Alignment and Resolution Studies of a MARS CT Scanner

A. Gongadze, A. Zhemchugov, G. Chelkov, D. Kozhevnikov, I. Potrap, M. Demichev, P. Smolyanskiy, R. Abramishvili, S. Kotov, A. P. Butler, P. H. Butler, and S. T. Bell

Abstract—This paper describes a procedure of alignment of MARS CT scanner with cone beam geometry. The position of the x-ray source relative to the detector, the tilt of the detector are measured during alignment. The mechanical precision of gantry movement is determined. Significant improvement in the quality of image reconstruction has been achieved as a result of the calibration. Spatial resolution (PTF) of the scanner is confirmed to be about 30 μm.

DOI: 10.1134/S1547477115050064

1. INTRODUCTION

The MARS scanner [1] is designed for the X-ray spectroscopic study of samples with the aid of computer tomography methods. Computer tomography allows the reconstruction of slices of an investigated sample using a set of shadow projections obtained for different angles. Projections in the MARS scanner are produced using a cone x-ray beam geometry. Correct reconstruction in this scheme requires precise knowledge of several geometrical parameters of a tomograph, such as displacement of a rotation axis, X-ray source position with respect to a camera, and camera inclinations. Use of inaccurate parameters leads to a poor sample reconstruction. Non-ideal positioning of camera, X-ray source and cylindrical rotating frame (gantry) itself on which these parts are located, leads to the need for tomograph alignment. In this note we describe the alignment procedure that was used to get different geometrical corrections for the reconstruction. Also, several different estimations of the final spatial resolution for reconstructed images are presented.

2. THE MARS SCANNER

The MARS (Medipix All Resolution System) scanner (Fig. 1) obtained by the Laboratory of Nuclear Problems of the Joint Institute for Nuclear Research, has a camera with two detectors based on gallium arsenide (compensated with chromium) sensors [2] and equipped with the Medipix3.1 [3] electronics. Each detector has 256 × 256 pixels of 55 microns and has dimensions of 14 × 14 mm. The Medipix3.1 electronics can simultaneously count the number of photons with energies above the threshold at each pixel for two different thresholds. Gallium arsenide sensors have higher detection efficiency of photons at high...
energies in comparison with silicon sensors. The advantages of the scheme with single photon counting include the absence of dark currents and radiation dose reduction. Moreover, by changing user-settable parameters in the Medipix3.1 electronics, it is possible to select different ranges of photon energies for spectrometry.

Since the MARS tomograph was designed for biomedical research, the gantry with the scanning equipment (X-ray source and camera) attached to it is rotated around fixed scanned sample (Fig. 2). The gantry rotation axis is horizontal.

A test sample (up to 100 mm in diameter and 300 mm length) is placed in the center and can be moved along the rotation axis. The camera and the source are placed on the gantry from the opposite sides and are able to move along the axis connecting each other, approaching or moving away from the sample. In order to enable scanning of large samples camera can also be moved in the direction transverse to the rotation axis and the axis connecting the source and the camera.

2.1. The MARS Tomograph Reference Frame

To describe the geometry of the tomograph it is necessary to define the reference frames associated with the moving parts of the tomograph (Fig. 3):

Laboratory reference frame
The Cartesian reference frame \((X, Y, Z)\), associated with the tomograph support structure. The axes are as it is shown in the figure.

Sample reference frame
The Cartesian reference frame \((X_s, Y_s, Z_s)\), associated with the sample, which can be moved along the \(Z\) axis of the laboratory reference frame.

Gantry reference frame
The Cartesian reference frame \((X_g, Y_g, Z_g)\), associated with the gantry, and differs from the laboratory frame by the rotation angle \(\phi\) around the \(Z\) axis.

Camera reference frame
The Cartesian reference frame \((X_c, Y_c, Z_c)\), associated with the camera that can be moved along the \(Y_c\) axis of the gantry reference frame. This reference frame is defined by the pixel detector plane. The \(Y_c\) axis is parallel to the detector rows of pixels, the \(Z_c\) axis is parallel to the detector columns of pixels.

3. MECHANICAL PRECISION OF THE MOVEMENT OF THE TOMOGRAPH PARTS

3.1. Measurements Using an Electronic Feeler Gauge

Prior to the alignment studies, the mechanical precision of the movements of the tomograph parts has been investigated. The main goal was to measure the displacement of the gantry rotation axis during its rotation and to measure the displacement of the gantry itself along the rotation axis. To perform these measurements an electronic feeler gauge was used. In the first case, the positions of the upper points of the left and right gantry supports (red arrows in Fig. 4 left side) have been measured for different rotation angles. The mean value of these two measurements (left and right) gives an estimation of the displacement of the rotation axis in the local area of a measured sample. In the second case, position measurements have been performed from the near side and the far side of the edge.
of the left gantry support (red arrows in Fig. 4 right side). In this case the mean value of the two measurements describes gantry movement along its rotation axis.

The results of the described mechanical measurements are presented in Fig. 5 and Fig. 6 as a function of the gantry rotation angle. The results show that in the area of a scanned object the displacement of the gantry rotation axis is within 30 microns (green line in Fig. 5), while the gantry itself moves along Z-axis by 100 microns (green line in Fig. 6). These displacement values are not negligible with respect to the pixel size of the detector and will lead to additional smearing of a reconstructed image. The results of these measurements may be used in the future for correcting projections of scan depending on the angle of rotation.

3.2. Measurements Using Angular Encoder System

Rotation of the gantry was studied using the optical angular encoder system REX-ISHAW RESR [4]. The system we used consists of the RESR ring (with the diameter of 200 mm) with graduations marked on it every 20 μm and the optical readhead with a resolution of 5 μm. The RESR ring is mounted on the shaft of the gantry and the readhead is attached to the tomograph frame. The angular resolution of this system is about 10 arc seconds.

In the normal scanning procedure the tomograph equipment rotates around a fixed sample making stops to get the x-ray projection images at different rotation angles. The gantry with its equipment attached has a considerable moment of inertia, which leads to vibrations of tomograph parts at the moment it stops. The behavior of the tomograph at this moment was investigated with the aid of RESR system (Fig. 7). As shown in the figure, significant initial vibrations of the system are observed. To get projections of good quality, there should be a time delay between the stop and the exposure of about half of a second.

The next step of the investigation is to study the repeatability of angular measurements at the same positions of the step motor which rotates the gantry. During a scan the tomograph makes stops several times in the same angular positions to get projections. For successful stitching of these projections, a high accuracy in the repeatability of angular positions is needed. Figure 8 shows the results of numerous angular measurements when tomograph is moved to positions 0° and 352°. The results show that the design of the tomograph does provide high reproducibility of angular positions.

The gantry of the MARS scanner is driven by a step motor via an automotive timing belt. The weight distribution of the equipment attached to the gantry is non-uniform and can lead to different tension of the belt for different rotation positions. The following measurements have been performed to check whether the tomograph angular positions correspond to actual angular positions.

In Fig. 9 the difference between measured and expected values of angular positions is presented as a function of time.

Fig. 5. Relative position of upper points of the left (1) and right (2) gantry supports as a function of the gantry rotation angle. The mean value (3) characterizes the displacement of the gantry rotation axis in the scanning area during rotation.

Fig. 6. Position measurements of the “near” (1) and “far” (2) sides of the left gantry support for different rotation angles. The mean value (3) characterizes the displacement of gantry along its rotation axis.

Fig. 7. Angular measurements after stopping the tomograph rotation.
Deviation of the measured angle is significant and its maximum approximately corresponds to the value of 500 microns on the surface of the RESR ring. In principle, encoder measurements are affected not only by the ring rotation but also by the movement of the ring axis during its rotation. To account for this effect, independent measurements of the ring axis movement were performed depending on the rotation angle. The distance to the surface of the RESR ring was measured using SAFIBRA optical probe. The amplitude of this measurement does not exceed 80 microns and can not explain the value of the difference in measured rotation angle. The difference between the measured and expected values of the rotation angle can be taken into account to correct gantry positions and then used in the image reconstruction procedure with nonlinear rotation steps.

4. GEOMETRICAL PARAMETERS REQUIRING CALIBRATION

In case of ideal geometry, the Z_s axis of the MARS tomograph, along which the sample is moving, is parallel to the gantry rotation axis Z_g, parallel to the columns of the camera Z_c axis and parallel to the Z axis of the laboratory reference frame. The Y_c and Z_c axes cor-

Fig. 8. Repeatability of angular measurements when tomograph is moved to positions 0° and 352°.

Fig. 9. The difference between measured and expected values of angular positions as a function of gantry rotation angle.
ALIGNMENT AND RESOLUTION STUDIES OF A MARS CT SCANNER

729

5. THE PROCEDURE FOR THE MARS SCANNER ALIGNMENT

5.1. Phantom Description

To study the geometry of the tomograph a very simple phantom was designed. This is a plastic hollow cylinder of 35 mm diameter with two tungsten 50 μm wires glued on the surface of the cylinder (Fig. 10). The tungsten wires form a “cross” with one wire oriented along the Z-axis and the other in the perpendicular direction.

On the camera projections, the position of the cross can be determined using a Gaussian approximation of the shadow in the local vicinity of a crossing point. An example of these measurements is presented in Fig. 11. The position of the shadow cross was determined for

![Fig. 10. Phantom for the tomograph geometry calibration.](image)

![Fig. 11. Determination of the position of the shadow cross, using a Gaussian approximation in the local vicinity of a crossing point.](image)
The above mentioned cross of wires, glued to the surface of the cylinder, was mainly used in the procedure for determining the source position. To find the camera inclination angle, another wire was stretched in the cross section of the phantom, which is shown as a vertical dashed line in Fig. 10.

5.2. Determination of the Camera Inclination Angle α_{tilt}

To determine the camera inclination angle α_{tilt} in the Y_gZ_g plane, the projection of the wire stretched in the X_sY_s plane is used. For this purpose the shadow inclination angle is analyzed for the vertical wire. Because the wire itself is not perfectly vertical, two projections are used: direct projection, and one obtained by rotating the gantry 180°. The average angle of the two positions gives the desired camera inclination angle in the plane Y_gZ_g (Fig. 12).

5.3. Determination of the Source Position along the Z_c Axis

To determine the source position with respect to the camera along the Z_c axis, we used the shadow cross images for the two gantry rotation angles in six Z-positions of the sample holder (Fig. 13). The values of rotation angles of 40° and 22° have been chosen that correspond to the “near” and “far” positions of the cross with respect to the camera. In principle, it is not necessary for the angle difference to be 180° and several rotation positions can be used instead of two.

For each of the projections, the position of the shadow crossing point along the camera Z_c axis has been calculated, as it is shown in Fig. 11. The dependence of the shadow cross position on the phantom

![Diagram](image-url)
5.4. Determination of the Source Position Along the \(Y_c \) Axis and of the Source to Detector Distance SDD

To determine the source position along the \(Y_c \) axis, the measurement scheme shown in Fig. 15 can be used. One needs to perform several sets of measurements of the shadow coordinate obtained for different “cross” height positions by moving the camera towards and away from the source. Different “cross” height positions are achieved by simply rotating the phantom by various angles.

In our case, the \(Y_c \) coordinate of the shadow cross have been measured for three positions of the gantry rotation angle in five camera positions along the \(X_g \) axis connecting the camera to the source. In Fig. 16 the green line corresponds to the shadow position measurements at 30° rotation angle, blue line corresponds to 203° gantry rotation angle and the red line corresponds to 358° gantry rotation angle. All three lines have to cross at the same point, which is the position of the x-ray source along the camera \(Y_c \) axis. As it is seen from the graph, this method is suitable not only for determining of the source \(Y_c \) position, but also to determine the distance SDD from the source focal spot to the camera, which in this case turned out to be approximately two centimeters greater than the nominal.

6. THE IMPACT OF THE TOMOGRAPH ALIGNMENT TO THE IMAGE RECONSTRUCTION QUALITY

Geometrical corrections obtained in the procedure of the tomograph alignment can be used as input parameters for the image reconstruction. The plastic phantom with two additional wires strung in its cross section has been used as a scanned sample. In the first
case, the image reconstruction is performed using the
nominal parameters of the geometry (Fig. 17). In the
second case, corrections obtained in the procedure of
the tomograph alignment have been applied (Fig. 18).

From these figures it is evident that without geo-
metrical corrections the reconstruction is of lower
quality, with several artifacts. In particular, the wires
on the reconstructed image are look duplicated and
dashed. The implementation of the alignment correc-
tions results in a significant improvement in the quality
of the reconstructed image.

7. SPATIAL RESOLUTION

The overall spatial resolution of the tomograph
depends both on the quality of the original projections
and also on the quality of the reconstruction. In the
first case, it is influenced by the physical processes in
the material of the detector, the detector pixel size, the
size of the X-ray tube focal spot, and the zoom factor.
Such factors as mechanical precision of the movement
of the tomograph parts and the precise alignment of
the system also affect the quality of the image recon-
struction. In this section several methods are described
that were used to obtain a quantitative estimation of
the overall spatial resolution of the system.

The first method is based on indirect estimation of
the spatial resolution using a Gaussian approximation
to the point spread function (PSF). Aluminum wire of
the diameter about 2.7 mm has been used as the
scanned object. To evaluate the spatial resolution of
the tomograph, an image presenting the sum over
20 reconstructed slices of the wire is used (Fig. 19). A
narrow area along the two axes presented by the red
lines in the figure, which can be considered as rectan-
gular, is selected for fitting. A function which is a con-
volution of a rectangle with a Gaussian is used here as
an approximation function (Fig. 20). The rectangular
function is a non-smeared initial image of the wire,
while the Gaussian function is the system response to
a point-like object. As a result of the fit, the value of
$\sigma = 34 \mu m$ for the Gaussian point spread function
(PSF) is determined along both axes. (The reader may
note that Fig. 20 has some beam hardening visible as a
cupping artefact, but this does not affect our results.)

To get a direct estimate of the spatial resolution,
three different samples of stainless mesh have been
scanned (Fig. 21). The first mesh has wires of 25 μm
diameter and 67 μm repeat distance, the second mesh
has wires of 30 μm diameter and 80 μm repeat distance
and the third mesh has wires of 50 μm diameter and
265 μm repeat distance. Assuming that the response to
a point object is Gaussian, the images of the two point-
like objects become separated when the distance
becomes larger than 2σ approximately. The smallest
mesh is barely resolved, but for the second sample
(30 μm diameter and 80 μm repeat distance) the mesh
structure is fully visible. This is in a good agreement
with the estimation above of the spatial resolution.

A second independent direct check of a spatial res-
olution has been performed by scanning a standard
calibration phantom, the QRM-Barpattern-Phantom
(Fig. 22). This calibration phantom consists of two
perpendicular silicon 5 \times 5 mm2 chips with pattern

Fig. 16. Results of calculation of the source Y_c position and
 correction of the SDD distance between the source and the
camera.

Fig. 17. Phantom image reconstructed without correc-
tions.

Fig. 18. Phantom image reconstructed with the alignment
corrections applied.
Fig. 19. Sum over 20 reconstructed slices of aluminum wire (the wire is slightly damaged from the one side).

Fig. 20. Approximation of the wire cross-section using convolution of a Gaussian with a rectangular function along the X_s axis (top plot) and along the Y_s axis (bottom plot).
bars and holes of 5 to 150 μm size and of 80 to 120 μm depth (Fig. 22). Reconstructed images of the phantom are shown in Fig. 23. The least size of visible bars on these pictures is 50 μm, this corresponds to 10 line-pairs per millimeter.

8. CONCLUSIONS

In computer tomography, a sufficiently accurate knowledge of the tomograph geometry is required to achieve good quality image reconstruction. In this paper, the precision of the movement of the MARS scanner parts has been studied and several geometrical parameters have been determined to improve the quality of the image reconstruction. Several procedures for measuring the MARS scanner alignment have been developed and applied. The resulting corrections were used as input parameters for the image reconstruction algorithm. The results of this work show that using these alignment corrections loads to a significant improvement in the quality of the imago reconstruction. Using these corrections, several independent methods have been applied to make quantitative estimation of the final spatial resolution for the recon-
structured imago. The results of different methods are consistent and give an estimation for the tomograph spatial resolution of slightly greater than 30 microns.

9. ACKNOWLEDGMENTS

This work was partially supported by the Ministry of Education and Science of the Russian Federation, contract 14.618.21.0001.

REFERENCES

1. MARS Bioimaging Ltd., 29a, Clyde Road Christchurch, NZ.
2. L. Tlustos, G. Shelkov, and O. Tolbanov, “Characterisation of a GaAs(Cr) Medipix2 hybrid pixel detector,” Nucl. Instrum. Methods Phys. Res. A 633, 103–107 (2011).
3. R. Ballabriga, M. Campbell, E. Heijne, X. Llopart, L. Tlustos, and W. Wong, “Medipix3: a 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance,” Nucl. Instrum. Methods Phys. Res. A (in press). Corrected Proof, available online 17 June, 2010.
4. RENISHAW RESR Angle Encoder System. http://www.renishaw.com
5. O. Langner, M. Karoleczak, G. Rattmann, and W. A. Kalender, “Bar and point test patterns generated by dry-etching for measurement of high spatial resolution in micro-CT,” in IFMBE Proceedings of World Congress on Medical Physics and Biomedical Engineering (Germany, Munich, 2009), Vol. 25/2, pp. 428–431.