In Vitro Techniques to the Conservation and Plant Regeneration of Malanga (Colocasia esculenta L. Schott)

Eucarion Mancilla-Alvarez
Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Amatlan de los Reyes, Veracruz, CP 94945, Mexico

Marco A. Ramírez-Mosqueda and Samantha Arano-Avalos
Colegio de Postgraduados Campus Córdoba, Km. 348 de la Carretera Federal Córdoba-Veracruz, Congregación Manuel Leon, Amatlán de los Reyes, Veracruz, CP 94946, Mexico

Rosalia Núñez-Pastrana
Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Amatlan de los Reies, Veracruz, CP 94945, Mexico

Jericó J. Bello-Bello1
CONACYT-Colegio de Postgraduados Campus Córdoba, Km. 348 de la Carretera Federal Córdoba-Veracruz, Congregación Manuel León, Amatlán de los Reyes, Veracruz, CP 94946, Mexico

Additional index words: minimum growth, ancyimidol, polyethylene glycol, in vitro regeneration.

Abstract. Malanga (Colocasia esculenta) is a plant genetic resource that requires biotechnological strategies for conservation and propagation. One time-, labor-, and space-saving option is in vitro conservation and regeneration. The objective of this study was to develop a protocol for in vitro regeneration and conservation of germplasm of C. esculenta var. criolla. For conservation through minimal growth, we assessed several concentrations of Murashige and Skoog (MS) medium (one-third, one-half, and three-quarter strength), the growth retardant ancyimidol (0, 1, 2, and 3 mg L−1), and the osmoregulator polyethylene glycol (PEG-8000 mw) at different concentrations (0, 10, 20, and 30 g L−1). For in vitro conservation, the percent survival, shoot number and length, and number of leaves and roots per explant were evaluated after 24 weeks. For in vitro regeneration, different concentrations of thidiazuron (TDZ: 0, 0.5, 1, 1.5, and 2 mg L−1) and 6-benzylaminopurine (BAP: 0, 1, 2, 3, and 4 mg L−1) were evaluated. After 4 weeks of cultivation, the percent response, shoot number, and number of leaves per explant were recorded. During in vitro conservation, it was noted that the treatment including 2 mg L−1 ancyimidol resulted in a retarded development, without affecting the survival of the C. esculenta germplasm. With regard to shoot regeneration, 7.60 shoots per explant were obtained using 2 mg L−1 TDZ. Finally, 98% survival was achieved during the acclimatization process. This study will contribute to the establishment of genetic improvement programs through in vitro conservation and propagation of this valuable plant genetic resource.

Received for publication 20 Dec. 2018. Accepted for publication 21 Dec. 2018.

Acknowledgments

This work was supported by the SAGARPA-CONACYT fund (El Fondo Sectorial de Investigación en Materia Agrícola, Pesquiera, Acuacultura, Agrobiotecnología y Recursos Fitogénicos, es un fideicomiso creado entre la Secretaría de Agricultura, Ganadería, Recursos Pesqueros y Alimentos y el Consejo Nacional de Ciencia y Tecnología “Taking advantage of genetic diversity and development of sustainable technology for production, benefit and handling of malanga” (SAGARPA-2015-03-265427).
1Corresponding author. E-mail: jericobello@gmail.com.
(Agri-mycin, Pfizer, New York, EE) followed by rinsing with tap water. Corms measuring an average length of 5 cm were then removed in a laminar-flow hood. These were immersed in a 15% (v/v) NaCl solution containing two drops of Tween 20 per 100 mL of solution for 20 min, then in 96% ethanol for 1 min, and afterward were rinsed three times with sterile distilled water. Finally, a scalpel was used to extract the apical meristems (0.5 cm in length). All meristems were cultivated in MS medium (Murashige and Skoog, 1962) supplemented with 30 g L\(^{-1}\) sucrose and without plant growth regulators (PGR). Phytagel at 2.2 g L\(^{-1}\) was used as gelling agent. The medium pH was adjusted to 5.8 ± 0.2 and culture flasks were autoclaved at 1.5 kg cm\(^{-2}\) and 121 °C for 15 min. Cultures were incubated at 25 ± 2 °C under an illumination of 50 ± 5 mol m\(^{-2}\) s\(^{-1}\) provided by fluorescent lamps.

In vitro conservation. For in vitro conservation by minimal growth, vitroplantlets measuring ≈1 cm in length were transferred to test tubes (22 × 220 mm) containing 15 mL of MS medium. Phytagel at 2.2 g L\(^{-1}\) was used as gelling agent. We evaluated different concentrations of MS salts (one-quarter, one-half, and three-quarter strength); a separate treatment was supplemented with the growth retardant indole-3-acetic acid (1, 2, and 3 mg L\(^{-1}\)) and the growth osmoregulator polyethylene glycol (PEG-8000) at different concentrations (10, 20, and 30 g L\(^{-1}\)). The control treatment consisted of 100% (full-strength) MS medium. The pH, sterilization of the culture medium, and incubation were as described earlier. After 4 weeks of cultivation, the percent response and number of shoots, leaves, and roots per explant were recorded.

In vitro regeneration. Individual tips measuring 1 cm in length from the best minimal-growth treatment were transfered to 500-mL flasks containing 40 mL of MS medium. Different concentrations (0, 1, 2, 3, and 4 mg L\(^{-1}\)) of BAP and (0, 0.5, 1, 1.5, and 2 mg L\(^{-1}\)) of TDZ were evaluated. Phytagel at 2.2 g L\(^{-1}\) was used as gelling agent. The pH, sterilization of the culture medium, and incubation were as described earlier. All reagents were obtained from Sigma-Aldrich Chemical Company (St. Louis, MO). After 4 weeks of culture, the percent response and the number of shoots and leaves per explant were recorded.

Acclimatization. Shoots measuring 5 to 7 cm in length and showing optimal root development were rinsed with tap water. Subsequently, shoots were planted in sterile peatmoss + agarlite (1:1 v/v) using 72-well trays (5 × 5 × 8 cm). Plantlets were kept under greenhouse conditions, at 50% shade, 90 ± 5% relative humidity, and 30 ± 5 °C. After 8 weeks of cultivation, the percent survival was recorded.

Statistical analysis. All experiments included a fully random design and were run in triplicate. For in vitro conservation, 25 explants per treatment were used (one explant per test tube). For regeneration, 30 explants per treatment were used (three explants per culture flask). The data obtained were tested through an analysis of variance followed by a Tukey’s test (P < 0.05) using the IBM SPSS Statistics software (Version 21 for Windows). The normality and homogeneity of the variance were tested using the Kolmogorov-Smirnov and Levene tests, respectively. Variables not meeting these statistical assumptions were natural log-transformed (LN). Percent data were arcsine-transformed before the statistical analysis.

Results.

In vitro conservation. Significant differences were observed between the treatments evaluated for in vitro conservation (Table 1). The highest percent survival was observed in treatments with 1 and 2 mg L\(^{-1}\) acrynodim and in treatments with MS medium at one-half to three-quarter strength, with 95.83% and with 96.66% survival, respectively. The lowest percent survival was observed in medium supplemented with 30 g L\(^{-1}\) PEG, with 53.33%. The largest number of shoots per explant was observed in treatments with 10% and 20% PEG, with 3.0 and 3.2 shoots per explant, respectively (Table 1). In contrast, lower MS salts and 30% PEG produced a lower number of shoots per explant (Fig. 1). The longest shoots were noted in full three-quarter and one-half-strength MS medium, with 10.1, 9.9, and 9.7 cm in length, respectively, and the shortest in medium supplemented with 2 and 3 mg L\(^{-1}\) acrynodim, with an average shoot length of 4.66 and 4.76 cm. As regards the number of leaves per shoot, significant differences between treatments were observed; however, values included 3 to 5 leaves per explant. In contrast, no significant differences were observed in the number of roots. For root length, all acrynodim treatments resulted in smaller root size.

In vitro regeneration. Significant differences were observed between BAP and TDZ concentrations on malanga in vitro regeneration (Table 2). It was noted that the number of shoots per explant increased in medium supplemented with BAP and TDZ. However, the highest shoot regeneration was noted with the addition of 2 mg L\(^{-1}\) TDZ, with 7.60 shoots per explant, followed by 2, 3, and 4 mg L\(^{-1}\) BAP, with 6.10 to 6.8 shoots per explant. For reference, the control treatment only produced 3.4 shoots per explant (Table 2). The highest shoot length was observed in culture medium supplemented with 1, 1.5, and 2 mg L\(^{-1}\) TDZ, with an average length between 6.26 to 7.71 cm (Fig. 2). On the other hand, the largest number of leaves per explant was observed in the control treatment, with 3.80 leaves per explant, followed by 0.5 mg L\(^{-1}\) TDZ, with 3.57 leaves per shoot. For the variables fresh weight and dry weight, higher values were noted in the treatment containing 2 mg L\(^{-1}\) TDZ, followed by 4 mg L\(^{-1}\) BAP.

Acclimatization. A 98% survival was observed in *C. esculenta* plantlets subjected to the acclimatization process. These results ensured the efficiency of the in vitro regeneration protocol developed.

Discussion. Currently, biotechnological strategies involving plant tissue culture are a feasible option for mass propagation and conservation intended for the replenishment of natural populations for sustainable use in the future (Bapat et al., 2008). In this context, the establishment of in vitro germplasm banks through minimal growth has been used successfully in other species of interest in agriculture, including coconut (*Cocos nucifera* L.) (Lédo et al., 2014), red-tipped photinia (*Photinia x fraseri* Dress) (Akdemir et al., 2010), pineapple (*Ananas comosus* L. Merr.) (Soneji et al., 2002), pumpkin (*Trichosanthes dioica*) (Singh et al., 2015), artichoke (*Cynara cardunculus var. scolymus*) (Tavazza et al., 2015), sugar cane (*Saccharum* spp.) (Bello-Bello et al., 2014; Nogueira et al., 2015), date palm (*Phoenix dactylifera*) (El-Bahr et al., 2016), passion flower (*Passiflora* spp.) (Pacheco et al., 2016), and vanilla (*Vanilla planifolia*) (Bello-Bello et al., 2015).

Treatment	Concentration (mg L\(^{-1}\))	No. of shoots per explant	Shoot length (cm)	No. of leaves per shoot	No. of shoots per explant	Root length	
Control	MS	91.66 ± 4.16 ab	2.20 ± 0.24 bc	10.10 ± 0.37 a	4.90 ± 0.23 a	14.50 ± 1.39 a	6.00 ± 0.26 a
	1/4	72.66 ± 8.33 bc	1.40 ± 0.21 c	6.20 ± 0.35 bc	3.41 ± 0.22 bc	16.25 ± 1.25 a	5.66 ± 0.22 a
	1/2	95.83 ± 4.16 a	1.63 ± 0.24 c	9.76 ± 0.42 a	4.90 ± 0.25 a	16.72 ± 1.14 a	6.00 ± 0.19 a
	3/4	95.83 ± 4.16 a	1.60 ± 0.26 a	9.90 ± 0.34 a	5.00 ± 0.23 a	16.18 ± 1.32 a	5.90 ± 0.27 a
Ancy (mg L\(^{-1}\))	1	96.66 ± 3.33 a	2.00 ± 0.21 a	9.16 ± 0.24 a	4.83 ± 0.24 a	15.00 ± 1.18 a	4.00 ± 0.24 b
	2	96.66 ± 3.33 a	2.27 ± 0.14 a	4.76 ± 0.32 c	4.00 ± 0.26 abc	14.45 ± 0.94 a	3.69 ± 0.23 b
	3	79.16 ± 8.33 bc	2.30 ± 0.15 c	6.66 ± 0.30 c	3.22 ± 0.27 bc	13.72 ± 1.11 a	2.88 ± 0.26 b
	10	76.66 ± 1.66 bc	3.58 ± 0.33 ab	5.54 ± 0.36 bc	3.20 ± 0.20 bc	14.50 ± 0.79 a	6.07 ± 0.32 a
	30	53.33 ± 3.33 a	5.33 ± 0.19 a	5.60 ± 0.33 bc	3.00 ± 0.21 bc	14.69 ± 0.73 a	6.50 ± 0.37 a

Figures represent the mean ± SE. Means with the same letter are not statistically different (Tukey, P < 0.05).
Fig. 1. Effect of the concentration of Murashige and Skoog (MS) medium, osmoregulator, and growth retardants on the in vitro conservation of *C. esculenta*. (A) MS medium (from left to right: 0%, 25%, 50%, and 75%, respectively). (B) Ancymidol (from left to right: 0, 1, 2, and 3 mg L⁻¹, respectively). (C) Polyethylene glycol (from left to right: 0, 10, 20, and 30 g L⁻¹, respectively). Bar = 1 cm.

Table 2. Effect of the growth regulators benzylaminopurine (BAP) and Thidiazuron (TDZ) on the in vitro multiplication of malanga.

Growth regulator	Dose (mg L⁻¹)	No. of shoots per explant	Shoot length (cm)	No. of leaves per shoot	Fresh wt (g)	Dry wt (g)
BAP	0	3.40 ± 0.43 c	5.30 ± 0.28 bc	3.80 ± 0.13 a	3.18 ± 0.38 c	0.28 ± 0.04 c
	1	5.90 ± 0.67 bc	3.10 ± 0.19 d	3.33 ± 0.18 bc	3.79 ± 0.32 bc	0.29 ± 0.01 c
	2	6.80 ± 0.82 ab	3.56 ± 0.24 c	2.92 ± 0.14 bc	5.32 ± 0.17 ab	0.39 ± 0.01 b
	3	6.10 ± 0.59 ab	2.97 ± 0.15 d	3.00 ± 0.27 bc	5.33 ± 0.33 ab	0.41 ± 0.03 b
	4	6.50 ± 0.77 ab	3.58 ± 0.17 cd	3.00 ± 0.07 bc	4.24 ± 0.07 bc	0.36 ± 0.02 bc
TDZ	0.5	4.30 ± 0.67 bc	4.50 ± 0.25 bcd	3.47 ± 0.20 ab	3.21 ± 0.13 bc	0.39 ± 0.03 b
	1	4.66 ± 0.69 bc	7.71 ± 0.12 a	2.64 ± 0.11 c	4.50 ± 0.31 bc	0.35 ± 0.04 bc
	1.5	5.33 ± 0.63 bc	5.98 ± 0.34 bc	3.29 ± 0.11 bc	3.64 ± 0.18 bc	0.30 ± 0.02 c
	2	7.60 ± 0.77 a	6.26 ± 0.31 ab	2.84 ± 0.15 bc	5.14 ± 0.29 a	0.56 ± 0.03 a

Figures represent the mean ± se. Means with the letter are not statistically different (Tukey, *P* < 0.05).

Fig. 2. Effect of the benzylaminopurine (BAP) and thidiazuron (TDZ) growth regulators on the in vitro regeneration of *C. esculenta* at 25 d of culture. (A) Control; (B–E) 1, 2, 3, and 4 mg L⁻¹ BAP, respectively; (F–I) 0.5, 1, 1.5, and 2 mg L⁻¹ TDZ, respectively.
However, none of these studies reports the use of ancymidol as an alternative in an in vitro conservation program.

There are reports of the in vitro conservation of malanga. Bessembrinder et al. (1993) managed to conserve for 8 years vitroplantulants under minimum growth. However, they mentioned that prolonged addition of mannitol to the culture medium affected survival and regeneration, causing abnormalities and death of the explants. On the other hand, Sant et al. (2008) implemented the droplet vitrification technique in Colocasia esculenta var. esculenta. However, they did not cryopreserve plant material for a long time.

It has been extensively documented that ancymidol inhibits the biosynthesis of gibberellins, blocking the conversion of ent-kaurene to ent-kaurenoic acid, hence reducing internode length and leaf size (Hernández-Altamirano et al., 2018). In our study, we observed a relationship among ancymidol concentration and reduction in shoot length of C. esculenta cultured in vitro. This is consistent with reports for in vitro cultured plantlets of pumpkin (Trichosanthes dioica) (Singh et al., 2015), potato (Solanum tuberosum) (Sarkar et al., 2001), and fern (Asparagus setaceus) (Pindel, 2017).

On the other hand, the use of PEG in the in vitro conservation of C. esculenta reduced the percent survival with increasing PEG concentrations in the culture medium, due to the osmotic stress produced by this molecule. The change in the osmotic potential of the culture medium affects nutrient concentration and growth rate in vitro (Sahoo et al., 2018). In contrast to our results, PEG concentrations of 1 to 15 g L⁻¹ have been successfully used in the in vitro conservation of various species, such as liquorice (Glycyrrhiza glabra) (Srivastava et al., 2013), jojoba (Simmondsia chinensis) (Bekheet et al., 2016), and vanilla (Vanilla planifolia) (Bello-Bello et al., 2015). MS salts at low concentrations have been used for in vitro conservation through minimum growth in cat’s claw (Uncaria tomentosa) (Mora et al., 2011). This contrasts with our study because lower MS salts had no significant effect on the growth variables evaluated, relative to the control treatment. This was probably due to the low nutritional requirements of C. esculenta.

A successful in vitro conservation program requires the development of regeneration strategies such as micropropagation (Bonilla et al., 2015; da Silva et al., 2016). TDZ is a phenylurea used as growth regulator for a rapid and effective in vitro regeneration of plant species (Ali et al., 2018). Various studies have shown that the TDZ affects the endogenous production of cytokinins and auxins by regulating several genes that act on the transport of auxins and cytokinins (Dewir et al., 2018; Wamakoriro and Tefera, 2012). In addition, this PGR is commonly used for obtaining shoots or somatic embryos in a number of plant species (Dewir et al., 2018).

In our study, we obtained a larger number of shoots per explant of C. succulent using TDZ (2 mg L⁻¹). These results contrast with what is described by Du et al. (2006), who in C. esculenta var. antiquorum obtained the largest number of shoots per explant (4.7) in medium supplemented with 3.0 mg L⁻¹ BAP + 0.1 mg L⁻¹ TDZ. However, the regenerated plants were not part of an in vitro conservation program. It has been mentioned that TDZ concentrations greater than 0.5 mg L⁻¹ induce morphological malformations in a number of plant species cultured in vitro (Dewir et al., 2018). These malformations occur in the morphology of leaves and shoots, and also appear as swelling at the base of shoots (Dewir et al., 2006, 2018). However, these abnormalities depend on the high sensitivity of each individual species to TDZ. In our study, no malformations were apparent during the regeneration of shoots.

In conclusion, a protocol was established for the in vitro conservation of C. esculenta by inhibiting growth but with no effect on the percent survival. Also, an efficient protocol for in vitro regeneration of the preserved shoots was developed. In vitro conservation and regeneration systems contribute to germplasm preservation and reintroduction strategies of this valuable plant genetic resource.

Literature Cited

Akdemir, H., E. Kaya, and Y. Ozden. 2010. In vitro proliferation and minimum growth storage of fraser ph军官: Influences of different medium, sugar combinations and culture vessels. Scientia Hort. 126:268–275.

Ali, H., M.A. Khan, W.K. Kayani, T. Khan, and R.S. Khan. 2018. Thidiazuron-raegulated growth, secondary metabolism and essential oil profiles in shoot cultures of Ajuga brac
teca. Ind. Crops Prod. 121:418–427.

Bapat, V. A., Yadav, S. R., and Dixit, G. B. 2008. Rescue of endangered plants through biotechnological applications. Natl. Acad. Sci. Lett. 31:201–201.

Barrueto Cid, L.P. and L.L. Carvalho. 2008. Importance of abscisic acid (ABA) in the in vitro conservation of Vanilla planifolia (Manihot esculent
ta Crantz). Chil. J. Agr. Res. 68:304–308.

Bekheet, S.A., M.A. Matter, and A.A. El-Ashry. 2018. Of estrogen- induced abnormalities in plant regeneration. Plant Cell Tissue Organ Cult. 33(2):121–127.

Bello-Bello, J.J., G.G. Garcia-Garcia, and L. Iglesias-Andreuc. 2015. Conservation of vain
ila (Vanilla planifolia Jacks) bajo condiciones de lento crecimiento in vitro. Rev. Fitotec. Mex. 38:165–171.

Bello-Bello, J., P. Poot-Poot, L. Iglesias-Andreuc, H. Caamal-Velazquez, and M. de la Cruz Dzaz-Sanchez. 2014. Effect of osmotic regulators and growth inhibitors on in vitro conservation of sugarcane. Agroecologia 48: 439–446.

Bessembrinder, J.J.E., G. Staritsky, and E.A. Zandvoort. 2018. Biotechnological interventions for propagation, conservation and improvement of ‘Lantem Flowers’ (Cer
tedgea spp.). S. Afr. J. Bot. 149:192–216.

Chen, J., D.E. Hall, and V. De Luca. 2005. Effects of the growth retardant paclobutrazol on large-scale micropropagation of daylily (Hemerocallis spp.). In Vitro Cell. Dev. Biol. Planta 41:58–62.

da Silva, R.L., C.F. Ferreira, C.A. da Silva Ledo, E.H. de Souza, P.H. da Silva, M.A.P. de Carvalho Costa, and F.V.D. Souza. 2016. Viability and genetic stability of pineapple germplasm after 10 years of in vitro conservation. Plant Cell Tissue Organ Cult. 127:123–133.

Dewir, Y.H., Y. Naidoo, and J.A.T. da Silva. 2018. Thidiazuron-induced abnormalities in plant tissues cultures. Plant Cell Rpt. 37:1451–1470.

Du, H.M., D.M. Tang, and D.F. Huang. 2006. ‘Fragrant taro’ [Colocasia esculenta (L.) Schott var. antiquorum] micropropagation using thidiazuron and benzylaminopurine. J. Hort. Sci. Biotechnol. 81:379–384.

El-Bahr, M.K., A.A. El-Hamid, M.A. Matter, A. Shallowt, S.A. Bekheet, and A.A. El-Ashey. 2018. In vitro conservation of embryogenic cultures of date palm using osmotic mediated growth agents. J. Genet. Eng. Biotechnol. 16:167-173.

El-Dawayati, M.M., Z.E. Zaid, and S.F. Elsharabasy. 2012. Effect of conservation on steroids contents of callus explants of date palm cv. sakkoti. Austral. J. Basic Appl. Sci. 6:305–310.

Eleazu, C.O. 2016. Characterization of the natural products in cocoyam (Colocasia esculenta) using GC–MS. Pharm. Biol. 54:2880–2885.

Food and Agriculture Organization of the United Nations (FAO). 2018. Malanga: Raíces y tubercu

ulas. <http://www.fao.org/tempref/GI/Reserved/FTP/Faorlc/old/priagam/prodalam/prodveg
dtrombendo/contenido/libro1/cap3.htm>.

Gantait, S., M.M. El-Dawayati, J. Panigrahi, C. Labrooy, and S.K. Verma. 2018. The retrospect of auxins and cytokinins. Rev. Inves

tig. Agrar. Ambient. (Bogota) 6:67–81.

Hassan, N.A., R.G. Stino, A.H. Gomaa, and R. M. Al-Mousa. 2014. In vitro medium-term germ

plasm conservation and genetic stability of grape (Vitis vinifera L.). J. Hort Sci. Ornamental. Pl 6:19–77.

Hernández-Altimirano, J.M., A. Largo-Gousens, R. Martínez-Rubio, D. Pereda, J.M. Álvarez, J.L. Acebes, A. Encina, and P. García-Angulo. 2018.
Effect of ancymidol on cell wall metabolism in growing maize cells. Planta 247:987–999.

Hidalgo, R.H., and F.A.V. Cabrera. 2014. Bases para el estudio de los recursos genéticos de especies cultivadas. Universidad Nacional de Colombia. Sede Palmira. 284.

Jiang, S.T., Y.Z. Cheng, Z. Zheng, and L.J. Pan. 2012. Analysis and evaluation of nutritional components of red bud taro (Colocasia esculenta L. Schott). Food Sci 33:269–272.

Kaur, M., P. Kaushal, and K.S. Sandhu. 2013. Studies on physicochemical and pasting properties of Taro (Colocasia esculenta L.) flour in comparison with a cereal, tuber and legume flour. J. Food Sci. Technol. 50:94–100.

Kundu, N., P. Campbell, B. Hampton, C.Y. Lin, X. Ma, N. Ambulos, X.F. Zhao, O. Goloubeva, D. Holt, and A.M. Fulton. 2012. Antimetastatic activity isolated from Colocasia esculenta (taro). Anticancer Drugs 23:200–211.

Lédo, A.D.S., C.R.F. Moura, C.D.A. Machado, S.R.R. Ramos, A.V.C.D. Silva, and C.A.D.S. Lédo. 2014. Mannitol for coconut ex situ conservation by minimum growth. Pesqui. Agropecu. Bras. 49:148–151.

Mora, N.C., M.B. Huertas, A.A. Esquivel, and S.A. Venutolo. 2011. Establecimiento de un protocolo para la conservación en vitro a mediano plazo de unia de gato (Uncaria tomentosa (Willd). DC). Tecnol. Marcha 24:19–29.

Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15:473–497.

Nogueira, G.F., L.A.S. Pio, M. Pasqual, A. Amaral, and J.E. Scherwinski-Pereira. 2015. An approach on the in vitro maintenance of sugarcane with views for conservation and monitoring of plant nuclear DNA contents via flow cytometry. In Vitro Cell. Dev. Biol. Plant 51:220–230.

Offord, C.A. 2017. Germplasm conservation, p. 281–288. In: B. Thomas, B.G. Murray, and D.J. Murphy (eds). Encyclopedia of applied plant sciences. Elsevier Ltd., London, UK.

Ogali, R.E., S.E. Ofodile, and C. Eze. 2016. Comparison of bioethanol yield from four cocoyam species in Nigeria. J. Chem. Soc. Niger 41:53–57.

Pacheco, G., M.J. Simão, M.G. Vianna, R.O. Garcia, M.L.C. Vieira, and E. Mansur. 2016. In vitro conservation of Passiflora—a review. Scientia Hort. 211:305–311.

Park, H.R., H.S. Lee, S.Y. Cho, Y.S. Kim, and K.S. Shin. 2013. Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Intl. J. Mol. Med. 31:361–368.

Pinel, A. 2017. Regeneration capacity of Asparagus setaceus (Kunth) Jessop ‘pyramidalis’ in in vitro cultures. Acta Sci. Pol. Hortorum Cultus 16:85–93.

Rai, M.K., R.K. Kalia, R. Singh, M.P. Gangola, and A.K. Dhawan. 2011. Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environ. Exp. Bot. 71:89–98.

Sahoo, M.R., M. Dasgupta, P.C. Kole, and A. Mukherjee. 2018. Photosynthetic, physiological and biochemical events associated with polyethylene glycol-mediated osmotic stress tolerance in taro (Colocasia esculenta L. Schott). Photosynthetica 56:1069–1080.

Sant, R., B. Panis, M. Taylor, and A. Tyagi. 2008. Cryopreservation of shoot-tips by droplet vitrification applicable to all taro (Colocasia esculenta var. esculenta) accessions. Plant Cell Tissue Organ Cult. 92(1):107–111.

Sarkar, D., S.K. Chakraborti, and P.S. Naik. 2001. Slow-growth conservation of potato microplants: Efficacy of ancydmidol for long-term storage in vitro. Euphytica 117:133–142.

Seesangboon, A., L. Gruneck, T. Pokawattana, P.D. Eungwanichyapant, J. Tovaranonte, and S. Popuechail. 2018. Transcriptome analysis of Jatropha curcas L. flower buds responded to the paclotbrazol treatment. Plant Physiol. Biochem. 127:276–286.

Singh, H., S. Kumar, and B.D. Singh. 2015. In vitro conservation of pointed gourd (Trichosanthes dioica) germplasm through slow-growth shoot cultures: Effect of flurprimidol and triiodobenzoic acid. Scientia Hort. 182:41–46.

Soneji, J., P. Rao, and M. Mhatre. 2002. Germination of synthetic seeds of pineapple (Ananas comosus L. Merr.). Plant Cell Rpt. 20:891–894.

Srivastava, M., D.K. Purshottam, A.K. Srivastava, and P. Misra. 2013. In vitro conservation of Glycyrrhiza glabra by slow growth culture. Intl. J. Biotechnol. Res. 3:49–58.

Talukder, A.A., S.I. Sujon, M.M. Hossain, D.J. Gomes, and M. Yamada. 2015. Production of bioethanol at high temperature from tari. Adv. Microbiol. 5:325–335.

Tavazza, R., N.A. Rey, V. Papacchioli, and M.A. Pagnotta. 2015. A validated slow-growth in vitro conservation protocol for globe artichoke germplasm: A cost-effective tool to preserve from wild to elite genotypes. Scientia Hort. 197:135–145.

Vannakrainjoj, S. and W. Tefera. 2012. Thidiazuron and other plant bioregulators for axenic culture of Siam cardamom (Amomum krervanh Pierre ex Gangr)’. Kasetsart J. Nat. Sci. 46:335–345.

Yu, J.G., P. Liu, J.A. Duan, Z.X. Tang, and Y. Yang. 2015. Itches—stimulating compounds from Colocasia esculenta (taro): Bioactive-guided screening and LC–MS/MS identification. Bioorg. Med. Chem. Lett. 25:4382–4386.