Enhancement of leukocyte adhesion after percutaneous irradiation in rats with hepatocellular carcinoma

Sasa-Marcel Maksan, Eduard Schmidt, Eduard Ryschich, Wolfgang Harms, Jan Schmidt

AIM: To evaluate the effects of percutaneous radiation on leukocyte-endothelium interaction (LEI) in experimental hepatocellular carcinoma (HCC).

METHODS: Twelve ACI rats underwent HCC-inoculation, six of which on day 12 received low-dose external radiation and six did not. After 12 h intravital microscopy was performed.

RESULTS: LEI was significantly reduced in tumor tissue. However, irradiation of liver sinusoids and tumor tissue with 6 Gy led to a significant activation of leukocyte adhesion in the tumor with a marked increase of the proinflammatory cytokine TNF-α.

CONCLUSION: The findings indicate that the immunological tumor-endothelial barrier can be overcome by external irradiation.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Radiation; Hepatocellular carcinoma; Immune response; Animal model

Maksan SM, Schmidt E, Ryschich E, Harms W, Schmidt J. Enhancement of leukocyte adhesion after percutaneous irradiation in rats with hepatocellular carcinoma. World J Gastroenterol 2005; 11(13): 1991-1994 http://www.wjgnet.com/1007-9327/11/1991.asp

INTRODUCTION

The incidence of hepatocellular carcinoma (HCC) is increasing worldwide, and represents the third most common cause of cancer-related death[1]. Although complete surgical resection is the primary goal, long-term survival is often limited by local recurrence or distant metastases of the tumor.
hepatoma A3294 was performed in 12 ACI rats. The recipient rats were anesthetized and the left liver lobe via a small midline incision was prepared for tumor implantation. Five million Morris hepatoma tumor cells (5 µL) were injected in subcapsular position. On d 12, six animals underwent a percutaneous single dose radiation with 6 Gy under general anesthesia. After 12 h the animals underwent laparotomy and intravital fluorescence microscopy was performed to determine tumor vessel diameter, red blood cell velocity (RBV) and leukocyte adherence. Values were compared to control animals without irradiation.

All animals were killed at the end of videomicroscopy and the whole liver was harvested for histopathological investigations. Serum specimens were taken at the end of experiments for enzyme analysis and TNF-α values.

Videomicroscopy
Intravital videomicroscopy was used according to the epiillumination technique reported by Menger et al. In general anesthesia the left liver lobe was exteriorized after relaparotomy. A Leitz fluorescence microscope (Leitz GmbH, Wetzlar, Germany) was used. In the presence of different excitation filters (wavelength 450-490 and 530-560 nm) visualization of FITC-labeled erythrocytes (Fluorescein isothiocyanate Isomer 1, Sigma, St. Louis, USA) and leukocytes with rhodamine 6G (0.02 mg/kg body-weight, Sigma) was possible. For contrast enhancement of plasma, FITC-labeled albumin was administered intravenously during experiments (50 mg/kg body-weight, Sigma). The microscopy was videotaped and off-line analysis was performed using a computer-assisted processing system.

The following parameters were assessed in ten randomly selected tumor areas and fields of healthy liver tissue. RBV was measured using the frame to frame method offline. Volumetric blood flow (V_b) was visualized after intravenous injection of FITC-labeled erythrocytes and analyzed offline. Determinants were erythrocyte velocity and vessel diameter (D) using the following equation: V_b = 4π/3 × V_c × π × D^3/2. LEI described the flow behavior of white blood cells and differentiated between low-affinity leukocytes (roller) moving with less than 66% of RBV or adhering for less than 30 s to the endothelium and high-affinity leukocytes (sticker) adhering for more than 30 s to the endothelium surface.

Hemodynamics
Blood gas analysis and monitoring of heart rate and mean arterial blood pressure were performed via the cannulated left carotid artery at the beginning of experiments, 30 min after the onset of videomicroscopy and 2 h after microscopy (ABL 5, Radiometer GmbH, Willich, Germany).

Cytokine measurement (TNF-α)
On d 13, blood samples of radiated animals and controls were taken after videomicroscopy for TNF-α measurement using a standardized ELISA kit (Pharmingen, USA).

Histology
One part of the harvested liver was fixed in buffered formalin and prepared for staining with hematoxilin and eosin to confirm tumor presence.

Statistical analysis
The data were expressed as mean±SD and compared between groups by Wilcoxon-Mann-Whitney U-test. P<0.05 was considered statistically significant.

RESULTS
There were no significant differences between the study groups in mean arterial blood pressure and blood gas analysis during intravital microscopy.

Control hemodynamics and blood gases were maintained at physiological levels throughout the experiments. Vessel diameter and basal RBV were comparable in hepatic tumor tissue and healthy liver tissue (Tables 1 and 2). There was a homogenous but not significant increase in volumetric blood flow in both groups (Table 3).

The number of high-affinity leukocytes was comparable in tumor tissue and healthy liver tissue (P>0.05) (Figure 1). After percutaneous low-dose irradiation (6 Gy), high-affinity LEI was significantly enhanced in tumor tissue and sinusoids (P<0.05) (Figure 1). TNF-α levels were significantly elevated after radiation (P<0.05) (Figure 2).

DISCUSSION
The results of the current study indicate that LEI decreases significantly in tumor tissue under basal conditions, but this can be overcome by low-dose external radiation. We have previously shown that tumor-associated endothelial cells have a suppressed expression of ICAM-1 compared to endothelial cells from healthy liver. Thus, only the basal expression of endothelial adhesion molecules is decreased in the tumor vasculature, but the possibility of inflammation-mediated upregulation is not hampered.

Table 1	Red blood cell velocity (RBV) (mm/s, mean±SD)	
	Healthy liver	Liver cancer
Controls	1.49±0.3	1.85±0.12
Radiation	1.88±0.1	1.93±0.14

Table 2	Vessel diameter in liver tumor tissue and healthy hepatic parenchyma (µm, mean±SD)	
	Healthy liver	Liver cancer
Controls	34.5±3.8	36.0±3.71
Radiation	35.6±2.82	36.5±0.92

Table 3	Volumetric blood flow pattern in liver tumor tissue and healthy liver parenchyma (nL/s, mean±SD)	
	Healthy liver	Liver cancer
Controls	0.25±0.07	0.29±0.02
Radiation	0.31±0.03	0.35±0.05
liver sinusoids and tumor vessels after radiation indicates that endothelial cells can be activated probably by unspecific radiation-induced inflammation with a marked increase of proinflammatory cytokine TNF-α.

Radiotherapy with or without transarterial embolization and/or percutaneous ethanol injection appears effective in controlling HCC and can prolong survival[17] although this is still controversial. External beam radiation is rarely used because TACE has a limited effect on portal vein tumor thrombus and pericapsular invasion of the tumor. This approach may provide response rates of 50% of treated infections during the revascularization of regenerating rat liver. Hepatology 2001; 34: 1135-1148

If tumor tissues are associated with tumor infiltrating lymphocytes at a high density or with sinus histiocytosis in its regional lymph nodes, good postoperative survival rates for cancer have been reported[2,21]. Involvement of an anti-tumor effect via cellular immunity, humoral immunity or via cytokines produced by the cancer cells has been discussed. TNF-α plays a critical role in the immune defense against tumor growth. By a regional infusion of the cytokine TNF-α and interferon-γ a significant reduction in tumor growth can be described in an animal model[23].

We focused on microcirculatory parameters and the course of TNF-α after radiation. Quantification of the LEI and determination of the proinflammatory cytokine TNF-α showed a significant increase after external single-dose radiation. These findings are in line with those of earlier studies, indicating that inflammation-mediated upregulation of adhesion molecules in tumor endothelium is possible[8,20].

Angiogenetic factors are capable of inducing a state of endothelial cell anergy. After activation by inflammatory cytokines there is a suppressed response of tumor endothelial cells compared to endothelial cells from normal tissue in human umbilical vein and human renal cell carcinoma[27]. This state is induced at the protein level (expression) and at the functional level (adhesion) and may serve as a tumor-

- **REFERENCES**

 1. Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153-156
 2. Bruix J, Llovet JM. Prognostic assessment and evaluation of the benefits of treatment. J Clin Gastroenterol 2002; 35: S138-S142
 3. Di Maio M, De Maio E, Perrone F, Pignata S, Daniele B. Hepatocellular carcinoma: systemic treatments. J Clin Gastroenterol 2002; 35: S109-S114
 4. Ross MA, Sander CM, Kleeb TB, Watkins SC, Stolz DB. Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver. Hepatology 2001; 34: 1135-1148
 5. Piali L, Fichtel A, Terpe HJ, Imhof BA, Gisler RH. Endothelial vascular cell adhesion molecule-1 expression is suppressed by melanoma and carcinoma. J Exp Med 1995; 181: 811-816
 6. Rycich E, Harms W, Loeflter T, Eble M, Klar E, Schmidt J. Radiation-induced leukocyte adhesion to endothelium in normal pancreas and in pancreatic carcinoma of the rat. Int J Cancer 2003; 105: 506-511
 7. Schmidt J, Rycich E, Maksan SM, Werner J, Gehbard MM, Herfarth C, Klar E. Reduced basal and stimulated leukocyte adhesion in tumor endothelium of experimental pancreatic cancer. Int J Pancreatol 1999; 26: 173-179
 8. Shimoyama S, Gansauge F, Gansauge S, Widmaier U, Oohara T, Beger HG. Overexpression of intercellular adhesion molecule-1 (ICAM-1) in pancreatic adenocarcinoma in comparison with normal pancreas. Pancreas 1997; 14: 181-186
 9. Hallahan D, Kuchibhotla J, Wyble C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res 1996; 56: 5150-5155
 10. Quarmby S, Kumar P, Kumar S. Radiation-induced normal tissue injury: role of adhesion molecules in leukocyte-endothelial cell interactions. Int J Cancer 1999; 82: 385-395
 11. Prabhakarpandian B, Goetz DJ, Suerlick RA, Chen X, Kiani MF. Expression and functional significance of adhesion molecules on cultured endothelial cells in response to ionizing radiation. Microcirculation 2001; 8: 355-364
 12. Yang R, Rescorla FJ, Reilly CR, Faught PR, Sanghvi NT, Luneng L, Franklin TD, Grosfeld JL. A reproducible rat liver
cancer model for experimental therapy: introducing a technique of intrahepatic tumor implantation. J Surg Res 1992; 52: 193-198

13 Maksan SM, Paulo H, Ryschich E, Kuntz C, Gebhard MM, Klar E, Schmidt J. In vivo assessment of angioarchitecture and microcirculation in experimental liver cancer: a new model in rats. Dig Dis Sci 2003; 48: 279-290

14 Menger MD, Marzi I, Messmer K. In vivo fluorescence microscopy for quantitative analysis of the hepatic microcirculation in hamsters and rats. Eur Surg Res 1991; 23: 158-169

15 Zeintl H, Sack FU, Intaglietta M, Messmer K. Computer assisted leukocyte adhesion measurement in intravital microscopy. Int J Microcirc Clin Exp 1989; 8: 293-302

16 Endrich B. Hyperthermia and microcirculatory effects of heat in animal tumors. Recent Results Cancer Res 1988; 109: 96-108

17 Tokuuye K, Sumi M, Kagami Y, Murayama S, Kawashima M, Ikeda H, Ueno H, Okusaka T, Okada S. Radiotherapy for hepatocellular carcinoma. Strahlenther Onkol 2000; 176: 406-410

18 Lin DY, Lin SM, Liaw YF. Non-surgical treatment of hepatocellular carcinoma. J Gastroenterol Hepatol 1997; 12: S319-S328

19 Cheng JC, Wu JK, Huang CM, Huang DY, Cheng SH, Lin YM, Jian JJ, Yang PS, Chuang VP, Huang AT. Radiation-induced liver disease after radiotherapy for hepatocellular carcinoma: clinical manifestation and dosimetric description. Radiother Oncol 2002; 63: 41-45

20 Ishikura S, Ogino T, Furuse J, Satake M, Baba S, Kawashima M, Nihei K, Ito Y, Maru Y, Ikeda H. Radiotherapy after transcatheter arterial chemoembolization for patients with hepatocellular carcinoma and portal vein tumor thrombus. Am J Clin Oncol 2002; 25: 189-193

21 Chia-Hsien Cheng J, Chuang VP, Cheng SH, Lin YM, Cheng TI, Yang PS, Jian JJ, You DL, Horng CF, Huang AT. Unresectable hepatocellular carcinoma treated with radiotherapy and/or chemoembolization. Int J Cancer 2003; 96: 243-252

22 Schwartz JD, Schwartz M, Mandeli J, Sung M. Neoadjuvant and adjuvant therapy for resectable hepatocellular carcinoma: review of the randomised clinical trials. Lancet Oncol 2002; 3: 593-603

23 Svennevig JL, Lunde OC, Holter J, Bjorgsvik D. Lymphoid infiltration and prognosis in colorectal carcinoma. Br J Cancer 1984; 49: 375-377

24 Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 1998; 27: 407-414

25 Yang R, Liu Q, Rescorla FJ, Grosfeld JL. Experimental liver cancer: improved response after hepatic artery ligation and infusion of tumor necrosis factor-alpha and interferon-gamma. Surgery 1995; 118: 768-772; discussion 772-774

26 Ryschich E, Schmidt J, Loeffler T, Eble M, Gebhard MM, Harms W, Klar E. Different radiogenic effects on microcirculation in healthy pancreas and in pancreatic carcinoma of the rat. Ann Surg 2003; 237: 515-521

27 Griffioen AW, Damen CA, Blijham GH, Groenewegen G. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 1996; 88: 667-673

28 Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G. Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 1996; 56: 1111-1117

29 Wu NZ, Klitzman B, Dodge R, Dewhirst MW. Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res 1992; 52: 4265-4268