Learning Neural Light Fields with Ray-Space Embedding

Benjamin Attal∗
Carnegie Mellon University
Jia-Bin Huang
Meta
Michael Zollhöfer
Reality Labs Research
Johannes Kopf
Meta
Changil Kim
Meta

https://neural-light-fields.github.io

Abstract

Neural radiance fields (NeRFs) produce state-of-the-art view synthesis results, but are slow to render, requiring hundreds of network evaluations per pixel to approximate a volume rendering integral. Baking NeRFs into explicit data structures enables efficient rendering, but results in large memory footprints and, in some cases, quality reduction. Additionally, volumetric representations for view synthesis often struggle to represent challenging view dependent effects such as distorted reflections and refractions. We present a novel neural light field representation that, in contrast to prior work, is fast, memory efficient, and excels at modeling complicated view dependence. Our method supports rendering with a single network evaluation per pixel for small baseline light fields and with only a few evaluations per pixel for light fields with larger baselines. At the core of our approach is a ray-space embedding network that maps 4D ray-space into an intermediate, interpolable latent space. Our method achieves state-of-the-art quality on dense forward-facing datasets such as the Stanford Light Field dataset. In addition, for forward-facing scenes with sparser inputs we achieve results that are competitive with NeRF-based approaches while providing a better speed/quality/memory trade-off with far fewer network evaluations.

1. Introduction

View synthesis is an important problem in computer vision and graphics. Its goal is to photorealistically render a scene from unobserved camera poses, given a few posed input images. Existing approaches solve this problem by optimizing some underlying representation of the scene’s appearance and geometry and then rendering this representation from novel views.

View synthesis has recently experienced a renaissance with an explosion of interest in neural scene representations — see Tewari et al. [52, 53] for a snapshot of the field. Neural radiance fields [30] are perhaps the most popular of these neural representations, and methods utilizing them have recently set the state-of-the-art in rendering quality for view synthesis. A radiance field is a 5D function that maps a 3D point x and 3D direction ω (with only 2 degrees of freedom) to the radiance leaving x in direction ω, as well as the density of the volume at point x. A neural radiance field or NeRF represents this function with a neural network. Because volume rendering a NeRF is differentiable, it is straightforward to optimize by minimizing the difference between ground truth views at known camera poses and their reconstructions.

The main drawback of neural radiance fields is that volume rendering requires many samples and thus many neural network evaluations per ray to approximate a volume rendering accurately. Thus, rendering from a NeRF is usually quite slow. Various approaches exist for baking or caching neural
radiance fields into explicit data structures to improve efficiency [11, 15, 39, 66]. Some approaches, concurrent to this work, learn color and density directly on a voxel grid, which improves both training and rendering speed [31, 50, 65]. However, the storage cost for explicit representations is much higher than a NeRF. Furthermore, the baking procedure itself sometimes leads to a loss in resulting view synthesis quality for baking methods. Other methods aim to reduce the number of neural network evaluations per ray by representing radiance only on surfaces [17, 32]. These methods predict new images with only a few evaluations per ray. However, their quality is contingent on either ground truth geometry or reasonable geometry estimates, which are not always available.

A light field [12, 20] is the integral of a radiance field. It maps ray parameters directly to the integrated radiance along that ray. Thus, only one look-up of the underlying representation is required to determine the color of a ray; hence one evaluation per pixel, unlike hundreds of evaluations required by a NeRF. A common assumption for light fields is that this integral remains the same no matter the ray origin (i.e., radiance is constant along rays), which holds when the convex hull of the scene geometry does not contain any viewpoints used for rendering [20]. Given this assumption, a light field is a function of a ray on a 4D ray space.

In this paper, we show how to learn neural light fields. Since coordinate-based neural representations have been successfully employed to learn radiance fields from a set of ground truth images, one might think that they could be useful for representing and learning light fields as well. However, we show that learning light fields is significantly more challenging than learning radiance fields. Using the same neural network architecture as in NeRF to parameterize a light field leads to poor interpolation quality for view synthesis.

While a radiance field is a 5D function, an essential ingredient of NeRF is that it learns the scene geometry as a density field in 3D space. Additionally, a NeRF’s learned appearance is closer to a 3D function than a 5D function since the network is late-conditioned on viewing directions [67]. This makes NeRFs easy to optimize but also means that they can struggle to represent complex view-dependent effects such as reflections and refractions [59] which violate multi-view color constraints.

On the other hand, we face the problem of learning a function defined on a 4D ray space from only partial observations — input training images only cover a few 2D slices of the full 4D space. At the same time, NeRF enjoys multiple observations of most 3D points. Further, light fields do not entail any form of scene geometry, which allows them to capture complex view dependence but poses significant challenges in interpolating unseen rays in a geometrically meaningful way. Existing methods address these issues by sacrificing view interpolation [8], leveraging data driven priors [47], or relying on strong supervision signals [22].

In order to deal with these challenges, we employ a novel ray-space embedding network that re-maps the input ray-space into an embedded latent space. This facilitates both the registration of rays observing same 3D points and the interpolation of unobserved rays, which leads to better memorization and view synthesis at the same time. The embedding network alone already provides state-of-the-art view synthesis quality for densely sampled inputs (such as the Stanford light fields [58]). However, it does not interpolate well in sparser input sequences (such as those from Real Forward-Facing [30]). Thus, we represent such scenes with a set of local light fields, where each local light field is less prone to large depth and texture changes. Each local light field has to learn a simpler embedding at the price of several more network evaluations per ray.

We evaluate our method for learning neural light fields in sparse and dense regimes, with and without subdivisions. We compare to state-of-the-art view-synthesis methods and show that our approach achieves comparable or better view synthesis quality in both regimes, in a fraction of render time that other methods require, while still maintaining their small memory footprint (Figure 1).

In summary, our contributions are:

1. A novel neural light field representation that employs a ray-space embedding network and achieves state-of-the-art quality for small-baseline view synthesis without any geometric constraints.
2. A subdivided neural light field representation for large baseline light fields that leads to a good trade-off in terms of the number of network queries vs. quality, which can be optimized to achieve comparable performance to NeRF [30] and NeX [59] for sparse real-world scenes.
3. Improved capture of view-dependent appearance in both sparse and dense regimes (e.g., complicated reflections and refractions) that existing volume-based methods such as NeRF [30] and NeX [59] struggle to represent.

2. Related Work

Light Fields. Light fields [20] or Lumigraphs [12] represent the radiance entering all positions in 3D space, in all viewing directions. By resampling the rays from the discrete set of captured images, one can query arbitrary rays in a light field and synthesize photorealistic novel views of a static scene without necessitating geometric reconstruction. While light fields have the flexibility to represent complicated, non-Lambertian appearance, this often requires high sampling rates, and thus capturing and storing an excessive number of images. Much effort has been devoted to extending light fields to sparse, unstructured input sequences [4, 7] and synthesizing (i.e. interpolating) in-between views for
such sequences [16, 43, 57, 60, 61, 64]. Very recently, neural implicit representations have been applied to modeling light fields for better memory compactness [8] and faster rendering for view synthesis [22, 47]. Like these methods, our work leverages neural light fields as its core representation for view synthesis. Unlike prior work, which sacrifices view interpolation [8] or leverages meta-learning for strong data-driven priors [47], we enable view synthesis without explicit priors, using per-scene training only.

Representations for View Synthesis. Various 3D representations have been developed for rendering novel views from a sparse set of captured images. Image-based rendering techniques leverage proxy geometry to warp and blend source image content into novel views [4, 6, 37, 45]. Recent advances in image-based rendering include learning-based disparity estimation [9, 16], blending [14, 40], and image synthesis via 2D CNNs [40, 41]. Other commonly used scene representations include voxels [25, 48], 3D point clouds [1, 18, 42] or camera-centric layered 3D representations, such as multi-plane images [3, 29, 55, 59, 69] or layered depth images [13, 19, 44, 56]. Rather than using discrete representations as in the above methods, a recent line of work explores neural representations to encode the scene geometry and appearance as a continuous volumetric field [2, 23, 27, 30, 49]. We refer the readers to [52] for more comprehensive discussions of these works.

Many of these methods learn a mapping from 3D points and 2D viewing directions to color/density, which can be rendered using numerical integration – thus, rendering the color of a pixel for novel views requires hundreds of MLP evaluations. Instead, our approach directly learns the mapping from rays to color, and therefore supports efficient rendering with fewer network evaluations. In some ways, our method is similar to AutoInt [22], which predicts integrated radiance along ray segments and uses subdivision. The accuracy of AutoInt, however, is lower than NeRF due to the approximation of the nested volume rendering integral. By contrast, our approach leads to comparable performance to NeRF.

Coordinate-based Representations. Coordinate-based representations have emerged as a powerful tool for overcoming the limitations of traditional discrete representations (e.g., images, meshes, voxelized volumes). The core idea is to train an MLP to map an input coordinate to the desired target value such as pixel color [26, 33, 46, 63], signed distance [5, 34], occupancy [28], volume density [30], or semantic labels [68]. Like existing coordinate-based representation approaches, our method also learns the mapping from an input coordinate (ray) to a target scene property (color). Our core contributions lie in designing a coordinate embedding network that enables plausible view synthesis.

Learned Coordinate Embedding. Learned coordinate transformation or embedding has been applied to extend the capability of coordinate-based representations, such as NeRF, for handling higher dimensional interpolation problems. For example, several works tackle dynamic scene view synthesis [10, 21, 35, 54, 62] by mapping space at each time-step into a canonical frame. Others leverage coordinate embedding for modeling articulated objects such as the human body [24, 36]. Our ray-space embedding network can be viewed as **locally deforming** the input ray coordinates such that the MLP can produce plausible view interpolation while preserving faithful reconstruction of the source views.

Subdivision. Recent coordinate-based representations employ 3D space partitioning/subdivision either for improving the rendering efficiency [15, 39, 66] or representation accuracy [26, 38]. Our work also leverages spatial subdivision and shows improved rendering quality, particularly on scenes with large camera baselines.

3. Neural Light Fields

A neural radiance field [30] represents the appearance and geometry of a scene with an MLP $F_\theta : (\mathbf{x}, \mathbf{ω}) \rightarrow (L_e(\mathbf{x}, \mathbf{ω}), \sigma(\mathbf{x}))$ with trainable weights θ. It takes as input a 3D position \mathbf{x} and a viewing direction $\mathbf{ω}$, and produces both the density $\sigma(\mathbf{x})$ at point \mathbf{x}, and the radiance $L_e(\mathbf{x}, \mathbf{ω})$ emitted at point \mathbf{x} in direction $\mathbf{ω}$.

One can generate views of the scene from this MLP using volume rendering:

$$L(\mathbf{x}, \mathbf{ω}) = \int_{t_0}^{t_1} T(\mathbf{x}, \mathbf{x}_s) \sigma(\mathbf{x}_s) L_e(\mathbf{x}_s, \mathbf{ω}) \, dt, \quad (1)$$

where $T(\mathbf{x}, \mathbf{x}_s) = e^{-\int_{t_0}^{t_s} \sigma(\mathbf{x}_t) \, dt}$ describes the accumulated transmittance for light propagating from position \mathbf{x} to \mathbf{x}_s, for near and far bounds $t \in [t_0, t_1]$ of the scene. In practice, the integral is approximated using numerical quadrature:

$$L(\mathbf{x}, \mathbf{ω}) \approx \sum_{k=1}^{N} \mathbf{N}(\mathbf{x}, \mathbf{x}_k) \left(1 - e^{-\sigma(\mathbf{x}_k) \Delta t}\right) L_e(\mathbf{x}_k, \mathbf{ω}), \quad (2)$$

where $\mathbf{N}(\mathbf{x}, \mathbf{x}_k) = e^{-\sum_{j=1}^{k-1} \sigma(\mathbf{x}_j) \Delta t}$ and $\Delta x_j = x_j - x_{j-1}$ is the distance between adjacent samples. An accurate approximation of (1) requires many samples and thus many neural network evaluations (on the order of hundreds) per ray.

Light Fields. Whereas a radiance field represents the radiance emitted at each point in space, a light field represents the total integrated radiance traveling along a ray. In other words, Equations (1) and (2) describe the relationship between the light field L on the left-hand side and the radiance field (L_e, σ) on the right-hand side. By optimizing a neural light field representation for L, given an input ray, one can predict this integrated radiance (and therefore render the color along this ray) with only a single neural network evaluation.
Baseline Neural Light Fields. To begin with, similar to how NeRF uses an MLP to represent radiance fields, we define an MLP F_θ to represent a light field. It takes as input positionally encoded 4D ray coordinates $\gamma(r)$ and outputs color c (integrated radiance) along each ray (Figure 2a):

$$L_{\text{base}}(r) = F_\theta(\gamma(r)).$$

Unfortunately, this baseline approach is an unsatisfactory light field representation due to the following challenges. First, the captured input images only provide partial observations in the form of a sparse set of 2D slices of the full 4D ray space, so that each 4D ray coordinate in the input training data is observed at most once, assuming that no cameras share the same origin.

Second, light fields do not explicitly represent 3D scene geometry; hence the network a priori does not know how to interpolate the colors of unobserved rays from training observations. In other words, when querying a neural network representing a light field with unseen ray coordinates, multi-view consistency is not guaranteed. To address these challenges, we present two key techniques — ray-space embedding and subdivision — which substantially improve the rendering quality of the proposed neural light field representation.

4. Ray-Space Embedding Networks

We first introduce ray-space embedding networks. This network re-maps the input ray-space into an embedded latent space. Intuitively, our goals for ray-space embedding networks are:

1. **Memorization**: Map disparate coordinates in input 4D ray-space that observe the same 3D point to the same location in the latent space. This allows for more stable training and better allocation of network capacity, and thus better memorization of input views.

2. **Interpolation**: Produce an interpolable latent space, such that querying unobserved rays preserves multi-view consistency and improves view synthesis quality.

Feature-Space Embedding. A straightforward approach would be to learn a nonlinear mapping from 4D ray coordinates to a latent feature space via an MLP $F_{\text{feat}} : r \rightarrow f \in \mathbb{R}^N$, where N is the feature space dimension (see Figure 2b). This embedding network can produce a nonlinear, many-to-one mapping from distinct ray coordinates into shared latent features, which would allow for better allocation of capacity in the downstream light field network F_θ. The finite capacity of F_θ incentivizes this “compression” and thus encourages rays with similar colors to be mapped to nearby features in the latent space; effectively a form of implicit triangulation.

After embedding, we then feed the positionally encoded N-dimensional feature into the light field MLP F_θ:

$$L_{\text{feat}}(r) = F_\theta(\gamma(F_{\text{feat}}(r))).$$

While this approach compresses and helps to find correspondences in ray space, it is not enough to facilitate the interpolation between these correspondences (see Section 6).

Light Field Re-parameterization. To understand our goals better, consider a scene containing an axis-aligned textured square at a fixed z-depth. Again, we assume a two-plane parameterization for the input ray-space of this scene. If one of the planes is at the depth of the square, then the light field will only vary in two coordinates, as illustrated in Figure 3a. In other words, the light field is only a function of (u, v) and is constant in (x, y). Since positional encoding is applied separately for each input coordinate, the baseline
model (3) can interpolate the light field perfectly if it chooses to ignore the positionally encoded coordinates \((x, y)\).

On the other hand, if the two planes in the parameterization do not align with the textured square, the color level sets (e.g., the line structures in the \(ux\) slices) of the light field are 2D affine subspaces that are not axis-aligned (see Figure 3b). Axis-aligned positional encoding, as used by NeRF [30], will yield interpolation kernels [51] that are ill-suited for capturing these sheared subspaces, especially from incomplete observations. One can therefore frame the task of effective interpolation as learning an optimal re-parameterization of the light field for a scene, such that the 2D color level sets for each 3D scene point are axis-aligned. See the appendix for a more extensive discussion.

Local Affine-Transformation Embedding. Given this intuition, we describe our architecture for ray-space embedding, which learns local affine transformations for each coordinate in ray space. We learn local affine transformations rather than a single global transformation because different rays may correspond to points with different depths, which will cause the shape of color level sets to vary.

To this end, we employ an MLP \(E_\phi : r \rightarrow (A \in \mathbb{R}^{N \times 4}, b \in \mathbb{R}^N)\). The output of the network is a \(N \times 4\) matrix \(A\), as well as an \(N\)-vector \(b\) representing a bias (translation), which together form a \(4D \rightarrow ND\) affine transformation. This affine transformation is applied to the input ray coordinate \(r\) before being positionally encoded and passed into the light field network \(F_\theta\):

\[
L(r) = F_\theta(\gamma(AR + b)), \quad \text{where} \quad (A, b) = E_\phi(r). \tag{5}
\]

See Figure 2c for an illustration of this model.

While setting \(N = 4\) above is perfectly reasonable, we use \(N = 32\) in practice, which can be seen as providing multiple possible re-parameterizations per ray. Also, note that learning arbitrary affine transforms, rather than a single \(z\)-depth for each ray, allows the network to better capture both angular frequencies in the light field (due to object depth), as well as spatial frequencies (due to object texture).

5. Subdivided Neural Light Fields

Although this approach works well for dense light fields, our embedding network struggles to find long-range correspondences between training rays when training data is too sparse. Moreover, even if it can discover correspondences, interpolation for unobserved rays in between these correspondences remains underconstrained.

To resolve these issues, we propose learning a voxel grid of local light fields that covers the entire 3D scene. This approach is motivated by the following observation: if we parameterize a local light field for a voxel by intersecting rays with the voxel’s front and back planes (See Figure 4), the color level sets of the local light field are already almost axis-aligned. As such, the ray-space embedding for each voxel can be simple, only inducing small shears of the input ray-space to allow for good interpolation. On the other hand, a global light field requires learning a complex ray-space embedding that captures occlusions and significant depth changes.

Therefore a local light field can be learned much more easily than an entire global light field with the same training data. This still requires that we solve an assignment problem: we must know which rays to use to train each local light field. While we can exclude all rays that do not intersect the voxel containing the local light field, many other rays may be occluded before they hit the voxel. Therefore, these rays should also be excluded during training.

A simple way to handle ray assignment is by learning (per-ray) opacity. If the opacity accumulated along a ray before it hits a voxel is high, the ray should receive a little contribution from this voxel. We, therefore, modify our light field network also to produce integrated opacity, or alpha for each ray. It is important to note that the opacity can vary depending on which ray is queried through a particular voxel --- opacity is a function of the ray, not the voxel itself.

Subdivided Volume Rendering. We detail how a set of local light fields can be rendered to form new images. Given a voxel grid in 3D space, we place a local light field within each voxel. A voxel’s light field is parameterized with respect to its front and back planes (See Figure 4), yielding ray coordinates \(r_i\), where \(i\) is some voxel index, for any ray \(r\) defined globally. If 3D space is subdivided into \(M\) voxels, there exist \(M\) distinct parameterizations \(\{r_i\}_{i=1}^M\) of each \(r\).

To implement this model, the embedding network \(E_\phi\) is augmented such that it takes the positionally encoded voxel index \(\gamma(i)\) in addition to the 4D ray coordinates, i.e., \(E_\phi : (r_i, \gamma(i)) \rightarrow (A_i, b_i)\). The light field network \(F_\theta\) is augmented in the same way and predicts both color and alpha: \(F_\theta : (\gamma(A_i r_i + b_i), \gamma(i)) \rightarrow (c_i, \alpha_i)\). Again, we emphasize that \(\alpha_i\) is a function of the embedded ray, not just the voxel.
Figure 5. **Local light fields via spatial subdivision.** Each local light field takes a locally re-parameterized ray r_i and its voxel index i, and predicts the radiance and opacity both integrated for the ray segment traveling through the voxel. Both the embedding network E_ϕ and the light field network F_θ are conditioned on positionally encoded voxel index $\gamma(i)$.

Given this model, rendering works in the following way. First, the set of voxels $V(r)$ that the ray r intersects are identified. The ray is then intersected with each voxel’s front and back planes π_{xy}^f and π_{xy}^b. This process yields a series of local ray coordinates $\{r_i\}_{0 \in V(r)}$. The color c_i and alpha α_i of each r_i are then computed as:

$$c_i, \alpha_i = F_\theta(\gamma(A_i r_i + b_i), \gamma(i)),$$

where the local affine-transformation is obtained from the embedding network:

$$A_i, b_i = E_\phi(r_i, \gamma(i)).$$

The final color of ray r is then over-composited:

$$c = \sum_{i \in V(r)} \left(\prod_{j \in V(r) \land j < i} (1 - \alpha_j) \right) \alpha_i c_i,$$

which assumes that we sort the voxels by their distance from the ray origin in ascending order (see Figure 5).

6. Experiments

Datasets.

We evaluate our model in two angular sampling regimes: sparse (wide-baseline) and dense (narrow-baseline), using the Real Forward-Facing dataset [30], the Shiny dataset [59], and the Stanford Light Field dataset [58]. Each scene from the Real Forward-Facing and Shiny datasets consist of a few dozen images with relatively large angular separation in between views. We followed their authors’ train/test split and hold out every 8th image from training.

The Stanford light fields are all captured as 17×17 dense 2D grids of images. We take every 4th image in both horizontal and vertical directions and use the resulting 5×5 subsampled light field for training (thus using 25 images out of 289), while preserving the rest of the images for testing.

We downsample the images in the Real Forward-Facing and Shiny datasets to 504×378 pixels, and use half the original resolution of the Stanford pixels. For quantitative metrics, we report PSNR, SSIM, LPIPS, and FPS; where FPS is computed for 512×512 pixel images.

Baseline Methods. We compare our model to NeRF [30], AutoInt [22] (with 32 sections), and NeX [59] on the Real Forward-Facing dataset [30]; and additionally to NeX on the Shiny dataset [59]. As in [59], we perform evaluation on NeX before baking. More information about this is provided in the appendix. In Table 1, we include metrics for both the Real Forward-Facing and Undistorted Real Forward-Facing dataset, a variant of the original dataset that is supported by the NeX codebase. We did not include the following methods, although they are related, for various reasons: PlenOctrees [66], KiloNeRF [39], and NSVF [23] operate on bounded 360-degree scenes only; SNeRG [15] strictly underperforms NeRF on real forward-facing scenes.

On Stanford [58], we compare our model to NeRF, NeX, and X-Fields [2], which is a state of the art method in image-based light field interpolation. Kalantari et al. [16] would also be a relevant comparison, but X-Fields outperforms it, hence we did not include it in our evaluations.

Subdivision. For small-baseline light fields (Stanford [58]), we do not use subdivision, and use a single-evaluation per ray model with ray-space embedding. For sparse light fields (Real Forward-facing [30] and Shiny [59]) we place local light fields within each voxel in a 32^2 regular voxel grid that covers all of NDC space, with the exception of the CD and Lab sequences in the Shiny dataset, where we use a coarser 4^3 voxel grid.

Implementation Details. For our feature-based embedding (4), we set the embedding space dimension to $N = 32$. The embedded feature f is ℓ_2-normalized and then multiplied by $\sqrt{32}$, such that on average, each output feature has a square value close to one. For our local affine transformation–based embedding (5), we infer 32×4 matrices and $32D$ bias vectors. We then normalize the matrices A with their Frobenius norm and multiply them by $\sqrt{32} \cdot 4$. We use a tanh-activation for our predicted bias vectors.

For positional encoding $\gamma(\cdot)$ we use $L = 8$ frequency bands for our subdivided model and $L = 10$ frequency bands for our one-evaluation model. Higher frequencies are gradu-
7. Results

Quantitative Evaluation. Table 1 compares view synthesis quality using the metrics aggregated over held-out images in all scenes. For the Real Forward-Facing dataset, our method outperforms AutoInt in both quality (∼2 dB) and speed (∼30%) while performing competitively with NeRF on PSNR and SSIM (within 0.5 dB in quality) and rendering more than x4.5 times faster. We also outperform NeRF on LPIPS. Additionally, we are competitive with NeX on the Undistorted Real Forward-Facing dataset (within 0.65 dB in quality). For the Shiny dataset, we outperform NeX in terms of PSNR, while performing slightly worse on SSIM and LPIPS metrics. We do especially well on the CD and Lab scenes with challenging view dependence, outperforming NeX by >3dB each.

On Stanford, our method outperforms NeRF, NeX, and X-Fields in all three metrics. Specifically, our model performs better on more complex scenes, e.g., Treasure and Bulldozer, with complicated geometry and high-frequency textures, while NeRF performs slightly better on simpler scenes like Chess and Beans. Our model renders a frame in about 0.11 seconds in this setup, which is faster than all other methods apart from X-Fields.

Training Time. For both RFF and Shiny, it takes about 20 hours to train our model at 32× resolution, while for the Stanford data, we train our model for about 10 hours. NeRF takes approximately 18 hours to train on all datasets, while NeX takes approximately 36 hours on 2 GPUs. For X-Fields, we double the default capacity of their model as well as the number of images used for interpolation; and train X-Fields for 8 hours rather than the maximum time of 172 minutes listed in their paper [2]. See the appendix for more details.

Reconstruction of View Dependence. Our approach reconstructs view dependence better than the baseline methods in both sparse and dense regimes (see Figures 1(left) and 6), due to the flexibility of the embedding network to predict different affine transforms for different regions of ray-space. This effectively produces locally deforming depth estimates, which can better model reflected and refracted content, for example. On the other hand, unlike our method, volumetric representations use a fixed global geometry, and are either late-conditioned on viewing direction [30], or use lower frequency basis functions for view dependence [59]. Thus, they struggle to represent high-frequency view dependent appearance that breaks multi-view color constraints.

In general, reproducing complex view dependence is a major challenge for volumetric representations, and is one of the primary contributions of our work. The difference is especially prominent in the Shiny dataset comparisons in Figure 1, as well as the results for T-rex, Food, CD, and Treasure in Figure 6.

Memory Footprint. Table 2 shows the model sizes. Our model has a similar memory footprint to NeRF. NeX explicitly represents albedo for 16 MPI layers, leading to larger memory consumption than pure coordinate-based neural representations. Overall, our method provides the best trade-off
Table 2. Memory footprint of our model compared to other methods in terms of the number of trainable weights in each network. For X-Fields [2] we include the memory footprint of the model, and of the training images which must be maintained in order to synthesize novel views.

Method	Ours	NeRF [30]	NeX [59]	AutoInt [22]	X-Fields [2]
Size (MB)	5.4	4.6	38.4	4.6	3.8 / 75

Table 3. Ablations on the ray-embedding network with subdivision (on Real Forward-Facing [30]) and without subdivision (on Stanford [58] light fields).

Subdivision	Method	Embedding	PSNR↑	SSIM↑	LPIPS↓	FPS↑
Used (On RFF)	Ours	Feature (4)	26.922	0.891	0.073	
		Local affine (5)	27.454	0.905	0.060	
	NeRF [30]		27.928	0.916	0.065	
Not used (On Stanford)	Ours	Feature (4)	25.111	0.841	0.098	
		Local affine (5)	37.120	0.9792	0.030	
	NeRF [30]		38.054	0.982	0.020	
			37.559	0.9790	0.037	

Ablations on Embedding Networks. We study the effect of our proposed embedding networks via ablations. See Table 3 for quantitative evaluation with varying configurations.

Ablations on Subdivision. Table 4 and Figure 1(right) summarize the trade-off between the quality and rendering speed of our model on various resolutions of spatial subdivision, compared to NeRF and AutoInt. For each subdivision level, we use a regular N^3 voxel grid, where $N \in (4, 8, 16, 32)$. As expected, our model archives better quality view synthesis as we employ more local light fields with finer spatial subdivision, trading off the rendering speed. The render-time increases linearly in N. Our method provides better quality and speed than AutoInt at all comparable subdivision levels.

Ablations on the subdivision on sparse light fields (Real Forward-Facing [30]).

Method	Subdivision	PSNR↑	SSIM↑	LPIPS↓	FPS↑
NeRF [30]	4^3 grid	25.579	0.867	0.094	2.82
	8^3 grid	26.860	0.893	0.070	1.42
	16^3 grid	27.350	0.904	0.062	0.69
	32^3 grid	27.454	0.905	0.060	0.34
AutoInt [22]	8 sections	24.136	0.820	0.176	0.94
	16 sections	24.898	0.836	0.167	0.51
	32 sections	25.531	0.853	0.156	0.26

8. Conclusion

We present a novel ray-space embedding approach for learning neural light fields, which achieves state-of-the-art quality on small-baseline datasets. To better handle sparse input, we leverage spatial subdivision with a voxel grid of local light fields, which improves quality at the cost of increased render time. Our subdivided representation enables comparable performance to existing models, and achieves a better trade-off between quality, speed, and memory. Additionally, in both regimes, our method can handle complex view dependent effects that existing state-of-the-art volumetric scene representations do not faithfully reproduce [30, 59].

We believe that our approach is orthogonal to contemporary works that leverage hybrid or explicit grid-based representations for view synthesis [31, 50, 65], as well as approaches that use many small MLPs within a 3D volume [39]. As such, our approach can potentially be used to reduce the required grid resolution and number of sample points per ray for these methods — which may further improve rendering quality, speed, and memory overhead. We hope that our work can open up new avenues for view synthesis; and further, that its insights can be leveraged for other signal-representation problems (such as image/video representation) or high-dimensional interpolation problems (such as view-time or view-time-illumination interpolation [2]).
References

[1] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry Ulyanov, and Victor Lempitsky. Neural point-based graphics. In * ECCV*, 2020. 3

[2] Mojtaba Bemana, Karol Myszkowski, Hans-Peter Seidel, and Tobias Ritschel. X-fields: implicit neural view-, light- and time-image interpolation. *ACM Trans. Graph.*, 39(6):257:1–257:15, 2020. 3, 6, 7, 8

[3] Michael Brouxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman, Matthew Duvall, Jason Bourgarian, Jay Busch, Matt Whalen, and Paul Debevec. Immersive light field video with a layered mesh representation. *ACM Transactions on Graphics (TOG)*, 39(4):86–1, 2020. 3

[4] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen. Unstructured lumigraph rendering. In *Proceedings of the 28th annual conference on Computer graphics and interactive techniques*, 2001. 2, 3

[5] Rohan Chabra, Jan E Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Lovegrove, and Richard Newcombe. Deep local shapes: Learning local sdf priors for detailed 3d reconstruction. In *ECCV*, 2020. 3

[6] Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis. Depth synthesis and local warps for plausible image-based navigation. *ACM Transactions on Graphics (TOG)*, 32(3):1–12, 2013. 3

[7] Abe Davis, Marc Levoy, and Fredo Durand. Unstructured light fields. In *Eurographics*, 2012. 2

[8] Brandon Yushan Feng and Ameetbhab Varshney. Signet: Efficient neural representation for light fields. In *ICCV*, 2021. 2, 3

[9] John Flynn, Ivan Neulander, James Phiblin, and Noah Snavely. Deepestereo: Learning to predict new views from the world’s imagery. In *CVPR*, 2016. 3

[10] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang. Dynamic view synthesis from dynamic monocular video. In *ICCV*, 2021. 3

[11] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. Fastnerf: High-fidelity neural rendering at 200fps. In *ICCV*, 2021. 2

[12] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. The lumigraph. In *Proceedings of the 23rd annual conference on Computer graphics and interactive techniques*, 1996. 2

[13] Peter Hedman, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi, and Ben Mildenhall. Casual 3d photography. *ACM Transactions on Graphics (TOG)*, 36(6):1–15, 2017. 3

[14] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Brostow. Deep blending for free-viewpoint image-based rendering. *ACM Transactions on Graphics (TOG)*, 37(6):1–15, 2018. 3

[15] Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul Debevec. Baking neural radiance fields for real-time view synthesis. *ICCV*, 2021. 2, 3

[16] Nima Khademi Kalantari, Ting-Chun Wang, and Ravi Ramamoorthi. Learning-based view synthesis for light field cameras. *ACM Transactions on Graphics (TOG)*, 35(6):1–10, 2016. 3, 6

[17] Petr Kellnhofer, Lars Jebe, Andrew Jones, Ryan Spicer, Kari Pulli, and Gordon Wetzstein. Neural lumigraph rendering. In *CVPR*, 2021. 2

[18] Georgios Kopanas, Julien Philip, Thomas Leimkuhler, and George Drettakis. Point-based neural rendering with per-view optimization. *Computer Graphics Forum*, 40(4):29–43, 2021. 3

[19] Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean Quigley, Francis Ge, Yangming Chong, Josh Patterson, Jan-Michael Frahm, Shu Wu, Matthew Yu, et al. One shot 3d photography. *ACM Transactions on Graphics (TOG)*, 39(4):76–1, 2020. 3

[20] Marc Levoy and Pat Hanrahan. Light field rendering. In *Proceedings of the 23rd annual conference on Computer graphics and interactive techniques*, 1996. 2

[21] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time view synthesis of dynamic scenes. In *CVPR*, 2021. 3

[22] David B Lindell, Julien NP Martel, and Gordon Wetzstein. Autoint: Automatic integration for fast neural volume rendering. In *CVPR*, 2021. 2, 3, 6, 8

[23] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel fields. In *NeurIPS*, 2020. 3, 6, 8

[24] Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu Sarkar, Jiatao Gu, and Christian Theobalt. Neural actor: Neural free-view synthesis of human actors with pose control. *ACM Transactions on Graphics (TOG)*, 2021. 3

[25] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural volumes: Learning dynamic renderable volumes from images. In *SIGGRAPH*, 2019. 3

[26] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric C. Chan, Marco Monteiro, and Gordon Wetzstein. Acorn: Adaptive coordinate networks for neural scene representation. *ACM Transactions on Graphics (TOG)*, 40(4), 2021. 3, 8

[27] Riccardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections. In *CVPR*, 2021. 3

[28] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function space. In *CVPR*, 2019. 3

[29] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. *ACM Transactions on Graphics (TOG)*, 38(4):1–14, 2019. 3

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020. 1, 2, 3, 5, 6, 7, 8

[31] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash encoding. *arXiv preprint arXiv:2201.05989*, 2022. 2, 8
[63] Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-Geoffroy, Kalyan Sunkavalli, and Hao Su. Neutex: Neural texture mapping for volumetric neural rendering. In CVPR, 2021.

[64] Henry Wing Fung Yeung, Junhui Hou, Jie Chen, Yuk Ying Chung, and Xiaoming Chen. Fast light field reconstruction with deep coarse-to-fine modeling of spatial-angular clues. In ECCV, 2018.

[65] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels: Radiance fields without neural networks. arXiv preprint arXiv:2112.05131, 2021.

[66] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for real-time rendering of neural radiance fields. In CVPR, 2021.

[67] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving neural radiance fields. CoRR, abs/2010.07492, 2020.

[68] Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew Davison. In-place scene labelling and understanding with implicit scene representation. In ICCV, 2021.

[69] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification: learning view synthesis using multiplane images. ACM Transactions on Graphics (TOG), 2018.

19797