ACQUISITION OF CELL SURFACE IgD
AFTER IN VITRO CULTURE OF NEOPLASTIC
B CELLS FROM THE MURINE TUMOR BCL1*

BY PETER C. ISAKSON, JONATHAN W. UHR, KEITH A. KROLICK, FRED
FINKELMAN, AND ELLEN S. VITETTA

From the Department of Microbiology, University of Texas Southwestern Medical School, Dallas, Texas 75235; and the Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20014

The differentiation of bone marrow-derived lymphocytes in mice is characterized by the sequential appearance of different surface markers. IgM is the first isotype to appear, and IgM⁺ cells subsequently acquire IgD. The acquisition of IgD appears to be antigen and T cell independent (1). The roles of these two surface isotypes in the triggering of B cells is the subject of intensive study. When mature B cells bearing both isotypes are triggered by mitogens, IgD is lost and the cells differentiate into IgM secreting plasma cells (1–3).

Recent evidence indicates that several nonsecreting B cell tumors from humans (4, 5) and mice (6) have the capacity to secrete IgM under the influence of mitogens (5), T cells (4), or after fusion to myeloma cells (7). One of the murine tumors, BCL1, has been used in the present studies to investigate the pathway of B cell differentiation that is characterized by the acquisition of IgD. The uncultured tumor cells bear large quantities of surface IgM and trace amounts of IgD (8–10). Thus, both the phenotypic characteristics (8) and, in addition, the functional properties (9, 10) of BCL1 cells suggest that they are analogous to immature B cells. In the present studies we have demonstrated that cultivation of BCL1 cells results in markedly increased expression of surface IgD in the absence of IgM secretion.

Materials and Methods

Mice. BALB/c mice were obtained from Cumberland View Farms, Clinton, Tenn. The BCL1 tumor was maintained in vivo by intravenous passage of 10⁵ spleen cells obtained from a tumor-bearing mouse.

Culture Conditions. Peripheral blood and spleen cells were obtained from mice that had carried the tumor for 8–12 wk and were prepared and cultured as previously described (11) without the addition of either 2-mercaptoethanol or lipopolysaccharide (LPS). Greater than 90% of the cell populations employed are tumor cells as judged by morphology and expression of idiotype (9, 12). Cells were incubated in 250-ml culture flasks (Falcon Labware, Div. of Becton, Dickinson & Co., Oxnard, Calif.) at 2 × 10⁶/ml (30–50 ml/flask), in RPMI-1640 with 10% fetal calf serum (FCS) (Grand Island Biological Co., Grand Island, N. Y.). Under these conditions, BCL1 cells do not secrete IgM.¹

Immunofluorescence. Indirect immunofluorescence analysis of tumor cells on the fluorescence-activated cell sorter (FACS III, Becton, Dickinson & Co., Rutherford, N. J.) was performed as

* Supported by National Institutes of Health grants AI-11851, AI-10967, AI-12789, and CA-23115, and by Uniformed Services University of the Health Sciences grants R08307 and R08308.

¹ Isakson, P. C., K. A. Krolick, J. W. Uhr, and E. S. Vitetta. Manuscript submitted for publication.

J. EXP. MED. © The Rockefeller University Press - 0022-1007/80/03/0749/06 $1.00 749
Volume 151 March 1980 749-754
Immunofluorescence analysis of BCL1 cells stained with anti-δ. Blood cells from tumor-bearing animals were cultured at \(2 \times 10^6/ml\) for 4 d and, along with uncultured blood cells, were stained with hybridoma anti-δ or the control mouse IgG2A (RPC-5) and F1-RAMy F(ab')2. Cells were analyzed on the FACS, and the results were plotted as cell number vs. fluorescence intensity.

Cell Surface Iodination. Surface molecules were labeled with \(^{125}\)I-Na by lactoperoxidase-catalyzed iodination, and the immunoglobulins were precipitated from the cell lysate and analyzed as previously described (12).

Radioimmunoassay for Surface Ig. The antibodies used for this assay were affinity-purified rabbit anti-mouse-μ and goat anti-mouse-δ. Preparation and iodination of the rabbit anti-μ and control Ig is detailed elsewhere. Affinity-purified goat anti-mouse-δ was prepared in goats by repeated injections of 500 μg of TEPC-1017 (an IgDκ myeloma protein [F. Finkelman, S. Kessler, F. Mushinski, and M. Potter. Manuscript in preparation.]) in adjuvant. After adsorption with an IgMκ myeloma (TEPC-183) and BALB/c serum, the serum was affinity purified on TEPC-1033 Sepharose (Pharmacia Fine Chemicals, Div. of Pharmacia, Inc., Piscataway, N. J.) (IgDκ) (F. Finkelman, S. Kessler, F. Mushinski, and M. Potter. Manuscript in preparation.). Tumor cells or normal spleen cells were incubated for 30 min at 4°C with 200 μl of \(^{125}\)I-labeled antibody in 5% FCS-phosphate-buffered saline (PBS) (with 10 mM azide) followed by three washes with PBS-azide. Cells were transferred to a fresh tube and counted directly in a gamma counter. For each point, four concentrations of \(^{125}\)I-antibody were tested, and the average counts per minute bound per 10⁵ cpm input was calculated. Under these conditions, binding of \(^{125}\)I-anti-μ and \(^{125}\)I-anti-δ to BALB/c spleen cells was linear with respect to concentration of antibody and number of cells assayed. Binding of radiiodinated normal Ig to normal or tumor cells was always ≤200 cpm/10⁵ input cpm.

Results

Immunofluorescence Analysis. Prior studies of BCL1 tumor cells with both immunofluorescence and biochemical techniques demonstrated that these cells bear large quantities of surface IgM but only trace amounts of IgD (8–10). Thus, Fig. 1 shows that freshly prepared BCL1 cells stained minimally with anti-δ. In contrast, 86% of BCL1 cells cultured for 4 d without added mitogens stained brightly with hybridoma anti-δ but not with a control myeloma protein of the same subclass (RPC-5). The
cultured cells that stained with anti-δ were very heterogeneous with respect to fluorescence intensity, which suggests a variable density of surface IgD. This finding indicates that the vast majority of BCL1 tumor cells differentiate in vitro and acquire the surface immunoglobulin phenotype of a more mature B cell.

Biochemical Analysis of Surface Ig. To obtain biochemical evidence that cultured BCL1 cells acquire IgD, cells were iodinated, either before or after culture, and the lysates were analyzed by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoprecipitation with rabbit anti-mouse Ig (RAMIg) of lysates from uncultured cells demonstrated substantial quantities of μ-chain but little or no δ-chain (Fig. 2). Lysates from radioiodinated cultured cells, however, contained readily detectable IgD as determined by the presence of radioactive δ-chain on SDS-PAGE. Estimation of the areas under the μ- and δ-peaks in several experiments showed at least a three- to fourfold decrease in the μ:δ-ratio of cultured cells. Analogous results with regard to δ-chain were obtained with affinity-purified goat anti-δ (data not shown).

Radioimmunoassay for Surface Ig. To further quantify the relative amounts of IgM and IgD on cultured BCL1 cells, cells were treated with radioiodinated, affinity-purified antibodies directed against μ- or δ-chains. As shown in Table I, BCL1 cells bound substantially more 125I-anti-μ than normal spleen cells (assuming 40% of normal spleen cells and 100% of BCL1 cells are IgM positive) (9). In the experiment shown, binding of 125I-anti-μ was unchanged on cells cultured for 6 d; in other experiments, increased binding of 125I-anti-μ (up to a twofold increase) was often observed. In contrast, binding of 125I-anti-δ to uncultured BCL1 cells, although

Fig. 2. Immunoprecipitation of lysates of cells radioiodinated before and after culture. BCL1 cells, cultured for 6 d at 2×10^7/ml, were washed and iodinated; fresh BCL1 blood cells were iodinated at the same time. The lysates were precipitated with RAMIg or control rabbit antisera (anti-φX174) and *Staphylococcus aureus*. Complexes were eluted and electrophoresed under reducing conditions on 7.5% SDS gels.
TABLE I

Radioimmunoassay for Cell Surface IgM and IgD on BCL1 Cells

Cell source	Days in culture	Bound to cells	125I-anti-μ	125I-anti-δ	μ/δ
BALB/c spleen	0	598	2,582	0.2	
BCL1 spleen**	0	2,764	933	3.0	
BCL1 spleen**	6	2,529	3,144	0.8	
BCL1 blood**	0	2,467	855	2.9	
BCL1 blood**	6	2,540	2,603	1.0	

* Cells were cultured at 2 × 10⁶/ml.
† 1 × 10⁶ cpm input (2 × 10⁶ cpm/μg).
‡ 2 × 10⁵ cpm input (2 × 10⁶ cpm/μg).
§ 5 X 10⁵ cells/tube were assayed.
¶ 2 X 10⁵ cells/tube were assayed.

FIG. 3. Kinetics of appearance of IgD during in vitro culture. BCL1 blood and spleen cells were cultured at 2 × 10⁶/ml for 1, 3, or 5 d. Binding of 125I-anti-μ and 125I-anti-δ was performed as described in Materials and Methods; 2 × 10⁶ BCL1 cells or 5 × 10⁶ BALB/c spleen cells were assayed. μ/δ-ratios were calculated on the basis of counts bound per 1 × 10⁶ cpm added for anti-μ, and 2 × 10⁶ cpm added for anti-δ.

reproducibly higher than the control, was very low compared with binding to normal cells. After cell culture there was a dramatic increase in 125I-anti-δ binding to BCL1 cells (Table I) but no increase in binding of the control Ig (data not shown). The increased binding of 125I-anti-δ after culture is reflected in the decreased binding ratio of anti-μ:anti-δ (μ:δ). The kinetics of appearance of IgD are shown in Fig. 3 and indicate that increased levels of surface IgD could be detected as early as 1 d of culture and levels continued to increase until they plateaued at 3–5 d. It should be emphasized that because the binding assays were performed under nonsaturating conditions, the μ:δ-ratios calculated here are relative ones and do not reflect absolute amounts of surface Ig.

Discussion

The present studies indicate that culture of BCL1 tumor cells can result in a markedly increased expression of cell surface IgD. The IgD was measured by three techniques: immunofluorescence using the FACS, immunoprecipitation of radiiodinated surface immunoglobulin and analysis by SDS-PAGE, and a radioimmunoassay with heavy chain-specific antibodies. The results of the latter assay suggest that the
density of IgD on uncultured BCL1 cells is \(~1/10\)th of that found on normal adult spleen cells. After 3–5 d of culture, the density of IgD increased three- to fourfold. Earlier studies have shown a loss of surface IgD during differentiation of B cells into plasma cells (1–3) but to our knowledge, this is the first demonstration of in vitro acquisition of surface IgD.

A significant development in B cell immunology was the demonstration by Fu et al. (4, 5) and Kishimoto (13) that neoplastic human B lymphocytes could be stimulated in vitro to differentiate into Ig-secreting plasma cells. Similar observations have been made with the BCL1 tumor, i.e., cultivation of BCL1 cells with LPS stimulates them to secrete IgM (11) bearing the same idiotype as the surface Ig of the unstimulated cells (12). The present findings extend the concept that tumor cells can differentiate. Thus, cultivation of BCL1 cells in the absence of LPS results in differentiation along a different pathway, i.e., acquisition of an Ig phenotype characteristic of a more mature B lymphocyte. It is unclear whether this is a spontaneous maturation event related to removal of host suppressive influences or caused by trace amounts of stimulatory factors (growth factors or mitogens) in the FCS. Regardless, the BCL1 cells may provide a useful model for analysis of the events involved in expression of IgD and the factors that determine which pathway of differentiation is chosen by B cells.

Summary

Murine BCL1 tumor cells bear large amounts of surface IgM and trace amounts of surface IgD. In the present studies we have shown that cultivation of these cells, in the absence of lipopolysaccharide, results in the acquisition of IgD by virtually all the cells. These results suggest that BCL1 cells can differentiate in vitro into more mature B cells and offer an attractive model for analyzing the factors controlling appearance of IgD on a monoclonal cell line.

The authors wish to acknowledge Ms. J. Himes, Mr. Y. Chinn, Mr. H. Siu, and Ms. Y. M. Tseng for excellent technical assistance and the secretarial skills of Ms. J. Hahn. We thank Dr. S. Strober, Department of Medicine, Stanford University School of Medicine (Palo Alto, Calif.) for providing us with the BCL1 cells.

Received for publication 27 November 1979.

References

1. Vitetta, E. S., and J. W. Uhr. 1978. IgD and B cell differentiation. *Immunol. Rev.* 37:50.
2. Bourgois, A., K. Kitajima, I. R. Hunger, and B. A. Askonas. 1977. Surface immunoglobulins of lipopolysaccharide-stimulated cells. The behavior of IgM, IgD, and IgG. *Eur. J. Immunol.* 7:151.
3. Preud'homme, J. L. 1977. Loss of surface IgD by human B lymphocytes during polyclonal activation. *Eur. J. Immunol.* 7:191.
4. Fu, S. M., N. Chiorazzi, H. G. Kunkel, J. P. Halper, and S. R. Harris. 1978. Induction of in vitro differentiation and immunoglobulin synthesis of human leukemic B lymphocytes. *J. Exp. Med.* 148:1570.
5. Fu, S. M., J. Hurley, N. Chiorazzi, and H. G. Kunkel. 1979. Differentiation in vitro of human B type leukemia cells. In B Lymphocytes in the Immune Response. M. D. Cooper, D. E. Mosier, I. Scher, and E. S. Vitetta, editors. Elsevier-North Holland, Inc., New York. 277.
6. Slavin, S., and S. Strober. 1977. Spontaneous murine B cell leukemia. *Nature (Lond.)* 272:624.
7. Levy, R., and J. Dilley. 1978. Rescue of immunoglobulin secretion from human neoplastic lymphoid cells by somatic cell hybridization. *Proc. Natl. Acad. Sci. U. S. A.* 75:2411.
8. Knapp, M. R., P. P. Jones, S. J. Black, E. S. Vitetta, S. Slavin, and S. Strober. 1979. Characterization of the spontaneous murine B cell leukemia (BCL4). I. Cell surface expression of IgM, IgD, Ia, and FcR. *J. Immunol.* 123:992.
9. Krolick, K. A., P. C. Isakson, J. W. Uhr, and E. S. Vitetta. 1979. Murine B cell leukemia (BCL4): organ distribution and kinetics of growth as determined by fluorescence analysis with an anti-idiotypic antibody. *J. Immunol.* 123:1928.
10. Krolick, K. A., P. C. Isakson, J. W. Uhr, and E. S. Vitetta. 1979. BCL4, a murine model for chronic lymphocytic leukemia: use of the surface immunoglobulin idiotype for the detection and treatment of tumor. *Immunol. Rev.* 48:81.
11. Knapp, M. R., E. Sevrinson-Gronowicz, J. Shroeder, and S. Strober. 1979. Characterization of the spontaneous murine B cell leukemia (BCL4). II. Tumor cell proliferation and IgM secretion after stimulation by LPS. *J. Immunol.* 123:1000.
12. Vitetta, E. S., D. Yuan, K. Krolick, P. Isakson, M. Knapp, S. Slavin, and S. Strober. 1979. Characterization of a spontaneous murine B cell leukemia (BCL4). III. Evidence for monoclonality using anti-idiotypic antibody. *J. Immunol.* 122:1649.
13. Kishimoto, T. 1979. Activation of human B-lymphoblastoid cell lines to IgG-producing cells by allogeneic T cells. In *B Lymphocytes in the Immune Response*. M. D. Cooper, D. E. Mosier, I. Scher, and E. S. Vitetta, editors. Elsevier-North Holland, Inc. New York. 285.