Quantum information processing with large nuclear spins in GaAs semiconductors

Michael N. Leuenberger and Daniel Loss
Department of Physics and Astronomy, University of Basel
Klingelbergstrasse 82, 4056 Basel, Switzerland

Martino Poggio and David D. Awschalom
Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA
(March 22, 2002)

We propose an implementation for quantum information processing based on coherent manipulations of nuclear spins $I = 3/2$ in GaAs semiconductors. We describe theoretically an NMR method which involves multiphoton transitions and which exploits the non-equidistance of nuclear spin levels due to quadrupolar splittings. Starting from known spin anisotropies we derive effective Hamiltonians in a generalized rotating frame, valid for arbitrary I, which allow us to describe the non-perturbative time evolution of spin states generated by magnetic rf fields. We identify an experimentally accessible regime where multiphoton Rabi oscillations are observable. In the nonlinear regime, we find Berry phase interference effects.

PACS numbers: 76.60.-k, 42.65.-k, 03.67.-a

Recent advances in spintronics \cite{1} have shown that the coherent control of electron and nuclear spins in semiconductors is experimentally feasible, enabling in particular an all-optical NMR in GaAs, based on the hyperfine interaction between electrons and nuclei \cite{2,3}. Such a control of nuclear spins can also be achieved via electrical gates as recently demonstrated for GaAs heterostructures in the quantum Hall regime \cite{3}, or even via conventional NMR techniques directly accessing the nuclei \cite{4}. In the present work, we will show that such advances in coherent spin control have opened up the possibility to manipulate the nuclear spins I for the purpose of quantum information processing, thereby presenting a scheme that is based on ensembles of large spins $I > 1/2$ instead of qubits. Nuclear spins are ideal candidates for this purpose due to their long decoherence times.

An implementation of the Grover algorithm \cite{1} has recently been proposed for molecular magnets \cite{6}, based on a perturbative approach to the unitary Grover operations which encode and decode the information stored in the phases of small amplitudes a_m \cite{8}. An alternative version of Grover’s algorithm was presented in Refs. \cite{7,10} that is described by a Hamiltonian that lets a completely delocalized state of the form $\ket{\psi} = \sum_{m=-I}^{I} a_m \ket{m}$, in some basis states \ket{m} with equal occupation probabilities $|a_m|^2$, evolve into a wanted localized state \ket{M}, where $\ket{\psi}$ and \ket{M} are degenerate and have a finite overlap. The information is encoded in the energies of \ket{m}. In order to produce $\ket{\psi}$, we propose here a novel NMR scheme that allows us to generate any desired distribution of amplitudes a_m, being not restricted to small values. For this we specifically exploit the properties of GaAs nuclei where quadrupolar spin splitting results in spin anisotropies and thus in non-equidistant energy levels—being a necessary condition for our scheme. The theoretical problem then is to find one magnetic rf pulse—inducing a unitary time evolution of the spins—that produces the desired spin state $\ket{\psi}$ and a second rf pulse that lets $\ket{\psi}$ evolve into \ket{M}, given certain spin anisotropies and adjustable magnetic fields (see below). In a non-perturbative approach, we find an analytic solution to this problem, valid for arbitrary spin I. For the special case of GaAs with $I = 3/2$, we have confirmed our analytical results by exact numerics. In contrast to previous work \cite{6} our method also holds for vanishing detuning energies, which turns out to be essential to perform non-perturbative unitary operations, i.e. quantum computations (QCs). Once the control over $2I$ magnetic fields is established, the scheme proposed here allows for QC and quantum storage with a single pulse, provided that there is sufficient signal amplification due to the spin ensemble \cite{11}.

FIG. 1. Multiphoton transition schemes for the coherent population of the I_x eigenstates \ket{m} of a nuclear spin $I = 3/2$.

(a) Quantum computation (QC) scheme: The frequencies ω_k of the fields H_k are red (- -) and blue (- -) detuned. Diagrams containing blue detunings are negligible for large quadrupolar splitting, i.e. $A \gg \hbar \omega_k \geq 0$. (b) Rabi oscillation (RO) scheme: The magnetic fields $H_k' \cos(\omega_k' t + \Phi_k')$, $k = 1, 2, 3$, give rise to k-photon RO.
As a first step towards this goal, it will be useful to generate and monitor multiphoton Rabi oscillations, as we describe in detail below. Finally, we show that oscillating quadratic transverse spin terms, which can be generated by optical pulses in GaAs [3], give rise to Berry phase oscillations [3] in the transition probabilities.

In the following we mainly focus on a nuclear spin of length $I = 3/2$, as appropriate for GaAs, but indicate its generalization to arbitrary I. Our nuclear spin system is described by the Hamiltonian $\mathcal{H}_0 = \mathcal{H}_Z + \mathcal{H}_Q$, consisting of the nuclear Zeeman energy $\mathcal{H}_Z = -g_N\mu_N H_I z$, $g_N = 1.3$ [2], and the quadrupolar splitting $\mathcal{H}_Q = A[3I_z^2 - I(I + 1)]$. The quadrupolar constant is $A = 7 \times 10^{-7}$ K for 69Ga, $A = 3 \times 10^{-7}$ K for 71Ga, and $A = 2 \times 10^{-6}$ K for 75As nuclei [3]. For the purpose of QC we need to achieve complete control over unitary state evolutions, i.e. control over amplitudes a_m to form a desired superposition $|\psi\rangle = \sum_{m=-J}^J a_m |m\rangle$ of the nuclear basis states $|m\rangle$ (eigenstates of \mathcal{H}_0). Our goal is now to show that such a control over a_m is indeed feasible under experimentally attainable conditions.

![FIG. 2. Preparation of $|s\rangle = (1/\sqrt{3})\sum_{m=-1/2}^{3/2} |m\rangle$ by means of Eq. (2) in the QC scheme, which takes about 0.2 ms for $H_1 = H_2 = 1$ G, $H_3 = 0$, $\delta_1 = 6083$ s$^{-1}$, and $\delta_2 = 0$. The duration of the QC operation is $< 1/2\omega_{\text{Rabi}}$. The analytical result is confirmed by numerics.](image)

We start from a configuration where mainly the ground state $|3/2\rangle$ is populated, see Fig. 3. This can be achieved by the Overhauser effect [3]. The next goal is to coherently populate all or a part of the excited states $|m\rangle$, $m \neq 3/2$, by means of $\Delta m = 1, 2, 3$-photon transitions. Fig. 4 shows the two transition schemes, QC and RO, which will turn out to be appropriate for quantum computation (QC) and multiphoton Rabi oscillations (RO), resp. In the QC scheme the frequencies ω_k of the external transverse magnetic fields, $H_{x,k}(t) = H_k(t) \cos(\omega_k t + \Phi_k)$, $k = 1, 2, 3$, are blue ($\delta_k < 0$) and red ($\delta_k > 0$) detuned with respect to the energy level separations $\hbar \omega_{m,m'}$. In the RO scheme the transverse fields $H_{x,k}(t) = H_k(t) \cos(\omega_k t + \Phi_k)$, $k = 1, 2, 3$, oscillate at frequencies $\omega_{\Delta m} = \omega_{3/2-\Delta m,3/2}/\Delta m$, which are blue detuned by $3A$ (6A) for the two(three)-photon transition. For GaAs, $\omega_k, \omega_k \sim 10$ MHz with $\delta_k \sim 1$ kHz, and a longitudinal magnetic field $H_z \sim 1$ T is appropriate. It is desirable to make H_z sufficiently large to accommodate many spin precessions before the spins dephase. We note that in contrast to the fields $H_{x,k}(t)$, the fields $H'_{x,k}(t)$ lead to transitions governed by non-commuting operators, with the important consequence that the RO scheme suffers from strong interferences between the transitions if two or more fields $H'_{x,k}(t)$ are nonzero, leading to a quick loss of amplitude control. Indeed, the RO scheme allows control of a_m’s only for times $t < 2\hbar(V'_k + V'_k')/V_k'$, which we estimate from the Baker-Campbell-Hausdorff formula and which we confirmed by exact numerical calculations. Here, $V'_k = 2[(g_N\mu_N H_k)^{p_{3/2-k,k,3/2}}] \prod_{j=1}^{k-1} \hbar \omega_{j-1/2}$ (see below). Although the RO scheme is only suited for QCs using perturbative approaches, it has its usefulness for testing the coherence of the spin system (see below).

![FIG. 3. Grover algorithm calculated by means of Eq. (2) in the QC scheme (numerically confirmed), where $|s\rangle = (1/\sqrt{3})\sum_{m=-1/2}^{3/2} |m\rangle$ is concentrated mainly into $|-1/2\rangle$ after 0.55 ms for $H_2 = h\delta_2/2g_N\mu_N = 1$ G, $h_1 = h_2$, $h_3 = 0$, $\delta_1 = 0$. The duration of the QC is $< 1/2\omega_{\text{Rabi}}$.](image)

Now we proceed with demonstrating the existence of the desired spin transitions in the QC scheme. For this we evaluate the transition amplitudes for the diagrams of Fig. 1 (a) in high-order perturbation theory which allows us then to obtain an appropriate non-perturbative Hamiltonian (see below). The three transverse fields $H_{x,k}(t)$ complete the Hamiltonian $\mathcal{H} = \mathcal{H}_0 + V(t)$, where $V(t) = \sum_{k=1}^3 g_N\mu_N H_k(t) \cos(\omega_k t + \Phi_k)I_x$, with $I_x = (I_+ + I_-)/2$, and phases Φ_k (see below). Then we expand the S-operator $S = \sum_{j=1}^{\infty} S^{(j)}$ in powers of $V(t)$. We use rectangular pulse shapes of duration T for all fields, i.e. $H_k(t) = H_k$ for $-T/2 < t < T/2$, and 0 otherwise. Then we obtain

$$S^{(3)} = \sum_{k=1}^3 H_k e^{-i\Phi_k} \left[\frac{1}{\delta_1 \delta_2} - \frac{1}{\delta_1 (\delta_1 - \delta + \delta_2)} \right]$$

$$- \frac{1}{\delta_1 + \delta_2} \left(\frac{1}{\delta_2} - \frac{1}{\delta_1 + \delta_1} \right)$$

with $\delta_k = \omega_k - \omega_{3/2}$. This expression is valid for $\omega_k \neq \omega_{\Delta m}$, $\Delta m \neq 0, \pm 1, \pm 2$. For $\omega_k = \omega_{\Delta m}$, $\Delta m \neq 0, \pm 1, \pm 2$ the expression becomes

$$S^{(3)} = \sum_{k=1}^3 H_k e^{-i\Phi_k} \left[\frac{1}{\delta_1 \delta_2} - \frac{1}{\delta_1 (\delta_1 - \delta + \delta_2)} \right]$$

$$- \frac{1}{\delta_1 + \delta_2} \left(\frac{1}{\delta_2} - \frac{1}{\delta_1 + \delta_1} \right)$$
for $\delta_3 = 0$, $\tilde{S}^{(2)}(\omega) = \prod_{k=1}^2 H_k e^{-i\Phi_k} \left(-\frac{1}{2} + \frac{1}{2} \right)$ for $\delta_2 = 0$ and $H_3 = 0$, and $\tilde{S}^{(1)}(\omega) = H_1 e^{-i\Phi_1}$ for $\delta_1 = 0$ and $H_2 = H_3 = 0$, where $S^{(j)}(\omega) = \frac{2e^{i\omega t_j}}{T} \tilde{S}^{(j)}(\omega) - \frac{1}{2} \frac{1}{\omega} \sum_k \int \delta(t/T) e^{i\omega t} dt$ is the delta-function of width $1/T$. The energy is conserved for $\Omega T > 1$. Also, the duration T of the rf pulses must not exceed the dephasing time τ_0 of the spin states. Interestingly, $\lim_{\Omega \to 0} S^{(3)}(\omega) = \lim_{\Omega \to 0} S^{(2)}(\omega) = 0$, i.e. destructive interference is maximal. However, if $A \gg \hbar |\delta_k|$, $k = 1, 2, 3$, destructive interference is negligible.

where $h_k = g_N \mu_N H_k \sqrt{k(2I+1-k)/2}$ ($k = 1, \ldots, 2I$).

Focusing on $I = 3/2$, we obtain e.g. for $H_3 = 0$ approximately $H^{(2)} = h_0 + h_1 e^{i(\omega t_1 + \Phi_1)} [3/2, 1/2] + h_2 e^{i(\omega t_2 + \Phi_2)} [1/2, -1/2] + h.c.. Applying $U(t) = e^{-i(\omega t_1 + \Phi_1 + \delta_1)/2} [3/2, 1/2] + e^{i(\omega t_1 + \Phi_1 + \delta_1)/2} [1/2, -1/2] + e^{i(\omega t_2 + \Phi_2 + \delta_2)/2} [1/2, -1/2] + e^{i(\omega t_2 + \Phi_2 + \delta_2)/2} [1/2, -1/2]$ yields $H^{(2)}$. Note that the Hamiltonian in Eq. (3) remains valid even in the limit $\delta_k \to 0$, where perturbation expansions such as in Eq. (4) break down. However, we must require that $|g_N \mu_N H_k| \ll |A|$, which means that the larger $|A|$, the faster the QCs. Propagators of the form $U^{(t)} e^{-i\omega t^{(2)}(\Omega)/\hbar}$ have $2I$ phases Φ_k and $2I$ detunings $\hbar \delta_k$, which determine the $2I$ phases and the $2I$ moduli of a_m.

For Grover’s algorithm [10] we must first produce $|s\rangle = (1/\sqrt{m}) \sum_m |m\rangle$ (see Fig. 3), n being the number of basis states involved in the search. Then we make use of the degeneracy between $|S\rangle$ and $|M\rangle$, which yields the resonance condition $\hbar \delta_k = \hbar \delta_{k-M/2} \neq 0 \forall k$, if $\delta_k = 0 \forall k \neq I - M$. In contrast to [10], $H^{(2)}$ has only nearest-neighbor coupling, which results in a decreasing amplification of $|M\rangle$ with increasing I or $|M\rangle$. However, even for the largest nuclear spin $I = 9/2$, we find that the resolution for identifying $|M\rangle$ is still sufficient ($\gtrsim 10%$). Fig. 3 shows the example where $|M = -1/2\rangle$ is found out of the three states $|n\rangle$, $m = 3/2, 1/2, -1/2$, for $I = 3/2$.

Now we are in the position to extract an effective Hamiltonian, which governs the desired unitary evolutions [3,11]. For the QC scheme we use the Hamiltonian \mathcal{H}. After applying the rotating wave approximation [3] we keep only the leftmost diagram of Fig. 1(a), which gives the dominant contribution to the transition amplitudes for $h|\delta_k| \ll |A|$. This is a direct consequence of the non-equidistance of the energy levels $|m\rangle$ due to the quadrupolar splitting. It is now possible to eliminate the time-dependence of \mathcal{H} by a unitary operation $U(t)$, the matrix elements of which can be determined by solving $2I$ linear equations. This is a transformation to a generalized rotating frame. Then, for a spin I we obtain an effective time-independent Hamiltonian

$$\mathcal{H}^{(2I)}_{\text{rot}} = \begin{bmatrix}
0 & h_1 & 0 & \cdots & 0 \\
h_1 & h_\delta_1 & h_2 & \ddots & \\
0 & h_2 & h_\delta_2 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & h_{2I} \\
0 & \cdots & 0 & h_{2I} & h_\delta_{2I}
\end{bmatrix},$$

(2)

FIG. 4. Numerical solution for the three-photon ROs of ^{75}As nuclei between $|3/2\rangle$ and $|-3/2\rangle$ driven by $H'_1 = 20 \text{ G}$ with the RO scheme (b) in cw mode. $H'_1 = H'_3 = 0$.

FIG. 5. Numerical solution for the two-photon ROs of ^{75}As nuclei between $|3/2\rangle$ and $|-1/2\rangle$, driven by $H'_2 = 10 \text{ G}$ according to the RO scheme in cw mode, and $H'_1 = H'_3 = 0$.

As a first test for the proposed schemes, it would be useful to measure generalized ROs involving multiphoton absorptions. They can be thought of as mutation of the large spin I between spin states $|m\rangle$. First, we consider the QC scheme. For the two-photon RO, with frequency $\nu^{(2)}_{\text{Rabi}}$, to become observable, we need $|g_N \mu_N H_k| \ll \hbar \delta_k$, $k = 1, 2$, so that the one-photon transitions are completely suppressed. To obtain $\nu^{(2)}_{\text{Rabi}}$, it is useful to think of [3] as describing the dynamics of a (fictitious) particle in a triple well with nearest-neighbor tunnel coupling h_k. The independent control of the tunnel couplings h_k and the biases $\hbar \delta_k$ between the wells is ensured by a large
value of A. Then, the energy (“tunnel”) splitting \[\Delta_{\text{Rabi}}^{(2)} = \sqrt{3}(g_N \mu_N)^2 H_1 H_2/\delta_1, \] which gives $\nu_{\text{Rabi}}^{(2)} = \Delta_{\text{Rabi}}^{(2)}/2\pi \nu$. In order to obtain large Rabi frequencies $\nu_{\text{Rabi}}^{(2)}$, the external fields H_1, H_2 and the detuning δ_1 are to be maximized under the conditions $|H_1, H_2| \ll h|\delta_1|/g_N \mu_N \ll |A|/g_N \mu_N$ \[17\], i.e. the larger $|A|$ the larger $\nu_{\text{Rabi}}^{(2)}$ can be achieved. We note that $|A|$ could e.g. be enhanced by optical laser pumping \[3\] or by modulated electric field gradients \[12\].

Next we turn to the RO scheme. Here it is sufficient to apply only one single field $H'_3(t)$ in order to see the multiphoton ROs shown in Figs. 3, 5. We now also allow for oscillating quadratic transverse anisotropies which can be externally generated by modulating the electric field gradient felt by the nuclei \[12\]. For this we adopt the most general Hamiltonian \[3\]

$$H' = A[3I_y^2 - I_x(I + 1)] - g_N \mu_N H_z I_z + e^{i\omega t} I_z [-h'_k I_x + B (I_x I_z + I_z I_x) + C (I_x^2 - I_z^2)] e^{-i\omega t},$$

where $h'_k = g_N \mu_N H'_k$ ($k = 1, 2$ or 3). Next we transform H' to the rotating frame, which yields $H'_{\text{rot}} = A[3I_f^2 - I_f(I + 1)] - (g_N \mu_N H_z I_z - h'_k) I_z + B (I_x I_z + I_z I_x) + C (I_x^2 - I_z^2) + h'_k I_x$. Then the time evolution takes the simple form $\psi(t) = e^{i\omega t I_z} e^{-iH'_{\text{rot}} t/\hbar} |I\rangle$. Although the transverse quadratic term C is not in resonance with any transition energy, it leads to a time-independent transverse quadratic anisotropy in the rotating frame. For the 3-photon transition in the RO scheme we obtain the following Hamiltonian in the rotating frame

$$H'_{\text{rot}}^{(3)} = \begin{bmatrix} 3A & \sqrt{3}h'_3 & \sqrt{3}C & 0 \\ \sqrt{3}h'_3 & -3A & h'_3 & \sqrt{3}C \\ \sqrt{3}C & h'_3 & -3A & \sqrt{3}h'_3 \\ 0 & \sqrt{3}C & \sqrt{3}h'_3 & 3A \end{bmatrix},$$

where we have neglected the B term since we choose $B \ll h'_3$. Inserting a typical value $C = -10^{-10} \text{K}$ \[3\], we obtain oscillations of the splitting $\Delta_{\text{Rabi}}^{(3)}$ between $|3/2\rangle$ and $|-1/2\rangle$ as a function of H'_3, see Fig. 4. These oscillations are due to the Berry phase in a biaxial spin system as shown in Fig. 4. Note that C must be negative for the Berry phase interference to occur \[4\]. Also, the Berry phase interference is present only for $\Delta m \geq 2$. In Figs. 4 and 5 the population probabilities $|a_m(t)|^2$ are shown for $C = 0$. The corresponding normalized magnetization reads $M(t) = \sum_m m|a_m|^2$.

In order to build parallel single-spin quantum computers or high-density memory devices, one could apply an inhomogeneous magnetic field to the GaAs sample. Then the nuclear Larmor frequencies are spread over a wide range, which could be divided into small frequency intervals that are individually accessible by NMR sources.

In conclusion we have shown that via multiphoton transitions a controlled superposition of spin states can be achieved by appropriate field pulses. Our results can be extended to arbitrary spin I and to any single-particle quantum system with non-equidistant energy levels.

Acknowledgement. We thank A. J. Leggett and G. Salis for useful discussions. We acknowledge the Swiss NSF, NCCR Nanoscience, Molnanomag, DARPA, and ARO for financial support. This research was supported in part by the US NSF under Grant No. PHY99-07949.

[1] S. A. Wolf et al., Science 294, 1488 (2001).
[2] J. M. Kikkawa, D. A. Awschalom, Science 287, 473 (2000).
[3] G. Salis et al., Phys. Rev. Lett. 86, 2677 (2001); G. Salis et al., Phys. Rev. B 64, 195304 (2001).
[4] J. H. Smet et al., Nature 415, 281 (2002).
[5] A. Abragam, The Principles of Nuclear Magnetism (Clarendon, 1961).
[6] L. K. Grover, Phys. Rev. Lett. 79, 4709 (1997).
[7] M. N. Leuenberger, D. Loss, Nature 410, 789 (2001).
[8] J. Ahn et al., Science 287, 463 (2000).
[9] E. Farhi, S. Gutmann, Phys. Rev. A 57, 2403 (1998).
[10] L. K. Grover, A. M. Sengupta, Phys. Rev. A 65, 032319 (2002).
[11] Like all implementations based on a “unary” representation, the present scheme is not scalable.
[12] E. Brun et al., Phys. Rev. Lett. 8, 365 (1962).
[13] M. N. Leuenberger, D. Loss, Phys. Rev. B 61, 1286 (2000).
[14] D. Loss et al., Phys. Rev. Lett. 69, 3232 (1992); J. von Delft, C. L. Henley, ibid., 3236 (1992); M. N. Leuenberger, D. Loss, Phys. Rev. B 63, 054414 (2001).
[15] S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994); J. A. Marohn et al., Phys. Rev. Lett. 75, 1364 (1995).
[16] We weakened two degrees of freedom: the global phase and the normalization condition, respectively.
[17] This condition must also be satisfied by the numerical values in Ref. 3.