Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

A search for physics beyond the standard model is performed in events with at least three jets and large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 7$ TeV. No significant excess of events above the expected backgrounds is observed in 4.98 fb$^{-1}$ of data collected with the CMS detector at the Large Hadron Collider. The results are presented in the context of the constrained minimal supersymmetric extension of the standard model and more generically for simplified models. For the simplified models of gluino-gluino and squark-squark production, gluino masses below 1.0 TeV and squark masses below 0.76 TeV are excluded in case the lightest supersymmetric particle mass is below 200 GeV. These results significantly extend previous searches.

Submitted to Physical Review Letters

*See Appendix A for the list of collaboration members
Many extensions of the standard model (SM) of particle physics have been proposed to address the shortcomings of the SM, e.g., problems concerning the gauge hierarchy and identity of dark matter [1-3]. Supersymmetry (SUSY) is one such new physics model, which postulates a new symmetry that relates fermionic and bosonic degrees of freedom and introduces a superpartner for each SM particle. In R-parity conserving models [4], SUSY particles are produced in pairs, and the lightest SUSY particle (LSP) is stable. If the LSP is weakly interacting and neutral, it serves as a candidate for dark matter. At the Large Hadron Collider (LHC), squarks (\(\tilde{q}\)) and gluinos (\(\tilde{g}\)), the superpartners of the quarks and gluons, would be produced via the strong interaction and decay to SM particles and two LSPs. A typical signature is the all-hadronic final state, characterized by multiple jets arising from quarks and gluons, and large missing transverse momentum due to the unobserved LSPs.

Searches in this final state have been performed by experiments at the Fermilab Tevatron [5, 6] and at the LHC [7-15]. This Letter presents a search in events with multiple jets and large missing transverse momentum produced in 7 TeV pp collisions using a data sample corresponding to an integrated luminosity of 4.98 \(\pm\) 0.11 fb\(^{-1}\) [16] collected with the Compact Muon Solenoid (CMS) detector. The search strategy follows Ref. [7] but uses more than 100 times the amount of data. This search is not specifically optimized for a particular SUSY model but is sensitive to a variety of new physics models that lead to the multijet final state with large missing transverse momentum. The results of this search are interpreted in the context of the constrained minimal supersymmetric extension of the SM (CMSSM) [17-19] and in a more general context for simplified models [20, 21] of new particles decaying to one or two jets and a stable weakly interacting particle.

The central feature of the CMS detector [22] is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the lead-tungstate crystal electromagnetic calorimeter, and the brass and scintillator hadron calorimeter. Charged particles are measured by the silicon tracker, covering \(0 < \phi < 2\pi\) in azimuth and \(|\eta| < 2.5\) [23]. The calorimeters surrounding the tracking volume cover \(|\eta| < 3\). Outside the field the quartz and steel forward hadron calorimeters extend the coverage to \(|\eta| < 5\). Muons are identified in gas ionization detectors, covering \(|\eta| < 2.4\), embedded in the steel return yoke of the magnet. A two-tier trigger system selects the pp collision events for use in this search.

The recorded events are reconstructed using the particle-flow algorithm [24], which reconstructs particles, namely charged hadrons, photons, neutral hadrons, muons, and electrons, using the information from all subdetectors. These particles are then clustered into jets using the anti-\(k_T\) clustering algorithm with distance parameter 0.5 [25]. Corrections are applied to account for the dependence of the jet response on transverse momentum \(p_T\) and \(\eta\) [26] and for the effects of additional (pileup) pp collisions overlapping with the collision of interest [27, 28].

The event sample for the search is selected by requiring at least three jets with \(p_T > 50\,\text{GeV}\) and \(|\eta| < 2.5\). The further selection is based on two variables: \(H_T\), defined as \(H_T = \sum p_T\) where the sum is carried out over jets with \(p_T > 50\,\text{GeV}\) and \(|\eta| < 2.5\), and \(\vec{H}_T\), defined as \(\vec{H}_T = -\sum \vec{p}_T\) where the sum is over jets with \(p_T > 30\,\text{GeV}\) and \(|\eta| < 5\). Events are required to have \(H_T > 500\,\text{GeV}\) and \(\vec{H}_T > 200\,\text{GeV}\), where \(H_T\) is the magnitude of the \(\vec{H}_T\). The \(H_T\) requirement rejects most of the QCD multijet background. Events with \(\vec{H}_T\) aligned in azimuth with one of the two leading jets with \(\Delta\phi < 0.5\) rad or along the third jet with \(\Delta\phi < 0.3\) rad are removed to further reduce the QCD multijet background. Events containing isolated muons or electrons with \(p_T > 10\,\text{GeV}\) are also vetoed in order to reject \(t\bar{t}\) and \(W/Z+\text{jets}\) backgrounds with leptons in the final state [7, 29, 30]. Events are also rejected if a jet with \(p_T > 30\,\text{GeV}\) has an
electromagnetic p_T fraction larger than 0.95 or a neutral hadron p_T fraction larger than 0.90. In addition, events affected by instrumental effects, particles from noncollision sources, and poor reconstruction quality are rejected (event cleaning) \[32\]. All these requirements constitute the baseline selection \[31\]. The event sample used in this search is collected by triggering on both H_T and M_H or only on H_T. The H_T threshold ranges from 160 to 350 GeV, and the M_H threshold ranges from 60 to 110 GeV. The trigger efficiency is measured to be consistent with 100% for the baseline event selection.

To increase the sensitivity of the search to the different kinematic regions of signal events, the sample of 1885 events passing the baseline selection is divided into 14 subsamples defined in terms of the H_T and M_H values (search selections), as listed in the first column of Table \[1\].

The SM backgrounds mainly consist of $Z(\nu\bar{\nu})$+jets events and $W(\ell\nu)$+jets events from W or $t\bar{t}$ production ($\ell = e, \mu$, or τ). The $W(\ell\nu)$+jets events pass the search selection when the e/μ escapes detection or a τ decays hadronically. The QCD multijet events also contribute to the background when leptonically decays of heavy-flavor hadrons inside jets or jet energy measurements lead to a large M_H. The contributions from other SM processes are found to be negligible. In this search all of the backgrounds are estimated from data \[7\].

Several Monte Carlo (MC) samples are used to model the signal as well as to develop and validate the background prediction methods. The $t\bar{t}$, W/Z+Jets, and γ+jets samples are produced using the MADGRAPH \[33\] generator, interfaced with the PYTHIA 6.4.24 \[34\] parton-shower model. The $t\bar{t}$ and W/Z+Jets samples are scaled up to the next-to-leading-order (NLO) or next-to-next-to-leading-order cross section predictions \[35\] \[36\]. The QCD multijet and SUSY signal production is simulated with PYTHIA 6.4.24, the CTEQ6L \[37\] parton distribution functions (PDFs), and a CMS custom underlying event tuning \[38\]. The generated events are passed through a GEANT4-based \[39\] detector simulation, and have the same distribution of pileup pp interactions as observed in the data.

The $Z(\nu\bar{\nu})$+jets background contribution is estimated using γ+jets events by treating photons as $Z \to \nu\bar{\nu}$ decays. The Z boson and photon exhibit similar kinematic properties at high p_T, and the hadronic component of events is similar in the two cases \[40\] \[43\]. A γ+jets sample is collected by triggering on a γ candidate with or without an additional requirement on H_T depending on the data-taking period. The photon candidates \[44\] are required to be isolated from other particles in the tracker and calorimeters and to have the shower shape consistent with that for a prompt photon. In order to predict the $Z(\nu\bar{\nu})$+jets background, the γ+jets sample is corrected for the γ reconstruction efficiency and purity, both measured from data \[7\], and the $Z(\nu\bar{\nu})$+jets/γ+jets production ratio, obtained from the MADGRAPH simulation samples, which also takes into account the detector acceptance for photons. The total multiplicative correction factor to obtain the $Z(\nu\bar{\nu})$+jets background prediction from the γ+jets event yield is 0.28 ± 0.06 for the baseline selection. The dominant systematic uncertainties on this background estimation originate from the theoretical uncertainty on the γ/Z cross section ratio (20–40%) \[40\] \[43\], the detector acceptance (5–7%), and the γ reconstruction and isolation efficiency (1–10%), depending on the search regions.

As a cross check, the $Z(\nu\bar{\nu})$+jets background is also estimated using $Z(\mu^+\mu^-)$+jets events by treating muons as neutrinos and correcting for the acceptance and efficiencies of the $Z(\mu^+\mu^-)$+jets event selection and the ratio of branching fractions $B(Z \to \nu\bar{\nu})/B(Z \to \mu^+\mu^-) = 5.95 \pm 0.02$ \[45\]. The $Z(\nu\bar{\nu})$+jets background estimated with this method is found to be consistent with the one from the γ+jets events.

The $W(\ell\nu)$+jets events ($\ell = e$ or μ) from W or top quark production constitute a background
Table 1: Event yields for different backgrounds for the 14 search selections together with the total backgrounds, as determined from the collision data, and number of events observed in data. The quoted uncertainties are the combinations of the statistical and systematic uncertainties.

Selection	H_T (GeV)	R_T (GeV)	$Z \rightarrow \nu\nu$	$t\bar{t}/W \rightarrow e, \mu + X$	$t\bar{t}/W \rightarrow \tau \bar{\nu} + X$	QCD multijet	Total background	Data
	500–800	200–350	359 ± 81	327 ± 47	349 ± 40	119 ± 77	1154 ± 128	1269
	500–800	350–500	112 ± 26	48 ± 9	62.5 ± 8.7	2.2 ± 2.2	225 ± 29	236
	500–800	500–600	17.6 ± 4.9	5.0 ± 2.2	8.7 ± 2.5	0.0 ± 0.1	31.3 ± 5.9	22
	>600		5.5 ± 2.6	0.8 ± 0.8	2.0 ± 1.8	0.0 ± 0.0	8.3 ± 3.2	6
	800–1000	200–350	48 ± 19	58 ± 15	56.3 ± 8.3	35 ± 24	197 ± 35	177
	800–1000	350–500	16.0 ± 6.7	5.4 ± 2.3	7.2 ± 2.0	1.2 ± 1.3	29.8 ± 7.5	24
	800–1000	500–600	7.1 ± 3.7	2.4 ± 1.5	1.3 ± 0.6	0.0 ± 0.0	10.8 ± 4.0	6
	>800		3.3 ± 1.7	0.7 ± 0.7	1.0 ± 0.3	0.0 ± 0.0	5.0 ± 1.9	5
	1000–1200	200–350	10.9 ± 5.1	13.7 ± 3.8	21.9 ± 4.6	19.7 ± 13.3	66 ± 15	71
	1000–1200	350–500	5.5 ± 3.0	5.0 ± 4.4	2.9 ± 1.3	0.4 ± 0.7	13.8 ± 5.5	12
	1000–1200	>500	2.2 ± 1.7	1.6 ± 1.2	2.3 ± 1.0	0.0 ± 0.0	6.1 ± 2.3	4
	1200–1400	200–350	3.1 ± 1.8	4.2 ± 2.1	6.2 ± 1.8	11.7 ± 8.3	25.2 ± 8.9	29
	1200–1400	>350	2.3 ± 1.5	2.3 ± 1.4	0.6 ± 0.8	0.2 ± 0.6	5.4 ± 2.3	8
	>1400		3.2 ± 1.8	2.7 ± 1.6	1.1 ± 0.5	12.0 ± 9.1	19.0 ± 9.4	16

when an electron or muon is not identified or is nonisolated and therefore passes the lepton veto. This background is estimated from a μ+jets control sample, selected with the same criteria as those used for the search except that we require exactly one rather than zero isolated μ. The transverse mass $m_T = \sqrt{2p_T^\mu E_T[1 - \cos(\Delta \phi)]}$ is required to be less than 100 GeV in order to select events containing a $W \rightarrow \mu\nu$ decay and to suppress possible new physics signal contamination, i.e., the signal events resulting in the μ+jets sample used for the background estimation. Here E_T is the missing transverse energy and $\Delta \phi$ is the azimuthal angle between the μ and the E_T. Events are weighted according to $(1/e_{\text{iso}}^\mu)/(1 - e_{\text{iso}}^\mu/e_{\text{reco}}^\mu)$ and $(e_{\text{iso}}^\mu/e_{\text{reco}}^\mu)[(1 - e_{\text{iso}}^\mu/e_{\text{reco}}^\mu)]$ in order to predict events with unidentified leptons and nonisolated leptons, where e_{iso}^μ and e_{reco}^μ are the reconstruction and isolation efficiencies of the electrons and muons. The lepton reconstruction efficiencies are obtained from MC simulation, while the isolation efficiencies are extracted by applying a “tag-and-probe” method on the $Z(\ell^+\ell^-)+$jets events in data. The lepton reconstruction and identification efficiencies are parametrized in lepton p_T and $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ relative to the closest jet, in order to account for the kinematic differences between $Z(\ell^+\ell^-)+$jets events and the $t\bar{t}$ and W+jets events. Leptons that are out of acceptance and events lost due to the m_T requirement are accounted for using factors determined from simulation. This background estimation method based on the collision data is validated by applying it to a MC sample and comparing the predicted and the true detector-level background distributions.

The predicted background for each search region is listed in Table 1. On this background estimation, low statistics in the μ+jets control sample are the dominant source of uncertainty in most of the search regions. The modeling of the lepton reconstruction and isolation efficiencies yields a 10% uncertainty. An additional uncertainty of 4–20% varying for different search regions is assigned based on the statistical power of the validation of this background estimation method. A 3% uncertainty accounts for the effect of the presence of QCD, Z, or diboson events in the μ+jets sample, which are modeled by MC simulation.

The background from the hadronic decay of τ leptons (η_τ) is estimated from a sample of μ+jets events, selected from inclusive μ or $\mu + \geq$2-jet triggers by requiring exactly one μ with
$p_T > 20 \text{ GeV}$ and $|\eta| < 2.1$. In this sample, the muon p_T is replaced with a jet p_T taken randomly from a simulated response function for a hadronically-decaying τ lepton. The H_T and H_T^* of the event are recalculated including this τ jet, and the search selections are applied to predict the τ_h background. The τ-jet response function for $\frac{p_T^*}{p_T^\tau}$ is obtained from simulated $t\bar{t}$ and $W(\tau\nu)+$jets events by matching the reconstructed τ jet with the generated τ. Corrections are applied to account for the trigger efficiency, acceptance, and efficiency of the μ selection, and the ratio of branching fractions $B(W \to \tau_h\nu)/B(W \to \mu\nu) = 0.69 \pm 0.05$. This τ_h background estimation method is validated by applying it to the W and $t\bar{t}$ MC samples, and 6–13% uncertainties are assigned mainly to reflect the statistical power of this validation. The other main systematic uncertainties arise from the μ acceptance (≤13%); the τ-jet response function (≤20%); and the subtraction of residual QCD multijet, $Z(\mu^+\mu^-)+$jets, and $(t\bar{t}/W) \to \tau\nu + X \to \mu\nu + X$ backgrounds (≤2%), where the quoted uncertainties apply to all search regions.

The QCD background is estimated from collision data recorded with a set of triggers having an H_T threshold ranging from 150 to 700 GeV. The data samples used include the electroweak contributions not removed by the lepton veto and any potential new physics events; however, their cross section is negligible compared to the QCD multijet cross section. First, the p_T values of the jets with $p_T > 15 \text{ GeV}$ in these events are adjusted within the jet p_T resolution, using a kinematic fit such that the events are balanced in the transverse plane. The jet p_T values in the rebalanced events are then smeared with the measured jet resolutions to predict the QCD multijet background. The jet p_T response functions are determined as a function of p_T and η using a QCD multijet MC sample that includes heavy-flavor quarks. The width and tail of the p_T response functions are subsequently adjusted to account for the differences in the resolutions measured in simulation and in data. The width (σ) of the Gaussian part of the simulated response is 5 (30%) narrower than what is observed in the data for $|\eta| < 0.5$ and $|\eta| < 5.0$. After correcting for this difference, the fraction of jets with response more than 2.5σ away from the mean value is consistent with that in the data within uncertainties. The main uncertainties in this QCD estimation method arise from the shape of the jet response functions including the Gaussian width, the tails, the heavy-flavor contribution, and the effect of pileup on jets in an event. The method has been validated in simulated QCD multijet events within the statistical uncertainties (30–50%), which are assigned as an additional uncertainty. The total uncertainty adds up to 60–70%.

The predicted yields of the SM background and the number of events observed in data are summarized in Table 1 for the 14 search regions. Figure 1 shows the H_T and H_T^* distributions predicted for the SM background, together with those observed in data. The data are consistent with the SM background estimates.

The 95% confidence level (C.L.) upper limits on the CMSSM signal cross section are set using a modified frequentist CL$_{b}$ method, taking the profile likelihood as a test statistic. The results from 14 exclusive search regions are combined into one test statistic considering the bin-to-bin correlations of the systematic uncertainties. The CMSSM model has five independent parameters: the universal scalar and gaugino masses at the grand unification scale, m_0 and $m_{1/2}$; the trilinear coupling, A_0; the ratio of the vacuum expectation values of the two Higgs doublets, $\tan \beta$; and the sign of the Higgsino mixing parameter, μ. The signal cross section is calculated at NLO and next-to-leading-log (NLL) accuracy. The H_T and H_T^* distributions predicted for a low-mass CMSSM benchmark parameter set LM5, $m_0 = 230 \text{ GeV}$, $m_{1/2} = 360 \text{ GeV}$, $A_0 = 0$, $\tan \beta = 10$, and $\mu > 0$, are shown in Fig. 1.

The acceptance times efficiency of the event selection for signal events is evaluated using the...
Figure 1: The (a) H_T and (b) H_T distributions in the search data samples (circles) compared with histograms showing predictions of the SM background and SUSY signal (LM5, see the text) for events passing the baseline selection. The hatched region indicates the uncertainties on the background predictions. The last bin contains all events above the maximum values of H_T and H_T in the figures. The ratio of the observed data to the background predictions is also shown.

Figure 2: The observed and expected 95% C.L. limits in the CMSSM $(m_0, m_{1/2})$ plane. The yellow-shaded region shows the $\pm 1\sigma$ variation in the expected limit, while the dot-dashed curves show the variation in the observed limit when the signal cross section is varied by its theoretical uncertainties. The remaining CMSSM parameters are $\tan \beta = 10$, $\mu > 0$, and $A_0 = 0$. The limits from an earlier CMS search [7] and from other experiments [47] are also shown. The limits from Ref. [7] are shown only up to 1000 GeV in m_0, as done in [7]. The regions where the superpartner of the τ lepton ($\tilde{\tau}$) is the LSP, the renormalization group equations (RGE’s) do not converge, or there is no electroweak symmetry breaking (EWSB) [53], are also indicated.
Figure 3: The observed and expected 95% C.L. upper limits on the (a) $\tilde{g}\tilde{g}$ and (b) $\tilde{q}\tilde{q}$ cross sections in the $(m(\tilde{g}), m(\tilde{\chi}^0))$ and $(m(\tilde{q}), m(\tilde{\chi}^0))$ planes obtained with the simplified model. Also shown are the $\pm 1\sigma$ variation in the expected limit and the variation in the observed limit when the signal cross section is varied by its theoretical uncertainties.

simulated CMSSM samples. The uncertainties on the background predictions, the luminosity determination (2.2%) [16], the signal acceptance and efficiency arising from the jet energy correction (8%), the jet energy resolution (2%), the PDF (6%), the trigger inefficiency (2%), and the event cleaning [31] (3%) are taken into account by the limit-setting procedure. The possible overdetermination of the backgrounds due to the presence of the signal in the data samples used for the background prediction is estimated to be about 3–20%, depending on $(m_0, m_{1/2})$ values, and subtracted when testing for the signal+background hypothesis in the CLs method.

The upper limits on the CMSSM signal cross section are mapped into lower limits in the $(m_0, m_{1/2})$ plane (exclusion contour), as shown in Fig. 2 [32, 54]. The exclusion contours are also shown for the cases in which the signal cross section is varied by its theoretical uncertainties. Conservatively, using the -1σ theory uncertainty values on the observed limit, squark masses below 1.2 TeV and gluino masses below 0.72 TeV are excluded for the chosen CMSSM parameter set.

The search results are also presented in a more general context of simplified models [20, 21] of new particles (\tilde{q} or \tilde{g}) decaying to one or two jets and an undetectable weakly interacting particle ($\tilde{\chi}^0_0$). The model used here includes the production of $\tilde{g}\tilde{g}$ and $\tilde{q}\tilde{q}$ pairs and their decays for a wide range of $(m(\tilde{g}), m(\tilde{\chi}^0))$ and $(m(\tilde{q}), m(\tilde{\chi}^0))$ values, and other SUSY particles are decoupled by being given masses beyond the reach of the LHC. The signal acceptance times efficiency [32] and its uncertainty are evaluated in the same way as used for the CMSSM but using the simulated simplified model signal samples. The observed and expected 95% C.L. upper limits on the signal cross section of $\tilde{g}\tilde{g}$ and $\tilde{q}\tilde{q}$ production are shown in Fig. 3 in the $(m(\tilde{g}), m(\tilde{\chi}^0))$ and $(m(\tilde{q}), m(\tilde{\chi}^0))$ planes, together with contours where the signal cross sections from the NLO+NLL calculations [51–53] are excluded. The results are presented only in the region of $m(\tilde{g}, \tilde{\chi}^0) - m(\tilde{\chi}^0) > 150$ GeV, since the estimation of signal acceptance times efficiency becomes unreliable due to its strong dependence on the modeling of QCD radiation when the mass difference $m(\tilde{g}, \tilde{\chi}^0) - m(\tilde{\chi}^0)$ is smaller. In this model, the $m(\tilde{g})$ values below 1.0 TeV and $m(\tilde{q})$ values below 0.76 TeV are excluded for $m(\tilde{\chi}^0) < 200$ GeV.
In summary, a search for new physics has been performed in the final state with at least three jets and large H_T using a data sample corresponding to an integrated luminosity of 4.98 fb$^{-1}$ collected in 7 TeV pp collisions with the CMS detector at the LHC. The observed numbers of events are consistent with the estimated SM background contributions, and 95% C.L. exclusion limits are set in the CMSSM parameter space which significantly extend the previous results. For the simplified models of $\tilde{g}\tilde{g}$ and $\tilde{q}\tilde{q}$ production, the $m(\tilde{g})$ values below 1.0 TeV and $m(\tilde{q})$ values below 0.76 TeV are excluded for $m(\tilde{\chi}^0) < 200$ GeV.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); and DOE and NSF (USA).

References

[1] J. Wess and B. Zumino, “Supergauge transformations in four dimensions”, *Nucl. Phys. B* 70 (1974) 39, [doi:10.1016/0550-3213(74)90355-1]

[2] H.-C. Cheng and I. Low, “TeV symmetry and the little hierarchy problem”, *JHEP* 09 (2003) 051, [doi:10.1088/1126-6708/2003/09/051] [arXiv:hep-ph/0308199]

[3] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, “Bounds on universal extra dimensions”, *Phys. Rev. D* 64 (2001) 035002, [doi:10.1103/PhysRevD.64.035002] [arXiv:hep-ph/0012100]

[4] G. R. Farrar and P. Fayet, “Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry”, *Phys. Lett. B* 76 (1978) 575, [doi:10.1016/0370-2693(78)90858-4]

[5] CDF Collaboration, “Inclusive Search for Squark and Gluino Production in pPb Collisions at $\sqrt{s} = 1.96$ TeV”, *Phys. Rev. Lett.* 102 (2009) 121801, [doi:10.1103/PhysRevLett.102.121801] [arXiv:0811.2512]

[6] D0 Collaboration, “Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 fb$^{-1}$ of pPb collision data at $\sqrt{s} = 1.96$ TeV”, *Phys. Lett. B* 660 (2008) 449, [doi:10.1016/j.physletb.2008.01.042] [arXiv:0712.3805]

[7] CMS Collaboration, “Search for new physics with jets and missing transverse momentum in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* 08 (2011) 155, [doi:10.1007/JHEP08(2011)155] [arXiv:1106.4503]

[8] CMS Collaboration, “Search for supersymmetry in pp collisions at 7 TeV in events with jets and missing transverse energy”, *Phys. Lett. B* 698 (2011) 196, [doi:10.1016/j.physletb.2011.03.021] [arXiv:1101.1628]
[9] CMS Collaboration, “Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy”, *Phys. Rev. Lett.* **107** (2011) 221804, doi:10.1103/PhysRevLett.107.221804, arXiv:1109.2352

[10] CMS Collaboration, “Inclusive search for squarks and gluinos in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Rev. D* **85** (2012) 012004, doi:10.1103/PhysRevD.85.012004, arXiv:1107.1279

[11] ATLAS Collaboration, “Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s} = 7$ TeV proton-proton collisions”, *Phys. Lett. B* **701** (2011) 186, doi:10.1016/j.physletb.2011.05.061, arXiv:1102.5290

[12] ATLAS Collaboration, “Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in $\sqrt{s} = 7$ TeV proton-proton collisions”, *Phys. Lett. B* **710** (2012) 67, doi:10.1016/j.physletb.2012.02.051, arXiv:1109.6572

[13] ATLAS Collaboration, “Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using $\sqrt{s} = 7$ TeV pp collisions with the ATLAS detector”, *JHEP* **11** (2011) 099, doi:10.1007/JHEP11(2011)099, arXiv:1110.2299

[14] ATLAS Collaboration, “Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb$^{-1}$ of $\sqrt{s} = 7$ TeV proton-proton collisions”, *JHEP* **07** (2012) 167, doi:10.1007/JHEP07(2012)167, arXiv:1206.1760

[15] ATLAS Collaboration, “Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb$^{-1}$ of $\sqrt{s} = 7$ TeV proton-proton collision data”, (2012), arXiv:1208.0949, *Phys. Rev. D* (to be published).

[16] CMS Collaboration, “Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update”, CMS Physics Analysis Summary CMS-PAS-SMP-12-008, (2010).

[17] A. H. Chamseddine, R. L. Arnowitt, and P. Nath, “Locally Supersymmetric Grand Unification”, *Phys. Rev. Lett.* **49** (1982) 970, doi:10.1103/PhysRevLett.49.970

[18] R. L. Arnowitt and P. Nath, “Supersymmetric mass spectrum in SU(5) supergravity grand unification”, *Phys. Rev. Lett.* **69** (1992) 725, doi:10.1103/PhysRevLett.69.725

[19] G. L. Kane et al., “Study of constrained minimal supersymmetry”, *Phys. Rev. D* **49** (1994) 6173, doi:10.1103/PhysRevD.49.6173, arXiv:hep-ph/9312272

[20] J. Alwall, P. Schuster, and N. Toro, “Simplified models for a first characterization of new physics at the LHC”, *Phys. Rev. D* **79** (2009) 075020, doi:10.1103/PhysRevD.79.075020, arXiv:0810.3921

[21] LHC New Physics Working Group, “Simplified Models for LHC New Physics Searches”, (2011), arXiv:1105.2838

[22] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the \(x\) axis pointing to the center of the LHC, the \(y\) axis pointing up (perpendicular to the LHC plane), and the \(z\) axis along the anticlockwise-beam direction. The polar angle, \(\theta\), is measured from the positive \(z\) axis, and the azimuthal angle, \(\phi\), is measured in the \(x-y\) plane relative to the \(x\) axis. The pseudorapidity \(\eta\) is defined as \(\eta = -\ln[\tan(\theta/2)]\).

[23] CMS Collaboration, “Particle Flow Event Reconstruction in CMS and Performance for Jets, Taus and MET”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, (2009).

[24] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\(k_t\) jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[25] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119, doi:10.1016/j.physletb.2007.09.077, arXiv:0707.1378.

[26] CMS Collaboration, “Electron reconstruction and identification at \(\sqrt{s} = 7\) TeV”, CMS Physics Analysis Summary CMS-PAS-EGM-10-004, (2010).

[27] J. Alwall et al., “MadGraph/MadEvent v4: the new web generation”, JHEP 09 (2007) 028, doi:10.1088/1126-6708/2007/09/028, arXiv:0706.2334.

[28] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[29] N. Kidonakis, “Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution”, Phys. Rev. D 82 (2010) 114030, doi:10.1103/PhysRevD.82.114030, arXiv:1009.4935.

[30] K. Melnikov and F. Petriello, “Electroweak gauge boson production at hadron colliders through \(O(\alpha(s)^2)\)”, Phys. Rev. D 74 (2006) 114017, doi:10.1103/PhysRevD.74.114017, arXiv:hep-ph/0609070.

[31] J. Pumplin et al., “New Generation of Parton Distributions with Uncertainties from Global QCD Analysis”, JHEP 07 (2002) 012, doi:10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195.
[38] R. Field, “Early LHC Underlying Event Data - Findings and Surprises”, (2010). arXiv:1010.3558

[39] J. Allison et al., “Geant4 developments and applications”, IEEE 53 1 (2006) 270, doi:10.1109/TNS.2006.869826

[40] Z. Bern et al., “Driving missing data at next-to-leading order”, Phys. Rev. D 84 (2011) 114002, doi:10.1103/PhysRevD.84.114002, arXiv:1106.1423

[41] J. H. Kuhn et al., “Electroweak corrections to hadronic photon production at large transverse momenta”, JHEP 03 (2006) 059, doi:10.1088/1126-6708/2006/03/059, arXiv:hep-ph/0508253

[42] S. Ask et al., “Using $γ$+jets production to calibrate the Standard Model $Z(→ν¯ν)+jets$ background to new physics processes at the LHC”, JHEP 10 (2011) 058, doi:10.1007/JHEP10(2011)058, arXiv:1107.2803

[43] Z. Bern et al., “Missing Energy and Jets for Supersymmetry Searches”, (2012). arXiv:1206.6064

[44] CMS Collaboration, “Measurement of the Differential Cross Section for Isolated Prompt Photon Production in pp Collisions at 7 TeV”, Phys. Rev. D 84 (2011) 052011, doi:10.1103/PhysRevD.84.052011, arXiv:1108.2044

[45] Particle Data Group Collaboration, “Review of Particle Physics”, J. Phys. G 37 (2010) 075021, doi:10.1088/0954-3899/37/7A/075021

[46] CMS Collaboration, “Measurement of the inclusive W and Z production cross sections in pp collisions at $\sqrt{s} = 7$ TeV with the CMS experiment”, JHEP 10 (2011) 132, doi:10.1007/JHEP10(2011)132, arXiv:1107.4789

[47] ALEPH, DELPHI, L3 and OPAL Collaborations, “Joint SUSY Working Group”, (2002). LEPSUSYWG/02-06-2.

[48] A. L. Read, “Presentation of search results: the CLs technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313

[49] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Methods Phys. Res., Sect. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-Z, arXiv:hep-ex/9902006

[50] ATLAS and CMS Collaborations, “Procedure for the LHC Higgs boson search combination in Summer 2011”, ATL-PHYS-PUB-2011-011, CMS NOTE-2011/005, (2011).

[51] W. Beenakker et al., “Squark and gluino production at hadron colliders”, Nucl. Phys. B 492 (1997) 51, doi:10.1016/S0550-3213(97)00084-9, arXiv:hep-ph/9610490

[52] A. Kulesza and L. Motyka, “Threshold Resummation for Squark-Antisquark and Gluino-Pair Production at the LHC”, Phys. Rev. Lett. 102 (2009) 111802, doi:10.1103/PhysRevLett.102.111802, arXiv:0807.2405

[53] M. Krämer et al., “Supersymmetry production cross sections in pp collisions at $\sqrt{s} = 7$ TeV”, (2012). arXiv:1206.2892

[54] K. Matchev and R. Remington, “Updated templates for the interpretation of LHC results on supersymmetry in the context of mSUGRA”, (2012). arXiv:1202.6580
[55] S. Alekhin et al., “The PDF4LHC Working Group Interim Report”, (2011). arXiv:1101.0536
A Supplemental Material: Baseline and search event selections

The event selection starts from a baseline selection. Events passing the baseline selection are then divided into 14 exclusive search regions. The baseline selection requirements after trigger are:

- at least three jets with $p_T > 50$ GeV and $|\eta| < 2.5$;
- $H_T > 500$ GeV;
- $\not H_T > 200$ GeV;
- $|\Delta \phi(J_n, \not H_T)| > 0.5$ rad, $n = 1, 2$ and $|\Delta \phi(J_3, \not H_T)| > 0.3$ rad, where $\Delta \phi$ is the azimuthal angle difference between jet axis J_n and the $\not H_T$ direction for the three highest-p_T jets in the event;
- no isolated muons or electrons in the event;
- muons and electrons are required to have $p_T \geq 10$ GeV and a good quality track that is matched to the primary vertex within 200 μm transversely and 1 cm longitudinally;
- they are required to be isolated, with a relative isolation variable, defined as $\left[\sum_{\Delta R < 0.3} p_T^{\text{charged hadron}} + \sum_{\Delta R < 0.3} p_T^{\text{neutral hadron}} + \sum_{\Delta R < 0.3} p_T^{\text{photons}} \right] / p_T$, smaller than 0.2, where $p_T^{\text{charged hadron}}$, $p_T^{\text{neutral hadron}}$, and p_T^{photons} are, respectively, the transverse momenta of charged hadrons, neutral hadrons, and photons, as reconstructed by the particle-flow algorithm, within a distance $\Delta R = 0.3$ in η-ϕ space of the lepton;
- muons are required to have $|\eta| < 2.4$, whereas electrons should have $|\eta| < 2.5$ excluding the barrel-endcap transition region 1.44 < $|\eta|$ < 1.57;
- jets with $p_T > 30$ GeV have an electromagnetic p_T fraction less than 0.95 and a neutral hadron p_T fraction less than 0.90.

Events passing the baseline selection are divided into 14 search regions:

- for the H_T bins of 500–800 and 800–1000 GeV, $\not H_T$ is binned into 200–350, 350–500, 500–600, and >600 GeV;
- for the H_T bin of 1000–1200 GeV, $\not H_T$ is binned into 200–350, 350–500, and >500 GeV;
- for the H_T bin of 1200–1400 GeV, $\not H_T$ is binned into 200–350 GeV and >350 GeV;
- for the H_T bin of $H_T > 1400$ GeV, $\not H_T > 200$ GeV.
Figure 4: The observed and expected 95% CL lower limits in the CMSSM \((m(\tilde{g}), m(\tilde{q}))\) plane, for \(\tan \beta = 10\), \(\mu > 0\), and \(A_0 = 0\). The yellow-shaded region shows the \(\pm 1\sigma\) variation in the expected limit, while the dot-dashed curves show the variation in the observed limit when the signal cross section is varied by its theoretical uncertainties. The limits from earlier searches by other experiments [5, 6, 47] are also shown. Comparisons with earlier searches are shown for illustrative purpose only, as they are derived with different models or parameter choices.
Figure 5: The acceptance times efficiency of the 14 search regions for the simplified model of $\tilde{g} \tilde{g}$ ($\tilde{g} \rightarrow q\tilde{\chi}^0$) production in the $(m(\tilde{g}), m(\tilde{\chi}^0))$ plane. Empty points are due to the low acceptance times efficiency where no simulated signal events pass the search selection.
Figure 6: The acceptance times efficiency of the 14 search regions for the simplified model of $\tilde{q}\tilde{q}$ ($\tilde{q} \rightarrow q\tilde{\chi}^0$) production in the $(m(\tilde{q}), m(\tilde{\chi}^0))$ plane. Empty points are due to the low acceptance times efficiency where no simulated signal events pass the search selection.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut f"ur Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Er"o, C. Fabjan1, M. Friedl, R. Fr"uhwirth1, V.M. Ghete, J. Hammer, N. H"ormann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Kn"unz, M. Krammer1, D. Liko, I. Mikulec, M. Pernicka1, B. Rahbaran, C. Rohringer, H. Rohringer, R. Sch"ofbeck, J. Strauss, A. Taurok, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Roughy, M. Selvaggi, Z. Staykova, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Universit´e Libre de Bruxelles, Bruxelles, Belgium
B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, T. Hreus, A. L´eonard, P.E. Marage, T. Reis, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, A. Cimmino, S. Costantini, G. Garcia, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, N. Strobbe, F. Thyssen, M. Tytgat, P. Verwilligen, S. Walsh, E. Yazgan, N. Zaganidis

Universit´e Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, R. Castello, A. Caudron, L. Cead, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco2, J. Hollar, V. Lemaître, J. Liao, O. Militaru, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, N. Schul, J.M. Vizan Garcia

Universit´e de Mons, Mons, Belgium
N. Beliy, T. Caeborgs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, D. De Jesus Damiao, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, A. Custódio, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, L. Soares Jorge, A. Sznajder

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
C.A. Bernardes3, F.A. Dias4, T.R. Fernandez Perez Tomei, E. M. Gregores3, C. Lagana, F. Marinho, P.G. Mercadante3, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev3, P. Iaydjiev3, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, S. Guo, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, S. Wang, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, J.P. Gomez, B. Gomez Moreno, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgamal, A. Ellithi Kamel, S. Khalil, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Muntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Harkonen, A. Heikkinen, V. Karimaki, R. Kinnunen, M.J. Kortelainen, T. Lampen, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominen, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer, A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj, C. Broutin, P. Busson, C. Charlot, N. Daci, T. Dahms, L. Dobrzynski, R. Granier de Cassagnac, M. Haguenaier, P. Miné, C. Mironov, M. Nguyen, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Veelken, A. Zabi
N. De Filippisa,c,5, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, L. Lusitoa,b, G. Maggia,c, M. Maggia, B. Marangellib, S. Mya,c, S. Nuzzoa,b, N. Pacificoa, A. Pompilia,b, G. Pugliesea,c, G. Selvaggia,b, L. Silvestrisa, G. Singhb, R. Venditti, G. Zitoa

\textbf{INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy}

G. Abbienia, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia, C. Grandib, L. Guiduccib, S. Marcellinia, G. Masettia, M. Meneghellia,b,5, A. Montanaria, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G. Sirolia,b, R. Travaglinia,b

\textbf{INFN Sezione di Catania a, Università di Catania b, Catania, Italy}

S. Albergoa,b, G. Cappelloa,b, M. Chiorbolia, S. Costaa,b, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

\textbf{INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy}

G. Barbaglia, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, S. Fosaldia,b, E. Galloa, S. Gonzia,b, M. Meschinia, S. Paolottia, G. Sguazzonia, A. Tropianoa,b

\textbf{INFN Laboratori Nazionali di Frascati, Frascati, Italy}

L. Benussi, S. Bianco, S. Colafranceschib,24, F. Fabbri, D. Piccolo

\textbf{INFN Sezione di Genova, Genova, Italy}

P. Fabbricatore, R. Musenich

\textbf{INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy}

A. Benagliaa,b,5, F. De Guioa,b, L. Di Matteoa,b,5, S. Fiorettia,b,5, S. Gennaia,b,5, A. Ghezzia,b, S. Malvezzia, R.A. Manzonia,b, A. Martellia,b, A. Massironia,b,5, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, S. Salaa, T. Tabarelli de Fatisa,b

\textbf{INFN Sezione di Napoli a, Università di Napoli ”Federico II” b, Napoli, Italy}

S. Buontempoa, C.A. Carrillo Montoyaa,b,5, N. Cavalloa,25, A. De Cosa,b,5, O. Doganguna,b, F. Fabozzia,25, A.O.M. Iorioa, L. Listaa, S. Meolaa,26, M. Merolaa,b, P. Paoluccia,5

\textbf{INFN Sezione di Padova a, Università di Padova b, Università di Trento (Trento) c, Padova, Italy}

P. Azzia, N. Bacchettaa,5, P. Bellana,b, D. Biselloa,b, A. Brancaa,5, R. Carlina,b, P. Checchiaa, T. Dorigoa, U. Dossellia, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, K. Kanishcheva,c, S. Lacompraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, M. Nespoloa,b,5, J. Pazzinia, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, S. Vaninia,b, P. Zottoa,b, A. Zucchettaa, G. Zumerlea,b

\textbf{INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy}

M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Torrea,b, P. Vituloa,b

\textbf{INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy}

M. Biasinia,b, G.M. Bileia, L. Fanòa,b, P. Laricciaa,b, A. Lucaronia,b,5, G. Mantovania,b, M. Menichellia, A. Nappia,b, F. Romeoa,b,5, A. Sahaa, A. Santoccchiaa,b, S. Taronia,b,5

\textbf{INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy}

P. Azzurria,c, G. Bagliesia, T. Boccalia, G. Broccolia,c, R. Castaldia, R.T. D’Agnoloa,c, R. Dell’Orsoa, F. Fornia,b,5, L. Foaa,c, A. Giassia, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martina,b,27, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A.T. Serbana,28, P. Spagnoloa, P. Squillaciotia,b,5, R. Tenchinia, G. Tonellia,b,5, A. Venturia,5, P.G. Verdinia

\textbf{INFN Sezione di Roma a, Università di Roma ”La Sapienza” b, Roma, Italy}

L. Baronea,b, F. Cavallaria, D. Del Rea,b,5, M. Diemoza, M. Grassia,b,5, E. Longoa,b,
P. Meridiania,5, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, M. Sigamania, L. Soffia,b

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, M. Costaa,b, N. Demariaa, A. Grazianoa,b, C. Mariottia,5, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,5, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,5, D. Montaninoa,b,5, A. Penzoa, A. Schizzia,b

Kangwon National University, Chunchon, Korea
S.G. Heo, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, D.H. Kim, G.N. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Martínez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vázquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolkowski

Soltan Institute for Nuclear Studies, Warsaw, Poland
H. Bialkowska, B. Boimska, T. Frueboes, R. Gokieli, M. Górska, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, M. Fernandes, P.G. Ferreia Parracho, M. Gallinaro, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, V. Karjavin, V. Konoplyanikov, G. Kozlov, A. Lanev, A. Malakhov, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
S. Evtuhykhin, V. Golovtsov, Y. Ivanov, V. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, M. Kossov³, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin⁴, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, A. Popov, L. Sarycheva†, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin⁵, V. Kachanov, D. Kostantinov, A. Korablev, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic²⁹, M. Djordjevic, M. Ekmedzic, D. Krpic²⁹, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo
Llatas, N., Colino, B., De La Cruz, A., Delgado Peris, D., Domínguez Vázquez, C., Fernandez Bedoya, J.P., Fernández Ramos, A., Ferrando, J., Flix, M.C., Fouz, P., García-Abia, O., Gonzalez Lopez, S., Goy Lopez, J.M., Hernandez, M.I., Josa, G., Merino, J., Puerta Pelayo, A., Quintario Olmeda, I., Redondo, L., Romero, J., Santaolalla, M.S., Soares, C., Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folguera, I. Gonzalez Caballero, L. Lloret Iglesias, J. Piedra Gomez

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chang, J. Duarte Campderrros, M. Felcini, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, T. Rodrigo, A.Y. Rodriguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, A. Botta, H. Breuer, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, D. D’Enterria, A. Dabrowski, A. De Roeck, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, G. Georgiou, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Giunta, G. Heuer, J. Harvey, B. Hegner, A. Hinzmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, K. Kousouris, P. Lecoq, Y.-J. Lee, P. Lenzi, C. Lourenço, T. Mäki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, P. Musella, E. Nesvold, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi, T. Rommerskirchen, C. Rovelli, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwik, I. Segoni, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spiga, M. Spire, M. Spire, M., A. Sisballe, J.R. Vlimant, H.K. Wöhri, S.D. Worm
W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dessertori, M. Dittmar, M. Dünser, J. Eugster, K. Freudenreich, C. Grab, D. Hits, P. Lecomte, W. Lustermann, A.C. Marino, P. Martinez Ruiz del Arbol, N. Mohr, F. Moortgat, C. Nägele, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, A. Starodumov, B. Stieger, M. Takahashi, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, H.A. Weber, L. Wehrli

Universität Zürich, Zurich, Switzerland
E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, P. Robmann, H. Snoek, S. Tupputi, M. Verzetti

National Central University, Chung-Li, Taiwan
Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, A.P. Singh, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, G. Karapinar, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
F. Bostock, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, G. Ball, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, A. Papageorgiou, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, M. Stoye, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, T. Whyntie

Brunel University, Uxbridge, United Kingdom
M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
K. Hatakeyama, H. Liu, T. Scarbrough

The University of Alabama, Tuscaloosa, USA
O. Charaf, C. Henderson, P. Rumerio
Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, M. Gardner, R. Houtz, W. Ko, A. Kopecky, R. Lander, T. Miceli, D. Pellett, B. Rutherford, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra

University of California, Los Angeles, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, J. Duris, S. Erhan, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein, J. Tucker, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, M.E. Dinardo, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, B. Mangano, S. Padhi, C. Palmer, G. Petrucchini, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lovett, N. Mccoll, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, Y. Chen, E. Di Marco, J. Duarte, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, Y.F. Liu, M. Paulini, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn
Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, L.A.T. Bauer, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, D. Green, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Kilminster, B. Klima, S. Kunori, S. Kwan, C. Leonidopoulos, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kroprivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, R. Remington, A. Rinkevicius, P. Sellers, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
J.R. Adams, T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, I. Bucinskaite, J. Callner, R. Cavanaugh, C. Dragoiu, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, S. Griffiths, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, Y. Onel, F. Ozok, S. Sen, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn,
T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Peterman, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, K. Krajczar, W. Li, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephens, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, B. Wyslouch, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, University, USA
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowskii, K. Smith

Northeastern University, Boston, USA
G. Alversen, E. Barberis, D. Baumgartel, M. Casco, J. Haley, D. Nash, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, B. Safdi, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
J.G. Acosta, E. Brownson, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyan

Purdue University, West Lafayette, USA
E. Alagöz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, M. Vidal Marono, H.D. Yoo, J. Zablocki, Y. Zheng
Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA
A. Adair, C. Boulahouache, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Saforov, T. Sakuma, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, C. Florez, S. Greene, A. Gurrola, W. Johns, C. Johnston, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hriosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinini, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, D. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, F. Palmonari, G.A. Pierro, I. Ross, A. Savin, W.H. Smith, J. Swanson

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
A The CMS Collaboration

5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
7: Also at Suez Canal University, Suez, Egypt
8: Also at Zewail City of Science and Technology, Zewail, Egypt
9: Also at Cairo University, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Also at British University, Cairo, Egypt
12: Now at Ain Shams University, Cairo, Egypt
13: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
14: Also at Université de Haute-Alsace, Mulhouse, France
15: Also at Moscow State University, Moscow, Russia
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
18: Also at Eötvös Loránd University, Budapest, Hungary
19: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
20: Also at University of Visva-Bharati, Santiniketan, India
21: Also at Sharif University of Technology, Tehran, Iran
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
24: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
25: Also at Università della Basilicata, Potenza, Italy
26: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
27: Also at Università degli studi di Siena, Siena, Italy
28: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
29: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
30: Also at University of Florida, Gainesville, USA
31: Also at University of California, Los Angeles, Los Angeles, USA
32: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
33: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
34: Also at University of Athens, Athens, Greece
35: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
36: Also at The University of Kansas, Lawrence, USA
37: Also at Paul Scherrer Institut, Villigen, Switzerland
38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Izmir Institute of Technology, Izmir, Turkey
42: Also at The University of Iowa, Iowa City, USA
43: Also at Mersin University, Mersin, Turkey
44: Also at Ozyegin University, Istanbul, Turkey
45: Also at Kafkas University, Kars, Turkey
46: Also at Suleyman Demirel University, Isparta, Turkey
47: Also at Ege University, Izmir, Turkey
48: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
49: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
50: Also at University of Sydney, Sydney, Australia
51: Also at Utah Valley University, Orem, USA
52: Also at Institute for Nuclear Research, Moscow, Russia
53: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
54: Also at Argonne National Laboratory, Argonne, USA
55: Also at Erzincan University, Erzincan, Turkey
56: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
57: Also at Kyungpook National University, Daegu, Korea