Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body

Esteban A. Terzo, Shawn M. Lyons, John S. Poulton, Brenda R. S. Temple, William F. Marzluff, and Robert J. Duronio

ABSTRACT Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis.

INTRODUCTION Numerous levels of molecular organization within the nucleus facilitate the highly regulated expression of the genome. One level of organization is the concentration of proteins, RNAs, and ribonucleoproteins into structures known as nuclear bodies (NBs) that are visible by light microscopy (Matera, 1999; Matera et al., 2009; Gall, 2000; Dundr and Misteli, 2001, 2010; Misteli, 2001, 2005; Parada et al., 2004). NBs include well-known structures such as Cajal bodies and the nucleolus and less well understood structures including PML bodies, speckles, paraspeckles, and histone locus bodies (HLBs). An attractive hypothesis for NB function posits that NBs concentrate factors to accelerate reactions that would otherwise take longer if these factors were dispersed throughout the nucleus (Dundr, 2012). This hypothesis has gained support from studies of vertebrate Cajal bodies, which promote efficient spliceosomal small nuclear ribonucleoprotein (snRNP) assembly (Klingauf et al., 2006; Strzelecka et al., 2010; Novotny et al., 2011; Machyna et al., 2014). However, Drosophila snRNA modification by scaRNAs, which are localized to Cajal bodies, does not require Cajal body assembly (Deryusheva and Gall, 2009). Thus the general applicability and further tests of this hypothesis require additional study.

An understanding of NB function requires detailed knowledge of NB composition and assembly. We have been exploring this issue by studying how HLB assembly contributes to the expression of replication-dependent histone genes, which encode the only known cellular mRNAs that are not polyadenylated (Marzluff et al., 2008). HLBs were defined by Gall and coworkers as NBs associated with
the Drosophila histone gene locus that contained U7 snRNP (Liu et al., 2006), a factor essential for generating the unique histone mRNA 3′ end (Strub and Rintschel, 1986; Mowry and Steitz, 1987). Similar factors necessary for histone transcription and pre-mRNA processing are found in both vertebrate and Drosophila HLBs, including human nuclear protein mapped to the mutated ataxia telangiectasia locus (NPAT), which was identified as a cyclin E/Cdk2 substrate essential for histone mRNA expression (Ma et al., 2000; Zhao et al., 2000; Wei et al., 2003; Miele et al., 2005). The multi-sex combs (mxc) locus encodes the Drosophila orthologue of NPAT. Mxc, like NPAT, is phosphorylated by cyclin E/Cdk2, colocalizes with U7 snRNP at the histone locus, and is required for both HLB assembly and histone gene expression (White et al., 2011). Other known HLB components include FLASH and Mute. FLASH was identified in mammals as colocalizing with NPAT (Bongiorno-Borbone et al., 2008) and subsequently shown to interact with U7 snRNP and be essential for histone pre-mRNA processing (Yang et al., 2009). Mute was identified as a Drosophila HLB component in a screen for factors required for muscle development, but its biochemical function is not known (Bulchand et al., 2010).

Our previous experiments on Drosophila HLBs suggest that Mxc is critical for HLB assembly. Mxc and FLASH localize to the histone locus immediately before the beginning of histone gene expression in syncytial embryos, and HLBs are not detected before this time. Loss of Mxc results in a failure to localize other HLB components, including FLASH and U7 snRNP (White et al., 2011). The Drosophila HLB is present in all cells, independent of whether they are cycling (Liu et al., 2006; White et al., 2007). The five canonical Drosophila histone genes (H1, H2A, H2B, H3, and H4) are clustered together in a 5-kb sequence that is repeated ∼100 times at a single locus on chromosome 2. The 300–base pair bidirectional promoter of the H3-H4 gene pair within this cluster is necessary and sufficient for HLB assembly and is necessary for expression of the adjacent H2A-H2B gene pair (Szlager et al., 2013). This 300-base pair sequence is also sufficient to recruit Mxc and FLASH, consistent with Mxc playing an integral role in HLB assembly and histone gene expression. How Mxc participates in coordinating these processes remains unclear.

The mxc locus was originally described by an allelic series of mutations in which null alleles resulted in a failure of cell proliferation and lethality. Knocking out NPAT in cultured mammalian cells is similarly lethal (Ye et al., 2003). In contrast, viable, hypomorphic mxc alleles cause homeotic transformations in adult males (giving rise to the gene name; Santamaria and Randsholt, 1995). Whether there is any causal relationship between histone gene expression and the homeotic transformations observed in mxc hypomorphs is unknown. Two mxc hypomorphic alleles encode nonsense mutations at residues K1482 and Q1643 of the 1837–amino acid long Mxc protein (White et al., 2011). The resulting truncated mutant proteins support histone gene expression (Landais et al., 2014), whereas an amorphic mxc allele that does not produce Mxc protein does not (White et al., 2011). The Q1643 → Stop mutation (mxcG46) partially disrupts Mxc function, resulting in replication stress and a persistent DNA damage response that contributes to the loss of germline stem cells through misregulation of histone gene expression (Landais et al., 2014).

Studies in human cell culture indicate that distinct domains of NPAT are required to activate histone gene expression and allow entry into S phase (Wei et al., 2003). These data suggest that Mxc/ NPAT may contain multiple domains that organize HLB assembly and coordinate histone mRNA biosynthesis. Proteins harboring multiple protein–protein interaction domains are likely a critical feature of NBs (Matera et al., 2009). The focal organization provided by the multiple interaction domains could facilitate a more efficient and rapid physiological response to distinct stimuli (Foray et al., 2003; Zaidi et al., 2007; Cortese et al., 2008; Matera et al., 2009; Good et al., 2011; Bian et al., 2012; Nussinov et al., 2013). Here we identify functional domains of Mxc required for localization of Mxc to the HLB in the presence of full-length Mxc using cultured Drosophila S2 cells. We use mxc-mutant animals expressing different Mxc mutant transgenic proteins to explore the function of Mxc in vivo and time-lapse imaging of early embryos expressing GFP-Mxc to assess the dynamics of Mxc localization to the HLB. Our data indicate that Mxc requires multiple domains for complete function in vivo and that two self-interaction domains of Mxc are essential for HLB assembly, which in turn promotes histone mRNA biosynthesis.

RESULTS
Two NH2-terminal domains are required for Mxc concentration in HLBs

The design of the Mxc mutants we analyzed for this study was directed by both homology to previously characterized protein domains and the properties of a collection of mxc mutant alleles (Santamaria and Randsholt, 1995) that we sequenced (White et al., 2011). The 1837–amino acid Mxc protein contains only two small domains recognizable by primary sequence—a LisH domain at the N-terminus (amino acids 6–38) and a 13–amino acid–long AT-hook motif toward the C-terminus (amino acids 1523–1535). LisH domains are 33–amino acid motifs readily identifiable by primary sequence homology, with invariant hydrophobic residues at positions 9 and 13 and an aromatic residue at position 12 (Supplemental Figure S1A, arrowheads). Structural and biochemical analyses indicate that LisH domains adopt a characteristic fold that mediates protein–protein interactions, including homodimerization (Kim et al., 2004; Cerna and Wilson, 2005; Gerlitz et al., 2005; Mikolajka et al., 2006). AT-hook domains bind the minor groove of DNA at AT-rich stretches and are characterized by an invariant peptide core motif of R-G-R-P that is well conserved and is flanked on both sides by positively charged amino acids (Reeves, 1990; Aravind, 1998; Harrrer et al., 2004). The mxcG43-null allele, with AG-to-AA splice acceptor mutation at the intron 1/exon 2 border, does not produce detectable full-length Mxc protein. The three other alleles we sequenced (mxcG43−1, mxcG43−2, and mxcG43−4) are predicted to generate altered Mxc proteins (Figure 1). The hypomorphic mxcG43−1 and mxcG43−4 alleles each has a mutation resulting in a premature stop codon and are predicted to express 1481– and 1642–amino acid long proteins, respectively. Although both of these alleles are viable, mxcG43−2 has a stronger phenotype (consistent with having a larger deletion), with fewer progeny developing to adulthood than mxcG46 (Santamaria and Randsholt, 1995). The mxcG43−1 mutant contains a 4–base pair deletion/frameshift near the end of the open reading frame, resulting in replacement of the last 14 amino acids of Mxc with 45 residues not normally present in wild-type Mxc. Of interest, the mxcG43−1 mutant is not viable, although it should produce an Mxc protein with a relatively small alteration at the C-terminus, compared with the more extensive deletions in MxcG43−2 and MxcG43−4.

To determine the regions of Mxc necessary for concentration in the HLB, we designed constructs encoding green fluorescent protein (GFP)–Mxc16a−1, GFP-Mxc16a, GFP-Mxc16b, and three additional larger deletion mutants (GFP-Mxc13a4, GFP-Mxc17a2, GFP-Mxc1117) as N-terminal GFP fusion proteins and expressed them in S2 cells (Figures 1 and 2). We stained transfected S2 cells with antibodies against GFP (to detect exogenous Mxc) and antibodies against FLASH or Mxc to mark the endogenous S2 cell HLB. Note that our
Mxc antibody was raised against the last 169 amino acids of Mxc and therefore does not detect GFP-Mxc fusion proteins lacking the C-terminus of Mxc. The five deletion mutants, including the smallest, GFP-Mxc1-76, were capable of concentrating in the endogenous HLB (Figure 2, A–G). The GFP-Mxc1-76 protein behaved differently from the deletion mutants: although we could detect some colocalization with FLASH in S2 cells, GFP-Mxc1-76 was also mislocalized in large foci throughout the nucleus. In addition, FLASH was also mislocalized in these cells (Figure 2H). This result indicates that the altered C-terminus encoded by mxc1-76 disrupts both Mxc and FLASH concentration in the HLB, an issue that we explore later.

We also tested whether the Mxc AT-hook domain was necessary for concentrating Mxc in the HLB in S2 cells. Mutation of the second conserved arginine of the Pro-Arg-Gly-Arg-Pro AT-hook consensus motif to glycine in high–mobility group protein A1a (HMGA1a) results in redistribution of HMGA1a within interphase nuclei (Harrer et al., 2004). We therefore changed Arg1528 of the Arg-Gly-Arg-Pro Mxc AT-hook motif to Gly (GFP-Mxc1528G), GFP-Mxc1528G concentrated in the HLB in S2 cells similarly to control GFP-Mxc (Figure 2, B and I), suggesting that the AT-hook domain is not necessary to concentrate exogenous Mxc in the HLB, consistent with the results of the C-terminal deletion experiments that remove the AT-hook domain.

To define more precisely the sequences required for concentration in the HLB in S2 cells, we used N-terminal deletions to explore whether the LisH domain plays a role in concentrating Mxc in the HLB. We tested whether an otherwise full-length Mxc lacking the first 60 amino acids encompassing the LisH motif (GFP-Mxc60) would be able to concentrate in the HLB. GFP-Mxc60 did not concentrate in the HLB in S2 cells but instead was found throughout the nucleus (Figure 2J). A GFP-Mxc fragment lacking the LisH domain (GFP-Mxc1528-354) also failed to concentrate in the HLB (Figure 2K). These data suggest that the LisH domain is required for concentration of Mxc in the HLB. Note that endogenous FLASH also became partially mislocalized after expression of GFP-Mxc60 but not after expression of GFP-Mxc39-185, which lacks the C-terminus (Figure 2, J and K). This result suggests that the presence of the C-terminus in a mislocalized Mxc can result in the mislocalization of FLASH, perhaps because the C-terminus of Mxc binds to FLASH.

Eleven of the first 12 amino acids in the LisH domain of Mxc are identical in all vertebrate NPATs, and overall the human NPAT LisH domain is 51% identical to that of Mxc. Three amino acids, Val-14, Tyr-17, and Leu-18, are conserved between the NPAT and LisH domains, respectively. TG, fragments used to generate transgenic flies. The table compiles results regarding the ability of each Mxc fragment to form a detectable HLB either in the presence or absence of wild-type (wt) Mxc, +, accumulation; –, no accumulation; ↓, decreased accumulation; ND, not determined.

![FIGURE 1: Mxc structure/function analysis. Top, full-length Mxc displaying LisH (yellow), SIF (green), and AT-hook (black) domains and previously described mutations of mxc. Numbers to the left of each Mxc fragment indicate length in amino acids. Red arrowheads indicate V14, Y17, and AT-hook (black) domains and previously described mutations of LisH, SIF, and AT-hook domains, respectively.](image-url)

Expressed protein	wt Mxc present	wt Mxc absent
1-76	–	ND
1-101	+	ND
1-185	+	–
39-354	–	ND
1-354	+	–
1-721	+	–
1-1172	+	–
G43	–	–
G46	–	–
16-a1	–	–
LisH-AAA	–	–
SIF-AAA	–	–
R/G	+	+
Δ60	–	ND
LisH-AAA	–	ND

Mxc antibody was raised against the last 169 amino acids of Mxc and therefore does not detect GFP-Mxc fusion proteins lacking the C-terminus of Mxc. The five deletion mutants, including the smallest, GFP-Mxc1-76, were capable of concentrating in the endogenous HLB (Figure 2, A–G). The GFP-Mxc16a-1 protein behaved differently from the deletion mutants: although we could detect some colocalization with FLASH in S2 cells, GFP-Mxc16a-1 was also mislocalized in large foci throughout the nucleus. In addition, FLASH was also mislocalized in these cells (Figure 2H). This result indicates that the altered C-terminus encoded by mxc16a-1 disrupts both Mxc and FLASH concentration in the HLB, an issue that we explore later.

We also tested whether the Mxc AT-hook domain was necessary for concentrating Mxc in the HLB in S2 cells. Mutation of the second conserved arginine of the Pro-Arg-Gly-Arg-Pro AT-hook consensus motif to glycine in high–mobility group protein A1a (HMGA1a) results in redistribution of HMGA1a within interphase nuclei (Harrer et al., 2004). We therefore changed Arg1528 of the Arg-Gly-Arg-Pro Mxc AT-hook motif to Gly (GFP-Mxc1528G), GFP-Mxc1528G concentrated in the HLB in S2 cells similarly to control GFP-Mxc (Figure 2, B and I), suggesting that the AT-hook domain is not necessary to concentrate exogenous Mxc in the HLB, consistent with the results of the C-terminal deletion experiments that remove the AT-hook domain.
promote the self-interaction of Mxc molecules and that the LisH domain was part of this interaction. To explore this possibility, we conducted in vitro pull-down assays using a recombinant protein fragment expressed in *Escherichia coli* as maltose-binding protein (MPB).

FIGURE 2: The Mxc N-terminus is required for concentration in the HLB in cultured cells.

Untransfected S2 cells (A) or S2 cells transfected with constructs expressing the indicated GFP-Mxc proteins (B–N) were stained with anti-GFP and anti-FLASH antibodies. Yellow arrows indicate foci of colocalizing GFP-Mxc and FLASH. Note that transfection of mislocalized Mxc proteins with an intact C-terminus result in mislocalized FLASH (red arrows in H, J, and L). Bars, 10 μm.

GFP	FLASH	Merge	DAPI
A			
B			
C			
D			
E			
F			
G			
H			
I			
J			
K			
L			
M			
N			

The Mxc N-terminus promotes Mxc self-interaction

Structural studies have shown that some LisH domains directly interact with each other, mediating dimerization (Kim et al., 2004). We postulated that the N-terminal 354 amino acids of Mxc function to
fused to the first 101 amino acids of Mxc (MBP-Mxc101; Figure 3, A-15 and B). We expressed \(^{35}\text{S}\)-methionine (\(^{35}\text{S}\)Met)-labeled Mxc fragments by in vitro translation in rabbit reticulocyte lysates and tested their ability to interact with recombinant MBP-Mxc101. We efficiently pulled down \(^{35}\text{S}\)Met-labeled Mxc1-354 using MBP-Mxc101 but not with MBP alone, indicating that the N-terminus of Mxc interacts with itself (Figure 3A-1). Two shorter fragments of Mxc—Mxc1-185 and Mxc1-101—were also pulled down by MBP-Mxc101 (Figure 3A-2 and -3) and were capable of concentrating in the S2 cell HLB as effectively as Mxc1-354 (Supplemental Figure S3, A and B). Of interest, an Mxc fragment lacking the LisH domain (Mxc39-354) was also pulled down by MBP-Mxc101, indicating that Mxc self-interaction does not require LisH-domain homodimerization. The Mxc39-354 was pulled down about half as efficiently as Mxc1-354, Mxc1-185, and Mxc1-101 (Figure 3, A1–A4 and C). These results suggest that sequences in addition to the LisH domain can promote Mxc self-interaction.

FIGURE 3: Mxc self-interaction requires two N-terminal domains. (A1–A14) \(^{35}\text{S}\)-labeled, in vitro–translated Mxc fragments (indicated at right) precipitated with MBP-Mxc101 (MBP 101) and run side by side with 10% input to compare percentage of pull down. (A15) Coomassie-stained gel showing similar loading of recombinant MBP proteins. (B) Sequence of first 354 amino acids of Mxc with the LisH domain (L6-R38) indicated in yellow and the SIF domain (H39-E185) underlined. Amino acids in red indicate Ala substitution mutations in LisH (V14, Y17, and L18) and SIF (L58, I61, I62, I68, L71, V72, V76, L79, and P80) domains. Residues in green indicate N-terminal amino acids in the 39–354 (L39), 81–354 (L81), 110–354 (N110), and 200–354 (P200) fragments. Residues in blue indicate C-terminal amino acid in the 1–90 (M90), 1–101 (A101), 1–185 (E185), and 1–354 (A354) fragments. (C) Bar graph showing percentage of pull down for each Mxc fragment. Error bars represent SEM. The double asterisk indicates all statistically significant (\(p < 0.001\)) differences in binding compared with Mxc1-354.

Volume 26
April 15, 2015
Multiple domains of Mxc assemble an HLB | 1563
Indeed, further deletion of the N-terminus (Mxc⁸¹⁻³⁵⁴ and Mxc¹⁰³⁻³⁵⁴) further reduced, but did not abolish, binding to MBP-Mxc¹⁰⁵ (Figure 3, A-5 and -6 and C). A fragment from amino acid 200 to 354 (Mxc²⁰⁰⁻³⁵⁴) did not bind MBP-Mxc¹⁰⁵ (Figure 3, A-7 and C). Taken together, these data suggest that residues downstream of the LisH domain between amino acids 39 and 101 are necessary for high-affinity Mxc self-interaction.

To identify candidate residues in this region, we performed an in silico structural analysis. LisH domains consist of a helix-turn-helix motif that typically homodimerizes. A homodimer of the Mxc LisH domain was modeled based on the crystallographic homodimer of the LisH domain of TBL1X (Protein Data Bank ID 2XTC). Analysis of the modeled Mxc homodimer revealed the possibility of a steric clash between His-7 of one LisH domain and Tyr-17 of the second LisH domain, suggesting that Mxc LisH domains do not homodimerize, consistent with our pull-down data. We hypothesized that additional structural motifs within the N-terminal 101 amino acids of Mxc would interact with the LisH domain and also contain residues in a similar helical structure that correspond to the highly conserved VxxYL hydrophobic residues within LisH domains that typically drive LisH homomerization. We identified three sets of hydrophobic residues between amino acids 58 and 80 of Mxc that were in helical regions and might drive self-interaction. These three motifs were LxxL (L58-I61-I62), IxxLV (I68-L71-V72), and VxxLP (V76-L79-P80; Figure 3B). We therefore constructed three different sets of triple-Ala-substitution mutations in Mxc¹⁻³⁵⁴ and measured binding to MBP-Mxc¹⁰⁷ using the pull-down assay. The binding of Mxc¹⁻³⁵⁴ fragments containing L58A-I61A-I62A, I68A-L71A-V72A, or V76A-L79A-P80A mutation to MBP-Mxc¹⁰⁵ was reduced 50–65% relative to wild-type Mxc¹⁻³⁵⁴ (Figure 3, A-8–A-10, B, and C). An Mxc¹⁻³⁵⁴ fragment carrying both L58A-I61A-I62A and I68A-L71A-V72A mutations did not further reduce binding to MBP-Mxc¹⁰⁵ (Figure 3A-11). These data indicate that specific residues between amino acids 58 and 80 are required for efficient Mxc self-interaction, perhaps through a heterologous interaction with the LisH domain (Supplemental Figure S1B).

To interrogate further the role of the LisH domain in Mxc self-interaction, we generated Mxc¹⁻⁹⁰ and Mxc¹⁻¹⁰¹ fragments containing the LisH triple-Ala substitution (V14A-Y17A-L18A; Supplemental Figure S1A). Either fragment harboring a mutated LisH domain showed >90% reduction in binding to MBP-Mxc¹⁰⁵ (Figure 3, A-12 and -13 and C). In contrast, the LisH-domain mutation in Mxc¹⁻³⁵⁴ did not significantly affect binding to MBP-Mxc¹⁰⁵ (Figure 3, A-14 and C). These data indicate that a mutant LisH domain has little affect on Mxc self-interaction when additional downstream residues are present. Because Mxc²⁰⁰⁻³⁵⁴ does not bind MBP-Mxc¹⁰⁵ whereas Mxc¹⁻¹⁸⁵ binds very well, we conclude that the C-terminal boundary of these additional amino acids is before residue 185. When all of our biochemical data are considered together (Figure 1), the results indicate that high-affinity Mxc self-interaction requires two distinct regions, the LisH domain (residues 6–38) and sequences between amino acids 39 and 185, which we designated the Mxc self-interaction facilitator (SIF) domain.

Multiple Mxc domains including the N-terminal self-interaction domains are required for HLB formation in vivo and completion of development

To identify domains of Mxc required for in vivo function, we determined which of our Mxc transgenes (Figure 1) encoded proteins that concentrate in the HLB and whether they were capable of rescuing the lethality of the mxc^{G48} null allele. These transgenes use the ubiquitin-63E promoter to ubiquitously express proteins with GFP fused to the N-terminus of wild-type or mutant Mxc. We first determined whether these proteins were present in the HLB in the presence of endogenous Mxc (Figure 4). GFP-Mxc concentrated in the HLB in embryos and ovarian follicle cells in the presence of the endogenous Mxc, as did the transgenic GFP-Mxc¹⁻³⁵⁴ and GFP-Mxc¹⁻⁷²¹ proteins (Figure 4, A–D and G–J). In contrast, transgenic full-length Mxc^{SIF-AAA} or Mxc^{LisH-AAA} protein did not localize to the HLB in the presence of endogenous Mxc (Figure 4, E, F, K, and L).

Embryos that are homozygous for mxc^{G48} hatch, develop to second-instar larvae, and then die. Expressing full-length GFP-Mxc in the homozygous mxc^{G48} background completely rescued mxc^{G48} lethality (i.e., supported development to adulthood) and resulted in assembly of HLBS that were indistinguishable from wild type (Supplemental Figure S2A). In fact, we can maintain a stock containing GFP-Mxc as the only functional copy of Mxc. GFP-Mxc^{SIF}, which contains a point mutation in the A/T-hook domain, is also capable of rescuing mxc^{G48}. In contrast, full-length Mxc harboring either a mutant LisH domain (Mxc^{LisH-AAA}) or a mutant SIF domain (Mxc^{SIF-AAA}) could not rescue mxc^{G48} lethality or support HLB assembly (Supplemental Figure S2, B and C). The Mxc^{SIF-AAA} allele contains the L58A-I61A-I62A mutation, which reduces self-interaction in the pull-down assay (Figure 3, A-8 and C), and we selected this mutation to test in vivo because these residues are conserved in human NPAT (Supplemental Figure S1C). Western blotting revealed that the Mxc^{LisH-AAA} and Mxc^{SIF-AAA} mutant proteins accumulate to levels similar to wild-type GFP-Mxc (Supplemental Figure S3C). These data indicate that the self-interaction domains we identified in vitro are required for Mxc function in vivo.

The GFP-Mxc¹⁻³⁵⁴ and GFP-Mxc¹⁻⁷²¹ deletion mutants, which contain wild-type LisH and SIF domains and localized to the HLB in S2 cells and wild-type embryos and follicle cells, failed to rescue lethality of mxc^{G48} or to support HLB assembly in the absence of endogenous Mxc (Supplemental Figure S2, B–E). This observation demonstrates that the concentration of GFP-Mxc¹⁻³⁵⁴ and of GFP-Mxc¹⁻⁷²¹ in HLBs in S2 cells and wild-type embryos requires interaction with endogenous, full-length Mxc. Moreover, these results demonstrate that sequences between amino acid 721 and the C-terminus of Mxc are necessary for HLB assembly and Drosophila development.

To explore in more detail the functional domains within the 721–1837 region, we analyzed the hypomorphic mutants mxc^{G46} and mxc^{G43}, which express Mxc proteins truncated at amino acids 1642 and 1481, respectively (Figure 1). Because our anti-Mxc antibody was raised against the last 169 amino acids of Mxc, it will not detect these proteins. We therefore generated a transgenic GFP-Mxc^{G46} protein to determine whether this Mxc truncation is able to concentrate in the HLB. In a wild-type background, GFP-Mxc^{G46} protein colocalizes at the histone locus with endogenous Mxc and FLASH (Figure 5A). In an mxc^{G48}-null background, GFP-Mxc^{G46} forms foci resembling HLBS and rescues mxc^{G48} lethality (Figure 5, B–E). In addition, mxc^{G48} males expressing GFP-Mxc^{G46} are sterile. Nuclear foci were detected in brains from mxc^{G46} third-instar larvae or from mxc^{G48} larvae expressing GFP-Mxc^{G46} after staining with MMP-2, a monoclonal antibody that recognizes cyclin E/Cdk2-dependent phosphorylation sites in Mxc (Figure 5, F–H). Similarly, we detected MMP-2 foci in brains from mxc^{G48}-mutant larvae (Figure 5, I and J), which express an Mxc protein truncated at amino acid 1481 (Figure 1). A small fraction of mxc^{G48} mutants survive to adulthood (Santamaria and Randsholt, 1995; Saget et al., 1998; Remillieux-Leschelle et al., 2002). Together these results demonstrate that a mutant Mxc with a C-terminal truncation to amino acid 1481 is capable of assembling into an HLB and supporting the completion of development, although inefficiently.
The C-terminus of Mxc recruits HLB components required for histone mRNA synthesis

To determine which domains of Mxc are necessary for histone mRNA transcription and pre-mRNA processing and the relationship between these processes and HLB formation, we measured total accumulation of histone H3 mRNA in our panel of mutants by fluorescence in situ hybridization (FISH) of 8- to 10-h-old embryos using a probe from the coding region of H3 (H3-cod). By 8 h of embryogenesis, the maternal stores of Mxc are substantially depleted as assayed by immunofluorescence (Figure 5C), as we previously reported (White et al., 2011), allowing us to assess the capability of the different mutant GFP-Mxc proteins to support histone mRNA synthesis. In control embryos that have endogenous wild-type Mxc concentrated in the HLB, histone H3 mRNA accumulates in the cytoplasm of actively cycling cells (Figure 6A). In mxcG48-null mutant embryos, histone H3 mRNA levels are reduced, and HLBS are not detectable with anti-Mxc antibodies that would only detect maternal Mxc. Bars, 10 μm (A–F), 5 μm (G–L).

FIGURE 4: Mxc requires the LisH and SIF domains to concentrate at the histone locus in transgenic flies. We stained 8- to 10-h-old embryos (A–F) and ovarian follicle cells (G–L) expressing the indicated transgenes with anti-GFP and anti-Mxc antibodies. Note that GFP-Mxc¹⁻³⁵⁴ and GFP-Mxc¹⁻⁷²¹ localize with endogenous Mxc (yellow arrows) but form smaller foci than GFP-Mxc. Bars, 10 μm (A–F), 5 μm (G–L).
These aberrant histone H3 transcripts are from null (Supplemental Figure S4). These data suggest that very relative to control embryos and that the GFP-Mxc a reproducible (Figure 6, K and L, respectively). Quantification of these data reveal second-instar larvae near the lethal phase of the blot analysis of RNA extracted from 15- to 18-h-old embryos or early (residues 1–1642; Figure 6, A, C, H, and I).

The 721–1481 region of Mxc is necessary for HLB assembly and completion of development. (A) An 8- to 10-h-old transgenic embryo expressing GFP-MxcG46 stained with anti- GFP, FLASH, and Mxc antibodies. Yellow arrow indicates GFP-MxcG46 localization to the endogenous HLB. (B, C) w1118 control and a homozygous mxcG48 mutant embryos expressing GFP-MxcG46 stained with anti- GFP and Mxc antibodies. The yellow arrow in C indicates a cell with an HLB containing a small amount of full-length, maternal Mxc still present (our anti-Mxc antibody does not recognize the truncated MxcG46 protein). The red arrow in C indicates a cell in which maternal Mxc has been depleted from the HLB. (D, E) Nuclei from salivary glands of w1118 and mxcG48; gfp-G46 third-instar larvae stained with anti- GFP and Mxc antibodies. (F–J) Third-instar larval brains of the indicated genotypes stained with anti-FLASH, anti-Mxc, and MPM-2 antibodies. Yellow arrows indicate foci containing all three HLB markers. Red arrows indicate MPM-2–positive foci containing MxcG46, GFP-MxcG46, and MxcG43 (G, H, and J, respectively). Note that MPM-2 also detects other proteins in the nucleus. Bar, 5 μm (A–C), 10 μm (D–J).

We observed a similar phenotype with GFP-Mxc containing Mxc

immunofluorescence can support some histone mRNA expression or that there is a basal level of expression that can occur in the absence of Mxc. H3 mRNA accumulation in mxcG43 and mxcG46 embryos is reduced relative to control but less so than the null alleles. Curiously, in the mxcG43 and mxcG46 larval samples, H3 mRNA accumulation is greater than in control, consistent with a previous study (Landais et al., 2014). The mechanistic basis for the mxcG43 and mxcG46 H3 larval mRNA expression phenotype is not known.

We next determined whether histone pre-mRNA processing was disrupted in our panel of Mxc mutants. Loss of histone pre-mRNA processing factors, such as the stem loop binding protein (SLBP) or U7 snRNP, results in transcription past the normal processing site, use of cryptic, downstream polyadenylation signals, and accumulation of cytoplasmic poly A+ histone mRNA (Sullivan et al., 2001; Godfrey et al., 2006). These aberrant histone H3 transcripts are readily detected by in situ hybridization using a probe (H3-ds) derived from sequences downstream of the normal H3 mRNA 3′ end
FIGURE 6: Mxc concentration in the HLB is required for histone mRNA biosynthesis. (A–J) We subjected 8- to 10-h-old embryos of the indicated genotypes to FISH with an RNA probe generated from the H3-coding region (H3-cod) and costained with anti-Mxc antibodies. Images of epithelial cells were specifically obtained from the cephalic region. Yellow arrows indicate Mxc foci in the nuclei of actively cycling cells that accumulate histone H3 mRNA in the cytoplasm. Note that mxc^{G43}- and mxc^{G46}-mutant embryos (H, I) accumulate detectable amounts of H3 mRNA. Bars, 10 μm.

(K, L) Northern blot analysis of histone H3 transcript levels from two developmental stages of different mxc mutants. A 1-μg amount of total RNA from 15- to 18-h-old embryos (K) and 5 μg of total RNA from second-instar larvae (L) per well were run on a 6% acrylamide 8 M urea denaturing gel. 7SK RNA was used as a loading control on both gels. Numbers below each lane represent the averaged percentage of histone H3 transcript levels obtained from three independent experiments. Homozygous cycE^{AR95}-mutant embryos were used as a control, as cyclin E is known to be required for DNA replication and cell cycle progression in dividing and endocycling cells after cycle 16 (Knoblich et al., 1994) and also for histone mRNA expression (Lanzotti et al., 2004a).
the histone mRNA is processed normally, as judged by Northern blotting (Figure 6, K and L), and the H3-ds probe does not detect processed H3 mRNA (Figure 7, A–C). In contrast, in Slbp15-null mutant embryos, the H3-ds probe detects nascent, readthrough H3 transcripts in the nucleus that colocalize with Mxc-positive HLBs (Figure 7D, red arrow). These readthrough transcripts are processed to poly A+ H3 mRNA and exported to the cytoplasm, where they are detected with either the H3-cod (Figure 6J) or H3-ds probes (Figure 7D, yellow arrowhead; Lanzotti et al., 2002, 2004b).

Using this assay, we determined whether any of the Mxc mutants accumulate unprocessed H3 mRNA at the site of transcription. As expected, the H3-ds probe did not hybridize to Mxc-mutant embryos with GFP-MxcLisH-AAA, GFP-MxcSIF-AAA, GFP-Mxc1-354, and GFP-Mxc1-721 transgenic proteins that failed to assemble an HLB and consequently failed to express H3 mRNA in the mxcG48-null background (unpublished data). In contrast, we detected robust nuclear foci with the H3-ds probe in both mxcG43- and mxcG46-mutant embryos (Figure 7, E and F). mxcG46 embryos reproducibly contained more and brighter H3-ds foci than homozygous mxcG43 embryos (Figure 7, E and F), suggesting a higher rate of histone gene transcription in the mxcG46 mutant (Figure 6, H, I, and K). In each mutant, the H3-ds foci were fewer and dimmer than in Slbp15-mutant embryos (Figure 7, D–F), perhaps because wild-type Mxc and the normal HLB in the Slbp15 mutants drives more transcription than the MxcG43- and MxcG46-mutant proteins.

The FLASH protein, which is essential for histone pre-mRNA processing, is not concentrated in the HLB in mxcG43 and mxcG46 mutants (Figure 5, G and J; Rajendra et al., 2010), providing a possible explanation for the absence of misprocessed H3 mRNA. Of interest, the H3-ds probe, we did not detect misprocessed H3 mRNA in the cytoplasm of mxcG43- and mxcG46-mutant cells, although we did detect histone mRNA with the H3-cod probe (Figure 6, H and I). This result suggests that the nascent readthrough transcripts are ultimately processed at the normal site and exported. We explore this observation in more depth in a separate study (D. Tatomer, E. A. Terzo, W. F. Marzluff, and R. J. Duronio, unpublished data).

Both the LisH and SIF domains are required for efficient accumulation of Mxc in the HLB

Although the severe phenotypes observed with large C-terminal deletions of Mxc are not surprising, two different 3–amino acid changes (MxcLisH-AAA and MxcSIF-AAA) effectively inactivated the 1837-residue Mxc protein. To investigate more carefully the effects that mutating the self-interaction domains has on Mxc localization and behavior in vivo, we conducted time-lapse imaging experiments on live embryos expressing GFP-MxcLisH-AAA and GFP-MxcSIF-AAA. We focused on the first 2 h of embryogenesis, when HLB formation first occurs (White et al., 2011). At this time, Drosophila embryos are a syncytium in which nuclei undergo 13 rapid, synchronous cycles composed only of S phase and mitosis (Swanhart et al., 2005). With our previous imaging of fixed embryos, we first detected Mxc nuclear foci during cycle 10, one cycle before histone gene expression begins (White et al., 2011). By imaging live embryos expressing GFP-Mxc and H2Av–red fluorescent protein (RFP) to visualize chromosomes, we detected small GFP-Mxc nuclear foci as early as interphase of cycle 9 (Figure 8, A and A′, and Figure 8 Supplemental Movie 1), suggesting that the live-imaging approach is more sensitive. These foci become larger in each subsequent cycle, as more-defined and much brighter GFP-Mxc foci become visible during interphase of cycle 10 and again in cycle 11.
when the mature HLB has formed (Figure 8, B, C, and J, and Figure 8 Supplemental Movie 1). In addition, we detected small GFP-Mxc foci associated with mitotic chromosomes (Supplemental Figure S5, A–A’), as we previously observed in fixed embryos (White et al., 2011). Our live imaging also revealed a low level of GFP-Mxc signal coincident with the H2Av-RFP signal from condensed mitotic chromosomes (Supplemental Figure S5, B–B’). One possibility for this observation is that Mxc associates with all chromosomes during mitosis and then becomes concentrated in the HLB at the histone locus during interphase. However, we cannot eliminate the possibility that this chromosome interaction results from overexpression of GFP-Mxc relative to endogenous Mxc and does not normally happen.

The increase in intensity of GFP-Mxc foci during cycles 9–11 (Figure 8J) suggests that the HLB expands in size after initial nucleation or “seeding” as early as cycle 9. To test whether this HLB expansion requires Mxc self-interaction, we performed live-imaging experiments with GFP-MxcLisH-AAA and GFP-MxcSIF-AAA. To our surprise, we observed discrete foci of GFP-MxcLisH-AAA (F’) and GFP-MxcSIF-AAA mutant proteins (I’). Note that red signal outside of nuclei are lipid droplets containing maternally supplied H2Av protein (Li et al., 2014). Bars, 10 μm. (J) Bar graph showing corrected total focus fluorescence values from interphase of cycles 9–11. Error bars represent SEM. Numbers above bars represent averaged CTFF values. ND, not determined CTFF values due to undetectable foci. Significant differences are indicated either by a single (p < 0.05) or double (p < 0.001) asterisk.
foci and mitotic chromosome association may result from a weak interaction between endogenous Mxc and either GFP-Mxc_D354H or GFP-Mxc_C354H. These data indicate that GFP-Mxc_D354H and GFP-Mxc_C354H are defective in HLB localization and suggest that Mxc self-interaction is a critical component of HLB assembly during development.

DISCUSSION

HLBs assemble at replication-dependent histone loci and provide a distinct compartment in the nucleus that promotes efficient transcription and processing of histone mRNA, likely by concentrating histone biosynthetic factors, as well as excluding factors specifically required for polyadenylation (Dundr, 2012). In this study, we show that multiple protein domains are necessary for Mxc to support HLB assembly and histone mRNA biosynthesis and ultimately normal Drosophila development.

Multiple domains of Mxc are required for HLB assembly

Whether NBs form by an ordered assembly process, random association of components, or a combination of each of these processes is not clear for most NBs (Matera et al., 2009). In the case of the HLB, we demonstrated that hierarchical assembly contributes to NB formation, with Mxc and FLASH It is not always immediately C-terminal to the LisH domain. Other LisH domains. Instead, Mxc self-interaction requires a region of Mxc that mediates self-interaction is necessary for colin accumulation in the Cajal body (Hebert and Matera, 2000), suggesting that oligomerization is a common feature of NB formation.

Many LisH domain–containing proteins also contain a CTLH domain (C-terminus to LisH), defined in both ProSite and SMART (Ences and Ponting, 2001; Adams, 2002; Umeda et al., 2003), which is often but not always immediately C-terminal to the LisH domain. Other than the prediction that this domain contains α-helical regions, there is no structural information on the CTLH domain. The CTLH domains of several proteins have been shown to participate in protein–protein interactions important for the assembly of multiprotein complexes (Kobayashi et al., 2007; Menens et al., 2012; Sun et al., 2013; Mxc, there is a possible steric clash between His-7 of one LisH domain and Tyr-17 of a second LisH domain, which may explain why the Mxc LisH domains do not homodimerize in a manner typical of other LisH domains. Instead, Mxc self-interaction requires a region downstream of the LisH domain between amino acids 39 and 185 (the SIF domain), and three amino acids (Leu-52, Ile-61, and Ile-62) in this region conserved between flies and vertebrates are required for HLB assembly in vivo and for rescuing the lethality of an mxc-null mutation. Furthermore, live imaging revealed dramatically reduced concentration of GFP-Mxc and GFP-Mxc_SIF in HLBs in the presence of endogenous Mxc, consistent with reduced binding affinity between the mutant and wild-type Mxc molecules.

Thus the LisH domain of one molecule of Mxc binds the SIF domain (i.e., amino acids 39–185) of another molecule of Mxc. Our molecular modeling suggests that this interaction may be mediated by direct binding between the LisH domain and the LxxII motif of the SIF domain (Figure 9). In addition to the LxxII motif, the SIF domain contains other amino acids that contribute to efficient Mxc self-interaction. These multiple interaction sites indicate that each Mxc molecule can potentially interact with at least two and possibly more Mxc molecules, raising the possibility that the N-terminal region of Mxc can promote formation of a three-dimensional lattice that is likely an essential component of HLB structure (Figure 10). Similarly, an N-terminal domain of colin that mediates self-interaction is necessary for colin accumulation in the Cajal body (Hebert and Matera, 2000), suggesting that oligomerization is a common feature of NB formation.

Self-interaction between different Mxc molecules is required for HLB assembly

LisH domains are found in a variety of multiprotein complexes and promote protein–protein interactions important for the assembly of these complexes (Kim et al., 2004; Cerna and Wilson, 2005; Gerlitz et al., 2005; Mikolajka et al., 2006). Some LisH-domain proteins dimerize through their LisH domains, and a structure of a LisH-domain homodimer has been solved (Kim et al., 2004). We find that the Mxc N-terminus promotes interaction of two Mxc molecules but that this interaction does not occur by LisH-domain homodimerization. In
the NPAT LisH domain is necessary for stimulating Hist4 and H2B promoter activation in cell culture–based transfection/reporter assays (Wei et al., 2003; Ye et al., 2003). They also reported that a LisH domain–mutant NPAT protein could localize to coilin-positive NBs (a subset of which are likely to be HLBs; Wei et al., 2003). However, these experiments were performed by transfecting RAT1 cells containing endogenous NPAT, and the role of the LisH domain in NB formation, cell proliferation, and histone gene expression was not examined in the absence of endogenous NPAT. In addition, mutations of the NPAT SIF domain were not generated and analyzed in these previous studies. On the basis of our results and the similarity between the N-termini of mammalian NPAT and Mxc (Supplemental Figure S1), we suspect that human NPAT LisH-domain mutants can interact with endogenous NPAT via the SIF and/or other domains. We propose that the N-terminus of human NPAT promotes interaction between multiple NPAT molecules.

Mxc’s requirement for histone mRNA biosynthesis correlates with HLB assembly

Our prior imaging of fixed embryos and our live imaging reported here indicate that maternal Mxc and FLASH colocalize in nuclear foci before the initiation of zygotic histone gene transcription in the syncytial embryo (White et al., 2007, 2011; Salzler et al., 2013). Once histone transcription initiates, these foci enlarge into mature HLBs, as detected by increased intensity of both Mxc and FLASH staining, as well as by recruitment of other HLB components, U7 snRNP and Mute. We previously reported that mxc null–mutant first-instar larvae fail to accumulate normal amounts of histone H3 mRNA, supporting a role for Mxc in histone gene expression (White et al., 2011). Here we show that the maternal supply of Mxc (as determined by detection of HLBs by immunofluorescence) is depleted in most cells by 8 h of embryogenesis and that this depletion is accompanied by a decrease in histone H3 transcript levels. In spite of reduced levels of histone mRNA, mxc null–mutant embryos hatch. Thus, as the maternal supply of Mxc is depleted in mxc-null mutants, histone gene expression drops, resulting in death in early larval stages.

In contrast to the null allele, hypomorphic mxc-mutant embryos (mxc^{G43} and mxc^{G46}) develop to adults and hence are capable of supporting histone mRNA biosynthesis, consistent with previous observations (Landais et al., 2014). In ovaries, the 1642–amino acid Mxc^{G46} protein fails to recruit FLASH to HLBs (Rajendra et al., 2010) and results in accumulation of small amounts of misprocessed histone H3 mRNA (D. Tatomer, E. A. Terzo, W. F. Marzluff, and R. J. Duronio, unpublished data). Here we report that unprocessed histone H3 RNA accumulates at the histone locus in mxc^{G43}-and mxc^{G46}-mutant embryos. This nascent, unprocessed H3 RNA was detected by in situ hybridization with a probe derived from sequence downstream of the normal H3 mRNA 3′ end. We do not detect these unprocessed RNAs in wild-type embryos. Thus loss of the last 195 amino acids from Mxc may reduce the efficiency of normal histone mRNA 3′ end formation.

Conclusions

Several lines of evidence suggest that proteins with multiple protein–protein interaction domains mediate the localized concentration of components that give rise to NBs (Foray et al., 2003; Zaidi et al., 2007; Matera et al., 2009; Good et al., 2011). NB components can exchange with the nucleoplasm (Deryushova and Gall, 2004; Dundr et al., 2004), suggesting that there are multiple relatively weak protein–protein interactions between components of nuclear bodies, a property that is shared with other cellular bodies (e.g., P-bodies and stress granules in the cytoplasm;
For embryos, larval brains, larval salivary glands, and ovaries, the following primary antibodies were used: monoclonal mouse MPM-2 (1:2000; Millipore, Temecula, CA), chicken anti-GFP (1:1000; Millipore), affinity-purified polyclonal rabbit anti-FLASH (1:2000), affinity-purified rabbit and guinea pig anti-Mxc (1:2000; Yang et al., 2009; White et al., 2011), and monoclonal mouse anti-lamin (Developmental Studies Hybridoma Bank, Iowa City, IA). For S2 cells, immunostaining was performed as described (White et al., 2011). The secondary antibodies used (1:2000) in all experiments were goat anti-rabbit immunoglobulin G (IgG) labeled with Alexa Fluor 488 (Abcam, Cambridge, MA) or Cy3 (Jackson, West Grove, PA), goat anti-mouse IgG Cy3 (Jackson), donkey anti-chicken Cy2 (Jackson), and goat anti-guinea pig IgG Cy3 or Cy5 (Jackson). DNA was detected by incubating tissue in 1 μg/ml 4',6-diamidino-2-phenylindole (DAPI; DAKO, Carpinteria, CA) for 1 min. Embryos were dechorionated, fixed in a 1:1 mixture of 7% formaldehyde:heptane for 20 min, and incubated with primary overnight at 4°C and secondary for 1 h at 25°C. Brains and salivary glands were dissected from third-instar larvae in Grace’s medium (Gibco, Grand Island, NY) and fixed in 4% paraformaldehyde and 3.7% formaldehyde, respectively, for 20 min. Brains were permeabilized in 0.2% Tween-20 for 20 min before immunostaining.

Amylose pull-down assay

The hexahistidine-tagged MBP and MBP-Mxc proteins (pDest-556 Gateway Destination vector; Addgene plasmid 11517; courtesy of Dominic Esposito, Frederick National Laboratory for Cancer Research, Frederick, MD) were expressed in E. coli and subsequently affinity purified through nickel-nitriloacetic acid resin columns (Qiagen, Austin, TX). Fragments of Mxc were labeled with [35S]Met) by in vitro translation using Promega’s TNT coupled rabbit reticulocyte kit (Promega, San Luis Obispo, CA). A 5-μg amount of recombinant MBP proteins was incubated at 4°C with preequilibrated amylose resin (GE Healthcare Life Sciences, Piscataway, NJ) in 100 μl of TEN100 buffer (20 mM Tris, pH 7.5, 0.1 mM EDTA, 100 mM NaCl). Unbound protein was removed by two washes with 250 μl of TEN100. A 10-μl amount of in vitro–translated protein was added to beads along with 10 μl of TEN100 buffer, 14 μl of GDB buffer (10% glycerol, 10 mM dithiothreitol, 0.05 mg/ml bovine serum albumin), and 76 μl of distilled H2O. Proteins were allowed to bind for 2 h at 4°C while being rotated. Amylose beads were washed four times with 1 ml of TEN100 buffer. A 25-μl amount of 2x SDS loading dye (4% SDS, 10% β-mercaptoethanol, 0.125 M Tris, pH 6.8, 20% glycerol, 0.2% bromophenol blue) was added to the beads and boiled for 10 min. The supernatant was loaded onto an SDS–PAGE gel. Gels were stained with Coomassie blue to confirm pull down of recombinant MBP protein. Gels were dried and visualized by autoradiography.

Imaging

Confocal images for embryo in situ hybridization were obtained at a zoom of 1.0–5.0 with a 20× PlanNeofluar (numerical aperture [NA] 0.5) and 40× PlanAPOCHROMAT (NA 1.3) objectives using the ZEN data acquisition software on a laser-scanning confocal microscope (S10; Carl Zeiss, Heidelberg, Germany). Confocal images for embryo, adult, and larval tissue immunostaining and high-magnification embryo in situ hybridization were obtained at a zoom of 1.0–5.0 with a 63× PlanAPOCHROMAT (NA 1.4) objective using the ZEN data acquisition software on a laser-scanning confocal microscope (710; Carl Zeiss). Confocal images for Drosophila S2 cells were taken at a zoom of 2.0–5.0 with a 40× (NA 1.25) PlanAPOCHROMAT objective on a laser-scanning confocal microscope (SP5; Leica, Exton, PA).

For live imaging, transgenic flies harboring GFP-Mxc were generated and crossed to flies carrying a transgenic histone H2A variant fused to the RFP tag (H2Av-RFP). Female virgins carrying one copy of GFP-Mxc (White et al., 2011) and one of H2Av-RFP (Poulton et al., 2014) were selected and crossed to their male siblings to assure one copy of each transgene maternally supplied to the embryos to be analyzed. Syncytiot Drosophila embryos were mounted on a lumox porous-surfaced dish (Sarstedt, Numbrecht, Germany) and covered with halocarbon oil 700 (Sigma-Aldrich, St. Louis, MO). Images from the surface of the embryonic body were acquired at −21°C on a Nikon TE2000-E microscope with Visititech Infinity-Hawk multipoint array scanner, using 100× Nikon objectives, a Ludd emission filter wheel with Semrock filters, and Hama-matsu ORCA R2 camera. Excitation was by 491-(GFP) and 561-nm (RFP) lasers. Movies and stills were processed in ImageJ (National Institutes of Health, Bethesda, MD). Fluorescence intensity was calculated for all foci on a single z-plane with the highest integrated intensity values in the region of interest. A circle was drawn around each focus and in areas inside five nuclei without fluorescence on the same z-plane to be used for background readings. To calculate the corrected total focus fluorescence (CTFF) using ImageJ software, we analyzed data from three embryos representing three independent experiments and used the formula CTFF = integrated density – (area of selected focus × mean fluorescence of background readings) (Burgess et al., 2010; Potapova et al., 2011).

Embryo in situ hybridization

The w1118, Slbp15, and mxc-mutant embryos were collected and aged at room temperature until they were 8–10 h old. Embryos were fixed in a 1:1 mixture of 7% formaldehyde:heptane for 20 min and rehydrated in 1× phosphate-buffered saline (PBS)/0.1% Tween-20. Histone H3 transcripts were detected by FISH using digoxigenin-labeled H3-coding or H3-ds probe (Lanzotti et al., 2002; White et al., 2007).

Molecular biology

Mxc fragments used for immunostaining and live-imaging experiments were expressed in Drosophila cultured S2 cells or as transgenes in Gateway-compatible vectors (Carnegie Institution, Baltimore, MD) as previously described (White et al., 2011). Mxc fragments used for pull-down assays were all expressed in the pxFRM vector (Lyons et al., 2014). The primers used to amplify all Mxc fragments are listed in Supplemental Table S1.

Western blotting

Ovary protein lysates were obtained from w1118, GFP-Mxc, w1118, GFP-MxcGLH, and w1118, GFP-MxcGLH female flies dissected in 1× Tris PBS. Ovaries were snap-frozen in dry ice and ethanol for 10 min and stored at −20°C overnight. Ovaries were resuspended...
in buffer containing 4% SDS and dissociated with 20 strokes of a Dounce homogenizer on ice. Equal amounts of protein were run on a 7.5% acrylamide gel (Bio-Rad, Hercules, CA) and then transferred to a polyvinylidene fluoride membrane (Millipore) presoaked in methanol for 15 min at room temperature. Membranes were incubated overnight at 4°C in primary rabbit anti-GFP (Abcam) antibody to detect GFP-tagged proteins (~250 kDa in size) and in primary mouse anti-lamin (Developmental Studies Hybridoma Bank) antibody to detect Drosophila lamin (74 kDa in size). Lamin and an anti-GFP antibody cross-reacting band were used as loading controls. Subsequently membranes were incubated in secondary antibody horseradish peroxidase (HRP)—conjugated donkey-anti rabbit IgG (GE Healthcare Life Sciences) and HRP-conjugated goat-anti mouse IgG (GE Healthcare) for 2 h at room temperature to detect GFP and lamin, respectively. The signal was enhanced using Enhance Signal West Dura (Thermo Scientific, Rockford, IL) and visualized using an 8-MP EX Sigma camera in a BioSpectrum imaging system (UVP) after a 25-min exposure.

Northern blotting

Northern blotting was performed using a 6% 7 M urea acrylamide gel to resolve histone mRNAs and 7SK RNA (Nguyen et al., 2012) as previously described (Mullen and Marzluff, 2008).

Statistical analysis

The SEM was calculated by dividing SD by the square root of the number of samples (n). Statistical significance between different samples was calculated using the Student’s t test.

Computational analysis of Mxc’s self-interaction

The structure of the LisH domain of TBL1X (Protein Data Bank ID 2XTC) was identified by HHpred (toolkit.tuebingen.mpg.de/hhpred; Soding, 2005) as a structural template for homology modeling of the LisH domain of Mxc using the Modeller software program (Eswar et al., 2006).

ACKNOWLEDGMENTS

We are grateful to Mark Peifer for kindly sharing the Nikon TE2000-E microscope (National Institutes of Health Grant R01GM067236), which greatly contributed to our study. We thank Tony Perdue for assistance in microscopy and Zbigniew Dominski and Xiao-cui Yang for generously sharing Mxc and FLASH antibodies. This work was supported by National Institutes of Health Grants F31GM106698-01 to E.T. and R01GM58921 to W.F.M. and R.J.D.

REFERENCES

Adams JC (2002). Characterization of a Drosophila melanogaster orthologue of muskelin. Gene 297, 69–78.

Aranid L, Landsman D (1998). AT-hook motifs identified in a wide variety of DNA-bending proteins. Nucleic Acids Res 26, 4413–4421.

Bian C, Wu R, Chen K, Xu X (2012). Loss of BRCA1-A complex function in RAP80 null tumor cells. PLoS One 7, e40406.

Bongiorno-Borbone L, De Cola A, Vernole P, Finos L, Barcaroli D, Knight RA, Aravind L, Landsman D (1998). AT-hook motifs identified in a wide variety of DNA-bending proteins. Nucleic Acids Res 26, 4413–4421.

Bulchand S, Menon SD, George SE, Chia W (2010). Muscle wasted: a novel companion of the LisH domain of Mxc using the Modeller software program (Eswar et al., 2006).

Cerna D, Wilson DK (2005). The structure of Sif2p, a WD repeat protein functioning in the SET3 corepressor complex. J Mol Biol 351, 923–935.

Deryusheva S, Gall JG (2004). Dynamics of collin in Cajal bodies of the Xenopus germinal vesicle. Proc Natl Acad Sci USA 101, 4810–4814.

Deryusheva S, Gall JG (2009). Small Cajal body-specific RNAs of Drosophila function in the absence of Cajal bodies. Mol Biol Cell 20, 5250–5259.

Dundr M (2012). Nuclear bodies: multifunctional companions of the genome. Curr Opin Cell Biol 24, 415–422.

Ems RD, Ponting CP (2001). A new sequence motif linking lissencephaly, Treacher Collins and oral-facial-digital type 1 syndromes, microtubule dynamics and cell migration. Hum Mol Genet 10, 2813–2820.

Emes RD, Ponting CP (2001). A new sequence motif linking lissencephaly, Treacher Collins and oral-facial-digital type 1 syndromes, microtubule dynamics and cell migration. Hum Mol Genet 10, 2813–2820.

Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Peier U, Sali A (2006). Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5, Unit 5.6.

Foray N, Marot D, Gabriel A, Randrianarison V, Carr AM, Pernicaudet M, Ashworth A, Jegg P (2003). A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J 22, 2860–2871.

Gall JG (2000). Cajal bodies: the first 100 years. Annu Rev Cell Dev Biol 16, 273–300.

Gerlitz G, Darbin E, Giorgio G, Franco B, Reiner O (2005). Novel functional features of the Lis-H domain: role in protein dimerization, half-life and cellular localization. Cell Cycle 4, 1632–1640.

Goodfry AC, Kupsco JM, Burch BD, Zimmerman RM, Dominski Z, Marzluff WF, Duronio RJ (2006). U7 snRNA mutations in Drosophila block histone pre-mRNA processing and disrupt oogenesis. RNA 12, 396–409.

Good MC, Zilant JG, Lin WA (2011). Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686.

Harrer M, Luhrs H, Bustin M, Scheer U, Hock R (2004). Dynamic interaction of HMGA1a proteins with chromatin. J Cell Sci 117, 3459–3471.

Hebert MD, Matera AG (2000). Self-association of collin reveals a common theme in nuclear body localization. Mol Biol Cell 11, 4159–4171.

Kim MH, Cooper DR, Oleksy A, Devedjiye Y, Derewenda U, Reiner O, Otlevski J, Derewenda ZS (2004). The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications. Structure 12, 987–998.

Klingauf M, Stanek D, Neugebauer KM (2006). Enhancement of U4/U6 small nuclear ribonucleoprotein particle association in Cajal bodies predicted by mathematical modeling. Mol Biol Cell 17, 4972–4981.

Knoblich JA, Sauer K, Jones L, Richardson H, Saint R, Lehrer CF (1994). Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77, 107–120.

Kobayashi N, Yang J, Ueda A, Suzuki T, Tomaru K, Takeno M, Okuda K, Ishigatsubo Y (2007). RanBPM, Muskelin, p84ELMP, p44CLTH, and the armadillo-repeat proteins ARMcalpha and ARMcBbeta are components of the CTLH complex. Gene 396, 236–247.

Lemaitre E, Allegro R, Jones AL, Daigniere M, de Crombrugghe B, de Smaele E, Gasser S, Canonne H, Viara B, Sanglard D, Du Pasquier A, Briandet R, Demeneix B, Cappello G, Migeon J, Noireaux V, Morin I, Clezardin P, Galione A, Wanker EE, Legendre C, Tissir F, Delpech V, Brandmuller P, Gosselin A, Weil D, Deplancke B, De Pater I, Muirhead TJ, Auger P, de Brabander J, Hoffmann A, Desplan C (2005). A nuclear body is required for efficient histone mRNA degradation. RNA 11, 2027–2047.

Lazarovits G, Darbin E, Giorgio G, Franco B, Reiner O (2005). Novel functional features of the Lis-H domain: role in protein dimerization, half-life and cellular localization. Cell Cycle 4, 1632–1640.

Lanzotti DJ, Kupsco JM, Duronio RF, Duronio RJ (2004a). STRING(de25) and cyclin E are required for patterned histone expression at different stages of Drosophila embryonic development. Dev Biol 274, 82–93.

Lanzotti DJ, Kupsco JM, Yang XC, Dominski Z, Marzluff WF, Duronio RJ (2004b). Drosophila stem-loop binding protein intracellular localization is mediated by phosphorylation and is required for cell cycle-regulated histone mRNA expression. Mol Biol Cell 15, 1112–1123.

Li Z, Johnson MR, Ke Z, Chen L, Welte MA (2014). Drosophila lipid droplets buffer the H2A variant supply to protect early embryonic development. Curr Biol 24, 1485–1491.

Liu JL, Murphy C, Busczak M, Catterbuck S, Goodman R, Gall JG (2006). The Drosophila melanogaster Cajal body. J Cell Biol 172, 875–884.

Lyons SM, Ricciardi AS, Guo AY, Kambach C, Marzluff WF (2014). The N-terminal extension of Lsm4 interacts directly with the 3′ end of the histone mRNA and is required for efficient histone mRNA degradation. RNA 20, 88–102.

Otlewski J, Derewenda ZS (2004). The structure of the N-terminal domain of Drosophila embryonic development. Dev Biol 24, 1485–1491.

Liu JL, Murphy C, Busczak M, Catterbuck S, Goodman R, Gall JG (2006). The Drosophila melanogaster Cajal body. J Cell Biol 172, 875–884.

Lyons SM, Ricciardi AS, Guo AY, Kambach C, Marzluff WF (2014). The N-terminal extension of Lsm4 interacts directly with the 3′ end of the histone mRNA and is required for efficient histone mRNA degradation. RNA 20, 88–102.
Ma T, Van Tine BA, Wei Y, Garrett MD, Nelson D, Adams PD, Wang J, Qin J, Chou LT, Harper JW (2000). Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/Cdk2 in Cajal bodies promotes histone gene transcription. Genes Dev 14, 2298–2313.

Machyna M, Kehr S, Straube K, Kappei D, Buchholz F, Butter F, Ule J, Hertel J, Stadler PF, Neugebauer KM (2014). The colin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol Cell 56, 389–399.

Marzluff WF, Wagner EJ, Duronio RJ (2008). Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9, 843–854.

Matera AG (1999). Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol 9, 302–309.

Matera AG, Izaurri-Sierra M, Praveen K, Rajendra TK (2009). Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17, 639–649.

Menssen R, Schweiggert J, Schreiner D, Reuter J, Braun B, Wolf DH (2012). Exploring the topology of the Gid complex, the E3 ubiquitin ligase involved in catabolite-induced degradation of gluconeogenic enzymes. J Biol Chem 287, 25602–25614.

Miele A, Braastad CD, Holmes WF, Mita P, Medina R, Xie R, Zaidi SK, Ye X, Wei Y, Harper JW, et al. (2005). HiNF-P directly links the cyclin E/Cdk2/p220NPAT pathway to histone H4 gene regulation at the G1/S phase cell cycle transition. Mol Cell Biol 25, 6140–6153.

Mikolajka A, Yan X, Popowicz GM, Smialowski P, Nigg EA, Holak TA (2006). Structure of the N-terminal domain of the FOP (PFGR1OP) protein and implications for its dimerization and centrosomal localization. J Mol Biol 359, 863–875.

Misteli T (2001). The concept of self-organization in cellular architecture. J Cell Biol 155, 181–185.

Misteli T (2005). Concepts in nuclear architecture. Bioessays 27, 477–487.

Mowry KL, Steitz JA (1987). Identification of the human U7 snRNP as one of the oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5' to 3' and 3' to 5'. Genes Dev 22, 50–65.

Muller TE, Marzluff WF (2008). Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5' to 3' and 3' to 5'. Genes Dev 22, 50–65.

Nguyen D, Krueger BJ, Sedore SC, Brogie JE, Rogers JT, Rajendra TK, Saunders A, Matera AG, Lis JT, Uguen P, Price DH (2012). The Drosophila 7SK snRNP and the essential role of dHEXIM in development. Nucleic Acids Res 40, 5283–5297.

Novotny I, Blazikova M, Stanek D, Herman P, Malinsky J (2011). In vivo kinetics of U4/U6.U5 tri-snRNP formation in Cajal bodies. Mol Cell Biol 22, 513–523.

Nussinov R, Ma B, Tsai CJ (2013). A broad view of scaffolding suggests that scaffolding proteins can actively control regulation and signaling of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9, 843–854.