CASE REPORT

Empyema caused by Clostridium bifermentans: A case report

Safa Edagiz MD1, Phil Lagace-Wiens MD1,2, John Embil MD3, James Karlowsky PhD1,2, Andrew Walkty MD1,2,3

A 60-year-old man with a medical history significant only for an anxiety disorder presented to a community hospital in Winnipeg, Manitoba with a four-day history of increasing fatigue, weakness, cough and shortness of breath. The patient also complained of sharp right-sided pleuritic chest pain, as well as right upper quadrant abdominal pain associated with deep breathing. He denied nausea and vomiting. A review of systems was otherwise negative. The patient was a heavy smoker and reported occasional alcohol consumption. He denied the use of intravenous recreational drugs.

On physical examination at the time of presentation, the patient was noted to be febrile, with an oral temperature of 39.2°C. He was otherwise hemodynamically stable. The patient was edentulous. On chest auscultation, decreased air entry was noted in the right upper lung base, and crepitations were heard with auscultation over the right-sided pleuritic chest pain, as well as right upper quadrant abdominal pain associated with deep breathing. He denied nausea and vomiting. A review of systems was otherwise negative. The patient was a heavy smoker and reported occasional alcohol consumption. He denied the use of intravenous recreational drugs.

Inhalation of a foreign object was denied. A review of systems was otherwise negative. The patient was a heavy smoker and reported occasional alcohol consumption. He denied the use of intravenous recreational drugs.

KEY WORDS: Clostridium bifermentans; Empyema; Pneumonia

CASE PRESENTATION

The patient was admitted to hospital. A chest tube was placed, and empirical antimicrobial therapy with a combination of levofloxacin-acin and metronidazole was initiated. A sample of pleural fluid was submitted to the microbiology laboratory for further analysis. No polymorphonuclear cells or bacteria were observed on Gram stain. The aerobic culture did not demonstrate any bacterial growth following 72 h of incubation. However, after 48 h of incubation, a large Gram-positive spore-forming bacillus was recovered on anaerobic culture. The organism was subsequently identified as Clostridium bifermentans using a Vitek™ 2 ANC card (bioMérieux, Canada). Antimicrobial susceptibility testing was performed by E-test (bioMérieux, Canada), with minimum inhibitory concentrations interpreted according to 2012 Clinical and Laboratory Standards Institute breakpoints for anaerobic bacteria (1). The isolate was susceptible to amoxicillin-clavulinate, cefotin, clindamycin, meropenem, metronidazole and penicillin.

On the third day postadmission, the patient continued to complain of significant dyspnea and chest pain. A CT scan of the chest was performed with contrast and this demonstrated a right main pulmonary artery embolus. The patient clinically deteriorated and ultimately required admission to the intensive care unit. His antimicrobial therapy was changed to a combination of piperacillin-tazobactam and levofloxacin, and heparin was initiated as treatment for the pulmonary embolus. Fifteen days postadmission, the patient underwent a thoracotomy and decortication of the right lung. Empyema fluid obtained at the time of surgery was submitted to the microbiology laboratory. Clostridium bifermentans was once again recovered on anaerobic culture. Postoperatively, antimicrobial therapy with piperacillin-tazobactam alone was continued.

Following surgery, the patient experienced intermittent low-grade fevers (approximately 38°C) and ongoing hypoxia requiring 2 L of
Clostridium 200 species and subspecies have been recognized to date. These include both anaerobic and aerotolerant species. Of particular note are those species that can demonstrate specific pathogenic properties. One such example is Clostridium bifermentans, in part, by a negative urease test, and positive indole and 

lecithinase tests (2). Older publications in the literature tended to regard C. bifermentans as nonpathogenic (4,6). In somewhat dated animal studies involving mice and guinea pigs, C. bifermentans was recovered from blood and pleural fluid cultures. The patient succumbed to complications of the illness (25).

In both of the previously published cases of C. bifermentans empyema as well as the current case, it is unclear whether infection occurred secondary to hematogenous spread, inhalation or aspiration of the organism, although inhalation was favoured in the report by Jonsson et al (24). The case presented here is similar to the case described by Misra and Hurst (25) in that the infection occurred in the setting of a pulmonary embolus. Given the reported low virulence of C. bifermentans, it is tempting to speculate that tissue injury/infection secondary to a pulmonary embolus may have predisposed our patient to develop this infection. A septic embolus would also be possible as a mechanism of infection, although blood cultures were negative. Unfortunately, the lack of an infused chest CT scan on presentation prevents determination of whether the pulmonary embolus was present at the start of the illness or whether it occurred in hospital once the infection was already established. Alternatively, the infection may have occurred secondary to aspiration, although the patient did not have any risk factors for aspiration specifically identified. It should be noted that the possibility of polymicrobial infection could not be completely excluded because all pleural fluid and tissue specimens were obtained after the start of antimicrobial therapy. Thus, the patient remained on broad-spectrum antimicrobials during his stay in hospital. The etiology of the pneumothorax in the present case also remains uncertain, as is its association (if any) with the development of infection. With the history of smoking, it is possible that our patient did, in fact, have underlying pulmonary disease, and this may have been a predisposing factor for the pneumothorax and/or the empyema.

CONCLUSION

The present report describes a case of pneumonia/empyema caused by C. bifermentans. Infections due to C. bifermentans are infrequently reported, potentially due to the relatively low virulence of this organism. Older publications tended to regard C. bifermentans as nonpathogenic (4,6). However, in more recent reports, this organism has been documented as a cause of septic arthritis, osteomyelitis, soft tissue infection, abdominal infections, brain abscess, bacteremia and endocarditis (7,9-18). The present article describes the third reported case of empyema caused by C. bifermentans, and serves to further define the spectrum of illness due to this uncommon organism.
REFERENCES

1. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. M100-S22. Wayne: Clinical and Laboratory Standards Institute, 2012.

2. Stevens DL, Bryant AM, Berger A, Von Eichel-Streiber C. Clostridium. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW, eds. Manual of Clinical Microbiology, 10th edn. Washington, DC: ASM Press, 2011:834-57.

3. Onderdonk AB, Garrett WS. Gas gangrene and other Clostridium-associated diseases. In: Mandell GL, Bennett JE, Dolin R, eds. Principles and Practice of Infectious Diseases, 7th edn. Philadelphia: Churchill Livingstone Elsevier, 2011:390-3.

4. Brooks ME, Epps HBG. Taxonomic studies of the genus Clostridium: Clostridium bifermentans and C. sordellii. J Gen Microbiol 1958;21:144-55.

5. Vanatsky VM, Garrity GM, Jones D, et al. (eds). Bergey’s Manual of Systematic Bacteriology, 2nd edn. Volume 3: The Firmicutes. New York: Springer Science+Business Media, 2009:758.

6. Nishida S, Tamai K, Yamagishi T. Taxonomy of Clostridium bifermentans and Clostridium sordellii I. Their toxigenicity, urease activity, and sporulating potency. J Bacteriol 1964;88:1641-6.

7. Nolan B, Leers WD, Schatzker J. Septic arthritis of the knee due to Clostridium bifermentans. J Bone Joint Surg 1972;54-A:1275-8.

8. Rechtman DJ, Nadler JP. Abdominal abscess due to Cardiobacterium hominis and Clostridium bifermentans. Rev Infect Dis 1991;13:418-9.

9. Fencer TL, Burchiel KJ. Delayed brain abscess related to a retained foreign body with culture of Clostridium bifermentans. J Neurorad 1986;64:813-5.

10. Scanlan D, Smith MA, Isenberg HD, Engressa S, Hilton E. Clostridium bifermentans bacteremia with metastatic osteomyelitis. J Clin Microbiol 1994;32:2867-8.

11. Gorbach SL, Thadepalli H. Isolation of Clostridium in human infections: Evaluation of 114 cases. J Infect Dis 1975;131:881-5.

12. Moyano R, Gomez-Mates JM, Luzano de Leon F, Florez C, Jimenez-Occano C, Gamboa P. Clostridium bifermentans: An exceptional agent of endocarditis. Clin Infect Dis 1994;18:853-7.

13. Kolander SA, Congrove EM, Molavi A. Clostridial endocarditis. Report of a case caused by Clostridium bifermentans and review of the literature. Arch Intern Med 1989;149:455-6.

14. Rechtem PM, Agger WA, Mrz K, Cogbill TH. Clinical features of clostridial bacteremia: A review from a rural area. Clin Infect Dis 2001;33:349-53.

15. Keal J, Gregson DB, Ross T, Church DL, Laupland KB. Epidemiology of Clostridium species bacteremia in Calgary, Canada, 2000-2006. J Infect 2008;57:198-203.

16. Haddy RI, Nadkarni DD, Mann BL, et al. Clostridial bacteremia in the community hospital. Scand J Infect Dis 2000;32:27-30.

17. Patel SB, Mahler R. Clostridial pleuropulmonary infections: Case report and review of the literature. J Infect Dis 1990;121:81-5.

18. Hudson DA, Gibb AP, Gill MJ. Empyema caused by Clostridium difficile. Can J Infect Dis 1999;10:170-1.

19. Stolk-Engelaar V, Verwiel J, Bongaerts G, Linsen V, Lacquet L, Cox A. Pleural empyema due to Clostridium difficile and Clostridium cadaveris. Clin Infect Dis 1997;25:160.

20. Granok AB, Mahon PA, Bieseck GW. Clostridium septicum empyema in an immunocompetent woman. Case Rep Med 2010;231738.

21. Mayall BC, Snashall EA, Peel MM. Isolation of Clostridium tetani from anaerobic empyema. Pathology 1998;30:402-4.

22. Jonsson S, Claridge J, Young EJ. Necrotising pneumonia and empyema caused by Bacillus cereus and Clostridium bifermentans. Arch Med 1983;127:357-9.

23. Mista DP, Hurst DJ. Necrotising pneumonia and empyema caused by Clostridium bifermentans. Thorax 1992;3:510-11.