The Influence of Age on Steroidogenic Enzyme Activities of the Rat Adrenal Gland: Enhanced Expression of Cholesterol Side-Chain Cleavage Activity*

PHILIP Y. POPPLEWELL†, JOHN BUTTE, AND SALMAN AZHAR

Department of Medicine, Stanford University School of Medicine and Geriatric Research, Education and Clinical Center, Veterans Administration Medical Center, Palo Alto, California 94304

ABSTRACT. The ability of isolated adrenocortical cells to secrete corticosterone in response to ACTH challenge declines as rats age, but the site or mechanism(s) of this impairment is still unknown. To test the functionality of steroidogenic capacity per se, we measured the key enzyme activities involved in corticosterone biosynthesis. We also measured the mitochondrial cytochrome P-450 content and nonsteroidogenic enzymes specific for subcellular fractions. Mitochondria and microsomal fractions were isolated from the adrenals of 2-, 12-, and 18-month-old animals and used for various enzyme measurements. Mitochondrial side-chain cleavage enzyme activity (nanomoles per min mg protein	extsuperscript{−1}) increased from a mean of 0.43 ± 0.06 in 2-month-old rats to 1.26 ± 0.11 and 1.51 ± 0.06 in 12- and 18-month-old rats, respectively. After incubation with 5-cholesten-3α,25-diol (25-hydroxycholesterol; 25 fig/ml) side-chain cleavage activity rose to 5.0 ± 0.6, 12.4 ± 1.2, and 16 ± 1.4 nmol min	extsuperscript{−1} mg protein	extsuperscript{−1} in adrenal mitochondrial fractions from 2-, 12-, and 18-month-old rats, respectively. In contrast, mitochondrial cytochrome P-450 content did not vary with advancing age. Microsomal Δ5-3β-hydroxysteroid dehydrogenase-Δ4-Δ5-isomerase activities were similar in 2- and 12-month-old rats, but 21-hydroxylase (nanomoles per min mg protein	extsuperscript{−1}) activity was significantly increased in 12-month-old rats (2-month-old, 5.2 ± 0.2; 12-month-old, 7.7 ± 0.5). Finally, mitochondrial 11β-hydroxylase was comparable in both age groups. In addition, activities of mitochondrial nonsteroidogenic enzymes, such as monoamine oxidase, amytal insensitive NADH cytochrome c reductase, cytochrome c oxidase, succinate dehydrogenase, and malate dehydrogenase, did not change with age. It appears from the evidence presented that the activities of the steroidogenic enzymes are not responsible for the diminished capacity in corticosterone production seen with aging in the rat. (Endocrinology 120: 2521-2528, 1987)

IT HAS been reported previously from this laboratory that the steroidogenic capacity of adrenocortical cells declines as rats age (1). Furthermore, this defect seems to be due to biochemical events distal to binding of ACTH to its receptor and stimulation of cAMP production (1). Although the exact mechanism of this defect is yet to be defined, the possibility that this phenomenon may represent a direct effect on the steroidogenic process per se is quite appealing.

In rat adrenals, steroid (corticosterone) biosynthesis involves the active participation of cholesterol side-chain cleavage, Δ5-3β-hydroxysteroid dehydrogenase-Δ4-Δ5-isomerase (3β-HSD), 21-hydroxylase, and 11β-hydroxylase activities (2-8). Among these, cholesterol side-chain cleavage (cytochrome P-450α) catalyzes the first step in corticosterone biosynthesis (i.e. the conversion of cholesterol to pregnenolone) and is generally considered to be the rate-limiting step in steroidogenesis (2-8). Furthermore, the levels of various steroidogenic enzyme activities have been shown to be influenced and/or regulated by ACTH (2-15). Therefore, the age-related decline in corticosterone secretion would be expected to have a profound effect on the activity of some or all steroidogenic enzymes. Moreover, this age-related defect may, in fact, result from alterations in the key enzyme(s) involved in corticosterone biosynthesis.

The present studies were conducted, therefore, to examine the effects of aging on steroidogenic enzymes responsible for the production of corticosterone. Additionally, changes in mitochondrial cytochrome P-450 were compared with the activity of cholesterol side-chain cleavage. Finally, to assess nonspecific age-related effects, the activities of several unrelated enzymes associated with specific compartments of mitochondria were also measured.

Materials and Methods

Materials

[1,2-N-3H]Cholesterol (SA, 40–60 Ci/mmol), [7-N-3H]pregnenolone (SA, 20–25 Ci/mmol), [4-14C]progesterone (SA, 50–
Preparation of microsomal fraction. The 8,700 × g supernatant was centrifuged at 15,000 × g for 15 min, and the pellet was discarded. The supernatant fraction was next centrifuged at 105,000 × g for 60 min (60-Ti rotor, Beckman LM 8 Ultracentrifuge) to sediment microsomal fraction. The pellet was washed in buffer A (without BSA) and again collected at 105,000 × g for 60 min. The sediment was resuspended in buffer C (0.25 M sucrose, 1 mM EDTA, and 10 mM potassium phosphate, pH 7.0) and immediately used for enzyme assays.

Assay for cholesterol side-chain cleavage activity. The enzyme activity was measured by a slight modification of the procedure of Toaff et al. (16), as described by Mori and Marsh (17). The incubation medium in a final volume of 1 ml contained 0.2 M sucrose, 10 mM KCl, 5 mM MgCl₂, 0.2 mM EDTA, 10 mM potassium phosphate, 25 mM Tris-HCl (pH 7.4), 1 mg/ml BSA (essentially fatty acid free), 3 mM sodium succinate, 6 μM cyano ketone, and a suitable aliquot of mitochondrial preparation (50–100 μg protein/ml) in the presence or absence of 25-hydroxycholesterol (25 μg/ml). After incubation at 37 C for 5–10 min, the reaction was terminated by quick freezing at −60 C. The reaction product, pregnenolone, was extracted from the incubation mixture with hexane (three times, 2 ml each) and assayed by specificRIA (19). Cyanoketone was included to inhibit further metabolism of pregnenolone to progesterone. All assays were run in triplicate.

The cholesterol side-chain cleavage activity is expressed as nanomoles of pregnenolone formed per min mg protein⁻¹.

Assay for 3β-HSD. 3β-HSD activity was determined by measuring the conversion of [3H]pregnenolone to [3H]progesterone as described by Shaw et al. (20). Briefly, incubation medium in a final volume of 1.0 ml contained 50 mM potassium phosphate buffer (pH 7.4), 50 μM [3H]pregnenolone (400 dpm/μg), 0.5 mM NAD⁺, and a suitable aliquot of microsomal fraction. The reaction, maintained at 37 C for 15–30 min, was initiated by the addition of [3H]pregnenolone (dissolved in 30 μl dimethyl sulfoxide). The reaction was stopped by the addition of 0.1 ml 1 N NaOH, and unlabeled pregnenolone (50 μg) and progesterone (50 μg) were added in addition to [14C]progesterone (5000 dpm) to monitor recovery. The steroids were extracted twice with 5 ml diethyl ether, and pooled diethyl ether extracts were dried under N₂. Pregnenolone and progesterone were separated by ascending TLC on silica gel H using chloroform-diethyl ether (5:1, vol/vol) as a solvent system. The radioactivity associated with progesterone was measured by liquid scintillation spectrometry (Beckman LS3801 scintillation counter). The purity of the [3H]progesterone was determined by repeated recrystallization. All enzyme assays were carried out in triplicate. 3β-HSD activity is expressed as nanomoles of progesterone produced per min mg protein⁻¹.

Assay for 21-hydroxylase activity. Enzyme activity was determined by measuring the formation of [14C]deoxycorticosterone from [14C]progesterone according to the procedure of Menard et al. (21). All incubations were performed at 37 C for 15–20 min. The incubation medium in a final volume of 0.4 ml contained 50 mM Tris-HCl (pH 7.4), 0.6 mM NADPH, 10 mM glucose-6-phosphate, 1 U/ml glucose-6-phosphate dehydrogenase, 5 mM MgCl₂, 1 mM [14C]progesterone (10,000 dpm/μmol in 2.5% propylene glycol), and a suitable aliquot of the micro-
Assay for 11β-hydroxylase. The enzyme activity was measured by following the conversion of [3H]deoxycorticosterone to [3H]corticosterone, as described by Churchill et al. (22). Briefly, incubation medium in a final volume of 0.5 ml contained 50 mM Tris-HCl (pH 7.4), 1 mM MgCl2, 1 mM [3H]deoxycorticosterone (20,000 dpm/nmol in 2.5% propylene glycol), 0.25 mM sucrose, 4 mM sodium succinate, and a suitable aliquot of mitochondrial preparation. All incubations were carried out at 37°C for 15–20 min. The reaction was initiated by the addition of mitochondrial suspension and terminated by the addition of 0.05 ml 1 N NaOH. Fifty micrograms each of progesterone and deoxycorticosterone, as described by Churchill et al. (22), were added to each tube, and steroids were extracted with dichloromethane. Steroids were separated by TLC (Silica gel F254 plates) using dichloromethane-butyl alcohol (1:1, vol/vol) as a solvent system. The radioactivity associated with deoxycorticosterone was measured by liquid scintillation spectrometry, as described above. All assays were carried out in triplicate.

The enzyme activity is expressed as nanomoles of deoxycorticosterone formed per min mg protein⁻¹.

Measurement of cytochrome P-450. Mitochondrial cytochrome P-450 was measured according to the method of Omura and Sato (23). The extinction coefficient of 91 cm⁻¹ mM⁻¹ was used to calculate the cytochrome P-450 concentration from the absorbancy difference between 450 and 490 nm.

Miscellaneous enzyme assays. Succinate dehydrogenase activity was measured according to the method of Pennington (24). The activity is expressed as nanomoles of 2-(p-iodophenyl)3-(p-nitrophenyl)-5-phenyltetrazolium reduced per min mg protein⁻¹. Malate dehydrogenase was assayed by a modification of the procedure of Ochoa (25), as described by Vardenis (26), with activity expressed as nanomoles of NADH oxidized per min mg protein⁻¹. Amytal-insensitive NADH cytochrome c reductase was measured by a combination of the procedures of Sottocasa et al. (28) and Privalle et al. (29). The enzyme activity is expressed as nanomoles of cytochrome c reduced per min mg protein⁻¹. Cytochrome oxidase activity was measured according to the methods of Cooperstein and Lazarow (30), with activity expressed as nanomoles of cytochrome c oxidized per min mg protein⁻¹.

The protein content of all fractions was measured by the modified procedure of Lowry et al. (31), as described by Markwell et al. (32).

Statistical analyses. The results are expressed as the mean ± SE. The results were analyzed by analysis of variance. The analysis used the general linear models procedures of SAS (SAS Institute, Cary, NC) when giving a significant F value; Scheffe’s posttests were used to determine differences between any two age groups. P < 0.05 was considered statistically significant.

Results

Cholesterol side-chain cleavage enzyme activity, the rate-limiting enzyme in corticosterone biosynthesis, was measured in adrenal mitochondria isolated from 2-, 12-, and 18-month-old male Sprague-Dawley rats. All assays were carried out in the presence and absence of 25-hydroxycholesterol (25 μg/ml). The enzyme-catalyzed reaction product, pregnenolone, was quantitated by a specific RIA.

Results presented in Figs. 1 and 2 show incubation time- and enzyme concentration-dependent pregnenolone formation by the adrenal mitochondria isolated from 2- and 12-month-old rats. Under basal conditions, the rate of pregnenolone formation was low and exhibited a biphasic response (Fig. 1, inset). In contrast, addition of oxygenated sterol (25-hydroxycholesterol) greatly enhanced pregnenolone production, and again this effect was biphasic. Furthermore, at each time point studied, mitochondria from senescent rats synthesized 2–3 times more pregnenolone compared to corresponding values from young control groups. Similarly, the rate of pregnenolone formation was linear with protein concentration up to 100 μg/ml in both age groups examined (Fig. 2). Like time-course studies, enzyme concentration studies also revealed enhanced steroidogenic capacity of mitochondria from 12-month-old rats, and this effect was potentiated in the presence of 25-hydroxycholesterol.

We next examined the side-chain cleavage enzyme activity in mitochondria isolated from rats 2, 12, and 18 months of age, and the results are presented in Fig. 3. Under basal conditions (without 25-hydroxycholesterol), cholesterol side-chain cleavage activity (expressed as nanomoles of pregnenolone produced per min mg protein⁻¹) increased (P < 0.001) from a mean (±SE) of 0.43 ± 0.06 in 2-month-old rats to 1.26 ± 0.11 and 1.51 ± 0.06 in the 12- and 18-month-old rats, respectively. Similarly, mitochondria isolated from 12- and 18-month-old rats showed significantly higher activity in the presence of more polar exogenous substrate (25-hydroxycholesterol) compared to the 2-month-old groups (18-month-old, 16 ± 1.4; 12-month-old, 12.4 ± 1.2; 2-month-old, 5.0 ± 0.6). All of these enzyme assays were carried out under a near-linear range of time and enzyme protein concentration.

Thus mitochondria isolated from the 12- or 18-month-
old rats exhibited an enhanced capacity to synthesize pregnenolone compared to mitochondria from control groups. Moreover, addition of 25-hydroxycholesterol produced a further substantial increase in pregnenolone formation in mitochondria isolated from older animals, and levels were significantly higher than those in mitochondria from control groups. In contrast to progressive changes in side-chain cleavage activity, mitochondrial cytochrome-P450 contents did not change with age (Table 1).

A comparison of the activities of other steroidogenic enzymes, 3\(\beta\)-HSD 21-hydroxylase, and 11\(\beta\)-hydroxylase, in microsomal and mitochondrial fractions of adrenals from 2- and 12-month-old animals is shown in Table 2. No significant age-related changes were noted for 3\(\beta\)-HSD (29.8 ± 1.2 nmol min\(^{-1}\) mg protein\(^{-1}\) in 2-month-old rats vs. 29.5 ± 2.2 nmol min\(^{-1}\) mg protein\(^{-1}\) in 12-month-old rats; \(P = NS\)). Similarly, mitochondrial 11\(\beta\)-hydroxylase activity was comparable in both age groups examined (1.21 ± 0.15 nmol min\(^{-1}\) mg protein\(^{-1}\) in 2-month-olds vs. 1.19 ± 0.09 nmol min\(^{-1}\) mg protein\(^{-1}\) in 12-month-olds; \(P = NS\)). In contrast microsomal 21-hydroxylase activity was slightly but significantly (\(P <\)
AGING AND ADRENAL STEROIDOGENIC ENZYMES 2525

LU

Fig. 3. Effect of age on cholesterol side-chain cleavage activity in intact mitochondria isolated from adrenals of 2-, 12-, and 18-month-old rats. The enzyme activity is expressed as nanomoles of pregnenolone produced per min mg protein⁻¹. The results are the mean ± SE of six separate experiments.

Table 1. Effect of age on cytochrome P-450 contents of adrenal mitochondria from 2-, 12-, and 18-month-old rats

Age (months)	Cytochrome P-450 (nmol mg protein⁻¹)
2	1.28 ± 0.06
12	1.17 ± 0.03
18	1.32 ± 0.01

Results are the mean ± SE of six separate experiments.

0.001) increased in 12-month-old rats (7.7 ± 0.5 nmol min⁻¹ mg protein⁻¹) compared to that in 2-month-old animals (5.2 ± 0.2 nmol min⁻¹ mg protein⁻¹).

Mean activities (±SE) of monoamine oxidase, amytal-insensitive NADH cytochrome c reductase, succinate dehydrogenase, cytochrome c oxidase, and malate dehydrogenase are presented in Table 3.

Monoamine oxidase (33, 34) and amytal-insensitive NADH cytochrome c reductase (18, 28, 29, 35) are located on the outer mitochondrial membrane and were chosen for study to serve as a control for the increase in side-chain cleavage activity associated with preparation of mitochondrial fractions. Succinate dehydrogenase and cytochrome c oxidase are conventional markers of the inner mitochondrial membrane (26) and were chosen as a control for the possibility that age leads to a generalized change in the activity of adrenal enzymes. Malate dehydrogenase is a classical marker for mitochondrial matrix (26, 29) and was employed to serve as a control for mitochondrial integrity. The fact that the activity of none of these enzymes changed as rats grew older provides support for the relative specificity of the age-related increase in cholesterol side-chain cleavage activity.

Table 2. The effect of age on mean (±SE) activities of microsomal 3β-HSD, microsomal 21-hydroxylase, and mitochondrial 11β-hydroxylase activities in subcellular fractions of rat adrenals

Enzyme	Age (months)
	2
3β-HSD*	29.8 ± 1.2 (6)
21-Hydroxylase*	5.2 ± 0.2 (6)
11β-Hydroxylase*	1.2 ± 0.06 (7)

Results are the mean ± SE. The number of experiments is given in parentheses.

*Expressed as nanomoles of progesterone produced per min mg protein⁻¹.

†Expressed as nanomoles of deoxycorticosterone produced per min mg protein⁻¹.

‡Expressed as nanomoles of corticosterone produced per min mg protein⁻¹.

Table 3. Mean (±SE) activities of monoamine oxidase, amytal-insensitive NADH cytochrome c reductase, succinate dehydrogenase, cytochrome c oxidase, and malate dehydrogenase in mitochondrial fractions of adrenals isolated from 2- and 12-month-old rats

Enzyme	Age (months)
	2
Monoamine oxidase*	2.14 ± 0.10
Amytal-insensitive NADH cytochrome c reductase*	368 ± 21
Succinate dehydrogenase*	55.6 ± 4.2
Cytochrome c oxidase*	709 ± 54
Malate dehydrogenase*	763 ± 99

Results are the mean ± SE of eight separate experiments.

*Expressed as nanomoles of benzaldehyde produced per min mg protein⁻¹.

†Expressed as nanomoles of cytochrome c reduced per min mg protein⁻¹.

‡Expressed as nanomoles of iodonitrotetrazolium reduced per min mg protein⁻¹.

§Expressed as nanomoles of NADH oxidized per min mg protein⁻¹.
Discussion

The ability of isolated adrenocortical cells to respond to ACTH declines with advancing age (1, 36). We have shown previously that this aging defect lies distal to both binding of ACTH to its receptor and the consequent production of its secondary messenger cAMP (1). In the present studies the possible relationship between steroidogenic enzyme activities and steroidogenesis in rat adrenals during aging was explored.

Accordingly, we measured cholesterol side-chain cleavage, 3β-HSD, 21-hydroxylase, 11β-hydroxylase activities, and cytochrome P450 contents in appropriate mitochondrial and microsomal fractions of adrenals from 2-, 12-, and 18-month-old rats. An unexpected finding was that cholesterol side-chain cleavage activity showed a progressive increase with advancing age. A slight but significant increase in the activity of 21-hydroxylase was also noted in adrenal microsomal fractions from senescent rats. In contrast, activities of 3β-HSD and 11β-hydroxylase were insensitive to the aging process.

Interestingly, the current results have clearly indicated that adrenal side-chain cleavage enzyme activity increased at a time when ACTH-induced cellular steroidogenesis has been more than 60% depressed (1, 36). Several mechanisms might account for the stimulatory effect of aging on cholesterol side-chain cleavage activity. One possibility is an augmentation of enzyme synthesis. In addition, if degradation of cholesterol side-chain cleavage enzyme protein were to proceed at a lower rate than in young rats, the levels of this enzyme would be expected to be higher, since the steady state level of any given protein is achieved by its relative rates of synthesis and degradation. A second possibility may be that an increased activity represents cellular adaptive changes to deal with the diminished capacity of the adrenal gland to mobilize and use cholesterol esters for steroidogenesis. Indeed, we have recently shown that cholesterol ester content increases with age and that this defect was related to specific changes in neutral cholesterol esterase (Popplewell, P. Y., and S. Azhar, submitted). Thus, an increase in cholesterol side-chain cleavage activity can be viewed as a compensation on the part of the enzyme to the elevated cholesterol esters levels. That is, mitochondrial side-chain cleavage enzymes increase in activity in order to effectively use that cholesterol which becomes available from the stored cholesterol ester. However, the fact that the adrenal steroidogenic response is still blunted in senescent rats demonstrates this to be a partially successful compensation. Another possibility of equal importance is that the observed increase in cholesterol side-chain activity may be in response to vastly elevated levels of plasma ACTH, previously reported in senescent rats (37). This hyperstimulation hypothesis is supported by the observations that the cholesterol side-chain cleavage step is the rate-limiting step in steroidogenesis and, as such, activated/regulated by ACTH (2, 4, 5). Finally, evidence has recently been presented to support the idea that adrenal mitochondria contain more than one cholesterol side-chain cleavage system (38–40). Thus, it is conceivable that elevated levels represent stimulation of only one isoenzymic form which may or may not actively participate in steroidogenesis under in vivo situations. Obviously more rigorous experimental approaches are needed to sort out these various possibilities. Such investigations are currently in progress in our laboratory.

We were unable to document any age-related changes in mitochondrial cytochrome P450 levels. These results point to a dissociation between cytochrome P450 levels and cholesterol side-chain cleavage enzyme activity. This discrepancy could be attributed to a variation in the relative compositions of various forms of cytochrome P450 in total mitochondrial preparations from young and senescent rat adrenals (41, 42). In addition, a pool of cytochrome P450 not associated with steroidogenic enzymes (i.e., cytochrome P450occ or cytochrome P45011β) may exist (12), which, in turn, could mask a real age effect on specific cytochrome P450occ. The above hypothesis is of interest in view of the previous finding demonstrating a dissociation in half-lives of 21-hydroxylase and cytochrome P450 (4.5 vs. 2.9 days) in rat adrenals after hypophysectomy (12). Additional evidence for this hypothesis is the recent finding of Naumoff and Stevenson (43), who observed a delayed developmental maturation pattern for cholesterol side-chain activity compared to cytochrome P450 in rat ovaries after gonadotropin treatment. In view of these observations, it is not unreasonable to speculate that levels of cytochrome P450 and side-chain cleavage are modulated differentially as rats grow old. Finally, demonstration of any specific age effect on cytochrome P450occ will require the purification of a side-chain cleavage enzyme system from adrenals of young and old rats.

Results of the present study also suggest that the decline in steroidogenesis observed in adrenocortical cells isolated from senescent rats is not related to a reduction in cholesterol side-chain cleavage activity or other steroidogenic responses, as measured in vitro in isolated subcellular components. These in vitro results do not exclude the possibility, however, that side-chain cleavage activity is reduced (or blunted) in intact cells or in vivo. Furthermore, the possibility that the aging process directly affects the performance (in vivo) of recently identified regulator (29, 44–55) of the side-chain cleavage enzyme activity should also be considered. Previous reports indicate that the aging process in mouse and rat adrenals is associated with changes in 3β-HSD (55, 56).
We realize that our inability to demonstrate an age effect on this enzyme are in conflict with earlier studies (55, 56). Several technical/physiological differences in the experimental approach to the problem may account for the observed incongruent findings. For instance, the earlier studies were carried out with female rats or mice, as opposed to male rats employed in the present studies. Additionally, variations in the assay mixture and other experimental conditions may account for the observed discrepancy. Likewise, alterations in nutritional status, animal strain, or other physiological factors could also contribute significantly. Finally, since this enzyme is not rate limiting, even a modest decline in its activity should have very little adverse effect on the overall steroidogenic capacity of the adrenal gland.

Significant changes in some steroidogenic enzymes in other steroid-producing tissues have been demonstrated in senescent rats. For example, testicular 3β-HSD activities have been shown to decline with advancing age (57–59). Similarly, other researchers have reported significant age-related loss of this enzyme activity in rat ovary (60–62). Likewise, other researchers have presented evidence that activities of 17α-hydroxylase (57, 59, 63), C17–20 lyase (63), as well as microsomal cytochrome P-450 (63) are depressed in testes from aged rats. However, comparison of data from different steroidogenic tissues suggests that changes in enzyme activities that occur with aging in one steroid-producing tissue may not necessarily be applicable to other steroid-producing tissues.

In conclusion, the results of the present study suggest that the impairment of corticosterone secretion in adrenocortical cells isolated from senescent rats is probably not related to a reduction in the activity of steroidogenic enzymes, as measured in vitro. However, since the transport of cholesterol to cytochrome P450sec rather than the activity of cytochrome P450sec per se limits the rate of steroidogenesis, it is possible at this time to at least speculate that the age-related decline in steroidogenesis is related to a decrease in the transport of cholesterol to the mitochondria. The roles of microtubules (44), microfilaments (44), phospholipids (40, 45–47, 52), sterol carrier proteins (48–51), and other factors (28, 53, 54) have all been described as playing a part in cholesterol transport. Failure of or changes in any of these mechanisms with age would reduce the amount of cholesterol substrate available for steroidogenesis within the mitochondria, and we are presently studying the possibility that cholesterol transport is also altered with age.

References

1. Popplewell PY, Tsukokawa M, Ramachandran J, Azhar S 1986 Differential effects of aging on ACTH receptors, adenosine 3′,5′ cyclic monophosphate response and corticosterone secretion in adrenocortical cells from Sprague-Dawley rats. Endocrinology 119:2206

2. Garren LD, Gill GN, Masui H, Walton GM 1971 On the mechanism of action of ACTH. Recent Prog Horm Res 27:433

3. Greep RO, Astwood EB 1975 Adrenal gland. In: Hamilton DW, Greep RO (eds) Handbook of Physiology, sect 7, vol 6. American Physiological Society, Washington DC, p 15

4. Simpson ER 1979 Cholesterol side-chain cleavage, cytochrome P450, and the control of steroidogenesis. Mol Cell Endocrinol 13:213

5. Boyd GS, McNamara B, Suckling KE, Tocher DR 1983 Cholesterol metabolism in the adrenal cortex. J Steroid Biochem 19:1017

6. Pevold HR 1983 Regulation of the adrenal and gonadal microsomal mixed function oxygenases of steroid hormone biosynthesis. Annu Rev Physiol 45:19

7. Hall PF 1980 The roles of cytochrome P450 in the synthesis and metabolism of steroids. Dev Biochem 13:461

8. Lieberman S, Greenfield NJ, Wolfsen AJ 1984 A heuristic proposal for understanding steroidogenic processes. Endocr Rev 5:128

9. Mahaffee D, Reitz RC, Ney RL 1974 The mechanism of action of adrenocorticotropic hormone: the role of mitochondrial cholesterol accumulation in the regulation of steroidogenesis. J Biol Chem 249:227

10. Simpson ER, McCarthy JL, Peterson JA 1978 Evidence that the cyclohexamide-sensitive site of adrenocorticotropic hormone action is in the mitochondrion: changes in pregnenolone formation, cholesterol content, and the electron paramagnetic resonance spectra of cytochrome P-450. J Biol Chem 253:3135

11. Hornsby JP 1980 Regulation of cytochrome P-450 supported 11β-hydroxylation of deoxycorticisol by steroids, oxygen and antioxidants in adrenocortical cell cultures. J Biol Chem 255:4020

12. Purvis JL, Canick JA, Mason JJ, Estabrook RW, McCarthy JL 1973 Life time of adrenal cytochrome P450 as influenced by ACTH. Ann NY Acad Sci 212:319

13. Rybak SM, Ramachandran J 1982 Mechanism of induction of Δ5-3β-hydroxysteroid dehydrogenase-isomerase activity in rat adrenocortical cells by corticotropin. Endocrinology 111:427

14. Hornsby PJ, Aldern KA 1984 Steroidogenic enzyme activities in cultured human definitive zone adrenocortical cells: comparison with bovine adrenocortical cells and resultant differences in adren al androgen synthesis. J Clin Endocrinol Metab 58:121

15. Cathiard AM, Crozat A, Durand P, Saes JM 1985 In vitro spontaneous and adrenocorticotropic dependent maturation of the steroidogenic pathway of ovine fetal adrenal cells. Endocrinology 116:585

16. Toaff ME, Strauss III JP, Flickinger GL, Shattil SJ 1979 Relationship of cholesterol supply to luteal mitochondrial steroid synthesis. J Biol Chem 254:3977

17. Mori MM, Marsh JM 1982 The site of luteinizing hormone stimulation of steroidalogenesis in mitochondria of the rat corpus luteum. J Biol Chem 257:6178

18. Stevens VL, Aw TY, Jones DP, Lambeth JD 1984 Oxygen dependence of adrenal cortex cholesterol side chain cleavage: implications in the rate-limiting steps in steroidogenesis. J Biol Chem 259:1174

19. Inaba T, Wiest WG, Niswender GD 1980 Radioimmunassay of serum and ovarian pregnenolone in immature rats. Steroids 34:663

20. Shaw MJ, Georgopoulos LE, Payne AH 1979 Synergistic effect of follicle-stimulating hormone and luteinizing hormone on testosterone Δ5-3β-hydroxysteroid dehydrogenase-isomerase: application of a new method for the separation of testicular compartments. Endocrinology 104:912

21. Menard RH, Bartter FC, Gillette JR 1976 Spironolactone and cytochrome P-450: impairment of steroid 21-hydroxylation in the adrenal cortex. Arch Biochem Biophys 173:395

22. Churchill PF, deAlvare LR, Kimura T 1978 Topological studies of the steroid hydroxylase complexes in bovine adrenocortical mitochondria. J Biol Chem 253:4924

23. Omura T, Sato R 1964 The carbon-monoxide binding pigment of microsomes. J Biol Chem 239:2557

24. Ochoa S 1955 Malic dehydrogenase from pig heart. Methods En-
