INTRODUCTION

The Fungi comprise an enormous diversity of species and life styles. Estimations of the number of species range from 2.2 to 3.8 million (Hawksworth & Lücking, 2017) of which only a small fraction (<145,000, http://www.speciesfungorum.org/Names/Names.asp, accessed January 2019) have been formally described. The evolutionary relationships between major fungal lineages are far from resolved an there is still no general agreement on the number of phyla, particularly for the basal clades. Hibbett et al. (2007) named seven phyla. Blackwell (2011) gave the number of phyla as ‘about 10’. Following the recent definition

RESEARCH ARTICLE

Combining the 5.8S and ITS2 to improve classification of fungi

Felix Heeger1,2 | Christian Wurzbacher1,2,3 | Elizabeth C. Bourne1,2 | Camila J. Mazzoni2,4 | Michael T. Monaghan1,2,5

1Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
2Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
3Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
4Department of Evolutionary Genetics, Leibniz Institute of Zoo- and Wildlife Research (IZW), Berlin, Germany
5Institut für Biologie, Freie Universität Berlin, Berlin, Germany

Correspondence
Felix Heeger
Email: heeger@igb-berlin.de

Funding information
Leibniz Association, Grant/Award Number: SAW-2014-IGB-1

Handling Editor: Douglas Yu

Abstract

1. The internal transcribed spacer (ITS) is used often in DNA metabarcoding of fungi. One disadvantage of its high variability may be a failure to classify operational taxonomic units (OTUs) when no similar reference sequence exists. We tested whether the 5.8S region, often sequenced with ITS2 but discarded before analysis, could provide OTU classifications when ITS2 fails.

2. We used in silico evaluation to compare classification success of 5.8S and ITS2 from the UNITE database when reference sequences of the same species, genus, or family were removed. We then developed an automated pipeline for a combined 5.8S–ITS2 analysis and applied it to mixed environmental samples containing many lineages that are underrepresented in databases.

3. ITS was clearly superior for species-level classifications with a complete reference database, but 5.8S outperformed ITS at higher level classifications with an incomplete database. Our combined 5.8S-ITS2 pipeline classified 3× more fungal OTUs compared to ITS2 alone, particularly within Chytridiomycota (27×) and Rozellomycota (6×).

4. Missing reference sequences led to the failure of ITS to classify many fungal OTUs at all, and to a significant underestimation of environmental fungal diversity. Using 5.8S to complement ITS classification will likely provide better estimates of diversity in lineages for which database coverage is poor.

KEYWORDS
5.8S, Chytridiomycota, fungi, internal transcribed spacer, ITS, metabarcoding, operational taxonomic units, Rozellomycota

1 | INTRODUCTION

The Fungi comprise an enormous diversity of species and life styles. Estimations of the number of species range from 2.2 to 3.8 million (Hawksworth & Lücking, 2017) of which only a small fraction (<145,000, http://www.speciesfungorum.org/Names/Names.asp, accessed January 2019) have been formally described. The evolutionary relationships between major fungal lineages are far from resolved an there is still no general agreement on the number of phyla, particularly for the basal clades. Hibbett et al. (2007) named seven phyla. Blackwell (2011) gave the number of phyla as ‘about 10’. Following the recent definition
of Rozellomycota (or Cryptomycota) (Corsaro et al., 2014; Jones, Richards, Hawksworth, & Bass, 2011; Lara, Moreira, & López-García, 2010). Tedersoo, Bahram, Puussepp, Nilsson, and James (2017) mentions 12 phyla and indicates that there may be more phyla. The latest taxonomy defines 16 basal phyla in addition to the Ascomycota and Basidimycota bringing the total to 18 (Wijayawardene et al., 2018). The community-curated reference database UNITE (Kõljalg et al., 2013) currently (version 7.2, 2017-12-01) also lists 18 phyla, including the preliminary named phyla GS01 and GS19.

Schoch et al. (2012) proposed the internal transcribed spacer (ITS) region of the eukaryotic rRNA operon as a universal fungal DNA barcode. The ITS region is c. 300–1,200 bp long and is located between the 18S (small eukaryotic ribosomal subunit, SSU) and 28S (large subunit, LSU) rRNA genes. It contains the two highly variable spacers, ITS1 and ITS2, separated by the less variable 5.8S gene (Nilsson, Kristiansson, Ryberg, Hallenberg, & Larsson, 2008). The full ITS region is included in the UNITE database (Kõljalg et al., 2013).

Advances in sequencing technologies have enabled a shift to DNA metabarcoding surveys of environmental samples, whereby sample throughput is much higher than previously possible and whole communities can be studied without the need for isolation and culture of single species or isolation of genotypes through cloning of single DNA fragments (Nilsson et al., 2018). Because the maximum length of continuously read sequence (c. 550 bases with overlapping paired-end design) using the most commonly used Illumina sequencer for metabarcoding (MiSeq), it is not feasible to sequence the whole ITS region. Most studies focus on either the ITS1 or ITS2 (Miller, Hopkins, Inward, & Vogler, 2016; Tedersoo et al., 2014; Wurzbacher, Nilsson, Rautio, & Peura, 2017) as a result. Of the two ITS2 is often preferred, because it is in general shorter than ITS1 (Wang et al., 2015), thus causing less amplification bias and additionally less biased primers have been developed for ITS2 (Tedersoo & Lindahl, 2016).

The ability of Illumina-based DNA metabarcoding to identify fungal taxa in mixed samples varies among studies. An in silico test with 8,967 ITS sequences from a range of fungal phyla (Porras-Alfaro, Liu, Kuske, & Xie, 2014) reported that >90% of test data (ITS1 91%; ITS2 93%) were identified to the correct genus. In a mock community of 24 Dikarya species, both ITS1 and ITS2 sequences of different species could be clustered into one operational taxonomic unit (OTU) (Blastet et al., 2005) each and classified correctly (Tedersoo et al., 2015). In environmental samples, classification of ITS sequences has proven more challenging in many studies. Rime et al. (2015) reported that 5% of the ITS2 OTUs from soil samples could not be classified to phylum (i.e., only to kingdom fungi). Wurzbacher et al. (2017) found that 25% of fungal OTUs in permafrost thaw ponds could not be assigned to phylum with ITS2. In a study of fungi in decaying wood, Yang et al. (2016) found that 19%–25% of OTUs could not be classified below kingdom level, and a study from lake sediments reported 72% of fungi were unclassified for the ITS1 region and 49% of unclassified fungi for the ITS2 (Wahl et al., 2018). These results all highlight the fact that the incomplete state of reference databases for many fungal taxa may hinder ITS classification, although it is not clear which taxonomic levels are affected and how this affects classification success.

A potential reason for the failure of ITS to classify fungal OTUs from environmental samples, even to higher taxonomic levels, is the variability of the ITS sequence itself. While high variability among closely related taxa makes the ITS an excellent DNA barcode, its variability also hinders classification of evolutionarily more distant taxa. This is because large sequence divergence can make it difficult to establish homology and impair an alignment to identify a sister taxon. This may be especially problematic in less well-studied habitats such as freshwater, where a wide variety of early diverging fungal lineages occur (Grossart, Wurzbacher, James, & Kagami, 2016; Rojas-Jimenez et al., 2017) and for which sequences from closely related species are often not available in reference databases.

Interestingly, many fungal DNA metabarcoding studies amplify the ITS2 region using the primer pair ITS3/ITS4 (White, Bruns, Lee, & Taylor, 1990), which includes a c. 130 bp long fragment of the 5.8S rRNA gene. The 5.8S rRNA gene has a much lower substitution rate compared to ITS1 or ITS2 (Nilsson et al., 2008) and is thus usually neglected as a potential barcode, but has been used for phylogenetic classification (Neubert, Mendgen, Brinkmann, & Wirs, 2006; Roose-Amsaleg, Yves, & Myriam, 2004). If it is part of an amplicon it is normally discarded during the data processing steps (e.g., Bälinit, Schmidt, Sharma, Thines, & Schmitt, 2014; Lindahl et al., 2013), because its lower variability would reduce OTU resolution and could cause biases in OTU classification if not handled correctly. The fact that the 5.8S gene is included in the full ITS reference database UNITE, allows for direct taxonomic comparison with the ITS1 and ITS2.

Here we tested whether the more conserved 5.8S region could provide higher level classification of fungi in cases where ITS2 could not, using in silico analysis of sequences present in the UNITE database. We classified query sequences at different taxonomic ranks using the 5.8S, ITS1 and ITS2 and examined the extent to which the classification success depended on database completeness. Specifically, we excluded all other sequences from individuals of either the same species, genus, or family. We observed that ITS1 and ITS2 are clearly superior for species-level classifications when the reference database is complete, but that 5.8S outperforms both markers at higher level taxonomic classifications with an incomplete database. Based on this result, we developed and implemented an automated pipeline to analyse amplicons that contain both 5.8S and ITS2 rRNA gene regions, typical of many fungal DNA metabarcoding studies. A test on sequence data from sediment and water samples from 20 freshwater lakes showed that the 5.8S sequence added phylum level classifications for most (74%) of the 64% of our ITS2 OTUs that were unclassified with ITS2 alone. The current version of the pipeline is released under GPLv3 and can be found at www.github.com/f-heeger/two_marker_metabarcoding/releases/tag/v1.1.
2 | MATERIALS AND METHODS

2.1 | Testing the effects of an incomplete reference database

For the in silico evaluation of how database completeness affects classification with different rRNA markers, we created a dataset whereby the classification of each query sequence was known, and where at least one other sequence from (a) the same species, (b) a different species in the same genus, and (c) a different genus within the same family, were also available. This allowed us to test whether classifications at a given rank were correct, even when all other sequences for the species, genus, or family were not present (i.e., removed from our reference database). An additional criterion was that complete sequences of ITS1, ITS2, and 5.8S had to be available to allow for comparison between the markers. We created such a dataset in the following way: Fungal ITS1, 5.8S and ITS2 sequences were extracted from sequences in the UNITE database (version 7.2, 2017-12-01) using ITxS with default parameters (version 1.0.11, Bengtsson-Palme et al., 2013). Sequences that satisfied the following three criteria were selected: (a) all three markers could be detected by ITxS, (b) a species-level classification was available in UNITE, and (c) at least one other sequence was available from the same species, from the same genus (but different species), and from the same family (but different genus). There were 5,038 sequences that satisfied these criteria and from these we chose a random subset of 100 sequences for our evaluation.

Marker sequences (ITS1, ITS2, 5.8S) were classified independently with the lowest common ancestor (LCA) classification approach based on database search results similar to the one employed in MEGAN (Huson, Auch, Qi, & Schuster, 2007). First a database search of each sequence is performed against the UNITE database. For each sequence, hits with an e-value below a minimum value (default: 10^{-7}) are considered. Any hit with an identity or query coverage below a certain threshold (default: 80% and 85% respectively) or a bitscore lower than a certain percentage (default: 95%) of the best score for that sequence is excluded. For the remaining hits the LCA in the taxonomic tree that underlies UNITE is determined in the following way: For each level in the taxonomic tree, starting from kingdom, classifications of all hits are compared. If the classification of a certain percentage (default: 90%) or more of the hits at this taxonomic level are the same, it will be accepted as the classification on this level for the query sequence. Otherwise the LCA is found and the query will only be classified to the last level, where a majority was achieved. During this process any classifications of ‘undetermined’ or ‘unclassified’ are ignored.

ITS2 sequences were additionally analysed with the Ribosomal Database Project (RDP) (Wang, Garrity, Tiedje, & Cole, 2007) classifier to make sure that the LCA approach we implemented here gives results comparable to widely applied tools. We employed the classifier trained for use in the PIPITS pipeline (Gweon et al., 2015) on ITS sequences from the same version (7.2, 2017-12-01) of UNITE we used for the LCA classification.

For 5.8S and ITS2, the classification was run using a range of parameter values for minimum identity, minimum coverage, top bit score fraction cutoff, and LCA majority stringency. This was done to investigate the parameter stability of the approach. The effect of missing database coverage was tested by first classifying query sequences using the complete reference database, and then repeating the process three times, removing all sequences from the same species, genus, and family in subsequent iterations. To assess whether classifying the 5.8S and ITS2 together was an effective method, we classified the combined 5.8S and ITS2 fragment with the LCA approach and compared the resulting classifications with those in the UNITE database.

2.2 | 5.8S reference dataset

As a reference dataset for classification of 5.8S sequences, we used the 5.8S sequences that were extracted from UNITE with ITxS (above) and complemented them with non-fungal 5.8S sequences from the 5.8S rRNA family (RF00002) of the Rfam database (Kalvari et al., 2018). Identical sequences were dereplicated to one representative with VSEARCH (version 1.9.7; Rognes, Flouri, Nichols, Quince, & Mahé, 2016). For each representative sequence, a taxonomic classification was determined by generating an LCA from the classifications of all sequences it represents. For Rfam sequences classified as fungi, any classification at lower rank was ignored and priority was given to the taxonomy information from the UNITE database.

2.3 | Description of the pipeline

The pipeline was implemented as a workflow with snakemake (Köster & Rahmann, 2012). It was tested on Ubuntu, but should run on any operating system where Python and the external tools are available. Most computation-intensive steps are done using external tools, the others are implemented directly in Python. Once the pipeline and the external tools are installed, and the configuration file defining parameters for the pipeline and the properties of the input data has been created the whole analysis (including the download of the reference databases) can be run with one command line command. If the user configures multiple CPUs, the pipeline will execute multiple steps in parallel where possible and also take advantage of parallelization capabilities of external tools.

The pipeline consists of four main stages: (a) initial read processing, (b) 5.8S classification, (c) ITS2 classification and (d) final classification (Figure 1).

a Initial read processing starts by producing quality plots with FastQC (version 0.11.2; Andrews, 2015). The presence of the forward or reverse primer in the first 25 bases of the respective read is checked with Flexbar (version v2.5_beta; Roehr, Dieterich, & Reinert, 2017). Quality trimming with Trimmomatic (version 0.35;
Bolger, Lohse, & Usadel, 2014) consists of a sliding window trimming (default window size: 8 and a minimum Phred score: 20) and removal of trailing bases with a low (default: <20) Phred quality, followed by the removal of sequences that are too short (default: <200) or have a low average Phred quality (default: <30) after trimming.

Forward and reverse reads of each pair are then merged with PEAR (version 0.9.6; Zhang, Kobert, Flouri, & Stamatakis, 2014). By default the minimum overlap for merging is set to 10. Pairs that cannot be merged or are too short (default: <150) or too long (default: >550) after merging are discarded. Merged sequences are dereplicated with VSEARCH. Potential chimeras (including sequences classified as ‘suspicious’) are removed with VSEARCH in de novo chimera detection mode with default parameters. The 5.8S and ITS2 sequences are extracted with ITSx with default parameters, except that partial 5.8S sequences are accepted. The 5.8S and the ITS2 sequences are independently classified in Stage 2 and 3 respectively.

5.8S classification starts with removal of the forward primer and sequences with ambiguous bases are discarded using CUTADAPT (version 1.9.1; Martin, 2011). Sequences are dereplicated with VSEARCH and then classified by a similarity search against our combined 5.8S reference dataset (above) with LAMBDA (version 0.9.3; Hauswedel, Singer, & Reinert, 2014) followed by a LCA classification as described for the in silico test (above).

ITS2 classification starts with dereplication of ITS2 sequences with VSEARCH. Clustering into OTUs is done with SWARM2 (version 2.1.6; Mahé, Rognes, Quince, Vargas, & Dunthorn, 2015). OTUs are classified by similarity search and LCA in the same way as 5.8S sequences are classified (above).

The final classification of the OTUs defined by the ITS2 combines the classifications from stage 2 and 3. For each read present in an ITS2 OTU cluster, all 5.8S sequences and their classifications are collected. The 5.8S classifications are combined with the same LCA approach explained above. The resulting classification is compared to the ITS2 classification. If 5.8S and ITS2 classification are concordant, but the ITS2 is classified to a lower taxonomic rank, the ITS2 classification is accepted. Sequences that are unclassified with ITS2 will automatically take the 5.8S classifications. All conflicting classifications can either be marked (default) or resolved by the user by giving priority to one of the markers.

2.4 | Test with reads from freshwater lake samples

We tested the pipeline on an unpublished dataset (E. C. Bourne, et al. unpublished data) of water and sediment samples, taken in October and November 2014 from the littoral zone of 20 freshwater lakes in North-East Germany. In six lakes, additional sediment and water samples were taken from the pelagic zone. Amplification was performed using ITS3mix1 and ITS3mix2 forward primers (Tedersoo et al., 2015) that were modified by adding a degenerate base (W) at the third position, and the standard reverse primer ITS4 (White et al., 1990). This primer set amplified a 350–500 bp amplicon consisting of the full ITS2 and c. 130 bp of the 5′-end of the 5.8S gene. Amplicons were sequenced with overlapping 300 bases paired-end reads on an Illumina MiSeq (v3 chemistry).
and ITS2 at the kingdom (from 100% to 83% and 88% respectively), phylum (from 100% to 83% and 88% respectively), and class (from 100% to 83% and 87% respectively) ranks (Figure 2). In contrast, the kingdom and phylum rank classifications of 5.8S sequences were not notably affected by the removal of reference sequences, with classification at the class rank only dropping from 83% to 81% and classification to kingdom and phylum being completely unaffected (Figure 2).

The LCA classification was performed with a range of parameters for ITS2 and 5.8S to test parameter stability. The stringency parameter had minimal influence on ITS2 classifications (Figure S1). Lowering the parameters of minimum identity (Figure S2) and minimum coverage (Figure S3) increased the number of classifications, but also increased the numbers of wrong classifications. Lower values for the top bitscore fraction parameter caused more wrong ITS2 classifications without increasing the number of correct classifications (Figure S4). Minimum identity and minimum coverage had little influence on 5.8S classifications (Figures S5 and S6), although a very high value (100%) resulted in more wrong classifications. The top bitscore fraction parameter gave more correct 5.8S classifications for values ≤5%, but at the cost of an increased number of wrong classifications (Figure S7). Finally a low value (≤85%) for the stringency parameter resulted in more wrong 5.8S classifications, while a very high value (100%) led to a decrease in correct assignments (Figure S8).

Comparison with RDP classifications (Figure S9) showed that the LCA approach gives comparable results to the RDP classifier (trained on the UNITE database) for our data. The comparison between independent classification of ITS2 and 5.8S with the classification of a combined fragment of both regions revealed that a combined fragment improved classification at kingdom and phylum ranks, but not to the same extent as an independent classification of 5.8S and ITS2 with a subsequent combination of the result (Figure S10).

The environmental dataset from 20 freshwater lakes (water and sediment samples) consisted of 13.6 million read pairs. It was analysed with our pipeline on a Ubuntu workstation with 32GB RAM and a 4 core Intel i7 CPU in under 48 hr. Our analysis pipeline generated 17,514 non-singleton OTUs. The 5.8S marker classified nearly three times as many OTUs compared to ITS2, including a 27-fold increase in the number of Chytridiomycota OTUs and a 6-fold increase in Rozellomycota.
OTUs (Table 1). Using ITS2, 30% of all OTUs were classified as Fungi, 1% were classified as belonging to a different kingdom, and 69% were unclassified (Figure 3). In contrast, using 5.8S, 64% were classified as Fungi, 12% were classified as belonging to a different kingdom, and 24% were unclassified (Figure 3). Using the two markers in combination, results were very similar to those using 5.8S alone (Table 1), but with more low level (family to species) classifications (Figure 3).

There was a classification conflict for only one OTU. The 5.8S classification was Arthropoda, whereas the ITS2 classification was Ascomycota. This was caused by a mis-classification of SH200261.07FU in the UNITE database (R. H. Nilsson, personal communication, 14 May, 2018), that has been subsequently corrected in UNITE.

4 | DISCUSSION

We developed and implemented a modular pipeline for the processing of fungal DNA metabarcoding data that uses the taxonomic information from the 5.8S gene to complement the more widely used ITS2 region. These markers are adjacent to one another in the eukaryotic rRNA operon and >100 bp of 5.8S are typically sequenced using the most frequently employed ITS2 primer sets (Tedersoo et al., 2015; White et al., 1990), but then discarded prior to analysis. Using both markers in combination allowed us to classify a substantially greater number of OTUs than with ITS2 alone, in particular for less well studied, basal fungal lineages.

Our in silico analysis of the UNITE database expanded on earlier results (Porras-Alfaro et al., 2014) that ITS1 and ITS2 are very good marker sequences when the database contains the exact same sequence or at least a sequence from the same species. In our test cases, no sequences were assigned to the wrong species and very few were unclassified. However, when only removing all sequences of the same species from our reference dataset, the ability to classify the genus dropped to 71% and 70% for ITS1 and ITS2 respectively, despite there being representatives of the genus in the reference dataset. Even for higher taxonomic ranks (phylum, class) the removal of the species caused classification problems. Simulating novel genera or families by removing the respective sequences from the database increased the effect even more. This is most likely the reason that many fungal OTUs remain unclassified in environmental studies that focus on poorly studied environments like freshwater (Grossart et al., 2016; Rojas-Jimenez et al., 2017). We found that new species, genera or families that do not have any reference sequences available are often unidentifiable at even the kingdom rank, leading to fungal diversity being severely underestimated.

In our environmental dataset from lake water and sediments, there were large differences in OTU classifications, depending on whether we used ITS2 or 5.8S. The proportion of OTUs that could be identified as fungi was twice as high using the 5.8S, with 6-fold more Rozellomycoota (also known as Cryptomycota) and nearly 30-fold more Chytridiomycota. Chytridiomycota are not well represented in the UNITE database (Frenken et al., 2017) and our in silico analysis showed that even if our environmental OTUs were represented by other members of the same genus or family, the ITS2 classification can fail completely. As a result, using ITS2 alone would have led to an estimate of Chytridiomycota of 3%, while the 5.8S classifications indicate that the actual proportion is an order of magnitude higher (32%). Similarly, the percentage of Rozellomycoota would increase from 0.1% to 3% (Figure 3). An estimation of the proportion of fungal phyla based on the ITS2 alone would have been strongly biased towards Ascomycota and Basidiomycota, which are better represented in the reference database.

Although the ITS2 barcode allows for accurate identification when near-perfect reference data are available, it may be unable to find a high enough similarity to any sequence when no closely related species is represented in the database. In such cases, the 5.8S sequence can help to classify OTUs to at least a higher taxonomic rank. In our environmental data, the 5.8S was especially helpful in splitting the results into fungal and non-fungal sequences when it comes to early diverging lineages or lineages that belong to the Top 50 known fungal lineages (Nilsson et al., 2016). Nonetheless, our results clearly indicate that the 5.8S would be of limited use as a DNA barcode on its own, or to delineate OTUs, but it should rather be seen as providing complementary information.

Our implementation of LCA-based classification performed comparably to the commonly used RDP classifier on our test dataset and was not very sensitive to parameter choice. This indicates that our implementation is working as well as commonly used approaches and can be used to study the advantage of using multiple markers as well as the influence of an incomplete database. Unlike using a single ‘best’ (e.g., lowest e-value) blast hit for identification which is problematic due to stochastic ranking of top hits (Shah, Nute, Warnow, & Pop, 2018) and can easily lead to wrong classifications if the query species is missing from the database, our approach uses a certain
proportion of top blast hits to try and quantify the uncertainty of our classifications by choosing a higher taxonomic rank. Nevertheless, we found a substantial amount of wrong assignments in the in silico analysis, when the database was not complete (Figure 2).

Third generation sequencing technologies currently available allow for the sequencing of longer amplicons. These include studies of the full-length 16S for bacteria (Mosher et al., 2014; Schloss, Jenior, Koumpouras, Westcott, & Highlander, 2016; Singer et al., 2016), the full ITS region (Schlaeppi et al., 2016; Tedersoo, Ave, & Sten, 2017) and most of the rRNA operon (Heeger et al., 2018).

Longer amplicons with multiple gene regions could be analysed using the approach we have developed here. Although longer amplicons can increase identification success (Tedersoo, Ave, et al., 2017), they typically result in lower sequencing depth because of the higher cost per base and can therefore increase the risk of missing rare taxa (Kennedy, Cline, & Song, 2018). Primer pairs to target longer amplicons have also not yet been optimized to prevent primer and long-range amplification bias (Heeger et al., 2018). We suggest that explicitly including the partial 5.8S gene into the analysis of shorter amplicons (as used in second-generation sequencing technologies

FIGURE 3 Classification of OTUs from lake water and sediments when using ITS2 (top left) or 5.8S (top right) and combined classification with our pipeline (bottom left). Concentric circles from the inside out represent levels of taxonomic classification from kingdom to species. Hatched areas contain more specific classifications that are not shown. Segments are colored by kingdoms and for fungi by phyla and classes. Abbreviations: ITS, internal transcribed spacer; OTU, operational taxonomic unit.
such as applied here) can dramatically improve the high level classification of new species and poorly studied clades without increasing cost or reducing read depth.

ACKNOWLEDGEMENTS

We thank R. Henrik Nilsson and Kessy Abarenkov for help with an earlier version of the manuscript, Susan Mbedi and Kirsten Richter for help with sequencing, Hannah Ebbinghaus for help with PCRs and two anonymous reviewers for their suggestions. Research was partially funded by the Leibniz Association Pakt/SAW project ‘MycobLink’ (SAW-2014-1GB-1).

AUTHORS’ CONTRIBUTIONS

F.H., E.C.B., C.W., C.J.M. and M.T.M. conceived and designed the overall study. F.H. and C.J.M. designed the analysis pipeline. F.H. implemented the analysis pipeline and carried out analysis. F.H., C.W., C.J.M. and M.T.M. wrote the manuscript and all authors contributed to the final manuscript. M.T.M. and C.J.M. contributed equally to this work.

DATA AVAILABILITY STATEMENT

Source code for the analysis pipeline is available from Zenodo https://doi.org/10.5281/zenodo.3295023 (Heeger, Wurzbacher, Bourne, Mazzoni, & Monaghan, 2019). The raw reads of the environmental test data set can be found in the NCBI Short Read Archive (https://www.ncbi.nlm.nih.gov/sra) under accessions SRR9666594–SRR966662 (Sequence Read Archive, 2009).

ORCID

Felix Heeger https://orcid.org/0000-0003-3519-2973
Christian Wurzbacher https://orcid.org/0000-0001-7418-0831
Elizabeth C. Bourne https://orcid.org/0000-0002-6369-9133
Michael T. Monaghan https://orcid.org/0000-0001-6200-2376

REFERENCES

Andrews, S. (2015). FastQC a quality control tool for high throughput sequence data. Retrieved from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Bååttin, M., Schmidt, P.-A., Sharma, R., Thines, M., & Schmitt, I. (2014). An Illumina metabarcoding pipeline for fungi. Ecology and Evolution, 4, 2642–2653. https://doi.org/10.1002/ece3.1107

Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., ... Nilsson, R. H. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4, 914–919. https://doi.org/10.1111/2041-210X.12073

Blackwell, M. (2011). The Fungi: 1, 2, 3 ... 5.1 million species? American Journal of Botany, 98, 426–438. https://doi.org/10.3732/ajb.1000298

Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitten, C., Floyd, R., & Abebe, E. (2005). Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1935–1943. https://doi.org/10.1098/rstb.2005.1725

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics, 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Corsaro, D., Walochań, J., Venditti, D., Steinmann, J., Müller, K.-D., & Michel, R. (2014). Microsporidium-like parasites of amoebae belong to the early fungal lineage Rosellomycota. Parasitology Research, 113, 1909–1918. https://doi.org/10.1007/s00436-014-3838-4

Frenken, T., Alacid, E., Berger, S. A., Bourne, E. C., Gerphagnon, M., Grossart, H.-P., ... Agha, R. (2017). Integrating chytrid fungal parasites into plankton ecology: Research gaps and needs. Environmental Microbiology, 19, 3802–3822. https://doi.org/10.1111/1462-2920.13827

Grossart, H.-P., Wurzbacher, C., James, T. Y., & Kagami, M. (2016). Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi. Fungal Ecology, 19, 28–38. https://doi.org/10.1016/j.fusco.2015.06.004

Gweon, H. S., Oliver, A., Taylor, J., Booth, T., Gibbs, M., Read, D. S., ... Schonrogge, K. (2015). PIPiT2: An automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods in Ecology and Evolution, 4, 973–980. https://doi.org/10.1111/2041-210X.12399

Hauswedell, H., Singer, J., & Reinert, K. (2014). Lambda: The local aligner for massive biological data. Bioinformatics, 30, i349–355. https://doi.org/10.1093/bioinformatics/btu439

Hawksworth, D. L., & Lücking, R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum, 5. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

Heeger, F., Bourne, E. C., Baschien, C., Yurkov, A., Bunk, B., Spröer, C., ... Monaghan, M. T. (2018). Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments. Molecular Ecology Resources, 18, 1500–1514. https://doi.org/10.1111/1755-0998.12937

Heeger, F., Wurzbacher, C., Bourne, E. C., Mazzoni, C. J., & Monaghan, M. T. (2019). Pipeline for metabarcoding of fungi with more than one marker (5.8S and ITS2) (Version 1.1). Zenodo. https://doi.org/10.5281/zenodo.3295023

Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E., ... Zhang, N. (2007). A higher-level phylogenetic classification of the fungi. Mycological Research, 111, 509–547. https://doi.org/10.1016/j.mycres.2007.03.004

Huson, D. H., Auch, A. F., Qi, J., & Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome Research, 17, 377–386. https://doi.org/10.1101/gr.5969107

Jones, M. D. M., Richards, T. A., Hawksworth, D. L., & Bass, D. (2011). Validation and justification of the phylum name Cryptomycota phylog. nov. IMA Fungus, 2, 173–175. https://doi.org/10.5598/imafung.2011.02.02.08

Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E. P., Rivas, E., Eddy, S. R., ... Petrov, A. I. (2018). Rfam 13.0: Shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Research, 46, D335–D342. https://doi.org/10.1093/nar/gkx1038

Kennedy, P. G., Cline, L. C., & Song, Z. (2018). Probing promise versus performance in longer read fungal metabarcoding. New Phytologist, 217, 973–976. https://doi.org/10.1111/nph.14883

Köster, J., & Rahmann, S. (2012). Snakemake – a scalable bioinformatics workflow engine. Bioinformatics, 28, 2520–2522. https://doi.org/10.1093/bioinformatics/bts480
Mucoromycota, Neocallimastigomycota, Olpidiomyctota, Rozellomyctota and Zoopagomycota). Fungal Diversity, 92, 43–129. https://doi.org/10.1007/s13225-018-0409-5

Wurzbacher, C., Nilsson, R. H., Rautio, M., & Peura, S. (2017). Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds. The ISME Journal, 11, 1938–1941. https://doi.org/10.1038/ismej.2017.54

Yang, C., Schaefer, D. A., Liu, W., Popescu, V. D., Yang, C., Wang, X., ... Yu, D. W. (2016). Higher fungal diversity is correlated with lower CO₂ emissions from dead wood in a natural forest. Scientific Reports, 6, 31066. https://doi.org/10.1038/srep31066

Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2014). PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30, 614–620. https://doi.org/10.1093/bioinformatics/btt593

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Heeger F, Wurzbacher C, Bourne EC, Mazzoni CJ, Monaghan MT. Combining the 5.8S and ITS2 to improve classification of fungi. Methods Ecol Evol. 2019;10:1702-1711. https://doi.org/10.1111/2041-210X.13266