Review

Essential Oil of the Plants Growing in the Brazilian Amazon: Chemical Composition, Antioxidants, and Biological Applications

Oberdan Oliveira Ferreira 1,2, Jorddy Neves Cruz 3, Ângelo Antônio Barbosa de Moraes 2, Celeste de Jesus Pereira Franco 2, Rafael Rodrigues Lima 3, Taina Oliveira dos Anjos 4, Giovanna Moraes Siqueira 2, Lidiane Diniz do Nascimento 2, Márcia Moraes Cascaes 5, Mozaniel Santana de Oliveira 2,3,* and Eloisa Helena de Aguiar Andrade 1,2,4,5

1 Program of Post-Graduation in Biodiversity and Biotecnology (Bionorte), Federal University of Pará, Belem 66075-110, PA, Brazil; oberdan@museu-goeldi.br (O.O.F.); eloisa@museu-goeldi.br (E.H.d.A.A.)
2 Adolpho Ducke Laboratory, Botany Coordination, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901-Terra Firme, Belem 66077-830, PA, Brazil; angeloquimica17@gmail.com (Â.A.B.d.M.); cleste.frango12@gmail.com (C.d.J.P.F.); giovannamsiqueiraa@gmail.com (G.M.S.); lidianenascimento@museu-goeldi.br (L.D.d.N.)
3 Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belem 66075-110, PA, Brazil; jorddynevescruz@gmail.com (J.N.C.); rafalima@ufpa.br (R.R.L.)
4 Program of Post-Graduation in Botany, Paraense Emílio Goeldi Museum, Av. Perimetral, 1901-Terra Firme, Belem 66077-830, PA, Brazil; tainadosanjoscb@gmail.com
5 Program of Post-Graduation in Chemistry, Federal University of Pará, Belem 66075-110, PA, Brazil; cascaesmm@gmail.com
* Correspondence: mozaniel.oliveira@yahoo.com.br

Abstract: Essential oils are biosynthesized in the secondary metabolism of plants, and in their chemical composition, they can be identified different classes of compounds with potential antioxidant and biological applications. Over the years in the Amazon, several species of aromatic plants were discovered and used in traditional medicine. The literature has shown that essential oils extracted from amazon species have several biological activities, such as antioxidant, antibacterial, antifungal, cytotoxic, and antiprotozoal activities. These activities are related to the diversified chemical composition found in essential oils that, by synergism, favors its pharmacological action. In light of this vital importance, this study aimed at performing a review of the literature with particular emphasis on the chemical composition and biological activities in studies conducted with species collected in the Amazon, taking into consideration in particular the last 10 years of collection and research.

Keywords: species of Brazil; essential oils; bioactive compounds; biological activities

1. Introduction

Brazil has the world’s highest plant diversity. It houses more than 46,000 species of plants, algae, and fungi, and most of this biodiversity is found in the Amazon [1,2]. This biome occupies 5 million km² of the territory, corresponding to 60% of the entire national territory. Such areas include the Brazilian Amazon, which accounts for 51% of all tropical plant species. The Brazilian Amazon forest accounts for approximately 26% of the remaining tropical rainforests on Earth [3,4].

Typifying this exuberance, 12 families that provide essential oil are predominant in the Amazon region (in descending order): Piperaceae, Asteraceae, Myrtaceae, Lamiaceae, Annonaceae, Lauraceae, Euphorbiaceae, Verbenaceae, Scrophulariaceae, Anacardiaceae, Burseraceae, and Rutaceae [5,6].

Essential oils are volatile, with a strong smell and taste derived from the secondary metabolites of the plants. Essential oils can be extracted from the roots, stems, leaves, and flowers by steam distillation, hydrodistillation, and squeezing citrus fruit pericarp.
The terminology “oil” is closely related to the physicochemical characteristics of these substances, as they are liquids at room temperature [7,8].

The biological activity of essential oils is due to the diversity of chemical components in these volatile oils. These properties include antibacterial, antifungal, and antioxidant activities [9–12]. Essential oils can also be used as raw materials for products such as cosmetics and perfumes, or in pharmaceutical industries to obtain structural derivatives (plant products) in addition to horticulture [7,13].

Although essential oils have several potential applications, many aromatic plants in the Amazon ecosystem are under constant environmental pressure, as this region undergoes increasing fires, deforestation, and unsustainable forest exploitation [5].

Although Brazil is still the largest natural angiosperm bank in the world and these aromatic plants have the potential for varied uses, part of this exuberance was lost long before scientific knowledge was gained [3,14]. Therefore, efforts and resources must be invested to acquire a greater awareness of the diversity and value of the plants that remain in the Amazon region.

Therefore, this chapter provides a bibliographic survey of scientific articles reporting the chemical composition and antioxidant and biological activities of species collected in the Amazon, taking into consideration the last ten years.

2. Chemical Composition of the Essential Oils of the Amazon

Table 1 shows the major chemical components found in the essential oils of the species from the Amazon region.

Species	Family	Extraction Method	Compounds	References
Anaxagorea brevipes	Annonaceae	HD	β-eudesmol (13.16%), α-eudesmol (13.05%), γ-eudesmol (7.54%), guaiol (5.12%), caryophyllene oxide (4.18%) and β-bisabolene (4.10%)	[15]
Aniba duckei (Synonym:	Lauraceae	HD	linalool (89.34%)	[16]
A. rosaeodora) (leaves				
and thin branches)				
A. parviflora (Aerial	Lauraceae	HD	linalool (45.0%)	[17]
parts)				
A. parviflora (branches)	Lauraceae	HD	γ-eudesmol (16.80%), (E)-caryophyllene (15.70%), linalool (12.40%), β-phellandrene (6.7%), and bicyclogermacrene (6.00%)	[18]
A. parviflora (leaves)	Lauraceae	HD	β-phellandrene (15.10%), linalool (14.10%) and γ-eudesmol (12.90%).	[18]
A. rosaeodora (Aerial	Lauraceae	HD	linalool (88.60%)	[17]
parts)				
A. rosaeodora (Aerial	Lauraceae	HD	linalool (93.60%)	[19]
parts)				
Annona exsucca (Dry	Annonaceae	HD	(E)-caryophyllene (31.26%), linalool (10.80%), β-elemene (10.30%), germacrene D (10.28%), bicyclogermacrene (9.84%)	[20]
leaves)				
Table 1. Cont.

Species	Family	Extraction Method	Compounds	References
Bauhinia ungulata	Fabaceae	HD	(E)-caryophyllene (15.9%), Caryophyllene oxide (9.2%), α-humulene (8.1%) and epi-γ-eudesmol (7.5%)	[21]
Bocageopsis pleiosperma	Annonaceae	HD	β-bisabolone (38.53%), δ-cadinene (7.55%), β-selinene (6.46%) and α-selinene (5.18%)	[22]
B. pleiosperma	Annonaceae	HD	β-bisabolene (55.77%), (E)-α-bergamotene (6.94%) and β-farnesene (E) (6.05%)	[22]
B. pleiosperma (twigs)	Annonaceae	HD	β-bisabolene (34.37%), cryptomerite (9.60%) and (2Z, 6Z)-farnesol (7.20%)	[22]
B. multiflora (Leaves)	Annonaceae	HD	Spathulenol (20.30%) and β-bisabolene (11.90%)	[23]
B. multiflora (Aerial parts)	Annonaceae	HD	cis-linalool oxide (33.10%) and 1-epi-cubenol (16.60%)	[24]
B. multiflora (fresh leaves)	Annonaceae	HD	Spathulenol (13.00-16.20%), β-bisabolene (13.20-13.80%) and Caryophyllene oxide (10.70-12.00%)	[25]
Copaifera multijuga	Fabaceae	Perforation in the trunk of the species	(E)-caryophyllene (57.29%), Caryophyllene oxide (10.34%) and α-humulene (9.11%)	[26]
Croton cajucara	Euphorbiaceae	HD	7-hydroxy-calamene	[27]
Duguetia quitarensis	Annonaceae	HD	4-heptanol (33.80%), α-thujene (18.40%) and (E)-caryophyllene (14.40%)	[24]
Endlicheria arenosa	Lauraceae	HD	Bicyclergemacrecine (42.20%) and (E)-caryophyllene (10.40%)	[28]
E. arenosa (Twigs)	Lauraceae	HD	Limonene (33.20%) and terpinen-4-ol (15.60%)	[28]
Ephedranthus amazonicus	Annonaceae	HD	Spathulenol (16.90%) and humulene epoxide II (16.30%)	[23]
Eugenia cuspidifolia	Myrtaceae	HD	Caryophyllene oxide (57.46%) and α-copaene (3.75%)	[29]
E. egensis (Aerial parts)	Myrtaceae	HD	5-hydroxy-(Z)-calamenene (35.80%), (E)-caryophyllene (8.90%) and (E)-cadin-1,4-diene (6.30%)	[30]
E. flavescens (Aerial parts)	Myrtaceae	HD	(E)-γ-bisabolene (35.00%) and β-bisabolene (34.70%)	[30]
E. patrisii (Aerial parts)	Myrtaceae	HD	(2E,6E)-Farnesol (34.50%) and (2E,6Z)-Farnesol (23.20%)	[30]
Table 1. Cont.

Species	Family	Extraction Method	Compounds	References
E. patrisii	Myrtaceae	HD	May: germacrene D (20.03%), bicyclogermacrene (11.82%) and (E)-caryophyllene (11.04%) September: γ-elemene (25.89%), (E)-caryophyllene (10.76%) and germacrene B (8.11%)	[31]
(Dry leaves)			(E)-caryophyllene (32.00%) and bicyclogermacrene (10.00%)	[32]
E. patrisii	Myrtaceae	HD	γ-elemene (17.48%), (E)-caryophyllene (16.46%) and bicyclogermacrene (8.11%)	[33]
(Leaves)			germacrene D (18.40%), ishwarane (15.70%) and 7-epi-α-selinene (7.50%)	[30]
E. piauhiensis	Myrtaceae	HD	May: β-elemene (25.12%), (E)-caryophyllene (13.11%), bicyclogermacrene (9.88%) and selin-11-en-α-ol (9.16%) September: (E)-caryophyllene (11.47%), β-pinene (5.86%), bicyclogermacrene (5.86%), and γ-muurolene (5.55%)	[31]
(dry leaves)			germacrene D (11.80%) and Z-α-bisabolene (8.38%).	[32]
E. polystachya	Myrtaceae	HD	γ-elemene (17.48%), (E)-caryophyllene (16.46%) and bicyclogermacrene (8.11%)	[33]
(Aerial parts)			germacrene D (18.40%), ishwarane (15.70%) and 7-epi-α-selinene (7.50%)	[30]
E. punicifolia	Myrtaceae	HD	May: β-elemene (25.12%), (E)-caryophyllene (13.11%), bicyclogermacrene (9.88%) and selin-11-en-α-ol (9.16%) September: (E)-caryophyllene (11.47%), β-pinene (5.86%), bicyclogermacrene (5.86%), and γ-muurolene (5.55%)	[31]
(Dry leaves)			germacrene D (11.80%) and Z-α-bisabolene (8.38%).	[32]
E. stipitata	Myrtaceae	HD	curzerene (34.40—53.10%)	[34]
(Leaves)				
E. uniflora	Myrtaceae	HD	curzerene (34.40—53.10%)	[34]
(leaves)				
E. tapacamensis	Myrtaceae	HD	caryophyllene oxide (55.95%) and α-copaene (13.67%)	[29]
(Dry leaves)				
Fusaea longifolia	Annonaceae	HD	β-selinene (19.30%), cis-β-guaiene (18.30%), (Z)-α-bisabolene (12.00%) and (E)-caryophyllene (7.10%)	[24]
(Aerial parts)				
Guatteria blepharophylla	Annonaceae	HD	caryophyllene oxide (55.70%).	[23]
(Leaves)				
G. friciana	Annonaceae	HD	β-eudesmol (51.92 ± 9.15%), γ-eudesmol (18.91 ± 5.41%) and α-eudesmol (12.56 ± 2.80%)	[35]
(dry leaves)				
G. megalophylla	Annonaceae	HD	spathulenol (27.76%), γ-muurolene (14.34%), bicyclogermacrene (10.47%) and β-elemene (7.48%)	[36]
(dry leaves)				
G. pogonopus	Annonaceae	HD	spathulenol (24.80 ± 11.38%), γ-amorphene (14.72 ± 3.37%) and germacrene D (11.75 ± 6.33%).	[35]
(dry leaves)				
G. punctata	Annonaceae	HD	germacrene D (19.80%), (E)-nerolidol (9.90%) and (E)-caryophyllene (8.40%).	[24]
(Aerial parts)				
Hedychium coronarium	Zingiberaceae	HD	eucalyptol (33.70%), β-pinene (30.00%) and α-pinene (10.00%)	[37]
Table 1. Cont.

Species	Family	Extraction Method	Compounds	References
Ipomea setifera (Dry leaves)	Convolvulaceae	SD	(E)-caryophyllene (36.70%) and β-elemene (20.49%)	[38]
I. asarifolia (Dry leaves)	Convolvulaceae	SD	phytol derivade (10.67–35.49%) and (E)-caryophyllene (15.93–19.93%)	[38]
Iryanthera polyneura (Leaves)	Myristicaceae	HD	spathulenol (6.42 ± 1.02%), α-cadinol (5.82 ± 0.40%) and τ-murolol (5.24 ± 0.03%)	[39]
Lippia gracilis (dry leaves)	Verbenaceae	HD	limonene (56.16%), geraniol (12.09%) and β-myrcene (6.22%)	[33]
L. origanoides (aerial parts)	Verbenaceae	HD	carvacrol (37.12%), p-cymene (11.64%) and thymol (7.83%)	[40]
L. origanoides (leaves)	Verbenaceae	HD	carvacrol (48.31%), p-cymene (9.11%), thymol (8.78%), (E)-caryophyllene (6.74%) and 2,5-dimethoxyacetophenone (6.63%)	[41]
L. thymoides (Fresh and Dry Leaves)	Verbenaceae	HD	thymol (59.29–62.78%), p-cymene (2.97–6.97%), (E)-caryophyllene (5.21–8.84%) and thymol acetate (4.92–7.22%)	[42]
L. thymoides (Freash and Dry leaves)	Verbenaceae	HD	thymol (58.90–66.33%), thymol acetate (7.49–8.10%), γ-terpinene (5.58–9.36%) and p-cymene (5.30–8.36%)	[43]
L. thymoides (Freash and Dry flowers)	Verbenaceae	HD	thymol (37.86–48.04%), thymol acetate (21.44–33.81), γ-terpinene (0.15–15.06%) and p-cymene (0.07–7.18%)	[43]
L. thymoides (Freash and Dry branches)	Verbenaceae	HD	thymol (63.59–66.20%), thymol acetate (5.07–5.96%) γ-terpinene (3.39–3.96%) and p-cymene (3.27–3.35%)	[43]
L. thymoides (Freash and Dry roots)	Verbenaceae	HD	(11Z)-11-hexadecenoic acid (38–02-40.92%), (9Z)-octadecenoic acid (27.40–28.21%) and thymol (19.34–22.18%)	[43]
Mentha piperita (Dry leaves)	Lamiaceae	HD	linalool (51.80%) and epoxycimene (19.30%)	[44]
Mesophaerum suaveolens (aerial parts)	Lamiaceae	HD	eucalyptol (30.15–64.44%), linalool (0.00–12.85%), β-pinene (3.27–9.04%) and sabine (0.00–8.58%)	[45]
Myrcia erythroxyylon (Dry leaves)	Myrtaceae	HD	α-humulene (26.79%), bicyclogermacrene (13.26%) and (E)-caryophyllene (10.55%)	[33]
M. splendens (Leaves)	Myrtaceae	HD	(E)-caryophyllene (45.80%)	[32]
Table 1. Cont.

Species	Family	Extraction Method	Compounds	References
M. splendens (Leaves)	Myrtaceae	HD	(E)-caryophyllene (36.23%), trans-γ-bisabolene (10.04%), cis-γ-bisabolene (8.33%) and trans-β-farnesene (7.81%)	[46]
M. sylvatica (Leaves)	Myrtaceae	HD	germacrene B (24.50%) and γ-elemene (12.50%)	[32]
M. sylvatica (Fresh leaves)	Myrtaceae	HD	1-epi-cubenol (9.90%), cadalene (7.20%), β-selinene (7.00%), β-calacorene (5.40%), cis-calamenene (4.80%), muskatone (4.40%), δ-cadinene (4.20%), cubenol (4.20%) and ar-curcumene (1.90%)	[10]
M. sylvatica (Dried Leaves)	Myrtaceae	HD	ar-curcumene (7.60%), 1-epi-cubenol (6.90%), β-selinene (6.00%), β-calacorene (5.80%), cis-calamenene (5.20%), arturmerol (4.90%), δ-cadineno (4.20%), cubenol (4.20%) and muskatone (3.40%)	[10]
M. tomentosa (Dry leaves)	Myrtaceae	HD	May: γ-elemene (12.52%), germacrene D (11.45%) and (E)-caryophyllene (10.22%) September: spathulenol (40.70%), zingiberene (9.58%) and γ-elemene (6.89%)	[31]
Nectandra cuspidata (Leaves)	Lauraceae	HD	(E)-caryophyllene (26.90%) and bicyclogermacrene (16.00%)	[47]
N. puberula (Leaves)	Lauraceae	HD	apiole (22.20%), (E)-caryophyllene (15.10%) and β-pinene (13.30%)	[47]
N. puberula (branches)	Lauraceae	HD	apiole (28.10%), pogostol (19.80%) and viridiflorol (11.20%)	[47]
Ocimum campechianum (leaves and stems)	Lamiaceae	HD	methyleugenol (80.00–87.00%)	[48]
O. campechianum (inflorescences)	Lamiaceae	HD	methyleugenol (75.30–83.50%)	[48]
O. canum (dry leaves)	Lamiaceae	HD	thymol (42.15%), p-cymene (21.17%) and γ-terpinene (19.81%)	[49]
Ocotea caniculata (leaves)	Lauraceae	HD	β-selinene (20.30%), β-caryophyllene (18.90%) and 7-epi-α-selinene (14.30%)	[50]
O. caniculata (branches)	Lauraceae	HD	selin-11-en-4-α-ol (20.60%), β-selinene (12.10%) and 7-epi-α-selinene (9.00%)	[50]
O. caudata (leaves)	Lauraceae	HD	bicyclogermacrene (29.60%), germacrene D (19.90%) and α-pinene (9.80%)	[50]
Table 1. Cont.

Species	Family	Extraction Method	Compounds	References
O. caudata (branches)	Lauraceae	HD	δ-cadinene (13.8%), germacrene D (8.9%), and α-muurulol (7.80%)	[50]
O. cujumary (leaves)	Lauraceae	HD	β-caryophyllene (22.20%), caryophyllene oxide (12.40%) and 2-tridecanone (7.30%)	[50]
O. cujumary (branches)	Lauraceae	HD	selin-11-en-4-α-ol (20.60%), β-selinene (12.10%) and 7-epi-α-selinene (9.00%).	[50]
Oncyopetalum amazonicum (leaves)	Annonaceae	HD	(E)-caryophyllene (17.00%), caryophyllene oxide (11.90%) and spathulenol (10.40%)	[51]
O. amazonicum (trunk bark)	Annonaceae	HD	α-epi-cadinol (14.00–24.10%), allo-aromadendrene (21.20%) and α-gurjunene (10.60–14.90%)	[51]
Piper aequale (Aerial parts)	Piperaceae	HD	δ-elemen (18.92%), β-pineno (15.56%), α-pineno (12.57%), cubebol (7.20%), β-atlantol (5.87%) and bicyclogermacrene (5.51%)	[52]
P. aduncum (Aerial parts)	Piperaceae	HD	dilapiol (64.40%), pipertone (3.30%) and (E)-β-ocimene (3.00%)	[53]
P. aduncum (Dry leaves)	Piperaceae	MAE	dilapiol (91.07%)	[54]
P. aduncum (Dry leaves)	Piperaceae	SD	dilapiol (53.60%), myristicin (24.30%) and (Z)-carpacin (11.90%)	[55]
P. alegraeum (Aerial parts)	Piperaceae	HD	β-elemene (16.30%), bicyclogermacrene (9.20%), δ-elemene (8.20%), germacrene D (6.90%) and (E)-caryophyllene (6.20%)	[12]
P. anonifolium (Aerial parts)	Piperaceae	HD	selin-11-en-4-ol (20.00%), β-selinene (12.70%), α-selinene (11.90%) and α-pinene (8.80%).	[12]
P. augustum (Leaves)	Piperaceae	HD	(E)-caryophyllene (27.10%), germacrene D (11.20%) and β-elemene (5.80%)	[37]
P. brachypetiolatum (Fresh Leaves)	Piperaceae	HD	(E)-nerolidol (44.23 ± 2.23%) and caryophyllene oxide (10.08 ± 0.74%)	[56]
P. callosum (Aerial parts)	Piperaceae	HD	Safrole (69.20%), methyleugenol (8.60%) and myrcene (6.20%)	[53]
P. capitarianum (Leaves, stems, and inflorescences)	Piperaceae	HD	(E)-caryophyllene (15.30–20.00%), α-humulene (9.10–12.70%), β-myrcene (1.40–10.50%), α-selinene (5.30–7.00%) and β-selinene (4.90–6.30%)	[57]
Table 1. Cont.

Species	Family	Extraction Method	Compounds	References
P. demeraranum (dry leaves)	Piperaceae	HD	β-elemene (33.10%), Limonene (19.30%) and bicyclogermacrene (8.80%)	[58]
P. divaricatum (Aerial parts)	Piperaceae	HD	Methyleugenol (69.20%), Eugenol (16.20%) and germacrene D (3.50%)	[53]
P. duckei (dry leaves)	Piperaceae	HD	(E)-caryophyllene (27.10%), germacrene D (14.70%) and eucalyptol (5.80%)	[58]
P. glandulosissimum (Fresh Leaves)	Piperaceae	HD	(E)-caryophyllene (10.50%), α-humulene (9.50%), δ-3-carene (9.10%), α-copaene (9.16 ± 0.12%), limonene (6.90%), caryophyllene oxide (5.90%) and β-selinene (5.10%).	[12]
P. hispidum (Aerial parts)	Piperaceae	HD	(E)-caryophyllene (21.80%), germacrene D (9.00%) and β-elemene (5.10%)	[37]
P. leticianum (Leaves)	Piperaceae	HD	Caryophyllene oxide (16.92 ± 0.21%), selin-11-en-4-α-ol (9.26 ± 0.12%), β-copaene (9.16 ± 0.12%) and β-selinene (8.70 ± 0.11%).	[56]
P. madeiranum (Fresh Leaves)	Piperaceae	HD	(E)-isosmorhizole (32.20%) and (E)-anethole (26.40%)	[53]
P. marginatum (Aerial parts)	Piperaceae	HD	p-mentha-1(7),8-diene (39.00%) and 3,4-methylenedioxy propiophenone (19.00%).	[53]
P. mollipilosum (Fresh Leaves)	Piperaceae	HD	β-selinene (32.44 ± 1.14%) and caryophyllene oxide (11.70 ± 0.42%)	[56]
Psidium guajava	Myrtaceae	HD	epi-β-bisabolol (16.10%), ar-curcumene (9.80%), β-bisabolene (9.20%), (E)-caryophyllene (5.10%), and caryophyllene oxide (4.50%)	[32]
P. guineense (Leaves)	Myrtaceae	HD	Limonene (30.20–30.4%) and α-pinene (17.70–22.50%)	[32]
P. myrsinites (dry Leaves)	Myrtaceae	HD	(E)-caryophyllene (26.05%), α-humulene (23.92%) and caryophyllene oxide (10.09%)	[33]
Renealmia breviscapa (Fresh rhizomes)	Zingiberaceae	HD	(E)-caryophyllene (62.38%), α-Humulene (9.56%) and guaiol (9.27%)	[59]
R. breviscapa (fresh leaves)	Zingiberaceae	HD	(E)-caryophyllene (28.25%), cis-3-hexenol (15.05%) and bicyclogermacrene (6.90%)	[59]
R. chrysotricha (Fresh rhizomes)	Zingiberaceae	HD	α-terpineol (26.14%), coronarin E (25.10%) and eucalyptol (15.87%)	[59]
Table 1. Cont.

Species	Family	Extraction Method	Compounds	References
R. chrysotricha	Zingiberaceae	HD	cis-3-hexenol (57.28%), (E)-caryophyllene (6.85%) and caryophyllene oxide (4.92%)	[59]
(Fresh leaves)				
R. nicolaioides	Zingiberaceae	HD	(E)-caryophyllene (22.78%), α-terpineol (14.15%) and (E)-nerolidol (11.06%)	[59]
(Fresh rhizomes)				
R. nicolaioides	Zingiberaceae	HD	(E)-nerolidol (21.03%), α-terpineol (11.92%) and germacrene D (10.33%)	[59]
(fresh leaves)				
Siparuna aspera	Siparunaceae	HD	germacrene D (23.30%), bicyclogermacrene (7.80%) and α-pinene (7.00%)	[37]
(Leaves)				
S. camporum	Siparunaceae	HD	γ-patchouline (28.63%), α-Phellandrene (12.80%) and Guaiadiene-6,9 (9.23%),	[33]
(dry leaves)				
S. macrotepalata	Siparunaceae	HD	germacrene D (42.10%), bicyclogermacrene (11.80%) and δ-cadinene (5.00%)	[37]
(Leaves)				
Syzygium cumini	Myrtaceae	HD	α-pinene	[60]
(leaves)				
Virola calophyla	Myristicaceae	HD	(E)-caryophyllene (55.70%) and caryophyllene oxide (9.80%)	[61]
(leaves)				
V. multinervia	Myristicaceae	HD	(E)-caryophyllene (54.80%) and bicyclogermacrene (10.00%)	[61]
(leaves)				
V. pavonis	Myristicaceae	HD	β-selinene (60.50%) and (E)-caryophyllene (12.70%)	[61]
(leaves)				
V. surinamensis	Myristicaceae	HD	Aristolene (28.40 ± 5.03%), α-gurjunene (15.00 ± 3.17%) and valencene (14.10 ± 4.87%).	[62]
(barks)				
V. surinamensis	Myristicaceae	HD	α-farnesene (14.50 ± 3.24), β-elemene (9.61 ± 1.02%) and bicyclogermacrene (8.10 ± 2.42%).	[62]
(leaves)				
Vismia cayennensis	Hypericaceae	HD	germacrene (25.42%) and curzerene (25.29%)	[63]
(Leaves)				
V. guianensis	Hypericaceae	HD	α-copaene (29.45%), (E)-nerolidol (24.06%) and (E)-caryophyllene (10.04%)	[63]
(leaves)				
Xylopia aromatica	Annonaceae	HD	spathulenol (21.50%), trans-pinocarveol (10.20%) and dihidrocarveol (11.60%)	[23]
(leaves)				

HD: Hydrodistillation; SD: steam distillation; MAE: microwave-assisted extraction.

In the documented studies, the essential oils were obtained by hydrodistillation, except in the case of the species Copaifera multijuga (perforation), Piper aduncum (MAE), P. aduncum (SD), Ipomea setifera (SD), and I. asarifolia (SD). Gas chromatography coupled with mass spectrometry (GC-MS) was used to identify the volatile compounds in the essential oils. There was little difference in the chemical composition and chemical profile of the essential oils of the species studied based on the families/genera/species, which may be related to the type of botanical material used from the plant in the extraction of the essential oils.
The chemical profile of essential oils from species of the Annonaceae family showed hydrocarbon and oxygenated sesquiterpenes as the main constituents, where the compounds β-bisabolene (55.77%), caryophyllene oxide (55.70%), and β-eudesmol (51.92%), were respectively dominant in the essential oils of Bocageopsis pleiosperma [22], Guatteria blepharophylla [23], and G. friesiana [35]. However, it was possible to observe other types of chemical classes in the genus Annonaceae, such as the oxygenated monoterpenes cis-linalool oxide (33.10%) in the essential oil of Bocageopsis multiflora [24] and the alcohol 4-heptanol (33.80%) in the essential oil of Duguetia quitensis [24].

Oxygenated monoterpenes, hydrocarbon sesquiterpenes, and phenylpropanoids are the major components in the essential oils of the Lauraceae family, where linalool (93.60%) is dominant in the essential oil of Aniba rosaeodora [16], as well as bicyclogermacrene (42.20%) and apiole (28.10%), respectively, in the essential oil of Endlicheria arenosa [28] and Nectandra piperulata [47]. Phenylpropanoids and oxygenated monoterpenes are also present in essential oils of the Lamiaeae family, where methyleugenol (80.00–87.00%) [48] and eucalyptol (16–33%) are dominant [64].

Studies carried out by Aranha et al. [29] and Da Silva et al. [30] confirmed the predominance of oxygenated sesquiterpenes and hydrocarbons in species of the genus Eugenia of the Myrtaceae family. Hydrocarbon sesquiterpenes were also observed as the main chemical classes in the essential oils of the genus Myrcia, where (E)-caryophyllene (45.80%) was dominant in the essential oil of M. splendens [32]. Monoterpene hydrocarbons characterize the essential oil profile of some species of the genus Psidium [32].

In species of the Piperaceae family, phenylpropanoids are present in the essential oils of some species of the genus Piper, as shown in the study of Piper aduncum essential oil by Nascimento et al. [54], the main component of which is dilapiol (91.07%). In species of the family Verbenaceae, the presence of oxygenated monoterpenes such as thymol (63.59–66.20%) was documented in Lippia thymoides essential oil [43]. In the species of Zingiberaceae, Siparunaceae, and Myristicaceae, sesquiterpenes are one of the main chemical classes in the chemical profile of the essential oil of some species, especially the compounds (E)-caryophyllene (62.38%) [59], and β-selinene (60.50%) [61].

3. Antioxidant Activity of Essential Oils

Essential oils comprise different organic compounds that have conjugated carbon double bonds, where the functional species are hydroxyl radicals, which can transfer hydrogen, inhibit free radicals, and minimize oxidative stress [65]. Essential oils with antioxidant properties are preferred over synthetic antioxidants because the former are safer for human health and are eco-friendly [66,67].

Aromatic plants are a well-known source of essential oils with antioxidant properties. These properties are exhibited by the raw essential oils and the isolated chemical constituents, both of which are efficient in preventing lipid oxidation [68]. The antioxidant potential of essential oils can be attributed to a single volatile constituent present in the chemical composition or to the synergistic effect among many components [69]. Table 2 summarizes the antioxidant potential of essential oils from Amazonian plants.

Studies on the antioxidant capacity of essential oils from the Amazon region have shown promising results. da Silva et al. [18] studied the essential oil from both the leaves and branches of Aniba parviflora, which strongly inhibited 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) free radicals. The authors indicated that the antioxidant activity may be related to the presence of β-phellandrene, linalool, β-caryophyllene, and γ-eudesmol, which presented antioxidant potential in other documented studies.
Table 2. Essential oils of the Amazon and their antioxidant activities.

Species (Plants Part)	Family	Method	Results	References	
Aniba parviflora (Leaves)	Lauraceae	DPPH	TEAC = 90.1–287.9 mg TE/mL	[18]	
A. parviflora (Branches)	Lauraceae	DPPH	TEAC = 94.1–358.4 mg TE/mL	[18]	
A. rosaeodora (Aerial parts)	Lauraceae	ABTS	EC$_{50}$ = 15.46 µg/mL	[19]	
Endlicheria arenosa (Leaves)	Lauraceae	DPPH	TEAC = 334.1 ± 41.6 mg TE/mL	[28]	
E. arenosa (Twigs)	Lauraceae	DPPH	TEAC = 252.6 ± 24.4 mg Te/mL	[28]	
Eugenia egensis (Aerial parts)	Myrtaceae	DPPH	TEAC = 216.5 ± 11.6 mg TE/mL	[30]	
E. flavescens (Aerial parts)	Myrtaceae	DPPH	TEAC = 122.6 ± 6.8 mg TE/mL	[30]	
E. patrisii (Aerial parts)	Myrtaceae	DPPH	TEAC = 111.2 ± 12.4 mg TE/mL	[30]	
E. patrisii (Leaves)	Myrtaceae	DPPH	Inhibition = 28.9 ± 4.8%	[32]	
E. patrisii (Dry leaves)	Myrtaceae	DPPH	Inhibition = 99.0 ± 0.099%	[31]	
			(Specimen A)		
			Inhibition = 204.0 ± 0.877%		
			(Specimen B)		
			ABTS		
			Inhibition = 31.4 ± 0.1%		
			(Specimen A)		
			Inhibition = 17.9 ± 0.069%		
			(Specimen B)		
E. punicifolia (Dry leaves)	Myrtaceae	DPPH	Inhibition = 408.0 ± 0.10%	[31]	
			(Specimen A)		
			Inhibition = 285.0 ± 0.028%		
			(Specimen B)		
			ABTS		
			Inhibition = 9.5 ± 0.034%		
			(Specimen A)		
			Inhibition = 37.7 ± 0.035%		
			(Specimen B)		
E. uniflora (Leaves)	Myrtaceae	DPPH	Inhibition = 42.6 ± 0.3 to 64.2 ± 0.3%	[34]	
E. uniflora (Dry leaves)	Myrtaceae	DPPH	Inhibition = 30.3 ± 3.3 to 40.6 ± 1.9%	[48]	
			β-Carotene		
			Inhibition = 153.5 ± 16.5 to 228.3 ± 19.2%		
			MTT		
			Inhibition = 10.8 ± 3.4 to 26.3 ± 1.2%		
Hedychium coronarium (Rhizome)	Zingiberaceae	DPPH	IC$_{50}$ = 9.04 ± 0.55 mg/mL	[37]	
		ABTS	IC$_{50}$ = 2.87 ± 0.17 mg/mL		
Lippia thymoides (Fresh Leaves)	Verbenaceae	DPPH	Inhibition = 89.97 ± 0.31%	[42]	
L. thymoides (Dry leaves)	Verbenaceae	DPPH	Inhibition = 63.53 b ± 5.04–73.63 ± 2.09%	[42]	
Species (Plants Part)	Family	Method	Results	References	
-----------------------	--------------	--------	---------	------------	
Mentha piperita	Lamiaceae	DPPH	AA = 79.9 ± 1.6%	[44]	
Myrcia splendens	Myrtaceae	DPPH	Inhibition = 28.4 ± 7.1%	[32]	
M. sylvatica	Myrtaceae	DPPH	Inhibition = 18.5 ± 3.5%	[32]	
M. tomentosa (Dry leaves)	Myrtaceae	DPPH	Inhibition = 213.0 ± 0.905% (Specimen A)	[31]	
			Inhibition = 208.5 ± 0.940% (Specimen B)		
			ABTS	Inhibition = 53.6 ± 0.150% (Specimen A)	[31]
				Inhibition = 0.333 ± 0.247% (Specimen B)	
Ocimum campechianum	Lamiaceae	DPPH	Inhibition = 36.0% (leaves and stems)	[48]	
(leaves and stems and				Inhibition = 41.6% (inflorescences)	
inflorescences)				TEAC = 58.5 mgTE/mL (leaves and stems)	
				TEAC = 68.4 mgTE/mL (inflorescences)	
Piper aequale (Aerial parts)	Piperaceae	DPPH	TEAC = 280.9 ± 22.2 mg TE/mL	[52]	
P. aleyreanum (Aerial parts)	Piperaceae	DPPH	TEAC = 412.2 ± 9.5 mg TE/mL	[12]	
P. anonifolium (Aerial parts)	Piperaceae	DPPH	TEAC = 148.6 ± 26.9 mg TE/mL	[12]	
P. augustum (Leaves)	Piperaceae	DPPH	IC₅₀ = 6.17 ± 0.33 mg/mL	[37]	
		ABTS	IC₅₀ = 2.16 ± 0.20 mg/mL		
P. brachypetiolatum (Fresh Leaves)	Piperaceae	DPPH	EC₅₀ = 64.8 ± 3.8 μg/mL	[56]	
		ABTS	EC₅₀ = 159.7 ± 8.3 μg/mL		
P. glandulosissimum (Fresh Leaves)	Piperaceae	DPPH	EC₅₀ = 104.4 ± 6.4 μg/mL	[56]	
		ABTS	EC₅₀ = 200.9 ± 6.4 μg/mL		
P. hispidum (Aerial parts)	Piperaceae	DPPH	TEAC = 303.1 ± 49.2 mg TE/mL	[12]	
P. leticianum (Leaves)	Piperaceae	DPPH	IC₅₀ = 4.26 ± 0.11 mg/mL	[37]	
		ABTS	IC₅₀ = 2.65 ± 0.25 mg/mL		
P. madeirianum (Fresh Leaves)	Piperaceae	DPPH	EC₅₀ = 66.8 ± 5.2 μg/mL	[56]	
		ABTS	EC₅₀ = 242.6 ± 6.8 μg/mL		
P. mollipilosum (Fresh Leaves)	Piperaceae	DPPH	EC₅₀ = 79.0 ± 4.9 μg/mL	[56]	
		ABTS	EC₅₀ = 280.5 ± 6.6 μg/mL		
Psidium guajava (Leaves)	Myrtaceae	DPPH	Inhibition = 38.6 ± 7.0%	[32]	
P. guineense	Myrtaceae	DPPH	Inhibition = 11.5 ± 2.0% (Pgui-1)	[32]	
				Inhibition = 27.7 ± 2.3% (Pgui-2)	
Table 2. Cont.

Species (Plants Part)	Family	Method	Results	References
Siparuna aspera	Siparunaceae	DPPH	\(IC_{50} = 20.70 \pm 0.80 \, \text{mg/mL} \)	[37]
(Leaves)		ABTS	\(IC_{50} = 1.12 \pm 0.04 \, \text{mg/mL} \)	
S. macrotepala	Siparunaceae	DPPH	\(IC_{50} = 29.37 \pm 1.15 \, \text{mg/mL} \)	[37]
(Leaves)		ABTS	\(IC_{50} = 0.80 \pm 0.03 \, \text{mg/mL} \)	

DPPH, 2,2-Diphenyl-1-picrylhydrazyl; ABTS, 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate); \(EC_{50} \) (concentration required to obtain 50% antioxidant effect).

The antioxidant potential of some essential oils is equivalent to the inhibition potential of the Trolox standard determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, as observed for the essential oils of leaves and twigs of *Endlicheria arenosa* [28]. These results may be related to the difference in the chemical composition of the two oils because the chemical profile of the product distilled from the leaves was characterized by the sesquiterpene hydrocarbons bicyclogermacrene (42.2%), germacrene D (12.5%), and \(\beta \)-caryophyllene (10.1%).

Other studies have shown that the inhibition potential of essential oils for the free radicals DPPH and ABTS is higher than that of the Trolox standard, as in the case of the essential oils of *Eugenia patrisii*, *E. punicifolia*, and *Myrcia tomentosa* [31]. Some studies have also reported that a high thymol content may favor higher potential inhibition for essential oils, in which thymol is a major constituent [42]. This is a result of the presence of hydroxyl radicals that facilitate the capture of free radicals and reduce the effects of lipid oxidation [70].

4. Biological Activities of Essential Oils from the Amazon Region
4.1. Antibacterial Activity

There has been an increasing search for bioactive compounds of natural origin with antimicrobial activities. Natural products and their derivatives are invaluable sources of therapeutic agents [71,72]. In the last few years, essential oils have attracted the interest of researchers because they are composed of mixtures of volatile constituents with potent biological properties, including antibacterial properties [73,74]. The Amazon flora contains several species that are a source of essential oils, some of which have been investigated for their antibacterial activity, as shown in Table 3.

Ocotea is a genus of the Lauraceae family that is very important for the economy of the Amazon region. The activity of the essential oils of the leaves of *Ocotea caniculata*, *O. caudalata*, and *O. cujumary* against *Bacillus cereus*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, and *Staphylococcus epidermidis* was assessed. The respective oils presented high antimicrobial activity against *Escherichia coli*, with MIC values equal to 19.5 \(\mu \text{g/mL} \) for the three species. On the other hand, the essential oil of *Ocotea cujumary* presented moderate activity against *Staphylococcus epidermidis* (MIC = 312.5 \(\mu \text{g/mL} \)) and *Bacillus cereus* (MIC = 312.5 \(\mu \text{g/mL} \)), and the oil of *O. caudalata* presented moderate activity against *Staphylococcus epidermidis* (MIC = 312.5 \(\mu \text{g/mL} \)) [50].

The essential oil of the leaves of *Endlicheria arenosa* (Lauraceae) showed strong antibacterial activity against *Escherichia coli* (MIC = 19.5 \(\mu \text{g/mL} \)), and the oils of the leaves and branches showed moderate activity against *Bacillus cereus*, with MIC values of 156 \(\mu \text{g/mL} \) for both oils. Other species of the Lauraceae family have also been reported to have antibacterial activity, including *Aniba parviflora*, *A. rosaeodora*, *Nectandra cuspidata*, and *N. puberula* [17].
Table 3. Antibacterial activity of essential oils from species found in the Amazon.

Species	Family	Methodos	Microorganisms (Results)	References
Anaxagorea brevipes	Annonaceae	Microbroth dilution	*Kocuria rhizophila* (MIC = 50.00 µg/mL)	[13]
(Leaves)			*Staphylococcus aureus* (MIC = 250.00 µg/mL)	
			Staphylococcus aureus penicillinase-negative (8+) (MIC = 25.00 µg/mL)	
			Staphylococcus aureus penicillinase-positive (7+) (MIC = 250.00 µg/mL)	
			Enterococcus faecalis (MIC = 250.00 µg/mL)	
A. roseodora	Lauraceae	Microbroth dilution	*Klebsiella pneumoniae* (DDM = 9.20 mm/MIC = >10 µL/mL)	
(Barks)			*Staphylococcus aureus* (DDM = 15.44 mm/MIC = >10 µL/mL)	
			Enterococcus faecalis (DDM = 11.2 mm/MIC = >10 µL/mL)	
			Staphylococcus epidermidis (DDM = 13.3 mm/MIC = >10 µL/mL)	
			Streptococcus pyogenes (DDM = 13.3 mm/MIC = 1.3 µL/mL)	
			Escherichia coli (DDM = 13.2 mm/MIC = >10 µL/mL)	
			Klebsiella pneumoniae (DDM = 11.6 mm/MIC = >10 µL/mL)	
			Staphylococcus aureus (DDM = 26.7 mm/MIC = 1.3 µL/mL)	
			Enterococcus faecalis (DDM = 8.80 mm/MIC = 5 µL/mL)	
			Staphylococcus epidermidis (DDM = 38.4 mm/MIC = 5 µL/mL)	
			Streptococcus pyogenes (DDM >40/MIC = 1.3 µL/mL)	
Aniba parviflora	Annonaceae	Microdilution	*Staphylococcus aureus* (MIC = 0.19 mg/mL)	[23]
(Aerial parts)			*Enterococcus faecalis* (MIC = 0.09 mg/mL)	
			Streptococcus sanguinis (MIC = 0.19 mg/mL)	
			Pseudomonas aeruginosa (MIC = 3.0 mg/mL)	
			Escherichia coli (MIC = 1.5 mg/mL)	[24]
B. multiflora	Annonaceae	Microdilution	*Streptococcus mutan* (MIC = 4.68 mg/mL)	[24]
(Leaves)			*Streptococcus pyogenes* (MIC = 4.68 mg/mL)	
			Escherichia coli (MIC = 4.68 µg/mL)	
			Pseudomonas aeruginosa (MIC = 4.68 µg/mL)	
			Streptococcus mutan (MIC = 37.5 µg/mL)	[24]
			Streptococcus pyogenes (MIC = 37.5 µg/mL)	
B. multiflora	Annonaceae	Microdilution	*Streptococcus mutan* (MIC = >1000 µg/mL)	[40]
(Aerial parts)			*Streptococcus pyogenes* (MIC = 1000 µg/mL)	
			Escherichia coli (MIC = >1000 µg/mL)	
Buccegoepsis pleiosperma	Annonaceae	Microbroth dilution	*Staphylococcus epidermidis* (MIC = 250 µg/mL)	[22]
(Aerial parts)				
Daguetia quitarensis	Annonaceae	Microdilution	*Staphylococcus aureus* (MIC = 0.19 mg/mL)	[17]
(Aerial parts)			*Enterococcus faecalis* (MIC = 0.09 mg/mL)	
			Streptococcus sanguinis (MIC = 0.19 mg/mL)	
Ephedrathus amazonicus	Annonaceae	Microdilution	*Staphylococcus aureus* (MIC = 0.09 g/mL)	[23]
(Leaves)			*Enterococcus faecalis* (MIC = 0.19 mg/mL)	
			Streptococcus sanguinis (MIC = 2.50 mg/mL)	
			Pseudomonas aeruginosa (MIC = 3.0 mg/mL)	
Endlicheria arenosa	Lauraceae	Microbroth dilution	*Pseudomonas aeruginosa* (MIC = 1250.0 µg/ml)	[28]
(Leaves)			*Escherichia coli* (MIC = 19.5 µg/mL)	
E. arenosa	Lauraceae	Microbroth dilution	*Staphylococcus aureus* (MIC = 625.0 µg/mL)	
(Twigs)			*Staphylococcus aureus* (MIC = 625.0 µg/mL)	
			Salmonella enterica (MIC = 1.5 mg/mL)	
Fussa longifolia	Annonaceae	Microdilution	*Staphylococcus aureus* (MIC = 1250.0 µg/ml)	[28]
(Aerial parts)			*Pseudomonas aeruginosa* (MIC = 250.0 µg/mL)	
Guatteria blepharophylla	Annonaceae	Microbroth dilution	*Staphylococcus aureus* (MIC = 0.05 mg/mL)	[23]
(Leaves)			*Enterococcus faecalis* (MIC = 0.05 mg/mL)	
			Streptococcus sanguinis (MIC = 0.02 mg/mL)	
			Pseudomonas aeruginosa (MIC = 1.5 mg/mL)	
			Escherichia coli (MIC = 1.5 mg/mL)	[24]
G. punctata	Annonaceae	Microdilution	*Staphylococcus aureus* (MIC = 625.0 µg/mL)	
(Aerial parts)			*Streptococcus mutan* (MIC = 4.68 mg/mL)	[24]
			Streptococcus pyogenes (MIC = 4.68 mg/mL)	
Lippia origanoides	Verbenaceae	Microbroth dilution	*Klebsiella pneumoniae* (DDM = 11.6 mm/MIC = >10 µL/mL)	[17]
(Aerial parts)			*Staphylococcus aureus* (DDM = 26.7 mm/MIC = 1.3 µL/mL)	
Myricia splendens	Myrtaceae	Microdilution	*Lavibacter michiganensis subsp. nebrukensis* (MIC = 125 µg/mL)	[46]
(Leaves)			*Enterococcus faecalis* (MIC = 200 µg/mL)	
			Listeria grayi (MIC = 1000 µg/mL)	
			Staphylococcus aureus (MIC = 1000 µg/mL)	
			Staphylococcus epidermidis (MIC = 1000 µg/mL)	
Table 3. Cont.

Species	Family	Method	Microorganisms (Results)	References
Myrcia splendita (Fresh leaves)	Myrtaceae	Disk method	Staphylococcus aureus (MIC = 2.5 µL/mL)	[10]
			Staphylococcus epidermidis (MIC = 20 µL/mL)	
			Bacillus cereus (MIC = 0.2 µL/mL)	
			Enterococcus faecalis (MIC = 20 µL/mL)	
M. sylvatica (Dried Leaves)	Myrtaceae	Disk method	Staphylococcus aureus (MIC = 2.5 µL/mL)	[10]
			Staphylococcus epidermidis (MIC = 20 µL/mL)	
			Bacillus cereus (MIC = 0.2 µL/mL)	
			Enterococcus faecalis (MIC = 20 µL/mL)	
Nectandra cuspidata (Leaves)	Lauraceae	Microbroth dilution	Pseudomonas aeruginosa (MIC = 1250.0 µg/mL)	[47]
			Escherichia coli (MIC = 19.5 µg/mL)	
			Staphylococcus epidermidis (MIC = 1250.0 µg/mL)	
			Staphylococcus aureus (MIC = 625.0 µg/mL)	
			Bacillus cereus (MIC = 312.5 µg/mL)	
N. puberula (Leaves)	Lauraceae	Microbroth dilution	Pseudomonas aeruginosa (MIC = 1250.0 µg/mL)	[47]
			Escherichia coli (MIC = 19.5 µg/mL)	
			Staphylococcus epidermidis (MIC = 1250.0 µg/mL)	
			Staphylococcus aureus (MIC = 625.0 µg/mL)	
			Bacillus cereus (MIC = 625.0 µg/mL)	
Ooctea Camiculata (Leaves)	Lauraceae	Microbroth dilution	Pseudomonas aeruginosa (MIC = 1250.0 µg/mL)	[50]
			Escherichia coli (MIC = 19.5 µg/mL)	
			Staphylococcus epidermidis (MIC = 1250.0 µg/mL)	
			Staphylococcus aureus (MIC = 625.0 µg/mL)	
			Bacillus cereus (MIC = 312.5 µg/mL)	
O. caudalata (Leaves)	Lauraceae	Microbroth dilution	Pseudomonas aeruginosa (MIC = 1250.0 µg/mL)	[50]
			Escherichia coli (MIC = 19.5 µg/mL)	
			Staphylococcus epidermidis (MIC = 1250.0 µg/mL)	
			Staphylococcus aureus (MIC = 625.0 µg/mL)	
			Bacillus cereus (MIC = 312.5 µg/mL)	
O. cujumery (Leaves)	Lauraceae	Microbroth dilution	Pseudomonas aeruginosa (MIC = 1250.0 µg/mL)	[50]
			Escherichia coli (MIC = 19.5 µg/mL)	
			Staphylococcus epidermidis (MIC = 1250.0 µg/mL)	
			Staphylococcus aureus (MIC = 625.0 µg/mL)	
			Bacillus cereus (MIC = 312.5 µg/mL)	
Ornychopedetum amazonicum (trunk bark)	Annonaceae	Microbroth dilution	Staphylococcus epidermidis (MIC = 62.5 µg/mL)	[51]
			lacticus rhizophila (MIC = 62.5 µg/mL)	
			Escherichia coli (MIC = 62.5 µg/mL)	
Vismia cagerenensis (Leaves)	Hypericaceae	Microplate dilution	Staphylococcus aureus (MIC = 62.5 µg/mL)	[63]
			Escherichia coli (MIC = 350 µg/mL)	
V. guianensis (Leaves)	Hypericaceae	Microplate dilution	Staphylococcus aureus (MIC = >1000 µg/mL)	[63]
			Escherichia coli (MIC = >1000 µg/mL)	
Xylopia aromatica (Leaves)	Annonaceae	Microdilution	Staphylococcus aureus (MIC = 1.20 mg/mL)	[63]
			Enterococcus faecalis (MIC = 0.05 mg/mL)	
			Streptococcus sanguinis (MIC = 0.02 mg/mL)	
			Pseudomonas aeruginosa (MIC = 3.0 mg/mL)	
			Escherichia coli (MIC = 3.0 mg/mL)	
			Salmonella enterica (MIC = 1.5 mg/mL)	

MIC, minimum inhibitory concentration; DDM, disk diffusion method.

Terpenes are the main class of compounds in the essential oils of Myrcia (Myrtaceae), and are described in the literature as having inherent antimicrobial properties, as well as synergic action against pathogens in humans. Leomara et al. [10] showed that Myrcia sylvaltica essential oils are strong candidates for use individually or in combination with traditional antibiotic products for the manufacture of pharmaceutical products to control strains of resistant bacteria and prevent food deterioration [10].

The essential oil of the fresh and dried leaves of M. sylvatica is rich in sesquiterpene hydrocarbons and oxygenated sesquiterpenes, exhibiting activity against Bacillus cereus (MIC = 0.2 µL/mL) and Staphylococcus aureus (MIC = 2.5 µL/mL) and bacteriostatic potential against Staphylococcus epidermidis (20.0 µL/mL) and Enterococcus faecalis (20.0 µL/mL) [10]. The essential oil of M. splendens also presented a predominance of sesquiterpene compounds, but did not show antibacterial activity against human pathogens; however, it showed moderate activity against phytopathogenic strains such as Pseudomonas syringae pv. Syringae (MIC = 250 µg/mL) and Clavibacter michiganensis subsp. Nebraskensis (MIC, 125 µg/mL). This activity is related to the major constituent of the oil, trans-nerolidol [46].
Bay et al. [24] assessed the antibacterial activity of the essential oils of four species of Annonaceae against Escherichia coli, Pseudomonas aeruginosa, Streptococcus mutans, Streptococcus pyogenes, and MRSA. The oil of Bocageopsis multiflora was strongly active against the four microorganisms tested. Dugetia quitarensis and Guatteria punctata were active only against Streptococcus mutans and Streptococcus pyogenes. The oil of Fusaea longifolia showed potential against Pseudomonas aeruginosa, Streptococcus mutans, and MRSA [24].

Piperaceae is a typical family from tropical regions such as the Amazon. A few studies have pointed out the antimicrobial properties of some species of this family such as the genus Piper [75,76].

4.2. Antifungal Activity

The use of synthetic fungicides is common on plantations, where this continued use can lead to the development of resistance in fungi, in addition to harming the soil and environment, causing degradation of the medium into which it is discharged [77]. Fungi not only negatively affect plants, but are also harmful to human beings and can cause series of discomfort for their host [78]. For this reason, the bioactivity of essential oils has been increasingly researched, as these oils have promising activity against the action of fungal pathogens, and represent a non-degrading alternative to the environment in the fight against the damage caused by these agents [79]. The antifungal activity of essential oils plausibly results from penetration of chitin in the hyphal wall, triggering a series of damages to the fungal outer wall and destroying it [80].

The essential oils of the aerial parts of Piper divaricatum showed high inhibitory activity against the fungal species Fusarium solani [81]. In another study, the essential oil of P. divaricatum leaves demonstrated significant inhibition of the fungicidal activity of the pathogens Cladosporium cladosporioides and Cladosporium sphareospermum [82]. The antifungal activities of some essential oils from the Amazon are summarized in Table 4.

Table 4. Antifungal activity of essential oils from the Amazon.

Species	Family	Methods	Microorganisms (Results)	References
Copaifera multijuga	Fabaceae	ASD	Aspergillus flavus (MIC = 0.08 mg/mL—19.5 ± 2.1)	[26]
			Aspergillus niger (MIC = 0.1 mg/mL—9.5 ± 0.7)	
			Aspergillus tamarii (MIC = 0.05 mg/mL—9.0 ± 0.0)	
			Aspergillus tamarii (MIC = 0.3 mg/mL—12.5 ± 3.5)	
			Aspergillus terreus (MIC = 0.3 mg/mL—11.5 ± 2.1)	
			Candida guilliermondii (MIC = 0.1 mg/mL—9.5 ± 1.1)	
			Candida tropicalis (MIC = 0.5 mg/mL—10.0 ± 0.0)	
Ocimum compechianum	Lamiacea	PDA	Growth (%) Fusarium oxysporum	[48]
(leaves/stems)			(IC50 0.25 µL/mL—23.9 ± 3.8) (IC50 0.50 µL/mL—47.1 ± 6.2)	
			(IC50 0.75 µL/mL—59.4 ± 1.2) (IC50 1.00 µL/mL—60.8 ± 3.7)	
			(IC50 2.50 µL/mL—70.3 ± 8.7)	
Ocimum compechianum	Lamiacea	PDA	Germination (%) Fusarium oxysporum	[48]
(leaves/stems)			(IC50 0.50 µL/mL—22.6 ± 1.6) (IC50 0.75 µL/mL—31.5 ± 1.5)	
			(IC50 1.00 µL/mL—33.0 ± 1.7) (IC50 2.50 µL/mL—58.7 ± 0.0)	
Ocimum compechianum	Lamiacea	PDA	Growth (%) Colletotrichum gossypii	[48]
(leaves/stems)			(IC50 0.25 µL/mL—0.0 ± 0.0) (IC50 0.50 µL/mL—0.0 ± 0.0)	
			(IC50 0.75 µL/mL—31.5 ± 1.5) (IC50 1.00 µL/mL—50.7 ± 8.7)	
			(IC50 2.50 µL/mL—55.0 ± 3.3) (IC50 2.50 µL/mL—100.0 ± 0.0)	
4.3. Cytoxicity

The search for new phytotherapeutics with anticancer (tumor) potential is extremely important because most anticancer drugs are of natural origin. Natural products have a high level of efficacy in use and application, constituting the main ally in the preparation and development of new treatments for cancer [86,87]. In this industry, the essential oils from botanical species of the Amazon region have shown favorable cytotoxic activity and applications, as reported in prior studies [38,88,89], in which the essential oils of two species of *Eugenia* (*E. cuspidifolia* and *E. tapacumensis*) collected in the forest reserve Adolfo Ducke, Manaus, Amazonas, Brazil, were assessed against five types of cancer cells: human malignant melanoma (SK-MEL-19), human colorectal carcinoma (HCT116), human breast adenocarcinoma (MCF7), human gastric adenocarcinoma (ACP02), and human embryonic lung (MRC-5) as a non-malignant cell line. The inhibitory activity of the essential oil of *E. cuspidifolia* (EO1) was demonstrated by the \(IC_{50} \) values of 18.11 \(\mu \)g/mL (MCF7), 15.25 \(\mu \)g/mL (HCT116), 26.17 \(\mu \)g/mL (SK-MEL-19), >50 \(\mu \)g/mL (ACP02), and 25.51 \(\mu \)g/mL (MRC-5). On the other hand, the essential oil of *E. tapacumensis* (EO2) presented inhibitory potential, with \(IC_{50} \) values of 24.35 \(\mu \)g/mL (MCF7), 12.37 \(\mu \)g/mL (SK-MEL-19), >50 \(\mu \)g/mL (ACP02), and 36.12 \(\mu \)g/mL (MRC-5). Such results show that EO1 and EO2 from the leaves reduced the viability of HCT116 cells, with \(IC_{50} \) values of 15.25 \(\mu \)g/mL and 12.37 \(\mu \)g/mL, respectively.

Essential oils from the leaves of *Eugenia patrisii*, *Eugenia stipitata*, *Myrcia splendens*, *Myrcia sylvatica*, *Psidium guajava*, and *Psidium guineense* (*Pgui-1 and Pgui-2*) were collected from several locations in the cities of Belem/Para/Brazil and Curuçá/Para/Brazil. The activity of the essential oils of these species against five types of cancer cells was analyzed: MCF7 breast cancer, SKMEL-19 melanoma, AGP01 Gastric, HCT116 colon cancer, and MRC5 human fibroblasts. The essential oil of *E. patrisii* exhibited no detectable activity against MCF7 breast type cell, but in the other types of cells, it showed the following inhibition potentials: \(IC_{50} \) = 5.80 \(\mu \)g/mL (SKMEL-19; melanoma), 3.21 \(\mu \)g/mL (AGP01; gastric), 6.70 \(\mu \)g/mL (HCT116; colon), and 3.5 \(\mu \)g/mL (MRC5; human fibroblast). The essential oil of *M. splendens* exhibited no

Species	Family	Methods	Microorganisms (Results)	References
Ocotea longifolia	Lauraceae	PDA	*Fusarium oxysporum* f. *sp. dianthi*—Inhibition: 31.2 ± 0.45%	[83]
O. macrophylla (leaves)	Lauraceae	PDA	*Botrytis cinerea*—Inhibition: 32.8 ± 0.21%	[83]
Piper aduncum (aerial parts)	Piperaceae	TLC plates	*Cladosporium cladosporioides* (DL = 100 \(\mu \)g)	[82]
P. aleymeanum (aerial parts)	Piperaceae	TLC plates	*Cladosporium cladosporioides* (DL = 0.1)	[12]
P. divaricatum (aerial parts)	Piperaceae	MIC	(MIC = 0.50 mg/mL = 38.93 ± 4.77)	[81]
P. divaricatum (leaves)	Piperaceae	TLC plates	*C. cladosporioides* (MIC = 0.5 \(\mu \)g)	[82]
P. hispidum (aerial parts)	Piperaceae	TLC plates	*C. cladosporium* cladosporioides (DL = 1.0)	[12]
P. krukoffii (twig)	Piperaceae	TLC plates	*C. cladosporium* sphaerospermum (DL = 0.1)	[84]
P. krukoffii (leaves)	Piperaceae	TLC plates	*C. cladosporium* sphaerospermum (DL = 0.5 \(\mu \)g)	[84]
P. marginatum (aerial parts)	Piperaceae	MIC	(MIC = 1.00 mg/mL = 77.10 ± 10.49)	[85]
P. hispidum (aerial parts)	Piperaceae	TLC plates	*C. cladosporium* sphaerospermum (DL = 0.1)	[12]
P. divaricatum (leaves)	Piperaceae	TLC plates	*C. cladosporium* sphaerospermum (DL = 25 \(\mu \)g/mL)	[85]

\(IC_{50} \), minimum inhibitory concentration; DDM, disk diffusion method.
cytotoxic activity against the MCF7 breast type cell, but showed an inhibition potential of 8.50 µg/mL against (SKMEL-19; melanoma), with IC_{50} values of 4.70 µg/mL (AGP01; gastric), 8.80 µg/mL (HCT116; colon), and 6.5 µg/mL (MRC5; human fibroblast). The essential oil of M. sylvatica exhibited no detectable activity against (HCT116; colon) type cells; however, the essential oil of such species presented inhibition of >25 µg/mL (MCF7; breast), 20.01 µg/mL (SKMEL-19; melanoma), 17.31 µg/mL (AGP01; gastric), and 23.3 µg/mL (MRC5; human fibroblast). The essential oil of Psidium guajava, as well as the essential oil of two specimens of P. guineense (Pgui-1 and Pgui-2), did not show cytotoxic activity against cancer cells (HCT116; colon). However, the essential oil of P. guajava presented the following inhibition potentials: 12.41 µg/mL (MCF7; breast), 15.31 µg/mL (SKMEL-19; melanoma), 16.31 µg/mL (AGP01; gastric), and 20.8 µg/mL (MRC5; human fibroblast). The specimen (Pgui-1) of P. guineense presented inhibition potentials of 11.60 µg/mL (MCF7; breast), 11.10 µg/mL (SKMEL-19; melanoma), 8.21 µg/mL (AGP01; gastric), and 8.27 µg/mL (MRC5; human fibroblast). The Pgui-2 specimen presented inhibition potentials of: 18.21 µg/mL (MCF7; breast), 19.11 µg/mL (SKMEL-19; melanoma), 15.71 µg/mL (AGP01; gastric), and 24 µg/mL (MRC5; human fibroblast). The greatest cytotoxic activity was observed for the essential oil of E. patrisii (SKMEL-19; melanoma), (AGP01; gastric), and (HCT116; colon), whereas the essential oils of P. guajava and P. guineense, were more active against breast cancer cells (MCF7, IC_{50} 12.4 µg/mL and 11.6 µg/mL, respectively) [32].

The essential oil of four species of Eugenia (E. egensis, E. flavescens, E. polystachya, and E. patrisii) collected in Marabá-PA were tested against three types of cancer cells: HCT-116 (colon), SKMEL19 (melanoma), and AGP01 (gastric). The essential oil of E. egensis did not present a cytotoxic profile against the three types of cells, with IC_{50} > 25 µg/mL. At the same concentration where IC_{50} > 25 µg/mL, the essential oil of E. flavescens, E. polystachya, and E. patrisii did not present cytotoxic activity against the two cancer cells: SKMEL19 (melanoma) and AGP01 (gastric). On the other hand, the essential oils of E. flavescens, E. patrisii, and E. polystachya showed cytotoxic activity, with IC_{50} values of 13.9 µg/mL, 16.4 µg/mL, and 10.3 µg/mL, respectively, against HCT-116 (colon). According to the authors, this cytotoxic potential may be related to the presence of the main compound, germacrene D [30].

The essential oil of Myrcia splendens from the equatorial Amazon was assessed against A549 (human lung cancer), MCF-7 (human breast adenocarcinoma), and HaCaT (human keratinocytes) cells. All the results showed inhibition of cancer cell growth depending on the dose of α-bisabolol, which was the most active component. At a concentration of 10 µg/mL, α-bisabolol reduced the viability of A549 (human lung cancer), MCF-7 (human breast adenocarcinoma), and HaCaT (human keratinocytes) cells by 70, 10, and 50%, respectively, compared to the negative control. The growth of MCF-7 type cells was more strongly inhibited than that of the HaCaT cells 48 h after treatment with α-bisabolol (IC_{50} = 1.24 ± 0.03 µg/mL vs. 10.15 ± 0.35 µg/mL) and essential oil (IC_{50} = 5.59 ± 0.13 µg/mL vs. 21.58 ± 1.26 µg/mL). However, the HaCaT cells were more sensitive than the A549 cell line, with IC_{50} values varying from 10.15 ± 0.35 to 27.76 ± 2.76 µg/mL for the former, compared with values of 54.28 ± 2.39 to 100.99 ± 2.32 µg/mL for the latter. Therefore, the assessment of the cytotoxic activity showed promising results regarding the selectivity and efficacy of the essential oil of M. splendens against the cell line MCF-7 compared to that against A549 cells [46].

The essential oils from the leaves of five specimens of Eugenia uniflora were collected in Belém and Santarém, Pará, Brazil, and tested against HCT-116 (colon), AGP01 (malignant gastric ascites), SKMEL-19 (melanoma), and MRC-5 (human fibroblast). The essential oil of specimen E1 did not exhibit cytotoxic activity against the four types of cells, whereas samples E3 and E5 presented equal inhibition percentages (IC_{50} > 25 µg/mL) against the four cell types. In contrast, the essential oils of the specimens E2 and E4 showed cytotoxic activity against all the HCT-116 cell lines tested (IC_{50} E2: 16.26 µg/mL; E4: 9.28 µg/mL), AGP01, (IC_{50} E2:12.60 µg/mL; E4:8.73 µg / mL), SKMEL-19 (IC_{50} E2: 12.20 µg/mL; E4: 15.42 µg/mL), and MRC-5 (IC_{50} E2: 10.27 µg/mL; E4: 14.95 µg/mL) [90].
The cytotoxic potential of essential oils from the Piperaceae family, especially the genus piper [91], has been documented [12], in which three species of Piper (P. hispidum, P. aleyreanum, and P. anonifolium) collected in the national forest of Carajás, Pará state, Brazil were tested against three cancer cell lines: HCT-116 (colon), SKMEL19 (melanoma), and ACP-03 (gastric). The essential oils of these three species had low inhibitory effects on the growth of the HCT-116 (colon) and ACP-03 (gastric) cell lines (IC$_{50}$ > 25 µg/mL). The oils also had IC$_{50}$ > 25 µg/mL for the cell line SKMEL19 (melanoma), except for the essential oil of P. aleyreanum, which presented high in vitro cytotoxic activity (IC$_{50}$ = 7.4 µg/mL).

The essential oils of the family Lauraceae exhibit cytotoxic activity against some types of cell lines, as shown in a previous study [47], where the essential oils were taken from the leaves and branches of Nectandra puberula and only the leaves of N. Cuspidata. During this research, the cytotoxic activity of the essential oils from the leaf of N. puberula and N. cuspidata against MCF-7 breast tumor cells was evaluated, where the IC$_{50}$ was 64.5 ± 1.6 and 117.1 ± 11.9 µg/mL, respectively.

The Annonaceae family is characterized by a pantropical family of trees, bushes, and climbers, and is found especially in tropical lowlands [92]. This family is characterized by species rich in essential oils with potential in vitro inhibitory activity against cancer cells [36,92]. This biological activity was observed for the essential oil from the leaves of Anaxagorea brevipes collected in Manaus, Amazonas, Brazil. The essential oil showed cytotoxic activity against the MCF-7 (breast, TGI = 12.8 µg/mL), NCI-H460 (lung, TGI = 13.0 µg/mL), and PC-3 (prostate, TGI = 9.6 µg/mL) cell lines [15]. Other botanical families have been studied to prove their efficacy against cancer cells, such as the Myristicaceae family, which is recognized as a species that produces essential oils. The species Iryanthera polyneura (Myristicaceae) is commonly known as cumala-colorada, and can be found in the Amazon forest [93]. Studies on this species have shown cytotoxic activity [39] for the essential oil from the leaves of three specimens of Iryanthera polyneura collected in Amazonas, Brazil, which were tested against human breast (MCF-7) and prostate (PC-3) cells. In that study, thirty-six of the forty essential oils were more active against PC-3 than against MCF-7 cells, where the samples of the set 22EO, 80EO, and 53EO were particularly active, with inhibition values of IC$_{50}$ = 14.69 ± 4.33, 13.63 ± 3.23, and 12.48 ± 4.03 µg/mL, respectively. The essential oils of the leaves and bark of Virola surinamensis, native to the Amazon, Brazil, were tested against HCT116 (human colon carcinoma), MCF-7 (human breast adenocarcinoma), HL-60 (human promyelocytic leukemia), HepG2 (human hepatocellular carcinoma), B16–F10 (mouse melanoma), and MRC-5 (human pulmonary fibroblasts). The essential oil of the sample barks presented an inhibition percentage of IC$_{50}$ = 9.41 µg/mL against the respective cells. The cytotoxic activities of some essential oils from the Amazon are shown in Table 5.

Species	Botanic Family	Methods	Results	References
Anaxagorea brevipes	Anonaceae	SRB assay	MCF-7 = TGI 12.8 µg/mL	[15]
			NCI-H460 = (TGI 13.0 µg/mL)	
			PC-3 = TGI 9.6 µg/mL	
			(MCF7) = IC$_{50}$ 18.11 µg mL$^{-1}$	
			(HCT116) = IC$_{50}$ 15. 25 µg mL$^{-1}$	[29]
			(SK-MEL-19) = IC$_{50}$ 26.17 µg mL$^{-1}$	
			(ACP02) = IC$_{50}$ > 50 µg mL$^{-1}$	
			(MRC-5) = IC$_{50}$ 25.51 µg mL$^{-1}$	

Table 5. Cytotoxic activity of essential oils from species found in the Amazon.
Table 5. Cont.

Species	Botanic Family	Methodos	Results	References
E. egensis	Myrtaceae		HCT-116 = IC₅₀ > 25 µg/mL	[30]
		SKMEL19 = IC₅₀ > 25 µg/mL		
		AGP-01 = IC₅₀ > 25 µg/mL		
E. flavescens	Myrtaceae		SKMEL19 = ****	[30]
		AGP-01 = ****		
	Myrtaceae	MTT colorimetric	HCT-116 = IC₅₀ 13.9 µg/mL	[30]
E. patrisii	Myrtaceae		SKMEL19 = ****	[30]
	Myrtaceae		AGP-01 = ****	[30]
E. polystachya	Myrtaceae		HCT-116 = IC₅₀ 10.3 µg/mL	[30]
E. stipitata	Myrtaceae	MTT colorimetric	HCT-116 = IC₅₀ 16.4 µg/mL	[30]
E. tapacumensis	Myrtaceae	Alamar blue assay	(MCF) = IC₅₀ 24.35 µg mL⁻¹	[29]
			(HCT116) = IC₅₀ 12.37 µg mL⁻¹	
			(SK-MEL-19) = IC₅₀ 50 µg mL⁻¹	
			(ACP02) IC₅₀ > 50 µg mL⁻¹	
			(MRC-5) = IC₅₀ 36.12 µg mL⁻¹	
E. uniflora	Myrtaceae	MTT colorimetric	HCT-116 (IC₅₀ E2: 16.26 µg/mL; IC₅₀ E4: 9.28 µg/mL)	[80]
			AGP-01, (IC₅₀ E2: 12.60 µg/mL; IC₅₀ E4: 8.73 µg/mL)	
			SKMEL-19 (IC₅₀ E2: 12.20 µg/mL; IC₅₀ E4: 15.42 µg/mL)	
			MRC-5 (IC₅₀ E2: 10.27 µg/mL; IC₅₀ E4: 14.95 µg/mL)	
Iryanthera polyneura	Myristicaceae	SRB assay	PC-3 = IC₅₀ 14.69 ± 4.33 µg/mL	[39]
			MCF-7 = IC₅₀ 13.63 ± 3.23 µg/mL	
			SKMEL-19 = IC₅₀ 8.50 µg/mL	[32]
			AGP-01 = IC₅₀ 4.70 µg/mL	
			HCT116 = IC₅₀ 8.80 µg/mL	
			MRC5 = IC₅₀ 6.5 µg/mL	
Myrcia splendens	Myrtaceae		A549 = IC₅₀ 54.28 ± 2.39 µg/mL	[46]
			MCF-7 = IC₅₀ 12.4 ± 0.03 µg/mL	
			SKMEL-19 = IC₅₀ 8.50 µg/mL	[32]
			AGP-01 = IC₅₀ 4.70 µg/mL	
			HCT116 = IC₅₀ 8.80 µg/mL	
			MRC5 = IC₅₀ 6.5 µg/mL	
Myrtaceae	Myrtaceae		MCF-7 = IC₅₀ 12.4 ± 0.03 µg/mL	[46]
M. splendens	Myrtaceae	MTT colorimetric	HCT-116 = IC₅₀ 25 µg/mL	[30]
			SKMEL-19 = IC₅₀ 20.01 µg/mL	
			AGP-01 = IC₅₀ 17.31 µg/mL	
			HCT116 = ****	
			MRC5 = IC₅₀ 23.3 µg/mL	
Nectandra cuspidata	Lauraceae		MCF-7 = IC₅₀ 117.1 ± 11.9 µg mL⁻¹	[47]
N. puberula			MCF-7 = IC₅₀ 64.5 ± 1.6 µg mL⁻¹	
Table 5. Cont.

Species	Botanic Family	Methodos	Results	References	
Piper anonifolium	*Piperaceae*	HCT-116 = IC₅₀ > 25 µg/mL	ACP-03 = IC₅₀ > 25 µg/mL	SKMEL19 = IC₅₀ > 25 µg/mL	[12]
P. aleppenum	*Piperaceae*	HCT-116 = IC₅₀ > 25 µg/mL	ACP-03 = IC₅₀ > 25 µg/mL	SKMEL19 = IC₅₀ = 7.4 µg/mL	
P. hydropium		HCT-116 = IC₅₀ > 25 µg/mL	ACP-03 = IC₅₀ > 25 µg/mL	SKMEL19 = IC₅₀ > 25 µg/mL	
Psidium guajava	*Myrtaceae*	MCF7 = IC₅₀ 12.41 µg/mL	SKMEL19 = IC₅₀ 15.31 µg/mL	AGP01 = IC₅₀ 16.31 µg/mL	HCT116 = ****
P. guineense (Pgui-1)	*Myrtaceae*	MCF7 = IC₅₀ 11.60 µg/mL	SKMEL19 = IC₅₀ 11.10 µg/mL	AGP01 = IC₅₀ 8.21 µg/mL	HCT116 = ****
P. guineense (Pgui-2)		MCF7 = IC₅₀ 11.00 µg/mL	SKMEL19 = IC₅₀ 19.11 µg/mL	AGP01 = IC₅₀ 15.71 µg/mL	HCT116 = ****
Virola surinamensis	*Myristicaceae*	SRB assay	Bark EO	Leaves EO	[62]

Table 5. Cont...

MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), **** = statistically similar at 95% confidence level by Tukey’s test.

4.4. Antiprotozal Activity

Diseases resulting from protozal infection have caused serious problems and have detrimental impacts on human health. Such diseases include leishmaniasis, which is considered one of the most neglected diseases resulting from the parasitic action of protozoans of the genus *Leishmania* [94]. Within this scope of parasitic diseases, *Trypanosoma cruzi* is predominant in the Americas [95].

The treatment of these diseases is based on highly toxic drugs with little efficacy [96], which cause serious side effects in the body [96]. However, some plants are considered potentially rich and promising for the development of drugs that act against leishmaniosis and Chagas disease [94,96]. In this context, it is important to emphasize that essential oils are substances extracted from aromatic plants and have biological potential against parasites [97]. The biological activity of natural products is related to the active chemical compounds in their composition [98].

Within the Amazon region, studies on the action of essential oils against protozoans are still lacking. However, studies have shown that the essential oils from plants of the Amazon have components that are active against leishmaniosis, as described in a study conducted with the essential oil of *Bocageopsis multiflora*, which presented significant activity (IC₅₀: 14.6 µg/mL) against promastigotes of *Leishmania amazonensis* [25]. The anti-Leishmania...
potential of the essential oil of *Syzygium cumini* and its major constituent, α-pinene, was tested, where α-pinene presented an inhibitory concentration of $IC_{50} = 19.7 \text{ mg/mL}$ against the promastigotes of *L. amazonenses*, and IC_{50} value of 16.1 mg/mL and 15. mg/mL against axenic and intracellular amastigotes. On the other hand, the essential oil from *S. cumini* presented inhibitory concentrations of $IC_{50} = 43.9 \text{ mg/mL}$ and $IC_{50} = 38.1 \text{ mg/mL}$ against axenic and intracellular amastigotes. According to the authors, α-pinene was the most active substance [60].

The activity of essential oils from two species of Annonaceae, *Guatteria friesiana* (EOGF) and *G. pogonopus* (EOGP), against the protozoa causing malaria (*Plasmodium falciparum*) and Chagas disease (*Trypanosoma cruzi*) was tested. EOGF presented an inhibition potential of $IC_{50} = 0.53 \mu g/mL$ against *P. falciparum* and $IC_{50} = 10.7 \mu g/mL$ against *T. cruzi*. EOGP presented respective IC_{50} values of 6.8 and 41.3 μg/mL against *P. falciparum* and *T. cruzi*. According to the authors, EOGF and EOGP presented potent antimalarial and trypanocidal activity [35]. The trypanocidal activity was assessed for essential oils of the leaves and rhizomes of a species of Zingiberaceae (*Renealmia chrysotricha*). At a concentration of 25 μg/mL, the essential oil of the rhizome of *R. chrysotricha* reduced the number of parasites by 50 and 61% after 24 and 48 h, respectively. Treatment with 100 μg/mL reduced the population of parasites by 56% after 24 h, with all parasites eliminated within 48 h. The essential oil of the leaves of *R. chrysotricha* reduced the population of parasites by 28–59% at concentrations of 25, 100, 400, and 800 μg/mL after 24 h, and by 2–53% at concentrations of 25, 100, and 400 μg/mL, with total death of the parasites at 800 μg/mL after 48 h [59].

The essential oil from the leaves and thin branches of three samples of *Aniba rosaeodora* (Lauraceae) and its major constituent linalool were tested against intracellular epimastigote and amastigote forms of *T. cruzi*. In the treatment with the essential oil of *A. rosaeodora*, the inhibitory concentration for the epimastigote forms was $IC_{50} = 150.5 \pm 1.08 \mu g/mL$, and $IC_{50} = 198.6 \pm 1.12 \mu g/mL$ for linalool. The essential oil and linalool presented respective inhibitory concentrations of $IC_{50} = 911.6 \pm 1.15$ and 249.6 ± 1.18 μg/mL for the intracellular amastigote forms. At higher concentrations, the essential oil and linalool both exhibited antitrypanosomal activity against the intracellular amastigote forms [19].

The activity of the essential oil from the leaves of *Ocimum canum* (Lamiaceae) against the intracellular promastigote and amastigote forms of *Leishmania amazonenses* was assessed. In this study, the essential oil presented respective inhibitory concentrations of $IC_{50} = 17.4 \mu g/mL$ and 13.1 μg/mL for the intracellular promastigote and amastigote forms [49]. In another study, the activity of the essential oils of two species of Piperaceae (*Piper duckei* and *P. demeraranum*) and their major compounds (limonene and E-caryophyllene) against strains of *L. amazonenses* and *L. guyanensis* was assessed. Both essential oils reduced the growth of the promastigote forms of two species of leishmania, where the essential oils of *P. duckei* and *P. demeraranum* presented respective inhibitory concentrations of $IC_{50} = 15.2 \mu g/mL$ and $IC_{50} = 22.7 \mu g/mL$ for the promastigote forms of *L. guyanensis*, whereas for the amastigote forms of *L. amazonenses*, the inhibitory concentrations were $IC_{50} = 46.0 \mu g/mL$ and $IC_{50} = 86.0 \mu g/mL$, respectively. For the amastigote forms of *L. guyanensis*, the essential oils presented inhibitory concentrations of $IC_{50} = 42.4 \mu g/mL$ for *P. duckei* and $IC_{50} = 78 \mu g/mL$ for *P. demeraranum*. The major compounds limonene and E-caryophyllene respectively exhibited inhibitory concentrations of $IC_{50} = 278 \mu M$ (limonene) and $IC_{50} = 96 \mu M$ (E-caryophyllene) against the promastigote forms of *L. amazonenses*. Thus, the major compounds presented lower inhibition percentages (IC_{50}) than the essential oils of *Piper* [58].

4.5. Larvicidal Activity and Toxicity

Toxicity studies of essential oils aim to discover new natural insecticidal and larvicidal agents that can fight against several vectors of public health concern [99]. It is important to highlight that these studies have increased steadily due to the strong resistance of microbes to synthetic insecticides that can cause serious problems to the environment, with risk of contamination of the air, soil, and water [65,100]. These problems have expanded the
search for and development of natural pesticides, especially aromatic plants in the Amazon region, as described in a study performed with the essential oil of the aerial parts of the species Mesophaerum suaveolens collected in three different periods (intermediate rainy, and dry). The activity of the essential oils against *Aedes aegypti* and *Artemia salina* Leach was tested, demonstrating that the essential oil extracted in the dry season showed greater activity \((LC_{50})\) against the larvae of *A. aegypti* (90.9 \(\mu\)g/mL), followed by that obtained in the rainy period (108.0 \(\mu\)g/mL), whereas low activity was observed for the oil acquired in the intermediary period (135.2 \(\mu\)g/mL). In relation to the *Artemia salina* Leach, the essential oil presented moderate toxicity \((LC_{50})\) 167.1 \(\mu\)g/mL (intermediary period), 202.6 \(\mu\)g/mL (rainy period), and 215.7 \(\mu\)g/mL (dry period) [45].

Some studies with essential oils of the family Piperaceae native to the Amazon region have demonstrated promising larvicidal activity and toxicity of the essential oil of *Piper capitatum* in the inflorescence vegetative period, which presented larvicidal potential against *Aedes aegypti* and *Aedes albopictus* \((LC_{50}) = 87.6 \mu\)g/mL and 76.1 \(\mu\)g/mL. Likewise, the essential oil obtained from the inflorescence was more active against *Artemia salina* Leach, with an \(LC_{50}\) of 465.30 \(\mu\)g/mL [57]. In another study, the activity of the essential oils of five species of *Piper* (*P. aduncum*, *P. gaudichaudianum*, *P. malacophyllum*, *P. marginatum*, and *P. tuberculatum*) against one type of rice blight (*Tribacta limbativentris*) was tested. The essential oils significantly reduced the hatching of *T. limbativentris* eggs, with \(LC_{50}\) = 2.49 \(\mu\)g/mL (\(P. aduncum\)), 4.243 \(\mu\)g/mL (\(P. gaudichaudianum\)), 6.073 \(\mu\)g/mL (\(P. malacophyllum\)), 1.968 \(\mu\)g/mL (\(P. marginatum\)), and 3.388 \(\mu\)g/mL (\(P. tuberculatum\)). The results demonstrate that essential oils are promising for use as botanical insecticides [101]. The essential oil of *Piper aduncum* presented insecticidal potential against one type of soybean pest, *Chrysodeixis includens* Walker, with \(LC_{50}\) = 3.5 \(\mu\)g/mL. According to the authors, further studies are necessary to confirm the use of this essential oil, rather than synthetic chemical products, to control this pest [55].

The insecticidal activity of the essential oils of *Piper* (\(P. aduncum\), \(P. marginatum\) (chomotypes A and B), \(P. divaricatum\), and \(P. callosum\)) against the termite *Solenopsis saevissima* was assessed. The activity values were \(LC_{50}\) = 114.4 \(\mu\)g/mL (\(P. aduncum\)), \(LC_{50}\) = 207.8 \(\mu\)g/mL (\(P. marginatum\) A), \(LC_{50}\) = 419.3 \(\mu\)g/mL (\(P. marginatum\) B), \(LC_{50}\) = 552.2 \(\mu\)g/mL (\(P. divaricatum\)), and \(LC_{50}\) = 571.1 \(\mu\)g/mL (\(P. callosum\)). The authors suggested new investigations of these essential oils for use in sustainable pest control in the Amazon region [53].

The larvicidal potential of essential oils from the leaves of three specimens of *Virola* (*V. calophylla*, *V. multinervia*, and *V. pavonis*) was tested to verify their activity against *A. aegypti*. The essential oil of *V. calophylla* presented \(LC_{50}\) = 179.6 \(\mu\)g/mL, followed by that of *V. pavonis* \(LC_{50}\) = 185.1 \(\mu\)g/mL and *V. multinervia* \(LC_{50}\) = 200.5 \(\mu\)g/mL. According to the authors, the essential oil of *Virola* had low larvicidal potential [61]. In contrast, the essential oil of *Bauhinia unguulata* (Fabaceae) presented high toxicity against *Artemia salina* Leach, with \(LC_{50}\) = 144.75 \(\mu\)g mL\(^{-1}\) [21].

Dias et al. [33] assessed the insecticidal potential of essential oils of *Eugenia piauiensis*, *Myrcia erythroxylon*, *Psidium myrsinoides*, *Siparuna camorum*, and *Lippia gracilis* against larvae of *A. aegypti* [33]. The essential oil of *M. erythroxylon* was inactive against *A. aegypti* larvae, with \(LC_{50}\) > 1000 mg/L, whereas the other essential oils were considered effective, with \(LC_{50}\) = 230, 251, 282, and 292 mg/L, respectively, for *E. piauiensis*, *S. camorum*, *L. gracilis*, and *P. myrsinoides*. The essential oil of the leaves and branches of *Aniba duckei* showed larvicidal activity against *A. aegypti*, with \(LC_{50}\) = 250.6 \(\mu\)g mL\(^{-1}\) [16]. Likewise, the essential oil of *Lippia origanoides* presented larvicidal potential against *Cerataphis lataniae* within 24 h of exposure, with \(LD_{50}\) = 6.6 \(\mu\)g/mL and \(LD_{90}\) = 41.9 \(\mu\)g/mL, and \(LD_{50}\) = 2.7 \(\mu\)g/mL and \(LD_{90}\) = 19.8 \(\mu\)g/mL within 48 h of exposure [41].

5. Conclusions

The Amazon flora has a wide range of aromatic plants with potential application in the international and national markets due to their fragrances and aromas and for their use in the traditional medicine for the treatment of several diseases. The essential oils and their compounds are directly related to the bioactive compounds found in the
essential oils of the Amazon biome. The chemical profile of the essential oils extracted from
amazon species is characterized specially by the terpenes, monoterpenes, sesquiterpenes,
and phenylpropanoids. Therefore, the essential oils listed in the present study show a great
potential for the development of natural pesticides, antioxidant products, and drugs with
antimicrobial and cytotoxic effect.

Author Contributions: Conceptualization, O.F.O., J.N.C., Â.A.B.d.M. and C.d.J.P.F.; methodology,
O.F.O., J.N.C., Â.A.B.d.M. and C.d.J.P.F.; writing—original draft preparation, O.F.O., J.N.C., Â.A.B.d.M.,
C.d.J.P.F., R.R.L., T.O.d.A., G.M.S., L.D.d.N., M.M.C., M.S.d.O. and E.H.d.A.A.; writing—review and
editing, R.R.L., T.O.d.A., G.M.S., L.D.d.N., M.M.C., M.S.d.O. and E.H.d.A.A.; visualization, M.S.d.O.
and E.H.d.A.A.; supervision, M.S.d.O. and E.H.d.A.A.; project administration, E.H.d.A.A.; funding
acquisition, E.H.d.A.A. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Universidade Federal do Pará/PROPESP Edital 02/2022, Programa
de Apoio à Publicação Qualificada.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author M.M.C. thanks CAPES for the Ph.D. scholarship process number:
[88887.497476/2020-00]. The author M.S.d.O., thanks PCI-MCTIC/MPEG, as well as CNPq for the
process number: [300983/2020-00]. The authors would like to thank the Universidade Federal do Pará/
PROPESP Edital 02/2022, Programa de Apoio à Publicação Qualificada.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Filardi, F.L.R.; De Barros, F.; Baumgratz, J.F.A.; Bicudo, C.E.; Cavalcanti, T.B.; Coelho, M.A.N.; Costa, A.F.; Costa, D.P.; Goldenberg,
R.; Labiap, P.H.; et al. Brazilian Flora 2020: Innovation and collaboration to meet Target 1 of the Global Strategy for Plant
Conservation (GSPC). Rodriguesia 2018, 69, 1513–1527. [CrossRef]
2. Almeida da Costa, W.; Elen Pereira de Lima, C.; Henrique Brabo de Sousa, S.; Santana de Oliveira, M.; Wariss Figueiredo Bezerra,
F.; Neves da Cruz, J.; Gomes Silva, S.; Macedo Cordeiro, R.; Cordovil Rodrigues, C.; Robson Batista de Carvalho, A.; et al. Invasive
Species in the Amazon. In Diversity and Ecology of Invasive Plants; IntechOpen: London, UK, 2019.
3. Zappi, D.C.; Filardi, F.L.R.; Leitman, P.; Souza, V.C.; Walter, B.M.T.; Pirani, J.R.; Queiroz, L.P.; Cavalcanti, T.B.; Mansano, V.F.; et al. Growing knowledge: An overview of Seed Plant diversity in Brazil. Rodriguesia 2015, 66, 1085–1113.
[CrossRef]
4. de Oliveira, M.S.; Cruz, J.N.; Ferreira, O.O.; Pereira, D.S.; Pereira, N.S.; Oliveira, M.E.C.; Venturieri, G.C.; Guilhon, G.M.S.P.; Souza Filho, A.P.D.S.; Andrade, E.H.D.A.; et al. Chemical composition of volatile compounds in apis mellifera propolis from the northeast region of pará state, brazil. Molecules 2021, 26, 3462. [CrossRef]
5. Maia, J.G.S.; Andrade, E.H.A. Database of the Amazon aromatic plants and their essential oils. Quim. Nova 2009, 32, 595–622.
[CrossRef]
6. Ferreira, O.O.; Neves da Cruz, J.; de Jesus Pereira Franco, C.; Silva, S.G.; da Costa, W.A.; de Oliveira, M.S.; de Aguair Andrade,
E.H. First report on yield and chemical composition of essential oil extracted from myrcia eximia DC (Myrtaceae) from the
Brazilian Amazon. Molecules 2020, 25, 783. [CrossRef]
7. Simões, C.M.O.; Schenkel, E.P.; Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia: Do produto natural ao medicamento; Artmed:
Porto Acrege, Brasil, 2017; 486, ISBN 8582713657.
8. Ju, J.; Chen, X.; Xie, Y.; Hu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of Essential Oil as a Sustained Release Preparation in
Food Packaging. Trends Food Sci. Technol. 2019, 92, 22–32. [CrossRef]
9. Morandim-giannetti, A.D.A.; Pin, A.R.; Ama, N.; Pietro, S.; De Oliveira, H.C.; Mendes-giannini, M.J.S.; Alecio, A.C.; Kato, M.J.;
De Oliveira, J.E.; Furlan, M.; et al. Composition and antifungal activity against Candida albicans, Candida parapsilosis, Candida
krusei and Cryptococcus neoformans of essential oils from leaves of Piper and Peperomia species. J. Med. Plant Res. 2010, 4,
1810–1814. [CrossRef]
10. Silva, L.; Sarrazin, S.; Oliveira, R.; Suemitsu, C.; Maia, J.; Mourão, R. Composition and Antimicrobial Activity of Leaf Essential
Oils of Myrica sylvatica (C. Mey.) DC. Eur. J. Med. Plants 2016, 13, 1–9. [CrossRef]
11. da Silva, M.F.R.; Bezerra-Silva, P.C.; de Lira, C.S.; de Lima Albuquerque, B.N.; Agra Neto, A.C.; Pontual, E.V.; Maciel, J.R.;
Paiva, P.M.G.; Navarro, D.M.d.A.F. Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC
(Piperaceae). Exp. Parasitol. 2016, 165, 64–70. [CrossRef] [PubMed]
12. da Silva, J.K.R.; Pinto, L.C.; Burbano, R.M.R.; Montenegro, R.C.; Guimarães, E.F.; Andrade, E.H.A.; Maia, J.G.S. Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Ind. Crops Prod. 2014, 58, 55–60. [CrossRef]

13. Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2020, 26, 666. [CrossRef] [PubMed]

14. Neves Cruz, J.; Gomes da Silva, A.; Almeida da Costa, W.; Simone Cajueiro Gurgel, E.; Eduardo Oliveira Campos, W.; Campos e Silva, R.; Ene Chaves Oliveira, M.; Pedro da Silva Souza Filho, A.; Santiago Pereira, D.; Gomes Silva, S.; et al. Volatile Compounds, Chemical Composition and Biological Activities of Apis mellifera Bee Propolis. In Essential Oils-Bioactive Compounds, New Perspectives and Applications; IntechOpen: London, UK, 2020.

15. De Alencar, D.C.; Pinheiro, M.L.B.; Pereira, J.L.D.S.; De Carvalho, J.E.; Campos, F.R.; Serain, A.F.; Tirico, R.B.; Hernández-Tasco, A.J.; Costa, E.V.; Salvador, M.J. Chemical composition of the essential oil from the leaves of Anaxagorea brevipes (Annonaceae) and evaluation of its bioactivity. Nat. Prod. Res. 2016, 30, 1088–1092. [CrossRef] [PubMed]

16. Teles, R.D.M.; Filho, V.E.M.; Souza, A.C.F. De Chemical Characterization and Larvicidal Activity of Essential Oil from Aniba dukeii Kostermanns against Aedes aegypti. Int. J. Life-Sci. Sci. Res. 2017, 3, 1495–1499. [CrossRef]

17. Sarrazin, S.; Oliveira, R.; Maia, J.; Mourão, R. Antibacterial Activity of the Rosewood (Aniba rosaeodora and A. parviflora) Linalool-rich Oils from the Amazon. Eur. J. Med. Plants 2016, 12, 1–9. [CrossRef]

18. Da Silva, J.K.R.; Maia, J.G.S.; Dosoky, N.S.; Setzer, W.N. Antioxidant, antimicrobial, and cytotoxic properties of Aniba parviflora essential oils from the Amazon. Nat. Prod. Commun. 2016, 11, 1025–1028. [CrossRef]

19. Teles, A.M.; Silva-Silva, J.V.; Fernandes, J.M.P.; da Calabrese, K.S.; Abreu-Silva, A.L.; Marinho, S.C.; Mouchrek, A.N.; Filho, V.E.M.; Almeida-Souza, F. Aniba rosaeodora (Var. amazonica Ducke) Essential Oil: Chemical Composition, Antibacterial, Antioxidant and Antitrypanosomal Activity. Antibiotics 2020, 10, 24. [CrossRef]

20. Cascas, M.M.; Silva, S.G.; Cruz, J.N.; Santana de Oliveira, M.; Oliveira, J.; de Moraes, A.A.B.; da Costa, F.A.M.; da Costa, K.S.; Diniz do Nascimento, L.; Helena de Aguiar Andrade, E. First report on the Annona exsouca DC. Essential oil and in silico identification of potential biological targets of its major compounds. Nat. Prod. Res. 2021, 1–4. [CrossRef]

21. Sandra, R.N.A.M.; de Antonio, A.M.F.; da Habeld, N.R.C.; dos Francisco, S.S.; dos Ricardo, C.S.; Jacqueline, A.T.; Vany, P.F.; de Ana, C.G.R.M.; Pedro, R.E.R.; de Andreina, G.A.L.; et al. Chemical profile, antimicrobial activity, toxicity on Artemia salina and anti-acetylcholinesterase enzyme essential oil from Bauhinia unguulata L. (Fabaceae) leaves. J. Med. Plants Res. 2016, 10, 442–449. [CrossRef]

22. Soares, E.R.; Da Silva, F.M.A.; De Almeida, R.A.; De Lima, B.R.; Koolen, H.H.F.; Lorenço, C.C.; Salvador, M.J.; Flach, A.; Da Costa, L.A.M.A.; De Souza, A.Q.L.; et al. Chemical composition and antimicrobial evaluation of the essential oils of Bauhinia pleiosperma Maas. Nat. Prod. Res. 2015, 29, 1285–1288. [CrossRef]

23. Alcântara, J.M.; De Lucena, J.M.V.M.; Facanali, R.; Marques, M.O.M.; Da Paz Lima, M. Chemical composition and bactericidal activity of the essential oils of four species of Amazon Piper growing in brazilian amazon. Nat. Prod. Commun. 2017, 12, 619–622. [CrossRef]

24. Bay, M.; Souza de Oliveira, J.V.; Sales Junior, P.A.; Fonseca Murta, S.M.; Rogério dos Santos, A.; dos Santos Bastos, I.; Puccinellli Orlandi, P.; Teixeira de Sousa Junior, P. In Vitro Trypanocidal and Antibacterial Activities of Essential Oils from Four Species of the Family Annonaceae. Chem. Biodivers. 2019, 16, e1900359. [CrossRef] [PubMed]

25. Oliveira, E.S.C.; Amaral, A.C.F.; Lima, E.S.; Jefferson, J.R. Chemical composition and biological activities of Bocageopsis multiflora essential oil. J. Essent. Oil Res. 2014, 26, 161–165. [CrossRef]

26. Deus, R.J.A.; Alves, C.N.; Arruda, M.S.P. Avaliação do efeito antifúngico do óleo resina e do óleo essencial de copaíba (Copaifera multijuga Hayne). Rev. Bras. Plantas Med. 2011, 13, 1–7. [CrossRef]

27. Rodrigues, L.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Bizzo, H.R.; Corte-Real, S.; Alviano, D.S.; Alviano, C.S.; Rosa, M.S.S.; Vermelho, A.B. In vitro cytotoxic effects of the essential oil from Croton caujara (red sacaca) and its major constituent 7-hydroxycalamenene against Leishmania chagasi. BMC Complement. Altern. Med. 2013, 13, 249. [CrossRef] [PubMed]

28. da Silva, J.K.R.; da Trindade, R.C.S.; Maia, J.G.S.; Setzer, W.N. Chemical Composition, Antioxidant, and Antimicrobial Activities of Essential Oils of Endlicheria aromata (Lauraceae) from the Amazon. Nat. Prod. Commun. 2016, 11, 695–698. [CrossRef]

29. Aranha, E.S.P.; de Azevedo, S.G.; dos Reis, G.G.; Silva Lima, E.; Machado, M.B.; de Vasconcellos, M.C. Essential oils from Eugenia spp.: In vitro antiproliferative potential with inhibitory action of metalloproteinases. Ind. Crops Prod. 2019, 141, 111736. [CrossRef]

30. da Silva, J.; Andrade, E.; Barreto, L.; da Silva, N.; Ribeiro, A.; Montenegro, R.; Maia, J. Chemical Composition of Four Essential Oils of Eugenia from the Brazilian Amazon and Their Cytotoxic and Antioxidant Activity. Medicines 2017, 4, 51. [CrossRef]

31. de Franco, C.J.P.; Ferreira, O.O.; Antônio Barbosa de Moraes, Â.; Varela, E.L.P.; Do Nascimento, L.D.; Pisciáro, S.; de Oliveira, M.S.; de Andrade, E.H.A. Chemical composition and antioxidant activity of essential oils from Eugenia patrisii vahl, e. Punicifolia (kunth) dc., and myrcia tomentosa (aubl.) dc., leaf of family myrtaceae. Molecules 2021, 26, 3292. [CrossRef]

32. Jerônimo, L.B.; da Costa, J.S.; Pinto, L.C.; Montenegro, R.C.; Setzer, W.N.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Antioxidant and Cytotoxic Activities of Myrtaceae Essential Oils Rich in Terpenoids from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae). Evid.-Based Complement Altern. Med. 2015, 2015, 1–8. [CrossRef]
34. da Costa, J.S.; Barroso, A.S.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Seasonal and antioxidant evaluation of essential oil from Eugenia uniflora L., curzerene-rich, thermally produced in situ. *Biomolecules* 2020, 10, 328. [CrossRef] [PubMed]

35. Meira, C.S.; Menezes, L.R.A.; dos Santos, T.B.; Macedo, T.S.; Fontes, J.E.N.; Costa, E.V.; Pinheiro, M.L.B.; da Silva, T.B.; Teixeira Guimarães, E.; Soares, M.B.P. Chemical composition and antiparasitic activity of essential oils from leaves of Guatteria friesiana and Guatteria ppongus (Annonaceae). *J. Essent. Oil Res.* 2017, 29, 156–162. [CrossRef]

36. Costa, R.G.A.; da Anunciação, T.A.; de Araujo, M.; Souza, C.A.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Soares, M.B.P.; da Silva, F.M.A.; Koolen, H.H.F.; et al. In vitro and in vivo growth inhibition of human acute promyelocytic leukemia HL-60 cells by Guatteria megalophylla Diels (Annonaceae) leaf essential oil. *Biomed. Pharmacother.* 2020, 122, 109713. [CrossRef]

37. Noriega, P.; Guerrini, A.; Sacchetti, G.; Grandini, A.; Ankuash, E.; Manfredini, S. Chemical composition and biological activity of five essential oils from the Ecuadorian Amazon rain forest. *Molecules* 2019, 24, 1637. [CrossRef] [PubMed]

38. da Silva Júnior, O.S.; de Franco, C.J.P.; de Moraes, A.A.B.; Cruz, J.N.; da Costa, K.S.; do Nascimento, L.D.; Andrade, E.H.d.A. In silico analyses of toxicity of the major constituents of essential oils from two *Ipomoea* L. species. *Toxicon* 2021, 195, 111–118. [CrossRef]

39. Martins, E.R.; Díaz, I.E.C.; Paciencia, M.L.B.; Fana, S.A.; Morais, D.; Eberlin, M.N.; Silva, J.S.; Silveira, E.R.; Barros, M.P.; Suffredini, I.B. Interference of Seasonal Variation on the Antimicrobial and Cytotoxic Activities of the Essential Oils from the Leaves of Iryanthera polynnea in the Amazon Rain Forest. *Chem. Biodivers.* 2019, 16, e1900374. [CrossRef] [PubMed]

40. Sarrazin, S.L.F.; Oliveira, R.B.; Barata, L.E.S.; Mourão, R.H.V. Chemical composition and antimicrobial activity of the essential oil of Lippia grandis Scher (Verbenaceae) from the western amazon. *Food Chem.* 2012, 134, 1474–1478. [CrossRef]

41. Mar, J.M.; Silva, L.S.; Azevedo, S.G.; França, L.P.; Goes, A.F.F.; dos Santos, A.L.; de Bezerra, J.A.; de Caisa, S.; Nunomura, R.; Machado, M.B.; et al. Lippia origanoides essential oil: An efficient alternative to control *Aedes aegypti*, *Tetranychus urticae* and Cerataphis lataniae. *Ind. Crops Prod.* 2018, 116, 292–297. [CrossRef]

42. Da Silva, J.K.; Da Trindade, R.; Moreira, E.C.; Maia, J.G.S.; Dosoky, N.S.; Miller, R.S.; Cseke, L.J.; Setzer, W.N. Chemical diversity, biological activity, and genetic aspects of three *Ocotea* species from the Amazon. *Int. J. Mol. Sci.* 2017, 18, 1081. [CrossRef]

43. da Silva, V.D.; Almeida-Souza, F.; Teles, A.M.; Neto, P.A.; Barbosa, C.; et al. Chemical Composition and In Vitro Antioxidant, Cytotoxic, Antimicrobial, and Larvicidal Activities of the Essential Oil of *Mentha piperita* L. *Lamiaceae Sci. World J.* 2017, 4927214.

44. Luz, T.R.S.A.; Leite, J.A.C.; de Mesquita, L.S.S.; Bezerra, S.A.; Silva, F.M.A.; de Mesquita, J.W.C.; Edilene Carvalho Gomes, R.; Vilanova, C.M.; de Ribeiro, M.N.S.; do Amaral, F.M.M.; et al. Seasonal variation in the chemical composition and biological activity of the essential oil of Mesosphaerum suaveolens (L.) Kuntze. *Ind. Crops Prod.* 2020, 153, 112600. [CrossRef]

45. Scalvenzi, L.; Grandini, A.; Spagnoletti, A.; Tacchini, M.; Neill, D.; Ballesteros, J.L.; Sacchetti, G.; Guerrini, A. Myrcia splendens (Sw.) DC. (syn. *M. fallax* (Rich.) DC.) (myrtaceae) essential oil from amazonian Ecuador: A chemical characterization and bioactivity profile. *Molecules* 2017, 22, 1163. [CrossRef]

46. Da Silva, J.K.R.; Maia, J.G.S.; Dosoky, N.S.; Setzer, W.N. Chemical profile and in vitro biological activities of essential oils of *Nectandra puberula* and *N. cuspidata* from the Amazon. *Nat. Prod. Commun.* 2017, 12, 131–134. [CrossRef]

47. Figueiredo, P.L.B.; Silva, S.G.; Nascimento, L.D.; Ramos, A.R.; Setzer, W.N.; Da Silva, J.K.R.; Andrade, E.H.A. Seasonal study of methyleugenol chemotype of *Ocimum campechianum* essential oil and its fungicidal and antioxidant activities. *Nat. Prod. Commun.* 2018, 13, 1055–1058. [CrossRef]

48. da Silva, V.D.; Almeida-Souza, F.; Teles, A.M.; Neto, P.A.; Mondégo-Oliveira, R.; Mendes Filho, N.E.; Taniwaki, N.N.; Abrué-Silva, A.L.; da Calabrese, K.S.; Mouchrek Filho, V.E. Chemical composition of *Ocimum canum* Sims. essential oil and the antimicrobial, antiprototozoal and ultrastructural alterations it induces in Leishmania amazonensis promastigotes. *Ind. Crops Prod.* 2018, 119, 201–208. [CrossRef]

49. Da Silva, J.K.; Da Trindade, R.; Moreira, E.C.; Maia, J.G.S.; Dosoky, N.S.; Miller, R.S.; Cseke, L.J.; Setzer, W.N. Chemical diversity, biological activity, and genetic aspects of three *Ocotea* species from the Amazon. *Int. J. Mol. Sci.* 2017, 18, 1081. [CrossRef]

50. de Lima, B.R.; da Silva, F.M.A.; Soares, E.R.; da Almeida, R.A.; da Silva Filho, F.A.; Pereira Junior, R.C.; Hernandez Tasco, Á.J.; Salvador, M.J.; Koolen, H.H.F.; de Souza, A.D.L.; et al. Chemical composition and antimicrobial activity of the essential oils of Onychopetalum amazonicum R.E.Fr. *Nat. Prod. Res.* 2016, 30, 2356–2359. [CrossRef]

51. Da Silva, J.K.R.; Pinto, L.C.; Burbano, R.M.R.; Montenegro, R.C.; Andrade, E.H.A.; Maia, J.G.S. Composition and cytotoxic and antioxidant activities of the oil of *Piper aequale* Vahl. *Lipids Health Dis.* 2016, 15, 1–6. [CrossRef]

52. Souto, R.N.P.; Harada, A.Y.; Andrade, E.H.A.; Maia, J.G.S. Insecticidal Activity of *Piper* Essential Oils from the Amazon Against the Fire Ant *Solenopsis saevissima* (Smith) (*Hymenoptera: Formicidae*). *Neotrop. Entomol.* 2012, 41, 510–517. [CrossRef]
54. do Nascimento, L.D.; Almeida, L.Q.; de Sousa, E.M.P.; Costa, C.M.L.; da Costa, K.S.; de Aguiar Andrade, E.H.; de Faria, L.J.G.; de Aguiar Andrade, E.H. Supercritical CO2 extraction to obtain Lippia thymoides Mart. & Schauer (Verbenaceae) essential oil rich in thymol and evaluation of its antimicrobial activity. Molecules 2021, 27, 4373. [CrossRef] [PubMed]

55. Sanini, C.; Massaroli, A.; Krinski, D.; Butnariu, A.R. Essential oil of spiked pepper, Piper aduncum L. (Piperaceae), for the control of caterpillar soybean looper, Chrysodeixis includens Walker (Lepidoptera: Noctuidae). Rev. Bras. Bot. 2017, 40, 399–404. [CrossRef]

56. Araujo, C.A.; da Camara, C.A.G.; de Moraes, M.M.; de Vasconcelos, G.J.N.; Pereira, M.R.; Zartman, C.E. Chemical composition of essential oils from four Piper species, differentiation using multivariate analysis and antioxidant activity. Nat. Prod. Res. 2021, 36, 436–439. [CrossRef] [PubMed]

57. França, L.P.; de Moraes, A.A.B.; da Costa, K.S.; Pereira, M.A.; de Jesus Chaves Neto, A.M.; et al. Phytochemical profile, antioxidant activity, inhibition of acetylcholinesterase and interaction mechanism of the major components of the Piper divaricatum essential oil obtained by supercritical CO2. J. Supercrit. Fluids 2019, 112, 353–362. [CrossRef]

58. Barbosa, A.T.; da Silva, V.H.N.; da Silva, B.Y.K.; da Lopes, A.S.N.; Guesdon, I.R.; Maia, P.J.S.; Abegg, M.A.; Corrêa, G.M.; da Trindade, R.C.S.; Xavier, J.K.A.M.; Setzer, W.N.; Maia, J.G.S.; da Silva Carneiro, J.; Figueiredo, P.B.L. Seasonal and Circadian Rhythm of a 1,8-Cineole Chemotype Essential Oil of Calycolpus goethanus from Marajó Island, Brazilian Amazon. Nat. Prod. Commun. 2020, 15. [CrossRef]

59. de Oliveira, M.S.; de Cruz, J.N.; Gomes Silva, S.; da Costa, W.A.; de Sousa, S.H.B.; Bezerra, F.W.F.; Teixeira, E.; da Silva, N.J.N.; de Aguiar Andrade, E.H.; de Jesus Chaves Neto, A.M.; et al. Phytochemical profile, antioxidant activity, inhibition of acetylcholinesterase and interaction mechanism of the major components of the Piper divaricatum essential oil obtained by supercritical CO2. J. Supercrit. Fluids 2019, 145, 74–84. [CrossRef]

60. Rezaeian, S.; Pourianfar, H.R.; Janpoor, J. Antioxidant properties of several medicinal plants growing wild in northeastern Iran. Pelagia Res. Libr. 2015, 3, 65–68. [CrossRef]
75. Noriega, P.; Ballesteros, J.; De la Cruz, A.; Veloz, T. Chemical Composition and Preliminary Antimicrobial Activity of the Hydroxylated Sesquiterpenes in the Essential Oil from Piper barbatum Kunth Leaves. *Plants* **2020**, *9*, 211. [CrossRef] [PubMed]

76. Rondón, M.E.; Velasco, J.; Cornejo, X.; Fernández, J.; Morroco, V. Chemical composition and antibacterial activity of Piper lenticellatum C.D.C essential oil collected in Ecuador. *J. Appl. Pharm. Sci.* **2016**, *6*, 156–159. [CrossRef]

77. da Silva, T.K.; Borges, B.G.; de Freitas, A.S.; de Soares, M.G.O.; Freitas, E.J.; Alcantra, E.; Figueiredo, J.R.M. Atividade antifúngica in vitro de propólis sobre Colletotrichum spp. DO ABACATE. *Rev. DA Univ. Vol. Da Rio Verde* **2018**, *16*, 1–6. [CrossRef]

78. Tedila, H.; Assefa, A.; Hajj, F. Candidiasis and opportunistic mycosis in human. *Nov. Res. Microbiol.* **J.** **2019**, *3*, 190–203. [CrossRef]

79. da-Taisan, W.A.; Bahkali, A.H.; Elgorba, M.A.; El-Metw, A.M. Effective Influence of Essential Oils and Microelements against *Sclerotinia sclerotiorum*. *Int. J. Pharmacol.* **2014**, *10*, 275–281. [CrossRef]

80. dos Santos, G.R.; Brum, R.B.C.S.; de Castro, H.G.; Gonçalves, C.G.; Fidelis, R.R. Effect of essential oils of medicinal plants on leaf blotch in Tanzania grass. *Rev. Cienc. Agron.* **2015**, *44*, 587–593. [CrossRef]

81. da Silva, J.; Silva, J.; Nascimento, S.; da Luz, S.; Meireles, E.; Alves, C.; Ramos, A.; Maia, J. Antifungal Activity and Computational Study of Constituents from Piper Divaricatum Essential Oil against Fusarium Infection in Black Pepper. *Molecules* **2014**, *19*, 17926–17942. [CrossRef]

82. da Silva, J.K.R.; Andrade, E.H.A.; Guimarães, E.F.; Maia, J.G.S. Essential Oil Composition, Antioxidant Capacity and Antifungal Activity of Piper divaricatum. *Nat. Prod. Commun.* **2010**, *5*. [CrossRef]

83. Prieto, J.A.; Pabón, L.C.; Patiño, O.J.; Delgado, W.A.; Cuca, L.E. Constituyentes Químicos, Actividad Insecticida y Antifúngica de los Aceites Esenciales de Hojas de dos Especies Colombianas del Género Ocotea (Lauraceae). *Rev. Colomb. Química* **2010**, *39*, 199–209.

84. da Silva, J.K.R.; Andrade, E.H.A.; Kato, M.J.; Carreira, L.M.M.; Guimarães, E.F.; Maia, J.G.S. Antioxidant capacity and larvicidal and antifungal activities of essential oils and extracts from Piper krukoffii. *Nat. Prod. Commun.* **2011**, *6*, 1361–1366. [CrossRef] [PubMed]

85. da Silva, J.K.R.; Silva, N.N.S.; Santana, J.F.S.; Andrade, E.H.A.; Maia, J.G.S.; Setzer, W.N. Phenylpropanoid-rich essential oils of piper species from the amazon and their antifungal and anti-cholinesterase activities. *Nat. Prod. Commun.* **2016**, *11*, 1907–1911. [CrossRef] [PubMed]

86. Sertel, S.; Eichhorn, T.; Plinkert, P.K.; Efferth, T. Cytotoxicity of Thymus vulgaris essential oil towards human oral cavity squamous cell carcinoma. *Anticancer Res.* **2011**, *31*, 81–87. [PubMed]

87. Mesquita, K.D.S.M.; de Feitosa, B.S.; Cruz, J.N.; Ferreira, O.O.; de Franco, C.J.P.; Cascaes, M.M.; de Oliveira, M.S.; de Andrade, E.H.A. Chemical composition and preliminary toxicity evaluation of the essential oil from peperomia circinnata link var. Cincinnata. (piperaceae) in Artemia salina leach. *Molecules* **2021**, *26*, 7359. [CrossRef]

88. Castro, A.L.G.; Cruz, J.N.; Sodré, D.F.; Correa-Barbosa, J.; Azonsivo, R.; de Oliveira, M.S.; de Sousa Siqueira, J.E.; da Rocha Galucio, N.C.; de Oliveira Bahia, M.; Burbano, R.M.R. et al. Evaluation of the genotoxicity and mutagenicity of isoeleutherin and eleutherin isolated from Eleutherine plicata herb. using bioassays and in silico approaches. *Arab. J. Chem.* **2021**, *14*, 103084. [CrossRef]

89. da Galucio, N.C.R.; de Moysés, D.A.; Pina, J.R.S.; Marinho, P.S.B.; Gomes Júnior, P.C.; Cruz, J.N.; Vale, V.V.; Khayat, A.S.; do Marinho, A.M.R. Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from *Luffa operculata* (L.) Cogn. *Arab. J. Chem.* **2022**, *15*, 103589. [CrossRef]

90. Figueiredo, P.L.B.; Pinto, L.C.; da Costa, J.S.; da Silva, A.R.C.; Mourão, R.H.V.; Montenegro, R.C.; da Silva, J.K.R.; Maia, J.G.S. Composition, antioxidant capacity and cytotoxic activity of *Eugenia uniflora* L. chemotype-oils from the Amazon. *J. Ethnopharmacol.* **2019**, *232*, 30–38. [CrossRef]

91. Morales, A.; Rojas, J.; Moujir, L.M.; Araujo, L.; Rondón, M. Chemical composition, antimicrobial and cytotoxic activities of piper hispidum SW. Essential oil collected in venezuela. *J. Appl. Pharm. Sci.* **2013**, *3*, 16–20. [CrossRef]

92. do N Fontes, J.E.; Ferraz, R.P.C.; Britto, A.C.S.; Britto, A.C.S.; de Barros, N.B.; Facundo, J.B.; Khayat, A.S.; do Marinho, A.M.R. Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from *Luffa operculata* (L.) Cogn. *Arab. J. Chem.* **2022**, *15*, 103589. [CrossRef]

93. Martins, E.R.; Díaz, I.E.C.; Paciencia, M.L.B.; Frana, S.A.; Marques, M.O.M.; de Morais, D.R.; Eberlin, M.N.; Suffredini, I.B. Amazon climatic factors driving terpene composition of *Iryanthora polyneura* Ducek in terra-firme forest: A statistical approach. *PLoS ONE* **2019**, *14*, 1–14. [CrossRef]

94. Meneguetti, D.U.D.O.; Lima, R.A.; Macedo, S.R.A.; De Barros, N.B.; Facundo, J.B.; Militão, J.S.L.T.; Nicolette, R.; Facundo, V.A. Plantas da amazônia brasileira com potencial leishmanicida in vitro. *Rev. Patol. Trop. J. Trop. Pathol.* **2015**, *44*, 359. [CrossRef]

95. Junior, G.Z.; Massago, M.; Teston, A.P.M.; Morey, A.T.; Toledo, M.J.O. Efficacy of some essential oils in mice infected with trypanosoma cruzi. *Trop. J. Pharm. Res.* **2017**, *16*, 1307–1316. [CrossRef]

96. Santos, A.O.; Santin, A.C.; Cortez, L.E.R.; Ueda-Nakamura, T.; Dias-Filho, B.P.; Nakamura, C.V. Antileishmanial activity of an essential oil from the leaves and flowers of *Achillea millefolium*. *Ann. Trop. Med. Parasitol.* **2010**, *104*, 475–483. [CrossRef] [PubMed]

97. Monzote, L.; Alarcon, O.; Setzer, W.N. Antiprotozoal activity of essential oils. *Agric. Conspec. Sci.* **2012**, *77*, 167–175.

98. Da Silva, B.J.M.; Hage, A.A.P.; Silva, E.O.; Rodrigues, A.P.D. Medicinal plants from the Brazilian Amazonian region and their antileishmanial activity: A review. *J. Integr. Med.* **2018**, *16*, 211–222. [CrossRef]
99. Araújo, M.J.C.; Câmara, C.A.G.; Born, F.S.; Moraes, M.M.; Badji, C.A. Acaricidal activity and repellency of essential oil from Piper aduncum and its components against Tetranychus urticae. *Exp. Appl. Acarol.* **2012**, *57*, 139–155. [CrossRef]

100. Mossa, A.T.H. Green Pesticides: Essential oils as biopesticides in insect-pest management. *J. Environ. Sci. Technol.* **2016**, *9*, 354–378. [CrossRef]

101. Krinski, D.; Foerster, L.A. Toxicity of essential oils from leaves of Piperaceae species in rice stalk stink bug eggs, Tibraca limbavitventris (Hemiptera: Pentatomidae). *Ciência Agrotecnologia* **2016**, *40*, 676–687. [CrossRef]