DEMUSHKIN’S THEOREM IN CODIMENSION ONE

FLORIAN BERCHTOLD AND JÜRGEN HAUSEN

Abstract. Demushkin’s Theorem says that any two toric structures on an affine variety \(X \) are conjugate in the automorphism group of \(X \). We provide the following extension: Let an \((n-1)\)-dimensional torus \(T \) act effectively on an \(n \)-dimensional affine toric variety \(X \). Then \(T \) is conjugate in the automorphism group of \(X \) to a subtorus of the big torus of \(X \).

Introduction

This paper deals with automorphism groups of toric varieties \(X \) over an algebraically closed field \(K \) of characteristic zero. We consider the following problem: Let \(T \times X \rightarrow X \) be an effective regular torus action. When is this action conjugate in \(\text{Aut}(X) \) to the action of a subtorus of the big torus \(T_X \subset X \)? Some classical results are:

- For complete \(X \), the answer is always positive, because then \(\text{Aut}(X) \) is an affine algebraic group with maximal torus \(T_X \), compare [5] and [4].
- For \(X = \mathbb{K}^m \) and \(\dim(T) \geq m - 1 \), positive answer is due to Białynicki-Birula, see [2] and [3].
- For \(X \) affine and \(\dim(T) = \dim(X) \), positive answer is due to Demushkin [6] and Gubeladze [8].

We focus here on the case \(\dim(T) = \dim(X) - 1 \). As in [6] and [8], we shall assume that \(X \) has no torus factors. We do not insist on \(X \) being affine; we just require that \(X \) has no “small holes” in the sense that there is no open toric embedding \(X \rightarrow X' \) with \(X' \setminus X \) nonempty of codimension at least two. Under these assumptions we prove, see Theorem 3.1:

Theorem. Let \(T \times X \rightarrow X \) be an effective regular action of an algebraic torus \(T \) of dimension \(\dim(X) - 1 \). Then \(T \) is conjugate in \(\text{Aut}(X) \) to a subtorus of the big torus \(T_X \subset X \).

In the case of tori \(T \) of dimension strictly less than \(\dim(X) - 1 \) the “toric linearization problem” stated at the beginning is wide open, even for actions of an \((n - 2)\)-dimensional torus on the affine space \(\mathbb{A}^n \). In the latter setting, there is a positive result for the case of a fixed point set of positive dimension, see [11], and a deep theorem saying that \(C^* \)-actions on \(\mathbb{C}^3 \) are linearizable, see [10] and [12].

Let us outline the main ideas of the proof of our theorem. In contrast to [6] and [8], our approach is geometric. Since any two toric structures on \(X \) are conjugate in the automorphism group of \(X \), see [1], it suffices to extend the \(T \)-action to an almost homogeneous torus action on \(X \). This is done in three steps:

First lift the \(T \)-action (up to a finite homomorphism \(T \rightarrow T \)) to Cox’s quotient presentation \(\mathbb{K}^m \rightarrow X \), see Section 1. Next extend the lifted \(T \)-action to a toric structure on \(\mathbb{K}^m \). This involves linearization of a certain diagonalizable group.
action, see Section 3. Finally, push down the new toric structure of K^m to X. For this we need that X has no small holes, see Section 3.

1. LIFTING TORUS ACTIONS

We provide here a lifting result for torus actions on a toric variety X to the quotient presentation of X introduced by Cox [3]. First we recall the latter construction. For notation and the basic facts on toric varieties, we refer to Fulton’s book [3].

We shall assume that the toric variety X is nondegenerate, that is X admits no toric decomposition $X \cong Y \times \mathbb{K}^*$. Note that this is equivalent to requiring that every invertible $f \in O(X)$ is constant.

Let X arise from a fan Δ in a lattice N. Denote the rays of Δ by $\varrho_1, \ldots, \varrho_m$. Let $Q: \mathbb{Z}^m \to N$ be the map sending the canonical base vector e_i to the primitive generator of ϱ_i. For a maximal cone $\tau \in \Delta$, set

$$\sigma(\tau) := \text{cone}(e_i; \varrho_i \subset \tau).$$

Then these cones $\sigma(\tau)$ are the maximal cones of a fan Σ consisting of faces of the positive orthant in \mathbb{Q}^m. Moreover, $Q: \mathbb{Z}^m \to N$ is a map of the fans Σ and Δ.

The following properties of this construction are well known:

Proposition 1.1. Let $Z \subset K^m$ be the toric variety defined by Σ, let $q: Z \to X$ be the toric morphism corresponding to $Q: \mathbb{Z}^m \to N$, and let $H \subset T_Z$ be the kernel of the homomorphism $T_Z \to T_X$ of the big tori obtained by restricting $q: Z \to X$.

(i) The complement $K^m \setminus Z$ is of dimension at most $m - 2$.
(ii) The map $q: Z \to X$ is a good quotient for the action of H on Z.
(iii) X is smooth if and only if the group H acts freely.

In general, the diagonalizable group $H \subset T_Z$ may be disconnected. Hence we can at most expect liftings of a given action $T \times X \to X$ in the sense that $q: Z \to X$ becomes T-equivariant up to a (finite) epimorphism $T \to T$. But such liftings exist:

Proposition 1.2. Notation as in [1, 4]. Let $T \times X \to X$ be an effective algebraic torus action. Then there exist an effective regular action $T \times Z \to Z$ and an epimorphism $\kappa: T \to T$ such that

(i) $t \cdot (h \cdot z) = h \cdot (t \cdot z)$ holds for all $(t, h, z) \in T \times H \times Z$,
(ii) $q(t \cdot z) = \kappa(t) \cdot q(z)$ holds for all $(t, z) \in T \times X$.

Proof. First we reduce to the case that X is smooth. So, suppose for the moment that the assertion is proven in the smooth case. Then we can lift the T-action over the set $U \subset X$ of smooth points. The task then is to extend the lifted action from $U' := q^{-1}(U)$ to Z.

By Sumihiro’s Theorem [14, Cor. 2], X is covered by T-invariant affine open subsets $V \subset X$. The inverse images $V' := q^{-1}(V)$ are affine and $V' \setminus U'$ is of codimension at least 2 in V'. This allows to extend uniquely the lifted T-action from $V' \cap U'$ to V' and hence from U' to Z.

Therefore we may assume in the remainder of this proof that the toric variety X is smooth. As noted in Proposition 1.1, this means that the group $H \subset T_Z$ acts freely on Z.

The most convenient way to lift the T-action is to split the procedure into simple steps. For this, write H as a direct product of a torus H_0 with finite cyclic groups.
This gives rise to a decomposition of the quotient presentation \(Z \rightarrow X \):

\[
\begin{array}{cccccccc}
Z & \frac{H_k}{H_{k-1}} & \frac{H_{k-1}}{H_{k-2}} & \cdots & \frac{H_1}{H_0} & Z_0 & \cdots & X
\end{array}
\]

This decomposition allows us to lift the \(T \)-action step by step with respect to the geometric quotients by the free actions of the factors \(H_i \). We shall write again \(Z, H \) and \(X \) instead of \(Z_i, H_i \) and \(Z_{i-1} \).

The action of \(H \) on \(Z \) defines a grading of the \(\mathcal{O}_X \)-algebra \(\mathcal{A} := q_*(\mathcal{O}_Z) \). Namely, denoting by \(\Gamma \) the character group of \(H \), we have for every open \(V \subset X \) the decomposition into homogeneous functions:

\[
\mathcal{O}(q^{-1}(V)) = \mathcal{A}(V) = \bigoplus_{\chi \in \Gamma} \mathcal{A}_\chi(V).
\]

Since \(H \) acts freely on \(Z \), all homogeneous components \(\mathcal{A}_\chi \) are locally free \(\mathcal{O}_X \)-modules of rank one. We shall use this fact to make the \(\mathcal{O}_X \)-algebra \(\mathcal{A} \) into a \(T \)-sheaf over the \(T \)-variety \(X \). Then it is canonical to extract the desired lifting from this \(T \)-sheaf structure.

If the group \(H \) is connected, then we can prescribe \(T \)-linearizations on the \(\mathcal{O}_X \)-modules \(\mathcal{A}_i \) corresponding to the members \(\chi_i \) of some lattice basis of \(\Gamma \). Tensoring these linearizations gives the desired \(T \)-sheaf structure on the \(\mathcal{O}_X \)-algebra \(\mathcal{A} \), compare also [3, Section 3].

Since \(X \) is covered by \(T \)-invariant affine open subsets, we can easily check that this \(T \)-sheaf structure of \(\mathcal{A} \) arises from a regular \(T \)-action on \(Z \) that commutes with the action of \(H \) and makes the quotient map \(q: Z \rightarrow X \) even equivariant. This settles the case of a connected \(H \).

Assume that \(H \) is finite cyclic of order \(d \). Let \(\chi \) be a generator of \(\Gamma \). Again, we choose a \(T \)-linearization of \(\mathcal{A}_\chi \). But now it may happen that the induced \(T \)-linearization on \(\mathcal{A}_{d\chi} = \mathcal{O}_X \) is not the canonical one. However, since \(\mathcal{O}^*(X) = \mathbb{K}^* \) holds, these two linearizations only differ by a character \(\xi \) of \(T \).

Let \(\kappa: T \rightarrow T \) be an epimorphism such that \(\xi \circ \kappa = \xi \circ \xi_0^d \) holds for some character \(\xi_0 \) of \(T \). Consider the action \(t \cdot x := \kappa(t) \cdot x \) on \(X \). Then \(\mathcal{A}_\chi \) is also linearized with respect to this action by setting \(t \cdot f := \kappa(t) \cdot f \). Twisting with \(\xi_0^{-1} \), we achieve that the induced linearization on \(\mathcal{A}_{d\chi} = \mathcal{O}_X \) is the canonical one:

\[
(t \cdot f)(x) = \xi_0^{-d}(t)(\xi(\kappa(t)) f(t^{-1} \cdot x)) = f(t^{-1} \cdot x).
\]

The rest is similar to the preceding step: The \(T \)-sheaf structure of \(\mathcal{A} \) defines a \(T \)-action \((t, z) \mapsto t \cdot z \) on \(Z \) commuting with the action of \(H \) and making the quotient map \(q: Z \rightarrow X \) equivariant with respect to \((t, x) \mapsto t \cdot x \). Dividing by the kernel of ineffectivity, we can make the action on \(Z \) effective and obtain the desired lifting. \(\square \)

2. Diagonalizable group actions

In this section we show that any effective regular action of an \((m-1)\)-dimensional diagonalizable group \(G \) on \(\mathbb{K}^m \) can be brought into diagonal form by means of an algebraic coordinate change. The result extends a well known analogous statement on torus actions due to Białynicki-Birula, see [3].

We would like to thank the referee for his valuable proposals in order to make our first proof more transparent.
Proposition 2.1. Let $G \times \mathbb{K}^m \to \mathbb{K}^m$ be an effective algebraic action of an $(m - 1)$-dimensional diagonalizable group G. Then there exist $\alpha \in \text{Aut}(\mathbb{K}^m)$ and characters $\chi_i: G \to \mathbb{K}^*$ such that for every $g \in G$ and every $(z_1, \ldots, z_m) \in \mathbb{K}^m$ we have
\[
\alpha(g \cdot \alpha^{-1}(z_1, \ldots, z_m)) = (\chi_1(g)z_1, \ldots, \chi_m(g)z_m).
\]

Proof. If the quotient space $\mathbb{K}^m//G$ is a point, then an application of Luna’s slice theorem shows that the action of G is linearizable; this works even more generally for reductive groups, see [4, Proposition 5.1]. Since any linear G-action is diagonalizable, we obtain the assertion in the case of $\mathbb{K}^m//G$ being a point.

So we are left with the case that $\mathbb{K}^m//G$ is of dimension one. We write $G = G_0 \times G_1$ with an algebraic torus G_0 and a finite abelian group G_1. According to the main result of [4], we may assume that the action of G_0 is already diagonal. In the sequel, we view G_0 as a subtorus of the torus $(\mathbb{K}^*)^m$.

We shall show that the group G_1 permutes the coordinate hyperplanes $V(z_i)$ of \mathbb{K}^m. Indeed, this is all we need, because then G_1 acts by linear automorphisms and hence the action of G is diagonalizable.

Let $p: \mathbb{K}^m \to \mathbb{K}^m//G_0$ be the quotient map. This is a toric morphism. In particular, since the quotient space $\mathbb{K}^m//G_0$ is of dimension one, it is isomorphic to \mathbb{K}. Thus we can write down the quotient map explicitly: There are relatively prime nonnegative integers a_i such that
\[
p(z_1, \ldots, z_m) = z_1^{a_1} \cdots z_m^{a_m}.
\]

Let us renumber the coordinates such that in the above presentation of the quotient map we have $a_i > 0$ for all $i \leq k$ and $a_i = 0$ for all $i > k$ with a suitable integer $k \leq m$.

Consider an $i > k$, say $i = m$. Then the points $(1, \ldots, 1)$ and $(1, \ldots, 1, 0)$ lie in the regular fiber $p^{-1}(1)$ of the quotient map $p: \mathbb{K}^m \to \mathbb{K}$. Thus $(1, \ldots, 1, 0)$ lies in the closure of G_0 and hence it lies in the closure of some onedimensional subtorus $T_m \subset G_0$. But this subtorus is necessarily of the form
\[
T_m = \{(1, \ldots, 1, t); t \in \mathbb{K}^*\}.
\]

Since the actions of G_1 and T_m commute, the group G_1 leaves the fixed point set of T_m invariant. But the latter is just the coordinate hyperplane $V(z_m)$. Analogously, we conclude that the remaining $V(z_i)$, where $i > k$, are invariant under the group G_1.

We discuss now what happens to the coordinate hyperplanes $V(z_i)$, where $i \leq k$. Note that these are precisely the irreducible components of the fiber $p^{-1}(0)$ of the quotient map. We shall distinguish the cases $k > 1$ and $k = 1$.

For $k > 1$, the fiber $p^{-1}(0)$ is the unique reducible fiber of the quotient map. On the other hand the action of G_1 commutes with the action of G_0 and hence G_1 permutes the fibres of p. Thus G_1 has to leave $p^{-1}(0)$ invariant. Hence G_1 permutes the coordinate hyperplanes $V(z_1), \ldots, V(z_k)$ provided $k > 1$.

Finally, we treat the case $k = 1$. Then, as seen before, G_0 contains the one dimensional tori T_2, \ldots, T_m. In other words, we have
\[
G_0 = \{(1, t_2, \ldots, t_m); t_i \in \mathbb{K}^*\}.
\]

So the fixed point set of G_0 is just the z_1-axis. Hence G_1 leaves the z_1-axis invariant. Now, G_1 acts on the z_1-axis with a fixed point, say b. By conjugating the G-action with the translation by b, we achieve that $b = 0$ holds. But then G_1 leaves $V(z_1) = p^{-1}(0)$ invariant. \qed
3. Proof of the main result

We say that a toric variety X has no small holes, if it does not admit an open toric embedding $X \subset X'$ such that $X' \setminus X$ is nonempty of codimension at least 2 in X'. Examples are the toric varieties arising from a fan with convex support. This comprises in particular the affine ones.

Theorem 3.1. Let X be a nondegenerate toric variety without small holes, and let $T \times X \to X$ be an effective regular action of an algebraic torus T of dimension $\dim(X) - 1$. Then T is conjugate in $\text{Aut}(X)$ to a subtorus of the big torus $T_X \subset X$.

Proof. According to [1, Theorem 4.1], any two toric structures of X are conjugate in $\text{Aut}(X)$. Consequently, it suffices to show that the action of T on X extends to an effective regular action of a torus of dimension $\dim(X)$ on X.

Consider Cox’s construction $q: Z \to X$ and its kernel $H := \ker(q)$ as defined in [1]. Choose a lifting of the T-action to Z as provided by Proposition 1.2. This gives us an action of the $(m-1)$-dimensional diagonalizable group $G := T \times H$ on the open set $Z \subset \mathbb{K}^m$.

Since the complement $\mathbb{K}^m \setminus Z$ is of dimension at most $m-2$, the action of G extends regularly to \mathbb{K}^m. Let G_0 be the (finite) kernel of ineffectivity. Applying Proposition 2.1 to the action of G/G_0, we can extend the G-action to an almost homogeneous action of a torus S on \mathbb{K}^m.

We show that Z is invariant with respect to the action of S. According to [15, Corollary 2.3], we obtain this if we can prove that the set Z is H-maximal in the following sense: If $Z' \subset \mathbb{K}^m$ is an H-invariant open subset admitting a good quotient $q': Z' \to X'$ by the action of H such that Z is a q'-saturated open subset of Z', then we already have $Z' = Z$.

To verify H-maximality of Z, consider $Z' \subset \mathbb{K}^m$ and $q': Z' \to X'$ as above. We may assume that Z' is H-maximal in \mathbb{K}^m. Applying [15, Corollary 2.3] to the actions of H and the standard torus k^* on \mathbb{K}^m, we obtain that Z' is invariant with respect to the action of k^*. Hence we obtain a commutative diagram of toric morphisms:

$$
\begin{array}{ccc}
Z & \longrightarrow & Z' \\
\| H \downarrow & & \| H \downarrow \\
X & \longrightarrow & X'
\end{array}
$$

By the choice of Z', the horizontal arrows are open toric embeddings. Moreover, the complement $X' \setminus X$ is of codimension at least two in X', because its inverse image $Z' \setminus Z$ under q' is a subset of the small set $\mathbb{K}^m \setminus Z$ and q' is surjective. By the assumption on X, we obtain $X' = X$. This verifies H-maximality of Z. Hence our claim is proved.

The rest is easy: The torus S/H acts with a dense orbit on X. Dividing S/H by the kernel of ineffectivity of this action, we obtain the desired extension of the action of T on X. □

References

[1] F. Berchtold: Lifting of morphisms to quotient presentations. To appear in Manuscripta Math.
[2] A. Białynicki-Birula: Remarks on the action of an algebraic torus on k^n. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 14, No. 4, 177–182 (1966)
A. Białynicki-Birula: Remarks on the action of an algebraic torus on k^n. II. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys., 15, No. 3, 123–125 (1967)

D. Cox: The homogeneous coordinate ring of a toric variety. J. Alg. Geom. 4, 17–50 (1995)

M. Demazure: Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. Ec. Norm. Supér., IV. Sér., 3, 507–588 (1970)

A.S. Demushkin: Combinatoric invariance of toric singularities. Mosc. Univ. Math. Bull. 37, No. 2, 104–111 (1982);

W. Fulton: Introduction to toric varieties. The William H. Roever Lectures in Geometry, Princeton University Press (1993)

J. Gubeladze: The isomorphism problem for commutative monoid rings. J. Pure Appl. Algebra 129, No. 1, 35–65 (1998)

J. Hausen: Producing good quotients by embedding into a toric variety. Semin. et Congrès 6, 192–212 (2002)

S. Kaliman, M. Koras, L. Makar-Limanov, P. Russell: \mathbb{C}^*-actions on \mathbb{C}^3 are linearizable. Electron. Res. Announc. Amer. Math. Soc. 3, 63–71 (1997)

M. Koras, P. Russell: Codimension 2 torus actions on affine n-space. Group actions and invariant theory. Proc. Conf., Montreal 1988, CMS Conf. Proc. 10, 103–110 (1989).

M. Koras, P. Russell: \mathbb{C}^*-actions on \mathbb{C}^3: The smooth locus of the quotient is not of hyperbolic type. J. Algebr. Geom. 8, No. 4, 603–694 (1999).

H. Kraft, V.L. Popov: Semisimple group actions on three dimensional affine space are linear. Comment. Math. Helv. 60, 466–479 (1985)

H. Sumihiro: Equivariant completion. J. Math. Kyoto Univ. 14, 1–28 (1974).

J. Święcicka: Quotients of toric varieties by actions of subtori. Colloq. Math. 82, No. 1, 105–116 (1999)