Supplementary Note 1: detailed description and diagnosis of the tessa model

October 16, 2020

1 Overview

T cells play a central role in moderating host immune response. T cell receptors (TCRs) identify specific TCR clonotypes and mediate recognition of antigens and activation of T cell. Therefore, an informative characterization of TCRs is critical for studying T cell immunity and responsiveness to immunotherapies. Many experimental and in-silico approaches have been developed to characterize the TCR repertoire. However, most existing approaches are not able to elucidate the functional relevance of TCR sequences, which significantly hinders and could mislead interpretation of the roles of T cells in various biological processes. To address this inadequacy, we developed a Bayesian model named tessa (TCR Functional Landscape Estimation Supervised with ScRNA-Seq Analysis), to integrate TCR sequence profiling with the transcriptomes of T cells. Enabled by the recently developed single cell sequencing techniques, which provide both TCR sequences and RNA sequences of each T cell concurrently, tessa allows us to map the functional landscape of the TCR repertoire, and generates insights into understanding human immune response to diseases.

2 The tessa model

2.1 Input data

The aims of tessa include: (1) estimating TCR sequence similarities and building TCR networks, and (2) capturing the association between expression and TCR repertoire. The 10x Genomics Chromium single cell immune profiling technique, and other advanced sequencing techniques, are capable of providing both gene expression and T cell receptor sequencing for each T cell simultaneously. For each T cell, we have (1) gene expression levels, as one numerical vector. Each element in the vector represents the RNA expression level of one gene, and (2) one TCR sequence, which is converted into a numeric vector through a stacked auto-encoder. The TCR sequences considered in the tessa model include only the TCR-β chain CDR3 region sequences. Typically, one T cell has only one productive TCR-β chain detected. In very rare conditions when one T cell has two productive TCR-β chains detected from the sequencing data, we select the sequence with the higher expression level. The group of T cells from the same patient that share the same TCR sequence are referred to as the same clone, and they are of the same clonotype. No T cell appears in more than one clone, and there are some clones that have only one unique T cell. The stacked auto-encoder extracts sequence features from each unique TCR and converts it into a numerical vector. Let \(i = 1, ..., T \) be the indices for T cells. Each T cell has a vector of numeric gene expression values, denoted by \(e_i \), and a vector of numeric TCR sequence features, denoted by \(t_i \).

2.2 Model specification

As the first step, T cells are assigned into networks depending on their sequence similarity, where T cells in one network are likely to target the same antigen. Naturally, T cells sharing the same TCR should be assigned to the same network. Therefore, networks are built on the units of TCRs, or clones, rather than those of T cells. We use \(t \) to represent all the unique TCRs, in the 30-dim embedded space, in one dataset. However, the RNA expression values of T cells sharing the same TCR are usually not the same, so we use \(e \) to represent expression of all individual T cells rather than T cell clones in one dataset. We consider identifying \(K \) networks among all T cells with observed data \(t \) and \(e \). The number of networks \(K \) is a positive integer determined through a Dirichlet Process dynamically, which assigns the network membership \(m_i \in \{1, ..., K\} \) for the \(i \)-th clone.

In each TCR network, we will determine a network center T cell clonotype. For the \(k \)-th network consisting of T cell clones with \(\varphi_k \) different TCR sequences \(\{ t_{k,1}, ..., t_{k,\varphi_k} \} \), we identify \(t_{k,c_k} \), where \(c_k \in \{1, ..., \varphi_k\} \), as the center TCR
that is "closest" to the mean of all embedded TCR sequences in this network. The remaining TCRs are considered as non-center in network k. Due to the inner structure of the networks such that there are center clones and non-center T cell clones in each network, we used the terminology of networks rather than clusters in this work, to emphasize this internal hierarchy.

Next, we maximize the association between TCRs and gene expression. Based on our observation of the real data, if two T cell clones within the same network have more similar TCRs, their expression profiles are also more similar. Motivated by this observation, we specify the relationship between TCR distances and expression distances in network k via a linear regression model,

$$d_{k,c,r}^r = a_k d_{k,c,r}^e + \epsilon_{k,r},$$

where $d_{k,c,r}^e$ are distances between the center TCR and the non-center TCRs, $d_{k,c,r}^r$ represents the average of the pairwise distances, in terms of gene expression, between all T cells in the center clone and all T cells in each non-center clone, for $r = 1, ..., \varphi_k$. The regression coefficient and the random error are denoted by a_k and $\epsilon_{k,c,r}$, respectively. The error term $\epsilon_{k,c,r}$ is assumed to follow a normal distribution with mean 0 and a variance of σ_r^2. Specifically, the two sets of distances in (1) can be calculated as,

$$d_{k,c,r}^e = \frac{1}{2} \sum_{q=1}^{Q} \frac{(t_{k,r,q} - t_{k,c,q})^2}{b_q}, 0 < r, c_k \in 1, ..., \varphi_k,$$

and,

$$d_{k,c,r}^r = \frac{\sum_{r \in g_k,r} \sum_{j \in g_k,c} ||e_i - e_j||^2}{|g_k,r| \cdot |g_k,c|}, 0 < r, c_k \in 1, ..., \varphi_k,$$

where g_k,r and g_k,c refer to the sets of the cells that belong to non-center TCR clone $t_{k,r}$ and the center TCR clone $t_{k,c}$, respectively.

As we previously mentioned, the networks are built on TCR clones rather than T cells, and the transcriptomes of the T cells in the same clonotype are usually not the same. The expression distances in (3) are defined as the average of the expression distances between every cell in one clone and every cell in the other clone. Assuming that different embedding digits of TCRs have different importance in terms of describing the part of TCR that is more relevant for the function of T cells, we employ the weighting factor $b = \{b_q\}_{q=1}^{Q}$ in (2) to adjust the weights of each digit to maximize the association between expression and TCRs in (1). As a result, the component of TCRs that is more relevant to the function of T cells is more influential in the tessa model. Q is the number of embedding digits. For instance, $Q = 30$ with our stacked auto-encoder.

For the network assignments m_i ($m_i = 1, ..., K$) for clone i, we employ a Dirichlet Process with a very diffuse base measure, $G_0 : MVN((t_{mean,1}, ..., t_{mean,i}, ..., t_{mean,30})^T, \lambda I_Q)$, where $t_{mean,i}$ represents the average value of the i-th element of all the input embedded TCR sequences t, and λ is a large positive number which is pre-defined to keep the base measure diffuse enough and cover the dynamic region of the embedded TCR sequences. We define $t_{k,0}$ as the mean of the multivariate normal distribution that can describe the group of (embedded) TCRs in network k. We also define the center TCRs c_k, which is the TCR clonotype that is closest to $t_{k,0}$, and the fixed scaling parameter ξ for sampling m_i. We assume a multivariate normal distribution for t,

$$p(t_{k,1}, ..., t_{k,\varphi_k})|t_{k,0}, b, m_i) \propto \prod_{r=1, ..., \varphi_k} e^{-d_{k,0,r}^r} \left(\prod_{b_q}\right)^{b_q} 0.5 \cdot$$

Given the network assignment in (4), for each network k, we define the center as,

$$c_k = \arg\min_s |t_{k,0} - t_{k,s}|, s \in \{1, ..., \varphi_k\}.$$

We then define priors and hyperpriors. A diffuse inverse gamma prior distribution $IG(a = 0.1, v = 0.1)$ is taken for b_q in (2) and for σ_r^2 of the random error $\epsilon_{k,r}$ in (1). We assign the regression coefficient a_k in (1) with a g–prior $N(a, g\sigma^2)$. For the hyperparameter a, we assume a truncated normal prior to enforce a to have a positive value,

$$TN(a; 0, \tau, a > 0) \propto e^{-\frac{a^2}{\tau}} ,$$

where τ is a pre-defined large positive number to make the prior diffuse. The overall model structure is summarized in SN1 Fig 1.
2.3 Posterior computation

Let $\Theta = \{\{a_k\}_{k=1}^{K}, \{b_q\}_{q=1}^{Q}, \{m_i\}_{i=1}^{K}, \{t_{k,0}\}_{k=1}^{K}, a, \sigma^2\}$ denote the set of model parameters. The joint posterior distribution is,

$$p(\Theta | t, e) \propto \prod_{k=1}^{K} G_0(t_{k,0}; \lambda) \cdot \prod_{q=1}^{Q} IG(b_q; u, v) \cdot \prod_{k=1}^{K} P(\{t_{k,1}, ..., t_{k,\varphi_k}\}| t_{k,0}, \{b_q\}_{q=1}^{Q}, \{m_i\}_{i=1}^{K}) \cdot \mathcal{N}(a; 0, \tau, a > 0).$$

With the log-posterior in (8), we employ the MCMC sampling to draw samples for each parameter in Θ.

$$\log(p(\Theta | t, e)) = -\frac{1}{2} \sum_{k=1}^{K} \sum_{q=1}^{Q} \log(\sigma^2_k) - \frac{1}{2} \sum_{k=1}^{K} \sum_{r=1}^{\varphi_k} \log(d_{k,r}^2) + \frac{v}{b_q} - \sum_{k=1}^{K} \sum_{r=1}^{\varphi_k} a_k d_{k,r}^2 + \frac{\sum_{q=1}^{Q} \log(b_q)}{2} - \frac{a^2}{\sigma^2} - [(u+1)\log(\sigma^2) + \frac{v}{\sigma^2}].$$

We update Θ according to the following steps.

(I) Updating network membership m_i for each cell i, using a Dirichlet process for all the clones $g_{k,r} = \{i| t_i = t_k, m_i = k\}$. The updating rule of each clone is as follows,

(a) If this clone belongs to a network with $\varphi_k = 1$, we remove the network k, the associated $t_{k,0}$ and a_k, and update $\Lambda = \{1, ..., K/k\}$.

(b) If this clone belongs to a network with $\varphi_k > 1$, we update the network k by changing φ_k to $\varphi_k - 1$.

Then we estimate the probability for each clone to belong to any of the existing networks or a new network following these steps.

(a) We build a new network $K + 1$, the ‘putative center’ $t_{K+1,0}$ is drawn from $G_0(t_{K+1,0}; \lambda)$ and the linear coefficient a_{K+1} is drawn from $\mathcal{N}(a_{K+1}|a, \sigma^2)$. The center of the new network is the clone $t_{k,r}$, which is denoted as $c_{K+1} = t_{k,r}$.

(b) We sample a network k_s from current networks, which includes the new one we created in the last step. The probability of drawing k_s from one of $\{\Lambda, K+1\}$ is proportional to

$$\left[I(k_s \in \Lambda)\varphi_k + I(k_s = K + 1) \times 10^5\right] \cdot MN(t_{k,r}| t_{k,0}, \{b_q\}_{q=1}^{Q}) \cdot N(d_{k,r}^2| q \cdot a_k d_{k,r}^2, \sigma^2_e).$$

where $N(d_{k,r}^2| q \cdot a_k d_{k,r}^2, \sigma^2_e)$ refers to the regression between the TCR sequence and the T cell expression for the sampled k_s.

(c) We assign $t_{k,r}$ to the sampled k_s according to the last step. Update K if needed, and rename the associated indices including $\varphi_k, m_i, d_{k,r}, d_{k,r}^2$, and c_k.

(II) We update $t_{k,0,q}$ by drawing each $t_{k,0,q}$ from,

$$N\left(\frac{\sum_{r=1}^{\varphi_k} t_{k,r,q}}{b_q \left[1 + \frac{\varphi_k}{b_q}\right]} \cdot \left[1 + \frac{\varphi_k}{b_q}\right]^{-1}\right).$$

SN1 Fig. 1: The tessa model structure.
We apply tessa to analyze T cells from multiple sources.

Let us create an indicator function a_k to determine whether the potential assignment of k to the same source. Otherwise, if the network contains clones from more than one source, we set $a_k = 0$.

The joint posterior distribution in (7) is adjusted to,

$$P(A|B) = \frac{\prod_{k=1}^{K} G_0(t_{k,0}; \lambda) \cdot \prod_{q=1}^{Q} IG(b_q; u, v) \cdot \prod_{k=1}^{K} P(t_{k,l} \mid \{t_{k,0}, \{b_q\}_{q=1}^Q, m_v\}, TN(a; 0, \tau, a > 0) \cdot IG(\sigma^2; u, v) \cdot \prod_{k=1}^{K} \prod_{r=1}^{\phi_k} N(a_k|a, \sigma^2) \prod_{k=1}^{K} \prod_{r=1}^{\phi_k} N(d_{k,c,r}^2|a_k d_{k,c,r}^2, \sigma^2) \cdot I(g)$$

The additional requirement does not change any posterior sampling procedure, except for the sampling of network memberships. The DP probability needs to be updated as $p(k_i | I(g^i))$, where $p(k_i)$ is the same as (9), and $I(g^i)$ tests whether the potential assignment of k_i to $\{\Lambda, K + 1\}$ is in compliance with the prerequisite that networks should only comprise clones from the same subset of data.

2.5 Linear relationship between TCR and expression of T cells

In this work, we assumed a linear relationship between TCR distances and expression distances of T cells in each network. One might argue that the linear relationship is not very obvious, as we showed in Extended Data, Fig. 2. In fact, in Extended Data, Fig. 2, the distances are calculated for all TCR clones of one dataset in a pair-wise manner. Therefore, in the right segments of each figure, where the TCR distances are large, such distances are more likely to be from pairs of T cells from different networks. In the left segments, the distances are more likely to be from pairs of T cells from the same networks. We only assume the intra-network distances to follow the linear relationship in the
tessa model. As can be seen from Extended Data. Fig. 2, the relationship between TCR and expression in the left parts of the figures conform better to a linear relationship. For Extended Data. Fig. 2a, we subset the pairwise distances and kept only the top 10% pairs with the smallest TCR distances, likely more of which are intra-network pairs. The correlation coefficient increased from 0.493 (overall) to 0.784 (within this subset), as expected.

We also look further into the networks inferred by tessa and show that the intra-network pairs of the top three networks with the most TCR clones (SN1 Fig 2, dashed lines: regression line between expression distances and TCR distances, data from the healthy-CD8-3 dataset referred in the Supplementary Table.1). The intra-network expression and TCR distances confirm better to a linear relationship when viewed in this way.

On the other hand, assuming a linear model between TCRs and expression of T cells will have the advantage of being simple, which can avoid inadvertently forcing a very high and artificial correlation between TCRs and expression. But our future work can explore other possibilities of assuming non-linear relationships in the tessa model.

3 Simulation study

We conduct simulation studies to evaluate the performance of tessa under various settings. The simulation procedure is described as follows:

(a) We first define K networks for one simulation experiment denoted as $\Phi = \{\phi_k\}$, for $k = 1, \ldots, K$, where ϕ_K, drawn from $U(1, 2\phi_{ave})$, represents the number of clones of each network, and ϕ_{ave} is the average number of clones among K networks. Depending on K and Φ, we generate the simulated network memberships $M = \{m_i\}$, where $m_i \in 1, \ldots, K$, for each of the clone i. To simplify the simulation scheme, we skip the step of combining data from different T cells in the same clone when handling the real data. Instead, we directly generate the clone-level data.

(b) Each b_q, for $q \in 1, \ldots, Q$, is randomly drawn from an inverse-gamma distribution, the shape and the scale of which are determined to match the real data, we let $Q = 30$, the shape of the inverse-gamma distribution equals to 5, and the scale equals to 2.

(c) For each network, each element of the ‘putative center’ $t_{k,0}$ is randomly drawn from a normal distribution $N(0, (\sum_{q=1}^{Q} \sqrt{b_q} \times t_{dist})^2)$, where $k \in 1, \ldots, K$, and t_{dist} is a diffusion factor that controls the overall TCR distances between network centers.

(d) For each network, the embedding of each TCR clonotype sequence is simulated from a normal distribution $N(t_{k,0,q}, b_q)$, where $q = \{1, \ldots, Q\}$, and different TCR sequences are simulated for the network k. All simulated TCR sequences are denoted as a matrix of t.

(e) Next, we calculate d^t_k, c_k, r for all $k = 1, \ldots, K$ with t and t_0. To simplify the calculation, here we assume that $t_{k,0}$ and c_k are the same, and both of them are real TCR centers for networks. Therefore, $d^t_k, c_k, r = \sum_{q=1}^{Q} \frac{(t_{k,q}-t_{0,q})^2}{b_q}$, where $k = 1, \ldots, K$.

(f) Next we simulate the expression data for each network. We define a three-element expression vector for each clone. To simplify the simulation, we assume there are only three genes. Actually, any number of genes can

SN1 Fig. 2: Scatter plots showing the linear relationships between the intra-network distances.
be assumed, which has limited effect on the simulation results. Again, since the expression distance in tessa is calculated between two TCR clones, here we generate simulated expression data at the clonal level directly. For each network, each of the three elements of a ‘putative expression center’ $c_{k,0}$ is randomly drawn from a normal distribution $N(0, 100)$, where $k = 1, ..., K$, and we define the variance according to our observation of the real data. Only the center clones’ expressions are simulated in this way. The other clones’ expression are not simulated directly, but rather the clone-to-clone expression distances are simulated as described below.

(g) Depending on the linear relationship we described in (1), for each of the network, $d_{k,ck,r}^e$ is simulated from $d_{k,ck,r}^e$. For each network k, the expression distance $d_{k,ck,r}^e$ between clone r and center TCR c_k (which is replaced by $l_{k,0}$) is randomly drawn from $N(c_{k,0}, \epsilon_{dist}^2 \times d_{k,ck,r}^e)$, where $k \in 1, ..., K$, and ϵ_{dist} is a diffusion factor that influences the approximate expression distances between network centers.

We consider the basic simulation setting with $K = 500$, $\varphi_{ave} = 10$, $t_{dist} = 1.5$, and $\epsilon_{dist} = 1$, to match the real data. Additional scenarios are considered in Section 3.3. For each scenario, we repeat the simulation study five times using different random seeds. The MCMC was iterated for 1,000 times, with the first 500 burn-ins.

3.1 Validation of the simulated data

To demonstrate that the data from our simulation experiments mimic real data, we first explored the simulated embedded TCRs with t-SNE plots (the same method as Fig. 1e in the main article) and one typical example (one simulated dataset with $K = 500$, $\varphi_{ave} = 10$, $t_{dist} = 1$, $\epsilon_{dist} = 1$) is shown in SN1 Fig 3. According to the simulation figure (SN1 Fig 3 below) and Fig. 1c of the main text, the ratios for within and between network TCR distances, in the simulated and real data, are on a comparable scale.

![SN1 Fig 3: T-SNE plots based on the TCR embeddings of the simulated TCR networks. TCRs in the same network were in the same color. Only the networks with more than 18 TCRs were shown to avoid the figures being overcrowded. The simulated TCR embeddings were adjusted by the simulated weighting factor b.](image)

We further calculated the pair-wise TCR distances and expression distances of the simulated TCRs, and analyzed the correlation between the two sets of distances using the same method as in Extended Data Fig. 2 in the main article. Typical examples (two simulated datasets with $K = 500$, $\varphi_{ave} = 10$, $t_{dist} = 1.5$, $\epsilon_{dist} = 1$, and different random seeds) were shown in SN1 Fig 4 (the r represents the Pearson correlation coefficient and the shaded area denotes the 95% confidence intervals for linear regressions). As expected, we found that the similar simulated TCRs were more likely to share similar simulated expression profiles, and the Pearson correlation coefficients between the two sets of distances were similar to those in the real datasets.

3.2 Diagnosis for convergence

We employed trace plots and auto-correlation functions (ACFs) to investigate the convergence of the MCMC process in the tessa model. Key parameters including α, and σ were examined. SN1 Fig 5a and SN1 Fig 6a shows that four parallel chains, initialized from four different random starting points, were well-mixed within 1000 iterations,
indicating convergence of parameters a and σ in the tessa model. From SN1 Fig 5b and SN1 Fig 6b we found that the autocorrelations of the log-scaled parameters decreased to being not significantly different from zero at about lag 3, which indicates only small serial correlations and our trace plots are reliable diagnostics for convergence. Furthermore, we calculated the Gelman-Rubin statistic for all the key parameters, where b achieved a point estimate = 1.05 with 95% upper limit being 1.07. For a and σ, the point estimates were 1.07 and 1.11, and the 95% upper limit were 1.23 and 1.31, respectively. The Gelman-Rubin diagnostic results also suggested the MCMC procedure converged in tessa.

3.3 Model performance evaluation

First we examined the ‘accuracy’ of the tessa networks measured by the Adjusted Rand Index (ARI). ARI estimates the similarity between the simulated clonal memberships $M_{\text{sim}} = \{m_{1}, m_{2}, ... , m_{i}, ..., m_{N}\}$, where $m_{i} \in \{1, 2, ..., K\}$ and N is the total number of clones, and the tessa predicted clonal memberships M_{pred}. An ARI of 0 represents random labeling, and 1 means that the M_{sim} and M_{pred} are identical. We vary the following parameters to create different
4 Hyper-parameter selection in real data

In the real data analysis, a standard diffuse prior was chosen for most hyper-parameters, and the inference is not sensitive to the choice of the value. There are two hyper-parameters that were tuned during the tessa model building, which are \(g \) and \(\xi \). \(g \) is used in the prior for \(a_k \) in the formula (11). \(g \) stayed the same for all real datasets and had

SN1 Fig. 6: Trace plots and auto-correlation function plots of \(a \) in four parallel chains.

SN1 Fig. 7a and SN1 Fig 7b showed that within the range of numbers used in the simulation, the number of the total TCR network in each dataset did not have much influence on the accuracy. However, building tessa networks with larger sizes achieved a higher modeling accuracy. We evaluated the real data and found that, mostly \(K \) is larger than 500 and smaller than 1000, and the average number of clones in the networks \(\varphi_{ave} = 10 \). Tessa has achieved high ARIs (\(ARI > 0.90, SD < 0.10 \)) in the simulation tests within the range of the real data.

Next we evaluated whether the \(t_{dist} \), the approximate TCR distances between networks, have influence on the accuracy. As we expected, increasing the \(t_{dist} \) resulted in a more dispersed network structure. Therefore, the results of tessa are more accurate as the networks become better separated by large distances (SN1 Fig 7c). In the real data, the estimated \(t_{dist} \) value is about 1.5. In SN1 Fig 7c we observed that tessa achieved \(ARI = 0.94, SD < 0.001 \) when \(t_{dist} = 1.5 \). Next we evaluated the \(e_{dist} \), which controls the clone-to-clone expression distances within networks. Increasing the \(e_{dist} \) resulted in higher ARIs, but the influence was limited (SN1 Fig 7d), which is expected as tessa does not primarily rely on the clones within the same network have similar or different expression profiles, but rather, emphasizes the regression between expression and TCRs within each network. In the real data, the estimated \(e_{dist} \) value ranges from 0.1 to 1. We found in SN1 Fig 7d that tessa achieved \(ARI \) between 0.91 and 0.94 (\(SD < 0.001 \)) within the real data range of the \(e_{dist} \).

Lastly, we evaluated the tessa estimations of the weighting factor \(b \). As we elaborated in the main article, the weighting factor \(b \) weights the importance of each digit of the TCR sequence embedding, which respect to the expression of T cells. We compared the \(b_{sim} \) vectors that are simulated and the \(b_{pred} \) vectors from the tessa estimation results. Under all simulation conditions, the Pearson correlation coefficients were close to 1, with typical examples shown in SN1 Fig 8.
SN1 Fig. 7: ARIs of different simulation experiments. Error bars plotted as SDs of 5 random repeats, hard to be observed because of small differences.

limited effect on the final estimation outcome. g was chosen to be 0.001 to achieve the best convergence of the model. The hyper-parameter ξ is from the formula (9). ξ determines how likely TCRs are clustered into networks (larger number leads to fewer networks). ξ was 25 (default) for all datasets, except for the four healthy-CD8 datasets (Supplementary Table. 1), where ξ was 40. This choice was made to ensure the clustering rates of TCRs are comparable across the different datasets.

In summary, these simulation analyses have established the robustness of tessa, its good statistics characteristics, and its capability of accurately mapping the functional landscape of TCR repertoire.
SN1 Fig. 8: Correlation between b_{sim} generated in the simulation and b_{pred} estimated by tessa.
Supplementary Note 2: Further bioinformatics analyses and discussion of tessa

Functional differences between center and non-center T cell clones

The 10X Immune Profiling technique (the 4 10X datasets) is very powerful and has incorporated multiple modalities. One of the modalities is the measurement of expression of a number of cell surface protein markers (in addition to regular scRNA expression). The captured markers for these cells include cell type sorting markers such as CD3 and CD8, and there are two, HLA-DR and PD-1, which can characterize T cell functional status. We examined the top 1% (in terms of network size) TCR networks that also have at least 3 different TCR clones, and divided the clones into three segments (group 1, group 2, and group 3), according to their tessa-weighted distances from the center clones, where group 1 are the most close clones to centers and group 3 are the most distant clones. We examined the expression of HLA-DR and PD-1 on T cells falling into each segment. It is quite interesting that, in each of the four datasets, a decreasing gradient can be seen, which means that T cells with TCRs more similar to the center TCRs have higher expression of HLA-DR and PD-1. As HLA-DR and PD-1 are markers of T cell activation47-49, the results suggest that there is a gradient over group 1 to group 2 to group 3 such that the T cells with TCRs more similar to the center TCRs are more activated, consistent with their higher clonal expansion (\textbf{Fig. 2c-e}). For all boxplots appearing here and below, box boundaries represent interquartile ranges, whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range, and the line in the middle of the box represents the median.
SN2 Fig. 1 The expression of HLA-DR on the surface of the T cells in the TCR clones that were divided into group1, group2, and group3, across the 4 10X datasets. One-sided Jonckheere test was applied to test if there is a decreasing trend of HLA-DR expression from group 1 to group 3. The Fisher’s combined p-value for the four datasets is 1.80×10^{-3}. The number of clones in the three groups are: $N1=7$, $N2=6$, $N3=19$ (Donor 1), $N1=4$, $N2=4$, $N3=11$ (Donor 2), $N1=4$, $N2=4$, $N3=12$ (Donor 3), and $N1=7$, $N2=7$, $N3=20$ (Donor 4), respectively. Same for the figure below.
SN2 Fig. 2 The expression of PD-1 on the surface of the T cells in the TCR clones that were divided into group1, group2, and group3, across the 4 10X datasets. One-sided Jonckheere test was applied to test if there is a decreasing trend of PD-1 expression from group 1 to group 3. The Fisher’s combined p-value for the four datasets is 1.75×10^{-3}.

Furthermore, using the RNA expression data of the T cells, we examined genes that showed a monotonous increasing or decreasing trend over group 1 to group 2 to group 3. We input them into the GOrilla server50,51. We found that, in these datasets, the monotonously changing genes are enriched in immune activation (group 1>group 2>group 3) and metabolomic terms (group 1<group 2<group 3), which echoes the PD-1 and HLA-DR results above. Due to the issue of space, we only show the Gene Ontology results from the first dataset. The P values shown are from two-sided Hypergeometric tests. The original P values and False Discovery Rates (FDRs) of multiple comparisons are both shown.
SF2 Table 1 Up-regulated pathways in group 1 T cell clones

GO Term	Description	P-value	FDR q-value	Enrichment N	B	n	b	
GO:0001817	regulation of cytokine production	2.35E-07	3.64E-03	3.23	17281	689	194	25
GO:0002376	immune system process	5.25E-07	4.07E-03	1.99	17281	2323	194	52
GO:0050776	regulation of immune response	1.95E-06	1.01E-02	2.56	17281	1045	194	30
GO:0006955	immune response	1.15E-05	4.44E-02	2.3	17281	1202	194	31
GO:0018219	positive regulation of cytokine production	3.64E-05	1.13E-01	3.25	17281	438	194	16
GO:0048518	positive regulation of biological process	1.13E-04	2.93E-01	1.30	17281	5778	194	90
GO:0048584	positive regulation of response to stimulus	1.27E-04	2.81E-01	1.75	17281	2240	194	44
GO:0009987	cellular process	1.33E-04	2.57E-01	1.15	17281	12992	194	167
GO:0050778	positive regulation of immune response	1.52E-04	2.63E-01	2.44	17281	768	194	21
GO:0045087	innate immune response	1.76E-04	2.72E-01	2.73	17281	554	194	17
GO:002682	regulation of immune system process	1.77E-04	2.50E-01	1.91	17281	1587	194	34
GO:0017755	cell activation	1.92E-04	2.48E-01	2.23	17281	958	194	24
GO:0041131	cell activation	2.13E-04	2.54E-01	4.88	17281	143	194	8
GO:0045321	leukocyte activation	2.22E-04	2.46E-01	2.31	17281	848	194	22
GO:0006950	response to stress	2.51E-04	2.60E-01	1.59	17281	2964	194	53
GO:0070936	protein K48-linked ubiquitination	2.87E-04	2.78E-01	8.57	17281	52	194	5
GO:0043122	regulation of I kappa B kinase/NF-kappaB signaling	3.00E-04	2.73E-01	3.84	17281	232	194	10
GO:0043170	macromolecule metabolic process	3.12E-04	2.68E-01	1.36	17281	5679	194	87
GO:0050929	positive regulation of NF-kappaB transcription factor activity	3.38E-04	2.63E-01	4.69	17281	152	194	8
GO:0016197	endosomal transport	3.79E-04	2.93E-01	4.09	17281	196	194	9

SF2 Table 2 Up-regulated pathways in group 3 T cell clones

GO Term	Description	P-value	FDR q-value	Enrichment N	B	n	b	
GO:0036222	cellular protein-containing complex assembly	3.8E-04	1.6E-01	2.75	17281	795	182	23
GO:0009987	cellular process	3.99E-05	1.08E-01	1.17	17281	12992	182	160
GO:0044237	cellular metabolic process	3.26E-05	1.68E-01	1.37	17281	6925	182	100
GO:0043170	macromolecule metabolic process	3.56E-05	1.38E-01	1.44	17281	5679	182	86
GO:0006413	translational initiation	4.24E-05	1.31E-01	6.28	17281	121	182	8
GO:0045669	regulation of virus genome replication	5.28E-05	1.36E-01	7.22	17281	92	182	8
GO:0016071	mRNA metabolic process	5.43E-05	1.20E-01	2.89	17281	591	182	18
GO:0090304	nucleic acid metabolic process	8.03E-05	1.56E-01	1.85	17281	2055	182	40
GO:0043983	protein-cortactin complex subunit organization	9.89E-05	1.70E-01	2.02	17281	1507	182	32
GO:0044260	cellular macromolecule metabolic process	1.09E-04	1.68E-01	1.5	17281	4373	182	69
GO:0034645	cellular macromolecule biosynthetic process	1.15E-04	1.67E-01	2.35	17281	928	182	23
GO:0042733	ribosomal large subunit biogenesis	1.48E-04	1.92E-01	14.61	17281	26	182	4
GO:0033441	cellular nitrogen compound metabolic process	1.50E-04	1.79E-01	1.63	17281	3031	182	52
GO:0006139	nucleoside-containing compound metabolic process	1.51E-04	1.67E-01	1.7	17281	2566	182	46
GO:0049900	regulation of multi-organism process	2.06E-04	2.12E-01	3.24	17281	381	182	33
GO:0046003	protein-cortactin complex assembly	2.25E-04	2.18E-01	2.08	17281	1322	182	27
GO:0008152	metabolic process	2.33E-04	2.12E-01	1.3	17281	7698	182	105
GO:0050792	regulation of viral process	2.36E-04	2.04E-01	4.36	17281	196	182	9
GO:0006725	cellular aromatic compound metabolic process	2.47E-04	2.02E-01	1.64	17281	2776	182	48
GO:0002244	hematopoietic progenitor cell differentiation	2.59E-04	2.00E-01	6.78	17281	84	182	6

Further benchmarking tessa against GLIPH, for discovering novel biological insights

We carried out more systematic analyses to compare the results from tessa and also from GLIPH (purely TCR-based analyses) for the datasets used in Fig. 234, in order to demonstrate the capability of tessa in deriving novel biological insights in real data applications.

First we performed the analyses as we did in Fig. 2e, but with GLIPH. Here we show that GLIPH is not able to reveal the gradients of antigen binding affinity within the TCR clusters it identified.
SN2 Fig. 3 GLIPH cannot reveal the decreasing gradient of antigen binding strength for TCRs, along with increasing dissimilarity to the center TCRs of the TCR networks. The same analysis was done as in Fig. 2e, but with GLIPH instead of tessa. The TCR clonotypes from each dataset were divided into six groups of equal size (N(TCR)=198).

We also performed GLIPH clustering on the BCC datasets of Fig. 3. As in our main text, we defined the ‘pre-1, pre-2, post-1, post-2’ subsets based on the clustering results. That is, post-2 clones are from clusters including only post-treatment clones, pre-2 clones are from pre-treatment-only clusters, and pre-1 and post-1 are from mixed clusters. We calculated pathway activity scores for the four subsets. The exhausted pathway is attached below. The figures show that GLIPH clustering is unable to distinguish post-treatment clones into two subsets, because all post clones were clustered with pre clones, leaving no post-treatment only clusters.

SN2 Fig. 4 GLIPH clustering is unable to distinguish post-treatment cells into two subsets. The numbers of T cells in the six subgroups analyzed were: responders: N(pre-1)=1638, N(post-1)=830, N(pre-2)=859; non-responders: N(pre-1)=1023, N(post-1)=828, N(pre-2)=1029, respectively.

Next we applied GLIPH clustering on all the single cell datasets and again calculated the ‘unexplained variations’ as we did in Fig. 4d to test the level of constraint on transcriptomic variations by TCRs, in the GLIPH clusters. In Fig. 4d, we took the top 20%, 40%, 60%, and 80% tessa networks with the largest numbers of unique TCR clones. But GLIPH identified much
fewer clusters with each cluster being much bigger, in each dataset. Therefore, we cannot take this subsetting approach for GLIPH, and thus have showed all GLIPH clusters below:

\[\text{SN2 Fig. 5} \] The unexplained variance in gene expression of all GLIPH clusters from twelve tumor samples of different cancer types and seven healthy donors.

Our results show that, unlike tessa, GLIPH cannot reveal the differences in unexplained variations between tumor and normal scRNA datasets.

Controlling for T cell stages when interpreting the TCR-transcriptome associations

In *Fig. 4*, we derived the observation that the unexplained variations by TCRs are much larger for the tumor datasets than the normal datasets. As we discussed in our paper, TCRs and intrinsic/extrinsic cues both impact the functions of T cells, which is also the conclusions of Tubo *et al*\(^1\) and Buchholz *et al*\(^2\). Therefore, it seems possible that the different levels of TCR/transcriptome association are strongly influenced by the differential stimulations in the tumor and normal contexts. To investigate this possibility, we divided the T cells into different stages, and refined our analyses in *Fig. 4d*.

We first categorized the T cells in each tumor/normal dataset into different functional states. As in Yost *et al*\(^3\), we observed that the T cells formed a V-shaped distribution. At the joint of the two branches, are the naive cells and memory cells. The pseudotime analysis cannot distinguish the naive and memory cells, which is also the same as in Yost *et al*\(^3\). One of the branches has the activated cells and the other branch has the exhausted cells. We distinguished the activated and the memory cells by expression of marker genes. Specifically, we compared the average expression levels of five marker genes between the cells from the two branches. The cells in the activated branch should have higher expression levels of *IFNG*, *TNF* and *FOS*, and the cells in the exhausted branch should highly express *ENTPD1* and *HAVCR2*\(^3\). One example dataset was shown below (the Breast-1 dataset of *Supplementary Table 1*)
SN2 Fig. 6 Pseudotime of T cells. The pseudotime of 2,403 T cells was inferred and overlaid onto the diffusion map.

Next we repeated the analyses in Fig. 4d in each of the naive/memory, activated, and exhausted stages. In Fig. 4d, we carried out a percentage-wise sub-sampling approach at several cutoffs and observed the same phenomenon. Here, as we limited ourselves to a subset of T cells each time (e.g. naive/memory), this sub-sampling approach does not work, as we have lost sample sizes in this sub-sampling process. Therefore, the analyses below included all available cells.

SN2 Fig. 7 Unexplained variances by TCRs in each of the naive/memory, activated and exhausted stages in the twelve tumor datasets and seven healthy datasets.

From the figure above, we make two interesting observations:

(1) The unexplained variances in the activated and exhausted cells in the tumor datasets are still larger than the normal datasets (P-values of 0.117 and 0.077 from one-sided Student’s T-tests,
respectively), but the differences are smaller than in Fig. 4d. The unexplained variances in the naive/memory cells serve as a control (P-value of 0.186 from one-sided Student’s T-test), which shows an opposite trend. These differences suggest that indeed the different functional statuses of T cells in tumor and normal contexts, as a consequence of differential stimulation, strongly influence how much TCRs constrain the functions of the T cells. Furthermore, the fact that activated and exhausted T cells still show more unexplained variances in tumor contexts than normal contexts suggest that there could be additional non-TCR-dependent cues from the tumor micro-environment that affected the functions of T cells that are supposed to be executing cytotoxic roles in tumor cells.

(2) On the other hand, in the normal contexts, T cells in the activated and exhausted stages have less unexplained variances by the TCRs than the naive/memory cells. But this phenomenon is reversed in the tumor context. This is also interesting, as in the normal contexts, the environmental cues are relatively quiescent, and TCRs may play more important roles in influencing T cell transcriptomics, when activated in a TCR-dependent manner. In comparison, the tumor microenvironment likely confers more complicated cues upon the T cells, especially the activated and exhausted subsets, so that TCRs of T cells could play less influential roles.

Re-coloring Fig. 3a

To make it easier to discern the different groups of patients (e.g. responder pre-1) in Fig. 3a, we have used 8 different colors to re-label these 8 different groups and shown the figure below.
SN2 Fig. 8 t-SNE plot of the pre- and post-treatment T cells from all the BCC patients (dataset BCC, Supplementary Table 1). The colors represent clonal level labels.

This coloring scheme will make it easier to discern the 8 different groups of cells. But the coloring scheme in **Fig. 3a** makes it easier to be compared against **Fig. 3b**, which has a similar coloring scheme. We encourage the readers to consider these three figures together to visualize the changes between clone level labels and network level labels. The group of T cells that we want the readers to focus on is the “responder post-1” T cells, which is colored in orange in **SN2 Fig. 8**.

Quantifying the mixing effects of the clones in the CTCL patient and the healthy donor

For **Fig. 4ab**, we objectively quantified the mixing effects of the clones with Kullback-Leibler (KL) divergence between the original clonal distributions and randomly mixed distributions. For each dataset, we fixed the positions of cells on the t-SNE plot (**Fig. 4ab**) and gridded the t-SNE space into n x n (we selected n=10) squares. For cells from each clone, we calculated their frequency in the n² bins according to their t-SNE coordinates. Then we randomly permuted the clone labels of the cells and calculated their random frequency in these bins again. Then for each clone, a KL divergence statistic between the two sets of frequencies was calculated and regarded as ‘the relative difficulty for one clone becoming randomly distributed around the t-SNE space’.
The KL divergence calculation was repeated 1,000 times for each clone and the maximum S.D. across all the clones was 2.8. The 1,000 repeats were averaged to generate the KL divergence for each clone. As we show below, the healthy control clones have generally larger KL divergences. Therefore, the clone frequency distributions are less random or less ‘mixed’ than those from the CTCL patients. One-tailed student’s t-test was performed between the two groups of KL divergence statistics, and the P-value was 0.011.

SN2 Fig. 9 KL divergence statistics of the CTCL T cell clones and the healthy donor T cell clones for quantifying the mixing of the clones in the t-SNE space. N(CTCL)=416 and N(Healthy)=433.

This KL divergence calculation used the true sample size and clone size information, which were the same for every round of simulation. Therefore, sample sizes and clone sizes were naturally controlled.

Additional discussion on the significance of tessa

Here we provide additional discussions of the significance of our work. They are adapted from the comments of one of our reviewers, whom we acknowledge deeply for providing such a nice summary of our work.

Tessa is built upon the landmark studies of GLIPH and TCRdist, which allowed for an analysis of ‘likeness’ or ‘distance’ between TCRs. Prior to this, TCRs were considered either clonally distinct or clonally identical, and therefore analyses of TCR repertoires were limited in that there was no provision for appreciating the ‘effective diversity’ of any epitope specific population. Our current study builds significantly on those by overlaying an analogous TCR distance algorithm with an analysis of transcriptional distance, which is of huge significance to the field especially in light of the numerous platforms now that support simultaneous resolution of both TCR sequences and transcriptional profiling. The bottleneck now really is in the analysis and
interpretation of such parallel datasets and an algorithm, such as tessa, which aligns the two, would provide a substantial advance than what is currently available.

This work is powerful as it will provide not just critical fundamental information about the extent, to which TCR groupings are associated with distinct transcriptional profiles (and thus the extent to which the TCR is responsible for transcriptional phenotypes), but will enable the identification and selection of functionally potent TCR groupings when determined in the context of epitope specific populations. This in turn could facilitate the selection of TCRs for engineering/optimization/expression in clinical scenarios for the treatment of chronic viral infections or cancer immunotherapies. As an extension, one can imagine tessa facilitating the structural resolution of TCR recognition of pMHC class I proteins that drives a transcriptionally optimal phenotype. That is, by linking TCR clonotypes with transcriptional profiles, it will facilitate a deeper understanding of the key recognition characteristics that underpin this association.

References

47. Saraiva, D. P., Jacinto, A., Borralho, P., Braga, S. & Cabral, M. G. HLA-DR in Cytotoxic T Lymphocytes Predicts Breast Cancer Patients’ Response to Neoadjuvant Chemotherapy. Front. Immunol. 9, 2605 (2018).

48. Hong, J. J., Amancha, P. K., Rogers, K., Ansari, A. A. & Villinger, F. Re-evaluation of PD-1 expression by T cells as a marker for immune exhaustion during SIV infection. PLoS ONE 8, e60186 (2013).

49. Petrovas, C. et al. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. J. Exp. Med. 203, 2281–2292 (2006).

50. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

51. Eden, E., Lipson, D., Yoge, S. & Yakhini, Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 3, e39 (2007).
Supplementary Table 1 Data cohorts and details.

Cohort	Reference	Accession methods	#T cells	#Unique TRB sequences	Role	Data type
TCGA	Citation 23	https://gdc.cancer.gov/about-data/publications/painnnucm	204,881	181,787	Training auto-encoder	TCRs called from tumor RNA-Seq
Kidney-bulkRNA	Citation 24	https://github.com/jcạo9757/TESSA/tree/master/Tessa_released_data	80,801	75,157	Training auto-encoder	TCRs called from tumor RNA-Seq
IEDB	https://www.iedb.org/	https://www.iedb.org/database_export_v3.php	93	58	Training auto-encoder	TCR database export
McPAS	Citation 26	http://friedmanlab.weizmann.ac.il/McPAS-TCR/	702	521	Training auto-encoder	TCR database export
NSCLC-1	Chromium Single Cell Immune Profiling Solution on the 10x website	https://support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1_hs_nsccl_5ge	1,741	1,401	Training auto-encoder & Tessa	ScRNA-Seq multiplexed with TCR-Seq
NSCLC-2	Citation 26	EGAS00001002430	3,628	845	Training auto-encoder & Tessa	ScRNA-Seq multiplexed with TCR-Seq
CRC	Citation 27	EGAS00001002791	3,463	891	Training auto-encoder & Tessa	ScRNA-Seq multiplexed with TCR-Seq
HCC	Citation 28	EGAS00001002072	3,536	2,506	Testing auto-encoder & Tessa	ScRNA-Seq multiplexed with TCR-Seq
Breast-1	Citation 29	GSE114727, GSE114724	6,376	4,145	Training auto-encoder & Tessa	ScRNA-Seq multiplexed with TCR-Seq
Breast-2	Citation 29	Same as above	6,289	4,028	Training auto-encoder & Tessa	ScRNA-Seq multiplexed with TCR-Seq
Breast-3	Citation 29	Same as above	4,455	2,246	Training auto-encoder & Tessa	ScRNA-Seq multiplexed with TCR-Seq
Tissue	Citation	Sample	Training Method	Seq Configuration		
--------	----------	--------	-----------------	-------------------		
Breast-4	Citation 29	Same as above	4,840	2,452	Training auto-encoder & Tessa	ScRNA-Seq multiplexed with TCR-Seq
Breast-5	Citation 29	Same as above	4,189	2,243	Training auto-encoder & Tessa	ScRNA-Seq multiplexed with TCR-Seq
Healthy-CD8-1	Chromium Single Cell Profiling Solution on the 10x website	Same as above	12,784	9,502	Tessa	ScRNA-Seq multiplexed with TCR-Seq
Healthy-CD8-2	Chromium Single Cell Immune Profiling Solution on the 10x website	Same as above	16,246	4,846	Tessa	ScRNA-Seq multiplexed with TCR-Seq
Healthy-CD8-3	Chromium Single Cell Immune Profiling Solution on the 10x website	Same as above	7,839	4,389	Tessa	ScRNA-Seq multiplexed with TCR-Seq
Healthy-CD8-4	Chromium Single Cell Immune Profiling Solution on the 10x website	Same as above	10,873	6,817	Tessa	ScRNA-Seq multiplexed with TCR-Seq
Healthy-PBMC-1	Chromium Single Cell Immune Profiling Solution on the 10x website		709	589	Tessa	ScRNA-Seq multiplexed with TCR-Seq
Healthy-PBMC-2	Chromium Single Cell Immune Profiling Solution on the 10x website		540	450	Tessa	ScRNA-Seq multiplexed with TCR-Seq
Melanoma	Citation 30	GSE123139	3,615	1,690	Tessa	ScRNA-Seq multiplexed with TCR-Seq
BCC	Citation 31	GSE113590	6,207	2,482	Tessa	ScRNA-Seq multiplexed with TCR-Seq
	Citation	ExpId	Seq	Seq Description		
------------------	----------	-------------	-----------	--		
ECCITE-CTCL	Citation 16	GSE126310	Tessa	ScRNA-Seq multiplexed with TCR-Seq		
ECCITE-ctrl	Citation 16	GSE126310	Tessa	ScRNA-Seq multiplexed with TCR-Seq		
Glanville	Citation 10	https://www.nature.com/articles/nature22976#MOESM1	Test antigen-specificity	TCR-antigen specificity data		
Dash	Citation 11	SRP101659	Test antigen-specificity	TCR-antigen specificity data		
Supplementary Table 2 The genes in the T cell functional pathways related to **Fig. 3e-g** and **Extended Data Fig. 6.**

Naive	Memory	Activated	Exhausted	Inhibition
IL7R	GZMK	IFNG	GZMB	TGFB1
PABPC1	CST7	JUNB	GNLY	LDHA
CCR7	DUSP2	SLC2A3	ENTPD1	FTH1
RPS12	SH2D1A	CD69	PRF1	SRGN
FTH1	TRAT1	NFkBIA	KRT86	MTRNR2L8
LTB	TC2N	PPP1R15A	ACP5	SRSF2
ANXA1	CMC1	TNF	GZMH	CREM
TCF7	LITAF	NR4A2	GAPDH	RPS26
S1PR1	EOMES	FOS	AC092580.4	SH2D2A
RPL13	GIMAP4	CCL4	GALNT2	PABPC1
MT-ND2	CNN2	NR4A1	ITGAE	HNRNPUL1
EEF1B2	COTL1	DUSP1	LAYN	ATP1B3
CD55	RPS15A	HSPA1B	CTSW	ZFP36
CXCR3	IER2	CXCL13		
LDHA	GADD45B	TNFRSF18		
RPS26	JUN	AHI1		
TRMO	CSRNP1	CXCR6		
FAM102A	CDKN1A	VCAM1		
APOBEC3G	TSC22D3	JAML		
MTRNR2L8	ALOX5AP			
IL9R		LAG3		
TGBF1		LSP1		
HLA-B		PTMS		
PLP2		HLA-DRB1		
CCR7		HLA-DPB1		
		CCL5		
		CD74		
		HLA-DRA		
		HLA-DPA1		
Supplementary Table 2 The genes in the T cell functional pathways related to Fig. 4e.

IL-2 pathway #1	IL-2 pathway #2	IFN-a/b	IL-12 pathway #1	IL-12 pathway #2	Control pathway #1
IRF4	NUP62	APBA2	DCAF17	TPTE	IPMK
CD69	ESM1	ZNF574	PAPPA2	CUL2	INPP5D
BATF	NPLGC4	ZNHit3	C2orf88	CCDC70	ALAS2
CCR7	TMPO	ZDHHC9	AVEN	FANCM	YWHAE
IL2RA	CD81	XCR1	MB21D1	CEP192	ATG4B
PRDM1	APIP	WNT10B	GCAT	CCDC122	HADHB
MTOR	ATP1A2	VAPA	PTPRM	HAUS6	EFTUD2
HRAS	FARp1	UFD1L	TRAT1	GPR34	CCNE2
KRAS	MAPRE2	TUSC2	ATP1B3	PTGER2	SRSF2
PRF1	RAB6A	TULP3	GUCY2C	PCGF6	GSTA1
GZMB	SH2D2A	TTF1	CAPN9	UHRF1BP1L	GNS
IFNG	DNA2	TSFM	NEURL	RIBC1	FMO5
HMGCR	CIT	TRHR	LOC389493	USP46	PHKA1
PDSS1	TPBG	DISP1	MDM2	SLC27A2	
VASH1	TMEM85	GTF2H1	PPP1R15B	GUCY1A2	
CBFB	TMEM30B	RAB1A	TNPO3	PIDD	
CARHSP1	TMEM159	TIPRL	ORC2	ALG9	
UBR7	TIGD5	ZCCHC2	NPEPPS	UGT2A3	
TPBG	THOC7	RPN1	GRINA	CYP2C9	
CCDC41	THBS3	C9orf41	SAMSN1	GM2A	
ANGPLT2	THAP7	MAPRE1	VNN1	PPP1CA	
G2E3	TFEB	CEP57L1	LARP4	GRN2A	
RPA2	TEKT2	TMEM161B	MIS12	PRKACG	
STIL	TBPL1	CLP1	ASZ1	LDLRAP1	
RBM44	TBC1D23	EIF2B3	MPHOSPH10	RAF1	
STK39	TALDO1	SSPN	PLS3	FLT1	
BMP2K	SYT7	MLF1IP	RAD50	PRPF38A	
WDR62	SYNGR2	BTD	UBE2Q2	GTF2H3	
SOD1	SWAP70	ST18	GNL2	PLCD1	
ICA1	STX2	ACTC1	GOLGA7	AOC3	
Gene	Gene	Gene	Gene	Gene	
-------	-------	-------	-------	-------	
CA13	SRPK1	MORC2	SCN7A	NEU1	
PMCH	SRMS	EEPD1	KPTN	PMAIP1	
RPA1	SPATA5	IMP4	CEP170	ADCY9	
CLIC4	SON	KCNE3	FOLR2	SYNJ1	
CASP7	SNX2	TMEM181	CX3CR1	DCXR	
ACTG1	SLC6A6	WDR45L	PDE4DIP	ABCA1	
C6orf168	SLC38A4	UMODL1	DNM1L	BRAF	
PRICKLE3	SLC35A2	PGM5	HELQ	GGT1	
DUSP14	SLC30A1	TRIM66	SESTD1	PPAP2B	
POLE	SLC25A28	ZNF18	GSPT2	GYS2	
PMVK	SLC22A12	MAB21L3	EEF2K	ADSSL1	
FUT4	SLC20A1	GNPDA2	FAF2	FTMT	
EXPH5	SIRT2	SEC24D	SLC33A1	UGT1A5	
GPD2	SFTPC	SGTA	RNF115	ACO1	
LGALS1	4-Sep	MED7	PTPLB	SDS	
LSM2	10-Sep	IL1RL1	CYSLTR2	ENTPD1	
DAP	SENP6	FTSJD2	TERF2IP	Treh	
LCLAT1	SEMA6C	NUDCD1	HINFP	CDA	
IL10	SEC23A	LRRC59	PTMA	GNS	
MYBL1	SEC22B	AGPS	UTP14A	ABL1	
PSMD14	SAR1A	MDH2	USP1	HADH	
AMDHD2	SAA4	SBDS	NEK4	ADH1A	
EIF4H	RYK	C15orf57	TIAL1	ITPKB	
PIF1	ROBO3	LCOR	HOOK1	NT5C2	
ACER3	RNASE3	SHCBP1L	CASP3	PSMD3	
TPI1	RGS4	TMEM97	ATP9B	CYP1A1	
MMD	RERE	CHCHD2	NR4A1	PRIM2	
RDBP	RENBP	RGAG4	ACACA	CRLF2	
BCAT1	REG3G	PCCB	MRFAP1	RPS6KA2	
HIF1A	RAX	C7orf42	SBF2	MCEE	
GNB4	RASA4	CKAP2L	HNRNPD	NRG2	
FBXO5	RAB5A	RBL1	DARS	PRPS2	
KDM2B	PTPN23	RGMA	SCNN1G	HMGCS1	
-------	--------	------	--------	--------	
FAM81A	PSTPIP2	SDR42E1	PPP1R3B	B4GALT1	
ERBB3	PSMC1	ERP27	CBFA2T2	DRD4	
SERPINF1	PRSS58	C21orf91	ZC3H15	ALDH3A1	
INTS7	PRPF8	FSCN3	CLPX	ADRB2	
RAD51AP1	PRPF39	RBM25	TBC1D7	PTH2R	
CENPN	PRAF2	GALNTL5	NAV2	LYN	
SRGN	POU3F3	NUDT3	HNRPLL	MARS	
TRIP12	PON1	MRAS	PRDM5	BMPR2	
GTSF1	POLR3D	SERPINB11	SHROOM2	CASP3	
GINS2	POLR3A	SGK1	ODF2L	CCL26	
GLRX	PLAU	CDK9	IDI1	PGK1	
STAU2	PIP4K2C	MRPS30	MRPL32	UGT2B10	
SLC25A20	PHLDA2	PCDHB3	VPS33B	GGT7	
SLMO2	PGAM2	BDP1	LY96	ACSS3	
FAM111A	PEMT	BDKRB2	RFX5	GADD45B	
SHC4	PCDH7	RPAP3	SRGAP2	PPAP2C	
DSP	P2RX6	APPBP2	GNA13	AK7	
SLC25A10	OR6A2	PLAG1	CDC14A	ALG12	
TUBB3	ORPD1	DOPEY1	MRGBPF	ABL2	
IL1R2	OMD	NUCB1	TMX1	EGFR	
THOC6	ODZ1	SYT12	PVT1	CCR6	
DERL2	NUP62	B4GALT7	CPEB2	PRIM2	
OSBPL9	NRCAM	CHIC2	APAF1	WARS	
ORC6	NKAIN1	BICD2	DNAJB2	PIP4K2B	
PRELID2	NCOA1	C20orf94	DNAJC3	BUB1	
ANXA7	NCK2	PRKACA	SNX16	CALM2	
CHEK1	NAT6	IL12RB1	NFYA	SETD1A	
INCENP	NAB1	ST13	CENPF	CMPK2	
LITAF	NAA11	TOX3	ACER3	PLA2G3	
UBASH3B	MYT1	XPNPEP3	TMBIM1	JMJD7-PLA2G4B	
CPD	KAT7	DCTN5	TRO	CACNA1S	
RORC	MYO10	GCNT2	LAGE3	GPAT2	
-------	-------	-------	-------	-------	
UBE2T	MXI1	APIP	DTX3	ODC1	
MTCH1	MTHFR	POLR3A	KDEL2C	XCR1	
HMGN3	MSH3	GTF2F2	POMT1	POLR2H	
DEPDC1B	MRPS7	GABARAPL1	TBL1X	UGT2A1	
MELK	MRPS18B	XIST	ABCA7	DCP1A	
TNFRSF9	MRPL3	DDX20	DHX29	RFC2	
HMGB3	MORC4	KIF5B	MFSD6	ALOX12	
CYP11A1	MLLT1	CYP4A11	POLK	ABCD2	
SPRED1	MINA	CYP2C8	CTSD	STX19	
KLHDC2	MIF4GD	RGS13	ZHX3	PTPLB	
TSSC1	MFNG	VWC2	EIF2AK4	PPP3CC	
H2AFX	METTL7A	RHBDL2	USP37	TP53AIP1	
CDC25C	MEST	C19orf28	PPAP2A	POLD4	
SLC12A8	MCM5	ATXN1	CENPC1	DGAT1	
ZBTB32	MBD4	TAF9	SH3BGRL	ASNS	
IL12RB2	MAST2	TOP3B	UHMK1	SIAH1	
IFIH1	MAPKAPK5	GNGT1	AIFM2	PIK3CB	
DUSP4	LOC100506612	FAM120C	SERPINB12	HSD17B2	
C9orf23	LITAF	ACAD8	RNF11	LOC652346	
C9orf41	LGALS9B	CCNO	ARHGAP5	CCL14	
LRR1	LEPREL2	CERCAM	NSMCE2	CPS1	
ABCC4	LCT	PDE4D	ADSS	CDC5L	
MAP2K3	LAMA5	TNFAIP6	CCDC41	STX10	
RAF1	LAMA4	FAM53B	BCAP29	SCP2	
TYMS	KTN1	C17orf108	TBC1D5	FPGS	
GCNT1	KRT6A	PAFAH1B1	PHACTR4	GADD45G	
GPR25	KPNA6	ALG14	SLC30A6	LYPLA2	
CCDC18	KLF4	DACH1	LGR4	PIGX	
FHL2	KLF12	MYO3B	DEK	SEPHS1	
SMC6	KCNK3	OAZ2	FBXW11	LDHD	
PCNA	KCMF1	WNT5A	HNRNPA3	LIPA	
Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	
-------	-------	-------	-------	-------	
ERMN	ITGAV	DNAJB4	MMD	ADI1	
C3orf37	IQGAP2	CLIC4	ARHGAP12	NDUFB6	
CYB5B	INMT	PIGH	SLAMF6	ZNRD1	
PASK	IL1R1	FAM65B	RNF25	SLC8A1	
CYTH2	IL1A	ACER2	A1CF	STMN1	
PSMD13	IFIT3	CLASP1	TPMT	CCNE2	
KIAA1522	IFIT2	U2SURP	RAF1	MAP2K2	
ADAP1	IER3	EIF4A1	AHRR	LTA	
HMOX1	IBSP	SPG20	DCP1B		
KLC3	HTR3A	GRPEL1	RAC2		
CKAP2L	HSPA5	PPP2R5E	ADRA2A		
EHBPl1	HPD	SLC1A4	PRKACB		
RTCD1	HOXB7	HNRNPM	TCIRG1		
BRIP1	GRPEL2	BCAS1	AARS		
GSR	GNPTG	C17orf89	PLA2G3		
FAM156A	GJA4	TRIO	ADH1A		
GSTM5	GFRA1	ELN	DLAT		
BCL3	GABRB1	COQ3	GOT1		
SEMA4C	G0S2	KIRREL3	GALR2		
BLM	FZD9	CYP7A1	GPX5		
EPDR1	FRAT1	ALX1	UGT2A3		
ANKRD50	FOSB	DNAJC24	COX5A		
RAPGEF5	FOLR2	BCAP29	RPN2		
TREX1	FKBp5	AMMECR1L	CCR2		
C11orf31	FKBp10	NEU2	LPAR3		
FKBp2	FGD1	CSMD1	RPL34		
FOXM1	FCER2	EGLN3	BDH1		
C11orf51	FAM110A	PSEN1	MGAT3		
SMTN	EPHB2	CEP128	PDE6H		
SNRNP25	EOMES	ASNS	GAD2		
SH3RF1	ENO1	ATF3	PSMC6		
KIF20B	EIF2B4	FLJ37453	ACADM		
Gene	Gene	Gene	Gene		
-------	-------	-------	-------		
STOM	EFNA5	CD80	CARS		
CDKN1A	E2F5	NDUFA12	DPYD		
TOX2	DVL2	VWA3A	RPL27A		
NUP93	DUT	XYLBJ	ARSA		
EHD4	DPF3	DNAJC12	JMJD7-PLA2G4B		
PTGIR	DNAJB13	C3orf22	MDH1		
POC1A	DKK3	KIAA1161	CERK		
UBL4A	DEK	CLTC	TAF9		
NUCB1	DEGS1	DRGX	CD70		
FMR1	DDX10	ALS2	AHCY		
FIGNL1	DCAF13	NUP43	AWAT2		
ELF4	CYR61	KRT4	GFPT1		
GARS	CYP2A6	QRICH1	TGFB1		
TIMP2	CTSC	C9orf93	P4HA1		
TUFT1	CSRPl	DDX39 A	LTB4R2		
SRSF12	CRX	HDHD3	LIF		
KIF18A	CREBBP	SIPA1L1	CACNA2D4		
BEND4	COX7A1	TMED5	RPA3		
AGPAT9	COL8A1	RALYL	HAGH		
C16orf61	COASY	PKD2L2	POLR2B		
NSMAF	CMA1	ANKRD34A	S1PR4		
ARHGAP19	CLPTM1L	CUL3	SEC11A		
GCG	CLP1	TAF1B	GRID1		
EXO1	CIDE C	IL10	GPDP1L		
HMHR	CFI	LINC00301	AGTR1		
TUBE1	CELF1	EXOSC8	GNPDA2		
BLMH	CDV3	NAA50	FABP7		
E2F8	CDKN2D	GHSR	UGT1A10		
PRICKLE1	CD70	EIF3B	AMDHD2		
UBXN8	CCND1	EIF2B5	LSM3		
CDC45	CCL4	USP37	YWHAH		
BUB1	CCKAR	YTHDF2	CCNB2		
	FRMD4B	CCDC6	OR4E2	HGSNAT	
----	--------	-------	-------	--------	
IQGAP3	CCDC28B	TAL1	PPAP2B		
PYCARD	CBFA2T3	EIF2C3	LAPT4A		
KIF18B	CAT	SRRM1	RAD50		
RCC1	CAPZA2	LYPLA2	CCND2		
UBR5	CAMK2D	P2RY14	ADH5		
POLH	CA3	MMP3	PPCDC		
C15orf23	C9orf78	CLVS2	LAMTOR3		
CDK2AP1	C20orf30	PAK1IP1	GCAT		
MMP16	C12orf41	ABCC3	PSMB11		
Control pathway #2					

B4GALT1					
LAPTM4B					
POLL					
TAF2					
DHRS9					
CAMK2G					
ALDH7A1					
PLCB3					
ALDH9A1					
EHHADH					
ABCA13					
C1GALT1					
LCMT2					
CCKAR					
ALDH9A1					
PPP3CA					
B3GNT1					
UGT2B4					
HTR4					
RBX1					
PNLIPRP2					
GALC					
CNTF					
ATP2B2					
FDFT1					
DPYS					
ABCB8					
PSME2					
ADORA2B					
TRIM37					
Gene					

FGF6					
SUOX					
HNRNPU					
SULT2B1					
GALT					
QDPR					
NAT6					
HRH1					
DNMT3B					
PIK3R1					
XAB2					
MAP2K7					
CLTB					
TAB1					
DGKQ					
RELT					
FPGS					
MAN2B1					
ATP6V0A2					
IL15RA					
GFPT2					
GSTT1					
RPA4					
IDUA					
RNASEH2A					
RAC1					
BCAT2					
CYP26C1					
TYMP					
BUB3					
LOC650621					
CDC16					
Gene					

PIK3CD					
ATG12					
POLR1D					
ACOX2					
CYP2E1					
ACER2					
RBKS					
RPS9					
CCNE1					
ALDH2					
ATP8					
EHHADH					
GNG7					
EDAR					
AP3S2					
UGT2B7					
COX7A2L					
CACNA2D1					
IL29					
NT5C3					
PNP					
MGST3					
CYP3A5					
NT5C1A					
CYP1A1					
GSTA4					
SOAT2					
GRB2					
ALDH6A1					
PRUNE					
ATP12A					
CDKN2A					
Gene					

IFNGR1					
PTH2R					
CLTA					
GMPR					
GUCY2D					
LYN					
ADCY6					
ALDH9A1					
ADCY1					
CXCL10					
MAP2K3					
FADS2					
GOT1					
PGAM4					
GSTK1					
RPL3					
FTCD					
UGT1A10					
PTAFR					
BAAT					
SPTLC2					
PRKCA					
FPR1					
UGT2A3					
PPAP2A					
LPAR2					
HTR1A					
SYNJ2					
ALDH5A1					
RYR2					
PRIM2					
SORD					
Gene					

CHMP4A					
GLB1					
LTC4S					
SFN					
RAD50					
GK					
GDF5					
TRPV1					
ETNK2					
ABCC8					
CYSLTR1					
MKNK2					
CACNA1I					
ATP6V1H					
RDH11					
POLR3D					
POLR1A					
GGT1					
HSD17B12					
ALDH2					
IDS					
AKR1B10					
GSTM3					
AKT2					
DUT					
INS					
EDC4					
OXCT1					
ZAK					
M6PR					
GNG12					
UGT1A9					
Gene					

PLD1					
TSHR					
GLS2					
METTL2B					
CCNE2B					
PIGZ					
B4GALT4					
GNG5					
ALDH9A1					
ACO2					
BCAT1					
CES1					
UGT1A10					
TBXAS1					
GRM5					
GSTM2					
TAF11					
VAMP3					
IL5RA					
ALDH2					
PIGG					
IFNG					
FADS2					
IFNA7					
HAGH					
AMH					
TAF4B					
ADCY8					
GOT1					
CHST4					
POLR2G					
IL4I1					
Gene					

ULK2					
PPAP2C					
HRH1					
TIAM1					
CDC42					
TREH					
UGP2					
ITCH					
POLR3B					
TCIRG1					

