Relative impact of indels versus SNPs on complex disease

Sarah A. Gagliano1 | Sebanti Sengupta1 | Carlo Sidore2 | Andrea Maschio2 | Francesco Cucca2,3 | David Schlessinger4 | Gonçalo R. Abecasis1

1Center for Statistical Genetics, and Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
2Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
3Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
4Laboratory of Genetics, National Institute on Aging, US National Institutes of Health, Baltimore, Maryland

Correspondence
Sarah A. Gagliano and Gonçalo R. Abecasis, Center for Statistical Genetics, and Department of Biostatistics, University of Michigan, 1415 Washington Heights, School of Public Health, Ann Arbor, MI, 48109.
Email: sarah.gagliano@umich.edu (S.A.G.); goncalo@umich.edu (G.R.A)

Funding information
Intramural Research Program of the National Institute on Aging, National Institutes of Health (NIH), Grant/Award Numbers: contracts N01-AG-1-2109, HHSN271201100005C; National Institutes of Health, Grant/Award Number: NHLBI HLI117626

1 | INTRODUCTION

The relative impact of insertion and deletion variants (indels) and single-nucleotide polymorphisms (SNPs) on human complex disease risk is unclear. By definition, an SNP changes a single nucleotide in the DNA sequence, whereas an indel incorporates or removes one or more nucleotides (Loewe, 2008).

SNPs in coding and noncoding regions have been implicated in both Mendelian and complex disease, and the same is true for indels. In coding regions, an insertion or deletion that is not in-frame (a multiple of three base pairs) will alter the reading frame resulting in a new set of amino acids and thus a protein product that differs to the wild type. The presence of 40 or more cytosine adenine guanine (CAG) repeats in the first exon of the huntingtin gene (HTT) results in Huntington’s disease (Lench et al., 2013). Even in-frame indels (insertions or deletions of three or multiples of three base pairs) in the coding sequence can also result in altered proteins. An example is a deletion in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that removes
one amino acid (phenylalanine) at position 508, which arrests protein function and leads to cystic fibrosis (Mullaney, Mills, Pittard, & Devine, 2010). With regard to noncoding regions, as with SNPs, indels may have effects on the affinity of a binding site for a regulatory factor or transcriptional machinery, or on chromatin structure. For example, insertions within the promoter region of the FMR1 gene can cause Fragile X syndrome (Mills et al., 2006), and insertions within the promoter region of the SNCA gene contributes to autosomal dominant Parkinson’s disease (Singleton et al., 2013).

There is a balance between mutation rates and selective constraint of indels, particularly in the coding sequence as reading frames should be maintained and thus the protein function preserved. Coding indels tend to be subject to stronger purifying selection than SNPs (de la Chaux, Messer, & Arndt, 2007, Montgomery et al., 2013).

The cumulative contribution of indels compared with SNPs to disease risk has not been thoroughly investigated. To fill this gap in our understanding, we assessed associations of indels and SNPs with 120 traits in a sample of up to 5,949 individuals from the island of Sardinia. We limited our analysis to common variants because of the vast majority of indels are noncoding, and only 0.2% (760) of the MAF $\geq 1\%$ indels fall into a coding region as defined by GENCODE v19 (Harrow et al., 2012). A total of 58% of the indels are deletions and 42% are insertions (276,508 and 202,367, respectively). This inequality in proportions is likely because of additional challenges aligning reads containing insertions larger than the fragment size in the sequencing library (Medvedev, Stanciu, & Brudno, 2009).

TABLE 1	Numbers of coding and noncoding variation (MAF $\geq 1\%$) in SardinIA		
Coding	Noncoding	Total	
SNPs	60,844 (0.7% of SNPs)	8,185,400 (99.3% of SNPs)	8,246,244 (95% of variants)
Indels	760 (0.2% of Indels)	478,116 (99.8% of indels)	478,876 (5% of variants)
Total	83,223	8,641,897	8,725,120

Note. Bold value indicate $p < 2.2E−16$. SNPs: single-nucleotide polymorphisms.

There were fewer indels in coding regions compared with noncoding regions than expected by chance (Table 1). This lower relative density of indels in the coding region has been seen previously in other datasets (Lek et al., 2016; Mullaney et al., 2010).

A total of 56% of the indels are the insertion or deletion of a single base (148,355 deletions and 120,098 insertions).

We assessed the proportion of SNPs and indels within 1Mbp of associated loci (see Table 2) in regions of low complexity (amino acid sequences that contain repeats of single amino acids or short amino acid motifs making these regions more difficult to call) (Morgulis, Gertz, Schäffer, & Agarwala, 2006). These regions represent 8.8% of the whole-genome autosomal sequences (254,665,411 base pairs). There were significantly more indels than SNPs found in these regions (chi-square = 1441.1; $p = 2.5E−315$), likely because of high error rate in variant calling. Of the 18,325 indels found within 1Mbp of associated loci, we detected 4.3% (792) to be in regions of low complexity. Of the 308,310 SNPs found within 1Mbp of associated loci, we detected 1.1% (3,354) to be in regions of low complexity.

A total of 6.3% of indels (30,124) were not found in the variant list of the NHLBI Trans-Omics for Precision Medicine (TOPMed) high-depth whole-genome sequencing effort.

2 | RESULTS

2.1 | Imputation of indels

A total of 928,605 of 1,156,646 autosomal indels remained after imputation quality (RSQR) thresholds were applied, and they are distributed throughout the autosomes (Supporting Information Figure S1). With regard to autosomal SNPs, 17,607,889 of 24,106,694 passed the RSQR thresholds. Applying a minor allele frequency (MAF) $\geq 1\%$ cutoff to ensure the inclusion of variants with high imputation quality, there were 8,725,120 variants genome wide (478,876 indels and 8,246,244 SNPs). All downstream analyses involve this filtered set of variants.

Imputation quality summary metrics are displayed in Supporting Information Figure S2.

2.2 | Annotation of indels

The vast majority of indels are noncoding, and only 0.2% (760) of the MAF $\geq 1\%$ indels fall into a coding region as defined by GENCODE v19 (Harrow et al., 2012). A total of 58% of the indels are deletions and 42% are insertions (276,508 and 202,367, respectively). This inequality in proportions is likely because of additional challenges aligning reads containing insertions larger than the fragment size in the sequencing library (Medvedev, Stanciu, & Brudno, 2009).

There were fewer indels in coding regions compared with noncoding regions than expected by chance (Table 1). This lower relative density of indels in the coding region has been seen previously in other datasets (Lek et al., 2016; Mullaney et al., 2010).

A total of 56% of the indels are the insertion or deletion of a single base (148,355 deletions and 120,098 insertions).

We assessed the proportion of SNPs and indels within 1Mbp of associated loci (see Table 2) in regions of low complexity (amino acid sequences that contain repeats of single amino acids or short amino acid motifs making these regions more difficult to call) (Morgulis, Gertz, Schäffer, & Agarwala, 2006). These regions represent 8.8% of the whole-genome autosomal sequences (254,665,411 base pairs). There were significantly more indels than SNPs found in these regions (chi-square = 1441.1; $p = 2.5E−315$), likely because of high error rate in variant calling. Of the 18,325 indels found within 1Mbp of associated loci, we detected 4.3% (792) to be in regions of low complexity. Of the 308,310 SNPs found within 1Mbp of associated loci, we detected 1.1% (3,354) to be in regions of low complexity.

A total of 6.3% of indels (30,124) were not found in the variant list of the NHLBI Trans-Omics for Precision Medicine (TOPMed) high-depth whole-genome sequencing effort.

2.3 | Association analyses

Using the MAF $\geq 1\%$ cutoff, 51 of the 120 traits tested had at least 1 variant that reached genome-wide significance ($p \leq 5E−8$), and for 33 of those 51 traits, at least 1 indel reached genome-wide significance. These association results allowed us to assess the relative enrichment of indels and SNPs among trait-associated variants. There were 9,474 variants that reached genome-wide significance, of which 494 are indels, in at least 1 of the traits tested for association.
2.4 | Impact of indels versus SNPs

We investigated whether indels are more likely than SNPs to be potentially causal. To obtain an estimate of indel enrichment among potentially causal variants, we assessed the proportion of indels to SNPs within 1Mbp of associated loci ($N = 89$) compared with the rest of the genome for variants MAF $\geq 1\%$. We set a wide base pair range to ensure that all possible causal variants would be included in the computation of credible sets (see below) regardless of the linkage disequilibrium structure at the loci. Indels were not significantly enriched (estimate $= e^{(0.09)} = 1.09; p = 0.88$).

To address the inherent genomic alignment and calling challenges in regions of low complexity, we removed SNPs and indels that fall into those regions and then repeated the analysis to estimate the enrichment parameter. Four percent of indels ($N = 792$) in the associated loci were removed, and 1% of SNPs ($N = 3,354$) were removed. The estimated enrichment parameter remained nonsignificant (estimate $= 1.41, p = 0.64$).

We obtained 95% credible sets of potentially causal variants. Of the variants in the credible sets, the distribution of effect sizes did not significantly differ between indels and SNPs (the Mann-Whitney U test $p = 0.91$). Indels were the most likely causal variant in 7 of the 89 associated loci assessed. One of those sets contained only one variant, solely an indel in the 3′-untranslated region of the TNSF13B gene (rs200748895: TGCTG/T; chi-square $= 24.9$; posterior probability $= 0.999$) for association with monocyte count. This complex polymorphism has been identified as the causal variant at this locus in previous work (Steri et al., 2017). Thus, the identification of a known causal variant provided us with reassurance of the utility of our method. Of variants with a posterior probability ≥ 0.1, 8% (14/182) were indels. Although 8% of indels with a posterior probability ≥ 0.1 within the credible sets is not more than expected by chance (chi-square $= 0.74; p = 0.39$), this percentage nevertheless is higher than the proportion of indels in the total number of variants.

As a positive control for the enrichment parameter, we assessed whether missense SNPs are enriched in trait-associated loci given their direct consequence on the amino acid chain and thus the resulting protein. The estimated enrichment parameter showed that missense SNPs are more likely to be potentially causal than other variants (estimate $= e^{(3.92)} = 50.4; p = 1.6E−10$) (Table 2). Relatively there are more indels than missense SNPs in the genome, and thus the nonsignificant enrichment results for the indel versus SNP analysis is unlikely because of a lack of power possibly a result of the lower imputation quality in indels compared with SNPs. Genome wide, there were 31,112 missense SNPs with MAF $\geq 1\%$ in the data set, of which 7.6% (2,356) fell into trait-associated loci.

As a complementary analysis to the missense analysis, we also performed a coding indel enrichment analysis. Of the 760 indels in the data set with MAF $\geq 1\%$ that fall into coding sequences, 8.0% (61) were in trait-associated loci. The estimated enrichment parameter showed that coding indels are not more likely to be potentially causal than other variants (estimate $= e^{(−16.3)} = 8.3E−8; p = 0.90$) (Table 2). However, we acknowledge the lack of power in this particular subanalysis of a small subset of variation.

TABLE 2 Enrichment results for indels and SNPs in associated loci and for controls

Category	Percentage within 1Mbp associated loci	Enrichment parameter, $\lambda (p)$
Indel versus SNP	3.8% (18,325) versus 3.7% (308,310)	0.09 (0.88)
Missense versus not	7.6% (2,356) versus 3.7% (324,279)	3.92 (1.6E−10)
Coding Indel versus not	8.0% (61) versus 3.7% (326,574)	(−16.3) (0.90)

Note. SNPs: single-nucleotide polymorphisms.

Of the significant indels, 19 are not found in the TOPMed variant list.

3 | DISCUSSION

Using association results from the SardiNIA cohort of up to 5,949 individuals for 120 traits, we did not find evidence of common indels more likely to be potentially causal than SNPs with regard to associations to complex traits. On a similar note but looking at only the coding sequence, Montgomery et al. (2013) did not find direct evidence that potentially causal classes of coding indels are enriched for associations compared with known disease-associated SNPs present in the GWAS Catalog.

The modest sample size in our study limits the capacity to identify causal variants. However, our analysis strategy allowed us to evaluate the enrichment of indels at loci even in situations where we could not pinpoint an individual causal variant, which may require studies with larger sample sizes or multiple ancestries. We also
acknowledge that a subset of variants achieving the widely accepted genome-wide significant \(p \) value threshold \((p \leq 5\times 10^{-8}) \) could be false positive signals. In addition, we applied a MAF threshold to ensure the integrity of the imputed genotypes, but in doing so we removed potentially causal rare variants, possibly biasing our analysis. Future studies with larger sample size will help in addressing these limitations by increasing the statistical power. Finally, in vitro and in vivo experimental designs are required to verify the functionality of the variants in question. We employ an in silico method to address potential “causality,” which can guide the choice of variants to carry forward to these subsequent experiments.

Investigation into the relative impact of common and also lower frequency indels compared with SNPs in the context of larger more diverse samples and more phenotypes is warranted.

4 | METHODS

4.1 | SardiNIA study data set

In brief, we genotyped 6,602 individuals from four villages in the Lanusei valley on Sardinia (>60% of the adult population). Each sample was genotyped on four different Illumina Infinium arrays: OmniExpress, Cardio-Metabo-chip (Voight et al., 2012), Immunochip (Parkes, Cortes, van Heel, & Brown, 2013), and Exome Chip. We also performed low-depth (~4× coverage) whole-genome sequencing on 3,839 individuals, 2,340 of whom we also genotyped. Study samples, genotyping, sequencing, and variant calling have been previously described (Sidore et al., 2015).

More than 100 traits (e.g., blood lab measurements, anthropometric values) have been measured at 4–5 time-points. We looked at 120 traits from the first visit, for which the majority of the individuals have measurements (median number of samples with at least one measurement per trait = 5,814, first quartile = 5,473, third quartile = 5,923). The traits have been previously summarized (Pilia et al., 2006).

4.2 | Imputation

We imputed autosomal SNPs and indels for the individuals who were successfully genotyped on all four arrays \((N = 6,602) \) using Minimac3 (Das et al., 2016) and the Sardinia sequencing data as the reference panel with genomic locations corresponding to GRCh37. This sequencing panel has 1,156,646 biallelic indels and 24,106,694 biallelic SNPs. We imputed SNPs based on only the phased SNPs in the reference panel (i.e., indels removed), and then we imputed indels based on both the SNPs and indels in the reference panel.

For very rare SNPs (i.e., MAF < 0.5%) we have shown (data not published) that imputation with a Sardinian reference panel outperforms imputation with the reference panel of the Haplotype Reference Consortium (HRC) (McCarthy et al., 2016) samples, which includes 3,445 Sardinian individuals.

After imputation, we retained only markers with an imputation quality \(\text{RSQR} > 0.3 \) or \(> 0.6 \) if the estimated MAF was \(\geq 1\% \) or <1%, respectively (Pistis et al., 2015).

4.3 | Annotation of indels

The likely functional impact of variants was annotated using the Ensembl Variant Effect Predictor (McLaren et al., 2010) to annotate consequences. VT (Tan, Abecasis, & Kang, 2015) was used to annotate DUST low complexity regions (Morgulis et al., 2006). We also looked at the MAF distributions and the lengths of the indels. We identified which indels were not found in any of the populations in the NHLBI TOPMed release 3a variant list (NHLBI TOPMed Project Freeze 3a. https://www.nhlbiwgs.org). The 3a release contains 170 million variants on 14,559 individuals and was accessed through the BRAVO browser (https://bravo.sph.umich.edu). Indels were considered present in the TOPMed Project if there was an exact match by chromosome, start position, reference allele, and alternate allele.

4.4 | Association analyses

Association analyses were performed for 120 quantitative traits measured in 1,460–5,949 individuals (median = 5,814) from Visit 1 of the SardiNIA cohort. Associations were run in EPACTS (Kang, Zhan, Sim, Ma, 2012) using the age, age\(^2\), and sex-adjusted inverse-normalized residuals of the outcomes as input to the Efficient Mixed Model Association Expedited (Kang et al., 2010) single variant test (i.e., a linear model with a kinship matrix).
4.5 | Impact of indels versus SNPs

To obtain an estimate of indel enrichment among potentially causal variants, we assessed the proportion of indels to SNPs within 1Mbp of associated loci compared with the rest of the genome. We used a filter of MAF $\geq 1\%$ and estimated an enrichment parameter, which denotes how much more likely indels are potentially causal compared with SNPs. This iterative procedure of essentially maximizing a log odds ratio of a two-by-two table to obtain the enrichment parameter is summarized in Figure 1. If this estimate was statistically significant, we would use it to calculate the posterior probability of each variant being causal. To illustrate, say an SNP and an indel have similar p values, but the enrichment parameter suggests the enrichment of indels at associated loci. The indel would thus receive a higher posterior probability.

For the traits, we identified all of the variants (MAF $\geq 1\%$) with a significant GWAS p value ($p \leq 5 \times 10^{-8}$). We took 500 K base pairs downstream and 500 K base pairs upstream the most significant variant to obtain the locus. For any overlapping loci, within a trait or among traits, we retained the locus with the most significant p value and dropped the other loci. Then, we obtained all of the variants (MAF $\geq 1\%$) within the nonoverlapping 1Mbp loci and annotated them with regard to being an SNP or an indel.

As a positive control, for the same nonoverlapping 1Mbp associated loci used for the indel versus SNP analysis, we reannotated the variants, this time with regard to being a either a missense SNP or not a missense SNP or an indel. As a complementary analysis, we also reannotated the variants with regard to being a coding indel or not, where coding regions were defined by GENCODE v19.

REFERENCES

dela Chaux, N., Messer, P. W., & Arndt, P. F. (2007). DNA indels in coding regions reveal selective constraints on protein evolution in the human lineage. BMC Evolutionary Biology, 7, 191. https://doi.org/10.1186/1471-2148-7-191
Das, S., Forrer, L., Schönherr, S., Sidore, C., Locke, A. E., Kwong, A., ... Fuchsberger, C. (2016). Next-generation genotype imputation service and methods. Nature Genetics, 48, 1284–1287. https://doi.org/10.1038/ng.3656
Harrow, J., Frankish, A., Gonzalez, J. M., Tapanari, E., Diekhans, M., Kokocinski, F., ... Hubbard, T. J. (2012). GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research, 22(9), 1760–1774. https://doi.org/10.1101/gr.135350.111
Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S., Freimer, N. B., ... Esk投机, E. (2010). Variance component model to account for sample structure in genome-wide association studies. Nature Genetics, 42, 348–354. https://doi.org/10.1038/ng.548
Kang, H. M., Zhan, X., Sim, X., & Ma, C. (2012, November). EPACTS: A flexible and efficient sequence-based genetic analysis software package. Paper presented at the 62nd Annual Meeting of The American Society of Human Genetics, San Francisco, CA.
Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., ... MacArthur, D. G. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536, 285–291. https://doi.org/10.1038/nature19057
Lench, N., Barrett, A., Fielding, S., McKay, F., Hill, M., Jenkins, L., ... Chitty, L. S. (2013). The clinical implementation of non-invasive prenatal diagnosis for single-gene disorders: Challenges and progress made. Prenatal Diagnosis, 33, 555–562. https://doi.org/10.1002/pd.4124
Loewe, L. (2008). Genetic mutation. Nature Education, 1(1), 113.
McCarthy, S., et al. (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 48, 1279–1283. https://doi.org/10.1038/ng.3643
McLaren, W., Pritchard, B., Rios, D., Chen, Y., Flicek, P., & Cunningham, F. (2010). Deriving the consequences of genomic variants with the ensembl API and SNP effect predictor. Bioinformatics, 26, 2069–2070. https://doi.org/10.1093/bioinformatics/btq330
Medvedev, P., Stanciu, M., & Brudno, M. (2009). Computational methods for discovering structural variation with next-generation sequencing. Nature Methods, 6, S13–S20. https://doi.org/10.1038/nmeth.1374
Mills, R. E., Luttig, C. T., Larkins, C. E., Beauchamp, A., Tsui, C., Pittard, W. S., & Devine, S. E. (2006). An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Research, 16(9), 1182–1190. https://doi.org/10.1101/gr.4565806
Montgomery, S. B., Goode, D. L., Kvistkstad, E., Albers, C. A., Zhang, Z. D., Mu, X. J., ... Lunter, G. (2013). The origin, evolution, and functional impact of short insertion-deletion variants identified in 179 human genomes. Genome Research, 23(5), 749–761 https://doi.org/10.1101/gr.148718.112
Morgulis, A., Gertz, E. M., Schäffer, A. A., & Agarwala, R. (2006). A fast and symmetric DUST implementation to mask low-complexity DNA sequences. Journal of Computational Biology, 13(7), 897–907.

ACKNOWLEDGMENTS

We thank all the volunteers who generously participated in this study and made this research possible. This research was supported in part by the Intramural Research Program of the National Institute on Aging, National Institutes of Health (NIH) (contracts N01-AG-1-2109 and HHSN271201100005C). This work was also supported by the National Institutes of Health (NHLBI grant HL117626).

CONFLICTS OF INTERESTS

The authors declare that they have no conflicts of interest.

ORCID

Sarah A. Gagliano http://orcid.org/0000-0003-1306-1868
Mullaney, J. M., Mills, R. E., Pittard, W. S., & Devine, S. E. (2010). Small insertions and deletions (INDELs) in human genomes. *Human Molecular Genetics, 19*(R2), R131–R136. https://doi.org/10.1093/hmg/ddq400

Parkes, M., Cortes, A., van Heel, D. A., & Brown, M. A. (2013). Genetic insights into common pathways and complex relationships among immune-mediated diseases. *Nature Reviews Genetics, 14*, 661–673. https://doi.org/10.1038/nrg3502

Pilia, G., Chen, W. M., Scuteri, A., Orrú, M., Albai, G., Dei, M., ... Schlessinger, D. (2006). Heritability of cardiovascular and personality traits in 6,148 Sardinians. *PLoS Genetics, 2*(8), e132. https://doi.org/10.1371/journal.pgen.0020132

Pistis, G., Porcu, E., Vrieze, S. I., Sidore, C., Steri, M., Danjou, F., ... Sanna, S. (2015). Rare variant genotype imputation with thousands of study-specific whole-genome sequences: Implications for cost-effective study designs. *European Journal of Human Genetics, 23*, 975–983. https://doi.org/10.1038/ejhg.2014.216

Sidore, C., Busonero, F., Maschio, A., Porcu, E., Naitza, S., Zoledziewska, M., ... Abecasis, G. R. (2015). Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. *Nature Genetics, 47*, 1272–1281. https://doi.org/10.1038/ng.3368.

Singleton, A. B., et al. (2013). α-Synuclein locus triplication causes Parkinson’s disease. *Science, 302*(5646), 841–841. https://doi.org/10.1126/science.1090278

Steri, M., Orrù, V., Idda, M. L., Pitzalis, M., Pala, M., Zara, I., ... Cucca, F. (2017). Overexpression of the cytokine BAFF and autoimmunity risk. *N Engl J Med, 376*, 1615–1626. https://doi.org/10.1056/NEJMoa1610528

Tang, A., Abecasis, G. R., & Kang, H. M. (2015). Unified representation of genetic variants. *Bioinformatics, 31*(13), 2202–2204. https://doi.org/10.1093/bioinformatics/btv112

Voigt, B. F., Kang, H. M., Ding, J., Palmer, C. D., Sidore, C., Chines, P. S., ... Boehnke, M. (2012). The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. *PLoS Genetics, 8*, e1002793. https://doi.org/10.1371/journal.pgen.1002793

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Gagliano SA, Sengupta S, Sidore C, et al. Relative impact of indels versus SNPs on complex disease. *Genet. Epidemiol. 2019; 43*:112–117. https://doi.org/10.1002/gepi.22175