SPATIALLY PARTITIONED EMBEDDED RUNGE–KUTTA METHODS
DAVID I. KETCHESON*, COLIN B. MACDONALD†, AND STEVEN J. RUUTH‡

Abstract. We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory.

Key words. Embedded Runge–Kutta methods, spatially partitioned methods, conservation laws, method of lines.

AMS subject classifications. 35L65, 65L06, 65M20

1. Introduction. The method-of-lines is a popular discretization technique for the numerical solution of time-dependent partial differential equations. In it, a spatial discretization is applied to the PDE, yielding an initial value problem consisting of a large system of ordinary differential equations (ODEs). These are evolved by some time-stepping method, for example, a Runge–Kutta method.

The choice of a suitable time-stepping scheme may depend on a variety of considerations. Typically, schemes are chosen to give good linear stability and accuracy, although in some applications it is also useful or necessary to preserve the monotonicity or other properties of the true PDE solution. Often, the key properties for determining a suitable time-stepping scheme vary locally in space. Examples of such properties include the grid spacing, the coefficients of the PDE, the smoothness of the solution and the geometry of the domain. As a consequence, it is possible that a scheme that is effective in one portion of the domain is unsuitable or inefficient in another. It is therefore natural to consider the development and analysis of spatially partitioned time-stepping methods, in which different step sizes or different methods are used over subdomains.

A class of methods that often benefit from spatially partitioned time-stepping are PDE discretizations with grid adaptivity. In regions where the solution is non-smooth or exhibits rapid variation, fine grids are needed; other regions may be more efficiently discretized with coarser meshes. If all components of an ODE system are evolved using some explicit time-stepping scheme and a single time step-size Δt, the evolution of all components will be restricted by the stiffest components of the system.
Improved efficiency is often possible by considering time-stepping methods that vary their time step-size according to the local mesh spacing. Time-stepping schemes of this type are called \textit{multirate} schemes. The first multirate schemes for one-dimensional conservation laws were developed by Osher and Sanders in [23]. Their approach carries out forward Euler time-stepping with step-sizes that vary locally. More recently higher-order methods have been considered; for example, Tang and Warnecke [32] develop second-order multirate schemes based on Runge–Kutta or Lax-Wendroff type schemes. Other recent work includes that by Constantinescu and Sandu [4] where a simple construction algorithm is given to form a second-order accurate multirate scheme based on an arbitrary strong-stability-preserving (SSP) scheme of order two or higher. Notably, their approach preserves a variety of monotonicity properties, such as positivity and the maximum principle. As explained by Hundsdorfer, Mozartova and Savcenco [15] multirate schemes for conservation laws are either locally inconsistent (e.g., [23]) or lack mass conservation (e.g., [32]). Fortunately, order reduction due to such local inconsistency may be less severe than expected, due to cancellation and damping effects; see [15] for details.

Whereas multirate methods use different step sizes, in the present work we focus on using different methods on different spatial subdomains. Specifically, we investigate spatially partitioned embedded Runge–Kutta (SPERK) schemes applied to one-dimensional PDEs such as conservation laws

\[u_t + f(u)_x = 0. \]

(1.1)

Here the term \textit{embedded} refers to methods having the same coefficient matrix A (but different weights b), which avoids the unnecessary duplication of computations that can occur when combining two unrelated time-stepping schemes. Two classes of SPERK schemes are considered: \textit{equation-based partitioning} and \textit{flux-based partitioning}. We shall find that equation-based partitioning maintains the overall accuracy of the schemes composing the embedded pair. This approach is, however, not conservative and can lead to wrong shock propagation speeds when applied to hyperbolic PDEs. Flux-based partitioning is conservative, but experiences a theoretical order reduction in the local consistency. In practice, however, we shall find that the overall accuracy of the combined scheme is unaffected.

The idea of adapting the time discretization locally in space is not new. Efficient combinations of implicit and explicit time discretizations have been developed for problems where very large wave speeds appear in a localized regions, such as oil reservoir modeling or fluid-structure interaction [2, 5, 33]. Combinations of higher- and lower-order implicit schemes have been used in order to preserve monotonicity under large step sizes [9, 7, 6, 24]. Combinations of explicit methods have received less attention; some techniques for simultaneous local adaptation of both temporal and spatial discretizations were proposed in [13], in the context of shock-capturing methods for conservation laws. Here we provide a general framework for local adaptation of just the time discretization, for explicit integration of general time-dependent PDEs.

We will see that the methods we study can be viewed in the general framework of partitioned or additive Runge–Kutta methods. However, such methods are usually applied in a way that applies different numerical treatment to \textit{different physical processes}, whereas the emphasis here is on different numerical treatments for \textit{different spatial domains}. These approaches are based on different motivations, and some approaches that work well for the former fail for the latter (see Example 2.2).
To illustrate the use of spatially adaptive time-stepping schemes, consider a convection-diffusion problem in which the Reynolds number varies spatially, such that the system is dominated by convection on one subdomain and dominated by diffusion elsewhere. The third-order, three-stage SSP Runge–Kutta scheme of Shu and Osher (SSPRK(3,3)) [29] might be desired for the convection-dominated regions, while a second-order Runge–Kutta–Chebyshev method, e.g., [35], might be preferred in diffusion-dominated regions. Unfortunately, neither scheme is particularly attractive on its own since SSPRK(3,3) requires small time steps when applied to diffusive problems, while the Runge–Kutta–Chebyshev method is unstable when applied to convective problems. On the other hand, a combination that applies each time-stepping scheme where it is best suited may provide better linear stability than either scheme on its own. An example of this kind is explored in Section 4.

There are other situations where spatially partitioned time-stepping schemes show a strong potential. For example, consider the evolution of a conservation law involving both shocks and smooth regions. The preservation of monotonicity properties may be the most crucial property near the shock, whereas high-order accuracy may be of primary interest in smooth regions. Use of a spatially partitioned time-stepping scheme opens the possibility of simultaneously obtaining good accuracy and monotonicity in such problems. An example of this kind is explored in Section 5, where SPERK schemes are applied to fifth-order weighted essentially non-oscillatory (WENO) spatial discretizations [28]. The motivation here is that fifth-order SSPRK methods are complicated by their use of the downwind-biased operator [29, 27, 31, 25] while monotonicity and the corresponding SSP property is likely only useful in the vicinity of non-smooth features. In these regions WENO discretizations are formally third-order accurate [28]. Thus, in our approach, a fifth-order linearly stable Runge–Kutta scheme is used in smooth regions while an embedded third-order SSP Runge–Kutta scheme is used near shocks or other discontinuities.

The paper unfolds as follows. Section 2 introduces equation-based partitioning and examines its conservation properties. This is followed by the introduction and analysis of flux-based partitioning. Errors and positivity properties for both classes of schemes are considered in this section. A variety of generalizations are given in Section 3. Section 4 gives some examples of SPERK schemes, and considers applications of the methods to a spatially discretized advection-diffusion equation. Section 5 considers SPERK schemes in the context of WENO spatial discretizations and a nonlinear partitioning step. In our approach, the WENO weights are used to select between an SSP Runge–Kutta scheme, and a high-order scheme chosen for its linear stability properties. Finally, Section 6 concludes with a discussion of some other application areas and some of our current research directions.

2. Spatially partitioned embedded Runge–Kutta methods. We begin by introducing equation- and flux-based SPERK schemes. An analysis of the accuracy, conservation and positivity properties of such schemes is also provided in this section.

2.1. Equation-based partitioning. Consider a system of N ordinary differential equations

$$U'(t) = G(U),$$

(2.1)

typically arising as the spatial discretization of a PDE where each component in the solution approximates, for example, point values of the PDE solution $u_i(t) \approx u(x_i, t)$ at discrete points $x_i, 1 \leq i \leq N$. To apply an s-stage Runge–Kutta method, we first
compute the stage values

$$Y^{(j)} = U^n + \Delta t \sum_{k=1}^{s} a_{jk} G(Y^{(k)}), \quad j = 1, \ldots, s. \quad (2.2a)$$

A standard Runge–Kutta method would then advance by one step using the formula

$$U^{n+1} = U^n + \Delta t \sum_{j=1}^{s} b_j G(Y^{(j)}).$$

Instead, let a different set of weights be applied at each point x_i, $1 \leq i \leq N$, choosing between coefficients b or \hat{b}. This results in

$$u_i^{n+1} = u_i^n + \Delta t \left[\chi_i^n \sum_{j=1}^{s} b_j g_i(Y^{(j)}) + (1 - \chi_i^n) \sum_{j=1}^{s} \hat{b}_j g_i(Y^{(j)}) \right] \quad (2.2b)$$

where g_i is the ith component of G and

$$\chi_i^n = \begin{cases} 1, & \text{if weights } b \text{ are used to compute } u_i^{n+1}, \\ 0, & \text{if weights } \hat{b} \text{ are used to compute } u_i^{n+1}. \end{cases} \quad (2.2c)$$

We write the coefficients of this method A, b, \hat{b} using the same tableau notation that is employed for embedded Runge–Kutta methods [11]:

$$\begin{array}{c|cc} c & A \\ b^T & \hat{b}^T \end{array} \quad (2.3)$$

We refer to the embedded method (2.2) as a spatially partitioned time-stepping method because the “mask” χ selects which scheme to propagate at each point in space, at each time step. In some cases, χ depends on the solution values, although we do not explicitly represent this for notational clarity.

2.1.1. Connection to partitioned Runge–Kutta methods. Methods of the form (2.2) form a special subclass of partitioned Runge–Kutta methods [11]. Generally, methods in a partitioned RK pair may have different coefficient matrices A as well as different weights b. In our embedded approach, methods have fewer degrees of freedom available for their design, but they possess the advantage of automatically satisfying the “extra” order conditions for partitioned RK methods. That is, if each of the component methods (A, b) and (A, \hat{b}) is accurate to order p, the SPERK method is also accurate to order p in time (see also Proposition 3.1 below).

Method (2.2) partitions (2.1) by equation; we refer to this type of partitioning as equation-based partitioning. Because the ith equation corresponds to grid node x_i, $1 \leq i \leq N$, our approach also gives a spatial partitioning of a semi-discretized PDE. It is worth noting, however, that equation-based partitioning is a very general technique that does not require any correspondence to grid locations.

2.1.2. Conservation. Many important physical phenomena are modeled by conservation laws, which in one dimension have the form

$$u_t + f(u)_x = 0. \quad (2.4)$$

In the numerical solution of (2.4), one should use a conservative scheme in order to ensure that shocks propagate at the correct speed. Typically, (2.4) is semi-discretized using a flux-differencing method:

$$u_i'(t) = -\frac{1}{\Delta x} \left(f_{i+\frac{1}{2}} - f_{i-\frac{1}{2}} \right) \quad (2.5)$$
where \(f_{i \pm \frac{1}{2}} \) are numerical approximations to the flux at \(x_{i \pm \frac{1}{2}}, 1 \leq i \leq N \). Integrating with a Runge–Kutta method gives
\[
 u_{n+1}^i = u_n^i - \frac{\Delta t}{\Delta x} \left(\sum_{j=1}^{s} b_j f_{i + \frac{1}{2}}(Y^{(j)}) - \sum_{j=1}^{s} b_j f_{i - \frac{1}{2}}(Y^{(j)}) \right)
\]
where the stage values \(Y^{(j)}, 1 \leq j \leq s \), are defined in equation (2.2a) above. This method is conservative since corresponding fluxes cancel out (except at the boundaries) if we sum over the spatial index \(i, 1 \leq i \leq N \).

Applying method (2.2) gives instead
\[
 u_{n+1}^i = u_n^i - \frac{\Delta t}{\Delta x} \left(\sum_{j=1}^{s} \left(\chi_n^i b_j + (1 - \chi_n^i) \hat{b}_j \right) f_{i + \frac{1}{2}}(Y^{(j)}) \right)
 - \sum_{j=1}^{s} \left(\chi_n^i b_j + (1 - \chi_n^i) \hat{b}_j \right) f_{i - \frac{1}{2}}(Y^{(j)}) \right).\]

This method is not conservative, since the flux terms at \(x_{i - \frac{1}{2}} \) will not cancel if \(\chi_{i - \frac{1}{2}} \neq \chi_i \). This can lead to solutions in which discontinuities move at incorrect speeds. Here we give an example.

Example 2.1. We consider Burgers’ equation, \(u_t + \left(\frac{1}{2}u^2\right)_x = 0 \), with the step function initial condition
\[
 u(x, t = 0) = \begin{cases}
 2 & x \leq 0, \\
 0 & x > 0.
 \end{cases}
\]
We discretize in space with a finite difference flux-differencing scheme using fifth-order WENO interpolation. In time, we discretize using the SPERK scheme in Table 5.1 and equation-based partitioning. We use a time step-size of \(\Delta t = 0.6\Delta x \), corresponding to a CFL number of 1.2. We take
\[
 \chi(x, t) = \begin{cases}
 0 & 0.01 < u(x, t) < 1.99, \\
 1 & \text{otherwise}.
 \end{cases}
\]

This simple choice of \(\chi \) ensures that the SSP method is used near the shock while the non-SSP method is used elsewhere. It also (unfortunately) ensures that the jumps in \(\chi \) are near the shock, maximizing the effect of conservation errors. The true shock velocity is 1, but the numerical shock velocity converges to approximately 0.925. If we replace \(\chi \) above by \(1 - \chi \), the shock moves instead too rapidly. □

2.2. Flux-based partitioning.

In (2.2) we applied one of the RK schemes to each equation in the ODE system. In order to obtain a conservative method, we partition by the fluxes \(f_{i + \frac{1}{2}}, 0 \leq i \leq N \), rather than by the equations.

Suppose we are given two Runge–Kutta methods with identical coefficient matrices \(A \), but different weights \(b \) and \(\hat{b} \). Similar to equation-based partitioning, we first compute stage values according to (2.2a), which when applied to the flux-differencing semi-discretization (2.5) is
\[
 y_i^{(j)} = u_n^i - \frac{\Delta t}{\Delta x} \sum_{k=1}^{s} a_{jk} \left(f_{i + \frac{1}{2}}(Y^{(j)}) - f_{i - \frac{1}{2}}(Y^{(j)}) \right), \quad j = 1, \ldots, s. \quad (2.6a)
\]
However, instead of varying the time-stepping method by equation, we vary the method by flux. An application of this partitioning to (2.5) yields

\[
u_i^{n+1} = u_i^n - \frac{\Delta t}{\Delta x} \left(\chi_i^{n+\frac{1}{2}} \left(\sum_{j=1}^{s} b_j f_{i+\frac{1}{2}}(Y^{(j)}) + (1 - \chi_i^{n+\frac{1}{2}}) \sum_{j=1}^{s} \tilde{b}_j f_{i-\frac{1}{2}}(Y^{(j)}) \right) \\
- \chi_i^{n-\frac{1}{2}} \left(\sum_{j=1}^{s} b_j f_{i-\frac{1}{2}}(Y^{(j)}) - (1 - \chi_i^{n-\frac{1}{2}}) \sum_{j=1}^{s} \tilde{b}_j f_{i+\frac{1}{2}}(Y^{(j)}) \right) \right)\]
(2.6b)

where we have partitioned using the characteristic functions corresponding to cell edges \(x_{i+\frac{1}{2}}\) (rather than grid points \(x_i\))

\[
\chi_i^{n+\frac{1}{2}} = \begin{cases}
1, & \text{if weights } b \text{ are used for fluxes at } x_{i+\frac{1}{2}}, \\
0, & \text{if weights } \tilde{b} \text{ are used fluxes at } x_{i+\frac{1}{2}}.
\end{cases}
\]
(2.6c)

Fig. 2.1 compares a pseudo-code implementation of the equation-based (2.2) and flux-based partitioning (2.6) for a three-stage SPERK scheme.

As we show next, the flux-based method corresponds to an additive Runge–Kutta method instead of a partitioned Runge–Kutta method.

2.2.1. Connection to additive Runge–Kutta schemes. Consider again the flux-differencing formula (2.5). Let \(\Phi(U)\) denote the vector of fluxes, with components \(\phi_i(U) = f_{i+\frac{1}{2}}(U), 0 \leq i \leq N\). We can write the flux-differencing method (2.5) in vector form:

\[
U'(t) = -\frac{1}{\Delta x} D\Phi,
\]
(2.7)

where \(D\) is the \(N \times (N + 1)\) differencing matrix with 1 on the superdiagonal and \(-1\) on the main diagonal.

We split the flux vector based on the vector \(\chi \equiv [\chi_\frac{1}{2}, \chi_1, \ldots, \chi_{N+\frac{1}{2}}]^T:\n
\[
U'(t) = -\frac{1}{\Delta x} D\Phi(U) = -\frac{1}{\Delta x} D \left[\text{diag}(\chi) \Phi(U) + (I - \text{diag}(\chi)) \Phi(U) \right],
\]

\[
= -\frac{1}{\Delta x} D \text{diag}(\chi) \Phi(U) - \frac{1}{\Delta x} D(I - \text{diag}(\chi)) \Phi(U),
\]

\[
= G_\chi(U) + G_{1-\chi}(U),
\]
(2.8)

where \(G_\chi(U) = -\frac{1}{\Delta x} D \text{diag}(\chi) \Phi(U), G_{1-\chi}(U) = -\frac{1}{\Delta x} D(I - \text{diag}(\chi)) \Phi(U)\) and \(\text{diag}(\chi)\) is the \((N + 1) \times (N + 1)\) diagonal matrix that has \(\chi\) as its main diagonal. Flux-based partitioning applies different Runge–Kutta methods to \(G_\chi\) and \(G_{1-\chi}\). Because we have chosen embedded pairs with identical coefficient matrices \(A\), the stage values \(Y^{(j)}, 1 \leq j \leq s\), are computed according to (2.2a) in the standard fashion. Different weights for \(G_\chi\) and \(G_{1-\chi}\) are applied, however, according to the formula

\[
U^{n+1} = U^n + \Delta t \left[\sum_{j=1}^{s} b_j G_\chi(Y^{(j)}) + \sum_{j=1}^{s} \tilde{b}_j G_{1-\chi}(Y^{(j)}) \right].
\]
(2.9)
Program 1: Equation-based SPERK implementation

1. First compute the standard stage values
2. for \(i \) in range(1, N):
3. \(y_i^{(1)} = u_i \)
4. for \(i \) in range(1, N):
5. \(y_i^{(2)} = u_i - \frac{dt}{dx}(a_{21}(y_i^{(1)} - y_{i-1}^{(1)})) \)
6. for \(i \) in range(1, N):
7. \(y_i^{(3)} = u_i - \frac{dt}{dx}(a_{31}(y_i^{(1)} - y_{i-1}^{(1)}) + a_{32}(y_i^{(2)} - y_{i-1}^{(2)})) \)
8. # Advance in time from \(u \) to \(unew \) using:
9. for \(i \) in range(1, N):
10. \(unew_i = u_i - \frac{dt}{dx}(\chi_i \left(b_1(y_i^{(1)} - y_{i-1}^{(1)}) + b_2(y_i^{(2)} - y_{i-1}^{(2)}) + b_3(y_i^{(3)} - y_{i-1}^{(3)}) \right) \)
11. + (1-\chi_i) \left(b_1(y_i^{(1)} - y_{i-1}^{(1)}) + b_2(y_i^{(2)} - y_{i-1}^{(2)}) + b_3(y_i^{(3)} - y_{i-1}^{(3)}) \right) \)

Program 2: Flux-based SPERK implementation

1. First compute the standard stage values as in lines 3-7 above
2. # Then advance in time from \(u \) to \(unew \) using:
3. for \(i \) in range(1, N):
4. \(unew_i = u_i - \frac{dt}{dx}\left(\chi_i \left(b_1(y_i^{(1)} - y_{i-1}^{(1)}) + b_2(y_i^{(2)} - y_{i-1}^{(2)}) + b_3(y_i^{(3)} - y_{i-1}^{(3)}) \right) \right. \)
5. + \left. (1-\chi_i) \left(b_1(y_i^{(1)} - y_{i-1}^{(1)}) + b_2(y_i^{(2)} - y_{i-1}^{(2)}) + b_3(y_i^{(3)} - y_{i-1}^{(3)}) \right) \right) \)

Fig. 2.1. Pseudocode implementation of the equation-based and flux-based SPERK algorithms.
Here we apply one step of an explicit three-stage method to the first-order upwinding spatial discretization of the advection PDE \(u_t + u_x = 0 \).

This approach (i.e., using (2.9)) may be viewed as applying an additive Runge-
Kutta method [17] to (2.8). We emphasize that the methods we consider have identical
\(A \) matrices and therefore form a special embedded subclass of the additive RK methods.
The effect of the splitting introduced in (2.8) is crucial for understanding the order of
accuracy of flux-based SPERK schemes. Theoretically, we might expect a reduction
of order by one, a result we establish in Theorem 2.4. In practice, however, we
observe that the order of accuracy of SPERK schemes is the minimum order of the
two schemes for both equation- and flux-based partitioning. Section 5 gives some
numerical experiments illustrating this property.

2.3. Accuracy. In general, additive and partitioned Runge–Kutta methods may
exhibit lower order convergence rates than either of their component methods. In
order for the method to be fully accurate, additional order conditions relating the
coefficients of the different component methods must be satisfied. Even then, in
our context of spatial splitting, such methods can exhibit order reduction when the
coefficient matrices \(A \) differ [15].

Example 2.2. Flux-based partitioning based on a characteristic function \(\chi \) gives
the ODE system (2.8). The classical Godunov operator splitting is a first-order method
that may be applied to this system. Applying this splitting yields

\[
U^* = U^n + \Delta t G_\chi(U^n),
\]
\[
U^{n+1} = U^* + \Delta t G_{1-\chi}(U^*).
\]
This can be written as an additive Runge–Kutta method with coefficient arrays

\[
\begin{array}{ccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
\end{array}
\]

Unlike all other pairs considered in this paper, this pair uses different coefficients \(a_{ij} \).

Consider the advection equation \(u_t + u_x = 0 \) discretized in space by upwind differencing:

\[
u_i'(t) = g_i(U)
\]

where \(g_i(U) = -\frac{1}{\Delta x} (u_i - u_{i-1}) \). Let \(G = [g_i(U)] \) and take \(\Delta t = \Delta x \) and constant initial data, \(u_0^i = 1, -\infty < i < \infty \). We partition the domain into two regions by choosing an integer \(J \) with \(\chi_{i-\frac{1}{2}} = 1 \) for \(i \leq J \) and \(\chi_{i-\frac{1}{2}} = 0 \) for \(i > J \). After one step with this method, the computed solution is

\[
u_i^1 = \begin{cases}
1 & \text{for } i < J, \\
0 & \text{for } i = J, \\
2 & \text{for } i = J + 1, \\
1 & \text{for } i > J + 1.
\end{cases}
\]

Despite the constant initial data, the local error is \(O(1) \) in the maximum norm.

The difficulty encountered in the example above is typical of methods in which \(A \neq \hat{A} \). In the next two theorems, we establish the accuracy of equation- and flux-based SPERK methods.

Theorem 2.1. Suppose that the partitioned Runge–Kutta method (2.2) with coefficients \((A, b, \hat{b}) \) is applied to the semi-discretization (2.1). Then the fully discretized system has a local order of accuracy equal to \(\min(p, \hat{p}) \) where \(p \) (respectively, \(\hat{p} \)) is the order of accuracy of the full discretization obtained by using the Runge–Kutta method with coefficients \((A, b) \) (respectively, \((A, \hat{b}) \)).

Proof. The full discretizations are one-step methods of the form

\[
w_{i}^{n+1} = Q_i(W^n), \\
\hat{w}_{i}^{n+1} = \hat{Q}_i(\hat{W}^n).
\]

The exact solution satisfies

\[
\begin{align*}
u(x_i, t_{n+1}) &= Q_i(u_h(t_n)) + O(\Delta t^{p+1}), \\
u(x_i, t_{n+1}) &= \hat{Q}_i(u_h(t_n)) + O(\Delta t^{\hat{p}+1}).
\end{align*}
\]

where \(u_h(t_n) = [u(x_1, t_n), u(x_2, t_n), \ldots, u(x_N, t_n)]^T \) is a vector of true solution values at the grid nodes at time \(t_n \). Here we have assumed that \(\Delta x \) is given by some prescribed relationship in terms of \(\Delta t \), so that the error can be characterized in terms of \(\Delta t \) only.

We now determine the local truncation error of the discretization: starting from the exact solution at time \(t_n \), the solution computed by the partitioned method is

\[
u_i^{n+1} = \chi_i^n Q_i(u_h(t_n)) + (1 - \chi_i^n) \hat{Q}_i(u_h(t_n)).
\]
Applying (2.11), we find
\[
\begin{align*}
 u_{n+1}^i &= \chi_n^i \cdot u(x_i, t_{n+1}) + O(\Delta t^{p+1}) + (1 - \chi_n^i) \cdot u(x_i, t_{n+1}) + O(\Delta \hat{t}^{\hat{p}+1}), \\
 &= u(x_i, t_{n+1}) + O(\Delta t^{\min(p, \hat{p})+1}).
\end{align*}
\]

In order to prove accuracy of the flux-based decomposition approach, we need to know how accurately a Runge–Kutta method approximates the fluxes.

Lemma 2.2. Suppose we are given an initial value problem (2.1) for \(U \in \mathbb{R}^n \), a Runge–Kutta method \((A, b)\) of order \(p \), and a smooth function \(V : \mathbb{R}^n \to \mathbb{R}^n \). Let \(W(t) = \int_0^t V(U(s))ds \), \(W_n = W(t_n) \) and compute \(W_{n+1} \) using (2.2a) and
\[
W_{n+1} = W_n + \Delta t \sum_{j=1}^s b_j V(Y^{(j)}).
\]

This scheme approximates \(W(t) \) to order \(p \), i.e. \(W_{n+1} = W(t_{n+1}) + O(\Delta t^{p+1}) \).

Proof. Suppose an \(O(\Delta t^p) \) Runge–Kutta method is applied to the system
\[
\begin{align*}
 U' &= G(U), \\
 W' &= V(U).
\end{align*}
\]

Stage values are given by
\[
\begin{align*}
 Y^{(j)} &= U^n + \Delta t \sum_{k=1}^s a_{jk} G(Y^{(k)}) \\
 Z^{(j)} &= W^n + \Delta t \sum_{k=1}^s a_{jk} V(Y^{(k)}), j = 1, \ldots, s.
\end{align*}
\]

The \(Z^{(j)}, j = 1, \ldots, s \), are not used and would not be computed in practice. We advance by one step via
\[
\begin{align*}
 U_{n+1}^{(j)} &= U^n + \Delta t \sum_{j=1}^s b_j G(Y^{(j)}), \\
 W_{n+1} &= W^n + \Delta t \sum_{j=1}^s b_j V(Y^{(j)}).
\end{align*}
\]

Recall that the Runge–Kutta method gives an error that is \(O(\Delta t^p) \). Applying this fact to the second equation gives the desired result. \(\square \)

From Lemma 2.2 we obtain:

Lemma 2.3. Let \(V : \mathbb{R}^n \to \mathbb{R}^n \) be a smooth function, and let \((A, b), (\hat{A}, \hat{b}) \) be an embedded RK pair with order \(p, \hat{p} \). Given an initial value problem (2.1) in \(U \), let \(Y^{(j)} \) denote the stage values in (2.2a); then
\[
\sum_{j=1}^s b_j V(Y^{(j)}) = \sum_{j=1}^s \hat{b}_j V(Y^{(j)}) + O(\Delta t^{\min(p, \hat{p})}). \tag{2.13}
\]
Proof. Applying Lemma 2.2 to both schemes gives

\[W(t) + \Delta t \sum_{j=1}^{s} b_j V(Y^{(j)}) = W(t + \Delta t) + O(\Delta t^{p+1}), \]

\[W(t) + \Delta t \sum_{j=1}^{s} \hat{b}_j V(Y^{(j)}) = W(t + \Delta t) + O(\Delta t^{\hat{p}+1}). \]

Combining these gives the stated result. \(\square \)

One must take care in applying Lemma 2.3 to a PDE semi-discretization, since the error constant appearing in (2.13) might involve a factor like \(\Delta x^{-r}, \ r > 0 \), which would grow as the spatial grid is refined. A detailed analysis of the propagation of the spatial discretization error within a Runge–Kutta step is beyond the scope of this work; we refer the interested reader to [26, 3]. In the following theorem we simply assume that the error constant in (2.13) is bounded as \(\Delta x \to 0 \). Note that this is an assumption on each of the component RK schemes separately. Theorem 2.4 indicates that if each of the component schemes gives a solution free from order reduction (in the sense just described), then the embedded pair loses at most one order of accuracy.

Theorem 2.4. Suppose that the flux-based spatially partitioned Runge–Kutta method (2.6) with coefficients \((A,b,\hat{b}) \) is applied to the semi-discretization (2.5) with \(\Delta t = O(\Delta x) \). Furthermore, suppose that the error constant appearing in (2.13) is bounded as \(\Delta x \to 0 \) when one takes \(V = f_{i+\frac{1}{2}} \). Then the full discretization of (2.5) has order of accuracy equal to \(\min(p,\hat{p}) - 1 \) where \(p \) (respectively, \(\hat{p} \)) is the order of accuracy of the full discretization obtained by using the RK method with coefficients \((A,b) \) (respectively, \((A,\hat{b}) \)).

Proof. The full discretizations are

\[
\begin{align*}
 w_{i}^{n+1} &= w_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\sum_{j=1}^{s} b_j f_{i+\frac{1}{2}}(Y^{(j)}) - \sum_{j=1}^{s} b_j f_{i-\frac{1}{2}}(Y^{(j)}) \right), \\
 \hat{w}_{i}^{n+1} &= \hat{w}_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\sum_{j=1}^{s} \hat{b}_j f_{i+\frac{1}{2}}(Y^{(j)}) - \sum_{j=1}^{s} \hat{b}_j f_{i-\frac{1}{2}}(Y^{(j)}) \right).
\end{align*}
\]

Using Lemma 2.3 with \(V(u) = f_{i+\frac{1}{2}}(u) \) gives

\[
\sum_{j=1}^{s} b_j f_{i+\frac{1}{2}}(Y^{(j)}) = \sum_{j=1}^{s} \hat{b}_j f_{i+\frac{1}{2}}(Y^{(j)}) + O(\Delta t^{\min(p,\hat{p})}). \tag{2.14}
\]

Flux-based partitioning gives

\[
\begin{align*}
 u_{i}^{n+1} &= u_{i}^{n} - \frac{\Delta t}{\Delta x} \left(x_{i+\frac{1}{2}}^{n} \sum_{j=1}^{s} b_j f_{i+\frac{1}{2}}(Y^{(j)}) - x_{i+\frac{1}{2}}^{n} \sum_{j=1}^{s} \hat{b}_j f_{i+\frac{1}{2}}(Y^{(j)}) \\
 &\quad - x_{i-\frac{1}{2}}^{n} \sum_{j=1}^{s} b_j f_{i-\frac{1}{2}}(Y^{(j)}) + x_{i-\frac{1}{2}}^{n} \sum_{j=1}^{s} \hat{b}_j f_{i-\frac{1}{2}}(Y^{(j)}) \right) \\
 &= u_{i}^{n} - \frac{\Delta t}{\Delta x} \left(\sum_{j=1}^{s} b_j f_{i+\frac{1}{2}}(Y^{(j)}) - \sum_{j=1}^{s} b_j f_{i-\frac{1}{2}}(Y^{(j)}) \right) + O(\Delta t^{\min(p,\hat{p})+1}/\Delta x),
\end{align*}
\]
where we have used (2.14). The first two terms on the right are just the solution computed by the scheme with weights b_j, which is accurate to order p by assumption. Thus, inserting the exact solution in the last equation above and using the assumption that $\Delta t = O(\Delta x)$ gives the desired result. □

Remark 2.1. More generally, for a semi-discretization of an evolution PDE that is order q in space, one takes (for explicit methods) $\Delta t = O(\Delta x^q)$ and a factor of Δx^{-q} appears in the spatial discretization. The net effect is the same in that it may reduce the accuracy by a factor of Δt.

Remark 2.2. It might be tempting to try to apply the theorem to the general additive Runge–Kutta method

$$
\begin{array}{c|c}
 c & A \\
 \hline
 b^T & \dot{\hat{A}} \\
\end{array}
$$

by first making a larger additive Runge–Kutta method that does share abscissae and stage weights, namely

$$
\begin{array}{c|c|c}
 c & A & 0 \\
 \hline
 \hat{c} & 0 & \hat{A} \\
 b^T & 0 & \hat{b}^T \\
\end{array}
$$

and then concluding that Theorem 2.1 applied to the latter implies the results on the former. Indeed the theorem does apply to (2.16); however, the implication does not follow because (2.15) and (2.16) are not the same method. To see this, note that (2.15) computes stages combining function values from the two schemes (according to χ) whereas (2.16) computes each stage value using only one scheme.

2.4. Positivity.

The nonlinear stability properties of SPERK schemes are of interest as well. In this section we consider the positivity of flux-based SPERK schemes that are comprised of two explicit SSP Runge–Kutta schemes.

We begin by reviewing some results. Of particular relevance to our derivations is that SSP Runge–Kutta schemes may be re-written in optimal Shu–Osher form [27] via the transformation provided in [8]. For the ODE system $U' = G(U)$ this yields schemes of the form

$$
\begin{align}
Y^{(j)} &= \left(1 - \sum_{k=1}^{j-1} \alpha_{jk}\right) U^n + \sum_{k=1}^{j-1} \alpha_{jk} Y^{(k)} + \Delta t \beta_{jk} G(Y^{(k)}), \\
U^{n+1} &= Y^{(s+1)}
\end{align}
$$

(2.17a, 2.17b)

where all $\alpha_{jk} \geq 0$, $\sum_{k=1}^{j-1} \alpha_{jk} \leq 1$ and $j = 1, 2, \ldots, s + 1$.

If both sets of coefficients α_{jk}, β_{jk} are nonnegative, and forward Euler is positivity-preserving, then it may be shown that the Runge–Kutta scheme preserves positivity under a suitable time step restriction [29, 10]:

Lemma 2.5. If the forward Euler method is positivity-preserving under the restriction $0 \leq \Delta t \leq \Delta t_{FE}$, then the Runge–Kutta method (2.17) with $\beta_{jk} \geq 0$ is positivity-preserving provided

$$
\Delta t \leq C\Delta t_{FE},
$$

where C is the SSP coefficient

$$
C \equiv \min \{c_{jk} : 1 \leq k < j \leq s + 1\} \quad \text{where } c_{jk} = \begin{cases}
\frac{\alpha_{jk}}{\beta_{jk}} & \text{if } \beta_{jk} \neq 0, \\
\infty & \text{otherwise}.
\end{cases}
$$
We now show the corresponding result for flux-based SPERK schemes.

Theorem 2.6. Suppose that the flux-differencing semi-discretization (2.5) of the one-dimensional conservation law (2.4) satisfies the positivity properties

\[
\frac{\delta t_1}{\Delta x} f_{i+\frac{1}{2}}(W) \geq 0, \text{ for all } \delta t_1 \leq \Delta t_1, \quad (2.18)
\]

\[
\frac{\delta t_2}{\Delta x} f_{i-\frac{1}{2}}(W) \geq 0, \text{ for all } \delta t_2 \leq \Delta t_2 \quad (2.19)
\]

for all \(w_i \geq 0, 1 \leq i \leq N \). Further, suppose that a flux-based SPERK scheme is applied to (2.5), and that the schemes composing the embedded pair have SSP coefficients \(\mathcal{C} \) and \(\hat{\mathcal{C}} \). Then the full discretization is positivity-preserving for time steps satisfying

\[
0 \leq \Delta t \leq \min(\mathcal{C}, \hat{\mathcal{C}}) \Delta t_s \quad (2.20)
\]

where

\[
\Delta t_s = \begin{cases}
\Delta t_2 & \text{if } \Delta t_1 = \infty, \\
\Delta t_1 & \text{if } \Delta t_2 = \infty, \\
\frac{\Delta t_1 \Delta t_2}{\Delta t_1 + \Delta t_2} & \text{otherwise.}
\end{cases}
\]

Proof. We give a proof for the case where \(\Delta t_1 \) and \(\Delta t_2 \) are finite; the proof for the two remaining cases is straightforward and follows in a similar fashion.

Let \(\chi_{i+\frac{1}{2}}^n \) and \(1 - \chi_{i+\frac{1}{2}}^n \) specify the (non-negative) weightings of the two schemes at the cell boundaries at time step \(n \). The update for \(U \) is given by

\[
u^n_{i+1} = \nu^n_i + \lambda \sum_{j=1}^s b_i \left(-\chi_{i+\frac{1}{2}}^n f_{i+\frac{1}{2}}^{(j)} + \chi_{i-\frac{1}{2}}^n f_{i-\frac{1}{2}}^{(j)} \right)
\]

\[+ \lambda \sum_{j=1}^s b_i \left(-(1 - \chi_{i+\frac{1}{2}}^n) f_{i+\frac{1}{2}}^{(j)} + (1 - \chi_{i-\frac{1}{2}}^n) f_{i-\frac{1}{2}}^{(j)} \right)
\]

\[= \chi_{i+\frac{1}{2}}^n \left(\gamma_p \nu^n_i + \lambda \sum_{j=1}^s -b_i f_{i+\frac{1}{2}}^{(j)} \right) + (1 - \chi_{i+\frac{1}{2}}^n) \left(\gamma_p \nu^n_i + \lambda \sum_{j=1}^s b_i f_{i+\frac{1}{2}}^{(j)} \right)
\]

\[+ \chi_{i-\frac{1}{2}}^n \left(\gamma_m \nu^n_i + \lambda \sum_{j=1}^s b_i f_{i-\frac{1}{2}}^{(j)} \right) + (1 - \chi_{i-\frac{1}{2}}^n) \left(\gamma_m \nu^n_i + \lambda \sum_{j=1}^s b_i f_{i-\frac{1}{2}}^{(j)} \right) \quad (2.21)
\]

where \(\lambda = \frac{\Delta t_1}{\Delta x} \), \(\gamma_p = \frac{\Delta t_2}{\Delta t_1 + \Delta t_2} \), and \(\gamma_m = \frac{\Delta t_1}{\Delta t_1 + \Delta t_2} \). We denote the fluxes associated with stage \(j \) by \(f_{i+\frac{1}{2}}^{(j)} = f_{i+\frac{1}{2}}(Y^{(j)}) \) where \(Y^{(j)} \) is the approximation of \(u_h(t_n) \) at the \(j \)th stage. The first term will be non-negative if

\[
\gamma_p \nu^n_i + \lambda \sum_{j=1}^s b_i f_{i+\frac{1}{2}}^{(j)} \quad (2.22)
\]

is non-negative. Transforming (2.22) to optimal Shu–Osher form yields

\[
\gamma_p \left(1 - \sum_{j=1}^s \alpha_{s+1,j} \right) \nu^n_i + \gamma_p \left(\sum_{j=1}^s \alpha_{s+1,j} y_i^{(j)} \right) - \frac{\lambda}{\gamma_p} \beta_{s+1,j} f_{i+\frac{1}{2}}^{(j)}
\]

We observe that forward Euler is positivity-preserving when applied to the semi-discretization (2.5) provided $\Delta t \leq \Delta t_{FE}$. An application of Lemma 2.5 gives $Y^{(j)} \geq 0$, $1 \leq j \leq s$, provided the step-size restriction (2.20) is satisfied and $U^n \geq 0$, where vector inequalities are to be interpreted as being taken componentwise. Combining this result with $\Delta t \leq C \Delta t_*$ and hypothesis (2.18) yields that the first term in (2.21) is non-negative. The proof follows by applying a similar analysis to the second, third, and fourth terms in (2.21).

The theorem may be applied to a variety of common discretizations. For example, consider an upwind discretization of the linear advection equation

$$u_t + au_x = 0, \quad a > 0,$$

on a grid with uniform spacing Δx. In this example $f_{i+\frac{1}{2}} = au_i$ from which we observe that $\Delta t_2 = \infty$ and $\Delta t_1 = \frac{1}{a} \Delta x$. Assuming that the schemes forming the embedded pair have SSP coefficients \mathcal{C} and \mathcal{C} we find that the flux-based SPERK scheme is positivity-preserving provided

$$\Delta t \leq \frac{1}{a} \min(\mathcal{C}, \mathcal{C}) \Delta x. \quad (2.23)$$

We can also apply the theorem to a discretization of the diffusion equation. Consider

$$u_t - \nu u_{xx} = 0, \quad \nu > 0,$$

on a grid with uniform spacing Δx. Taking $f_{i+\frac{1}{2}} = \frac{\nu}{\Delta x} (-u_{i+1} + u_i)$ gives $\Delta t_1 = \Delta t_2 = \frac{1}{\nu} \Delta x^2$. Assuming that the schemes forming the embedded pair have SSP coefficients \mathcal{C} and \mathcal{C}, we find that the flux-based SPERK scheme is positivity-preserving under the time step-size restriction

$$\Delta t \leq \frac{1}{2\nu} \min(\mathcal{C}, \mathcal{C}) \Delta x^2. \quad (2.24)$$

The proof for equation-based partitioning follows in a similar manner. For completeness we state the result below.

Theorem 2.7. Suppose that the semi-discretization (2.1) of the one-dimensional conservation law (2.4) satisfies the positivity property

$$W + \Delta t G(W) \geq 0$$

for all $W \geq 0$ and $\Delta t \leq \Delta t_{FE}$ where the inequalities are taken component-wise. Further, suppose that an equation-based SPERK scheme is applied to (2.1), and that the schemes composing the embedded pair have SSP coefficients \mathcal{C} and \mathcal{C}. Then the full discretization is positivity-preserving for time steps satisfying

$$0 \leq \Delta t \leq \min(\mathcal{C}, \mathcal{C}) \Delta t_{FE}.$$

3. Generalizations. In this section we provide some useful generalizations of our previous spatial partitioning methods. For notational simplicity we state these results for partitions that are invariant in time; however, it is also possible to vary the partitioning function χ at each time level n.
3.1. More than two methods. Both equation- and flux-based partitioning can be generalized to more than two methods. Accuracy and positivity results essentially identical to those in Sections 2.3 and 2.4 can be shown for both cases.

3.1.1. Equation-based partitioning. Let \((I_1, I_2, \ldots, I_r)\) be a partitioning of the integers from 1 to \(N\) (i.e., the partitioning satisfies \(\bigcup_{k=1}^{r} I_k = \{1, 2, \ldots, N\}\), and \(I_j \cap I_k = \emptyset\) if \(j \neq k\)). The generalization to \(r\) embedded methods defined by the coefficients \(A, b^{(1)}, \ldots, b^{(r)}\) is defined as

\[
Y^{(j)} = U^n + \Delta t \sum_{k=1}^{r} a_{jk} G(Y^{(k)}), \quad 1 \leq j \leq s,
\]

\[
U^{n+1} = U^n + \Delta t \sum_{k=1}^{r} \sum_{j=1}^{s} b_{jk}^{(k)} \text{diag}(\chi^{(k)}) G(Y^{(j)}),
\]

where

\[
\chi^{(k)}_i = \begin{cases}
1 & \text{if } i \in I_k, \\
0 & \text{otherwise.}
\end{cases}
\]

3.1.2. Flux-based partitioning. Flux-based partitioning can also be written more generally in terms of \(b^{(1)}, \ldots, b^{(r)}\). In this case we take

\[
Y^{(j)} = U^n - \Delta t \sum_{k=1}^{r} a_{jk} D\Phi(Y^{(k)}), \quad 1 \leq j \leq s,
\]

\[
U^{n+1} = U^n - \Delta t \sum_{k=1}^{r} \sum_{j=1}^{s} b_{jk}^{(k)} D\text{diag}(\chi^{(k)}) \Phi(Y^{(j)}),
\]

to combine the \(r\) different embedded schemes.

3.2. Blending and accuracy. Rather than shifting discontinuously between methods from one spatial point to the next, an appealing approach is to have a transition region in which a weighted average of the two methods is used, with the weight shifting from one method to the other over the transition region. The following proposition shows that this approach is still accurate in time, which is a necessary condition for the full SPERK discretization to be accurate.

Proposition 3.1. Let \((A, b^{(1)}), (A, b^{(2)}), \ldots, (A, b^{(r)})\) denote a set of embedded RK methods, and let \(p_k\) denote the order of accuracy of method \((A, b^{(k)})\). Then the RK method

\[
\left(A, \sum_{k=1}^{r} \alpha_k b^{(k)} \right) \quad \text{where} \quad \sum_{k=1}^{r} \alpha_k = 1
\]

has order of accuracy at least \(p = \min_k p_k\).

Proof. The order conditions involve only expressions that are linear in the weights. Since all of the component method coefficients satisfy the conditions up to order \(p = \min_k p_k\), the averaged method does as well. \(\Box\)

Remark 3.1. The proposition applies only to embedded methods. If the component methods had different coefficient matrices \(A\), their average would in general be only first-order accurate, even if they share common abscissas \(c\).

Theorems 2.1 and 2.4 for equation- and flux-based SPERK methods can be extended to the blended case in this way. In practice, we observe the full accuracy when blending using either approach.
4. Example: Advection-diffusion. The semi-discretization of certain time-dependent PDEs leads to systems of ODEs with eigenvalues near the negative real axis, whereas the semi-discretization of others leads to systems with eigenvalues near the imaginary axis. Appropriate time integrators must include the corresponding portions of the complex plane in their absolute stability regions. In problems with strongly varying coefficients or mesh spacing the relevant portion of the complex plane may vary spatially. This may complicate the selection of an appropriate time integrator.

Consider, for example, the nonlinear advection-diffusion equation

\[u_t + (b(x)u)_x = (a(x)(u^2))_x, \quad (4.1) \]

with periodic boundary conditions on [0, 1] and initial conditions

\[u(x, 0) = \frac{1}{10} \sin^3(2\pi x) + 2. \]

Discretizing the spatial derivatives in (4.1) with three-point centered differences yields the flux-differencing method (2.5) with

\[f_{i+\frac{1}{2}} = b(x_{i+\frac{1}{2}}) \left(\frac{u_{i+1} + u_i}{2} \right) - a(x_{i+\frac{1}{2}}) \frac{1}{\Delta x} (u_{i+1}^2 - u_i^2) \]

and a constant mesh spacing \(\Delta x \). We take \(a(x) > 0 \) and \(b(x) \) to be functions that are periodically defined by

\[a(x) = \frac{1}{1000} + \frac{1}{10000} (\cos(2\pi x - \frac{1}{2}\pi) + 1)^{10}, \]
\[b(x) = 1 + \frac{1}{10} (\cos(2\pi x - \frac{3}{2}\pi) + 1)^{10}. \]

As shown in Fig. 4.1, there is a region centered at \(x = 0.25 \) where diffusion dominates and negative real axis inclusion is critical for the design of the time-stepping scheme. Similarly, in the region around \(x = 0.75 \), convection dominates and imaginary axis inclusion is the most crucial design feature. The strong spatial variation in the dominant term makes this a good problem for testing the performance of SPERK schemes.

Remark 4.1. This nonlinear advection-diffusion problem serves as a prototype where the relative importance of real and imaginary eigenvalues varies spatially. We now develop explicit time-stepping schemes suitable for such problems. Explicit schemes have the advantage of being easy to implement and do not require the solution of nonlinear systems or the inversion of matrix systems. We remark that for the case of advection-diffusion, implicit-explicit (IMEX) time-stepping schemes might also be considered. IMEX schemes apply an explicit scheme to nonstiff terms and an implicit scheme to stiff terms, and are particularly effective when a linear, symmetric diffusion term arises. See, e.g., [1] for further details.

4.1. Second-order embedded pairs. We now design three- and four-stage embedded explicit Runge–Kutta pairs suitable for this problem. In each embedded pair, one method has a stability polynomial that maximizes (or nearly maximizes) the real axis interval of absolute stability, while the other method has a stability polynomial that maximizes (or nearly maximizes) the imaginary axis interval of absolute stability. Given a coefficient matrix \(A \), the stability polynomial of a Runge–Kutta method (and hence its linear stability properties) can be chosen by solving a linear
system of equations for the weights b_j. We do not consider two-stage pairs since all second-order two-stage schemes have the same stability polynomial.

The stability polynomial of a three-stage, second-order RK method has the form $R(z) = 1 + z + z^2/2 + \alpha_3 z^3$ where $\alpha_3 = b^T A c$. For real-axis stability, we take the 3-stage Runge–Kutta–Chebyshev method of the family presented in [35], which we refer to as RKC(3,2), as the second scheme of our embedded pair. The stability polynomial of this method is a Bakker–Chebyshev polynomial and contains nearly the largest possible portion of the negative real axis over the class of three-stage second-order schemes. The first scheme is obtained by setting $\alpha_3 = 1/4$, which approximately maximizes imaginary axis inclusion, and selecting weights \hat{b}_j corresponding to the resulting polynomial. This gives the following embedded pair:

$$
\begin{array}{cccc}
0 & 3/8 & 3/8 & 3/8 \\
3/8 & 3/16 & 3/16 & \\
\hline
\hat{b}^T & -1/3 & -20/9 & 32/9 \\
\hat{b}^T & -1/3 & 4/9 & 8/9
\end{array}
$$

The absolute stability regions are shown in Fig. 4.2 (left).

The stability polynomial of a four-stage, second-order RK method has the form $R(z) = 1 + z + z^2/2 + \alpha_3 z^3 + \alpha_4 z^4$ where $\alpha_3 = b^T A c$ and $\alpha_4 = b^T A^2 c$. The optimal imaginary axis inclusion occurs for the choice $\alpha_3 = 1/6$, $\alpha_4 = 1/24$, which gives the stability polynomial of the classical fourth-order Runge–Kutta method. Hence we take the classical method, which we shall denote by RK4, as the first scheme of our pair. Sufficient degrees of freedom remain to obtain a scheme with the same linear stability as the optimal four-stage, second-order scheme RKC(4,2). This gives the following embedded pair (with absolute stability regions as shown in Fig. 4.2 right)

$$
\begin{array}{cccc}
0 & 1/2 & 1/2 & 1/2 \\
1/2 & 0 & 1/2 & \\
1 & 0 & 0 & 1 \\
\hline
\hat{b}^T & 1/6 & 1/3 & 1/3 & 1/6 \\
\hat{b}^T & 2/125 & 17/25 & 36/125 & 2/125
\end{array}
$$

4.2. Numerical results. We now give the results of numerical experiments carried out using our three- and four-stage SPERK schemes. The partitioning parameter χ is set equal to 1 wherever $a(x)$ is more than 0.005; elsewhere it is zero. More generally, χ could be selected based on the local Reynolds number. In all cases, we vary the time step-size and compute max-norm absolute errors by comparing to a highly accurate RK4 approximation of the spatially discretized system at the final time $t = 0.1$. All computations use a constant mesh spacing of $\Delta x = 1/250$.

Fig. 4.1. The variable coefficients $a(x)$ (left) and $b(x)$ (right). We observe a spatial variation in the relative importance of advection and diffusion.
Fig. 4.2. Absolute stability regions for the three-stage embedded pair (4.2) (left) and the four-stage embedded pair (4.3) (right). The shaded red region corresponds to the method optimized for real axis inclusion and the black line corresponds to the method optimized for imaginary axis inclusion.

Fig. 4.3. Maximum norm absolute errors for SPERK schemes applied to the variable coefficient advection-diffusion problem. The left plot gives results for three-stage schemes: (a) scheme with maximal imaginary axis inclusion, (b) RKC(3,2), (c) equation-based partitioning. The right plot gives results for four-stage schemes: (a) RK4, (b) our variant of RKC(4,2), (c) equation-based partitioning.

The results for three-stage methods are given in the left-hand plot of Fig. 4.3. We find that the scheme that is designed for advection-dominated flows gives good results for $\Delta t \leq 1.45 \times 10^{-5}$. Stability is lost for larger time step-sizes. The second method, RKC(3,2), is unstable for $\Delta t \geq 1.93 \times 10^{-5}$. The SPERK scheme derived from the combination is stable for values of Δt that are more than two times greater.

The right-hand plot of Fig. 4.3 gives the results for four-stage methods. The classical fourth-order Runge–Kutta method RK4 has a small error but becomes unstable for time steps larger than 2×10^{-5}. Our variant of RKC(4,2) has a similar time step restriction but produces a larger error (because it is second order). The SPERK scheme gives improved stability and allows for time steps that are more than three times larger. In this example, whenever RK4 is stable, the SPERK scheme gives the same accuracy because the largest error occurs in the convection-dominated region.

For both embedded pairs, if we repeat the experiments with flux-based partitioning, we observe essentially the same errors. This is because the largest errors occur away from the switching interface.

5. Example: Spatially partitioned time-stepping for WENO. Weighted essentially non-oscillatory (WENO) spatial discretizations involve an adaptive, data-dependent combination of several candidate stencils to compute fluxes [28]. The most commonly used scheme provides fifth-order accuracy in smooth regions of the solution.
and formally third-order spatial discretizations near shocks or other discontinuities. Assuming a positive flux function, the finite difference WENO scheme computes the positive flux differences in (2.5) with
\[f_{j+\frac{1}{2}} = \omega_0 \left(\frac{2}{9} f_{j-2} - \frac{2}{9} f_{j-1} + \frac{11}{9} f_j \right) + \omega_1 \left(- \frac{1}{9} f_{j-1} + \frac{5}{9} f_j + \frac{2}{9} f_{j+1} \right) + \omega_2 \left(\frac{2}{9} f_j + \frac{5}{9} f_{j+1} - \frac{1}{9} f_{j+2} \right), \] (5.1)
where the weights \(\omega_0, \omega_1, \) and \(\omega_2 \) are chosen by computing data-dependent smoothness indicators [28]. In smooth regions, \(\omega_{0,1,2} \) will be close to \(\frac{1}{10}, \frac{6}{10} \) and \(\frac{3}{10} \) respectively whereas near nonsmooth spatial features (such as a discontinuity), they adopt a binary choice biasing the stencil away from the discontinuity [28].

5.1. An embedded pair for WENO. We start with the SSPRK(5,3) scheme [31]. This will be the lower-order scheme which is used in spatial regions where the solution is not smooth. If we embed this method in a larger 7-stage, 5th-order method, we have the following Butcher tableau

\[
\begin{array}{c|cccccc}
0 & 0 & 0.3773 & 0.3773 & 0.3773 \\
0.7545 & 0.2430 & 0.2430 & 0.2430 & 0.2385 \\
0.7290 & 0.2436 & 0.2436 & 0.2436 & 0.2436 \\
0.6992 & 0.3936 & 0.3936 & 0.3936 & 0.3936 \\
\hline
\alpha_6 & \alpha_{61} & \alpha_{62} & \alpha_{63} & \alpha_{64} & \alpha_{65} & \alpha_{66} \\
\hat{\beta}_T & 0.2067 & 0.2067 & 0.1171 & 0.1818 & 0.2870 & 0 & 0
\end{array}
\] (5.2)
where we display only a few digits of the SSPRK(5,3) coefficients. The unknown coefficients will determine an RK(7,5) scheme that will be optimized for linear stability and used in spatial regions where the solution is smooth.

A technique for determining these coefficients by satisfying the order conditions is explored in [20] following a strategy designed in [34]. We attempt to maximize the linear stability properties of the RK(7,5) scheme; these are determined by the stability polynomial which in this case is parameterized by the coefficients of the \(z^6 \) and \(z^7 \) terms [12], polynomial expressions in the coefficients (5.2) which we denote by \(\alpha_6 \) and \(\alpha_7 \) respectively. We find that specifying the SSPRK(5,3) coefficients restricts the possible solutions to a straight line through the \(\alpha_6 - \alpha_7 \) space. By examining the linear stability properties along this line (see Fig. 5.1), we can choose one of the degrees of freedom (the “homogeneous polynomial” \(I_{65} \), see [20] for details) to maximize the linear stability properties of the resulting scheme. There are still six (nonlinear) order conditions to satisfy and six coefficients to be determined. Solving these remaining equations with a computer algebra system results in a single discrete solution and a one-parameter family of solutions. The one-parameter family was discarded because each member had either a negative node \(c_6 \) or unreasonably large coefficients. The lone solution did not have these deficiencies and we use it for our numerical experiments. The coefficients are shown to 15 digits in Table 5.1.

5.2. Mask selection. Various approaches to spatially switching between different schemes have been proposed in the context of nonlinear hyperbolic PDEs; see e.g., [13] and references therein. One particularly simple but effective approach used in [13] is to consider the second order differences of the solution:
\[
\chi_i = \begin{cases}
1 & \text{if } |\Delta^2 q_i| < C\Delta x^2 \\
0 & \text{if } |\Delta^2 q_i| \geq C\Delta x^2.
\end{cases}
\] (5.3)
This approach sets $\chi = 0$ (so the lower-order SSP scheme will be used) wherever $\Delta^2 q$ is large. In practice, setting $C = 500$ seems to work well for the problems investigated below.

Alternatively, one may conveniently use the WENO weights $\omega_{0,1,2}$ to select the mask χ in a WENO-based SPERK scheme. One possible choice is

$$\chi_i = \begin{cases} 1 & \text{if } |\omega_0 - \frac{1}{3\pi}| \leq 0.06 \text{ and } |\omega_1 - \frac{6}{\pi}| \leq 0.06 \text{ and } |\omega_2 - \frac{4}{3\pi}| \leq 0.06, \\ 0 & \text{otherwise}, \end{cases}$$

(5.4)

where 0.06 is an adjustable threshold parameter. That is, if the WENO weights are within this small threshold of their theoretical smooth-region values then we propagate the higher-order linearly stable RK(7,5) solution, otherwise we propagate the lower-order SSPRK(5,3) solution. We compute the mask based on the weights corresponding to U^n, the solution at time t_n and thus fix the mask over each time step.

With either approach, we then set

$$\chi_i = \min_{|j| \leq 4} \chi_{i+j};$$

(5.5)

i.e., the mask is widened by four grid cells to increase the usage of the SSP scheme. This was suggested in [13] and is essential to ensure that a shock does not leave the zone in which the SSP method is used during one time step.

Remark. There are many possibilities for choosing the mask χ; here we have suggested two simple approaches but this not intended to be exhaustive, nor have we tried to optimize the 0.06 threshold parameter or the value of C.

![Figure 5.1](image_url)

Fig. 5.1. Choosing the linear stability properties for RK(7,5) scheme. **Left:** various measurements of the linear stability region versus a parameter I_{65}. Here ρ is the radius of the largest inscribed disc and ρ_2 is the radius of the largest interval of the imaginary axis included. **Right:** the "WENO bean", the spectrum of the linearized WENO operator in smooth regions [16, 36, 22]: ρ_3 measures the largest scaling of this bean that will fit in the linear stability region. We choose $I_{65} = 0.0037$ and find $\rho_3 \approx 1.76$, $\rho \approx 1.58$, and $\rho_2 \approx 1.2$.

Table 5.1

| Coefficients of the embedded RK(7,5)/SSPRK(5,3) method. |
|----------------------------------|--|
| $a_{21} = 0.3726891531368$ | $a_{31} = 0.3726891531368$ |
| $a_{31} = 0.3726891531368$ | $a_{32} = 0.3726891531368$ |
| $a_{41} = 0.242995220537396$ | $a_{42} = 0.242995220537396$ |
| $a_{51} = 0.15589067695126$ | $a_{52} = 0.15589067695126$ |
| $a_{54} = 0.2384583284629$ | $b_3 = 0.296734020864804$ |
| $b_3 = 0.117097251841844$ | $b_4 = 0.1818025601204$ |
| $a_{61} = 0.11301571552667$ | $a_{62} = 1.19914221487533$ |
| $a_{63} = 0.1347534006262683$ | $b_4 = 0.287632146308408$ |
| $a_{64} = -1.0642159266782$ | $a_{65} = 0.2051457072233$ |
| $a_{71} = -0.1220975669974901$ | $b_1 = 0.049289173466563$ |
| $b_2 = -0.1220975669974901$ | $b_2 = 0.232023614650883$ |
| $b_3 = 1.85394392181784$ | $b_6 = 0.965538124667539$ |
| $b_6 = 0.965538124667539$ | $b_7 = -0.21850836446657$ |
Convergence studies for various mask functions $\chi(x)$, performed on Burgers’ equation with smooth initial conditions discretized using WENO and the SPERK 5th-order/3rd-order pair. We compute to $t_f = 0.25$ using a CFL number of 1.2; error measured in an approximate L_2 norm.

partitioning	Δx	1	0	Heaviside(x)	random($0,1$)
equation-based	1/320	1.29×10^{-7}	5.59×10^{-7}	1.29×10^{-7}	3.33×10^{-7}
	1/640	4.09×10^{-9}	7.00×10^{-8}	4.44×10^{-9}	3.76×10^{-8}
	1/1280	1.29×10^{-10}	8.64×10^{-9}	5.48×10^{-10}	4.39×10^{-9}
est. order		4.99	3.02	3.45	3.08
flux-based	1/320	2.01×10^{-8}	1.08×10^{-7}	2.44×10^{-8}	6.63×10^{-8}
	1/640	6.38×10^{-10}	1.34×10^{-8}	1.87×10^{-9}	8.06×10^{-9}
	1/1280	2.00×10^{-11}	1.65×10^{-9}	2.18×10^{-10}	1.05×10^{-9}
est. order		4.99	3.02	3.44	2.99

5.3. Burgers’ equation

We perform convergence studies which demonstrate that the SPERK methods achieve the predicted orders of accuracy. Our tests use the inviscid Burgers’ equation $u_t + (u^2)_x = 0$ on the periodic domain $[-1, 1]$ with smooth initial conditions

$$u(x, 0) = \frac{1}{2} - \frac{1}{2} \cos \left(\pi \left(x - \frac{\sin 2\pi x}{4\pi} \right) \right).$$

Table 5.2 shows that the methods achieve (at least) their expected orders of accuracy. Namely, five when the fifth-order scheme is used ($\chi(x) = 1$ for all x) and three when using the third-order scheme at any subset of points. As noted in Section 3.2, χ need not be a binary choice: we see that the method maintains third-order even when random values of χ (in the range $[0, 1]$) are selected at each point and at each time-step. Note also that the flux-partitioned scheme exhibits an order of accuracy $\min(p, \bar{p}) = 3$, without the loss of one order predicted by our Theorem 2.4; this is typical of what we observed in all our numerical tests.

In addition to these finite difference convergence studies, we also tested the equation-based SPERK scheme with a finite-volume WENO code [21] and observed similar results.

5.3.1. Total variation tests

We consider the discrete total variation seminorm of the solution on two test problems shown in Fig. 5.2. The first consists of the inviscid Burgers’ equation with a square wave initial condition in $[0, 1]$. We determined the largest CFL number σ, $\Delta t = \sigma \Delta x$, such that the resulting solution experiences no significant increase in the TV seminorm. For the flux-partitioned scheme we find in Fig. 5.3 that the SSPRK(5,3) scheme (i.e., $\chi = 0$ everywhere) is no longer TVD for $\sigma > 1.4$. The TV error of the RK(7,5) solution slowly increases with σ and, for example, exhibits a TV error larger than 10^{-4} for $\sigma > 0.5$. With the SPERK embedded pair (using χ as chosen by the WENO weights using (5.4) and (5.5)), the loss of the TVD property occurs for $\sigma > 1.4$ (that is, the same as the SSPRK(5,3) scheme). The results using equation-based partitioning are very similar.

Next consider the inviscid Burgers’ equation with smooth initial conditions (5.6). The WENO weights are again used to choose χ. Table 5.3 shows that the embedded pair SPERK scheme offers high-order accuracy when the solution is smooth and remains TVD later when the solution is non-smooth; the best of both worlds!
5.4. Euler equations: conservation and equation-based partitioning. As we have seen, equation-based partitioning is non-conservative and can lead to incorrect shock speeds. It is suggested in [13] that correct shock speeds should be obtained as long as the switching between schemes occurs in regions where the solution is smooth.

We consider the Euler equations of compressible fluid dynamics; specifically, we solve the Shu–Osher problem of [30], in which a shock wave impacts a sinusoidally-varying density field. We use the fifth-order WENO wave-propagation method of [19] and a standard Roe Riemann solver with entropy fix. First, integrating with the 5th-order RK method, the solver fails for any CFL number greater than 0.89, due to the appearance of negative densities near the shock in the sixth Runge–Kutta stage of the first time step. Next, using the third-order SSP(5,3) method, the integration is successful using a CFL number of 1.2. The accuracy obtained with either method is similar, with the largest errors occurring at the shock.

Finally, the problem is solved using the embedded pair, with switching based on (5.3) and applying (5.5) to ensure that switching does not occur too near the shock. A sample solution and a plot of χ are shown in Fig. 5.4. The SPERK method propagates the shock correctly and captures the high-frequency region behind the shock as accurately as either of the component schemes.

6. Discussion and future work. This paper considers spatially partitioned embedded Runge–Kutta (SPERK) schemes. Such methods give an efficient means to apply two or more Runge–Kutta methods to a spatially discretized PDE. In this paper, SPERK schemes are applied in two ways. The first of these partitions the ODEs, and is therefore referred to as equation-based partitioning. In these methods the order of accuracy is shown to equal the minimum of the order of accuracy of the schemes composing the embedded pair. Equation-based partitioning is not conservative when applied to a conservation law, however. The second partitioning method partitions by fluxes. This flux-based partitioning has the advantage of being conservative when
The flux-partitioned SPERK scheme combined with WENO has the best features of each method. Here the initial smooth curve sharpens into a shock. At small times $t = 0.25$ before shock formation, both of the underlying schemes exhibit their design orders of 5 and 3 respectively. At a later time $t = 1.25$, a shock has formed; all schemes exhibit larger errors as the solution is no longer smooth. However, RK(7,5) now exhibits spurious oscillations, indicated by an increase in the total variation seminorm. We use a CFL number of 1.2, $\Delta x = \frac{1}{320}$, and error measured in an approx. L_2 norm.

method	time	error	error ($\Delta x/2$)	est. order	TV increase
RK(7,5)	$t = 0.25$	2.01e-8	6.38e-10	4.98	0
	$t = 1.25$	8.72e-3	8.79e-3	—	0.264
SSPRK(5,3)	$t = 0.25$	1.08e-7	1.34e-8	3.01	0
	$t = 1.25$	1.35e-3	9.53e-4	0.50	0
SPERK	$t = 0.25$	2.01e-8	6.38e-10	4.98	0
	$t = 1.25$	1.35e-3	9.53e-4	0.50	0

Fig. 5.4. Solution of the Shu–Osher problem at time $t = 1.8$. Left: the solid line represents a reference solution computed with just the SSP scheme and 6400 points; the black circles are computed using the embedded pair and 400 points with CFL number 1.2. Right: The mask χ, showing that the SSP scheme is used only in a small region around the shock.

applied to a conservation law. Theoretically, it may lead to a loss of one order of accuracy when compared to the underlying schemes; however, this loss of accuracy is not observed in practice. We show that both equation- and flux-based partitioning are positivity-preserving under a suitable time step restriction when the underlying schemes are strong-stability-preserving (SSP). Numerical experiments on a spatially discretized variable coefficient advection-diffusion equation show that SPERK schemes can have superior linear stability properties than either scheme individually. SPERK schemes may be applied to weighted non-oscillatory (WENO) spatial discretizations of conservation laws. One approach to partitioning is carried out using the weights introduced in the WENO spatial discretization. Specifically, a fifth-order Runge–Kutta method is used in smooth regions where WENO chooses a fifth-order stencil, and a third-order SSP Runge–Kutta method is used in non-smooth regions where WENO chooses a formally third-order stencil. We find that this combination avoids oscillations in problems with shocks, and gives fifth-order accuracy in smooth flows.

As part of this paper, several explicit SPERK schemes are designed and numerically validated. Future work will carry out a more systematic development of SPERK schemes. Of particular interest for us are methods that have good monotonicity where the solution is nonsmooth, and good accuracy elsewhere. Such methods are partic-
Spatially partitioned embedded Runge–Kutta methods

...ularly attractive for approximating conservation laws with isolated shocks and other nonsmooth features.

Schemes with improved local absolute stability properties (like those designed in Section 4) seem promising for problems with strong spatial variation in the coefficients or grid size. The stability polynomial optimization algorithm developed in [18] could be used more generally to design appropriate methods for such problems.

Theoretically, the accuracy of flux-based partitioning is expected to be less than the accuracy of the schemes composing the embedded pair but this loss of accuracy is not seen in our tests. This effect may be similar to what is observed in multirate schemes. For example, the Osher–Sanders scheme [23] is locally inconsistent, but has been found to give first-order convergence in practice. An explanation for this is given in [15] where it is shown that local inconsistencies may not show up in the global errors due to cancellation and damping effects. We hope to transfer this analysis to the case of SPERK schemes to obtain a better understanding of the unexpectedly good performance of flux-based partitioning.

We have not attempted to prescribe general techniques for selecting the function χ, since those must depend on the nature of the problem and the purpose of switching between schemes. In the context of switching based on smoothness of the solution, simple but useful approaches have been proposed in [14, 13]. Investigation of effective switching methods for specific classes of problems is left to future work.

REFERENCES

[1] U. M. Ascher, S. J. Ruuth, and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), pp. 797–823.
[2] T. Belytschko, H.-J. Yen, and R. Mullen, Mixed methods for time integration, Computer Methods in Applied Mechanics and Engineering, 17 (1979), pp. 259–275.
[3] M. Carpenter, D. Gottlieb, S. Abarbanel, and W. Don, The theoretical accuracy of Runge–Kutta time discretizations for the initial boundary value problem: a study of the boundary error, SIAM J. Sci. Comput., 16 (1995), pp. 1241–1252.
[4] E. Constantinescu and A. Sandu, Multirate timestepping methods for hyperbolic conservation laws, J. Sci. Comput., 33 (2007), pp. 239–278.
[5] R. De Loubens, A. Riaz, and H. A. Tchelepi, Error analysis of an adaptive implicit scheme for hyperbolic conservation laws, SIAM Journal on Scientific Computing, 31 (2009), pp. 2890–2914.
[6] K. Duraisamy and J. Baeber, Implicit scheme for hyperbolic conservation laws using nonoscillatory reconstruction in space and time, SIAM Journal on Scientific Computing, 29 (2007), pp. 2607–2620.
[7] K. Duraisamy, J. Baeber, and J.-G. Liu, Concepts and application of time-limiters to high resolution schemes, Journal of Scientific Computing, 19 (2003), pp. 139–162.
[8] L. Ferracina and M. N. Spijker, An extension and analysis of the Shu–Osher representation of Runge–Kutta methods, Math. Comp., 74 (2005), pp. 201–219.
[9] S. Forth, A second order accurate, space-time limited, bdf scheme for the linear advection equation, in Godunov Methods, E. Toro, ed., Springer US, 2001, pp. 335–342.
[10] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong-stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89–112.
[11] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations I: Nonstiff problems, Springer-Verlag, second ed., 1993.
[12] E. Hairer and G. Wanner, Solving ordinary differential equations. II: Stiff and differential-algebraic problems, Springer-Verlag, second ed., 1996.
[13] E. Harabetian and R. L. Pego, Nonconservative hybrid shock capturing schemes, J. Comput. Phys., 105 (1993), pp. 1–13.
[14] A. Harten and G. Zwas, Self-adjusting hybrid schemes for shock computations, J. Comput. Phys., 9 (1972), pp. 568–583.
[15] W. Hundsdorfer, A. Mozartova, and V. Savcenco, Monotonicity conditions for multirate and partitioned explicit Runge–Kutta schemes, Recent Developments in the Numerics of
Nonlinear Hyperbolic Conservation Laws. (2012), pp. 177–195.

[16] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), pp. 202–228.

[17] C. A. Kennedy and M. H. Carpenter, Additive Runge–Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44 (2003), pp. 139–181.

[18] D. I. Ketcheson and A. J. Ahmadia, Optimal stability polynomials for numerical integration of initial value problems, Commun. Appl. Math. Comput. Sci., (2012). In press. Currently available at http://arxiv.org/abs/1201.3035.

[19] D. I. Ketcheson, M. Parsani, and R. J. LeVeque, High-order wave propagation algorithms for hyperbolic systems, SIAM J. Sci. Comput., 35 (2013), pp. A351–A377.

[20] C. B. Macdonald, Constructing high-order Runge–Kutta methods with embedded strong-stability-preserving pairs, Master’s thesis, Simon Fraser University, August 2003.

[21] K. T. Mandli, D. I. Ketcheson, et al., Pyclaw software, 2011.

[22] M. Motamed, C. B. Macdonald, and S. J. Ruuth, On the linear stability of the fifth-order WENO discretization, J. Sci. Comput., 47 (2010), pp. 127–149.

[23] S. Osher and R. Sanders, Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comp., 41 (1983), pp. 321–336.

[24] M. B. P. Van Slingerland and C. Vuik, A local theta scheme for advection problems with strongly varying meshes and velocity profiles, tech. rep., Delft University of Technology, 2008.

[25] S. J. Ruuth and R. J. Spiteri, High-order strong-stability-preserving Runge–Kutta methods with downwind-biased spatial discretizations, SIAM J. Numer. Anal., 42 (2004), pp. 974–996.

[26] J. Sanz-Serna, J. Verwer, and W. Hundsdorfer, Convergence and order reduction of Runge–Kutta schemes applied to evolutionary problems in partial differential equations, Numer. Math., 50 (1986), pp. 405–418.

[27] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 1073–1084.

[28] C.-W. Shu, High order weighted essentially non-oscillatory schemes for convection dominated problems, SIAM Rev., 51 (2009), pp. 82–126.

[29] C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 439–471.

[30] ———, Efficient implementation of essentially non-oscillatory shock-capturing schemes, II, J. Comput. Phys., 83 (1989), pp. 32–78.

[31] R. J. Spiteri and S. J. Ruuth, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40 (2002), pp. 469–491.

[32] H. Tang and G. Warnecke, High resolution schemes for conservation laws and convection-diffusion equations with varying time and space grids, J. Comput. Math., 24 (2006), p. 121.

[33] E. Timofeev and F. Norouzi, Application of a new hybrid explicit-implicit flow solver to 1d unsteady flows with shock waves, in 28th International Symposium on Shock Waves, Springer, 2012, pp. 245–250.

[34] J. H. Verner, Explicit Runge–Kutta methods with estimates of the local truncation error, SIAM J. Numer. Anal., 15 (1978), pp. 772–790.

[35] J. G. Verwer, Explicit Runge–Kutta methods for parabolic partial differential equations, Appl. Numer. Math., 22 (1996), pp. 359–379.

[36] R. Wang and R. J. Spiteri, Linear instability of the fifth-order WENO method, SIAM J. Numer. Anal., 45 (2007), pp. 1871–1901.