Interventions for great saphenous vein reflux: network meta-analysis of randomized clinical trials

B. Siribumrungwong1,2, C. Wilasrusmee3, S. Orrapin4, K. Srikuea1, T. Benyakorn1, G. McKay4, J. Attia5, K. Rerkasem6 and A. Thakkinstian7*

1Division of Vascular and Endovascular Surgery, Department of Surgery, Thammasat University Hospital, Pathum Thani, Thailand
2Centre of Excellence in Applied Epidemiology, Thammasat University Hospital, Thammasat University, Pathum Thani, Thailand
3Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
4Centre for Public Health, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
5Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, and Hunter Medical Research Institute, NSW, Australia
6Division of Vascular and Endovascular Surgery, Department of Surgery, Faculty of Medicine; Non-Communicable Disease Centre of Excellence, Research Institute of Health Sciences, Chiang Mai University, Chiang Mai, Thailand
7Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand

*Correspondence to: Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Rama VI Road, Rachatevi, Bangkok 10400, Thailand (e-mail: ammarin.tha@mahidol.ac.th)

Abstract

Background: A variety of endovascular and open surgical interventions exist to treat great saphenous vein reflux. However, comparisons of treatment outcomes have been inconsistent.

Methods: A systematic review and network meta-analysis of RCTs was performed to compare rates of incomplete stripping or non-occlusion of the great saphenous vein with or without reflux (anatomical failure) at early, mid- and long-term follow-up; and secondary outcomes (reintervention and clinical recurrence) among intervention groups. The surface under the cumulative ranking curve (SUCRA) method was used to estimate the probability of the intervention with the lowest anatomical failure rates.

Results: Some 72 RCTs were included. Comparisons of endothermal techniques with open surgery were mostly not significantly different, except for endovenous laser ablation (EVLA), which had higher long-term anatomical failure rates (pooled risk ratio (RR) 1.87, 95 per cent c.i. 1.14 to 3.07). Mechanochemical ablation had higher anatomical failure rates than radiofrequency ablation (RFA) (pooled RR 2.77, 1.38 to 5.53), and cyanoacrylate closure (CAC) had a RR 0.56 (0.34 to 0.93) times lower than either RFA or EVLA at the early term. Ultrasound-guided foam sclerotherapy had a higher risk of anatomical failure and reintervention than open surgery, with the lowest SUCRA value, and CAC was ranked first, third and first for best intervention for anatomical failure at early, mid and long term respectively. However, clinical recurrence rates were not significantly different between all comparisons.

Conclusion: Mechanochemical ablation and ultrasound-guided foam sclerotherapy performed poorly, with higher anatomical failure rates in the long term. The other treatment modalities had similar rates of anatomical failure in the short and mid term.

Introduction

Endovenous thermal ablation methods, including radiofrequency ablation (RFA) and endovenous laser ablation (EVLA), have been recommended instead of open surgery for the treatment of great saphenous vein reflux1,2. Other non-invasive modalities are available, including ultrasound-guided foam sclerotherapy (UGFS) and non-thermal non-tumescent (NTNT) techniques, such as mechanochemical ablation (MOCA) and cyanoacrylate closure (CAC).

A meta-analysis3 in 2012 demonstrated similar efficacies in the mid term (1–3 years) for rates of incomplete stripping or non-occlusion of the great saphenous vein (GSV) with or without reflux (anatomical failure) following RFA and EVLA, but poorer outcomes for UGFS, compared with open surgery. However, findings from two recent meta-analyses4,5 of RCTs that assessed long-term outcomes (more than 5 years) reached conflicting conclusions, with one4 reporting similar rates of anatomical failure between open surgery and EVLA, and the other5 demonstrating significantly greater anatomical failure after EVLA at long-term follow-up compared with open surgery.

Previous studies4–5 have focused solely on anatomical failure rates, whereas other important clinical outcomes, including neovascularization and reflux in tributaries (such as anterior accessory saphenous vein (AASV) reflux) that contribute to the efficacy of the procedures, have been considered insufficiently6–8. Furthermore, several studies9–14 have applied combined techniques (high open surgical ligation (HL) with EVLA or UGFS), but these were not pooled separately.
The primary aim of this systematic review and network meta-analysis was to quantify the rates of anatomical failure between the treatment techniques. In addition, a variety of secondary outcomes were assessed.

Methods

The study was conducted according to the PRISMA guidelines \(^{15}\) and extension statement for network meta-analysis of healthcare interventions \(^{16}\). The published protocol was registered at PROSPERO (number CRD42018096794) \(^{17}\).

Search strategy and study selection

MEDLINE and Scopus were searched from 2011 to March 2020. Search terms were based on patients and interventions \(^{17}\). Two reviewers independently selected studies according to predefined inclusion criteria: RCTs of GSV reflux; comparison of defined interventions as outlined below; and reporting any of the primary or secondary outcomes of interest. Data from multiple publications involving the same cohort were combined.

Interventions

Interventions of interest included open surgery, endothermal ablation (EVLA, RFA), UGFS, CAC, and MOCA. In addition, EVLA and UGFS procedures that were combined with HL were also considered.

Outcomes

Anatomical failure (incomplete stripping or GSV non-occlusion with or without reflux, as defined in the original study) \(^{9}\) was regarded as the primary outcome of interest. Secondary outcomes included postoperative complications (wound infection, haematoma, paraesthesia and venous thromboembolism), postoperative pain, time to recovery, Venous Clinical Severity Score (VCSS), AASV reflux, neovascularization, clinical recurrence, reintervention, and quality of life as measured by the Aberdeen Varicose Vein Questionnaire (AVVQ). Outcomes including anatomical failure, neovascularization, AASV reflux, VCSS and AVVQ scores were measured and stratified according to follow-up time as periprocedural (less than 30 days), early term (30 days to 1 year), mid term (1–3 years) and long term (more than 3 years) \(^{4}\).

Data extraction

Data, including characteristics of studies and patients, such as setting, interventions, outcomes, mean age, severity, GSV diameter, co-intervention (compression, concomitant phlebectomy), were extracted independently by two of three reviewers. In addition, data for pooling (frequency data among interventions and dichotomous outcomes; mean(s.d.) values of continuous outcomes by intervention group) were extracted. Corresponding authors were contacted twice to request unreported data for pooling. Discrepancies between reviewers were resolved by consensus.

Risk-of-bias assessment and grading of evidence

The Cochrane Collaboration tool \(^{18}\) was used by two independent reviewers to assess sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessors, incomplete outcome reports, selective outcome reports, and other sources of potential bias. In addition, the quality of evidence was graded using the GRADE working group tool \(^{19}\) to consider study limitations, consistency, indirectness, imprecision and publication bias.

Statistical analysis

Direct meta-analysis was applied for direct comparison of intervention and comparator when at least three studies reported the same comparisons and outcomes. Effect sizes (risk ratio (RR) and risk difference for dichotomous outcomes, mean difference (MD) or standardized mean difference (SMD) for continuous outcomes) with 95 per cent c.i. were estimated. A fixed-effect model was used when effect sizes demonstrated low levels of heterogeneity across studies; otherwise a random-effects model was used. When studies did not report mean(s.d.) values, these were estimated from median (range/i.q.r.) values \(^{20}\). Number needed to treat (NNT) and harm (NNH) along with 95 per cent c.i. were estimated by inverse of pooled risk differences.

The Q test and \(I^2 \) values were used to assess heterogeneity. Outcomes with either a significant Q test results (\(P < 0.100 \)) or \(I^2 \) value of 25 per cent or more were considered heterogeneous \(^{21}\). Possible sources of heterogeneity (such as wavelength and per-protocol analysis) were explored by means of meta-regression. Subgroup or sensitivity analyses were performed accordingly. Publication bias was assessed with Egger’s test and funnel plots. Contour-enhanced funnel plots were assessed to determine whether asymmetry was likely due to heterogeneity or publication bias.

Network meta-analysis \(^{22}\) was performed by borrowing information from the common comparators where direct comparisons were not available to compare outcomes indirectly among interventions (RFA, EVLA, EVLA with HL, UGFS, UGFS with HL, MOCA, CAC and open surgery). Effect sizes and variance–covariance were estimated for individual studies and pooled in a multi-variable consistency model meta-analysis. Mixed intervention comparisons were also estimated. A surface under the cumulative ranking curve (SUCRA) based on the frequentist method was used to estimate the probability of the best intervention. The SUCRA method used cumulative posterior probability with 1000 simulations to estimate the probability of each intervention being the best ranked; values range from 0 to 100 per cent, where the higher value demonstrates high likelihood of being the best intervention.

The inconsistency assumption was tested using a design-by-treatment interaction model; if this was unmet, inconsistency factors were estimated and tested. Comparison-adjusted funnel plots were explored for evidence of small study effects across the whole network. A cluster rank plot of SUCRA for anatomical failure on the y-axis and postoperative pain on the x-axis was constructed \(^{23}\). Analysis was performed using STATA \(^{24}\) version 16.0 (StataCorp, College Station, TX, USA) with a threshold of \(P < 0.050 \) for the two-sided test considered statistically significant \(^{25}\).

Results

Seventy-four RCTs \(^{5,7,9–14,24–89}\) met the study inclusion criteria (Fig. S1). Of them, 26 studies were the same as other RCTs but reported outcomes measured at different times, leaving 48 original RCTs for qualitative and risk-of-bias assessment (Table S1). A total of 49 RCTs \(^{5,7,9–14,24–56,79–87}\) from 30 studies compared endovenous ablation with open surgery, and the remainder included comparisons between endovenous ablation methods only (Table S1). Duration of follow-up ranged from 0.5 months to 8 years, with 18 of the 48 studies (38 per cent) reporting long-term outcomes (more than 3 years). Most studies included participants
with a mean GSV diameter below 10 mm, with the exception of a single study that reported a mean GSV diameter above 10 mm.

Risk-of-bias assessment

Results from the risk-of-bias assessment are presented in Table S2. Blinding domains represented the highest risk, with 85 and 75 per cent of RCTs unblinded for personnel and outcome assessors respectively. Approximately 30 per cent of RCTs had randomizations that were unclear or had a high risk of bias. However, most studies (95 per cent) had a low risk of bias for incomplete and selective outcome reports.

Anatomical failure

Direct meta-analysis

For EVLA versus open surgery, there were between 5 and 12 comparisons of anatomical failure at periprocedural, early, mid-term and long-term follow-up (Table 1). Anatomical failure rates were not significantly different for EVLA in relation to open surgery at periprocedural to mid-term follow-up (Fig. S2). However, anatomical failure at long-term follow-up after EVLA was significantly higher than after surgery, with a pooled RR of 1.87 (95 per cent c.i. 1.14 to 3.07) and NNH of 20 (12 to 59). Sources of heterogeneity (I² = 53.5 per cent) were explored by fitting different types of waveform in a meta-regression and sensitivity analysis with study exclusion according to protocol, however, the source of heterogeneity could not be determined (data not shown). The contour-enhanced funnel plots suggested publication bias at early-term follow-up (Fig. S3).

Comparisons of RFA and open surgery outcomes were reported in five or six RCTs at periprocedural, early, and mid-term follow-up, (Table 1 and Fig. S4). Anatomical failure risk was 1.26 (95 per cent c.i. 0.20 to 7.99), 1.99 (0.92 to 4.31) and 1.45 (0.75 to 2.80) times greater for RFA than for open surgery at periprocedural, early and mid-term follow-up respectively, although none was significant and I² values were 0 per cent for early and mid-term follow-up. Evidence of publication bias was not identified for any pooled comparisons (Fig S4).

Comparisons of UGFS and open surgery outcomes were reported in three to nine RCTs at periprocedural, early, mid-term and long-term follow-up (Fig. S5). The anatomical failure risk was significantly higher at early, mid-term and long-term follow-up with corresponding RRs of 2.47 (95 per cent c.i. 1.78 to 3.43; NNH 6 (4 to 14), 2.14 (1.42 to 3.23; NNH 6 (5 to 10) and 3.06 (1.74 to 5.36; NNH 4 (2 to 9), with moderate to high levels of heterogeneity detected (I² values between 37.3 and 84.5 per cent). Sensitivity analyses through the exclusion of a study that reported combined outcomes of UGFS with HL did not reduce the heterogeneity. Contour-enhanced funnel plots suggested missing studies from mid-term to long-term follow-up (Fig. S6).

The pooling of 10 RCTs of EVLA and RFA outcomes at early term identified significantly lower rates of anatomical failure for EVLA compared with RFA (RR 0.75, 95 per cent c.i. 0.58 to 0.97;

Table 1 Direct meta-analysis of anatomical failure comparison between intervention types

Comparison arms	Follow-up time	No. of studies	Intervention type	Events per no. of patients	Pooled RR	NNT/NNH	Heterogeneity	Egger's test	Quality				
EVLA versus OS	Periprocedural	10	EVLA Surgery	14 of 940	0.65 (0.28, 1.52)	–	0.193	28.1	0.077	High	3	3	3
Early		12	EVLA Surgery	23 of 865	1.14 (0.84, 1.55)	–	0.428	1.7	0.020	Moderate	3	3	3
Mid term	5		EVLA Surgery	77 of 1375	1.24 (0.69, 2.22)	–	0.224	23.8	0.504	High	3	3	3
Long term	9		EVLA Surgery	32 of 760	1.18 (1.14, 3.07)	20 (12, 59)	0.042	53.5	0.158	Moderate	3	3	3
RFA versus OS	Periprocedural	6	RFA Surgery	14 of 367	1.26 (0.20, 7.99)	–	0.053	58.7	0.240	Low	3	3	3
Early	6		RFA Surgery	10 of 358	1.99 (0.92, 4.31)	–	0.617	0.653	0.328	Moderate	3	3	3
Mid term	5		RFA Surgery	17 of 261	1.45 (0.75, 2.80)	–	0.653	0.032	0.328	Moderate	3	3	3
UGFS versus open surgery	Periprocedural	5	UGFS Surgery	15 of 376	0.96 (0.51, 1.81)	–	0.587	0.136	0.901	Moderate	3	3	3
Early	9		UGFS Surgery	270 of 948	2.47 (1.78, 3.43)	6 (4, 14)	0.064	37.3	0.812	High	3	3	3
Mid term	3		UGFS Surgery	122 of 414	2.14 (1.42, 3.23)	6 (5, 10)	0.169	43.6	0.148	Moderate	3	3	3
Long term	6		UGFS Surgery	298 of 861	3.06 (1.74, 5.36)	4 (2, 9)	<0.001	84.5	0.011	Low	3	3	3
EVLA versus RFA	Periprocedural	5	EVLA RFA	3 of 376	1.25 (0.37, 4.26)	–	0.984	0.877	0.664	Moderate	3	3	3
Early	10		EVLA RFA	68 of 912	0.75 (0.58, 0.97)	18 (33, 200)	0.519	0.190	0.905	High	3	3	3
Mid term	3		EVLA RFA	27 of 419	0.97 (0.50, 1.60)	–	0.978	0.090	0.905	Low	3	3	3
CAC versus endothermal	Early	3	CAC RFA	20 of 483	0.56 (0.34, 0.93)	30 (17, 200)	0.364	0.165	0.905	Moderate	3	3	3
MOCA versus RFA	Early	3	MOCA RFA	49 of 604	2.77 (1.38, 5.53)	12 (8, 29)	0.359	0.312	0.905	Moderate	3	3	3

Values in parentheses are 95 per cent confidence intervals. *Early, up to 1 year; mid-term, 1–3 years; long-term, more than 3 years. †Number needed to treat/harm (NNT/NNH) values were estimated only for significant results. RR, risk ratio; EVLA, endovenous laser ablation; OS, open surgery; RFA, radiofrequency ablation; UGFS, ultrasound-guided foam sclerotherapy; CAC, cyanoacrylate closure; MOCA, mechanochemical ablation.
NNT 18 (33 to 200; I²=0 per cent), although there was no significant effect observed at mid term (RR 0.97, 0.59 to 1.60). Evidence of publication bias was not detected (Fig. S7).

Three RCTs compared CAC with endothermal ablation (RFA and EVLA). The risk of anatomical failure was significantly lower after CAC compared with endothermal ablation at early term, with a pooled RR of 0.56 (95 per cent c.i. 0.34 to 0.93) and NNT of 30 (17 to 200). In contrast, the anatomical failure risk at early term was higher after MOCA than RFA (pooled RR 2.77, 1.38 to 5.53; NNH 12, 8 to 29). Both results were homogeneous (I²=0 per cent) with no publication bias (Fig. S8).

Network meta-analysis

Network meta-analyses of anatomical failure were generated from 26, 37, 17 and 15 RCTs for periprocedural, early-term, mid-term and long-term outcomes respectively (Table 2 and Fig. S9). The global test indicated consistent results for all networks (Table S3). None of the interventions was significantly different to open surgery at periprocedural follow-up.

Comparisons of open surgery and MOCA showed that MOCA had greater anatomical failure at both early and mid-term follow-up (pooled RR 3.34 (95 per cent c.i. 1.55 to 7.19) and 2.03 (0.69 to 6.01) respectively), but only early term was significant. UGFS had significantly higher anatomical failure than open surgery at early, mid-term and long-term follow-up with pooled RRs of 3.05 (2.41 to 3.86), 2.60 (1.54 to 4.41) and 3.98 (2.18 to 7.28) respectively. All types of endothermal ablation (RFA, EVLA and EVLA with HL) showed no significant differences in anatomical failure compared with open surgery at early and mid term, although EVLA had a significantly higher level of anatomical failure at long-term follow-up (RR 1.90, 1.08 to 3.34).

CAC comparisons with open surgery showed a lower risk of anatomical failure at periprocedural, early and long-term follow-up (RR 0.21 (95 per cent c.i. 0.01 to 6.84), 0.65 (0.36 to 1.17) and 0.62 (0.08 to 4.60) respectively), but none was significant (Table 2). Comparisons of CAC with MOCA and UGFS showed that MOCA had a significantly higher anatomical failure rate than CAC at early term (RR 1.98, 1.17 to 3.35); EVLA and EVLA with HL also had a higher risk than CAC, but this was not significant. MOCA and UGFS had significantly greater risks of anatomical failure compared with CAC, RFA and EVLA at early term (Table 2).

Consideration of the additional effect of HL on anatomical failure identified a significantly higher failure rate following UGFS compared with UGFS with HL at early follow-up (RR 4.28, 95 per cent c.i. 1.30 to 4.73); this was also reflected at mid-term and long-term follow-up, but was not significant (Table 2). EVLA also showed an increased risk of failure between 1.61 and 1.92 times higher than EVLA with HL at both mid-term and long-term follow-up, but neither was significant.

SUCRA values associated with the lowest risk of anatomical failure were calculated for each follow-up period (Table S4). CAC was the top ranked intervention in lowering anatomical failure risk at the periprocedural, early and long-term follow-up. Open surgery and endothermal ablation were largely ranked next, followed by MOCA and UGFS with HL, whereas UGFS alone was

Table 2 Network meta-analysis risk ratios of anatomical failure between intervention type and time of follow-up
Early term
Open surgery
MOCA
CAC
UGFS with HL
EVLA with HL
RFA
RFA
UGFS
EVLA

Values in cells are risk ratios (95 per cent c.i.) of anatomical failure, comparing the intervention in the diagonal line with the side relative to the intervention on the left side. For instance, the risk ratio for endovenous laser ablation (EVLA) versus open surgery is 0.63 (95 per cent c.i. 0.27 to 1.48) and 1.00 (0.74 to 1.34) at periprocedural and early follow-up times respectively: MOCA, mechaanochemical ablation; CAC, cyanoacrylate closure; UGFS, ultrasound-guided foam sclerotherapy; HL, high ligation; RFA, radiofrequency ablation.
Table 3 Direct meta-analysis comparisons of secondary outcomes between intervention types and time of follow-up

Comparison arm	Outcomes	Follow-up time	No. of studies	Events per no. of patients	Pooled RR or MD	NNT/NNH*	Heterogeneity	Egger’s test	Quality	
EVLA versus OS	Neovascularization	Early term	4	0 of 371	0.06 (0.01, 0.28)	16	0.639	0	0.256	Moderate
		Mid term	3	0 of 385	0.03 (0.01, 0.18)	9	0.370	0	0.207	Moderate
		Long term	8	25 of 766	0.38 (0.20, 0.74)	11	0.061	40.8	0.018	Moderate
	AASV reflux	Long term	7	77 of 674	3.62 (2.31, 5.67)	15	0.462	1.6	0.185	High
	Clinical recurrence	End of follow-up	7	217 of 937	0.91 (2.31, 5.67)	11	0.038	56.4	0.573	Low
	Reintervention	End of follow-up	9	99 of 784	0.92 (0.70, 1.17)	–	0.635	0	0.293	High
	VCSS†	Early term	6	–	0.00 (0.00)	–	0.991	0	0.653	High
		Mid term	4	–	-0.01 (0.00)	–	0.737	0	0.438	High
		Long term	4	–	-0.08 (0.00)	–	<0.001	90.6	0.029	High
	AVVQ†	Early term	7	–	-0.74 (0.19)	–	0.010	65.3	0.583	Moderate
		Mid term	6	–	0.36 (0.13, 0.59)	–	0.671	0	0.772	High
		Long term	6	–	0.16 (0.02, 0.3)	–	0.005	73.7	0.285	Moderate
RFA versus OS	Neovascularization	Mid term	3	2 of 79	0.45 (0.13, 1.54)	–	0.672	0	0.632	Moderate
	Clinical recurrence	End of follow-up	5	43 of 324	0.81 (0.46, 1.45)	–	0.145	42.9	0.322	Moderate
UGFS versus OS	Reintervention	End of follow-up	7	223 of 943	1.79 (1.41, 2.27)	2	0.104	34.0	0.620	High
	VCSS†	Early term	3	–	0.13 (0.01, 0.27)	–	0.001	89.9	0.901	Moderate
	AVVQ†	Early term	4	–	-0.73 (0.98)	–	0.007	80.8	0.283	Moderate

Values in parentheses are 95 per cent confidence intervals. *Number need to treat (NNT) was estimated only for significant results. †Continuous outcomes. RR, risk ratio; MD, mean difference; NNT, number needed to harm; EVLA, endovenous laser ablation; OS, open surgery; AASV, anterior accessory saphenous vein; VCSS, Venous Clinical Severity Score; AVVQ, Aberdeen Varicose Vein Questionnaire; RFA, radiofrequency ablation; UGFS, ultrasound-guided foam sclerotherapy.

Secondary outcomes

Secondary outcomes, including neovascularization, AASV reflux, clinical recurrence and reintervention, were considered (Table 3). Results demonstrated consistently lower neovascularization following EVLA compared with open surgery at early, mid-term and long-term follow-up (pooled RR 0.06 (95 per cent c.i. 0.01 to 0.28), NNT 16 (8 to 250); 0.03 (0.01 to 0.18), NNT 9 (7 to 13); and 0.38 (0.20 to 0.74), NNT 11 (6 to 48) respectively). There was no evidence of heterogeneity, except for long-term follow-up (pooled RR 0.20 (0.09 to 0.47) respectively) (Table 3 and Fig. S12). Reintervention was significantly greater after UGFS compared with open surgery (RR 1.79 (1.41 to 2.27); NNT 2 (1 to 3)) (Fig. S12). Similarly, VCSS and AVVQ showed no significant differences at early, mid-term and long-term follow-up for EVLA comparisons with open surgery, and at early follow-up for UGFS versus open surgery (Figs S13-S15).

Postoperative complications were also assessed (Table 4). Venous thromboembolism was not significantly different for any comparison. EVLA, RFA and UGFS were significantly less likely to be associated with wound infection than open surgery (RR 0.41 (95 per cent c.i. 0.21 to 0.79), 0.25 (0.07 to 0.89) and 0.48 (0.25 to 0.95) respectively), with low to moderate levels of heterogeneity. In addition, EVLA, RFA and UGFS had a significantly lower risk of haematoma than open surgery (RR 0.55 (0.33 to 0.93), 0.29 (0.11 to 0.74) and 0.36 (0.23 to 0.56) respectively). Paraesthesia was significantly reduced following EVLA and UGFS compared with open surgery (RR 0.64 (0.46 to 0.89) and 0.20 (0.09 to 0.47) respectively). Paraesthesia was also significantly lower for NTNT treatments relative to endothermal ablation (RR 0.35 (0.14 to 0.85)). Furthermore, superficial thrombophlebitis was significantly greater in RFA and UGFS treatments compared with open surgery (RR 2.63 (1.34 to 5.14) and 3.41 (1.36 to 8.59) respectively).
For postoperative pain after endothermal ablation and open surgery, RFA resulted in significantly less pain than open surgery (pooled MD -1.3, 95 per cent c.i. -1.6 to -0.9, $I^2=0$ per cent) and EVLA (pooled MD -0.98, -1.55 to -0.40, $I^2=95.8$ per cent) (Table 5). A subgroup analysis by wavelength (less than 1470 versus 1470 nm) reduced the I^2 value from 95.8 to 0 per cent for RFA versus EVLA comparisons. For studies with a wavelength below 1470 nm, RFA involved significantly less pain than EVLA (pooled MD -1.44, -1.66 to -1.22) than those with a wavelength of 1470 nm, where RFA had significantly greater pain than EVLA (pooled MD 0.20, 0.09 to 0.31) (Fig. S16).

There was no significant difference in postoperative pain between MOCA and endothermal ablation (either RFA^{66,68}, RFA and 1470-nm EVLA⁶⁹, or 1470-nm EVLA⁶⁹) with a pooled MD of -0.26 (95 per cent c.i. -1.29 to 0.76, $I^2=91.2$ per cent) (Table 5 and Fig. S17). However, CAC had lower postoperative pain than endothermal ablation (SMD -1.37, -1.98 to -0.75), with high heterogeneity.

A network meta-analysis of postoperative pain showed consistent trend results between direct and network meta-analyses (Tables S3 and S5). Ranking indicated that CAC was the most effective method in lowering postoperative pain in the x-axis (Fig. 1). The plot was divided into four quadrants at the SUCRA value of 0.5: interventions that fell in the right upper and lower quadrant had low pain
with low and high anatomical failure respectively, whereas those in the left upper and lower quadrants had high pain with low and high anatomical failure. Therefore, the best intervention should fall in the right upper quadrant, with values for CAC indicating low anatomical failure and low postoperative pain for both mid-term and long-term follow-up.

EVLA, RFA and UGFS were associated with 3–4 and 4–8 days shorter return to normal activities and work compared with open surgery, with high levels of heterogeneity. NTNT had significantly reduced time to normal activities compared with endothermal ablation (pooled MD −0.9, 95 per cent c.i. −1.5 to −0.3; I² = 92 per cent), but this was not significantly different for time to work.

Quality of evidence
The quality of the body of evidence for direct meta-analysis was graded according to each outcome across studies (Tables S6–S9). The most common reason for a reduction in the quality of evidence was serious imprecision as a result of inadequate sample size.

Discussion
This study failed to identify any significant differences in anatomical failure from comparisons between open surgery and RFA and EVLA at early and mid-term follow-up. The network meta-analysis did, however, identify significantly higher levels of anatomical failure with EVLA at long-term follow-up, although no data were available for assessment of RFA in the longer term. At early-term follow-up, CAC resulted in lower levels of anatomical failure than endothermal ablation, supported by a moderate quality of evidence. MOCA was associated with higher levels of anatomical failure compared with RFA, with a NNH value of 12 (95 per cent c.i. 8 to 29). Network meta-analysis also showed higher levels of anatomical failure following MOCA compared with open surgery, CAC, RFA, UGFS with HL, and EVLA at early follow-up. UGFS was associated with a higher risk of anatomical failure than open surgery in both direct and network meta-analyses, with NNH values ranging between 2 and 14 across all periods of follow-up with the lowest SUCRA value.

The data also demonstrated greater anatomical failure for EVLA at long-term follow-up compared with open surgery, with findings of moderate quality due to heterogeneity. These findings contrast with the previous meta-analysis, which found no evidence of difference in anatomical failure rates between EVLA and open surgery. However, the present study supports the conclusions from the meta-analysis by Kheirelseid and colleagues, which reported significantly greater GSV recanalization following EVLA compared with open surgery, with a pooled RR of 2.28 (95 per cent c.i. 1.20 to 4.30).

In early-term follow-up, direct meta-analysis identified reduced anatomical failure after CAC compared with endothermal ablation, with moderate levels of quality associated with imprecision (the upper boundary of NNT was as high as 200 and with a suboptimal sample size). In addition, CAC ranked better than RFA for having the lowest anatomical failure rate in the network meta-analysis, scoring first, third and first rank for early, mid-term and long-term follow-up respectively. The findings of this study are consistent with a recent network meta-analysis of
group analysis by wavelength reduced the blood within, could reduce pain and complications. The sub-length EVLA (1470 nm), which targets the vein wall instead of explained within the analysis. Variation from lower to higher wave explained through variation in the wavelength of EVLA consid- effect observed failed to reach significance. This may be the benefits of EVLA relative to open surgery were reduced, the lowing RFA and UGFS compared with open surgery. Although ablation in terms of postoperative pain and recovery time fol- 1.54).

were not significantly different (RR 0.99 (95 per cent c.i. 0.63 to perficial thrombophlebitis with endothermal ablation and NTNT were not significantly different across the rate of GSV recanalization following CAC (8.6 per cent) and RFA (14.8 per cent)\(^7\). AASV reflux was significantly greater following EVLA, whereas neovascularization was greater after open surgery, with little differ- in NNT/NNH values. However, anatomical failure, AASV reflux and neovascularization were surrogate outcomes of clinical recur- rence that were not significantly different in the present analyses. In addition, other important patient outcomes, such as VCSS, AVVQ scores and reintervention, were also not significantly different be- yond the higher reintervention rate observed after UGFS in relation to open surgery, although these outcomes should be considered further. Other likely sources of recurrence include perforator insufficiency, saphenopopliteal reflux and primary varicosities, which should be considered across different types of intervention. More detailed clas- sification of clinical recurrence associated with specific interventions would facilitate comparisons of efficacies between interventions. Paraesthesia was reduced after NTNT compared with endo- thermal ablation, which may result from lower levels of thermal injury to the adjacent nerve during the procedure, whereas superficial thrombophlebitis was not significantly different across the comparisons assessed. Postprocedure phlebitis was the most common complication following CAC\(^8\), and comparisons of superficial thrombophlebitis with endothermal ablation and NTNT were not significantly different (RR 0.99 (95 per cent c.i. 0.63 to 1.54).

The data in this study confirmed the benefit of endovenous ablation in terms of postoperative pain and recovery time fol- lowing RFA and UGFS compared with open surgery. Although the benefits of EVLA relative to open surgery were reduced, the effect observed failed to reach significance. This may be explained through variation in the wavelength of EVLA consid- ered within the analysis. Variation from lower to higher wave- length EVLA (1470 nm), which targets the vein wall instead of blood within, could reduce pain and complications. The sub- group analysis by wavelength reduced the \(i^2\) value to zero, resulting in significantly higher pain recorded at wavelength thresholds below 1470 nm and lower pain levels at thresholds of 1470 nm for EVLA comparisons with RFA. Two RCTs\(^9\,\(^{10}\) also reported significantly lower levels of pain and complications at EVLA wavelengths of 1470 nm.

CAC was also associated with lower postoperative pain com- pared with endothermal ablation, possibly as a consequence of non-thermal mechanisms of ablation or perhaps due to unneces- sary use of tumescent anaesthesia. Although MOCA does not need tumescent anaesthesia, its mechanical injury of vein during the procedure may cause discomfort. The quality of evidence was graded as moderate, owing to inconsistency\(^7\,\(^{10}\).

The efficacies, benefits and harms, together with measures on the quality of evidence according to outcomes, were reported in the pre- sent study to support physician decisions when choosing the most appropriate intervention for individual patients. For instance, if anatomi- cal failure is the main concern in the mid and long term, open surgery might be best, given its associated complications are similar to those of other techniques. If patient outcome such as postopera- tive pain is of more concern, CAC might be preferred over open sur- gery and other interventions, given that anatomical failure is not much different to that for open surgery. However, this should be interpreted with caution because data for other important outcomes (neovascularization, AASV reflux, clinical recurrence and quality of life) were not available for CAC comparisons.

There are some limitations to this study. Although comparis- ons of many relevant clinical outcomes were included, important patient outcomes such as symptomatic improvement were not considered owing to lack of available data. Quality of life, mea- sured by the AVVQ, was available for a small number of studies of endothermal ablation, but not for CAC or MOCA. Cost is also an impor-tant consideration, but was not part of the present analysis.

Supplementary material

Supplementary material is available at BJS online.

Acknowledgements

This work was supported by the Centre of Excellence in Applied Epidemiology, Thammasat University, and the Department of Clinical Epidemiology and Biostatistics, Ramathibodi Hospital,
Mahidol University, Bangkok, Thailand. K.R. was also supported by Chiang Mai University.

Disclosure. The authors declare no conflict of interest.

References

1. Gloviczki P, Comerota AJ, Dalsing MC, Eklof BG, Gillespie DL, Gloviczki ML et al. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum. J Vasc Surg 2011;53:2s–48s

2. Wittens C, Davies AH, Baekgaard N, Broholm R, Cavezzi A, Chastanet S et al. Editor’s Choice—Management of chronic venous disease: clinical practice guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg 2015;49:678–737

3. Siribumrungwong B, Noorit P, Wilasrusmee C, Attia J, Thakkinstian A. A systematic review and meta-analysis of randomised controlled trials comparing endovenous ablation and surgical intervention in patients with varicose vein. Eur J Vasc Endovasc Surg 2012;44:214–223

4. Hamann SAS, Giang J, De Maeseneer MGR, Nijsten TEC, van den Bos RR. Editor’s Choice—Five year results of great saphenous vein treatment: a meta-analysis. Eur J Vasc Endovasc Surg 2017;54:760–770

5. Kheirelseid EAH, Crowe G, Sehgal R, Liakopoulos D, Bela H, Mulckern E et al. Systematic review and meta-analysis of randomised controlled trials evaluating long-term outcomes of endovenous management of lower extremity varicose veins. J Vasc Surg Venous Lymphat Disord 2018;6:256–270

6. Disselhoff BCVM, Der Kinderen DJ, Kelder JC, Moll FL. Five-year results of a randomised clinical trial of endovenous laser ablation of the great saphenous vein with and without ligation of the saphenofemoral junction. Eur J Vasc Endovasc Surg 2011;41:685–690

7. Disselhoff BCVM, Der Kinderen DJ, Kelder JC, Moll FL. Five-year results of a randomised clinical trial comparing endovenous laser ablation with cryoablation for great saphenous varicose veins. Br J Surg 2011;98:1107–1111

8. Theivacumar NS, Darwood R, Gough MJ. Neovascularisation and recurrence 2 years after varicose vein treatment for sapheno-femoral and great saphenous vein reflux: a comparison of surgery and endovenous laser ablation. Eur J Vasc Endovasc Surg 2009;38:203–207

9. de Medeiros CA, Luccas GC. Comparison of endovenous treatment with an 810 nm laser versus conventional stripping of the great saphenous vein in patients with primary varicose veins. Dermatol Surg 2005;31:1685–1694

10. Kalteis M, Berger I, Messie-Werndl S, Pistrich R, Schimetta W, Polz W et al. High ligation combined with stripping and endovenous laser ablation of the great saphenous vein: early results of a randomised controlled study. J Vasc Surg 2008;47:822–829

11. Bouzourosoglou DG, Azzam M, Kakos SK, Pathmarajah M, Young P, Geroulakos G. Ultrasound-guided foam sclerotherapy combined with sapheno-femoral ligation compared to surgical treatment of varicose veins: early results of a randomised controlled trial. Eur J Vasc Endovasc Surg 2006;31:93–100

12. Abele R, Lianis A, Pronidis I, Mathai J, Gorton L, Browne T et al. Reverse foam sclerotherapy of the great saphenous vein with sapheno-femoral ligation compared to standard and invagination stripping: a prospective clinical series. Eur J Vasc Endovasc Surg 2008;36:485–490

13. Liu X, Jia X, Guo W, Xiong J, Zhang H, Liu M et al. Ultrasound-guided foam sclerotherapy of the great saphenous vein with sapheno-femoral ligation compared to standard stripping: a prospective clinical study. Int Angiol 2011;30:321–326

14. Yin H, He H, Wang M, Li Z, Hu Z, Yao C et al. Prospective randomized study of ultrasound-guided foam sclerotherapy combined with great saphenous vein high ligation in the treatment of severe lower extremity varicosity. Ann Vasc Surg 2017;39:256–263

15. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700

16. Hutton B, Salanti G, Caldwell DM, Chaiman I, Schmid CH, Cameron C et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Int Med 2015;162:777–784

17. Siribumrungwong B, Srikuea K, Ornrapin S, Benyakorn T, Rerkasem K, Thakkinstian A. Endovenous ablation and surgery in great saphenous vein reflux: a systematic review and network meta-analysis of randomised controlled trials protocol. BMJ Open 2019;9:e024813

18. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928

19. Puhar MA, Schunemann HJ, Murad MH, Li T, Brigardell-Petersen R, Singh JA et al. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ 2014;349:g5630

20. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 2005;5:13

21. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–560

22. White IR. Network meta-analysis. Stata J 2015;15:951–985

23. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PloS One 2013;8:e76654

24. Rasmussen LH, Bjoern L, Lawaetz M, Blemings A, Lawaetz B, Eklof B. Randomized trial comparing endovenous laser ablation of the great saphenous vein with high ligation and stripping in patients with varicose veins: short-term results. J Vasc Surg 2007;46:308–315

25. Rasmussen LH, Bjoern L, Lawaetz M, Lawaetz B, Blemings A, Eklof B. Randomised clinical trial comparing endovenous laser ablation with stripping of the great saphenous vein: clinical outcome and recurrence after 2 years. Eur J Vasc Endovasc Surg 2010;39:630–635

26. Rasmussen L, Lawaetz M, Bjoern L, Blemings A, Eklof B. Randomized clinical trial comparing endovenous laser ablation and stripping of the great saphenous vein with clinical and duplex outcome after 5 years. J Vasc Surg 2013;58:421–426

27. Darwood R, Theivacumar N, Dellagrammaticas D, Mavor AI, Gough MJ. Randomized clinical trial comparing endovenous laser ablation with surgery for the treatment of primary great saphenous varicose veins. Br J Surg 2008;95:294–301

28. Disselhoff BC, Der Kinderen DJ, Kelder JC, Moll FL. Randomized clinical trial comparing endovenous laser with cryoablation for great saphenous varicose veins. Br J Surg 2008;95:1232–1238

29. Kalteis M, Adelsgruber P, Messie-Werndl S, Gangl O, Berger I. Five-year results of a randomised controlled trial comparing...
high ligation combined with endovenous laser ablation and stripping of the great saphenous vein. Dermatol Surg 2015;41:579–586

30. Christenson JT, Gueddi S, Gemayel G, Bounameaux H. Prospective randomized trial comparing endovenous laser ablation and surgery for treatment of primary great saphenous varicose veins with a 2-year follow-up. J Vasc Surg 2010;52:1234–1241

31. Pronk P, Gauw SA, Mooij MC, Gaaster MT, Lawson JA, van Goethem AR et al. Randomised controlled trial comparing sapheno-femoral ligation and stripping of the great saphenous vein with endovenous laser ablation (980 nm) using local tumescent anaesthesia: one year results. Eur J Vasc Endovasc Surg 2010;40:649–656

32. Gauw SA, Lawson JA, van Vlijmen-van Keulen CJ, Pronk P, Gaaster MT, Mooij MC. Five-year follow-up of a randomized, controlled trial comparing sapheno-femoral ligation and stripping of the great saphenous vein with endovenous laser ablation (980 nm) using local tumescent anesthesia. J Vasc Surg 2016;63:420–428

33. Carradice D, Mekako AI, Mazari FAK, Samuel N, Hatfield J, Chetter IC. Randomized clinical trial of endovenous laser ablation compared with conventional surgery for great saphenous varicose veins. Br J Surg 2011;98:501–510

34. Carradice D, Mekako AI, Mazari FAK, Samuel N, Hatfield J, Chetter IC. Clinical and technical outcomes from a randomized clinical trial of endovenous laser ablation compared with conventional surgery for great saphenous varicose veins. Br J Surg 2011;98:1117–1123

35. Wallace T, El-Sheikha J, Nandhra S, Leung C, Mohamed A, Rayala K, Frings N, Glowacki P, Hamsch C, Graéber S, Vogt T et al. Comparable effectiveness of endovenous laser ablation and high ligation with stripping of the great saphenous vein: two-year results of a randomized clinical trial (RELACS study). Arch Dermatol 2012;148:49–58

36. Rass K, Frings N, Glowacki P, Hamsch C, Gräber S, Vogt T et al. Comparative effectiveness of endovenous laser ablation and high ligation with stripping of the great saphenous vein: five year results of a randomized clinical trial (RELACS Study). Eur J Vasc Endovasc Surg 2015;50:648–656

37. Flessenkämper I, Stenger D, Hartmann M, Roll S. Endovenous laser therapy vs. high ligation/stripping for varicosity of the great saphenous vein: clinical and sonographic findings. Phlebologie 2013;42:7–11

38. Flessenkämper I, Hartmann M, Stenger D, Roll S. Endovenous laser ablation with and without high ligation compared with high ligation and stripping in the treatment of great saphenous varicose veins: initial results of a multicentre randomised controlled trial. Phlebology 2013;28:16–23

39. Flessenkämper I, Hartmann M, Hartmann K, Stenger D, Roll S. Endovenous laser ablation with and without high ligation compared to high ligation and stripping for treatment of great saphenous varicose veins: results of a multicentre randomised controlled trial with up to 6 years follow-up. Phlebology 2016;31:23–33

41. Rautio T, Ohinmaa A, Perala J, Ohtonen P, Heikkinen T, Wik H et al. Endovenous obliteration versus conventional stripping operation in the treatment of primary varicose veins: a randomised controlled trial with comparison of the costs. J Vasc Surg 2002;35:958–965

42. Perala J, Rautio T, Biancari F, Ohtonen P, Wik H, Heikkinen T, Juvonen T. Radiofrequency endovenous obliteration versus stripping of the long saphenous vein in the management of primary varicose veins: 3-year outcome of a randomized study. Ann Vasc Surg 2005;19:669–672

43. Lurie F, Creton D, Eklof B, Kabnick LS, Kistner RL, Pichot O et al. Prospective randomized study of endovenous radiofrequency obliteration (closure procedure) versus ligation and stripping in a selected patient population (EVALVEs Study). J Vasc Surg 2003;38:207–214

44. Lurie F, Creton D, Eklof B, Kabnick LS, Kistner RL, Pichot O et al. Prospective randomised study of endovenous radiofrequency obliteration (closure) versus ligation and vein stripping (EVALVEs): two-year follow-up. Eur J Vasc Endovasc Surg 2005;29:67–73

45. Hinchliffe RJ, Ubbi J, Beech A, Ellison J, Braithwaite BA. A prospective randomised controlled trial of VNUS closure versus surgery for the treatment of recurrent long saphenous varicose veins. Eur J Vasc Endovasc Surg 2006;31:212–218

46. Stötter L, Schaaf I, Bockelbrink A. Comparative outcomes of radiofrequency endoluminal ablation, invagination stripping, and cryoablation in the treatment of great saphenous vein insufficiency. Phlebolgie 2006;21:60–64

47. Subramonia S, Lees T. Randomized clinical trial of radiofrequency ablation or conventional high ligation and stripping for great saphenous varicose veins. Br J Surg 2010;97:328–336

48. Helmy Elkaﬀas K, Elkaﬀes O, Elbaz W. Great saphenous vein radiofrequency ablation versus standard stripping in the management of primary varicose veins—a randomized clinical trial. Angiology 2011;62:49–54

49. Mendes CA, Martins AA, Fukuda JM, Parente JBHF, Munia MAS, Fioraneli A et al. Randomized trial of radiofrequency ablation versus conventional surgery for superficial venous insufﬁciency: If you don’t tell, they won’t know. Clinics 2016;71:650–656

50. Sinços IR, Baptista APW, Coelho Neto F, Labropoulos N, Alledi LB, Marins EM et al. Prospective randomized trial comparing radiofrequency ablation and complete saphenous vein stripping in patients with mild to moderate chronic venous disease with a 3-year follow-up. Einstein 2019;17:eOA4526

51. Kalodiki E, Lattimer CR, Azzam M, Shawish E, Bouowntougloj D, Geroulakos G. Long-term results of a randomized controlled trial on ultrasound-guided foam sclerotherapy combined with saphenofemoral ligation vs standard surgery for superficial venous insufﬁciency. J Vasc Surg 2012;55:451–457

52. Wright D, Gobin JP, Bradbury AW, Coleridge-Smith P, Spoelstra H, Berridge D et al. Varisolve® polidocanol microfoam compared with surgery or sclerotherapy in the management of varicose veins in the presence of trunk vein incompetence: European randomized controlled trial. Phlebologie 2006;21:180–190

53. Figueiredo M, Araujo S, Barros N Jr, Miranda F Jr. Results of surgical treatment compared with ultrasound-guided foam sclerotherapy in patients with varicose veins: a prospective randomised study. Eur J Vasc Endovasc Surg 2009;38:758–763

54. Shahid N, Ceulen P, Nelemans P, Dirksen C, Verraart J, Schurink GW et al. Randomized clinical trial of ultrasound-guided foam sclerotherapy versus surgery for the incompetent great saphenous vein. Br J Surg 2012;99:1062–1070

55. Lam YL, Lawson JA, Toonder IM, Shadid NH, Sommer A, Veenastra M et al. Eight-year follow-up of a randomized clinical trial comparing ultrasound-guided foam sclerotherapy with surgical stripping of the great saphenous vein. Br J Surg 2018;105:692–698
56. Campos W Jr, Torres IO, da Silva ES, Casella IB, Puech-Leao P. A prospective randomized study comparing polidocanol foam sclerotherapy with surgical treatment of patients with primary chronic venous insufficiency and ulcer. Ann Vasc Surg 2015;29:1128–1135

57. Almeida JJ, Kaufman J, Gockeritz O, Chopra P, Evans MT, Hoheim DF et al. Radiofrequency endovenous ClosureFAST versus laser ablation for the treatment of great saphenous reflux: a multicenter, single-blinded, randomized study (RECOVERY study). J Vasc Interv Radiol 2009;20:752–759

58. Gale SS, Lee JN, Walsh ME, Wojnarowski DL, Comerota AJ. A randomized, controlled trial of endovenous thermal ablation using the 810-nm wavelength laser and the ClosurePLUS radiofrequency ablation methods for superficial venous insufficiency of the great saphenous vein. J Vasc Surg 2010;52:645–650.

59. Goode SD, Chowdhury A, Crockett M, Beech A, Simpson R, Richards T et al. Laser and radiofrequency ablation study (LARA study): a randomised study comparing radiofrequency ablation and endovenous laser ablation (810 nm). Eur J Vasc Endovasc Surg 2010;40:246–253

60. Shepherd AC, Gehl MS, Brown LC, Metcalfe MJ, Hamish M, Davies AH. Randomized clinical trial of VNUS ClosureFAST radiofrequency ablation versus laser for varicoce veins. Br J Surg 2010;97:810–818

61. Nordon IM, Hincliffe RJ, Brar R, Moxey P, Black SA, Thompson MM et al. A prospective double-blind randomized controlled trial of radiofrequency versus laser treatment of the great saphenous vein in patients with varicoce veins. Ann Surg 2011;254:876–881

62. Mese B, Bozoglan O, Eroglu E, Erdem K, Acipayam M, Ekerbicer HC et al. A comparison of 1470-nm endovenous laser ablation and radiofrequency ablation in the treatment of great saphenous veins 10 mm or more in size. Ann Vasc Surg 2015;29:1368–1372

63. Bozoglan O, Mese B, Eroglu E, Erdogan MB, Erdem K, Ekerbicer HC et al. Comparison of endovenous laser and radiofrequency ablation in treating varice veins in the same patient. Vasc Endovasc Surg 2016;50:47–51

64. Sydner M, Mavropoulos J, Slobodnik N, Wolfe L, Strife B, Komorowski D. A randomized prospective long-term (>1 year) clinical trial comparing the efficacy and safety of radiofrequency ablation to 980-nm laser ablation of the great saphenous vein. Phlebology 2017;32:415–424

65. Hamann SAS, Timmer-de Mik L, Fritschy WM, Kuiters GRR, Nijsten TEC, van den Bos RR. Randomized clinical trial of endovenous laser ablation versus direct and indirect radiofrequency ablation for the treatment of great saphenous varicose vein. Br J Surg 2019;106:998–1004

66. Bootun R, Lane TRA, Dharmarajah B, Lim CS, Najem M, Renton S et al. Intra-procedural pain score in a randomised controlled trial comparing mechanochemical ablation to radiofrequency ablation: the multicentre Venefit™ versus Clarivein® for varicose veins trial. Phlebology 2016;31:61–65

67. Lane T, Bootun R, Dharmarajah B, Lim CS, Najem M, Renton S et al. A multi-centre randomised controlled trial comparing radiofrequency and mechanical occlusion chemically assisted ablation of varicose veins—final results of the Venefit versus Clarivein for varicosve veins trial. Phlebology 2017;32:89–98

68. Holewijn S, van Eecken RRJP, Wahl A, de Vries JPPM, Reijn MMPI, Werson D et al. Two-year results of a multicenter randomized controlled trial comparing Mechanochemical endovenous Ablation to RADIOfrequeNcy Ablation in the treatment of primary great saphenous vein incompetence (MARADONA trial). J Vasc Surg Venous Lymphat Disord 2019;7:364–374

69. Tawfik AM, Sorour WA, El-Laboudy ME. Laser ablation versus mechanochemical ablation in the treatment of primary varicose veins: a randomized clinical trial. J Vasc Surg Venous Lymphat Disord 2020;8:211–215

70. Morrison N, Gibson K, McEnroe S, Goldman M, King T, Weiss R et al. Randomized trial comparing cyanoacrylate embolization and radiofrequency ablation for incompetent great saphenous veins (VeClose). J Vasc Surg 2015;61:985–994

71. Morrison N, Gibson K, Vasquez M, Weiss R, Cher D, Madsen M et al. VeClose trial 12-month outcomes of cyanoacrylate closure versus radiofrequency ablation for incompetent great saphenous veins. J Vasc Surg Venous Lymphat Disord 2017;5:321–330

72. Gibson K, Morrison N, Kolluri R, Vasquez M, Weiss R, Cher D et al. Twenty-four month results from a randomized trial of cyanoacrylate closure versus radiofrequency ablation for the treatment of incompetent great saphenous veins. J Vasc Surg Venous Lymphat Disord 2018;6:606–613

73. Morrison N, Kolluri R, Vasquez M, Madsen M, Jones A, Gibson K. Comparison of cyanoacrylate closure and radiofrequency ablation for the treatment of incompetent great saphenous veins: 36-month outcomes of the VeClose randomized controlled trial. Phlebology 2019;34:380–390

74. Morrison N, Gibson K, Vasquez M, Weiss R, Jones A. Five-year extension study of patients from a randomized clinical trial (VeClose) comparing cyanoacrylate closure versus radiofrequency ablation for the treatment of incompetent great saphenous veins. J Vasc Surg Venous Lymphat Disord 2020;8:978–989

75. Lattimer CR, Kalodiki E, Azzam M, Makris GC, Somiayajulu S, Geroulakos G. Interim results on abolishing reflux alongside a randomized clinical trial on laser ablation with phlebectomies versus foam sclerotherapy. Int Angiol 2013;32:394–403

76. Kalodiki E, Azzam M, Schnatterbeck P, Geroulakos G, Lattimer CR. The Discord Outcome Analysis (DOA) as a reporting standard at three months and five years in randomised varicose vein treatment trials. Eur J Vasc Endovasc Surg 2019;57:267–274

77. Calik ES, Arsalan U, Ercut B. Ablation therapy with cyanoacrylate glue and laser for refluxing great saphenous veins—a prospective randomised study. Vasa 2019;48:405–412

78. Disselhoff BC, der Kinderen DJ, Kelder JC, Moll FL. Randomized clinical trial comparing endovenous laser ablation of the great saphenous vein with and without ligation of the saphenofemoral junction: 2-year results. Eur J Vasc Endovasc Surg 2008;36:713–718

79. Rasmussen LH, Lawaetz M, Bjorn L, Vennits B, Blemings A, Eklof B. Randomized clinical trial comparing endovenous laser ablation, radiofrequency ablation, foam sclerotherapy and surgical stripping for great saphenous varicose veins. Br J Surg 2011;98:1079–1087

80. Rasmussen L, Lawaetz M, Serup J, Bjorn L, Vennits B, Blemings A et al. Randomized clinical trial comparing endovenous laser ablation, radiofrequency ablation, foam sclerotherapy, and surgical stripping for great saphenous varicose veins with 3-year follow-up. J Vasc Surg Venous Lymphat Disord 2013;1:349–356

81. Lawaetz M, Serup J, Bjorn L, Vennits B, Blemings A, Eklof B et al. Comparison of endovenous ablation techniques, foam sclerotherapy and surgical stripping for great saphenous varicose veins. Extended 5-year follow-up of a RCT. Int Angiol 2017;36:281–288

82. Biemans AAM, Kockaert M, Akkersdijk GP, Van Den Bos RR, De Maeseneer MGR, Cuypers P et al. Comparing endovenous laser ablation, foam sclerotherapy, and conventional surgery for great saphenous varicose veins. J Vasc Surg 2013;58:727–734
83. Van Der Velden SK, Biemans AAM, De Maeseneer MGR, Kockaert MA, Cuypers PW, Hollestein LM et al. Five-year results of a randomized clinical trial of conventional surgery, endovenous laser ablation and ultrasound-guided foam sclerotherapy in patients with great saphenous varicose veins. *Br J Surg* 2015;102:1184–1194
84. Brittenden J, Cotton SC, Elders A, Ramsay CR, Norrie J, Burr J et al. A randomized trial comparing treatments for varicose veins. *N Engl J Med* 2014;371:1218–1227
85. Brittenden J, Cooper D, Dimitrova M, Scotland G, Cotton SC, Elders A et al. Five-year outcomes of a randomized trial of treatments for varicose veins. *N Engl J Med* 2019;381:912–922
86. Venermo M, Saarinen J, Eskelinen E, Vahaaho S, Saarinen E, Railo M et al. Randomized clinical trial comparing surgery, endovenous laser ablation and ultrasound-guided foam sclerotherapy for the treatment of great saphenous varicose veins. *Br J Surg* 2016;103:1438–1444
87. Vahaaho S, Halmesmaki K, Alback A, Saarinen E, Venermo M. Five-year follow-up of a randomized clinical trial comparing open surgery, foam sclerotherapy and endovenous laser ablation for great saphenous varicose veins. *Br J Surg* 2018;105:686–691
88. Eroglu E, Yasim A. A randomised clinical trial comparing N-buty1 cyanoacrylate, radiofrequency ablation and endovenous laser ablation for the treatment of superficial venous incompetence: two year follow up results. *Eur J Vasc Endovasc Surg* 2018;56:553–560
89. Vahaaho S, Mahmoud O, Halmesmaki K, Alback A, Noronen K, Vikatmaa P et al. Randomized clinical trial of mechanochemical and endovenous thermal ablation of great saphenous varicose veins. *Br J Surg* 2019;106:548–554
90. Kolluri R, Chung J, Kim S, Nath N, Bhalla BB, Jain T et al. Network meta-analysis to compare VenaSeal with other superficial venous therapies for chronic venous insufficiency. *J Vasc Surg Venous Lymphat Disord* 2020;8:472–481.e473
91. Lawson J, Gauw S, van Vlijmen C, Pronk P, Gaastra M, Mooij M et al. Sapheon: the solution? *Phlebology* 2013;28:2–9
92. Malskat WSJ, Giang J, De Maeseneer MGR, Nijsten TEC, Van Den Bos RR. Randomized clinical trial of 940- versus 1470-nm endovenous laser ablation for great saphenous vein incompetence. *Br J Surg* 2016;103:192–198
93. Hirokawa M, Ogawa T, Sugawara H, Shokoku S, Sato S. Comparison of 1470 nm laser and radial 2ring fiber with 980 nm laser and bare-tip fiber in endovenous laser ablation of saphenous varicose veins: a multicenter, prospective, randomized, non-blind study. *Ann Vasc Dis* 2015;8:282–289