Disquisitiones Arithmeticae and online sequence A108345

Paul Monsky
Brandeis University, Waltham MA 02454-9110, USA
monsky@brandeis.edu

Abstract

Let g be the element $\sum_{n \geq 0} x^n$ of $A = \mathbb{Z}/2[[x]]$, and B consist of all n for which the coefficient of x^n in $\frac{1}{g}$ is 1. (The elements of B are the entries 0, 1, 2, 3, 5, 7, 8, 9, 13, \ldots in A108345; see [3].) In [1] it is shown that the (upper) density of B is $\leq \frac{1}{4}$, and it is conjectured that B has density 0. This note uses results of Gauss on sums of 3 squares to show that the subset of B consisting of $n \not\equiv 15 \quad (16)$ has density 0. The final section gives some computer calculations, made by Kevin O’Bryant, indicating that, pace [1], B has density $\frac{1}{32}$.

Comments. The note is drawn from my answers, on Mathoverflow, to questions asked by O’Bryant and me.

1 Introduction

I begin with simple derivations of some results from [1]. Let g be the element $1 + x + x^4 + x^9 + \cdots$ of $A = \mathbb{Z}/2[[x]]$. Write $\frac{1}{g}$ as $\sum b_i x^i$ with the b_i in $\mathbb{Z}/2$, and let B consist of all n with $b_n = 1$.

Theorem 1.1. If n is even, n is in B if and only if $\frac{n}{2}$ is a square.

Proof. Let $R \subset A$ be $\mathbb{Z}/2[[x]]$. As R-module, A is the direct sum of R and xR. Let $pr : A \to R$ be the R-linear map which is the identity on R and sends xR to 0. Since g^2 is in R, so is $\frac{1}{g^2}$. Now $pr(g) = 1 + x^4 + x^{16} + x^{36} + \cdots = g^4$. So $pr \left(\frac{1}{g} \right) = \frac{1}{g^2} pr(g) = g^2$. This is precisely the statement of the theorem.

Theorem 1.2. If $n \equiv 1 \quad (4)$, n is in B if and only if the number of ways of writing n as $(\text{square}) + 4(\text{square})$ is odd.
Proof. \(\frac{1}{g} = g \cdot \frac{1}{g} \). So the coefficient of \(x^n \) in \(\frac{1}{g} \) is the number of ways, modulo 2, of writing \(n \) as \((\text{square}) + 2k\) with \(k \) in \(B \). Since \(n \equiv 1 \pmod{4} \), the square is also \(\equiv 1 \pmod{4} \), and \(k \) is even. Now use Theorem 1.1.

Theorem 1.3. The number of \(n \) in \(B \) that are \(\leq x \) and \(\not\equiv 3 \pmod{4} \) is \(O(x/\log(x)) \).

Proof. In view of Theorem 1.1 we may restrict our attention to \(n \) that are \(\equiv 1 \pmod{4} \) (and that are not squares). If such an \(n \) is \(s_1 + 4s_2 \) then \(\sqrt{s_1 + 2i\sqrt{s_2}} \) and \(\sqrt{s_1 - 2i\sqrt{s_2}} \) generate ideals of norm \(n \) in \(\mathbb{Z}[i] \); since \(n \) is not a square, these two ideals are distinct. Since every ideal of norm \(n \) comes from exactly one decomposition of \(n \) as \((\text{square}) + 4(\text{square})\), the number of decompositions of \(n \) is \(\frac{1}{2} \) \((\text{the number of ideals of norm } n) \). Standard facts about \(\mathbb{Z}[i] \) tell us that this number is odd only when \(n \) is the product of a square by a prime \(\equiv 1 \pmod{4} \). Now use the fact that \(\pi(x) = O(x/\log(x)) \).

Theorem 1.4. If \(n \equiv 3 \pmod{8} \), \(n \) is in \(B \) if and only if the number of ways of writing \(n \) as \((\text{square}) + 2(\text{square}) + 8(\text{square})\) is odd.

Proof. \(\frac{1}{g} = g \cdot g^2 \cdot \frac{1}{g^3} \). So the coefficient of \(x^n \) in \(\frac{1}{g} \) is the number of ways, modulo 2, of writing \(n \) as \((\text{square}) + 2(\text{square}) + 4k\) with \(k \) in \(B \). Since \(n \equiv 3 \pmod{8} \), congruences mod 8 show that \(k \) is even, and we use Theorem 1.1.

2 A density result for \(n \equiv 3 \pmod{8} \)

Lemma 2.1. Suppose \(n \equiv 3 \pmod{8} \). Let \(R_1 \) and \(R_2 \) be the number of ways of writing \(n \) as \((\text{square}) + (\text{square}) + (\text{square})\) and as \((\text{square}) + 2(\text{square})\). If \(4 \) divides \(R_1 \) and \(R_2 \), then \(n \) is not in \(B \).

Proof. In view of Theorem 1.4 it suffices to show that \(R_1 + R_2 \) is twice the number of ways of writing \(n \) as \((\text{square}) + 2(\text{square}) + 8(\text{square})\). Suppose \(n = s_1 + s_2 + s_3 \) with the \(s_i \) squares. The \(s_i \) are odd. Let \(r_2 \) and \(r_3 \) be square roots of \(s_2 \) and \(s_3 \) with \(r_2 \equiv r_3 \pmod{4} \). Then \(n = s_1 + 2 \left(\frac{r_2 + r_3}{2} \right)^2 + 8 \left(\frac{r_2 - r_3}{4} \right)^2 = (\text{square}) + 2(\text{square}) + 8(\text{square}) \), and replacing \(r_2 \) and \(r_3 \) by \(-r_2 \) and \(-r_3 \) gives the same decomposition. It’s easy to see that one gets every decomposition \(n = t_1 + 2t_2 + 8t_3 \) with the \(t_i \) squares from some triple \((s_1, s_2, s_3)\) in this way. Furthermore if \((s_1, s_2, s_3) \rightarrow (t_1, t_2, t_3)\), then \((s_1, s_3, s_2) \rightarrow \) the same \((t_1, t_2, t_3)\). It follows that the fiber over a fixed \((t_1, t_2, t_3)\) consists of 2 elements except at those points where \(t_3 = 0 \). But such a point corresponds to a decomposition of \(n \) as \((\text{square}) + 2(\text{square})\).

Lemma 2.2. Suppose \(n \equiv 3 \pmod{8} \) and is divisible by 3 or more different primes. Then the number of ways of writing \(n \) primitively as \((\text{square}) + (\text{square}) + \ldots\) (8 times)
(square) is divisible by 4.

Proof. Let $O = \mathbb{Z}[\frac{1 + \sqrt{-n}}{2}]$. A result of Gauss, [2], put into modern language, is that the number of primitive representations of n by the form $x^2 + y^2 + z^2$ is $24 \cdot (\text{the number of invertible ideal classes in } O)$. So the number of ways of writing n primitively as (square) + (square) + (square) is $3 \cdot (\text{the number of invertible ideal classes})$, and it suffices to show that 4 divides this number. Now Gauss developed a genus theory for binary quadratic forms which tells us that the group of invertible ideal classes maps onto a product of $m - 1$ copies of $\mathbb{Z}/2$, where m is the number of different primes dividing n. Since $m \geq 3$ we’re done.

Theorem 2.3. If $n \equiv 3 \pmod{8}$ and there are 3 or more primes that occur to odd exponent in the prime factorization of n, then n is not in B.

Proof. By Lemma 2.2, whenever a^2 divides n, the number of ways of writing n/a^2 primitively as (square) + (square) + (square) is divisible by 4. Summing over a we find that 4 divides R_1. Furthermore, by Lemma 3.3, $2R_2$ is the number of ideals of norm n in $\mathbb{Z}[\sqrt{-2}]$. This number is $\sum \left(\frac{-2}{d} \right)$ where $\left(\frac{d}{ } \right)$ is the Jacobi symbol, and d runs over the divisors of n. Since $\left(\frac{ }{ } \right)$ is multiplicative, the sum is a product of integer factors, one coming from each prime dividing n. Also, a prime having odd exponent in the factorization contributes an even factor. Since there are at least 3 such primes, 8 divides $2R_1$, 4 divides R_1, and we use Lemma 2.1.

Theorem 2.4. The number of n in B that are $\leq x$ and $\equiv 3 \pmod{8}$ is $O \left(x \log \log(x) / \log(x) \right)$.

Proof. Let $\pi_2(x)$ be the number of $n \leq x$ that are a product of 2 primes. It’s well-known that $\pi_2(x)$ is $O \left(x \log \log(x) / \log(x) \right)$. By Theorem 2.3 an element of B that is $\equiv 3 \pmod{8}$ is either the product of a single prime and a square, or of two primes and a square. The result follows easily.

3 A density result for $n \equiv 7 \pmod{16}$

For $n \equiv 7 \pmod{16}$ we show that n is in B if and only if the number of ways to write $2n$ as (square) + (square) + (square) is $\equiv 2 \pmod{4}$, and arguing as in the last section, prove the analogue to Theorem 2.4.

Lemma 3.1. If $n \equiv 1 \pmod{8}$ then the number of ideals U of norm n in $\mathbb{Z}[\sqrt{-2}]$ is congruent mod 4 to the number of ideals V of norm n in $\mathbb{Z}[i]$ unless $n = A^2$ with $A \equiv \pm 3 \pmod{8}$.

3
Proof. $U = \sum \left(\frac{\,\cdot\,}{d} \right)$ and $V = \sum \left(\frac{\,\cdot\,}{d} \right)$ where the sums are over the divisors of n. Since $\left(\frac{\,\cdot\,}{d} \right)$ is multiplicative, U (resp. V) is a product of contributions, one for each prime dividing n. A contribution is even if the prime occurs to odd exponent in the factorization of n, and is odd otherwise. In particular if 2 or more p appear to odd exponent, then 4 divides U and V. Next suppose there is exactly one prime p occurring with odd exponent and that the exponent is c. Since $n \equiv 1 \pmod{8}$, $p \equiv 1 \pmod{8}$, and $\left(\frac{\,\cdot\,}{p} \right) = \left(\frac{\,\cdot\,}{p} \right) = 1$. So p makes a contribution of $c + 1$ both to U and to V. Since all the other contribution are odd, $U \equiv V \equiv 0 \pmod{4}$ when $c \equiv 3 \pmod{4}$, and $U \equiv V \equiv 2 \pmod{4}$ when $c \equiv 1 \pmod{4}$.

It remains to analyze the case $n = A^2$. In this case U and V are odd, and we are reduced to showing: if $A \equiv \pm 1 \pmod{8}$ then $UV \equiv 1 \pmod{4}$, while if $A \equiv \pm 3 \pmod{8}$, then $UV \equiv 3 \pmod{4}$. Consider UV as an element of the multiplicative group $\{1, 3\}$ of $\mathbb{Z}/4$. UV is a product of contributions, one for each prime dividing A. A $p \equiv \pm 1 \pmod{8}$ makes the same contribution to U as to V and so does not contribute to the product. If on the other hand $p \equiv \pm 3 \pmod{8}$ and has exponent c in the factorization of A then the contribution it makes to UV is $(2c + 1) \cdot 1$ when $p \equiv 3 \pmod{8}$ and $1 \cdot (2c + 1)$ when $p \equiv -3 \pmod{8}$. In other words the contribution is -1 precisely when c is odd. This tells us that $UV \equiv 1 \pmod{4}$ when the number of primes $\equiv \pm 3 \pmod{8}$ with odd exponent in the factorization of A is even, and that $UV \equiv 3 \pmod{4}$ when this number is odd. But in the first case $A \equiv \pm 1 \pmod{8}$, while in the second $A \equiv \pm 3 \pmod{8}$.

Definition 3.2. Suppose n is odd. U_1 is the number of ways of writing n as $(\text{square}) + 2(\text{square})$ while U_2 is the number of ways of writing n as $(\text{square}) + 4(\text{square})$.

Lemma 3.3. The number of ideals U of $\mathbb{Z} \left[\sqrt{-2} \right]$ of norm n is $2U_1 - 1$ when n is a square and $2U_1$ otherwise. The number of ideals V of $\mathbb{Z}[i]$ of norm n is $2V_1 - 1$ when n is a square and $2V_1$ otherwise.

Proof. Suppose $n = s_1 + 2s_2$ with s_1 and s_2 squares. Then $\sqrt{s_1} + \sqrt{-2} \sqrt{s_2}$ and $\sqrt{s_1} - \sqrt{-2} \sqrt{s_2}$ generate ideals of norm n in $\mathbb{Z} \left[\sqrt{-2} \right]$. These 2 ideals are distinct except when n is a square and $s_2 = 0$. Also every ideal of norm n comes from exactly one such decomposition of n. This gives the first result and the proof of the second is similar.

Lemmas 3.1 and 3.3 immediately give:

Lemma 3.4. If $n \equiv 1 \pmod{16}$, then $U_1 \equiv V_1 \pmod{2}$.

Lemma 3.5. If $n \equiv 1 \pmod{16}$, then the coefficient of x^n in $\frac{1}{y^n}$ is 1 if and only if n is a square.
Proof. Since \(n \equiv 1 \pmod{8} \), the number of ways \(U_1 \) of writing \(n \) as \((\text{square}) + 2(\text{square})\) is the number of ways of writing \(n \) as \((\text{square}) + 8(\text{square})\). So the image of \(U_1 \) in \(\mathbb{Z}/2 \) is the coefficient of \(x^n \) in \(g \cdot g^8 = g^9 \). Similarly, the image of \(V_1 \) in \(\mathbb{Z}/2 \) is the coefficient of \(x^n \) in \(g \cdot g^{16} = g^{17} \). Lemma 3.4 then tells us that for \(n \equiv 1 \pmod{16} \) the coefficients of \(x^n \) in \(g^9 \) and in \(g^{17} \) are equal.

Now let \(S \subseteq A \) be \(\mathbb{Z}/2[[x^{16}]] \). As \(S \)-module \(A \) is the direct sum of the \(x^j S \) for \(j \leq 15 \). Let \(pr : A \to xS \) be the \(S \)-linear map that is the identity on \(xS \) and 0 on the other summands. The last paragraph tells us that \(pr(g^9) = pr(g^{17}) \).

Since \(\frac{1}{g^r} \) is in \(S \), \(pr \left(\frac{1}{g^r} \right) = pr(g) \). But as \(n \equiv 1 \pmod{16} \), the coefficient of \(x^n \) in \(pr(g) \) is the coefficient of \(x^n \) in \(g \), giving the result.

\[\square \]

Theorem 3.6. If \(n \equiv 7 \pmod{16} \) then \(n \) is in \(B \) if and only if the number of ways of writing \(n \) as \((\text{square}) + 2(\text{square}) + 4(\text{square})\) is odd.

Proof. \(\frac{1}{g} = g^2 \cdot g^4 \cdot \frac{1}{g} \). So the coefficient of \(x^n \) in \(\frac{1}{g} \) is the number of ways, modulo 2, of writing \(n \) as \(2(\text{square}) + 4(\text{square}) + k \) with the coefficient of \(x^k \) in \(\frac{1}{g} \) equal to 1. Suppose we have such a representation of \(n \). Then \(k \) is odd. Since \(\frac{1}{g^r} = \frac{1}{g} \), it follows that \(k \equiv 1 \pmod{8} \). A congruence mod 16 argument using the fact that \(n \equiv 7 \pmod{16} \) shows that \(k \equiv 1 \pmod{16} \), and Lemma 3.5 tells us that \(k \) is a square. Conversely suppose \(n = 2(\text{square}) + 4(\text{square}) + k \), where \(k \) is a square. Then \(k \equiv 1 \pmod{8} \) and our congruence mod 16 argument tells us that \(k \equiv 1 \pmod{16} \). By Lemma 3.5, the coefficient of \(x^k \) in \(\frac{1}{g^r} \) is 1, and this completes the proof.

\[\square \]

Lemma 3.7. Let \(R_3 \) be the number of ways of writing \(2n \) as \((\text{square}) + (\text{square}) + (\text{square})\). Then if \(n \equiv 7 \pmod{8} \), \(R_3 = 6 \cdot \text{(the number of ways of writing } n \text{ as } (\text{square}) + 2(\text{square}) + 4(\text{square})\).)

Proof. Suppose \(2n = s_1 + s_2 + s_3 \) with the \(s_i \) squares. A congruence mod 16 argument shows that the \(s_i \), in some order, are \(1, 4 \) and \(9 \) mod 16. So \(R_3 = 6 \cdot \text{(the number of ways of writing } 2n \text{ as } s_1 + s_2 + s_3 \text{ with the } s_i \text{ squares, } s_1 \equiv 1 \pmod{16}, s_2 \equiv 4 \pmod{16}, s_3 \equiv 9 \pmod{16} \)). Suppose we have such a representation. Then we can choose square roots of \(s_1 \) and \(s_3 \) congruent to \(1 \) and \(5 \) respectively mod 8. Then \(n = \left(\frac{\sqrt{s_1} + \sqrt{s_3}}{2} \right)^2 + 2 \left(\frac{s_2}{4} \right) + 4 \left(\frac{\sqrt{s_1} - \sqrt{s_3}}{4} \right)^2 = (\text{square}) + 2(\text{square}) + 4(\text{square}) \). Conversely suppose \(n = t_1 + 2t_2 + 4t_3 \) with the \(t_i \) squares. Then the \(t_i \) are odd. Choose square roots of \(t_1 \) and \(t_3 \) that are \(1 \) (4). Then \(2n = \left(2\sqrt{t_3} - \sqrt{t_1} \right)^2 + 4t_2 + \left(2\sqrt{t_3} + \sqrt{t_1} \right)^2 \), and the three squares appearing in this decomposition are, in order, congruent mod 16 to 1, 4 and 9. In this way we get a 1–1 correspondence that establishes the result.

\[\square \]

Combining Theorem 3.6 and Lemma 3.7 we get:
Theorem 3.8. An \(n \equiv 7 \ (16) \) is in \(B \) if and only if the \(R_3 \) of Lemma 3.7 is \(\equiv 2 \ (4) \).

Lemma 3.9. Suppose \(n \equiv 7 \ (8) \) and is divisible by 3 or more different primes. Then the number of ways of writing \(2n \) primitively as \((\text{square})+(\text{square})+(\text{square})\) is divisible by 4.

Proof. Let \(\mathcal{O} = \mathbb{Z}[\sqrt{-2n}] \). When we write \(2n \) as \((\text{square})+(\text{square})+(\text{square})\), the summands, being \(\equiv 1, 4 \) and 9 mod 16 are non-zero and distinct. So the number we’re talking about is \(\frac{1}{8} \cdot (\text{the number of primitive representations of } 2n \text{ by the form } x^2 + y^2 + z^2). \) In [2] Gauss showed that this (in modern language) is \(\frac{1}{8} \cdot 12 \cdot (\text{the number of invertible ideal classes in } \mathcal{O}). \) Let \(m \) be the number of different primes dividing \(2n \). Gauss’ genus theory tells us that the group of invertible ideal classes maps onto a product of \(m - 1 \) copies of \(\mathbb{Z}/2 \). Since \(m \geq 4 \) we’re done.

Corollary 3.10. If \(n \equiv 7 \ (8) \) and 3 or more different primes occur to odd exponent in the factorization of \(n \), then the \(R_3 \) of Lemma 3.7 is divisible by 4.

Proof. For \(a^2 \) dividing \(2n \), Lemma 3.9 shows that the number of ways of writing \(2n/a^2 \) primitively as \((\text{square})+(\text{square})+(\text{square})\) is a multiple of 4. Summing over \(a \) gives the result.

Theorem 3.11. If \(n \equiv 7 \ (16) \) and 3 or more primes occur to odd exponent in the factorization of \(n \) then \(n \) is not in \(B \). Furthermore the number of \(n \) in \(B \) that are \(\leq x \) and \(\equiv 7 \ (16) \) is \(O(x \log \log(x)/\log(x)) \).

Proof. Theorem 3.8 and Corollary 3.10 give the first result, and we argue as in Theorem 2.4 to get the second.

Combining Theorems 1.3, 2.4 and 3.11 we get:

Theorem 3.12. The number of \(n \) in \(B \) that are \(\leq x \) and \(\not\equiv 15 \ (16) \) is \(O(x \log \log(x)/\log(x)) \). In particular the upper density of \(B \) is \(\leq \frac{1}{16} \).

Can one go further? A hope would be to find extensions of Theorems 1.1, 1.2 and 1.4 of this note that hold for \(n \equiv 7 \ (16) \), \(n \equiv 15 \ (32) \), \(n \equiv 31 \ (64) \), The authors of [1] claim that such extensions exist, but apart from \(n \equiv 7 \ (16) \), treated in this section, this seems unlikely. (The formulas they propose are incorrect.) There seems to be no theoretical evidence supporting the proposition that the \(n \equiv 15 \ (16) \) that lie in \(B \) form a set of density 0. As we’ll see in the next section the empirical evidence supports a quite different proposition.
Suppose \(x \) is in \(N \). There evidently are \(x \) positive integers that are \(\leq 16x \) and \(\equiv 15 \pmod{16} \). Let \(\beta = \beta(x) \) be the number of these integers that are in \(B \). Virtually nothing is known about the asymptotic growth of \(\beta \). But Kevin O’Bryant has calculated \(\beta \) for \(x \leq 2^{19} \), and his calculations show, for example:

(1) If \(x = 2^{16} \), the numbers of elements of \(B \) that are \(\equiv 15 \pmod{16} \) and lie in \([0, 16x], [16x, 32x], \ldots, [112x, 128x]\), are given respectively by \(\frac{x}{2} + 13, \frac{x}{2} + 94, \frac{x}{2} - 231, \frac{x}{2} + 207, \frac{x}{2} - 120, \frac{x}{2} + 14, \frac{x}{2} - 270 \) and \(\frac{x}{2} + 7 \).

(2) Suppose \(x \leq 2^{19} \) and is divisible by \(2^{10} \). Then \(\beta = \frac{x}{2} + \alpha \sqrt{x} \) with \(-1.1 < \alpha < 0.58\). (The minimum of \(\alpha \) is attained at \(5 \cdot 2^{10} \), and the maximum at \(37 \cdot 2^{10} \).)

This provides evidence for the following “15 mod 16 conjecture”: For every \(\rho > \frac{1}{2} \), \(\beta = \frac{x}{2} + O(x^\rho) \).

Note that if the conjecture holds then Theorem 3.12 shows that \(B \) has density \(\frac{1}{32} \).

Remark 4.1. There is a related much studied problem. Let \(g^* \) in \(\mathbb{Z}/2[[x]] \) be \(1 + x + x^3 + x^5 + x^7 + \cdots \) where the exponents are the generalized pentagonal numbers. Just as we used \(\frac{1}{g} \) to define \(B \) we can use \(\frac{1}{g^*} \) to define a set \(B^* \). (A famous result of Euler says that \(B^* \) consists of all \(n \) for which the number of partitions, \(p(n) \), of \(n \) is odd.) Let \(\beta^* = \beta^*(x) \) be the number of elements of \(B^* \) that are \(\leq x \). Despite extensive study only very weak results about the asymptotic growth of \(\beta^* \) have been proved. But Parkin and Shanks \[4\], on the basis of computer calculations, conjectured that for every \(\rho > \frac{1}{2} \), \(\beta = \frac{x}{2} + O(x^\rho) \). The resistance of this conjecture to attack suggests however that any proof of our 15 mod 16 conjecture is far off.

References

[1] Cooper J.N., Eichhorn D., O’Bryant K., Reciprocals of binary series, Int. J. Number Theory 2 (2006), 499–522.

[2] Gauss C.F., Disquisitiones Arithmeticæ(1801)—translated by Arthur A. Clarke, S.J., Yale University Press, New Haven, U.S. (1966).

[3] The On-Line Encyclopedia of Integer Sequences (OEIS).

[4] Parkin T.R., Shanks D., On the distribution of parity in the partition function, Math. Comp. 21 (1967), 466–480.