Clonidine In Paediatrics – A Review

Sujatha Basker¹, Georgene Singh², Rebecca Jacob³

Summary

Clonidine, an alpha-2 agonist is a known antihypertensive agent. Because of its sedative and analgesic effects, it is gaining popularity in anaesthesiology. It can be used to premedicate children, as an adjuvant to regional and general anaesthesia and it has several other applications in paediatric anaesthesia. It has also found use in the paediatric intensive care as a sedative, analgesic and to ensure haemodynamic stability. As in the case of any other anaesthetic drug, its use has to be vigilantly monitored.

Key words Clonidine, Paediatric Anaesthesia, Analgesia, Premedication

Introduction:

Clonidine is a mixed alpha-1 and alpha-2 adrenoceptor agonist with a predominant alpha-2 action. Traditionally, it has been used as an antihypertensive agent since the late sixties. Its primary effect is sympatholysis and it reduces peripheral norepinephrine release by stimulation of the prejunctional inhibitory alpha-2 adrenoceptors. Further uses based on its sedative, anxiolytic and analgesic properties are being developed¹.

Pharmacokinetics and Pharmacodynamics:

Clonidine is N-(2,6 dichlorophenyl)-4,5-dihydro-1H-imidazol-2-amine (Fig 1) with a formula of C₉H₉Cl₂N₃.

Clonidine is rapidly absorbed after oral administration. It reaches a peak plasma concentration within 60-90 minutes. The bioavailability of the drug is about 75-95%. About 20-40% of the drug is bound to protein. 50% of the drug is metabolized in the liver to inactive metabolites which are excreted in the urine and the half life is about 12-33 hours. As clonidine is lipid soluble, it penetrates the blood-brain barrier to reach the hypothalamus and medulla. It does not require transformation into another substance prior to its action².

Clearance of clonidine in neonates is about one-third of that described in adults due to immature elimination pathways and it reaches about 82% of adult rate by one year of age. Hence maintenance dosing which is a function of clearance should be decreased in neonates and infants when using a target concentration approach³.

Rectal administration of 2.5 mcg.kg⁻¹ of clonidine in children, approximately 20 minutes before induction of anaesthesia, achieves a plasma concentration within the range known to be clinically effective in adults⁴.

Fig 1 Clonidine(C₉H₉Cl₂N₃)
Mechanism of action:

Alpha-2 adrenergic agonists produce clinical effects by binding to alpha-2 receptors of which there are 3 subtypes: alpha-2a, alpha-2b and alpha-2c. Alpha-2a receptors mediate sedation, analgesia and sympatholysis. Alpha-2b receptors mediate vasoconstriction and possibly anti-shivering mechanisms. The startle response reflects activation of alpha-2c receptors and it is the response of mind and body to a sudden unexpected stimulus, such as a flash of light, a loud noise (acoustic startle reflex), or a quick movement near the face. In human beings, the reaction includes physical movement away from the stimulus, a contraction of the muscles of the arms and legs, blinking and it also includes blood pressure, respiration, and breathing changes. Clonidine is a centrally acting selective partial adrenergic agonist (alpha-2: alpha-1=220:1).

Alpha-2 receptors are found densely in the pontine locus coeruleus which is an important source of sympathetic nervous system innervation of the forebrain and a vital modulator of vigilance. The sedative effects evoked by alpha-2 agonists most likely reflect inhibition of this nucleus.

Clonidine also stimulates alpha-2 adrenergic inhibitory neurons in the medullary vasomotor centre. As a result, there is a decrease in the sympathetic nervous system outflow from the central nervous system (CNS) to the peripheral tissues. This causes central and peripheral attenuation of sympathetic outflow and central activation of nonadrenergic imidazoline preferring receptors. Decreased sympathetic nervous system activity is manifested as peripheral vasodilatation and a decrease in systolic blood pressure, heart rate and cardiac output. The ability of clonidine to modify the potassium channels in the CNS and thereby hyperpolarize the cell membranes may be the mechanism for profound decrease in anaesthetic requirements produced by clonidine.

Neuraxial placement of clonidine inhibits spinal substance P release and nociceptive neuron firing produced by the noxious stimulation. Alpha-2 afferent terminals are situated centrally and peripherally, in the superficial laminae of the spinal cord and several brain stem nuclei. This suggests that clonidine’s analgesic effects are more pronounced after neuraxial administration.

Clonidine synchronously decreases the cold-response threshold while slightly increasing the sweating threshold thus suggesting that it acts on the central thermoregulatory system rather than preventing shivering peripherally.

Adverse effects:

Administration of clonidine may be accompanied by drowsiness, dry mouth, bradycardia, orthostatic hypotension and impotence. Abrupt withdrawal of the drug could lead to rebound hypertension resulting in a hypertensive crisis. Hence clonidine should be continued throughout the perioperative period. Clonidine may increase blood glucose concentration by inhibiting insulin release.

Drug interactions

Tricyclic antidepressant drugs and presumably phenothiazines and butyrophenones interfere with the action of clonidine. Although administration of a butyrophenone (e.g droperidol) to a patient taking clonidine, guanabenz, or guanfacine chronically could theoretically precipitate a hypertensive crisis, none has been reported. Acute clonidine or dexmedetomidine administration decreases anaesthetic requirements by 40% to 60% and chronic administration decreases requirements by 10% to 20%.

Available forms:

Clonidine is available as tablets, injections and transdermal patches. The various routes and doses are given in Table I.
Antagonist:

The adverse clinical effects of clonidine and dexmedetomidine can be readily reversed with the specific antagonist atipamezole.

Clinical applications:

As a premedicant:

Clonidine in doses of 4 mcg/kg orally or intranasally and in doses of 5 mcg/kg rectally provides adequate sedation. Routine atropine administration along with clonidine negates the adverse effects like bradycardia and hypotension. In a study by Almenrader et al, it was observed that the onset of sedation was much faster with midazolam (30+/−13/min) as compared to clonidine (38.5+/−14.6 min) but the quality of sedation, acceptance of steal induction and parental satisfaction were better with clonidine than midazolam. Clonidine has been proven to resolve agitation and hallucination produced by midazolam.

The quality of sedation produced by alpha-2 agonists differs from sedation produced by drugs that act on GABA receptors such as midazolam. Clonidine produces sedation by decreasing the sympathetic nervous system activity and the level of arousal. The result is a calm patient who can be easily aroused to full consciousness. Drugs that activate GABA receptors produce a clouding of consciousness and can cause paradoxical agitation as well as tolerance or dependence.

Clonidine is devoid of respiratory depressant action and lacks the negative effects on cognition, memory and behaviour as seen with midazolam. Thus it may be substituted for premedication. The taste of clonidine is much better than midazolam. Intranasal administration produces nasal burning and it offers no advantage over the oral route. It is also reported that the onset of action is faster with the oral administration than with intranasal administration. Oral clonidine with atropine can also be recommended to sedate outpatients.

Jatti et al concluded that clonidine produces good sedation and causes less effect on psychomotor functions and therefore it can be used as a premedicant in children. Oral clonidine attenuated the hyperglycemic response, probably by inhibiting the surgical stress-induced release of catecholamines and cortisol. In doses of 4 mcg/kg oral clonidine blunted the increase in heart rate after intravenous atropine in awake children, although clonidine 2 mcg/kg did not. A larger dose of atropine was required to increase the heart rate by 20 beats/min in children who had received 4 mcg/kg of clonidine. It does not affect the preoperative gastric fluid pH and volume in children.

Clonidine decreases postoperative oxygen consumption and adrenergic stress response. Despite dose dependent adverse effects such as hypotension, sedation and idiosyncratic adverse effects such as bradycardia, clonidine does not induce profound respiratory depression. It mildly potentiates opiate-induced respiratory depression. Rectal premedication with clonidine was associated with a significant reduction of pain in the early postoperative period as compared to midazolam and was also associated with moderately increased sedation during the first 24 hours postoperative.

Route	Dose
Intranasal	2-4 mcg/kg
Intramuscular	2 mcg/kg
Oral	4-5 mcg/kg
Rectal	2.5-5 mcg/kg with atropine 40 mcg/kg
Intravenous	1-2 mcg/kg as a bolus
Caudal anaesthetic adjuvant	1-2 mcg/kg
Spinal anaesthetic adjuvant	1-2 mcg/kg
Epidural anaesthetic adjuvant	0.0625% Bupivacaine with fentanyl
Sciotic block	0.2% ropivacaine 0.4 mg/kg/hour with clonidine 0.12 mcg/kg/hour infusion
Paravertebral block	Bolus of 0.5% bupivacaine 19 ml with clonidine 150 mcg/kg given every 48 hours for 3 weeks via an indwelling catheter
tively. The sedative effect of clonidine is in agreement with the unambiguous finding of a parental preference for a calm and sedated child during the first 24 hours postoperatively23. Shiga et al observed that oral clonidine premedication does not alter the efficacy of a simulated epidural test dose containing epinephrine or isoproterenol42.

As an adjuvant to regional techniques:

Physiology in newborns and infants differ from older children and adults because of their narrow therapeutic window and increased incidence of toxicity. Some of the documented complications of caudal are by the local anaesthetics and/or their additives. Inadvertent intravasation of bupivacaine has serious CVS and CNS toxicity. Enantiomers like ropivacaine and levobupivacaine are safer and their duration of action can be prolonged by adjuvants like clonidine and ketamine43-46. The incidence of side effects are lower with clonidine as an adjuvant when compared to morphine given epidurally47-48. Epidural bupivacaine with clonidine as a patient controlled epidural analgesia in children and adolescents following extensive spinal surgery should be encouraged due to the low incidence of side effects like postoperative nausea and vomiting (PONV)27. Addition of clonidine or ketamine for continuous epidural infusion of ropivacaine following lower limb surgeries provides adequate analgesia. It also enables early diagnosis of compartmental syndrome, as the increase in requirement of analgesics precede other clinical symptoms by an average of 7.3 hours49.

A continuous infusion of 0.2% ropivacaine 0.4 mg/kg/hour with clonidine 0.12 mcg/kg/hour through a sciatic nerve catheter offered complete pain relief in a three year old boy who had a subtotal amputation of his foot28. In a case of herpetic neuralgia refractory to medical therapy, paravertebral nerve block with a catheter inserted at T2-3 level using 19 ml of 0.5% bupivacaine with 150 mcg of clonidine every 48 hours for three weeks in a pediatric intensive care unit was helpful29. A combination of S (+) enantiomer of ketamine 1 mg/kg with clonidine 1 mcg/kg administered caudally is adequate for subumbilical surgery without adverse effects50.

Subarachnoid block with bupivacaine and clonidine in term and former preterm infants caused episodes of bradycardia and apnea without desaturation for the first 24 hours postoperatively which resolved spontaneously51. Unlike spinal opioids, clonidine does not cause urinary retention and may hasten the time to first micturition after spinal anaesthesia34,52,54. At the doses of 1-2 mcg/kg, clonidine significantly increases (approximately by a factor of two) the duration of blockade with no haemodynamic effects and decreases the peak plasma concentration of the local anaesthetics.

Caudal 0.2% ropivacaine 0.75 ml/kg with clonidine 1 mcg/kg for subumbilical surgery attenuates changes in postoperative cortisol, insulin and blood glucose response to surgery55. The addition of clonidine 2 mcg/kg to a weak (0.2%) solution of ropivacaine could enhance analgesia but reduce the risk of motor blockade56. Sharpe P et al in their study concluded that there was an increase in analgesic duration with increasing doses of clonidine administered caudally and arousal time was also prolonged57. Light to moderate sedation is commonly observed postoperatively for 1 to 3 hours, which is more beneficial than detrimental in paediatric patients, and at doses not exceeding 2 mcg/kg, this sedation does not preclude hospital discharge. Using clonidine makes catheter placement unnecessary for many paediatric procedures, reducing the overall morbidity and cost of the regional block procedure. However, there are some respiratory concerns about very young patients especially the premature infants58.

Analgesic adjuvant:

After systemic administration, clonidine improves the analgesic effects of anti-inflammatory agents and has peripheral (intra-articular, intravenous, regional) antinociceptive effects in combination with local anaesthetics, opioids and ketamine59. It is an effective analgesic and sedative in combination with NSAIDS for ophthalmic surgery60, tonsillectomy and adenoidec-
The analgesic effect of clonidine 2 mcg/kg as an adjuvant to 0.25% bupivacaine is similar when administered intravenously or caudally.

Prevention of emergence agitation:

In a study by Schmidt et al, premedicating children with oral midazolam 0.5mg/kg or clonidine 4mcg/kg or transmucosal dexmedetomidine 1 mcg/kg produced the same level of anxiety and sedation postoperatively, but children who were given clonidine or dexmedetomidine had less perioperative sympathetic stimulation and postoperative pain as compared to children who were given midazolam. Children who received intravenous clonidine 2 mcg/kg following induction of general anaesthesia woke up slowly (22' vs 14') had a longer PACU stay (57' vs 46') and were sleepy after discharge (75% vs 39%) (p < 0.03) as compared to the placebo group.

Decreasing Minimum Alveolar Concentration (MAC) of sevoflurane:

Nishina et al in their study found that oral clonidine 4 mcg/kg given 105 minutes before induction decreased MAC values of sevoflurane for LMA insertion. The MAC of sevoflurane in the clonidine group was 1.3% +/- 0.18% and in the placebo group it was 2% +/- 0.16. The combination of clonidine and nitrous oxide lessened the MAC of sevoflurane more than that achieved by either drug alone.

Postoperative nausea and vomiting (PONV):

Handa et al has shown that premedication with 4mcg/kg of oral clonidine 105 minutes before paediatric strabismus surgery enhances the antiemetic effect of propofol when compared with oral midazolam 0.4 mg/kg. Both oral and caudal clonidine has been reported to reduce the incidence of postoperative vomiting in children.

Controlled hypotension:

In adolescents aged 10 – 16 years, oral clonidine 5 mcg/kg on the night before surgery and 90 minutes before a major oromaxillofacial surgery reduced the dose of anaesthetics, analgesics, hypotensive agents and provided faster recovery from anaesthesia. It also reduced the fluctuations in blood pressure and heart rate perioperatively.

Sevoflurane induced agitation:

Bock et al found that prophylactic use of clonidine decreased sevoflurane induced agitation at a dose of 4 mcg/kg, independent of the route of administration without increasing postoperative side effects in children.

In cardiovascular surgery:

Intravenous clonidine 0.18 to 3.16 mcg/kg/hr was found to be an effective analgesic, sedative and it ensured haemodynamic stability by decreasing withdrawal symptoms like CNS hyperactivation, hypertension, tachycardia and fever following surgery to correct congenital heart defects in infants aged 0–24 months. There was an age related normalized profile of the haemodynamic parameters with a reduction in heart rate and mean arterial pressure from the upper norm to the mean within 24 hours. In no case, was there a fall in blood pressure which required additional therapy to reach the target blood pressure.

Post operative shivering:

Clonidine is effective in treating post operative shivering in children. In a study by Bergendahl et al, clonidine prevented postoperative shivering when compared to midazolam. Extrapolation from adult data revealed that a dose of 1.5 mcg/kg is required to stop shivering in 5 minutes after drug administration.

Daycare Surgery:

Oral clonidine premedication and new safer local anaesthetics like ropivacaine and levobupivacaine with adjuvants like clonidine or ketamine for regional blocks and single caudal shots prolong analgesia with minimal
Basker Sujatha et al. Clonidine in paediatrics

side effects. These have been useful adjuncts in pediatric ambulatory surgery. Behavioural and cognitive changes may be seen. Hence parental education prior to administration is important.

Attenuation of response to tracheal intubation and extubation:

It was found that children premedicated with rectal clonidine 2.5 mcg/kg did not have a rise in neuropeptide Y, a marker of major adrenergic activation during tracheal intubation, compared to those who received midazolam 300 mcg/kg. It was also found that oral clonidine 4 mcg/kg given 105 minutes before induction attenuated hemodynamic changes associated with tracheal extubation. Yaguchi et al in their study found that oral clonidine premedication decreased MAC of sevoflurane for tracheal extubation and did not prolong emergence from anaesthesia.

Anaesthetic sparing effect:

Oral clonidine premedication in children at a dose of 2-4 mcg/kg decreases the dose of intravenous barbiturate required for induction of anaesthesia and also reduces halothane requirement for maintenance of anaesthesia.

Treatment of spasticity:

Baclofen and clonidine are used in children diagnosed with cerebral palsy or traumatic brain injury. Mean dosages of 40 mg/day (n = 86) and 0.4 mg/day (n = 31) were required for baclofen and clonidine, respectively. The maximum dosage was 240 mg/day for baclofen and 3.8 mcg/kg for clonidine.

Ventilatory response:

Clonidine administered caudally in a dose of 1 mcg/kg did not produce a rise in EtCO₂ despite prolonged sedation. Nishina et al found that a premedicant dose of 4 mcg/kg oral clonidine did not attenuate the increase in minute volume induced by a hypercapnic challenge under sevoflurane anaesthesia. They found no difference in the respiratory rate, EtCO₂ and SpO₂ between clonidine and placebo groups and suggested that clonidine is a suitable premedicant for children to undergo sevoflurane anaesthesia with spontaneous ventilation. Infants who were preterm, formerly preterm or in the neonatal period had perioperative apnea following caudal clonidine.

Cyclical vomiting syndrome:

Palmer et al reported that intravenous clonidine found relief in a teenage boy with cyclical vomiting syndrome not responding to conventional therapy. He suggested that there are links between migraine, cardiovascular system and adrenergic autonomic dysfunction.

Sensorymotor gating deficits:

Clonidine because of its effect on alpha-2c receptors is used to treat sensorymotor gating deficits like attention deficit hyperactivity disorder ADHD, schizophrenia, post traumatic stress disorder and drug withdrawal.

Sedation in Paediatric Intensive Care Unit (PICU):

Clonidine is used as an analgesic and sedative in the ICU and forms a part of the ICU protocol in UK. Intravenous clonidine 1 mcg/kg/hour with midazolam 50 mcg/kg/hour was not associated with significant changes in heart rate, blood pressure and cardiac index and achieved satisfactory sedation scores. Hence clonidine was found to be cardiostable as a sedative along with midazolam in critically ill infants who were ventilated. Lowery et al, has reported a long term use of about four and a half months in a critically ill infant for analgesic purpose. Lyons et al reported a case of an 11 year old child with 78% deep burns who was ventilator dependent due to the use of large doses of morphine. Addition of low dose clonidine to the analgesic regime produced a dramatic reduction in morphine consumption with an attendant improvement in ventilatory, gastrointestinal and psychological functions.
Clonidine Overdose:

Caudal clonidine has a large margin of safety in healthy children as reported in three cases where 100 times the dose for a single shot caudal was given. Apart from excessive somnolence for a day, these children had no respiratory depression or haemodynamic instability. A five year old child with cerebral palsy and seizure disorder was given clonidine in excessive doses by the mother to control restlessness. The child had bradycardia and hypotension after induction and required resuscitation. In a multicentre study conducted by Spiller et al children younger than twelve years of age who reported to six poison centers with clonidine ingestion were followed for a minimum of 24 hours. Though clinical effects were common, severe adverse effects occurred only in 10% of the patients. The dose ingested was reported for 90 patients (80%). 61 (68%) children ingested 0.3 mg and none had coma, respiratory depression, or hypotension. The lowest dose ingested that resulted in coma and respiratory depression was 0.3 mg (0.015mcg/kg). The authors have recommended a direct medical evaluation for (1) all children 4 years of age and younger with unintentional clonidine ingestion of 0.1 mg (2) ingestion of 0.2 mg in children 5 to 8 years of age and (3) ingestion of 0.4 mg in children older than 8 years of age. Observation for 4 hours may be sufficient to detect patients who will develop severe effects.

Sinha et al reviewed cases of clonidine poisoning presenting to Royal Children’s Hospital, Melbourne, Australia over the period from 1997 to 2001. Twenty-four cases of clonidine poisoning were identified over the 5 year period. Nine patients ingested their own medication, which was prescribed for attention-deficit hyperactivity disorder. Clonidine was prescribed for children in 16 cases (67%) for other purposes. Impaired conscious state and bradycardia were the most common presenting features. Activated charcoal was given in 14 cases and volume expansion in six. There were 12 children (50%) who required admission to the intensive care for monitoring, including three who received mechanical ventilation. The average length of stay was 25.7 hours with no long-term complications.

Contraindications to the use of Clonidine:

Hypovolemia, A-V block, prolonged P-R interval and spontaneous bradycardia.

Conclusion:

Clonidine is associated with a number of beneficial effects especially in the paediatric age group. Its ability to provide a calm patient preoperatively, stable intraoperative haemodynamics and a prolonged postoperative sedation without respiratory depression makes it a suitable anaesthetic agent. Furthermore, the analgesic effect provided by clonidine when administered intravenously and as an adjuvant to regional anaesthetic techniques makes it a suitable choice in infants. Because of its sedative, anxiolytic and analgesic properties, clonidine is assuming greater importance as an anaesthetic adjuvant in paediatric anaesthesia.

References

1. Moss J, Glick D. The Autonomic Nervous System.In: Miller RD Editor. Miller’s Anesthesia. 6th Ed. Philadelphia: Elsevier Churchill Livingstone 2005:617-77.
2. Aho M, Erkola O, Korttila K. Alpha-2 Adrenergic agonists in anaesthesia. Curr Opin Anesthesiol 1992;5:481.
3. Potts AL, Larsson P, Eksborg S, Warman G, Lönnqvist PA, Anderson BJ. Clonidine disposition in children; a population analysis. Paediatr Anaesth 2007;17:924-33.
4. Lönnqvist PA, Bergendahl HT, Eksborg S. Pharmacokinetics of clonidine after rectal administration in children. Anesthesiology 1994;81:1097-101
5. Stoelting RK, Hillier SC. Editors. Antihypertensive Drugs. In: Pharmacology & Physiology in Anesthetic Practice, 4th Ed. Philadelphia: Lippincott Williams & Wilkins 2006: 338-51.
6. Davis M, Gendelman DS, Tischler MD, Gendelman PM. A primary acoustic startle circuit: Lesion and stimulation studies. Journal of Neuroscience 1982;6:791-05.
7. De Vos H, Bricca G, De Keyser J, De Backer JP, Bousquet P, Vauquelin G. Imidazoline receptors, non-adrenergic idazoxan binding sites and alpha 2-adrenoceptors in the human central nervous system. Neuroscience 1994;59:589-98.
Basker Sujatha et al. Clonidine in paediatrics

8. Hamilton CA. The role of imidazoline receptors in blood pressure regulation. Pharmacol Ther 1992; 54:231.
9. Guyenet PG, Cabot GB. Inhibition of sympathetic preganglionic neurons by catecholamines and clonidine: Mediation by an alpha adrenergic receptor. Neurosci 1981;1:1908.
10. Eisenach JC, DeKock M, Klinschwa WA. Alpha-2 adrenergic agonist for regional anesthesia. A clinical review of clonidine (1984-1995). Anesthesiology 1996;85:655-74.
11. Delaunay L, Bonnet F, Liu N, Beydon L, Catoire P, Sessler DI. Clonidine comparably decreases the thermoregulatory thresholds for vasoconstriction and shivering in humans. Anesthesiology 1993;79:470-4.
12. Delaunay L, Herail T, Sessler DI, Lienhart A, Bonnet F. Clonidine increases the sweating threshold, but does not reduce the gain of sweating. Anesth Analg 1996;83:844-8.
13. De Witte J, Sessler DI. Perioperative shivering: Physiology and pharmacology. Anesthesiology 2002;96:467-484.
14. Metz SA, Halter JB, Robertson RP. Induction of defective insulin secretion and impaired glucose tolerance by clonidine. Selective stimulation of metabolic alpha adrenergic pathways. Diabetes 1978;27:554.
15. Flacke JW, Bloor BC, Flacke WE, Wong D, Dazza S, Stead SW, et al. Reduced narcotic requirement by clonidine with improved hemodynamic and adrenergic stability in patients undergoing coronary bypass surgery. Anesthesiology 1987;67:11-9.
16. Ghignone M, Calvillo O, Quintin L. Anesthesia and hypertension: the effect of clonidine on perioperative hemodynamics and isoflurane requirements. Anesthesiology 1987;67:3.
17. Bloor BC, Flacke WE. Reduction in halothane anesthetic requirement by clonidine, an alpha-adrenergic agonist. Anesth Analg 1982;61:741.
18. Stella MJ, Bailey AG. Intranasal clonidine as a premedicant: three cases with unique indications. Paediatr Anaesth 2008;17:1143-9.
19. Schmidt AP, Valinetti EA, Bandeira D, Bertacchi MF, Simões CM, Auler JO Jr. Effects of preanesthetic administration of midazolam, clonidine, or dexmedetomidine on postoperative pain and anxiety in children. Paediatr Anaesth 2007;17:667-74.
20. Bergendahl HT, Lönöqvist PA, Eksborg S, Ruthström E, Nordenberg L, Zetterqvist H, et al. Clonidine vs midazolam as premedication in children undergoing adeno-tonsillectomy: a prospective, randomized, controlled clinical trial. Acta Anaesthesiol Scand 2004;48:1292-300.
21. Bergendahl HT, Eksborg S, Kogner P, Lönöqvist PA. Neuropeptide Y response to tracheal intubation in anaesthetized children: effects of clonidine vs midazolam as premedication. Br J Anaesth 1999;82:391-4.
22. Pohl-Schickinger A, Lemmer J, Hübler M, Alexi-Meskishvili V, Redlin M, Berger F, Stiller B. Intravenous clonidine infusion in infants after cardiovascular surgery. Paediatr Anaesth 2008;18:217-22.
23. Ambrose C, Sale S, Howells R, Bevan C, Jenkins I, Weir P et al. Intravenous clonidine infusion in critically ill children: dose-dependent sedative effects and cardiovascular stability. Br J Anaesth 2000;84:794-6.
24. Saudan S, Habre W, Ceroni D, Meyer PA, Greenberg RS, Kaelin A et al. Safety and efficacy of patient-controlled epidural analgesia following pediatric spinal surgery. Paediatr Anaesth 2008;18:132-9.
25. Ivani G, Codipietro L, Gagliardi F, Rosso F, Mossetti V, Vitale P. A long-term continuous infusion via a sciatic catheter in a 3-year-old boy. Paediatr Anaesth 2003;13:718-21.
26. Shelly MP. Dexmedetomidine: a real innovation or more of the same? Br J Anaesth 2001;87:767-78.
27. Bergendahl H, Lönöqvist PA, Eksborg S. Clonidine: an alternative to benzodiazepines for premedication in children. Curr Opin Anaesthesiol 2005;18:608-13.
33. Bergendahl H, Lönnqvist PA, Eksborg S. Clonidine in paediatric anaesthesia: review of the literature and comparison with benzodiazepines for premedication. Acta Anaesthesiol Scand 2006;50:135-43.

34. Jatti K, Batra YK, Bhardwaj N, Malhotra S. Comparison of psychomotor functions and sedation following premedication with oral diazepam and clonidine in children. Int J Clin Pharmacol Ther 1998;36:336-9.

35. Nishina K, Mikawa K, Maekawa N, Shiga M, Obara H. Effects of oral clonidine premedication on plasma glucose and lipid homeostasis associated with exogenous glucose infusion in children. Anesthesiology 1998;88:922-7.

36. Nishina K, Mikawa K, Maekawa N, Obara H. Oral clonidine premedication blunts the heart rate response to intravenous atropine in awake children. Anesthesiology 1995;82:1126-30.

37. Nishina K, Mikawa K, Maekawa N, Obara H. Oral clonidine premedication does not affect preoperative gastric fluid pH and volume in children. Anesth Analg 1995;80:1065-6.

38. Quintin L, Viale JP, Annat G. Oxygen uptake after major abdominal surgery: Effect of clonidine. Anesthesiology 1991;74:236.

39. Bailey PL, Sperry RJ, Johnson GK, Eldredge SJ, East KA, East TD et al. Respiratory effects of clonidine alone and combined with morphine, in humans. Anesthesiology 1991;74:43-8.

40. Ooi R, Pattison J, Feldman Sa. The effects of intravenous clonidine on ventilation. Anaesthesia 1991;46:632.

41. Rauck RL, Eisenach JC, Jackson K, Young LD, Southern J. Epidural clonidine treatment for refractory reflex sympathetic dystrophy. Anesthesiology 1993; 79:1163-9.

42. Shiga M, Nishina K, Mikawa K, Uesugi T, Maekawa N, Obara H. Oral clonidine premedication does not change efficacy of simulated epidural test dose in sevoflurane-anaesthetized children. Anesthesiology 2000;93:954-8.

43. Hussain AS, Siddiqui MS, Hamdard F, Mayhew JF. Postoperative apnoea in an ex-premature infant: is it only related to clonidine? Paediatr Anaesth 2003;13:741.

44. Marhofer P, Koinig H, Kapral S. [The choice of drugs for caudal anaesthesia in children. An overview] Anaesthesist 2003;52:55-67.

45. Kodric N. Regional anaesthesia in children. Med Arh 2003;57:61-4.

46. Ivani G, Mattioli G, Rega M, Conio A, Jasonni V, de Negri P. Clonidine-mepivacaine mixture vs plain mepivacaine in paediatric surgery. Paediatr Anaesth 1996;6:111-4.

47. Cucchiaro G, Dagher C, Baujard C, Dubousset AM, Benhamou D. Side-effects of postoperative epidural analgesia in children: a randomized study comparing morphine and clonidine. Paediatr Anaesth 2003;13:318-23.

48. Peutrell JM, Lönnqvist PA. Neuraxial blocks for anaesthesia and analgesia in children. Curr Opin Anaesthesiol 2003;16:461-70.

49. Dalens B. Some current controversies in paediatric regional anaesthesia. Curr Opin Anaesthesiol 2006;19:301-8.

50. Passariello M, Almenrader N, Canneti A, Rubeo L, Haiberger R, Pietropaoli P. Caudal analgesia in children: S(+)-ketamine vs S(+)-ketamine plus clonidine. Paediatr Anaesth 2004;14:851-5.

51. Rochette A, Troncin R, Raux O, Dadure C, Lubrano JF, Barbotte E, et al. Clonidine added to bupivacaine in neonatal spinal anesthesia: a prospective comparison in 124 preterm and term infants. Paediatr Anaesth 2005;15:1072-7.

52. Gentili M, Bonnet F. Incidence of urinary retention after spinal anaesthesia: Comparison of morphine and clonidine. Anesthesiology 1994;81: A945.

53. Gentili M, Mamelle JC, Le Foll G. Combination of low dose bupivacaine and clonidine for unilateral spinal anesthesia in arthroscopic knee surgery. Reg Anesth 1995;20:169.

54. Kapral S, Kocek S, Krafft P, et al. Intrathecal clonidine delays motor onset of bupivacaine. Anesthesiology 81: A935,1994.

55. Akbas M, Akbas H, Yegin A, Sahin N, Titiz TA. Comparison of the effects of clonidine and ketamine added to ropivacaine on stress hormone levels and the duration of caudal analgesia. Paediatr Anaesth 2005;15:580-5.

56. Ivani G, De Negri P, Conio A, Amati M, Roero S, Giannone S et al. Ropivacaine-clonidine combination for caudal blockade in children. Acta Anaesthesiol Scand 2000 ; 44:446-9.

57. Sharpe P, Klein JR, Thompson JP, Rushman SC, Sherwin J, Wandless JG, et al. Analgesia for circumcision in a paediatric population: comparison of caudal bupivacaine alone with bupivacaine plus two doses of clonidine. Paediatr Anaesth 2001;11:695-700.

58. Bouchut JC, Dubois R, Godard J. Clonidine in preterm-infant caudal anesthesia may be responsible for post-operative apnea. Reg Anesth Pain Med 2001; 26:83.

59. Tryba M, Gehling M. Clonidine—a potent analgesic adjuvant. Curr Opin Anaesthesiol 2002;15:511-7.
Basker Sujatha et al. Clonidine in paediatrics

60. Nishina K, Mikawa K, Shiga M, Takao Y, Maekawa N, Obara H. Diclofenac and flurbiprofen with or without clonidine for postoperative analgesia in children undergoing elective ophthalmological surgery. Paediatr Anaesth 2000;10:645-51.

61. Reimer EJ, Dunn GS, Montgomery CJ, Sanderson PM, Scheepers LD, Merrick PM. The effectiveness of clonidine as an analgesic in paediatric adentonilslectomy. Can J Anaesth 1998;45:1162-7.

62. Hansen TG, Henneberg SW, Walther-Larsen S, Lund J, Hansen M. Caudal bupivacaine supplemented with caudal or intravenous clonidine in children undergoing hypospadias repair: a double-blind study. Br J Anaesth 2004;92:223-7.

63. Malviya S, Voepel-Lewis T, Ramamurthi RJ, Burke C, Tait AR. Clonidine for the prevention of emergence agitation in young children: efficacy and recovery profile. Paediatr Anaesth 2006;16:554-9.

64. Nishina K, Mikawa K, Uesugi T, Obara H. Oral clonidine premedication reduces minimum alveolar concentration of sevoflurane for laryngeal mask airway insertion in children. Paediatr Anaesth 2006;16:834-9.

65. Nishina K, Mikawa K, Shiga M, Maekawa N, Obara H. Oral clonidine premedication reduces minimum alveolar concentration of sevoflurane for tracheal intubation in children. Anesthesiology 1997;87:1324-7.

66. Handa F, Fujii Y. The efficacy of oral clonidine premedication in the prevention of postoperative vomiting in children following strabismus surgery. Paediatr Anaesth 2001;11:71-4.

67. Mikawa K, Nishina K, Maekawa N, Takao Y, Asano M, Obara H. Attenuation of the catecholamine response to tracheal intubation with oral clonidine in children. Can J Anaesth 1995;42:869-74.

68. Motsch J, Böttiger BW, Bach A, Böhrer H, Skoberne T, Martin E. Caudal clonidine and bupivacaine for combined epidural and general anaesthesia in children. Acta Anaesthesiol Scand 1997;41:877-83.

69. Grottke O, Müller J, Dietrich PJ, Krause TH, Wappler F. Comparison of premedication with clonidine and midazolam combined with TCI for orthopaedic shoulder surgery. Anesthesiol Intensivmed Notfallmed Schmerzther 2003;38:772-80.

70. Hackmann T, Friesen M, Allen S, Precious DS. Clonidine facilitates controlled hypotension in adolescent children. Anesth Analg 2003;96:976-81.

71. Bock M, Kunz P, Schreckenberger R, Graf BM, Martin E, Motsch J. Comparison of caudal and intravenous clonidine in the prevention of agitation after sevoflurane in children. Br J Anaesth 2002;88:790-6.

72. Nishina K, Mikawa K. Clonidine in paediatric anaesthesia. Curr Opin Anaesthesiol 2002;15:309-16.

73. Joris J, Banache M, Bonnet F. Clonidine and ketamine both are effective treatment for postoperative shivering: Anesthesiology 1993;79:532-39.

74. Kranke P, Eberhart LH, Roewer N, Tramèr MR. Postoperative shivering in children: a review on pharmacologic prevention and treatment. Paediatr Drugs 2003;5:373-83.

75. Lonnqvist PA, Morton NS. Paediatric day-case anaesthesia and pain control. Curr Opin Anaesthesiol. 2006;19(6):617-21. 76 Eck JB, Ross AK. Paediatric regional anaesthesia—what makes a difference? Best Pract Res Clin Anaesthesiol 2002;16:159-74.

76. Yaguchi Y, Inomata S, Kihara S, Baba Y, Kohda Y, Toyooka H. The reduction in minimum alveolar concentration for tracheal extubation after clonidine premedication in children. Anesth Analg 2002;94:863-6.

77. Nishina K, Mikawa K, Maekawa N, Obara H. The efficacy of clonidine for reducing perioperative haemodynamic changes and volatile anaesthetic requirements in children. Acta Anaesthesiol Scand 1996;40:746-51.

78. Lubsch L, Habersang R, Haase M, Luedtke S. Oral baclofen and clonidine for treatment of spasticity in children. J Child Neurol 2006;21:1090-2.

79. Nishina K, Mikawa K, Uesugi T, Obara H. Oral clonidine does not change ventilatory response to carbon dioxide in sevoflurane-anesthetized children. Paediatr Anaesth 2004;14:1001-4.

80. Galante D. Preoperative apnea in a preterm infant after caudal block with ropivacaine and clonidine. Paediatr Anaesth 2005;15:708-9.

81. Fellmann C, Gerber AC, Weiss M. Apnoea in a former preterm infant after caudal bupivacaine with clonidine for inguinal herniorrhaphy. Paediatr Anaesth 2002;12:637-40.

82. Breschan C, Krumpholz R, Likar R, Kraschl R, Schalk HV. Can a dose of 2microg.kg(-1) caudal clonidine cause respiratory depression in neonates? Paediatr Anaesth 1999;9:81-3.

83. Sinha Y, Cranswick NE. Clonidine poisoning in children: a recent experience. J Paediatr Child Health 2004;40:678-80.
86. Jukka Sallinen, Antti Haapalinna, Timo Viitamaa, Brian K. Kobilka, Mika Scheinin. Adrenergic \(\alpha_2\)-Receptors Modulate the Acoustic Startle Reflex, Prepulse Inhibition, and Aggression in Mice. The Journal of Neuroscience 1998; 18:3035-42.

87. Huber D, Kretz FJ. Efficacy of clonidine in paediatric anaesthesia. Anesthesiol Intensivmed Notfallmed Schmerzther 2005;40:567-75.

88. Jenkins IA, Playfor SD, Bevan C, Davies G, Wolf AR. Current United Kingdom sedation practice in pediatric intensive care. Paediatr Anaesth 2007;17:675-83.

89. Lowery R, Zuk J, Polaner DM. Long-term use of clonidine in a critically-ill infant.Paediatr Anaesth 2005;15:694-8.

90. Lyons B, Casey W, Doherty P, McHugh M, Moore KP. Pain relief with low-dose intravenous clonidine in a child with severe burns.Intensive Care Med 1996;22:249-51.

91. Meyer C, Cambray R. One hundred times the intended dose of caudal clonidine in three pediatric patients.Paediatr Anaesth 2008;18:888-90.

92. Goldfinger MM, Tripi PA. Cardiac arrest in a child with cerebral palsy undergoing sevoflurane induction of anesthesia after preoperative clonidine. Paediatr Anaesth 2007;17:270-2.

93. Spiller HA, Klein-Schwartz W, Colvin JM, Villalobos D, Johnson PB, Anderson DL. Toxic clonidine ingestion in children. J Pediatr 2005;146:263-6.

94. Weerasuriya K, Shaw E, Turner P. Preliminary clinical pharmacological studies of S3341, a new hypotensive agent, and comparison with clonidine in normal males. Eur J Clin Pharmacol 1984; 27: 281–6.