Noncritical Weighted Hardy’s Inequalities with compact perturbations

HIROSHI ANDO and TOSHIO HORIZUCHI

Abstract

Let Ω be a bounded domain of \(\mathbb{R}^N \) \((N \geq 1)\) whose boundary \(\partial \Omega \) is a \(C^2 \) compact manifolds. In the present paper we shall study a variational problem relating the weighted Hardy inequalities with sharp missing terms established in [4]. As weights we adopted powers of the distance function \(\delta(x) \) to the boundary \(\partial \Omega \).

1 Introduction

Let Ω be a bounded domain of \(\mathbb{R}^N \) \((N \geq 1)\) whose boundary \(\partial \Omega \) is a \(C^2 \) compact manifolds. In [4] we have established \(N \)-dimensional weighted Hardy’s inequalities with weight function being powers of the distance function \(\delta(x) = \text{dist}(x, \partial \Omega) \) to the boundary \(\partial \Omega \). In this paper we shall study a variational problem relating to these new inequalities.

We prepare more notations to describe our results. Let \(1 < p < \infty \) and \(\alpha < 1 - 1/p \). By \(L^p(\Omega, \delta^{\alpha p}) \) we denote the space of Lebesgue measurable functions with weight \(\delta^{\alpha p} \), for which

\[
||u||_{L^p(\Omega, \delta^{\alpha p})} = \left(\int_{\Omega} |u|^p \delta^{\alpha p} \, dx \right)^{1/p} < \infty.
\]

(1.1)

\(W^{1,p}_{\alpha,0}(\Omega) \) is given by the completion of \(C_c^\infty(\Omega) \) with respect to the norm defined by

\[
||u||_{W^{1,p}_{\alpha,0}(\Omega)} = ||\nabla u||_{L^p(\Omega, \delta^{\alpha p})}.
\]

(1.2)

Then \(W^{1,p}_{\alpha,0}(\Omega) \) becomes a Banach space with the norm \(|| \cdot ||_{W^{1,p}_{\alpha,0}(\Omega)} \). Under these preparation we recall the noncritical weighted Hardy inequality in [4]. In particular, we have the simplest one:

\[
\int_{\Omega} |\nabla u|^p \delta^{\alpha p} \, dx \geq \mu \int_{\Omega} |u|^p \delta^{(\alpha-1)p} \, dx \quad \text{for} \quad u \in W^{1,p}_{\alpha,0}(\Omega),
\]

(1.3)

where \(\mu \) is a positive constant independent of \(u \). If \(\alpha = 0 \) and \(p = 2 \), then (1.3) is a well-known Hardy’s inequality and valid for a bounded domain \(\Omega \) of \(\mathbb{R}^N \) with Lipschitz boundary (c.f. [6], [8], [11], [13]). If \(\Omega \) is convex and \(\alpha = 0 \), then (1.3) with \(\mu = (1 - 1/p)^p \) holds for arbitrary \(1 < p < \infty \) (see [13], [14]).

Keywords: Weighted Hardy’s inequalities, nonlinear variational problem, Weak Hardy property, \(p \)-Laplace operator with weights.

2000 mathematics Subject Classification: Primary 35J70, Secondary 35J60, 34L30, 26D10.

This research was partially supported by Grant-in-Aid for Scientific Research (No.16K05189) and (No.15H03621).
The best possible μ in (1.3) is given by the quantity

$$\inf_{u \in W^{1,p}_{\alpha,0}(\Omega), u \neq 0} \frac{\int_{\Omega} |\nabla u|^p \delta^p dx}{\int_{\Omega} |u|^p \delta^{(\alpha-1)p} dx},$$

which depends on p, α and Ω.

In this paper we consider the following variational problem

$$J_\alpha^\lambda = \inf_{u \in W^{1,p}_{\alpha,0}(\Omega), u \neq 0} \chi_\alpha^\lambda(u)$$

(1.5)

where $\lambda \in \mathbb{R}$ and

$$\chi_\alpha^\lambda(u) = \frac{\int_{\Omega} |\nabla u|^p \delta^p dx - \lambda \int_{\Omega} |u|^p \delta^{(\alpha-1)p} dx}{\int_{\Omega} |u|^p \delta^{(\alpha-1)p} dx}.$$ (1.6)

Note that J_0^λ gives the best constant in (1.3). Clearly, the function $\lambda \mapsto J_\alpha^\lambda$ is non-increasing on \mathbb{R} and $J_\alpha^\lambda \to -\infty$ as $\lambda \to \infty$.

Remark 1.1. It is worthy to remark that (1.3) is never valid in the critical case that $\alpha \geq 1 - 1/p$. Nevertheless, we have established in this case a variant of weighted Hardy’s inequalities in [4] (cf. [10]). In a coming paper [3], we shall treat general weighted Hardy’s inequalities with compact perturbations and study relating variational problems including the critical case that $\alpha \geq 1 - 1/p$.

This paper is organized in the following way: The main result is described in Section 2. Section 3 is devoted to the proof of main result.

2 Main results

Our main result is the following.

Theorem 2.1. Assume that Ω is a bounded domain of class C^2 in \mathbb{R}^N. Assume that $1 < p < \infty$ and $\alpha < 1 - 1/p$. Then there exists a constant $\lambda^* \in \mathbb{R}$ such that:

1. If $\lambda \leq \lambda^*$, then $J_\lambda^\alpha = \Lambda_{\alpha,p}$. If $\lambda > \lambda^*$, then $J_\lambda^\alpha < \Lambda_{\alpha,p}$.

Here

$$\Lambda_{\alpha,p} = \left(1 - \alpha - \frac{1}{p}\right)^p.$$ (2.1)

Moreover, it holds that:

2. If $\lambda < \lambda^*$, then the infimum J_λ^α in (1.3) is not attained.
3. If $\lambda > \lambda^*$, then the infimum J_λ^α in (1.3) is attained.

Remark 2.1.

1. In Theorem 2.1, it remains for $\lambda = \lambda^*$ of the open problem whether the infimum J_λ^α in (1.3) is attained or not.
2. For the case of $\alpha = 0$ and $p = 2$, it is shown that the infimum J_λ^0 in (1.3) is attained if and only if $\lambda > \lambda^*$. See [6].
3. For the case of $\alpha = 0$ and $\lambda = 0$, the value of the infimum J_0^0 in (1.3) and its attainability are studied in [13].
4. In the assertion 3 of Theorem 2.1, if \(\lambda > \lambda^* \) then the minimizer \(u \) for the variational problem (1.5) is a non-trivial weak solution of the following Euler-Lagrange equation:

\[-\text{div}(\delta^{\alpha p}|\nabla u|^{p-2}\nabla u) - \lambda \delta^{\alpha p}|u|^{p-2}u = J_{\lambda}^\alpha \delta^{(\alpha-1)p}|u|^{p-2}u \quad \text{in} \ D'(\Omega).\]

Corollary 2.1. Under the same assumptions as in Theorem 2.1 there exists a constant \(\lambda \in \mathbb{R} \) such that for \(u \in W^{1,p}_{\alpha,0}(\Omega) \)

\[
\int_{\Omega} |\nabla u|^p \delta^{\alpha p} dx \geq \Lambda_{\alpha,p} \int_{\Omega} |u|^p \delta^{(\alpha-1)p} dx + \lambda \int_{\Omega} |u|^p \delta^{\alpha p} dx. \tag{2.2}
\]

For each small \(\eta > 0 \), by \(\Omega_\eta \) we denote a tubular neighborhood of \(\partial \Omega \):

\[
\Omega_\eta = \{ x \in \Omega : \delta(x) = \text{dist}(x, \partial \Omega) < \eta \}. \tag{2.3}
\]

Then we have the following inequality of Hardy type which is crucial in the proof of Theorem 2.1.

Theorem 2.2. Assume that \(\Omega \) is a bounded domain of class \(C^2 \) in \(\mathbb{R}^N \). Assume that \(1 < p < \infty \) and \(\alpha < 1 - 1/p \). Assume that \(\eta \) is a sufficiently small positive number. Then we have that for \(u \in W^{1,p}_{\alpha,0}(\Omega) \)

\[
\int_{\Omega_\eta} |\nabla u|^p \delta^{\alpha p} dx \geq \Lambda_{\alpha,p} \int_{\Omega_\eta} |u|^p \delta^{(\alpha-1)p} dx, \tag{2.4}
\]

where \(\Lambda_{\alpha,p} \) is defined by (2.1).

In [4] we have more precise estimate than (2.4).

Corollary 2.2. Under the same assumptions as in Theorem 2.2 there exists a positive constant \(\gamma \) such that for \(u \in W^{1,p}_{\alpha,0}(\Omega) \)

\[
\int_{\Omega} |\nabla u|^p \delta^{\alpha p} dx \geq \gamma \int_{\Omega} |u|^p \delta^{(\alpha-1)p} dx. \tag{2.5}
\]

For any bounded domain \(\Omega \subset \mathbb{R}^N \) we can prove the following:

Theorem 2.3. Assume that \(\Omega \) is a bounded domain of \(\mathbb{R}^N \). Assume that \(1 < p < \infty \) and \(\alpha < 1 - 1/p \). Then the followings are equivalent with each other.

1. There exists a positive number \(\gamma \) such that the inequality (2.5) is valid for every \(u \in W^{1,p}_{\alpha,0}(\Omega) \).

2. For a sufficiently small positive number \(\eta \), there exists a positive number \(\kappa \) such that the inequality (2.4) with \(\Lambda_{\alpha,p} \) replaced by \(\kappa \) is valid for every \(u \in W^{1,p}_{\alpha,0}(\Omega) \).

For the proofs of Theorem 2.2, Corollary 2.2 and Theorem 2.3 see in [4].

3 Proof of Theorem 2.1

In this section, we give the proof of Theorem 2.1.
3.1 Upper bound of J^α_λ

First, we prove the assertion 1 of Theorem 2.1.

Lemma 3.1. Let $1 < p < \infty$ and $\alpha < 1 - 1/p$. For any $\varepsilon > 0$ and any $\eta > 0$ there exists a function $h \in W^{1,p}_{\alpha,0}((0,\eta))$ such that

$$\int_0^\eta |h'(t)|^p t^{\alpha p} dt \leq (\Lambda_{\alpha,p} + \varepsilon) \int_0^\eta |h(t)|^{p(\alpha-1)} dt,$$

where $\Lambda_{\alpha,p}$ is defined by (2.1).

Proof. Since the inequality (3.1) is invariant with respect to scaling, we may assume that $\eta = 2$. Put

$$h(t) = \begin{cases} t^\beta & \text{if } t \in (0,1), \\ 2 - t & \text{if } t \in [1,2) \end{cases}$$

with $\beta > 1 - \alpha - 1/p$. Then we see that $h \in W^{1,p}_{\alpha,0}((0,2))$,

$$\int_0^2 |h'(t)|^p t^{\alpha p} dt = \frac{\beta^p}{p(\beta - 1 + \alpha + 1/p)} + C_{\alpha,p}$$

and

$$\int_0^2 |h(t)|^{p(\alpha-1)} dt = \frac{1}{p(\beta - 1 + \alpha + 1/p)} + D_{\alpha,p},$$

where

$$C_{\alpha,p} = \int_1^2 t^{\alpha p} dt \quad \text{and} \quad D_{\alpha,p} = \int_1^2 (2-t)^{p(\alpha-1)} dt$$

are constants independent of β. It follows from (3.2) and (3.3) that

$$\frac{\int_0^\eta |h'(t)|^p t^{\alpha p} dt}{\int_0^\eta |h(t)|^{p(\alpha-1)} dt} \to \Lambda_{\alpha,p} \quad \text{as } \beta \to 1 - \alpha - \frac{1}{p} + 0,$$

which implies (3.1) with $\eta = 2$. Therefore we obtain the desired conclusion.

Lemma 3.2. Let Ω be a bounded domain of class C^2 in \mathbb{R}^N. Let $1 < p < \infty$ and $\alpha < 1 - 1/p$. Then it holds that

$$J^\alpha_\lambda \leq \Lambda_{\alpha,p}$$

for all $\lambda \in \mathbb{R}$.

Proof. Since the boundary $\partial \Omega$ is of class C^2, there exists an $\eta_0 > 0$ such that for any $\eta \in (0,\eta_0)$ and every $x \in \Omega_\eta$ we have a unique point $\sigma(x) \in \partial \Omega$ satisfying $\delta(x) = |x - \sigma(x)|$. The mapping

$$\Omega_\eta \ni x \mapsto (\delta(x), \sigma(x)) = (t, \sigma) \in (0,\eta) \times \partial \Omega$$

is a C^2 diffeomorphism, and its inverse is given by

$$(0,\eta) \times \partial \Omega \ni (t,\sigma) \mapsto x(t,\sigma) = \sigma + t \cdot n(\sigma) \in \Omega_\eta,$$
where \(n(\sigma) \) is the inward unit normal to \(\partial \Omega \) at \(\sigma \in \partial \Omega \). For each \(t \in (0, \eta) \), the mapping

\[
\partial \Omega \ni \sigma \mapsto \sigma_t(\sigma) = x(t, \sigma) \in \Sigma_t = \{ x \in \Omega : \delta(x) = t \}
\]

is a also a \(C^2 \) diffeomorphism of \(\partial \Omega \) onto \(\Sigma_t \), and its Jacobian satisfies

\[
|\text{Jac} \sigma_t(\sigma) - 1| \leq ct \quad \text{for any } \sigma \in \partial \Omega,
\]

where \(c \) is a positive constant depending only on \(\eta_0, \partial \Omega \) and the choice of local coordinates. Since \(n(\sigma) \) is orthogonal to \(\Sigma_t \) at \(\sigma_t(\sigma) = \sigma + t \cdot n(\sigma) \in \Sigma_t \), it follows that for every integrable function \(v \) in \(\Omega_\eta \),

\[
\int_{\Omega_\eta} v(x)dx = \int_0^\eta dt \int_{\Sigma_t} v(\sigma_t)ds_t
\]

\[
= \int_0^\eta dt \int_{\partial \Omega} v(x(t, \sigma))|\text{Jac} \sigma_t(\sigma)|ds,
\]

where \(ds \) and \(ds_t \) denote surface elements on \(\partial \Omega \) and \(\Sigma_t \), respectively. Hence \((3.6) \) together with \((3.5) \) implies that for every integrable function \(v \) in \(\Omega_\eta \),

\[
\int_0^\eta (1 - ct)dt \int_{\partial \Omega} |v(x(t, \sigma))|ds \leq \int_{\Omega_\eta} |v(x)|dx
\]

\[
\leq \int_0^\eta (1 + ct)dt \int_{\partial \Omega} |v(x(t, \sigma))|ds.
\]

Let \(\varepsilon > 0 \), and let \(\eta \in (0, \eta_0) \). Take \(h \in W^{1,p}_{\alpha,0}(0, \eta) \) be a function satisfying \((3.8) \). Put

\[
u(x) = \begin{cases} h(\delta(x)) & \text{if } x \in \Omega_\eta, \\ 0 & \text{if } x \in \Omega \setminus \Omega_\eta. \end{cases}
\]

Since \(|\nabla \nu(x)| = |h'(\delta(x))| \) for \(x \in \Omega_\eta \) by \(|\nabla \delta(x)| = 1 \), it follows from \((3.8) \) that

\[
\int_{\Omega_\eta} |\nabla \nu|^p \delta^{\alpha p}dx \leq (1 + c\eta)|\partial \Omega| \int_0^\eta |h'(t)|^p t^{\alpha p}dt,
\]

which implies \(u \in W^{1,p}_{\alpha,0}(\Omega) \) by \(\text{supp } u \subset \Omega_\eta \). On the other hand, by \((3.7) \) and \((3.8) \) we have that

\[
\int_{\Omega_\eta} |u|^p \delta^{(\alpha - 1)p}dx \geq (1 - c\eta)|\partial \Omega| \int_0^\eta |h(t)|^p t^{\alpha - 1}dt.
\]

Since \(\text{supp } u \subset \Omega_\eta \), by combining \((3.10) \), \((3.11) \) and the estimate

\[
\int_{\Omega_\eta} |u|^p \delta^{\alpha p}dx \leq \eta^p \int_{\Omega_\eta} |u|^p \delta^{(\alpha - 1)p}dx,
\]

we obtain that

\[
\chi^\alpha(u) \leq \frac{1 + c\eta}{1 - c\eta} \int_0^\eta |h'(t)|^p t^{\alpha p}dt + |\lambda|\eta^p.
\]

This together with \((3.1) \) implies that

\[
J^\alpha \leq \frac{1 + c\eta}{1 - c\eta}(\Lambda_{\alpha,p} + \varepsilon) + |\lambda|\eta^p.
\]

Letting \(\eta \to +0 \) in \((3.12) \), \((3.3) \) follows. Therefore it concludes the proof. \(\square \)
Lemma 3.3. Let Ω be a bounded domain of class C^2 in \mathbb{R}^N. Let $1 < p < \infty$ and $\alpha < 1 - 1/p$. Then there exists a $\lambda \in \mathbb{R}$ such that $J_\lambda^\alpha = \Lambda_{\alpha,p}$.

Proof. Let $\eta > 0$ be a sufficiently small number as in Theorem 2.2. For any $u \in W_{\alpha,0}^{1,p}(\Omega) \setminus \{0\}$, by using Hardy’s inequality (2.4) and the estimate

$$\int_{\Omega \setminus \Omega_\eta} |u|^p \delta^{(\alpha-1)p} dx \leq \eta^{-p} \int_{\Omega} |u|^p \delta^{\alpha p} dx,$$

we have that

$$\Lambda_{\alpha,p} \int_{\Omega} |u|^p \delta^{(\alpha-1)p} dx = \Lambda_{\alpha,p} \int_{\Omega_\eta} |u|^p \delta^{(\alpha-1)p} dx + \Lambda_{\alpha,p} \int_{\Omega \setminus \Omega_\eta} |u|^p \delta^{(\alpha-1)p} dx \leq \int_{\Omega} |\nabla u|^p \delta^{\alpha p} dx + \Lambda_{\alpha,p} \eta^{-p} \int_{\Omega} |u|^p \delta^{\alpha p} dx,$$

which implies that

$$\chi_\lambda^\alpha(u) \geq \Lambda_{\alpha,p}$$

for $\lambda \leq -\Lambda_{\alpha,p} \eta^{-p}$. Consequently, it holds that $J_\lambda^\alpha \geq \Lambda_{\alpha,p} \eta^{-p}$. This together with (3.4) implies the desired conclusion. \hfill \Box

Lemma 3.4. Let Ω be a bounded domain of class C^2 in \mathbb{R}^N. Let $1 < p < \infty$ and $\alpha < 1 - 1/p$. Then the function $\lambda \mapsto J_\lambda^\alpha$ is Lipschitz continuous on \mathbb{R}.

Proof. Let $\lambda, \bar{\lambda} \in \mathbb{R}$. Then it holds that for any $u \in W_{\alpha,0}^{1,p}(\Omega) \setminus \{0\}$

$$|\chi_\lambda^\alpha(u) - \chi_{\bar{\lambda}}^\alpha(u)| = |\lambda - \bar{\lambda}| \frac{\int_{\Omega} |u|^p \delta^{\alpha p} dx}{\int_{\Omega} |u|^p \delta^{(\alpha-1)p} dx} \leq M |\lambda - \bar{\lambda}|,$$

where $M = \sup_{x \in \Omega} \delta(x)$ is a positive constant depending only on Ω. Hence we see that

$$|J_\lambda^\alpha - J_{\bar{\lambda}}^\alpha| \leq M |\lambda - \bar{\lambda}|$$

for $\lambda, \bar{\lambda} \in \mathbb{R}$. It completes the proof. \hfill \Box

Proof of the assertion 1 of Theorem 2.1

By Lemma 3.3 and $\lim_{\lambda \to \infty} J_\lambda^\alpha = -\infty$, the set $\{ \lambda \in \mathbb{R} : J_\lambda^\alpha = \Lambda_{\alpha,p} \}$ is non-empty and upper bounded. Hence the sup $\{ \lambda \in \mathbb{R} : J_\lambda^\alpha = \Lambda_{\alpha,p} \}$ exists finitely. Put

$$\lambda^* = \sup \{ \lambda \in \mathbb{R} : J_\lambda^\alpha = \Lambda_{\alpha,p} \}. \quad (3.13)$$

Since the function $\lambda \mapsto J_\lambda^\alpha$ is non-increasing on \mathbb{R}, it follows from Lemma 3.2 and Lemma 3.3 that $J_\lambda^\alpha = \Lambda_{\alpha,p}$ for $\lambda < \lambda^*$ and $J_\lambda^\alpha < \Lambda_{\alpha,p}$ for $\lambda > \lambda^*$. Further, by Lemma 3.4 we have the equality $J_{\lambda^*}^\alpha = \Lambda_{\alpha,p}$. Therefore the assertion 1 of Theorem 2.1 is valid. \hfill \Box

3.2 J_λ^α is not attained when $\lambda < \lambda^*$

Next, we prove the assertion 2 of Theorem 2.1

Proof of the assertion 2 of Theorem 2.1

Suppose that for some $\lambda < \lambda^*$ the infimum J_λ^α in (1.5) is attained at an element $u \in W_{\alpha,0}^{1,p}(\Omega) \setminus \{0\}$. Then, by the assertion 1 of Theorem 2.1 we have that

$$\chi_\lambda^\alpha(u) = J_\lambda^\alpha = \Lambda_{\alpha,p} \quad (3.14)$$
and for \(\lambda < \bar{\lambda} < \lambda^* \)
\[
\chi_{\bar{\lambda}}^\alpha(u) \geq J_{\bar{\lambda}}^\alpha = \Lambda_{\alpha,p}.
\]
(3.15)

From (3.14) and (3.15) it follows that
\[
(\bar{\lambda} - \lambda) \int_{\Omega} |u|^p \delta^{\alpha p} dx \leq 0.
\]
Since \(\bar{\lambda} - \lambda > 0 \), we conclude that
\[
\int_{\Omega} |u|^p \delta^{\alpha p} dx = 0,
\]
which contradicts \(u \neq 0 \) in \(W^{1,p}_{\alpha,0}(\Omega) \). Therefore it completes the proof.

\[\square \]

3.3 Attainability of \(J_{\lambda}^\alpha \) when \(\lambda > \lambda^* \)

At last, we prove the assertion 3 of Theorem 2.1.

Let \(\{u_k\} \) be a minimizing sequence for the variational problem (1.5) normalized so that
\[
\int_{\Omega} |u_k|^p \delta^{(\alpha-1)p} dx = 1 \quad \text{for all } k.
\]
(3.16)

Since \(\{u_k\} \) is bounded in \(W^{1,p}_{\alpha,0}(\Omega) \), by taking a suitable subsequence, we may assume that there exists a \(u \in W^{1,p}_{\alpha,0}(\Omega) \) such that
\[
\nabla u_k \overset{\text{weak}}{\rightharpoonup} \nabla u \quad \text{in } (L^p(\Omega, \delta^{\alpha p}))^N,
\]
(3.17)
\[
u_k \overset{\text{weak}}{\rightharpoonup} u \quad \text{in } L^p(\Omega, \delta^{(\alpha-1)p})
\]
(3.18)
and
\[
u_k \rightharpoonup u \quad \text{in } L^p(\Omega, \delta^{\alpha p})
\]
(3.19)
by Hardy’s inequality (2.5) and the compact embedding \(W^{1,p}_{\alpha,0}(\Omega) \hookrightarrow L^p(\Omega, \delta^{\alpha p}) \).

Under these preparation we establish the properties of concentration and compactness for the minimizing sequence, respectively.

Proposition 3.1. Let \(\Omega \) be a bounded domain of class \(C^2 \) in \(\mathbb{R}^N \). Let \(1 < p < \infty \) and \(\alpha < 1 - 1/p \). Let \(\lambda \in \mathbb{R} \). Let \(\{u_k\} \) be a minimizing sequence for (1.5) satisfying (3.10), (3.17), (3.18) and (3.19) with \(u = 0 \). Then it holds that
\[
\nabla u_k \rightharpoonup 0 \quad \text{in } (L^p_{\text{loc}}(\Omega))^N
\]
(3.20)
and
\[
J_{\lambda}^\alpha = \Lambda_{\alpha,p}.
\]
(3.21)

Proof. Let \(\eta > 0 \) be a sufficiently small number as in Theorem 2.2. By Hardy’s inequality (2.4) and (3.10) we have that
\[
\int_{\Omega_n} |\nabla u_k|^p \delta^{\alpha p} dx \geq \Lambda_{\alpha,p} \int_{\Omega_n} |u_k|^p \delta^{(\alpha-1)p} dx
\]
\[
= \Lambda_{\alpha,p} \left(1 - \int_{\Omega \setminus \Omega_n} |u_k|^p \delta^{(\alpha-1)p} dx \right),
\]
and so
\[
\chi_\alpha(\mu_k) \geq \Lambda_{\alpha,p} \left(1 - \int_{\Omega \setminus \Omega_n} |\mu_k|^{p\delta^{(\alpha-1)p}} \, dx \right)
+ \int_{\Omega \setminus \Omega_n} |\nabla \mu_k|^{p\delta^{\alpha p}} \, dx - \lambda \int_{\Omega} |\mu_k|^{p\delta^{\alpha p}} \, dx. \tag{3.22}
\]

Since
\[
\int_{\Omega \setminus \Omega_n} |\mu_k|^{p\delta^{(\alpha-1)p}} \, dx \leq \eta^{-p} \int_{\Omega} |\mu_k|^{p\delta^{\alpha p}} \, dx,
\]

it follows from (3.19) with \(u = 0 \) that
\[
\lim_{k \to \infty} \int_{\Omega \setminus \Omega_n} |\mu_k|^{p\delta^{(\alpha-1)p}} \, dx = 0. \tag{3.23}
\]

Hence, by (3.22), (3.23) and (3.19) with \(u = 0 \), we obtain that
\[
\lim sup_{k \to \infty} \int_{\Omega \setminus \Omega_n} |\nabla \mu_k|^{p\delta^{\alpha p}} \, dx \leq J_\alpha - \Lambda_{\alpha,p}.
\]

Since \(J_\alpha - \Lambda_{\alpha,p} \leq 0 \) by Lemma 3.2, we conclude that
\[
\lim_{k \to \infty} \int_{\Omega \setminus \Omega_n} |\nabla \mu_k|^{p\delta^{\alpha p}} \, dx = 0,
\]

and so
\[
\lim_{k \to \infty} \int_{\Omega \setminus \Omega_n} |\nabla \mu_k|^p \, dx = 0.
\]

This shows (3.20). Moreover, letting \(k \to \infty \) in (3.22), it follows from (3.23), (3.24) and (3.19) with \(u = 0 \) that
\[
J_\alpha^p \geq \Lambda_{\alpha,p}.
\]

This together with Lemma 3.2 implies (3.21). Consequently it completes the proof.

Proposition 3.2. Let \(\Omega \) be a bounded domain of class \(C^2 \) in \(\mathbb{R}^N \). Let \(1 < p < \infty \) and \(\alpha < 1 - \frac{1}{p} \). Let \(\lambda \in \mathbb{R} \). Let \(\{ \mu_k \} \) be a minimizing sequence for (1.5) satisfying (3.16), (3.17), (3.18) and (3.19) with \(u \neq 0 \). Then it holds that
\[
J_\alpha^p = \min(\Lambda_{\alpha,p}, \chi_\alpha^{\alpha}(u)). \tag{3.25}
\]

In addition, if \(J_\alpha^p < \Lambda_{\alpha,p} \), then it holds that
\[
J_\alpha^p = \chi_\alpha^{\alpha}(u), \tag{3.26}
\]

namely \(u \) is a minimizer for (1.5), and
\[
\mu_k \rightharpoonup u \ \text{in} \ W_{1,p}^\alpha(\Omega). \tag{3.27}
\]

Proof. Let \(\eta > 0 \) be a sufficiently small number as in Theorem 2.2. Then we have (3.22) by the same arguments as in the proof of Proposition 3.1. By the estimate
\[
\int_{\Omega \setminus \Omega_n} |\mu_k - u|^p \delta^{(\alpha-1)p} \, dx \leq \eta^{-p} \int_{\Omega} |\mu_k - u|^p \delta^{\alpha p} \, dx,
\]

\[\lim_{k \to \infty} \int_{\Omega \setminus \Omega_\eta} |u_k|^p \delta^{(\alpha-1)p} \, dx = \int_{\Omega \setminus \Omega_\eta} |u|^p \delta^{(\alpha-1)p} \, dx. \] (3.28)

Since it follows from (3.17) that \(\nabla u_k \rightharpoonup \nabla u \) weakly in \((L^p(\Omega \setminus \Omega_\eta, \delta^{ap}))^N \), by weakly lower semi-continuity of the \(L^p \)-norm, we see that
\[
\liminf_{k \to \infty} \int_{\Omega \setminus \Omega_\eta} |\nabla u_k|^p \delta^{ap} \, dx \geq \left(\liminf_{k \to \infty} \|\nabla u_k\|_{L^p(\Omega \setminus \Omega_\eta, \delta^{ap})} \right)^p \\
\geq \|\nabla u\|_{L^p(\Omega \setminus \Omega_\eta, \delta^{ap})} \\
= \int_{\Omega \setminus \Omega_\eta} |\nabla u|^p \delta^{ap} \, dx. \] (3.29)

Hence, by letting \(k \to \infty \) in (3.22), from (3.19), (3.28) and (3.29) it follows that
\[
J_\alpha^\Lambda \geq \Lambda_{\alpha,p} \left(1 - \int_{\Omega \setminus \Omega_\eta} |u|^p \delta^{(\alpha-1)p} \, dx \right) + \int_{\Omega \setminus \Omega_\eta} |\nabla u|^p \delta^{ap} \, dx - \lambda \int_{\Omega} |u|^p \delta^{ap} \, dx. \] (3.30)

Letting \(\eta \to +0 \) in (3.30), we obtain that
\[
J_\alpha^\Lambda \geq \Lambda_{\alpha,p} \left(1 - \int_{\Omega} |u|^p \delta^{(\alpha-1)p} \, dx \right) + \int_{\Omega} |\nabla u|^p \delta^{ap} \, dx - \lambda \int_{\Omega} |u|^p \delta^{ap} \, dx. \] (3.31)

Since it holds that
\[
0 < \int_{\Omega} |u|^p \delta^{(\alpha-1)p} \, dx \leq \liminf_{k \to \infty} \int_{\Omega} |u_k|^p \delta^{(\alpha-1)p} \, dx = 1 \] (3.32)
by \(u \neq 0 \), (3.16) and (3.18) and weakly lower semi-continuity of the \(L^p \)-norm, we have from (3.31) and (3.32) that
\[
J_\alpha^\Lambda \geq \Lambda_{\alpha,p} \left(1 - \int_{\Omega} |u|^p \delta^{(\alpha-1)p} \, dx \right) + \chi_{\alpha}(u) \int_{\Omega} |u|^p \delta^{(\alpha-1)p} \, dx \\
\geq \min(\Lambda_{\alpha,p}, \chi_{\alpha}(u)). \] (3.33)

This together with Lemma 3.2 implies (3.25). Moreover, by (3.25) and (3.33), we conclude that
\[
J_\alpha^\Lambda = \Lambda_{\alpha,p} \left(1 - \int_{\Omega} |u|^p \delta^{(\alpha-1)p} \, dx \right) + \chi_{\alpha}(u) \int_{\Omega} |u|^p \delta^{(\alpha-1)p} \, dx. \] (3.34)

In addition, if \(J_\alpha^\Lambda < \Lambda_{\alpha,p} \), then \(J_\alpha^\Lambda = \chi_{\alpha}(u) \) by (3.25), and so, it follows from (3.31) and (3.16) that
\[
\int_{\Omega} |u|^p \delta^{(\alpha-1)p} \, dx = 1 = \lim_{k \to \infty} \int_{\Omega} |u_k|^p \delta^{(\alpha-1)p} \, dx. \] (3.35)

(3.18) and (3.35) imply that
\[
\lim_{k \to \infty} u_k \to u \quad \text{in} \quad L^p(\Omega, \delta^{(\alpha-1)p}). \] (3.36)
Further, by (3.16), (3.19), (3.26) and (3.35), we obtain that
\[
\int_{\Omega} \left| \nabla u_k \right|^p \delta^{\alpha p} dx = \chi_{\lambda}^\alpha(u_k) + \lambda \int_{\Omega} |u_k|^p \delta^{\alpha p} dx \\
\rightarrow \chi_{\lambda}^\alpha(u) + \lambda \int_{\Omega} |u|^p \delta^{\alpha p} dx = \int_{\Omega} \left| \nabla u \right|^p \delta^{\alpha p} dx.
\]
This together with (3.17) implies that
\[
\nabla u_k \rightarrow \nabla u \quad \text{in} \quad (L^p(\Omega, \delta^{\alpha p}))^N, \tag{3.37}
\]
which shows (3.27). Consequently it completes the proof. ☐

Proof of the assertion 3 of Theorem 2.1 Let \(\lambda > \lambda^* \). Then \(J_\lambda^\alpha < \Lambda_{\alpha,p} \) by the assertion 1 of Theorem 2.1. Let \(\{u_k\} \) be a minimizing sequence for (1.5) satisfying (3.16), (3.17), (3.18) and (3.19). Then we see that \(u \neq 0 \) by Proposition 3.1. Therefore, by applying Proposition 3.2 we conclude that \(\chi_{\lambda}^\alpha(u) = J_\lambda^\alpha \), namely \(u \) is a minimizer for (1.5). It finishes the proof. ☐

References

[1] Adimurthi, N. Nirmalendu, M. Chaudhuri, M. Ramaswamy, An improved Hardy-Sobolev inequality and its application, *Proceedings of the American Mathematical Society*, Vol.130, No.2 (2001), 489–505.

[2] H. Ando, T. Horiuchi, Missing terms in the weighted Hardy-Sobolev inequalities and its application, *Kyoto J. Math*. Vol.52, No.4 (2012), 759–796.

[3] H. Ando, T. Horiuchi, General Weighted Hardy’s Inequalities with compact perturbations, in preparation.

[4] H. Ando, T. Horiuchi, X. Liu, One dimensional Weighted Hardy’s Inequalities and application, *Journal Mathematical Inequality*, to appear.

[5] H. Ando, T. Horiuchi, E. Nakai, Weighted Hardy inequalities with infinitely many sharp missing terms, *Mathematical Journal of Ibaraki University*, Vol.46 (2014), 9–30.

[6] H. Brezis, M. Marcus, Hardy’s inequalities revisited, *Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série*, tome 25, No.1-2 (1997), 217–237.

[7] Z. Chen, Y. Shen, Sharp Hardy-Sobolev inequalities with general weights and remainder terms, *Journal of inequalities and applications*, (2009), Article ID 419845, 24pages doi:10.1155/2009/419845.

[8] E. B. Davis, The Hardy constant, *Quart. J. Math. Oxford*, (2) Vol.46 (1995), 417–431.

[9] A. Detalla, T. Horiuchi, H. Ando, Missing terms in Hardy-Sobolev inequalities and its application, *Far East Journal of Mathematical Sciences*, Vol.14, No.3 (2004), 333–359.

[10] T. Horiuchi, Hardy’s inequalities with non-doubling weights and sharp remainders, in preparation.
[11] A. Kufner, B. Opic, Hardy-type Inequalities, *Pitman Research Notes in Mathematics series*, **Vol.219**, London, Longman Group UK Limited, (1990).

[12] E. H. Lieb and M. Loss, Analysis, *American Mathematical Society*, (2001).

[13] M. Marcus, V. J. Mizel, Y. Pinchover, On the best constant for Hardy’s inequality in \mathbb{R}^n, *Trans. Amer. Math. Soc*, **Vol.350**, No.8 (1998), 3237–3255.

[14] T. Matskewich, P. E. Sobolevskii, The best possible constant in a generalized Hardy’s inequality for convex domains in \mathbb{R}^n, *Nonlinear Analysis TMA*, **Vol.28** (1997), 1601–1610.

[15] V. G. Maz’ja, Sobolev spaces (2nd edition), Springer, (2011).

Hiroshi Ando:
Department of Mathematics, Faculty of Science, Ibaraki University,
Mito, Ibaraki, 310-8512, Japan;
hiroshi.ando.math@vc.ibaraki.ac.jp

Toshio Horiuchi:
Department of Mathematics, Faculty of Science, Ibaraki University,
Mito, Ibaraki, 310-8512, Japan;
toshio.horiuchi.math@vc.ibaraki.ac.jp