In Vivo Efficacy of Artemether-Lumefantrine and Chloroquine against *Plasmodium vivax*: A Randomized Open Label Trial in Central Ethiopia

Jimee Hwang,2,9, Bereket Hailegiorgis Alemayehu5, Richard Reithinger4,5, Samuel Girma Tekleyohannes6, Takele Teshi6, Sintayehu Gebresillasie Birhanu6, Leykun Demeke6, David Hoos3, Zenebe Melaku6, Moges Kassa6, Daddi Jima7,8, Joseph L. Malone1, Henry Nettey1,9, Michael Green1, Amanda Poe10, Sheila Akinyi1, Venkatachalam Udhayakumar1, S. Patrick Kachur1, Scott Filler1,11

1 Malaria Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, 2 Global Health Group, University of California San Francisco, San Francisco, California, United States of America, 3 ICAP-Columbia University, New York, New York, United States of America, 4 U.S. Agency for International Development, Addis Ababa, Ethiopia, 5 Research Triangle Institute, Washington, DC, United States of America, 6 ICAP-Columbia University, Addis Ababa, Ethiopia, 7 Ethiopian Health and Nutrition Research Institute, Addis Ababa, Ethiopia, 8 Federal Ministry of Health, Addis Ababa, Ethiopia, 9 School of Pharmacy, University of Ghana, Legon, Ghana, 10 Atlanta Research and Education Foundation, Decatur, Georgia, United States of America, 11 The Global Fund to Fight AIDS, Tuberculosis and Malaria, Geneva, Switzerland

Abstract

Background: In vivo efficacy assessments of antimalarials are essential for ensuring effective case management. In Ethiopia, chloroquine (CQ) without primaquine is the first-line treatment for *Plasmodium vivax* in malarious areas, but artemether-lumefantrine (AL) is also commonly used.

Methods and Findings: In 2009, we conducted a 42-day efficacy study of AL or CQ for *P. vivax* in Oromia Regional State, Ethiopia. Individuals with *P. vivax* monoinfection were enrolled. Primary endpoint was day 28 cure rate. In patients with recurrent parasitemia, drug level and genotyping using microsatellite markers were assessed. Using survival analysis, uncorrected patient cure rates at day 28 were 75.7% (95% confidence interval (CI) 66.8–82.5) for AL and 90.8% (95% CI 83.6–94.9) for CQ. During the 42 days of follow-up, 41.6% (47/113) of patients in the AL arm and 31.8% (34/107) in the CQ arm presented with recurrent *P. vivax* infection, with the median number of days to recurrence of 28 compared to 35 days in the AL and CQ arm, respectively. Using microsatellite markers to reclassify recurrent parasitemias with a different genotype as non-treatment failures, day 28 cure rates were genotype adjusted to 91.1% (95% CI 84.1–95.1) for AL and to 97.2% (91.6–99.1) for CQ. Three patients (2.8%) with recurrent parasitemia by day 28 in the CQ arm were noted to have drug levels above 100 ng/ml.

Conclusions: In the short term, both AL and CQ were effective and well-tolerated for *P. vivax* malaria, but high rates of recurrent parasitemia were noted with both drugs. CQ provided longer post-treatment prophylaxis than AL, resulting in delayed recurrence of parasitemia. Although the current policy of species-specific treatment can be maintained for Ethiopia, the co-administration of primaquine for treatment of *P. vivax* malaria needs to be urgently considered to prevent relapse infections.

Trial Registration: ClinicalTrials.gov NCT01052584

Introduction

Plasmodium vivax transmission is more widely distributed globally than *P. falciparum*, with 2.85 billion people living at risk of its infection [1]. In Ethiopia, malaria is a leading cause of morbidity and mortality, with 14% of all outpatient visits and 9% of hospital admissions being due to malaria in 2009–2010 [2]. Unlike much of Africa, both *P. falciparum* and *P. vivax* substantially contribute to malaria morbidity in Ethiopia, in relative proportions of approx-
imately 60% and 40% [3,4,5], respectively, although their relative proportions vary both temporally and spatially.

With widespread \textit{P. falciparum} resistance to chloroquine (CQ) [6] and sulphadoxine-pyrimethamine (SP) [7,8], in 2004, the Ethiopian Federal Ministry of Health (FMOH) adopted artemether-lumefantrine (AL) as first-line treatment of uncomplicated \textit{P. falciparum} malaria and of mixed infections with both \textit{P. falciparum} and \textit{P. vivax} [9]. Although CQ remains the first-line treatment for \textit{P. vivax} malaria in Ethiopia, AL is used widely for all cases of mixed infections and clinical malaria where laboratory diagnostics to determine the specific malaria species are not available or not done.

Following the first report of CQ-resistant \textit{P. vivax} in 1989 from Papua New Guinea [10], decreased CQ susceptibility has been reported from Indonesia [11,12,13,14], Papua New Guinea [15], Burma [16], Vietnam [17,18], Turkey [19,20], Colombia [21], and Brazil [22]. Overall, CQ-resistant \textit{P. vivax} has remained rare in Africa. In 1996, Ethiopia published its first report of CQ resistance, with 2% (5/255) of study patients on CQ with persistent parasitemia on day 7 [23]. Subsequent reports from Ethiopia documented presence of CQ-resistant \textit{P. vivax}, but at levels not exceeding 5% [24,25,26].

After adopting AL as first-line therapy for uncomplicated \textit{P. falciparum} malaria, mixed infections, and clinically diagnosed malaria, the Ethiopian FMOH scaled up an ambitious plan to provide universal access to prompt malaria diagnosis and treatment –as recommended by the World Health Organization (WHO) [27]– through a network of 15,000 community-level health posts [28]. With the use of multiple-species malaria rapid diagnostic tests (RDTs) to distinguish \textit{P. falciparum} from \textit{P. vivax} infection and expansion of quality malaria microscopy diagnostic capacity, administration of CQ increased in Ethiopia since 2004 in parallel with increased numbers of laboratory confirmed \textit{P. vivax} mono-infections. Since both AL and CQ without primaquine are widely used according to FMOH guidelines for \textit{P. vivax} mono-infections, patients attending the outpatient ward were initially clinically evaluated by the health facility staff; those with fever or a history of fever were referred for malaria microscopy testing (as routinely done). Once a positive \textit{P. vivax} infection was identified by microscopy, the patient was screened for study eligibility criteria. At Bulbula Health Center, all patients attending the outpatient ward were initially clinically evaluated by the health facility staff; those with fever or a history of fever were referred for malaria microscopy testing (as routinely done). Once the patient was noted to have microscopy-confirmed \textit{P. vivax} infection, the study staff screened the patient for inclusion in the study.

After meeting the inclusion criteria and consenting to study enrollment, all patients underwent hemoglobin testing (Hemocue Hb 201+, Angelholm, Sweden) and filter paper blood spot collection. All women aged 13-49 years underwent a urine pregnancy test and those testing positive were excluded from the study. Giemsa-stained thick and thin blood films were prepared according to standard procedures [29] and read by two independent microscopists blinded to the other read and the assigned treatment arms. Parasite density was estimated based on the number of asexual parasites observed against 200 leukocytes per \textmu L. Slides with parasite densities differing by more than 20\% between microscopists were reassessed by a third microscopist, with the third reading considered final. Smears were determined to be negative only after examining 100 high power oil immersion fields.

Patients were enrolled, interviewed and examined by the study clinician. The patients were randomized to standard dosages of oral AL (Coartem\textregistered, Novartis Pharma, Basel, Switzerland) or CQ (Aralen\textregistered, Sanofi-Aventis, US) based on weight according to national policy [9]. Randomization sequence was computer generated by the principal investigator and kept in sealed envelopes. Clinicians enrolled the patients and nurses assigned the patients sequentially according to the sealed envelopes. Artemether-lumefantrine was packaged in fixed-dose combination tablets, each containing 20 mg of artemether and 120 mg of lumefantrine. Artemether-lumefantrine was administered according to the package insert twice daily for three days: patients weighing 5–14 kg, 15–24 kg, 25–34 kg, and ≥ 35 kg were given one tablet, two tablets, three tablets, and four tablets at each of six dosing intervals, respectively. The initial and each morning dose were directly observed by the study staff and given with milk...
biscuits to increase absorption [32,33]. A total of 25 mg base per kg over three days (10 mg base/kg on day 1 and 2, and 5 mg base/kg on day 3) of CQ was administered based on weight using 10 mg/ml syrup or dividing 500 mg tablets accordingly. All patients were monitored for 60 minutes; a full or half a dose was re-administered if the patient vomited the drug within 30 or 31–60 minutes, respectively. If the patient vomited again, he or she was referred to the hospital and withdrawn from the study. Patients were instructed to take the evening dose with food. On follow-up days 1–3, patients taking AL were asked if the drug was taken properly the previous night. In order to facilitate twice daily dosing AL, all patients presenting after 1500 hrs were excluded from the study. Antipyretics were given for temperatures >39°C as per national policy [9]. Ferrous sulfate, folate, and mebendazole (if aged >1 year) were given to all children with hemoglobin <10 mg/dl as per Integrated Management of Childhood Illness guidelines [34]. Quinine (10 mg mg/kg every 8 hours for 7 days), the second-line treatment as per national policy [9], was administered as rescue therapy.

Follow-up

Patients were followed-up for 42 days and asked to return on days 1–3, 7, 14, 21, 28, 35, and 42 post-treatment, as well as any other interim day if ill. The study site facilities were open from 0800 to 1800 hrs, and after hours care was also available. Standardized follow-up included documentation of history-taking to elicit symptoms, adverse events, and any concomitant therapy, and physical examination including axillary temperature measurement. All symptoms elicited during follow-up that were not present on day 0 were classified as an adverse event. For all adverse events, severity, duration, outcome and its likely relatedness to the administered drug were assessed by the clinicians. Adverse events were reported for all enrolled patients. Finger pricks for follow-up blood films were taken on scheduled days 2, 3, 7, 14, 21, 28, 35, 42, and at any unscheduled visit. Hemoglobin was measured weekly and filter papers were collected on day 7 for drug level testing and on any day of recurrent parasitemia (after day 3) for CQ level and parasitemia molecular testing. All filter papers were dried and stored in plastic storage bags with dessicant and humidity indicators. The filter papers for drug level and molecular testing were sent to the U.S. Centers for Disease Control and Prevention in Atlanta, USA. All additional sample investigations such as the drug level and molecular testing were performed by individuals who were blinded to the treatment allocation.

Outcomes

Efficacy was assessed by clinical and parasitological outcomes using WHO definitions, with a 42-day follow-up period [30], with treatment failure defined as 1) clinical deterioration due to P. vivax illness requiring hospitalization in presence of parasitemia; or 2) presence of parasitemia and axillary temperature ≥37.5°C anytime between days 3 and 28/42; or 3) presence of parasitemia on any day between days 7 and 28/42, irrespective of clinical conditions. If no failure was recorded, outcome was classified as a treatment success.

Laboratory Analysis

To refine the identification of recrudescences, three to four drops of blood were collected on filter paper at day 0 prior to treatment, day 7, and on any day of recurrent parasitemia. Blood spots collected on the day of enrollment (day 0) and on the day of failure were used for molecular analysis to determine the genetic identity of the parasites. Blood spots collected on day 7 or day of treatment failure were tested for lumefantrine and CQ drug levels, respectively.

Microsatellite characterization. Eight of the eleven microsatellite markers described by Imwong et al. [35] were chosen for the final analysis in this study. Although marker 2208 amplified only in a subset of samples, it was included in the final analysis, because allelic difference in this locus was useful to differentiate strains. The published PCR protocol [35] was slightly modified by using a commercial PCR MasterMix (Promega, Madison, WI). Length variation in fluorescently-labeled PCR products was determined on an Applied Biosystems Prism 3130xl Avant Genetic Analyzer and the data analyzed using GeneMapper v4.0 (all Applied Biosystems, Foster City, CA). When the sizes of alleles at a microsatellite marker differed by >2 base pairs, they were considered different alleles.

The genetic variation for each microsatellite locus was measured by calculating the expected heterozygosity (H_e) and number of alleles per microsatellite locus (μ). H_e was calculated for each locus as $H_e = \frac{n}{2(n-1)} \left(1 - \sum p_i^2\right)$, where n is the number of isolates sampled and p_i is the frequency of the ith allele. The sampling variance for H_e was calculated as $2(n-1)/n^3$ [36]. Arlequin ver 3.01 (University of Bern, Switzerland) was used to compute H_e [37], and the Excel Microsatellite Toolkit was used to format data for use in Arlequin [38]. When parasites on day 0 and the day of failure were different from each other at one or more loci in their microsatellite profile, then these parasites were considered genetically non-identical and regarded as different strains for the purpose of this study. Recurrent parasitemias with identical genotypes from day 0 were classified as recrudescences (true drug resistance) although this group could include homologous relapses. The PCR-adjusted cure rate (the sum of cases with no recurrent parasites and recurrent with different genotypes) attempts to reduce the contribution from new infections and heterologous relapses representing a refined ‘minimum’ cure rate.

Drug level testing. Lumefantrine levels from day 7 dried blood spots were assessed in all cases of AL recurrent parasitemia. Lumefantrine levels in capillary whole blood were measured from dried blood spots using a modified high-performance liquid chromatographic method [30]. Due to logistical constraints, it was impossible to treat the filter papers with tartaric acid prior to drug level testing. Therefore, the final analysis in this study. Although marker 2208 amplified only in a subset of samples, it was included in the final analysis, because allelic difference in this locus was useful to differentiate strains. The published PCR protocol [35] was slightly modified by using a commercial PCR MasterMix (Promega, Madison, WI). Length variation in fluorescently-labeled PCR products was determined on an Applied Biosystems Prism 3130xl Avant Genetic Analyzer and the data analyzed using GeneMapper v4.0 (all Applied Biosystems, Foster City, CA). When the sizes of alleles at a microsatellite marker differed by >2 base pairs, they were considered different alleles.

The genetic variation for each microsatellite locus was measured by calculating the expected heterozygosity (H_e) and number of alleles per microsatellite locus (μ). H_e was calculated for each locus as $H_e = \frac{n}{2(n-1)} \left(1 - \sum p_i^2\right)$, where n is the number of isolates sampled and p_i is the frequency of the ith allele. The sampling variance for H_e was calculated as $2(n-1)/n^3$ [36]. Arlequin ver 3.01 (University of Bern, Switzerland) was used to compute H_e [37], and the Excel Microsatellite Toolkit was used to format data for use in Arlequin [38]. When parasites on day 0 and the day of failure were different from each other at one or more loci in their microsatellite profile, then these parasites were considered genetically non-identical and regarded as different strains for the purpose of this study. Recurrent parasitemias with identical genotypes from day 0 were classified as recrudescences (true drug resistance) although this group could include homologous relapses. The PCR-adjusted cure rate (the sum of cases with no recurrent parasites and recurrent with different genotypes) attempts to reduce the contribution from new infections and heterologous relapses representing a refined ‘minimum’ cure rate.

Statistical Analysis

Primary efficacy outcome was day 28 cure rates. Secondary outcomes included day 42 cure rates, genotype adjusted minimum cure rates, hematologic outcomes, and fever and parasite clearance. With treatment failure of AL and CQ for P. vivax being reported at ≥5%, 10% was chosen as the estimated therapeutic failure rate. Assuming an estimated cure rate of 90% and a 20% loss to follow-up at 42 days, a sample size of 120 subjects per arm was calculated to result in a 95% exact binomial confidence interval from 82.4%–95.1%. The study was not powered to estimate differences in efficacy across treatment arms or between sites.
All data were entered into both a Microsoft Access (Microsoft, Redmond, WA, USA) study database and the Microsoft Excel (Microsoft, Redmond, WA, USA) standard database developed by WHO [30], and analyzed using SAS 9.2 (SAS Institute, Cary, NC, USA). Data were double-entered and any discrepancies resolved by referring to the original paper form. The cumulative risk of failure was computed for 28 and 42 days of follow-up using a modified intention to treat Kaplan-Meier survival analysis, the most appropriate way to estimate failure rates: parasitological recurrence is classified as treatment failure on the day it occurred [40], where lost to follow-up, withdrawal, and parasitemia with a different species are censored on the last day of follow-up. For survival analyses adjusting for microsatellite results, isolates with different genotype for primary and recurrent parasitemias were censored on the last day of recurrence. Comparisons between groups were made using a χ^2 test or Fisher's exact test for categorical variables and the Student's t-test or Wilcoxon-Mann-Whitney test for continuous variables. A two-sided p-value<0.05 was considered statistically significant.

Results

Patients

Of the 4,426 patients tested from the two study sites, 961 were positive for malaria parasites from October 21 to November 30, 2009. The last date of follow-up occurred on January 11, 2010. Of 672 patients with confirmed P. vivax mono-infections, 242 (217 from Bishoftu and 25 from Bulbula) were enrolled for the in vivo drug efficacy study, with 122 and 120 patients randomized to receive AL or CQ, respectively (Figure 1). At the Bishoftu Malaria Health Center where all presenting patients received microscopy testing, the slide positivity rate was 16.5% (455/2,764), of which P. vivax mono-infection accounted for 83.5% (380/455). At Bulbula Health Center where only suspected malaria cases received microscopy, the slide positivity rate was 30.7% (510/1,662) of which P. vivax mono-infection accounted for 57.3% (292/510). The majority of excluded patients presented late in the afternoon and was therefore not enrolled to ensure appropriate timing of the second AL dose.

Although drug assignment was randomized, there was a statistically significant baseline difference in age ($p=0.03$), weight ($p=0.04$), height ($p=0.05$), and ownership of bed nets with fewer patients in the AL drug arm owning one ($p=0.02$) (Table 1). The other characteristics did not differ significantly, but the study was not powered to compare the drug arms.

Treatment Outcomes

Follow-up was completed for 114 patients to day 28 and 113 to day 42 in the AL arm and 108 patients to day 28 and 107 to day 42 in the CQ arm (Figure 1). Six of 122 patients were lost to follow-up and three withdrew from the study in the AL arm, whereas, ten of 120 patients were lost to follow-up and three withdrew from the CQ arm (Table 2). The total attrition rate was 0.0% for the AL arm and 12.1% in the CQ arm.

Treatment with both AL and CQ resulted in rapid clearance of parasites and reduction of fever. Whereas in the AL arm all patients had cleared their peripheral parasitemia by day 2, 6.0% (7/117) of the patients in the CQ arm had peripheral parasitemia by day 2 and 9.9% (1/113) remained positive on day 3 (Table 3). The difference in day 2 positivity was statistically significant ($p=0.006$). Of those with persistent peripheral parasitemia on day 2, one was lost to follow-up, but the remaining with outcome data did not develop recurrent parasitemia.

In the AL arm, 28 patients (24.3%) presented with recurrent parasitemia by day 28, and 47 (41.6%) by day 42 (Table 2). In the CQ arm, ten patients (9.3%) presented with recurrent parasitemia by day 28 and 34 (31.8%) by day 42 (Table 2). The median time to appearance of recurrent parasitemia was 20 days (range 21–42) in the AL arm and 35 days (range 21–42) in the CQ arm (Table 3). The earliest day of recurrent parasitemia was day 21 for both treatment arms. The PCR uncorrected cure rates at day 28 and 42 in the AL arm were 75.7% (95% CI 66.8–82.5) and 58.9% (95% CI 49.2–67.2), respectively (Table 2 and Figure 2A). The uncorrected cure rates at day 28 and 42 in the CQ arm were 90.8% (95% CI 83.6–94.9) and 68.4% (95% CI 58.7–76.5), respectively (Table 2 and Figure 2A). The day 28 PCR uncorrected cure rate for the CQ arm was higher than the AL arm, which was statistically significant ($p=0.003$). The varying proportion of patients presenting with recurrent parasitemia and the cure rates by study site are shown in Table 2 which suggests higher recurrent parasitemia rates in Bishoftu. However, with such small number of patients from Bulbula the confidence intervals are too wide to draw any meaningful conclusions.

In the AL arm, the median age for those patients with or without recurrent parasitemia was seven and 17.5 years of age, respectively ($p<0.0001$). In the CQ arm, the median age for those patients with or without recurrent parasitemia was nine and 20 years of age, respectively ($p<0.0001$). In both treatment arms, younger age was associated with treatment failure. In the CQ arm, those with recurrent parasitemia had a higher median parasite density (4780 parasites/µL) compared to those without recurrent parasitemia (2120 parasites/µL) which was statistically significant ($p=0.01$).

Laboratory Outcomes

Hematologic response. In the AL arm, median hemoglobin increased from 13.0 g/dL (standard deviation (SD) 2.3) on day 0 to 13.9 g/dL (SD 1.5) on day 42 (Table 3). In the CQ arm, median hemoglobin increased from 13.5 g/dL (SD 2.5) on day 0 to 14.2 g/dL (SD 1.8) on day 42. The difference in median hemoglobin levels between day 28 and 42 was 0.06 g/dL (SD 0.18) in the AL arm and 0.06 g/dL (SD 0.17) in the CQ arm.

Microsatellite analysis of paired samples. Day 0 and day 42 of recurrent parasitemia samples were analyzed for P. vivax strain identity using the size polymorphisms in eight microsatellite loci as reported in Table 4. For the AL arm, 47 pairs were analyzed and 16 pairs were identical at all loci (Table 2). For the CQ arm, 34 pairs were analyzed and 16 pairs were identical at all loci. It is worth noting that most of the microsatellite markers used in this study (except marker 2208) were highly diverse as indicated by high H_E values and several allelic forms existed for all the markers used in this study (Table 4). This data provide further support that these combination of markers can reliably differentiate genetic relatedness of parasite populations in this study. Since paired samples identified as different strains are not true drug resistant infections, the PCR adjusted cure rates for the AL arm at day 28 were refined from 75.7% to 91.1% (95% CI 84.1–95.1) and for the CQ arm from 90.8% to 97.2% (95% CI 91.6–99.1) (Table 2). The day 42 PCR adjusted cure rates were 84.3% (95% CI 75.6–90.1) for the AL arm and 83.6% (95% CI 74.6–89.7) for the CQ arm (Table 2 and Figure 2B). Overall, 49 pairs were different in at least one locus and they were considered different strains (Table S1).

Drug level testing. Day 7 whole blood capillary hemafantrine levels from dried blood spots for the patients in the AL arm with recurrent parasitemia ranged from below detection to 1,537.3 ng/mL (median 446.3 ng/mL). Using previously reported cut-off levels identified to predict P. falciparum treatment failure of
<280 ng/ml [33] and <175 ng/ml [41], 30.4% (14/46) and 19.6% (9/46) of the recurrent samples were below this level, respectively.

Chloroquine and DCQ levels on the day of recurrent parasitemia in the CQ arm ranged from below detection to 485.1 ng/mL. Of those that had recurrent parasitemia by day 28, 30% (3/10) were noted to have CQ+DCQ levels above the minimum effective concentration (i.e. 100 ng/mL). Thus, 2.8% (3/108) of all patients had recurrent parasitemia by day 28 with adequate CQ concentrations: one was caused by the identical P. vivax strain (3-year-old boy) and two were caused by different P. vivax strains (7- and 2-year-old boys).

Adverse Events
Both AL and CQ were well tolerated with no serious adverse events reported. Overall, 48.4% (59/122) of the patients in the AL arm and 50.8% (61/120) in the CQ arm reported at least one adverse event. 8.2% (10/122) of the patients in the AL arm and 12.5% (15/120) in the CQ arm presented with oral ulcers, which

Characteristic	Artemether-lumefantrine	Chloroquine
	N = 122	N = 120
Female, n (%)	46 (37.7%)	38 (31.7%)
Median age, years (range)	11.5 (1–70)	18 (1–65)
Median height, cm (range)	144 (70–183)	159 (75–190)
Median weight, kg (range)	30 (6–79)	48.5 (8–76)
Median temperature, °C (range)	37.0 (35–40.5)	37.0 (35–40.3)
Median hemoglobin, g/dL (range)	13.0 (5.7–17.6)	13.5 (6.9–18)
Geometric Mean Parasite Density (range)	3179 (280–28,400)	2581 (280–42,000)
Owns a bednet, n (%)	51 (41.8%)	68 (56.7%)
IRS in past 12 months, n (%)	64 (52.5%)	72 (60%)

doi:10.1371/journal.pone.0063433.t001
was the most common complaint, followed by nausea/vomiting and cough (Table 5).

Discussion

We show that both AL and CQ are well-tolerated and remain efficacious for early *P. vivax* treatment response involving 242 patients from two sites in central Ethiopia in late 2009. In both treatment arms, no recurrent parasitemias were seen prior to 21 days and there were very few patients that remained microscopy positive beyond day 2 in contrast to high rates of day 2 and 3 positivity seen in Asia with known high grade CQ resistance [13,42]. Albeit low, the CQ arm had higher day 2 positivity compared to the AL arm, which is consistent with conclusions from a recent review of ACTs for *P. vivax* treatment which noted that patients receiving ACTs clear their parasites more quickly (median parasite clearance time = 28.8 hrs) compared to CQ-based monotherapy or non-ACT combination therapies (50.4 hrs) [43].

Although high rates of recurrent parasitemia were noted in both treatment arms, fewer patients receiving CQ presented with recurrent parasitemia by day 28 compared to those receiving AL indicating that CQ may have provided longer post-treatment prophylaxis. Our recurrent *P. vivax* parasitemia findings are higher than some previously reported studies in Ethiopia [24,25,44], but

Table 2. Treatment outcomes after day 28 and 42 of follow-up by treatment arm.

Outcome	Artemether-lumefantrine (n = 122)	Chloroquine (n = 120)		
	Day 28	Day 42	Day 28	Day 42
No treatment outcome, n (%)	8 (6.6)	9 (8.0)	12 (11.1)	13 (12.1)
Lost to follow-up	6	6	9	10
Protocol violation	2	3	3	3
Recurrent parasitemia, n (%)	28 (24.3)	47 (41.6)	10 (9.3)	34 (31.8)
Bishoftu, n/N (%)	28/115 (24.4)	46/115 (40)	8/102 (7.8)	30/102 (29.4)
Bulbula, n/N (%)	0/7 (0)	1/7 (14.3)	2/18 (11.1)	4/18 (22.2)
Cure rate–Survival analysis, % (95% CI)	75.7 (66.8–82.5)	58.8 (49.2–67.2)	90.8 (83.6–94.9)	68.4 (58.7–76.3)
Bishoftu, % (95% CI)	74.6 (65.4–81.7)	57.9 (48.1–66.5)	91.2 (83.1–95.5)	66.7 (56.0–75.4)
Bulbula, % (95% CI)	100	80.0 (20.4–96.9)	88.9 (62.4–97.1)	77.0 (49.7–90.7)
Genotype of recurrent parasitemias, n (%)	18 (64.3)	31 (66.0)	7 (70.0)	18 (52.9)
Different*	10 (35.7)	16 (34.0)	3 (30.0)	16 (47.1)
Identical				
Minimum cure rate (adjusted for genotype*)–Survival analysis, % (95% CI)	91.1 (84.1–95.1)	84.3 (75.6–90.1)	97.2 (91.6–99.1)	83.6 (74.6–89.7)

*Greater than 2 base pair difference detected in at least one out of eight markers between the Day 0 (pre-treatment) and day of failure samples.

CI- confidence interval.

doi:10.1371/journal.pone.0063433.t002

Table 3. Secondary outcomes by treatment arm.

Outcome	Artemether-lumefantrine	Chloroquine
Fever, n/N (%)*	76/122 (62.3)	66/118 (55.9)
Day 1	31/121 (25.6)	26/117 (22.2)
Day 3	13/121 (10.7)	11/115 (9.6)
Parasitemia, n/N (%)	0/121 (0)	7/117 (6.0)
Day 2	0/121 (0)	1/115 (0.9)
Day 3	28 (21–42)	35 (21–42)
Median Hemoglobin g/dL, mean (SD)	12.5 (1.7)	13.2 (2.0)
Day 7	13.7 (1.7)	14.0 (1.7)
Day 28	13.9 (1.5)	14.2 (1.8)
Median difference in hemoglobin from day 0 to day 7	0.0 (0.1)	−0.02 (0.1)
Median difference in hemoglobin from day 0 to day 42	0.06 (0.18)	0.06 (0.17)

*Subjective fever or axillary temperature ≥37.5 °C; CI- confidence interval.

doi:10.1371/journal.pone.0063433.t003
are consistent with more recent efficacy studies from 2005 and 2009 [26,45]. Similarly, observed recurrent parasitemia rates with AL and CQ are comparable to reports from the Greater Mekong Sub-region [16,17,46,47], but not as high as the Southwest Pacific region where rapidly relapsing tropical strains, high grade CQ resistance, and high rates (i.e. 57–70%) of recurrence within 28–42 days following AL administration are common [11,14,42]. Even though confirmed CQ resistance appears to be at 5% in our study consistent with others from Ethiopia that included CQ drug level testing [24–26], the confirmation of resistant strains, the relatively high recurrent rate seen by day 28 and other reports from elsewhere in Ethiopia of parasitemia recurrences occurring as early as day 7 [45] are all concerning for the possibility of evolving CQ resistance. Continued monitoring involving additional sites is needed to understand the efficacy of antimalarial drugs in Ethiopia, and it is possible that focal drug resistance could emerge within a large and populous country such as Ethiopia.

Table 4. Microsatellite diversity for eight potential markers for *P. vivax* by pre- and post-treatment.

Microsatellite marker name	14.185	12.335	7.67	2208	8.332	6.34	10.29	3.35
Microsatellite	v23	v24	v25	v27	v29	v30	v32	v33
Allelic size range, bp								
D0	263–273	156–196	100–125	158–169	216–252	136–173	116–130	112–128
DF	263–283	155–196	100–125	159–169	231–252	135–173	115–134	112–128
No. of alleles								
D0	8	11	18	6	12	16	10	11
DF	7	15	18	4	13	18	11	13
PCR positivity								
D0	82	79	73	39	80	81	82	82
DF	82	79	67	25	81	80	80	81
MOI								
D0	0	2	13	0	3	3	0	8
DF	1	2	11	0	3	1	0	1
HE								
D0	0.821	0.818	0.774	0.631	0.836	0.864	0.820	0.757
DF	0.816	0.828	0.856	0.504	0.834	0.867	0.818	0.773

Microsatellite markers and their descriptions are as reported previously [35]. bp- base pairs; D0- day 0; DF- day of failure; No.- number; PCR- polymerase chain reaction; PCR positivity indicates number of samples successfully amplified for the indicated loci. MOI- multiplicity of infection, minimum number of different parasite genotypes present; HE- expected virtual heterozygosity where $H_E = [n/(n – 1)] \times (1 – \sum p^2)$, where n is the number of samples. This variable can be defined as the probability that a randomly chosen pair of alleles differ from each other.

doi:10.1371/journal.pone.0063433.t004

Figure 2. Kaplan-Meier Survival Curves for time to recurrent parasitemia during the 42 days of follow-up. (A) Time to any recurrent *P. vivax* parasitemia by drug arm; (B) Time to only recurrent *P. vivax* parasitemia with the same genotype by drug arm. AL: artemether-lumefantrine; CQ: chloroquine.
doi:10.1371/journal.pone.0063433.g002
parasitemia using molecular methods. Although genotyping to
genetic relatedness of parasite populations allowing us to better
microsatellite markers used in our study reliably differentiated
P. vivax
recurrent
protocol [30], it has been used to improve characterization of
standardized and is not part of the current standard WHO
helpful in documenting that three out of the ten recurrent
recommended by WHO to identify CQ resistance [30] was
determined in patients with recurrent parasitemias in the AL arm,
levels above the minimal effective concentration (i.e. 100 ng/mL
treatment failure rates.
There are several limitations of this trial including drug
administration procedures, baseline differences, and external
validity. Due to logistical reasons, the evening doses of AL were
not supervised and the antimalarial treatment administration not
blinded. The lower day 28 cure rates seen in the AL arm most
likely resulted from its shorter post-prophylactic effect, but poor
adherence cannot be discounted as a contributing factor, even
though, all patients reported having taken their evening doses.
Reassuringly, approximately 70% of the patients with recurrent
parasitemia had lumefantrine levels
and pruritus for CQ. Although we noted oral lesions in both
consistent with ones generally reported [51,52,53], i.e. headaches
patients with adverse events, n (%)
Table 5. Adverse events by treatment arm.

Patients with adverse events, n (%)	Artemether-lumefantrine (N = 122)	Chloroquine (N = 120)
Abdominal Pain	5 (4.1)	9 (7.5)
Anorexia	2 (1.6)	2 (1.7)
Cough	10 (8.2)	7 (5.8)
Diarrhea	6 (4.9)	5 (4.2)
Dizziness	5 (4.1)	1 (0.8)
Headache	4 (3.3)	4 (3.3)
Myalgia	6 (4.9)	2 (1.7)
Nausea/vomiting	9 (7.4)	13 (10.8)
Oral ulcers	10 (8.2)	15 (12.5)
Pruritus	4 (3.3)	7 (5.8)
Rash	4 (3.3)	2 (1.7)

Our study also highlights issues related to classifying recurrent
parasitemia using molecular methods. Although genotyping to
distinguish recurrent parasitemia in P. vivax in vivo studies is not
standardized and is not part of the current standard WHO
protocol [30], it has been used to improve characterization of
P. vivax
parasitemias [16,18,48,49]. The combination of
microsatellite markers used in our study reliably differentiated
genetic relatedness of parasite populations allowing us to better
estimate the true efficacy of P. vivax treatment regimens. Recurrent
infections with the same genotype (true failure and homologous relapse) were distinguished from those with a different genotype (reinfection or heterologous relapse). Despite the possibility of a recurrent parasitemia arising from a clonal hypnozoite, all identical recurrent parasitemias were classified as treatment failures resulting in a higher, more conservative estimate of treatment failure, but still an improvement over the unadjusted
treatment failure rates.

Chloroquine drug level testing on the day of failure as
recommended by WHO to identify CQ resistance [30] was
helpful in documenting that three out of the ten recurrent parasitemias by day 28 in the CQ arm occurred with CQ+DCQ
levels above the minimal effective concentration (i.e. 100 ng/mL
of whole blood) [50]. Although, day 7 lumefantrine levels were
determined in patients with recurrent parasitemias in the AL arm, the utility of obtaining lumefantrine levels from filter paper to aid in accurately determining treatment failures especially for P. vivax
remains challenging and was of limited benefit in this study.

Approximately half of the patients in both the AL and CQ
reported some adverse events, none were severe and most were
consistent with ones generally reported [51,52,53], i.e. headaches and nausea/vomiting for AL, and headaches, vomiting, myalgia, and pruritus for CQ. Although we noted oral lesions in both treatment arms, this is not a previously reported common drug
d-side-effect and unlikely to be drug-related.

There are several limitations of this trial including drug
administration procedures, baseline differences, and external
validity. Due to logistical reasons, the evening doses of AL were
not supervised and the antimalarial treatment administration not
blinded. The lower day 28 cure rates seen in the AL arm most
likely resulted from its shorter post-prophylactic effect, but poor
adherence cannot be discounted as a contributing factor, even
though, all patients reported having taken their evening doses.
Reassuringly, approximately 70% of the patients with recurrent
parasitemia had lumefantrine levels >280 ng/mL as compared to
only 51% in a study with supervised arteether-benflumetol administration [33]. Although treatment allocation was randomized, the patients in the AL arm were younger than the CQ arm. With the finding that younger age was associated with higher recurrent parasitemia, the contribution of this patient character-

istic in the lower AL cure rates by day 28 needs to be considered. Results from this study may not be applicable to other ACTs or other areas with different resistance and relapse patterns. Furthermore, our study was not powered to estimate differences in
efficacy across treatment arms or between sites. Finally, the two
health facilities were not chosen randomly and thus may not be representative of our target population.

Some experts have suggested unifying malaria treatments under
a single ACT regimen [43,54] in countries where P. falciparum and
P. vivax are sympatric. However, due to a relative short half-life, AL provides less post-exposure prophylaxis against P. vivax
recurrent parasitemias. In Indonesia, patients receiving DP
compared to AL were half as likely to be anemic and 6.6 times
less likely to carry P. vivax gametocytes [53]. In a setting where
primaquine is not routinely administered (e.g. Ethiopia), CQ
resulted in fewer early recurrent parasitemias than AL, which
could provide some hematologic and transmission benefits. This
supports the maintenance of current species-specific treatment policy for Ethiopia [9].

With high recurrent parasitemia rates for both AL and CQ at
42 days following treatment, the addition of primaquine for radical
cure should be considered in all areas of Ethiopia as is currently
recommended by WHO [27]. Furthermore, with an increasing
number of reports showing that P. vivax infections can lead to
severe disease [55,56,57], country policies and practices that fail to
prevent substantial numbers of relapsing P. vivax illnesses need to
be reexamined. In Ethiopia, the addition of primaquine to CQ
decreased the cumulative incidence of therapeutic failure at day 28
by a life-table analysis method from 3.76% to 0.75% and the
cumulative risk of relapse at day 157 by a life-table method from
61.8% to 26.3% [44]. Along with continued surveillance of AL or
CQ drug resistance, the added benefit of co-administering
primaquine with AL or CQ should be explored urgently in
Ethiopia.
Supporting Information

Table S1. Microsatellite diversity for the eight markers for all samples with recurrent parasitemia at both day 0 (pre-treatment) and day of failure.

(DOCX)

Checklist S1 CONSORT checklist.

(DOC)

Protocol S1 Study protocol.

(DOC)

Acknowledgments

We are grateful to the patients and their guardians for participating in this study. We thank the staff at the malaria clinic in Bahisfo (Brita Bekele, Asmelash Endris, Kebede Abebe, Tegegno Zelealem, Abaynesh Dejene, and Semira Abdulmanan) and the health center in Bulbulia (Zewditi Tesfaye, Desta Oda, Frehiwot Afework, Asledegel Tezhome, Ekedar Woldeyesus, Nura Negewo, Zewditi Negewo, Ali Shubise, and Abdulkadir Gudeto). We are indebted to Derge Muluneh from UNICEF for ensuring a supply of AL and quinine. We also thank Kim Mace for her invaluable help with coordinating drug level testing. Finally, we would like to thank the reviewers for their invaluable comments.

Author Contributions

Conceived and designed the experiments: JH BA RR SG DH ZM MK DJ SPK SF. Performed the experiments: JH BA SG TT SGB LD MK HN MG AP SA VU. Analyzed the data: JH BA TT RR AP SA VU MG. Contributed reagents/materials/analysis tools: JH SGB LD MK HN MG AP SA VU. Wrote the paper: JH BA RR SG TT DH ZM DJ JM MG AP SA VU SPK SF.

References

1. Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, et al. (2010) The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4: e774.
2. Ethiopia Federal Ministry of Health (2010) Health and Health Related Indicators report EC 2002. Addis Ababa: Ethiopian Federal Ministry of Health.
3. Nigatu W, Abebe M, Dejene A (1992) Plasmodium vivax and P. falciparum epidemiology in Gambella, south-west Ethiopia. Trop Med Parasitol 43: 181-185.
4. Olana D, Chibsa S, Teshome D, Mekasha A, Graves PM, et al. (2011) Malaria, Oromia regional state, Ethiopia, 2001–2006. Emerg Infect Dis 17: 1336–1337.
5. Kamas JM, Reyes F, Testa-Perez A (2009) Change in the Epidemiology of Malaria Infections in a Rural Area in Ethiopia. J Travel Med 12: 155–156.
6. Alene GD, Bennett S (1996) Chloroquine resistance of Plasmodium falciparum malaria in Ethiopia and Eritrea. Trop Med Int Health 1: 810-815.
7. Jina D, Tesfaye G, Medhin A, Kebede A, Argaw D, et al. (2005) Efficacy of sulfadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria in Ethiopia. East Afr Med J 82: 391–395.
8. Kassa M, Silesli M, Mohammed H, Taye G, Afadw M (2005) Development of resistance by Plasmodium falciparum to sulfadoxine/pyrimethamine in Amhara Region, Northwestern Ethiopia. Ethiop Med J 43: 181-187.
9. Ethiopia Federal Ministry of Health (2004) Malaria: Diagnosis and Treatment Guidelines for Health Workers in Ethiopia 2nd Edition. Addis Ababa: Federal Democratic Republic of Ethiopia, Ministry of Health.
10. Rieckmann KH, Davis DR, Hutton DC (1989) Plasmodium vivax resistance to chloroquine? Lancet 2: 1183–1184.
11. Baird JK, Basri H, Subianto B, Fryauff DJ, McElyod PD, et al. (1995) Treatment of chloroquine-resistant Plasmodium vivax with chloroquine and primaquine or halofantrine. Am J Trop Med Hyg 171: 1678–1682.
12. Baird JK, Leksana B, Masbar S, Suradi, Sutanihardja MA, et al. (1997) Whole blood chloroquine concentrations with Plasmodium vivax infection in Irian Jaya, Indonesia. Ann Trop Med 65: 90–93.
13. Ratcliff A, Siswantoro H, Kenangalem E, Wuwung M, Brockman A, et al. (2008) Very high risk of therapeutic failure with chloroquine for uncomplicated Plasmodium falciparum malaria in Indonesia. Am J Trop Med Hyg 56: 618–620.
14. Nash D, Nair S, Mayxay M, Newton PN, Guthmann JP, et al. (2005) Selection of chloroquine resistance by Plasmodium falciparum to sulfadoxine-pyrimethamine in Amhara Region, Northwestern Ethiopia. Trop Med Int Health 10: 351–359.
15. Kobb W, Bernadetka, Leksana B, Sumarihardja A, Purnomo, et al. (2003) Very high risk of therapeutic failure with chloroquine for uncomplicated Plasmodium falciparum and P. vivax malaria in Indonesian Papua. Am J Trop Med Hyg 68: 416–420.
16. Maves S, Boer R, Popp M, Sabin S, Winters E, et al. (2002) Plasma drug levels of chloroquine and desethylchloroquine in Papua New Guinea. P N G Med J 40: 114–150.
17. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.
18. Jima D, Getachew A, Bilak H, Steketee RW, Emerson PM, et al. (2010) Malaria indicator survey 2007, Ethiopia: coverage and use of major malaria prevention and control interventions. Malar J 9: 58.
19. Nash D, Nair S, Mayxay M, Newton PN, Guthmann JP, et al. (2007) Pharmaco kinetic study of artesunate/lumefantrine given once daily for the treatment of uncomplicated multidrug-resistant falciparum malaria. Trop Med Int Health 12: 201–208.
20. Park SDE (2001) Trypanotolerance in West African Cattle and the Population Genetics Online 1: 47–50.
42. Karunajeewa HA, Mueller I, Senn M, Lin E, Law I, et al. (2008) A trial of combination antimalarial therapies in children from Papua New Guinea. N Engl J Med 359: 2545–2557.
43. Douglas NM, Anstey NM, Angus BJ, Nosten F, Price RN (2010) Artemisinin combination therapy for vivax malaria. Lancet Infect Dis 10: 405–416.
44. Yeshiwondim AK, Tekle AH, Dengela DO, Yohannes AM, Teklehaimanot A (2010) Therapeutic efficacy of chloroquine and chloroquine plus primaquine for the treatment of Plasmodium vivax in Ethiopia. Acta Trop 113: 105–113.
45. Ketema T, Getahun K, Barcha K (2011) Therapeutic efficacy of chloroquine for treatment of Plasmodium vivax malaria cases in Halaba district, South Ethiopia. Parasit Vectors 4: 46.
46. Kolaczinski K, Durrani N, Rahim S, Rowland M (2007) Sulfadoxine-pyrimethamine plus artemether compared with chloroquine for the treatment of vivax malaria in areas co-endemic for Plasmodium falciparum and P. vivax: a randomised non-inferiority trial in eastern Afghanistan. Trans R Soc Trop Med Hyg 101: 1081–1087.
47. Phy D, Lwin KM, Price RN, Ashley EA, Russell B, et al. (2011) Dihydroartemisinin-Piperaquine Versus Chloroquine in the Treatment of Plasmodium vivax Malaria in Thailand: A Randomized Controlled Trial. Clinical Infectious Diseases 53: 977–984.
48. Barnadas C, Koepfli C, Karunajeewa HA, Siba PM, Davis TM, et al. (2011) Characterization of treatment failure in efficacy trials of drugs against Plasmodium vivax by genotyping neutral and drug resistance-associated markers. Antimicrob Agents Chemother 55: 4479–4481.
49. Hasugian AR, Tjiitra E, Ratcliff A, Siswantoro H, Kenangalem E, et al. (2009) In vivo and in vitro efficacy of amodiaquine monotherapy for treatment of infection by chloroquine-resistant Plasmodium vivax. Antimicrob Agents Chemother 53: 1094–1099.
50. Baird JK, Leksana B, Mashar S, Fryauff DJ, Sutanihardja MA, et al. (1997) Diagnosis of resistance to chloroquine by Plasmodium vivax: timing of recurrence and whole blood chloroquine levels. Am J Trop Med Hyg 56: 621–626.
51. Makanga M, Premji Z, Falade C, Karbwang J, Mueller EA, et al. (2006) Efficacy and safety of the six-dose regimen of artemether-lumefantrine in pediatrics with uncomplicated Plasmodium falciparum malaria: a pooled analysis of individual patient data. Am J Trop Med Hyg 74: 991–998.
52. Naing C, Aung K, Win DK, Wah MJ (2010) Efficacy and safety of chloroquine for treatment in patients with uncomplicated Plasmodium vivax infections in endemic countries. Trans R Soc Trop Med Hyg 104: 695–705.
53. Ratcliff A, Siswantoro H, Kenangalem E, Maristela R, Wuwung RM, et al. (2007) Two fixed-dose artemisinin combinations for drug-resistant falciparum and vivax malaria in Papua, Indonesia: an open-label randomised comparison. Lancet 369: 757–765.
54. Price RN, Douglas NM, Anstey NM, von Seidlein L (2011) Plasmodium vivax treatments: what are we looking for? Curr Opin Infect Dis 24: 578–585.
55. Baird JK (2009) Severe and fatal vivax malaria challenges 'benign tertian malaria' dogma. Ann Trop Paediatr 29: 251–252.
56. Genton B, D’Acremont V, Rare L, Baca K, Reeder JC, et al. (2008) Plasmodium vivax and mixed infections are associated with severe malaria in children: a prospective cohort study from Papua, New Guinea. PLoS Med 5: e127.
57. Tjiitra E, Anstey NM, Sugianto P, Warikar N, Kenangalem E, et al. (2008) Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med 5: e128.