Modification of SiO$_2$, ZnO, Fe$_2$O$_3$ and TiN Films by Electronic Excitation under High Energy Ion Impact

Noriaki Matsunami 1,*; Masao Okayasu 2; Satoru Okayasu 2 and Bun Tsuchiya 1

1 Faculty of Science and Technology, Meijo University, Nagoya 468-8502, Japan; btsuchiya@meijo-u.ac.jp
2 Japan Atomic Energy Agency (JAEA), Tokai 319-1195, Japan; sataka@tac.tsukuba.ac.jp (M.S.);
okayasu.satoru@jaea.go.jp (S.O.)
* Correspondence:atsu20matsu@gmail.com

Abstract: It has been known that the modification of non-metallic solid materials (oxides, nitrides, etc.,) e.g., the formation of tracks, sputtering representing atomic displacement near the surface and lattice disordering are induced by electronic excitation under high-energy ion impact. We have investigated lattice disordering by the X-ray diffraction (XRD) of SiO$_2$, ZnO, Fe$_2$O$_3$ and TiN films and have also measured the sputtering yields of TiN for a comparison of lattice disordering with sputtering. We find that both the degradation of the XRD intensity per unit ion fluence and the sputtering yields follow the power-law of the electronic stopping power and that these exponents are larger than unity. The exponents for the XRD degradation and sputtering are found to be comparable. These results imply that similar mechanisms are responsible for the lattice disordering and electronic sputtering. A mechanism of electron–lattice coupling, i.e., the energy transfer from the electronic system into the lattice, is discussed based on a crude estimation of atomic displacement due to Coulomb repulsion during the short neutralization time (~fs) in the ionized region. The bandgap scheme or exciton model is examined.

Keywords: electronic excitation; lattice disordering; sputtering; electron–lattice coupling

1. Introduction

Material modification induced by electronic excitation under high-energy (> 0.1 MeV/u) ion impact has been observed for many non-metallic solids since the late 1950's; for example, the formation of tracks (each track is characterized by a long cylindrical disordered region or amorphous phase in crystalline solids) in LiF crystal (photographic observation after chemical etching) by Young [1], in mica (a direct observation using transmission electron microscopy, TEM, without chemical etching, and often called a latent track) by Silk et al. [2], in SiO$_2$-quartz, crystalline mica, amorphous P-doped V$_2$O$_5$, etc. (TEM) by Fleischer et al. [3,4], in oxides (SiO$_2$-quartz, Al$_2$O$_3$, ZrSi$_2$O$_4$, Y$_2$Fe$_5$O$_{12}$, high-Tc superconducting copper oxides, etc.) (TEM) by Mehta et al. [5] and Toulemonde et al. [6], in Al$_2$O$_3$ crystal (atomic force microscopy, AFM) by Ramos et al. [7], in Al$_2$O$_3$ and MgO crystals (TEM and AFM) by Skuratov et al. [8], in Al$_2$O$_3$ crystal (AFM) by Khalifaoui et al. [9], in Al$_2$O$_3$ crystal (high resolution TEM) by O’Connell et al. [10], in amorphous SiO$_2$ (small angle X-ray scattering (SAXS)) by Kluth et al. [11], in amorphous Si$_2$O$_5$ (TEM) by Benyagoub et al. [12], in polycrystalline Si$_3$N$_4$ (TEM) by Zinkle et al. [13] and by Vuuren et al. [14], in amorphous Si$_{35}$N$_{2}$ (TEM) by Kitayama et al. [15], in amorphous SiN$_{95}$:H and SiO$_{1.85}$:H (SAXS) by Mota-Santiago et al. [16], in epilayer GaN (TEM) by Kucheyev et al. [17], in epilayer GaN (AFM) by Mansouri et al. [18], in epilayer GaN and InP (TEM) by Sall et al. [19], in epilayer GaN (TE) by Moisy et al. [20], in InN single crystal (TEM) by Kamara et al. [21], in SiC crystal (AFM) by Ochedowski et al. [22] and in crystalline mica (AFM) by Alencar et al. [23]. Amorphization has been observed for crystalline SiO$_2$ [5] and the Al$_2$O$_3$ surface at a high ion fluence (though the XRD peak remains) by Ohkubo et al. [24] and Grygiel et al. [25]. The counter process, i.e., the recrystallization of the amorphous or disordered regions, has been reported for SiO$_2$ by Dhar et al. [26], Al$_2$O$_3$ by Rymzhanov [27] and InP, etc., by Williams [28]. Density
modified, i.e., a lower density in the track core surrounded by a shell with a higher density, has been observed for Al₂O₃ [10], amorphous SiO₂ [11], Si₃N₄ [14] and amorphous Sn₃0.5H and SiO₂:Sn (16). Interestingly, an electrically conducting track formation in tetrahedral-amorphous carbon (sp³ into sp² bond transformation) has been observed by Gupta et al. [29].

The track radius, hillock height and diameter characterizing the surface morphology modification associated with the track are well described in terms of the electronic stopping power S_e (defined as the energy loss due to electronic excitation and ionization per unit path length), and the velocity effect has been noticed [12]. The threshold of S_e for the track formation has been reported [3,6,8,9,12,13,30] and the data appear to scatter, and it seems that the threshold S_e depends on the observation method of the track [12]. No track formation by monatomic ions has been observed in AlN [19].

Moreover, electronic sputtering (the erosion of solid materials caused by electronic energy deposition) has been observed for various compound solids: UO₂ by thermal-neutron-induced 238U fission fragments by Rogers [31,32] and by Nilsson [33], UO₂ by energetic ions by Meins et al. [34], Bouffard et al. [35] and Schlutig [36], H₂O ice by Brown et al. [37,38], Bottiger et al. [39], Baragiola et al. [40], Dartois et al. [41] and Galli et al. [42], frozen gas films of Xe, CO₂ and SF₆ [39], those of CO, Ar and N₂ by Brown et al. [43], CO₂ ice by Mejia et al. [44], SiO₂ by Qui et al. [45], Sugden et al. [46], Matsunami et al. [47,48], Arnoldvik et al. [49] and Toulemonde et al. [50,51], MgAl₂O₄ [48], UF₄ [34], by Griffith et al. [52] and Toulemonde et al. [53], LiNbO₃ [45], Al₂O₃ [45] and by Matsunami et al. [54], various oxides by Matsunami et al. (SrTiO₃ and SrCeO₃ [47,54], CeO₂, MgO, TiO₂ and ZnO [54], Y₂O₃ and ZrO₂ [55], Cu₂O [56,57], WO₃ [58], CuO [59], Fe₂O₃ [60]), Si₃N₄ [45], Si₃N₄ and AlN by Matsunami et al. [55], Cu₃N by Matsunami et al. [56,61], LiF [50], by Assmann et al. [62] and Toulemonde et al. [63], KBr [56], NaCl [63], CaF₂ [53] and SiC [56]. The sputtering of frozen Xe films has been observed for low energy electron impact, against the anticipation of no atomic displacement [39], and the result confirms that the sputtering is caused by electronic excitation. Mechanisms of electronic excitation leading to atomic displacement will be discussed in Section 4.

As mentioned above, electronic sputtering has been observed for a variety of non-metallic materials, indicating that it seems to be a general phenomenon for non-metallic solids by high-energy ion impact. In many cases, ions with an equilibrium charge have been employed, which is usually attained by inserting thin foils, such as carbon, metals, etc., before impact on samples, and sputtered atoms are collected in carbon, metals, etc., followed by neutron activation and ion beam analysis to obtain sputtering yields. This article concerns the equilibrium charge incidence, though charge-state effects for non-metallic solids by high-energy ion impact. In many cases, ions with an equilibrium charge have been employed, which is usually attained by inserting thin foils, such as carbon, metals, etc., before impact on samples, and sputtered atoms are collected in carbon, metals, etc., followed by neutron activation and ion beam analysis to obtain sputtering yields. This article concerns the equilibrium charge incidence, though charge-state effects for non-metallic solids by high-energy ion impact.

Electronic sputtering yields (Y_{SP}) are found to be larger by 10–10³ than nuclear sputtering yields due to elastic collision cascades, which can be estimated assuming linear dependence on S_e.

- Y_{SP} super linearly depends on S_e and is approximated by the power-law fit: $Y_{SP} = (B_{SP} S_e)^{N_{SP}}$ with $1 \leq N_{SP} \leq 4$ for most cases, with B_{SP} being a material dependent constant. Stoichiometric sputtering has been observed for many materials, whereas a considerable deviation from the stoichiometric sputtering has been reported for YBa₂Cu₃O₇ [68], Gd₃Ga₅O₁₂ and Y₃Fe₂O₁₂ [69] and CaF₂ and UF₄ [53]. Only the heavy element of U [31–36] and the light element of O [49] have been detected.

Besides track formation and electronic sputtering, lattice disordering (the degradation of X-ray diffraction (XRD) intensity) with lattice expansion (an increase in the lattice parameter) by high-energy ions has been observed for the polycrystalline films of SiO₂ [70] and WO₃ [58], and lattice disordering with lattice compaction for those of Cu₂O [57],
CuO [59], Fe₂O₃ [60], Cu₃N [61] and Mn-doped ZnO [71]. Only lattice disordering has been observed for the ultra-thin films of WO₃ [72]. It should be noted that a comparison between high-energy and low-energy ion impact effects is important. Lattice expansion has been observed for a few keV D ion irradiation on Fe₂O₃ [73], and this can be understood by the incorporation of D into non-substitutional sites (incorporation or implantation effect). Thus, lattice expansion by medium-energy ions (100 keV Ne) on Fe₂O₃ [60] could be understood by Ne incorporation and/or interstitial-type defects generated by ion impact, with a possible stabilization by incorporating Ne in the film, whereas lattice compaction has been observed for a 100 MeV Xe ion impact on Fe₂O₃ [60]. It should be noted that the incorporation of ions in thin films does not take place for high-energy ions, since the projected range of ions (Rₚ) is much larger than the film thickness (e.g., Rₚ of 14 µm for 100 MeV Xe in SiO₂), unless the thickness is too large. The lattice expansion due to the incorporation effect has been observed for a few keV H and D irradiation at a low fluence on WNO₃ with x ≈ 0.4, whereas lattice compaction has been observed at a high fluence of D [74]. Peculiarly, lattice expansion at a low ion fluence and compaction at a high fluence, as well as disordering, have been reported for medium-energy (100 keV Ne and N) and high-energy (100 MeV Xe and 90 MeV Ni) ion impact on WNO₃ [75,76]. One speculation is that the lattice compaction is due to vacancy-type defects generated by ion impact, which is to be investigated. Furthermore, a drastic increase in electrical conductivity has been observed for Cu₃N [61], Mn-doped ZnO [71] and WNO₃ with x ≈ 0.4 [75,76]. The conductivity increase is ascribed to the increase in the carrier concentration and mobility.

There are a few reports on the Sₑ dependence of the XRD intensity degradation per unit fluence (YYXD) for SiC and KBr [56] and WO₃ [72]. YYXD is found to follow the power-law fit: YYXD = (BXDSe)NXD, BXD being a material-dependent constant and the exponent NXD being comparable with the Nsp of the electronic sputtering. The results imply that similar mechanisms operate for lattice disordering and electronic sputtering. It is of interest to compare the Sₑ dependence of lattice disordering with that of electronic sputtering for materials other than those mentioned above. In this paper, we have measured the lattice disordering of SiO₂, ZnO, Fe₂O₃ and TiN films, and the sputtering of TiN. The XRD results are compared with the sputtering. The exciton model is examined and scaling parameters are explored for representing electronic excitation effects.

2. Materials and Methods

XRD has been measured using Cu-k₁ radiation. Accuracy of the XRD intensity is estimated to be approximately 10%, based on the variation of repeated measurements. Rutherford backscattering (RBS) has been performed with MeV He ions for evaluation of film thickness and composition. Similarly, accuracy of the RBS is estimated considering the variation of the repeated measurements. High-energy ion irradiation has been performed at room temperature and normal incidence. Irradiation of high-energy ion with lower incident charge than the equilibrium charge without carbon foil is often employed for the samples of XRD measurement; however, the effect of non-equilibrium charge incidence does not come into play because the length for attaining the equilibrium charge is much smaller than the film thickness, as described for each material in Section 3.

SiO₂ films have been grown by thermal oxidation of Si(001) at 1300 °C for 5 hr. According to XRD, the films are polycrystalline with diffraction peaks at ~21°, 22°, 31°, 33°, 36° and 69°, with very weak peak at 44° and 47°. The peaks at ~21°, 22°, 44° and 47° have been assigned to (100), (002), (004) and (202) diffraction of hexagonal-tridymite structure [70]. The strong peak at 69° is Si(004) and peak at 33° is possibly Si(002). Film thickness is ~1.5 µm and the composition is stoichiometric (O/Si = 2.0 ± 5%) by RBS of 1.8 MeV He. Film density is taken to be the same as that of amorphous-SiO₂ (a-SiO₂), since it has been derived to be 2.26 g cm⁻³ from XRD results, which is close to that of a-SiO₂ (2.2 g cm⁻³).

Pure ZnO films have been prepared on MgO (001) substrate by using a radio frequency magnetron sputtering (RFMS) deposition method with ZnO target, and it has been reported that the dominant growth orientation is (001) and (100) of hexagonal-wurtzite structure.
depending on the substrate temperature of 350 °C and 500 °C during the film growth, respectively [71,77,78]. The composition is stoichiometric, i.e., O/Zn = 1.0 ± 0.05, and film thickness is ~100 nm by He RBS. Here, the density is taken to be 4.2×10^{22} Zn cm$^{-3}$ (5.67 g cm$^{-3}$).

Preparation and characterization methods of Fe$_2$O$_3$ films are described in [60]. Briefly, Fe$_2$O$_3$ films have been prepared by deposition of Fe layers on SiO$_2$-glass and C-plane cut Al$_2$O$_3$ (C-Al$_2$O$_3$) substrates using a RFMS deposition method with Fe target (99.99%) and Ar gas, followed by oxidation at 500 °C for 2–5 hr in air. According to RBS of 1.4–1.8 MeV He ions, the composition is stoichiometric (O/Fe = 1.5 ± 0.1) and film thickness used in this study is ~100 nm. Here, the density of 3.96×10^{22} Fe cm$^{-3}$ (5.25 g cm$^{-3}$) is employed. Diffraction peaks have been observed at ~33° and 36°, and crystalline structure has been identified as hexagonal Fe$_2$O$_3$ (hematite or α-Fe$_2$O$_3$). These correspond to (104) and (110) diffraction planes.

TiN films have been prepared on SiO$_2$-glass, C-plane cut Al$_2$O$_3$ (C-Al$_2$O$_3$) and R-plane cut Al$_2$O$_3$ (R-Al$_2$O$_3$) substrates at 600°C using a RFMS deposition method with Ti target (99.5%) and high purity N$_2$ gas. RBS of 1.4–1.8 MeV He ions shows that the composition is stoichiometric (N/Ti = 1.0 ± 0.05) and that the film thickness used in this study is ~170 nm (deposition time of 1 hr). Here, the density of 5.25×10^{22} Ti cm$^{-3}$ (5.4 g cm$^{-3}$) is employed. Diffraction peaks have been observed at 36.6°, 42.6° and ~77° on SiO$_2$ glass and C-Al$_2$O$_3$. Crystalline structure has been identified as a cubic structure and these correspond to (111), (200) and (222) diffractions [79]. Diffraction intensity of (111) is larger than that of (200) on SiO$_2$ glass, and diffraction of (111) on C-Al$_2$O$_3$ is very intensive. TiN on R-Al$_2$O$_3$ has preferential growth orientation of (220) of a cubic structure (diffraction angle at ~61°). Sputtered atoms are collected in the carbon foil (100 nm) and the sputtered atoms are analyzed by RBS to obtain the sputtering yields [54] (carbon collector method).

3. Results and Discussion

3.1. SiO$_2$

The XRD intensity at the diffraction angle of ~22° (the most intensive (002) diffraction of hexagonal-tridymite) normalized to that of as-grown SiO$_2$ films on Si(001) is shown in Figure 1 as a function of the ion fluence for 90 MeV Ni$^{+10}$, 100 MeV Xe$^{+14}$ and 200 MeV Xe$^{+14}$ ion impact. The XRD intensity of the irradiated sample normalized to that of the unirradiated sample is proportional to the ion fluence to a certain fluence. Deviation from the linear dependence for the high fluence could be due to the overlapping effect. As observed in latent track formation (e.g., [5,6]), electronic excitation effects extend to a region (approximately cylindrical) with a radius of several nm and a length of the projected range or film thickness, and thus ions may hit the ion-irradiated part for a high ion fluence (called the overlapping effect). As described below, the XRD degradation yield per unit ion fluence (Y_{XD}) is reduced at a high fluence, and this could be understood as thermal annealing and/or a reduction in the disordered regions via ion-induced defects (recrystallization [26]). The damage cross-sections (A_D) obtained by RBS-channeling (RBS-C) technique and TEM [5]) are compared with Y_{XD} in Figure 2, and it appears that both agree well for $S_e > 10$ keV. A discrepancy between A_D and Y_{XD} is seen for $S_e < 10$ keV, and the reason for this is not understood. In addition, sputtering yields are often reduced, and this is unlikely to be explained by the annealing effect. Therefore, the reasons for the sputtering suppression at a high fluence remain in question. The XRD degradation yields (Y_{XD}) per unit ion fluence are obtained and given in Table 1. The film thickness has been obtained to be ~1.5 μm, using 1.8 MeV He RBS. The attenuation length (L_{XA}) of Cu-k$_\alpha$ (8.0 keV) is obtained to be 128 μm [80] and the attenuation depth ($L_{XA} \sin(22°/2) = 24.3$ μm. The film thickness (~1.5 μm) is much smaller than the attenuation depth and thus no correction is necessary for the XRD intensity. The lattice expansion or increase in the lattice parameter of 0.5% with an estimated error of 0.2% at 1×10^{12} cm$^{-2}$ is found to be nearly independent of the electronic stopping power.
Figure 1. XRD intensity from (002) diffraction plane at ~22° normalized to as-grown films of SiO$_2$ as a function of ion fluence for 90 MeV Ni (●), 100 MeV Xe (○, △) and 200 MeV Xe (x) ions. Data of 90 MeV Ni (●) and 100 MeV Xe (△) are from [70]. Linear fit is indicated by dashed lines. An estimated error of XRD intensity is 10%.

Figure 2. XRD degradation per unit fluence Y_{XD} of polycrystalline SiO$_2$ film (○, present result) and sputtering yield Y_{sp} (x) of amorphous (or vitreous)-SiO$_2$ (□, x) and film of SiO$_2$ (▲, ■, ♦, +) as a function of electronic stopping power (S_e). Data (□, ▲) from [Qiu et al.] [45], (■) from [Sugden et al.] [46], (♦) from [Arnoldbik et al.] [49] and (+) from [Toulemonde et al.] [51]. S_e is calculated using SRIM2013, and power-law fits of $Y_{XD} ((0.0545S_e)^{2.9})$ and $Y_{sp} ((0.62S_e)^{3.0})$ are indicated by blue and black dotted lines, respectively. Power-law fit (●) $Y_{XD} ((0.055S_e)^{3.4}$, TRIM1997) and $Y_{sp} ((0.58S_e)^{3.0}$, TRIM1985 through SRIM2010) from [47,48,51] are indicated by black and green dashed lines. Damage cross sections (♦) are obtained by RBS-C and (●) by TEM from [5].
Table 1. XRD data of SiO₂ films. Ion, incident energy (E in MeV), XRD intensity degradation (Y XD), appropriate E* (MeV) considering the energy loss in the film and electronic stopping power in keV/nm (S e*) appropriate for Y XD (see text). S e from SRIM2013. The deviation ΔS e* = (S e*/S e(E) − 1) × 100 is also given.

Ion	Energy (MeV)	Y XD (10⁻¹² cm²)	E* (MeV)	S e* (keV/nm)	ΔS e* (%)
⁵⁸Ni	90	0.066	84.5	7.246	−0.32
¹³⁶Xe	100	0.27	91.0	11.56	−3.2
¹³⁶Xe	200	0.475	189	14.22	−1.3

The electronic stopping power (S e*) appropriate for XRD intensity degradation is calculated using SRIM 2013, using a half-way approximation that the ion loses its energy for half of the film thickness (~0.75 μm), i.e., S e* = S e(E*) with E* = E(incidence) − S e(E) × 0.75 μm (Table 1). The correction for the film thickness on S e appears to be a few percent. It is noticed that the incident charge (Ni+¹⁰, Xe+¹⁴) differs from the equilibrium charge (+19, +25 and +30 for 90 MeV Ni, 100 MeV Xe and 200 MeV Xe, respectively (Shima et al.) [81], and +18.2, +23.9 and +29.3 (Schiwietz et al.) [82]), both being in good agreement. Following [64], the characteristic length (L EQ = 1/(electron loss cross-section times N)) for attaining the equilibrium charge is estimated to be 8.7, 8.3 and 7.9 nm for 90 MeV Ni+¹⁰, 100 MeV Xe+¹⁴ and 200 MeV Xe+¹⁴, respectively, from the empirical formula of the single-electron loss cross-section σ₁L (10⁻¹⁶ cm²) of 0.52 (90 MeV Ni+¹⁰), 0.55 (100 MeV Xe+¹⁴) and 0.57 (200 MeV Xe+¹⁴) [83,84], N (2.2 × 10²² Si cm⁻³) being the density, and (target atomic number)²/³ dependence being included. Here, σ₁L = σ₁L(Si) + 2σ₁L(O), ionization potential I P = 321 eV [85,86] with the number of removable electrons N eff = 8 and I P = 343 eV with N eff = 12 are employed for Ni+¹⁰ and Xe+¹⁴. L EQ is much smaller than the film thickness and hence the charge-state effect is insignificant.

The sputtering yields Y sp of SiO₂ (normal incidence) are summarized in Table 2 for the comparison of the S e dependence of the XR degradation yields Y XD. There are various versions of TRIM/SRIM starting in 1985, and in this occasion, the results used the latest version of SRIM2013 are compared with those earlier versions. Firstly, the correction on the stopping power and projected range for carbon foils (20–120 nm), which have been used to achieve the equilibrium charge incidence, is less than a few %, except for low-energy Cl ions (several %). Secondly, S e by CasP (version 5.2) differs ~30% from that by SRIM 2013. Figure 2 shows the S e dependence of the XR degradation yields Y XD and Y sp. Both Y XD and Y sp fit to the power-law of S e, and the exponents of XR degradation N XD = 2.9 and N sp = 3 (sputtering) are almost identical, indicating that the same mechanism is responsible for lattice disordering and sputtering. Further plotted is the sputtering yields vs. S e calculated using earlier versions of TRIM/SRIM (TRIM1985 to SRIM2010) [45–49,51], and the plot using earlier versions give the same exponent (N sp = 3) with a 6% smaller constant B sp in the power-law fit (20% smaller in the sputtering yields). This means that the plot and discussion using SRIM2013 do not significantly differ from those using the earlier versions of TRIM/SRIM. One notices that no appreciable difference in sputtering yields is observed among a-SiO₂, films and single-crystal-SiO₂ (c-SiO₂) [45–48], even though the density of c-SiO₂ is larger by 20% than that of a-SiO₂, whereas much smaller yields (by a factor of three) have been observed for c-SiO₂ [51]. The discrepancy remains in question. Sputtering yields Y EC, which are due to elastic collision cascades, is estimated assuming Y EC is proportional to the nuclear stopping power, discarding the variation of the α-factor (order of unity) depending on the ratio of target mass over ion mass (Sigmund) [87]. The proportional constant is obtained to be 2.7 nm/keV using the sputtering yields by low-energy ions (Ar and Kr) (Betz et al.) [88]. Y EC is given in Table 2 and it is shown that Y sp/Y EC ranges from 44 (5 MeV Cl) to 3450 (210 MeV Au).
Table 2. Sputtering data of SiO$_2$ (normal incidence). Ion, incident energy (E in MeV), energy (E^* in MeV) corrected for the energy loss in carbon foils (see footnote), electronic stopping power (S_e), nuclear stopping power (S_n), projected range (R_p) and sputtering yield (Y_{SP}). S_e, S_n and R_p are calculated using SRIM2013. ($S_e(E^*)/S_e(E) - 1$), ($S_n(E^*)/S_n(E) - 1$) and ($R_p(E^*)/R_p(E) - 1$) in % are given in the parentheses after $S_e(E^*)$, $S_n(E^*)$ and $R_p(E^*)$, respectively. Y_{SP} in the parenthesis is for SiO$_2$ films. S_e by CasP is also listed. Y_{EC} is the calculated sputtering yield due to elastic collisions.

Ion	E (MeV)	E^* (keV/nm)	$S_e (E^*)$ (keV/nm)	$S_n (E^*)$ (keV/nm)	$R_p (E^*)$ (µm)	Y_{SP}	S_e(CasP) (keV/nm)	Y_{EC}
35Cl	5 (4.6)	2.59 (−4.26)	0.0426 (6.8)	3.0 (−4.6)	5.1 (4.4)	1.87	0.12	
35Cl	20 (19.4)	4.15 (−0.35)	0.0134 (2.7)	7.0 (−2.0)	8.77 (8.22)	3.83	0.036	
35Cl	30 (29.9)	4.24 (−2.4 $\times 10^{-5}$)	9.3 $\times 10^{-3}$ (0.3)	9.5 (−0.25)	11	3.99	0.025	
58Ni	90 (89)	7.265 (−0.055)	0.0145 (0.84)	18.3 (−0.60)	120	7.66	0.039	
136Xe	100 (99)	11.88 (−0.49)	0.091 (1.2)	14.4 (−0.83)	362	14.0	0.246	
136Xe	200 (198)	14.37 (−0.19)	0.051 (0.73)	21.9 (−0.51)	404	16.0	0.138	
40Ar	60 (60)	4.40	6.5 $\times 10^{-3}$	16.3	32	4.19	0.018	
32S	80 (80)	3.49	3.3 $\times 10^{-3}$	23	9.7	3.23	0.0089	
63Cu	50 (50)	7.17	0.027	Toulemonde et al. [51]	11.6	80	7.55	0.073
197Au	190 (190)	16.9	0.143	20.5	1425	20.9	0.39	
197Au	190 (190)	16.9	0.143	20.5	1425	20.9	0.39	
197Au	197 (197)	17.1	0.14	20.9	1110	21.2	0.38	
197Au	210 (210)	17.4	0.13	21.7	1230	21.7	0.36	
127I	148 (148)	12.9	0.06	20	525	15.3	0.16	
58Ni	69 (69)	7.15	0.018	15.5	135	7.75	0.049	

Equilibrium charge has been obtained by using carbon foils of 120 nm [45], 25 nm [46], 100 nm [47,48], 20 nm [49] and 50 nm [51].

In order to obtain the stopping powers (S) for the non-metallic compounds, such as SiO$_2$, described above, we apply the Bragg’s additive rule, e.g., $S_{SiO_2} = S_{Si} + 2S_{O}$ and S of the constituting elements is calculated using TRIM/SRIM and CasP codes. Before moving to the discussion of the Bragg’s deviation, the accuracy of S is briefly mentioned. It is estimated to be 8% (Be through U ions in Ag) near the maximum of S (~0.8 MeV/u) [66], 17% (K to U ions in Au) (Paul) [89]. Besenbacher et al. have reported no difference between solid and gas phases for 0.5–3 MeV He ion stopping in Ar with an experimental accuracy of 3% [90], and this could be understood by the fact that the binding energy (cohesive energy) of solid Ar is too small (0.08 eV (Kittel) [91]), compared with the ionization potential (I_{Bethe}) of 188 eV [92], to affect the stopping. On the other hand, Arnau et al. have reported a large deviation (~50% near the stopping power maximum at ~50 keV) for proton stopping between solid and gas phases of Zn, and the deviation reduces ~10% at ~1 MeV [93]. The cohesive energy of 1.35 eV [91] is much smaller than the mean ionization potential I_{Bethe} of 330 eV [92], and hence the small increase in I_{Bethe} cannot explain the Bragg’s deviation of Zn. They have argued that the difference in the 4s into 4p transition probability and screening effect between solid and gas phases are responsible. Both TRIM/SRIM and CasP codes are based on the experiments of conveniently available solid targets and molecular gas (e.g., N$_2$, O$_2$), and thus it is anticipated that the binding effect is included to some or large extent and that the Bragg’s deviation is not serious for nitrides and oxides, and is roughly 10% or less at around 1 MeV/u.
3.2. ZnO

The XRD intensity at a diffraction angle of ~34° ((001) diffraction) and 32° ((100) diffraction) normalized to those of unirradiated ZnO films on the MgO substrate is shown in Figure 3 as a function of the ion fluence for 90 MeV Ni$^{+10}$, 100 MeV Xe$^{+14}$ and 200 MeV Xe$^{+14}$ ion impact. It appears that the XRD intensity degradation is nearly independent of the diffraction planes. The XRD intensity degradation per unit fluence Y_{XD} is given in Table 3, together with sputtering yields [54], stopping powers and projected ranges (SRIM2013). The X-ray (Cu-kα) attenuation length L_{XA} is obtained to be 36.6 μm [80] and the attenuation depth is 11 and 10 μm for the diffraction angle of ~34° and 32°, respectively; thus, the X-ray attenuation correction is unnecessary. It appears that the appropriate energy for the Y_{XD} vs. S_e plot, $E - S_e \ell / 2$, where ℓ = a film thickness of ~100 nm, is nearly the same as E^* for sputtering, in which the energy loss of a carbon foil of 100 nm is considered. Similarly to the case of SiO$_2$, the characteristic length (L_{EQ}) is estimated to be 4.6, 4.4 and 4.2 nm for 90 MeV Ni$^{+10}$, 100 MeV Xe$^{+14}$ and 200 MeV Xe$^{+14}$, respectively, from the empirical formula of the single-electron loss cross-section $\sigma_{1L}(10^{-16} \text{cm}^2)$ of 0.52 (90 MeV Ni$^{+10}$), 0.54 (100 MeV Xe$^{+14}$) and 0.57 (200 MeV Xe$^{+14}$) [83,84]. Here, $\sigma_{1L} = \sigma_{1L}(Zn) + \sigma_{1L}(O)$, and the ionization potential I_P and N_{eff} are described in Section 3.1. Again, L_{EQ} is much smaller than the film thickness and the charge-state effect is insignificant.

![Figure 3. XRD intensity normalized to as-deposited films of ZnO as a function of ion fluence for 90 MeV Ni (Δ, +), 100 MeV Xe (o, x) and 200 MeV Xe (□) ions. Diffraction planes are (002) at ~34° (Δ, o, □) and (100) at ~32° (+, x). Linear fit is indicated by dashed lines. An estimated error of XRD intensity is 10%.](image)

Ion	Energy (MeV)	Y_{XD} (10^{-14} cm2)	E^* (MeV)	S_e^* (keV/nm)	S_n^* (keV/nm)	R_p^* (μm)	Y_{sp}
32S	80	80	6.62	0.007	13	1.09	
40Ar	60	60	8.3	0.014	9.5	2.08	
58Ni	90	0.788	89	13.72	0.031	11	4.0
127I	85	84	18.92	0.205	8.8	7.0	
136Xe	100	1.3	99	21.60	0.20	8.8	
136Xe	200	1.7	198	27.14	0.112	13	11
20Ne	0.10	0.10	0.29	0.24	0.12	0.9	

Table 3. XRD data of ZnO films. Ion, incident energy (E in MeV), XRD intensity degradation (Y_{XD}), $E^* = E - \Delta E$ (energy loss in carbon foil of 100 nm) (MeV) and electronic (S_e^*) and nuclear (S_n^*) stopping powers in keV/nm and projected range R_p^* (μm) at E^* calculated using SRIM2013. Sputtering yield Y_{sp} from [54]. Sputtering yield by 100 keV Ne ion is also given.
Figure 4 shows the XRD intensity degradation Y_{XD} vs. electronic stopping power (S_e) (SRIM2013 and TRIM1997) together with the sputtering yields Y_{sp} vs. S_e. Both Y_{XD} and Y_{sp} follow the power-law fit and the exponent for Y_{XD} using TRIM1997 gives a slightly larger value than that using SRIM2013. The exponent of lattice disordering is nearly the same as that of sputtering. The change in the lattice parameter Δc appears to scatter, and roughly -0.2% and -0.1% with an estimated error of 0.1% are obtained for (100) and (002) diffractions by 100 MeV Xe at $10 \times 10^{12} \text{ cm}^{-2}$, assuming that Δc is proportional to the ion fluence. Δc is obtained at -0.3% for (002) diffraction by 200 MeV Xe at $5 \times 10^{12} \text{ cm}^{-2}$, and no appreciable change in the lattice parameter is observed by 90 MeV Ni ions at $40 \times 10^{12} \text{ cm}^{-2}$; more data are desired.

Figure 4. XRD degradation per unit fluence Y_{XD} of polycrystalline ZnO film vs. electronic stopping power S_e (TRIM1997 and SR2013). Power-law fit to $Y_{XD} = (0.057 S_e)^{1.32}$ (TRIM1997) (o, blue dotted line) and $(0.0585 S_e)^{1.16}$ (SRIM2013) (+, black dotted line). Sputtering yield Y_{sp} vs. S_e (TRIM1997, □) and S_e (SR2013, x) is also shown. Sputtering yield from [54]. Power-law fits to Y_{sp}: $(0.175 S_e)^{1.57}$ for both S_e from TRIM1997 and SR2013 is indicated by green dotted line.

3.3. Fe_2O_3

The XRD intensity at a diffraction angle of $\sim 33^\circ$ and 36° (corresponding to diffraction planes of (104) and (110)) normalized to those of unirradiated Fe_2O_3 films on C-Al$_2$O$_3$ and SiO$_2$ glass substrates as a function of the ion fluence is shown in Figure 5 for 90 MeV Ni$^{10+}$, 100 MeV Xe$^{14+}$ and 200 MeV Xe$^{14+}$ ion impact. It appears that the XRD intensity degradation is nearly independent of the diffraction planes and substrates. The XRD intensity degradation per unit fluence Y_{XD} is given in Table 4, together with the sputtering yields [60] and stopping powers (SRIM2013). The X-ray (Cu-ka) attenuation length L_{XA} is obtained to be 8.8μm [80] and the attenuation depth is 2.5 and 2.7μm for the diffraction angle of $\sim 33^\circ$ and 36°, respectively, which are much larger than the film thickness of ~ 100 nm and thus the X-ray attenuation correction is unnecessary. The appropriate energy for the XRD vs. S_e plot, using half-way approximation $(E - S_e \ell/2)$ with the film thickness ℓ of ~ 100 nm, again gives nearly the same as E^* for sputtering, in which the energy loss of the carbon foil of 100 nm is taken into account.
Figure 5. XRD intensity normalized to unirradiated films of Fe$_2$O$_3$ as a function of ion fluence for 90 MeV Ni (□, ◆, ▽, ▲), 100 MeV Xe (○, Δ, +, x) and 200 MeV Xe (●, ◇, ▼, ⋂) ions. Diffraction peaks at ~33° of Fe$_2$O$_3$ films on C-Al$_2$O$_3$ substrate (□ (90 MeV Ni), ○ (100 MeV Xe), ● (200 MeV Xe)), ~36° of films on C-Al$_2$O$_3$ (● (90 MeV Ni), + (100 MeV Xe), ◇ (200 MeV Xe)), ~33° of films on SiO$_2$ glass substrate (▲ (90 MeV Ni), x (100 MeV Xe), ⋂ (200 MeV Xe)) and ~36° of films on SiO$_2$ glass substrate (● (90 MeV Ni), + (100 MeV Xe), ▼ (200 MeV Xe)). Data of 100 MeV Xe are from [60]. Linear fit is indicated by dotted lines. An estimated error of XRD intensity is 10%.

Table 4. XRD data of Fe$_2$O$_3$ films. Ion, energy (E in MeV), XRD intensity degradation (Y$_{XD}$), E* = E-ΔE (energy loss in carbon foil of 100 nm) (MeV) and electronic (S$_e$*) and nuclear (S$_n$*) stopping powers in keV/nm and projected range R$_p$* (µm) calculated using SRIM2013. Sputtering yield Y$_{sp}$ from [60]. Results by low energy (100 keV Ne) ion are also given.

Ion	Energy Y$_{XD}$ (MeV)	(10$^{-12}$ cm2)	E* (MeV)	S$_e$* (keV/nm)	S$_n$* (keV/nm)	R$_p$* (µm)	Y$_{sp}$
58Ni	90	0.12	89	14.28	0.030	9.8	38.3
136Xe	100	0.38	99	23.25	0.19	7.9	57.9
136Xe	200	0.60	198	28.27	0.11	11.7	81.7
20Ne	0.10	0.10	0.354	0.258	0.12	2.3	

Similarly to SiO$_2$ and ZnO, the characteristic length (L$_{EQ}$) is estimated to be 4.5, 4.3 and 4.1 nm for 90 MeV Ni$^{+10}$, 100 MeV Xe$^{+14}$ and 200 MeV Xe$^{+14}$, respectively, from the empirical formula of the single-electron loss cross-section $\sigma_{1L}(10^{-16}$ cm2) of 0.56 (90 MeV Ni$^{+10}$), 0.59 (100 MeV Xe$^{+14}$) and 0.61 (200 MeV Xe$^{+14}$) [83,84]. Here, $\sigma_{1L} = \sigma_{1L}(Fe) + 1.5\sigma_{1L}(O)$. L$_{EQ}$ is much smaller than the film thickness and the charge-state effect does not come into play.

Figure 6 shows XRD intensity degradation Y$_{XD}$ vs. electronic stopping power (S$_e$) (SRIM2013 and TRIM1997) together with the sputtering yields Y$_{sp}$ vs. S$_e$. Both Y$_{XD}$ and Y$_{sp}$ follow the power-law fit and the exponent using TRIM1997 gives a slightly larger fit than those using SRIM2013. The exponent of lattice disordering is two times larger than that of sputtering (N$_{sp}$ is exceptionally close to unity, in contrast to the SiO$_2$ and ZnO cases). The change in the lattice parameter appears to scatter depending on the substrate and diffraction planes, and is not proportional to the ion fluence. The average of the lattice parameter change in the (104) and (110) diffractions of Fe$_2$O$_3$ on C-Al$_2$O$_3$ is −0.2, −0.3% (an estimated error of 0.1%) and nearly zero at ~1 × 1012 cm$^{-2}$ for 200 MeV Xe, 100 MeV Xe and 90 MeV Ni ion impact. The dependence of the lattice parameter change on the ion fluence and S$_e$ is complicated, and is to be investigated.
Figure 6. XRD degradation per unit fluence Y_{XD} of polycrystalline Fe$_2$O$_3$ films (•, o) and sputtering yield Y_{sp} (▲, x) as a function of the electronic stopping power (S_e) in keV/nm. Power-law fits are indicated by dashed lines and S_e is calculated using SRIM2013 (•, ▲) and TRIM1997 (o, x): (•) $Y_{XD} = (0.028 S_e)^{2.28}$ (SRIM2013), (o) $Y_{XD} = (0.029S_e)^{2.54}$ (TRIM1997), (▲) $Y_{sp} = (2.2 S_e)^{1.05}$ (SRIM2013) and (x) $Y_{sp} = (1.16 S_e)^{1.25}$ (TRIM1997). Sputtering data and power-law fit to the sputtering yields (TRIM1997) from [60].

3.4. TiN

The XRD patterns are shown in Figure 7 for unirradiated and irradiated TiN films on the SiO$_2$ glass substrate. As already mentioned in Section 2, (111) and (200) diffraction peaks are observed and the XRD intensity decreases due to ion impact. Figure 8 shows XRD intensities normalized to those of unirradiated TiN films on SiO$_2$ glass, C-Al$_2$O$_3$ and R-Al$_2$O$_3$ substrates as a function of the ion fluence. It is seen that the XRD intensity degradation is nearly the same for the diffraction planes of (111) and (200) on SiO$_2$, and for (111) on C-Al$_2$O$_3$. The XRD intensity degradation is less sensitive to the ion impact for the diffraction plane (220) on the R-Al$_2$O$_3$ substrate (~30% smaller than that for (111) and (200) on SiO$_2$, and for (111) on C-Al$_2$O$_3$). The XRD intensity degradation per unit fluence Y_{XD} for (111) and (200) diffractions is given in Table 5, together with sputtering yields and stopping powers (TRIM1997 and SRIM2013). No appreciable change in the lattice parameter is observed, as shown in Figure 7. Similarly to the SiO$_2$, ZnO and Fe$_2$O$_3$ cases, the appropriate energy, $E - S_e \ell / 2$, $\ell =$ film thickness of ~170 nm is taken into account, and the energy is close to that for sputtering, in which the energy loss of the carbon foil of 100 nm is considered. The X-ray (Cu-ka) attenuation length L_{XA} is obtained to be 11.8 μm [80], and the attenuation depth is 3.7, 4.3 and 6.0 μm for diffraction angles of 36.6°, ~43° and 61°, respectively; thus, the X-ray attenuation correction is insignificant.
Figure 7. XRD patterns of TiN film on SiO$_2$ glass substrate: unirradiated (●) and irradiated by 100 MeV Xe at 0.72×10^{12} cm$^{-2}$ (+).

Figure 8. XRD intensity normalized to unirradiated films of TiN as a function of ion fluence for 60 MeV Ar (■, ◊), 90 MeV Ni (▼, +, ◆, ⋄), 100 MeV Xe (○, x, ◢) and 200 MeV Xe (▲, •) ions. Diffraction plane (111) at diffraction angle of ~36.6$^\circ$ is indicated by ■, ◊, ○ and ▲ for SiO$_2$ substrate, (200) at ~43$^\circ$ by +, x and • for SiO$_2$ substrate, (111) by ⋄ for C-Al$_2$O$_3$ substrate and (220) at ~61$^\circ$ by ⋄ and ◢ for R-Al$_2$O$_3$ substrate. Linear fit is indicated by dotted lines. An estimated error of XRD intensity is 10%.
Table 5. XRD data of TiN films. Ion, energy (E in MeV), XRD intensity degradation (Y\textsubscript{XD}) for (111) and (200) diffraction on SiO\textsubscript{2} and C-Al\textsubscript{2}O\textsubscript{3} substrates, Y\textsubscript{XD} for (220) diffraction on R-Al\textsubscript{2}O\textsubscript{3} in the parenthesis, E* = E − ΔE (energy loss in carbon foil of 100 nm) (MeV) and electronic (S\textsubscript{e}*) and nuclear (S\textsubscript{n}*) stopping powers in keV/nm and projected range R\textsubscript{p}*(µm) calculated using SRIM2013 and sputtering yield Y\textsubscript{sp} of Ti. S\textsubscript{e}*(TRIM1997) is given in parenthesis.

Ion	Energy (MeV)	Y\textsubscript{XD} (10^{-12} cm2)	E* (MeV)	S\textsubscript{e}* (keV/nm)	S\textsubscript{n}* (keV/nm)	R\textsubscript{p}* (µm)	Y\textsubscript{sp} (Ti)
40Ar	60	0.14	60	9.41 (9.33)	0.0135	7.6	51.8
58Ni	90	0.27 (0.2)	89	15.5 (16.5)	0.0305	8.6	147
136Xe	100	0.50 (0.35)	99	26.7 (25.5)	0.19	6.9	380
136Xe	200	0.60	198	30.85 (30.25)	0.11	10	529

The characteristic length (L\textsubscript{EQ}) is estimated to be 4.5, 4.4, 4.2 and 4.0 nm for 60 MeV Ar+7, 90 MeV Ni+10, 100 MeV Xe+14 and 200 MeV Xe+14, respectively, from the empirical formula of the single-electron loss cross-section \(\sigma_{1L}(10^{-16} \text{ cm}^2)\) of 0.43 (60 MeV Ar+7), 0.44 (90 MeV Ni+10), 0.46 (100 MeV Xe+14) and 0.48 (200 MeV Xe+14) [83,84]. Here, \(\sigma_{1L} = \sigma_{1L}(\text{Ti}) + \sigma_{1L}(\text{N})\), and the ionization potential \(I\) and \(N_{\text{eff}}\) are \(I = 143 \text{ eV and } N_{\text{eff}} = 1\) for Ar+7, with those described in Section 3.1 for Ni+10 and Xe+14. L\textsubscript{EQ} is much smaller than the film thickness, and hence the charge-state effect is insignificant.

It is found that sputtered Ti collected in the carbon foil is proportional to the ion fluence, as shown in Figure 9 for 60 MeV Ar, 90 MeV Ni, 100 MeV Xe and 200 MeV Xe ions. The sputtering yield of Ti is obtained using the collection efficiency of 0.34 in the carbon foil collector [47] and the results are given in Table 5. Sputtered N collected in the carbon foil is obtained to be 0.4 \(\times 10^{14}\) and 0.44 \(\times 10^{14} \text{ cm}^{-2}\) with an estimated error of 20% for 200 MeV Xe at 0.22 \(\times 10^{12} \text{ cm}^{-2}\) and 60 MeV Ar at 2.8 \(\times 10^{12} \text{ cm}^{-2}\), respectively, and this is comparable with the Ti areal density of 0.4 \(\times 10^{14} \text{ cm}^{-2}\) (200 MeV Xe) and 0.475 \(\times 10^{14} \text{ cm}^{-2}\) (60 MeV Ar). The results imply stoichiometric sputtering, due to the collection efficiency of N in the carbon foil collector of 0.35 [55], which is close to that of Ti. Thus, the total sputtering yield (Ti + N) is obtained by doubling Y\textsubscript{sp} (Ti) in Table 5. The sputtering yields of Ti(N) (Y\textsubscript{EC}) due to elastic collisions can be estimated assuming that Y\textsubscript{EC} is proportional to the nuclear stopping power. Here, the proportional constant is obtained to be \(-1.6 \text{ nm/keV}\) using the experimental yields of 0.527 (0.6 keV Ar) and 0.427 (0.6 keV N) [94] and 0.7 (0.5 keV Cd) [88]. Y\textsubscript{sp}(TiN)/Y\textsubscript{EC} ranges from 2.5 \(\times 10^3\) to 6 \(\times 10^3\). The XRD intensity degradations Y\textsubscript{XD} and Y\textsubscript{sp}(Ti + N) are plotted as a function of the electronic stopping power S\textsubscript{e} in Figure 10. It appears that both fit to the power-law: Y\textsubscript{XD} = (0.022S\textsubscript{e})1.26 and Y\textsubscript{sp} = (1.17S\textsubscript{e})1.95. The exponents are comparable for XRD intensity degradation and sputtering.
Figure 9. Areal density of sputtered Ti from TiN on SiO$_2$ substrate collected in carbon foil vs. ion fluence for 60 MeV Ar (□), 89 MeV Ni (∇), 99 MeV Xe (o) and 198 MeV Xe (Δ) ions. An estimated error of areal density is 20%.

Figure 10. XRD intensity degradation Y_{XD} (10^{-12} cm2) (o, +) and sputtering yields Y_{sp} (Ti + N) (□, x) vs. electronic stopping power S_e (keV/nm). S_e is calculated by TRIM1997 (o, □) and by SRIM2013 (+, x). Power-law fits are indicated by dotted lines: $Y_{XD} = (0.0224S_e)^{1.26}$ and $Y_{sp} = (1.17S_e)^{1.95}$.

4. Discussion
4.1. Comparison of Lattice Disordering with Sputtering

The electronic stopping power (S_e) dependence of lattice disordering Y_{XD}, together with electronic sputtering, is summarized in Table 6, recognizing that most of the data have used TRIM1997. Results using SRIM2013 and TRIM1997 are compared in Section 3. Both exponents of the power-law fits are similar for SiO$_2$, ZnO, Fe$_2$O$_3$, TiN and WO$_3$ films, as well as for KBr and SiC. As mentioned in Section 3, it can be seen that the exponent of the lattice disordering N_{XD} is comparable with that of sputtering N_{sp}, except for Fe$_2$O$_3$, in which N_{sp} is exceptionally close to unity, as in the case of Cu$_2$O (N_{sp} = 1.0) [56] and CuO (N_{sp} = 1.08) [59]. The similarity of the exponent of lattice disordering and sputtering for SiO$_2$, ZnO, Fe$_2$O$_3$, TiN, WO$_3$, KBr and SiC imply that both phenomena originate from similar mechanisms, despite the fact that small displacements and annealing and/or the reduction in disordering via ion-induced defects are involved in the lattice disordering whereas large displacements are involved in sputtering. The result of Fe$_2$O$_3$ indicates that the electronic excitation is more effective for lattice disordering. In
the case of CuO, N_{XD} is nearly zero [59]. In Table 6, Y_{XD} \left(10^{-12} \text{ cm}^2\right) at S_{e} = 10 \text{ keV/nm} and Y_{XD}/Y_{sp} \left(\times 10^{-15} \text{ cm}^2\right) are listed. It is found that the ratio Y_{XD}/Y_{sp} is an order of 10^{-15} cm^2, except for ZnO, where the sputtering yields are exceptionally small. More data of lattice disordering would be desired for further discussion.

Table 6. Summary of electronic stopping power (S_{e} in keV/nm) dependence of lattice disordering Y_{XD} = (B_{XD}S_{e})^{N_{XD}} for the present results of SiO_{2}, ZnO, Fe_{2}O_{3} and TiN films, and sputtering yields Y_{sp} = (B_{sp}S_{e})^{N_{sp}} of the present result for TiN. Lattice disordering and sputtering yields of WO_{3} film from [58,72], those of KBr and SiC from [56] and sputtering yields of SiO_{2}, ZnO and Fe_{2}O_{3} (see Section 3). Constant B_{XD} and B_{sp} and the exponent N_{XD} and N_{sp} are obtained using TRIM1997 and those using SRIM2013 are in parentheses. Y_{XD} at S_{e} = 10 \text{ keV} and Y_{XD}/Y_{sp} \left(10^{-15} \text{ cm}^2\right) are given.

Sample	B_{XD} (nm/keV)	N_{XD}	B_{sp} (nm/keV)	N_{sp}	Y_{XD} \left(10^{-12} \text{ cm}^2\right)	Y_{XD}/Y_{sp} \left(10^{-15} \text{ cm}^2\right)
SiO_{2}	0.055 (0.0545)	3.4 (2.9)	0.58 (0.62)	3.0 (3.0)	0.13	0.67
ZnO	0.057 (0.0585)	1.32 (1.16)	0.175	1.57	0.476	198
Fe_{2}O_{3}	0.029 (0.028)	2.54 (2.28)	1.16 (2.2)	1.25 (1.05)	0.043	2.0
TiN	0.0224	1.26	1.17	1.95	0.15	1.26
WO_{3}	0.07355	2.65	0.65	3.6	0.44	0.53
KBr	0.127	2.4	0.77	3.0	1.78	3.9
SiC	0.0377	1.97	1.86	1.53	0.15	1.7

4.2. Electron–Lattice Coupling

Three models have been suggested for atomic displacement induced by electronic excitation: Coulomb explosion (CE) [3,4], thermal spike (TS) [50] and exciton model [30,95–97]. The neutralization time of the ionized region along the ion path is generally too short, and the fraction of the charged sputtered ions is small, e.g., 100 MeV Xe ions on SiO_{2} glass [48]. Hence, the CE model is unsound. However, a small atomic separation during the short time might be enough for electron–lattice coupling (a key for electronic excitation effects), which will be discussed later. A crude estimation of the evaporation yield for SiO_{2} based on the TS model appears to be far smaller than the experimental sputtering yield [55] and thus the TS model is also unsound. Moreover, the electron–lattice coupling or transfer mechanism of electronic energy into the lattice is not clear in the model. In the exciton model, the non-radiative decay of self-trapped excitons (STX, i.e., localized excited-state of electronic system coupled with lattice) leads to atomic displacement. According to the exciton model (or bandgap scheme), it is anticipated that the energy of the atoms in motion from the non-radiative decay of STX is comparable with the bandgap, leading to a larger sputtering yield with a larger bandgap, discarding the argument for the efficiency of STX generation from the electron–hole pairs, which is inversely proportional to the bandgap. This bandgap scheme is examined below. The effective depth contributing to the electronic sputtering of WO_{3} has been obtained to be 40 nm, which is nearly independent of S_{e} [98], which would shed light on understanding the electronic sputtering; therefore, more data are desired.

The electronic sputtering yield Y_{sp} super-linearly depends on the electronic stopping power (S_{e}), and Y_{sp} at S_{e} = 10 \text{ keV/nm} is taken to be a representative value, which is plotted as a function of the bandgap (E_{g}) in Figure 11 from [56], including the present TiN result. The optical absorbance (defined as log_{10}(I_{0}/I), I_{0} and I being the incident and transmitted photon intensities) of TiN films are measured, and the direct bandgap E_{g} is obtained to be 4.5 eV for a film thickness of 25–50 nm, which decreases to 2.8 eV for a film thickness of ~180 nm by using the relation: (absorbance \times photon energy)^{2} is proportional to photon energy—E_{g}. The thickness dependence of E_{g} is under investigation by considering the influence of the reflectivity, film growth conditions and experimental problems, such as stray light, etc. A large variation
has been reported for E_g 4.0 eV (film thickness of 260 nm on Si substrate) (Popovic et al.) [99], 3.4 eV (thickness of ~100 nm on glass substrate) (Solovan et al.) [100] and 2.8–3.2 eV (film thickness of 460 nm on glass substrate) (Kavitha et al.) [101]. In this study, E_g is taken to be 4 eV and this choice is tolerable in the following discussion. It has been reported that the bandgap is reduced by 0.06 eV under a 400 KeV Xe ion implantation at 10^{16}cm^{-2} [99]. High-energy ion impact effects on optical properties are under way. It can be observed that the bandgap scheme seems to work for $E_g > 3$ eV [56]. A large deviation (two orders of magnitude) from the upper limit (dashed line indicated in Figure 11) is observed for ZrO$_2$, MgO, MgAl$_2$O$_4$ and Al$_2$O$_3$. The existence of STX is known for limited materials, rare gas solids, SiO$_2$ and alkali halides [30,95,96]. The STX does not exist for MgO and probably does not exist for Al$_2$O$_3$ [102]. The deviation for MgO and Al$_2$O$_3$ could be explained by the non-existence of STX. The numbers of electron–hole pairs leading to STX are inversely proportional to E_g, which could be a reason for the dependence of the sputtering yields for $E_g < 3$ eV. In any case, the single parameter of the band gap is insufficient for the explanation of the bandgap dependence of the sputtering yields.

![Figure 11](image-url)

Figure 11. Sputtering yield at $S_e = 10 \text{keV/nm}$ vs. bandgap. Data from [56], TiN (present result) and LiF data from [62]. Dotted line is a guide for eyes ($E_g > 3$ eV).

Martin et al. [102] argued that STX exists for materials with small elastic constants. Following this suggestion, sputtering yields are plotted as a function of the elastic constant (C_{11}) in Figure 12. Here, C_{11} (GPa) is taken to be 87 (SiO$_2$), 348 (SrTiO$_3$), 497 (Al$_2$O$_3$), 294 (MgO), 270 (TiO$_2$), 210 (ZnO), 299 (MgAl$_2$O$_4$), 242 (Fe$_2$O$_3$), 35 (KBr) and 114 (LiF) [85], and, for other materials, 403 (CeO$_2$) [103], 224 (Y$_2$O$_3$) [104], 400 (ZrO$_2$) [105], 13 (WO$_3$) [106], 126 (Cu$_2$O) [107], 135 (CuO) [108], 388 (Si$_3$N$_4$) as an average of the values [109,110], 345 (polycrystalline-AlN) [111], which is smaller by 16% than 410 (AlN single crystal) [112], 234 (Cu$_3$N) [113], 500 (SiC) [114] and 625 (TiN) [115]. It can be observed for oxides (the most abundant data are available at present) that Y_{sp} decreases exponentially with an increase in the elastic constant for $C_{11} < 300$ GPa, except for MgO and ZrO$_2$. Y_{sp} for nitrides and SiC is larger than that for oxides at a given C_{11}, and these are to be separately treated. It can be understood that the elastic constant represent the resistance of lattice deformation by electronic energy deposition. However, a single parameter, either the bandgap or elastic constant, is not adequate, and at least one more parameter is necessary. Furthermore, parameters other than those mentioned above are to be explored. More data for nitrides, alkali halides and especially carbides are desired.
Finally, a mechanism for the electron–lattice coupling is discussed. In an ionized region along the ion path, Coulomb repulsion leads to atomic motion, which is not adequate to cause sputtering because of its short neutralization time. Nevertheless, displacement comparable with the lattice vibration amplitude (one tenth of the average atomic separation, d_{av} of ~ 0.25 nm for a-SiO$_2$) is highly achievable during the neutralization time. As a first step, the time required for the Si$^+$–O$^+$ displacement of 0.025 nm (one tenth of d_{av}) from d_{av} is estimated to be ~ 15 fs using a formula [116]. Also, the time is estimated to be ~ 15 fs and ~ 12 fs for the Zn$^+$–O$^+$ displacement of 0.02 nm from d_{av} of 0.2 nm in ZnO and for the Ti$^+$–N$^+$ displacement of 0.02 nm from d_{av} of 0.2 nm in TiN, respectively. A similar situation has been reported for the Fe$^+$–O$^+$ displacement of 0.01 nm in Fe$_3$O$_5$ (~ 7 fs) [60], the K$^+$–Br$^+$ displacement of 0.01 nm in KBr (~ 9 fs) and the Si$^+$–C$^+$ displacement of 0.01 nm in SiC (~ 6 fs). These suggest a possibility that a small displacement comparable with the lattice vibration amplitude caused by Coulomb repulsion during the short neutralization time leads to the generation of a highly excited state coupled with the lattice (h-ESCL), and h-ESCL is considered to be equivalent to STX or multi STX. The non-radiative decay of h-ESCL leads to atomic displacement (a larger displacement results in sputtering and smaller displacement results in phonon generation or lattice distortion).

5. Conclusions

We have measured the lattice disordering of polycrystalline SiO$_2$, ZnO, Fe$_2$O$_3$ and TiN films, as well as the sputtering yield of TiN, by high-energy ion impact. It is found that lattice disordering is caused by electronic excitation and the degradation of the XRD intensity fits to the power-law on the electronic stopping power. The exponent in the fit of the XRD degradation is comparable with that of the electronic sputtering yield for these films, as well as the published results of WO$_3$, KBr and SiC, implying that both lattice disordering and sputtering originate from similar mechanisms. In the case of Fe$_3$O$_5$, on the other hand, the exponent of the lattice disordering is larger by twice than that of the sputtering (the exponent for the sputtering is close to unity). The exciton mechanism seems to work for $E_g > 3$ eV, with some exceptions, and the elastic constant is examined as another scaling parameter for the electronic sputtering yields. A possibility of electron–lattice coupling is discussed based on a crude estimation that an atomic displacement comparable with the vibration amplitude due to Coulomb repulsion during the short neutralization time in the ionized region along the ion path can be attainable and, thus, the generation of a highly excited state coupled with the lattice is highly achievable, resulting in atomic displacement.
Author Contributions: Conceptualization and writing, N.M.; investigation, M.S., S.O. and B.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: One of the authors (N.M.) thanks for utilization of XRD equipments of RIGAKU ULTIMA IV and RAD IIc at Radioisotope Research Center, Nagoya University and of AN Van de Graaff accelerator, Nagoya University for Rutherford backscattering spectroscopy (RBS) measurement. High-energy ion irradiation has been performed using a TANDEM accelerator at Tokai Research Center, JAEA.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Young, D.A. Etching of Radiation Damage in Lithium Fluoride. *Nature* **1958**, *182*, 375–377. [CrossRef] [PubMed]
2. Silk, E.C.H.; Barnes, R.S. Examination of Fission Fragment Tracks with an Electron Microscope. *Phil. Mag.* **1959**, *4*, 970–972. [CrossRef]
3. Fleischer, R.L.; Price, P.B.; Walker, R.M. Ion Explosion Spike Mechanism for Formation of Charged-Particle Tracks in Solids. *J. Appl. Phys.* **1965**, *36*, 3645–3652. [CrossRef]
4. Fleischer, R.L. *Tracks to Innovation*; Springer: New York, NY, USA, 1998; pp. 1–193.
5. Meftah, A.; Brisard, F.; Costantini, J.M.; Dooryhee, E.; Hage-Ali, M.; Hervieu, M.; Stoquert, J.P.; Studer, F.; Toulemonde, M. Track formation in SiO2 quartz and the thermal-spike mechanism. *Phys. Rev. B* **1994**, *49*, 12457–12463. [CrossRef]
6. Toulemonde, M.; Bouffard, S.; Studer, F. Swift heavy ions in insulating and conducting oxides: Tracks and physical properties. *Nucl. Instr. Meth. B* **1994**, *91*, 108–123. [CrossRef]
7. Ramos, S.M.M.; Bonardi, N.; Canut, B.; Bouffard, S.; Della-Negra, S. Damage creation in α-Al2O3 by MeV fullerene impacts. *Nucl. Instr. Meth. B* **1998**, *143*, 319–332. [CrossRef]
8. Skuratov, V.A.; Zinkle, S.J.; Efimov, A.E.; Havancsak, K. Surface defects in Al2O3 and MgO irradiated with high-energy heavy ions. *Surf. Coat. Technol.* **2005**, *196*, 56–62. [CrossRef]
9. Khalifaoui, N.; Stoquert, J.P.; Haas, F.; Trautmann, C.; Meftah, A.; Toulemonde, M. Damage creation threshold of Al2O3 under swift heavy ion irradiation. *Nucl. Instr. Meth. B* **2012**, *286*, 247–253. [CrossRef]
10. O’Connell, J.H.; Rymzhanov, R.A.; Skuratov, V.A.; Volkov, A.E.; Kirilkin, N.S. Latent tracks and associated strain in Al2O3 irradiated with swift heavy ions. *Nucl. Instr. Meth. B* **2016**, *374*, 97–101. [CrossRef]
11. Kluth, P.; Pakarinen, O.H.; Djurabekova, F.; Giulian, R.; Ridgway, M.C.; Byrne, A.P. Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2. *J. Appl. Phys.* **2011**, *110*, 123520. [CrossRef]
12. Benyagoub, A.; Toulemonde, M. Ion tracks in amorphous silica. *J. Mater. Res.* **2015**, *30*, 1529–1543. [CrossRef]
13. Zinkle, S.J.; Skuratov, V.A.; Hoezter, D.T. On the conflicting roles of ionizing radiation in ceramics. *Nucl. Instr. Meth. B* **2002**, *191*, 758–766. [CrossRef]
14. Van Vuuren, A.J.; Ibraeva, A.D.; Skuratov, V.A.; Zdorovets, M.V. Analysis of the microstructural evolution of silicon nitride irradiated with swift Xe ions. *Ceram. Int.* **2020**, *46*, 7155–7160. [CrossRef]
15. Kitayama, T.; Morita, Y.; Nakajima, K.; Narumi, K.; Saitoh, Y.; Matsuda, M.; Sataka, M.; Tsujimoto, M.; Isoda, S.; Toulemonde, M.; et al. Formation of ion tracks in amorphous silicon nitride films with MeV C60 ions. *Nucl. Instr. Meth. B* **2015**, *356–357*, 22–27. [CrossRef]
16. Mota-Santiago, P.; Vazquez, H.; Bierschenk, T.; Kremer, F.; Nadzri, A.; Schaauries, D.; Djurabekova, F.; Nordlund, K.; Trautmann, C.; Mudie, S.; et al. Nanoscale density variations induced by high energy heavy ions in amorphous silicon nitride and silicon dioxide. *Nanotechnology* **2018**, *29*, 144004. [CrossRef]
17. Kucheyev, S.O.; Timmers, H.; Zou, J.; Williams, J.S.; Jagadish, C.; Li, G. Lattice damage produced in GaN by swift heavy ions. *J. Appl. Phys.* **2004**, *95*, 5360–5365. [CrossRef]
18. Mansouri, S.; Marie, P.; Dufour, C.; Noyet, G.; Monnet, I.; Leblan, H.; Benamara, Z.; Al-Douri, Y. Swift heavy ion effects in gallium nitride. *Int. J. Nanoelectron. Mater.* **2008**, *1*, 101–106.
19. Sall, M.; Monnet, I.; Moisy, F.; Grygiel, C.; Grygiel, C.; Jubolt-Leclerc, S.; Della-Negra, S.; Toulemonde, M.; Balanzat, E. Track formation in III-N semiconductors irradiated by swift heavy ions and fullerene and re-evaluation of the inelastic thermal spike model. *J. Mater. Sci.* **2015**, *50*, 5214–5227. [CrossRef]
20. Moisy, F.; Sall, M.; Grygiel, C.; Ribet, A.; Balanzat, E.; Monnet, I. Optical bandgap and stress variations induced by the formation of latent tracks in GaN under swift heavy ion irradiation. *Nucl. Instr. Meth. B* **2018**, *431*, 12–18. [CrossRef]
21. Kamarou, A.; Wesch, W.; Wendler, E.; Undisz, A.; Rettenmayr, M. Swift heavy ion irradiation of InP: Thermal spike modeling of track formation. *Phys. Rev. B* **2006**, *73*, 184107. [CrossRef]
22. Ochendowski, O.; Osmani, O.; Schade, M.; Bussmann, B.K.; Ban-d’Etat, B.; Lebuis, H.; Schleberger, M. Graphitic nanostripes in silicon carbide surfaces created by swift heavy ion irradiation. *Nat. Commun.* 2014, 5, 3913. [CrossRef] [PubMed]

23. Alencar, I.; Silva, M.R.; Leal, R.; Grande, P.L.; Papaleo, R.M. Impact Features Induced by Single Fast Ions of Different Charge-State on Muscovite Mica. *Atoms* 2021, 9, 17. [CrossRef]

24. Okubo, N.; Ishikawa, N.; Satica, M.; Mitsukawa, S. Surface amorphization in Al2O3 induced by swift heavy ion irradiation. *Nucl. Instr. Meth. B* 2013, 314, 208–210. [CrossRef]

25. Grygiel, C.; Moisy, F.; Sall, M.; Lebuis, H.; Balazant, E.; Madi, T.; Been, T.; Marie, D.; Monnet. I. In-situ kinetics of modifications induced by swift heavy ions in Al2O3: Colour center formation, structural modification and amorphization. *Acta Mater.* 2017, 140, 157–167. [CrossRef]

26. Dhar, S.; Boisse, W.; Lieb, K.-P. Ion-beam induced amorphization and dynamic epitaxial recrystallization in α-quartz. *J. Appl. Phys.* 1999, 85, 3120–3123. [CrossRef]

27. Rymzhanov, R.A.; Medvedev, N.; O’Connell, J.H.; van Vuuren, A.J.; Skuratov, V.A.; Evolokov, A.E. Recrystallization as the governing mechanism of ion track formation. *Sci. Rep.* 2019, 9, 3837. [CrossRef]

28. Williams, J.S. Damage Formation, Amorphization and Crystallization in Semiconductors at Elevated Temperature. Chapter 6. In *Ion Beam Modification of Solids*; Wesch, W., Wendler, E., Eds.; Springer: Berlin, Germany, 2016; pp. 243–285.

29. Gupta, S.; Gehrke, H.G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsass, H. Conducting ion tracks generated by charge-selected swift heavy ions. *Nucl. Instr. Meth. B* 1988, 199, 76–83. [CrossRef]

30. Itoh, N.; Duffy, D.M.; Khakshouri, S.; Stoneham, A.M. Making tracks: Electronic excitation roles in forming swift heavy ion tracks. *J. Phys. Condens. Matter* 2009, 21, 474205. [CrossRef]

31. Rogers, M.D. Mass Transport and Grain Growth induced by Fission Fragments in Thin Films of Uranium Dioxide. *J. Nucl. Mater.* 1965, 16, 298–305. [CrossRef]

32. Rogers, M.D. Ejection of Uranium Atoms from Sintered UO2. *J. Nucl. Mater.* 1967, 22, 103–105. [CrossRef]

33. Nilsson, G. Ejection of Uranium Atoms from Sintered UO2 by Fission Fragments in Different Gases and at Different Gas Pressures. *J. Nucl. Mater.* 1966, 20, 215–230. [CrossRef]

34. Meins, C.K.; Griffith, J.E.; Qiu, Y.; Mendenhall, M.H.; Seiberling, L.E.; Tombrello, T.A. Sputtering of UF4 by High Energy Heavy Ions. *Rad. Eff.* 1983, 71, 13–33. [CrossRef]

35. Bouffard, S.; Duraud, J.P.; Mosbah, M.; Schlutig, S. Angular distribution of the sputtered atoms from UO2 under high electronic stopping power irradiation. *Nucl. Instr. Meth. B* 1998, 141, 372–377. [CrossRef]

36. Schlutig, S. Contribution a l’etude de la Pulverisation et de l’endommagement du Dioxyde D’uranium par les Ions Lourds Rapides. Ph.D. Thesis, University of Caen, Caen, France, March 2001.

37. Brown, W.L.; Lanzerottti, L.J.; Poate, J.M.; Augustyniak, W.M. “Sputtering” of Ice by MeV Light Ions. *Phys. Rev. Lett.* 1978, 40, 1027–1030. [CrossRef]

38. Brown, W.L.; Augustyniak, W.M.; Brody, E.; Cooper, B.; Lanzerottti, L.J.; Ramirez, A.; Evatt, R.; Johnson, R.E. Energy Dependence of the Erosion of H2O Ice Films by H and He Ions. *Nucl. Instr. Meth.* 1980, 170, 321–325. [CrossRef]

39. Böttger, J.; Davies, J.A.; L’Ecuyer, J.; Matsunami, N.; Ollerhead, R. Erosion of Frozen-Gas Films by MeV Ions. *Rad. Eff.* 1980, 49, 119–124. [CrossRef]

40. Baragiora, R.A.; Vidal, R.A.; Svendsen, W.; Schou, J.; Shi, M.; Bahr, D.A.; Atteberry, C.L. Sputtering of water ice. *Nucl. Instr. Meth. B* 2003, 209, 294–303. [CrossRef]

41. Dartois, E.; Auge, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J.J.; Kamalou, O.; Lv, X.Y.; Rothard, H.; et al. Heavy ion irradiation of crystalline ice: Cosmic ray amorphisation cross-section and sputtering yield. *Astron. Astrophys.* 2015, 576, A125. [CrossRef]

42. Galli, A.; Vorburger, A.; Wurz, P.; Tulej, M. Sputtering of water ice films: A re-assessment with singly and doubly charged oxygen and argon ions, molecular oxygen, and electrons. *Icarus* 2017, 291, 36–45. [CrossRef]

43. Brown, W.L.; Lanzerottti, L.J.; Marcantonio, K.J.; Johnson, R.E.; Reimann, C.T. Sputtering of Ices by High Energy Particle Impact. *Nucl. Instr. Meth. B* 1986, 14, 392–402. [CrossRef]

44. Mejia, C.; Bender, M.; Severin, D.; Trautmann, C.; Boduch, P.H.; Bordalo, V.; Domaracka, A.; Lv, X.Y.; Martinez, R.; Rothard, H. Radiolysis and sputtering of carbon dioxide ice induced by swift Ti, Ni and Xe ions. *Nucl. Instr. Meth. B* 2015, 365, 477–481. [CrossRef]

45. Qiu, Y.; Griffith, J.E.; Meng, W.J.; Tombrello, T.A. Sputtering of Silicon and its Compounds in the Electronic Stopping Region. *Rad. Eff.* 1983, 70, 231–236. [CrossRef]

46. Sugden, S.; Sofield, C.J.; Murrell, M.P. Sputtering by MeV ions. *Nucl. Instr. Meth. B* 1992, 67, 569–573. [CrossRef]

47. Matsunami, N.; Sataka, M.; Iwase, A. Electronic sputtering of oxides by high energy ion impact. *Nucl. Instr. Meth. B* 2002, 193, 830–834. [CrossRef]

48. Matsunami, N.; Fukuoka, O.; Shimura, T.; Sataka, M.; Okayasu, S. A multi-exciton model for the electronic sputtering of oxides. *Nucl. Instr. Meth. B* 2005, 230, 507–511. [CrossRef]

49. Arnoldbik, W.M.; Tomozeiu, N.; Habraken, F.H.P. Electronic sputtering of thin SiO2 films by MeV heavy ions. *Nucl. Instr. Meth. B* 2003, 203, 151–157. [CrossRef]

50. Toulemonde, M.; Assmann, W.; Trautmann, C.; Gruner, F. Jetlike Component in Sputtering of LiF Induced by Swift Heavy Ions. *Phys. Rev. Lett.* 2002, 88, 057602. [CrossRef]
110. Vogelgesang, R.; Grimsditch, M.; Wallace, J.S. The elastic constants of single crystal \(\beta\)-Si\(_3\)N\(_4\). *Appl. Phys. Lett.* 2000, *76*, 982–984. [CrossRef]

111. Carlotti, G.; Gubbiotti, G.; Hickernell, F.S.; Liaw, H.M.; Socino, G. Comparative study of the elastic properties of polycrystalline aluminum nitride films on silicon by Brillouin light scattering. *Thin Solid Films* 1997, *310*, 34–38. [CrossRef]

112. McNeil, L.; Grimsditch, M.; French, R.H. Vibrational Spectroscopy of Aluminum Nitride. *J. Am. Ceram. Soc.* 1993, *76*, 1132–1136. [CrossRef]

113. Hou, Z.F. Effects of Cu, N and Li interaction on the structural stability and electronic structure of cubic Cu\(_3\)N. *Solid State Sci.* 2008, *10*, 1651–1657. [CrossRef]

114. Kamitani, K.; Grimsditch, M.; Nipko, J.C.; Loong, C.K.; Okada, M.; Kimura, I. The elastic constants of silicon carbide: A Brillouin-scattering study of 4H and 6H SiC single crystals. *J. Appl. Phys.* 1997, *82*, 3152–3154. [CrossRef]

115. Kim, J.O.; Achenbach, J.D.; Mirkarimi, P.B.; Shinn, M.; Barnett, S.A. Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy. *J. Appl. Phys.* 1992, *72*, 1805–1811. [CrossRef]

116. Gemmell, D.S. Determining the Stereochemical Structures of Molecular Ions by “Coulomb-Explosion” Techniques with Fast (MeV) Molecular Ion Beams. *Chem. Rev.* 1980, *80*, 301–311. [CrossRef]