Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere

Chanyarat Paungfoo-Lonhienne1,2, Yun Kit Yeoh2,3, Naga Rup Pinaki Kasinadhuni4, Thierry G. A. Lonhienne5, Nicole Robinson1, Philip Hugenholtz2,3, Mark A. Ragan2 & Susanne Schmidt1

1School of Agriculture and Food Sciences, The University of Queensland, St. Lucia QLD, 4072, Australia, 2Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD, 4072, Australia, 3Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia QLD, 4072, Australia, 4Australian Genome Research Facility Ltd, The University of Queensland, St. Lucia QLD, 4072, Australia, 5School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia QLD, 4072, Australia.

Fungi play important roles as decomposers, plant symbionts and pathogens in soils. The structure of fungal communities in the rhizosphere is the result of complex interactions among selection factors that may favour beneficial or detrimental relationships. Using culture-independent fungal community profiling, we have investigated the effects of nitrogen fertilizer dosage on fungal communities in soil and rhizosphere of field-grown sugarcane. The results show that the concentration of nitrogen fertilizer strongly modifies the composition but not the taxon richness of fungal communities in soil and rhizosphere. Increased nitrogen fertilizer dosage has a potential negative impact on carbon cycling in soil and promotes fungal genera with known pathogenic traits, uncovering a negative effect of intensive fertilization.

The rhizosphere, the interface between soil and roots, is a biologically active zone where roots and microorganisms interact1. The identity of microorganisms in the rhizosphere has great influence on plant vigour and growth with beneficial, neutral and detrimental microbial relationships2. Structural and functional diversity of rhizosphere microbial populations in natural and agricultural systems is affected by plant species, crop cultivar, phenology, soil type, agronomy practice and other environmental factors3–5.

It is estimated that global N fertilizer use will increase threefold by 2050 to meet the growing need for food6. The use of chemical fertilizers is often accompanied by inefficiencies that result in pollution and soil degradation7. The type and quantity of N fertilizer affects physical, chemical and biochemical properties of soil8,9, as well as bacterial and arbuscular mycorrhizal fungal (AMF) communities in the rhizosphere10,11.

Increasing the dose of NPK fertilizer has been associated with an increased presence of bacteria and fungi in crop soils12. However, whether the dose of fertilizer modifies rhizosphere fungal communities is largely unknown, with the exception of AMF which diminish in taxon richness in maize roots in response to N fertilizer11. The objective of this study was to investigate how N fertilizer rates influence fungal communities in rhizosphere and soil of a commercial sugarcane crop system.

Results and Discussion

We sampled a total of 822 operational taxonomic units (OTUs) (February) and 820 OTUs (November) of fungi from 1135428 (February) and 1187048 (November) pyrosequence reads, respectively. Irrespective of collection time, the Chao1 metric showed no difference in species richness between low and high N treatment: in February 18.6 ± 8.83 (high N) and 17.2 ± 9.72 (low N); in November 19.3 ± 8.57 (high N) and 18.7 ± 9.63 (low N). Similar to the Chao1 metric, Simpson’s index confirmed no difference in species richness: in February 0.768 ± 0.162 (high N) and 0.773 ± 0.125 (low N); in November 0.787 ± 0.126 (high N) and 0.782 ± 0.133 (low N). However, while fungal taxon richness did not differ between N-fertilizer doses, clear differences were detected in the fungal community composition in sugarcane rhizosphere and soil at each sampling time (Fig. 1).

Sequence-based community profiling is increasingly adopted to study plant root-associated bacterial and fungal communities14,15 as this approach circumvents culture bottlenecks. Species richness can be estimated from read counts of the internal transcribed spacer (ITS) region, but in the case of fungal communities these estimates
may be biased due to the differing lengths of the ITS in different fungal species16, as shorter regions are preferentially amplified17. However, this bias does not significantly alter estimates of relative abundance (species evenness) of the dominant OTUs17,18 and is expected to be even further attenuated in comparisons of relative abundance within a community, e.g. between treatments. Our results (Fig. 1), based on the relative abundance of dominant OTUs and showing compositional dissimilarities between sugarcane soil and rhizosphere fungal communities associated with N fertilizer dose, are therefore unlikely to be significantly affected by this amplification bias, and detected community dissimilarities would reflect true biological variation.

Interesting results are apparent even at the phylum level. Across all soil and rhizosphere samples collected in February and November, fungal taxonomic diversity involves mainly two phyla, Ascomycota and Basidiomycota (Fig. 2). The relative abundance of Ascomycota was generally higher in high N fertilizer dose conditions compared to low N, whereas for Basidiomycota it was lower. Consistent with this result, most saprotrophic microfungi are Ascomycota19 and their growth rate is correlated with N availability20. Basidiomycetes are
widely recognised as lignin decomposers and thus important for carbon cycling in soil; in the same way, this beneficial function could be adversely affected by high N dose (Fig. 2). In agreement to our results, deleterious effects of mineral fertilizers on soil and plant function has been proposed because it negatively impacts on symbiotic relationships, including diazotrophic and AM symbioses.

To identify the known fungal genera that were most-altered in relative abundance by N fertilizer doses, we compared the relative abundances of identified OTUs in rhizosphere and soil between low N and high N doses, using the ratio (low N/high N) as a means of evaluation (Tables 1 and 2). The data show that in all samples, the genera positively or negatively affected include groups known for their positive impact on soil and plant health (biocontrol, decomposers) or to the contrary, for their negative impact as plant pathogens. For example, irrespective of collection time, the genera positively or negatively affected include groups known to influence plant health. Further research should elucidate the specific roles of these fungal taxa in the rhizosphere to reduce the need for agrochemicals, reduce disease incidence and improve crop performance. To advance the ecological management of crop soils, understanding is needed of how beneficial microbial relationships can be fostered.

Methods

Sample collection

We sampled three individual plots within a 4-hectare field trial in the Burdekin region, Australia (near Ayr, S19°43.95', E141°710.727', 26 m above sea level). The soil is a silty-clay loam. Within each plot, half the sugarcane crops received an N supply rate of 200 kg N ha⁻¹ (recommended 'high' N in the form of urea) while the other half received 40 kg N ha⁻¹ (low N). From the three replicate plots, six bulk-soil and six roots with adhering soil (constituting the rhizosphere samples in our study) biological replicates were sampled at 0–10 cm depth from sugarcane receiving either N supply rate. Sampling was performed on a first and second ratoon crop of three sugarcane cultivars (Australian cultivars Q208 and Q186, and Brazilian cultivar S79-2313) for a total of 144 root and bulk soil samples. Samples were immediately placed in a cool box for 2 days during transport to the laboratory and stored at −20 °C for isolation of DNA. Sampling was carried out in February 2012 and November 2012 (4 and 3 months after fertilizer application, respectively) to assess the reproducibility of the observations.

DNA extraction and pyrosequencing

Total DNA was extracted from soil and rhizosphere samples using Mo Bio PowerSoil DNA isolation kits following manufacturer’s instructions (Mo Bio Laboratories, Inc., Carlsbad, CA, USA). To profile fungal communities, the fungal internal transcribed spacer (ITS) region was PCR-amplified from isolated soil and rhizosphere DNA using ITS1F (5' -

Table 1 Fifteen fungal OTUs whose relative proportion in the community was increased or decreased the most between low and high N fertilizer dose. Ratio denotes the relative abundance of OTUs in low N compared to high N. The samples were from February 2012 collection.

Rhizosphere	Soil								
OTU	Genus	Function Ref	Ratio	OTU	Genus	Function Ref	Ratio		
110	Clonostachys	Biocontrol	31	41.8	175	Unidentified	n/a	21	
178	Agrocybe	Decomposer	32	26.3	110	Clonostachys	Biocontrol	31	14.2
123	Emericellipsoid	Biocontrol	33	26	82	Calcarisporiella	n/a	14	
205	unidentified	n/a	34	24.3	207	Waira	n/a	13.3	
183	Clotopilus	Biocontrol	35	23.7	199	unidentified	n/a	13	
212	Resinicum	Decomposer, biocontrol	26,36	16.2	43	Epicoccum	Biocontrol	36	11.3
145	Kanasus	n/a	37	11.8	253	unidentified	n/a	10.2	
180	Conocybe	Biocontrol	38	11.2	250	unidentified	n/a	7.7	
126	Sarocladium	Pathogen	39	7.3	151	Scedosporium	n/a	6.7	
154	Cynauscas	Decomposer	40	6	243	unidentified	n/a	6.6	
199	unidentified	n/a	41	5.5	180	Conocybe	Biocontrol	37	6.6
176	unidentified	n/a	42	5.3	205	unidentified	n/a	5.7	
204	Ceratobasidium	Biocontrol	43	5.3	216	unidentified	n/a	5.3	
1	Aporosporella	n/a	44	4.9	97	Dactyliella	Biocontrol	41	3.3
67	Emericellus	Pathogen	45	4.6	76	Spiromystix	n/a	3.8	
136	Nectria	Pathogen	46	0.3	196	unidentified	n/a	0.4	
160	Zophella	n/a	47	0.3	89	Scolocobasidium	n/a	0.4	
48	Preussia	Biocontrol	48	0.04	129	Trichothecium	Pathogen	45	0.05
161	unidentified	n/a	49	0.07	126	Sarocladium	Pathogen	38	0.07
113	Cordyceps	Biocontrol	50	0.07	258	Mortierella	Biocontrol	47	0.09
4	Capnadium	Pathogen	51	0.15	200	unidentified	n/a	0.3	
194	Coprinopsis	n/a	52	0.17	178	Psilocybe	n/a	0.10	
114	Metarhizium	Biocontrol	53	0.17	143	Arthrinium	Biocontrol	50	0.12
108	unidentified	n/a	54	0.18	187	unidentified	n/a	0.14	
93	Scytalidium	n/a	55	0.21	186	Vassellum	n/a	0.20	
44	Euxerophilium	Decomposer, biocontrol, pathogen	56	0.21	64	Thermoascus	Decomposer	52	0.20
97	Dactyliella	Biocontrol	57	0.22	122	Acronemum	n/a	0.20	
236	Dioszezia	n/a	58	0.23	236	Dioszezia	n/a	0.22	
59	Rhinolodiella	n/a	59	0.25	111	unidentified	n/a	0.22	
140	Ophiocordycipes	Biocontrol	60	0.27	191	Pluteus	n/a	0.24	

In summary, our findings add to understanding on how different doses of N influence fungal communities. The data show that changes in relative abundance of fungal population in response to N doses are not restricted to AMF but span a wide range of fungal taxa, including genera known to influence plant health. Further research should elucidate the specific roles of these fungal taxa in sugarcane rhizosphere and soils, and on the health of the plant. It is an attractive concept to manipulate the microbial community in the rhizosphere to reduce the need for agrochemicals, reduce disease incidence and improve crop performance. To advance the ecological management of crop soils, understanding is needed of how beneficial microbial relationships can be fostered.
CTTGGTCATTAGGTAA-3’) and ITS2B (5’-GCTGCGTTCTTCATCGATGC-3’) primers modified on the 5’ end to contain the 454 FLX Titanium Lib L adapters. A unique MID was used for each sample to identify sequencing reads to

3. Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. The rhizosphere microbiome and its relevance for plant health. Trends Plant Sci. 17, 476–486 (2012).

4. Cui, Z. L. et al. Closing the N-use efficiency gap to achieve food and environmental security. Environ. Sci. Technol. 48, 5780–5787 (2014).

5. Grayston, S. J., Wang, S., Campbell, C. D. & Edwards, A. C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30, 369–378 (1998).

6. Marschner, P., Yang, C. H., Lieberei, R. & Crowley, D. E. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33, 1437–1445 (2001).

7. Aira, M., Gomez-Brandon, M., Lazcano, C., Baath, E. & Dominguez, J. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 30, 1733–1741 (1998).

8. Ghanem, O., Falcao Salles, J. & van Elsas, J. Soil and cultivar type shape the bacterial community in the potato rhizosphere. Microb. Ecol. 63, 460–470 (2012).

9. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

10. Cui, Z. L. et al. The organic constituents of soils. U.S. Department of Agriculture, Bureau of Soils, Circular No. 74 - Washington, Government Printing Office, 1913 (1913). Closing the N-use efficiency gap to achieve food and environmental security. Environ. Sci. Technol. 48, 5780–5787 (2014).

11. Schreiner, O. The organic constituents of soils. U.S. Department of Agriculture, Bureau of Soils, Circular No. 74 - Washington, Government Printing Office, 1913 (1913). Closing the N-use efficiency gap to achieve food and environmental security. Environ. Sci. Technol. 48, 5780–5787 (2014).

12. Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 476–486 (2012).

13. Grayston, S. J., Wang, S., Campbell, C. D. & Edwards, A. C. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30, 369–378 (1998).

14. Marschner, P., Yang, C. H., Lieberei, R. & Crowley, D. E. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33, 1437–1445 (2001).

15. Inceoğu, O., Falcão Salles, J. & van Elsas, J. Soil and cultivar type shape the bacterial community in the potato rhizosphere. Microb. Ecol. 63, 460–470 (2012).

16. Lupwayi, N. Z., Rice, W. A. & Clayton, G. W. Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol. Biochem. 30, 1733–1741 (1998).

17. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

18. Cui, Z. L. et al. The organic constituents of soils. U.S. Department of Agriculture, Bureau of Soils, Circular No. 74 - Washington, Government Printing Office, 1913 (1913). Closing the N-use efficiency gap to achieve food and environmental security. Environ. Sci. Technol. 48, 5780–5787 (2014).

19. Schreiner, O. The organic constituents of soils. U.S. Department of Agriculture, Bureau of Soils, Circular No. 74 - Washington, Government Printing Office, 1913 (1913). Closing the N-use efficiency gap to achieve food and environmental security. Environ. Sci. Technol. 48, 5780–5787 (2014).

20. Paungfoo-Lonhienne, C., Visser, J., Lonhienne, T. G. A. & Schmidt, S. Past, present and future of organic nutrients. Plant Soil 359, 1–18 (2012).

21. Toljander, J. F., Santos-Gonzalez, J. C., Tehler, A. & Finlay, R. D. Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize–mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol. Ecol. 65, 323–338 (2008).

22. Verbruggen, E. et al. Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytol. 186, 968–979 (2010).

23. Aila, M., Gomez-Brandon, M., Lazcano, C., Baath, E. & Dominguez, J. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 42, 2276–2281 (2010).

24. Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).
15. Dumbrell, A. J. et al. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. *New Phytol.* 190, 794–804 (2011).
16. Bellemain, E. et al. ITS as an environmental DNA barcode for fungi: an *in silico* approach reveals potential PCR biases. * BMC Microbiol.* 10, 189–189 (2010).
17. Engelbrektson, A. et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. *ISME Journal* 4, 642–647 (2010).
18. Amend, A. S., Seifert, K. A. & Bruns, T. D. Quantifying microbial communities with 454 pyrosequencing: does read abundance count? *Mol. Ecol.* 19, 5555–5565 (2010).
19. Xiong, J., Peng, F., Sun, H., Xue, X. & Chu, H. Divergent responses of soil fungi functional groups to short-term warming. *Microb. Ecol.* 68, 708–715 (2014).
20. Fontaine, S. et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. *Soil Biol. Biochem.* 43, 86–96 (2011).
21. Hanson, C., Allison, S., Bradford, M., Wallenstein, M. & Treseder, K. Fungal taxa target different carbon sources in forest soil. *Ecosystems* 11, 1157–1167 (2008).
22. Laws, M. T. & Graves, W. R. Nitrogen inhibits nodulation and reversibly suppresses nitrogen fixation in nodules of *Alnus maritima*. *J. Am. Soc. Hortic. Sci.* 130, 496–499 (2005).
23. Ryan, M. H. & Graham, J. H. Is there a role for arbuscular mycorrhizal fungi in production agriculture? *Plant Soil* 244, 263–271 (2002).
24. Larsen, J., Ravnskov, S. & Sorensen, J. in Mycorrhizae in crop production (eds C Hamel & C Planche) 123–150 (The Haworth Press, 2007).
25. ten Hoopen, G. M. et al. Compatibility between *Clonostachys* isolates with a view to mixed inocula for biocontrol. *Mycolgia* 102, 1204–1215 (2010).
26. Holmer, L. & Stenlid, J. *Resinicium bicolor*: a potential biological control agent for *Heterobasidion annosum*. *European Journal of Forest Pathology* 27, 159–172 (1997).
27. Shen, J. et al. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. *Exp. Bot.* 64, 1181–1192 (2013).
28. Chaparro, J. M., Sheflin, A. M., Manter, D. K. & Vivanco, J. M. Harnessing the rhizosphere microbiome to increase soil health and plant fertility. *Birol. Fertil. Soils* 48, 489–499 (2012).
29. Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L. & Vivanco, J. M. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. *Plant Soil* 360, 1–13 (2012).
30. Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. *Methods Ecol. Evol.* 4, 914–919 (2013).
31. Cota, L. V., Maffia, I. A., Mizubuti, E. S. G. & Macedo, P. E. F. Biological control by *Clonostachys rosea* as a key component in the integrated management of strawberry gray mold. *Birol. Control* 50, 222–230 (2009).
32. Philippoussis, A., Zervas, G. & Diamantopoulou, P. Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms *Agrocybe aegerita*, *Volvariella volvacea* and *Pleurotus sp.* World J. Microbiol. Biotechnol. 17, 191–200 (2001).
33. Fantini, A. A. Genetics and antibiotic production of *Emeriellula* species. *Genetics* 47, 161–177 (1962).
34. Kiliann, S., Collins, C. M., Hartley, A. J., Bailey, A. M. & Foster, G. D. Establishing estimates of microbial species richness and evenness. *ISME Journal* 4, 642–647 (2010).
35. Connolly, J. H. & Jellison, J. Calcium translocation, calcium oxalate accumulation and comparative genomics of *Metarhizium anisopliae* and related fungi. *Appl. Environ. Microbiol.* 97, 2797–2804 (2013).
36. Haliewaters, D. *Exserohilum rostratum*, the killing fungus *http://www.sciolgs.com*. *BMC Microbiol.* 6, 190–207 (2013).
37. De Felice, B. & Wilson, R. R. Molecular characterization of a novel pathogen-responsive receptor kinase-like in *Citrus limon*. *Tree Genet. Genomes* 6, 47–56 (2010).
38. Pattermore, J. A. et al. The genome sequence of the biocontrol fungus *Metarhizium anisopliae* and comparative genomics of *Metarhizium* species. *BMC Genomics* 15 (2014).
39. Evans, H. C., Elliot, S. L. & Hughes, D. P. Hidden diversity behind the zombie-ant fungus *Ophiocordyceps unilateralis*: four new species described from carpenter ants in Minas Gerais, Brazil. *PLoS One* 6, e17024 (2011).
40. Anke, T. & Overwinkler, F. The stratiats-new antibiotics from the basidiomycete *Callytria stratis* (Huds. ex Pers.) Willd. *Antibiot. 30*, 221–225 (1997).
41. Blenis, P. V. & Chow, P. S. Evaluating fungi from wood and canola for their ability to decompose canola stubble. *Can. J. Plant Pathol*. 27, 259–267 (2005).
42. Kang, H. et al. Antifungal activities of *Xylolge ganodermophthora KACC93082P* against several plant pathogens. *Phytopathology* 103, 71–71 (2013).
43. Hobbie, E. A. et al. Fungal carbon sources in a pine forest: evidence from a C-13-labeled global change experiment. *Fungal Ecology* 10, 91–100 (2014).
44. Quebedweig, V. et al. Sizing up Septoria. *Stud. Mycol.* 307–309 (2013).
45. Paulitz, T. C. & Menge, J. A. Is *Spizellomyces punctatus* a parasite or saprophyte of vesicular-arbuscular mycorrhizal fungi? *Mycologia* 76, 99–107 (1984).
46. Ansari, M. S., Ahmad, N. & Hasan, F. [Environmental Protection Strategies for Sustainable Development] Potential of *Biopesticides in Sustainable Agriculture* [Malik, A. & Grohmann, E. (eds.)] (529–595) (Springer, London, 2012).
47. Odvody, S., Dunkle, L. & Edmunds, L. Characterization of the *Periconia circinata* population in a milo disease nursery on roots of *Sorghum bicolor* (L.) *Moench*. *Phytopathology* 67, 1485–1489 (1977).
48. Barbara, D. J. & Clewes, E. Plant pathogenic *Verticillium* species: how many of them are there? *Mol. Plant Pathol*. 4, 297–305 (2003).
49. Taheri, P., Gnanamanickam, S. & Hofte, M. Characterization, genetic structure, and pathogenicity of *Rhizoctonia solani* associated with rice sheath diseases in India. *Phytopathology* 97, 373–383 (2007).
50. Gezahgne, A., Cortinas, M. N., Wingfield, M. J. & Roux, J. Characterisation of the *Coniothyrium stem canker pathogen on Eucalyptus camaldulensis* in Ethiopia. *Australas. Plant Pathol.* 34, 85–90 (2005).
51. Gezahgne, A. J., Fravel, D. R. & Papavizas, G. C. *Cladorrhinum foecundissimum*: a potential biological control agent for the reduction of *Rhizoctonia solani* Soil Biol. Biochem. 27, 863–869 (1995).
52. Chen, Y. & Ko, W. Characterization of a fungalicidal substance produced by *Eupenicillium brevispumatum* isolated from soil for plant disease control and its significance in nature. *Bot. Stud.* 55 (2014).
53. Savaga, P., Rai, V. & Rai, K. *Bionectria ochroleuca NOTL33*: an endophytic fungus from *Notaphyodes foetida* producing antimicrobial and free radical scavenging metabolites. *Ann. Microbiol.* 64, 275–285 (2014).
54. Coda, R. et al. Antifungal activity of *Meyerozyma guilliermondii*: identification of secondary compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. *Food microbiol.* 33, 243–251 (2013).
55. Maroos, J. J., Fravel, D. R. & Papavizas, G. C. Ability of *Talaromyces flavus* to occupy the rhizosphere and its interaction with *Verticillium dahliae*. *Soil Biol. Biochem.* 16, 387–390 (1984).
56. Goula, H. & Wang, C. A first report of *Pheosphaeropsis gauzeponctata* as the cause of leaf spot and necrosis on *Ruscus aculeatus* in Australia. *Australasian Plant Dis. Notes* 7, 13–15 (2012).
Acknowledgments
We thank Jozef Visser for discussions and Michael Nuhn for depositing data in ENA. We are grateful to the ARC Centre of Excellence for Integrative Legume Research for access to research facilities. This project was carried out in part at Bioinformatic Resource Australia of EMBL Australia (BRAEMBL). This research was funded by a Queensland Co-Investment Fund award to MAR, PH and SS, and a James S. McDonnell Foundation grant to MAR. It was supported by access to facilities managed by Bioplatforms Australia and funded by the Australian Government National Collaborative Research Infrastructure Strategy and Education Investment Fund Super Science Initiative.

Author contributions
C.P.L. and Y.K.Y. have contributed equally. C.P.-L., T.G.A.L., P.H., M.A.R. and S.S. wrote the main manuscript text and C.P.-L., Y.K.Y., N.K. and N.R. performed the experiments. All authors reviewed the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Paungfoo-Lonhienne, C. et al. Nitrogen fertilizer dose alters fungal communities in sugarcane soil and rhizosphere. Sci. Rep. 5, 8678; DOI:10.1038/srep08678 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/