Supporting Information

Near-infrared turn-on fluorescent probe for discriminative detection of Cys and application in vivo imaging

Shaolong Qi,† Lubao Zhu,† Xinyu Wang,* Jianshi Du,* Qingbiao Yang,* and Yaoxian Li†

† These two authors equally contribute to this paper

Table of Contents

Fig. S1	Absorption of NIRHA in the presence of 4.8 eq Cys, 480 eq GSH and 48 eq other interfering substance.
Fig. S2	Fluorescence of NIRHA in the presence of various interfering substance: 480 eq GSH and 48 eq other competitive substance. Fluorescence of NIRHA in the presence of 4.8 eq Cys, 480 eq GSH and 48 eq other competitive analytes.
Fig. S3	Cell viability of NIRHA via the standard MTT assay of HeLa cells.
Fig. S4	Fluorescence signal of compound 2.
Fig. S5	HR-MS spectrum of released compound 2.
Fig. S6	HR-MS spectrum of released seven-membered ring compound.
Fig. S7	HR-MS spectrum of probe NIRHA.
Fig. S8	1H NMR of probe NIRHA.
Fig. S9	1C NMR of probe NIRHA.
Fig. S10	1H NMR of compound 2.
Fig. S11	HR-MS spectrum of compound 2.
Table S1	Comparison of the representative Cys probes with the present work.1-7.

References
Fig. S1 Absorption of NIRHA in the presence of 4.8 eq Cys, 480 eq GSH and 48 eq other interfering substance.

Fig. S2 Fluorescence of NIRHA in the presence of various interfering substance: 480 eq GSH and 48 eq other
competitive substance. Fluorescence of NIRHA in the presence of 4.8 eq Cys, 480 eq GSH and 48 eq other competitive analytes.

Fig. S3 Cell viability of NIRHA via the standard MTT assay of HeLa cells.

Fig. S4 fluorescence signal of compound 2.
Fig. S5 HR-MS spectrum of released compound 2.

Fig. S6 HR-MS spectrum of released seven-membered ring compound.
Fig. S7 HR-MS spectrum of probe NIRHA.

Fig. S8 1H NMR of probe NIRHA.
Fig. S9 1C NMR of probe NIRHA.

Fig. S10 1H NMR of compound 2.
Table S1. Comparison of the representative Cys probes with the present work.\(^1-7\).

Previous literatures	Solvent system	LOD	time	λ_{ex}/λ_{em}
Angewandte Chemie International Edition, 2011, 50, 10690-10693	PBS	0.13 μM	10 min	470/585 nm
Chemical Communications, 2012, 48, 8341-8343	EtOH/PBS = 2:8	0.11 uM	9 min	304/487 nm
Sensors and Actuators B: Chemical, 2019, 290, 47-52	C₂H₅OH/PBS = 1:99	0.12 μM	30 min	570/615 nm
Analytical Chemistry, 2015, 87, 4856-4863	DMSO/H₂O = 1:19	0.16 μM	5 min	670/697 nm
RSC Advances, 2017, 7, 18867-18873	CAN/HEPES = 2:8	0.158 μM	90 min	470/565 nm
Sensors and Actuators B: Chemical, 2018, 267, 76-82	PBS/DMSO = 4/1	0.122 μM	5 min	445/500 nm
Sensors and Actuators B: Chemical, 2019, 298, 126844	H₂O/CH₃CN = 3/1	2.31 μM	10 min	370/464 nm
This work	PBS/DMF = 99:1	0.0776 μM	15 min	650/710 nm

References:
1. X. Yang, Y. Guo and R. M. Strongin, *Angewandte Chemie International Edition*, 2011, **50**, 10690-10693.
2. H. Wang, G. Zhou, H. Gai and X. Chen, *Chemical Communications*, 2012, **48**, 8341-8343.
3. S. Jiao, X. He, L. Xu, P. Ma, C. Liu, Y. Huang, Y. Sun, X. Wang and D. Song, *Sensors and Actuators B: Chemical*, 2019, **290**, 47-52.
4. J. Zhang, J. Wang, J. Liu, L. Ning, X. Zhu, B. Yu, X. Liu, X. Yao and H. Zhang, *Analytical Chemistry*, 2015, **87**, 4856-4863.
5. J. Guo, Z. Kuai, Z. Zhang, Q. Yang, Y. Shan and Y. Li, *RSC Advances*, 2017, **7**, 18867-18873.
6. X. Xie, C. Yin, Y. Yue and F. Huo, *Sensors and Actuators B: Chemical*, 2018, **267**, 76-82.
7. J. Chao, M. Li, Y. Liu, Y. Zhang, F. Huo and C. Yin, *Sensors and Actuators B: Chemical*, 2019, **298**, 126844.