Abstract: Peptic ulcers are a common disorder of the entire gastrointestinal tract that occurs mainly in the stomach and the proximal duodenum. This disease is multifactorial and its treatment faces great difficulties due to the limited effectiveness and severe side effects of the currently available drugs. The use of natural products for the prevention and treatment of different pathologies is continuously expanding throughout the world. This is particularly true with regards to flavonoids, which represent a highly diverse class of secondary metabolites with potentially beneficial human health effects that is widely distributed in the plant kingdom and currently consumed in large amounts in the diet. They display several pharmacological properties in the gastroprotective area, acting as anti-secretory, cytoprotective and antioxidant agents. Besides their action as gastroprotectives, flavonoids also act in healing of gastric ulcers and additionally these polyphenolic compounds can be new alternatives for suppression or modulation of peptic ulcers associated with *H. pylori*. In this review, we have summarized the literature on...
ninety-five flavonoids with varying degrees of antiulcerogenic activity, confirming that flavonoids have a therapeutic potential for the more effective treatment of peptic ulcers.

Keywords: Flavonoids; Gastroprotective activity; Peptic ulcers; Natural products.

Introduction

Peptic ulcers are a common disorder of the entire gastrointestinal tract [1]. They occur mainly in the stomach and the proximal duodenum. They can also occur in the esophagus, jejunum and gastric anastamotic site [2]. A peptic ulcer results from an imbalance between some endogenous aggressive factor(s) [hydrochloric acid, pepsin, refluxed bile, leukotrienes, reactive oxygen species (ROS)] and cytoprotective factors, which include the function of the mucus-bicarbonate barrier, surface active phospholipids, prostaglandins (PGs), mucosal blood flow, cell renewal and migration, nonenzymatic and enzymatic antioxidants and some growth factors [3-6]. The pathogenesis of gastric ulcers remains widespread, it is multifactorial disease where diverse factors such as a stressful lifestyle, alcohol consumption, use of steroidal and nonsteroidal antiinflammatory drugs (NSAIDs) and drugs which stimulate gastric acid and pepsin secretion, *Helicobacter pylori* infections, smoking, lower socio-economic status and family history all represent significant risk factors that may contribute to increasing gastric damage [3]. The prevention or cure of peptic ulcers is one of the most important challenges confronting medicine nowadays, as it is certainly a major human illness affecting nearly 8 to 10% of the global population [7], and of these 5% suffer from gastric ulcers [3]. The prevalence of this disease is higher in men than in women [8].

Although recent advances in our understanding have highlighted the multifactorial pathogenesis of peptic ulcers, secretion of gastric acid is still recognized as a central component of this disease, therefore the main therapeutic target is the control of this secretion using antacids, H₂ receptor blockers like ranitidine, famotidine, anticholinergics like pirenzepin, telezipine or proton pump blockers like omeprazole, lansoprazole, etc. [9]. However, gastric ulcer therapy faces nowadays a major drawback because most of the drugs currently available in the market show limited efficacy against gastric diseases and are often associated with severe side effects [10,11].

In this context, the use of medicinal plants is in continuous expansion all over the world for the prevention and treatment of different pathologies, and natural products are recovering space and importance in the pharmaceutical industry as inspiring sources of new potentially bioactive molecules [12]. Clinical research has confirmed the efficacy of several plants for the treatment of gastroduodenal diseases [13,14]. The medicinal properties of many plants are attributed mainly to the presence of flavonoids, but they may be also influenced by other organic and inorganic compounds such as coumarins, alkaloids, terpenoids, tannins, phenolic acids and antioxidant micronutrients, e.g., Cu, Mn, Zn [15,16].

Flavonoids represent a highly diverse class of secondary metabolites comprising about 9,000 structures that have been identified to date. They constitute the largest and most important group of polyphenolic compounds in plants. These compounds are found in all vascular plants as well as in
some mosses [17, 18]. The term flavonoid is used to describe plant pigments, mostly derived from benzo-γ-pyrone, which is synonymous with chromone (rings A and C in Figure 1) [19,20].

Figure 1. Basic flavonoid structure.

All flavonoids derive their 15-carbon skeletons (C6–C3–C6) from two basic metabolites, malonyl-CoA and p-coumaroyl-CoA. Their crucial biosynthetic reaction is the condensation of three molecules of malonyl-CoA with one molecule of p-coumaroyl-CoA to give a chalcone intermediate [21]. Chalcones act as the precursors for the vast range of flavonoid derivatives found throughout the plant kingdom. Most contain a six-membered heterocyclic ring, formed by Michael-type nucleophilic attack of a phenol group on to the unsaturated ketone giving a flavanone [22]. The first committed step of the flavonoid pathway is catalyzed by chalcone synthase (CHS; see Scheme 1). Chalcones can then be converted into aurones, a subclass of flavonoids found in certain plant species. Beyond CHS, the next step shared by most of the flavonoid biosynthesis pathways is catalyzed by chalcone isomerase (CHI), which catalyzes a stereospecific ring closure isomerization step to form the 2S-flavanones. The flavanones may represent the most important branching point in flavonoid metabolism, because isomerization of these compounds yields the others class of flavonoids [23]. However, the chemical synthesis is carried out mostly by cyclization and condensation of hydroxyacetophenone.

Taking into account the chemical nature of the molecule, and the positions of substituents on rings A, B, and C, the flavonoids are divided into 14 different groups [24]. Seven of these groups – the flavones, flavonols, flavanones, isoflavones, flavanols (catechins), flavanolols, and anthocyanidines – are particularly well known [24-27].

Flavonoids belong to the recently popular phytochemicals, chemicals derived from plant material with potentially beneficial effects on human health. The therapeutic effects of many traditional medicines may be related in many cases to the presence of these polyphenols [28]. For example, a wide variety of pharmacological activities have been reported for these substances, including antiviral [29], antiallergic [30], antiplatelet [31], antiestrogenic, anticancerogenic, anti-inflammatory, antiproliferative, antiangiogenic, and antioxidant properties, and their ingestion typically produces no or very little toxicity [24]. Flavonoids were also reported to act in the gastrointestinal tract, having antispasmodic [32], anti-secretory, antidiarrhoeal [33] and antiulcer properties [34]. Considering the important role of flavonoids in the prevention or reduction of gastric lesions induced by different ulcerogenic agents, this aim of this study was to review the literature on flavonoids with gastroprotective activity. The search was carried out on Pubmed, Schifinder School, Scieny Direct and NAPRALERT (Acronym for Natural Products ALERT) the data bank of The University of Illinois in Chicago, updated to December 2007, using “anti-ulcer flavonoids” as the search term. The
references found in the search were later consulted for details on the models or mechanism based bioassays used for testing flavonoids against peptic ulcers.

Scheme 1. A schematic presentation of the flavonoid biosynthetic pathway showing the enzymatic steps leading to the major classes of end products. Enzymes are indicated with standard abbreviations.

Abbreviations: **ANR**, anthocyanidin reductase; **ANS**, anthocyanidin synthase (also known as leucoanthocyanidin dioxygenase); **CHI**, chalcone isomerase; **CHR**, chalcone reductase; **CHS**, chalcone synthase; **DFR**, dihydroflavonol 4-reductase; **FNS I and FNS II**, flavone synthase I and II; **IFR**, isoflavone reductase; **IFS**, isoflavone synthase; **LAR**, leucoanthocyanidin reductase; **GTs**, glucosyl transferases [21].
Flavonoids studied in models that investigate anti-ulcer activity

In this literature review, it was possible to identify ninety-five flavonoids, whose gastroprotective activities cover a full range from inactive through weak activity to active and even strong activity. Of the flavonoids found in this study, forty-two were reportedly inactive; however, this inactivity could vary widely according to the experimental model, animal, route of administration and the dose. For example, flavonols like kaempferol, robinin and dactailin showed no gastroprotective effect in experimental models of reserpine [35,36] and restraint stress-induced ulcers in mouse [35], but kaempferol at doses of 50 and 100 mg/kg showed gastroprotective activity, and when the dose was increased to 250 mg/kg, it showed no activity [37]. Similar results were found for noleotin, a flavone, where doses of 8 and 25 mg/kg protect the gastric mucosa of the rats from injuries induced by ethanol and HCl/ethanol, respectively, but it was only weakly active at a dose of 50 mg/kg in model of aspirin-induced ulcers [38]. Although many of the pharmacological and biochemical actions of flavonoids are attributed to their activities as antioxidants [39], this observed inactivity in high doses may be related to the capacity of flavonoids to act as pro-oxidants. Thus, flavonoids like quercetin, myricetin and kaempferol induce a concentration-dependent decrease of both the nuclear glutathione (GSH) content and glutathione S-transferase (GST) activity in a model system of isolated rat liver nuclei, which could lead to oxidative DNA damage [40], which in turn may be responsible for their mutagenicity and carcinogenicity; this effect may be explained by the pro-oxidant effects of this compounds [40, 41]. Nevertheless, the structural features that might determine the pro-oxidant activity of these compounds are not well established.

Chalcones belong to flavonoid class with the largest number of compounds with gastroprotective activity. In this review were found thirty-eight, among which we can mention sophoradin, an isoprenyl chalcone, which is present in a Chinese crude drug (the root of *Sophora subprostrata*) and protects the gastric mucosa from lesions induced by pylorus-ligation and water-immersion stress [42, 43]. Thirty sophoradin analogs have shown anti-ulcer effects in the same ulcer induction models. Several chalcones, all having more than one isoprenyloxyl group, exhibited high inhibitory ratios. In particular, 2',4'-dihydroxy-3'-(3-methyl-2-butenyl)-4-(3-methyl-2-butenyloxy) chalcone, 2'-hydroxy-4,4'-bis(3-methyl-2-butenyloxy) chalcone and 2'-carboxymethoxy-4,4'-bis(3-methyl-2-butenyloxy) chalcone (sofalcone), showed strong activity at a dose of 100 mg/kg, with a high percentage of inhibition of lesions (70-100%), when compared to other chalcones at the same dose and were as potent as sophoradin [42]. Sofalcone is one of these analogs that in addition to its gastroprotective effects also accelerates ulcer healing [44]. The mechanisms of action involved in gastric protection are increased gastric blood flow, stimulated synthesis of mucosubstances of the gastric mucosa [45] and increasing effects on gastric tissue PGs contents [46]. Besides its cytoprotective effects, sofalcone has a direct bactericidal effect on *H. pylori*, with a minimum inhibitory concentration of 55-222 µmol/L, anti-urease activity and it reduces the adhesion of this organism to gastric epithelial cells [47,48]. When outpatients with peptic ulcers and *H. pylori* infections were medicated for 7 d with sofalcone (100 mg thrice daily) plus the triple therapy with rabeprazole (10 mg twice daily), clarithromycin (200 mg twice daily) and amoxicillin (750 mg twice daily), sofalcone significantly increased the cure rate of *H. pylori* infections [49]. Therefore flavonoids can be utilized as alternative or additive agents to the current therapy in treatment of peptic ulcer induced by *H. pylori* infection.
Another flavonoid that appears to exert anti-ulcer activity is monomeric leucocyanidin, a natural flavonoid and the major component present in unripe plantain banana (Musa sapientum L. var. paradisiaca). It and its synthetic analogues hydroxyethylated leucocyanidin and tetraallylleucocyanidin showed protective effects against aspirin-induced gastric erosions in a prophylactic animal model, as shown by the absence of mucosal damage and a significant reduction in the ulcer index, when added to the diet at 5 mg and 15 mg per day [50,51]. The authors concluded that these compounds may be responsible for the displayed anti-ulcer properties and they suggested that the mechanism by which the active agent present in plantain banana and its synthetic analogues protects the mucosa is mediated, at least in part, by an increase in mucus thickness [51].

Another polyphenolic compound with relevant activities is garcinol, a polyisoprenylated benzophenone derivative from Garcinia indica, which shows potent free radical scavenging activity in three kinds of free radical generating systems. In the hypoxanthine/xanthine oxidase system, emulsified garcinol suppressed superoxide anion to almost the same extent as DL-α-tocopherol by weight and also suppressed hydroxyl radical more strongly than DL-α-tocopherol in the Fenton reaction system. In the H2O2/NaOH/DMSO system, this compound suppressed superoxide anion, hydroxyl radical, and methyl radical. Orally administered garcinol prevented acute ulceration in rats induced by indomethacin (40-200 mg/kg) and water immersion stress (200 mg/kg) caused by radical formation. These results suggested that garcinol might have potential as a free radical scavenger and clinical applications as an anti-ulcer drug. Although the mechanism of its anti-ulcer activity is not yet understood, garcinol may scavenge reactive oxygen species on the surface of gastric mucosa, thus protecting cells from injury [52].

A flavonoid that has been studied in some detail is rutin (quercetin-3-rhamnosylglucoside), a natural flavone derivative. It has been reported to prevent gastric mucosal ulceration in animal models including reserpine [35], acidified ethanol [37] and absolute and 50% ethanol [34,37]. The cytoprotective effect of this flavonoid does not appear to be mediated by endogenous prostaglandins [53], but its protective effects may be mediated by endogenous platelet-activating factor (PAF), since it inhibited dose-dependently the mucosal content of PAF [37]. Another possible mechanism involves the antioxidant properties of rutin, which at a dose of 200 mg/kg has a protective effect against lesions induced by 50% ethanol, probably by reducing the levels of lipoperoxides and increasing the activity of the antioxidant enzyme glutathione peroxidase (GSH-Px). However, no significant modifications were observed in the gastric non-protein sulphydryl (SH) content or in the ethanol-induced leukocyte infiltrate [34].

One of the most studied flavonoids is quercetin (3,3′,4′,5,7-pentahydroxyflavone). It protects the gastrointestinal mucosa from acute lesions induced by various experimiental models and against different necrotic agents, including restraint stress [37,54,55] pylorus-ligation [56], reserpine [35, 36,55,57], aspirin [54], indomethacin [58], acid-ethanol [37] and ethanol-induced gastric ulcers [54,59,60]. Its gastroprotective action mechanism involves endogenous PAF [37], an increase in mucus production [58], antihistaminic properties, which decrease histamine levels and reduction of the number of ethanol-induced mast cells. It also inhibits H. pylori growth, the formation of acid by parietal cells in response to stimulation by histamine and dibutyryl cyclic AMP, as well as the gastric H+/K+ proton pump (data not shown in Table 1) [61]. The main mechanism of action for the gastroprotective effects of this flavonol are its antioxidant properties, since oral pretreatment with
quercetin (200 mg/kg) had protective effects in that it significantly reduced the severity of ethanol-induced ulcers by inhibition of lipid peroxidation, enhancement in the levels of mucosal non-protein SH compounds (important antioxidant agents) [59,60] in GSH-Px [59] and superoxide dismutase activities, as well as reduction of protein carbonyl compounds [60]. At a dose of 100 mg/kg twice daily for 5 days it also decreases lipid peroxidation and plasmatic corticosterone in a restraint stress model. This flavonoid, in addition to protecting the gastric mucosa in acute models of ulcer induction, when administered chronically both quercetin and naringenin also promote healing of gastric ulcers induced by acetic acid, a chronic model of ulcer [62]. The antioxidant mechanism of action of flavonoids, especially gencinol, rutin and quercetin, is due mainly the presence in their structures of an o-dihydroxy in the B ring (catechol), and additionally a 2,3 double bond in conjugation with a 4-oxo function, as well as the presence of hydroxyl groups in positions 3, 5 and 7 [24,63,64].

Finally, nowadays it is known that NSAIDs, such as piroxicam or aspirin have several adverse effects on the gastrointestinal tract and increase the risk of myocardial infarction. However, several flavonoids have demonstrated anti-inflammatory properties, without showing any ulcerogenic action as a side effect, and thus showing a great advantage in the treatment of peptic ulcers.

Table 1. Flavonoids with gastroprotective activity.

Substance	Experimental assay/Administration route	Animal tested	Dose	Activity	
Butein	HCl/ethanol-induced ulcers/intragastric	Rat	10 mg/kg	Active [65]	
	NaOH-induced ulcers/intragastric	Rat	50.0 mg/kg	Inactive [65]	
2',3,4,4',6'-pentahydroxychalcone	HCl/ethanol-induced ulcers/intragastric	Rat	10.0 mg/kg	Active [65]	
	NaOH-induced ulcers/intragastric	Rat	10.0 mg/kg	Active [65]	
2',3,4-trihydroxychalcone	HCl/ethanol-induced ulcers/intragastric	Rat	10.0 mg/kg	Active [65]	
	NaOH-induced ulcers/intragastric	Rat	10.0 mg/kg	Active [65]	
Molecule	Activity	Dose	Route/Model	Animal	Result
--	-----------	----------	------------------------------------	--------	--------
2',4',6'-trihydroxychalcone	Active	10.0 mg/kg	HCl/ethanol-induced ulcers/intragastric	Rat	[65]
	Active	10.0 mg/kg	NaOH-induced ulcers/intragastric	Rat	[65]
2',4'-dihydroxy-3',5'-diprenyl-4-O-prenyl-chalcone	Active	100.0 mg/kg	Stress-induced ulcers (water-immersion)/i.p.	Rat	[42]
2',4'-dihydroxy-3'-methoxychalcone	Weak	*	Ethanol-induced ulcers/intragastric	Mouse	[66]
	Active	100.0 mg/kg	Ethanol-induced ulcers/intragastric	Rat	[67]
	Active	*	Ethanol-induced ulcers/intragastric	Rat	[66]
2',4'-dihydroxy-5'-prenyl-4-O-prenyl-chalcone	Active	100.0 mg/kg	Pylorus ligation-induced ulcers/i.p.	Rat	[42]
	Active	100.0 mg/kg	Stress-induced ulcers (water-immersion)/i.p.	Rat	[42]
2',4'-dihydroxychalcone	Active	10.0 mg/kg	Stress-induced ulcers (water-immersion)/intragastric	Rat	[65]
	Active	10.0 mg/kg	Acetic acid-induced ulcers/intragastric	Rat	[65]
	Active	10.0 mg/kg	HCl/ethanol-induced ulcers/intragastric	Rat	[65]
	Active	10.0 mg/kg	NaOH-induced ulcers/intragastric	Rat	[65]
	Active	*	Ethanol-induced ulcers/intragastric	Mouse	[66]
	Active	100 mg/kg	Ethanol-induced ulcers/intragastric	Rat	[67]
	Active	*	Ethanol-induced ulcers/intragastric	Rat	[66]
2',4,4',6'-tetrahydroxychalcone	Inactive	10.0 mg/kg	HCl/ethanol-induced ulcers/intragastric	Rat	[65]
	Active	10.0 mg/kg	NaOH-induced ulcers/intragastric	Rat	[65]
Table 1. Cont.

Compound	Activity	Rat	Source
2',4,4'-trihydroxy-3,3',5'-tris-(3-methyl-but-2-enyl) chalcone	*/*	*	Active [68]
2',4,4'-trihydroxy-3,3',5,5'-tetrakis-(3-methyl-but-2-enyl)-4,4'-bis-(O-3-methyl-but-2-enyl) chalcone	*/*	*	Active [69]
2',4,4'-trihydroxy-3,3',5,5'-tetrakis-3-methyl-but-2-enyl) chalcone	*/*	*	Active [68]
2',4,4'-trihydroxy-3,3',5-tris-(3-methyl-but-2-enyl)-4-4'-di-O-allyl chalcone	*/*	*	Active [69]
2',4,4'-trihydroxy-3,3'-bis-(3-methylbut-2-enyl) chalcone	*/*	*	Active [68]
Table 1. Cont.

Compound	Activity	Dose (mg/kg)	Source
2',4',4'-trihydroxy-3,3'-diprenylchalcone	Stress-induced ulcers (water-immersion)/i.p.	Rat 100.0 mg/kg	Active [42]
2',4',4'-trihydroxy-3,5,5'-tris-(3-methylbut-2-enyl)-4'-O-(3-methylbut-2-enyl) chalcone	*/*	Rat *	Active [69]
2',4',4'-trihydroxylchalcone	HCl/ethanol-induced ulcers/intragastric	Rat 10.0 mg/kg	Active [65]
	NaOH-induced ulcers/intragastric	Rat 10.0 mg/kg	Active [65]
2',4-dihydroxy-3-prenyl-4'-O-prenylchalcone	Stress-induced ulcers (water-immersion)/i.p.	Rat 100.0 mg/kg	Active [42]
2',4-dihydroxy-4'-methoxy-3,5-bis-(3-methyl-but-2-enyl) chalcone	*/*	Rat *	Active [42]
Table 1. Cont.

Compound	Effect	Species	Dose	Activity		
2'-carbomethoxy-4,4'-bis-(3-methyl-2-butenyl-oxy) chalcone (sofalcone)	Histamine-induced ulcers/i.p.	Rat	100.0 mg/kg	Active [45]		
	Acetic acid-induced ulcers/gastric intubation	Rat	20-50 mg/kg	Active [45]		
	Histamine-induced ulcers/gastric intubation	Guinea pig	100.0 mg/kg	Active [45]		
	Pylorus ligation-induced ulcers/i.p.	Rat	50.0 mg/kg	Active [45]		
	Stress-induced ulcers (water-immersion)/i.p.	Rat	50.0 mg/kg	Active [45]		
	Phenylbutazone-induced ulcers/gastric intubation	Rat	300.0 mg/kg	Active [45]		
	Acetic acid-induced ulcers/gastric intubation	Rat	50.0 mg/kg	Active [44]		
	HCl induced gastric lesions/i.p.	Rat	100.0 mg/kg	Active [46]		
	HCl induced gastric lesions/gastric intubation	Rat	100.0 mg/kg	Active [46]		
	Pretreatment with indomethacin vs HCl induced gastric lesions/gastric intubation	Rat	100.0 mg/kg	Active [46]		
	Pretreatment with indomethacin vs HCl induced gastric lesions/i.p.	Rat	100.0 mg/kg	Inactive [46]		
	H. pylori induced ulcer/p.o.	Human adult		Active [49]		
2'-hydroxy-4,4'-di-O-prenylchalcone	Pylorus ligation-induced ulcers/i.p.	Rat	100.0 mg/kg	Strong activity [42]		
	Stress-induced ulcers (water-immersion)/i.p.	Rat	100.0 mg/kg	Strong activity [42]		
2,4'-di-O-prenylchalcone	Pylorus ligation-induced ulcers/i.p.	Rat	100.0 mg/kg	Active [42]		
	Stress-induced ulcers (water-immersion)/i.p.	Rat	100.0 mg/kg	Weak activity [42]		
Molecule	Activity	Dose	Ucer Model	Species	Reaction Type	Ref
---	------------------------------	-----------	---	---------	---------------	-----
2,4,4'-trihydroxy-3,3',5'-tris-(3-methylbut-2-enyl)-4-O-allyl-4-O-propargylchalcone	*/*	Rat	Pylorus ligation-induced ulcers/i.p.	*	Active [69]	
3',5'-dihydroxy-4'-prenyl-5-O-prenylchalcone	Pylorus ligation-induced ulcers/i.p.	Rat	100.0 mg/kg	Strong activity [42]		
3',4'-dihydroxychalcone	HCl/ethanol-induced ulcers/intragastric	Rat	10.0 mg/kg	Active [65]		
3,3',4-trihydroxychalcone	HCl/ethanol-induced ulcers/intragastric	Rat	10.0 mg/kg	Inactive [65]		
4'-hydroxy-3'-prenyl-4-O-prenylchalcone	Pylorus ligation-induced ulcers/i.p.	Rat	100.0 mg/kg	Active [42]		
4,4'-di-O-geranyl chalcone	Pylorus ligation-induced ulcers/i.p.	Rat	100.0 mg/kg	Weak activity [42]		
Compound	Condition	Animal	Dose	Result		
--	---	--------	-------------	-----------------		
4,4'-di-O-prenylchalcone	Pylorus ligation-induced ulcers/i.p.	Rat	100.0 mg/kg	Active [42]		
	Stress-induced ulcers (water-immersion)/i.p.	Rat	100.0 mg/kg	Strong activity [42]		
4,4'-dihydroxy-3,3'-diprenylchalcone	Stress-induced ulcers (water-immersion)/i.p.	Rat	100.0 mg/kg	Active [42]		
4,4'-dimethoxy-3,3'-diprenylchalcone	Pylorus ligation-induced ulcers/i.p.	Rat	100.0 mg/kg	Weak activity [42]		
	Stress-induced ulcers (water-immersion)/i.p.	Rat	100.0 mg/kg	Active [42]		
4-hydroxy-3-prenyl-4'-O-prenylchalcone	Pylorus ligation-induced ulcers/i.p.	Rat	100.0 mg/kg	Weak activity [42]		
	Stress-induced ulcers (water-immersion)/i.p.	Rat	100.0 mg/kg	Weak activity [42]		
2',4-bis-(carbomethoxy)-4'-(3-carboxy-2-	Pylorus ligation-induced ulcers/i.p.	Rat	100.0 mg/kg	Weak activity [70]		
butenyl-oxy) dihydrochalcone	Stress-induced ulcers (water-immersion)/i.p.	Rat	100.0 mg/kg	Weak activity [70]		
	Histamine-induced ulcers/i.p.	Rat	100.0 mg/kg	Active [70]		
2',4-bis-(carboxymethoxy)-4'-(3-	Pylorus ligation-induced ulcers/i.p.	Rat	100.0 mg/kg	Active [70]		
methyl-2-butenyl-oxy) dihydrochalcone	Stress-induced ulcers (water-immersion)/i.p.	Rat	100.0 mg/kg	Weak activity [70]		
Table 1. Cont.

Molecule	Condition (Route)	Animal	Dose (mg/kg)	Activity	
2'-carboxymethoxy-4-4'-bis-(3-methyl-2-butenyl-oxy) dihydrochalcone	Pylorus ligation-induced ulcers/i.p.	Rat	100.0	Active [70]	
	Stress-induced ulcers (water-immersion)/i.p.	Rat	100.0	Active [70]	
	Histamine-induced ulcers/i.p.	Rat	100.0	Active [70]	
Garcinol	Stress-induced (restraint) ulcers/intragastric	Rat	200.0	Active [52]	
	Indomethacin-induced ulcers/intragastric	Rat	200.0	Active [52]	
Sophoradin	Pylorus ligation-induced ulcers/p.o.	Rat	*	Active [43]	
	Stress-induced ulcers/p.o.	Rat	*	Active [43]	
	Pylorus ligation-induced ulcers/p.o.	Rat	100.0	Strong activity [42]	
	Stress-induced ulcers/p.o.	Rat	100.0	Strong activity [42]	
Xanthoangelol E	Stress-induced (restraint) ulcers/*	Rat	*	Active [71]	
Flavanones	3',4',5,7-tetrahydroxy-3-methoxyflavanone	Rat	*	Active [72]	
Molecule	Formula	Activity	Species	Dose	Reference
----------	---------	----------	---------	------	-----------
Hesperidin	![Hesperidin](image)	Cold stress-induced ulcers/intragastric	Rat	100.0 mg/kg	Active [74]
Hesperidin		Ethanol-induced ulcers/intragastric	Rat	100.0 mg/kg	Inactive [74]
Naringenin	![Naringenin](image)	Acetic acid-induced ulcers/intragastric	Rat	100.0 mg/kg	Active [62]
Naringenin		Stress-induced ulcers (water-immersion)/intragastric	Rat	100.0 mg/kg	Active [56]
Naringenin		Pylorus ligation-induced ulcers/intragastric	Rat	100.0 mg/kg	Active [56]
Naringenin		Pylorus ligation-induced ulcers/gastric intubation	Rat	ED50 132 mg/kg	Active [75]
Naringenin		Stress-induced (restraint) ulcers/gastric intubation	Rat	ED50 42.0 mg/kg	Active [75]
Naringenin		Aspirin-induced ulcers/gastric intubation	Rat	*	Active [75]
Naringenin		Phenylbutazone-induced ulcers/gastric intubation	Rat	*	Active [75]
Naringenin		Reserpine-induced ulcers/gastric intubation	Rat	*	Active [75]
Molecules 2009, 14	994				
-------------------	-----				

Table 1. Cont.

Compound	Activity	Dose (mg/kg)	Description
Naringin	Active	200.0	Aspirin-induced ulcers/intragastric
		100.0	Acid-ethanol-induced ulcers/i.p.
		200.0	Acid-ethanol-induced ulcers/i.p.
		400.0	Acid-ethanol-induced ulcers/i.p.
		400.0	Ethanol-induced gastric injury/intragastric
Sigmoidin A	Active	50.0	Stress-induced ulcers (water-immersion)/gastric intubation
		50.0	Stress-induced (restraint) ulcers/gastric intubation
Sigmoidin B	Active	50.0	Stress-induced ulcers (water-immersion)/gastric intubation
		50.0	Stress-induced (restraint) ulcers/gastric intubation
Sophoranone		*	Pylorus ligation-induced ulcers/p.o.
		*	Stress-induced ulcers/p.o.
Flavane and Flavanols			HCl/ethanol-induced stomach ulcers/intragastric
(+) catechin		*	Inactive
		*	Reserpine-induced ulcers/gastric intubation
		100.0	Active
		49.7	Equivocal
		72.5	Inactive
		500.0	Weak
			Active
Molecules 2009, 14	995		

Table 1. Cont.

Compound	Stress Model	Species	Dose/Effect	Activity
(dl) catechin	Stress-induced ulcers (restraint)/subcutaneous	Mouse	300.0 mg/kg	Active [82]
	Stress-induced ulcers (restraint)/intragastric	Mouse	300.0 mg/kg	Active [82]
	Stress-induced ulcers (water-immersion)/subcutaneous	Mouse	300.0 μmol/kg	Active [82]
	Stress-induced ulcers (water-immersion)/intragastric	Mouse	300.0 mg/kg	Active [82]
3-O-methyl: (+) catechin	Pylorus ligation-induced ulcers/subcutaneous	Rat	ED50 60.0 mg/kg	Active [83]
	Stress-induced ulcers (restraint)/subcutaneous	Rat	ED50 13.2 mg/kg	Active [83]
	*/s.c.	Rat	*	Active [83]
	Phenylbutazone-induced ulcers/subcutaneous	Rat	*	Active [83]
	Reserpine-induced ulcers/subcutaneous	*	*	Active [84]
(-) Epicatechin	Stress-induced ulcers (water-immersion)/intragastric	Mouse	500.0 mg/kg	Weak Active [81]
(+) Cyanidan-3-beta-ol	Pylorus ligation-induced ulcers/subcutaneous	Rat	ED50 62 mg/kg	Active [85]
	Restraint-induced ulcers/subcutaneous	Rat	ED50 18 mg/kg	Active [85]
	Aspirin-induced ulcers/gastric intubation	Rat	100.0 mg/kg	Active [85]
	Phenylbutazone-induced ulcers/gastric intubation	Rat	100.0 mg/kg	Active [85]
	Ibuprofen-induced ulcers/gastric intubation	Rat	100.0 mg/kg	Active [85]
	Reserpine-induced ulcers/gastric intubation	Rat	100.0 mg/kg	Active [85]
Table 1. Cont.

Molecules	Aspirin-induced ulcers/*intragastric	Rat	5.0 mg/day	Active [50]
Leucocyanidin				
![Leucocyanidin Structure](image)				
Flavanolols	Ethanol induced gastric ulcers/intragastric	Rat	50.0 mg/kg	Active [86]
Taxifolin				
![Taxifolin Structure](image)				
Flavanolols	HCl/ethanol-induced stomach ulcers/intragastric	Rat	* mg/kg	Inactive [79]
Taxifolin,(dl)				
![Taxifolin,(dl) Structure](image)				
Anthocyanidines	Pylorus ligation-induced ulcers/intragastric	Rat	12.5 mg/kg	Active [87]
Benzopyrylium chloride,1: 3,5,7-trihydroxy-2-(3-4-dihydroxyphenyl)				
![Benzopyrylium chloride,1: 3,5,7-trihydroxy-2-(3-4-dihydroxyphenyl) Structure](image)				
Stress-induced (restraint) ulcers/intragastric				
Phenylbutazone-induced ulcers/intragastric				
Indomethacin-induced ulcers/intragastric				
Reserpine-induced ulcers/intragastric				
Ethanol induced lesion/intragastric				
Histamine-induced ulcers/intragastric				
Cysteamine-induced ulcers/intragastric				
Acetic acid-induced ulcers/intragastric				
![Cysteamine-induced ulcers/intragastric Structure](image)				
Table 1. Cont.

Flavones	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Inactive [36]
Acacetin				
![Acacetin](image1)				
Apigenin				
![Apigenin](image2)				
Cynaroside	*/intragastric	Rat	*	* [88]
![Cynaroside](image3)				
Dactylin	Reserpine-induced ulcers/gastric intubation	Mouse	*	Inactive [35]
![Dactylin](image4)	Stress-induced (restraint)	Mouse	*	Inactive [35]
Eupatilin	*/ Intragastric	Rat	*	Active [89]
![Eupatilin](image5)				
Gnaphaloside A	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Active [36]
![Gnaphaloside A](image6)				
Table 1. Cont.

Molecule	Activity	Solvent	Dose	Notes
Gossypin	*/oral	Rat	100.0 mg/kg	Active [80]
Hyperoside	Reserpine-induced ulcers/gastric intubation	Mouse	*	Weak activity [35]
	Stress-induced (restraint) ulcers/gastric intubation	Mouse	*	Weak activity [35]
Hypolaetin-8-O-beta-d-glucoside	Cold stress-induced ulcers/i.p.	Rat	ED50 573mg/kg	Active [90]
	Cold stress-induced ulcers/*	*	ED50 57.3mg/kg	Active [91]
	Ethanol-induced gastric lesions/s.c.	Rat	ED50 68.0mg/kg	Active [92]
Kaempferol rhamnoside	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Active [36]
Linarin	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Inactive [36]
Molecules 2009, 14				

Table 1. Cont.				

Compound	Animal	Route	ED50	Activity
Luteolin	Rat	*/intragastric		Active [88]
	Mouse	47.4 mg/kg		Active [57]
Myricetin rhamnoside	Mouse	474 mg/kg		Active [57]
Nobiletin	Rat	Ethanol-induced gastric ulcer/intragastric	8.0 mg/kg	Active [38]
	Rat	Ethanol-induced ulcers/intragastic	ED50	Active [93]
	Rat	Aspirin-induced ulcers/intragastic	50.0 mg/kg	Weak active [93]
	Rat	HCl/ethanol-induced gastric ulcers/intragastic	25.0 mg/kg	Active [97]
Pectolinarigenin	Mouse	0.05 mL/g		Inactive [36]
Pectolinarin	Mouse	0.05 mL/g		Inactive [36]
Molecule	Activity Description	Species	Dose	Status
---------------------------	---	---------	------	---------
Acetyl pectolinarin	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Inactive [36]
Quercetin rhamnoside	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Active [36]
Quercitrin	Reserpine-induced ulcers/gastric intubation	Mouse	50.0 mg/g	Active [57]
Robinin	Reserpine-induced ulcers/gastric intubation	Mouse	*	Inactive [36]
	Stress-induced (restraint) ulcers/gastric intubation	Mouse	*	Inactive [36]
Rutin	Acid-ethanol-induced ulcers/i.p.	Mouse	12.5 mg/kg	Inactive [37]
	Acid-ethanol-induced ulcers/i.p.	Rat	25.0 mg/kg	Active [37]
	Acid-ethanol-induced ulcers/i.p.	Rat	50.0 mg/kg	Active [37]
	Pretreatment with indomethalin vs	Rat	25.0 mg/kg	Weak activity [53]
	ethanol induced-ulcers/intragastric			
	Ethanol-induced ulcers/intragastric	Rat	50.0 mg/kg	Active [53]
	Ethanol-induced ulcers/intragastric	Rat	200.0 mg/kg	Active [34]
	*/intragastric	Mouse	7.0 mg/kg	Active [95]
	*/intragastric	Mouse	*	Active [96]
Table 1. Cont.

Molecule	Condition	Species	Dose (mg/kg)	Activity
Salvigenin	Reserpine-induced ulcers/gastric intubation	Mouse	*	Weak activity [35]
	Stress-induced (restraint) ulcers/gastric intubation	Mouse	*	Weak activity [35]
Scoparin	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Inactive [36]
Ternatin	Cold stress-induced ulcers/i.p.	Rat	25.0 mg/kg	Inactive [98]
	Ethanol-induced ulcers/i.p.	Rat	25.0 mg/kg	Inactive [98]
	Indomethacin-induced ulcers/i.p.	Rat	25.0 mg/kg	Inactive [98]
Vexibinol	HCl-ethanol induced ulcers/intragastric	Rat	10.0 mg/kg	Active [99]
	Stress-induced ulcers (water-immersion)/intragastric	Rat	10.0 mg/kg	Active [99]
	Pylorus ligation-induced ulcers/intragastric	Rat	100.0 mg/kg	Active [99]
	Indomethacin-induced ulcers/intragastric	Rat	100.0 mg/kg	Active [99]
	Histamine-induced ulcers/intragastric	Rat	100.0 mg/kg	Inactive [99]
	Phenylbutazone induced ulcers/intragastric	Rat	300.0 mg/kg	Active [99]
	5-Ht-induced ulcers/intragastric	Rat	300.0 mg/kg	Active [99]
Isoflavones

Compound	Administration	Species	Dose	Result
Genistin	*/intragastric	Rat	*	Active [88]

Flavonols

Compound	Administration	Species	Dose	Result
Kaempferol	Acid-ethanol-induced ulcers/i.p.	Rat	250.0 mg/kg	Inactive [37]
	Acid-ethanol-induced ulcers/i.p.	Rat	50.0 mg/kg	Active [37]
	Acid-ethanol-induced ulcers/i.p.	Rat	100.0 mg/kg	Active [37]
	Ethanol-induced ulcers/i.p.	Rat	100.0 mg/kg	Active [100]
	Cold stress-induced ulcers/i.p.	Rat	200.0 mg/kg	Active [100]
	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Inactive [36]
	Pylorus ligation-induced ulcers/i.p.	Rat	200.0 mg/kg	Active [101]
	Stress-induced (restraint) ulcers/i.p.	Rat	200.0 mg/kg	Active [101]
	Reserpine-induced ulcers/gastric intubation	Mouse	*	Inactive [35]
	Stress-induced (restraint) ulcers/gastric	Mouse	*	Inactive [35]
Myricetin	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Inactive [36]
	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Active [36]
	Reserpine-induced ulcers/gastric intubation	Mouse	*	Active [55]
	Stress-induced (restraint) ulcers/gastric intubation	Mouse	*	Active [55]
	Reserpine-induced ulcers/gastric intubation	Mouse	*	Active [35]
	Stress-induced (restraint) ulcers/gastric intubation	Mouse	*	Active [35]
Patuletin	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Inactive [36]
Compound	Condition	Species	Dose	Effect
---------------	--	---------	-----------------	--------------
Patulitrin	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Weak active
				[36]
Phellavin	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Inactive
				[36]
Quercetin	Ethanol-induced gastric lesions/intragastric	Rat	200.0 mg/kg	Active
	Acetic acid-induced ulcers/intragastric	Rat	100.0 mg/kg	Active
	Stress-induced ulcers (water-immersion)/intragastric	Rat	100.0 mg/kg	Active
	Pylorus ligation-induced ulcers/intragastric	Rat	100.0 mg/kg	Active
	Pylorus ligation-induced ulcers/intragastric	Rat	100.0 mg/kg	Active
	*/intragastric	Rat	12.5 mg/kg	Inactive
	Acid-ethanol-induced ulcers/i.p.	Rat	25.0 mg/kg	Active
	Acid-ethanol-induced ulcers/i.p.	Rat	50.0 mg/kg	Active
	Acid-ethanol-induced ulcers/i.p.	Rat	12.5 mg/kg	Active
	Ethanol-induced gastric ulcers/i.p.	Mouse	*	Active
	*/ intragastric	Rat	100.0 mg/kg	Active
	Ethanol-induced ulcers/intragastric	Rat	100.0 mg/kg	Active
	Stress-induced (restraint) ulcers/intragastric	Rat	200.0 mg/kg	Active
	Ethanol-induced ulcers/intragastric	Mouse	0.05 mL/gm	Inactive
	Reserpine-induced ulcers/gastric intubation	Mouse	50.0 mg/kg	*[57]
	Reserpine-induced ulcers/gastric intubation	Mouse	*	Active
	Reserpine-induced ulcers/gastric intubation	Mouse	*	Active
	Stress-induced (restraint) ulcers/gastric	Mouse	*	Active
	Stress-induced (restraint) ulcers/gastric	Mouse	*	Active
Table 1. Cont.

Molecule	Condition	Species	Dose	Activity
Quercetin-3'-o-beta-d-glucoside	Reserpine-induced ulcers/gastric intubation	Mouse	0.05 mL/g	Inactive [36]

Biflavonoids

Molecule	Condition	Species	Dose	Activity
Cinnamtannin B-1	Stress-induced ulcers (water-immersion)/gastric intubation	Mouse	500.0 mg/kg	Inactive [81]
Cinnamtannin D-1	Stress-induced ulcers (water-immersion)/gastric intubation	Mouse	500.0 mg/kg	Inactive [81]
Procyanidin B-1	Stress-induced ulcers (water-immersion)/gastric intubation	Mouse	500.0 mg/kg	Weak activity [81]
Procyanidin B-2	Stress-induced ulcers (water-immersion)/gastric intubation	Mouse	200.0 mg/kg	Active [81]

Flavonoids represent a highly diverse class of secondary metabolites with potentially beneficial effects on human health. These compounds protect the gastrointestinal mucosa from lesions produced by various experimental ulcer models and against different necrotic agents. Several mechanisms of action may be involved in this protective effect. Quercetin has an anti-secretory mechanism of action. This flavonol has antihistaminic properties, thus, decreases histamine levels, as well as preventing the release of histamine from gastric mast cells and inhibiting the gastric H+/K+ proton pump, diminishing acid gastric secretion. On the other hand chalcones, in particular those with more than one isoprenyloxyl group, possess cytoprotective effects, which increase the mucosal blood flow, stimulate the synthesis of mucus substances in the gastric mucosa and increase PGs levels. However, the most important mechanism of action responsible for the anti-ulcer activity of flavonoids is their antioxidant properties, seen in garcinol, rutin and quercetin, which involves free radical scavenging, transition metal ions chelation, inhibition of oxidizing enzymes, increase of proteic and nonproteic antioxidants and reduction of lipid peroxidation. These effects are correlated with presence in the structures of an o-dihydroxy in the ring B (catechol), and additionally a 2,3 double bond in conjugation with a 4-oxo function, as well as the presence hydroxyl groups in positions 3, 5 and 7. Besides the gastroprotective activity, sofalcone (a chalcone), quercetin and naringenin (flavanones) accelerate the healing of gastric ulcers. In addition, the two first polyphenolic compounds have anti-*H. pylori* activity and may be
utilized as an alternative or additive agent to the current therapy. Therefore flavonoids could have an ideal more effective and less toxic therapeutic potential for the treatment of gastrointestinal diseases, particularly for peptic ulcers.

Acknowledgements

The authors would like to express their sincere thanks to Ms. Gabriela G. Barbosa for the revision of the English grammar and to College of Pharmacy, the University of Illinois at Chicago, U.S.A., for helping with the computer in the database NAPRALERT.

References and Notes

1. Mayty, P.; Biswas, K.; Roy, S.; Barnergee, R. K.; Bandyopadhyay, U. Smoking and pathogenesis of gastroduodenal ulcer-recent mechanistic update. *Mol. Cell. Biochem.* **2003**, *253*, 329-338.
2. Prados, C. M.A.; Miquel, D.B. Úlcera péptica. *Rev. Esp. Enferm. Dig.* **2004**, *96*, 81-82.
3. Bandyopadhyay, D.; Biswas, K.; Bhattacharyya, M.; Reiter, R.J.; Banerjee, R.K. Gastric toxicity and mucosal ulceration induced by oxygen-derived reactive species, protection by melatonin. *Curr. Mol. Med.* **2001**, *1*, 501-513.
4. Bhattacharjee, M.; Bhattacharjee, S.; Gupta, A.; Banerjee, R.K. Critical role of an endogenous gastric peroxidase in controlling oxidative damage in *H. pylori*-mediated and non-mediated gastric ulcer. *Free Radical Biol. Med.* **2002**, *32*, 731-743.
5. Konturek, P.C.; Konturek, S. Role of *Helicobacter pylori* infection in gastro-duodenal secretion and in pathogenesis of peptic ulcer and gastritis. *J. Physiol. Pharmacol.* **1994**, *45*, 333-350.
6. Wallace, J.L.; Granger, D.N. The cellular and molecular basis of gastric mucosal defense. *FASEB J.* **1996**, *10*, 731-740.
7. Calam, J.; Baron, J. H. Pathophysiology of duodenal and gastric ulcer and gastric cancer. *Brit Med J.* **2001**, *323*, 980-983.
8. Liu, C.; Crawford, J. M. Patologia–Bases patológicas das doenças. In *Robbins & Cotran*; Kumar, V., Abbas, A.K., Fausto, N., Eds.; Elsevier: Rio de Janeiro, Brazil, 2005; Volume 7, pp. 851-857.
9. Rao, C.H.V.; Ojha, S.K.; Radhakrishnan, K.; Govindarajan, R.; Rastogi, S.; Mehrotra, S.; Pushpangadan, P. Antiulcer activity of *Uteria salicifolia* rhizome extract. *J. Ethnopharmacol.* **2004**, *91*, 243-249.
10. Bandyopadhyay, D.; Biswas, K.; Bhattacharyya, M.; Reiter, R.J.; Banerjee, R.K. Involvement of reactive oxygen species in gastric ulceration, protection by melatonin. *Indian J. Exp. Biol.* **2002**, *40*, 693-705.
11. Lehne, R.A. *Pharmacology for Nursing Care*; W.B. Saunders: Philadelphia, USA, 1998; pp. 781-783.
12. Cechinel-Filho, V.; Yunes, R.A. Breve análise histórica da Química de Plantas Medicinais: Sua importância na atual concepção de fármaco segundo os paradigmas Ocidental e Oriental. In *Plantas medicinais sob a ótica da química medicinal moderna*; Yunes, R.A., Calixto, J.B., Eds.; Argos Editora Universitária: Chapecó, Brazil, 2001.
13. Kanner, J.; Lapidot, T. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. *Free Radical Biol. Med.* **2001**, *31*, 1388-1395.

14. Gurbuz, I.; Akyuz, C.; Yesilada, E.; Sener, B. Anti-ulcerogenic effect of *Momordica charantia* L. fruits on various ulcer models in rats. *J. Ethnopharmacol.* **2000**, *71*, 77-82.

15. Cechinel Filho, V.; Yunes. R.A. Estratégias para a obtenção de compostos farmacologicamente ativos a partir de plantas medicinais. Conceitos sobre modificação estrutural para otimização da atividade. *Quim. Nova* **1998**, *21*, 1.

16. Czinner, E.; Hagymasi, K.; Blazovics, A.; Kery, A.; Szoke, E.; Lemberkovics, E. The *in vitro* effect of *Helichyis flos* on microsomal lipid peroxidation. *J. Ethnopharmacol.* **2001**, *77*, 31-35.

17. Harborne, J.B.; Baxter, H. *Handbook of Natural Flavonoids*; Wiley: Chichester, UK, 1999; p. 2.

18. Williams, C.A.; Grayer, R.J. Anthocyanins and other flavonoids. *Nat. Prod. Rep.* **2004**, *21*, 539-573.

19. Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. *Phytochemistry* **2000**, *55*, 481-504.

20. Hassig, A.; Liang, W.X.; Schwabl, H.; Stampfli, K. Flavonoids and tannins plant-based antioxidants with vitamin character. *Med. Hypotheses* **1999**, *52*, 479-481.

21. Martens, S.; Mithöfer, A. Flavones and flavone synthases. *Phytochemistry* **2005**, *66*, 2399-2407.

22. Dewick, P. M. *Medicinal Natural Products: a biosynthetic approach*; John Wiley: Chichester, UK, 2002; p. 150.

23. Buchanan, B.; Gruissem, W.; Jones, R. *Biochemistry & Molecular Biology of Plants*; American Society of Plant Physiologists, USA, 2000; p. 1304.

24. Havsteen, B.H. The biochemistry and medical significance of the flavonoids. *Pharmacol. Ther.* **2002**, *96*, 67-202.

25. Beecher, G.R. Overview of dietary flavonoids: nomenclature, occurrence and intake. *J. Nutr.* **2003**, *133*, 3248S-3254S.

26. Ross, J.A., Kasum, C. M. Dietary flavonoids: bioavailability, metabolic effects, and safety. *Annu. Rev. Nutr.* **2002**, *22*, 19-34.

27. Yang, C.S.; Landau, J.M.; Huang, M.T.; Newmark, H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. *Annu. Rev. Nutr.* **2001**, *21*, 381-406.

28. Manach, C.; Morand, C.; Demigne, C.; Texier, O.; Regerat, F.; Rémésy, C. Bioavailability of rutin and quercetin in rats. *FEBS Lett.* **1997**, *409*, 12-16.

29. Critchfield, J.W.; Butera, S.T.; Folks, T.M. Inhibition of HIV activation in latently infected cells by flavonoid compounds. *AIDS Res. Hum. Retrovir.* **1996**, *12*, 39-46.

30. Cheong, H.; Ryu, S.Y.; Oak, M.H.; Cheon, S.H.; Yoo, G.S.; Kim, K.M. Studies of structure activity relationship for the anti-allergic actions. *Arch. Pharmacal Res.* **1998**, *21*, 478-480.

31. Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S.; De Feo, V.; Cicala, C. The flavonoids of *Allium neapolitanum*. *Phytochemistry* **1997**, *44*, 949-957.

32. Lima, J.T.; Almeida, J.R.G.S.; Barbosa-Filho, J.M.; Assis, T.S.; Silva, M.S.; Dacunha, E.V.L.; Braz-Filho, R.; Silva, B.A. Spasmolytic action of diploptropin, a furanoflavan from *Diploptropis ferruginea* Benth., involves calcium blockade in ginea-pig ileum. *Z. Naturforsch. B* **2005**, *60*, 1-8.
33. Di Carlo, G.; Autore, G.; Izzo, A.A.; Maiolino, P.; Mascolo, N.; Viola, P.; Diurno, M.V.; Capasso, F. Inhibition of intestinal motility and secretion by flavonoids in mice and rats: structure-activity relationships. *J. Pharm. Pharmacol.* **1993**, *45*, 1054-1059.

34. La Casa, C.; Villegas, I.; Alarcon De La Lastra, C.; Motilva, V.; Martin Calero, M.J. Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric Lesions. *J. Ethnopharmacol.* **2000**, *71*, 45-53.

35. Barnaulov, O.D.; Manicheva, O.A.; Komissarenko, N.F. Comparative evaluation of the effect of some flavonoids on changes in the gastric wall of reserpine-treated or immobilized mice. *Pharm Chem.* **1983**, *17*, 946-951.

36. Barnaulov, O.D.; Manicheva, O.A.; Shelyuto, V.L.; Konopleva, M.M.; Glyzin, V.I. Effect of flavonoids on development of experimental gastric dystrophies in mice. *Khim Farm Zh.* **1985**, *18*, 935-941.

37. Izzo, A.A.; Di Carlo, G.; Mascolo, N.; Capasso, F. Antiulcer effect of flavonoids: role of endogenous PAF. *Phytother Res.* **1994**, *8*, 179-181.

38. Hirano, H.; Takase, H.; Yamamoto, K.; Abe, K.; Saito, J. Nobiletin as ulcer inhibitor. *Patent-Japan Kokai Tokkyo Koho*-06 72, **1994**, 870, 4.

39. Larson, R.A. The antioxidants of higher plants. *Phytochemistry* **1998**, *27*, 969-978.

40. Sahu, S.C; Gray, G.C. Pro-oxidant activity of flavonoids: effects on glutathione and glutathione S-transferase in isolated rat liver nuclei. *Cat. Inist.* **1996**, *104*, 193-196.

41. Yoshino, K.; Suzuki, M.; Sasaki, K.; Miyase, T.; Sano, M. Formation of antioxidants from (-)-epigallocatechin gallate in mild alkaline fluids, such as authentic intestinal juice and mouse plasma. *J. Nutr. Biochem.* **1999**, *10*, 223-229.

42. Kyogoku, K.; Hatayama, K.; Yokomori, S.; Saziki, R.; Nakane, S.; Sasajima, M.; Sawada, J.; Ohzeki, M.; Tanaka, I. Anti-ulcer effect of isoprenyl flavonoids. II. Synthesis and anti-ulcer activity of new chalcones related to sophoradin. *Chem. Pharm. Bull.* **1979**, *27*, 2943-2953.

43. Sasajima, M.; Nakane, S.; Saziki, R.; Saotome, H.; Hatayama, K.; Kyogoku, K.; Tanaka, I. Studies on the anti-ulcer effects of isoprenyl flavonoids. I. The anti-ulcer effects of isoprenyl chalcone extracted from *Sophora subprostrata*. *Nippon Yakurigaku Zasshi* **1978**, *74*, 897-905.

44. Kimura, M.; Saziki, R.; Arai, I.; Tarumoto, Y.; Nakane, S. Effect of z-carboxymethoxy-4,4'-bis (3-methyl-2-butenyloxy) chalcone (sofalcone) on chronic gastric ulcers in rats. *JPN. J. Pharmacol.* **1984**, *35*, 389-396.

45. Saziki, R.; Kyogoku, K.; Hatayama, K.; Suwa, T.; Sawada, J. Anti-ulcer activities of su-88, a compound related to sophoradin isolated from guang-dou-gen. *J. Pharmacobio-Dynam.* **1983**, *6*, 59.

46. Saziki, R.; Arai, I.; Isobe, Y.; Hirose, H.; Aihara, H. Effects of sofalcone on necrotizing agents-induced gastric lesions and on endogenous prostaglandins in rat stomachs. *J. Pharmacobio-Dynam.* **1984**, *7*, 791-797.

47. Sunairi M, Watanabe K, Suzuki T, Tanaka N, Kuwayama H, Nakajima M. Effects of anti-ulcer agents on antibiotic activity against *Helicobacter pylori*. *Eur J Gastroenterol Hepatol.* **1994**, *6*(Suppl 1), S121-S124

48. Nagate T, Numata K, Hanada K, Kondo I. The susceptibility of *Campylobacter pylori* to agents and antibiotics. *J Clin Gastroenterol.* **1990**, *12*(Suppl 1), S135-S138.
49. Isomoto, H; Furusu, H; Ohnita, K; Wen, Chun-Yang; Inoue, K; Kohno, S. Sofalcone, a mucoprotective agent, increases the cure rate of *Helicobacter pylori* infection when combined with rabeprazole, amoxicillin and clarithromycin. *World J. Gastroenterol.* 2005, 11, 1629-1633.

50. Lewis, D.A.; Fields, W.N.; Shaw, G.P. A natural flavonoid present in unripe plantain banana pulp (*Musa sapientum* L. var. *paradisiaca*) protects the gastric mucosa from aspirin-induced erosions. *J. Ethnopharmacol.* 1999, 65, 283-288.

51. Lewis, D.A.; Shaw, G.P. A natural flavonoid and synthetic analogues protect the gastric mucosa from aspirin-induced erosions. *J. Nutr. Biochem.* 2001, 12, 95-100.

52. Yamaguchi, F.; Saito, M.; Ariga, T.; Yoshimura, Y.; Nakazawa, H. Free radical scavenging activity and antiulcer activity of garcinol from *Garcinia indica* Fruit Rind. *J. Agric. Food Chem.* 2000, 48, 2320-2325.

53. Guerrero, C.P.; Martin, M.J.; Marhuenda, E. Prevention by rutin of gastric lesions induced by ethanol in rats, role of endogenous prostaglandins. *Gen. Pharmacol.* 1994, 25, 575-580.

54. Rao, C.V.; Govindarajan, S.K.O.R.; Rawat, A.K.S.; Mehrotra, S.; Pushpangadan, P. Quercetin, a bioflavonoid, protects against oxidative stress-related gastric mucosal damage in rats. *Nat. Prod. Sci.* 2003, 9, 68-72.

55. Barnaulov, O.D.; Manicheva, O.A.; Yasinov, R.K.; Yakovlev, G.P. Evaluation of the effect of flavonoids from the aerial parts of *Astragalus quisqualis bunge* and *A. floccosifolius sumn* on the development of experimental lesions in the mouse stomach. *Rast. Resur.* 1985b, 21, 85-90.

56. Martin, M.J.; Motilva, V.; Alarcon De La Lastra, C. Quercetin and naringenin, effects on ulcer formation and gastric secretion in rats. *Phytother. Res.* 1993, 7, 150-153.

57. Barnaulov, O.D.; Manicheva, O.A.; Zapesochnaya, G.G.; Shelyuto, V.L.; Glyzin, V.I. Effects of certain flavonoids on the ulcerogenic action of reserpine in mice. *Khim. Farm. Zh.* 1982, 16, 300-303.

58. Alarcon De La Lastra, C.; Martin, M.J.; Motilva, V. Antiulcer and gastroprotective effects of quercetin., a gross and histologic study. *Pharmacology* 1994, 48, 56-62.

59. Martin, M.J.; La-Casa, C.; Alarcon De La Lastra, C.; Cabeza, J.; Villegas, I.; Motilva, V. Anti-oxidant mechanisms involved in gastroprotective effects of quercetin. *Z. Naturforsch. C J. Biosci.* 1998, 53, 82-88.

60. Kahraman, A.; Erkasap, N.; Koken, T.; Serteser, M.; Aktepe, F.; Erkasap, S. The antioxidative and antihistaminic properties of quercetin in ethanol-induced gastric lesions. *Toxicology* 2003, 183, 133-142.

61. Beil, W.; Birkhoiz, C.; Sewing, K.F. Effects of flavonoids on parietal cell acid secretion, gastric mucosal prostaglandin production and *Helicobacter pylori* growth. *Arzneim. Forsch.* 1995, 45, 697-700.

62. Motilva, V.; Alarcon De La Lastra, C.; Calero, M.J.M. Effects of naringenin and quercetin on experimental chronic gastric ulcer in rat studies on the histological findings. *Phytother. Res.* 1992, 6, 168-170.

63. Russo, A.; Acquaviva, R.; Campisi, A.; Sorrenti, V.; Di Giacomo, C.; Virgata, G.; Barcellona, M.L.; Vanella, A. Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. *Cell Biol. Toxicol.* 2000, 16, 91-98.

64. Pietta, P.G. Flavonoids as antioxidant. *J. Nat. Prod.* 2000, 62, 1035-1042.
65. Yamamoto, K.; Kakegawa, H.; Ueda, H.; Matsumoto, H.; Sudo, T.; Miki, T.; Satoh, T. Gastric cytoprotective anti-ulcerogenic actions of hydroxychalcones in rats. *Planta Med.* 1992, 58, 389-393.

66. Ortega, C.A.; Maria, A.O.M.; Gianello, J.C. Chemical components and biological activity of *Bidens subalternans*, *B. aurea* (Astereaceae) and *Zuccagnia punctata* (Fabaceae). *Molecules* 2000, 5, 465-467.

67. De La Rocha, N.; Maria, A.O.M.; Gianello, J.C.; Pelzer, L. Cytoprotective effects of chalcones from *Zuccagnia punctata* and melatonin on the gastroduodenal tract in rats. *Pharmacol. Res.* 2003, 48, 97-99.

68. Kyogoku, K.; Hatayama, K.; Yokomori, S.; Seki, T. Isoprenylchalcones. *Patent-Japan Kokai-75* 1975, 24, 257.

69. Kyogoku, K.; Hatayama, K.; Yokomori, S.; Seki, T.; Isoprenylchalcones. *Patent-Japan Kokai-75b* 1975, 24, 258.

70. Hayatama, Y.; Yokomori, S.; Kawashima, Y.; Saziki, R.; Kyogoku, K. Anti-ulcer effect of isoprenyl flavonoids. III. Synthesis and anti-ulcer activity of metabolites of 2'carboxymethoxy-4',4'-Bis(3-methyl-2-butenyloxy) chalone. *Chem. Pharm. Bull.* 1985, 33, 1327-1333.

71. Murakami, S.; Kotomo, S.; Ozawa, M.; Baba, K. Novel chalcone derivative as antiulcer agent. *Patent-Japan Kokai Koho-04* 1992, 29, 968.

72. Parmar, S.; Hennings, G. Perfect of 3-methoxy-5,7,3',4'-tetrahydroxyflavon on the healing of restraint ulcers in albino rats. *IRCS Med. Sci-Biochem.* 1984, 12, 393-394.

73. Kyogoku, K.; Tachi, Y.; Hatayama, K.; Ohtake, T. Novel flavanone from *Sophora angustifolia*. *Patent-Japan Kokai-74* 1974, 126, 809.

74. Suarez, J.; Herrera, M.D.; Marhuenda, E. Hesperidin and neohesperidin dihydrochalcone on different experimental models of induced gastric ulcer. *Phytoter. Res.* 1996, 10, 616-618.

75. Parmar, N.S. The Gastric Anti-Ulcer Activity of Naringenin, a specific histidine decarboxylase inhibitor. *Int. J. Tissue React.* 1984, 5, 415-420.

76. Galati, E.M.; Monforte, M.T.; D'aquino, A.; Miceli, N.; Di Mauro, D.; Sanogo, R. Effects of naringin on experimental ulcer in rats. *Phytomedicine* 1998, 5, 361-366.

77. Martin, M.J.; Marhuenda, E.; Perez-Guerrero, C.; Franco, J.M. Antiulcer effect of naringin on gastric lesions induced by ethanol in rats. *Pharmacology* 1994, 49, 144-150.

78. Fomum, Z.T.; Ayafor, J.F.; Mbaforji.; Mbi, C.N. Erythrina studies. Part 6. Pharmacological studies on sigmoidin a, b and c, novel flavanones isolated from *Erythrina sigmoidea*. *Rev. Sci. Technol. (Health Sci. Ser.)* 1984, 1, 55-68.

79. Saito, M.; Hosoyama, H.; Ariga, T.; Kataoka, S.; Yamaji, N. Antiulcer activity of grape seed extract and procyanidins. *J. Agric. Food Chem.* 1998, 46, 1460-1464.

80. Parmar, N.S.; Ghosh, M.N. The antiinflammatory and anti-gastric ulcer activities of some bioflavonoids. Bull Jawaharlal Inst. Post-Grad. *Med. Educ. Res.* 1976, 1, 6-11.

81. Ezaki, N.; Kato, M.; Takizawa, N.; Morimoto, S.; Nonaka, G.I.; Nishioka, I. Pharmacological studies on linderae umbellatae ramus, IV. Effects of condensed tannin related compounds on peptic activity and stress-induced gastric lesions in mice. *Planta Med.* 1985, 51, 34-38.
82. Yamazaki, M.; Okuyama, E.; Matsudo, T.; Takamaru, T.; Kaneko, T. Principles of indonesian herbal drugs having an antiulcerogenic activity. I. Isolation and identification of (+)-catechin from *Artocarpus integrus* merr. *Yakugaku Zasshi*. **1987**, *107*, 914-916.

83. Parmar, N.S.; Ghosh, M.N. Gastric antiulcer activity of methyl-3-(+)-catechin. *Stud. Org. Chem. (Amsteram).* **1982**, *11*, 513-521.

84. Balint, G. A.; Gabor, M.; Nafradi, J.; Varro, V. Interaction of 3-o-methyl-(+)-catechin and H2-receptor blockers in piroxican- and indomethacin-induced gastric ulcer models of rat. *Stud. Org. Chem.* **1985**, *23*, 453-456.

85. Parmar, N.S.; Ghosh, M.N. Gastric anti-ulcer activity of (+)-cyanidanol-3, a histidine decarboxylase inhibitor. *Eur. J. Pharmacol.* **1981**, *69*, 25-32.

86. Kolhir, V.K.; Bykov, V.A.; Baginskaja, A.I.; Sokolov, S.Y.; Glazova, N.G.; Leskova, T.E.; Sakovich, G.S.; Tjukavkina, N.A.; Kolesnik, Y.A.; Rulenko, I.A. Antioxidant activity of a dihydroquercetin isolated from *Larix gmelinii* (Rupr.) Rupr. wood. *Phytother. Res.* **1996**, *10*, 478-482.

87. Magistretti, M.J.; Conti, M.; Cristoni, A. Antiulcer activity of an anthocyanadin from *Vaccinium myrtillus*. *Arzneim. Forsch.* **1988**, *38*, 686-690.

88. Rainova, L.; Nakov, N.; Bogdanova, S.; Minkov, E.; Staneva-Stoytcheva, D. Ulceroprotective activity of the flavonoids of *Genista rumelica* Vel. *Phytother. Res.* **1988**, *2*, 137-139.

89. Lee, E.B.; Kang, S.S. Antigastritis and antiulcer agent containing eupatilin, and isolation thereof. *Patent-Repub. Korea* **1994**, *127*, 777.

90. Villar, A.; Gasco, M.A.; Alcaraz, M.J. Anti-inflammatory and anti-ulcer properties of hypolaetin-8-glucoside, a novel plant flavonoid. *J. Pharm. Pharmacol.* **1984**, *36*, 820-823.

91. Villar, A.; Gasco, M.A.; Alcaraz, M.J.; Manez, S.; Cortes, D. Hypolaetin-8-o-glucoside, an anti-inflammatory flavonoid from *Sideritis mugronensis*. *Planta Med.* **1985**, *51*, 70-71.

92. Alcaraz, M.J.; Tordera, M. Studies on the gastric anti-ulcer activity of hypolaetin-8-glucoside. *Phytother. Res.* **1988**, *2*, 85-88.

93. Takase, H.; Yamamoto, K.; Hirano, H.; Saito, Y.; Yamashita, A. Pharmacological profile of gastric mucosal protection by marmin and nobiletin from a traditional herbal medicine, *Aurantii fructus immaturus*. *Jpn. J. Pharmacol.* **1994**, *66*, 139-147.

94. Hirano, H.; Takase, H.; Yamamoto, K.; Yanase, T.; Abe, K.; Saito, Y. The anti-ulcer effects of *Aurantii fructus immaturus*, *Aurantii fructus* and the principles in *Aurantii fructus immaturus*. *Nat. Med.* **1997**, *51*, 190-193.

95. Cen, D.Y.; Chen, Z.W.; Wang, Y.L.; Wang, Q.; Li, Q.J.; Song, B.W. Protective effects of rutoside on gastric mucosa and influence on nitric oxide and prostaglandin. *Chin. Pharm. Bull.* **1999**, *15*, 360-362.

96. Meng, D.S.; Wnag, S.L., Protective effects of quercetin, rutoside, and flavone against intestinal mucosal injury induced by burns in mice. *Chin. Pharm. Bull.* **2000**, *16*, 673-675.

97. Okuyama, E.; Yamazaki, M.; Ishii, Y. Isolation and identification of ursolic acid-related compounds as the principles of glechoma hederacea having an antiulcerogenic activity. *Shoyakugaku zasshi* **1983**, *37*, 52-55.
98. Rao, V.S.N.; Santos, F.A.; Sobriera, T.T.; Souza, M.F.; Melo, C.L.; Silveira, E.R. Investigations on the gastroprotective and antidiarrhoeal properties of ternatin, a tetramethoxyflavone from Egletes viscosa. *Planta Med.* 1997, 63, 146-149.

99. Yamahara, J.; Mochizuki, M.; Chisaka, T.; Fujimura, H.; Tamai, Y. The antiulcer action of sophora and the active constituent in sophora. II. The antiulcer action of vexibinol. *Chem. Pharm. Bull.* 1990, 38, 1039-1044.

100. Goel, R.K.; Maiti, R.N.; Tavares, I.A. Role of endogenous eicosanoids in the antiulcer effect of kaempferol. *Fitoterapia* 1996, 67, 548-552.

101. Goel, R.K.; Pandey, V.B.; Dwivedi, S.P.D.; Rao, Y.V. Antiinflammatory and antiulcer effects of kaempferol, a flavone, isolated from *Rhamnus procumbens*. *Indian J. Exp. Bio.* 1988, 26, 121-124.

102. Di Carlo, G.; Mascolo, N.; Izzo, A.A.; Capasso, F. Effects of quercetin on the gastrointestinal tract in rats and mice. *Phytother. Res.* 1994, 8, 42-45.

Sample availability: Not available.

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).