Distributed multiple-bipartite consensus in networked Lagrangian systems with cooperative-competitive interactions

Tiehui Zhang
Shanghai University

Hengyu Li (✉ lihengyu@shu.edu.cn)
Shanghai University https://orcid.org/0000-0002-2243-5908

Jun Liu
Jining University

Daowei Lu
Jining University

Shaorong Xie
Shanghai University

Jun Luo
Shanghai University

Research Article

Keywords: Multiple-bipartite consensus, networked Lagrangian systems (NLSs), cooperative-competitive, leaderless, leader-following

Posted Date: February 26th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-272873/v1

License: ☺ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

In combination with the collective behavior evolutions of bipartite consensus and cluster/group consensus, this paper proposes the notion of multiple-bipartite consensus in networked Lagrangian systems (NLSs). The distributed leaderless and leader-following multiple-bipartite consensus control laws for NLSs are presented in the cooperative-competitive network, where the negative interactions between agents can exist in the same subnetwork. By introducing an acyclic partition and adding the integral item in the control protocols, the final explicit convergence states in the leaderless case are eventually obtained. Moreover, the leader-following scenario can be realized in finite time with integrated controllers. All of the effectiveness has been illustrated through numerical simulations.

Full Text

Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the manuscript can be downloaded and accessed as a PDF.

Figures
Figure 1

Two-link revolute arm agent
Figure 2

Network topology graph G1 of ten two-link revolute arm agents
Figure 3

Generalized coordinate state evolutions of ten two-link revolute arm agents under G1
Figure 4

Generalized velocity state evolutions of ten two-link revolute arm agents under G1
Figure 5

Network topology graph G2 of ten two-link revolute arm agents with three virtual leaders
Figure 6

Generalized coordinate state evolutions of ten two-link revolute arm agents under G2
Figure 7

Generalized velocity state evolutions of ten two-link revolute arm agents under G2