石垣島でモデル線虫 C. elegans の姉妹種発見
新たなモデル生物として動物の進化や多様性を生み出すしくみの解明に期待

【発表のポイント】
● 線虫 Caenorhabditis elegans （C. エレガンス）は優れたモデル生物として用いられてきまし
tたが、その姉妹種が見つかっていなかったため、進化生物学的な解析が遅れていました。
● 今回、C. エレガンスの姉妹種を沖縄県石垣島のイチジクの一種から発見し、
 Caenorhabditis inopinata （C. イノビナータ）と命名しました。
● さらに、C. イノビナータの全ゲノム解読を行い、遺伝子操作技術を確立しました。
● C. エレガンスと C. イノビナータの比較解析により、動物の進化や多様性を生み出すしく
みの理解が深まることが期待されます。

【概要】
宮崎大学医学部の菊地泰生 教授、国立研究開発法人森林研究・整備機構森林総合研究所 神崎菜摘 主任研究員と東北大学大学院生命科学研究科 栃木原砂子 教授のグループは
米・英・台湾の研究機関と共同で、モデル生物 Caenorhabditis elegans （セノラブディティ
ス・エレガンス）の姉妹種 Caenorhabditis inopinata （セノラブディティ
ス・イノビナータ）を沖縄県石垣島のイチジクの一種から発見し、全
ゲノムの解読を行いました。C. elegans は優れたモデル生物として様々な生物学的研究に活
用されてきましたが、姉妹種が存在していなかったため、進化生物学的な解析が進んでい
ませんでした。今回、発見された C. inopinata は、C. elegans と最も近縁でありながら形態
や行動・生態に大きな違いがあります。研究グループによって整備された高精度なゲノム
情報と遺伝子操作技術により、C. inopinata が新たなモデル生物として広く利用されること
で、動物の進化や多様性を生み出すしくみの理解が深まることが期待されます。
この成果は平成 30 年 8 月 10 日（日本時間 18:00）の Nature Communications 誌（電子版）
に掲載されます。本研究は、文部科学省科学研究費補助金の支援を受けて行われました。

図 C. inopinata（上）と C. elegans（下）。C. inopinata の方が体長が約 2 倍長い。
【詳細な説明】
線虫Caenorhabditis elegans（セノラブディティス・エレガンス：C. エレガンス）は医学・生命科学研究分野で幅広く使用され、様々な重要な発見を導いてきたモデル生物です。実際、C. elegansを用いた研究に対し過去3つのノーベル賞が授与されています。この優秀なモデル生物の唯一の弱点は「姉妹種」が不在で、比較進化学的な解析が困難なことでした。「生物学は、進化に照らして考えなければ何も意味をなさない（Nothing in Biology Makes Sense Except in the Light of Evolution）」とはアメリカの生物学者セオドシアス・ドブザンスキーの有名な言葉です。

森林総合研究所 神崎菜摘 主任研究員、宮崎大学医学部 菊地泰生 准教授、東北大学大学院生命科学研究科 杉本亜砂子 教授らのグループは、長らく求められてきたC. elegansの姉妹種を沖縄県石垣島のイチジク（オオバイヌビワ）の実（花嚢）から発見し、Caenorhabditis inopinata（セノラブディティス・イノピナータ：C. イノピナータ）と名付けました。これはこれまでC. elegans研究の制限要因となっていた姉妹種不在問題を解消する極めて重要な発見です。

この新しい線虫は、C. elegansと共通点はあるものの、興味深い相違点が数多くありました。まず、体サイズがC. elegansと比較して2倍以上大きくなる（図1）、生活スタイルもC. elegansが多様な環境で生育可能な自由生活性に対して、C. inopinataはイチジクおよびイチジクコバチと深い関係があることなどです（図2）。これは姉妹種としては驚くべき違いです。

研究グループは、この違いが何に起因するかを明らかにするため、C. inopinataの全ゲノムを解読し、C. elegansと比較しました（図3）。その結果、ダイナミックなゲノム進化をもたらすトランスポゾン（注2）がC. inopinataには数多くあり、その転移を制御する可能性のあるergo-1遺伝子がC. inopinataで失われていること、また、特定のイチジク種の実（花嚢）という極めて限られた生息領域を反映して、環境変化を感知する受容体（7TM-GPCR（注3））が減少しているといった、重要なゲノム進化を明らかにしました。

研究グループが行ったゲノム解読は極めて高精度で、解読された遺伝子配列はすべて染色体レベルにまとめることができています。研究グループはこの高精度なゲノム情報を利用しやすい形で広く提供するとともに、RNA干渉（RNAi）（注4）による遺伝子機能破壊や遺伝子導入などの遺伝学的解析ツールも確立しました。
これらのリソースを活用し、\textit{C. inopinata}が新たなモデル生物として今後広く利用され、\textit{C. elegans}と併用して研究を進められることで、動物の進化や多様性を生み出すしくみの解析をはじめとする様々な分野で生命現象の理解がさらに深まることが期待されます。

本研究は、文部科学省科学研究費補助金の支援を受けて行われました。

【用語説明】
注1: \textit{Caenorhabditis elegans} モデル生物として50年以上用いられている線虫の一種。細胞数が約1000個と少なくその分裂バターンが完全に解明されていること、細胞が透明で体内の観察がしやすいこと、全ゲノム配列が最初に決定された動物であること、遺伝子操作技術が充実していること、などの実験材料として優れた性質を持つことから、個体発生・神経科学・寿命等の多様な生物学分野で活用されている。

注2: ヨン ゲノム上を転移できる塩基配列。転移することで突然変異の原因となり、生物の進化を促進してきたと考えられている。

注3: 7TM-GPCR 7回膜貫通型Gタンパク質共役レセプター。細胞外の神経伝達物質やホルモンを受容してそのシグナルを細胞内に伝える役割を果たす。\textit{C. elegans}には約1,300の7TM-GPCRが存在するが、\textit{C. inopinata}には約400しか存在しない。

注4: RNA干渉（RNAi） \textit{C. elegans}で発見された、二本鎖RNAと相補的な塩基配列を持つmRNAが分解される現象。この現象を利用し、人工的に二本鎖RNAを細胞内に導入することで、任意の遺伝子の発現抑制を行うことができると。
図 1. *C. inopinata*（上）と *C. elegans*（下）。*C. inopinata*の方が体長が約2倍長い。

図 2. *C. inopinata*の生活環。イチジクの一一種（オオパイヌビワ）の実（花嚢）に生息。イチジクコバチが *C. inopinata*の移動を媒介すると推測されている。
図3. ゲノム配列比較に基づくCaenorhabditis属線虫の系統樹

【論文題目】
題目：Biology and genome of a newly discovered sibling species of Caenorhabditis elegans
著者：Natsumi Kanzaki, Isheng J. Tsai, Ryusei Tanaka, Vicky L. Hunt, Dang Liu, Kenji Tsuyama, Yasunobu Maeda, Satoshi Namai, Ryohei Kumagai, Alan Tracey, Nancy Holroyd, Stephen R. Doyle, Gavin C. Woodruff, Kazunori Murase, Hiromi Kitazume, Cynthia Chai, Allison Akagi, Oishika Panda, Huei-Mien Ke, Frank C. Schroeder, John Wang, Matthew Berriman, Paul W. Sternberg, Asako Sugimoto, Taisei Kikuchi
雑誌：Nature Communications