LeSICiN: A Heterogeneous Graph-based Approach for Automatic Legal Statute Identification from Indian Legal Documents

Shounak Paul, Pawan Goyal, Saptarshi Ghosh
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, India
shounakpaul95@kgpian.iitkgp.ac.in, pawang@cse.iitkgp.ac.in, saptarshi@cse.iitkgp.ac.in

Abstract
The task of Legal Statute Identification (LSI) aims to identify the legal statutes that are relevant to a given description of Facts or evidence of a legal case. Existing methods only utilize the textual content of Facts and legal articles to guide such a task. However, the citation network among case documents and legal statutes is a rich source of additional information, which is not considered by existing models. In this work, we take the first step towards utilizing both the text and the legal citation network for the LSI task. We curate a large novel dataset for this task, including Facts of cases from several major Indian Courts of Law, and statutes from the Indian Penal Code (IPC). Modeling the statutes and training documents as a heterogeneous graph, our proposed model LeSICiN can learn rich textual and graphical features, and can also tune itself to correlate these features. Thereafter, the model can be used to inductively predict links between test documents (new nodes whose graphical features are not available to the model) and statutes (existing nodes). Extensive experiments on the dataset show that our model comfortably outperforms several state-of-the-art baselines, by exploiting the graphical structure along with textual features. The dataset and our codes are available at https://github.com/Law-AI/LeSICiN.

1 Introduction
The task of Legal Statute Identification (LSI) is important in the judicial field, and involves identifying the possible set of statutory laws that are relevant, or might have been violated, given the natural language description of the Facts of a situation. This task needs to be performed at different stages of litigation by different experts, including police personnel, lawyers and judges. An automated system for LSI can greatly promote access to Law by the common masses.

Existing LSI methods and their limitations: Early methods for LSI modeled the task using statistical or simple machine learning methods (Kort 1957; Lauderdale and Clark 2012). Recently, several neural architectures have modeled the problem as a text classification task, attempting to extract increasingly richer features from the text (Luo et al. 2017; Wang et al. 2018; 2019; Xu et al. 2020). Some of these methods simplify the task by trying to identify only the most relevant statute, no longer retaining its multi-label nature.

Historically maintained court case data have been popularly used to create datasets to train the LSI models (Chalkidis, Androutsopoulos, and Aletras 2019; Xiao et al. 2018). However, almost all existing methods for this task rely only on the text of the Facts (and statutes) to perform the classification task. The existing methods do not utilize the legal statute citation network between court case documents and statutes, that has been shown to be a rich source of legal knowledge that is useful for tasks such as estimating legal document similarity (Bhattacharya et al. 2020). However, there has not been any attempt to utilize the legal citation network for the LSI task.

Graph formulation of LSI: This work is the first attempt towards LSI by utilizing both the textual content of statutes/Facts and a heterogeneous statute citation network. In this network, statutes and document are nodes of different types, and citation links exist between these nodes iff a particular Section is cited by a particular document. Additionally, statute nodes may also be connected via defined hierarchies specified in the written law itself. Given such a network, the task of LSI boils down to predicting the existence of links between statute-nodes and newly entering document-nodes.

However, most existing supervised network-based training methods for link prediction do not work well for out-of-sample nodes, or nodes that the model has not seen during training. Indeed, in our case, we can only provide the document nodes and their citation links during training. While testing, every document-node is previously unseen to the model, and the model must predict whether links exist between a new document-node and the statute nodes. Thus, approaches that seek to learn effective node representations for link prediction will fail during test time in our setting. Rather, one has to capitalize on the Fact that two kinds of information are available at all times — the texts corresponding to each statute/document, and the statute nodes themselves (and hierarchical links between them).

We, therefore, formulate the LSI problem as an inductive link prediction task (Hao et al. 2020) on the heterogeneous citation network, between the previously seen Section nodes and a new, unknown Fact node. We use a hybrid learning mechanism to learn two kinds of representations for each node – attribute (generated from text) and structural (generated from network). By forcing the model to learn attribute representations that closely match structural representations
of the same node, we ensure that the model can generalize better by generating more robust, feature-rich attribute representations for unseen document nodes during test time.

A new LSI dataset: There do not exist many good quality datasets for LSI in English. The ECHR dataset (Chalkidis, Androutsopoulos, and Aletras 2019) is considerably small (~ 11.5K documents/Facts) and does not provide the text of the statutes. Another popular dataset, CAIL (Xiao et al. 2018) is much larger; it is, however, in the Chinese language. Importantly, the average no. of statutes cited per document is quite low in both these datasets (0.71 for ECHR and 1.09 for CAIL), i.e., most documents cite at most one statute (or none in the case of ECHR). However, the LSI problem is inherently multi-label, and these datasets do not reflect the true multi-label nature of the LSI problem.

We construct a new, fairly large dataset (~ 66K docs) from case documents and statutes (in English) from the Indian judiciary. This dataset, which we call the Indian Legal Statute Identification (ILSI) dataset, captures the multi-label nature of the LSI problem more truly (details in Section 6).

Contributions of present work: To sum up, our contributions are as follows: (1) To our knowledge, we are the first to use the statute citation network in conjunction with textual descriptions for the task of Legal Statute Identification. We propose a novel architecture LeSICiN (Legal Statute Identification using Citation Network) for the task, that outperforms several state-of-the-art baselines for LSI (improvement of 19.2% over the closest competitor). (2) We construct a large-scale LSI dataset from Indian court case documents, where the task is to identify Sections of the Indian Penal Code, the major criminal law in India. The dataset and our codes are available at https://github.com/Law-AI/LeSICiN.

2 Related Work

Legal Statute Identification (LSI) has been widely studied by researchers in an attempt to automate the process.

Initial Efforts: The earliest LSI approaches used statistical algorithms along with hand-crafted rules (Kort 1957; Ulmer 1963; Segal 1984; Lauderdale and Clark 2012). Later, LSI was approached as a text classification problem based on manually engineered features (Liu and Hsueh 2006; Aletras et al. 2016). However, such hand-crafted rules/features do not allow these methods to generalize well.

Neural models for LSI: Recently developed attention-based neural models for LSI look to extract richer features from text using techniques such as dynamic context vectors (Luo et al. 2017), dynamic thresholding (Wang et al. 2018), hierarchical classification (Wang et al. 2019) or pre-trained BERT-based contextualizers (Chalkidis, Androutsopoulos, and Aletras 2019). Xu et al. 2020 split statutes into communities and use a novel graph distillation operator to identify intra-community features; however, they do not use the citation network in any way. We use all the above-mentioned methods as baselines in this paper.

LJP and Multi-task approaches: Legal Judgment Prediction (LJP) is an umbrella problem that encompasses several related sub-tasks such as identifying statutes (LSI), charges, the term of penalty, etc. A different class of algorithms attempt to exploit the relationship between these multiple related tasks (of LJP) by modeling them together (Zhong et al. 2018; Yang et al. 2019). These models work effectively only when training data is available for more than one of the tasks. Since our main focus is LSI, and we do not have training data for other tasks such as predicting the term of penalty, we do not consider these as baselines in this work.

3 Data Preparation

We develop a novel dataset for the Legal Statute Identification (LSI) task using criminal case documents and statutes from the Indian judiciary. This Section describes the dataset.

Statutes: In Indian Law, most criminal offences are described in the Indian Penal Code (IPC), which is an Act. The IPC Act has a hierarchical structure – the Act is divided into coarse-grained categories called Chapters, which are further subdivided into fine-grained categories called Topics. Each Topic groups together a set of Sections that are based on the same crime. Sections are statutory legal articles that are usually cited from case documents. The text of a Section describes the nature and circumstances of the crime, and litigation procedures involved. In this paper, we use the terms ‘Statute’ and ‘Section’ interchangeably. Table 1 shows a part of the Indian Penal Code, depicting examples of Chapters, Topics and Sections.

Chapter	Topic	Section
Offences affecting Human Body	Offences affecting Life	299: Culpable homicide
Hurts	307: Attempt to murder	
Offences against Property	Robbery and Dacoity	390: Robbery
Criminal Trespass	396: Dacoity with murder	
Trespass	441: Criminal trespass	
446: House breaking by night		

Table 1: An illustrative part of the hierarchy of the Indian Penal Code (IPC) Act divided into Chapters, Topics and Sections (which are mostly cited by documents).
Table 2: Statistics of the new ILSI dataset and comparison with two other LSI datasets (ECHR and CAIL). ILSI reflects the multi-label nature of the LSI task more closely.

Dataset	ECHR	CAIL	ILSI
Language	English	Chinese	English
No. of documents/Facts	11,478	2,676,075	66,090
No. of labels/statutes	66	183	100
Avg. no. of words per doc	2406	1444	1232
Avg. no. of labels per doc in test set	0.71	1.09	3.78

Comparison of ILSI with existing LSI datasets: Table 2 compares ILSI with two popular datasets for the task of LSI, namely, ECHR (Chalkidis, Androustopoulos, and Aletras 2019) and CAIL (Xiao et al. 2018). The ECHR dataset is relatively small, and contains many documents which do not cite any statute/label (since the dataset was designed for legal citation network). The CAIL dataset does not contain any text for the statutes/labels. ILSI is quite large and includes the text of the statutes.

Link Prediction Formulation: We model the LSI task using a graph formalism, over a legal citation network. Each Section and each Fact (from training instances) is treated as a node in a heterogeneous graph \(G = (V, E) \), with a node mapping function \(\phi : V \rightarrow A \) and an edge mapping function \(\psi : E \rightarrow R \), where \(A \) and \(R \) represent the types of nodes and types of relations between nodes, respectively. In our case, we have Fact nodes (\(F \)) and Section nodes (\(S \)), which are accompanied with their attributes. Additionally, we have placeholder node types to denote the hierarchical levels of IPC – Topics (\(T \)), Chapters (\(C \)) and IPC Act (\(A \)) (see Section 3). There exist several types of relations between the nodes – ‘cites’ (\(ct \)) and ‘cited by’ (\(ctb \)) relationships between nodes of types \(F \) and \(S \), ‘includes’ (\(inc \)) and ‘part of’ (\(po \)) relationships between the successive node hierarchy types \(A, C, T \) and \(S \).

We construct the network using the following steps. (i) Assign the set of nodes in each node type, e.g., \(A, C, T, F, S \). Set \(V = V_F \cup V_S \cup V_T \cup V_C \cup V_A \). (ii) For given nodes \(u \) and \(v \) belonging to different, successive levels of hierarchy in the Act (IPC) s.t. \(\phi(u) \in \{A, C, T\} \) and \(\phi(v) \in \{C, T, S\} \), include links \((u, v) \in E_{inc}\) and \((v, u) \in E_{po}\) iff \(v \) is categorized under the broader hierarchy level of \(u \). (iii) For given nodes \(u \) and \(v \) s.t. \(u \in V_F \) and \(v \in V_S \), include links \((u, v) \in E_{ct}\) (‘cites’ link) and \((v, u) \in E_{ctb}\) (‘cited by’ link) iff \(y_{uv}[v] = 1 \).

Given a new Fact \(f \) at test time, the task is to identify the relevant Sections. This problem can be seen as inductive link prediction over the network described above, i.e., predicting the possibility of the existence of a link between the new Fact \(f \) and the Section nodes in the network. Note that inductive link prediction is the task of predicting a link between a pair of nodes, where one or more nodes might not be visible to the model during training.

Formally, modeling LSI as Link Prediction requires us to develop a function \(Q(\cdot) \) such that \(Q(u, v, \theta) = y_{uv} \), where \(u \in V_F \) and \(v \in V_S \) and \(y_{uv} \in \{0, 1\} \) denotes the function’s prediction of whether a link should exist between \(u \) and \(v \).

5 Proposed LSI Model: LeSICIN

Figure 3 gives an overview of our proposed model LeSICIN. Each Fact \(f \) in \(F \) and Section \(s \) in \(S \) is accompanied by a text \(x_f \) and \(x_s \) respectively, which can be considered as attributes of the node. The citation network provides the structural information. We have two separate encoders for encoding attributes and structural information, which are shared across both Facts and Sections.

We adopt the technique used by DEAL (Hao et al. 2020) to generate good quality embeddings for unseen nodes (new Fact descriptions) using only their attributes at test time. During training, we obtain both attribute and structural embeddings of both node types, Facts and Sections. These are combined in different ways to generate three types of scores – attribute, structural and alignment. During testing, since
5.1 Attribute Encoder

We use a shared attribute encoder for both Facts and Sections. A text portion in our formulation is a nested sequence of sentences and words. Hence we encode the text using the Hierarchical Attention Network (HAN) (Yang et al. 2016). Specifically, by feeding the Fact text \(x_f \) and each Section text \(x_s \) to HAN, we obtain a single, attention-weighted representation for the entire text, namely, \(h_f^{(s)} \) and a set of Section representations \(\{ h_s^{(s)} | s \in S \} \).

5.2 Structural Encoder

To exploit the rich, semantic information of the Citation Network, we carefully design various metapath schemas, followed by intra- and inter-metapath aggregation to obtain the structural embedding.

The structural embedding of new Facts are not available, we can only generate attribute and alignment scores. The alignment score enables the model to correlate the two kinds of embeddings, for generalizing well to unseen nodes during testing.

Next, we describe the attribute and structural encoders, and the scoring function used by the architecture.

Intra-Metapath Aggregation: First, we need to aggregate all the node embeddings for a target node \(v \) under a particular metapath schema \(P \). For a metapath instance \(P(v, u) \) connecting \(v \) with its metapath-based neighbour \(u \in \mathcal{N}_v^P \), we use a metapath instance encoder \(g_{(v, u)} \) to generate a representation for the instance \(P(v, u) \). We adopt the relational rotation encoder used by Fu et al. (2020).

Consider that \(P(v, u) = \{ n_0, n_1, \ldots, n_M \} \), with \(n_0 = u \) and \(n_M = v \). We thus have

\[
q_l = h_{n_l} + q_{l-1} \odot r_l; \quad h_{P(v, u)} = \frac{q_M}{M+1}
\]

where \(q_0 = h_{n_0}, r_l \in \mathbb{R}^d \) is the learned relation vector for \(R_l \in \mathcal{R} \) and \(h_{P(u, v)} \) is the vector representation of the metapath instance \(P(u, v) \). Now, we have obtained representations \(h_{P(u, v)} \) for each \(u \in \mathcal{N}^P \). We attentively combine these \(P \)-based representations for the target node \(v \) as

\[
e_{vu}^P = \text{LeakyReLU} (a_P^T \cdot [h_v', |h_{P(v, u)}|])
\]

\[
\alpha_{vu}^P = \text{SOFTMAX}_{u \in \mathcal{N}_v^P} (e_{vu}^P)
\]

\[
h_v^P = \text{RELU} \left(\sum_{u \in \mathcal{N}_v^P} \alpha_{vu}^P \cdot h_{P(u, v)} \right)
\]

where \(a_P \in \mathbb{R}^{2d} \) is the parameterized context vector and \(h_v^P \in \mathbb{R}^d \) is the aggregated representation from all metapath neighbours of \(v \) in \(P \).

Inter-Metapath Aggregation: Now, we need to aggregate the metapaths across different schemas. Consider \(\mathcal{P}_A = \{ P_1, P_2, \ldots, P_N \} \) as the set of metapath schemas which start with node type \(A \in \mathcal{A} \). For a node \(v \in \mathcal{V}_A \) of type \(A \), we have a set of \(N \) representations \(\{ h_v^P, \forall i \in [1, N] \} \).

First, information for each metapath schema is summarized across all nodes \(v \in \mathcal{V}_A \) as

\[
s_{P_i} = \frac{1}{|\mathcal{V}_A|} \sum_{v \in \mathcal{V}_A} \tanh (M_A \cdot h_v^P + b_A)
\]

where \(M_A \in \mathbb{R}^{d_m \times d} \) and \(b_A \in \mathbb{R}^{d_m} \) are learnable parameters. Then, attention mechanism is employed to aggregate all the \(M \) representations as \(e_{P_i} = q_M \cdot s_{P_i} \).

\[
\beta_{P_i} = \text{SOFTMAX}_{P_i \in \mathcal{P}_A} (e_{P_i}) \quad h_v = \sum_{P_i \in \mathcal{P}_A} \beta_{P_i} \cdot h_v^P
\]

where \(q_A \in \mathbb{R}^{d_m} \) is the parameterized context vector.

Thus, at the end of the structural encoding phase, we get a single representation of the Fact \(h_f^{(s)} \) and a set of representations for each Section \(\{ h_s^{(s)} | s \in S \} \).
where \(W(i) \) matches the attribute embedding of Facts with Sections; Section parameters for the final classification layer.

5.3 Scoring Mechanism

We design a scoring function \(m_\theta(f; \{s \mid s \in S\}) \) to assign a score to each Section \(s \in S \) for Fact \(f \). Leveraging the fact that Sections in IPC do have a defined sequential order and related semantics, we first use an LSTM to contextualize these embeddings \(h_s \) for \(s \in S \) as \(h_s = B1-LSTM(h_s; [h_t \mid t \in S]) \). Then, we use the standard attention mechanism to generate a single aggregated embedding \(h_S \) representing the set \(S \):

\[
e_s = w_S^T \cdot \tanh \left(M_S \cdot \tilde{h}_s + b_S \right)
\]

\[
\gamma_s = \text{SOFTMAX}_s \in S (e_s) \quad h_S = \sum_{s \in S} \gamma_s \tilde{h}_s
\]

where \(w_S \in \mathbb{R}^{d_S} \) is the parameterized context vector and \(M_S \in \mathbb{R}^{d_S \times d_S} \) and \(b_S \in \mathbb{R}^{d_S} \) are learnable parameters.

Finally, we generate the score for each class as:

\[
o_f = m_\theta(f; \{s \mid s \in S\}) = \sigma \left(W_C \cdot [h_f||h_S]) + b_C \right)
\]

where \(W_C \in \mathbb{R}^{2d' \times d' \times d'} \) and \(b_C \in \mathbb{R}^{d'} \) are the learnable parameters for the final classification layer.

Since we have two sets of embeddings for each Fact \(f \) and Section \(c_i \), we can generate three sets of scores, namely –

(i) **Attribute Score**: \(o_f^{(a)} = m_\theta(h_f^{(a)}; \{h_s^{(a)} \mid s \in S\}) \)

matches the attribute embedding of Facts with Sections;

(ii) **Structural Score**: \(o_f^{(s)} = m_\theta(h_f^{(s)}; \{h_s^{(s)} \mid s \in S\}) \)

matches the structural embedding of Facts with Sections;

(iii) **Alignment Score**: \(o_f^{(l)} = m_\theta(h_f^{(l)}; \{h_s^{(l)} \mid s \in S\}) \)

matches the attribute embedding of Facts with structural embedding of Sections.

The structural score can only be calculated during training time, since the graphical structure of the Facts at test/inference time is not available. During training, the structural score helps the model to understand the graphical structure of Sections and training documents. However, the graphical structure of the Sections is available at all times, and thus the alignment score actually tunes the model to generate similar attribute and structural representations.

Using Dynamic Context: To provide better guidance to the attention mechanism for the structural encoder through the attribute embeddings, we replace the static context vectors in the structural encoder with dynamically generated vectors from the attribute embeddings of the same node (Luo et al. 2017). In the scoring function, we use the Fact embeddings to generate the dynamic context.

\[
a_f = T_P \cdot h_f^{(a)}; \quad q_A = T_A \cdot h_f^{(s)}; \quad w_S = T_S \cdot h_f^{(l)}
\]

where \(T_P \in \mathbb{R}^{2d' \times d'} \), \(T_A \in \mathbb{R}^{d' \times d'} \) and \(T_S \in \mathbb{R}^{d' \times d'} \) are the learnable transformation matrices.

5.4 Training and Prediction

The loss function has three parts, analogous to the three scores, namely, \(\mathcal{L}^{(a)} \), \(\mathcal{L}^{(s)} \) and \(\mathcal{L}^{(l)} \). We use weighted Binary Cross Entropy Loss to calculate each component as:

\[
l_{s}^{(l)} = w_s y_f[s] \log (o_f^{(l)}[s]) + (1 - y_f[s]) \log (1 - o_f^{(l)}[s])
\]

\[
\mathcal{L}^{(l)} = -\frac{1}{|B|} \sum_{f \in B} \sum_{s \in S} l_f^{(l)} \quad t \in \{a, s, l\}, s \in S
\]

where \(w_s \) denotes the weight of each positive sample of class \(s \in S \) and \(B \) denotes a mini-batch of Facts.

The *vanilla weighting scheme* (VWS) assigns \(w_s = N/f_s, \forall s \in S \), where \(N \) is the total no. of training documents and \(f_s \) is the no. of training documents that cite \(s \). However, this scheme can sometimes lead to very large weights for the rare labels \(f_s << N \). To address this issue, we propose a *threshold-based weighting scheme* (TWS) defined as \(w_s = \min (f_{max}/f_s, \eta) \) where \(f_{max} \) is the frequency of the most cited label, and \(\eta \) is a threshold value determined on the validation set. This scheme caps the class
weights at a reasonable value, so that the model does not compromise performance on the frequent classes for minor improvements over the rare ones.

We have the final loss as: $L = \theta_a L^{(a)} + \theta_s L^{(s)} + \theta_l L^{(l)}$ During test time, the structural score is not available. Thus, $\hat{y}_f = I \left(\lambda_a o_1^{(a)} + \lambda_s o_1^{(s)} + \lambda_l o_1^{(l)} \geq \tau \right)$ where $\hat{y}_f \in \{0,1\}^{|S|}$ and $\hat{y}_f[s] \in \{0,1\}$ indicates whether the model predicts Section s to be relevant to Fact f or not, and τ is the threshold value set using the validation set.

6 Experiments & Results

In this Section, we compare the performance of our model with that of several baselines. We also analyze the effectiveness of our model and its various components.

Baselines: We consider the following state-of-the-art baselines for ILSI: (1) FLA (Luo et al. 2017) uses two HANs to generate Fact embeddings and Section embeddings (2) DPAM (Wang et al. 2018) learns the distribution of pairs of Sections instead of individual Sections, for better learning the rare Sections; (3) HMN (Wang et al. 2019) models the task as a hierarchical classification task with two levels (analogous to Acts and Sections in our work); (4) LADAN (Xu et al. 2020) groups the Sections into non-overlapping communities based on TF-IDF similarity measures before performing Graph distillation on each community (5) HBERT (Chalkidis, Androutsopoulos, and Aletras 2019) uses BERT (Devlin et al. 2018) to generate embeddings for each sentence of the Fact, and an LSTM-Attn layer on top to generate the final embedding for each document before classifying. Note that this model does not utilize the text of the statutes for each document before classifying. Note that this model does not utilize the text of the statutes (6) HLegalBERT: A variation of HBERT with the same architecture, but using LegalBERT (Chalkidis et al. 2020) to generate domain-aware embeddings for each sentence; (7) DEAL: The base DEAL (Hao et al. 2020) using a node embedding matrix as the structural encoder, cosine similarity for scoring links, and a network distance-based weighting of the negative samples for the loss function.

Hyperparameters: We apply the same settings to all competing methods to ensure fair competition. Every model is trained and validated on the train and validation sets described in Section 2 for 100 epochs. At the end of training, the model state yielding the best validation result is used over the test set. Some hyper-parameters are also fixed across all models – (i) embedding dimension of 200 in all cases except 768 for HBERT, (ii) Adam Optimizer with learning rate in the range $[0.01, 0.000001]$, (iii) dropout probability of 0.5, and (iv) batch size of 32.

For model-specific configurations required in LeSiCiN, we sample 8 metapath instances per schema, per node. To place extra emphasis on network learning, we set $\theta_a = 1$, $\theta_s = 2$, $\theta_l = 3$ and $\lambda_a = 0.25$, $\lambda_s = 0.75$. Based on validation set performance, we set $\tau = 0.65$ and $\eta = 10.0$.

To improve the models’ understanding of legal text, we use sent2vec (Pagliardini, Gupta, and Jaggi 2018) embeddings of dimension 200 trained on a large legal corpus of Indian case documents, to initialize the sentence embeddings of all models (except HBERT and HLegalBERT which have their own encoding methods).

We have used the source codes for the baselines where available. We have coded our model and other models (if code unavailable) in PyTorch (Paszke et al. 2019). For the network part, we use PyTorch Geometric (Fey and Lenssen 2019). We trained all models on an NVIDIA Tesla T4 with 16 GB GPU memory.

Evaluation Metrics: Since the label distribution (frequency of statutes being cited) is very skewed, we use macro-averaged versions (i) macro-Precision, (ii) macro-Recall and (iii) macro-F1. Also, we use (iv) the Jaccard overlap between the gold standard set of labels and the predicted set of labels (of a test Fact). All metrics are averaged over the entire test dataset.

6.1 Comparative Results

Table 3 shows the performance of all the competing models on the test set. In terms of macro-F1, our proposed model LeSiCiN performs the best across all methods, followed by DPAM and FLA. The last column of Table 3 shows a configuration of LeSiCiN tuned for higher recall, by reducing the classification threshold to $\tau = 0.3$. This is for the sake of comparison with the best configuration of LeSiCiN (second-last column), which has been tuned for the highest F1 with $\tau = 0.65$.

In the case of FLA, the Fact-aware Section representations seem to give good performance, especially in terms of Recall (highest macro-Recall across all methods). Methods like HMN and LADAN that perform two-step classification do not perform well, possibly since performance of the second step depends crucially on that of the first step; the distribution of Sections over Topics (in case of HMN) and Sections over communities (for LADAN) might be too skewed, leading to low Precision values (and hence low F-score) for both models. The BERT-based HBERT and HLegalBERT do not perform well at all, most possibly because these models do not make use of the Section texts. DEAL uses the graph structure to extract valuable distinguishing features, achieving the second highest macro-Recall after FLA. However, it does not make use of the graph heterogeneity nor complex GNNs, just a simple node embedding lookup. Thus its overall performance (macro-F1) is relatively low.

Interestingly, several models suffer from the problem of low Precision and high Recall, demonstrating a significant difference between macro-P and macro-R, except for DPAM and LeSiCiN, which are actually the top performing methods. However, as the last column in Table 3 shows, LeSiCiN can be tuned to yield higher recall than all baselines with slight sacrifice in F1. LeSiCiN with $\tau = 0.3$ performs similar to FLA in terms of all the metrics.

6.2 Analysis of Our Model

Ablation experiments: To understand the effectiveness of different components of LeSiCiN, we try the following variations:

1We follow the HBERT implementation in Chalkidis, Androutsopoulos, and Aletras 2019.
Metric	FLA	DPAM	HMN	LADAN	HBERT	HLegalBERT	DEAL	LeSICiN	LeSICiN (τ = 0.3)
Macro-P	12.19	27.11	10.27	12.64	5.79	4.36	12.66	27.90	11.99
Macro-R	69.25	27.43	57.30	46.17	51.43	52.55	64.83	31.32	69.42
Macro-F1	19.60	23.86	16.12	17.93	7.91	7.58	19.43	28.45	19.77
Jaccard	11.64	14.44	9.56	10.28	4.47	4.01	11.44	17.57	11.49

Table 3: Comparative results of the baselines and the proposed LeSICiN on the test set. Last column shows a variations of LeSICiN, that optimizes for Recall. All values are in percentages. Best value for each metric is in boldface. Differences in Macro-F1 between LeSICiN and all baselines are all statistically significant (paired t-Test with 95% confidence).

Model	Macro-P	Macro-R	Macro-F1	Jaccard
LeSICiN	27.90	31.32	28.45	17.57
LeSICiN-E	27.87	26.99	25.18	15.38
LeSICiN-B	21.53	36.04	24.66	14.89
LeSICiN-S	22.00	43.19	25.40	15.32
LeSICiN-V	19.50	47.60	25.52	15.48
LeSICiN-SG	26.50	29.80	26.90	16.17

Table 4: Ablation test results on our proposed model LeSICiN on the test set. All values are in percentages.

(1) **LeSICiN-E**: To inspect the graph encoding capabilities of LeSICiN, we replace the metapath-based aggregation network with a simple node embedding lookup table, similar to what is used in DEAL.

(2) **LeSICiN-B**: We replace the Scoring Function described in Section 5.3 with a simple Bilinear layer, i.e., for each (Fact, Sec) pair, this variation generates a single score that denotes how relevant the members of the pair are.

(3) **LeSICiN-S**: We remove the structural loss $L^{(s)}$ calculated based on Section structural embeddings and Fact attribute embeddings during training.

(4) **LeSICiN-V**: We use VWS for weighting loss instead of our proposed TWS (described in Section 5.4).

(5) **LeSICiN-SG**: To investigate the gains of modeling heterogeneity in the citation network, we replace the metapath-based aggregation network with a homogeneous graph encoder, GraphSAGE [Hamilton et al., 2017].

Table 4 shows that removal of any component from LeSICiN degrades its performance. The node embedding matrix of LeSICiN-E is not capable of capturing the complex semantic relationships in the heterogeneous citation graph and hence fails to generalize well to the test dataset. The scoring function used in LeSICiN seems to have a higher impact on performance, since replacing it with a bilinear matching function (in LeSICiN-B) deteriorates macro-F1 even further. The bilinear function cannot model relationships between labels efficiently since it scores each label independently. LeSICiN-S, though inferior to LeSICiN, outperforms several baselines, probably due to the fact that the alignment loss captures the Section-side aspect of the citation network. Using threshold-based weights also seem to improve performance, since LeSICiN outperforms LeSICiN-V with the vanilla weighting scheme. Finally, LeSICiN-SG does not perform as good as LeSICiN since it neglects the heterogeneity of the citation network. Importantly, despite significant ablations, the variations of LeSICiN achieve higher macro-F1 than the baselines in Table 3.

Performance on labels of varying frequencies: We check how well LeSICiN and the two closest baselines (DPAM and DEAL) perform across labels/Sections having different frequencies of citation. Figure 2a shows the performances

Figure 2: Performance (macro-F1) of LeSICiN and two closest competitors DPAM and DEAL across (a) labels (statutes) of varying frequencies, (b) Facts from different Law courts.

(Macro-F1 scores), where the X-axis shows the Sections sorted in decreasing order of their frequency of being cited (by the documents in the test set), and grouped into four groups. The performances of all models degrade sharply over the less frequently cited labels/Sections. LeSICiN performs much better than the baselines for the first two groups of Sections, i.e., for the 50 most-frequently cited Sections. For the less frequently cited Sections, LeSICiN performs much better than DEAL and very close to DPAM (difference between LeSICiN and DPAM is not statistically significant by paired t-Test with 95% confidence).

Performance on Facts from different courts of Law: As discussed in Section 3, the ILSI dataset has Facts extracted from case documents of seven Indian courts: the Supreme Court and six major High Courts (Allahabad, Bombay, Madras, Calcutta, Delhi and Madhya Pradesh). It is important for models to be generalizable across different courts, since writing styles may vary significantly across courts.

Figure 2b shows the performance of LeSICiN and the two closest competitors (DPAM and DEAL) over the Facts of each Court. LeSICiN consistently performs much better than both DPAM and DEAL, across documents from all courts, thus showing its generalizability over writing styles.

7 Conclusion

We propose a novel model LeSICiN for the Legal Statute Identification (LSI) task, that utilizes the citation network of the training data to produce robust, feature-rich representations for the text, which generalize well to unseen test documents, across a range of different parameters. We also introduce a new, large-scale English dataset for LSI constructed from Indian judiciary documents.

Acknowledgements: The research is partially supported by TCG CREST through the project “Smart Legal Consultant: AI-based Legal Analytics”. S. Paul is supported by the Prime Minister’s Research Fellowship (PMRF) from the Government of India.
References

Aletras, N.; Tsarapatsanis, D.; Preotiuc-Pietro, D.; and Lampos, V. 2016. Predicting judicial decisions of the European Court of Human Rights: A natural language processing perspective. PeerJ Computer Science, 2: e93.

Bhattacharya, P.; Ghosh, K.; Pal, A.; and Ghosh, S. 2020. Hier-SPCNet: A Legal Statute Hierarchy-Based Heterogeneous Network for Computing Legal Case Document Similarity. In Proc. ACM SIGIR Conference on Research and Development in Information Retrieval, 1657–1660.

Bhattacharya, P.; Paul, S.; Ghosh, K.; Ghosh, S.; and Wyner, A. 2019. Identification of Rhetorical Roles of Sentences in Indian Legal Judgments. In Proceedings of JURIX.

Chalkidis, I.; Androustopoulos, I.; and Aletras, N. 2019. Neural Legal Judgment Prediction in English. In Proceedings of ACL.

Chalkidis, I.; Fergadiotis, M.; Malakasiotis, P.; Aletras, N.; and Androustopoulos, I. 2020. LEGAL-BERT: The Muppets straight out of Law School. In Findings of the Association for Computational Linguistics: EMNLP 2020, 2898–2904.

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL.

Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation Learning with PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds.

Fu, X.; Zhang, J.; Meng, Z.; and King, I. 2020. Magnn: Metapath aggregated graph neural network for heterogeneous graph embedding. In Proceedings of The Web Conference 2020, 2331–2341.

Hamilton, W. L.; et al. 2017. Inductive Representation Learning on Large Graphs. NIPS’17.

Hao, Y.; Cao, X.; Fang, Y.; Xie, X.; and Wang, S. 2020. Inductive Link Prediction for Nodes Having Only Attribute Information. In Bessiere, C., ed., Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, 1209–1215. International Joint Conferences on Artificial Intelligence Organization.

Kort, F. 1957. Predicting Supreme Court decisions mathematically: A quantitative analysis of the “right to counsel” cases. American Political Science Review, 51(1): 1–12.

Lauderdale, B. E.; and Clark, T. S. 2012. The Supreme Court’s many median justices. American Political Science Review, 106(4): 847–866.

Liu, C.-L.; and Hsieh, C.-D. 2006. Exploring phrase-based classification of judicial documents for criminal charges in chinese. In International Symposium on Methodologies for Intelligent Systems, 681–690. Springer.

Luo, B.; Feng, Y.; Xu, J.; Zhang, X.; and Zhao, D. 2017. Learning to predict charges for criminal cases with legal basis. In Proceedings of EMNLP, 2727–2736.

Pagliardini, M.; Gupta, P.; and Jaggi, M. 2018. Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features. In Proc. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), 528–540.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; and Chintala, S. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Wallach, H.; Larochelle, H.; Beygelzimer, A.; d’Alché-Buc, F.; Fox, E.; and Garnett, R., eds., Advances in Neural Information Processing Systems 32, 8024–8035. Curran Associates, Inc.

Sechidis, K.; Tsoumakas, G.; and Vlahavas, I. 2011. On the stratification of multi-label data. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 145–158. Springer.

Segal, J. A. 1984. Predicting Supreme Court cases probabilistically: The search and seizure cases, 1962-1981. American Political Science Review, 78(4): 891–900.

Ulmer, S. S. 1963. Quantitative analysis of judicial processes: Some practical and theoretical applications. Law & Contemp. Probs., 28: 164.

Wang, P.; Fan, Y.; Niu, S.; Yang, Z.; Zhang, Y.; and Guo, J. 2019. Hierarchical Matching Network for Crime Classification. In Proceedings of SIGIR, 325–334. ACM.

Wang, P.; Yang, Z.; Niu, S.; Zhang, Y.; Zhang, L.; and Niu, S. 2018. Modeling dynamic pairwise attention for crime classification over legal articles. In Proceedings of SIGIR, 485–494. ACM.

Xiao, C.; Zhong, H.; Guo, Z.; Tu, C.; Liu, Z.; Sun, M.; Feng, Y.; Han, X.; Hu, Z.; Wang, H.; et al. 2018. Cail2018: A large-scale legal dataset for judgment prediction. arXiv preprint arXiv:1807.02478.

Xu, N.; Wang, P.; Chen, L.; Pan, L.; Wang, X.; and Zhao, J. 2020. Distinguish Confusing Law Articles for Legal Judgment Prediction. In Proceedings of ACL.

Yang, W.; Jia, W.; Zhou, X.; and Luo, Y. 2019. Legal judgment prediction via multi-perspective bi-feedback network. In Proceedings of IJCAI.

Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; and Hovy, E. 2016. Hierarchical attention networks for document classification. In Proceedings of NAACL, 1480–1489.

Zhong, H.; Guo, Z.; Tu, C.; Xiao, C.; Liu, Z.; and Sun, M. 2018. Legal judgment prediction via topological learning. In Proceedings of EMNLP, 3540–3549.
Appendix A Overview of Algorithm

Algorithm 1: Forward Propagation of LeSICiN

Require: x_f — the text of the Facts
 $\{x_s | s \in S\}$ — the text of the Sections
 G, ϕ, ψ — the Citation Network with node and edge mapping functions
 training — indicates if this is a training pass
Ensure: o_f — Final predictions for each Section
 \mathcal{L} — Final loss

1: for each $s \in S$ do
2: Encoding Section Text:
3: $h_s^{(a)} = $ ATTRIBUTE-ENCODER(x_s)
4: end for
5: Encoding Fact Text:
6: $h_f^{(a)} = $ ATTRIBUTE-ENCODER(x_f)
7: Generate Dynamic Context Vectors:
8: $a_p = T_P \cdot h_o^{(a)}$; $q_A = T_A \cdot h_o^{(a)}$;
9: $w_S = T_S \cdot h_f$
10: for each $s \in S$ do
11: Encoding Section Structure:
12: $h_s^{(s)} = $ STRUCTURAL-ENCODER($G, \phi, \psi; a_p, q_A$)
13: end for
14: if training is True then
15: Encoding Fact Structure:
16: $h_f^{(s)} = $ STRUCTURAL-ENCODER($G, \phi, \psi; a_p, q_A$)
17: end if
18: Attribute Score, Loss:
19: $o_f^{(a)}, \mathcal{L}_f^{(a)} = $ SCORING-FUNCTION($h_f^{(a)}; \{h_s^{(a)} | s \in S\}; w_S$)
20: Alignment Score, Loss:
21: $o_f^{(l)}, \mathcal{L}_f^{(l)} = $ SCORING-FUNCTION($h_f^{(a)}; \{h_s^{(s)} | s \in S\}; w_S$)
22: Structural Score, Loss:
23: $o_f^{(s)}, \mathcal{L}_f^{(s)} = $ SCORING-FUNCTION($h_f^{(s)}; \{h_s^{(s)} | s \in S\}; w_S$)
24: if training is True then
25: Final Loss:
26: $\mathcal{L}_f = \theta_a \mathcal{L}_f^{(a)} + \theta_s \mathcal{L}_f^{(s)} + \theta_l \mathcal{L}_f^{(l)}$
27: end if
28: else
29: $\mathcal{L}_f^{(s)} = 0$
30: end if
31: Final Predictions:
32: $y_f = I (\lambda_s o_f^{(a)} + \lambda_l o_f^{(l)} \geq \tau)$

Algorithm 1 details the forward pass of our proposed model LeSICiN, the same as was depicted in Figure 1. The attribute encoder converts texts to vector representations for both Facts and Sections. The structural encoder is used to generate another set of vector representations for the Sections (at all times) and Facts (only train time).

The scoring function can use any pair of embeddings to generate scores and losses. It is used to calculate the attribute and alignment scores (at all times) and the structural scores (only train time). These various scores and losses are combined to get the final outputs of the model.

Appendix B Citation network & Metapaths

Here we take a brief look at the heterogeneous legal citation network and the metapaths used in LeSICiN.

B.1 Overview of the Citation Network

The citation network can be decomposed into the two (overlapping) parts:

1) Label Hierarchy Tree: As described in Section 3 (example in Table 1), the entire Act, IPC, can be divided into coarse-grained categories called Chapters and further subdivided into fine-grained categories called Topics. Each Topic is a non-overlapping grouping of Sections related to the same crime. This hierarchy of Acts, Chapters, Topics and Sections form the Label Tree (see Figure 2). The nodes at each level have an includes relationship with the nodes below them in the hierarchy, and a part of relationship in the other direction.

2) Fact-side Graph: The citations between Sections and Facts (documents) can be considered as a bi-partite graph. In fact, just this part alone is sufficient to describe the citation network; we include the Label hierarchy as part of the entire network to exploit hierarchical relationships between the Sections themselves. Each Fact has a cites relationship with Sections it is linked to, and there is a cited by relationship the other way.

![Figure 3: Zoomed-in illustration of the Citation Network in the architecture diagram of Figure 1](image)

B.2 Description of Metapath Schemas

As described in Section 5.2, a metapath is a sequence of nodes and the relationships connecting them in a heterogeneous network. A ‘metapath schema’ is a user-defined sequence of node types and their connecting relations. Individual metapath instances can be constructed for a target node, and are sampled from the graph following the metapath schema.

Metapath schemas are defined keeping a target node in mind. All defined metapath schemas start and end with the same node type, and are defined in a way to extract meaningful relationships between the metapath neighbours.

In our work, we use 4 Fact-side metapaths and 4 Section-side metapaths, as described below.
Table 6: Comparing outputs of LeSICiN and of the two closest baselines DEAL and DPAM, on the input Fact shown in Table 5. Sections marked in **green** are correctly identified (according to the gold-standard), and those in **red** are wrongly identified.

Table 5: Example of the Fact Section taken from the Indian Supreme Court Document “Liyakat vs State Of Uttarakhand on 25 February, 2008”, along with the IPC Sections (201 and 302) that it cites.