EMQN best practice guidelines for molecular genetic testing and reporting of 21-hydroxylase deficiency

Sabina Baumgartner-Parzer1 · Martina Witsch-Baumgartner2 · Wolfgang Hoeppner3

Received: 24 September 2019 / Revised: 5 May 2020 / Accepted: 13 May 2020 / Published online: 2 July 2020
© The Author(s) 2020. This article is published with open access

Abstract
Molecular genetic testing for congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is offered worldwide and is of importance for differential diagnosis, carrier detection and adequate genetic counseling, particularly for family planning. In 2008 the European Molecular Genetics Quality Network (EMQN) for the first time offered a European-wide external quality assessment scheme for CAH (due to 21-OH deficiency). The interest was great and over the last years at about 60 laboratories from Europe, USA and Australia regularly participated in that scheme. These best practice guidelines were drafted on the basis of the extensive knowledge and experience got from those annually organized CAH-schemes. In order to obtain the widest possible consultation with practicing laboratories the draft was therefore circulated twice by EMQN to all laboratories participating in the EQA-scheme for CAH genotyping and was updated by that input. The present guidelines address quality requirements for diagnostic molecular genetic laboratories, as well as criteria for CYP21A2 genotyping (including carrier-testing and prenatal diagnosis). A key aspect of that article is the use of appropriate methodologies (e.g., sequencing methods, MLPA (multiplex ligation dependent probe amplification), mutation specific assays) and respective limitations and analytical accuracy. Moreover, these guidelines focus on classification of variants, and the interpretation and standardization of the reporting of CYP21A2 genotyping results. In addition, the article provides a comprehensive list of common as well as so far unreported CYP21A2-variants.

Introduction—CAH (21-OH deficiency)

Best practice guidelines

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder, caused in more than 90% of cases by variants of CYP21A2 impairing the function of 21-hydroxylase [1–4]. Since CYP21A2 genotyping is of importance for differential diagnosis, carrier detection and adequate genetic counseling, it is performed worldwide and completes 21-OH deficiency newborn screening offered in many countries. Encouraged by the European Molecular Genetics Quality Network (EMQN) and its European-wide external quality assessment scheme for CAH (due to 21-OH deficiency) best practice guidelines were drafted on the basis of the extensive knowledge and experience got from those annually organized CAH-schemes.

In order to obtain the widest possible consultation with practicing laboratories the draft was therefore circulated twice by EMQN to all laboratories participating in the EQA-scheme for CAH genotyping and was updated by that input. Nevertheless, the authors are aware that due to the wide range of 21-OHD phenotypes, the complex genetic background and different legal obligations, it will be difficult to achieve consensus for all issues addressed in this paper.

In deficiency of 21-hydroxylase (21-OHD), a cytochrome P450 enzyme (P450C21) involved in cortisol biosynthesis, 21-hydroxylation is impaired in the zona
fasciculata of the adrenal cortex so that 17α-hydroxyprogesterone (17α-OHP) and progesterone are not converted to 11-deoxy cortisol and 11-deoxycorticosterone, respectively. Owing to the resulting diminished plasma concentrations of aldosterone and cortisol, ACTH levels increase, resulting in overproduction and accumulation of cortisol precursors (particularly 17α-OHP), which are finally diverted to androsterone and testosterone [5–7]. Variable degrees of prenatal and/or postnatal androgen excess as well as diminished cortisol and aldosterone synthesis reflect the broad clinical range of CAH due to 21-OHD.

From the clinical point of view 21-OHD is categorized into classic (including life threatening salt-wasting as well as simply virilizing), non-classical or so-called cryptic forms of the disease [1–3], the latter often not brought to medical attention. Key features of classic 21-OHD in newborns are ambiguous genitalia in females, neonatal salt loss, failure to thrive and potentially fatal hypovolemia and shock [8, 9]. In the following years classical CAH is characterized by rapid postnatal growth, sexual precocity, different signs of hyperandrogenism, reduced fertility and a variety of additional health problems [10–12].

In contrast to the classical salt-wasting and simple virilizing forms of 21-OHD, the non-classical forms are milder [13, 14], present without adrenal insufficiency and show variable symptoms of postnatal androgen excess (premature pubarche, hirsutism, acne, menstrual abnormalities, unfulfilled pregnancy) or are without clinical symptoms (cryptic CAH). Recent data suggest a reduced quality of life and cognition in CAH patients due to the chronic illness and excess exposure to androgens and corticosteroids [15, 16]. Thus, early diagnosis and adequate treatment is of major importance for mild as well as severe cases of 21-OHD, particularly for children in order to omit unnecessary suffering and to reduce future health problems in adult life [3, 4, 10, 17, 18].

On the basis of neonatal screening programs [8, 9, 19], which are performed in many countries to avoid life threatening salt wasting crises in newborns, the classical forms of CAH are suggested to occur with an incidence of about 1:16,000 in most populations, with a higher incidence reported in Germany (=1:12,000 for 2005–2007, National Screening Report, www.screening-dgns.de). Non-classic forms of the disease are assumed to be more common [9, 20] and to occur in 0.1–0.2% of the normal Caucasian population. In that context it is of note that recent findings suggest a higher carrier frequency in the general population (of 15% in a Spanish [20] and of 10% in a middle European [21] population) than previously deduced from neonatal screening programs.

Functional impairment of the 21-hydroxylase is caused by variants affecting the function of the CYP21A2 gene, which is located on chromosome 6p21.33 (Genome assembly GRCh 38). 21-OHD’s broad clinical range reflects the fact that the majority of patients are compound heterozygous for at least two of the more than 200 disease causing CYP21A2 variants identified so far. In general there is a good phenotype–genotype correlation, the milder variant determining the phenotype [22–24]. Of note, however, recent data suggest that variants in the promoter as well as in the 3′UTR could influence the phenotype [25, 26]. Comprehensive genotyping is therefore of importance for adequate genetic counseling for further pregnancies, the patients’ offspring and family planning.

CYP21A2 genotyping is error-prone in particular due to the presence of the closely located highly homologous pseudogene CYP21A1P, as well as complex duplications, deletions and rearrangements within chromosome 6p21.3. CYP21A2 genotyping, interpretation of the respective results and adequate genetic counseling of the patient and his/her family members thus require a deep knowledge of CYP21A2 genetics [27–31].

Quality requirements for diagnostic molecular genetic laboratories

- Diagnostic CYP21A2 genotyping should be performed only by accredited laboratories (ISO 15189 or ISO 17025) or laboratories with implemented laboratory quality management systems (equivalent to ISO 15189) and in accordance with local laws and standards.
- Most of the methods used for molecular genetic analyses including sequence analysis, MLPA and Southern Blotting are not CE-IVD certified and therefore diagnostic laboratories should fully validate their analytical procedures before implementing the respective method for patient testing. Nevertheless, it is also necessary for CE-IVD-marked reagents to verify their performance before clinical implementation. For laboratories outside of Europe different regulations and requirements may be relevant and necessary.
- As a minimum, validation should cover an estimate of test accuracy (specificity and sensitivity) and robustness [32]. Test accuracy can be established by analyzing a series of samples of known genotype, and/or by comparison with other laboratories.
- Written Standard Operating Procedures (SOPs) for the methods used are mandatory.
- Laboratories should also refer to and be acquainted with the OECD Guidelines for Quality Assurance of Molecular Genetic Testing, 2007, as well as with EMQN reporting and internal quality control guidelines.
Table 1 Reasons for referrals for CYP21A2-genotyping.

- For both sexes
- Elevated 17α-OHP levels detected by CAH-newborn screening
- Salt loss and failure to thrive
- Precocious puberty
- Accelerated growth in childhood, reduced adult height
- Elevated concentrations of androgens (testosterone), of 17-OHP and of 21-deoxycortisol (basal and after ACTH-stimulation test)
- Transsex or transgender patients before sex reassignment surgery
- Carrier detection in at-risk relatives and in partners of CAH-patients or carriers
- In couples before IVF and ART
- Prenatal diagnosis in at-risk pregnancies
- Adrenal hyperplasia (tumors)
- For females
- Profound clinical symptoms, especially virilization of external genitalia
- Diffuse signs of virilization including hirsutism or acne vulgaris
- Differential diagnosis in patients with PCOS
- Infertility, recurrent miscarriage, abnormal menstrual cycle
- For males
- Swelling of testes reflecting growth of adrenal rests in testicular tissue (TARTs-testicular adrenal rest tumors) [4, 225, 226].

- Annual participation in external quality assessment schemes for CYP21A2 genotyping (EMQN, UKNE-QAS, or similar) is essential.
- A profound knowledge on the molecular background of the disease, the gene structure, and the respective literature is necessary to correctly interpret the results obtained by CYP21A2 genotyping and to provide adequate genetic counseling.

Pre-test requirements and criteria for testing

Test referral, case history, and essential samples

- Most referrals to the genetic laboratory for CYP21A2-genotyping come from endocrinologists, pediatricians and obstetricians and the respective reasons are listed in Table 1.
- The type of the test required—confirmation of diagnosis in index patient, prenatal diagnosis, identification of carrier, family analysis (compare Fig. 1)—must be clearly defined by the requesting clinician or geneticist in writing. A proper clinical examination and appropriate biochemical work up is desirable so that a brief clinical description and 17-OHP levels as well as family history are available before diagnostic CYP21A2 genotyping is performed.

Significance/scope of CYP21A2 genotyping

Second-tier confirmatory test

Second-tier confirmatory tests of neonatal CAH screening depend on country and/or region and could be both biochemical and molecular genetic approaches. As reported recently, tandem mass spectrometry has proved to be an excellent second-tier test in newborns with positive CAH screening to confirm elevated 17-OHP levels [35–37]. On the other hand it is an advantage of the molecular genetic screens [38–41] that variants affecting 21-hydroxylase function can be detected in DNA extracted from the same dried blood spots that are used for hormonal neonatal screenings. Because more than 90% of disease-causing alleles carry one out of 10 known variants, most 21-OHD cases could be identified by a screening for those 10 most

Informed consent and genetic counseling

Policy and procedures concerning initiation of the genotyping, written informed consent, genetic counseling before and after genotyping as well as documentation of genotyping results in different medical records are subject to local practices and national law and have to be handled accordingly. As addressed previously due to the complex genetic background and the wide range of clinical phenotypes CYP21A2 genotyping and genetic counseling should only be offered by experienced laboratories or institutions with a deep understanding thereof.
common variants affecting 21-OH function. A relatively easy to handle “strip-test” [40] covering those most common variants as well as a Real-Time-PCR-based assay to detect copy number variations were recently developed, are commercially available and are used in a limited number of institutions in Europe. Of importance, however, the high carrier frequency reported for Europe [21, 42] in a considerable number of samples requires verification of such results by sequencing the whole gene in order to detect other than the most common and known 10 disease causing variants. In contrast to those commercially available test kits, genotyping particularly including sequencing of the whole gene in combination with MLPA or quantitative PCR (for detection of deletions) is more elaborate, concerning both costs and personnel, but would—due to detection of uncommon and new variants as well as duplications and deletions—spare subsequent genotyping necessary for genetic counseling. The latter aspect of detection of uncommon and new variants (not covered by variant specific assays) is particularly important in less well studied populations and in countries with ethnically diverse populations. In general, all negative variant specific sequencing tests should be followed up by expanded testing particularly if there is a positive screening indication or positive family history. It has to be taken into account, however, that now new techniques such as massive parallel sequencing will allow to screen several CAH genes at once in less time with less costs.

Table 2 Analysis of parental samples.

Analysis (CYP21A2 genotyping) of parental samples is necessary in order to determine
- whether heterozygous disease causing variants are in trans or in cis as to calculate the risk of the patient’s children to be carriers and provide adequate genetic counseling for pregnancies in the future
- whether disease causing variants detected in a child are de novo or inherited as to calculate the parents’ risk for further children suffering from CAH and provide adequate genetic counseling
- allocation of different (more than one or two) detected disease causing variants to the different CYP21A2-copies particularly if more than two CYP21A2-copies were detected

Fig. 1 Flow chart of CYP21A2 genotyping. *Best practice genotyping should be PCR-based sequence analysis along with MLPA as addressed in 6.1. of the manuscript. **Second pathogenic variant in trans not detected."
Exclusion/confirmation of 21-OHD

Comprehensive CYP21A2 genotyping (not variant specific assays alone) is the best approach to exclude/confirm 21-OHD and 21-OHD-heterozygosity (carrier), because

- particularly mild clinical symptoms as hyperandrogenism, hirsutism, and acne, or infertility [43–47] show overlap with other diseases (e.g., PCOS).
- biochemical parameters (e.g., 17-OHP) should have been measured on certain days of the estrous cycle, which in practice turns out to be difficult. Thus, 17-OHP-levels determined in different laboratories (with blood samples from different days of the estrous cycle) show significant differences hampering interpretation.
- implementation of an ACTH-stimulation test may not be possible in all institutions and depends on availability of Synacthen® (tetracosactide, adrenocorticotropic hormone).

Family planning—genetic counseling

According to the Endocrine Society Clinical Practice Guidelines [3] genetic counseling should be given to parents at birth of a CAH child and to adolescents at the transition to adult care. To provide correct genetic counseling it should be considered that

- it is only CYP21A2 genotyping that allows the detection and confirmation of the carrier state in parents with a child suffering from 21-OHD.
- it is of major importance to know whether both parents are carriers or whether a variant affecting 21-OH function in the affected child has occurred de novo.
- it is indispensable to know the nature of the variants affecting function, which determine the type of CAH from which future children could suffer (salt wasting versus simple virilizing versus nonclassical CAH), since this may influence the parents’ decision for future pregnancies.
- the nature of the variants affecting 21-OH function is also required for genetic counseling, because they determine whether prenatal diagnosis and prenatal treatment should be considered in further pregnancies.
- CYP21A2 genotyping is the best method to detect the carrier state in clinically asymptomatic at risk relatives (family analysis) or partners of CAH-patients and of CAH-carriers.
- in case of in vitro fertilization (IVF): it should be mentioned that it is still a matter of debate whether 21-hydroxylase deficiency genotyping should be considered before IVF and assisted reproductive technology (ART) programs [43, 48, 49].

Prenatal diagnosis (PND) and prenatal therapy (PNT)

Due to the good genotype/phenotype correlation [1, 2, 22, 23] CYP21A2 genotyping of the fetus is predictive for his/her clinical outcome. Therefore, several institutions offer CYP21A2 genotyping in the course of prenatal diagnosis and dexamethasone therapy [50–52]. It is, however, important to mention that prenatal therapy is still considered to be an experimental one [3] due to controversial data particularly concerning treatment outcome and maternal as well as fetal safety [53–55]. Whereas Miller [53] only recently recommended that “fetal endocrine therapy for congenital adrenal hyperplasia should not be done”, due to the Endocrine Society Clinical Practice Guideline [3] prenatal therapy should be pursued through protocols approved by Institutional Review Boards at centers capable of collecting outcome data, and laboratories should seek for cooperation with such centers in order to provide the best counseling for family planning for such patients and to optimize the therapeutic regimen. Nevertheless in those Guidelines [3] the authors state that prenatal treatment of CAH remains controversial and poses unresolved ethical questions.

In general, most often chorionic villus sampling (CVS) is performed at about 10–12 weeks of gestation (or amniocentesis at 14–16 weeks) followed by determination of sex/karyotype by PCR or cytogenetics (often to exclude other chromosomal abnormalities).

By analysis of free fetal DNA from maternal blood nowadays it is possible to perform fetal sex assignment as early as in the sixth/seventh week of gestation [54–57]. The latter technique (NIPD; non-invasive prenatal diagnosis) enables sex determination before the start (7th–8th week of gestation) of a potential therapy and helps to minimize the duration of unnecessary dexamethasone treatment in male or unaffected female pregnancies and has become an integral part of prenatal therapy during the last years [52, 58].

NIPD is a rapidly-expanding technique not only for sex determination, but could also be used for detection of CYP21A2 variants using massively parallel sequencing (MPS) of cell-free fetal DNA in maternal plasma. Further development of these techniques will provide new possibilities for the diagnosis of monogenic disorders in utero avoiding the complications of invasive testing by chorionic villus sampling [58, 59].

So far PND has been offered to couples for whom it has previously been proven by diagnostic testing that both partners carry severe disease causing CYP21A2-variants, which would result in severe virilisation of female external genitalia. By genotyping of the parents de novo variants
impeirning 21-OH function in previous affected children have been ruled out.

In conclusion the requirements for PND are that

- All steps of PND are performed in accordance with national law and local practice.
- extensive genetic counseling (including information on risks of dexamethasone therapy for mother and child) by a specialist (medical geneticist, clinical specialist, pediatrician, endocrinologist or equivalent) has been performed,
- evidence of written informed consent for PND signed by the respective specialist (who did the pre-test genetic counseling) and the parents is provided with the referral, in accordance with local practices and national law,
- \textit{CYP21A2} genotyping is preceded by fetal sex assignment at the earliest time point possible (6th and 7th week of gestation),
- contamination of the prenatal sample (CVS or amniotic fluid) by maternal tissue is excluded (for example by analysis of polymorphic markers),
- full gene analysis of \textit{CYP21A2} (sequence analysis of all exons and exon/intron boundaries) including copy number detection (MLPA analysis) can be performed, because spontaneous (de novo) variants impairing 21-OH function can occur,
- absence/presence of \textit{CYP21A2} disease causing variants should be confirmed using different techniques (e.g., sequence analysis, MLPA, microsatellite-analysis).
- It has to be kept in mind that non-paternity is a caveat/limitation for test result interpretation and indication for PND. Thus, if possible, parallel testing of parental samples is recommended.

\textbf{21-OH genotyping}

\textbf{Nomenclature and gene}

The nomenclature of the gene, its localization, transcript and protein is based on specifications by the HUGO Gene Nomenclature Committee (HGNC, genenames.org), Online Mendelian Inheritance in Man (OMIM, omim.org) and Locus Reference Genomic (LRG, lrg-sequence.org). Details are given in Table 3.

\textbf{General information on gene, disease causing variants, and genotype–phenotype correlation}

\textbf{Gene}

The functional \textit{CYP21A2} gene and its highly homologous pseudogene \textit{CYP21A1P} are located in the HLA major histocompatibility complex on chromosome 6p21.33, a highly variable region [60, 61]. Before cloning of the \textit{CYP21A} genes, prenatal diagnosis was performed by HLA-typing. Moreover, particular forms of 21-OH deficiency, e.g., specific variants or constellations such as the p.(Val281Leu) variant c.841G>T or deletions of the pseudogene are associated with certain HLA haplotypes [62].

Both the functional \textit{CYP21A2} gene and the pseudogene form a genetic unit (designated as \textit{RCCX} module) with several neighboring genes including \textit{TNXB}. Copy number variations for this \textit{RCCX} locus have been described, with two modules representing the norm and three or four modules being rare (compare Fig. 2) [63, 64].

\textbf{Disease causing variants}

The most frequent variants impairing 21-OH function are the result of recombination and/or gene conversion events between the functional \textit{CYP21A2} gene and its functionally inactive (rendered inactive by variants impairing 21-OH function) pseudogene \textit{CYP21A1P} [1, 2, 65–67]. In a recent review Concolino et al. [68] listed more than 200 CAH causing variants of the \textit{CYP21A2} gene. These include the following most common variants affecting 21-OH function representing about 70–75% of CAH alleles listed in Table 4. In that context it has to be considered that uncommon and new variants (not covered by variant specific assays) could occur with higher frequency in less well studied populations and in countries with ethnically diverse populations. Thus, negative variant specific sequencing tests should be followed up by expanded testing particularly if there is a positive screening indication or positive family history.

\begin{table}[h]
\centering
\caption{Reference sequences and chromosomal localization.}
\begin{tabular}{ll}

\textbf{HGNC:} CYP21A2, HGNC ID: 2600 \\
\textbf{Aliases:} CYP21, steroid 21-hydroxylase, CYP21B, cytochrome P450, 21-hydroxylase \\
\textbf{OMIM Gene} *613815 \\
\textbf{Associated disease:} OMIM #201910 \\
\textbf{Reference sequences} \\
\textbf{Gene:} NG_007941.3 \\
\textbf{LRG:} LRG_829 (based on NG_007941.3) \\
\textbf{Transcript:} t1 (based on NM_000500.9; ENST00000644719.2) \\
\textbf{Protein:} p1 (based on NP_000491.4; ENSP00000496625.1) \\
\textbf{Consensus Coding Sequence Project (CCDS):} 4735.1 \\
\textbf{Chromosomal localization} \\
\textbf{Gene map locus} 6p21.33 \\
\textbf{Chromosome} 6, NC_000006.12 (32038316..32041670) (built GRCh38/CM000668.2)
\end{tabular}
\end{table}
Variants detected in authors’ departments and so far not published (Table 5) have all been submitted to ClinVar (www.ncbi.nlm.nih.gov/clinvar/). A more comprehensive list of known disease-causing and benign variants is given in Table 6.

Large deletions and conversions extending to about 30kb with breakpoints between exons 3 and 8 of CYP21A2P through C4B to the corresponding point in CYP21A2 comprise about 20–30% of CAH alleles [1, 2, 69]. Only a small number of variants affecting 21-OH function (~10%) represent new variants not derived from the pseudogene. CYP21A2 de novo germ-line variants are estimated to account for about 1–2% of CAH alleles in unexpectedly affected newborns [1, 2, 70]. In case that only one parent of a child (suffering from CAH) carries a disease causing variant, it can be deduced that the child’s second allele has harbored the disease causing variant “de novo”. That means that for children from further pregnancies of that couple there is no significantly increased risk to t should be mentioned that it is still a matter of debe affected by CAH.

The close proximity of the functional CYP21A2 gene to the pseudogene, as well as copy number variations for this RCCX- locus could result in a deletion of a 30 kb region (including the CYP21A2 gene) due to unequal crossing-over (misalignment of a CYP21A1P pseudogene to the functional CYP21A2 gene) between chromosomes with a monomodular and a standard bimodular form.

Table 4 Most common disease causing CYP21A2 variants (NM_000500.9) detected in Non-Finnish Europeans (Caucasians) in the course of routine CYP21A2 genotyping performed in the authors’ laboratories.

cDNA level (NM_000500.9)	Predicted protein change (NP_000491.4)	dbSNP	Corresponding exon (NG_007941.3)
c.92C>T	p.(Pro31Leu)	rs9378251	Exon 1
c.293-13C>G	Splicing defect	rs6467	Intron 2
c.332_339del	p.(Gly111Valfs*21)	rs387906510	Exon 3
c.518T>A	p.(Ile173Asn)	rs6475	Exon 4
c.710T>A	p.(Ile237Asn)	rs111647200	Exon 6
c.713T>A	p.(Val238Glu)	rs12530380	Exon 6
c.719T>A	p.(Met240Lys)	rs6476	Exon 6
c.844G>T	p.(Val282Leu)	rs6471	Exon 7
c.923dup	p.(Leu308Phefs*6)	rs267606756	Exon 7
c.955C>T	p.(Gln319*)	rs7755898	Exon 8
c.1069C>T	p.(Arg357Trp)	rs7769409	Exon 8

Variants detected in authors’ departments and so far not published (Table 5) have all been submitted to ClinVar (www.ncbi.nlm.nih.gov/clinvar/). A more comprehensive list of known disease-causing and benign variants is given in Table 6.

Large deletions and conversions extending to about 30kb with breakpoints between exons 3 and 8 of CYP21A1P through C4B to the corresponding point in CYP21A2 comprise about 20–30% of CAH alleles [1, 2, 69]. Only a small number of variants affecting 21-OH function (~10%) represent new variants not derived from the pseudogene. CYP21A2 de novo germ-line variants are estimated to account for about 1–2% of CAH alleles in unexpectedly affected newborns [1, 2, 70]. In case that only one parent of a child (suffering from CAH) carries a disease causing variant, it can be deduced that the child’s second allele has harbored the disease causing variant “de novo”. That means that for children from further pregnancies of that couple there is no significantly increased risk to t should be mentioned that it is still a matter of debe affected by CAH.

The close proximity of the functional CYP21A2 gene to the pseudogene, as well as copy number variations for this RCCX- locus could result in a deletion of a 30 kb region (including the CYP21A2 gene) due to unequal crossing-over (misalignment of a CYP21A1P pseudogene to the functional CYP21A2 gene) between chromosomes with a monomodular and a standard bimodular form.

Table 4 Most common disease causing CYP21A2 variants (NM_000500.9) detected in Non-Finnish Europeans (Caucasians) in the course of routine CYP21A2 genotyping performed in the authors’ laboratories.

cDNA level (NM_000500.9)	Predicted protein change (NP_000491.4)	dbSNP	Corresponding exon (NG_007941.3)
c.92C>T	p.(Pro31Leu)	rs9378251	Exon 1
c.293-13C>G	Splicing defect	rs6467	Intron 2
c.332_339del	p.(Gly111Valfs*21)	rs387906510	Exon 3
c.518T>A	p.(Ile173Asn)	rs6475	Exon 4
c.710T>A	p.(Ile237Asn)	rs111647200	Exon 6
c.713T>A	p.(Val238Glu)	rs12530380	Exon 6
c.719T>A	p.(Met240Lys)	rs6476	Exon 6
c.844G>T	p.(Val282Leu)	rs6471	Exon 7
c.923dup	p.(Leu308Phefs*6)	rs267606756	Exon 7
c.955C>T	p.(Gln319*)	rs7755898	Exon 8
c.1069C>T	p.(Arg357Trp)	rs7769409	Exon 8
Table 5 CYP21A2 variants detected in authors’ institutions (and so far not described in the literature) with ClinVar accession IDs.

Classification	Variant- cDNA level (NM_000500.9)	Predicted protein change (NP_000491.4)	dbSNP	Clin Var accession ID	Corresponding exon (NG_007941.3)
C2	c.-211T>A	Submitted			Pro
C2	c.-210T>C	Submitted			Pro
C1	c.-187A>C	Submitted			Pro
C3	c.-125G>A	rs1377266725	Submitted		5’UTR
C3	c.-121C>T	rs183137942	Submitted		5’UTR
C3	c.50G>T	p.(Arg17Leu)		VCV000800572	Exon 1
C3	c.137C>G	p.(Pro46Arg)		VCV000800573	Exon 1
C1	c.203-18G>C	VCV000800574			Intron 1
C2	c.203-46C>T	VCV000800575			Intron 1
C3	c.268G>T	rs1185350916		VCV000800576	Exon 2
C3	c.292+3A>G	rs752771213		VCV000800577	Intron 2
C2	c.292+37T>A	VCV000800578			Intron 2
C2	c.292+45_292 +46insTGT	VCV000800579			Intron 2
C2	c.292+56T>G	VCV000800580			Intron 2
C1	c.292+109C>G	VCV000800581			Intron 2
C2	c.293-136C>T	VCV000800582			Intron 2
C3	c.293-131_290-129dup	VCV000800583			Intron 2
C3	c.293-100_293-99insG	VCV000800584			Intron 2
C1	c.293-130C>T	VCV000800585			Intron 2
C1	c.293-115C>G	VCV000800586			Intron 2
C1	c.293-96G>T	VCV000800587			Intron 2
C1	c.293-95G>C	rs1382005578		VCV000800588	Intron 2
C1	c.293-94T>A	VCV000800589			Intron 2
C1	c.293-91G>A	rs1051507539		VCV000800590	Intron 2
C1	c.293-89A>G	VCV000800591			Intron 2
C1	c.293-88G>A	rs1282239643		VCV000800592	Intron 2
C1	c.293-80G>A	rs79249676		VCV000800593	Intron 2
C1	c.322C>T	p.(Leu108=)		VCV000800611	Exon 3
C1	c.382C>T	p.(Leu128=)		VCV000800612	Exon 3
C1	c.405C>T	p.(Ser135=)		VCV000800613	Exon 3
C1	c.447+38C>T	rs6466		VCV000800614	Intron 3
C1	c.447+39G>A	rs569670804		VCV000800615	Intron 3
C1	c.448-50G>A	rs780875791		VCV000800616	Intron 3
C1	c.448-3C>T	VCV000800617			Intron 3
C3	c.485A>G	p.(Glu162Gly)	rs1229809778	VCV000800618	Exon 4
C3	c.499G>G	p.(Leu167Val)		VCV000800619	Exon 4
C3	c.500T>G	p.(Leu167Arg)	CM071684	VCV000800620	Exon 4
C5	c.509G>A	p.(Cys170Tyr)		VCV000800621	Exon 4
C5	c.525C>A	p.(Tyr174*)		VCV000800622	Exon 4
C3	c.540C>G	p.(Asp180Glu)		VCV000800623	Exon 4
C1	c.550-19C>G	VCV000800624			Intron 4
C4	c.559T>G	p.(Leu187Val)		VCV000800625	Exon 5
C1	c.651+30G>A	rs777741541		VCV000800626	Intron 5
a functional CYP21A2 gene, resulting in a CAH-carrier state.

Genotype-phenotype correlation

In general there is a good genotype/phenotype correlation [22, 23] and specific genotypes have been shown to be associated with salt wasting, simple virilizing or non-classical CAH. The genotype/phenotype correlation decreases with diminished severity of the disease [71, 72] or depends on the patient’s background with respect to other genes regulating androgen and oestrogen metabolism. In that context it is of note that Grodnitskaya and Kurtser [73] published only recently that out of 800 women with hyperandrogenism only 1% had non-classical CAH due to 21-OH deficiency. There are also many papers reporting symptomatic patients with clinical signs of hyperandrogenism (hirsutism, precocious puberty, cycle abnormalities in women) and only heterozygous 21-OH function impairing variants and that heterozygotes are more likely to have signs of androgen excess than would genetically-unaffected subjects [74–76]. Nevertheless, a recent study [77] showed that out of 205 patients with hyperandrogenemia manifested in adolescence or adulthood the majority (n = 105) were not carriers of 21-OH function impairing variants. Moreover, due to our experience, almost all (heterozygous) parents of classical CAH-patients were clinically asymptomatic or unaware of CAH-related symptoms and were thus identified as 21-OH carriers only in the course of family analysis of a 21-OH index patient. At present it is unclear which conditions lead to “mild” clinical symptoms in heterozygous carriers. As addressed previously [77], benign variants of CYP21A2 (as p.(Asn493Ser) c.1478G>A) could influence the phenotype. Other defects (at a genetic or environmental level) in adrenal and ovarian steroid metabolism and/or metabolic disturbances (e.g., hyperinsulinism, obesity) should be investigated as possible...

Table 5 (continued)

Classification	Variant- cDNA level (NM_000500.9)	Predicted protein change (NP_000491.4)	dbSNP	Clin Var accession ID	Corresponding exon (NG_007941.3)
C1	c.651+35A>G	rs12525076	VCV000800627	Intron 5	
C1	c.652-5C>T	rs758449746	VCV000800628	Intron 5	
C3	c.724C>G	p.(Leu242Val)	VCV000800629	Exon 6	
C3	c.738+75C>T	rs1463196531	VCV000800630	Intron 6	
C3	c.739-74G>A		VCV000800631	Intron 6	
C4	c.754G>A	p.(Gly252Ser)	rs182942340	VCV000800632	Exon 7
C4	c.782T>G	p.(Met261Arg)	VCV000800633	Exon 7	
C4	c.782T>C	p.(Met261Tyr)	VCV000800634	Exon 7	
C3	c.856G>T	p.(Ala286Ser)	VCV000800594	Exon 7	
C3	c.1109G>C	p.(Arg370Pro)	VCV000800595	Exon 8	
C3	c.1132G>T	p.(Asp378Tyr)	VCV000800596	Exon 9	
C3	c.1170A>T	p.(Gln390His)	VCV000800597	Exon 9	
C3	c.1201A>G	p.(Arg401Gly)	rs1451687726	VCV000800598	Exon 9
C1	c.1223-21C>T	rs755724055	VCV000800599	Intron 9	
C3	c.1223-3C>G	rs6460	VCV000800600	Intron 9	
C5	c.1272C>A	p.(Pro424*)	VCV000800601	Exon 10	
C5	c.1291G>A	p.(Gly431Ser)	CD110266	VCV000800602	Exon 10
C3	c.1298C>G	p.(Pro433Arg)	VCV000800603	Exon 10	
C1	c.1320C>T	p.(Phe440=)	rs1188690556	VCV000800604	Exon 10
C3	c.1371C>A	p.(Asp457Glu)	VCV000800605	Exon 10	
C3	c.1405A>G	p.(Ser469Gly)	VCV000800606	Exon 10	
C3	c.1447C>A	p.(Pro483Thr)	VCV000800607	Exon 10	
C4	c.1450dup	p.(Arg484Profs*40)	VCV000800608	Exon 10	
C1	c.*2G>C	CM12111226	VCV000800609	3′UTR	
C1	c.*18C>T	VCV000800610	3′UTR		

Classification is done according to ACMG guidelines [98–100], C1 (benign), C2 (likely benign), C3 (uncertain), C4 (likely pathogenic), C5 (definitely pathogenic).
Table 6 Listing and classification of known CYP21A2-variants (based on NM_000500.9).

Classification	Gene level	Protein level	Id	Region	Phenotype	Reference
C5	c.-126C>T	Transcript. activity ~ 52%	rs191516492	5’UTR	NC	[80]
C5	c.-113G>A	rs1246774295				
C5	c.-103G>A	rs573835051				
C5	c.1A>C	p.(Met1Leu)	Hmo671	Exon 1	SW	[101]
C5	c.1A>G	p.(Met1Val)	Hmo670	Exon 1	SW	[101]
C5	c.2T>C	p.(Met1Thr)	CM1211226	Exon 1	SW/SV?	[102, 103]
C5	c.3G>A	p.(Met1Ile)	CM040727	Exon 1	SW	[104]
C5	c.23_32del	p.(Leu9Profs*42)	Exon1	SW		[105]
C1	c.29_31delTGC	p.(Leu10del)	rs61338903	Exon 1		[106]
C2	c.37C>A	p.(Leu13Met)	rs758864534	Exon 1	WT	[107]
C2	c.46G>A	p.(Ala16Thr)	rs63749090	Exon 1	NC/WT?	[107, 108]
C2	c.49C>T	p.(Arg17Cys)	rs757608533	Exon 1	NC/WT?	[107]
C5	c.59G>A	p.(Trp20*)	rs72552743	Exon 1	SW	[109]
C5	c.60G>A	p.(Trp20*)	rs746097144	Exon 1		[110]
C5	c.64dup	p.(Trp22Leufs*58)		Exon 1	SW	[111]
C5	c.68G>A	p.(Trp23*)	CM076139	Exon 1	SW	[112, 113]
C5	c.69G>A	p.(Trp23*)	rs72552744	Exon 1		[112]
C5	c.85dup	p.(His29Profs*51)		Exon 1	SW	[114]
C5	c.92C>A	p.(Pro31Gln)		Exon 1	SW	[115]
C5	c.92C>T	p.(Pro31Leu)	rs9378251	Exon 1	NC-SV	[116–121]
C5	c.116A>T	p.(His39Leu)	rs1030467767	Exon 1	SV ?	[122]
C5	c.124C>T	p.(Gln42*)	CM117607	Exon 1	SW	[123]
C4	c.129del	p.(Asp44Thrfs*9)	CD043179	Exon 1	SW/SV	[124]
C5	c.137_138delinsTG	p.(Pro46Leu)	CI060691	Exon 1	SW-SV	[125]
C5	c.138dupC	p.(Ile47Hisfs*33)		Exon 1		[126]
C5	c.143A>G	p.(Tyr48Cys)	rs566306310	Exon 1	NC	[127]
C5	c.144delT	p.(Leu49Cysfs*4)		Exon 1	SW	[22]
C5	c.163A>T	p.(Lys55*)	CM098017	Exon 1	SW	[128]
C5	c.169G>A	p.(Gly57Arg)	CM082589	Exon 1	SV	[129]
C5	c.178T>A	p.(Tyr60Asn)	HMO0672	Exon 1	SW	[101]
C5	c.188A>T	p.(His63Leu)	rs9378252	Exon 1	NC	[130]
C5	c.194G>A	p.(Gly65Glu)	CM990459	Exon 1	SW	[131]
C5	c.203-2A>G	Disrupted splice acceptor	CS961545	Intron 1	SW	[112]
C5	c.212_213insTGTGGTGGTG	p.(Leu72Valfs*11)		Exon 2	SW	[132]
C4	c.208G>T	p.(Val70Leu)	rs763599355	Exon 2	SV	[119]
C5	c.223A>T	p.(Lys75*)	CM990460	Exon 2	SW	[133]
C5	c.233T>C	p.(Ile78Thr)	CM050039	Exon 2	SV	[120, 134]
C5	c.272G>T	p.(Gly91Val)	CM990461	Exon 2	SW	[133]
C4	c.274A>G	p.(Arg92Gly)		Exon 2	SW	[119]
C5	c.274A>T	p.(Arg92*)		Exon 2	SW	[24]
C5	c.292dupT	p.(Tyr98Leufs*6)	CI138738	Exon 2	SW	[135]
C5	c.292+1G>A	Disrupted splice donor	rs779144910	Intron 2	SW	[119, 136]
C5	c.292+5G>A	disrupted donor splice site	rs757288233	Intron 2	SW	[137]
C1	c.293-79G>A		rs114414746	Intron 2		[103]
C1	c.293-13C>A		rs6467	Intron 2	WT	[65]
C5	c.293-13C>G	New splice acceptor site	rs6467	Intron 2	SW	[65, 117–119]
Classification	Gene level	Protein level	Id	Region	Phenotype	Reference
----------------	------------	---------------	----	--------	-----------	-----------
C3	c.293-7C>G	intron 2 acceptor splice site	rs193922544	Intron 2	SW	[138]
C5	c.293-2A>G	Disrupted splice acceptor	CS022262	Intron 2	SW	[139]
C5	c.294C>A	p.(Tyr98*)	CM980506	Exon 3	SW	[140]
C3	c.304_305delinsAA	p.(Ser102Asn)		Exon 3	NC/WT?	[107]
C3	c.308G>A	p.(Arg103Lys)	rs6474	Exon 3	WT	[125]
C5	c.317C>T	p.(Pro106Leu)	CM940328	Exon 3	NC	[141]
C5	c.323T>G	p.(Leu108Arg)	CM082591	Exon 3	SW	[129]
C5	c.323T>A	p.(Leu108Gln)	rs957886272	Exon 3	SV-NC	[142]
C5	c.332_339del	p.(Gly111Valfs*21)	rs387906510	Exon 3	SW	[118–120, 143]
C4	c.341C>T	p.(Ser141Phe)	rs1296268275	Exon 3	SV-NC	[107, 24]
C4	c.341C>A	p.(Ser141Tyr)	rs1296268275	Exon 3	NC	[24, 144]
C5	c.359A>G	p.(His120Arg)	HM070142	Exon 3	NC	[145]
C5	c.364A>C	p.(Lys122Gln)	rs547552654	Exon 3	NC	[146]
C4	c.368T>C	p.(Leu123Pro)		Exon 3	SW	[147]
C4	c.368T>G	p.(Leu123Arg)		Exon 3	NC	[142]
C4	c.371C>T	p.(Thr124Ile)	rs566065375	Exon 3	SW	[119]
C5	c.373C>T	p.(Arg125Cys)	rs371412889	Exon 3	SV-NC	[148]
C5	c.374G>A	p.(Arg125His)	rs72552750	Exon 3	NC	[104]
C4	c.389T>C	p.(Leu130Pro)		Exon 3	SW	[118]
C3	c.397C>T	p.(Arg133Cys)	rs770379536	Exon 3	NC	[149, 150]
C3	c.398G>A	p.(Arg133His)		Exon 3	NC	[142]
C5	c.419T>A	p.(Val140Glu)	CM122724	Exon 3	SW	[151]
C5	c.421G>A	p.(Glu141Lys)	rs774422392	Exon 3	SW	[125, 152]
C4	c.424C>T	p.(Gln142*)	CM130871	Exon 3	SW	[148]
C5	c.428T>C	p.(Leu143Pro)	CM082590	Exon 3	SW	[129]
C4	c.434A>C	p.(Gln145Pro)		Exon 3	SW	[119]
C5	c.442T>C	p.(Cys148Arg)	CM122725	Exon 3	SV-NC	[125, 152]
C5	c.447+1G>A	Disrupted splice donor		Intron 3	SW	[153]
C5	c.448C>T	p.(Arg150Cys)	rs577450124	Exon 4	NC	[149, 150]
C3	c.449G>C	p.(Arg150Pro)	rs760710835	Exon 4	NC	[154]
C5	c.452T>G	p.(Met151Arg)	CM115995	Exon 4	SV-NC?	[147]
C5	c.460C>T	p.(Gln154*)	rs775389993	Exon 4	SW	[119]
C5	c.481dupA	p.(Ile161Asnfs*)		Exon 4	SW	[155]
C2	c.478G>A	p.(Ala160Thr)	rs761406994	Exon 4	WT	[125]
C4	c.484G>T	p.(Glu162*)		Exon 4	SW	[147]
C5	c.492delA	p.(Glu164Aspfs*)		Exon 4	SW	[156]
C5	c.494T>C	p.(Phe165Ser)		Exon 4	CL-SV	[119]
C3	c.496T>C	p.(Ser166Pro)		Exon 4	NC	[118]
C5	c.500T>C	p.(Leu167Pro)	CM071684	Exon 4	SW	[157]
C5	c.503T>C	p.(Leu168Pro)	CM101300	Exon 4	SW	[158]
C4	c.506C>A	p.(Thr169Asn)	CM106846	Exon 4	NC	[117]
C5	c.508T>C	p.(Cys170Arg)	CM066041	Exon 4	SV	[159]
C5	c.509_510insA	p.(Cys170?)		Exon 4	SW	[160]
C5	c.510C>A	p.(Cys170?)		Exon 4	SW	[117]
C4	c.511dup	p.(Ser171Lysfs*125)	rs1378695952	Exon 4	SW	[139]
C5	c.515T>A	p.(Ile172Asn)	CM062571	Exon 4	SV	[161]
C5	c.518T>A	p.(Ile173Asn)	rs6475	Exon 4	SV	[107, 117–120, 125, 162]
Classification	Gene level	Protein level	Id	Region	Phenotype	Reference
----------------	------------	---------------	---------	--------	-----------	-----------
C5	c.535G>A	p.(Gly179Arg)	rs772317717	Exon 4	SW	[159]
C5	c.536G>C	p.(Gly179Ala)	rs72552751	Exon 4	SV	[133]
C5	c.549+1G>C	Disrupted splice donor		Intron 4	SW	[119]
C5	c.550G>A	Disrupted splice acceptor		Intron 4	SW	[163]
C5	c.552delC	p.(Asp184Glufs*)			Exon 5	[164]
C1	c.552C>G	p.(Asp184Glu)	rs397515531	Exon 5	WT	[165, 166]
C5	c.574T>C	p.(Tyr192His)	CM119139	Exon 5	NC	[167]
C5	c.584T>A	p.(Ile195Asn)	HM070141	Exon 5	NC	[128]
C3	c.590_592delAGG	p.(Glu197del)		Exon 5	NC, SV?	[168]
C5	c.597A>T	p.(Leu199Phe)	rs143240527	Exon 5	NC?	[169]
C3	c.607A>G	p.(Ser203Gly)	rs372964292	Exon 5	NC-WT	[107]
C5	c.634G>A	p.(Val121Met)	rs758846970	Exon 5	WT ?	[125, 103]
C5	c.634G>C	p.(Val121Leu)	CM880021	Exon 5	ndea	[158, 170]
C4	c.639dupT	p.(Pro214Serfs*)		Exon 5	SW	[104]
C5	c.652-8T>A	Disrupted splice acceptor		Intron 5	SW, SV?	[163]
C5	c.652-2A>G	Disrupted splice acceptor	rs372403269	Intron 5	SW	[149]
C4	c.662del	p.(Asn221fs*)	CD138173	Exon 6	SW	[171]
C5	c.673C>T	p.(Arg225Trp)	HM070087	Exon 6	NC	[172]
C4	c.676_677del	p.(Arg226fs*)		Exon 6	SW	[24]
C4	c.683dup	p.(Gln229Alafs*67)		Exon 6	SW	[173]
C5	c.685C>T	p.(Glu229*)	CM101304	Exon 6	NC	[158]
C5	c.700A>G	p.(Arg234Gly)	CM081569	Exon 6	NC/SV?	[121, 175]
C5	c.701G>A	p.(Arg234Lys)	CM105548	Exon 6	SV	[158]
C1	c.705T>C	p.(Asp235=)	rs10947229	Exon 6		[165]
C5	c.710T>A	p.(Ile237Asn)	ns11647200	Exon 6	SV	[119, 120, 176]
C5	c.713T>A	p.(Val238Glu)	rs12530380	Exon 6	SW	[119, 120, 176]
C5	c.715G>A	p.(Glu239Lys)	rs754019944	Exon 6	ndea	[103]
C4	c.715_717delGAG	p.(Glu239Lys)		Exon 6	SW	[177]
C5	c.719T>A	p.(Met240Lys)	rs6476	Exon 6	WT	[119, 120, 176]
C4	c.740del	p.(Glu247Glyfs*)	CD021411	Exon 7	SW	[119]
C5	c.749T>C	p.(Ile231Thr)	CM101304	Exon 6	NC	[158]
C5	c.756A>T	p.(Pro220Ser)	CM105548	Exon 6	SV	[158]
C5	c.785T>C	p.(Leu262Pro)	rs750337015	Exon 7	SW	[179]
C5	c.787C>T	p.(Gln263*)	CM990463	Exon 7	SW	[131]
C4	c.787dup	p.(Gln263Profs*)	CM990463	Exon 7	SW	[120]
C3	c.790G>C	p.(Gly264Arg)		Exon 7		[67]
C2	c.796G>T	p.(Ala266Ser)		Exon 7	WT	[121]
C5	c.797C>T	p.(Ala266Val)	rs144029176	Exon 7	NC	[180]
C1	c.803C>T	p.(Pro268Leu)	rs67132208	Exon 7	WT	[107]
C1	c.806G>C	p.(Ser269Thr)	rs6472	Exon 7	WT	[165, 181, 182]
C5	c.844G>C	p.(Val282Leu)	rs6471	Exon 7	NC	[118, 183]
C5	c.844G>T	p.(Val282Leu)	rs6471	Exon 7	NC	[107, 117, 119–121, 184]
C5	c.845T>G	p.(Val282Gly)	CM000364	Exon 7	SV-NC	[22]
C5	c.847C>A	p.(His283Asn)	CM119136	Exon 7	SV	[167]
C5	c.850A>G	p.(Met284Val)	rs770199817	Exon 7	NC	[149, 150]
C5	c.850A>T	p.(Met284Leu)	CM023732	Exon 7	NC	[185]
C5	c.874G>A	p.(Gly292Ser)	rs201552310	Exon 7	SW	[141, 164, 168]
Classification	Gene level	Protein level	Id	Region	Phenotype	Reference
----------------	------------	---------------	-------------	--------	-----------	-----------
C5	c.874G>C	p.(Gly292Arg)	rs201552310	Exon 7	SW	[125, 151, 164]
C5	c.874G>T	p.(Gly292Cys)	CM990464	Exon 7	SW	[133]
C5	c.877G>A	p.(Gly293Ser)	rs151344501	Exon 7	SV/SW?	[186]
C5	c.878G>A	p.(Gly293Asp)	CM101301	Exon 7	SW	[158]
C5	c.887C>A	p.(Thr296Asn)	CM122726	Exon 7	SW-SV	[151]
C5	c.901C>T	p.(Leu301Phe)	CM000365	Exon 7	SV	[22]
C5	c.905C>A	p.(Ser302Tyr)	CM031956	Exon 7	NC	[164]
C5	c.907T>C	p.(Trp303Arg)	CM066042	Exon 7	SW	[159]
C5	c.908G>C	p.(Trp303Ser)	CM060249	Exon 7	SV	[126, 187]
C5	c.909G>A	p.(Trp303*)	rs777168794	Exon 7	SW	[188]
C5	c.913G>A	p.(Val305Met)	rs151344505	Exon 7	NC	[189]
C5	c.914T>A	p.(Val305Glu)	Exon 7	SW	NC	[119]
C3	c.917T>G	p.(Phe307Val)	rs746303150	Exon 7	NC	[144, 165]
C4	c.921T>G	p.(Leu308Val)	Exon 7	NC	[24, 144]	
C5	c.923dup	p.(Leu308Phefs*6)	rs267606756	Exon 7	SW	[118–120]
C5	c.925C>T	p.(Leu309Phe)	CM122727	Exon 7	SV	[151]
C5	c.939+1G>C	Disrupted splice donor	Intron 7	SW	[190]	
C5	c.939+2T>G	Disrupted splice donor	rs72552753	Intron 7	SW	[191]
C5	c.946C>T	p.(Gln316*)	CM053199	Exon 8	SV	[192]
C5	c.949C>T	p.(Arg317*)	rs748290896	Exon 8	SV	[193]
C3	c.950G>T	p.(Arg317Leu)	Exon 8	SV-NC	[24, 144]	
C5	c.952C>A	p.(Leu318Met)	CM010203	Exon 8	NC	[194]
C5	c.952C>G	p.(Leu318Val)	CM053827	Exon 8	NC	[195]
C5	c.955C>T	p.(Gln319*)	rs7755898	Exon 8	SW	[118–120, 196]
C5	c.961G>A	p.(Glu321Lys)	CM101302	Exon 8	SV	[158]
C4	c.963T>C	p.(Leu322Pro)	Exon 8	SW	[144]	
C5	c.968A>G	p.(Asp323Gly)	CM060248	Exon 8	NC	[126]
C5	c.991_1000del	p.(Ser331Glyfs*)	Exon 8	SW	[193]	
C5	c.1003del	p.(Val335Serfs*)	CD130873	Exon 8	SW	[148]
C3	c.1007C>T	p.(Pro336Leu)	COSM3624998	Exon 8	NC	[142]
C5	c.1011C>G	p.(Tyr337*)	rs139392370	Exon 8	NC-SW	[197]
C5	c.1019G>A	p.(Arg340His)	rs72552754	Exon 8	NC	[198]
C5	c.1024C>T	p.(Arg342Trp)	rs777860817	Exon 8	NC-SV	[121]
C5	c.1025G>C	p.(Arg342Pro)	CM033605	Exon 8	SV	[199]
C5	c.1027T>C	p.(Glu346Pro)	CM138736	Exon 8	[135]	
C5	c.1054G>A	p.(Glu352Lys)	rs771822460	Exon 8	SV	[144, 200]
C4	c.1055A>T	p.(Glu352Val)	Exon 8	SW-SV	[186]	
C5	c.1061T>G	p.(Leu354Arg)	CM087502	Exon 8	SW	[201]
C5	c.1063C>T	p.(Arg355Cys)	rs772900496	Exon 8	SW	[22]
C5	c.1064G>A	p.(Arg355His)	rs760216630	Exon 8	SW	[133]
C5	c.1064G>C	p.(Arg354Pro)	Exon 8	SW	[202]	
C5	c.1069C>T	p.(Arg357Trp)	rs7769409	Exon 8	SW	[118–120, 147, 203]
C5	c.1070G>A	p.(Arg357Gln)	rs54370139	Exon 8	SV	[119, 204]
C5	c.1070G>C	p.(Arg357Pro)	CM970414	Exon 8	SV	[165, 205]
C4	c.1075G>A	p.(Val359Ile)	rs373579128	Exon 8	[206]	
C5	c.1088C>T	p.(Ala363Val)	CM990466	Exon 8	SW	[131]
Classification	Gene level	Protein level	Id	Region	Phenotype	Reference
----------------	------------	---------------	-------------	--------	-----------	-----------
C5	c.1091T>G	p.(Leu364Trp)	CM013257	Exon 8	SV	[207]
C5	c.1096C>T	p.(His366Tyr)	CM042969	Exon 8	SW	[120, 124]
C4	c.1096C>A	p.(His366Asn)		Exon 8	NC	[165]
C2	c.1099C>T	p.(Arg367Cys)	rs758658540	Exon 8	NC	[121]
C3	c.1100G>A	p.(Arg367His)	rs376035565	Exon 8	NC	[144]
C5	c.1108C>T	p.(Arg370Trp)	rs781074931	Exon 8	NC	[158]
C5	c.1118+1G>A	Disrupted splice donor	rs778895502	Intron 8	SW	[120]
C5	c.1119-2A>G	Disrupted splice acceptor	rs1256824831	Intron 8	SW	[163]
C5	c.1126G>A	p.(Gly376Ser)	rs151344506	Exon 9	SW	[189]
C5	c.1131C>A	p.(Tyr377*)	CM031957	Exon 9	SW	[164]
C5	c.1143G>C	p.(Glu381Asp)	rs72552756	Exon 9	SW	[208]
C4	c.1144G>A	p.(Gly382Ser)	rs1395322291	Exon 9	SW	[144]
C4	c.1160C>T	p.(Pro438Leu)	rs546660952	Exon 9	NC	[144]
C4	c.1160C>G	p.(Gly432Ser)	CM110245	Exon 9	SW	[120]
C4	c.1166C>T	p.(Arg409Cys)	CM060572	Exon 9	SV	[120]
C5	c.1166C>A	p.(Arg409His)	CM110245	Exon 10	SW	[120]
C5	c.1166G>C	p.(Pro405Ser)	rs72552757	Exon 10	SW	[120]
C4/C5	c.1173_1277del	Disrupted splice donor	rs151344503	Exon 9	SW/NC	[24, 144]
C4	c.1174G>A	p.(Glu434Ser)	CM074139	Exon 9	SW	[120]
C4	c.1175G>A	p.(Pro438Leu)	CM110245	Exon 10	SW	[120]
C4	c.1181C>T	p.(Arg437Cys)	CM110245	Exon 9	SW	[120]
C5	c.1201C>G	p.(Thr401Met)	CM0606039	Exon 10	SW	[120]
C5	c.1204C>A	p.(Arg409His)	CM110245	Exon 10	SW	[120]
C5	c.1204G>A	p.(Gly432Ser)	CM110245	Exon 10	SW	[120]
C4	c.1208C>T	p.(Arg437His)	CM110245	Exon 10	SW	[120]
C4	c.1213C>T	p.(Glu434Val)	CM0606039	Exon 10	SW	[120]
C5	c.1214C>A	p.(Asp436Asn)	CM110245	Exon 10	SW	[120]
C5	c.1214G>A	p.(Pro438Leu)	CM110245	Exon 10	SW	[120]
C5	c.1216C>T	p.(Arg409His)	CM110245	Exon 10	SW	[120]
C5	c.1216C>G	p.(Pro438Leu)	CM110245	Exon 10	SW	[120]
C5	c.1217C>T	p.(Arg409His)	CM110245	Exon 10	SW	[120]
C4	c.1220C>T	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C5	c.1220G>A	p.(Glu434Val)	CM110245	Exon 10	SW	[120]
C4	c.1222C>T	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C5	c.1222G>A	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C4	c.1224C>T	p.(Pro438Leu)	CM110245	Exon 10	SW	[120]
C4	c.1226C>T	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C4	c.1226C>G	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C5	c.1228G>A	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C5	c.1229C>T	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C5	c.1230C>T	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C5	c.1231C>T	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C5	c.1232C>T	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C5	c.1233C>T	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
C4	c.1234C>T	p.(Arg437Cys)	CM110245	Exon 10	SW	[120]
causes for the hyperandrogenism. In these patients, detection of disease causing CYP21A2 variants is only important in the background of family planning.

Another reason for genotype-phenotype variability is the so-called leakiness (e.g., c.290-13C>G) or a different molecular "background" of the respective variant (e.g., p. (Pro46Leu)—small versus large gene conversion – or the circumstance that 3'-and 5'-UTR (untranslated region) are often not analyzed in the course of routine CYP21A2 genotyping [25, 26, 69, 78–82]. This has to be kept in mind, when interpreting and reporting results of 21-OH genotyping.

Methodological approaches—analytical methods

Best practice 21-OHD genotyping

Due to the complex spectrum of disease causing variants (large gene conversions with multiple mutations in cis, deletions and duplications of variable size [83–89], more than one 21-OH function affecting variant per gene), best practice genotyping should be PCR-based sequence analysis along with MLPA, which would detect the majority of types of potential alterations.
If other methodologies are used, which cover only the most common disease causing variants and/or cannot detect large deletions/duplications the limitations of the employed methods have to be clearly stated in the respective genetic reports.

Nevertheless, we have to be aware, that all methods mentioned so far have limitations and none of those techniques are able to identify 100% of possible variants due to the complexity of the \textit{CYP21A2} locus.

In at-risk relatives despite known familial \textit{CYP21A2} variants a full screening for \textit{CYP21A2} variants (by sequence and MLPA analysis) is preferable, rather than exclusively analyzing the known 21-OH function impairing variant detected in the index patient. Due to a high \textit{CYP21A2}-carrier rate (as addressed previously in these guidelines [21, 42]) family members may carry other \textit{CYP21A2} variants than detected in the index patient and would then escape detection.

\textbf{Approved/preferred methodologies}

\textbf{PCR-based sequence analysis}

Usually PCR-based Sanger sequencing is performed to detect disease causing or clinically relevant single nucleotide substitutions, small deletions and insertions. In brief, one or more fragments covering all 10 exons and the respective exon/intron boundaries are specified by selective PCR primers differentiating the functional \textit{CYP21A2} gene from the \textit{CYP21A1P} pseudogene followed by Sanger sequencing. So far, only the minority of laboratories sequence parts of the 5‘ regulatory and of the 3‘ untranslated region.

Of note, PCR based approaches detecting sequence variants, the common 30kb deletion as well as fusion events can also be used for comprehensive \textit{CYP21A2} genotyping [89].

\textbf{Primer design} Since exonic and intronic nucleotide sequences of the pseudogene and the functional gene exhibit 98% sequence homology [61] and are characterized by a high number of SNPs, the design of PCR- and sequencing primers is challenging. A shortlist of different primers used for PCR-based sequencing is provided as Supplementary material.

In principle, allelic dropout has to be considered as for every other gene, since SNPs could lie in primer regions and hamper primer binding. Sequencing overlapping fragments with different primers can help to detect allelic drop out and hence minimize the probability of missing disease causing variants.

\textbf{Taq-polymerase} The use of proof reading Taq-polymerases is strongly recommended to avoid allelic drop out, as previously reported for the c.290-13C>G locus [90]. Laboratory experience suggests that this phenomenon does not particularly relate to this intronic locus but could be a problem also for other loci.

\textbf{Promoter and 3‘ UTR} Whereas exons and intron/exon boundaries are usually covered by PCR-based sequencing, the majority of the laboratories do not analyze the promoter and the 3‘ untranslated region in the course of routine \textit{CYP21A2} genotyping. As reported previously [79–82] promoter variants could result in classic as well as non-classic CAH and/or could modify the phenotype in patients with p.(Pro30Leu) variants [69, 78]. However, due to that lack of information on patients’ data the clinical relevance of promoter sequence variants is unclear and interpretation therefore remains difficult.

In that context it is of note that MLPA covers the c.-113G>A variant in the promoter region with the respective probe for exon 1, but the knowledge on a deletion/conversion in exon 1 (as detected by MLPA) cannot replace for the sequencing of at least a part of the promoter region.

It was reported [26] only recently that the variant c.*13G>A correlates with a mild form of CAH. This variant should therefore be included in routine \textit{CYP21A2} genotyping.

\textbf{Multiplex ligation-dependent probe amplification (MLPA)}

A commercially available \textit{CYP21A2}-MLPA kit is widely used, as this method [29, 91, 92] has the advantage that it is easy to set up and that results should be comparable between laboratories worldwide, although the automatic computer-based plotting is individually done by each lab using different analysis software products. Substitutions of MLPA probes and software updates by the manufacturer require re-evaluation and re-validation of that method (including the used software) regarding IVD (in vitro diagnostic) policies, since the assay is not CE-certified and probe specificity and exons covered by the test may change. Therefore, we strongly encourage the documentation of the MLPA-lot used in the genetic report.

\textbf{Variant-specific rapid screening strategies}

Different methods allowing rapid detection of the most common variants causing CAH are performed by certain laboratories and/or certain countries in the course of stepwise analysis of 21-OH deficiency. Such methods, reviewed in more detail by others [1, 93], include allele-specific oligonucleotide hybridization, amplification-created restriction site and single-stranded conformational analysis, allele-specific oligonucleotide PCR, oligonucleotide arrays, ligase chain reaction or PCR-based minisequencing as well as a
commercially available CE-IVD certified Strip assay [40], detecting the most common 21-OH function impairing variants in a time- and cost-effective manner. The latter assay can be used as an independent confirmation for already detected variants by other assays and strategies. Of note, recent EMQN-CAH schemes revealed that several laboratories using that method did not have sufficient knowledge and experience in interpreting CYP21A2 constellations, as they reported wrong results using that assay. In addition, it was observed by recent EMQN CAH-schemes that disease causing variants as c.898C>T p.(Leu300Phe) were missed by such “CAH-variant-specific” methods. Detection of one disease-causing variant does not exclude the presence of further ones not covered by the respective assay. This has to be mentioned in the respective genetic reports and should also be considered in genetic counseling.

Next generation sequencing

Massive parallel sequencing is expanding quickly and represents a promising tool for future molecular diagnostic approaches. Although already used for 21-OHD genotyping by some laboratories, due to the limited experience a recommendation cannot be given at this point of time. In the course of the 2017 EMQN-CAH scheme two laboratories used NGS and one failed to detect the very common c.515T>A p.(Ile172Asn) variant (in the heterozygous state) in one case, but detected it in the second (in homzygous form). On the basis of the submitted reports of the recent CAH-scheme the assessors strongly encourage to include more information on bioinformatics tools as well as on enrichment kit, etc. in order to get more knowledge on the NGS technique for CYP21A2 analysis. Preliminary data (unpublished observation by the authors) demonstrate difficulties in discriminating localization of variants regarding homologous genes and pseudogenes.

Southern blot analysis (SBA) and quantitative PCR

Originally SBA was used to detect large gene deletions and conversions [1, 2, 93], employing at least two restriction enzymes (Taq I and Bgl II), in order to differentiate large gene deletions from conversions.

Since Southern blot analysis is time-consuming and requires high concentrations and amounts of DNA, in the majority of diagnostic laboratories SBA has been replaced by MLPA or semiquantitative and quantitative real-time PCR methods. Whereas the latter have previously been developed almost exclusively as in house products in different laboratories, in the meantime an IVD-certified kit (ViennaLab) for quantitation of CYP21A copies is commercially available.

Caveats and pitfalls

Controls Positive controls (with known variants in the respective analyzed exon/intron) should be used for validation of all analyses to ensure that the technique used is appropriate. For predictive testing a close relative carrying the disease causing variant could be analyzed in parallel as internal control.

Duplicated CYP21A2 genes The wide use of MLPA led to the findings that three or even four functional CYP21A2 genes are present in a certain number of individuals. To avoid false interpretation of positive genotyping it is of utmost importance to be aware of the high frequency of duplicated CYP21A2 genes in association with p. (Gln318*) [28, 42, 94, 95]. In case of detection of a p. (Gln318*) variant, we strongly recommend MLPA analysis in order to clarify the CYP21A2 gene copy number. If three or more CYP21A2 copies are present, PCR with specific primers and/or family analysis has to be performed in order to allocate the disease causing variant to the respective single or duplicated CYP21A2 gene [42]. If two CYP21A2-genes are detected, the p.(Gln318*) bearing allele represents a CAH-allele. If p.(Gln318*) is on an allele carrying a duplicated CYP21A2, it does not represent a CAH allele, but rather a functional normal one. Currently, the presence of three functional CYP21A2 genes distributed on two alleles are considered to exhibit complete normal function, although proof from the literature is lacking. The observation that the disease causing variant p.(Gln318*) associated with two CYP21A2 gene copies on the same allele or chromosome is more prevalent in the healthy general population than in CAH-patients is in line with the above-mentioned assumption [42, 95].

Of note, the number of functional genes do not only determine the carrier status of a person, but the presence of three or more functional genes could hamper the detection of one mutated allele out of three or four in comparison to one mutated sequence out of two.

In case of duplicated CYP21A2 alleles the risk of no correct assignment of the mutated allele and hence wrong distribution of CYP21A2 genes during meiosis cannot be excluded.

In that context it is of note that in spite of the detection of two CYP21A2 copies, this could be due to a duplication of CYP21A2 on one allele, whereas the second allele is lacking a functional CYP21A2 gene, resulting in a CAH-carrier state.

The above mentioned constellations have to be documented and addressed in the respective genetic reports to provide correct genetic counseling.
Pitfalls and false negative results

Pitfalls and false negative results can occur during CYP21A2 analysis and are due to:

- Mix up of samples during venipuncture, during DNA isolation or subsequent testing.
- Sequence variations in primer binding regions which could give rise to non-amplification of a normal or disease causing variant carrying allele (“allelic dropout”) [90]; Therefore not amplified CYP21A2 genes are not sequenced and the variant on the other allele appears homozygous instead of heterozygous.
- Homozygosity/hemizygosity for a disease causing variant which has to be verified by a second method (e.g., MLPA)
- Duplication of the functional CYP21A2 gene can mask a deletion on the second allele and can complicate determination of carrier status [28, 69, 94, 95], as outlined above.
- Under certain circumstances hybrid genes can be co-amplified and detected disease causing variants could erroneously be assigned to the functional gene.
- Contamination of fetal with maternal material in prenatal diagnosis.
- Disease causing variant lies in a gene other than the one tested (including double heterozygosity for different genetic entities, e.g., one disease causing variant in CYP21A2 and one in CYP11B1).

Interpretation and reporting

Reporting format and relevant information

While every laboratory has its own reporting format, general guidance on reporting is available from the European Molecular Genetics Quality Network (http://www.emqn.org) on the EMQN website and relevant links including Eurogentest (a project founded in order to harmonize genetic testing across Europe - www.eurogentest.org), the Association for Clinical Genomic Science (www.acgs.uk.com) or the Swiss Society of Medical Genetics (http://sgmg.ch). Some degree of standardization is of pivotal importance for the referring clinicians and for consistency between different laboratories.

The respective recommendations concerning a genetic report and the required informations are:

- **Clear and concise report**
 - Individual report issued

- **Patient-related information**
 - Patient’s name and date of birth, sex, ethnic background
 - Reason for referral
 - Name, address of referring clinician/institution

- **Specimen-related information**
 - Type of specimen (EDTA-blood, DNA, chorionic villi)
 - Date of referral/arrival noted
 - Laboratory reference/code

- **Methods-related information**
 - Testing method and respective limitations (error probability) must be included.
 - Clinical sensitivity for full CYP21A2 screening is >95%, analytical sensitivity for sequencing and MLPA is assumed >98%.
 - Both the clinical and analytical accuracy of the assay should be empirically established by each laboratory as part of validation/verification and actually achieved values should be included in the methods.
 - HGVS nomenclature (http://www.hgvs.org) should be used for all variants, and citing the reference sequence on the report—LRG_829t1 (http://www.lrg-sequence.org), NM_000500.9 - is pivotal.
 - Benign variants should not be reported (but can be transmitted upon request).

- **Disease-related information**
 - OMIM number of the disease and mode of inheritance should be given (www.ncbi.nlm.nih.gov).
 - Detected variants should be related to the different phenotypes (classical CAH, salt wasting, simply virilising, non-classical CAH) [24, 96] and potential risk for prenatal virilisation in females should be addressed.

- **Patient and family-related information**
 - Availability of carrier screening for relatives and partners should be addressed.
 - Necessity of family analysis should be addressed if applicable (allocation of different disease causing variants to two or more CYP21A2 copies).
 - Risk for children to carry 21-OHD-alleles should be addressed and given.

- In case CAH-index patient is a child.
 - Parents should be genotyped in order to exclude a de novo 21-OH function impairing variant in the affected
child and to correctly calculate the risk for the couple’s further children to suffer from CAH (particularly address virilisation of external genitalia in females).

- Necessity/opportunity of genetic counseling of the patient and her/his partner at a later time point for future children should be mentioned.

- Laboratory related information

 - Name, address of laboratory and its head.
 - Report dated and signed by two suitably qualified persons.

- Recommendations

 - Recommend retesting of an independent blood sample particularly in the case of carrier testing (family planning)
 - Recommend genetic counseling for the index patient

Genotype related informations

The CYP21A2 gene harbors benign variants affecting the numbering of nucleotides and codons. Thus, differences in nomenclature existing in the literature and resulting from different reference sequences may cause confusion and make comparison of reports from different laboratories difficult for referring clinicians. Therefore a common reference sequence and standardized nomenclature are desirable. The authors of this manuscript recommend LRG_829t1 (based on NM_000500.9) as a reference sequence.

HGVS nomenclature should be used for all variants including single nucleotide variants, short del/ins and large deletions; for complex variants (insertion–deletions) descriptive explanations can be given in addition.

- Definitions—explanations

 - In general, the terms “mutation” and “polymorphism” should no longer be used. The term variant is preferred with an explanation of whether the found variants are disease-causing, benign (and so not usually reported) or of uncertain significance.
 - SNP and polymorphisms imply a population allelic frequency of above 1%, but give no indication on pathogenicity.

Classification of variants

Variant curation and interpretation is complex and has to be performed in reference to the established guidelines from ACMG (American College of Medical Genetics and Genomics) and ACGS (ACGS Best Practice Guidelines for Variant Classification in Rare Disease 2020). In these guidelines only some important aspects can be addressed: Common variants already well known in the literature and being listed in databases e.g., as ClinVar and already classified as “disease causing or pathogenic” do not need further investigation. All other variants, as well as not so common but already included variants in databases, need always a systematic (re-) evaluation for pathogenicity. This can be done by use of so-called search tools as e.g., ClinGen Pathogenicity Calculator (http://calculator.clinicalgenome.org/site/cg-calculator) [97] which interprets the variant on the base of ACMG guidelines (American College of Medical Genetics and Genomics) [98, 99]. The classification is performed in five classes [100]. The systematic interpretation of a variant requires at least

- the check for frequency in the respective and other populations (dbSNP, 1000 Genomes, ExAC),
- the search in different databases (for example: Pubmed, HGMD, HGVS, Pharmvar—previously CYP21-alleles, etc.),
- to perform in silico analysis (for example: MutationTaster, SIFT, PolyPhen-2, SpliceSiteFinder, INNSPLICE, MaxEntScan, etc.),
- the check of co-segregation with the disease, although this is difficult in recessive disease, and
- to perform in vitro expression experiments (is not a recommendation, but would bring information about novel variants which would be of general interest).

Acknowledgements

We wish to thank Dr Wim Wuys for organizing the Best Practice Meeting in Antwerp in 2009 and all the participants of that EMQN-CAH-Best-Practice-Meeting (Christine Bellanne-Chantelot, Berta Carvalho, Edward Edkins, Rob Elles, João Gonçalves, Lies Hoefsloot, Mirjana Kocova, Ivan McGown, Yves Morel, Nicole Motton, Vassos Neocleous, Josep Oriola, Gill Rumsby, Egbert Schulze, Nicos Skordis, Veronique Tardy, Chu-Lee Thakkar) as well as all participants of the EMQN-CAH schemes for their input. We gratefully acknowledge the help of Stefan Nemeth who did the illustration of figures and we thank Daniel Wedemeyer for preparing the list of CYP21A2 variants. Funding for the best practice meeting was provided by the European Molecular Genetics Quality Network (http://www.emqn.org) and EuroGentest.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxydeficiency. Endocr Rev. 2000;21:245–91.
2. Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med. 2003;349:776–88.
3. Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2010;95: 4133–60.
4. Bachelot A, Grouthier V, Courtillot C, Dulon J, Touraine P. 2017 Management of endocrine disease: congenital adrenal hyperplasia due to 21-hydroxydeficiency: update on the management of adult patients and prenatal treatment. Eur J Endocrinol. 2017;176:R167–81.
5. Honour JW. 17-Hydroxyprogesterone in children, adolescents and adults. Ann Clin Biochem. 2014;51:424–40. (Pt 4)
6. Parsa AA, New MI. Steroid 21-hydroxydeficiency in congenital adrenal hyperplasia. J Steroid Biochem Mol Biol. 2017;165:2–11.
7. Miller WL. Molecular biology of steroid hormone synthesis. Endocr Rev. 1989;9:295–318.
8. Therrell BL. Newborn screening for congenital adrenal hyperplasia. Endocrinol Metab Clin North Am. 2001;30:15–30.
9. Grosse SD, Van Vliet G. How many deaths can be prevented by newborn screening for congenital adrenal hyperplasia? Horm Res. 2007;67:284–91.
10. Webb EA, Krone N. Current and novel approaches to children and young people with congenital adrenal hyperplasia and adrenal insufficiency. Best Pract Res Clin Endocrinol Metab. 2015;29:449–68.
11. Falhammer H, Frisen L, Linden Hirschberg A, Norby C, Almqvist C, Nordenskjöld A, et al. Increased cardiovascular and metabolic morbidity in patients with 21-hydroxydeficiency: a Swedish population-based national cohort study. J Clin Endocrinol Metab. 2015;100:3520–8.
12. Kim MS, Ryabets-Lienhard A, Dao-Tran A, Mittelman SD, Gilsanz V, Schrager SM, et al. Increased abdominal adiposity in adolescents and young adults with classical congenital adrenal hyperplasia due to 21-hydroxydeficiency. J Clin Endocrinol Metab. 2015;100:E1153–9.
13. Falhammer H, Nordenström A. Nonclassical congenital adrenal hyperplasia due to 21-hydroxydeficiency: clinical presentation, diagnosis, treatment, and outcome. Endocrine. 2015;50:32–50.
14. Kohn B, Levine LS, Pollack MS, Pang S, Lorenzen F, Levy D, et al. Late-onset steroid 21-hydroxydeficiency: a variant of classical congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1982;55:817–27.
15. Kanhere M, Fuqua J, Rink R, Houk C, Mauger D, Lee PA. Psychosexual development and quality of life outcomes in females with congenital adrenal hyperplasia. Int J Pediatr Endocrinol. 2015;2015:21.
16. Yau M, Vogiatzi M, Lewkowitz-Shputoff A, Nimkarn S, Lin-Su K. Health-related quality of life in children with congenital adrenal hyperplasia. Horm Res Paediatr. 2015;84:165–71.
17. Falhammer H, Wedell A, Nordenström A. Biochemical and genetic diagnosis of 21-hydroxylase deficiency. Endocrine. 2015;50:306–14.
18. Turcu AF, Auchus RJ. Novel treatment strategies in congenital adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes. 2016;23:225–32.
19. Therrell BL Jr, Berenbaum SA, Manter-Kapanke V, Simmank J, Korman K, Prentice L, et al. Results of screening 1.9 million Texas newborns for 21-hydroxylase deficient congenital adrenal hyperplasia. Pediatrics. 1998;101:583–90.
20. Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxydeficiency. Am J Hum Genet. 1985;37:650–67.
21. Baumgartner-Parzer SM, Nowotny P, Waldbäusl W, Vierhapper H. Carrier frequency of Congenital Adrenal Hyperplasia (21-OH-deficiency) in a middle European population. J Clin Endocrinol Metabol. 2004;90:775–8.
22. Krone N, Braun A, Roscher AA, Knorr D, Schwarz HP. Predicting phenotype in steroid 21-hydroxydeficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J Clin Endocrinol Metab. 2006;85:1059–65.
23. Speiser PW, Dupont J, Zhu D, Serrat J, Buegeleisen M, Tüsie-Luna MT, et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxydeficiency. J Clin Investig. 1992;90:584–95.
24. New MI, Abraham M, Gonzalez B, Dumić M, Razzaghy-Azar M, Chitayat D, et al. Genotype-phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxydeficiency. Proc Natl Acad Sci USA. 2013;110:2611–6.
25. Aratijio RS, Mendonca BB, Barbosa AS, Lin CJ, Marcondes AM, Billerbeck AEC, et al. Microconversion between CYP21A2 and CYP21A1P promoter regions causes the nonclassical form of 21-hydroxydeficiency. J Clin Endocrinol Metab. 2007;92/4:10028–34.
26. Menabo S, Balsamo A, Baldazzi L, Barbaro M, Nicoletti A, Conti V, et al. A sequence variation in 3’UTR of CYP21A2 gene correlates with a mild form of congenital adrenal hyperplasia. J Endocrinol Invest. 2012;35:298–305.
27. Day DJ, Speiser PW, Schultz E, Bettendorf M, Fitness J, Barnay F, et al. Identification of non-amplifying CYP21-genes when using PCR-based diagnosis of 21-hydroxydeficiency in congenital adrenal hyperplasia (CAH) affected pedigrees. Hum Mol Genet. 1996;5:2039–48.
28. Ezquielta B, Beneyto M, Munoz-Pacheco R, Barrio R, Oyarzabal M, Lechuga JL, et al. Gene duplications in 21-hydroxydeficiency: the importance of accurate molecular diagnosis in carrier detection and prenatal diagnosis. Prenat Diagn. 2006;26:1172–8.
29. Concolino P, Mello E, Minucci A, Zuitti C, Capoluoengo E. Multiplex ligation-dependent probe amplification analysis is useful for diagnosing congenital adrenal hyperplasia but requires a deep knowledge of CYP21A2 genes. Clin Chem. 2011;57:1079–80.
30. Tsai LP, Cheng CF, Chuang SH, Lee HH. Analysis of the CYP21A1P pseudogene: indication of mutational diversity and CYP21A2-like and duplicated CYP21A2 genes. Anal Biochem. 2011;413:133–41.
EMQN best practice guidelines for molecular genetic testing and reporting of 21-hydroxylase deficiency

31. Cantürk C, Baade U, Salazar R, Storm N, Pörtner R, Höppner W. Sequence analysis of CYP21A1P in a German population to aid in the molecular biological diagnosis of congenital adrenal hyperplasia. Clin Chem. 2011;57/3:511–7.

32. Mattocks CJ, Morris MA, Matthijs G, Swinnen E, Corveleyn A, Dequeker E, et al. A standardized framework for the validation and verification of clinical molecular genetic tests. EuroGentest Valid Group. Eur J Hum Genet. 2010;18:1276–88.

33. New M, Lorenzen F, Lerner AJ, Kohn B, Oberfield SE, Pollack MS, et al. Genotyping steroid 21-hydroxylase deficiency: hormonal reference data. J Clin Endocrinol Metab. 1983;57:320–6.

34. Ambroziak U, Kepczyńska-Nyk A, Kuryłowicz A, Malunowicz EM, Wójcicka A, Misikiewicz P, et al. The diagnosis of non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency, based on serum basal or post-ACTH stimulation 17-hydroxyprogesterone, can lead to false-positive diagnosis. Clin Endocrinol. 2016;84:23–9.

35. Rauh M, Gröschl M, Rascher W, Dörre HG. Automated, fast and sensitive quantification of 17α-hydroxyprogesterone, androstenedione and testosterone by tandem mass spectrometry with online extraction. Steroids. 2006;71:450–8.

36. Janzen N, Sander S, Terhardt M, Peter M, Sander J. Fast and direct quantification of adrenal steroids by tandem mass spectrometry in serum and dried blood spots. J Chromatogr B Anal Technol Biomed Life Sci. 2008;861:117–22.

37. Seo JY, Park HD, Oh HJ, Yang JS, Chang YS, et al. Steroid profiling for congenital adrenal hyperplasia by tandem mass spectrometry as a second-tier test reduces follow-up burdens in a tertiary care hospital: a retrospective and prospective evaluation. J Perinat Med. 2014;42/1:121–7.

38. Fitness J, Dixit N, Webster D, Torresani T, Pergolizzi R, Speiser PW, et al. Genotyping of CYP11A1, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1999;84:960–6.

39. Kössel S, Burggraf S, Fingerhut R, Dörre HG, Roscher AA, Olgémüller B. Rapid second-tier molecular genetic analysis for congenital adrenal hyperplasia attributable to steroid 21-hydroxylase deficiency. Clin Chem. 2005;51:298–304.

40. Nemeth S, Riedl S, Kriegshäuser G, Baumgartner-Parzer S, Concolino P, Neocleous V, et al. Reverse-hybridization assay for rapid detection of common CYP21A2 mutations in dried blood spots from newborns with elevated 17-OH progesterone. Clin Chim Acta. 2012;414:211–4.

41. Silveira EL, Elnecave RH, dos Santos EP, Moura V, Pinto EM, von der Linden Nader I, et al. Molecular analysis of CYP21A2 can optimize the follow-up of positive results in newborn screening for congenital adrenal hyperplasia. Clin Genet. 2009;76:503–10.

42. Parajes S, Quinteiro C, Domínguez F, Loidi L. High frequency of copy number variations and sequence variants at CYP21A2 locus: implication for the genetic diagnosis of 21-hydroxylase deficiency. Plos ONE. 2008;3:5:e2138.

43. Trakakis E, Dracopoulou-Vabouli M, Dacou-Voutetakis C, Basios G, Chrelias C, Kassanos D. Infertility reversed by glucocorticoids and full-term pregnancy in a couple with previously undiagnosed nonclassic congenital adrenal hyperplasia. Fertil Steril. 2011;96/4:1048–50.

44. Krone N, Wachtler I, Stefanidou M, Roscher AA, Schwarz HP. Mothers with congenital adrenal hyperplasia and their children: outcome of pregnancy, birth and childhood. Clin Endocrinol. 2001;55:523–9.

45. Bidet M, Bellanne-Chantelot C, Galand-Portier M-B, Golmard J-L, Tardy V, Morel Y, et al. Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2010;95/3:1182–90.

46. Wedell A, Thilén A, Ritzén EM, Stengler B, Luthman H. Mutational spectrum of the steroid 21-hydroxylase gene in Sweden: Implications for genetic diagnosis and association with disease manifestation. J Clin Endocrinol Metab. 1994;78:1145–52.

47. Unluhizarci K, Kula M, Dundar M, Tanriverdi F, Israel S, Colak R, et al. The relavence of non-classic adrenal hyperplasia among Turkish women with hyperandrogenism. Gynecol Endocrinol. 2010;26:139–43.

48. Ezqueta B, Alonso M, Alvarez E, Arnao DR, Rodriguez A, Siguero PL. Should 21-hydroxylase deficiency genotyping be considered in assisted preproductive technology programs? Fertil Steril. 2007;88:1437–e5.

49. Baumgartner-Parzer S, Vytiska-Binsdorfer E, Kleinline S, Heinze G, Vierhapper H. Unexplained infertility: increased risk for 21-hydroxylase-deficiency in parents and offspring? Eur J Obstet Gynecol Reprod Biol. 2014;182:258–9.

50. Yau M, Khattab A, New MI. Prenatal diagnosis of congenital adrenal hyperplasia. Endocrinol Metab Clin North Am. 2016;45:267–81.

51. Speiser PW. Prenatal and neonatal diagnosis and treatment of Congenital Adrenal Hyperplasia. Horm Res. 2007;68(Suppl 5):90–2.

52. Tardy-Guilodet V, Menassa R, Costa J-M, David M, Bouvattier-Morel C, Baumann C, et al. New management strategy of pregnancies at risk of Congenital Adrenal Hyperplasia using fetal sex determination in maternal serum: French cohort of 258 cases (2002–11). J Clin Endocrinol Metab. 2014;99:1180–8.

53. Miller WL. Fetal endocrine therapy for congenital adrenal hyperplasia should not be done. Best Pract Res Clin Endocrinol Metab. 2015;29:469–83.

54. Simpson JL, Reichtsky S. Prenatal genetic testing and treatment for congenital adrenal hyperplasia. Fertil Steril 2019;111:21–3.

55. Bartha JL, Finning K, Soothill PW. Fetal sex determination from maternal blood at 6 weeks of gestation when at risk for 21-hydroxylase deficiency. Obstet Gynecol. 2003;101:1135–6.

56. Rijnders RJ, van der Schoot CE, Bossers B, de Vroede MA, Christiaens GC. Fetal sex determination from maternal plasma in pregnancies at risk for congenital adrenal hyperplasia. Obstet Gynecol. 2001;98:374–8.

57. Tardy V. Management of pregnancies at risk of 21-hydroxylase or 11-hydroxylase deficiency using fetal sex determination in maternal serum proposed in France since 2002: how to limit prenatal exposure to dexamethasone. Horm Res. 2009;70 (Suppl 3):348.

58. Allen S, Young E, Gerrish A. Noninvasive prenatal diagnosis of monogenic disorders. In: Noninvasive Prenatal Testing (NIPT) applied genomics in prenatal screening and diagnosis, 2018; Editors: Lieve P-C and Klein H-G. https://doi.org/10.1007/B978-0-12-814189-2.00009-8.

59. New MI, Tong YK, Yuen T, Jiang P, Pina C, Chan KCA, et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab. 2014;99:E1022–30.

60. White PC, New MI, Dupont B. Structure of human steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene. Proc Natl Acad Sci USA. 1986;83:2841–5.

61. Pollack MS, Levine LS, O’Neill GJ, Pang S, Lorenzen F, Kohn B, et al. HLA linkage and B14, DR1, Bf haplotype association with the genes for late onset and cryptic 21-hydroxylase deficiency. Am J Hum Genet. 1981;33:540–50.

62. Blanchong CA, Zhou B, Rupert KL, Chung EK, Jones KN, Sotos JF, et al. Deficiencies of human complement component
C4A and C4B and heterozygosity in length variants of RP-C4-CYP21-TNX (RCCX) modules in Caucasians. The load of RCCX genetic diversity on major histocompatibility complex-associated disease. J Exp Med. 2000;191:2183–96.

64. Yang Z, Mendoza AR, Welch TR, Zipf WB, Yu CY. Modular variations of the human major histocompatibility complex class iii genes for serine/threonine kinase rp, complement component c4, steroid 21-hydroxylase CYP21, and tenasin TNX (the RCCX Module). A mechanism for gene deletions and disease associations. J Biol Chem. 1999;274:12147–56.

65. Higashi Y, Tanae A, Inoue H, Hiromasa T, Fujiyama K. Aberrant splicing and missense mutations cause steroid 21-hydroxylase (P450 (C21)) deficiency in humans: possible gene conversion products. Proc Natl Acad Sci USA. 1988;85:7486–90.

66. Sinnott P, Collier S, Costigan C, Dyer PA, Harris R, Strachan T. Genesis by meiotic unequal crossover of a de novo deletion that contributes to steroid hydroxylase deficiency. Proc Natl Acad Sci USA. 1990;87:2107–11.

67. Simonetti L, Bruque CD, Fernández CS, Benavides-Mori B, Delea M, Kolomenski JE, et al. CYP21A2 mutation update: comprehensive analysis of databases and published genetic variants. Hum Mutat. 2018;39:5–22.

68. Concolino P, Costella A. Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency: a comprehensive focus on 233 pathogenic variants of CYP21A2 gene. Mol Diagn Ther. 2018;22:261–80.

69. Baumgartner-Parzer SM, Schulze E, Waldhäusl W, Pauschent-A. Gemeinde, Waldhäusl W. A rare duplicated 21-OH haplotype and a de novo mutation—a family analysis. J Clin Endocrinol Metab. 2003;88:2794–9.

70. Wilson RC, Mercado AB, Cheng KC, New MI. Steroid 21-hydroxylase deficiency: genotype may not predict phenotype. J Clin Endocrinol Metab. 1995;80:2322–9.

71. Nandagopal R, Sinu A, Avila NA, Van Ryzin C, Chen W, Finkelstein GP, et al. Phenotypic profiling of parents with cryptic nonclassic congenital adrenal hyperplasia: findings in 145 unrelated families. Eur J Endocrinol. 2011;164:977–84.

72. Groditskaya E, Kurtser M. The prevalence of non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency in Russian women with hyperandrogenism. Hum Fertil. 2017;3:1–14.

73. Paris F, Tardy V, Chalancon A, Picot MC, Morel Y, Sultan C. Premature pubarche in Mediterranean girls: high prevalence of heterozygous CYP21 mutation carriers. Gynecol Endocrinol. 2010;26:319–24.

74. Kulle AE, Riepe FG, Hedricher J, Sippell WG, Schmitz J, Niermeyer L, et al. LC-MS/MS based determination of basal- and ACTH-stimulated plasma concentrations of 11 steroid hormones: implications for detecting heterozygote CYP21A2 mutation carriers. Eur J Endocrinol. 2015;173:517–24.

75. Ghizzoni L, Cappa M, Vottero A, Ubertini G, Carta D, Di Iorgi N, et al. Relationship of CYP21A2 genotype and serum 17-hydroxyprogesterone and cortisol levels in a large cohort of Italian children with premature pubarche. Eur J Endocrinol. 2011;165:307–14.

76. Skordis N, Shammas C, Phedonas AA, Kyriakou A, Toumba M, Neocleous V, et al. Genetic defects of the CYP21A2 gene in girls with premature adrenarche. J Endocrinol Investig. 2015;38:535–9.

77. L’Allemand D, Tardy V, Grütters A, Schnabel D, Krude H, Morel Y. How a patient homozygous for a 30-kb deletion of the C4-CYP 21 genomic region can have a nonclassic form of 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2000;85:4562–7.

78. Zhang H, Yang J, Zhang M, Zhang W, Liut J, Wang W, et al. Variations in the promoter of CYP21A2 gene identified in a Chinese patient with simple virilizing form of 21-hydroxylase deficiency. Clin Endocrinol. 2009;70:201–7.

79. Araró JS, Billerbeck AEC, Madureira G, Mendonca BB, Bachega TASS. Substitutions in the CYP21A2 promoter explain the simple virilizing form of 21-hydroxylase deficiency in patients harbouring a P30L mutation. Clin Endocrinol. 2005;62:132–6.

80. Chang SF, Chung B. Difference in transcriptional activity of two homologous CYP21A genes. Mol Endocrinol. 1995;9:10:1330–6.

81. Chin KK, Chang SF. The -104G nucleotide of the human CYP21 gene is important for CYP21 transcription activity and protein interaction. Nucl Acids Res. 1998;268:1959–64.

82. Concolino P, Mello E, Minucci A, Giardina E, Zappi C, Toscano V, et al. A new CYP21A1P/CYP21A2 chimeric gene identified in an Italian woman suffering from classical congenital adrenal hyperplasia form. BMC Med Genet. 2009;10:72–7.

83. Tusić-Luna MT, White PC. Gene conversions and unequal crossovers between CYP21 (steroid 21-hydroxylase gene) and CYP21P involve different mechanisms. Proc Natl Acad Sci USA. 1995;92:10796–800.

84. Lee HH. The chimeric CYP21P/CYP21 gene and 21-hydroxylase deficiency. J Hum Genet. 2004;49:65–72.

85. Koppens PF, Smeets JH, de Wijs IJ, Degenhart JH. Mapping of a de novo unequal crossover causing a deletion of the steroid 21-hydroxylase (CYP1A2) gene and a non-functional hybrid tenasin-X (TNXB) gene. J Med Genet. 2003;40:e53.

86. Morel Y, Murena M, Nicolino M, Forest MG. Molecular genetics of the congenital adrenal hyperplasia due to 21-hydroxylase deficiency. In: Saez JM, Brownie AC, Capponi A, Chambaz EM, editors. Cellular and molecular biology of the adrenal cortex. 1992;222:123–36.

87. Wedell A, Luthman H. Steroid 21-hydroxylase (450c21): a new deficiency in humans: possible gene variations of the human major histocompatibility complex class iii genes. Hum Genet. 1993;91:236–40.

88. Greene CN, Cordovado SK, Turner DP, Keong LM, Shulman D, Mueller PW. Novel method to characterize CYP21A2 in Florida patients with congenital adrenal hyperplasia and commercially available cell lines. Mol Genet Metab Rep. 2014;1:312–23.

89. Schulze E, Bettendorf M, Maser-Fluth C, Decker M, Schwabe U. Allele-dropout using pcr-based diagnosis for the splicing mutation in intron-2 of the CYP21B1 gene: successful amplification with a TAQ/PWO-polymerase mixture. Endocr Res. 1999;24:637–41.

90. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30:e57.

91. Concolino P, Mello E, Toscano V, Ameglio F, Zappi C, Capoluongo E. Multiplex ligation-dependent probe amplification (MLPA) assay for the detection of CYP21A2 gene deletions/duplications in Congenital Adrenal Hyperplasia: first technical report. Clin Chim Acta. 2009;402:164–70.

92. Riepe FG, Sippell W. Recent advances in diagnosis, treatment, and outcome of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Rev Endocr Metab Disord. 2007;8:349–63.

93. Wedell A, Stengler B, Luthman H. Characterization of mutations on the rare duplicated C4/CYP21 haplotype in steroid 21-hydroxylase deficiency. Hum Genet. 1994;94:50–4.
95. Kleinele S, Lang R, Fischer GF, Vierhapper H, Waldhauser F, Födinger M, et al. Duplications of the functional CYP21A2 gene are primarily restricted to Q318X alleles: evidence for a founder effect. J Clin Endocrinol Metab. 2009;94:3954–8.
96. Gurgov S, Bernabé KJ, Stites J, Cunniff CM, Lin-Su K, Felsen D, et al. Linking the degree of virilization in females with congenital adrenal hyperplasia to genotype. Ann NY Acad Sci. 2017;1402:56–63.
97. Patel RY, Shah N, Jackson AR, Ghosh R, Pawlczek P, Paitthakar S, et al. ClinGen Pathogenicity Calculator: a configurable system for assessing pathogenicity of genetic variants. Genome Med. 2017;9:3.
98. Richards S, Aziz N, Bale S, Bick D, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
99. Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med. 2008;10:294–300.
100. Plon SE, Eccles DM, Easton D, Foulkes WD, Genuardi M, EMQN best practice guidelines for molecular genetic testing and reporting of 21-hydroxylase deficiency. Europ J Endocrinol. 2003;149/2:137–41.
101. Tardy VT, Morel Y. Gene symbol: CYP21A2. Hum Genet. 2000;107:182–4.
102. Usui T, Nishisho K, Kaji M, Ikuno N, Yorifuji T, Yasuda T, et al. A novel frameshift mutation in the CYP21A2 gene causing salt-wasting congenital adrenal hyperplasia in a compound heterozygous girl. J Endocrinol Invest. 2007;30/9:806–7.
103. Lau IF, Soardi FC, Lemos-Marini SH, Guerra G Jr, Baptista MT, De Mello MP. H284C insertion in the CYP21 gene: a novel frameshift mutation in a Brazilian patient with the classical form of 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2001;86/12:5877–80.
104. Lajic S, Nikoshkov A, Holst M, Wedell A. Effects of missense mutations and deletions on membrane anchoring and enzyme function of human steroid 21-hydroxylase (P450c21). Biochem Biophys Res Commun. 1999;257/2:384–90.
105. Vrzalová Z, Hrubá Z, Stáhllová Hrabincová E, Pouchlá M, Votruba F, Kolousková S, et al. Identification of CYP21A2 mutant alleles in Czech patients with 21-hydroxylase deficiency. Int J Mol Med. 2010;26/4:595–603.
106. Milacic I, Barac M, Milenkovic T, Ugrin M, Klaassen K, Skakic S, et al. Molecular genetic study of congenital adrenal hyperplasia in Serbia: novel p.Leu129Pro and p.Ser165Pro CYP21A2 gene mutations. J Endocrinol Invest. 2015;38/11:1199–210.
107. Wang R, Yu Y, Ye J, Han L, Qiu W, Zhang H, et al. 21-hydroxylase deficiency-induced congenital adrenal hyperplasia in 230 Chinese patients: Genotype-phenotype correlation and identification of nine novel mutations. Steroids. 2016;108:47–55.
108. Finkelstein GP, Chen W, Mehta SP, Fujimura FK, Hanna RM, Van Ryzin C, et al. Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2011;96/1: E161–72.
109. Barbaro M, Soardi FC, Östberg LJ, Persson B, de Mello MP, Wedell A, et al. In vitro functional studies of rare CYP21A2 mutations and establishment of an activity gradient for non-classic mutations improve phenotype predictions in congenital adrenal hyperplasia. Clin Endocrinol (Oxf). 2015;82/1:137–44.
110. Lajic S, Tardy V. Gene symbol: CYP21A2. Disease: steroid 21-hydroxylase deficiency. Hum Genet. 2006;119/3:363.
111. Marino R, Ramirez P, Galeano J, Perez Garrido N, Rocco C, Ciacco M, et al. Steroid 21-hydroxylase gene mutational spectrum in 454 Argentinian patients: genotype-phenotype correlation in a large cohort of patients with congenital adrenal hyperplasia. Clin Endocrinol (Oxf). 2011;75/4:427–35.
112. Zeng X, Witchel SF, Dobrowolski SF, Moulder PV, Jarvik JW, Telmer CA. Detection and assignment of CYP21 mutations using peptide mass signature genotyping. Mol Genet Metab. 2004;82/1:38–47.
113. Brønstad I, Breivik L, Methlie P, Wolff AS, Bratland E, Nermoen I, et al. Functional studies of novel CYP21A2 mutations detected in Norwegian patients with congenital adrenal hyperplasia. Endocr Connect. 2014;3/2:67–74.
114. Loidi L, Quinteiro C, Parajes S, Barreiro J, Lestón DG, Cabezas-Agicola JM, et al. High variability in CYP21A2 mutated alleles

SPRINGER NATURE
in Spanish 21-hydroxylase deficiency patients, six novel mutations and a founder effect. Clin Endocrinol (Oxf). 2006;64:330–6.

127. Tardy VT, Morel Y. Gene symbol: CYP21A2. Hum Genet. 2007;121/2:293–4.

128. Concolino P, Minucci A, Mello E, Zuppi C, Capoluongo E. A new CYP21A2 nonsense mutation causing severe 21-hydroxylase deficiency. Clin Chem Lab Med. 2009;47/7:824–5.

129. Soardi FC, Barbaro M, Lau IF, Lemos-Marini SH, Baptista MT, Guerra-Junior G, et al. Inhibition of CYP21A2 enzyme activity caused by novel missense mutations identified in Brazilian and Scandinavian patients. J Clin Endocrinol Metab. 2008;93/6:2416–20.

130. Menassa R, Tardy V, Despert F, Bouvattier-Morel C, Brossier JP, Cartigny M, et al. p.H62L, a rare mutation of the CYP21 gene identified in two forms of 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2008;93/5:1901–8.

131. Ohlsson G, Müller J, Skakkebaek NE, Schwartz M. Steroid 21-hydroxylase deficiency: mutational spectrum in Denmark, three novel mutations, and in vitro expression analysis. Hum Mutat. 1999;13/6:482–6.

132. Dubey S, Idicula-Thomas S, Anwaruddin M, Saravanan C, Varma RR, Maitra A. A novel 9-bp insertion detected in steroid 21-hydroxylase gene (CYP21A2): prediction of its structural and functional implications by computational methods. J Biomed Sci. 2009;16:3.

133. Nunez BS, Lobato MN, White PC, Meseguer A. Functional analysis of four CYP21 mutations from Spanish patients with congenital adrenal hyperplasia. Biochem Biophys Res Commun. 1999;262/3:635–7.

134. Krone N, Riepe FG, Grötzinger J, Partsch CJ, Sippell WG. Gene symbol: CYP21A2. Hum Genet. 2002;87/9:4313–20.

135. Balraj P, Lim PG, Sidek H, Wu LL, Khoo AS. Mutational characterization of congenital adrenal hyperplasia due to 21-hydroxylase deficiency: Identiﬁcation of steroid 21-hydroxylase deficiency mutations in a Chinese Han patient with nonclassic 21-hydroxylase deficiency. Eur J Endocrinol. 2014;80/6:927–32.

136. Lee HH, Chang SF. Multiple transcripts of the CYP21 gene are caused by novel missense mutations identified in Brazilian and Portuguese patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2005;90/1:445–54.

137. Taboas M, Gómez Acuña L, Scaia MF, Brueque CD, Buzzalino N, Stivel M, et al. Structure-based analysis of four novel disease-causing mutations in 21-hydroxylase-deficient patients. PLoS ONE. 2014;9/3:e92181.

138. Minuto C, Nadra AD, Fernández C, Taboas M, Buzzalino N, Casali B, et al. Structure-based analysis of five novel disease-causing mutations in 21-hydroxylase-deficient patients. PLoS ONE. 2011;6/1:e15899.

139. Barbaro M, Soardi FC, de Mello MP, Weddell A, Lajic S. Functional studies of CYP21A2 mutants complement structural and clinical predictions of disease severity in CAH. Clin Endocrinol (Oxf). 2012;76/5:766–8.

140. Nermoen I, Brønstad I, Fougner KJ, Svartberg J, Øksnes M, Husebye ES, et al. Genetic, anthropometric and metabolic features of adult Norwegian patients with 21-hydroxylase deficiency. Eur J Endocrinol. 2012;167/4:507–16.

141. Krone N, Roscher AA, Schwarz HP, Braun A. Comprehensive analytical strategy for mutation screening in 21-hydroxylase deficiency. Clin Chem. 1998;44/10:2075–82.

142. Wedell A, Ritzén EM, Haglund-Stengler B, Luthman H. Steroid 21-hydroxylase deficiency: three additional mutated alleles and establishment of phenotype-genotype relationships of common mutations. Proc Natl Acad Sci U S A. 1992;89/15:7232–6.

143. White PC, Vittek A, Dupont B, New MI. Characterization of frequent deletions causing steroid 21-hydroxylase deficiency. Proc Natl Acad Sci U S A. 1988;85(12):4436–40.

144. Haider S, Islam B, D’Atri V, Sgobba M, Poojari C, Sun L, et al. Structure-phenotype correlations of human CYP21A2 mutations in congenital adrenal hyperplasia. Proc Natl Acad Sci USA. 2013;110/7:2605–10.

145. Concolino P, Venditelli F, Mello E, Carelli Alinovi C, Minucci A, Carrozza C, et al. Two novel CYP21A2 missense mutations in Italian patients with 21-hydroxylase deficiency: Identiﬁcation and functional characterisation. IUBMB Life. 2009;61/3:229–35.

146. Riepe FG, Hiort O, Grötzinger J, Sippell WG, Krone N, Holterhus PM. Functional and structural consequences of a novel point mutation in the CYP21A2 gene causing congenital adrenal hyperplasia: potential relevance of helix C for P450 oxidoreductase-21-hydroxylase interaction. J Clin Endocrinol Metab. 2008;93/7:2891–5.

147. Massimi A, Malaponti M, Federici L, Vinciguerra D, Manca Bitti ML, Vettero A, et al. Functional and structural analysis of four novel mutations of CYP21A2 gene in Italian patients with 21-hydroxylase deficiency. Horm Metab Res. 2014;46/7:515–20.

148. Krone N, Rose IT, Willis DS, Hodson J, Wild SH, Doherty EJ, et al. Genotype-phenotype correlation in 153 adult patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: analysis of the United Kingdom Congenital adrenal Hyperplasia Adult Study Executive (CaHASE) cohort. J Clin Endocrinol Metab. 2013;98/2:E346–54.

149. Taboas M, Gómez Acuña L, Scaia MF, Brueque CD, Buzzalino N, Stivel M, et al. Functional studies of p.R132C, p.R149C, p.R154C, p.H62L and p.I783P novel mutations in Italian patients with 21-hydroxylase deficiency. Proc Natl Acad Sci USA. 2004;101/26:9629–34.

150. Minuto C, Nadra AD, Fernández C, Taboas M, Buzzalino N, Casali B, et al. Structure-based analysis of five novel disease-causing mutations in 21-hydroxylase-deficient patients. PLoS ONE. 2011;6/1:e15899.

151. Barbaro M, Soardi FC, de Mello MP, Weddell A, Lajic S. Functional studies of CYP21A2 mutants complement structural and clinical predictions of disease severity in CAH. Clin Endocrinol (Oxf). 2012;76/5:766–8.

152. Mermoon I, Bronstad I, Fouger Kn, Svartholm J, Øksnes M, Husebye ES, et al. Genetic, anthropometric and metabolic features of adult Norwegian patients with 21-hydroxylase deficiency. Eur J Endocrinol. 2012;167/4:507–16.

153. Raisingani M, Contreras MF, Prasad K, Pappas JG, Kluge ML, Shah B, et al. Unusual phenotype of congenital adrenal hyperplasia (CAH) with a novel mutation of the CYP21A2 gene. J Pediatr Endocrinol Metab. 2016;29/7:867–71.

154. Chu X, Ding H, Cui G, Xu Y, Wang DW, He Y. Functional consequences of a novel point mutation in the CYP21A2 gene identified in a Chinese Han patient with nonclassic 21-hydroxylase deficiency. Clin Endocrinol (Oxf). 2014;80/6:927–8.

155. Janner M, Pandey AV, Mullis PE, Fluck CE. Clinical and biochemical description of a novel CYP21A2 gene mutation 962_963insA using a new 3D model for the P450c21 protein. Bioorg Med Chem. 2011;19/21:6413–7.

156. Chung H, Park HD, Choi R, Jhi DK, Kim JH, Ki CS, et al. CYP21A2 mutation in Korean patients with congenital adrenal hyperplasia using complementary methods: sequencing after long-range PCR and restriction fragment length polymorphism analysis with multiple ligation-dependent probe amplification assay. Ann Lab Med. 2015;35/5:535–9.

157. Robins T, Bellanne-Chantelot C, Barbaro M, Cabrol S, Weddell A, Lajic S. Characterization of novel missense mutations in
CYP21 causing congenital adrenal hyperplasia. J Mol Med (Berl). 2007;85(3):247–55.

158. Tardy V, Menassa R, Sulmont V, Lienhardt-Roussie A, Lecointre C, Brauner R, et al. Phenotype-genotype correlations of 13 rare CYP21A2 mutations detected in 46 patients affected with 21-hydroxylase deficiency and in one carrier. J Clin Endocrinol Metab. 2010;95(3):1288–1300.

159. Grischuk Y, Rubtsov P, Riepe FG, Grötzing J, Beljelarkaia S, Prassolov V, et al. Four novel missense mutations in the CYP21A2 gene detected in Russian patients suffering from the classical form of congenital adrenal hyperplasia: identification, functional characterization, and structural analysis. J Clin Endocrinol Metab. 2006;91(12):4976–80.

160. Witchel SF, Smith R, Suda-Hartman M. Identification of CYP21 mutations, one novel, by single strand conformational polymorphism (SSCP) analysis. Mutations in brief no. 218. Online. Hum Mutat. 1999;13/2:172.

161. Barbaro M, Baldazzi L, Balsamo A, Lajic S, Robins T, Barp L, et al. Functional studies of two novel and two rare mutations in the 21-hydroxylase gene. J Mol Med (Berl). 2006;84/6:521–8.

162. Amor M, Parker KL, Globerman H, New MI, White PC. Mutation in the CYP21B1 gene (Ile-172–>Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci U S A. 1988;85/5:1600–4.

163. Concolino P, Rizza R, Costella A, Carrozza C, Zuppi C, Capoluongo E. CYP21A2 intronic variants causing 21-hydroxylase deficiency. Metabolism. 2017;71:46–51.

164. Stükelbroeck NM, Hoefsloot LH, de Wijs IJ, Otten BJ, Hermus AR, Siermans EA. CYP21 gene mutation analysis in 198 patients with 21-hydroxylase deficiency in The Netherlands: six novel mutations and a specific cluster of four mutations. J Clin Endocrinol Metab. 2003;88/8:3852–9.

165. Khajuria R, Walia R, Bhansali A, Prasad R. The spectrum of CYP21A2 mutations in Congenital Adrenal Hyperplasia in an Indian cohort. Clin Chim Acta. 2017;464:189–94.

166. Higashi Y, Fuji-Kuriyama Y. Functional analysis of mutant P450(C21) genes in COS cell expression system. Methods Enzymol. 1991;206:166–73.

167. Concolino P, Mello E, Patrosso MC, Penco S, Zuppi C, Capoluongo E. CYP21A2 p.E238 deletion as result of multiple microconversion events: a genetic study on an Italian congenital adrenal hyperplasia (CAH) family. Diagn Mol Pathol. 2013;22/1:48–51.

168. Wu DA, Chung BC. Mutations of P450c21 (steroid 21-hydroxylase) at Cys428, Val281, and Ser268 result in complete, partial or no loss of enzymatic activity, respectively. J Clin Invest. 2002;110/3:549–56.

169. Ezquieta B, Cueva E, Oyarzábal M, Oliver A, Varela JM, Jariego C. Gene conversion (655G splicing mutation) and the founder effect (Gln318Stop) contribute to the most frequent severe point mutations in congenital adrenal hyperplasia (21-hydroxylase deficiency) in the Spanish population. Clin Genet. 2002;62/2:181–8.

170. Falhammer H, Thorén M, Hagenfeldt K. A 31-year-old woman with infertility and polycystic ovaries diagnosed with non-classic congenital adrenal hyperplasia due to anovel CYP21 mutation. J Endocrinol Invest. 2008;31/2:176–80.

171. Bleicken C, Loidi L, Dhir V, Parajes S, Quinteiro C, Dominguez F, et al. Functional characterization of three CYP21A2 sequence variants (p.A265V, p.W302S, p.D322G) employing a yeast coexpression system. Hum Mutat. 2009;30/2:E443–50.

172. Asanuma A, Ohura T, Ogawa E, Sato S, Igarashi Y, Matsubara Y, et al. Molecular analysis of Japanese patients with steroid 21-hydroxylase deficiency. J Hum Genet. 1999;44/5:312–7.

173. Wu DA, Chung BC. Mutations of P450c21 (steroid 21-hydroxylase) at Cys428, Val281, and Ser268 result in complete, partial or no loss of enzymatic activity, respectively. J Clin Invest. 1991;88/2:519–23.

174. Carvalho DF, Miranda MC, Gomes LG, Madureira G, Marques JA, Billerbeck AE, et al. Molecular CYP21 diagnosis in Brazilian patients affected by steroid 21-hydroxylase deficiency. Hum Mutat. 1995;5/2:126–30.

175. Asanuma A, Ohura T, Ogawa E, Sato S, Igarashi Y, Matsubara Y, et al. Molecular analysis of Japanese patients with steroid 21-hydroxylase deficiency. Clin Chim Acta. 2002:19/8:892–9.

176. de Carvalho DF, Miranda MC, Gomes LG, Madureira G, Marques JA, Billerbeck AE, et al. Molecular CYP21A2 diagnosis in 480 Brazilian patients with congenital adrenal hyperplasia before newborn screening introduction. Eur J Endocrinol. 2016;175/2:107–16.

177. Bleicken C, Loidi L, Dhir V, Parajes S, Quinteiro C, Dominguez F, et al. Functional characterization of three CYP21A2 sequence variants (p.A265V, p.W302S, p.D322G) employing a yeast coexpression system. Hum Mutat. 2009;30/2:E443–50. https://doi.org/10.1002/humu.20926.

178. Levo A, Partanen J. Novel nonsense mutation (W302X) in the steroid 21-hydroxylase gene of a Finnish patient with the salt-wasting form of congenital adrenal hyperplasia. Hum Mutat. 1997;9/4:363–5.

179. Lajic S, Clauin S, Robins T, Vexiau P, Blanché H, Bellanne-Chantelot C, et al. Novel mutations in CYP21 detected in individuals with hyperandrogenism. J Clin Endocrinol Metab. 2002;87/6:2824–9.
190. Wedell A, Luthman H. Steroid 21-hydroxylase deficiency: two additional mutations in salt-wasting disease and rapid screening of disease-causing mutations. Hum Mol Genet. 1993;2:5:499–504.

191. Ordoñez-Sánchez ML, Ramírez-Jiménez S, López-Gutierrez AU, Riba L, Gamboa-Cardiel S, Cerrillo-Hinojosa M, et al. Molecular genetic analysis of patients carrying steroid 21-hydroxylase deficiency in the Mexican population: identification of possible new mutations and high prevalence of apparent germ-line mutations. Hum Genet. 1998;102/2:170–7.

192. Dolzan V, Sólyom J, Fekete G, Kovács J, Rakosnikova V, Votava F, et al. Mutational spectrum of steroid 21-hydroxylase and the genotype-phenotype association in Middle European patients with congenital adrenal hyperplasia. Eur J Endocrinol. 2005;153/1:99–106.

193. Lee HH, Chao HT, Lee YJ, Shu SG, Chao MC, Kuo JM, et al. Identification of four novel mutations in the CYP21 gene in congenital adrenal hyperplasia in the Chinese. Hum Genet. 1998;103/3:304–10.

194. Deneux C, Tardy V, Dib A, Mornet E, Billaud L, Charron D, et al. Phenotype-genotype correlation in 56 women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2001;86/1:207–13.

195. Bojunga J, Welsch C, Antes I, Albrecht M, Lengauer T, Zeuzem S. Structural and functional analysis of a novel mutation of CYP21B in a heterozygote carrier of 21-hydroxylase deficiency. Hum Genet. 2005;117/6:558–64.

196. Globerman H, Amor M, Parker KL, New MI, White PC. Nonsense mutation causing steroid 21-hydroxylase deficiency. J Clin Invest. 1988;82/1:139–44.

197. Bernal González C, Fernández Salas C, Martínez S, Ezquieta Zubicaray B. [Premature androgenetic alopecia in adult male]. J Mol Med (Berl). 2005;83/11:7561–6.

198. Billerbeck AE, Bachega TA, Frazetto ET, Nishi MY, Goldberg AC, Marin ML, et al. A novel missense mutation, GLY424SER, in Brazilian patients with 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1999;84/8:2870–2.

199. Baumgartner-Parzer SM, Schulze E, Waldhäusl W, Pauschenwein S, Rondot S, Nowotny P, et al. Mutational spectrum of the 21-hydroxylase gene in Austria: identification of a novel missense mutation. J Clin Endocrinol Metab. 2001;86/10:4771–5.

200. Lajic S, Levo A, Nikoshkov A, Lundberg Y, Partanen J, Wedell A. A cluster of missense mutations at Arg356 of human steroid 21-hydroxylase may impair redox partner interaction. Hum Genet. 1997;99/6:704–9.

201. Menabò S, Balsamo A, Baldazzi L, Barbaro M, Nicoletti A, Conti V, et al. A sequence variation in 3’UTR of CYP21A2 gene correlates with a mild form of congenital adrenal hyperplasia. J Endocrinol Invest. 2012;35/3:298–305.

202. Levo A, Partanen J. Novel mutations in the human CYP21 gene. Prenat Diagn. 2001;21/10:885–9.

203. Kirby-Keyser L, Porter CC, Donohoue PA. E380D: a novel point mutation of CYP21 in an HLA-homozygous patient with salt-losing congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum Mutat. 1997;9/2:181–2.

204. Wasmierska M, Mirabelli S, Baldazzi L, Salzano G, Messina MF, Lombardo F, et al. Novel mutation of CYP21A2 gene (N387K) affecting a non-conserved amino acid residue in exon 9. J Endocrinol Invest. 2009;32/7:633.

205. Baradanar-Heravi A, Vakili R, Robins T, Carlsson J, Ghaemi N, ‘Arabi A, et al. Three novel CYP21A2 mutations and their protein modelling in patients with classical 21-hydroxylase deficiency from northeastern Iran. Clin Endocrinol (Oxf). 2007;67/3:335–41.

206. Katsumata N, Shinagawa T, Horikawa R, Fujikura K. Novel intronic CYP21A2 mutation in a Japanese patient with classic salt-wasting steroid 21-hydroxylase deficiency. Metabolism. 2010;59/11:1628–32.

207. Yang J, Huang X, Wang Y, Yang P, Li J, et al. Molecular characterization of 25 Chinese pedigrees with 21-hydroxylase deficiency. Genet Test Mol Biomarkers. 2011;15(Mar):137–42. https://doi.org/10.1089/gtmb.2010.0131.

208. Millerbeck AE, Bachega TA, Frazetto ET, Nishi MY, Goldberg AC, Marin ML, et al. A novel missense mutation, GLY424SER, in Brazilian patients with 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1999;84/8:2870–2.

209. Baumgartner-Parzer SM, Schulze E, Waldhäusl W, Pauschenwein S, Rondot S, Nowotny P, et al. Mutational spectrum of the 21-hydroxylase gene in Austria: identification of a novel missense mutation. J Clin Endocrinol Metab. 2001;86/10:4771–5.

210. Dain L, Minutolo C, Buzzalino N, Belli S, Oneto A, Charreau E, et al. Gene symbol: CYP21A2. Disease: adrenal hyperplasia. CYP 21. Hum Genet. 2006;119/3:363.

211. Carvalho B, Pereira M, Marques CJ, Carvalho D, Leão M, Oliveira JP, et al. Comprehensive genetic analysis and structural characterization of CYP21A2 mutations in CAH patients. Exp Clin Endocrinol Diabetes. 2012;120/9:535–9.

212. Owerbach D, Sherman L, Ballard AL, Aziz R, Pro–453 to Ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency. Mol Endocrinol. 1992:6/8:1211–5.

213. Wang H, Jiang L, Wang PP, Zhou HB, Wang JL, Song LL. [Mutation analysis in families with 21-hydroxylase deficiency]. Zhonghua Yi Xue Chuan Xue Za Zhi. 2007;24/6:681–4.

214. Ordoñez-Sánchez ML, Ramírez-Jiménez S, López-Gutierrez AU, Riba L, Gamboa-Cardiel S, Cerrillo-Hinojosa M, et al. Molecular genetic analysis of patients carrying steroid 21-hydroxylase deficiency in the Mexican population: identification of possible new mutations and high prevalence of apparent germ-line mutations. Hum Genet. 1998;102/2:170–7.

215. Di Pasquale G, Wasmierska M, Caruso M, Salzano G, Coco M, Lombardo F, et al. Salt wasting phenotype in a compound heterozygous girl with P458S mutation associated with a novel mutation of CYP21 gene (Q481P). J Endocrinol Invest. 2005;28/11:1038–9.

216. Barbaro M, Lajic S, Baldazzi L, Balsamo A, Pirazzoli P, Cicognani A, et al. Functional analysis of two recurrent amino acid substitutions in the CYP21 gene from Italian patients with
congenital adrenal hyperplasia. J Clin Endocrinol Metab. 2004;89/5:2402–7.

222. Wedell A, Luthman H. Steroid 21-hydroxylase (P450c21): a new allele and spread of mutations through the pseudogene. Hum Genet. 1993;91/3:236–40.

223. White PC, Tusie-Luna MT, New MI, Speiser PW. Mutations in steroid 21-hydroxylase (CYP21). Hum Mutat. 1994;3/4:373–8.

224. Neocleous V, Fanis P, Toumba M, Phedonos AAP, Picolos M, Andreou E, et al. Variations in the 3′UTR of the CYP21A2 Gene in Heterozygous Females with Hyperandrogenaemia. Int J Endocrinol. 2017; https://doi.org/10.1155/2017/8984365.

225. Falhammar H, Nyström HF, Ekström U, Granberg S, Wedell A, Thorén M. Fertility, sexuality and testicular adrenal rest tumors in adult males with congenital adrenal hyperplasia. Eur J Endocrinol. 2012;166:441–9.

226. Yu MK, Jung MK, Kim KE, Kwon AR, Chae HW, Kim DH, et al. Clinical manifestations of testicular adrenal rest tumor in males with congenital adrenal hyperplasia. Ann Pediatr Endocrinol Metab. 2015;20:155–61.

227. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46: D754–61.