Genetic control and geo-climate adaptation of pod dehiscence provide novel insights into the soybean domestication and expansion

Jiaoping Zhang* and Asheesh K. Singh*
Department of Agronomy, Iowa State University, Ames, IA 50011, USA
* Correspondence: singhak@iastate.edu, jiaoping@iastate.edu

ABSTRACT
Loss of pod dehiscence is a key step during soybean [Glycine max (L.) Merr.] domestication. Genome-wide association analysis for soybean shattering identified loci harboring Pdh1, NST1A and SHAT1-5. Pairwise epistatic interactions were observed, and the dehiscent Pdh1 overcomes the resistance conferred by NST1A or SHAT1-5 locus, indicating that Pdh1 predominates pod dehiscence expression. Further candidate gene association analysis identified a nonsense mutation in NST1A associated with pod dehiscence. Allele composition and population differential analyses unraveled that Pdh1 and NST1A, but not SHAT1-5, underwent domestication and modern breeding selections. Geographic analysis showed that in Northeast China (NEC), indehiscence at both Pdh1 and NST1A were required by cultivated soybean; while indehiscent Pdh1 alone is capable of coping shattering in Huang-Huai-Hai (HHH) valleys where it originated; and no specific indehiscence was required in Southern China (SC). Geo-climatic investigation revealed strong correlation between relative humidity and frequency of indehiscent Pdh1 across China. This study demonstrates that the epistatic interaction between Pdh1 and NST1A fulfills a pivotal role in determining the level of resistance against pod dehiscence. Humidity shapes the distribution of indehiscent alleles. Our results also suggest that HHH valleys, not NEC, was at least one of the origin centers of cultivated soybean.

Key words: soybean, domestication, pod dehiscence, seed shattering, candidate gene association analysis, geo-climate adaptation.

INTRODUCTION
Modern crop species have undergone domestication that makes them distinct from their wild ancestors. During domestication, the fitness of a plant for human exploitation increases through artificial selection for a suite of traits including seed shattering (or pod dehiscence), seed size, branching and stature (Meyer et al. 2012, Meyer Purugganan 2013). Seed shattering is pivotal for the propagation of wild plant species. However, it is unfavorable for crop production, because it causes yield loss prior to harvesting. The elimination of seed shattering is vital for seed retention and is a key step during crop domestication.

The genetic mechanism underlying seed shattering varies across species. In monocot crops, such as cereals, the abscission layer between the hull and pedicle is necessary for seed shattering. Genes SH4 (allelic to SHA1) (Li et al. 2006, Lin et al. 2007), qSH1 (Konishi et al. 2006), Sh1 (Lin et al. 2012), SHAT1 and SH5 (Zhou et al. 2012, Yoon et al. 2014) that regulate the development of the abscission layer are responsible for seed shattering in rice (Oryza sativa L.). Sh1 was also revealed under parallel domestication in sorghum (Sorghum bicolor (L.) Moench), rice
soybean. However, in dicot crops, such as soybean [Glycine max (L.) Merr.], the abscission layer remain unchanged between the wild ancestors (G. soja) and domesticated soybeans (Dong et al. 2014), indicating new strategies of pod indehiscence in soybean that is different from cereals. Recent studies identified two genes controlling soybean pod dehiscence via distinct mechanisms. The Pdh1 encodes a dirigent family protein, which is highly expressed in the lignin-rich inner sclerenchyma of pod walls. The functional Pdh1 coils pod walls of mature plants under low humidity conditions and serves as a driving force for pod dehiscence (Funatsuki et al. 2014). SHAT1-5, an NAC gene, conditions the deposition of the secondary walls of the lignified fiber cap cells (FC) in the pod ventral suture and determines the binding strength of the pods (Dong et al. 2014). Furthermore, genetic mapping studies identified additional quantitative trait loci (QTL) associated with pod dehiscence (SoyBase, https://soybase.org/), implied a complex genetic regulatory network of pod dehiscence in soybean.

Understanding the geo-climatic adaptation of crop species is a pressing need in order to develop resilient cultivars and ensure food security under changing climates. A recent study illustrated that environment accounts for a substantial portion of genetic variation (Lasky et al. 2015). Both wild and cultivated soybeans exhibited ecological differentiation related to geographic conditions (Ding et al. 2008). Based on the topographic distribution and the soybean growth habit, the soybean-growing areas in China can be divided into three zones: the Northeast China (NEC), the Huang-Huai-Hai (HHH) valleys and the Southern China (SC) (Ding et al. 2008). The investigation of the geographic adaptation of the pod dehiscence will provide insights into the domestication and improvement of soybean. Previous study indicated that humidity is a crucial factor in pod dehiscence in soybean (Tsuchiya 1987). However, the impact of climate conditions on the genetic architecture of this important soybean domestication trait remains unclear.

Here, we report a novel locus, NST1A, and the known Pdh1 and SHAT1-5 loci associated with soybean pod dehiscence through genome-wide association study (GWAS). The causal genetic variants were further verified through candidate gene association analysis. We revealed the epistatic interaction between these loci, and demonstrated its importance to soybean domestication, especially Pdh1 and NST1A. This study uncovered the role of humidity on shaping the distribution of the pod indehiscent alleles across regions in China as part of genome-environment adaptation during soybean domestication. It also provides insights into the origin centers and expansion of cultivated soybean.

MATERIALS AND METHODS

Plant materials and phenotyping

The pod shattering dataset of the study SOYBEAN.EVALUATION.MS923 was retrieved from Germplasm Resources Information Network (GRIN, http://www.ars-grin.gov/), which consists of 782 soybean plant introductions (G. max) of the USDA soybean germplasm collection belonging to maturity group VI. These accessions were planted at Stoneville, Mississippi, in 1992 and 1993 with one replication each year, and the average values were used for analysis. The details of experimental design and trait phenotyping are described in a previous study (Hill et al. 2001). Briefly, plots were 4-rows wide, with rows 3.6 m long and 91 cm row spacing. The border rows were evaluated for pod dehiscence two weeks after the center two rows were harvested using a scale of 1 - 5 based on the percentage of open pods: 1 = 0%; 2 = 1 - 10%; 3 = 10 - 25%; 4 = 25 - 50% and 5 = over 50% shattering.
Genotyping and association analysis

The single nucleotide polymorphism (SNP) dataset for the association panel, prepared by using the SoySNP50K Illumina Infinium BeadChip (Song et al. 2013), was retrieved from SoyBase (https://soybase.org/). The quality control and imputation of missing data were as described in a previous study (Zhang et al. 2015). Finally, 30,530 SNPs with minor allele frequencies > 5% remained for further study. The association analysis with mixed linear model and general liner model were conducted by using the Genome Association and Prediction Integrated Tool (GAPIT) software implemented in R as previously described (Zhang et al. 2010, Lipka et al. 2012). No correction of population structure was suggested according to the Bayesian Information Criterion test output by GAPIT. Additionally association analysis with the first three principal components accounting for population structure also gave similar results. The significant threshold was corrected for multiple testing by using the Bonferroni correction (α = 0.05).

Allele distribution and humidity

A total of 758 G.soja from China, Koreas and Japan, 13,371 G.max Asian landraces and 834 North American cultivars (after removing the isolines) deposited in GRIN were involved in the allele distribution analysis. The SNP data of these soybean panels was retrieved from SoyBase (https://soybase.org/). The origin information of the accessions was available on GRIN. The map was created using the R ‘maps’ package (Team 2012, Becker et al. 2013). Data for the relative humidity at 10 m above the surface of the earth and air temperature were obtained from NASA surface meteorology and solar energy (release 6.0) (https://eosweb.larc.nasa.gov/cgi-bin/sse/global.cgi?email=skip@larc.nasa.gov). The dataset contains monthly and annual average relative humidity and air temperature from July 1983 to June 2005 on one-by-one latitude/longitude degree resolution. Only the average humidity and temperature values across the soybean harvest season including September, October, and November during these 22 years were used for analysis.

Population differential analysis

A total 153 G.soja originated from China and the same number of Chinese landraces (G.max) randomly selected from NEC, HHH valleys or SC were used to calculate the population differential (\(F_{st} \)) of the specific chromosomal regions with the R ‘snpStats’ package (Clayton 2012). A diverse G.max panel that consists of equal number of accessions (n=51) randomly selected from NEC, HHH valleys and SC was also used for population differential analysis.

Alignment and phylogenetic analysis of Pdh1, NST1A and SHAT1-5 proteins

Because NST1A and SHAT1-5 are paralogs and highly similar (Dong et al. 2013), only amino acid sequence of NSAT1A and Pdh1 of soybean was searched from homologs using BLASTP against the entire GenBank on the National Center of Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov/). The top hits were selected and the alignment analysis was conducted on NCBI. The phylogenetic analysis of the aligned proteins was carried out using the R ‘ape’ package (Paradis et al. 2004).

Candidate gene association study

A subset of 400 accessions was randomly selected from the original association panel for candidate gene association analysis. Twenty-one SNPs located at the promoter and the coding regions of the candidate gene Glyma07g05660, and another 10 SNPs and one InDel including the known causal genetic
variants of *Pdh1* and *SHAT1-5* were selected based on the SNP dataset on Phytozome (https://phytozome.jgi.doe.gov) (Zhou *et al.* 2015). The genomic DNA preparation and SNP genotyping were conducted by the LGC Genomics at Beverly, MA. The primers for the InDel and the polymerase chain reaction (PCR) conditions were listed in Table S1. The sequencing validation of the InDel polymorphism was conducted as described previously (Xu *et al.* 2015). The PCR products and sequencing results are shown in Fig. S1. The association analysis was implemented in GAPIT as described above with a significance threshold $P < 10^{-3}$.

Fig 1. Manhattan plots and candidate genes of the loci associated with pod dehiscence in soybean. (A) Negative \log_{10}-transformed P values from a genome-wide scan using mixed linear model are plotted against positions on each of 20 chromosomes. The grey line indicates the significance threshold ($P = 1.64 \times 10^{-6}$). The lead SNP of each locus is given. (B) and (C) Candidate genes of the loci associated with pod dehiscence. The top panel shows regional Manhattan plot for the indicated region. The color of each SNP indicates its linkage disequilibrium r^2 value with the peak SNP as shown in the color intensity index on the top-right. The bottom panel shows all putative genes in the indicated region as indicated by the shadow.
RESULTS

GWAS identified loci associated with pod dehiscence

Genome-wide scan with the mixed linear model (MLM) identified two QTL, the SNP ss715598106 on Gm07 (also known as Gm07_4241705_G_T) and ss715624201 on Gm16 (also known as Gm16_29666971_T_C), strongly associated with pod dehiscence (Fig. 1A). The locus tagged by ss715598106 on Gm07 has not been reported previously. A closer review of the region identified the candidate gene NST1A (Glyma07g05660), that is 49 kb downstream of ss715598106 and encodes a No Apical Meristem (NAM) protein (Fig. 1B). NST1A is a parologue of SHAT1-5 (also known as NST1B). They shares 92.8% amino acid similarity and similar expression profiles (Dong et al. 2013). On Gm16, ss715624201 is in a hotspot associated with soybean pod dehiscence (Bailey et al. 1997, Funatsuki et al. 2006, Kang et al. 2009), and is 65 kb upstream of the shattering gene Pdh1 that was characterized in a recent study (Fig. 1C) (Funatsuki et al. 2014). SHAT1-5 locus was not detected using MLM, even with specifying ss715598106 and/or ss715624201 as covariate. However, using general linear model (GLM) without correction of kinship, ss715623567 (P = 3.8 x 10^{-11}) located at 581 bp upstream of SHAT1-5 and ss715624201 were significant, but ss715598106 was not significant.

Epistatic interaction determines the level of resistance to pod dehiscence

Pairwise interactions among three loci were detected, but three-way interactions were non-significant (Table S2). The strong epistatic interaction between ss715624201 and ss715598106 (P = 1.3 x 10^{-5}) was noted, and at least partially explains why ss715598106 was not detected in the GLM. Under the condition of dehiscence genotype (‘CC’) at ss715624201, the change of genotype at ss715598106 or ss715623567 has very limited impact on trait performance (Fig. 2) suggesting that ss715624201 locus (harboring Pdh1) dominates pod dehiscence and is able to overcome the indehiscence conferred by ss715598106 (harboring NST1A) and ss715623567 (carrying SHAT1-5). This is consistent with the role of the related genes in pod dehiscence. In soybean, Pdh1 is associated with the coiling of the drying pod wall and servers as the driving force for dehiscence under low humidity condition (Funatsuki et al. 2014). NST1A and SHAT1-5 are paralogs (Dong et al. 2013), and SHAT1-5 has been shown to thicken the FCC secondary walls that is associated with binding strength between pod walls (Dong et al. 2014). At the indehiscent (‘TT’) background of ss715624201, switching genotypes of ss715598106 from ‘TT’ to ‘GG’ or ss715623567 from ‘CC’ to ‘TT’, strengthens the dehiscent resistance indicating that ‘G’ and ‘T’ are the indehiscent alleles, respectively. The results also illustrated that the resistance conferred by ss715624201 and ss715598106 is comparable to that from all three loci.
combined (Fig. 2). However, it is difficult to distinguish the effect of ss715598106 and ss715623567 due to lack of enough (only three) individual with ‘TT’ at ss715623567 under the resistant background at ss715624201 (Fig. 2).

The origin and transition of pod-indehiscent alleles during soybean domestication

Further investigation showed that the indehiscent alleles are minor at all three loci in wild soybean (Fig. 3), particularly ss715624201 and ss715623567, indicating natural selection against pod indehiscence. The rare (frequency < 5%) indehiscent allele of ss715624201 implied that it was under high natural selection pressure because of the large effect. The indehiscent allele frequencies of all three loci were substantially increased (landraces versus G.soja) during domestication. Although loss of pod dehiscence is important for soybean domestication, the indehiscent allele of the major-effect ss715624201 remained minor within Asian landraces indicating that necessity of pod indehiscence for soybean domestication varies across different origin or environmental conditions. In North America cultivars, the indehiscent alleles at ss715624201 and ss715598106 continuously increased until being almost fixed, but that of ss715623567 decreased and remained minor, suggesting ss715623567 was not under modern breeding selection in the United States (US). Besides domestication, North American cultivars also underwent introduction bottleneck (Hyten et al. 2006). A survey of the 17 Asian landraces that account for 86% of the parentage of modern US cultivars indicated that the decrease of indehiscent ss715623567 in cultivars might be attributed to the founder population effect (Table S3).

Geographic origin analysis of the G.soja accessions revealed that only six of the 758 wild accessions that originated from China, Koreas and Japan carried the ancient indehiscent allele of ss715624201. All of them were from China and were collected from HHH valleys (Fig. 4A and Table S4), which is considered one of the centers of origin of cultivated soybean (Zhou et al. 1998). An
Figure 4. Geographic distribution of the pod dehiscence alleles at ss715624201, ss715598106 and ss715623567 in wild soybean and Asian landraces. Shown are allele distributions of relevant loci within 758 wild soybean accessions (G.soja) across China, Koreas and Japan (A-C) and the Asian landraces (G.max) (D-F) based on their origin. A total of 12,441 soybean landraces that with known origin and each origin has ≥ 20 accessions are plotted. Among them, 721 accessions from Northeast China without knowing the specific origin province are also plotted. The radius of the pie indicates one half of the log_{10}-transformed number of germplasm accessions of each origin. Bottom dashed line is used to delineate Northern China (NC) with Southern China (SC), while Huang-Huai-Hai (HHH) valleys is the region between bottom and top dashed lines.

investigation of a previous resequencing study identified 12 wild soybeans originated from SC (Zhejiang Province) that were not in the USDA germplasm collection (Zhou et al. 2015). None of them carried the indehiscent allele of ss715624201. Interestingly, the allele distribution of ss715624201 in landraces showed a clear pattern where the indehiscent allele frequency increased from SC to Northern China (NC), and from the coastland (including Japan, Korea and Indonesia) to inland regions (Fig. 4D). In the wild progenitors, ss715598106 and ss715623567 showed similar distribution. The indehiscent alleles of both loci were mainly located in Koreas and Japan, and few in NEC (Fig. 4B and C). In the landraces, notably, the indehiscent allele of ss715598106 was predominant among the accessions from SC and NEC, but not HHH valleys (Fig. 4E). However, no special pattern was found for ss715623567 (Fig. 4F). Above results suggest that the pod indehiscence conferred by ss715624201 alone may not be strong enough to prevent shattering in NEC; and ss715598106, instead of ss715623567, was selected to enhance the resistance to pod dehiscence during soybean domestication. At HHH valleys, indehiscent ss715624201 alone was capable of coping with shattering. At SC, resistance to dehiscence might not be required for cultivated soybean given that indehiscent
SS715624201 was minor in SC but it was required for resistance of other two loci as illustrated by the epistatic effects.

We further estimated the Fst between soybean landraces and the wild relatives from different regions in China at the candidate chromosomal region of the three loci. Consistent with the allele distribution, the landraces in NEC gave the largest differential from the wild progenitors at regions of both SS715624201 and SS715598106 loci, followed by the HHH panel of landraces at SS715624201 and combined panel at SS715598106 (Fig. 5A-B). No selection trace was observed at SS715623567 across different panels (Fig. 5C). Combined panel of landraces from multiple regions in China was widely used in a genome-wide scan for domestication related sweeps in soybean (Zhou et al. 2015, Han et al. 2016, Wang et al. 2016). Although a similar region on Gm16 was detected, Pdh1 locus was not detected in a recent study (Zhou et al. 2015). These results suggested that using domestication center specific population of landraces (for example, NEC, SC, HHH), instead of combined population with pooled multiple origins, might improve the power to detect the domestication related chromosomal regions and generate insights on domestication.

![Graphs of population differential (Fst) at the chromosomal regions associated with pod dehiscence.](image)

Figure 5. Population differential (Fst) at the chromosomal regions associated with pod dehiscence. (A), (B) and (C) Fst values of the SNPs within the indicated chromosomal regions tagged by SS715624201, SS715598106 and SS715623567 respectively, between soybean landraces (*Glycine max*) and wild relatives (*G.soja*). A total of 153 Chinese wild soybean and 153 randomly selected soybean landraces originated from Northeast China (NEC), the Huang-Huai-Hai valleys (HHH), Southern China (SC) or combined panel are used for analysis. The combined panel consists equal number of accessions randomly selected from NEC, HHH valleys and SC. The vertical lines indicate the location of the candidate genes.
Figure 6. Geo-climate distribution of the pod dehiscent alleles, and the correlations between the relative humidity and the allele frequency of indehiscent ss715624201. (A) Geo-climate distribution of ss715624201 in Chinese landraces. Shown are 4,228 landraces from 26 provinces in China that each has ≥ 20 accessions. The radius of pie indicates the regional population size as described above. The heatmap indicates the average relative humidity across the soybean harvest season (September, October, and November) of the related regions in a resolution of one latitude/longitude degree from July 1983 to June 2005 (NASA, https://eosweb.larc.nasa.gov/). (B) The correlation between the relative humidity and the distribution of the indehiscent ss715624201 among the landrace showing in (A). (C) Geo-climate distribution of ss715624201 and ss715598106 in US cultivars. A total 645 from 14 States with each having ≥ 10 cultivars are plotted. (D) The correlation between relative humidity and air temperature across China. The calculation is based on the average temperature and humidity values during the same time period as in (A).
Relative humidity shapes the geographic distribution of the pod-dehiscence alleles

The strong geographic pattern of the allele distribution at ss715624201 encouraged us to further explore the underlying driven force. Previous studies suggested that humidity is the major environmental factor affecting pod dehiscence in soybean (Tsuchiya 1987, Funatsuki et al. 2014). Therefore, we mapped the relative humidity on top of the allele distribution of the landraces across China (Fig. 6A). The results showed that the relative humidity increases from NEC, HHH valleys to SC region. This matches the change of the level of resistance to pod dehiscence very well. The NEC has low humidity and requires the highest level of pod-indehiscence at both ss715624201 but ss715598106; the HHH valleys has moderate humidity and only requires the pod indehiscence conferred by major-effect ss715624201; while the broad SC area has high humidity and requires no indehiscence at ss715624201 (Fig. 4 and 6). High correlation was discovered between the level of the humidity and the allele frequency for ss715624201 \((r = -0.75, P < 10^{-5})\), Fig. 6B) but not for ss715598106 or their combination (data not shown), which supports the function of Pdh1, candidate gene for ss715624201, that conditions coercing force of drying pod walls. Surface humidity and temperature are highly correlated. According to a reconstruction study of regional and global temperature for the Holocene (Marcott et al. 2013), the past decades global temperatures were comparable to that of 6,000-9,000 years ago when soybean was believed to be domesticated (Carter et al. 2004). Therefore, above results demonstrate the importance of RH in shaping the geographic pattern of ss715624201 allele distribution and the different levels of resistance to pod dehiscence across China during soybean domestication.

A survey of the soybean cultivars developed in the US showed that the indehiscent allele was predominant at both ss715624201 and ss715598106, which obviously was not driven by humidity conditions alone (Fig. 6C). Other driving factors include modern breeding selection against shattering to reduce yield losses and the low genetic diversity of the US soybean that experienced multiple genetic bottlenecks (Gizlice et al. 1994, Hyten et al. 2006). If the latter is the case, the local moderate humidity level gives US soybean breeding programs great potential to enhance the genetic diversity by utilizing germplasm resources with less pod indehiscence. This potential increases under the context of global warming, because the dehiscent allele averagely decreases 14.3% for every 2°C increase during maturing season (Fig. 6B and D).

Candidate gene association analysis identified premature stop mutations associated with pod indehiscence

Promising candidate genes inspire further investigation of the casual genetic variants. Non-synonymous SNPs associated with pod dehiscence were identified in Pdh1 and NST1A through candidate gene association analyses using MLM (Fig. 7A-B). Both resulted in truncated transcriptions. The ss.101224845 introduced a stop codon close to the N-terminus of Pdh1 accounting for pod indehiscence as reported in a recent study (Funatsuki et al. 2014). Additionally, ss.101224850, located at the promoter of Pdh1 and in complete linkage disequilibrium (LD, \(r^2 = 1\)) with ss.101224845, was also identified. The ss.98955957 introduced a premature stop codon close to the C-terminus of NST1A and led to a missing of 47 amino acids that related to dehiscence resistance. As expected, ss.101224845 and ss.98955957 were in high LD with ss715624201 \((r^2 = 0.83)\) and ss715598106 \((r^2 = 0.85)\) respectively. However, the previously reported causal genetic variant of pod dehiscence at the promoter of SAHT1-5 (designated as pShat1-5) was only detected using GLM \((P = 7.2 \times\)
10^{-6}) (Fig. 7C). Similar to other two loci, pShat1-5 was in high LD with ss715623567 ($r^2 = 0.82$), which is only 3.4 kb apart. The known-indehiscent allele of pShat1-5 and the allele ‘T’ at ss715623567 formed the major haplotype, suggesting that ‘T’ is associated with pod indehiscence.

Phylogenetic analysis and homologs of shattering genes in peas

The phylogenetic analysis of the top hits from the BLAST search for Pdh1 and NST1A against the non-redundant protein sequences of the entire GenBank at NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) showed that homologs of the shattering genes are widely existed in pea family (Fabaceae) species (Fig. 8). The soybean shattering genes are well grouped with legume crops such as pigeonpea (*Cajanus cajan*), kidney bean (*Phaseolus vulgaris*), mung bean (*Vigna radiate var. radiata*), and adzuki bean (*V. angularis*). Additionally, an NST1 ortholog and a Pdh1 parologue were discovered in oilseed rape (*Brassica napus*) and soybean, respectively.

DISCUSSION

The present study identified multi-level of resistance to pod dehiscence in soybean that was driven by humidity, and was determined by the interactions among QTL harboring *Pdh1*, *NST1A* and *SHAT1-5*, especially between *Pdh1* and *NST1A* loci. Similar phenomenon has been observed in rice. During the rice domestication, *SH4* and *qSH1* fulfilled key roles in the loss of seed shattering. The K79N mutation in *SH4*, which determines shattering resistance, was prevalent in cultivated rice subspecies *japonica* and *indica* (Lin et al. 2007), whereas non-shattering *qSH1* was only found in temperate *japonica* but not tropical *japonica* (subgroup of *japonica*) or *indica* (Konishi et al. 2006). Although the mechanism of

Figure 7. Candidate gene association analysis for ss715624201, ss715598106 and ss715623567 associated with pod dehiscence in soybean. (A), (B) and (C) Regional Manhattan plots of association analysis for Pdh1, NST1A and SHAT1-5, respectively. The x-axis indicates the physical position on the chromosome. Both positions referring to the start of the chromosome and to the transcription start-site are shown. Each triangle represents one SNP. The red dashed lines indicate the significance threshold of $P = 10^{-3}$. The black boxes represent the exons of the gene. The names of the lead SNPs are also given, and their details can be found at Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Gmax). MAF = minor allele frequency.
Figure 8. Neighbor-joining phylogenetic trees of Pdh1, NST1A and SHAT1-5 homologs in legume crops. (A) Phylogenetic tree of Pdh1 orthologs. (B) Phylogenetic tree of NST1A and SHAT1-5 orthologs. The homologs of Arabidopsis and oilseed rape (Brassica napus) are also involved. Bootstrap (with 1000 replicates) values with support > 50% are shown. The genes with star are the shattering genes identified in soybean.

Nonshattering is different between soybean and rice (Dong et al. 2014), the underlying driving force of the distribution of the nonshattering alleles might be similar, because the temperate japonica mainly grow in cooler zones of the subtropics, temperate zones or in high latitude regions including NEC, Koreas and Japan with lower humidity comparing to the tropical regions (Sweeney et al. 2007).

Our study provides novel insights into the origin of cultivated soybean from a view of domestication condition. It is generally accepted that soybean originated in China (Fukuda 1933, Hymowitz Newell 1981). However, the center of origin of cultivated soybean in China is controversial. To date, there are four major hypotheses of the origin center: NEC, HHH valleys, SC, and Multiple origin centers (reviewed by Zhao Gai 2004). The present study suggested that the domestication of soybean in NEC requires, at least, indehiscence at both Pdh1 and NST1A. However, the local wild progenitors had no indehiscent Pdh1. This falsifies the hypothesis of NEC origin center. In contrast, our results indicated that HHH valleys was one of the domestication centers, and the cultivated soybean in NEC was disseminated from HHH valleys where indehiscent Pdh1 originated. Recent studies on genetic diversity among domesticated and wild soybeans also supported the origin center of HHH valleys (Li et al. 2008, Li et al. 2010, Han et al. 2016, Wang et al. 2016). Additionally, our study showed that distinct from northern regions, the cultivated soybean in SC requires less or no demand for indehiscent Pdh1 lending further evidence that SC might be another origin center of the cultivated soybeans (Gai et al. 1999, Guo et al. 2010).

This study also shed light on the expansion of soybean from China to other regions in Asian. Soybean was first disseminated to peninsular Korea from NEC, and was then introduced into Japan by the sixth century through two paths: i) from NEC through Korea; ii) directly from SC (Singh Hymowitz 1999, Zhao Gai 2004). However, the contribution of each path is unclear. Our results showed that the allele constitution of

- **A**:
 - XP 019420874.1 [Lupinus angustifolius]
 - AFK40037.1 [Lotus japonicus]
 - AAA33666.1 [Pisum sativum]
 - XP 004503651.1 [Cicer arietinum]
 - Medtr0909135 [Medicago truncatula]
 - Glyma.08G020000
 - XP 017441955.1 [Vigna angularis]
 - Phavu 0020294900g [Phaseolus vulgaris]
 - XP 020224740.1 [Caenpsis cajan]
 - GmPdh1
 - XP 014508512.1 [Vigna radiata var. radiata]
 - Phavu 0030252100g [Phaseolus vulgaris]

- **B**:
 - XP 004514930.1 [Cicer arietinum]
 - XP 019494711.1 [Arachis duranensis]
 - XP 016185077.1 [Arachis ipaensis]
 - XP 019460444.1 [Lupinus angustifolius]
 - XP 019420527.1 [Lupinus angustifolius]
 - GmNST1 (SHAT1-5)
 - GmNST1
 - Phavu 0100018700 [Phaseolus vulgaris]
 - XP 017441754.1 [Vigna angularis]
 - XP 014524901.1 [Vigna radiata var. radiata]
 - XP 020227650.1 [Cajanus cajan]
 - AtNST2
 - AtNST1
 - Phvul001G01110 [Brassica napus]
 - AtNST1

12
Phd1 among the cultivated soybean in both Korea Peninsula and Japan are substantially different from that in NEC, but similar to that in SC and the coast region in HHH valleys. These observations imply that the cultivated soybean in Korea and Japan are the primarily from SC and/or HHH valleys; and the NEC accounts for very limit contribution, although it geographically connects or is proximal to the above regions. However, this result does not necessary exclude the possibility of the development of cultivated soybean from the local wild progenitors.

The wild soybeans investigated in this study were mainly from Japan, peninsular Korea and NC, but not SC (Fig. 4A). Considering the relative high humidity in SC, the natural selection pressure against the indehiscent Phd1 in wild soybean at SC could be even larger than that in HHH valleys. This prompts our speculation that the major-effect indehiscent Phd1 among SC soybean landraces was more likely from the expansion of soybeans in HHH valleys rather than originated from the local wild progenitors. However, the natural selection pressure against indehiscent NST1A might be very limited in SC. Japan has humidity condition similar to SC, and the indehiscent NST1A was predominant among the local wild soybeans (Fig. 6A and Fig. 4B). Therefore, the prevalent indehiscent NST1A in SC landraces could be domesticated from the local wild progenitors. A survey of a representative collection of the SC wild progenitors will help uncover the allele constitution of the two pod dehiscence related loci.

Legumes such as soybean and common beans (Phaseolus vulgaris) are crops of economic and societal importance, and are the major source of protein, oil and essential nutrients (Schmutz et al. 2010, Schmutz et al. 2014). A recent study identified that the domain and the function of the NST1s were highly conversed between soybean and the model species Arabidopsis (Dong et al. 2013, Dong et al. 2014). Our results showed that a group of legume NST1A and Phd1 homologs are closely related to each other, indicating that legume crops might also undergone parallel domestication of pod dehiscence as identified recently in cereal species (Lin et al. 2012), and the soybean homologs could be used to fasten the domestication of wild legume species that have potential to be economic crops. Current information and studies on legume species are very limited. Further genetic study and genome sequencing of legume crops will help unravel above inference.

The mutation at the promoter region of SHAT1-5 (designated as pSHAT1-5 in the present study) was characterized responsible for pod indehiscence in a recent study (Dong et al. 2014). The authors also suggested that SHAT1-5 was under higher selection intensity than NST1A during soybean domestication by comparing the 3’ flanking sequence of SHAT1-5 and NST1A between 13 wild progenitors and 23 cultivated soybeans. The present study investigated the genetic diversity at related loci using the entire wild and Asian landrace accessions in the USDA soybeans germplasm collection, and illustrated that SHAT1-5 locus was subjected to higher natural selection pressure than NST1A locus. However, the pSHAT1-5 was not under extensive selection for pod indehiscence during soybean domestication. In contrast, our results suggested that NST1A locus played a critical role in strengthening pod indehiscence in cultivated soybean. The discrepancy between of the present and previous reports (Dong et al. 2014) might be attributed to the distinct soybean materials and sample size involved in the two studies.

Previous studies documented two distinct mechanisms of resistance to pod shattering in soybean: i) loss-of-function of Phd1 decreases the coiling of drying pod walls (Funatsuki et al. 2014), and ii) up-regulating the expression of SHAT1-5 thickens the FCC secondary walls
and strengthen the binding between tow pod walls (Dong et al. 2014). However, unlike the paralogue SHAT1-5, the present study identified a premature stop codon in NST1A associated with pod indehiscence, which is similar to Pdh1. We noted that the premature stop codon of Pdh1 leading to malfunction is near the N terminal of the protein (Fig. 7B), while that of NST1A resulting in 47 of 446 amino acids missing is close to the C terminal and the conserved NAC domain at the N terminal remains intact (Fig. 7A) (Dong et al. 2013). Interestingly, premature stop in FSQ6, a NAC-domain containing transcript factor, has been reported to be responsible for gain-of-function phenotype in Arabidopsis (Li et al. 2011). Therefore, unlike the truncated Pdh1 that is a loss-of-function mutation, the truncated NST1A might be a gain-of-function mutation, suggesting a third mechanism of pod indehiscence in soybean. Further functional validation of the causal genetic variant of NST1A is necessary to uncover the underlying mechanism.

In conclusion, this study demonstrated the importance of the epistatic interaction among three pod dehiscent loci, especially NST1A and Pdh1, to determine pod-dehiscence during soybean domestication and revealed relative humidity as the driving force in shaping the geographic distribution of indehiscent alleles. It enhanced our understanding about pod dehiscence in soybean by emphasizing the adaptation of genetic control to specific climate conditions. Our results also suggest that the HHH valleys, but not NEC, is the center or at least one of the centers of origin of cultivated soybean. The genetic variants and the correlation between humidity and pod dehiscence identified in this study are valuable for development of resilient soybean cultivars in coping with climate change and quick domestication of the wild legume species.

ACKNOWLEDGEMENTS

Research funding support from Monsanto Chair in Soybean Breeding and R F Baker Center for Plant Breeding at Iowa State University is sincerely appreciated. This project was also supported by USDA-CRIS IOW04314 project (Crop Genetic Improvement and Adaptation Using Gene Discovery, Phenotypic Prediction, and Systems Engineering). We thank Dr. R V Chowda Reddy for wet lab experiments on candidate gene association analysis and Ms. J. Hicks for proof reading the manuscript.

AUTHOR CONTRIBUTION

JZ and AKS conceptualized and designed the experiments and research; JZ performed the database searches and statistical analysis; JZ and AKS wrote the manuscript.

REFERENCES

Bailey M.A., Mian M.A.R., Carter J.T.E., Ashley D.A. & Boerma H.R. (1997) Pod Dehiscence of Soybean: Identification of Quantitative Trait Loci. Journal of Heredity, 88, 152-154.

Becker R.A., Wilks A.R., Brownrigg R. & Minka T.P. (2013) Maps: draw geographical maps. R package version, 2.

Carter T.E., Hymowitz T. & Nelson R.L. (2004) Biogeography, Local Adaptation, Vavilov, and Genetic Diversity in Soybean. In: Biological Resources and Migration (ed D. Werner), pp. 47-59, Springer Berlin Heidelberg, Berlin, Heidelberg.

Clayton D. (2012) snpStats: SnpMatrix and XSnpMatrix classes and methods. R package.

Ding Y., Zhao T. & Gai J. (2008) Genetic diversity and ecological differentiation of Chinese annual wild soybean (Glycine soja). Biodiversity Science, 16, 133-142.

Dong Y., WANG B.H. & WANG Y.Z. (2013) Functional characterization of the orthologs of AtNST1/2 in Glycine soja (Fabaceae)
and the evolutionary implications. *Journal of Systematics and Evolution*, **51**, 693-703.
Dong Y., Yang X., Liu J., Wang B.H., Liu B.L. & Wang Y.Z. (2014) Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. *Nature Communications*, **5**, 3352.
Fukuda Y. (1933) Cytogenetical studies on the wild and cultivated Manchurian soybeans (Glycine L.). *The Journal of Japanese Botany*, **6**, 489-506.
Funatsuki H., Ishimoto M., Tsuji H., Kawaguchi K., Hajima K. & Fujino K. (2006) Simple sequence repeat markers linked to a major QTL controlling pod shattering in soybean. *Plant Breeding*, **125**, 195-197.
Funatsuki H., Suzuki M., Hirose A., Inaba H., Yamada T., Hajima K., . . . Fujino K. (2014) Molecular basis of a shattering resistance boosting global dissemination of soybean. *Proceedings of the National Academy of Sciences of the United States of America*, **111**, 17797-17802.
Gai J., Xu D., Gao Z., Shimamoto Y., Abe J., Fukushi H. & Kitajima S. (1999) Studies on the evolutionary relationship among eco-types of G. max and G. soja in China. *Zuo wu xue bao*, **26**, 513-520.
Gizlice Z., Carter T. & Burton J. (1994) Genetic base for North American public soybean cultivars released between 1947 and 1988. *Crop Science*, **34**, 1143-1151.
Guo J., Wang Y., Song C., Zhou J., Qiu L., Huang H. & Wang Y. (2010) A single origin and moderate bottleneck during domestication of soybean (Glycine max): implications from microsatellites and nucleotide sequences. *Ann Bot*, **106**, 505-514.
Han Y., Zhao X., Liu D., Li Y., Lightfoot D.A., Yang Z., . . . Li W. (2016) Domestication footprints anchor genomic regions of agronomic importance in soybeans. *New Phytologist*, **209**, 871-884.
Hill J., Peregrine E., Sprau G., Cremeens C., Nelson R., Kenty M., . . . Thomas D. (2001) Evaluation of the USDA soybean germplasm collection: maturity groups VI-VII (FC 03.659-PI 567.235 B). *Technical Bulletins/USDA. Agricultural Research Service*.
Hymowitz T. & Newell C. (1981) Taxonomy of the genus Glycine, domestication and uses of soybeans. *Economic Botany*, **35**, 272-288.
Hyten D.L., Song Q.J., Zhu Y.L., Choi I.Y., Nelson R.L., Costa J.M., . . . Cregan P.B. (2006) Impacts of genetic bottlenecks on soybean genome diversity. *Proceedings of the National Academy of Sciences of the United States of America*, **103**, 16666-16671.
Kang S.-T., Kwak M., Kim H.-K., Chung M.-G., Han W.-Y., Baek I.-Y., . . . Lee S.-H. (2009) Population-specific QTLs and their different epistatic interactions for pod dehiscence in soybean [Glycine max (L.) Merr.]. *Euphytica*, **166**, 15.
Konishi S., Izawa T., Lin S.Y., Ebana K., Fukuta Y., Sasaki T. & Yano M. (2006) An SNP caused loss of seed shattering during rice domestication. *Science*, **312**, 1392-1396.
Lasky J.R., Upadhyaya H.D., Ramu P., Deshpande S., Hash C.T., Bonnette J., . . . Morris G.P. (2015) Genome-environment associations in sorghum landraces predict adaptive traits. *Science Advances*, **1**, e1400218.
Li C., Zhou A. & Sang T. (2006) Rice domestication by reducing shattering. *Science*, **311**, 1936-1939.
Li P., Wind J.J., Shi X.L., Zhang H.L., Hanson J., Smeekens S.C. & Teng S. (2011) Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain. *Proceedings of the National Academy of Sciences of the United States of America*, **108**, 3436-3441.
Schmutz J., McClean P.E., Mamidi S., Wu G.A., Cannon S.B., Grimwood J., . . .
Jackson S.A. (2014) A reference genome for common bean and genome-wide
analysis of dual domestications. Nature Genetics, 46, 707-713.
Singh R.J. & Hymowitz T. (1999) Soybean
genetic resources and crop improvement.
Genome, 42, 605-616.
Song Q.J., Hyten D.L., Jia G.F., Quigley C.V.,
Fickus E.W., Nelson R.L. & Cregan P.B.
(2013) Development and Evaluation of
SoySNP50K, a High-Density Genotyping
Array for Soybean. Plos One, 8.
Sweeney M.T., Thomson M.J., Cho Y.G.,
Park Y.J., Williamson S.H., Bustamante
C.D. & McCouch S.R. (2007) Global
dissemination of a single mutation
conferring white pericarp in rice. Plos
Genetics, 3, e133.
Team R.C. (2012) R: A language and
environment for statistical computing.
Tsuchiya T. (1987) Physiological and genetic
analysis of pod shattering in soybeans.
Japan Agricultural Research Quarterly.
Wang J., Chu S., Zhang H., Zhu Y., Cheng H.
& Yu D. (2016) Development and
application of a novel genome-wide SNP
array reveals domestication history in
soybean. Scientific Reports, 6, 20728.
Xu X., Gu L., He P. & Zhou R. (2015)
Characterization of five putative aspartate
aminotransferase genes in the N2-fixing
heterocystous cyanobacterium Anabaena
sp. strain PCC 7120. Microbiology, 161,
1219-1230.
Yoon J., Cho L.H., Kim S.L., Choi H., Koh
H.J. & An G. (2014) The BEL1-type
homeobox gene SH5 induces seed
shattering by enhancing abscission-zone
development and inhibiting lignin
biosynthesis. Plant Journal, 79, 717-728.
Zhang J., Singh A., Mueller D.S. & Singh
A.K. (2015) Genome-wide association and
epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean. *Plant Journal*, **84**, 1124-1136.

Zhang Z.W., Ersoz E., Lai C.Q., Todhunter R.J., Tiwari H.K. & Gore M.A. (2010) Mixed linear model approach adapted for genome-wide association studies. *Nature Genetics*, **42**.

Zhao T.-J. & Gai J.-Y. (2004) The origin and Evolution of Cultivated Soybean [Glycine max(L.) Merr.]. *Scientia Agricultura Sinica*, **37**, 954-962.

Zhou X., Peng Y., Wang G. & Chang R. (1998) Preliminary studies on the centers of genetic diversity and origination of cultivated soybean in China. *Scientia Agricultura Sinica*, **31**, 37-43.

Zhou Y., Lu D., Li C., Luo J., Zhu B.F., Zhu J., . . . Han B. (2012) Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1. *Plant Cell*, **24**, 1034-1048.

Zhou Z., Jiang Y., Wang Z., Gou Z., Lyu J., Li W., . . . Tian Z. (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. *Nature Biotechnology*, **33**, 408-414.
Supporting information:

Title: Genetic control and geo-climate adaption of pod dehiscence provide novel insights into the soybean domestication and expansion

Authors: Jiaoping Zhang* and Asheesh K. Singh*

Address: Department of Agronomy, Iowa State University, Ames, IA 50011, USA

* Correspondence: singhak@iastate.edu, jiaoping@iastate.edu

Running title: Genetics and climate-adaptation of soybean shattering

Figure S1. Genotyping and sequencing validation of the known causal polymorphism at the pShat1-5 region. (A) Shown are the polymorphisms of PCR products of pShat1-5 region among 11 soybean germplasm accessions. (B) Alignment of the PCR products sequencing results of three accessions and primers against the reference sequence of the soybean cultivar William 82 at the pShat1-5 region.
Table S1. Primers for the known casual pod dehiscence mutation at the promoter of SHAT1-5 (pShat1-5).

Primer	5’ -> 3’	PCR conditions
pShat1-5 Forward	CACTTTGTTTATAACTTTTGGTGCATGAC	94°C 2min; then 35 cycles of 94°C for 20 sec, 58°C for 20 sec, 72°C for 40 sec; and finally 5 min at 72°C.
pShat1-5 Reverse	TTTTGCTATAACAACATCGATTTTC	

Table S2 Epistasis test among ss715624201, ss715598106 and ss715623567

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
ss715624201	1	161.2	161.17	156.7	<2e-16 ***
ss715598106	1	15.0	14.99	14.6	0.0001 ***
ss715623567	1	5.4	5.44	5.3	0.0217 *
ss715624201:ss715598106	1	19.8	19.83	19.3	1.29e-05 ***
ss715624201:ss715623567	1	4.6	4.57	4.4	0.0354 *
ss715598106:ss715623567	1	5.2	5.18	5.0	0.0251 *
ss715624201:ss715598106:ss715623567	1	0.3	0.29	0.3	0.5973
Residuals	770	792.1	1.03		

Significance level: ***, P < 0.001; **, P < 0.01; *, P < 0.05
Table S3 Alleles of the three loci associated with pod dehiscence among 17 ancestors that contributed 86% parentage of North America soybean cultivars.

Ancestors	ss715624201	ss715598106	ss715623567
FC 033243	T	G	C
PI 548488	T	G	C
PI 548298	T	T	C
PI 548318	C	G	C
PI 548391	T	G	C
PI 548311	T	G	C
PI 548406	T	G	C
PI 548485	T	G	T
PI 548603	T	G	C
PI 548456	C	G	C
PI 548657	T	G	C
PI 548382	C	G	C
PI 548348	T	T	C
PI 548362	T	G	C
PI 548379	T	G	T
PI 548477	T	G	C
PI 548445	C	G	C
Dehiscent allele%	24%	12%	88%
Table S4 Information of the six of 758 *Glycine soja* accessions carrying the indehiscent allele ‘T’ at ss715624201.

Accession	ss715624201	Maturity Group	Origin (China)
PI 464938	T	V	Jiangsu
PI 468397A*	T	IV	Shanxi
PI 468397B*	T	IV	Shanxi
PI 483071A	T	IV	Shandong
PI 483462B	T	IV	Beijing
PI 549048	T	III	Beijing

Completely identical at the known SNPs of the SoySNP50K data set between the two accessions.