Recommended names for pleomorphic genera in *Dothideomycetes*

Amy Y. Rossman¹, Pedro W. Crous²,³, Kevin D. Hyde⁴,⁵, David L. Hawksworth⁶,⁷,⁸, André Aptroot⁹, Jose L. Bezerra¹⁰, Jayarama D. Bhat¹¹, Eric Boehm¹², Uwe Braun¹³, Saranyaphat Boonmee⁴,⁵, Erio Camporesi¹⁴, Putarak Chomnunti⁴,⁵, Dong-Qin Dai⁴,⁵, Melvina J. D’souza⁴,⁵, Aasha Dissanayake⁵,⁶, E.B. Garrett Jones¹⁶, Johannes Z. Groenewald¹⁷, Margarita Hernández-Restrepo²³, Siang Hongsantran¹⁵, Walter M. Jaklitsch¹⁷, Ruvishika Jayawardena⁴,⁵,¹², Li Wen Jing¹⁵, Paul M. Kirk¹⁸, James D. Lawrey¹⁹, Ausana Mapoopath¹⁵, Eric H.C. McKenzie²⁰, Jutamart Monkai²¹, Alan J.L. Phillips²¹, Rungtiwa Phookamsak⁴,⁵, Huzefa A. Raja²², Keith A. Seifert²³, Indulni Senanayake⁴,⁵, Bernard Slippers³, Satinee Sueترong²⁴, Joanne E. Taylor²⁵, Kasun M. Thambbugala⁴,⁵,²⁶, Qing Tian⁴,⁵, Saowaluck Tiphromma⁵,²⁷, Dhanushika N. Wanasinghe⁴,⁵,¹², Nalin N. Wijayawardene⁴,⁵, Saowanee Wikee⁴,⁵, Joyce H.C. Woudenberg², Hai-Xia Wu²⁷,²⁸, Jiye Yan¹², Tao Yang²⁹, Ying Zhang³⁰

¹Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA; corresponding author e-mail: amydiwaner@yahoo.com
²CBS-KNAW Fungal Biodiversity Institute, Uppsalaalaan 8, 3584 CT Utrecht, The Netherlands
³Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
⁴Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
⁵School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
⁶Department of Life Sciences, The Natural History Museum, Cromwell Road, SW7 5BD London, UK
⁷Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, Madrid 28040, Spain
⁸Comparative Plant and Fungal Biology, Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey, TW9 3DS, UK
⁹ABL Herbarium, G.v.d.Veenstraat 107, NL-3762 XK Soest, The Netherlands
¹⁰Departamento de Micologia, Universidade Federal de Pernambuco Rua Nelson Chaves, s/n, Cidade Universitária, Recife, 50670-901, Brazil
¹¹No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha-403108, India; formerly, Department of Botany, Goa University, Goa, India
¹²42 Longacre Dr., Livingston, NJ, 07039, USA
¹³Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany
¹⁴A.M.B. Gruppo Micologico Forlivese “Antonio Ciocongnì”, Via Roma 18, Forli, Italy; A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy
¹⁵Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
¹⁶College of Science, Botany and Microbiology Department, King Saud University, Riyadh 1145, Saudi Arabia
¹⁷Institute of Forest Entomology, Forest Pathology and Forest Protection, Dept. of Forest and Soil Sciences, BOKU-University of Natural Resources and Life Sciences, Hasenauerstraße 38, 1190 Vienna, Austria, and Division of Systematic and Evolutionary Botany, Department of Botany and Biodiversity Research, University of Vienna, Renngweg 14, 1030 Wien, Austria
¹⁸Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
¹⁹Department of Botany, George Mason University, 4400 University Drive, Fairfax, VA 22030-4444, USA
²⁰Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand
²¹University of Lisbon, Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal
²²Department of Chemistry and Biochemistry, 457 Sullivan Science Building, University of North Carolina, Greensboro, NC 27402-8170, USA
²³International Fungal Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 196 Carling Avenue, Ottawa, Ontario K1A 0C6 Canada
²⁴Fungal Biodiversity Laboratory (BFBD), BIOTEC, National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Amphoe Klong Luang, Pathum Thani, 12120, Thailand
²⁵Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
²⁶Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006, PR China
²⁷International Fungal Research and Development Centre, Key Laboratory of Resource Insect Cultivation & Utilization State Forestry Administration
²⁸The Research Institute of Resource Insects, Chinese Academy of Forestry Kunming 650224, PR China
²⁹Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
³⁰Institute of Microbiology, Beijing Forestry University, P.O. Box 61, Beijing 100083, PR China

© 2015 International Mycological Association

You are free to share - to copy, distribute and transmit the work, under the following conditions:

Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

Non-commercial: You may not use this work for commercial purposes.

No derivative works: You may not alter, transform, or build upon this work.

For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.
Abstract: This paper provides recommendations of one name for use among pleomorphic genera in Dothideomycetes by the Working Group on Dothideomycetes established under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). A number of these generic names are proposed for protection because they do not have priority and/or the generic name selected for use is asexually typified. These include: Acrogenospora over Farlowiella; Alternaria over Alliella, Lewia, and Crivellia; Botryosphaeria over Fusisporum; Camarosporula over Anthracostroma; Capnodium over Polychaeton; Cladosporium over Davidella; Corynespora over Corynesporasca; Curvularia over Pseudocochliobolus; Elsinoë over Sphaceloma; Excipularispora over Kentingia; Exosporiella over Anamoura; Exserohilum over Setosphaeria; Gymmamycetes over Megaloaspeoria; Kellermania over Planistromella; Kirschsteiniothelia over Dendryphiopsis; Lecanosticta over Eriptio; Pananectria over Araneomyces; Phaeosphaeria over Phaeoseptoria; Phyllosticta over Guignardia; Podonecctria over Tetracrum; Polythrichium over Cymadotheca; Prosthemium over Pleomassaria; Ramularia over Mycosphaerella; Sphaerellopsis over Eudarluca; Sphaeropsis over Phaeobotryosphaeria; Stemphylium over Pleospora; Teratosphaeria over Kirrmycoses and Colletocolgoeps; Tetraploa over Tetraplosphaeria; Venturia over Fusidiadium and Pollaccia; and Zelosperisporium over Neomicrothryium. Twenty new combinations are made: Acrogenospora carmichaeliana (Berk.) Rossman & Crous, Alternaria scrophulariae (Desm.) Rossman & Crous, Pyrenophora catenaria (Drechsler) Rossman & K.D. Hyde, P. dematoidea (Bubák & Wróbl.) Rossman & K.D. Hyde, P. fugax (Wallr.) Rossman & K.D. Hyde, P. nobilae (McKenzie & D. Matthews) Rossman & K.D. Hyde, P. triseptata (Drechsler) Rossman & K.D. Hyde, Schizothyrium cryptogum (Batzer & Crous) Crous & Batzer, S. cylindricum (G.Y. Sun et al.) Crous & Batzer, S. emperora (G.Y. Sun & L. Gao) Crous & Batzer, S. inaequale (G.Y. Sun & L. Gao) Crous & Batzer, S. muca (G.Y. Sun & L. Gao) Crous & Batzer, S. qianense (G.Y. Sun & Y.Q. Ma) Crous & Batzer, S. tard crescens (Batzer & Crous) Crous & Batzer, S. wisconsinense (Batzer & Crous) Crous & Batzer, Teratosphaeria epicoccoides (Cooke & Masssee) Rossman & W.C. Allen, Venturia catenospora (Butin) Rossman & Crous, V. convolvularum (Ondrej) Rossman & Crous, V. oleaginea (Castagne) Rossman & Crous, and V. phillyreae (Nicolas & Aggery) Rossman & Crous, combs. nov. Three replacement names are also proposed: Pyrenophora grahamii Rossman & K.D. Hyde, Schizothyrium sunii Crous & Batzer, and Venturia bariae Rossman & Crous noms. nov.

Article info: Submitted: 4 November 2015; Accepted: 23 November 2015; Published: 2 December 2015.

INTRODUCTION

A comprehensive account of the genera of Dothideomycetes was provided by Hyde et al. (2013), and updated by Wijayawardene et al. (2014). These works serve as the basis for the move to one scientific name for pleomorphic genera of fungi in this class. Based on the latter publication, an account is presented for all pleomorphic genera in Dothideomycetes including the generic names recommended for use. This article is essentially abstracted from Wijayawardene et al. (2014) to present only competing pairs of genera for consideration by the Nomenclature Committee for Fungi (NCF), as well as including minor corrections. All but three of the recommendations listed here agree with those of Wijayawardene et al. (2014). For Acrogenospora-Farlowiella, a case is now made for protecting Acrogenospora based on the wider use and fewer name changes required rather than following the principle of priority. Similarly Camarosporula was determined to be more widely used than the competing generic name Anthracostroma, which has equal priority; Camarosporula is consequently recommended for use. Although Sydowiwa and Hormonema were considered distinct by Wijayawardene et al. (2014), a study by Hirooka et al. (2012) suggested that their type species were congeneric. Thus, Sydowiwa is now recommended for use based on the greater number of species, wider use, and priority. Four additional pairs of genera were discovered to be synonyms as explained below. In addition, three generic names with synonyms listed in Wijayawardene et al. (2014) are probably not, as explained under names not included. Generic names with synonyms that are not pleomorphic, i.e. all sexual or all asexually typified synonyms are not included.

A list of names of all pleomorphic genera, i.e. those having synonymous generic names for an alternate morph along with their type species and citations and the action required, if any, is presented in Table 1. A number of genera recommended for use require action by the NCF for two reasons. Generic names that do not have priority must be approved for protection by the NCF, equivalent to conservation. In addition, according to Article 57.2 of the International Code of Nomenclature for algae, fungi and plants (ICN; McNeill et al. 2012), generic names with type species typified by sexual morphs of species (S) must be suppressed or rejected before a generic name typified by a species with an asexual morph (A) can be used. We note, however, that the mycological community has proposed deletion of Art. 57.2 (Hawksworth 2015) so that names will in future compete on priority of publication regardless of the morph of their type species.

Clarifications of elements of the ICN relevant to this paper are as follows. One concerns the publication of two or more scientific names in the same publication. When this occurs, all names in that publication are considered to have equal priority. If names in that publication are determined to be synonyms, the first author to select one of them for use determines the priority. Secondly, if a generic name is protected for use because it is considered a synonym of another generic name but is later found not to be a synonym, that generic name remains available for use. This is similar to the concept of a genus that may initially be broadly circumscribed and later more narrowly defined. These and
many other nomenclatural situations related to moving to one scientific name for fungi are explained in Rossman (2014), as determined by the ICN. For an updated account of the scientific names of fungi associated with plants including those previously having two names, consult the USDA SMML Fungal Databases (http://nt.ars-grin.gov/fungaldatabases/), which includes the scientific names of plant-associated fungi that reflect the most recent literature along with the host and worldwide distribution of each species.

PLEOMORPHIC GENERIC NAMES OF DOTHIDEOMYCETES AND RECOMMENDATIONS FOR USE OF ONE NAME

Protect Acrogenospora M.B. Ellis 1971 (A) over Farlowiella Sacc. 1891 (S)

The generic name Acrogenospora, typified by *A. sphaerocephala*, includes one of the 11 species that have sexual morphs placed in *Farlowiella* typified by *F. repanda* (also considered to be *F. carmichaeliana*). Although no molecular data exist to support the synonymy of *Acrogenospora* with *Farlowiella*, the distinctive morphology of the asexual morph suggests this and has long been accepted (Ellis 1971, 1976, Schoch et al. 2009). Three names representing two species have been described in *Farlowiella*, both of which have earlier names in *Acrogenospora* and thus would require name changes if *Farlowiella* were retained. All names in *Acrogenospora* would need to be changed if *Farlowiella* were used. In addition, confusion exists with the fungal name *Farlowiella* because it has also been used for an algal genus of *Phaeophyta* for which a replacement name was published in 1975, and because there is also an insect genus named *Farlowiella*. If the generic name *Acrogenospora* is protected, only one name change would be required. *Acrogenospora* has been monographed (Goh et al. 1998), including especially those known from freshwater that may not all belong in that genus. *Acrogenospora* is commonly used by plant pathologists and ecologists, thus protection of the generic name *Acrogenospora* is favoured as it would contribute to nomenclatural stability of these species. This disagrees with our previous recommendation (Wijayawardene et al. 2014), which was supported by the argument that *Farlowiella* was adopted in the comprehensive account of *Dothideomycetes* by Schoch et al. (2009), a paper published prior to the shift to single nomenclature for pleomorphic fungi (Crous et al. 2015a).

Acrogenospora carmichaeliana (Berk.) Rossman & Crous, comb. nov.

MycoBank MB814513

Basionym: *Hysterium carmichaelianum* Berk., in Hooker, *Engl. Fl.* 5 (2): 294 (1836).

Synonyms: *Farlowiella carmichaeliana* (Berk.) Sacc., *Syll. Fung.* 9: 1101 (1891).

Monospora megalospora Berk. & Broome, *Ann. Mag. nat. Hist.*, ser. 2, 13: 462 (1854).

Acrogenospora megalospora (Berk. & Broome) Goh et al., *Mycol. Res.* 102: 1311 (1998).

Hysterium repandum A. Bloxam ex Duby, *Mém. Soc. Phys. Hist. nat. Genève* 16: 27 (1861).

Farlowiella repanda (A. Bloxam ex Duby) Sacc., *Syll. Fung.* 9: 1101 (1891).

Use Alternaria Nees 1816 (A) rather than Lewia M.E. Barr & E.G. Simmons 1986 (S), All Lewia E.G. Simmons 1990 (S) and Crivellia Shoemaker & Inderb. 2006 (S)

The genus *Alternaria*, typified by *A. alternata*, is a well-known genus with over 700 names including the causal organisms of diseases such as leaf spot of crucifers (*A. brassicaceae*), citrus fruit black spot (*A. citri*), sunflower blight (*A. helianthi*), and early blight of potatoes (*A. solani*) among others. Simmons (1986) was the first to describe a sexual morph for *Alternaria* based on *Lewia scrophulariae* having the asexual morph *Alternaria conjuncta*. A second sexually typified genus *Alllewia* based on *A. proteae* was described for species that Simmons (1990) placed in *Embellisias*, a segregate of *Alternaria*. These genera, as well as the monotypic genus *Crivellia* typified by *C. papaveracearum*, were shown to be monophyletic and recognized as a broadly circumscribed *Alternaria* by Woudenberg et al. (2013, 2104). Given its widespread use, the number of species, and its priority, the use of *Alternaria* is recommended.

Alternaria scrophulariae (Desm.) Rossman & W.C. Allen, comb. nov.

MycoBank MB815091

Basionym: *Sphaeria scrophulariae* Desm., *Pl. Crypt. Nord Fr.* ed. 1, fasc. 15, no. 718. (1834).

Synonyms: *Lewia scrophulariae* (Desm.) M.E. Barr & E.G. Simmons, *in Simmons*, *Mycotaxon* 25: 294 (1986)

Pleospora scrophulariae (Desm.) Höh., *Sber. Akad. Wiss. Wien, Math.-naturw. Kl.*, Abt. 1 126: 374 (1917)

Leptosphaeria scrophulariae (Desm.) Sacc., *Syll. Fung.* 2: 57 (1883)

Alternaria conjuncta E.G. Simmons, *Mycotaxon* 25: 294 (1986)

When Barr & Simmons (in Simmons 1986) introduced the new generic name *Lewia* for the sexual morph of species of *Alternaria*, they selected *L. scrophulariae* (based on *Sphaeria scrophulariae*) as the type species. In the same publication the asexual morph of *L. scrophulariae* was described as a new species, *A. conjuncta*, thus there is no doubt that these names represent the same species. However, the oldest epithet for this species should be placed in *Alternaria*. Most reports of this species are under the names *L. scrophulariae* or *Pleospora scrophulariae*.

Protect Bipolaris Shoemaker 1959 (A) over Cochliobolus Drechsler 1954 (S)

The generic names *Bipolaris* typified by *B. maydis* and *Cochliobolus* typified by *C. heterostrophus*, the sexual morph of *B. maydis*, are unquestionably synonyms (Manamgoda et al. 2014). These genera include a number of economically important plant pathogens causing diseases of cereal crops worldwide, especially southern corn leaf blight caused by *B. maydis*. At present 115 names have been included in *Bipolaris* while 54 names have been described in *Cochliobolus*.
Table 1. Names of pleomorphic genera in Dothideomycetes that are proposed for protection or are asexually typified and recommended for use over sexually typified genera. For each genus the citation, type species and accepted name is given. NCF = Nomenclature Committee for Fungi.

Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species, and currently accepted name	Action required
Acrogenospora M.B. Ellis, Demat. Hyphom: 114.1971. Typos: A. sphaerocephala (Berk. & Broome) M.B. Ellis 1971. (Monotospora sphaerocephala Berk. & Broome 1859). Farlowiella Sacc., Syll. Fung. 9: 1100. 1891. Typos: F. repanda (A. Bloxom ex Duby) Sacc. 1891 (Hysterium repandum A. Bloxom ex Duby 1861); now Acrogenospora carmichaeliana (Berk.) Rossman & Crous 2015.	Protect Acrogenospora (1971) over Farlowiella (1891). Asexual type. Approval needed by NCF.	
Alternaria Nees, Syst. Pilze: 72 1816; nom. cons. Typos: A. tenuis Nees 1816; now A. alternata (Fr.) Keissl. 1912 (Torula alternata Fr. 1832). Lewia M.E. Barr & E.G. Simmons in Mycotaxon 25: 289. 1986. Typos: L. scrophulariae (Desm.) M.E. Barr & E.G. Simmons 1986; now Alternaria scrophulariae (Desm.) Rossman & W.C. Allen 2015.	Asexual type. Approval needed by NCF.	
Bipolaris Shoemaker in Can. J. Bot. 37: 882. 1959. Typos: B. maydis (Y. Nisik. & C. Miyake) Shoemaker 1959 (Helminthosporium maydis Y. Nisik. & C. Miyake 1926). Cochliobolus Drechsler in Phytopathology 24: 973. 1934. Typos: C. heterostrophus (Drechsler) Drechsler 1934 (Ophiobolus heterostrophus Drechsler 1925); now Bipolaris maydis (Y. Nisik. & C. Miyake) Shoemaker 1959.	Bipolaris was proposed for conservation by Rossman et al. (2013).	
Botryohypoxylon Samuels & J.D. Rogers in Mycotaxon 25: 631. 1986. Typos: B. amazonense Samuels & J.D. Rogers 1986. Iledon Samuels & J.D. Rogers in Mycotaxon 25: 633. 1986. Typos: I. versicolor Samuels & J.D. Rogers 1986; now Botryohypoxylon amazonense Samuels & J.D. Rogers 1986.	None.	
Botryosphaeria Ces. & De Not., Comm. Soc. crittog. Ital. 1(4): 211. 1863. Typos: B. dothidea (Moug.) Ces. & De Not. 1863. Fusicoecum Corda in Sturm, Deutschl. Fl. 3 (2): 111. 1829. Typos: F. aesculi Corda 1829; now Botryosphaeria dothidea (Moug.) Ces. & De Not. 1863.	Protect Botryosphaeria (1863) over Fusicoecum (1829).	
Brooksia Hansf. in Proc. Linn. Soc. N.S.W. 81: 32. 1956. Typos: B. tropicalis Hansf. 1956. Hiospira R.T. Moore, in Trans. Brit. mycol. Soc. 45: 145. 1962. Typos: H. hendrickxii (Hansf.) R.T. Moore 1962 (Helminthosporium hendrickxii Hansf. 1945); now Brooksia tropicalis Hansf. 1956.	None.	
Camarosporula Petr. in Sydowia 8: 99. 1954. Typos: C. persoonii (Henn.) Petr. 1954 (Hendersonia persoonii Henn. 1901). Anthracostroma Petr. in Sydowia 8: 96. 1954. Typos: A. persooniae (Henn.) Petr. 1954 (Mycosphaerella persooniae Henn. 1903); now Camarosporula persoonii (Henn.) Petr. 1954.	Asexual type. Approval needed by NCF.	
Capnodium Mont. in Annsl Sci. Nat., Bot., sér. 3 11: 233. 1849. Typos: C. salicinum Mont. 1849; now C. citri Berk. & Desm. (1849). Polychaeton (Pers.) Lév. in Orbigny, Dict. Univ. Hist. Nat. 8: 493. 1846 (Fumago sect. Polychaeton Pers., Mycol. eur. 1: 1. 1822). Typos: P. quercinum (Pers.) Kuntze 1898. (Fumago quercinum Pers. 1822).	Protect Capnodium (1849) over Polychaeton (1846).	
Table 1. (Continued)

Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species, and currently accepted name	Action required
Cladosporium Link in Mag. Gesell. naturf. Freunde, Berlin 7: 37. 1816.	*Davidiella* Crous & U. Braun in Mycol. Progr. 2: 8. 2003.	Asexual type. Approval needed by NCF.
Typos: *C. herbarum* (Pers.) Link 1816 (*Dennatum herbarum* Pers. 1794).	*Typus: D. tassiana* (De Not.) Crous & U. Braun 2003 (*Sphaerella tassiana* De Not. 1863); now *Cladosporium herbarum* (Pers.) Link 1816.	
Comminutispora A.W. Ramaley in Mycologia 88: 132. 1996.	*Hyphospora* A.W. Ramaley in Mycologia 88: 133. 1996.	None.
Typos: *C. agavacearum* A.W. Ramaley 1996.	*Typus: H. agavacearum* A.W. Ramaley 1996; now *Comminutispora agavacearum* A.W. Ramaley 1996.	
Corynespora Güssow in Z. PflKrankh. PfISchutz 16: 10. 1906.	*Corynesporascas* Sivan. in Mycol. Res. 100: 786. 1996.	Asexual type. Approval needed by NCF.
Typos: *C. mazei* Güssow 1906; now *C. cassiicola* (Berk. & M.A. Curtis) C.T. Wei 1950.	*Typus: C. caryotae* Sivan. 1996; ? now *Corynespora cassiicola* (Berk. & M.A. Curtis) C.T. Wei 1950.	
Curvularia Boedijn in Bull. Jard. bot. Buitenz. sér. 3 13: 123. 1933.	*Pseudococchiobolus* Tsuda et al. in Mycologia 69: 1117. 1978.	Asexual type. Approval needed by NCF.
Typos: *C. lunata* (Wakker) Boedijn 1933 (*Acrothecium lunatum* Wakker 1898).	*Typus: P. niskadai* Tsuda et al. 1978; now *Curvularia coicis* E. Castell. 1956.	
Elsinoë Racib., Parasit. Alg. Pilze Java’s 1: 14. 1900.	*Sphaeloma* de Bary, Ann. Oenol. 4: 165. 1874.	Protect *Elsinoë* (1900) over *Sphaeloma* (1874).
Typos: *E. canavaleae* Racib. 1900.	*Typus: S. ampelinum* de Bary 1874; now *Elsinoë ampelinum* Shear 1929.	
Excipulariopsis P.M. Kirk & Spooner in Trans. Brit. mycol. Soc. 78: 251. 1982.	*Kentingia* Sivan. & W.H. Hsieh in Mycol. Res. 93: 83. 1989.	Asexual type. Approval needed by NCF.
Typos: *E. narsapurensis* (Subram.) Spooner & P.M. Kirk 1982 (*Excipularia narsapurensis* Subram. 1956).	*Typus: K. corticola* Sivan. & W.H. Hsieh 1989; now *Excipulariopsis narsapurensis* (Subram.) Spooner & P.M. Kirk 1982.	
Exosporiella P. Karst., Finlands mögelsvampar (Hyphom. fenn.).: 160. 1892.	*Anomalemma* Sivan. in Trans. Brit. mycol. Soc. 8: 328. 1983.	Asexual type. Approval needed by NCF.
Typos: *E. fungorum* (Fr.) P. Karst. 1892 (*Epochium fungorum* Fr. 1832).	*Typus: A. epochii* (Berk. & Broome) Sivan. 1983 (*Sphaeria epochii* Berk. & Broome 1866); now *Exosporiella fungorum* (Fr.) P. Karst. 1892.	
Exserohilum K.J. Leonard & Suggs in Mycologia 66: 289. 1974.	*Setosphaeria* K.J. Leonard & Suggs in Mycologia 66: 294. 1974.	Assexual type. Approval needed by NCF.
Typos: *E. turcicum* (Pass.) K.J. Leonard & Suggs 1974 (*Helminthosporium turcicum* Pass. 1876).	*Typus: S. turcica* (Luttr.) K.J. Leonard & Suggs 1974 (*Trichometasphaeria turcica* Luttr. 1958); now *Exserohilum turcicum* (Pass.) K.J. Leonard & Suggs 1974.	
Gemmaycyces Casagr. in Phytopath. Z. 66: 119. 1969.	*Megaloseptoria* Naumov, Bolél. Rast. 14: 144. 1925.	Protect Gemmaycyces (1969) over Megaloseptoria (1925).
Typos: *G., piceae* (Borthw.) Casagr. 1969 (*Cucurbitaria piceae* Borthw. 1909).	*Typus: M. mirabilis* Naumov 1925; now *Gemmaycyces piceae* (Borthw.) Casagr. 1699.	
Kellermania Ellis & Everh. in j. Mycol. 1(12): 153. 1885.	*Planistromella*A.W. Ramaley in Mycotaxon 47: 260. 1993.	Assexual type. Approval needed by NCF.
Typos: *K. yuccigena* Ellis & Everh. 1885.	*Typus: P. yucciflorium* A.W. Ramaley 1993; now *Kellermania yucciflororum* A.W. Ramaley 1993.	
Kirschsteiniothelia D. Hawksw. in Bot J. Linn. Soc. 91: 182. 1985.	*Dendryphiopsis* S. Hughes in Can. J. Bot. 31: 655. 1953.	Protect Kirschsteiniothelia (1985) over Dendryphiopsis (1953).
Typos: *K. aethiops* (Sacc.) D. Hawksw. 1985 (*Amphisphaeria aethiops* Sacc. 1882).	*Typus: D. atra* (Corda) S.Hughes 1953 (*Dendryphiopsis atrom Corda 1840*); now *Kirschsteiniothelia atra* (Corda) D. Hawksw. 2014.	
Lecanosticta Syd. in Annls mycol. 20: 211. 1922.	*Eruptio* M.E. Barr in Mycotaxon 60: 437. 1996.	Asexual type. Approval needed by NCF.
Typos: *L. pini* Syd. 1922; now *Lecanosticta acicola* (Thüm.) Syd. 1924 (*Cryptosporium acicola* Thüm. 1878).	*Typus: E. acicola* (Dearn.) M.E. Barr 1996 (*Oligostroma acicola* Dearn. 1926); now *Lecanosticta acicola* (Thüm.) Syd. 1924.	
Table 1. (Continued).

Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species, and currently accepted name	Action required
Paranectriella (Henn. ex Sacc. & D. Sacc.) Höhn. in Sber. Akad. Wiss. Wien. Math.-naturw. Kl., Abt. 1 119: 899. 1910. (Paranectria subgen. Paranectriella) Henn. ex Sacc. & D. Sacc. 1905.) Typus: *P. juruana* (Henn.) Höhn. 1910 (Paranectria juruana Henn. 1904).	Araneomyces Höhn. in Sber. Akad. Wiss. Wien. Math.-naturw. Kl., Abt. 1 118: 894. 1909. Typus: *A. acarifer* Höhn. 1909.	Protect Paranectriella (1910) over Araneomyces (1909).
Phaeosphaeria L. Miyake in Bot. Mag., Tokyo 23: 93. 1909. Typus: *P. oryzae* L. Miyake 1909.	Phaeosphaeria Speg. in Revta Mus. La Plata 15: 39. 1908. Typus: *P. papayae* Speg. 1908; now Phaeosphaeria papaya Quaedvlieg et al. 2013.	Protect Phaeosphaeria (1909) over Phaeosphaeria (1908).
Phragmocapnia Theiss. & Syd. in Annls mycol. 15: 480. 1918. Typus: *P. betle* (Syd. et al.) Theiss. & Syd. 1918 (Capnodium betle Syd. et al. 1911).	Conidiocarpus Woron. in Annls mycol. 24: 250. 1927. Typus: *C. penzigii* Woron. 1927; now Phragmocapnia penzigii (Woron.) Chomnunti & K.D. Hyde 2011.	None.
Phylllosticta Pers., Traité Champ. Comest.: 55, 147. 1818; nom. cons. Typus: *P. convallariae* Pers. 1818; now *P. cruenta* (Fr.) J. Kickx f. 1849.	Guignardia Viala & Ravaz in Bull. Soc. Mycol. Fr. 8: 63. 1929; nom. cons. Typus: *G. bidwellii* (Ellis) Viala & Ravaz 1892 (Sphaeria bidwellii Ellis 1880); now Phylllosticta amphelicida (Engelm.) Aa 1973.	Asexual type. Approval needed by NCF.
Podonectria Petch in Trans. Brit. mycol. Soc. 7: 146. 1921. Typus: *P. coccicola* (Ellis & Everh.) Petch 1921.	Tetracrium Henn. in Hedwigia 41: 116. 1902. Typus: *T. aurantii* Henn. 1902; now Podonectria aurantii (Henn.) Petch 1921.	Protect Podonectria (1921) over Tetracrium (1902).
Polythrinicum Kunze, Mykol. Hefte 1: 13. 1817. Typus: *P. trifoli* Kunze 1817.	Cymadothea F.A. Wolf in Mycologia 27: 71. 1935. Typus: *C. trifoli* (Pers.) F.A. Wolf 1935 (Sphaeria trifoli Pers. 1801); now Polythrinicum trifoli Kunze 1817.	Asexual type. Approval needed by NCF.
Prillieuxina G. Arnaud in Annals Ecole Nat. Agric. Montp., série 2 16: 161. 1918. Typus: *P. winteriana* (Paszchke) G. Arnaud 1918 (Asterina winteriana Paszchke 1892).	Leprieunia G. Arnaud in Annals Ecole Nat. Agric. Montp., série 2 16: 210. 1918. Typus: *L. winteriana* G. Arnaud 1918; now Prillieuxina winteriana (Paszchke) G. Arnaud 1918.	None.
Prosthemium Kunze, Mykol. Hefte 1: 17. 1817. Typus: *P. betulinum* Kunze 1817.	Pleomanassaria Speg. in Anal. Soc. cient. argent. 9: [in tabula ad p. (192)]. 1880. Typus: *P. siparia* (Berk. & Broome) Sacc. 1883 (Sphaeria siparia Berk. & Broome 1852); now Prosthemium betulinum Kunze 1817.	Asexual type. Approval needed by NCF.
Pseudodidymella C.Z. Wei et al. in Mycologia 89: 494. 1997. Typus: *P. fagi* C.Z. Wei et al. 1997.	Pycnopleiospora C.Z. Wei et al. in Mycologia 89: 496. 1997. Typus: *P. fagi* C.Z. Wei et al. 1997; now Pseudodidymella fagi C.Z. Wei et al. 1997.	None.
Pyrenophora Fr., Summa Veg. Scand. 2: 397. 1849. Typus: *P. phaeocomes* (Rebent.) Fr. 1849 (Sphaeria phaeocomes Rebent. 1804).	Drechslera S. Ito in Proc. Imp. Acad. Japan 6: 355. 1930. Typus: *D. tritici-vulgaris* (Y. Nisik.) S. Ito ex S. Hughes 1958 (Helminthosporium tritici-vulgaris Y. Nisik. 1928; now Pyrenophora tritici-repentis (Died.) Drechsler 1923.	None.
Ramularia Unger, Exanth. Pflanzen: 119. 1833; nom. cons. Typus: *R. pusilla* Unger 1833.	Mycosphaerella Johanson in Öfvers. K. Svensk. Vetensk.-Akad. Förhandl. 41(9): 163.1884. Typus: *M. punctiformis* (Pers.) Starbäck 1889 (Sphaeria punctiformis Pers. 1794); now Ramularia endophylla Verkley & U. Braun 2004.	Asexual type. Approval needed by NCF.
Generic name recommended for use, citation and type species	Suppressed generic name(s), citation, type species, and currently accepted name	Action required
--	--	-----------------
Schizothyrium Desm. in Annls Sci. Nat., Bot., sér. 3 11: 360. 1849. Typus: S. acerinum Desm. 1849.	Zygophiala E.W. Mason in Mycol. Pap. 13: 3. 1945. Typus: Z. jamaicensis E.W. Mason 1945; now Schizothyrium pomi (Mont. & Fr.) Arx 1959.	None.
Sphaereopsis Cooke in Grevillea 12 (61): 23. 1883. Typus: S. quercuum Cooke 1883; now S. filum (Blv.) B. Sutton 1977.	Eudarluca Spec. in Revta Mus. La Plata 15: 22. 1908. Typus: E. australis Spec. 1908.	Asexual type. Approval needed by NCF.
Sphaeropsis Sacc. in Michelia 2: 105. 1880; nom. cons. Typus: S. visci (Alb. & Schwein.) Sacc. 1880 (Sphaeria atrovirens var. visci Alb. & Schwein. 1805).	Phaeobotryosphaeria Spec. in Anal. Mus. nac. B. Aires, Ser. 3 17(10): 120. 1908. Typus: P. herbarum (Pers.) Rabenh. 1854 (Sphaeria herbarum Pers. 1801); now Stemphylium herbarum E.G. Simmons 1986, nom. cons. prop.	Asexual type. Approval needed by NCF.
Stemphylium Wallr., Fl. crypt. Germ. 2: 300. 1833. Typus: S. botryosum Sacc. 1886.	Pleospora Rabenh. ex Ces. & De Not. in Comment. Soc. Crittog. Ital. 1: 217 (1863); nom. cons. Typus: P. herbarum (Pers.) Rabenh. 1854 (Sphaeria herbarum Pers. 1801); now Stemphylium herbarum E.G. Simmons 1986, nom. cons. prop.	Asexual type. Approval needed by NCF.
Sydowia Bres. in Hedwigia 34: (66). 1895. Typus: S. gregaria Bres. 1895.	Hormonema Lagerb. & Melin in Svensk Skogsvårdsförening Tidskr. 25: 233. 1927. Typus: H. dematioides Lagerb. & Melin 1927; now Sydowia polyspora (Bref. & Tavel) E. Müll. 1953.	None.
Teratosphaeria Syd. & P. Syd. in Annls mycol. 10: 39. 1912. Typus: T. fibrillosa Syd. & P. Syd. 1912.	Kirramyces J. Walker et al. in Mycol. Res. 96: 919. 1992. Typus: K. epicoecoides (Cooke & Massae) J. Walker et al. 1992 (Cercospora epicoecoides Cooke & Massae 1891); now Teratosphaeria epicoecoides (Cooke & Massae) Rossman & W.C. Allen 2015.	None.
Colletogloeopsis Crous & M.J. Wingf. in Canad. J. Bot. 75: 668. 1997. Typus: C. nubilosum (Ganap. & Corbin) Crous & M.J. Wingf. 1997 (Colletogloeum nubilosum Ganap. & Corbin 1979); now Teratosphaeria cryptica (Cooke) Crous & U. Braun 2007.		
Tetraploa Berk. & Broome in Ann. Mag. nat. Hist., ser. 2 5: 459. 1850. Typus: T. aristata Berk. & Broome 1850.	Tetraploasphaeria Kaz. Tanaka & K. Hiray. in Stud. Mycol. 64: 177. 2009. Typus: T. sasicola Kaz. Tanaka & K. Hiray. 2009; now Tetraploa sasicola (Kaz. Tanaka & K. Hiray.) Rossman & Crous 2015.	Asexual type. Approval needed by NCF.
Venturia Sacc., Syll. Fung. 1: 586. 1882. Typus: V. inaequalis (Cooke) G. Winter 1875 (Sphaeria inaequalis Cooke 1866).	Fusicladium Bonord., Handb. Allgem. Mykol.: 80. 1851. Typus: F. virescens Bonord. 1851; now Venturia pyrina Aderh. 1896, nom. cons. prop.	Protect Venturia (1882) over Fusicladium (1851).
Zeloasperisporium R.F. Castañeda in Mycotaxon 60: 284. 1996. Typus: Z. hyphopodioides R.F. Castañeda 1996.	Neomicrothyrium Boonmee et al. in Fungal Diversity 51: 217. 2011. Typus: N. siamense Boonmee et al. 2011; now Zeloasperisporium siamense (Boonmee et al.) Honganan & K. Hyde 2015.	None.
Although the sexually typified Cochliobolus is an older name than the assexually typified Bipolaris, assexual morphs are more commonly encountered in nature, thus the name Bipolaris has been used more frequently than Cochliobolus. In all but one case, the sexual morphs for these species were named at a later time than the asexual morphs. Three species of Cochliobolus have been studied as model organisms and their genomes sequenced with publications concerning their genomics and genetics using the name in Cochliobolus. Rossman et al. (2013) proposed that the generic name Bipolaris be conserved over Cochliobolus and that B. maydis (syn. Helminthosporium maydis), be conserved over the type species of Cochliobolus, C. heterostrophus (syn. Ophiobolus heterostrophus). If the generic name Bipolaris and the species name B. maydis are conserved, none of the names of Bipolaris will need to be changed. In all cases except that of Bipolaris maydis, the oldest epithet is already placed in Bipolaris. Use of the generic name Cochliobolus would result in the need to transfer 46 names from Bipolaris to Cochliobolus while another seven names in Bipolaris would replace names currently used in Cochliobolus. Given the frequency with which the name Bipolaris is used by plant pathologists, including a recent monograph (Manamgoda et al. 2014), and the number of name changes required if Cochliobolus were retained, protecting the generic name Bipolaris is recommended.

Use Botryohypoxylon Samuels & J.D. Rogers 1986 (S) rather than Iledon Samuels & J.D. Rogerson 1986 (A)
The monotypic genera Botryohypoxylon based on B. amazonense and Iledon based on I. versicolor were described in the same article and thus have equal priority. Neither name has been used later in the literature. Botryohypoxylon is recommended for use.

Protect Botryosphaeria Ces. & De Not. 1863 (S) over Fusisocccum Corda 1829 (A)
The type species of Botryosphaeria, B. dothidea, was shown to be a synonym of Fusisocccum aesculi, the type species of Fusisocccum, by Slippers et al. (2004). Although many species names have been placed in both genera, this complex has been divided into several genera with relatively few species remaining in Botryosphaeria. In the most recent account, Phillips et al. (2013) accepted only six species in Botryosphaeria, which has now been clearly defined and the type species epitypified. Additionally, most names in Fusisocccum have been redisplayed in other genera (Crous et al. 2006, Xu & Zhang 2006, Mohali et al. 2007, Phillips & Alves 2009, Phillips et al. 2013) and Botryosphaeria is the generic name used most commonly by plant pathologists. Given that the recent studies of this group have adopted the name Botryosphaeria while names in Fusisocccum have been placed in other genera, we recommend protection of Botryosphaeria.

Use Brooksia Hansf. 1956 (S) rather than Hiospira R.T. Moore 1962 (A)
Brooksia tropicalis, the type species of Brooksia, is a leaf parasite reported on diverse hosts throughout tropical regions (Farr & Rossman 2015). The asexual morph was described as Hiospira hendrickxii, the type species of Hiospira, by Moore (1962); there is no question that these types represent the same species. A second variety of Brooksia tropicalis was described as well as a second species of Hiospira, but the identities of these remain obscure. Given the widespread use of Brooksia and its priority, the use of Brooksia is recommended.

Use Camarosporula Petr. 1954 (A) rather than Anthracostroma Petr. 1954 (S)
The monotypic generic names Camarosporula typified by C. persooniae and Anthracostroma by A. persooniae were published in the same article as alternate morphs of the same species by Petrak (1954), and thus have equal priority. Because this fungus has been reported most frequently as Camarosporula persooniae (Farr & Rossman 2015), as used by Crous et al. (2011b), Camarosporula is recommended for use, contrary to the proposal of Wijayawardene et al. (2014).

Protect Capnodium Mont. 1849 (S) over Polychaetum (Pers.) Lév. 1846 (A)
The generic name Capnodium is typified by C. salicinum, a species now regarded as a synonym of C. citri (Reynolds 1999). This genus is relatively large with over 100 names and is used for many common tropical leaf-inhabiting “sooty moulds”. On the other hand, Polychaetum, typified by P. quercinum (Hughes 1976), includes only 16 names some of which have been placed in other genera. Crous et al. (2009a) and Chomnunti et al. (2011) suggested that these genera were congeneric although they did not include the type species of Polychaetum in their studies. It seems likely that these generic names are synonyms. Chomnunti et al. (2011) assumed this and suggested that, given the great number of epithets and its widespread use, the name Capnodium should be used and thus protected over Polychaetum. Protection of Capnodium will prevent an excessive number of name changes and is, by far, the most commonly used generic name. This case is cited as an example of good practice in the ICN (Art. 57.2 Ex 2).

Use Cladosporium Link 1816 (A) rather than Davidiella Crous & U. Braun 2003 (S)
Cladosporium, typified by C. herbarum, is a well-known genus including over 700 names and the ubiquitous air-borne species C. cladosporioides. A sexual morph of C. herbarum was discovered and described in Davidiella, typified by D. tassiana (Braun et al. 2003), thus these two generic names are synonyms. The monograph of Bensch et al. (2012) provided a reliable circumscription of the genus and included 169 species based on a multi-gene phylogeny. Most names in Davidiella have already been redisplayed in Cladosporium (Crous et al. 2007a). Given its widespread use, the importance of the genus in indoor air and buildings (Bensch et al. 2015), the greater number of species, and priority of publication, the name Cladosporium is recommended for use.

Use Communitispora A.W. Ramaley 1996 (S) rather than Hyphosphora A.W. Ramaley 1996 (A)
These monotypic generic names describe alternate morphs of the same species, Communitispora based on C.
agavacearum and Hyphospora agavacearum, thus these names have equal priority. Several reports of this species as C. agavacearum exist (Farr & Rosman 2015), thus Communitispora is recommended for use.

Use Corynespora Güßow 1906 (A) rather than Corynesporasca Sivan. 1996 (S)
The monotypic genus Corynesporasca, typified by C. carotae, was described by Sivanesan (1996) for the sexual morph of a species of Corynespora on a tropical plant. Corynespora, typified by C. maezi, a synonym of C. cassiicola, has been widely used and includes approximately 200 species names. The ubiquitous leaf spot fungus C. cassiicola has been shown to occur on many plant hosts, especially in tropical regions (Smith et al. 2009). Given the extensive use of the name Corynespora for plant pathogenic fungi and its priority, this generic name is recommended for use.

Use Curvularia Boedijn 1933 (A) rather than Pseudocochliobolus Tsuga et al. 1978 (S)
The generic name Curvularia, typified by C. lunata, has been recently separated from the related genera Bipolaris, Exserohilum, and Pyrenophora and monographed by Manamgoda et al. (2015). Although the sexual morph is known and placed in Pseudocochliobolus based on P. nisikadoi, that morph is rarely encountered. Species of Curvularia occur as both plant and animal pathogens with over 30 species described. Given its widespread use, priority, and number of species, the use of Curvularia is recommended.

Protect Elsinoë Racib. 1900 (S) over Sphaceloma de Bary 1874 (A)
The genus Elsinoë includes many species that cause a number of economically important leaf scab diseases, especially in tropical regions. The type species, E. canavaliae, occurs on Canavalia and is known from leguminous plants in the tropics (Sivanesan & Holliday 1971). Many species of Elsinoë have asexual morphs that are placed in Sphaceloma, a genus typified by S. ampelinum, and now known as Elsinoë ampelinum, causing grape scab. Although Sphaceloma has priority, both genera contain an equal number of names. Because Elsinoë is more commonly applied to these scab diseases and this name has been adopted in recent literature (Li et al. 2011, Crous et al. 2013), it is recommended that Elsinoë be protected.

Use Excipulariopsis P.M. Kirk & Spooner 1982 (A) rather than Kentingia Sivan. & W.H. Hsieh 1989 (S)
The monotypic genus Kentingia, typified by K. corticola, was established for the sexual morph of another monotypic genus, Excipulariopsis based on E. narsapurensis (Sivanesan & Hsieh 1989); there is no question that these genera are synonyms. Following the principle of priority of publication for these genera would prevent a name change, thus Excipulariopsis is recommended for use.

Use Exosporiella P. Karst. 1892 (A) rather than Anomalemma Sivan. 1983 (S)
The monotypic genus Anomalemma, based on A. epochnii, was described for the sexual morph of the monotypic Exosporiella, typified by E. fungorum (Sivanesan 1983), thus these generic names are synonyms. Tian et al. (2015) found the asexual morph of an Exosporiella species when examining the isotype of Anomalemma epochnii. Even though molecular data for either the sexual or asexual morphs are lacking, following the principle of priority and use of the asexually typified name, Exosporiella is recommended for protection.

Use Exserohilum K.J. Leonard & Suggs 1974 (A) rather than Setosphaeria K.J. Leonard & Suggs 1974 (S)
The generic names Exserohilum, typified by E. turcicum, and Setosphaeria, typified by S. turcicum, were described in the same paper and thus have equal priority. Despite the use of the same epithet, these names are based on different type specimens and so are nomenclaturally distinct; however, Leonard & Suggs (1974) demonstrated that they represent the same species and so Exserohilum and Setosphaeria are synonyms. Exserohilum includes 36 names of important plant pathogens, such as E. rostrupum, the cause of leaf spot and rot of wheat and other grasses, while only nine names have been placed in Setosphaeria. Use of Exserohilum would prevent a number of name changes, and so the use of Exserohilum is recommended.

Protect Gemmamyces Casagr. 1969 (S) over Megaloseptoria Naumov 1925 (A)
The generic name Gemmamyces, typified by G. piceae, was established for the cause of spruce bud blight occurring in northern Europe and China for which the asexual morph is Megaloseptoria mirabilis, type of the monotypic genus Megaloseptoria (Casagrande 1969, Sivanesan 1984). The basionym of G. piceae, Cucurbitaria piceae, has also been used when referring to this species although Yuan & Wang (1995) suggest that Gemmamyces is distinct from Cucurbitaria based on both biological and morphological characteristics. The latter authors describe a second species, G. piceicola. Given that Gemmamyces is widely used for the causes of spruce bud blight diseases (Hansen & Lewis 1997) and includes two species, the protection of Gemmamyces is recommended.

Use Kellermania Ellis & Everh. 1885 (A) rather than Planistromella A.W. Ramaley 1993 (S)
The generic name Kellermania, typified by K. yuccigena, was monographed by Minnis et al. (2012) who showed that Planistromella, typified by P. yucciflororum, is a synonym; this was subsequently confirmed by Monkai et al. (2013). Ramaley (1993) established Planistromella for the sexual morph of K. yucciflororum. Kellermania includes 38 names while 13 names have been placed in Planistromella, all except one of which also have names in Kellermania. Given its priority, widespread use, and adoption in a recent monographic account, the use of Kellermania is recommended.

Protect Kirschsteiniothelia D. Hawksw. 1985 (S) over Dendryphiopsis S. Hughes 1953 (A)
The type species of Kirschsteiniothelia, K. aethiops, is congeneric with the type species of Dendryphiopsis, D. atra,
as demonstrated by the molecular phylogeny presented in Boonmee et al. (2012). Both species have been regarded as having various synonyms, but it now seems likely that this represents a species complex. Hughes (1958) treated D. atra as the asexual morph of Ampshiphasia incrustans, and the connection was confirmed by ascospore cultures (Hughes 1978), then using the generic name Microthelia, subsequently ruled as a nomen rejiciendum in favour of Anisomeridium nom. cons. Sequenced epitypes may be required to resolve the connections at the species level, as Boonmee et al. (2012) shows some material named as K. aethiops and D. atra to be distinct but congeneric species. Kirschsteiniothelia currently includes 17 species, with some recently added by Chen & Hsieh (2004), and Wang et al. (2004). Dendryphiopsis includes six names, one of which is recombined as K. atra. Given that Kirschsteiniothelia includes the most species and is now widely used, that name is proposed for protection.

Use Lecanosticta Syd. 1922 (A) rather than Eruptio M.E. Barr 1996 (S) Lecanosticta aciocola, an older name for the type species of Lecanosticta, L. pini, is now regarded as the name for the fungus that causes the widespread disease of pine known as brown spot needle blight. Previously this species had been referred to as Scirrhia aciocola in the asexual morph and Eruptio aciocola (the type species of Eruptio) and Mycosphaerella dearnessii in the sexual morph; all are now treated as synonyms of L. aciocola, as evidenced by Crous et al. (2009b) and Quaedvlieg et al. (2012). Neither Scirrhia typified by S. rimosas (Crous et al. 2011a), nor Mycosphaerella now considered a synonym of Ramularia (see p. 518 below) are synonyms of Lecanosticta. The genus Lecanosticta includes eight names, while only the type species of the three names originally placed in Eruptio is currently retained in that genus. Given the widespread use of Lecanosticta, its priority, and the greater number of names, the use of Lecanosticta is recommended.

Protect Paranectriella (Henn. ex Sacc.) Höhn. 1910 (S) over Araneomyces Höhn. 1909 (A) The type species of Paranectriella, P. juruana, is a relatively uncommon hyperparasite of stromatic leaf-inhabiting fungi in the tropics. Some authors have observed an associated asexual morph similar to the staurospores of Araneomyces, possibly A. acarifer, the generic type (Rossman 1987, Kirschner et al. 2010). It appears likely that these generic names are synonyms. The two names in Araneomyces were moved to Titaea (Damon 1952), but Sutton (1984) considered A. acarifer and thus Araneomyces to be distinct from Titaea. The genus Paranectriella includes 10 names while only two names have been placed in Araneomyces. In addition, Paranectriella has been more widely reported than Araneomyces and no name changes would be required if it were used, thus Paranectriella is proposed for protection.

Protect Phaeosphaeria I. Miyake 1909 (S) over Phaeoseptoria Speg. 1908 (A) The type species of Phaeosphaeria, P. oryzae, was shown to be congeneric with the type species of Phaeoseptoria, P. papayae, by Quaedvlieg et al. (2013). The latter authors reclassified a number of species in both genera replacing some species of Phaeoseptoria in Phaeosphaeria. Over 200 names have been placed in Phaeosphaeria while Phaeoseptoria includes only 49 names. As Phaeosphaeria has a greater number of names and is more commonly used than Phaeoseptoria, Phaeosphaeria is proposed for protection.

Use Phragmocapnias Theiss. & Syd. 1918 (S) rather than Conidiocarpus Woron. 1927 (A) The type species of Phragmocapnias, P. betle, was epitypified and classified as a member of Capnodiaceae by Chomunti et al. (2011). Although molecular data were lacking, they followed Hughes (1976) who considered the type species of Conidiocarpus, C. penzigii, to be related to Phragmocapnias and transferred it to that genus; they therefore consider Phragmocapnias and Conidiocarpus to be synonyms. Phragmocapnias includes 13 names while only 10 names have been placed in Conidiocarpus. Phragmocapnias is more widely used for these species than Conidiocarpus, has priority, and includes the greatest number of species, so we recommend the use of Phragmocapnias.

Use Phyllosticta Pers. 1818 (A) rather than Guignardia Vila & Ravaz 1892 (S) Both Phyllosticta and Guignardia have been widely used for ubiquitous leaf spot fungi on diverse hosts including black rot of grape (Farr & Rossman 2015). The relationship between the commonly encountered asexual morphs placed in Phyllosticta and the sexual morphs described in Guignardia is well known. Recent molecular research has also confirmed this relationship for such common species as Phyllosticta maculata (syn. Guignardia musae) causing freckle disease of banana in Southeast Asia and Oceania (Wong et al. 2012) and P. citricarpa (syn. G. citricarpa) causing citrus black spot (Glienke et al. 2011). These species are also commonly encountered as endophytes in leaves of woody plants, especially P. capitanensis (Wikee et al. 2013b). The relationship between Guignardia bidwellii, conserved type of Guignardia, and Phyllosticta ampelicola has been known for several decades (Aa 1973) and has recently been confirmed using molecular data (Zhang et al. 2013). Placement of the type species of Phyllosticta, P. convallariae, which is now considered a synonym of P. cruenta (Aa 1973), in the same genus has also been shown using a multigene phylogeny (Motohashi et al. 2009). There is therefore no doubt that these two generic names are synonyms. Over 3000 names have been placed in Phyllosticta (Aa & Vanek 2002), while over 300 names have been placed in Guignardia. The asexual morph is most commonly encountered, and thus species of Phyllosticta are widely reported (Farr & Rossman 2015). Given the priority of Phyllosticta, the greater number of names, and its widespread use including a recent account (Wikee et al. 2013a), the use of Phyllosticta is recommended.

Protect Podonectria Petch 1921 (S) over Tetracrium Henri. 1902 (A) The generic name Podonectria is typified by P. coccicola, a species that has been used for the biocontrol of scale insects on Citrus (Moore 2002). The asexual morph of P. coccicola is
Tetracrium cocciola, which appears morphologically similar to T. auranti, the type species of Tetracrium, a name with a sexual morph regarded as P. auranti (Rossman 1978, 1987). Although neither genus has been studied using molecular data, these generic names appear to be synonyms. At present 11 names exist in Podonectria, and nine in Tetracrium. Many of the species are, however, poorly known. Although Tetracrium is older, the name Podonectria has been widely used within the biocontrol community and thus Podonectria is proposed for protection.

Use Polythricium Kunze 1817 (A) rather than Cymadothea F.A. Wolf 1935 (S)
The type species of Polythricium, P. trifolii, is known as the cause of sooty blotch of clover occurring on leaves throughout temperate regions. The sexual morph of this species was described as Cymadothea trifolii, the type of the monotypic genus Cymadothea, thus these generic names are synonyms. Both names have been well-used in the literature, but Polythricium features more commonly than Cymadothea (in papers using these generic names). Given that there are five species names in Polythricium, and just one in Cymadothea, and priority, the use of Polythricium is recommended.

Use Prillieuxina G. Arnaud 1918 (S) rather than Leprieurina G. Arnaud 1918 (A)
The generic name Leprieurina, typified by L. winteriana, was established for the asexual morph of Prillieuxina winteriana, the type species of Prillieuxina, in the same article; these names therefore have equal priority. Over 70 names have been placed in Prillieuxina, compared with just four in Leprieurina, so Prillieuxina is recommended for use. The type species have both been placed in Asterinella Theiss. 1912, typified by A. puiggarii (Speg.) Theiss. 1912, but the species in that genus have a distinct peridial morphology and Asterinella is not congeneric with Prillieuxina.

Use Prosthemium Kunze 1817 (A) rather than Pleomassaria Spg. 1880 (S)
The type species of Prosthemium, P. betulinum, is the asexual morph of the type species of Pleomassaria, P. siparia. The connection was initially based on morphology (Sivanesan 1984, Hantula et al. 1998) and later confirmed using molecular data (Tanaka et al. 2010). Although more names have been placed in Pleomassaria, a number of these have now been removed to other genera, and recent studies have used Prosthemium (Kamiyama et al. 2009). Based on its priority and recent use in the literature, the use of Prosthemium is recommended.

Use Pseudodidymella C.Z. Wei et al. 1997 (S) rather than Pycnopleiospora C.Z. Wei et al. 1997 (A)
The monotypic generic names, Pseudodidymella typified by P. fagi and Pycnopleiospora typified by P. fagi, were described in the same publication and so have equal priority. Both names remain obscure, and no subsequent reports were traced, so we recommend the use of Pseudodidymella.

Use Pyrenophora Fr. 1849 (S) rather than Drechslera S. Ito 1930 (A) or Marieliottia Shoemaker 1999 (A)
The type species of Pyrenophora, P. phaeocomes, has long been said to have a Drechslera asexual morph (Sivanesan 1987), although it remained unnamed. Recent studies place this species in a genus including the type of Drechslera, D. tritic-vulgaris, now regarded as P. tritic-repentis (Ariyawansa et al. 2014). Many previous authors had noted this relationship (e.g. Shoemaker 1959, 1962, Sivanesan 1987, Zhang & Berbee 2001, Crous et al. 2011b), thus there is no doubt that Pyrenophora and Drechslera are generic synonyms. These fungi cause a number of important diseases on grasses, such as yellow leaf spot of wheat caused by P. tritic-repentis, and leaf blotch and head rot of oats caused by P.avenae. Both generic names are well known to plant pathologists. Many species of Drechslera, however, are now placed in the segregate genera Bipolaris, Curvularia, and Exserohilum (Sivanesan 1987, Manamgoda et al. 2012, 2014, 2015). More names have been placed in Pyrenophora than in Drechslera (199 vs 136 species epithets, respectively). Based on priority, the number of species, and recent usage, Pyrenophora is recommended for use.

The generic name Marieliottia, typified by M. biseptata, was established for three species segregated from Drechslera by Shoemaker (1999). Marieliottia biseptata (syn. Drechslera biseptata) as well as the two other species were shown to belong in Pyrenophora by Zhang & Berbee (2001) and Ariyawansa et al. (2014); Marieliottia is therefore considered a synonym of Pyrenophora.

The following new combinations into Pyrenophora are needed, based on the studies of Zhang & Berbee (2001), Crous et al. (2011b), and Ariyawansa et al. (2014):

Pyrenophora catenaria (Drechsler) Rossman & K.D. Hyde, comb. nov.
MycoBank MB815092
Basionym: Helminthosporium catenaria Drechsler, J.Agric. Res. 24: 627 (1923).
Synonym: Drechslera catenaria (Drechsler) S. Ito, Proc. Imper. Acad. Tokyo 6: 355 (1930).

Pyrenophora dematioidea (Bubák & Wróbl.) Rossman & K.D. Hyde, comb. nov.
MycoBank MB815093
Basionym: Helminthosporium dematioideum Bubák & Wróbl., Hedwigia 62: 337 (1921).
Synonyms: Drechslera dematioidea (Bubák & Wróbl.) Scharif, Stud. Graminic. Sp. Helminthosporium: 81 (1963). Marieliottia dematioidea (Bubák & Wróbl.) Shoemaker, Canad. J. Bot. 76: 1563 (1999).

Pyrenophora fugax (Wallr.) Rossman & K.D. Hyde, comb. nov.
MycoBank MB815094
Basionym: Helminthosporium fugax Wallr., Fl. crypt. Germ. 2: 164 (1833).
Synonym: Drechslera fugax (Wallr.) Shoemaker, Canad. J. Bot. 36: 765 (1958).
Pyrenophora grahamii Rossman & K.D. Hyde, nom. nov.
MycoBank MB819095
Replaced synonym: Helminthosporium dictyoides var. phlei
J.H. Graham, Phytopathology 45: 228 (1955).
Synonyms: Drechslera phlei (J.H. Graham) Shoemaker, Canad. J. Bot. 37: 881 (1959).
Non P. phlei (E. Mull.) Crivelli 1983.

Pyrenophora nobleae (McKenzie & D. Matthews) Rossman & K.D. Hyde, comb. nov.
MycoBank MB815096
Basionym: Drechslera nobleae McKenzie & D. Matthews, Trans. Brit. mycol. Soc. 68: 309 (1977).

Pyrenophora triseptata (Drechsler) Rossman & K.D. Hyde, comb. nov.
MycoBank MB815097
Basionym: Helminthosporium triseptatum Drechsler, J. Agric. Res. 24: 686 (1923).
Synonyms: Drechslera triseptata (Drechsler) Subram. & B.L. Jain, Curr. Sci. 35: 355 (1966).
Marielliottia triseptata (Drechsler) Shoemaker, Canad. J. Bot. 76: 1565 (1999).

Use Ramularia Unger 1833 (A) rather than Mycosphaerella Johansson 1884 (S)
The very large genus Mycosphaerella, typified by *M. punctiformis*, has long been known to include a diverse range of relatively non-descript sexual morphs that cause leaf spots. This became more obvious as their asexual morphs were explored and determined to belong to numerous genera (Sivanesan 1984, Crous & Braun 2003). Crous et al. (2009b, 2011b) determined that *M. punctiformis*, now regarded as Ramularia endophylla (Videira et al. 2015a), belongs in Ramularia typified by *R. pusilla*, thus Mycosphaerella and Ramularia are synonyms. Crous et al. (2009b, 2011b) and others have also determined that most of the 1738 names placed in Mycosphaerella are not congeneric with the type of the genus such that many species have already been placed in segregate genera including Batcheloromyces, Delphinella, Passalora, Pseudocercospora, Stenella, and Pseudocercospora amongst many others (Farr & Rossman 2015). Although Mycosphaerella includes many names, those that are congeneric with the type species are relatively few. Around 225 names in Mycosphaerella have been reported to be morphologically indistinguishable from *M. punctiformis* (ApRooT 2006) and are thus likely to belong to Ramularia. Given the extreme morphological convergence of the sexual morphs placed in Mycosphaerella and confusion associated with these names, the use of the generic name that has priority, Ramularia, for the species of Mycosphaerella sensu stricto as already reflected in the recent literature (Videira et al. 2015b), is recommended.

Use Schizothyrium Desm. 1849 (S) rather than Zygothiala E.W. Mason 1945 (A)
The type species of Zygothiala, *Z. jamaicensis*, was initially shown to be the asexual morph of *Schizothyrium pomi* by Batzer et al. (2005), although later Batzer et al. (2008) considered *Z. jamaicensis* to be distinct from *S. pomi*. Nevertheless Batzer et al. (2005, 2008), Gao et al. (2014), Li et al. (2010) and Ma et al. (2010) demonstrated that *S. pomi* and species of Zygothiala are congeneric. The type species of *Schizothyrium*, *S. acerinum*, is relatively unknown and has long been considered to be a synonym of *S. pomi* (Arc 1959). *Schizothyrium* includes over 50 names while Zygothiala includes only 11 names. These fungi cause sooty blotch and fly speck diseases such as *S. pomi* on the fruits of apple and pear. Based on priority, widespread use, and the greater number of names, the use of *Schizothyrium* is recommended. In the event that *S. acerinum* should eventually be typified and prove not to be congeneric with *Z. jamaicensis*, further disruption could be avoided by the conservation of *Schizothyrium* with *S. pomi*.

Based on the molecular phylgeny presented in Batzer et al. (2008), Li et al. (2010), Ma et al. (2010), and Gao et al. (2014), the following additional species are placed in *Schizothyrium*:

Schizothyrium cryptogamum (Batzer & Crous) Crous & Batzer, comb. nov.
MycoBank MB815098
Basionym: Zygothiala cryptogama Batzer & Crous, Mycologia 100: 254 (2008).

Schizothyrium cylindricum (G.Y. Sun et al.) Crous & Batzer, comb. nov.
MycoBank MB815099
Basionym: Zygothiala cylindrica G.Y. Sun et al., Mycol. Progr. 9: 250 (2010).

Schizothyrium emperorae (G.Y. Sun & L. Gao) Crous & Batzer, comb. nov.
MycoBank MB815100
Basionym: Zygothiala emperorae G.Y. Sun & L. Gao, PLoS ONE 9 (10, e110717): 6 (2014).

Schizothyrium inaequale (G.Y. Sun & L. Gao) Crous & Batzer, comb. nov.
MycoBank MB815101
Basionym: Zygothiala inaequalis G.Y. Sun & L. Gao, PLoS ONE 9 (10, e110717: 8 (2014).

Schizothyrium musae (G.Y. Sun & L. Gao) Crous & Batzer, comb. nov.
MycoBank MB815103
Basionym: Zygothiala musae G.Y. Sun & L. Gao, PLoS ONE 9 (10, e110717: 7 (2014).

Schizothyrium qianense (G.Y. Sun & Y.Q. Ma) Crous & Batzer, comb. nov.
MycoBank MB815104
Basionym: Zygothiala qianensis G.Y. Sun & Y.Q. Ma, Mycol. Progr. 9: 153 (2010).

Schizothyrium sunii Crous & Batzer, nom. nov.
MycoBank MB815102
Replaced name: Zygothiala longispora G.Y. Sun & L. Gao,
The confusion regarding the commonly encountered mycoparasitic species on rust fungi considered under the generic name *Sphaeropsis* and *Eudarluca* has been clarified by Trakunyingcharoen et al. (2014). The type species of *Sphaeropsis*, *S. quercuum*, for which the oldest name is *S. filum*, was suggested to be congeneric with the type species of *Eudarluca*, *E. australis*, often considered a synonym of *E. caris* (Eriksson 1966). The name *Sphaerellopsis* was used in preference to *Eudarluca* by Trakunyingcharoen et al. (2014). *Sphaerellopsis* has the greater number of names, is most widely used, and has priority so the use of the generic name *Sphaerellopsis* is recommended.

Use *Sphaerellopsis* Cooke 1883 (A) rather than *Eudarluca* Spag. 1908 (S)

The confusion regarding the commonly encountered mycoparasitic species on rust fungi considered under the generic names *Sphaerellopsis* and *Eudarluca* has been clarified by Trakunyingcharoen et al. (2014). The type species of *Sphaerellopsis*, *S. quercuum*, for which the oldest name is *S. filum*, was suggested to be congeneric with the type species of *Eudarluca*, *E. australis*, often considered a synonym of *E. caris* (Eriksson 1966). The name *Sphaerellopsis* was used in preference to *Eudarluca* by Trakunyingcharoen et al. (2014). *Sphaerellopsis* has the greater number of names, is most widely used, and has priority so the use of the generic name *Sphaerellopsis* is recommended.

Use *Sphaeropsis* Sacc. 1880 (A) rather than *Phaeobotrysphaeria* Spag. 1908 (S)

The generic name *Sphaeropsis* Sacc. 1880, typified by *S. visci*, has been conserved against *Sphaeropsis Lév. 1842* (Donk 1968) and over 600 names have been included in this conserved genus. Phillips et al. (2008, 2013) have now shown that *S. visci* has a sexual morph that they placed in *Phaeobotrysphaeria* within *Botryosphaeriaceae*. The type species of *Phaeobotrysphaeria*, *P. yerbae*, was examined by Phillips et al. (2008) but not placed within *Sphaeropsis*. Nevertheless these genera appear to be synonyms. Given its widespread use, the number of names, its priority, and the recent study of this genus, the use of *Sphaeropsis* is recommended.

Use *Stemphylium* Wallr. 1833 (A) rather than *Pleospora* Rabenh. ex Ces. & De Not. 1863 (S)

The type species of *Stemphylium*, *S. botryosum*, is considered the asexual morph of *Pleospora tarda*, cause of black mold rot and leaf blight on diverse hosts while the type species of *Pleospora, P. herbarum*, has an asexual morph referred to as *Stemphylium herbarum*, a widespread species (Ariyawansa et al. 2015). There is no question that these two generic names are synonyms. Although over 1000 names have been placed in *Pleospora* with only about 200 names in *Stemphylium*, many names initially placed in *Pleospora* have now been moved to other genera. *Stemphylium* is more widely used, especially by plant pathologists, and has priority, thus the use of *Stemphylium* is recommended.

Use *Sydowia* Bres. 1895 (S) rather than *Hormonema Lagerb. & Melin 1927* (A)

The genus *Sydowia*, typified by *S. gregaria*, is congeneric with the type species of *Hormonema, H. dematioides*, now recognized as *S. polymorpha* by Hirooka et al. (2012). Twelve species are currently accepted in *Sydowia* while only seven are retained in *Hormonema*. Given the priority, the greater number of species, as well as the widespread use, *Sydowia* is recommended for use. This recommendation is contrary to that presented in Wijayawardene et al. (2014) who considered these genera to be distinct. Protection of *Sydowia* would not, however, preclude the use of *Hormonema* by anyone wishing to follow an alternative taxonomy and recognize both genera.

Use *Teratosphaeria* Syd. & P. Syd. 1912 (S) rather than *Kirramyces* J. Walker et al. 1992 (A) and *Colletogloeopsis* Crous & Wingfield 1997 (A)

The genus *Teratosphaeria*, typified by *T. fibrillosa*, has been circumscribed by Crous et al. (2009b) to include species having asexual morphs placed in *Kirramyces* and *Colletogloeopsis*. The type species of *Colletogloeopsis*, *C. nubilosum*, was placed in *Kirramyces* by Andjic et al. (2007), which was supported by molecular data. The type species of *Kirramyces*, *K. epicoccoides* (syn. *T. suttonii*), has also been sequenced and shown to be a species of *Teratosphaeria* (Crous et al. 2009b, Quaedvlieg et al. 2014). *Teratosphaeria* includes 90 names while *Colletogloeopsis* includes only 9, and *Kirramyces* 19. As *Teratosphaeria* has priority and the most names, the use of *Teratosphaeria* is recommended.
Use Tetraploa Berk. & Broome 1850 (A) rather than Tetraplosphaeria Kaz. Tanaka & K. Hiray. 2009 (S)

When Tanaka et al. (2009) proposed the generic name Tetraplosphaeria, they showed that the type species T. sasicola grouped closely with the type species of Tetraploa, T. aristata. This relationship was accepted by Hyde et al. (2013) and Wijayawardene et al. (2014), both of whom recommended the use of Tetraploa over Tetraplosphaeria. Tetraploa includes 20 names while Tetraplosphaeria has only four names, thus, having priority and the most names, use of Tetraploa is recommended.

Protect Venturia Sacc. 1882 (S) over Fusicladium Bonord. 1851 (A) and Pollaccia E. Bald. & Cif. 1947 (A)

The generic name Venturia is well known because of the ubiquitous disease of apple known as apple scab, caused by V. inaequalis, and for species causing other diseases especially on Rosaceae. Venturia is typified by V. inaequalis, which has an asexual morph referred to as Fusicladium pomi, while the type of Fusicladium, F. virescens, has a sexual morph known as Venturia pyrina, the cause of pear scab (Sivanesan & Waller 1974, Schubert et al. 2003). The genus Pollaccia, typified by P. radiosa, was established for the asexual morph of Venturia radios. Using a molecular phylogeny Crous et al. (2007b) showed that V. inaequalis, V. pyrina and V. radiosa were congeneric, thus Venturia, Fusicladium, and Pollaccia are synonymous generic names. All three generic names have been used in reports of the diseases. The names in Venturia, however, are more widely known than those in Fusicladium or Pollaccia so Venturia is recommended for protection.

Based on the molecular phylogeny presented by Crous et al. (2007b) and Zhang et al. (2011), the following species should also be placed in Venturia:

Venturia bariae Rossman & Crous, nom. nov.
MycoBank MB815108
Replaced name: Fusicladium fagi Crous & de Hoog, Stud. Mycol. 58: 209 (2007).
Non V. fagi M.E. Barr 1968.

Venturia catenospora (Butin) Rossman & Crous, comb. nov.
MycoBank MB815110
Basionym: Pollaccia catenospora Butin, Mycol. Res. 96: 658 (1992).
Synonym: Fusicladium catenosporum (Butin) Ritschel & U. Braun, Schlechtendalia 9: 30 (2003).

Venturia convolvarumar (Ondřej) Rossman & Crous, comb. nov.
MycoBank MB815111
Basionym: Fusicladium convolvarumar Ondřej, Česká Mykol. 25: 171 (1971).

Venturia oleaginosa (Castagne) Rossman & Crous, comb. nov.
MycoBank MB815112

Use Zeloasperisporium R.F. Castañeda 1996 (A) rather than Neomicrothyrium Boonmee et al. 2011 (S)

The type species of Zeloasperisporium, Z. hyphopodioides, was recently show to be congeneric with the monotype species of Neomicrothyrium, N. siamense, by Crous et al. (2015b) and Hongsanan et al. (2015), thus these generic names are synonyms. Crous et al. (2015b) added another species to Zeloasperisporium while Hongsanan et al. (2015) described two further new species of Zeloasperisporium and placed N. siamense in Zeloasperisporium. Given its priority and greater number of species, Zeloasperisporium is recommended for use here.

GENERAE NOT COMPETING FOR USE

Notes are provided below on generic names that were considered synonyms by Wijayawardene et al. (2014), but upon closer examination may not be. Until questions about the relationships between the type species involved are answered, no recommendations are made.

Antennariella Woron. 1915 (S) and Antennariella Bat. & Cif. 1963 (A) may not be synonyms

The type species of Antennariella, A. fuligiosa, has been placed in Wentiomycetes, a genus that includes 22 names while the type species of Antennariella, A. unedonis, is now considered a synonym of Polychaeton brasilienne, a name that should be placed in Capnodium. This suggests that these type species are not congeneric and thus the generic names Antennariella and Antennariella are probably not synonyms.

Use Cyclopeltella Petr. 1953 (A)

The monotypic generic names Cyclopeltis and Cyclopeltella were described in the same article by Petrak (1953), however, Cyclopeltis is a later homonym of the fern genus Cyclopeltis J. Sm. 1846 (Aspidiaceae), and thus cannot be used. Only Cyclopeltella typified by C. orbicularis Petr. is available for use.

REFERENCES

Aa HA van der (1973) Studies in Phyllosticta I. Studies in Mycology 5: 1–110.
Kamiyama M, Hirayama K, Tanaka K, Mel’nik VA (2009) Transfer of Asterosporium orientale to the genus Prosthemania (Pleosporales, Ascomycota): a common coelomycetous fungus with stellate conidia occurring on twigs of Betula spp. Mycoscience 50: 438–441.

Kirschner R, Arauz V, Herbst F, Hofmann TA, Ix S, et al. (2010) A new species of Puttemanisia (Tubefucaeae, Pleosporales) and new records of further Ascomycota from Panama. Sydowia 62: 225–241.

Leonard KJ, Suggs EG (1974) Setosphaeria prolate, the ascigerous state of Exserohilum prolatum. Mycologia 66: 281–297.

Li H, Zhang R, Sun G, Batzer JC, Gleason ML (2010) New species and record of Zygophialia on apple fruit from China. Mycological Progress 9: 245–251.

Li Y, Wu H, Chen H, Hyde KD (2011) Morphological studies in Dothideomycetes: Elsinoë (Elsinoaceae), Bullerina, and three excluded genera. Mycotaxon 115: 507–520.

Ma Y, Zhang R, Sun G, Zhu H, Tang M, et al. (2010) A new species of Zygophialia associated with the flyspeck complex on apple from China. Mycological Progress 9: 151–155.

Manamgoda DS, Cai L, McKenzie EHC, Crous PW, Madrid H, et al. (2012) A phylogenetic and taxonomic re-evaluation of the Bipolaris - Cochliobolus - Curvularia complex. Fungal Diversity 56: 131–144.

Manamgoda DS, Rossman AY, Castlebury LA, Crous PW, Madrid H, et al. (2014) The genus Bipolaris. Studies in Mycology 79: 221–288.

Manamgoda DS, Rossman AY, Castlebury LA, Chukeatitiro E, Hyde KD (2015) A taxonomic and phylogenetic re-appraisal of the genus Curvularia (Pleosporaceae): human and plant pathogens. Phytoselecta 212: 175–198.

McNeill J, Barrie FF, Buck WR, Demoulin V, Greuter W, et al. (eds.) (2012) International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). [Regnum Vegetabile no. 154.] Königstein: Koeltz Scientific Books.

Minnis AM, Kennedy AH, Grencher DB, Palm ME, Rossman AY (2012) Phylogeny and taxonomic revision of the Planistromeliaceae including its coelomycetous anamorphs: contributions towards a monograph of the genus Kellermania. Persoonia 29: 11–28.

Mohari SR, Slippers B, Wingfield MJ (2007) Identification of Botryosphaeraceae from Eucalyptus, Acacia and Pinus in Venezuela. Fungal Diversity 25: 103–125.

Monkai J, Liu J-K, Boonmee S, Chomprutti P, Chukeatitiro E., et al. (2013) Planistromeliaceae (Botryosphaeriales). Cryptogamie Mycologie 34: 45–77.

Moore RT (1962) Hiospora, a new genus of the Helicosporae. Transactions of the British Mycological Society 45: 143–146.

Moore SD (2002) Entomopathogens and microbial control of citrus pests in South Africa: a review. South African Fruit Journal 1: 30–32.

Motohashi K, Inaba S, Anzai K, Takamats S, Nakashima C (2009) Phylogenetic analyses of Japanese species of Phyllosticta sensu stricto. Mycoscience 50: 291–302.

Petrač K (1953) Cyclopellis n. gen., eine neue Gattung der Polystomellaccaen. Sydowia 7: 370–374.

Petrač K (1954) Anthracostroma n. gen., eine neue Gattung der dothisidalen Pyrenomyzeten. Sydowia 8: 96–99.

Phillips AJL, Alves A, Pennycook S, Johnston P, Ramale A, et al. (2008) Resolving the phylogenetic and taxonomic status of dark-spored teleomorph genera in the Botryosphaeriaceae. Persoonia 21: 29–55.

Phillips AJL, Alves A (2009) Taxonomy, phylogeny, and epitypification of Melanospora tulasnei, the type species of Melanospora. Fungal Diversity 38: 155–166.

Phillips AJL, Alves A, Slippers B, Wingfield MJ, Groenewald JZ, et al. (2013) The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology 76: 51–167.

Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, et al. (2014) Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 33: 1–40.

Quaedvlieg W, Groenewald JG, Yáñez-Morales, M de J, Crous P (2012) DNA barcoding of Mycosphaerella species of quarantine importance to Europe. Persoonia 29: 101–115.

Quaedvlieg W, Verkley GJM, Shin H-D, Barreto RW, Allenas AC, et al. (2013) Sizing up Septoria. Studies in Mycology 75: 307–390.

Ramey AW (1993) New fungi from Yucca: Planistromella yucciflororum gen. et sp. nov., its anamorph, Kellermania yucciflororum sp. nov., and Planistromella unisepata, sp. nov., the teleomorph of Kellermania yuccigena. Mycotaxon 47: 259–274.

Reynolds DR (1999) Capsnium citri: the sooty mold fungi comprising the taxon concept. Mycopathologia 148: 141–147.

Rossman AY (1978) Podonectria, a genus in the Pleosporales on scale insects. Mycotaxon 7: 163–182.

Rossman AY (1987) The Tubefucaea and similar Loculocystidaceae. Mycological Papers 157: 1–71.

Rossman A, Manamgoda D, Hyde K (2013) A proposal to conserve Bipolaris over Cochliobolus. Taxon 62: 1331–1332.

Rossman A (2014) Lessons learned from moving to one scientific name for fungi. IMA Fungus 5: 81–89.

Schoch CL, Spatafora JW, Summerell BA, Carnegie AJ, et al. (eds.) (2009) A phylogenetic re-evaluation of Dothideomycetes. Studies in Mycology 64: 1–220.

Schubert K, Ritschel A, Braun U (2003) A monograph of Fusidiacum s. lat. (Hyphomycetes). Schlechtendalia 9: 1–132.

Shoemaker RA (1959) Nomenclature of Drechslera and Bipolaris, grass parasites segregated from ‘Helminthosporium’. Canadian Journal of Botany 37: 879–887.

Shoemaker RA (1962) Drechslera lto. Canadian Journal of Botany 40: 809–836.

Shoemaker RA (1999) Mareilliatia, a new genus of cereal and grass parasites segregated from Drechslera. Canadian Journal of Botany 76: 1558–1569.

Simmons EG (1986) Alternaria themes and variations (22–26). Mycotaxon 25: 287–308.

Simmons EG (1990) Embellisia and related teleomorphs. Mycotaxon 38: 251–265.

Sivanesan A, Waller JM (1974) Venturia pirina. Descriptions of Pathogenic Fungi and Bacteria 404: 1–2.

Sivanesan A (1983) Studies on ascomycetes. Transactions of the British Mycological Society 81: 313–332.

Sivanesan A (1984) The Bitunicate Ascomycetes and their Anamorphs. Vaduz: J. Cramer.

Sivanesan, A (1987) Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. Mycological Papers 158: 1–261.

Sivanesan A (1996) Corynesporasca caryotae gen. et sp. nov. with a Corynespora anamorph, and the family Corynesporascaceae. Mycological Research 100: 783–788.

Sivanesan A, Holliday P (1971) Elsinoë canavaliae. Descriptions of...
Generic names of pleomorphic Dothideomycetes

Walker J, Sutton BC, Pascoe IG (1992) Phaeoseptoria eucalypti and similar fungi on Eucalyptus, with description of Kirramyces gen. nov. (Dothideomycetes). Mycological Research 96: 911–924.

Wang YZ, Aptroot A, Hyde KD (2004) Revision of the Ascomycete genus Amphipsphaeria. Hong Kong: Fungal Diversity Press.

Wijayawardene NN, Crous PW, Kirk PM, Wang Y, Woudenberg JHC, et al. (2014) Naming and outline of Dothideomycetes–2014 including proposals for the protection or suppression of generic names. Fungal Diversity 69: 1–55.

Wikee S, Lombard L, Nakashima C, Motohashi K, Chukeatirote E, et al. (2013a) A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales). Studies in Mycology 76: 1–29.

Wikee S, Lombard L, Crous PW, Nakashima C, Motohashi K, et al. (2013b) Phyllosticta capitansens, a widespread endophyte of plants. Fungal Diversity 60: 91–105.

Wong M-H, Crous PW, Henderson J, Groenewald JZ, Drenth A (2012) Phyllosticta species associated with freckle disease of banana. Fungal Diversity 56: 173–187.

Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013) Alternaria redefined. Studies in Mycology 75: 171–212.

Woudenberg JHC, Truter M, Groenewald JZ, Crous PW (2014) Large-spored Alternaria pathogens in section Porri disentangled. Studies in Mycology 79: 1–47.

Xu J-J, Zhang T-Y (2006) Dematiaceous hyphomycetes from soil in Zhejiang Province, China I. Mycosistema 25: 169–178.

Yuan Z-Q, Wang X-W (1995) A taxonomic study of fungi associated with spruce bud blight in China. Mycotaxon 53: 371–376.

Zhang G-J, Berbee ML (2001) Pyrenophora phylogenetics inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 93: 1048–1063.

Zhang Y, Crous PW, Schoch CL, Bahkali AH, Guo LD, et al. (2011) A molecular, morphological and ecological re-appraisal of Venturiales – a new order of Dothideomycetes. Fungal Diversity 51: 249–277.

Zhang K, Zhang N, Cai L (2013) Typification and phylogenetic study of Phyllosticta ampelicida and P. vaccinii. Mycologia 105: 1030–1042.