Excimer laser-assisted corneal epithelial pattern ablation for corneal cross-linking

Jurriaan Brekelmans,1,2 Mor M. Dickman,1 Shwetabh Verma,3,4,5,6 Samuel Arba-Mosquera,3 Ruth Goldschmidt,2 Alexandra Goz,2,7 Alexander Brandis,8 Tos T.J.M. Berendschot,1 Isabelle E.Y. Saelens,1 Arie L. Marcovich,2,7 Avigdor Scherz7 and Rudy M.M.A. Nuijts1

1University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
2Department of Plant Science and Environmental Health, the Weizmann Institute of Science, Rehovot, Israel
3Department of Research and Development, SCHWIND Eye-Tech-Solutions, Kleinostheim, Germany
4Experimental Radiation Oncology, University Medical Center Mannheim, Heidelberg, Germany
5Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
6Central Institute for Computer Engineering (ZITI), Heidelberg University, Heidelberg, Germany
7Department of Ophthalmology, Kaplan Medical Center, Rehovot, Israel
8Department of Biological Services, the Weizmann Institute of Science, Rehovot, Israel

ABSTRACT.

Purpose: To determine corneal cross-linking (CXL) efficacy and chromophore penetration after excimer laser-assisted patterned de-epithelialization.

Methods: Two-hundred-twenty porcine eyes were de-epithelialized ex vivo, either fully (mechanical; n = 88) or patterned (excimer laser; n = 132). Consecutively, corneas were impregnated with hypo- or hyperosmolar riboflavin (RF; n = 20, RF-D; n = 40, respectively) or water-soluble taurine (WST11; n = 40, and WST-D; n = 40, respectively), or kept unimpregnated (n = 80). Sixty corneas were subsequently irradiated, inducing CXL, with paired contralateral eyes serving as controls. Outcome measurements included strip extensiometry to assess CXL efficacy, and spectrophotometry and fluorescence microscopy to determine stromal chromophore penetration.

Results: All tested chromophores induced significant CXL (p < 0.001), ranging from 7.6% to 14.6%, with similar stiffening for all formulations (p = 0.60) and both de-epithelialization methods (p = 0.56). Light transmittance was significantly lower (p < 0.001) after full compared with patterned de-epithelialization. Stromal chromophore penetration was comparable between fully and patterned de-epithelialized samples, with full penetration in RD and RF-D samples and penetration depths measuring 591.7 ± 42.8 μm and 592.9 ± 63.5 μm for WST11 (p = 0.963) and 504.2 ± 43.2 μm and 488.8 ± 93.1 μm for WST-D (p = 0.669), respectively. Conclusions: Excimer laser-assisted patterned de-epithelialization allows for effective CXL. Stromal chromophore concentration is, however, reduced, which may have safety implications given the need for sufficient UVA attenuation in RF/UVA CXL. The different safety profile of near-infrared (NIR) may allow safe WST11/NIR CXL even with reduced stromal chromophore concentration values. In vivo studies are needed to evaluate the benefits and further assess safety of excimer laser-assisted patterned de-epithelialization for corneal CXL.

Key words: corneal cross-linking – WST11 – riboflavin – excimer laser

Introduction

Corneal collagen cross-linking (CXL) is applied to arrest thinning and destabilization associated with keratoconus (KC) progression. CXL using riboflavin (RF) and ultraviolet A (UVA) light is currently the only clinically approved treatment modality. Although good clinical results showing stabilization of disease for up to 10 years, the procedure has several downsides (O’Brart et al. 2015; Poli et al. 2015; Raiskup et al. 2015). One major disadvantage is related to epithelial debridement, which is associated with discomfort and postoperative complications, such as haze formation, delayed healing and infection (Koller, Mrochen & Seiler 2009; Cagil et al. 2015; Maharana et al. 2018). Various approaches have been suggested to overcome the need for full epithelial debridement, including epithelium-on cross-linking, chemical modification of riboflavin and mechanical removal of only part of the epithelium (Rechichi et al. 2013; Razmjoo et al. 2014; Hashemi et al. 2016; Stulting et al. 2018). Thus far, most reports show reduced RF penetration and reduced efficacy for epithelium-on procedures (Lombardo et al. 2015; Akbar et al. 2017; Godefrooij et al. 2017). Besides RF/UVA CXL, several other light-activated chromophores have been investigated, providing corneal stiffening.
with different drug and treatment characteristics (Marcovich et al. 2012; Cherfan et al. 2013; Alageel et al. 2018). One alternative is water-soluble taurine (WST11) (Marcovich et al. 2012). In contrast to RF, which uses potentially toxic UVA light, WST11 can be activated by near-infrared (NIR) light at 755 nm, which is safe to the eye at intensities beyond what is needed for effective CXL (ICNIRP (International Commission on Non-ionizing Radiation Protection) (1997)). Due to their different characteristics, both chromophores rely on different stromal diffusion patterns to assure safety. Alternative CXL modalities offer a perspective to patients non-responsive to or unsuitable for RF/UVA CXL, such as patients with thin corneas.

In this study, we use a clinically approved excimer laser platform to selectively ablate the corneal epithelium in a patterned fashion, creating 350 µm wide and 375 µm spaced epithelial channels to allow for chromophore diffusion while leaving up to 60% of the epithelium in the treated area in situ. We hypothesize this may promote faster epithelial healing, reduce patient discomfort and increase treatment safety. In an ex vivo porcine model, we evaluated stromal penetration, light attenuation and biomechanical stiffening of the two chromophores WST11 and RF, in hypo- and hyper-osmotic formulations, after full mechanical or patterned excimer laser-assisted de-epithelialization.

Materials and Methods

Sample preparation

Ex vivo porcine model
We included 220 paired porcine eyes, freshly obtained from a local abattoir and macroscopically inspected for damage, haze, oedema or surface irregularities. Porcine corneas provide a well-established ex vivo animal model for preclinical research on corneal procedures, with reported central corneal thickness (CCT) ex vivo of approximately 920 µm, shown to remain stable for up to 24 hr after enucleation (Jay et al. 2008; Nibourg & Koopmans 2014; Stoddard et al. 2018).

Manual and excimer laser-assisted de-epithelialization
All 220 corneas were de-epithelialized, either manually (n = 88) or excimer laser-assisted (n = 132). Full manual de-epithelialization of the central epithelium with a 9 mm diameter was performed using a blunt hockey knife, following the Dresden protocol (Wollensak, Spoerl & Seiler 2003), similar to clinical practice without the application of alcohol. Selective patterned de-epithelialization was performed over the central 9 mm using the SCHWIND Amaris excimer laser (SCHWIND Eye-Tech-Solutions, Kleinostheim, Germany). Epithelial channels with a radius of 350 µm, the minimal radius possible for this excimer laser apparatus, were created in a hexagonal pattern with equal distance between channels (Fig. 1, Fig. 2, supplementary Figure S1). Pilot studies showed chromophore diffusion became heterogenous if the spacing between channels was greater than 375 µm. Thus, the distance between channels was set at 375 µm, resulting in approximately 40% total surface ablation of the treated area (Supplementary equation S1). Ablation depth was determined for each cornea individually and set to penetrate the full epithelial thickness, measured by ocular coherence tomography (OCT), as described below.

Chromophore preparation

Four different formulations of photosensitizer were prepared: RF, RF with 20% Dextran T500 (RF-D), WST11 and WST11 with 20% Dextran T500 (WST-D). RF solutions (Sigma-Aldrich, St. Louis, Missouri, USA) were prepared at a concentration of 0.1%, WST11 (Steba Laboratories Ltd., Rehovot, Israel) solutions at...
2.5%. All solutions were prepared in saline and corrected to a pH between 7.2 and 7.3.

Sample allocation
Samples were divided into two groups: 100 eyes were used to assess safety (i.e. stromal chromophore diffusion; Fig. 3A) and 120 eyes were used to determine CXL efficacy (Fig. 3B). In the first group (i.e. safety group), allocation of paired eyes to each chromophore was done in a layered design (Supplementary Table S1). In the second group (i.e. efficacy group), a paired setup was used with one eye of each pair receiving full CXL treatment, with the contralateral eye serving as control (de-epithelialized only).

Sample treatment
After de-epithelialization, a self-manufactured plastic well, 12 mm in diameter with round edges, was placed on top of corneas allocated to receive chromophore impregnation. The well was filled with 1 mL of the respective photosensitizer, providing a constant supply of chromophore, alike the chromophore film existing during frequent topical chromophore application (Wollensak et al. 2010). Control corneas were left unimpregnated. After 30 or 20 min of impregnation, for RF and RF-D, and WST and WST-D, respectively, the remaining photosensitizer was removed and the cornea was briefly rinsed with 2 mL of distilled water to remove excess photosensitizer.

In addition to the above, in the CXL efficacy group, 60 eyes of 60 pairs received additional irradiation treatment to achieve full CXL treatment (Fig. 3B). CXL efficacy was assessed for RF-D, WST11 and WST-D-based CXL. After either RF-D or WST11/WST-D impregnation, corneas were irradiated for 30 min by either UVA light of 365 nm at 3 mW/cm² (SCHWIND CXL-365 vario system; SCHWIND Eye-Technologies, Kleinostheim, Germany) or NIR light of 753 nm at 10 mW/cm² (Cerelas PDT 753, CeramOptec GmbH, Bonn, Germany), respectively. During irradiation, every 5 min, a drop of distilled water was placed on the cornea to prevent dehydration.

Sample evaluation
Central corneal and epithelial thickness measurements
Corneas were imaged with a CASIA2 OCT (Tomey, Nagoya, Japan), prior to (patterned) de-epithelialization, directly after de-epithelialization and, when applicable, after photosensitizer impregnation and after irradiation (Fig. 4). Central epithelial thickness (CET) was determined for each cornea individually. Following mechanical de-epithelialization, CET was determined by calculating the difference between CCT prior and directly after de-epithelialization. In the excimer laser ablation group, the residual epithelium did not allow similar subtraction, and thus, CET was determined by averaging five manual CET measurements in the central four millimetres of the pre-excimer laser ablation high-resolution OCT image.

Safety
Described in detail below, treatment safety was assessed by absorbance spectrophotometry (total indicating stromal chromophore concentration and direct determining the de-epithelialization’s scattering effect) and confocal fluorescence microscopy (imaging stromal chromophore penetration depth).

Absorbance spectrophotometry
Corneas in the chromophore diffusion group (n = 100, Fig. 3A) were consecutively placed in the beam of two UV-visible spectrophotometers: adapted with an integrating sphere (V-570, Jasco Inc., Mary’s Court, MD, USA) or without (Evolution 220, Thermo Fischer Scientific Inc., Waltham, MA, USA). Total and direct absorbance was measured between 300 and 900 nm with a spectral bandwidth of 5 nm. Total spectroscopy, measuring all transmitted light independent of scattering, was used to assess stromal chromophore concentration in the five subgroups (native/RF/RF-D/WST11/WST-D impregnated). Given the toxic nature of UVA light, sufficient stromal chromophore is needed to attenuate the UVA light. Stromal chromophore diffusion was assessed by absorbance spectrophotometry (total indicating stromal chromophore concentration and direct determining the de-epithelialization’s scattering effect) and confocal fluorescence microscopy (imaging stromal chromophore penetration depth).
chromophore concentration serves as an indirect measure for treatment safety. Direct spectroscopy, excluding scattered light, was used to assess changes in transmittance induced by excimer laser ablation. A curve was fitted including a wavelength-dependent (Rayleigh) and wavelength-independent factors (Tryptophan; derived from Van de Kraats et al.) (van de Kraats & van Norren 2007). The percentual decrease for both factors was calculated as a measure of changes in the cornea’s optical properties.

Confocal fluorescence microscopy

After absorbance spectrophotometry, corneal chromophore diffusion was assessed using an inverted confocal fluorescence microscope (BX61 Olympus, Tokyo, Japan), with images taken at 10 μm steps using a CCD camera (Cascade 512B, Roper Sci., New Jersey, USA). Samples were stained by 5 μM propidium iodine (PI), allowing visualization of the sample’s stromal borders. All samples were excited at 561 nm with fluorescence being recorded at 617 nm to image PI-stained cell nuclei. Additionally, samples were consecutively excited at 488 nm (RF-based impregnated corneas) or 755 nm (WST11-based impregnated corneas), or at both 488 nm and 755 nm (unimpregnated control corneas). Fluorescence intensity was recorded above 525 nm and 760 nm using a filter, for RF and WST respectively. Per cornea, above-mentioned images were taken at three (mechanically de-epithelialized samples) or six (excimer laser-assisted de-epithelialized samples) different areas. In the latter, three areas each were taken, manually centred at either an epithelial channel or a non-ablated area (Fig. 1). Samples were measured from endothelium to epithelium, to avoid the influence of photobleaching and clear imaging of the chromophore’s penetration front depth. Per image, the intensity in the central 100x100 pixels for both measured channels was averaged and plotted against the depth into the sample, using MATLAB (MATLAB R2018b; The MathWorks Inc., Natick, USA). The stromal border’s position, visualized by the PI staining, was used to determine each frame’s depth within that specific corneal sample. Intensity plots corresponding to RF and WST11 were baseline corrected. Penetration depth was determined to be the point where the intensity dropped below a predetermined threshold value of 30 A.U., below which the signal was considered noise. Supplemental Figure S2 shows a representative example of the output generated by above-mentioned method of a RF impregnated cornea after excimer laser ablation. Per cornea in the excimer laser-assisted group six such graphs were generated (following the sampled areas as shown in figure 1), with three areas sampled in the manual de-epithelialization group.

Efficacy

Treatment efficacy was measured by measuring the sample’s increased stiffness after treatment by strip extensometry.

Strip extensometry

In 60 pairs, one eye received full CXL treatment by RF-D, WST11 or WST-D, with the contralateral eye only undergoing similar de-epithelialization as the paired treated cornea (Fig. 3 B). Two 2-mm wide adjacent central strips were cut in superior–inferior direction, and the sample’s Youngs modulus was determined as described previously (Brekelmans et al. 2017). Strips were centred and mounted in the clamps of an extensometer with a 5 kN load cell (Instron 5965; Instron, Norwood, MA, USA) set 6 mm apart, to include treated tissue only. The average of both strips per cornea was used for analysis.

Statistical analysis

Corneal pachymetry and chromophore penetration depth were analysed using analysis of variance (ANOVA), while a repeated-measures ANOVA was used.
for strip extensiometry analysis, permitted by the paired study design. A linear regression model was used for the spectrometry data. Statistical calculations were done with SPSS statistical software (version 23; IBM Corp., Armonk, USA).

Results

Baseline measurements

Central corneal and epithelial thickness

Mean CCT prior to treatment read $919 \pm 69 \text{µm} \ (n = 20)$, $919 \pm 81 \text{µm} \ (n = 60)$, $893 \pm 64 \text{µm} \ (n = 60)$ and $925 \pm 75 \text{µm} \ (n = 60)$, for corneas receiving no impregnation, RF, RF-D, WST11 or WST-D impregnation, respectively ($p = 0.147$). Epithelial thickness measured $77 \pm 21 \text{µm} \ (n = 20)$, $83 \pm 16 \text{µm} \ (n = 20)$, $74 \pm 18 \text{µm} \ (n = 60)$, $79 \pm 16 \text{µm} \ (n = 60)$ and $75 \pm 20 \text{µm} \ (n = 60)$ ($p = 0.212$). Figure 4 shows representative consecutive OCT imaging of a porcine cornea at all stages of sample preparation.

Safety

Absorbance spectrophotometry

Mean total transmittance at 365 nm for RF and RF-D, at 755 nm for WST11 and WST-D impregnated samples, and at both 365 nm and 755 nm for unimpregnated samples is shown in Figure 5. Total transmittance measurements (RF-based at 365 nm, WST11-based at 755 nm) for fully and patterned de-epithelialized corneas read $14.4 \pm 3.2\% \ (n = 8)$ vs. $31.1 \pm 6.7\% \ (n = 12)$, $47.4 \pm 6.9\% \ (n = 8)$ vs. $48.7 \pm 5.5\% \ (n = 12)$, $0.1 \pm 0.0\% \ (n = 8)$ vs. $2.7 \pm 1.0\% \ (n = 12)$ and $4.7 \pm 0.8\% \ (n = 8)$ vs. $17.7 \pm 4.4\% \ (n = 12)$, for RF, RF-D, WST11 and WST-D, respectively. For unimpregnated corneas, total transmittance measured $76.8 \pm 10.8\% \ (n = 8)$ vs. $65.5 \pm 5.3\% \ (n = 12)$ and $93.2 \pm 6.9\% \ (n = 8)$ vs. $90.0 \pm 3.8\% \ (n = 12)$ for fully and patterned de-epithelialized corneas at 365 nm and 755 nm, respectively. In chromophore impregnated corneas (RF, RF-D, WST11 and WST-D), total transmittance was significantly lower in fully de-epithelialized corneas compared with the patterned de-epithelialized corneas ($p < 0.001$). Compared with hypotonic solutions (RF and WST11), the addition of 20% Dextran (RF-D, WST-D) significantly increased the total transmittance ($p < 0.001$). In native corneas, total transmittance was not significantly different between fully and patterned de-epithelialized corneas ($p = 0.189$).

Direct transmission spectrometry showed reduced transmission after excimer laser-assisted patterned de-epithelialization, compared with full mechanical de-epithelialization. Figure 6 shows the average measured direct transmission of unimpregnated samples, with curve fittings as described in the methods section. Wavelength independent and dependent (Rayleigh scattering) scattering increased by 125% and 77%, respectively, indicating reduced optical clarity by excimer laser-assisted de-epithelialization alone.

Confocal fluorescence microscopy

In unimpregnated corneas, no chromophore fluorescence was detected in either full or patterned de-
epithelialization groups. In the RF and RF-D subgroup, full chromophore penetration, regardless of full or patterned de-epithelialization was seen. In WST11 and WST-D impregnated samples, a clear chromophore penetration front was noted, with only partial stromal chromophore penetration. When comparing penetration depth in fully and patterned de-epithelialized corneas, no difference was seen for both WST11 (592 ± 43 μm vs. 593 ± 64 μm, p = 0.963) and WST-D (504 ± 43 μm vs. 489 ± 93 μm, p = 0.669) impregnated samples. Similarly, within the patterned de-epithelialized subgroup, no difference in penetration depth was seen between channels and intermediate areas for both WST11 (593 ± 64 μm vs. 575 ± 62 μm, p = 0.479) and WST-D (489 ± 93 μm vs. 433 ± 94 μm, p = 0.160) impregnated samples. The addition of dextran significantly reduced the stromal penetration depth, in both fully and patterned de-epithelialized corneas, and in both channels and intermediate areas in patterned de-epithelialized corneas (both p < 0.001).

Efficacy

Strip extensiometry

Out of 120 corneas, three samples were excluded from analysis, due to testing apparatus failure (two samples) and as a result of sample slippage during testing (one sample). A significant CXL treatment effect (p < 0.001) was seen for all examined chromophores.
Unfortunately, I cannot provide a natural text representation of the document as it appears to be an incomplete or corrupted version, containing symbols and numbers that do not form coherent sentences or phrases. The content is not legible, and I am unable to provide a meaningful transcription or interpretation of the text.
covering the cornea with an additional layer of RF solution or by a RF soaked contact lens (Wollensak et al. 2010; Jacob et al. 2014; Hafezi et al. 2020). In WST11-based CXL, safe NIR light is applied, omitting the need to obtain sufficient stromal chromophore concentration to attenuate the applied light. For WST11-based CXL, chromophore penetration depth provides a more important safety measure, as a damaging photochemical reaction may still occur if WST11 reaches the endothelium. In this study, total transmission spectrometry was used to assess stromal chromophore concentrations, and confocal fluorescence microscopy allowed visualization of the chromophores’ penetration depth. Lower stromal chromophore concentrations were seen by total transmission spectrometry in the patterned de-epithelialization group. Whereas RF was shown to penetrate the full stroma, regardless of Dextran addition or degree of de-epithelialization, confocal fluorescence microscopy showed that the addition of Dextran limits the stromal penetration depth of WST11 to the anterior half of the stroma. Thus, while for WST-D/NIR standard CXL parameters may be used safely in conjunction with this novel excimer laser-patterned de-epithelialization, protocol adaptation may be needed for RF/UVA CXL to ensure endothelial safety.

While this study provides a proof of concept, several limitations should be addressed. First, although we show that patterned de-epithelialization achieves similar stiffening as the regular Dresden protocol ex vivo, further in vivo models should address the clinical safety and efficacy. Direct transmission spectrometry shows increased scattering after patterned de-epithelialization, which indicates inferior optical clarity. This may be due to light absorption by remaining epithelium, the periodic structure of the laser ablation pattern or the irregular surface after excimer laser pretreatment (Pérez-Merino et al. 2010; Meek & Knupp 2015). Resolution of this increased scattering after epithelial healing could, however, not be confirmed in this ex vivo model. Also, while clinical studies suggest faster epithelial recovery and reduced post-operative pain after partial de-epithelialization, this study cannot confirm or disprove these hypothesized benefits (Rechichi et al. 2013; Mazzotta & Ramovecchi 2014; Hashemi et al. 2015). Thus, future in vivo studies should investigate the technique’s effect on corneal transparency and post-treatment epithelial healing and pain. Second, it is most likely corneal hydration ex vivo differs from the in vivo situation, with rapid swelling occurring after enucleation. As corneal swelling occurs mainly within the stroma, limited influence on excimer laser epithelial ablation may be expected, but stromal chromophore diffusion could differ from the in vivo situation. Third, in this study, an average epithelial thickness was determined for each cornea to set the laser’s ablation depth, aimed to prevent ablation beyond the Bowman layer. In healthy eyes, this may be sufficient, as chromophore penetration may not be influenced by a thin layer of remaining epithelium due to only few tight junction complexes in the posterior epithelium, allowing a safe distance from the stroma (Bakke et al. 2009). However, in keratoconus eyes, the epithelium is known to be highly irregular and an average epithelial thickness would not suffice (Franco, White & Kruh 2020). In order to prevent stromal ablation, excimer laser-assisted patterned ablation of diseased eyes should thus involve accurate epithelial mapping with corresponding individualized and mapped ablation depth profiles. Given the fast-evolving imaging technology and increasing interest in personalized and targeted CXL, this limitation may soon be overcome. Last, while the total number of eyes in this study is high, the number of eyes per group as used for sub-analysis is relatively low.

In conclusion, the results of this study show the epithelium does not have to be removed completely to achieve effective corneal CXL but can be performed using an excimer laser to create epithelial channels, leaving approximately 60% of the epithelium in the treated area in situ. Stromal chromophore concentration, however, is found to be significantly lower when the epithelium is only partially removed and is influenced by the addition of Dextran. This raises safety implications for RF-based CXL, while less relevant for WST11-based CXL due to its different safety mechanism. As interest in partial or selective de-epithelialization is growing along with customized cross-linking, and clinical studies applying partial mechanical de-epithelialization have already been partaken, these results may help to guide the development of a CXL technique reducing treatment burden, while guaranteeing patients’ safety.

Acknowledgements

The authors would like to thank Amin Seraji from SCHWIND Eye-Tech-Solutions for his assistance during sample preparation, and Kathrin Benedikt and Udo Schmidt from Tomey GmbH for providing us with a CASL2 ocular coherence tomographer during the experiments.

References

Akbar B, Intisar-Ul-Haq R, Isihaq M, Fawad A, Azroz S & Siddique K (2017): Comparison of transepithelial corneal crosslinking with epithelium-off crosslinking (epithelium-off CXL) in adult Pakistani population with progressive keratoconus. Taiwan J Ophthalmol 7: 185–190.
Alageel SA, Arafat SN, Salvador-Culla B, Kolovou PE, Jahanmir K, Kozak A, Braithwaite JG & Cisino JB (2018): Corneal cross-linking with verteporfin and nonthermal laser therapy. Cornea 37: 362–368.
Bakke EF, Stojanovic A, Chen X & Droussan L (2009): Penetration of riboflavin and postoperative pain in corneal collagen crosslinking: excimer laser superficial versus mechanical full-thickness epithelial removal. J Cataract Refract Surg 35: 1363–1366.
Beckman KA, Gupta PK, Farid M et al. (2019): Corneal crosslinking: Current protocols and clinical approach. J Cataract Refract Surg 45: 1670–1679.
Bradford S, Mikula E, Xie Y, Juhasz T, Brown DJ & Jester JV (2020): Enhanced transepithelial riboflavin delivery using femtosecond laser-machined epithelial microchannels. Transl Vis Sci Technol 9: 1.
Brekelmans J, Gooi A, Dickman MM et al. (2017): Long-term biomechanical and histologic results of WST-D/NIR corneal stiffening in rabbits, up to 8 months follow-up. Investig Ophthalmol Vis Sci 58: 4089–4095.
Cagil N, Sarac O, Campak HB, Can G & Can E (2015): Mechanical epithelial removal followed by corneal collagen crosslinking in progressive keratoconus: short-term complications. J Cataract Refract Surg 41: 1730–1737.
Cerman E, Toker E & Otaran Ocean D (2015): Transepithelial versus epithelium-off crosslinking in adults with progressive keratoconus. J Cataract Refract Surg 41: 1416–1425.
Cherfan D, Verter EE, Melki S et al. (2013): Collagen cross-linking using rose bengal and nonthermal laser therapy. Cornea 32: 185–189.
Franco J, White CA & Kruh JN (2020): Analysis of compensatory corneal epithelial thickness changes in keratoconus using corneal tomography. Cornea 39: 298–302.
Galvis V, Tello A, Carreño NL, Ortiz AI, Barrera R, Rodríguez CJ & Ochoa ME (2016): Corneal cross-linking (with a partial deproteinization) in keratoconus eyes with five years of follow-up. Ophthalmol Eye Dis 8: 17-22.

Godfrooij DA, El KM, Soeters N & Wisse RP (2017): Higher order optical aberrations and visual acuity in a randomized controlled trial comparing transepithelial versus epithelium-off corneal crosslinking for progressive keratoconus. Clin Ophthalmol 11: 1931-1936.

Haefeli T, Kling S, Girardin F F et al. (2020): Individualized corneal cross-linking with riboflavin and UV-A in ultra-thin-cornea the sub400 protocol. Am J Ophthalmol. 224:133-142.

Hashemi H, Miraflah M, Hafezi F & Asgari S (2015): Matched comparison study of total and partial epithelial removal in corneal cross-linking. J Refract Surg 31: 110-115.

Henriquez MA, Hernandez-Sahagun G, Camargo J & Izquierdo L (2020): Accelerated epi-on versus standard epi-off corneal collagen cross-linking for corneal keratopathy patients. Five years of follow-up. Cornea 39: 1493-1498.

ICNIRP (International Commission on Non-ionizing Radiation Protection) (1997): Guidelines on limits of exposure to non-ionizing coherent optical radiation (0.38 to 3 microM). International Commission on Non-Ionizing Radiation Protection.

Health Phys 73: 539-554.

Jaco S, Kumar DA, Agarwal A, Basi S, Sinha P & Agarwal A (2014): Contact lens-assisted collagen cross-linking (CACLE): A new technique for corneal cross-linking thin lenses. J Refract Surg 30: 366-372.

Jay A, B魁rner A, Kieffer JC, Brunetti I & Ozaki T (2008): Determination of porcine cornea layers with high spatial resolution by simultaneous second and third harmonic generation microscopy. Opt Express 16(21): 16284-16293.

Kanellopoulos AJ & Asimellis G (2014): Keratoconus management: long-term stability of total corneal collagen cross-linking with high-fluence CXL stabilization (the Athens Protocol). J Refract Surg 30: 88–93.

Katibah A, Owji SM & Eghtedar M (2012): Morphologic changes of corneal epithelial flap: Ethanol-mediated versus mechanical removal. Ultrastrath Pathol 36: 400–403.

Koller T, Mrochen M & Seiter T (2009): Complication and failure rates after corneal crosslinking. J Cataract Refract Surg 35: 1358-1362.

Lombardo M, Villari V, Serrao S, Pucci G, Lombardo MC, Mar-Sarda S, Perez-Escudero A, Blanco-Mezaqui T, Mayo- Asner A & Merayo-Lloves J (2010): Corneal light transmission and roughness after refractive surgery. Optom Vis Sci 87: E469-E474.

Lorić M, Leitgeb R, Auxemiers C & Burillon C (2015): Corneal collagen cross-linking for the treatment of progressive corneal ectasia: 6-year prospective outcome in a French population. Am J Ophthalmol 160: 654-662e1.

Raiskup F, Theuring A, Pllumat LE & Spoerl E (2015): Corneal collagen cross-linking with riboflavin and ultraviolet-A light in progressive keratoconus: Ten-year results. J Cataract Refract Surg 41: 41–46.

Peiman A, Kharraji M, Koosha N, Razmjo H & Rahimi B (2014): Corneal haze and visual outcome after collagen crosslinking for keratoconus. A comparison between total epithelium off and partial epithelial removal methods. Adv Biomed Res 3: 221.

Rechiichi M, Daya S, Scorcia V, Meduri A & Scorcia G (2013): Epithelial-disruption collagen crosslinking for keratoconus: One-year results. J Cataract Refract Surg 39: 1358-1362.

Rossi S, Orizzo A, Santamaria C, Romanov V, De Rosa L, Simonelli F & De Rosa G (2015): Standard versus trans-epithelial collagen cross-linking in keratoconus patients suitable for standard collagen cross-linking. Clin Ophthalmol 9: 503-509.

Sarac O, Kosekayha P, Caglayan M, Tanriverdi B, Uzel AGT & Cagil N (2013): Mechanical versus transepithelial phototherapeutic keratotomy epithelial removal followed by accelerated corneal crosslinking for pediatric keratoconus: Long-term results. J Cataract Refract Surg 40: 827-835.

Stoddard JE, Marneris AG, Borr MJ & Keel ML (2018): Optimization of femtosecond lasers using porcine and human donor corneas before in vivo use. J Cataract Refract Surg 44: 1018-1022.

Stojanovic A, Zhou W & Utnehe TP (2014): Corneal collagen cross-linking with and without epithelial removal: A contralateral study with 0.5% hypotonic riboflavin solution. Biomed Res Int 2014: 9, 619938.

Stirling RD, Trautler WB, Woolson JM & Rubinfeld RS (2018): Corneal crosslinking without epithelial removal. J Cataract Refract Surg 44: 1363-1370.

van de Kraats J & van Norren D (2007): Optical density of the aging human ocular media in the visible and the UV. J Opt Soc Am A Opt Image Sci Vis 24: 1842-1857.

Vingopodous F & Kanellopoulos AJ (2019): Epi- Bowman blunt keratometry versus diluted EtOH epithelial removal in myopic photorefractive keratotomy: A prospective contralateral eye study. Cornea 38: 612-616.

Wollensak G, Aurich H, Wirbelauer C & Scl S (2010): Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg 36: 114–120.

Wollensak G & Iomdina E (2009): Biochemical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg 35: 540–546.

Wollensak G, Spoerl E & Seiter T (2003): Riboflavin/ ultraviolet-A induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol, Behandlung von keratokonus durch kollagenvernetzung 136: 620-627.

Wollensak G, Spoerl E, Wilsh C & Seiter T (2003): Endothelial cell damage after riboflavin-ultraviolet-A treatment in the rabbit. J Cataract Refract Surg 29: 1786–1790.

Received on March 30th, 2021.

Accepted on August 31st, 2021.

Correspondence
Att. Jurriaan Brekelmans MD
University Eye Clinic Maastricht
Maastricht University Medical Center
P.O. B. 5800, 6202 AZ
Maastricht
The Netherlands
Phone: +31 43 387 1594
E-mail: jurriaan.brekelmans@umc.nl

Conflict of Interest:
J. Brekelmans, None; M.M. Dickeman, None; S. Verma, SCHWIND Eye-Tech-Solutions (E); S. Arba-Mosquera, SCHWIND Eye-Tech-Solutions (E); R. Goldschmidt, None; A. Goz, None; A. Brandis, Steba Biotech (P); T.T.M. Berendschot, None; I.E.Y. Saelens, None; A.L. Marcovich, Steba Biotech (P), Yeda Weizmann (P), EyeYon Medical (C, P), Mor Isum (P), A. Scherz, Steba Biotech (C, P), R.M.M. Nuijts, Auclous (S), Alcon (C, L, S), Bausch&Lomb (S), HumanOptics (S), Ophtec (S), ThéaPharma (C).

Funding: This work was supported by the Academic Incentive Fund azM/MUMC and the following foundations: Algemene Nederlandse Vereniging ter Voorkoming van Blindheid, Landelijke Stichting voor Blinden en Slechtzienden and Stichting Steunfonds UitZicht that contributed through UitZicht [grant number 2014-36]. The funding organizations provided unrestricted grants and had no role in the design or conduct of this research. AS is the inventor of WST-D licensed to Steba Biotech by “Yeda” with royalties agreement. AB and AM are inventors of WST-D-NIR treatment with same.

Presented: Free paper abstract accepted to the 37th congress of the European Society of Cataract and Refractive Surgeons, Paris, France, September 2019 and to the CXL Experts’ Meeting, Zurich, Switzerland, December 2019.

Supporting Information
Additional Supporting Information may be found in the online version of this article:
Fig S1
Fig S2
Table S1
Equation S1