can be obtained up to a normalization factor as

\[
|1\rangle_{H} = P_{V} |\varphi\rangle, \quad \forall |\varphi\rangle \in \mathcal{H}_{\text{eff}},
\]

where

\[
P_{V} = \frac{I + W_{V}^{\chi}}{2} \frac{I + W_{V}^{\bar{\chi}}}{2} \frac{I + W_{V}^{\chi}}{4} + 2W_{V}^{\bar{\chi}} \times \frac{I + W_{V}^{\chi}}{4} P_{0}.
\]

Hence, we obtain what we call the \emph{inter-domain basis} of \(\mathcal{H}_{0} \):

\[
|J_{\text{DI}} - J_{\text{TC}}\rangle_{H} := W_{H}^{J_{\text{DI}} - J_{\text{TC}}} |\Phi\rangle_{H}.
\]

as depicted in Fig. 11b.
6.3 Ground State Degeneracy on the Torus

According to the bases \(|J_{DW}\rangle_V\) (6.4) or \(|J_{DI} - J_{TC}\rangle_H\) (6.4) of the ground-state subspace on the torus, our model of the doubled Ising and \(\mathbb{Z}_2\) toric code phases separated by two gapped domain walls on the torus has

\[
\text{GSD}_{\text{torus}} = 6.
\] (6.6)

This GSD agrees with the number of the domain-wall quasiparticle species \(J_{DW}\), as well as the number of inter-domain topological observable pairs \(J_{DI} - J_{TC}\). This is a generalization of the correspondence between the GSD of a topological phase on the torus and the number of anyon species of this topological phase. We can simply replace the input data of our model with that of any other parent and child phases, so for any two domain-wall separated topological phases related by anyon condensation, the following correspondence holds.

Note that the GSD in Eq. (6.6) has also been obtained before by algebraic methods[16].

7 The \(S\) and \(T\) matrices

Besides the ground-state degeneracy, another fingerprint of the topological phase consists the \(S\) and \(T\) matrices, which generate the basis transformations in the ground-state Hilbert space \(\mathcal{H}_0 \subset \mathcal{H}_{\text{eff}}\) on the torus. We shall construct the \(S\) and \(T\) matrices of our model and show their physical significances.

7.1 The \(S\) matrix on the torus

We define the \(S\) matrix as

\[
S_{J_{DW}, J_{DI} - J_{TC}} := \langle J_{DW} | J_{DI} - J_{TC} \rangle_H, \quad (7.1)
\]
which up to phase factor reads

\[
S = \frac{\sqrt{2}}{4} \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 \\
m & 1 & 1 & -1 & -1 & 1 \\
\bar{\epsilon} & \sqrt{2} & -\sqrt{2} & \sqrt{2} & -\sqrt{2} & 0 & 0 \\
\bar{\chi} & \sqrt{2} & -\sqrt{2} & -\sqrt{2} & \sqrt{2} & 0 & 0 \\
\chi & \sqrt{2} & -\sqrt{2} & \sqrt{2} & -\sqrt{2} & 0 & 0 \\
\end{pmatrix}
\]

The Levin-Wen model of a single topological phase on the torus is invariant under rotations generated by a \(\frac{\pi}{2} \) rotation of the lattice\([30]\); the \(S \) matrix of the model represents the \(\frac{\pi}{2} \) rotation and is thus symmetric and unitary. Nevertheless, our model on the torus does not have this rotation invariance due to the gapped domain walls, so the \(S \) matrix (7.1) has nothing to do with rotations. Since the domain-wall basis and inter-domain basis are labeled by different sets of quasiparticle species, our \(S \) matrix is neither symmetric, nor unitary.

The \(S \) matrix of a single topological phase not only transforms the ground-state bases on the torus but also characterizes the mutual statistics of the anyons in the topological phase. This feature of the \(S \) matrix is generalized in our model. That is, the matrix elements of our \(S \) matrix (7.2) can be understood in the following sense of braiding

\[
\begin{pmatrix}
J_{DW} \\
\end{pmatrix}
\begin{pmatrix}
J_{TC} \\
\end{pmatrix}
= \frac{S_{J_{DW}, J_{DU}} - S_{J_{DU}, J_{TC}}}{S_{1,11-1}}
\begin{pmatrix}
J_{DW} \\
\end{pmatrix}
\begin{pmatrix}
J_{TC} \\
\end{pmatrix}
\]

Note that in Eq. (7.2), domain-wall quasiparticles \(\chi \) and \(\bar{\chi} \) have nontrivial mutual statistics with the trivial domain-wall quasiparticle 1:

\[
\frac{S_{\chi, \psi \bar{\psi}}}{S_{1,11-1}} = \frac{S_{\bar{\chi}, \bar{\psi} \bar{\phi}}}{S_{1,11-1}} = -\sqrt{2}.
\]

7.2 The \(T \) matrix on the torus

Although our model on the torus is not invariant under the \(\frac{\pi}{2} \) rotation of the lattice, it is still invariant under the shear, i.e., the \(T \) transformation, of the lattice along the vertical direction.

The \(T \) transformation exchanges the positions of two vertically neighbouring vertices in the ovals in Fig. 12. After the \(T \) transformation, for any two horizontally adjacent
Figure 12: The \mathcal{T} transformation and change of perspective. (a) The original lattice on the torus. Each oval encircles the vertices to be exchanged under the \mathcal{T} transformation. (b) Two horizontally adjacent plaquettes P_1 and P_2. (c) The plaquettes P_1 and P_2 after the \mathcal{T} transformation. (d) is (c) in a more convenient perspective.

Figure 13 shows how the \mathcal{T} transformation acts on the entire lattice. In the lattice, the number of columns is equal to the number of plaquettes in each column (e.g., the number is 4 for the lattice in Fig. 13), so the configuration of the lattice on the torus is invariant and thus the Hilbert space of our model is unchanged under the \mathcal{T} transformation. The \mathcal{T} transformation can be represented in this invariant Hilbert space. Note that any loop remains a loop under the \mathcal{T} transformation; hence, the \mathcal{T} transformation preserves the ground-state Hilbert space.

To see how the \mathcal{T} transformation acts on a basis state of the Hilbert space, we can zoom in to see how \mathcal{T} acts on the vicinity of a dashed oval:

\[
\left| e_1 \ a_0 \ a_1 \ a_2 \ e_2 \right> \quad \Rightarrow \quad \sqrt{d_{a_1} d_{a'_1} G^{a_0 e_1 a_1}_{a_2 e_2 a'_1}} \left| e_1 \ a_0 \ a'_1 \ a_1 \ e_2 \right>
\]

We define the T matrix as a representation of the \mathcal{T} transformation over the inter-domain basis:

\[
T_{J_{DW} - J_{TC}, K_{DW} - K_{TC}} := H(J_{DI} - J_{TC}) \mathcal{T} |K_{DW} - K_{TC}\rangle H,
\]

(7.4)
The matrix T is diagonal and reads

$$
egin{pmatrix}
J_{DI} - J_{TC} & 1 & 1 & -1 & -1 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
\bar{I} - 1 & \psi \bar{\psi} - 1 & \psi \bar{I} - \epsilon & 1\bar{\psi} - \epsilon & \sigma \bar{\sigma} - m & \sigma \bar{\sigma} - e
\end{pmatrix}.
$$

The elements $T_{J_{DI}-J_{TC},J_{DI}-J_{TC}}$ of the T matrix are the topological spins $\theta_{J_{DI}} = \theta_{J_{TC}} = T_{J_{DI}-J_{TC},J_{DI}-J_{TC}}$ of the anyons J_{DI} and J_{TC}:

$$
\begin{pmatrix}
J_{DI} & J_{TC}
\end{pmatrix}
 = T_{J_{DI}-J_{TC},J_{DI}-J_{TC}}
\begin{pmatrix}
J_{DI} & J_{TC}
\end{pmatrix}.
$$

The S matrix (7.1) and T matrix (7.4) generate all possible basis transformations of the ground states of our model on the torus.

Acknowledgments

YW is supported by NSFC grant No. 11875109, General Program of Science and Technology of Shanghai No. 21ZR1406700, Fudan University Original Project (Grant No.
A Gauge transformations of the positions of tails

In the lattice of the extended LW model, each tail associated with vertex V is chosen to attach to any one of the three edges incident at the vertex. Different choices lead to different lattice configurations and hence different Hilbert spaces of the extended LW model. Nevertheless, since tails are internal degrees of freedom that cannot be probed, the different Hilbert spaces underly the same topological phase. Specifically, these Hilbert spaces are equivalent up to the gauge transformation μ:

$$\mu_p \left| \begin{array}{c} i \\ l & j \\ k & p \end{array} \right| V = \sum_{m \in L_{DI}} \sqrt{d_l d_m} C^{kpl}_{jim} \left| \begin{array}{c} i \\ m & j \\ k & p \end{array} \right| V.$$

Besides the gauge transformation of the positions of tails, the directions of tails are also defined up to gauge transformation[25]. For example, the following two states are equivalent up to a gauge transformation:

$$\left| \begin{array}{c} i \\ l & j \\ k & p \end{array} \right| V \equiv \left| \begin{array}{c} i \\ l & j \\ k & p \end{array} \right| V.$$

B The matrix elements of the doubled-Ising ribbon operators

In section 4.1, we have defined the action of shortest ribbon operators $W_{DI; p,q}^{J}$ on the states where all tails take value $1 \in L_{DI}$:

$$W_{E}^{J_{DI}, pq} \left| \begin{array}{c} j_E \\ \end{array} \right| = \sum_{k \in L_{DI}} \sqrt{d_k d_{JE} z_{pqJE}^{J_{DI}k} J} \left| \begin{array}{c} j_E \\ p & k \\ q & J \end{array} \right| E,$$

where $j_E \in L_{DI}$ is the label on edge E, and $z_{pqJE}^{J_{DI}k}$ are listed in Appendix D.1.

In this appendix, we define the actions of any ribbon operators on any states in \mathcal{H} of the doubled Ising phase.

B.1 Matrix elements of shortest ribbon operators

Here, we define the action of the shortest ribbon operator $W_{E}^{J_{DI}, pq}$ on the states, in which there are nontrivial tails attached on edge E.
We start with the simplest case where the tail is associated with the upper vertex \(V_2 \) of edge \(E \) and carries a charge \(r \) and points to the right:

\[
W_{E}^{j_{2}j_{0},r_{2}} = \sum_{k_{\ell} \in L_{D_{1}}} \sqrt{d_{k}d_{s}} z_{j_{2}j_{0}}^{j_{2}j_{0}} G_{r_{2}s_{2},g}^{r_{2}s_{2}}.
\]

(B.1)

This action formally is the composition of two operators \(\tilde{W}_{E}^{j_{2}j_{0},r_{2}} \) and \(F \):

\[
W_{E}^{j_{2}j_{0},r_{2}} = F \tilde{W}_{E}^{j_{2}j_{0},r_{2}}.
\]

First, the operator \(\tilde{W}_{E}^{j_{2}j_{0},r_{2}} \) acts as

\[
\tilde{W}_{E}^{j_{2}j_{0},r_{2}} = \sum_{k_{\ell} \in L_{D_{1}}} \sqrt{d_{k}d_{s}} G_{r_{2}s_{2},g}^{r_{2}s_{2}}.
\]

There are now two tails (\(q \) and \(r \)) associated with vertex \(V_2 \), which can then be fused by the operator \(F \):

\[
F := \sum_{s_{\ell} \in L_{D_{1}}} \sqrt{d_{j_{0}d_{s}} G_{r_{2}s_{2},g}^{r_{2}s_{2}}}.
\]

The result is Eq. (B.1).

Similarly, when edge \(E \) has one tail (\(r \)) associated with the lower vertex \(V_1 \) and pointing to the right, \(W_{E}^{j_{1}j_{0},r_{1}} \) acts on the state as

\[
W_{E}^{j_{1}j_{0},r_{1}} = \sum_{k_{\ell} \in L_{D_{1}}} d_{k} \sqrt{d_{l}d_{s}} z_{j_{1}j_{0}}^{j_{1}j_{0}} G_{r_{1}s_{1},g}^{r_{1}s_{1}}.
\]

which is also a composition of the actions of two operators:

\[
W_{E}^{j_{1}j_{0},r_{1}} = F_{\mu}W_{E}^{j_{1}j_{0},r_{1}}.
\]

See Fig. 14.

All other actions of ribbon operators \(W_{E}^{j_{2}j_{0},r_{2}} \) can be obtained likewise.
Figure 14: The action of $W_{E}^{J_{D1},pq}$ on the state where a tail r is associated with V_1.

Figure 15: Concatenating shorter ribbon operators to a longer one.

B.2 Concatenating shorter ribbon operators to a longer ribbon operator

Now we define the ribbon operators along longer paths. Consider ribbon operator $W_{L}^{J_{D1},pq}$ in Fig. 4c, whose path L crosses two edges labeled by j_1 and j_4 respectively:

$$W_{L}^{J_{D1},pq} = \sum_{q} W_{E_{4}^{J_{D1}},pq}^{J_{D1},pq} \times \left(\mu_{q}^{*} \right)^{4} W_{E_{1}^{J_{D1}},pq}^{J_{D1},pq},$$

see Fig. 15.

The operator $W_{L}^{J_{D1},pq}$ formally is

$$W_{L}^{J_{D1},pq} = B_{p}^{D1} \sum_{q \in L_{D1}} F(\mu_{q}^{*})^{4} W_{E_{4}^{J_{D1}},pq}^{J_{D1},pq} W_{E_{1}^{J_{D1}},pq}^{J_{D1},pq},$$

see Fig. 15.
Figure 16: Two different cases where a tail with charge σ is attached to a TC edge E_2. (a) The tail σ is associated with the vertex V_1 with an incident DI edge E_1. (b) is equivalent to (a) up to a μ_σ gauge transformation. (c) The tail σ is associated with the vertex V_2 with two incident TC edges E_3 and E_4.

All matrix elements of the doubled-Ising ribbon operators taking longer paths can be obtained likewise.

C Proof of the commutation in \mathcal{H}_{eff} of P_{eff} and the doubled-Ising ribbon operators

In this section we prove Eq. (4.5):

$$P_{\text{eff}} \left[W_{L}^{J_{\text{DI}};p,q}, P_{\text{eff}} \right] = 0.$$

Obviously, Eq. (4.5) holds when $J_{\text{DI}} = 1 \bar{1}$, $\psi \bar{\psi}$, $\bar{\psi} \bar{1}$, and $\bar{1} \bar{\psi}$ because these anyon species all have charges in $\{1, \psi\}$ that are preserved under the projection.

We then consider the ribbon operators $W_{L}^{J_{\text{DI}};p,q}$ with $J_{\text{DI}} = \sigma \bar{1}$, $\sigma \bar{\psi}$, $1 \bar{\sigma}$, and $\bar{\psi} \sigma$. These operators create quasiparticles with charge σ at the ends of path L. Note that Eq. (4.5) holds when path L crosses DI edges because P_{eff} only acts on the TC edges, we only need to consider the projections of states $|\varphi\rangle = W_{L}^{J_{\text{DI}};p,q} |\Phi\rangle$ with nontrivial tails σ on TC edges. There are two cases of these states, depicted in Fig. 16a and Fig. 16c.

In the first case, the tail σ is associated with vertex V_1 with an incident DI edge E_1. Up to the gauge transformations introduced in Appendix A, this state is equivalent to the state with tail σ on DI edge E_1 (see Fig. 16b) and therefore satisfies Eq. (4.5).

In the second case, the tail σ is associated with vertex V_2 with two other incident TC edges E_3 and E_4. Note that

$$N_{1 \sigma}^{1} = N_{\bar{\sigma} \sigma}^{\psi} = 1, \quad N_{1 \sigma}^{1} = N_{\bar{\psi} \psi}^{1} = N_{\bar{\psi} \psi}^{\sigma} = 0,$$

one of the labels p_1 and p_2 on edge E_2 must be σ. If $p_1 = \sigma$, $W_{E_2}^{\bar{\psi} \psi;1,1} |\varphi\rangle = - |\varphi\rangle$; otherwise, if $p_2 = \sigma$, one of the labels p_3 and p_4 must be σ. Since associated with vertex V there is at most 1 nontrivial tails that has been on edge E_2, we have $W_{E_3}^{\bar{\psi} \psi;1,1} = - |\varphi\rangle$ or $W_{E_4}^{\bar{\psi} \psi;1,1} = - |\varphi\rangle$. Therefore,

$$P_{\text{eff}} |\varphi\rangle = 0,$$
which leads to

\[P_{\text{eff}} W_{L}^{J_{\text{DI}}; pq} P_{\text{eff}} = P_{\text{eff}} W_{L}^{J_{\text{DI}}; pq} = 0. \]

D The components of \(z \) tensors

\section*{D.1 Nonzero components of \(z_{\text{DI}} \) tensors in doubled Ising domain}

Equation (4.4),

\[
\frac{\delta_{j,t} \delta_{rst} \ z_{pq,l}}{d_{l}} = \sum_{u \in L_{\text{DI}}} z_{J_{\text{DI}}; pq, r} \cdot d_{u} d_{v} G_{p r}^{r s t} G_{q u v}^{s t} G_{v w u}^{l}
\]

has 9 minimal solutions \(z_{\text{DI}} \), labeled by the 9 double-Ising anyon species. The nonzero components of these tensors are

\[
\begin{align*}
\psi_{\psi, \psi}^{1} &= 1, \\
\psi_{\psi, \psi}^{\sigma} &= 1, \\
\psi_{\psi, \psi}^{\psi, \psi} &= 1, \\
\psi_{\psi, \psi}^{\psi, \psi, \psi} &= 1, \\
\psi_{\psi, \psi}^{\psi, \psi, \psi, \psi} &= 1, \\
\psi_{\psi, \psi}^{\psi, \psi, \psi, \psi, \psi} &= 1, \\
\psi_{\psi, \psi}^{\psi, \psi, \psi, \psi, \psi, \psi} &= 1, \\
\psi_{\psi, \psi}^{\psi, \psi, \psi, \psi, \psi, \psi, \psi} &= 1, \\
\psi_{\psi, \psi}^{\psi, \psi, \psi, \psi, \psi, \psi, \psi, \psi} &= 1.
\end{align*}
\]

(D.1)

\section*{D.2 Nonzero components of \(z_{\text{TC}} \) tensors in toric code domain}

The tensors \(z_{\text{TC}} \), \(J_{\text{TC}} \in \{1, e, m, l\} \), are

\[
\begin{align*}
\psi_{\psi, \psi, \psi, \psi, \psi} = 1, \\
\psi_{\psi, \psi, \psi, \psi, \psi, \psi} = 1, \\
\psi_{\psi, \psi, \psi, \psi, \psi, \psi, \psi} = 1, \\
\psi_{\psi, \psi, \psi, \psi, \psi, \psi, \psi, \psi} = 1, \\
\psi_{\psi, \psi, \psi, \psi, \psi, \psi, \psi, \psi, \psi} = 1.
\end{align*}
\]

(D.2)
These $z^{j\text{TC}}$ tensors are the four minimal solutions to the equation

$$\frac{\delta_{j,t} N_{rs}^{\text{TC}}}{d_t} = \sum_{uv \in L_{\text{TC}}} z^{j\text{TC}:u}_{pqs} z^{j\text{TC}:w}_{zpq} \cdot d_u d_v G_{ptuv} \rho_{asrt} \rho_{abj} \rho_{st}, \quad (D.3)$$

with all indices in $L_{\text{TC}} = \{1, \psi\}$.

Note that although the doubled-Ising tensor $z^{\sigma\bar{\sigma}} (D.2)$ also solves Eq. (D.3), it is not a minimal solution but the sum of two minimal solutions z^e and z^m:

$$z^{\sigma\bar{\sigma}}_{pqs} = z^m_{pqs} + z^e_{pqs}, \quad p, q, r, s \in L_{\text{TC}}.$$

D.3 Nonzero components of $z^{j\text{DW}}$ tensors in the gapped domain wall

The tensors $z^{j\text{DW}}, J_{\text{DW}} \in \{1, e, m, \epsilon, \chi, \bar{\chi}\}$, are

$$z^{1, u}_{pqs} = z^{11, u}_{pqs} = z^{\psi\psi, u}_{pqs}, \quad z^{e, u}_{pqs} = z^{\psi 1, u}_{pqs}, \quad z^{m, u}_{pqs} = \delta_{p, 1} z^{\sigma, u}_{pqs}, \quad z^{e, u}_{pqs} = \delta_{p, \psi} z^{\bar{\sigma}, u}_{pqs};$$

where the nonzero components are

$$z_{1111}^{1, \psi} = 1, \quad z_{\psi\psi1}^{e, \psi} = 1, \quad z_{111}^{m, \psi} = 1, \quad z_{\psi\psi1}^{e, \psi} = 1, \quad z_{\sigma\sigma1}^{\epsilon, \sigma} = 1, \quad z_{\sigma\sigma\psi}^{\epsilon, \sigma} = i, \quad z_{\sigma\sigma\psi}^{\bar{\epsilon}, \sigma} = -i.$$

The tensors $z^{j\text{DW}}$ are the 6 minimal solutions to the equation

$$\frac{\delta_{j,t} N_{rs}^{\text{DW}}}{d_t} = \sum_{uv \in L_{\text{DI}}} z^{j\text{DW}:u}_{pqs} z^{j\text{DW}:w}_{zpq} \cdot d_u d_v G_{ptuv} \rho_{st} \rho_{asrt} \rho_{st} \rho_{st}, \quad (D.4)$$

with all indices in L_{DI} except that $r, s, t \in L_{\text{TC}} = \{1, \psi\}$.

E Measuring elementary excitation states by local operators

E.1 Local operators in the doubled Ising phase

Since our model stems from the extended LW model describing the doubled Ising phase, we first focus on the operators in the doubled Ising phase. In the doubled Ising phase, the local operators B^{pq}_{DI} are defined by

$$B^{pq}_{\text{DI}} = \delta_{p, p'} \sum_{jo,j1,j2,j3,j4,j5 \in L_{\text{DI}}} \left(\prod_{n=0}^{6} \sqrt{d_{i_n} d_{j_n}} \right) \left(G^{q\text{sup}}_{j0j1j} G^{q\text{sq}}_{j1j0j} \right) \times$$
The local operators \(B_{p}^{\text{psqu}} \) preserve the anyon species \(J_{\text{DI}} \) of the elementary excitation state \(|J_{\text{DI}}; p, r)_{\text{DI}} \) but change the charge of the doubled-Ising quasiparticle \((J_{\text{DI}}, p) \) in plaquette \(P \).

There are in total 12 local operators \(B_{p}^{\text{psqu}} \) acting on plaquette \(P \):

\[
B_{p}^{\text{psqu}} (J_{\text{DI}}, p) \rightarrow (J_{\text{DI}}, r) \propto \delta_{p, p'}.
\]

E.2 Measurement operators in the doubled Ising phase

In this section we define the measurement operators of the elementary excitation states in the doubled Ising phase via the local operators defined above. Since the doubled-Ising elementary excitation states \(|J_{\text{DI}}; p, q)_{\text{DI}} \) are determined by quasiparticles \((J_{\text{DI}}, p) \) and \((J_{\text{DI}}, q) \) up to phase factors, to measure the elementary excitation states, we only need to measure the quasiparticles in the plaquettes.

The measurement operators \(\Pi_{P}^{J_{\text{DI}}, p} \) of quasiparticles \((J_{\text{DI}}, p) \) in plaquette \(P \) is a linear composition of local operators

\[
\Pi_{P}^{J_{\text{DI}}, p} = \sum_{su} \pi_{p}^{J_{\text{DI}}, psu} B_{p}^{\text{psqu}}.
\]

Here the coefficients \(\pi_{p}^{J_{\text{DI}}, psu} \) satisfy

\[
\frac{\pi_{p}^{J_{\text{DI}}, psu}}{\pi_{p}^{J_{\text{DI}}, psu}} = \frac{d_{s}d_{u}}{d_{p}} J_{\text{DI}; psu}^{\text{psq}},
\]

where \(\pi_{p}^{J_{\text{DI}}, psu} \) is a normalization factor, such that

\[
\Pi_{P}^{J_{\text{DI}}, p} (J_{\text{DI}}, p') \rightarrow (J_{\text{DI}}, r) = \delta_{p, p'} \delta_{J_{\text{DI}}, J_{\text{DI}}'} \delta_{J_{\text{DI}}, J_{\text{DI}}'}.
\]
The measurement operators $\Pi^{J_{\text{DI}}}_{P}$ of anyon species J_{DI} are thus

$$\Pi^{J_{\text{DI}}}_{P} = \sum_{p \in J_{\text{DI}}} \Pi^{J_{\text{DI}},p}_{P},$$

where $p \in J_{\text{DI}}$ are the charges of J_{DI} anyons, i.e., there exist $q, s, u \in L_{\text{DI}}$, such that $\gamma_{p q s}^{J_{\text{DI}},u} \neq 0$.

E.3 Local operators and measurement operators in the toric code domain and in the gapped domain wall

The local operators in our model are projected from the local operators (E.1) in the doubled Ising phase, while the measurement operators of quasiparticles in our model are projected from the doubled-Ising measurement operators (E.2).

There are four local operators acting on the TC plaquette P:

$$P_{\text{eff}}B_{P_{1111}}^{1 \psi_{1} \psi} P_{\text{eff}}, \quad P_{\text{eff}}B_{P_{1111}}^{1 \psi_{1} \psi} P_{\text{eff}}, \quad P_{\text{eff}}B_{P_{1111}}^{1 \psi_{1} \psi} P_{\text{eff}}, \quad P_{\text{eff}}B_{P_{1111}}^{1 \psi_{1} \psi} P_{\text{eff}},$$

which comprise the measurement operators of the four quasiparticles (J_{TC}, p) in the toric code domain

$$\begin{align*}
\Pi^{1,1}_{P} &= \frac{1}{2} P_{\text{eff}} \left(B_{P_{1111}}^{1 \psi_{1} \psi} + B_{P_{1111}}^{1 \psi_{1} \psi} + B_{P_{1111}}^{1 \psi_{1} \psi} \right) P_{\text{eff}}, \\
\Pi^{m,1}_{P} &= \frac{1}{2} P_{\text{eff}} \left(B_{P_{1111}}^{1 \psi_{1} \psi} - B_{P_{1111}}^{1 \psi_{1} \psi} - B_{P_{1111}}^{1 \psi_{1} \psi} \right) P_{\text{eff}}, \\
\Pi^{e,\psi}_{P} &= \frac{1}{2} P_{\text{eff}} \left(B_{P_{1111}}^{1 \psi_{1} \psi} + B_{P_{1111}}^{1 \psi_{1} \psi} \right) P_{\text{eff}}, \\
\Pi^{e,\psi}_{P} &= \frac{1}{2} P_{\text{eff}} \left(B_{P_{1111}}^{1 \psi_{1} \psi} - B_{P_{1111}}^{1 \psi_{1} \psi} \right) P_{\text{eff}}.
\end{align*}$$

(E.3)

In the gapped domain wall, since s is restricted to L_{TC}, there are 6 local operators:

$$\begin{align*}
P_{\text{eff}}B_{P_{1111}}^{1 \psi_{1} \psi} P_{\text{eff}}, \quad P_{\text{eff}}B_{P_{1111}}^{1 \psi_{1} \psi} P_{\text{eff}}, \quad P_{\text{eff}}B_{P_{1111}}^{1 \psi_{1} \psi} P_{\text{eff}}, \\
P_{\text{eff}}B_{P_{1111}}^{1 \psi_{1} \psi} P_{\text{eff}}, \quad P_{\text{eff}}B_{P_{1111}}^{1 \psi_{1} \psi} P_{\text{eff}}, \quad P_{\text{eff}}B_{P_{1111}}^{1 \psi_{1} \psi} P_{\text{eff}}.
\end{align*}$$

They comprise the measurement operators of the domain-wall quasiparticles (J_{DW}, p).

$$\begin{align*}
\Pi^{1,1}_{P} &= \frac{1}{2} P_{\text{eff}} \left(B_{P_{1111}}^{1 \psi_{1} \psi} + B_{P_{1111}}^{1 \psi_{1} \psi} \right) P_{\text{eff}}, \\
\Pi^{m,1}_{P} &= \frac{1}{2} P_{\text{eff}} \left(B_{P_{1111}}^{1 \psi_{1} \psi} - B_{P_{1111}}^{1 \psi_{1} \psi} \right) P_{\text{eff}}, \\
\Pi^{e,\psi}_{P} &= \frac{1}{2} P_{\text{eff}} \left(B_{P_{1111}}^{1 \psi_{1} \psi} + B_{P_{1111}}^{1 \psi_{1} \psi} \right) P_{\text{eff}}, \\
\Pi^{e,\psi}_{P} &= \frac{1}{2} P_{\text{eff}} \left(B_{P_{1111}}^{1 \psi_{1} \psi} - B_{P_{1111}}^{1 \psi_{1} \psi} \right) P_{\text{eff}}, \\
\Pi^{e,\sigma}_{P} &= \frac{\sqrt{3}}{2} P_{\text{eff}} \left(B_{P_{1111}}^{e,\sigma} + iB_{P_{1111}}^{e,\sigma} \right) P_{\text{eff}}, \\
\Pi^{e,\sigma}_{P} &= \frac{\sqrt{3}}{2} P_{\text{eff}} \left(B_{P_{1111}}^{e,\sigma} - iB_{P_{1111}}^{e,\sigma} \right) P_{\text{eff}}.
\end{align*}$$

(E.4)

Using the measurement operators (E.2), (E.3) and (E.4) in different areas of our model, we can measure the quasiparticle species of our model. See Table 1, 2, 4, 5, and 6.
F The algebra of the noncontractible loop operators

F.1 The multiplications of noncontractible loop operators

The loop operators $W_H^{J_{\partial H} - J_{TC}}$ (6.1) and $W_V^{J_{DW}}$ (6.2) generate a 36-dimensional algebra A. Here, we list the multiplications of these loop operators, which completely determine this algebra.

The six H-loop operators $W_H^{J_{\partial H} - J_{TC}}$ are commutative:

\[
\left(W_H^{1\bar{\psi} - \epsilon}\right)^2 = \left(W_H^{\psi\bar{\bar{1}} - \epsilon}\right)^2 = W_H^{1\bar{\bar{1}} - 1} = I, \quad W_H^{\psi\bar{\bar{1}} - \epsilon} W_H^{1\bar{\bar{\psi}} - \epsilon} = W_H^{\bar{\psi}\bar{\psi} - 1},
\]

\[
W_H^{\psi\bar{1}} - \epsilon W_H^{\sigma\bar{\sigma} - \epsilon} W_H^{\psi\bar{1}} - \epsilon W_H^{\bar{\sigma}\bar{\bar{\sigma}} - \epsilon} = W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - m}, \quad \left(W_H^{\sigma\bar{\sigma} - \epsilon}\right)^2 = \frac{W_H^{1\bar{1}} - 1 + W_H^{\bar{\psi}\bar{\psi} - 1}}{2}.
\]

The six V-loop operators $W_V^{J_{DW}}$ along the gapped domain wall are also commutative, and

\[
(W_V^{\bar{\psi}})^2 = (W_V^{m\bar{1}})^2 = W_V^{\bar{1}} = I, \quad W_V^{\psi} W_V^{m\bar{1}} = W_V^{\bar{1}},
\]

\[
W_V^{\psi} W_V^{\bar{1}} = W_V^{m\bar{1}} W_V^{\bar{\psi}} = W_V^{\bar{\bar{1}}}, \quad (W_V^{\bar{\psi}})^2 = W_V^{1\bar{1}} + W_V^{\bar{\psi}}.
\]

Multiplying $W_V^{J_{DW}}$ and $W_H^{J_{\partial H} - J_{TC}}$ generate the additional 25 linearly independent symmetry operators.

\[
W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - m} W_V^m = W_V^m W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - m},
\]

\[
W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - \epsilon} W_V^m = W_V^m W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - \epsilon},
\]

\[
W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - \epsilon} W_V^m = -W_V^m W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - \epsilon},
\]

\[
W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - m} W_V^\epsilon = -W_V^\epsilon W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - m},
\]

\[
W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - \epsilon} W_V^\epsilon = -W_V^\epsilon W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - \epsilon},
\]

\[
W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - m} W_V^\epsilon = -W_V^\epsilon W_H^{\sigma\bar{\sigma} - \bar{\bar{1}} - m},
\]

\[
W_H^{\psi\bar{1}} - \epsilon W_V^m = W_V^m W_H^{\psi\bar{1}} - \epsilon,
\]

\[
W_H^{\psi\bar{1}} - \epsilon W_V^m = W_V^\bar{\psi} W_H^{\bar{\psi} - \epsilon},
\]

\[
W_H^{\psi\bar{1}} - \epsilon W_V^\bar{\psi} = -W_V^\bar{\psi} W_H^{\psi\bar{1} - \epsilon},
\]

\[
W_H^{\psi\bar{1}} - \epsilon W_V^\bar{\psi} = -W_V^\bar{\psi} W_H^{\psi\bar{1} - \epsilon},
\]

\[
W_H^{\psi\bar{1}} - \epsilon W_V^m = -W_V^m W_H^{\psi\bar{1} - \epsilon},
\]

\[
W_H^{\psi\bar{1}} - \epsilon W_V^m = W_V^\bar{\psi} W_H^{\bar{\psi} - \epsilon},
\]

\[
W_H^{\psi\bar{1}} - \epsilon W_V^\bar{\psi} = -W_V^\bar{\psi} W_H^{\psi\bar{1} - \epsilon},
\]

\[
W_H^{\psi\bar{1}} - \epsilon W_V^\bar{\psi} = -W_V^\bar{\psi} W_H^{\psi\bar{1} - \epsilon}.
\]
Besides Eq. (F.1), all other multiplications are:

\[W_H^{\psi^{\dagger} - \epsilon} W_V^{m} = -W_V^{m} W_H^{1\psi^{\dagger} - \epsilon}, \]
\[W_H^{\psi^{\dagger} - \epsilon} W_V^{e} = -W_V^{e} W_H^{1\psi^{\dagger} - \epsilon}, \]
\[W_H^{\sigma^{\dagger} - m} W_V^{\chi}, \]
\[W_V^{\sigma^{\dagger} - m} W_H^{\chi}, \]
\[W_H^{\sigma^{\dagger} - \epsilon} W_V^{\chi}, \]
\[W_V^{\chi} W_H^{\sigma^{\dagger} - \epsilon}, \]
\[W_H^{\sigma^{\dagger} - m} W_V^{\chi}, \]
\[W_V^{\chi} W_H^{\sigma^{\dagger} - m}, \]
\[W_H^{\sigma^{\dagger} - \epsilon} W_V^{\chi}, \]
\[W_V^{\chi} W_H^{\sigma^{\dagger} - \epsilon}. \] (F.1)

Now we have obtained the multiplications of all the operators in algebra \(\mathcal{A} \).

F.2 Generating the entire ground state subspace

Finally, we prove Eq. (6.3): For any given two ground states \(|\Phi\rangle \in \mathcal{H}_{\text{eff}}\) and \(|\Phi'\rangle \in \mathcal{H}_{\text{eff}}\) of our model on the torus, there exists an operator \(W \in \mathcal{A} \), such that

\[|\Phi'\rangle = W |\Phi\rangle. \]

Since the ribbon operators in our model are projected from the doubled-Ising ribbon operators in the doubled Ising phase, the doubled-Ising loop operators in our model on the torus—the special cases of ribbon operators—are also projections of the doubled-Ising loop operators in the doubled Ising phase on the same lattice:

\[W_V^{1} = P_{\text{eff}} W_V^{1} P_{\text{eff}} = P_{\text{eff}} W_V^{1\psi} P_{\text{eff}}, \]
\[W_V^{\epsilon} = P_{\text{eff}} W_V^{\psi} P_{\text{eff}} = P_{\text{eff}} W_V^{1\psi} P_{\text{eff}}, \]
\[W_V^{m} + W_V^{e} = P_{\text{eff}} W_V^{\sigma^{\dagger}} P_{\text{eff}}, \]
\[W_V^{\chi} = P_{\text{eff}} W_V^{\sigma^{\dagger}} P_{\text{eff}} = P_{\text{eff}} W_V^{\sigma^{\dagger} \psi} P_{\text{eff}}, \]
\[W_V^{\psi^{\dagger} - 1} = P_{\text{eff}} W_H^{1\psi^{\dagger}} P_{\text{eff}}, \]
\[
W H^{\psi} = P_{\text{eff}} W H^{\psi} P_{\text{eff}}, \\
W H^{\bar{\psi}} = P_{\text{eff}} W H^{\bar{\psi}} P_{\text{eff}}, \\
W H^{\psi - m} + W H^{\bar{\psi} - \epsilon} = P_{\text{eff}} W H^{\psi - m} P_{\text{eff}}, \\
W H^{\bar{\psi} - \epsilon} = P_{\text{eff}} W H^{\bar{\psi} - \epsilon} P_{\text{eff}}, \\
W H^{\bar{\psi} - \epsilon} = P_{\text{eff}} W H^{\bar{\psi} - \epsilon} P_{\text{eff}}.
\]

Therefore, the algebra \(\mathcal{A} \) in our model satisfies
\[
\mathcal{A} = P_{\text{eff}} A_{\text{DI}} P_{\text{eff}},
\]
where the algebra \(A_{\text{DI}} \) is generated by all noncontractible loop operators \(W_{\text{DI}}^{\psi}, W_{\text{DI}}^{\bar{\psi}} \) in the doubled Ising phase on the torus along \(H \)-loop and \(V \)-loop.

On the other hand, in the doubled Ising phase, the projector
\[
P^D_0 = \prod_P B^D_P \prod_V Q_V
\]
projects the total Hilbert space \(\mathcal{H} \) to the doubled-Ising-ground-state subspace \(\mathcal{H}^D_0 \):
\[
P^D_0 \mathcal{H} = \mathcal{H}^D_0.
\]

In our model, the projector
\[
P_0 = \prod_{P \in \text{DI}} B^D_P \prod_{P \in \text{DW}} B^D_P \prod_{P \in \text{TC}} B^D_P \prod_V Q_V
\]
projects the effective Hilbert space \(\mathcal{H}_{\text{eff}} \) to the ground-state subspace \(\mathcal{H}_0 \):
\[
P_0 \mathcal{H}_{\text{eff}} = \mathcal{H}_0.
\]

Note that
\[
P_0 = P_{\text{eff}} P^D_0 P_{\text{eff}},
\]
the projector \(P_{\text{eff}} \) projects \(\mathcal{H}_{\text{DI}}^D \) to \(\mathcal{H}_0^D \):
\[
P_{\text{eff}} \mathcal{H}_{\text{DI}}^D = P_{\text{eff}} \mathcal{H}_{\text{DI}}^D.
\]

Therefore, for any two ground states \(|\Phi\rangle \) and \(|\Phi'\rangle \) of our model, there exist doubled-Ising ground states \(|\Phi\rangle_{\text{DI}} \) and \(|\Phi'\rangle_{\text{DI}} \), such that
\[
|\Phi\rangle = |\Phi\rangle_{\text{DI}}, \quad |\Phi'\rangle = |\Phi'\rangle_{\text{DI}}.
\]

Since \(\mathcal{H}_{\text{DI}}^0 \) is generated by the algebra \(A_{\text{DI}} \) given any doubled-Ising ground state \(|\Phi\rangle_{\text{DI}} \), there exists a doubled-Ising operator \(W_{\text{DI}} \in A_{\text{DI}} \), such that
\[
|\Phi'\rangle_{\text{DI}} = W_{\text{DI}} |\Phi\rangle_{\text{DI}}.
\]

As their projections,
\[
|\Phi'\rangle = \left(P_{\text{eff}} W_{\text{DI}} P_{\text{eff}} \right) |\Phi\rangle_{\text{DI}}, \quad \quad \text{(F.2)}
\]
where \(P_{\text{eff}} W_{\text{DI}} P_{\text{eff}} \in \mathcal{A} \). Therefore, the algebra \(\mathcal{A} \) generates the entire ground-state subspace \(\mathcal{H}_0 \) of our model given any ground state:
\[
\mathcal{H}_0 = \mathcal{A} |\Phi\rangle, \quad \forall |\Phi\rangle \in \mathcal{H}_0.
\]
References

[1] F. A. Bais and J. Slingerland, Physical Review B 79, 045316 (2009).
[2] M. Barkeshli and X.-g. Wen, Physical Review Letters 105, 216804 (2010).
[3] F. J. Burnell, S. H. Simon, and J. K. Slingerland, New Journal of Physics 14, 015004 (2012).
[4] M. D. Schulz, S. Dusuel, K. P. Schmidt, and J. Vidal, Physical review letters 110, 147203 (2013).
[5] M. Barkeshli, (2013), arXiv:1307.8194 .
[6] I. S. Eliëns, J. C. Romers, and F. A. Bais, Physical Review B 90, 195130 (2014), arXiv:1310.6001 .
[7] X. Chen, F. Wang, Y.-m. Lu, and D.-h. Lee, (2013), 10.1016/j.nuclphysb.2013.04.015, arXiv:1302.3121 .
[8] Y. Gu, L.-Y. Hung, and Y. Wan, Phys. Rev. B 90, 245125 (2014), arXiv:1402.3356 .
[9] L.-Y. Hung and Y. Wan, Journal of High Energy Physics 1507, 120 (2015).
[10] W. Ji and X.-G. Wen, (2019), 10.1103/PhysRevResearch.2.033417, arXiv:1912.13492 .
[11] Y. Hu, Z. Huang, L.-y. Hung, and Y. Wan, Journal of High Energy Physics 2022, 26 (2022), arXiv:2109.06145v1 .
[12] F. A. Bais, J. Slingerland, and S. Haaker, Physical Review Letters 102, 220403 (2009), arXiv:arXiv:0812.4596v1 .
[13] A. Kitaev and L. Kong, Communications in Mathematical Physics 313, 351 (2012).
[14] D. Gaiotto, Journal of High Energy Physics 2012 (2012), 10.1007/JHEP12(2012)103, arXiv:1201.0767 .
[15] L.-Y. Hung and Y. Wan, Phys. Rev. Lett. 114, 076401 (2015), arXiv:1408.0014 .
[16] T. Lan, J. C. Wang, and X.-G. Wen, Physical Review Letters 114, 9 (2015), arXiv:1408.6514 .
[17] F. Bais and S. Haaker, Physical Review B 92, 075427 (2015).
[18] Y. Wan and C. Wang, Journal of High Energy Physics 2017, 172 (2017).
[19] C. Bao, S. Yang, C. Wang, and Z.-C. Gu, Physical Review Research 4, 023038 (2022).
[20] T. Lan, X. Wen, L. Kong, and X.-G. Wen, Physical Review Research 2, 023331 (2020).
[21] Z. Jia, D. Kaszlikowski, and S. Tan, arXiv preprint arXiv:2207.03970 (2022), 10.48550/arXiv.1801.00719.
[22] L.-Y. Hung and Y. Wan, International Journal of Modern Physics B 28, 1450172 (2014).
[23] M. Levin and X.-g. Wen, Physical Review B 71, 21 (2005), arXiv:0404617 [cond-mat] .
[24] Y. Hu, Y. Wan, and Y.-s. Wu, Chinese Physics Letters 34, 077103 (2017), arXiv:1706.00650 .
[25] Y. Hu, N. Geer, and Y.-S. Wu, Physical Review B 97, 195154 (2018).
[26] A. Kitaev, Annals of Physics 303, 2 (2003).
[27] Y. Hu, Y. Wan, and Y.-S. Wu, Physical Review B 87, 125114 (2013), arXiv:1211.3695 .
[28] Y.-Z. Huang, Contemporary Mathematics (2005), arXiv:0502558 [math] .

– 38 –
[29] C. Nayak, A. Stern, M. Freedman, and S. Das Sarma, Reviews of Modern Physics 80, 1083 (2008).

[30] Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vishwanath, Physical Review B 85, 235151 (2012).

[31] M. Barkeshli, C.-M. Jian, and X.-L. Qi, Physical Review B 87, 045130 (2013).

[32] J. C. Y. Teo, A. Roy, and X. Chen, Physical Review B 90, 155111 (2014), arXiv:1308.5984.

[33] F. Liu, Z. Wang, Y.-Z. You, and X.-G. Wen, arXiv preprint arXiv:1303.0829 (2013), 10.48550/arXiv.1303.0829.

[34] L. Cincio and G. Vidal, Physical Review Letters 110, 1 (2013), arXiv:1208.2623.

[35] S. Jiang, A. Mesaros, and Y. Ran, (2014), 10.1103/PhysRevX.4.031048, arXiv:1404.1062.

[36] C. Shen and L.-Y. Hung, Physical review letters 123, 051602 (2019).