On chaotic minimal center of attraction of a Lagrange stable motion for topological semi flows

Xiongping Dai

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

Abstract

Let $f: \mathbb{R}_+ \times X \to X$ be a topological semi flow on a Polish space X. In 1977, Karl Sigmund conjectured that if there is a point x in X such that the motion $f(t, x)$ has just X as its minimal center of attraction, then the set of all such x is residual in X. In this paper, we present a positive solution to this conjecture and apply it to the study of chaotic dynamics of minimal center of attraction of a motion.

Keywords: Minimal center of attraction · Chaotic motion · Semi flow

2010 MSC: 37B05 · 37A60 · 54H20

1. Introduction

By a C^0 semi flow over a metric space X, we here mean a transformation $f: \mathbb{R}_+ \times X \to X$ where $\mathbb{R}_+ = [0, \infty)$, which satisfies the following three conditions:

1. The initial condition: $f(0, x) = x$ for all $x \in X$.
2. The condition of continuity: if there be given two convergent sequences $t_n \to t_0$ in \mathbb{R}_+ and $x_n \to x_0$ in X, then $f(t_n, x_n) \to f(t_0, x_0)$ as $n \to \infty$.
3. The semigroup condition: $f(t_2, f(t_1, x)) = f(t_1 + t_2, x)$ for any x in X and any times t_1, t_2 in \mathbb{R}_+.

Sometimes we write $f(t, x) = f^t(x)$ for any $t \geq 0$ and $x \in X$; and for any given point $x \in X$ we call $f(t, x)$ a motion in X and $O_f(x) = f(\mathbb{R}_+, x)$ the orbit starting from the point x. If $O_f(x)$ is precompact (i.e. $\overline{O_f(x)}$ is compact) in X, then we say that $f(t, x)$ is Lagrange stable.

We refer to any subset Λ of X as an invariant set if $f(t, x) \in \Lambda$ for each pint $x \in \Lambda$ and any time $t \geq 0$. In dynamical systems, statistical mechanics and ergodic theory, we shall have to do with “probability of sojourn of a motion $f(t, x)$ in a given region E of X” as $t \to +\infty$:

$$P(f(t, x) \in E) = \lim_{T \to +\infty} \frac{1}{T} \int_0^T \mathbb{1}_E(f(t, x)) dt,$$

where $\mathbb{1}_E(x)$ is the characteristic function of the set E on X.

This motivates H.F. Hilmy to introduce following important concept, which was discussed in [13, 15, 16, 12], for example.
Lemma 1.2. Let \(f : \mathbb{R} \times X \to X \) be a \(\mathcal{C}^0 \)-semi flow on a metric space \(X \). Then each Lagrange stable motion \(f(t, x) \) always possesses the minimal center of attraction.

First of all, by the classical Cantor-Baire theorem and Zorn’s lemma we can obtain the following basic existence lemma.

Definition 1.1 (Hilmy 1936 [10]). Given any \(x \in X \), a closed subset \(C_x \) of \(X \) is called the center of attraction of the motion \(f(t, x) \) as \(t \to +\infty \) if \(\mathcal{P}(f(t, x) \in B_{\varepsilon}(C_x)) = 1 \) for all \(\varepsilon > 0 \), where \(B_{\varepsilon}(C_x) \) denotes the \(\varepsilon \)-neighborhood around \(C_x \) in \(X \). If the set \(C_x \) does not admit a proper subset which is likewise a center of attraction of the motion \(f(t, x) \) as \(t \to +\infty \), then \(C_x \) is called the minimal center of attraction of the motion \(f(t, x) \) as \(t \to +\infty \).

Our argument of Theorem 1.4 below also works for discrete-time case. Thus we can obtain the following:

Corollary. For any continuous transformation \(f \) of a Polish space \(X \), the set of points \(x \in X \) with \(C_x = X \), if nonempty, is residual in \(X \).

We now turn to some applications of Theorem 1.4. For our convenience, we first introduce two notions for a \(\mathcal{C}^0 \)-semi flow \(f : \mathbb{R}_+ \times X \to X \) on a Polish space \(X \).

Definition 1.5. An \(f \)-invariant subset \(\Lambda \) of \(X \) is referred to as generic if there exists some point \(x \in \Lambda \) with \(\Lambda = C_x \).

According to Conjecture 1.3 (or precisely speaking Theorem 1.4) for any generic minimal center of attraction \(C_x \) of a motion \(f(t, x) \), the set of points \(y \in C_x \) with \(C_y = C_x \) is residual in \(C_x \).

Definition 1.6. We say that a motion \(f(t, x) \) is chaotic for \(f \) if there can be found some point \(y \in X \) such that

\[
\liminf_{t \to +\infty} d(f(t, x), y) = 0, \quad \limsup_{t \to +\infty} d(f(t, x), y) > 0
\]

and

\[
\liminf_{t \to +\infty} d(f(t, x), f(t, y)) = 0, \quad \limsup_{t \to +\infty} d(f(t, x), f(t, y)) > 0.
\]
By using Theorem 1.4, we will show that if C_x is not generic, then the chaotic behavior occurs near C_x; see Theorems 3.1 and 3.2 stated and proved in Section 3. On the other hand whenever C_x is generic and it is not “very simple”, then chaotic motions are generic in C_x; that is the following

Theorem 1.7. Let $f(t, p)$ be a Lagrange stable motion in a Polish space X. If C_p is generic and itself is not a minimal subset of (X, f), then there exists a residual subset S of C_p such that $f(t, x)$ is chaotic for each $x \in S$.

In Section 4 we will consider a relationship of the minimal center of attraction of a motion with the pointwise recurrence.

Finally we shall consider the multiply attracting of the minimal center of attraction of a motion in Section 5.

2. Proof of Sigmund’s conjecture

This section will be devoted to proving Karl Sigmund’s Conjecture 1.3 in the continuous-time case; that is, Theorem 1.4.

Recall that if a continuous surjective map $T: X \to X$ is topologically transitive, then for a countable basis $U_1, U_2, \ldots, U_n, \ldots$ of the underlying space X, the set

$$\{ x \in X \mid \overline{O_T(x)} = X \} = \bigcap_{n=1}^{+\infty} \bigcup_{m=0}^{+\infty} T^{-m}(U_n),$$

where $O_T(x) = \{ T^n x : n \in \mathbb{Z}_+ \}$, is a dense G_δ set in X because $\bigcup_{m=0}^{+\infty} T^{-m}(U_n)$ is open and dense in X. It is easy to see that this standard argument for topological transitivity does not work here for Sigmund’s conjecture (or Theorem 1.4). So we need a new idea that will explore the times of sojourn of a motion in a domain.

Given any $x \in X$, let \mathcal{U}_x be the neighborhood system of the point x in X. To prove Conjecture 1.3, we will need a classical result, which shows that C_x consists of the points $y \in X$ which are interesting for x.

Lemma 2.1 ([10, 15] for C^0-flow). Let $f: \mathbb{R}_+ \times X \to X$ be a C^0-semi flow on a metric space X. Then for any $x \in X$, there holds

$$C_x = \left\{ y \in X \mid \limsup_{T \to +\infty} \frac{1}{T} \int_0^T \mathbb{1}_U(f(t, x))dt > 0 \ \forall U \in \mathcal{U}_x \right\}.$$

Proof. For self-closeness, we present an independent proof for this lemma which is shorter than that of [15]. Let $x \in X$ and write

$$I(x) = \left\{ y \in X \mid \limsup_{T \to +\infty} \frac{1}{T} \int_0^T \mathbb{1}_U(f(t, x))dt > 0 \ \forall U \in \mathcal{U}_x \right\}.$$

We first claim that $C_x \subseteq I(x)$. Indeed, for any $q \in C_x$, let $U \in \mathcal{U}_q$ be a neighborhood of q in X; then

$$\limsup_{T \to +\infty} \frac{1}{T} \int_0^T \mathbb{1}_U(f(t, x))dt > 0.$$
Otherwise, one would find some $\varepsilon > 0$ so that

$$\lim_{T \to +\infty} \frac{1}{T} \int_0^T 1_{B_3(q)}(f(t,x))\,dt = 0.$$

Further $C_x - B_2(q)$ is a center of attraction of the motion $f(t,x)$ and we thus arrive at a contradiction to the minimality of C_x.

Finally we assert that $C_x \supseteq I(x)$. By contradiction, let $q \in I(x) - C_x$ and then we can take some $\varepsilon > 0$ such that $d(q,C_x) \geq 3\varepsilon$. Set

$$N(B_\varepsilon(q)) = \{ t \geq 0 \mid f(t,x) \in B_\varepsilon(q) \text{ for } 1 \leq i \leq l \}$$

and

$$N(B_\varepsilon(C_x)) = \{ t \geq 0 \mid f(t,x) \in B_\varepsilon(C_x) \text{ for } 1 \leq i \leq l \}.$$

Clearly $N(B_\varepsilon(q)) \cap N(B_\varepsilon(C_x)) = \emptyset$. However, by definitions, $N(B_\varepsilon(q))$ has positive upper density and $N(B_\varepsilon(C_x))$ has density 1 in $[0,\infty)$. This is a contradiction.

The proof of Lemma 2.1 is thus completed.

In Definition 1.1 we do not require the f-invariance of C_x. However, it is actually f-invariant by Lemma 2.1.

Corollary 2.2. Let $f : \mathbb{R}_+ \times X \to X$ be a C^0-semi flow on a metric space X. For any $x \in X$, C_x is f-invariant.

Since for any real number $\theta > 0$ and any integer $N \geq 0$ there holds

$$0 \leq \int_0^\theta 1_U(f(N\theta + t,x))\,dt \leq \theta,$$

then Lemma 2.1 implies immediately the following.

Corollary 2.3. Let $f : \mathbb{R}_+ \times X \to X$ be a C^0-semi flow on a Polish space X. For any $x \in X$ and any $\theta > 0$, there holds

$$C_x = \left\{ y \in X \mid \limsup_{N \to +\infty} \frac{1}{N} \int_0^{N\theta} 1_U(f(t,x))\,dt > 0 \forall U \in \mathcal{U}_y \right\}.$$

Here $\mathbb{N} = \{ 1, 2, \ldots \}$.

Proof. The statement follows from that $T = N_T \theta + r_T$ where $N_T \in \mathbb{N}$, $0 \leq r_T < \theta$ for any $T \geq 1$ and that

$$\limsup_{T \to +\infty} \frac{1}{T} \int_0^T 1_U(f(t,x))\,dt = \limsup_{N \to +\infty} \frac{1}{N\theta} \int_0^{N\theta} 1_U(f(t,x))\,dt$$

for any $U \in \mathcal{U}_y$ and any $y \in X$.

We are now ready to prove one of our main statements—Theorem 1.4—by applying Lemma 2.1 and Corollaries 2.2 and 2.3.
Proof of Theorem 1.4. Write $\Theta = \{ x \in X : C_x = X \}$ and let $x \in X$ be such that $C_x = X$. Then from Lemma 2.1, it follows that the orbit $O_f(x) = f(\mathbb{R}_+, x)$ is dense in X and that $O_f(x) \subseteq \Theta$ such that for any $y \in O_f(x)$,\[\limsup_{N \to \infty} \frac{1}{N} \int_0^N 1_U(f(t,x))dt = \limsup_{N \to \infty} \frac{1}{N} \int_0^N 1_U(f(t,y))dt, \]
for every nonempty $U \in \mathcal{F}_X$, where \mathcal{F}_X is the topology of the space X.

Let $\mathcal{W} = \{ U_i \}_{i=1}^\infty$ be an any given countable base of the topology \mathcal{F}_X of the state space X. Then by Corollary 2.3, we can choose a sequence of positive integers $L_i, i = 1, 2, \ldots$, such that\[\limsup_{N \to \infty} \frac{1}{N} \int_0^N 1_{U_i}(f(t,x))dt > \frac{1}{L_i}, \]
for all $i = 1, 2, \ldots$. For each i, write\[\Theta_i = \left\{ y \in X \mid \forall n_0 \in \mathbb{N}, \exists n > n_0 \text{ with } \int_0^{nL_i} 1_{U_i}(f(t,y))dt > n \right\}. \]
From the continuity of $f(t,y)$ with respect to (t,y) and\[\Theta_i = \bigcap_{n=1}^{\infty} \bigcup_{n_0=n}^{\infty} \left\{ y \in X \mid \int_0^{nL_i} 1_{U_i}(f(t,y))dt > n \right\}, \]
it follows that Θ_i is a G_δ subset of X. Because x belongs to Θ_i by noting $N = n_0L_i + r_N$ and $\lim_{N \to \infty} \frac{r_N}{N} = 0$ where $0 \leq r_N < L_i$ and then similarly $O_f(x) \subseteq \Theta_i$, there follows $\bigcap_{i=1}^{\infty} \Theta_i$ is a dense and G_δ set in X.

Since for any $y \in \bigcap_{i=1}^{\infty} \Theta_i$ we have\[\limsup_{N \to \infty} \frac{1}{N} \int_0^N 1_{U_i}(f(t,y))dt \geq \frac{1}{L_i} > 0 \]
for any $U_i \in \mathcal{W}$ and \mathcal{W} is a base of the topology \mathcal{F}_X of the space X, we see that $y \in \Theta$ from Corollary 2.3. Therefore, Θ is a residual set in X.

This completes the proof of Theorem 1.4. \hfill \square

Finally we mention that the statement of Theorem 1.4 is also valid for a continuous transformation $f : X \to X$ of a Polish space X.

3. Li-Yorke chaotic pairs and sensitive dependence on initial data

In this section, we shall apply Theorem 1.4 to the study of chaos of a topological dynamical system on a Polish space X.

Let $f : \mathbb{R}_+ \times X \to X$ be a C^0-semi flow on the Polish space (X,d). Recall that two points $x, y \in X$ is called a Li-Yorke chaotic pair for f if\[\limsup_{t \to +\infty} d(f(t,x), f(t,y)) > 0 \quad \text{and} \quad \liminf_{t \to +\infty} d(f(t,x), f(t,y)) = 0. \]
That is to say, x is proximal to y but not asymptotical. If there can be found an uncountable set $S \subset X$ such that every pair of points $x, y \in S, x \neq y$, is a Li-Yorke chaotic pair for f, then we say f is Li-Yorke chaotic; see, e.g., Li and Yorke 1975 \cite{14}.
3.1. Nongeneric case

Let \(f : \mathbb{R}_+ \times X \to X \) be a \(C^0 \)-semi flow on a compact metric space. The following theorem shows that if \(C_x \) has no the generic dynamics in the sense of Definition 1.5, then \(f \) has the chaotic dynamics.

Theorem 3.1. Given any \(x \in X \), if \(C_x \) is not generic, then one can find some point \(q \in \Delta \), for any closed \(f \)-invariant subset \(\Delta \subseteq C_x \), such that \((x, q)\) is a Li-Yorke chaotic pair for \(f \).

Proof. Given any \(x \in X \), let \(C_x \) be not generic in the sense of Definition 1.5. Let \(\Delta \) be an \(f \)-invariant nonempty closed subset of \(C_x \). Then by Theorem 1.4 it follows that \(x \notin C_x \). Moreover from Definition 1.1, we can obtain that \(x \) is proximal to \(\Delta \); that is,

\[
\liminf_{t \to +\infty} d(f(t, x), f(t, \Delta)) = 0.
\]

Then from [1, 6] also [7, Proposition 8.6], it follows that there exists some point \(q \in \Delta \) such that

\[
\liminf_{t \to +\infty} d(f(t, x), f(t, q)) = 0.
\]

We claim that \(\limsup_{t \to +\infty} d(f(t, x), f(t, q)) \geq 0 \). Otherwise, \(\lim_{t \to +\infty} d(f(t, x), f(t, q)) = 0 \) and it follows that \(C_x = C_q \); and then \(C_x \) is generic by Theorem 1.4.

The proof of Theorem 3.1 is therefore complete.

Corollary 1. Given any \(x \in X \), if \(C_x \) is not generic, then one can find some point \(q \in C_x \) such that \((x, q)\) is a Li-Yorke chaotic pair for \(f \) and the set

\[
N_f(x, B_\varepsilon(q)) = \{ t \geq 0 : f(t, x) \in B_\varepsilon(q) \}
\]

is a central set in \(\mathbb{R}_+ \), which has positive upper density.

Proof. Let \(\Delta \subseteq C_x \) be a minimal set. Then there can be found by Theorem 3.1 a point \(q \in \Delta \) such that \((x, q)\) is a Li-Yorke chaotic pair for \(f \). By definition (cf. [7, Definition 8.3] and [5, Definition 7.2]) \(N_f(x, B_\varepsilon(q)) \) is a central set of \(\mathbb{R}_+ \) for each \(\varepsilon > 0 \). In addition, by Lemma 2.1 it follows that \(N_f(x, B_\varepsilon(q)) \) has positive upper density. This proves the corollary.

Corollary 2. Let there exist a fixed point or a periodic orbit in the minimal center \(C_x \) of attraction of a motion \(f(t, x) \). Then we can find a Li-Yorke chaotic pair near \(C_x \).

Proof. First if \(C_x \) is generic in the sense of Definition 1.5, then \(f \) restricted to it is topologically transitive and has a fixed point or a periodic orbit. Then by Huang and Ye 2002 [11, Theorem 4.1], it follows that \(f \) restricted to \(C_x \) is chaotic in the sense of Li and Yorke.

On the other hand, if \(C_x \) is not generic in the sense of Definition 1.5, then from Theorem 3.1 it follows that there always exists a Li-Yorke chaotic pair near \(C_x \).

The proof of the corollary is thus complete.

Recall that a motion \(f(t, x) \) is referred to as a Birkhoff recurrent motion of \(f \) if \(\overline{O_f(x)} \) is minimal (cf. [15, 3]). It is also called “uniformly recurrent” in [7] and “almost periodic” of von Neumann in [9] in the discrete-time case.

Motivated by [2, 8, 4] we can obtain the following theorem on sensitivity on initial data near the minimal center of attraction of a motion.

\[\text{ } \]
Theorem 3.2. Let C_x, for a motion $f(t, x)$, be not generic. If the Birkhoff recurrent points of f are dense in C_x, then f has the sensitive dependence on initial data near C_x in the sense that one can find a sensitive constant $\epsilon > 0$ such that for any $a \in X, \hat{x} \in C_x$ and any $U \in \mathcal{B}_x$, there exists some point $c \in U$ with $\lim \sup_{t \to +\infty} d(f(t, a), f(t, c)) \geq \epsilon$.

Proof. Since C_x is not generic, by Theorem 1.4 it follows that it is not minimal and so it contains at least two different motions of f far away each other. Thus one can find a number $\delta > 0$ such that for all $\hat{x} \in C_x$ there exists a corresponding motion $f(t, q)$ in C_x, not necessarily recurrent, such that

$$d(\hat{x}, \overline{O_f(q)}) \geq \delta,$$

where $d(\hat{x}, A) = \inf_{a \in A} d(\hat{x}, a)$ for any subset A of X. We will show that f has sensitive dependence on initial data with sensitivity constant $\epsilon = \delta/4$ following the idea of [4, Theorem 4].

For this, we let \hat{x} be an arbitrary point in C_x and let U be an arbitrary neighborhood of \hat{x} in X. Since the Birkhoff recurrent motions of (X, f) are dense in C_x from assumption of the theorem, there exists a Birkhoff recurrent point $p \in U \cap B_{r/2}(\hat{x}) \cap C_x$, where $B_r(\hat{x})$ is the open ball of radius r centered at \hat{x} in X. As we noted above, there must exist another point $q \in C_x$ whose orbit $O_f(q)$ is of distance at least 4ϵ from the given point \hat{x}.

Let $\eta > 0$ be such that $\eta < \epsilon/2$. Then from the Birkhoff recurrence of the motion $f(t, p)$, it follows that one can find a constant $T = T(\eta, p) > 0$ such that for any $\gamma \geq 0$, there is some moment $t_j \in [\gamma, \gamma + T]$ verifying that

$$d(p, f^{\gamma}(p)) < \eta.$$

For the given q, we simply write

$$V = \bigcap_{n \in [0, 2T]} f^{-n}(B_\epsilon(f^n(q))), \text{ where } f^{-n}(\cdot) = f(t, \cdot)^{-1}.$$

Clearly from the continuity of topological flow, it follows that V is a neighborhood of q in X but not necessarily open, and it is nonempty since $q \in V$.

Since \hat{x} is the minimal center of attraction of the motion $f(t, x)$, from Lemma 2.1 it follows that there is at least one point $z \in U \cap B_r(\hat{x})$ such that $f^N(z) \in V$ for some sufficiently large number $N \gg T$. Let

$$N = jT + r \text{ where } 0 \leq r < T, \ j \in \mathbb{N},$$

and

$$t_jT \in [jT, (j + 1)T) \text{ such that } d(p, f^{t_jT}(p)) < \eta.$$

Then $0 \leq t_jT - N < 2T$.

By construction, one has

$$f^{t_jT}(z) = f^{t_jT - N}(f^N(z)) \in f^{t_jT - N}(V) \subseteq B_\epsilon(f^{t_jT - N}(q)).$$

From the triangle inequality of metric, it follows that

$$d(f^{t_jT}(p), f^{t_jT}(z)) \geq d(p, f^{t_jT}(z)) - \eta$$

$$\geq d(\hat{x}, f^{t_jT}(z)) - d(p, \hat{x}) - \eta$$

$$\geq d(\hat{x}, f^{t_jT - N}(q)) - d(f^{t_jT - N}(q), f^{t_jT}(z)) - d(p, \hat{x}) - \eta.$$
Consequently, since $\eta < \epsilon/2$, $p \in B_{\epsilon/2}(\xi)$ and $f^{j\sigma}(z) \in B_{\epsilon}(f^{jN}(q))$, it holds that
\[d(f^{j\sigma}(p), f^{j\sigma}(z)) > 2\epsilon. \]

Therefore from the triangle inequality again, one can obtain either
\[d(f^{j\sigma}(\xi), f^{j\sigma}(z)) > \epsilon \]
or
\[d(f^{j\sigma}(\xi), f^{j\sigma}(p)) > \epsilon. \]

Repeating this argument for another likewise N bigger than $(j + 2)T$, one can find a sequence $t_n = j_nT \uparrow +\infty$ as $n \to +\infty$ such that either
\[d(f^{j_n}(\xi), f^{j_n}(z)) > \epsilon \]
or
\[d(f^{j_n}(\xi), f^{j_n}(p)) > \epsilon, \]
for all $n \geq 1$. Thus in either case, we have found a point $\tilde{y} \in U$ such that
\[\limsup_{t \to +\infty} d(f^{j_n}(\xi), f^{j_n}(\tilde{y})) \geq \epsilon. \]

Now for any $a \in X$, using the triangle inequality once more, we see either
\[\limsup_{t \to +\infty} d(f^{j_n}(\xi), f^{j_n}(a)) \geq \frac{\epsilon}{3} \]
or
\[\limsup_{t \to +\infty} d(f^{j_n}(\tilde{y}), f^{j_n}(a)) \geq \frac{\epsilon}{3}. \]

Since ξ, U both are arbitrary and $\tilde{y} \in U$, hence the proof of Theorem 3.2 is complete.

We note that if (C_x, f) is distal (cf. [7, Definition 8.2]) and not minimal and even not topologically transitive, then the conditions of Theorem 3.2 hold; i.e., the Birkhoff recurrent points are dense in C_x. In fact, C_x consists of Birkhoff recurrent points ([7, Corollary of Theorem 8.7]) and it is not topologically transitive.

3.2. Generic case

Let $f : \mathbb{R} \times X \to X$ be a C^0-semi flow on a Polish space and $f(t, p)$ a Lagrange stable motion. Then the minimal center C_p of attraction of the motion $f(t, p)$ is always existent. Theorem 1.7 is just a corollary of the following

Theorem 3.3. Let C_p be generic and not a minimal subset of (X, f). Then there exists a residual subset S of C_p such that for any $x \in S$ and any minimal subset $\Lambda \subset C_p$, there corresponds some point $y \in \Lambda$ with the properties: x, y form a Li-Yorke chaotic pair for f and
\[
\liminf_{t \to +\infty} d(f(t, x), y) = 0 \quad \text{and} \quad \limsup_{t \to +\infty} d(f(t, x), y) \geq \frac{1}{2} \text{diam}(C_p).
\]
Proof. Since C_p is generic in the sense of Definition 1.5, there exists some point $q \in C_p$ with $C_q = C_p$. Therefore by Theorem 1.4, there is a residual subset S of C_p such that $C_x = C_p$ for all point x in S. Because C_p is not a minimal subset of X by hypothesis of Theorem 1.7, $O_f(x)$ is not minimal for each $x \in S$.

Let Λ be a minimal subset of C_p. Then each $x \in S$ is proximal to Λ. Moreover by [7, Theorem 8.7], it follows that for every $x \in S$, there corresponds some point $y \in \Lambda$ such that x is proximal to y and $f(t, y)$ is Birkhoff recurrent (or uniformly recurrent). Clearly, x and y is a Li-Yorke chaotic pair for f. In addition, from Lemma 2.1 follows that

\[\limsup_{t \to +\infty} d(f(t, x), y) \geq \frac{1}{2} \text{diam}(C_p) \]

and

\[\liminf_{t \to +\infty} d(f(t, x), y) = 0. \]

This completes the proof of Theorem 3.3.

Therefore by Theorems 3.1 and 3.3, it follows that every Lagrange stable motion $f(t, x)$ is chaotic in the sense of Definition 1.6 if its minimal center C_x of attraction is not a minimal subset of (X, f).

4. Quasi-weakly almost periodic motion

In this section, we let $f : \mathbb{R}_+ \times X \to X$ be a C^0-semi flow on the compact metric space X.

Definition 4.1 (Huang-Zhou 2012 [12]). A point x in X is called a quasi-weakly almost periodic point of f if for any $\varepsilon > 0$ there exists an integer $N = N(\varepsilon) \geq 1$ and an increasing positive integer sequence $\{n_j\}$ with the property that for each j there are $0 = t_0 < t_1 < \cdots < t_{n_j} < n_j N$ with $t_{n_j} - t_i \geq 1$ such that $f(t_j, x) \in B_\varepsilon(x)$ for all $i = 1, \ldots, n_j$.

As results of the statements of Lemma 2.1 and Theorem 1.4, we can obtain the following two results.

Proposition 4.2. The following statements are equivalent to each other.

1. $x \in X$ is a quasi-weakly almost periodic point of f.
2. $x \in C_x$.

Proof. (1)\Rightarrow(2) follows from Lemma 2.1. (2)\Rightarrow(1) follows from Lemma 2.1 and the local section theorem of Bebutov (cf. [15, Theorem V.2.14]).

Proposition 4.2 has been proved in [12] in the case where x is a Poisson stable point of f, i.e., there is a sequence $t_n \to \infty$ such that $f(t_n, x) \to x$ as $n \to \infty$.

Proposition 4.3. If $x \in C_x$, then the set $\{y \in C_x | y \in C_y = C_x\}$ is dense and G_δ relative to the subspace C_x.

Proof. The statement follows from Theorem 1.4 with C_x replacing of X.

9
5. Minimal center of multi-attraction of a motion

Let \(f: \mathbb{R}_+ \times X \to X \) be a C^\alpha-semi flow on a Polish space \(X \). From now on, by \(\lambda(dt) \) we denote the standard Haar (Lebesque) measure on \(\mathbb{R} \). We will need the following simple but useful fact.

Lemma 5.1. Let \(S \) be a measurable subset of \(\mathbb{R}_+ \) and \(\tau > 0 \). If \(S \) has the density \(\alpha \), i.e.,
\[
D(S) := \lim_{T \to +\infty} \frac{\lambda(S \cap [0, T])}{T} = \alpha,
\]
then \(\tau S = \{ \tau t: t \in S \} \) also has the density \(\alpha \) in \(\mathbb{R}_+ \).

Proof. Let \(\tau > 0 \) be any given. Since \(\lambda(\tau A) = \tau \lambda(A) \) and \(\lambda(\tau S \cap [0, T]) = \tau \lambda(S \cap [0, T\tau^{-1}]) \), hence it follows that \(D(\tau S) = 1 \). This proves the lemma. \(\Box \)

It should be noted here that there is no an analogous result for the discrete-time \(\mathbb{Z}_+ \); for example, \(S = \{0, 2, 4, 6, \ldots\} \) has the density \(\frac{1}{2} \) but \(\frac{1}{\tau} S \) has the density 1 in \(\mathbb{Z}_+ \).

The following lemma shows that every minimal center of attraction of a motion \(f(t, x) \) is multiply attracting as \(t \to +\infty \).

Lemma 5.2. Let \(C_x \) be existent for a motion \(f(t, x) \) as \(t \to +\infty \). Then for any \(t_1 > 0, \ldots, t_l > 0 \) where \(l \in \mathbb{N} \) and any \(\epsilon > 0 \),
\[
\lim_{T \to +\infty} \frac{1}{T} \int_0^T \mathbb{1}_{B_{\epsilon}(C_x)}(f(t_1 t, x)) \cdots \mathbb{1}_{B_{\epsilon}(C_x)}(f(t_l t, x)) dt = 1.
\]

Proof. For any \(\tau > 0 \) and any open set \(U \), define an open set
\[
N_\epsilon(x, U) = \{ t: 0 \leq t < +\infty, f(\tau t, x) \in U \}.
\]
It is easy to check that \(\tau^{-1} N_\epsilon(x, U) = N_\epsilon(x, U) \). Then by Lemma 5.1 and Definition 1.1, it follows that \(N_\epsilon(x, B_{\epsilon}(C_x)), \ldots, N_\epsilon(x, B_{\epsilon}(C_x)) \) all have the density 1. Thus
\[
N_{\epsilon, \ldots, \epsilon}(x, B_{\epsilon}(C_x)) := N_\epsilon(x, B_{\epsilon}(C_x)) \cap \cdots \cap N_\epsilon(x, B_{\epsilon}(C_x))
\]
also has the density 1 in \(\mathbb{R}_+ \). This completes the proof of Lemma 5.2. \(\Box \)

Recall that a motion \(f(t, x) \) is said to be Lagrange stable as \(t \to +\infty \) if the orbit-closure \(\overline{O_f(x)} \) is compact in \(X \) (cf. [15]). As a direct result of Lemma 5.2, we can obtain the following.

Corollary 5.3. For any Lagrange stable motion \(f(t, x) \) as \(t \to +\infty \), \(C_x \) is the minimal closed subset of \(X \) such that for any \(t_1 > 0, \ldots, t_l > 0 \) and any \(\epsilon > 0 \),
\[
\lim_{T \to +\infty} \frac{1}{T} \int_0^T \mathbb{1}_{B_{\epsilon}(C_x)}(f(t_1 t, x)) \cdots \mathbb{1}_{B_{\epsilon}(C_x)}(f(t_l t, x)) dt = 1.
\]

This result shows that \(C_x \) is the “minimal center of multi-attraction” of a Lagrange stable motion \(f(t, x) \) as \(t \to +\infty \).

Acknowledgment

This work was supported partly by National Natural Science Foundation of China grant #11431012, 11271183 and PAPD of Jiangsu Higher Education Institutions.
References

[1] J. Auslander, *On the proximal relation in topological dynamics*, Proc. Amer. Math. Soc., 11 (1960), 890–895.
[2] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, *On Devaney’s definition of chaos*, Amer. Math. Monthly, 99 (1992), 332–334.
[3] B. Chen and X. Dai, *On uniformly recurrent motions of topological semigroup actions*, Discret. Contin. Dyn. Syst., in press, 2015.
[4] X. Dai, *Chaotic dynamics of continuous-time topological semiflow on Polish spaces*, J. Differential Equations, 258 (2015), 2794–2805.
[5] X. Dai, *On the Furstenberg-Zimmer structure theorems for Noetherian modules over syndetic rings*, Preprint, 2015.
[6] R. Ellis, *A semigroup associated with a transformation group*, Trans. Amer. Math. Soc., 94 (1960), 272–281.
[7] H. Furstenberg, *Recurrence in Ergodic Theory and Combinatorial Number Theory*, Princeton University Press, Princeton, New Jersey, 1981.
[8] E. Glasner and B. Weiss, *Sensitive dependence on initial conditions*, Nonlinearity, 6 (1993), 1067–1075.
[9] W.H. Gottschalk and G.A. Hedlund, *Topological Dynamics*, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, RI, 1955.
[10] H.F. Hilmy, *Sur les centres d’attraction minimaux des systèmes dynamiques*, Compositio Math., 3 (1936), 227–238.
[11] W. Huang and Y.-D. Ye, *Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos*, Topology and its Appl., 117 (2012), 259–272.
[12] Y. Huang and Z.-L. Zhou, *Two new recurrent levels for C^0-flows*, Acta Appl. Math., 118 (2012), 125–145.
[13] K. Jacobs, *Einige Grundbegriffe der topologischen Dynamik*, Math. Phys. Semesterberichte, 14 (1967), 129–150.
[14] T. Li and J. Yorke, *Period 3 implies chaos*, Amer. Math. Monthly, 82 (1975), 985–992.
[15] V.V. Nemytskii and V.V. Stepanov, *Qualitative Theory of Differential Equations*, Princeton University Press, Princeton, New Jersey 1960.
[16] K. Sigmund, *On minimal centers of attraction and generic points*, J. Reine Angew. Math., 295 (1977), 72–79.