A FORMULA FOR THE R-MATRIX USING A SYSTEM OF WEIGHT PRESERVING ENDOmorphisms

PETER TINGLEY

Abstract. We give a formula for the universal R-matrix of the quantized universal enveloping algebra $U_q(g)$. This is similar to a previous formula due to Kirillov-Reshetikhin and Levendorskii-Soibelman, except that where they use the action of the braid group element T_{w_0} on each representation V, we show that one can instead use a system of weight preserving endomorphisms. One advantage of our construction is that it is well defined for all symmetrizable Kac-Moody algebras. However we have only established that the result is equal to the universal R-matrix in finite type.

1. Introduction

Let g be a finite type complex simple Lie algebra and $U_q(g)$ the corresponding quantized universal enveloping algebra. In [KR] and [LS], Kirillov-Reshetikhin and Levendorskii-Soibelman developed a formula for the universal R-matrix

$$R = (X^{-1} \otimes X^{-1})\Delta(X),$$

where X belongs to a completion of $U_q(g)$. The element X is constructed using the braid group element T_{w_0} corresponding to the longest word of the braid group, and as such only makes sense when g is of finite type.

The element X in (1) defines a vector space endomorphism X_V on each representation V of $U_q(g)$, and in fact X is defined by the system of endomorphisms $\{X_V\}$. Furthermore, any natural system of vector space endomorphisms $\{E_V\}$ can be represented as an element E in a certain completion of $U_q(g)$ (see [KT]). The action of the coproduct $\Delta(E)$ on a tensor product $V \otimes W$ is then simply $E_V \otimes W$. Thus the right side of (1) is well defined if X is replaced by $E = \{E_V\}$.

In this note we consider the case where g is a symmetrizable Kac-Moody algebra. We define a system of weight preserving endomorphisms $\Theta = \{\Theta_V\}$ of all integrable highest weight representations V of $U_q(g)$. When g is of finite type, we show that

$$R = (\Theta^{-1} \otimes \Theta^{-1})\Delta(\Theta),$$

where the equality means that, for any type 1 finite dimensional modules V and W, the actions of the two sides of (2) on $V \otimes W$ agree. We expect this remains true in other cases, although this has not been proven.

Our endomorphisms Θ_V are not linear over the field $\mathbb{C}(q)$, but are instead compatible with the automorphism which inverts q. For this reason, Θ cannot be realized using an element in a completion of $U_q(g)$, and it is crucial to work with
systems of endomorphisms. There is a further technically in that Θ_V actually depends on a choice of global basis for V. Nonetheless, we give a precise meaning to (2).

This note is organized as follows. In Section 2 we fix notation and conventions. In Section 3 we review the universal R-matrix. In Section 4 we review a method developed by Henriques and Kamnitzer [HK] to construct isomorphisms $V \otimes W \rightarrow W \otimes V$. In Section 5 we state some background results on crystal bases and global bases. In Section 6 we construct our endomorphism Θ. In Section 7 we prove our main theorem (Theorem 7.11), which establishes (2) when g is of finite type. In Section 8 we briefly discuss future directions for this work.

1.1. Acknowledgements. We thank Joel Kamnitzer, Noah Snyder, and Nicolai Reshetikhin for many helpful discussions.

2. Conventions

We must first fix some notation. For the most part we follow [CP].

- g is a symmetrizable Kac-Moody algebra with Cartan matrix $A = (a_{ij})_{i,j \in I}$ and Cartan subalgebra \mathfrak{h}.
- $\langle \cdot, \cdot \rangle$ denotes the paring between \mathfrak{h} and \mathfrak{h}^* and (\cdot, \cdot) denotes the usual symmetric bilinear form on either \mathfrak{h} or \mathfrak{h}^*. Fix the usual elements $\alpha_i \in \mathfrak{h}^*$ and $H_i \in \mathfrak{h}$, and recall that $\langle H_i, \alpha_j \rangle = a_{ij}$.
- $d_i = (\alpha_i, \alpha_i)/2$, so that $(H_i, H_j) = d_j^{-1}a_{ij}$ and, for all $\lambda \in \mathfrak{h}^*$, $(\alpha_i, \lambda) = d_i(H_i, \lambda)$.
- B is the symmetric matrix $(d_j^{-1}a_{ij})$.
- $\rho \in \mathfrak{h}^*$ satisfies $(H_i, \rho) = 1$ for all i. Note that this implies $(\alpha_i, \rho) = d_i$. If A is not invertible this condition does not uniquely determine ρ, and we simply choose any one solution.
- H_ρ is the element of \mathfrak{h} such that, for any $\lambda \in \mathfrak{h}^*$, $\langle H_\rho, \lambda \rangle = (\rho, \lambda)$. In particular, $\langle H_\rho, \alpha_i \rangle = d_i$ for all i.
- $U_q(g)$ is the quantized universal enveloping algebra associated to g, generated over $\mathbb{C}(q)$ by E_i, F_i for all $i \in I$, and K_H for H in the coweight lattice of g. As usual, let $K_i = K_{d_i H_i}$. For convenience, we recall the exact formula for the coproduct:

$$\Delta E_i = E_i \otimes K_i + 1 \otimes E_i
\Delta F_i = F_i \otimes 1 + K_i^{-1} \otimes F_i
\Delta K_H = K_H \otimes K_H$$

and the following commutation relations

$$K_H E_i K_H^{-1} = q^{\langle H, \alpha_i \rangle} E_i \quad \text{and} \quad K_H F_i K_H^{-1} = q^{-\langle H, \alpha_i \rangle} F_i.$$

At times it will be necessary to adjoin a fixed k-th root of q to the base field $\mathbb{C}(q)$, where k is twice the dual Coxeter number of g.

- $[n] = q^{n-2}/q^{-n}$, and $X(n) = X^n_{[n][n-1] \cdots [2]}$.
- Fix a representation V of $U_q(g)$ and $\lambda \in \mathfrak{h}^*$. We say $v \in V$ is a weight vector of weight λ if, for all $H \in \mathfrak{h}$, $K_H(v) = q^{\langle H, \lambda \rangle} v$.
- $\lambda \in \mathfrak{h}^*$ is called a dominant integral weight if $\langle H_i, \lambda \rangle \in \mathbb{Z}_{\geq 0}$ for all i.
- For each dominant integral weight λ, V_λ is the type 1 irreducible integrable representation of $U_q(g)$ with highest weight λ.
A FORMULA FOR THE R-MATRIX

B_λ is a fixed global basis for V_λ, in the sense of Kashiwara (see [K]). b_λ and b^low_λ are the highest weight and lowest weight elements of B_λ respectively.

3. The R-matrix

We briefly recall the definition of a universal R-matrix, and the related notion of a braiding.

Definition 3.1. A braided monoidal category is a monoidal category \mathcal{C}, along with a natural system of isomorphisms $\sigma_{V,W}^{br}$: $V \otimes W \rightarrow W \otimes V$ for each pair $V, W \in \mathcal{C}$, such that, for any $U, V, W \in \mathcal{C}$, the following two equalities hold:

\[
\begin{align*}
(\sigma_{U,W}^{br} \otimes \text{Id}) \circ (\text{Id} \otimes \sigma_{V,W}^{br}) &= \sigma_{U \otimes V,W}^{br} \\
(\text{Id} \otimes \sigma_{U,V}^{br}) \circ (\sigma_{U,V}^{br} \otimes \text{Id}) &= \sigma_{U,V \otimes W}^{br}.
\end{align*}
\]

The system $\sigma^{br} := \{\sigma_{V,W}^{br}\}$ is called a braiding on \mathcal{C}.

Let $\widetilde{U_q(\mathfrak{g})} \otimes \widetilde{U_q(\mathfrak{g})}$ be the completion of $U_q(\mathfrak{g}) \otimes U_q(\mathfrak{g})$ in the weak topology defined by all matrix elements of representations $V_\lambda \otimes V_\mu$, for all ordered pairs of dominant integral weights (λ, μ).

Definition 3.2. A universal R-matrix is an element R of $\widetilde{U_q(\mathfrak{g})} \otimes \widetilde{U_q(\mathfrak{g})}$ such that $\sigma^{br}_{V,W} := \text{Flip} \circ R$ is a braiding on the category of $U_q(\mathfrak{g})$ representations.

Note in particular that, since the braiding is an isomorphism, R must be invertible. It is central to the theory of quantized universal enveloping algebras that, for any symmetrizable Kac-Moody algebra \mathfrak{g}, $U_q(\mathfrak{g})$ has a universal R-matrix. The universal R-matrix is not truly unique, but there is a well-studied standard choice. See [CP] for a thorough discussion when \mathfrak{g} is of finite type, and [L] for the general case.

When \mathfrak{g} is of finite type, the R-matrix can be described explicitly as follows. Note that the expression below is presented in the h-adic completion of $U_h(\mathfrak{g})$, whereas here we are working in $U_q(\mathfrak{g})$. However, it is straightforward to check that this gives a well defined endomorphism of $V \otimes W$ for any integrable highest weight $U_q(\mathfrak{g})$-representations V and W, with the only difficulty being that certain fractional powers of q can appear.

Theorem 3.3. (see [CP, Theorem 8.3.9]) Assume \mathfrak{g} is of finite type. Then the standard universal R-matrix for $U_q(\mathfrak{g})$ is given by the expression

\[
(6) \quad R_h = \exp \left(h \sum_{i,j} (B^{-1})_{ij} H_i \otimes H_j \right) \prod_{\beta} \exp \left[(1 - q_{\beta}^2) E_{\beta} \otimes F_{\beta} \right],
\]

where the product is over all the positive roots of \mathfrak{g}, and the order of the terms is such that β_r appears to the left of β_s if $r > s$. \hfill \Box

We will not explain all the notation in (6), since the only thing we use is the fact that E_{β} acts as 0 on any highest weight vector, and so the product in the expression acts as the identity on $b_\lambda \otimes c \in V_\lambda \otimes V_\mu$.
4. Constructing isomorphisms using systems of endomorphisms

Here and throughout this note a representation of $U_q(\mathfrak{g})$ will mean a direct sum of possibly infinitely many of the irreducible integrable type 1 representations V_λ. We note that the category of such representations is closed under tensor product. When \mathfrak{g} is of finite type, we can restrict to finite direct sums, or equivalently finite dimensional type 1 modules, since this category is already closed under tensor product.

In this section we review a method for constructing natural systems of isomorphisms $\sigma_{V,W} : V \otimes W \to W \otimes V$. This idea was used by Henriques and Kamnitzer in [HK], and was further developed in [KT]. The data needed to construct such a system is:

(i) An algebra automorphism C_ξ of $U_q(\mathfrak{g})$ which is also a coalgebra anti-automorphism.

(ii) A natural system of invertible vector space endomorphisms ξ_V of each representation V of $U_q(\mathfrak{g})$ which is compatible with C_ξ in the sense that the following diagram commutes for all V:

\[
\begin{array}{ccc}
V & \xrightarrow{\xi_V} & V \\
\downarrow & & \downarrow \\
U_q(\mathfrak{g}) & \xrightarrow{C_\xi} & U_q(\mathfrak{g}).
\end{array}
\]

It follows immediately from the definition of coalgebra anti-automorphism that

\[
\sigma_{V,W}^\xi := \text{Flip} \circ (\xi_V^{-1} \otimes \xi_W^{-1}) \circ \xi_{V \otimes W}
\]

is an isomorphism of $U_q(\mathfrak{g})$ representations from $V \otimes W$ to $W \otimes V$, where Flip is the map from $V \otimes W$ to $W \otimes V$ defined by Flip$(v \otimes w) = w \otimes v$.

We will normally denote the system $\{\xi_V\}$ simply by ξ, and will denote the action of ξ on the tensor product of two representations by $\Delta(\xi)$. This is justified since, as explained in [KT], ξ in fact belongs to a completion of $U_q(\mathfrak{g})$, and the action of ξ on $V \otimes W$ is calculated using the coproduct. With this notation $\sigma^\xi := \{\sigma_{V,W}^\xi\}$ can be expressed as

\[
\sigma^\xi = \text{Flip} \circ (\xi^{-1} \otimes \xi^{-1}) \circ \Delta(\xi).
\]

In the current work we require a little more freedom: we will sometimes use automorphisms C_ξ of $U_q(\mathfrak{g})$ which are not linear over $\mathbb{C}(q)$, but instead are bar-linear (i.e. invert q). This causes some technical difficulties, which we deal with in Section 6. Once we make this precise, we will use all the same notation for a bar-linear C_ξ and compatible system of \mathbb{C} vector space automorphisms ξ as we do in the linear case, including using $\Delta(\xi)$ to denote ξ acting on a tensor product.

Comment 4.1. Since the representations we are considering are all completely reducible, to describe the data (C_ξ, ξ) it is sufficient to describe C_ξ and to give the action of $\xi_V\lambda$ on any one vector v in each irreducible representation V_λ. This is usually more convenient then describing $\xi_{V_\lambda}(v)$ explicitly. Of course, the choice of C_ξ imposes a restriction on $\xi_{V_\lambda}(v)$, so when we give such a description of ξ, we must check that the action on our chosen vector in each V_λ is compatible with C_ξ.
Comment 4.2. If C_ξ is an coalgebra automorphism as opposed to a coalgebra anti-automorphism, the same arguments show that $(\xi^{-1}_V \otimes \xi^{-1}_W) \circ \xi_{V \otimes W} : V \otimes W \to V \otimes W$ is an isomorphism.

5. Crystal bases and Global bases

In order to extend the construction described in the Section 4 to include bar linear ξ, we will need to use some results concerning crystal bases and global bases. We state only what is relevant to us, and refer the reader to [K] for a more complete exposition. Unfortunately, the conventions in [K] and [CP] do not quite agree. In particular, the theorems from [K] that we will need are stated in terms of a different coproduct, so we have modified them to match our conventions.

Definition 5.1. Fix an integrable highest weight representation V of $U_q(\mathfrak{g})$. Define the Kashiwara operators $\tilde{F}_i, \tilde{E}_i : V \to V$ by linearly extending

$$(9) \quad \begin{cases} \tilde{F}_i(F_i^{(n)}(v)) = F_i^{(n+1)}(v) \\ \tilde{E}_i(F_i^{(n)}(v)) = F_i^{(n-1)}(v). \end{cases}$$

for all $v \in V$ such that $E_i(v) = 0$.

Definition 5.2. Let $A_\infty = \mathbb{C}[q^{-1}]$ be the algebra of rational functions in q^{-1} over \mathbb{C} whose denominators are not divisible by q^{-1}.

Definition 5.3. A crystal basis of a representation V (at $q = \infty$) is a pair (\mathcal{L}, \tilde{B}), where \mathcal{L} is an A_∞-lattice of V and \tilde{B} is a basis for $\mathcal{L} \otimes q^{-1} \mathcal{L}$, such that

(i) \mathcal{L} and \tilde{B} are compatible with the weight decomposition of V.

(ii) \mathcal{L} is invariant under the Kashiwara operators and $\tilde{B} \cup 0$ is invariant under their residues $e_i := \tilde{E}_i(-\text{mod } q^{-1} \mathcal{L})$, $f_i := \tilde{F}_i(-\text{mod } q^{-1} \mathcal{L}) : \mathcal{L}/q^{-1} \mathcal{L} \to \mathcal{L}/q^{-1} \mathcal{L}$.

(iii) For any $b, b' \in \tilde{B}$, we have $e_i b = b'$ if and only if $f_i b' = b$.

Definition 5.4. Let (\mathcal{L}, \tilde{B}) be a crystal basis for V. The highest weight elements of \tilde{B} are those $b \in \tilde{B}$ such that, for all i, $e_i(b) = 0$.

Proposition 5.5. (see [K]) Each V_λ has a crystal basis $(\mathcal{L}_\lambda, \tilde{B}_\lambda)$. Furthermore, $(\mathcal{L}_\lambda, \tilde{B}_\lambda)$ has a unique highest weight element, and this occurs in the λ weight space.

Theorem 5.6. [K, Thoerem 1] Let V, W be representations with crystal bases (\mathcal{L}, \tilde{A}) and (\mathcal{M}, \tilde{B}) respectively. Then $(\mathcal{L} \otimes \mathcal{M}, \tilde{A} \otimes \tilde{B})$ is a crystal basis of $V \otimes W$. Furthermore, the highest weight elements of $\tilde{A} \otimes \tilde{B}$ are all of the form $a^\text{high} \otimes b$, where a^high is a highest weight element of \tilde{A}.

Definition 5.7. Let $(\mathcal{L}_\lambda, \tilde{B}_\lambda)$ and $(\mathcal{L}_\mu, \tilde{B}_\mu)$ be crystal bases for V_λ and V_μ. Set

$$S_{\lambda, \mu}^\nu := \{ b \in \tilde{B}_\mu : b_\lambda \otimes b \text{ is a highest weight element of } \tilde{B}_\lambda \otimes \tilde{B}_\mu \text{ of weight } \nu \}.$$

For any V_λ, and any choice of highest weight vector $b_\lambda \in V_\lambda$, there is a canonical choice of basis B_λ for V_λ, which contains b_λ, and such that $(B_\lambda + q\mathcal{L}, \mathcal{L})$ is a crystal basis for V, where \mathcal{L} is the A_∞-span of B_λ. That is not to say there is a unique basis for V_λ satisfying these two conditions, only that one can find a canonical “good” choice. This is known as the global basis for V_λ. A complete construction can be found in [K], although here we more closely follow the presentation from
6. PETER TINGLEY

In the present work we simply use the fact that the global basis exists, and state the properties of B_λ that we need.

Definition 5.8. $\overline{C} : U_q(g) \to U_q(g)$ is the \mathbb{C}-algebra involution defined by

\[
\begin{align*}
C_{\overline{\cdot}}(E_i) &= E_i \\
C_{\overline{\cdot}}(F_i) &= F_i \\
C_{\overline{\cdot}}(K_i) &= K_i^{-1} \\
C_{\overline{\cdot}}(q) &= q^{-1}.
\end{align*}
\]

Theorem 5.9. (Kashiwara [K]) Fix a highest weight vector $b_\lambda \in V_\lambda$. There is a canonical choice of a “global” basis B_λ of V_λ. This has the properties (although is not defined by these alone) that:

(i) $b_\lambda \in B_\lambda$.

(ii) B_λ is a weight basis for V_λ.

(iii) Let L be the A_{∞} span of B_λ. Then $(B_\lambda + q^{-1}L, L)$ is a crystal basis for V_λ.

(iv) Define the involution $\overline{b_{\lambda, B_\lambda}}$ of V_λ by $\overline{b_{\lambda, B_\lambda}}(f(q)b) = f(q^{-1})b$ for all $f(q) \in \mathbb{C}(q)$ and $b \in B_\lambda$. Then $\overline{b_{\lambda, B_\lambda}}$ is compatible with $C_{\overline{\cdot}}$, in the sense discussed in Section 4.

Furthermore, if a different highest weight vector is chosen, B_λ is multiplied by an overall scalar. □

Definition 5.10. If V is any (possibly reducible) representation of $U_q(g)$, we say a basis B of V is a global basis if there is a decomposition of V into irreducible components such that B is a union of global bases for the irreducible pieces.

6. THE SYSTEM OF ENDOMORPHISMS Θ

We now introduce a \mathbb{C}-algebra automorphism C_Θ of $U_q(g)$. Notice that this inverts q, so it is not a $\mathbb{C}(q)$ algebra automorphism, but is instead bar linear:

\[
\begin{align*}
C_\Theta(E_i) &= E_iK_i^{-1} \\
C_\Theta(F_i) &= K_iF_i \\
C_\Theta(K_i) &= K_i^{-1} \\
C_\Theta(q) &= q^{-1}.
\end{align*}
\]

One can check that C_Θ is a well defined algebra involution and a coalgebra anti-involution. In order to use the methods of section 4, we must define a \mathbb{C}-vector space automorphism Θ_{V_λ} of each V_λ which is compatible with C_Θ. This is complicated by the fact that C_Θ does not preserve the $\mathbb{C}(q)$ algebra structure, but instead inverts q. We must actually work in the category of representations with chosen global bases. An element of this category will be denoted (V, B), where B is the chosen global basis of V.

Definition 6.1. Fix a global basis B_λ for V_λ. The action of $\Theta_{(V_\lambda, B_\lambda)}$ on V_λ is defined by requiring that it be compatible with C_Θ, and that $\Theta_{(V_\lambda, B_\lambda)}(b_\lambda) = q^{-(\lambda, \lambda)/2 + (\lambda, \rho)}b_\lambda$. This is extended by naturality to define $\Theta_{(V, B)}$ for any (possibly reducible) V.

[CP, Chapter 14.1C].
Comment 6.2. To ensure that Definition 6.1 makes sense, one must check that there is a map which sends b_λ to $q^{-(\lambda,\lambda)/2+2\lambda,q}b_\lambda$ and is compatible with C_Θ. This amounts to checking that b_λ is still a highest weight vector if the action of $U_q(\mathfrak{g})$ is twisted by the automorphism C_Θ, and is not difficult.

Comment 6.3. In some cases Θ acts on a weight vector as multiplication by a fractional power of q. To be completely precise we should adjoin a fixed k^{th} root of unity to the base field $\mathbb{C}(q)$, where k is twice the dual Coxeter number of \mathfrak{g}. This causes no significant difficulties.

The construction described in Section 4 uses the action of $\xi_{V \otimes W}$ on $V \otimes W$. Thus we will need to define how Θ acts on a tensor product. In particular, we need a well defined notion of tensor product in the category of representations with chosen global bases.

Definition 6.4. Let $V^\nu_{\lambda,\mu}$ denote the isotypic component of $V_\lambda \otimes V_\mu$ with highest weight ν. Let $V_{\lambda,\mu}^{>\nu} := \bigcup_{\gamma > \nu} V_{\lambda,\mu}^\gamma$, $V_{\lambda,\mu}^{\geq \nu} := \bigcup_{\gamma \geq \nu} V_{\lambda,\mu}^\gamma$, and $Q_{\lambda,\mu}^{\nu} := V_{\lambda,\mu}^{>\nu} / V_{\lambda,\mu}^{\geq \nu}$. Here we use the partial order of the weight lattice where $\gamma > \nu$ iff $\gamma - \nu$ is a non-negative linear combination of the α_i.

Comment 6.5. It is clear that the inclusion $V_{\lambda,\mu}^{\nu} \hookrightarrow V_{\lambda,\mu}^{\geq \nu}$ descends to an isomorphism from $V_{\lambda,\mu}^{\nu}$ to $Q_{\lambda,\mu}^{\nu}$.

Definition 6.6. The tensor product $(V_\lambda, B_\lambda) \otimes (V_\mu, B_\mu)$ is defined to be $(V_\lambda \otimes V_\mu, A)$, where A is the unique global basis of $V \otimes W$ such that the projections of the highest weight elements of A of weight ν in $Q_{\lambda,\mu}^{\nu}$ are equal to the projections of $b_\lambda \otimes b$ for those $b \in S_{\lambda,\mu}^\nu$. This is well defined by Comment 6.5. Extend by naturality to can a tensor product $(V, B) \otimes (W, C)$ for possibly reducible V and W.

7. Proof that we obtain the R-matrix when \mathfrak{g} is of finite type

The proof of our main theorem uses a relationship between the R-matrix and the braid group element T_{w_0} first observed in [KR] and [LS]. Thus for this section we must restrict to finite type. We hope the result will prove to be true in greater generality, but establishing this would certainly require a different approach. We start by introducing a few more automorphisms of $U_q(\mathfrak{g})$ and of its representations.

Definition 7.1. Let θ to be the diagram automorphism such that $w_0(\alpha_i) = -\alpha_{\theta(i)}$, where w_0 is the longest element in the Weyl group.

Definition 7.2. C_Γ is the \mathbb{C}-Hopf algebra automorphism of $U_q(\mathfrak{g})$ defined by

\begin{align*}
C_\Gamma(E_i) &= -K_{\theta(i)} F_{\theta(i)} \\
C_\Gamma(F_i) &= -E_{\theta(i)} K^{-1}_{\theta(i)} \\
C_\Gamma(K_i) &= K_{\theta(i)} \\
C_\Gamma(q) &= q^{-1}.
\end{align*}

Define the action of $\Gamma_{(V_\lambda, B_\lambda)}$ on V_λ to be the unique \mathbb{C}-linear endomorphism of each V_λ which is compatible with C_Γ, and which is normalized so that $\Gamma(b_\lambda) = b_\lambda^{w_0}$. Extend this by naturality to get the action of $\Gamma_{(V, B)}$ on any (possible reducible) representation V with chosen global basis B.
Comment 7.3. It is a simple exercise to check that C_T is in fact a Hopf algebra automorphism, and is compatible with a \mathbb{C}-vector space automorphism of V_λ, which takes b_λ to b^low_λ.

Definition 7.4. $C_{T_{w_0}}$ and C_J are the $\mathbb{C}(q)$-algebra automorphisms of $U_q(\mathfrak{g})$ defined by

$$
\begin{aligned}
C_{T_{w_0}}(E_i) & = -F_{\theta(i)} K_{\theta(i)} \\
C_{T_{w_0}}(F_i) & = -K_{\theta(i)}^{-1} E_{\theta(i)} \\
C_{T_{w_0}}(K_H) & = K_{w_0(H)}, 	ext{ so that } C_{T_{w_0}}(K_i) = K_{\theta(i)}^{-1} \\
C_J(E_i) & = K_i E_i \\
C_J(F_i) & = F_i K_i^{-1} \\
C_J(K_H) & = K_H.
\end{aligned}
$$

The systems of $\mathbb{C}(q)$-vector space automorphisms T_{w_0} and J of each V_λ are the unique automorphisms which are compatible with $C_{T_{w_0}}$ and C_J respectively, and such that $T_{w_0}(b^\text{low}_\lambda) = b_\lambda$ and $J(b_\lambda) = q^{(\lambda,\lambda)/2 + (\lambda,\rho)} b_\lambda$, where b_λ and b^low_λ are the highest and lowest weight elements in some global basis B_λ.

Comment 7.5. It is a straightforward exercise to show that the formulas in Definition 7.4 do define algebra automorphisms of $U_q(\mathfrak{g})$ and compatible vector space automorphisms of each V_λ. There is an action of the braid group on each V_λ, and T_{w_0} is in fact the action of the longest element (for an appropriate choice of conventions). Note also that J and T_{w_0} do not depend on the choice of global basis as they are stable under simultaneously rescaling b_λ and b^low_λ. All of this is discussed in [KT].

Lemma 7.6. The following identities hold:

1. $\Gamma_{(V,B)} = \text{bar}_B(V,B) \circ T_{w_0}^{-1}$,
2. $\Theta_{(V,B)} = K_{2H_\rho} \circ \text{bar}_B(V,B) \circ J$,
3. For any weight vector $v \in V$ with $\text{wt}(v) = \mu$, $\text{J}(v) = q^{(\mu,\rho)/2 + (\mu,\rho)} v$,
4. For any $b \in B$ with $\text{wt}(b) = \mu$, $\Theta_{(V,B)}(b) = q^{-(\mu,\rho)/2 + (\mu,\rho)} b$,
5. $\Gamma^{-1}_{(V,B)} \circ \Theta_{(V,B)} = JT_{w_0}$.

Here $\text{bar}_B(V,B)$ is the involution defined in Theorem 5.9, part (iv).

Proof. Let $C_{K_{2H_\rho}}$ be the algebra automorphism of $U_q(\mathfrak{g})$ defined by $C_{K_{2H_\rho}}(X) = K_{2H_\rho} X K_{2H_\rho}^{-1}$. It follows directly from (4) that

$$
C_{K_{2H_\rho}}(K_i^{-1} E_i) = E_i K_i^{-1} \quad \text{and} \quad C_{K_{2H_\rho}}(F_i K_i) = K_i F_i.
$$

Using (15) and the relevant definitions, a simple check on generators shows that

$$
C_T = C_{\text{bar}} \circ C_{T_{w_0}}^{-1}, \quad \Theta = C_{K_{2H_\rho}} \circ \text{bar} \circ C_J, \quad \text{and} \quad C_{\Gamma^{-1}} \circ \Theta = C_J \circ C_{T_{w_0}}.
$$

Thus, to prove (i), (ii) and (v), it suffices to check each identity when each side acts on any one chosen vector b in each V_λ. For parts (i) and (ii), choose $b = b_\lambda$ and the identity is immediate from definitions.

For part (iii), it is sufficient to consider $V = V_\lambda$. By Definition 7.4, (iii) holds for $b = b_\lambda$. Furthermore, vectors of the form $F_{i_k} \cdots F_i b_\lambda$ generate V_λ as a $\mathbb{C}(q)$
module. Assume that v is a weight vector of weight μ, and $J(v) = q^{(\mu, \rho)/2 + (\mu, \rho)}$. Fix $i \in I$. Then
\begin{equation}
J(F_i v) = C_i(J(F_i)v) = F_i K_i^{-1} q^{(\mu, \rho)/2 + (\mu, \rho)} v = F_i q^{-d(v, w)} q^{(\mu, \rho)/2 + (\mu, \rho)} v
\end{equation}
(17)
\[= q^{-(\alpha_i, \mu)} q^{(\mu, \rho)/2 + (\mu, \rho)} v = q^{(\mu - \alpha_i, \mu - \alpha_i)/2 + (\mu - \alpha_i, \rho)} v.\]

The claim now follows by induction on k.

Part (iv) follows by directly calculating the action of the right side of (ii) on b and using Part (iii) to evaluation the action of J.

The definitions of $\Theta_{(V, B)}$ and $\Gamma_{(V, B)}$, along with parts (iii) and (iv), now immediately imply that $\Gamma_{(V_\lambda, B_\lambda)}^{-1} \circ \Theta_{(V_\lambda, B_\lambda)}(b_{\lambda}^{\text{low}}) = J T_{w_0}(b_{\lambda}^{\text{low}}) = q^{(\lambda, \lambda)/2 + (\lambda, \rho)} b_{\lambda}$, completing the proof of (v). \square

We also need the following construction of the R matrix due to Kirillov-Reshetikhin and Levendorskii-Soibelman. Due to a different choice of conventions, our T_{w_0} is $K_{H_0} T_{w_0}^{-1}$ in those papers, so we have modified the statement accordingly. As with Theorem 7.7, this expression is written using the h-adic completion of $U_h(\mathfrak{g})$, but gives a well defined action on $V \otimes W$ for any finite dimensional type $1 U_q(\mathfrak{g})$-module.

Theorem 7.7. [KR, Theorem 3], [LS, Theorem 1] The standard universal R-matrix can be realized as
\begin{equation}
R = \exp \left(h \sum_{i,j \in I} (B^{-1})_{ij} H_i \otimes H_j \right) \left(T_{w_0}^{-1} \otimes T_{w_0}^{-1} \right) \Delta(T_{w_0}).
\end{equation}
(18)

\[\square\]

Corollary 7.8. $(T_{w_0}^{-1} \otimes T_{w_0}^{-1}) \Delta(T_{w_0}) = \prod_{\beta} \exp_{q_{\beta}} \left[(1 - q_{\beta}^{-2}) E_\beta \otimes F_\beta \right],$

where the product is over all the positive roots of \mathfrak{g}, and the order of the terms is such that β_r appears to the left of β_s if $r > s$.

Proof. Follows immediately from Theorems 3.3 and 7.7, since the action of R on $V_\lambda \otimes V_\mu$ is invertible. \square

As discussed in [KT], the following is equivalent to Theorem 7.7:

Corollary 7.9. (see [KT, Comment 7.3]) Let $X = J T_{w_0}$. Then
\[R = (X^{-1} \otimes X^{-1}) \Delta(X).\]

\[\square\]

Lemma 7.10. Fix type 1 finite dimensional $U_q(\mathfrak{g})$ representations with chosen global bases (V, B) and (W, C). The operator $(\Gamma_{(V, B)} \otimes \Gamma_{(W, C)}) \Gamma_{(V \otimes W, A)}^{-1}$ acts on $V \otimes W$ as the identity, where A is the global basis of $V \otimes W$ constructed from B and C in Definition 6.6.

Proof. It suffices to consider the case when $V = V_\lambda$ and $W = V_\mu$ are irreducible. Set
\begin{equation}
m^ \Gamma := (\Gamma_{(V_\lambda, B_\lambda)} \otimes \Gamma_{(V_\mu, B_\mu)}) (\Gamma_{(V_\lambda \otimes V_\mu, A)})^{-1} : V_\lambda \otimes V_\mu \rightarrow V_\lambda \otimes V_\mu
\end{equation}
(19)

We must show that $m^ \Gamma$ is the identity. C_1 is a Hopf algebra automorphism of $U_q(\mathfrak{g})$, so, as in Section 4, it follows that $m^ \Gamma$ is an automorphism of $U_q(\mathfrak{g})$ representations.
In particular, \(m^\Gamma \) preserves isotypic components of \(V_\lambda \otimes V_\mu \) and acts on each subquotient \(Q^\nu_{\lambda,\mu} \) (see Definition 6.4). It is sufficient to show that the action on \(Q^\nu_{\lambda,\mu} \) is the identity for all \(\nu \). In fact it is sufficient to consider the action on the highest weight space of \(Q^\nu_{\lambda,\mu} \), since this generates \(Q^\nu_{\lambda,\mu} \). This highest weight space has a basis consisting of \(\{ b_\lambda \otimes b : b \in S^\nu_{\lambda,\mu} \} \), where \(S^\nu_{\lambda,\mu} \) is as in Definition 5.7 and we use the notation \(a \otimes b \) to denote the image of \(a \otimes b \) in \(Q^\nu_{\lambda,\mu} \).

By Lemma 7.6 part (i) and Corollary 7.8,
\[
\begin{align*}
 m^\Gamma &= (\text{bar}_{(V_\lambda,B_\lambda)} \otimes \text{bar}_{(V_\mu,B_\mu)})(T_{w_0}^{-1} \otimes T_{w_0}^{-1}) \Delta(T_{w_0}) \text{bar}_{(V_\lambda \otimes V_\mu,A)} \\
 &\quad = (\text{bar}_{(V_\lambda,B_\lambda)} \otimes \text{bar}_{(V_\mu,B_\mu)}) \prod_{\beta} \exp_{q_\beta} \left[(1 - q_\beta^{-2})E_\beta \otimes F_\beta \right] \text{bar}_{(V_\lambda \otimes V_\mu,A)},
\end{align*}
\]
For convenience, set
\[
 \Psi := (\text{bar}_{(V_\lambda,B_\lambda)} \otimes \text{bar}_{(V_\mu,B_\mu)}) \prod_{\beta} \exp_{q_\beta} \left[(1 - q_\beta^{-2})E_\beta \otimes F_\beta \right].
\]
Both \(m^\Gamma \) and \(\text{bar}_{(V_\lambda \otimes V_\mu,A)} \) act in a well defined way on each \(Q^\nu_{\lambda,\mu} \), which implies that \(\Psi \) does as well.

The global basis \(A \) was chosen so that \(\text{bar}_{(V_\lambda \otimes V_\mu,A)}(b_\lambda \otimes b) = b_\lambda \otimes b \) (see Definition 6.6). Since all \(E_\beta \) kill \(b_\lambda \) and \(\text{bar}_{(V_\lambda,B_\lambda)} \otimes \text{bar}_{(V_\mu,B_\mu)} \) preserves \(b_\lambda \otimes b \) by definition, we see that \(\Psi(b_\lambda \otimes b) = b_\lambda \otimes b \), and, taking the image in \(Q^\nu_{\lambda,\mu} \), \(\Psi(b_\lambda \otimes b) = b_\lambda \otimes b \). Thus, using (20), we see that \(m^\Gamma \) acts on \(b_\lambda \otimes b \) as the identity. The lemma follows.

Theorem 7.11. Fix type 1 finite dimensional \(U_q(\mathfrak{g}) \) representations with chosen global bases \((V,B) \) and \((W,C) \). Then \((\Theta^{-1}_{(V,B)} \otimes \Theta^{-1}_{(W,C)})\Theta_{(V \otimes W,A)} \) acts on \(V \otimes W \) as the standard \(R \)-matrix, where \(A \) is the global basis of \(V \otimes W \) constructed from \(B \) and \(C \) in Definition 6.6. This holds independently of the choices of global bases \(B \) and \(C \).

Proof. By Corollary 7.9 and Lemma 7.6 part (v)
\[
 R = ((JT_{w_0})^{-1} \otimes (JT_{w_0})^{-1}) \Delta(JT_{w_0}) \\
 = (\Theta^{-1}_{(V,B)} \otimes \Theta^{-1}_{(W,C)})(\Gamma_{(V,B)} \otimes \Gamma_{(W,C)})(\Gamma_{(V \otimes W,A)}^{-1})^{-1}\Theta_{(V \otimes W,A)}).
\]
By Lemma 7.10, the \((\Gamma_{(V,B)} \otimes \Gamma_{(W,C)})(\Gamma_{(V \otimes W,A)}^{-1})^{-1} \) that appears acts as the identity.

Comment 7.12. By Theorem 7.11, the composition
\[
 (\Theta^{-1}_{(V,B)} \otimes \Theta^{-1}_{(W,C)})\Theta_{(V \otimes W,A)}
\]
does not depend on the choices on global bases \(B \) and \(C \). Introducing the notation \(\Delta(\Theta) \) to mean \(\Theta_{(V \otimes W,A)} \) and dropping the subscripts, we can interpret \((\Theta^{-1} \otimes \Theta^{-1})\Delta(\Theta) \) as (23) calculated using any global bases \(B \) and \(C \). Then Theorem 7.11 becomes (2) from the introduction. We also note that \(\Theta_{(V,B)} \) is easily seen to be an involution, so the inverses in (23) are perhaps unnecessary.
8. Future directions

Although we have only proven Theorem 7.11 when \(g \) is of finite type, much of the construction works in greater generality. We did not assume \(g \) was finite type in Section 6, so the expression \((\Theta^{-1}_{(V,B)} \otimes \Theta^{-1}_{(W,C)}) \Theta_{(V \otimes W, A)} \) makes sense for any symmetrizable Kac-Moody algebra. Since \(C_\Theta \) is a coalgebra-antiautomorphism, the methods from Section 4 imply that

\[
\text{Flip} \circ (\Theta^{-1}_{(V,B)} \otimes \Theta^{-1}_{(W,C)}) \Theta_{(V \otimes W, A)}
\]

is an isomorphism of representations. Furthermore, it is true in general that (24) does not depend on the choice of \(B \) and \(C \). To see why, it is sufficient to consider the case when \(V = V_\lambda \) and \(W = V_\mu \) are irreducible. Then the global bases \(B_\lambda \) and \(B_\mu \) are unique up multiplication by an overall scalar. It is straightforward to see that if \(B_\lambda \) (or \(B_\mu \)) is scaled by a constant \(z \), then \(A \) is scaled by \(z \) as well, and from there that both \(\Theta_{(V_\lambda, B_\lambda)} \) and \(\Theta_{(V_\lambda \otimes V_\mu, A)} \) are scaled by \(z/\bar{z} \), where \(\bar{z} \) is obtained from \(z \) by inverting \(q \). Thus the composition is unchanged.

As in Comment 7.12, we can now make sense of the expression \((\Theta^{-1} \otimes \Theta^{-1}) \Delta(\Theta) \) for all symmetrizable Kac-Moody algebras \(g \). The fact that (24) defines an isomorphism is one of the properties required of a universal \(R \)-matrix. However, we have not proven the crucial equalities (5). Thus we ask:

Question 1. Is \((\Theta^{-1} \otimes \Theta^{-1}) \Delta(\Theta) \) a universal \(R \)-matrix for \(U_q(g) \) if \(g \) is a general symmetrizable Kac-Moody algebra? If yes, is it the standard \(R \)-matrix?

References

[CP] V. Chari and A. Pressley, *A Guide to Quantum Groups*, Cambridge University Press, 1994.

[HK] A. Henriques and J. Kamnitzer, Crystals and coboundary categories, *Duke Math. J.*, 132 (2006) no. 2, 191–216; arXiv:math/0406478.

[KT] J. Kamnitzer and P. Tingley. The crystal commutor and Drinfeld’s unitarized \(R \)-matrix. *J. Algebraic Combin.* 29 (2009), no. 3, 315-335. arXiv:0707.2248v2.

[K] M. Kashiwara, On crystal bases of the \(q \)-analogue of the universal enveloping algebras, *Duke Math. J.*, 63 (1991), no. 2, 465–516.

[KR] A. N. Kirillov and N. Reshetikhin, \(q \)-Weyl group and a multiplicative formula for universal \(R \)-matrices, *Comm. Math. Phys.* 134 (1990), no. 2, 421–431.

[LS] S. Z. Levendorskii and Ya. S. Soibelman, The quantum Weyl group and a multiplicative formula for the \(R \)-matrix of a simple Lie algebra, *Funct. Anal. Appl.* 25 (1991), no. 2, 143–145.

[L] G. Lusztig. *Introduction to quantum groups*, Birkhäuser Boston Inc. 1993.

E-mail address: ptingley@math.mit.edu

Peter Tingley, MIT dept. of math, 77 Massachusetts Ave, Cambridge, MA, 02139