ON KNOTS WITH INFINITE SMOOTH CONCORDANCE ORDER

ADAM SIMON LEVINE

ABSTRACT. We use the Heegaard Floer obstructions defined by Grigsby, Ruberman, and Strle to show that forty-six of the sixty-seven knots through eleven crossings whose concordance orders were previously unknown have infinite concordance order.

Let K be an oriented knot in S^3. If K bounds a smoothly embedded disk in D^4, we say that K is (smoothly) slice. Two knots K, K' are said to be (smoothly) concordant if $K \# K'$ is slice, where K' denotes the mirror of K. The set of concordance classes of knots forms a group C_1 under the connect sum operation with identity the unknot. The concordance order of a knot K is the order of K in C_1. The structure of the torsion in C_1 is of considerable interest; see, for instance, Livingston-Naik [6, 7] and Jabuka-Naik [4].

Let $Y_K = \Sigma_2(K)$ be the double branched cover of K, and let \tilde{K} be the inverse image of K in Y. Grigsby, Ruberman, and Strle [3] defined numerical invariants $D_n(K)$ and $T_n(K)$ ($n \in \mathbb{N}$) coming from the Heegaard Floer homology of Y_K and the knot Floer homology of \tilde{K}. They proved:

Theorem 1. Let K be a knot in S^3. Let p be prime, and suppose that p^m is the largest power of p that divides $\det(K)$. If K has finite concordance order, then for each integer $0 \leq e \leq \left\lfloor \frac{m+1}{2} \right\rfloor$, we have $D_{pe}(K) = T_{pe}(K) = 0$.

In practice, we are usually interested in $D_p(K)$ and $T_p(K)$, where p is 1 or a prime that divides $\det(K)$, so we restrict our discussion to this case.

According to Livingston's database KnotInfo [2], the smooth concordance orders of sixty-seven knots with up to eleven crossings, listed in Table[1] were previously unknown. We show here that forty-six of these knots, listed in Tables[2] and[3] have at least one nonzero D_p invariant and hence have infinite concordance order. For the remaining knots, all of the relevant D_p invariants vanish, so the concordance orders of these knots remains unknown. The T_p invariants for several of these knots
can be obtained using the author’s computations of \(\widehat{\text{HFK}}(Y_K, \tilde{K}) \) \[5\], but we do not obtain any new concordance information in this manner.

For the remainder of this paper, we describe the techniques used to compute the \(D_p \) and \(T_p \) invariants for the knots considered here.

Let us briefly recall the definition of these invariants in the case where \(H^2(Y_K; \mathbb{Z}) \) is cyclic. (For the general case, see \[3\, \text{Definition 4.1}]\.) Let \(s_0 \in \text{Spin}^c(Y_K) \) be the so-called canonical spin\(^c\) structure on \(Y_K \), uniquely characterized by the property that \(c_1(s_0) = 0 \). Recall that \(\text{Spin}^c(Y_K) \) is an affine space for \(H^2(Y_K; \mathbb{Z}) \), so we may identify \(\text{Spin}^c(Y_K) \) with \(H^2(Y_K; \mathbb{Z}) \) via the identification \(s \mapsto c_1(s) \). Let \(G_m \) be the unique order-\(p \) subgroup of \(H^2(Y_K; \mathbb{Z}) \). The invariants \(D_p(K) \) and \(T_p(K) \) are then defined as

\[
D_p(K) = \sum_{s \in s_0 + G_p} d(Y_K, s)
\]

\[
T_p(K) = \sum_{s \in s_0 + G_p} \tau(Y_K, \tilde{K}, s).
\]

Here \(d(Y_K, s) \) is the correction term for \(\text{HF}^+(Y_K, s) \), and \(\tau(Y_K, \tilde{K}, s) \) is the \(\tau \)-invariant for \(\widehat{\text{HFK}}(Y_K, \tilde{K}, s) \). (See Ozsváth-Szabó \[8\, \text{[11]}\] for the definitions of \(d \) and \(\tau \).

In many cases, the results of Ozsváth and Szabó \[9\, 12\, 13\] may be used to compute the correction terms \(d(Y, s) \) combinatorially. Given a projection of \(K \), let \(G \) be its Goeritz matrix (defined in \[12\, \text{section 3}]\). Let \(|G| \) denote the rank of \(G \). The double cover \(Y_K \) bounds a 4-manifold \(X_G \) whose intersection form on \(H_2 \), \(Q = Q_{X_G} \), is given by \(G \) (with respect to a basis of spheres). Let \(\text{Char}(G) \subset H^2(X_G; \mathbb{Z}) \) denote the set of characteristic vectors for \(Q \), i.e., vectors \(\alpha \in H^2(X_G; \mathbb{Z}) \) such that

9_{30}	9_{33}	9_{44}	10_{58}	10_{60}	10_{91}	10_{102}	10_{119}
10_{135}	10_{158}	10_{164}	11_{a_4}	11_{a_5}	11_{a_8}	11_{a_{11}}	11_{a_{24}}
11_{a_26}	11_{a_30}	11_{a_{38}}	11_{a_{44}}	11_{a_{47}}	11_{a_{52}}	11_{a_{56}}	11_{a_{67}}
11_{a_{72}}	11_{a_{76}}	11_{a_{80}}	11_{a_{88}}	11_{a_{98}}	11_{a_{104}}	11_{a_{109}}	11_{a_{112}}
11_{a_{126}}	11_{a_{135}}	11_{a_{160}}	11_{a_{167}}	11_{a_{168}}	11_{a_{170}}	11_{a_{187}}	11_{a_{189}}
11_{a_{233}}	11_{a_{249}}	11_{a_{257}}	11_{a_{265}}	11_{a_{270}}	11_{a_{272}}	11_{a_{287}}	11_{a_{288}}
11_{a_{289}}	11_{a_{300}}	11_{a_{303}}	11_{a_{315}}	11_{a_{350}}	11_{n_{12}}	11_{n_{34}}	11_{n_{45}}
11_{n_{48}}	11_{n_{53}}	11_{n_{55}}	11_{n_{85}}	11_{n_{100}}	11_{n_{110}}	11_{n_{114}}	11_{n_{130}}
11_{n_{145}}	11_{n_{157}}	11_{n_{165}}					

\text{Table 1. Knots through eleven crossings with unknown concordance order.}
Knot K	$\det(K)$	Nonzero GRS invariants
9_{30}	53	$D_{53} = 4$
9_{33}	61	$D_{61} = 4$
10_{58}	65	$D_{13} = 4$
10_{60}	85	$D_{17} = 4$
10_{102}	73	$D_{73} = -12$
10_{119}	101	$D_{101} = -16$
$11a_{4}$	97	$D_{97} = -24$
$11a_{8}$	117	$D_{13} = -4$
$11a_{11}$	113	$D_{113} = 12$
$11a_{24}$	157	$D_{157} = 12$
$11a_{26}$	157	$D_{157} = 12$
$11a_{30}$	149	$D_{149} = 12$
$11a_{52}$	137	$D_{137} = 16$
$11a_{56}$	109	$D_{109} = -8$
$11a_{67}$	125	$D_{25} = -4$
$11a_{76}$	145	$D_{29} = -4$
$11a_{80}$	137	$D_{137} = -12$
$11a_{88}$	101	$D_{101} = -8$
$11a_{126}$	145	$D_{5} = 4, D_{29} = 4$
$11a_{160}$	145	$D_{29} = -4$
$11a_{167}$	113	$D_{113} = 12$
$11a_{170}$	185	$D_{37} = -4$
$11a_{189}$	149	$D_{149} = -12$
$11a_{233}$	173	$D_{101} = 16$
$11a_{249}$	117	$D_{13} = -4$
$11a_{257}$	97	$D_{97} = -8$
$11a_{265}$	109	$D_{109} = 24$
$11a_{270}$	137	$D_{137} = 12$
$11a_{272}$	149	$D_{149} = 12$
$11a_{287}$	181	$D_{181} = -12$
$11a_{288}$	205	$D_{5} = 4, D_{41} = 4$
$11a_{289}$	145	$D_{29} = 4$
$11a_{300}$	153	$D_{17} = -4$
$11a_{303}$	149	$D_{149} = 36$
$11a_{315}$	157	$D_{157} = 12$
$11a_{350}$	185	$D_{5} = 4, D_{37} = 4$

Table 2. Alternating knots with non-vanishing Grigsby-Ruberman-Strle D_p invariants.
Knot \(K \)	\(\det(K) \)	Nonzero GRS invariants
9_{44} | 17 | \(D_{17} = 4 \)
10_{135} | 135 | \(D_{37} = 4 \)
11_{n_{12}} | 13 | \(D_{13} = -8 \)
11_{n_{48}} | 29 | \(D_{29} = -8 \)
11_{n_{53}} | 37 | \(D_{37} = -8 \)
11_{n_{55}} | 61 | \(D_{61} = 12 \)
11_{n_{110}} | 41 | \(D_{41} = -12 \)
11_{n_{114}} | 53 | \(D_{53} = -4 \)
11_{n_{130}} | 53 | \(D_{53} = 12 \)
11_{n_{165}} | 85 | \(D_{17} = -4 \)

Table 3. Non-alternating knots with non-vanishing Grigsby-Ruberman-Strle \(D_p \) invariants.

\[\langle \alpha, v \rangle \equiv Q(v, v) \pmod{2} \] for every \(v \in H_2(X_G; \mathbb{Z}) \). The restriction map \(i^*: H^2(X_G) \to H^2(Y_K) \) partitions \(\text{Char}(G) \) into equivalence classes \(\text{Char}(G, s) \) corresponding to the spin\(^c\) structures on \(Y_K \). Given certain hypotheses on \(G \), including that \(G \) is negative-definite, Ozsváth and Szabó [9, Corollary 1.5] proved that the correction terms for HFK\(^+\)(\(Y_K \)) are given by the formula

\[
(1) \quad d(Y_K, s) = \max_{\alpha \in \text{Char}(G, s)} \frac{\alpha^2 + |G|}{4}.
\]

Ozsváth and Szabó provide an algorithm for finding the vectors in each equivalence class that realize this maximum. Moreover, since \(H^2(Y_K; \mathbb{Z}) \cong \text{coker}(G) \), we may easily identify the group structure on \(\text{Spin}^c(Y_K) \) (specifically, which spin\(^c\) structures are in the special subgroup \(G_p \)) using the Smith normal form for \(G \).

As shown in [12], Equation (1) holds whenever \(G \) is computed from an alternating projection. More generally, if \(K \) admits a projection that is alternating except in a region that consists of left-handed twists, Ozsváth and Szabó [13] show how to use Kirby calculus on \(X_G \) to obtain a matrix \(\tilde{G} \) for \(Q \) that satisfies the correct hypotheses. (See also Jabuka-Naik [4] for a concise explanation.) All of the non-alternating knots in Table 3 satisfy this hypothesis, so we may compute the \(D_p \) invariants as described above.

Finally, to compute the \(T_p \) invariants of a knot, one must compute the integers \(\tau(Y_K, \tilde{K}, s) \) associated to the spectral sequence from

\(^1\)That \(K = 11_{n_{12}} \) has infinite concordance order also follows from the simpler fact that \(\tau(S^3, K) = 1 \), as was computed by Baldwin and Gillam [1].
When \(\widehat{\text{HFK}}(Y_K, \tilde{K}, s) \) and \(\widehat{\text{HF}}(Y_K, s) \) are sufficiently simple, one can sometimes determine \(\tau \) without knowing all the differentials in the spectral sequence. For instance, if \(\widehat{\text{HFK}}(Y_K, \tilde{K}, s) \) has rank 1 and \(\widehat{\text{HFK}}(Y_K, \tilde{K}, s) \) is supported on a single diagonal, \(\tau(Y_K, \tilde{K}, s) \) is equal to the Alexander grading of the nonzero group in Maslov grading \(d(Y_K, s) \). The author [5] has shown how to compute \(\text{HFK}(Y_K, \tilde{K}) \) (with coefficients in \(\mathbb{Z}/2 \)) for any knot \(K \) using grid diagrams and has computed the values of \(\tau \) for several of the non-alternating knots considered here (9\(_{44} \), 10\(_{135} \), 10\(_{158} \), 10\(_{164} \), 11\(_{100} \), and 11\(_{145} \)). However, the \(T_p \) invariants all vanish in these cases, so we do not obtain any new concordance information.

REFERENCES

[1] J. A. Baldwin and W. D. Gillam, Computations of Heegaard Floer knot homology, preprint, math/0610167.
[2] J. C. Cha and C. Livingston, KnotInfo: an online table of knot invariants, www.indiana.edu/~knotinfo.
[3] J. E. Grigsby, D. Ruberman, and S. Strle, Knot concordance and Heegaard Floer homology invariants in branched covers, preprint, math/0701460.
[4] S. Jabuka and S. Naik, Order in the concordance group and Heegaard Floer homology, Geom. Topol. 11 (2007), 979–994.
[5] A. S. Levine, Computing knot Floer homology in branched double covers, preprint to appear in Alg. Geom. Topol., math/0709.1427.
[6] C. Livingston and S. Naik, Obstructing four-torsion in the classical knot concordance group, J. Diff. Geom. 51 (1999), 1-12.
[7] C. Livingston and S. Naik, Knot concordance and torsion, Asian J. Math. 5 (2001), 161–168.
[8] P. S. Ozsváth and Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179–261.
[9] P. S. Ozsváth and Z. Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185-224.
[10] P. S. Ozsváth and Z. Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003), 225-254.
[11] P. S. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), 58–116.
[12] P. S. Ozsváth and Z. Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), 1-33.
[13] P. S. Ozsváth and Z. Szabó, Knots with unknotting number one and Heegaard Floer homology, Topol. 44 (2005), 705-745.

Department of Mathematics, Columbia University, New York, NY 10027

E-mail address: alevine@math.columbia.edu