14.50 EPIDEMIOLOGY AND SURVIVAL OF PATIENTS WITH HARD PALATE MELANOMA: A POPULATION-BASED STUDY

Carlo M. ORANGES, René D. LARGO, Giovanni SISTI, Dimitrios NASIOUDIS, Dirk J. SCHAEFER

Basel, Switzerland

INTRODUCTION: Primary oral melanoma is an extremely rare and aggressive malignancy arising from the mucosal epithelium of the oral cavity. The majority of cases occur in the hard palate. However, disease presentation and survival have never been comprehensively studied. Our main goal was to analyze epidemiology, loco regional treatment patterns and survival outcomes of patients with primary hard palate melanoma in the United States, using the Surveillance, Epidemiology, and End Results (SEER) population based registry of the National Cancer Institute.

MATERIALS AND METHODS: The SEER database was queried for melanoma cases (morphology codes=8720–8790) located in the hard palate (topography code C05.0-hard palate) diagnosed between 1973 and 2012. Demographic and clinicopathological information were extracted for each case. Overall survival rate was determined using the Kaplan-Meier method. Log.ran..k test was employed to compare overall survival between different subgroups and a Cox hazard regression analysis was performed to determine independent predictors of overall survival.

RESULTS: We identified 83 cases of hard palate melanoma, 49 female and 34 males. The age distribution was: 13.3% < 50 years, 38.6% between 50 and 69 years, 48.2% >= 70. Surgery alone was performed in 48.2% of cases, radiation therapy alone in 6%, and the combination of surgery and radiation therapy 33.7%. Overall 5-year survival was 26.3%. Adjuvant radiation therapy was not associated with a longer overall survival as compared to surgery alone.

CONCLUSIONS: Hard palate melanoma is a rare tumor with a low overall survival mostly affecting the elderly. Main treatment is surgical resection. Adjuvant radiotherapy does not confer an improved survival. The establishment of an international registry is advocated to better define treatment options.

15.00 AN ANIMAL STUDY ON THE EFFECT OF GEOMETRIC SHAPE ON HEALING IN CARTILAGE DEFECTS

Savas SEREL, Servet Elçin ISILGAN, Polat YIGIT, Belgin CAN, Hilal GÖKTÜRK

Ankara, Turkey

INTRODUCTION: Cartilage reconstruction-related procedures are very common in plastic surgery. Cartilage is unique for its predominantly anaerobic metabolism with missing blood vessels; thereby, slow turnover and low viability after defect healing. Since it is possible to control the shape of the defect in surgery, we aimed to investigate the effect of defect shape on cartilage healing in animal models assuming certain geometries might decrease the morbidity in donor area.

MATERIALS AND METHODS: Twelve New Zealand white rabbits were used in the study. Square, rectangle, sphere and fusiform-shaped cartilage defects were introduced to both ears with 1 cm² geometric templates by completely elevating cartilage tissue without damaging opposite perichondrium. The removed cartilage was sutured back to the right ear to be used as control. Samples taken at the first and fourth months after defect formation were histologically compared. Chondrocyte production, chondrocyte organization, growth rate, granulation tissue, pseudocarcinomatosis, transverse and sagittal growth, collagen synthesis, hypercellularity, blood vessels, vessel diameters, vessel maturation, penetration, leukocyte invasion, hyperplastic epidermis, regional blood flow, cartilage necrosis, and dermal growth were scored between 0 to 4 by two histologists blinded to the groups, and statistically analyzed by repeated measures analysis of variance.

RESULTS: The results indicated higher but not statistically different scores in the right ears for cartilage synthesis-related parameters like chondrocyte production. Dermal growth rate in sphere-shaped defect in the left ear was found to be statistically significant (p=0.05). Other histological comparisons indicated no significant effect of geometric shape in cartilage healing. There was, on the other hand, a statistically significant difference between initial and final cartilage healing independent of the defect shape (p=0.01).