Prevalence of Metabolic Syndrome in Type 2 Diabetic Patients

Tina Uprety (✉ tinauprety1@gmail.com)
Pokhara University https://orcid.org/0000-0002-6481-1625

Saroj Kunwar
Pokhara University

Soumya Harsha Gurung
Pokhara University

Shraddha Thapa
Pokhara University

Sanjita Shrestha
Pokhara University

Ashim Rai
Pokhara University

Prakriti Karmacharya
Pokhara University

Research note

Keywords: Diabetes Mellitus, Metabolic Syndrome, Dyslipidemia, Hypertension

Posted Date: July 20th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-42633/v1

License: ☺️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Prevalence of Metabolic Syndrome in Type 2 Diabetic Patients

Authors Information

- Ms. Tina Uprety
 Modern Technical College, Sanepa, Lalitpur, Nepal
 Department of Biochemistry
 Email: tinauprety1@gmail.com

- Mr. Saroj Kunwar
 Modern Technical College, Sanepa, Lalitpur, Nepal
 Department of Biochemistry
 Email: sarojkunwar00@gmail.com

- Ms. Soumya Harsha Gurung
 Modern Technical College, Sanepa, Lalitpur, Nepal
 Department of Biochemistry
 Email: sgurung2@gmail.com
• Ms. Shraddha Thapa
 Modern Technical College, Sanepa, Lalitpur, Nepal
 Department of Biochemistry
 Email: shraddhat997@gmail.com

• Mrs. Sanjita Shrestha
 Modern Technical College, Sanepa, Lalitpur, Nepal
 Department of Biochemistry
 Email: sthasanju12345@gmail.com

• Mr. Ashim Rai
 Modern Technical College, Sanepa, Lalitpur, Nepal
 Department of Biochemistry
 Email: ashim.raee555@gmail.com

• Ms. Prakriti Karmacharya
 Modern Technical College, Sanepa, Lalitpur, Nepal
 Department of Biochemistry
 Email: prakritikarmacharya19@gmail.com
Corresponding Author

- Ms. Tina Uprety

 Modern Technical College, Sanepa, Lalitpur, Nepal

 Department of Biochemistry

 Email: tinauprety1@gmail.com
ABSTRACT

Objective

Metabolic syndrome and diabetes mellitus concurrently potentiates a number of risk factors, significantly higher prevalence of cardiovascular diseases. Numerous risk factors associated with diabetes gets intensified by the presence of metabolic syndrome. Diabetes and metabolic syndrome together can increase the risk of cardiovascular disease by 2 to 4 folds. The main objective of this study was to determine the prevalence of MetS in Type 2 Diabetic patients. Components of metabolic syndrome were measured and compared to determine the prevalence.

Hospital based cross-sectional study was conducted from September 2019 to December 2019 at Star hospital and Modern Technical College, Sanepa, Nepal. A total number of 353 patients with type 2 diabetes visiting Star Hospital were included in the study.

Results

Among 353 participants, metabolic syndrome was diagnosed in 242 (68.5%) participants using NCEP-ATPIII criteria. The prevalence of MetS was 68.5% among which male were 123 (76.3%) and female were 119 (61.9%). MetS was found to be highest in age group of 50-59 years with 34.2% (83) participants. Dyslipidemia with raised TG 71.4% and reduced HDL 76% was found to be most prevalent component in our study followed by hypertension 73.1%.

Key words: Diabetes Mellitus; Metabolic Syndrome, Dyslipidemia, Hypertension
Introduction

Diabetes Mellitus, common form of diabetes is chronic metabolic disorder that has enormous social, health and economic consequences [1]. The clinical state of prolonged increase in levels of plasma glucose due to ineffective or inadequate amount of insulin is referred as diabetes mellitus. It is the third most leading causes of death among developing countries following heart diseases and cancer which can lead to serious health complications such as cardiovascular disorders, stroke, diabetic retinopathy and kidney dysfunction [2].

A cluster of three of the five conditions specifically abdominal obesity, elevated triglycerides, reduced HDL cholesterol, raised blood pressure, and elevated plasma glucose is clinically recognized as metabolic syndrome [3]. These factors are linked to a higher probability of cardiovascular disease and diabetes mellitus. Components contributing to risk of metabolic syndrome are increasing age, genetic makeup, sedentary lifestyle, stress, poor diet and other health conditions. Metabolic syndrome and diabetes mellitus are hence correlated [3,4].

Presence of visceral fat alters the level of substances such as adiponectin, resistin with increase in plasma levels of TNF-α. This triggers the formation of inflammatory cytokines that stimulates cell signaling with TNF-α receptor that can lead to insulin resistance [3].

Immune cells increase with the increase in the adipose tissue which contributes to inflammation. This has a significant role in increased risk of diabetes and atherosclerosis. High fat diet and provisions lead to production of inflammatory mediators called eicosanoids [3].
Sedentary Lifestyle, Poor Diet and family history can cause body’s cell to inhibit the ability to utilize glucose from the blood, referred to as Insulin resistance, which ultimately leads to Metabolic Syndrome [5].

The burden of diabetes mellitus and its increasing rates are leading to high mortality rates [6]. T2DM is now pandemic and affecting various individuals across the globe [7].

The study tends to determine the prevalence of MetS in type 2 diabetic patients following NCEP-ATP III criteria.

Main Text

Materials and Methods

Study setting and population

Hospital based cross-sectional study was conducted from August 2019 to December 2019 at Star hospital Sanepa, Nepal. Total 353 patients with type 2 diabetes visiting Star Hospital were included in the study. Presence of diabetes mellitus was ascertained by history of patient's medical condition and medication. Patients with type 1 diabetes, heart diseases, chronic illness, pregnancy and malignancy were excluded from the study. As the study was confined to patients visiting Star hospital during certain period, non-probability purposive sampling technique was used. The subjects were 33-85 year old diagnosed with type 2 diabetes mellitus. Questionnaire was used to obtain history and information regarding type 2 diabetes mellitus.
Sample size determination

353 clinical specimens

\[n = z^2pq/e^2 \]

Where,

\[n = \text{required sample} \quad p = \text{estimated prevalence} = 73.1\% \quad (\text{Pokharel et al.(2014)}) \]

\[q = 100-p = 26.9\% \quad e = \text{allowable error} = 8\% \text{ of } p = 4.41 \]

\[z = 1.96 \text{ for 0.05 significance level (95\% confidence interval)} \]

\[n = (1.96)^2 \times 73.1 \times 26.9 \]

\[(4.41)^2 \]

\[n = 379 \quad n \approx 353 \]

In this study the calculated data size was 379 but due to limited time and hemolysis we are able to achieve sample from 353 samples.

Metabolic syndrome definition criteria

In our study we have used NCEP ATP III definition of metabolic syndrome. According to this definition participant are suffering from metabolic syndrome when they meet three or more of following criteria:[8]

- central obesity: waist circumference ≥ 102 cm (male), ≥ 88 cm (female)
- Dyslipidemia: TG ≥ 1.7 mmol/L (150 mg/dl)
- High density lipoprotein (HDL-C) : < 40 mg/dL (male), < 50 mg/dL (female)
• blood pressure ≥ 130/85 mmHg
• fasting plasma glucose ≥ 6.1 mm mol/l (110 mg/dl)

As we are taking diabetes patients as our subject we use only 4 criteria from above mentioned 5 criteria excluding FBS.

Data collection

Anthropometric and lifestyle related variables

Patients were interviewed within the hospital before sample collection using prepared questionnaire. After taking the consent from the patients' blood pressure, height, weight, waist circumference was measured.

BP measurement was taken using manual Sphygmomanometer. Height and weight of the participant was taken using stadiometer and weighing machine in upright standing position respectively. BMI was calculated as

\[
\text{BMI} = \frac{\text{Weight (kg)}}{\text{height (m)}^2}
\]

WHO guidelines for Asian

BMI	Description
<18.5	Underweight
18.5-22.9	Normal
23-25	Overweight
>25	Obese
The waist circumference was measured using WHO guideline for waist measurement. The abdominal obesity was defined according to NCEP criteria [9].

Sample collection and biochemical investigations

Blood sample was collected by venous blood collection method using 5ml syringes. Participant must be on overnight fasting for the examination of FBS and lipid profile. About 5ml fasting blood was drawn from each participant. Two tubes were used for the sample collection; Gel tube (yellow cap vial) for lipid profile (TG and HDL) estimation and Fluoride tube (grey cap vial) for plasma glucose estimation.

Glucose oxidase peroxidase method was used for the estimation of fasting plasma glucose.

Glycerol phosphate oxidase-para-aminophenazone enzymatic method was used for analysis of serum Triglycerides (TG).

Precipitation method was used for the measurement of serum HDL-cholesterol. These parameters were analyzed at Biochemistry laboratory, Star hospital using semi-auto analyzer following all the protocol and SOP provided by Manufacturer Company ELITech Clinical System.

Quality assurance

All the procedures were done according to standard operating procedure provided by ELITech Clinical System. Internal quality controls were run on daily bases before the analysis of sample.
ELITech QC of each reagent was provided by the company. Control ELITROL I (low) and ELITROL II (high) were run before the analysis to check the QC and the graph.

Data entry and Statistical analysis

From the patients information, anthropometric variables, biochemical investigation and history data was collected and was entered in Microsoft Excel 2013.

For the analysis of data Statistical Package for Social Sciences (SPSS) was used. All the data from excel was analyzed using SPSS version 20.

Independent T-test was used to compare the mean value between the groups. Chi square test was used to determine significant difference between categories. P value <0.05 was considered statistically significant.
Results

A total 353 Type 2 diabetes patients were enrolled with mean age of 55±11.196 among which male were 161 and female were 192. Table 1 shows the anthropometric parameters of patients with mean age of male subject 53.89±10.545years and female subject 55.93±11.660 years. The anthropometric parameters of patients such as weight, height and waist circumference were found to be significantly higher in the male population compared to female population.

Among the biochemical parameters, assayed TG level of male was significantly higher than female while HDL level was significantly higher in female than male. There was no significant difference between systolic / diastolic blood pressure and plasma glucose level among male and female [Table 2].

Metabolic syndrome was diagnosed in 242 (68.5%) participants using NCEP-ATPIII criteria. The prevalence of MetS was 68.5% among which male were 123 (76.3%) and female were 119 (61.9%) [Table 3].

Figure S1 shows the metabolic syndrome stratified by different age group with the prevalence found to be highest in age group of 50-59 years with 34.2% (83) participants. Also age group of 40-49 and 60-69 years were found to be almost similar with 52(21.48%) and 61(25.20%) participants respectively. Lower prevalence was observed in age group of <39 years (3.7%).

All the parameters like age, BMI, systolic/diastolic pressure, waist circumference, Triglyceride, HDL were found to be significant in metabolic syndrome group compared with non-metabolic syndrome [Table S1].
Table S2 shows the most prevalent component in our study. Dyslipidemia with and reduced HDL (76%) and raised TG (71.4%) was found to be most prevalent component in our study followed by hypertension (73.1%).

Discussion

Metabolic syndrome and diabetes mellitus concurrently potentiates significantly higher prevalence of cardiovascular diseases. Numerous risk factors are associated with diabetes which is further intensified by the presence of metabolic syndrome. Diabetes and metabolic syndrome together can increase the risk of cardiovascular disease by 2 to 4 folds.

Only limited research article on Prevalence of MetS in type 2 diabetes patients were available conducted among Nepalese population. Development of cardiovascular disease cannot be fully confirmed since our study design is cross sectional however it suggests criteria for diagnosis of MetS and an indicator of future cardiovascular risk.

The prevalence of metabolic syndrome in type 2 diabetic patients was found to be 68.5% according to NCEP ATP III. Prevalence in male and female were 76.3% and 61.9% respectively showing significantly higher prevalence in male population than in female.

Past study conducted in Nepal showed a greater prevalence of metabolic syndrome in type 2 diabetes. HK Tamang et al. showed the prevalence of 76.9% according to NCEP ATP III [10]. Study done by Bhattarai S et al. in 2012 showed that 71% diabetic patients had metabolic syndrome with prevalence of male and female of 72% and 91% respectively [11]. The study conducted in Manipal Teaching Hospital had the prevalence of 73.9% according to NCEP ATP
III with 80.3%, 69.9% and 66.8% according to Harmonized, WHO and IDF definition respectively [12].

Our study found a high prevalence of dyslipidemia followed by hypertension while Shakya D et al. showed high prevalence of central obesity followed by hypertension [13].

Our research found prevalence of 76.3% and 61.9% in male and female respectively, showing a higher prevalence in male while the research conducted by Bhattarai S et al. showed higher prevalence in female with prevalence of male and female of 72% and 91% respectively [11].

Anthropometric indices such as weight, height and waist (cm) were significantly higher in the male population compared to female population in our study are similar to the study done in Gwalior, India [14].

Our study shows highest prevalence in the age group 50-59 years old followed by age group of 40-49 and 60-69 years. The reason may be sedentary lifestyle, retirement, and diet intake of this group participant. Lower prevalence was observed in age group of <39 years (3.7%) as this age group is physically active age group.

All the parameters like BMI, Blood pressure, fasting sugar, raised TG, reduced HDL and central obesity was found to be significantly higher in participant diagnosed with MetS than with the participant without MetS.

Almost all these components are interrelated with each other by direct or indirect means. Obesity, dyslipidemia, hypertension all can lead to diabetes in some context by signaling and triggering insulin resistance. Similarly, uncontrolled diabetes, insulin resistance and insulin
deficiency leads to dyslipidemia, obesity, hypertension as it affects body several mechanism and metabolism in different way.

Other factors like genetics, medication, age factor, certain disease condition can also pitch in complication of metabolic syndrome.

Increased incidence of diabetes is associated with increasing urbanization and lifestyle changes in context of developing countries like Nepal. With urbanization and development people tend to follow sedentary lifestyle for their ease and comfort.

Nepalese population tends to have packaged food, fast food than the authentic Nepalese food which contributes in the development of metabolic syndrome. The authentic diet and lifestyle of Nepalese society can help to reduce further risk to prevent metabolic syndrome. However increased urbanization, comfort life, working habits and influences from western society somehow can enhance the development of metabolic syndrome and diabetes.

Conclusion

68.5% prevalence of MetS in Type 2 Diabetic patients with 76.3% male and 61.9% female according to NCEP ATP III was found with Anthropometric indices significantly higher in the male population compared to female population. Dyslipidemia was the most prevalent component followed by Hypertension It may conclude that the prevalence of metabolic syndrome is increasing in Nepal as our study is conducted in small population visiting Star Hospital which concludes that as we have this prevalence in this population than in overall population MetS is increasing day by day.
Limitation of study

The study is limited to small number of samples only and cannot be generalized to overall population.

Abbreviations

DM: Diabetes Mellitus

HDL: High Density Lipoproteins

TG: Triglyceride

T2DM: Type 2 Diabetes Mellitus

TNF: Tumor Necrosis Factor

NCEP-ATP III: National Cholesterol Education Program- Adult Treatment Panel III

Mets: Metabolic Syndrome

FBS: Fasting Blood Sugar

BP: Blood Pressure

BMI: Body Mass Index

WHO: World Health Organization

QC: Quality Control
SPSS: Statistical Package for the Social Sciences

IDF: International Diabetes Federation

Declarations

Ethical approval and consent to participant

Ethical clearance was taken from Institutional review committee of Nepal health research council (IRC of NHRC). Written Consent from hospital was taken for the sample collection, processing and data collection. Also written consent was taken from participants for the research.

Consent for Publication

Consent was taken from the participants to use their clinical data in the research.

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Data is available in additional file.

Conflict of Interest
No conflict of interest

Funding

No Funding

Author information

Miss. Tina Uprety, Department Of Biochemistry

Mr. Saroj Kunwar, Department Of Biochemistry

Miss. Soumya Harsha Gurung, Department of Biochemistry

Miss. Shraddha Thapa, Department of Biochemistry

Mrs. Sanjita Shrestha, Department of Biochemistry

Mr. Ashim Rai, Department of Biochemistry

Ms. Prakriti Karmacharya, Department of Biochemistry

Contributions of Authors

TU and SK: conceptualized the research. TU, SHG, ST, AR, PK and SS: sample collection and processing. SK: provided overall supervision and feedback. AR and PK: provided support for planning of study. TU, SHG and ST: carried out the
study. TU, SHG, ST and SS: performed the analysis. TU, SK, and SHG: interpretation of data. TU and SK: entered data and interpreted data. TU and SHG: paper writing. TU: drafted the manuscript and all authors critically revised the manuscript.

Corresponding author

Miss Tina Uprety, Department of Biochemistry

Email: tinauprety1@gmail.com

Acknowledgements

We would like to express our sincere gratitude to laboratory staff of Star Hospital Sanepa, especially Mr. Saroj Khanal for the support and help in patients' selection, data collection and sample processing. We also like to thank our esteemed teacher, supervisor and assistant professor, Department of Biochemistry, Mr. Saroj Kunwar and all teachers for support, supervision, guidance throughout the project. We would like to express our love and say thank you to all our friends for their support and help.
References

1. Kaul K, Tarr JM, Ahmad SI, Kohner EM, Chibber R. Introduction to diabetes mellitus. InDiabetes 2013 (pp. 1-11). Springer, New York, NY.

2. Bharathkumar H, Sundaram MS, Jagadish S, Paricharak S, Hemshekhar M, Mason D, Kemparaju K, Girish KS, Bender A, Rangappa KS. Novel benzoxazine-based aglycones block glucose uptake in vivo by inhibiting glycosidases. PloS one. 2014 Jul 21;9(7):e102759

3. R.A. Harvery and P.C. Champe: Lippincott's Illustrated Review: Biochemistry (3rd Ed.) 2004, Lippincott Williams and Wilkins

4. Mayo clinic: metabolic syndrome- https://www.mayoclinic.org/diseases-conditions/metabolic-syndrome/symptoms-causes/syc-20351916

5. Ferrannini E. Physiological and metabolic sequences of obesity. Metabolism 1995;44 Suppl 3:15-7.

6. Islam SMS, Purnat TD, Phuong NTA, Mwingira U, Schacht K, Fröschl G. Non-communicable diseases (NCDs) in developing countries: a symposium report. Glob Health. 2014;10(81)

7. Birarra MK, Gelayee DA. Metabolic syndrome among type 2 diabetic patients in Ethiopia: a cross-sectional study. BMC cardiovascular disorders. 2018 Dec;18(1):149.

8. Osei-Yeboah J, Owiredu WK, Norgbe GK, Yao Lokpo S, Gyamfi J, Alote Allotey E, Asumbasiya Aduko R, Noagbe M, Attah FA. The prevalence of metabolic syndrome and its components among people with type 2 diabetes in the ho municipality, Ghana: a cross-sectional study. International journal of chronic diseases. 2017;2017.
9. https://www.who.int/nutrition/publications/obesity/WHO_report_waistcircumference_and_waisthip_ratio/en/

10. Tamang HK, Timilsina U, Thapa S, Singh KP, Shrestha S, Singh P, Shrestha B. Prevalence of metabolic syndrome among Nepalese type 2 diabetic patients. Nepal med coll j. 2013 Mar;15(1):50-5.

11. Bhattarai S, Kohli SC, Sapkota S. Prevalence of metabolic syndrome in type 2 diabetes mellitus patients using NCEP/ATP III and IDF criteria in Nepal. Nepal Journal of Medical Sciences. 2012 Aug 2;1(2):79-83.

12. Pokharel DR, Khadka D, Sigdel M, Yadav NK, Acharya S, Kafle RC, Shukla PS. Prevalence of metabolic syndrome in Nepalese type 2 diabetic patients according to WHO, NCEP ATP III, IDF and Harmonized criteria. Journal of Diabetes & Metabolic Disorders. 2014 Dec;13(1):104.

13. Shakya D, Vijay KC. Prevalence of Metabolic Syndrome in Patients With Type 2 Diabetes Mellitus in a Tertiary Care Hospital. Medical Journal of Shree Birendra Hospital. 2019 Jul 12;18(2):36-41.

14. Yadav D, Mahajan S, Subramanian SK, Bisen PS, Chung CH, Prasad GB. Prevalence of metabolic syndrome in type 2 diabetes mellitus using NCEP-ATPIII, IDF and WHO definition and its agreement in Gwalior Chambal region of Central India. Global journal of health science. 2013 Nov;5(6):142.
Table 1. Anthropometric parameters of diabetic patients stratified by gender

Parameter	Female	Male	p-value
Age (year)	55.93±11.660	53.89±10.545	0.089
Weight(kg)	61.88±8.467	69.50±11.146	0.000
Height(m)	1.78±0.414	1.98±0.156	0.000
BMI(kg/m²)	26.49±3.771	26.98±3.827	0.226
Waist (inch)	33.77±3.982	36.47±4.198	0.000
Waist (cm)	85.71±10.262	92.65±10.865	0.000
Table 2. Haemodynamic and biochemical parameters of study population stratified by gender

Parameter	Female	Male	p-value
Systolic Pressure (mmHg)	128.70±13.513	129.63±10.876	0.483
Diastolic Pressure (mmHg)	87.76±10.754	88.76±10.444	0.380
Fasting Blood Sugar (mg/dl)	120.73±38.041	129.58±48.567	0.056
TG (mg/dl)	149.19±71.008	194.27±125.617	0.000
HDL (mg/dl)	42.64±6.373	38.25±4.944	0.000
Table 3. Prevalence of Metabolic Syndrome according to NCEP-ATPIII stratified by gender

Gender	Positive	Negative	p-value	Total
Female	119 (61.9%)	73 (38.1%)	0.004	192
Male	123 (76.3%)	38 (23.7%)		161
Total	242 (68.55%)	111 (31.45%)		353
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- data.xlsx
- figS1.docx
- TableS1S2.docx