The soil carbon erosion paradox reconciled
Kristof Van Oost¹ and Johan Six²

¹Earth & Life Institute, Georges Lemaître Center for Earth & Climate Research, UCLouvain, Place Louis Pasteur 3, 1348 Louvain-la-Neuve, Belgium
²Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland

Correspondence to: K Van Oost (Kristof.vanoost@uclouvain.be) & J Six (jsix@ethz.ch)

Abstract.

The acceleration of erosion, transport and burial of soil organic carbon (C) in response to agricultural expansion represents a significant perturbation of the terrestrial C cycle. Recent model advances now enable improved representation of the relationships between sedimentary processes and C cycling and this has led to substantially revised assessments of changes in land C as a result of land cover and climate change. However, surprisingly a consensus on both the direction and magnitude of the erosion-induced land-atmosphere C exchange is still lacking. Here, we show that the apparent soil C erosion paradox, i.e., whether agricultural erosion results in a C sink or source, can be reconciled when comprehensively considering the range of temporal and spatial scales at which erosional effects on the C cycle operate. We developed a framework that describes erosion-induced C sink and source terms across scales. We conclude that erosion is a source for atmospheric CO₂ when considering only small temporal and spatial scales, while both sinks and sources appear when multi-scaled approaches are used. We emphasize the need for erosion control for the benefits it brings for the delivery of ecosystem services, but cross-scale approaches are essential to accurately represent erosion effects on the global C cycle.

1 Introduction

Soil erosion has been identified as the biggest threat to global food security (Amundson et al., 2015). Reducing soil erosion to maintain or enhance soil fertility is therefore imperative to sustainably feed the growing and more demanding world population (Koch et al., 2013; Montgomery, 2007). Although there is no doubt that soil conservation practices reducing erosion result in healthier, more fertile soils, there is still a debate whether agricultural soil erosion represent a net C sink or source. Assuming that a substantial fraction of soil C mobilized on agricultural land is lost to the atmosphere, many researchers concluded that agricultural erosion represents a source of atmospheric CO₂, with estimates of up to 1 Pg C yr⁻¹ (Lal, 2004). This realization led to the notion of a win-win situation whereby soil conservation practices that reduce soil erosion not only result in healthier soils, but that an additional and large C sink could be obtained by halting the large source term associated with pre-conservation agricultural soil erosion (Koch et al., 2013; Lal, 2003, 2019; Ran et al., 2014, 2018; Worrall et al., 2016). This notion was challenged by other studies that suggested a different pathway for the eroded C (Berhe et al., 2007; Harden et al., 1999; Van Oost et al., 2007; Smith et al., 2001; Stallard, 1998). They proposed the concept of the geomorphic C pump that transfers C from the atmosphere to upland soils recovering from erosion to burial sites where C is protected from decomposition in low-mineralization contexts. Along this geomorphic conveyor belt, C originally fixed by plants is continuously displaced laterally along the Earth’s surface where it can be stored in sedimentary environments such as colluvial and floodplain soils, lake and reservoir sediments and eventually the sea floor (i.e., the Land Ocean Aquatic Continuum or LOAC) (Regnier et al., 2013). They argued that the combination of C recovery and sedimentation on land could capture vast quantities of atmospheric C of ca. 1 Pg C yr⁻¹ and erosion therefore may represent a C sink (Berhe et al., 2007; Smith et al., 2005; Stallard, 1998). This soil C erosion source-sink paradox is an important knowledge gap because (i) erosion-induced C fluxes associated with agriculture operate at rates that are relevant for the global C budget (Aufdenkampe et al., 2011; Berhe et al., 2008; Chappell et al., 2016; Wang et al., 2017; Yue et al., 2016) and (ii) the expected future increases in food demand and climate erosivity will further
exacerbate erosion and its implications for the global C budget (Borrelli et al., 2017; Lugato et al., 2016). Here, we elucidate through a comprehensive and synthesizing literature review covering 74 studies (see methods) how the current source-sink paradox, i.e. whether agricultural soil erosion represents a sink or source for atmospheric C, can be reconciled. At the very center of this paradox is the fact that erosion-induced processes operate across temporal and spatial scales that determine the relationship between erosion and C loss versus stabilization processes. We conceptualize the effects of the contributing erosional (sub-)processes across time and space using decay functions (see methods).

2 Transport in runoff and rivers

At very short timescales (seconds to days) erosion events shift a portion of the soil C from a protected state to an available state where it faster mineralizes to gaseous forms. More specifically, the breakdown of aggregates, either via raindrop impact or via transport in runoff or rivers, makes previously protected mineral associated organic matter (MAOM) and especially particulate organic matter (POM) more readily available for microbial consumption because of reduced physical occlusion (Jacinthe et al., 2002, 2004; Six et al., 2002) (Fig. 1). This facilitates the transformation of free MAOM and POM into more easily decomposable forms of C through desorption of MAOM from mineral surfaces and comminution and dissolution of POM-derived C (Bailey et al., 2019). Together, these processes, which can be observed during a single erosive event, result in an erosion-induced source term. Initial laboratory experiments focusing on the potential mineralization of C transported by overland flow suggested that 13 to 37% of the transported C could be returned to the atmosphere in a matter of several weeks, thereby representing a large and almost instantaneous source term (Guenet et al., 2014; Jacinthe et al., 2002, 2004). These high proportions of mineralizable C were related to the preferential erosion and translocation of labile C. Further experimental work and field observations based on in-situ measurements suggested that the net erosion-induced source term, i.e. relative to non-eroded soils, was much smaller with fractional losses of only 4 ± 4.2 % (Van Hemelryck et al., 2010, 2011; Polyakov and Lal, 2008; Wang et al., 2014a). In addition, at larger spatial scales the destabilization of eroded C during its transport in rivers and estuaries has to be considered and the oxidation of C during in-river transport can be substantial (Aufdenkampe et al., 2011; Wang et al., 2017; Worrall et al., 2016). During fluvial transport, fluid turbulence mixes and aerates water, and in combination with particle abrasion, this may enhance oxidation. The oxidation of particulate organic carbon mobilized by agricultural erosion during its transit time in the aquatic system is assumed to be large with estimates ranging between 0 and 50% (Scheingross et al., 2019; Worrall et al., 2014). Based on this literature review, we estimate the loss terms for runoff and rivers, i.e. α_{runoff} and α_{river}, at -0.04 and -SDR$^{0.5}$, respectively, (where SDR is the fraction of the eroded C that reaches the river network). This outgassing is usually observed to occur quickly in the timeframe of several days to months. We therefore set the time constant for both processes (i.e. τ_{runoff} and τ_{river}) to 1 yr. Our literature review (Fig. 2) clearly shows that studies reporting erosion as a source term typically consider mobilization and transport processes at very short timescales (0.5 ± 0.7 yr). Thus, studies assuming that this short-term erosion-induced loss term is the dominant process concluded that agricultural erosion represents a large source of atmospheric CO$_2$.

3 SOC recovery after erosion

In contrast, studies considering erosion as a sink for atmospheric C typically consider longer timescales at which the geomorphic C conveyor belt is operating. In the net outcome of the geomorphic C conveyor belt strongly depends on the C sink mechanisms induced by erosion of upland soils (Manies et al., 2001; Van Oost et al., 2007; Stallard, 1998; Vandenbygaart et al., 2012). On eroding hillslopes, soils are truncated, and C depleted subsoil material is brought to the surface layers. This induces two competing processes occurring simultaneously: the decomposition of old subsoil C and the sequestration and stabilization of fresh C inputs from newly growing plants. It is, exposure of deep C by erosion of surface soil and associated changes in microclimatic conditions increase the rate of deep C decomposition (Bailey et al., 2019). Furthermore, the mixing...
of formerly deep C with labile C provides readily available energy sources for decomposers, which speeds up the decomposition rate of older, previously stable C, the so-called priming effect (Fontaine et al., 2007). At the same time, new C formation from new vegetation inputs into the former subsoil may replace some or all of the eroded SOC. It is, erosion-induced soil truncation facilitates the new formation of more stable MAOM by the adsorption of products from POM decomposition and DOC derived from plant material onto mineral surfaces of the former subsoil (Fig. 1), thereby representing a net transfer of C from the atmosphere to soils (Harden et al., 1999; Li et al., 2015; Liu et al., 2003; Wang et al., 2017). Observations covering a broad range of environmental conditions have shown that a substantial part of the eroded SOC in agricultural soils can be replaced by new C and dominates over the enhanced destabilization of deep C (Li et al., 2015; Liu et al., 2003; Van Oost et al., 2007; Wang et al., 2017). This leads to the counterintuitive situation where a system exhibiting lateral C loss due to erosion represents a net atmospheric sink term, in contrast to the short-term source term described above, the underlying processes leading to an erosion-induced sink term operate at a slower rate but occur at 70-90% of the affected surface, whereas the source term is spatially restricted (Dlugosz et al., 2012). Thus, the sink-term is more difficult to isolate from the much larger background C fluxes between soil and atmosphere, particularly at short timescales. By using C isotopes and fallout radionuclides, in combination with space-for-time substitutions spanning several years to decades, studies have conclusively shown that a substantial part of the laterally eroded C can be effectively replaced (50 ± 43%) (Li et al., 2015; Quine and van Oost, 2007; Vandenbygaart et al., 2012), whereby this erosion-induced sink term was substantially larger than the source term related to erosion-induced C destabilization (Wang et al., 2017). Our literature review clearly shows that studies reporting C erosion recovery as a sink term typically consider these longer time-scales (91 ± 1098 yr) (Fig. 2).

The C recovery potential of soils at the scale of eroding hillslopes, which is driving the C sink term of the geomorphic pump, is however in itself also time-dependent. In the initial phases after the start of an erosional disturbance, the soil is not yet in equilibrium with the erosional disturbance and only a small fraction of the eroded C is replaced, which leads to only a small erosion-induced sink (Fig. 3). There is, however, a transient response where the C stocks at the eroding sites continue to decline until a new equilibrium is reached, i.e., when losses through decomposition and lateral erosion balance new C formation. At this point, the erosion loss term is part of a steady state flux where all the eroded C is atmospherically replaced and the sink term potential is maximized (Li et al., 2015). For example, for European cropland subjected to a recent erosional disturbance of c. 2 decades associated with mechanized tillage, a sink-term representing only 26% of the eroded C was found (Van Oost et al., 2007). In contrast, for cropland subjected to >100 yr of continued water erosion, replacement rates of 58-100% were found (Dymond, 2010; Li et al., 2015; Naipal et al., 2020). Thus, both observation- and model-based studies support the notion that the fraction of the eroded C that is replaced, and hence the erosion-induced sink term, increases with the duration of the erosional disturbance (Fig. 3). This transient response of eroding landscapes to erosional disturbance is a key control on the erosion-induced sink strength (Li et al., 2015; Van Oost et al., 2007; Wang et al., 2017), but is often overlooked in C budget assessments (e.g., Lugato et al., 2016, 2018; Worrall et al., 2014).

It is important to notice, however, that at eroding sites, an erosion-induced decline in net primary production (NPP) may reduce soil C inputs and this may limit the sink term described above (Lal, 2019). Soil erosion reduces soil depth and modifies soil properties, which can have a detrimental effect on NPP through the decrease of the supply of water, nutrients and rooting space (Fig. 1). Model simulations (Fig. 3) show that NPP decline reduces the efficiency of the sink term and may eventually lead to a source rather than a sink under high erosion scenarios. Although there are documented cases where soil loss has contributed to the collapse of the soil system (e.g., Montgomery, 2007; Óskarsson et al., 2004), the available evidence from present-day agricultural land suggests that erosion-induced soil C input decline is not the dominant mechanism (Lugato et al., 2018), but rather, C stabilization in newly exposed subsoil results in efficient SOC recovery and the sink term is maintained over longer timescales (Wang et al., 2017) (Fig. 3). This is most likely due to the small fraction (i.e., < 10%) of NPP is removed by erosion (Berhe et al., 2008). Based on the data available in literature, we estimate the fractional gain at steady state for the SOC recovery term (αrec) at 0.93, while the time constant (τrec) equals 167 yr (Fig. 3).
4 SOC burial

The erosion source-sink paradox is also related to an incomplete consideration of the multiple spatial scales at which C and erosion processes interact. After mobilization, the eroded C is transported and a large amount of eroded sediment and C is redeposited in alluvial and colluvial soils while the remainder is stored in lake/reservoir deposits and ocean sediments (Aufdenkampe et al., 2011). At the global scale, colluvial and alluvial burial represent by far the largest stores of C burial (75%) (Wang et al., 2017). Here, the eroded C is more efficiently protected from destabilization, relative to their origin, due to re-aggregation, the formation of MAOM as well as the burial of autochthonous C (Fig. 1). However, high rates of post-depositional C losses in colluvial and alluvial soils have been observed with low C burial efficiencies of only 15-30% at a centennial/millennial time scale; whereas C is preserved more efficiently in lake and ocean deposits with C burial efficiencies of 22-60% (Van Oost et al., 2012; Wang et al., 2017). This leads to the counterintuitive situation where systems receiving lateral C inputs accumulate C but represent a source for atmospheric C. It has been observed that C destabilization in terrestrial burial stores is a very slow process, with half-lives of up to 300 yr (Van Oost et al., 2012), and C losses therefore lag C burial. At decadal timescales, several studies reported no significant outgassing and hence a full protection of the buried C (Van Oost et al., 2007; VandenBygaart et al., 2015). This lag implies that there is a commitment to future climate as the result of both present and past agriculture and associated erosion and burial. Based on our literature review, we found a large variability in SOC burial response curves (τbur and αbur, Table 1), particularly for alluvial settings. This variability is most likely driven by climatic factors that regulate the hydrologic context, by local NPP and by differences in soil texture and geochemical parameters. Nevertheless, we found a consistent pattern across burial sites with a median τbur and αbur of 0.58 and 0.0019 yr, respectively.

5 Discussion and conclusion

Using parameter values for α and τ for the different processes constrained by published estimates as presented above and summarized in Table 2 (Table 2), we developed a framework where the instantaneous source terms associated with runoff and river transport are combined with the transient source/sink terms associated with oxidation during burial and SOC recovery on sites of erosion (Fig. 4). The model shows that C stocks in stores along the LOAC are not necessarily in equilibrium with the erosional disturbance and it is thus critical to consider the dynamic phases of both C recovery at sites of erosion and C destabilization in sedimentary environments. Furthermore, the time since agricultural disturbance and the residence times of C in sedimentary environments are critical factors to consider. Considering all these processes this reconciles the apparent soil C erosion paradox by showing that both major source and sink terms for atmospheric C are simultaneously induced by erosion. The contrasting views that erosion represents a large sink or a source originate from a partial analysis and an incomplete consideration of the underlying processes that occur at vastly different spatial and temporal scales. When a comprehensive analysis is done by considering the complete trajectory of eroded C (i.e. the LOAC) at the appropriate timescales, the available evidence indicates that the sink and source terms are in the same order of magnitude. This implies that the assertions of a very large effect of agricultural erosion on the global C budget, with a net C flux of up to 1 to 2 Pg C yr⁻¹ (Berhe et al., 2007; Lal, 2004; Smith et al., 2005) are inconsistent with integrative assessments. Nevertheless, when considering the studies focusing on agricultural systems and accounting for all components of the geomorphic cascade, the available data suggests that the sink terms dominate and agricultural erosion represents a small sink in the order of 5 Pg C yr⁻¹, but a sink nonetheless (Fig. 2 and Table 1).

Although recent work has provided full spatial integrative assessments along the LOAC, the transient response of both terrestrial and aquatic ecosystems to erosion (Van Oost et al., 2012; Wang et al., 2017) as well as the outgassing of other GHG (Lal, 2019; Wang et al., 2017; Worrall et al., 2016) requires more attention. It is also important to note that the available estimates are strongly biased towards high-input agricultural systems with deep fertile soils developed on sedimentary...
substrates and thus more data on low-input systems on marginal lands are urgently needed. While we emphasize the necessity of programs to reduce soil losses because of the many benefits this brings for soil quality and delivery of ecosystems services, we urge to consider both C sink and source terms at appropriate scales when assessing the effect of erosion on the global C cycle.

Methods

We use the following model to describe system responses (Eq. 1):

\[R_t = \alpha \left(1 - e^{-\frac{t}{\tau}} \right) \]

where \(R_t \) is the erosion-induced C loss/gain at time \(t \) of process \(R \), expressed as a fraction of the mobilized C, \(t \) is the time since the start of the erosional disturbance, \(\alpha \) is the fractional C loss/gain at steady state and \(\tau \) is the time constant that describes the pace at which the process is adjusting to the erosional disturbance. We compiled 74 studies that were available in the literature and that report on SOC erosion as a sink or source of atmospheric CO2. We used the search terms “soil erosion” & “C sink”|“C source|C budget” in the Scopus database. This was complemented with review papers and references cited herein. From these studies we extracted whether they report erosion as a sink, source or neutral (if no C flux direction is given). The data was complemented with the space and time scales considered as well as the C flux rates (lateral and vertical fluxes). The studies considered are shown in Table 1. The statistics reported in the main text represent the median value ± interquartile range.

References

Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E. and Sparks, D. L.: Soil and human security in the 21st century, Science (80-.)., 348(6235), doi:10.1126/science.1261071, 2015.

Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E. and Yoo, K.: Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere, Front. Ecol. Environ., 9(1), 53–60, doi:10.1890/100014, 2011.

Bailey, V. L., Pries, C. H. and Lajtha, K.: What do we know about soil carbon destabilization?, Environ. Res. Lett., 14(8), doi:10.1088/1748-9326/ab2c11, 2019.

Bakker, M. M., Govers, G. and Rounsevell, M. D. A.: The crop productivity-erosion relationship: An analysis based on experimental work, Catena, 57(1), 55–76, doi:10.1016/J.CATENA.2003.07.002, 2004.

Berhe, A. A., Harte, J., Harden, J. W. and Torn, M. S.: The significance of the erosion-induced terrestrial carbon sink, Bioscience, 57(4), 337–346, doi:10.1641/B570408, 2007.

Berhe, A. A., Harden, J. W., Torn, M. S. and Harte, J.: Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions, J. Geophys. Res. Biogeoosciences, 113(4), doi:10.1029/2008JG000751, 2008.

Billings, S. A., Buddemeier, R. W., DeB. Richter, D., Van Oost, K. and Bohling, G.: A simple method for estimating the influence of eroding soil profiles on atmospheric CO2, Global Biogeochem. Cycles, 24(2), doi:10.1029/2009GB003560, 2010.

Billings, S. A., Richter, D. D. B., Ziegler, S. E., Prestegaard, K. and Wade, A. M.: Distinct contributions of eroding and depositional profiles to land-atmosphere CO2 exchange in two contrasting forests, Front. Earth Sci., 7, doi:10.3389/feart.2019.00036, 2019.

Boix-Fayos, C., de Vente, J., Albaladejo, J. and Martínez-Mena, M.: Soil carbon erosion and stock as affected by land use changes at the catchment scale in Mediterranean ecosystems, Agric. Ecosyst. Environ., 133(1–2), 75–85, doi:10.1016/j.agee.2009.05.013, 2009.
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Montanarella, L. and Panagos, P.: An assessment of the global impact of 21st century land use change on soil erosion, Nat. Commun., 8(1), doi:10.1038/s41467-017-02142-7, 2017.

Bouchoms, S., Wang, Z., Vanacker, V., Doetterl, S. and Van Oost, K.: Modelling long-term soil organic carbon dynamics under the impact of land cover change and soil redistribution, Catena, 151, 63–73, doi:10.1016/j.catena.2016.12.008, 2017.

Chappell, A., Baldock, J. and Sanderman, J.: The global significance of omitting soil erosion from soil organic carbon cycling schemes, Nat. Clim. Chang., 6(2), 187–191, doi:10.1038/nclimate2829, 2016.

Dialynas, Y. G., Bastola, S., Bras, R. L., Marin-Spiotta, E., Silver, W. L., Arnone, E. and Noto, L. V.: Impact of hydrologically driven hillslope erosion and landslide occurrence on soil organic carbon dynamics in tropical watersheds, Water Resour. Res., 52(11), 8895–8919, doi:10.1002/2016WR018925, 2016a.

Dialynas, Y. G., Bastola, S., Bras, R. L., Billings, S. A., Markewitz, D. and Richter, D. D.: Topographic variability and the influence of soil erosion on the carbon cycle, Global Biogeochem. Cycles, 30(5), 64–660, doi:10.1002/2015GB005302, 2016b.

Dialynas, Y. G., Bras, R. L. and deB. Richter, D.: Hydro-geomorphic perturbations on the soil-atmosphere CO2 exchange: How (un)certain are our balances?, Water Resour. Res., 53(2), 1664–1682, doi:10.1002/2016WR019411, 2017.

Doetterl, S., Fiener, P., Van Oost, K. and Schneider, K.: Model based analysis of lateral and vertical soil carbon fluxes induced by soil redistribution processes in a small agricultural catchment, Earth Surf. Process. Landforms, 37(2), 193–208, doi:10.1002/esp.2246, 2016.

Dymond, J. R.: Soil erosion in New Zealand is a net sink of CO2, Earth Surf. Process. Landforms, 35(15), 1763–1772, doi:10.1002/esp.2014, 2010.

Fiener, P., Dialynas, V. and Van Oost, K.: Erosion-induced carbon redistribution, burial and mineralisation - Is the episodic nature of erosion processes important?, Catena, 133, 282–292, doi:10.1016/j.catena.2015.05.027, 2015.

Guenet, B., Danger, M., Harrault, L., Allard, B., Jauset-Alcala, M., Bardoux, G., Benest, D., Abbadie, L. and Lacroix, G.: Fast mineralization of land-born C in inland waters: First experimental evidences of aquatic priming effect, Hydrobiologia, 721(1), 35–44, doi:10.1007/s10750-013-1635-1, 2014.

Guenet, B., Danger, M., Harrault, L., Allard, B., Jauset-Alcala, M., Bardoux, G., Benest, D., Abbadie, L. and Lacroix, G.: Fast mineralization of land-born C in inland waters: First experimental evidences of aquatic priming effect, Hydrobiologia, 721(1), 35–44, doi:10.1007/s10750-013-1635-1, 2014.

Harden, J. W., Sharpe, J. M., Parton, W. J., Ojima, D. S., Fries, T. L., Huntington, T. G. and Dabney, S. M.: Dynamic replacement and loss of soil carbon on eroding cropland, Global Biogeochem. Cycles, 13(4), 885–901, doi:10.1029/1999GB000661, 1999.

Van Hemelryck, H., Fiener, P., Van Oost, K., Govers, G. and Mereckx, R.: The effect of soil redistribution on soil organic carbon: An experimental study, Biogeosciences, 7(12), 3971–3986, doi:10.5194/bg-7-3971-2010, 2010.

Van Hemelryck, H., Govers, G., Van Oost, K. and Mereckx, R.: Evaluating the impact of soil redistribution on the in situ mineralization of soil organic carbon, Earth Surf. Process. Landforms, 36(4), 427–438, doi:10.1002/esp.2055, 2011.

Hoffmann, T., Schlummer, M., Notebaert, B., Verstraeten, G. and Korup, O.: Carbon burial in soil sediments from Holocene agricultural erosion, Central Europe, Global Biogeochem. Cycles, 27(3), 828–835, doi:10.1002/gbc.20071, 2013a.

Hoffmann, T., Mudd, S. M., Van Oost, K., Verstraeten, G., Erkens, G., Lang, A., Middelkoop, H., Boyle, J., Kaplan, J. O., Willenbring, J., Willenbring, J. and Aalto, R.: Short Communication: Humans and the missing C-sink: Erosion and burial of soil carbon through time, Earth Surf. Dyn., 1(1), 45–52, doi:10.5194/esurf-1-45-2013, 2013b.

Hu, Y., Berhe, A. A., Fogel, M. L., Heckrath, G. J. and Kuhn, N. J.: Transport-distance specific SOC distribution: Does it
skew erosion induced C fluxes?, Biogeochemistry, 128(3), 339–351, doi:10.1007/s10533-016-0211-y, 2016.
Ito, A.: Simulated impacts of climate and land-cover change on soil erosion and implication for the carbon cycle, 1901 to 2100, Geophys. Res. Lett., 34(9), doi:10.1029/2007GL029342, 2007.
Jacinthe, P.-A., Lal, R. and Kimble, J. M.: Carbon dioxide evolution in runoff from simulated rainfall on long-term no-till and plowed soils in southwestern Ohio, Soil Tillage Res., 66(1), 23–33, doi:10.1016/S0167-1987(02)00010-7, 2002.
Jacinthe, P.-A., Lal, R., Owens, L. B. and Hothen, D. L.: Transport of labile carbon in runoff as affected by land use characteristics, Soil Tillage Res., 77(2), 111–123, doi:10.1016/j.still.2003.11.004, 2004.
Kirkels, F. M. S. A., Cammeraat, L. H. and Kuhn, N. J.: The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes - A review of different concepts, Geomorphology, 226, 94–105, doi:10.1016/j.geomorph.2014.07.023, 2014.
Koch, A., Mcbratney, A., Adams, M., Field, D., Hill, R., Crawford, J., Minasny, B., Lal, R., Abbott, L., O’Donnell, A., Young, I. and Zimmermann, M.: Soil Security: Solving the Global Soil Crisis, Glob. Policy, 4(4), 434–441, doi:10.1111/1758-5899.12096, 2013.
Kuhn, N. J., Hoffmann, T., Schwanghart, W. and Dotterweich, M.: Agricultural soil erosion and global carbon cycle: Controversy over?, Earth Surf. Process. Landforms, 34(7), 1033–1038, doi:10.1002/esp.1796, 2009.
Lal, R.: Soil degradation by erosion, L. Degrad. Dev., 12(6), 519–539, doi:10.1002/lrd.472, 2001.
Lal, R.: Soil erosion and the global carbon budget, Environ. Int., 29(4), 437–450, doi:10.1016/S0160-4120(02)00192-7, 2003.
Lal, R.: Soil carbon sequestration impacts on global climate change and food security, Science (80-.)., 304(5677), 1623–1627, doi:10.1126/science.1097396, 2004.
Lal, R.: Soil erosion and carbon dynamics, Soil Tillage Res., 81(2), 137–142, doi:10.1016/j.still.2004.09.002, 2005.
Lal, R.: Accelerated Soil erosion as a source of atmospheric CO2, Soil Tillage Res., 188, 35–40, doi:10.1016/j.still.2018.02.001, 2019.
Li, Y., Quine, T. A., Yu, H. Q., Govers, G., Six, J., Gong, D. Z., Wang, Z., Zhang, Y. Z. and Van Oost, K.: Sustained high magnitude erosional forcing generates an organic carbon sink: Test and implications in the Loess Plateau, China, Earth Planet. Sci. Lett., 411, 281–289, doi:10.1016/j.epsl.2014.11.036, 2015.
Liu, S., Bliss, N., Sundquist, E. and Huntington, T. G.: Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition, Global Biogeochem. Cycles, 17(2), 43–1, 2003.
Lugato, E., Paustian, K., Panagos, P., Jones, A. and Borrelli, P.: Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution, Glob. Chang. Biol., 22(5), 1976–1984, doi:10.1111/gcb.13198, 2016.
Lugato, E., Smith, P., Borrelli, P., Panagos, P., Ballabio, C., Orgiazzi, A., Fernandez-Ugalde, O., Montanarella, L. and Jones, A.: Soil erosion is unlikely to drive a future carbon sink in Europe, Sci. Adv., 4(11), doi:10.1126/sciadv.aau3523, 2018.
Manies, K. L., Harden, J. W., Kramer, L. and Parton, W. J.: Carbon dynamics within agricultural and native sites in the loess region of Western Iowa, Glob. Chang. Biol., 7(5), 545–555, doi:10.1046/j.1354-1013.2001.00427.x, 2001.
Mayer, S., Schwindt, D., Steffens, M., Vökel, J. and Kögel-Knabner, I.: Drivers of organic carbon allocation in a temperate slope-floodplain catena under agricultural use, Geoderma, 327, 63–72, doi:10.1016/J.GEODERMA.2018.04.021, 2018.
Montgomery, D. R.: Soil erosion and agricultural sustainability, Proc. Natl. Acad. Sci. U. S. A., 104(33), 13268–13272, doi:10.1073/pnas.061508104, 2007.
Mora, J. L., Guerra, J. A., Armas, C. M., Rodriguez-Rodriguez, A., Arbello, C. D. and Notario, J. S.: Mineralization rate of eroded organic C in Andosols of the Canary Islands, Sci. Total Environ., 378(1–2), 143–146, doi:10.1016/j.scitotenv.2007.01.040, 2007.
Müller-Nedebock, D. and Chaplot, V.: Soil carbon losses by sheet erosion: A potentially critical contribution to the global carbon cycle, Earth Surf. Process. Landforms, 40(13), 1803–1813, doi:10.1002/esp.3758, 2015.
Nadeu, E., Berhe, A. A., De Vente, J. and Boix-Fayos, C.: Erosion, deposition and replacement of soil organic carbon in
Mediterranean catchments: A geomorphological, isotopic and land use change approach, Biogeosciences, 9(3), 1099–1111, doi:10.5194/bg-9-1099-2012, 2012.

Nadeu, E., Gobin, A., Fiener, P., van Wesemael, B. and van Oost, K.: Modelling the impact of agricultural management on soil carbon stocks at the regional scale: The role of lateral fluxes, Glob. Chang. Biol., 21(8), 3181–3192, doi:10.1111/gcb.12889, 2015.

Naipal, V., Lauerwald, R., Ciais, P., Guenet, B. and Wang, Y.: CE-DYNAM (v1): A spatially explicit process-based carbon erosion scheme for use in Earth system models, Geosci. Model Dev., 13(3), 1201–1222, doi:10.5194/gmd-13-1201-2020, 2020.

Ni, J., Yue, Y., Borthwick, A. G. L., Li, T., Miao, C. and He, X.: Erosion-induced CO2 flux of small watersheds, Glob. Planet. Change, 94–95, 101–110, doi:10.1016/j.gloplacha.2012.07.003, 2012.

Novara, A., Keestra, S., Cerdà, A., Pereira, P. and Cristina, L.: Understanding the role of soil erosion on CO2-C loss using 13C isotopic signatures in abandoned Mediterranean agricultural land, Sci. Total Environ., 550, 330–336, doi:10.1016/j.scitotenv.2016.01.095, 2016.

Olson, K. R., Al-Kaisi, M., Lal, R. and Cihacek, L.: Impact of soil erosion on soil organic carbon stocks, J. Soil Water Conserv., 71(3), 61A-67A, doi:10.2489/jswc.71.3.61A, 2016.

Omengo, F. O., Geeraert, N., Bouillon, S. and Govers, G.: Deposition and fate of organic carbon in floodplains along a tropical semi-ariad lowland river (Tana River, Kenya), J. Geophys. Res. G Biogeosciences, 121(4), 1131–1143, doi:10.1002/2015JG003288, 2016.

Van Oost, K., Govers, G., Quine, T. A., Heckrath, G., Olesen, J. E., De Gryze, S. and Merckx, R.: Landscape-scale modeling of carbon cycling under the impact of soil redistribution: The role of tillage erosion, Global Biogeochem. Cycles, 19(4), doi:10.1029/2005GB002471, 2005.

Van Oost, K., Quine, T. A. A., Govers, G., De Gryze, S., Six, J., Harden, J. W. W., Ritchie, J. C. C., McCarty, G. W. W., Heckrath, G., Kosmas, C., Giráldez, J. V. V., da Silva, J. R. M., Merckx, R., Al, E., De Gryze, S., Six, J., Harden, J. W. W., Ritchie, J. C. C., McCarty, G. W. W., Heckrath, G., Kosmas, C., Giráldez, J. V. V., da Silva, J. R. M., Merckx, R.: The impact of agricultural soil erosion on the global carbon cycle, Science (80-.), 318(5850), 626-629 ST-The impact of agricultural soil erosion, doi:10.1126/science.1145724, 2007.

Van Oost, K., Van Hemelryck, H. and Harden, J. W.: Erosion of soil organic carbon: Implications for carbon sequestration., 2009.

Van Oost, K., Verstraeten, G., Doetterl, S., Notebaert, B., Wiaux, F., Broothaerts, N. and Six, J.: Legacy of human-induced C erosion and burial on soil-atmosphere C exchange, Proc. Natl. Acad. Sci. U. S. A., 109(47), 19492–19497, doi:10.1073/pnas.1211162109, 2012.

Óskarsson, H., Arnalds, Ó., Gudmundsson, J. and Gudbergsson, G.: Organic carbon in Icelandic Andosols: Geographical variation and impact of erosion, Catena, 56(1–3), 225–238, doi:10.1016/j.catena.2003.10.013, 2004.

Page, M., Trustrum, N., Brackley, H. and Baisden, T.: Erosion-related soil carbon fluxes in a pastoral steepland catchment, New Zealand, Agric. Ecosyst. Environ., 103(3), 561–579, doi:10.1016/j.agee.2003.10.010, 2004.

Polyakov, V. O. and Lal, R.: Soil organic matter and CO2 emission as affected by water erosion on field runoff plots, Geoderma, 143(1–2), 216–222, doi:10.1016/j.geoderma.2007.11.005, 2008.

Quine, T. A. and van Oost, K.: Quantifying carbon sequestration as a result of soil erosion and deposition: Retrospective assessment using caesium-137 and carbon inventories, Glob. Chang. Biol., 13(12), 2610–2625, doi:10.1111/j.1365-2486.2007.01457.x, 2007.

Quinton, J. N., Catt, J. A., Wood, G. A. and Steer, J.: Soil carbon losses by water erosion: Experimentation and modeling at field and national scales in the UK, Agric. Ecosyst. Environ., 112(1), 87–102, doi:10.1016/j.agee.2005.07.005, 2006.

Quinton, J. N., Govers, G., Van Oost, K. and Bardgett, R. D.: The impact of agricultural soil erosion on biogeochemical
cycling, Nat. Geosci., 3(5), 311–314, doi:10.1038/ngeo838, 2010.
Ran, L., Lu, X. X. and Xin, Z.: Erosion-induced massive organic carbon burial and carbon emission in the Yellow River basin, China, Biogeosciences, 11(4), 945–959, doi:10.5194/bg-11-945-2014, 2014.
Ran, L., Lu, X., Fang, N. and Yang, X.: Effective soil erosion control represents a significant net carbon sequestration, Sci. Rep., 8(1), doi:10.1038/s41598-018-30497-4, 2018.
Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., Laruelle, G. G., Lauerwald, R., Luysaert, S., Andersson, A. J., Arndt, S., Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A., Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., Larowe, D. E., Leifeld, J., Meysman, F. J. R., Munhoven, G., Raymond, P. A., Spahni, R., Suntharalingam, P. and Thullner, M.: Anthropogenic perturbation of the carbon fluxes from land to ocean, Nat. Geosci., 6(8), 597–607, doi:10.1038/ngeo1830, 2013.
Remus, R., Kaiser, M., Kleber, M., Augustin, J. and Sommer, M.: Demonstration of the rapid incorporation of carbon into protective, mineral-associated organic carbon fractions in an eroded soil from the CarboZALF experimental site, Plant Soil, 430(1–2), 329–348, doi:10.1007/s11104-018-3724-4, 2018.
Rosenbloom, N. A., Harden, J. W., Neff, J. C. and Schimel, D. S.: Geomorphic control of landscape carbon accumulation, J. Geophys. Res. Biogeosciences, 111(1), doi:10.1029/2005JG000077, 2006.
Scheingross, J. S., Hovius, N., Dellinger, M., Hilton, R. G., Repasch, M., Sachse, D., Gröcke, D. R., Vieth-Hillebrand, A. and Turowski, J. M.: Preservation of organic carbon during active fluvial transport and particle abrasion, Geology, 47(10), 958–962, doi:10.1130/G46442.1, 2019.
Six, J., Conant, R. T., Paul, E. A. and Paustian, K.: Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils, Plant Soil, 241(2), 155–176, doi:10.1023/A:1016125726789, 2002.
Smith, S. V., Renwick, W. H., Buddemeier, R. W. and Crossland, C. J.: Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States, Global Biogeochem. Cycles, 15(3), 697–707, doi:10.1029/2000GB001341, 2001.
Stallard, R. F.: Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial, Global Biogeochem. Cycles, 12(2), 231–257, doi:10.1029/98GB00741, 1998.
Steger, K., Fiener, P., Marvin-DiPasquale, M., Viers, J. H. and Smart, D. R.: Human-induced and natural carbon storage in floodplains of the Central Valley of California, Sci. Total Environ., 651, 851–858, doi:10.1016/j.scitotenv.2018.09.205, 2019.
Vandenbygaart, A. J., Kroetsch, D., Gregorich, E. G. and Lobb, D.: Soil C erosion and burial in cropland, Glob. Chang. Biol., 18(4), 1441–1452, doi:10.1111/j.1365-2486.2011.02604.x, 2012.
Wang, Z., Van Oost, K., Lang, A., Quine, T., Clymans, W., Van der Putte, A., Langhans, C., Merekx, R. and Van Oost, K.: Catchment-scale carbon redistribution and delivery by water erosion in an intensively cultivated area, Geomorphology, 124(1–2), 65–74, doi:10.1016/j.geomorph.2010.08.010, 2010.
Wang, Z., Van Oost, K., Lang, A., Quine, T., Clymans, W., Merekx, R., Notebaert, B. and Govers, G.: The fate of buried organic carbon in colluvial soils: A long-term perspective, Biogeosciences, 11(3), 873–883, doi:10.5194/bg-11-873-2014, 2014b.
Wang, Z., Hoffmann, T., Six, J., Kaplan, J. O., Govers, G., Doetterl, S. and Van Oost, K.: Human-induced erosion has offset
one-third of carbon emissions from land cover change, Nat. Clim. Chang., 7(5), 345–349, doi:10.1038/nclimate3263, 2017.

Worrall, F., Burt, T. P. and Howden, N. J. K.: The fluvial flux of particulate organic matter from the UK: Quantifying in-stream losses and carbon sinks, J. Hydrol., 519(PA), 611–625, doi:10.1016/j.jhydrol.2014.07.051, 2014.

Worrall, F., Burt, T. P. and Howden, N. J. K.: The fluvial flux of particulate organic matter from the UK: The emission factor of soil erosion, Earth Surf. Process. Landforms, 41(1), 61–71, doi:10.1002/esp.3795, 2016.

Xiao, H., Li, Z., Chang, X., Huang, B., Nie, X., Liu, C., Liu, L., Wang, D. and Jiang, J.: The mineralization and sequestration of organic carbon in relation to agricultural soil erosion, Geoderma, 329, 73–81, doi:10.1016/j.geoderma.2018.05.018, 2018.

Yoo, K., Amundson, R., Heimsath, A. M. and Dietrich, W. E.: Erosion of upland hillslope soil organic carbon: Coupling field measurements with a sediment transport model, Global Biogeochem. Cycles, 19(3), 1–17, doi:10.1029/2004GB002271, 2005.

Yue, Y., Ni, J., Borthwick, A. G. L. and Miao, C.: Diagnosis of river basins as CO₂ sources or sinks subject to sediment movement, Earth Surf. Process. Landforms, 37(13), 1398–1406, doi:10.1002/esp.3254, 2012.

Yue, Y., Ni, J., Ciais, P., Piao, S., Wang, T., Huang, M., Borthwick, A. G. L., Li, T., Wang, Y., Chappell, A., Chappell, A. and Van Oost, K.: Lateral transport of soil carbon and land-atmosphere CO₂ flux induced by water erosion in China, Proc. Natl. Acad. Sci. U. S. A., 113(24), 6617–6622, doi:10.1073/pnas.1523358113, 2016.

Zeng, Y., Fang, N. and Shi, Z.: Effects of human activities on soil organic carbon redistribution at an agricultural watershed scale on the Chinese Loess Plateau, Agric. Ecosyst. Environ., 303, doi:10.1016/J.AGEE.2020.107112, 2020.

Zhang, H., Liu, S., Yuan, W., Dong, W., Ye, A., Xie, X., Chen, Y., Liu, D., Cai, W. and Mao, Y.: Inclusion of soil carbon lateral movement alters terrestrial carbon budget in China, Sci. Rep., 4, doi:10.1038/srep07247, 2014.

Zhao, J., Van Oost, K., Chen, L. and Govers, G.: Moderate topsoil erosion rates constrain the magnitude of the erosion-induced carbon sink at agricultural productivity losses on the Chinese Loess Plateau, Biogeosciences, 13(16), 4735–4750, doi:10.5194/bg-2012-14735-2016, 2016.
Figure 1: Schematic representation of the effect erosion on soil C stabilization and loss processes. The red triangles represent erosion-induced C loss enhancement processes, while blue triangles represent processes leading to increased stabilization.
Figure 2: Effect of time and space on the erosional sink versus source term reported in the literature. Panel a) shows how the reported C source versus sink by erosion is influenced by the time scale considered in the study (74 studies). Panel b) shows how the magnitude of the reported erosion-induced C source/sink strength is influenced by the spatial scale considered in the study (40 studies). Estimates which do not account for C recovery at eroding sites for scales 3 and 4 are encircled with a dotted line. Further details on the studies used are given in Table 1.
Figure 3: Fraction of eroded C replaced by atmospheric CO$_2$ (rec) as a function of time since start of agricultural erosion based on studies using mass-balance (circles) and model (triangle) approaches. The error bars denote the reported uncertainty range. The bold blue line denotes a fit of a non-linear regression model through the reported SOC recovery data points. The fine red lines represent the results of 100 model runs covering a range of typical erosion and C turnover rates representative for global agricultural land. We use the model for cropland presented by (Quinton et al., 2010). Erosion rates were allowed to vary randomly between 0.1 and 0.4 mm yr$^{-1}$ and soil C residence time for the top layer between 200 and 1000 yr. For the feedback scenario, we assumed a negative feedback that ranged randomly between 3 to 5% yield loss for each 10 cm of cumulative erosion (Bakker et al., 2004). The green boxplots represent oxidation in colluvial settings ($n=255$, see Table 2). The thin cyan lines represent the non-linear regression models for five alluvial studies ($n=273$, see Table 2). The thick green and cyan lines represent the response curves for colluvial and alluvial burial using the median values for α and τ.

Figure 3: Fraction of eroded C replaced by atmospheric CO$_2$ (rec) as a function of time since start of agricultural erosion based on studies using mass-balance (circles) and model (triangle) approaches. The error bars denote the reported uncertainty range. The bold blue line denotes a fit of a non-linear regression model through the reported SOC recovery data points. The fine red lines represent the results of 100 model runs covering a range of typical erosion and C turnover rates representative for global agricultural land. We use the model for cropland presented by (Quinton et al., 2010). Erosion rates were allowed to vary randomly between 0.1 and 0.4 mm yr$^{-1}$ and soil C residence time for the top layer between 200 and 1000 yr. For the feedback scenario, we assumed a negative feedback that ranged randomly between 3 to 5% yield loss for each 10 cm of cumulative erosion (Bakker et al., 2004). The green boxplots represent oxidation in colluvial settings ($n=255$, see Table 2). The thin cyan lines represent the non-linear regression models for five alluvial studies ($n=273$, see Table 2). The thick green and cyan lines represent the response curves for colluvial and alluvial burial using the median values for α and τ.

https://doi.org/10.5194/bg-2022-1
Preprint. Discussion started: 14 January 2022
© Author(s) 2022. CC BY 4.0 License.
Figure 4: Framework to represent fraction gain/loss relative to mobilized SOC. The example shown here uses $\alpha_{\text{runoff}}=0.04$, $\tau_{\text{runoff}}=1$, $\alpha_{\text{river}}=0.5$, $\tau_{\text{river}}=1$, $\alpha_{\text{runoff}}=0.04$, $\tau_{\text{runoff}}=1$, $\alpha_{\text{burial}}=0.584$, $\tau_{\text{burial}}=0.0019$, $\alpha_{\text{recovery}}=0.91$, $\tau_{\text{recovery}}=0.005$.

Figure 4: Framework to represent fraction gain/loss relative to mobilized SOC. The example shown here uses $\alpha_{\text{runoff}}=0.04$, $\tau_{\text{runoff}}=1$, $\alpha_{\text{river}}=0.5$, $\tau_{\text{river}}=1$, $\alpha_{\text{runoff}}=0.04$, $\tau_{\text{runoff}}=1$, $\alpha_{\text{burial}}=0.584$, $\tau_{\text{burial}}=0.0019$, $\alpha_{\text{recovery}}=0.91$, $\tau_{\text{recovery}}=0.005$.

https://doi.org/10.5194/bg-2022-1
Preprint. Discussion started: 14 January 2022
© Author(s) 2022. CC BY 4.0 License.
Table 1: Overview of studies reporting erosion-induced C fluxes used in our literature synthesis. Space refers to the 4 components of the geomorphic cascade (see Figure 2 for key). Positive values for C strength denote a sink, while negative values denote a source. Methods are categorized as Data- or Model-based. Modelling studies using scenario analysis are reported as Mod/Scen and a range for the sink/source strength is given. Rec denotes the fraction (in %) of the eroded C that is replaced with atmospheric derived C.

Reference	Year	Method	Time (yr)	Effect	Strenght \((g \text{ C m}^{-2} \text{yr}^{-1})\)	Source	Rec (%)	Dominant Land Cover
(Stallard, 1998)	1996	Data	250	Sink	5,3	4	Agriculture	
(Harden et al., 1999)	1999	Mod	130	Sink	15	2	55.3	Agriculture
(Smith et al., 2001)	2001	Data	10	Sink	5,1	4	Agriculture	
(Manies et al., 2001)	2001	Mod	137	Sink	22,4	2	Agriculture	
(Lal, 2001)	2001	Review	1	Neutral	/	4	Agriculture	
(Jacinthe et al., 2002)	2002	Data	0,5	Source	-0,81	1	Agriculture	
(Lal, 2003)	2003	Review	1	Source	-7,6	1	Agriculture	
(Liu et al., 2003)	2003	Mod	122	Sink	1,4	2	58.8	Agriculture
(Lal, 2004)	2004	Review	1	Source	-5,3	1	Agriculture	
(Öskarsson et al., 2004)	2004	Data	1000	Source	-1,5	4	Agriculture	
(Jacinthe et al., 2004)	2004	Data	0,1	Source	-0,73	1	Agriculture	
(Page et al., 2004)	2004	Data	114	Source	/	4	Grassland	
(Yoo et al., 2005)	2005	Data	5000	Sink	1	2	100	Grassland
(Van Oost et al., 2005)	2005	Mod	150	Sink	6,5	2	40.4	Agriculture
(Smith et al., 2005)	2005	Data	10	Sink	5	4	Agriculture	
(Lal, 2005)	2005	Review	1	Neutral	-7,6/-7,6	3	Agriculture	
(Rosenboom et al., 2006)	2006	Mod	3000	Sink	/	2	Grassland	
(Quinton et al., 2006)	2006	Mod	1	Sink	4,96	3	Agriculture	
(Van Oost et al., 2007)	2007	Data	47	Sink	3,8	2	26	Agriculture
(Quine and van Oost, 2007)	2007	Data	50	Sink	11,2	2	37.3	Agriculture
(Berhe et al., 2007)	2007	Review	2150	Sink	3,98	4	Agriculture	
(Ito, 2007)	2007	Mod	1	Source	-5	1	Agriculture	
(Mora et al., 2007)	2007	Data	0,03	Source	/	1	Agriculture	
(Polyakov and Lal, 2008)	2008	Data	0,3	Source	-2,74	1	Agriculture	
(Berhe et al., 2008)	2008	Data	6000	Sink	/	2	Grassland	
(Kuhn et al., 2009)	2009	Review	1200	Neutral	/	3	Agriculture	
(Van Oost et al., 2009)	2009	Review	300	Sink	/	2	Agriculture	
(Boix-Fayos et al., 2009)	2009	Data	50	Sink	/	3	Agriculture	
(Dymond, 2010)	2010	Data	110	Sink	2,2/4,5/11	4	Grassland/Agriculture	
(Billings et al., 2010)	2010	Mod/Scen	150	Neutral	-21/60	2	Agriculture	
(Van Hemelryck et al., 2010)	2010	Data*	0,5	Source	/	1	Agriculture	
(Quinton et al., 2010)	2010	Review	1	Neutral	/	3	Agriculture	
(Wang et al., 2010)	2010	Data	2	Sink	/	2	Agriculture	
(Auldenkempe et al., 2011)	2011	Data	10	Sink	/	3	Agriculture	
(Van Hemelryck et al., 2011)	2011	Data	0,5	Source	/	1	Agriculture	
(Van Oost et al., 2012)	2012	Data	500	Sink	5	3	71	Agriculture
(Ni et al., 2012)	2012	Mod/Scen	47	Neutral	/	2	Agriculture	
(Nadeau et al., 2012)	2012	Data	52	Sink	/	3	Agriculture	
(Vandenbygaart et al., 2012)	2012	Data	50	Sink	/	2	Agriculture	
(Dlugos et al., 2012)	2012	Mod	57	Sink	0,8	2	Agriculture	
(Yue et al., 2012)	2012	Data	48	Sink	0,32	4	Agriculture	
(Hoffmann et al., 2013a)	2013	Data	7500	Sink	1,05	3	Agriculture	
(Hoffmann et al., 2013b)	2013	Review	8000	Sink	/	3	Agriculture	
(Zhang et al., 2014)	2014	Mod	29	Neutral	-20/-25.3	2	Agriculture	
(Worrall et al., 2014)	2014	Data	1	Source	-3,1	4	Peatland	
(Kirkels et al., 2014)	2014	Review	Neutral	/	Agriculture			
(Ran et al., 2014)	2014	Mod	50	Source	-6,64	3	Agriculture	
(Wang et al., 2014a)	2014	Data*	0,3	Source	-48	2	Agriculture	
(Guem et al., 2014)	2014	Data	0,12	Source	/	1	Agriculture	
(Li et al., 2015)	2015	Data	1000	Sink	32	2	102	Agriculture
(Nadeau et al., 2015)	2015	Mod	30	Sink	2,6	2	40	Agriculture
(Vandenbygaart et al., 2015)	2015	Data	50	Sink	/	2	Agriculture	
(Müller-Nedebock et al., 2015)	2015	Data	50	Sink	/	Agriculture		
(Chaplot, 2015)	2015	Data	1	Neutral	/	1	Agriculture	
(Fienert et al., 2015)	2015	Mod	57	Sink	4,25	2	Agriculture	
(Yue et al., 2016)	2016	Mod	60	Sink	4,73	3	18-50	Agriculture
(Lugato et al., 2016)	2016	Mod/Scen	100	Neutral	-0,3/-0,2	2	Agriculture	
(Zhao et al., 2016)	2016	Data	5	Sink	3,16	3	Agriculture	
Reference	Year	Type	Scenario	Source				
----------------------------	------	------	----------	--------				
(Dialynas et al., 2016a)	2016	Mod/Scen	100	Neutral	-14.5 / 18.2	3	Agriculture	
(Worrall et al., 2016)	2016	Data	1	Source	-1.8	4	Peatland	
(Doetterl et al., 2016)	2016	Review	Neutral	/				
(Olson et al., 2016)	2016	Review	Source	/	1			
(Dialynas et al., 2016b)	2016	Mod/Scen	100	Neutral	-18.3 / 21.5	3	Forest	
(Novara et al., 2016)	2016	Data*	0.3	Source	/	1	Agriculture	
(Hu et al., 2016)	2016	Data	0.08	Source	/	1	Agriculture	
(Wang et al., 2017)	2017	Data	2000	Sink	4	4	92	Agriculture
(Bouchoms et al., 2017)	2017	Mod	1000	Sink	3.19	3	Agriculture	
(Dialynas et al., 2017)	2017	Mod/Scen	100	Neutral	-10.3 / 8.4	3	Agriculture	
(Lugato et al., 2018)	2018	Mod/Scen	150	Neutral	-3 / 0.5	2	14.7	Agriculture
(Remus et al., 2018)	2018	Data	0.07	Sink	2	2	Agriculture	
(Ran et al., 2018)†	2018	Data	25	Source †	-8.7	3	Agriculture	
(Xiao et al., 2018)	2018	Review	Neutral	/	3	Agriculture		
(Naipal et al., 2020)	2019	Mod	2100	Sink	2.1	3	80	Agriculture
(Billings et al., 2019)	2019	Mod/Scen	100	Neutral	-41.8 / 55.5	2	Forest	
(Lal, 2019)	2019	Review	Source	/	4	Agriculture		

*Manipulation experiments, †Particulate organic matter sources dominated by organic soils from peatlands, ‡C recovery on eroding soils is not considered in overall effect.
Table 2: Estimates of α and τ reported in the literature. Estimates are derived from a non-linear regression using Eq (1).

Reference	α	τ	r²	n	range yrs
*Oxidation Burial (Colluvial)					
(Van Oost et al., 2012)	0.79	0.0019	0.95	309	0-2436
(Wang et al., 2014b)	0.87	0.0014	0.89	29	0-1388
(Mayer et al., 2018)*	0.584	0.0005	0.66	5	0-5480
(Zeng et al., 2020)	0.14	0.26	0.025	211	0-49
median	0.69	0.0017			
*Oxidation Burial (Alluvial)					
(Omengo et al., 2016)	0.54	0.011	0.42	258	0-420
(Steger et al., 2019)*	0.84	0.003	0.81	3	0-105
(Mayer et al., 2018)*	0.59	0.00067	0.92	4	0-1190
(Hoffmann et al., 2013a)	0	0	/	1126	0-5000
(Van Oost et al., 2012)	0.16	0	/	133	0-2436
median	0.54	0.00067			
median (col+all)	0.58	0.0014			
*Oxidation Runoff					
Median (see text)	0.04	1	/	/	0-1
*Oxidation River					
Median (see text)	0.5	1	/	/	-
*Recovery					
See text	0.93	0.0060	0.71	19	0-2000

* Two observations from (Mayer et al., 2018) and one from (Steger et al., 2019) with very high local NPP inputs (organic layers) were discarded, the values presented here are therefore conservative estimate of C burial efficiencies.