A field experiment was conducted during Zaid season, 2015 at the Crop Research Farm, Department of Agronomy, SHIATS, and Allahabad (U.P.) to conducted Economics statues of summer pearlmillet (Pennisetum glaucum L.) hybrids to different levels of nitrogen. Among the response of different hybrids to levels of nitrogen, treatment T9 i.e., V3 + 100:45:45 kg ha⁻¹ NPK, recorded maximum grain yield (3.72 t ha⁻¹), straw yield (6.98 t ha⁻¹), protein content (13.43%) and harvest index (36.15%). Whereas the lowest value in terms of plant height (164.47cm), dry weight (40.80g), grain yield (2.47 t ha⁻¹) and straw yield (4.62 t ha⁻¹) was observed in the treatment T1 i.e., V1 + 80:45:45 kg ha⁻¹ NPK). The highest gross return (78795.00 ha⁻¹), net return (57222.00 ha⁻¹) and benefit cost ratio (2.65) were registered in treatment T11 i.e., N3 (20:60:20NPK) + 0.2% foliar spray of borax at 35DAS (pre-flowering). Whereas the lowest value (48925.50 ha⁻¹), (30075.50 ha⁻¹) and (1.59) respectively in the treatment T1 i.e., N1 (20:40:20 NPK).

Keywords
Pearlmillet, Level of NPK, Boron, Growth, Yield and Benefit Cost Ratio.

Accepted: 17 May 2017
Available Online: 10 June 2017

Introduction

Pearlmillet [Pennisetum glaucum (L.)] is largely grown for grain and fodder purpose under those situations where other crops generally fail. Pearlmillet as a food crop is limited to the developing countries in Asia, and particularly in Africa and ranked sixth in the world following rice, wheat, corn, barley and sorghum (Anonymous, 2010-11). The important pearlmillet growing countries are India, China, Nigeria, Pakistan, Sudan, Egypt, Arabia, and Russia. It is estimated that over 95% of pearlmillet production is used as food, the reminder being divided between animal and poultry feed (7%), other uses (seed, bakery products, snacks, etc.) and waste. The genus Pennisetum is distributed throughout the tropics and subtropics of the world. It includes about 140 species, one In India, pearlmillet is popularly known as Bajra, and it is the fourth most important cereal crop after rice, wheat and sorghum. It has the greatest potential among all the millets. Annual planting area of the country under pearlmillet is 9.5 million hectares producing nearly 10.1
million tonnes of grains with productivity of 10.44 q ha\(^{-1}\) (Economic Survey of India, 2011). The major producing states are Rajasthan (46%), Maharashtra (19%), Gujarat (11%), Uttar Pradesh (8%) and Haryana (6%), (Sonawane et al., 2010). The nutrient content of pearl millet compares very well with other cereals and millets. It has high protein content with slightly superior amino acid profile. Pearl millet grain contains 13-14 per cent protein, 5-6 per cent fat, 74 per cent carbohydrate and 1-2 per cent minerals. The probable reasons for recording higher stature of growth attributes viz., plant height, leaf area index, dry matter production and number of tillers m\(^{-2}\) was observed in different varieties due to increased levels of nitrogen. While all these parameters were at their lowest value with no nitrogen application. Naik et al., (1995) and Basavarajappa et al., (2002) and also similar finding observed in pearl millet by AICRP Forage Crops (2006).

Materials and Methods

Field experiment was conducted during Zaid season 2015 at Crop Research Farm, Sam Higginbottom Institute of Agriculture, Technology and Sciences (Deemed-to-be-University) Allahabad. The experimental site is located at 250 57 N latitude, 870 19 E longitude and at an altitude of above mean sea level. The soil of the experimental area was sandy loam with moderately alkaline pH; low in organic carbon (0.32%) and available N (188.30 kg ha\(^{-1}\)), available P (34.50 kg ha\(^{-1}\)) and available K (87.00 kg ha\(^{-1}\)) during zaid 2015 respectively.

A recommended pearl millet variety (Pro Agro 9444, Ganga kaveri 1044 and Pioneer 86M 32) was chosen for the study. The experiment was laid out in Randomized Block Design (RBD) with two factor different levels of Nitrogen and three improved Varieties with nine treatments combination on a plot size of 3 x 3 m\(^{2}\). Before sowing, line were formed in the field as the spacing in treatments. Pearl millet was sown in line and covered with the soil. Pearl millet seeds were hand dibbled. The total quantity of nitrogen, phosphorus and potassium as per treatment in the form of two split application are applied, one at basal and the second application at top dressing.

All the agronomic practices were carried out uniformly to raised the crop. For taking data on yield and yield components on pearl millet five plants were selected randomly in each plot. Cost of cultivation, gross return, net return and benefit cost ratio was worked out to evaluate the economics of each treatment, based on the existing market prices of inputs and output. The Cost of Cultivation (ha\(^{-1}\)) for each treatment was work out separately, taking

The Gross return (ha\(^{-1}\)) from each treatment was calculated

Gross return (ha\(^{-1}\)) = Income from grain + income from stover

Net return (ha\(^{-1}\))

The net profit from each treatment was calculated separately, by using the following formula

Net return = Gross return (ha\(^{-1}\)) – Cost of cultivation (ha\(^{-1}\))

Benefit cost ratio

The benefit cost ratio was calculated using the following formula

\[
\text{Benefit cost ratio} = \frac{\text{Gross return (ha}^{-1}\text{)}}{\text{Total cost of cultivation (ha}^{-1}\text{)}}
\]

Results and Discussion

Observations regarding the response of different levels of phosphorus and frequency
of boron levels on economics of greengram are given in tables 1–4.

Grain yield (t ha\(^{-1}\))

The result revealed that there was significant difference between different treatments and maximum grain yield (3.72 t ha\(^{-1}\)) was observed by the application in T9 *i.e.*, V3 + 100:45:45 kg ha\(^{-1}\) NPK, whereas the lowest value 2.47 t ha\(^{-1}\) was observed in treatment T5 *i.e.*, V2 + 90:45:45 kg ha\(^{-1}\) NPK and T1 *i.e.*, V1 + 80:45:45 kg ha\(^{-1}\) NPK. And these are partially supporting by Tiwana and Puri (2005). However, treatment, T3 *i.e.*, V1 + 100:45:45 kg ha\(^{-1}\) NPK, T6 *i.e.*, V2 + 100:45:45kg ha\(^{-1}\) NPK was found statistically at par with T9 *i.e.*, V3 + 100:45:45 kg ha\(^{-1}\) NPK.

Straw yield (t ha\(^{-1}\))

The result revealed that there was significant difference between different treatments and maximum straw yield (6.98 t ha\(^{-1}\)) was observed by the application in T9 *i.e.*, V3 + 100:45:45 kg ha\(^{-1}\) NPK, whereas the lowest value 4.62 t ha\(^{-1}\) was observed in treatment T1 *i.e.*, V1 + 80:45:45 kg ha\(^{-1}\) NPK. Jain and Poonia (2003) also observed similar finding.

Table 1: Cost of cultivation (for Agro practices) of per common cost of Cultivation fixed cost of all treatment

SI. No.	Particulars	Unit	Qty.	Rate/Unit(₹)	Cost (₹ ha\(^{-1}\))
A	Land preparation				
1	Ploughing	Hours	3 hr	300	900.00
2	Disc harrowing	Hours	3 hr	250	750.00
3	Leveling	Hours	4 hr	200	800.00
4	Lay out of the field	Labour	8	100	800.00
B	Seed sowing				
1	Seed	Rate	20 kg ha\(^{-1}\)	150	3000.00
2	Sowing	Labour	4	100	400.00
C	Fertilizer				
1	Urea	Charges	47 kg ha\(^{-1}\)	10	470.00
2	MOP	Charges	34 kg ha\(^{-1}\)	20	680.00
D	Irrigation				
1	Irrigation	Number	3	800	2400.00
2	Labour	Charges	6	100	600.00
E	Harvesting				
1	Harvesting	Labour	15	100	1500.00
2	Threshing	Labour	8	100	800.00
3	Winnowing	Labour	6	100	600.00
F	Depreciation				
G	Reatal value of land	Months	3	750	2250.00
H	Supervision charges	Months	3	300	900.00

Total cost of cultivation(₹ ha\(^{-1}\)) 16850.00
Table 2 Variable cost and cost of cultivation on each treatment

Treatments	Fixed cost of SSP (₹ ha⁻¹)	Cost of SSP (₹ ha⁻¹)	Cost of boron (₹ ha⁻¹)	Variable cost of boron (₹ ha⁻¹)	Total cost (₹ ha⁻¹)
T₁	16850.00	2000.00	-	2000.00	18850.00
T₂	16850.00	2000.00	1389.00	3389.00	20239.00
T₃	16850.00	2000.00	1389.00	3389.00	20239.00
T₄	16850.00	2500.00	-	2500.00	19350.00
T₅	16850.00	2500.00	1389.00	3889.00	20739.00
T₆	16850.00	2500.00	1389.00	3889.00	20739.00
T₇	16850.00	2500.00	2778.00	5278.00	22128.00
T₈	16850.00	2500.00	-	2500.00	19350.00
T₉	16850.00	3334.00	-	3334.00	20184.00
T₁₀	16850.00	3334.00	1389.00	4723.00	21573.00
T₁₁	16850.00	3334.00	1389.00	4723.00	21573.00
T₁₂	16850.00	3334.00	2778.00	6112.00	22962.00

Urea = 10 ₹ kg⁻¹, SSP = 8 ₹ kg⁻¹, MOP = 20 ₹ kg⁻¹, Boron = 50 ₹ 100 g⁻¹

FsB – Foliar spray of Boron

Table 3 Mean grain yield and straw yield grain and straw return and gross return

Treatments	Yield (t ha⁻¹)	Return (₹ ha⁻¹)	Gross return (₹ ha⁻¹)		
	Grain yield	Straw yield	Grain	Straw	
T₁	0.99	2.06	45816.00	3109.50	48925.50
T₂	1.12	2.28	51566.00	3429.00	54995.00
T₃	1.22	2.33	56120.00	3499.50	59619.50
T₄	1.28	2.38	58880.00	3579.00	62459.00
T₅	1.22	2.33	56120.00	3499.50	59619.50
T₆	1.34	2.46	61778.00	3699.00	65477.00
T₇	1.36	2.67	62836.00	4009.50	66845.50
T₈	1.33	2.67	61180.00	4009.50	65189.50
T₉	1.24	2.43	57316.00	3645.00	60961.00
T₁₀	1.35	2.48	62238.00	3729.00	65967.00
T₁¹	1.62	2.85	74520.00	4275.00	78795.00
T₁₂	1.40	2.69	64400.00	4039.50	68439.50

Sale rate of grain = 46 ₹ kg⁻¹
Sale rate of straw = 1.5 ₹ kg⁻¹

FsB – Foliar spray of Boron
Table 4: Total cost of cultivation (रु ha⁻¹) gross return (रु ha⁻¹) net return (रु ha⁻¹) and Benefit cost ratio

S.No.	Treatments	Cost of cultivation (रु ha⁻¹)	Gross return (रु ha⁻¹)	Net return (रु ha⁻¹)	Benefit cost ratio
T₁	N₁ (20:40:20 NPK)	18850.00	48925.50	30075.50	1.59
T₂	N₂ (20:40:20 NPK)+20 DAS (0.2% FsB)	20239.00	54995.00	34756.00	1.71
T₃	N₃ (20:40:20 NPK)+35DAS (0.2% FsB)	20239.00	59619.50	39380.50	1.94
T₄	N₄ (20:40:20 NPK)+20&35DAS (0.2% FsB)	21628.00	62459.00	40831.00	1.88
T₅	N₅ (20:50:20 NPK)	19350.00	59619.50	40269.00	2.08
T₆	N₆ (20:50:20 NPK)+20 DAS (0.2% FsB)	20739.00	65477.00	44738.00	2.15
T₇	N₇ (20:50:20 NPK)+35 DAS (0.2% FsB)	20739.00	66845.50	46106.50	2.22
T₈	N₈ (20:50:20 NPK)+20&35DAS (0.2% FsB)	22128.00	65189.50	43061.50	1.94
T₉	N₉ (20:60:20 NPK)	20184.00	60961.00	44394.00	2.08
T₁₀	N₁₀ (20:60:20 NPK)+20 DAS (0.2% FsB)	21573.00	78795.00	57222.00	2.65
T₁₁	N₁₁ (20:60:20 NPK)+35 DAS (0.2% FsB)	21573.00	78795.00	57222.00	2.65
T₁₂	N₁₂ (20:60:20 NPK)+20&35DAS (0.2% FsB)	22962.00	68439.50	45477.50	1.98

FsB – Foliar spray of Boron

Cost of cultivation

Maximum cost of cultivation (22962.00 रु ha⁻¹) was recorded in treatment T12 i.e., N₃ (20:60:20 NPK) + 20 & 35DAS (0.2% foliar spray of borax), whereas the lowest value (18850.00 रु ha⁻¹) was observed in treatment T₁ i.e., N₁ (20:40:20 NPK). The results are in conformity with those of, Obeng et al., (2012), Singh et al., (2003) and Malik et al., (1990).

Gross return: Maximum gross return (78795.00 रु ha⁻¹) was recorded in treatment T₁₁ i.e., N₃ (20:60:20 NPK) + (0.2% foliar spray of borax) at 35 DAS, whereas the lowest value (48925.00 रु ha⁻¹) was observed in treatment T₁ i.e., N₁ (20:40:20 NPK). Naik et al., (1995) and Rathore et al., (2006) also observed similar finding.

Net return

Maximum net return (57222.00 रु ha⁻¹) was recorded in treatment T₁₁ i.e., N₃ (20:60:20 NPK) + (0.2% foliar spray of borax) at 35 DAS, whereas the lowest value (30075.50 रु ha⁻¹) was observed in treatment T₁ i.e., N₁ (20:40:20 NPK) and these are partially supporting by Pradhan et al., (2010) and Shaikh (1995).

Benefit cost ratio

Maximum benefit cost ratio (2:65) was recorded in treatment T₁₁ i.e., N₃ (20:60:20 NPK) + (0.2% foliar spray of borax) at 35 DAS, whereas the lowest value 1:59 was observed in treatment T₁ i.e., N₁ (20:40:20 NPK). The results are in conformity with those of, Totawat et al., (2001), Yadav and Solanki (2002), Panday et al., (2001). The probable reason for increase in economics of treatment T₁₁ i.e., N₃ (20:60:20 NPK) + (0.2% foliar spray of borax) at 35 DAS, due to high level of P + 0.2% foliar spray of borax at 35DAS (pre flowering) through application of SSP and borax recorded higher net returns, B:C ratio, protein content, N and P uptake and available phosphorus in soil in field pea than that of DAP and AMF are in the findings of Singh et al., (2005).
(20:60:20NPK) + 0.2% foliar spray of borax at 35DAS (pre-flowering). Whereas the lowest value (48925.50 ha\(^{-1}\)), (30075.50 ha\(^{-1}\)) and (1.59) respectively in the treatment T1-N1 (20:40:20 NPK).

References

Anonymous. 2010-2011. Annual Report All India Co-ordinated Pearlmillet Improvement Project pp.141-142.

Basavarajappa, et al. 2002. Response of safflower to bio-fertilizers with nitrogen levels on growth and seed yield.

Jain, N.K. and Poonia, B.L. 2003. Integrated nutrient management in pearlmillet and optimizing fertilizer requirement in succeeding wheat. Crop Res., 26(1): 62-66.

Malik, A.S., Singh, J. and Faroda, A.S. 1990. Effect of integrated agronomic practices on pearlmillet production under rainfed condition. Crop Res., 3: 21-26.

Naik, B., Linge Gowda, T.B.K., Thimme Gowda, S. and Sridhara, S. 1995. Effect of integrated nutrient management on growth and grain yield of foxtail millet (Setaria italica L. Beauv.) under rainfed conditions on Alfisols of sub-tropical India. Fertilizer News, 40(3): 55-57.

Panday, R.K., Maranville, J.W., and Bako, Y. 2001. Nitrogen Fertilizer Response and Efficiency for Three Cereal Crops in Niger. Communications in Soil Science and Plant Analysis, 32(9&10): 1465-1482.

Pardhan, A., Rajput and Patel, 2010. Effect of varieties and nitrogen levels on growth and yield of Kodo millet (Paspalum scrobiulatum L.) under rainfed condition. Ann. Agric. New service, 31(3&4): 86-87.

Rathore, V.S., Singh, P. and Gautam, R.C. 2006. Productivity and water use efficiency of rainfed pearlmillet (Pennisetum glaucum L.) as influenced by planting patterns and integrated nutrient management. Indian J. Agronomy, 51(1): 46-48.

Shaikh, M. 1995. Genotype response of pearlmillet to planting date alternations and nitrogen application rates in a scarce rainfall shallow soil ecosystem. Crop Res., 10: 229-235.

Singh, R., Singh, D.P., & Tyagi, P.K. 2003. Effect of Azotobacter, Farmyard Manure and Nitrogen Fertilization on Productivity of Pearl Millet Hybrids (Pennisetum glaucum (L) R. Br) in Semi-Arid Tropical Environment, GAGS, 49(1): 21-24.

Singh, R.C., Kumar, S., Kadian, V.S. and Singh, S.N. 2005. Effect of FYM and fertilizer along and their combination on yield of pearlmillet. Haryana Agricultural University J. Res., 35: 109-112.

Sonawane, P.D., Wadile, S.C., Girase, P.P., Chitodkar, S.S. and Sonawane, D.A. 2010. Response of summer pearlmillet (Pennisetum glauchum L.) to depth and time of irrigation. Scheduling. Int. J. Agri. Sci., 6(1): 283-285.

Tiwana, U.S. and Puri, K.P. 2005. Effect of nitrogen levels on the fodder yield and quality of pearl millet varieties under rainfed conditions. Forage Res. 31(2): 142-143.

Totawat, K.L., Somani, L.L., Singh, R. and Singh, G. 2001. Integrated nitrogen management in maize wheat cropping sequence on typic haplustalfs of western India. Annals of Arid Zone, 40(4): 439-444.

Yadava, N.S. and Solanki, N.S. 2002. Effect of levels of nitrogen and its time of application on fodder production of pearl millet. Forage Res., 28: 6-7.

How to cite this article:

Neha, Gautam Ghosh, Preeti Choudhary and Shobha Kumari. 2017. Economic (Benefit Cost Ratio) Status of Summer Pearlmillet at different NPK Levels. Int.J.Curr.Microbiol.App.Sci. 6(6): 1074-1079. doi: https://doi.org/10.20546/ijcmas.2017.606.124