STATISTICAL PROPERTIES OF SORET AND DUFOUR EFFECTS: RESULTS ON HEAT AND MASS TRANSFERS

Alias Jedi¹, Nor Ashikin Abu Bakar²

¹Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, The University Kebangsaan Malaysia, Bangi 43600 Malaysia
²Institute of Engineering Mathematics, The University Malaysia Perlis, Arau 02600 Malaysia

¹aliasjedi@ukm.edu.my, ²ashikinbakar@unimap.edu.my

Corresponding Author: Alias Jedi

https://doi.org/10.26782/jmcms.spl.9/2020.05.00008

Abstract

This article is investigated the data on heat and mass transfer using Soret and Dufour act as independent variables. From the investigation, it is revealed that the heat transfer rate increases when slip parameter and Soret number increase, while Dufour number decreases through solving ordinary differential equation (ODE). Statistical correlation coefficient were used to see the relationship effect of Soret number and Dufour number on the heat and mass transfer. The correlation coefficient's results of the parameters and to the local Nusselt/Sherwood number are found to be statistically significant.

Keywords: Statistical Thermodynamics, Nanofluid, stretching/shrinking sheet, Soret/Dufour effects, Brownian motion, thermophoresis

I. Introduction

Nanofluid is a new technology combining base fluid and nano-sized particles. Choi [XVI] discovered that nanofluid influence the thermal conductivity. Through reviewed, Minea [I] found that nanoparticle enhance nanofluid's thermal conductivity. There are many researchers have employed numerical technique to explore convection heat transfer of nanofluid in details. Hashim et al. [V] used the mathematical nanofluid model that takes into consideration two slip mechanisms which are Brownian motion and thermophoresis. He et al. [XVIII] further explored the boundary layer flow theory in nonequilibrium supersonic. It seems Zaimi et al. [VII] was study boundary layer flow of a nanofluid over a stretching sheet by assuming nonlinearity and extend by Jedi et al. [IV] to the case with suction effect. Sabir et al. [XVII] however study the chemical reaction in Cass on nanofluid. Sobamowo [VIII] studied the free convection flow of a Cassonnanofluid with thermal

Copyright reserved © J. Mech. Cont.& Math. Sci.
Alias Jedi et al.

Conference on “Emerging Trends in Applied Science, Engineering and Technology” Organized by MDSG Research Group, Malaysia
The effects of Brownian motion was discovered by Devi [XIV]. Waini et al. [VI] and Rahman et al. [XII] studied the stretching/shrinking sheet in a nanofluid. Further, such effects arise in many applications such as in chemical engineering, heat insulation, geothermal systems, drying technology and catalytic reactors. Ali et al. [II] investigated the Soret and Dufour in nanotechnology research. The thermal diffusion and diffusion thermo effects on Marangoni convection boundary layer flow of Self-rewetting fluid was analysed numerically by Tsang and Sun [XV]. Mahabaleshwar et al. [X], [IX], Abdal et al.[III], Jamaludin et al. [III] and Noor et al. [II] continued to study the MHD convective with various effects. Motivation by the work done by Zaimi et al. [IV], we extend these studies to the cases of Soret and Dufour with the partial slip effect.

II. Methodology

The extension of the governing equations, considering method by Zaimi et al. [VII], are;

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{1}
\]

\[
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2}, \tag{2}
\]

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} + \sum \frac{D_k}{\eta_1} \frac{\partial C}{\partial y}, \tag{3}
\]

\[
u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_0 \frac{\partial^2 C}{\partial y^2} + \frac{D_k}{\eta_1} \frac{\partial^2 T}{\partial y^2}, \tag{4}
\]

subject to

\[
u \frac{\partial u}{\partial y} + v = \nu_{xy}, \quad T = T_w, \quad C = C_w \quad \text{at} \ y = 0, \tag{5}
\]

By introducing the relation (6) into the equations (2)-(4), we obtain

\[
f'' + \left(\frac{2n}{n+1} f' \right)^2 = 0, \tag{7}
\]

The dimensionless variables are:

\[
u = \frac{av(n+1)}{2} \left[f'(\eta) + \frac{n-1}{n+1} \eta f''(\eta) \right], \tag{6}
\]

\[
\eta = y \left(\frac{av(n+1)}{2} \right)^{1/2} x^{(r-\eta)/2}, \quad \theta(\eta) = \frac{T - T_w}{T_w - T_c}, \quad \phi(\eta) = \frac{C - C_c}{C_w - C_c}.
\]
where prime denote the differentiation with respect to \(\eta \). The boundary conditions are now transformed to

\[
\begin{align*}
 f(0) = S, & \quad f'(0) = \varepsilon + \sigma f'(0), \quad \theta(0) = 1, \quad \phi(0) = 1, \\
 f'(\eta) \to 0, & \quad \theta(\eta) \to 0, \quad \phi(0) \to 0 \quad \text{as} \quad \eta \to \infty.
\end{align*}
\]

With

\[
V_w = \left(\frac{a(n+1)}{2b} \right)^{1/2} S,
\]

velocity slip parameter, \(\sigma \) is

\[
\sigma = N_t \rho \alpha \left(\frac{a(n+1)}{2b} \right)^{1/2}.
\]

Where;

\[
\Pr = \frac{\nu}{\alpha}, \quad \Le = \frac{\nu}{D_b}, \quad \Nb = \frac{(\rho_1)_p (C_e - C_b)}{(\rho_1)_p}, \quad \Pr = \frac{(\rho_1)_p (T_e - T_b)}{(\rho_1)_p T_b},
\]

\[
D_p = \frac{D_{K_p}(C_e - C_b)}{C_p(T_e - T_b)}, \quad \Sr_p = \frac{D_{K_p}(T_e - T_b)}{C_p(T_e - T_b)}
\]

\[
C_j = \frac{\tau_n}{\rho U^2}, \quad N_t = \frac{q_n}{k(T_e - T_b)}, \quad S_l = \frac{q_n}{D_b(C_e - C_b)},
\]

and,

\[
\tau_n = \frac{\partial T}{\partial \eta}, \quad q_n = \frac{\partial \theta}{\partial \eta}, \quad q_n = \frac{\partial \phi}{\partial \eta}
\]

Applying similarity variables in (6),

\[
C_j \text{Re}^{12} = f'(0), \quad N_t \text{Re}^{12} = \theta(0), \quad S_l \text{Re}^{12} = -\phi(0),
\]

The Nomenclature and Greek Symbols of the above equations (1) - (16) are in Appendix I.

III. Results and Discussion

The stretching/shrinking sheet with partial slip for Soret and Dufour were analysed. Ordinary differential equations (7)-(9) with (10) are solved using the
shooting method. The comparison table for the skin friction coefficient with results found by Zaimi et al. [IV] in Table 1 act as a benchmark that the numerical results are in perfect agreement.

Table 1: Effect of S and ε

S	ε	Local Nusselt	Present results
2.5	-1	-	7.2280502[8.2273622]
	-0.5	6.991104[7.887191]	6.991104[7.8871915]
	0	-	6.8519856[7.5982374]
	1	-	6.6924610[7.2967475]
	2	6.607723[7.151258]	6.6077233[7.1512588]
3	-1	-	8.4794183[9.6275893]
	-0.5	8.330163[9.323738]	8.3301634[9.3237389]
	0	-	8.2223828[9.0974233]
	1	-	8.0764801[8.8204727]
	2	7.984141[8.661916]	7.9841415[8.6619165]

a. [] second solution

Figures 1a and 1b display different values of Soret number Sr, respectively when $Nb,Nt = 0.5$, $Du = 0.1$, $\sigma = 0.1$, $Le = 1$, $S = 2.5Pr = 1$ and $n = 2$. The values of $-\theta'(0)$ in Figure 1a and $-\phi'(0)$ in Figure 1b are seem to increase as the Soret number Sr increases. The increasing of Soret number in the fluid flow will reduce the boundary layer thicknesses which are lead to increase both the heat and mass transfer rates on the surface. The dual similarity solution exist when $\varepsilon_c = -1.5972$ where ε_c is the critical value of ε and no similarity solution is found for $\varepsilon < \varepsilon_c = -1.5972$ where the boundary layer separation occurs. Results for different values of Dufour number Du given that Nb and $Nt = 0.5$, $Sr = 0.1$, $\sigma = 0.1$, $Le = 1$, $S = 2.5$, $Pr = 1$ and $n = 2$ are depicted in Figures 2a and 2b, respectively. The presence of Dufour effect do not effect the range of dual solutions exist for ε. From the investigation, the dual solution exist up to $\varepsilon < \varepsilon_c = -1.5972$ and no solution can be found when $\varepsilon < \varepsilon_c = -1.5972$ where as beyond this value, the boundary layer has separated from the surface. As seen in Figures 2a, the value of $-\theta'(0)$ decreases when Dufour number Du increases. While in Figures 2b, the reverse trend is observed in Fig. 2b. where the value of $-\phi'(0)$ increases when Du increases. The increasing of Dufour number in the fluid flow will increase the thermal boundary layer thickness, but to reduce the nanoparticle concentration boundary layer thickness.
The results for $\theta'(0)$ and $\phi'(0)$ is higher for first solution. Figs. 3a - 6b are the results for temperature profiles $\theta(\eta)$ and concentration $\phi(\eta)$ profiles.

IV. Statistical Properties

Statistical analysis is used to study the effects of Suret and Dufour. The relationship between Suret/Dufour and heat/mass transfer is done by finding the values of correlation, r. The purpose of r is to measure the relationship between physical parameter and local Nusselt/Sherwood number. The value of r will be used to obtain the probable error, $P.E (r)$. The probable error;

$$P.E (r) = 0.6745 \frac{1-r^2}{\sqrt{n}}$$ \hspace{1cm} (17)

n denotes as the number of observations taken from the local Nusselt/Sherwood number. The value $r > 0.7$ indicates strong liner relationship between parameter variables. If r less than $P.E$ the correlation coefficient is not significant. Furthermore, the correlation is significant when the value ratio between correlation with probable error is more than 6. Table II shows that, the values of Sr and Du for the local Nusselt/Sherwood number are fulfilled the relation of the value ratio between correlation with probable error, which is indicated that all the values are greater than 6. Conclusion can be made that the correlation coefficient between physical parameter and local Nusselt/Sherwood number are statistically significant

Table 2: The values ratio of correlation with probable error

Local Nusselt	Local Sherwood		
Du	Sr	Du	Sr
R	0.9842	0.9451	0.9445
$P.E(r)$	0.0045	0.0154	0.0155
$r/P.E(r)$	218.6652	61.4755	60.8118

Fig. 1a: Variation of $-\theta'(0)$ versus ε with Sr

Fig. 1b: Variation of $-\phi'(0)$ versus ε with Sr
Fig. 2a: Variation of $-\theta'(0)$ versus ε with Du

Fig. 2b: Variation of $-\phi'(0)$ versus ε with Du

Fig. 3a: Effects of Sr to the temperature profile when $\varepsilon = -1$ (shrinking)

Fig. 3b: Effects of Sr to the concentration profile when $\varepsilon = -1$ (shrinking)

Fig. 4a: Effects of Sr to the temperature profile when $\varepsilon = 1$ (stretching)

Fig. 4b: Effects of Sr to the concentration profile when $\varepsilon = 1$ (stretching)
Fig. 5a: Effects of Du to the temperature profile when $\varepsilon = -1$ (shrinking)

Fig. 5b: Effects of Du to the concentration profile when $\varepsilon = -1$ (shrinking)

Fig. 6a: Effects of Du to the temperature profile when $\varepsilon = 1$ (stretching)

Fig. 6b: Effects of Du to the concentration profile when $\varepsilon = 1$ (stretching)

V. Conclusion
Soret/Dufour gives the effect on temperature/nanoparticle concentration profiles. The increasing of the parameters Soret and Dufour lead to an decreasing the heat and mass transfers rate. From statistical output, the correlation coefficient are statistically significant.

VI. Acknowledgment
The research was fully funded by the government of Malaysia under the University Kebangsaan Malaysia, Project code: GGPM-2017-036.
Appendix I.

- u velocity components (x direction) $v_x > 0$ suction
- v velocity components (y direction) $v_y < 0$ injection
- T fluid temperature $\varepsilon > 0$ stretching
- T_w surface temperature $\varepsilon < 0$ shrinking
- T_∞ ambient temperature $n = 1$ linear
- C nanoparticle concentration $n \neq 1$ nonlinear
- C_w nanoparticle volume fraction (at the plate) η similarity variable
- C_∞ nanoparticle volume fraction (far from the plate) $f(\eta)$ dimensionless stream function
- ν kinematic viscosity $\theta(\eta)$ fluid temperature
- D_B Brownian diffusion $\phi(\eta)$ fluid concentration
- D_T thermophoresis diffusion Pr Prandtl number
- $\alpha = k/(\rho c)_f$ is the thermal diffusivity of the fluid, Le Lewis number
- $\tau = (\rho c)_f/(\rho c)_f$ is the ratio of effective heat capacity Nb Brownian motion
- ρ_f fluid density Nt thermophoresis
- ρ_p particles density Du Dufour number
- c volumetric volume expansion Sr Soret number
- D_B Brownian diffusion C_f skin friction
- D_T thermophoresis diffusion Nu_s local Nusselt number
- D_m mass diffusivity Sh_s local Sherwood number
- K_T thermal diffusion ratio μ dynamic viscosity
References

I. A.A. Minea, "A Review on Electrical Conductivity of Nanoparticle-Enhanced Fluids", Nanomaterials, 9, 1592, 2019

II. A. Ali, F. Iqbal, K. Marwat, S.D.N. Asghar, M. Awais, "Soret and Dufour effects between two rectangular plane walls with heat source/sink", Heat Transfer—Asian Res, 49: 614–625, 2020

III. A. Jamaludin, K. Naganthran, R. Nazar, I. Pop, "Thermal Radiation and MHD Effects in the Mixed Convection Flow of Fe$_3$O$_4$–Water Ferrofluid towards a Nonlinearly Moving Surface", Processes, 8(1):95, 2020

IV. A. Jedi, N. Razali, W.M.F.W Mahmood, N.A.A, Bakar, "Statistical Criteria of Nanofluid Flows over a Stretching Sheet with the Effects of Magnetic Field and Viscous Dissipation", Symmetry, 11, 1367, 2019

V. Hashim, A. Hamid, M. Khan, "Heat and mass transport phenomena of nanoparticles on time-dependent flow of Williamson fluid towards heated surface", Neural Comput & Applic," 2019

VI. I. Waini, A. Ishak, I. Pop, "MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge", I. Appl. Math. Mech.-Engl. Ed. (2020)

VII. K. Zaimi, A. Ishak, I. Pop, "Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid", Scientific Reports 4, 4404, 1-8, 2014

VIII. M. G. Sobamowo, "Combined Effects of Thermal Radiation and Nanoparticles on Free Convection Flow and Heat Transfer of Casson Fluid over a Vertical Plate", International Journal of Chemical Engineering, Article ID 7305973, 2018

Copyright reserved © J. Mech. Cont.& Math. Sci.
Alias Jedi et al.
IX. Mahabaleshwar, Nagaraju, Kumar, Nadagouda, Bennacer, Sheremet, "Effects of Dufour and Soret mechanisms on MHD mixed convective-radiative non Newtonian liquid flow and heat transfer over a porous sheet", Thermal Science and Engineering Progress, Volume 16, 2020

X. Mahabaleshwar, Nagaraju, Vinaykumar, Nadagoud, Bennacer, Baleanu, "An MHD viscous liquid stagnation point flow and heat transfer with thermal radiation and transpiration", Thermal Science and Engineering Progress, Volume 16, 100379, 2020

XI. N.A.M Noor, S. Shafie, M.A. Admon, "Unsteady MHD Flow of Cassonnano Fluid with Chemical Reaction, Thermal Radiation and Heat Generation/Absorption", MATEMATIKA: MJIAM, Special Issue, 33–52, 2019

XII. N.H.A. Rahman, N. Bachok, H. Rosali, "MHD Stagnation-point Flow over a Stretching/Shrinking Sheet in Nanofluids", Universal Journal of Mechanical Engineering 7.4, 183 - 191, 2019

XIII. S. Abdal, B. Ali, S. Younas, L. Ali, A. Mariam, "Thermo-Diffusion and Multislip Effects on MHD Mixed Convection Unsteady Flow of Micropolar Nanofluid over a Shrinking/Stretching Sheet with Radiation in the Presence of Heat Source", Symmetry, 12(1):49, 2020

XIV. S. Devi, S. Mekala, "Role of Brownian Motion and Thermophoresis Effects on Hydromagnetic Flow of Nanofluid Over a Nonlinearly Stretching Sheet with Slip Effects and Solar Radiation", International Journal of Applied Mechanics and Engineering, 24(3), 489-508, 2019.

XV. S. Tsang, C. Sun, "Utilizing the inverse Marangoni convection to facilitate extremely-low-flow-rate intermittent spray cooling for large-area systems", Applied Thermal Engineering, Volume 166, 114725, 2020

XVI. S.U.S. Choi, "Enhancing thermal conductivity of fluids with nanoparticles", Proceeding of the 1995 ASME International Mechanical Engineering Congress and Exposition, ASME, FED 231/MD, New York 231(66), 99-105, 1995

XVII. Sabir, R. Akhtar, Zhu Zhiyu, et al., "A Computational Analysis of Two-Phase CassonNanoFluid Passing a Stretching Sheet Using Chemical Reactions and Gyrotactic Microorganisms", Mathematical Problems in Engineering, Article ID 1490571, 2019

XVIII. X. He, K. Zhang, C. Cai, "Stability Analysis on Nonequilibrium Supersonic Boundary Layer Flow with Velocity-Slip Boundary Conditions", Fluids 4, 142, 2019