by Lucas J. Lourens

On the Neogene–Quaternary debate

Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands. Email: llourens@geo.uu.nl

A proposed resolution to the current Neogene–Quaternary debate involves independent, non-overlapping status for the two units and harks back to Lyell’s original denotation of the terms Older and Newer Pliocene.

The Astronomical Tuned Neogene Time Scale 2004

The standard methods to construct geological time scales changed drastically with the advent of the astronomical dating method, which relies on tuning sedimentary cycles or cyclic variations in climate proxy records to target curves derived from astronomical solutions for the solar, planetary and Earth-Moon systems. A major breakthrough of the astronomical theory was established by Milutin Milankovitch between 1915 and 1940 when he worked out a solid mathematical basis of the late Pleistocene climatic cycles (Milankovitch, 1941). With the success of ocean drilling and the development of stable oxygen isotopes (δ18O) as proxy for global climate change, the astronomical time scale was extended step by step further back in time. Concomitantly, integrated stratigraphic studies of late Cenozoic land-based marine sequences in the Mediterranean yielded an independent astrochronology with many calcareous plankton events, magnetic reversals and Global Stratotype Section and Points (GSSP’s), apart from the Aquitanian, directly tied to it. Milestones were the accomplishment of tuning the Brunhes Chron (Johnson, 1982), the Pleistocene (Shackleton et al., 1990), the Late Pliocene (Shackleton et al., 1990; Hilgen, 1991a), the Early Pliocene (Hilgen, 1991b; Tiedemann et al., 1994) and Mioce ne (Shackleton et al., 2000). Lourens et al. (1996a) verified and slightly modified the astronomical time scale for the Pliocene and early Pleistocene resulting from a comparison with different astronomical solutions. In 2004, the first complete Astronomical Tuned Neogene Time Scale (ATNTS2004) was incorporated in the standard geological time scale (Lourens et al., 2004).

Astronomically tuned ages are typically presented to three decimals without error bar, being the age (in kyrs) of the corresponding peak in the selected target curve calculated from a particular astronomical solution. The main uncertainties in astronomical dating and, hence, the astronomical ages in particular, depend on the accuracy of the astronomical solution and the correctness of the tuning. The exact error in the presently used La2004 (Laskar et al., 2004) solution is difficult to calculate due to the complexity of the solution, but the largest uncertainty (i.e., less than a few kyr for the past 3 million years) is thought to be related to the dissipative evolution of the Earth-Moon system; i.e., the dynamical ellipticity of the Earth and/or the tidal dissipation by the Moon (Laskar, 1999; Lourens et al., 2001; 2004).

Another potential error in the astronomical ages stems from the uncertainty in the phase relation between the astronomically-forced variations in the climate proxy records used for tuning and the initial insolation forcing. A fundamental assumption used in many δ18O chronologies is that they are tuned to an ice sheet model in which the phase lags of the isotopic signal at the main astronomical frequencies (obliquity and precession) are those of a single-exponential system, including a fixed ice sheet response time and a non-linearity coefficient (Imbrie and Imbrie, 1980). In their recent global stacked benthic oxygen isotope chronology (LR04) Lisiecki and Raymo (2005 and references therein) applied different values for both parameters to correct for the transition from the nearly ice-free Northern Hemisphere during the early Pliocene (5.3–3.0 Ma) to the full glacial conditions of the late Pleistocene. Although this tuning procedure takes the long-term trends in global ice volume into account, it still fails to resolve the geometry and response time of individual glacial cycles. Moreover, the uncertainty in the size-prediction of ice sheets, and hence their response times, is augmented by the fact that benthic foraminiferal δ18O records preserve not only an ice-volume, but also a deep-water temperature component (Shackleton et al., 1990; Bin tanja et al., 2005). Nevertheless, the uncertainty in the absolute timing of the glacial–interglacial cycles is supposed to be less than ~5 kyr. Similarly, the uncertainty in the astrochronology of the Mediterranean is on the order of 3 kyr for each calibration point, depending upon the assumed phase relation between insolation and the cyclic sedimentary (i.e., sapropels) expression (Lourens et al., 2004).

Global climate change over the past 5.3 Ma

Figure 1 displays the variations in the global benthic δ18O record (Lisiecki and Raymo, 2005) spanning the current Pliocene, Pleistocene and Holocene Epochs. This record depicts a major change towards heavier values around 4 Ma, interpreted as reflecting the beginning of a cooling trend associated with the growth of major Northern Hemisphere ice caps superimposed on short-term obliquity-dominated glacial cycles (Shackleton, 1997). At 3.3 Ma a marked cooling event occurs during the Mammoth subchron (Prell, 1984; Keigwin, 1986). Approximately at this point the background values of the LR04-stacked δ18O record passed present-day values for the first time.

Marine Isotopic Stage (MIS) 100 to 96 are clearly-defined glacial periods and are associated with a significant amount of ice rafted debris (IRD) in the North Atlantic (Shackleton et al., 1984; Raymo et al., 1989). The immediately preceeding MIS102-114 are less amplified, but already contain trace amounts of IRD in the Northern Atlantic Deep Sea Drilling (DSDP) Sites 607 and 609 (Raymo et al., 1989). Besides isotopic evidence, this climatic deterioration is denoted by the first occurrence of the extinct polar water planktonic foraminiferal species Neogloboquadrina atlantica in the Mediterranean during MIS 110 at 2.72 Ma (Lourens et al., 1996a). Neogloboquadrina atlantica became extinct at the end of MIS 96 (Zachariasse et al., 1990), indicating a return to warmer background climate conditions between the less prominent glacial cycles of MIS 96 to 82. Two punctuated glacial stages, MIS 78 and 82, occur again around 2.1 Ma.

The Pliocene/Pleistocene boundary at 1.806 Ma (Hilgen, 1991a; Lourens et al., 1996b; 1998; 2004) as defined in the Vrica section (Aguirre and Pasini, 1985) is not represented by an extreme climatic event in the global δ18O record (Figure 1), but its significance in terms of cooling is corroborated by the first common occurrence of sinistrally-coiled Neogloboquadrina pachyderma in the North Atlantic DSDP Site 607 and the Mediterranean (Lourens and Hilgen, 1997). Until MIS 25, the early Pleistocene is characterized
by very regular glacial cycles. Thereafter, a marked transition (known as the mid-Pleistocene transition) to the approximately 100 kyr dominated and strongly amplified glacial-interglacial oscillations occurred. Four major glacial periods stand out in the late Pleistocene! 

The Plio–Pleistocene and Neogene–Quaternary debate

In 2007 the International Commission on Stratigraphy (ICS) held a ballot to place the Quaternary System above the Neogene with its base at the GSSP of the Gelasian Stage. Following the ballot, which was passed with a majority of votes, an official proposal was sent to the International Union of Geological Sciences (IUGS). The main arguments in favor of this proposal are that the Quaternary is of special significance in terms of climate cycles and human evolution, and that the historical usage of the term Neogene has been variable. In turn, arguments in favor of retaining the Neogene extending to the Recent are the original definition, its widely adopted concept in terms of (marine) biostratigraphical zonation schemes, and also that its astrochronology has now become an integral part of the late Cenozoic chronostratigraphic time scale.

The recent historical overview of Stephen L. Walsh (2008) on the origin, adoption, evolution, and controversy of the term Neogene (Hörnes, 1853, 1864) proves on the other hand that historical arguments to extend the Neogene to and including the Recent (Lyell, 1833–73; Haug, 1908–1911; Rio et al., 1991) and present (Lourens et al., 2004) chronostratigraphic subdivision of the late Cenozoic.

The current Neogene–Quaternary debate as such does not originate from the proposition to lower the base of the Quaternary (and hence the top of the Tertiary; Head et al., this volume), but from the fact that this proposal decapitates the Neogene as well as extending the Pleistocene Series to include strata that for more than a century and a half have been considered by (marine) stratigraphers to be Pliocene deposits (Figure 1).

Another major shortcoming in the present debate is that the arguments of lowering the Pleistocene/Pliocene (and Tertiary/Quaternary) boundary to 2.6 Ma (i.e., Head et al., and Ogg and Pillans this volume) are on historical grounds no more logical than raising it to ~0.6 Ma. Moreover, it could be argued that the climatic transition between 0.6 and 0.9 Ma from the less-amplified 41 kyr glacial cycles to the large scale 100 kyr dominated glacial cycle had a larger impact on ecosystems, including human evolution (origin of Homo sapiens).
ents), than the gradual transition around 2.7 Ma (Figure 1). Finally, in terms of climate science, only the last ~0.6 Myr of Earth’s history can be studied in all geological archives, including ice core records, making the younger option, also in that sense, more relevant than the older option.

To conclude, I am of the opinion that a general consensus on the “time war over the Period we live in debate” (Kerr, 2008) can only be reached if the Neogene remains extended to the present, and that the position of the present Pliocene/Neogene boundary remains unchanged. If the Quaternary (and Tertiary) retains a formal chronostratigraphic status in the standard Geological Time Scale with its base at a refined Gelasian GSSP (i.e., the FO *N. atlantica* in the Mediterranean at 2.72 Ma) then a solution for the hierarchical inconsistency of the chronostratigraphic chart may have been found. Such a solution would hark back to Lyell’s original Older and Newer Pliocene Epochs, could upgrade the present Upper, Middle and Lower Pliocene Subseries to separate Late Pliocene and Early Pliocene Epochs with its boundary at 2.72 Ma. In addition, the present Pleistocene could be split into separate Early, (Middle) and Late Pleistocene Epochs.

With the renewed introduction of the Early and Late Pliocene as separate Epochs, all stratigraphic criteria to define the base of the Quaternary as a Subperiod (Subsystem) of the Neogene are fulfilled. Namely 1) the boundary-stratotype is fixed by its lower boundary, 2) it follows the principles of “base defines boundary”, 3) the boundary stratotype can be fixed in marine sediments, 4) it respects the historical usage (albeit not a true historical priority and age), and 5) it focuses as much as possible on the best correlation potential, which is in this case the base of the (refined) Gelasian Stage (Rio et al., 1998) as the basal unit or the base of the Late Pliocene Epoch. Hence the Quaternary will encompass the Late Pliocene, Early, (Middle) and Late Pleistocene and Holocene Epochs, thereby respecting its historical usage in its broadest sense and its consistence with the principles of hierarchical classification.

A redefinition of the Quaternary as Subperiod will imply that an official end has come to the Tertiary (Arduino, 1760) as a formal unit of the GTS (see also Pillions, 2004). But, if the Tertiary and Quaternary are to be formally defined and ranked again (Walsh, 2006; Head et al., this volume) then one should rank them as Suberas of the Cenozoic (Aubry et al., 2005) and split the Neogene into an Early, Middle and Late Neogene Period. A split Neogene is not new: Renuvier (1874; 1897) for instance already included the Holocene, Pliocene (Renuier’s spelling) and Pliocene in his Recent Neogenic, and Prepliocene and Miocene within the Ancient Neogenic, whereas the Nummulitic represented the Paleogene. Accordingly, the Middle–Late Neogene boundary would correspond to the base of the (refined) Gelasian Stage or Early–Late Pliocene boundary, and the Late Neogene would encompass the same time interval as the Quaternary, thereby respecting the usage of both terms in the current literature.

Acknowledgements

I thank Frits Hilgen, Brad Pillions, Bill Berggren, Jim Ogg and Brian McGowran for discussion and additional comments on earlier draft versions of the manuscript.

References

Aguire, E., and Pasini, G., 1985. The Pliocene–Pleistocene Boundary: Episodes, v. 8, pp. 116–120.

Arduino, 1760. Nuovo raccolta di opuscoli scientifici e filologici dal padre abate Amiogolo Calogiera, v.6, pp.99–180.

Aubry, M.-P., Berggren, W.A., Van Couvering, J.A., McGowran, B., Pillions, B., and Hilgen, F.J., 2005. Quaternary: status, rank, definition, and survival: Episodes, v.28, pp.118–120.

Berggren, W.A., 1998. The Cenozoic Era: Lyellian (chrono)stratigraphy and nomenclatural reform at the millenium. In: Blundell, D.J., Scott, A.C. (Eds.), Lyell: the Past is the Key to the Present: Geological Society, Special Publication, vol. 143. Geological Society, London, pp. 111–132.

Bintanja, R., Wal, R.S.W. van de, and Oerlemans, J., 2005. Modelled atmospheric temperatures and global sea levels over the past million years: Nature, v.437, pp. 125–127.

Boulton, G.S., Dalgleish, N., Hulton, N. and Van Gijssel, K., 1997. Reconstruction of mid- and late Quaternary climate and environmental change in Europe. In Simulation of the effects of long-term climatic change on groundwater flow and the safety of geological disposal sites, Report EUR 17793 EN (Ed. by G.S. Boulton and F. Curie), pp. 29–66. Office for Official Publications of the European Community, Luxembourg.

Eldredt, J.S., L.C. Harding, P.A. Wilson, E. Butler and A.P. Roberts., 2007. Continental ice in Greenland during the Eocene and Oligocene: Nature, v. 446, pp.176–179.

Forbes, E., 1846. On the connection between the distribution of the existing fauna and flora of the British Isles, and the geological changes which have affected their area, especially during the epoch of the Northern Drift: Great Britain Geological Survey Memoir, v.1, pp.336–342.

Gervais, P., 1867–9. Zoologie et paléontologie générales. Nouvelles recherches sur les animaux vertébrés et fossiles, Paris, 263 pp.

Haug, E., 1906–1911. Les Périodes géologiques: Traité de Géologie, 11, pp. 1766–1776.

Head, M.J., P.L. Gibbard, and A. Salvador. The Tertiary and Quaternary: status, duration and future: Episodes, submitted.

Hilgen, F.J., 1991a. Astronomical calibration of Gauss to Matuyama sarpelp in the Mediterranean and implication for the Geomagnetic Polarity Time Scale: Earth and Planetary Science Letters, v.107, pp.226–244.

Hilgen, F.J., 1991b. Extension of the astronomically calibrated (polarity) time scale to the Miocene–Pliocene boundary; Earth Planet. Sci. Lett., v.107, pp.349–368.

Hörnes, M., 1853. Mittteilung an Prof. Bronn gerichtet: Wien, 3. Okt., 1853. Neues Jahrb. Mineral. Geol. Geogn. Petrofakten., pp. 806–810.

Hörnes, M., 1864. V. Die fossilen Mollusken des Tertiärbeckens von Wien. Jahrb. Geol. Reichsamt., v.14, pp.509–514.

Imbrie, J. and Imbrie, J.Z., 1980. Modelling the climatic response to orbital variations: Science, v. 207, pp. 943–953.

Johnson, R. G., 1982. Brunhes–Matuyama magnetic reversal dated at 780,000 yr BP by marine–astronomical correlations: Quaternary Research, v.17, pp.135–147.

Keigwin, L.D., 1986. Pliocene stable-isotope record of Deep Sea Drilling Project Site 606: Sequential events of δ18O enrichment beginning at 3.1 Ma. In Ruddiman, W. E., Kidd, R. B., Thomas, E., et al., Init. Repts. DSDP, 94: Washington (U.S. Govt. Printing Office), pp.911–920.

Kerr, R.A., 2008. A time war over the Period we live in:Science, v.318, pp.402–403.

Kukla, G.J., 1975. Loess stratigraphy of Central Europe. In: In the Austratlopithecines: stratigraphy, ecology, and culture change in the Middle Pleistocene (Ed. by K. W. Butzer and G. L. Isaac), pp. 99–188. Mouton, The Hague/Paris.

Laskar, J., 1999. The limits of Earth orbital calculations for geological time scale use: Phil. Trans. R. Soc. Lond. A., 357, pp.1735–1759.

Laskar, J., 1999. The limits of Earth orbital calculations for geological time scale use: Phil. Trans. R. Soc. Lond. A., 357, pp.1735–1759.

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and Levrard, B., 2004. A long term numerical solution for the insolation quantities of the Earth: Astron. Astrophys., v. 428, pp.261–285.

Lisiecki, L.E., and Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records: Paleoceanography, 20, PA1003.

Lourens, L.J., and Hilgen, F.J., 1997. Long–periodic variations in the Earth's obliquity and their relation to third-order eustatic cycles and late Neogene glaciations, Quat. Int., 40, pp.43–52.

Lourens, L.J., Hilgen, F.J., Zachariasse, W.J., van Hoof, A.A.M., Antonarakou, A. and Vermaat-Graziunni, C., 1996a. Evaluation of the Plio–Pleistocene astronomical time scale: Paleoceanography, v. 11, pp. 391–413.

Lourens, L.J., Hilgen, F.J., Raffi, I., and Vermaat-Graziunni, C., 1996b. Early Pleistocene chronology of the Vrica section (Calabria, Italia): Paleoceanography, v. 11, pp. 797–812.

Lourens, L.J., Hilgen, F.J., and Raffi, I., 1998. Base of large Gephyrocapsa and astronomical calibration of early Pleistocene sapropels in ODP sites 967 and 969: Solving the chronology of the Vrica section. ODP Sci. Results, v.160, pp.191–197.

Lourens, L.J., Wehausen, R., and Brumsack, H.J., 2001. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years: Nature v.409, pp.1029–1033.

Lourens, L.J., Hilgen, F., Shackleton, N.J., Laskar, J., Wilson, D., 2004. The Neogene Period. In: Gradstein, F.M., Ogg, J.G., Smith, A. (Eds.), A Geo-

Episodes, Vol. 31, no. 2
logic Time Scale 2004: Cambridge University Press, Cambridge, UK, pp. 409–440.

Lyell, C., 1833. Principles of Geology: being an inquiry how far the former changes of the earth's surface are referable to causes now in operation. Volume III. London: John Murray, 398 pp.

Lyell, C., 1839. Nouveaux éléments de géologie. Pitois-Levranet., Paris, 648 pp.

Lyell, C., 1857. Supplement to the fifth edition: London, John Murray, 40 pp.

Lyell, C., 1873. The geological evidences of the antiquity of man: with an outline of glacial and post-tertiary geology and remarks on the origin of species; with special reference to man's first appearance on the earth: London, John Murray, 572 pp.

Milankovitch, M.M., 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy, Section of Mathematical and Natural Sciences, Special Publication 32. Belgrade: Royal Serbian Academy, p. 633.

Ogg, J.G., 2004. Introduction to concepts and proposed standardization of the term “Quaternary”: Episodes, v. 27, pp. 125–126.

Pillans, B., 2004. Proposal to redefine the Quaternary: Episodes, v. 27, pp. 127.

Pillans, B., and T., Naish, 2005. Defining the Quaternary: Quaternary Science Reviews, v. 23, pp. 2271–2282.

Prell, W. L., 1984. Covariance patterns of foraminiferal species; with special reference to man's first appearance on the earth: London, John Murray, 572 pp.

Raymo, M.E., Ruddiman, W. F., Backman, J., Clement B. M. & Martinson, D.G., 1989. Late Pliocene variation in northern Hemisphere ice sheets and North Atlantic deep water circulation: Paleoceanography, v. 4, pp. 413–446.

Renevier, E., 1874. Tableau des terrains sédimentaires formés pendant les époques de la phase organique du globe terrestre: Bulletin Societé Vaudoise Sciences Naturelles, 12(70), table 3; 13(72), pp. 218–252.

Renevier, E., 1897. Chronographe géologique; seconde édition du Tableau des terrains sédimentaires formés pendant les époques de la phase organique du globe terrestre: Bulletin Société Vaudoise des Sciences Naturelles, 12(70), table 3; 13(72), pp. 218–252.

Rio, D., Sprovieri, R., and Thunell, R., 1991. Pliocene-lower Pleistocene chronostratigraphy: A re-evaluation of Mediterranean type sections: Geol. Soc. Am. Bull., 103, pp. 1049–1058.

Rio, D., Sprovieri, R., and Thunell, R., 1991. Pliocene-lower Pleistocene chronostratigraphy: A re-evaluation of Mediterranean type sections: Geol. Soc. Am. Bull., 103, pp. 1049–1058.

Reno, E., 1874. Tableau des terrains sédimentaires formés pendant les époques de la phase organique du globe terrestre: Bulletin Societé Vaudoise Sciences Naturelles, 12(70), table 3; 13(72), pp. 218–252.

Shackleton, N.J., Hall MA, Raffi I, Tauxe L, Zachos J, 2000. Astronomical calibration age for the Oligocene–Miocene boundary: Geology, v. 28, pp. 447–450.

Thiede, J., Winkler, A., Wolf-Welling, T., Eldholm, O., Myrhe, A.M., Bau- mann, K.-H., Henrich, R., and Stein, R., 1998. Late Cenozoic history of the polar north Atlantic: Results from ocean drilling: Quaternary Science Rev., v. 17, pp. 185–208.

Tiedemann, R., Sarnthein, M., and Shackleton, N.J., 1994. Astronomical timescale for the Pliocene Atlantic δ18O and dust flux records of ODP Site 659: Paleoceanography, v. 9, pp. 619–638.

Vai, G.B., 1997. Twisting or stable Quaternary boundary? A perspective on the glacial Late Pliocene concepts: Quaternary International, v. 40, 11–22.

Walsh, S.L., 2006. Hierarchical subdivision of the Cenozoic Era: A venerable solution, and a critique of current proposals: Earth Science Reviews, v. 78, pp. 207–237.

Walsh, S.L., 2008. The Neogene: Origin, adoption, evolution and controversy: Earth Science Reviews (in press).

Wolf-Welling, T.C.W., M. Cremer, S. O'Connell, A. Winkler, and J. Thiede, 1996. Cenozoic Arctic Gateway paleoclimate variability: Indications from changes in coarse-fraction composition (ODP Leg 151). In: Thiede, J., Myrhe, A.M., Firth, J., et al., Proceedings Ocean Drilling Program, Scientific Results, 151, pp. 515–567.

Zachariasse, W.J., Gadjojonson, L., Hilgen, F.J., Lourens, L.J., Verhallen, P.J.J.M., Langereis, C.G., and Zijderveld, J.D.A., 1998. Late Gauss to early Matuyama invasions of Neogloboquadrina atlantica in the Mediterranean and associated record of climatic change: Paleoceanography, v. 5, pp. 239–252.

Lucas J. Lourens is assistant professor of stratigraphy and paleoclimatology at the Faculty of Geosciences of the Utrecht University in the Netherlands. His research concentrates on the Cenozoic, especially in astronomically-tuned time scales, tidal dissipation, leads and lags in the ocean-climate system and the origin of Paleogene hyperthermals. His activities included Ocean Drilling Program leg 208 in the southern Atlantic, cruises in the Arabian Sea, and field expeditions in Italy.

June 2008