Effect of Moisture Regimes, FYM and Levels of P Carriers on Yield, Quality and P Uptake by Wheat in Loamy Sand

D.A. Patel¹, K.N. Patel²*, R.P. Pavaya¹ and V.R. Patel¹

¹C. P. College of Agriculture, S.D.A.U., Sardarkrushinagar, Gujarat, India
²Centre for Research on Integrated Farming Systems, S.D.A.U., Sardarkrushinagar, Gujarat, India

*Corresponding author

ABSTRACT

In field study, total 36 treatment combinations consisting of three moisture regimes as main plot treatment and 12 combinations of two levels of FYM, three levels of P carriers as sub-plot treatments evaluated in split plot design with three replications using wheat variety GW-451 as test crop. The results revealed that the maintenance of moisture between 100 and 75 % available water content (W₁) significantly increased the length of earhead, number of grains/earhead, 1000-grain weight, grain and straw yield as well as gluten content. The treatments W₁ and W₂ resulted in 22.11 and 18.45 per cent higher grain yield as well as 23.56 and 19.91 per cent higher straw yield, respectively over W₃ treatment. Whereas, maintenance of soil moisture between 100 and 25 % AWC (W₃) resulted significantly higher P content in grain and straw of wheat. Application of phosphorus @ 90 kg P₂O₅ as MAP with 10 t/ha FYM (P₃S₁M₁) gave significantly higher length of earhead, number of grains/earhead, 1000-grain weight, grain yield and application of 60 kg P₂O₅/ha as DAP with 10 t FYM/ha registering 4660 kg/ha grain yield which was at par with P₃S₂M₁ while, Treatment combinations P₃S₁M₁ showed significantly higher P content in grain and straw, but it was at par with P₃S₁M₁ and P₂S₂M₁. While significantly the highest P uptake by grain, straw and total P uptake by wheat was recorded by P₃S₁M₁, but it was at par with P₂S₂M₁. The interaction W₂ × P₃S₁M₁ recorded maximum length of earhead (11.09 cm), number of grains/earhead (68), 1000-grain weight (73.18 g), grain (5210 kg/ha) and straw (11969 kg/ha) yield of wheat and gluten content (39.42 %) in grain. The lowest value for bulk density (1.61 Mg/m³) and the highest value for maximum water holding capacity (22.49 %) of soil after harvest were recorded by P₂S₁M₁. Treatment combination P₃S₁M₁ recorded significantly higher available N (177.30 kg/ha), P₂O₅ (40.7 kg/ha) and K₂O (207.57 kg/ha) in soil after harvest.

Keywords
-- Moisture regimes, P carrier and levels of P

Article Info
-- Accepted: 10 July 2019
-- Available Online: 10 August 2019

Introduction

An ideal moisture regime favors the absorption of mobile nutrients. The accessibility of immobile nutrient like PO₄⁻³ is increased due to more root development in a soil having low suction of moisture. A favorable moisture regime also, increases the uptake of available nutrients. An ideal moisture regime in combination with optimum dose of nutrient not only increases the yield, but also the nutrient use efficiency. The extent of response to phosphorus fertilizer application in relation to moisture is determined by the rate and distance of diffusion of phosphate ion to come in contact with root surface release of non-labile phosphorus and mineralization of organic-P. Phosphate ion is partially immobile and hence, it’s placement in root zone/moist layer is must for its efficient utilization. In most soils, phosphorus availability is the highest in the
surface plow layer and much lower in the sub-soil. Therefore, during a period of dry weather, if the surface soil becomes dry, plant suffers from a phosphorus deficiency even though moisture is still available in the sub-soil and plants show no water stress.

This is a potential threat to sustainable crop production. Almost 80 per cent soils in India are either low or medium in P fertility status, which reinforces the need for P application in the form of organic manures, green manures and phosphatic fertilizers to maximize the crop yields (Sanyal et al., 2015). In Gujarat, 60 per cent soils are classified as deficient in available P status.

The GAU has made 38 crop specific P recommendations. Instances of erratic response to P application by different crops or crop sequences are quite common. The state average of P consumption is only 18.1 kg P2O5/ha (Patel et al., 1994).

Wheat [Triticum aestivum (L.)] has been described as “king of cereals” and one of the most important staple food crop cultivated in 43 countries of the world. Wheat has its own outstanding importance as a human food; the nutritive value of wheat is fairly high as compared to other cereals. It contains 11.80, 1.50, 71.20, 1.50, 0.50, 0.32, per cent, fat, carbohydrate, mineral matter, calcium and phosphorus, respectively (Swaminathan et al., 1981).

Gujarat occupies in area of 1.05 million hectares with a production of 3.13 million tones and productivity of 2986 kg/ha. The most important wheat growing districts of the state are Junagadh, Ahmedabad, Sabarkantha, Rajkot, Kheda, Banaskantha, Mehsana and Bhavnagar.

The combined use of moisture regimes, FYM and levels of P carriers, the immobile properties of P can be exploited by mobilizing native plant unavailable P to available form so that, it may be recycled the native P and minimize P fertilizer particularly in wheat crop.

Materials and Methods

Climate and weather conditions

The maximum and minimum temperature ranged between 24.5 to 36.40ºC and 6.8 to 18.7 ºC, respectively no rainfall was received. The mean relative humidity recorded at 7.40 am ranged between 22.4 to 89.3 per cent and the mean sunshine hours ranged between 7.7 to 9.4 hours during the crop growing period.

The overall climatological data indicated that the weather conditions were observed normal and favorable for the satisfactory growth and development of the crop during the rabi, 2017-18.

Physico-chemical properties of soil

The representative soil sample was analyzed for different physico-chemical characteristics (Table 1).

Irrigation management

Two common irrigations were applied, first after sowing for better germination and second at 21 DAS i.e. crown root initiation stage of wheat crop.

After that according to treatments (moisture regimes), the irrigations were given when the moisture content in the soil was reached to 7.66, 6.60 and 5.54 per cent, which represent the availability of soil moisture at 75, 50 and 25 per cent, respectively. Periodically, the soil samples for moisture were taken up to a depth of 30 cm for determining the needs of irrigation.
Collection and preparation of plant and soil samples for chemical analysis

Plant samples

Representative plant samples were collected at the time of harvesting of crop. Grain and straw yield was recorded. The plant samples were washed with tap water followed by distilled water and dried in oven at 70ºC till they attained constant weight.

The oven dried plant samples were ground in grinding mill. Finally, the powdered samples were stored in labeled polythene bags for chemical analysis than Vanadomolybdophosphoric acid yellow colour method was used for determination of P (Jackson, 1978).

Soil samples

To assess the nutrient status of soil after harvest, a representative soil samples (0-15 cm) from three spots of each net plot after harvest of wheat crop were collected, composited and air dried in shade (Experimental details are given in table 4).

These samples were then ground using wooden mortar and pestle and passed through 2 mm sieve and were analysed for organic carbon, available N, P₂O₅, K₂O, EC, pH, bulk density and maximum water holding capacity as per standard analytical methods listed in Table 3.

Nutrient content and uptake

The concentration of the phosphorus was determined in grain and straw.

The uptake of P was computed by using the following formula.

\[
\text{Phosphorus content (\%)} \times \text{Yield (kg/ha)} \times \frac{100}{\text{Phosphorus uptake (kg/ha)}}
\]

Results and Discussion

Yield attributes and yield

Among the levels of P carriers with and without application of FYM, combination of P₃S₁M₁ showed significantly higher length of earhead (10.02 cm), grain/earhead (61) and 1000-grain weight (65.68 g) as compared to other treatment combinations except P₂S₂M₁ which was at par with P₃S₁M₁ (Table 6). As far as interaction effect between W × PSM is concerned, W₂P₃S₁M₁ ranked at top bearing the highest length of earhead (11.09 cm), grain/earhead (68) and 1000-grain weight (73.18 g). As far as the effect of different combinations of FYM and levels of P carriers on wheat grain and straw yield was concerned (Table 6), it was observed that yield of grain with FYM and application of P @ 90 kg/ha in the form of MAP (P₃S₁M₁) was significantly higher (4708 kg/ha) over all the treatment combinations except P₂S₂M₁ (4660 kg/ha).

The treatment combination P₃S₁M₁ and P₂S₂M₁ registered 47.63 and 46.13 per cent higher grain yield of wheat as compared to P₁S₂M₀. The treatment combination W₂P₃S₁M₁ showed the highest yield (5210 kg/ha). The treatment combination W₂P₃S₁M₁ yielded 85.28 per cent higher grain yield of wheat than W₂P₁S₂M₀. W₁ and W₂ treatments gave 23.56 and 19.91 per cent more straw yield of wheat as compared to W₃. Maximum straw yield (9383 kg/ha) was registered by W₁ treatment. Application of P @ 60 kg/ha in the form of DAP with FYM (P₂S₂M₁) was significantly higher straw yield (10682 kg/ha) over all the treatment combinations except P₃S₁M₁ (10532 kg/ha). The treatments P₂S₂M₁ and P₃S₁M₁ increased the straw yield of wheat to the tune of 45.83 and 43.78 per cent, respectively over P₁S₂M₀. The similar results were also observed by Singh and Agarwal (2005) with the application of FYM @ 10 and 20 t/ha and observed an increase in grain and straw yield of wheat. Shahi et al., (2015) also
observed the role of P levels and FYM on wheat crop. Application of P levels significantly augmented crop growth and yield of wheat. This might be due to moisture availability for a longer period to the crop along with positive effect of moisture and FYM on P availability in soil. As far as effect of P levels and sources on wheat yield is concerned, the findings of Al Harbi et al., (2013) also revealed in their studies that an application of P at a higher level in the form of DAP showed higher and significant response.

Quality parameter

The interaction effect of treatment combination W₃P₂S₁M₀ showed significantly lowest (20.47 %) content of gluten in wheat grain (Table 5). Although, the treatment combination W₂P₂S₂M₁ showed the higher gluten content (39.42 %), but it was at par with the combinations W₁P₂S₂M₁ (35.17 %), W₂P₂S₂M₁ (37.54 %), W₁Pₛ₁M₁ (34.99 %), W₂P₂S₂M₁ (34.89 %), W₂P₁S₁M₀ (33.87 %) and W₁P₂S₁M₀ (33.43 %).

In general the combinations involving M₁ with P application at a higher level of moisture, phosphorus availability had a tendency of showing higher gluten content in wheat grains. Delay in irrigation from 70 mm to 90 mm evaporation, significantly increased wet gluten by Jazy et al., (2012).

The data exhibited in Table 7 indicates that maintenance of soil moisture between 100-25 per cent, (W₃) proved its superiority over W₂ and W₁ as far as, P content in grain and straw was concerned as, it follows the Jenny’s dilution effect phenomena and contained significantly higher P content in grain (0.42 %) and straw (0.31 %). Treatment combination P₃S₂M₁ showed significantly higher P content in wheat grain (0.52 %) and straw (0.38 %). Although, it was at par with treatment combinations Pₛ₁M₁ and Pₛ₂M₁.

The perusal of data given in Table 7 suggests that phosphorus uptake by grain and straw did not differ significantly with moisture regimes. The trend of P uptake by grain and straw is in the order W₁ > W₂ > W₃. Different treatment combinations were found to affect the P uptake by wheat grain and straw significantly. Pₛ₁M₁ registered higher P uptake (24.10 kg P/ha) by grain and straw (39.18 kg/ha), but it was at par with Pₛ₂M₁ (22.60 kg/ha) in grain and (37.75 kg/ha). It seems that “dilution effect” has played a crucial role in governing the nutrient concentration in the plant parts.

Of course, content as such is deceptive yardstick for nutrient availability as it increase with decrease in the quantity of dry matter produced by a particular crop. Golakiya (1988) reported that P uptake was decreased by decreasing soil moisture level.

Nutrient status of soil after harvest

The bulk density and MWHC of soil, which is one of the important criteria of physical fertility of soil, was directly positively related with the amount of organic matter content in the soil (Table 8). Under this experimentation, this phenomenon is also true. The lowest value of BD (1.61 Mg/m³) and highest MWHC (22.49 %) was obtained under the treatment combination Pₛ₁M₁. Although, it was at par with Pₛ₁M₁, Pₛ₂M₁, Pₛ₁M₁ and Pₛ₂M₁. Numerically higher value under treatment combination Pₛ₁M₁ (0.18 dS/m) was observed for electrical conductivity (EC) of soil. Treatment combinations Pₛ₁M₁ and Pₛ₂M₁ registered significantly the lowest soil pH (7.24) after the harvest of crop, but it was at par with Pₛ₂M₀ (7.30), Pₛ₁M₁ (7.30), Pₛ₂M₁ (7.30) and Pₛ₁M₁ (7.33). With respect to organic carbon content in soil after one season of experimentation treatment combination Pₛ₁M₁ registered significantly higher organic carbon content (0.37 %) over other combinations (Table 8).
Table 1: Initial physico-chemical properties of the surface soil (0-15 cm) of the experimental plot before sowing of wheat crop

Properties	Values
A. Mechanical composition	
Coarse sand (%)	44.76
Fine sand (%)	40.18
Silt (%)	7.90
Clay (%)	7.16
Textural class	Loamy sand
Taxonomy	*Typics Ustipsamments*
Depth (cm)	30
B. Physical properties	
Bulk density (Mg m⁻³)	1.65
Infiltration rate (cm/hr)	14.8
F.C. (%)	8.72
P.W.P. (%)	4.48
A.W.C. (%)	4.24
M.W.H.C. (%)	22.12
C. Chemical properties	
pH (1 : 2 : 5) at 25 °C	7.5
EC (1 : 2 : 5) dSm⁻¹ at 25 °C	0.18
Exchangeable Ca (meq/100 g)	5.6
Exchangeable Mg (meq/100 g)	0.8
CEC (meq/100 g)	7.48
Organic carbon (%)	0.349
Available N (kg/ha)	148.0
Available P₂O₅ (kg/ha)	33.15
Available K₂O (kg/ha)	177.26

Table 2: Total treatment combinations

Treatments	Combinations	Treatments	Combinations
T₁	W₁P₁S₁M₀	T₁₉	W₂P₁S₁M₀
T₂	W₁P₁S₁M₁	T₁₀	W₂P₁S₁M₁
T₃	W₁P₁S₂M₀	T₁₁	W₂P₁S₂M₀
T₄	W₁P₁S₂M₁	T₁₂	W₂P₁S₂M₁
T₅	W₂P₁S₂M₀	T₁₃	W₂P₂S₁M₀
T₆	W₂P₁S₂M₁	T₁₄	W₂P₂S₁M₁
T₇	W₂P₂S₂M₀	T₁₅	W₂P₂S₂M₁
T₈	W₂P₂S₂M₁	T₁₆	W₂P₂S₂M₁
T₉	W₂P₂S₂M₂	T₁₇	W₂P₂S₂M₁
T₁₀	W₂P₂S₂M₂	T₁₈	W₂P₂S₂M₁

1092
Table 3: Methods followed for soil analysis

Sr. No.	Element	Methods	Reference(s)
1	Organic carbon	Walkley and Black titration	Jackson (1978).
2	Available N	Alkaline KMnO₄ method	(Subbiah and Asija, 1956).
3	Available P₂O₅	Extraction: 0.5 M NaHCO₃ (pH 7.0)	Olsen’s et al., (1954).
4	Available K₂O	Flame photometric method NH₄OAC (pH 7.0)	Jackson (1973).
5	Soil reaction (pH)	1 : 2.5 on Beckmen pH meter	(Jackson, 1973).
6	Electrical Conductivity (EC)	1 : 2.5 with water	(Jackson, 1973).
7	Bulk Density (BD)	Core method	(Culley, 1993).
8	Water Holding Capacity	Gravimetric method	(Piper, 1966).

Table 4: Experimental details

A Main plot treatment : 03

Sr. No.	Element	Methods	Reference(s)
1	Organic carbon	Walkley and Black titration	Jackson (1978).
2	Available N	Alkaline KMnO₄ method	(Subbiah and Asija, 1956).
3	Available P₂O₅	Extraction: 0.5 M NaHCO₃ (pH 7.0)	Olsen’s et al., (1954).
4	Available K₂O	Flame photometric method NH₄OAC (pH 7.0)	Jackson (1973).
5	Soil reaction (pH)	1 : 2.5 on Beckmen pH meter	(Jackson, 1973).
6	Electrical Conductivity (EC)	1 : 2.5 with water	(Jackson, 1973).
7	Bulk Density (BD)	Core method	(Culley, 1993).
8	Water Holding Capacity	Gravimetric method	(Piper, 1966).

Table 5: Effect of moisture regime and combinations of FYM and levels of P carriers on gluten content in wheat grain at harvest

Treatments	Gluten content (%)	W₁	W₂	W₃
P₁S₁M₀	27.18	33.87	23.49	
P₁S₁M₁	28.24	31.57	29.16	
P₂S₂M₀	27.73	21.26	23.49	
P₂S₂M₁	30.76	34.89	27.04	
P₁S₂M₀	30.32	26.24	20.47	
P₁S₂M₁	30.52	26.53	25.10	
P₂S₁M₀	29.46	29.22	23.61	
P₂S₁M₁	35.17	37.54	33.04	
P₁S₁M₀	33.43	29.51	21.72	
P₁S₁M₁	34.99	39.42	32.09	
P₂S₂M₀	32.21	24.20	21.39	
P₂S₂M₁	31.84	27.28	24.26	

S.E.M. ± C.D. at 5 %

W	Treatment combination (TC)	W × TC
0.906	1.205	2.087
3.55	3.40	5.89
Table 6 Effect of moisture regime and combinations of FYM and levels of P carriers on length of ear head, number of grains/earhead, 1000-grain weight, grain yield and straw yield of wheat at harvest

Treat.	Length of ear head (cm)	Number of grains/earhead	1000-grain weight (g)	Grain yield (kg/ha)	Straw yield (kg/ha)										
	W1	W2	W3												
P₁S₁M₀	7.65	9.53	6.62	47	58	40	50.50	61.35	43.70	3596	4481	3111	8219	10241	7151
P₁S₁M₁	7.94	8.89	8.21	38	54	50	52.50	58.56	54.23	3735	4170	3861	8488	9528	8778
P₁S₂M₀	7.82	5.98	6.57	48	36	40	51.57	39.50	43.35	3670	2812	3087	8432	6457	7087
P₁S₂M₁	8.66	9.81	7.62	53	60	46	57.90	64.72	50.28	4071	4608	3580	9259	10537	8151
P₂S₁M₀	8.53	7.37	5.76	52	44	35	56.37	48.59	38.12	4012	3463	2709	9170	7920	6225
P₂S₁M₁	8.59	7.46	7.07	53	45	43	56.66	49.24	46.68	4040	3506	3324	9235	7969	7596
P₂S₂M₀	8.28	8.22	6.56	50	50	40	54.76	54.23	43.92	3898	3861	3127	8923	8787	7127
P₂S₂M₁	9.90	10.64	9.29	60	64	57	65.31	69.52	61.35	4654	4957	4367	10626	11395	10024
P₃S₁M₀	9.38	8.31	6.12	58	51	37	62.11	54.81	40.40	4426	3901	2876	10124	8926	6605
P₃S₁M₁	9.91	11.09	9.05	60	68	55	64.19	73.18	59.68	4664	5210	4250	10661	11969	8966
P₃S₂M₀	9.07	6.80	6.03	55	41	37	59.88	44.90	39.78	4262	3198	2833	9780	7306	6475
P₃S₂M₁	8.97	7.67	6.82	55	47	41	57.77	50.62	45.05	4216	3605	3207	9682	8234	6948

S.Em.± CD5% CD5% S.Em.*± CD5% *S.Em.*± CD5% *S.Em.*± CD5% *S.Em.*± CD5%

	W	W	TC	W × TC							
W	0.247	0.97	1.310	5.14	1.628	6.38	117.927	462.96	W	297.516	1168
TC	0.342	0.96	2.201	6.21	2.283	6.44	159.798	451.29	TC	374.309	1057.11
W × TC	**0.592**	**1.67**	**3.812**	**10.77**	**3.954**	**11.16**	**276.778**	**781.67**	W × TC	**648.321**	**1830.97**

* TC- Treatment combination
Table 7 Effect of moisture regime and combinations of FYM and levels of P carriers on P content in grain and straw, P uptake in grain and straw and total uptake of P by wheat at harvest

Treat.	P content in grain (%)	P uptake in grain (kg/ha)	P content in straw (%)	P uptake in straw (kg/ha)	Total uptake of P (kg/ha)									
	W1	W2	W3											
P1S1M0	0.24 0.25 0.27	8.49 11.13 8.49	0.17 0.18 0.20	14.14 18.51 14.22	22.63 29.64 22.70									
P1S1M1	0.28 0.26 0.31	10.37 10.66 11.75	0.21 0.19 0.22	17.19 17.75 19.47	27.56 28.40 31.22									
P1S2M0	0.27 0.27 0.27	9.73 7.40 8.20	0.20 0.19 0.19	16.29 12.38 13.72	26.02 19.78 21.92									
P1S2M1	0.28 0.28 0.30	11.24 13.01 10.65	0.20 0.21 0.22	18.64 21.69 17.66	29.87 34.71 28.30									
P2S1M0	0.37 0.36 0.42	14.99 12.33 11.35	0.27 0.26 0.30	24.96 20.56 19.00	39.96 32.89 30.36									
P2S1M1	0.45 0.45 0.49	17.94 15.88 16.39	0.33 0.33 0.36	29.90 26.30 27.29	47.84 42.17 43.67									
P2S2M0	0.40 0.38 0.47	15.96 14.86 14.85	0.29 0.28 0.35	26.64 24.65 24.66	42.60 39.51 39.51									
P2S2M1	0.48 0.47 0.51	22.47 23.24 22.09	0.35 0.34 0.37	37.38 38.93 36.96	59.84 62.17 59.05									
P3S1M0	0.44 0.47 0.45	19.48 18.40 12.93	0.32 0.34 0.33	32.46 30.68 21.63	51.95 49.09 34.55									
P3S1M1	0.49 0.52 0.53	22.64 27.25 22.41	0.35 0.38 0.39	37.71 45.61 34.22	60.35 72.86 56.63									
P3S2M0	0.44 0.44 0.49	18.74 13.86 13.84	0.32 0.32 0.36	31.33 23.09 23.05	50.07 36.95 36.90									
P3S2M1	0.49 0.53 0.53	20.62 18.92 17.05	0.36 0.38 0.39	34.51 31.49 26.97	55.14 50.40 44.02									
-	S.Em.±	CD5%	CD5%	S.Em.±	CD5%	-	S.Em.±	CD5%	-	S.Em.±	CD5%			
W	0.005 0.021	W	0.608	NS	W	0.003 0.013	W	1.070	NS	W	1.669	NS		
TC	0.012 0.035	TC	0.831	2.34	TC	0.009 0.025	TC	1.408	3.97	TC	2.225	6.28		
W×TC	0.022	NS	W×TC	1.439	NS	W×TC	0.016	NS	W×TC	2.440	NS	W×TC	3.853	NS
Table 8 Effect of moisture regime and combinations of FYM and levels of P carriers on BD, MWHC, EC (1: 2.5), pH (1: 2.5) and organic carbon of soil after harvest of wheat

Treat.	BD (Mg/m³)	MWHC (%)	EC (dS/m)	pH	Organic carbon (%)										
	W₁	W₂	W₃												
P₁S₁M₀	1.66	1.66	1.67	21.94	21.76	21.89	0.17	0.17	0.16	7.60	7.53	7.57	0.35	0.35	**0.34**
P₁S₁M₁	1.63	1.62	1.63	22.39	22.34	22.43	0.19	0.17	0.17	7.33	7.23	7.43	0.36	0.37	**0.37**
P₁S₂M₀	1.67	1.67	1.67	21.85	21.89	21.89	0.16	0.16	0.16	7.57	7.60	7.70	0.35	0.34	**0.35**
P₁S₂M₁	1.62	1.63	1.63	22.48	22.43	22.43	0.17	0.18	0.18	7.30	7.37	7.23	0.36	0.36	**0.36**
P₂S₁M₀	1.67	1.67	1.67	22.09	21.72	21.62	0.17	0.16	0.16	7.50	7.67	7.57	0.35	0.35	**0.35**
P₂S₁M₁	1.62	1.61	1.61	22.46	22.48	22.52	0.16	0.18	0.15	7.23	7.33	7.33	0.36	0.36	**0.37**
P₂S₂M₀	1.66	1.67	1.66	22.09	21.76	21.94	0.17	0.16	0.16	7.67	7.60	7.50	0.34	0.34	**0.35**
P₂S₂M₁	1.62	1.62	1.63	22.39	22.52	22.34	0.17	0.18	0.17	7.27	7.27	7.37	0.36	0.36	**0.36**
P₃S₁M₀	1.67	1.67	1.67	21.81	21.89	21.71	0.16	0.16	0.17	7.50	7.57	7.57	0.34	0.34	**0.35**
P₃S₁M₁	1.62	1.63	1.61	22.43	22.14	22.43	0.18	0.16	0.17	7.23	7.17	7.33	0.37	0.36	**0.36**
P₃S₂M₀	1.66	1.66	1.67	21.72	21.90	21.67	0.16	0.17	0.17	7.60	7.57	7.60	0.34	0.34	**0.34**
P₃S₂M₁	1.61	1.63	1.61	22.34	22.39	22.48	0.17	0.17	0.17	7.27	7.27	7.20	0.36	0.36	**0.37**

- S.Em.± CD5% CD5% S.Em.± CD5% **-** S.Em.± CD5% **-** S.Em.± CD5% **-** S.Em.± CD5%

W	0.003	NS	W	0.056	NS	W	0.003	NS	W	0.041	NS	W	0.001	NS
TC	0.006	0.018	TC	0.089	0.25	TC	0.008	NS	TC	0.053	0.14	TC	0.002	0.007
W×TC	**0.011**	NS	W×TC	**0.154**	NS	W×TC	**0.014**	NS	W×TC	**0.091**	NS	W×TC	**0.004**	NS
Table 9 Effect of moisture regime and combinations of FYM and levels of P carriers on available N, available P$_{2}$O$_{5}$ and available K$_{2}$O of soil after harvest of wheat

Treat.	Available nitrogen (kg/ha)	Available P$_{2}$O$_{5}$ (kg/ha)	Available K$_{2}$O (kg/ha)						
	W$_1$	W$_2$	W$_3$	W$_1$	W$_2$	W$_3$	W$_1$	W$_2$	W$_3$
P$_1$S$_1$M$_0$	129.22	134.91	148.56	29.66	30.97	34.10	151.28	157.95	173.93
P$_1$S$_1$M$_1$	154.34	140.90	166.68	35.43	32.34	38.26	180.69	164.95	195.14
P$_1$S$_2$M$_0$	146.09	145.21	145.31	33.54	33.33	33.36	171.04	170.00	170.12
P$_1$S$_2$M$_1$	166.32	202.56	163.01	38.18	46.50	37.42	194.72	237.15	190.84
P$_2$S$_1$M$_0$	137.70	151.47	155.60	31.61	34.77	35.72	161.21	177.33	182.17
P$_2$S$_1$M$_1$	161.61	154.04	167.67	37.10	35.36	38.49	189.21	180.34	196.30
P$_2$S$_2$M$_0$	149.45	159.61	159.74	34.31	36.64	36.67	174.96	186.86	187.02
P$_2$S$_2$M$_1$	158.57	165.32	169.83	36.40	37.95	38.99	185.64	193.54	198.83
P$_3$S$_1$M$_0$	137.13	168.06	163.05	31.48	35.58	37.12	160.55	196.76	190.89
P$_3$S$_1$M$_1$	163.21	167.23	163.63	37.47	38.39	38.71	191.08	195.79	197.42
P$_3$S$_2$M$_0$	151.49	174.03	175.34	34.78	39.95	40.25	177.36	203.75	205.27
P$_3$S$_2$M$_1$	171.11	175.99	175.93	39.28	40.40	40.39	200.33	206.04	205.97

-	S.Em.±	CD5%	CD5%	S.Em.±	CD5%	-	S.Em.±	CD5%
W	3.138	NS	W	0.724	NS	W	3.674	NS
TC	5.595	15.80	TC	1.284	3.62	TC	6.550	18.50
W×TC	9.691	NS	W×TC	2.224	NS	W×TC	11.346	NS
It is obvious that treatment receiving FYM as an organic source, showed the positive effect. Singh et al., (2007) noted that such type of beneficial effect on physical fertility due to addition of organic matter due to creation of environment conductive for formation of humic acids. Stimulated the activity of soil microorganisms favours the organic carbon and reduction in bulk density. The bulk density is decreasing this could be attributed to mixing of the low density material (FYM) with the dense mineral fraction of soil (Bajpai et al., 2006).

The perusal of data with respect to available N and available K2O content in soil after harvest of wheat show that combination P4S2M1 resulted in the highest available N (177.30 kg/ha) and available K2O (207.57 kg/ha) in soil after harvest of wheat, but it was statistically at par with combinations P3S2M1, P3S2M0, P3S1M1 and P2S2M1 (Table 9). Whereas, treatment combination P3S1M1 proved its superiority through registering higher value of available P2O5 (40.70 kg/ha). Numerically, maximum value of available N (202.56 kg/ha), available P2O5 (46.50 kg/ha) and available K2O (237.15 kg/ha) in soil after harvest under W2P1S2M1 i.e. application of P @ 30 kg/ha as DAP and FYM @ 10 t/ha with 100-50 per cent available water (Table 9).

In the loamy sand (Typic Ustipsamments) of North Gujarat, maintenance of moisture regimes at 100-50 per cent available water capacity and an application of FYM @ 10 t/ha along with 60 kg P2O5/ha through DAP apart from recommended dose of 120 kg N/ha was found more advantageous in terms of yield, gluten content, P uptake by wheat and soil fertility status.

References

Al Harbi, S.F., Ghoneim, A.M., Modaihsh, A.S. and Mahjoub, M.O. (2013). Effect of Foliar and Soil Application of Phosphorus on Phosphorus Uptake, Use Efficiency and Wheat Grain Yield in Calcareous Soil. Journal of Applied Sciences. 13 (1): 188-192.

Bajpai, R.K., Chitale, S., Upadhyaya, S.K. and Urkurkar, J.S. (2006). Long-term studies on soil physico-chemical properties and productivity of rice-wheat system as influenced by integrated nutrient management in Inceptisol of Chhattisgarh. Journal of Indian Society of Soil Science. 54 (1): 24-29.

Culley, J.L.B. (1993). Density and compressibility in soil sampling and methods of analysis (Carter, M.R. Ed.). Canadian Society of Soil Science, Lewis publishers, London. pp. 529-539.

Golakiya, B.A. (1988). Ph.D. Thesis, Gujarat Agricultural University, Junagadh Campus, Junagadh.

Jackson, M.L. (1973). Soil chemical analysis, Prentice-Hall of India Private Ltd., New Delhi.

Jackson, M.L. (1978). Soil chemical analysis, Prentice-Hall of India Private Ltd., New Delhi.

Jazy, H.D., Namini, K.N. and Ameri, M. (2012). Effect of deficit irrigation regimes on yield, yield components and some quality traits of three bread wheat cultivars (Triticum aestivum L.). International Journal of Agriculture and Crop Sciences. 4 (5): 234-237.

Olsen, S.R., Cole, G.V., Watanabe, F.S. and Dean, L.A. (1954). Estimation of available phosphorus in soil by extraction with sodium bicarbonate. U.S. Department of Agriculture. Cir. No. 939: 19.

Patel, M.S., Pavaya, R.P., Patel, V.R. and Patel, M.K. (1994). Retention and release of phosphorus in soils of Gujarat. Phosphorus in Gujarat Agriculture. 55-63.
Piper, C.S. (1966). Soil and Plant Analysis. Hans Publishers, Bombay.
Sanyal, S.K., Dwivedi, B.S., Singh, V.K., Majumdar, K., Datta, S.C., Pattanayak, S.K. and Annapurna, K. (2015). Phosphorus in relation to dominant cropping sequences in India: chemistry, fertility relation and management option. Current Science. 108: 1262-1270.
Shahi, S.H., Kushwaha, I.K. and Sharma, P.K. (2015) Effect of phosphorus levels, Phosphate Solubilizing Bacteria (PSB) and Farmyard Manure (FYM) on physico-chemical properties of soil and performance of wheat crop (Triticum aestivum L.). Indian Journal of Agriculture and Allied Sciences. 1 (1): 38-44.
Singh, G., Jalota, S.K. and Singh, Yadvinder (2007). Manuring and residue management effects on physical properties of a soil under the rice wheat system in Punjab, India. Soil and Tillage Research. 94: 229-238.
Singh, R. and Agrawal, S.K. (2005). Effect of levels of farm yard manure and nitrogen fertilizer on grain yield and use efficiency of nutrients on wheat (Triticum aestivum). Indian Journal of Agricultural Science. 75 (7): 408-413.
Subbiah, B.V. and Asija, G.L. (1956). A rapid procedure for determination of available nitrogen in soil. Current Science. 25: 259-260.
Swaminathan, M., Kantha Josheph Rao, N., Chandramani, S.V., Subramanyam, L. and Indira, K. (1981). Balanced diet and nutritive values of common recipes. 2nd Feb., Sharda Press, Mangalore.

How to cite this article:
Patel, D.A., K.N. Patel, R.P. Pavaya and Patel, V.R. 2019. Effect of Moisture Regimes, FYM and Levels of P Carriers on Yield, Quality and P Uptake by Wheat in Loamy Sand. Int.J.Curr.Microbiol.App.Sci. 8(08): 1088-1099. doi: https://doi.org/10.20546/ijcmas.2019.808.127