Characteristics of conservations laws of chiral-type systems

A.V. Balandin

Department of Mathematics and Mechanics
N.I.Lobatchevsky Nizhny Novgorod State University
23 Gagarin ave., 603950 Nizhny Novgorod, Russia
e-mail: balandin@mm.unn.ru

Abstract

In this note a new way to construct the characteristics of conservations laws of integrable chiral-type systems is proposed.

Key words: chiral-type systems, Lax representation, characteristics of conservation laws, Killing fields.

1. Introduction

Chiral-type systems (see, for example, [1]) are the systems of partial differential equations of the form

$$U_{xy} + G_{\beta\gamma}^\alpha U_x U_y + Q^\alpha = 0.$$ \hspace{0.5cm} (1)

Here, the Greek indices α, β, γ range from 1 to n and the subscripts denote partial derivatives with respect to the independent variables x and y. The coefficients $G_{\beta\gamma}^\alpha, Q^\alpha$ are assumed to be smooth functions of the variables U_1, U_2, \ldots, U^n. The summation rule over the repeated indices is also assumed.

If the system (1) is a system of Euler-Lagrange equations, then it is called a nonlinear generalized sigma model.

Following [2], recall that the characteristic of the conservation law $L = (L_1, L_2)$ of the system (1) is a set of functions $R = \{R_\alpha\}$ such that

$$\text{Div } L = D_x L_1 + D_y L_2 = R_\alpha \Delta^\alpha,$$ \hspace{0.5cm} (2)

where Δ^α denotes the l.h.s. of Eq. (1).

We understand integrable systems as the systems admitting a Lax representation. Suppose that the matrix g-valued Lax representation is of the form:

$$D_y \tilde{A} - D_x \tilde{B} + [\tilde{A}, \tilde{B}] = S_\alpha \Delta^\alpha,$$ \hspace{0.5cm} (2)

where
\[\tilde{A} = A_\alpha U_\alpha^x + \lambda M, \quad \tilde{B} = B_\alpha U_\alpha^y + \frac{1}{\lambda} N, \]

(3)

\[A, B, M, N \] are smooth functions of the variables \(U^1, U^2, ..., U^n \), taking values in a matrix Lie algebra \(\mathfrak{g} \), and \(S_\alpha = S_\alpha(U^1, U^2, ..., U^n) \).

Remark 1. Note that the set of such matrices as \(S_\alpha \) in the general case was investigated by M. Marvan [3], and named a characteristic element of a Lax representation.

Let \(f : \mathfrak{g} \times \mathfrak{g} \times ... \mathfrak{g} \mapsto R \) be a symmetric \(p \)-linear ad-invariant form on \(\mathfrak{g} \), i.e., for all \(x_1, x_2, ..., x_p, y \in \mathfrak{g} \) the following identity is valid:

\[f([y, x_1], x_2, ..., x_p) + f(x_1, [y, x_2], x_3, ..., x_p) + ... + f(x_1, x_2, ..., [y, x_p]) = 0. \]

(4)

For \(p = 2 \) one can take the Killing metric of the Lie algebra \(\mathfrak{g} \).

The purpose of this note is to prove the following main theorem which states that the sets \(R_\alpha \) and \(\tilde{R}_\alpha \) defined by the expressions

\[R_\alpha = f(S_\alpha, \frac{\partial \tilde{A}}{\partial \lambda}, \frac{\partial \tilde{A}}{\partial \lambda}, ..., \frac{\partial \tilde{A}}{\partial \lambda}), \quad \tilde{R}_\alpha = f(S_\alpha, \frac{\partial \tilde{B}}{\partial \lambda}, \frac{\partial \tilde{B}}{\partial \lambda}, ..., \frac{\partial \tilde{B}}{\partial \lambda}) \]

(5)

are characteristics of conservation laws of the system \((1) \).

2. **Main theorem and examples**

Denote the \(\alpha \)-th Euler operator by

\[E_\alpha = \sum J(-D)_J(\frac{\partial}{\partial U_j^\alpha}), \]

where the sum extending over all multi-indices \(J = (j_1, j_2) \).

For the sequel, we need the following technical lemma 1.

Lemma 1 Let

\[\tilde{A} = A_\alpha U_\alpha^x + M, \quad \tilde{B} = B_\alpha U_\alpha^y + N, \]

(6)

where \(A, B, M, N \) are smooth functions of the variables \(U^1, U^2, ..., U^n \), taking values in a matrix Lie algebra \(\mathfrak{g} \), and such that the following conditions are satisfied:

\[M_\alpha = [B_\alpha, M], \]

(7)

\[N_\alpha = [A_\alpha, N]. \]

(8)
Here and further, the comma denotes the partial derivatives, that is, \(P,\alpha = \frac{\partial P}{\partial U^\alpha} \).

Assume that \(f : \underbrace{\mathfrak{g} \times \mathfrak{g} \times \ldots \mathfrak{g}}_p \mapsto R \) is a symmetric \(p \)-linear ad-invariant form on \(\mathfrak{g} \).

Then the following identities are valid:

\[
E_\alpha (f(D_y \tilde{A} - D_x \tilde{B} + [\tilde{A}, \tilde{B}]), M_\alpha, ..., M_\alpha) = 0,
\]

\[
E_\alpha (f(D_y \tilde{A} - D_x \tilde{B} + [\tilde{A}, \tilde{B}]), N_\alpha, ..., N_\alpha) = 0.
\]

We will prove this lemma in the appendix.

Theorem 1 Let the chiral-type system \((1)\) admit the Lax representation of the form \((2),(3)\) in a matrix Lie algebra \(\mathfrak{g} \). Then for each ad-invariant symmetric \(p \)-form \(f \) of the Lie algebra \(\mathfrak{g} \) the sets of functions \((5)\) are characteristics of conservation laws of the system \((1)\).

Proof.

In the case under consideration, up to a constant factor, we evidently have:

\[
R_\alpha = f(S_\alpha, M_\alpha, ..., M_\alpha),
\]

\[
\tilde{R}_\alpha = f(S_\alpha, N_\alpha, ..., N_\alpha).
\]

Further, consider the case of Eq. \((11)\). The case of Eq. \((12)\) can be proved in a similar way. One can easily verify that the coefficients by first derivatives \(U_\alpha^x, U_\alpha^y \) in l.h.s. of Eq. \((2)\) vanish whenever Eqs. \((7),(8)\) are fulfilled.

Substituting \((2)\) in the polynomial \(f \) as the first argument and \(M \) as the remaining arguments, we obtain the relations

\[
f(D_y \tilde{A} - D_x \tilde{B} + [\tilde{A}, \tilde{B}], M_\alpha, ..., M_\alpha) = R_\alpha [U_\alpha^x U_\alpha^y + G_\alpha^r U_\alpha^x U_\alpha^y + Q^\alpha].
\]

The use of the lemma 1 completes the proof.

Next, we notice an invariant properties of the characteristics of conservation laws.
One can readily verify that under arbitrary non-degenerate transformations of the variables $U^1, U^2, ..., U^n$ the functions $G_{\beta\gamma}^\alpha$ in (1) are transformed as the coefficients of an affine connection. Therefore, we assume $G_{\beta\gamma}^\alpha$ to be the coefficients of an affine connection in the local coordinate system $U^1, U^2, ..., U^n$ of a space V^n. We say that the connection is associated to the system (1) and denote the covariant derivatives w.r.t. this connection by ∇_{α}.

Further on, we consider characteristics of conservation laws only of the form $R_{\alpha} = R_{\alpha}(U^1, U^2, ..., U^n)$.

Theorem 2 A set R_{α} is the characteristic of the conservation law of system (1) iff the following conditions are satisfied:

1) R_{α} is a Killing covector field, i.e.,

$$\nabla_{(\alpha}R_{\beta)} = 0;$$

(13)

2) $R_{\alpha}Q^\alpha = \text{const};$

(14)

3) the form $\nabla_{\alpha}R_{\beta}dU^\alpha \wedge dU^\beta$ is closed, i.e.,

$$d(\nabla_{\alpha}R_{\beta}dU^\alpha \wedge dU^\beta) = 0.$$

(15)

Proof.

As it is well known (see for example [2]), a function $R_{\alpha}\Delta^\alpha$ is a divergence iff $E_{\beta}(R_{\alpha}\Delta^\alpha) = 0$.

One can readily verify that

$$E_{\alpha}(R_{\beta}\Delta^\beta) = K_{\alpha\beta}U_x^\beta + \tilde{L}_{\alpha\beta\gamma}U_x^\beta U_y^\gamma + L_{\alpha},$$

where

$$K_{\alpha\beta} = \nabla_{(\alpha}R_{\beta)};$$

(16)

$$\tilde{L}_{\alpha\beta\gamma} = R_{\alpha\beta\gamma} - (R_{\delta}G_{\alpha\gamma}^\delta)_{,\beta} - (R_{\delta}G_{\beta\gamma}^\delta)_{,\alpha} + (R_{\delta}G_{\beta\alpha}^\delta)_{,\gamma};$$

(17)

$$L_{\alpha} = (R_{\delta}Q^\delta)_{,\alpha}.$$

(18)

Now, one can see that conditions (13) and (14) are fulfilled. Taking into account condition (13), Eq. (17) results in

$$\tilde{L}_{\alpha\beta\gamma} = (\nabla_{\gamma}R_{\alpha})_{,\beta} + (\nabla_{\beta}R_{\gamma})_{,\alpha} + (\nabla_{\alpha}R_{\beta})_{,\gamma}.$$

This completes the proof.
Corollary 1 Let the chiral-type system (1) admit the Lax representation of the form (2), (3) in a compact semisimple Lie algebra \mathfrak{g}, where:

1) not all of the coefficients Q^α vanish;
2) the number n of components of the system (1) and the dimension of the Lie algebra \mathfrak{g} satisfy the condition:

$$n \leq \dim \mathfrak{g} \leq n + 1; \quad (19)$$

3) the matrices S_α are linear independent.

Then the system (1) admits at least one non-trivial conservation law whose characteristic R_α depends on $U^1, U^2, ..., U^n$ and satisfy the conditions (13), (15), and

$$R_\alpha Q^\alpha = 0.$$

Proof.

First, using the Lax representation (2), we find that $2S_\alpha Q^\alpha = [M, N]$. In view of linear independence of S_α we conclude that M and N are linear independent too. Let the 2-form f be the Killing metric on the Lie algebra \mathfrak{g}. Taking into account non-degeneracy and positivity of the form f and consideration of the dimensionality, we conclude that at least one of the fields $R_\alpha = f(S_\alpha, M), \tilde{R}_\alpha = f(S_\alpha, N)$ is non-vanishing. Now, the use of the theorem 2 and observation that $R_\alpha Q^\alpha = f(Q^\alpha S_\alpha, M) = f(\frac{[M, N]}{2}, M) = 0$ complete the proof.

The tensor fields $R_\alpha, \tilde{R}_\alpha$ admit the following generalization.

Theorem 3 Let the chiral-type system (1) admit the Lax representation taking value in a Lie algebra \mathfrak{g}. Define for each ad-invariant symmetric p-form f of the Lie algebra \mathfrak{g} the tensor fields:

$$R_{\alpha_1 \alpha_2 ... \alpha_k} = f(S_{\alpha_1}, S_{\alpha_2}, ..., S_{\alpha_k}, M, ..., M), \quad (20)$$

$$\tilde{R}_{\alpha_1 \alpha_2 ... \alpha_k} = f(S_{\alpha_1}, S_{\alpha_2}, ..., S_{\alpha_k}, N, ..., N). \quad (21)$$

Then these fields are the Killing fields.
Example 1 Consider Pohlmeier-Lund-Regge system [5] which has the form:

\[\Delta^1 = U^1_{xy} + \frac{1}{\sin U^2} (U^1_x U^2_x + U^1_y U^2_y) = 0, \]

\[\Delta^2 = U^2_{xy} - \frac{\sin U^2}{(1 + \cos U^2)^2} U^1_x U^1_y - p \sin U^2 = 0, \]

where \(p \) is an arbitrary constant.

It will be convenient to write the Lax representation of PLR system in the form (2),(3), where

\[\tilde{A} = \begin{pmatrix} 0 & \lambda p - \frac{\cos U^2 U^1_x}{2 \cos^2 U^2} & -\frac{\tan U^2}{2} U^1_x \\ -\left(\frac{p}{\lambda} - \frac{\cos U^2 U^1_x}{2 \cos^2 U^2}\right) & 0 & U^1_x \\ \frac{\tan U^2}{2} U^1_x & -U^2_x & 0 \end{pmatrix}, \]

\[\tilde{B} = \begin{pmatrix} 0 & -\left(\frac{\cos U^2}{\lambda} + \frac{U^1_y}{2 \cos^2 U^2}\right) & -\tan U^2 \\ \left(\frac{\cos U^2}{\lambda} + \frac{U^1_y}{2 \cos^2 U^2}\right) & 0 & 0 \\ -\tan U^2 & 0 & 0 \end{pmatrix}. \]

Choose the basis \(B \) of the Lie algebra \(so(3) \) as

\[\vec{e}_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \quad \vec{e}_2 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \vec{e}_3 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \]

then we have

\[D_y \tilde{A} - D_x \tilde{B} + [\tilde{A}, \tilde{B}] = S_\alpha \Delta^\alpha = \begin{pmatrix} 0 & \frac{\tan U^2}{2} & -\frac{\tan U^2}{2} \\ -\frac{\tan U^2}{2} & 0 & 0 \\ \frac{\tan U^2}{2} & 0 & 0 \end{pmatrix} \Delta^1 \]

\[+ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \Delta^2. \]

That is, w. r. t. the basis \(B \)

\[S_1 = (0, \frac{tg U^2}{2}, \frac{tg^2 U^2}{2}), S_2 = (1, 0, 0). \]

\[M = (0, 0, p), N = (0, \sin U^2, -\cos U^2). \]
Assume that the 2-form \(f \) is the Killing metric of the Lie algebra \(\mathfrak{so}(3) \), which w. r. t. the basis \(B \) is \(\delta_{ij} \) up to a constant factor.

Next, we obtain \(R = (f(S_1, M), f(S_2, M)) = (ptg^2 \frac{U^2}{2}, 0), \tilde{R} = (f(S_1, N), f(S_2, N)) = (tg^2 \frac{U^2}{2}, 0) \). Indeed, one can verify that the 1-form \(\phi = tg^2 \frac{U^2}{2}(U^3_x dx - U^3_y dy) \) is the conservation law of PLR system with the characteristic \(R = p\tilde{R} \).

Remark 2 It can be proved that PLR-system admits only one conservation law whose characteristic depends on \(U^1, U^2 \). It would be interesting to investigate in which cases of integrable chiral-type systems all of the characteristics depending on \(U^1, U^2, ..., U^n \) can be found by using expression (5).

Example 2 Consider the 3-component system

\[
\begin{align*}
U^1_{xy} + U^3 U^1_y \cot U^3 - \frac{1}{\sin U^3} U^3_y U^2_x &= 0, \\
U^2_{xy} + U^3 U^2_y \cot U^3 - \frac{1}{\sin U^3} U^3_x U^1_y &= 0, \\
U^3_{xy} + U^1_y U^2_x \sin U^3 - p \sin U^3 &= 0,
\end{align*}
\]

where \(p \) is an arbitrary constant.

This system admits the Lax representation of the form (2), (3), where [6]:

\[
\begin{align*}
\tilde{A} &= \begin{pmatrix} 0 & i\lambda M^3 & -i\lambda M^2 \\
-i\lambda M^3 & 0 & i\lambda M^1 \\
i\lambda M^2 & -i\lambda M^1 & 0 \end{pmatrix}, \\
\tilde{B} &= \begin{pmatrix} 0 & \frac{1}{\chi} (\cos U^3 U^1_y + U^2_y) & -b_{31} \\
-b_{31} + (\cos U^3 U^1_y + U^2_y) & 0 & b_{23} \\
-b_{23} & 0 & 0 \end{pmatrix}, \\
M^1 &= p \sin U^3 \sin U^2, M^2 = -p \sin U^3 \cos U^2, M^3 = p \cos U^3, \\
b_{31} &= \sin U^3 \cos U^2 U^1_y - \sin U^2 U^3_y, b_{23} = -\cos U^2 U^3_y - \sin U^2 \sin U^3 U^1_y.
\end{align*}
\]

Consider the same basis \(B \) and the same 2-form \(f \) as in example 1. Then, we find \(S_1 = (\sin U^2 \sin U^3, -\cos U^2 \sin U^3, \cos U^3), S_2 = (0, 0, 1), S_3 = (\cos U^2, \sin U^2, 0) \), and \(R = \{f(S_\alpha, M)\} = \{p, p \cos U^3, 0\}, \tilde{R} = \{f(S_\alpha, M)\} = \{\cos U^3, 1, 0\} \). Now, one can see that the set \(R \) up to factor \(p \) is the characteristic of the conservation law \(\phi_1 = (\cos U^3 U^2_x + U^1_x) dx \), and the set \(\tilde{R} \) is the characteristic of the conservation law \(\phi_2 = (\cos U^3 U^1_y + U^2_y) dy \).
Remark 3. It turns out that the expressions (5) for characteristics are still valid not only for the case of chiral-type systems, but in some cases of evolution equations.

Example 3. Korteweg–de Vries equation. Write the Lax representation of KdV in the form [7]:

\[D_t \tilde{A} - D_x \tilde{B} + [\tilde{A}, \tilde{B}] = i(U_y - 6UU_x + U_{xxx}) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},\]

where

\[
\tilde{A} = i\lambda \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + i \begin{pmatrix} 0 & U \\ 1 & 0 \end{pmatrix},
\]

\[
\tilde{B} = -4\lambda^2 \tilde{A} - 2i\lambda \begin{pmatrix} -U & -iU_x \\ 0 & U \end{pmatrix} + \begin{pmatrix} U_x & iU_{xx} + 2iU^2 \\ 2iU & -U_x \end{pmatrix}.
\]

Then, we find

\[S = i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad g = \mathfrak{sl}(2) \text{ and, assuming } f \text{ to be the Killing metric, we obtain}
\]

\[f(S_1, \frac{\partial \tilde{A}}{\partial \lambda}) = -2V, \quad f(S_2, \frac{\partial \tilde{A}}{\partial \lambda}) = -2U \]

and

\[-2V \Delta^1 - 2U \Delta^2 = -D_t(2UV) - D_x(UV_x - VU_x).\]
3. Conclusion

In this note we prove that expressions (5) are characteristics of conservation laws for the chiral-type systems admitting a Lax representation. It would be interesting to investigate for which systems of evolution equations the same is valid.

Acknowledgment

The author is grateful to E.V. Ferapontov for attention to this work. This work was partially supported by grant MINOBRNAUKI RF (shifr zajavki 1.1907.2011).
Appendix

Here, we give proof of lemma 1.

Let us first prove Eq. (9). The case of Eq. (10) can be proved in a similar way. Denote by $R_{1\alpha} = E_\alpha(f(D_y\bar{A}, M, ..., M))$, $R_{2\alpha} = E_\alpha(D_x\bar{B}, M, ..., M))$, $R_{3\alpha} = E_\alpha([\bar{A}, \bar{B}], M, ..., M))$. It is readily verified that collecting the terms at $U^\beta_{xy}, U^\beta_x U^\gamma_y, U^\beta_x$ in $R_{i\alpha}$, $i = 1, 2, 3$, taking into account Eqs. (7), (8), and ad-invariancy of the form f, we obtain the relations

$$R_{1\alpha} = Z_{i\alpha\beta} U^\beta_{xy} + T_{i\alpha\beta\gamma} U^\beta_x U^\gamma_y + W_{i\alpha\beta} U^\beta_x,$$

where

$$Z_{1\alpha\beta} = 2(p-1)f(A(\alpha, M, M, M, ..., M),$$

$$Z_{2\alpha\beta} = 2(p-1)f(B(\alpha, M, M, ..., M),$$

$$= 2(p-1)f(B(\alpha, [B, \beta], M, ..., M), M) - 2(p-1)f([A(\alpha, B)], M, ..., M),$$

$$Z_{3\alpha\beta} = -2(p-1)f([A(\alpha, B)], M, ..., M),$$

$$T_{1\alpha\beta\gamma} = (p-1)\{2f(A(\alpha, \beta, M, ..., M), f(A(\alpha, \beta, M, ..., M))$$

$$+ f(A, M, \gamma, M, ..., M) + (p-2)f(A, M, \gamma, M, \beta, M, ..., M))\},$$

$$T_{2\alpha\beta\gamma} = (p-1)\{2f(B(\alpha, \gamma, M, ..., M), f(B(\alpha, \gamma, M, ..., M))$$

$$+ f(B, M, \gamma, M, ..., M) + (p-2)f(B, M, \gamma, M, \beta, M, ..., M))\},$$

$$T_{3\alpha\beta\gamma} = f([A, B], M, ..., M) - f([A, B], \beta, M, ..., M)$$

$$- f([A, B], M, ..., M) + (p-1)f([A, B], M, M, ..., M)$$

$$- f([A, B], M, ..., M) - f([A, B], M, \gamma, M, ..., M))\},$$

$$W_{1\alpha\beta} = 0, W_{2\alpha\beta} = (p-1)(f(N, M, \alpha, M, ..., M)$$

$$- f(N, \alpha, M, \beta, M, ..., M)),$$

$$W_{3\alpha\beta} = f([A, B], M, ..., M) - f([A, B], N, M, ..., M)$$

$$+ (p-1)(f([A, B], N, M, M, ..., M)) - f([A, B], N, \beta, M, ..., M))\}.$$

We claim that all of the coefficients of the expression $R_{1\alpha} - R_{2\alpha} + R_{3\alpha}$ vanish.
In view of relations (23)-(25) and (7), we obtain the condition
\[Z_{1\alpha\beta} - Z_{2\alpha\beta} + Z_{3\alpha\beta} = 0. \]

Further, using Eqs. (26)-(28) and the identities of the form
\[f([A_\beta, B_\gamma], \alpha, M, ..., M) = f(A_\beta, B_\gamma, \alpha, M, ..., M) + (p - 1)f(A_\beta, M_\gamma, ..., M), \]
we obtain the equations:
\[T_{1\alpha\beta\gamma} - T_{2\alpha\beta\gamma} + T_{3\alpha\beta\gamma} = (p - 1)f(A_\alpha, M_\gamma, M_\beta, M, ..., M) \]
\[- (p - 2)f(A_\alpha, M_\gamma, M_\beta, M, ..., M), \]
\[- f(B_\gamma, M_\alpha, M, ..., M) - f(B_\alpha, M_\gamma, M, ..., M) \]
\[- (p - 2)f(B_\alpha, M_\gamma, M_\beta, M, ..., M) + f([A_\beta, B_\gamma, M_\alpha, M, ..., M]) \]
\[+ f([A_\beta, B_\gamma], M_\alpha, M, ..., M) - f([A_\beta, B_\gamma, M_\beta, M, ..., M]) - f([A_\beta, B_\alpha, M_\gamma, M, ..., M]). \]

Denote the sum of the underlined terms by \(D \). We claim that \(D = 0 \).

Indeed, using the identities
\[f([A_\alpha, B_\gamma], M_\beta, M, ..., M) = (p - 1)f(A_\alpha, [B_\gamma, M_\beta, M, ..., M]), \]
\[f([A_\alpha, B_\gamma], M_\beta, M, ..., M) = f(A_\alpha, [B_\gamma, M_\beta, M, ..., M]) \]
\[+ (p - 2)f(A_\alpha, M_\gamma, M_\beta, M, ..., M), \]
reduce \(D \) in the form
\[D = (p - 1)f(A_\alpha, M_\gamma, M, ..., M) + (p - 1)f(A_\alpha, M_\gamma, M_\beta, M, ..., M) \]
\[- f(A_\alpha, [B_\gamma, M_\beta, M, ..., M]) - (p - 2)f(A_\alpha, M_\gamma, M_\beta, M, ..., M) \]
\[- f(A_\alpha, [B_\gamma, M_\beta, M, ..., M]). \] Thus we conclude that \(D = 0 \).

Define \(D_1 \) as follows:
\[D_1 = (p - 1)f([A_\beta, B_\gamma], M_\alpha, M, ..., M) - f([A_\beta, B_\gamma], M_\gamma, M, ..., M) \]
\[+ f([A_\beta, B_\alpha], M, ..., M) - f([A_\beta, B_\alpha], M_\gamma, M, ..., M). \]

Using Eq. (31), one can verify that \(D_1 \) results in \(D_1 = (p - 1)f(A_\beta, M_\gamma - M_\alpha, M, ..., M), \) that is \(D_1 = 0. \)
Denote by $D_2 = T_{1\alpha\beta\gamma} - T_{2\alpha\beta\gamma} + T_{3\alpha\beta\gamma}$. Now taking into account the previous computations, D_2 yields that

$$D_2 = -(p - 1)\{f(B_{\gamma,\beta}, M, \ldots, M) - f(B_{\gamma,\alpha}, M, \ldots, M) + f(B_{\gamma,\beta}, M, \ldots, M) + f(B_{\alpha, M, \beta}, M, \ldots, M) + (p - 2)f(B_{\alpha, M, \beta}, M, \ldots, M)\}.$$

Further, using the following identities:

$$f(B_{\alpha, M, \beta, \gamma}, M, \ldots, M) = f(B_{\alpha, [B_{\beta, \gamma}], M}, M, \ldots, M) + f(B_{\alpha, [B_{\beta, \gamma}], M}, M, \ldots, M) = - f([B_{\beta, \gamma}, B_{\alpha}], M, \ldots, M) - (p - 2)f(B_{\alpha, M, \beta, \gamma}, M, \ldots, M),$$

D_2 results in

$$D_2 = -(p - 1)\{2f([B_{\gamma, \beta}, M, \ldots, M], M, \ldots, M) + 2f([B_{\alpha, \gamma}, M, \ldots, M], M, \ldots, M) + f([B_{\alpha, M, \beta}, M, \ldots, M], M, \ldots, M)\}.$$

Taking into account the identities:

$$2[B_{[\alpha, \beta], M}] = -[B_{[\alpha, M, \beta]}, M] + [B_{\beta, M, \alpha}] = -[B_{[\alpha, B_{\beta}], M}],$$

$$2f(B_{[\gamma, \beta], M, \alpha, M, \ldots, M}) = 2f(B_{[\gamma, \beta], [B_{\alpha}, M], M, \ldots, M}) = -f([B_{[\alpha, M, \beta]}, B_{[\beta, M, \alpha]}], M, \ldots, M),$$

transform D_2 to the form:

$$D_2 = (p - 1)\{f([B_{\gamma, \beta}, M, \alpha, M, \ldots, M], M, \ldots, M) + f([B_{\alpha, \gamma}, M, \beta, M, \ldots, M], M, \ldots, M) + f([B_{\beta, B_{\alpha}], M, \gamma, M, \ldots, M], M, \ldots, M)\}.$$

In view of relations

$$f([B_{\alpha}[B_{\gamma}, B_{\beta}], M, \ldots, M], M) = -(p - 1)f([B_{\gamma}, B_{\beta}], M, \alpha, M, \ldots, M)$$

and Jacobi’s identity, D_2 vanishes.
Finally, denote by

$$\triangle_1 = W_{1\alpha\beta} - W_{2\alpha\beta} + W_{3\alpha\beta}. \quad (32)$$

Substituting Eq. (29) and (30) in (32), we obtain the relations

$$\triangle_1 = f([A_{\beta}, N_{\alpha}], M, ..., M) - f([A_{\alpha}, N_{\beta}], M, ..., M).$$

These equations result in

$$\triangle_1 = f(N_{,\alpha\beta} - N_{,\beta\alpha}, M, ..., M) = 0.$$

Therefore we have proved the lemma.

References

[1] Demskoi D.K. and Meshkov A.G., Zero-curvature representation for a chiral-type three-field system, Inverse Problems, 19(3), 2003, 563–571.

[2] Olver P., Applications of Lie Groups to Differential Equations, 2nd ed., New York, Springer, 1993.

[3] Marvan M., On zero-curvature representations of partial differential equations, Differential Geometry and Its Applications, Proc. Conf. Opava (Czechoslovakia, 24–28 Aug 1992) (Opava: Silesian University), 103–22 (http://www.emis.de/proceedings/5ICDGA).

[4] Balandin A.V., Conservation laws of integrable chiral-type systems, Vestnik Nizhegorodskogo Universiteta (in Russian) to appear

[5] Lund F. and Regge T., Unified approach to strings and vortices with soliton solutions, Phys.Rev. D., 14(6), 1976, 1524–1535

[6] Balandin A.V., Pakhareva O.N. and Potemin G.V., Lax representation of the chiral-type field equations, Phys. Lett. A., 23(3-4), 2001, 168-176.

[7] V.Y. Novokshenov, Vvedenie v teoriju solitonov, IKI, 2002, (in Russian)

[8] A.B. Shabat (ed), Encyclopedia of integrable systems, version 0043, 2010