General Lagrangian of Non-Covariant Self-dual Gauge Field

Wung-Hong Huang
Department of Physics
National Cheng Kung University
Tainan, Taiwan

ABSTRACT

We present the general formulation of non-covariant Lagrangian of self-dual gauge theory. After specifying the parameters therein the previous Lagrangian in the decomposition of spacetime into $6 = D_1 + D_2$ and $6 = D_1 + D_2 + D_3$ can be obtained. The self-dual property of the general Lagrangian is proved in detail. We furthermore show that the new non-covariant actions give field equations with 6d Lorentz invariance. The method can be straightforward extended to any dimension and we also give a short discussion about the 10D self-dual gauge theory.

*E-mail: whhwung@mail.ncku.edu.tw
1 Introduction

The problem in Lagrangian description of chiral p-forms, i.e. antisymmetric boson fields with self-dual had been known before thirty years ago. As first noted by Marcus and Schwarz [1], the manifest duality and spacetime covariance do not like to live in harmony with each other in one action.

Historically, the non-manifestly spacetime covariant action for self-dual 0-form was proposed by Floreanini and Jackiw [2], which is then generalized to p-form by Henneaux...
and Teitelboim [3]. In general the field strength of chiral p-form $A_{1\ldots p}$ is split into electric density $\mathcal{E}_{i_{1}\ldots i_{p+1}}$ and magnetic density $\mathcal{B}_{i_{1}\ldots i_{p+1}}$:

$$\mathcal{E}_{i_{1}\ldots i_{p+1}} \equiv F_{i_{1}\ldots i_{p+1}} \equiv \partial_{[i_{1}} A_{i_{2}\ldots i_{p+1}]}$$

$$\mathcal{B}_{i_{1}\ldots i_{p+1}} \equiv \frac{1}{(p+1)!} \epsilon^{i_{1}\ldots i_{2p+2}} F_{i_{p+2}\ldots i_{2p+2}} \equiv \tilde{\mathcal{F}}_{i_{1}\ldots i_{p+1}}$$

in which $\tilde{\mathcal{F}}$ is the dual form of \mathcal{F}. The Lagrangian is described by

$$L = -\frac{1}{p!} \tilde{\mathcal{B}} \cdot (\mathcal{E} - \mathcal{B}) = \frac{1}{p!} \tilde{\mathcal{F}}_{i_{1}\ldots i_{p+1}} \mathcal{F}^{i_{1}\ldots i_{p+1}}$$

in which we define

$$\mathcal{F}^{i_{1}\ldots i_{p+1}} \equiv \tilde{\mathcal{F}}^{i_{1}\ldots i_{p+1}} - F^{i_{1}\ldots i_{p+1}}$$

Note that in order for self-dual fields to exist, i.e. $\tilde{\mathcal{F}} = F$, the field strength \mathcal{F} and dual field strength $\tilde{\mathcal{F}}$ should have the same number of component. As the double dual on field strength shall give the original field strength the spacetime dimension have to be 2 modulo 4.

Four years ago, a new non-covariant Lagrangian formulation of a chiral 2-form gauge field in 6D, called as $6 = 3 + 3$ decomposition, was derived in [4] from the Bagger-Lambert-Gustavsson (BLG) model [5]. Later, a general non-covariant Lagrangian formulation of self-dual gauge theories in diverse dimensions was constructed [6]. In this general formulation the $6 = 2 + 4$ decomposition of Lagrangian was found.

In the last year we have constructed a new kind of non-covariant actions of self-dual 2-form gauge theory in the decomposition of $6 = D_{1} + D_{2} + D_{3}$ [7]. In this paper we will present the general formulation of non-covariant Lagrangian of self-dual gauge theory.

In section II we first present the general non-covariant Lagrangian of self-dual gauge theory. We see that after specifying the parameters therein the all known Lagrangian in the decomposition of $6 = D_{1} + D_{2}$ [6] and $6 = D_{1} + D_{2} + D_{3}$ [7] can be obtained. In section III We discuss some properties which are crucial to formulate the general Lagrangian of non-covariant forms of self-dual gauge theory. We then prove in detail the self-dual property of the general Lagrangian. In section IV we follow Perry and Schwarz [8] to show that the general non-covariant Lagrangian gives field equations with 6d Lorentz invariance. Our prescription can be straightforward extended to any dimension and we also give a brief description about the 10D self-dual gauge theory in section V. Last section is devoted to a short conclusion.
2 Lagrangian of Self-dual Gauge Fields in Simple Decomposition

In this section we first present the general non-covariant Lagrangian L_G of self-dual gauge theory in (2.2) and table 1. Then we collect all know non-covariant Lagrangian of self-dual gauge theory in six dimension [6,7] and compare them with L_G. Table 2 and table 3 are just those in our previous paper [7], while for convenience we reproduce them in this paper. We will see that, after specifying the parameters in L_G the previous Lagrangian in the decomposition of spacetime into $6 = D_1 + D_2$ and $6 = D_1 + D_2 + D_3$ can be obtained.

To begin with, let us first define a function L_{ijk}:

$\tilde{L}_{ijk} = \tilde{F}_{ijk} \times (F_{ijk} - \tilde{F}_{ijk})$, without summation over indices i, j, k (2.1)

which is useful in the following formulations.

In terms of L_{ijk} the most general non-covariant Lagrangian of self-dual gauge theory we found is

$$L_G(\alpha_i) = \sum_a L_{12a} + (\frac{1}{2} + \frac{\alpha_1}{2})L_{134} + (\frac{1}{2} - \frac{\alpha_1}{2})L_{256} + (\frac{1}{2} + \frac{\alpha_2}{2})L_{135} + (\frac{1}{2} - \frac{\alpha_2}{2})L_{246} + (\frac{1}{2} + \frac{\alpha_3}{2})L_{136} + (\frac{1}{2} - \frac{\alpha_3}{2})L_{245} + (\frac{1}{2} + \frac{\alpha_4}{2})L_{145} + (\frac{1}{2} - \frac{\alpha_4}{2})L_{236} + (\frac{1}{2} + \frac{\alpha_5}{2})L_{146} + (\frac{1}{2} - \frac{\alpha_5}{2})L_{235} + (\frac{1}{2} + \frac{\alpha_6}{2})L_{156} + (\frac{1}{2} - \frac{\alpha_6}{2})L_{234}$$

(2.2)

Let us make three comments about above Lagrangian.

First, From table 1 we see that L_G does not picks up L_{456}, L_{356}, L_{346} nor L_{345}, which is denoted as L_{abc}. This can ensure to the existence of gauge symmetry $\delta A_{12} = \Phi_{12}$, which is crucial to prove the self-duality of L_G, as shown in next section.

Next, We have chosen the coefficient before L_{12a} to be one. This is because that the overall constant of L_G does not affect the self-duality.

Third, we choose coefficient $(\frac{1}{2} + \frac{\alpha_1}{2})$ before L_{134} while choose coefficient $(\frac{1}{2} - \frac{\alpha_1}{2})$ before L_{256}. This can ensure that adding the two coefficient $(\frac{1}{2} + \frac{\alpha_1}{2}) + (\frac{1}{2} - \frac{\alpha_1}{2}) = 1$, which give a proper normalization. This property is also crucial to prove the self-duality of L_G, as shown in next section.
Table 1: Lagrangian in the general decompositions: \(D = 6 \).

\[
\begin{array}{|c|c|c|}
\hline
D=6 & L_{12a} & 123 \\
 & & 456 \\
 & & 356 \\
 & & 346 \\
 & & 345 \\
134 & \left(\frac{1}{2} + \frac{a_1}{2}\right)L_{134} & 256 \\
135 & \left(\frac{1}{2} + \frac{a_2}{2}\right)L_{135} & 246 \\
136 & \left(\frac{1}{2} + \frac{a_3}{2}\right)L_{136} & 245 \\
145 & \left(\frac{1}{2} + \frac{a_4}{2}\right)L_{145} & 236 \\
146 & \left(\frac{1}{2} + \frac{a_5}{2}\right)L_{146} & 235 \\
156 & \left(\frac{1}{2} + \frac{a_6}{2}\right)L_{156} & 234 \\
\hline
\end{array}
\]

2.1 Lagrangian in Decomposition: \(D = 1 + 5 \)

In the \((1+5)\) decomposition the spacetime index \(A = (1, \cdots, 6) \) is decomposed as \(A = (1, \hat{a}) \), with \(\hat{a} = (2, \cdots, 6) \). Then \(L_{ABC} = (L_{1\hat{a}\hat{b}}, L_{\hat{a}\hat{b}\hat{c}}) \). In terms of \(L_{ABC} \), the Lagrangian is expressed as [6]

\[
L_{1+5} = -\frac{1}{4} \sum L_{1\hat{a}\hat{b}} = -\frac{1}{4} \tilde{F}_{1\hat{a}\hat{b}}(F^{1\hat{a}\hat{b}} - \tilde{F}^{1\hat{a}\hat{b}}), \text{ has summation over } \hat{a} \hat{b} \quad (2.3)
\]

From table 2 we see that \(L_{1+5} \) picks up only \(L_{1\hat{a}\hat{b}} \). Note that that \(L_G(\alpha_i = 1) = L_{1+5} \).

Table 2: Lagrangian in various decompositions: \(D = D_1 + D_2 \).

\[
\begin{array}{|c|c|}
\hline
D=1+5 & 456 \\
 & 356 \\
 & 346 \\
 & 345 \\
L_{1\hat{a}\hat{b}} & 256 \\
\hat{a}\hat{b} & 246 \\
\hat{a}\hat{b} & 245 \\
134 & 236 \\
135 & 235 \\
136 & 234 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
D=3+3 & 456 \\
 & 356 \\
 & 346 \\
L_{ab\hat{a}} & 345 \\
\hat{a}\hat{b} & 256 \\
\hat{a}\hat{b} & 246 \\
134 & 245 \\
135 & 236 \\
136 & 235 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
D=2+4 & 456 \\
 & 356 \\
 & 346 \\
L_{a\hat{a}\hat{b}} & 345 \\
\hat{a}\hat{b} & 256 \\
\hat{a}\hat{b} & 246 \\
134 & 245 \\
135 & 236 \\
136 & 235 \\
\hline
\end{array}
\]

\[5\]
2.2 Lagrangian in Decomposition: 6 = 2 + 4

In the (2+4) decomposition [6] the spacetime index A is decomposed as $A = (a, \dot{a})$, with $a = (1, 2)$ and $\dot{a} = (3, \cdots, 6)$. Then $L_{ABC} = (L_{ab\dot{a}}, L_{a\dot{a}b}, L_{\dot{a}b\dot{c}})$. From table 2 it is easy to see that in terms of L_{ABC} the Lagrangian can be expressed as [7]

$$L_{2+4} = -\frac{1}{4} \left(\sum L_{ab\dot{a}} + \frac{1}{2} \sum L_{a\dot{a}b} \right)$$ \hspace{1cm} (2.4)

The $\frac{1}{2}$ factor before $L_{a\dot{a}b}$ arising from the property that $L_{a\dot{a}b}$ contains both of left-hand side element and right-hand side element (for example, it includes L_{134} and L_{256}), thus there is double counting. Note that that $L_G(\alpha_i = 0) = L_{2+4}$.

2.3 Lagrangian in Decomposition: 6 = 3 + 3

In the (3+3) decomposition [6] the spacetime index A is decomposed as $A = (a, \dot{a})$, with $a = (1, 2, 3)$ and $\dot{a} = (4, 5, 6)$. Then $L_{ABC} = (L_{abc}, L_{ab\dot{a}}, L_{a\dot{a}b}, L_{\dot{a}b\dot{c}})$. Using table 2 it is easy to see that in terms of L_{ABC} the Lagrangian can be expressed as

$$L_{3+3} = -\frac{1}{12} \left(\sum L_{abc} + 3 \sum L_{ab\dot{a}} \right)$$ \hspace{1cm} (2.5)

The “3” factor before $L_{ab\dot{a}}$ arising from the property that we have to include three kinds of $L_{ijk} : L_{ab\dot{a}}, L_{a\dot{a}b}$ and $L_{\dot{a}ab}$. Note that $L_G(\alpha_1 = \alpha_2 = \alpha_3 = 1; \alpha_4 = \alpha_5 = \alpha_6 = -1) = L_{3+3}$.

Self-dual property of above decomposition had been proved in [6].

2.4 Lagrangian in Decomposition: 6 = 1 + 1 + 4

In the (1+1+4) decomposition the spacetime index A is decomposed as $A = (1, 2, \dot{a})$, with $\dot{a} = (3, 4, 5, 6)$, and $L_{ABC} = (L_{12a\dot{a}}, L_{1\dot{a}b\dot{c}}, L_{1\dot{a}b\dot{c}}, L_{2\dot{a}b\dot{c}})$. From table 3 it is easy to see that, in terms of L_{ABC}, the Lagrangian can be expressed as [7]

$$L_{1+1+4} = 6 \sum L_{12a\dot{a}} + \frac{3(1 + \alpha)}{2} \sum L_{1\dot{a}b\dot{c}} + \frac{3(1 - \alpha)}{2} \sum L_{2\dot{a}b\dot{c}}$$ \hspace{1cm} (2.6)

We neglect overall constant in Lagrangian, which is irrelevant to the self-duality.

It is easy to see that L_{1+1+4} in the case of $\alpha = 0$ is just L_{2+4}, in the case of $\alpha = 1$ is just L_{1+5}, and in the case of $\alpha = -1$ is just L_{1+5} while exchanging indices 1 and 2, as can be seen from table 2. Note that $L_G(\alpha_i = \alpha) = L_{1+1+4}$.

6
Table 3: Lagrangian in various decompositions: \(D = D_1 + D_2 + D_3 \).

D=1+1+4	D=1+2+3	D=2+2+2
123	123	123
124	124	124
125	125	125
126	126	126
134	134	134
135	135	135
136	136	136
145	145	145
146	146	146
156	156	156
123	456	456
124	356	356
125	346	346
126	345	345
134	256	256
135	246	246
136	245	245
145	236	236
146	235	235
156	234	234

2.5 Lagrangian in Decomposition: \(6 = 1 + 2 + 3 \)

In the \((1+2+3)\) decomposition the spacetime index \(A \) is decomposed as \(A = (1, a, \dot{a}) \), with \(a = (2, 3) \), \(\dot{a} = (4, 5, 6) \), and \(L_{ABC} = (L_{1ab}, L_{1a\dot{a}}, L_{1\dot{a}b}, L_{\dot{a}bc}, L_{\dot{a}\dot{a}b}, L_{\dot{a}ab}) \). From table 3 it is easy to see that, in terms of \(L_{ABC} \), the Lagrangian can be expressed as [7]

\[
L_{1+2+3} = \sum L_{\dot{a}bc} + 6 \sum L_{1a\dot{a}} + 3 \sum L_{1\dot{a}b} \tag{2.7}
\]

Choosing \(L_{1ab} + L_{1a\dot{a}} + L_{1\dot{a}b} \) is just \(L_{1+5} \), and choosing \(L_{1ab} + L_{1a\dot{a}} + L_{\dot{a}ab} \) is just \(L_{3+3} \), as can be seen from table 2. Note that, exchanging indices 2 with 5 and 3 with 6 then \(L_G(\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 1, \alpha_6 = -1) = L_{1+2+3} \).

2.6 Lagrangian in Decomposition: \(6 = 2 + 2 + 2 \)

In the \((2+2+2)\) decomposition the spacetime index \(A \) is decomposed as \(A = (a, \dot{a}, \ddot{a}) \), with \(a = (1, 2) \), \(\dot{a} = (3, 4) \) and \(\ddot{a} = (5, 6) \). Now, from table 3 we see that \(L_{ABC} = (L_{a\ddot{a}b}, L_{a\ddot{a}\dot{a}}, L_{a\dot{a}\ddot{a}}, L_{a\dot{a}\dot{a}b}, L_{a\ddot{a}b}, L_{a\ddot{a}\dot{a}}) \). Then, in terms of \(L_{ABC} \) the Lagrangian can be expressed as [7]

\[
L_{2+2+2} = \sum L_{a\ddot{a}b} + \sum L_{a\dot{a}\ddot{a}} + \sum L_{a\dot{a}\dot{a}b} + \sum L_{a\ddot{a}b} \tag{2.8}
\]

Note that \(L_G(\alpha_1 = 1, \alpha_2 = \alpha_3 = \alpha_4 = \alpha_5 = 0, \alpha_6 = -1) = L_{2+2+2} \).

Self-dual property of above decompositions had been proved in [6, 7].
3 General Lagrangian of Self-dual Gauge Fields

In order to understand how to find the general formulation we need to find some constrains in formulating the non-covariant Lagrangian of self-dual gauge theory \([6,7]\).

3.1 General Lagrangian and Gauge Symmetry

From previous studies \([6,7]\) we see that the proof of the self-dual property has used a Gauge symmetry. The property tells us that terms involved \(A_{12}\), for example, only through total derivative terms and we have gauge symmetry

\[
\delta A_{12} = \Phi_{12} \tag{3.1}
\]

for arbitrary functions \(\Phi_{12}\). In order to have this property we must not choose the dual transformation of \(L_{12a}\) in table 1, where \(a=(3,4,5,6)\). Thus the general non-covariant Lagrangian of self-dual gauge theory is

\[
L = \sum_a L_{12a} + C_1(\frac{1}{2} + \alpha_1)L_{134} + C_1(\frac{1}{2} - \tilde{\alpha}_1)L_{256} + C_2(\frac{1}{2} + \alpha_2)L_{135} + C_2(\frac{1}{2} - \tilde{\alpha}_2)L_{246} \\
C_3(\frac{1}{2} + \alpha_3)L_{136} + C_3(\frac{1}{2} - \tilde{\alpha}_3)L_{245} + C_4(\frac{1}{2} + \alpha_4)L_{145} + C_4(\frac{1}{2} - \tilde{\alpha}_4)L_{236} \\
C_5(\frac{1}{2} + \alpha_5)L_{146} + C_5(\frac{1}{2} - \tilde{\alpha}_5)L_{235} + C_6(\frac{1}{2} + \alpha_6)L_{156} + C_6(\frac{1}{2} - \tilde{\alpha}_6)L_{234} \tag{3.2}
\]

in which we have let the coefficient before \(L_{12a}\) to be one as the overall constant of \(L\) does not affect the self-duality. We will now show that above Lagrangian has desired gauge symmetry, and after proper choosing the parameters \(C_i\) it becomes \(L_G\) in (2.2) and the associated field strength has self-dualtiy property.

First, the variation of the action gives

\[
\frac{\delta L}{\delta A_{12}} = -\partial_3 \tilde{F}^{312} - \partial_4 \tilde{F}^{412} - \partial_5 \tilde{F}^{512} - \partial_6 \tilde{F}^{612} = \partial_a \tilde{F}^{a12} = 0 \tag{3.3}
\]

which is identically zero. This means that terms involved \(A_{12}\) only through total derivative terms and we have gauge symmetry

\[
\delta A_{12} = \Phi_{12} \tag{3.4}
\]

for arbitrary functions \(\Phi_{12}\).
3.2 Self-duality

Next, simply using above gauge symmetry does not guarantee that the Lagrangian has self-dual property. Let us find the another constrain.

The variation of the Lagrangian L gives

$$0 = \frac{\delta L}{\delta A_{34}} = -\left[C_1 \partial_1 \tilde{F}^{134} + C_6 \partial_2 \tilde{F}^{234} + \partial_5 \tilde{F}^{534} + \partial_6 \tilde{F}^{634} \right]$$

$$+ C_1 \left(1 - \frac{\alpha_1 + \tilde{\alpha}_1}{2}\right) \partial_1 \tilde{F}^{134} - C_1 \left(1 - \tilde{\alpha}_1\right) \partial_1 F^{134}$$

$$+ C_6 \left(1 - \frac{\alpha_6 + \tilde{\alpha}_6}{2}\right) \partial_2 \tilde{F}^{234} - C_6 \left(1 - \tilde{\alpha}_6\right) \partial_2 F^{234}$$

$$+ 2(\partial_5 \mathcal{F}^{534} + \partial_6 \mathcal{F}^{634})$$

(3.5)

Now, if we require each $L_{i,j,k}$ has a same normalization then $C_i = 1$. Under this constrain we find that

$$0 = \frac{\delta L}{\delta A_{34}} = \left(1 - \frac{\alpha_1 + \tilde{\alpha}_1}{2}\right) \partial_1 \tilde{F}^{134} - \left(1 - \tilde{\alpha}_1\right) \partial_1 F^{134}$$

$$+ \left(1 - \frac{\alpha_6 + \tilde{\alpha}_6}{2}\right) \partial_2 \tilde{F}^{234} - \left(1 - \tilde{\alpha}_6\right) \partial_2 F^{234}$$

$$+ 2(\partial_5 \mathcal{F}^{534} + \partial_6 \mathcal{F}^{634})$$

(3.6)

where we have used the property $\partial_a \tilde{F}^{a34} = 0$.

To proceed, we can from table 2 and table 3 see that, for example, the difference between the Lagrangian in decomposition $D = 2 + 4$ and $D = 1 + 5$ is that we have chosen left-hand (electric) part and right-hand (magnetic) part in $D = 2 + 4$, while in $D = 1 + 5$ we choose only left-hand (electric) part. However, in the self-dual theory the electric part is equal to magnetic part. Thus the Lagrangian choosing electric part is equivalent to that choosing magnetic part. In the decomposition into different direct-product of spacetime one can choose different part of L_{ijk} to mixing to each other and we have many kind of decomposition. This observation lead us to find more decomposition $6 = D_1 + D_2 + D_3$ in [7].

This property can be applied to find the more general formulation of non-covariant Lagrangian of self-dual gauge theory. Thus the another constrain is that

$$\left(\frac{1}{2} + \frac{\alpha_i}{2}\right) + \left(\frac{1}{2} - \frac{\tilde{\alpha}_i}{2}\right) = 1 \quad \Rightarrow \quad \alpha_i = \tilde{\alpha}_i$$

(3.7)

From now on we will use this property and Lagrangian L becomes L_G in (2.2).
Thus
\[0 = \frac{\delta L}{\delta A_{34}} = (1 - \alpha_1)\partial_1 F^{134} + (1 + \alpha_6)\partial_2 F^{234} + 2\partial_5 F^{534} + 2\partial_6 F^{634} \]
\[= \partial_1 \bar{F}_{134} + \partial_2 \bar{F}_{234} + \partial_5 \bar{F}_{534} + \partial_6 \bar{F}_{634} \] (3.8)
in which we have normalized each \(F \) by the associated factor \((1 - \alpha_i) \) or \(2 \) for convenience.

Similarly, we have the relations
\[0 = \frac{\delta L}{\delta A_{35}} = \partial_1 \bar{F}_{135} + \partial_2 \bar{F}_{235} + \partial_4 \bar{F}_{435} + \partial_6 \bar{F}_{635} \] (3.9)
\[0 = \frac{\delta L}{\delta A_{36}} = \partial_1 \bar{F}_{136} + \partial_2 \bar{F}_{236} + \partial_4 \bar{F}_{436} + \partial_5 \bar{F}_{536} \] (3.10)
\[0 = \frac{\delta L}{\delta A_{45}} = \partial_1 \bar{F}_{145} + \partial_2 \bar{F}_{245} + \partial_3 \bar{F}_{345} + \partial_6 \bar{F}_{645} \] (3.11)
\[0 = \frac{\delta L}{\delta A_{46}} = \partial_1 \bar{F}_{146} + \partial_2 \bar{F}_{246} + \partial_3 \bar{F}_{346} + \partial_5 \bar{F}_{546} \] (3.12)
\[0 = \frac{\delta L}{\delta A_{56}} = \partial_1 \bar{F}_{156} + \partial_2 \bar{F}_{256} + \partial_3 \bar{F}_{356} + \partial_4 \bar{F}_{456} \] (3.13)

Above six equations can be expressed as
\[\partial_a \bar{F}^{abc} = 0, \quad a, b, c \neq 1, 2 \] (3.14)
which has solution
\[\bar{F}^{abc} = \epsilon^{12abcd} \partial_d \Phi_{12} \] (3.15)
for arbitrary functions \(\Phi_{12} \). As the gauge symmetry of \(\delta A_{12} = \Phi_{12} \) can totally remove \(\Phi_{12} \) in \(\mathcal{F}^{abc} \) we have found a self-dual relation
\[\mathcal{F}_{abc} = 0, \quad a, b, c \neq 1, 2 \] (3.16)

In the same way, the variation of the action gives
\[0 = \frac{\delta L}{\delta A_{13}} = (1 - \alpha_1)\partial_4 \mathcal{F}^{413} + (1 - \alpha_2)\partial_5 \mathcal{F}^{513} + (1 - \alpha_3)\partial_6 \mathcal{F}^{613} \]
\[= \partial_4 \bar{F}^{413} + \partial_5 \bar{F}^{513} + \partial_6 \bar{F}^{613} \] (3.17)
where we have normalized each \(\mathcal{F} \) by the associated factor \((1 - \alpha) \). In the same way we have the relations
\[0 = \frac{\delta L}{\delta A_{14}} = \partial_3 \bar{F}^{314} + \partial_5 \bar{F}^{514} + \partial_6 \bar{F}^{614} \] (3.18)
\[0 = \frac{\delta L}{\delta A_{15}} = \partial_3 \bar{F}^{315} + \partial_4 \bar{F}^{415} + \partial_6 \bar{F}^{615} \] (3.19)
\[0 = \frac{\delta L}{\delta A_{16}} = \partial_3 \bar{F}^{316} + \partial_4 \bar{F}^{416} + \partial_5 \bar{F}^{516} \] (3.20)
Above 4 equations give the solution of F^{1ab} ($a, b \neq 2$)

$$F^{1ab} = \epsilon^{12abcd} \partial_c \Phi_d$$ \hspace{1cm} (3.21)

In the same way, we can find

$$0 = \frac{\delta L}{\delta A_{23}} = \partial_4 \tilde{F}^{423} + \partial_5 \tilde{F}^{523} + \partial_6 \tilde{F}^{623}$$ \hspace{1cm} (3.22)

$$0 = \frac{\delta L}{\delta A_{12}} = \partial_3 \tilde{F}^{324} + \partial_5 \tilde{F}^{524} + \partial_6 \tilde{F}^{624}$$ \hspace{1cm} (3.23)

$$0 = \frac{\delta L}{\delta A_{25}} = \partial_3 \tilde{F}^{325} + \partial_4 \tilde{F}^{425} + \partial_6 \tilde{F}^{625}$$ \hspace{1cm} (3.24)

$$0 = \frac{\delta L}{\delta A_{26}} = \partial_3 \tilde{F}^{326} + \partial_4 \tilde{F}^{426} + \partial_5 \tilde{F}^{526}$$ \hspace{1cm} (3.25)

Above 4 equations give the solution of F^{2ab} ($a, b \neq 1$)

$$F^{2ab} = \epsilon^{12abcd} \partial_c \Phi_d$$ \hspace{1cm} (3.26)

We can now follow [6,7] to find another self-dual relation. First, taking the Hodge-dual of both sides in above equation we find that

$$F^{1ab} = \partial[a \Phi^b] \hspace{1cm} (a, b \neq 2)$$ \hspace{1cm} (3.27)

Identifying this solution with previous found solution of F^{1ab}, then

$$\partial[a \Phi^b] = \epsilon^{12abcd} \partial_c \Phi_d$$ \hspace{1cm} (3.28)

Acting ∂_a on both sides gives

$$\partial_a \partial[a \Phi^b] = 0$$ \hspace{1cm} (3.29)

under the Lorentz gauge $\partial_a \Phi^{a1} = 0$. Now, following [6,7], imposing the boundary condition that the field Φ^{b1} be vanished at infinities will lead to the unique solution $\Phi^{b1} = 0$ and we arrive at the self-duality conditions

$$F^{2ab} = 0, \hspace{1cm} a, b \neq 1$$ \hspace{1cm} (3.30)

In the same way, we can find another self-duality conditions

$$F^{1ab} = 0, \hspace{1cm} a, b \neq 2$$ \hspace{1cm} (3.31)

These complete the proof.
4 Lorentz Invariance of Self-dual Field Equation

In this we follow the method of Perry and Schwarz [8] to show that the above general non-covariant actions give field equations with 6d Lorentz invariance. Note that sec. 4.1, 4.2.1 and 4.2.2 are just those in our previous paper [7], while for completeness we reproduce them in below.

4.1 Lorentz transformation of 2-form Field strength

We first describe the Lorentz transformation of 2-form field strength. For the coordinate transformation : \(x_a \rightarrow \bar{x}_a \equiv x_a + \delta x_a \) the tensor field \(H_{MNP}(x_a) \) will becomes

\[
H_{MNP}(x_a) \rightarrow H_{\bar{M}\bar{N}\bar{P}}(x_a + \delta x_a) \equiv \frac{\partial x^Q}{\partial \bar{x}^M} \frac{\partial x^R}{\partial \bar{x}^N} \frac{\partial x^S}{\partial \bar{x}^P} H_{QRS}(x_a + \delta x_a)
\]

\[
\approx H_{MNP}(x_a + \delta x_a) + \frac{\partial x^Q}{\partial \bar{x}^M} \frac{\partial x^R}{\partial \bar{x}^N} \frac{\partial x^S}{\partial \bar{x}^P} H_{QRS}(x_a)
\]

(4.1)

For the transformation mixing between \(x_1 \) with \(x_\mu (\mu \neq 1) \) the relation \(\delta x_a = \omega_{ab} x^b \)

leads to \(\delta x_1 = -\Lambda_\mu x^\mu \) and \(\delta x_\mu = \Lambda_\mu x^1 \) in which we define \(\omega_{1\mu} = -\omega_{\mu 1} = \Lambda_\mu \).

The orbital part of transformation [8] is defined by

\[
\delta_{orb} H_{MNP} \equiv H_{MNP}(x_a + \omega_{ab} x^b) - H_{MNP}(x_a) \approx [\delta x_a] \cdot \partial^a H_{MNP}
\]

\[
= [\Lambda_\mu x^\mu \partial^1] H_{MNP} - x^1 [\Lambda_\mu \partial^\mu] H_{MNP}
\]

\[
= [(\Lambda \cdot x) \partial^1 - x^1 (\Lambda \cdot \partial)] H_{MNP} \equiv (\Lambda \cdot L) H_{MNP}
\]

(4.2)

Note that \(\delta_{orb} \) is independent of index \(MNP \) and is universal for any tensor.

The spin part of transformation [8] becomes

\[
\delta_{spin} H_{\mu\nu\lambda} \equiv \frac{\partial x^Q}{\partial x^\mu} \frac{\partial x^R}{\partial x^\nu} \frac{\partial x^S}{\partial x^\lambda} H_{QRS}(x) - H_{\mu\nu\lambda}
\]

\[
= \frac{\partial (\delta x^1)}{\partial x^\mu} \frac{\partial x^R}{\partial x^\nu} \frac{\partial x^S}{\partial x^\lambda} H_{1RS}(x) + \frac{\partial x^Q (\delta x^1)}{\partial x^\mu} \frac{\partial x^R}{\partial x^\nu} \frac{\partial x^S}{\partial x^\lambda} H_{QRS}(x) + \frac{\partial x^Q}{\partial x^\mu} \frac{\partial x^R}{\partial x^\nu} \frac{\partial (\delta x^1)}{\partial x^\lambda} H_{RQS}(x)
\]

\[
= \left[-\Lambda_\mu H_{1\nu\lambda} \right] + \left[-\Lambda_\nu H_{\mu1\lambda} \right] + \left[-\Lambda_\lambda H_{\mu\nu1} \right]
\]

(4.3)

and \(\delta H_{\mu\nu\lambda} = \delta_{orb} H_{\mu\nu\lambda} + \delta_{spin} H_{\mu\nu\lambda} \)

In a same way

\[
\delta_{spin} H_{\mu\nu1} \equiv \frac{\partial x^Q}{\partial x^\mu} \frac{\partial x^R}{\partial x^\nu} \frac{\partial x^1}{\partial x^1} H_{QRS}(x) - H_{\mu\nu1}
\]

\[
= \frac{\partial (\delta x^1)}{\partial x^\mu} \frac{\partial x^R}{\partial x^\nu} \frac{\partial x^1}{\partial x^1} H_{1RS}(x) + \frac{\partial x^Q (\delta x^1)}{\partial x^\mu} \frac{\partial x^R}{\partial x^\nu} \frac{\partial x^1}{\partial x^1} H_{QRS}(x) + \frac{\partial x^Q}{\partial x^\mu} \frac{\partial x^R}{\partial x^\nu} \frac{\partial (\delta x^1)}{\partial x^1} H_{RQS}(x)
\]

\[
= 0 + 0 + \Lambda^\lambda H_{\mu\nu\lambda}
\]

(4.4)

and \(\delta H_{\mu\nu1} = \delta_{orb} H_{\mu\nu1} + \delta_{spin} H_{\mu\nu1} = (\Lambda \cdot L) H_{\mu\nu1} + \Lambda^\lambda H_{\mu\nu\lambda} \).
4.2 Lorentz Invariance of Self-dual Field Equation

We now use above Lorentz transformation need to examine transformations (I) mixing \(x_1 \) with \(x_2 \), (II) mixing \(x_1 \) with \(x_a \) and (IV) mixing \(x_a \) with \(x_b \), \(a, b = 3, 4, 5, 6 \).

4.2.1 Mixing \(x_1 \) with \(x_2 \)

(I) Consider first the mixing \(x_1 \) with \(x_2 \). The transformation is

\[
\begin{align*}
\delta x^1 &= \omega^{12} x_2 \equiv \Lambda x_2, \\
\delta x^2 &= \omega^{21} x_1 = -\Lambda x_1
\end{align*}
\]

Define

\[
\Lambda \cdot L \equiv (\Lambda x_2) \partial_1 - x_1 (\Lambda \partial_2)
\]

then

\[
\begin{align*}
\delta F_{12a} &= (\Lambda \cdot L) F_{12a} \\
\delta F_{abc} &= (\Lambda \cdot L) F_{abc} \\
\delta F_{1ab} &= (\Lambda \cdot L) F_{1ab} - \Lambda F_{2ab} \\
\delta F_{2ab} &= (\Lambda \cdot L) F_{2ab} + \Lambda F_{1ab}
\end{align*}
\]

Using above transformation we can find

\[
\begin{align*}
\delta \tilde{F}_{12a} &= (\Lambda \cdot L) \tilde{F}_{12a} + \frac{1}{6} \epsilon_{12abcd} (\delta_{\text{spin}} F^{bced}) = (\Lambda \cdot L) \tilde{F}_{12a} \\
\delta \tilde{F}_{1ab} &= (\Lambda \cdot L) \tilde{F}_{1ab} + \frac{1}{6} \epsilon_{1ab2cd} (\delta_{\text{spin}} F^{2cd} \cdot 3) \\
&= (\Lambda \cdot L) \tilde{F}_{1ab} + \frac{1}{2} \epsilon_{1ab2cd} [\Lambda F^{1cd}] \\
&= (\Lambda \cdot L) \tilde{F}_{1ab} - \Lambda \tilde{F}_{2ab}
\end{align*}
\]

Thus

\[
\begin{align*}
\delta (F_{12a} - \tilde{F}_{12a}) &= (\Lambda \cdot L)(F_{12a} - \tilde{F}_{12a}) = 0 \\
\delta (F_{1ab} - \tilde{F}_{1ab}) &= (\Lambda \cdot L)(F_{1ab} - \tilde{F}_{1ab}) - \Lambda(F_{2ab} - \tilde{F}_{2ab}) = 0
\end{align*}
\]

which are zero for self-dual theory. Taking Hodge of above relations we also get

\[
\delta (F_{abc} - \tilde{F}_{abc}) = 0, \quad \delta (F_{2ab} - \tilde{F}_{2ab}) = 0
\]

and the non-covariant action gives field equations with 6d Lorentz invariance under transformation mixing \(x_1 \) with \(x_2 \).
4.2.2 Mixing x_1 with x_a

(II) For the mixing x_1 with x_a, $a = 3, 4, 5, 6$, we shall consider the transformation

$$\delta x^a = \omega^{a1} x_1 \equiv \Lambda^a x_1, \quad (4.17)$$

$$\delta x^1 = \omega^{1a} x_a = -\Lambda^a x_a = -\Lambda \cdot x \quad (4.18)$$

Define

$$\Lambda \cdot L \equiv (\Lambda \cdot x) \partial_1 - x_1(\Lambda \cdot \partial) \quad (4.19)$$

then

$$\delta F_{12a} = (\Lambda \cdot L) F_{12a} + \Lambda^b F_{b2a} \quad (4.20)$$

$$\delta F_{abc} = (\Lambda \cdot L) F_{abc} - \Lambda_a F_{1bc} - \Lambda_b F_{a1c} - \Lambda_c F_{ab1} \quad (4.21)$$

$$\delta F_{1ab} = (\Lambda \cdot L) F_{1ab} + \Lambda^c F_{cab} \quad (4.22)$$

$$\delta F_{2ab} = (\Lambda \cdot L) F_{2ab} - \Lambda_a F_{21b} - \Lambda_b F_{2a1} \quad (4.23)$$

Use above transformation we can find

$$\delta \tilde{F}_{12a} = (\Lambda \cdot L) \tilde{F}_{12a} + \frac{1}{6} \epsilon_{12abc} (\delta_{\text{spin}} F^{bcd})$$

$$= (\Lambda \cdot L) \tilde{F}_{12a} + \frac{1}{6} \epsilon_{12abc} [-\Lambda^b F^{1cd} - \Lambda^c F^{b1d} - \Lambda^d F^{bc1}]$$

$$= (\Lambda \cdot L) \tilde{F}_{12a} + \Lambda^b \tilde{F}_{ab2} \quad (4.24)$$

$$\delta \tilde{F}_{1ab} = (\Lambda \cdot L) \tilde{F}_{1ab} + \frac{1}{6} \epsilon_{1ab2cd} (\delta_{\text{spin}} F^{2cd} \cdot 3)$$

$$= (\Lambda \cdot L) \tilde{F}_{1ab} + \frac{1}{2} \epsilon_{1ab2cd} [-\Lambda^c F^{21d} - \Lambda^d F^{2c1}]$$

$$= (\Lambda \cdot L) \tilde{F}_{1ab} + \Lambda^c \tilde{F}_{cab} \quad (4.25)$$

Thus

$$\delta (F_{12a} - \tilde{F}_{12a}) = (\Lambda \cdot L) (F_{12a} - \tilde{F}_{12a}) + \Lambda^b (F_{ab2} - \tilde{F}_{ab2}) = 0 \quad (4.26)$$

$$\delta (F_{1ab} - \tilde{F}_{1ab}) = (\Lambda \cdot L) (F_{1ab} - \tilde{F}_{1ab}) + \Lambda^c (F_{cab} - \tilde{F}_{cab}) = 0 \quad (4.27)$$

which are zero for self-dual theory. Taking Hodge of above relations we also get

$$\delta (F_{abc} - \tilde{F}_{abc}) = 0, \quad \delta (F_{2ab} - \tilde{F}_{2ab}) = 0 \quad (4.28)$$

and the non-covariant action gives field equations with 6d Lorentz invariance under transformation mixing x_1 with x_a.

14
4.2.3 Mixing x_a with x_b

(II) For the mixing x_a with x_b, $a = 3, 4, 5, 6$, we shall consider the transformation

$$\delta x^a = \omega^{ab} x_b \equiv \Lambda^{ab} x_b$$

(4.29)

Define

$$\Lambda \cdot L \equiv \Lambda^{ab}(x_a \partial_b - x_b \partial_a)$$

(4.30)

then

$$\delta F_{12a} = (\Lambda \cdot L) F_{12a} - \Lambda_a e F_{12e}$$

(4.31)

$$\delta F_{abc} = (\Lambda \cdot L) F_{abc} - \Lambda_a e F_{ebc} - \Lambda_b e F_{ace} - \Lambda_c e F_{abe} - \Lambda F_{ab1}$$

(4.32)

$$\delta F_{1ab} = (\Lambda \cdot L) F_{1ab} - \Lambda_a e F_{1eb} - \Lambda_b e F_{1ae}$$

(4.33)

$$\delta F_{2ab} = (\Lambda \cdot L) F_{2ab} - \Lambda_a e F_{2eb} - \Lambda_b e F_{2ae}$$

(4.34)

Using above transformations we can find

$$\delta \tilde{F}_{12a} = (\Lambda \cdot L) \tilde{F}_{12a} + \frac{1}{6} \epsilon_{12abcd}(\delta_{\text{spin}} F^{abcd})$$

$$= (\Lambda \cdot L) \tilde{F}_{12a} - \frac{1}{6} \epsilon_{12abcd}(\Lambda^b e F^{becd} + \Lambda^c e F^{bced} + \Lambda^d e F^{bcde})$$

$$= (\Lambda \cdot L) \tilde{F}_{12a} - \Lambda_a e \tilde{F}_{12e}$$

(4.35)

$$\delta \tilde{F}_{1ab} = (\Lambda \cdot L) \tilde{F}_{1ab} + \frac{1}{6} \epsilon_{12abcd}(\delta_{\text{spin}} F^{2cde} \cdot 3)$$

$$= (\Lambda \cdot L) \tilde{F}_{1ab} - \frac{1}{6} \epsilon_{12abcd}(\Lambda^c e F^{2cde} + 3 + \Lambda^d e F^{2ce} \cdot 3)$$

$$= (\Lambda \cdot L) \tilde{F}_{1ab} - \Lambda_a e \tilde{F}_{1eb} - \Lambda_b e \tilde{F}_{1ae}$$

(4.36)

Therefore

$$\delta(F_{12a} - \tilde{F}_{12a}) = (\Lambda \cdot L)(F_{12a} - \tilde{F}_{12a}) - \Lambda_a e (F_{12e} - \tilde{F}_{12e}) = 0$$

(4.37)

$$\delta(F_{1ab} - \tilde{F}_{1ab}) = (\Lambda \cdot L)(F_{1ab} - \tilde{F}_{1ab}) - \Lambda_a e (F_{1eb} - \tilde{F}_{1eb}) - \Lambda_b e (F_{1ae} - \tilde{F}_{1ae}) = 0$$

(4.38)

which are zero for self-dual theory. Taking Hodge of above relations we also get

$$\delta(F_{abc} - \tilde{F}_{abc}) = 0, \quad \delta(F_{2ab} - \tilde{F}_{2ab}) = 0$$

(4.39)

and the non-covariant action gives field equations with 6d Lorentz invariance under transformation mixing x_a with x_b.

15
5 10D Self-dual Gauge Theory

The extension above prescription to 10D self-dual gauge theory is straightforward. As before, let us first define a function \(L_{ijktmn} : \)

\[
L_{ijktm} \equiv \tilde{F}_{ijktm} \times (F^{ijktm} - \tilde{F}^{ijktm}), \text{ without summation over indices} \quad (5.1)
\]

In terms of \(L_{ijktm} \) the most general non-covariant Lagrangian of self-dual gauge theory is

\[
L_G(\alpha_i) = \sum_a L_{1234a} + \left(\frac{1}{2} + \frac{\alpha_1}{2} \right) L_{13456} + \left(\frac{1}{2} - \frac{\alpha_1}{2} \right) L_{2789Q}
\]

\[
+ \left(\frac{1}{2} + \frac{\alpha_2}{2} \right) L_{13457} + \left(\frac{1}{2} - \frac{\alpha_2}{2} \right) L_{2689Q}
\]

\[
+ \cdots \quad (5.2)
\]

in which \(Q \) denotes as tenth dimension hereafter.

Table 4: Lagrangian in the general decompositions: \(D = 10. \)

| D=10 | \(12345 \) | \(12346 \) | \(12347 \) | \(12348 \) | \(12349 \) | \(1234Q \) | \(13456 \) | \(13457 \) | \(1345Q \) | \(6789Q \) | \(5789Q \) | \(5689Q \) | \(5679Q \) | \(5678Q \) | \(56789 \) | \(2789Q \) | \(2689Q \) | \(2689Q \) |
|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| | \(L_{1234a} \) | | | | | | | \(\frac{1}{2} + \frac{\alpha_1}{2} L_{13456} \) | \(\frac{1}{2} + \frac{\alpha_2}{2} L_{13457} \) | \(\frac{1}{2} + \frac{\alpha_2}{2} L_{1345Q} \) | \(\frac{1}{2} + \frac{\alpha_1}{2} L_{2789Q} \) | \(\frac{1}{2} + \frac{\alpha_2}{2} L_{2689Q} \) | \(\frac{1}{2} + \frac{\alpha_1}{2} L_{2789Q} \) |

From table 4 we see that \(L_G \) does not picks up \(L_{6789Q}, \ldots, L_{56789} \). This is a crucial property to have a gauge symmetry. We now summarize the proof of self-duality of above Lagrangian.
5.1 Self-duality of 10D Self-dual Gauge Theory

First, the variation of the action gives

$$\frac{\delta L_G(\alpha_i)}{\delta A_{1234}} = \partial_a \tilde{F}^{a1234} = 0 \quad (5.3)$$

which is identically zero. This means that terms involved A_{1234} only through total derivative terms and we have gauge symmetry

$$\delta A_{1234} = \Phi_{1234} \quad (5.4)$$

for arbitrary functions Φ_{1234}.

Next, we can find that

$$\partial_a \tilde{F}^{abcde} = 0, \quad a, b, c, d, e \neq 1, 2, 3, 4 \quad (5.5)$$

which has solution

$$\tilde{F}^{abcde} = \epsilon^{1234abcde} \partial_f \Phi_{1234} \quad (5.6)$$

for arbitrary functions Φ_{1234}. As the gauge symmetry of $\delta A_{1234} = \Phi_{1234}$ can totally remove Φ_{1234} in F^{abcde} we have found a self-dual relation

$$F^{abcde} = 0, \quad a, b, c, d, e \neq 1, 2, 3, 4 \quad (5.7)$$

In the same way, we can find that

$$\partial_a \tilde{F}^{1abcd} = 0, \quad a, b, c, d \neq 2, 3, 4 \quad (5.8)$$

which has solution

$$\tilde{F}^{1abcd} = \epsilon^{1234abcde} \partial_f \Phi_{234e} \quad a, b, c, d \neq 2, 3, 4 \quad (5.9)$$

for arbitrary functions Φ_{234e}. We can also find that

$$\partial_a \tilde{F}^{234ab} = 0, \quad a, b \neq 1 \quad (5.10)$$

which has solution

$$\tilde{F}^{234ab} = \epsilon^{1234abcde} \partial_c \Phi_{1def}, \quad a, b \neq 1 \quad (5.11)$$

for arbitrary functions Φ_{234e}.

17
We can now follow [6,7] to find another self-dual relation. First, taking the Hodge-dual of both sides in above equation we find that

$$F^{abcd} = \partial[a\Phi^{1bcd}], \quad (a, b, c, d \neq 1, 2, 3, 4) \quad (5.12)$$

Identifying this solution with previous found solution of F^{1abcd}, then

$$\partial[a\Phi^{1bcd}] = \epsilon^{1234abcdf}\partial_f\Phi_{2345e}, \quad (a, b, c, d \neq 1, 2, 3, 4) \quad (5.13)$$

Acting ∂_a on both sides gives

$$\partial_a\partial^a\Phi^{1bcd} = 0, \quad (a, b, c, d \neq 1, 2, 3, 4) \quad (5.14)$$

under the Lorentz gauge $\partial_a\Phi^{1abc} = 0$. Now, following [6,7], imposing the boundary condition that the field Φ^{1bcd} be vanished at infinities will lead to the unique solution $\Phi^{1bcd} = 0$ and we arrive at the self-duality conditions

$$F^{234ab} = 0, \quad a, b \neq 1 \quad (5.15)$$

In the same way, we can find all other self-duality conditions.

5.2 Lorentz invariance of 10 D Self-dual Field Equation

Finally, the method in section IV can be easily applied to prove that general non-covariant actions give field equations with 10d Lorentz invariance. Essentially, we merely add more index in field strength.

For example, in considering mixing x_1 with x_2 we can find that

$$\delta F^{12abc} = (\Lambda \cdot L)F_{12abc} \quad (5.16)$$
$$\delta F^{abde} = (\Lambda \cdot L)F_{abde} \quad (5.17)$$
$$\delta F^{abcd} = (\Lambda \cdot L)F_{abcd} - \Lambda F_{2abcd} \quad (5.18)$$
$$\delta F^{2abde} = (\Lambda \cdot L)F_{2abde} + \Lambda F_{1abcd} \quad (5.19)$$

Using above transformation we can find that

$$\delta(F^{12abc} - \tilde{F}^{12abc}) = (\Lambda \cdot L)(F_{12abc} - \tilde{F}_{12abc}) = 0 \quad (5.20)$$
$$\delta(F^{abcd} - \tilde{F}^{abcd}) = (\Lambda \cdot L)(F_{abcd} - \tilde{F}_{abcd}) - \Lambda(F_{2abcd} - \tilde{F}_{2abcd}) = 0 \quad (5.21)$$

which are zero for self-dual theory. Taking Hodge of above relations we also get

$$\delta(F^{abde} - \tilde{F}^{abde}) = 0, \quad \delta(F_{2abde} - \tilde{F}_{2abde}) = 0 \quad (5.22)$$

and the non-covariant action gives field equations with 10d Lorentz invariance under transformation mixing x_1 with x_2.
6 Conclusion

In this paper we have reviewed the various non-covariant formulations Lagrangian of self-dual gauge theory in 6D and then use the crucial property of the existence of gauge symmetry $\delta A = \Phi$ to present a general Lagrangian of non-covariant forms of self-dual gauge theory. We have followed previous prescription [6,7] to prove the self-dual property in the general Lagrangian. We furthermore follow the method of Perry and Schwarz [8] to show that the general non-covariant Lagrangian give field equations with 6d Lorentz invariance. Our method can be straightforward extended to any dimension and we also give a short description about the 10D self-dual gauge theory.

The result and property found in this paper have shown that there are many kinds of non-covariant Lagrangian of self-dual gauge theory and we can easily construct the general Lagrangian.

REFERENCES

1. N. Marcus and J.H. Schwarz, Phys. Lett. 115B (1982) 111; J. H. Schwarz and A. Sen, “Duality symmetric actions,” Nucl. Phys. B 411, 35 (1994) [arXiv:hep-th/9304154].
2. R. Floreanini and R. Jackiw, “Selfdual fields as charge density solitons,” Phys. Rev. Lett. 59 (1987) 1873.
3. M. Henneaux and C. Teitelboim, “Dynamics of chiral (selfdual) p forms,” Phys. Lett. B 206 (1988) 650.
4. P. M. Ho, Y. Matsuo, “M5 from M2”, JHEP 0806 (2008) 105 [arXiv: 0804.3629 [hep-th]]; P.M. Ho, Y. Imamura, Y. Matsuo, S. Shiba, “M5-brane in three-form flux and multiple M2-branes,” JHEP 0808 (2008) 014, [arXiv:0805.2898 [hep-th]].
5. J. Bagger and N. Lambert, “Modeling multiple M2” Phys. Rev. D 75 (2007) 045020 [arXiv:hep-th/0611108]; J.A. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M2-Branes,” Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955 [hep-th]]; J. Bagger and N. Lambert, “Comments On Multiple M2-branes,” JHEP 0802 (2008) 105, [arXiv:0712.3738 [hep-th]]
A. Gustavsson, ”Algebraic structures on parallel M2-branes,” Nucl. Phys. B 811 (2009) 66, arXiv:0709.1260 [hep-th].

6. W.-M. Chen and P.-M. Ho, “Lagrangian Formulations of Self-dual Gauge Theories in Diverse Dimensions” Nucl. Phys. B837 (2010) 1 [arXiv:1001.3608 [hep-th]].

7. Wung-Hong Huang, “Lagrangian of Self-dual Gauge Fields in Various Formulations” Nucl. Phys. B861 (2012) 403.

8. M. Perry and J. H. Schwarz, “Interacting Chiral Gauge Fields in Six Dimensions and Born-Infeld Theory” Nucl. Phys. B489 (1997) 47-64 [arXiv:hep-th/9611065]