On the degree distribution of a growing network model

Linda Farczadi
University of Waterloo
lindafarczadi@gmail.com

Nicholas Wormald*
Monash University
nick.wormald@monash.edu

Abstract

In this note we make some specific observations on the distribution of the degree of a given vertex in certain models of randomly growing networks. The rule for network growth is the following. Starting with an initial graph of minimum degree at least \(k \), new vertices are added one by one. Each new vertex \(v \) first chooses a random vertex \(w \) to join to, where the probability of choosing \(w \) is proportional to its degree. Then \(k \) edges are added from \(v \) to randomly chosen neighbours of \(w \).

1 Introduction

In this note we make some specific observations on the distribution of the degree of a given vertex in certain models of randomly growing networks. Fix an integer \(k \geq 2 \). We start with a seed graph \(G^1_k \) consisting of one vertex \(v_1 \) with \(k \) loops. For \(t \geq 2 \) given \(G_{t-1}^k \) we obtain \(G_t^k \) as follows:

- we add a new vertex \(v_t \) which connects first to an existing vertex \(v_i \) chosen by preferential attachment and then to \(k-1 \) neighbours of \(v_i \) chosen uniformly at random.

We let \(V_t \) and \(E_t \) denote the vertex set and edge set of \(G_t^k \). Note that \(|V_t| = t \) and \(|E_t| = kt \). We denote by \(d_t(v_i) \) the degree of vertex \(v_i \) in \(G_t^k \). We define \(N_t(v_i) \) to be the set of neighbours of vertex \(v_i \) in \(G_t^k \).

We begin with a simple derivation of the expected value of \(d_t(v_i) \) in Section 2.1, then describe some closely related existing results, and apply them to get a more precise description of the distribution of \(d_t(v_i) \) in Section 2.4.

It is straightforward to modify our results for any given initial seed graph.

2 Degree distribution

2.1 Expected degree of a given vertex

Fix vertex \(v_i \). We want to study \(d_n(v_i) \), the degree of vertex \(i \) at the \(n^{th} \) step in the process. For \(t \geq i \) we have

\[
\Pr(v_{t+1} \text{ connects to } v_i | d_t(v_i)) = \frac{d_t(v_i)}{2|E_t|} + \sum_{v_j \in N_t(v_i)} \frac{d_t(v_j)}{2|E_t|} \frac{k}{d_t(v_j)} = \frac{d_t(v_i)}{2kt} + d_t(v_i) \left(\frac{k-1}{2kt} \right) = \frac{d_t(v_i)^2}{2t}.
\]

Taking expectations of both sides gives

\[
\Pr(v_{t+1} \text{ connects to } v_i) = \frac{E[d_t(v_i)]}{2t}.
\]

*Supported by an ARC Australian Laureate Fellowship. Research supported partly by NSERC
We then have
\[\mathbf{E}[d_{t+1}(v_i)] = \mathbf{E}[d_t(v_i)] + \mathbf{P}(v_{t+1} \text{ connects to } v_i) \]
\[= \mathbf{E}[d_t(v_i)] + \frac{\mathbf{E}[d_t(v_i)]}{2t} \]
\[= \left(1 + \frac{1}{2t}\right) \mathbf{E}[d_t(v_i)]. \]

Since each vertex has degree \(k\) when it joins the graph we have \(\mathbf{E}[d_i(v_i)] = k\). We obtain for \(1 \leq i \leq n\)
\[\mathbf{E}[d_n(v_i)] = k \prod_{t=i}^{n-1} \left(1 + \frac{1}{2t}\right) \]
\[= k\Gamma(i)\Gamma(n + 1/2) / \Gamma(n)\Gamma(i + n/2) \]
\[= k\sqrt{n/i} (1 + O(1/i)). \]

2.2 LCD model of Bollobás and Riordan

The LCD model of Bollobás and Riordan can be described as follows: start with \(G_1^1\) the graph with one vertex and one loop; for \(t \geq 2\) given \(G_{t-1}^1\) obtain \(G_t^1\) by adding one vertex \(v_t\) and one edge connecting \(v_t\) to an existing vertex \(v_i\) chosen randomly with probability given by
\[\mathbf{P}(v_i = s) = \begin{cases} \frac{d_{t-1}(s)}{2t-1} & \text{if } 1 \leq s \leq t-1 \\ \frac{1}{2t-1} & \text{if } s = t \end{cases} \]

Then for a given parameter \(k > 1\) obtain \(G_k^n\) by first constructing \(G_1^{kn}\) on vertices \(v'_1, v'_2, \ldots, v'_k\) using the process described above. Then identify vertices \(v'_1, \ldots, v'_k\) to form vertex \(v_1\) of \(G_k^n\), vertices \(v'_{k+1}, \ldots, v'_{2k}\) to form vertex \(v_2\), and so on.

We observe that both the \(k\)-neighbour model and the Bollobás-Riordan model satisfy the following condition
\[\mathbf{P}(v_{t+1} \text{ connects to } v_i | d_t(v_i)) = \frac{d_t(v_i)}{\sum_{j=1}^{k} d_t(v_j)}. \]

This is known as the Barabási-Albert (BA) description. Hence the degree of a given vertex has the same distribution in both models. In particular the following result concerning the degree sequence of Bollobás and Riordan [BRSa01, BR03] applies to the \(k\)-neighbour model as well.

Theorem 1. Let \(N_n(d)\) be the number of vertices of degree \(d\) in \(G_k^n\) and define
\[\alpha(k, d) = \frac{2k(k + 1)}{d(d + 1)(d + 2)}. \]

Then for a fixed \(\epsilon > 0\) and \(0 \leq d \leq n^{1/15}\) the following holds with high probability
\[(1 - \epsilon)\alpha(k, d) \leq N_n(d) \leq (1 + \epsilon)\alpha(k, d). \]

2.3 General preferential attachment models of Ostroumova et al.

We can obtain results about the \(k\) neighbour model by observing that it belongs to a certain class of general preferential attachment models. Specifically Ostroumova et al. [ORS12] define the PA-class by considering all random graph models \(G_k^n\) that fit the following description:

- \(G_k^n\) is a graph with \(n\) vertices and \(kn\) edges obtained from the following random graph process: start at time \(n_0\) with an arbitrary seed graph \(G_{k}^0\) with \(n_0\) vertices and \(kn_0\) edges; at time \(t\) obtain the graph \(G_t^k\) from \(G_{t-1}^k\) by adding a new vertex and \(k\) edges connecting this vertex to some \(k\) vertices of \(G_{t-1}^k\).
Then G^t_k belongs to the class PA-class if it satisfies the following conditions for some constants A and B:

\[
P \left(d_{t+1}(v_i) = d_t(v_i)|G^t_k \right) = 1 - A \frac{d_t(v_i)}{n} - B \frac{1}{n} + O \left(\frac{(d_t(v_i))^2}{n^2} \right)
\]

(1)

\[
P \left(d_{t+1}(v_i) = d_t(v_i) + 1|G^t_k \right) = A \frac{d_t(v_i)}{n} + B \frac{1}{n} + O \left(\frac{(d_t(v_i))^2}{n^2} \right)
\]

(2)

\[
P \left(d_{t+1}(v_i) = d_t(v_i) + j|G^t_k \right) = O \left(\frac{(d_t(v_i))^2}{n^2} \right) \quad 2 \leq j \leq k
\]

(3)

\[
P \left(d_{t+1}(v_i) = k + j|G^t_k \right) = O \left(\frac{1}{n} \right) \quad 1 \leq j \leq k
\]

(4)

Then we can observe that our model belongs to this PA-class with parameters $A = 1/2$ and $B = 0$. Then the following two results from [ORS12] apply to our model.

Theorem 2. Let $N_n(d)$ be the number of vertices of degree d in G^t_k and $\theta(x)$ be an arbitrary function such that $|\theta(x)| < X$. There exists a constant $C > 0$ such that for any $d \geq k$ we have

\[
E \left[N_n(d) \right] = \alpha(k, d) \left(n + \theta(Cd^4) \right)
\]

where

\[
\alpha(k, d) = \frac{2k(k+1)}{d(d+1)(d+2)} \sim 2k(k+1)d^{-3}.
\]

Theorem 3. For any $\delta > 0$ there exists a function $\psi(n) = o(n)$ such that for any $k \leq d \leq n^{\frac{1}{3} - \frac{\delta}{3}}$

\[
\lim_{n \to \infty} P \left(|N_n(d) - E[N_n(d)]| \geq \frac{\psi(n)}{d^3} \right) = 0.
\]

2.4 Urn models

We can obtain the distribution of $d_n(v_i)$ by using an urn model. Our urn contains balls of two colours: white and black. White balls represent edge-ends incident with vertex i and black balls represent edge-ends not incident with vertex i. Suppose that the urn initially has a_0 white balls and b_0 black balls where

\[
a_0 = k, \\
b_0 = 2i - k, \\
t_0 = a_0 + b_0 = 2i.
\]

At each step, one ball is drawn randomly from the urn. If the drawn ball is white, replace it and put an additional α white and $\sigma - \alpha$ black. If it is black, replace and put σ more black balls.

We now introduce some relevant results about urn models from Flajolet et al. [FDP06]. Consider a triangular urn with replacement matrix

\[
\begin{pmatrix}
\alpha & \sigma - \alpha \\
0 & \sigma
\end{pmatrix}
\]

Let $H_n(a_0, b_0)$ be the number of histories of length n that start in configuration (a_0, b_0) and end in configuration (a, b). Note that $a + b = a_0 + b_0 + \sigma n$. Then the generating function of urn histories is defined as

\[
H(x, 1, z) := \sum_{n,a} H_n(a_0, b_0) x^a z^n n!
\]
and is given by

\[H(x, 1, z) = x^{a_0} (1 - \sigma z)^{-b_0/\sigma} \left(1 - x^\alpha \left(1 - (1 - \sigma z)^{\alpha/\sigma}\right)\right)^{-a_0/\alpha}. \]

Letting \(\Delta := (1 - \sigma z)^{-1/\sigma} \) we have from [FDP06, Equation (74)]

\[H(x, 1, z) = x^{a_0} \Delta^{b_0} (1 - x^\alpha \left(1 - \Delta^{-\alpha}\right))^{-a_0/\alpha} \]

(The reader may notice that [FDP06] is not entirely consistent, but in that paper, the ‘balls of the first type’ do always correspond to the first row of the replacement matrix.) Now let \(A_m \) be the number of white balls in the urn after \(m \) trials. The probability that this equals \(a_0 + x \alpha \) for some \(0 \leq x \leq m \) is given by [FDP06, Equation (75)] as

\[P(A_m = a_0 + x \alpha) = \left(\frac{x + \frac{a_0}{\alpha} - 1}{x}\right) \sum_{i=0}^{x} (-1)^i \binom{x}{i} \frac{[m + (b_0 - \alpha i)/\sigma - 1]_m}{[m + t_0/\sigma - 1]_m} \]

where \([\cdot]_m\) denotes falling factorial.

We next explain why the urn results apply to the random network process. At any given step, let \(s \) denote the total degrees of the vertices. If a vertex \(v \) has degree \(d \) then the probability it is chosen as the first vertex is \(d/s \). The probability it is chosen as the second vertex via any given one of its \(d \) incident edges is \((k-1)/s \). Hence, the probability it receives a new edge is \(dk/s \). (This is similar to the derivation in Section 2.1.) So we may use an urn with \(k \) white balls and \(s \) black balls. At each step, \(s \) increases by \(2k \), whilst \(k \) increases by \(k \) if \(v \) receives a new edge, and by 0 otherwise. Hence, at each step the number of white balls is \(k \) times the degree of \(v \), and the parameters are \(\alpha = k \) and \(\sigma = 2k \). The initial number of white balls, \(a_0 \), is \(k \) times the initial degree of the vertex, and the initial number of black balls is \(2k \) times the initial number of edges.

Suppose the initial graph is a copy of \(K_j \). Then for any of the \(j \) initial vertices we have \(\alpha = k \), \(a_0 = k(j-1) \), \(t_0 = j(j-1) \) and \(b_0 = t_0 - a_0 = (j-k)(j-1) \). Also \(\sigma = 2k \). For each of those \(j \) vertices \(v_i \) (which initially have degree \(j-1 \)), there are \(m = n-j \) trials. So the probability that the corresponding urn process finishes with \(k(j-1 + x) \) balls is

\[P(d_n(v_i) = j - 1 + x) = \left(\frac{x + j - 2}{x}\right) \sum_{u=0}^{x} (-1)^u \binom{x}{u} \frac{[n - j + (j-1)^2 - ku - 1]}{[n - j + R - 1]_n} \]

where \(R = j(j-1)/(2k) \). On the other hand, if \(i > j \) then \(t_0 = j(j-1) + 2(i-j)k \), \(a_0 = k^2 \), \(b_0 = t_0 - a_0 \), \(m = n - i \) and so

\[P(d_n(v_i) = k + x) = \left(\frac{x + k - 1}{x}\right) \sum_{u=0}^{x} (-1)^u \binom{x}{u} \frac{[n - j + R - (u + k) - 1]}{[n - j + R - 1]_n} \]

We can also obtain the moments of \(A_n \) directly from the generating function of urn histories. In particular, as explained in [FDP06], the first and second moments are given by

\[E[A_n] = \frac{\Gamma(n+1)\Gamma\left(\frac{t_0}{\sigma \alpha} + n\right)}{\sigma^n \Gamma\left(\frac{t_0}{\sigma} + n\right)} [z^n] \left(\frac{\partial H(x, 1, z)}{\partial x}\right)_{x=1} = \frac{\Gamma(n+1)\Gamma\left(\frac{t_0}{\sigma \alpha} + n\right)}{\sigma^n \Gamma\left(\frac{t_0}{\sigma} + n\right)} [z^n] a_0 \Delta^{t_0 + \alpha} \]

\[E[A_n^2] = \frac{\Gamma(n+1)\Gamma\left(\frac{t_0}{\sigma} + n\right)}{\sigma^n \Gamma\left(\frac{t_0}{\sigma} + n\right)} [z^n] \left(\frac{\partial^2 H(x, 1, z)}{\partial x^2}\right)_{x=1} = \frac{\Gamma(n+1)\Gamma\left(\frac{t_0}{\sigma} + n\right)}{\sigma^n \Gamma\left(\frac{t_0}{\sigma} + n\right)} [z^n] \left(a_0 (a_0 + \alpha) \Delta^{t_0 + 2\alpha} + a_0 (a_0 + 1) \Delta^{t_0 + \alpha}\right). \]
Performing coefficient extraction gives

\[[z^n] a_0 \Delta^{\alpha+0} = a_0 [z^n] (1 - \sigma z)^{-\frac{t_0 + \alpha}{\sigma}} \]

\[= a_0 \left(-\frac{t_0 + \alpha}{n} \right)(-\sigma)^n \quad \text{using} \quad [t^n](1 + at)^r = \binom{r}{n} a^n \]

\[= a_0 \frac{n + \frac{t_0 + \alpha}{\sigma} - 1}{n} \sigma^n \quad \text{using} \quad \binom{r}{n} = \frac{(n + r - 1)}{n}(-1)^n \]

\[= a_0 \sigma^n \frac{\Gamma \left(n + \frac{t_0 + \alpha}{\sigma} \right)}{\Gamma (n + 1) \Gamma \left(\frac{t_0 + 2 \alpha}{\sigma} \right)} \quad \text{using} \quad \binom{x}{y} = \frac{\Gamma (x + 1)}{\Gamma (y + 1) \Gamma (x - y + 1)} \]

And by linearity:

\[[z^n] (a_0 (a_0 + \alpha) \Delta^{t_0+2\alpha} - a_0(\alpha + 1)\Delta^{t_0+\alpha}) = a_0 (a_0 + \alpha) [z^n] \Delta^{t_0+2\alpha} - a_0(\alpha + 1) [z^n] \Delta^{t_0+\alpha} \]

\[= a_0 \left[(a_0 + \alpha) \sigma^n \frac{\Gamma \left(n + \frac{t_0 + 2\alpha}{\sigma} \right)}{\Gamma (n + 1) \Gamma \left(\frac{t_0 + 2\alpha}{\sigma} \right)} - (\alpha + 1)\sigma^n \frac{\Gamma \left(n + \frac{t_0 + \alpha}{\sigma} \right)}{\Gamma (n + 1) \Gamma \left(\frac{t_0 + \alpha}{\sigma} \right)} \right]. \]

Plugging these coefficients back in the equations for the first and second moment we obtain

\[E[A_n] = a_0 \gamma \left(\frac{\tau_0}{\alpha} \right) \frac{\Gamma \left(n + \frac{t_0 + 2\alpha}{\sigma} \right)}{\Gamma \left(\frac{t_0 + 2\alpha}{\sigma} \right) \Gamma \left(\frac{\tau_0}{\alpha} + n \right)} \]

\[E[A_n^2] = a_0 \left[\frac{(a_0 + \alpha) \gamma \left(\frac{\tau_0}{\alpha} \right) \Gamma \left(n + \frac{t_0 + 2\alpha}{\sigma} \right)}{\Gamma \left(\frac{t_0 + 2\alpha}{\sigma} \right) \Gamma \left(\frac{\tau_0}{\alpha} + n \right)} + \frac{(\alpha + 1) \gamma \left(\frac{\tau_0}{\alpha} \right) \Gamma \left(n + \frac{t_0 + \alpha}{\sigma} \right)}{\Gamma \left(\frac{t_0 + \alpha}{\sigma} \right) \Gamma \left(\frac{\tau_0}{\alpha} + n \right)} \right] \]

Applying these results to our example where \(a_0 = k, b_0 = 2i - k, \alpha = 1, \sigma = 2 \) and the number of trials is \(n - i \) we obtain

\[E[d_n(i)] = \frac{k \Gamma (i) \Gamma (n + 1/2)}{\Gamma (i + 1/2) \Gamma (n)} \]

\[E[d_n(i)^2] = k \left[\frac{(k + 1) \Gamma (i) \Gamma (n + 1)}{\Gamma (i + 1) \Gamma (n)} + \frac{2 \Gamma (i) \Gamma (n + 1/2)}{\Gamma (i + 1/2) \Gamma (n)} \right] \]

\[= k \frac{(k + 1)n}{i} + 2 E[d_n(i)]. \]

We note that the value for the first moment matches the one obtained previously by solving the simple recursion in Section 2.1.

References

[BR03] B. Bollobás and O.M. Riordan. Mathematical results on scale-free random graphs. *Handbook of graphs and networks: from the genome to the internet*, pages 1–34, 2003.

[BRS+01] B. Bollobás, O. Riordan, J. Spencer, G. Tusnády, et al. The degree sequence of a scale-free random graph process. *Random Structures & Algorithms*, 18(3):279–290, 2001.

[FDP06] P. Flajolet, P. Dumas, and V. Puyhaubert. Some exactly solvable models of urn process theory. *Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities*, 59–118, Discrete Math. Theor. Comput. Sci. Proc., AG, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006.

[Gre11] EA Grechnikov. An estimate for the number of edges between vertices of given degrees in random graphs in the bollobás–riordan model. *Moscow Journal of Combinatorics and Number Theory*, 1(2), 2011.
[OG11] L. Ostroumova and E. Grechnikov. The distribution of second degrees in the bollobás–riordan random graph model. Arxiv preprint arXiv:1108.5585, 2011.

[ORS12] L. Ostroumova, A. Ryabchenko, and E. Samosvat. Generalized preferential attachment: tunable power-law degree distribution and clustering coefficient. Arxiv preprint arXiv:1205.3015, 2012.