Osteoarthritis year in review 2019: genetics, genomics and epigenetics

L.N. Reynard, M.J. Barter
Skeletal Research Group, Biosciences Institute, Newcastle University, United Kingdom

ARTICLE INFO

Article history:
Received 15 August 2019
Accepted 5 November 2019

Keywords:
Osteoarthritis
Genetics
Genomics
Epigenetics
Genome wide association study/studies (GWAS)
Non-coding RNAs

SUMMARY

Although osteoarthritis (OA) aetiology is complex, genetic, genomic and epigenetic studies published within the last decade have advanced our understanding of the molecular processes underlying this common musculoskeletal disease. The purpose of this narrative review is to highlight the key research articles within the OA genetics, genomics and epigenetics fields that were published between April 2018 and April 2019. The review focuses on the identification of new OA genetic risk loci, genomic techniques that have been used for the first time in human cartilage and new publicly available databases, and datasets that will aid OA functional studies.

Introduction

Osteoarthritis (OA) is a chronic musculoskeletal disease characterised by the destruction of articular cartilage, synovial inflammation and bone remodelling. Although disease aetiology is complex, our understanding of the molecular processes underlying OA has been advanced through genetic, genomic and epigenetic studies. The goal of this annual review is to summarise the progress made within this field between April 2018 and April 2019. We have chosen to focus on the identification of new OA genetic risk loci and on new genomics techniques that have been used in human cartilage for the first time. We also highlight new publically available datasets and databases that will aid future functional studies of OA genetic and epigenetic loci.

OA genetics

Identification of new OA genetic risk loci

Identification of genetic loci using hypothesis-free genome wide association studies (GWAS) has given novel insights into diseases, identified potential drug targets, and led to the use of polygenic risk scores in selecting individuals for clinical trials. However, until recently, identification of OA loci was trailing behind other complex diseases and phenotypes such as rheumatoid arthritis (over 100 risk loci) and height (over 3,000 loci), with only 19 OA loci reported up to April 2017 at genome wide significance level of $P \leq 5 \times 10^{-8}$ (Fig. 1(A), Table I). The number of significant OA genetic risk loci has now increased to 90 (Table I), the majority of which have small effects sizes (odds ratios [OR] 1.03 to 1.25, Fig. 1(B)). As the number of samples included in the analysis has a significant effect on the number of loci identified, the increase in loci is largely explained by the publication of several large scale, well powered OA GWAS. Four of these studies have utilised genotyping and medical data for...
~488,000 individuals available as part of the UK biobank (UKBB; https://www.ukbiobank.ac.uk/), together with existing OA GWAS cohorts. The two largest OA analyses were published within the last year and together they identified 56 new loci (Fig. 1(B) and (C)). Unlike the majority of previous OA studies, which have employed the traditional GWAS design of signal discovery followed by replication, both studies performed a meta-analysis of the UKBB data together with the Icelandic deCODE genetics or UK arcOGEN datasets. This meta-analysis approach has several advantages, including increasing the power to detect genetic variants with small to modest effects sizes whilst reducing the probability of false-negative results and identify effect size heterogeneity across cohorts.

The deCODE-UKBB study included over 650,000 British and Icelandic individuals, making it the biggest OA GWAS published to date. They analysed 11.6 million genotyped variants present in both cohorts, performing separate meta-analyses for hip and knee OA. Two independent signals were reported overlapping the MAPT gene in the arcOGEN-UKBB study. Two independent COL11A1 signals were identified in the deCODE-UKBB study, one of which was also identified in the arcOGEN-UKBB study and was associated with height.
and individuals with known causes of secondary OA (e.g., prior ACL injury and acetabular dysplasia) were excluded, yielding a total of 17,151 OA hip cases, 23,877 OA knee cases and up to 619,289 controls (individuals without any medical record of OA). They identified 23 independent associations at 22 loci in the additive meta-analyses (odds ratios [OR] 1.06 to 2.84) and two loci using a recessive mode (OR 1.95–5.89). This included 12 novel hip loci, four novel knee loci and replication of numerous existing loci including CHADL, GDF5 and FILIP1. The arcGEN-UKBB study analysed up to 7.5 million variants in over 455,000 UK individuals, reporting 65 overlapping OA loci. The genetic link between OA risk and height was significant at the genome-wide level in both studies, including variants mapping to the LMX1B, COL11A1 and IL11 genes (Table I, Fig. 1(C)); a larger overlap is observed when considering all signals that reach genome-wide suggestive P values. These studies confirmed that there are joint-site differences in genetic risk, with the majority of signals only associated with OA at a specific joint (Table I). For example, the two signals with the most significant P values in both studies, mapping to the GDF5 and PTHLH loci, were only significant for knee or hip OA respectively.

Pathway analysis revealed that OA loci are enriched near genes involved in skeletal development and/or associated with rare monogenic bone diseases. This includes the TGFB pathway genes TGFBI, LTBPI, LTBPI3 and SMAD3, and the recently identified ROCR long non-coding RNA (lncRNA) that acts upstream of SOX9 during chondrogenic differentiation. New OA pathways may be identified in the near future with the publication of the first multi-ethnic OA GWAS meta-analysis study performed by the Genetics of Osteoarthritis consortium (https://www.genetics-osteoarthritis.com/home/index.html). This is a global collaboration of 18 GWAS cohorts from Europe, Japan, Hong Kong and the USA, and includes more than twice the number of OA cases used in previous GWAS studies. In addition to hip and knee OA, meta-analyses are also being performed for spine, thumb and finger OA.

Genetic overlap of OA with hip morphology, height, bone area and DDH

It has been hypothesised that OA genetic risk loci may act during skeletal development, causing subtle differences in joint development and shape that, through alterations of joint biomechanics, predispose the individual to OA later in life. Several genetic studies published this year have provided further evidence of this hypothesis, with DNA variants associated with height, hip shape, and developmental dysplasia of the hip (DDH:10) overlapping OA loci. The genetic link between OA risk and height was examined in the deCODE-UKBB GWAS, with 12/25 OA loci associated with increased (e.g., FAM101A, FILIP1) or decreased height (e.g., COL11A1, GDF5) at the genome-wide significance level (Table I, Supplemental Table 1). The first GWAS for hip shape used DXA scans of almost 16,000 individuals from five cohorts, and identified nine loci at P < 5 × 10−9 and 12 at P < 5 × 10−8. Two signals overlapped the established OA hip loci near the PTHLH and ASTN2, and another signal was located downstream of ROCR, overlapping the ROCR/SOX9 OA knee loci reported in the arcGEN-UKBB GWAS. Co-localisation analysis suggested a shared causal variant for hip shape, OA and height at the ASTN2 locus, and for OA and hip shape at the PTHLH locus.

DDH is the most common developmental musculoskeletal disease and is characterised by abnormal development of the hip joint, a risk factor for degenerative hip diseases including OA. The largest DDH GWAS to date identified an association between the GDF5 OA SNP rs143384 and DDH in European individuals, confirming previous reports of a suggestive association in Asian populations. rs143384 explained approximately 1% of DDH heritability, with fine mapping indicating this SNP had >99% likelihood of being the causal DDH variant at the locus. rs143384 is also associated with hip intertrochanteric/shaft and trochanter bone area as well as bone area of the lumbar spine. Although GDF5 is not a risk locus for hip OA in Europeans, a new study in mice demonstrated a direct link between this gene and hip morphology. Compared to heterozygous mice, mice lacking the GDF5 gene had abnormal proximal femur and acetabular morphology, including smaller femoral heads and neck. These dysmorphologies are concordant with changes that cause hip instability, injury and adult onset OA in humans.

Functional studies of OA loci

Once a DNA region harbouring OA genetic risk has been identified by GWAS, functional studies are required to pinpoint the causal variant(s), target gene(s), cell or tissue type in which this risk allele is acting, and when in the lifecourse this occurs. Although such functional studies have lagged behind identification of risk loci for many diseases, there have been several functional studies of individual OA loci published this year. Together, these studies have prioritised candidate genes, highlighted potential mechanisms of action and examined the role of target genes in cartilage homeostasis and disease using mouse models. However, with identification of 56 new loci in the last year, there is a need to prioritise specific DNA variants and genes from within risk loci for functional studies in a rapid and systematic way.

The majority of common disease causing SNPs, including those for OA, are thought to act by altering transcription factor binding, subtly affecting transcription of nearby genes such that one allele drives higher gene expression than the other, termed allelic imbalance (AI). Online tools such as HaploReg and LDlink are invaluable for prioritising potential target genes and highlighting putative causal variants within a locus, some of which contain 100s–1000s of variants in high linkage disequilibrium (LD) with the OA SNP (see Table I). These tools integrate genetic data from the 1,000 Genomes Project with chromatin status, transcription factor binding, and DNase hypersensitivity (DHS) mapping generated by the ENCODE and Epigenome Roadmaps projects, and gene expression data from the GTEx Project (https://gtexportal.org/home/). Although chromatin state information is available for isolated osteoblasts and in vitro differentiated chondrocytes, there are limitations in the application of these tools for OA studies as the majority of data used for variant and gene prioritisation has been generated in non-synovial joint tissues.

However, a study published this year sought to detect all transcript SNPs showing AI in OA cartilage, creating an important dataset for OA functional studies. RNAseq data was combined with genotype data for 42 OA cartilage samples in order to provide a downloadable dataset for probing the effect of genetic variants on gene expression in this disease relevant tissue (available at http://onlinelibrary.wiley.com/doi/10.1002/art.40748/abstract). A total 2070 SNPs marking AI in 1,031 cartilage expressed genes were identified, including SNPs within the known OA risk loci ALDH1A2, MGP and COL11A1. Integration of the dataset with DNA variants in high linkage disequilibrium (LD, r² > 0.8) with the new OA signals reveals AI of OA SNPs within the novel COL11A1, LTBPI, TNC, and SLC44A2 loci (Table I). Moreover, a DNA variant at the SBN01 locus...
chr	variant ID	trait	Ref	EA/NEA	EAF	OR	locus ID	nearest gene	others traits	AI	ATAC seq SNPs
chr 1	rs3753841	hip	A/G	0.610	1.08	COL11A1	COL11A1	22	He, BA	COL11A1	2
chr 2	rs2061027	OA	A/G	0.510	1.04	LTBP1	LTBP1	119	LTBP1	5	
chr 3	rs6976	T/R	0.380	1.12	GNL3	GNL3	326				
chr 4	rs3771501	OA	A/G	0.448	1.06	TGFA	TGFA	26			
chr 5	rs68262139	OA	A/G	0.540	1.04	BMP6	BMP6	123			
chr 6	rs7775228	knee	A/G	0.770	1.06	ATAC	ATAC	4			
chr 7	rs115740542	OA	A/G	0.470	1.21	TNC	TNC	6			
chr 8	rs9049726	OA	A/G	0.300	1.04	COL5A1	COL5A1	9			
chr 9	rs11843536	OA	A/G	0.470	1.06	COL11A1	COL11A1	15			
chr 10	rs118271036	OA	A/G	0.630	1.43	COL6A1	COL6A1	40			
chr 11	rs3983168	OA	A/G	0.550	1.03	COL11A1	COL11A1	9			
chr 12	rs13107325	OA	A/G	0.080	1.10	COL5A1	COL5A1	3			
chr 13	rs35611929	OA	A/G	0.340	1.06	AP2B1	AP2B1	6			
chr 14	rs1800652	hip	A/G	0.730	1.95	HFE/HISTH2BC	HFE	8			
chr 15	rs12107036	OA	A/G	0.470	1.21	TNC	TNC	6			
chr 16	rs3774335	hip	A/G	0.380	1.05	ITIH1	ITIH1	304	He	11	
chr 17	rs11153571	OA	A/G	0.770	1.04	ANAPC4	ANAPC4	1			
chr 18	rs115740542	OA	A/G	0.470	1.21	TNC	TNC	6			
chr 19	rs1913707	hip	A/G	0.610	1.08	RARB	RARB	5			
chr 20	rs12209223	OA	A/G	0.100	1.16	FLJ107	FLJ107	7	He	1	
chr 21	rs903059	OA	A/G	0.330	1.09	RUNC2	RUNC2	108			
chr 22	rs80287694	OA	A/G	0.110	1.12	BMP5	BMP5	6			
chr 23	rs11764536	OA	A/G	0.203	1.26	HDAC9	HDAC9	2			
chr 24	rs38115148	OA	A/G	0.230	1.14	DUS4L/COG5	DUS4L/COG5	328			
chr 25	rs43732050	OA	A/G	0.170	1.17	DUS4L	DUS4L	73			
chr 26	rs13408318	OA	A/G	0.001	2.84	SM0	SM0	1			
chr 27	rs7792864	OA	A/G	0.880	2.35	linc01067	linc01067	2			
chr 28	rs330005	OA	A/G	0.510	1.04	PPP1R1B	PPP1R1B	26			
chr 29	rs43732724	OA	A/G	0.790	1.11	GSDMC	GSDMC	89	He	10	
chr 30	rs60890741	OA	A/G	0.860	1.11	GSDMC	GSDMC	10			
chr 31	rs11780978	OA	A/G	0.387	1.13	PLEC	PLEC	108			
chr 32	rs116882138	OA	A/G	0.014	1.25	MOB3B	MOB3B	1			
chr 33	rs10116772	OA	A/G	0.600	1.03	GLIS3	GLIS3	8			
chr 34	rs10974438	OA	A/G	0.650	1.03	GLIS3	GLIS3	2			
chr 35	rs10974438	OA	A/G	0.650	1.03	GLIS3	GLIS3	2			
chr 36	rs919642	OA	A/G	0.280	1.07	COL11A1	COL11A1	7			
chr 37	rs12209223	OA	A/G	0.100	1.17	FLJ107	FLJ107	7			
chr 38	rs48367269	OA	A/G	0.580	1.08	TNC	TNC	16			
chr 39	rs133039	OA	A/G	0.424	1.10	ASTN2	ASTN2	3	He, HS		
chr 40	rs34687269	OA	A/G	0.530	1.09	ASTN2	ASTN2	8			
chr 41	rs10760442	OA	A/G	0.621	1.09	LMX1B	LMX1B	10			
chr 42	rs62578127	OA	A/G	0.630	1.09	LMX1B	LMX1B	10			
chr 43	rs17659979	OA	A/G	0.710	1.06	mir8068	mir8068	2			
chr 44	rs10896015	OA	A/G	0.730	1.08	LTPB3	LTPB3	15			
chr 45	rs10896015	OA	A/G	0.730	1.08	LTPB3	LTPB3	15			
chr 46	rs34419890	OA	A/G	0.930	1.13	C11orf80	C11orf80	9			
chr 47	rs1149620	OA	A/G	0.570	1.04	TSUK	TSUK	6			
chr 48	rs4764133	OA	A/G	0.390	1.29	MGP/ERP27	MGP/ERP27	0.28			

(continued)
The number of variants with an r² ≥ 0.8 (referred to the LD class in 38) of the OA variant calculated by LDlink45 using the 1,000 Genomes Project phase three data 49 in the same population(s) as the GWAS study; other traits: loci also significantly associated with height (He, 28), bone area (BA, 19), hip shape (HS, 10), and developmentally dysplasia of the hip (DDH, 11); AI: overlap of all DNA variants within the LD class and transcript SNPs from 62 showing significant allelic imbalance (AI) in cartilage. The effect of the OA risk allele on gene expression is shown (+ increased and − decreased); ATACseq SNPs: number of DNA variants within the LD class that overlap ATACseq peaks in cartilage identified in 1. The ATACseq peaks in hgs8 were lifted over into hgs19 using the UCSC LiftOver tool and overlapped with OA DNA variants using the UCSC Data Integrator tool. An extended version of this table is available as Supplemental Table 1.

novel loci identified in the deCODE-UKBB study 46.

Table I

Loci	Chr	Gene	Effect	OR (95% CI)	P-value	
rs10843013	hip	C/A	0.211	1.14	PTHHL/KLHL42	
rs10492367	hip	T/G	0.183	1.14	KLHL42	
rs10492367	hip	T/G	0.190	1.16	KLHL42	
rs79056043	hip	G/A	0.050	1.18	LRG2	
rs1176308	OA	T/C	0.270	0.044	CPSF6	
rs11105466	Hκ/K	G/A	0.420	1.04	lnC20399	
rs2171126	OA	T/C	0.510	1.03	CRADD	
rs853487	THR	G/A	0.340	1.13	CHST11	
rs11059094	hip	T/C	0.480	1.08	BCL7A/MXIP	
rs10601054	knee	C/T	0.774	1.07	SNB1	
rs56116847	knee	A/G	0.360	1.06	SNB1	
rs4765540	hip	C/T	0.253	1.08	FAM101	
chr 13	rs11842874	Hκ/K	A/G	0.591	1.17	MCFL2
chr 13	rs35912128	knee	A/G	0.170	1.08	USP8
chr 13	rs3204689	hand	C/G	0.525	1.46	ALDH1A2
chr 13	rs4775006	knee	A/C	0.410	1.06	SMAD3
chr 13	rs1920971	Hκ/K	A/G	0.080	1.08	SMAD3
chr 13	rs12901372	hip	C/G	0.535	1.08	SMAD3
chr 13	rs12901372	hip	C/G	0.530	1.08	SMAD3
chr 13	rs35206230	OA	T/C	0.670	1.04	CSX
chr 16	rs8044769	female	C/T	0.537	1.11	FTO
chr 16	rs9930333	Hκ/K	G/T	0.420	1.05	FTO
chr 16	rs6499244	knee	A/T	0.560	1.06	NFA55/WAPP2
chr 16	rs34195470	knee	G/A	0.538	1.07	NFA55
chr 16	rs864839	hip	T/G	0.691	1.08	PHH3
chr 16	rs1126464	OA	G/C	0.760	1.04	DPEP1
chr 17	rs3508756	knee	T/T	2.60	1.07	SMG6
chr 17	rs2953013	Hκ/K	C/A	0.300	1.05	NF1
chr 17	rs62063281	hip	G/A	0.220	1.10	MAPT
chr 17	rs54711605	OA	T/C	0.001	1.83	MAPT
chr 17	rs7221178	hip	A/T	0.205	1.09	NACA2
chr 17	rs7222178	hip	A/T	0.200	1.10	NACA2
chr 17	rs5221349	hip	A/G	0.410	1.13	MAP2K6
chr 17	rs8067763	knee	G/A	0.410	1.06	MAF2K6
chr 19	rs10502437	OA	G/A	0.600	1.03	TME2M41
chr 19	rs1560707	Hκ/K	T/G	0.370	1.04	SLCD4A2
chr 19	rs12982744	male	C/G	0.618	1.17	DOT1L
chr 19	rs37557539	knee	del/T	0.040	1.21	ZNF345
chr 19	rs75621460	OA	A/G	0.030	1.16	TCFB1
chr 19	rs4252548	hip	T/C	0.021	1.30	TCFB1
chr 19	rs4252548	hip	T/C	0.020	1.32	IL1
chr 20	rs143383	THR	G/C	0.003	16.7	COMP
chr 20	rs143383	knee	T/C	0.740	1.79	GDF5
chr 20	rs143383	knee	T/C	0.609	1.17	GDF5
chr 20	rs143384	knee	T/C	0.614	1.10	GDF5
chr 21	rs9049710	hip	A/G	0.040	1.28	NCOA3
chr 21	rs6518868	hip	T/A	0.764	1.10	RDWDD2B
chr 21	rs2836618	hip	A/G	0.260	1.09	ERC
chr 22	rs53246466	hip-rec	T/C	0.039	7.70	CHADL
chr 22	rs117018441	hip-rec	T/C	0.032	5.89	CHADL
chr 22	rs528981060	OA	A/G	0.001	1.68	SCUBE1

Table I (continued)

The number of variants with an r² ≥ 0.8 (referred to the LD class in 38) of the OA variant calculated by LDlink45 using the 1,000 Genomes Project phase three data 49 in the same population(s) as the GWAS study; other traits: loci also significantly associated with height (He, 28), bone area (BA, 19), hip shape (HS, 10), and developmentally dysplasia of the hip (DDH, 11); AI: overlap of all DNA variants within the LD class and transcript SNPs from 62 showing significant allelic imbalance (AI) in cartilage. The effect of the OA risk allele on gene expression is shown (+ increased and − decreased); ATACseq SNPs: number of DNA variants within the LD class that overlap ATACseq peaks in cartilage identified in 1. The ATACseq peaks in hgs8 were lifted over into hgs19 using the UCSC LiftOver tool and overlapped with OA DNA variants using the UCSC Data Integrator tool. An extended version of this table is available as Supplemental Table 1.

novel loci identified in the deCODE-UKBB study 46.

Novel loci identified in the arcGEN-UKBB study 46.

Loci only analysed in the UKBB cohort in 29; y/Hz: hip-rec: recessive hip OA; K/Hd: knee and/or hand OA; THR(F): total knee replacement (female); 5/6: effect (OA risk) allele; He: non-effect allele; odds ratio.
is actually associated with increased expression of the nearby CDK2AP1 gene rather than SBN01 itself, highlighting the usefulness of this dataset for prioritising genes as well as variants within OA susceptibility regions.

Transcriptomics

A wealth of novel human skeletal transcriptomic analyses were published the last year, including RNAseq based datasets of OA cartilage,72–74, timecourse analysis of in vitro chondrogenesis75,76 and profiling of human foetal chondrocytes, myoblasts, osteoblasts, ligamentocytes and tenocytes77. Such RNAseq datasets generate a huge treasure trove of gene expression information, although the published studies typically focus only on a small subset of the data, with the remaining data either relegated to supplemental files or not provided. Furthermore, it is difficult to compare the results between studies due to differences in data analysis methods. These issues have been addressed by SkeletalVis, a new online web application designed as a specialised meta-analysis portal for skeletal disease transcriptomic datasets (http://phenome.manchester.ac.uk/58). The portal currently contains microarray and RNAseq data from 300 studies encompassing a total of 779 individual analyses in cartilage and other OA-relevant tissues. SkeletalVis permits exploration and comparison of existing human and animal model datasets, including the identification of gene signatures across studies and species. Furthermore, the user can upload their own unpublished data in order to compare it to existing datasets and perform downstream analyses, including transcription factor and gene ontology enrichment analysis. The portal also allows the expression of a specific gene to be compared across the different experiments, a very useful tool for preliminary analysis of OA-associated genes identified through GWAS, transcriptomic and epigenomic studies.

Although bulk RNAseq studies are now the norm, advances in sequencing technology have allowed the transcriptome to be analysed at the level of individual cells. Single cell RNA sequencing (scRNAseq) is becoming increasingly popular, leading to new insights into development and disease78. This year, the first human cartilage single-cell RNAseq analysed the transcriptome of 1,464 chondrocytes isolated from the tibial plateau of 10 knee patients79. Seven molecular subgroups of OA chondrocyte were identified, including three novel populations termed effector (EC), regulatory (RegC) and homeostatic (HomC) chondrocytes. These subgroups can be classified based on expression of 792 genes, several of which map to newly identified OA susceptibility regions (e.g., GLIS3, TGFB1, TNC and WWF2). Single cell analysis of OA synovium has also been performed, with Chou and colleagues reporting analysis of over 10,000 synovial cells and 26,000 OA chondrocytes from three OA knee patients at OARSI 201980. The number of single-cell RNA-seq analyses of OA-relevant tissues is expected to rise over the next few years and these studies have the potential to identify new pathological cell types and pathways.

Epigenetics

MicroRNAs

Numerous microRNAs (miRNAs) have now been associated with cartilage development or homeostasis and during the development of OA81. To identify candidate miRNAs for future miRNA-based OA therapies, a study this year aimed to identify all cartilage miRNAs involved in OA pathophysiology82. They leveraged miRNA and small RNA-seq data from 19 paired damaged and intact OA knee and hip cartilage samples in order to create a chondrocyte-specific interaction network of miRNAs with their target miRNAs. Utilising predicted and validated miRNA target databases, an ‘OA-specific miRNA interactome’ of 62 differentially expressed miRNAs and 238 differentially expressed target miRNAs was generated. One notable miRNA was miR-99a-3p, which had not been associated with OA prior to the study. miR-99a-3p was downregulated in lesional OA cartilage and targeted 36 genes, including TGF1, ITGB5 and GDF6. A second large miRNA—miRNA cluster centred on the upregulated miRNA miR-143–3p, and consisted of 16 target genes including DCAD, AMIGO1 and SMAD3. Importantly, functional validation was performed for both miR-99a-3p and miR-143–3p, confirming several of the identified target interactions.

A number of other studies published this year have further expounded targets of miRNAs in cartilage and bone with implications for skeletal development and homeostasis. One study focused on miR-20483, which is upregulated in human damaged OA cartilage and mouse cartilage with age or after OA induction. miR-204 is also induced by number of senescence inducers (including H2O2 and infra-red radiation). Interestingly miR-204 repressed chondrocyte sulphated glycosaminoglycan production by directly targeting a number of transcripts involved in cartilage proteoglycan biosynthesis, including genes crucial for chondroitin sulphate (CS) and hyaluronic acid formation. Furthermore, in vivo intra-articular injections of a miR-204 mimic exacerbated cartilage damage in the mouse DMM model, while miR-204 inhibitor injection caused a reciprocal protection against experimental OA. Inhibition of miR-204 in human chondrocytes could similarly upregulate CS levels and suppress catabolic MMP expression.

A second study focused on miR-181a-5p, which is increased in degenerated human facet joints and OA knee cartilage, and during mouse OA development84. Injection of antisense oligonucleotides, which attenuated miR-181a-5p activity, reduced cartilage damage in knee joints with concomitant reduction in catabolic gene expression and markers of cartilage damage. This finding was confirmed in human cartilage explants and further work is required to characterise the targets and pathways mediating the effect of miR-181–5p in chondrocytes.

The crucial role of miR-140 in skeletal development is well established85,86, and a novel pathological mutation within this miRNA was recently described87. An A > G nucleotide substitution within the miR-140–5p seed region caused a novel human skeletal dysplasia with features including short stature, brachydactyly and delayed epiphyseal ossification leading to degenerative joint disease. This mutation causes both de-repression of conserved miR-140–5p targets and suppression of an additional repertoire of genes that are targeted by the new seed sequence. These include genes required for skeletal development such as Lox3 and Hif1a. Importantly, a knock-in mouse model containing the human miR-140–5p seed mutation had skull, cartilage and long bone development alterations, phenocopying the skeletal dysplasia features of the patients.

Other key findings in the miRNA field include the observation that miR-138-mediated inhibition of osteogenesis could be rescued by overexpression of its target RhoC88, miR-93–5p may target TCF4 to prevent cartilage matrix degradation89, and finally, that miR-324–5p is upregulated in OA and targets the hedgehog signalling pathway in chondrocytes90.

Other non-coding RNAs

Unlike miRNAs, research into the role of other types of non-coding RNAs in OA and cartilage remains in its infancy. These include long noncoding RNAs (lncRNAs), a diverse group of non-coding transcripts over 200 nt in length. Although the role of individual lncRNAs such as ROCR91 have been investigated (reviewed in92), the first study to characterise IncRNAs genome-wide in OA
cartilage was published this year54. Ajekigbe and colleagues sought to define the IncRNA transcriptome in OA cartilage by analysing both hip and knee cartilage RNA-seq data and identified a total of 1834 IncRNAs. Twenty IncRNAs were significantly differentially expressed between both OA and non-OA hip and preserved and damaged regions of OA knee cartilage, including the imprinted gene \textit{MEG3}. Future work will focus on the identification of IncRNA functions in cartilage, thereby enabling investigation into the consequence of IncRNA expression changes in OA.

Circular RNAs (circRNAs) are single-stranded RNAs usually formed by alternative splicing of pre-miRNAs in which the 5' and 3' ends have been spliced together to form a loop2. Systematic analysis of circRNAs expressed in OA cartilage identified CircSERPINE2, which is formed by circularisation of exons 2–4 of the serine protease inhibitor gene \textit{SERPINE2}1,2. The expression of CircSERPINE2 in human cartilage was comprehensively validated and found to be downregulated in OA in contrast to the linear SERPINE2 transcript. This circRNA is downregulated during OA and intra-articular overexpression of CircSERPINE2 alleviated OA severity in a rabbit model. Specific inhibition of CircSERPINE2 by siRNA caused the suppression of key cartilage genes such as \textit{SOX9} and the upregulation of catabolic genes such as \textit{MMP13}. CircSERPINE2 pulldown experiments identified binding of miR-1271, which is upregulated in OA, and the authors posited that CircSERPINE2 acts as a sponge for miR-127–5p. Indeed overexpression of miR-1271 in chondrocytes phenocopied the effect of CircSERPINE2 siRNA, while inhibition of miR-1271 could rescue the phenotype. However, miR-1271 is relatively lowly expressed in chondrocytes and other studies have failed to detect expression changes in OA suggesting other mechanisms of CircSERPINE2 action may still be discovered4,75.

\textit{Genome-wide mapping of open chromatin and histone modifications}

Within the OA epigenetics field, the majority of research has centred on DNA methylation and non-coding RNAs. The few studies of histone modifications have primarily focussed on the role of individual chromatin remodelling proteins in cartilage (e.g., \textit{DOT1L}4,55) rather than genome-wide mapping of specific histone modifications and open chromatin. Techniques used for the latter analyses, namely chromatin immunoprecipitation sequencing (\textit{ChIPseq}) and DHS mapping, have previously required unfeasibly large number of freshly isolated cells (typically 1×10^6 to 2×10^7 cells), preventing such studies in cartilage. However, this has changed with the last year with publication of the first reports of histone \textit{ChIPseq} and mapping of open chromatin regions in human chondrocytes56,77.

In the first study, Ferguson and colleagues performed \textit{ChIPseq} of fetal and adult chondrocytes for the active histone modifications \textit{H3K4me1}, \textit{H3K4me3} and \textit{H3K27ac}, and the repressive \textit{H3K27me3} mark using only 10,000 chondrocytes per \textit{ChIP}57. \textit{ChIPseq} was also generated from pluripotent stem cells at day 14 and day 60 of \textit{in vitro} chondrogenic differentiation. Matched RNAseq data available for both \textit{in vitro} differentiation timepoints as well as the fetal and adult chondrocyte subtypes. Based on the combination of different histone modifications, 12 chromatin states were identified, including putative active promoter enhancer regions. Given the utility of the chromatin state information for future epigenetic studies, the authors have made the \textit{ChIPseq} and RNAseq data available to download (GSE118530 and GSE106292 respectively).

In the second study76, the open chromatin regions of preserved and damaged regions of knee cartilage from eight OA patients were mapped using the assay for transposase-accessible chromatin using sequencing (\textit{ATACseq})76. This is a fast and sensitive alternative method to DHS mapping that requires 5,000 to 50,000 cells, making analysis of cartilage and other primary joint tissues feasible. Of the 109,215 accessible chromatin regions identified in this study (available at https://www.nature.com/articles/s41598-018-33779-z#MOESM1), 71.1% mapped to putative enhancer regions, and 4% had altered accessibility between damaged and undamaged OA chondrocytes. DNA variants within several established OA loci map to these \textit{ATACseq} peaks, as do the variants within 28 of the 56 new OA loci, including \textit{LTBP1}, \textit{LTBP3} and \textit{SNBO1} (Table 1). Collectively, these chromatin datasets will be an invaluable resource for identifying non-coding regulatory regions in cartilage, and will aid prioritisation of OA risk variants and epigenetic changes for functional analyses.

\textbf{Summary}

Within the last year, the number of OA genetic risk loci has increased from 34 to 904,25, with several OA loci also associated with height, hip shape, DDH and bone area56,76,77. However, functional studies are required to elucidate the molecular mechanism whereby these variants increase OA risk. Integrating genetic variants with genome-wide datasets of cartilage \textit{AI}25, \textit{chromatin states}72 and open chromatin regions77 will inform functional analyses of these loci. RNA sequencing studies have characterised new chondrocyte subtypes75 and systematically identified all miRNAs53, IncRNAs54 and circRNAs73 present in OA cartilage. The number of transcriptomic and epigenomic studies will continue to increase as sequencing costs fall and technical difficulties are overcome. As well as analysing cartilage from different joints at numerous time points in development, adulthood and during OA disease progression, future studies will hopefully examine additional disease-relevant tissues such as bone, synovium and fat pad.

\textbf{Author contributions}

Dr Louise Reynard searched the literature, summarised the results and wrote the manuscript, with Dr Matthew Barter contributing to the section on non-coding RNAs.

\textbf{Conflict of interest}

We have no conflicts of interest.

\textbf{Role of funding source}

No specific funding was obtained for this paper. Dr Barter is funded by the Dunhill Medical Trust (grant reference R476/0516). Dr Reynard is funded by the Medical Research Council (MRC) and Versus Arthritis as part of the MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA, grant references JXR 10641 and MR/P020941/1), the JGW Patterson Foundation and the Community Foundation.

\textbf{Supplementary data}

Supplementary data to this article can be found online at https://doi.org/10.1016/j.joca.2019.11.010.

\textbf{References}

1. Reynard LN. Analysis of genetics and DNA methylation in osteoarthritis: What have we learnt about the disease? Semin Cell Dev Biol 2017;34(2):57–66.
2. van Meurs JB, Boer CG, Lopez-Delgado L, Riancho JA. Role of epigenomics in bone and cartilage disease. J Bone Miner Res 2019;34(2):215–30.
3. Reynard LN, Loughlin J. Insights from human genetic studies into the pathways involved in osteoarthritis. Nat Rev Rheumatol 2013;9(10):573–83.

4. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet 2019;51(3):34–40.

5. Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, et al. Rare coding variants in PLCG2, AB13, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 2017;49(9):1373–84.

6. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014;511(7510):421–7.

7. Westra HJ, Martinez-Bonet M, Onengut-Gumuscu S, Lee A, Westra HJ, Martinez-Bonet M, Onengut-Gumuscu S, Lee A, et al. Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat Genet 2018;50(10):1366–74.

8. Winkler C, Haupt F, Heigermoser M, Zapardiel-Gonzalo J, Ohli J, Faure T, et al. Identification of infants with increased type 1 diabetes genetic risk for enrollment into Primary Prevention Trials-GPPAD-02 study design and first results. Pediatr Diabetes 2019;20(5):720–7.

9. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014;511(7510):376–81.

10. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700,000 individuals of European ancestry. Hum Mol Genet 2018;27(20):3641–9.

11. Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, et al. A functional polymorphism in the 5’ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet 2007;39(4):529–33.

12. Miyamoto Y, Shi D, Nakajima M, Ozaki K, Sudo A, Kotani A, et al. Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nat Genet 2008;40(8):994–8.

13. Nakajima M, Takahashi A, Koy I, Rodriguez-Fontenla C, Gomez-Reino JJ, Furuchi T, et al. New sequence variants in HLA class II/III region associated with susceptibility to knee osteoarthritis identified by genome-wide association study. PLoS One 2010;5(3), e9723.

14. Kerkhof HJ, Lories RJ, Meulenbelt I, Jonsdottir I, Valdes AM, Arp P, et al. A genome-wide association study identifies an osteoarthritis susceptibility locus on chromosome 7q22. Arthritis Rheum 2010;62(2):499–510.

15. Evangelou E, Valdes AM, Kerkhof HJ, Styrkarsdottir U, Zhu Y, Meulenbelt I, et al. Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22. Ann Rheum Dis 2011;70(2):349–55.

16. Valdes AM, Evangelou E, Kerkhof HJ, Tamn A, Doherty SA, Kisinand K, et al. The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann Rheum Dis 2011;70(5):873–5.

17. Day-Williams AG, Southam L, Panoutsopulu K, Rayner NW, Esko T, Estrada K, et al. A variant in MCF2L is associated with osteoarthritis. Am J Hum Genet 2011;88(3):446–50.

18. arc OC, arc OC, Zeggini E, Panoutsopulu K, Southam L, Rayner NW, et al. Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 2012;380(9844):815–23.

19. Evangelou E, Valdes AM, Castano-Betancourt MC, Doherty M, Doherty S, Esko T, et al. The DOT1L rs12982744 polymorphism is associated with osteoarthritis of the hip with genome-wide statistical significance in males. Ann Rheum Dis 2013;72(7):1264–5.

20. Styrkarsdottir U, Thorleifsson G, Helgadottir HT, Bomer N, Metruxry S, Bierma-Zeinstra S, et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nat Genet 2014;46(5):498–502.

21. Evangelou E, Kerkhof HJ, Styrkarsdottir U, Ntzani EE, Bos SD, Esko T, et al. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip. Ann Rheum Dis 2014;73(12):2130–6.

22. Styrkarsdottir U, Helgason H, Sigurdsson A, Norddahl GL, Agustsdottir AB, Reynard LN, et al. Whole-genome sequencing identifies rare genotypes in COMP and CHADL associated with high risk of hip osteoarthritis. Nat Genet 2017;49(5):801–5.

23. Hackenger S, Trajanoska K, Styrkarsdottir U, Zengini E, Steinberg J, Ritchie GRS, et al. Evaluation of shared genetic aetiology between osteoarthritis and bone mineral density identifies SMAD3 as a novel osteoarthritis risk locus. Hum Mol Genet 2017;26(19):3850–8.

24. Liu Y, Yau MS, Yerges-Armstrong LM, Dugan DJ, Renner JB, Arp P, Agustsdottir AB, Reynard LN, et al. A genome-wide association study identifies rare genotypes in COMP and CHADL associated with osteoarthritis. Am J Hum Genet 2017;44(11):1652–8.

25. den Hollander W, Boer CG, Hart DJ, Yau MS, Ramos YFM, Metruxry S, et al. Genome-wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand. Ann Rheum Dis 2017;76(12):2046–53.

26. Casalone E, Tachmazidou I, Zengini E, Hatzikotoulas K, Hackenger S, Suveges D, et al. A novel variant in GLIS3 is associated with osteoarthritis. Ann Rheum Dis 2018;77(4):620–3.

27. Zengini E, Hatzikotoulas K, Tachmazidou I, Steinberg J, Hartwig FP, Southam L, et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet 2018;50(4):549–58.

28. Styrkarsdottir U, Lund SH, Thorleifsson G, Zink F, Stefansson OA, Sigurdsson JK, et al. Meta-analysis of Icelandic and UK data sets identifies missense variants in SMO, IL11, COL11A1 and 13 more new loci associated with osteoarthritis. Nat Genet 2018;50(12):1681–7.

29. Tachmazidou I, Hatzikotoulas K, Southam L, Espana-Gordillo J, Haberland V, Zheng J, et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat Genet 2019;51(2):230–6.

30. van Meurs JB. Osteoarthritis year in review 2016: genetics, genomics and epigenetics. Osteoarthritis Cartilage 2017;25(2):181–9.

31. Panagiotou OA, Willer CJ, Hirschhorn JN, Ioannidis JP. The power of meta-analysis in genome-wide association studies. Annu Rev Genomics Hum Genet 2013;14:441–65.

32. Barter MJ, Gomez R, Wyatt S, Cheung K, Skelton AJ, Xu Y, et al. The long non-coding RNA ROCR contributes to SOX9 expression and chondrogenic differentiation of human mesenchymal stem cells. Development 2017;144(24):4510–21.

33. Large-scale global multi-ethnic GWAS doubles the number of osteoarthritis loci and identifies new treatment targets. In: Boer C, Hatzikotoulas K, Southam L, Stefensusdottir L, Styrkarsdottir U, Blevs Meurs, et al. Eds. 69th Annual Meeting of The American Society of Human Genetics. Houston, USA: American Journal of Human Genetics; 2019.

34. Bos SD, Slagboom PE, Meulenbelt I. New insights into osteoarthritis: early developmental features of an ageing-related disease. Curr Opin Rheumatol 2008;20(5):553–9.
35. Sandell LJ. Etiology of osteoarthritis: genetics and synovial joint development. Nat Rev Rheumatol 2012;8(2):77–89.
36. Baird DA, Evans DS, Kamano FK, Gregory JS, Saunders FR, Giuraniuc CV, et al. Identification of Novel Loci Associated With Hip Shape: A Meta-Analysis of Genomewide Association Studies. J Bone Miner Res 2019;34(2):241–51.
37. Hatzikotoulas K, Roposch A, Consortium HDHC, Shah KM, Clark MJ, Bratherton S, et al. Genome-wide association study of developmental dysplasia of the hip identifies an association with GDF5. Commun Biol 2018;1:56.
38. Sun Y, Wang C, Hao Z, Dai J, Chen D, Xu Z, et al. A common variant of ubiquinol-cytochrome c reductase complex is associated with DDH. PLoS One 2015;10(4), e0120212.
39. Styrkarsdottir U, Stefansson OA, Gunnarsdottir K, Thorleifsson G, Rampersaud YR, Nakamura Y, et al. Gain-of-function mutation of ubiquinol-cytochrome c reductase complex is responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthritis Cartilage 2019;27(4):694–702.
40. Fisher KM, Gemini R, Alvarez-Garcia O, Akagi R, Saito M, Muramatsu Y, et al. Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthritis Cartilage 2019;27(4):1531–8.
41. Gallagher MD, Chen-Plotkin AS. The post-GWAS Era: functional and post-traumatic osteoarthritis in Dot1l-decient mice. Osteoarthritis Cartilage 2019;27(3):513–25.
42. Zhang B, Li Z, Wang W, Guo J, Kang S, Liu S, et al. NCOA3 loss disrupts molecular signature of chondrocytes and promotes posttraumatic osteoarthritis progression. Cell Physiol Biochem 2018;49(6):2396–413.
43. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 2012;40(Database issue):D930–4.
44. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015;31(21):3555–7.
45. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature 2015;526(7571):68–74.
46. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489(7414):57–74.
47. Roadmap Epigenomics C, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518(7539):317–30.
48. den Hollander W, Pulyakhina I, Boer C, Bomer N, van der Breggen R, Arindarrotto W, et al. Annotating transcriptional effects of genetic variants in disease-relevant tissue: transcriptome-wide allelic imbalance in osteoarthritic cartilage. Arthritis Rheumatol 2019;71(4):561–70.
49. Coutinho de Almeida R, Ramos YFM, Mahfouz A, den Hollander W, Lakenberg N, Houtman E, et al. RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage. Ann Rheum Dis 2019;78(2):270–7.
50. Ajekigbe B, Cheung K, Xu Y, Skelton AJ, Panagiopoulos A, Soul J, et al. Identification of long non-coding RNAs expressed in knee and hip osteoarthritic cartilage. Osteoarthritis Cartilage 2018;26(11):1531–8.
51. Huynh NPT, Zhang B, Guilak F. High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis. FASEB J 2019;33(1):358–72.
52. Ferguson GB, Van Handel B, Bay M, Fiziev P, Org T, Lee S, et al. Mapping molecular landmarks of human skeletal ontology and pluripotent stem cell-derived articular chondrocytes. Nat Commun 2018;9(1):3634.
53. Soul J, Hardingham T, Boot-Handford R, Schwartz JM. skelEtVIs: An exploration and meta-analysis data portal of cross-species skeletal transcriptomics data. Bioinformatics 2019;35(13):2283–90.
54. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet 2016;17(3):175–88.
55. Ji Q, Zhang Y, Zhang G, Hu Y, Fan X, Hou Y, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis 2019;78(1):100–10.
56. Chou CH, Gibson J, Attarian DE, Haraden C, Yohn CB, Laberge RM, et al. Profiling human chondrocytes and synovioctyes using single cell RNA sequencing identifies cell diversity in the pathogenesis of osteoarthritis in the joint organ. Osteoarthritis and Cartilage 2019;27:S27.
57. Endisha H, Rockel J, Jurisica I, Kapoor M. The complex landscape of microRNAs in articular cartilage: biology, pathology, and therapeutic targets. JCI Insight 2018;3(17).
58. Kang D, Shin J, Cho Y, Kim HS, Gu YR, Kim H, et al. Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. Sci Transl Med 2019;11(486).
59. Nakamura A, Rampersaud YR, Nakamura S, Sharma A, Zeng F, Rossmacha E, et al. microRNA-181a-5p antisense oligonucleotides attenuate osteoarthritis in facet and knee joints. Ann Rheum Dis 2019;78(1):111–21.
60. Nakamura Y, Inoies JB, Katagiri T, Kobayashi T. Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol 2011;31(14):3019–28.
61. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 2010;24(11):1173–85.
62. Grigolioniene G, Suzuki HI, Taylan F, Mirzamohammadi F, Borochowitz ZU, Ayturk UM, et al. Gain-of-function mutation of microRNA-140 in human skeletal dysplasia. Nat Med 2019;25(4):583–90.
cartilage degradation in osteoarthritis partially by targeting TCF4. Bone 2019;123:129–36.

70. Woods S, Barter MJ, Elliott HR, McGillivray CM, Birch MA, Clark IM, et al. miR-324-5p is up regulated in end-stage osteoarthritis and regulates Indian Hedgehog signalling by differing mechanisms in human and mouse. Matrix Biol 2019;77:87–100.

71. Sun H, Peng G, Ning X, Wang J, Yang H, Deng J. Emerging roles of long noncoding RNA in chondrogenesis, osteogenesis, and osteoarthritis. Am J Transl Res 2019;11(1):16–30.

72. Barrett SP, Salzman J. Circular RNAs: analysis, expression and potential functions. Development 2016;143(11):1838–47.

73. Shen S, Wu Y, Chen J, Xie Z, Huang K, Wang G, et al. CircSERPINE2 protects against osteoarthritis by targeting miR-1271 and ETS-related gene. Ann Rheum Dis 2019;78(6):826–36.

74. Crowe N, Swingler TE, Le LT, Barter MJ, Wheeler G, Pais H, et al. Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA. Osteoarthritis Cartilage 2016;24(3):534–43.

75. Haseeb A, Makki MS, Khan NM, Ahmad I, Haqqi TM. Deep sequencing and analyses of miRNAs, isomiRs and miRNA induced silencing complex (miRISC)-associated miRNome in primary human chondrocytes. Sci Rep 2017;7(1):15178.

76. Monteagudo S, Cornelis FMF, Aznar-Lopez C, Yibmantasiri P, Guns LA, Carmeliet P, et al. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis. Nat Commun 2017;8:15889.

77. Liu Y, Chang JC, Hon CC, Fukui N, Tanaka N, Zhang Z, et al. Chromatin accessibility landscape of articular knee cartilage reveals aberrant enhancer regulation in osteoarthritis. Sci Rep 2018;8(1):15499.

78. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 2013;10(12):1213–8.