On the Rothenberg-Steenrod spectral sequence for the mod 3 cohomology of the classifying space of the exceptional Lie group E_8 (Cohomology Theory of Finite Groups and Related Topics)

亀子 正喜 三村 護

数理解析研究所講究録 1357: 95-103

2004-02
On the Rothenberg-Steenrod spectral sequence for the mod 3 cohomology of the classifying space of the exceptional Lie group E_8

富山国際大学 亀子正喜 (Masaki Kameko)
(Toyama University of International Studies),

Comenius大学数学物理学部 三村篤 (Mamoru Mimura)
(Department of Algebra, Faculty of Mathematics-Physics-Informatics, Comenius University, Bratislava, Slovakia)

1 はじめに

G を連結コンパクト Lie 群, BG をその分類空間とする. 以下, 簡単のため X の mod 3 コホモロジーを H^*X とかくことにする. また, 具体的な Lie 群をあげて話を進めてゆくことにする.

古典群の分類空間のコホモロジーにおいては極大トーラス T の分類空間のコホモロジーとそのコホモロジーへの Weyl 群 $W_G(T)$ (トーラスの正規化群 $N_G(T)$ をトーラスの中心化群 $C_G(T)$ でわたったものの) の作用による不変式環が決定的な役割をはたす. たとえば G がユニタリ群 $U(n)$ の場合, T は $U(n)$ の対角行列全体になり, Weyl 群 W は n 次の対称群になる. 分類空間のコホモロジーの間の誘導準同型の像はこの Weyl 群の不変式環と一致し次の同型が成り立つ.

$$H^*BU(n) \cong (H^*BT)^W = F_3[x_1, \ldots, x_n]^W.$$
ような極大トーラスの分類空間のコホモロジーへの埋め込みを期待することはできない。

極大トーラスを基本アーベル 3-部分群 E に置き換えた場合にも E の Weyl 群 $W_G(E) = N_G(E)/C_G(E)$ を考えて誘導準同型

$$H^*BG \to H^*BE^{W_G(E)}$$

が得られる。また Quillen [4] により

$$q : H^*BG \to \lim H^*BE$$

が F-同型である（$q^{-1}(0)$ が積零元からなり、$\lim H^*BE$ の元のべきは q の像に含まれる）ことが知られている。しかし、古典群の場合、基本アーベル 3-部分群は極大トーラスの部分群と共役であり、上の準同型はなにも新しい情報をもたらしてくれない。

一方、例外 Lie 群の場合には、たとえば $G = F_4, E_6, E_7, E_8$ に関しては極大トーラスの部分群にならないような基本アーベル 3-部分群の存在が知られておりこのような non-toral な基本アーベル 3-部分群を用いれば H^*BG について極大トーラスだけからは得られないような情報が得られる可能性がある。たとえば F_4 には non-toral な rank 3 の基本アーベル 3-部分群が共役をのぞいてただひとつ存在する。それを A とおくことにする。このとき

$$H^*BF_4 \to H^*BT \times H^*BA$$

は単射になることが（出版されていないが） Adams-河野, Broto などにより知られている。

ここでは $G = E_8$ の場合のある基本アーベル 3-部分群の mod 3 ホモロジーの不変式環の計算とその H^*BE_8 への応用を述べる。

2 Rothenberg-Steenrod スペクトル系列

分類空間のホモロジーの計算のための道具として Rothenberg-Steenrod スペクトル系列がある。これは E_2 項が

$$Cotor_{H^*G}(F_3, F_3)$$

で H^*BG に収束する。例外リー群 $G = F_4, E_6, E_7, E_8$ に関してこの E_2 項は計算されており、さらに $G = F_4, E_6, E_7$ に関してはこのスペクトル
定理 1 $H^* B E_8$ に収束する Rothenberg-Steenrod スペクトル列

$$Cotor_{H^* E_8} (F_3, F_3) \Rightarrow gr H^* B E_8$$

は退化しない。

この定理 1 の証明には次の 3 つの事実を用いる。

(A) G をコンパクト Lie 群, A を G の部分群, $G \subset U(N)$ を Lie 群の埋め込みとする。誘導準同型

$$H^* BU(N) \rightarrow H^* B G \rightarrow H^* B A$$

で $H^* BA$ を $H^* BU(N)$-加群とみたとき $H^* BA$ は $H^* BU(N)$-加群として有限生成である。（Quillen [4] Theorem 2.1 を参照。）

(B) E_8 はつぎのような行列全体からなる Weyl 群 $W \subset GL(5, F_3)$ をもつ rank 5 の基本アーベル 3-部分群 A をもつ。

\[
\begin{pmatrix}
\epsilon_1 & * & * & * & * \\
0 & & & & 0 \\
0 & & g & & 0 \\
0 & & & & 0 \\
0 & 0 & 0 & 0 & \epsilon_2
\end{pmatrix}
\]

ただし * は任意の F_3 の元を表すとし, $\epsilon_1, \epsilon_2 \in F_3^\times, g \in SL(3, F_3)$ とする。（Andersen 他 [1] Theorem 8.15 を参照。この論文では A は $E_8^{E_8}$ と表記されている。）

(C) $Cotor_{H^* E_8} (F_3, F_3)$ は F_3 上の次数つき代数として次数 168 以下の 29 個の元から生成される。（Mimura-Sambe [2] を参照。）
で H^*BA のべき零元の全体を表す。A から $H^*BA, H^*BA/\sqrt{0}$, $(H^*BA/\sqrt{0})^W$ はすべて $H^*BU(N)$-加群として有限生成で Noether 加群になる。

(B) から不変式環を計算すると

$$(H^*BA/\sqrt{0})^W = F_3[b_4, b_{26}, b_{36}, b_{48}, b_{324}]$$

ここで添え字はコホモロジーの次数を表す。この不変式環の計算は次の節で行う。また (C) から、もし Rothenberg-Steenrod スペクトル系列が退化すれば H^*BE_8 は次数 168 以下の元から生成されることがわかる。したがって誘導準同型 $H^*BE_8 \to (H^*BA/\sqrt{0})^W$ は生成元の次数を考えれば

$$H^*BE_8 \to F_3[b_4, b_{26}, b_{36}, b_{48}] \to F_3[b_4, b_{26}, b_{36}, b_{48}, b_{324}] = (H^*BA/\sqrt{0})^W$$

と分解することになり $(H^*BA/\sqrt{0})^W$ は $H^*BU(N)$-加群として有限生成ではなくなってしまう。それゆえに、はじめの仮定「Rothenberg-Steenrod スペクトル系列が退化する」が成り立たないことになる。

3 不変式環

F_q を元の個数が q 個の有限体とする。V を F_q 上の $m + n$ 次元ベクトル空間とし、その基底を $\{v_1, \ldots, v_{m+n}\}$ とする。V^* を V の双対とし、$\{x_1, \ldots, x_{m+n}\}$ を V^* の $\{v_1, \ldots, v_{m+n}\}$ の双対基底とする。V_1, V_2 を V の部分空間で $\{v_1, \ldots, v_m\}, \{v_{m+1}, \ldots, v_{m+n}\}$ で生成されているものとする。$F_q[V]$ で多項式環 $F_q[x_1, \ldots, x_{m+n}]$ を表す。$G_1 \subset GL(m, F_q), G_2 \subset GL(n, F_q)$ がそれぞれ V_1, V_2 へ作用しているものとする。ここで G_1 は

$$g = \left(\begin{array}{cc} g_1 & * \\ 0 & g_2 \end{array} \right)$$

の形の行列全体とし、その V への作用はこの行列による作用を考える。群 G_1, G_2, G の V_1, V_2, V への作用は $F_q[V_1], F_q[V_2], F_q[V]$ への作用を誘導する。

群 G_1, G_2 の不変式環 $F_q[V_1]^{G_1}, F_q[V_2]^{G_2}$ がそれぞれ

$$a_1, \ldots, a_m, \quad a_{m+1}, \ldots, a_{m+n}$$
を変数とする多項式環になっている場合を考える。すなわち

\[
\begin{align*}
F_q[V_1]^{G_1} &= F_q[a_1, \ldots, a_m], \\
F_q[V_2]^{G_2} &= F_q[a_{m+1}, \ldots, a_{m+n}]
\end{align*}
\]

とする。ここで

\[
\begin{align*}
a_i &= a_i(x_1, \ldots, x_m) \quad (i = 1, \ldots, m), \\
a_j &= a_j(x_{m+1}, \ldots, x_{m+n}) \quad (j = m + 1, \ldots, m + n)
\end{align*}
\]

である。さらに、

\[
\mathcal{O}(X) = \prod_{x \in V_2^*} (X + x) \in F_q[V][X]
\]

とおく。これを用いて

\[
\begin{align*}
a'_i &= a_i(\mathcal{O}(x_1), \ldots, \mathcal{O}(x_m)) \quad (i = 1, \ldots, m), \\
a'_j &= a_j(x_{m+1}, \ldots, x_{m+n}) \quad (j = m + 1, \ldots, m + n)
\end{align*}
\]

とおく。

定理 2 上の条件のもとで \(G \) の不変式環 \(F_q[V]^G \) は \(a'_1, \ldots, a'_m+n \) を変数とする多項式環である。

まずこれを用いて前節の不変式環 \((H^*BA/\sqrt{0})^W\) の計算を行っておく。

\[
H^*BA/\sqrt{0} = F_3[x_1, x_2, x_3, x_4, x_5].
\]

ここでは \(x_1, \ldots, x_5 \) は \(H^2BA \) の元であるのでその次数は 2 である。

\[
G_1 = \{\epsilon_1\}, \quad G_2 = \left\{ \begin{pmatrix} g & 0 \\ 0 & 0 \\ 0 \end{pmatrix} \right\}
\]

とおくと不変式環は \(F_3[x_2, x_3, x_4] \) の Dickson invariant \(c_{3,k} \) を用いてかくことができる。

\[
\begin{align*}
F_3[x_1]^{G_1} &= F_3[x_1^2], \\
F_3[x_2, x_3, x_4]^{G_2} &= F_3[b_4, b_{26}, b_{36}, b_{48}].
\end{align*}
\]
ここで

\[b_4 = x_5^2, \]
\[b_{26} = e_3(x_2, x_3, x_4), \]
\[b_{36} = c_{3,2}(x_2, x_3, x_4), \]
\[b_{48} = c_{3,1}(x_2, x_3, x_4) \]

で \(e_3 \) は \(e_3^2 = c_{3,0} \) となる多項式である。Dickson invariant \(c_{3,k} \) の多項式としての次数は \(3^3 - 3^k \) であるがここでは \(x_1, \ldots, x_5 \) を次数 2 としているので上の \(b \) の次数は \(b \) の添え字と同じになる。上の定理 2 により

\[F_3[x_1, x_2, x_3, x_4, x_5]^G = F_3[(O(x_1))^2, b_4, b_{26}, b_{36}, b_{48}] \]

となる。\((O(x_1))^2\) の次数は定義から 324 になる。

最後に定理 2 の証明を述べる。

有限体上の多項式環 \(F_q[x_1, \cdots, x_n] \) の \(G \) の不変式環の計算に関してはつぎの定理 3 にもとづいた方針が Wilkerson [5] の論文に説明されている。われわれはこの方針にもとづいて定理 2 を証明する。

定理 3 \(V \) を \(F_q \) 上の \(n \) 次元ベクトル空間、\(G \subset GL(V) \) とする。\(G \)-不変な \(n \) 個の弁次多項式 \(f_1, \cdots, f_n \) があって次の条件 (1), (2) を満たすとき \(G \) の不変式環は \(f_1, \cdots, f_n \) を変数とする多項式環

\[F_q[V]^G = F_q[f_1, \cdots, f_n] \]

である。

(1) \(f_1, \cdots, f_n \) から生成される部分代数を \(B \) とすると \(B \subset F_q[V] \) は整拡大である。

(2) \(\deg f_1 \cdots \deg f_n = |G| \)。ただし、\(\deg x_1 = \cdots = \deg x_n = 1 \) とする。

逆に、\(F_q[V]^G \) が \(f_1, \cdots, f_n \) を変数とする多項式環になっているようであれば上の条件 (1), (2) が成り立つ。

まず定理 2 の \(a_1', \cdots, a_{m+n}' \) が \(G \)-不変であることを確認する。

\(a_{m+1}', \cdots, a_{m+n}' \) が \(G \)-不変なので自明なので、以下 \(i = 1, \cdots, m \) とし、\(a_1', \cdots, a_m' \) が \(G \)-不変であることを示す。

\[g = \begin{pmatrix} g_1 & * \\ 0 & g_2 \end{pmatrix} \in G \]
とし，

\[g_1 x_i = \sum_{j=1}^{m} a_{j,i}(g_1) x_j \quad (a_{j,i}(g_1) \in \mathbb{F}_q) \]

とおくと

\[gx_i = g_1 x_i + h(g, x_i) \]

となる \(h(g, x_i) \in V_2^* \) がある。また \(x \in V_2^* \) のとき \(gx \in V_2^* \) も明らかである。\(c_{n,k} \) を \(\mathbb{F}_q[x_{m+1}, \cdots, x_{m+n}] \) の Dickson invariant, \(c_{n,n} = 1 \) とすると

\[\mathcal{O}(X) = \sum_{k=0}^{n} (-1)^{n-k} c_{n,k} X^{q^k} \]

が成り立つので

\[g \mathcal{O}(x_i) = g \prod_{x \in V_2^*} (x_i + x) \]

\[= \prod_{x \in V_2^*} \left(\sum_{j=1}^{m} a_{j,i}(g_1) x_j + h(g, x_i) + gx \right) \]

\[= \prod_{x' \in V_2^*} \left(\sum_{j=1}^{m} a_{j,i}(g_1) x_j + x' \right) \]

\[= \sum_{k=0}^{n} (-1)^{n-k} c_{n,k} \left(\sum_{j=1}^{m} a_{j,i}(g_1) x_j \right)^{q^k} \]

\[= \sum_{j=1}^{m} a_{j,i}(g_1) \left(\sum_{k=0}^{n} (-1)^{n-k} c_{n,k} x_j^{q^k} \right) \]

\[= \sum_{j=1}^{m} a_{j,i} \mathcal{O}(x_j) \]

\(a_i \) が \(G_1 \)-不変であることから

\[ga'_i = ga_i(\mathcal{O}(x_1), \cdots, \mathcal{O}(x_m)) \]

\[= a_i(\sum_{j=1}^{m} a_{j,1}(g_1) \mathcal{O}(x_j), \cdots, \sum_{j=1}^{m} a_{j,m}(g_1) \mathcal{O}(x_j)) \]

\[= a'_i. \]

つぎに \(B \) を \(a'_1, \cdots, a'_{m+n} \) で生成される \(\mathbb{F}_q[x_1, \cdots, x_{m+n}] \) の部分代数とし，\(x_1, \cdots, x_{m+n} \) が \(B \) 上整であることを示す。

\(x_{m+1}, \cdots, x_{m+n} \) が \(B \) 上整であることは明らかなのでここでも \(i = 1, \cdots, m \) とし，\(x_1, \cdots, x_m \) が \(B \) 上整であることを示す。\(x_i \) は \(\mathbb{F}_q[V_1]^{G_1} \) 上整なので

\[f(X) = X^r + f_{r-1}(a_1, \cdots, a_m) X^{r-1} + \cdots + f_0(a_1, \cdots, a_m) \in \mathbb{F}_q[V_1]^{G_1}[X] \]
で

\[f(x_i) = 0 \]

となる \(f(X) \) と \(m \) 变数の多項式 \(f_0, \ldots, f_{r-1} \) が存在する。

\[g(X) = \mathcal{O}(X)^r + f_{r-1}(a'_1, \ldots, a'_m)\mathcal{O}(X)^{r-1} + \cdots + f_0(a'_1, \ldots, a'_m) \]

とおくと \(c_{n,n} = 1, c_{n,k} \in F_q[V_2]^{G_2} \) なので \(g(X) \) は \(B \) 上のモニックな \(q^n \) 次の多項式となる。また,

\[g(x_i) = 0 \]

も明らかなので, \(x_i \) が \(B \) 上整であることがいえる。

最後に次数と位数の計算を行う。

\[\deg \mathcal{O}(x_i) = q^n \]

なので

\[\deg a'_1 \cdots \deg a'_m = |G_1| \times q^{mn}. \]

さらに

\[\deg a'_{m+1} \cdots \deg a'_{m+n} = |G_2| \]

なので

\[\deg a'_1 \cdots \deg a'_{m+n} = |G_1| \times |G_2| \times q^{mn} = |G|. \]

これで定理 3 による定理 2 の証明が完了する。

参考文献

[1] K. Andersen, J. Grodal, J. Møller and A. Viruel, The classification of \(p \)-compact groups for \(p \) odd. preprint arXiv:math.AT/0302346 v1 27 Feb 2003.

[2] M. Mimura and Y. Sambe, On the cohomology mod \(p \) of classifying spaces of the exceptional Lie groups, II, III. J. Math. Kyoto Univ. \textbf{20-2} (1980) 327–349, 351–379.

[3] H. Toda, Cohomology mod 3 of the classifying space \(BF_4 \) of teh exceptional Lie group \(F_4 \). J. Math. Kyoto Univ. \textbf{13-1} (1973) 97–115.
[4] D. Quillen, *The spectrum of an equivariant cohomology ring: I*. Annals of Math. **94** (1971) 549–572.

[5] C. W. Wilkerson, *A primer on the Dickson invariants*. Proc. Northwestern Homotopy Conference, Contemporary Mathematics **18** (Amer. Math. Soc., Providence, RI) 421–434. (corrected version available at the Hopf Topology Archive)