TORSION SUBGROUPS IN THE UNITS OF THE INTEGRAL GROUP RING OF PSL(2, p^3)

ANDREAS BÄCHLE AND LEO MARGOLIS

Abstract. We show that for every prime \(r \) all \(r \)-subgroups in the normalized units of the integral group ring of \(\text{PSL}(2, p^3) \) are isomorphic to subgroups of \(\text{PSL}(2, p^3) \). This answers a question of M. Hertweck, C.R. Höft and W. Kimmerle for this series of groups.

Let \(G \) be a finite group and \(ZG \) its integral group ring. A natural question is how far the structure of \(G \) is reflected in the structure of the torsion part of \(V(ZG) \), the group of normalized units of the integral group ring of \(G \), and vice versa. One of the first questions studied in this context is, whether a finite subgroup of \(V(ZG) \) is necessarily isomorphic to a subgroup of \(G \), which was already raised in G. Higman’s PhD thesis [Hig40, Section 5] (cf. also the article [San81] outlining this thesis). It was later explicitly stated as a problem in [San85, Problem 5.4].

A first step towards an answer to the above question lies in the consideration of \(p \)-subgroups. It is known that if \(G \) has cyclic Sylow \(p \)-subgroups then all \(p \)-subgroups of \(V(ZG) \) are cyclic; for \(p = 2 \) see [Kim07, Proposition] (the proof involves the Brauer-Suzuki theorem) and cf. [Her08, Corollary 1] for odd primes \(p \). If the Sylow 2-subgroups of \(G \) are elementary abelian, then so are all 2-subgroups of \(V(ZG) \) and in particular they are isomorphic to subgroups of \(G \) (combining [CL65, Corollary 4.1] and [Sak71, Corollary 1.7], cf. also [Seh93, Lemma (37.3)]). But it is not even known in general whether abelian Sylow \(p \)-subgroups of \(G \) cause that the \(p \)-subgroups of \(V(ZG) \) are abelian. However, this assertion holds for solvable \(G \) [DJ96, Proposition 2.11].

In the concluding remarks of [HHK09] the question whether the \(p \)-subgroups of \(V(Z \text{PSL}(2, p^f)) \) are (elementary) abelian is highlighted. For \(p = 2 \) or \(f \leq 2 \) there is an even stronger assertion, recently proved by the second author [Mar14]: for all primes \(r \) the \(r \)-subgroups of \(V(Z \text{PSL}(2, p^f)) \) are conjugate by a unit of the corresponding rational group algebra to a subgroup of the group base \(\text{PSL}(2, p^f) \). It is also known that any subgroup of \(V(Z \text{PSL}(2, p^f)) \) of the same order as \(\text{PSL}(2, p^f) \) is conjugate in the rational group algebra to the group base \(\text{PSL}(2, p^f) \) [Ble95, Propositions 3.2 and 4.1].

In this article we prove that for all primes \(p \) the \(p \)-subgroups of the group \(V(Z \text{PSL}(2, p^3)) \) are abelian. We obtain the following result:

Theorem. Let \(p \) be a prime and set \(G = \text{PSL}(2, p^3) \). Then for all primes \(r \), the \(r \)-subgroups of \(V(ZG) \) are isomorphic to subgroups of \(G \).

The method of choice here is what one could call a “non-cyclic HeLP-method”. For a finite group \(G \) consider a finite subgroup \(U \) of \(V(ZG) \). Every ordinary representation of \(G \) can be linearly extended to a representation of \(ZG \) and then restricted to a representation \(D \) of \(V(ZG) \). Let its character be denoted by \(\chi \). If \(\psi \) is a character of \(U \), then for the inner product we necessarily have

\[
\langle \chi|_U, \psi \rangle_U \in \mathbb{Z}_{\geq 0}.
\]

For cyclic \(U \) this can be expressed in an explicit formula, whose application is known as the HeLP-method, cf. [LP89, Theorem 1] and [Her07, Section 4]. The method for non-cyclic \(U \) was used for the first time in the PhD-thesis of C.R. Höft [Höf08, page 58] and later in [Her08] and [HHK09, page 2].
We will introduce some notation. Let \(u = \sum_{g \in G} z_g g \in \mathbb{Z}G \) be a normalized torsion unit. For \(x^G \), the conjugacy class of the element \(x \in G \) in \(G \), we denote by
\[
\varepsilon_x(u) = \sum_{g \in x^G} z_g
\]
the partial augmentation of \(u \) at \(x \). The partial augmentations will provide us with restrictions on the possible eigenvalues of \(D(u) \) and vice versa. By the so-called Berman-Higman Theorem \(\varepsilon_1(u) = 0 \) if \(u \neq 1 \) [Hig40, Theorem 10], [Ber55, Lemma 2] (cf. also [Seh93, Proposition (1.4)]). Also \(\varepsilon_x(u) = 0 \) if the order of \(x \) does not divide the order of \(u \) [Her07, Proposition 2.2]. Moreover, the order of a finite subgroup of \(V(ZG) \) divides the order of \(G \) [Sak71, Corollary 1.7], cf. also [Seh93, Lemma (37.3)], and its exponent divides the exponent of \(G \) [CL65, Corollary 4.1]. We will use these facts in the sequel without further mention.

Let \(A \) be a complex matrix of finite order. Assume that \(A \) has eigenvalues \(\alpha_1, ..., \alpha_j \) each with multiplicity \(m_1 \), eigenvalues \(\beta_1, ..., \beta_k \) each with multiplicity \(m_2 \) and eigenvalues \(\gamma_1, ..., \gamma_\ell \) each with multiplicity \(m_3 \), then we indicate this by
\[
A \sim \left(m_1 \times \alpha_1, ..., \alpha_j \right) \times \left(m_2 \times \beta_1, ..., \beta_k \right) \times \left(m_3 \times \gamma_1, ..., \gamma_\ell \right).
\]

Proof of the theorem.

Set \(G = \text{PSL}(2, p^3) \). By a result of Dickson [Dic58, 260.] (see also [Hup67, 8.27 Hauptsatz]), the Sylow \(r \)-subgroups of the simple groups \(\text{PSL}(2, p^l) \) are elementary abelian for \(r = p \), cyclic for odd \(r \neq p \), and dihedral groups if \(r = 2 \neq p \). By the results cited above we obtain that the \(r \)-subgroups of \(V(ZG) \) are isomorphic to subgroups of \(G \), provided the Sylow \(r \)-subgroups are cyclic. The case of elementary abelian Sylow 2-subgroups is also handled by the remarks in the introduction. If the Sylow 2-subgroups are dihedral, the result is obtained in [HHK09, Theorem 2.1]. It remains the case \(r = p \geq 3 \). Note that in this case the Sylow \(p \)-subgroups of \(G \) are elementary abelian of order \(p^2 \).

Let \(H \) be a finite \(p \)-subgroup of \(V(ZG) \). Hence \(|H| \leq p^3 \) and \(\exp H \mid p \). Assume that \(H \) is not isomorphic to a subgroup of \(G \), then, by the classification of all \(p \)-groups up to order \(p^4 \), it is a so-called Heisenberg group. Thus there are elements \(z, b, c \in H \) such that
\[
H = \langle z, b, c \mid z^p = b^p = c^p = 1, z \in \mathbb{Z}(H), \; c^{-1}bc = zb \rangle \cong (C_p \times C_p) \times C_p. \tag{1}
\]

We will use the non-cyclic HeLP-method to show that \(H \) does not exist. In \(G \) there are exactly two conjugacy classes of elements of order \(p \), let \(g \) and \(h \) be representatives of these classes. In Table 1 we list two irreducible characters [Dor71, Theorem 38.1], one of them we will use in the remainder of the proof. Let \(\epsilon \in \{1, -1\} \) such that \(p \equiv \epsilon \mod 4 \).

\(\eta \)	\(\eta^p \)	\(\epsilon + \sqrt{\epsilon p^3} \)	\(\epsilon - \sqrt{\epsilon p^3} \)
\(\eta^p \)	\(\eta^p \)	\(\epsilon - \sqrt{\epsilon p^3} \)	\(\epsilon + \sqrt{\epsilon p^3} \)

Table 1. Part of the character table of \(G = \text{PSL}(2, p^3) \), \(p \geq 3 \), \(\epsilon \in \{1, -1\} \) such that \(p \equiv \epsilon \mod 4 \).

Let \(\zeta = \exp (2\pi i /p) \in \mathbb{C} \), a primitive \(p \)-th root of unity, \(Q \) be a set of integral representatives of the quadratic residues in \((\mathbb{Z}/p\mathbb{Z})^\times\) and \(N \) be a set of integral representatives of the non-quadratic residues in \((\mathbb{Z}/p\mathbb{Z})^\times\). We will also use the Gaussian sums cf. [Gau11] (also [Neu99, Proof of (8.6) in Chapter I])
\[
\sqrt{\epsilon p} = 1 + 2 \sum_{q \in Q} \zeta^q, \tag{2}
\]
\[
-\sqrt{\epsilon p} = 1 + 2 \sum_{n \in N} \zeta^n.
\]
Let D be a representation affording η. Let $u \in H \setminus \{1\}$ and $\alpha \in \mathbb{Z}_{>0}$ such that $(\varepsilon_g(u), \varepsilon_h(u)) = (\alpha + 1, -\alpha)$ or $(\varepsilon_g(u), \varepsilon_h(u)) = (-\alpha, \alpha + 1)$. By slight abuse of notation we denote from here on by η also the restriction $\eta|_H$. For the first possibility of the partial augmentations of u we obtain, using the first equation of (2),

$$\eta(u) = (\alpha + 1) \left(\frac{\epsilon + \sqrt{\epsilon p^3}}{2} \right) + (-\alpha) \left(\frac{\epsilon - \sqrt{\epsilon p^3}}{2} \right)$$

$$= \frac{1}{2} (\epsilon + (2\alpha + 1)p\sqrt{\epsilon})$$

$$= \frac{p + \epsilon}{2} + \alpha p + (2\alpha + 1)p \sum_{q \in Q} \zeta^q. \quad (3)$$

For the second possibility for the partial augmentations of u we get, using the second equation of (2),

$$\eta(u) = \frac{p + \epsilon}{2} + \alpha p + (2\alpha + 1)p \sum_{n \in N} \zeta^n. \quad (4)$$

From the character value we get $\frac{p + \epsilon}{2} + \alpha p + (2\alpha + 1)p$ eigenvalues of $D(u)$. The other eigenvalues have to sum up to 0, hence there are

$$\frac{1}{p} \left(\frac{p^3 + \epsilon}{2} - \left(\frac{p + \epsilon}{2} + \alpha p + \left(\frac{p - 1}{2} \right)(2\alpha + 1)p \right) \right)$$

$$= \frac{1}{2p} \left(p^3 + \epsilon - p - \epsilon - 2\alpha p - (p - 1)(2\alpha + 1)p \right)$$

$$= \frac{p^2 - p}{2} - \alpha p$$

blocks having eigenvalues $1, \zeta, \zeta^2, ..., \zeta^{p - 1}$. Thus in the case of $\varepsilon_g(u) > 0$ we have

$$D(u) \sim \left(\frac{p + \epsilon}{2} + \alpha p \times (2\alpha + 1)p \right) \times \prod_{n \in N} \left(\frac{p^2 - p}{2} - \alpha p \times 1, \zeta, ..., \zeta^{p - 1} \right)$$

where $Q = \{ q_1, ..., q_{p - 1} \}$. In the other case, $\varepsilon_g(u) \leq 0$, we get

$$D(u) \sim \left(\frac{p + \epsilon}{2} + \alpha p \times (2\alpha + 1)p \times \prod_{n \in N} \left(\frac{p^2 - p}{2} - \alpha p \times 1, \zeta, ..., \zeta^{p - 1} \right) \right) \times \prod_{n \in N} \left(\frac{p^2 - p}{2} - \alpha p \times 1, \zeta, ..., \zeta^{p - 1} \right)$$

with $N = \{ n_1, ..., n_{p - 1} \}$.

The group H is an extra-special p-group, its character theory is well-known, see e.g. [Dor71, Theorem 31.5]. H has exactly $p - 1$ non-linear irreducible characters which are all of degree p. They all vanish on the non-central elements of H and take the values $p\zeta^j$ for $1 \leq j \leq p - 1$ on the non-trivial central elements. Moreover H posses p^2 linear characters corresponding to the quotient $H/\mathbb{Z}(H) = H/H' \simeq C_p \times C_p$. In particular, they have value 1 on all central elements of H. See table 2. Now we decompose $\eta = \eta|_H$ into the irreducible characters of H.

Let $v \in \mathbb{Z}(H) \setminus \{1\}$. To obtain the multiplicity of the eigenvalue 1 of $D(v)$ as calculated above, we must sum up exactly

$$\frac{p + \epsilon}{2} + \alpha p + \frac{p^2 - p}{2} - \alpha p = \frac{p^2 + \epsilon}{2}$$

linear characters of H and hence

$$\frac{1}{p} \left(\frac{p^3 + \epsilon}{2} - \frac{p^2 + \epsilon}{2} \right) = \frac{p^2 - p}{2}$$

irreducible non-linear character of H.

Now let $w \in H$ be a non-central element. Since every irreducible non-linear character of H vanishes on w, the character value $\eta(w)$ is the sum of exactly $\frac{p^2 + \epsilon}{2}$ roots of unity. Thus from (3)
groups. In every such cyclic subgroup \(p \) direct consequences of the Gaussian sums in (4 and (5) we obtain that \((\varepsilon_{\varphi}(w), \varepsilon_{\psi}(w)) = (1, 0)\) or \((\varepsilon_{\varphi}(w), \varepsilon_{\psi}(w)) = (0, 1)\). Furthermore, from the eigenvalues of \(D(u) \) calculated in these equations, we get

\[
(\varepsilon_{\varphi}(w), \varepsilon_{\psi}(w)) = (1, 0) \iff (\varepsilon_{\varphi}(u^n), \varepsilon_{\psi}(u^n)) = (0, 1) \quad \forall n \in N.
\]

Now we compute the inner product \(\langle \eta, \chi \rangle_H \) of \(\eta \) with a non-trivial linear character \(\chi \) of \(H \). We split up the computation of the contributions of different parts of \(H \) and omit the global factor \(1/|H| = 1/p^3 \) until adding all contributions. The contribution of the identity element is

\[
\eta(1)\chi(1) = \frac{p^3 + \epsilon}{2}.
\]

There are \(p - 1 \) more elements in the center of \(H \). On \(\eta \) half of them takes the value \(\frac{p+1}{2} + \alpha p + (2 \alpha + 1)p \sum_{\zeta \in Q} \zeta^q \), the other half the value \(\frac{p+1}{2} + \alpha p + (2 \alpha + 1)p \sum_{n \in N} \zeta^n \). Since they all lie in the kernel of \(\chi \) the contribution to the inner product is

\[
\frac{p-1}{2} \left(\frac{p+\epsilon}{2} + \alpha p + (2 \alpha + 1)p \sum_{q \in Q} \zeta^q \right) + \frac{p-1}{2} \left(\frac{p+\epsilon}{2} + \alpha p + (2 \alpha + 1)p \sum_{n \in N} \zeta^n \right)
\]

\[
= \frac{p-1}{2} \left(p + \epsilon + 2 \alpha p - (2 \alpha + 1)p \right)
\]

\[
= \epsilon \cdot \frac{p-1}{2}.
\]

The kernel of \(\chi \) contains another conjugacy class of cyclic subgroups consisting of exactly \(p \) subgroups. In every such cyclic subgroup \(\frac{p-1}{2} \) of the elements take the value \(\frac{p+1}{2} + p \sum_{\zeta \in Q} \zeta^q \) on \(\eta \) and \(\frac{p-1}{2} \) of the elements take the value \(\frac{p+1}{2} + p \sum_{n \in N} \zeta^n \) on \(\eta \). The same computation as above gives the contribution

\[
p \epsilon \cdot \frac{p-1}{2}.
\]

To calculate the contributions of the other elements we need the following formulas which are direct consequences of the Gaussian sums in (2):

\[
\left(\sum_{q \in Q} \zeta^q \right) \left(\sum_{i \in \mathbb{Z}} \zeta^i \right) + \left(\sum_{n \in N} \zeta^n \right) \left(\sum_{j \in \mathbb{Z}} \zeta^j \right) = \frac{\epsilon \cdot p + 1}{2}
\]

and

\[
\left(\sum_{n \in N} \zeta^n \right) \left(\sum_{l \in \mathbb{Z}} \zeta^l \right) + \left(\sum_{q \in Q} \zeta^q \right) \left(\sum_{j \in \mathbb{Z}} \zeta^j \right) = \frac{-\epsilon \cdot p + 1}{2}.
\]
Every conjugacy class of non-central cyclic subgroups contains exactly \(p \) subgroups. Let \(\langle d \rangle \) be such a subgroup. By \(\chi(d) \in Q \) we indicate that \(\chi(d) = \zeta^q \) for some \(q \in Q \). To compute the contribution of the remaining elements we distinguish two cases.

Case 1: \((\varepsilon_g(d), \varepsilon_h(d)) = (1, 0), \chi(d^{-1}) \in N \) or \((\varepsilon_g(d), \varepsilon_h(d)) = (0, 1), \chi(d^{-1}) \in Q \). Then the contribution of the conjugacy class of \(\langle d \rangle \) is

\[
p \sum_{h \in \langle d \rangle \setminus \{1\}} \eta(h)\chi(h^{-1}) = p \left(\sum_{\eta \in Q} \left(\frac{p + \epsilon}{2} + p \sum_{i \in Q} \zeta^i \right) \zeta^q + \sum_{n \in N} \left(\frac{p + \epsilon}{2} + p \sum_{j \in N} \zeta^j \right) \zeta^n \right) = p \left(\frac{p + \epsilon}{2} + p \left(\sum_{\eta \in Q} \left(\sum_{i \in Q} \zeta^i \right) + \left(\sum_{n \in N} \left(\sum_{j \in N} \zeta^j \right) \right) \right) \right) = p \left(\frac{p + \epsilon}{2} + p \left(\frac{\epsilon + p + 1}{2} \right) \right) = \epsilon \cdot \frac{p^3 - p}{2}
\]

Case 2: \((\varepsilon_g(d), \varepsilon_h(d)) = (1, 0), \chi(d^{-1}) \in N \) or \((\varepsilon_g(d), \varepsilon_h(d)) = (0, 1), \chi(d^{-1}) \in Q \). Then the contribution of the conjugacy class of \(\langle d \rangle \) is

\[
p \left(\sum_{n \in N} \left(\frac{p + \epsilon}{2} + p \sum_{i \in Q} \zeta^i \right) \zeta^n + \sum_{\eta \in Q} \left(\frac{p + \epsilon}{2} + p \sum_{j \in N} \zeta^j \right) \zeta^n \right) = p \left(\frac{p + \epsilon}{2} + p \left(\sum_{n \in N} \left(\sum_{i \in Q} \zeta^i \right) + \left(\sum_{j \in N} \zeta^j \right) \right) \right) = p \left(\frac{p + \epsilon}{2} + p \left(-\epsilon \cdot \frac{p + 1}{2} \right) \right) = -\epsilon \cdot \frac{p^3 + p}{2}
\]

From now on let \(I = \{0, 1, ..., p - 1\} \). Let \(\chi \) be a non-trivial linear character of \(H \) and let \(s \in \text{Ker}(\chi) \setminus \mathbb{Z}(H) \). Moreover let \(t \not\in \text{Ker}(\chi) \) such that \(\chi(t^{-1}) \in Q \). Then \(\{(ts^i)^{-1} \mid i \in I \} \) is a set which contains exactly one element from every conjugacy class of cyclic subgroups not lying in \(\text{Ker}(\chi) \) and \(\chi((ts^i)^{-1}) \in Q \) for every \(i \). Set

\[
\gamma = \{ i \mid (\varepsilon_g(ts^i), \varepsilon_h(ts^i)) = (1, 0) \} \quad \text{and} \quad \delta = \{ i \mid (\varepsilon_g(ts^i), \varepsilon_h(ts^i)) = (0, 1) \}.
\]

Then \(\gamma + \delta = p \) and, summing up all the contributions obtained above, we get

\[
\langle \eta, \chi \rangle_H = \frac{1}{p^3} \left(\frac{p^3 + \epsilon}{2} + \epsilon \cdot \frac{p - 1}{2} + \epsilon \gamma \cdot \frac{p^3 - p}{2} - \epsilon \delta \cdot \frac{p^3 + p}{2} \right) = \frac{1}{2p^2} \left(p^3 \left(1 + \epsilon \gamma - \epsilon \delta \right) + \epsilon p^2 - \epsilon (\gamma + \delta) p \right) = \frac{1 + \epsilon \gamma - \epsilon \delta}{2}
\]

For \(n \in N \) the map \(\chi^n : H \to \mathbb{Z}[\zeta] : x \mapsto \chi(x)^n \) is also a linear character of \(H \) and an analogous computation gives

\[
\langle \eta, \chi^n \rangle_H = \frac{1 - \epsilon \gamma + \epsilon \delta}{2}.
\]

Since both, \(\langle \eta, \chi \rangle_H \) and \(\langle \eta, \chi^n \rangle_H \), are non-negative, necessarily \(|\gamma - \delta| \leq 1 \). Thus \(\gamma = \frac{p+1}{2} \) and \(\delta = \frac{p-1}{2} \).

Recall that by (1), \(H \) is generated by a central element \(z \) and two other elements \(b \) and \(c \). We may assume w.l.o.g. by (5) that \((\varepsilon_g(c), \varepsilon_h(c)) = (1, 0)\). We have that \(\{(c), (bc^i) \mid i \in I \} \) is a set
of representatives of the $p + 1$ conjugacy classes of non-central cyclic subgroups of H. Up to the action of $\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$, every linear character is determined by its kernel. Let $n \in N$. Then by (5) there exist $a_0, a_1, ..., a_{p-1} \in \{1, n\}$ such that $c, b^a, b^{a_1}, ..., b^{a_{p-1}}(p-1)a_{p-1}$ all have partial augmentation 1 at g and 0 at h.

Let χ be a non-trivial linear character with $\langle c \rangle \subseteq \text{Ker}(\chi)$ and $\chi(b^{-1}) \in Q$. Then $S = \{bc^i \mid i \in I\}$ is a set which contains exactly one element from every conjugacy class of cyclic subgroups not lying in $\text{Ker}(\chi)$. By the above, $\frac{p+1}{2}$ of the elements of S have partial augmentation 1 at g and the other elements have augmentation 0 at g. Since $\varepsilon_g(bc^i) = 1$ if and only if $a_i = 1$ we get

$$|\{i \in I \mid a_i = 1\}| \in \left\{\frac{p+1}{2}\right\}.$$

(6)

Now let $j \in I$ and χ be a non-trivial linear character of H such that $\langle bc^j \rangle \subseteq \text{Ker}(\chi)$ and $\chi(c^{-1}) \in Q$. For every $i \in I \setminus \{j\}$ we determine one element of the form $b^{a_i}c^{\ell a_i}$, for some ℓ, lying in the coset $\text{Ker}(\chi)c = \{z b^{c^{k+1}} \mid 0 \leq k, r \leq p-1\}$. To do so let ℓ, k be such that $b^{k}c^{j+1} = b^{a_i}c^{\ell a_i}$.

Thus $k \equiv \ell a_i \pmod{p}$ and $j + k + 1 \equiv \ell a_i \pmod{p}$. This gives $\ell \equiv (\ell a_i - ja_i)^{-1} \pmod{p}$. For the partial augmentations of $b^{a_i}c^{\ell a_i}$ it only matters, by (5), whether ℓ is a quadratic residue modulo p. Hence $b^{a_i}c^{\ell a_i}$ has the same partial augmentations as c if and only if $\ell \in Q$, i.e. $ja_i - ja_i \in Q$. Hence

$$1 + |\{i \in I \setminus \{j\} \mid ia_i - ja_i \in Q\}| \in \left\{\frac{p+1}{2}\right\},$$

(7)

where the 1 represents the element c.

Denote by $(r \mid p)$ the Legendre symbol of r modulo the prime p and set $\beta_i = (a_i \mid p)$ for $i \in I$. By (6) we have

$$\sum_{i \in I} \beta_i = \sum_{i \in I} \left(\begin{array}{c} a_i \mid p \end{array}\right) \in \{\pm 1\}.\quad (8)$$

From (7) we get for every $j \in I$:

$$1 + \sum_{i \in I} \left(\begin{array}{c} i - j \mid p \end{array}\right) \beta_i = 1 + \sum_{i \in I} \left(\begin{array}{c} i - j \mid a_i \end{array}\right) \in \{\pm 1\}.\quad (9)$$

Set $s_i = (i \mid p)$ for $i \in \{1, ..., p-1\}$. Then the above equations read as follows: there exist $m_0, ..., m_{p-1} \in \{\pm 1\}$ such that

$$\begin{pmatrix} \beta_0 & s_1 & s_2 & \cdots & s_{p-1} \\ s_{p-1} & \beta_1 & s_1 & \cdots & s_{p-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ s_2 & s_3 & \cdots & \beta_{p-2} & s_1 \\ s_1 & s_2 & \cdots & s_{p-1} & \beta_{p-1} \end{pmatrix} \begin{pmatrix} m_0 \\ m_1 \\ \vdots \\ m_{p-2} \\ m_{p-1} \end{pmatrix} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-2} \\ \beta_{p-1} \end{pmatrix}.$$

Summing up all equations and sorting with regard to the β_i’s we get

$$\beta_0(s_1 + \cdots + s_{p-1}) + \cdots + \beta_{p-1}(s_1 + \cdots + s_{p-1}) + p = m_0 + \cdots + m_{p-1}.$$

Since $s_1 + \cdots + s_{p-1} = 0$ all the m_i’s must be equal to 1. Thus we have to solve the homogeneous system of linear equations given by

$$\begin{pmatrix} 0 & s_1 & s_2 & \cdots & s_{p-1} \\ s_{p-1} & 0 & s_1 & \cdots & s_{p-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ s_2 & s_3 & \cdots & 0 & s_1 \\ s_1 & s_2 & \cdots & s_{p-1} & 0 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-2} \\ \beta_{p-1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}.$$

The null space of the system has (at most) dimension 1 by the following lemma and contains the vector $(\beta_0, \beta_1, ..., \beta_{p-1})^T = (1, 1, ..., 1)^T$. This is however out of the question by (8).
Lemma. Let \(m \) be odd and \(A \in \mathbb{F}_2^{m \times m} \) where

\[
A = \begin{pmatrix}
0 & 1 & 1 & \ldots & 1 \\
1 & 0 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \ldots & 0 & 1 \\
1 & 1 & \ldots & 1 & 0
\end{pmatrix}
\]

Then \(\text{rank } A = m - 1 \).

Proof. Summing up all rows of \(A \) gives the zero vector, hence the rank of \(A \) is at most \(m - 1 \). Let \(z_1, \ldots, z_{m-1} \) be the first \(m - 1 \) rows of \(A \) and \(\alpha_1, \ldots, \alpha_{m-1} \in \mathbb{F}_2 \) such that \(\sum_{i=1}^{m-1} \alpha_i z_i = 0 \). Then we get \(\sum_{i=1, i \neq j}^{m-1} \alpha_i = 0 \) for every \(j \in \{1, \ldots, m-1\} \) and \(\sum_{i=1}^{m-1} \alpha_i = 0 \). Hence \(\alpha_j = 0 \) for all \(j \in \{1, \ldots, m-1\} \). \(\square \)

References

[Ber55] S.D. Berman, On the equation \(x^m = 1 \) in an integral group ring, Ukrain. Mat. Ž. 7 (1955), 253–261.

[Bie95] F.M. Bleher, Tensor products and a conjecture of Zassenhaus, Arch. Math. (Basel) 64 (1995), no. 4, 289–298.

[CL65] J.A. Cohn and D. Livingston, On the structure of group algebras I, Canadian Journal of Mathematics 17 (1965), 583–593.

[Dic58] I.E. Dickson, Linear groups: With an exposition of the Galois field theory, with an introduction by W. Magnus, Dover Publications, New York, 1958.

[DJ96] M.A. Dokuchaev and S.O. Juriaans, Finite subgroups in integral group rings, Canad. J. Math. 48 (1996), no. 6, 1170–1179.

[Dor71] L. Dorhoffer, Group representation theory. Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971, Pure and Applied Mathematics, 7.

[Gau11] C.F. Gauß, Summatio quoramdam serierum singularium, Commentationes societ. reg. sc. Gotting. recensiores 1 (1811), Published in German in: Gauss, Untersuchungen über höhere Arithmetik, Chelsea Publishing Co., New York, 1965.

[Her07] M. Hertweck, Partial Augmentations and Brauer character values of torsion units in group rings, arXiv:math.RA/0612429v2 [math.RA] (2007).

[Her08] _____, Unit groups of integral finite group rings with no noncyclic abelian finite \(p \)-subgroups, Comm. Algebra 36 (2008), no. 9, 3224–3229.

[HHK09] M. Hertweck, C.R. Höfert, and W. Kimmerle, Finite groups of units and their composition factors in the integral group rings of the group PSL(2, \(q \)), J. Group Theory 12 (2009), no. 6, 873–882.

[Hig40] G. Higman, Units in group rings, D. phil. thesis, Oxford Univ., 1940.

[Höf08] C.R. Höfert, Bestimmung von Kompositionsfactoren endlicher Gruppen aus Burnsidern und ganzzahligem Gruppenringen, Doktorarbeit, Universität Stuttgart, 2008, http://elib.uni-stuttgart.de/opus/frontdoor.php?source_opus=3551&la=de.

[Hup67] B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften ed., vol. 134, Springer-Verlag, Berlin, 1967.

[Kim07] W. Kimmerle, Torsion units in integral group rings of finite insoluble groups, Oberwolfach Reports 4 (2007), no. 4, 3229–3230. Abstracts from the mini-workshop held November 25–December 1, 2007, Organized by Eric Jespers, Zbigniew Marciniak, Gabriele Nebe, and Wolfgang Kimmerle.

[LP89] I.S. Luthar and I.B.S. Passi, Zassenhaus conjecture for \(A_5 \), Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 1, 1–5.

[Mar14] L. Margolis, A Sylow theorem for the integral group ring of \(PSL(2, q) \), arXiv:1408.6075 [math.RA] (2014).

[Neu99] J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999.

[Sak71] A. I. Saksonov, Group rings of finite groups, I, Publ. Math. Debrecen 18 (1971), 187–209.

[San81] R. Sandling, Graham Higman’s thesis “Units in group rings”, Integral representations and applications (Oberwolfach, 1980), Lecture Notes in Math., vol. 882, Springer, Berlin-New York, 1981, pp. 93–116.

[San85] _____, The isomorphism problem for group rings: a survey, Orders and their applications (Oberwolfach, 1984), Lecture Notes in Math., vol. 1142, Springer, Berlin, 1985, pp. 256–288.

[Sek93] S.K. Sehgal, Units in integral group rings, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 69, Longman Scientific & Technical, Harlow, 1993.