Short Communication

Does deprivation affect breast cancer management?

NC Henley*,1, DJ Hole2, E Kesson3, HJG Burns3, WD George4 and TG Cooke4

1University Department of Surgery, Glasgow Royal Infirmary, Glasgow G31 2ER, UK; 2West of Scotland Cancer Surveillance Unit, Department of Public Health, University of Glasgow, Glasgow G12 8RZ, UK; 3Greater Glasgow National Health Service Board, 350 St Vincent Street, Glasgow G3 8YZ, UK; 4University Department of Surgery, Western Infirmary, Glasgow G11 6NT, UK

We evaluated whether social deprivation affected decision-making for breast cancer surgery. Of 3419 patients, 53.6% had mastectomy and this was predicted by deprivation, age, tumour size and hospital, all of which retained significance on multivariate analysis, except deprivation. Pathological characteristics and surgical decision-making determined choice of operation not deprivation.

PARTICIPANTS AND METHODS

The Breast Cancer Audit in Glasgow was set up in 1995. It prospectively collects demographic, surgical and pathological data of women with primary operable breast cancer from the five hospitals in the area staffed by specialist surgical teams.

We analysed patients diagnosed between 1996 and 2001, during which time 3541 patients were diagnosed with primary operable invasive breast cancer. Patients with tumours ≥5 cm or locally advanced disease unsuitable for conservation were excluded. Data on tumour pathology, surgical management and patient demographics including deprivation category were collected.

Deprivation was determined using the method of Carstairs and Morris (McLoone, 2004). Postcode sectors are analysed for the prevalence of various census variables associated with socio-economic status, these are: ownership of a car, proportion of people in social classes IV and V, overcrowding, and male unemployment. Postcode sectors are scored and categorised into seven deprivation categories. Categories 1 and 2 were combined to ‘affluent’; 3, 4 and 5 were combined to ‘intermediate’; and 6 and 7 were combined to ‘deprived’. Surgical management was divided into ‘conservation surgery’ (lumpectomy with axillary staging) and ‘mastectomy’ (mastectomy with axillary staging).

Age, deprivation, tumour size, nodal status, histological grade, oestrogen receptor (ER) status and hospital were individually examined for their association with surgical management using chi-square tests of association, and then subjected to multivariate analysis.

RESULTS

Of the 3570 patients entered onto the database, 3419 had tumours smaller than 5 cm. Of these, 1588 (46.4%) underwent conservation surgery and 1831 (53.6%) mastectomy.

On univariate analysis, deprivation, tumour size, nodal status, grade, method of diagnosis and hospital varied significantly with type of surgery (Table 1).

Women from deprived areas were significantly more likely to have larger, symptomatic tumours (Table 2). There was no
Table 1: Univariate analysis of factors determining surgical management

Variable	Conservation (%), \(N = 1588 \)	Mastectomy (%), \(N = 1831 \)	\(\chi^2 \)	\(P \)-value
Deprivation				
Affluent	285 (46.3)	330 (53.7)	17.301	<0.0001
Intermediate	824 (49.7)	833 (50.3)		
Deprived	479 (41.8)	668 (58.2)		
Tumour size (mm)				
<10	380 (73.4)	138 (26.6)		
10–19	770 (57.2)	577 (42.8)		
20–29	330 (35.0)	614 (65.0)		
30–39	90 (20.4)	351 (79.6)		
40–49	17 (10.1)	151 (89.9)		
Nodal status				
Negative	1117 (56.2)	869 (43.8)	252.172	<0.0001
Positive	390 (29.6)	927 (70.4)		
Not known	81	35		
Method of diagnosis				
Screen detected	824 (66.8)	409 (33.2)	327.684	<0.0001
Symptomatic	737 (34.6)	1396 (65.4)		
Not known	26	26		
Grade				
I	507 (65.5)	267 (34.5)	158.889	<0.0001
II	667 (44.0)	848 (56.0)		
III	402 (36.6)	695 (63.4)		
Not known	12	21		
Hospital				
1	722 (52.4)	656 (47.6)	65.751	<0.0001
2	198 (36.7)	341 (63.3)		
3	95 (32.6)	196 (67.4)		
4	472 (48.6)	500 (51.4)		
5	101 (42.3)	138 (57.7)		

*Defined as lumpectomy with axillary staging. bDefined as mastectomy with axillary staging.

Table 2: Univariate analysis of association between deprivation and tumour characteristics

Variable	Affluent (%), \(N = 615 \)	Intermediate (%), \(N = 1657 \)	Deprived (%), \(N = 1147 \)	\(\chi^2 \)	\(P \)-value
Tumour size					
<10	101 (16.4)	279 (16.8)	138 (12.0)	31.699	<0.0001
10–19	250 (40.7)	673 (40.6)	425 (37.1)		
20–29	160 (26.0)	448 (27.1)	336 (29.3)		
30–39	77 (12.5)	191 (11.5)	173 (15.1)		
40–49	27 (4.4)	66 (4.0)	75 (6.5)		
ER status					
Positive	487 (79.2)	1262 (76.2)	846 (73.8)	8.405	0.078
Negative	112 (18.2)	337 (20.5)	267 (23.3)		
Not known	16	58	34		
Nodal status					
Negative	364 (59.2)	988 (59.6)	634 (55.3)	8.484	0.075
Positive	224 (36.4)	619 (37.4)	474 (41.3)		
Not known	27	50	39		
Method of diagnosis					
Screen detected	204 (33.2)	700 (42.2)	331 (28.9)	55.476	<0.0001
Symptomatic	411 (66.8)	957 (57.8)	816 (71.1)		
Grade					
I	140 (22.8)	380 (23.0)	254 (22.1)	5.051	0.282
II	245 (44.9)	755 (45.6)	485 (42.3)		
III	191 (31.2)	510 (30.8)	396 (34.5)		
Not known	7	10	12		

ER = oestrogen receptor.

Table 3: Multivariate analysis of factors determining surgical management

Variable	Relative risk of mastectomy (95% CI)*	\(P \)-value
Deprivation		
Affluent	1	= 0.189
Intermediate	0.93 (0.752–1.161)	
Deprived	1.102 (0.873–1.392)	
Tumour size (mm)		
<10	1	
10–19	1.302 (1.019–1.663)	<0.0001
20–29	2.330 (1.774–3.060)	
30–39	4.216 (2.982–5.960)	
40–49	10.025 (5.643–17.812)	
Nodal status		
Negative	1	
Positive	1.950 (1.649–2.305)	<0.0001
Method of diagnosis		
Screen detected	1	
Symptomatic	2.178 (1.776–2.673)	<0.0001
Grade		
I	1	
II	1.538 (1.254–1.887)	<0.0001
III	1.646 (1.314–2.061)	
Hospital		
1	1	
2	1.110 (0.871–1.414)	
3	1.326 (0.977–1.799)	
4	1.353 (1.118–1.637)	
5	0.639 (0.462–0.884)	

CI = confidence interval. *Derived from multiple logistic regression model including age group, oestrogen receptor (ER) status and year of surgery in addition to those listed above.

Deprivation and breast cancer
NC Henley et al
British Journal of Cancer (2005) 92(4), 631 – 633 © 2005 Cancer Research UK Clinical Studies
significant association between deprivation and nodal status, ER status or grade (Table 2).

Stepwise logistic regression modelling showed that deprivation maintained its significance when age and year of surgery were added into the model (OR = 1.118; \(P = 0.015\)), but lost its significance when tumour size was added (OR = 1.07; \(P = 0.245\)). The multivariate analysis showed that tumour size, nodal status, histological grade, method of diagnosis and hospital were independently predictive of surgical management (Table 3).

DISCUSSION

Our data show that the mastectomy rate in Glasgow is higher than reported elsewhere (Morrow et al., 2001). Based on figures from the United States, it has been estimated that 10% of tumours smaller than 2 cm and 30% of tumours between 2 and 5 cm require mastectomy due to a medical contraindication (Morrow et al., 2001). In our study, the percentages having a mastectomy were 38 and 72%, respectively. Our database does not identify which patients have a medical contraindication to conservation surgery, nor does it record the decision-making process for each patient. However, access to radiotherapy is equal for all patients and it is unlikely that a high incidence of medical contraindications would explain our relatively high mastectomy rate.

We found that women from deprived areas are more likely to have a mastectomy than women from more affluent areas.

However, women from deprived areas have larger and symptomatic tumours. The uptake of breast screening in Glasgow is 68.1% (data from Scottish Breast Screening Programme) with the lowest uptake in the most deprived groups, while the UK average is 75.5% (data from NHS Breast Screening Programme). Both tumour size and method of diagnosis were independently predictive of mastectomy, so it is likely that tumour size and fewer screen-detected tumours determine surgical management rather than the biased treatment of deprived women. Therefore, to some extent, our mastectomy rate reflects higher levels of deprivation in Glasgow.

The populations served by the different hospitals are similar in age and access to radiotherapy services, although their levels of deprivation differ. In the univariate model, the relatively low mastectomy rate in hospitals 1 and 4 is due to their large breast screening practice. However, in the multivariate model, which included method of diagnosis, hospital of treatment was independently predictive of surgical management. This indicates that individual surgeons have an influence over choice of surgical management. Although guidelines have been produced recommending suitability for conservation surgery, there still appears to be a lack of consensus among surgeons.

It does appear that women from deprived areas are being treated appropriately and the choice of surgery is based on tumour characteristics. However, the wide variation in mastectomy rate between hospitals suggests a lack of consensus on the best surgical treatment of breast cancer.

REFERENCES

Brewster DH, Thomson CS, Hole DJ, Black RJ, Stroner PL, Gilliss CR (2001) Relation between socio-economic status and tumour stage in patients with breast, colorectal, ovarian, and lung cancer: results from four national, population based studies. BMJ 322: 830 – 831
Cannon AG, Ssemwogerere A, Lamont DW, Hole DJ, Mallon EA, George WD, Gillis GR (1994) Relation between socio-economic deprivation and pathological prognostic factors in women with breast cancer. BMJ 309: 1054 – 1057
Clark D, McKeon A, Wood R (2004) Health Life Expectancy in Scotland pp. 26 – 39. Scotland: Information & Statistics Division, NHS
Coleman MP, Rachet B, Woods LM, Mitry E, Riga M, Cooper N, Quinn MJ, Brenner H, Esteve J (2004) Trends and socio-economic inequalities in cancer survival in England and Wales up to 2001. Br J Cancer 90: 1367 – 1373
Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jeong JH, Wolmark N (2002) Twenty-year follow-up of a randomised trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347: 1233 – 1241
Macleod U, Ross S, Gillis C, McConnachie A, Twelves C, Watt GC (2000a) Socio-economic deprivation and stage of disease at presentation in women with breast cancer. Ann Oncol 11: 105 – 107
Macleod U, Ross S, Twelves C, George WD, Gillis C, Watt GC (2000b) Primary and secondary care management of women with early breast cancer from affluent and deprived areas: retrospective review of hospital and general practice records. BMJ 320: 1442 – 1445
McLoone P (2004) Carstairs Scores for Scottish Postcode Sectors From the 2001 Census. Glasgow: MRC Social and Health Sciences Unit, University of Glasgow
Morrow M, White J, Moughan J, Owen J, Pajack T, Sylvester J, Wilson JF, Winchester D (2001) Factors predicting the use of breast-conserving therapy in stage I and II breast carcinoma. J Clin Oncol 19: 2254 – 2262
Thomson CS, Hole DJ, Twelves CJ, Brewster DH, Black RJ (2001) Prognostic factors in women with breast cancer: distribution by socio-economic status and effect on differences in survival. J Epidemiol Community Health 55: 308 – 315