Clinical Application of Quantitative Myocardial Blood Flow Accessment Using Positron Emission Tomography

Ping Wu, MM1,2, Sijin Li, MD, PhD1,2, Xiaoshan Guo, MD, PhD1 and Ruonan Wang, MB2

Received: November 28, 2018/Revised manuscript received: January 28, 2019/Accepted: February 27, 2019
J-STAGE advance published: June 10, 2019
© The Japanese Society of Nuclear Cardiology 2019

Abstract

Epicardial coronary artery disease has been highly noticed in the traditional clinical examination, while myocardial microcirculation function has been neglected for a long time, which plays a nonnegligible role in quite a few patients’ clinical manifestations and prognosis. Non-invasive quantitative PET myocardial perfusion imaging has become a unique and gold standard of evaluating myocardial microcirculation function. Its clinical applications in diagnosis, risk stratification, prognosis evaluation, efficacy evaluation and treatment guidance of cardiovascular diseases are given, together with its development status in China.

Keywords: Absolute quantification, Myocardial perfusion imaging, Positron emission tomography

Ann Nucl Cardiol 2019; 5 (1): 106–110

A follow-up study concluding 11,223 patients of stable angina pectoris (1) reported the incidence of microcirculation dysfunction in patients with myocardial ischemia but with non-obstructive coronary angiography was about 45%, whose major cardiovascular events and all-cause mortality were significantly higher than the control group. Epicardial coronary artery disease has been highly noticed in the traditional cardiovascular examination, while myocardial microcirculation function has been neglected for decades and globally.

In China, two myocardial perfusion PET imaging agents, 13N-ammonia, 15O-H\textsubscript{2}O, have been approved by Chinese Food and Drug Administration. 13N-ammonia is the common one used in both clinical and research study for its proper half-life period and good image quality since the end of the 20th century. Adenosine triphosphate and dobutamine are the most commonly used stress drugs. For the past few years, about 10 hospitals or centers carried out more 13N-ammonia-related work of production optimization or clinical application. Currently, four departments of nuclear medicine carry out absolute quantitative cardiac PET for routine clinical program (Table 1). The earliest is the first hospital of Shanxi medical university, initiated from the end of 2015, the typical results diagrams of normal volunteer (Figure 1) and diabetes mellitus (Figure 2) show as follows. Although the current status is not optimistic, it is gratifying that the Chinese Society of Nuclear Medicine is now paying great attention to the absolute quantitative technology, giving strong support and active promotion to adapt to clinical needs in future. In addition, as the installation of D-SPECT increases in China, more and more hospitals are expected to participate.

Since Gould K. Lance put forward the concept of coronary flow reserve (CFR) in 1974, non-invasive PET MPI has become a unique and gold standard of evaluating myocardial microcirculation function. In order to broad acknowledgement and better utilization of quantitative cardiac PET, the following summarizes its clinical applications.

Risk stratification, prognosis evaluation and decision-making optimization

Abnormal coronary microcirculation is an independent predictor of adverse cardiovascular events (2). The prognosis of CAD patients with reduced CFR was similar to that of patients with worse coronary morphology, and patients with lower CFR after CABG revascularization had unimproved prognosis (3). Cardiomyopathy were also found with abnormal myocardial blood flow (MBF) or CFR (4). CFR can perform more detailed risk stratification and prediction, not
only among common risk population, but also between different gender (5). The absolute quantitative analysis is the premise of individual precision therapy. In addition to the above clinical studies, derived PET indexes like coronary flow capacity (CFC) (6) and CFR ratio (ratio of CFR in single vessel coronary artery to overall maximum CFR) (7) were reported better diagnosis value when compared with traditional CFR and stress MBF.

Exploring of cardiovascular risk factors
In addition to traditional cardiovascular risk factors, more potential factors such as systemic lupus erythematosus (8), end-stage renal disease (9), elevated serum uric acid level (10) and early trauma (11) were found leading to microcirculatory abnormalities, which were of great significance for early clinical intervention and future improvement of prognosis of individuals.

Comparative studies with other imaging
Studies of coronary circulatory response to stenosis reported CFR even could successfully distinguish between 70%–89% and 50%–69% of coronary stenosis (12). There was a discrepancy between noninvasive and invasive indexes (13). Abnormal CFR and IMR (resistance index of microcirculation) may still be found in people with normal FFR (coronary flow reserve fraction). The prognosis of patients with decreased CFR and increased IMR is poor, which may be applied to further risk stratification (14). Combined coronary artery calcification score, total perfusion defect area and absolute quantitative index (MBF, CFR) are more valuable for accurate evaluation of obstructive CAD (15). CFR and other indexes can complement each other and provide the most accurate and overall information to the clinic.

Efficacy evaluation of treatments or interventions
Traditional interventions such as smoking cessation, blood glucose or pressure control, lipid lowering were reported to improve MBF or CFR. Ranolazine, drugs for chronic angina pectoris, was reported no significant influence on exercise-stimulated MBF or CFR but modestly improve diastolic function in suspected CAD (16). Some novel approaches to treat CAD like neutrophil inhibition can also be assessed by PET MPI (17). On the other hand, Chemotherapy medicines were reported presence of cardiotoxicity, leading to decreased CFR, using mostly echocardiography (18–20). In addition, thoracic radiotherapy can induce a series of changes of MBF and CFR in the irradiated area, leading to radiation-induced heart disease (21, 22).

Development of acquisition and algorithm
As to acquisition, shorter scan time (23), new vasodilator like regadenoson as well as new 18F-labeled myocardial perfusion tracers are being tried to realize more feasible clinical practice. Meanwhile, updated algorithms like post-reconstruction Gaussian filtering (24), time-of-flight (25), respiratory motion correction (26) were applied to obtain better image quality.

In conclusion, PET MPI plays an important role in the early assessment of the occurrence and development of coronary dysfunction and in revealing the pathogenesis of cardiovascular disease, it can provide more precise guidance for clinical decision-making. However, a large number of studies are still needed to further excavate and utilize the information provided by PET MBF and CFR to verify its clinical value and to better serve the patients.

Table 1 Related Chinese status of quantitative PET MPI

Approved perfusion PET agents by Chinese Food and Drug Administration	Commonly used vasodilator	Nuclear medicine departments carrying out quantitative cardiac PET in clinics currently
13N-ammonia (Commonly used), 15O-H2O	Adenosine triphosphate, dobutamine	1. First hospital of Shanxi Medical University
2. Wuhan Union Medical College Hospital
3. Tianjin Teda International Cardiovascular hospital
4. Peking Union Medical College Hospital |
Figure 1 A 31-year-old male volunteer. The upper three rows display rest flow, stress flow and coronary flow reserve (CFR) of left ventricle. Max, min and whole represent the maximum, minimum and average value of the left ventricle as a whole, respectively. Mean represents the average value of a single chamber wall. The advantage of this diagram is to combine quantitative blood flow with anatomical coronary artery distribution, thus facilitating the intuitive judgment of criminal coronary vessels. The 4th row shows maps of the coronary flow capacity of each single wall, six different colors represent varying degrees of flow capacity. The coordinate diagram below is another display way, which projects each pixel point of the left ventricular myocardium into a different color block, the abscissa represents stress flow, and the ordinate represents CFR. Therefore, the rest flow information is actually covered in it.
Figure 2 A 58-year-old male diagnosed with diabetes for 17 years, showed diffusely decreased stress flow and CFR, suggesting injured endothelial function. The following capacity map displayed large areas of minimally reduced flow capacity (orange zone), not reaching the standard of ischemia.
Reprint requests and correspondence:
Sijin Li, MD, PhD
Department of nuclear medicine, First hospital of Shanxi Medical University, No.85, Jiefang South Road, Taiyuan, Shanxi, 030001, China
E-mail: lisjnm123@163.com

References

1. Jespersen L, Hvelplund A, Abildstrøm SZ, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J 2012; 33: 734–44.
2. Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 2014; 129: 2518–27.
3. Taqueti VR, Hachamovitch R, Murthy VL, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation 2015; 131: 19–27.
4. Sciagrà R, Calabretta R, Cipollini F, et al. Myocardial blood flow and left ventricular functional reserve in hypertrophic cardiomyopathy: a 13NH3 gated PET study. Eur J Nucl Med Mol Imaging 2017; 44: 866–75.
5. Gebhard C, Fiechter M, Herzog BA, et al. Sex differences in coronary flow reserve assessed by Rubidium-82 PET/cine-2D PET/CT as a tool for the quantitative assessment of early post-radiotherapy changes of heart perfusion in breast carcinoma patients. J Nucl Cardiol 2016; 23: 208–215.
6. Gould KL, Johnson NP, Roby AE, et al. Regional artery-specific thresholds of quantitative myocardial perfusion by PET associated with reduced Myocardial Infarction and death after revascularization in stable coronary artery disease. J Nucl Med 2019; 60: 410–7.
7. Kawaguchi N, Okayama H, Kawamura G, et al. Clinical usefulness of coronary flow reserve ratio for the detection of significant coronary artery disease on 15O-water PET/CT imaging. J Nucl Cardiol 2016; 23: 208–215.
8. Alexanderson E, Ochoa JM, Carlela R, et al. Endothelial dysfunction in systemic lupus erythematosus: evaluation with 13N-ammonia PET. J Nucl Med 2010; 51: 1927–31.
9. Paz Y, Morgenstern R, Weinberg R, et al. Relation of coronary flow reserve to other findings on positron emission tomography myocardial perfusion imaging and left heart catheterization in patients with end-stage renal disease being evaluated for kidney transplant. Am J Cardiol 2017; 120: 1909–12.
10. Kim SC, Shah NR, Rogers JR, et al. Assessment of coronary vascular function with cardiac PET in relation to serum uric acid. PLoS One 2018; 13: e0192788.
11. Rooks C, Veledar E, Goldberg J, et al. Long-term consequences of early trauma on coronary heart disease: role of familial factors. J Trauma Stress 2015; 28: 456–9.
12. Constantinou Anagnostopoulos, Alexandra Almonacid, Georges El Fakhri, et al. Quantitative relationship between coronary vasodilator reserve assessed by Rubidium-82 PET imaging and coronary artery stenosis severity. Eur J Nucl Mol Imaging 2008; 35: 1593–601.
13. Johnson NP, Kirkdee RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging 2012; 5: 193–202.
14. Lee JM, Jung JH, Hwang D, et al. Coronary flow reserve and microcirculatory resistance in patients with intermediate coronary stenosis. J Am Coll Cardiol 2016; 67: 1158–69.
15. Zampella E, Acampa W, Assante R, et al. Combined evaluation of regional coronary artery calcium and myocardial perfusion by 82Rb PET/CT in the identification of obstructive coronary artery disease. Eur J Nucl Med Mol Imaging 2018; 45: 521–9.
16. Shah NR, Cheezum MK, Veeranna V, et al. Ranolazine in symptomatic diabetic patients without obstructive coronary artery disease: impact on microvascular and diastolic function. J Am Heart Assoc 2017; 6. doi: 10.1161/JAHA.116.005027.
17. Joseph JP, Reyes E, Guzman J, et al. CXCR2 Inhibition—a novel approach to treating CoronAry heart DiseAse (CICADA): study protocol for a randomised controlled trial. Trials 2017; 18: 473.
18. Erdoğan D, Yücel H, Alanoğlu EG, et al. Can comprehensive echocardiographic evaluation provide an advantage to predict anthracycline-induced cardiomyopathy? Turk Kardiyol Dern Ars 2011; 39: 646–53.
19. Sen F, Yildiz I, Basaran M, et al. Impaired coronary flow reserve in metastatic cancer patients treated with sunitinib. J BUON 2013; 18: 775–81.
20. Altin C, Sade LE, Demirats S, et al. Effects of Paclitaxel and Carboplatin combination on mechanical myocardial and microvascular functions: a transthoracic Doppler echocardiography and two-dimensional strain imaging study. Echocardiography 2015; 32: 238–47.
21. Nehmeh S, Fox J, Schwartz J, et al. Value of cardiac 13N-ammonia PET in assessing early radiation-induced cardiotoxicity in breast cancer patients undergoing radiotherapy: a feasibility study. J Nucl Med 2017; 58: 517.
22. Żyromska A, Małkowski B, Wiśniewski T, et al. Quantification of coronary flow reserve by 15O-water PET with ATP stress; from a practical application perspective. Ann Nucl Cardiol 2016; 2: 58–60.
23. Kim HJ, Cho SG, Kim JH, et al. Effect of post-reconstruction gaussian filtering on image quality and myocardial blood flow measurement with N-13 ammonia PET. Asia Ocean J Nucl Med Biol 2014; 2: 104–10.
24. Matsuo S, Mochizuki T, Takeda S, et al. Cardiac time-of-flight PET for evaluating myocardial perfusion with 15N-ammonia: phantom studies for estimation of defect and heterogeneity. Ann Nucl Cardiol 2016; 2: 73–8.
25. Yu Y, Chan C, Ma T, et al. Event-by-event continuous respiratory motion correction for dynamic PET imaging. J Nucl Med 2016; 57: 1084–90.