TRIM21-regulated Annexin A2 plasma membrane trafficking facilitates osteosarcoma cell differentiation through the TFEB-mediated autophagy

Huan-Tian Zhang1,2, Qingzhong Zeng1, Baomeng Wu1, Junlei Lu1, Kui-Leung Tong2, Jiebin Lin2, Qiu-Yu Liu3, Lipei Xu1, Jie Yang2, Xiaohui Liu1, Wanting Liu1, Yun-Fang Zhang4, Qionghua Lian1, Langxia Liu1 and Xuejuan Gao1

Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, which is characterized by dysfunctional autophagy and poor differentiation. Our recent studies have suggested that the tripartite motif containing-21 (TRIM21) plays a crucial role in regulating OS cell senescence and proliferation via interactions with several proteins. Yet, its implication in autophagy and differentiation in OS is largely unknown. In the present study, we first showed that TRIM21 could promote OS cell autophagy, as determined by the accumulation of LC3-II, and the degradation of cargo receptor p62. Further, we were able to identify that Annexin A2 (ANXA2), as a novel interacting partner of TRIM21, was critical for TIRM21-induced OS cell autophagy. Although TRIM21 had a negligible effect on the mRNA and protein expressions of ANXA2, we did find that TRIM21 facilitated the translocation of ANXA2 toward plasma membrane (PM) in OS cells through a manner relying on TRIM21-mediated cell autophagy. This functional link has been confirmed by observing a nice co-expression of TRIM21 and ANXA2 (at the PM) in the OS tissues. Mechanistically, we demonstrated that TRIM21, via facilitating the ANXA2 trafficking at the PM, enabled to release the transcription factor EB (TFEB, a master regulator of autophagy) from the ANXA2-TFEB complex, which in turn entered into the nucleus for the regulation of OS cell autophagy. In accord with previous findings that autophagy plays a critical role in the control of differentiation, we also demonstrated that autophagy inhibited OS cell differentiation, and that the TRIM21/ANXA2/TFEB axis is implicated in OS cell differentiation through the coordination with autophagy. Taken together, our results suggest that the TRIM21/ANXA2/TFEB axis is involved in OS cell autophagy and subsequent differentiation, indicating that targeting this signaling axis might lead to a new clue for OS treatment.

Introduction
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents. Although the survival rate of patients with a localized tumor can reach 70% at 5 years, for those who developed pulmonary metastatic or relapsed, its survivorship is significantly reduced to only 20–30%. This poor clinical outcome underscores the urgent need to clarify the mechanism of OS pathogenesis aiming to develop novel therapeutic strategies. Increasing evidence has suggested that more than 80% of OS are poorly differentiated and a better-differentiated state is associated

© The Author(s) 2021
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
with a better prognosis of the patients4,5. Thus, exploring the molecular mechanism underlying differentiation defects in OS is insightful for OS therapy4,5.

The tripartite motif proteins (TRIM) have increasingly been recognized to play a role in regulating autophagy and are implicated in innate immune responses6. Among them, TRIM21 assembles autophagy machinery through interacting with several key components of the autophagic machinery and acts as an autophagic receptor7; whereas, its implication in tumor autophagy has not been investigated. Recent reports have shown that TRIM21 participates in the regulation of immune cell subset differentiation8,9; however, its effect on tumor cell differentiation has not been uncovered. A series of studies have highlighted the role of TRIM21 in multiple cancers. For instance, TRIM21 has been demonstrated to be downregulated in hepatocellular carcinoma, breast cancer, and diffuse large B-cell lymphomas10–13, whereas other studies have shown that decreased expression of TRIM21 predicts better prognosis in pancreatic cancer patients14. We have recently demonstrated that TRIM21 plays a crucial role in regulating OS cell senescence and proliferation via interacting with several proteins, such as PRMT515,16.

However, it remains to be investigated whether TRIM21 plays a role in regulating OS autophagy and subsequent differentiation.

In this study, we first demonstrated that TRIM21 played a crucial role in regulating OS autophagy. Mechanistically, we found that TRIM21, via interacting with Annexin A2 (ANXA2), regulated its plasma membrane (PM) localization, which in turn, facilitated the nuclear translocation of transcription factor EB (TFEB). Altogether, we propose that the TRIM21/ANXA2/TFEB axis regulates OS cell differentiation via the induction of autophagy.

Materials and methods

Antibodies and reagents

The following antibodies were obtained from Cell Signaling Technology (USA): p62 (#23214), Beclin 1 (#3495), LAMP1 (#9091), Histone H3 (#4499), a-tubulin (#96292), GFP (#2555), and LC3-2 (#2775). Anti-TRIM21 (sc-25351) was from Abcam (USA). Antibodies against ANXA2 (11256-1-AP, 66035-1-lg), CD63 (25682-1-AP), b-actin (20536-1-AP), b-tubulin (10094-1-AP), and GAPDH (10494-1-AP) were from Proteintech (USA). Antibodies against LC3 (L7543), Flag (SAB4301135), and HA (H6908) were from Sigma (USA). Alexa Fluor 488- and 594-conjugated secondary antibodies (ZF-0511, ZF-0512, ZF-0516, ZF-0513) were from ZSGB-BIO (China). Chloroquine phosphate (CQ, PHR1258-1g), tetracycline (TET, #58346), 3-MA (M9281), MG132 (#474790), rapamycin (RAPA) (V900930-1mg), and DAPI (#10236276001) were from Sigma (USA).

Cell lines and culture

Human OS U2-OS and Saos-2 cells (ATCC, USA) were maintained in McCoy’s 5A medium (Sigma, USA) containing 10% or 15% fetal bovine serum (FBS, PAN-Biotech, Germany) in a humidified atmosphere containing 5% CO\textsubscript{2}. MG63 cells (Institute of Life Science Chinese Academy of Sciences, China) were cultured in MEM (Gibco BRL, USA) and supported with 10% FBS. All these cells were authenticated by short tandem repeat (STR) as described previously17 and were mycoplasma-free tested by TransDetect® PCR Mycoplasma Detection Kit (TRANS, China).

Small interfering RNA transfection

Sequences of the small interfering RNAs (siRNAs) used in this study were listed as follows: 5'-GCAGAGAGUUUGCCU GAGAAGTT-3' (TRIM21), 5'-GGGGCUGUCAAAAGCCU AUATT-3' (ANXA2), 5'-CAGTTTGCGCACAATCAATA TT-3' (Beclin 1), 5'-AGACGAGGGUUCAACAUA-3' (TFEB), and 5'-UUUCCGAACUGGUACGUTT-3' (NC). OS cells were transfected with the siRNAs using Lipofectamine2000 (Invitrogen, CA, USA) according to the manufacturer’s instructions.

Establishment of OS stable cells

The U2-OS cells stably expressing H125-TRIM21 or H125-V were established previously and the MG63 stable cells were established using the same method15. U2-OS cells stably knocking down TRIM21 and its control cells were named as sh-TRIM21#1, sh-TRIM21#2, and sh-NC as previously described16.

Co-immunoprecipitation

The co-immunoprecipitation (co-IP) assay was performed as described previously18. Briefly, 1 mg of total protein from the lysate was mixed with 2 µg of indicated primary antibodies. The immune complexes were separated by western blotting. These experiments were repeated three times.

Immunofluorescence assays

Immunofluorescence (IF) assay was performed to determine the subcellular localization of the indicated proteins as described previously19,20. To observe the subcellular localization of GFP-ANXA2 in living cells, the cells cultured on coverslip-bottomed small chamber were transfected with GFP-ANXA2 and then mounted onto the stage of LSM700 microscope equipped with a temperature-controlled and CO\textsubscript{2}-controlled small incubator as described previously21.

ELISA kit for alkaline phosphatase

Cultured cells were lysed with lysis buffer A (20 mM Tris pH 7.5, 150 mM NaCl, 1% Triton X-100, sodium pyrophosphate, b-glycerophosphate, EDTA, Na\textsubscript{4}VO\textsubscript{4}, leupeptin, and 1% protease inhibitor cocktail (Roche)). Alkaline
phosphatase (ALP) activity of the lysates (50 ng/well) was examined by ELISA kit (YEASEN, China) according to the manufacturer’s protocol. Absorbance at 450 nm was measured using a spectrophotometric microplate reader (ELX800, BioTek Instrument, USA). These experiments were repeated three times.

Gene expression by qRT-PCR
Total RNA was purified and the quantitative real-time PCR (qRT-PCR) assays were performed as described previously19. The following primers were used: TRIM21, 5′-TGGACAAATTGGTTGTGGA-3′ (forward), 5′-ACC ATGCCAGCTCATTGTC-3′ (reverse); ALP, 5′-GACA AGAAGCGCCTTCACTGC-3′ (forward), 5′-AGACTGC GCCTGGTAGTTG-3′ (reverse); RUNX2, 5′-CGGAAT GCCCTCTGCTGTAT-3′ (forward), 5′-TGGGAGGAT TTGTGAAGAC-3′ (reverse); ANXA2, 5′-CAGGATAT TGCTTTCGCCATACAG-3′ (forward), 5′-GGCTCATA CTGACAGGTTGCTCT-3′ (reverse); p62, 5′-GCCTC TGTTCTGACACTT-3′ (forward), 5′-GGTAGGTG GAAGCATTTA-3′ (reverse); ACTB (the control), 5′-ACGGTACATCGGCAAG-3′ (forward), 5′-GACTG TCATACCTCCTGGT-3′ (reverse). These experiments were repeated three times.

Subcellular fractionation assay
For the preparation of nuclear, cytoplasmic, and membrane-enriched proteins, Minute™ Plasma Membrane Protein Isolation and Cell Fractionation Kit (SM-005, Invent Biotechnologies, Eden Prairie, USA) was applied according to the manufacturer’s instructions. Then, the western blotting assay was used to analyze the protein expression in different fractionations. These experiments were performed three times.

Western blotting
Western blotting was performed as described previously18,19. Three independent experiments were performed and the relative quantitative expression was analyzed by Image J software (NIH, USA).

Tissue microarrays
The expressions of TRIM21 and ANXA2 were analyzed using two consecutively numbered commercial tissue microarrays (TMAs) of OS (OS804C, Alenabio, Xi’an, China), which includes 80 sections of OS tissue samples and every 2 sections coming from one OS case. The company stated that all human tissues are collected under Institutional Review Board and Health Insurance Portability and Accountability Act (HIPAA)-approved protocols. The immunohistochemical staining was performed in Shanghai Outdo Biotech (China) as described previously18. Two slides were stained with the primary antibodies against TRIM21 (1:200 dilution) and ANXA2 (1:500 dilution). Histologic slides were reviewed by two experienced pathologists without knowledge of the relevant information of the patients as reported previously18. Briefly, the intensity of protein staining was scored as 0 (negative), 1 (weak), 2 (moderate), 3 (stronger), or 4 (strongest). The percentage of positive cells was scored as 0 (<10%), 1 (11–40%), 2 (41–60%), 3 (61–80%), and 4 (>80%). These two scores were then multiplied. Correlation between the expression of TRIM21 and ANXA2 was estimated using Spearman’s rank correlation analysis.

Statistical analysis
All values were shown as the means ± SEM of three independent experiments. Statistical analyses were calculated using Student’s t-test and the statistical significance was defined as p < 0.05.

Results
TRIM21 induces autophagy of OS cells
TRIM21 has been reported to be involved in regulating autophagy of immune cells7, yet its role in OS autophagy is largely unknown. We first determined whether TRIM21 regulated the expression of LC3-II, an autophagy marker of autophagosomes3. As shown in Fig. 1A, B, overexpression of HA-TRIM21 promoted the expression of LC3-II. Autophagy inhibitor CQ causes LC3-II accumulation, due to its prevention of autophagosome–lysosome fusion as reported previously22. TRIM21 overexpression caused a further increase of CQ-mediated (5 μM) LC3-II accumulation. In contrast, knockdown of TRIM21 reduced the accumulation of LC3-II in both the control and CQ-stimulated conditions (Fig. 1C, D). Next, IF assay using a pH-sensitive mCherry-EGFP-LC323 also showed that overexpression of TRIM21 remarkably increased the ratio of red-only to yellow dots, whereas knockdown of TRIM21 attenuated this ratio (Fig. 1E), suggesting that TRIM21 is essential for promoting the formation of autophagosomes and its delivery to lysosomes.

Then, we tested whether TRIM21 participated in the degradation of p62, an autophagy receptor, which can be degraded together with cargos3,24. Overexpression of TRIM21 significantly diminished the p62 expression, whereas, its expression level was restored by CQ (Fig. 1F). In contrast, TRIM21 knockdown inhibited the degradation of p62, similar to the effect of CQ (Fig. 1D). These results collectively suggest that TRIM21 plays a crucial role in the induction of OS cell autophagy.

ANXA2 is identified as a novel interacting protein of TRIM21, and it counteracts on TRIM21-mediated autophagy
Next, we sought to explore the underlying mechanism of TRIM21-mediated OS cell autophagy. Previously, we had identified a series of interacting proteins of TRIM21...
in the U2-OS cells. Among them, ANXA2 exhibited the highest unique peptide number and sequence coverage rate (Supplementary Table S1). ANXA2 is a calcium- and phospholipid-dependent membrane-binding protein that has been reported to regulate osteogenic differentiation, autophagy, and OS tumorigenesis; we thus hypothesized that ANXA2 play a role in TRIM21-regulated autophagy via protein–protein interaction. Notably, a cytoplasmic colocalization of TRIM21 and ANXA2 was observed in U2-OS cells, with a marked decrease when TRIM21 was knocked down (Fig. 2A). Co-IP assay further validated that ANXA2 was precipitated by the HA antibody in the HA-TRIM21 group but not in control cells (Fig. 2B). Similarly, endogenous TRIM21 and ANXA2 were coprecipitated by the ANXA2 antibody (Fig. 2C), suggesting that TRIM21 and ANXA2 interacted with each other. Interestingly, another autophagy-related protein, Beclin 1, was also identified in the same immune complex of HA-TRIM21 (Fig. 2B), indicating that TRIM21 might also
participate in the early stage of autophagy through interacting with Beclin 1. Next, we explored the role of ANXA2 in TRIM21-mediated OS cells autophagy. ANXA2 knockdown significantly increased the LC3-II expression either in the presence or absence of CQ (Fig. 2D). Conversely, overexpression of EGFP-ANXA2 reduced the expression of LC3-II, while increased the accumulation of p62, which was also observed when combined with CQ treatment (Fig. 2E). Furthermore, we did find that overexpression of ANXA2 compromised the induction of LC3-II by enforced TRIM21 expression (Fig. 2F). These results together suggest that ANXA2 negatively regulates OS cell autophagy induced by TRIM21.

TRIM21 promotes the translocation of ANXA2 toward cell membrane

Next, we investigate whether TRIM21, as an E3 ubiquitin ligase, may regulate the expression of ANXA2. Our results showed that neither overexpression nor knockdown of TRIM21 had visible effects on the protein and mRNA expression of ANXA2 (Supplementary Fig. S1). As the subcellular trafficking of ANXA2 is another
major form of ANXA2 regulation, we then tested whether TRIM21 plays a role in regulating its localization. As shown in Fig. 3A, B, stable overexpression of TRIM21 remarkably increased the translocation of ANXA2 toward PM in both the U2-OS and MG63 cells. Consistently, the subcellular fractionation assay also demonstrated that...
overexpression of TIRM21 upregulated the expression of ANXA2 at the cytoplasm and cell membrane, while decreased its level within the nucleus (Fig. 3C).

According to a recent study, ANXA2 was incorporated into autophagosomes after interferon-γ (IFN-γ) stimulation, followed by the fusion with multivesicular bodies (MVBs) for PM, but not with the lysosome. We then investigated whether the trafficking of ANXA2 was related to the autophagy induced by TIRM21. As shown in Fig. 3D, TIRM21 overexpression resulted in obvious trafficking of GFP-ANXA2 to the PM in living cells (arrows). However, the addition of 3-MA, an upstream inhibitor of autophagy, significantly inhibited ANXA2 localization at the PM. Furthermore, knockdown of Beclin 1 significantly decreased the trafficking of ANXA2 to the PM which mediated by the TIRM21 overexpression (Fig. 3E). IF assay further confirmed the colocalization of ANXA2 with LC3 upon TIRM21 overexpression (Fig. 3F), indicating that ANXA2 was incorporated into the autophagosomes. Next, we observed the colocalization of ANXA2 with CD63 (a marker of MVBs) in the TIRM21-overexpressed cells; however, no colocalization of ANXA2 and LAMP1 (a lysosomal marker) was observed, indicating that ANXA2, after incorporating into the autophagosomes, was subsequently inserted into the MVBs for PM localization, but not for lysosomes (Fig. 3G, H). These results suggest that the translocation of ANXA2 toward PM is dependent on TIRM21-induced autophagy and this translocation might favor TIRM21-induced autophagy.

Co-expression of TIRM21 and ANXA2 at the PM in OS tissues

Having established a positive correlation of TIRM21 with the PM localized ANXA2, we next sought to extend this finding into clinical context by using the TMAs of OS tissues. As shown in Fig. 4A, B, 95% of OS tissues positively expressed TIRM21 and 97.5% positively expressed ANXA2 at the PM. Moreover, a positive correlation between TIRM21 expression in the whole-cell and ANXA2 expression at the PM was established, with a statistic signifies R = 0.64, P < 0.0001, Fig. 4C). Three representative cases were shown in Fig. 4D.

TRIM21 disrupts the ANXA2-TFEB complex and promotes the nuclear translocation of TFEB

In lung epithelial cells, ANXA2 has been reported to interact with TFEB, a master transcription factor for autophagy, thus impeding autophagy through cytoplasmic retention and inactivation of TFEB. Consistent with this, our co-IP assay did confirm that TFEB interacted with ANXA2 in the U2-OS cells (Fig. 5A). Of significance, overexpression of TIRM21 diminished the interaction between ANXA2 and TFEB, while favoring ANXA2 and TIRM21 interaction (Fig. 5B). A similar result was observed by IF assay, in which overexpression of TIRM21 reduced the colocalization of ANXA2 and TFEB in the cytoplasm (Fig. 5C). Instead, an increase of PM localization of ANXA2 and nuclear localization of TFEB was found (Fig. 5C). Thus, these results collectively suggest that TIRM21 impedes the cytoplasmic association between ANXA2 and TFEB, and that the translocation of ANXA2 towards PM might contribute to the release of TFEB from the complex of ANXA2-TFEB.

We then evaluated the impacts of ANXA2 and TIRM21 on the localization of TFEB. As shown in Fig. 5D, E, either knockdown of ANXA2 or overexpression of TIRM21 promoted the nuclear translocation of TFEB. Similarly, the increased nuclear translocation of TFEB was confirmed using the subcellular fractionation assay upon ANXA2 knockdown and the diminished nuclear translocation of TFEB was found upon TIRM21 knockdown (Fig. 5F, G). These results indicate that TIRM21 promotes the nuclear translocation of TFEB, whereas ANXA2 has the opposite effect. As TFE can upregulate autophagy-related genes such as p62/SQSTM1, we explored the role of ANXA2 and TIRM21 in regulating p62 mRNA expression. As shown in Fig. 5H, ANXA2 knockdown caused a significant increase in p62 mRNA expression, while EGFP-ANXA2 overexpression decreased it. Interestingly, we demonstrated that TIRM21 played an opposite role in regulating
These results indicate that ANXA2 and TRIM21 affect the mRNA expression of p62 through regulating the TFEB translocation. Furthermore, overexpression of EGFP-ANXA2 lessened the nuclear expression of TFEB, whereas overexpression of TRIM21 augmented the nuclear expression of TFEB. This augments of nuclear TFEB was compromised by the overexpression of EGFP-ANXA2 (Fig. 5J, K). These results suggest that ANXA2 suppresses the nuclear translocation of TFEB induced by TRIM21 and thus triggering OS cell autophagy (Fig. 5L).

TRIM21 inhibits osteogenic differentiation of OS cells by inducing autophagy

Autophagy has been shown to positively regulate osteogenic differentiation of osteoblasts, we then hypothesized that TRIM21 might regulate OS cell differentiation through the induction of autophagy. Serum starvation caused an increase of LC3-II, accompanied by a downregulation of RUNX2 (Supplementary Fig. S2c–f). These results suggested that autophagy might inhibit the osteogenic differentiation of OS cells through a transcriptional regulation rather than autophagy degradation of RUNX2 (Supplementary Fig. S2g). Next, we determined the expression of TRIM21 in a series of OS cells with different differentiation status. It has been reported that the degrees of differentiation in OS cells MG63, U2-OS, Saos-2 were gradually increased. In line with this, our results confirmed that the levels of the differentiation markers RUNX2 and ALP were gradually increased. Conversely, inhibition of autophagy with CQ elevated the expression of RUNX2, which was re-decreased by the protein synthesis inhibitor CHX (Supplementary Fig. S2c–f). These results suggested that autophagy might inhibit the osteogenic differentiation of OS cells through a transcriptional regulation rather than autophagy degradation of RUNX2 (Supplementary Fig. S2g). Next, we determined the expression of TRIM21 in a series of OS cells with different differentiation status. It has been reported that the degrees of differentiation in OS cells MG63, U2-OS, Saos-2 were gradually increased. In line with this, our results confirmed that the levels of the differentiation markers RUNX2 and ALP were gradually increased.
We then explored the implication of TRIM21 in OS differentiation. As shown in Fig. 6A, B, overexpression of HA-TRIM21 significantly reduced the level of RUNX2, while TRIM21 knockdown increased RUNX2 expression and ALP activity (Fig. 6C–E). Moreover, overexpression of HA-TRIM21 significantly reduced the expression of

Fig. 5 (See legend on next page.)
RUNX2 and ALP at the transcriptional levels (Fig. 6F). Inversely, TRIM21 knockdown significantly enhanced the transcriptional levels of RUNX2 and ALP (Fig. 6G). Thus, TRIM21 inhibits OS cell differentiation marked with the negative regulation of the transcriptional expressions of RUNX2 and ALP.

To examine whether the effect of TRIM21 on OS cell differentiation was dependent on the TRIM21-induced autophagy, the autophagy inhibitor CQ was applied. As shown in Fig. 6H, overexpression of HA-TRIM21 diminished the level of RUNX2; however, it was restored upon the treatment of CQ, but not the proteasome inhibitor, MG132 (Fig. 6H). Similarly, the decline of ALP activity induced by TRIM21 overexpression was also restored by the CQ (Fig. 6I). Collectively, these results indicate that autophagy is a prerequisite for the inhibitory role of TRIM21 in OS cell differentiation (Fig. 6J). Next, we tested whether ANXA2 was involved in the regulation of OS cell differentiation mediated by TRIM21. In agreement with the previous report, TRIM21 knockdown compromised the decreasing trend of RUNX2 by inducing TRIM21 overexpression (Fig. 6L). Furthermore, ANXA2 overexpression reversed the overexpression of ANXA2 increased its expression level, which was suppressed by the autophagy activator RAPA (Fig. 6L). ANXA2 has been demonstrated to not only positively regulate autophagy but also participate in the negative regulation of autophagy by impeding autophagic flux and the degradation of p62 (Fig. 1). A previous study has reported that TRIM21 ubiquitylates p62 and abrogates p62 oligomerization and sequestration of client proteins for autophagic degradation under proteotoxic stress and starvation. In other cases, TRIM21 has been shown to facilitate autophagy by assembling core components of autophagic machinery including ULK1, BECN1, and p62 in the cells responding to IFN-γ stimulation. Thus, both the influence of TRIM21 on autophagy and the interplay between TRIM21 and p62 are highly cell-type dependent. ANXA2 was screened and identified as an interesting interaction partner of TRIM21 due to its backgrounds in both autophagy and osteoblast differentiation. ANXA2 has been demonstrated to not only positively regulate autophagy but also participate in the negative regulation of autophagy by impeding autophagic flux and inducing cytoplasmic retention of TFEB. TFEB upregulates the number of autophagosomes and increases gene expressions of ATG9B, p62/SQSTM1, LC3, UVRAG, WIPi, VPS11, and VPS18, the direct targets of TFEB. Here we showed that ANXA2 not only inhibited OS cell autophagy but also antagonized TRIM21-induced autophagy. Overexpression of TRIM21 partly compromised the inhibitory role of ANXA2 in autophagy through disrupting the ANXA2-TFEB complex, abolishing the cytoplasmic retention of TFEB, and facilitating the nuclear translocation of TFEB (Figs. 2 and 5). Collectively, these results suggest that the TRIM21/ANXA2/TFEB axis is involved in OS cell autophagy (Fig. 7).

The relationships between autophagy and differentiation are still controversial. During osteogenesis and osteoclastogenesis, autophagy is actively induced and required for differentiation. However, other research showed that p53 inactivates the major virulence factor of Streptococcus pneumoniae, inhibits osteoblast differentiation by inducing autophagy. Mechanistically, PLY-induced autophagy downregulates the expression of TFEB.
of transcription factor Sp1, essential for differentiation, and subsequently inhibits osteoblast differentiation39. Sp1 upregulates RUNX2 and both of them are key transcription factors of osteoblast differentiation52. Here, TRIM21-induced autophagy inhibited the expression of RUNX2 (Fig. 6). It is likely that the...
inhibitory effect of autophagy induced by TRIM21 on the differentiation is through the Sp1/RUNX2 signaling in OS cells (Fig. 7).

ANXA2 has been reported to be implicated in the positive regulation of osteoblastic differentiation.

Consistently, our result showed that ANXA2 positively regulated OS differentiation (Fig. 6). ANXA2 is reported to express in the cytoplasm, nucleus, and PM, and able to translocate toward PM under several conditions.

Herein, we demonstrated that TRIM21 overexpression facilitated the translocation of ANXA2 toward PM (Fig. 3), which might be beneficial for the release of TFEB from its inhibitory complex and thus activating cell autophagy (Fig. 7).

In conclusion, our study provides deep insights into the biological function and molecular mechanism of TRIM21 in OS autophagy and differentiation, which highlights the potential of TRIM21 silencing as a promising therapeutic strategy for OS. In addition, our findings that the TRIM21/ANXA2/TFEB axis is involved in OS cell autophagy and subsequent differentiation, also might lead to a new clue for OS treatment.

Acknowledgements

We thank Han’s Lab of Xiamen University for providing us with the cDNA of human TRIM21 and ANXA2.

Author details

1Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China. 2Department of Bone and Joint Surgery, Institute of Orthopedic Diseases, The First Affiliated Hospital, Jilin University, Guangzhou, Guangdong 510630, China. 3Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou 450003, China. 4Center of Kidney Disease, Huadu District People’s Hospital, Southern Medical University, Guangzhou, Guangdong 510800, China.

Author contributions

Z.H.T. designed experiments, analyzed the data, drafted and revised the manuscript. Z.Q. and W.B. performed most of the experiments. L.J., T.K.L., L.J., X.L., Y.J., L.X., and L.Q. performed some of the experiments. L.Q.Y. and Z.Y.F. performed some of the experiments and analyzed the data. L.W. analyzed the data and revised the manuscript. G.X. designed experiments, analyzed the data, drafted the manuscript, and approved the final version to be published.

Ethics

Tissue microarrays: The expressions of TRIM21 and ANXA2 were analyzed using two consecutively numbered commercial tissue microarrays (TMAs) of osteosarcoma (OS804C, Alenabio, Xi’an, China), which includes 80 sections of OS tissue samples and every 2 sections coming from one OS case. The company stated that all human tissues are collected under IRB (Institutional Review Board) and HIPPA-approved protocols.

References

[55–57]
References

1. Lewis, I. J. et al. Improvement in histologic response but not survival in osteosarcoma patients treated with intensified chemotherapy: a randomized phase III trial of the European Osteosarcoma Intergroup. J. Natl Cancer Inst. 99, 112–128 (2007).

2. Lamoureux, F. et al. Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle. Nat. Commun. 5, 3511 (2014).

3. Camuozzo, O., Santucci-Darmanin, S., Carle, G. F. & Pierrefite-Carle, V. Role of autophagy in osteosarcoma. J. Bone Oncol. 16, 100235 (2019).

4. Kansara, M. & Thomas, D. M. Molecular pathogenesis of osteosarcoma. DNA Cell Biol. 26, 1–18 (2007).

5. Lamplot, J. D. et al. The current and future therapies for human osteosarcoma. Clin. Cancer Ther. Rev. 9, 55–77 (2013).

6. Di Renzo, M., Romagnoli, A., Antonioli, M., Piacentini, M. & Fimia, G. M. TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death Differ. 27, 887–902 (2020).

7. Kimura, T. et al. TRIM-directed selective autophagy regulates immune activation. Autophagy 13, 989–990 (2017).

8. Kunihita, Y. et al. TRIM21 dysfunction enhances aberrant B-cell differentiation in autoimmune pathogenesis. Front Immunol. 11, 98 (2020).

9. Zhou, G. et al. Tripartite motif-containing 21 negatively regulates intestinal mucosal inflammation through inhibiting TH1/TH17 cell differentiation in patients with inflammatory bowel diseases. J. Allergy Clin. Immunol. 142, 1218–1228 e1212 (2018).

10. Ding, Q. et al. Downregulation of TRIM21 contributes to hepatocellular carcinoma carcinogenesis and indicates poor prognosis of cancers. Tumor Biol. 36, 8761–8772 (2015).

11. Zhou, W. et al. Decreased expression of TRIM21 indicates unfavorable outcome and promotes cell growth in breast cancer. Cancer Manag. Res. 10, 3687–3696 (2018).

12. Jin, Y. et al. TRIM21 mediates ubiquitination of Snail and modulates epithelial to mesenchymal transition in breast cancer cells. Int. J. Biol. Macromol. 124, 846–853 (2019).

13. Brauner, S. et al. Reduced expression of TRIM21/Ro52 predicts poor prognosis in diffuse large B-cell lymphoma patients with and without rheumatic disease. J. Intern. Med. 278, 323–332 (2015).

14. Nguyen, J. Q. & Ibray, R. B. TRIM21 is a novel regulator of Par-4 in colon and pancreatic cancer cells. Cancer Biol. Ther. 18, 16–25 (2015).

15. Zheng, Q. Z. et al. VHH(A2) binds to TRIM21 but is not involved in TRIM21-stimulated osteosarcoma cell proliferation. Biomed. Environ. Sci. 31, 186–196 (2018).

16. Li, Y. H. et al. PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. Aging 12, 2507–2529 (2020).

17. Liang, G. H. et al. Transcriptional regulation of Runx2 by HIP20 controls osteosarcoma apoptosis via the AKT/GSK-3beta/beta-catenin signaling. J. Cell. Biochem. 119, 948–959 (2018).

18. Gao, X. et al. hNRPK inhibits GSK3beta Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci. Rep. 6, 22999 (2016).

19. Gao, X. et al. 14-3-3eta reduces DNA damage by interacting with and stabilizing proliferating cell nuclear antigen. J. Cell. Biochem. 116, 158–169 (2015).

20. Huang, W. S. et al. ERK1/2-mediated cytoplasmic accumulation of hNRPK antagonizes TRAIL-induced apoptosis through upregulation of XAP in H1299 cells. Biomed. Environ. Sci. 30, 473–481 (2017).

21. Ding, Q. et al. Downregulation of TRIM21 contributes to hepatocellular carcinoma via Nrf2-p52-keap1 feedback loop. Cell Death Dis. 8, e2876 (2017).

22. Mauthe, M. et al. Chloroquine inhibits autophagic flux by decreasing autophagosomes-lysosome fusion. Autophagy 14, 1435–1455 (2018).

23. Wang, Y. et al. Isodoleoleylephantopin induces protective autophagy in lung cancer cells via htr2-p52-keap1 feedback loop. Cell Death Dis. 8, e2876 (2017).

24. Khamiani, A., Belhi, C. & Dicic, I. Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol. 26, 6–16 (2016).

25. Genetos, D. C., Wong, A., Weber, T. J., Karrn, N. J. & Yellowley, C. E. Impaired osteoblast differentiation in annexin A2- and -A5-deficient cells. PLoS ONE 9, e107482 (2014).

26. Gillette, J. M. & Nielsen-Preiss, S. M. The role of annexin 2 in osteoblastic mineralization. J. Cell Sci. 117, 441–449 (2004).

27. Wang, K. et al. Identification of ANXA2 (annexin A2) as a specific bleomycin target to induce pulmonary fibrosis by impeding TFE3-mediated autophagic flux. Autophagy 14, 289–292 (2018).

28. Gillette, J. M., Chan, D. C. & Nielsen-Preiss, S. M. Annexin 2 expression is reduced in human osteosarcoma metastases. J. Cell. Biochem. 92, 820–832 (2004).

29. Reddy, B. A. et al. Nucleotide biosynthetic enzyme GBP1 synthase is a TRIM21-controlled relay of p53 stabilization. Mol. Cell 53, 458–470 (2014).

30. Chen, Y. D. et al. Exophagy of annexin A2 via RAB8A, RAB27A and RAB27A in IFN-gamma-stimulated lung epithelial cells. Sci. Rep. 7, 5676 (2017).

31. Settembre, C. et al. TFE3 links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

32. Mammucari, C. et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 6, 483–471 (2007).

33. Martina, J. A. et al. The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 7, 169 (2014).

34. Mizushima, N. & Levine, B. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823–830 (2010).

35. Pantovic, A. et al. Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human osteoblastic differentiation in annexin A2- and -A5-depleted cells. J. Cell. Physiol. 250, 77–87 (2017).

36. Geoffroy, V., Niesel, M., Fourier, B., Boyde, A. & Matthias, P. High bone resorption in adult aging transgenic mice overexpressing cbfa1 runx2 in cells of the osteoblastic lineage. Mol. Cell. Biol. 22, 6222–6233 (2002).

37. Kim, J., Lee, H. W., Rhee, D. K., Paton, J. C. & Pyo, S. Pneumolysin-induced autophagy contributes to inhibition of osteoblast differentiation through downregulation of Sp1 in human osteosarcoma cells. Biochim. Biophys. Acta. Gene. Subj. 1861, 2663–2673 (2017).

38. Wang, W. et al. The role of the Wnt/beta-catenin pathway in the effect of implant topography on MG63 differentiation. Biomaterials 33, 7993–8002 (2012).

39. Reffitt, D. M. et al. Orthocic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32, 127–135 (2003).

40. Luo, X. et al. Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab. Invest. 88, 1264–1277 (2008).
43. Pan, J. A. et al. TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol. Cell 62, 149–151 (2016).
44. Kimura, T. et al. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J. Cell Biol. 210, 973–989 (2015).
45. Morozova, K. et al. Annexin A2 promotes phagophore assembly by enhancing Atg16L(+/-) vesicle biogenesis and homotypic fusion. Nat. Commun. 6, 5856 (2015).
46. Moreau, K. et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat. Commun. 6, 8045 (2015).
47. Li, R. et al. Annexin A2 regulates autophagy in Pseudomonas aeruginosa infection through the Akt1-mTOR-ULK1/2 signaling pathway. J. Immunol. 195, 3901–3911 (2015).
48. Tao, Z., Liu, L., Zheng, L. D. & Cheng, Z. Autophagy in adipocyte differentiation. Methods Mol. Biol. 1854, 45–53 (2019).
49. Riffelmacher, T., Richter, F. C. & Simon, A. K. Autophagy dictates metabolism and differentiation of inflammatory immune cells. Autophagy 14, 199–206 (2018).
50. Wan, Y., Zhuo, N., Li, Y., Zhao, W. & Jiang, D. Autophagy promotes osteogenic differentiation of human bone marrow mesenchymal stem cell derived from osteoporotic vertebrae. Biochem. Biophys. Res. Commun. 488, 46–52 (2017).
51. Qi, M. et al. Autophagy maintains the function of bone marrow mesenchymal stem cells to prevent estrogen deficiency-induced osteoporosis. Theranostics 7, 4498–4516 (2017).
52. Zhang, Y. et al. Co-stimulation of the bone-related Runx2 P1 promoter in mesenchymal cells by SP1 and ETS transcription factors at polymorphic purine-rich DNA sequences (Y-repeats). J. Biol. Chem. 284, 3125–3135 (2009).
53. Davies, O. G. et al. Osteoblast-derived vesicle protein content is temporally regulated during osteogenesis: implications for regenerative therapies. Front. Bioeng. Biotechnol. 7, 92 (2019).
54. Waisman, D. M. Annexin II tetramer: structure and function. Mol. Cell. Biochem. 149-150, 301–322 (1995).
55. Deora, A. B., Kretzner, G., Jacovina, A. T. & Hajjar, K. A. An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J. Biol. Chem. 279, 43411–43418 (2004).
56. Lei, H., Romeo, G. & Kazlauskas, A. Heat shock protein 90alpha-dependent translocation of annexin II to the surface of endothelial cells modulates plasmin activity in the diabetic rat aorta. Circ. Res. 94, 902–909 (2004).
57. Li, H., Wang, Y., Lu, Y. & Li, F. Annexin A2 interacting with ELMO1 regulates HCC chemotaxis and metastasis. Life Sci. 222, 168–174 (2019).