Expanded View Figures

A

Body weight (g)

0 5 10 15 20 25

B

Distance traveled (cm)

0 500 1000 1500 2000 2500

C

% Time in the center

0 5 10 15

D

Average speed cm/sec

0 2 4 6 8

E

Escape latency (s)

0 10 20 30 40 50

Cre-

Cre+

Training (Days)

1 2 3 4 5 6 7 8 9 10

F

% Time

0 10 20 30 40

chance

G

Number of platform crossings

0 2 4 6 8 10

Cre-

Cre+

Figure EV1.
Figure EV1. Behavioral analysis of mice expressing CamKII-driven Cre recombinase.

A Transgenic mice expressing Cre under control of the CamKII promoter were subjected to behavior testing ($n = 8$, Cre+) comparing them with wild-type mice from the same breeding colony that did not express Cre ($n = 8$, Cre−). No difference was observed in body weight.

B–C The distance traveled in the open field test (B) and the time spent in the center of the arena (C) were similar amongst groups.

D No difference in the swimming speed was observed among groups when subjected to the water maze test.

E Escape latency during water maze training was similar in Cre− and Cre+ mice.

F–G During the probe test performed after 10 training days, Cre− and Cre+ mice showed similar performance when time spent in the target quadrant (F) and the number of platform crossings (G) were analyzed.

Data information: Bar graphs indicate mean, Error bars indicate ± SEM. “n” indicates biological replicates.

Figure EV2. Analysis of memory recall cannot be interpreted in Setd1b cKO mice.

A, B (A) Twenty-four hours after the completion of the 10 day-training procedure in the water maze paradigm (See Fig 1G) mice were subjected to a probe test. The performance in the probe test, as measured by the time spent in the target quadrant (TQ), is impaired in Setd1b cKO mice (Control: $n = 15$, cKO: $n = 15$. ***,P < 0.0001; Student’s t-test). These results have to be interpreted with care, however, since faulty interpretation about memory recall is possible in this experiment since the Setd1b cKO mice not even being able to form the memory during the training (See Fig 1G and H). It is moreover important to note that Setd1b cKO mice spent even less time in TQ than would be predicted by chance alone. To address the issue we analyzed the swim speed during the entire experiment (B) and noticed that the swim speed was similar in control and Setd1b cKO mice across the first 5 days of training. There was however a trend for reduced swim speed in Setd1b cKO mice from training day 6 to 10. Although we did not detect significant differences in the swim speed when we analyzed the average values across all training days, a more detailed analysis revealed that swim speed was significantly impaired in Setd1b cKO mice at training day 10 (**P = 0.016; Student’s t-test) and also during the probe test (**P = 0.001, Student’s t-test). These data may help to explain why the Setd1b cKO mice appear to avoid the target quadrant during the one trial 60 s probe test session. The training session consists of a sequence of 4 × 60 s sessions and mice are always placed into the pool from 4 different locations. During the probe test, that consists of a trial of one 60-s session, animals are always placed in the quadrant opposite to the target quadrant, that is, the quadrant that is the farthest away from the target quadrant. While the reason for the reduced swim speed after 9 days of training is unclear, at present these data do not affect the conclusion that Setd1b cKO mice exhibit impaired learning ability.

Data information: Bar graphs/dots indicate mean, Error bars indicate ± SEM. “n” indicates biological replicates.
Figure EV3. Decreased H3K9ac and H3K27ac in Setd1b cKO mice.

A Left panel: Heat map showing genomic regions with differentially bound H3K9ac sites in the close vicinity of TSS (± 2 kb) in neuronal nuclei from Setd1b cKO mice and the overall genomic locations of altered H3K9ac levels (Control: n = 4; Setd1b cKO: n = 3). Right panel shows the same analysis for H3K27ac (Control: n = 3; Setd1b cKO: n = 4).

B Bar chart showing the number of genes with significantly decreased and increased H3K9ac and H3K27ac marks at the TSS region (± 2 kb). Data for H3K4me3 and H3K4me1 are shown for comparison. As expected, the most affected histone mark is H3K4me3.

C Venn diagram showing that most of the sites exhibiting decreased H3K9ac at the TSS also exhibit reduced H3K4me3, while this is not the case for H3K27ac. TSS, transcription start site.
Figure EV4. Sorting neuronal and non-neuronal nuclei for RNA-Seq analysis.

Nuclei from the hippocampal CA region were subjected to FANS as depicted in Fig 2A.

A Representative images showing nuclei that were sorted using the neuronal marker NeuN. Note that no NeuN positive nuclei are detected in the NeuN (−) fraction confirming the purity of the approach. Scale bar: 50 μm.

B Gating strategy for NeuN (+) and NeuN (−) nuclei sorting.

C RNA-sequencing (n = 2/group) was performed from NeuN (+) and NeuN (−) nuclei and a differential expression analysis was performed. Heat map shows 836 genes specifically enriched in NeuN (+) nuclei when compared to NeuN (−) nuclei. The criteria to select those genes were: adjusted P-value < 0.01, base mean > 150, fold change > 5.

D GO-term analysis showing that the top 10 enriched biological processes and molecular functions for the 836 genes enriched in NeuN (+) nuclei all represent specific neuronal processes.

E Normalized expression values obtained from the RNA-seq experiment showing the expression of selected genes known to be enriched in neurons.

F Normalized expression values of genes that are known to be enriched in non-neuronal cells including glia cells. Error bars indicate SEM.

Data information: Bar graphs indicate mean, error bars indicate ± SEM. "n" indicates biological replicates.
Figure EV4.
Figure EV5. Comparison of H3K4me3 changes in Setd1b cKO, Kmt2a cKO, Kmt2b cKO, and CK-p25 mice.

Overlap of TSS regions (± 2 kb) with decreased H3K4me3 in each of the three KMT cKO mice with those decreased in mouse model for Alzheimer’s disease (CK-p25 mice) (Gjoneska et al, 2015). The pattern of overlapping regions (Setd1b > Kmt2a > Kmt2b) is in agreement with our suggested role of the 3 KMTs in the regulation of neuronal genes important for memory function. Left panel: A highly significant overlap was only seen in case of Setd1b cKO mice (580 out of 997 regions; hypergeometric test: P-value = 0). Middle panel: The overlap between Kmt2a cKO and CK-p25 is much smaller (195 TSS regions) but still remains significant according to the hypergeometric test (P-value = 0.00000292). Right panel: The overlap between Kmt2b cKO and CK-p25 is in turn negligible (85 TSS regions) and is not significant (hypergeometric test: P-value = 1). It is important to note that we re-analyzed our ChIP-seq data from Kmt2a, Kmt2b, and Setd1b cKO mice together with the data from the CK-p25 mice and selected only genomic regions which showed H3K4me3 signal in all datasets to allow for a reliable comparison. Thus, the total numbers of H3K4me3 regions that differ between conditions are slightly different to our results reported, for example, in Fig 4A. This is also due to the fact that Gjoneska et al. analyzed bulk hippocampal tissue, whereas our experiments are based on sorted hippocampal neurons from the CA region. Nevertheless, the fact that the overlap is still substantial with Setd1b cKO and lower or negligible in the other two KMT cKOs supports the view that Setd1b is particularly important for regulating genes important for synaptic plasticity and memory function.