Two-way Gaussian quantum cryptography against coherent attacks in direct reconciliation

Carlo Ottaviani,1 Stefano Mancini,2 and Stefano Pirandola1
1Department of Computer Science & York Center for Quantum Technologies, University of York, York YO10 5GH, United Kingdom
2School of Science and Technology, University of Camerino, 62032 Camerino, Italy & INFN Sezione di Perugia 06123 Perugia, Italy

We consider the two-way quantum cryptographic protocol with coherent states assuming direct reconciliation. A detailed security analysis is performed considering a two-mode coherent attack, that represents the residual eavesdropping once the parties have reduced the general attack by applying symmetric random permutations. In this context we provide a general analytical expression for the keyrate, discussing the impact of the residual two-mode correlations on the security of the scheme. In particular we identify the optimal eavesdropping against two-way quantum communication, which is given by a two-mode coherent attack with symmetric and separable correlations.

PACS numbers: 03.67.Dd, 03.65.-w, 42.50.-p, 89.70.Cf

I. INTRODUCTION

The goal of quantum key distribution (QKD) [1] is to make available unconditionally secure private keys between two authenticated users, Alice and Bob. Carriers of the information are quantum systems whose quantum nature is exploited to generate the same random sequence of bits, to be then used as a cryptographic key in one-time pad protocols. This strategy is based on the fundamental restriction, imposed by quantum mechanics, that obtaining perfect copies of arbitrary quantum states is impossible. In fact, any attempt in this sense unavoidably introduces some noise perturbing the quantum state itself (no-cloning theorem [2]).

To convert this feature of the quantum world into the ultimate cipher [3], any quantum cryptographic protocol needs to be arranged in a first quantum communication step, followed by a classical communication one. During the first stage, Alice encodes classical information into non-orthogonal quantum states, which are sent to Bob over a noisy quantum channel. This is used N times and assumed to be in the hands of an eavesdropper (Eve). The quantum signals are measured by Bob, detecting a noisy version of Alice’s quantum states. After many uses of the channel (N >> 1), the parties can share a random sequence of bits called the raw key. At this point, the parties sacrifice part of the N bits, from the raw key, communicating over a classical public channel. This allows them to compare the data in their hands, and to estimate the presence of the eavesdropper on the quantum channel. This second stage allows Alice and Bob to quantify the adequate amount of error correction and privacy amplifications needed to reduce the stolen information to a negligible amount [4].

In recent years, continuous variable (CV) quantum systems [5, 6] have attracted increasing attention for the implementation of quantum communication tasks, with special attention devoted to Gaussian CV states. The appealing possibilities of this approach are based on the replacement of single photon pulses with bright coherent states, and single photon detection with simpler and more efficient Gaussian operations like homodyne and/or heterodyne detection schemes. This simplifies the experimental realization on one side, and can increases the key-rate production of the protocols by many orders of magnitude on the other [1, 7–10]. Furthermore, Gaussian CV protocols can easily go broadband. Within this research area, quantum cryptography has been one of the most prolific field of the last years [6], with extensive theoretical and experimental research developed to improve the performances of point-to-point communications in one-way [11, 12] and two-way [13, 14] protocols.

In two-way schemes the parties exploit twice the quantum channel per each use of the protocol [13, 14] (see also Ref. [15] for DV two-way protocols and Ref. [16–18] for CV two-way protocols based on quantum illumination [19, 20]). In particular CV two-way protocols [13, 14] can achieve higher security thresholds thanks to an improved tolerance to the eavesdropper’s noise. In fact, the analysis developed in Ref. [13] (see for example Fig. 3 of Ref. [13]) proved that, for fixed values of channel’s transmissivity, CV two-way protocols tolerate higher level of noise than one-way in the presence of collective attacks. This makes this approach appealing to achieve high-rate secure communication in noisier environments, where one-way communication fails to provide a secure key.

In this work we study the security of two-way QKD considering general coherent attacks and focusing on direct reconciliation. In this case, see Fig. 1, Gaussian-modulated reference coherent states |β⟩, are sent from Bob to Alice through the quantum channel, and are processed by Alice via a random displacement operation D(α), with Gaussian modulation of amplitudes α.
output $\rho(\alpha, \beta)$ is sent backward to Bob who applies heterodyne detection and classical post-processing, in order to subtract the reference amplitude β and infer Alice’s signal amplitude α. The higher tolerance to noise, granted by the double use of the quantum channel, is due to the fact that Eve needs to attack both the forward and backward steps of the quantum communication, in order to extract information on both β and α [13].

The key-rate of the two-way QKD protocol has been studied under the standard assumption of collective Gaussian attacks [6]. Protection against coherent attacks can be achieved switching randomly between the single and double use of the quantum channel (ON/OFF switching) [13]. Collective attacks means that Eve attaches uncorrelated ancillary modes to each use of the quantum channel. The ancillas interact unitarily with the communication modes and are then measured by the eavesdropper. In this scenario, recently, it has been possible to extend two-way QKD also to the case where the parties encode information affected by trusted thermal noise [14].

In the present study we explicitly derive the secret-key of the two-way protocol in the case where Eve’s ancillary states are correlated. In such a case the Alice-Bob communication line becomes a memory channel [22] in contrast to the case of collective attacks where it is memoryless. Ours is the first security analysis of a two-way CV-QKD protocol against coherent attacks. Our analysis is based on the conventional assumption that the parties exchange a large number of signals ($N \gg 1$). In this case we can reduce the general attack to a simpler two-mode coherent attack where, for each use of the protocol, Eve’s ancillas share non-zero two-mode correlations. In addition to that we also consider the case of asymptotically large Gaussian modulation of the amplitudes α and β. This allows us to work with analytical mathematical expressions, and to find the optimal two-mode coherent attack against the protocol, when Eve injects symmetric separable states [22].

The results for the two-way protocol are compared with the performances of the one-way version of the scheme, and show that eavesdropping two-way quantum communication with a suitable two-mode coherent attack can reduce the performances partly below the one-way security threshold. This represents the first example of a coherent attack overcoming the performances of collective ones, in point-to-point protocols. We discuss why this happens, in the context considered here, and finally we compare our results with other recent studies [7, 8, 24] where two-mode optimal coherent attacks have been identified for end-to-end cryptographic protocols.

Our results are important for the development of the security analysis of continuous variable protocols, and to identify the general challenges to implement secure point-to-point communications. Our results confirm that the ON/OFF switching operated by Alice, described in detail in Refs. [13] and [24], represents a necessary countermeasure to overcome the problem of realistic coherent attacks in two-way point-to-point quantum cryptography.

The structure of this paper is the following. In Sec. II we introduce the protocol and illustrate the reduction of the general eavesdropping to a two-mode coherent attack. In Sec. III we provide the definition of the key-rate and we show how to compute the Holevo bound and Alice-Bob mutual information, arriving at the analytical expression of the secret-key rate. In Sec. IV we analyze the security thresholds and we study the behavior of the relevant quantities as function of Eve’s injected thermal noise and degree of two-mode correlation. Sec. V is for conclusions.

II. PROTOCOL AND EAVESDROPPING

We show the protocol in the entanglement based representation (see Fig 2). We reduce the general coherent eavesdropping to two-mode coherent attacks, and we illustrate the steps to compute the total and conditional covariance matrices. Then in the next section we provide the analytical expression of the symplectic spectra which are used to compute the Holevo bound.

A. Coherent Gaussian Attack

In a general (coherent) eavesdropping, Eve processes all the N uses of the quantum channel applying a global coherent unitary operation that correlates all the modes involved in the different uses. However, exploiting the quantum de Finetti theorem [25] for infinite-dimensional systems, this general scenario can be reduced to a two-mode coherent attack. The parties can apply symmetric random permutations of the classical data in such a way that for $N \gg 1$, the cross correlations between distinct uses of the two-way communication can be neglected.
The global coherence of the attack is so reduced to a two-mode coherence, between the forward and backward channels involved in each round-trip quantum communication.

This residual two-mode coherent attack, in the most typical case, is implemented by two beam splitters of transmissivity T [28], where Eve mixes two ancillary modes E_1 and E_2 (see Fig. 2). These two ancillas belong to generally larger set of modes, $\{E_1, E_2, e\}$, defining the pure initial quantum state owned by the eavesdropper. The two-mode Gaussian state $\rho_{E_1E_2}$ is generally correlated and described by the following covariance matrix (CM)

$$V_{E_1E_2} = \begin{pmatrix} \omega I & G \\ G^\dagger & \omega I \end{pmatrix}, \quad G := \begin{pmatrix} g & 0 \\ 0 & g' \end{pmatrix}. \quad (1)$$

Here the parameter ω describes the variance of the thermal noise injected by Eve in the beam splitters, $I = \text{diag}(1,1)$, $Z = \text{diag}(1, -1)$, and matrix G accounts for the specific two-mode correlations employed by Eve to eavesdrop. The parameters ω, g and g' must fulfill the conditions given in Ref. [22], in order to represent a physical attack. Note that the properties of this type of non-Markovian channel have been recently studied in the context of relay-based continuous variable quantum cryptography [4, 8], where they have been also classified and grouped in three possible cases. More recently it has been shown how they could be exploited to reactivate entanglement distribution and quantum communication protocols [27].

We distinguish between three possible extremal cases: Collective attacks for $g = g' = 0$ corresponding to the standard collective eavesdropping; separable attacks defined by the condition $|g| = |g'| = \omega - 1$, representing coherent attacks with separable correlations injected and, finally, Einstein-Podolsky-Rosen (EPR attacks) where $g = -g' = \sqrt{\omega^2 - 1}$ and $g = -g' = -\sqrt{\omega^2 - 1}$. These three eavesdropping strategies are not equivalent, and in next section we will identify the optimal one.

B. Entanglement based protocol

We perform the security analysis in the entanglement based representation so that, besides previous dilation of the quantum channel, we also provide the purification of the source of Bob’s coherent states and Alice’s random displacements. Thus, by referring to Fig. 2 we first assume that Bob’s coherent states originate from two-mode squeezed vacuum states (EPR states), which are zero mean Gaussian state is described by the CM

$$V_{B_iB'_i} = \begin{pmatrix} \mu_B I & \sqrt{\mu_B^2 - 1} Z \\ \sqrt{\mu_B^2 - 1} Z^\dagger & \mu_B I \end{pmatrix}. \quad (2)$$

where the variance parameter μ_B quantifies the entanglement and also the local thermal noise in modes B_i and B'_i. The heterodyne measurement performed by Bob on mode B_1, remotely projects mode B'_1 on a coherent state traveling forward (from Bob to Alice) through the quantum channel. Its amplitude is classically modulated with a Gaussian distribution having variance $\mu = \mu_B - 1$.

At Alice’s station the random displacement $D(\alpha)$ can be implemented by means of a beam splitter of transmissivity η. This mixes the incoming mode C_1 with a mode A', coming from Alice’s EPR pairs A and A', whose Gaussian quantum state, $\rho_{AA'}$, is described by the following CM

$$V_{AA'} = \begin{pmatrix} \mu_A I & \sqrt{\mu_A^2 - 1} Z \\ \sqrt{\mu_A^2 - 1} Z^\dagger & \mu_A I \end{pmatrix}. \quad (3)$$

While Alice’s mode A' is sent through the beam splitter, the other mode A is heterodyne detected, in order to project the mode A' onto a coherent state $|\gamma\rangle$ modulated with variance μ_γ, such that

$$\mu_\gamma = \mu_A - 1. \quad (4)$$

This setup is a way to equivalently simulate Alice’s random displacements. In fact, for simplicity, consider the case where Eve is absent and there is no loss and noise in the quantum channel. In this scenario Alice receives $|\beta\rangle$ and must send $|\beta + \alpha\rangle = D(\alpha)|\beta\rangle$ back to Bob. We can see that using the setup with the beam splitter, Alice prepares her output mode C_2 into the coherent state

$$|\sqrt{\eta\beta} + \sqrt{1 - \eta\gamma}\rangle. \quad (5)$$

FIG. 2: (Color online)Entanglement based representation of the two-way QKD protocol. Bob prepares reference coherent states $|\beta\rangle$. This can be done by heterodyning one part of an EPR state. One mode is measured (B_1), while the other, B'_1, is sent to Alice through an insecure quantum channel. Alice applies a random displacement of the reference state, $D(\alpha)$, which can be implemented by a beam splitter with transmissivity η and another EPR state. Choosing appropriately the transmissivity η, and the variance of her EPR state, Alice sends displaced output state $\rho(\alpha, \beta)$ back to Bob. These are heterodyned and classically post-processed by Bob. In this way he recovers Alice’s encoding by subtracting the known reference amplitude β. The information encoded in the amplitude α is then used to obtain the raw key.
Now, in order to obtain a coherent state of the form $|\beta + \alpha\rangle$ from Eq. (5), we design Alice’s beam splitter to have transmissivity $\eta \rightarrow 1$, and we assume that the coherent amplitude $\gamma \rightarrow \infty$ in such way that

$$\gamma = \frac{\alpha}{\sqrt{1 - \eta}}.$$

This is possible in theory by using an EPR input state for Alice with divergent variance ν, which is equal to the von Neumann entropy of Bob’s output modes, which coincides with the von Neumann entropy of Bob’s output modes conditioned on Alice’s detection of Alice and Bob’s total output modes $\nu_{\alpha} + 1$ where

$$\mu_{\gamma} := \frac{\mu}{1 - \eta}.$$

Under these assumptions we get

$$|\sqrt{\eta}\beta + \sqrt{1 - \eta}\gamma\rangle \simeq |\beta + \alpha\rangle.$$

III. KEY-RATE, HOLEVO FUNCTION AND MUTUAL INFORMATION

In direct reconciliation the parties use Alice’s amplitudes α to prepare the secret key. This means that, during the classical procedure of parameter estimation, error correction and privacy amplification, Bob infers the values of Alice’s variables α from the results of his measurements. The security performances are quantified by the asymptotic secret-key rate

$$R := I_{AB} - \chi_{EA}$$

which is defined as the difference between Alice-Bob’s mutual information I_{AB} and the Holevo function χ_{EA} which upper bounds Eve-Alice’s mutual information.

The advantage of using the entanglement based representation od Sec. [14] relies on the fact that we do not need to know the details of the coherent operations performed by Eve on the modes. Instead, we can compute the function χ_{EA} from the output quantum state of Alice and Bob $|\phi\rangle$. More precisely we compute Eve’s Holevo information as

$$\chi_{EA} = S_E - S_{E|\alpha},$$

where S_E is the von Neumann entropy of Eve’s total output modes, which coincides with the von Neumann of Alice’s and Bob’s total output modes B_1, A, A''. The other quantity is the von Neumann entropy of Eve’s output modes conditioned on Alice’s detection α. This is equal to the von Neumann entropy of Bob’s output modes B_1, B_2 conditioned on α.

For Gaussian states, the von Neumann entropy has a particularly simple form in terms of the symplectic eigenvalues χ_{EA}. It is given by

$$S := \sum_{\nu} h(\nu),$$

where ν are the symplectic eigenvalues of the CM associated with the state, and the entropic function $h(\nu)$ is defined as

$$h(\nu) := \frac{\nu + 1}{2} \log_2 \frac{\nu + 1}{2} - \frac{\nu - 1}{2} \log_2 \frac{\nu - 1}{2}.$$

This expression simplifies further in the limit of large modulation $\mu >> 1$, in which case we have

$$h(\nu) \rightarrow \log_2 \frac{e}{2\nu} + O(\nu^{-1}).$$

In next subsection we provide the total and conditional CMs corresponding to $\rho_{B_1, AA''B_2}$ and $\rho_{B_1, B_2|\alpha}$ and the respective symplectic spectra, that are then used to compute the Holevo bound χ_{EA}.

A. Total symplectic spectrum

The global Alice-Bob quantum state, $\rho_{B_1, AA''B_2}$, is a Gaussian state whose properties are described by the following CM (we use the modes ordering $B_1 AA''B_2$)

$$V = \begin{pmatrix} \mu_B I & \phi Z & \theta Z & \phi Z & \xi Z & \tau Z & \phi Z & \xi Z & \delta I & \delta I & \epsilon I & \epsilon I \\ \mu_A I & \mu_A I & \mu_A I & \xi I & \xi I & \delta I & \xi I & \delta I & \delta I & \delta I & \delta I & \epsilon I \\ \phi Z & \phi Z \\ \theta Z & \theta Z \\ \phi Z & \phi Z \\ \xi Z & \xi Z \\ \tau Z & \tau Z \\ \phi Z & \phi Z \\ \xi Z & \xi Z \\ \delta I & \delta I \\ \delta I & \delta I \\ \epsilon I & \epsilon I \end{pmatrix} + \begin{pmatrix} g_{\phi} G & \epsilon I \\ g_{\epsilon} G & \epsilon I \end{pmatrix},$$

where the missing matrix entries are zero and we have defined

$$\phi := -\sqrt{T(1 - \eta)(\mu_B^2 - 1)},$$

$$\theta := T\sqrt{\eta(\mu_B^2 - 1)},$$

$$k := \eta\mu_A + (1 - \eta)[T\mu_B + (1 - T)\omega],$$

$$\xi := \sqrt{\eta(\mu_A^2 - 1)},$$

$$\tau := \sqrt{T(1 - \eta)(\mu_A^2 - 1)},$$

$$\epsilon := 2(1 - T)\sqrt{\eta},$$

$$g_{\phi} := \frac{T\eta\mu_B + (1 - \eta)\mu_A + (T\eta + 1)(1 - T)\omega}{\sqrt{T(1 - \eta)}},$$

$$g_{\epsilon} := -(1 - T)\sqrt{\eta}. $$

To obtain the symplectic spectrum of the CM of Eq. (13), we first compute the matrix

$$M_T = i\Omega V,$$

where $\Omega = \Theta^{4}_{k=1}$ with $\tilde{\omega}_k = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is the symplectic form. Then we compute the standard eigenvalues of Eq. (13). After simple algebra and taking the limit of large modulation ($\mu >> 1$), we find the following general expressions

$$\nu_1 = \sqrt{(\omega - g)(\omega - g')},$$

$$\nu_2 = \sqrt{(\omega + g)(\omega + g')},$$

$$\nu_3 = (1 - T)^2\mu^2,$$

where the dependency on the correlation parameters, g and g', generalizes the known total symplectic spectrum.
under collective attacks, recovered for $g = g' = 0$. Using this spectrum with Eqs. (9) and (10), one easily obtains the asymptotic total von Neumann entropy, that we can write as

$$S_E = h(\nu_1) + h(\nu_2) + \log \frac{e^2}{4}(1-T)^2\mu^2.$$

(17)

B. Conditional symplectic spectrum and Holevo bound

When the protocol is used in direct reconciliation Bob’s conditional CM can be obtained straightforwardly considering the CM involving Bob’s modes, obtained from Eq. (11) tracing out Alice’s modes. This approach considerably simplifies the problem. Starting from the following matrix

$$V_{B_1B_2} = \begin{pmatrix} \mu B \mathbf{I} & \theta Z \\ \theta Z & \varepsilon \mathbf{I} + g \mathbf{G} \end{pmatrix},$$

(18)

we set $\mu_A = 1$ to simulate the conditioning on Alice’s measurements, to arrive at the conditional CM given by

$$V_C = V_{B_1B_2}(\mu_A = 1).$$

(19)

From this CM we compute the matrix

$$M_C = i\Omega V_C,$$

(20)

where $\Omega = \sum_{k=1}^2 \omega_k$, and we derive its spectrum. Considering the asymptotic limit for large μ and the limit $\eta \to 1$, we obtain the following pair of symplectic eigenvalues

$$\tilde{\nu}_1 = \sqrt{\omega + 2g(1-T)^2\mu},$$

$$\tilde{\nu}_2 = (1-T^2)\mu.$$

(21)

Using $\tilde{\nu}_1$ and $\tilde{\nu}_2$ in Eq. (9) and (10), we derive the conditional von Neumann entropy

$$S_{E|\alpha} = h(\tilde{\nu}_1) + h(\tilde{\nu}_2),$$

$$= h(\tilde{\nu}_1) + \log \frac{e^2}{4}(1-T)^2\mu.$$

(22)

Finally, putting together the results of Eqs. (17) and (22) in the definition of the Holevo function, Eq. (8), we find the analytic expression of the Holevo bound

$$\chi_{EA} = h(\nu_1) + h(\nu_2) - h(\tilde{\nu}_1) + \log \frac{e^2}{4}(1-T^2)\mu.$$

(23)

C. Mutual Information

To obtain the secret-key rate we also need Alice-Bob mutual information. Since both quadratures, q and p, of mode B_2 are measured, the mutual information I_{AB} is given by the following expression

$$I_{AB} = \frac{1}{2} \log_2 \frac{V_B^g + 1}{V_B^{\alpha\beta} + 1} + \frac{1}{2} \log_2 \frac{V_B^p + 1}{V_B^{\alpha\beta} + 1},$$

(24)

where V_B^g, V_B^p represent the variances for quadratures q and p of mode B_2, while $V_B^{\alpha\beta}$ describe the conditional variances after Bob and Alice’s measurements. The former can be obtained from the diagonal block of the CM given in Eq. (13), describing mode B_2. This is given by the expression

$$B_2 = \varepsilon \mathbf{I} + g \mathbf{G},$$

(25)

from which, taking the limit $\eta \to 1$ and setting $\mu_B = 1$, we obtain

$$V_B^g = T^2 + T\mu + (1-T^2)\omega + 2g'(1-T) \sqrt{T},$$

$$V_B^p = T^2 + T\mu + (1-T^2)\omega + 2g'(1-T) \sqrt{T},$$

(26)

The conditional variances, $V_B^{\alpha\beta}$ and $V_B^{\beta\alpha}$, can now be obtained setting $\mu = 0$ in the previous equations. Taking the limit of large modulation $\mu \gg 1$, we get the asymptotic Alice-Bob mutual information

$$I_{AB} = \frac{1}{2} \log_2 \frac{T^2\mu^2}{\sigma\sigma'},$$

(27)

where

$$\sigma := V_B^{\alpha\beta} + 1 = \Delta + 2g(1-T) \sqrt{T},$$

$$\sigma' := V_B^{\beta\alpha} + 1 = \Delta + 2g'(1-T) \sqrt{T},$$

and

$$\Delta := 1 + T^2 + (1-T^2)\omega.$$

D. Secret-key rate

We have now all the quantities needed to compute the secret-key rate defined in Eq. (7). From the expressions for the asymptotic mutual information given in Eq. (25), and the Holevo bound of Eq. (23), after some simple algebra we get the following formula for the key-rate

$$R = \log_2 \frac{2T(1+T)^2}{e(1-T)^2\sqrt{\sigma\sigma'}} - h(\nu_1) - h(\nu_2) + h(\tilde{\nu}_1),$$

(28)

where ν_1 and ν_2 are given in Eq. (14) and (15) and $\tilde{\nu}_1$ is given in Eq. (21).

IV. ANALYSIS OF THE ATTACKS

Here we study the security thresholds $R = 0$ that describe the performances of the considered protocol for all possible attacks. The thresholds are given in terms of
the tolerable excess noise, defined as $N := \frac{T - 1 + (1-T)\omega}{T}$, as a function of the channel transmissivity T.

Fig. 3 shows the two-way security thresholds in direct reconciliation. In particular the red lines, labeled by (a) and (c), describe two-mode attacks for which $g = -g'$. In particular (a) is the threshold obtained when Eve uses maximally entangled ancillas E_1 and E_2. This case is given by the two equivalent conditions on the correlation parameters $g = \sqrt{\omega^2 - 1} = -g'$ and $g = -\sqrt{\omega^2 - 1} = -g'$. Curve (c) describes the cases $g = \omega - 1 = -g'$ and $g = 1 - \omega = -g'$. The curves (b) and (d) correspond to the thresholds for $g = g'$. In curve (b) we have $g = \omega - 1 = g'$ and $g = 1 - \omega = g'$. The dashed line is the threshold for standard collective attacks, $g = g' = 0$. The black dotted line is the security threshold for the corresponding one-way protocol for which only collective attacks can be considered. We see that curve (d) partly goes below the one-way threshold for high transmissivities.

All these cases have been compared with the security threshold of the one-way protocol \cite{51}, in direct reconciliation (dotted line), for which the collective attacks are known to be optimal. We see that for standard collective attacks, the two-way protocol (dashed) always overcome the performances of the one-way (dotted). However if Eve exploits suitably correlated ancillas, she can perform a more profitable eavesdropping of the two-way protocol. This is evident from curve (d) which is clearly below the security threshold corresponding to collective attacks (dashed) and, for high transmissivity ($T \gtrsim 0.86$), it goes below the security threshold for the one-way protocol (dotted). Thus for the two-way protocol described in this paper, we find that the two-mode coherent attack, given by curve (d), is optimal. In the Appendix we further deepen the discussion about this result.

\section{Conclusions}

We have studied the two-way QKD protocol, focusing on its security under two-mode coherent attacks. This represents the first study for this kind of communication scheme in which a coherent attack can be explicitly considered and analytically solved. The analysis spotlighted the first evidence of a coherent attack beating the collective one in the setting of point-to-point protocols. A similar result has been obtained in previous investigations focused on the alternative approach to quantum cryptography, based on the end-to-end paradigm. As proved in Refs. \cite{23,25} when the parties establish the key exploiting two channels with an untrusted middle relay, then Eve can potentially obtain an advantage by exploiting correlated ancillary modes. Here something similar happens, despite the optimal attack is different \cite{28}.

Finally our analysis confirms the importance of the ON/OFF switching strategy, in the context of two-way QKD protocols \cite{13}. In light of the results presented, we conclude that the active exploitation of the additional degrees of freedom available to the parties in two-way communication, represents a necessary solution to avoid the possibility of powerful coherent attacks. Alice can decide to open/close the two-way quantum communication, therefore switching between one-way and two-way instances; finally Alice and Bob decide which instances to keep on the base of Eve’s strategy. In this sense the ON/OFF switching can grant the immunity of two-way protocols against coherent attacks. Further work \cite{24} will extend these results here restricted to direct reconciliation, and will consider finite-size effects and composability security \cite{23,30}.

Acknowledgments

The Authors acknowledge the financial support provided from Leverhulme Trust and the EPSRC via ‘qDATA’ (grant no. EP/L011298/1) and the
Appendix A: Optimal Attack

The result of Fig. 4 shows that differently from the one-way protocol, the use of correlated ancillas is convenient for the eavesdropper. To investigate further this feature we study the behavior of the quantities defining the key-rate of Eq. (26) as function of the thermal noise ω. We fix the classical Gaussian modulation $\mu = 10^6$, for which we have verified that the asymptotic limit is largely fulfilled, and the transmissivity to the value $T = 0.65$. In Fig. 4 left panel, we plot the mutual information I_{AB}, given in Eq. (23), and in the right panel we plot the Holevo function χ_{EA} given by Eq. (23).

First, as one would expect, we note that the mutual information (left panel) decreases for increasing thermal noise. Simultaneously Eve's accessible information, χ_{EA} (right panel) corresponding to the optimal two-mode attack (d) is the highest among the others cases $(a)-(c)$. It also rapidly increases for increasing ω. This attack is profitable for Eve because she is able to increase her knowledge on Alice’s variable α, at an higher rate than Bob can do. To illustrate further this property we have plotted in Fig. 5 the relative variation of Alice-Bob mutual information

$$\Delta I_{AB} = (I_{AB} - I_c)/I_c, \quad (A1)$$

and of the Holevo function

$$\Delta \chi_{EA} = (\chi_{EA} - \chi_c)/\chi_c, \quad (A2)$$

of the optimal attack with respect to the respective expressions under collective attacks $(g = g' = 0)$, given by I_c and χ_c. In the left panel we plot the case for $T = 0.65$, while the right panel shows the case $T = 0.95$ We note that increasing the transmissivity T, the relative variation in the mutual information tends to zero, while the relative variation in Eve's Holevo information tends to increase.

[1] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus and Momtchil Peev, Rev. Mod. Phys. 81, 1301 (2009).
[2] W. H. Wotter and W. H. Zurek, Nature 299, 802-803 (1982).
[3] C. H. Bennett and G. Brassard, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, IEEE press, 175-179 (1984).
[4] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail and J. Smolin, Journal of Cryptology 5, 3-28 (1992).
[5] S. L. Braunstein and P. van Lock, Rev. Mod. Phys. 77, 513-577 (2005).
[6] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro and S. Lloyd, Rev. Mod. Phys. 84, 62 (2012).
[7] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen and U. L. Andersen, Nature Phot. 9, 397-402 (2015). See also arXiv:1312.4104 (2013).
[8] C. Ottaviani, G. Spedalieri, S. L. Braunstein and S. Pirandola, Phys. Rev. A 91, 022320 (2015).
[9] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen and U. L. Andersen, Nature Phot. 9, 773 (2015). See also preprint 1506.06748 (2015).
[10] G. Spedalieri, C. Ottaviani, S. L. Braunstein, T. Gehring, C. S. Jacobsen, U. L. Andersen and S. Pirandola, Proceedings of the SPIE Security + Defence 2015 conference on Quantum Information Science and Technology, Toulouse, France (21-24 September 2015) - Paper 9648-47, (2015).
[11] F. Grosshans, G. Van Assche, J. Wenger, R. Tualle-Brouri, N. J. Cerf and P. Grangier Nature 421, 238 (2003).
[12] C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph and P. K.Lam Phys. Rev. Lett. 93, 170504 (2004).
[13] S. Pirandola, S. Mancini, S. Lloyd and S. L. Braunstein Nature Phys. 4, 726-730 (2008).
[14] C. Weedbrook, C. Ottaviani, S. Pirandola Phys. Rev. A 89, 012309 (2014).
[15] M. Lucamarini and S. Mancini Phys. Rev. Lett. 94, 140501 (2005).
[16] J. H. Shapiro Phys. Rev. A 80, 022320 (2009).
[17] Z. Zhang, M. Tengner, T. Zhong, F. N. C. Wong, and J. H. Shapiro Phys. Rev. Lett. 111, 010501 (2013).
[18] Q. Zhuang, Z. Zhang, J. Dove, F. N. C. Wong, J. H. Shapiro, preprint arXiv:1508.04171 (2015).
[19] S. Lloyd, Science 321, 1463 (2008).
[20] S.-H. Tan et al., Phys. Rev. Lett. 101, 253601 (2008).
[21] S. Barzanjeh et al., Phys. Rev. Lett. 114, 080503 (2015).
[22] S. Pirandola, New J. of Phys. 15, 113046 (2013).
[23] F. Caruso, V. Giovanni, C. Lupo and S. Mancini, Rev. Mod. Phys. 86, 1203 (2014).
[24] C. Ottaviani and S. Pirandola, (submitted).
[25] R. Renner and J. I. Cirac, Phys. Rev. Lett. 102, 110504 (2009).
[26] S. Pirandola, S. L. Braunstein and S. Lloyd, Phys. Rev. Lett. 101, 200504 (2008).
[27] S. Pirandola, C. Ottaviani, C. S. Jacobsen, G. Spedalieri, S. L. Braunstein, T. Gehring and U. L. Andersen, Non-Markovian Reactivation of Quantum Repeaters, (unpublished) arXiv.1505.07457 (2015).
[28] In end-to-end QKD based on untrusted relays (performing a CV Bell detection) the optimal attack, at fixed thermal noise ω, is one of the two of type (a).
[29] A. Leverrier Phys. Rev. Lett. 114, 070501, (2015).
[30] E. Diamanti and A. Leverrier Entropy 17, 6072-6092 (2015).
[31] One-way means that in the figure we want to show not
FIG. 4: (Color online) This figure shows the behavior of the asymptotic mutual information I_{AB} (left panel) and of the Holevo function χ_{EA} (right panel) as a function of Eve’s thermal noise ω. We fix the Gaussian modulation $\mu = 10^6$, value for which we checked the asymptotic limit is achieved. We also fix the transmissivity $T = 0.65$, for which the parties may obtain a positive key-rate (see curves (a) and (b) in Fig. 3). The labeling corresponds to that adopted for the thresholds of Fig. 3. We have that (a) describes two-mode attacks for which $g = \sqrt{\omega^2 - 1} = -g'$, or $g = -\sqrt{\omega^2 - 1} = -g'$ and curve (c) describes the cases $g = \omega - 1 = -g'$ or $g = 1 - \omega = -g'$. The curve (b) corresponds to the case $g = \omega - 1 = g'$ and (d) is for $g = 1 - \omega = g'$, i.e., the optimal attack. The dashed line refers to standard collective attacks, $g = g' = 0$. We see that, for the optimal attack (d), while the mutual information slightly decreases by increasing ω, the curve corresponding to the Holevo bound, χ_{EA}, increases and with a larger rate than in any other attack. This causes the reduction of the key-rate in case (d).

FIG. 5: (Color online) This figure shows the relative variation of the Holevo bound $\Delta \chi_{EA}$, given in Eq. (A2) and of the mutual information ΔI_{EA} of Eq. (A1), for the optimal attack (d), versus ω for fixed values of the transmissivity, $T = 0.65$ (left) and $T = 0.95$ (right).

only that the optimal 2-mode attack can reduce the security threshold of the two-way protocol below that one against collective attacks, but even that for large enough T, the optimal two-mode threshold is lower than the one-way protocol against collective.