Chemical Papers (2021) 75:4697–4706
https://doi.org/10.1007/s11696-021-01684-x

ORIGINAL PAPER

A high selective “turn-on” fluorescent chemosensor for detection of Zn\(^{2+}\) in aqueous media

Juan Li1 · Shu-Zhen Zhang1 · Geng Guo1 · Hao-Ran Jia1 · Yin-Xia Sun1

Received: 6 February 2021 / Accepted: 26 April 2021 / Published online: 18 May 2021
© Institute of Chemistry, Slovak Academy of Sciences 2021

Abstract
A simple Schiff base fluorescent probe (SW) composed of oxime and salicylaldehyde units was designed and synthesized. The probe has high selectivity and sensitivity for Zn\(^{2+}\) ion in mixed solvent (DMSO/H\(_2\)O, V/V = 9:1). The fluorescence has obvious redshift phenomenon and visible color change. The stoichiometric ratio of the probe to Zn\(^{2+}\) ion was confirmed to be 1:2 (mole) by \(^1\)H NMR, MS analysis and job curves. And the detection limit of fluorescence response of the SW to Zn\(^{2+}\) is down to 2.53 × 10\(^{-8}\) mol/L. At the same time, the probe SW can be applied to the test paper detection of Zn\(^{2+}\) ions under 365 nm UV light and the detection of Zn\(^{2+}\) ions in actual water samples.

Keywords Fluorescent probe · Schiff base containing oxime · Zn\(^{2+}\) recognition · Test paper · Actual water samples

Introduction
Zinc is the second most abundant transition metal ion in the human body after iron. It plays an important role in various physiological and pathological processes, including DNA synthesis, gene expression, enzyme regulation structure and neuron signal transmission (Wang et al. 2020a, b, c, d; Zhang et al. 2021). The lack of Zn\(^{2+}\) in adults can lead to neurological disorders, Alzheimer’s disease and diabetes. Lack of Zn\(^{2+}\) in children can lead to decreased immune function, diarrhea and even death (Vetriarasu et al. 2019; Liu et al. 2020a, b). In recent years, zinc ion is widely used in electroplating industry, which causes more and more serious environmental pollution. Therefore, it is very important for human health and environment to design a high selective zinc ion detection probe (Zhao et al. 2019; Yu et al. 2017b, a). Although many chemical sensors for zinc detection have been studied before, new fluorescent probes for selective detection of zinc ions in physiological pH conditions and environmental systems are still in great demand. Due to its d\(^{10}\) configuration, Zn\(^{2+}\) sensor is usually interfered by other d\(^{10}\) metal ions (such as Cd\(^{2+}\) and Hg\(^{2+}\)) (Anand et al. 2018; Bian et al. 2021b, a). As we all know, Schiff base fluorescent probe is a kind of metal ion probe which is relatively simple to synthesize and widely used. It has the advantages of convenient operation, simple detection method, fast detection and high sensitivity, and has attracted great attention. Because of the C=N group in its structure, its rigid structure and fluorescence are enhanced after chelating with metal ions (Patil et al. 2018; Xu et al. 2021a, b).

In this paper, we designed and synthesized a fluorescent probe SW with high selectivity and sensitivity for the detection of Zn\(^{2+}\) ions, which can be used for visual detection. The probe has the advantages of simple preparation and low cost (Wei et al. 2020; Pannipara et al. 2018). It has a strong practical value for the test paper detection of Zn\(^{2+}\) ions under 365 nm UV light and the detection of Zn\(^{2+}\) ions in actual water samples.

Experimental
Materials and methods

The O-benzylhydroxylamine (99%), 4-aminoacetophenone (99%), and salicylic aldehyde (98%) used in the experiment were purchased from Alfa Aesar. The remaining reagents and solvents are all analytical reagents and can be used without further purification. The water used in the experiment is distilled water. The X-4 microscopic melting point

1 School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People’s Republic of China

✉ Yin-Xia Sun
Sun_yinxia@163.com

© Springer
instrument produced by Beijing Tyco Instrument Limited company was used for melting point measurement, and no calibration was performed before use. German Vario EL V3.00 automatic element analyzer was used for the analysis of C, H, and N elements. 1H NMR spectra were recorded in DMSO-d$_6$ solution using Bruker AV series DRX-500 MHz nuclear magnetic resonance instrument. Fluorescence spectra were recorded using Hitachi (Japan) F-7000 fluorescence spectrophotometer. Ultraviolet–visible absorption spectrum is measured by Hitachi UV-3900 spectrometer. The B3LYP/6-31G function is used as the basis of geometric optimization, and the Gaussian 09 software program is used for DFT calculation.

By adding various metal cations in DMSO/H$_2$O (V/V = 9:1) medium, and the probe SW concentration was kept constant (2.0 × 10$^{-4}$ mol/L). All metal cation solutions (1.0 × 10$^{-2}$ mol/L) Na$^+$, Al$^{3+}$, Ba$^{2+}$, Ca$^{2+}$, Cd$^{2+}$, Co$^{2+}$, Cr$^{3+}$, Fe$^{3+}$, Mg$^{2+}$, Mn$^{2+}$, Zn$^{2+}$, Ni$^{2+}$, Pb$^{2+}$, Hg$^{2+}$ and Cu$^{2+}$ were prepared from the nitrate salts, while the Zn$^{2+}$ solutions was prepared by Zn(NO$_3$)$_2$. The excitation wavelength used for fluorescence spectrometry is 368 nm, the entrance slit is 5 nm and the exit slit is 5 nm.

Results and discussion

Fluorescence recognition of Zn$^{2+}$ by probe SW

The response of probe SW to different metal cations was studied by the fluorescence method at room temperature (Li et al. 2021a, b, c). As shown in Fig. 1a, fifteen cations (Na$^+$, Al$^{3+}$, Ba$^{2+}$, Ca$^{2+}$, Cd$^{2+}$, Co$^{2+}$, Cr$^{3+}$, Fe$^{3+}$, Mg$^{2+}$, Mn$^{2+}$, Zn$^{2+}$, Ni$^{2+}$, Pb$^{2+}$, Hg$^{2+}$ and Cu$^{2+}$) (1.0 × 10$^{-2}$ mol/L) were added to the solution of probe SW (2.0 × 10$^{-4}$ mol/L) (DMSO/H$_2$O, V/V = 9:1), respectively. When the excitation wavelength is 368 nm, the probe SW has a weak fluorescence emission peak at 437 nm. After the addition of other metal ions, the intensity of emission peak has no obvious enhancement except Zn$^{2+}$ ions. Furthermore, the emission peak was red-shifted from 437 to 502 nm and the intensity increased by 16 times upon addition of Zn$^{2+}$ ions (Dong et al. 2017; Wang et al. 2020a). Under the UV lamp, the solution of 15 kinds of metal ions to be measured was added to DMSO/H$_2$O solution (V/V = 9:1) of SW in turn, a strong bright green fluorescence is produced only added Zn$^{2+}$ ions, and other metal cations have basically no obvious effect (Anand et al. 2017; Pan et al. 2020a, b), the fluorescence remains unchanged or quenched (Fig. 1b). It can prove that probe SW could selectively identify Zn$^{2+}$ ion among other metal ions to be measured. It is helpful to study the high sensitivity of probe SW to Zn$^{2+}$ ion by anti-interference experiment (Ozdemir 2016; Sun et al. 2019). In Fig. 2, after adding Zn$^{2+}$ ion to

Scheme 1 Synthetic routes of SW

© Springer
probe SW solutions containing different metal ions, other metal cations had no markedly effect on the fluorescence recognition to Zn\(^{2+}\) ions except for the slight quenching of Cu\(^{2+}\) ion and Co\(^{2+}\) ion had a slight effect (Liu et al. 2020a). The results show that SW has good selectivity for Zn\(^{2+}\) ions.

In order to quantitatively evaluate the fluorescence sensing behavior of SW, we carried out fluorescence titration experiment. As shown in Fig. 3, the Zn\(^{2+}\) solution (1.0 × 10\(^{-3}\) mol/L) was gradually added to the probe SW solution (2.0 × 10\(^{-4}\) mol/L) (Upadhyay et al. 2018; Wang et al. 2021a, b), the free SW exhibited a weak emission peak at 437 nm, a new peak emission present at 507 nm and its intensity gradually increased when the concentration of Zn\(^{2+}\) ion increases continuously (Wang et al. 2017; Chang et al. 2020). When the Zn\(^{2+}\) content reaches 0.5 equivalent, the fluorescence emission intensity reaches the maximum, indicating that the optimal binding ratio of Zn\(^{2+}\) to probe SW is 1:2.

Bringing the results of titration experiments into the Benesi–Hildebrand equation

\[
\frac{1}{F - F_0} = \frac{1}{F_{\text{max}} - F_0} + \frac{1}{K_d [C]} \times \frac{1}{1/(F_{\text{max}} - F_0)}
\]

(Sudipa et al. 2019; Xu et al. 2021a), and the binding constant is calculated as \(K_d = 7.7 \times 10^4\) M\(^{-1}\) (Fig. S2a). Where, \(F_0\), \(F\) and \(F_{\text{max}}\) are the fluorescence intensity without Zn\(^{2+}\), the fluorescence intensity at any given Zn\(^{2+}\) concentration and the fluorescence intensity after titration saturation, respectively. The limit of detection LOD for Zn\(^{2+}\) toward SW was calculated using LOD = 3\(\sigma/slope\) and was found to be 2.53 × 10\(^{-8}\) mol/L (Fig. S2b) (Wang et al. 2020b; Purkait et al. 2019). Among them, the standard deviation \(\sigma\) was calculated by measuring five consecutive fluorescence intensities of probe SW, and the slope was obtained by plotting the relationship between the emission intensity of SW and the concentration of Zn\(^{2+}\) (Zhang et al. 2020; Bian et al. 2021b; Fan et al.
The calculated results are lower than the acceptable limit (7.0 × 10^{-6} mol/L) of WHO drinking water (Lu et al. 2020; Kang et al. 2019b). Compared with other Zn^{2+} sensors reported previously, the detection limit is lower and the sensitivity is higher (Table 1).

In order to test and verify the rapid detection performance of probe SW for Zn^{2+}, the Zn^{2+} response time experiment was carried out (Zhang et al. 2019). As shown in Fig. S3, after adding Zn^{2+}, the response time of probe SW was 3 min (Pan et al. 2020a; Li et al. 2021a). The fluorescence reversibility studied by adding Zn^{2+} and ethylenediaminetetraacetic acid (EDTA, c = 1.0 × 10^{-3} mol/L) to SW solution. In Fig S4, when EDTA was introduced to SW and Zn^{2+} mixed solution, the fluorescence intensity at 502 nm was diminished. Then, Zn^{2+} solution was added again, and the fluorescence intensity was close to the initial fluorescence value, and the above experimental steps were repeated, and the fluorescence intensity continued to decrease and increase (Wang et al. 2021a; Mu et al. 2020). Thus, the probe SW can monitor Zn^{2+} reversibly.

UV–Vis spectroscopic studies of Zn^{2+} by probe SW

In the UV–Vis spectrum, as shown in Fig S5a, the free ligand SW exhibited a weak absorb peak at 425 nm. When Zn^{2+} ions were added to probe SW solution, a new absorption peak appeared at 458 nm, and the solution changed from colorless to yellow (Fig. S5b). At the same time, the addition of Co^{2+}, Fe^{3+} and Cu^{2+} metal ions also slightly changed the color. Therefore, UV–Vis spectrum can be used as an assistant method to detect the Zn^{2+} by this probe SW. As shown in Fig. S6, the Zn^{2+} solution (1.0 × 10^{-3} mol/L) was gradually added to the probe SW solution (2.0 × 10^{-4} mol/L) for UV–visible titration experiments (Wang et al. 2020c; Liu et al. 2018). With the continuous increase of Zn^{2+} concentration, a new absorption peak appears at 458 nm, while the absorption peak at 352 nm gradually decreases. At the same time, an isoabsorptive point appeared at 285 nm and corresponding, the energy gap was 3.455 eV, and the electron density was mainly delocalized on the two Schiff groups except for the oxime phenyl group. The UV–Vis spectral characteristics support the molar ratio of metal to ligand of 1:2, and the association constant $K_a = 5.6 \times 10^4$ M^{-1} (Fig. S7a).

The detection mechanism of the probe SW for Zn^{2+}

1H NMR titration experiment was carried out in DMSOD$_6$ (Long et al. 2020). As shown in Fig. 4, with the addition of Zn$^{2+}$ from 0 to 0.5 equivalent, the phenolic hydroxyl protons H1 ($\delta = 12.87$ ppm) gradually disappeared until completely disappeared, indicating the deprotonation process of hydroxyl induced by Zn$^{2+}$. With the addition of Zn$^{2+}$, azomethine H2 (HC= N) shifts from 9.02 ppm to 8.65 ppm, which may be due to the coordination between imine-N and Zn$^{2+}$. In the complex SW-Zn$^{2+}$, the 1H NMR titration data supports 1:2 metal–ligand ratio (Xu et al. 2020; Yu et al. 2017a). Job’s plot further analyzes the coordination ratio between SW and Zn$^{2+}$ (Fig. S8), when the mole fraction of Zn$^{2+}$ ion is 0.345, the fluorescence intensity reaches the maximum value, showing that the binding ratio of Zn$^{2+}$ ion to SW is 1:2 (Liu et al. 2020b; Xue et al. 2019).

As shown in Scheme 2, the fluorescence enhancement recognition mechanism of Zn$^{2+}$ by probe SW may be mainly due to the presence of Zn$^{2+}$ hindering the PET (light-induced electron transfer) effect of SW. Owing to the rotation of imine group (CH = N) in free SW, there is a very weak fluorescence in SW solution. The addition of Zn$^{2+}$ ions can coordinate with the probe SW, which inhibits the free rotation of imine group of SW molecules and produces CHEF effect (Liu et al. 2018; Zhang et al. 2018), resulting enhanced fluorescence. The mass spectrum peak of the complex appeared at 751.22 (Fig. S9), which further confirmed that the complex was consistent with the conjecture.

DFT computation

In order to further study the geometry and interaction of SW and Zn$^{2+}$, density functional theory (DFT) calculation was carried out. The geometry structures of SW and SW-Zn$^{2+}$ were optimized by 6-31G/LanL2DZ basic setting program using Gausans-09 software (Feng et al. 2021; Rout et al. 2019). As shown in Fig. 5, one the Zn$^{2+}$ ion coordinated with two ligand SW molecules. Among, the coordination atoms are hydroxyl O atoms and the imine N atoms on C = N groups of two SW molecules, respectively. The LUMO and HOMO energies of SW were −1.551 eV and −5.659 eV, respectively. The energy gap ($\Delta E = E_\text{LUMO} - E_\text{HOMO}$) was 4.108 eV, and the SW molecule was delocalized on the entire conjugated skeleton except for the oxime phenyl group. After SW coordinating with Zn$^{2+}$, LUMO and HOMO energies were −1.931 eV and −5.386 eV, respectively. Correspondingly, the energy gap was 3.455 eV, and the electron density was mainly delocalized on the two Schiff groups and mainly on entire salicylaldehyde and aminoacetophenone conjugated skeleton except for the oxime phenyl group. The electron density of HOMO–LUMO transition showed the fluorophore-metal charge transfer, indicating that with the PET effect, the excited electrons were readily averted to metal ions (Cui et al. 2019; Li et al. 2021b). The decrease of
Method	medium used	Detection limit (M)	Practical test paper	actual water	References
MeCN:H₂O	(V/V=19:1)	4.7×10⁻⁶	-	Yes	Zhang et al. (2019)
MeCN		6.00×10⁻⁷	Yes	-	Kang et al. (2019)
MeOH:H₂O	(V/V=9:1)	1.44×10⁻⁷	-	-	Dong et al. (2017)
EtOH		3.50×10⁻⁷	-	-	Fan et al. (2020)
DMSO/EtOH	(V/V=2:3)	1.34×10⁻⁷	Yes	-	Xue et al. (2019)
EtOH/HEPES	(V/V=7:3)	3.35×10⁻⁷	Yes		Purkait et al. (2019)
MeOH-tris buffer (v/v=1:1)		1.23×10⁻⁸	-	Yes	Rout et al. (2019)
MeOH/H₂O	(V/V=1:1)	1.60×10⁻⁷	-	-	Liu et al. (2018)
DMSO/H₂O	(V/V=9:1)	2.53×10⁻⁸	Yes	Yes	This work
ΔE indicates that there is good coordination ability between Zn$^{2+}$ and SW and formed a stable environment.

Practical application of probe SW

In practical application, the probe SW is designed as a Zn$^{2+}$ responsive strip sensor with good selectivity, and it can quickly and simply detect Zn$^{2+}$ ions by changing the

Fig. 4 1H NMR titration of SW with different concentrations of Zn$^{2+}$ in d$_6$-DMSO

Scheme 2 Plausible mechanism for Zn$^{2+}$ recognition by SW
wavelength, which has great practical value (Kang et al. 2019a). The filter strips were immersed in DMSO/H$_2$O solution of probe SW for 1 h, and dried at low temperature, then immersed in different concentrations of Zn$^{2+}$ ions and other metal ions for 30 min, and the changes were observed under 365 nm UV lamps (Diao et al. 2018). As shown in Fig. 6a, with the increase of Zn$^{2+}$ concentration, the color of the test paper changed from colorless to green. Whereas the other metal ions did not cause obvious changes in the color of test paper except Zn$^{2+}$ ions (Fig. 6b), indicating that SW probe had high selectivity for Zn$^{2+}$.

In order to test the practicability of Zn$^{2+}$ ions in real water samples, drinking water, tap water and Yellow River Water were collected for sensing experiments (Sarkar et al. 2020). All samples were filtered through 0.2 mm filter membrane and tested for three times. The calibration curve was obtained by measuring the Zn$^{2+}$ ions concentration.
As shown in Table 2, the detection results show that the probe SW can effectively detect Zn2+ ions and has high recovery (98%-103%), good analytical precision (RSD < 3%), which meets the detection requirements. Therefore, the probe SW can be effectively used for the detection of Zn2+ ion concentration in actual water samples and has practical value in environmental analysis.

Conclusions

In summary, a simple Schiff base ligand SW has been designed and synthesized, and it has higher sensitivity and selectivity to Zn2+ in DMSO/H\textsubscript{2}O (v/v = 9:1) solution. And the detection limit of the SW to Zn2+ is down to 2.53 \times 10^{-8} mol/L, which was lower than the limited value defined by WHO. By means of 1H NMR, MS analysis and theoretical calculation, we obtained the binding mode of probe SW to Zn2+ is 2:1. In addition, the probe SW can be used for the detection of Zn2+ ions in the test paper under the UV light at 365 nm and the detection of Zn2+ ions in actual water samples, which has a potential application prospect.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s11696-021-01684-x.

Acknowledgements

This work was supported by the Science and Technology Program of Gansu Province (18YF1GA054) and the Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University (201706), both of which are gratefully acknowledged.

Author Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by all authors. The first draft of the manuscript was written by Juan Li and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the Science and Technology Program of Gansu Province (18YF1GA054) and the Program for the Excellent Team of Scientific Research in the Lanzhou Jiaotong University (201706).

Data Availability

The data sets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Declaration

Conflicts of interest The authors declare that they have no conflict of interest.

References

Anand T, Ashok Kumar SK, Sahoo SK (2017) Vitamin B6 cofactor derivative: a dual fluorescent turn-on sensor to detect Zn2+ and CN- ions and its application in live cell imaging. Chem Select 2:7570–7579. https://doi.org/10.1002/slct.201701024

Anand T, Ashok Kumar SK, Sahoo SK (2018) A novel Schiff base derivative of pyridoxal for the optical sensing of Zn2+ and cysteine. Photochem Photobiol 17:414–422. https://doi.org/10.1039C7PP00391A

Bian RN, Wang JF, Xu X, Dong WK, Ding YJ (2021) Investigation of mononuclear, dinuclear, and trinuclear transition metal (II) complexes derived from an asymmetric Salamo-based ligand possessing three different coordination modes. Appl Organomet Chem 35:e6040. https://doi.org/10.1002/aoc.6040

Bian RN, Xu X, Feng T, Dong WK (2021) A novel O-phenanthroline-based bis(half-salamo)-like chemical sensor: For rapid and efficient continuous recognition of Cu2+, HPO\textsubscript{4}2- and H\textsubscript{2}PO\textsubscript{4}-. Inorg Chim Acta 516:120098. https://doi.org/10.1016/j.ica.2020.120098

Chang J, Zhang SZ, Wu Y, Zhang HJ, Sun YX (2020) Three supramolecular trinuclear Nickel(II) complexes based on Salamo-type chelating ligand: Synthesizes, crystal structures, solvent effect, Hirshfeld surface analysis and DFT calculation. Transit Met Chem 45:279–293. https://doi.org/10.1007/s11243-020-00379-8

Cui YF, Zhang Y, Xie KF, Dong WK (2019) A newly synthesized heterobimetallic NiII-GdIII salamo-BDC-based coordination polymer: Structural characterization, DFT calculation, fluorescent and antibacterial properties. Crystals 9:596. http://creativecommons.org/licenses/by/4.0/.

Diao HP, Guo LX, Liu W, Feng LH (2018) A novel polymer probe for Zn(II) detection with ratiometric fluorescence signal. Spectrochim
Vetriarasu V, Selva Kumar R, Ashok Kumar SK, Sahoo SK (2019) Highly selective turn-on fluorogenic chemosensor for Zn\(^{2+}\) based on chelation enhanced fluorescence. Inorg Chem Commun 102:171–179. https://doi.org/10.1016/j.inoche.2019.02.020

Wang JL, Hao YF, Wang H, Yang SX, Tian HY, Sun BG, Liu YG (2017) Rapidly responsive and high selective fluorescent probe for bisulfite detection in food. J Agric Food Chem 65:2883–2887. https://doi.org/10.1021/acs.jafc.7b00353

Wang L, Wei ZL, Liu C, Dong WK, Ru JX (2020) Synthesis and characterization for a high selective bis(salamo)-based chemical sensor and imaging in living cell. Spectrochim Acta A 239:118496. https://doi.org/10.1016/j.saa.2020.118496

Wang L, Wei ZL, Chen ZZ, Liu C, Dong WK, Ding YJ (2020) A chemical probe capable for fluorescent and colorimetric detection to Cu\(^{2+}\) and CN\(^{-}\) based on coordination and nucleophilic addition mechanism. Microchem J 155:104801. https://doi.org/10.1016/j.microc.2020.104801

Wang B, Liu X, Duan W, Dai S, Lu H (2020) Highly selective turn-on fluorescent and naked-eye colorimetric salamo-based probe in aqueous medium. Luminescence 36:169–179. https://doi.org/10.1002/bio.3932

Xu X, Feng T, Feng SS, Dong WK (2021) Influence of structural variation of salamo-based ligand on supramolecular architectures, Hirshfeld analyses, and fluorescence properties of new tetracatenal Ni\(^{3+}\) complexes. Appl Organomet Chem 35:e6057. https://doi.org/10.1002/aoc.6057

Xue J, Tian LM, Yang ZY (2019) A novel rhodamine-chromone Schiff-base as turn-on fluorescent probe for the detection of Zn(II) and Fe(III) in different solutions. J Photochem Photobio A 369:77–84. https://doi.org/10.1016/j.jphotochem

Yu B, Sun YX, Yang CJ, Guo JQ, Li J (2017) Synthesis and crystal structures of an unexpected tetracatenal Zinc(II) complex and a benzoquinone compound derived from Zn\(^{2+}\) and Cd(II)-promoted reactivity of Schiff base ligands. Z Anorg Allg Chem 643:689–698. https://doi.org/10.1016/j.zaac.201700034

Yu B, Li CY, Sun YX, Jia HR, Guo JQ, Li J (2017) A new azine derivative colourimetric and fluorescent dual-channel probe for cyanide detection. Spectrochim Acta Part A 184:249–254. https://doi.org/10.1016/j.saa.2017.05.012

Zhang HJ, Chang J, Jia HR, Sun YX (2018) Syntheses, supramolecular structures and spectroscopic properties of Cu(II) and Ni(II) complexes with Schiff base containing oxime group. Chinese J Inorg Chem 34:2261–2270. https://doi.org/10.1016/j.cjic.2018.261

Zhang JZ, Zhao Z, Shang H, Liu QS, Liu F (2019) An easy-to-synthesize multi-photoresponse smart sensor for fast detecting Zn\(^{2+}\) and quantifying Fe\(^{3+}\) based on the enol/keto binding mode. New J Chem 43(58):54. https://doi.org/10.1039/C9NJ03635K

Zhang SZ, Chang J, Zhang HJ, Sun YX, Wu Y, Yang Y-B (2020) Synthesis, crystal structure and spectral properties of binuclear Ni(II) and cubane-like Cu(μ3-O)4 Cored Tetracatenal Cu(II) complexes based on coumarin Schiff base. Chinese J Inorg Chem 36:503–514. https://doi.org/10.1016/j.cjic.2020.056

Zhang SZ, Guo G, Ding WM, Li J, Wu Y, Sun YX (2021) Synthesis and spectroscopic properties of two different structural Schiff base Zn(II) complexes constructed with/without auxiliary ligands. J Mol Struct 1230:129627. https://doi.org/10.1016/j.molstruc.2020.129627

Zhao Q, An XX, Liu LZ, Dong WK (2019) Syntheses, luminescences and Hirshfeld surfaces analyses of structurally characterized homo-tricatenal Zn\(^{2+}\) and hetero-pentacatenal Zn\(^{2+}\)-Ln\(^{3+}\) (Ln=Eu, Nd) bis(salamo)-like complexes. Inorg Chim Acta 490:6–15. https://doi.org/10.1016/j.ica.2019.02.040.38

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.