Intertwined ferroelectricity and topological state in two-dimensional multilayer

Yan Liang, Ning Mao, Ying Dai, Liangzhi Kou, Baibiao Huang and Yandong Ma

The intertwined ferroelectricity and band topology will enable the non-volatile control of the topological states, which is of importance for nano-electronics with low energy cost and high response speed. Nonetheless, the principle to design such system is unclear and the feasible approach to achieve the coexistence of two parameter orders is absent. Here, we propose a general paradigm to design 2D ferroelectric topological insulators by sliding topological multilayers on the basis of first-principles calculations. Taking trilayer Bi$_2$Te$_3$ as a model system, we show that in the van der Waals multilayer based 2D topological insulators, the in-plane and out-of-plane ferroelectricity can be induced through a specific interlayer sliding, to enable the coexistence of ferroelectric and topological orders. The strong coupling of the order parameters renders the topological states sensitive to polarization flip, realizing non-volatile ferroelectric control of topological properties. The revealed design-guideline and ferroelectric-topological coupling not only are useful for the fundamental research of the coupled ferroelectric and topological physics in 2D lattices, but also enable innovative applications in nanodevices.

BRIEF COMMUNICATION

OPEN

INTRODUCTION

Ferroelectricity and band topology are two intensively investigated yet distinct properties of insulators. Physically, there is no inherent exclusion between them due to different origins of polarization and band inversion, their coexistence in a single material leads to the concept of ferroelectric topological insulator (FETI). The past years have witnessed the discovery of FETIs, especially in three dimensional, including strained CsPbI$_3$, strained LiZnSb, pressured or strained AMgBi, and alloyed KMgBi, and the induced intriguing electronic properties such as ferroelectric controlled spin vortex. The strongly coupled ferroelectric and topological orders render them both fundamentally intriguing and practically appealing to be used in potential devices.

Unlike 3D FETIs, two-dimensional (2D) lattices with intertwined ferroelectric and topological orders are rather scarce, and the coupling of the order parameters are also quite weak in several existing cases. This is partly due to that, the ferroelectricity in 2D materials has been mainly established in the single-layer asymmetric structures, while band topology is commonly seen in the materials with heavy elements and strong spin orbital coupling. There, the requirements of symmetrical structure with switchable polarization and band inversion with different parity in the revealed 2D material family have to be simultaneously satisfied, to build the 2D FETIs, which significantly restrict the possible realization of 2D FETIs. So far, how to expand the scope for material candidates of 2D FETIs, especially with intertwined ferroelectric and topological physics, remains an open question.

The intriguing model of sliding switchable interfacial ferroelectricity has been proposed theoretically and recently confirmed experimentally, which serves as a good starting point for realizing 2D FETI. Here, based on first-principles calculations, we fill aforementioned outstanding gap by introducing a general and simple scheme to realize 2D FETIs with intertwined ferroelectric and topological physics.

RESULTS

Ferroelectric and topological orders

The proposed scheme to realize 2D FETIs with intertwined ferroelectric and topological physics is schematically presented in Fig. 1. Without losing generality, we start from 2D van der Waals multilayers with nontrivial topological properties, the time-reversal symmetry is preserved. Unlike band topology that links with electronic properties, ferroelectricity relates to crystal structure symmetry and electric dipole induced by electron distribution. To realize ferroelectricity, the polarization has to be switchable. As illustrated in the upper part of Fig. 1, if the in-plane (IP) and out-of-plane (OPP) mirror symmetries (M$_{IP}$,OPP), as well as the inversion symmetry (I), of the 2D multilayer are broken, the ferroelectricity occurs as long as the polarization is switchable, yielding the 2D FETI. The polarization switching is obtained via interlayer translation. If the polarization is unswitchable, it is just a normal 2D TI, without showing ferroelectric order. On the other hand, when the 2D multilayer possesses M$_{IP}$,OPP or I symmetry, as illustrated in the lower part of Fig. 1, two different...
cases can be induced by the interlayer sliding. In first case, the systems like bilayer possess the spatial I symmetry there is no polarization, this configuration is out of our consideration. In second case, considering that the topological property of the multilayer may be disturbed by the sliding, the polarization thus appears, and obviously such polarization is electrically switchable. In the latter case, the topology of the multilayer may be disturbed by the sliding, if the topological property is preserved, the ferroelectric-topological phases can be achieved; otherwise, it is a trivial 2D ferroelectric material. As we will show below, the obtained ferroelectric and topological orders in such systems exhibits a strong coupling. This design scheme suggests the crystal symmetry can be utilized as one screening factor to identify 2D FETIs with intertwined ferroelectric and topological physics.

Following the design scheme, we study the coexistence of FE and band topology in a real material of trilayer Bi$_2$Te$_3$. Our first-principles calculations are performed based on density functional theory as implemented in the Vienna Ab Initio Simulation Package (VASP)41. Figure 2a shows the crystal structure of trilayer Bi$_2$Te$_3$ (α-Bi$_2$Te$_3$), which is obtained by direct exfoliating from the bulk phase. It shows a space group of D_{dy} with symmetry elements ($E, C_{2y}, C_{3y}, i, 2S_{6t}, 3S_{6g}$). Clearly, the inversion symmetry prevents it from hosting any polarization. We thus slide the upper and lower quintuple layer (QL) along the [110] and [101] directions, respectively, which are referred to as β_1- and β_2-Bi$_2$Te$_3$, respectively, as shown in Fig. 2b and Supplementary Note 1. Such interlayer sliding reduces the space group of trilayer Bi$_2$Te$_3$ to C_{3y} with symmetry elements ($E, C_{3y}, 3S_{6g}$). Due to the simultaneous absence of I and M_2 symmetries, β_1- and β_2-Bi$_2$Te$_3$ host a spontaneous electric polarization of -5.1×10^9 e cm$^{-2}$ and 5.1×10^9 e cm$^{-2}$, respectively, along the out-of-plane (OOP) direction. Obviously, these two polarized configurations can be switched to each other by electric field triggered middle QL sliding ([Fig. 2b]), and thus correlate to two ferroelectric states, suggesting the OOP ferroelectricity.

To get more insight into the OOP ferroelectricity, we investigate the underlying physics for the electric polarization. In β_1-Bi$_2$Te$_3$, as displayed in Fig. 2c, the Te$_3$ atom sits above the Bi$_1$ atom, while the Te$_4$ atom lies right below the Te$_2$ atom. The inequivalent distribution of these atoms gives rise to the spatial electron-hole separation along the OOP direction ([Fig. 2d]), yielding an electric polarization pointing $-z$ direction. The resultant polarization is also suggested by the calculated planar average electrostatic potential of β_1-Bi$_2$Te$_3$ along the [001] direction. As shown in Fig. 2e, there is a discontinuity (ΔV) of 34 meV between the vacuum levels of the upper and lower QL layers, confirming the formation of electric polarization pointing $-z$ direction. While in β_2-Bi$_2$Te$_3$, the Te$_3$ atom shifts to above the Te$_1$ atom, while the Te$_4$ atom shifts right below the Bi$_2$ atom; see Fig. 2b. Accordingly, the distribution of these atoms, as well as the spatial electron-hole separation, in β_2-Bi$_2$Te$_3$ is reversed with respect to that of β_1-Bi$_2$Te$_3$. Such reversal produces an electric polarization pointing to $+z$ direction for β_2-Bi$_2$Te$_3$, which are confirmed by the calculated planar average electrostatic potential ($\Delta V = -34$ meV). To evaluate the feasibility of the OOP ferroelectricity in trilayer Bi$_2$Te$_3$, we study the minimum energy path for the ferroelectric switching, which are shown Fig. 2f. The energy barrier is estimated to be 69.46 meV per unit cell, which is comparable to the values of other ferroelectrics37,42-45, indicating its feasibility.

By further examining the distribution of these atoms in the [110] plane [Fig. 2c], we can see that, for β_1-Bi$_2$Te$_3$, the distance between Te$_3$ and Te$_4$ atoms in the [101] direction is larger than that between Te$_1$ and Te$_2$ atoms. Such imbalance distribution also generates the spatial electron-hole separation along the [101] direction, yielding an in-plane (IP) electric polarization of 3.1×10^{10} e cm$^{-2}$ pointing to [101] direction. When transforming β_1-Bi$_2$Te$_3$ into β_2-Bi$_2$Te$_3$, the Te$_3$ atom moves close to Te$_4$, in the [101] direction. In this regard, the spatial electron-hole separation in the [101] direction is reversed, inducing an IP electric polarization of -3.1×10^{10} e cm$^{-2}$ pointing [101] direction. The reversal of IP electric polarization shares the same energy path as the OOP case. It should be emphasized that, similar to single-layer InSe46,47 there are three equivalent IP polarizations along the [110], [120] and [210] directions, which leads to a zero net IP polarization. However, introducing the substrate proximity effect can readily break the threefold rotation symmetry, realizing the IP ferroelectricity, which has been well demonstrated in experiments38,48-50.

Accordingly, both IP and OOP ferroelectricity can be expected in trilayer Bi$_2$Te$_3$.

It is important to emphasize that, it is feasible to engineer ferroelectricity in trilayer Bi$_2$Te$_3$. First, the phonon dispersions without imaginary phonon modes (Supplementary Fig. 1) and negative cohesive energy of -2.97 eV/atom confirm the stability of β_1-Bi$_2$Te$_3$. And secondly, sliding ferroelectricity and stacking manipulation have been well established in experiments30-32. The tear-and-stack method, for example, that pick up one layer and then stamp it on top of the remaining part can be used to precisely fabricate the large-scale commensurate trilayer Bi$_2$Te$_3$ with intercorrelated ferroelectricity30,31.

Next, we study the electronic properties of trilayer Bi$_2$Te$_3$ in the ferroelectric phase. As β_1- and β_2-Bi$_2$Te$_3$ are linked as two equivalent ferroelectric states, here we take β_1-Bi$_2$Te$_3$ as an example. Supplementary Fig. 2a shows the band structure of β_1-Bi$_2$Te$_3$ without including spin-orbit coupling (SOC), from which we see that it is an indirect gap semiconductor with a global gap of 0.51 eV near the Γ point. By analyzing orbital contributions, we find the highest valence bands (VB) near the Fermi level is mainly contributed by Te-p orbital, while Bi-p orbital makes the dominant contribution to the lowest conduction bands (CB). Upon taking SOC into account, the VB and CB bands near the Γ point experience a significant Rashba spin splitting [Supplementary Fig. 2b], which can be attributed to the existence of OOP electric polarization in β_1-Bi$_2$Te$_3$. The corresponding Rashba parameter is calculated to be $\alpha_R = 0.67$ eVÅ. When SOC effect is considered, it is interesting to notice that the CBM and VBM move closer and the band gap is reduced to 9 meV. Such band narrowing and M-shaped VBM normally indicates a nontrivial topological phase.

To confirm the nontrivial topological order in β_1-Bi$_2$Te$_3$, we calculate the topological invariant \mathbf{Z}_2. Due to its broken inversion symmetry, the \mathbf{Z}_2 invariant is calculated by tracing the Wannier

Fig. 1 Schematic diagram for screening 2D FETIs. Schematic diagram for designing 2D FETIs from 2D van der Waals multilayers with nontrivial topological properties. Both topological and ferroelectric phases are determined by the mirror and inversion symmetry $(M_{\text{OOP}}\& I)$ of multilayer. Blue cross denotes the situation that is not under consideration.
charge center (WCC) using non-Abelian Berry connection. The Wannier functions (WFs) related with lattice vector R can be written as:

$$|\psi_{nk}\rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} dke^{-i(k-R)\cdot R}|\psi_{nk}\rangle$$ (1)

Here, a WCC is defined by the mean value of $\langle 0_n | X | 0_n \rangle$, where the X represent the position operator and n is the state corresponding to a WF in the cell with $R = 0$. Then we obtain:

$$X_n = \frac{i}{2\pi} \int_{-\pi}^{\pi} dke\langle 0_n | \nabla_k | 0_n \rangle$$ (2)

Assuming $\sum_a X_a = \frac{1}{\sqrt{2}} \int_{BZ} \alpha S$ with $S = I$ or II, the summation in a is the occupied states and A is Berry connection. So we get the Z_2 invariant following

$$Z_2 = \sum_a [x_a^I - x_a^II] - \sum_a [x_a^I(0) - x_a^II(0)]$$ (3)

The calculated evolution of WCC is shown in Fig. 3a. As expected, the WCC is crossed by any arbitrary horizontal reference lines an odd number of times, indicating $Z_2 = 1$. This firmly confirms the nontrivial topological phase of β_1-${B}_2{T}_3$. As the existence of the localized metallic helical edge channels is the prominent feature for 2D TI, we calculate the armchair edge states by using a tight-binding (TB) Hamiltonian in the maximally localized WF. As shown in Fig. 3b, a pair of edge states around the edge projected Γ-point are observed within the bulk gap. And these states are robust and spin helical, where opposite spin polarizations are propagated along the different directions. The topological edge states further manifest the nontrivial properties. As a result, the coexistence of ferroelectric and topological orders is obtained in trilayer β_1-${B}_2{T}_3$.

Ferroelectric-topological coupling

In the following, we discuss the coupling of ferroelectricity and topological orders in trilayer β_1-${B}_2{T}_3$. Different from 2D TI with inversion symmetry, due to the existence of IP electric polarization, the characters of the nontrivial edge states contributed by two opposite zigzag edges would be remarkably anisotropic. Taking the edge states along [110] and [110] as examples, we show them in Supplementary Fig. 3. As expected, these two edge states are distinctly different. Under the ferroelectric switching, these two different nontrivial edge states would be exchanged. This means that the character of nontrivial edge state, such as the position of Dirac point, at an assigned edge can be precisely controlled by ferroelectricity. Moreover, because of the coupling between IP and OOP ferroelectricity, either IP or OOP external electric field can trigger such modulation. This results in the coupled ferroelectric and topological physics in such multilayer systems. Benefit from such ferroelectric-topological coupling, the fascinating topological $p-n$ junctions can be easily obtained when forming a side-by-side ferroelectric domain walls with opposite polarizations. In addition, utilizing the either IP or OOP external electric field, such topological $p-n$ junctions are controllable.

Meanwhile, for such multilayer exhibiting weakly coupled vdW interface, the electric field induced transition between two equivalent structural variants with opposite electric polarization could be regarded as a lateral sliding of central β_1-${B}_2{T}_3$ QL with respect to the outmost β_2-${B}_3{T}_3$ QLs. The ferroelectric reversal operation acts as a 180° rotation with respect to the direction perpendicular to both IP and OOP polarizations. That’s to say, the two ferroelectric states with opposite polarizations as well as the boundary morphology are linked together through an inversion operation. Besides, IP electric dipole reversal also switches the spin polarization of electronic states, which switches the spin currents at the boundaries. As a result, as shown in Fig. 3c, the chirality as well as the direction of the spin-locked currents at boundaries are closely associated with the direction of ferroelectric polarization, and the direction of topological spin current can be fully controlled by ferroelectricity, which would promote exotic applications in conceptually multifunctional devices. Moreover, due to the direction of spin-locked current can be viewed as a ferroic order, such multilayers can also be treated as multiferroic systems, see Fig. 3d, holding potential for highly efficient multiferroic devices.

DISCUSSION

It should be noted that, the coupled properties are robust in ferroelectric multilayer TIs with different layer number, as long as the polarization reversal in multilayers could be regarded as an
inversion operation. We also wish to stress that these coupled ferroelectric and topological physics are not limited to trilayer Bi$_2$Te$_3$, but applicable for all 2D FETIs designed by this scheme.

In summary, we introduce a general scheme to realize coupled ferroelectric and topological physics in multilayer systems. Taking trilayer Bi$_2$Te$_3$ as an example, we show that through a specific interlayer sliding, both IP and OOP ferroelectricity can be realized in van der Waals multilayer based 2D topological insulators, resulting in the coexistence of ferroelectric and topological orders. We further show that the ferroelectric and topological orders exhibit a strongly coupling. Under the ferroelectric switching, distinct different topological physics can be induced in such multilayer systems.

METHODS

Density functional theory calculations

First-principles calculations are performed based on density functional theory as implemented in the Vienna Ab Initio Simulation Package (VASP)\(^4\). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke, and Ernzerhof (PBE)\(^5\) is used to describe the exchange correlation. PBE-D3 method is employed for taking van der Waals interaction into account\(^6\). A 500 eV is adopted for the cut-off energy. A vacuum space larger than 18 Å is employed to eliminate the periodic interactions. Convergence criteria of 10^{-5} eV and 0.01 eVÅ$^{-1}$ for energy and forces, respectively, are used. The Brillouin zone integration is sampled with Monkhorst-Pack grids of $9 \times 9 \times 1$. A tight binding (TB) method, based on maximally localized Wannier functions (MLWFs)\(^6\), is used to calculate the edge states. Energy barriers of ferroelectric switching are obtained by using nudged elastic band (NEB) method\(^9\).

DATA AVAILABILITY

All data generated or analysed during this study are included in this published article (and its supplementary information files).

CODE AVAILABILITY

The central codes used in this paper are VASP and WANNIER90. Detailed information related to the license and user guide are available at http://www.wannier.org and https://www.vasp.at.

Received: 27 July 2021; Accepted: 1 October 2021; Published online: 20 October 2021

REFERENCES

1. Ren, Y., Qiao, Z. & Niu, Q. Topological phases in two-dimensional materials: a review. Rep. Prog. Phys. 79, 066501 (2016).
2. Huang, H., Xu, Y., Wang, J. & Duan, W. Emerging topological states in quasi-two-dimensional materials. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 7, e1296 (2017).
3. Rehman, M. U., Hua, C. & Lu, Y. Topology and ferroelectricity in group-V monolayers. Chin. Phys. B 29, 057304 (2020).
4. Springer, M. A., Liu, T. J., Kuc, A. & Heine, T. Topological two-dimensional polymers. Chem. Soc. Rev. 49, 2007–2019 (2020).
5. Li, Y. et al. High-temperature quantum anomalous hall insulators in lithium-decorated iron-based superconductor materials. Phys. Rev. Lett. 125, 086401 (2020).
6. Xu, T. et al. Two-dimensional polar metal of a PbTe monolayer by electrostatic doping. Nanoscale Horiz. 5, 1400–1406 (2020).
7. Lü, X., Pyatakov, A. P. & Ren, W. Magnetoelastic coupling in multiferroic bilayer VS2. Phys. Rev. Lett. 125, 247601 (2020).
8. Park, J., Yeu, I. W., Han, G., Hwang, C. S. & Choi, J. H. Ferroelectric switching in bilayer 3R MoS2 via interlayer shear mode driven by nonlinear phononics. Sci. Rep. 9, 1–9 (2019).
9. Tang, X. & Kou, L. Two-dimensional ferroics and multiferroics: platforms for new physics and applications. J. Phys. Chem. Lett. 10, 6634–6649 (2019).
10. Niu, G. et al. Antiferromagnetic topological insulator with nonsymmmorphic protection in two dimensions. Phys. Rev. Lett. 124, 066401 (2020).
11. Hanke, J. P., Freimuth, F., Niu, C., Blugel, S. & Mokrousov, Y. Mixed Weyl semimetals and low-dissipation magnetization control in insulators by spin-orbit torques. Nat. Commun. 8, 1–8 (2017).
12. Rangel, T. et al. Large bulk photovoltaic effect and spontaneous polarization of single-layer monochalcogenides. Phys. Rev. Lett. 119, 067402 (2017).
13. Kou, L. et al. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers. Phys. Rev. B 97, 054219 (2018).
14. Monserrat, B., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Antiferroelectric topological insulators in orthorhombic AMgBi compounds (A = Li, Na, K). Phys. Rev. Lett. 119, 036802 (2017).
15. Kou, L., Ma, Y., Liao, T., Du, A. & Chen, C. Multiferroic and ferroic topological order in ligand-functionalized germanane and arsenene. Phys. Rev. Appl. 10, 024043 (2018).
16. Liu, S., Kim, Y., Tan, L. Z. & Rappe, A. M. Strain-induced ferroelectric topological insulator. Nano Lett. 16, 1663–1668 (2016).
17. Narayan, A. Class of Rashba ferroelectrics in hexagonal semiconductors. Phys. Rev. B 92, 220101 (2015).
18. Di Sante, D. et al. Intertwined Rashba, Dirac, and Weyl Fermions in hexagonal hyperferroelectrics. Phys. Rev. Lett. 117, 076401 (2016).
19. Jiang, X., Feng, Y., Chen, K. Q. & Tang, L. M. The coexistence of ferroelectricity and superconductivity in elemental bilayer 3 Te (2017).
20. Zhang, J.-J., Zhu, D. & Yakobson, B. I. Heterobilayer with ferroelectric switching of energy gaps. Nano Lett. 18, 7857–7861 (2018).
21. Kou, L. et al. Two-dimensional ferroelectric topological insulators in functionally tuned atomically thin bismuth layers. Phys. Rev. B 97, 054219 (2018).
22. Pang, Z.-X. et al. Two-dimensional ligand-functionalized plumbene: A promising ultrathin elemental Te multilayer. Nano Lett. 18, 114095 (2018).
23. Xu, T. et al. Two-dimensional polar metal of a PbTe monolayer by electrostatic doping. Nanoscale Horiz. 5, 1400–1406 (2020).
24. Tian, Z. & Kou, L. Out-of-plane ferroelectricity and multiferroicity in elemental bilayer phosphorene, arsenene, and antimonene. Appl. Phys. Lett. 118, 012905 (2021).
25. Liang, Y. et al. Out-of-plane ferroelectricity and multiferroicity in elemental bilayer phosphorene, arsenene, and antimonene. Appl. Phys. Lett. 118, 012905 (2021).
26. Kou, L. et al. Tunable quantum order in bilayer Bi2Te3: stacking dependent quantum spin Hall states. Appl. Phys. Lett. 112, 243103 (2018).
27. Fei, Z. et al. Two-dimensional ferroelectricity by van der Waals sliding. Phys. Rev. B 101, 115427 (2020).
28. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
29. Debela, T. T., Liu, S., Choi, J. H. & Kang, H. S. Electroregvativity, phase transition, and ferroelectricity of TeSe2; few-layers. J. Phys. Condens. Matter 32, 045301 (2020).
30. Wang, Y. et al. Two-dimensional ferroelectricity and switchable spin-textures in ultra-thin elemental Te multilayers. Mater. Horiz. 5, 521–528 (2018).
31. Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett. 9, 7160–7164 (2018).
32. Wang, D. et al. High bipolar conductivity and robust in-plane spontaneous electric polarization in selenerene. Adv. Electron. Mater. 5, 180047 (2019).
33. Pourfath, M. & Solemani, M. Ferroelectricity and phase transitions in InSe2 van der Waals material. Nanoscale 12, 22688–22697 (2020).
34. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectricities in InSe2 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).
35. Dai, M. et al. Intrinsic dipole coupling in 2D van der Waals ferroelectrics for gate-controlled switchable rectifier. Adv. Electron. Mater. 6, 1900975 (2019).
36. Xue, F. et al. Optoelectronic ferroelectric domain-wall memories made from a single Van Der Waals ferroelectric. Adv. Funct. Mater. 30, 2004206 (2020).
37. Li, Y. et al. Orthogonal electric control of the out-of-plane field-effect in 2D ferroelectric a-In2S3. Adv. Electron. Mater. 6, 200061 (2020).
38. Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. Equivalent expression of Z2 topological invariant for band insulators using the non-Abelian Berry connection. Phys. Rev. B 84, 075119 (2011).
39. Tu, N. H., Tanabe, Y., Satake, Y., Huynh, K. K. & Tanigaki, K. In-plane topological p-n junction in the three-dimensional topological insulator Bi2S3–Sb2Te3–Se2. Nat. Commun. 7, 13763 (2016).
40. Wang, J., Chen, X., Zhu, B.-F. & Zhang, S.-C. Topological p-n junction. Phys. Rev. B 85, 235131 (2012).
41. Shir Oakar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett. 112, 157601 (2014).
42. Lin, Z., Si, C., Duan, S., Wang, C. & Duan, W. Rashba splitting in bilayer transition metal dichalcogenides controlled by electronic ferroelectricity. Phys. Rev. B 100, 155408 (2019).
43. Peredew, J. P., Burke, K. & Ernerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
44. Moellingmann, J. & Grimm, S. DFT-D3 study of some molecular crystals. J. Phys. Chem. C. 118, 7615 (2014).
45. Mostofi, A. A. et al. wannier90: a tool for obtaining maximally-localised Wannier functions. Comp. Phys. Commun. 178, 685 (2008).
46. Henkelman, G. & Jönsson, H. Improved tangent nudging in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).

ACKNOWLEDGEMENTS
This work is supported by the National Natural Science Foundation of China (Nos. 11804190 and 12074217), Shandong Provincial Natural Science Foundation (Nos. ZR2019Q0A01 and ZR2019MEM013), Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project) (No. 2019JZZY010302), Shandong Provincial Key Research and Development Program (No. 2019KJRC2004), Shandong Provincial Science Foundation for Excellent Young Scholars (No. ZR2020YQ04), Qilu Young Scholar Program of Shandong University, and Tsinghua Scholar Program of Shandong Province.

AUTHOR CONTRIBUTIONS
Y.M conceived the project. Y.L performed DFT calculations. All authors commented on the manuscript and contributed to its final version.

COMPETING INTERESTS
The authors declare no competing interests.
