Instability of the printing jet during the three-dimensional-printing process

Yuting Zuo¹,² and Hongjun Liu¹,²

Abstract
Euler’s instability criterion is widely used in engineering to design a column. However, this criterion is not suitable for judging the instability of a three-dimensional printing process because the axial motion of the printing jet has to be considered. A variational principle is established, and an equivalent Eulerian load is obtained. The theoretical results show that a higher printing velocity makes the moving jet much more stable, and an experiment is designed to verify our theoretical prediction.

Keywords
Bending energy, electrospinning, electrospraying, printing, variational theory

Introduction
The three-dimensional-printing technology is now playing an important role in materials science, constructional engineering, and food engineering.¹⁻⁵ It can print micro/nano devices, e.g. micro-electromechanical systems⁶ and Fangzhu-like devices for collecting water from air.⁷⁻⁹ An accurate printed object requires an exact sprinting process, and any small instability is not allowed. However, when a column subjects to a buckling load, an instability occurs when the axial pressure reaches the Eulerian load

\[P_{cr} = \frac{\pi^2 EI}{L^2} \]

where \(EI \) is the rigidity of the column, \(E \) is the elastic modulus, and \(I \) is section moment of inertia, \(L \) is the length, and \(P_{cr} \) is Eulerian load, see Figure 1. For a cylindrical column, the moment of inertia is

\[I = \frac{\pi d^4}{64} \]

and equation (1) becomes

\[P_{cr} = \frac{\pi^3 Ed^4}{64L^2} \]

When \(P > P_{cr} \), the column becomes instability, and a low frequency vibration might occur.

¹School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
²State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, China

Corresponding author:
Yuting Zuo, Lanzhou University of Technology, 287 Lan Gong Ping Road, Lanzhou 730050, China.
Email: zuoyuting2020@126.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
In the three-dimensional-printing process1–5 (see Figure 2), an instability often occurs for the slender axially moving jet, and the instability always leads to morphology change of the printed object. The instability also occurs in some spinning process, see, for example, the following works10–17 In this paper, the moving jet is approximated as an axially moving cylindrical rod-like viscoelastic fluid, and its Eulerian load is studied.

Newton’s law and variational principle

The Newton’s second law is widely used to establish a differential model. Consider the pendulum motion as illustrated in Figure 3, the Newton’s law leads to the following equation

\[
mg\sin\theta = -m\ddot{\theta}l
\]

or

\[
\ddot{\theta} + \frac{g}{l}\sin\theta = 0
\]

where \(L \) is the pendulum’s length.

The governing equation of the pendulum can be also derived from the variational principle, which is

\[
J(\theta) = \int [K - P]dt = \int \left\{ \frac{1}{2}ml^2\dot{\theta}^2 - mgl(1 - \cos\theta) \right\} dt
\]
Figure 2. Extrusion-based 3D printing.

Figure 3. The pendulum.
where K is the kinetic energy and P is the potential energy. The stationary condition of equation (6) is

$$
\delta J(\theta) = \delta \int_{\theta_1}^{\theta_2} \left\{ \frac{1}{2} m f^2 \dot{\theta}^2 - m g l (1 - \cos \theta) \right\} dt
$$

$$
= \int_{\theta_1}^{\theta_2} \left\{ m f^2 \dot{\theta} \delta \theta - m g l \sin \theta \delta \theta \right\} dt
$$

$$
= \int_{\theta_1}^{\theta_2} \left\{ m f^2 \frac{d}{dt}(\dot{\theta} \delta \theta) - \frac{d(m f^2 \dot{\theta})}{dt} \delta \theta - m g l \sin \theta \delta \theta \right\} dt
$$

$$
= (m f^2 \dot{\theta} \delta \theta) \bigg|_{\theta_1}^{\theta_2} - \int_{\theta_1}^{\theta_2} \left\{ m f^2 \dot{\theta} + m g l \sin \theta \right\} \delta \theta dt = 0
$$

(7)

For any arbitrary $\delta \theta$, from equation (7), we obtain

$$
mf^2 \ddot{\theta} + mg l \sin \theta = 0
$$

(8)

Equation (8) can also be obtained directly from the Euler–Lagrange equation, which reads

$$
\frac{\partial L}{\partial \theta} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}} = 0
$$

(9)

where L is the Lagrange function

$$
L = \frac{1}{2} mf^2 \dot{\theta}^2 - m g l (1 - \cos \theta)
$$

(10)

Both Newton’s law and the variational principle can be used to establish a governing equation for simple problems, but the latter is more suitable for a complex problem.

Instability of the printing jet

Figure 4 shows the printing process, the printing velocity is u_1, and the platform moves at a velocity of u_2. According to literature,18–22 the printing jet has the following bending energy similar to an elastic column

$$
E = \frac{1}{2} EI \left(\frac{d w}{dx} \right)^2
$$

(11)

where w is the displacement. The jet moves axially, and its kinetic energy is

$$
K = -\frac{1}{2} \rho A \left(\frac{D w}{Dt} \right)^2
$$

(12)

where ρ is density, A is the sectional area, and D/Dt is the material derivative, and it is defined as

$$
\frac{D w}{Dt} = \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x}
$$

(13)
where \(u \) is the velocity of the printing jet. For a steady printing process, we have
\[
\frac{Dw}{Dt} = u \frac{\partial w}{\partial x}
\]
(14)

The variational principle\(^{22-28}\) for the bending jet is
\[
J(w) = \int_0^L \left(E + K - \frac{1}{2} P_{cr} w^2 \right) dx
\]
(15)

or
\[
J(w) = \int_0^L \left\{ \frac{1}{2} EI \left(\frac{dw}{dx} \right)^2 + \frac{1}{2} \rho A u^2 \left(\frac{dw}{dx} \right)^2 - \frac{1}{2} P_{cr} w^2 \right\} dx
\]
(16)

The stationary condition of equation (16) is
\[
\frac{\partial L}{\partial w} - \frac{d}{dx} \left(\frac{\partial L}{\partial w_x} \right) = 0
\]
(17)

where the Lagrange function is given as follows
\[
L = \frac{1}{2} EI \left(\frac{dw}{dx} \right)^2 + \frac{1}{2} \rho A u^2 \left(\frac{dw}{dx} \right)^2 - \frac{1}{2} P_{cr} w^2
\]
(18)

It is obvious that
\[
\frac{\partial L}{\partial w} = - P_{cr} w, \quad \frac{\partial L}{\partial w_x} = EI \frac{dw}{dx} + \rho A u^2 \frac{dw}{dx}
\]
(19)
According to equation (17), the governing equation is

$$\frac{d}{dx} \left[(EI + \rho Au^2) \frac{dw}{dx} \right] + P_{crw} = 0$$

(20)

We assume that the velocity at the nozzle is u_1 and the receptor’s moving velocity is u_2, and the jet velocity changes gradually from u_1 to u_2, so the jet velocity can be written as

$$u(x) = u_1 + \frac{u_2 - u_1}{L} x$$

(21)

In view of equation (21), equation (20) becomes

$$\left(EI + \rho A \left(u_1 + \frac{u_2 - u_1}{L} x \right)^2 \right) \frac{d^2 w}{dx^2} + 2\rho \frac{u_2 - u_1}{L} \left(u_1 + \frac{u_2 - u_1}{L} x \right) \frac{dw}{dx} + P_{crw} = 0$$

(22)

with the following boundary conditions

$$w(0) = 0, \quad \frac{dw}{dx} (L) = u_2$$

(23)

In practical applications, we always assume

$$u_1 = u_2 = u$$

(24)

If $u_1 \gg u_2$, the printed jet will be piled up, and if $u_1 \ll u_2$, the jet will be broken. The bending equation becomes

$$(EI + \rho Au^2) \frac{d^2 w}{dx^2} + P_{crw} = 0$$

(25)

We introduce an equivalent rigidity

$$(EI)_{eq} = EI + \rho Au^2$$

(26)

and equation (25) becomes

$$(EI)_{eq} \frac{d^2 w}{dx^2} + P_{crw} = 0$$

(27)

This is exactly same with the Euler equation, so the critical Eulerian load reads

$$P_{cr} = \frac{\pi^2 (EI)_{eq}}{L^2} = \frac{\pi^2 (EI + \rho Au^2)}{L^2} = \frac{\pi^2 (Ed^4 + 16\rho \pi d^2 u^2)}{64L^2}$$

(28)

Equation (28) predicts that a larger nozzle diameter, or a higher printing velocity, or a shorter printing distance between the nozzle and the receptor leads to a more stable printing process.

Experimental verification

SiC/graphene composites can be printed by the 3D-printing technology. In our experiment, SiC paste was prepared with 54.8 wt.% SiC particles, 4 wt.% TMAH, 0.8 wt.% PEG1500, 3.2 wt.% glycerol, 6.4 wt.% carrageenan, 30.6 wt.% water, and 0.2 wt.% graphene.
Figure 5. Effect of the printing distance on the printing instability with $u = 6$ mm/s and $d = 0.86$ mm: (a) $L = 1$ mm and (b) $L = 5$ mm.

Figure 6. Velocity-induced stability, $L = 1$ mm, $d = 0.86$ mm: (a) $u = 2$ mm/s and (b) $u = 4$ mm/s.

Figure 7. Effect of the nozzle diameter on morphology of the printed object, $u = 4$ mm/s, $L = mm$: (a) $d = 0.5$ mm and (b) $d = 0.86$ mm.

Figure 5 shows the effect of the printing distance between the nozzle and the receptor on the printed objects. A shorter distance always leads to a stable printing process, see Figure 5(a), while a longer distance results in instability (see Figure 5(b)).

The printing velocity also affects the printing instability, and a higher velocity leads to a more stable printing process (see Figure 6).
As shown in equation (28), the nozzle diameter also affects the printing instability. Figure 7 shows the experimental results for the different nozzle diameters, which agree with our theoretical prediction.

Discussion and conclusion

For the first time ever, this paper suggests an instability criterion for axially moving jet of a 3D-printing process. A longer printing distance always results in a more unstable printing process, see Figure 5, while a higher velocity always makes the moving jet much more stable, see Figure 6, and we call this phenomenon as the motion stability. Due to extremely low elastic modulus of the most printing materials, it is necessary to increase the printing velocity to make the printing process stable. However, due to the solvent evaporation is incomplete for a fast printing process, the printed object is easy to be deformed. We will discuss the problem in a forthcoming paper by establishing a fractal vibration model.\(^3\),\(^30\),\(^31\) The instability of the printing jet will also affect the mechanical and electrical properties of graphene/sic composites.\(^2\)

Acknowledgements

The author wishes to thank teachers from State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals for the technical support.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors acknowledge the financial support for this work from School of Materials Science and Engineering of Lanzhou University of Technology. This research was supported by National Natural Science Foundation of China (Grant No. 52062029).

ORCID iD

Yuting Zuo https://orcid.org/0000-0001-5260-6926

References

1. Zuo Y and Liu H. A fractal rheological model for SiC paste using a fractal derivative. *J Appl Comput Mech* 2021; 7: 13–18.
2. Zuo Y and Liu H. Fractal approach to mechanical and electrical properties of graphene/sic composites. *Facta Univ-Ser Mech Eng*. Epub ahead of print 2021. DOI: 10.22190/FUME201212003Z.
3. Zuo Y. A gecko-like fractal receptor of a three-dimensional printing technology: a fractal oscillator. *J Math Chem* 2021; 59: 1–10.
4. Chandrasekar P, Prasad NS, Balamurugan V, et al. Design and performance evaluation of a novel self-rotating fuel injector using computational fluid dynamics – a preliminary study. *Therm Sci* 2020; 24: 271–280.
5. Pokusaev B, Vyazmin A, Zakharov N, et al. Thermokinetics and rheology of agarose gel applied to bioprinting technology. *Therm Sci* 2020; 24: 347–353.
6. He J-H, Anjum N and Skrzypacz P. A variational principle for a nonlinear oscillator arising in the microelectromechanical system. *J Appl Comput Mech* 2021; 7: 78–83.
7. He C-H, He J-H and Sedighi HM. Fangzhu (方铸): an ancient Chinese nanotechnology for water collection from air: history, mathematical insight, promises, and challenges. *Math Methods Appl Sci*. Epub ahead of print 6 April 2020. DOI: 10.1002/mma.6384.
8. He J-H and El-Dib YO. Homotopy perturbation method for Fangzhu oscillator. *J Math Chem* 2020; 58: 2245–2253.
9. He C-H, Liu C, He J-H, et al. Passive atmospheric water harvesting utilizing an ancient Chinese ink slab. *Facta Univ – Ser Mech Eng*. Epub ahead of print 2020. DOI: 10.22190/FUME201203001H.
10. Liu L-G, Liu Y-Q, Li Y-Y, et al. Dropping in electrospinning process: a general strategy for fabrication of microspheres. *Therm Sci* 2021; 25: 1295–1303.
11. Yang C-F, Tian D and He J-H. Preparation of a Cu-Btc/Pan electrospun film with a good air filtration performance. *Therm Sci* 2021; 25: 1469–1475.
12. He J-H. On the height of Taylor cone in electrospinning. *Result Phys*. Epub ahead of print 2020. DOI: 10.1016/j.rinp.2020.103096.
13. He J-H. Advances in bubble electrospinning. *Recent Pat Nanotechnol* 2019; 13: 162–163.
14. He J-H and Liu Y-P. Bubble electrospinning: patents, promises and challenges. *Recent Pat Nanotechnol* 2020; 14: 3–4.
15. Li X-X and He J-H. Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: the formation mechanism of nanofiber membrane in the electrospinning. *Results Phys* 2019; 12: 1405–1410.
16. He C-H, Shen Y, Ji F-Y, et al. Taylor series solution for fractal Bratu-type equation arising in electrospinning process. In: *Fractals – complex geometry patterns and scaling in nature and society*. Vol. 28. Singapore: World Scientific, 2020.
17. Yao X and He J-H. On fabrication of nanoscale non-smooth fibers with high geometric potential and nanoparticle’s nonlinear vibration. *Therm Sci* 2020; 24: 2491–2497.
18. Huang H, Zhao C-T, Song M-F, et al. Crimp frequency of a viscoelastic fiber in a crimping process. *Therm Sci* 2017; 21: 1839–1842.
19. Huang J-X, Song M-F, Zhang L, et al. Transverse vibration of an axially moving slender fiber of viscoelastic fluid in bubbful spinning and stuffer box crimping. *Therm Sci* 2015; 19: 1437–1441.
20. Huang JX, Song MF, Kong HY, et al. Effect of temperature on non-linear dynamical property of stuffer box crimping and bubble electrospinning. *Therm Sci* 2014; 18: 1049–1053.
21. Chen R-X, Zhang L, Kong H-Y, et al. Mechanism of nanofiber crimp. *Therm Sci* 2013; 17: 1473–1477.
22. He J-H, Kong H-Y, Yang R-R, et al. Review on fiber morphology obtained by the bubble electrospinning and Blown bubble spinning. *Therm Sci* 2012; 16: 1263–1279.
23. He JH, Qie N, He CH, et al. On a strong minimum condition of a fractal variational principle. *Appl Math Lett*. Epub ahead of print 2021. DOI: 10.1016/j.aml.2021.107199.
24. He J-H. Thermal science for the real world: reality and challenge. *Therm Sci* 2020; 24: 2289–2294.
25. He J-H and Ain Q-T. New promises and future challenges of fractal calculus: from two-scale Thermodynamics to fractal variational principle. *Therm Sci* 2020; 24: 659–681.
26. He J-H. On the fractal variational principle for the Telegraph Equation. *Fractals* 2021; 29: 2150022.
27. He J-H. A fractal variational theory for one-dimensional compressible flow in a microgravity space. In: *Fractals – complex geometry patterns and scaling in nature and society*. Vol. 28. Singapore: World Scientific, 2020.
28. Hou WF, Qie N, He JH, et al. Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. *Facta Univ Ser Mech Eng* 2021. DOI: 10.22190/FUMME.2020.5002H
29. He J-H. A new proof of the dual optimization problem and its application to the optimal material distribution of SiC/graphene composite. *Rep Mech Eng* 2020; 1: 187–191.
30. He J-H, Kou S-J, He C-H, et al. Fractal oscillation and its frequency-amplitude property. *Fractals*. Epub ahead of print 2021. DOI: 10.1142/S0218348X2150105x.
31. CH, He C, Liu JH, He, et al. Low frequency property of a fractal vibration model for a concrete beam. *Fractals*. Epub ahead of print 2021. DOI: 10.1142/S0218348X2150176.