Digital teaching as an instrument for cross-location teaching networks in medical informatics: opportunities and challenges

Abstract

The increasingly digitized healthcare system requires new skills from all those involved. In order to impart these competencies, appropriate courses must be developed at educational institutions. In view of the rapid development of new aspects of digitization, this presents a challenge; suitable teaching formats must be developed successively. The establishment of cross-location teaching networks is one way to better meet training needs and to make the necessary spectrum of educational content available. As part of the Medical Informatics Initiative, the HiGHmed consortium is establishing such a teaching network, in the field of medical informatics, which covers many topics related to the digitization of the health care system.

Various problem areas in the German education system were identified that hinder the development of the teaching network. These problem areas were prioritized firstly according to the urgency of the solution from the point of view of the HiGHmed consortium and secondly according to existing competencies in the participating societies. A workshop on the four most relevant topics was organized with experts from the German Society for Medical Informatics, Biometry and Epidemiology (GMDS), the Society for Medical Education (GMA) and the HiGHmed consortium. These are:

1. recognition of exam results from teaching modules that are offered digitally and across locations, and their integration into existing curricula;
2. recognition of digital, cross-location teaching in the teachers' teaching load;
3. nationwide uniform competencies for teachers, in order to be able to conduct digital teaching effectively and with comparable quality;
4. technical infrastructure to efficiently and securely communicate and manage the recognition of exam results between educational institutions.

For all subject areas, existing preliminary work was identified on the basis of working questions, and short- and long-term needs for action were formulated. Finally, a need for the redesign of a technologically supported syntactic and semantic interoperability of learning performance recording was identified.

Keywords: education, distance, medical informatics, computer user training, teaching networks
Introduction

Digitalization has a far-reaching impact on everyday life in almost all areas of society. The demands on students, teachers and university employees are subject to a fundamental change process [1], [2]. According to the Hochschulforum Digitalisierung (the higher education forum for digitalization), the structural conditions at universities are favorable for innovation in digital teaching, since the high degree of autonomy provided by decentralized organization can promote innovation [2]. The establishment of cross-locational teaching networks promises to increase competence at distant institutions [3]. Both the students who are currently studying and professionals can benefit from these teaching networks. Of particular added value, compared with conventional teaching, is the fact that the learners have access to a broader catalogue of educational content. This breadth is particularly important in the digitalization of the health care system [4], [5], since the necessary competencies and structures are only gradually being built up at the various institutions [2] and are usually not fully available [6]. Learning at multiple institutions can enable the most comprehensive acquisition of digital skills for health care professionals.

While cross-location teaching has great potential, the actual implementation poses challenges for both students and teachers. The many technical, didactic, organizational and legal challenges mean that participation in courses across locations is still rare. Even the content and forms of teaching are subject to digital transformation. For example, the digital delivery of teaching materials via online learning platforms is being expanded into web-based self-study units and fully digitalized online courses [7]. The flexibility inherent in digital teaching promises to open up courses to learners in diverse locations [8].

The German Medical Informatics Initiative (MII) is currently researching and developing methods to share medical data from multiple locations for translational health research [9]. As the acquisition of cross-location and multidisciplinary competencies is an important prerequisite for data sharing, HiGHmed, one of the MII members, is explicitly addressing this within a separate subproject, designed to foster the generation, evaluation and analysis of medical data. For this purpose, HiGHmed is developing the digital teaching organization entitled “HiGHmeduca-
tion”, which will facilitate the sustainable operation of a nationwide teaching network. Within HiGHmeducation, individual HiGHmed partners are offering digital teaching modules, which can be accessed by interested parties from any of the partner institutes.

The teaching modules within HiGHmeducation have been designed both for those interested in studying and for those already in employment. The modules are also open to all disciplines of the health care system, such as medical informatics, medicine, nursing and administration, since the requirements for digital skills are increasing in all occupational groups of the health care system. This interdisciplinary structure should also strengthen interprofessional learning and working. Each module represents a thematically complete course with a defined workload and is based on the didactic framework developed for HiGHmeducation [10].

In order to assess whether the didactic methods successfully supported the teaching of each module’s learning objectives, a standardized evaluation is conducted at the end of each module using a German version of the Community of Inquiry questionnaire [11]. The competencies taught in the modules address in particular the current need for increased digital literacy in the training of health care professionals. These competencies are also being addressed by a separate project, which is currently working on the revision of the National Catalogue of Learning Objectives in Medicine (NKLM).

The work of HiGHmeducation, the teaching network, is hampered by various aspects, which are described below; possible solutions to these problems have been offered within other teaching networks; these include the MedizinDidaktikNetz (MDN) as a working group of the Medizinischen Fakultätentag (MFT), the Digitalization Committee of the Gesellschaft für Medizinische Ausbildung (GMA) and the Hochschulforum Digitalisierung (HFD) are active in these areas. For this current paper, this preparatory work by these other organization was utilized as a baseline of knowledge in the planned workshop groups. In particular, the aspects of the German education system, which are hampering HiGHmeducation and were therefore the focus of the planned workshop groups are (in no particular order):

1. Recognition of exam results from other institutions into the curriculum at the home institution.

[9] LMU Munich, University Hospital, Institute for Medical Education, Munich, Germany

[10] Leuphana University Lüneburg, Center for Applied Health Sciences, Lüneburg, Germany
2. High standards in teaching modules require a considerable investment of both time and effort on the part of the teacher in the development and implementation of the modules. In modern teaching it is important for teachers that this time spent be recognized so that it reflects in their teaching load. For this reason, it should be possible to credit digital teaching in the teaching load appropriately, such that it reflects in the compulsory teaching regulations of the German federal states.

3. The transition from the complementary use of digital technologies in conventional courses to fully digital courses requires new skills on the part of teachers. There are numerous German-language materials for acquiring these skills, making it difficult to provide an overview. Teachers face a challenge in selecting relevant continuing education content.

4. When developing a teaching network and cross-locational modules, scalability for larger numbers of participants must be taken into account from the very beginning. This includes participant interaction and examination practices. For this purpose, technical infrastructure must be developed that effectively supports the process in the environment of German universities.

These aspects fall within three primary stakeholders “learners”, “teachers” and “educational institutions”. This is shown in figure 1.

Methods

Due to the overarching relevance of the four identified problem areas, a workshop was organized, comprised of experts from three organizations – firstly, the work group “Technology-based Teaching and Learning in Medicine” from the German Society for Medical Informatics, Biometry and Epidemiology (GMDS); secondly, the committee “Digitalization” from the Society for Medical Education (GMA) and thirdly from the HiGHmed consortium. Prior to the beginning of the workshop, some representatives from the three organizations discussed their respective experiences with regard to cross-locational teaching. In the process, they identified key problem areas (as outlined above), specifically in the areas of teaching culture, strategic orientation, and organizational and legal structure. This list of problem areas was prioritized according to two factors: firstly, the urgency of the problems from the point of view of the HiGHmeducation consortium and secondly, according to the expertise provided by the aforementioned participating professional societies. The four most relevant topics were selected to be addressed in the workshop. The topics were then sent to the participants before the workshop, so that they could indicate their preferences, based on their experience and expertise.

At the beginning of the workshop, the participants were divided into groups according to their preferences and the organizations involved. During the workshop, each group began by clarifying and elaborating upon the specifics of the defined problem area, as each area had only been briefly outlined in advance. Each member of these groups contributed their experiences of both the scope of the problem and potential solutions. The solutions from these discussions were then collected and amalgamated into the results; these are presented sequentially below.

1. Recognition of exam results and integration into existing curricula

Introduction

The teaching experience of the experts present at the workshop shows that the recognition of exam results from other universities is an important prerequisite for increasing participation in external modules. This is due both to the fact that the marks are presented with their certificates or diplomas and also the fact that there is less risk of delaying the completion of degrees. The difficulty lies in crossing the institutional boundary – students need to have their participation in external modules recognized at the institution in which they are enrolled.

Questions

1. What functioning mechanisms already exist for the recognition of exams taken at other universities? How can examination achievements be transferred?
2. Should there be restrictions on the proportion of digital forms of teaching?

Results

In principle, recognition can be granted by decisions on a case-by-case basis or by framework agreements. The former represents a precise, but also complex and time-consuming procedure in which each student submits an individual application for recognition of an examination to the respective home institution. The European Credit Transfer System (ECTS) is a helpful instrument for this procedure: in the grading scale recommended since 2009, the distribution of the grades of other students in the same cohort is provided as additional information to the grade in the local grading system [12].

In order to avoid duplicating workload on case-by-case decision-making, inter-institutional framework agreements should be sought. One example of a framework agreement is the EU-funded Erasmus program. The basis for recognition between two universities here is named the Learning Agreement [13]. Another example, with regard to the transfer of grades, comes from the University of Würzburg; there, they have developed a solution with concrete mechanisms for converting grades between different systems [14]. This solution is based on the Bavarian formula, which compares the best mark, the lowest pass mark and the mark achieved [15].

Another factor that can affect exam recognition is the coursework format – differences between the proportion
of digital formats permitted at the home institution and at external module providers can prevent the recognition of exam results. Such restrictions on the proportion of permitted digital coursework are often stipulated in higher-level legal structures, such as examination regulations and state higher education laws. These restrictions unfortunately contradict the principle which is a key goal of teaching called Constructive Alignment; this principle encourages the orientation of the learning format towards learning goals. It is therefore recommended to adapt statutes in such a way that participation in digital teaching modules can be fully recognized.

Outcome

The following steps should be taken for the recognition of teaching modules from consortium partners: In the short term: Develop a catalogue of the modules offered within the teaching network including which modules are recognized at which institutions. Collecting the grading systems used at all the sites in the network and their lower pass marks (as the other metrics of the Bavarian Formula are standard across Germany). In the long term: Create a framework agreement for the recognition of examinations for all institutions within the teaching network, taking into account heterogeneous grading systems where applicable.

Regarding the restrictions of the teaching forms: In the short term: Develop tools, including standardized text and standardized decision-making support, for the digital formats permitted in examination regulations depending on learning goals. Baumgartner has made concrete suggestions as to which teaching arrangements should be chosen for which types of learning objectives [16]. In the long term: Adaptation of local examination regulations in the teaching network to standardized examination formats.

2. Recognition of digital teaching in teaching load

Introduction

Cross-location teaching raises recognition questions not only on the part of the students, but also on the part of the teachers. The compulsory teaching regulations (LV-VOs) of the federal states define the teaching load. The methods used to calculate the teaching load are usually based on conventional forms of teaching, so it is unclear how the time spent on digital teaching formats should be credited to the teaching load.

Questions

1. On which legal level have universities so far solved the problem of the recognition of cross-location teaching in the teaching budget?
2. How should the recognition of digital teaching be regulated in the LVVOs?

Results

There are already numerous teaching associations that offer country-specific or thematically concentrated teaching. What all of these associations have in common is that recognition in the teaching budget is regulated by the legal structures at the lecturer’s university. This results in a multitude of isolated solutions that do not result in a uniform concept.

In order to be able to make suggestions for the recognition of digital teaching that can be applied nationwide (question 2), the work group compiled an overview of the current regulations from the LVVOs of the federal states based on an overview conducted by the Bavarian medical faculties [17]. It was found that almost all of the examined LVVOs contained regulations for the recognition of digital teaching. Older LVVOs often mention relativizing calculation methods, for example by defining that only a certain proportion of the teaching budget may consist of digital
teaching. Often this proportion was 25%. More recent LVVOs tended not to distinguish between digital and conventional teaching.

Outcome

In the short term: The current regulations hinder the further development of digital teaching because they place artificial limits on the crediting of digital teaching hours toward the teaching load. The recognition of digital teaching should not deviate in any way from face-to-face teaching and should be in relation to the workload involved for learners and their support. In the long term: A nationally harmonized categorization of teaching forms would significantly simplify the crediting of teaching output for conventional and digital teaching forms across state borders. In addition, the work group recommended explicitly promoting the creation of high-quality digital teaching formats by reducing the teaching load, as is already being done at some universities.

3. Which competencies are uniformly required for teachers in the field of e-learning nationwide?

Introduction

The acquisition of appropriate skills for an increasingly digitalized healthcare system makes problem- and task-based learning with authentic digital data and systems essential. In addition, teaching across locations requires online collaborative learning both students and teachers. These evolving educational formats and their contents are constantly changing both the demanded profile of a teacher and the role of teachers in general. They need skills not only in organizing and implementing virtual forms of teaching, but also in designing learning processes and digital learning materials [18].

Question

Which existing concepts define the necessary competencies for teachers in digital, cross-location teaching programs?

Results

Instructional design models such as the sequential ADDIE model (named for its five steps: Analyze, Design, Development, Implement, and Evaluate) [19] or the agile SAM (Successive Approximation Model) [20] provide a framework for the planning, development and delivery of a course. Due to its greater popularity, the workshop focused on the ADDIE model. During the analysis step, teachers should ask themselves what kind of teaching and learning environment they are in. This includes aspects such as the technical infrastructure, financial and content support, the necessary competencies and the target group. The focus should also be on the organization of the curriculum and the possibilities for networking with other institutions. Knowledge of teaching-learning strategies and learning methods is important for the design step. Teachers should be able to weigh up strategies [21], [22] of active learning that are suitable for the goals pursued. In addition, they should be able to consider certain cognitive-psychological prerequisites from multimedia or "cognitive load" theory [23].

In the development step, teachers should be able to use certain teaching-learning techniques such as social interaction, retrieval practice, distributed learning [24] or "worked examples". Knowledge of effective feedback is also essential in order to implement and support the new teaching units in a meaningful way.

For implementation, teachers should know which participants they need to involve in order to create a successful teaching-learning organization. They should also be able to use computer-mediated communication and instruments for "Classroom Orchestration" effectively.

Finally, teachers should be aware of the possibilities for support through evaluation. This way, feedback can initiate a dialogue between those involved, which will constantly improve and update teaching. However, they should also be aware of the control and legitimation function of evaluations in order to be able to check whether all participants have performed their services to achieve the desired teaching quality.

Outcomes

In the short term: Further best practice examples of approaches to the use of digital media should be collected centrally in teaching networks. The common European framework of reference for languages, the "DigCompEdu framework" [18], is an important addition. In the long term: Communities of Practice (CoP) should be established throughout the teaching associations in order to sustainably exchange knowledge and instruments for digital teaching. For selected issues, CoPs across teaching networks could also facilitate a meaningful exchange.

4. Technical infrastructure for recognition management

Introduction

The hitherto practiced recognition of examination achievements between universities is a cumbersome and non-scalable process, i.e. it cannot be carried out with reasonable resources for a large number of participants. The increase in digital teaching formats is expected to lead to a sharp rise in recognition cases. Technical infrastructure is necessary to automate the recognition process and thereby ensure the smooth operation of cross-location teaching. Legal framework conditions such as the basic data protection ordinance must be taken into account.
Questions

1. How are participants authenticated and authorized?
2. How is the proof of the achieved exam performance provided?
3. How are students’ results transmitted and how can the recognition process be supported technically?

Results

For the authentication and authorization of learners, digital identities should be used if possible, which are usually already available at the home institutions. This way, both an uncomplicated access to the course is ensured and students can maintain a sense of belonging to their home institution. For the proof of examination performance, integrity must especially be ensured: the recognizing institution must be able to verify that an examination has been taken exactly as shown in the certificate. If there is a large number of participants, a high degree of automation is likely required. For the automated transfer and recognition of performance, standards should be used, which are proposed in the outcomes below.

Since complete digitalization of the recognition process is not considered feasible in the short term, a step-by-step implementation of these standards should be sought.

Outcome

In the short term: By using the national service DFN-AAI (Authentication and Authorization Infrastructure of the German Research Network) [25] users enrolled for external modules can authenticate themselves with the identity of their home organization. The home organization is clearly defined so that the services provided can be transferred later. Standards such as LTI (“Learning Tools Interoperability”) for the exchange of teaching content at the level of individual lessons) of the IMS Global Learning Consortium [26] or xAPI (“Experience API”) for the exchange of learning activities) of the Advanced Distributed Learning (ADL) [https://xapi.com] initiative can be used to digitalize and transmit the performance certificates.

The support and use of digital certificates of achievement using existing standards such as OpenBadges is helpful to document exam performance [https://openbadges.org/get-started/]. The digitalization of these conventional processes should be the goal for the near future.

In the long-term: Digitalization of paper-based processes is a pragmatic but not sustainable solution. New processes should be defined and introduced that make the best possible use of the existing optimization potential through digitalization. At the MIT Media Lab, for example, so-called BlockCerts were designed on the basis of the Blockchain technology, which represent an open standard for creating, issuing, displaying and verifying certificates [27]. The Blockchain technology is a decentralized architecture for the forgery-resistant storage of information about values (e.g. exam results), which enables an easy exchange between organizations [28]. The implementation of such a modern recognition process is hardly feasible in the short term, as it requires restructuring the existing infrastructure. Nevertheless, the relevance of the process is demonstrated by its designation as a field of application in the German government’s block chain strategy published in 2019 [29].

Summary

The cooperation of the experts from the professional societies and the consortium resulted in a collection of existing solutions, possibilities for action and open questions in the four problem areas. While the outcomes arising from the workshop were discussed in the context of a purely digital teaching format as utilized in HiGHmeducation, the results can also be applied in blended learning arrangements. As strengthened by our experiences with the COVID-19 pandemic, it has been shown that even in a predominantly digital teaching format, in-person classes are still helpful to ensure commitment, practical relevance and a personal learning atmosphere. It is noticeable that all four topics from the workshop presuppose that competence-oriented learning objectives have been defined, which are not only used to develop courses, but also to design legal frameworks and to train teachers.

In addition to the short- and long-term recommendations for action, we see an urgent need for harmonization in the digital representation of exam results in medical informatics. This harmonization, supplemented by syntactic standardization, could offer the possibility to automate the processing of learning objectives received from other institutions. While semantic frameworks in the form of catalogues of learning objectives are developed for specific subjects [30] and are also regularly updated [31], the technical implementation of harmonized specification and exchange formats is an unsolved problem. This makes complex mappings of learning objectives necessary [32] for which supporting tools have been developed [33], but which still require manual work and interpretation. A semantically and syntactically standardized digital recording of learning objectives would not only support the work of curricular integration in teaching networks, but also facilitate the process of implementing subject-specific learning objectives (here in medical informatics), as is already being done in some national catalogs of learning objectives such as the NKLM. Likewise, a newly designed digital recording of learning achievements would considerably simplify the transfer of certified learning achievements across locations.

Based on the results of the workshop, we consider a national action plan and a superordinate institution on the topic of digitalization in university teaching of medical informatics to be a necessary and meaningful intervention to bundle different activities in this area [6]. This institution could be developed from the field of medical informatics following the example of the MFT working group MedizinDidaktikNetz [34]. Possible patrons of such a
network could be the Society for Medical Informatics, Biometry and Epidemiology (GMDS) or an organization on the level of the Medical Informatics Initiative (MII). We consider the patronage of such a network to be an important strategic question and plan a further workshop for the next steps, the objective of which is to develop a more precise structure for a network for digital teaching in medical informatics. In this context, cooperation with working groups of the MFT, the GMA, and the HDF will be sought so that generic results can be shared and mutual needs and offers can be coordinated. This may include other thematically related working groups, such as the GMA’s Human Resources and Organizational Development Committee on questions of the necessary competencies for teaching staff. The cooperation between the various participants that has begun here provides a basis for the further development of the German educational landscape in the area of cross-institutional cooperation in the field of digitalization in the health care professions. The continuation of the successful cooperation was supported by all participants. Further workshops and joint publications will be organized. The authors are looking forward to external impulses as well as further experts who are interested in active participation.

Acknowledgements

We thank all participants of the workshop (study group) for their active participation: Marianne Behrends, Christoph Bohne, Barbara Braun, Bas de Leng, Jasmin Decker, Thomas Deserno, Cornelia Fiessler, Peter Heuschmann, Ina Hoffmann, Thomas Koehler, Martin Lemos, Christoph Rensing, Eugenia Rinaldi, Bernd Romeike, Julian Varghese, Joana Warnecke. Special thanks to Alexander Whillier for editing the English article version.

Funding

This work was supported by the Federal Ministry of Education and Research under grant number 01ZZ1802A.

Competing interests

The authors declare that they have no competing interests.

References

1. Bischof L, von Stuckrad T. Die digitale (Re)volution? Chancen und Risiken der Digitalisierung akademischer Lehre. Gütersloher Centrum für Hochschulentwicklung gGmbH; 2013.
2. Hochschulforum Digitalisierung. The Digital Turn - Hochschulbildung im Digitalen Zeitalter. Berlin: Hochschulforum Digitalisierung; 2016. Zugänglich unter/available from: https://hochschulforumdigitalisierung.de/sites/default/files/dateien/Abschlussbericht.pdf
3. Breitner M, Guhr N. ATLANTIS: Ein nachhaltiger Lehrverbund der Wirtschaftsinformatik. Hannover: Technische Informationsbibliothek; 2018. DOI: 10.5546/37818
4. Müller H, Was die Digitalisierung im Gesundheitswesen erfordert. ÄrzteZ. 2019. Zugänglich unter/available from: https://www.aerztezeitung.de/Wirtschaft/Digitalisierung-erfordert-Qualifikation-und-Vertrauen-139198.html
5. Kuhn S, Frankenhauser S, Tolks D. Digitale Lehr- und Lernangebote in der medizinischen Ausbildung. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz. 2018;61(2):201-209. DOI: 10.1007/s00103-017-2673-z
6. Haag M, Igel C, Fischer MR; German Medical Education Society (GMA), Committee “Digitization - Technology-Assisted Learning and Teaching”; Joint working group “Technology-enhanced Teaching and Learning in Medicine (TeLL)" of the German Association for Medical Informatics, Biometry and Epidemiology (gmds) and the German Informatics Society (GI). Digital teaching and digital medicine: A national initiative is needed. GMS J Med Educ. 2018;35(3):Doc43. DOI: 10.3205/zma001189
7. Fisher DH, Fox A. Report on the CCC-CRA Workshop on Multidisciplinary Research For Online Education. Washington, DC: Computing Community Consortium of the Computing Research Association; 2013. Zugänglich unter/available from: https://my.vanderbilt.edu/douglasfisher/files/2014/02/MROEFinalReport.2.12.14.pdf
8. ELAN e.V. Academic Teaching and Learning Network in Information Systems. Oldenburg: ELAN; 2020. Zugänglich unter/available from: https://www.elan-ev.de/projekte_atlantis.php
9. Knaup P, Deserno T, Prokosch HU, Sax U. Implementation of a National Framework to Promote Health Data Sharing. Yearb Med Inform. 2018;27(01):302-304. DOI: 10.1055/s-0038-1641210
10. Behrends M, Benning NH, Witte ML, Hoffmann I, Bott OJ. Didactical Framework for Cross-Location Online Learning Modules on Medical Informatics. In: Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie, 64. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS). Dortmund, 08.-11.09.2019. Düsseldorf: German Medical Science GMS Publishing House; 2019. DocAbstr. 193. DOI: 10.3205719gmds120
11. Ammenwerth E, Hackl W. Übersetzung und Validierung des Community of Inquiry-Instruments zur Messung erfolgreicher Lernprozesse in online-gestützten Lernsettings. In: Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie, 62. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS). Oldenburg, 17.-21.09.2017. Düsseldorf: German Medical Science GMS Publishing House; 2017. DocAbstr. 193. DOI: 10.3205/17gmds004
12. Generaldirektion Bildung Jugend Sport und Kultur (Europäische Kommission). ECTS Leitfaden 2015. Brüssel: Europäische Kommission, Generaldirektion Bildung Jugend Sport und Kultur; 2017.
13. European Commission. Erasmus+ Learning Agreement, Brussels: European Commission; 2019. Zugänglich unter/available from: https://ec.europa.eu/programmes/erasmus-plus/resources/documents/applicants/learning-agreement_en
14. Julius-Maximilians-Universität Würzburg. Prüfungs- und Studienordnung für das Zusatzstudium Translational Medicine. Würzburg: Julius-Maximilians-Universität Würzburg; 2018. Zugänglich unter/available from: http://www.uni-wuerzburg.de/amti_veroeffentlichungen/2018-36
Corresponding author:
Nils-Hendrik Benning
Heidelberg University Hospital, Institute of Medical Biometry and Informatics, Im Neuenheimer Feld 130.3, D-69120 Heidelberg, Germany
Nils.Benning@med.uni-heidelberg.de

Please cite as
Benning NH, Haag M, Knapa P, Krefting D, Haag M, Knapa P, Krefting D, Rienhoff O, Suhr M, Hege I, Tolks D. Digital teaching as an instrument for cross-location teaching networks in medical informatics: opportunities and challenges. GMS J Med Educ. 2020;37(6):Doc56. DOI: 10.3109/0142159X.2018.1487047

This article is freely available from
https://www.egms.de/en/journals/zilla/2020-37/zma001349.shtml

Received: 2020-02-17
Revised: 2020-07-26
Accepted: 2020-10-01
Published: 2020-11-16

Copyright
©2020 Benning et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Digitale Lehre als Instrument für standortübergreifende Lehrverbünde in Medizinischer Informatik: Chancen und Herausforderungen

Zusammenfassung

Das zunehmend digitalisierte Gesundheitswesen erfordert neue Kompetenzen von allen Beteiligten. Um diese Kompetenzen vermitteln zu können, müssen an den Bildungsinstitutionen entsprechende Lehrveranstaltungen entwickelt werden. Dies ist angesichts der rasanten Entwicklung neuer Digitalisierungsaspekte eine Herausforderung; passende Lehrformate müssen sukzessive aufgebaut werden. Die Etablierung standortübergreifender Lehrverbünde ist eine Möglichkeit, den Ausbildungsbedarf besser zu decken und die notwendige Bandbreite an Bildungsinhalten verfügbar zu machen. Im Rahmen der Medizininformatik-Initiative wird im HiGHmed-Konsortium ein solcher Lehrverbund im Fachgebiet der Medizinischen Informatik aufgebaut, in welches viele Themen der Digitalisierung des Gesundheitswesens fallen.

Dabei wurden verschiedene Problemfelder im deutschen Bildungswesen identifiziert, welche den Aufbau des Lehrverbundes hemmen. Diese Problemfelder wurden unter Beachtung der Dringlichkeit der Lösung aus Sicht des HiGHmeducation Konsortiums und andererseits nach vorhandenen Kompetenzen in den teilnehmenden Fachgesellschaften priorisiert. Zu den vier relevantesten Themen wurde ein Workshop mit Fachleuten der deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), der Gesellschaft für Medizinische Ausbildung (GMA) und des HiGHmed Konsortiums ausgerichtet. Diese sind:

1. Anerkennung von Prüfungsleistungen aus Lehrmodulen, welche digital und standortübergreifend angeboten werden, und Integration in bestehende Curricula;
2. Anerkennung digitaler, standortübergreifender Lehre im Deputat der Lehrenden;
3. bundesweit einheitliche Kompetenzen für Lehrende, um digitale Lehre effektiv und mit vergleichbarer Qualität betreiben zu können;
4. technische Infrastrukturen, um die Anerkennung zwischen Bildungseinrichtungen effizient und sicher kommunizieren und verwalten zu können.

Für alle Themengebiete wurden anhand von Arbeitsfragen existierende Vorarbeiten identifiziert sowie kurz- und langfristige Handlungsbedarfe formuliert. Abschließend wurde themenübergreifend ein Bedarf für die Neugestaltung einer technologisch unterstützten syntaktischen und semantischen Interoperabilität der Erfassung von Lernleistungen festgestellt.

Schlüsselwörter: Ausbildung, Fernunterricht, medizinische Informatik, Computer-Anwenderschulung, Lehernetzwerke

Nils-Hendrik Benning¹,²
Martin Haag²,⁴,⁵
Petra Knaup¹,²
Dagmar Krefting²,⁶,⁷
Otto Rienhoff²,⁶
Markus Suhr²,⁶
Inga Hege³,⁸
Daniel Tolks⁵,⁹,¹⁰

¹ Universitätäsklinikum Heidelberg, Institut für Medizinische Biometrie und Informatik, Heidelberg, Deutschland
² HiGHmed Konsortium, AG Lehre, Heidelberg, Deutschland
³ Hochschule Heilbronn, GECKO-Institut für Medizin, Informatik und Ökonomie, Heilbronn, Deutschland
⁴ Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie, AG Technologiegestütztes Lehren und Lernen in der Medizin, Deutschland
⁵ Gesellschaft für Medizinische Ausbildung, Ausschuss Digitalisierung - Technologie-unterstütztes Lernen und Lehren, Erlangen, Deutschland
⁶ Universitätsmedizin Göttingen, Institut für Medizinische Informatik, Göttingen, Deutschland
⁷ Hochschule für Technik und Wirtschaft Berlin, Berlin, Deutschland
⁸ Universität Augsburg, Medizinische Fakultät, Augsburg, Deutschland
⁹ Klinikum der Universität München, Institut für
Einleitung

Digitalisierung hat einen weitreichenden Einfluss auf den Alltag in nahezu allen Bereichen der Gesellschaft und die Anforderungen an Studierende, Lehrende und Hochschulangestellte sind einem grundlegenden Veränderungsprozess unterworfen [1], [2]. Laut Hochschulforum Digitalisierung sind die strukturellen Voraussetzungen an Hochschulen günstig für Innovationen in der digitalen Lehre, da das hohe Maß an Autonomie durch dezentrale Organisation Innovation fördern kann [2].

Die Etablierung standortübergreifender Lehrverbünde verspricht eine Kompetenzerweiterung an entfernten Institutionen [3]. Hiervon können sowohl Lernende profitieren, welche in einem Studium befinden, als auch solche, die bereits in ihrem Beruf aktiv sind. Der Mehrwert gegenüber konventioneller Lehre besteht insbesondere darin, dass die Lernenden auf einen breiteren Katalog an Bildungsinhalten zugreifen können. Diese Breite ist insbesondere in den am digitalisierten Gesundheitswesen interessierten Berufen erforderlich, da die notwendigen Kompetenzen erst sukzessive an den verschiedenen Institutionen aufgebaut werden [2] und meist nicht vollständig vorhanden sind [6]. So ermöglicht das Lernen an mehreren Institutionen den umfassendsten Erwerb von Digitalkompetenzen für Gesundheitsberufe.

Während das Potenzial standortübergreifender Lehre groß ist, stellt die tatsächliche Durchführung sowohl Lernende als auch Lehrende vor Herausforderungen. Diese sind technischer, didaktischer, organisatorischer sowie rechtlicher Natur, so dass die standortübergreifende Teilnahme an Lehrveranstaltungen nach wie vor eine Ausnahme ist. Auch Lehrinhalte und Lehrformen unterliegen der digitalen Transformation. So wird die digitale Bereitstellung von Lehrmaterialien auf online Lernplattformen zu webbasierten Selbstlerninhalten und vollständig digitalisierten Online-Kursen erweitert [7]. Digitale Lehre verspricht, Lehrveranstaltungen flexibel für Lernende verschiedener Standorte zu öffnen [8].

Die deutschlandweite Medizininformatik-Initiative (MII) erforscht und entwickelt derzeit Methoden, wie medizinische Daten aus der Versorgung standortübergreifend für die translationale Gesundheitsforschung geteilt werden können [9]. Als wichtige Voraussetzung für die gemeinsam
1. Anerkennung von Prüfungsleistungen anderer Institutionen und die Integration in Curricula an der Heimatinstitution der Lernenden: Diese ist wichtig, um eine standortübergreifende Modulteilnahme zu motivieren.

2. Der hohe Qualitätsanspruch an die Lehrmodule fordert einen bedeutenden Aufwand bei der Modulentwicklung, und -durchführung. Die Anerkennung dieses Aufwands ist für die Lehrenden wichtig, um auch mit modernen Lehrformen ihrer beruflichen Lehrverpflichtung nachzukommen. Aus diesem Grund sollte digitale Lehre im Lehrdeputat in den Lehrverpflichtungsverordnungen der Bundesländer angemessen auf die Lehrverpflichtung angerechnet werden können.

3. Der Übergang von der ergänzenden Verwendung digitaler Technologien in konventionellen Lehrveranstaltungen zu digitalen Lehrveranstaltungen erfordert neue Kompetenzen der Lehrenden. Zum Erwerb dieser Kompetenzen existieren zahlreiche deutschsprachige Materialien, sodass ein Überblick schwerfällt. Lehrende stehen bei der Auswahl relevanter Fortbildungsinhalte einer Herausforderung gegenüber.

4. Bei der Entwicklung eines Lehrverbundes ist von Beginn an zu beachten, dass die standortübergreifenden Mechanismen so skalierbar sind, dass sie auch für größere Teilnehmerzahlen mit adäquatem Aufwand zu bewältigen sind. Besonders wichtig dabei ist die Verwaltung der erbrachten Prüfungsleistungen. Hierzu sollen technische Infrastrukturen entwickelt werden, die den Prozess effektiv im Umfeld deutscher Hochschulen unterstützen.

Die behandelten Aspekte lassen sich den primären Stakeholdern „Lernende“, „Lehrende“ und „Bildungsinstitutionen“ zuordnen. Diese Zuordnung sowie der Aufbau dieser Arbeit sind in Abbildung 1 dargestellt.

Methoden

Aufgrund der übergreifenden Relevanz der beschriebenen Problemfelder wurde ein Workshop mit Fachleuten der AG „Technologiegestütztes Lehren und Lernen in der Medizin“ der deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS), des Ausschusses „Digitalisierung“ der Gesellschaft für Medizinische Ausbildung (GMA) und des HiGHmed Konsortiums ausgerichtet. Vertretende der drei Institutionen haben zunächst bestehende Problemfelder und Vorерfahrungen der Gruppen in Bezug auf standortübergreifende Lehre identifiziert. Dabei wurden Problemfelder im Bereich der Lehrkultur, strategischen Ausrichtung, sowie in organisatorischen wie rechtlichen Belangen identifiziert. Die Liste dieser Problemfelder wurde priorisiert: Einerseits nach der Dringlichkeit der Lösung der Probleme aus Sicht des HiGHmed Konsortiums und andererseits nach vorhandenen Kompetenzen in den teilnehmenden Fachgesellschaften. Die vier relevantesten Themen wurden ausgewählt, um diese im Workshop zu bearbeiten.

Anschließend wurden die Themen verschliffentlich und den Teilnehmenden vor dem Workshop zur Verfügung gestellt. Diese konnten auf Basis ihrer Vorserfahrungen angeben, auf welchem Thema sie mitarbeiten möchten. Zu Beginn des Workshops wurden die Teilnehmenden gemäß den Präferenzen und den beteiligten Organisationen in Gruppen aufgeteilt. Während des Workshops wurden innerhalb der Gruppen zunächst die Arbeitsfragen präzisiert, dabei wurde nur das Problemfeld durch die vier in der Einleitung genannten Themen vorgegeben, diese wurden durch die Fachleute genauer ausgestaltet. Zunächst haben die Expertengruppen Antworten anhand ihres Vorwissens zusammengetragen. Zum Abschluss des Workshops wurden die Ergebnisse allen Teilnehmenden präsentiert und im Nachgang schriftlich ausgearbeitet.

1. Anerkennung von Prüfungsleistungen und Integration in bestehende Curricula

Einleitung

Die Lehrerfahrung der im Workshop anwesenden Fachleute zeigt, dass die Anerkennung von Prüfungsleistungen, die Lernende an anderen Hochschulen erbringen, eine wichtige Voraussetzung ist, damit die Teilnahme an externen Modulen attraktiv ist. Dies begründet sich einerseits darin, dass sich die Ergebnisse in Leistungsverfahren wie Abschlusszeugnissen oder Urkunden wiederfinden und andererseits darin, dass die Gefahr der Verlängerung von Qualifizierungen geringer ist. Die Besonderheit liegt im Überschreiten der Institutionsgrenze: Es soll insbesondere Studierenden in Hochschulcurricula möglich sein, die Teilnahme an Modulen des Lehrverbunds in dem Curriculum anerkennen zu lassen, in dem sie eingeschrieben sind.

Fragestellung

1. Welche funktionierenden Mechanismen existieren bereits zur Anerkennung von Prüfungsleistungen anderer Hochschulen? Wie können dabei Prüfungsleistungen übernommen werden?
2. Sollte es Einschränkungen bezüglich des Anteils digitaler Lehrformen geben?

Ergebnisse

Grundsätzlich kann eine Anerkennung durch Einzelfallentscheidungen oder Rahmenvereinbarungen erfolgen. Erstere stellen ein präzises, aber auch aufwändiges Verfahren dar, bei welchem jede*r Studierende einen individuellen Antrag auf Anerkennung einer Prüfungsleistung an die entsprechende Heimatinstitution richtet. Ein hilfreiches Instrument für dieses Verfahren stellt das European Credit Transfer System (ECTS) zur Verfügung: In der seit 2009 empfohlenen Notenverteilungsskala wird als Zusatzinformation zur Note im lokalen Notenschema die Verteilung der Noten anderer Studierender derselben Kohorte angegeben [12]. Um wiederkehrende Einzelfall-
Abbildung 1: Identifizierte Themengruppen sortiert nach primären Stakeholdern. Auf dem Workshop behandelte Themengruppen sind weiß unterlegt und nummeriert.

entscheidungen zu vermeiden, sollten Rahmenvereinbarungen in einem Lehrverbund angestrebt werden. Ein Beispiel für eine Rahmenvereinbarung ist das von der EU geförderte Erasmus Programm. Grundlage für die Anerkennungen ist hier das sogenannte Learning Agreement zwischen zwei Hochschulen [13]. In Bezug auf die Notenübernahme besteht ein Lösungsansatz der Universität Würzburg mit konkreten Mechanismen zur Konvertierung der Noten zwischen verschiedenen Systemen [14]. Dieser basiert auf der sogenannten bayerischen Formel, welche die Bestnote, die niedrigste Bestehensnote und die erzielte Note in Relation setzt [15].

Einschränkungen des Anteils digitaler Lehrformen zur Anerkennung einer Prüfungsleistung sind häufig in übergeordneten Rechtsstrukturen wie Prüfungsordnungen und Landeshochschulgesetzen vorgegeben. Diese Einschränkungen widersprechen dem Prinzip des Constructive Alignments, welches die Ausrichtung der Lehrform auf Lernziele beschreibt. Differenzen im zulässigen Anteil digitaler Lehrformen der anerkennenden Institution und der besuchten Lehrveranstaltung einer anderen Institution können die Anerkennung von Prüfungsleistungen verhindern. Deshalb gibt es Satzungen so anzupassen, dass die Teilnahme an digitalen Lehrmodulen in vollem Umfang anerkannt werden kann.

Perspektive

Zur Anerkennung von Lehrmodulen aus Lehrverbünden sollen folgende Schritte eingeleitet werden: Kurzfristig: Erarbeiten eines Katalogs zur Abbildung der Module des Lehrverbundes auf Lehrveranstaltungen in beteiligten Curricula, für die Module anerkannt werden können. Sammeln der verwendeten Benotungssysteme aller Ver bundstandorte und der unteren Bestehensnoten. Langfristig: Schließen einer Rahmenvereinbarung zur Anerkennung von Prüfungsleistungen innerhalb des Lehrverbundes unter Berücksichtigung gegebenenfalls heterogener Benotungssysteme. Bezüglich der Einschränkungen der Lehrformen: Kurzfristig: Erarbeiten von Formulierungs- und Entscheidungshilfen zu Lehrformen in Prüfungsordnungen in Abhängigkeit von Lernzielen. Hierzu gibt es konkrete Vorschläge von Baumgartner, welche Lehr-Arrangements für welche Lernzielarten zu wählen sind [16]. Langfristig: Anpassung der lokalen Prüfungsordnungen im Lehrverbund an harmonisierte Prüfungsformen.

2. Anerkennung digitaler Lehre im Deputat

Einleitung

Standortübergreifende Lehre wirft nicht nur Anerkennungsfragen auf Seiten der Lernenden auf, sondern auch auf Seiten der Lehrenden. Die Lehrverpflichtungsverordnungen (LVVOs) der Bundesländer legen Lehrdeputate fest. Dabei sind die Bemessungsmethoden des Deputatsmeist auf konventionelle Lehrformen ausgelegt, sodass unklar ist, wie der Aufwand für digitale Lehrformate auf das Lehrdeputat angerechnet werden kann.

Fragestellung

1. Auf welcher rechtlichen Ebene lösen Hochschulen die Anerkennung standortübergreifender Lehre im Lehrdeputat bisher?
2. Wie sollte die Anerkennung digitaler Lehre in den LVVOs geregelt werden?

Ergebnisse

Es gibt bereits zahlreiche Lehrverbünde, die länderbezogene oder thematisch konzentrierte Lehre betreiben. Alle diese Verbünde haben gemeinsam, dass die Anerkennung im Lehrdeputat über die rechtlichen Strukturen der jeweiligen Universität der Lehrenden geregelt wird. So entsteht eine Vielzahl von Insellösungen, die kein einheitliches Konzept ergeben. Um bundesweit anwendbare Vorschläge zur Anerkennung digitaler Lehre machen zu können (Frage 2), erarbeitete die Arbeitsgruppe eine Übersicht der aktuellen Regelungen aus den LVVOs der Länder auf Grundlage der Über-
Perspektive

Kurzfristig: Die derzeitigen Regelungen behindern die Weiterentwicklung digitaler Lehre durch artifizielle Grenzen der Anrechnung digitaler Lehrleistungen auf das Lehrdeputat. Die Anerkennung digitaler Lehre sollte in keiner Weise von der Präsenzlehre abweichen und in Relation zum entstehenden Arbeitsaufwand für die Lehrenden und deren Betreuung stehen. Langfristig: Eine bundesweit harmonisierte Kategorisierung von Lehrformen würde die Anrechnung digitaler Lehrleistungen für konventionelle und digitale Lehrformen über Ländergrenzen hinweg deutlich vereinfachen. Darüber hinaus empfiehlt die Arbeitsgruppe, die Erstellung von hochwertigen digitalen Lehrformaten durch Lehrdeputatsreduktionen explizit zu fördern, wie dies bereits an einigen Hochschulen praktiziert wird.

3. Welche Kompetenzen sind für Lehrende im Bereich E-Learning national einheitlich notwendig?

Einleitung

Der Erwerb von geeigneten Kompetenzen für ein immer stärker digitalisiertes Gesundheitswesen macht ein problem- und aufgabenbasiertes Lernen mit authentischen digitalen Daten und Systemen unerlässlich. Zudem erfordert standortübergreifende Lehre webbasiertes kollaboratives Lernen. Diese Bildungsformate und -inhalte über Ländergrenzen hinweg deutlich vereinfachen. Darüber hinaus empfiehlt die Arbeitsgruppe, die Erstellung von hochwertigen digitalen Lehrformaten durch Lehrdeputatsreduktionen explizit zu fördern, wie dies bereits an einigen Hochschulen praktiziert wird.

Fragstellung

Welche bestehenden Konzepte definieren die notwendigen Kompetenzen für Lehrende in digitalen, standortübergreifenden Lehrangeboten?

Ergebnisse

Instruktionsdesign-Modelle wie zum Beispiel das sequenzielle ADDIE-Modell (Analyze, Design, Development, Implement, and Evaluate) [19] oder das agile SAM (Successive Approximation Model) [20] geben einen Rahmen für die Planung, Entwicklung und Durchführung einer Lehrveran-
4. Technische Infrastrukturen zur Anerkennungsverwaltung

Einleitung

Die bisher praktizierte Anerkennung von Prüfungsleistungen zwischen Universitäten ist ein umständlich und nicht-skalierbar, das heißt nicht mit vertretbaren Ressourcen für eine große Zahl von Teilnehmenden durchführbar. Durch die Zunahme von digitalen Lehrformaten ist mit einer starken Zunahme von Anerkennungsfällen zu rechnen. Eine technische Infrastruktur ist notwendig, um den reibungslosen Betrieb der standortübergreifenden Lehre gewährleisten zu können. Dabei sind rechtliche Rahmenbedingungen wie beispielsweise die Datenschutzgrundverordnung zu berücksichtigen.

Fragestellung

1. Wie erfolgen die Authentifizierung und Autorisierung der Teilnehmenden?
2. Wie erfolgt der Nachweis der erbrachten Prüfungsleistungen?
3. Wie erfolgt die Übermittlung der erbrachten Leistungen und wie kann der Anerkennungsprozess technisch unterstützt werden?

Ergebnisse

Für die Authentifizierung und Autorisierung der Lernenden sollten nach Möglichkeit digitale Identitäten genutzt werden, welche in der Regel bereits an den Heimatinstitutionen vorhanden sind. So ist einerseits eine unkomplizierte Zugriffsmöglichkeit auf das Lehrangebot zu erlangen und andererseits bleibt das Zugehörigkeitsgefühl des Lernenden zur Heimatomorganisation erhalten. Für den Nachweis einer Prüfungsleistung muss insbesondere die Integrität sichergestellt werden: Die anerkannte Institution muss prüfen können, dass eine Prüfungsleistung genauso wie im Nachweise dargestellt abgelegt wurde. Bei einer großen Zahl an Teilnehmenden ist ein hoher Grad an Automatisierung erforderlich. Für die automatisierte Übermittlung und Anerkennung von Leistungen sollten Standards genutzt werden, welche in der Perspektive vorgeschlagen werden. Da eine vollständige Digitalisierung des Anerkennungsprozesses kurzfristig als nicht machbar angesehen wird, sollte eine stufenweise Implementierung dieser Standards angestrebt werden.

Perspektive

Kurzfristig: Durch die Nutzung des nationalen Dienstes DFN-AAI (Authentifizierungs- und Autorisierungsinfrastruktur des Deutschen Forschungsnetzes) kann in Lehrverbünden erreicht werden, dass Nutzende sich an verschiedenen Hochschulen mit der Identität ihrer Heimatomorganisation authentifizieren können. Dabei ist die Heimatomorganisation eindeutig definiert, sodass später die erbrachten Leistungen übermittelt werden können. Zur Digitalisierung der Leistungsnachweise und deren Übermittlung können Standards wie LTI („Learning Tools Interoperability“) zum Austausch von Lehrinhalten auf Ebene einzelner Lektionen) des IMS Global Learning Consorti ums (26) oder xAPI („Experience API“ zum Austausch von Lernaktivitäten) der Advanced Distributed Learning (ADL) Initiative eingesetzt werden. Eine Unterstützung und Nutzung von digitalen Leistungsbescheinigungen unter Nutzung vorhandener Standards wie OpenBadges ist hilfreich, um Prüfungsleistungen zu dokumentieren. Die Digitalisierung dieser konventionellen Prozesse sollte zeitnah angestrebter werden. Langfristig: Die Digitalisierung der papierbasierten Prozesse ist zwar eine pragmatische aber keine nachhaltige Lösung. Es sollten neue Prozesse definiert und eingeführt werden, welche das vorhandene Optimierungspotential durch Digitalisierung bestmöglich nutzen. So wurden beispielsweise am MIT Media Lab auf Basis der Blockchain-Technologie sogenannte BlockCerts entworfen, die einen offenen Standard zum Erstellen, Ausstellen, Anzeigen und Verifizieren von Zertifikaten darstellen [27]. Die Blockchain-Technologie ist eine dezentrale Architektur zur fälschungssicheren Speicherung von Informationen über Werte (z. B. Prüfungsleistungen), welche einen einfachen Austausch zwischen Organisationen ermöglicht [28]. Die Umsetzung eines solchen modernen Anerkennungsprozesses ist kurzfristig kaum umsetzbar, da dies eine Restrukurierung der Infrastruktur erfordert. Dennoch zeigt sich die Relevanz unter anderem durch die Benennung als ein Anwendungsfeld in der 2019 veröffentlichten Blockchain-Strategie der Bundesregierung [29].

Zusammenfassung und Ausblick

Die Zusammenarbeit der Fachleute aus den Fachgesellschaften und dem Konsortium resultierte in einer Sammlung von existierenden Lösungen, Handlungsmöglichkeiten und offenen Fragen in den vier Problemfeldern. Während der Workshop für die rein digitale Lehre in HiGHmeducation geplant war, sind die Ergebnisse ebenso für Blended-Learning Arrangements nutzbar. Nicht zuletzt durch die COVID-19 Pandemie hat sich gezeigt, dass auch bei einer überwiegend digitalen Lehre, Präsenztermine weiterhin hilfreich sind, um Verbindlichkeit, Praxisbezug und eine persönliche Lernatmosphäre sicherzustellen. Es ist auffällig, dass alle Themengebiete des Workshops voraussetzen, dass kompetenzbasierte Lernziele definiert werden, anhand derer nicht nur Lehrveranstaltungen entwickelt, sondern auch rechtliche Rahmenbedingungen gestaltet sowie Lehrende fortgebildet werden. Neben den kurz- und langfristigen Handlungsempfehlungen sehen wir dringenden Bedarf im Bereich der Harmonisierung einer digital erfassten Version von Lernleistungen der Medizinischen Informatik. Diese harmonisierte Version könnte ergänzt mit einer syntaktischen Standardisierung die Möglichkeit zur automatisierten Verarbei-
tung von Lernzielen bieten. Während semantische Rahmenwerke in Form von Lernzielkatalogen fachspezifisch erarbeitet werden [30] und auch regelmäßig aktualisiert werden [31], stellt die technische Umsetzung von harmonisierten Spezifikations- und Austauschformaten ein bisher ungelöstes Problem dar. Dies macht aufwendige Mappings von Lernzielen nötig [32] für welche zwar unterstützende Werkzeuge entwickelt wurden [33], aber weiterhin manuelle Arbeit und Interpretation notwendig ist. Eine semantisch und syntaktisch standardisierte digitale Erfassung von Lernzielen würde nicht nur die Arbeit zur curricularen Integration in Lehrverbünden wesentlich unterstützen, sondern auch den Prozess der Umsetzung von fachspezifisch erarbeiteten Lernzielen (hier in Medizinischer Informatik) erleichtern, so wie dies teilweise bereits in nationalen Lernzielkatalogen wie dem NKLM erfolgt. Ebenso würde eine neu gestaltete digitale Erfassung von Lernleistungen die standortübergreifende Übertragung von attestierten Lernleistungen erheblich vereinfachen.

Auf Basis der Ergebnisse des Workshops erachten wir einen nationalen Aktionsplan sowie eine übergeordnete Institution zum Thema Digitalisierung in der Hochschullehre zur Medizininformatik als eine notwendige und sinnvolle Intervention, um unterschiedliche Aktivitäten in diesem Bereich zu bündeln [6]. Diese Institution könnte aus der Fachrichtung der Medizinischen Informatik nach dem Vorbild der MFT-Arbeitsgruppe MedizinDidaktikNetz [34] entwickelt werden. Mögliche Träger eines solchen Verbundes könnten die Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS) oder auch eine Organisation auf Ebene der Medizininformatik-Initiative (MII) sein. Die Trägerschaft eines solchen Verbundes erachten wir als eine wichtige strategische Frage und sehen für nächste Schritte einen weiteren Workshop vor, dessen Zielsetzung eine genauere Ausgestaltung eines Verbundes zur digitalen Lehre in der Medizininformatik sein soll. Dabei werden Kooperationen mit Arbeitsgruppen des MFT, der GMA sowie des HFD angestrebt, sodass generische Ergebnisse gemeinsam genutzt werden können und gegen seitige Bedarfe und Angebote koordiniert werden können. Dies kann weitere thematisch verwandte Arbeitsgruppen einschließen, wie beispielsweise den Ausschuss Personal- und Organisationsentwicklung der GMA zu Fragen der notwendigen Kompetenzen für Lehrende. Die hier begonnene Kooperation der verschiedenen Beteiligten bietet eine Grundlage zur Weiterentwicklung der deutschen Bildungslandschaft im Bereich der institutionsübergreifenden Zusammenarbeit auf dem Gebiet der Digitalisierung in den Gesundheitsberufen. Die Fortsetzung der erfolgreichen Kooperation wurde von allen Teilnehmenden befürwortet. Es werden weitere Workshops und gemeinsame Publikationen organisiert werden. Die Autoren freuen sich über externe Impulse sowie weitere Fachkundige.

Danksagungen
Wir danken allen Beteiligten des Workshops (Studiengruppe) für die aktive Mitwirkung: Marianne Behrends, Christoph Bohne, Barbara Braun, Bas de Leng, Jasmin Decker, Thomas Deserno, Cornelia Fiessler, Peter Heuscha mann, Ina Hoffmann, Thomas Koehler, Martin Lemos, Christoph Rensing, Eugenia Rinaldi, Bernd Romeike, Julian Varghese, Joana Warnecke. Ein besonderer Dank gilt Alexander Whillier für das Lektorat der englischen Artikelversion.

Förderung
Diese Arbeit wurde durch das Bundesministerium für Bildung und Forschung unter dem Förderkennzeichen (grant number) 01ZZ1802A unterstützt.

Interessenkonflikt
Die Autor*innen erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Literatur
1. Bischof L, von Stuckrad T. Die digitale (R)evolution? Chancen und Risiken der Digitalisierung akademischer Lehre. Gütersloh: Centrum für Hochschulentwicklung gGmbH; 2013.
2. Hochschulforum Digitalisierung. The Digital Turn - Hochschulbildung im Digitalen Zeitalter. Berlin: Hochschulforum Digitalisierung; 2016. Zugänglich unter/available from: https://hochschulforumdigitalisierung.de/sites/default/files/Dateien/Abschlussbericht.pdf
3. Breitner M, Guhr N. ATLANTIS: Ein nachhaltiger Lehrverbund der Wirtschaftsinformatik. Hannover: Technische Informationsbibliothek; 2018. DOI: 10.5546/37818
4. Müller H. Was die Digitalisierung im Gesundheitswesen erfordert. ÄrzteZ. 2019. Zugänglich unter/available from: https://www.aerztezeitung.de/Wirtschaft/Digitalisierung-erfordert-Qualifikation-und-Vertrauen-139198.html
5. Kuhn S, Frankenhauser S, Tolks D. Digitale Lehr- und Lernangebote in der medizinischen Ausbildung. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz. 2018;61(2):201-209. DOI: 10.1007/s00103-017-2673-z
6. Haag M, Igel C, Fischer MR. German Medical Education Society (GMA), Committee "Digitization - Technology-Assisted Learning and Teaching"; Joint working group "Technology-enhanced Teaching and Learning in Medicine (TeLL)" of the German Association for Medical Informatics, Biometry and Epidemiology (gmds) and the German Informatics Society (GI). Digital teaching and digital medicine: A national initiative is needed. GMS J Med Educ. 2018;35(3):Doc43. DOI: 10.3205/zma001189
7. Fisher DH, Fox A. Report on the CCC-CRA Workshop on Multidisciplinary Research For Online Education. Washington, DC: Computing Community Consortium of the Computing Research Association; 2013. Zugänglich unter/available from: https://my.vanderbilt.edu/douglasfisher/files/2014/02/MROEFinalReport.2.12.14.pdf

GMS Journal for Medical Education 2020, Vol. 37(6), ISSN 2366-5017
8. ELAN e.V. Academic Teaching and LeArning Network in Information Systems. Oldenburg: ELAN; 2020. Zugänglich unter/available from: https://www.elan-ev.de/projekte_atlantis.php

9. Knapp P, Deserno T, Prokosch HU, Sax U. Implementation of a National Framework to Promote Health Data Sharing, Yearb Med Inform. 2018;27(01):302-304. DOI: 10.1055/s-0038-1641210

10. Behrends M, Benning NH, Witte ML, Hoffmann I, Bott OJ. Didactical Framework for Cross-Location Online Learning Modules on Medical Informatics. In: Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. 64. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS). Dortmund, 08.-11.09.2019. Düsseldorf: German Medical Science GMS Publishing House; 2019. DocAbstr. 32. DOI: 10.3205719gmsd120

11. Ammenwerth E, Hackl W. Übersetzung und Validierung des Community of Inquiry-Instruments zur Messung erfolgreicher Lernprozesse in online-gestützten Lernsettings. In: Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie. 62. Jahrestagung der Deutschen Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie e.V. (GMDS). Oldenburg, 17.-21.09.2017. Düsseldorf: German Medical Science GMS Publishing House; 2017. DocAbstr. 193. DOI: 10.3205/16gmsd004

12. Generaldirektion Bildung Jugend Sport und Kultur (Europäische Kommission). ECTS Leitfaden 2015. Brüssel: Europäische Kommission, Generaldirektion Bildung Jugend Sport und Kultur; 2017.

13. European Commission. Erasmus+ Learning Agreement. Brussels: European Commission; 2019. Zugänglich unter/available from: https://ec.europa.eu/programmes/erasmusplus/resources/documents/applicants/learning-agreement_en

14. Julius-Maximilians-Universität Würzburg. Prüfungs- und Kompetenzverererbung im Rahmen des Erasmus+ Programes. Würzburg: Julius-Maximilians-Universität Würzburg; 2018. Zugänglich unter/available from: http://www.uni-wuerzburg.de/amti_vereinbarungen/2018-36

15. Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. Vereinbarung über die Festsetzung der Gesamtzeit bei ausländischen Hochschulzugangsbewerbungen. Bonn: KMK; 2004. Zugänglich unter/available from: https://www.kmk.org/fileadmin/pdf/2004/Zusatztitel/Zusatztitel_2004.pdf

16. Baumgartner P. Blended Learning Arrangement. In: von Beck U, Sommer W, Siepmann F, editors, E-Learning & Wissensmanagement Jahrbuch 2008. Karlsruhe: KKA; 2008. Zugänglich unter/available from: http://peter.baumgartner.name/wp-content/uploads/2013/08/Baumgartner_2008_Blended-Learning-Arrangements.pdf

17. Müller C, Füngerlings S, Tolks D; E-Learning working group in the Competence Network Medical Education in Bavaria. Teaching load - A barrier to digitalisation in higher education? A position paper on the framework surrounding higher education medical teaching in the digital age using bavaria, germany as an example. GMS J Med Educ. 2018;35(3):Doc34. DOI: 10.3205/zma001138

18. European Commission. European Framework for the Digital Competence of Educators: DigCompEdu, Brussels; European Commission; 2017. Zugänglich unter/available from: https://ec.europa.eu/jrc/sites/jrcsh/files/digcompedu_overview_-_english.pdf

19. Branson RK, Rayner GT, Cox LJ, Furman JP, King FJ, Hannum WH. Interservice Procedures for Instructional Systems Development, Executive Summary and Model. Springfield, VA: US Department of Commerce, National Technical Information Service; 1975. DOI: 10.21236/ADA023892

20. Jung H, Kim YR, Lee H, Shin Y. Advanced instructional design for successful E-learning: Based on the successive approximation model (SAM). Int J E-Learning Corp Gov Heal High Educ. 2019;18(2):191-204.

21. Dunlosky J, Rawson KA, Marsh EJ, Nathan MJ, Willingham DT. Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychol Sci Public Interes. 2013;14(1):4-58. DOI: 10.1177/1529100612453266

22. Schneider M, Preckel F. Variables associated with achievement in higher education: A systematic review of meta-analyses. Psychol Bull. 2017;143(6):565-600. DOI: 10.1037/s0048-1920-52

23. Mayer RE, Moreno R. Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educ Psychol. 2003;38(1):43-52. DOI: 10.1207/S15326985EP3801_6

24. Carpenter SK, Cepeda NJ, Rohrer D, Kang SHK, Pashler H. Using Spacing to Enhance Diverse Forms of Learning: Review of Recent Research and Implications for Instruction. Educ Psychol Rev. 2012;24(3):369-378. DOI: 10.1007/s10648-012-9205-z

25. Verein zur Förderung eines Deutschen Forschungsnetzes e. V. DFN-AAI - Authentifikations- und Autorisierungs-Infrastruktur. Berlin: Verein zur Förderung eines Deutschen Forschungsnetzes e.V.; 2019. Zugänglich unter/available from: https://www.aai.dfn.de

26. IMS Global Learning Consortium Inc. IMS Interoperability Standards. Lake Mary, FL: IMS Global Learning Consortium Inc; 2019. Zugänglich unter/available from: https://www.imsglobal.org/specifications.html

27. Massachusetts Institute of Technology. Blockcerts - The Open Standard for Blockchain Credentials. Massachusetts Institute of Technology; 2020. Zugänglich unter/available from: https://www.blockcerts.org/about.html

28. Wright CS. Bitcoin: A Peer-to-Peer Electronic Cash System. SSRN Electronic Journal. Amsterdam, NL: Elsevier BV; 2019.

29. Bundesministerium für Wirtschaft und Energie. Blockchain-Strategie der Bundesregierung. Berlin: Bundesministerium für Wirtschaft und Energie; 2019. Zugänglich unter/available from: https://www.bmwi.de/Redaktion/DE/Publikationen/Digitale-Welt/blockchain-strategie.html

30. Dugas M, Röhrig R, Stausberg J. Lernzielkatalog medizinische informatik: Wissen und verantwortung. Dtsch Arztebl Intern. 2013;110:A243-A244.

31. Varghese J, Röhrig R, Dugas M; GMDS working group “MI-Education in Medicine”. Welche Kompetenzen in Medizininformatik benötigen Ärztinnen und Ärzte? Update des Lernzielkatalogs für Studierende der Humanmedizin.GMS Med Inform Biom Epidemio.2020;18(01):Doc02. DOI: 10.3205/mime00020

32. Behrends M, Steffens S, Marschollek M. The implementation of medical informatics in the national competence based catalogue of learning objectives for undergraduate medical education (NKLM). Stud Health Technol Inform. 2017;243:18-22.

33. Carpenter SK, Cepeda NJ, Rohrer D, Kang SHK, Pashler H. Using Spacing to Enhance Diverse Forms of Learning: Review of Recent Research and Implications for Instruction. Educ Psychol Rev. 2012;24(3):369-378. DOI: 10.1007/s10648-012-9205-z

34. Lammerding-Koeppel M, Ebert T, Goerlitz A, Karsten G, Nounla I. The implementation of MI-Teaching in Medicine - A web-based tool linking medical educational and information systems. Int J Med Educ. 2015;6:378-384. DOI: 10.3109/0142159X.2015.1047752

Benning et al.: Digitale Lehre als Instrument für standortübergreifende ...
Benning et al.: Digitale Lehre als Instrument für standortübergreifende ...