Development of a Headspace-Gas Chromatography-Mass Spectrometry Method Based on Matrix-Matched Calibration for Evaluating VOC Content, Characterization, Source, and Risk in RO Membrane

Mingtao Hou
China Building Materials Academy

Hui-xue Ren (renhx138@163.com)
Shandong Jianzhu University https://orcid.org/0000-0002-5389-1084

Wenqing Cheng
Shandong Jianzhu University

Lingjie Li
Shandong Jianzhu University

Shuai Zhang
Shandong Jianzhu University

Yanxue Chen
Shandong University

Chunfeng Yu
Energy Research Institute of Shandong Academy of Sciences

Fangjun Li
Shandong Sanqi Energy Co.LTD

Naichao Chi
China Building Materials Academy

Wenxiu Wang
China Association for Quality

Zhe Deng
China Household Appliance Research Institute

Research Article

Keywords: RO membrane, Volatile organic compounds, HS-GC/MS, Matrix effect, Risk assessment

DOI: https://doi.org/10.21203/rs.3.rs-404558/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Analytical method have been developed to determine volatile organic compounds (VOCs) in reverse osmosis (RO) membrane using headspace with gas chromatographic mass spectrometry (HS-GC/MS). The operating parameters, including incubation temperature, incubation time and the choice of matrix modifier, were investigated. The existence of matrix effect was checked and the VOC-free RO membrane was selected as the best material for developing matrix-matched calibration curve. At optimum operating conditions, the established method performed good linearity (R > 0.996), repeatability (< 9.5%), VOC recoveries (84.7%–123%) and detection limits (3.44–748 µg/kg). The method was applied to determining thirty-seven common VOCs for RO membrane and their concentration in effluent water was also investigated. The results obtained in this study could provide the foundation for future contamination analysis and development of the RO membrane. Of these VOCs, dichloromethane, chloroform, 1,2-dichloroethane, benzene, chlorobenzene, ethylbenzene, xylene, styrene were also found with content between N.D.—112 419 µg/kg in detection rate between 40%—100%. The analysis of VOC distribution showed the solvents used during the production of the RO membrane were the main source of VOCs in commercial RO membrane. Of these VOCs, dichloromethane, chloroform, 1,2-dichloroethane, and toluene were hardly removed by pre-washing. The relationship between the content of VOCs in RO membrane and their corresponding concentration in filtrated water showed highly positive correlation and the safety limit values for the four compounds were evaluated as 2.6×10⁻²–3.8×10⁻⁵ µg/kg, but more accurate and completed guideline values should be formulated to guarantee the RO membrane quality.

1. Introduction

Water pollution in surface water and underground water is becoming serious in worldwide nowadays. Heavy metals and organic compounds are the most focused pollutants in water sources and for decades, many water treatment technologies, including biological process, electrochemistry, chemical reduction, and physico-chemical method, are used in water disposal (Hou et al., 2018; Hou et al., 2015; Ren et al., 2016; Sharma and Bhattacharya, 2016). Of these technologies, the reverse osmosis (RO) membrane technology has been extensively employed in urban households and poverty-stricken regions all over the world, because it is able to synchronously remove contaminants, including heavy metals, organic compounds, and bacteria (Sharma and Bhattacharya, 2016).

The primary concept of RO was started by Loeb and Sourirajan in the 1960s through the introduction of asymmetric cellulose acetate membrane, but commercial application in this field thrived with the development of thin film composite (TFC) RO membrane owing to its salt rejection, resistance to pressure compaction, and wide operating temperature range and pH range (Kang and Cao, 2012; Li and Wang, 2010; Liu et al., 2011). For decades, studies have been intensively focused on the development of the RO membranes by using novel materials and methods for synthesis to increase the RO membranes performance in terms of high water flux, long lifetime, and resistance to chlorine and membrane fouling (Shi et al., 2017; Wei et al., 2010; Zhang et al., 2013). Notably, many volatile organic compounds (VOCs), such as toluene (Tol), hexane (Hex), and N,N-dimethylformamide (DMF), are widely used as solvents during the synthesis and modification of the RO membrane (Emadzadeh et al., 2015; Guillen et al., 2011; Rana et al., 2015). For this reason, removing the residual organic compounds during the production process of RO membrane is an essential step which is performed by squeezing using a roll rubber, drying at ambient temperature ~ 90°C, and washing by pure water (Liu et al., 2014; Yan et al., 2016; Zhao et al., 2017). However, before the use, pre-washing for a certain time is still a required step in RO operation specification to ensure the quality of effluent water. Nevertheless, residual organic contamination in commercial RO membrane is also a crucial problem even if few studies have been published about it.

Countries in the worldwide have formulated standards to ensure the quality of the materials in contact with water. National Sanitation Foundation of United States (NSF) has established a series of standards for evaluating the materials and units for drinking water treatment, and these criteria have also been quoted as the American National Standard (NSF/ANSI, 2015; 2017; 2018). Of these criteria, NSF-58 Reverse Osmosis — Drinking Water Treatment Systems was the main reference used for the evaluation of the health effects of RO membrane, and it introduced a classical method referred to as the extraction testing. According to this method, samples were completely filled with exposure water which contained 50 ± 5 mg/L of total dissolved solids and 0.5 ± 0.05 mg/L of free available chlorine and have a pH of 6.75 ± 0.25, and maintained for 24 h at an ambient temperature of 23 ± 2°C. At least 2 L of exposure water shall be collected for analysis and the above process shall be repeated to give a total of three times. Similarly, State Bureau of Technical Supervision of China also published criteria in accordance with NSF’s method to ensure the health security of water-contact materials used in drinking water treatment and toluene (Tol), dichloromethane (DCM) and trichloromethane (TCM) were selected as the candidates in the testing of RO membrane (SBTS, 1998). However, the shortcomings of this method are that it required plenty of time for preprocessing, and the products which were certified by NSF standards were possible to cause problems in practice since there existed deviations between extraction testing and the actual use (Heim and Dietrich, 2007; Triantafyllidou et al., 2012). In addition, common solvents, such as DMF and Hex, are not limited by above criteria. Therefore, developing a fast and comprehensive method for the determination of the residual organic components in RO membranes is significant to ensure their sanitary safety for household use.

In this investigation, we developed an analytical method for the determination of VOCs in RO membrane using headspace-gas chromatography-mass spectrometry (HS-GC/MS). The influence of parameters, including matrix modifier selection, incubation time and temperature, were optimized. The effect of the existence of matrix effect was also studied. The method developed in this paper was used to analyze the VOC content of commercial RO membranes, and sources of various VOCs were also discussed. In addition, risk assessment conducted by evaluating the relationship between specific VOC content in RO membrane and their concentration in effluent water was also investigated. The results obtained in this study could provide the foundation for future contamination analysis and development of the RO membrane.

2. Experimental

2.1 Chemicals and standard solutions

Methanol and acetonitrile were HPLC grade and purchased from Fisher Chemical, China. VOC standard solutions, nylon membrane and mixed cellulose ester membrane were obtained from ANPEL Scientific Instrument Co., Ltd., China. Deionized water was obtained with a Milli-Q purification system. A stock solution
of the VOCs was prepared in methanol and stored in a refrigerator at 4°C for no more than 12 h.

2.2 RO membrane samples

To estimate the VOC content in RO membrane, various samples purchased from different manufacturers were used in the experiments (RO1–RO10). Before the experiments, each sample of RO membrane was dismantled into three parts, namely, the outer packing gummed paper, RO membrane, and gauze element. The dismantled RO membranes were stored in sealed valve bags away from light and analyzed within 2 h. Before analysis, RO membrane samples were rapidly cut down to a size of 5 cm×2 cm, and the samples at 0.2 g were placed into a headspace bottle that was contained by a certain matrix modifier (if have). Afterward, the headspace bottles were closed with an aluminum seal and waited for analysis. The incubation time for equaling samples was in the range of 15–180 min, and the oven temperature was in the range 45°C–140°C. The injection volume was 1000 µL. Calibration curves were constructed by plotting the peak areas against the content of each analyte, and then, the contents of VOCs in RO membranes were calculated according to the following formula:

\[p = \frac{c}{m \times (100 + w)} \times 100 \]

(1)

where \(p \) is the content of VOCs in RO membrane (µg/kg), and \(c \) is the mass of the measured individual VOCs by HS-GC/MS (ng). \(m \) is the sample mass (g), and \(w \) is the moisture content (%) of each sample.

2.3 Pre-washing of RO membrane

A RO water purifier (Fig. 1) without other purification crafts was used to investigate the practical effect of residual VOCs in RO membrane on purified water quality. The RO membrane used was in the same batch as the above experiments. Deionized water without VOC background was pumped into the experimental RO membrane at speed of 0.5 L/min, and the VOC concentration in effluent water was determined within 24 h.

2.4 Instrument and sample analysis

An automated headspace instrumentation (Dani, HSS 86.50, U.S.A) set at certain temperature (45°C–140°C) was used for the pretreatment of the samples. The loop (1000 µL) and line transmission line temperatures were 150°C and 170°C, respectively. The VOC content of the RO membrane was analyzed in a gas chromatograph system (Shimadzu, 2010 plus, Japan) equipped with a mass detector (Shimadzu, QP 2020, Japan). A 624MS chromatographic column (30 m × 0.25 mm × 1.4 µm, Shimadzu, Japan) was used to separate individual VOCs. Helium (99.999%) was used as carrier gas at 1.17 mL/min, and the injector was operated in a split of 1:5 ratio. The injector temperature was 230°C, and the results were obtained using the following program: the column temperature was initially at 40°C for 5 min after injection and then increased at 20°C/min to 200°C. For mass spectrometry, ionization was carried out by electronic impact (EI) with a voltage of 70 eV and full scan mode in the m/z range of 35–400. The ion and transference temperatures were set at 230°C and 200°C, respectively. Analyte retention times and the ions for analysis in HS-GC/MS are shown in Table S1.

The VOC concentration in effluent water was measured by a standard method under the instrumental conditions mentioned above (MEP, 2016). The DMF's concentration in water was detected by high-performance liquid chromatography (Shimadzu, Japan) with an InertSustain C18 column (150 mm × 4.6 mm, 5 µm) and UV detection at 198 nm. The mobile phase was acetonitrile and water (5: 95 V/V%) with a flow rate of 0.8 mL/min. The column oven was set at 35°C. After filtration through a 0.22 µm filter membrane, the DMF in samples was measured with direct injection method.

3. Results And Discussion

3.1 Experimental conditions optimization

To accurately analyze the VOCs in RO membrane, investigating the effects of various experimental conditions was necessary. A preliminary screening of VOCs showed that DCM, Tol, DMF, chlorobenzene (PhCl), and xylene (Xyl) were abundant in the RO membrane (Fig. 2). Thus, they were employed to optimize the operation parameters of the headspace. In this study, the matrix modifier, incubation temperature, and incubation time were investigated by comparing the variations in GC/MS spectrum peak areas under various experimental conditions.

The matrix modifier aiming at improving the recovery rates or the signal abundance was typically used for the analysis of VOCs in aqueous/solid phase as it could decrease or eliminate the effect from the studied matrix without altering the natural levels of the analyte of interest (Cavalcante et al., 2010). In particular, saturated NaCl solution or phosphoric–NaCl solution were extensively used in standard methods widely (MEP, 2016; USEPA, 1996). As we known, headspace formation methodologies contribute to signal intensity, thus the addition of a salt modifier in sample system that is not saline favors would increase the signal intensity. However, Cavalcante et al. observed the VOCs determination was not dependent on salinity and pH change (Cavalcante et al., 2010), and the similar results was also obtained by Menendez et al. when using NaCl saturation for sample preparation (Menendez et al., 2000). On the other hand, direct analysis of VOCs in samples without the addition of any modifier has been practiced in material testing owing to its convenience and high sensitivity (Hwang et al., 2019; Lim et al., 2014; Seo and Shin, 2010).

In these experiments, the variations in GC/MS spectrum peak areas under various experimental conditions are shown in Fig. 3. It can be seen that the sample used did contain VOCs and Tol showed the highest peak areas among the five VOCs. The peak areas obtained by direct analysis were apparently higher than those with the addition of matrix modifier (Fig. 3A), especially for Tol, DMF, and Xyl. The reason for this could be partly because these VOCs are both difficult to escape into aqueous phase from samples and into gas phase from aqueous solution. Thus, the modifier used in experiments decreased the gas phase concentration of the targeted compounds.
Incubation temperature often plays an important role on headspace analysis because the higher the incubation temperature is, the higher the diffusion rate for analytes from the sample to the headspace is. As shown in Fig. 3B, the area peak for the five VOCs slowly increased with increasing incubation temperatures from 45°C to 80°C, but then dramatically increased when the incubation temperature was increased from 80°C to 140°C. However, the higher incubation temperatures requires more energy consumption and lead to a higher interior pressure and more water vapor in the head space bottle. In this study, when the incubation temperature was beyond 100°C, the risk of top lid bursting greatly increased.

Incubation time is also an important parameter that affects the sensitivity on the measurement of the VOCs in the samples. Figure 3C shows that the VOC peak areas sharply increased with the 15–60 min equilibrium time and then slowly decreased with 60–180 min equilibrium time. The result illustrated the VOCs, even with the low boiling point, required a relatively long time for release. Thus, the optimal experiment conditions for headspace were determined as follows: headspace equilibrium without matrix modifier, equilibrium temperature of 100°C, and equilibrium time of 60 min.

3.2 Evaluation of the matrix effect and method validation

Matrix effect is often essential to the influent of the component of the aqueous/solid matrix in the GC/MS determination, and the ways to combat matrix effects in GC−MS have been extensively studied (Cavalcante et al., 2010; Ferrer et al., 2011; Garcia Pinto et al., 2011). However, each of the approaches has advantages and disadvantages in certain aspects and among the approaches, matrix-matched calibration is widely used due to its wide applicability and economic benefits (Kwon et al., 2012).

In this study, in order to explore the matrix effect, several matrixes including Nylon Membrane, Mixed Cellulose Ester Membrane, and RO Membrane (samples RO1) were selected as the matched matrixes. For the preparation of calibration curve, all matrix materials were baked in 105°C for a certain period for the preparation of VOC-free matrix. The prepared matrix with mass at 0.20 g was filled into the headspace bottle, and 1 µL of VOC standard solution at concentration 100–2000 ng/µL (2 000–20 000 and 50 000–500 000 ng/µL for Tol and DMF, respectively) was injected rapidly into the matrix materials. Then, the top lid of the headspace bottle was soon compressed by a specific tool. The calibration curve was established with peak areas of quantitative ions and the mass of the added VOCs using external standard method.

Correlation coefficients (r), relative standard deviations (RSDs), recoveries, limits of detection (LODs), and limits of quantitation (LOQs) were employed to verify the validation of the proposed method under optimized headspace condition. Table 1 gives an overview of calibrations for all substances analyzed by means of the matrix-matched method (only showed the VOCs detected in testing samples). All of the selected matched matrixes showed good linearity in the concentration range of 100–2 000 ng or 2 000–20 000 ng or 50 000–500 000 ng with the correlation coefficients (r) ranging from 0.9960 to 1.000. However, the slopes of the curve developed by different matrix showed significant differences. For instances, the slopes obtained were in the range 167 to 372 for TCM and 5.83 to 96.7 for DMF, demonstrating that the matrix effect had a great influence on the determination of VOCs in RO membranes (Garcia Pinto et al., 2011).

For recoveries, three levels of the standard adding (5 000, 10 000, 20 000 ng for Tol and 50 000, 200 000, and 500 000 ng for DMF and 100, 500, 2000 ng for others) were used to verify the method validation. It can be seen that by matrix-matched calibration, most targeted compounds (except DMF) showed good results of 70–130% (Table 1), but the calibration developed without adding matrix (empty gas) showed higher slope and insufficient recovery rate for most of these compounds, indicating the absorption of VOCs in matrix decreased their concentration in vapor phase. It is worthy noting that DMF showed very poor recovery, except when the VOC-free RO membrane used as the matrix material. Afterwards, the VOC-free matrix-matched calibration was used for evaluating the reproducibility of different VOCs and the RSD values of the analytic VOCs were all below 9.5% at above three content levels (n = 6), indicating the proposed method had good reproducibility.

Limits of detections (LODs) and quantitation (LOQs) were measured by means of the signal to noise ratio. Noise was determined experimentally from the blank samples and LOD was defined as S/N of 3, LOQ as S/N of 10 (Trefz et al., 2012). Table 2 shows the LODs and LOQs, as well as the corresponding retention time, quantitative ions, qualitative ions, and calibration curve for various VOCs. Most of the compounds presented LODs of no more than 15 µg/kg and LQDs of no more than 48 µg/kg. However, compared with these compounds, DMF (a universal solvent) showed a much higher LOD (748 µg/kg) and LQD (2493 µg/kg) mainly due to its high boiling point and strong absorption on matrix materials.

3.3 VOC distribution and VOC sources

VOCs in 10 RO membrane samples from different manufacturers were determined by the developed method. Table 3 illustrated the analysis results of RO membrane samples. Clearly, all experimental samples contained at least four VOCs. The total amount of VOCs (Σ VOCs) in various RO membrane samples varied from 107 309 to 1 189 847 µg/kg dry weight with a mean concentration of 371 574 µg/kg. Among the screened 37 VOCs (Table S1), only DMK, DCM, Hex, TCM, DCA, benzene (PhH), Tol, DMF, PhCl, ethylbenzene, Xyl, and styrene were detected. The detection rate of each VOCs in RO membrane was in the following order: DMF (100%) > Tol (100%) > Hex (100%) > Xyl (90%) > ethylbenzene (90%) > PhCl (80%) > DCA (70%) > DCM (70%) > PhH (70%) > TCM (60%) > DCA (60%) > DCM (40%). This order showed that these VOCs were used in RO membrane production at different degrees. Tol and DMF were relatively abundant with mean contents of 90 087 and 249 957 µg/kg, representing 24.2% and 67.3% of mean Σ VOCs, respectively. For individual sample, the contents of Tol and DMF were also dramatically higher than those of other VOCs, and their content were respectively accounting for 5.80–60.0% and 27.9–89.3% of ZVOCs over the tested samples. As the VOCs should originate from the production and processing of RO membrane and the VOC content, such as DMK, DCM and TCM, showed discrepancies between various samples (Table 3), in this study, only the possible sources for those VOCs are discussed exploratory.

Nowadays, the mainstream technology currently used for the preparation of commercial RO membranes is interfacial polymerization on support materials via two steps (Gholami et al., 2018; Rana et al., 2015). In the first step, support membrane (the most common is Polysulfone (PSF), Fig. S1) is prepared according to the phase inversion method by casting their monomer solution on non-woven fabric. In the second stage, polyamide barrier layer on the top of support
membrane is prepared by in situ interfacial polymerization process between m-phenylenediamine (MPD) in the aqueous phase and trimesoyl chloride (TMC) in the organic phase (Kong et al., 2011; Lalia et al., 2013; Mohan and Kullóvá, 2012).

VOC contamination could be introduced during the above steps. Usually, DMF was the most common solvent for dissolving PSF. However, in practice, the organic reagents used (e.g. TCM, Tol, DCA and etc.) might contain two or more solvents/additives to obtain a designed membrane for a particular application (Guillen et al., 2011; Herrero et al., 2014; Seung-Pyo et al., 2014). Thus, they should be the main sources of the high level residual VOCs (e.g. DMF) into RO membranes. Besides, the boundary reaction between MPD and TMC could also result in organic contamination, because the organic phase, primarily is Hex, is used as the solvent for dissolving TMC and as the cleaning agent for rinsing the membrane surface after the interfacial polymerization reaction (Gholami et al., 2018; Klaysom et al., 2013). The synthesis of the PSF raw materials could also be another possible sources of VOCs entering RO membranes. The nucleophilic substitution reaction between diphenol and bis(4-chlorophenyl)sulfone is a classical reaction that is widely used for commercial PSF production (Sahre et al., 2006). However, this reaction lead to the formation of the by-product water, which has a serious effect adverse to this reaction, for this reason, azeotropes such as Tol and Xyl are often synchronously added (Ates et al., 2011; Gao et al., 2017; Ma et al., 2020). Additionally, in industry production, the organic solvents used were often not pure enough, thus impurities in solvent (e.g., Xyl, PhH in Tol) may also be an important source of the VOCs (Han et al., 2015; Joshi et al., 2016).

In general, the results implied that the productive process of support materials could be the major source of the VOCs residual in RO membranes. Although many methods were available for removing the organic solvent, our study showed there still presented a considerable amount of residues. Thus, the RO membrane users always need to beware of the harmful effect of VOCs from their purity devices with a RO element.

3.4 Drinking water quality and risk assessment

To evaluate the migration of VOCs into effluent water, each experimental RO membrane was washed by 10 L of deionized water and then the effluent water was collected for the analysis of aqueous VOCs. Maximum contamination level (MCL) of drinking water from U.S. Environmental Protection Agency (USEPA), Ministry of Health, Labor and Welfare of Japan (MHLW), and Ministry of Health of China (MHC) were used to evaluate the potential adverse effect of VOCs in effluent water filtrated by RO membrane (JMHL, 2015; MHC/SAC, 2006; USEPA, 2018). In this study, concentration over MCL suggested the VOC was deemed to have a specific adverse effect on effluent water. Maximum VOCs in 10 L of effluent in measured samples are shown in Table 4. The results showed that the concentrations of DMK, Hex and Styrene were not detected in all samples. PhH, PhCl, ethylbenzene, and Xyl were far from the MCL, which indicated that the safety hazard for these substances was low.

DMF was often not limited in the drinking water quality criteria, and it possessed very high concentration in the initial effluent (780–5234 µg/L in 0 L). However, fortunately, with the increase of the effluent volume, its concentration rapidly decreased owing to its high solubility in water (Fig. S2), indicating it was not a key contaminant that was difficult to be removed by pre-washing. However, the concentrations of DCM, TCM, DCA, and Tol in effluent water decreased slowly with pre-washing (Fig. S2) and their concentration did have the risk to surpass the MCL after 10 L pre-washing. As DCM, TCM, DCA and Tol are all considered as the toxic substances which not only give the drinking water a bad taste or smell but also increase the risk of illness such as cancer, kidney, and nervous system problems (Al-Baldawi, 2018; Hrudey, 2009; Shetakeva and Sillanpaa, 2013; Tavakoli Dastjerdi et al., 2017), users need to continue increasing the pre-washing volume to ensure their drinking water’s quality.

3.5 Recommended VOC limit value

As the VOCs in RO membrane did affect the effluent water quality, it is necessary for practitioners to evaluate the safety limit values of VOCs in RO membrane. Species sensitivity distributions (SSDs) are commonly used to derive the limit values of contaminants in a field based on their limit values in a linked field (e.g. obtaining unknown soil thresholds for heavy metal from the food quality standard) (Ding et al., 2016; Ding et al., 2018). Countries around the world have set the drinking water standards to ensure the drinking water quality, but considering there were only limited data in our study and the SSDs is accomplished with the establishment of complex models and requires great experimental results (Wheeler et al., 2002), therefore, in this study, we tentatively assessed the safety contamination limits (SCLs) of VOCs in RO membrane by investigating the relationship between the VOC contents in RO membranes and their concentrations in effluent water.

The VOCs in effluent water that were higher in concentration than the one of the MCLs from USEPA, MHLW, or MHC were discussed. Figure 4 presents the relationship of the concentration of VOCs in 10 L effluent water with their contents in RO membranes. Clearly, with the increasing DCM, TCM, DCA, and Tol contents in RO membranes, their concentrations in effluent also proportionately increased significantly (r > 0.995, Fig. S3), indicating the proposed method can be used for calculation statistically. The MCL of each contaminant in drinking water is presented in Fig. 4, and the SCL of a VOC can be obtain by calculating the intersection points between the line of VOC MCL in drinking water with the column of VOC content in RO membranes. By this method, the SCLs of DCM, TCM, DCA, and Tol calculated from USEPA, MHLW and MHC were 1.2×10³–7.4×10³, 2.6×10⁵–2.0×10⁵, and 3.8×10⁵ µg/kg, respectively. So, when the VOCs in RO membranes exceeded these values, their concentrations in the effluent within 10 L were more possible not able to reach the MCLs.

4. Conclusion

A method based on HS-GC/MS was developed for the analysis of common VOCs in RO membrane. The existence of matrix effect had a reverse effect on the accuracy of quantification, but the matrix-matched calibration established by VOC-free RO membranes provided good linearity, low detection, reproducibility and accuracy. Twelve VOCs were detected in RO membranes with contents in the range of N.D.–961 186 µg/kg and after pre-washing of the RO membranes, most of them showed no high-risk to the effluent quality. However, DCM, TCM, DCA, and Tol were more abundant in RO membranes and likely made water undrinkable. The investigation provide a basis for comparison for the contamination level in RO membranes and indicated that more accurate guideline values are necessary to be established to guarantee RO membrane quality.
Declarations

Ethical Approval: Not applicable.

Consent to Participate: Not applicable.

Consent to Publish: Not applicable

Author contributions: Mingtao HOU: Conceptualization, Methodology, Writing-original draft. Huixue REN: acquisition, Methodology, Writing-review & editing. Wenchong CHENG: Investigation, Formal analysis, Supervision. Lingjie LI: Formal analysis, Validation. Shuai ZHANG: Validation, Visualization. Yanxue CHEN: Investigation, Supervision. Chunfeng YU: Supervision, Validation. Fangjun LI: Validation, Visualization. Naichao CHI: Supervision, Visualization. Wenxiu WANG: Validation, Visualization. Zhe DENG: Supervision, Validation. All authors read and approved the final manuscript.

Funding: The work was financially supported by Shandong Provincial Major Scientific and Technological Innovation Project (MSTIP) (2019JZZY020211), the National Key Research and Development Program of China (2017YFF0209903, 2017YFF0209904), and Natural Science Foundation of Shandong Province (ZR2016EM01).

Competing Interests: The authors declare that they have no competing interests.

Availability of data and materials: All data generated or analysed during this study are included in this published article.

References

1. Al-Baldawi, I.A (2018) Removal of 1,2-Dichloroethane from real industrial wastewater using a sub-surface batch system with Typha angustifolia L. Ecotoxicology and environmental safety 147, 260-265.https://doi.org/10.1016/j.ecoenv.2017.08.022

2. Ates, S., Dizman, C., Aydogan, B., Kiskan, B., Torun, L. and Yagci, Y (2011) Synthesis, characterization and thermally activated curing of polysulfones with benzoxazine end groups. Polymer 52(7), 1504-1509.https://doi.org/10.1016/j.polymerr.2011.01.051

3. Cavalcante, R.M., de Andrade, M.V.F., Marins, R.V. and Oliveira, L.D.M (2010) Development of a headspace-gas chromatography (HS-GC-PID-FID) method for the determination of VOCs in environmental aqueous matrices: Optimization, verification and elimination of matrix effect and VOC distribution on the Fortaleza Coast, Brazil. Microchemical Journal 96(2), 337-343.https://doi.org/10.1016/j.microc.2010.05.014

4. Ding, C., Ma, Y., Li, X., Zhang, T. and Wang, X. (2016) Derivation of soil thresholds for lead applying species sensitivity distribution: A case study for root vegetables. Journal of hazardous materials 303, 21-27.https://doi.org/10.1016/j.jhazmat.2015.10.027

5. Ding, C., Ma, Y., Li, X., Zhang, T. and Wang, X. (2018) Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assessment. The Science of the total environment 619-620, 700-706.https://doi.org/10.1016/j.scitotenv.2017.11.137

6. Emadzadeh, D., Lau, W.J., Rahbani-Sisakht, M., Daneshfar, A., Ghanbari, M., Mayahi, A., Matsuura, T. and Ismail, A.F (2015) A novel thin film nanocomposite reverse osmosis membrane with superior anti-organic fouling affinity for water desalination. Desalination 368, 106-113.https://doi.org/10.1016/j.desal.2014.11.019

7. Ferrer, C., Lozano, A., Aguera, A., Giron, A.J. and Fernandez-Alba, A.R (2011) Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables. Journal of chromatography. A 1218(42), 7634-7639.https://doi.org/10.1016/j.chroma.2011.07.033

8. Gao, H., Sun, X. and Gao, C (2017) Antifouling polysulfone ultrafiltration membranes with sulfobetaine polyimides as novel additive for the enhancement of both water flux and protein rejection. Journal of Membrane Science 542, 81-90.https://doi.org/10.1016/j.memsci.2017.07.053

9. Garcia Pinto, C., Herrero Martin, S., Perez Pavon, J.L. and Moreno Cordero, B (2011) A simplified Quick, Easy, Cheap, Effective, Rugged and Safe approach for the determination of trihalomethanes and benzene, toluene, ethylbenzene and xylene in soil matrices by fast gas chromatography with mass spectrometry detection. Analytica chimica acta 689(1), 129-136.https://doi.org/10.1016/j.aca.2011.01.023

10. Gholami, S., Rezvani, A., Vatanpour, V. and Cortina, J.L (2018) Improving the chlorine resistance property of polyamide TFC RO membrane by polyethylene glycol diacrylate (PEGDA) coating. Desalination 443, 245-255.https://doi.org/10.1016/j.desal.2018.06.004

11. Guillon, G.R., Pan, Y., Li, M. and Hoek, E.M.V (2011) Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research 50(7), 3798-3817.https://doi.org/10.1021/ie101928r

12. Han, B., Chen, J., Zheng, L., Zhou, T., Li, J., Wang, X. and Wang, J (2015) Development of an impurity-profiling method for source identification of spilled benzene series compounds by gas chromatography with mass spectrometry: Toluene as a case study. Journal of separation science 38(18), 3198-3204.https://doi.org/10.1002/jssc.201500086

13. Helm, T.H. and Dietrich, A.M (2007) Sensory aspects and water quality impacts of chlorinated and chloraminated drinking water in contact with HDPE and cPVC pipe. Water research 41(4), 757-764.https://doi.org/10.1016/j.watres.2006.11.028

14. Herrero, M., Martos, A.M., Varex, A., Galván, J.C. and Levenfeld, B (2014) Synthesis and characterization of polysulfone/layered double hydroxides nanocomposite membranes for fuel cell application. International Journal of Hydrogen Energy 39(8), 4016-4022.https://doi.org/10.1016/j.ijhydene.2013.06.041

15. Hou, M., Pu, Y., Qi, W.K., Tang, Y., Wan, P., Yang, X.J., Song, P. and Fisher, A (2018) Enhanced electrocatalytic reduction of aqueous nitrate by modified copper catalyst through electrochemical deposition and annealing treatment. Chemical Engineering Communications 205(5), 706-715.https://doi.org/10.1080/00986445.2017.1413357
16. Hou, M., Tang, Y., Xu, J., Pu, Y., Lin, A., Zhang, L., Xiong, J., Yang, X.J. and Wan, P (2015) Nitrate reduction in water by aluminum–iron alloy particles catalyzed by copper. Journal of Environmental Chemical Engineering 3(4), 2401-2407.https://doi.org/10.1016/j.jece.2015.08.014

17. Hruday, S.E (2009) Chlorination disinfection by-products, public health risk tradeoffs and me. Water research 43(8), 2057-2092.https://doi.org/10.1016/j.watres.2009.02.011

18. Hwang, J.B., Lee, S., Yeum, J., Kim, M., Choi, J.C., Park, S.-J. and Kim, J (2019) HS-GC/MS method development and exposure assessment of volatile organic compounds from food packaging into food simulants. Food Additives & Contaminants: Part A 36(10), 1574-1583.https://doi.org/10.1080/19440409.2019.1642520

19. Japanese Ministry of Health, Labour, and Welfare (JMHL), 2015. Water Quality Standard.

20. Joshi, O., Gide, P. and Nimkar, N (2016) Development and Validation of Gas Chromatographic Method for Residual Solvents Determination in Difenoxin Hydrochloride. International Journal of Pharma Res earch & Review 5(3), 1-6.

21. Kang, G.D. and Cao, Y.M (2012) Development of antifouling reverse osmosis membranes for water treatment: A review. Water research 46(3), 584-600.https://doi.org/10.1016/j.watres.2011.11.041

22. Klaysom, C., Hermans, S., Gahlaut, A., Van Craenenbroeck, S. and Vankelecom, I.F.J (2013) Polyamide/Polyacrylonitrile (PA/PAN) thin film composite osmosis membranes: Film optimization, characterization and performance evaluation. Journal of Membrane Science 445, 25-33.https://doi.org/10.1016/j.memsci.2013.05.037

23. Kong, C., Shintani, T., Kamada, T., Freger, V. and Tsuru, T (2011) Co-solvent-mediated synthesis of thin polyamide membranes. Journal of Membrane Science 384(1-2), 10-16.https://doi.org/10.1016/j.memsci.2011.08.055

24. Kwon, H., Lehotay, S.J. and Geis-Asteggianti, L (2012) Variability of matrix effects in liquid and gas chromatography-mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops. Journal of chromatography. A 1270, 235-245.https://doi.org/10.1016/j.jchroma.2012.10.059

25. Lalia, B.S., Kochkodan, V., Hashaikeh, R. and Hilal, N (2013) A review on membrane fabrication: Structure, properties and performance relationship. Desalination 326, 77-95.https://doi.org/10.1016/j.desal.2013.06.016

26. Li, D. and Wang, H (2010) Recent developments in reverse osmosis desalination membranes. Journal of Materials Chemistry 20(22), 4551.https://doi.org/10.1039/B92455G

27. Lim, S.K., Shin, H.S., Yoon, K.S., Kwack, S.J., Um, Y.M., Hyeon, J.H., Kwak, H.M., Kim, J.Y., Kim, T.Y., Kim, Y.J., Roh, T.H., Lim, D.S., Shin, M.K., Choi, S.M., Kim, H.S. and Lee, B.M (2014) Risk assessment of volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX) in consumer products. Journal of toxicology and environmental health. Part A 77(22-24), 1502-1521.https://doi.org/10.1080/15287394.2014.955905

28. Liu, L.-F., Cai, Z.-B., Shen, J.-N., Wu, L.-X., Hoek, E.M.V. and Gao, C.-J (2014) Fabrication and characterization of a novel poly(amide-urethane@imide) TFC reverse osmosis membrane with chlorine-tolerant property. Journal of Membrane Science 469, 397-409.https://doi.org/10.1016/j.memsci.2014.06.029

29. Liu, M., Chen, Z., Yu, S., Wu, D. and Gao, C (2011) Thin-film composite polyamide reverse osmosis membranes with improved acid stability and chlorine resistance by coating N-isopropylacrylamide-co-acrylamide copolymers. Desalination 270(1-3), 248-257.https://doi.org/10.1016/j.desal.2010.10.052

30. Ma, Y., Zeng, J., Zeng, Y., Zhou, H., Liu, G., Liu, Y., Zeng, L., Jian, J. and Yuan, Z (2020) Preparation and performance of poly(4-vinylpyridine)-b polysulfone-b-poly(4-vinylpyridine) triblock copolymer/polyhydroxy blend membrane for separation of palladium (II) from electroplating wastewaters. Journal of hazardous materials 384, 121277.https://doi.org/10.1016/j.jhazmat.2019.121277

31. Menendez, J.C.F., Sanchez, M.L.F., Uria, J.E.S., Martinez, E.F. and Sanzmedel, A (2000) Static headspace, solid-phase microextraction and headspace solid-phase microextraction for BTEX determination in aqueous samples by gas chromatography. Analytica chimica acta 415(1), 9-20.https://doi.org/10.1016/S0003-2670(00)00862-X

32. Ministry of Environmental Protection (MEP) (2016) Water quality — Determination of volatile organic compounds — Headspace/Gas chromatography mass spectrometry.

33. Ministry of Health of China/Standardization Administration of China (MHC/SAC) (2006) Standard for Drinking Water Quality.

34. Mohan, D.J. and Kullová, L (2012) A study on the relationship between preparation condition and properties/performance of polyamide TFC membrane by IR, DSC, TGA, and SEM techniques. Desalination and Water Treatment 51(1-3), 586-596.https://doi.org/10.1016/j.desal.2014.06.052

35. National Sanitation Foundation International (NSF) (2015) NSF International Standard/American National Standard 53: Drinking Water Treatment Units—Health Effects.

36. National Sanitation Foundation International (NSF) (2017) NSF International Standard/American National Standard 61: Drinking Water SystemComponents—Health Effects.

37. National Sanitation Foundation International (NSF) (2018) NSF International Standard/American National Standard 58: Reverse Osmosis — Drinking Water Treatment Systems.

38. Rana, H.H., Saha, N.K., Jewrajka, S.K. and Reddy, A.V.R (2015) Low fouling and improved chlorine resistant thin film composite reverse osmosis membranes by cerium(IV)/polyvinyl alcohol mediated surface modification. Desalination 357, 93-103.https://doi.org/10.1016/j.desal.2014.11.013

39. Ren, H., Jiang, J., Wu, D., Gao, Z., Sun, Y. and Luo, C (2016) Selective Adsorption of Pb(II) and Cr(VI) by Surfactant-Modified and Unmodified Natural Zeolites: A Comparative Study on Kinetics, Equilibrium, and Mechanism. Water, Air, & Soil Pollution 227(4).https://doi.org/10.1007/s11270-016-2790-6

40. Sahre, K., Hoffmann, T., Pospiech, D., Eichhorn, K.-J., Fischer, D. and Voit, B (2006) Monitoring of the polycondensation reaction of bisphenol A and 4,4′-dichlorodiphenylsulfone towards polysulfone (PSU) by real-time ATR–FTIR spectroscopy. European Polymer Journal 42(10), 2292-2301.https://doi.org/10.1016/j.europolyj.2006.05.025

41. State Bureau of Technical Supervision (SBTS) (1998) Standard for Safety Evaluation of Equipment and Protective Materials in Drinking Water System.
42. Seo, I. and Shin, H.-S (2010) Determination of toluene and other residual solvents in various food packaging materials by gas chromatography/mass spectrometry (GC/MS). Food Science and Biotechnology 19(6), 1429-1434.https://doi.org/10.1007/s10068-010-0204-x

43. Seung-Pyo, J., Seung-Yup, L., Phill, L., Hye-Jin, K. and Chong-Kyu, S (2014) Method for manufacturing a reverse osmosis membrane and a reverse osmosis membrane manufactured thereby, LG Chemical Co., Ltd., China.

44. Sharma, S. and Bhattacharyya, A (2016) Drinking water contamination and treatment techniques. Applied Water Science 7(3), 1043-1067.https://doi.org/10.1007/s13201-016-0455-7

45. Shestakova, M. and Sillanpaa, M (2013) Removal of dichloromethane from ground and wastewater: a review. Chemosphere 93(7), 1258-1267.https://doi.org/10.1016/j.chemosphere.2013.07.022

46. Shi, M., Wang, Z., Zhao, S., Wang, J. and Wang, S (2017) A support surface pore structure re-construction method to enhance the flux of TFC RO membrane. Journal of Membrane Science 541, 39-52.https://doi.org/10.1016/j.memsci.2017.06.087

47. Tavakoli Dastjerdi, M.H., Habibagahi, G., Ghahramani, A., Karimi-Jashni, A. and Zeinali, S (2017) Removal of dissolved toluene in underground water with nanowires of manganese oxide. Adsorption Science & Technology 36(1-2), 393-407.https://doi.org/10.1177/0263617417698469

48. Trefz, P., Kischkel, S., Hein, D., James, E.S., Schubert, J.K. and Miekisch, W (2012) Needle trap micro-extraction for VOC analysis: effects of packing materials and desorption parameters. Journal of chromatography. A 1219, 29-38.https://doi.org/10.1016/j.chroma.2011.10.077

49. Triantafyllidou, S., Raetz, M., Parks, J. and Edwards, M (2012) Understanding how brass ball valves passing certification testing can cause elevated lead in water when installed. Water research 46(10), 3240-3250.https://doi.org/10.1016/j.watres.2012.03.022

50. U.S. Environmental Protection Agency (USEPA) (1996) Volatile organic compounds in soils and other solid matrices using equilibrium headspace analysis.

51. U.S. Environmental Protection Agency (USEPA) (2018) 2018 Edition of the Drinking Water Standards and Health Advisories.

52. Wei, X., Wang, Z., Zhang, Z., Wang, J. and Wang, S (2010) Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5,5-dimethylhydantoin. Journal of Membrane Science 351(1-2), 222-233.https://doi.org/10.1016/j.memsci.2010.01.054

53. Wheeler, J.R., Grist, E.P.M., Leung, K.M.Y., Morritt, D. and Crane, M (2002) Species sensitivity distributions: data and model choice. Marine Pollution Bulletin 45, 192-202.https://doi.org/10.1016/S0025-326X(01)00327-7

54. Yan, W., Wang, Z., Wu, J., Zhao, S., Wang, J. and Wang, S (2016) Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method. Journal of Membrane Science 498, 227-241.https://doi.org/10.1016/j.memsci.2015.10.029

55. Zhang, Z., Wang, Z., Wang, J. and Wang, S (2013) Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5,5-dimethylhydantoin and N,N-Methylenebis(acrylamide). Desalination 309, 187-196.https://doi.org/10.1016/j.desal.2012.10.019

56. Zhao, Y., Zhang, Z., Dai, L. and Zhang, S (2017) Preparation of high water flux and antifouling RO membranes using a novel diacyl chloride monomer with a phosphonate group. Journal of Membrane Science 536, 98-107.https://doi.org/10.1016/j.memsci.2017.04.039

Tables

Table 1 Curve slopes, coefficients and recoveries of different matrix matched calibration
Matrix materials	Blank (empty bottle)	Nylon Membrane
Slope	Coefficient	Recovery (%)
---	---	---
100/5000/50000 ng	500/10000/200000 ng	2000/20000/500000 ng
---|---|---|---|---|---
Acetone | 348 | 0.9981 | 104 | 112 | 106 | 312 | 0.9990 | 97.3 | 104 | 115
Dichloromethane | 319 | 0.9983 | 54.9 | 66.7 | 49.2 | 184 | 0.9986 | 95.3 | 115.7 | 85.3
Hexane | 562 | 0.9991 | 108 | 116 | 107 | 547 | 0.9995 | 115 | 104 | 99.6
Chloroform | 372 | 0.9998 | 46.6 | 69.3 | 45.7 | 205 | 1.0000 | 84.3 | 126 | 82.7
1,2-dichloroethane | 272 | 0.9986 | 71.9 | 85.1 | 62.4 | 213 | 0.9983 | 91.5 | 108 | 79.4
Benzene | 1111 | 0.9998 | 49.6 | 71.5 | 50.6 | 666 | 0.9990 | 115 | 104 | 99.6
Toluene | 784 | 1.0000 | 67.3 | 79.6 | 54.1 | 501 | 0.9999 | 78.8 | 101 | 76.8
N,N-Dimethylformamide | 96.7 | 0.9998 | 101 | 31.4 | 38.6 | 27.5 | 0.9988 | 46.0 | 64.3 | 57.5
Chlorobenzene | 620 | 0.9993 | 39.8 | 57.9 | 43.6 | 325 | 0.9997 | 76.0 | 110 | 83.2
Ethylbenzene | 885 | 0.9997 | 46.8 | 59.9 | 45.6 | 525 | 0.9995 | 78.8 | 101 | 76.8
m,p-xylene | 754 | 0.9996 | 38.7 | 57.7 | 42.2 | 840 | 0.9992 | 68.6 | 102 | 74.9
o-xylene | 335 | 0.9994 | 36.9 | 48.6 | 37.6 | 391 | 0.9993 | 71.3 | 93.9 | 72.6
Styrene | 659 | 0.9991 | 42.2 | 47.7 | 40.4 | 362 | 1.0000 | 76.7 | 86.7 | 73.5

Table 2
Retention, calibration curves, limits of detection (LODs) and quantitation (LOQs) for various compounds

Compound	Retention time (min)	Quantitative ion (m/z)	Qualitative ion (m/z)	Calibration curve equation	LOD (µg/kg)	LOQ (µg/kg)
Acetone | 2.579 | 43 | 58 | Y = 292 x – 9129 | 3.87 | 12.9
Dichloromethane | 3.035 | 84 | 86, 49 | Y = 158 x + 17908 | 14.3 | 47.7
Hexane | 3.565 | 57 | 41/86 | Y = 487 x – 38119 | 4.93 | 16.4
Chloroform | 4.745 | 83 | 85 | Y = 167 x + 34017 | 11.7 | 39.1
1,2-dichloroethane | 5.435 | 62 | 98 | Y = 161 x + 19777 | 11.7 | 38.9
Benzene | 5.380 | 78 | / | Y = 569 x + 48990 | 3.44 | 11.5
Toluene | 8.060 | 92 | 91 | Y = 416 x + 168095 | 4.20 | 14.0
N,N-Dimethylformamide | 9.985 | 73 | 44/58 | Y = 16.4 x – 187770 | 748 | 2493
Chlorobenzene | 10.775 | 112 | 77, 114 | Y = 271 x + 19603 | 8.84 | 29.5
Ethylbenzene | 11.080 | 91 | 106 | Y = 397 x + 38815 | 6.41 | 21.4
m,p-xylene | 11.480 | 106 | 91 | Y = 621 x + 93595 | 6.20 | 20.7
o-xylene | 12.640 | 106 | 91 | Y = 279 x + 25565 | 10.2 | 34.0
Styrene | 12.720 | 104 | 78 | Y = 265 x + 25085 | 10.8 | 36.0
Table 3
VOCs distribution in experimental samples (µg/kg)

Compounds	Acetone	Dichloromethane	Hexane	Chloroform	1,2-dichloroethane	Benzene	Toluene	N,N-dimethylformamide	Chlorobenzene
RO1	1193	N.D.	N.D.	850	303	50449	129033	56.3	
RO2	779	660	342	15072	N.D.	118	199366	961186	901
RO3	475	19.7	61.5	882	166	400982	186220	9003	
RO4	1133	1078	319	55.8	34.0	11981	90419	N.D.	
RO5	587	N.D.	4348	N.D.	64.3	10931	135879	N.D.	
RO6	N.D.	N.D.	247	40.3	41.2	75371	86556.	3467	
RO7	430	8121	57.0	74.6	N.D.	10190	153519	1990	
RO8	507	N.D.	12498	40.3	84968	465429	16017	N.D.	
RO9	N.D.	N.D.	15291	40.3	90419	135879	N.D.	3331	
RO10	N.D.	N.D.	1022	41345	155801	N.D.	90087	1218	
Mean	512	991	640	439	77.1	90087	10190	249957	3331
Proportion in mean \(\Sigma\) VOCs,%	0.14	0.27	0.17	0.80	0.12	0.02	24.2	67.3	0.90

Table 4
MCL values for VOCs in drinking water and the ratios of over MCL numbers in total sample numbers

Compound	Maximum value in 10L effluent \(\mu g/L\)	MCL \(\mu g/L\)	Over MCL numbers/total numbers				
		US's EPA	Japan's MHLW	China's MHC	US's EPA	Japan's MHLW	China's MHC
Acetone	N.D.	-	-	-	-	-	-
Dichloromethane	32.9	5	20	2/10	1/10	1/10	
Hexane	N.D.	-	-	-	-	-	-
Chloroform	143	70	60	2/10	2/10	2/10	
1,2-dichloroethane	37.9	5	4	3/10	3/10	1/10	
Benzene	0.9	5	10	0/10	0/10	0/10	
Toluene	420	1000	400	0/10	1/10	0/10	
N,N-dimethylformamide	28.0	-	-	-	-	-	-
Chlorobenzene	10.2	100	300	0/10	-	0/10	
Ethylbenzene	0.2	700	300	0/10	-	0/10	
Xylene	6.7	10000	400	0/10	0/10	0/10	
Styrene	N.D.	100	20	0/10	-	0/10	

Figures
Figure 1
Device of filtration test

Figure 2
Total Ion Chromatography (TIC) of the preliminary screening of VOCs in RO membrane
Figure 3

Effect of a) matrix modifier, b) incubation temperature and c) incubation time on the response of VOCs on mass spectrum detector, initial condition: incubation time = 80 °C, incubation time = 30 min, sample mass = 0.2 g.
Figure 4

VOCs concentration in 10 L effluent as a function of their content in RO membrane, a) DCM, b) TCM, c) DCA, d) Tol; Experimental condition: total flow rate = 0.5 L/min, ratio of purified water and waste water = 0.9 – 1.2.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementalmaterialHou20210407.docx