Oxidative stress biomarkers and acetylcholinesterase activity in human erythrocytes exposed to clomazone (in vitro)

Adriana SANTI, Charlene MENEZES, Marta Maria F. DUARTE, Jossiele LEITEMPERGER, Thais LÓPES, Vania L. LORO
Departamento de Química, Centro de Ciências Naturais e Exatas, Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, RS, Brazil

ABSTRACT
The aim of this study was to investigate the effect of clomazone herbicide on oxidative stress biomarkers and acetylcholinesterase activity in human erythrocytes in vitro conditions. The activity of catalase (CAT), superoxide dismutase (SOD) and acetylcholinesterase (AChE), as well as the levels of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) were measured in human erythrocytes exposed (in vitro) to clomazone at varying concentrations in the range of 0, 100, 250 and 500 μg/L for 1 h at 37 °C. TBARS levels were significantly higher in erythrocytes incubated with clomazone at 100, 250 and 500 μg/L. However, erythrocyte CAT and AChE activities were decreased at all concentrations tested. SOD activity was increased only at 100 μg/L of clomazone. GSH levels did not change with clomazone exposure. These results clearly showed clomazone to induce oxidative stress and AChE inhibition in human erythrocytes (in vitro). We, thus, suggest a possible role of ROS on toxicity mechanism induced by clomazone in humans.

KEY WORDS: clomazone; erythrocytes; oxidative stress; acetylcholinesterase

Introduction
The widespread use of pesticides in agriculture results in continuous exposure of human populations. Low-level exposure to pesticides is known to produce a variety of biochemical changes such as target cell/receptor binding, protein and DNA adduct formation, as well as induction or inhibition of enzymes (López et al., 2007). Clomazone (2-[(2-chlorophenyl) methyl]-4, 4-dimethyl-3-isoxazolidinone), which is a soil-applied herbicide, has been reported to interfere with chloroplast development and to reduce or prevent accumulation of plastid pigments in susceptible species (Ferhatoglu & Barrett, 2006). It belongs to the class of isoxazolidinones and is widely used against weeds in paddy rice fields in Southern Brazil (Crestani et al., 2007).

Biochemical and physiological functions of red blood cells (RBC) can be affected by pesticides. Erythrocytes are particularly sensitive to oxidative damage due to the presence of high polyunsaturated fatty acid content in their membranes and high cellular concentrations of oxygen and haemoglobin (Hgb) (Prasanthi et al., 2005; Mansour & Mossa, 2009). In addition, it is speculated that oxidative stress in erythrocytes may lead to significant alterations in their structural conformation, which may compromise effective blood flow, oxygen uptake and release (Prasanthi et al., 2005). Lipid peroxidation (LPO), which is the major contributor to the loss of cell function, as well as DNA damage, enzyme inactivation, and hormone oxidation are indicators of oxidative cell damage (Ruas et al., 2008). LPO, in particular, has been suggested to be one of the mechanisms of pesticide-induced toxicity (Mansour & Mossa, 2009).

Erythrocytes are well equipped with several biological mechanisms which defend them against intracellular oxidative stress including antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT) (Prasanthi et al., 2005). SOD enzymes belong to
metalloenzymes, which transform superoxide anions (O$_2^-$) into less reactive species, namely molecular oxygen (O$_2$) and hydrogen peroxide (H$_2$O$_2$). The H$_2$O$_2$ formed by SOD activity is decomposed to H$_2$O and O$_2$ by CAT and/or glutathione peroxidase (GPx) in the presence of reduced glutathione (GSH) (Ruas et al., 2008). CAT is ubiquitously present in a wide range of aerobic cell types and in red blood cells where it is found as a soluble protein that may protect against peroxidation of haemoglobin. Because of the important role of CAT in the scavenging process of this enzyme under the influence of commonly used herbicides seems to be essential (Bukowska et al., 2000).

Acetylcholinesterase (AChE) in erythrocytes is one of the typical extraneural AChE enzymes. AChE has an essential role in acetylcholine-mediated neurotransmission. It is present in the cholinergic synapses in the central nervous system as well as in neuromuscular synapses where it rapidly hydrolyzes acetylcholine (Igisu et al., 1994; Jha & Rizvi, 2009). The determination of AChE activity in blood is a great consideration in the diagnosis of poisonings caused by reversible and irreversible inhibition of the typical extraneural AChE enzymes. AChE has an essential role in acetylcholine-mediated neurotransmission. It is present in the cholinergic synapses in the central nervous system as well as in neuromuscular synapses where it rapidly hydrolyzes acetylcholine (Igisu et al., 1994; Jha & Rizvi, 2009). The determination of AChE activity in blood is a great consideration in the diagnosis of poisonings caused by reversible and irreversible inhibitors of this enzyme including pesticides (Bukowska & Hutnik, 2006).

GSH is the most abundant non-protein thiol in cells participating in several processes, including synthesis of DNA and proteins, regulation of enzyme activity and inter- and intracellular transport. In human erythrocytes, about 99% of the existing glutathione is in the reduced form under normal physiological conditions, where it affects the scavenging of all functions, including free radical reactions (Bukowska, 2003; Celik & Suzek, 2009). The consequence of oxidative stress in cells may be a decrease of GSH and increase of its oxidized form (GSSG) (Superchio et al., 1996)

Considering the fact that erythrocytes are susceptible to oxidative stress induced by pesticide as well as that studies describing the role of reactive oxygen species (ROS) in clomazone toxicity are limited, the aim of this study was to investigate the effect of clomazone on oxidative stress biomarkers and AChE activity in human erythrocytes \textit{(in vitro)}.

Material and methods

Chemicals

The herbicide clomazone (2-[(2-cholorophenyl)-methyl]-4,4-dimethyl-3-isoxazolidinone) used in this study was obtained commercially from the FMC Corporation (Gamit; 50% purity, Philadelphia, EUA). Malondialdehyde (MDA), 2-thiobarbituric acid (TBA), bovine serum albumin, hydrogen peroxide (H$_2$O$_2$) and other reagents were obtained from Sigma Chemical Co. (St. Louis, MO, USA).

Preparation of erythrocytes

Blood samples were obtained from twelve healthy donors (50% female and 50% male; age, mean ± SD (years): 40.7 ± 9.84) from Labimed (Santa Maria, RS, Brazil). The volunteers were non-smokers, non-alcohol drinkers, and under no medication or food supplement intake. Blood samples were collected after a 12-h overnight fasting by venous puncture into gray top Vacutainers® (BD Diagnostics, Plymouth, UK) tubes with sodium fluoride plus potassium oxalate. Specimens were routinely centrifuged at 3000 rpm for 10 min at 4°C, and the plasma and buffy coat were removed. The erythrocytes were washed three times with cold isotonic saline and centrifuged. After the final wash, the packed erythrocytes were resuspended in phosphate buffer (0.1 mol/L, pH 7.4) at 1:9 dilution and used for incubations. The protocol was approved by the Human Ethics Committee of the Federal University of Santa Maria (number 0291.0.243.000-09).

Treatment of erythrocytes

Erythrocytes suspended in phosphate buffer were exposed to clomazone at varying concentrations in the range of 0, 100, 250 and 500 μg/L for 1h at 37°C (with continuous mixing). There are not sufficient data available on the cytotoxic effects of clomazone using erythrocyte as a model. The concentration usually recommended in rice fields is from 0.4 to 0.7 mg/L (Rodrigues & Almeida, 1998) and thus we chose clomazone concentrations of 0–500 μg/L for the experiments. Samples of erythrocytes and phosphate buffer without herbicide were used as controls. Both the samples exposed to clomazone and controls were stored at −20°C until biochemical analysis. All the experiments were repeated ten times under the same conditions.

Determination of lipid peroxidation

Lipid peroxidation was assessed by measuring TBARS in erythrocytes, according to a modified method of Jentzsch et al. (1996). Briefly, 0.2 mL of erythrocytes was added to the reaction mixture containing 1 mL of 1% orthophosphoric acid, 0.25 mL alkaline solution of thiobarbituric acid-TBA (final volume 2.0 mL) followed by 45 min heating at 95°C. After cooling, samples and standards of malondialdehyde were read at 532 nm against the blank of the standard curve. The results were expressed as nmol MDA/mL erythrocytes.

Catalase activity

CAT activity in erythrocyte lysate was determined according to the method of Aebi (1984). The method is based on the decomposition of H$_2$O$_2$ by catalase. An aliquot (0.02 mL) of erythrocyte lysate was homogenised in potassium phosphate buffer, pH 7.0. The spectrophotometric determination was initiated by the addition of 0.1 mL in an aqueous solution of hydrogen peroxide 0.3 mol/L. The reduction rate of H$_2$O$_2$ was followed at 240 nm for 1 min. Catalase activity was expressed in μmol/mg protein /minute.

Superoxide dismutase activity

SOD activity measurement is based on the inhibition of the radical superoxide reaction with adrenaline as described by McCord & Fridovich (1969). In this method,
Acetylcholinesterase activity
AChE activity was assayed by the method of Ellman et al. (1961). According to this method, acetylthiocholine (AcSCH) is hydrolyzed by AChE to acetic acid and thiocysteamine. The catalytic activity is measured by the increase in the yellow anion, 5-thio-2-nitrobenzoate, produced when it reacts with 5,5-Dithio-bis-2-nitrobenzoic acid (DTNB). AChE activity was expressed in μmol of AcSCH hydrolyzed/ min/ mg protein.

Reduced glutathione
Reduced glutathione was assayed by the method of Ellman (1959). Aliquots (0.1 mL) of erythrocytes were added to a phosphate buffer 0.3 mol/L (0.85 mL), pH 7.4 and the reaction was followed at 412 nm after the addition of 0.05 mL of 10 mmol/L 5-5'-dithio-bis(2-nitrobenzoic acid) (DTNB). Results were expressed as μmol/ AcSCH hydrolyzed/ min/ mg protein.

Protein determination
Protein was determined by the Comassie blue method using bovine serum albumin as standard. Absorbance of samples was measured at 595 nm (Bradford, 1976).

Statistical analysis
All data were expressed as mean ± standard deviation (SD). Data were analysed statistically using analysis of variance followed by the Duncan multiple test. Statistical significance was assumed at p < 0.05. Data analysis was performed with Statistica 6.0 (StatSoft, Inc, Tulsa, OK, USA, 2001).

Results
Table 1 shows oxidative stress biomarkers and acetylcholinesterase activity in erythrocytes incubated with clomazone for 1 h. TBARS levels were significantly increased in all clomazone concentrations used compared to control value. On the contrary, a significant reduction in the activity of AChE was observed at all clomazone concentrations. No statistically significant changes were observed in GSH levels as compared to control group. The lowest dose of clomazone (100 μg/L) appeared to result in statistically significant induction of SOD activity when compared to control. The activity of erythrocyte CAT decreased when red blood cells were exposed to clomazone (Table 2).

Discussion
Erythrocytes are a convenient model to understand the membrane oxidative damage induced by various xenobiotic pro-oxidants (Mansour et al., 2009). The treatment with clomazone (in vitro) showed increased LPO in human erythrocytes. Polyunsaturated fatty acids of the membrane, an oxygen-rich environment, as well as iron-rich haemoglobin make red cells susceptible to oxidative damage. ROS initiates LPO reactions that lead to loss of membrane integrity and, consequently, death of the cell. Malondialdehyde (MDA), a highly reactive bifunctional molecule, is an endproduct of membrane LPO. MDA has been shown to cross-link erythrocyte phospholipids and proteins. This process results in impairment of the membrane-related functions, leading ultimately to diminished survival (Çimen, 2008). The increased TBARS levels found in this study may have resulted from an increase of free radicals as a result of stress condition generated by erythrocyte herbicide exposure. These findings are consistent with results of several other recent investigations (Prasanthi et al., 2005; Duchnowicz et al., 2005).

Enzymes for preventing oxidative denaturation in erythrocytes include SOD and CAT. Superoxide anion is converted into O₂ and H₂O₂ by SOD, a ubiquitous metal-containing enzyme (Çimen, 2008). Physiologically, erythrocytes are well protected against ROS by abundant Cu, Zn-SOD, which scavenge free radical thus preventing methaemoglobin (metHgb) formation (Dumaswala et al., 2001).

Table 1. Oxidative stress biomarkers and acetylcholinesterase activity in erythrocytes incubated with clomazone during 1 h.

Biomarker	Control	100 μg/L	250 μg/L	500 μg/L
TBARS (μmol MDA/ml)	17.02 ± 3.67a	26.98 ± 8.39b	34.07 ± 7.09c	31.21 ± 7.60c
AChE (μmol AcSCH min/mg protein)	0.86 ± 0.13a	0.63 ± 0.03b	0.48 ± 0.04c	0.39 ± 0.04c
GSH (μmol/ml)	1.31 ± 0.32a	1.94 ± 0.33b	1.27 ± 0.19c	1.36 ± 0.04c

Data are expressed as mean ± SD of ten experiments. Duncan’s multiple range test: groups that show different letters are statistically different (p ≤ 0.05).

Table 2. Erythrocyte superoxide dismutase (SOD) and catalase (CAT) activities in human erythrocytes incubated with clomazone for 1 h.

Activity of SOD (U/mg protein)	Activity of CAT (μmol/mg protein/min)	
Control	3.58±0.96a	34.28±3.18a
100 μg/L	6.13±1.08b	30.28±2.89c
250 μg/L	3.14±1.16b	29.73±5.19b
500 μg/L	1.85±0.74a	25.83±4.11a

Data are expressed as mean ± SD of ten experiments. Duncan’s multiple range test: groups that show different letters are statistically different (p ≤ 0.05).
In this study we observed higher SOD activity at 100 μg/L of clomazone. The increased SOD activity may be a consequence of cellular-oxidative damage due to pesticide exposure in this concentration. Moreover, in higher doses of clomazone, an inhibition tendency of SOD activity was observed, possibly due to toxic effects of higher doses of the herbicide. Therefore, oxidative stress is likely to be potentially related to SOD activity damage in vitro conditions. Damage in SOD can significantly affect the defensive mechanisms against free radical attack in the living cell, such as human erythrocytes (Bukowska, 2003). On the other hand, the activity of erythrocyte SOD decreased with the increasing dose of 2, 4-D and 2, 4-DCP, for both herbicides (Bukowska, 2004).

CAT activity significantly decreased in the erythrocytes after clomazone exposure in a dose-dependent manner. Low CAT activity could also be attributed to enzyme inactivation by ROS-induced damage to proteins (Nelson et al., 2006). CAT, a soluble protein in erythrocytes, plays a role in the decomposition of hydrogen peroxide to give H₂O₂. On balance, our results are in accordance with other recent investigations that showed phosalone, chlorpyrifos-ethyl and phenoxycarboxylic metabolites to cause a decrease in CAT activity (Gultekin et al., 2001; Altuntas et al., 2002; Bukowska et al., 2000).

In the present study, the erythrocyte AChE activity was markedly inhibited after clomazone treatment. AChE in blood cells is biochemically identical to the enzyme contained in neurons and reveals lower individual dispersion as well as higher resistance towards external factors. Erythrocyte AChE plays an important role in the preservation of the integrity of the red cell. Markedly reduced erythrocyte AChE activity was demonstrated in cases of paroxysmal nocturnal haemoglobinurina (PNH) (Auditore & Hartmann, 2004). Previous studies showed a correlation between AChE inhibition in blood and inhibition in target tissues (Kale et al., 1999, Igsisu et al., 1994). Clomazone significantly inhibited AChE activity in brain and muscle of silver catfish (Rhamdia quelen) exposed to 5, 10 and 20 mg/L for 96 h (dos Santos Miron et al., 2005). The same result was found by Bukowska et al. (2007), where AChE inhibition was observed in human erythrocytes incubated with 3-(dimethylamino) phenol, a derivative of phenoxycarbamates.

In summary, the present study demonstrated an increase of oxidative stress in human erythrocytes exposed to clomazone herbicide (in vitro). This study clearly showed an inhibition of AChE activity, presenting this enzyme as a good indicator of intoxication of erythrocytes by pesticides. Nevertheless, in addition to in vitro studies, larger clinical studies are required to better understand clomazone toxic mechanisms in humans.

Acknowledgements

The financial support by CAPES is gratefully acknowledged.

REFERENCES

Abeti H. (1984). Catalase in vitro. Meth Enzymol 105: 121–126.
Altuntas I, Delibas N, Demirci M, Killic I, Tamer N. (2002). The effects of methadithion on lipid peroxidation and some liver enzymes: role of vitamins E and C. Archives of Toxicology 76: 470–473.
Auditore JV, Hartmann RC. (1959). Paroxysmal nocturnal hemoglobinuria. II. Erythroocyte acetylcholinesterase defect. Am J Med 27: 401–410.
Bradford MM. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
Bukowska B, Chajdys A, Duda W, Duchnowicz P. (2000). Catalase activity in human erythrocytes: effect of phenoxycarbamates and their metabolites. Cell Biol Int 24: 705–711.
Bukowska B. (2003). Effects of 2, 4-D and its metabolite 2, 4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp Biochem Physiol C Toxicol Pharmacol 135: 435–441.
Bukowska B, Hutnika K. (2006). 2, 4-D and MCPA and their derivatives: Effect on the activity of membrane erythrocytes acetylcholinesterase (in vitro). Pestic Biochem Physiol 85: 174–180.
Bukowska B, Michalowicz J, Duda W. (2007). Alterations in human red blood cell properties induced by 3 (dimethylamino)phenol (phenol) in vitro. Toxicol in Vitro 21: 1574–1580.
Celik I, Suszek H. (2009). Effects of subacute exposure of dichloroacetonitrile at sublethal dosages on erythrocyte and tissue antioxidant defense systems and lipid peroxidation in rats. Ecotoxicol Environ Saf 72: 905–908.
Cimici MY. (2008). Free radical metabolism in human erythrocytes. Clin Chim Acta 390: 1–11.
Crestani M, Menezes C, Giuscaoz L, dos Santos Miron D, Spanevello R, Silvaere A, Gonçalves FF, Zanelle R, Loro VL. (2007). Effect of clomazone herbicide on biochemical and histological aspects of silver catfish (Rhamdia quelen) and recovery pattern. Chemosphere 67: 2305–2311.
dos Santos Miron D, Crestani M, Rosa Shettinger M, Maria Morsch V, Baldiserotto B, Angel Tierno M, Morais G, Vieira VL. (2005). Effects of the herbicides clomazone, quinolarc, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae). Ecotoxicol Environ Saf 61: 398–403.
Duchnowicz P, Szczepaniaka P, Koter M. (2005). Erythrocyte membrane protein damage by phenoxacycatic herbicides and their metabolites. Pestic Biochem Physiol 82: 59–65.
Dumarwala UJ, Zhou L, Jacobsen DW, Jain SK, Sukalski KA. (1999). Protein and lipid oxidation of banked human erythrocytes: role of glutathione. Free Radic Biol Med 27: 1041–1049.
Elliott GL. (1959). Tissue sulfhydryl groups. Arch Biochem Biophys. 82: 70–77.
Elliott GL, Courtney KD, Andrews Jr V. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol 7: 88–95.
Ferhatoglu Y, Michael B. (2006). Studies of clomazone mode of action. Pestic Biochem Physiol 97: 78–86.
Gultekin F, Delibas N, Yasar S, Kilinc I. (2001). In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and vitamin E on oxidative damage in erythrocytes induced by chlorpyrifos-ethyl in rats. Arch of Toxicol 75: 88–96.
Igsisu H, Matsumura H, Matsuoka M. (1994). Acetylcholinesterase in the erythrocyte membrane. J Biochem. 116: 493–498.
Jentzsch AM, Bachmann H, Fürst P, Biesalski HK. (1996). Improved analysis of malondialdehyde in human body fluids. Free Radic Biol Med 20: 251–256.
Jha R, Rizvi SI. (2009). Age-dependent decline in erythrocyte acetylcholinesterase activity: correlation with oxidative stress. Biomed Pap Fac Med Univ Palacky Olomouc Czech Repub 153: 195–198.
Kale MN, Rathore S, Bhatnagar JD. (1999). Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol Lett 153: 195–205.
López O, Hernández AF, Rodrigo L, Gil F, Pena G, Serrano JL, Parrón T, Villanueva E, Pla A. (2007). Changes in antioxidant enzymes in humans with long-term exposure to pesticides. Toxicol Lett 171: 146–153.
Luperchio S, Tamir S, Tannenbaum SR. (1996). No-induced oxidative stress and glutathione metabolism in rodent and human cells. Free Radic Biol Med 21: 513–519.
Mansour SA, Mossa AT, Heikal TM. (2009). Effects of methomyl on lipid peroxidation and antioxidant enzymes in rat erythrocytes: in vitro studies. Toxicol Ind Health 25: 557–563.

Mansour S, Mossa A. (2009). Lipid peroxidation and oxidative stress in rat erythrocytes induced by chlorpyrifos and the protective effect of zinc. Pestic Biochem Physiol 97: 34–39.

McCord JM, Fridovich I. (1969). Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049–6055.

Nelson SK, Bose SK, Grunwald GK, Myhill P, McCord JM. (2006). The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy. Free Radical Biol Med 40: 341–347.

Prasanthi K, Rajini PS. (2005). Morphological and biochemical perturbations in rat erythrocytes following in vitro exposure to Fenvalerate and its metabolite. Toxicol In Vitro 19: 449–456.

Rodrigues NR, Almeida FS. (1998). Guia de Herbicidas, fourth ed. pp. 137–142.

Ruas CB, Carvalho Cdos S, de Araújo HS, Espíndola EL, Fernandes MN. (2008). Oxidative stress biomarkers of exposure in the blood of cichlid species from a metal-contaminated river. Ecotoxicol Environ Saf 71: 86–93.