Rigorous mean-field limit and cross-diffusion

Li Chen, Esther S. Daus and Ansgar Jüngel

Abstract. The mean-field limit in a weakly interacting stochastic many-particle system for multiple population species in the whole space is proved. The limiting system consists of cross-diffusion equations, modeling the segregation of populations. The mean-field limit is performed in two steps: First, the many-particle system leads in the large population limit to an intermediate nonlocal diffusion system. The local cross-diffusion system is then obtained from the nonlocal system when the interaction potentials approach the Dirac delta distribution. The global existence of the limiting and the intermediate diffusion systems is shown for small initial data, and an error estimate is given.

Mathematics Subject Classification. 35Q92, 35K45, 60J70, 60H30, 82C22.

Keywords. Interacting particle system, Stochastic processes, Cross-diffusion system, Mean-field equations, Mean-field limit, Population dynamics.

1. Introduction

Cross-diffusion models are systems of quasilinear parabolic equations with a nondiagonal diffusion matrix. They arise in many applications in cell biology, multicomponent gas dynamics, population dynamics, etc. [21]. To understand the range of validity of these diffusion systems, it is important to derive them from first principles or from more general models. In the literature, cross-diffusion systems were derived from random walks on lattice models [40], the kinetic Boltzmann equation [5], reaction-diffusion systems [9,19], or from stochastic many-particle systems [36]. We derive in this paper rigorously the \(n \)-species cross-diffusion system

\[
\partial_t u_i - \sigma_i \Delta u_i = \text{div} \left(\sum_{j=1}^{n} a_{ij} u_i \nabla u_j \right) \quad \text{in} \quad \mathbb{R}^d, \quad t > 0,
\]

where \(\sigma_i > 0 \) and \(a_{ij} \) are real numbers, starting from a stochastic many-particle system for multiple species. System (1) describes the diffusive dynamics of populations subject to segregation effects modeled by the term on the right-hand side [14].

1.1. Setting of the problem

We consider \(n \) subpopulations of interacting individuals moving in the whole space \(\mathbb{R}^d \) with the particle numbers \(N_i \in \mathbb{N}, i = 1, \ldots, n \). We take \(N_i = N \) to simplify the notation. The individuals are represented...
by the stochastic processes $X_{n,i}^{k,N}(t)$ evolving according to

$$dX_{n,i}^{k,N}(t) = -\sum_{j=1}^{n} \frac{1}{N} \sum_{l=1}^{N} \nabla V_{ij}^{\eta}(X_{n,i}^{k,N}(t) - X_{n,j}^{l,N}(t))dt + \sqrt{2\sigma_i}dW_i^{k}(t),$$

$$X_{n,i}^{k,N}(0) = \xi_k^i, \quad i = 1, \ldots, n, \quad k = 1, \ldots, N,$$

where $(W_i^{k}(t))_{t \geq 0}$ are d-dimensional Brownian motions, σ_i are the constant diffusion coefficients, the initial data ξ_1^1, \ldots, ξ_n^N are independent and identically distributed random variables with the common probability density function u_i^0, and the interaction potential V_{ij}^{η} is given by

$$V_{ij}^{\eta}(x) = \frac{1}{n} V_{ij} \left(\frac{|x|}{\eta} \right), \quad x \in \mathbb{R}^d, \quad i, j = 1, \ldots, n.$$

Here, V_{ij} is a given smooth function and $\eta > 0$ the scaling parameter. The scaling is chosen in such a way that the L^1 norm of V_{ij}^{η} stays invariant and $V_{ij}^{\eta} \to a_{ij}\delta$ in the sense of distributions as $\eta \to 0$, where δ denotes the Dirac delta distribution.

The mean-field limit $N \to \infty, \eta \to 0$ has to be understood in the following sense. For fixed $\eta > 0$, the many-particle model (2) is approximated for $N \to \infty$ by the intermediate stochastic system

$$d\tilde{X}_{n,i}^{k}(t) = -\sum_{j=1}^{n} (\nabla V_{ij}^{\eta} * u_{n,j})(\tilde{X}_{n,i}^{k}(t), t)dt + \sqrt{2\sigma_i}dW_i^{k}(t),$$

$$\tilde{X}_{n,i}^{k}(0) = \xi_k^i, \quad i = 1, \ldots, n, \quad k = 1, \ldots, N,$$

where $u_{n,i}$ is the probability density function of $\tilde{X}_{n,i}^{k}$, satisfying the nonlocal diffusion system

$$\partial_t u_{n,i} = \sigma_i \Delta u_{n,i} + \text{div} \left(\sum_{j=1}^{n} u_{n,i} \nabla V_{ij}^{\eta} * u_{n,j} \right) \quad \text{in} \ \mathbb{R}^d, \quad t > 0,$$

$$u_{n,i}(0) = u_i^0, \quad i = 1, \ldots, n.$$

Observe that we consider N independent copies $\tilde{X}_{n,i}^{k}(t), k = 1, \ldots, N,$ of the solution to (3). In particular, the intermediate system depends on N only through the initial datum. Then, passing to the limit $\eta \to 0$ in the intermediate system, the limit $\nabla V_{ij}^{\eta} * u_{n,j} \to a_{ij} \nabla u_j$ in L^2 leads to the limiting stochastic system

$$d\hat{X}_i^{k}(t) = -\sum_{j=1}^{n} a_{ij} \nabla u_j(\hat{X}_i^{k}(t), t)dt + \sqrt{2\sigma_i}dW_i^{k}(t),$$

$$\hat{X}_i^{k}(0) = \xi_k^i, \quad i = 1, \ldots, n, \quad k = 1, \ldots, N,$$

and the law of \hat{X}_i^{k} is a solution to the limiting cross-diffusion system (1). We remark that also here, we consider N independent copies $\hat{X}_i^{k}(t), k = 1, \ldots, N,$ of the solution to (5). The main result of this paper is the proof of the error estimate

$$\sup_{k=1, \ldots, N} \mathbb{E} \left(\sum_{i=1}^{n} \sup_{0 < s < t} \left| X_{n,i}^{k,N}(s) - \hat{X}_i^{k}(s) \right| \right) \leq C(t)\eta,$$

if we choose η and N such that $\eta^{-(2d+4)} \leq \varepsilon \log N$ holds, where $\varepsilon > 0$.

1.2. State of the art

Particle limits from systems of stochastic differential equations were investigated intensively in the last decades to derive, for instance, reaction-diffusion equations [12] or McKean–Vlasov equations [10,15]. For details, we refer to the reviews [16,20] and the classical works of Sznitman [37,38], Oelschl"ager [27]
considered in the 1980s a weakly interacting particle system of N particles and proved that in the limit $N \to \infty$, the stochastic system converges to a deterministic nonlinear process. Later, he generalized his approach to systems of reaction-diffusion equations [28].

The analysis of quasilinear diffusion systems started more recently. The chemotaxis system was derived by Stevens [36] from a stochastic many-particle system with a limiting procedure that is based on Oelschl"ager’s work. Reaction-diffusion systems with nonlocal terms were derived in [22] as the mean-field limit of a master equation for a vanishing reaction radius; also see [18]. The two-species Maxwell–Stefan equations were found to be the hydrodynamic limit system of two-component Brownian motions with singular interactions [34]. Nonlocal Lotka–Volterra systems with cross-diffusion were obtained in the large population limit of point measure-valued Markov processes by Fontbona and Méléard [13]. Moussa [26] then proved the limit from the nonlocal to the local diffusion system but only for triangular diffusion matrices. A derivation of a space discretized version of this system from a Markov chain model was presented in [11]. Another nonlocal mean-field model was analyzed in [7].

Related cross-diffusion systems have been derived also by using different techniques, e.g., the relative entropy method. It was employed in hydrodynamic limits [39] to derive the Stokes and incompressible Euler equations [33]. This technique was recently applied to multicomponent Euler flows to derive cross-diffusion systems of Maxwell–Stefan type [17].

Our system (1) is different from the aforementioned Shigesada–Kawasaki–Teramoto system (neglecting for a moment the simple diffusion terms)

$$\partial_t u_i = \Delta \left(u_i \sum_{j=1}^n a_{ij} u_j \right) = \text{div} \left(\sum_{j=1}^n a_{ij} u_i \nabla u_j \right) + \text{div} \left(\sum_{j=1}^n a_{ij} u_j \nabla u_i \right)$$

derived in [13,26]. Our derivation produces the first term on the right-hand side. The reason for the difference is that in [13], the diffusion coefficient σ_i in (2) is assumed to depend on the convolutions $W_{ij} * u_j$ for some functions W_{ij}—yielding the last term in the previous equation—while we have assumed a constant diffusion coefficient. It is still an open problem to derive the general Shigesada–Kawasaki–Teramoto system; the approach of Moussa [26] requires that $a_{ij} = 0$ for $j < i$.

System (1) was also investigated in the literature. A formal derivation from the intermediate diffusion system (4) was performed by Galiano and Selgas [14], while probabilistic representations of (1) were presented in [2]. A rigorous derivation from the stochastic many-particle system (2) (4) is parabolic in the sense of Petrovskii which gives the local-mean-field limit and cross-diffusion Page 3 of 21 122
We use the following notation throughout the paper. We write $\| \cdot \|_{L^p}$ and $\| \cdot \|_{H^s}$ for the norms of $L^p = L^p(\mathbb{R}^d)$ and $H^s = H^s(\mathbb{R}^d)$, respectively. Furthermore, $|u|^2 = \sum_{i=1}^n u_i^2$ for $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$ and $\|u\|_{L^p}^2 = \sum_{i=1}^n \|u_i\|_{L^p}^2$ for functions $u = (u_1, \ldots, u_n)$. We use the notation $u(t) = u(\cdot, t)$ for functions depending on x and t, and $C > 0$ is a generic constant whose value may change from line to line.

1.3. Main results

The first two results are concerned with the solvability of the nonlinear diffusion system (4) and the limiting cross-diffusion system (1). The existence results are needed for our main result, Theorem 3 below.

We impose the following assumptions on the interaction potential. Let $V_{ij} \in C^2_0(\mathbb{R}^d)$ be such that $\text{supp}(V_{ij}) \subset B_1(0)$ for $i, j = 1, \ldots, n$. Then $V_{ij}^\eta(x) = \eta^{-d}V_{ij}(|x|/\eta)$ for $\eta > 0$ satisfies $\text{supp}(V_{ij}^\eta) \subset B_\eta(0)$ and

$$a_{ij} := \int_{\mathbb{R}^d} V_{ij}(|x|)dx = \int_{\mathbb{R}^d} V_{ij}^\eta(x)dx, \quad i, j = 1, \ldots, n.$$ \hspace{1cm}

As the potential may be negative (and a_{ij} may be negative too), we introduce

$$A_{ij} := \|V_{ij}\|_{L^1} = \|V_{ij}^\eta\|_{L^1}, \quad i, j = 1, \ldots, n.$$ \hspace{1cm}

Proposition 1. (Existence for the nonlocal diffusion system) Let $u^0 = (u_{i0}^0, \ldots, u_{n0}^0) \in H^s(\mathbb{R}^d; \mathbb{R}^n)$ with $s > d/2 + 1$ and $u_{i0}^0 \geq 0$ in \mathbb{R}^d and assume that for some $0 < \gamma < \sigma$, it holds that

$$\|u^0\|_{H^s} \leq \frac{\sigma - \gamma}{C^* \sum_{i,j=1}^n A_{ij}}.$$ \hspace{1cm} (6)

where $\sigma = \min_{i=1, \ldots, n} \sigma_i > 0$ and $C^* > 1$ is a constant only depending on s and d. Then there exists a unique global solution $u_\eta = (u_{\eta,1}, \ldots, u_{\eta,n})$ to problem (4) such that $u_{\eta,i}(t) \geq 0$ in \mathbb{R}^d, $t > 0$, $u_\eta \in L^\infty(0, \infty; H^s(\mathbb{R}^d; \mathbb{R}^n)) \cap L^2(0, \infty; H^{s+1}(\mathbb{R}^d; \mathbb{R}^n))$, and

$$\sup_{t > 0} \|u_\eta(t)\|_{H^s}^2 + \gamma\|\nabla u_\eta\|_{L^2(0, \infty; H^{s+1})}^2 \leq \|u^0\|_{H^s}^2.$$ \hspace{1cm} (7)

We may interpret (6) also as a smallness condition for the nonlinear diffusion:

$$\sum_{i,j=1}^n A_{ij} \leq \frac{\sigma}{C^* \|u^0\|_{H^s}}.$$ \hspace{1cm}

For the diffusion system at hand, cross-diffusion should help to create segregation effects. Therefore, the smallness condition may prevent nonconstant steady states.

Since we do not use the structure of the equations, we can only expect the global existence of solutions for sufficiently small initial data. The proof of this result is based on the Banach fixed-point theorem and a priori estimates and is rather standard. We present it for completeness.

Proposition 2. (Existence for the limiting cross-diffusion system) Let $u^0 \in H^s(\mathbb{R}^d; \mathbb{R}^n)$ with $s > d/2 + 1$ be such that $u_{i0}^0 \geq 0$ in \mathbb{R}^d and let (6) hold. Then there exists a unique global solution $u = (u_1, \ldots, u_n)$ to problem (1) satisfying $u_i(t) \geq 0$ in \mathbb{R}^d, $t > 0$, $u \in L^\infty(0, \infty; H^s(\mathbb{R}^d; \mathbb{R}^n)) \cap L^2(0, \infty; H^{s+1}(\mathbb{R}^d; \mathbb{R}^n))$, and

$$\sup_{t > 0} \|u(t)\|_{H^s}^2 + \gamma\|\nabla u\|_{L^2(0, \infty; H^{s+1})}^2 \leq \|u^0\|_{H^s}^2.$$ \hspace{1cm} (8)

Moreover, let u_η be the solution to problem (4). Then the following error estimate holds for any $T > 0$:

$$\|u_\eta - u\|_{L^\infty(0,T;L^2)} + \|\nabla(u_\eta - u)\|_{L^2(0,T;L^2)} \leq C(T)\eta$$ \hspace{1cm} (9)

for some constant $C(T) > 0$. \hspace{1cm}
The proposition is proved by performing the limit $\eta \to 0$ in (4) which is possible in view of the uniform estimate (7). The error estimate (9) follows from the uniform bounds and the smallness condition (6).

For our main result, we need to make precise the stochastic setting. Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathcal{P})$ be a filtered probability space and let $\{W^k_t(t)\}_{t \geq 0}$ for $i = 1, \ldots, n, k = 1, \ldots, N$ be d-dimensional \mathcal{F}_t-Brownian motions that are independent of the random variables ξ^k_i. We assume that the Brownian motions are independent and that the initial data ξ^1_i, \ldots, ξ^N_i are independent and identically distributed random variables with the common probability density function u^0_η.

We prove in Sect. 4 that if $s > d/2 + 2$ and the initial density u^0 satisfies the smallness condition (6), the stochastic differential systems (2), (3), and (5) have pathwise unique strong solutions; also see Remark 11.

Theorem 3. (Error estimate for the stochastic system) Let $u^0 \in H^s(\mathbb{R}^d; \mathbb{R}^n)$ with $s > d/2 + 2$ be such that $u^0_i \geq 0$ in \mathbb{R}^d and let (6) hold. Let $X^{k,N}_{\eta,i}$ and $\hat{X}^{k,i}$ be solutions to problems (2) and (5), respectively. Furthermore, let $0 < \varepsilon < 1$ be sufficiently small and choose $N \in \mathbb{N}$ such that $\varepsilon \log N \geq \eta^{-2d-4}$. Then, for any $t > 0$,

$$
\sup_{k=1,\ldots,N} \mathbb{E}\left(\sum_{i=1}^{n} \sup_{0 < s < t} \left| X^{k,N}_{\eta,i}(s) - \hat{X}^{k,i}(s) \right| \right) \leq C(t) \eta,
$$

where the constant $C(t)$ depends on t, n, $\|D^2V_{ij}\|_{L^\infty}$, and the initial datum u^0.

The idea of the proof is to derive error estimates for the differences $X^{k,N}_{\eta,i} - \hat{X}^{k,i}$ and $\hat{X}^{k,i}$ (where $\hat{X}^{k,i}$ solves (3)) and to use

$$
\sup_{k=1,\ldots,N} \mathbb{E}\left(\sum_{i=1}^{n} \sup_{0 < s < t} \left| X^{k,N}_{\eta,i} - \hat{X}^{k,i} \right| \right) \leq \sup_{k=1,\ldots,N} \mathbb{E}\left(\sum_{i=1}^{n} \sup_{0 < s < t} \left| X^{k,N}_{\eta,i} - \hat{X}^{k,i} \right| \right) + \sup_{k=1,\ldots,N} \mathbb{E}\left(\sum_{i=1}^{n} \sup_{0 < s < t} \left| \hat{X}^{k,i} \right| \right).
$$

The expectations on the right-hand side are estimated by taking the difference of the solutions to the corresponding stochastic differential equations, exploiting the Lipschitz continuity of ∇V_{ij}, and observing that $\|V_{ij}^\eta + \nabla u^0_i - a_{ij} \nabla u^0_j\|_{L^2(0,T;L^2)} \leq C\eta$.

Usually, population models are accompanied by birth–death terms, e.g., Lotka-Volterra terms. In the context of the Keller-Segel model, source terms have been derived in [36] via suitable Poisson processes. We expect that a similar approach can be used to derive Lotka-Volterra terms also in (1).

The paper is organized as follows. Sections 2 and 3 are concerned with the proof of Propositions 1 and 2, respectively. The existence of solutions to the stochastic systems is shown in Sect. 4. The main result (Theorem 3) is then proved in Sect. 5. Finally, the appendix recalls some auxiliary results needed in our analysis.

2. Existence for the nonlocal diffusion system (4)

We show Proposition 1 whose proof is split into several lemmas.

Lemma 4. (Local existence of solutions) Let $u^0 = (u^0_1, \ldots, u^0_n) \in H^s(\mathbb{R}^d; \mathbb{R}^n)$ with $s > d/2 + 1$ and $u^0_i \geq 0$ in \mathbb{R}^d. Then there exists $T_* > 0$ such that (4) possesses the unique solution $u_\eta = (u_{\eta,1}, \ldots, u_{\eta,n}) \in L^\infty(0,T_*; H^s(\mathbb{R}^d; \mathbb{R}^n)) \cap L^2(0,T_*; H^{s+1}(\mathbb{R}^d; \mathbb{R}^n))$ satisfying $u_{\eta,i}(t) \geq 0$ in \mathbb{R}^d for $t > 0$. The time $T_* > 0$ depends on $\|u^0\|_{H^s}$ such that $T_* \to 0$ if $\|u^0\|_{H^s} \to \infty$.
Proof. The idea is to apply the Banach fixed-point theorem. For this, we introduce
\[Y = \left\{ v \in L^\infty(0, T^*; H^s(\mathbb{R}^d; \mathbb{R}^n)) : \sup_{0 < t < T^*} \|v(\cdot, t)\|_{H^s}^2 \leq M := 1 + \|u^0\|_{H^s}^2 \right\}, \]
endowed with the metric \(\text{dist}(u, w) = \sup_{0 < t < T^*} \|(u - w)(t)\|_{L^2} \), where \(T^* > 0 \) will be determined later. It is quite standard to check that the space \(Y \) is complete with this metric. The fixed-point operator \(S : Y \to Y \) is defined by \(Sv = u \), where \(u \) is the unique solution to the Cauchy problem
\[\partial_t u_i = \sigma_i \Delta u_i + \text{div} \left(\sum_{j=1}^n u_i \nabla V_{ij}^\alpha * v_j \right), \quad u_i(0) = u_i^0 \text{ in } \mathbb{R}^d. \quad (10) \]

By standard parabolic theory, this linear advection–diffusion problem has a weak solution \(u_i \in C^0([0, T]; L^2(\mathbb{R}^d)) \cap L^2(0, T; H^1(\mathbb{R}^d)) \). Bootstrapping the regularity result of \cite[Theorem 1.3.11]{41}, we arrive at \(u_i \in C^0([0, T]; H^s(\mathbb{R}^d)) \cap L^2(0, T; H^{s+1}(\mathbb{R}^d)) \).

We prove that \(\sup_{0 < t < T^*} \|u(\cdot, t)\|_{H^s}^2 \leq M \) for sufficiently small values of \(T^* > 0 \). Then \(u \in Y \) and \(S : Y \to Y \) is well defined. We apply the differential operator \(D^\alpha \) for an arbitrary multi-index \(\alpha \in \mathbb{N}^d \) of order \(|\alpha| \leq s \) to \((10) \), multiply the resulting equation by \(D^\alpha u_i \), and integrate over \(\mathbb{R}^d \):
\[\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |D^\alpha u_i|^2 \, dx + \sigma_i \int_{\mathbb{R}^d} |\nabla D^\alpha u_i|^2 \, dx = - \int_{\mathbb{R}^d} \sum_{j=1}^n D^\alpha(u_i \nabla V_{ij}^\alpha * v_j) \cdot \nabla D^\alpha u_i \, dx. \]

We sum these equations from \(i = 1, \ldots, n \), apply the Cauchy–Schwarz inequality to the integral on the right-hand side, and the Moser-type calculus inequality (Lemma 15):
\[\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |D^\alpha u|^2 \, dx + \sigma \int_{\mathbb{R}^d} |\nabla D^\alpha u|^2 \, dx \leq \sum_{i,j=1}^n \|D^\alpha(u_i \nabla V_{ij}^\alpha * v_j)\|_{L^2} \|\nabla D^\alpha u_i\|_{L^2} \]
\[\leq C(\varepsilon) \sum_{i,j=1}^n \left(\|u_i\|_{L^\infty} \|D^\alpha(\nabla V_{ij}^\alpha * v_j)\|_{L^2} + \|D^\alpha u_i\|_{L^2} \|\nabla V_{ij}^\alpha * v_j\|_{L^\infty} \right)^2 \]
\[+ \varepsilon \|\nabla D^\alpha u\|_{L^2}^2, \]
where we recall that \(\sigma = \min_{i=1, \ldots, n} \sigma_i > 0 \) and \(\varepsilon \) is any positive number. The last term on the right-hand side can be absorbed by the second term on the left-hand side if \(\varepsilon \leq \sigma/(2n) \). Hence, summing over all multi-indices \(\alpha \) of order \(|\alpha| \leq s \), using Young’s convolution inequality (Lemma 16), and the inequality \(\|\nabla V_{ij}^\alpha\|_{L^1} \leq C(\eta) \), we find that
\[\frac{1}{2} \frac{d}{dt} \|u\|_{H^s}^2 + \frac{\sigma}{2} \|\nabla u\|_{H^s}^2 \leq C \sum_{i,j=1}^n \left(\|u\|_{L^\infty} \|\nabla V_{ij}^\alpha\|_{L^1} \|D^\alpha v_j\|_{L^2} + \|D^\alpha u_i\|_{L^2} \|\nabla V_{ij}^\alpha\|_{L^1} \|v_j\|_{L^\infty} \right)^2 \]
\[\leq C(\eta) \|u\|_{H^s}^2 \|v\|_{H^s}^2, \]
where in the last step we have taken into account the continuous embedding \(H^s(\mathbb{R}^d) \hookrightarrow L^\infty(\mathbb{R}^d) \). As \(v \in Y \) and consequently \(\|v(t)\|_{H^s}^2 \leq M \), we infer that
\[\frac{d}{dt} \|u\|_{H^s}^2 \leq C(\eta) M \|u\|_{H^s}^2. \]
Gronwall’s inequality then yields
\[\|u(t)\|_{H^s}^2 \leq \|u^0\|_{H^s}^2 e^{C(\eta) M t} = (M - 1) e^{C(\eta) M T^*} \leq M, \quad 0 < t < T^*, \]
if we choose \(T^* > 0 \) so small that \(e^{C(\eta) M T^*} \leq M/(M - 1) \). We conclude that \(u \in Y \).
Note that the time T^* depends on M and hence on u^0 in such a way that T^* becomes smaller if $\|u^0\|_{H^s}$ is large but $T^* > 0$ is bounded from below if $\|u^0\|_{H^s}$ is small.

It remains to show that the map $S : Y \to Y$ is a contraction, possibly for a smaller value of $T^* > 0$. Let $v, w \in Y$ and take the difference of the equations satisfied by Sv and Sw, respectively:

$$
\partial_t ((Sv)_i - (Sw)_i) - \sigma_i \Delta ((Sv)_i - (Sw)_i)
= \text{div} \left(\sum_{j=1}^n ((Sv)_i - (Sw)_i) \nabla V^\eta_{ij} \ast v_j \right) + \text{div} \left(\sum_{j=1}^n (Sw)_i \nabla V^\eta_{ij} \ast (v_j - w_j) \right).
$$

Multiplying these equations by $(Sv)_i - (Sw)_i$, summing from $i = 1, \ldots, n$, integrating over \mathbb{R}^d, and using the Cauchy-Schwarz inequality leads to

$$
\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |Sv - Sw|^2 \, dx + \sigma \int_{\mathbb{R}^d} |\nabla (Sv - Sw)|^2 \, dx
\leq \sum_{i,j=1}^n \|((Sv)_i - (Sw)_i) \nabla V^\eta_{ij} \ast v_j\|_{L^2} \|\nabla ((Sv)_i - (Sw)_i)\|_{L^2}
+ \sum_{i,j=1}^n \|(Sw)_i \nabla V^\eta_{ij} \ast (v_j - w_j)\|_{L^2} \|\nabla ((Sv)_i - (Sw)_i)\|_{L^2}.
$$

We deduce from Young’s convolution inequality that

$$
\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |Sv - Sw|^2 \, dx + \sigma \int_{\mathbb{R}^d} |\nabla (Sv - Sw)|^2 \, dx
\leq C(\sigma) \sum_{i,j=1}^n \|((Sv)_i - (Sw)_i) \nabla V^\eta_{ij} \ast v_j\|_{L^2}^2 + C(\sigma) \sum_{i,j=1}^n \|(Sw)_i \nabla V^\eta_{ij} \ast (v_j - w_j)\|_{L^2}^2
\leq C(\sigma) \max_{i=1,\ldots,n} \|(Sw)_i\|_{L^\infty}^2 \sum_{i,j=1}^n \|\nabla V^\eta_{ij} \ast (v_j - w_j)\|_{L^2}^2
\leq C(\sigma) \sum_{i,j=1}^n \|\nabla V^\eta_{ij}\|_{L^1}^2 \|v_j - w_j\|_{L^2}^2
+ C(\sigma) \|Sw\|_{L^\infty}^2 \sum_{i,j=1}^n \|\nabla V^\eta_{ij}\|_{L^1}^2 \|v_j - w_j\|_{L^2}^2.
$$

By definition of the metric on Y, we have shown that

$$
\frac{d}{dt} \|Sv - Sw\|_{L^2}^2 \leq C_1(\sigma, \eta, M) \|Sv - Sw\|_{L^2}^2 + C_2(\sigma, \eta, M) \|v - w\|_{L^2}^2.
$$

The constants C_1 and C_2 depend on M (and hence on u^0) in such a way that they become larger if $\|u^0\|_{H^s}$ is large but they stay bounded for small values of $\|u^0\|_{H^s}$. Thus, because of $v(0) = w(0)$, Gronwall’s inequality gives

$$
\|Sv(t) - Sw(t)\|_{L^2}^2 \leq C_2(\sigma, \eta, M) t e^{C_1(\sigma, \eta, M) t} \sup_{0 < s < t} \|v(s) - w(s)\|_{L^2}^2,
$$

and the definition of the metric leads to

$$
\text{dist}(Sv, Sw)^2 \leq C_2(\sigma, \eta, M) t e^{C_1(\sigma, \eta, M) t} \text{dist}(v, w)^2.
$$
Then, choosing $T^* > 0$ such that $C_2(\sigma, \eta, M)T^* e^{C_2(\sigma, \eta, M)T^*} \leq 1/2$ shows that $S : Y \rightarrow Y$ is a contraction. Again, T^* depends on u^0 but it is bounded from below for small values of $\|u^0\|_{H^s}$. Thus, we can apply the Banach fixed-point theorem, finishing the proof.

\[\square \]

Lemma 5. (A priori estimates) Let assumption (6) hold. For the local solution u_η to problem (4), the uniform estimate (7) holds. In particular, the solution u_η can be extended to a global one.

Proof. We proceed similarly as in the proof of Lemma 4. We choose α of order $|\alpha| \leq s$, apply the operator D^α on both sides of (4), multiply the resulting equation by $D^\alpha u_{\eta,i}$, and integrate over \mathbb{R}^d. By the Cauchy–Schwarz inequality, the Moser-type calculus inequality, and Young’s convolution inequality and writing u_i instead of $u_{\eta,i}$, we obtain

\[
\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |D^\alpha u|^2 dx + \sigma \int_{\mathbb{R}^d} |\nabla D^\alpha u|^2 dx \leq \sum_{i,j=1}^n \|D^\alpha(u_i V_{ij}^\eta * \nabla u_j)\|_{L^2} \|\nabla D^\alpha u_i\|_{L^2}
\]

\[
\leq C_M \sum_{i,j=1}^n \left(\|u_i\|_{L^\infty} \|D^\alpha(V_{ij}^\eta * \nabla u_j)\|_{L^2} + \|D^\alpha u_i\|_{L^2} \|V_{ij}^\eta * \nabla u_j\|_{L^\infty} \right) \|\nabla D^\alpha u_i\|_{L^2}
\]

\[
\leq C_M \sum_{i,j=1}^n \left(C\|u\|_{H^s} \|V_{ij}^\eta\|_{L^1} \|D^\alpha u\|_{L^2} + \|D^\alpha u\|_{L^2} \|V_{ij}^\eta\|_{L^1} \|\nabla u\|_{L^\infty} \right) \|\nabla D^\alpha u\|_{L^2}
\]

\[
\leq C^* \sum_{i,j=1}^n A_{ij} \|u\|_{H^s} \|\nabla u\|_{H^s} \|\nabla D^\alpha u\|_{L^2},
\]

where C_M is the constant from Lemma 15, $C^* > 1$ depends on C_M and the constant of the embedding $H^s(\mathbb{R}^d) \hookrightarrow L^\infty(\mathbb{R}^d)$, and we have used $\|V_{ij}^\eta\|_{L^1} = A_{ij}$. Summation of all $|\alpha| \leq s$ leads to

\[
\frac{1}{2} \frac{d}{dt} \|u\|_{H^s}^2 + \sigma \|\nabla u\|_{H^s}^2 \leq C^* \sum_{i,j=1}^n A_{ij} \|u\|_{H^s} \|\nabla u\|_{H^s}^2,
\]

which can be written as

\[
\frac{d}{dt} \|u\|_{H^s}^2 + 2 \left(\sigma - C^* \sum_{i,j=1}^n A_{ij} \|u\|_{H^s} \right) \|\nabla u\|_{H^s}^2 \leq 0.
\]

(11)

This inequality holds for all $t \in [0, T]$, where $T < T^*$. By Lemma 17, applied to $f(t) = \|u(t)\|_{H^s}^2$, $g(t) = \|\nabla u(t)\|_{H^s}$, $a = \sigma$, and $b = C^* \sum_{i,j=1}^n A_{ij}$, we find that $\|u(t)\|_{H^s}^2 \leq (a/b)^2$ for $t \in [0, T]$. Here, we use Assumption (6). We deduce that $(d/dt)\|u\|_{H^s}^2 \leq 0$ and consequently $\|u(t)\|_{H^s} \leq \|u^0\|_{H^s}$ for $t \in [0, T]$.

Now, we take $u(T)$ as the initial datum for problem (4). We deduce from Lemma 4 the existence of a solution u to (4) defined on $[T, T + T^*)$. Here, $T^* > 0$ can be chosen as the same end time as before since the norm of the initial datum $\|u(T)\|_{H^s}$ is not larger as $\|u^0\|_{H^s}$. Note that T^* becomes smaller only when the initial datum is larger in the H^s norm. Hence, $u(t)$ exists for $t \in [T, 2T]$ and inequality (11) holds. As before, we conclude from Lemma 17 that $\|u(t)\|_{H^s} \leq \|u^0\|_{H^s}$ for $t \in [T, 2T]$. This argument can be continued, obtaining a global solution satisfying $\|u(t)\|_{H^s} \leq \|u^0\|_{H^s}$ for all $t > 0$. Then, under the stronger assumption (6),

\[
\frac{d}{dt} \|u\|_{H^s}^2 \leq -2 \left(\sigma - C^* \sum_{i,j=1}^n A_{ij} \|u^0\|_{H^s} \right) \|\nabla u\|_{H^s}^2 \leq -\gamma \|\nabla u\|_{H^s}^2,
\]

which leads to (7), finishing the proof. \[\square \]
Lemma 6. (Uniqueness of solutions) Let assumption (6) hold. Then the solution to problem (4) is unique in the class of functions $u \in L^\infty(0, \infty; H^s(\mathbb{R}^d; \mathbb{R}^n)) \cap L^2(0, \infty; H^{s+1}(\mathbb{R}^d; \mathbb{R}^n))$.

Proof. Let u and v be two solutions to (4) with the same initial data. We multiply the difference of the equations satisfied by u_i and v_i by $u_i - v_i$, sum from $i = 1, \ldots, n$, and integrate over \mathbb{R}^d. Then, for all $0 < t < T$ and some $T > 0$,

$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |u - v|^2 dx + \sigma \int_{\mathbb{R}^d} |\nabla(u - v)|^2 dx$$

$$\leq \sum_{i,j=1}^n (||u_i - v_i||_{L^2} ||V_{ij}^\eta * \nabla u_j||_{L^\infty} + ||v_i||_{L^\infty} ||V_{ij}^\eta * \nabla (u_j - v_j)||_{L^2}) ||\nabla(u_i - v_i)||_{L^2}$$

$$\leq \sum_{i,j=1}^n (||u - v||_{L^2} ||V_{ij}^\eta||_{L^1} ||\nabla u||_{L^\infty} + ||v||_{L^\infty} ||V_{ij}^\eta||_{L^1} ||\nabla (u - v)||_{L^2}) ||\nabla (u - v)||_{L^2}$$

$$\leq C \sum_{i,j=1}^n A_{ij} (||u||_{H^{s+1}} ||u - v||_{L^2} ||\nabla (u - v)||_{L^2} + ||v||_{H^{s}} ||\nabla (u - v)||_{L^2}^2).$$

By assumption, $\sum_{i,j=1}^n A_{ij} ||v||_{H^s} \leq \sigma - \gamma$. Thus, using the Cauchy–Schwarz inequality, it follows that

$$\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |u - v|^2 dx + \sigma \int_{\mathbb{R}^d} |\nabla(u - v)|^2 dx$$

$$\leq C(\varepsilon) \left(\sum_{i,j=1}^n A_{ij} ||u||_{H^{s+1}} \right)^2 ||u - v||_{L^2}^2 + \varepsilon n^2 ||\nabla (u - v)||_{L^2}^2 + (\sigma - \gamma) ||\nabla (u - v)||_{L^2}^2$$

$$\leq C(\varepsilon) ||u(t)||_{H^{s+1}}^2 ||u - v||_{L^2}^2 + \sigma ||\nabla (u - v)||_{L^2}^2,$$

if we choose $\varepsilon \leq \gamma/n^2$. Observe that the norm $||u||_{L^2(0,\infty;H^{s+1}(\mathbb{R}^d))}$ is bounded. This allows us to apply the Gronwall inequality, and together with the fact that $||(u - v)(0)||_{L^2} = 0$, we infer that $||(u - v)(t)||_{L^2} = 0$, concluding the proof. \hfill \Box

3. Existence for the cross-diffusion system (1)

We prove Proposition 2 whose proof is split into two lemmas.

Lemma 7. (Existence and uniqueness of solutions) Let the assumptions of Proposition 2 hold. Then there exists a unique solution to (1) satisfying (8).

Proof. Let u_η be the solution to (4). We prove that a subsequence of (u_η) converges to a solution to problem (1). In view of the uniform estimate (7), there exists a subsequence of (u_η), which is not relabeled, such that, as $\eta \rightarrow 0$,

$$u_\eta \rightharpoonup u \quad \text{weakly in } L^2(0, T; H^{s+1}(\mathbb{R}^d)). \quad (12)$$

We show that u is a weak solution to problem (1). First, we claim that

$$V_{ij}^\eta * \nabla u_{\eta,j} \rightharpoonup a_{ij} \nabla u_j \quad \text{weakly in } L^2(0, T; L^2(\mathbb{R}^d)).$$

To prove this statement, we observe that $V_{ij}^\eta * \psi \rightharpoonup a_{ij} \psi$ strongly in $L^2(0, T; L^2(\mathbb{R}^d))$ for any $\psi \in L^2(0, T; L^2(\mathbb{R}^d))$ [32, Theorem 9.10] and $\nabla u_{\eta,j} \rightharpoonup \nabla u_j$ weakly in $L^2(0, T; L^2(\mathbb{R}^d))$. Therefore, for all
\[\psi \in C_0^\infty(\mathbb{R}^d \times (0, T); \mathbb{R}^n), \text{ as } \eta \to 0, \]
\[
\int_0^T \int_{\mathbb{R}^d} \left(\nabla u_{\eta,j} \cdot \psi \right) \, dx \, dt = \int_0^T \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} V^n_{ij}(x-y) \nabla u_{\eta,j}(y,t) \, dy \right) \, \psi(x,t) \, dx \, dt
\]
\[- \int_0^T \int_{\mathbb{R}^d} a_{ij} \nabla u_j(y,t) \cdot \psi(y,t) \, dy \, dt \leq \int_0^T \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} V^n_{ij}(x-y) \psi(x,t) \, dx - a_{ij} \psi(y,t) \right) \cdot \nabla u_{\eta,j}(y,t) \, dy \, dt
\]
\[+ |a_{ij}| \int_0^T \int_{\mathbb{R}^d} \left(\nabla u_{\eta,j} - \nabla u_j \right)(y,t) \cdot \psi(y,t) \, dy \, dt \to 0,
\]
which proves the claim. Estimate (7) and the embedding \(H^s(\mathbb{R}^d) \hookrightarrow L^\infty(\mathbb{R}^d) \) show that
\[
\|u_{\eta,i} V^n_{ij} * \nabla u_{\eta,j}\|_{L^2(0,T;L^2)} \leq \|u_{\eta,i}\|_{L^\infty(0,T;L^\infty)} \|V^n_{ij}\|_{L^1} \|\nabla u_{\eta,j}\|_{L^2(0,T;L^2)} \leq C \tag{13}
\]
and consequently, for any \(T > 0 \),
\[
\|\partial_t u_{\eta,i}\|_{L^2(0,T;H^{-1})} \leq \sigma_i \|\nabla u_{\eta,i}\|_{L^2(0,T;L^2)} + \sum_{j=1}^n \|u_{\eta,i} V^n_{ij} * \nabla u_{\eta,j}\|_{L^2(0,T;L^2)} \leq C.
\]
The weak formulation of (4) reads as
\[
\int_0^T \left(\partial_t u_{\eta,i} \phi \right) \zeta(t) \, dt = \int_0^T \int_{\mathbb{R}^d} \left(\sigma_i \nabla u_{\eta,i} + \sum_{j=1}^n u_{\eta,i} V^n_{ij} * \nabla u_{\eta,j} \right) \cdot \nabla \phi \, dx \zeta(t) \, dt, \tag{14}
\]
where \(\phi \in C_0^\infty(\mathbb{R}^d) \) with \(\text{supp}(\phi) \subseteq B_R(0) \) and \(\zeta \in C^\infty([0,T]) \). Since the ball \(B_R(0) \) is bounded and the embedding \(H^1(B_R(0)) \hookrightarrow L^2(B_R(0)) \) is compact, the Aubin–Lions lemma [35] gives the existence of a subsequence of \((u_\eta) \), which is not relabeled, such that \(u_\eta \rightharpoonup u \) strongly in \(L^2(0,T;L^2(B_R(0))) \) as \(\eta \to 0 \), and the limit coincides with the weak limit in (12). We deduce that
\[
u_{\eta,i} V^n_{ij} * \nabla u_{\eta,j} \rightharpoonup a_{ij} u_i \nabla u_j \text{ weakly in } L^1(0,T;L^1(B_R(0))).
\]
Estimate (13) shows that this convergence even holds in \(L^2(0,T;L^2(B_R(0))) \). We can perform the limit in (14), which shows that the limit \(u \) is a solution to the cross-diffusion problem (1). The uniform estimates (8) follow from (7) using the lower semicontinuity of the norm.

Next, we show the uniqueness of solutions. Let \(u \) and \(v \) be two solutions to (1) with the same initial data. Taking the difference of the equations satisfied by \(u_1 \) and \(v_1 \), multiplying the resulting equation by
$u_i - v_i$, summing from $i = 1, \ldots, n$, integrating over \mathbb{R}^d, and using the Cauchy–Schwarz inequality leads to
\[
\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |u - v|^2 dx + \sigma \int_{\mathbb{R}^d} |\nabla (u - v)|^2 dx
\leq \sum_{i,j=1}^n A_{ij} \|u\|_{H^{s+1}} \|u - v\|_{L^2} \|\nabla (u - v)\|_{L^2} + \sum_{i,j} A_{ij} \|v\|_{H^s} \|u - v\|_{L^2}^2.
\]
In view of estimate (8), this becomes
\[
\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |u - v|^2 dx + \sigma \int_{\mathbb{R}^d} |\nabla (u - v)|^2 dx \leq C(t) \|u - v\|_{L^2}^2,
\]
and the constant $C(t) > 0$ is integrable (as it depends on $\|u(t)\|_{H^{s+1}}$). Gronwall’s inequality then implies that $(u - v)(t) = 0$ for $t > 0$.

Lemma 8. (Error estimate) Let the assumptions of Proposition 2 hold. Let u be the solution to (1) and u_η be the solution to (4). Then the error estimate (9) holds.

Proof. We take the difference of Eqs. (4) and (1),
\[
\partial_t (u_\eta, i - u_i) - \sigma_i \Delta (u_\eta, i - u_i) = \text{div} \left(\sum_{j=1}^n u_{\eta,j} V_{ij}^\eta * \nabla u_{\eta,j} - \sum_{i=1}^n a_{ij} u_i \nabla u_j \right)
\]
\[
= \text{div} \sum_{j=1}^n \left((u_\eta, i - u_i) V_{ij}^\eta * \nabla u_{\eta,j} + u_i (V_{ij}^\eta * \nabla u_{\eta,j} - a_{ij} \nabla u_{\eta,j}) + a_{ij} u_i \nabla (u_{\eta,j} - u_j) \right).
\]
Multiplying this equation by $u_\eta, i - u_i$, summing from $i = 1, \ldots, n$, integrating over \mathbb{R}^d, using the Cauchy–Schwarz inequality, and the estimate $|a_{ij}| \leq A_{ij}$, we find that
\[
\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |u_\eta - u|^2 dx + \sigma \int_{\mathbb{R}^d} |\nabla (u_\eta - u)|^2 dx
\leq \sum_{i,j=1}^n \|u_\eta, i - u_i\|_{L^2} \|V_{ij}^\eta * \nabla u_{\eta,j}\|_{L^\infty} \|\nabla (u_\eta, i - u_i)\|_{L^2}
\]
\[
+ \sum_{i,j=1}^n \|u_i\|_{L^\infty} \|V_{ij}^\eta * \nabla u_{\eta,j} - a_{ij} \nabla u_{\eta,j}\|_{L^2} \|\nabla (u_{\eta,j} - u_j)\|_{L^2}
\]
\[
+ \sum_{i,j=1}^n A_{ij} \|u_i\|_{L^\infty} \|\nabla (u_{\eta,j} - u_j)\|_{L^2} \|\nabla (u_\eta, i - u_i)\|_{L^2}
\]
\[
= I_1 + I_2 + I_3.
\]
We estimate the right-hand side term by term. First, by the continuous embedding $H^s(\mathbb{R}^d) \hookrightarrow L^\infty(\mathbb{R}^d)$,
\[
|I_1| \leq \sum_{i,j=1}^n \|u_\eta, i - u_i\|_{L^2} \|V_{ij}^\eta\|_{L^1} \|\nabla u_{\eta,j}\|_{L^\infty} \|\nabla (u_\eta, i - u_i)\|_{L^2}
\]
\[
\leq C(\gamma) \left(\sum_{i,j=1}^n A_{ij} \|\nabla u_\eta\|_{H^{s+1}} \right)^2 \|u_\eta - u\|_{L^2}^2 + \frac{\gamma}{4} \|\nabla (u_\eta - u)\|_{L^2}^2.
\]
To estimate I_2, let $g \in L^2(\mathbb{R}^d; \mathbb{R}^n)$. Since $\text{supp} V^\eta_{ij} \subset B_\eta(0)$, the fundamental theorem of calculus shows that
\begin{align*}
&\left| \int_{\mathbb{R}^d} \left(V^\eta_{ij} \ast \nabla u_{\eta,j} - a_{ij} \nabla u_{\eta,j} \right) (x) \cdot g(x) dx \right| \\
&= \left| \int_{\mathbb{R}^d} \int_{B_\eta(0)} V^\eta_{ij}(y) \sum_{k=1}^d \left(\frac{\partial u_{\eta,j}}{\partial x_k} (x-y) - \frac{\partial u_{\eta,j}}{\partial x_k} (x) \right) g_k(x) dy dx \right| \\
&= \left| \int_{\mathbb{R}^d} \int_{B_\eta(0)} V^\eta_{ij}(y) \left(\int_0^1 \sum_{k,l=1}^d \frac{\partial^2 u_{\eta,j}}{\partial x_k \partial x_l} (x-ry) y_l dr \right) g_k(x) dy dx \right| \\
&\leq \eta \int_0^1 \int_{B_\eta(0)} |V^\eta_{ij}(y)| \int_{\mathbb{R}^d} |D^2 u_{\eta,j} (x-ry)| |g(x)| dx dy dr \\
&\leq \eta \int_0^1 \int_{B_\eta(0)} |V^\eta_{ij}(y)| \|D^2 u_{\eta,j} (\cdot - ry)\|_{L^2} \|g\|_{L^2} dy dr \\
&\leq \eta \|V^\eta_{ij}\|_{L^1} \|D^2 u_{\eta,j}\|_{L^2} \|g\|_{L^2} = \eta A_{ij} \|D^2 u_{\eta,j}\|_{L^2} \|g\|_{L^2}.
\end{align*}
This shows that
\begin{equation}
\|V^\eta_{ij} \ast \nabla u_{\eta,j} - a_{ij} \nabla u_{\eta,j}\|_{L^2} \leq \eta C \|D^2 u_{\eta,j}\|_{L^2} \leq \eta C
\end{equation}
and consequently,
\begin{align*}
|I_2| &\leq C(\gamma) \sum_{i,j=1}^n \|V^\eta_{ij} \ast \nabla u_{\eta,j} - a_{ij} \nabla u_{\eta,j}\|_{L^2}^2 + \frac{\gamma}{4} \|\nabla (u_{\eta} - u)\|_{L^2}^2 \\
&\leq C(\gamma) \eta^2 + \frac{\gamma}{4} \|\nabla (u_{\eta} - u)\|_{L^2}^2.
\end{align*}
Finally, by Assumption (6),
\begin{align*}
|I_3| &\leq \left(\sum_{i,j=1}^n A_{ij} \|u\|_{H^s} \right) \|\nabla (u_{\eta} - u)\|_{L^2}^2 \leq (\sigma - \gamma) \|\nabla (u_{\eta} - u)\|_{L^2}^2.
\end{align*}
Therefore,
\begin{align*}
&\frac{1}{2} \frac{d}{dt} \int_{\mathbb{R}^d} |u_{\eta} - u|^2 dx + \frac{\gamma}{2} \int_{\mathbb{R}^d} |\nabla (u_{\eta} - u)|^2 dx \\
&\leq C(\gamma) \left(\sum_{i,j=1}^n A_{ij} \|\nabla u_{\eta}\|_{H^s} \right)^2 \|u_{\eta} - u\|_{L^2}^2 + C(\gamma) \eta^2 \\
&\leq C(\gamma) (\sigma - \gamma)^2 \|u_{\eta} - u\|_{L^2}^2 + C(\gamma) \eta^2,
\end{align*}
and Gronwall’s lemma gives the conclusion. \hfill \Box

4. Existence of solutions to the stochastic systems

Let the initial data ξ_1, \ldots, ξ_n be square integrable. We prove the solvability of the stochastic ordinary differential systems (2), (3), and (5).
Lemma 9. (Solvability of the stochastic many-particle system) For any fixed \(\eta > 0 \), problem (2) has a unique strong solution \(X^{k,N}_{\eta,i} \) that is \(\mathcal{F}_t \)-adapted.

Proof. By assumption, the gradient \(\nabla V^\eta_{ij} \) is bounded and Lipschitz continuous. Then [30, Theorem 5.2.1] or [31, Theorem 3.1.1] show that there exists a (up to \(\mathbb{P} \)-indistinguishability) unique strong solution to (2).

Lemma 10. (Solvability of the nonlocal stochastic system) Let \(u_\eta \) be a solution to the nonlocal diffusion system (4) satisfying \(|\nabla u_\eta| \in L^\infty(0, \infty; W^{1,\infty}(\mathbb{R}^d; \mathbb{R}^n)) \). Then problem (3) has a unique strong solution \(\tilde{X}^{k}_{\eta,i} \) with probability density function \(u_{\eta,i} \).

Remark 11. We have shown in Proposition 2 that if \(u^0 \in H^s(\mathbb{R}^d; \mathbb{R}^n) \) and the smallness condition (6) holds, there exists a unique solution \(u_\eta \in L^\infty(0, \infty; H^s(\mathbb{R}^d; \mathbb{R}^n)) \). The regularity for \(u_\eta \), required in Lemma 10, is fulfilled if \(s > d/2 + 2 \), thanks to the embedding \(u_{\eta,i} \in L^\infty(0, \infty; W^{2,\infty}(\mathbb{R}^d)) \) for \(i = 1, \ldots, n \).

Proof of Lemma 10. We proceed as in the proof of Lemma 3.2 of [8]. Let \(u_{\eta,i} \in L^\infty(0, T; H^s(\mathbb{R}^d)) \cap L^2(0, T; H^{s+1}(\mathbb{R}^d)) \) be the unique solution to (4) satisfying \(u_\eta(0) = u^0 \) in \(\mathbb{R}^d \), where \(u^0 \) is the density of \(\xi^k \). By assumption, \(\nabla V^\eta_{ij} * u_{\eta,j} = V^\eta_{ij} \nabla u_{\eta,j} \) is bounded and Lipschitz continuous. Therefore,

\[
d\tilde{X}^{k}_{\eta,i} = -\sum_{j=1}^{n} (\nabla V^\eta_{ij} * u_{\eta,j})(\tilde{X}^{k}_{\eta,i}(t), t)dt + \sqrt{2\sigma_t}dW^k_i(t), \quad \tilde{X}^{k}_{\eta,i}(0) = \xi^k,
\]

has a unique strong solution \(\tilde{X}^{k}_{\eta,i} \). By [6], the stochastic process \(\tilde{X}^{k}_{\eta,i} \) is absolutely continuous with respect to the Lebesgue measure, thus there exists the probability density function \(\tilde{u}_{\eta,i} \) of \(\tilde{X}^{k}_{\eta,i} \), which is Lipschitz continuous. Let \(\phi_i \) be a smooth test function. Then Itô’s lemma implies that

\[
\phi_i(\tilde{X}^{k}_{\eta,i}(t), t) - \phi_i(\xi^k, 0) = \int_{0}^{t} \partial_s \phi_i(\tilde{X}^{k}_{\eta,i}(s), s)ds - \sum_{j=1}^{n} \int_{0}^{t} (V^\eta_{ij} * \nabla u_{\eta,j})(\tilde{X}^{k}_{\eta,i}(s), s) \cdot \nabla \phi_i(\tilde{X}^{k}_{\eta,i}(s), s)ds
\]

\[+ \sigma_i \int_{0}^{t} \Delta \phi_i(\tilde{X}^{k}_{\eta,i}(s), s)ds + \sqrt{2\sigma_t} \int_{0}^{t} \nabla \phi_i(\tilde{X}^{k}_{\eta,i}(s), s) dW^k_i(s).
\]

Applying the expectation

\[
\mathbb{E}(\phi_i(\tilde{X}^{k}_{\eta,i}(t), t)) = \int_{\mathbb{R}^d} \phi_i(x, t)\tilde{u}_{\eta,i}(x, t)dx
\]

to the previous expression yields

\[
\int_{\mathbb{R}^d} \phi_i(x, t)\tilde{u}_{\eta,i}(x, t)dx = \int_{\mathbb{R}^d} \phi_i(x, 0)\tilde{u}_{\eta,i}(x, 0)dx
\]

\[+ \int_{0}^{t} \int_{\mathbb{R}^d} \left(\partial_s \phi_i(x, s) + \sigma_i \Delta \phi_i(x, s) \right) \tilde{u}_{\eta,i}(x, s)dxds
\]

\[- \sum_{j=1}^{n} \int_{0}^{t} \int_{\mathbb{R}^d} \nabla \phi_i(x, s) \cdot (V^\eta_{ij} * \nabla u_{\eta,j})(x, s)\tilde{u}_{\eta,i}(x, s)dxdy.
\]
This is the weak formulation of the linear problem
\[
\partial_t \bar{u}_{\eta,i} - \sigma_i \Delta \bar{u}_{\eta,i} = \text{div} \left(\sum_{j=1}^{n} \bar{u}_{\eta,j} V_{ij}^{\eta} \ast \nabla u_{\eta,j} \right), \quad u_{\eta,i}(0) = u^0.
\]
The solution \(\bar{u}_{\eta,i}\) of this linear problem is Lipschitz continuous. Thus, by regularity theory [41, Theorem 1.3.11], it holds that \(\bar{u}_{\eta,i} \in L^\infty(0, T; H^s(\mathbb{R}^d)) \cap L^2(0, T; H^{s+1}(\mathbb{R}^d))\). But since \(u_{\eta,i}\) is the unique solution to problem (4) in that solution class, this implies that \(\bar{u}_{\eta,i} = u_{\eta,i}\). This finishes the proof. \(\square\)

By the same technique, the solvability of the limiting stochastic system can be proved.

Lemma 12. (Solvability of the limiting stochastic system) Let \(u\) be the unique solution to problem (1) satisfying \(|\nabla u| \in L^\infty(0, \infty; W^{1, \infty}(\mathbb{R}^d; \mathbb{R}^n))\). Then there exists a unique strong solution \(\tilde{X}_i^k\) with probability density function \(u_i\).

5. Proof of Theorem 3

First, we show an estimate for the difference \(X_{\eta,i}^{k,N} - \tilde{X}_{\eta,i}^{k}\).

Lemma 13. Let the assumptions of Theorem 3 hold. Then, for any \(t > 0\),
\[
\sup_{k=1,\ldots,N} \mathbb{E} \left(\sum_{i=1}^{n} \sup_{0 \leq s \leq t} \left| X_{\eta,i}^{k,N}(s) - \tilde{X}_{\eta,i}^{k}(s) \right|^2 \right) \leq \frac{C(t)}{N^{1-C(t)}}
\]
where the constant \(C(t)\) depends on \(t, n, \|D^2V_{ij}\|_{L^\infty}\), and the initial datum \(u^0\).

Proof. We set for \(k = 1, \ldots, N\),
\[
S_t^k = \sum_{i=1}^{n} \sup_{0 \leq s \leq t} \left| X_{\eta,i}^{k,N}(s) - \tilde{X}_{\eta,i}^{k}(s) \right|^2.
\]

The difference of Eqs. (2) and (3), satisfied by \(X_{\eta,i}^{k,N}\) and \(\tilde{X}_{\eta,i}^{k}\), respectively, equals
\[
X_{\eta,i}^{k,N}(t) - \tilde{X}_{\eta,i}^{k}(t) = - \int_0^t \sum_{j=1}^{n} \frac{1}{N} \sum_{\ell=1}^{N} \left(\nabla V_{ij}^{\eta}(X_{\eta,j}^{k,N}(s) - X_{\eta,j}^{\ell,N}(s)) - (\nabla V_{ij}^{\eta} \ast u_{\eta,j})(\tilde{X}_{\eta,i}^{k}(s), s) \right) ds
\]
and thus,
\[
\sum_{i=1}^{n} \left| X_{\eta,i}^{k,N}(s) - X_{\eta,i}^{k}(s) \right|^2 \leq \sum_{i=1}^{n} \left(\int_0^t \frac{1}{N} \sum_{j=1}^{n} \sum_{\ell=1}^{N} \left(\nabla V_{ij}^{\eta}(X_{\eta,j}^{k,N}(s) - X_{\eta,j}^{\ell,N}(s)) - (\nabla V_{ij}^{\eta} \ast u_{\eta,j})(\tilde{X}_{\eta,i}^{k}(s), s) \right) ds \right)^2.
\]
Taking the supremum in \((0, t)\) and the expectation and using the Cauchy-Schwarz inequality with respect to \(t\) yields
\[
\sup_{k=1,\ldots,N} \mathbb{E}(S_t^k) \leq \sum_{i=1}^{n} \frac{t}{N^2} \int_0^t \sup_{k=1,\ldots,N} \mathbb{E} \left(\sum_{j=1}^{n} \sum_{\ell=1}^{N} \left(\nabla V_{ij}^{\eta}(X_{\eta,j}^{k,N}(s) - X_{\eta,j}^{\ell,N}(s)) - (\nabla V_{ij}^{\eta} \ast u_{\eta,j})(\tilde{X}_{\eta,i}^{k}(s), s) \right) ds \right)^2.
\]
\[
\leq C \sum_{i=1}^{n} \frac{t}{N^2} \int_{0}^{t} \left\{ \sup_{k=1, \ldots, N} \mathbb{E} \sum_{j=1}^{N} \left(\sum_{\ell=1}^{N} \left(\nabla V_{ij}^{\eta}(X_{\eta,i}^{k,N}(s) - X_{\eta,j}^{\ell,N}(s)) - \nabla V_{ij}^{\eta}(\bar{X}_{\eta,i}^{k}(s) - \bar{X}_{\eta,j}^{\ell}(s)) \right) \right)^2 \right\} \times \sum_{\ell=1}^{N} \left(\nabla V_{ij}^{\eta}(X_{\eta,i}^{k,N}(s) - X_{\eta,j}^{\ell,N}(s)) - \nabla V_{ij}^{\eta}(\bar{X}_{\eta,i}^{k}(s) - \bar{X}_{\eta,j}^{\ell}(s)) \right) \right)^2 \\
+ \sup_{k=1, \ldots, N} \mathbb{E} \sum_{j=1}^{n} \left\{ \sum_{\ell=1}^{N} \left(\nabla V_{ij}^{\eta}(X_{\eta,i}^{k,N}(s) - X_{\eta,j}^{\ell,N}(s)) - \nabla V_{ij}^{\eta}(\bar{X}_{\eta,i}^{k}(s) - \bar{X}_{\eta,j}^{\ell}(s)) \right) \right)^2 \\
+ \sup_{k=1, \ldots, N} \mathbb{E} \sum_{j=1}^{n} \left\{ \sum_{\ell=1}^{N} \left(\nabla V_{ij}^{\eta}(\bar{X}_{\eta,i}^{k}(s) - \bar{X}_{\eta,j}^{\ell}(s)) - (\nabla V_{ij}^{\eta} * u_{\eta,j})(\bar{X}_{\eta,i}^{k}(s), s) \right) \right)^2 \right\} ds \\
=: J_1 + J_2 + J_3.
\]

We estimate the terms \(J_1, J_2,\) and \(J_3\) separately.

Let \(L_{ij}^{\eta}\) be the Lipschitz constant of \(\nabla V_{ij}\). Because of \(V_{ij}^{\eta}(z) = \eta^{-d}V_{ij}(|z|/\eta)\), we obtain \(L_{ij}^{\eta} = \eta^{-d-2}\|D^2 V_{ij}\|_{L^\infty}\). Hence,

\[
|J_1| \leq \sum_{i=1}^{n} \frac{t}{N^2} \int_{0}^{t} \mathbb{E} \left(\sum_{j=1}^{n} (L_{ij}^{\eta})^2 2N \sum_{\ell=1}^{N} \left| X_{\eta,j}^{\ell,N}(s) - \bar{X}_{\eta,j}^{\ell}(s) \right| \right)^2 ds \\
\leq 2t \sum_{i,j=1}^{n} (L_{ij}^{\eta})^2 \int_{0}^{t} \frac{1}{N} \sum_{\ell=1}^{N} \mathbb{E} \left(\left| X_{\eta,j}^{\ell,N}(s) - \bar{X}_{\eta,j}^{\ell}(s) \right| \right)^2 ds \\
\leq 2t \sum_{i,j=1}^{n} (L_{ij}^{\eta})^2 \sup_{k=1, \ldots, N} \mathbb{E}(S_k^i) ds \\
\leq \frac{2tn}{\eta^{2d+4}} \sup_{i,j=1, \ldots, n} \|D^2 V_{ij}\|_{L^\infty}^2 \int_{0}^{t} \sup_{k=1, \ldots, N} \mathbb{E}(S_k^i) ds.
\]

Furthermore, by similar arguments,

\[
|J_2| \leq \sum_{i=1}^{n} \frac{t}{N^2} \int_{0}^{t} \sup_{k=1, \ldots, N} \mathbb{E} \left(\sum_{j=1}^{n} (L_{ij}^{\eta})^2 \left(\sum_{\ell=1}^{N} \left| X_{\eta,i}^{k,N}(s) - \bar{X}_{\eta,j}^{k}(s) \right| \right)^2 \right) ds \\
\leq 2t \sum_{i,j=1}^{n} (L_{ij}^{\eta})^2 \int_{0}^{t} \sup_{k=1, \ldots, N} \mathbb{E} \left(\left| X_{\eta,i}^{k,N}(s) - \bar{X}_{\eta,j}^{k}(s) \right| \right)^2 ds \\
\leq \frac{2tn}{\eta^{2d+4}} \sup_{i,j=1, \ldots, n} \|D^2 V_{ij}\|_{L^\infty}^2 \int_{0}^{t} \sup_{k=1, \ldots, N} \mathbb{E}(S_k^i) ds.
\]

For the third term, we set

\[
Z_{i,j}^{k,\ell}(s) := \nabla V_{ij}^{\eta}(\bar{X}_{\eta,i}^{k}(s) - \bar{X}_{\eta,j}^{\ell}(s)) - (\nabla V_{ij}^{\eta} * u_{\eta,j})(\bar{X}_{\eta,i}^{k}(s), s),
\]

and write the square as a product of two sums \(Z_{i,j}^{k,1}, \ldots, Z_{i,j}^{k,N}):

\begin{align*}
|J_3| &= \sum_{i=1}^{n} \frac{t}{N^2} \int_0^t \sup_{k=1, \ldots, N} \mathbb{E} \left(\sum_{j=1}^{N} \left| \sum_{\ell=1}^{N} Z_{i,j}^{k,\ell}(s) \right|^2 \right) ds \\
&= \sum_{i,j=1}^{n} \frac{t}{N^2} \int_0^t \sup_{k=1, \ldots, N} \mathbb{E} \left(\sum_{\ell=1}^{N} Z_{i,j}^{k,\ell}(s) \cdot \sum_{m=1}^{N} Z_{i,j}^{k,m}(s) \right) ds \\
&\leq \sum_{i,j=1}^{n} \frac{t}{N^2} \sum_{\ell,m=1}^{N} \int_0^t \sup_{k=1, \ldots, N} \mathbb{E} \left(Z_{i,j}^{k,\ell}(s) \cdot Z_{i,j}^{k,m}(s) \right) ds \\
&= \sum_{i,j=1}^{n} \frac{t}{N^2} \sum_{\ell=1}^{N} \int_0^t \sup_{k=1, \ldots, N} \mathbb{E} \left| Z_{i,j}^{k,\ell}(s) \right|^2 ds \\
&+ \sum_{i,j=1}^{n} \frac{t}{N^2} \sum_{\ell \neq m} \int_0^t \sup_{k=1, \ldots, N} \mathbb{E} \left(Z_{i,j}^{k,\ell}(s)Z_{i,j}^{k,m}(s) \right) ds.
\end{align*}

We show that the last term vanishes. Indeed, since $X_{\eta,i}^k$, $X_{\eta,j}^\ell$, and $X_{\eta,j}^m$ are independent by construction (since we consider N independent copies) with distribution functions $u_{\eta,i}$, $u_{\eta,j}$, and $u_{\eta,j}$, respectively, the joint distribution equals $u_{\eta,i} \otimes u_{\eta,j} \otimes u_{\eta,j}$. This gives for $\ell \neq m$ and $i \neq j$ or, when $i = j$, $k \neq \ell$, $k \neq m$,

\begin{align*}
\mathbb{E}(Z_{i,j}^{k,\ell}(s)Z_{i,j}^{k,m}(s)) &= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \nabla V_{ij}^\eta(\xi - x)\nabla V_{ij}^\eta(\xi - y)u_{\eta,i}(\xi)u_{\eta,j}(x)u_{\eta,j}(y) dx dy \\
&+ \int \left(\nabla V_{ij}^\eta * u_{\eta,j}(\xi) \right)^2 u_{\eta,i}(\xi) d\xi \\
&- 2 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \nabla V_{ij}^\eta(\xi - x)(\nabla V_{ij}^\eta * u_{\eta,j}(\xi))u_{\eta,i}(\xi)u_{\eta,j}(x) dx d\xi = 0.
\end{align*}

If $\ell \neq m$, $i = j$, and $k = \ell$ or $k = m$, it holds by a similar calculation that $\mathbb{E}(Z_{i,j}^{k,\ell}(s)Z_{i,j}^{k,m}(s)) = 0$, and thus, $\mathbb{E}(Z_{i,j}^{k,\ell}(s)Z_{i,j}^{k,m}(s)) = 0$ for all $\ell \neq m$. Also the expectation of $Z_{i,j}^{k,\ell}$ vanishes since

\begin{align*}
\mathbb{E}(Z_{i,j}^{k,\ell}(s)) &= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left(\nabla V_{ij}^\eta(\xi - x) - (\nabla V_{ij}^\eta * u_{\eta,j})(\xi, s) \right)u_{\eta,i}(\xi, s)u_{\eta,j}(x, s) dx d\xi \\
&= \int u_{\eta,i}(\xi, s) \left(\int_{\mathbb{R}^d} \nabla V_{ij}^\eta(\xi - x)u_{\eta,j}(x, s) dx - (\nabla V_{ij}^\eta * u_{\eta,j})(\xi, s) \right) d\xi = 0.
\end{align*}

We have shown that for $\ell = 1, \ldots, N$, $Z_{i,j}^{k,\ell}$ are uncorrelated. Therefore, using the estimates $|\nabla V_{ij}^\eta| \leq C\eta^{-d-1}$, $|\nabla V_{ij}^\eta|_{L^2} \leq C\eta^{-1}$, and consequently

\begin{align*}
|\nabla V_{ij}^\eta * u_{\eta,j}|_{L^\infty} \leq |\nabla V_{ij}^\eta|_{L^2}|u_{\eta,j}|_{L^2} \leq C\eta^{-1},
\end{align*}

we deduce that

\begin{align*}
|J_3| &= \sum_{i,j=1}^{n} \frac{t}{N^2} \sum_{\ell=1}^{N} \int_0^t \sup_{k=1, \ldots, N} \mathbb{E} \left| Z_{i,j}^{k,\ell}(s) \right|^2 ds \\
&\leq \frac{n^2}{N^d+2} Ct^2.
\end{align*}
Summarizing these estimations, we conclude that
\[\sup_{k=1,\ldots,N} \mathbb{E}(S^k_t) \leq 2 \frac{t}{\eta^{2d+4}} \sup_{i,j=1,\ldots,n} \|D^2V_{ij}\|_{L^\infty}^2 \int_0^t \sup_{k=1,\ldots,N} \mathbb{E}(S^k_s) \, ds + \frac{n^2 C t^2}{N \eta^{d+2}}, \]
and, by Gronwall's inequality,
\[\sup_{k=1,\ldots,N} \mathbb{E}(S^k_t) \leq \frac{C t^2}{N \eta^{d+2}} \exp\left(\frac{C t}{\eta^{2d+4}} \right), \quad t > 0. \]

For fixed \(\varepsilon \in (0,1) \) and \(\eta \in (0,1) \), we choose \(N \in \mathbb{N} \) such that \(\varepsilon \log N \geq \eta^{-2d-4} \). Using \(\eta^{-2d-2} \leq \eta^{-2d-4} \leq \exp(C \eta^{-2d-4}) \) for \(C \geq 1 \), we obtain
\[\sup_{k=1,\ldots,N} \mathbb{E}(S^k_t) \leq \frac{C}{N \eta^{d+2}} \exp\left(\frac{C t}{\eta^{2d+4}} \right) \leq \frac{C}{N} \exp\left(C \varepsilon (1 + t) \log N \right) \leq C N^{-1 + C \varepsilon (1 + t)}. \]
This proves the result. \(\square \)

Next, we prove an estimate for the difference \(X^k_{\eta,i} - \hat{X}^k_i \).

Lemma 14. Let the assumptions of Theorem 3 hold. Then for \(t > 0 \),
\[\mathbb{E}\left(\sum_{i=1}^n \sup_{0 < s < t} |X^k_{\eta,i}(s) - \hat{X}^k_i(s)| \right) \leq C(t) \eta, \quad \forall k = 1, \ldots, N. \]

Proof. Since \(X^k_{\eta,i} \) and \(\hat{X}^k_i \) are \(N \) independent copies, we can omit the index \(k \) in the proof. We use similar arguments as in the proof of Lemma 13. Taking the difference of Eqs. (3) and (5), satisfied by \(X_{\eta,i} \) and \(\hat{X}_i \), respectively, and setting
\[U_t = \sum_{i=1}^n \sup_{0 < s < t} |X_{\eta,i}(s) - \hat{X}_i(s)|, \]
if follows that
\[\mathbb{E}(U_t) \leq \sum_{i=1}^n \int_0^t \mathbb{E}\left(\sum_{j=1}^n \left| a_{ij} \nabla u_j(X_i(s),s) - (V_{ij}^\eta * \nabla u_{\eta,j})(X_{\eta,i}(s),s) \right| \right) \, ds \]
\[\leq \sum_{i=1}^n \int_0^t \mathbb{E}\left(\sum_{j=1}^n \left| a_{ij} \nabla u_j(X_i(s),s) - (V_{ij}^\eta * \nabla u_j)(X_i(s),s) \right| \right) \, ds \]
\[+ \sum_{i=1}^n \int_0^t \mathbb{E}\left(\sum_{j=1}^n \left| (V_{ij}^\eta * \nabla u_j)(\hat{X}_i(s),s) - (V_{ij}^\eta * \nabla u_{\eta,j})(\hat{X}_i(s),s) \right| \right) \, ds \]
\[+ \sum_{i=1}^n \int_0^t \mathbb{E}\left(\sum_{j=1}^n \left| (V_{ij}^\eta * \nabla u_{\eta,j})(\hat{X}_i(s),s) - (V_{ij}^\eta * \nabla u_{\eta,j})(\hat{X}_{\eta,i}(s),s) \right| \right) \, ds \]
\[=: K_1 + K_2 + K_3. \]
Using (15), the first two terms on the right-hand side are estimated according to
and Gronwall’s inequality yields
\[
K_1 \leq \sum_{i,j=1}^{n} \int_{0}^{t} \left| (a_{ij} \nabla u_j(x, s) - (V_{ij}^{\eta} \ast \nabla u_j)(x, s)) u_i(x, s) \right| dx ds
\]
\[
\leq n^2 \max_{i,j=1,\ldots,n} \left\| a_{ij} \nabla u_j - V_{ij}^{\eta} \ast \nabla u_j \right\|_{L^2(0,t;L^2)} \\| u_i \|_{L^2(0,t;L^2)}
\]
\[
\leq C(n) \eta \| D^2 u \|_{L^2(0,t;L^2)} \leq C \eta,
\]
where we have used Lemma 16 (ii) and the error estimate from Lemma 13. Finally, the term K_3 can be controlled by
\[
K_3 \leq \sum_{i,j=1}^{n} \left\| \nabla (V_{ij}^{\eta} \ast \nabla u_{\eta,j}) \right\|_{L^\infty} \int_{0}^{t} \mathbb{E}(U_s) ds
\]
\[
\leq n^2 \max_{i,j=1,\ldots,n} \| V_{ij}^{\eta} \|_{L^1} \| D^2 u_{\eta} \|_{L^\infty} \int_{0}^{t} \mathbb{E}(U_s) ds \leq C \int_{0}^{t} \mathbb{E}(U_s) ds.
\]
We need the assumption $s > d/2 + 2$ for the continuous embedding $H^s(\mathbb{R}^d) \hookrightarrow W^{2,\infty}(\mathbb{R}^d)$, which allows us to estimate $D^2 u_{\eta}$ in $L^\infty(\mathbb{R}^d)$. This shows that
\[
\mathbb{E}(U_t) \leq C \eta + C \int_{0}^{t} \mathbb{E}(U_s) ds,
\]
and Gronwall’s inequality yields $\mathbb{E}(U_t) \leq C(t) \eta$ for $t > 0$. The statement of the lemma follows after taking the supremum over $t > 0$. \hfill \square

Lemmas 13 and 14 imply Theorem 3. Indeed, it follows that
\[
\sup_{k=1,\ldots,N} \mathbb{E} \left(\sum_{i=1}^{n} \sup_{0<s<t} \left| X_{\eta,i}^{k,N}(s) - \tilde{X}_{i}^{k}(s) \right| \right)
\]
\[
\leq \sup_{k=1,\ldots,N} \mathbb{E} \left(\sum_{i=1}^{n} \sup_{0<s<t} \left| X_{\eta,i}^{k,N}(s) - X_{\eta,i}^{k}(s) \right| \right)
\]
\[
+ \sup_{k=1,\ldots,N} \mathbb{E} \left(\sum_{i=1}^{n} \sup_{0<s<t} \left| X_{\eta,i}^{k}(s) - \tilde{X}_{i}^{k}(s) \right| \right)
\]
\[
\leq CN^{(-1+C(t)\varepsilon)/2} + C(t)\eta \leq C(t)\eta,
\]
since the choice $\log N \geq 1/(\varepsilon \eta^{2d+4})$ is equivalent to
\[
N^{(-1+C(t)\varepsilon)/2} \leq \exp \left(\frac{1}{2\varepsilon} (-1 + C(t)\varepsilon) \eta^{-2d-4} \right),
\]
and the right-hand side is smaller than η possibly times a constant $C(t)$.

Acknowledgements

Open access funding provided by Austrian Science Fund (FWF).

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Some auxiliary results

We recall some auxiliary results.

Lemma 15. (Moser-type calculus inequality; Prop. 2.1 in [25]) Let \(f, g \in H^s(\mathbb{R}^d) \) with \(s > d/2 + 1 \) and let \(\alpha \in \mathbb{N}^d \) be a multi-index of order \(|\alpha| \leq s \). Then, for some constant \(C_M > 0 \) only depending on \(s \) and \(d \),

\[
\|D^\alpha (fg)\|_{L^2} \leq C_M \left(\|f\|_{L^\infty} \|D^\alpha g\|_{L^2} + \|g\|_{L^\infty} \|D^\alpha f\|_{L^2} \right).
\]

Lemma 16. (Young’s convolution inequality; formula (7) on page 107 in [23]) (i) Let \(1 \leq p, q \leq \infty \) satisfying \(1/p + 1/q = 1/r + 1 \) and \(f \in L^p(\mathbb{R}^d), \ g \in L^q(\mathbb{R}^d) \). Then

\[
\|f \ast g\|_{L^r} \leq \|f\|_{L^p} \|g\|_{L^q}.
\]

(ii) Let \(p, q, r \geq 1 \) satisfying \(1/p + 1/q + 1/r = 2 \) and \(f \in L^p(\mathbb{R}^d), \ g \in L^q(\mathbb{R}^d), \ h \in L^r(\mathbb{R}^d) \). Then, for some constant \(C > 0 \) only depending on \(p, q, r, \) and \(d \),

\[
\left\| \int_{\mathbb{R}^d} (f \ast g) h \mathrm{d}x \right\| \leq C \|f\|_{L^p} \|g\|_{L^q} \|h\|_{L^r}.
\]

Lemma 17. (Gronwall-type inequality) Let \(a, b > 0 \), \(g \in C^0([0, T]) \) with \(g(t) \geq 0 \) for \(t \in [0, T] \) and \(f : [0, T] \to [0, \infty) \) be absolutely continuous such that

\[
f'(t) \leq -g(t)(a - b\sqrt{f(t)}) \quad \text{for } t > 0
\]

and \(0 < f(0) \leq (a/b)^2 \). Then \(f(t) \leq (a/b)^2 \) for all \(t \in [0, T] \). If \(g : [0, T] \to [0, \infty) \) is any function, we still have the strict inequality: \(f(t) < (a/b)^2 \) for all \(t \in [0, T] \).

We present a proof of this lemma since we could not find a reference in the literature.

Proof. First, let \(f(0) < (a/b)^2 \). We claim that \(f(t) < (a/b)^2 \) for \(t \in [0, T] \). Assume that there exists \(t_0 \in [0, T] \) such that \(f(t_0) \geq (a/b)^2 \). By continuity, there exists \(t_1 \in [0, t_0] \) such that \(f(t_1) < (a/b)^2 \) and \(f'(t_1) > 0 \). This leads to the contradiction \(0 < f'(t_1) \leq -g(t_1)(a - b\sqrt{f(t_1)}) \leq 0 \), proving the claim.

Since \(f(t) < (a/b)^2 \) for \(t \in [0, T] \), the differential inequality can be written as

\[
\frac{f'(t)}{a - b\sqrt{f(t)}} \leq -g(t), \quad t \in [0, T].
\] (16)

Introduce

\[
F(s) = \int_0^s \frac{d\sigma}{a - b\sqrt{\sigma}} = \int_0^{\sqrt{s}} \frac{2\tau d\tau}{a - b\tau} = -\frac{2}{b^2} (b\sqrt{s} + a \log(a - b\sqrt{s}) - a \ln a).
\]
Then integrating (16) over \((0, t)\) leads to
\[
F(f(t)) - F(f(0)) \leq -\int_0^t g(\tau) d\tau,
\]
which, after a computation, is equivalent to
\[
a - b\sqrt{f(t)} \geq (a - b\sqrt{f(0)}) \exp\left(\frac{b}{a}\sqrt{f(0)} - \frac{b}{a}\sqrt{f(t)} + \frac{b^2}{2a} \int_0^t g(\tau) d\tau\right).
\]
Finally, we choose a sequence of initial data \(f_0^\delta < (a/b)^2\) such that \(f_0^\delta \to f_0 \leq (a/b)^2\) as \(\delta \to 0\). To each \(f_0^\delta\), we associate a function \(f^\delta\) satisfying the differential inequality. The proof shows that \(f^\delta(t) < (a/b)^2\).

In the limit \(\delta \to 0\), this reduces to \(f(t) \leq (a/b)^2\), where \(f(t) = \lim_{\delta \to 0} f^\delta(t)\) for \(t \in [0, T]\).

\[\square\]

References

[1] Amann, H.: Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems. Diff. Integral Equ. 3, 13–75 (1990)
[2] Belopol’skaya, Y.: Probabilistic model for the Lotka–Volterra system with cross-diffusion. J. Math. Sci. 214, 425–442 (2016)
[3] Bertsch, M., Gurtin, M., Hilhorst, D., Peletier, L.A.: On interacting populations that disperse to avoid crowding: preservation of segregation. J. Math. Biol. 23, 1–13 (1985)
[4] Bertsch, M., Hilhorst, D., Izhara, H., Mimura, M.: A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth. Diff. Equ. Appl. 4, 137–157 (2012)
[5] Boudin, L., Grec, B., Salvarani, F.: The Maxwell–Stefan diffusion limit for a kinetic model of mixtures. Acta Appl. Math. 136, 79–90 (2015)
[6] Bouleau, N., Hirsch, F.: Propriétés d’absolue continuité dans les espaces de Dirichlet et application aux E.D.S. In: Séminaire de Probabilités, XX, 1984/85. Lecture Notes Math. 1204, pp. 131–161. Springer, Berlin (1986)
[7] Burger, M., Pietschmann, J.-F., Ranetbauer, H., Schmeiser, C., Wolfram, M.-T.: Mean field models for segregation dynamics. Submitted for publication (2018). arXiv:1808.04069
[8] Chen, L., Götlich, S., Knapp, S.: Modeling of a diffusion with aggregation: rigorous derivation and numerical simulation. ESAIM: Math. Model. Numer. Anal. 53, 567–593 (2018)
[9] Conforto, F., Desvillettes, L.: Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross diffusions. Commun. Math. Phys. 12, 457–472 (2014)
[10] Dai Pra, P., den Hollander, F.: McKean–Vlasov limit for interacting random processes in random media. J. Stat. Phys. 84, 735–772 (1996)
[11] Daus, E.S., Desvillettes, L., Dietert, H.: About the entropic structure of detailed balanced multi-species cross-diffusion equations. J. Diff. Equ. 266, 3861–3882 (2019)
[12] De Masi, A., Ferrari, P., Lebowitz, J.: Reaction-diffusion equations for interacting particle systems. J. Stat. Phys. 44, 589–644 (1986)
[13] Fontbona, J., Méliard, S.: Non local Lotka–Volterra system with cross-diffusion in an heterogeneous medium. J. Math. Biol. 70, 829–854 (2015)
[14] Galiano, G., Selgas, V.: On a cross-diffusion segregation problem arising from a model of interacting particles. Nonliner Anal. Real World Appl. 18, 34–49 (2014)
[15] Gärtner, J.: On the McKean–Vlasov limit for interacting diffusions. Math. Nachr. 137, 197–248 (1988)
[16] Golse, F.: The mean-field limit for the dynamics of large particle systems. Journées Equations aux dérivées partielles 1–47 (2003). https://doi.org/10.5802/jedp.623
[17] Huo, X., Jüngel, A., Tzavaras, A.: High-friction limits of Euler flows for multicomponent systems. To appear in Nonlinearity (2019). arXiv:1810.08225
[18] Ichikawa, K., Rouzimaimaiti, M., Suzuki, T.: Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete Contin. Dyn. Syst. Ser. S 5, 115–126 (2012)
[19] Izhara, H., Mimura, M.: Reaction-diffusion system approximation to the cross-diffusion competition system. Hiroshima Math. J. 38, 315–347 (2008)
[20] Jabin, P.-E., Wang, Z.: Mean field limit for stochastic particle systems. Active Part. 1, 379–402 (2017)
[21] Jüngel, A.: Entropy Methods for Diffusive Partial Differential Equations. BCAM SpringerBriefs. Springer (2016). https://doi.org/10.1007/978-3-319-34219-1
[22] Kavallaris, N., Suzuki, T.: Non-local reaction-diffusion system involved by reaction radius I. IMA J. Appl. Math. 78, 614–632 (2013)
[23] Lieb, E.H., Loss, M.: Analysis. Second edition. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)
[24] Lions, P.-L., Mas-Gallic, S.: Une méthode particulaire déterministe pour des équations diffusives non linéaires. C. R. Acad. Sci. Paris Sér. I(332), 369–376 (2001)
[25] Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Mathematical Sciences, vol. 53. Springer, New York (1984)
[26] Moussa, A.: From non-local to classical SKT systems: triangular case with bounded coefficients. Submitted for publication (2017). arXiv:1711.08662
[27] Oelschläger, K.: A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Probab. 12, 458–479 (1984)
[28] Oelschläger, K.: On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes. Probab. Theory Relat. Fields 82, 565–586 (1989)
[29] Oelschläger, K.: Large systems of interacting particles and the porous medium equation. J. Diff. Equ. 88, 294–346 (1990)
[30] Øksendal, B.: Stochastic Differential Equations, 5th edn. Springer, Heidelberg (2000)
[31] Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes Math. 1905. Springer, Berlin (2007)
[32] Rudin, W.: Functional Analysis. McGraw-Hill, Singapore (1987)
[33] Saint-Raymond, L.: Hydrodynamic Limits of the Boltzmann Equation. Lecture Notes Math. 1971. Springer, Berlin (2009)
[34] Seo, I.: Scaling limit of two-component interacting Brownian motions. Ann. Probab. 46, 2038–2063 (2018)
[35] Simon, J.: Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pure Appl. 146, 65–96 (1987)
[36] Stevens, A.: The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math. 61, 183–212 (2000). (Erratum: 61 (2000), 2200–2200)
[37] Sznitman, A.S.: Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal. 56, 311–336 (1984)
[38] Sznitman, A.S.: Topics in propagation of chaos. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint-Flour XIX-1989, Lecture Notes Math. 1464. Springer, Berlin (1991)
[39] Varadhan, S.: Relative Entropy and Hydrodynamic Limits. Stochastic Processes, pp. 329–336. Springer, New York (1993)
[40] Zamponi, N., Jüngel, A.: Analysis of degenerate cross-diffusion population models with volume filling. Ann. Inst. H. Poincaré—AN 34, 1–29 (2017). (Erratum: 34 (2017), 789–792)
[41] Zheng, S.: Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems. Longman, Essex (1995)

Li Chen
Department of Mathematics
University of Mannheim
68131 Mannheim
Germany
e-mail: chen@math.uni-mannheim.de

Esther S. Daus and Ansgar Jüngel
Institute for Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstrasse 8–10
1040 Wien
Austria
e-mail: juengel@tuwien.ac.at

Esther S. Daus
e-mail: esther.daus@tuwien.ac.at

(Received: November 3, 2018; revised: June 24, 2019)