On the continuity of \(u(t, x) := Y^{t,x}_t \) from Feynman-Kac formula for a Neumann-Dirichlet problem

Lucian Maticiuc\(^a,b\), Aurel Rășcanu\(^a\)

\(^a\) Faculty of Mathematics, “Alexandru Ioan Cuza” University, Carol I Blvd., no. 11, Iași, 700506, Romania.
\(^b\) Department of Mathematics, “Gheorghe Asachi” Technical University of Iași, Carol I Blvd., no. 11, 700506, Romania

May 22, 2014

Abstract

In this note we prove the continuity of the deterministic function \(u : [0, T] \times \bar{D} \to \mathbb{R} \), \(u(t, x) := Y^{t,x}_t \), where process \((Y^{t,x}_s)_{s \in [t, T]}\) is defined by the generalized multivalued backward stochastic differential equation:

\[
\begin{aligned}
 dY^{t,x}_s + F(s, X^{t,x}_s, Y^{t,x}_s)ds + G(s, X^{t,x}_s, Y^{t,x}_s)dA^{t,x}_s \\ + \partial \psi(Y^{t,x}_s)dA^{t,x}_s + Z^{t,x}_s dW_s, & \quad t \leq s \leq T, \\
 Y_T = \xi.
\end{aligned}
\]

The process \((X^{t,x}_s, A^{t,x}_s)_{s \geq t}\) is given by a stochastic differential equation with reflecting boundary conditions.

Keywords or phrases: Reflected diffusion processes; Continuity w.r.t. initial data

The aim of this paper is to correct the statement of [10, Proposition 13-inequality (40)] and the proof of [10, Corrolary 14-(c)]. In order to obtain the conclusion we should assume the additional conditions (11) and (12). Moreover, we will restrict to the case where coefficient \(f \) does not depend on \(Z \). We mention that our approach follows [2, Section 4].

This note is connected with many other papers; starting with [13] the viscosity solution of various type of parabolic partial differential equation with Neumann boundary condition, via probabilistic methods, represent the subject of: [3, 16, 4, 17, 5, 14, 15, 1].

We adopt all the notations and assumptions used in [10]. Let \(\mathcal{D} \) be a open connected bounded subset of \(\mathbb{R}^d \) of the form

\[\mathcal{D} = \{ x \in \mathbb{R}^d : \ell(x) < 0 \}, \quad \text{Bd}(\mathcal{D}) = \{ x \in \mathbb{R}^d : \ell(x) = 0 \}, \]

where \(\ell \in C^3_b(\mathbb{R}^d), |\nabla \ell(x)| = 1 \), for all \(x \in \partial \mathcal{D} \).

E-mail addresses: lucian.maticiuc@ymail.com (Lucian Maticiuc), aurel.rascanu@uaic.ro (Aurel Rășcanu)
Functions

\[b : [0, \infty) \times \mathbb{R}^d \rightarrow \mathbb{R}^d, \]
\[\sigma : [0, \infty) \times \mathbb{R}^d \rightarrow \mathbb{R}^{d \times d}, \]
\[f : [0, \infty) \times \overline{\mathcal{D}} \times \mathbb{R} \rightarrow \mathbb{R}, \]
\[g : [0, \infty) \times \text{Bd} (\mathcal{D}) \times \mathbb{R} \rightarrow \mathbb{R}, \]
\[h : \overline{\mathcal{D}} \rightarrow \mathbb{R} \]

are continuous.

We assume that for all \(T > 0 \) there exist \(\alpha \in \mathbb{R} \) and \(L, \beta, \gamma \geq 0 \) (which can depend on \(T \)) such that \(\forall t \in [0, T] \), \(\forall x, \tilde{x} \in \mathbb{R}^d \):

\[
|b(t, x) - b(t, \tilde{x})| + ||\sigma(t, x) - \sigma(t, \tilde{x})|| \leq L \|x - \tilde{x}\|,
\]
and \(\forall t \in [0, T], \forall x \in \overline{\mathcal{D}}, u \in \text{Bd} (\mathcal{D}), y, \tilde{y} \in \mathbb{R} : \)

\[
(i) \quad (y - \tilde{y}) (f(t, x, y) - f(t, \tilde{x}, \tilde{y})) \leq \alpha \|y - \tilde{y}\|^2,
(ii) \quad |f(t, x, y)| \leq \gamma (1 + |y|),
(iii) \quad (y - \tilde{y}) (g(t, u, y) - g(t, u, \tilde{y})) \leq \alpha \|y - \tilde{y}\|^2,
(iv) \quad |g(t, u, y)| \leq \gamma (1 + |y|).
\]

With respect to the functions \(\varphi \) and \(\psi \) we assume

\[
(i) \quad \varphi, \psi : \mathbb{R} \rightarrow (-\infty, +\infty] \text{ are proper convex l.s.c. functions,}
(ii) \quad \varphi(y) \geq \varphi(0) = 0 \text{ and } \psi(y) \geq \psi(0) = 0, \forall y \in \mathbb{R},
\]

and there exists a positive constant \(M \) such that

\[
(i) \quad |\varphi(h(x))| \leq M, \quad \forall x \in \overline{\mathcal{D}},
(ii) \quad |\psi(h(x))| \leq M, \quad \forall x \in \text{Bd} (\mathcal{D}).
\]

We define

\[
\text{Dom} (\varphi) = \{ u \in \mathbb{R} : \varphi(u) < \infty \},
\]
\[\partial \varphi (u) = \{ u^* \in \mathbb{R} : u^*(v - u) + \varphi(u) \leq \varphi(v), \forall v \in \mathbb{R} \}, \]
\[\text{Dom}(\partial \varphi) = \{ u \in \mathbb{R} : \partial \varphi(u) \neq \emptyset \}, \]
\[(u, u^*) \in \partial \varphi \iff u \in \text{Dom} \partial \varphi, \quad u^* \in \partial \varphi(u) \]

(for the function \(\psi \) we have the similar notation).

We introduce compatibility assumptions for all \(\epsilon > 0, t \geq 0, x \in \text{Bd} (\mathcal{D}), \tilde{x} \in \overline{\mathcal{D}} \) and \(y \in \mathbb{R} \):

\[
(i) \quad \nabla \varphi_{\epsilon} (y) g (t, x, y) \leq [\nabla \psi_{\epsilon} (y) g(t, x, y)]^+, \\
(ii) \quad \nabla \psi_{\epsilon} (y) f (t, \tilde{x}, y) \leq [\nabla \varphi_{\epsilon} (y) f(t, x, y)]^+,
\]

where \(a^+ = \max \{0, a\} \) and \(\nabla \varphi_{\epsilon} (y), \nabla \psi_{\epsilon} (y) \) are the unique solutions \(U \) and \(V \), respectively, of equations

\[
\partial \varphi (y - \epsilon U) \ni U \quad \text{and} \quad \partial \psi (y - \epsilon V) \ni V.
\]
Let now $T > 0$ be arbitrary and fixed. It follows from [8, Theorem 3.1] that for each $(t, x) \in [0, T] \times \mathcal{D}$ there exists a unique pair of continuous \mathcal{F}^t_s-p.m.s.p. $(X^t_{s,x}, A^t_{s,x})_{s \in [t, T]}$, with values in $\mathcal{D} \times \mathbb{R}_+$, solution of reflected stochastic differential equation:

$$
\begin{cases}
X^t_{s,x} = x + \int_t^s b(r, X^t_{r,x})dr + \int_t^s \sigma(r, X^t_{r,x})dW_r - \int_t^s \nabla \ell(X^t_{r,x})dA^t_{r,x}, \\
s \mapsto A^t_{s,x} \text{ is increasing,} \\
A^t_{s,x} = \int_t^s 1_{\{X^t_{r,x} \in \text{Bd}(\mathcal{D})\}}dA^t_{r,x}, \forall s \in [0, T],
\end{cases}
$$

(7)

where

$$
\mathcal{F}^t_s = \sigma \{ W_r - W_t : t \leq r \leq s \} \cup \mathcal{N}.
$$

We introduce a notation for the martingale part of the reflected diffusion process $X^t_{s,x}$:

$$
M^X_{s,x} := \int_t^s \sigma(X^t_{r,x})dW_r.
$$

Since \mathcal{D} is a bounded set, then

$$
\sup_{s \geq 0} |X^t_{s,x}| \leq M
$$

(8)

and with calculus similar to that in [13] we have for all $\mu, T, p > 0$ there exists a positive constant C such that $\forall t, t' \in [0, T], x, x' \in \mathcal{D}$:

$$
\mathbb{E} \sup_{s \in [0, T]} |X^t_{s,x} - X^t_{s,x'}|^p \leq C \left(|x - x'|^p + |t - t'|^\frac{p}{2} \right),
$$

(9)

$$(t, x) \mapsto A^t_{s,x} : [0, T] \times \mathcal{D} \rightarrow C([0, T], \mathbb{R}_+) \text{ is continuous } \mathbb{P}\text{-a.s.}
$$

and

$$
\mathbb{E}[e^{\mu A^t_{s,x}}] < \infty.
$$

(10)

In addition to paper [10] we impose two supplementary assumptions:

for all $(r, x) \in [0, T] \times \mathcal{D}$ the matrix $\sigma(r, x)$ is invertible

(11)

and $\forall t, \tilde{t} \in [0, T], x \in \text{Bd}(\mathcal{D}), y, \tilde{y} \in \mathbb{R}$

$$
|g(t, x, y) - g(\tilde{t}, \tilde{x}, \tilde{y})| \leq \beta \left(|t - \tilde{t}| + |x - \tilde{x}| + |y - \tilde{y}| \right).
$$

(12)

Under assumptions (1)-(6), it follows from [10, Theorem 9] (with $k = 1$ and τ replaced by T) that for each $(t, x) \in [0, T] \times \mathcal{D}$ there exists a unique 4-tuple $(Y^t_{x, x}, Z^t_{x, x}, U^t_{x, x}, V^t_{x, x})$ of p.m.s.p. such that Y^t_{x} has continuous trajectories,

$$
\mathbb{E} \sup_{s \in [0, T]} e^{\lambda s + \mu A^t_{s,x}} |Y^t_{s,x}|^2 + \mathbb{E} \int_0^T e^{\lambda s + \mu A^t_{s,x}} |Y^t_{s,x}|^2 (ds + dA^t_{s,x}) < \infty,
$$

$$
\mathbb{E} \int_0^T e^{\lambda s + \mu A^t_{s,x}} |Z^t_{s,x}|^2 ds < \infty,
$$

$$
\mathbb{E} \int_0^T e^{\lambda s + \mu A^t_{s,x}} |U^t_{s,x}|^2 ds < \infty, \quad \mathbb{E} \int_0^T e^{\lambda s + \mu A^t_{s,x}} |V^t_{s,x}|^2 dA^t_{s,x} < \infty,
$$

3
and

\[(Y_{s}^{t,x}, U_{s}^{t,x}) \in \partial \varphi, \ P (d\omega) \otimes dt, \quad (Y_{s}^{t,x}, V_{s}^{t,x}) \in \partial \psi, \ P (d\omega) \otimes A (\omega, dt), \ \text{a.e. on } \Omega \times [t, T], \quad (13)\]

and satisfy the following BSDE:

\[
Y_{s}^{t,x} + \int_{s}^{T} U_{r}^{t,x} dr + \int_{s}^{T} V_{r}^{t,x} dA_{r}^{t,x} = h(X_{T}^{t,x}) + \int_{s}^{T} 1_{[t,T]} (r) f (r, X_{r}^{t,x}, Y_{r}^{t,x}) dr \\
+ \int_{s}^{T} 1_{[t,T]} (r) g (r, X_{r}^{t,x}, Y_{r}^{t,x}) dA_{r}^{t,x} - (M_{T}^{t,x} - M_{s}^{t,x}), \ \text{for all } s \in [0, T] \ \text{a.s.} \quad (14)\]

where

\[M_{s}^{t,x} := \int_{0}^{s} \hat{Z}_{r}^{t,x} dM_{r}^{X_{t,x}}.\]

Above we have extended the solution to interval \([0, t)\) by defining

\[Y_{s}^{t,x} = Y_{t}^{t,x}, \ \hat{Z}_{s}^{t,x} = 0, \ U_{s}^{t,x} = 0, \ V_{s}^{t,x} = 0, \ M_{s}^{X_{t,x}} = 0, \ \forall s \in [0, t).\]

We mention that, if we denote

\[K_{s}^{1,t,x} := \int_{0}^{s} U_{r}^{t,x} dr \quad \text{and} \quad K_{s}^{2,t,x} := \int_{0}^{s} V_{r}^{t,x} dA_{r}^{t,x},\]

then conditions (13) are equivalent with

\[
\int_{s_{1}}^{s_{2}} \langle u - Y_{r}^{t,x}, dK_{r}^{1,t,x} \rangle + \int_{s_{1}}^{s_{2}} \varphi (Y_{r}^{t,x}) dr \leq \int_{s_{1}}^{s_{2}} \varphi (u) dr, \\
\forall u \in \mathbb{R}, \ \forall 0 \leq t \leq s_{1} \leq s_{2} \quad (15)\]

and

\[
\int_{s_{1}}^{s_{2}} \langle v - Y_{r}^{t,x}, dK_{r}^{2,t,x} \rangle + \int_{s_{1}}^{s_{2}} \psi (Y_{r}^{t,x}) dA_{r}^{t,x} \leq \int_{s_{1}}^{s_{2}} \psi (v) dA_{r}^{t,x}, \\
\forall v \in \mathbb{R}, \ \forall 0 \leq t \leq s_{1} \leq s_{2}. \quad (16)\]

Notations

\[dK_{s}^{1,t,x} \in \partial \varphi(Y_{s}^{t,x}) d\omega, \ \mathbb{P}\text{-a.e.} \quad \text{and} \quad dK_{s}^{2,t,x} \in \partial \psi(Y_{s}^{t,x}) dA_{s}^{t,x}, \ \mathbb{P}\text{-a.e.} \quad (17)\]

mean that inequalities (15) and (16) are respectively satisfied.

We remark in addition that functions \(f, g\) depends by \(\omega\) only via function \(X_{t,x}\).

Below is the correct statement of [10, Proposition 13]. The only difference is due to the presence, in inequality (19), of the integral with respect to the measure generated by the total variation \(\mathcal{V} A_{t}^{t,x} - A_{t}^{t,x} \mathcal{V}\). The proof uses the same techniques and inequalities as declared in [10, Proposition 13].
Proposition 1 Under assumptions (1)-(6), we have

$$
\mathbb{E} \sup_{s \in [0, T]} e^{\lambda s + \mu A_s} |Y^t, x|^2 \leq C(T)
$$

(18)

and

$$
\mathbb{E} \sup_{s \in [0, T]} e^{\lambda s + \mu A_s} |Y^t, x - Y^t, x'|^2 \leq \mathbb{E} \left[e^{\lambda T + \mu A_T} |h(X^T_T) - h(X^T_T')|^2
+ \int_0^T e^{\lambda r + \mu A_r} \left(\mathbb{1}_{[t, T]}(r) f(r, X^r_T, Y^r_T, Z^r_T) - \mathbb{1}_{[t', T]}(r) f(r, X^r_T, Y^r_T, Z^r_T) \right)^2 dr
+ \int_0^T e^{\lambda r + \mu A_r} \left(\mathbb{1}_{[t, T]}(r) g(r, X^r_T, Y^r_T) - \mathbb{1}_{[t', T]}(r) g(r, X^r_T, Y^r_T) \right)^2 dA^r_T
+ \int_0^T e^{\lambda r + \mu A_r} \mathbb{1}_{[t, T]}(r) \left| g(r, X^r_T, Y^r_T) \right|^2 dA^{t,x}_r \right].
$$

(19)

We define

$$
u(t, x) = Y^t_t, \quad (t, x) \in [0, T] \times \mathcal{D},$$

(20)

which is a determinist quantity since Y^t_t is $\mathcal{F}^t_t \equiv \mathcal{N}$-measurable.

From the Markov property we have

$$
u(s, X^r_s) = Y^r_s.
$$

(21)

The proof of the first two points in [10, Corollary 14] is the same. Concerning the point (c), we highlight that now the continuity of application $(t, x) \mapsto \nu(t, x)$ does not follows anymore directly from inequality (19) (as in [10, Corollary 14-(c)]). Our note involves new arguments. Since the function ν is defined through Y^t_t, the problem of continuity of ν is reduced to the continuity of the stochastic process with respect to the initial data (t, x). We will give first a generalization of [2, Proposition 15] to our backward stochastic equation; more precisely, we will show that $(Y^t, x)_{s \in [0, T]}$ is tight in a suitable topological space and we will use the techniques presented in [2, Section 4] and [3, Section 3]. This approach forces us to restrict to the case where coefficient f does not depend on Z (for a more detailed explanation see the comments from [11, Section 6, page 535]).

Let consider the Skorohod space $\mathcal{D} = \mathcal{D} \left([0, T], \mathbb{R} \right)$ of càdlàg functions $\nu : [0, T] \rightarrow \mathbb{R}$ (i.e. right continuous and with left-hand limits) endowed with \mathcal{S}-topology (introduced by Jakubowski in [6]). Space $C \left([0, T], \mathbb{R}^d \right)$ of continuous functions is equipped with the supremum norm topology.

We work with \mathcal{S}-topology because we need the continuity of application $\mathcal{D} \ni y \mapsto \int_0^s g(r, y(r)) dA_r$, where h is a continuous function and A is a continuous non-decreasing function. This property is not true in Meyer-Zheng topology (unless the measure induced by A is absolutely continuous with respect to the Lebesgue measure).

For the convenience of the reader we summarize the introduction of \mathcal{S}-topology (see [6]). First, let $\mathcal{V}^+ \subset \mathcal{D}$ denote the space of non-negative and non-decreasing functions $\mathcal{D} \ni \nu : [0, T] \rightarrow \mathbb{R}$ and therefore $\mathcal{V} := \mathcal{V}^+ - \mathcal{V}^+$ is the space of bounded variation functions. \mathcal{S}-topology is a sequential topology defined by:
Definition 2 Sequence \((x_n)_{n \in \mathbb{N}} \subset \mathbb{D}\) converges to \(x_0 \in \mathbb{D}\) (denoted by \(x_n \longrightarrow x_0\)) if for every \(\varepsilon > 0\), there exists \((v_{n,\varepsilon})_{n \in \mathbb{N}} \subset \mathbb{D}\) such that:

(a) elements \(v_{n,\varepsilon}\) are \(\varepsilon\)-uniformly close to \(x_n\), i.e.

\[
\sup_{[0,T]} |x_n(t) - v_{n,\varepsilon}(t)| \leq \varepsilon, \ \forall n \in \mathbb{N};
\]

(b) \(v_{n,\varepsilon}\) is weakly-* convergence to \(v_{0,\varepsilon}\) (denoted by \(\longrightarrow\)), i.e for every continuous function \(f : [0,T] \rightarrow \mathbb{R}\),

\[
\int_0^T f(t) \, dv_{n,\varepsilon}(t) \longrightarrow \int_0^T f(t) \, dv_{0,\varepsilon}(t), \text{ as } n \rightarrow \infty.
\]

Remark 3 ([6, Remark 2.4]) From this definition we deduce the pointwise convergence outside a countable set \(Q_\varepsilon \subset [0,T]\), i.e.

\[
v_{n,\varepsilon}(t) \longrightarrow v_{0,\varepsilon}(t), \ \forall t \in [0,T] \setminus Q_\varepsilon.
\]

In addition

\[x_n(t) \longrightarrow x_0(t), \ \forall t \in [0,T] \setminus \bigcup_{i=1}^{\infty} Q_{1/i}.
\]

A very important ingredient is the following result (a generalization of the Helly-Bray theorem) due to Boufoussi, Van Casteren [3]. We precise that, with a slight change of the proof, we can consider weaker assumptions in order to obtain the same convergence result:

Lemma 4 ([3, Lemma 3.3]) Let \(\Phi_n : [0,T] \times \mathbb{R} \rightarrow \mathbb{R}\) with \(1 \leq n \leq \infty\), be uniformly locally Lipschitz functions, such that

\[
\lim_{n \rightarrow \infty} \Phi_n(s,y) = \Phi_\infty(s,y), \ \forall (s,y) \in [0,T] \times \mathbb{R},
\]

and \((H^n)_{1 \leq n \leq \infty}\) be a sequence of elements of \(\mathcal{V}_+^c\) (the subspace of continuous functions \(V \in \mathcal{V}_+\) vanishing at 0) such that

\[
\lim_{n \rightarrow \infty} \|H^n(\cdot) - H_\infty(\cdot)\|_\infty = 0.
\]

Let sequence \((Y^n)_{1 \leq n \leq \infty} \subset \mathbb{D}\) such that

\[Y^n \longrightarrow Y_\infty \text{ as } n \rightarrow \infty.
\]

Then there exists a countable subset \(Q \subset [0,T]\) such that for all \(t \in [0,T] \setminus Q\) :

\[
\lim_{n \rightarrow \infty} \int_0^t \Phi_n(s,Y^n(s)) \, dH^n(s) = \int_0^t \Phi_\infty(s,Y_\infty(s)) \, dH_\infty(s).
\]

The main result of this note is the following:

Proposition 5 Under assumptions (1)-(6) and (11)-(12), function

\[(t, x) \mapsto u(t, x) = Y^{t,x}_t : [0,T] \times \mathcal{D} \rightarrow \mathbb{R}\]

is continuous.
Remark 6 Using the continuity of u it was proved in [10] that this function is the unique viscosity solution of the following parabolic variational inequality with a mixed nonlinear multivalued Neumann-Dirichlet boundary condition:

$$
\begin{cases}
\frac{\partial u(t, x)}{\partial t} - \mathcal{L}_t u(t, x) + \partial \varphi(u(t, x)) \geq f(t, x, u(t, x)), & t > 0, \ x \in \mathcal{D}, \\
\frac{\partial u(t, x)}{\partial n} + \partial \psi(u(t, x)) \geq g(t, x, u(t, x)), & t > 0, \ x \in \partial \mathcal{D}, \\
u(0, x) = h(x), & x \in \mathcal{D}.
\end{cases}
$$

Proof of Proposition 5. Let $(t_n, x_n) \to (t, x)$, as $n \to \infty$. To prove that $u(t_n, x_n) \to u(t, x)$ is equivalent with proving that any subsequence has a further subsequence which converges to $u(t, x)$. Let (t_{n_k}, x_{n_k}) be an arbitrary subsequence still denoted in the sequel by (t_n, x_n).

Using the definitions

$$f_n(r, x, y) := \mathbb{1}_{[t_n, T]}(r) f(r, x, y) \quad \text{and} \quad g_n(r, x, y) := g(r \vee t_n, x, y)$$

it is clearly that the processes

$$X^n := X^{t_n, x_n}, \ A^n := A^{t_n, x_n} \quad \text{and} \quad Y^n := Y^{t_n, x_n}, \ \dot{Z}^n := \dot{Z}^{t_n, x_n}, \ U^n := U^{t_n, x_n}, \ V^n := V^{t_n, x_n}$$

satisfy equation (7)

$$\begin{cases}
X^n_s = x + \int_{t_n}^{s \wedge t} b(r, X^n_r)dr + \int_{t_n}^{s \wedge t} \sigma(r, X^n_r)dW_r - \int_{t_n}^{s \wedge t} \nabla \ell(X^n_r)dA^n_r, \\
A^n_s = \int_{t_n}^{s \wedge t} \mathbb{1}_{\{X^n_r \in \partial \mathcal{D}\}}dA^n_r, \forall s \in [0, T]
\end{cases} \quad (22)$$

and backward equation

$$Y^n_s + \int_s^T U^n_r dr + \int_s^T V^n_r dA^n_r = h(X^n_T) + \int_s^T f_n(r, X^n_r, Y^n_r)dr + \int_s^T g_n(r, X^n_r, Y^n_r)dr$$

$$+ \int_s^T \dot{Z}^n_r dM^n_r, \ s \in [0, T] \quad (23)$$

such that (13) is satisfied.

The first part of the proof is adapted from [2, Proposition 15] and [3, Theorem 3.1].

Since we have the conclusion of the existence Theorem 9 from [10] and $\lambda, \mu \geq 0$ we easily see that:

$$\sup_{n \in \mathbb{N}} \mathbb{E}\left(\sup_{s \in [0, T]} |Y^n_s|^2 \right) + \mathbb{E}\left(\int_0^T |Y^n_r|^2 dA^n_r \right) + \mathbb{E}\left(\int_0^T |Z^n_r|^2 dr \right) < \infty.$$

The S-tightness we will be obtained using the sufficient condition given, e.g., in [7, Appendix A]; for this we shall prove the uniform boundedness for the quantities of type

$$CV_T(L) + \mathbb{E}\left(\sup_{s \in [0, T]} |L_s| \right),$$
where the conditional variation CV_T is defined by

$$CV_T(L) := \sup_{\pi} \sum_{i=0}^{m-1} \mathbb{E}\left[\left|\mathbb{E}^{F_i} [L_{t_{i+1}} - L_{t_i}]\right|\right]$$

(24)

with the supremum taken on partitions $\pi : t = t_0 < t_1 < \cdots < t_m = T$.

Let

$$M_n := \int_0^s Z_r^n dM_r^X$$

and

$$K_{s,n} := \int_0^s U_r^n dr, \quad K_{s,n}^2 := \int_0^s V_r^n dA_r^n, \forall s \in [0,T].$$

Equation (23) becomes

$$Y_n^s + (K_{s,n}^1 - K_{s,n}^1) + (K_{s,n}^2 - K_{s,n}^2) = h(X_n^s) + \int_s^T f_n(r, X_r^n, Y_r^n) dr$$

$$+ \int_s^T g_n(r, X_r^n, Y_r^n) dA_r^n - (M_n^s - M_n^s), \quad s \in [0,T]$$

(25)

with

$$dK_{s,n}^1 \in \partial \varphi (Y_n) ds, \quad \mathbb{P}\text{-a.e.} \quad \text{and} \quad dK_{s,n}^2 \in \partial \psi (Y_n) dA_n, \quad \mathbb{P}\text{-a.e., } \forall s \in [t_n, T].$$

(26)

It is easy to make the computations (as in [2, Proposition 15] or [3, Theorem 3.1]) and to deduce that

$$\sup_{n \in \mathbb{N}} \left[CV_T (Y_n^s) + \mathbb{E}\left(\sup_{s \in [0,T]} |Y_n^s| \right) + \mathbb{E}\left(\sup_{s \in [0,T]} |M_n^s| \right) \right] < \infty$$

and

$$\sup_{n \in \mathbb{N}} \left[CV_T (K_{s,n}^1) + \mathbb{E}\left(\sup_{s \in [0,T]} |K_{s,n}^1| \right) + CV_T (K_{s,n}^2) + \mathbb{E}\left(\sup_{s \in [0,T]} |K_{s,n}^2| \right) \right] < \infty.$$

As example,

$$CV_T (K_{s,n}^2) + \mathbb{E}\left(\sup_{s \in [0,T]} |K_{s,n}^2| \right) \leq \mathbb{E} \int_0^T |V_r^n| dA_r^n$$

$$\leq \left(\mathbb{E}(A_T^n) \right)^{1/2} \left[\mathbb{E} \int_0^T |V_r^n|^2 dA_r^n \right]^{1/2} \leq C.$$

Now the criterion presented in [7, Appendix A] ensures tightness with respect to the S-topology of the sequence $(Y_n^s, M_n^s, K_{s,n}^1, K_{s,n}^2)$ and therefore

$$\Gamma^n := (X^n, W, A^n, Y^n, M^n, K_{s,n}^1, K_{s,n}^2)$$

is tight in $C^2 ([0,T], \mathbb{R}^d) \times C([0,T], \mathbb{R}) \times \mathbb{D}^4$.

From [6, Theorem 3.4 & Definition 3.3], it follows that there exists a subsequence (still denoted by n) and the following processes, defined on the same probability space $([0,1], B_{[0,1]}, \lambda)$,

$$\bar{\Gamma}^n := (\bar{X}^n, \bar{W}^n, \bar{A}^n, \bar{Y}^n, \bar{M}^n, \bar{K}_{s,n}^1, \bar{K}_{s,n}^2) \in C^2 ([0,T], \mathbb{R}^d) \times C([0,T], \mathbb{R}) \times \mathbb{D}^4$$
and
\[\Gamma := (\bar{X}, \bar{W}, \bar{A}, \bar{Y}, \bar{M}, \bar{K}^1, \bar{K}^2) \in C^2([0, T], \mathbb{R}^d) \times C([0, T], \mathbb{R}) \times \mathbb{D}^4 \]

such that
\[\Gamma^n \sim \Gamma^n \]

and
\[\forall \omega \in [0, 1], \bar{\Gamma}^n (\omega) \xrightarrow{U^3 \times \mathbb{S}^4} \bar{\Gamma} (\omega), \text{ as } n \to \infty. \]

As a consequence we obtain
\[\forall \omega \in [0, 1], (\bar{X}^n (\omega), \bar{W}^n (\omega), \bar{A}^n (\omega)) \to (\bar{X} (\omega), \bar{W} (\omega), \bar{A} (\omega)), \]

in \(C^2([0, T], \mathbb{R}^d) \times C([0, T], \mathbb{R}) \), as \(n \to \infty. \)

From the S-convergence we see that we have in addition the pointwise convergence of the sequence \((Y^n, M^n, K^{1,n}, K^{2,n})_n\), outside a countable set \(Q_1 \subset [0, T]\).

We are now able to pass to the limit in (22): since
\[(X^n, W, A^n) \sim (\bar{X}^n, \bar{W}^n, \bar{A}^n) \]

we deduce, using classical arguments, that \((\bar{X}^n, \bar{W}^n, \bar{A}^n)\) satisfy equation (22), the limit process \((\bar{X}, \bar{W}, \bar{A})\) satisfy equation (7) and \(W^n, \bar{W}\) are Brownian motion with respect to the filtration \(\mathcal{F}^{\bar{X}, \bar{W}}\). Hence we have
\[(\bar{X}, \bar{A}) = (\bar{X}_{t,x}^r, \bar{A}_{t,x}^r), \]

where \((\bar{X}_{t,x}^r, \bar{A}_{t,x}^r)_{r \in [0,T]}\) is the solution of equation (7) considered on the probability space \(([0,1], \mathcal{B}[0,1], \lambda)\).

Concerning equation (25), we state first the following technical result (which proof is left to the reader):

Lemma 7 Let
\[(X^n, Y^n, M^n, K^{1,n}, K^{2,n}) \sim (\bar{X}^n, \bar{Y}^n, \bar{M}^n, \bar{K}^1, \bar{K}^2, n) \]

and two continuous functions \(G : [0, T] \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}\) and \(\phi : C([0, T], \mathbb{R}^d) \times \mathbb{D}^4 \to \mathbb{R}\). If
\[\phi(X^n, Y^n, M^n, K^{1,n}, K^{2,n}) = \int_{s_1}^{s_2} G(r, X^n_r, Y^n) \, dA^n_r \]

then
\[\phi(\bar{X}^n, \bar{Y}^n, \bar{M}^n, \bar{K}^{1,n}, \bar{K}^{2,n}) = \int_{s_1}^{s_2} G(r, \bar{X}^n_r, \bar{Y}^n) \, d\bar{A}^n_r. \]

Hence we deduce that
\[Y^n_s + (\bar{K}^{1,n}_T - \bar{K}^{1,n}_s) + (\bar{K}^{2,n}_T - \bar{K}^{2,n}_s) = h(\bar{X}^n_T) + \int_s^T f_n(r, \bar{X}^n_r, \bar{Y}^n) \, dr \]

\[+ \int_s^T g_n(r, \bar{X}^n_r, \bar{Y}^n) \, d\bar{A}^n_r - (M^n_T - M^n_s), \quad s \in [0, T]. \]

(27)

In order to prove that (26) holds true for \((\bar{Y}^n, \bar{K}^{1,n}, \bar{K}^{2,n})\), the next Lemma can be proved:
Lemma 8 Let

\[(A^n, Y^n, K^{2,n}) \sim (\bar{A}^n, \bar{Y}^n, \bar{K}^{2,n}) \]

and a proper convex l.s.c. function \(\psi : \mathbb{R} \to (-\infty, +\infty] \) such that \(\psi(y) \geq \psi(0) = 0, \forall y \in \mathbb{R} \).

If

\[
\int_{s_1}^{s_2} \psi(Y^n_r) dA^n_r \leq \int_{s_1}^{s_2} (Y^n_r - v) dK^{2,n}_r + \int_{s_1}^{s_2} \psi(v) dA^n_r, \forall v \in \mathbb{R}, \forall 0 \leq t \leq s_1 \leq s_2.
\]

then

\[
\int_{s_1}^{s_2} \psi(\bar{Y}^n_r) d\bar{A}^n_r \leq \int_{s_1}^{s_2} (\bar{Y}^n_r - v) d\bar{K}^{2,n}_r + \int_{s_1}^{s_2} \psi(v) d\bar{A}^n_r, \forall v \in \mathbb{R}, \forall 0 \leq t \leq s_1 \leq s_2.
\]

Hence we deduce that

\[d\bar{K}^{1,n}_s \in \partial \varphi(\bar{Y}^n_s) ds, \mathbb{P}\text{-a.e. and } d\bar{K}^{2,n}_s \in \partial \psi(\bar{Y}^n_s) d\bar{A}^n_s, \mathbb{P}\text{-a.e., } \forall s \in [t_n, T]. \]

\[(28) \]

Now we can pass to the limit in \((27)\).

First, applying \([6, \text{Corollary 2.11}]\), we see that

\[
\lim_{n \to \infty} \int_s^T f_n(r, \bar{X}_r^n, \bar{Y}_r^n) dr = \int_s^T f(r, \bar{X}_r^{t,x}, \bar{Y}_r) dr,
\]

since

\[
\int_s^T f_n(r, \bar{X}_r^n, \bar{Y}_r^n) dr = \int_s^T \mathbb{1}_{[t_n, T]}(r) f(r, \bar{X}_r^n, \bar{Y}_r^n) dr
\]

\[
= \int_s^T \mathbb{1}_{[t, T]}(r) f(r, \bar{X}_r^n, \bar{Y}_r^n) dr + \int_s^T f(r, \bar{X}_r^n, \bar{Y}_r^n)(\mathbb{1}_{[t_n, T]}(r) - \mathbb{1}_{[t, T]}(r)) dr.
\]

For the Riemann-Stieltjes integral we will apply Lemma 4. Hence, there exists a countable set \(Q_2 \subset [0, T] \) such that, for any \(s \in [0, T] \setminus Q_2 \),

\[
\lim_{n \to \infty} \int_0^s g_n(r, \bar{X}_r^n, \bar{Y}_r^n) d\bar{A}^n_r = \int_0^s g(r, \bar{X}_r^{t,x}, \bar{Y}_r) d\bar{A}_r^{t,x}.
\]

It follows that

\[
\bar{Y}_s + (\bar{K}_s^1 - \bar{K}_s^2) + (\bar{K}_s^2 - \bar{K}_s^2) = h(\bar{X}_T) + \int_s^T \mathbb{1}_{[t, T]}(r) f(r, \bar{X}_r^{t,x}, \bar{Y}_r) dr
\]

\[
+ \int_s^T g(r, \bar{X}_r^{t,x}, \bar{Y}_r) d\bar{A}_r^{t,x} - (\bar{M}_T - \bar{M}_s), s \in [0, T] \setminus (Q_1 \cup Q_2).
\]

\[(29) \]

Since the processes \(\bar{Y}, \bar{M}, \bar{K}^1 \) and \(\bar{K}^2 \) are càdlàg the above equality take place for any \(s \in [0, T] \).

From the above equation, it is immediately that \(\bar{M} \) is \(\mathcal{F}_s^X, W, A, Y, M, K^1, K^2 \)-adapted and it can be show (see e.g. the proof \([3, \text{Theorem 3.1 (step 3)}]\)) that both \(M^X \) and \(M \) are martingale.
with respect to the same filtration \(\mathcal{F}_s^X, \mathcal{W}, \hat{A}, \mathcal{Y}, \mathcal{M}, \mathcal{K}_1, \mathcal{K}_2 \) (and this is the reason to work not with the filtration generated by the Brownian motion).

On our new probability space \([0, 1], \mathcal{B}_{[0,1]}, \lambda\) we consider the solution \((\bar{Y}^{t,x}, \bar{Z}^{t,x}, \bar{U}^{t,x}, \bar{V}^{t,x})\) of the BSDE (14):

\[
\begin{align*}
\bar{Y}^{t,x}_s + (\bar{K}^1_{T} - \bar{K}^1_s) + (\bar{K}^2_{T} - \bar{K}^2_s) = h(X^{t,x}_T) + \int_s^T \mathbb{1}_{[t,T]}(r) f(r, \bar{X}^{t,x}_r, \bar{Y}^{t,x}_r) dr \\
+ \int_s^T g(r, \bar{X}^{t,x}_r, \bar{Y}^{t,x}_r) d\bar{A}^{t,x}_r - (\bar{M}^{t,x}_T - \bar{M}^{t,x}_s), \quad s \in [0, T],
\end{align*}
\]

with

\[
d\bar{K}^1_s \in \partial \varphi(\bar{Y}^{t,x}_s) ds, \quad \mathbb{P}\mbox{-a.e.} \quad \text{and} \quad d\bar{K}^2_s \in \partial \psi(\bar{Y}^{t,x}_s) d\bar{A}^{t,x}_s, \quad \mathbb{P}\mbox{-a.e.},
\]

where

\[
\begin{align*}
\bar{K}^1_{t,x} := \int_0^t \bar{U}^{t,x}_s ds, \quad \bar{K}^2_{t,x} := \int_0^t \bar{V}^{t,x}_s d\bar{A}^{t,x}_s, \quad \bar{M}^{t,x}_s := \int_0^s \bar{Z}^{t,x}_r d\bar{M}^{t,x}_r.
\end{align*}
\]

From Itô’s formula applied to (29) and (30) and since \(\bar{M} \) and \(\bar{M}^{t,x} \) are martingale with respect to the same filtration, we obtain

\[
\begin{align*}
&\left| \bar{Y}_s - \bar{Y}^{t,x}_s \right|^2 + \left([\bar{M} - \bar{M}^{t,x}]_T - [\bar{M} - \bar{M}^{t,x}]_s \right) \\
&\quad + 2 \int_s^T (\bar{Y}_r - \bar{Y}^{t,x}_r)(d\bar{K}^1_r - d\bar{K}^1_{t,x}) + 2 \int_s^T (\bar{Y}_r - \bar{Y}^{t,x}_r)(d\bar{K}^2_r - d\bar{K}^2_{t,x}) \\
&\quad = 2 \int_s^T (\bar{Y}_r - \bar{Y}^{t,x}_r)(f(r, \bar{X}^{t,x}_r, \bar{Y}_r) - f(r, \bar{X}^{t,x}_r, \bar{Y}^{t,x}_r)) dr \\
&\quad + 2 \int_s^T (\bar{Y}_r - \bar{Y}^{t,x}_r)(g(r, \bar{X}^{t,x}_r, \bar{Y}_r) - g(r, \bar{X}^{t,x}_r, \bar{Y}^{t,x}_r)) d\bar{A}^{t,x}_r \\
&\quad - 2 \int_s^T (\bar{Y}_r - \bar{Y}^{t,x}_r) d(\bar{M}_r - \bar{M}^{t,x}_r), \quad s \in [t, T],
\end{align*}
\]

where \([\bar{M} - \bar{M}^{t,x}] \) is the quadratic variation process of \(\bar{M} - \bar{M}^{t,x} \).

Using the assumptions on \(f \) and \(g \), the below auxiliary result (inequality 33) and generalized Gronwall’s lemma from [9, Lemma 12] we deduce identification of the limit:

\[
\bar{Y} = \bar{Y}^{t,x} \quad \text{and} \quad \bar{M} = \bar{M}^{t,x}.
\]

Lemma 9 (i) The limit processes \(\bar{K}^1 \) and \(\bar{K}^2 \) satisfy

\[
(d\bar{K}^1_s + d\bar{K}^2_s) \in \partial \varphi(\bar{Y}_r) dr + \partial \psi(\bar{Y}_r) d\bar{A}^{t,x}_r, \quad \text{for} \ r \in [t, T],
\]

in the sense that for any \(v \in \mathbb{R} \) and any \(0 \leq t \leq s_1 \leq s_2 \),

\[
\begin{align*}
&\int_{s_1}^{s_2} (v - \bar{Y}_r) d(\bar{K}^1_r + \bar{K}^1_{t,x}) + \int_{s_1}^{s_2} \varphi(\bar{Y}_r) dr + \int_{s_1}^{s_2} \psi(\bar{Y}_r) d\bar{A}^{t,x}_r \\
&\quad \leq \int_{s_1}^{s_2} \varphi(v) dr + \int_{s_1}^{s_2} \psi(v) d\bar{A}^{t,x}_r.
\end{align*}
\]
(ii) The following inequality holds true:

\[
\int_s^T \left[(\bar{Y}_r - \bar{Y}^{t,x}_r)(d\bar{K}_r^1 - d\bar{K}^{t,x}_r) + (\bar{Y}_r - \bar{Y}^{t,x}_r)(d\bar{K}_r^2 - d\bar{K}^{t,x}_r) \right] \geq 0. \tag{33}
\]

Finally, from equality

\[
\bar{Y}^n_{t_n} = -\bar{K}^{1,n}_T - \bar{K}^{2,n}_T + h(\bar{X}^n_{t_n}) + \int_{t_n}^T f(r, \bar{X}^n_r, \bar{Y}^n_r)dr + \int_{t_n}^T g(r, \bar{X}^n_r, \bar{Y}^n_r)d\bar{A}^n_r - \bar{M}^n_T
\]

and the pointwise convergence outside a countable set \(Q \subset [0, T)\) we deduce that

\[
\bar{Y}^n_{t_n} \to \bar{Y}^{t,x}_t = -\bar{K}^{1,t,x}_T - \bar{K}^{2,t,x}_T + h(\bar{X}^{t,x}_T) + \int_t^T f(r, \bar{X}^{t,x}_r, \bar{Y}^{t,x}_r)dr + \int_t^T g(r, \bar{X}^{t,x}_r, \bar{Y}^{t,x}_r)d\bar{A}^{t,x}_r - \bar{M}^{t,x}_T.
\]

Hence, on a subsequence,

\[
u(t_n, x_n) \to u(t, x),
\]

since \(u\) is deterministic function.

The last part of the proof consists in showing Lemma 9.

Proof of Lemma 9

(i) We know (see, e.g., [12, Proposition 6.24]) that if \(\varphi\) is a l.s.c. function such that \(\varphi(x) \geq 0, \forall x \in \mathbb{R}\), then there exists a sequence of locally Lipschitz functions \(\varphi_n : \mathbb{R} \to \mathbb{R}\) such that

\[
0 \leq \varphi_1(x) \leq \cdots \leq \varphi_j(x) \leq \cdots \leq \varphi(x)
\]

and

\[
\lim_{j \to \infty} \varphi_j(x) = \varphi(x)
\]

(the same conclusion holds true for \(\psi\)).

From the above, using conditions (28) and Itô’s formula for (14), we deduce that, for any \(j \in \mathbb{N}\) and any \(s_1, s_2\) such that \(0 \leq t \leq s_1 \leq s_2\),

\[
\mathbb{E} \left[\int_{s_1}^{s_2} \varphi_j(\bar{Y}^n_r)dr + \int_{s_1}^{s_2} \psi_j(\bar{Y}^n_r)d\bar{A}^n_r \right]
\]

\[
\leq \mathbb{E} \left[\int_{s_1}^{s_2} \varphi(\bar{Y}^n_r)dr + \int_{s_1}^{s_2} \psi(\bar{Y}^n_r)d\bar{A}^n_r \right]
\]

\[
\leq \mathbb{E} \left[\int_{s_1}^{s_2} (\bar{Y}^n_r - v)d\bar{K}^{1,n}_r + \int_{s_1}^{s_2} \varphi(v)dr + \int_{s_1}^{s_2} (\bar{Y}^n_r - v)d\bar{K}^{2,n}_r + \int_{s_1}^{s_2} \psi(v)d\bar{A}^n_r \right]
\]

\[
= \mathbb{E} \left[-\int_{s_1}^{s_2} v(d\bar{K}^{1,n}_r + d\bar{K}^{2,n}_r) + \int_{s_1}^{s_2} \varphi(v)dr + \int_{s_1}^{s_2} \psi(v)d\bar{A}^n_r \right] + \mathbb{E} \left[|\bar{Y}^n_{s_2}|^2 - |\bar{Y}^n_{s_1}|^2 \right]
\]

\[
+ \mathbb{E} \left[\int_{s_1}^{s_2} \bar{Y}^n_r f(r, \bar{X}^n_r, \bar{Y}^n_r)dr + \int_{s_1}^{s_2} \bar{Y}^n_r g(r, \bar{X}^n_r, \bar{Y}^n_r)d\bar{A}^n_r - ([M^n]_{s_2} - [M^n]_{s_1}) \right]
\]

Now,

\[
\liminf_{n \to \infty} \mathbb{E} \left[\int_{s_1}^{s_2} \varphi_j(\bar{Y}^n_r)dr + \int_{s_1}^{s_2} \psi_j(\bar{Y}^n_r)d\bar{A}^n_r + ([M^n]_{s_2} - [M^n]_{s_1}) \right]
\]

\[
\geq \liminf_{n \to \infty} \mathbb{E} \int_{s_1}^{s_2} \varphi_j(\bar{Y}^n_r)dr + \liminf_{n \to \infty} \mathbb{E} \int_{s_1}^{s_2} \psi_j(\bar{Y}^n_r)d\bar{A}^n_r + \liminf_{n \to \infty} \mathbb{E} ([M^n]_{s_2} - [M^n]_{s_1}).
\]
By Fatou’s lemma we have

\[\liminf_{n \to \infty} \mathbb{E} \int_{s_1}^{s_2} \varphi_j (Y^n_r) \, dr \geq \mathbb{E} \int_{s_1}^{s_2} \varphi_j (\bar{Y}_r) \, dr. \]

From Lemma 4 we see that for any \(s_1, s_2 \in [0, T] \setminus Q_1 \)

\[\lim_{n \to \infty} \int_{s_1}^{s_2} \psi_j (Y^n_r) \, dA^n_r = \int_{s_1}^{s_2} \psi_j (\bar{Y}_r) \, d\bar{A}^{1,x}_r, \quad \text{P-a.s.} \]

hence, using Fatou’s lemma,

\[\liminf_{n \to \infty} \mathbb{E} \int_{s_1}^{s_2} \psi_j (Y^n_r) \, d\bar{A}^{1,x}_r \geq \liminf_{n \to \infty} \mathbb{E} \int_{s_1}^{s_2} \psi_j (Y^n_r) \, dA^n_r = \mathbb{E} \int_{s_1}^{s_2} \psi_j (\bar{Y}_r) \, d\bar{A}^{1,x}_r. \]

Finally,

\[
\liminf_{n \to \infty} \mathbb{E} (|\bar{M}_n| - |\bar{M}_n|) = \liminf_{n \to \infty} \mathbb{E} (|\bar{M}_n|^2 - |\bar{M}_n|^2) = \liminf_{n \to \infty} \mathbb{E} (|\bar{M}_n|^2 - |\bar{M}_n|^2) \\
\geq \mathbb{E} (|\bar{M}_n|^2 - |\bar{M}_n|^2) = \mathbb{E} (|\bar{M}_n|^2 - |\bar{M}_n|^2) = \mathbb{E} (|\bar{M}_n|^2 - |\bar{M}_n|^2).
\]

On the other hand, as a consequence of S-convergence of sequence \((\bar{K}^{1,n}, \bar{K}^{2,n})_n\), we deduce that there exists a countable set \(Q_2 \subset [0, T)\) such that

\[\lim_{n \to \infty} \left[(\bar{K}^{1,n}_{s_2} - \bar{K}^{1,n}_{s_1}) + (\bar{K}^{2,n}_{s_2} - \bar{K}^{2,n}_{s_1}) \right] = (\bar{K}^{1}_{s_2} - \bar{K}^{1}_{s_1}) + (\bar{K}^{2}_{s_2} - \bar{K}^{2}_{s_1}), \quad \forall s_1, s_2 \in [0, T] \setminus Q_2. \]

But

\[\sup_{n \in \mathbb{N}} \mathbb{E} |\bar{K}^{1,n}|^p \leq C \sup_{n \in \mathbb{N}} \mathbb{E} \int_0^s |U^n_r|^2 \, dr < \infty \]

and, for any \(1 < p < 2 \),

\[
\sup_{n \in \mathbb{N}} \mathbb{E} |\bar{K}^{2,n}|^p \leq \sup_{n \in \mathbb{N}} \mathbb{E} \left[(A^n_t)^{p/2} \left(\int_0^s |V^n_r|^2 \, dA^n_r \right)^{p/2} \right] \\
\leq \sup_{n \in \mathbb{N}} \mathbb{E} \left[(A^n_t)^{p/2} \left(\int_0^s |V^n_r|^2 \, dA^n_r \right)^{p/2} \right] < \infty.
\]

Hence, by a convergence criterion (see, e.g. [12, Corollary 1.21]) we see that

\[\lim_{n \to \infty} \mathbb{E} \int_{s_1}^{s_2} (d\bar{K}^{1,n}_{r} + d\bar{K}^{2,n}_{r}) = \mathbb{E} \int_{s_1}^{s_2} (d\bar{K}^{1}_{r} + d\bar{K}^{2}_{r}), \quad \forall s_1, s_2 \in [0, T] \setminus Q_2. \]

Obviously,

\[\lim_{n \to \infty} \mathbb{E} \left[\int_{s_1}^{s_2} \psi (v) \, d\bar{A}^{1,x}_r \right] = \mathbb{E} \left[\int_{s_1}^{s_2} \psi (v) \, d\bar{A}^{1,x}_r \right], \quad \forall s_1, s_2 \in [0, T]. \]

and, as above,

\[\lim_{n \to \infty} \mathbb{E} |\bar{Y}^{n}_{s_2}|^2 - |\bar{Y}^{n}_{s_1}|^2 = \mathbb{E} |\bar{Y}^{n}_{s_2}|^2 - |\bar{Y}^{n}_{s_1}|^2, \quad \forall s_1, s_2 \in [0, T] \setminus Q_2. \]
By Lebesgue’s theorem we deduce the convergence
\[\lim_{n \to \infty} E \int_{s_1}^{s_2} \bar{Y}^n f(r, \bar{X}^n_r, \bar{Y}^n_r) dr = E \int_{s_1}^{s_2} \bar{Y}_r f(\bar{r}, \bar{X}_r^t, \bar{Y}_r) dr \text{, } \forall s_1, s_2 \in [0, T] \setminus Q_2 \]
and, for the last term, we can use Lemma 4, since \((x, y) \mapsto y \cdot g(r, x, y)\) is locally Lipschitz (with the constant independent of \(n\)). Therefore, using again the convergence criterion as above,
\[\lim_{n \to \infty} E \int_{s_1}^{s_2} \bar{Y}^n g(r, \bar{X}^n_r, \bar{Y}^n_r)d\bar{A}^n = E \int_{s_1}^{s_2} \bar{Y}_r g(\bar{r}, \bar{X}_r^t, \bar{Y}_r)d\bar{A}_r^t, \text{ } \forall s_1, s_2 \in [0, T] \setminus Q_1 \]
In order to finish the proof of the Lemma we conclude, passing to the \(\lim \inf\) in (34), that
\[
E \left[\int_{s_1}^{s_2} \varphi_j (\bar{Y}_r) dr + \int_{s_1}^{s_2} \psi_j (\bar{Y}_r) d\bar{A}^t_r + ([\bar{M}]_{s_2} - [\bar{M}]_{s_1}) \right]
\]
\[
= E \left[- \int_{s_1}^{s_2} v(\bar{d}K^t_r + \bar{d}K^2_r) + \int_{s_1}^{s_2} \varphi (v) dr + \int_{s_1}^{s_2} \psi (v) d\bar{A}^t_r \right] + E [Y_{s_2}^2 - |y_{s_1}|^2]
\]
\[
+ E \left[\int_{s_1}^{s_2} \bar{Y}_r f(\bar{r}, \bar{X}_r^t, \bar{Y}_r) dr + \int_{s_1}^{s_2} \bar{Y}_r g(\bar{r}, \bar{X}_r^t, \bar{Y}_r)d\bar{A}_r^t \right]
\]
which represents the conclusion.

\(\text{(ii) Let}
\]
\[\bar{Q}_s (\omega) := s + \bar{A}^t_s (\omega), \text{ } s \in [0, T] \]
\(\text{(which is strictly increasing) and } \{\bar{\alpha}_s : s \geq 0\} \text{ be the real positive progressively measurable stochastic process (given by Radon-Nikodym’s representation theorem) such that } \bar{\alpha} \in [0, 1] \text{ and}
\]
\[ds = \bar{\alpha}_s d\bar{Q}_s \text{ and } d\bar{A}^t_s = (1 - \bar{\alpha}_s) d\bar{Q}_s . \]

We define now
\[\Psi (\omega, s, y) = [\bar{\alpha}_s (\omega) \varphi (y) + (1 - \bar{\alpha}_s (\omega)) \psi (y)] \]
which implies that \(\partial_y \Psi\) is maximal monotone operator and
\[\partial_y \Psi (\omega, s, y) = [\bar{\alpha}_s (\omega) \partial \varphi (y) + (1 - \bar{\alpha}_s (\omega)) \partial \psi (y)]. \]

Relations (31) and (32) become respectively
\[d \left(\bar{K}^1_{r, t} + \bar{K}^2_{r, t} \right) \in \partial_y \Psi (r, \bar{Y}^t_r) d\bar{Q}_r \quad \text{and} \quad d \left(\bar{K}^1_r + \bar{K}^2_r \right) \in \partial_y \Psi (r, \bar{Y}_r) d\bar{Q}_r, \text{ for } r \in [t, T], \]
i.e., \(\forall v \in \mathbb{R}, \forall s_1 \leq s_2,\)
\[(j) \int_{s_1}^{s_2} (v - \bar{Y}^t_r) d \left(\bar{K}^1_{r, t} + \bar{K}^2_{r, t} \right) + \int_{s_1}^{s_2} \Psi (r, \bar{Y}^t_r) d\bar{Q}_r \leq \int_{s_1}^{s_2} \Psi (r, v) d\bar{Q}_r \quad \text{and} \]
\[(jj) \int_{s_1}^{s_2} (v - \bar{Y}_r) d \left(\bar{K}^1_r + \bar{K}^2_r \right) + \int_{s_1}^{s_2} \Psi (\bar{Y}_r) d\bar{Q}_r \leq \int_{s_1}^{s_2} \Psi (v) d\bar{Q}_r . \]
(35)
The next step is to prove that inequalities (35) hold true for any function \(v \in \mathbb{D} \). We will prove this assertion only for inequality \((jj)\) (in a similar way can be proved \((j)\)). Let \(v \in \mathbb{D} \) and \(\epsilon, s_1, s_2 \) be arbitrary chosen such that \(0 < \epsilon < s_1 < s_2 \leq T \). If \(r, u \in [s_1, s_2] \), let \(r_\epsilon \) and \(u_\epsilon \) be given by
\[
Q_{r_\epsilon} = Q_r + Q_\epsilon \quad \text{and} \quad Q_{u_\epsilon} = Q_u - Q_\epsilon.
\]
From (35-\(jj\)) we deduce, by taking \(s_1 = u_\epsilon \) and \(s_2 = u_\epsilon \), that
\[
\int_{u_\epsilon}^{u} (v(\epsilon) - \bar{Y}_r) \, d\left(\bar{K}_1 + \bar{K}_2^2\right) + \int_{u_\epsilon}^{u} \Psi(\epsilon, \bar{Y}_r) \, d\bar{Q}_r \leq \int_{u_\epsilon}^{u} \Psi(v(\epsilon), \bar{Q}_r) \, d\bar{Q}_r
\]
and therefore
\[
\int_{s_1}^{s_2} \left(\frac{1}{Q_\epsilon} \int_{u_\epsilon}^{u} (v(\epsilon) - \bar{Y}_r) \, d\left(\bar{K}_1 + \bar{K}_2^2\right) \right) \, d\bar{Q}_u
\]
\[
+ \int_{s_1}^{s_2} \left(\frac{1}{Q_\epsilon} \int_{u_\epsilon}^{u} \Psi(\epsilon, \bar{Y}_r) \, d\bar{Q}_r \right) \, d\bar{Q}_u \leq \int_{s_1}^{s_2} \left(\frac{1}{Q_\epsilon} \int_{u_\epsilon}^{u} \Psi(v(\epsilon), \bar{Q}_r) \, d\bar{Q}_r \right) \, d\bar{Q}_u.
\]
Since
\[
\frac{1}{Q_\epsilon} \int_{u_\epsilon}^{u} \Psi(\epsilon, \bar{Y}_r) \, d\bar{Q}_r = \frac{1}{Q_\epsilon} \int_{Q_u}^{Q_u(Q^{-1}, \bar{Y}_{Q^{-1}})} \Psi(Q^{-1}, \bar{Y}_{Q^{-1}}) \, ds = \frac{1}{Q_\epsilon} \int_{Q_u - Q_\epsilon}^{Q_u} \Psi(Q^{-1}, \bar{Y}_{Q^{-1}}) \, ds
\]
\[
\rightarrow \Psi(u, \bar{Y}_u), \, \text{as} \, \epsilon \to 0, \, \text{a.e.} \, u \in [s_1, s_2],
\]
we deduce by Fatou’s lemma that
\[
\int_{s_1}^{s_2} \left(\frac{1}{Q_\epsilon} \int_{u_\epsilon}^{u} \Psi(\epsilon, \bar{Y}_r) \, d\bar{Q}_r \right) \, d\bar{Q}_u \rightarrow \int_{s_1}^{s_2} \Psi(u, \bar{Y}_u) \, d\bar{Q}_u, \, \text{as} \, \epsilon \to 0.
\]
Using Lebesgue’s theorem,
\[
\int_{s_1}^{s_2} \left(\frac{1}{Q_\epsilon} \int_{u_\epsilon}^{u} (v(\epsilon) - \bar{Y}_r) \, d\left(\bar{K}_1 + \bar{K}_2^2\right) \right) \, d\bar{Q}_u
\]
\[
= \int_{-\infty}^{+\infty} \left(\frac{1}{Q_\epsilon} \int_{-\infty}^{+\infty} \bar{1}_{[s_1,s_2]}(u) \, d\bar{Q}_u \right) \, d\bar{Q}_u
\]
\[
= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} \frac{1}{Q_\epsilon} \bar{1}_{[s_1,s_2]}(u) \, \bar{1}_{[u,u]}(r) (v(\epsilon) - \bar{Y}_r) \, d\left(\bar{K}_1 + \bar{K}_2^2\right) \right) \, d\bar{Q}_u
\]
\[
= \int_{-\infty}^{+\infty} \left(\frac{1}{Q_\epsilon} \int_{-\infty}^{+\infty} \bar{1}_{[s_1,s_2]}(u) \, \bar{1}_{[r,r_\epsilon]}(u) (v(\epsilon) - \bar{Y}_r) \, d\left(\bar{K}_1 + \bar{K}_2^2\right) \right) \, d\bar{Q}_u
\]
\[
= \int_{-\infty}^{+\infty} \left(\frac{1}{Q_\epsilon} \int_{r}^{r_\epsilon} \bar{1}_{[s_1,s_2]}(u) (v(\epsilon) - \bar{Y}_r) \, d\left(\bar{K}_1 + \bar{K}_2^2\right) \right) \, d\bar{Q}_u
\]
\[
\rightarrow \int_{-\infty}^{+\infty} \bar{1}_{[s_1,s_2]}(r) (v(\epsilon) - \bar{Y}_r) \, d\left(\bar{K}_1 + \bar{K}_2^2\right), \, \text{as} \, \epsilon \to 0,
\]
since
\[
\frac{1}{Q_\epsilon} \int_{r}^{r_\epsilon} \bar{1}_{[s_1,s_2]}(u) (v(\epsilon) - \bar{Y}_r) \, d\bar{Q}_u = \frac{1}{Q_\epsilon} \int_{Q_r}^{Q_{r_\epsilon}} \bar{1}_{[s_1,s_2]}(Q^{-1}) (v(Q^{-1}) - \bar{Y}_{Q^{-1}}) \, ds
\]
\[
\rightarrow \bar{1}_{[s_1,s_2]}(r) (v(\epsilon) - \bar{Y}_r), \, \text{as} \, \epsilon \to 0.
\]
On the other hand, if we assume that
\[\varphi (v (u)) + \psi (v (u)) \leq M, \ \forall u \in [s_1, s_2], \]
we deduce using Lebesgue’s theorem that
\[\int_{s_1}^{s_2} \frac{1}{Q_r} \int_{u}^{u} \Psi (r, v (u)) dQ_r \rightarrow \int_{s_1}^{s_2} \Psi (u, v (u)) dQ_u, \text{ as } \epsilon \to 0, \text{ a.e.} \]
Hence under assumption (36) we obtain
\[\int_{s_1}^{s_2} (v (r) - \bar{Y}_r) d (K_r^1 + K_r^2) + \int_{s_1}^{s_2} \Psi (r, \bar{Y}_r) d\bar{Q}_r \leq \int_{s_1}^{s_2} \Psi (r, v (r)) d\bar{Q}_r. \]
Let’s take now
\[v_n (u) = \mathbb{1}_{[0,n)} (\varphi (v (u)) + \psi (v (u))) \cdot v (u) + \mathbb{1}_{[n,\infty)} (\varphi (v (u)) + \psi (v (u))) \cdot 0 \]
which satisfy restriction (36) since \(v (u) \in \text{Dom} (\partial \varphi) \cap \text{Dom} (\partial \psi), \varphi, \psi \) are convex, \(\varphi (0) = \psi (0) = 0 \) and
\[\varphi (v_n (u)) + \psi (v_n (u)) \leq \mathbb{1}_{[0,n)} (\varphi (v (u)) + \psi (v (u))) \cdot [\varphi (v (u)) + \psi (v (u))] \leq 2n. \]
Therefore, using the previous step, it follows that
\[\int_{s_1}^{s_2} (v_n (r) - \bar{Y}_r) d (K_r^1 + K_r^2) + \int_{s_1}^{s_2} \Psi (r, \bar{Y}_r) d\bar{Q}_r \leq \int_{s_1}^{s_2} \Psi (r, v_n (r)) d\bar{Q}_r \]
\[\leq \int_{s_1}^{s_2} \mathbb{1}_{[0,n)} (\varphi (v (u)) + \psi (v (u))) \Psi (r, v (r)) d\bar{Q}_r \]
Passing to the limit and using Lebesgue theorem (for the first integral) and Beppo-Levi theorem (for the last integral) it follows that, for any \(v, v' \in \mathbb{D} \) and any \(0 \leq t \leq s_1 \leq s_2 \)
\[\int_{s_1}^{s_2} (v (r) - \bar{Y}_r) d (K_r^1 + K_r^2) + \int_{s_1}^{s_2} \Psi (r, \bar{Y}_r) d\bar{Q}_r \leq \int_{s_1}^{s_2} \Psi (r, v (r)) d\bar{Q}_r \]
(37)
and (in a similar manner)
\[\int_{s_1}^{s_2} (v' (r) - \bar{Y}_r) d (K_r^1 + K_r^2) + \int_{s_1}^{s_2} \Psi (r, \bar{Y}_r) d\bar{Q}_r \leq \int_{s_1}^{s_2} \Psi (r, v' (r)) d\bar{Q}_r. \]
(38)
Taking \(v = \bar{Y}_r \) in (37) and \(v' = \bar{Y} \) in (38) we deduce
\[\int_{s_1}^{s_2} (\bar{Y}_r - \bar{Y}_r) (dK_r^1 + dK_r^2 - dK_r^{1,t,x} - dK_r^{2,t,x}) \geq 0 \]
and the proof of (ii) is complete. \[\blacksquare \]
References

[1] A. Aman, N. Mrhardy, Obstacle problem for SPDE with nonlinear Neumann boundary condition via reflected generalized backward doubly SDEs’, Statistics & Probability Letters 83 (2013) 863-874.

[2] K. Bahlali, L. Maticiuc, A. Zălinescu, Penalization method for a nonlinear Neumann PDE via weak solutions of reflected SDEs, submitted.

[3] B. Boufoussi, J. van Casteren, An approximation result for a nonlinear Neumann boundary value problem via BSDEs, Stochastic Process. Appl. 114 (2004), 331-350.

[4] B. Boufoussi, J. Van Casteren, N. Mrhardy, Generalized backward doubly stochastic differential equations and SPDEs with nonlinear Neumann boundary conditions, Bernoulli 13 (2007), 423-446.

[5] A. Diakhaby, Y. Ouknine, Reflected BSDE and Locally Periodic Homogenization of Semilinear PDEs with Nonlinear Neumann Boundary Condition, Stochastic Analysis and Applications 28 (2010), 254-273.

[6] A. Jakubowski, A non-Skorohod Topology on the Skorohod space, Electronic Journal of Probability 2 (1997), 1-21.

[7] A. Lejay, BSDE driven by Dirichlet process and semi-linear Parabolic PDE. Application to Homogenization, Stochastic Process. Appl. 97 (2002), 1-39.

[8] P.L. Lions, A.S. Sznitman, Stochastic differential equations with reflecting boundary conditions, Comm. Pure & Appl. Math. 37 (1984) 511-537.

[9] L. Maticiuc, A. Răşcanu, Viability of moving sets for a nonlinear Neumann problem, Nonlinear Analysis 66 (2007) 1587-1599.

[10] L. Maticiuc, A. Răşcanu, A stochastic approach to a multivalued Dirichlet-Neumann problem, Stochastic Processes and their Applications 120 (2010) 777-800.

[11] E. Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs, Nonlinear Analysis, Differential Equations and Control (Montreal, QC, 1998), Kluwer Academic Publishers, Dordrecht (1999), 503-549.

[12] E. Pardoux, A. Răşcanu, Stochastic differential equations, Backward SDEs, Partial differential equations, Stochastic Modelling and Applied Probability, Springer, in press, 2013.

[13] E. Pardoux, S. Zhang, Generalized BSDEs and nonlinear Neumann boundary value problems, Probab. Theory Related Fields 110 (1998), 535-558.

[14] Q. Ran, T. Zhang, Existence and uniqueness of bounded weak solutions of a semilinear parabolic PDE, J. Theoret. Probab. 23 (2010), 951-971.

[15] Y. Ren, M. El Otmani, Generalized reflected BSDEs driven by a Lévy process and an obstacle problem for PDIEs with a nonlinear Neumann boundary condition, J. Comput. Appl. Math. 233 (2010), 2027-2043.

[16] Y. Ren, N. Xia, Generalized reflected BSDE and an obstacle problem for PDEs with a nonlinear Neumann boundary condition, Stoch. Anal. Appl. 24 (2006), 1013-1033.

[17] A. Richou, Ergodic BSDEs and related PDEs with Neumann boundary conditions, Stochastic Process. Appl. 119 (2009), 2945-2969.