NUNO SILVA

Industry Based Equity Premium Forecasts

ESTUDOS DO GEMF
N.º 19
2015

Este trabalho é financiado por Fundos Nacionais através da FCT – Fundação para a Ciência e a Tecnologia no âmbito do projeto UID/ECO/00031/2013.
Industry based equity premium forecasts

Nuno Silva (Universidade de Coimbra/GEMF)

JEL Classification: C11, G11, G14, G17

Keywords: equity premium prediction, industries, particle filter, combination of forecasts
Abstract

In this paper we used industry indexes to predict the equity premium in the US. We considered several types of predictive models: i) constant coefficients and constant volatility, ii) drifting coefficients and constant volatility, iii) constant coefficients and stochastic volatility and iv) drifting coefficients and stochastic volatility. The models were estimated through the particle learning algorithm, which is suitable for dealing with the problem that an investor faces in practice, given that it allows the investor to revise the parameters as new information arrives. All the models exhibit similar statistical predictive ability, but stochastic volatility models generate slightly higher utility gains.

Resumo

Neste trabalho usamos índices industriais para prever o prémio de risco no EUA. Considerámos vários tipos de modelos de previsão: i) Coeficientes constantes e volatilidade constante, ii) coeficientes variáveis e volatilidade constante iii) coeficientes constantes e volatilidade estocástica e iv) coeficientes variáveis e volatilidade estocástica. Os modelos foram estimados através do algoritmo parameter learning, que replica adequadamente o problema que um investidor enfrenta na prática, dado que permite ao investidor atualizar os parâmetros após a chegada de nova informação. Todos os modelos exibem capacidade de previsão similar ao nível estatístico, mas os modelos de volatilidade estocástica geram ganhos de utilidade ligeiramente superiores.
1. Introduction

The efficient markets hypothesis, characterized by Fama (1965), states that prices fully reflect all the available information. Later, Grossman and Stiglitz (1980) proved that, if the process of information gathering is costly, prices cannot possibly incorporate all the available information. They argue that prices only partially reveal the information because, otherwise, informed investors could not obtain a return that would justify paying the cost of acquiring information. The fact that information is costly and that investors have limited time and resources is closely related to the limited attention hypothesis, according to which investors must choose to analyze only a subset of the available information, because they can not process it all.

One of the most clear episodes that illustrates investors inattention was analyzed by Huberman and Regev (2001). The stock price of EnterMed, a biotechnology company, surged 600% after the New York Times Sunday edition published an article on a potential development of new cancer-curing drugs, even though the article did not reveal any new information. The same news have been published more than five months earlier, in the scientific review Nature, with a much smaller impact on this firm's stock price.

Other authors used slow information diffusion as an explanation for several stock market anomalies. Peng and Xiong (2006), develop a model that contemplates both limited investor attention and overconfidence, and argue that return correlation between firms is higher than fundamental correlation. Hou (2007) shows that slow diffusion of common information causes large firms to lead small firms in the same industry. Menzly and Ozbas (2010) report that industries related through the supply
chain exhibit strong cross-momentum, and Cohen and Frazzini (2008) find that firms' prices do not incorporate immediately the news about other firms that are amongst their main customers. Hong et al. (2007) show that, if investors focus their attention on a subset of all the industries, then returns will exhibit positive cross-momentum. They also provide evidence, using univariate predictive regressions, that industries lead the stock market.

We extend the work of Hong et al. (2007) in two directions: we consider predictive regressions with both drifting parameters and stochastic volatility, and we analyze the out-of-sample predictive ability of industries, through combination forecasts.

Instability in predictive regressions has been reported by several authors. Pettenuzzo and Timmermann (2011) searched for breaks in predictive regressions, based on the dividend yield and the short rate, in the US. They concluded that there is strong evidence of breaks, and that they may have a substantial impact on the optimal asset allocation. Paye and Timmermann (2006) also tested for the presence of breaks in several developed countries, and reached similar results. Henkel et al. (2011) have used a regime-shifting model to predict the equity premia in the G7 countries. They have shown that parameter estimates are different in the two regimes, and that predictability is substantially higher during recessions than during expansionary periods. Dangl and Halling (2012) used a dynamic linear model, which implies gradual coefficients changes, in order to forecast the equity premium in the US. They showed that the model's predictions generate substantial utility gains for an investor with CRRA preferences. Johannes et al. (2014) proposed a model to estimate the relation between the net payout ratio and the equity premium, in the US, that featured both
drifting coefficients and time-varying volatility. They concluded that their model delivers statistically and economically significant out-of-sample utility gains, for a power utility investor, unlike traditional predictive models, with constant parameters and volatility, that generate no benefit for the investor. Rapach et al. (2010) argued that model uncertainty and instability limits the ability on individual predictive models. In order to overcome this problem, they combined the predictions of univariate regressions and concluded that the resulting forecasts were smoother and generated both statistical and economic out-of-sample gains.

In this paper we estimated equity premium predictive regressions, based on 32 US industries. We considered models with i) constant coefficients and constant volatility, ii) drifting coefficients and constant volatility, iii) constant coefficients and stochastic volatility and iv) drifting coefficients and stochastic volatility. We combined the forecasts of the industries' predictive regressions, for each model type, according to their past performance. The combined forecasts delivered both statistical and economic gains, relative to the predictions based on the historical mean. The models' statistical performance is similar across all model types, but stochastic volatility models generated slightly higher economic gains.

The rest of this paper is organized as follows. Section 2 describes the methodology used in the estimation of the predictive regressions, and the out-of-sample evaluation measures. Section 3 presents the dataset. Section 4 displays our results, and section 5 presents the main conclusions.
2. Methodology

2.1 The model

It is a well known fact that stock returns exhibit conditional stochastic volatility. Besides, past research provides extensive evidence that the relation between the equity premium and a set of commonly used predictive variables is not stable over time. Therefore, we have chosen the following model that contemplates both these features

\[R_{t+1} = \alpha_t + \beta_0 I_t + \beta_{t+1} I_t + \exp(V_{t+1}/2) \varepsilon_{t+1}^R \]
\[I_{t+1} = \alpha_t + \beta_{t+1} I_t + \exp(W_{t+1}/2) \varepsilon_{t+1}^I \]

where \(R_{t+1} \) is the equity premium from the end of month \(t \) to the end of month \(t+1 \), \(I_{t+1} \) is the excess return of the industry over the riskless interest rate, \(V_{t+1} \) and \(W_{t+1} \) are stochastic conditional volatilities for the equity premium and industry equations, respectively, \(\varepsilon_{t+1}^R \) and \(\varepsilon_{t+1}^I \) are standard normal errors with correlation \(\rho \).

Traditional models that attempt to predict the equity premium assume volatility is constant, which implies that all observations have the same weight in the estimation. Stochastic volatility models, underweight observations that correspond to high volatility periods, whose information content is presumably lower. We have chosen a log-stochastic volatility specification (Jacquier et al., 2005), because of its simplicity and its ability to incorporate volatility clusters

\[V_{t+1} = \alpha_v + \beta_v V_t + \sigma_v \eta_{t+1}^V \]
\[W_{t+1} = \alpha_w + \beta_w W_t + \sigma_w \eta_{t+1}^W \]

where \(\eta_{t+1}^V \) and \(\eta_{t+1}^W \) are standard normal independent errors.
We model the time-varying nature of predictability assuming that β_{t+1}, in equation (1), follows an AR(1) process, as in Johannes et al., 2004

$$\beta_{t+1} = \beta_{\beta} \beta_t + \sigma_{\beta} \varepsilon^\beta_{t+1}$$

(5)

where ε^β_{t+1} is a standard normal independent error.

Equations (1) to (5) characterize the general model, which features both stochastic volatility and drifting coefficients (SV-DC model). We also consider other restricted versions of this model, namely:

- Stochastic volatility and constant coefficients (SV-CC model)- β_{t+1} equals zero;

- Constant volatility and drifting coefficients (CV-DC model)- V_{t+1} and W_{t+1} are constant;

- Constant volatility and constant coefficients (CV-CC model)- V_{t+1} and W_{t+1} are constant and β_{t+1} equals zero.

2.2 Particle filter

Particle filters are a class of sequential Monte Carlo methods which are particularly suitable for problems that involve sequential parameter and state learning. They approximate a continuous probability distribution by a discrete distribution of weighted draws named particles. Historically, particle filters were used to estimate sequentially an unknown set of state variables, assuming that the parameters were known\(^1\) (for example, the bootstrap filter and the auxiliary particle filter). Later, new methods were developed that can be used to estimate both the state variables and the parameters, such as the Storvik (2002) filter and particle learning (Carvalho et al. 2010)), which we used to estimate equations (1) to (5).

\(^1\) Lopes and Tsay (2011) provide an excellent review of particle filters in financial econometrics.
The particle learning algorithm requires the computation a set of sufficient statistics, that are deterministically updated, in order to represent the posterior parameter vector. This algorithm can be described as follows

i) Resample \(\left\{ \hat{z}_t^{(i)} \right\}_{i=1}^N \) from \(z_t^{(i)} = (x_t, s_t, \theta)^{(i)} \) with weights \(w_t \propto p(y_{t+1}|z_t^{(i)}) \)

ii) Propagate \(\hat{x}_t^{(i)} \) to \(x_{t+1}^{(i)} \) via \(p(x_{t+1}|\hat{z}_t^{(i)}, y_{t+1}) \)

iii) Propagate sufficient statistics \(s_t^{(i)} = S(s_t^{(i)}, x_t^{(i)}, y_{t+1}) \)

iv) Sample \(\theta^{(i)} \) from \(p(\theta|s_t^{(i)}) \)

where, \(x_t \) is the state vector, \(s_t \) is the sufficient statistics vector, \(y_t \) is the data vector, and \(\theta \) is the parameter vector. For further details about the estimation procedure for equation (1) to (5), see the internet appendix to Johannes et al. (2014).

In order to implement the algorithm described above, we had to define prior parameter and state values. We followed Johannes et al. (2014) and we used the three initial years as a training sample.

2.3 Combination of forecasts

Equity premium forecasts, based on a single predictive variable, are known to be unstable and volatile (Goyal and Welch (2003)), which compromises their out-of-sample performance. Rapach et al. (2010) proposed a new approach that combines predictions from univariate models according to their past performance. They show that this method generates smoother forecasts, that outperform the predictions based on the historical mean. We draw on the approach of Rapach et al. (2010) and combined the equity premium forecasts from the various industries, in order to generate better performing predictions.
Hong et al. (2007) have shown that not all industries incorporate useful information for predicting the equity premium. Therefore, unlike Rapach et al. (2010), we have chosen to restrict the set of industries included in the weighted forecasts, based on their mean-squared forecast error (MSFE).

The procedure we used to generate weighted forecasts was the following:

1- We computed the mean-squared forecast errors for industry i, from t_1 until the end of the sample

$$\text{MSFE}_t^i = \sum_{s=t_1}^{t-1} (R_{s+1}^i - \hat{R}_{s+1}^i)^2$$ (6)

where \hat{R}_{s+1}^i is the equity premium prediction from industry i, for period $s + 1$. The MSFE computation starts at t_1, 120 periods (10 years) after the estimation begins, in order to obtain sufficiently reliable parameter estimates.

2- For each period, from t_2 ($t_2 = t_1 + 120$ periods) until the end of the sample, we sorted the individual predictions according to the reciprocal of their MSFE. Then, we computed the individual predictions' weights, based on the N best industries ($N=1, 2, 3, 4, 5, 10$ and 15). When industry i is amongst those N with lowest MSFE at time t, its weight in the combined forecast is

$$w_t^i = \frac{1}{\text{MSFE}_t^i} \sum_{n=1}^{N} \left(\frac{1}{\text{MSFE}_t^n} \right)$$ (7)

3- We generated combined predictions. The equity premium combined forecast for $t+1$, based on the best N industries is

$$\hat{R}_{t+1}^N = \sum_{i=1}^{N} w_t^i \hat{R}_{t+1}^i$$ (8)
2.4 Performance evaluation

We used several measures, that complement each other, in order to evaluate the forecasts. We computed the pseudo R^2 out-of-sample, which reveals whether the predictions are close to the realized equity premia, in a mean-square sense. The statistical significance of the pseudo R-squared out-of-sample was tested using the MSPE-adjusted statistic. We also computed the utility gain for an investor that used the equity premia predictions based on the model, relative to an investor that based his asset allocation decisions on the historical mean.

The pseudo R^2 is

$$R^2_{\text{OOS}} = 1 - \frac{\text{MSFE}^{\text{mod}}}{\text{MSFE}^{\text{mean}}}$$ \hspace{1cm} (9)

where MSFE^{mod} is the mean-squared forecast error from the model and $\text{MSFE}^{\text{mean}}$ represents the mean-squared forecast error from the historical mean. Note that the pseudo R^2 out-of-sample is positive whenever the model predictions outperform the forecasts based on the historical mean.

The MSPE-adjusted statistic, proposed by Clark and West (2007), is an approximately normal modified version of McCraken (2007) MSE-F statistic, which is used to test the null hypothesis that the unrestricted model MSPE is equal to the restricted model MSPE, against the one-sided alternative hypothesis that the former MSPE is lower than the later. The most convenient way to implement this test is to compute

$$\hat{f}_t = \left(R_t - \overline{R}_t^{\text{mean}} \right)^2 - \left[\left(R_t - \overline{R}_t^{\text{mean}} \right)^2 - \left(\overline{R}_t^{\text{mean}} - \overline{R}_t^{\text{mod}} \right)^2 \right]$$ \hspace{1cm} (10)
where R_t^{mod} is the equity premium prediction at month t, based on the model, and R_t^{mean} is the equity premium prediction at month t, based on the historical mean. The MSPE-adjusted statistic is computed by regressing \hat{f}_t on a constant, and using the resulting t-statistic for a zero coefficient. The null hypothesis of equal predictive ability is rejected, at the 5% confidence level, if the t-statistic exceeds 1.645 (one-sided test).

The previous performance evaluation measures are statistical in nature, and do not necessarily bear a direct relation with the benefits of forecasting the equity premium for an investor. In order to assess the economic value of the predictions, we compute the utility gains for a mean-variance investor, who incorporates the models' predictions in his investment decisions. We assume that the investor can choose between two types of investments, stock market and the riskless asset and, as in Campbell and Thompson (2008), we consider that the fraction of wealth invested in equities can neither exceed 150% nor fall below 0% (no short-selling).

A mean-variance investor with coefficient of relative risk aversion γ, who forecasts the equity premium using the historical average, will invest a fraction w_t^{mean} of his wealth in equities, at each month t

$$w_t^{\text{mean}} = \frac{1}{\gamma} \frac{R_t^{\text{mean}}}{\sigma_{t+1}^{2}}$$

where $\hat{\sigma}_{t+1}$ is estimate of standard deviation of stock returns based on historical data.

Over the out-of-sample period, an investor that follows this strategy obtains an average utility

$$\hat{v}^{\text{mean}} = \hat{\mu}^{\text{mean}} - \frac{1}{2}\gamma\hat{\sigma}_{\text{mean}}^{2}$$
where $\hat{\mu}_{\text{mean}}$ and $\hat{\sigma}_{\text{mean}}^2$ represent the sample average and variance, respectively, over the out-of-sample period, for the portfolio formed using only information about the historical mean.

The optimal portfolio weight for an investor that bases his investment decisions on the predictive model are

$$w_{\text{mod}}^t = \frac{1}{\gamma \hat{\sigma}_{N,t+1}^2} \frac{R_{t+1}}{\gamma \hat{\sigma}_{N,t+1}^2}$$

(13)

where $\hat{\sigma}_{N,t+1}^2$ is the combination of the standard deviation estimates, for period $t+1$, from the N best models, with weights given by equation (7). This investor obtains an average utility, over the out-of-sample period given by

$$\hat{\psi}_{\text{mod}} = \hat{\mu}_{\text{mod}} - \frac{1}{2} \gamma \hat{\sigma}_{\text{mod}}^2$$

(14)

where $\hat{\mu}_{\text{mod}}$ and $\hat{\sigma}_{\text{mod}}^2$ are the sample average and variance, respectively, over the out-of-sample period, for the portfolio formed using the predictive model.

The net average benefit per month for an investor who uses the predictive model is

$$\Delta U = \hat{\psi}_{\text{mod}} - \hat{\psi}_{\text{mean}}$$

(16)

and can be interpreted as the average monthly fee that an investor would be willing to pay to have access to the model's forecasts.

3. Data

We obtained monthly returns to the 38 value-weighted industries, from the Kenneth French website, for the period between July 1927 and December 2013. We had to exclude six industries due to missing data, namely, agriculture, forestry and
fishing, sanitary services, steam supply, irrigation systems, public administration and other. We also extracted from this website the one month treasury bill rate (risk free rate) and the excess return, over the risk free rate, on the market value-weighted return of all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ (equity premium).

Table 1

Descriptive statistics for the 32 industries' monthly returns and for the equity premium (EP), in %.

Industry	Average	Std.	Max	Min
Mines	0.66	7.49	33.48	-34.32
Oil	0.94	7.82	41.05	-27.57
Stone	0.83	7.94	55.23	-35.22
Cnstr	0.79	9.55	67.27	-38
Food	0.72	4.84	32.43	-27.94
Smoke	0.86	5.83	33.33	-25.32
Txtls	0.70	7.76	59.03	-33.19
Aprl	0.74	8.43	90.01	-33.16
Wood	0.85	7.71	42.73	-34.38
Chair	0.87	10.11	91.68	-46.51
Paper	0.79	7.07	70.37	-31.5
Print	0.63	7.09	53.4	-30.36
Chems	0.76	5.66	47.79	-31.31
Ptrlm	0.83	5.99	39.02	-29.95
Rubbr	0.925	8.78	100.37	-35.7
Lethr	0.70	6.70	41.34	-29.82
Glass	0.71	7.43	50.36	-31.83
Metal	0.65	8.53	80.7	-33.1
MtlPr	0.70	6.24	39.97	-28.48
Machn	0.81	7.25	50.2	-33.73
Elctr	0.79	8.01	59.38	-34.65
Cars	0.82	7.35	71.63	-34.23
Instr	0.72	5.82	27.81	-30.79
Manuf	0.64	7.67	60.14	-35.26
Trans	0.63	7.20	65.35	-34.52
Phone	0.53	4.77	30.79	-21.59
TV	0.98	7.27	29.62	-29.58
Utils	0.60	5.59	42.82	-32.88
Whlsl	0.63	7.31	59.17	-44.63
Rtail	0.74	6.02	42.21	-30.32
Money	0.73	6.89	59.75	-39.62
Srvc	0.78	7.85	51.95	-39.29
EP	0.64	5.42	37.93	-29.07
Table 1 presents descriptive statistics for the equity premium and for the excess return, over the risk free rate, for all the industries. The average monthly equity premium is 0.64%, and the average excess returns for the industries ranges between 0.53% (phone) and 0.93% (rubber). The equity premium standard deviation is 5.42%, and is higher for most industries, reaching 10.11% for chair. The last two columns shows that monthly excess returns are widely disperse, as was expected, given that our sample includes the great depression. The highest monthly excess return across all the industries is 100.37% for rubber, and the lowest reaches -46.51% (chair).

4. Results

We present the main results in three separate subsections. In the first one, we consider the full sample results. In the second subsection, we analyze the results in three subsamples of approximately equal length. Finally, in the last subsection, we compare the predictors' performance in expansion and recession periods.

4.1 Full sample

Table 2 exhibits the pseudo R-squared out-of sample for combinations of forecasts, based on four different models (CV-CC, CV-DC, SV-CC and SV-DC). All the models considered have statistically significant predictive ability, with pseudo R-square often higher than 1%. Models with constant volatility perform slightly better than stochastic volatility models. The best result overall is obtained for the combination of the two best industries, based on the model with constant coefficients and constant volatility. It is noticeable that forecasts based on the weighted average of a small number of industries (four or less) outperform predictions that use many industries. In
particular, predictions that combine all the industries underperform the best forecast by more than 1%.

Table 2
Pseudo R-squared out-of-sample for the models with constant coefficients and constant volatility (CV-CC), drifting coefficients and constant volatility (CV-DC), constant coefficients and stochastic volatility (SV-CC) and drifting coefficients and stochastic volatility (SV-DC), based on the best industry (1), combinations of 2, 3, 4, 5, 10, 15 best industries, and all the industries (All), in %. The last three rows display the average, maximum and minimum pseudo R-squared out-of-sample for the predictions based on the individual industries (in %).
a- significant at 1%, b- significant at 5% c- significant at 10%

	CV-CC	CV-DC	SV-CC	SV-DC
1	1.8\(^a\)	1.78\(^a\)	1.52\(^a\)	1.36\(^a\)
2	1.98\(^a\)	1.74\(^a\)	1.79\(^a\)	1.79\(^a\)
3	1.75\(^a\)	1.9\(^a\)	1.49\(^a\)	1.27\(^a\)
4	1.6\(^a\)	1.78\(^a\)	1.49\(^a\)	1.60\(^a\)
5	1.65\(^a\)	1.8\(^a\)	1.24\(^a\)	1.5\(^a\)
10	1.44\(^a\)	1.34\(^a\)	1.02\(^a\)	1.21\(^a\)
15	1.2\(^a\)	1.13\(^a\)	0.83\(^a\)	1.01\(^a\)
All	0.52\(^c\)	0.5\(^c\)	0.49\(^c\)	0.51\(^b\)
Average	0.1	0.01	-1.55	-0.29
Maximum	1.23	1.22	1.30	1.45
Minimum	-1.87	-1.65	-10.8	-2.82

The bottom three rows of table 2 display the average, maximum and minimum pseudo R-squared out-of-sample for the individual industries. It is clear that combinations of forecast, based on the past MSFE, outperform the predictions from a single industry.

Table 3 presents the average net annualized utility gains, for an investor with coefficient of relative risk aversion equal to 3. All the models generate sizable utility gains, with gains as high as 5%. Generally, weighted forecasts based on only a few industries provide higher utility gains than predictions based on a large number of industries. Stochastic volatility models also tend to deliver higher utility gains than constant volatility models, due to the fact that the former are able to time market
volatility and reduce the fraction of wealth invested in stocks during high volatility periods.

Table 3
Utility gains for the models with constant coefficients and constant volatility (CV-CC), drifting coefficients and constant volatility (CV-DC), constant coefficients and stochastic volatility (SV-CC) and drifting coefficients and stochastic volatility (SV-DC), based on the best industry (1), combinations of 2, 3, 4, 5, 10, 15 best industries, and all the industries (All), in %.

	CV-CC	CV-DC	SV-CC	SV-DC
1	2.78	2.78	5.38	2.35
2	2.54	2.35	5.03	3.77
3	2.40	2.40	4.89	3.36
4	2.30	2.32	1.09	3.93
5	2.23	2.39	4.12	3.47
10	1.97	1.90	3.77	3.38
15	1.7	1.67	3.35	3.41
All	1.1	0.98	2.04	2.38

Figure 1
The top panel exhibits the difference between the fraction of wealth invested in stocks according to the constant coefficients and stochastic volatility model and the constant coefficients and constant volatility models, for combined predictions based on the 5 best industries, during the last 20 years. The bottom panel shows the squared monthly equity premium.
Figure 1 aims to illustrate this phenomenon. The top panel exhibits the difference between the fraction of wealth invested in stocks according to the constant coefficients and stochastic volatility model and the constant coefficients and constant volatility models, for combined predictions based on the 5 best industries, during the last 20 years. The bottom panel shows the squared monthly equity premium. It is clear that the investment strategy, driven by the stochastic volatility model, allocates a smaller fraction of wealth to the stock market during the turbulent periods comprised between 1999 and 2002, and after the recent financial crisis. In the remaining low volatility periods, the investment in the stock market is higher for the stochastic volatility model.

4.2 Subsamples

In this subsection we analyze the results in three different subsamples. The first subsample ranges from 9/1950 and 12/1953, the second one is comprised between 1/1974 and 12/1993, and the final one covers the period between 1/1994 and 12/2013.

Table 4

Pseudo R-squared out-of-sample for the models with constant coefficients and constant volatility (CV-CC), drifting coefficients and constant volatility (CV-DC), constant coefficients and stochastic volatility (SV-CC) and drifting coefficients and stochastic volatility (SV-DC), based on the best industry (1), combinations of 2, 3, 4, 5, 10, 15 best industries, and all the industries (All), in %. In each cell, the first value corresponds to the period from 9/1950 to 12/1973, the second value corresponds to the period from 1/1974 to 12/1993, and the last values corresponds to the period from 1/1994 to 12/2013.

	CV-CC	CV-DC	SV-CC	SV-DC
1	1.46⁰/2.23⁰/1.50⁰	3.01⁰/1.83⁰/0.84	2.19⁰/1.50⁰/1.05⁰	0.21/1.59/1.83⁰
2	2.01⁰/2.30⁰/1.54⁰	2.10⁰/2.11⁰/1.00	2.80⁰/2.03⁰/0.76	1.50⁰/2.33⁰/1.32⁰
3	1.81⁰/2.10⁰/1.24⁰	2.47⁰/2.26⁰/1.04	2.19⁰/1.44⁰/1.00	1.18/1.74⁰/0.76
4	1.69⁰/1.91⁰/1.13⁰	2.27⁰/2.11⁰/1.00	1.94⁰/1.52⁰/1.09	1.48⁰/1.84⁰/1.36⁰
5	1.69⁰/1.94⁰/1.24⁰	2.13⁰/2.10⁰/1.19⁰	1.26⁰/1.36⁰/1.06	2.01⁰/1.32⁰/1.33⁰
10	1.87⁰/1.57⁰/0.93	1.61⁰/1.44⁰/0.99	1.21⁰/1.11⁰/0.74	1.63⁰/1.07⁰/1.04⁰
15	1.51⁰/1.20⁰/0.94	1.48⁰/1.11⁰/0.86	0.94⁰/0.98⁰/0.95	1.31⁰/0.87⁰/0.93⁰
All	0.89⁰/0.40⁰/0.37	0.75/0.45/0.35	0.13/0.87/0.27	0.71/0.51/0.35
Table 4 exhibits the pseudo R-squared out-of-sample for the three subsamples. All the R-squared are positive, which indicates that the models outperform predictions based on the historical mean. The evidence of predictive ability is stronger in subsamples one and two than in the last one but, even in the last 20 years, there is evidence of predictability at the 10% level. Even though the results are similar for the different models, the model that features constant coefficients and volatility presents the best overall performance.

Table 5 shows the annualized utility gains for each subsample. Almost all the models deliver positive gains, except the SV-CC model, for the 4 best industries. The economic benefits generated by the constant volatility models are higher during the middle subsample, and the gains for the stochastic volatility models are higher in the first part of the sample. Overall, stochastic volatility models tend to generate higher gains.

	CV-CC	CV-DC	SV-CC	SV-DC
1	2.02/3.65/2.67	2.60/3.89/1.86	7.45/3.82/4.81	2.75/1.41/2.87
2	1.98/3.71/1.95	1.84/3.53/1.69	7.34/4.03/3.67	5.45/2.68/3.14
3	1.79/3.18/2.24	1.97/3.28/1.93	7.27/3.28/4.05	5.48/2.13/2.42
4	1.64/3.15/2.12	1.84/3.19/1.93	3.82/-1.63/1.05	2.83/2.73/3.18
5	1.52/2.99/2.18	1.80/3.15/1.93	5.99/2.55/3.77	5.69/1.69/2.97
10	1.52/2.73/1.68	1.39/2.45/1.85	5.51/2.44/3.62	6.02/1.61/2.53
15	1.34/2.13/1.62	1.26/2.07/1.70	4.96/2.05/3.00	5.95/1.40/2.84
All	0.91/1.27/1.11	0.76/1.15/1.02	3.03/1.28/1.78	4.94/0.33/1.82

Table 5
Utility gains for the models with constant coefficients and constant volatility (CV-CC), drifting coefficients and constant volatility (CV-DC), constant coefficients and stochastic volatility (SV-CC) and drifting coefficients and stochastic volatility (SV-DC), based on the best industry (1), combinations of 2, 3, 4, 5, 10, 15 best industries, and all the industries (All), in %. In each cell, the first value corresponds to the period from 9/1950 to 12/1973, the second value corresponds to the period from 1/1974 to 12/1993, and the last values corresponds to the period from 1/1994 to 12/2013.
4.3 Expansions and recessions

Rapach et al. (2010) and Neely et al. (2014), among others, have shown that equity premium predictability, based on a wide set of traditional predictive variables, is strong during recessions and absent in expansions. In this subsection we tested if our industry based equity premium forecasts exhibit the same pattern. We split the sample in recession and expansion periods, according to NBER data. Tables 6 and 7 present the pseudo R-squared out-of-sample and the annualized utility gains, respectively, for each subsample.

Table 6

Predictability is strong in recessions for all the models, with R-squared values often exceeding 5%. In contrast, there is no evidence that any of the models considered is able to forecast the equity premium during expansionary periods. The models that feature stochastic volatility and drifting coefficients do not seem to have a higher predictive ability than the basic model (CV-CC). Therefore, there seems to be no advantage in using more complicated models, that require the estimation of a higher number of parameters, if we are only interested in their statistical performance.
Table 7
Utility gains for the models with constant coefficients and constant volatility (CV-CC), drifting coefficients and constant volatility (CV-DC), constant coefficients and stochastic volatility (SV-CC) and drifting coefficients and stochastic volatility (SV-DC), based on the best industry (1), combinations of 2, 3, 4, 5, 10, 15 best industries, and all the industries (All), in %. In each cell, the first value corresponds to expansions and the second one to recessions.

	CV-CC	CV-DC	SV-CC	SV-DC
1	1.8/7.45	1.64/8.33	4.71/8.4	0.95/9.29
2	1.47/7.75	1.22/7.91	4.37/8.01	2.64/9.25
3	1.31/7.73	1.22/8.13	4.28/7.53	2.3/8.45
4	1.19/7.73	1.18/7.92	0.04/4.19	2.96/8.57
5	1.15/7.49	1.29/7.76	3.69/5.89	2.67/7.22
10	0.97/6.79	0.83/7.07	3.29/5.79	2.87/5.55
15	0.73/6.37	0.67/6.53	2.93/5.05	3.09/4.62
All	0.3/4.89	0.22/4.53	1.51/4.35	2.33/2.15

Table 7 reveals that the combined forecast generates positive utility gains, both in recessions and expansions. However, the economic benefit of the predictions is clearly superior in recessions, with gains as high as 9.29%. Stochastic volatility models deliver higher gains in both subsamples relative to constant volatility models.

5. Concluding remarks

In this paper we have shown that industries can be used to predict the equity premium. Moreover, combination of forecasts based on the past performance of the individual industries’ predictions deliver utility gains, for a mean-variance investor. Predictability is lower during the last subsample, which was expected, given that the cost of acquiring information has decreased. Grossman and Stiglitz (1980) argue that when the cost of acquiring information decreases, the fraction of investors who decide to be informed is higher, and prices become more informative.

We also found that predictability is strong during recessions, and absent during expansion. This predictability pattern, that has also been reported in previous studies, deserves further research.
References

- Campbell, J. Y. and Thompson, S. B. (2008) Predicting the equity premium out of sample: Can anything beat the historical average?, Review of Financial Studies, 21 (4), 1509-31.

- Carvalho, Carlos M., Johannes, Michael S., Lopes, Hedibert F. and Polson, Nicholas G., 2010, Particle Learning and Smoothing, Statistical Science, 25 (1), 88-106.

- Clark, T. E. and West, K. D. (2007) Approximately normal tests for equal predictive accuracy in nested models, Journal of Econometrics, 138 (1), 291-311.

- Cohen, Lauren and Frazzini, Andrea, 2008, Economic Links and Predictable Returns, Journal of Finance, 63 (4), 1977-2011.

- Dangl, T. and Halling, M. (2012) Predictive regressions with time-varying coefficients, Journal of Financial Economics, 106 (1), 157-181.

- Fama, Eugene, 1965, The Behavior of Stock Market Prices, Journal of Business, 38, 34-105.

- Goyal, A. and Welch, I. (2008) A comprehensive look at the empirical performance of equity premium prediction, Review of Financial Studies, 21 (4), 1455-1508.

- Grossman, Sanford J. and Stiglitz Joseph E., 1980, On the Impossibility of Informationally Efficient Markets, American Economic Review, 70 (3), 393-408.

- Henkel, S. J., Martin, S. J. and Nardiri, F. (2001) Time-varying short-horizon predictability, Journal of Financial Economics, 99 (3), 560-580.

- Hong, Harrison, Totous, Walter and Valkanov, Rossen, 2007, Do Industries lead stock markets?, Journal of Financial Economics, 83, 367-396.
- Hou, Kewei, 2007, Industry Information Diffusion and the Lead-Lag Effect in Stock Returns, *Review of Financial Studies*, 20 (4), 1113-1138.

- Huberman, Gur and Regev, Tomer, 2001, Contagious Speculation and a Cure for Cancer: A Nonevent that Made Stock Prices Soar, *Journal of Finance*, 56 (1), 387-396.

- Jacquier, E., Polson, N. G. and Rossi, P, 2005, Bayesian analysis of correlated stochastic volatility models, *Journal of Econometrics*, 122, 185-212.

- Johannes, Michael, Korteweg, Arthur an Polson, Nicholas, 2014, Sequential Learning, Predictability, and Optimal Portfolio Returns, *Journal of Finance*, 69 (2), 611-644.

- Lopes, Hedibert F. and Tsay, Ruey S., 2011, Particle Filters and Bayesian Inference in Financial Econometrics, *Journal of Forecasting*, 30, 168-209.

- McCracken, M. W. (2007) Asymptotics for the out-of-sample test of Granger causality, *Journal of Econometrics*, 140 (2), 719-752.

- Menzly, Lior and Ozbas, Oguzhan, 2010, Market Segmentation and Cross-predictability of Returns, *Journal of Finance*, 65 (4), 1555-1580.

- Neely, Christopher J, Rapach, David E., Tu, Jun and Shou, Goufu, 2014, Forecasting the Equity Risk Premium: The Role of Technical indicators, *Management Science*, 60 (7), 1772-1791.

- Paye, B. S. and Timmermann, A. (2006) Instability of return prediction models, *Journal of Empirical Finance*, 13 (3), 274-315.

- Peng, Lin and Xiong, Wei, 2006, Investor Attention, Overconfidence and Category Learning, *Journal of Financial Economics*, 80 (3), 563-602.
- Pettenuzzo, D. and Timmermann, A. (2011) Predictability of stock returns and asset allocation under structural breaks, *Journal of Econometrics*, 164 (1), 60-78.

- Rapach, David E., Strauss, Jack K. and Zhou, Guofu, 2010, Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy, *Review of Financial Studies*, 23 (2), 821-862.

- Storvik, G., 2002, Particle filters for state-space models with the presence of unknown static parameters, *IEEE Transactions on Signal Processing*, 50, 281-289.
| Year | Title | Authors |
|------|--|--|
| 2015-19 | Industry based equity premium forecasts | Nuno Silva |
| 2015-18 | Pacts for Employment and Competitiveness as a Role Model? Their Effects on Firm Performance | John T. Addison, Paulino Teixeira, Katalin Evers, Lutz Bellmann |
| 2015-17 | On the Forecasting of Financial Volatility Using Ultra-High Frequency Data | António A. F. Santos |
| 2015-16 | Social Spending, Inequality and Growth in Times of Austerity: Insights from Portugal | Marta N. C. Simões; Adelaide P. S. Duarte & João A. S. Andrade |
| 2015-15 | Portfolio Management with Higher Moments: The Cardinality Impact | Rui Pedro Brito, Hélder Sebastião & Pedro Godinho |
| 2015-14 | The Determinants of Entrepreneurship at the Country Level: A Panel Data Approach | Gonzalo Brás & Elias Soukiazis |
| 2015-13 | Budget, Expenditures Composition and Political Manipulation: Evidence from Portugal | Vítor Castro & Rodrigo Martins |
| 2015-12 | The Occupational Feminization of Wages | John T. Addison, Orgul D. Ozturk & Si Wang |
| 2015-11 | Economies to Scale and the Importance of Human Capital in the Moulds Industry in Portugal: A Micro Panel Data Approach | Fátima Diniz & Elias Soukiazis |
| 2015-10 | The Evolution of the Volatility in Financial Returns: Realized Volatility vs Stochastic Volatility Measures | António A. F. Santos |
| 2015-09 | The Impact of the Chinese Exchange Policy on Foreign Trade with the European Union | Ana Cardoso & António Portugal Duarte |
| 2015-08 | The links between the Companies’ Market Price Quality and that of its Management and Business Quality: A system panel data approach | Dinis Santos & Elias Soukiazis |
| 2015-07 | Education and Software piracy in the European Union | Nicolas Dias Gomes, Pedro André Cerqueira & Luís Alçada-Almeida |
| 2015-06 | A Monetary Analysis of the Liquidity Trap | João Braz Pinto & João Sousa Andrade |
| 2015-05 | Efficient Skewness/Semivariance Portfolios | Rui Pedro Brito, Hélder Sebastião & Pedro Godinho |
| 2015-04 | Size Distribution of Portuguese Firms between 2006 and 2012 | Rui Pascoal, Mário Augusto & Ana M. Monteiro |
| 2015-03 | Optimum Currency Areas, Real and Nominal Convergence in the European Union | João Sousa Andrade & António Portugal Duarte |
| 2015-02 | Estimating State-Dependent Volatility of Investment Projects: A Simulation Approach | Pedro Godinho |
| 2015-01 | Is There a Trade-off between Exchange Rate and Interest Rate Volatility? Evidence from an M-GARCH Model | António Portugal Duarte, João Sousa Andrade & Adelaide Duarte |
| 2014-25 | Portfolio Choice Under Parameter Uncertainty: Bayesian Analysis and Robust Optimization Comparison | António A. F. Santos, Ana M. Monteiro & Rui Pascoal |
| 2014-24 | Crowding-in and Crowding-out Effects of Public Investments in the Portuguese Economy | João Sousa Andrade & António Portugal Duarte |
| 2014-23 | Are There Political Cycles Hidden Inside Government Expenditures? | Vítor Castro & Rodrigo Martins |

ESTUDOS DO G.E.M.F.
(Available on-line at http://www.uc.pt/feuc/gemf)
Year	Title	Authors
2014-22	The Nature of Entrepreneurship and its Determinants: Opportunity or Necessity?	Gonzalo Brás & Elias Soukiazis
2014-21	Estado Social, Quantis, Não-Linearidades e Desempenho Económico: Uma Avaliação Empírica	Adelaide Duarte, Marta Simões & João Sousa Andrade
2014-20	Assessing the Impact of the Welfare State on Economic Growth: A Survey of Recent Developments	Marta Simões, Adelaide Duarte & João Sousa Andrade
2014-19	Business Cycle Synchronization and Volatility Shifts	Pedro André Cerqueira
2014-18	The Public Finance and the Economic Growth in the First Portuguese Republic	Nuno Ferraz Martins & António Portugal Duarte
2014-17	On the Robustness of Minimum Wage Effects: Geographically-Disparate Trends and Job Growth Equations	John T. Addison, McKinley L. Blackburn & Chad D. Cotti
2014-16	Determinants of Subjective Well-Being in Portugal: A Micro-Data Study	Sara Ramos & Elias Soukiazis
2014-15	Changes in Bargaining Status and Intra-Plant Wage Dispersion in Germany. A Case of (Almost) Plus Ça Change?	John T. Addison, Arnd Kölling & Paulino Teixeira
2014-14	The Renewables Influence on Market Splitting: the Iberian Spot Electricity Market	Nuno Carvalho Figueiredo, Patrícia Pereira da Silva & Pedro Cerqueira
2014-13	Drivers for Household Electricity Prices in the EU: A System-GMM Panel Data Approach	Patrícia Pereira da Silva & Pedro Cerqueira
2014-12	Effectiveness of Intellectual Property Regimes: 2006-2011	Noemí Pulido Pavón & Luís Palma Martos
2014-11	Dealing with Technological Risk in a Regulatory Context: The Case of Smart Grids	Paulo Moisés Costa, Nuno Bento & Vitor Marques
2014-10	Stochastic Volatility Estimation with GPU Computing	António Alberto Santos & João Andrade
2014-09	The Impact of Expectations, Match Importance and Results in the Stock Prices of European Football Teams	Pedro Godinho & Pedro Cerqueira
2014-08	Is the Slovak Economy Doing Well? A Twin Deficit Growth Approach	Elias Soukiazis, Eva Muchova & Pedro A. Cerqueira
2014-07	The Role of Gender in Promotion and Pay over a Career	John T. Addison, Orgul D. Ozturk & Si Wang
2014-06	Output-gaps in the PIIGS Economies: An Ingredient of a Greek Tragedy	João Sousa Andrade & António Portugal Duarte
2014-05	Software Piracy: A Critical Survey of the Theoretical and Empirical Literature	Nicolas Dias Gomes, Pedro André Cerqueira & Luís Alçada Almeida
2014-04	Agriculture in Portugal: Linkages with Industry and Services	João Gaspar, Gilson Pina & Marta C. N. Simões
2014-03	Effects of Taxation on Software Piracy Across the European Union	Nicolas Dias Gomes, Pedro André Cerqueira & Luís Alçada Almeida
2014-02	A Crise Portuguesa é Anterior à Crise Internacional	João Sousa Andrade
2014-01	Collective Bargaining and Innovation in Germany: Cooperative Industrial Relations?	John T. Addison, Paulino Teixeira, Katalin Evers & Lutz Bellmann
2013-27	Market Efficiency, Roughness and Long Memory in the PSI20 Index Returns: Wavelet and Entropy Analysis	Rui Pascoal & Ana Margarida Monteiro
2013-26 Do Size, Age and Dividend Policy Provide Useful Measures of Financing Constraints? New Evidence from a Panel of Portuguese Firms
- Carlos Carreira & Filipe Silva

2013-25 A Política Orçamental em Portugal entre Duas Intervenções do FMI: 1986-2010
- Carlos Fonseca Marinho

2013-24 Distortions in the Neoclassical Growth Model: A Cross-Country Analysis
- Pedro Brinca

2013-23 Learning, Exporting and Firm Productivity: Evidence from Portuguese Manufacturing and Services Firms
- Carlos Carreira

2013-22 Equity Premia Predictability in the EuroZone
- Nuno Silva

2013-21 Human Capital and Growth in a Services Economy: the Case of Portugal
- Marta Simões & Adelaide Duarte

2013-20 Does Voter Turnout Affect the Votes for the Incumbent Government?
- Rodrigo Martins & Francisco José Veiga

2013-19 Determinants of Worldwide Software Piracy Losses
- Nicolas Dias Gomes, Pedro André Cerqueira & Luís Alçada Almeida

2013-18 Despesa Pública em Educação e Saúde e Crescimento Económico: Um Contributo para o Debate sobre as Funções Sociais do Estado
- João Sousa Andrade, Marta Simões & Adelaide P. S. Duarte

2013-17 Duration dependence and change-points in the likelihood of credit booms ending
- Vítor Castro & Megumi Kubota

2013-16 Job Promotion in Mid-Career: Gender, Recession and ‘Crowding’
- John T. Addison, Orgul D. Ozturk & Si Wang

2013-15 Mathematical Modeling of Consumer’s Preferences Using Partial Differential Equations
- Jorge Marques

2013-14 The Effects of Internal and External Imbalances on Italy’s Economic Growth. A Balance of Payments Approach with Relative Prices No Neutral.
- Elias Soukiazis, Pedro André Cerqueira & Micaela Antunes

2013-13 A Regional Perspective on Inequality and Growth in Portugal Using Panel Cointegration Analysis
- Marta Simões, João Sousa Andrade & Adelaide Duarte

2013-12 Macroeconomic Determinants of the Credit Risk in the Banking System: The Case of the GIPSI
- Vítor Castro

2013-11 Majority Vote on Educational Standards
- Robert Schwager

2013-10 Productivity Growth and Convergence: Portugal in the EU 1986-2009
- Adelaide Duarte, Marta Simões & João Sousa Andrade

2013-09 What Determines the Duration of a Fiscal Consolidation Program?
- Luca Agnello, Vítor Castro & Ricardo M. Sousa

2013-08 Minimum Wage Increases in a Recessionary Environment
- John T. Addison, McKinley L. Blackburn & Chad D. Cotti

2013-07 The International Monetary System in Flux: Overview and Prospects
- Pedro Bação, António Portugal Duarte & Mariana Simões

2013-06 Are There Change-Points in the Likelihood of a Fiscal Consolidation Ending?
- Luca Agnello, Vítor Castro & Ricardo M. Sousa

2013-05 The Dutch Disease in the Portuguese Economy
- João Sousa Andrade & António Portugal Duarte

2013-04 Is There Duration Dependence in Portuguese Local Governments’ Tenure?
- Vítor Castro & Rodrigo Martins

2013-03 Testing for Nonlinear Adjustment in the Portuguese Target Zone: Is there a Honeymoon Effect?
- António Portugal Duarte, João Soares da Fonseca & Adelaide Duarte
2013-02 Portugal Before and After the European Union
 - Fernando Alexandre & Pedro Bação

2013-01 The International Integration of the Eastern Europe and two Middle East Stock Markets
 - José Soares da Fonseca

2012-21 Are Small Firms More Dependent on the Local Environment than Larger Firms? Evidence from Portuguese Manufacturing Firms
 - Carlos Carreira & Luís Lopes

2012-20 Macroeconomic Factors of Household Default. Is There Myopic Behaviour?
 - Rui Pascoal

2012-19 Can German Unions Still Cut It?
 - John Addison, Paulino Teixeira, Jens Stephani & Lutz Bellmann

2012-18 Financial Constraints: Do They Matter to R&D Subsidy Attribution?
 - Filipe Silva & Carlos Carreira

2012-17 Worker Productivity and Wages: Evidence from Linked Employer-Employee Data
 - Ana Sofia Lopes & Paulino Teixeira

2012-16 Slovak Economic Growth and the Consistency of the Balance-of-Payments Constraint Approach
 - Elias Soukiazis & Eva Muchova

2012-15 The Importance of a Good Indicator for Global Excess Demand
 - João Sousa Andrade & António Portugal Duarte

2012-14 Measuring Firms’ Financial Constraints: A Rough Guide
 - Filipe Silva & Carlos Carreira

2012-13 Convergence and Growth: Portugal in the EU 1986-2010
 - Marta Simões, João Sousa Andrade & Adelaide Duarte

2012-12 Where Are the Fragilities? The Relationship Between Firms’ Financial Constraints, Size and Age
 - Carlos Carreira & Filipe Silva

2012-11 An European Distribution of Income Perspective on Portugal-EU Convergence
 - João Sousa Andrade, Adelaide Duarte & Marta Simões

2012-10 Financial Crisis and Domino Effect
 - Pedro Bação, João Maia Domingues & António Portugal Duarte

2012-09 Non-market Recreational Value of a National Forest: Survey Design and Results
 - Paula Simões, Luís Cruz & Eduardo Barata

2012-08 Growth rates constrained by internal and external imbalances and the role of relative prices: Empirical evidence from Portugal
 - Elias Soukiazis, Pedro André Cerqueira & Micaela Antunes

2012-07 Is the Erosion Thesis Overblown? Evidence from the Orientation of Uncovered Employers
 - John Addison, Paulino Teixeira, Katalin Evers & Lutz Bellmann

2012-06 Explaining the interrelations between health, education and standards of living in Portugal. A simultaneous equation approach
 - Ana Poças & Elias Soukiazis

2012-05 Turnout and the Modeling of Economic Conditions: Evidence from Portuguese Elections
 - Rodrigo Martins & Francisco José Veiga

2012-04 The Relative Contemporaneous Information Response. A New Cointegration-Based Measure of Price Discovery
 - Helder Sebastião

2012-03 Causes of the Decline of Economic Growth in Italy and the Responsibility of EURO. A Balance-of-Payments Approach.
 - Elias Soukiazis, Pedro Cerqueira & Micaela Antunes

2012-02 As Ações Portuguesas Seguem um Random Walk? Implicações para a Eficiência de Mercado e para a Definição de Estratégias de Transação
 - Ana Rita Gonzaga & Helder Sebastião

2012-01 Consuming durable goods when stock markets jump: a strategic asset allocation approach
 - João Amaro de Matos & Nuno Silva
2011-21 The Portuguese Public Finances and the Spanish Horse
- João Sousa Andrade & António Portugal Duarte

2011-20 Fitting Broadband Diffusion by Cable Modem in Portugal
- Rui Pascoal & Jorge Marques

2011-19 A Poupança em Portugal
- Fernando Alexandre, Luís Aguiar-Conraria, Pedro Baçao & Miguel Portela

2011-18 How Does Fiscal Policy React to Wealth Composition and Asset Prices?
- Luca Agnello, Vítor Castro & Ricardo M. Sousa

2011-17 The Portuguese Stock Market Cycle: Chronology and Duration Dependence
- Vítor Castro

2011-16 The Fundamentals of the Portuguese Crisis
- João Sousa Andrade & Adelaide Duarte

2011-15 The Structure of Collective Bargaining and Worker Representation: Change and Persistence in the German Model
- John T. Addison, Paulino Teixeira, Alex Bryson & André Pahnke

2011-14 Are health factors important for regional growth and convergence? An empirical analysis for the Portuguese districts
- Ana Poças & Elias Soukiazis

2011-13 Financial constraints and exports: An analysis of Portuguese firms during the European monetary integration
- Filipe Silva & Carlos Carreira

2011-12 Growth Rates Constrained by Internal and External Imbalances: a Demand Orientated Approach
- Elias Soukiazis, Pedro Cerqueira & Micaela Antunes

2011-11 Inequality and Growth in Portugal: a time series analysis
- João Sousa Andrade, Adelaide Duarte & Marta Simões

2011-10 Do financial Constraints Threat the Innovation Process? Evidence from Portuguese Firms
- Filipe Silva & Carlos Carreira

2011-09 The State of Collective Bargaining and Worker Representation in Germany: The Erosion Continues
- John T. Addison, Alex Bryson, Paulino Teixeira, André Pahnke & Lutz Bellmann

2011-08 From Goal Orientations to Employee Creativity and Performance: Evidence from Frontline Service Employees
- Filipe Coelho & Carlos Sousa

2011-07 The Portuguese Business Cycle: Chronology and Duration Dependence
- Vítor Castro

2011-06 Growth Performance in Portugal Since the 1960’s: A Simultaneous Equation Approach with Cumulative Causation Characteristics
- Elias Soukiazis & Micaela Antunes

2011-05 Heteroskedasticity Testing Through Comparison of Wald-Type Statistics
- José Murteira, Esmeralda Ramalho & Joaquim Ramalho

2011-04 Accession to the European Union, Interest Rates and Indebtedness: Greece and Portugal
- Pedro Baçao & António Portugal Duarte

2011-03 Economic Voting in Portuguese Municipal Elections
- Rodrigo Martins & Francisco José Veiga

2011-02 Application of a structural model to a wholesale electricity market: The Spanish market from January 1999 to June 2007
- Vítor Marques, Adelino Fortunato & Isabel Soares

2011-01 A Smoothed-Distribution Form of Nadaraya-Watson Estimation
- Ralph W. Bailey & John T. Addison

A série Estudos do GEMF foi iniciada em 1996.