Structure properties and dielectric relaxation of Ca$_{0.1}$Na$_{0.9}$Ti$_{0.1}$Nb$_{0.9}$O$_3$ ceramic

Hanen Ghoudi, Souad Chkoundali, Zeineb Raddaoui and Abdelhedi Aydi

In this paper, the synthesis of Ca$_{0.1}$Na$_{0.9}$Ti$_{0.1}$Nb$_{0.9}$O$_3$ (CNTN) ceramic by a solid-state reaction method is reported. The results of Rietveld refinement of X-ray diffraction (XRD) patterns at room temperature showed a pure tetragonal perovskite (P4mm space group). Raman spectroscopy analysis, ranging from 50 to 1000 cm$^{-1}$, at room temperature, validates the results of XRD. The dielectric properties were studied by complex impedance spectroscopy examined in broad frequency range, 100 Hz to 200 kHz, at different temperatures. The dielectric permittivity for our CNTN compound confirms the typical relaxor behavior. The investigation of the diffuseness of the transition was conducted by fitting the experimental data with modified Curie–Weiss law; Gaussian distribution and Power law confirm the presence of a short-range association between the polar nanoregions (PNRs). The obtained values of the diffuseness coefficient are of the order 1.6, which corresponds to the diffuse phase transition (DPT) ascribed to the existence of various states of polarization, thus various relaxation times in different regions. The value of diffuseness is of the order 85 and the degree of relaxor ($\Delta T_{cm} = 65$ K) is interesting as far as microelectric applications are concerned. Moreover, based on the frequency dependence of temperature at dielectric maxima using Vogel–Fulcher relationship, a strong evidence for a static freezing temperature with regards to thermally-activated polarization fluctuations was found.

1. Introduction

Oxide materials with perovskite structure, having a general formula ABO$_3$, represent the backbone of the ferroelectric industry. For a long time, ferroelectric ceramics have proved to be useful for various practical applications, such as high dielectric constant capacitors, radio and communication filters, pyroelectric devices, medical diagnostic transducers, ultrasonic motors and electro-optic light valves. The typical dielectric response, for example, has a frequency and temperature dependent diffuse permittivity maximum. However, most of relaxor compounds are complex lead-based perovskites, namely Pb(Mg$_{1/3}$Nb$_{2/3}$)O$_3$ (PMN) or (Pb, La)–(Zr, Ti)O$_3$ (PLZT). In recent years, materials with lead-free compositions have attracted much interest for environment-friendly applications. Promising compounds are BaTiO$_3$ based solid solutions, such as Ba(Ti, Sn)O$_3$, Ba(Ti, Zr)O$_3$, Ba$_{0.8}$Sr$_{0.2}$TiO$_3$, or BiFeO$_3$.

Thanks to its numerous electric, dielectric and optical properties, calcium titanate (CaTiO$_3$) has been widely investigated. CaTiO$_3$ with orthorhombic distortions of the perovskite structure was observed from X-ray diffraction by Naray-Szabo. It is characterized by paraelectric property at room temperature, dielectric permittivity above 170 and a dissipation factor (D) $\sim 10^{-3}$ at 1 kHz. Lemanov et al. measured the dielectric properties of CaTiO$_3$. They classified this perovskite as a ferroelectric at temperature below 300 K ($T_C = 330$ K). At room temperature, pure NaNbO$_3$ is an antiferroelectric with an orthorhombic distorted perovskite along with a Pnma space group. This compound undergoes several phase transitions. The dielectric behavior of NaNbO$_3$ sample has been widely examined. It displays a phase transition at T_C around 913 K with a maxima real permittivity of ε'_{max} at 1750 at T_C. Recently, several authors have reported that NaNbO$_3$ becomes ferroelectric with similar behavior related to KNbO$_3$. LiNbO$_3$. NaNbO$_3$ substituted CaTiO$_3$ reveals suppression of quantum fluctuations, when the concentration of NaNbO$_3$ exceeds 2%. SSNNx is a solid solution based on a mixture of NaNbO$_3$ and SrSnO$_3$. It is considered as an advanced ferroelectric ceramic for environment-friendly applications.

In the mixed system 1-xNaNbO$_3$-xCaTiO$_3$, the dielectric permittivity shows a morphotropic phase boundary ceramics. The well known MPB is nonferroelectric and nonpiezoelectric at room temperature.
This study was undertaken to study the behavior of the relaxors, the structural and dielectric properties of the mixed oxide system CaTiO$_3$–NaNbO$_3$ (CT–NN). This work is also intended to explore the effects of substitutions in sites A and B on their structural, dielectric and Raman properties. In this regard, the NaNbO$_3$ solid solution was selected as the antiferroelectric material and CaTiO$_3$ was added to investigate the relaxor behavior in a lead-free sample.

Considered as environment-friendly materials, these lead-free compounds could be highly significant regarding the scope of application.

2. Experimental procedure

2.1. Sample preparation

The polycrystalline sample of CNTN was prepared by solid-state reaction using the oxides CaCO$_3$, Na$_2$CO$_3$, Nb$_2$O$_5$ and TiO$_2$, Aldrich with 99.9% of purity, in suitable stoichiometries. The stoichiometrically weighed composition was thoroughly mixed in an agate for 1 h. The powder was then pressed into discs and calcinated at 1373 K for 12 h, to obtain a single phase sample. After calcination, the powder was mixed for 1 h and one part of it was pressed under 100 MPa into discs of an 8 mm diameter and about a 1 mm thickness. Ultimately, the formed pellets were sintered at 1523 K for 3 h with a speed of 200 °C h$^{-1}$, in an oxygen-rich atmosphere.

The microstructure was analyzed using scanning electron microscopy (SEM). The pictures were taken at room temperature (with 15 kV) on a JEOL JED 2300.

The identification of phase purity, homogeneity and crystallinity of polycrystalline sample was performed via powder X-ray diffraction (XRD) analysis, at room temperature, by means of an XPERT-PRO diffractometer with a graphite monochromatized CuK$_\alpha$ radiation (λCuK$_\alpha$ = 1.54 Å). The data collected in the range of 19 ≤ 2θ ≤ 109 with a step-size of 0.02° and a counting time of 10 s per step were analyzed by the Fullprof software based on the Rietveld method.

The Raman spectroscopy was recorded in the frequency range 70–1000 cm$^{-1}$, in a micro-Raman Spectrometer LABRAM HR800. The excitation source was the 633 nm line of He$^+$ ion laser, working in a back scattering. The spectral resolution of the system was 3 cm$^{-1}$. The deconvoluted Raman active modes were fitted with the lognormal function.

\[
f(D) = \frac{1}{\sqrt{2\pi\sigma D}} \exp \left(-\frac{\ln^2(D/D_0)}{2\sigma^2} \right)
\]

where D_0 and σ are the median diameter obtained from the SEM and data dispersions, respectively, for CNTN compound. The inset of Fig. 1 exhibits the grains size distribution histograms. The SEM image reveals that this compound has a homogenous microstructure and well-developed grains. The mean particle size of the sample was estimated by using ImageJ software. After measuring the diameters of the particle in SEM image, the obtained data were fitted with the lognormal function.

3. Results and discussions

3.1. Morphological and X-ray diffraction analysis

Fig. 1 shows the SEM micrographs of the CNTN ceramic and the inset represents the grains size distribution histograms. The SEM image reveals that this compound has a homogenous microstructure and well-developed grains. The mean particle size of the sample was estimated by using ImageJ software. After measuring the diameters of the particle in SEM image, the obtained data were fitted with the lognormal function.

Table 1 shows the values of ρ_{exp} and C. According to this table, CNTN compound is characterized by an excellent quality.

To acquire dielectric measurements, gold electrodes were sputtered on the circular faces of the ceramic discs. The measurement of the real parts pertaining to the relative dielectric permittivity (ε_r) was carried out via a Wayne-Kerr 6425 impedance analyser (from 100 Hz to 200 kHz), in the temperature range of 82 K to 500 K, with a heating rate of 2 K min$^{-1}$.

ρ_{exp}	C
5.39	5.12
95%	

3.2. Raman spectroscopy

The Raman spectroscopy was recorded in the frequency range 70–1000 cm$^{-1}$, in a micro-Raman Spectrometer LABRAM HR800. The excitation source was the 633 nm line of He$^+$ ion laser, working in a back scattering. The spectral resolution of the system was 3 cm$^{-1}$. The deconvoluted Raman active modes were fitted with the lognormal function.
experimental apparatus, which indicates that Ca\(^{2+}\) and Ti\(^{4+}\) diffused into NaNbO\(_3\) lattices to form a new composition, CNTN. We found a good agreement between the observed and calculated profiles. The diffraction peaks were indexed in the tetragonal structure with the P\(4mm\) space group, with (Na/Ca): 1a (0, 0, 0), (Nb/Ti): 1b (0.5, 0.5, z), O1: 1b (0.5, 0.5, z) and O2: 2c (0.5, 0, z).

Through the Rietveld refinement analysis, we estimated the lattice parameters, unit cell volume and fitting parameters were estimated. In fact, Table 1 represents the detailed results of Rietveld refinements. It can be noted that the partial replacement of Na\(^+\) by Ca\(^{2+}\) in site A and Ti\(^{4+}\) by Nb\(^{5+}\) in site B confirms the regular deviation of Nb/Ti–O–Nb/Ti bond angles and the Ti–O bond length (Table 1). However, the value of distance and angle data with the effect of the substitution indicates that the TiO\(_6\) octahedral framework has a slight distortion (inset of Fig. 2). These observations are consistent with the crystal structure and the TiO\(_6\) octahedron for the CNTN sample determined using “Diamond” program which, based on the refined atomic positions find by XRD, was represented graphically as illustrated in the inset of Fig. 2(b). From this figure, the lattice distortion in our compound can be observed.

Table 2 Calculated grain sizes, crystallite sizes and strains of Ca\(_{0.1}\)Na\(_{0.9}\)Ti\(_{0.1}\)Nb\(_{0.9}\)O\(_3\)

Sample	\(D_{\text{Sch}}\) (nm)	\(D_{\text{W-H}}\) (nm)	\(D_{\text{SEM}}\) (\(\mu m\))	Strain (\(\sigma\))
Ca\(_{0.1}\)Na\(_{0.9}\)Ti\(_{0.1}\)Nb\(_{0.9}\)O\(_3\)	150	160	0.51	0.0580

To validate the experimental observations, the results were compared with the Goldschmidt tolerance factor \(t\), expressed by:

\[
t = \frac{0.1r_{\text{Ca}^{2+}} + 0.9r_{\text{Na}^{+}} + r_{\text{O}^{2-}}}{\sqrt{2((0.1r_{\text{Ti}^{4+}} + 0.9r_{\text{Nb}^{5+}}) + r_{\text{O}^{2-}})}}
\]

where \(r_{\text{Na}^{+}} = 1.39\ \text{Å}, r_{\text{Ca}^{2+}} = 1.34\ \text{Å} in a twelvefold coordination; r\(_{\text{Nb}^{5+}}\) = 0.64 Å, r\(_{\text{Ti}^{4+}}\) = 0.6 Å in a sixfold coordination and \(r_{\text{O}^{2-}} = 1.35\ \text{Å}^{29}\).

Based on the values of the ionic radii of the various atoms, we estimated the tolerance factor value \(t = 0.97\), ranging in a stable pervoskite structure. This result is in line with the results of the refinement.

The average crystallite size of our CNTN compound was estimated using different methods, such as Scherrer formula (Sch) and Williamson–Hall formula (W–H).

Scherrer formula is as follows:\(^{30}\)

\[
D_{\text{Sch}} = \frac{K\lambda}{\beta \cos \theta}
\]

where \(K\) is a constant equal to 0.9, \(\beta\) is the breadth of the detected diffraction line at its half intensity maximum on the highest peak of plane (313), \(\lambda\) is the used X-ray wavelength and \(\theta\) is the Bragg angle of the most intense peak. The instrumental broadening factor\(^{31}\) was considered during the FWHM calculation (\(\beta = \sqrt{\beta_{\text{exp}}^2 - \beta_{\text{inst}}^2}\)). The values of \(D_{\text{Sch}}\) are given in Table 2.

Depending on different \(\theta\) positions, the separation of size and strain broadening analysis was based on Williamson–Hall

![Fig. 1 SEM image of the sample Ca\(_{0.1}\)Na\(_{0.9}\)Ti\(_{0.1}\)Nb\(_{0.9}\)O\(_3\) ceramic. The inset shows the size distribution histogram.](http://example.com/figure1.png)
The calculation of strain contribution is given by:

$$\varepsilon = \frac{\beta}{4 \tan \theta}$$

Line broadening evidently combines crystallite size and strain, as represented by the following equation:

$$\beta = \frac{K \lambda}{D_{W-H} \cos \theta} + 4 \varepsilon \tan \theta$$

In a more simplified way:

$$\beta \cos \theta = \frac{K \lambda}{D_{W-H}} + 4 \varepsilon \sin \theta$$

The value of ε is calculated based on the slope of $\beta \cos \theta$ vs. $4 \sin \theta$ plot.

This gives an equation of a straight line between $\beta \cos \theta$ and $4 \sin \theta$. Plotting $\beta \cos \theta$ (y-axis) and $4 \sin \theta$ (x-axis), the slope of the line yields the strain (ε) and the crystallite size (D) can be calculated from the intercept ($\frac{K \lambda}{D_{W-H}}$) of this line on the y-axis, Fig. 2(c). Indeed, Table 2 illustrates the calculated values pertaining to the structural parameters.

From these calculations, we found that the average crystallite size calculated in the present system using W–H method (D_{W-H}) is larger than that from Scherrer method (D_{SCH}) because the broadening effect due to strain is completely excluded in Scherrer method. In addition, we notice that the grains detected by SEM are obviously much larger compared to those

Fig. 2 (a) Rietveld plots of XRD data for polycrystalline Ca$_{0.3}$Na$_{0.7}$Ti$_{0.1}$Nb$_{0.9}$O$_3$ ceramic, (b) the crystal structure for the sample Ca$_{0.3}$Na$_{0.7}$Ti$_{0.1}$Nb$_{0.9}$O$_3$ ceramic and the distortion of TiO$_6$, (c) strain graph of the tetragonal phase of Ca$_{0.3}$Na$_{0.7}$Ti$_{0.1}$Nb$_{0.9}$O$_3$.

(W–H) method. The calculation of strain contribution is given by:

$$\varepsilon = \frac{\beta}{4 \tan \theta}$$

Line broadening evidently combines crystallite size and strain, as represented by the following equation:

$$\beta = \frac{K \lambda}{D_{W-H} \cos \theta} + 4 \varepsilon \tan \theta$$

In a more simplified way:

$$\beta \cos \theta = \frac{K \lambda}{D_{W-H}} + 4 \varepsilon \sin \theta$$

The value of ε is calculated based on the slope of $\beta \cos \theta$ vs. $4 \sin \theta$ plot.

This gives an equation of a straight line between $\beta \cos \theta$ and $4 \sin \theta$. Plotting $\beta \cos \theta$ (y-axis) and $4 \sin \theta$ (x-axis), the slope of the line yields the strain (ε) and the crystallite size (D) can be calculated from the intercept ($\frac{K \lambda}{D_{W-H}}$) of this line on the y-axis, Fig. 2(c). Indeed, Table 2 illustrates the calculated values pertaining to the structural parameters.

From these calculations, we found that the average crystallite size calculated in the present system using W–H method (D_{W-H}) is larger than that from Scherrer method (D_{SCH}) because the broadening effect due to strain is completely excluded in Scherrer method. In addition, we notice that the grains detected by SEM are obviously much larger compared to those.
calculated by XRD. Therefore, this indicates that each grain detected by SEM is composed of several crystallized grains.

3.2. Raman spectroscopy

Raman spectroscopy was carried out for the sample in order to further study the changes in the crystal structure and the presence of functional groups, also to correlate our structural information with the Raman data that we obtained.

The room temperature deconvolution of Raman spectrum of CNTN ceramic is shown in Fig. 7. The spectra are similar to that of NaNbO₃ in tetragonal phase. The Raman spectrum of the tetragonal CNTN showed 14 vibration modes. These results, accordingly, are in line with the ones proposed by S. D. Ross, Juang and L. B. Abdessalem et al. In our compound, the peaks detected at 81, 107, 134 and 158 cm⁻¹ were attributed to the Na–O bonds of the A-site vibration in the perovskite with an ABO₃ general formula. Modes observed at 638.70 cm⁻¹ are dominated by vibrations, involving chiefly oxygen displacements. The oxygen vacancies are present by the two latest modes (i.e., at 809 and 849 cm⁻¹), which can be described as:

\[
\text{Nb} \leftrightarrow \text{Nb}^{\text{III}} + \text{V}_{\text{O}}^{\text{}}
\]

Table 3 Physical properties of Ca₀.₁Na₀.₉Ti₀.₁Nb₀.₉O₃ ceramic

\(\Delta \epsilon' / \epsilon' \)	C (K) × 10^5	T₀ (K)	Tₘ (K)	T_{dev} (K)	\(\Delta T_{cm} \) (K)	\(\Delta T_{m} \) (K)	D
0.154	1.544	340	378	443	65	14	85

Fig. 3 Raman spectra of Ca₀.₁Na₀.₉Ti₀.₁Nb₀.₉O₃ at room temperature.

Fig. 4 Temperature dependence on the permittivity \(\epsilon' \) at various frequencies of Ca₀.₁Na₀.₉Ti₀.₁Nb₀.₉O₃ ceramic.

Fig. 5 The variation of \(\Delta \epsilon' / \epsilon' \) and the value of the diffuseness degree for Ca₀.₁Na₀.₉Ti₀.₁Nb₀.₉O₃ ceramic.
The bands around 259 and 533 cm$^{-1}$ are assigned to the mode of A_1 (TO) symmetry. However, the bands around 319, 382 and 449 cm$^{-1}$, signaling out the tetragonal phase, are ascribed to the E (TO + LO) + B_1 mode. The A_1 (LO) modes can be detected at 809 and 849 cm$^{-1}$. The peaks assigned to the Nb–O phonon Raman spectrum are identified at 276 cm$^{-1}$ for NaNbO$_3$. On the other hand, in the CNNT, they are observed at 259 cm$^{-1}$ (Fig. 3). This behavior means that the substitution of NaNbO$_3$ by Ca$^{2+}$ in A site and by Ti$^{4+}$ in B site of the perovskite structure gives rise to an important disorder in the structure. These results are in compliance with the results related to the XRD (Fig. 2(a)) patterns from the variation of c/a ratio and the volumes of cell parameter of our compound (Table 1).

This structural distortion and slight change in the local symmetry of the CNTN sample can affect the dielectric property by confirming the relaxor behavior for this sample.

3.3. Dielectric studies

The evolution of the real part of the permittivity as a function of the temperature and the frequency of the CNTN ceramic is shown in Fig. 4. The studied system exhibits the distinctive feature of relaxor ferroelectrics, namely a strong dispersion of the maximum of ε'_r at $T < T_m$ (T_m is the maximum permittivity temperature) which shifts towards higher temperature by decreasing progressively the value of ε'_r as the frequency increases. The relaxor phenomenon has recently been explored.
in perovskite structure, viz. Ba$_1$-xNa$_x$(Ti$_{1-x}$Sn$_x$)$_3$O$_9$, Pb$_{0.7}$Ba$_{0.3}$SrO$_3$, Ba$_{0.7}$Sr$_{0.3}$TiO$_3$, Pb$_{1-y}$Zr$_y$TiO$_3$, and Pb$_{1-y}$Bi$_y$TiO$_3$. The diffuse dielectric behavior of relaxor materials has been attributed to the compositional fluctuation (i.e., the presence of a microscopic domain in the macro polar region) and to the structural disorder in crystallographic sites when one or more cations occupy the same site in the structure; for instance, in site A by Na$^+$ and Ti$^{4+}$ by Nb$^{5+}$ in site B. Table 3 shows the relaxor characteristics for our composition as the T_m shift, $\Delta T_m = T_m - T_{m \text{dev}}$, and the relative dispersion $\Delta \varepsilon_r = (\varepsilon_r(10^5 \text{ Hz}) - \varepsilon_r(2 \times 10^3 \text{ Hz})) / \varepsilon_r(2 \times 10^3 \text{ Hz})$.

The width of the transition represents the DPT for the CNTN compound, which is very important in ferroelectric materials. We can define D as the distinctive parameter of diffuseness degree. This is defined as:

$$ D = T \left(\frac{\varepsilon_r}{\varepsilon_r^{\text{min}}} \right)_{\text{max}} - T \left(\frac{\varepsilon_r}{\varepsilon_r^{\text{max}}} \right)_{\text{min}} $$

where $T \left(\frac{\varepsilon_r}{\varepsilon_r^{\text{min}}} \right)_{\text{max}}$ and $T \left(\frac{\varepsilon_r}{\varepsilon_r^{\text{max}}} \right)_{\text{min}}$ are the temperature when $\frac{\partial \varepsilon_r(T)}{\partial T}$ reaches the minimum and maximum, respectively.

The curves for $\frac{\partial \varepsilon_r(T)}{\partial T}$ against T for the sample are indicated in Fig. 5. The temperature interval between $T \left(\frac{\varepsilon_r}{\varepsilon_r^{\text{min}}} \right)_{\text{max}}$ and $T \left(\frac{\varepsilon_r}{\varepsilon_r^{\text{max}}} \right)_{\text{min}}$ reflects the diffuseness degree microscopically. The vertical dashed lines in Fig. 5 correspond to $T \left(\frac{\varepsilon_r}{\varepsilon_r^{\text{min}}} \right)_{\text{max}}$ and $T \left(\frac{\varepsilon_r}{\varepsilon_r^{\text{max}}} \right)_{\text{min}}$ values. The interval between them is D as indicated.

The value of diffuseness is of the order $D = 85$ (Table 3). Therefore, the phase transition from paraelectric-ferroelectric (T_m) is the transition that is more diffuse.

With reference to the T_m transition temperature, the dielectric constant ε_r and the Curie temperature T_0 of a ferroelectric can be depicted by the Curie–Weiss law as follows:

$$ \frac{1}{\varepsilon_r} = \frac{(T - T_0)}{C} (T > T_c) $$

where T_0 stands for the Curie temperature and C the Curie–Weiss constant.

Fig. 6(a) exhibits the inverse of the dielectric constant $\frac{1}{\varepsilon_r}$ depending on the temperature at 1 kHz. A deviation from Curie–Weiss law is detected in this sample. The parameter ΔT_{cm} refers to the degree of deviation from the Curie–Weiss law and is expressed by: $\Delta T_{cm} = T_{dev} - T_m$ where T_{dev} stands for the temperature at which the dielectric constant starts deviating from Curie–Weiss law and T_m denotes the temperature of the dielectric maximum.

The values of the parameters C, T_0, T_{dev}, T_m and ΔT_{cm} are illustrated in Table 3. ($T_c \neq T_0$) shows that the phase transition is of a first order type. The broadened peaks correspond to the diffuse type transition in this composition, a distinctive feature of a disordered perovskite structure.

To further study the phase transition behavior of the CNTN sample, we calculated the diffuseness parameter using the modified Curie–Weiss law:

$$ \frac{1}{\varepsilon_r} - \frac{1}{\varepsilon_r^{\text{max}}} = \frac{(T - T_m)^\gamma}{C_1} (T > T_m) $$

The diffuseness coefficient γ allows understanding the character of the phase transition; C_1 is a constant quantity and $\varepsilon_r^{\text{max}}$ is the peak dielectric permittivity at temperature T_m. In general, the value of γ between these limits ($1 < \gamma < 2$) provides an incomplete diffuse phase transition. For normal ferroelectrics γ approximate to 1, while relaxor ones approximate to 2.

The inset of Fig. 6(b) shows the plots of $\ln(1/\varepsilon'_{\text{dev}} - 1/\varepsilon_{\text{max}})$ versus $\ln(T - T_m)$ at 1 kHz for CNTN ceramic sample. The obtained values of ‘γ’ are found in the order of 1.58, which corresponds to the diffuse phase transition assigned to the existence of various states of polarization, thus various relaxation times in different regions.

Therefore, the origin of the observed relaxor behavior with DPT in CNTN sample is due to the inhomogeneous distribution assigned to...
the compositional fluctuation, resulting in the microscopic heterogeneity with various Curie points and giving rise to the detected behavior Relaxor.58 Furthermore, the creation of the Coulomb interactions at long distance inhibits the formation of ferroelectric microdomains in favor of the formation of the PNRs. Under these conditions, the order becomes short. Each nanodomain transits at a given temperature, which explains the diffuse character and the widening of the transition, however, no dielectric relaxation at temperatures below T_m. This dielectric dispersion is elucidated by the dynamics of these nanodomains. In fact, this behavior is identical to those mentioned in the literature.59

\[\epsilon' = \frac{\epsilon'_m}{1 + \frac{(T - T_m)^2}{2\delta_1^2}} \]
(11)

F. Bourguiba and Kirillov et al.60,61 highlight the quadratic relation between the dielectric constant and temperature for ferroelectrics with a diffuse phase transition (relaxor-ferroelectrics). This quadratic law was derived theoretically from a microscopic composition-fluctuation model basis. Assuming that the statistical composition fluctuation in a complex perovskite generates microscopic regions possessing similar dielectric characteristics, but a marginally different Curie temperature, and that the distribution of the Curie temperature is of a Gaussian type as well:62

Fig. 8 Fitting of Vogel–Fulcher model to the dielectric relaxation data of Na$_{0.9}$Ca$_{0.1}$Nb$_{0.9}$Ti$_{0.1}$O$_3$ ceramic.

Fig. 9 Thermal variation of the imaginary part of permittivity ϵ'' for Na$_{0.9}$Ca$_{0.1}$Nb$_{0.9}$Ti$_{0.1}$O$_3$ ceramic.

Fig. 10 Thermal variation of the dielectric loss for Na$_{0.9}$Ca$_{0.1}$Nb$_{0.9}$Ti$_{0.1}$O$_3$.

This journal is © The Royal Society of Chemistry 2019 RSC Advances, 2019, 9, 25358–25367 | 25365
where $\varepsilon'_{\text{max}}$ is the maximum of the real part of the dielectric permittivity, T_m is the temperature of maximum dielectric permittivity and δ_t is the diffuseness parameter pertaining to the peak broadening of the phase transition.

However, it was found that this Gaussian distribution is not suitable to account for the relaxor behavior in our CNTN compound. Furthermore, the Power law was introduced to explain the dependence of temperature on the dielectric constant and it is given as:63

$$\varepsilon' = \frac{\varepsilon'_{\text{max}}}{1 + \frac{(T - T_m)}{2\delta_t^2}}^{\gamma}$$ \hspace{1cm} (12)

where γ depicts the Curie–Weiss law for $\gamma = 1$ and the total diffuse phase transition for γ tends towards 2. Only when $\gamma = 2$, the parameter δ_t possesses the dimension of a temperature, revealing, in this case, the temperature extension of the phase transition, i.e. the Curie region.

The experimental values are fitted to eqn (11) and (12) and illustrated in Fig. 7(a) and (b). By fitting the experimental data to eqn (12), the value of γ is 1.61, standing for the diffuse phase transition.

Comparing the modified Curie–Weiss law and Power law, it is noted that the values of γ are close.

Overall, the presence of micro-heterogeneities in the perovskite material due to the thermo chemical distribution controlled by solid-state reactions may account for the relaxor behavior with DPT. In our case, the relaxor behavior is a result of both the substitution of Ca$^{2+}$ by Na$^+$ and Ti$^{4+}$ by Nb$^{5+}$ in A and B sites, respectively. Therefore, different states of polarization are caused by such a heterogenous distribution of cations.

According to the Curie–Weiss law and the value of the empirical parameters such as ΔT_{cmt}, γ and ΔT_m, all the characterization, as determined above, confirmed the relaxor type of the ceramic.

To have a better insight into relaxor ferroelectric character, the maximum dielectric constant (T_m) is found to obey Vogel–Fulcher model.64 This model observes the interaction between the dipoles, which makes the dipoles freeze at a particular temperature, labeled freezing temperature. Moreover, the relaxation similar to that recognized for glasses can depict this model,65 and it is expressed as follows:

$$f = f_0 \exp \left(- \frac{E_a}{k_B(T_m - T_f)} \right)$$ \hspace{1cm} (13)

where f_0 is the attempt frequency of dipole reorientation, E_a is a measurement of average activation energy, k_B is the Boltzmann constant and T_f is the freezing temperature. Fig. 8 displays the variation of In f (in the range of frequencies 0.1–200 kHz) as a function of $1/T_m$. The experimental curve was fitted using the above mentioned Vogel–Fulcher formula, characterized by the following fitting parameters: $T_f = 137$ K, $E_a = 0.053$ eV and $f_0 = 3.44 \times 10^5$ Hz.

In addition, we notice that the pre-exponent factor f_0 elucidates the size of polar clusters and the degree of interaction between them. The smaller the size of the cluster is, the lower the interaction between them is and hence the larger value of f_0 is, and vice versa.

Similarly, the low values of the activation energy are also found by H. Ghoudi et al.66 for (Ba$_{0.7}$Sr$_{0.3}$)$_{1-x}$Na$_x$ (Ti$_{0.8}$Sn$_{0.2}$)$_{1-x}$Nb$_x$O$_3$ relaxors ($E_a \approx 0.061$ eV). The activation energy E_a much lower in our ceramic, reflected a lower barrier between two potential wells. This range of features, relating to the potential well, reflected different polarization mechanisms. As shown in this figure (Fig. 8), the model accounts well for the data, suggesting the similarity between the relaxor behavior in the present composition and that of a spin glass model with polarization fluctuations beyond the static freezing temperature.

Fig. 9 and 10 show the thermal evolution of the imaginary part of the permittivity and loss for this Ca$_{0.1}$Na$_{0.9}$Ti$_{0.1}$Nb$_{0.9}$O$_3$ ceramic. The dielectric losses are about 6%.

4. Conclusion

To conclude, using the conventional solid state reaction method, Ca$_{0.1}$Na$_{0.9}$Ti$_{0.1}$Nb$_{0.9}$O$_3$ was successfully prepared. The Rietveld analysis of X-ray diffraction, at room temperature, validated that there is a single phase tetragonal perovskite crystal structure with the $P4mm$ space group. The vibrational Raman spectroscopy study at room temperature confirms our structural results. With broad and dispersive permittivity maxima based on empirical parameters (ΔT_m, ΔT_{cmt} and γ), the dielectric study of the composition offered typical characteristics of relaxor ferroelectrics. Furthermore, the relaxation behavior is triggered by monopolar based on the Vogel–Fulcher model. This behavior is similar to the thermally-activated process of the spin, wherein the freezing process is controlled by cluster-flipping and inter-cluster interaction mechanism.

This composition can be of high significance. Indeed, industrially speaking, these applications require a relaxor character at room temperature with non-lead based ceramic.

Conflicts of interest

There are no conflicts to declare.

References

1 V. Westphal, W. Kleemann and M. D. Glinchuk, Phys. Rev. Lett., 1992, 68, 847–850.
2 S. B. Hemer, F. A. Selmi, V. V. Varadan and V. K. Varadan, Mater. Lett., 1993, 5, 317–324.
3 T. Hu, T. J. Price, D. M. Iddles, A. Uusimäki and H. Jantunen, J. Eur. Ceram. Soc., 2005, 25, 2531–2535.
4 S. Garcia, R. Font, J. Portelles, R. J. Q. U. I. Nones, J. Heiras and J. M. Siqueiros, J. Electroceram., 2001, 3, 101–108.
5 K.-T. Kim and C.-I. Kim, Thin Solid Films, 2005, 472, 26–30.
6 S. Garcia, R. Font, J. Portelles, R. J. Q. U. I. Nones, J. Heiras and J. M. Siqueiros, J. Electroceram., 2001, 3, 101–108.
7 S.-G. Lee, R. G. Monteiro, R. S. Feigelson, H. S. Lee, M. Lee and S.-E. Park, Appl. Phys. Lett., 1999, 1030–1032.
8 A. Lurio and G. Burns, J. Appl. Phys., 1974, 45, 1986–1992.
9 R. Brahem, H. Rahmouni, N. Farhat, J. Dahan and K. Khiroun, Ceram. Int., 2014, 40, 9355–9360.
10 S. Chihouai, L. Seveyrat, V. Perrin, I. Kallel, L. Lebrun and H. Khemakhem, Ceram. Int., 2016, 123, 305.
