Unstable fingering patterns of Hele-Shaw flows as a dispersionless limit of the KdV hierarchy

Razvan Teodorescu,1 Paul Wiegmann,2 and Anton Zabrodin3
1Physics Department, Columbia University, 538 W. 120th St., New York, NY 10027
2James Frank Institute, Enrico Fermi Institute of the University of Chicago, 5640 S. Ellis Ave, Chicago IL 60637
3Institute of Biochemical Physics, Kosygina str. 4, 117334 Moscow, Russia
(Dated: August 13, 2018)

We show that unstable fingering patterns of two dimensional flows of viscous fluids with open boundary are described by a dispersionless limit of the KdV hierarchy. In this framework, the fingering instability is linked to a known instability leading to regularized shock solutions for nonlinear waves, in dispersive media. The integrable structure of the flow suggests a dispersive regularization of the finite-time singularities.

1. Introduction. The Hele-Shaw cell is a narrow space between two parallel planes – a device used to study the 2D dynamics of a fluid with an open boundary. In a common set-up, air (regarded as a non-viscous fluid) occupies a bounded domain of the cell, otherwise filled by a viscous incompressible fluid. When more air is injected through a well, the free boundary evolves in a complicated and unstable manner. In finite time, an arbitrary smooth initial boundary develops a pattern of branched fingers. This mechanism is rather general and has been identified in numerous growth problems 1.

Starting from early works 2, it became clear that the problem of fingering instability in the Hele-Shaw cell is linked to profound aspects of the analytical functions theory and 2D conformal maps. In recent years, the problem has reached other domains of theoretical physics. In particular, a connection to fractal self-similar patterns of stochastic growth, like DLA, has been recognized 3.

The Hele-Shaw problem has also emerged in the context of electronic physics in low dimensions. For 1D electrons, the Fermi sphere is deformed by external perturbations according to the Hele-Shaw mechanism 4. The same is true for deformations of an electronic droplet in a quantizing magnetic field 5. Similarly, the Hele-Shaw problem is connected to statistical ensembles of normal or complex random matrices, where a non-Gaussian potential deforms the support of eigenvalues 6.

In this paper we emphasize yet another connection, which may be viewed as a formal ground for appearance of this phenomenon in different physical situations. We show that the fingering instability is linked to the integrable Korteweg-de Vries (KdV) hierarchy of differential equations. More precisely, we show that developed fingers, in the absence of surface tension, are described by the dispersionless KdV hierarchy. The Hele-Shaw fingers correspond to the same solution of the KdV hierarchy as that exploited in 2D-gravity 7, and in studies of critical points of Hermitian random matrix ensembles 8.

The integrable structure of the Hele-Shaw problem has been observed in our earlier papers 9. There, we have shown that the problem is equivalent to the dispersionless limit of the Toda integrable hierarchy. This is an exact relation. Here we concentrate on the critical (turbulent) regime of the flow, where fingers are already well developed, and close to a cusp-like singularity. In this case, one may concentrate only on the vicinity of the tip of a single finger, neglecting the rest of the boundary. The KdV integrable structure emerges in this regime. It can be obtained from the Toda hierarchy as a reduction, but can also be derived directly from hydrodynamics of the critical regime. We choose the latter.

In this letter, the intuitive physics of interface dynamics gives a clear geometrical interpretation to algebraic objects used in dispersionless soliton equations 10.

2. Darcy’s law. Consider a 2D domain (a “bubble”) occupied by “air” regarded as an incompressible fluid with low viscosity. The rest of the cell is occupied by another incompressible fluid but with high viscosity. Air is injected into the cell through the origin, at a constant rate, while the viscous fluid is evacuated from “infinity” (edges of the cell). The area of the bubble is proportional to time t. We normalize it to be πt. The Navier-Stokes equation adapted to the 2D geometry gives a simple rule for the dynamics of the moving boundary γ: velocity in the viscous fluid (and of the boundary) is proportional to the gradient of pressure,

$$\vec{v} = -\nabla p. \tag{1}$$

Pressure is harmonic for incompressible fluids. Inside the bubble, it is constant (set to $p = 0$), due to low viscosity. In the absence of surface tension, it is continuous across the boundary, and hence a solution of the problem

$$\Delta p = 0, \quad p|_\infty \rightarrow -\log |z|, \quad p|_\gamma = 0. \tag{2}$$

The origin of the fingering instability is intuitively clear – high curvature portions of the boundary move with a higher velocity than the rest and get even more curved.

We now introduce a minimal set of objects of potential theory. Consider a holomorphic function $\phi (z) = \xi (x, y) + i p (x, y)$, whose imaginary part is pressure. The function $\phi (z)$ is a univalent conformal map of the exterior
of the bubble to the cylinder $\text{Im} \phi > 0$, and its derivative $\partial \phi(z)$ taken on the boundary is the conformal measure of the boundary. Darcy’s law reads: the complex velocity of the boundary is proportional to the conformal measure. In other words, the complex potential of the flow is a conformal map of the outer domain to the cylinder. Equivalently, the Cauchy-Riemann conjugate of pressure, $\xi(x,y)$, is the stream function.

For simplicity, let the bubble and finger have a symmetry axis. In Cartesian coordinates, the boundary can be described by a multivalued function $y(x)$, Fig. 1.

Another useful way to describe the boundary is through the height function $h(z)$. It is an analytic function in some vicinity of the boundary, taking values $h(x+iy) = y(x)$ on the boundary. With the help of the Schwarz reflection principle, we obtain $h(\phi) - h(-\phi) = -i(z(\phi) - z(-\phi))$, where $z(\phi)$ is the inverse of the map (we write $h(\phi) = h(z(\phi)))$. Therefore,

$$2i h(\phi) = z(\phi) - z(-\phi). \quad \text{(3)}$$

We will also use a generating function $\partial z \omega(z) = -2i h(z)$. Darcy’s law can be interpreted as evolution of the height function. The complex velocity $v = \dot{z}$ can be analytically continued into the outer domain, as $v = \partial \partial \omega(z) = -2i \partial h(z)$. Then from $v = -2i \partial z \phi$, Darcy’s law becomes

$$\partial_t h(z) = \partial_z \phi(z). \quad \text{(4)}$$

3. Branch points If the boundary is analytic, the map $\phi(z)$ and the height function $h(z)$ can be analytically continued inside the bubble, until they reach singularities. For an important class of analytic boundaries, the conformal map $z(\phi)$ is a rational function of $e^{i \phi}$. Such domains are called algebraic. In this case, the singularities of the inverse map are generically simple branch points $z_0(t), \ldots, z_{q-1}(t)$ (analogous to Riemann invariants in hydrodynamics), where $\partial_z \phi \sim (z - z_i(t))^{-1/2}$. Hele-Shaw flows preserve the class of algebraic domains.

As the boundary moves, so do the branch points. We identify the traces of the branch points with the branch cuts. Comparing singularities of (4), we get a system of coupled equations for the branch points,

$$\dot{z}_i = \frac{\partial \phi}{\partial h}|_{z_i}, \quad i = 0, 1, \ldots, q - 1. \quad \text{(5)}$$

4. Finite time singularities In full generality, these equations are difficult to analyze. Qualitatively, branch points tend to move towards the boundary. As a result, the boundary is pushed away, forming a finger. When, eventually, a branch point reaches the boundary, the finger forms a cusp-like singularity. It appears that for almost all initial algebraic domains, a cusp-like singularity emerges at a finite time, i.e., at a finite area of the bubble. The idealized law then needs to be corrected by regularizing the singularity. Some examples of singular Hele-Shaw flows were elaborated.

In this letter we suggest a unified approach to the finite time singularities based on a singular limit of the KdV integrable hierarchy. We concentrate on the critical regime of the flow, when fingers are close to a cusp. Generically, an isolated branch point, say $z_0 = (x_0,0)$, is found very close to the boundary (tip of the finger), i.e., $\phi(z_0) \approx 0$. From (3), this branch point (and tip) moves with velocity $\dot{x}_0 = \partial \phi/\partial y|_{x_0}$.

The origin of the finite time singularities can already be seen from this equation by means of scaling analysis. Around the tip, the map $z(\phi)$ has a regular expansion $z(\phi) - x_0 = ia \phi + b \phi^2 + ic \phi^3 + \ldots$, with real a, b, c, \ldots. It follows from the reflection formula that $h(\phi) = a \phi + c \phi^3 + \ldots$. If a branch point is close to the tip, then a is small, while b and c are of order 1. If there is only one scale, $u(t)$, then x_0, measured from what will be the cusp tip, and a are of the same order $u(t)$. The velocity of the finger tip $\dot{x}_0 \sim \dot{u}$ grows with the curvature $a^{-1} \sim u^{-1}$ of the tip such that $\dot{u} \sim u^{-1}$, hence the scale vanishes as $u \sim (t_c - t)^{-1/2}$. At the critical time $t = t_c$, $u = 0$ and the curve forms a (2,3)-cusp, $y(x) \sim x^{3/2}$.

More general cusps are characterized by two integers (q,p), $q < p$, implying that the finger is bounded by $y(x) \sim x^{p/q}$, $x > 0$, q is even. Higher cusps correspond to higher order singularities merging at the boundary.

In what follows we mostly consider the case $q = 2$, making only brief remarks on the higher cusps. The details will be given elsewhere.

5. Critical regime and scaling functions. When the finger is very close to becoming a cusp, the rest of the bubble does not affect its evolution. We will call this regime critical. In the critical regime, different scales separate. It is convenient to define the scales in the complex plane of ϕ. At $\phi = O(u^{1/2})$ we see the details of the tip. At $1 \gg \phi \gg u^{1/2}$, the details of the tip cannot be seen, the finger looks like a cusp. Finally, $\phi = O(1)$ corresponds to the rest of the body of the bubble. The scale of $u(t)$ changes with time and eventually disappears at the critical point. In that limit, the finger is scale invariant.
To summarize, in the critical regime \(u \to 0, t \to t_c \), the inverse map and the height function are
\[
z(\phi) - ih(\phi) = u^{\frac{2}{q}} Q(\phi/u^{1/2}), \quad h(\phi) = u^{\frac{2}{q}} P(\phi/u^{1/2}) \quad (6)
\]
where the scaling functions \(Q \) and \(P \) do not depend on \(u \). At \(q = 2 \), \(Q \) is an even quadratic polynomial and the scaling ansatz holds everywhere in the critical region.

The asymptotic behavior of the finger, \(y \sim \pm x^{p/q} \), allows us to identify the scaling functions. They are polynomials of degrees \(q \) and \(p \), respectively. The reflection symmetry suggests that \(Q \) is an even polynomial, while \(P \) is odd, and that all their coefficients are real. This follows by matching asymptotes in different regions: far from the tip, the finger asymptote is \(y \sim \pm x^{p/q} \). Since \(y < x \ll 1 \), we approximate \(y \sim x^{p/q} \), where \(z = x + iy \). Higher-order corrections will make \(y \) real. Therefore, we conclude that the height function, in the domain close to the boundary, but away from the tip, is \(h(z) \sim z^{p/q} \). This also means that at \(u^{1/2} \ll \phi \ll 1 \), and close to the real axis, \(Q(\phi) \sim \phi^q, \ P(\phi) \sim \phi^q \). Close to the tip, where \(\phi \ll u^{1/2} \), both \(z(\phi) \) and \(h(\phi) \) are regular in \(\phi \). The only holomorphic functions matching these conditions are polynomials.

6. An important remark on the scaling ansatz is in order. From (6), approximating the univalent map \(z(\phi) \), being by polynomials makes it no longer univalent at \(q > 2 \). It covers the \(z \)-plane \(q \) times, as many as the number of sheets of the complex curve. This probably means that at \(q > 2 \) the scaling ansatz does not hold everywhere in the upper half-plane of \(\phi \). It holds only in certain sectors of the plane adjacent to the real axis and breaks down otherwise. Their union, covering roughly \(2/q \) part of the upper half-plane - a physical domain determines a physical branch of the map \(\phi(z) \). The physical branch must obey the reflection symmetry and be real at the boundary of the finger. This is impossible unless the stream function \(Re\phi \) is allowed to have a discontinuity across the reflection axis outside the finger. Every nonmonial \(z^{n/q} \) in the asymptotic expansion \(\phi(z) \sim z^{1/q} + \text{negative powers of } z^{1/q} \) should be understood as \(z^{1/q} \), if \(0 < \text{Arg}z < \pi - \epsilon \), and \(e^{2\pi i/q} z^{1/q} \), if \(-\pi + \epsilon < \text{Arg}z < 0 \). As a result the imaginary part of \(\phi(z) \) has a finite discontinuity on the reflection line, at least far away from the tip, unless \(q = 2 \).

This indicates that cusps with \(q > 2 \) do not appear for algebraic simply-connected domains. We do not have an interpretation of this phenomenon. The non-univaldness of the map suggests that there is another finger at the left, while the cusp singularity implies their merging.

7. dKdV hierarchy From (6), in the scaling limit, the generating function has the asymptotic expansion \(\omega(z) - \omega(z_0) = -2it \int_{z_0}^{z} h'(z')dz' + O(u^p) \approx u^{\frac{2}{q}} \int_0^1 PdQ \). It is a truncated Laurent series in \(z^{1/q} \),
\[
\omega(z) = i \sum_{n=1}^{p+q} t_n \omega^{n/q} + \text{negative powers of } z^{1/q} \quad (7)
\]
We will see in a moment that all the coefficients \(t_k \) except \(t_1 \) are conserved. Moreover, the coefficient \(t_1 \) is proportional to time, measured from the moment of singularity. The coefficients \(t_k, t_1 \) are called deformation and evolution parameters, respectively. The generating function and the height function can be expressed through deformation parameters. As polynomials of \(\phi \), they are
\[
\omega = i \sum_{n=1}^{p+q} t_n \omega_n, \quad h = \sum_{n=1}^{p+q} \frac{n}{q} t_n \omega_{n-q} \quad (8)
\]
Here \(\omega_n(\phi) \) is the polynomial part of \(h^{n/2}Q^{n/q}(\phi) \).

Now we can describe the evolution of the curve with respect to all the deformation parameters. The arguments are borrowed from [10] with little changes. We note that \(\partial_{h_0} \) is a polynomial of degree \(n \) in \(\phi \). As a Laurent series in \(z^{1/q} \), it has only one term, \(z^{n/q} \), with positive degree. The only polynomial of this kind is \(\omega_n \). Therefore,
\[
\partial_{h_0} h(z) = \partial_{\omega_n} h(z) \quad (9)
\]
Notice that the flow in real time \(t \) appears on the same footing as flows with respect to the deformation parameters. Setting \(n = 1 \), we recover the flow equation (1).

Eqs. (4, 9) can be cast in the form of flow equations, if one takes time derivative at constant \(\phi \). Defining the Poisson bracket with respect to the canonical pair \(t, \phi \) such that \(\{ f, g \} = \partial_t f \partial_\phi g - \partial_\phi f \partial_t g \), we read
\[
\{ h, z \} = 1, \quad \{ h, \omega_n \} = 0, \quad \{ h, \omega_m \} \quad (10)
\]
From this we conclude that the inverse map evolves as
\[
\partial_{h_0} z = \{ z, \omega_n \} \quad (10)
\]

Compatibility of these equations gives a closed set of nonlinear equations for the coefficients of the polynomials \(\partial_{h_0} \omega_n - \partial_{\omega_n} \omega_m = \{ \omega_n, \omega_m \} \). At \(q = 2 \), it is the dispersionless KdV hierarchy (dKdV). At \(q > 2 \), equations (10) constitute the dispersionless Gelfand-Dikii hierarchy (dGdH).

8. Solutions of the dKdV hierarchy At \(q = 2 \), a complete solution is available. In this case \(z(\phi) = \phi^2 - 2u \), the evolution does not depend on \(t_{2n} \)
\[
\omega_{2n+1} = \sum_{k=0}^{n} \frac{(2n+1)!}{(2n-2k+1)!} (-u)^k k! \phi^{2n-2k+1} \quad (11)
\]
Equations (10) become
\[
\partial_{t_{2n+1}} u = \frac{(2n+1)!}{n!} (-u)^n \partial_{t_1} u \quad (12)
\]
The first equation is the familiar Hopf-Burgers equation
\[
\partial_{t_1} u + 3u \partial_1 u = 0 \quad (12)
\]
The hodograph transformation gives a general solution
\[
\sum_{k=0}^{l} \frac{(2k+1)!}{k!} t_{2k+1} (-u)^k = 0, \quad p = 2l + 1 \quad (13)
\]
More details of the application to the singular limit of the Hele-Shaw flow can be found in [14]. Some results for \(q > 2 \) are discussed in [15].
9. KdV hierarchy Eq. [12] is a singular \(h \to 0 \) limit of the full dispersive KdV equation

\[
4\partial_tu + 12u\partial_xu + \notag \frac{h^3}{2}u_{ttt} = 0. \tag{14}
\]

To clarify the nature of this limit, we recall the definition of the \(q \)-reduced KP hierarchy. It is a set of nonlinear equations compactly written through a pair of operators \(L, M \), differential operators in time of degrees \(q \) and \(p \):

\[
L = \hat{\phi}^q - \sum_{l=1}^{q} \left[e_l^{\prime}, \hat{\phi}^{q-l} \right]_+, \quad M = \sum_{n=1}^{p+q} \frac{n}{q} t_n^{\prime} \Omega_{n-q} \Rightarrow M \rightarrow \frac{\Omega_{n-q}}{q}. \tag{15}
\]

Here \([\cdot, \cdot]_+\) denotes the anti-commutator, \(\hat{\phi} = \hbar \partial_t \), and the coefficients \(e_l \) are functions of a string of “times” \(t_1, \ldots, t_{p+q} \), and \(\Omega_n = L^{n/q} \) is a differential operator of degree \(n \), obtained from the pseudo-differential operator \(L^{n/q} \) by omitting a non-differential part. The dependence of the coefficients \(e_l \) on the “times” is introduced by the Lax-Sato equations \(\hbar \partial_t L = [L, \Omega_n] \), \(\hbar \partial_t M = [M, \Omega_n] \), supplemented by the condition \([L, M] = \hbar \). An alternative way to define the hierarchy is to impose the consistency conditions \(\partial_n \Omega_n^{\prime} - \partial_n^{\prime} \Omega_n = \hat{\Omega}_n^{\prime} \Omega_n \).

The dispersionless (“quasiclassical”) limit of this hierarchy is obtained by replacing the differential operator \(\hbar \partial_t \) by a function \(\phi \to \phi \), and the commutator \(i\hbar^{-1}[\cdot, \cdot] \) by the Poisson bracket \(\{\cdot, \cdot\} \). We have seen that in this limit the formal objects of the Lax-Sato construction acquire a clear physical interpretation in terms of the Hele-Shaw flow. Namely, \(\phi, L \) and \(M \) become respectively the complex potential \(\phi \), the coordinate \(z \), and the height function \(h \). This correspondence also gives a meaning of \(\hbar \) as a quantum of area.

10. Applications The integrable structure revealed in this letter allows one to use the KdV theory in the study of the Hele-Shaw and other moving boundary problems. Special solutions of the hierarchy describe (i) bubble coalescence, (ii) bubble break-off, (iii) branching, (iv) bubble creations, etc. We report some of them in [14].

It is known that the dispersionless limit of non-linear waves is singular [12]. The solutions suffer from nonphysical shock waves. Smooth initial data generally evolve into a multi-valued (“overhanged”) function within a finite time. Such nonphysical solutions are equivalent to the finite-time singularities of the Hele-Shaw flow.

The singular behaviour should be corrected by a regularization of the cusps at short distances, by introducing a new scale — a short distance cut-off. Surface tension, lattice or DLAno-regularizations were considered.

The integrable structure of singularities suggests a novel, “dispersive” regularization. The flow [11] is seen as an ill limit of the true dispersive flow, just as Eq. [14] is seen as a singular limit of Eq. [14]. We will present details of this regularization elsewhere. Here we only note that this regularization treats the Hele-Shaw flow as a stochastic process of deposition of small particles with an area \(\hbar \). It carries a similar physics as the DLA [3].

Acknowledgments We were benefited by discussions with I. Krichever, A. Marshakov and M. Mineev-Weinstein. P. W. and A. Z. are particularly grateful to E. Bettelheim and O. Agam for numerous discussions, help, and contribution to our understanding of physics of Hele-Shaw flow, and I. Loutsenko for a critical comment. R.T. thanks I. Aleiner and A. Millis for support. P.W. and R.T. were supported by the NSF MRSEC Program under DMR-0213745, NSF DMR-0220198. A.Z. was also supported in part by RFBR grant 03-02-17373, by grant INTAS 03-51-6346 and by the grant NSh-1999.2003.2.