Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis

Peng Shao¹, Qi Liu¹, Peterson Kariuki Maina¹, Jiayue Cui², Thomas Bair³, Tiandao Li⁴, Shaikamjad Umelsalma⁵, Weizhou Zhang⁵ and Hank Heng Qi¹,*

¹ Department of Anatomy and Cell Biology; Carver College of Medicine, The University of Iowa, IA 52242, USA
² Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
³ Iowa Institute of Human Genetics, Carver College of Medicine, The University of Iowa, IA 52242, USA
⁴ McDonnell Genome Institute, Washington University, St. Louis, Mo 63108, USA
⁵ Department of Pathology, Carver College of Medicine, The University of Iowa, IA 52242, USA

* To whom correspondence should be addressed. Tel: +01-319-335-3084; Fax: +01-319-335-7198; Email: hank-qi@uiowa.edu

Supplementary Materials and Methods

Supplementary Figure Legends
Supplementary References
Supplementary Figures S1-S9
Supplementary Tables S1
Supplementary Materials and Methods

Plasmids, retroviruses, lentiviruses, and stable cell lines

pOZ-N-Flag-HA-wtPHF8 and mutPHF8 (F279S) vectors were described previously (1). The sequences of the scrambled (control) shRNA and the shRNAs targeting the PHF8 ORF and 3'UTR (1,2) were cloned into the AgeI and EcoRI sites of the Tet-pLKO-puro vector (doxycycline-inducible system) which was a gift from Dmitri Wiederschain (Addgene plasmid # 21915) (3). These shRNAs were also cloned into the AgeI and EcoRI sites of the pLKO.1-TRC vector (constitutive expression system), which was a gift from David Root (Addgene plasmid # 10878) (4). The MYC coding sequence (571-1890 bp) of NM_002467 was cloned into the XhoI and NotI sites of the pOZ-C vector to generate the pOZ-MYC construct. Cell lines stably expressing the pOZ constructs (MCF10A-Mock, -wtPHF8, -mutPHF8, double stable MCF10A cells expressing control or PHF8 shRNA-2 combined with empty vector (shCtrl_Mock or shPHF8-2_Mock), PHF8 shRNA resistant wtPHF8 (shPHF8-2_wtPHF8) or mutPHF8 (shPHF8-2_mutPHF8); MCF10A-MYC; HaCaT-Mock and -MYC; MDA-MB-231-Mock and -PHF8; MT2-Mock and -PHF8) were established as previously described (5). The conditionally regulated MYC (MYC-ER) construct was generated by fusing the MYC coding sequence in frame with the hormone-binding domain of the human estrogen receptor (ER), and was then subcloned into the pOZ-C vector. Briefly, the cells were infected with the corresponding retrovirus generated in Phoenix A cells, and were selected using dynalbead-conjugated anti-IL-2RA (Interleukin-2 receptor alpha subunit) antibodies. MYC-ER expression was stimulated with 100 nM of 4-hydroxy tamoxifen (4-OHT) (Sigma-Aldrich). Puromycin selection was used to establish Tet-On inducible cell lines stably expressing lentiviral vectors (MCF10A-control shRNA, -PHF8 ORF shRNA). Additional lines stably expressing non-inducible constructs were established in pLKO-TRC vector in similar fashion (MT-2-control shRNA, and PHF8 ORF shRNA).

RNA-seq and bioinformatics analysis

Total RNA was isolated from MCF10A/control and MCF10A/PHF8 cells using the RNeasy Plus Mini Kit (Qiagen) following the manufacturer’s protocol. The efficiency of PHF8 overexpression was determined by immunoblotting and qRT-PCR. RNA-seq libraries were made using the TruSeq Stranded Total RNA LT Sample Prep Kit (with Ribo-Zero™ Human/Mouse/Rat, RS-122-2201) and multiplexed with Illumina barcodes. Two biological duplicates of MCF10A/control and MCF10A/PHF8 samples treated with TGF-β1 for 0, 24, 48 and 72 hours were submitted for sequencing on a HiSeq2500 instrument following protocols supplied by Illumina (San Diego, CA). 50-bp paired-end reads were generated. More than 20 Mb reads were produced for each
library. The paired-end raw reads were aligned against the hg19 assembly of the human genome using the TopHat (v2.0.13) program (6). Counts were generated using featureCounts from the Subread package (Release 1.4.6) (7), and the initial differential expression was assessed with DESeq2 (8). The heat map was generated by GENE-E software hosted at the Broad Institute (http://www.broadinstitute.org/cancer/software/GENE-E/).

Gene set enrichment analysis
Gene set enrichment (GSEA) was performed using the GSEA software (9,10). Dataset files were developed based on normalization of expression intensities by DESeq2. Specifically, the log2 fold change values were compared for two phenotypes in our analysis: MCF10A-Mock versus MCF10A-PHF8. GSEA was executed using the default settings, the permutation type was set to Gene_set with 1000 permutations, and the metric for ranking genes was set to Diff_of_Classes because normalized expression data by DESeq2 was log2 transformed. Three datasets of EMT signature genes were used as references. (11-13) Each EMT signature collection was analyzed individually in multiple GSEA runs.

Transient transfection
Cells were 80-90% confluent in 6-well plates when transfection experiments were conducted. miR-22 mimics (GenePharma) or inhibitors (Integrated DNA Technologies) were used at a final concentration of 90 nM or 3 nM, respectively. In the siRNA knockdown experiments, siRNA duplexes targeting the human PHF8 (OriGene, SR308029A and B) and MYC (OriGene, SR303025A and C) were used at a final concentration of 40 nM. After transfection for 48 hours (miRNA mimics and inhibitors) or 72 hours (siRNAs), cells were harvested for analysis of gene expression. All transfection of RNA duplexes was performed using the Lipofectamine RNAiMAX transfection reagent (Life technologies).

Colony formation assays
Both monolayer colony formation and anchorage-independent growth in soft agar were tested. All assays were conducted in triplicate, and three independent experiments were performed. For the monolayer colony formation assay, 500 cells that either stably expressed PHF8 or had been subjected to doxycycline-inducible PHF8 knockdown were plated in 6-well plates in triplicate, and allowed to grow in the appropriate culture medium for two weeks. Fresh medium was supplied every 3 days. Colonies were stained with 0.1% crystal violet dye after being fixed
in 4% paraformaldehyde. Colonies larger than 5 μm in diameter were counted as positive for growth.

To assay anchorage-independent growth in soft agar, MDA-MB-231 and BT474 cells subjected to doxycycline-inducible PHF8 knockdown by shRNAs were added to 1.5 ml of growth medium with 0.4% agar and layered onto 2 ml of 0.7% agar beds in six-well plates, respectively. Cells were fed with 1 ml of medium in 0.4% agar every 4 days for 3 weeks, after which the colonies were stained with 0.01% crystal violet overnight and photographed. The number of colonies larger than 100 μm in diameter was counted.

Transwell migration assay

MDA-MB-231 and MCF10A cells subjected to doxycycline-inducible PHF8 knockdown, or expressing pOZ-PHF8-HA or control plasmid, were serum-starved for 4 hours. A total of 3×10⁴ cells/well was added to the top chambers of 24-well transwell inserts (Corning Costar; 8-μm pore size). The lower compartment was filled with standard cell culture medium. Cells were allowed to migrate for 18-20 hours, after which 4% paraformaldehyde was added to each chamber for 10 minutes. Membranes were stained with 0.1% (w/v) crystal violet for 20 minutes and subsequently washed thoroughly with PBS to visualize nuclei. Cells that had not migrated to the lower compartment were removed with a cotton swab. The number of migrating cells was counted using the ImageJ software. Experiments were repeated a minimum of three times. Data are shown as the mean ±S.D. of three independent experiments.

Acinar formation assay

Acinar formation of MCF10A cells in 3D Matrigel cultures was performed as described by Debnath et al. (14). Briefly, a total of 5×10³ cells/well were plated in growth factor-reduced Matrigel (BD Biosciences, 354230) coated chamber slide (Falcon, 354108) and grown in 400 µl of DMEM:F12 medium supplemented with 2.5% Matrigel, 2% horse serum, 500 ng/ml Hydrocortisone, 10 µg/ml Insulin, 100 ng/ml Cholera Toxin and 5 ng/ml EGF. Media was changed every 4 days with assay media containing 2.5% Matrigel and 5 ng/ml EGF. Acini like structures were counted at day 12 and confocal image was taken using Carl Zeiss LSM 700.

Cell proliferation assays

Cell proliferation was assessed using the MTT assay, using at least three replicates. Cells were seeded in 96-well plates at 1×10³ cells per well, and allowed to adhere overnight. Thereafter, on each day 20 µl of MTT (5 μg/µl in PBS) was added to the medium. Four hours later, the medium
was removed with a needle and syringe, and blue formazan crystals trapped in the cells were dissolved in DMSO (120µl) by incubation at 37°C for 30 minutes. The absorbance at 490 nm was then measured using a Microplate Reader (VersaMax).

Immunoblotting, immunofluorescence, immunohistochemistry and antibodies

For immunoblotting experiments, cells were washed twice with cold PBS and lysed at 4°C in RIPA buffer containing 50 mM Tris (pH 7.4), 150 mM NaCl, 0.1% SDS, 1 mM EDTA, 1% (vol/vol) Triton X-100, 1% sodium deoxycholate, 0.5 mM EDTA, 1 mM sodium vanadate, 50 mM NaF and complete protease inhibitors (Roche). Lysates were cleared by centrifugation at 13000 rpm for 10 minutes, and aliquots of the cell extracts containing equal amounts of protein were analyzed for protein expression by western blotting. Proteins were separated by SDS-PAGE and transferred to nitrocellulose filters (BioRad). Membranes were blocked in TBST buffer (10 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.05% (vol/vol) Tween-20) containing 5% (wt/vol) milk. Proteins were detected using the Amersham ECL reagent.

For immunofluorescence experiments, cells were washed twice with PBS and fixed for 5 minutes with 4% formaldehyde in PBS, then permeabilized for 5 minutes with 0.1% Triton X-100. After rinses with PBS, blocking solution (2% BSA in PBS, pH7.5) was applied for 30 minutes and primary antibodies were added in blocking buffer for 1 h at room temperature or overnight at 4°C. After two washes with PBS/0.1% Triton X-100 for 10 minutes, cells were incubated with DAPI, Alexa Fluor® 594 Phalloidin (A12381, Life Technologies) and secondary antibodies conjugated with fluorescent dyes (Life Technologies) for 1 h, washed again with PBS/0.1% Triton X-100 for 10 minutes, and mounted in mounted in Vectashield mounting medium (Vector Laboratories). Slides were observed at 40× using a Nikon Eclipse 80i microscope, and images were recorded with a Nikon digital camera.

For immunohistochemical staining, histological tissue arrays (BR10010c, BR1503d, BR244 and BR082a) purchased from USBIOMAX were routinely deparaffinized in xylene, 3 x 5 minutes, and rehydrated through an alcohol series. Protease-induced epitope retrieval was carried out and followed by heat-induced epitope retrieval. Tissues were pre-treated with trypsin working solution (0.05%) and incubated for 10–20 minutes at 37°C in a humidified chamber. Sections were allowed to cool down to room temperature. After a short rinse in distilled water, the sections were boiled in a microwave oven at 800 Watts in 100 ml of 0.01 M citrate buffer (pH 6.0) for 5 x 2 minutes. After treatment, the beaker was left on the bench to cool for 30 minutes.
Endogenous peroxidase activity was blocked with 3% H$_2$O$_2$ in PBST for 10 minutes. After blocking in the blocking reagent (Immunoperoxidase Secondary Detection System, Millipore), immunohistochemical blotting was performed using PHF8 antibody (PHF8 IHC-00343, Bethyl Laboratories) and c-Myc Tag Antibody (MA1-980, ThermoFisher) at 1:100 dilution, in PBST with 1% goat serum. A sample lacking primary antibody served as the negative control. Biotinylated secondary goat anti-mouse IgG/goat anti-rabbit IgG (Millipore) antibody was used in labelling with IHC Select® Immunoperoxidase Secondary Detection System (Millipore) for PHF8 detection. The tissue arrays were examined using a Nikon Eclipse 80i microscope, and images were recorded using a Nikon digital camera. The expression levels of PHF8 and MYC were semi-quantitatively based on staining intensity and distribution using the immunoreactive score (IRS) as described by Su et al. (2014) (15). Primary antibodies were: anti-PHF8 for use in western blotting, made in house (1); anti-CDH1 (3195S), anti-CDH2 (13116S), anti-SNAI1 (3879S), and anti-PTEN (9552S) purchased from Cell Signaling Technologies; anti-ZEB1 (sc-25388), anti-c-MYC (sc-40), anti-β-actin (sc-47778), anti-HA (sc-7392), anti-VIM (sc-6260), anti-p-SMAD2 (sc-135644), and anti-GFP (sc-9996) purchased from Santa Cruz Biotechnology; and anti-PHF8 for use in immunofluorescence, purchased from Abcam (ab36068). Secondary antibodies were anti-mouse- or anti-rabbit-conjugated horseradish peroxidase (BioRad).

Real-time PCR assay

RNA was isolated from 80% confluent plates of cells using TRIzol Reagent (Invitrogen). Total RNA (500 ng) was used for reverse transcription (RT) reactions using the M-MLV reverse transcriptase (Promega). Levels of expression for mature miRNAs and mRNAs were quantified by SYBR Green-based real-time PCR, using the iTaq Universal SYBR Green Supermix (Bio-Rad). miRNA-specific primers were designed as described previously (16). Real-time PCR reactions for miRNA were performed as follows: one cycle of 95°C for 30 seconds followed by 40 cycles of 95°C for 5 sections and 60°C for 20 sections. For mRNA detection, one cycle of 95°C for 30 sections was followed by 40 cycles of 95°C for 10 sections, 55°C for 15 sections and 72°C for 25 sections. The expression levels of mRNAs and miRNAs relative to RPL13A or GAPDH and U6 snRNA, respectively, were determined using the 2$^{-\Delta\Delta Ct}$ method. Error bars represent standard deviations. Comparative real-time PCR was performed minimally in triplicate.

Dual luciferase reporter assay
Dual-luciferase reporters were derived from the psiCHECK-2 vector (Promega). The 3' untranslated region (UTR) of human PHF8 containing a wild type (wt) miR-22 binding site (PHF8-3'UTR-wt) or a mutated site complementary to the seed region of miR-22 (PHF8-3'UTR-mut) was cloned into the downstream of the 3' UTR of the Renilla luciferase (hRluc) gene. HEK 293T cells were plated in 48-well plates (4x10^4 per well) one day before transfection, and then were cotransfected with 100 ng of reporter plasmid (psiCHECK-3'UTR) and 20 nM of the synthetic miR-22 mimics or negative control (GenePharma). Transfection was performed using lipofectamine 2000 (Invitrogen), according to the manufacturer's protocol. Luciferase activities were measured 30 h post-transfection, using the Dual-Luciferase® Reporter Assay System (Promega) and an FB12 Luminometer (Berthold). For each sample, Renilla luciferase activity was normalized to firefly luciferase expression (Rluc/Fluc). Data shown are the Mean ± SD from at least three independent experiments performed in duplicate.

Bioluminescent imaging

For bioluminescent imaging, FVB/N mice were anesthetized and injected with 100 µl of D-luciferin (15 mg/ml). Animals were imaged in an IVIS 200 chamber within 6 min after D-luciferin injection, and the photon flux were recorded using Living Image software (Xenogen) at the indicated time points. To measure tumor growth, photon flux was calculated for each mouse by using a circular region of interest over the tumor and normalized to the value obtained from the signal of control tumors at day 0.

Oligonucleotides

Primers or Probes	Sequences	Annotation	
PHF8			
PHF8_3'UTR	Forward	GCCTTCTCCACTGAGGAGCAGGTA	qPCR targeting the 3'UTR of PHF8
	Reverse	CTCCTCATCTGGCTTCCAGCTCT	
PHF8_ORF	Forward	GCAAACGAGCACCACACCT	qPCR targeting the ORF of PHF8
	Reverse	CGAGTCTCTGCTTTTGCTTG	
shPHF8-1	Sense	CCGGTTGCCCTAGAAATGCACAATTCCTCAGAGCAAGTTGCCATTTCTAGGCTTTTTTGG	pLKO-TET-ON-PHF8 shRNA; sequence targeting the 3' UTR of PHF8 is underlinned.
shPHF8-2	Sense	CCGGCTTACATGACAGTGACACTGAGTGCTACACCTCAATCATGACAGGCTTTTTTGG	pLKO-TET-ON-PHF8 shRNA; sequence targeting the ORF of PHF8 is underlinned.
shPHF8-3	Sense	CCGGTTGGAGACACCCAGATTTGGCCTCGAGTGAACATCTCTCGTCTCTTTTTTG	pLKO-TET-ON-PHF8 shRNA; sequence targeting the ORF of PHF8 is underlinned.
siPHF8-A
rArGrCrArArGrArArGrUrArGrArGrArGrUrArGrArGrArGrUrArGrArGrArGrUrArGrArGrArGrUrArGrArCrArArCrArArGrGrUrArGrArCrArArCrArGrArUrGrArGrGAC
siRNA for PHF8

siPHF8-B
rGrGrArGrGrArCrUrArUrArCrArArCrArGrArUrGrArGrGAC
siRNA for PHF8

MYC and MYC target genes

siMYC-A
rUrCrUrGrArGrArCrArGrUrArGrArGrArGrUrArGrArGrArGrUrArGrArGrArGrUrArGrArCrArArCrArGrArUrGrArGrGAC
siRNA for MYC

siMYC-C
rCrGrArGrGrArGrArGrArUrGrUrCrArArGrArGrArGrArGrGrArGrArCrArArCrArGrArUrGrArGrGAC
siRNA for MYC

MYC Forward TTCGGGTAGTGGAAAACCAG
Reverse CCTCCTCGTCGCAGTAGAAA

NCL Forward TGCCCAGTCCAAGGTAACT
Reverse TGCCCAGTCCAAGGTAACT

CDK1 Forward GGCCAGAAGTGGGAATTTACA
Reverse GGATCATAAGATTAAACATTTC

CDK4 Forward GAACACTCTGAAGCCGACCCAG
Reverse AGGCAGAGATCGCTTGTGT

CDC25A Forward TAAAGACCTGTATCTGTCGGCTG
Reverse CCTGCTTCACTGCTATCTCT

CCNA2 Forward CTGCATTTGGCTGTGAACTAC
Reverse ACAAAACTCTGGACTCTTGGA

EMT-related genes and control

TWIST1 Forward CCGGAGACCTAGATGTCATTG
Reverse CACGCCCTGTGTTTTGAAT

ZEB1 Forward CTGATTCTACACCGCCCAAA
Reverse AGCGCTTCTCCAGTCTTCA

ZEB2 Forward CGCAAACAAGCAATCCA
Reverse CACACTAGCTGGACTCTTCA

CDH1 Forward CGAGAGCTCACTACGTCCACCG
Reverse GGGTGTCAGGGGAAAATAGG

CDH2 Forward CGACGAATGGATGAAAGACC
Reverse CATAGTCCTGCTACCACCA

SNAI1 Forward CCTCAGATGACAGCAATCGA
Reverse TGCGACTGTACTTCTTGACATCTGA

GAPDH Forward ATGCCCTGTGCACACCACCA
Reverse GGGGCCATCCACAGTCTTCT

RPLP0 (36B4) Forward CCTGGAGAAGGAGGAAAGGA
Reverse TTGAGGACCTCTGCTATTTGTGA

CHGA Forward GGAGCATCGCCAGGACAC
Reverse GAGCAGAAGAGCCAGGACAG

ChIP-qPCR

SNAI1_1 Forward GGCTAGCTGATCATTTCG
Reverse CCAACGCACCTGGATTAG
Targeting the TSS of SNAI1

SNAI1_2 Forward CTCTGAGCGGTGAGGGTTAG
Reverse CCAAAATAGAGCCCTGTGA
Targeting the gene body of SNAI1
Gene	Forward	Reverse	Targeting Site
ZEB1_1	CGGCTTTACGACATCACCTT	CCACCACACCTGAGGAAAAC	TSS of ZEB1
ZEB1_2	TAGGGGAATGCGAGTTGTG	CTCAAGGAGAAACTACATCCCT	Gene body of ZEB1
GAPDH_1	GCTCTCTGCTCTCCTGTTTCC	CCTCAAGGGCCGCTCCCTAGC	TSS of GAPDH
GAPDH_2	GGCCTCAAAGAGAGAGACC	AGGGGTCTACATAAGCGAAG	3’UTR of GAPDH
CHGA_1	GAGAATCGACCGAAGCACAGC	GAGCAGAAAGAGCCAGACAG	TSS of CHGA
CHGA_2	TTGAGGTGTTGCTCCTTGGA	TGAATCCCTGGTCTCTGATTGT	Gene body of CHGA
Luciferase assay			
PHF8_miR22	Sense: TCGAGTTGTCCATTAAACCCCTTCTTGATCTT	Antisense: GGCAGCTGCTAGCAAATTGCTGCTAGAGC	Wild-type target site is underlined.
	RT_primer: GAGAATCGACCGAAGCACAGC		
	Antisense: GAGCAGAAAGAGCCAGACAG		
PHF8_miR22	Sense: TCGAGTTGTCCATTAAACCCCTTCTTGATCTT	Antisense: GGCAGCTGCTAGCAAATTGCTGCTAGAGC	Mutant target site is underlined.
	RT_primer: GAGAATCGACCGAAGCACAGC		
	Antisense: GAGCAGAAAGAGCCAGACAG		
miRNA			
let-7c-5p_RT	RT_primer: GTCGTATCCAGTCGGAGGTTGCCGAGGTTTCCGC		
	Forward: GCCAGCTGAGGTTGAGGTTGTA		
miR-31-5p_RT	RT_primer: GTCGTATCCAGTCGGAGGTTGAGGATTCCGC		
	Forward: ACTCAAAGGCAAGATGCTGGCA		
miR-22-3p_RT	RT_primer: GTCGTATCCAGTCGGAGGTTGAGGATTCCGC		
	Forward: GCGACAAGCTGGCAAGTGGAA		
miR-182-5p_RT	RT_primer: GTCGTATCCAGTCGGAGGTTGAGGATTCCGC		
	Forward: GCCAGGAGTCGGCAAGTGGAA		
miRNA universal qPCR primer	Reverse: GTGCAGGGCACCAGCAGATATAC		Control for the miRNA assay
U6	Forward: CGCTTCCGCAGCAATATAC		
	Reverse: AAAATATGGAAACGCTTACAGA		
Supplementary Figure Legends

Supplementary Figure S1. PHF8 regulates acinar formation in MCF10A cells. (A) Western blot analysis of PHF8 expression in MCF10A-Mock and MCF10A-wtPHF8 cells (left panel), and cells expressing control shRNAs or PHF8 shRNAs (right panel). (B) The size of acini was measured on day 12. Immunostaining was performed for F-actin (red) and the apoptosis marker cleaved caspase-3 (green). Nuclei were co-stained with DAPI (blue). Scale bars, 50 μm. The dot plot shows the size distribution for each condition (right panel), with the median indicated by a horizontal line (at least 100 acini per experiment; **P < 0.001, Mann-Whitney test).

Supplementary Figure S2. PHF8 regulates the cell morphology and expression of EMT-related genes induced by TGF-β1. (A) Western blot analysis of proteins encoded by selected EMT-related genes in A549 cells stably overexpressing vector only (Mock), wild type PHF8 (WT), or mutant PHF8 (Mut). The relative signal intensities for indicated proteins are normalized to β-actin and shown below each lane. (B) Western blot analysis of PHF8 expression in A549 cells with inducible expression of control shRNA or two different PHF8 shRNAs. (C) Morphological change induced by TGF-β1 at indicated time points in A549 cells expressing control or PHF8 shRNAs. (D) qPCR analysis of RPLP0 in MCF10A-Mock and MCF10A-wtPHF8 cells treated with TGF-β1 treatment for 0 and 1.5 hours. (E) A heat map of the expression of Taube’s EMT genes (up and down regulated), retrieved from normalized RNA-seq data as in Figure 1F. (F) Normalized enrichment scores for the genes between MCF10A-Mock and MCF10A-wtPHF8 cells treated with TGF-β1 for 24, 48 and 72 hours, using the EMT gene signatures of Taube et al. (2010) (13), Huang et al. (2012) (11) and Groger et al. (2012) (12), respectively. (G) qPCR analysis of GAPDH and CHGA expression in MCF10A cells expressing control shRNAs or PHF8 shRNA-2 without or with TGF-β1 treatment for 1.5 hours. (H) Western blot analysis of EMT-related genes in A549 cells expressing control or two different PHF8 shRNAs with TGF-β1 treatment at different time points. (I and J) Comparison of cell morphology and proteins encoded by EMT-related genes in double stable MCF10A cells expressing control or PHF8 shRNA-2 combined with empty vector (shCtrl_Mock or shPHF8-2_Mock), PHF8 shRNA-2 resistant wtPHF8 (shPHF8-2_wtPHF8) or mutPHF8 (shPHF8-2_mutPHF8).

Supplementary Figure S3. ChIP-qPCR assay on TSS (amplicon 1) and gene body (amplicon 2) for GAPDH, ZEB1 and CHGA. (A) The amplicons of GAPDH, ZEB1 and CHGA for ChIP-qPCR were illustrated. (B) ChIP-qPCR assays with PHF8 antibody were performed for GAPDH, ZEB1 and CHGA.
Supplementary Figure S4. Western blot analysis of PHF8 expression in MCF10A and human breast cancer cell lines. The relative signal intensity for PHF8, normalized to β-actin, is shown below the lane.

Supplementary Figure S5. PHF8 overexpression blocks TGF-β induced cell cycle arrest. Quantitation of the cycle distributions in MCF10A-Mock and MCF10A-wtPHF8 cells following treatment with TGF-β for the indicated time, as assessed by fluorescence activated cell sorting (FACS). P values represent three independent experiments. *: p<0.05, **: p<0.001; unpaired two-tailed Student’s t-test.

Supplementary Figure S6. Schematic illustration of predicted sites of miRNA targeting within the PHF8 3’ UTR using TargetScan Human (Release 6.2). The seed sequences and complementary PHF8 sequences are shown.

Supplementary Figure S7. PHF8 positively regulates anchorage-independent growth and tumor growth of breast cancer cells *in vitro* and *in vivo*. (A) Western blot analysis of PHF8 expression in MDA-MB-231, BT474 cells expressing control shRNA, siRNA or PHF8 shRNAs and siRNAs, respectively. (B) Soft agar colony assays in BT474 cells expressing doxycycline inducible control or PHF8 shRNAs. The quantification is shown at the right panel. (C) Western blot analysis of PHF8 expression in MDA-MB-231 overexpressing empty vector (Mock) or wild type PHF8. (D) Knockdown of PHF8 by shRNAs in MDA-MB-231 cells downregulated the expression of cell cycle and migration related genes, as detected by qPCR. SD was obtained from three independent experiments. *: p<0.05, **: p<0.01; unpaired two-tailed Student’s t-test. (E) Representative image of tumor growth of MDA-MB-231 cells stably expressing control and PHF8 shRNA implanted in nude mice. Tumors collected at week 6 after injections were weighed and assessed for volume, as quantitated at the right panel. **: p<0.01; unpaired two-tailed Student’s t-test. (F) Western blot analysis of PHF8 expression using anti-PHF8 antibody in MT2 stable cell lines expressing control shRNAs or PHF8 shRNAs and SKBR3 cells. (G) IHC analysis of PHF8 expression in MT2 xenograft tumors. (H) MT2 stable cell lines expressing empty vector (Mock) or HA-tagged PHF8 was confirmed by western blotting using anti-HA antibody. (I) Representative image of tumor growth of mouse breast cancer MT2 cells in FVB/N mice into which MT2 cells stably overexpressing empty vector (Mock) or PHF8 were implanted.
Tumors collected at day 60 were weighed and assessed for volume, as quantitated at the right panel. Error bars denote SD. *: p<0.05, **: p<0.01; Mann Whitney test (two-tailed) was used.

Supplementary Figure S8. PHF8 is upregulated in breast cancers. (A) Levels of the PHF8 mRNA in multiple cancer types based on RNA-seq data from The Cancer Genome Atlas (TCGA). (B) RNA-seq data from The Cancer Genome Atlas (TCGA) for PHF8 expression in breast cancers versus normal tissue was analyzed using StartBase 2.0. The case numbers are indicated in the parentheses. (C) Levels of the PHF8, JHDM1D and PHF2 mRNAs based on ONCOMINE analysis using the indicated thresholds. (D) PHF8 mRNA expression in breast cancer samples from ONCOMINE. (E) Correlation of PHF8 expression with ERBB2, ER and PR status, based on TCGA data for 593 cases of breast cancer. The number of cases is shown in parentheses.

Supplementary Figure S9. PHF8 protein levels are positively correlated with metastasis in the MMTV-ERBB2 mouse model of breast cancer. IHC analysis of PHF8 expression in small and large tumors obtained from six and eight month old MMTV-ERBB2/FVB mice with anti-PHF8 antibody (1). Nuclei were counterstained with Surgipath Hematoxylin. Tumor stages are indicated. Images are at 20X magnification unless otherwise indicated.

Supplementary References

1. Qi, H.H., Sarkissian, M., Hu, G.Q., Wang, Z., Bhattacharjee, A., Gordon, D.B., Gonzales, M., Lan, F., Ongusaha, P.P., Huarte, M. *et al.* (2010) Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature, **466**, 503-507.

2. Fortscheegger, K., de Graaf, P., Ouchkourov, N.S., van Schaik, F.M., Timmers, H.T. and Shiekhattar, R. (2010) PHF8 targets histone methylation and RNA polymerase II to activate transcription. *Mol Cell Biol*, **30**, 3286-3298.

3. Wiederschain, D., Wee, S., Chen, L., Loo, A., Yang, G., Huang, A., Chen, Y., Caponigro, G., Yao, Y.M., Lengauer, C. *et al.* (2009) Single-vector inducible lentiviral RNAi system for oncology target validation. *Cell Cycle*, **8**, 498-504.

4. Moffat, J., Grueneberg, D.A., Yang, X., Kim, S.Y., Kloepfer, A.M., Hinkle, G., Piqani, B., Eisenhaure, T.M., Luo, B., Grenier, J.K. *et al.* (2006) A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. *Cell*, **124**, 1283-1298.
5. Qi, H.H., Ongusaha, P.P., Myllyharju, J., Cheng, D., Pakkanen, O., Shi, Y., Lee, S.W. and Peng, J. (2008) Prolyl 4-hydroxylation regulates Argonaute 2 stability. *Nature*, **455**, 421-424.

6. Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and Salzberg, S.L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biol.*, **14**, R36.

7. Liao, Y., Smyth, G.K. and Shi, W. (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. *Nucleic Acids Res.*, **41**, e108.

8. Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.*, **15**, 550.

9. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. *et al.* (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A.*, **102**, 15545-15550.

10. Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E. *et al.* (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. *Nat Genet.*, **34**, 267-273.

11. Huang, S., Holzel, M., Knijnenburg, T., Schlicker, A., Roepman, P., McDermott, U., Garnett, M., Gernrum, W., Sun, C., Prahallad, A. *et al.* (2012) MED12 controls the response to multiple cancer drugs through regulation of TGF-beta receptor signaling. *Cell.*, **151**, 937-950.

12. Groger, C.J., Grubinger, M., Waldhor, T., Vierlinger, K. and Mikulits, W. (2012) Meta-analysis of gene expression signatures defining the epithelial to mesenchymal transition during cancer progression. *PLoS One*, **7**, e51136.

13. Taube, J.H., Herschkowitz, J.I., Komurov, K., Zhou, A.Y., Gupta, S., Yang, J., Hartwell, K., Onder, T.T., Gupta, P.B., Evans, K.W. *et al.* (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. *Proc Natl Acad Sci U S A.*, **107**, 15449-15454.

14. Debnath, J., Muthuswamy, S.K. and Brugge, J.S. (2003) Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. *Methods*, **30**, 256-268.
15. Su, S., Liu, Q., Chen, J., Chen, J., Chen, F., He, C., Huang, D., Wu, W., Lin, L., Huang, W. et al. (2014) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. *Cancer cell, 25*, 605-620.

16. Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R. et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. *Nucleic Acids Res, 33*, e179.
Supplementary Figure S1

A

MCF10A
Mock PHF8

HA-PHF8
β-actin

MCF10A
Mock PHF8
shCtrl shPHF8-2 shPHF8-3

PHF8
β-actin

B

MCF10A
Mock PHF8

Acinar size (µm²)

0 5000 10000 15000

Mock PHF8
shCtrl shPHF8

**

**
Supplementary Figure S2

A) Phenotype data: PHF8 versus Mock

B) A549

C) TGF-β (hrs)

D) RPLP0

E) EMT Upregulated

F) EMT Downregulated

G) GAPDH

H) A549

I) PHF8

J) CDH1
Supplementary Figure S3

A

\[
gapdh \quad 1 \text{kb}
\]

\[
zeb1 \quad 5 \text{kb}
\]

\[
chga \quad 5 \text{kb}
\]

B

\[
\text{% input}
\]

\[
\begin{array}{cccccccc}
1 & 1 & 2 & 2 & 1 & 1 & 2 & 2 \\
\text{NC} & \text{TGF-β} & \text{NC} & \text{TGF-β} & \text{NC} & \text{TGF-β} & \text{NC} & \text{TGF-β} \\
\end{array}
\]

\[
\text{GAPDH} \quad \text{ZEB1} \quad \text{CHGA}
\]

\[
\text{shCtrl} \quad \text{shPHF8-2}
\]
Supplementary Figure S4

Name	PHF8	β-actin
MCF10A	1.0	2.2
MDA-MB-468	5.6	4.2
SUM149	2.8	
MCF7	9.7	
SKBR3	11.6	
BT474	23.5	
MDA-MB-231	2.2	
SUM159	4.2	
Supplementary Figure S5

TGF-β1 treatment (hrs)

TGF-β1 treatment (hrs)	Percentage of cells in cell cycle phases
Mock 0	100% G0/G1 60% S 40% G2/M
PHF8 24	100% G0/G1 60% S 40% G2/M
Mock 48	100% G0/G1 60% S 40% G2/M
PHF8 72	100% G0/G1 60% S 40% G2/M

Significance levels:
- * p < 0.05
- ** p < 0.01
Supplementary Figure S6

Human PHF8 mRNA 3' UTR (2478nt, NM_015107)

miR-9
miR-31
miR-182

miR-9 sites

Seed sequence 1: 131-137
5' ...GCUUUCUUGGGACUUACAAAGG...
3' AGUAUGUCGAUCUAUUGGUUUCU

Seed sequence 2: 1602-1608
5' ...UCUCCAUCUAGUCACCAAAAGG...
3' AGUAUGUCGAUCUAU-UGGUUUCU

Seed sequence 3: 2036-2042
5' ...CAGAGUUAUGCUUUUCCAAAGAG...
3' AGUAUGUCGAUCUAUUGGUUUCU

Let-7a* seed sequence: 1622-1828
5' ...AGGCAAAAAGCCUGGCUACCUCC...
3' UUGAUAUGGUUGGAUGAGGAGU

miR-22 seed sequence: 1840-1847
5' ...UCUUGAUCUUUCAAA-GGCAGCUA...
3' UGUCAAGAAGUUGACCGUCGAA

miR-31 seed sequence: 528-535
5' ...GUGGUCUCUGCCCCCUCUUGCCA...
3' UCGAUACGGUGCUAGAACGGA

miR-182 seed sequence: 530-537
5' ...GGUCUCUGCCCCCUCUUGCCAAA...
3' UCACACUCAAGAUGGUACCGUUU

miR-9 sites

miR-22/3p
miR-9
miR-9
Let-7/98/4458/4500

* : This seed sequence is shared by all 8 let-7 isoforms and miR-4500, 4458, 98
Supplementary Figure S8

A
PHF8 differential plot

B
Log2 Fold Change=1.19
p=5.32e-06

C
Analysis type by cancer

Cancer	PHF8	PHF2	JHDM1D
Bladder cancer			
Brain and CNS cancer			
Breast cancer	1	1	2
Cervical cancer	7	4	2
Colorectal cancer		1	1
Esophageal cancer		1	1
Gastric cancer			
Head and Neck cancer	1	1	2
Kidney cancer		2	1
Leukemia	1	1	3
Liver cancer	1	2	1
Lung cancer	2	5	1
Lymphoma	1	1	2
Melanoma	1	1	2
Myeloma	1	1	1
Other cancer	7	1	4
Ovarian cancer		1	4
Pancreatic cancer		1	2
Prostate cancer		1	1
Sarcoma	13	16	25

D
Breast cancer (Number of cases)

Gene ranking	Fold change	p value	Reference	
Top %	1.5 fold p<0.05			
Intraductal Cribriform Breast Carcinoma (3)	1%	2.1	1.14E-12	TCGA Breast
Mixed Lobular and Ductal Breast Carcinoma (7)	2%	2.2	7.90E-6	TCGA Breast
Male Breast Carcinoma (3)	3%	1.6	7.51E-7	TCGA Breast
Mucinous Breast Carcinoma (4)	5%	1.6	0.002	TCGA Breast
Invasive Lobular Breast Carcinoma (36)	7%	1.9	3.63E-9	TCGA Breast
Invasive Ductal Breast Carcinoma (389)	11%	2.0	7.15-17	TCGA Breast
Invasive Ductal and Lobular Carcinoma (3)	19%	3.5	0.028	TCGA Breast
Invasive Breast Carcinoma Stroma (53)	2%	2.3	1.30E-19	Finak Breast
Invasive Lobular Breast Carcinoma (7)	10%	1.6	0.041	Radvanyi Breast
Invasive Breast Carcinoma (154)	21%	1.5	0.019	Gluck Breast

1 compared with 61 normal tissues; 2 compared with 6 normal tissues; 3 compared to 9 normal tissues; 4 compared to 4 normal tissues

Data type: mRNA; Cutoff: 1.5 fold, p<0.05; Gene ranking: Top 10%
Supplementary Figure S9

Early stage

Normal tissue
Small tumor
Small tumor
Small tumor (4X)
Small tumor

Late stage

Normal tissue
Large tumor
Large tumor
Large tumor (4X)
Large tumor

Mammary gland
Lung metastasis
Table S1. Summary of biological duplicated RNA-seq information.

Sample ID	Index	Yield (Mbases)	# Reads	% Align (PF)	% of raw clusters per lane	% of >= Q30 Bases (PF)	Mean Quality Score (PF)
First round							
MCF10A/Mock-NC	CGATGT	1,477	29,545,742	69.7	11.6	97.3	37.7
MCF10A/Mock-TGFβ1-24hr	TGACCA	1,554	31,084,892	70.8	12.2	97.4	37.8
MCF10A/Mock-TGFβ1-48hr	ACAGTG	1,554	31,086,940	69.9	12.2	97.2	37.7
MCF10A/Mock-TGFβ1-72hr	TAGCTT	1,599	31,985,712	68.4	12.5	97.2	37.7
MCF10A/PHF8-NC	CCGTCC	1,206	24,126,904	62.7	9.4	97.2	37.7
MCF10A/PHF8-TGFβ1-24hr	GTCCGC	1,557	31,148,960	62.6	12.2	97.0	37.6
MCF10A/PHF8-TGFβ1-48hr	GTTTCG	1,799	35,989,074	64.3	14.1	97.3	37.8
MCF10A/PHF8-TGFβ1-72hr	ACTGAT	1,739	34,772,914	63.3	13.6	97.6	37.8
Secondary round							
MCF10A/Mock-NC	CGATGT	1,702	34,031,810	68.0	13.0	97.0	37.6
MCF10A/Mock-TGFβ1-24hr	TGACCA	1,544	30,883,576	68.6	11.8	97.6	37.8
MCF10A/Mock-TGFβ1-48hr	ACAGTG	1,578	31,568,542	70.9	12.1	97.8	37.9
MCF10A/Mock-TGFβ1-72hr	TAGCTT	1,872	37,436,972	70.4	14.3	97.6	37.8
MCF10A/PHF8-NC	CCGTCC	1,366	27,328,602	65.4	10.5	97.6	37.8
MCF10A/PHF8-TGFβ1-24hr	GTCCGC	1,613	32,268,858	67.0	12.3	97.5	37.8
MCF10A/PHF8-TGFβ1-48hr	GTTTCG	1,765	35,293,844	68.5	13.5	97.5	37.8
MCF10A/PHF8-TGFβ1-72hr	ACTGAT	1,381	27,616,924	68.0	10.6	97.9	37.9