Data Article

Data collected from the experimental validation for the application of flat jack tests in cob walls

Alejandro Jiménez Rios*, Dermot O'Dwyer

Department of Civil, Structural and Environmental Engineering Trinity College Dublin, College Green, D02 Dublin, Ireland

Article Info

Article history:
Received 1 May 2020
Revised 14 May 2020
Accepted 18 May 2020
Available online 25 May 2020

Keywords:
Cob
Consolidation
Minor Destructive Tests (MDT)
Single flat jack
Double flat jack
Mechanical properties

Abstract

This paper accompanies the paper titled “Experimental validation for the application of the flat jack test in cob walls” presented by the same authors to the Construction and Building Materials Journal [1]. It contains data collected during the consolidation process of six cob wallets and data collected after single and double flat jack test were applied for the first time to a set of cob wallets at the laboratory facilities of the Department of Civil, Structural and Environmental Engineering at Trinity College Dublin. The data served to estimate the value of the dimensionless geometrical efficiency constant, K_e, and cob’s mechanical properties, namely, Young’s modulus, Poisson’s ratio and compressive strength. The detailed information presented here may be of interest for verification and replicability purposes.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author.
E-mail address: jimnezra@tcd.ie (A.J. Rios).

https://doi.org/10.1016/j.dib.2020.105764
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject	Civil and Structural Engineering
Specific subject area	Minor Destructive Tests (MDT)
Type of data	Tables
	Figures
	Equations
How data were acquired	Consolidation data was acquired from six cob wallottes in accordance with BS EN 1052 Part 1 [2]. Four Linear Variable Differential Transformers (LVDTs) RDP Electronics model ACT3000 with an accuracy of 0.01 mm +/- 0.5 % where attached to the front and rear faces' middle third of the wallottes to measure the deformation caused by the load transfer to it by the tensioning of four steel threaded bars. The load applied to the wallottes was measured with two load cells Tokyo Measuring Instruments Lab model KCM-300KNA, 300 kN capacity, 0.1 kN precision and two load cells Honeywell/Sensotec model TH, 890 kN capacity and 0.1 kN precision installed under every tensioning bar. Flat jack data was acquired from the application of single flat jack and double flat jack tests in the six cob wallottes. The slot cutting equipment used was a ring saw model Husqvarna K3600 with a blade diameter of 370 mm and a 6 mm thickness which allows for a maximum cut depth of 270 mm. The flat jacks used were eccentric flat jacks model SISGEO 0L103352600. Pressure increments were measured with a pressure transducer Wykeham Farrance model 28-WF6301 with a range capacity of 0-2000 kPa. Control points' displacements were manually measured with “Vernier” callipers equipped with a digital display.
Data format	Raw
	Analysed
Parameters for data collection	The cob wallottes dried under natural conditions protected from rain and wind. They were subjected to a consolidation load of 84 kN +/- 1.0 kN. During the flat jack tests, the wallottes were subjected to a load of approximately 50 kN.
Description of data collection	Cob wallottes were initially loaded in increments of roughly 8 kN until a total load of approximately 84 kN was achieved. The load was kept quasi-constant for a period of five days and monitored. Deformation was measured by four LVDTs installed at the middle third of the wallotte (two in each of its faces). The procedures described in [3–8], were adopted and adapted to perform the flat jack test.
Data source location	Institution: Trinity College Dublin
	City: Dublin
	Country: Ireland
Data accessibility	With the article and in the following repository [9]: Repository name: Mendeley Data Data identification number: 10.17632/twbf86wxtx1 Direct URL to data: https://data.mendeley.com/datasets/twbf86wxtx/1
Related research article	Alejandro Jiménez Rios and Dermot O’Dwyer Experimental validation for the application of the flat jack test in cob walls Construction and Building Materials DOI: 10.1016/J.CONBUILDMAT.2020.119148

Value of the Data

- This paper presents the first data ever published from the application of the flat jack test in cob walls.
- Conservation engineers working on the investigation of cob structures with the use of quantitative approaches can use this data as reference.
- The data was used to determine the values of the mechanical properties of the material, namely, Young’s modulus, Poisson’s ratio and compressive strength, and the dimensionless geometrical efficiency constant, K_e. Additionally, the data here presented contributes to the enrichment of the scarce information available in the literature concerned with the mechanical properties and the structural behaviour of cob.
1. Data

All raw data points collected during the wallettes consolidation can be freely accessed from the Mendeley repository [10]. The raw data is divided in three files. The first one contains all the data points collected during the first cycle loading for load (kN), and displacement (mm) for each wallette. The second file contains the same data collected during a second loading cycle (except for wallette W1). Finally, the third one contains data points collected during the consolidation period of five days for load (kN), displacement (mm) and time (min).

The analysed data obtained from the first and second load cycles applied to each one of the cob wallettes is presented from Tables 1–6 (wallette W1 was not reloaded). Total loads were obtained by adding the forces in each one of the four steel threaded bars whereas that average displacements were computed taking into account the displacements measured by the four LVDTs attached to the wallettes’ faces unless specified otherwise (the uneven surface of the wallettes hindered the proper installation of the LVDTs and some of them did not provided faithful measurements therefore were neglected to compute the average displacement value reported in these tables).

The analysed data points obtained during the consolidation period of five days are presented in Table 7 and Table 8 for wallettes W1, W2, W3 and W4, W5, W6 respectively. The average displacement–time curves plotted for each one of the wallettes are shown in Figure 1.

To transform loads and displacements into stresses and strains the wallettes dimensions and the LVDTs lengths were measured. Those dimensions were obtained with a metallic measuring tape with an accuracy of 5.0 mm and are reported in Table 9 and Table 10 respectively. The sketch in Figure 2 shows the location were every wallette’s dimension was taken.

Finally, the values reported in Table 11 represent the estimation of cob’s Young’s modulus based on the slope of linear regression lines fitted into the consolidation stress–strain curves. As wallette W1 was not subjected to a second load cycle no Young’s modulus values is reported for it. The mean value obtained (from wallettes, W2-W6) was 143.3 MPa with a SD of 32.6 MPa and a COV of 22.77 %.

The data collected from the measurements of the cuts in wallettes W1, W2 and W3 and the correspondent cut shapes are presented in Table 12 and Figure 3 respectively. Cuts’ measure-
Table 1
First and second load cycle’s force-displacement and stress-strain data points for W1.

1st load cycle	Reloading													
Total load (kN)	Average displacement (mm)	Stress (MPa)	Average strain (mm/mm)	Total load (kN)	Average displacement (mm)	Stress (MPa)	Average strain (mm/mm)							
0	0.00	0.00	0.0000	-	-	-	-							
3.89	0.01	0.01	0.0001	-	-	-	-							
8.24	0.03	0.02	0.0002	-	-	-	-							
12.96	0.06	0.03	0.0005	-	-	-	-							
20.49	0.10	0.05	0.0008	-	-	-	-							
28.25	0.15	0.07	0.0011	-	-	-	-							
35.8	0.22	0.09	0.0016	-	-	-	-							
44.36	0.32	0.11	0.0024	-	-	-	-							
51.97	0.43	0.13	0.0032	-	-	-	-							
60.53	0.64	0.15	0.0048	-	-	-	-							
67.85	0.87	0.17	0.0065	-	-	-	-							
75.12	1.15	0.19	0.0087	-	-	-	-							
84.76	1.67	0.21	0.0127	-	-	-	-							

* LVDT 4 values discarded.
Table 2
First and second load cycle's force-displacement and stress-strain data points for W2.

1st load cycle	Average displacement (mm)*	Stress (MPa)	Average strain (mm/mm)*	Reloading	Total load (kN)	Average displacement (mm)	Stress (MPa)	Average strain (mm/mm)
0.00	0.00	0.00	0.0000	0.00	0.00	0.00	0.00	0.0000
4.76	0.00	0.01	0.0000	8.48	0.00	0.00	0.03	0.0001
12.79	0.03	0.03	0.0001	16.83	0.09	0.00	0.04	0.0003
20.57	0.08	0.05	0.0003	24.47	0.15	0.00	0.06	0.0005
28.27	0.16	0.07	0.0005	32.92	0.24	0.00	0.08	0.0008
36.07	0.30	0.09	0.0010	40.77	0.29	0.00	0.10	0.0010
44.05	0.49	0.11	0.0016	48.44	0.35	0.00	0.12	0.0012
52.02	0.75	0.12	0.0025	57.25	0.44	0.00	0.14	0.0015
59.56	1.08	0.14	0.0036	64.32	0.49	0.00	0.15	0.0017
67.53	1.42	0.16	0.0048	72.11	0.55	0.00	0.17	0.0018
75.71	1.99	0.18	0.0067	84.56	0.64	0.00	0.20	0.0022
83.91	2.53	0.20	0.0085	90.56	0.68	0.00	0.22	0.0025

* LVDT 2 values discarded.
Table 3
First and second load cycle's force-displacement and stress-strain data points for W3.

1st load cycle	Reloading	Total load (kN)	Average displacement (mm)	Stress (MPa)	Average strain (mm/mm)	Total load (kN)	Average displacement (mm)	Stress (MPa)	Average strain (mm/mm)
0.00		0.00	0.00	0.00	0.0000	0.00	0.00	0.00	0.0000
9.08		0.01	0.02	0.04	0.0000	8.13	0.02	0.02	0.0001
16.12		0.05	0.06	0.06	0.0004	16.60	0.02	0.04	0.0001
24.65		0.10	0.08	0.08	0.0005	24.95	0.11	0.06	0.0004
32.59		0.16	0.10	0.10	0.0010	32.69	0.14	0.08	0.0005
41.58		0.28	0.14	0.14	0.0011	40.50	0.18	0.10	0.0006
56.90		0.34	0.14	0.14	0.0015	48.40	0.23	0.12	0.0008
56.07		0.46	0.14	0.14	0.0015	57.14	0.29	0.14	0.0010
64.27		0.64	0.16	0.16	0.0021	64.29	0.31	0.16	0.0011
72.18		0.86	0.17	0.17	0.0029	72.22	0.35	0.17	0.0012
79.57		1.11	0.19	0.19	0.0037	80.13	0.37	0.19	0.0013
84.86		1.39	0.21	0.21	0.0047	84.14	0.43	0.20	0.0014
						0.13	-0.02	0.00	-0.0001

* LVDT 2, 3 and 4 values discarded.
Table 4
First and second load cycle's force-displacement and stress-strain data points for W4.

1st load cycle	Average displacement (mm)	Stress (MPa)	Average strain (mm/mm)	Reloading	Average displacement (mm)	Stress (MPa)	Average strain (mm/mm)
Total load (kN)				Total load (kN)			
0.00	0.00	0.00	0.0000	0.00	0.00	0.00	0.0000
4.46	0.00	0.01	0.0000	4.43	0.01	0.01	0.0000
12.33	0.02	0.03	0.0001	12.40	0.22	0.03	0.0008
20.75	0.05	0.05	0.0002	20.77	0.06	0.05	0.0002
28.10	0.09	0.07	0.0003	28.30	0.10	0.07	0.0004
36.41	0.17	0.09	0.0006	36.71	0.13	0.09	0.0005
44.01	0.27	0.11	0.0009	44.24	0.17	0.11	0.0006
52.12	0.43	0.13	0.0015	52.18	0.20	0.13	0.0007
60.57	0.63	0.15	0.0022	60.01	0.23	0.15	0.0008
67.88	0.87	0.17	0.0030	68.15	0.28	0.17	0.0010
75.93	1.19	0.19	0.0041	76.34	0.32	0.19	0.0011
83.77	1.53	0.21	0.0053	84.52	0.40	0.21	0.0014

* LVDT 1 values discarded.
Table 5
First and second load cycle's force-displacement and stress-strain data points for W5.

1st load cycle	Reloading							
	Total load (kN)	Average displacement (mm)\(\ast\)	Stress (MPa)	Average strain (mm/mm)\(\ast\)	Total load (kN)	Average displacement (mm)\(\ast\)	Stress (MPa)	Average strain (mm/mm)\(\ast\)
0.00	0.00	0.00	0.0000	0.00	0.00	0.0000	0.00	0.0000
4.45	0.00	0.01	0.0000	4.38	-0.01	0.01	0.03	0.0000
12.43	0.01	0.03	0.0001	12.35	0.01	0.03	0.03	0.0000
21.31	0.02	0.05	0.0001	20.50	0.03	0.05	0.05	0.0001
28.54	0.05	0.07	0.0002	28.42	0.07	0.07	0.07	0.0002
36.65	0.12	0.09	0.0004	36.34	0.11	0.09	0.09	0.0004
44.22	0.19	0.11	0.0007	44.68	0.14	0.11	0.11	0.0005
52.27	0.31	0.13	0.0011	52.48	0.18	0.13	0.13	0.0006
60.28	0.43	0.15	0.0015	60.31	0.21	0.15	0.15	0.0007
68.16	0.60	0.17	0.0021	68.40	0.25	0.17	0.17	0.0009
76.00	0.81	0.19	0.0028	76.79	0.28	0.19	0.19	0.0010
84.13	1.01	0.21	0.0035	84.32	0.32	0.21	0.21	0.0011

\(\ast\) LVDT 4 values discarded.
Table 6
First and second load cycle's force-displacement and stress-strain data points for W6.

1st load cycle	Reloading		
Total load (kN)	Average displacement (mm)*	Stress (MPa)	Average strain (mm/mm)*
0.00	0.00	0.00	0.00
5.05	0.01	0.01	0.000
12.82	0.02	0.03	0.0001
20.70	0.05	0.05	0.0002
28.96	0.09	0.07	0.0003
36.50	0.14	0.09	0.0005
44.03	0.21	0.11	0.0007
52.32	0.32	0.13	0.0011
59.41	0.44	0.15	0.0015
68.01	0.60	0.17	0.0020
75.36	0.77	0.19	0.0026
84.27	1.07	0.21	0.0036
0.00	0.00	0.00	0.00
4.71	0.00	0.00	0.00
12.67	0.01	0.01	0.03
20.99	0.05	0.05	0.05
28.87	0.09	0.07	0.0003
36.43	0.13	0.09	0.0005
44.67	0.17	0.11	0.0006
52.71	0.21	0.13	0.0007
60.79	0.25	0.15	0.0008
69.05	0.29	0.17	0.0010
76.70	0.32	0.19	0.0011
84.05	0.36	0.21	0.0012
-0.90	0.00	0.00	0.00

* LVDT 1 values discarded.
** LVDT 1 and 3 values discarded.
| W1 | Average displacement (mm) | Time (min) | W2 | Average displacement (mm) | Time (min) | W3 | Average displacement (mm) | Time (min) |
|----|--------------------------|------------|----|--------------------------|------------|----|--------------------------|------------|
| 1.67 | 0 | 2.53 | 0 | 1.39 | 0 |
| 1.84 | 8 | 2.71 | 3 | 1.51 | 6 |
| 1.92 | 13 | 2.98 | 7 | 1.62 | 12 |
| 2.08 | 29 | 3.12 | 15 | 1.71 | 20 |
| 2.16 | 38 | 3.28 | 23 | 1.76 | 25 |
| 2.23 | 50 | 3.40 | 31 | 1.85 | 38 |
| 2.27 | 56 | 3.51 | 41 | 1.91 | 52 |
| 2.35 | 82 | 3.68 | 70 | 2.01 | 70 |
| 2.38 | 90 | 3.81 | 100 | 2.11 | 105 |
| 2.46 | 125 | 3.95 | 132 | 2.16 | 135 |
| 2.51 | 151 | 4.05 | 160 | 2.33 | 230 |
| 2.55 | 184 | 4.18 | 226 | 2.45 | 303 |
| 2.59 | 213 | 4.28 | 287 | 2.68 | 1245 |
| 2.63 | 244 | 4.36 | 340 | 2.75 | 1372 |
| 2.66 | 274 | 4.66 | 1315 | 2.82 | 1483 |
| 2.69 | 303 | 4.77 | 1422 | 2.89 | 1610 |
| 2.71 | 335 | 4.87 | 1563 | 2.95 | 1720 |
| 3.01 | 1297 | 4.94 | 1660 | 3.07 | 2695 |
| 3.06 | 1417 | 5.00 | 1780 | 3.12 | 2805 |
| 3.11 | 1532 | 5.20 | 2745 | 3.19 | 2955 |
| 3.16 | 1650 | 5.28 | 2885 | 3.22 | 3050 |
| 3.20 | 1770 | 5.33 | 3004 | 3.24 | 3180 |
| 3.38 | 2727 | 5.38 | 3124 | 3.35 | 4125 |
| 3.44 | 2850 | 5.43 | 3256 | 3.37 | 4245 |
| 3.47 | 2970 | 5.55 | 4185 | 3.40 | 4365 |
| 3.52 | 3095 | 5.60 | 4306 | 3.41 | 4485 |
| 3.55 | 3210 | 5.65 | 4428 | 3.46 | 4603 |
| 3.66 | 4170 | 5.69 | 4544 | 3.52 | 5565 |
| 3.70 | 4292 | 5.77 | 4640 | 3.55 | 5685 |
| 3.72 | 4410 | 5.85 | 5630 | 3.56 | 5807 |
| 3.75 | 4529 | 5.89 | 5744 | 3.59 | 5930 |
| 3.77 | 4650 | 5.93 | 5878 | 3.60 | 6050 |
| 3.85 | 5637 | 5.96 | 5980 | 3.67 | 7075 |
| 3.89 | 5752 | 6.02 | 6220 | 3.75 | 7075 |
| 3.90 | 5871 | 6.08 | 7060 | 3.80 | 7075 |

* LVDT 4 values discarded. **LVDT 2 values discarded.
Table 8
Consolidation time-displacement data for W4, W5 and W6.

W4 Average displacement (mm)	Time (min)	W5 *Average displacement (mm)	Time (min)	W6 **Average displacement (mm)	Time (min)
1.53	0	1.01	0	1.07	0
1.69	5	1.12	5	1.24	5
1.80	15	1.20	11	1.35	15
1.90	25	1.26	17	1.44	35
1.96	35	1.32	28	1.55	72
2.13	51	1.38	43	1.62	102
2.22	92	1.43	56	1.69	132
2.36	130	1.50	88	1.78	180
2.43	180	1.57	120	1.86	275
2.50	225	1.65	182	1.94	335
2.57	295	1.72	240	2.14	1475
2.71	370	1.77	300	2.21	1605
2.93	1330	1.82	356	2.28	1740
3.01	1445	1.99	1320	2.33	1860
3.04	1520	2.06	1458	2.36	1980
3.12	1685	2.10	1550	2.47	2790
3.18	1794	2.15	1685	2.51	2915
3.43	2810	2.21	1820	2.55	3035
3.47	2942	2.35	2880	2.57	3155
3.51	3060	2.40	3000	2.60	3275
3.53	3185	2.44	3120	2.69	4230
3.57	3305	2.48	3254	2.72	4350
3.67	4195	2.51	3360	2.76	4477
3.69	4315	2.60	4200	2.79	4590
3.73	4440	2.63	4320	2.81	4710
3.77	4795	2.66	4450	2.87	5735
3.86	5700	2.69	4556	2.90	5850
3.88	5820	2.72	4680	2.92	5975
3.91	5940	2.78	5640	2.94	6095
3.92	6055	2.81	5760	2.95	6230
3.94	6180	2.83	5900	3.01	7105
4.17	7085	2.85	6000	2.92	7090

* LVDT 4 values discarded. **LVDT 1 values discarded.
Table 9
Cob wallettes' measured dimensions (mm).

Location	W1	W2	W3	W4	W5	W6
H1	1010	980	1020	1035	1020	990
H2	1010	990	1020	1010	1010	990
H3	410	425	420	400	405	410
H4	405	430	400	395	395	405
H5	985	980	1000	1020	1020	1010
H6	1000	1005	1010	1020	1015	1000
H7	400	410	405	405	410	410
H8	400	425	410	400	405	390
V1	950	955	970	950	950	950
V2	960	950	970	960	945	955
V3	955	950	965	960	950	950
V4	955	950	985	950	950	950

Table 10
LVDT’s distances between points of attachment to the wallettes’ faces.

W1 LVDT Length (mm)	W2 LVDT Length (mm)	W3 LVDT Length (mm)	W4 LVDT Length (mm)	W5 LVDT Length (mm)	W6 LVDT Length (mm)
1 110	1 287	1 295	1 290	1 300	1 300
2 170	2 286	2 300	2 287	2 285	2 290
3 135	3 300	3 295	3 289	3 290	3 290
4 129	4 309	4 300	4 287	4 295	4 300

Figure 2. Sketch showing the locations were the wallettes measurements were taken.

ments and the correspondent cut shapes of wallettes W4, W5 and W6 are presented in Table 13 and Figure 4 respectively. As the depth of the cuts was measured using a template fabricated with a piece of timber with a thickness of 1.23 cm, the measured depth was corrected by subtracting this value and is presented as the Corrected depth in Table 12 and Table 13.

The data collected at every pressure increment for the distances between control points is presented from Tables 14–19 for each one of the wallettes. Furthermore, Figure 5 shows the distances between control points for every pressure increment, Figure 6 illustrates the correspondent deformations and, finally, Figure 7 displays the deformation recovery plots for every wallette.

The over imposed load was monitored at different stages of the single flat jack test. The data collected is presented in Table 20. Finally, data concerned with the wallettes’ geometry and other loads acting in the wallettes during the test is presented in Table 21.
Figure 3. Slot cut shape of wallets (a) W1 (ASLOT=79921.50 mm²), (b) W2 (ASLOT=85277.75 mm²) and (c) W3 (ASLOT=84428.60 mm²).
Figure 4. Slot cut shape of wallets (a) W4 (ASLOT=79921.50 mm²), (b) W5 (ASLOT=83249.75 mm²) and (c) W6 (ASLOT=82627.75 mm²).
Figure 5. Control points’ distances for (a) W1, (b) W2, (c) W3, (d) W4, (e) W5 and (f) W6.
Figure 6. Control points’ deformations for (a) W1, (b) W2, (c) W3, (d) W4, (e) W5 and (f) W6.
Figure 7. Deformation recovery plots for (a) W1, (b) W2, (c) W3, (d) W4, (e) W5 and (f) W6.
Table 11
Estimated values of cob’s Young’s modulus.

Wallette	Young’s modulus (MPa)
W1	-
W2	92.05
W3	135.89
W4	148.45
W5	162.41
W6	177.70

The data collected from the measurements of the upper cuts in wallets W1, W2 and W3 and the corresponding cut shapes are presented in Table 22 and Figure 8 respectively. Cuts’ measurements and the corresponding cut shapes of wallets W4, W5 and W6 are presented in Table 23 and Figure 9 respectively. As the depth of the cuts was measured using a template fabricated with a piece of timber 1.23 cm thick, the measured depth was corrected by subtracting this value and is presented as the Corrected depth in Table 22 and Table 23.

Table 24 presents important data used to perform intermediate calculations before estimating the material’s mechanical properties. \(A_{ij} \) represents the area of the eccentric flat jack used, \(A_{EJSLAT} \) and \(K_{adj} \) represent respectively the measured area of the lower cut and the corresponding value for the dimensionless geometrical coefficient. \(A_{EJSLAT} \) and \(K_{adj} \) represent the values of the upper cut and the corresponding value for the dimensionless geometrical coefficient respectively. \(K_{ave} \) is the average of both geometrical dimensionless coefficients, \(K_{adj} \) and \(K_{adj} \). Finally, \(K_m \), is the dimensionless coefficient provided by the manufacturer of the flat jacks.

The data collected at every pressure increment for the distances between vertical (VCP) and horizontal (HCP) control points is presented from Tables 25–30 for each one of the wallets.

The stresses in the cob wallets, \(f_m \), caused by the increment of the pressure, \(p \), in the flat jacks were computed using Eq. 1 whereas that strain values were computed by dividing the changes of the distances between control points by the initial distance recorded. Stress-strain values computed from all cob wallets are presented from Tables 31–36. Furthermore, Figure 10 shows the stress-strain curves obtained for each one of the control points and Figure 11 displays the average stress-strain curves for every cob wallette.

\[
f_m = K_m K_0 p
\]

Both ASTM C 1197 and RILEM LUM D3 advise to compute the Secant Young’s modulus of the material, \(E_{si} \), using Eq. 2. On the other hand, RILEM MDT. D5 advises that the values estimated for the Secant Young’s modulus of the material should be corrected by implementing the dimensionless geometrical efficiency constant, \(K_e \), thus obtaining a corrected Secant Young’s modulus \(E_{si corrected} \) (see Eq. 3). A value for \(K_e = 0.51 \) is advised to be used when the flat jack test is applied in cob walls. Moreover, values for the Young’s modulus of the material were as well estimated by taking into account the slope of a linear regression curve fitted to the points of the linear region of the average stress-strain curves presented in Figure 11. The selected stress-strain points and the correspondent linear regression curves fitted are shown in Figure 12. The estimated values using Eq. 2 for the Secant Young’s modulus of wallets W1, W2 and W3 are presented in Table 37 whereas those for wallets W4, W5 and W6 are presented in Table 38.

\[
E_{si} = \frac{f_{mi}}{\varepsilon_{mi}}
\]

\[
E_{si corrected} = K_e \frac{f_{mi}}{\varepsilon_{mi}}
\]

The material Poisson’s ratio was estimated as the average value obtained using Eq. 4 for different pressure levels within the elastic range of the stress-strain curves. The estimated values using Eq. 4 for the Poisson’s ratio of wallets W1, W2 and W3 are presented in Table 39.
Table 12
Cut measurements of wallettes W1, W2 and W3.

W1	Horizontaldistance(cm)	Meas.Depth(cm)	Correcteddepth (cm)	W2	Horizontaldistance (cm)	Meas.Depth(cm)	Correcteddepth (cm)	W3	Horizontaldistance (cm)	Meas.Depth(cm)	Correcteddepth (cm)
---	------------------------	----------------	---------------------	---	------------------------	----------------	---------------------	---	------------------------	----------------	---------------------
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.0	17.1	15.9	0.0	2.0	17.7	16.5	2.0	17.1	15.9	0.0	0.0
4.0	19.8	18.6	4.0	4.0	20.4	19.2	4.0	19.8	18.6	4.0	4.0
6.0	22.1	20.9	6.0	6.0	23.3	22.1	6.0	22.1	20.9	6.0	6.0
8.0	23.7	22.5	8.0	8.0	25.0	23.8	8.0	23.7	22.5	8.0	8.0
10.0	25.4	24.2	10.0	10.0	25.8	24.6	10.0	25.4	24.2	10.0	10.0
12.0	26.0	24.8	12.0	12.0	30.4	29.2	12.0	26.0	24.8	12.0	12.0
14.0	28.2	27.0	14.0	14.0	30.4	29.2	14.0	28.2	27.0	14.0	14.0
16.0	27.5	26.3	16.0	16.0	29.3	28.1	16.0	27.5	26.3	16.0	16.0
18.0	27.5	26.3	18.0	18.0	28.6	27.4	18.0	27.5	26.3	18.0	18.0
20.0	27.6	26.4	20.0	20.0	27.7	26.5	20.0	27.6	26.4	20.0	20.0
22.0	27.4	26.2	22.0	22.0	27.3	26.1	22.0	27.4	26.2	22.0	22.0
24.0	26.8	25.6	24.0	24.0	27.5	26.3	24.0	26.8	25.6	24.0	24.0
26.0	26.3	25.1	26.0	26.0	30.4	29.2	26.0	26.3	25.1	26.0	26.0
28.0	25.1	23.9	28.0	28.0	25.6	24.4	28.0	25.1	23.9	28.0	28.0
30.0	24.2	23.0	30.0	30.0	23.5	22.3	30.0	24.2	23.0	30.0	30.0
32.0	22.0	20.8	32.0	32.0	22.8	21.6	32.0	22.0	20.8	32.0	32.0
34.0	19.3	18.1	34.0	34.0	20.6	19.4	34.0	19.3	18.1	34.0	34.0
37.0	0.0	0.0	36.0	37.5	13.8	12.6	37.0	0.0	0.0	37.5	0.0
Table 13
Cut measurements of wallettes W4, W5 and W6.

W4	W5	W6							
Horizontal distance (cm)	Meas. Depth (cm)	Corrected depth (cm)	Horizontal distance (cm)	Meas. Depth (cm)	Corrected depth (cm)	Horizontal distance (cm)	Meas. Depth (cm)	Corrected depth (cm)	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2.0	21.0	19.8	2.0	17.4	16.2	3.5	16.6	15.4	
4.0	23.2	22.0	4.0	20.6	19.4	5.5	21.6	20.4	
6.0	25.2	24.0	6.0	22.8	21.6	7.5	22.4	21.2	
8.0	26.4	25.2	8.0	24.0	22.8	9.5	24.8	23.6	
10.0	27.4	26.2	10.0	27.2	26.0	11.5	25.1	23.9	
12.0	27.7	26.5	12.0	27.5	26.3	13.5	26.0	24.8	
14.0	28.4	27.2	14.0	28.0	26.8	15.5	27.3	26.1	
16.0	28.5	27.3	16.0	28.2	27.0	17.5	27.4	26.2	
18.0	28.4	27.2	18.0	28.5	27.3	19.5	27.5	26.3	
20.0	28.2	27.0	20.0	28.2	27.0	21.5	27.5	26.3	
22.0	27.9	26.7	22.0	27.8	26.6	23.5	27.3	26.1	
24.0	27.1	25.9	24.0	27.4	26.2	25.5	26.9	25.7	
26.0	26.4	25.2	26.0	27.0	25.8	27.5	26.3	25.1	
28.0	25.1	23.9	28.0	25.7	24.5	29.5	25.5	24.3	
30.0	23.4	22.2	30.0	22.8	21.6	31.5	24.0	22.8	
32.0	22.2	21.0	32.0	21.6	20.4	33.5	22.1	20.9	
34.0	18.5	17.3	34.0	20.5	19.3	35.5	20.4	19.2	
36.5	0.0	0.0	36.0	15.7	14.5	39.5	0.0	0.0	
37.0	0.0	0.0	37.0	0.0	0.0	37.0	0.0	0.0	
Pressure (bars)	Distances (mm)	Deformations (mm)	Average deformation (mm)						
----------------	----------------	-------------------	-------------------------						
	CP1	CP2	CP3	CP4	CP1	CP2	CP3	CP4	
Initial	120.69	121.45	120.65	121.99	0.00	0.00	0.00	0.00	0.00
0.00	120.11	120.09	119.63	121.50	0.58	1.36	1.02	0.49	0.86
0.00*	119.73	120.18	119.36	121.35	0.96	1.27	1.29	0.64	1.04
0.73	119.88	120.08	119.46	121.15	0.81	1.37	1.19	0.84	1.05
1.04	119.77	120.07	119.56	121.30	0.92	1.38	1.09	0.69	1.02
1.53	119.71	120.16	119.64	121.27	0.98	1.29	1.01	0.72	1.00
2.01	119.76	120.45	119.79	121.41	0.93	1.00	0.86	0.58	0.84
2.50	119.88	120.64	119.87	121.46	0.81	0.81	0.78	0.53	0.73
3.05	120.23	121.05	120.48	121.91	0.46	0.40	0.17	0.08	0.28
3.54	120.72	121.43	120.79	122.08	-0.03	0.02	-0.14	-0.09	-0.06
4.03	120.86	121.84	121.27	122.25	-0.17	-0.39	-0.62	-0.26	-0.36

* After a second slot cut.
Figure 8. Slot cut shape of wallets (a) W1, (b) W2 and (c) W3.
Figure 9. Slot cut shape of wallets (a) W4, (b) W5 and (c) W6.
Figure 10. Stress-strain curves obtained from the double flat jack test for (a) W1, (b) W2, (c) W3, (d) W4, (e) W5 and (f) W6.
Figure 11. Average stress-strain curves obtained from the double flat jack test for (a) W1, (b) W2, (c) W3, (d) W4, (e) W5 and (f) W6.
Figure 12. Linear regression curves fitted to the selected stress-strain points of the elastic range of the material for (a) W1, (b) W2, (c) W3, (d) W4 and (e) W5 (as the test for W6 was unsuccessful no regression line is reported for that wallette).
Table 15
Control points' distances and deformation data of W2.

Pressure (bars)	Distances (mm)	Deformations (mm)	Average deformation (mm)					
	CP1	CP2	CP3	CP4	CP1	CP2	CP3	CP4
Initial	121.95	165.18	140.51	127.61	0.00	0.00	0.00	0.00
0.00	121.35	163.48	139.35	126.36	0.60	1.70	1.16	1.25
0.55	121.21	164.12	139.42	126.25	0.74	1.06	1.09	1.36
1.04	121.55	164.14	139.71	126.52	0.40	1.04	0.80	1.09
1.53	121.63	164.9	139.89	126.56	0.32	0.28	0.62	1.05
2.01	121.62	164.74	140.23	126.88	0.33	0.44	0.28	0.73
2.50	121.94	165.14	140.48	126.97	0.01	0.04	0.03	0.04
3.05	121.95	165.46	141.12	127.25	0.00	-0.28	-0.61	0.36
3.48	122.22	165.78	141.53	127.48	-0.27	-0.60	-1.02	0.13
								-0.44

Table 16
Control points' distances and deformation data of W3.

Pressure (bars)	Distances (mm)	Deformations (mm)	Average deformation (mm)					
	CP1	CP2	CP3	CP4	CP1	CP2	CP3	CP4
Initial	118.46	122.76	122.72	119.53	0.00	0.00	0.00	0.00
0.00	117.79	121.84	121.89	118.90	0.67	0.92	0.83	0.63
0.55	117.92	121.79	121.74	118.73	0.54	0.97	0.98	0.80
1.04	117.97	121.87	122.01	118.91	0.49	0.89	0.71	0.62
1.53	118.07	122.02	122.12	119.02	0.39	0.74	0.60	0.51
2.01	118.16	122.29	122.15	119.03	0.30	0.47	0.57	0.50
2.50	118.26	122.31	122.26	119.20	0.20	0.45	0.46	0.33
3.05	118.40	122.49	122.55	119.16	0.06	0.27	0.17	0.37
3.54	118.41	122.63	122.76	119.44	0.05	0.13	-0.04	0.09
4.03	118.58	122.90	122.94	119.46	-0.12	-0.14	-0.22	0.07
4.52	118.49	123.15	123.23	119.61	-0.03	-0.39	-0.51	-0.08
								-0.25

Table 17
Control points' distances and deformation data of W4.

Pressure (bars)	Distances (mm)	Deformations (mm)	Average deformation (mm)					
	CP1	CP2	CP3	CP4	CP1	CP2	CP3	CP4
Initial	121.70	119.93	119.62	121.37	0.00	0.00	0.00	0.00
0.00	120.75	118.66	118.41	120.39	0.95	1.27	1.21	0.98
0.00*	120.59	118.63	118.37	120.62	1.11	1.30	1.25	0.75
0.61	120.75	118.55	118.62	120.70	0.95	1.38	1.00	0.67
1.04	120.90	118.84	118.32	120.48	0.80	1.09	1.30	0.89
1.53	120.83	119.08	118.83	120.75	0.87	0.85	0.79	0.62
2.01	120.89	119.14	118.89	120.83	0.81	0.79	0.73	0.54
2.44	121.21	119.37	119.35	120.99	0.49	0.56	0.27	0.38
3.05	121.32	119.71	119.70	120.91	0.38	0.22	-0.08	0.46
3.54	121.38	119.94	119.77	121.37	0.32	-0.01	-0.15	0.00
4.03	121.52	120.76	120.84	121.84	0.18	-0.83	-1.22	-0.47
								-0.58

* After a second slot cut.

whereas that those for wallets W4, W5 and W6 are presented in Table 40.

\[
\epsilon_i = \frac{\epsilon_{hi}}{\epsilon_{vi}}
\] (4)

To estimate cob's compressive strength a logarithmic regression curve was fitted to the average stress-strain curves as done by Lombillo [11] and the corresponding equation was then extrapolated for a strain value of 2% which was observed from the stress-strain curves reported by Miccoli et al. [12] as the strain value at which cob attained its peak strength. The fitted logarithmic curves and their correspondent equations are shown in Figure 13. The fitted curve's
Figure 13. Logarithmic regression curves fitted to the average stress-strain curves (a) W1, (b) W2, (c) W3, (d) W4 and (e) W5 (as the test for W6 was unsuccessful no regression line is reported for that wallette).
Table 18
Control points’ distances and deformation data of W5.

Pressure (bars)	Distances (mm)	Deformations (mm)	Average deformation (mm)																								
	CP1	CP2	CP3	CP4																							
Initial	120.33	121.04	118.58	123.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	119.46	119.72	116.83	122.32	0.87	1.32	1.75	0.86	1.20																		
0.55	120.00	119.70	116.75	122.19	0.33	1.34	1.83	0.99	1.12																		
1.04	119.88	119.98	117.10	122.02	0.45	1.06	1.48	1.16	1.04																		
1.53	119.88	120.33	117.79	122.51	0.45	0.71	0.79	0.67	0.66																		
2.01	120.11	120.49	117.83	122.37	0.22	0.55	0.75	0.81	0.58																		
2.50	120.15	120.52	117.89	122.26	0.18	0.52	0.69	0.92	0.58																		
3.00	120.19	120.57	117.96	122.75	0.14	0.47	0.69	0.43	0.43																		
3.54	120.37	121.09	118.39	122.73	-0.04	-0.05	0.19	0.45	0.14																		
4.03	120.78	121.65	118.78	122.89	-0.45	-0.61	-0.20	0.29	-0.24																		
4.52	120.94	121.72	119.58	122.86	-0.61	-0.68	-1.00	0.32	-0.49																		

Table 19
Control points’ distances and deformation data of W6.

Pressure (bars)	Distances (mm)	Deformations (mm)	Average deformation (mm)																							
	CP1	CP2	CP3	CP4																						
Initial	102.96	99.08	103.14	102.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	102.86	98.14	102.20	101.54	0.10	0.94	0.94	1.28	0.81																	
0.37	102.98	98.14	102.16	101.62	-0.02	0.94	0.98	1.20	0.77																	
0.61	102.99	97.90	102.28	101.92	-0.03	1.18	0.86	0.90	0.73																	
0.86	103.12	97.94	101.98	101.88	-0.16	1.14	1.16	0.94	0.77																	
1.16	102.94	98.22	102.26	101.88	0.02	0.86	0.88	0.94	0.67																	
1.34	103.00	98.42	102.36	101.92	-0.04	0.66	0.78	0.90	0.57																	
1.64	103.14	98.16	102.32	101.82	-0.18	0.92	0.82	1.00	0.64																	
1.83	103.22	98.60	102.34	101.98	-0.26	0.48	0.80	0.84	0.46																	
2.14	103.24	98.34	102.58	102.04	-0.28	0.74	0.56	0.78	0.45																	
2.32	103.12	98.42	102.62	102.20	-0.16	0.66	0.52	0.62	0.41																	
2.62	103.14	98.70	102.68	102.02	-0.18	0.38	0.46	0.80	0.36																	
2.81	103.12	98.68	102.66	102.06	-0.16	0.40	0.48	0.76	0.37																	
3.11	103.20	98.94	102.72	102.16	-0.24	0.14	0.42	0.66	0.24																	
3.24	103.12	98.88	102.72	102.12	-0.16	0.20	0.42	0.70	0.29																	
3.60	103.24	99.28	103.24	102.22	-0.28	-0.20	-0.10	0.60	0.33																	
4.00	103.32	99.22	103.28	102.34	-0.36	-0.14	-0.14	0.48	-0.04																	
4.27	103.44	99.12	103.34	102.42	-0.48	-0.04	-0.20	0.40	-0.08																	

equations used to estimate the Young’s modulus and compressive strength are summarized in Table 41.

2. Experimental Design, Materials, and Methods

The consolidation loading setup of the wallettes consisted in four treaded bars fixed at the bottom and top steel pallets which were tensioned by tightening the nuts at the top. The tightening of the nuts was performed manually, in increments of approximately 2 kN per bar, and the initial loading process, going from 0 up to 85 kN took approximately 15 to 20 min for each wallette. The tension forces thus applied caused the shortening of the bars, deformation that subsequently was transformed into a compressive force applied to the cob wallettes. Therefore, loads were applied slightly eccentrically but in a symmetric way as the points of anchorage of the bars were located at the external faces of the steel pallets flanges. A load cell was installed between each point of support at the top steel pallet and the nut to measure the load transferred from the bars to the wallette. The total load transferred to the wallette was calculated as the sum of the four bars’ forces.
Table 20

Dataset of monitored load values.

Wallette	F1 (kN)	F2 (kN)	F3 (kN)	F4 (kN)	Total (kN)	Time	Situation
W1	12.59	12.76	12.46	12.49	50.30	11:14	Initial load
W2	12.38	12.33	12.04	11.85	48.60	11:44	Load before cut
	12.24	12.05	11.27	10.98	46.54	11:54	Load after cut
	11.95	11.66	10.87	10.60	45.08	12:37	Load before pumping
	12.03	11.76	11.39	11.28	46.45	13:06	Load at recovery
W3	12.54	12.42	12.50	12.50	49.96	10:01	Initial load
	12.11	11.67	11.90	11.71	47.39	10:17	Load before cut
	11.05	10.64	11.70	11.30	44.69	10:23	Load after cut
	10.84	10.34	11.40	11.00	43.58	10:42	Load before pumping
	11.13	11.21	11.40	11.00	44.74	11:02	Load at recovery
W4	12.57	12.42	12.50	12.47	49.96	12:23	Initial load
	11.58	11.44	10.10	10.35	43.47	12:50	Load after cut
	11.46	11.24	9.90	10.25	42.84	13:12	Load before pumping
	11.45	11.35	10.80	11.33	44.93	13:29	Load at recovery
W5	12.55	12.48	12.50	12.47	50.00	10:37	Initial load
	12.30	11.80	11.60	11.30	47.00	10:45	Load before cut
	11.95	11.66	10.70	10.90	45.21	10:52	Load after cut
	11.58	11.38	10.30	10.50	43.76	11:17	Load before pumping
	11.57	11.33	11.20	11.00	45.10	11:38	Load at recovery
W6	12.55	12.61	12.60	12.40	50.16	10:47	Initial load
	11.66	11.86	10.90	10.60	45.02	11:20	Load after cut
	11.50	11.75	10.60	10.40	44.25	11:32	Load before pumping
	11.61	11.75	11.80	11.40	46.56	11:49	Load at recovery
	12.54	12.57	12.44	12.50	50.04	10:44	Initial load
	11.72	11.67	11.66	11.95	46.99	11:09	Load before cut
	10.40	10.42	11.41	11.76	44.00	11:19	Load after cut
	10.34	10.12	11.22	11.47	43.14	12:01	Load before pumping
	11.21	11.08	11.17	11.47	44.92	13:17	Load at recovery

Four LVDTs were placed in the.wallettes' faces, two in the front and two in the back, to measure the vertical deformation caused by the compressive forces. The LVDT’s were pinned through the material using stainless steel pins of roughly 5 to 6 cm length by 2 mm diameter. The points of support were held in place at an initial distance of roughly 30 cm (except for W1) at the middle third of the specimens. This arrangement is in accordance with BS EN 1052 Part 1 [2]. The full consolidation setup is shown in Figure 14.

After the load of 84 kN +/- 1 kN was imposed to the wallettes it was kept quasi-constant for a period of five days and displacements increments were monitored. After this consolidation period loads were completely removed manually by untightening the nuts in decrements of roughly 2 kN per bar. A second load cycle was applied (except for W1), as described for the first cycle, and loads and displacements were recorded.

The procedure followed for the application of the flat jack tests is briefly described here. Full details about its implementation have been reported in a co-submitted MethodsX article [13].

1. Single flat jack:
 a. Wallette setting up and application of load (50 kN) (load recorded).
 b. Control points fixing.
 c. Initial distance between control points measured.
 d. Slot cutting (load recorded immediately before and after making the cut).
 e. Cleaning of the slot and cut depth measurement every 2 cm.
 f. Initial displacements measurement.
 g. Flat jack connection, insertion and system purging.
 h. Pressure applied at 50 % (between 1.0 and 2.0 bars) to allow seating of the flat jack.
 i. Removal of pressure.
Table 21
Wallettes' geometries and other over imposed loads.

Wallette	Height (m)	Density (kg/m³)	Weight above cut (N)	Other loads (N-)	Cross section at cut (m²)	Average monitored load (N)
W1	0.96	1476.44	9631.79	1471.50	0.405	47521.50
W2	0.95	1434.39	9304.68	1471.50	0.426	46065.00
W3	0.97	1523.44	10125.22	1471.50	0.411	47443.50
W4	0.96	1563.63	10200.58	1471.50	0.403	46050.00
W5	0.95	1541.30	9960.38	1471.50	0.405	48360.50
W6	0.95	1540.04	9990.03	1471.50	0.396	45957.45
Table 22
Cut measurements of wallettes W1, W2 and W3.

W1	Meas.Depth (cm)	Correcteddepth (cm)	Horizontaldistance (cm)
0.0	0.0	0.0	0.0
2.0	19.0	17.8	2.0
4.0	20.8	19.6	4.0
6.0	23.9	22.7	6.0
8.0	24.4	23.2	8.0
10.0	26.6	25.4	10.0
12.0	27.5	26.3	12.0
14.0	28.0	26.8	14.0
16.0	28.4	27.2	16.0
18.0	28.4	27.2	18.0
20.0	28.4	27.2	20.0
22.0	27.9	26.7	22.0
24.0	27.6	26.4	24.0
26.0	26.9	25.7	26.0
28.0	25.8	24.6	28.0
30.0	24.4	23.2	30.0
32.0	21.8	20.6	32.0
34.0	20.0	18.8	34.0
37.0	0.0	0.0	37.0

W2	Meas.Depth (cm)	Correcteddepth (cm)	Horizontaldistance (cm)
0.0	0.0	0.0	0.0
2.0	19.1	17.9	2.0
4.0	20.7	19.5	4.0
6.0	23.6	22.4	6.0
8.0	25.4	24.2	8.0
10.0	26.1	24.9	10.0
12.0	26.9	25.7	12.0
14.0	28.4	27.2	14.0
16.0	28.7	27.5	16.0
18.0	28.9	27.7	18.0
20.0	28.6	27.4	20.0
22.0	27.6	26.4	22.0
24.0	27.2	26.0	24.0
26.0	26.8	25.6	26.0
28.0	25.8	24.6	28.0
30.0	24.1	22.9	30.0
32.0	22.3	21.1	32.0
34.0	19.8	18.6	34.0
37.0	15.7	14.5	37.0

W3	Meas.Depth (cm)	Correcteddepth (cm)	Horizontaldistance (cm)
0.0	0.0	0.0	0.0
2.0	18.4	17.2	2.0
4.0	18.9	17.7	4.0
6.0	23.4	22.2	6.0
8.0	22.9	21.7	8.0
10.0	26.6	25.4	10.0
12.0	26.7	25.5	12.0
14.0	27.1	25.9	14.0
16.0	27.5	26.3	16.0
18.0	28.3	27.1	18.0
20.0	28.3	27.1	20.0
22.0	27.3	26.1	22.0
24.0	26.8	25.6	24.0
26.0	26.0	25.0	26.0
28.0	24.9	23.7	28.0
30.0	24.1	22.9	30.0
32.0	21.4	20.2	32.0
34.0	19.8	18.6	34.0
37.0	15.2	14.0	37.0
Table 23
Cut measurements of wallettes W4, W5 and W6.

W4 Horizontal distance (cm)	Meas. Depth (cm)	Corrected depth (cm)	W5 Horizontal distance (cm)	Meas. Depth (cm)	Corrected depth (cm)	W6 Horizontal distance (cm)	Meas. Depth (cm)	Corrected depth (cm)
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2.0	19.4	18.2	2.0	19.9	18.7	2.0	12.5	11.3
4.0	21.0	19.8	4.0	22.4	21.2	4.0	16.4	15.2
6.0	23.5	22.3	6.0	24.5	23.3	6.0	20.3	19.1
8.0	25.5	24.3	8.0	25.7	24.5	8.0	24.5	23.3
10.0	26.6	25.4	10.0	26.5	25.3	10.0	25.1	23.9
12.0	27.7	26.5	12.0	26.9	25.7	12.0	25.4	24.2
14.0	28.2	27.0	14.0	28.4	27.2	14.0	26.2	25.0
16.0	28.6	27.4	16.0	28.5	27.3	16.0	26.7	25.5
18.0	28.5	27.3	18.0	28.8	27.6	18.0	27.0	25.8
20.0	28.5	27.3	20.0	28.7	27.5	20.0	27.0	25.8
22.0	28.4	27.2	22.0	28.1	26.9	22.0	27.0	25.8
24.0	28.1	26.9	24.0	27.7	26.5	24.0	26.6	25.4
26.0	27.6	26.4	26.0	26.9	25.7	26.0	26.0	24.8
28.0	26.3	25.1	28.0	26.3	25.1	28.0	25.6	24.4
30.0	24.7	23.5	30.0	25.6	24.4	30.0	23.8	22.6
32.0	24.5	23.3	32.0	23.8	22.6	32.0	22.7	21.5
34.0	20.5	19.3	34.0	21.9	20.7	35.0	20.0	18.8
36.0	17.8	16.6	36.0	17.1	15.9	37.0	16.9	15.7
37.0	0.0	0.0	37.0	0.0	0.0	39.0	7.3	6.1
							41.0	4.2
							43.0	0.0
Table 24
Coefficients determined for every wallette.

Property	W1	W2	W3	W4	W5	W6
A₀j (mm²)	77855.64	77855.64	77855.64	77855.64	77855.64	77855.64
A₀j SLOT (mm²) *	79921.50	85277.75	84428.6	83249.75	83028.50	82627.75
A₀j SLOT (mm²)	82716.50	84422.60	82142.15	85823.50	86318.50	83332.00
K₀ dfj (-) *	0.97	0.91	0.92	0.94	0.94	0.94
K₀ dfj (-)	0.94	0.92	0.95	0.91	0.90	0.93
K₀ ave (-)	0.96	0.92	0.93	0.92	0.92	0.94
K₀ lm (-)	0.92	0.92	0.92	0.92	0.92	0.92

* Values obtained from the single flat jack test performed in the same cob wallettes.

Table 25
Distances between control points at every pressure increment for wallette W1 (mm).

Pressure (bars)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPC
Initial	288.64	288.00	286.58	288.28	270.58	272.88	271.90
0.00	288.64	288.00	286.58	288.28	270.58	272.88	271.90
1.04	288.48	287.50	286.48	287.96	271.70	272.96	272.06
2.08	288.48	287.40	286.58	287.90	270.72	273.18	272.20
3.05	288.28	287.70	286.38	287.62	270.98	273.38	272.46
4.03	288.38	287.18	286.08	287.78	271.38	272.96	272.98
5.01	288.36	287.56	285.98	287.80	272.26	274.82	274.12
6.10	288.36	287.20	285.46	287.58	273.72	276.22	275.54
7.00	288.34	287.52	284.96	287.28	274.68	277.68	277.48

Table 26
Distances between control points at every pressure increment for wallette W2 (mm).

Pressure (bars)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPC
Initial	285.30	284.76	286.86	286.64	273.80	270.52	270.56
0.00	285.30	284.76	286.86	286.64	273.80	270.52	270.56
1.04	285.40	284.46	286.42	286.38	273.84	270.68	270.70
2.01	285.26	284.36	286.18	286.38	273.74	270.72	270.76
3.05	284.86	283.74	286.80	286.08	274.18	271.12	271.14
4.03	284.64	283.54	285.50	285.96	275.44	272.58	272.64
5.01	284.96	283.32	285.58	285.80	277.00	274.48	274.54

Table 27
Distances between control points at every pressure increment for wallette W3 (mm).

Pressure (bars)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPC
Initial	285.18	284.88	289.28	286.56	273.44	271.72	270.66
0.00	285.18	284.88	289.28	286.56	273.44	271.72	270.66
1.04	285.40	284.92	289.08	286.28	273.40	271.78	270.58
2.01	286.58	284.52	289.34	286.28	273.46	271.85	270.76
3.05	284.98	284.30	288.66	286.08	273.48	272.08	270.90
4.03	284.82	284.18	288.64	285.82	273.82	272.50	271.12
4.75	284.68	284.00	288.30	285.88	275.00	274.16	272.96
5.75	284.53	283.60	287.86	285.90	277.98	276.80	275.48
6.75	284.68	282.92	287.18	285.80	280.00	279.48	278.14

j Pressure increments of about 0.5 bars (increments in the first wallette tested, W6, were of only 0.25 bars) until initial distance is recovered (load recorded before start pumping, distance between control points measured at every increment and load recorded again at recovery of initial distance between control points).

k System depressurisation and removal of flat jack.

2 Double flat jack:
Table 28	Distances between control points at every pressure increment for wallette W4 (mm).						
Pressure (bars)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPC
Initial	286.00	286.62	283.98	285.64	280.86	281.88	281.58
0.00	286.00	286.62	283.98	285.64	280.86	281.88	281.58
1.04	285.82	287.46	284.56	285.08	280.60	281.98	281.48
2.01	286.22	286.10	283.44	284.42	280.76	282.14	281.58
3.05	285.64	286.08	283.24	284.88	281.88	282.20	281.74
3.97	285.40	285.60	282.76	284.96	281.14	282.50	281.98
4.75	285.30	286.48	282.48	284.72	281.88	283.54	282.86
6.00	285.16	285.18	281.76	283.86	283.92	285.30	284.54
6.75	284.68	285.00	280.82	283.58	284.98	286.50	285.58

Table 29	Distances between control points at every pressure increment for wallette W5 (mm).						
Pressure (bars)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPC
Initial	284.68	285.76	285.18	289.28	270.96	272.38	270.54
0.00	284.68	285.76	285.18	289.28	270.96	272.38	270.54
1.04	285.08	286.28	284.66	289.52	271.04	272.44	270.34
2.01	284.44	285.90	284.78	289.20	270.94	272.50	270.48
3.05	284.38	285.78	284.68	289.14	271.16	272.66	270.80
4.03	284.34	285.58	284.58	289.88	271.66	273.22	271.38
4.75	284.28	284.74	284.60	288.96	272.64	274.32	272.50
5.75	284.28	285.35	284.56	288.74	273.70	275.42	273.42
6.75	284.26	285.50	285.06	288.94	275.58	277.40	275.72

Table 30	Distances between control points at every pressure increment for wallette W6 (mm).						
Pressure (bars)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPC
Initial	287.14	284.58	286.52	287.38	270.02	273.60	272.10
0.00	287.14	284.58	286.52	287.38	270.02	273.60	272.10
0.55	287.38	284.76	286.88	287.66	270.00	273.50	272.16
1.04	287.30	284.80	286.82	287.40	270.00	273.48	272.68
1.59	286.82	284.70	286.92	287.40	270.08	273.50	272.54
2.08	287.22	284.98	286.76	287.56	270.00	273.60	272.46
2.63	287.44	284.62	286.72	287.66	270.20	273.52	272.34
3.05	287.24	284.74	286.88	287.50	270.10	273.52	272.20
3.54	286.92	284.40	286.40	287.58	270.12	273.80	272.78
4.03	286.68	284.30	286.38	287.52	270.18	273.98	272.94
5.01	286.72	284.36	286.66	287.46	270.84	274.44	273.40
6.04	286.70	284.66	286.46	287.50	271.88	275.50	274.28
7.02	286.98	284.62	286.66	287.72	273.04	276.98	275.80

Table 31	Computed stresses and strains for wallette W1 (mm/mm).								
Stress f_{m} (MPa)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPC	Average vertical strain	Average horizontal strain
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.09	0.0006	0.0017	0.0003	0.0011	-0.0041	-0.0003	-0.0066	0.0009	-0.0017
0.18	0.0006	0.0021	0.0000	0.0013	-0.0005	-0.0011	-0.0010	-0.0000	-0.0090
0.27	0.0012	0.0010	0.0007	0.0023	-0.0015	-0.0018	-0.0021	0.0013	-0.0018
0.35	0.0009	0.0028	0.0017	0.0017	-0.0030	-0.0003	-0.0040	0.0018	-0.0024
0.44	0.0010	0.0015	0.0021	0.0017	-0.0062	-0.0071	-0.0082	0.0016	-0.0072
0.54	0.0010	0.0028	0.0039	0.0024	-0.0016	-0.0122	-0.0134	0.0025	-0.0124
0.61	0.0010	0.0017	0.0057	0.0035	-0.0152	-0.0176	-0.0205	0.0030	-0.0178
Table 32
Computed stresses and strains for wallette W2 (mm/mm).

Stress f_m (MPa)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPC	Average vertical strain	Average horizontal strain
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.09	-0.00040	0.0011	0.0015	0.0009	-0.0001	-0.0006	-0.0005	0.0008	-0.0004
0.17	0.0001	0.0014	0.0024	0.0009	0.0002	-0.0007	-0.0007	0.0012	-0.0004
0.26	0.0015	0.0036	0.0022	0.0020	-0.0014	-0.0022	-0.0021	0.0018	-0.0019
0.34	0.0023	0.0043	0.0047	0.0024	-0.0060	-0.0076	-0.0077	0.0034	-0.0071
0.42	0.0012	0.0051	0.0045	0.0029	-0.0017	-0.0146	-0.0147	0.0034	-0.0137

Table 33
Computed stresses and strains for wallette W3 (mm/mm).

Stress f_m (MPa)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPC	Average vertical strain	Average horizontal strain	
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
0.09	-0.00080	-0.00030	0.00010	0.0007	0.0010	0.0001	-0.0001	-0.00020	0.0003	0.0002
0.17*	-0.00490	0.0013	-0.00002	0.0010	-0.0001	-0.0006	-0.0004	-0.0007	-0.0003	
0.26	0.0007	0.0020	0.0021	0.0017	-0.0001	-0.0013	-0.0009	0.0016	-0.0008	
0.34	0.0013	0.0025	0.0022	0.0026	-0.0014	-0.0029	-0.0017	0.0021	-0.0020	
0.41	0.0018	0.0031	0.0034	0.0024	-0.0057	-0.0090	-0.0085	0.0027	-0.0077	
0.49	0.0023	0.0045	0.0049	0.0023	-0.0166	-0.0187	-0.0178	0.0035	-0.0177	
0.58	0.0018	0.0069	0.0073	0.0027	-0.0240	-0.0286	-0.0276	0.0046	-0.0267	

* Neglected data point for linear regression fitting.

Table 34
Computed stresses and strains for wallette W4 (mm/mm).

Stress f_m (MPa)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPC	Average vertical strain	Average horizontal strain
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.09*	0.0006	-0.0029	-0.00200	0.00200	0.009	-0.00040	0.00040	0.0006	0.0003
0.17	-0.00080	0.0018	0.0019	0.00800	0.0004	-0.00090	0.00000	0.0009	-0.0002
0.26	0.0013	0.0019	0.0026	0.0027	-0.0036	-0.0011	-0.0006	0.0021	-0.0018
0.33	0.0021	0.0036	0.0043	0.0024	-0.0010	-0.0022	-0.0014	0.0031	-0.0015
0.40	0.0024	0.0005	0.0053	0.0032	-0.0036	-0.0059	-0.0045	0.0029	-0.0047
0.51	0.0029	0.0050	0.0078	0.0062	-0.0109	-0.0121	-0.0105	0.0055	-0.0112
0.57	0.0046	0.0057	0.0111	0.0072	-0.0147	-0.0164	-0.0142	0.0072	-0.0151

*Neglected data point for linear regression fitting.

- a Wallette setting up.
- b Second slot cut.
- c Cleaning of the slot.
- d Second cut depth measurement every 2 cm.
- e Control points fixing.
- f Flat jacks insertion.
- g Flat jack connection and system purging.
- h Pressure applied at 50 % (between 1.0 and 2.0 bars) to allow seating of the flat jacks.
- i Removal of pressure.
- j Initial distance between control points measured.
- k Pressure increments of about 0.5 bars (increments in the first wallette tested, W6, were of only 0.25 bars) until material started to fail (distances between vertical and horizontal control points recorded at every increment).
- l Removal of pressure.
- m Removal of flat jacks.
Table 35
Computed stresses and strains for wallette W5 (mm/mm).

Stress f_m (MPa)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPA	Average vertical strain	Average horizontal strain
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.09*	-0.0014-0.0018	0.0018	-0.0008-0.0003	-0.0020-0.0007	-0.0006	0.0001	0.0000	-0.0002-0.0009	
0.17	0.0008	-0.0050-0.014	0.0003	0.0001	-0.0040-0.0002	0.0005	0.0000		
0.34	0.0011	-0.0001-0.0018	0.0005	-0.0007-0.0010	-0.0006-0.0008	-0.0009			
0.34	0.0012	0.0006	0.0021	0.0010	-0.0026-0.0031	-0.0031-0.0012	-0.0029		
0.40	0.0014	0.0036	0.0020	0.0011	-0.0062-0.0071	-0.00720-0.0020	-0.0069		
0.48	0.0014	0.0014	0.0022	0.0019	-0.0101-0.0112	-0.0106-0.0017	-0.0106		
0.57	0.0015	0.0009	0.0040	0.0012	-0.0171-0.0184	-0.0191-0.0010	-0.0182		

* Neglected data point for linear regression fitting.

Table 36
Computed stresses and strains for wallette W6 (mm/mm).

Stress f_m (MPa)	VCP1	VCP2	VCP3	VCP4	HCPA	HCPB	HCPA	Average vertical strain	Average horizontal strain	
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
0.05*	-0.0008-0.0006-0.0013	-0.0010-0.0001	0.0004	-0.0002-0.0009	0.0000	0.0001				
0.09*	-0.0006-0.0008-0.0010	-0.0001-0.0001	0.0004	-0.0021-0.0006	-0.0005					
0.14*	0.0011	-0.0004-0.0014	-0.0001-0.0002	-0.0008-0.0002	-0.0006		-0.0005			
0.18*	-0.0003-0.0014-0.0008	-0.0006-0.0001	-0.0000	-0.0013-0.0008	-0.0004		-0.0004			
0.23*	-0.0010-0.0001-0.0007	-0.0010-0.0001	-0.0007-0.0003	-0.0009-0.0007	-0.0004		-0.0004			
0.26*	-0.0003-0.0006-0.0013	-0.0004-0.0030-0.0003	-0.0004-0.0006	-0.00250-0.0003	-0.0012		-0.0001			
0.30	0.0008	0.0006	0.0004	-0.0007-0.0004	-0.0007	-0.00250-0.0003	-0.0012		-0.0004	
0.35	0.0016	0.0010	0.0005	-0.0005-0.0006	-0.0014-0.00310-0.0006		-0.0017			
0.43	0.0015	0.0008	-0.0005-0.0003	-0.0030-0.0031	-0.00480-0.0004		-0.0036			
0.52	0.0015	-0.00030-0.0002	-0.0004-0.0069	-0.0069-0.00800-0.0003	-0.0073		-0.0036			
0.60	0.0006	-0.0001-0.0005	-0.0012	-0.0112	-0.0124-0.0136-0.0003	-0.0124		-0.0036		

* Neglected data point for linear regression fitting.

Figure 14. Cob wallets’ consolidation setup.
Table 37
Young’s modulus estimation values computed for wallets W1, W2 and W3.

W1 Pressure (bars)	Young’s modulus (MPa)	W2 Pressure (bars)	Young’s modulus (MPa)	W3 Pressure (bars)	Young’s modulus (MPa)
1.04	97.09	1.04	110.94	1.04	469.72
2.08	183.96	2.01	140.33	2.01∗	-239.79
3.05	202.86	3.05	159.40	4.03	162.02

∗ Neglected data point.
Table 38
Young’s modulus estimation values computed for wallettes W4, W5 and W6.

W4	Pressure (bars)	Young’s modulus (MPa)	W5	Pressure (bars)	Young’s modulus (MPa)	W6	Pressure (bars)	Young’s modulus (MPa)
1.04*	150.00	-150.00	1.04*	156.72	-	-		
2.01	182.79	2.01	2.01	333.81	-	-		
3.05	122.43	3.05	3.05	319.16	-	-		
3.97	108.53	-	-	-	-			

* Neglected data point.

Table 39
Poisson’s ratio estimation values computed for wallettes W1, W2 and W3.

W1	Pressure (bars)	Poisson’s ratio (-)	W2	Pressure (bars)	Poisson’s ratio (-)	W3	Pressure (bars)	Poisson’s ratio (-)
1.04*	1.79	1.04	0.53	1.04*	-0.39	-		
2.08*	0.92	2.01	0.35	2.01*	-0.48	-		
3.05*	1.36	3.05*	1.05	3.05	0.48	-		
4.03*	1.33	-	-	4.03*	0.93	-		

* Neglected data point.

Table 40
Poisson’s ratio estimation values computed for wallettes W4, W5 and W6.

W4	Pressure (bars)	Poisson’s ratio (-)	W5	Pressure (bars)	Poisson’s ratio (-)	W6	Pressure (bars)	Poisson’s ratio (-)
1.04*	0.52	1.04*	0.13	-	-			
2.01	0.20	2.01	0.10	-	-			
3.05*	0.85	3.05*	1.13	-	-			
3.97*	0.50	-	-	-	-			

* Neglected data point.

Table 41
Linear and logarithmic regression equations obtained for each wallette.

Wallette	Linear regression equation	Logarithmic regression equation
W1	$y = 186.45x - 0.0161$	$y = 0.4161 \ln(x) + 3.0356$
W2	$y = 136.57x - 0.0052$	$y = 0.1994 \ln(x) + 1.512$
W3	$y = 129.94x - 0.0607$	$y = 0.141 \ln(x) + 1.2575$
W4	$y = 103.86x - 0.0314$	$y = 0.2009 \ln(x) + 1.5416$
W5	$y = 321.21x - 0.0018$	$y = 0.1827 \ln(x) + 1.6151$
W6	-	-

Declaration of Competing Interest

None.

Acknowledgments

This work was supported by the Department of Civil, Structural and Environmental Engineering at Trinity College Dublin. The authors would like to thank all the technical staff of this Department for their invaluable help and support. The first author would also like to thank Professors Luis Villegas and Ignacio Lombillo for hosting him at University of Cantabria, Spain, and for sharing their experience and know-how with the flat jack technique.
References

[1] A. Jiménez Rios, D. O’Dwyer, Experimental validation for the application of the flat jack test in cob walls, Construction and Building Materials 254 (2020) 119148. https://doi.org/10.1016/J.CONBUILDMAT.2020.119148.

[2] BS EN 1052-1:1999, Methods of test for masonry, Determination of compressive strength, England: British Standards Institution, London, 1999.

[3] ASTM C1196-09, Standard test method for in situ compressive stress within solid unit masonry estimated using flatjack measurements, ASTM International, West Conshohocken, PA, 2009. https://doi.org/10.1520/C1196-09.

[4] ASTM C1197-14a, Standard test method for in situ measurement of masonry deformability properties using the flatjack method, ASTM International, West Conshohocken, PA, 2014. https://doi.org/10.1520/C1197-14A.

[5] RILEM LUM D2 In-situ stress tests on masonry based on the flat jack (RILEM TC, 1994). https://doi.org/10.1617/2351580117.157.

[6] RILEM LUM D3 In-situ strength/elasticity tests on masonry based on the flat jack (RILEM TC, 1994). https://doi.org/10.1617/2351580117.158.

[7] RILEM MDT. D.4 In-situ stress tests based on the flat jack (RILEM, 2004). https://doi.org/10.1007/BF02481588.

[8] RILEM MDT. D.5 In-situ stress-strain behaviour tests based on the flat jack (RILEM, 2004). https://doi.org/10.1007/BF02481589.

[9] A. Jiménez Rios, Cob cylinder’s data, Mendeley Data (2019) v1. http://dx.doi.org/10.17632/h8ksd6mvkj.1.

[10] A. Jiménez Rios, Cob wallets’ consolidation data, Mendeley Data (2019) v1. http://dx.doi.org/10.17632/twbf86wxv.1.

[11] I. Lombillo Vozmediano, Investigación teórico-experimental sobre ensayos ligeramente destructivos (MDT) utilizados para la caracterización mecánica in situ de estructuras de fábrica del patrimonio construido, Universidad de Cantabria, 2010.

[12] L. Miccoli, U. Müller, P. Fontana, Mechanical behaviour of earthen materials: a comparison between earth block masonry, rammed earth and cob, Construction and building materials 61 (2014) 327–339.

[13] A. Jiménez Rios & D. O’Dwyer, Adaptations of the flat jack test for its application in cob walls. MethodsX, (n.d.).