Introduction

Microorganisms play important and often essential roles in the growth and development of insect species. Many insects that harbor endosymbionts depend on them for reproduction, digestion, supply of essential nutrients and pheromone production, etc. [1,2]. The bacteria in the gut of some specialized niche feeders, such as termites and aphids, have attracted wide attention because of the microbial enzymes achieving particular biochemical transformations [3,4,5]. However, relatively little is known about insects feeding on foliage, where no strict symbiotic interaction has been proposed so far. In fact, most lepidopteran larvae are herbivores [6,7] and their gut content (food bolus) is not sterile [8]. Indigenous gut bacteria of lepidopteran and other insects have been found to detoxify harmful secondary metabolites [9] and to protect the host against the colonization of pathogens [8]. They are also involved in formation of the aggregation pheromones of locusts [10], maintenance of the host fitness [11,12] and the homeostasis of plant defense elicitors in certain lepidopteran larvae [13,14,15].

For a long time, studying insect gut microbiota was mainly performed by cultivation and isolation. These studies formed the basis of our current understanding but often led to a biased description [8]. Less than half of the bacterial phylotypes identified with terminal-restriction fragment-length polymorphism of 16S rRNA genes from gypsy moth (Lymantria dispar) were viable on Petri dishes [16]. None of the bacteria isolated from the laboratory-bred tobacco hornworm (Manduca sexta) [17] belong to the abundant phylotypes revealed by PCR-single-strand conformation polymorphism of the 16S rRNA genes [18].
denaturing gradient gel electrophoresis coupled with 16S rRNA gene sequencing has revealed that 72% midgut bacteria of the "old world" cotton bollworm (*Helicoverpa armigera*) shared less than 98% sequence identities to known species [19].

The larvae of African cotton leafworm (*Spodoptera littoralis*) and the cotton bollworm (*Lepidoptera; Noctuidae*) are generalist herbivores and devastating agricultural pests, feeding on more than a hundred plant species [6]. The uptake food passes through the larval gut quickly, normally within a few hours. Whether autochthonous bacterial strains exist in these insect guts is largely unknown [8]. Here we ask the following questions: i) the taxonomic composition of bacteria living in lepidopteran larval gut; ii) the dynamics of gut microbiota in the course of larval development; iii) the influence of diet on gut microbiota.

Results

Bacteria Enumeration

Both *S. littoralis* and *H. armigera* were maintained in the laboratory on heat- and UV-sterilized artificial diet [15]. To rule out the possibility that laboratory conditions have long-term effects on the midgut bacterial community, we compared the *H. armigera* strain TWB that was collected in 2004 in Australia with the strain HEL1V1 that has been maintained under artificial condition for many years. However, no significant difference between the two *H. armigera* strains was observed.

By cloning and sequencing PCR products, we obtained 1473 high-quality bacterial 16S rRNA gene sequences from the *S. littoralis* gut (Figure 1) and 1245 from the *H. armigera* gut. Most of the 18 operational taxonomic units (OTUs) in *S. littoralis* larvae can be classified to known genus based on 99.5% similarity threshold (Table S1). If the sequence is highly similar to one known species, it was named after that species; if the sequence shares equal similarity to two or more species belonging to the same genus, its taxonomy could not be classified to known genus based on 99.5% similarity threshold. 55 OTUs were obtained from *H. armigera* larvae. Among them, 39 OTUs were identical to those found in *S. littoralis* (Table S2). Furthermore, we could not detect any Archaea in the insect samples.

Spatial Distribution

In Lepidoptera, the larval alimentary canal is composed of three morphologically distinguishable segments [7]: the foregut and the hindgut derived from ectodermal ingrowth and the midgut from the endoderm (Figure 2A). For microbiota analysis, the gut of 5th-instar *S. littoralis* larvae feeding on artificial diet was cut into three segments at the two visible constricting sites on the midgut. In section I, *E. mundtii* is the most dominant species, whereas in section III, *E. casseliflavus* is more dominant. *P. aeruginosa* was only found in section I, and *E. termitis* was only identified in section III. Only one species, namely *Clostridium sp.* SL01, was detected in section II. Rarefaction analyses confirmed that the sequencing is deep enough to reveal high abundance species in section I and III (Figure 2C). Fluorescent in situ hybridization (FISH) using probes designed from the cloned 16S rRNA gene sequences (Table S3) revealed that *Clostridium sp.* SL01 form large aggregates in the deep anoxic area of the food bolus, and small satellite aggregates already exist at 50 μm away from the gut wall. Other species attached to the gut peritrophic membrane (Figure 3).

Temporal Variation

In the course of larval development, the body length of *S. littoralis* larvae increases from 1.5 mm to ca. 40 mm, and the diameter of its gut increases from 0.5 mm to ca. 7 mm. We monitored the change of dominant species at different instars feeding on artificial diet. The microbiota of the freshly emerged larvae mainly comprised *E. faecalis* and *E. casseliflavus* (Figure 4A). *E. casseliflavus* was also detected on the eggs (data not shown). In older larvae, bacterial diversity increased and *E. mundtii* became very abundant. *E. casseliflavus* was no longer detectable by sequencing but was found with the more sensitive PhyloChip (see discussion below). The *Clostridium* sp. began to appear in 6-day-old larvae. On the larval cuticle, 75% bacterial species were *Pseudomonas*, and *E. casseliflavus* was the only gut inhabitant detected. Statistical analysis with two richness indices Chao1 and ACE (abundance-based coverage estimator) and the α-diversity indices Shannon and Simpson supports the conclusion that the composition of the dominant bacteria in *S. littoralis* larval gut is not complex (Figure 4B).

The Impact of Food

The influence of food plant on the gut microbiota was also investigated by feeding *S. littoralis* with either Lima bean or barley, and feeding *H. armigera* with cabbage, cotton and tomato. In addition, *E. coli* were doped to the artificial diet of *H. armigera* larvae to mimic food born non-pathogenic bacteria. When the young *S. littoralis* larvae were supplied with the toxic Lima bean containing cyanogenic glycosides [20], a high mortality and a transient growth retardation was observed (Figure 5A). The same phenomenon was observed when *H. armigera* larvae fed on the toxic tomato which contain other alkaloids [21].

The bacterial composition in these plant-feeding insects was dramatically different from artificial diet-feeding insects (compare Figure 4A and Figure 5B). When the larvae suffered from intoxication, their gut microbiota was composed of 25% *E. mundtii* and 50% of *P. agglomerans* (Figure 5B). When the larvae recovered after four days, *Clostridia* and *E. casseliflavus* became dominant. In the Barley feeding insects, *Clostridia* and *K. pneumonia* were most abundant. Even with the slightly more complex microbiota, our sequencing approach is deep enough to cover the dominant species (Figure 5C). A similar pattern was observed when the frass and gut of *H. armigera* larvae were analyzed. Furthermore, in the frass of *H. armigera*, the plant-derived *Burkholderiaceae* sp. was identified in high abundance (Table S2).

Microarray Analysis

Direct cloning is particularly useful to uncover new and dominant bacterial species, while microarray-based PhyloChip can identify thousands of OTUs simultaneously [22]. The 10-day-old *S. littoralis* larvae that fed on artificial diet, Lima bean, and barley, as well as the *H. armigera* larvae that fed on artificial diet, tomato, and cabbage and the food plants were also subjected to analysis with Affymetrix PhyloChip arrays. 55 OTUs were obtained from *H. armigera* larvae and 46 OTUs from *S. littoralis* larvae. Among them, 39 OTUs belonging to 22 families were common (Table 1). It is worth noting that the microarray OTUs were different from those of the cloning, because it is based on hierarchical clustering of the fluorescence signals generated with group-specific probes. However, most of the ubiquitous bacterial families were detectable in all larvae and independent of diet. In general, microarray confirmed the results of cloning and sequencing, and some low abundant species were only detected by microarray.
Figure 1. Phylogenetic tree of bacterial divisions retrieved from *S. littoralis* larval gut based on sequence similarity. The 16S rRNA gene sequence of the cyanobacterium *Synechococcus elongatus* PCC 6301 (NC_006576.1) and the Armatimonadetes *Chthonomonas calidirosea* T49 (AM749780.1) were used as the out groups. A detailed description of the phylotypes and accession numbers of the most closely related reference sequences can be found in Table S1. The accession number of the other reference sequences are: *Enterococcus durans* Ed-02 (HM130537.1), *Lactobacillus brevis* T9 (JQ301799.1), *Staphylococcus aureus* subsp. aureus JH1(CP000736.1), *Micrococcus luteus* NCTC2665 (CP001628.1), *Corynebacterium diphtheriae* 31A (CP000206.1), *Burkholderia pseudomallei* K96243 (NC_006350.1), *Rhizobium etli* CFN 42 (CP000133.1), *Desulfobacterium autotrophicum* HRM2 (CP001087.1). The two digit bootstrap number and the three decimal posterior probabilities are shown on major nodes. The bottom bar represents substitution rate per site.

doi:10.1371/journal.pone.0036978.g001
The structure of the alimentary canal. The digestive tract was cut into three segments (I, II, and III) for sampling as indicated by the dotted lines. (b), Relative abundance of bacteria in the three segments revealed by cloning and sequencing. (c), Rarefaction curves of the bacterial diversity in gut section I and section III.

doi:10.1371/journal.pone.0036978.g002

Discussion

The gut microbiota of lepidopteran insects was studied with two complementary and cultivation independent approaches: direct cloning and sequencing that uncovers unknown and dominant bacterial species [23] and a microarray-based approach that monitors low abundant species [22]. Our results clearly showed some dominant bacterial species are shared by two lepidopteran insects. Bacterial species constantly present in the gut are considered as members of the “core set of bacterial community.”

Core Community

The composition of dominant species of insect gut microbiota can be very simple. A recent survey using 454 sequencing revealed 5 dominant OTUs in the gut of the fruit fly (Drosophila melanogaster) [24]. In the gut of the gypsy moth and cabbage white butterfly (Pieris rapae) were found 23 and 15 OTUs, respectively [16,25]. We detected 36 dominant OTUs in S. littoralis larvae and a similar composition in H. armigera larvae. It has been shown that the gut microbiota of laboratory-reared insects is much simpler than those of the insects collected from the field [19,26].

The fact that insects maintain a stable gut microbiota suggests potential benefits. An Enterococcus sp. had been detected in gypsy moth larvae independent of the plant diet [16]. It was the major and the only metabolically active bacterium in the gut and eggs of Manduca sexta [18]. Enterococci are also prominent in the gut of insects such as Drosophila, ground beetle, and desert locust [26,27,28]. We detected several Enterococcus species in the two lepidopteran larvae, with E. casseliflavus being the most widely distributed. The most abundant sequence type in the two lepidopteran larvae belongs to an unknown Clostridium species. Clostridia are the dominant bacteria in the guts of termites [5]. We did not detect any Archaea in the lepidopteran insects, in good agreement with the observation on another lepidopteran species Calptra balieta [29]. Lactobacilli have been detected in the gut of both lepidopteran insects. They were also present in the guts of the fruit fly and the ground beetle [26,27,30]. It has been shown that bacteria isolated from other Lepidoptera performed various hydrolytic activity under aerobic conditions [31]. We believe that the core set microbiota would play important roles in host physiology other than digestion.

Spatial and Temporal Distribution

The tubular lepidopteran midgut is structurally simple, and with a pH gradient from the highly alkaline (ca. 10) anterior end to the nearly neutral posterior ends [14]. The spatial distribution of some bacterial species might reflect their pH tolerance (Figure 2). A strain showing high sequence similarity to E. termitis isolated from termite gut was found specifically in the hindgut [32]. Clostridium sp. was the most dominant species in the midgut of 6-day-old larva (Figure 4). They were also the most dominant lineage in the gut of the European cockchafer, where 100 μm away from the gut all becomes completely anoxic [33]. In the lepidopteran larval gut, Clostridium sp. was only detectable about 50 μm inside the gut wall (Figure 3), in accordance with its anaerobic nature. As the insects grew bigger, the ratio of gut volume to the gut surface increased with a factor of D/4 (here D is the diameter of the gut). As a consequence, anaerobic species like Clostridia became more dominant. Besides the change of the Clostridium sp., the overall composition of the gut microbiota change significantly as the insect ages (Figure 6), suggesting the involvement of other host-derived factor(s) shaping the gut community.

Impact of Food

Most lepidopteran herbivores are highly polyphagous and naturally exposed to bacteria via food consumption. However, the bacteria on the food plant were very different from those in the guts (Table 1), which are again different from those in frass (Table S2). The alkaline pH, digestion enzymes, reactive oxygen species produced by cells of the gut membrane [34] along with the ionic strength in insect gut generally kill the ingested bacteria [35]. Persisting bacteria might become gut colonizers, or remain as transient passengers [18]. We found examples of all, e.g. X. campestris from the artificial diet of S. littoralis were not detectable in the insect guts. A bacterium belonging to Annamoxales was detected in both plant and insects, while C. maltovorans were abundant in H. armigera frass (Table S2).

The gut bacterial communities in insects feeding on different diet are dramatically deferent (Figure 6). It has been shown that the gut microbial composition was different between crickets feeding on protein-rich diet and those feeding on fiber-rich diet [36]. P. agglomerans that was also found in gypsy moth larvae [16] and in locust hindguts [28] was also detectable in our plant-fed larvae (Figure 5). In the S. littoralis larvae that ingested Lima bean, many low-abundant species began to bloom. The dominance of some species such as Enterococci and Lactobacilli can be explained by their cyanide resistance [37]. When a large amount of E. coli were ingested, the gut microbiota of H. armigera became more complex. Whether this is due to a probiotic effect or dysbacteriosis needs further investigation.

Conclusions

The comprehensiveness of the current study on microbiota of lepidopteran gut is only comparable by few studies performed on termites [38], and fruit flies [24,39]. Demonstrating the existence...
Figure 3. Bacterial localization in the gut of S. littoralis larvae with Fluorescent In Situ Hybridization. Scale bar equals 10 μm. A, Detection of *Clostridium* sp. In the midgut. The three images shown are TIC image, fluorescent image of universal probe (EUB, red) and of specific probe (SPE, green). B to G are merged images of TIC, EUB and SPE. The bacteria detected only with universal probe are red, and the bacterial with both probes are green. B, a large aggregate of *Clostridium* sp. deep in the gut lumen. C, Detection of *E. mundtii*. D, Detection of *E. casseliflavus*. E,
of the core bacterial community established a platform for further evaluation of the tritrophic bacteria-insect-plant interaction. Further research on each individual species as well as genetic and chemical manipulating the insect and bacteria partners will advance our knowledge on the role of lepidopteran gut microbiota far beyond the old assumption as neutral commensals. As microbiota contribute substantially to insect nutritional ecology and other processes, understanding the physiological role of gut microbiota could potentially pave the way for novel pest control strategies.

Materials and Methods

Insects and Plants

\(S. \) littoralis eggs were purchased from Syngenta Crop Protection Münchwilen AG (Münchwilen, Switzerland). The artificial food made of white bean and some essential nutrients was prepared according to [15]. Eggs were hatched at 14°C. Larvae were transferred to room temperature (24°C). Neonatal larvae (400), 2-day-old (400) and 6-day-old (50) larvae were used to prepare the DNA template, while the 10-day-old (20) and 14-day-old (7) larvae were dissected, the whole gut was used for DNA preparation. The cuticle of 10-day-old larvae was collected as control. After starvation for 4 hours, larvae were rinsed 3 times alternatively with water and 70% ethanol before dissection. Samples were stored at \(-20°C\) before DNA extraction.

\(H. \) armigera strain TWB (from laboratory stock) and strain HELIAR (Bayer CropScience, Monheim, Germany) were grown on artificial diet or on plants until the beginning of the final instar as described previously [40]. Artificial diet doped with \(E. \) coli was performed as described before [12]. Midguts (\(3 \times 5 \) larvae per diet) were dissected from freeze-killed larvae in ice-cold phosphate-

\[\text{P. acnes} \] in the midgut. \(F. \) coli detected in the midgut; \(G. \) pneumonia detected in the midgut. Bacteria detected only by universal probe are highlighted with white arrows; Bacteria stained by sequence-specific probes are pointed by open arrows. Insect tissue is indicated by arrow heads.

\[\text{doi:10.1371/journal.pone.0036978.g003} \]

Figure 4. Different gut bacterial community structures in \(S. \) littoralis larvae of different instars feeding on artificial diet. A, The bacterial community compositions detected by cloning and sequencing from insects that are 2-days (\(n = 33 \)), 6-days (\(n = 104 \)), 10-days (\(n = 232 \)), and 14-days (\(n = 490 \)). The arrow represents the life span of an \(S. \) littoralis larva. The developmental stages, hatch, pupation, and larval instars are represented by bars. The inset shows the relative abundance of bacteria detected on the epithelium of 10-day old larvae (\(n = 94 \)). B, The rarefaction curves of the richness indices Chao1 and ACE, and the diversity indices Shannon and Simpson based on sequences retrieved from larvae. Indices were calculated using 95% confidence level and 0.03 distance cutoff for OUT clustering.

\[\text{doi:10.1371/journal.pone.0036978.g004} \]
buffered saline solution (PBS), immersed in ice-cold balanced salt solution (BSS) and kept at −20°C.

Tomato (Solanum lycopersicum), cabbage (Brassica oleracea), cotton (Gossypium hirsutum), barley (Hordeum vulgare subsp. vulgare Cultivar: Barke), and lima bean (Phaseolus lunatus strain CV_JWBJ A) were cultivated in the greenhouse [20,37]. Small larvae were reared in a box and supplied with fresh cuttings of plant shoots on a daily basis.

16S rRNA Gene Library and Sequencing

Frozen samples were thawed on ice and dried at 45°C in a speedvac (Concentrator 5301, Eppendorf). The dried samples were crushed in a 1.5 ml tube with a plastic pestle. Plant material was ground in liquid nitrogen. DNA was extracted with the PowerSoil™ DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA) according to protocol provided by the manufacturer. 240 ng of purified DNA was used as template for 27f (5'-AGAGTTT-

Phylum/Class	Family/Genus	HA	SL	Plant	
Bacteroidetes	Sphingobacteriaceae	+++	ND	ND	
	Flexibacteriaceae	+++	+++	ND	
	Flavobacteriaceae	ND	ND	ND	
	KSA1	+++	+++	+	
Acidobacteria	Acidobacteriaceae	ND	+	+	
Actinobacteria	Corynebacteriaceae	+	+	ND	
	Micrococcaceae	+	+	ND	
	Propionibacteriaceae	+	+	ND	
	Unclassified	+	+	+	
Chloroflexi	Anaerolineae	+++	+++	+	
	Thermomicrobia	+	ND	ND	
Cyanobacteria	Chloroplasts	+	ND	+++	
Deinococcus	Unclassified sf1	+	ND	ND	
Firmicutes/Bacilli	Enterococcaceae	+++	+++	ND	
	Bacillaceae	+++	+++	ND	
	Halobacillaceae	++	++	ND	
	Aerococcaceae	+++	ND	ND	
	Lactobacillaceae	+++	++	ND	
	Streptococcaceae	+++	ND	ND	
	Erysipelotrichaceae	+++	+++	ND	
	Clostidiales	Clostridiaceae	+++	+++	ND
	Lachnospiraceae	+	+	ND	
	Catabacter	+++	+++	ND	
	Symbiobacteria	ND	ND	+	
Planctomycetes	Planctomycetaceae	++	++	ND	
	Amnimonas	+++	ND	ND	
	Proteobacteria	Caulobacteriaceae	++	++	ND
	Rhodobacterales	Rhodobacteriaceae	+	+	ND
	Enterobacteriales	Enterobacteriaceae	++	+++	ND
	Alsteromonadaceae	++	+	ND	
	Desulfovibrionaceae	Desulfdubacteriaceae	ND	+	+++
	Proteobacteria	Campylobacteriaceae	++	ND	ND
	Verrucomicrobia	Xiphinemaetabacteriaceae	ND	ND	+
	Thermodesulfobacteriaceae	Thermodesulfobacteriaceae	+	ND	ND
	OP9/JS1	Unclassified	+++	ND	ND
	Unclassified	sf160	+	+	ND
	sf156	ND	+	+	
	sf95	ND	+	ND	

Notes:
1) Found only in plant-feeding H. armigera; 2) high abundance in artificial diet feeding larvae; 3) high abundance in plant feeding larvae and low abundance in artificial diet feeding larvae; 4) low abundance only in tomato plant; 5) S. littoralis and H. armigera possibly contain different species; 6) not detected.
by heating at 94°C templates with different GC content. Denaturation was achieved with accession numbers HQ264061 to HQ264097.

Center for Biotechnology Information with accession numbers 16S rRNA gene sequences have been deposited at the National databases at the National Center for Biotechnology Information with accession numbers. The bacterial partial diversity indices (Parsimony and UniFrac) were calculated using the software mothur [44]. The bacterial partial diversity values between samples were cut into 5 μm thin sections. The thin sections were mounted on SuperFrost Ultra Plus glass slide (Thermo Scientific) and treated with 5 mg/ml lysozyme for 15 min at 37°C. After washing away the lysozyme, the slide was dried by blowing with air. The slide was hybridized with 1.5 μM of each probe (Table S3) in hybridization buffer containing 900 mM NaCl, 0.02 M Tris-HCl (pH8.0), 20% formamide, 1% SDS. Hybridization was performed at 46°C for 4 hours on the Advalytix slide booster (Beckman Coulter Biomedical GmbH, Munich, Germany). Afterward, the slide was washed in 50 ml washing buffer containing 0.02 M Tris-HCl (pH8.0), 0.2 M NaCl, 0.05 M EDTA, 1% SDS at 46°C for 20 min. Slide was then washed with running water for 30 sec and dried with blowing air. Images were taken with an Axio Imager Z1 microscope (Carl Zeiss) equipped with an AxioCam MRM camera.

Supporting Information

Table S1 Bacterial partial 16S rRNA gene sequences cloned from S. littoralis larvae and the BLAST results.

Table S2 Bacteria detected in H. armigera larval gut and frass based on cloning and sequencing.

Table S3 FISH probes used to detect bacteria in S. littoralis gut.

Supporting Information

We thank Angelika Berg, Renate Kaiser, Domenica Schnabelrauch for laboratory assistance and Martin Kaltenpoph for general discussion. This work was supported by the Max Planck Society and the excellence graduate school Jena School of Microbial Communication.

Author Contributions

Conceived and designed the experiments: LP HV WB DH. Performed the experiments: XT DF GA MW. Analyzed the data: XT DF HV YS LP EC. Wrote the paper: HV LP WB.
References

1. Gill R, Latorre A, Moya A (2004) Bacterial endosymbionts of insects: insights from comparative genomics. Environ Microbiol 6: 1109–1122.
2. Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3: 858–861.
3. Brauman A, Kane MD, Labat M, Brencher JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termite species. Science 257: 1304–1307.
4. Chen DQ, Purcell AH (1997) Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol 34: 220–225.
5. Warnecke F, Lugtenbel P, Ivanova N, Ghassimian M, Richardson TH, et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560–565.
6. Carter DJ (1984) Pest Lepidoptera of Europe: with special reference to the bollworm (Spodoptera exigua) and its use as a model of Entomococcus fasciei pathogenesis. Insect Immun 75: 1565–1576.
7. Lehman R, Landgren J, Petzke L (2009) Bacterial communities associated with the digestive tract of the predatory ground beetle, Pterostichus melanarius, and their modification by laboratory rearing and antibiotic treatment. Microb Ecol 59: 199–211.
8. Cox CR, Gilmore MS (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Entomococcus fasciei pathogenesis. Insect Immun 75: 1565–1576.
9. Morrison M, Pope PB, Denman SE, McSweeney CS (2009) Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol 20: 356–363.
10. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: Nonpathogenic Interactions. Annu Rev Entomol 49: 71–92.
11. Freitag D, Kuchling K, Wilken H, Gutierrez C, Middelhoven A, et al. (2007) A novel Dps-like protein from insect gut bacteria catalyses hydrolysis and synthesis of Vasa-1 amino acids. Environ Microbiol 9: 1572–1583.
12. Matthias F, Rata B, Vertica M, Alexander S, Michael R, et al. (2008) Rapid hydrolysis of quorum-sensing molecules in the gut of lepidopteran larvae. ChemBioChem 9: 1593–1599.
13. Xin B, Dettner K, Boland W (2005) Gut bacteria may be involved in interactions between plants, herbivores and their predators: microbial biosynthesis of tryptophan precursors as electors of plant volatiles. Biol Chem 386: 755–762.
14. Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70: 293–300.
15. van der Hoeven R, Baretog B, Fouts S (2008) Characterization of the gut bacterial community in Manduca sexta and effect of antibiotics on bacterial diversity and nematode reproduction. Environ Microbiol Lett 266: 249–256.
16. Hildenbrand N, Martens R, Tebbé C (2008) Origin and diversity of gut bacteria in the locust. Nature 453: 851–854.
17. Freitag D, Heekel DG, Vogel H (2009) Dietary-dependent trans-generational immune priming in an insect herbivore. Proc R Soc Lond B [Biol] 276: 2617–2624.
18. Freitag D, Wheat C, Heckel D, Vogel H (2007) Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichopisca ni. BMC Biol 5: 56.
19. Ping L, Bacher R, Mithöfer A, Scavo A, Spitterle D, et al. (2007) A novel Dps-type protein from insect gut bacteria catalyses hydrolysis and synthesis of Vasa-1 amino acids. Environ Microbiol 9: 1572–1583.
20. van der Hoeven R, Baretog B, Fouts S (2008) Characterization of the gut bacterial community in Manduca sexta and effect of antibiotics on bacterial diversity and nematode reproduction. Environ Microbiol Lett 266: 249–256.
21. Brinkmann N, Martens R, Tebbé C (2008) Origin and diversity of gut bacteria in the locust. Nature 453: 851–854.
22. Brinkmann N, Martens R, Tebbé C (2008) Origin and diversity of gut bacteria in the locust. Nature 453: 851–854.
23. Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, et al. (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and resorption. Appl Environ Microbiol 72: 6260–6268.