Formins as effector proteins of Rho GTPases

Sonja Kühn1 and Matthias Geyer*

Center of Advanced European Studies and Research (CAESAR); Group Physical Biochemistry; Bonn, Germany;
1Present address: Laboratoire d’Enzymologie et Biochimie Structurales (LEBS); CNRS; Cytoskeleton Dynamics and Motility Group; 91198 Gif-sur-Yvette, France

Keywords: formin, Cdc42, mDia1, mDia2, mDia3, Daam1, Daam2, FMNL1, FMNL2, FMNL3, FHOD1, FHOD3, Rac, Rho, ROCK, stress fiber, filopodia, lamellipodium

Abbreviations: FH2, formin homology 2; FH3, formin homology 3; GAP, GTPase activating protein; GBD, GTPase-binding domain; GEF, guanine nucleotide-exchange factor; Daam, Disheveled-associated-activator of morphogenesis; Dia, Diaphanous-related formin; FHOD, FH1/FH2 domain-containing protein; FMNL, Formin-like protein.

Introduction

Many cellular functions such as migration, adhesion, and changes in cell shape are regulated by remodeling of the actin cytoskeleton. The dynamic actin structures play key roles during tissue regeneration, immune responses, embryonic development, and wound healing in eukaryotic organisms. Among a wide array of cytoskeletal structures, three main categories of actin filament assemblies can be distinguished that play fundamental roles in cell migration of multicellular organisms. There is the lamellipodium as a veil-like membrane protrusion at the leading edge of a cell, which contains a meshwork of branched actin filaments. Second, filopodia and microvilli appear as finger-like outgrowths of the plasma membrane that are stabilized by an actin filament bundle of varying thickness. Lastly, actin stress fibers occur in the cytoplasm of the cell that can form at least three different assembly categories such as dorsal stress fibers, actin arcs and ventral stress fibers. These actin structures are dynamically regulated by small GTPases of the Rho family, which has been phenotypically shown more than two decades ago.

The assembly of actin monomers into filamentous structures does not occur spontaneously but requires factors which help to overcome the kinetic barrier of nucleation. These actin nucleation factors can be classified into three groups: the Arp2/3 complex and its nucleation promoting factors, WH2 domain-containing nucleators, and formin proteins. Members of these three groups employ different mechanisms to accomplish the nucleation and elongation of actin filaments. The Arp2/3 complex binds to the sides of pre-existing actin filaments and generates branched actin networks. Spir, as an example for WH2 domain-containing proteins, nucleates the assembly of straight actin filaments by its four WH2 domains. The WH2 elements are lined up at defined distances to accomplish binding to one G-actin molecule each and doubled through Spir dimerization. Formins finally nucleate actin molecules from the barbed end and remain associated with the barbed end during filament elongation. In a landmark study, the formin mDia as the mammalian homolog of Drosophila Diaphanous was found as a downstream effector of Rho that selectively interacts with the triphosphate bound form of RhoA GTPase. In this review we discuss the current knowledge on the structure, function, and activation mechanism of formins as downstream effectors of Rho GTPases.

Formin Effector Proteins of Rho-GTPases

In mammals, there are 15 formins that group into eight different sub-families based on their sequences and domain architectures. A part of these formins were found to be autoinhibited, which gave rise to the classification as Diaphanous-related formins, or DRFs, named after the product of the Drosophila gene diaphanous. The intramolecular interaction between the C-terminal Diaphanous autoregulatory domain (DAD) and its N-terminal recognition domain, termed FH3 or DID, leads to the autoinhibition of DRF proteins. For some of the DRFs it is now well established that the autoinhibition is relieved...
Formins are multi-domain proteins of typically more than 140 kDa in weight that are defined by the presence of a formin homology 2 (FH2) domain. The flanking regions of the FH2 domain vary considerably between individual formins, reflecting the different cellular functions and regulatory mechanisms of the actin polymerization factors. A molecular scheme of the domain architecture of human DRFs is shown in Figure 1. The FH2 domain binds directly to G- and F-actin and has been shown for many formins to nucleate actin molecules and elongate actin filaments. The approximately 400 amino acid long domain forms a doughnut-shaped head-to-tail dimer that remains associated with the fast-growing actin filament barbed end. The formin thereby prevents binding of capping proteins during the elongation procedure. In most formins a proline-rich FH1 domain that interacts with profilin for the recruitment of G-actin molecules precedes the FH2 domain, thus accelerating the actin polymerization rate of the formin. N-terminal to the FH1 domain is the FH3 domain, which is the least conserved module in the overall domain architecture and involved in the regulation of formin activity. In the resting state of the formin, the FH3 domain recognizes the C-terminal DAD generating an intramolecular, autoinhibited complex. In some formins, the FH3 domain is N-terminally merged with a GTPase-binding domain (GBD), whereas an additional dimerization element can be found C-terminally merged with a GTPase-binding domain (GBD), the switch II region (also named the “effector loop”) exclusively interacts with the GBD, the switch I region (also named the “switch region”) binds to the GTPase, similar to that of other Rho effectors. While the switch I region (also named the “effect loop”) exclusively interacts with the GBD, the switch II region forms contacts with the GBD and the FH3 domain (Fig. 4). The GTPase interacts with the mDia1 GBD through a complementary hydrophobic surface, the concave side of the FH3 armadillo repeat structure.15,16 The basic region seems to be important for the affinity of the interaction.15,27 The interaction of the basic region with the FH3 domain has not been determined by structural means yet, but large, negatively charged patches were identified in mDia1 and FHOD1 adjacent to the MDxLxxL recognition site. The basic region of the DAD likely interacts with an acidic groove located between the FH3 domain and the elongated α-helix at the C-terminus of the FH3 domain in mDia1, which connects the FH3 and the DD domain. In addition, the DAD has been shown to exhibit dual functions in autoinhibition and actin assembly as it enhances actin nucleation by recruiting actin monomers. This function is achieved without altering the filament elongation rate of the FH2 domain and independently of the FH1 domain.

The Diaphanous-related formins encompass the four mammalian families mDia, Daam, FMNL, and FHOD, that largely share a similar domain organization. Their interactions with Rho GTPases described today are listed in Table 1 and will be discussed in the following.

Regulation of Diaphanous Related Formins

The resting, autoinhibited complex

An autoinhibitory intramolecular interaction between the C- and N-terminal regions has been described for all mammalian DRFs, but only the autoregulatory interaction of mDia1 is known at structural detail to date. The C-terminal DAD of mDia1 is composed of an amphipathic helix with the central consensus motif MDxLxxL followed by an unstructured, basic region of variable sequence and length (Fig. 3). While the DAD helix is essential for the binding to a hydrophobic surface patch at the concave side of the FH3 armadillo repeat structure, the basic region seems to be important for the affinity of the interaction. The interaction of the basic region with the FH3 domain has not been determined by structural means yet, but large, negatively charged patches were identified in mDia1 and FHOD1 adjacent to the MDxLxxL recognition site. The basic region of the DAD likely interacts with an acidic groove located between the FH3 domain and the elongated α-helix at the C-terminus of the FH3 domain in mDia1, which connects the FH3 and the DD domain. In addition, the DAD has been shown to exhibit dual functions in autoinhibition and actin assembly as it enhances actin nucleation by recruiting actin monomers. This function is achieved without altering the filament elongation rate of the FH2 domain and independently of the FH1 domain.
whereas mainly electrostatic driven interactions are formed with the first armadillo motif on the concave side of the FH3 domain. Since all formin-interacting residues in the switch regions of Rho GTPases are conserved, the specificity of the GTPase–formin interaction remains elusive. Two aromatic residues C-terminal to the α_3 helix of the GTPase were shown to be involved in binding and contribute to the specificity of the interaction. Mutation of three interacting asparagine residues located in the first Armadillo repeat of mDia1 from 164NNN to the corresponding residues TSH found in mDia2 and mDia3 increased the binding affinity to Cdc42.

Activation through displacement

The mechanism how Rho GTPases displace the autoregulatory DAD domain from the FH3 domain is not fully understood today. Our molecular insights are currently based on the available complex structures of the N-terminus of mDia1 with either the DAD or active RhoC, respectively. Although the binding interfaces displayed on the surfaces of the FH3 domain for both, the DAD and the GTPase, only slightly overlap (Fig. 5), a simultaneous binding is excluded. Therefore, a two-step binding mechanism to abolish the autoinhibition has been suggested. The Rho GTPase might first bind in an initially weak complex to the GBD of the mDia1 formin, followed by the formation of a stronger interaction with the GBD-FH3 interface, which subsequently could result in the dislocation of the DAD from the FH3 domain.

However, there is increasing evidence that binding of a Rho GTPase is not sufficient for full activation of a DRF. Whereas constitutively active RhoA is able to completely displace a small DAD peptide from an N-terminal construct of mDia1, such active GTPase only partially relieved the autoinhibited complex between the dimeric N-terminus (GBD-FH3-DD or GBD-FH3-DD-CC) and the C-terminus (FH2-DAD). In vitro polymerization assays using near to full-length mDia1 protein exhibited only partial activation even in the presence of a three orders of magnitude higher excess of constitutively active RhoA. These observations led to the conclusion that additional formin family-specific regulation mechanisms might be required for full activation. For example, two studies demonstrated that phosphorylation events could interfere with the FH3-DAD interaction contributing to DRF regulation, and likewise association to membrane compartments is suggested to strengthen the active state. These additional activators are displayed as co-factors bridging the partially activated to the fully activated state of the DRFs shown in Figure 2A.

Formin inhibiting co-regulators often bind directly to the FH2 domain and thereby block the actin polymerization activity as it has been shown for the interaction of DIP-1 with mDia1. In contrast, activating co-regulators may prevent the autoinhibitory interaction between the C-terminal DAD and

Figure 2. Cartoon of the regulation of a Diaphanous related formin. (A) In the autoinhibited state, the C-terminal DAD interacts with the N-terminal FH3 domain. Binding to a GTP-bound Rho GTPase leads to relief of the autoinhibited state by a partial displacement of the DAD and formin activation. Possible co-factors as e.g., kinases for formin phosphorylation, additional interaction factors of the DAD (as described for Daam), or interactions with membrane compartments for proper orientation might be required for full activation of the formin. GBD, GTPase-binding domain, FH1/2/3, formin-homology domains, DD, dimerization domain, CC, coiled coil domain, DAD, Diaphanous-autoregulation domain. (B) Cartoon of the activated formin dimer. The proline-rich FH1 domain recruits profilin–actin complexes in close proximity to the FH2 domain. G-actin molecules are polymerized to F-actin by the dimeric FH2 domain.
the N-terminal FH3 domain. For example, the competitive binding of Anillin to the N-terminus of mDia2 effects its DAD release resulting in formin activation.41 On the other hand, the binding of Anillin to the N-terminus of mDia2 effects its DAD autoinhibition. The N-terminal FH3 domain reveals a tetrameric conformation29,30 that might result from crystal packing as full-length mDia1 is a dimer in solution.29,30,36 First insights into the structure of the dimeric, almost full-length mDia1 formin in the autoinhibited state were reported by Maiti et al. using electron microscopy.36 In this study, the full-length mDia1 formin in the autoinhibited state were reported to steric hindrance.29 In the activated state, the elongated mDia1 structure seems to be accessible for G-actin, but not F-actin due to steric hindrance.29 The overall domain assembly

First studies addressed the assembly of full-length mDia1 in the autoinhibited state, yet the overall structure of the 140 kDa protein is not fully understood.29,30,36 Structural assemblies of the N- and C-terminal regions lacking the GBD and the FH1 domain reveal a tetrameric conformation29,30 that might result from crystal packing as full-length mDia1 is a dimer in solution.29,30,36 First insights into the structure of the dimeric, almost full-length mDia1 formin in the autoinhibited state were reported by Maiti et al. using electron microscopy.36 In this reconstruction the dimeric, fork-shaped N-terminus folds over the doughnut-shaped FH2 domain and inhibits F-actin elongation by steric hindrance of actin filament binding. Likewise, the mDia1 FH2 domain in the autoinhibited state of the crystal structure seems to be accessible for G-actin, but not F-actin due to steric hindrance.29 In the activated state, the elongated mDia1 molecule might not easily drop back into the autoinhibited conformation, due to large conformational transitions between the active and inactive conformations of the formin. It is indeed conceivable that the DAD interacts in the activated state with the F-actin filament preventing renewed autoinhibition, as interaction of the mDia1 DAD with actin has been described.31

Subcellular localization

Besides GTPase-mediated activation, the subcellular localization of the formin is also part of its regulation. This has been first described for the S. pombe formin Fus1,33 followed by mammalian formins FMNL1 and mDia1.37,44 As early as 2001, it has been assumed that the FH3 domain of mDia1 regulates its subcellular recruitment.45 Membrane recruitment of formins occurs either through the direct interaction with a prenylated, membrane-associated Rho GTPase or includes other, GTPase independent localization mechanisms. mDia1 and mDia2, but not mDia3, contain an additional membrane binding motif composed of polybasic clusters N-terminal to the GBD that is thought to sustain the interaction with phospholipids through electrostatic interactions.46,47 A Rho GTPase independent localization mechanism was confirmed for the N-terminus of Daam1 and the yeast formins Cdc12p and Bnr1p.48-50 Meanwhile, it has been shown that a region inside the FH3 domain of mDia1 mediates binding to the scaffolding protein IQGAP1.51 Furthermore, scaffolding proteins that contain membrane-anchored BAR domains represent crucial interfaces between signal transduction and actin cytoskeleton dynamics.52,53 Consequently, some formins were described to be recruited by FH1–SH3 interactions with BAR proteins to specific membranes, such as mDia by IRSp5354,55 or Daam by Cip4/Toca-1.56

Overall, the combination of formin localization either by intrinsic targeting motifs or external recruitment factors and the interaction with activating factors of the Rho family GTPases determines the regulation of DRFs in cells. An overview about the expression profiles, specific function in actin remodeling, cellular functions, and binding interactions and localization of the DRFs is provided in Table 2. In the following we will describe the four mammalian DRF families with regard to their function and mechanism of activation by Rho GTPases as known to date. A model figure summarizing the function and localization of DRFs in cells is shown in Figure 6.

mDia

The mammalian Dia formin family with the three isoforms mDia1, mDia2, and mDia3 is a major effector of Rho GTPases.9,11 mDia proteins induce actin filaments upon activation and cooperatively work with ROCK (Rho-associated coiled-coil...
coil kinase) to regulate the formation of actin stress fibers in cultured cells. mDia1 is the mouse ortholog of human Dia1 or DRF1 that shares 90.3% sequence identity to its human counterpart. mDia1 binds to the barbed ends of actin filaments and promotes strong polymerization activity, as seen by the processive movement of mDia molecules at the filament barbed ends in living cells. In a recent study Breitsprecher and colleagues used single-molecule fluorescence microscopy techniques to image actin filament polymerization in vitro by differentially labeling the adenomatous polyposis coli (APC) and the FH1-FH2-DAD domain assembly of mDia1. Upon filament polymerization, the complexes separated as visualized in the fluorescence images, with mDia1 moving processively on growing barbed ends while APC remained at the site of nucleation.

The best studied isoform of the Dia family is mDia1, which is involved in a variety of cellular processes including mechanotransduction, cell polarization and migration of certain cell lines, axonal outgrowth in primary cell cultures of cerebellar granule neurons, and exocrine vesicle secretion in the apical membrane. mDia2 instead is involved in filopodia formation, and cytokinesis in cultured cells. mDia2 was also ascribed a function in the formation of the contractile ring during asymmetric cell division of erythroblasts and endosome trafficking in fibroblasts. mDia3 finally was shown to be required for chromosome alignment in HeLa cells, potentially by phosphorylation and regulation through the kinase Aurora B. A comprehensive overview of mDia function and the phenotypes resulting from mDia1 and mDia3 knockout in mice was recently provided by the Narumiya laboratory. Diseases associated with the roles of formins in cell division, migration, immunity, and microvesicle formation imply various types of cancer, deafness, and mental retardation. The misregulation of formins is suggested to loosen adhesion of cancer cells, migration and ultimately invasion.

The majority of biochemical and structural data to this day results from mDia1-Rho GTPase interactions. The FH3 domain (also called DID for “Diaphanous inhibitory domain”), encompassing amino acids 133–377 in mDia1, is located in the N-terminal regulatory part of DRF proteins. Up to now, FH3 domain structures of mDia1, FHOD1, and FHOD3 have been determined. The FH3 domain is exclusively helical and composed of five armadillo (ARM) repeats (Fig. 4). ARM repeats consist of three α-helices arranged in a rectangular triangle, with each repeat rotated against another by 15–20° forming an elongated, banana-shaped structure with a convex and concave site of the superhelical domain fold. High sequence variations make a prediction of the helical assembly difficult and hence the prediction of interaction sites speculative. In mDia1, the extended helix of the last ARM motif leads into the following dimerization domain (DD, aa 377–452) that consists of three α-helices with two helices of each dimer chain forming a four helix bundle (Fig. 4A). A helical region that displays sequence features of a coiled coil structure is located C-terminal to the dimerization domain (CC, aa 452–570). It has been demonstrated that the DD of mDia1 is sufficient for dimerization and that the N-terminus of mDia1 represents a constitutive dimer which might only dissociate through unfolding. Not all DRFs necessarily contain this second dimerization element in addition to the C-terminal head-to-tail arrangement of the FH2 domain, as the N-terminus of FHOD1 was shown to contain a flexible linker region instead (Fig. 1). N-terminal to the FH3 domain of mDia1 is the GTPase-binding domain (GBD, aa 73–131). This short segment is constructed of three

![Figure 3. Structure of the autoinhibited FH3–DAD complex of mDia1. The helical DAD binds into the concave site of the FH3 domain armadillo repeat structure. (A) The DAD consensus motif MDxLL extends to VMDxLLxxLxF in the binding interface to the FH3 domain. (B) All five armadillo repeats participate in the interaction of the N-terminal FH3 domain with the C-terminal autoregulatory domain. Mutation of the central A256 residue to aspartate on the last turn of the third armadillo repeats leads to relief of the autoinhibition and activation of the formin. Displayed is the structure 2F31. A cartoon of the interaction scheme is shown below the atomic model.](image-url)
triangularly arranged helices that are connected by a short linker to the FH3 domain (Fig. 4).32,34 In the absence of the activating Rho GTPase, the GBD is presumably loosely folded but moves freely in solution,35 representing therefore a subdomain rather than an independent structural unit.

Daam

The protein Dishevelled-associated activator of morphogenesis 1 (Daam1) was identified as interaction factor of Dishevelled (Dvl), which mediates the non-canonical Wnt/PCP (planar cell polarity) signaling pathway.75 Early functional studies of Daam1 in lower species suggested an essential role in *Xenopus* gastrulation and *Drosophila* trachea formation.75,76 Daam1 localizes to the plasma membrane and cytoplasmic vesicles, and this pattern is tightly regulated by Wnt and Dvl.75,77,79 Recent studies in mammalian systems underline the role of the two Daam proteins, Daam1 and Daam2, in cell development.

Daam1 is highly expressed in developing murine organs, including the heart. Consistent with this expression pattern, Daam1-deficient mice show cardiac defects, including ventricular non-compaction, double outlet right ventricles and ventricular septal defects. These animals die during embryonic development or at early postnatal days.80 The role of Daam1 in the nervous system has been analyzed in zebrafish.81 Here, Daam1 is enriched in the dorsal part of the asymmetric habenular neuropil. Loss of Daam1 in zebrafish embryos resulted in disturbed asymmetry and reduced neuropil formation. This can be explained by the finding that Daam1 regulates outgrowth of neuronal axons and dendrites.1 Another Daam1-dependent process is the closure of the neural tube during embryogenesis. This process involves a regulating cadherin, Dvl, Daam1, and the PDZ-Rho-GEF to upregulate Rho kinase.82 Cellular forces of the ROCK stimulated actomyosin-dependent contraction promote the polarized bending of the neural plate.

Like Daam1, Daam2 seems to be involved in developmental processes regulated by Wnt-signaling. Two studies describe that Daam2 is important for asymmetric cell behavior. At first, loss-of-function studies revealed that Daam2 is required for dorsal progenitor identities and canonical Wnt signaling by its interaction with Dvl3, which modulates Wnt signal transduction during spinal cord development.83 In addition, initiation of a leftward tilt in gut morphogenesis is likewise a critical aspect of asymmetric cell behavior that was found to be modulated by Daam2.84 Effectors of the transcription factor Pitx2 responsible for the transfer of left-right information from early gastrulation to morphogenesis were found to mediate Wnt signaling to activate Daama.84

The activation mechanisms of the two Daam proteins remain not well understood on a molecular level. The Daam proteins are
autoinhibited by a C-terminal DAD, similarly as found in Dia formins, but activation is achieved through the interaction of the DAD with the PDZ domain of Dishevelled, releasing the autoinhibited state. As active Daam1 was reported to lead to RhoA activation, a positive feedback loop that amplifies the levels of active GTPase has been proposed. For Daam1 it has been speculated that either a RhoGEF is recruited to activate Daam1 to increase the pool of GTP-loaded RhoA or that a RhoGAP might be silenced such that less RhoA-GTP is hydrolyzed. Yet, another study described that Daam1 does neither regulate cytoskeletal organization through RhoA nor Rac1 or Cdc42. Active Daam1 however is found in nonadhesive regions of cells bridging fibronectin-coated adhesive strips where it associated with actin networks containing myosin II and the cross-linker filamin A.

Figure 5. Display of the autoinhibitory and activating binding interfaces on mDia1 GBD-FH3 domains. (A) DAD binding interface on mDia1. Displayed are interacting residues derived from the mDia1 FH3–DAD complex structure 2F3116 and highlighted on the GBD-FH3 structure 1Z2C.2 Hydrogen bonds are formed between N217, N310, and Q352 (colored light blue) of the FH3 domain and the DAD. A salt bridge to D1183 of the DAD is mediated by K213 (colored blue) and hydrophobic interactions to the DAD motif are contributed by I222, K252, L253, A256, I259, L260, Q307, A311, T314, V351, and V355 (colored yellow) of the FH3 domain. (B) Display of the Rhoc binding interface on mDia1 GBD-FH3 based on the evaluation provided in the 1Z2C structure.32 Polar interactions to the GTPase are formed by K100 and Q118 of the GBD and N164, N165, N166, and N217 of the FH3 domain. A salt bridge is mediated by K107 and hydrophobic interactions are formed by M90, M94, N95, L96, P103, L104, and M115. Only N217 on the second armadillo repeat of the FH3 domain is in the intersection of the binding interface between the inhibiting and activating complex.

FMNL

The “Formin-like” (FMNL) protein family represents the third family of mammalian DRFs and includes the members FMNL1 (alternative name FRL1), FMNL2 (also named FRL3), and FMNL3 (also named FRL2) with a total of eight splicing isoforms. The multidomain FMNL formins have been initially described as formin-related genes in leukocytes (FRL)86 and share about 23% sequence identity with Dia1.5 The functional roles of FMNL formins seem to be diverse and are only partly defined to date. The different members of the FMNL family appear to regulate similar processes during development based on overlapping expression patterns, but also seem to have independent functions based on distinct tissue expression.87 The macrophage-enriched FMNL1 is involved in the regulation of cell adhesion, growth and migration through the reorganization of the lamellipodial and filopodial actin cytoskeleton.86 In T lymphocytes, this formin has been identified as essential regulator of centrosome polarity and exhibits crucial functions in the activation of cytotoxic T cells.88 FMNL1 proteins display unique patterns circular around centrosomes and localize at the tip of filopodial structures that have been developed during the recognition of the antigen presenting cell.88 It has been furthermore described that FMNL1 is recruited to the phagocytic cup and involved in the Fcγ receptor-mediated phagocytosis.37 FMNL1 also accumulates at the pseudopods of macrophages and regulates macrophage coiling phagocytosis since its depletion reduces the uptake of invading borrelia.89 Recently published studies have shown that FMNL1 may be involved in the regulation of podosomes and the structural stabilization of the Golgi complex.90,91 Activated FMNL1 might cause polarized non-apoptotic membrane blebbing independent of ROCK or Src activity.92 Additionally, first hints from proteomic screens point to a potential involvement of FMNL1 in calcium-dependent membrane plasticity.93

The second member of the FMNL formin family, FMNL2, generates protruding actin structures at the leading edge of a migrating cell, the lamellipodium and filopodia.94,95 FMNL3 in contrast regulates endothelial cell elongation during angiogenic morphogenesis by microtubule alignment96 and seems to be involved in cell motility.97 Both, FMNL2 and FMNL3 are predominantly associated with the plasma membrane and this localization depends on their N-terminal myristoylation (Table 2).95 The misregulation of FMNL formins has been implicated with severe diseases. FMNL1 is enriched in hematopoietic cells and tissues such as thymus, spleen and peripheral blood leukocytes and is overexpressed in malignant lymphomas of patients with chronic lymphatic leukemia as well as in T cells from patients with malignant non-Hodgkin lymphoma.98,99 The depletion of FMNL1 reduces cell proliferation as well as migration of leukemia cells and tumor growth.100 The fmnl2 gene is expressed in many tissues with the highest expression level found in cells of the nervous system, the gastrointestinal as well as the breast epithelium and the lymphoid tissue.94 Overexpression of FMNL2 in cells of colorectal carcinoma causes a more aggressive tumor behavior associated with increased proliferation, motility, invasion, and metastasis.101 In breast melanoma cells, FMNL2 is likewise involved in their invasive cell migration.102 Furthermore, FMNL2 promotes the epithelial mesenchymal transition, which
Table 2. Expression profiles, functions, and interactions of DRFs

	mDia1/DRF1	mDia2/DRF3	mDia3/DRF2	Daam1, Daam2
Expression	several cell types and tissues	several cell types and tissues	several cell types and tissues	Daam1: expressed in early developmental stages¹¹² Daam2: high expression in neuronal cells,¹¹² high expression in later developmental stages of central nervous system¹¹²
Actin regulation	F-actin nucleation, elongation¹⁴,²²	F-actin nucleation, elongation¹⁷,²²	F-actin nucleation, elongation, bundling¹⁶³,¹⁶⁴	F-actin polymerization³³,¹⁶⁷,¹⁶⁸
Actin structures	Stress fibers¹¹¹,¹⁵⁰	Filopodia¹⁵⁴	F-actin polymerization³³,¹⁶⁷,¹⁶⁸	Filopodia⁷⁹
Function	Mechanosensation³⁰,⁶¹ Cell polarization⁶²,¹³¹ Cell migration⁵¹,¹³¹ Phagocytosis³¹ Cell motility of T cells¹³² Axogenesis of neurons⁶⁰ Endosome trafficking¹³³ Exocrine vesicle secretion⁶⁴ Microtubule stabilization¹⁵⁴,¹⁵⁶ Cell signaling, transcriptional regulation¹⁵⁷	Cytokinesis⁴¹, ⁶⁸,¹⁶¹ Nucleation of erythroblasts⁶⁹ Cell movements during gastrulation¹⁶² Endosome trafficking¹⁷⁰	Cell mitosis¹⁶⁵ Mitotic chromosome alignment¹⁷² Endosome trafficking¹⁷³ Apical-basal polarity of neuroepithelial cells¹⁶⁷	
Interactions, localization	Rho GTPase RhoA³⁷,¹³⁶ Polybasic N-terminal clusters⁴⁶,¹²⁴ IQGAP1³¹ IRSp53⁵⁴,⁵⁵ CLIP-170¹⁵⁹ Nuclear localization¹⁷²	Rho GTPase RhoA³⁷ Polybasic N-terminal clusters⁴⁶ IQGAP1³¹ Rho GTPase Cdc42³⁷ srGAP2¹¹¹ Rho GTPase Cdc42³⁷ N-terminal myristoylation³⁷	n.d.	Cip4⁵⁶ Toca-1³⁶

	FMLN1	FMLN2, FMNL3	FHOD1	FHOD3
Expression	Macrophage-enriched⁸⁶ Hematopoietic cells and tissues (thymus, spleen, peripheral blood leukocytes)⁸⁶,⁹⁷ Overexpressed in lymphoma cells⁹⁸,⁹⁹	Cells of nervous system, epithelium, lymphoid tissue⁹⁸ Overexpressed in colorectal carcinoma¹⁰¹	high expression in several cell types¹¹² mesenchymal cells¹¹⁹	low average expression levels, specific expression in skeletal and cardiac muscle¹¹² highly expressed in heart¹³³,¹⁷⁰,¹⁷¹
Actin regulation	F-actin polymerization, severing, bundling¹⁰⁶	F-actin polymerization, bundling⁹⁵,¹⁰⁹	F-actin bundling, capping¹¹⁵	F-actin acceleration¹²³
Actin structures	Lamellipodium, filopodia⁸⁶	Lamellipodium, filopodia⁹⁴,¹⁰⁷	Stress fibers¹¹³ enriched in transversal actin arcs, mature stress fibers¹¹⁶	Stress fibers¹²⁴,¹⁷⁰
Function	Cell proliferation¹⁰⁶ Cell adhesion, growth, and migration⁹⁶,¹⁰⁰ Centerosome polarity¹⁰⁶ Cytotoxic T cell activation⁸⁷ Recognition of the antigen presenting cell¹⁰⁸ Phagocytosis¹⁷²,¹⁷³ Regulation of podosomes⁹⁰ Golgi complex stabilization⁹³ Non-apoptotic membrane blebbing¹³³	Cell motility and cell migration⁹⁴,⁹⁵,⁹⁷,¹⁰¹-¹⁰³,¹¹⁰ Cell proliferation¹⁰¹,¹⁰⁵ Endothelial cell elongation during angiogenic morphogenesis⁹⁶	Regulation of sarcomere organization¹²² Heart development¹²⁵ Myofibril maintenance¹²³	
Interactions, localization	Rho GTPase Cdc42³⁵,¹³⁶ srGAP²¹¹	Rho GTPase Cdc42³⁵ N-terminal myristoylation³⁵	Recruitment by Rho GTPase Rac¹¹³ Phosphorylation by ROCK²⁸,¹²⁶ Association with Nesprin-2-giant¹⁷³	Phosphorylation by CK²¹²

n.d., not determined
is associated with the loss of cell adhesions and enhanced migration ability.103 Besides a link to cancer progression, FMNL2 could also be involved in diseases of the nervous system. A sporadic 3.9 Mb deletion in gene locus 2q23.3 of an infant caused severe mental retardation, early onset of puberty, reduced stature and hand anomalies.104 This locus encompasses five genes including \textit{fmnl2}. As a possible reason for these symptoms a morphological change of the dendritic spines based on disturbances of the actin cytoskeleton has been proposed.104 Like the other two FMNL proteins, also FMNL3 seems to participate in the proliferation of malignant tumor cells.105

Actin filament polymerization and bundling activity of FMNL formins was reported by several groups, while FMNLs also might sever actin filaments.25,95,106-108 It has been shown for FMNL1 that the dimeric FH2 domain associates with the barbed end of actin filaments, processively elongates them in the presence of profilin, reduces the elongation rate in the absence of profilin, and prevents binding of capping proteins.106 An FH1-FH2 protein construct of FMNL3 induces filopodia formation and accumulates at their tips, while the corresponding construct of FMNL1 does not.107 The region C-terminal to the FH2 domain accelerates the actin assembly activity of FMNL3 and this activity is mediated by an actin monomer and F-actin barbed end binding WASP homology 2 (WH2)-like sequence.109 FMNL2 rather represents an actin filament elongation factor promoting cell migration than a nucleation factor.95

FMNL1, -2 and -3 are autoinhibited by interactions between the N- and C-termini25,37,95 and also hetero-dimeric complex formation between N- and C-terminal domains of FMNL2 and FMNL3 appeared to be possible.25 The specificity of Rho GTPases for individual FMNL formins is still under debate as contradictory studies were reported in the past (Table 1). A nucleotide-independent binding mode of the N-terminus of FMNL1 to Rac1 has been described,86 as well as the nucleotide-dependent interaction with active GTPases Cdc42,37,95 Rac1,109 and Rho.88,102,110 RhoC, but not RhoA, was shown to specifically interact with FMNL3, which promotes polarized migration through FMNL3 by restricting lamellipodial broadening.110 In addition, Cdc42-induced recruitment of FMNL1 and FMNL2 to the plasma membrane has been demonstrated.37,95 FMNL1 might interact with the iBAR domain-containing protein srGAP2 and co-localizes with it at the phagocytic cup of macrophages.111 srGAP2 is a Rac1-specific RhoGAP and might represent an inhibition mechanisms of formin activity.
FHOD

The mammalian FHOD family comprises two proteins, FHOD1 and FHOD3 (the name FHOD2 has been misleadingly assigned to a protein of a different formin family and is thus discontinued). Both FHOD1 and FHOD3 show considerably different expression profiles in cells. In a recent study, 22 different human cell and tissue types were analyzed by quantitative real-time PCR, showing on average highest expression levels for FHOD1 among all 15 formins. In contrast, FHOD3 was lowest on average but with a very specific expression profile in cardiac and skeletal muscle, outbalancing here its sister homolog FHOD1.

Expression of active FHOD1 leads to a phenotype of F-actin stress fibers. The protein contains an N-terminal F-actin side binding element and localizes to cellular stress-fiber structures. Yet FHOD1 is thought to poorly elongate actin filaments but rather acts as an actin bundling factor with capping activity toward the filament barbed end. FHOD1 thus stabilizes actin filaments by protecting barbed ends from depolymerization with its dimeric FH2 domain, whereas the region N-terminal to the FH1 domain mediates F-actin bundling by binding to the sides of adjacent F-actin filaments. The protein moves with the actin retrograde flow and enriches in actin arcs and more mature stress fibers, rather than staying at the leading edge and expanding cell migration as Dia and FMNL. FHOD1 stimulates the spatiotemporal organization of transversal arcs that are formed by fusion of short antiparallel actin filaments, which is critical for stress fiber maturation. The GBD-FH3 domains of FHOD1 are responsible for stress fiber association and co-localization with Myosin.

FHOD1 was recently described to be recruited to integrin clusters, which results in actin assembly. Integrin binding to matrix ligands provides critical signals for cell growth or differentiation. Targeting of FHOD1 to the integrin sites depends on the direct interaction with Src family kinases and is upstream of the activation by Rho kinase. Functional studies showed that retention of the mitotic kinase Aurora-B at the cortex depends on FHOD1, which becomes phosphorylated by the kinase. Modulation of FHOD1 activity by Aurora-B thereby contributes to daughter cell spreading after mitosis. FHOD1 also appeared to be markedly upregulated upon epithelial-to-mesenchymal transition in cancer cells contributing to cell migration and invasion. FHOD1 in conjunction with Rac1 was furthermore described as novel regulators of vaccinia actin tail formation. Vaccinia virus thus integrates the activity of the N-WASP-ARP2/3 and Rac1-FHOD1 pathways to display robust actin-based motility. FHOD1 and Arp2/3 were also shown to cooperate in *Salmonella* invasion where both factors occupy distinct microdomains at the invasion site and control distinct aspects of membrane protrusion formation.

FHOD3 was first described to regulate sarcomere organization in cardiomyocytes where it localizes to thin actin filaments in a striated pattern. Its depletion by siRNA resulted in a marked reduction in filamentous actin and disruption of the sarcomeric structure. A splice variant of FHOD3 specific for striated muscles promotes the polymerization of actin filaments in cardiomyocytes and downregulation of this isoform severely affects myofibrill integrity. This specific FHOD3 variant is phosphorylated by casein kinase 2 (CK2), which is required for proper targeting of muscle FHOD3 to the myofibrils in embryonic cardiomyocytes being in the mature state restricted to the Z-disc proper in the adult heart. Knockout of *fhod3* in mice resulted in disturbed myofibril maturation and embryonic lethality due to problems in heart development. Together, these studies demonstrate the different functions of FHOD1 and FHOD3 in cells, which is reflected by their different expression profiles.

Although FHOD is considered a DRF according to its domain architecture (Fig. 1), its interaction with GTPases and mechanism of activation remains still elusive. FHOD1 is autoinhibited by a C-terminal DAD and truncation of the C-terminus leads to an active phenotype. Structural studies showed that FHOD1 contains an N-terminal GTPase-binding domain composed of an ubiquitin superfold, yet a direct interaction of the GBD or the GBD-FH3 unit to Rac1 could not be confirmed. Instead FHOD1 was shown to become phosphorylated at three specific sites within the C-terminal DAD by the Rho effector kinase ROCK. This interaction places FHOD1 as a downstream effector of Rho, which is in line with the phenotype attributed to this GTPase and the observed function of active FHOD1 in stress fiber formation (Fig. 6). The ubiquitin superfold found in FHOD1 is known as GTPase-binding domain from Ras family effectors such as Raf, PI3 kinases or RalGDS. A similar N-terminal domain structure is found as F0 domain in Kindlin and Talin, moving the FHOD domain assembly close to integrin cofactors. The *Dictyostelium discoideum* protein Formin C (ForC) as the closest homolog to mammalian FHOD1 contains a similar N-terminal ubiquitin domain structure, whose positively charged surface area mediates localization to specific membrane patches. Likewise, ForC binds to actin filaments and crosslinks them into loose bundles of mixed polarity. The association of FHOD1 with the growing actin filament as bundling and capping factor however makes a stable interaction with a GTPase unlikely but fits well to the activation mechanism via phosphorylation, e.g., by ROCK. The possible interaction partners for recruitment and activation of FHOD1 and FHOD3 are not yet clear.

Conclusions

The analysis of the interaction between Rho GTPases and formin effector proteins is only at the beginning, as the specificity (or promiscuity) of these GTPases for effectors of the actin cytoskeleton is not yet well understood. For some formin families such as Dia and FMNL, all three major Rho GTPase subfamilies Rho, Cdc42, and Rac have been reported to interact with these effectors (Table 1). However, as different biochemical techniques were employed for the analyses of these interactions, some of these results are difficult to compare. It is supposed that GTPase activation by guanine nucleotide exchange factors occurs at lipid membranes. The Rho, Cdc42, and Rac subfamilies all contain C-terminal prenylation motifs as either farnesylation or
geranylgeranylation that target these signaling proteins to membrane compartments. The targeting of formins to specific cellular membranes is therefore a major determinant of function. This mechanistic condition correlates well with the observed phenotypes of some DRFs, as e.g., for the generation of filopodia and lamellipodia at the leading edge of a cell (Fig. 6). The spatial positioning of these cytoskeletal membrane protrusions appears secured by the association and activation of the complex at membranes. Other formins such as FHOD instead are activated through phosphorylation, which only indirectly requires Rho as the upstream factor of ROCK kinase. Likewise the combined interaction of a Rho GTPase and a DAD binding factor as in Daam might be required for full activation of the formin. This diversity requires the individual characterization of each formin and the consideration of multiple co-factors. Future functional and structural studies are therefore required to shed light on the versatile aspects of the modulation of the actin cytoskeleton by formins as downstream effectors of Rho GTPases.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
S.K. is a member of the International Max Planck Research School in Chemical Biology, Dortmund.

Funding
This work was supported by a grant from the Deutsche Forschungsgemeinschaft to M.G. (GE-9767/2–).
Nureki O, et al. Biochemical characterization of the Rh GTPase-regulated actin assembly by diaphanous-related formins, mDia1 and Daam1, in platelets. J Biol Chem 2008; 283:8746-55; PMID:18216825; http://dx.doi.org/10.1074/jbc.M707039200

43. Lammer M, Meyer S, Kühlmann D, Wittinghofer A. Specificity of interactions between mDia isoforms and Rho proteins. J Biol Chem 2008; 283:53326-46; PMID:18829452; http://dx.doi.org/10.1074/jbc.M008396200

44. Copeland SJ, Green BJ, Burchat S, Papalia GA, Ban-...
of the centrosome to the immunological synapse.
Immunity 2007; 26:177-90; PMID:17306570;
http://dx.doi.org/10.1016/j.immuni.2007.01.008

75. Naj X, Hoffmann AK, Himmel M, Linder S. The for-
minus FMNL1 regulates new and novel phagocyto-
sis of Borellia burgdorferi by primary human macrophages. Infect Immun 2013; 81:1683-95;
PMID:23460512; http://dx.doi.org/10.1128/IAI.01411-12

76. Merschitz AK, Miller MR, Chouwko H, Blystone SD.
The formin FRL1 (FMNL1) is an essential compo-
ment of macrophage podosomes. Cytoskeleton (Hobo-
ken) 2010; 67:657-78; PMID:20617518; http://dx.doi.org/10.1080/00907319.2010.481685

77. Li Y, Zhu X, Zeng Y, Wang J, Zhang X, Ding YQ.
Liang L. FMNL2 enhances invasion of colorectal car-
cinoma by inducing epithelial-mesenchymal transi-
 Cell Mol Cancer Res 2010; 8:1579-90; PMID:20720152;
http://dx.doi.org/10.1158/1541-7786.CMR-10-0081

78. Lybaek H, Ostravik KH, Prescott T, Hovland R, Breitl H, Stanesby C, Steen VM, Houge G. An 8.9
Mb 19p13 duplication associated with precocious puberty and a sporadic 3.9 Mb 22q34.31 deletion
containing NR4A2 in mentally retarded members of a family with an intrachromosomal 19p-into-19q
between-arm inversion. Eur J Hum Genet 2007; 15:904-10; PMID:17951671; http://dx.doi.org/10.1038/ejhg.2008.261

79. Matusek T, Gombos R, Sz
-13Small GTPases
76. Matusek T, Djiane A, Jankovics F, Brunner D, Mlod-
-13Small GTPases
75. Habas R, Kato Y, He X. Wnt/Frizzled activation of
-13Small GTPases
74. Gomez TS, Kumar K, Medeiros RB, Shimizu Y, Leib-
-13Small GTPases
73. Santos-Ledo A, Jenny A, Marlow FL. Comparative
gene expression analysis of the fmnl family of formins
-13Small GTPases
72. Colombo A, Palma K, Armijo L, Mione M, Signore
-13Small GTPases
71. Kida YS, Satou T, Miyasaka KY, Satou A, Ogaru T.
-13Small GTPases
70. Marutek T, Dijane A, Jankovics F, Brunner D, Mlod-
-13Small GTPases
69. Kida YS, Tato T, Miyasaka KY, Satou A, Ogaru T.
-13Small GTPases
68. Matusek T, Djiane A, Jankovics F, Brunner D, Mlod-
-13Small GTPases
67. Habas R, Kato Y, He X. Wnt/Frizzled activation of
-13Small GTPases
66. Habas R, Kato Y, He X. Wnt/Frizzled activation of
-13Small GTPases
65. Luo W, Yu CH, Lieu ZZ, Allard J, Mogilner A,
-13Small GTPases
64. Bellocchio M, Boland P, Cristiani M, Sbrocco F,
-13Small GTPases
63. Van Doren S, Honah C, van Miltenburg M, van
-13Small GTPases
62. Wei Z, Wang K, Lein C, Peng Y, Zhou X, Zhang H,
-13Small GTPases
61. Xiao Y, Eppingen E, Schuster G, Weigand LU, Liang
-13Small GTPases
60. Zhang X, Kuo Y, Gao D, Liu MJ, Gao J, Guo X, Liang
-13Small GTPases
59. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
58. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
57. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
56. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
55. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
54. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
53. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
52. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
51. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
50. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
49. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
48. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
47. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
46. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
45. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
44. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
43. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
42. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
41. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
40. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
39. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
38. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
37. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
36. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
35. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
34. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
33. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
32. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
31. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
30. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
29. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
28. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
27. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
26. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
25. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
24. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
23. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
22. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
21. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
20. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
19. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
18. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
17. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
16. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
15. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
14. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
13. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
12. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
11. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
10. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
9. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
8. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
7. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
6. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
5. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
4. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
3. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
2. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
1. Han GH, Han JK. Essential role for beta-arrestin 2 in
-13Small GTPases
combined actin filament capping and bundling factor that selectively associates with actin arcs and stress fibers. J Cell Sci 2013; 126:1891-901; PMID:23444374; http://dx.doi.org/10.1242/jcs.134627

116. Schulze N, Grasel M, Blancke Soares A, Geyer M, Dehmlot L, Nilbahn P. FHOD1 regulates stress fiber organization by controlling the dynamics of transverse arcs and dorsal junctions. J Cell Science 2014; 127:1379-93; PMID:25048812; http://dx.doi.org/10.1242/jcs.134627

117. Iratchart T, Yu CH, Mathur A, Liu S, Stevenin V, Dwyer J, Hone J, Elbir E, Sheeza M. FHOD1 is needed for directed forces and adhesion maturation during cell spreading and migration. Dev Cell 2013; 27:545-59; PMID:23433197; http://dx.doi.org/10.1016/j.devcel.2013.11.003

118. Floyd S, Whiffin N, Gavilan MP, Kunochi S, De Luca M, Maroccoz G, Min M, Watkins J, Chung K, Fidler OT, et al. Spatiotemporal organization of Aurora-B by APC/Cdc11 after mitosis coordinates cell spreading through FHOD1. J Cell Sci 2013; 126:284-56; PMID:23614371; http://dx.doi.org/10.1242/jcs.134627

119. Gardberg M, Kaipio K, Lehtinen L, Mikkonen P, Medeiros JF, Nelson D, Dwyer J, Foss D, Patrikka J, et al. FHOD1 antagonizes cytochalasin D-induced actin filament capping and bundling factor that is required for formation of actin ring. EMBO J 2013; 32:879-92; PMID:23806598; http://dx.doi.org/10.1038/journal.pone.0074923

120. Alvarez DE, Agasse H. The formin FHOD1 and the small GTPase Rap1 promote vinculin interaction with actin-based motility. J Cell Biol 2013; 202:1075-9; PMID:24062339; http://dx.doi.org/10.1016/j.jmb.2009.09.061

121. Truong D, Brabant D, Bashkurov M, Wan LC, Braun M, et al. Tension-dependent polarization promotes Salmonella invasion. Cell Microbiol 2013; 15:2051-63; PMID:23868992; http://dx.doi.org/10.1111/cmi.12173

122. Taniguchi K, Takeya R, Suzuki T, Nakanami H, Naruse K. Composition of Uvr complex reflects the role of formin in actin polymerization processes during eukaryotic cell invasion. PLoS One 2013; 8:e74923; PMID:24086398; http://dx.doi.org/10.1111/jcs.123232

123. Goult BT, Bouaouina M, Elliott PR, Bate N, Patel B, Bate N, Patel B, Bate N, Patel B. Combinatorial actin filament capping and bundling factor that is required for formation of actin ring in Schizosaccharomyces pombe. J Cell Biol 2003; 162:581-62; PMID:12939354; http://dx.doi.org/10.1083/jcb.200305012

124. Nakano K, Imai J, Arai R, Toh-E A, Matsui Y, Mabuchi I. The small GTPase Rac3 and the diaphanous formin For3 function in polarized cell growth in fission yeast. J Cell Sci 2002; 115:4629-39; PMID:12415007; http://dx.doi.org/10.1242/jcs.00150

125. Martin SG, Rincoin SA, Busa R, Pérez F, Chang H. Regulation of the formin for3 by cdc24 and bud5p. Mol Biol Cell 2007; 18:4155-67; PMID:17699955; http://dx.doi.org/10.1091/mbc.E07-02-0094

126. Kohno H, Tanaka K, Mino A, Umikawa M, Imamura H, Fujitani T, Hotta K, Qadona H, Watanabe T, et al. Bnip1 implicated in cytoskeletal control is a target of RhoA small GTP binding protein in Schizosaccharomyces cerevisiae. EMBO J 1996; 15:6060-8; PMID:8947028

127. Qui M, Elion EA. Formin-induced actin cables are required for polarized reorganization of the SAc scaffold and high level activation of MAPK Fus3. J Cell Sci 2005; 118:2387-48; PMID:15956145; http://dx.doi.org/10.1242/jcs.02418

128. Robinson NG, Guo L, Imai J, Toh-E A, Matsui Y, Tamanini F. Rho3 of Schizosaccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol Cell Biol 1999; 19:5380-7; PMID:10207081

129. Dong Y, Pruyne D, Bretchler A. Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J Cell Sci 2003; 161:1081-92; PMID:12810699; http://dx.doi.org/10.1242/jcs.200212040

130. Imamura H, Tanaka K, Hiihata T, Umikawa M, Kambe T, Ichiki K, Sasaki T, Takai Y, Bnip1 and Bnrp1 downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Schizosaccharomyces cerevisiae. EMBO J 1997; 16:2745-53; PMID:9184220; http://dx.doi.org/10.1093/emboj/cdf274

131. Evangelista M, Blundell K, Longime S, Chow CJ, Adams N, Pringle JR, Peter M, Boone C. Bnrp1, a yeast formin linking cdc42 and the actin cytoskeleton during polarized morphogenesis. Science 1997; 276:118-22; PMID:9082982; http://dx.doi.org/10.1126/science.276.5309.118

132. Otsuki-Kuroda Y, Yamahara Y, Kinoshita M, Fujisawa T, Irie K, Takayama K. Dynamic localization of the formin, Dia2, is required for cytokinesis in fission yeast and growth in Schizosaccharomyces cerevisiae. Mol Cell Biol 2001; 21:827-39; PMID:11154270; http://dx.doi.org/10.1128/MCB.21.3.827-839.2001

133. Horulainen P, Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in murine cells. J Cell Biol 2006; 173:383-94; PMID:16651381; http://dx.doi.org/10.1083/jcb.200511093

134. Shi Y, Zhang J, Mullin M, Dong B, Alberts AS, Siminovich KA. The small GTPase RhoA interacts with formin, Dia2 and Diaphanous related formin in mammalian cells. J Biol Chem 2005; 280:11847-55; PMID:15900838; http://dx.doi.org/10.1002/jcb.11383

135. Grosshans J, Wencl C, Herz HM, Bartoszewski S, Schnorrer F, Vogt N, Schwarz H, Müller HA. RhoGEF and Dia cooperate to control formin-mediated actin polymerization. Dev Cell 2005; 12:827-39; PMID:15900838; http://dx.doi.org/10.1002/jcb.11383

136. Schierenbeck A, Bretschneider T, Arasaki R, Schleich M, Fias X, Jaff T. The formin-related-domain DIA2 is required for the formation and maintenance of lipo- kinin. Nat Cell Biol 2005; 7:169-25; PMID:15900844; http://dx.doi.org/10.1038/jcb.1166
Small GTPases

1. Block J, Stradal TE, Lewkowicz E, Herit F, Le Clainche C, Bourdoncle P, Tominaga T, Sahai E, Chardin P, McCormick F, Eng CH, Huckaba TM, Gundersen GG. The formin CLIP-170 coordinates mDia1 and actin reorganization during CR3-mediated phagocytosis. J Cell Biol 2004; 168:20-30; PMID:15311282; http://dx.doi.org/10.1038/jcb.200807035

2. Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Palazzo AF, Cook TA, Alberts AS, Gundersen GG. The microtubule-binding protein CLIP-170 regulates Rho-mediated formation and orientation of stable microtubules. Nat Cell Biol 2001; 3:723-9; PMID:11483957; http://dx.doi.org/10.1038/35087035

3. Lu J, Meng W, Poy F, Maiti S, Goode BL, Eck MJ. Structure of the FH2 domain of Daam1: implications for formin regulation of actin assembly. J Mol Biol 2007; 369:1258-69; PMID:17482208; http://dx.doi.org/10.1016/j.jmb.2007.04.002

4. Barkó S, Bugyi B, Cartier MF, Gombos R, Matusek T, Nyírty M. Characterization of the biochemical properties and biological function of the formin homology domains of Drosophila DAAM. J Mol Biol 2010; 385:1354-69; PMID:20770955; http://dx.doi.org/10.1016/j.jmb.2010.09.017

5. Sato A, Khadka DK, Liu W, Bharti R, Runnels LW, Dawid IB, Habas R. Profilin is an effector for Daam1 in non-canonical Wnt signaling and is required for vertebrate gastrulation. Development 2006; 133:4219-31; PMID:17021034; http://dx.doi.org/10.1242/dev.02590

6. Lu J, Meng W, Poy F, Maiti S, Goode BL, Eck MJ. Structure of the FH2 domain of Daam1: implications for formin regulation of actin assembly. J Mol Biol 2007; 369:1258-69; PMID:17482208; http://dx.doi.org/10.1016/j.jmb.2007.04.002

7. Kanaya H, Takeya R, Taniguchi K, Tanoue Y, Tomi-naga R, Sumimoto H. Expression and subcellular localization of mammalian formin Fhod5 in the embryonic and adult heart. PLoS One 2012; 7:e34765; PMID:22509354; http://dx.doi.org/10.1371/journal.pone.0034765

8. Baarlink C, Wang H, Grosse R. Nuclear actin network assembly by formins regulates the SRP coactivator MAL. Science 2013; 340:864-7; PMID:23558171

9. Kutschur S, Zhu R, Atnska S, Luntow GW, Staglar J, Fackler GT, Gundersen GG. FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement. Nat Cell Biol 2014; 16:708-15; PMID:24880667; doi: 10.1038/nclb2981

10. Lu J, Meng W, Poy F, Maiti S, Goode BL, Eck MJ. Structure of the FH2 domain of Daam1: implications for formin regulation of actin assembly. J Mol Biol 2007; 369:1258-69; PMID:17482208; http://dx.doi.org/10.1016/j.jmb.2007.04.002

11. Barkó S, Bugyi B, Cartier MF, Gombos R, Matusek T, Nyírty M. Characterization of the biochemical properties and biological function of the formin homology domains of Drosophila DAAM. J Mol Biol 2010; 385:1354-69; PMID:20770955; http://dx.doi.org/10.1016/j.jmb.2010.09.017

12. Kanaya H, Takeya R, Taniguchi K, Tanoue Y, Tomi-naga R, Sumimoto H. Expression and subcellular localization of mammalian formin Fhod5 in the embryonic and adult heart. PLoS One 2012; 7:e34765; PMID:22509354; http://dx.doi.org/10.1371/journal.pone.0034765

13. Baarlink C, Wang H, Grosse R. Nuclear actin network assembly by formins regulates the SRP coactivator MAL. Science 2013; 340:864-7; PMID:23558171

14. Kutschur S, Zhu R, Atnska S, Luntow GW, Staglar J, Fackler GT, Gundersen GG. FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement. Nat Cell Biol 2014; 16:708-15; PMID:24880667; doi: 10.1038/nclb2981