RESEARCH ARTICLE

Polymorphism in the Serotonin Receptor 2a (HTR2A) Gene as Possible Predisposal Factor for Aggressive Traits

Zsofia Banlaki1, Zsuzsanna Elek1, Tibor Nanasi1, Anna Szekely2, Zsofia Nemoda1, Maria Sasvari-Szekely1, Zsolt Ronai1*

1 Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary, 2 Institute of Psychology, Eotvos Lorand University, Budapest, Hungary

* ronai.zsolt@med.semmelweis-univ.hu

Abstract

Aggressive manifestations and their consequences are a major issue of mankind, highlighting the need for understanding the contributory factors. Still, aggression-related genetic analyses have so far mainly been conducted on small population subsets such as individuals suffering from a certain psychiatric disorder or a narrow-range age cohort, but no data on the general population is yet available. In the present study, our aim was to identify polymorphisms in genes affecting neurobiological processes that might explain some of the inter-individual variation between aggression levels in the non-clinical Caucasian adult population. 55 single nucleotide polymorphisms (SNP) were simultaneously determined in 887 subjects who also filled out the self-report Buss-Perry Aggression Questionnaire (BPAQ). Single marker association analyses between genotypes and aggression scores indicated a significant role of rs7322347 located in the HTR2A gene encoding serotonin receptor 2a following Bonferroni correction for multiple testing (p = 0.0007) both for males and females. Taking the four BPAQ subscales individually, scores for Hostility, Anger and Physical Aggression showed significant association with rs7322347 T allele in themselves, while no association was found with Verbal Aggression. Of the subscales, relationship with rs7322347 was strongest in the case of Hostility, where statistical significance virtually equaled that observed with the whole BPAQ. In conclusion, this is the first study to our knowledge analyzing SNPs in a wide variety of genes in terms of aggression in a large sample-size non-clinical adult population, also describing a novel candidate polymorphism as predisposal to aggressive traits.

Introduction

Aggression, defined as any behavior intended to be destructive, lies at the root of numerous major ills of humanity ranging from verbal abuse through both interpersonal and self-directed violence to mass criminal acts. Consequences of aggression-driven acts pose an enormous burden on society and economics, rendering it important to understand the biological basis behind [1,2].
Increased levels of aggression are characteristic to patients with a variety of neurodegenerative and psychiatric disorders as well as to alcoholics and drug addicts [3–7], but can also often be observed among the normal human population, even conferring certain privileges to the aggressor under certain circumstances e.g. by means of social dominance [8,9]. From the evolutionary point of view, some degree of aggression is indeed necessary for gaining adequate fitness (through an improved access of food supplies and other resources) and reproductive success; however, these benefits are compensated for by an increased risk of injury and social isolation. Hence, optimal levels of aggression are presumably shaped by a fine balance between effects of positive and negative selection pressure, implying a strong genetic background next to the role of environment [10,11]. This assumption is further underpinned by the fact that aggression proved to be heritable in several twin studies, with an estimated genetic contribution to the risk of aggressiveness of above 40% [12–17].

Experimental evidence suggest that aggressive manifestations and the accompanying emotions (anger, anxiety, fear) can be strongly related to highly conserved brain regions, chiefly to the amygdala and its linked neural circuits, but also to the anterior cingulated cortex and the prefrontal cortex [18,19]. In terms of biochemistry, it is principally the monoaminergic neurotransmitter systems (e.g. dopamine, noradrenaline and serotonin pathways) that are believed to play a major role in aggressive behavior, though possible effects of sexual hormones, the hypothalamic-pituitary-adrenal (HPA) axis and blood sugar levels have also been implicated [20,21].

Great efforts have been made to decipher the possible genetic background behind predisposition to aggression, describing novel polymorphisms in a variety of genes with a role in neuropsychiatry, and also identifying promising candidates for aggressive behavior and the related mental states (impulsivity, hostility). However, most of these association studies were carried out in small samples, raising the possibility of committing statistical errors (Pavlov 2012). Besides, the vast majority of aggression-related genetic investigations either were based on comparisons between healthy individuals and patients suffering from personality disorders etc., or concentrated on restricted samples not representative of the general population (e.g. [22–28]). These factors render data evaluation challenging, and often lead to controversial results.

Our aim was to simultaneously examine the effect of a set of putatively functional single nucleotide polymorphisms (SNP) on aggressive tendencies of the general Hungarian adult population using a microarray system, with a principal focus on monoaminergic pathways and its close interactors. Selected SNPs are located in genes encoding monoaminergic neurotransmitter transporters and receptors, their associated proteins and other signal transduction molecules, enzymes involved in the biosynthesis or degradation of neurotransmitters, neurotrophic factors and regulators of circadian rhythm as well as of neuronal death, all with an implicated role in emotional responses and behavioral traits [20,29–32].

Materials and Methods

Individuals involved
Non-related individuals of Caucasian Hungarian origin without any known psychiatric disorder were recruited for this study on a voluntary basis at the Institute of Psychology, Eotvos Lorand University (Budapest). Buccal samples and self-filled out aggression questionnaires were obtained from 887 subjects (45.8% males and 54.2% females). The sample comprised of 495 psychology and law enforcement students studying in the Budapest area and 392 random volunteers recruited at academic institutions and events popularizing this survey. All participants belonged to the middle socioeconomic status. Mean age was 23.2 (±7.55) years within the range from 18 to 75 years. All participants gave written informed consent and the study was
approved by the Scientific and Research Ethics Committee of the Medical Research Council (“ETT TUKEB”—Ministry of Health, Medical Research Council, Budapest, H-1051 Hungary).

Phenotypic measure
The original 29-item version of the self-report Buss-Perry Aggression Questionnaire (BPAQ) [33] was used to assess aggressive tendencies. This instrument comprises four subscales: Verbal Aggression (5 items), Physical Aggression (9 items), Anger (7 items) and Hostility (8 items). Individual items are rated from one (‘extremely uncharacteristic of me’) to five (‘extremely characteristic of me’). Total score for aggression was calculated as the sum of ratings for all the items, with a possible range between 29 and 145. Hungarian version of the original English language questionnaire was obtained by the “forward-backward” translation method and was pilot tested prior to the present study [34].

Sample collection
Buccal cells were collected by gently scraping the inner cheek with cotton-tipped collection swabs. Genomic DNA preparation was performed by a traditional, salting-out procedure [35]. Briefly, collection swabs were incubated overnight in 450 μl cell lysis buffer (0.2 g/l Proteinase K, 0.1 M NaCl, 0.5% SDS, 0.01 M Tris buffer pH = 8.0) at 56°C, followed by RNase treatment at room temperature. Proteins were precipitated with saturated NaCl (6 M) and removed by centrifugation. DNA was precipitated with isopropanol, purified with 70% ethanol and resuspended in 100 μl of Tris-EDTA pH = 8.0 (containing 0.5 M EDTA). DNA concentrations were measured by a fluorometry based intercalation assay (AccuBlue Broad Range dsDNA Quantification Kit, Biotium). Concentration of samples analyzed in this study ranged between 15 and 200 ng/μl. Isolated DNA samples were kept at −20°C until used.

Marker selection
Common SNPs with a higher than 5% minor allele frequency (MAF) were selected from the dbSNP database of NCBI [36]. Priority was given to polymorphisms referred to in various association studies in connection with personality or mood disorders as well as aggression or impulsivity in psychiatric disorders, and to putative functional variants, either causing an amino acid change or with an implicated gene regulatory role.

Genotyping
Genotyping was performed in 384-well plates on an Open Array real-time PCR platform (Applied Biosystems) based on allele-specific, fluorescent (TaqMan) probes and pre-designed, validated primers immobilized to a solid surface obtained from the manufacturer. Approximately 100 ng DNA per sample was used in each measurement. DNA amplification was carried out in the GeneAmp PCR System 9700 (Applied Biosystems) according to the manufacturer’s instructions, using the master mix, containing each dNTP and AmpliTaq Gold DNA-polymerase, provided by the manufacturer. Endpoint detection of signal intensities of allele specific fluorescent dyes was conducted by the OpenArray NT Imager, and genotypes were called by the TaqMan Genotyper v1.2 software. Call rate for individual SNPs is shown in Table 1 (mean: 77.9%).

Statistical analysis
Statistical analyses were performed by the SPSS 22.0 (SPSS Inc.) software. Allele and genotype frequency distributions were determined by the χ^2 test. Independent samples t-test was used to assess gender differences, and relationship with age was tested by Pearson correlation. Genetic
SNP	Gene	N	MM	Mm	mm	HWE*	Call rate	
rs1048101	ADRA1A	763	218	384	161	21,1%	0.945	86%
rs3808585	ADRA1A	722	396	277	49	6,8%	0.998	81%
rs2236554	ADRA1D	757	293	346	118	15,6%	0.641	85%
rs553668	ADRA2A	692	519	158	15	2,2%	0.770	78%
rs11030104	BDNF	702	393	264	45	6,4%	0.997	79%
rs2049045	BDNF	690	419	241	30	4,3%	0.820	78%
rs6265	BDNF	601	362	212	27	4,5%	0.847	68%
rs7103411	BDNF	715	393	276	46	6,4%	0.966	81%
rs7094179	CDNF	687	305	302	80	11,6%	0.924	77%
rs7900873	CDNF	696	384	273	39	5,6%	0.573	78%
rs1051730	CHRNA3	753	320	346	118	15,6%	0.943	85%
rs16969968	CHRNA5	663	279	307	77	11,6%	0.866	75%
rs4680	COMT	603	177	295	131	21,7%	0.927	68%
rs135745	CSNK1E	718	187	375	156	21,7%	0.460	81%
rs1997644	CSNK1E	688	176	364	148	21,5%	0.291	78%
rs1611115	DBH	761	443	283	35	4,6%	0.482	86%
rs6271	DBH	780	657	116	7	0,9%	0.759	88%
rs4532	DRD1	761	286	357	118	15,5%	0.931	86%
rs6277	DRD2	579	169	284	126	21,8%	0.948	65%
rs1800497	DRD2	605	399	192	14	2,3%	0.261	68%
rs1079597	DRD2	608	443	158	7	1,2%	0.226	69%
rs1800498	DRD2	595	215	280	100	16,8%	0.862	67%
rs2134655	DRD3	760	410	295	55	7,2%	0.981	86%
rs3732790	DRD3	734	243	365	69	9,2%	0.857	83%
rs6280	DRD3	749	354	326	69	9,2%	0.887	84%
rs963468	DRD3	736	246	364	126	17,1%	0.909	83%
rs11246226	DRD4	685	173	347	165	24,1%	0.941	77%
rs3758653	DRD4	714	468	208	20	2,8%	0.923	80%
rs916455	DRD4	702	644	56	2	0,3%	0.803	79%
rs936460	DRD4	697	344	284	69	9,9%	0.655	79%
rs3733829	EGLN2	683	263	321	99	14,5%	0.998	77%
rs222843	GABARAP	683	307	293	83	12,2%	0.601	77%
rs11111	GDNF	719	540	160	19	2,6%	0.241	81%
rs1549250	GDNF	710	231	353	126	17,7%	0.907	80%
rs1981844	GDNF	576	320	223	33	5,7%	0.771	65%
rs2910702	GDNF	705	387	269	49	7,0%	0.971	79%
rs2973041	GDNF	695	492	182	21	3,0%	0.710	78%
rs2973050	GDNF	582	242	275	65	11,2%	0.608	66%
rs3096140	GDNF	671	320	287	64	9,5%	1.000	76%
rs3812047	GDNF	679	521	144	14	2,1%	0.559	77%
rs6925	HTR1A	607	167	289	151	24,9%	0.510	68%
rs1228814	HTR1B	599	432	153	14	2,3%	0.995	68%
rs130058	HTR1B	595	330	232	33	5,5%	0.642	67%
rs13212041	HTR1B	606	376	209	21	3,5%	0.467	68%
rs11568817	HTR1B	600	187	292	121	20,2%	0.937	68%

(Continued)
associations were tested by one way analysis of covariance (ANCOVA) assuming a dominant model of inheritance with sex and age as covariates. Bonferroni correction for multiple testing was applied for the total number of SNPs in this study when assessing relationship between BPAQ scores and individual SNPs (the corrected level of significance was $p = 0.05 / 55 = 0.0009$). In all other cases, $p < 0.05$ values were regarded as significant. Effect of prior associations in males and females was analyzed by two-way ANCOVA with age as covariate. All tests were two-tailed.

Lewontin’s D' and r^2 values of linkage disequilibrium were calculated using HaploView 4.2. [37]. Haplotypes were determined by the PHASE software [38,39].

Results

Reliability of the markers analyzed

Internal consistency of the self-report BPAQ was assessed by Chronbach’s alpha, which had a value of 0.895 for total scores ensuring reliability of the study. Coefficients for Verbal Aggression, Physical Aggression, Anger and Hostility were 0.640, 0.842, 0.831 and 0.792, respectively. Alleles of all the SNPs studied were in Hardy-Weinberg equilibrium (Table 1).

Potential confounders

Gender differences on the BPAQ scale were evaluated by Independent samples t-test. Males presented significantly higher scores than females (68.52±17.14 compared to 64.49±15.09; $p<0.001$). Relationship between BPAQ scores and age was tested by Pearson correlation coefficient and was found to be significant ($p = 0.008$). Thus, both gender and age were used as covariates in all association analyses.

Significant association of the HTR2A rs7322347 T/A intronic SNP with aggression

Table 2 summarizes results of phenotypic data as a function of each SNP analyzed. Association with aggression reached nominal level of significance $p<0.05$ in the case of two SNPs, rs916455 located in the promoter region of the DRD4 gene and rs7322347 in intron 2 of...
Table 2. Association of the 55 polymorphisms studied with aggression levels.

SNP	Gene	Aggression (total score)	p^2			
		MM	Mm	mm		
1.	rs1048101	ADRA1A	66.66	66.50	66.46	0.9684
2.	rs3808585	ADRA1A	66.15	68.19	65.93	0.2294
3.	rs2236554	ADRA1D	65.31	67.18	68.29	0.0840
4.	rs533668	ADRA2A	66.52	66.61	70.47	0.8682
5.	rs11030104	BDNF	66.56	66.60	67.73	0.8735
6.	rs2049045	BDNF	66.34	67.15	66.73	0.5703
7.	rs6265	BDNF	66.94	66.80	65.98	0.9220
8.	rs7103411	BDNF	65.55	66.53	67.34	0.9163
9.	rs7094179	CDNF	65.81	66.46	68.32	0.6485
10.	rs7900873	CDNF	67.03	66.49	64.68	0.3912
11.	rs1051730	CHRNA3	67.53	65.51	66.58	0.1190
12.	rs16969968	CHRNA5	67.45	65.77	66.61	0.2138
13.	rs4680	COMT	67.07	66.58	67.62	0.8569
14.	rs135745	CSNK1E	65.99	66.63	66.24	0.7121
15.	rs1997644	CSNK1E	66.83	66.31	65.68	0.7781
16.	rs1611115	DBH	65.74	67.36	70.89	0.0941
17.	rs6271	DBH	66.59	66.68	61.00	0.8731
18.	rs4532	DRD1	66.55	65.94	67.91	0.9000
19.	rs6277	DRD2	66.81	67.06	66.39	0.9148
20.	rs1800497	DRD2	66.72	67.70	61.29	0.7106
21.	rs1079597	DRD2	67.20	66.38	57.95	0.4397
22.	rs1800498	DRD2	67.07	66.46	67.34	0.7979
23.	rs2134655	DRD3	65.71	67.81	66.12	0.1250
24.	rs3732790	DRD3	67.03	66.42	65.90	0.5267
25.	rs6280	DRD3	66.98	66.60	64.46	0.4667
26.	rs963468	DRD3	67.25	67.01	65.06	0.5779
27.	rs11246226	DRD4	67.31	66.33	66.41	0.4831
28.	rs3758653	DRD4	66.51	66.48	69.93	0.9091
29.	rs916455	DRD4	66.93	62.92	46.67	0.0275
30.	rs936460	DRD4	66.60	66.39	67.70	0.9890
31.	rs3733829	EGLN2	66.96	66.76	65.38	0.6238
32.	rs222843	GABARAP	66.50	66.09	68.77	0.9562
33.	rs11111	GDNF	66.56	65.90	73.85	0.9972
34.	rs1549250	GDNF	66.75	65.38	70.34	0.8604
35.	rs1981844	GDNF	66.48	66.85	72.22	0.4727
36.	rs2910702	GDNF	66.27	66.40	68.79	0.5293
37.	rs2973041	GDNF	66.68	66.24	71.95	0.9268
38.	rs2973050	GDNF	66.30	66.49	68.89	0.5259
39.	rs3096140	GDNF	65.79	66.97	68.52	0.1457
40.	rs3812047	GDNF	66.45	67.46	70.87	0.3422
41.	rs6925	HTR1A	66.55	67.63	65.63	0.9441
42.	rs1228814	HTR1B	67.20	66.47	63.95	0.5336
43.	rs130058	HTR1B	67.22	65.55	70.74	0.3419
44.	rs13212041	HTR1B	67.09	66.21	66.87	0.5259
45.	rs11568817	HTR1B	68.70	65.76	67.12	0.0605

(Continued)
Corresponding statistical values for these were \([F = 4.878, p = 0.0275, \eta^2 = 0.007, \text{power} = 0.597]\) and \([F = 11.617, p = 0.0007, \eta^2 = 0.015, \text{power} = 0.926]\), respectively. In order to reduce the likelihood of a type I error, Bonferroni adjustment on the target alpha level was performed to correct for multiple testing. Effect of the rs7322347 polymorphism remained significant after Bonferroni-correction, labeled by an asterisk in Table 2. Individuals homozygous for the wild type allele (T) of rs7322347 had significantly higher aggression scores (69.21±17.00) compared to those carrying at least one minor allele (A) of this polymorphism (65.34±15.69). The corresponding Cohen’s d effect size for rs7322347 was \(d = 0.24\).

In order to gain a more detailed insight into the nature of the observed association, post hoc analyses were performed testing for possible relationship between rs7322347 and each of the four individual BPAQ subscales (Fig. 1). With the exception of Verbal Aggression, where mean scores did not differ in non-carriers compared to carriers of allele A (15.09±3.47 vs. 14.65±3.24; \(p = 0.1076\)), scores of all subscales showed significant association with rs7322347. Differences in mean scores between those homozygous for rs7322347 T and those with at least one
copy of rs7322347 A was most remarkable in the case of Hostility (18.41±5.55 vs. 17.05±5.48), with statistical difference between groups virtually equaling that observed with the overall BPAQ scale \(F = 11.535, p = 0.0007, \eta^2 = 0.015, \text{power} = 0.924\). Mean scores for both Physical Aggression and Anger were also higher in the absence of rs7322347 A than in its presence (18.86±7.08 vs. 17.80±6.63) \(F = 7.419, p = 0.0066, \eta^2 = 0.010, \text{power} = 0.776\) and (16.91±5.67 vs. 15.89±5.46) \(F = 5.858, p = 0.0157, \eta^2 = 0.008, \text{power} = 0.676\), respectively.

Effect of the HTR2A rs7322347 polymorphism on male and female aggression

As significant gender effect was observed in the BPAQ scores, male vs. female differences were also tested in terms of rs7322347 genotype and aggression using two-way ANCOVA with age as covariate. Although interaction between gender and aggression scores was highly significant \(F = 10.991, p = 0.0010, \eta^2 = 0.014, \text{power} = 0.912\), no gene-sex interaction was found \(p = 0.8834\). Both males and females carrying the minor (A) allele of rs7322347 showed lower levels of aggression (Fig. 2).

Linkage disequilibrium (LD) and haplotype analyses within the HTR2A gene

Taken that four other SNPs than rs7322347 (rs6311 C/T, rs6313 G/A, rs6314 G/A and rs7984966 T/C) within the HTR2A gene were also genotyped in this study, LD and haplotype analyses were performed as well to explore possible further contribution of loci in nearby regions to higher aggression levels. The associating polymorphism rs7322347 was found to be in complete linkage disequilibrium \((D’ = 1)\) with rs6314 located 1069 bp upstream from rs7322347 (Fig. 3), due to the fact that allele A of rs6314 could only be observed in subjects also carrying rs7322347 A and that all individuals homozygous for rs6314 A were homozygous for rs7322347 A as well. However, this was accompanied by a relatively low \(r^2\) value as there was a marked difference in MAFs for these two SNPs (8.8% for rs6314 vs. 44.2% for rs7322347). The polymorphism rs7322347 was in strong LD with rs7984966 as well (chromosomal distance: 19343 bp), although to a lesser extent than with rs6314. In addition, prominently high LD was also observed between rs6313 and rs6311 spaced 1538 bp apart, where in the majority of cases allele A of rs6313 was linked to rs6311 T (662/665 chromosomes; 99.6%) and allele G of rs6313 to rs6311 C (850/853 chromosomes; 99.7%) (Fig. 3).
One-way ANCOVAs were applied on the overall BPAQ scale scores with 2-SNP haplotypes (comprising rs7322347 and each of the other four HTR2A variants genotyped) as the grouping variable and gender and age as covariates (Table 3). In a dominant model (haplotypes containing only major alleles of the constituting SNPs), haplotypes rs6314/rs7322347 and rs7322347/rs7984966 showed a significant effect \[F = 11.128, p = 0.0009, \eta^2 = 0.014, \text{power} = 0.915 \] and \[F = 7.352, p = 0.0068, \eta^2 = 0.009, \text{power} = 0.773 \] respectively, while no significant differences in the mean scores of aggression were observed with regard to the other two haplotypes analyzed \((p = 0.1875 \text{ and } p = 0.1232, \text{respectively}) \). Subjects homozygous for haplotype rs6314 G/rs7322347 T had higher aggression scores as compared to the rest of the population (69.05±17.07 vs. 65.33±15.77). Similarly, individuals carrying haplotype rs7322347 T/rs7984966 T on both chromosomes presented with higher mean BPAQ scores than those with other haplotype combinations (68.83±17.19 vs. 65.64±15.85). Haplotype-wise analyses also indicated significant association of haplotype rs6314/rs7322347, but to a lesser extent than in the dominant model \([F = 3.205, p = 0.0408, \eta^2 = 0.004, \text{power} = 0.614] \) (Table 4).

![Fig 3. Linkage disequilibrium patterns between SNPs studies within the HTR2A gene. A: Lewontin's D' (%) and B: r2 (%) values of linkage disequilibrium between each SNP pairs, as determined by HaploView (version 4.2.). Higher values and darker colors indicate stronger LD between loci pairs. Red square indicates 100% LD.](https://example.com/figure3)

Table 3. Association of rs7322347 comprising 2-SNP within-HTR2A haplotypes with aggression scores.

Haplotype	Aggression score	\(p \)
HH	69.05±17.07	0.0009
Hh	65.33±15.77	
rs6314/rs7322347		
rs7322347/rs7984966	68.83±17.19	0.0068
rs7322347/rs6313	66.23±15.89	0.1875
rs7322347/rs6311	66.19±15.92	0.1232

H: Haplotype containing major alleles of the constituting SNPs;

h: haplotype containing minor allele of at least of the two constituting SNPs

Significant associations are indicated by bold, italics.

doi:10.1371/journal.pone.0117792.t003
In this study, we examined possible contribution of 55 SNPs to aggressive tendencies measured by the BPAQ in the general adult Hungarian population [33,34]. Only two of these SNPs showed association reaching nominal significance, and merely rs7322347 of the HTR2A gene retained significant effect after Bonferroni adjustment. These findings underpin the long-suspected key role of the serotonin neurotransmitter system in aggression and the related disorders [40,41]. There is convergent evidence that low or impaired serotonergic function underlies aggression and impulsivity [42–44]. As within the central nervous system (CNS) serotonin is synthesized solely in neurons of the raphe nuclei innervating virtually the entire neuraxis, this neurotransmitter is believed to exert a global effect on the brain with a holistically general role, even though local specialized functions are achieved by a variety of receptors [45,46]. It has been proposed that the principal role of serotonin might be the withdrawal from dangerous and aversive situations; consequently, serotonergic hypofunction could lead to impaired avoidance of undesirable stimuli, which in turn could provoke aggressive responses [47]. Strong experimental evidence supports this concept. The inverse correlation of aggression, impulsivity and antisocial behavior with serotonin metabolite 5-hydroxyindoleacetic acid levels in the cerebrospinal fluid was already known decades ago [40,48–50]. Later on, numerous studies confirmed these early observations regarding the relationship between dysregulation of the serotonergic system and aggressive-impulsive traits both in human and animals [51–54]. Behavioral functions of serotonin and also the effect of drugs influencing serotonergic mechanisms shows a marked conservation even between evolutionarily remote species [55]. This enables utilization of animal models for different types of aggression, e.g. affective (or defensive) and predatory (referred to as impulsive and premiated in humans, respectively) [56]. Data especially on rodents and felines provide valuable insight into underlying molecular mechanisms, shedding light for example on the interplay of proinflammatory cytokines and serotonin receptors in defensive rage and also on differential modulation

Table 4. Haplotype-wise analysis of rs7322347 and each of the other HTR2A SNPs studied.

	N	Haplotype frequency	Aggression score ± Standard Error	p
rs6314G-rs7322347T	862	0.56	67.28±16.53	0.041
rs6314G-rs7322347A	547	0.35	65.78±16.04	
rs6314A-rs7322347A	135	0.09	64.46±15.28	
rs6314A-rs7322347T	0	0	-	
rs7322347T-rs7984966T	809	0.52	67.34±16.54	0.115
rs7322347A-rs7984966C	347	0.22	65.45±15.63	
rs7322347A-rs7984966T	335	0.22	65.59±16.18	
rs7322347T-rs7984966C	53	0.03	66.37±16.38	
rs7322347T-rs6313G	592	0.38	67.02±16.50	0.072
rs7322347A-rs6313A	405	0.26	65.88±16.40	
rs7322347A-rs6313G	277	0.18	64.99±15.14	
rs7322347T-rs6313A	270	0.17	67.83±16.60	
rs7322347T-rs6311C	590	0.38	67.07±16.48	0.074
rs7322347A-rs6311T	403	0.26	65.92±16.42	
rs7322347A-rs6311C	279	0.18	64.94±15.10	
rs7322347T-rs6311T	272	0.18	67.74±16.66	

Significant p value is indicated by bold, italics.

doi:10.1371/journal.pone.0117792.t004

Discussion

In this study, we examined possible contribution of 55 SNPs to aggressive tendencies measured by the BPAQ in the general adult Hungarian population [33,34]. Only two of these SNPs showed association reaching nominal significance, and merely rs7322347 of the HTR2A gene retained significant effect after Bonferroni adjustment. These findings underpin the long-suspected key role of the serotonin neurotransmitter system in aggression and the related disorders [40,41]. There is convergent evidence that low or impaired serotonergic function underlies aggression and impulsivity [42–44]. As within the central nervous system (CNS) serotonin is synthesized solely in neurons of the raphe nuclei innervating virtually the entire neuraxis, this neurotransmitter is believed to exert a global effect on the brain with a holistically general role, even though local specialized functions are achieved by a variety of receptors [45,46]. It has been proposed that the principal role of serotonin might be the withdrawal from dangerous and aversive situations; consequently, serotonergic hypofunction could lead to impaired avoidance of undesirable stimuli, which in turn could provoke aggressive responses [47]. Strong experimental evidence supports this concept. The inverse correlation of aggression, impulsivity and antisocial behavior with serotonin metabolite 5-hydroxyindoleacetic acid levels in the cerebrospinal fluid was already known decades ago [40,48–50]. Later on, numerous studies confirmed these early observations regarding the relationship between dysregulation of the serotonergic system and aggressive-impulsive traits both in human and animals [51–54]. Behavioral functions of serotonin and also the effect of drugs influencing serotonergic mechanisms shows a marked conservation even between evolutionarily remote species [55]. This enables utilization of animal models for different types of aggression, e.g. affective (or defensive) and predatory (referred to as impulsive and premiated in humans, respectively) [56]. Data especially on rodents and felines provide valuable insight into underlying molecular mechanisms, shedding light for example on the interplay of proinflammatory cytokines and serotonin receptors in defensive rage and also on differential modulation...
of aggression by distinct types of serotonin receptors [57–59]. Administration of selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, citalopram or paroxetine usually reduces aggression [60–69], though contradictory results have also been reported, especially in juvenile humans and animals [70–72]. Reduced levels of serotonin caused by depletion of its precursor tryptophan have been linked to aggressive behavior [73–76], and disrupted function of enzymes involved in serotonin metabolism, such as tryptophan hydroxylase or monoamine oxidase, are also related to aggressive traits [77–79]. Observations on the link between life history of aggression and platelet serotonin content as well as platelet serotonin receptor and transporter binding further underpin the constantly growing body of evidence referring to a close relationship between the serotonergic system and aggression [80–82].

Serotonin (5-hydroxytryptamine) receptor 2a, encoded by the gene HTR2A, is a G-protein coupled excitatory receptor exerting its influence through the activation of secondary messengers phospholipase C and D [83]. Among others it is expressed in high levels on pyramidal cells of the prefrontal cortex, where it is ideally positioned to modulate both cognitive functions such as working memory or executive control and also emotions through dynamic interactions with the amygdala [84,85]. Serotonin receptors are also distributed along the midbrain periaqueductal grey (PAG) and the hypothalamus [56], brain areas that both have a direct connection with the prefrontal cortex and amygdala and long have been proved to control components of aggression including vocalization [86,87]. In accordance, mice with inherited aberrations in development and function of serotonergic neurons in the CNS exhibit increased levels of aggression which can be ameliorated by SSRIs [88]. Functional polymorphisms of the HTR2A gene are thus expected to influence neuronal networks regulating all the above mentioned features, providing a physiological basis for associations between HTR2A genetic variations and different mental states. During the last decade, several groups investigated SNPs of the HTR2A gene in connection with psychiatric and personality disorders [89–95]. Noteworthy observations have been made with regard to a number of variations located mainly in the promoter or the coding region; however, though scarce, literature data also indicate that intronic variant rs7322347 might as well be of interest from behavioral aspects, as it showed marked association with the combined subtype of childhood attention-deficit hyperactivity disorder (ADHD) and with suicide attempt in females subjected to physical assault in younger age [96,97].

Interestingly, according to our findings the missense polymorphism rs6314 is in complete LD with rs7322347, and the haplotype defined by these two SNPs has a similarly high impact on aggression levels as rs7322347 alone, despite the great difference observed between their MAFs. This might reflect that a complex background lies behind the robust association observed in the case of rs7322347, possibly consisting of several minor factors. Intrinsically, marked physiological effect of a single genetic variation with a MAF nearing 50% is generally improbable, simply based on the consideration that the spread of newly arisen alleles with functional relevance is most probably controlled by either positive or negative selection, hardly allowing quasi equal allele frequencies to evolve. Although in the present case it is plausible that a fine evolutionary balance has been struck between avoiding fights thus injury and gaining access to better resources, it cannot be excluded that other, linked polymorphic loci also contribute to the overall observed effect, even though similarly high D’ values as seen for rs6314 are unlikely for any such sites. Indeed, full linkage disequilibrium can only be expected when no crossing over event between the linked loci has yet occurred, which is mainly characteristic to the situation when at least one of the polymorphic sites is evolutionarily young. It is, though, noteworthy that immensely strong LD has been identified elsewhere within the HTR2A gene as well (between rs6311 and rs6313), both in this study and before [98–100].

As the linked polymorphism rs6314 causes a histidine to tyrosine change, thus the substitution of a basic amino acid residue to an uncharged one, this SNP could potentially affect both
protein structure and function [101]. In vitro studies implicate that its rare allele causes slower receptor response, decreased activation levels of phospholipases C and D, reduced calcium ion mobilization and thus a general hypofunctioning of the whole signaling cascade [102,103]. Recent findings imply that rs6314 also interferes with adequate splicing of pre-mRNA, with defective transcript forms triggering the RNA surveillance machinery, leading to a lower expression of the variant allele both on RNA and protein level [104].

Another possible explanation for the observed relationship between rs7322347 and aggression lies in gene regulation. Over the last few years, growing number of disease-associating polymorphisms in intergenic and intronic regions identified especially in GWA studies, combined with the fact that the more complex an organism is, the larger proportion of its genome will consist of non-coding sequences, has drawn attention of the scientific community towards the significance of expression regulation. By now, light has been thrown on several molecular mechanisms modifying gene expression, mostly with the involvement of non-coding sequences. Polymorphic intronic sites can lead to splicing efficiency bias or modified pre-mRNA stability, or they might affect long-distance gene regulation, for instance as part of an enhancer or an insulator, or through the RNAi pathway. In fact, according to the miRBase registry, T allele of rs7322347 disrupts a potential miRNA binding site [105,106]. It has recently been demonstrated by our group that differences in transcriptional regulation caused by a miRNA binding site disrupting SNP can indeed contribute to elevated aggression levels [107]. Though functional relevance of intronic miRNA target sites is obscure, recent evidence suggests that at least in plants miRNA interaction with intronic sequences is indeed involved in gene regulation processes [108]. In addition, expression quantitative trait loci (eQTL) data (http://genenetwork.nl/bloodeqtlbrowser) indicate that minor allele (A) of rs7322347 negatively affects (Z-score: -8.06) transcription of the ESD gene located 34 kb downstream of HTR2A [109]. ESD encodes esterase D, a poorly characterized protein with a suggested role in the recycling of sialic acids and also in detoxification [110,111]. Thus, it would be intriguing to explore possible interaction of ESD with neurobiological aspects and behavioral traits, especially as it is expressed all across the brain in considerable amounts according to AceView and TiGER databases [112,113].

In conclusion, this study adds on the growing evidence that the serotoninergic system greatly influences aggressive tendencies. To our best knowledge, this is the first report demonstrating a direct relationship between the HTR2A gene and aggression. However, confirmation of the present findings by independent replication would inevitably be necessary before drawing
any further conclusions from these results. Functional studies should also be performed in order to explore the exact biochemical background of the association described, and to elicit possible contribution of rs7322347 to psychiatric and personality disorders. By no means forgetting about the significance of environmental exposure, our findings will hopefully provide help to elucidate the genetic basis behind increased predisposition to aggression.

Author Contributions
Conceived and designed the experiments: ZR MSS. Performed the experiments: ZE AS. Analyzed the data: TN ZN. Wrote the paper: ZB ZR MSS.

References
1. Krug EG, Mercy JA, Dahlberg LL, Zwi AB (2002) The world report on violence and health. Lancet 360: 1083–1088. PMID: 12384003
2. Swann AC (2003) Neuroreceptor mechanisms of aggression and its treatment. J Clin Psychiatry 64 Suppl 4: 26–35. PMID: 12672262
3. Zahodne LB, Ornstein K, Cosentino S, Devanand DP, Stern Y (2013) Longitudinal Relationships Between Alzheimer Disease Progression and Psychosis, Depressed Mood, and Agitation/Aggression. Am J Geriatr Psychiatry S1064–7481(13)00201–7 [pii] 10.1016/j.jagp.2013.03.014.
4. Kachadourian LK, Hornish GG, Quigley BM, Leonard KE (2012) Alcohol expectancies, alcohol use, and hostility as longitudinal predictors of alcohol-related aggression. Psychol Addict Behav 26: 414–422. doi: 10.1037/a0025842 PMID: 22004128
5. Latalova K (2014) Violence and duration of untreated psychosis in first-episode patients. Int J Clin Pract 68: 330–335. doi:10.1111/ijcp.12327 PMID: 24471741
6. Volavka J (2013) Violence in schizophrenia and bipolar disorder. Psychiatr Danub 25: 24–33. PMID: 23470603
7. Wexler E (2013) Clinical neurogenetics: behavioral management of inherited neurodegenerative disease. Neurol Clin 31: 1121–1144. doi: 10.1016/j.ncl.2013.04.016 PMID: 24176427
8. Georgiev AV, Klimeczuk AC, Trafficone DM, Maestripieri D (2013) When violence pays: a cost-benefit analysis of aggressive behavior in animals and humans. Evol Psychol 11: 678–699. PMID: 23864299
9. Dijkstra JK, Lindenberg S, Zijlstra L, Bouma E, Veenstra R (2013) The secret ingredient for social success of young males: a functional polymorphism in the SHT2A serotonin receptor gene. PLoS One 8: e54821. doi:10.1371/journal.pone.0054821 PMID: 23457454
10. Maynard Smith J, Harper DG (1988) The evolution of aggression: can selection generate variability? Philos Trans R Soc Lond B Biol Sci 319: 557–570. PMID: 2905492
11. Cairns RB (1996) Aggression from a developmental perspective: genes, environments and interactions. Ciba Found Symp 194: 45–56; discussion 57–60. PMID: 8862869
12. Niv S, Tuvblad C, Raine A, Baker LA (2013) Aggression and Rule-breaking: Heritability and stability of antisocial behavior problems in childhood and adolescence. J Crim Justice 41. doi:10.1016/j.jcrimjus.2013.06.014 PMID: 24526799
13. Brendgen M, Vitaro F, Boivin M, Dionne G, Perusse D (2006) Examining genetic and environmental effects on reactive versus proactive aggression. Dev Psychol 42: 1299–1312. PMID: 17087562
14. Baker LA, Raine A, Liu J, Jacobson KC (2008) Differential genetic and environmental influences on reactive and proactive aggression in children. J Abnorm Child Psychol 36: 1265–1278. doi: 10.1007/s10802-008-9249-1 PMID: 18615267
15. Tuvblad C, Raine A, Zheng M, Baker LA (2009) Genetic and environmental stability differs in reactive and proactive aggression. Agress Behav 35: 437–452. doi:10.1002/ab.20319 PMID: 19688841
16. Bezdjian S, Tuvblad C, Raine A, Baker LA (2011) The genetic and environmental covariation among psychopathic personality traits, and reactive and proactive aggression in childhood. Child Dev 82: 1267–1281. doi: 10.1111/j.1467-8624.2011.01598.x PMID: 21557742
17. Rhee SH, Waldman ID (2002) Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol Bull 128: 490–529. PMID: 12002699
18. Lesch KP (2005) Serotonergic gene inactivation in mice: models for anxiety and aggression? Novartis Found Symp 268: 111–140; discussion 140–116, 167–170. PMID: 16206878
19. Davidson RJ, Putnam KM, Larson CL (2000) Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence. Science 289: 591–594. PMID: 10915615
20. Pavlov KA, Chistiakov DA, Chekhonin VP (2012) Genetic determinants of aggression and impulsivity in humans. J Appl Genet 53: 61–82. doi: 10.1007/s13353-011-0069-6 PMID: 21994088

21. Craig IW, Halton KE (2009) Genetics of human aggressive behaviour. Hum Genet 126: 101–113. doi: 10.1007/s00439-009-0895-9 PMID: 19506905

22. Albaugh MD, Harder VS, Althoff RR, Rettew DC, Ehli EA, et al. (2010) COMT Val158Met genotype as a risk factor for problem behaviors in youth. J Am Acad Child Adolesc Psychiatry 49: 841–849. doi: 10.1016/j.jaac.2010.05.015 PMID: 20643317

23. Kuepper Y, Grant P, Welpuetz C, Hennig J (2013) MAOA-uVNTR genotype predicts interindividual differences in experimental aggressiveness as a function of the degree of provocation. Behav Brain Res 247: 73–78. doi: 10.1016/j.bbr.2013.02.002 PMID: 23499704

24. Grigorenko EL, De Young CG, Eastman M, Getchell M, Haeffel GJ, et al. (2010) Aggressive behavior, related conduct problems, and variation in genes affecting dopamine turnover. Aggress Behav 36: 158–176. doi: 10.1002/ab.20339 PMID: 20127808

25. Turecki G, Briere R, Dewar K, Antonetti T, Lesage AD, et al. (2011) Association of androgen receptor gene, CAG and GGN repeat length polymorphism and impulsive-disinhibited personality traits in inmates: the role of short-long haplotype. Psychiatr Genet 21: 229–239. doi: 10.1097/YPG.0b013e328345465e PMID: 21368712

26. Kotyuk E, Keszler G, Nemeth N, Ronai Z, Sasvari-Szekely M, et al. (2013) Glial cell line-derived neurotrophic factor (GDNF) as a novel candidate gene of anxiety. PLoS One 8: e80613. doi: 10.1371/journal.pone.0080613 PMID: 24324616

27. Siddiq A, Aminova LR, Troy CM, Suh K, Messer Z, et al. (2009) Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci 29: 4157–4168. doi: 10.1523/JNEUROSCI.1779-09.2009 PMID: 19587290

28. Bryant CD, Parker CC, Zhou L, Olker C, Chandrasekaran RY, et al. (2012) Csnk1e is a genetic regulator of sensitivity to psychostimulants and opioids. Neuropsychopharmacology 37: 1026–1035. doi: 10.1038/npp.2011.287 PMID: 22089318

29. Xu H, Belkacemi L, Jog M, Parrent A, Hebb MO (2013) Neurotrophic factor expression in expandable cell populations from brain samples in living patients with Parkinson's disease. FASEB J 27: 4157–4168. doi: 10.1096/fj.12-226555 PMID: 23825231

30. Buss AH, Perry M (1992) The aggression questionnaire. J Pers Soc Psychol 63: 452

31. Terranova C, Tucci M, Sartore D, Cavarzeran F, Barzon L, et al. (2012) Alcohol dependence and criminal behavior: preliminary results of an association study of environmental and genetic factors in an Italian male population. J Forensic Sci 57: 1343–1348. doi: 10.1111/j.1556-4029.2012.02243.x PMID: 22881191

32. Aluja A, Garcia LF, Blanch A, Fibla J (2011) Association of androgen receptor gene, CAG and GGN repeat length polymorphism and impulsive-disinhibited personality traits in inmates: the role of short-long haplotype. Psychiatr Genet 21: 229–239. doi: 10.1097/YPG.0b013e328345465e PMID: 21368712

33. Kotyuk E, Keszler G, Nemeth N, Ronai Z, Sasvari-Szekely M, et al. (2013) Glial cell line-derived neurotrophic factor (GDNF) as a novel candidate gene of anxiety. PLoS One 8: e80613. doi: 10.1371/journal.pone.0080613 PMID: 24324616

34. Siddiq A, Aminova LR, Troy CM, Suh K, Messer Z, et al. (2009) Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J Neurosci 29: 4157–4168. doi: 10.1523/JNEUROSCI.1779-09.2009 PMID: 19587290

35. Bryant CD, Parker CC, Zhou L, Olker C, Chandrasekaran RY, et al. (2012) Csnk1e is a genetic regulator of sensitivity to psychostimulants and opioids. Neuropsychopharmacology 37: 1026–1035. doi: 10.1038/npp.2011.287 PMID: 22089318

36. Xu H, Belkacemi L, Jog M, Parrent A, Hebb MO (2013) Neurotrophic factor expression in expandable cell populations from brain samples in living patients with Parkinson's disease. FASEB J 27: 4157–4168. doi: 10.1096/fj.12-226555 PMID: 23825231

37. Buss AH, Perry M (1992) The aggression questionnaire. J Pers Soc Psychol 63: 452–459. PMID: 1403624

38. Gerevich J, Bacsikai E, Czobor P (2007) The generalizability of the Buss-Perry Aggression Questionnaire. J Pers Soc Psychol 63: 452

39. Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73: 1162–1169. PMID: 14574454

40. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68: 978–989. PMID: 11254454

41. Brown GL, Linnola MI (1990) CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence. J Clin Psychiatry 51 Suppl: 31–41; discussion 42–33. PMID: 2211564
42. Stanley B, Molcho A, Stanley M, Winchel R, Gameroff MJ, et al. (2000) Association of aggressive behavior with altered serotonergic function in patients who are not suicidal. Am J Psychiatry 157: 609–614. PMID: 10739421

43. Winstanley CA (2011) Gambling rats: insight into impulsive and addictive behavior. Neuropsychopharmacology 36: 359. doi: 10.1038/npp.2010.167 PMID: 21116253

44. Pattij T, Vanderschuren LJ (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29: 192–199. doi: 10.1016/j.tips.2008.01.002 PMID: 18304658

45. Azmitia EC (2007) Serotonin and brain: evolution, neuroplasticity, and homeostasis. Int Rev Neurobiol 77: 31–56. PMID: 17178471

46. Yildirim BO, Derksen JJ (2013) Systematic review, structural analysis, and new theoretical perspectives on the role of serotonin and associated genes in the etiology of psychopathy and sociopathy. Neurosci Biobehav Rev 37: 1254–1296. doi: 10.1016/j.neubiorev.2013.04.009 PMID: 23644029

47. Tops M, Russo S, Boksem MA, Tucker DM (2009) Serotonin: modulator of a drive to withdraw. Brain Cogn 71: 427–436. doi: 10.1016/j.bandc.2009.03.009 PMID: 19423206

48. Kruesi MJ, Rapoport JL, Hamburger S, Hibbs E, Potter WZ, et al. (1990) Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Arch Gen Psychiatry 47: 419–426. PMID: 1691910

49. Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, et al. (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33: 2609–2614. PMID: 6198573

50. Coccaro EF, Lee R (2010) Cerebrospinal fluid 5-hydroxyindolacetic acid and homovanillic acid: reciprocal relationships with impulsive aggression in human subjects. Journal of neural transmission 117: 241–248. doi: 10.1007/s00702-009-0359-x PMID: 20069438

51. Fairbanks LA, Melega WP, Jorgensen MJ, Kaplan JR, McGuire MT (2001) Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology 24: 370–378. PMID: 11182532

52. Cases O, Seil I, Grimsby J, Gaspar P, Chen K, et al. (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268: 1763–1766. PMID: 7792602

53. Herculano AM, Maximino C (2014) Serotonergic modulation of zebrafish behavior: Towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry S0278–5846(14)00061-X[pii] 10.1016/j.pnpbp.2014.03.008.

54. Siegel A, Bhatt S, Bhatt R, Zalcman SS (2007) The neurobiological bases for development of pharmacological treatments of aggressive disorders. Current neuropharmacology 5: 135–147. PMID: 18615178

55. Hassanain M, Bhatt S, Zalcman S, Siegel A (2005) Potentiating role of interleukin-1beta (IL-1beta) and IL-1beta type 1 receptors in the medial hypothalamus in defensive rage behavior in the cat. Brain research 1048: 1–11. PMID: 15919060

56. Hassanain M, Bhatt S, Siegel A (2003) Differential modulation of feline defensive rage behavior in the medial hypothalamus by 5-HT1A and 5-HT2 receptors. Brain research 981: 201–209. PMID: 12885442

57. Siegel A, Roeling TA, Gregg TR, Kruk MR (1999) Neuropharmacology of brain-stimulation-evoked aggression. Neurosci Biobehav Rev 23: 359–389. PMID: 9989425

58. Vartiainen H, Tiitonen J, Putkonen A, Koponen H, Virkkunen M, et al. (1995) Citalopram, a selective serotonin reuptake inhibitor, in the treatment of aggression in schizophrenia. Acta Psychiatr Scand 91: 348–351. PMID: 7639092

59. Ho HP, Olsson M, Westberg L, Melke J, Eriksson E (2001) The serotonin reuptake inhibitor fluoxetine reduces sex steroid-related aggression in female rats: an animal model of premenstrual irritability? Neuropsychopharmacology 24: 502–510. PMID: 11282250

60. Ten Eyck GR, Regen EM (2014) Chronic fluoxetine treatment promotes submissive behavior in the territorial frog, Eleutherodactylus coqui. Pharmacol Biochem Behav 124: 86–91. doi: 10.1016/j.pbb.2014.05.018 PMID: 24887449
63. Fanning JR, Berman ME, Guillot CR, Marsic A, McCloskey MS (2014) Serotonin (5-HT) augmentation reduces provoked aggression associated with primary psychopathy traits. J Pers Disord 28: 449–461. doi: 10.1521/pepi_2012_26_06 PMID: 22984854

64. Berman ME, McCloskey MS, Fanning JR, Schumacher JA, Coccaro EF (2009) Serotonin augmentation reduces response to attack in aggressive individuals. Psychol Sci 20: 714–720. doi: 10.1111/j.1467-9280.2009.02355.x PMID: 19422623

65. Coccaro EF, Kavoussi RJ, Hauger RL (1997) Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch Gen Psychiatry 54: 1081–1088. PMID: 9400343

66. Coccaro EF, Kavoussi RJ (1997) Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch Gen Psychiatry 54: 1081–1088. PMID: 9400343

67. Coccaro EF, Lee RJ, Kavoussi RJ (2009) A double-blind, randomized, placebo-controlled trial of fluoxetine in patients with intermittent explosive disorder. J Clin Psychiatry 70: 653–662. doi: 10.4088/JCP.08m04150 PMID: 19389333

68. Phan KL, Lee R, Coccaro EF (2011) Personality predictors of antiaggressive response to fluoxetine: inverse association with neuroticism and harm avoidance. International clinical psychopharmacology 26: 278–283. doi: 10.1097/YIC.0b013e32834978ac PMID: 21795983

69. Coccaro EF, Lee R, Kavoussi RJ (2010) Aggression, suicidality, and intermittent explosive disorder: serotonergic correlates in personality disorder and healthy control subjects. Neuropsychopharmacology 35: 435–444. doi: 10.1038/npp.2009.148 PMID: 19776731

70. Kiryanova V, Dyck RH (2014) Increased aggression, improved spatial memory, and reduced anxiety-like behaviour in adult male mice exposed to fluoxetine early in life. Dev Neurosci 36: 396–408. doi: 10.1159/000363102 PMID: 25115143

71. Constantino JN, Liberman M, Kincaid M (1997) Effects of serotonin reuptake inhibitors on aggressive behavior in psychiatrically hospitalized adolescents: results of an open trial. J Child Adolesc Psychopharmacol 7: 31–44. PMID: 9192540

72. Ricci LA, Melloni RH, Jr., (2012) Repeated fluoxetine administration during adolescence stimulates aggressive behavior and alters serotonin and vasopressin neural development in hamsters. Behav Neurosci 126: 640–653. doi: 10.1037/a0029761 PMID: 23025830

73. Passamonti L, Crockett MJ, Apergis-Schoute AM, Clark L, Rowe JB, et al. (2012) Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol Psychiatry 71: 36–43. doi: 10.1016/j.biopsych.2011.07.033 PMID: 21920502

74. Robinson OJ, Cools R, Sahakian BJ (2012) Tryptophan depletion disinhibits punishment but not reward prediction: implicatons for resilience. Psychopharmacology (Berl) 219: 599–605. doi: 10.1007/s00213-011-2410-5 PMID: 21769566

75. Crockett MJ, Clark L, Tabbinia G, Lieberman MD, Robbins TW (2008) Serotonin modulates behavioral reactions to unfairness. Science 320: 1739. doi: 10.1126/science.1155577 PMID: 18535210

76. McCloskey MS, Ben-Zeev D, Lee R, Berman ME, Coccaro EF (2009) Acute tryptophan depletion and self-injurious behavior in aggressive patients and healthy volunteers. Psychopharmacology (Berl) 203: 53–61. doi: 10.1007/s00213-008-1374-6 PMID: 18946662

77. Angoa-Perez M, Kane MJ, Sykes CE, Perrine SA, Church MW, et al. (2014) Brain serotonin determines maternal behavior and offspring survival. Genes Brain Behav 13: 579–591. doi: 10.1111/gbb.12159 PMID: 25077934

78. Godar SC, Bortolato M, Castelli MP, Casti A, Casu A, et al. (2014) The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake. J Psychiatr Res 56: 1–9. doi: 10.1016/j.jpsychires.2014.04.014 PMID: 24882701

79. Alia-Klein N, Goldstein RZ, Kriplani A, Logan J, Tomasi D, et al. (2008) Brain monoamine oxidase A activity predicts trait aggression. J Neurosci 28: 5099–5104. doi: 10.1523/JNEUROSCI.0925-08.2008 PMID: 18463263

80. Marseille R, Lee R, Coccaro EF (2012) Inter-relationship between different platelet measures of 5-HT and their relationship to aggression in human subjects. Prog Neuropsychopharmacol Biol Psychiatry 36: 277–281. doi: 10.1016/j.pnbp.2011.10.004 PMID: 22019855

81. Coccaro EF, Lee R, Kavoussi RJ (2010) Inverse relationship between numbers of 5-HT transporter binding sites and life history of aggression and intermittent explosive disorder. J Psychiatr Res 44: 137–142. doi: 10.1016/j.jpsychires.2009.07.004 PMID: 19767013

82. Goveas JS, Csernansky JG, Coccaro EF (2004) Platelet serotonin content correlates inversely with life history of aggression in personality-disordered subjects. Psychiatry Res 126: 23–32. PMID: 15081624

83. Fink KB, Gothert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59: 360–417. PMID: 18160701
84. Weber ET, Andrade R (2010) Htr2a Gene and 5-HT(2A) Receptor Expression in the Cerebral Cortex Studied Using Genetically Modified Mice. Front Neurosci 4. doi: 10.3389/fnins.2010.00300 PMID: 21350600

85. Salzman CD, Fusi S (2010) Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu Rev Neurosci 33: 173–202. doi: 10.1146/annurev.neuro.051508.135256 PMID: 20331363

86. Kruk MR, Van der Poel AM, Meelis W, Hermans J, Mostert PG, et al. (1983) Discriminant analysis of the localization of aggression-inducing electrode placements in the hypothalamus of male rats. Brain research 260: 61–79. PMID: 6681724

87. Ferris CF, Melloni RH, Jr., Koppel G, Perry KW, Fuller RW, et al. (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17: 4331–4340. PMID: 9151749

88. Lyons WE, Mamounas LA, Ricarte GA, Coppola V, Reid SW, et al. (1998) A family based association study of HTR2A in suicide attempts: observed gene, gene x environment and parent-of-origin associations. Mol Psychiatry 35: 1518–1524. doi: 10.1016/j.molpsycho.2011.04.011 PMID: 21575667

89. Stoltenberg SF, Christ CC, Highland KB (2012) Serotonin system gene polymorphisms are associated with impulsivity in a context dependent manner. Prog Neuropsychopharmacol Biol Psychiatry 39: 182–191. doi: 10.1016/j.neuropsychopharmacology.2011.09.001 PMID: 21930285

90. Ni X, Bismil R, Chan K, Sicard T, Bulgin N, et al. (2006) Serotonin 2A receptor gene is associated with personality traits, but not to disorder, in patients with borderline personality disorder. Neurosci Lett 408: 214–219. PMID: 17000047

91. Jakubczyk A, Wrozsek M, Lukaszkiewicz J, Sadowska-Mazuryk J, Matsumoto H, et al. (2012) The CC genotype in HTR2A T102C polymorphism is associated with behavioral impulsivity in alcohol-dependent patients. J Psychiatr Res 46: 44–49. doi: 10.1016/j.jpsychires.2011.09.001 PMID: 21930285

92. Saiz PA, Garcia-Portilla P, Paredes B, Corcoran P, Arango C, et al. (2011) Role of serotonergic-related systems in suicidal behavior: Data from a case-control association study. Prog Neuropsychopharmacol Biol Psychiatry 35: 1518–1524. doi: 10.1016/j.pnpbp.2011.04.011 PMID: 21575667

93. Oades RD, Lasky-Su J, Christiansen H, Faraco N, Sonuga-Barke EJ, et al. (2008) The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): Findings from a family-based association test (FBAT) analysis. Behav Brain Funct 4: 48. doi: 10.1186/1744-9081-4-48 PMID: 18997842

94. Wilkie MJ, Smith G, Day RK, Matthews K, Smith D, et al. (2009) Polymorphisms in the SLC6A4 and HTR2A genes influence treatment outcome following antidepressant therapy. Pharmacogenomics J 9: 61–70. doi: 10.1038/sj.tpj.6500491 PMID: 19253134

95. Rubin DH, Althoff RR, Ehlit EA, Davies GE, Retter DC, et al. (2013) Candidate gene associations with withdrawn behavior. J Child Psychol Psychiatry 54: 1337–1345. doi: 10.1111/jcpp.12108 PMID: 23888549

96. Ribases M, Ramos-Quiroga JA, Hervas A, Bosch R, Bielsa A, et al. (2009) Exploration of 19 serotoninergic candidate genes in adults and children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB. Mol Psychiatry 14: 71–85. PMID: 17939636

97. Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M (2013) Family-based study of HTR2A in suicide attempts: observed gene, gene x environment and parent-of-origin associations. Mol Psychiatry 18: 758–766. doi: 10.1038/mp.2012.86 PMID: 22751492

98. Bray NJ, Buckland PR, Hall H, Owen MJ, O’Donovan MC (2004) The serotonin-2A receptor locus does not contain common polymorphism affecting mRNA levels in adult brain. Mol Psychiatry 9: 109–114. PMID: 14699448

99. Kusumi I, Suzuki K, Sasaki Y, Kameda K, Sasaki T, et al. (2002) Serotonin 5-HT(2A) receptor gene polymorphism, 5-HT(2A) receptor function and personality traits in healthy subjects: a negative study. J Affect Disord 68: 235–241. PMID: 12063151

100. Spurlock G, Heils A, Holmans P, Williams J, D’Souza UM, et al. (1998) A family based association study of T102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter. Mol Psychiatry 3: 42–49. PMID: 9491812

101. Erdmann J, Shimron-Abarbanell D, Rietschel M, Albus M, Maier W, et al. (1996) Systematic screening for mutations in the human serotonin-2A (5-HT2A) receptor gene: identification of two naturally occurring receptor variants and association analysis in schizophrenia. Hum Genet 97: 614–619. PMID: 8655141

102. Ozaki N, Manji H, Lubierman V, Lu SJ, Lappalainen J, et al. (1997) A naturally occurring amino acid substitution of the human serotonin 5-HT2A receptor influences amplitude and timing of intracellular calcium mobilization. J Neurochem 68: 2186–2193. PMID: 9109547
103. Hazelwood LA, Sanders-Bush E (2004) His452Tyr polymorphism in the human 5-HT2A receptor destabilizes the signaling conformation. Mol Pharmacol 66: 1293–1300. PMID: 15496511
104. Blasi G, De Virgilio C, Papazacharias A, Taurisano P, Gelao B, et al. (2013) Converging evidence for the association of functional genetic variation in the serotonin receptor 2a gene with prefrontal function and olanzapine treatment. JAMA Psychiatry 70: 921–930. doi: 10.1001/jamapsychiatry.2013.1378 PMID: 23842608
105. Griffiths-Jones S (2006) miRBase: the microRNA sequence database. Methods Mol Biol 342: 129–138. PMID: 16957372
106. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36: D154–158. PMID: 17991681
107. Kovacs-Nagy R, Elek Z, Szekely A, Nanasi T, Sasvari-Szekely M, et al. (2013) Association of aggression with a novel microRNA binding site polymorphism in the wolframin gene. Am J Med Genet B Neuropsychiatr Genet 162B: 404–412. doi: 10.1002/ajmg.b.32157 PMID: 23650218
108. Meng Y, Shao C, Ma X, Wang H (2013) Introns targeted by plant microRNAs: a possible novel mechanism of gene regulation. Rice (N Y) 6: 8.
109. Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, et al. (2013) Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet 45: 1238–1243. doi: 10.1038/ng.2756 PMID: 24013639
110. Harms N, Ras J, Reijnders WN, van Spanning RJ, Stouthamer AH (1996) S-formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: a universal pathway for formaldehyde detoxification? J Bacteriol 178: 6296–6299. PMID: 8892832
111. Wu D, Li Y, Song G, Zhang D, Shaw N, et al. (2009) Crystal structure of human esterase D: a potential genetic marker of retinoblastoma. FASEB J 23: 1441–1446. doi: 10.1096/fj.08-125286 PMID: 19126594
112. Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7 Suppl 1: S12 11–14. PMID: 16925834
113. Liu X, Yu X, Zhac DJ, Zhu H, Qian J (2008) TiGER: a database for tissue-specific gene expression and regulation. BMC Bioinformatics 9: 271. doi: 10.1186/1471-2105-9-271 PMID: 18541026
114. Chiao JY, Blizinsky KD (2010) Culture-gene coevolution of individualism-collectivism and the serotonin transporter gene. Proc Biol Sci 277: 529–537. doi: 10.1098/rspb.2009.1650 PMID: 19864296
115. Miller GA (2010) Mistreating Psychology in the Decades of the Brain. Perspect Psychol Sci 5: 716–743. PMID: 21949539