Combination of a cryosectioning method and section scanning electron microscopy for immuno-scanning electron microscopy

Satoshi KUSUMI¹, Daisuke KOGA², Tsuyoshi WATANABE², and Masahiro SHIBATA¹
¹Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan and
²Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan

(Received 1 November 2017; and accepted 16 November 2017)

ABSTRACT
We describe a novel immuno-scanning electron microscopy (SEM) technique that combines both Tokuyasu’s cryosectioning and section SEM methods. In this technique, semithin cryosections, cut according to the Tokuyasu method, were adhered to glass microscope slides, immunostained for bio-molecules of interest and observed by confocal laser scanning microscopy. The same sections were subsequently embedded in epoxy resin and ultrathin sections were cut on an ultramicrotome. These were then observed by SEM using a backscattered electron detector. Correlation between immunofluorescence and SEM images was performed in the same area of the cryosection. Immuno-SEM was also performed using a FluoroNanogold-labeled secondary antibody. This novel immuno-SEM method can provide ultrastructural information of cell organelles in relation to associated molecules, such as Golgi- and ER-associated proteins. This novel immuno-SEM technique has the potential to be widely used.

The semithin cryosection technique developed by Dr. Tokuyasu is a valid method for the immunocytochemical detection of subcellular antigens at the electron microscopic level (6–8). In this cryosectioning technique, specimens are prepared in a high molar sucrose solution or in a mixture of polyvinylpyrrolidone (PVP) and high molar sucrose to prevent ice-crystal formation. These cryoprotectants result in both good preservation of ultrastructure and high antigenicity in cells; sections cut according to the procedure have better antigen accessibility compared with sections prepared from specimens embedded in resins such as epoxy resin and LR white resin.

More recently, we have introduced a novel imaging method for observing resin-embedded sections by scanning electron microscopy (SEM) (1, 2). In this technique, semithin or ultrathin sections adhered to a glass slide are stained with both uranyl acetate and lead citrate, and observed with backscattered electron (BSE)-mode SEM at a low accelerating voltage. Using this method, we can obtain ultrastructural images similar to conventional TEM of ultrathin biological sections, because BSE imaging of resin-embedded sections at a low accelerating voltage provides information very near the surface of the section (2).

In the present study, we combine the Tokuyasu method of semithin cryosectioning with the section SEM technique to develop a novel immuno-SEM method. Using FluoroNanogold (FNG)-labeled secondary antibodies, correlation between immunofluorescence microscopy and immuno-SEM is performed without a complicated procedure. Furthermore, our SEM method can provide ultrastructural information on subcellular structures with respect to associated functional molecules.

MATERIALS AND METHODS
Antibodies. A rabbit polyclonal anti-rat luteinizing hormone (LH) antibody (kindly provided by Dr.
Matozaki, Gunma University) was used to identify gonadotropes. A mouse monoclonal antibody against Binding immunoglobulin protein (BiP), an ER chaperon protein, was purchased from BD Biosciences (San Jose, CA). A sheep polyclonal anti-TGN 38 antibody (AbD Serotec, Oxford, UK) was also used for immunofluorescence microscopy. Secondary antibodies conjugated with fluorescent dyes (Alexa Fluor 488-labeled anti-rabbit IgG; Alexa Fluor 647-labeled anti-mouse IgG) were purchased from Invitrogen (Carlsbad, CA, USA). A biotinylated secondary antibody (anti-sheep IgG; purchased from Abcam, Cambridge, UK) and Alexa Fluor 594-labeled streptavidin FNG (Invitrogen) were also used for immunofluorescence microscopy.

Animals. Male Wistar rats, aged 8 weeks old, were used. Animal experiments were approved by the Committee of the Ethics on Animal Experimentation of Kagoshima and Asahikawa Medical Universities in accordance with their Guidelines for Animal Experimentation (no. MD15028 and no. 02-006).

Immunofluorescence microscopy of semithin cryosections. Under deep anesthesia with pentobarbital sodium, animals were perfused through the ascending aorta with physiological saline, followed by 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). After perfusion fixation, excised pituitaries were cut into small pieces and further fixed in the same fixative for 24 h at 4°C. They were then immersed sequentially in 0.4, 0.9, 1.5, and 2.3 M sucrose, and finally in a mixture of 20% PVP and 1.84 M sucrose solution for cryoprotection (3 h in each solution, at 4°C). Specimens were then put on a sample pin, quickly frozen in liquid nitrogen and placed in a cryochamber (EM FC7; Leica Microsystems, Nussloch, Germany) attached to an ultramicrotome (Ultrcut EM UC7; Leica Microsystems). Semithin cryosections (1 μm thick) were then cut from the frozen specimen in the low-temperature sectioning system at −65 to −75°C using a diamond knife (Diatome, Biel, Switzerland) (Fig. 1a). Cryosections were picked up with a 2.3 M sucrose droplet on a 2 mm diameter wire loop and mounted on glass microscope slides. Subsequently, they were rinsed with phosphate buffered saline (PBS) for 30 min at 4°C and then blocked with 2% normal donkey serum for 30 min at 20°C, followed by incubation with a mixture of primary antibodies of different species (a rabbit polyclonal anti-rat LH antibody, a mouse monoclonal anti-rat BiP antibody and a sheep polyclonal anti-TGN 38 antibody) for 12 h at 4°C. Sections were then rinsed with PBS (3 min, three times) and incubated with a mixture of secondary antibodies (Alexa Fluor 488-labeled anti-rabbit IgG, Alexa Fluor 647-labeled anti-mouse IgG and biotin-labeled anti-sheep IgG) for 1 h at 20°C, followed by further rinses in PBS (3 min, three times). They were then incubated with streptavidin-labeled FNG conjugated with Alexa 594 for 1 h at 20°C and then washed with PBS (3 min, three times). After coverslips were mounted on sections using SlowFade® Diamond (Invitrogen) and 4',6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, St. Louis, Mo, USA), immunostained sections were observed by confocal laser scanning microscopy (CLSM) (LSM 700; Carl Zeiss Microscopy GmbH, Jena, Germany) (Fig. 1b).

RESULTS AND DISCUSSION

Immunofluorescence images of gonadotropes in the rat pituitary gland are presented in Fig. 2a–d. The semithin cryosections were immunocytochemically stained with LH (colored yellow; Fig. 2a), the ER
A novel immuno-SEM method

Fig. 1 Outline of the combination of cryosectioning and section SEM methods for immuno-SEM. (a) Semithin cryosections are cut using an ultramicrotome equipped with a cryo-chamber. (b) A cryosection on a glass microscope slide is immuno-cytochemically stained with primary antibodies and a mixture of AlexaFluor labeled- and FluoroNanogold labeled-secondary antibodies. The section is observed with confocal laser scanning microscopy. (c) The section is fixed with 2% glutaraldehyde (GA) for 1 h (d) and then incubated in a gold enhancing solution to enlarge nanogold particles. (e) The specimen is then heavy metal stained with reduced osmium solution for 1 h, uranyl acetate solution for 1 h and lead citrate solution for 5 min. (f) The cryosection is then dehydrated and embedded in epoxy resin. The resin block on the glass slide is peeled off and trimmed under a stereoscopic microscope. (g) Ultrathin sections of the resin-embedded cryosection are cut using an ultramicrotome with a diamond knife. (h) The sections are then adhered to a glass slide by heating on a hot plate (i) and then coated with carbon. (j) The sections are then observed with SEM using a BSE detector. (k) Correlation between immunofluorescence and SEM images is performed by observation of the same area. High resolution imaging is also performed by observing the localization of gold particles.
Fig. 2 Application of the immuno-SEM method. A semithin cryosection of the rat pituitary gland was immunocytochemically stained with sheep polyclonal anti-LH (yellow pseudocolor, a), mouse monoclonal anti-BiP (magenta pseudocolor, b) and sheep polyclonal anti-TGN38 (green pseudocolor, c) antibodies. Nuclei were labeled with DAPI (blue pseudocolor, d). The merged image is shown in (d). (e) Ultrathin section image of the LH-positive cell shown in (d) was recorded by backscattered electron (BSE)-mode SEM. A black and white reversal image is shown. N: nucleus. (f) The immunofluorescence signals are merged on the BSE image shown in (e). The immunocytochemical location of LH (yellow), BiP (magenta), TGN38 (green) and DAPI (blue) corresponds to secretory granules, the ER, the Golgi apparatus and the nucleus (N), respectively. Higher magnification image of the boxed area in (f) is enlarged and shown in (g). The fluorescence image of TGN38 labeled with FluoroNanogold (green) is overlaid on the BSE image. The localization of gold particles (i.e., TGN38) is clearly seen (arrows) on trans-cisterna of the Golgi apparatus. N: nucleus, M: mitochondria, Sg: secretory granules, asterisks: the ER. Bars: (d) 10 μm; (f) 5 μm; (h) 0.5 μm.
A novel immuno-SEM method

A novel immuno-SEM method

of both a fluorescent dye and a 1.4 nm gold particle conjugated to an antibody Fab’ fragment, IgG or streptavidin (3–5). As FNG can be detected by both fluorescence microscopy and TEM or SEM, this secondary antibody has been used for correlative microscopy (2, 4). As the signal intensity of BSE depends on the average atomic number of the specimen, enhancement by the nanogold particles (atomic number: 79) was clearly recognized by BSE-mode SEM.

The present study introduces a novel immuno-SEM technique developed by combining a cryosectioning method and section SEM. The relationship between the localization of molecules and the ultrastructure of subcellular structures was clearly demonstrated using immuno-SEM. This technique is applicable to investigate the functional morphology of many different several kinds of tissue.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (C) from the JSPS (#16k08458).

REFERENCES

1. Koga D, Kusumi S and Ushiki T (2016) Three-dimensional shape of the Golgi apparatus in different cell types: serial section scanning electron microscopy of the osmium-impregnated Golgi apparatus. Microscopy 65, 145–157.
2. Koga D, Kusumi S, Shodo R, Dan Y and Ushiki T (2015) High-resolution imaging by scanning electron microscopy of semithin sections in correlation with light microscopy. Microscopy 64, 387–394.
3. Powell RD, Halsey CM and Hainfeld JF (1998) Combined fluorescent and gold immunoprobes: reagents and methods for correlative light and electron microscopy. Microsc Res Tech 42, 2–12.
4. Takizawa T, Powell RD, Hainfeld JF and Robinson JM (2015) FluoroNanogold: an important probe for correlative microscopy. J Chem Biol 8, 129–142.
5. Takizawa T and Robinson JM (2000) FluoroNanogold is a bifunctional immunoprobe for correlative fluorescence and electron microscopy. J Histochem Cytochem 48, 481–486.
6. Tokuyasu KT (1989) Use of poly(vinylpyrroldione) and poly(vinyl alcohol) for cryoultramicrotomy. J Microsc 121, 163–171.
7. Tokuyasu KT (1986) Application of cryoultramicrotomy to immunocytochemistry. J Microsc 143, 139–149.
8. Tokuyasu KT (1973) A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol 57, 551–565.