Potential Neurodevelopmental Effects of Pediatric Intensive Care Sedation and Analgesia: Repetitive Benzodiazepine and Opioid Exposure Alters Expression of Glial and Synaptic Proteins in Juvenile Rats

Alia Marie Iqbal O’Meara, MD1,2,3; Nikki Miller Ferguson, MD1,2; Sidney E. Zven, MD3; Oliver L. Karam, MD, PhD1,2; Logan C. Meyer, MS4; John W. Bigbee, PhD5; Carmen Sato-Bigbee, PhD4

Objectives: Sedatives are suspected contributors to neurologic dysfunction in PICU patients, to whom they are administered during sensitive neurodevelopment. Relevant preclinical modeling has largely used comparatively brief anesthesia in infant age-approximate animals, with insufficient study of repetitive combined drug administration during childhood. We hypothesized that childhood neurodevelopment is selectively vulnerable to repeated treatment with benzodiazepine and opioid. We report a preclinical model of combined midazolam and morphine in early childhood age-approximate rats.

Design: Animal model.

Setting: Basic science laboratory.

Subjects: Male and female Long-Evans rats.

Interventions: Injections of morphine + midazolam were administered twice daily from postnatal days 18–22, tapering on postnatal days 23 and 24. Control groups included saline, morphine, or midazolam. To screen for acute neurodevelopmental effects, brain homogenates were analyzed by western blot for synaptophysin, drebrin, glial fibrillary acidic protein, S100 calcium-binding protein B, ionized calcium-binding adaptor molecule 1, and myelin basic proteins. Data analysis used Kruskal-Wallis with Dunn posttest, with a p value of less than 0.05 significance.

Measurements and Main Results: Morphine + midazolam and morphine animals gained less weight than saline or midazolam (p ≤ 0.01). Compared with saline, morphine + midazolam expressed significantly higher drebrin levels (p = 0.01), with numerically but not statistically decreased glial fibrillary acidic protein. Similarly, morphine animals exhibited less glial fibrillary acidic protein and more S100 calcium-binding protein B and synaptophysin. Midazolam animals expressed significantly more S100 calcium-binding protein B (p < 0.001) and 17–18.5 kDa myelin basic protein splicing isoform (p = 0.01), with numerically increased synaptophysin, ionized calcium-binding adaptor molecule 1, and 21.5 kDa myelin basic protein, and decreased glial fibrillary acidic protein.

Conclusions: Analysis of brain tissue in this novel rodent model of repetitive morphine and midazolam administration showed effects on synaptic, astrocytic, microglial, and myelin proteins. These findings warrant further investigation because they may have implications for critically ill children requiring sedation and analgesia.

Key Words: benzodiazepine; glial and synaptic proteins; neurodevelopment; opioid; pediatric intensive care; sedative neurotoxicity

Neurodevelopmental consequences of sedatives and analgesics that alter neurotransmission by their very design are not entirely understood. However, there are compelling preclinical animal model data supporting deleterious effects on the neonatal and infant mammalian brain after relatively brief exposures to common surgical anesthetics (1, 2). Despite this evidence,
there is little to no investigation representing the sustained administra-
tion of sedatives and analgesics to infants, children, and adolescents in the PICU setting (3–5). Although anesthesia is an
almost uniformly singular event, survivors of childhood critical ill-
ess are exposed to similarly neuroactive sedatives and analgesics
in a variety of combinations, frequently as continuous infusions, in
escalating doses, over days to weeks exclusive of additional wean-
ing to abstinence during convalescence and recovery.

Seminal work in this area began with episodic exposures to
inhalational anesthetics that both block N-methyl-D-aspartate
receptors and promote γ-aminobutyric acid (GABA) signaling, and similar findings were also reported for parenteral propofol, ketamine, and benzodiazepines (6–13). Those studies in
rodents and non-human primates reproducibly demonstrated increased neuronal death and reduced synaptic growth and refine-
ment. However, a timeline for neurodevelopmental vulnerability
still needs to be delineated because the bulk of those studies were
performed in neonate and infant age-approximate rodents from
birth to postnatal day (PND) 14, a time period coinciding with
peak dendritic spine formation and synaptogenesis before tran-
stion to early childhood at PND 15, and also preceding the peak of
brain myelination (14–16). Interestingly, Briner et al (17) showed
suppression of dendritic synaptogenesis with 6-hour sedation
with either propofol or midazolam in PNDs 5 and 10 rats but
described an opposite effect of increased dendritic synaptogenesis in
childhood age-approximate rats at PNDs 15, 20, and 30 (18).
These effects were long lasting and persisted after adulthood was
reached at PND 60. No effect was found after PND 60 or 90 expo-
sure, indicating at least two distinctly sensitive epochs in brain
development, and recommending similar agents for investigation
across a broader age range.

Importantly, there are age-dependent variations in the balance
and coordination of neurodevelopmental processes, and, thus, it
is logical to hypothesize that there will be age-dependent variation
in the neuroactive effects of sedatives and analgesics. Although
human synaptogenesis peaks in the first 2 years, peak myelination,
synaptic remodeling, selective neuronal apoptosis, and ongoing
neurogenesis and glial cell generation are equally critical at later
stages of brain maturation. These crucial mechanisms confer the
plasticity necessary for increasingly complex cognition and envi-
ronmental interactions. Furthermore, they are also vital in main-
taining neurologic integrity after a variety of insults and stressors,
from primary brain injuries to critical illness hypoxemia, ischemia,
imflammation, and oxidative stress.

It must be noted that despite reproducible laboratory evidence
of anesthetic neurotoxicity, studies in human children have been
less uniform. Although some studies observed lower age-matched
academic achievement test scores and more learning disabilities
after elective surgical anesthesia in young children, more recent
prospective landmark clinical trials detected no impact on cogni-
tive function or behavior (19–24). Although this dichotomy might
also apply to PICU-typical sedation in an otherwise healthy child,
critically ill children are not otherwise healthy. Critical illness is
a milieu of inflammation, metabolic disturbance, and oxidative
stress often in the midst of hypoxemia and ischemia. Clinical stud-
ies have identified neurologic morbidity after childhood critical
illness such as delirium, posttraumatic stress, cognitive and func-
tional decline, and need for neurologic evaluation (25–27). As in
adults, delirium may be a harbinger of children at risk for neuro-
logic morbidity, and this link was recently reported in a study of
over 2,000 PICU patients that found the following to be associated
with delirium: age less than 2 years, mechanical ventilation days,
higher-dose benzodiazepine, and low or moderate dexmedetomi-
dine exposure, among other sedation and illness factors (28, 29).
Interestingly, fentanyl as the primary opiate, days of propofol,
depth and days of sedation, inadequate pain control, and days of
agitation were also associated with delirium. Given clinical evi-
dence of this complex problem, there is a need to better under-
stand the interplay between the neurologic stressors of critical
illness and routinely administered sedatives and analgesics.

To address a critical lack of preclinical models of PICU-typical
sedation, we report here a novel juvenile rat model of 7-day com-
bined morphine and midazolam treatment in a rodent age more
consistent with early childhood than robustly reported neonate
and infant age-approximate models. We hypothesized that an
early childhood neurodevelopmental time point is selectively vul-
nerable to prolonged, repeated administration of combined opioid
and benzodiazepine already commonplace in contemporary pedi-
atriic intensive care. This model is feasible and accessible without
the need for continuous infusion, intraperitoneal injections, or
invasive mechanical ventilatory support. Importantly, it provides a
safe and efficacious initial dose range for future study, particularly
in combined models of PICU-typical illnesses and injuries where
animal viability is a concern.

MATERIALS AND METHODS
Animal Breeding and Housing Procedures
Experiments were performed in accordance with the National
Institutes of Health Guidelines for the Care and Use of Animals
in Research and under protocols approved by the Animal Care
and Use Committee of Virginia Commonwealth University.
Outbred Long-Evans male and female rats were the offspring from
timed pregnant dams provided by Charles River Laboratories
(Raleigh, NC). Dams were obtained early on gestational day 2
to minimize potential shipping stress effects on prenatal brain
development. Litters were group housed with their own natural
mother throughout experiments until the end of study, in ven-
tilated 43 cm × 30 cm × 19 cm clear polycarbonate cages under
controlled temperature, with ad libitum chow and water, 12-hour
regular light/dark cycles, and wood chew and cardboard tube
enrichment. All experimental animals had equal access to nurs-
ing and chow, with equal durations of maternal separation during
drug or saline administration.

Study Design
On PND 18, animals within each litter were randomly divided into
the different experimental groups: morphine + midazolam (Morph/
Midaz; n = 13), morphine (Morph; n = 12), midazolam (Midaz;
N = 12), and saline (Sal; n = 10). Male and female breakdown in
each experimental group was as follows: Morph/Midaz (7 male, 6
female), Morph (7 male, 5 female), Midaz (8 male, 4 female), and
than or equal to 92%, and FIO_2 ranged between 0.29 and 0.42 with oxyHb% was titrated for oxyhemoglobin saturations (oxyHb%) greater than 23 and 24. Sedations were performed at 08:00 AM in the light cycle, followed by once daily weaning doses with no sedative effect on PNDs (postnatal days) 18–22. Animals were dosed twice daily for 5 days (PNDs, 18–22), followed by once daily weaning doses with no sedative effect on PNDs 23 and 24. Sedations were performed at 08:00 AM in the light cycle, and 16:00 PM for recovery during the dark cycle. Supplemental oxyHb% was titrated for 60- to 90-min sedation after Morph/Midaz treatment. As anticipated, both Morph and Midaz treatments resulted in shorter duration, or no sedation, over time. Sal control animals did not lose righting reflex and are not graphically represented. The required dosage is noted for each study timepoint. Data are depicted as mean and SEM.

Sal (5 male, 5 female). As outlined in Figure 1, escalating doses of Morph/Midaz (dose range = 2.5–4 mg/kg Morph and 5–9 mg/kg Midaz) were administered to produce sedation as defined by the absence of righting reflex without apnea. Because drug metabolism in rodents is faster than in humans, higher relative doses are required for equipotent effect given size and body surface area (30–32). We, therefore, targeted a clinically relevant 60–90-minute sedation duration representing a typical effect in children after one-time administration of combined opioid and benzodiazepine. To establish the doses to achieve this effect, we carried out pilot studies that considered some of the previously reported concentrations used by others in different animal models (4–6, 18, 22, 23). Study drugs (or no drug in Sal) were diluted in 0.9% saline for a uniform volume of 5 mL/kg calculated with an online veterinary calculator (VPRcloud.com), and administered subcutaneously by a blinded investigator at the nape of the neck with a 30 gauge needle (Nipro, Bridgewater, NJ). Animals were dosed twice daily for 5 days (PNDs, 18–22), followed by once daily weaning doses with no sedative effect on PNDs 23 and 24. Sedations were performed at 08:00 AM in the light cycle, and 16:00 PM for recovery during the dark cycle. Supplemental oxygen was titrated for oxyhemoglobin saturations (oxyHb%) greater than or equal to 92%, and FIO_2 ranged between 0.29 and 0.42 with a mean of 0.36. Animals were noninvasively monitored during sedation in a 34–38°C warmed container for oxyHb% and heart rate using medium collar clips and consecutive autocycling every 5 seconds (MouseOx Plus with Multiplexer; STARR Life Sciences, Oakmont, PA). Darkly hooded Long-Evans rats required shaving of fur from the neck on study day 1. Animals later identified as saline and single-drug treatments were frequently too arousable to cooperate with a collar, and thus, uncooperative animals with regular respirations and pink noses and paw pads were assumed to have adequate oxyHb%. On PND 24, rats were anesthetized with isoflurane and killed by transcardial perfusion with ice-cold phosphate-buffered saline (PBS). Brains were removed and snap frozen and stored at −80°C for western blot analysis.

Western Blot Protocol

Brain tissue was homogenized in PBS with Halt Protease Inhibitor Cocktail with EDTA (Thermo Fisher, Waltham, MA) before solubilization in 2. Laemmli buffer and 5% β-mercaptoethanol. Tissue protein content for each sample was determined by the Bradford method. Protein separation used sodium dodecyl sulfate electrophoresis in TGX Stain-Free 4–15% acrylamide gels followed by 45-second ultraviolet light exposure to activate tryptophan residues for total protein band quantification (Bio-Rad, Hercules, CA). Protein electrotransfer to nitrocellulose membranes was carried out with Bio-Rad Laboratories equipment and reagents (Bio-Rad). Protein electrotransfer to nitrocellulose membranes was carried out with Bio-Rad Laboratories equipment and reagents (Bio-Rad, Hercules, CA). Western blotting used the following primary antibodies: anti-myelin basic protein (MBP; dilution 1:500; MilliporeSigma, Burlington, MA), anti-synaptophysin (SYN; 1:1,000; Cell Signaling, Beverly, MA), anti-drebrin (1:1,000; Cell Signaling), anti-glial fibrillary acidic protein (GFAP; 1:2,000; Cell Signaling), anti-S100 calcium-binding protein B (S100B; 1:1,000; Cell Signaling), and anti-ionized calcium-binding adapter molecule 1 (Iba1; 1:1,000; Wako, Richmond, VA). After horseradish peroxidase-conjugated secondary antibody incubation, immunoreactive bands were detected by enhanced chemiluminescence reaction with either Clarity or Clarity Max reagent and imaged with a Bio-Rad ChemiDoc MP Imager (Bio-Rad). Immunoreactive band relative expressions were determined by scanning densitometric analysis using both the ImageJ (National Institutes of Health, Bethesda, MD) and ImageLab programs (Bio-Rad). All target proteins were divided by the respective 50 kDa protein band of ultraviolet light-activated tryptophan residues to standardize protein loading and transfer conditions (33).

Statistical Analysis

Weight, oxyHb%, heart rate, FIO_2, and sedation duration were recorded daily. Cerebral homogenate samples for each experimental drug condition (Morph/Midaz, Morph, and Midaz) were grouped and processed with respective Sal for comparison. To evaluate sex differences and control for sexual dimorphism in pup size, male and female samples were first analyzed separately and then combined for a larger prepubertal group analysis. Western blot semiquantitative evaluations of relative optical density were blinded and performed by two separate observers. All results were analyzed using Kruskal-Wallis with Dunn posttest with GraphPad Prism 8 software (GraphPad Software, San Diego, CA). Sedation duration data are reported and depicted as mean ± SEM. Weight gain and western blot data are reported as median followed by interquartile range (IQR) in parentheses, with significance determined by a p value of less than 0.05. Data are graphically depicted in box and whisker plots, with whiskers indicating minimum and maximum values of all data. Individual data points are also displayed. For ease of visual interpretation of the reader, saline values were combined within graphs of each protein of interest because there were no significant differences between gels.
RESULTS

Model Development

Previous studies reported the use of PND 0–30 pups and adult rodents with doses of 10 mg/kg morphine and 9–40 mg/kg midazolam (4–6, 22, 23). However, in our hands and with the present animal model, our pilot study showed that a first-dose combination of 5 mg/kg morphine + 15 mg/kg midazolam resulted in 50% mortality from apnea. Subsequent first-dose combination of Morph/Midaz (2.5 mg/kg morphine + 5 mg/kg midazolam) was reduced and well tolerated with no mortality. As shown in Figure 1, animals displayed narcotic tolerance, requiring a dose increase of either midazolam or morphine roughly every third dose to attain a 60–90 minutes of sedation induced by Morph/ Midaz. Cumulative doses for 7 days were as follows: 35 mg/kg morphine and 79.5 mg/kg midazolam, for both combination and single-drugs.

Morph/Midaz animals were markedly sedated compared with all other groups and were the only group successfully monitored; average Morph/Midaz oxyHb% and heart rate are displayed in Table 1. After injections, the Morph group displayed stereotypic licking and chewing that was not only absent in the Midaz animals but also in the Morph/Midaz rats, an effect possibly related to Midaz coadministration or sedation depth. Interestingly, on study days 3–5, Midaz-treated animals adopted a side-lying C-shaped posture, and during recovery from acute drug effect manifested various degrees of disorganized “darting and zooming” behavior.

Weight gain in Morph was significantly reduced compared with both Sal and Midaz ($p < 0.0001$), and weight gain in both Morph/ Midaz was significantly reduced compared with Sal and Midaz ($p < 0.01$). As shown in Figure 2, median weight gain for both sexes from PND 18 to PND 24 was Sal 73.2% (IQR, 66.9–75.1) and Midaz 73.7% (IQR, 67.5–79.4), versus Morph 54.1% (IQR, 48.4–57.3) and Morph/Midaz 59.2% (IQR, 55.6–65.6). Failure to gain weight was most pronounced in Morph males compared with either Sal or Midaz (Morph 53.9% [IQR, 47.7–57.1] vs Sal 73.7% [IQR, 71.0–78.1], $p < 0.001$; vs Midaz 73.7% [IQR, 66.3–86.0], $p < 0.001$). Morph/Midaz-treated males also gained less weight than Sal or Midaz (Morph/Midaz 58.8% [IQR, 55.6–65.0], $p = 0.01$). In Morph- and Morph/Midaz-treated females, the difference in weight gain was significantly reduced only compared with Midaz (Midaz 73.7% [IQR, 69.5–76.4] vs Morph 54.3% [IQR, 48.6–61.5], $p < 0.01$; vs Morph/Midaz 61.1% [IQR, 55.6–65.7], $p = 0.04$). Despite reduced weight gain in animals that received Morph or Morph/Midaz, there were no differences in coat luster and no coat shabbiness; there was no porphyrin staining, lethargy, or anhedonia to indicate obvious impacts on animal robustness.

Assessment of Treatment Effects by Western Blot Analysis

To assess potential neurodevelopmental effects, we evaluated cerebral levels of SYN and drebrin as markers for altered dendritic synaptogenesis or plasticity (9, 10). Glial fibrillary acidic protein (GFAP) was used as a marker of astrocyte activation, S100B was used as a marker of mature astrocytes, and MBP expression was used as a reporter of mature oligodendrocytes and myelinization (34). Iba1 is a microglial marker and is chosen to screen for the presence of potential brain inflammation.

Importantly, as shown in Figure 3, median S100B expression was significantly increased by Midaz treatment in prepubertal pups (Midaz 170.0% [IQR, 128.0–206.0] vs Sal 101.0% [IQR, 92.9–105.0], $p < 0.001$). This effect was similar in males and females (male 176.0% [IQR, 131.0–206.0], $p = 0.01$; female 152.0% [IQR, 125.0–239.0], $p = 0.05$). Treatment with Morph numerically increased median S100B without a male-female difference (124.0% [IQR, 98.4–143.0] vs Sal 98.0% [IQR, 94.0–110.0], $p = 0.13$), whereas combined treatment with Morph/Midaz did not significantly change S100B (82.3% [IQR, 56.4–104.0] vs Sal 97.4% [IQR, 88.7–117.0], $p = 0.29$). Also shown in Figure 3 is GFAP expression, which was reduced by more than 20% in all drug treatment groups in prepubertal pups.

Table 1. Morphine + Midazolam Physiologic Data

Timepoint	Oxymoglobin Saturation (%)	Heart Rate (beats/min)
Day 1 AM	94.5 ± 1.5	418.0 ± 10.3
Day 1 PM	90.7 ± 1.5	414.5 ± 16.4
Day 2 AM	94.9 ± 2.5	419.5 ± 14.5
Day 2 PM	96.5 ± 0.9	439.6 ± 29.5
Day 3 AM	95.2 ± 1.4	444.8 ± 29.5
Day 3 PM	96.4 ± 0.5	421.4 ± 9.8
Day 4 AM	94.6 ± 1.7	423.9 ± 13.2
Day 4 PM	97.4 ± 0.6	404.2 ± 12.1
Day 5 AM	95.2 ± 1.3	407.2 ± 11.4
Day 5 PM	96.0 ± 1.7	405.4 ± 21.5

Data are expressed as mean ± SEM.
The present results indicate that despite the low 5- to 9-mg/kg midazolam and 2.5- to 4-mg/kg morphine dose used in this PNDs 18–24 model, there are drug effects on established markers of brain injury, with median cerebral SYN expression being increased in morphine versus saline (136.0% [IQR, 104.0–180.0] vs 92.7% [IQR, 91.1–108.0], p = 0.05). This was greater for males than females (males: 152.0% [IQR, 106.0–195.0], p = 0.03; females: 113.0% [IQR, 74.1–143.0], p = 0.66). Results also indicated that compared with saline, treatment with midazolam and morphine/midazolam numerically increased SYN by 26% and 11%, respectively, without a male-female difference (midazolam: male 126.0% [IQR, 95.5–157.0] vs female 94.8% [IQR, 82.1–121.0], p = 0.07; morphine/midazolam: male 111.0% [IQR, 92.3–163.0] vs female 94.8% [IQR, 82.1–121.0], p = 0.16).

Interestingly, as shown in Figure 4, median cerebral SYN expression was increased in morphine versus saline (136.0% [IQR, 104.0–180.0] vs 92.7% [IQR, 91.1–108.0], p = 0.05). This was greater for males than females (males: 152.0% [IQR, 106.0–195.0], p = 0.03; females: 113.0% [IQR, 74.1–143.0], p = 0.66). Results also indicated that compared with saline, treatment with midazolam and morphine/midazolam numerically increased SYN by 26% and 11%, respectively, without a male-female difference (midazolam: male 126.0% [IQR, 95.5–157.0] vs female 94.8% [IQR, 82.1–121.0], p = 0.07; morphine/midazolam: male 111.0% [IQR, 92.3–163.0] vs female 94.8% [IQR, 82.1–121.0], p = 0.16).

Drebrin expression significantly increased only in morphine/midazolam versus saline (119.0% [IQR, 110.0–127.0] vs 101.0% [IQR, 93.1–109.0], p = 0.01), although the upper quartile range for morphine (IQ, 88.0–135.0) is larger than saline (IQ, 91.3–109.0). This morphine/midazolam effect was statistically significant in females but not males (males: 152.0% [IQR, 106.0–195.0], p = 0.03; females: 113.0% [IQR, 74.1–143.0], p = 0.66). Results also indicated that midazolam-treated females expressed significantly more drebrin than males (female: 113.0% [IQR, 99.8–157.0], p = 0.02).

MBP results are depicted in Figure 5 and showed significantly increased 17–18.5 kDa splicing variant after midazolam (17–18.5 kDa: 123.0% [IQR, 107.0–201.0] vs saline 102.0% [IQR, 89.1–107.0], p = 0.01). This pattern was seen in both midazolam males and females (male: 133.0% [IQR, 102.0–253.0], p = 0.06; female: 123.0% [IQR, 117.0–154.0], p = 0.07). Midazolam treatment also numerically increased 21.5 kDa splicing variant without a male-female difference (21.5 kDa: 127.0% [IQR, 95.6–159.0] vs saline 101.0% [IQR, 87.9–109.0], p = 0.13). There were no significant differences in the medians for 14 kDa MBP, although midazolam and morphine/midazolam had larger 75% upper quartile ranges (midazolam: 109.0–176.0, morphine/midazolam: 107.0–162.0). Midazolam males expressed numerically more 14 kDa MBP than females (male: 132.0% [IQR, 99.3–190.0]; female: 110.0% [IQR, 72.3–154.0]). Although there were no combined sex differences in MBP splicing variants after morphine treatment, expression was lower in males compared with females (14 kDa male: 70.2% [IQR, 66.8–101.0], p = 0.04; 17–18.5 kDa male: 82.6% [IQR, 66.8–101.0] vs female: 101.0% [IQR, 90.5–142.0], p = 0.09; and 21 kDa male: 74.6% [IQR, 54.9–111.0] vs female: 108.0% [IQR, 84.4–161.0], p = 0.07).

As depicted in Figure 6, midazolam treatment numerically increased median microglial Iba1 compared with saline (119.0% [IQR, 99.8–157.0] vs 101.0% [IQR, 93.1–109.0], p = 0.01), although the upper quartile range for morphine (IQ, 88.0–135.0) is larger than saline (IQ, 91.3–109.0). This morphine/midazolam effect was statistically significant in females but not males (female: 123.0% [IQR, 116.0–127.0], p = 0.04; male: 114.0% [IQR, 107.0–130.0], p = 0.12). Results also indicated that midazolam-treated females expressed significantly more drebrin than males (female: 113.0% [IQR, 99.8–157.0] vs male: 85.9% [IQR, 79.8–97.3], p = 0.02).

DISCUSSION

The present results indicate that despite the low 5- to 9-mg/kg midazolam and 2.5- to 4-mg/kg morphine dose used in this PNDs 18–24 model, there are drug effects on established markers of brain injury.
Iqbal O’Meara et al

6

www.ccejournal.org

2020 • Volume 2 • e0105

development and plasticity. More than 20% increase in the median presynaptic marker SYN was observed in both Morph and Midaz groups, and the SYN increase was higher in Morph males than in Morph females. There was more variability in the levels of the postsynaptic dendritic marker drebrin in Morph and Midaz–treated animals that disappeared with combined Morph/Midaz in males and females. There was a significant drebrin increase in females and combined sex analysis. These results are in line with synaptic up-regulation and dendritogenesis reported by Xu et al (3) and Briner et al (17) and De Roo et al (18) using single-drug Midaz at a 10-25 mg/kg dose during PND 15-22, although Xu et al (3) reported decreased synapsin-1. Lack of uniform single-drug effect in our drebrin results is likely explained by the comparatively low dosing in outbred animals, but interestingly, there appears to be an interactive effect on the postsynapse even when low-dose opioid and benzodiazepine were combined in the Morph/Midaz group.

Benzodiazepines are suspect in sedative neurotoxicity, and they are associated with both synaptic dysregulation and delirium in a dose-dependent manner; however, opioids also modulate synapses (35–37). In our model, both presynaptic and postsynaptic markers are affected by Morph, alone or in combined Morph/Midaz. This

Figure 4. PICU-typical sedation and analgesia alters cerebral levels of synaptic markers. Representative western blot and box whisker plots for synaptophysin (SYN) and drebrin (A). The 50 kDa total protein band was used as a loading and transfer control. Each treatment (midazolam [Midaz], morphine [Morph], morphine + midazolam [Morph/Midaz]) is compared with saline (Sal), which is set at a mean of 100. Combined sex group comparisons are shown in (B), whereas separate sex comparisons are shown in (C). Linking brackets indicate statistically significant between sex differences. Using Sal as a reference: *p < 0.05, **p ≤ 0.01.

Figure 5. Midazolam exposure alters cerebral levels of myelin basic protein (MBP). Representative western blot and box whisker plots for developmentally regulated MBP splicing isoforms: 14, 17, 18.5, and 21 kDa (A). The 50 kDa total protein band was used as a loading and transfer control. Each treatment (morphine + midazolam [Morph/Midaz], morphine [Morph], midazolam [Midaz]) is compared with saline (Sal) control, which is set at a mean of 100. Combined sex group comparisons are shown in (B), whereas separate sex comparisons are shown in (C). Linking brackets indicate statistically significant between sex differences. Using Sal as a reference: *p < 0.05, **p ≤ 0.01.
is similar to previously observed increases in striatal and cortical presynaptic and postsynaptic markers after morphine administration in mature rodents (38, 39). Morph administration blocks endogenous GABA-related neuronal inhibition, with likely interplay of benzodiazepines and opioids in PICU-typical sedation, the effects of which on the critically ill developing brain are unknown (40–42). Under normal conditions, dendritic synaptogenesis is experiential, and drug-promoted synapses may be disorganized, abnormally interconnected, or preferentially formed in brain regions related to reward and emotion, contributing to neurologic dysfunction such as delirium or posttraumatic stress disorder.

Relevant literature has shed light on neuronal viability and dendritic synaptogenesis; however, our results also point to glial effects that warrant directed study. In support of this, when serum biomarkers are correlated with poor neurologic outcome in PICU patients, not only is neuron-specific enolase a potential predictor, but so are S100B, GFAP, monocyte chemoattractant protein 1, and oligodendrocytic MBP (43, 44). In particular, astrocytes regulate synaptic plasticity and activity and provide ionic and neurotransmitter homeostasis. Astrocytes also supply metabolic substrate, balance extracellular fluid, and modulate cerebral blood flow (45). In our model, median cerebral GFAP expression was reduced by more than 20% in Morph/Midaz, Morph, and Midaz groups. Reduced GFAP expression may reflect stunted astrocyte outgrowth or activity and deserves further study to elucidate mechanism. Irrespective of mechanism, given their homeostatic role, astrocyte abatement by sedatives in the face of critical illness brain stress could contribute to neurologic sequelae (46). In contrast to GFAP, the mature astrocyte marker S100B is significantly and numerically increased in Midaz and Morph groups, respectively. Because S100B is expressed by mature astrocytes, preserved or increased brain S100B argues against reduced astrocyte population to explain reduced GFAP and may indicate drug-altered astrocyte maturation (34, 47). Importantly, S100B is also secreted by astrocytes, which, at physiologic levels, regulates neurite outgrowth and synaptic plasticity, and inhibits astrocyte and microglial activation and inflammation (48). In contrast, at high levels observed after brain injury, S100B activates inflammatory microglia and astrocytes, inhibits oligodendrocyte maturation, and alters synaptic protein expression. Notably, elevated serum S100B has been correlated with delirium and postdelirium encephalopathy, and the largest effect in our study was with benzodiazepine treatment (49). S100B has demonstrated utility as a clinical biomarker for a variety of brain injuries, and given its role in synaptic plasticity and myelination in the developing brain, potential modulation by PICU-typical sedation is an important result for directed study.

The numeric increase in microglial Iba1 in Midaz and Morph/Midaz with no change in Morph was unexpected in our model, given known opioid activation of the microglial toll-like receptor 4 pathway, and reported impaired intellectual quotient testing in meningococcal shock survivors who received opioids but not benzodiazepine (50, 51). This result may be related to low Morph dose and/or lack of concomitant injury or inflammation and may reflect increased trophic microglial chaperoning of accelerated synapse formation induced by benzodiazepine GABA agonism rather than reactive inflammatory microglia (52, 53). Although Midaz increased both Iba1 and S100B, Morph/Midaz increased Iba1 without S100B increase. This may reflect drug interaction or dose-dependent S100B and Iba1 effects below an inflammatory threshold. Future measurement and brain localization of inflammatory mediators such as cytokines should shed light on the mechanism of increased Iba1 after GABA agonism.

Finally, although both endogenous opioid and benzodiazepine are involved in oligodendrocyte maturation and axonal myelination, only exogenous GABA agonism with midazolam significantly increased MBP expression in our model (54). Given previous observations of accelerated rat brain myelination after perinatal exposure to low doses of buprenorphine and methadone, we had anticipated morphine effect (55, 56). Our present results may reflect age-dependent differences in myelin regulation.

Figure 6. Midazolam and morphine + midazolam (Morph/Midaz) exposure and cerebral levels of ionized calcium-binding adaptor protein (Iba1). Representative western blot and box whisker plots for Iba1. The 50 kDa total protein band was used as an loading and transfer control. Each treatment (Morph/Midaz, morphine [Morph], midazolam [Midaz]) is compared with saline (Sal), which is set at a mean of 100. Combined sex group comparisons are shown in (B), whereas separate sex comparisons are shown in (C). Sal versus Midaz, Morph, and Morph/Midaz: not significant.
or insufficient morphine dose. It should be noted that S100B is also expressed by immature oligodendrocytes, and the S100B increase in the Midaz group may not be solely astrocytic given increased MBP (57). Taken together, it is evident that although neuronal health is an important target for future investigation, glial cells are a reservoir for neurologic resilience and a potential therapeutic target during critical illness that may be influenced by PICU-typical sedation.

It is striking that although Morph animals were minimally sedated compared with Morph/Midaz, weight gain was limited in both, and to a greater degree in Morph. Nutritional access was identical across groups, suggesting opioid behavioral effects on appetite or resource acquisition. Our model is similar to reports of oral motor and other behavioral stimulant effects after morphine administration in rodents, cats, and primates, as well as disrupted typical rodent diurnal patterns and reduced nighttime eating with associated weight loss (58-60). Our observations suggest an unknown duration of opioid effects on behavior and possibly sleep/wake patterns that may impact neurodevelopment or signal neuropathology. Malnutrition can retard brain development, particularly myelination, and Morph males gained the least weight and numerically expressed the least MBP; however, MBP expression was not altered in female Morph or male and female Morph/Midaz animals that also gained less weight than Sal or Midaz (61, 62). Our study lacks an underweight control group to clarify the contribution of nutrition. However, achieving weight loss in preweaning rats before PND 18 necessitates premature weaning or maternal separation which have confounding neurodevelopmental consequences (63). This might be addressed in future studies by shifting the first experiment day by several days to postweaning, however, rodents are coprophagic, and specialized measures may be necessary.

Limitations of our study include intermittent, comparatively low dosing. This was necessary to establish a combined sedative and analgesic model, and our findings may underestimate dose-dependent effects. Continuous infusions with implantable pumps were considered but would not achieve a PICU-typical depth of sedation and require a confounding anesthetic exposure. Low-range dosing is not only required to establish dose-dependent responses but also is necessary for developing combination models of sedation and critical illness in which animal viability is a concern. Noninvasive oxyHb% ruled out hypoxemia, a critical parameter for brain injury. However, the need for supplemental oxygen in our model suggests hypventilation, and lack of blood gas measurement of carbon dioxide is a limitation. Marked hypercarbic respiratory acidosis is routinely tolerated as a lung-protective strategy in contemporary critical care, and acidosis may affect cellular physiology in addition to cerebral blood flow in the developing brain, particularly if supportive glial function is altered by illness or medication. Because carbon dioxide is a robust regulator of vascular tone and cerebral blood flow, future and similar studies should include blood gas measurement, or if feasible, assessment of cerebral blood flow with near-infrared spectroscopy scaled for rodents. Biologic variability in vivo is expected in outbred rats undergoing dynamic neurodevelopment, and our sample size may have, therefore, been too small to statistically detect differences, particularly at this low range of drug dosing.

We analyzed groups by sex, and fewer females per litter resulted in fewer females per some group analysis, limiting interpretation between sex results. Nonetheless, what differences we observed highlight the importance of including both sexes in these experiments, even in prepubertal pups. It would also be useful to include both younger than PND 15 and older than PND 35 groups to establish a timeline of age-dependent effects. Another limitation is inclusion of a single acute timepoint in this study because there are likely subacute (adolescent) and chronic (adult) changes. Finally, we used total hemispheric homogenate, which likely obscured anatomically localized effects. Complementary tissue analysis for regional effects will be important in follow-up studies, particularly in brain regions corresponding to observed clinical outcomes. Nonetheless, the present model suggests important changes in synaptic and glial protein expression that certainly warrant further investigation given increasing evidence that survivors of childhood critical illness incur neurologic morbidity and mortality.

Advances in modern critical care medicine have shifted attention from simple survival to meaningful recovery and health-related quality of life (HRQL). PICU-associated neurologic morbidity is prevalent, and survivors suffer a variety of neurologic sequelae, from delirium and reduced Pediatric Cerebral Performance Category scores, to reduced HRQL, a spectrum of impaired learning and memory, posttraumatic stress, and behavioral difficulties (25–29, 64–69). Notably, not all neurologic consequences manifest immediately or as overt deficits, even in animal models (13). In addition to acute sequelae, critical illness brain stress and therapies, including sedation and analgesia, may create psychological, sociability, or executive functioning vulnerabilities that accumulate over time or manifest remotely under stress or stimulus. Subtlety and latency may explain heretofore under-recognized neurotoxicities, and survivors may also be at risk as they age. Critical illness inherently involves a complex variety of factors that impact the developing brain, and there are gaps in our knowledge with regard to the most routine of contemporary therapies. Understanding the contribution of sedatives and analgesics, for better or worse, is a necessary step in developing patient-based and disease-based neuroprotective strategies for optimizing outcomes for the uniquely vulnerable PICU population. We have been lacking preclinical models to that end. Considering the study limitations discussed, future investigation should target dose-dependent effects on both neuronal and glial cell populations, interactivity with concomitant critical illness brain stress and injury, and age-dependent effects in infants, children, and adolescents.

This work was performed at the Virginia Commonwealth University.

Supported, in part, by funding from the Children’s Hospital Foundation of Richmond, VA, and National Institutes of Health Clinical and Translational Science Awards grant UL1TR002649 from the Virginia Commonwealth University Center for Clinical and Translational Research.

The authors have disclosed that they do not have any potential conflicts of interest.

The opinions and assertions expressed herein are those of the author(s) and do not necessarily reflect the official policy or position of the Uniformed Services University or the Department of Defense.

For information regarding this article, E-mail: aliamarie.omeara@vcuhealth.org
REFERENCES

1. Sanders RD, Hassell J, Davidson AJ, et al: Impact of anaesthetics and surgery on neurodevelopment: An update. Br J Anaesth 2013; 110(Suppl 1):i53–i72
2. Maloney SE, Creeley CE, Hartman RE, et al: Using animal models to evaluate the functional consequences of anesthesia during early neurodevelopment. Neurobiol Learn Mem 2019; 165:168–83
3. Xu J, Mathena RP, Singh S, et al: Early developmental exposure to repetitive long duration of midazolam sedation causes behavioral and synaptic alterations in a rodent model of neurodevelopment. J Neuropsychopharmacology 2019; 31:151–162
4. Luo J, Guo J, Han D, et al: Comparison of dexmedetomidine and midazolam on neurotoxicity in neonatal mice. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2013; 30:607–610
5. Craig MM, Bajic D: Long-term behavioral effects in a rat model of prolonged postnatal morphine exposure. Behav Neurosci 2015; 129:643–655
6. Young C, Jevtovic-Todorovic V, Qin YQ, et al: Potential of ketamine and midazolam on neurotoxicity in neonatal mice. Br J Pharmacol 2015; 129:643–655
7. Obradovic AL, Atluri N, Dalla Massara L, et al: Early exposure to ketamine impairs axonal pruning in developing mouse hippocampus. Mol Neurobiol 2018; 55:164–172
8. Fredriksson A, Pontén E, Gordh T, et al: Neonatal exposure to a combination of N-methyl-D-aspartate and gamma-aminobutyric acid type A receptor agonists causes persistent neurodegeneration and persistent behavioral deficits. Anesthesiology 2007; 107:427–436
9. Milanovic D, Pesic V, Loncarevic-Vasiljkovic N, et al: Neonatal propranolol anesthesia changes expression of synaptic plasticity proteins and increases stereotypy and anxiety behavior in adult rats. Neurotox Res 2017; 32:247–263
10. Nikizad H, Yon JH, Carter LB, et al: Early exposure to general anesthesia causes significant neuronal deletion in the developing rat brain. Ann N Y Acad Sci 2007; 1122:69–82
11. Lunardi N, Ori C, Erirsr A, et al: General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox Res 2010; 17:179–188
12. Diana P, Loksimovic SM, Faisant A, et al: Early exposure to general anesthesia impairs social and emotional development in rats. Mol Neurobiol 2020; 57:41–50
13. Zhu C, Gao J, Karlsson N, et al: Isovflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents. J Cereb Blood Flow Metab 2010; 30:1017–1030
14. Dobbins J, Sands J: Comparative aspects of the brain growth spurt. Early Hum Dev 1979; 3:79–83
15. Rice D, Barone S Jr: Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ Health Perspect 2000; 108(Suppl 3):511–533
16. Semple BD, Blomgren K, Gimlin K, et al: Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 2013; 106–107:1–16
17. Briner A, Nikonenko I, De Roo M, et al: Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology 2011; 115:282–293
18. De Roo M, Klauser P, Briner A, et al: Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS One 2009; e47043
19. Block RI, Thomas JJ, Bayman EO, et al: Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology 2012; 117:494–503
20. Flick RP, Katucik SK, Colligan RC, et al: Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 2011; 128:e1053–e1061
21. Vutsikis L, Culey DJ: GAS, PANDA, and MASK: No evidence of clinical anesthetic neurotoxicity! Anesthesiology 2019; 131:762–764
22. McCann ME, de Graaff JC, Dorris L, et al: GAS Consortium: Neurodevelopmental outcome at 5 years of age after general anesthesia or awake-regional anaesthesia in infancy (GAS): An international, multicentre, randomised, controlled equivalence trial. Lancet 2019; 393:664–677
23. Sun LS, Li G, Miller TL, et al: Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA 2016; 315:2312–2320
24. Warner DO, Zaccariello MJ, Katusic SK, et al: Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia: The Mayo Anesthesia Safety in Kids (MASK) Study. Anesthesiology 2018; 129:89–105
25. Shein SL, Slain KN, Clayton JA, et al: Neurologic and functional morbidity in critically ill children with bronchiolitis. Pediatr Crit Care Med 2017; 18:1106–1113
26. Caprarola SD, Kudchadkar SR, Bembea MM: Neurologic outcomes following care in the pediatric intensive care unit. Curr Treat Options Pediatr 2017; 3:193–207
27. Au AK, Carillo JA, Clark RS, et al: Brain injuries and neurosurgical system failure are the most common proximate causes of death in children admitted to a pediatric intensive care unit. Pediatr Crit Care Med 2011; 12:566–571
28. Pandharipande PP, Girard TD, Jackson JC, et al: BRAIN-ICU Study Investigators: Long-term cognitive impairment after critical illness. N Engl J Med 2013; 369:1306–1316
29. Dervan LA, Di Gennaro JL, Farris RWD, et al: Delirium in a tertiary PICU: Risk factors and outcomes. Pediatr Crit Care Med 2020; 21:21–32
30. Hawk CT, Leary SL, Morris TH (Eds): American College of Laboratory Animal Medicine, European College of Laboratory Animal Medicine: Formulary for Laboratory Animals. Third Edition. Ames, IA, Blackwell Pub, 2005
31. US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research: Guidance for Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. Rockville, MD, 2005. Available at: https://www.fda.gov/media/72309/download. Accessed April 13, 2020
32. West GB, Brown JH: The origin of allometric scaling laws in biology from genomes to ecosystems: Towards a quantitative unifying theory of biological structure and organization. J Exp Biol 2005; 208:1575–1592
33. Gilda JE, Gomes AV: Stain-Free total protein staining is a superior load-dependent technique for protein analysis. J Neurosci Methods 2007; 162:278–286
34. Pickard RS, Bembea MM: Delirium in the young and old: Truth be told or still not sold? Crit Care Med 2017; 45:1562–1564
35. Abul-Husn NS, Annangudi SP, Ma’ayan A, et al: Chronic morphine alters the presynaptic protein profile: Identification of novel molecular targets using proteomics and network analysis. PLoS One 2011; 6:e25535
36. Ricalde AA, Hammer RP Jr: Perinatal opiate treatment delays growth of cortical dendrites. Neurosci Lett 1997; 55:165–177
37. Moazen P, Azizi H, Salmanzadeh H, et al: Adolescent morphine exposure induces immediate and long-term increases in impulsive behavior. Psychopharmacology (Berl) 2018; 235:3423–3434
38. Johannesson T, Becker BA: Morphine analgesia in rats at various ages. Acta Pharmacol Toxicol (Copenh) 1973; 33:429–441
39. Kudchadkar SR: Benzodiazepines and delirium in the young and old: Injury as diagnostic tools and outcome predictors after extracorporeal membrane oxygenation. Crit Care Med 2017; 45:1054–1063
40. De Rover M, Lodder JC, Schoffelmeer AN, et al: Intermittent morphine treatment induces a long-lasting increase in cholinergic modulation of GABAergic synapses in nucleus accumbens of adult rats. Synapse 2005; 55:17–25
41. Nugent FS, Penick EC, Kauer JA: Opioids block long-term potentiation of inhibitory synapses Nature 2007; 446:1086–1090
42. Schoffelmeer AN, Wardeh G, Vanderschuren LJ: Morphine acutely and persistently attenuates nonvesicular GABA release in rat nucleus accumbens. Synapse 2001; 42:87–94
43. Bembea MM, Rizkalla N, Freedy J, et al: Plasma biomarkers of brain injury as diagnostic tools and outcome predictors after intracereoporal membrane oxygenation. Crit Care Med 2015; 43:2202–2211
44. Au AK, Bell MJ, Fink EL, et al: Brain-Specific serum biomarkers predict neurological morbidity in diagnostically diverse pediatric intensive care unit patients. *NeuroCrit Care* 2018; 28:26–34

45. Allen NJ, Eroglu C: Cell biology of astrocyte-synapse interactions. *Neuron* 2017; 96:697–708

46. Sfera A, Osorio C, Price AI, et al: Delirium from the gliocentric perspective. *Front Cell Neurosci* 2015; 9:171

47. Stiene-Martin A, Gurwell JA, Hauser KF. Morphine alters astrocyte growth in primary cultures of mouse glial cells: Evidence for a direct effect of opiates on neural maturation. *Brain Res Dev Brain Res* 1991; 60:1–7.

48. Santos G, Barateiro A, Gomes CM, et al: Impaired oligodendrogenesis and myelination by elevated S100B levels during neurodevelopment. *Neuropharmacology* 2018; 129:69–83

49. Khan BA, Zawahiri M, Campbell NL, et al: Biomarkers for delirium—a review. *J Am Geriatr Soc* 2011; 59(Suppl 2):S256–S261

50. van Zellem L, Utens EM, de Wildt SN, et al: Analgesia-sedation in PICU and neurological outcome: A secondary analysis of long-term neuropsychological follow-up in meningococcal septic shock survivors. *Pediatr Crit Care Med* 2014; 15:189–196

51. Shah M, Choi S: Toll-like receptor-dependent negative effects of opioids: A battle between analgesia and hyperalgesia. *Front Immunol* 2017; 8:642

52. Bessis A, Béchade C, Bernard D, et al. Microglial control of neuronal death and synaptic properties. *Glia* 2007; 55:233–238

53. Tremblay MÈ, Lowery RL, Majewska AK: Microglial interactions with synapses are modulated by visual experience. *Plos Biol* 2010; 8:e1000527

54. Liedtke W, Edelmann W, Bieri PL, et al: GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. *Neuron* 1996; 17:607–615

55. Eschenroeder AC, Vestal-Laborde AA, Sanchez ES, et al: Oligodendrocyte responses to buprenorphine uncover novel and opposing roles of μ-opioid- and nociceptin/orphanin FQ receptors in cell development: Implications for drug addiction treatment during pregnancy. *Glia* 2012; 60:125–136

56. Vestal-Laborde AA, Eschenroeder AC, Bigbee JW, et al: The opioid system and brain development: Effects of methadone on the oligodendrocyte lineage and the early stages of myelination. *Dev Neurosci* 2014; 36:409–421

57. Deloulme JC, Raponi E, Gentil BJ, et al: Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendrogial lineage and modulates oligodendrocyte maturation. *Molecular Cell Neurosci* 2004; 27:453–465

58. Djahanguiri B, Richelle M, Fontaine O: Behavioural effects of a prolonged treatment with small doses of morphine in cats. *Psychopharmacologia* 1966; 9:363–372

59. Kumar R, Mitchell E, Stolerman IP: Disturbed patterns of behaviour in morphine tolerant and abstinent rats. *Br J Pharmacol* 1971; 42:473–484

60. Thompson T, Schuster CR: Morphine self-administration, food-reinforced, and avoidance behaviors in rhesus monkeys. *Psychopharmacologia* 1964; 5:87–94

61. Alamy M, Bengelloun WA: Malnutrition and brain development: An analysis of the effects of inadequate diet during different stages of life in rats. *Neurosci Biobehav Rev* 2012; 36:1463–1480

62. Wiggins RC: Myelination and nutritional insufficiency. *Brain Res* 1982; 257:151–175

63. Kikusui T, Mori Y. Behavioral and neurochemical consequences of early weaning in rodents. *J Neuroendocr* 2009; 21:427–431

64. Pinto NP, Rhinesmith EW, Kim TY, et al: Long-term function after pediatric critical illness: Results from the Survivor Outcomes Study. *Pediatr Crit Care Med* 2017; 18:e122–e130.

65. Sobotka SA, Peters S, Pinto NP: Neurodevelopmental disorders in the PICU population. *Clin Pediatr (Phila)* 2018; 57:913–919

66. Knoester H, Bronner MB, Bos AP, et al: Quality of life in children three and nine months after discharge from a paediatric intensive care unit: A prospective cohort study. *Health Qual Life Outcomes* 2008; 6:21

67. Watson RS, Choong K, Colville G, et al: Life after critical illness in children—toward an understanding of pediatric post-intensive care syndrome. *J Pediatr* 2018; 198:16–24

68. Watson RS, Asaro LA, Hertzog JH, et al; RESTORE Study Investigators and the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network: Long-term outcomes after protocolized sedation versus usual care in ventilated pediatric patients. *Am J Respir Crit Care Med* 2018; 197:1457–1467

69. Muranjan MN, Birajdar SB, Shah HR, et al: Psychological consequences in pediatric intensive care unit survivors: The neglected outcome. *Indian Pediatr* 2008; 45:99–103