Relationship between pore throat and permeability of porous carbonate reservoir in the Middle East

Lv Miaomiao 1 · Song Benbiao 1 · Tian Changbing 1 · Mao Xianyu 1

Received: 2 June 2021 / Accepted: 13 September 2021 / Published online: 21 December 2021
© The Author(s) 2021

Abstract
A significant behavior of carbonate reservoirs is poor correlation between porosity and permeability. With the same porosity, the permeability can vary by three orders of magnitude or more. An accurate estimation of permeability for carbonate reservoir has been a challenge for many years. The aim of this study was to establish relationships between pore throat, porosity, and permeability. This study indicates that pore throat radius corresponding to a mercury saturation of 20% (R20) is the best permeability predictor for carbonates with complex porous pore networks. Quantitative analysis was made to achieve three different patterns of pore throat for 417 carbonate samples which cover all pore types of carbonate rocks. Different relationships between porosity, pore throat radius, and permeability have been identified in different patterns, which are utilized to predict more accurate permeability by different pore throat patterns.

Keywords Porous carbonate · Permeability · Pore throat · Porosity · MICP

Introduction
As the strong heterogeneity of carbonate reservoirs, the correlation between porosity and permeability is usually very poor or even none. The permeability estimation model usually builds on the correlation with porosity, water saturation, the grain size, and clay content (Qibin et al. 2015). All these parameters above are indirect indication of pore throat size (Wang and Taillang 2013). While mercury injection capillary pressure (MICP) curve is a direct reflection of pore throat size, many experts utilize MICP curve to explore the relation between pore throat and permeability (Hangyu et al. 2018; Fengfeng et al. 2020; Gao et al. 2013a; Ruibao et al. 2015). Purcel (Ahr et al. 2005) used the whole MICP curve to deduce the formula between permeability, porosity, and capillary pressure (Pc-2) and concluded that all the pore throat contributed to the permeability. Swanson (Al-Marzouqi et al. 2010) holds the viewpoint that pore throat contributes to the permeability only when the mercury saturation reached to a maximum percentage (Figure 1). Winland (Purcel 1949) believes that R35 (pore throat radius corresponding to a mercury saturation of 35%) correlates with permeability best based on the statistics of carbonates and clastic samples, which are widely used by many researchers. Katz and Thompson (Swanson 1981) think the injected mercury reached to the knee point (Figure 1) correlating with the large size of the pore throats, which controls the rock permeability. Warren thinks that R50 (Gunter et al. 2014) (pore throat radius corresponding to a mercury saturation of 50%) has the best correlation with permeability based on sandstone samples from different strata.

Figure 1 shows some of the researchers’ viewpoint. Some of the researchers above used sandstone samples to extract relationship between pore throat and permeability, but further study and experiments will be very necessary to test whether the relationship fits in carbonate rocks. Though some of the researchers covered carbonate samples in their research, but sample classification is missing based on the pore throat’s structure (Katz and Thompson 1986). For example, Swanson excluded the samples with duel-modal pore throat pattern, and only samples with homogeneity are kept in the experiment. So the results cannot be used in carbonate reservoir widely.

In this paper, carbonate rock samples are classified by pore throat structure patterns (single modal, dual modal, and triple modal), the relationships between pore throat radius and...
permeability are studied, and permeability is predicted separately by different pore throat patterns. Also, a whole set of pore throat radius (R5–R95) are calculated from MICP, from injected mercury saturation from 5 to 95% with 5% mercury saturation incremental interval to identify the best fit pore throat radius with permeability.

Background

M oilfield is located in southeastern Iraq, close to Iran-Iraq border, 50km north of Rumaila oilfield and Zubair oilfield (Warren and Pulham 2001). The whole Mesopotamia basin lies on Arabian plate on shore, which is divided into two tectonic units: Mesopotamia foredeep tectonic belt and stable Arabian platform (ZhiMin et al. 2018; Luo and Wang 1986). M oilfield, the giant carbonate oilfield whose main pay zone is bioclastic limestone of Mishrif formation in Cretaceous, is a north-south-oriented anticline lying in Mesopotamia foredeep tectonic belt (Cheng et al. 2017; Jin et al. 2013; Ma 2010; Gao et al. 2013b), with an area of 750km².

The sedimentary environment of Mesopotamia foredeep tectonic belt was passive continental margin belt in the Cretaceous, whose sedimentary evolution was controlled by both relative sea level fluctuation and Arabian plate’s uplift (Deng et al. 2014). High-quality reservoirs were developed in the mid-Cretaceous(Wang et al. 2016a; Wen et al. 2014; Hulea and Nicholls 2012), which are para-unconformity with Upper and Lower Cretaceous (Figure 2).

The main rock types of Mishrif formation are organic reef limestone (reef-building organisms are cyanophyta, coral, etc.) and bioclastic (rudist, foraminifer, etc.) and pelleted limestone (Nelson 2005). The main pore spaces are interparticle pore, intercrystal pore, moldic pore, and epigenetic freshwater solution vug. The carbonate ramp slope has a steady low angle less than 0.1° (Wright and Burchette, 1998) in shallow marine environment, with a broad reef shoal distribution of Mishrif formation which can be found across the research area (Pittman 1992; Jianping et al. 2015). The carbonate pore system of Mishrif formation is reformed by the superimposition of multi-stage diagenesis, as dissolution facilitated secondary interparticle pore, intercrystal pore, and moldic pore (Wang et al. 2016b; Zepu et al. 2016; Yikai et al. 2016); cementation in later stages diminished the storage space and throat size. For instance, the growth of sparry calcite dissolved interparticle space, while compaction and micritization also played a key role in lowering porosity and permeability.

Data and methods

Data introduction

All samples used in this paper are from Mishrif formation of M oilfield in the Middle East. Four hundred fifteen samples are chosen to cover all the rock types and pore throat structures. These samples have all been analyzed by lab experiments to get useful information such as mercury injection capillary pressure data, thin casting slices, and petrophysical data such as porosity and permeability. The porosity data varies from 2 to 34% with the median porosity 17%, while permeability varies from 0.001 to 3010mD with the median permeability 3.6mD. Both primary and secondary pore were well developed, including matrix micropore, intraparticle pore, moldic pore, intercrystal pore, and visceral foramen (Figure 3).

Identification of pore throat patterns

Microstructure and percolation capability depend on pore types and pore throat structures. Capillary pressure curve shape is controlled by both pore throat selection and size, which can form the basis to evaluate the storage capability of the rocks. Based on pore throat probability distribution chart, which are extracted from the capillary pressure curve, there are three patterns of pore throat distribution (PTSD): single modal, dual modal, and triple modal. The complex pore throat types and diagenesis differences within the same pore type caused strong micro-heterogeneity and poor correlation between porosity and permeability. After careful study and comparison of pore throat size of different modal, thin slices, pore, and permeability parameters, some findings have been summarized as below:

1) The pore system in carbonate rocks is complicated and with high heterogeneity, as there are three patterns of pore throat distribution: single modal (Figure 4A), dual modal

![Capillary pressure curve and key pore throat points](image)
The pore throat size varies with a wide range from 0.01 to 100 μm.

2) Different pore throat modal represents different rock and pore types. For single modal, the main rock type is micritic bioclastic limestone (Figure 5A) with a highly frequent bio-turbulence (Figure 5B). For dual-modal pattern, the cementation of mineral and calcite (Figure 5C) and dolomite is the reason to cause dual modal. Samples with triple modal are the most dispersed. Calcite, dolomite, and pyrrhotite (Figure 5D, E) were infilled in interparticle dissolved pore, dorsal foramen (Figure 5F).

3) Porosity and permeability correlations are different in the three pore throat patterns. In single modal, porosity and permeability correlate the best (Figure 4D) compared with the other two modals, but still not good enough for permeability estimation. In dual modal, permeability varies three orders of magnitude difference within the same porosity (Figure 4E). In triple-modal pattern, porosity and permeability correlated worst as there are four orders of magnitude difference within the same porosity (Figure 4F).

In summary, there are some connection between porosity and permeability, but it is not enough to use only porosity to predict permeability. While pore throat size is an indirect indicator for percolation ability of rocks, different pore throat size can be obtained from MICP. The next step will focus on finding out the best fit pore size with permeability.

Relation between pore throat, permeability, and permeability

The pore throat size is the key factor to control percolation capability in rocks. Based on the 415 samples, 19 different pore throat radii are extracted covering from 5 to 95% of mercury saturation during mercury injection process. Linear regressions between different pore throat radius and
permeability are made. It turns out that at 20% of mercury saturation, pore throat radius R_{20} and permeability correlate the best, with the correlation coefficient 0.74 (Figure 6). R_{20} will be utilized in the next step in analyzing how porosity and permeability will change along with the R_{20} size.

From all 415 samples, the scatter plot (Figure 7a) of porosity and permeability is plotted and divided into seven intervals (Table 1) sorted by the size of R_{20} (pore throat radius at mercury saturation of 20%). For each interval, the average permeability (Figure 7b) is calculated to get clearer trends of how porosity and permeability change along with pore throat radius.

As shown in Figure 7 a and b, some conclusion can be drawn: (1) There is strong positive correlation between

![Fig. 3](image-url) Main pore types in Mishrif formation

![Fig. 4](image-url) Pore throat characteristics in Mishrif formation
permeability and pore throat radius for all samples. Permeability keeps increasing with R20. Both the max value and max average value of permeability are in interval RVII, which is the maximal pore throat zone. (2) There is a poor correlation between porosity and permeability. With the same porosity, there are 1–4 orders of magnitude difference of permeability. (3) The max permeability zone is in interval RVII with an average permeability of 100mD. The maximal permeability exceeds 1000mD, with the average porosity around 20% within porosity interval 14–24%. This means that permeability does not keep increasing with porosity. (4) When pore throat radius exceeds 2um, there is an obvious better correlation between permeability and pore throat radius; however, there is a negative correlation between permeability and porosity.

Unlike the turbidite reservoirs, the correlation between porosity and permeability of carbonate reservoir usually is very poor. The reason is that the diagenesis process had different reconstruction effect on storage and percolation capability of the reservoir, while the pore throat size and connectivity directly indicate the quality of percolation pathway. This research identifies that the pore throat radius (R20) is the main controlling factor of permeability and clarifies the micro-distributing characteristics of the reservoir. This provides positive evidence to evaluate reservoir quality and classification more accurately.

Fig. 5 Reservoir micro-characteristics in Mishrif formation

Fig. 6 Correlation coefficient of permeability and pore

![Graph showing correlation coefficient of permeability and pore throat radius](image)
Discussion

Reservoir engineers and petrophysicists are interested in how permeability and porosity relate to pore throat size and pore throat distribution, primarily so they can estimate permeability (Pittman 1992). Regression analysis has frequently been used as the main tool with which to correlate porosity and permeability values (Jamialahmadi and Javadpour 2000). Regressions have been made between porosity, permeability, and R20 (Table 2) by three different pore throat patterns in the “Identification of pore throat patterns” section.

Pore throat radius (microns)	Interval	Mean porosity (%)	Mean permeability (mD)	Porosity range (%)	Permeability range (mD)
0–0.1	RI	0.075	2.149	2.63–23.6	0.0007–0.5
0.1–0.5	RII	0.139	3.544	4.15–26.9	0.01–80
0.5–1	RIII	0.179	11.277	7.5–28.3	0.3–110
1–2	RIV	0.229	17.537	6.5–30	6–101
2–5	RV	0.257	50	15–37	5–800
5–10	RVI	0.216	186	8–34	7–3121
10–21	RVII	0.210	234.7	16–26	8–881

Fig. 7 Crossplot of permeability and R20 of Mishrif formation

Pore throat pattern	Equations	Correlation coefficient
Single modal	$\log_{10} K = 2.076 \log_{10} R20 + 0.913 \log_{10} \phi + 2.297$	0.824
Dual nodal	$\log_{10} K = 3.0377 \log_{10} R20 + 0.787 \log_{10} \phi + 2.648$	0.881
Triple modal	$\log_{10} K = 2.307 \log_{10} R20 + 0.557 \log_{10} \phi + 3.265$	0.791

Conclusion

There is a good correlation between pore throat radius and permeability. Pore throat and permeability correlate the best when mercury saturation reaches 20%. Porosity and permeability correlate differently in different pore throat pattern. With the increment of pore throat radius, porosity and permeability show different trends. Statistically, as the increment of pore throat radius, permeability keeps increasing, while porosity shows different trend. Three different patterns have been identified for pore throat: single modal, dual modal, and triple modal. Regressions have been made between...
porosity, permeability, and pore throat radius by different pore throat patterns.

Declarations

Conflict of interest The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material, this article is licensed under a Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahr M, Allen D, Boyd A, Bachman HN, Smithson T, Clerke EA et al (2005) Confronting the carbonate conundrum[J]. Oilfield Rev 17(1):18–29

Al-Marzouqi ML, Budebes, Griffiths R, Gzara K, Ramamoorthy R, Husser A et al (2010) Resolving carbonate complexity[J]. Oilfield Rev 22(2):40–55

Cheng Y, Chong Z, Yulong C, Zhu L, Cong G (2017) Permeability prediction model of carbonate reservoir based on mercury injection data: a case study of oil-bearing limestone reservoir in KT-land KT-I members of Zhananpor oilfield. Petroleum Geology and Recovery Efficiency 24(3)

Deng H, Wen Z, Guo R (2014) Pore structure characteristics and control factors of carbonate reservoirs: the Middle-Lower Cretaceous Formation, Ai Hardy Cloth oilfield, Iraq[J]. Acta Petrol Sin 30(3):801–812

Fengfeng L, Guo R, Lifeng L, Shi qj S (2020) Heterogeneity genesis of bioclastic limestone reservoirs of Cretaceous Mishrif Formation in M oilfield, Iraq. J Earth Sci Environ 03:297–312

Gao J, Changbing T, Weimin Z, Xinmin S, Wang Y, Bo L (2013a) Reservoir characteristics and development model of Middle Cretaceous Mishrif Formation, Persian Gulf Basin. Chinese J Geol 48(1):304–316

Gao J, Changbing T, Weimin Z (2013b) Characteristics and genesis of carbonate reservoir of the Mishrif Formation in the Rumaila oil field, Iraq[J]. Acta Petrol Sin 34(5):843–852

Gunter GW, Spain DR, Viro EJ, Thomas JB, Potter G, William J. Winland pore throat prediction method-A proper retrosp ect: new examples from carbonates and complex systems[C]/SPWLA-2014-kkk presented at the SPWLA 55th Annual Logging Symposium, 18-22 May 2014, Abu Dhabi, United Arab Emirates.

Hangyu L, Zhongyuan T, Guo R (2018) Characteristics of different pore type Carbonate reservoirs and pore origins: a case study of Middle Cretaceous Mishrif formation in West Quma Oilfield, Iraq. Bulletin of Geological Science and Technology 37(6):154–162

Hulea IN, Nicholls CA (2012) Carbonate rock characterization and modeling: capillary pressure and permeability in multimodal rocks-A look beyond sample specific heterogeneity [J]. AAPG Bull 96(9):1627–1642

Jianping Y, Liqiang S, Tan X (2015) Carbonate reservoir characteristics of the Cretaceous Sarvak Formation in southwestern Zagros Basin, Iran[J]. Oil Gas Geol 36(3):409–415

Jin L, Wang G, Min C, Wang S, Yu C, Chao C (2013) Pore structures evaluation of low permeability clastic reservoirs based on petrophysical facies: a case study on Chang 8 reservoir in the Jiyuan region, Ordos Basin[J]. Pet Explor Dev 40(5):566–573

Katz AJ, Thompson AH (1986) Quantitative prediction of permeability in porous rock[J]. Phys Rev 34(11):8179–8181

Luo Zhetan, Wang Yuncheng. Pore structure of oil & gas reservoirs [M].Beijing: Petroleum Industry Press,1986.

Ma X (2010) Internal relationship between physical property and micro—pore structure of reservoir[J]. Progress Explor Geophys 33(3):216–220

Nelson PH (2005) Permeability, porosity and pore-throat size—a three dimensional perspective [J]. Petrophysics 46(6):452–455

Pittman ED (1992) Relationship of porosity and permeability to various parameters derived from mercury injection capillary pressure curves for sandstone[J]. AAPG Bull 79(2):191–198

Purcel WR. Capillary pressures—their measurement using mercury and calculation of permeability therefrom[J]. AIME: Petroleum Transactions, February, 1949:39–48.

Qibin Y, Mingjiang C, Wang J, Yang D (2015) Wang Xiaoxin Correlation among permeability, porosity and pore throat radius of carbonate reservoirs. Nat Gas Ind 35(6):30–26

Ruibao Q, Xiongyan L, Chuncheng L et al (2015) Influential factors of pore structure and quantitative evaluation of reservoir parameters in carbonate reservoir s[J]. Earth Sci Front 1:251–259

Swanson BF (1981) A simple correlation between permeabilities and mercury capillary pressure[J]. J Pet Technol 33(12):2498–2504

Wang X, Taiilang F (2013) Progress of research on permeability of carbonate rocks. Earth Sci Front 20(5):166–174

Wang J, Guo R, Limin Z (2016a) Geological features of grain bank reservoirs and the main controlling factors: a case study on Cretaceous Mishrif Formation, Halfaya oilfield, Iraq[J]. Pet Explor Dev 43(3):367–377

Wang Y, Wen Z, Guo R et al (2016b) Characteristics and origin of high porosity and low permeability carbonate reservoirs in the Sa’di Formation, Halfaya oil field, Iraq[J]. Pet Geol Exp 38(2):224–230

Warren EA, Pullham AJ (2001) Anomalous porosity and permeability preservation in deeply buried Tertiary and Mesozoic sandstones in Cusiana Field, Llanos Foothills, Colombia[J]. J Sediment Res 71(1):2–14

Wen Z, Guo R, Meyan F (2014) Characteristics and origin of Cretaceous limestone reservoir with bio-moldic pore and intrafossil pore, in Ahdeb oilfield, Iraq[J]. Acta Petrol Sin 30(3):813–821

Yikai Z, An K, Xiaogang M et al (2016) Characteristics and genesis of carbonate reservoirs in the Mishrif MB1 member in the Missan oil fields, Iraq[J]. Pet Geol Exp 38(3):360–365

Zepu T, Bo L, Gao J (2016) Diagenesis of bioclastic carbonates of the Cretaceous Mishrif Formation in the Rumaila oil field, Iraq[J]. J Stratigr 40(1):41–50

ZhiMin J, Tan XC, Guo R, LiMin Z, Yuan Z, YanTao C (2018) Pore structure characteristics and control factors of carbonate reservoirs: the Cretaceous Mishrif Formation, Halfaya oilfield, Iraq. Acta Sedimentol Sin 005(036):981–994