RSV neutralization by palivizumab, but not by monoclonal antibodies targeting other epitopes, is augmented by Fc gamma receptors

Lenny van Mechelen a, Willem Luytjes a, Cornelis A.M. de Haan b, Oliver Wicht a, c, *

a Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

b Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands

c Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands

A R T I C L E I N F O

Article history:
Received 2 February 2016
Received in revised form 29 April 2016
Accepted 4 May 2016
Available online 13 May 2016

A B S T R A C T

Palivizumab efficiently blocks respiratory syncytial virus (RSV) infection in vitro. However, virus neutralization assays generally omit Fc region-mediated effects. We investigated the neutralization activity of RSV-specific monoclonal antibodies on cells with Fc receptors. Subneutralizing concentrations of antibodies resulted in antibody-dependent enhancement of RSV infection in monocytic cells. Contrary to antibodies targeting other epitopes, the neutralization by palivizumab was augmented in cells with Fc receptors. This unrecognized characteristic of palivizumab may be relevant for its performance in vivo.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Respiratory syncytial virus (RSV) is the major cause of severe respiratory infections during infancy (Nair et al., 2010). The only approved antiviral intervention is palivizumab, a monoclonal, humanized, immunoglobulin G1 (IgG1) directed against the fusion glycoprotein (F) (Groothuis et al., 1993). Prophylactic administration of palivizumab to neonates at high-risk for severe RSV infection reduces hospitalization rates by 50% (Group, 1998). Currently, novel monoclonal antibodies (mAb) and more than 50 RSV vaccine candidates are in development (Modjarrad et al., 2013).

Serum antibodies against RSV correlate poorly with probability of protection in challenge studies and severe RSV infection in neonates can occur despite the presence of maternal antibodies in serum (Habibi et al., 2015; Eick et al., 2008). Human sera and RSV-specific murine monoclonal antibodies can also enhance RSV infection (Gimenez et al., 1989; Krilov et al., 1989; Gimenez et al., 1996) by interacting with Fc gamma receptors (FCGR). RSV-antibody immune complexes also modulate the response of immune cells (Gomez et al., 2016; Jans et al., 2014). Thus, antibodies may play an ambivalent role during RSV infection, like in Dengue fever (van der Schaar et al., 2009).

Novel therapeutic antiviral mAbs are primarily selected for better virus neutralization as compared to palivizumab. This is assessed by virus neutralization assays in vitro. Antibody-mediated effector functions such as antibody-dependent cell cytotoxicity, immunomodulation, and complement activation act beyond neutralization, but are generally omitted from analysis (Pelegrin et al., 2015). In the present study we analyzed to what extent the neutralizing capacity of humanized RSV-specific monoclonal antibodies in general, and of palivizumab in particular, is affected in cells with FCGFRs. The presence of FCGFR generally weakened RSV neutralization. In contrast, palivizumab showed augmented neutralization. Additionally, all tested humanized mAbs demonstrated antibody-dependent enhancement (ADE) of RSV infection in TPH-1 cells, even at very low concentrations.

2. RSV infection of THP-1 cells is enhanced by mAbs

The interaction of endogenous FCGRs on murine P388D1 cells with complexes of RSV and murine mAbs facilitates ADE (Krilov et al., 1989). We asked whether humanized mAbs, in particular the therapeutic mAb palivizumab or the next generation, high-affinity mAb D25, cause ADE. To assess the dilution range where mAbs cause ADE, a recombinant RSV expressing green fluorescent protein (E7-rRSV_X (Widjojoatmodjo et al., 2010)), was pre-incubated with serial diluted mAbs (overview in Table 1), a human IgG1 isotype control (Mab901, Eureka therapeutics), or purified human, serum-derived immunoglobulin (IVIG, KIOVIG, Baxter) for 1 h at 37 °C. TPH-1 cells or Vero-E6 cells were inoculated at a
multiplicity of infection corresponding to 5% infection or 300 plaques per well, respectively. THP-1 cells display Fc receptor 1a (FCGR1A) and Fc gamma receptor 2a (FCGR2A) on the plasma-membrane whereas Vero cells lack FCGRs (Fleit and Kobasuk, 1991). THP-1 cells were infected by spinoculation at 700-x for 1 h at room temperature, after which the inoculum was removed, cells were washed and fresh medium was added. After overnight incubation, RSV infection was quantified by assessing GFP-positive cells using flow cytometry (FACS Canto II, BD). Titration curves were displayed normalized to samples without antibody (100% infection) (Fig. 1A). Inhibition of RSV infection of Vero cells was determined by plaque reduction neutralization assays as described earlier (van Remmerden et al., 2012). In short, RSV-antibody complexes were displayed normalized to samples without antibody (100% infection) (Fig. 1A). Inhibition of RSV infection of Vero cells was determined by plaque reduction neutralization assays as described earlier (van Remmerden et al., 2012). Next, we asked how virus neutralization is affected by FCGR interactions. Non-neutralizing antibodies 131-2A, 131-2G, and 3D3 increased infection of THP-1 cells to >200% at 48 h post infection, Fc-gamma-positive foci were counted. Similar to IVIG, all RSV-specific mAbs increased infection of THP-1 cells to >200% at sub-neutralizing concentrations (Fig. 1C–K). Treatment of RSV with various antibodies that do not recognize RSV antigens (data not shown) as well as isotype control antibody (Fig. 1D) resulted in similar infection at all tested dilutions. RSV-neutralizing mAbs blocked infection at high concentrations and enhanced infection at low concentrations (Fig. 1E–H). For D25, the maximum infection was observed at a dilution corresponding to a concentration as low as 1 ng/ml. Therefore, our experiments proved to be an extremely sensitive tool to detect antibody-FCGR interactions. Non-neutralizing antibodies 131-2A, 131-2G, and 3D3 increased infection up to 350% at all tested concentrations until diluted out (Fig. 1E–H). ADE occurred independent of neutralization titer, epitope specificity, species, or any other known attribute of the antibody (Table 1). To exclude interference by the Fc region subclass, all antibodies with human Fc regions were chosen to be of human IgG1 that efficiently interacts with FCGR1A and FCGR2A. Murine IgG2a, present in mAb 131-2A, interacts strongly with human monocytes Fc receptors, whereas murine IgG1 Fc regions of 47F and 131-2G interact less (Lubeck et al., 1985). However, all murine Abs sufficiently bound human FcR to cause ADE in THP-1 cells.

3. RSV neutralization by palivizumab is augmented on THP-1 cells

Next, we studied how virus neutralization is affected by FCGR interactions. We expected that ADE mitigates neutralization by increasing the 50% inhibitory concentration (IC50). IC50s of IVIG and the different mAbs were calculated by non-linear regression (Graphpad Prism 7). Intriguingly, the IC50 of palivizumab (Medimmune) was lower in THP-1 cells than in Vero cells (Fig. 1B). Identical results were obtained with in-house produced palivizumab (Rigter et al., 2013). We could find a similar, but weaker augmentation of neutralization for 47F (Fig. 1H) that also binds to antigenic site II in RSV F (Garcia-Barreno et al., 1989). In contrast, other mAbs and IVIG had a higher IC50 in THP-1 cells.

4. RSV neutralization by palivizumab is augmented on Vero cells with Fc gamma receptors

To gain more insight into the augmented neutralizing capacity of palivizumab and to exclude cell line-specific differences, we developed Vero cells with either of the two FCGR present on THP-1 cells. FCGR1A has a >10-fold higher affinity for IgG1 and both FCGRs contain an intracellular immunoreceptor tyrosine-based activation motif. Vero cells expressing FCGR2A (designated Vero2a) or co-expressing the murine common gamma chain (FCER1G) and FCGR1A (designated Vero1a) were generated by retroviral transduction (Bruhns and Jonsson, 2015). Stable, polyclonal cell lines were selected by antibodies and surface display of FCGRs was confirmed by flow cytometry (data not shown). Vero1a, Vero2a, and the parental Vero cells produced similar amounts of plaques after infection with RSV (data not shown). The presence of sub-neutralizing mAb concentrations enhanced RSV infection (Fig. 2A–I) for IVIG, D25, 101F, 131-2A (MAB8599, Millipore), and 131-2G (MAB8582–8, Millipore) on Vero1a and IVIG, 131-2A, and D25 (University Utrecht (Rigter et al., 2013)) on Vero2a. This ADE was not as pronounced as on THP-1 cells. Furthermore, IC50 values of neutralizing antibodies were altered in presence of FCGRs as demonstrated by shifting of the titration curves when using Vero1a and Vero2a cells instead of Vero cells (Fig. 2J). Palivizumab had a 14.2-fold and 1.7-fold lower IC50 using Vero1a and Vero2a, respectively (Fig. 2K). Slightly better neutralization was also observed for 47F using Vero2a (2.6-fold) and D25 in Vero1a (1.3-fold). All other RSV-specific antibodies and IVIG required a higher concentration for neutralization in Vero cells with FCGRs. Shifts of IC50s in FCGR-bearing Vero cells were statistically significant in all cases (Fig. 2J).

5. Implications of antibody-FCGR interaction

We studied the impact of interactions between FCGRs and humanized mAb on RSV infection by RSV neutralization assays. Higher
concentrations of most mAbs and IVIG were required to neutralize RSV when FCGRs are present in target cells. In contrast, the presence of FCGRs, especially high-affinity receptor FCGR1A, greatly augmented the neutralization activity of palivizumab. This previously unrecognized characteristic of palivizumab should be taken into account when using palivizumab as a reference standard for

Fig. 1. Neutralization activity of palivizumab was augmented on THP-1 cells compared to Vero cells. Infection of Fc gamma receptor carrying, monocytic THP-1 cells by RSV in the presence of monoclonal antibodies. (A) Schematic of dose-dependent RSV neutralization normalized to infection in the absence of antibodies. Neutralizing antibodies block RSV infection at high concentrations. Antibody-dependent enhancement (ADE) of infection can occur at low concentrations or by non-neutralizing antibodies. Furthermore, the half maximal inhibitory concentration (IC50) is changed when using cells with Fc gamma receptors, illustrated by shifting titration curves. (B) To compare neutralization, IC50 derived from THP-1 cells was divided by IC50 on Vero cells. Titration curves of human plasma immunoglobulin (IVIG, panel C) and individual antibodies are shown (panels D–K). The RSV epitope that is recognized by mAbs is indicated. Graphs report means and standard deviations based on ≥3 independent experiments measured in duplicate or triplicate for THP-1 or Vero cells, respectively.
novel antibodies and vaccine concepts (Kwakkenbos et al., 2010; Collarini et al., 2009).

This study elucidates some aspects, but cannot fully comprehend how IC50s are modulated by antibody-FCGR interactions. The F protein antigenic site II that is recognized by palivizumab and 47F seems to support FCGR-augmented neutralization independent of the origin of the Fc region and the engaged FCGR. Nevertheless, direct comparison with other mAbs is challenging, since variable phenotypes may occur when different in Fc regions are present. How individual FCGRs operate could not be concluded from this study.

Fig. 2. Neutralization activity of palivizumab is augmented on Vero cells in presence of Fc gamma receptors. IC50 of human plasma immunoglobulin (IVIG, (A)) and monoclonal antibodies (B–I) were determined in Vero cells and Vero cells that stably express Fc gamma receptor 1a (Vero1a) or Vero cells with Fc gamma receptor 2a (Vero2a). The RSV epitope that is recognized by mAbs is indicated. Graphs report means and standard deviations based on ≥3 independent experiments measured in triplicate. (J) Mean IC50 (with 95% confidence interval) of ≥4 independent experiments were calculated. IC50 on Vero2a and Vero1a are significantly different from Vero cells using Dunnett’s test (P < 0.01). (K) To illustrate the change of IC50 in the presence of FCGRs, logIC50 in Vero1a or Vero2a were compared to that in Vero cells using a two-way ANOVA and plotted with 99% confidence interval after linear transformation.
study due to mixed results for FCGRIA or FCGRIA2. In general, the Fc-FcγR interactions depend on the immunoglobulin species, (sub-class, and modifications of the N-linked glycan in the Fc region (Vidarsson et al., 2014).

Besides altering the IC50, FcγRs facilitated antibody-dependent enhancement of RSV infection (Krilov et al., 1989). For human sera and murine mAbs, ADE was dependent on the balance between neutralization and enhancement, whereas non-neutralizing mAbs generally enhanced infection (Gimenez et al., 1996). We report similar effects for humanized mAbs that are in clinical use or in development. ADE even occurs when the mAbs was designed for high potency, binding to pre-fusion F epitope Ø, and present at concentrations as low as 0.1 ng/ml (Fig. 2F). All tested RSV-neutralizing mAbs could enhance infection of THP-1 cells, hence we could not address whether ADE was determined of Fc region, affinity, and neutralization capacity.

Mechanism that causes ADE of RSV infection remains elusive. (Antibody-mediated) endocytosis may traffic RSV into a favorable endosomal compartment where proteases unleash the fusion machinery of RSV to enable viral release in to the cytoplasm (Krzyzaniak et al., 2013). ADE was generally more pronounced in Vero1a than Veroa2a. This might originate either from the higher affinity with which FCGRIA binds IgG, relate to the increased trafficking of FCGRIA-bound immune complexes to the late endosomal/lysosomal compartment (Dai et al., 2009), and is consistent with the enhanced uptake of and infection by Dengue virus immune complexes via FCGRIA (Chawla et al., 2013). Augmented neutralization of RSV, however, is unique to palivizumab in our study. The generally weak ADE in FcγR-bearing Vero cells may occur due to cell type specific differences, incompatibility between simian Vero cells and human FcγRs, or the lack of synergy between FCGRIA1 and FCGRIA2.

Antibody-Fc γ receptor interactions result in altered neutralization and ADE in vitro. In vivo, FcγR-bearing immune cells are crucial for the antiviral stimulation. Stimulation of FcγR-dependent immune responses may contribute to RSV-mediated pathogenesis (Ponnuraraj et al., 2003; Gomez et al., 2016; Kruisjen et al., 2013). Like in dengue virus infection (van der Schaaf et al., 2009), antibodies may thus play an ambivalent role during RSV infection. Hence, Fc receptor-mediated effects should be considered when evaluating novel antibodies and vaccines (Bourazos and Ravetch, 2015).

Acknowledgements

We thank José Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A, and Jose Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. R. D. Welliver, for providing FcγR-1 and FcγR-2A. We thank José Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A and we thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A.

We thank the CIBERER (Camino de las Nueces, 16, 28042 Madrid, Spain) for providing mAbs and Dr. São Lourenço (Faculty of Veterinary Medicine, University of Porto, Portugal) for providing human sera.

We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A.

We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A.

We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A. We thank Josée Melero (Centro Nacional de Microbiología and CIBERES, Madrid, Spain) for providing mAb 47F and Jeanette Leusen (University Medical Center Utrecht, The Netherlands) for providing C19A.