Fetal-maternal interface
A chronicle of allogeneic coexistence

Josep-Maria Pujal,1 Santiago Roura,1 Ana M. Muñoz-Marmol,2 Jose-Luis Mate2 and Antoni Bayes-Genís1,3,4

1CREC Research Group, Health Sciences Research Institute Germans Trias i Pujol (ICP), Barcelona, Spain; 2Department of Obstetrics and Gynecology, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain; 3Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain; 4Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Saragossa, Spain

Keywords: fetal-maternal interface, microchimerism, placenta, FISH, tolerance

Introduction
Chimerism is the presence in a host of genetically distinct cells that originated from another individual.1 Its existence has clearly been demonstrated in multiple fields such as hematopoietic stem cell or solid organ transplantation,2 non-depleted blood transfusions and the most common form which is bidirectional maternal-fetal cell trafficking, whereby cells from the fetus pass through the placental barrier. In order to graphically illustrate this early natural phenomenon that initiates the journey of a child’s cells within the mother’s blood and other tissues, we used a new procedure in microscopy imaging generating large scale panoramic pictures (LSPP). This technique can also be extended to explore a broad diversity of experimental models.

Chimerism Volume 3 Issue 1

The existence of allogeneic cells within an individual has been demonstrated in multiple fields such as hematopoietic stem cell or solid organ transplantation, non-depleted blood transfusions and the most common form which is bidirectional maternal-fetal cell trafficking, whereby cells from the fetus pass through the placental barrier. In order to graphically illustrate this early natural phenomenon that initiates the journey of a child’s cells within the mother’s blood and other tissues, we used a new procedure in microscopy imaging generating large scale panoramic pictures (LSPP). This technique can also be extended to explore a broad diversity of experimental models.

Results and Discussion
Using this novel imaging procedure, we composed an LSPP (Fig. 1A) covering a macroscopic area (rounding 1 mm²) of the maternal decidua basalis surrounded by invasive fetal villi (Fig. 1B). Surprisingly, autofluorescence of extra-cellular matrix components within red and green channels helped in imaging global tissue structures without interfering with expected FISH probes fluorescence. As expected, the decidua contained maternal cells organized within the endometrial tissue (XX, nuclei showing...
two green dots) surrounded by fetal structures (cells containing one green “X” dot and one red “Y” dot within the same nucleus in Fig. 1B and C), suggesting a maternal micro-septum (Fig. 1B). It is also frequent to find in the placenta, fetal-derived structures infiltrating maternal tissues as shown with white arrows in Figure 1B, and even at the cell level as shown in Figure 1D and E. Figure 1F illustrates the presence of two distinct adjacent allogeneic cells from the mother and the baby at the fetal-maternal interface. After observing the exposed LSPP, it is reasonable to consider that fetal cells can easily be transferred and circulate within maternal blood either because cells can migrate from villi or simply due to infiltrating cells. The question of how immunogenic processes of alloresponse have been altered can consequently be addressed. In other words, a deeper understanding of this “nonaggression pact” at the fetal-maternal interface, in which two genetically distinct cell lineages coexist, may improve the options to mimic this procedure in transplantation, autoimmunity and regenerative medicine using allogeneic sources.

In summary, here we visualize the classic concept of chimerism by generating newly panoramic images of human placental

Figure 1. (A) LSPP were constructed using MosaiX (authorizing 10% of overlapping), Z-stacking with focus correction for each quadrant, Stitching frames algorithm and Extended Focus functions from Axiovision v4.8.2 software. (B) Example of a resulting LSPP of the decidua basalis of a human placenta covering an area of 0.78 mm² with a resolution of 30.5 megapixels. Decidua basalis was parallel to the sectioning surface. The fetal-maternal interface is labeled with PNA-X (Spectrum Green, green) and PNA-Y (Spectrum Orange, red) chromosome-specific probes. FISH was used for sex-typing and Dapi for nuclear staining (blue). The dotted line-delimited zone is the maternal decidua. White arrows show direct invasion of fetal structures into maternal tissue. (C) Common natural maternal cell (XX) distribution within tissues of the decidua. (D and E) Dispersed infiltrating fetal-derived cells (XY) neighboring maternal cells. (F) Two adjacent cells of maternal and fetal origin. Scale bars: (A) 50 μm; (C) 20 μm; (D-F) 10 μm.
sections following simple dual fluorescence in situ hybridization labeling to co-localize male fetal and maternal cells. Since this process generates vast amounts of data requiring advanced computer technology, we believe that generation of LSPP may be advantageous to map and explore large extensions of tissue. Thus, this novel technique may be extended to a broad diversity of experimental models, such as the visualization of large post-infarct border zones following implantation of regenerative stem-cell embedded patches.

Methods

Placenta collection. Written consent was obtained from each participant after an explanation of the study, which was previously approved by the local ethics committee. All participants had no previous pregnancy to ensure no confounding due to cells from previous gestations. Approaching term but prior to the onset of labor, placentas of male sons were collected in sterile conditions during routine C-sections. Vaginal birth was not chosen for study to obviate the risk of contamination due to passage within the vaginal tract. All enrolled donors had no complications during pregnancy or C-section.

FISH staining. Initial material was obtained from a transversal section of 10 mm² quadrants base of a caesarean placenta initiated from the chorionic plate down to decidua materna, thus including amnios, chorionic plate and vessels, fetal villi expansions and decidua materna. Segments were fixed with 10% formalin, then used for fluorescence in situ hybridization (FISH) using Spectrum Green and Spectrum Orange for X and Y chromosome respectively, according to manufacturer’s recommendation. Tissue sections were also counterstained with 4',6-diamidino-2-phenylindole (DAPI) (Vysis). All FISH stained samples were analyzed under an Axios Observer Z1 fluorescence microscope (Zeiss). LSPP methodology included first, area localization by mosaic module. All modules used are contained in Zeiss AxiosVision v4.8.2 software.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments

The authors are grateful to the members of the Gynecology and Obstetrics Department of the University Hospital Germans Trias i Pujol and V. Guirao for the priceless contributions in fluorescence microscopy imaging. We also thank the invaluable advice received during revision. A.B.-G. has full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

References

1. Stand T, Zelkerbarg RM. Azonien localization and migration in immunity and infection. N Engl J Med. 2013; 369:1051-1059. PMID:24012594; http://dx.doi.org/10.1056/NEJMoa1300822.2012
2. Ildstad ST, Sachs DH. Reconstitution with syngeneic lymphocytes in the milieu of the maternal immune system. Nat Rev Immunol. 2001; 1:771-80. PMID:11599876; http://dx.doi.org/10.1038/307168a0
3. Reed W, Lee TH, Norris PJ, Utter GH, Busch MP. Transfusion-associated microchimerism: a new complication of obstetric transfusions. Transfusion. 2007; 47:145-56. PMID:17272024; http://dx.doi.org/10.1111/j.1537-2995.2006.01670.x
4. Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Ildstad ST, Sachs DH. Reconstitution with syngeneic lymphocytes in the milieu of the maternal immune system. Nat Rev Immunol. 2001; 1:771-80. PMID:11599876; http://dx.doi.org/10.1038/307168a0
5. Yoshida H, Suikui H, Umezawa T, Hasegawa M, Sakaguchi S. Foxp3 is required for the development of CD4+ CD25+ Foxp3+ regulatory T cells. Immunity. 2004; 20:403-15. PMID:14995781; http://dx.doi.org/10.1016/j.immuni.2004.01.001
6. Helsby J, Good J, Badger HDMI, Dweck M, et al. Tolerance induction by CD4+ forkhead box P3+ regulatory T cells. Nature. 2006; 444:1096-1099. PMID:17097831; http://dx.doi.org/10.1038/nature05485
7. Scicchitano L, Emery B, Cheadle K, Foxon P, Stanford LB. Detection of fetal cells in maternal blood using microchimerism-specific tetraplex amplification in situ hybridization (TAS-ISH). Am J Obstet Gynecol. 2011; 205:575.e1-575.e8. PMID:21913121; http://dx.doi.org/10.1016/j.ajog.2011.07.010
8. Leier EI, Hsing CA. Imaging of microchimerism in mouse and human tissues using I-SHHISH and I-ISHISH. J Pathol. 2008; 214:164-171. PMID:18460704; http://dx.doi.org/10.1002/path.2208
9. Schönfelder C, Wagner T, Blood group chimerism. Curr Opin Hematol. 2001; 8:469-475. PMID:11531027; http://dx.doi.org/10.1097/00001554-200109000-00011
10. Kollarik M, Maniatis T, Bhardwaj N, et al. Transgenic CD4+CD25+ T cells prevent allograft rejection. Nat Immunol. 2004; 5:1127-1133. PMID:15304062; http://dx.doi.org/10.1038/ni1127
11. Sahu K, Miller PW. Translational role of microRNAs in autoimmune and other diseases. Annu Rev Immunol. 2006; 24:549-563. PMID:15503510; http://dx.doi.org/10.1146/annurev.immunol.24.011805.133939
12. Bayes-Genis A, Bonet S, Pons-Vallès C, Fariñas J, Soler-Boix C, de la Fuente D, et al. Chimerism and microchimerism of the human heart: evidence for cardiac regeneration. Nat Clin Pract Cardiovasc Med. 2007; 4:360-367. PMID:17230214; http://dx.doi.org/10.1038/ncpcardio0748
13. Reuss S, Fariñas J, Hofmann-Mehling L, Potti-Vallès C, Soler-Boix C, Galcer-Marcin C, et al. Exposure to cardioembolic microflora fails to transdifferentiate human umbilical cord blood-derived mesenchymal stem cells. Basic Res Cardiol. 2010; 105:493-502. PMID:20093125; http://dx.doi.org/10.1007/s00395-009-0403-0
14. Bayes-Genis A, Soler-Boix C, Fariñas J, Sadržažová P, Reus A, Bonet S, et al. Human progenitor cells derived from cardiac adipose tissue stimulate myocardial microvascular progenitor cells. J Mol Cell Cardiol. 2010; 49:771-776. PMID:20713075; http://dx.doi.org/10.1016/j.yjmcc.2010.02.006
15. Sarkar K, Miller PW. Translational role of microRNAs in autoimmune and other diseases. Annu Rev Immunol. 2006; 24:549-563. PMID:15503510; http://dx.doi.org/10.1146/annurev.immunol.24.011805.133939
16. Whelk GS, Cartwright JE. Trophoblast-mediated spiral artery remodeling: a risk for preeclampsia. J Am Obstet Gynecol. 2009; 201:21-26. PMID:19253539; http://dx.doi.org/10.1016/j.ajog.2008.08.031
17. Schnepf N, Lauthay L, van der Heuvel ML, Claus F. Fetal specific T cell-mediated immunosuppression during fertilization, implantation and pregnancy. Placenta. 2011; 32(Suppl 4): S93-S101. PMID:21932562; http://dx.doi.org/10.1016/j.placenta.2011.05.014
18. Warnagiris P, McGovern SA, Martin JM. A balancing act: mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction. 2011; 141:75-24. PMID:21828977; http://dx.doi.org/10.1530/REP-10-0360
19. Dhodapkar MV, Wagner T, Blood group chimerism. Curr Opin Hematol. 2001; 8:469-475. PMID:11531027; http://dx.doi.org/10.1097/00001554-200109000-00011
20. Adams KM, Nelson JI. Microchimerism as an informative frontier in autoimmunity and transplantation. JAMA. 2004; 291:1127-1131. PMID:14989758; http://dx.doi.org/10.1001/jama.291.9.1127
21. Sahu K, Miller PW. Translational role of microRNAs in autoimmune and other diseases. Annu Rev Immunol. 2006; 24:549-563. PMID:15503510; http://dx.doi.org/10.1146/annurev.immunol.24.011805.133939