Objective Physical Activity and Weight Loss in Adults: The Step-Up Randomized Clinical Trial

John M. Jakicic¹, Deborah F. Tate²,³, Wei Lang⁴, Kelliann K. Davis¹, Kristen Polzien²,³, Rebecca H. Neiberg⁴, Amy D. Rickman¹, and Karen Erickson²,³

Objective: To examine the amount of objectively measured MVPA and LPA that is associated with long-term weight loss and the maintenance of clinically significant weight loss.

Methods: Adults (N = 260; BMI: 25 to <40 kg/m²; age: 18–55 years) participated in an 18-month behavioral weight loss intervention and were prescribed a low-calorie diet and increased physical activity. Change in weight and objectively measured physical activity were assessed. MVPA >10 (MET-min/week) was computed from bouts >10 min and >3.0 METs and MVPA <10 was computed from bouts <10 min in duration and >3.0 METs. LPA was computed from bouts between 1.5 to <3.0 METs.

Results: When grouped on percent weight loss at 18 months, there was a significant group × time interaction effect (P < 0.0001) for both MVPA >10 and LPA, with both measures being significantly greater at 18 months in those with >10% weight loss. Similar results were observed for MVPA >10 and LPA with participants grouped on achieving >10% weight loss at 6 months and sustaining this at 18 months.

Conclusions: MVPA >10 of 200-300 min per week, coupled with increased amounts of LPA, are associated with improved long-term weight loss. Interventions should promote engagement in these amounts and types of physical activity.

Introduction

Overweight (BMI > 25 kg/m²) and obesity (BMI > 30 kg/m²) are significant public health concerns associated with chronic health conditions (1,2). The cornerstone of lifestyle interventions include reduced energy intake and increased energy expenditure, and a key behavior for enhancing weight loss is physical activity. Physical activity accounts for approximately 2-3 kg of weight loss beyond what is achieved through diet modification over a period of up to 6 months (2,3) and is associated with improved long-term weight loss (4-10). The amount of moderate-to-vigorous intensity physical activity (MVPA) associated with improved long-term weight loss appears to be approximately 250-300 min per week (3).

The amount of physical activity associated with improved long-term weight loss is based mostly on self-report of MVPA (5-10). Given the potential for persons who are overweight or obese to over-report their physical activity (11,12), it is unclear if self-reported data accurately reflect the amount of MVPA that is associated with improved long-term weight loss. Moreover, reliance on self-report has limited the ability to understand the contribution of various intensities of physical activity, particularly light intensity activity (LPA), on weight loss, which has not been examined in prior studies. Use of objective assessment of physical activity would provide greater insight into the amount of MVPA required and the potential contribution of LPA related to weight loss.

Objectively measured physical activity was assessed within the context of an 18 month behavioral weight loss program to examine the amount of MVPA and the contribution of LPA that is associated with absolute weight loss and patterns of weight loss.

Methods

Participants

Participants were recruited between May 2008 and February 2010, with data collection completed by September 2011. Procedures were

¹ Department of Health and Physical Activity, Physical Activity and Weight Management Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. Correspondence: John M. Jakicic (jakicic@pitt.edu) ² Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA ³ Department of Nutrition, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA ⁴ Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest University, Winston-Salem, North Carolina, USA.

Funding agencies: Supported by grant HL084400 from the National Institutes of Health.

Disclosures: Dr. Jakicic received an honorarium for a scientific presentation from Kaiser Permanente and was the Principal Investigator on grants awarded to the University of Pittsburgh by BodyMedia, Inc. Dr. Tate was a consultant to Weight Watchers, the Department of Veterans Affairs, and VioCare and received an honorarium from MD Anderson Cancer Center.

Clinical Trials Registration: clinicaltrials.gov NCT00714168

Received: 13 May 2014; Accepted: 16 June 2014; Published online 5 November 2014. doi:10.1002/oby.20830
approved by the Institutional Review Boards at the University of Pittsburgh and University of North Carolina at Chapel Hill; the two clinical sites for this study.

Participants were recruited through television, newspaper, and other mass media advertisements. Interested individuals provided verbal consent prior to completion of a telephone screening that was used to determine initial eligibility, with this information being confirmed at an in-person visit after written informed consent was obtained. A medical history and a physical activity readiness questionnaire were completed, in addition to clearance from the individual’s physician that was obtained prior to any additional data collection and prior to randomization in the weight loss intervention. Eligibility criteria included body mass index (BMI) within 25.0 to <40.0 kg/m² and age between 18 and 55 years, along with additional eligibility criteria previously reported (13).

This study randomized 363 individuals; however, 2 participants did not provide objectively measured physical activity at baseline, resulting in 361 participants with valid data at baseline. Demographic characteristics are presented in Table 1. Justification for sample size, the process for randomization, and the consort diagram for the primary outcomes have previously been published (13).

Outcome assessments

Body weight was assessed at 0, 3, 6, 9, 12, 15, and 18 months, and objectively measured physical activity assessed at 0, 6, 12, and 18 months. Participants were compensated $25 for completion of assessments at 0, 6, 12, and 18 months, and compensated $10 for completion of assessments at 3, 9, and 15 months. Assessment staff knew that the participants were in an active weight loss intervention program because this study did not include a no-treatment control group. To minimize the potential for bias, the staff did not have access to the prior assessment data when assessments were being conducted.

Weight was assessed on a scale to the nearest 0.1 kg with the participant clothed in a hospital gown or light-weight clothing. Height was measured only at baseline to the nearest 0.1 cm. BMI was computed as kg/m².

Physical activity was measured using a device worn as an armband for one week (SenseWear Pro Armband, BodyMedia, Inc.) at each of the assessment periods to provide an estimate of minute-by-minute energy expenditure. This device has been shown to provide a valid measure of energy expenditure (14,15). Minute-by-minute energy expenditure was converted to metabolic equivalents (METs). These data were used to identify minutes of LPA (1.5 to <3.0 METs) and MVPA (>3.0 METs). Data were considered valid and used for analysis only if the participants wore the device for >10 h per day for >4 days, as it has been reported that this amount of objectively measured physical activity is sufficient to determine a consistent pattern of physical activity (16,17). Data are presented as MET-minutes per week (MET-min/week).

Behavioral weight loss intervention

Participants were randomized to one of two 18 month behavior weight loss interventions, a standard behavioral weight loss intervention (SBWL) or a stepped-care intervention (STEP). The details of
the intervention and the main study results have previously been published (13), and a brief description is provided below.

Diet recommendations
SBWL and STEP were prescribed an energy-reduced diet consisting of 1,200-1,800 kcal/day based on initial body weight, and reduce fat intake of 20-30% of total energy intake.

Physical activity
SBWL and STEP were prescribed a physical activity program. Physical activity was initially prescribed at 100 min/week and progressed by 50 min every 4 weeks until a prescription of 300 min/week was achieved. Participants were encouraged to be physically active in bouts that were >10 min in duration and at a moderate-to-vigorous intensity.

SBWL intervention
SBWL was instructed to attend group-based intervention sessions. These intervention sessions were conducted weekly during months 1-6, biweekly during months 7-12, and monthly during months 13-18. Each group session was focused on a specific topic related to weight loss that addressed diet, physical activity, or specific behavioral strategies to support the prescribed diet and physical activity recommendations. Participants who were unable to attend a group session were offered an individual make-up session, and if this was not possible an attempt was made for the interventionist to speak with the participant by telephone.

STEP intervention
STEP was instructed to attend one group-based intervention session per month over the 18-month intervention period. As previously reported (13), participants were given weight loss goals of 5% at 3 months, 7% at 6 months, and 10% at 9, 12, and 15 months. Failure to achieve any of these a priori weight loss goals resulted in additional intervention contact by telephone or in-person, or additional weight loss strategies (e.g., supervised exercise, meal replacements) being added to the intervention in a stepped-care manner as previously reported. Each intervention contact focused on a specific topic related to weight loss that addressed diet, physical activity, or specific behavioral strategies to support the prescribed diet and physical activity recommendations. Participants who were unable to attend a scheduled intervention session were offered make-up sessions.

Statistical analysis
Statistical analyses were performed using SAS (version 9.2), with the type I error rate fixed at 0.05 (two-tailed). Normality of outcome variables was checked using the Kolmogorov-Smirnov test.

Two grouping variables were created: one based on weight change over the 18 months and the other based on weight change patterns at both 6 and 18 months. Separate mixed effects models using the first-order autoregressive dependence structure, AR (1), were fit to the outcomes. Weight measured at baseline, 3-, 6-, 9-, 12-, 15- and 18 months were analyzed using a mixed effects model with 7 time points. Inferences were focused on the main effects of weight change groups, time and the interaction effect between these two. Randomization stratification factors such as clinic, gender, and race were adjusted in the mixed effects model as covariates. Missing weight measures were handled using the multiple imputation methods implemented in SAS using the PROC MI and PROC MIANALYZE. A total of 10 imputation datasets were generated, analyzed, and summarized. The least square means obtained from the mixed effects model were presented. Weight changes from baseline and % weight change from baseline were analyzed similarly using separate mixed effects models with six time points with additional adjustment for the baseline weight.

For MET-min/week, the square root transformation was used to correct for the skewedness in its distribution. Only participants with objective physical activity measured for at least one time point (0, 6, 12, or 18 months) were included in the analysis, and missing MET-min/week were imputed to be zero. Separate mixed effects models with 4 time points were fitted to the MET-min/week for each of the following activity bouts: >1 min in duration and between 1.5 and <3.0 METs (LPA), >1 min in duration and >3.0 METs (MVPA-TOTAL), between 1 and <10 min in duration and >3.0 METs (MVPA<10), and >10 min in duration and ≥3.0 METs (MVPA >10). The least square means obtained from these models were back-transformed and so were the 95% confidence limits. Pairwise comparisons were performed at a significance level that was adjusted using the Bonferroni’s method, resulting in a type I error rate of 0.008 for 6 pairwise comparisons among the four groups.

Results
Physical activity comparison based on 18-month weight loss
Participants were grouped on the magnitude of percent weight change from baseline to 18 months. It has been suggested that health benefits can be realized with 5% weight loss (18,19) and weight loss of 10% has been recommended as an important clinical target (2). Therefore, these weight loss targets were used to categorize participants, with groups consisting of weight gain (GAIN), weight loss <5% (WL <5%), weight loss of 5 to <10% (WL <10%), and weight loss >10% (WL >10%). To be placed into the appropriate group the participant needed to provide weight data at 0 and 18 months, resulting in 260 (71.6%) of the 363 randomized participants being included in the analyses (Figure 1). Demographic characteristics of the sample of the 260 are presented in Table 1 and closely resemble the demographic characteristics of the randomized sample with complete data at baseline. The pattern of weight change over the 18 month intervention is shown in Table 2 and Figure 2. Weight loss at 18 months was significantly different between GAIN (mean ± SEM: 3.36 ± 0.76%) and WL <10% (mean ± SEM: 5.7 ± 0.6%), with WL >10% showing a significant group × time interaction (P < 0.0001) (Table 3). Post hoc analysis with Bonferroni’s adjustment for multiple comparisons (α = 0.008) revealed that MET-min/week for MVPA >10 was significantly greater in WL >10% compared to GAIN, WL <5%, and WL <10% at 6, 12, and 18 months. A similar pattern of results was observed for MVPA-TOTAL at 18 months, although relationships were not as strong at 12
Variable	Group based on weight change	Baseline	3 months	6 months	9 months	12 months	15 months	18 months	Weight change in kg	P values	Weight change group	Time	Weight change group × time
Weight (kg)	++	98.65 ± 2.10	96.36 ± 2.10	96.45 ± 2.10	99.19 ± 2.10	99.74 ± 2.10	102.0 ± 2.10	102.2 ± 2.10	<0.0001	<0.0001	<0.0001		
Weight change from baseline (kg)	++	-2.65 ± 0.70	-2.57 ± 0.70	0.17 ± 0.71	0.72 ± 0.70	2.98 ± 0.71	3.17 ± 0.70	<0.0001	<0.0001	<0.0001			
Percent weight change from baseline (%)	++	-2.63 ± 0.72	-2.58 ± 0.72	0.33 ± 0.73	0.92 ± 0.72	3.45 ± 0.72	3.63 ± 0.72	<0.0001	<0.0001	<0.0001			

Table 2 Change in weight by weight loss category

Gain (N = 39): Weight gain ≥ 0% of baseline weight; **WL < 5%**: weight loss <5% of baseline weight; **WL < 10%**: weight loss of 5% to <10% of baseline weight; **WL ≥ 10%**: weight loss ≥10% of baseline weight; **Nonloss**: weight loss at both 6 and 18 months; **LATE-LOSS**: <10% weight loss at 6 months and ≥10% weight loss at 18 months; **NONMAINTAIN**: ≥10% weight loss at 6 months and <10% weight loss at 18 months; **MAINTAIN**: ≥10% weight loss at both 6 and 18 months.
months and even less so at 6 months, compared to MVPA > 10. There was no significant difference between 18 month weight loss categories (GAIN, WL < 5%, WL < 10%, WL > 10%) for MVPA accumulated in bouts 1 to <10 min (MVPA < 10) (Table 3).

LPA showed a significant group × time interaction (P < 0.0001) (Table 3). Post hoc analysis with Bonferroni’s adjustment for multiple comparisons revealed that MET-min/week for LPA was significantly greater in WL > 10% compared to GAIN and WL < 5% at 12 and 18 months.

Physical activity comparison by pattern of weight loss at 6 and 18 months

Participants were also grouped on the magnitude of percent weight change that was achieved at both 6 and 18 months. Weight loss of 10% has been recommended as an important clinical target (2). Therefore, participants were grouped based on <10% weight loss at both 6 and 18 months (NONLOSS, N = 104), <10% weight loss at 6 months and >10% weight loss at 18 months (LATE-LOSS, N = 19), >10% weight loss at 6 months and <10% weight loss at 18 months (NONMAINTAIN, N = 44), or >10% weight loss at both 6 and 18 months (MAINTAIN, N = 86). To be placed into the appropriate category, weight data at 0, 6, and 18 months was required, resulting in 258 (71.1%) of the 363 randomized participants being included in the analyses Figure 1. Demographic characteristics of the 258 participants are presented in Table 1 and closely resemble the demographic characteristics of the randomized sample with complete data at baseline. The pattern of weight change over the 18 month intervention is shown in Table 2 and Figure 3.

The results of the analysis of the physical activity data here was not significantly influenced by randomized treatment group assignment (SBWL vs. STEP) and therefore this was not considered further in these analyses. Physical activity data are presented as MET-min/week. Comparison of MVPA > 10 showed a significant group ×
Physical activity variable	Group based on 18-month weight change	Baseline	6 months	12 months	18 months	Time	Weight change group	Weight change group x time	
LPA (bouts ≥1 min in duration and <3.0 METs)	GAIN (W = 39)	(2,652.6, 3,204.8)	(2,519.8, 3,064.8)	(2,216.7, 2,741.6)	(2,080.7, 2,597.8)	0.0014	0.0350	0.0001	
	WL < 5% (N = 57)	3,225.0	3,100.5	3,079.1	2,509.1	<0.0001	0.0001	<0.0001	
	WL < 10% (N = 57)	2,821.8	2,382.9	2,497.3	1,986.3	<0.0001	<0.0001	<0.0001	
	WL ≥ 10% (N = 107)	2,530.1	3,315.1	2,649.6	2,247.3	<0.0001	0.0001	<0.0001	
MVPA-TOTAL (bouts ≥1 min in duration and ≥3.0 METs)	GAIN	1,484.6	1,355.4	1,462.3	1,377.9	0.0121	0.0962	0.1576	
	WL < 5%	(1,273.1, 1,712.3)	(1,156.0, 2,091.5)	(1,449.5, 2,549.7)	(1,393.2, 2,474.8)	<0.0001	0.0962	0.1576	
	WL < 10%	(1,194.9, 2,208.0)	(1,764.8, 2,962.8)	(1,875.6)	(1,602.0)	<0.0001	0.0962	0.1576	
	WL ≥ 10%	(1,264.1, 1,913.6)	(2,076.2, 2,883.5)	(1,538.2, 2,246.5)	(1,283.8, 1,955.3)	<0.0001	0.0962	0.1576	
MVPA < 10 (bouts 1 to <10 min in duration and ≥3.0 METs)	GAIN	1,041.5	1,484.6	899.3	890.7	0.0121	0.0962	0.1576	
	WL < 5%	(925.1, 1,164.8)	(930.0, 1,173.9)	(787.2, 1,018.9)	(777.6, 1,101.4)	<0.0001	0.0962	0.1576	
	WL < 10%	(878.2, 1,422.7)	(932.5, 1,491.6)	(871.0, 1,413.5)	(818.5, 1,345.6)	<0.0001	0.0962	0.1576	
	WL ≥ 10%	(982.1, 1,344.3)	(1,087.0, 1,464.1)	(977.0, 1,337.9)	(843.2, 1,189.8)	<0.0001	0.0962	0.1576	
MVPA ≥ 10 (bouts ≥10 min in duration and ≥3.0 METs)	GAIN (W = 39)	337.7	673.3	456.9	392.8	<0.0001	0.0001	<0.0001	
	WL < 5% (N = 57)	234.2, 460.2	521.5, 844.5	694.9	709.5	<0.0001	0.0001	<0.0001	
	WL < 10% (N = 57)	178.6	713.5	876.9	1,091.3	0.0121	0.0962	0.1576	
	WL ≥ 10% (N = 107)	178.1	490.3	417.7	854.2	(305.5, 703.2)	<0.0001	0.0001	<0.0001

Note: Group based on 18-month weight change—GAIN: Weight gain ≥0% of baseline weight; WL<5%: weight loss <5% of baseline weight; WL<10%: weight loss of 5 to <10% of baseline weight; WL≥10%: weight loss ≥10% of baseline weight.
Physical Activity and Weight Loss

When participants were grouped based on weight loss achieved at 18 months (GAIN, WL < 5%, WL < 10%, WL > 10%), MVPA-TOTAL was significantly greater in WL > 10% compared to all other categories (GAIN, WL < 5%, and WL < 10%) (Table 3). However, it appears that the difference in MVPA is a result of WL > 10% engaging in more MVPA > 10 at 6, 12, and 18 months when compared to those participants achieving less magnitudes of weight loss, and not a result of differences in MVPA < 10. This is an important finding because public health recommendation for physical activity recommend the engagement in bouts of MVPA that are at least 10 min in duration, and these findings appear to support this recommendation for weight loss.

Brisk walking, or activities similar in intensity, were recommended as the form of physical activity within this weight loss intervention. Assuming an intensity of 4.5 METs, which reflects brisk walking, the minutes of weekly MVPA > 10 in WL > 10% at 6, 12, and 18 months would be approximately 337, 257, and 260 min per week, respectively. Similar magnitudes of MVPA > 10 were observed for individuals who lost >10% of their initial weight at 6 months and sustained this magnitude of weight loss at 18 months (MAINTAIN), with the duration of MVPA > 10 being 314.4, 236.2, and 238.4 min per week at 6, 12, and 18 months respectively. These durations of MVPA are comparable to the 200-300 min per week of physical activity recommended to enhance long-term weight loss and to minimize weight regain (3). These recommendations based primarily on studies that relied on self-reported physical activity are largely confirmed by the results of this study using an objective physical activity monitor.

Limited studies have used objectively measured physical activity to examine the association with long-term weight loss (4,9) and there are limitations to these studies. Schoeller et al. (9) recruited patients after they had lost >12 kg, and used physical activity measured with doubly labeled water to predict weight regain over the subsequent 12 months. Catenacci et al. (4) used accelerometry in a cross-sectional design to compare physical activity in a subsample of successful weight losers to both normal weight and overweight control participants. By comparison, the current study measured physical activity objectively at 6 month intervals throughout the entire 18 month intervention, which provides greater detail regarding the dose, duration, and intensity of physical activity in individuals achieving different magnitudes of weight loss within a behavioral weight loss intervention.

Objective measurement of physical activity also allowed for the examination of LPA, which has received little attention within the scientific literature on long-term weight loss. Individuals achieving the greatest weight loss (Table 3) or maintaining significant weight loss (Table 4) were participating in a greater amount of LPA compared to individuals less successful at long-term weight loss. This is an important contribution and may suggest that the combination of increasing both MVPA > 10 and LPA contribute to long-term weight loss success, and the role of LPA warrants further investigation.

MVPA > 10 and LPA may both contribute to increase energy expenditure, which facilitates energy balance and body weight regulation. However, there may be additional metabolic and physiological pathways by which the dose, duration, and intensity of physical activity shown to be associated with long-term weight loss success in this study contribute to the regulation of energy balance and body weight. These may include influences of physical activity on energy intake and eating behavior, fat metabolism, and other hormonal or physiological processes, and these warrant further investigation.

The intervention in this study also included recommendations for reducing energy intake, and therefore physical activity was not solely responsible for the weight loss observed in this study. However, the interaction between physical activity and energy intake can be complex. For example, greater engagement in physical activity is not necessarily associated with improved compliance to reduced energy intake (20,21). It has also been shown that physical activity is associated with a reduction in energy intake in some individuals and with an increase in others (22). The complex interaction...
Physical activity variable	Group based on 18-month weight changea	Assessment periods (MET-min per week)	P valuesa					
		Baseline	6 months	12 months	18 months	Time	Weight change	Weight change
							group	group × time
LPA (bouts ≥1 min in duration and between 1.5 and <3.0 METs)	GAIN (N = 39)	2,922	2,785.6	2,472.2A	2,332.1A	0.0014	0.0350	0.0001
	WL < 5% (N = 57)	(2,652.6, 3,204.8)	(2,519.8, 3,064.8)	(2,216.7, 2,741.6)	(2,080.7, 2,597.8)			
	WL < 10% (N = 57)	3,255.0	3,100.5	3,079.8B	2,591B			
	WL ≥ 10% (N = 107)	2,909.4	3,065.1	2,844.1	2,613.0			
MVPA-TOTAL (bouts ≥1 min in duration and >3.0 METs)	GAIN	1,484.6	1,835.4A,B,C	1,596.0	2,091.5	<0.0001	0.0001	<0.0001
	WL < 5% (N = 57)	(1,273.1, 1,712.3)	(1,566.0, 2,091.5)	(1,244.0, 1,698.1)	(1,163.6, 1,610.3)			
	WL < 10% (N = 57)	1,662.9	2,325.2A	1,961.0B	1,895.4B			
	WL ≥ 10% (N = 107)	1,572.3	2,463.3B	1,875.6	1,602.0C			
MVPA <10 (bouts 1 to <10 min in duration and >3.0 METs)	GAIN	1,041.5	1,048.4	899.3	890.7	0.0121	0.0962	0.1576
	WL < 5% (N = 57)	(925.1, 1,164.8)	(930.0, 1,173.9)	(787.2, 1,018.9)	(777.6, 1,011.4)			
	WL < 10% (N = 57)	1,134.1	1,195.7	1,125.9	1,066.2			
	WL ≥ 10% (N = 107)	1,156.1	1,268.5	1,150.4	1,009.1			
MVPA ≥10 (bouts ≥10 min in duration and >3.0 METs)	GAIN	337.7	673.3A,B,C	456.9A	392.8A	<0.0001	<0.0001	<0.0001
	WL < 5% (N = 57)	(234.2, 460.2)	(521.5, 844.5)	(330.3, 604.0)	(274.9, 531.7)			
	WL < 10% (N = 57)	401.5	1,004.5A	694.9B	709.5B			
	WL ≥ 10% (N = 107)	314.9	1,062.4ΔE	616.6C	483.9C			

Note: Groups with the same superscript at the same assessment point are significantly different at p < 0.008 (p-value of 0.05 adjusted using Bonferroni adjustment for 6 group comparisons at that time point).
1. No significant difference between randomized groups (data not presented).
between physical activity and energy intake warrants further investigation.

This study did show that a comprehensive behavioral weight loss program can elicit significant long-term weight loss, and the magnitude of weight loss achieved is comparable to what is achieved with other medical-based clinical interventions. For example, individuals classified as WL > 10 or MAINTAIN achieved 18 month weight loss of 16.6 ± 0.5% and 17.4 ± 0.5%, respectively (Table 2, Figures 2 and 3). This study also showed that 130 of the 253 participants lost >10% of initial body weight at 6 months; however, 44 of the 130 participants (33.8%) were unable to maintain >10% weight loss at 18 months (Table 2; Figure 3), and lower levels of physical activity may have contributed to this weight regain (Table 4). Few participants (7.5%) who did not achieve a 10% weight loss at 6 months were ever able to achieve this magnitude of weight loss at 18 months (LATE-LOSS), suggesting that it is unlikely that most individuals who initially do not respond favorably to a behavioral weight loss intervention will ultimately observe longer term success in such a program. This may have important implications for the clinical management of overweight and obesity. Moreover, the small sample defined as LATE-LOSS may have reduced the statistical power to detect difference in physical activity between this weight loss pattern and other weight loss patterns (GAIN, NONMAINTAIN, MAINTAIN).

This study is not without limitations. While prospective data were used to examine the dose, duration, and intensity of physical activity and weight loss, participants were grouped in a post hoc manner based on weight loss achieved in the intervention. This may result in selection bias and additional confounding factors that could influence the findings reported. Moreover, the majority of study participants were female (82.6%), which prohibited analysis to determine if these findings were consistent between males and females. This study included adults 18-55 years of age with BMI between 25 and <40 kg/m², and therefore is it unclear whether these findings would apply to older adults or individuals at higher levels of obesity.

Objective measurement of physical activity also occurred for 1 week at 0, 6, 12, and 18 months, which does not provide a comprehensive perspective of physical activity across the entire 18-month period. It is possible that physical activity may have differed during this assessment period compared to normal physical activity behavior; however, we have previously shown that activity does not differ during weeks when participants wear an activity monitor compared to weeks where they do not wear an activity monitor (11).

The results provided objective information on the dose, duration, and intensity of physical activity that is associated with successful long-term weight loss. These findings appear to confirm clinical recommendations for MVPA > 10 that have been based mostly on self-reported physical activity. The findings suggest that LPA may also contribute to successful long-term weight loss when combined with appropriate amounts of MVPA > 10. While the pathways and mechanisms by which the dose, duration, and intensity of physical activity influence weight loss and body weight regulation within the context of behavioral weight loss interventions require further study, promoting the adoption and maintenance of 200-300 min per week of MVPA > 10 and encouraging engagement in increased amounts of LPA may improve long-term weight loss in adults.

Acknowledgments

We recognize the contribution of the Physical Activity and Weight Management Research Center at the University of Pittsburgh, the UNC Weight Research Program at the University of North Carolina at Chapel Hill, and the Department of Biostatistical Sciences at Wake Forest University.

© 2014 The Obesity Society

References

1. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and The Obesity Society. Circulation 2014:129 (Suppl 2):S102–S38.

2. National Institutes of Health National Heart Lung and Blood Institute. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults—The Evidence Report. Obes Res 1998;6 (Suppl 2):S158–129.

3. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. ACSM position stand on appropriate intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 2009;42:459-471.

4. Catenecci VA, Grunwald GK, Ingebrigtsen JP, et al. Physical activity patterns using accelerometry in the National Weight Control Registry. Obesity 2011;19:1163-1170.

5. Jakicic JM, Marcus BH, Lang W, Janney C. Effect of exercise on 24-month weight loss in overweight women. Arch Int Med 2008;168:1550-1559.

6. Jakicic JM, Winters C, Lang W, Wing RR. Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: A randomized trial. J Am Med Assoc 1999;282:1554-1560.

7. Jeffery RW, Wing RR, Sherwood NE, Tate DF. Physical activity and weight loss: Does prescribing higher physical activity goals improve outcome? Am J Clin Nutr 1997;66:239-246.

8. Klem ML, Wing RR, McGuire MT, Seagle HM, Hill JO. A descriptive study of individuals successful at long-term maintenance of substantial weight loss. Am J Clin Nutr 1997;66:551-556.

9. Tate DF, Jeffery RW, Sherwood NE, Wing RR. Long-term weight loss associated with prescription of higher physical activity goals. Are higher levels of physical activity protective against weight regain? Am J Clin Nutr 2007;85:954-959.

10. Jakicic JM, Polley BA, Wing RR. Accuracy of self-reported exercise and the relationship with weight loss in overweight women. Med Sci Sports Exerc 1998;30:634-638.

11. Litchman SW, Pisarska K, Berman ER, et al. Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N Engl J Med 1992;327:1893-1898.

12. Jakicic JM, Tate D, Davis KK, et al. Effect of a stepped-care intervention approach on weight loss in adults: The Step-Up Randomized Trial. JAMA 2012;307:2617-2626.

13. Jakicic JM, Marcus MD, Gallagher KL, et al. Evaluation of the SenseWear Pro Armband™ to assess energy expenditure during exercise. Med Sci Sports Exerc 2004;36:897-904.

14. St-Onge M, Mignault D, Allisson DB, Rabasa-Lhoret R. Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am J Clin Nutr 2007;85:742-749.

15. Masse LC, Fuemmeler BF, Anderson CB, et al. Accelerometer data reduction: A comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc 2005;37:5544-5554.

16. Miller GD, Jakicic JM, Rejeski WJ, et al. Effect of varying accelerometry criteria on physical activity: The Look AHEAD Study. Obesity 2013;21:24-44.

17. Goldstein DJ. Beneficial health effects of modest weight loss. Int J Obes 1992;16:397-415.

18. Stevens J, Truesdale KP, McClain JE, Cai J. The definition of weight maintenance. Int J Obes 2006;30:391-399.

19. Jakicic JM, Wing RR, Winters-Hart C. Relationship of physical activity to eating behaviors and weight loss in women. Med Sci Sports Exerc 2002;34:1653-1659.

20. Unick JL, Otto AD, Helsel D, Dutton C, Goodpaster BH, Jakicic JM. The acute effect of exercise on energy intake in overweight/obese women. Appetite 2010;55:413-419.