Neutrophil CD64 a Diagnostic and Prognostic Marker of Sepsis in Adult Critically Ill Patients: A Brief Review

Rupali Patnaik1, Afzal Azim2, Vikas Agarwal3

ABSTRACT

Introduction: Sepsis is a life-threatening organ dysfunction with increased incidence of morbidity and mortality. Early diagnosis and prompt therapeutic intervention is the cornerstone of sepsis care. Biomarkers play an important role in sepsis having both diagnostic and prognostic implications. Neutrophil CD64 (nCD64) is a useful candidate biomarker for sepsis. Neutrophil CD64 also known as Fc receptor 1 (FcγR1), is a high-affinity receptor present on neutrophils for Fc part of immunoglobulin-G (IgG) heavy chain. Its expression gets strongly upregulated in response to proinflammatory cytokines of infection within 4–6 hours. Neutrophil CD64 integrates function involving both innate and adaptive immune responses. The aim of this review is to present literature about nCD64 as a diagnostic and prognostic marker in patients with sepsis/septic shock.

Background: The authors searched articles over 13 years, i.e., from 2006 to 2019. They included articles written in English only and further reviewed the reference list of selected articles to obtain potentially relevant articles. Reviews, letters, commentaries, correspondences, case reports, conference abstracts, expert opinions, editorials, and animal experiments were excluded. Articles involving pediatric patients (≤18 years) were also excluded.

Review results: Several studies have indicated that nCD64 is a highly sensitive and specific marker for the diagnosis of sepsis. Various combinations of biomarkers have been used with nCD64 for a better diagnostic value. Neutrophil CD64 as a prognostic marker in critically ill patients needs to be explored more. Most of the existing literatures have highlighted its prognostic utility based on single value at enrolment. There are limited literatures on prognostic implications of serial trend and kinetics of nCD64.

Conclusion: Neutrophil CD64 is a useful diagnostic and prognostic marker of sepsis in critically ill patients. Additional studies are needed on nCD64 in sepsis based on sepsis-3 criteria. Further trials with large sample size are needed to establish prognostic implications of serial nCD64 trend.

Keywords: Fc receptor 1, Immunoglobulin-G, Neutrophil CD64, Sepsis, Septic shock.

Indian Journal of Critical Care Medicine (2020): 10.5005/jp-journals-10071-23558

BACKGROUND

Sepsis is a major burden for healthcare.1 Due to its aggressive nature, rapid recognition and appropriate urgent therapeutic interventions are cornerstone for sepsis and septic shock management. Biomarkers have important implications in patients with sepsis including diagnosis, prognosis, and therapeutic guidance.2 Cell surface receptors are important candidate biomarkers for sepsis. Surface receptors of neutrophils recognize bacterial antigen, thereby activating neutrophils. Activated neutrophils have a capacity for phagocytosis, chemotaxis, oxidative burst, and production of cytokines.3 Phagocytosis is facilitated by various opsonins like immunoglobulin-G (IgG) and complement factors. Polymorphonuclear leukocytes (PMNs) express receptors for the attachment of opsonin IgG called Fcy receptor. These receptors are named as Fcy receptors, as they bind to specific portion of antibody, the Fc (constant) region. Cluster of differentiation 64 (CD64) is the monoclonal antibody which recognizes FcγR1 neutrophilic receptor.4 In addition to innate immune response stimulating phagocytosis, Fc receptor is also involved in adaptive immune response stimulating antibody-mediated cytotoxicity.5 FcγR1 receptor is constitutively expressed to a very low extent on resting neutrophils. However, its expression gets strongly upregulated once these become activated by proinflammatory cytokines produced in response to infection like IFN-γ, IL-6, TNF-α, and granulocyte colony-stimulating factor (G-CSF), within 4–6 hours, allowing good discrimination between resting and activated neutrophils. When these stimulation factors are absent, it will substantially decrease within 48 hours and will be back to normal baseline values after 7 days.6-9 Therefore, CD64 expression is a very early step of immune host response to bacterial infection and has been found to correlate with proinflammatory cytokine levels both in time and quantitatively.

Several studies have indicated that neutrophil CD64 (nCD64) is a highly sensitive and specific marker for the diagnosis of sepsis of bacterial origin and differentiating sepsis from non-septic conditions. Various combinations of biomarkers have been used in combination with nCD64 for a better diagnostic value in sepsis. Studies comparing nCD64 with C reactive protein (CRP), procalcitonin (PCT), and other biomarkers as diagnostic markers of sepsis have got results in favor of nCD64. Neutrophil CD64 is an

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Neutrophil CD64 in Sepsis for Diagnosis and Prognosis

emerging novel biomarker with prognostic implications in critically ill patients. Serial nCD64 has been found to correlate with clinical course and prognosis. Literature on nCD64 as a prognostic marker in intensive care unit (ICU) is limited.

The aim of this review is to present literature about nCD64 as a diagnostic marker and a prognostic marker in critically ill patients with sepsis. We systematically searched studies using PubMed, Embase, Web of Knowledge, and the Cochrane Library. The search terms were (“CD64, Fc gamma receptor”) and (SIRS, sepsis, or septic shock) and (mortality, diagnosis, prognosis, sensitivity, specificity). We searched articles over 13 years, i.e., from 2006 to 2019. We included articles written in English only. We further reviewed the reference list of the selected articles to obtain potentially relevant articles. Reviews, letters, commentaries, correspondences, case reports, conference abstracts, expert opinions, editorials, and animal experiments were excluded. Articles involving pediatric patients (≤18 years) were also excluded.

Review Results

nCD64 for the Diagnosis of Sepsis in Adult Critically Ill Patients

Delay in the diagnosis of sepsis and thereby use of appropriate antibiotic leads to organ dysfunction and increased risk of mortality in sepsis. Though microbiological culture is a gold standard for the diagnosis of infection, it takes time to get culture reports. Diagnostic test with high sensitivity and low specificity yield more number of false positives, thereby promoting irrational use of antibiotics. Conversely, a diagnostic test with low sensitivity and high specificity like microbiological culture can lead to missed diagnosis. Diagnostic test with early diagnosis of infection with biomarkers plays an important role in critically ill patients. Hence, to diagnose sepsis, a biomarker with acceptable sensitivity and specificity should be used. For the diagnosis of sepsis, most widely studied biomarkers are PCT and CRP. Most of the studies have evaluated nCD64 as a biomarker for the diagnosis of sepsis (Table 1). A prospective observational study of 112 patients with suspected sepsis admitted to ICU found that nCD64 was a sensitive and specific test for the early diagnosis of sepsis. Neutrophil CD64 value >2398 molecules/cell was able to differentiate between patients with and without sepsis had area under receiver operating characteristic curve (AUROC) of 0.97.10 In another prospective study, CD64 index >1.19 was predictive of a clinical and/or culture diagnosis of infection with a sensitivity of 94.6% and a specificity of 88.7%.11 As described by Gámez-Díaz et al., CD64 cutoff level of 1.7 molecules of equivalent soluble fluorochrome (MESF) showed 65.8% sensitivity and 64.6% specificity and AUROC 0.706 to diagnose sepsis within first 24 hours of emergency department admission.12 A prospective study published in 2011 found that nCD64 was better than PCT for differentiating systemic inflammatory response syndrome (SIRS) from severe sepsis and septic shock and correlated with severity of illness as SIRS, sepsis, and severe sepsis/septic shock with higher values in non-survivors.13 Another prospective trial found that in patients admitted to medical ICU with at least two SIRS criteria, CD64 index >2.2 predicted bacterial infection with good specificity (89%) and AUROC (0.8), at the cost of low sensitivity of 63%. Low sensitivity of nCD64 for the prediction of bacterial infection in this study was attributed to more number of gram-positive infections in their study.14 Earlier study has described that CD64 expression was more in patients with gram-negative infection.15 A 2013 prospective observational study found that CD64 index had excellent diagnostic accuracy and high discriminative power to differentiate between sepsis and SIRS in adult ICU patients. To differentiate sepsis from non-sepsis, a cutoff value of CD64 index 1.66 showed a 100% sensitivity, 95% specificity, positive predictive value (PPV) of 96%, and negative predictive value (NPV) of 95%.16 An observational retrospective study published in 2014 found that CD64 index was a good biomarker for sepsis diagnosis, better than PCT and CRP (AUROC 0.98) with a cutoff 1.15 of CD64 index.17 Similar results favoring CD64 were obtained in subsequent prospective trials.18–20 Three meta-analyses have been published on nCD64 as a diagnostic marker of bacterial infection and sepsis. Two of which21,22 evaluated CD64 as a diagnostic marker of bacterial infection. Both meta-analyses included studies which were heterogeneous and included both adult and pediatric patients. Meta-analysis by Cid et al. including 13 studies suggested that pooled sensitivity and specificity for nCD64 expression as a marker for bacterial infection was 79 and 91%, respectively. Area under curve for summary receiver operating curve was 0.94. Neutrophil CD64 was suggested as a useful diagnostic test for bacterial infection. Subgroup analysis revealed that pooled sensitivity and specificity was higher in adults (sensitivity 0.9, specificity 0.95) than children (0.71, 0.87). But, the published studies in this meta-analysis showed low methodological quality.21 Another meta-analysis by Li et al. found that nCD64 was a reliable biomarker for the early diagnosis of bacterial infection with a higher diagnostic accuracy for rheumatoid arthritis and systemic lupus erythematosus (SLE) patients. Total 26 studies with 3,944 patients were included with both adult and pediatric population. The overall pooled sensitivity, specificity, positive, and negative likelihood ratios were 0.76, 0.85, 6.67, and 0.24, respectively. Summary of diagnostic odds ratio was 34.29 and area under summary AUROC was 0.92. But, the studies cited in the meta-analysis were heterogeneous and the cutoff value varied in studies.22

Meta-analysis by Wang et al. evaluated the diagnostic utility of nCD64 for sepsis in critically ill adult patients. It included 8 studies (7 of ICU, 1 of emergency department) with 1,986 patients. This meta-analysis showed good sensitivity and excellent specificity of nCD64 to diagnose sepsis. Pooled sensitivity and specificity was 0.76 and 0.85, respectively, with area under summary AUROC was 0.95. The positive and negative likelihood ratio and diagnostic odds ratio were 8.15, 0.16, and 60.41, respectively. The authors suggested that nCD64 was a helpful marker for the early diagnosis of sepsis as in accordance with previous meta-analysis by Cid et al. and Li et al. But, there was significant heterogeneity between studies and different studies used different assays for nCD64 with no ideal cutoff point. It was suggested that nCD64 should not be used alone to diagnose sepsis and should be interpreted with clinical correlation and other test results.23 Recently, a meta-analysis consisting of 14 studies [3 in emergency department (ED) and 11 in ICU] with a total of 2,471 patients, compared the diagnostic accuracy of CD64 with PCT and CRP for sepsis identification. The pooled sensitivity and specificity of CD64 was 0.87 and 0.89, respectively, with summary AUROC of 0.94. Cluster of differentiation 64 was found to be better than PCT and CRP for sepsis identification (AUROC of both 0.84). Subgroup analysis of this study revealed that no difference in diagnostic accuracy of CD64 according to source of patient (ED or ICU) or assay method (in-house method or Leuko64 kit). This meta-analysis has its limitations of significant heterogeneity among included studies.24
Table 1: Characteristic of studies on neutrophil CD64 for diagnosis of sepsis

Author	Year	Place	Clinical setting	Study population	Sample size	Disease severity	Control	Measurement time	Number of times measured	CD64 assay	Unit of measurement	To diagnose sepsis cutoff	AUROC	Sensitivity
Cardelli	2008	Italy	ICU	Adult	112	Suspected sepsis	50 healthy control	Within 6 hours of suspected sepsis	Single time	Flow cytometry CD64 molecules/neutrophil	CD64 index	≥2398 CD64 molecules/neutrophil	0.97	96%
Icardi	2009	Iowa	In hospital	Adult	109	Suspected sepsis	24 healthy control	Within 36 hours of blood culture event	Single time	Flow cytometry CD64 index	CD64 index	≥1.19 CD64 molecules/neutrophil	0.706	94.6%
Gámez-Díaz	2011	Columbia	ED	Adult	631	Suspected sepsis	No	Within 24 hours of admission	Single time	Flow cytometry CD64 index	CD64 index	≥4300 CD64 molecules/neutrophil	0.928	65.8%
Hsu	2011	Taiwan	Respiratory ICU	Adult	66	SIRS, severe sepsis, septic shock	No	Admission to ICU	Single time	Flow cytometry CD64 index	CD64 index	>2.2 CD64 molecules/neutrophil	0.8	89.1%
Gros	2012	France	Medical ICU	Adult	293	SIRS, sepsis	No	Admission to ICU	Single time	Flow cytometry CD64 index	CD64 index	>1.66 CD64 molecules/neutrophil	1.00	63%
Gerrits	2013	Netherlands	ICU	Adult	88	SIRS, sepsis	No	Admission to ICU	Single time	Flow cytometry CD64 index	Antibody binding capacity (ABC)	>1.15 CD64 molecules/neutrophil	0.982	90%
Rogina	2014	Slovenia	ICU	Adult	93	SIRS, sepsis, severe sepsis, septic shock	No	Admission to ICU	Single time	Flow cytometry CD64 antigen bound cell (abc)	CD64 index	>2000 antibody binding capacity	0.93	97.6%
Righi	2014	Italy	ICU	Adult	42	SIRS, sepsis	No	Within 24 hours of infection onset	Single time	Flow cytometry CD64 index	CD64 index	45 abc CD64 antigen bound cell (abc)	0.88	90.2%
Tan	2016	Malaysia	ED	Adult	109	SIRS, sepsis	No	Within 6 hours of admission then after 48 hours	Single time	Flow cytometry CD64 index	CD64 index	>1.45 CD64 molecules/neutrophil	0.34	81%
Dal Ponte	2018	Brazil	ED	Adult		SIRS, sepsis	No	Admission to ICU	Single time	Flow cytometry CD64 index	CD64 index			

AUROC, area under receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; MESF, molecules of equivalent soluble fluorochrome; ED, emergency department; ICU, intensive care unit; SIRS, systemic inflammatory response syndrome
Combination of nCD64 and Other Biomarkers to Diagnose Sepsis in Adult Critically Ill Patients

Various biomarkers have been used in combination with nCD64 for a better diagnostic value in sepsis (Table 2). In a prospective observational study conducted in 300 adult patients of ICU, a biological score was constructed combining biomarkers (range 0–3, all below threshold to all above) PCT, soluble triggering receptor expressed on myeloid cell-1 (sTREM-1), and CD64 index. Bioscore had the highest area of the curve (0.95) followed by CD64 index (0.93). Probability of sepsis was 3.8% with bioscore of 0 and 100% with bioscore of 3. A large prospective observational study including 548 critically ill patients of a medico-surgical ICU found that nCD64 identified sepsis with sensitivity of 89% and specificity of 87% with AUROC 0.94. While combining CRP and nCD64 expression, an abnormal result for both was associated with a 92% probability of sepsis, whereas sepsis was ruled out with a probability of 99% if both were normal. A prospective observational study conducted in 219 patients of a 24-bedded medical ICU found that combination of CRP, PCT, and nCD64 measure remained a significant predictor of sepsis with an excellent AUROC (0.90) and improved diagnostic accuracy of sepsis.

A prospective study evaluated the diagnostic power of biomarkers CRP, PCT, and nCD64 individually and in combination to distinguish sepsis from non-septic adult ICU patients. Neutrophil CD64 was found to be better than other two biomarkers alone and

Table 2: Characteristic of studies using combination of neutrophil CD64 and other biomarkers for diagnosis of sepsis

Author	Year	Place	Clinical setting	Study population	Sample size	Disease severity	Control	Measurement time	Number of times measured	CD64 assay	Unit of measurement	Cutoff	Other biomarkers	AUROC	Sensitivity	Specificity	PPV	NPV	PLR	NLR
Gibot	2012	France	ICU	Adult	79	Sepsis, sepsis	No	Within 12 hours of admission then on day 2	Twice	Flow cytometry	CD64 index	1.62	Combination: 0.95, CD64: 0.93	CD64: 84.4%	Combination: 98%, CD64: 87%	CD64: 95.2%	Combination: 98%, CD64: 87%	CD64: 95.2%	Combination: 98%, CD64: 87%	CD64: 95.2%
Dimoula	2014	Belgium	ICU	Adult	548	Sepsis, sepsis	No	Within 24 hours of admission then daily	Daily till death or discharge	Flow cytometry	Flow cytometry	CD64: 230 MFI CRP: ≥3.5 mg/dL	Combination: 0.95, CD64: 0.93	CD64: 84.4%	Combination: 98%, CD64: 87%	CD64: 95.2%	Combination: 98%, CD64: 87%	CD64: 95.2%	Combination: 98%, CD64: 87%	CD64: 95.2%
Bauer	2016	USA	ICU	Adult	219	SIRS, sepsis	No	At enrolment	Single time	Flow cytometry	Flow cytometry	CD64: ≥1040.5 CD64 molecules/neutrophil and ≥49.96% positive neutrophils	Combination: 0.95, CD64: 0.93	CD64: 84.4%	Combination: 98%, CD64: 87%	CD64: 95.2%	Combination: 98%, CD64: 87%	CD64: 95.2%	Combination: 98%, CD64: 87%	CD64: 95.2%
Jamsa	2017	Finland	ICU	Adult	27	SIRS, sepsis	No	At admission	Single time	Flow cytometry	Flow cytometry	CD64: 9172 MESF	Combination: 0.95, CD64: 0.93	CD64: 84.4%	Combination: 98%, CD64: 87%	CD64: 95.2%	Combination: 98%, CD64: 87%	CD64: 95.2%	Combination: 98%, CD64: 87%	CD64: 95.2%

AUROC, area under receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio; MFI, median fluorescence intensity; MESF, molecules of equivalent soluble fluorochrome; PCT, procalcitonin; sTREM-1, soluble triggering receptor expressed on myeloid cell-1; CRP, C-reactive protein; APACHE, acute physiology and chronic health evaluation; SIRS, systemic inflammatory response syndrome; ICU, intensive care unit
there was improved diagnostic accuracy when nCD64 was analyzed simultaneously with positive CRP and PCT.28

nCD64 as a Prognostic Marker in Adult Critically Ill Patients

Literature on nCD64 as a prognostic marker in critically ill ICU patients is scarce. Due to the availability of few literature on CD64 as a prognostic marker, no meta-analysis has yet been formulated. Most of the existing studies on CD64 for prognosis have used single value at admission/inclusion for prognostication aspects (Table 3). Very few studies have measured serial levels of this biomarker and evaluated its prognostic utility (Table 4).

In a prospective observational study of adult ICU patients with sepsis, nCD64 level was measured single time within 24 hours of onset of sepsis. Neutrophil CD64 expression significantly increased in sepsis than healthy controls and higher levels correlated with worsening severity of sepsis (sepsis, severe sepsis, septic shock) and increased 28-day mortality. It correlated with severity of organ failure via sequential organ failure assessment (SOFA) score and severity of sepsis via Acute Physiology And Chronic Health Evaluation II (APACHE II).15 In one prospective study of ICU patients with sepsis, expression of the CD64 on polymorphonuclear cells was higher on day of admission in patients who survived than non-survivors. Increased CD64 expression correlated with polymorphonuclear phagocytic activity and patients’ survival. Significant decrease in level of this biomarker from admission value was noted in patients who survived to day of discharge.29 Diagnostic accuracy and prognostic value of nCD64 expression for bacterial infection in febrile adult patients presenting to hospital emergency department was evaluated in another prospective trial.

Table 3: Characteristic of studies using single value of neutrophil CD64 and prognosis of sepsis

Author	Year	Place	Clinical setting	Study population	Sample size	Disease severity	Control	Measurement time	CD64 assay	Unit of measurement	Cutoff	AUROC	Sensitivity	Specificity	PPV	NPV	LR	Accuracy	
Livaditi	2006	Greece	ICU	Adult	47	Sepsis, severe sepsis, septic shock	12 healthy controls	First 24 hours of sepsis onset	Flow cytometry	CD64 molecules per cell	Severe sepsis prediction: 2566. Septic shock: 6512. 28-day mortality prediction: 6252	0.71	0.752	85%	33%	–	–	–	–
Cid	2011	Spain	ED	Adult	132	With (115) and without (17) bacterial infection	No	One day after admission	Flow cytometry	Flow cytometry	Survival prediction: CD64 index ≥ 1.5	–	–	–	–	–	–	–	–
Chen	2014	China	ICU	Adult	797	Infectious (381) and non-infectious disease (416)	No	First day within admission	Flow cytometry	Relative CD64 ratio (MFI (mean fluorescence intensity) on granulocytes ÷ MFI on lymphocytes)	For predicting ICU mortality ≥ 1.833	–	–	–	–	–	–	–	–
Ollingeris	2015	Greece	ICU	Adult	67	SIRS (infectious and non-infectious)	No	Day 1 of SIRS	Flow cytometry	Neutrophils expressing CD 64% and MFI (mean fluorescence intensity)	Predicting infection in SIRS patient CD64%: >8, MFI of CD64 expression on neutrophils: >1.39	–	–	–	–	–	–	–	–
Muzlovic	2016	Slovenia	ICU	Adult	32	VAP with or without sepsis	No	When temperature rises	Flow cytometry	Flow cytometry	1.58 for possible bacterial infection	–	–	–	–	–	–	–	–

AUROC, area under receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; LR, likelihood ratio; MFI, median fluorescence intensity; VAP, ventilator-associated pneumonia; ICU, intensive care unit
Neutrophil CD64 in Sepsis for Diagnosis and Prognosis

To detect bacterial infection, CD64 index showed good sensitivity but low specificity and higher expression of CD64 correlated to survival of the patients.

In a large prospective study conducted in critically ill patients of medico-surgical ICU, nCD64 was found to be a prognostic marker during ICU stay. It correlated with severity of sepsis. Level was higher in hospital non-survivors than survivors. Cluster of differentiation 64 >260 median fluorescence intensity (MFI) at day 3 identified inappropriate antibiotic treatment with sensitivity of 93% and specificity of 48%. Septic patients receiving inappropriate empirical antibiotics had persistently elevated CD64 expression, whereas it decreased overtime in patients receiving appropriate antibiotics. In non-septic patients, an increase in C64 expression ≥40 MFI predicted ICU acquired infection (n = 29) with a sensitivity of 88% and specificity of 65%.

Literature has highlighted nCD64 as predictor of ICU mortality similar to APACHE II score. Another prospective cohort study conducted in a medico-surgical ICU showed that MFI of nCD64 expression on neutrophils had high sensitivity, specificity, and accuracy in the diagnosis of sepsis but not for the prediction of

Author	Year	Place	Clinical setting	Study population	Sample size	Disease severity	Control	Number of times measured	CD64 assay	Unit of measurement	Cutoff CD64 value
Danikas	2008	Greece	ICU	Adult	31	Severe sepsis, septic shock	No	Twice (at admission, at discharge)	Flow cytometry	Mean MFI	At admission, survival prediction: 3.75, non-survivor: 1.08, control: 0.285
Dimoula	2014	Belgium	ICU	Adult	548	Sepsis, septic shock	Daily till death or discharge from admission	Three times, at admission (day 1), day 2 and 3	Flow cytometry	Flow cytometry	Survivor: 155, non-survivor: 232, inappropriate antibiotic use at day 3: ≥260, non-septic patients developing hospital acquired infection: maximum variation of CD64 expression before event ≥40 MFI
Djordjevic	2015	Serbia	ICU	Adult	102	Severe sepsis, severe trauma	No	No	Flow cytometry	Flow cytometry	To predict outcome (survival and non-survival) CD64 index at day 1 with cutoff CD64 index 2.8
De Jong	2016	Netherlands	ICU	Adult	155	Sepsis, severe sepsis, septic shock	No	Daily till death or discharge	Flow cytometry	CD64 index	CD64 index day 1; sepsis: 1.48, severe sepsis: 1.93, septic shock: 2.89, Positive culture: 2.26, negative culture: 1.49, survivor: 1.51, non-survivor: 1.81
Ghosh	2018	India	ICU	Adult	51	Sepsis, septic shock	No	Three times, at admission, day 4 and 8	Flow cytometry	% of neutrophils positive for CD64	% CD64 at admission; sepsis: 38%, septic shock: 67%, % CD64 day 4: survivor: 56.5, non-survivor: 70% CD64 day 8; survivor: 31, non-survivor: 74

AUROC

- AUC of admission CD64 for predicting survival: 0.892
- AUC of admission CD64 for predicting hospital death: 0.65, AUC to predict inappropriate antibiotic use at day 3: 0.71, maximum variation of CD64 expression before event to predict non-septic patients developing hospital-acquired infection: 0.77
- AUC of admission CD64 to predict outcome (survival and non-survival): 0.727
- AUC of admission CD64 to predict septic shock: 0.747, AUC of CD64 on day 8 to predict septic shock: 0.679

Remark

- Increased CD64 expression correlate with survival
- Serial CD64 measurement has prognostic implications (predict mortality, inappropriate antibiotic use and non-septic patients developing hospital acquired infection) during ICU stay
- CD64 index at day 1 and 2 was higher in non-survivors. CD64 index: good discriminator power to predict hospital mortality
- CD64 index on day 1 significantly correlate with sepsis severity and higher in culture positive cases
- Increased CD64 in septic shock than sepsis and survivors had improving trend of CD64

AUROC, area under receiver operating characteristic curve; MFI, median fluorescence intensity; MIF, mean intense fluorescence; ICU, intensive care unit
Neutrophil CD64 in Sepsis for Diagnosis and Prognosis

For its prognostic utility, serial trend has more impact than mere measurement of this biomarker for prognosis in critically ill ICU patients. No existing literature has highlighted the kinetics of serial trend for different aspects of prognosis. Neutrophil CD64 has been found to be a predictor of survival/mortality during ICU stay. Clinical status of critically ill patients with sepsis can change in the initial few days after sepsis-3 definition put forward in 2016, no prospective study is available about CD64 where sepsis-3 criteria were used for the diagnosis and the prognosis of sepsis. According to this criterion, sepsis is defined as life-threatening organ dysfunction caused by dysregulated host response to infection. For clinical operation, this is based on change in SOFA score in patients with known or suspected infection. In a recent retrospective study, diagnostic accuracy of CD64, PCT, and CRP was evaluated for sepsis identification in 35 adult ICU patients and compared with 27 controls (underwent coronary bypass surgery). Sepsis 3 criteria were used for sepsis identification. Cluster of differentiation 64 index showed better diagnostic accuracy than PCT and CRP with sensitivity, specificity, and AUROC of 83%, 88%, and 0.923, respectively. But, this study has limitations of small sample size and heterogeneous patient populations. In most of the studies, serial level of this biomarker has not been assessed. Most of them highlighted prognostic utility of nCD64 to predict outcome based on single value at enrolment. Clinical status of critically ill patients with sepsis can change in the initial few days of admission to ICU due to resuscitation, appropriate antibiotic use, and other therapeutic interventions. Cluster of differentiation 64 as a biomarker for prognosis needs to be explored more. None of the existing literature has highlighted the kinetics of serial trend of this biomarker for prognosis in critically ill ICU patients. No literature is there on combination of CD64 with other biomarkers for prognostic utility in critically ill patients with sepsis/septic shock. Cluster of differentiation 64 needs to be evaluated as a combination of biomarkers for prognosis in critically ill patients and its kinetics of serial trend for different aspects of prognosis.

After sepsis-3 definition put forward in 2016, no prospective study is available about CD64 where sepsis-3 criteria were used for the diagnosis and the prognosis of sepsis. According to this criterion, sepsis is defined as life-threatening organ dysfunction caused by dysregulated host response to infection. For clinical operation, this is based on change in SOFA score in patients with known or suspected infection. In a recent retrospective study, diagnostic accuracy of CD64, PCT, and CRP was evaluated for sepsis identification in 35 adult ICU patients and compared with 27 controls (underwent coronary bypass surgery). Sepsis 3 criteria were used for sepsis identification. Cluster of differentiation 64 index showed better diagnostic accuracy than PCT and CRP with sensitivity, specificity, and AUROC of 83%, 88%, and 0.923, respectively. But, this study has limitations of small sample size and retrospective in nature. Till now, no literature is there describing CD64 as a prognostic marker or sepsis as per sepsis 3 criteria.

Limitations

Though nCD64 has been found to have improved sensitivity and specificity for sepsis diagnosis than conventional sepsis biomarkers like PCT and CRP, it has its own limitations. Some studies have also pointed out the low sensitivity of nCD64 to diagnose sepsis.
No sepsis biomarker is entirely specific for the diagnosis of sepsis. Biomarkers are a better tool to rule out rather than ruling in sepsis. Though CD64 is a promising biomarker for bacterial sepsis, its role in fungal and viral sepsis needs to be evaluated more. It has not been validated in larger trials for the de-escalation of antibiotics and role in antibiotic stewardship. Determination of nCD64 lacks standardization and various methods have been used in expressing CD64. Optimal cutoff for nCD64 is still unknown and cutoff values to differentiate sepsis and non-sepsis vary in different studies. There are limited literature on serial monitoring of nCD64. Cluster of differentiation 64 analysis needs a laboratory with flow cytometry facility.

Clinical Significance

Neutrophil CD64 is a relatively simple test and can be performed in a short period of time in most of the laboratories. Combination of nCD64 with other biomarkers increases the diagnostic accuracy of sepsis. Despite being a diagnostic marker, it is a reliable prognostic marker of sepsis itself. It correlates well with sepsis severity and predicts outcome in critically ill patients. Neutrophil CD64 levels along with clinical parameters is a useful diagnostic and prognostic marker of sepsis in critically ill patients. Neutrophil CD64 assay should be standardized with appropriate cutoff levels to differentiate sepsis from non-sepsis. Additional studies are needed on nCD64 for both diagnosis and prognosis of sepsis diagnosed based on sepsis-3 criteria. In this literature review, the authors have tried to highlight the existing literature on nCD64 in critically ill patients with sepsis/septic shock with respect to its diagnostic and prognostic implications. Further prospective trials with large sample size are needed to establish prognostic implications of serial nCD64 trend and combination of CD64 with other biomarkers for prognosis in critically ill patients.

Acknowledgments

Entire department of the Critical Care Medicine.

References

1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 2017;43(3):304–377. DOI: 10.1007/s00134-017-4683-6.
2. Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care 2010;14(1):R15. DOI: 10.1186/cc8872.
3. Wagner C, Deppisch R, Denefleh B, Hug F, Andrassy K, Hansch GM. Expression patterns of the lipopolysaccharide receptor CD14, and the Fc-gamma receptors CD16 and CD64 on polymorphonuclear neutrophils: data from patients with severe bacterial infections and lipopolysaccharide-exposed cells. Shock 2003;19(1):5–12. DOI: 10.1097/00024382-20031000-00002.
4. Hoffmann JJ. Neutrophil CD64: a diagnostic marker for infection and sepsis. Clin Chem Lab Med 2009;47(8):903–916. DOI: 10.1515/CCLM.2009.224.
5. Larsen FF, Petersen JA. Novel biomarkers for sepsis: a narrative review. Eur J Intern Med 2017;45:46–50. DOI: 10.1016/j.ejim.2017.09.030.
6. Schiess DE, Rae J, Martin TR. Increased phagocyte Fc gamma RI expression and improved Fc Gamma-receptor mediated phagocytosis after in vivo recombinant human interferon-gamma treatment of normal human subjects. Blood 1999;90(8):3187–3194. DOI: 10.1182/blood.V90.8.3187.
7. Davis BH, Olsen SH, Ahmad E, Bigelow NC. Neutrophil CD64 is an improved indicator of infection or sepsis in emergency department patients. Arch Pathol Lab Med 2006;130(5):654–661. DOI: 10.1043/1543-2165(2006)0130(654:NCIAII2.0.CO;2.
8. Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, et al. CD molecules 2006 – human cell differentiation molecules. J Immunol Meth 2007;319(1-2):1–5. DOI: 10.1016/j.jim.2006.11.001.
9. Song SH, Kim HK, Park MH, Cho HJ. Neutrophil CD64 expression is associated with severity and prognosis of disseminated intravascular coagulation. Thromb Res 2008;121(4):499–507. DOI: 10.1016/j.thromres.2007.05.013.
10. Cardelli P, Ferraiorini M, Amodeo R, Tabacco F, De Blasi RA, Nicoletti M, et al. Evaluation of neutrophil CD64 expression and procalcitonin as useful markers in early diagnosis of sepsis. Int J Immunopath Pharmacol 2008;21(1):43–49. DOI: 10.1177/019433100802100106.
11. Icardi M, Erickson Y, Kilborn S, Stewart B, Grief B, Scharnweber G. CD64 index provides simple and predictive testing for detection and monitoring of sepsis and bacterial infection in hospital patients. J Clin Microbiol 2009;47(12):3914–3919. DOI: 10.1128/JCM.00288-09.
12. Gámez-Diaz LY, Enriquez LE, Matute JD, Velásquez S, Gómez ID, Toro F, et al. Diagnostic accuracy of HMGB-1, sTREM-1, and CD64 as markers of sepsis in patients recently admitted to the emergency department. Acad Emerg Med 2011;18(8):07–15. DOI: 10.1111/j.1533-2712.2011.01113.x.
13. Hsu KH, Chan MC, Wang JM, Lin LY, Wu CL. Comparison of Fcy receptor expression on neutrophils with procalcitonin for the diagnosis of sepsis in critically ill patients. Respiratory 2011;16(1):152–160. DOI: 10.1111/j.1440-1843.2010.01876.x.
14. Gros A, Roussel M, Sauvadet E, Gacouin A, Marqué S, Chimot L, et al. The sensitivity of neutrophil CD64 expression as a biomarker of bacterial infection is low in critically ill patients. Intensive Care Med 2012;38(3):445–452. DOI: 10.1007/s00134-012-2483-6.
15. Livaditi O, Kotanidou A, Psarra A, Dimopoulou I, Sotiropoulou C, Augustatou K, et al. Neutrophil CD64 expression and serum IL-8: sensitive early markers of severity and outcome in sepsis. Cytokine 2006;365(6):283–290. DOI: 10.1016/j.cytb.2007.02.007.
16. Gerrits JH, McLaughlin PM, Nienhuis BN, Smit JW, Loeb B. Polymorphonuclear neutrophils CD64 index for diagnosis of sepsis in postoperative surgical patients and critically ill patients. Clin Chem Lab Med 2013;51(4):897–905. DOI: 10.1515/ccl-2012-0279.
17. Rogina P, Stubiarz D, Zupanc TL, Osredkar J, Skvarc M. Expression of CD64 on neutrophils (CD64 index): diagnostic accuracy of CD64 index to predict sepsis in critically ill patients. Clin Chem Lab Med 2015;53(4):e89–e91. DOI: 10.1515/cclm-2014-0814.
18. Righi S, Santambrogio L, Monsagrati A, Salii M, Locati L, Radizzini D. Clinical evaluation of neutrophil CD64 as a diagnostic marker of infection in a polyvalent intensive care unit. Infect Dis Clin Pract 2014;22(1):32–37. DOI: 10.1097/IPC.0b013e31829eb6a.
19. Tan TL, Ahmad NS, Nasruddin DN, Ithnin A, Tajul Arifin K, Zaini IZ, et al. Evaluation of neutrophil CD64 expression and procalcitonin in the emergency department patients. Acad Emerg Med 2011;18(8):07–15. DOI: 10.1111/j.1533-2712.2011.01113.x.
20. Dal Ponte S, Alegretti A, Pilger D, Rezende G, Andrioli G, Ludwig H, et al. Diagnostic accuracy of CD64 for sepsis in emergency department. J Global Infect Dis 2018;10(2):42–46. DOI: 10.1371/journal.pone.0152065.
21. Cid J, Aguinaco R, Sánchez R, García-Pardo G, Llorente A. Neutrophil CD64 expression as marker of bacterial infection: a systematic review and meta-analysis. Infect J Infect Dis 2010;50(5):313–319. DOI: 10.1016/j. jinf.2010.02.013.
22. Li S, Huang X, Chen Z, Zhong H. Neutrophil CD64 expression as a biomarker in the early diagnosis of bacterial infection: a meta-analysis. Int J Infect Dis 2013;17(1):e12–e23. DOI: 10.1016/j. ijid.2012.07.017.
23. Wang X, Li ZY, Zeng L, Zhang AQ, Pan W, Gu W, et al. Neutrophil CD64 expression as a diagnostic marker for sepsis in adult patients: a meta-analysis. Crit Care 2015;19(1):245. DOI: 10.1186/s13054-015-0972-z.
24. Yeh CF, Wu CC, Liu SH, Chen KF. Comparison of the accuracy of neutrophil CD64, procalcitonin, and C-reactive protein for sepsis
Neutrophil CD64 in Sepsis for Diagnosis and Prognosis

25. Gibot S, Béné MC, Noel R, Massin F, Guy J, Cravoisy A, et al. Combination biomarkers to diagnose sepsis in the critically ill patient. Am J Respir Crit Care Med 2012;186(1):65–71. DOI: 10.1164/rccm.201201-0037OC.

26. Dimoula A, Pradier Q, Kassengera Z, Dalcomune D, Turkan H, Vincent JL. Serial determinations of neutrophil CD64 expression for the diagnosis and monitoring of sepsis in critically ill patients. Clin Infect Dis 2014;58(6):820–829. DOI: 10.1093/cid/cit936.

27. Bauer P, Kashyap R, League S, Park J, Block D, Baumann N, et al. Diagnostic accuracy and clinical relevance of an inflammatory biomarker panel in early sepsis in adult critical care patients. Crit Care 2015;19(Suppl 1):P55. DOI: 10.1186/cc14135.

28. Jamsa J, Ala-Kokko T, Huotari V, Ohtonen P, Savolainen ER, Syrjala H. Neutrophil CD64, C-reactive protein and procalcitonin in the identification of sepsis in the ICU - Post-test probabilities. J Crit Care 2018;43:139–142. DOI: 10.1016/j.jcrc.2017.08.038.

29. Danikas DD, Karakantza M, Theodorou GL, Sakellaropoulos GC, Gogos CA. Prognostic value of phagocytic activity of neutrophils and monocytes in sepsis. correlation to CD64 and CD14 antigen expression. Clin Exp Immunol 2008;154(1):87–97. DOI: 10.1111/j.1365-2249.2008.03737.x.

30. Cid J, Gracia-Pardo G, Aguinaco R, Sanchez R, Llorente A. Neutrophil CD64, diagnostic accuracy and prognostic value in patients presenting to the emergency department. Eur J Clin Microbiol Infect Dis 2011;30(7):845–852. DOI: 10.1007/s10096-011-1164-7.

31. Chen Q, Shi J, Fei A, Wang F, Pan S, Wang W. Neutrophil CD64 expression is a predictor of mortality for patients in the intensive care unit. Int J Exp Pathol 2014;7(11):7806–7813.

32. Papadimitriou-Oliveris M, Lekka K, Zisimopoulos K, Spiliopoulou I, Logothetis D, Theodorou G, et al. Role of CD64 expression on neutrophils in the diagnosis of sepsis and prediction of mortality in adult critically ill patients. Diagn Microbiol Infect Dis 2015;82(3):234–239. DOI: 10.1016/j.diagmicrobio.2015.03.022.

33. Djordjevic D, Pejovic J, Surbatovic M, Jevdijc J, Radakovic S, Veljovic M, et al. Prognostic value and daily trend of interleukin-6, neutrophil CD64 expression, C-reactive protein and lipopolysaccharide-binding protein in critically ill patients: reliable predictors of outcome or not? J Med Biochem 2015;34(4):431–439. DOI: 10.1515/jomb-2015-0002.

34. De Jong E, de Lange DW, Beishuizen A, Van De Ven PM, Girbes ARJ, Huisman A. Neutrophil CD64 expression as a longitudinal biomarker for severe disease and acute infection in critically ill patients. Int J Lab Hematol 2016;38(5):1–9. DOI: 10.1111/ijlh.12545.

35. Muzlovic I, Lhan A, Stubljar D. CD64 index on neutrophils can diagnose sepsis and predict 30-day survival in subjects after ventilator-associated pneumonia. J Infect Dev Ctries 2016;10(3):260–268. DOI: 10.3855/jidc.6532.

36. Burgos J, Los-Arcos I, Álvarez de la Sierra D, Falcó V, Aguiló A, Sánchez I, et al. Determination of neutrophil CD64 expression as a prognostic biomarker in patients with community acquired pneumonia. Eur J Clin Microbiol Infect Dis 2016;35(9):1007–1016. DOI: 10.1007/s10096-016-2678-9.

37. Agarwal V, Poddar B, Gurjar M, Chaturvedi S, Mishra P, Misra R, et al. Correlation of neutrophil CD64 with clinical profile and outcome of sepsis patients during intensive care unit stay. Indian J Crit Care Med 2018;22(8):569–574. DOI: 10.4103/ijccm.IJCCM_228_18.

38. Elghetany MT, Davis BH. Impact of preanalytical variables on granulocytic surface antigen expression: a review. Cytometry B Clin Cytom 2005;65(1):1–5. DOI: 10.1002/cyto.b.20051.

39. Ye Z, Zou H, Liu S, Mei C, Chang X, Hu Z, et al. Diagnostic performance of neutrophil CD64 index in patients with sepsis in the intensive care unit. J Int Med Res 2019;47(9):4304–4311. DOI: 10.1177/0300060519860677.