Knowledge management in the pharmaceutical industry between academic research and industry regulations

Ahmed Ramy, Mohamed Af Ragab and Amr Arisha
35 Group, College of Business, Technological University Dublin, Dublin, Ireland

ABSTRACT
The pharmaceutical sector is one of the pillars of the world’s economy. A significant proportion of its value lies in intellectual assets generated through continuous innovation and lengthy development cycles within a strictly regulated environment. The purpose of this paper is to address the gap between knowledge management (KM) as an expanding academic discipline in the pharmaceutical industry and at the same time a growing regulatory expectation. A systematic review of 137 refereed KM articles revealed six empirical research themes in the pharmaceutical industry. In a subsequent step, the discovered themes and subthemes were compared with the extant regulatory expectations as explained in 128 regulatory guidelines. Findings shed the light on the gap between academic KM research and the current thinking of regulatory bodies. Some regulated knowledge processes were underrepresented in academic literature. The paper offers also novel insights and recommendations for future developments in academic research, regulations, and/or industry.

1. Introduction
The acknowledgement of knowledge as a pivotal strategic resource in the current smart economy has impelled considerable organisational change. This progressive movement by individuals and organisations to manage their intellectual assets developed into KM (Davenport & Völpel, 2001). The Pharmaceutical industry is not an exception to this trend, not only as a knowledge-intensive industry but also as a leading economic partner with transcendent investments in innovation and research. According to European Federation of Pharmaceutical Industries and Associations (EFPIA), the Pharmaceutical industry employs more than 750,000 employees in Europe, 16% of them working in Pharmaceutical Research and Development (R&D) (EFPIA, 2018).

It is not strange that the significance of KM is also realised by major pharmaceutical regulatory authorities. International Council for Harmonisation (ICH) recommends management of drug and process knowledge from development and up to product discontinuation as an enabler of effective quality management systems. From this perspective, KM creates the basis for the manufacturing process, control strategy, and ongoing continual improvement (ICH, 2009). On the other hand, there are some signs of regulatory immaturity of KM. The term “knowledge” is relatively new in regulatory publications and is routinely replaced by indirect words such as “science” or “product/process understanding” (Calnan et al., 2018). Moreover, KM is seen by ICH only as an enabler of The Pharmaceutical quality system (ICH, 2009).

Thus, as knowledge is another core product of the pharmaceutical industry (Riddell & Goodman, 2014), managing stocks and flows of knowledge in this sector emerges as a key economic and regulatory objective as well as a growing area of academic research. Nonetheless, some knowledge-intensive industries such as pharmaceuticals have not received adequate attention in industry-specific publications (Ramy et al., 2017). This paper comes as a comprehensive industry-specific systematic review of KM literature between the academic research and regulatory expectations.

2. Review methodology
The high expectations of improving the quality of reviews through well-defined methodologies led to the development of systematic review protocols (Jesson et al., 2011). Systematic review protocol encompasses specific research questions, the population that is the focus of the study, the search strategy, and terms for identification of the relevant studies. Studies that meet all inclusion criteria and manifest none of the exclusion criteria need to be integrated into the review (Davies & Crombie, 1998; Tranfield et al., 2003). The authors commenced his review by identifying three research questions:

CONTACT Ahmed Ramy ● Ahmed.Ramy@TUDublin.ie ● 35 Group, College of Business, Technology University Dublin, Dublin, Ireland

© Operational Research Society 2020.
Q.1 How is the KM literature in pharmaceutical/biopharmaceutical industry developing?

Q.2 What are the expectations of regulatory agencies with regard to the identified research themes?

Q.3 What is the future of KM research within the pharmaceutical industry?

After refining the review questions, the timeframe of review is set to be the last twenty years (1996–2016). This time period represents the prosperous period of KM research (Ragab and Arisha, 2013a). Furthermore, the timeframe took into account the relative novelty of online KM journals. According to Serenko and Bontis (2013) ranking of the KM journals, the top-ranked four KM journals (JKM, KMRP, IJKM, and JIC) have been published online only since 1997, 2003, 2005, and 2000, respectively.

The criteria for inclusion comprise peer-reviewed electronic business journals in the English language retrieved from Emerald Insight and Science Direct database (Table 1). Pharmaceuticals related search strings in the titles, keywords, or abstracts were used to identify the relevant articles. Search strings were synthesised by combining terms like “pharmaceutical” or “pharmaceutical industry” with the most popular KM keywords (such as knowledge sharing, intellectual capital, knowledge transfer, or innovation) extracted from two comprehensive keyword analysis studies in the KM discipline: Fteimi and Lehner (2016) along with Ribière and Walter (2013). After a brainstorming session by the authors, potential search strings were approved. The list was updated during the search process. It was meant not to tightly plan the review process as this may inhibit researchers’ capacity to explore, discover, and develop ideas (Tranfield et al., 2003).

After the exclusion of duplicates, Articles that have been retrieved from the search results were screened against the inclusion and exclusion criteria by reviewing the titles and abstracts (Pati & Lorusso, 2018). A full-text assessment followed where the full-text articles were scrutinised to assess relevance to the review questions. The retained articles addressed a KM related topic exclusively in the field of pharmaceutical industry or in conjunction with other industries. To mitigate the risk of bias of the reviewed studies (Moher et al., 2015), 141 eligible articles were quality-assessed for the clarity of research objectives, adequacy of description of the data collection methods and finally the link between data, results, and conclusion as advised by Kitchenham and Charters (2007). Four articles were excluded at this stage due to ambiguous methodology and irrelevance to pharmaceutical industry. Ultimately, only 137 articles were retained for analysis after application of inclusion/exclusion criteria and quality assessment. A limited number of non-business journal papers (e.g., medical journals) and papers identified through cross-referencing and hand searching were included (Figure 1).

After acknowledgement of main themes and processes in KM literature; the identified themes were scrutinised in the regulatory guidelines of five major regulatory bodies. The reviewer collected all the published guidelines for pharmaceutical industry on the official websites of World Health Organisation (WHO), FDA, ICH, The Pharmaceutical Inspection Convention and Pharmaceutical Inspection Cooperation Scheme (jointly referred to as PIC/S) and EudraLex- European Union (EU) Legislation. At the end, 128 guidelines were searched for KM related topics in light of the identified themes from academic literature review. The analysis was meant to recognise the significance of research themes from regulatory perspective as well as the possible research gaps in this field.

3. Findings

3.1. Scientometric trends

Initially, findings indicate that KM in the Pharmaceutical industry has become a well-established academic research area. Authorship trends show that approximately 93% of articles are published by academic researchers, while the remaining 7% is the product of practitioner work. Over the past ten years, a significant increase in collaborative research from 62% to 85% is also evident. Among the articles which do specify the function under study (approx. 40%), 83% fall within pharmaceutical development and innovation functions in contrast to only 8% in production, 4% in sales and 4% in supply chain. In order to identify the leading countries in the KM field, the relative contributions of 36 countries whose papers were included in this review are traced and ranked using the Equal Credit counting method (Chua & Cousins, 2002; Lowry et al.,

Table 1. Inclusion and exclusion criteria.

Inclusion criteria	Exclusion criteria
KM theories and processes	Not related to KM
With applications in pharmaceutical industry	Applied exclusively in other industries
Peer reviewed journal articles	Editorials and position papers
In English language	Articles that use languages other than English
Published online between 1996 and 2016	From journals that don’t have online domains and unpublished work
Table 2 presents the key articles under each of the featured themes.
Table 2. Themes and keyword analysis.

Rank	Themes & K. processes	Frequency	Keywords	Frequency
1	Intellectual Capital	29	Intellectual Capital	27
2	Innovation	25	Innovation	18
3	Knowledge Transfer	14	Knowledge Sharing	10
4	Knowledge Sharing	13	Knowledge Transfer	10
5	Organisational Performance	12	New Product Development	9
6	Organisational Culture	12	Research and Development	9
7	Intellectual Property	10	Intangible Assets	8
8	Knowledge Creation	9	Organisational Learning	7
9	New Product Development	6	Organisational Culture	5
10	Organisational Learning	6	Project Management	5

Figure 3. Literature map.

Table 3. Key articles under the featured themes.

Category	Authors and Year
Knowledge Sharing and Technology Transfer	Wakefield, 2005; Styhre et al., 2008; (Qureshi & Evans, 2015; (Akhavan et al., 2015; (Pedroso & Nakano, 2009; (Mets, 2006; (Lilleeoe & Hansen, 2011; (Lawson & Potter, 2012; (Hemmert, 2004; (Gray et al., 2011; (Dooley & Kirk, 2007; (Delaney, 1999; (Criscuolo, 2005; (Coradi et al., 2015; (Chavez & Viquez, 2015; (Brachos et al., 2007; (Bourouni et al., 2015; (Azan and Huber Sutter 2010; (Allen et al., 2016; (Santos, 2003; (Moham, Jain, and Ramesh 2007; (Malik, 2012; (Iwasa and Odagari 2004; (Fileri et al., 2014; (Chang, Yeh, and Yeh 2007; (Buchel et al., 2013; (Bourouni et al., 2015
Pharmaceutical Firm Performance	Mehralian et al. 2012; (Malik, 2012; (Kim et al., 2014; (Vishnu & Gupta, 2014; (SubbaNarasimha et al., 2003; (Sharabati et al., 2010; (Pal & Soriya, 2012; (Ramath, 2008; (Garcia Morales et al., 2008; (Bollen et al., 2005; (Terziovski and Morgan 2006; (Styhre et al., 2002; (Sternitzke, 2010; (Standing and Kinti 2011; (Sharma and Goswami 2009; (Roth, 2003; (Parisi and Hockerts 2008; (Palacios-Marqués, Popa, and Mari 2016; (O’Dwyer et al. 2015; (Nightingale, 2000; (Mehralian et al. 2014; (Lowman et al., 2012; (Lauro and Valentim 2016; (Kneifer, 2003; (Karim & Gault, 2010; (Kazadi, Lieve, and Mahr 2015; (Kalé & Little, 2005; (Huang, 2011; (Hohberger, 2016; (Herrmann and Peine 2011; (van Geenhuizen and Reyes-Gonzalez 2007; (Gassmann & Reepmeyer, 2005; (Garcia Morales et al., 2008; (Fileri et al., 2014; (Chen, Jiao, and Zhao 2008; (Chang et al., 2007; (Cardinal & Hatfield, 2000; (Styhre et al., 2008; (Mets, 2006; (Lowman et al., 2012; (Lauro and Valentim 2016; (Kazadi et al., 2015; (Gassmann & Reepmeyer, 2005; (Cardinal & Hatfield, 2000; (Boasson and Boasson 2015; (Mohan et al. 2007
Research, Innovation and Knowledge Creation	Yang et al. 2014; (Iwasa and Odagari 2004; (Boasson and Boasson 2015; (Allarakha & Walsh, 2011; (Sternitzke, 2010; (Kale and Little 2002; (Hohberger, 2016; (Chavez & Viquez, 2013; (Russell 2016; (Bollen et al., 2005; (Wang, Ashleigh, and Meyer 2006; (Mehralian et al., 2016; (Mgnier-Watanabe and Senoo, 2008; (Mgnier-Watanabe and Senoo, 2010; (Mgnier-Watanabe et al., 2011; (Mgnier-Watanabe and Senoo, 2009; (Lindner & Wald, 2011; (Guzman, 2008; (Evans & Brooks, 2005; (Ebrahim et al., 2008; (Bigliardi et al., 2012; (Fileri et al. 2014
Intellectual Property Protection	Vishnu & Gupta, 2014; (Tahvanainen and Hermans 2005; (SubbaNarasimha et al., 2003; (Singh & Kansal, 2011; (Sharabati et al., 2010; (Palacios-Marques & Garrigos-Simon, 2003; (Pal & Soriya, 2012; (Narula, 2016; (Naidenova & Parshakov, 2013; (Mehralian et al. 2013; (Mehralian et al. 2013; (Ramath, 2008; (Huang and Wu 2010; (Hine, Helmersson, and Mattsson 2008; (Gosh & Mondal, 2009; (Erickson & Rothberg, 2009; (Hosein Chizari et al., 2016; (Bollen et al., 2005; (Boekstein, 2009; (Abhayawansa & Azim, 2014; (Syder et al., 2014; (Russell, 2016; (Rossi et al., 2015; (Nito, 2005; (Mehralian et al. 2012; (Mehralian et al. 2014 (Huang et al., 2011)
3.3. Publication years

The review shows that the majority of included articles have been published between 2004 and 2016 as shown in (Table 4).

3.4. Knowledge Sharing (KS) and technology transfer

More than 19% of reviewed articles addressed knowledge sharing and transfer signifying that Knowledge transfer (KT) holds a special significance in the Pharmaceutical industry. Therefore, the WHO dedicates Annex 7 of Technical Report Series no.961 to discuss dynamics and controls of technology transfer occurring at some stage in the lifecycle of most products in the pharma industry. However, the real significance of KS comes from the fact that it is the component that facilitates continuous knowledge creation (Akhavan et al., 2012) and is a key driver of long-term success in a knowledge-intensive organisation (Coradi et al., 2015). Accordingly, Qureshi and Evans (2015) identify nine categories of deterrents of KS in the pharmaceutical organisation. They can be broadly classified as either structural barriers, cultural barriers, or managerial barriers.

Other studies focused on the attitudes necessary to enhance knowledge sharing (Akhavan et al., 2015). Also, Knowledge Networks (KN) are increasingly considered vital channels to achieve strategic objectives in project-based organisations particularly Pharma R&D (Bourouni et al., 2015). By the same token, structural indexing and knowledge dictionaries can identify knowledge agents and evaluate intra-organisational knowledge sharing. Enhancing knowledge flow among R&D stages can be crucial to shorten the product to market timing (Wakefield, 2005).

As physical proximity is one of the suggested barriers for Knowledge Sharing and Technology Transfer (Lilleoere & Hansen, 2011), several studies handle this topic in pharma explicitly. For instance, studies conducted in the R&D department of multinational drug manufacturer Novartis reveal that co-location of dispersed project teams leads to faster and more precise flow of knowledge (Coradi et al., 2015).

On a macro scale, an equally significant aspect of inter-organisational KS is geographic distribution. Higher quality risk can accompany offshore manufacturing due to challenges of KT from headquarters (Gray et al., 2011). Pharmaceutical firm location is found to influence the intensity of communication between different firms but not the innovation. Relocation (e.g., into industry clusters) and expensive real estate investments can be replaced by enhancing the social connections through technology (Allen et al., 2016). In spite of that, having an R&D laboratory near corporate headquarters enhances new drug productivity as proximity is necessary for the integration of R&D with other functions (Cardinal & Hatfield, 2000).

3.5. Intellectual Propriety Protection (IPP)

There is no industry where firms build their competitive advantage more closely to IPP than the pharmaceutical industry. However, in response to dramatic transitions in bioscience and computational chemistry, biopharmaceutical companies commence newer approaches for managing their IP and innovation including open access, exclusive and non-exclusive licencing (Allarakha & Walsh, 2011). Although the exclusive licencing is more preferred in the pharmaceutical industry (2:1), non-exclusive licencing provides a strategic advantage to the company and

Year	Intellectual property protection	Knowledge culture and organisational structure	Knowledge measurement and IC disclosure	Knowledge sharing and technology transfer	Pharmaceutical firm performance	Research, innovation and knowledge creation	Miscellaneous	Total
1996	1	1					1	1
1997	1	1					1	1
1998	1	1					1	1
1999	1	1					1	1
2000	3	1					1	4
2001	1	1					2	2
2002	1	1					1	2
2003	2	1					1	7
2004	1	2					5	8
2005	2	3					3	17
2006	1	1					2	2
2007	4	3					4	11
2008	3	2					4	21
2009	1	4					1	10
2010	1	2					2	10
2011	1	2					3	13
2012	1	2					2	11
2013	3	3					1	7
2014	1	4					2	15
2015	2	1					4	3
2016	2	3					1	14
reduces market uncertainty by decreasing competition (Malik, 2012).

The real significance of IP for the pharmaceutical industry comes from the belief that patents are used as a proxy indicator of knowledge creation (Nerkar, 2003). Also, patent citations studies in pharma exploit patent-related data to estimate the quality of innovation, diffusion of knowledge and geographic localisation of knowledge (Chávez & Víquez, 2015). For this reason, patents can affirm firm’s value and market performance. Association between company value, reported intangible assets and R&D capitals is proven (Russell, 2016).

In a highly dynamic global economy, enforcing IP protection laws implies significant costs particularly on developing economies (Mazzoleni & Nelson, 1998). Nevertheless, IPP is an important incentive for innovation in advanced countries enjoying both a superior technological infrastructure as well as a rich market for new drug (WHO, 2006a).

3.6. Knowledge measurement and IC disclosure

Empirical evidence supports the notion that the nature and value of knowledge assets differ from industry to another with a direct impact on investment decisions. By using Tobin’s Q model for knowledge measurement, it is noticed that not only the level of intellectual capital (IC) and competitive intelligence are both higher in consumer industries (such as pharmaceuticals) in comparison to business to business industries, but also investments in knowledge assets are more promising (Erickson & Rothberg, 2009). Measurement of pharmaceutical IC at organisational level relies on the identification of most relevant constructs or indicators in each industry (Palacios-Marques & Garrigos-Simon, 2003). For example, management experience and technical knowledge are on the top of HC indicators in pharma. Regarding structural capital, organisational culture, the ratio of investment in R&D and the number of R&D projects are the highest priority indicators. Additionally, mutual trust with customers and their satisfaction are the highest priority RC indicators (Mehralian et al., 2013).

However, the disclosure of IC in balance sheet (BS) is still a measurement barrier and an opportunity for improvement in the pharmaceutical industry, particularly in developing countries. The lack of standardised accounting guidelines on this vital asset results in unreporting of resources of billions in firm’s annual reports with an impact on their performance in the stock market (Abhayawansa & Azim, 2014).

Intellectual capital is widely adopted as a predictor for firm’s profitability in pharmaceutical sector (Sydler et al., 2014). Healthcare patents reflect firm’s innovative capabilities and enhance the capacity to raise necessary start-up capital (WHO, 2006a). However, no significant relationship was observed either between IC and productivity or market valuation (Ghosh & Mondal, 2009; Pal & Soriya, 2012). This argument is subject to controversy as companies which generate more profits are able to invest more in IC (Naidenova & Parshakov, 2013).

In the pharmaceutical industry, Merger and Acquisition (M&A) is used as a cost-effective way to gain access to new product platforms, technologies and patents; traditional pharmaceutical companies with dried-out research pipelines but sufficient cash acquire innovative biotech firm as a source of new products (Rossi et al., 2015). M&A can be seen as an opportunity to overcome the underestimation of intangible assets under current accounting systems in pharma companies (Boekestein, 2009).

3.7. Research, innovation, and Knowledge Creation (KC)

The emergence of new discoveries in the twenty-first century will urge Pharmaceutical manufacturing to employ innovation and cutting-edge technology as ways of doing business (FDA, 2004b). Nowadays, pharmaceutical industries do not typically fit to the classic economy of scales theories as they transformed into R&D intensive rather than production intensive (Gassmann & Reepmeyer, 2005). Pharmaceutical industry becomes more than other industries dependent on scientific advances, particularly in basic sciences, developed in public sector (Sternitzke, 2010). Historically, public sector role in drug discovery was limited to basic research to elucidate the basic pathological mechanisms. However, this role has significantly expanded in the biotechnology era (Stevens et al., 2011). In contrast with publically funded drug research model in EU and US universities, it is noticed that drug discovery in Japanese companies occurs predominately in-house which may be no longer compatible with global competitiveness (Kneller, 2003).

In such a complex R&D environment, information sharing and intrinsic motivation are recognised as important drivers for organisational creativity (Sundgren et al., 2005). There is a significant influence of knowledge transfer on firm innovative capability ($r = 0.893$) too (Palacios-Marqués et al., 2016). As the bulk costs of R&D come from the clinical phases, sharing knowledge and experiences coming from terminated projects would be of high significance (Styhre et al., 2008).

Surveyed literature highlights some of the dynamics of innovation within pharma organisation. Management support and effective management of knowledge are found indispensable if the organisation wants to adopt an innovative environment. Additionally, job satisfaction explains up to 25% of the variance in innovation regression models (Khemka & Gautam, 2010).
Transformational leadership shows a positive relationship with innovation (Garcia Morales et al., 2008). Also, a significant positive relationship is established between organisation capital and innovation confirming the remarkable role of intangible assets in generation and enhancement of innovative capabilities (Huang et al., 2011).

Conversely, outsourcing of R&D and clinical studies for new product development (NPD) and the associated knowledge losses as well as regulatory delays create innovation risks (Lowman et al., 2012). Likewise, FDA warned from the threats of broad interpretations of 21 CFR part 11 (electronic records and electronic signatures) on innovation and technological advances without any benefit for patient health (FDA, 2003).

3.8. Knowledge culture and organisational structure

FDA encourages management to implement quality systems and procedures that support a communicative culture. Under such work culture, employee suggestions are appreciated and used for continual improvement (FDA, 2006). Along the same line, beliefs and knowledge-related values (love, care and trust) can be potential sources of competitive advantages in pharma (Magnier-Watanabe & Senoo, 2009).

Knowledge culture is a way of organisational life that empowers people to create, share, and use knowledge for the good of the organisation (Oliver & Kandadi, 2006). In the pharmaceutical industry, knowledge culture is believed to compensate for the lack of organisation memory in temporary project teams where information Communication Technology (ICT) systems are not enough alone for ensuring the exchange of knowledge (Evans & Brooks, 2005; Lindner & Wald, 2011). Organisation memory held by ageing workers can be transferred to the younger workers through bridges of socialisation and adequate organisational climate (Ebrahimim et al., 2008).

Organisational characteristics of pharmaceutical firm such as structure and strategy affect knowledge acquisition activities including knowledge storage, diffusion, and application (Magnier-Watanabe & Senoo, 2008). In fact, organisational characteristics can have even more influence over KM than national culture (Magnier-Watanabe & Senoo, 2010). For example, open culture where employees can raise questions and feel at ease explains 31% of the variance in four modes of SECI process compared to only 16% for bureaucratic culture (Magnier-Watanabe et al., 2011). In pharmaceutical R&D, bureaucratic culture has a negative impact on knowledge workers’ job satisfaction while innovative or supportive culture positively influences them (Bigliardi et al., 2012).

3.9. Pharmaceutical firm performance

Human and Relational Capital is deemed to positively impact business performance of the pharmaceutical firm (Sharabati et al., 2010). Several empirical studies have underlined this paradigm utilising either return on asset (ROA) as performance measures (Vishnu & Gupta, 2014); whereas, Value Added Intellectual Coefficient (VAIC) (Chizari et al., 2016) or generation of new patents were used as proxies for technical knowledge of firms (SubbaNarasimha et al., 2003). Even more striking is the fact that each of the three components of IC is not only individually related to firm performance, but also they collaborate together in the way they influence firm performance (Bollen et al., 2005). KM performance is considered as a predictor of superior financial performance in terms of higher profit ratios (ROA, ROS) and lower cost ratios (OPEX) (Holsapple & Wu, 2011).

KM strategies can influence organisational performance in pharma. Information system maturity in the pharmaceutical firm as well as knowledge intensity would be the determinants for the most effective KM strategy (Kim et al., 2014). Internal organisational tensions between tacit-oriented and explicit-oriented strategies, which are difficult to reconcile, would negatively impact the performance (Choi et al., 2008).

3.10. Regulatory insights

A thorough exploration of KM in 128 Good Practice (GxP) quality guidelines (Table 5) has revealed a slightly different pattern of interests and expectations in comparison with the academic business journals (Figure 4).

An overview of the current thinking and expectations of key regulatory bodies regarding KM is presented as follow:

3.11. ICH

From the previous review sections, KM expresses a considerable level of maturity as an academic research field in the pharmaceutical industry. Despite that, KM shows less mature roles at industry level which might hinder the achievement of ICH Q10 desired state (Calnan et al., 2018). KM received meagre attention by regulatory agencies (Rathore et al., 2017). For instance, ICH Q10 considers KM together with QRM as the enablers of its effective implementation throughout the product lifecycle. Proper implementation of ICH Q10 guidelines is deemed necessary for innovation and continual improvement and strengthening the link between pharmaceutical development and manufacturing activities. Last but not least, ICH Q10 suggests monitoring of all innovations.
Table 5. Regulatory insights into knowledge management.

KM theme	EU GMP	ICH	FDA	WHO
Knowledge Sharing and Technology Transfer:	N/A	ICH Q9 on quality risk management (4.5); ICH Q9 on pharmaceutical quality system Q10 (1.6.1); ICH Q10 (3.1.2)	FDA Guidance for Industry: Contract Manufacturing Arrangements for Drugs: Quality Agreements (1.2);	WHO TRS 1003 Annex 4 (4.1.1.2); WHO TRS 996 Annex 4 (1.1.); WHO TRS 996 Annex 1 (4.1); WHO TRS 1003 Annex 4 (1.5.); WHO TRS 996 Annex 1 (4.1); WHO TRS 1003 (2.1.1.); WHO TRS 953 (2.1.9); WHO TRS 953 (2.1.13); WHO TRS 953 (8.1); WHO TRS 953 (8.1.1); WHO TRS 953 (17); WHO TRS 1003 Annex 4 (4.2.4.3.); WHO TRS 1003 Annex 4 (4.4.); WHO TRS 981 Annex 2 (1.1.); WHO TRS 981 Annex 2 (glossary); WHO TRS 961 Annex 7; WHO TRS 957 Annex 2 (17.60); WHO TRS 996 Annex 5 (1.2.); WHO TRS 996 Annex 5 (Appendix 1); WHO TRS 973 Annex 4 (1.4.); WHO TRS 973 Annex 4 (3.3.); WHO TRS 986 Annex 2 (1.4.); WHO TRS 986 Annex 2 (7.17); WHO TRS 981 Annex 2 (1.2.); WHO TRS 981 Annex 5 (1.4.1.); WHO TRS 953 (8.2.); WHO TRS 981 Annex 4 (1.6.); WHO TRS 953 (2.1.7., 2.1.11)
IPP	N/A	N/A	N/A	N/A
Knowledge Measurement and IC Disclosure	EudraLex Annex 15: Qualification and Validation	ICH pharmaceutical quality system Q10 (2.8)	FDA Guidance for Industry: PAT: A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance (1.d.)	WHO TRS 961 Annex 7 (1.4)
Research, Innovation and Knowledge Creation	N/A	ICH Q11 – (3.1.3.); ICH Q10 (Glossary); ICH Q10 (1.1.); ICH Q10 (1.5.3.); ICH Q10 (1.6.3.); ICH Q10 (1.6.1.); ICH Q10 (3.2.3.); ICH Q10 (42.2.);	FDA Guidance for Industry: Part 11, Electronic Records; Electronic Signatures – Scope and Application (II. B.); FDA Guidance for Industry: Process Validation: General Principles and Practices (1.); FDA Guidance for Industry: Data Integrity and Compliance: CGMP (Draft) (III.1.c)	WHO TRS 981 Annex 2 (1.1)
Knowledge Culture	N/A	N/A	CGMP (Draft) (III.1.c)	Knowledge strategies: WHO TRS 996 Annex 5 (1.4., 5.4., 5.5., 7.5.)
Pharmaceutical Firm Performance	N/A	N/A	N/A	N/A
that might enhance QMS (ICH, 2008). Other ICH guidelines refer sporadically to KM with a focus on KS/KT. ICH Q9 suggested the need for further studies related to technology transfer should be assessed through QRM (ICH, 2005). ICH Q11 endorses the management and sharing of product/process-related knowledge throughout product lifecycle including knowledge related to drug substance and its manufacturing process. This is supposed to enhance the manufacturing process and establish a control strategy especially in cases of product ownership changes.

3.12. WHO

For the purpose of earlier detection of potential problems, WHO guidelines pay close attention to regulatory harmonisation and participation in information (e.g., from inspections and clinical studies) sharing networks among regulatory agencies with special considerations to confidentiality and intellectual property issues (e.g., WHO, 1999, 2003, 2017). Parallel efforts are exerted to contain escalating costs of drug prices by minimising duplication of inspection activities through: better networking, enhanced collaboration, and increased mutual trust (WHO, 1999). Information sharing efforts with the European Directorate for the Quality of Medicines & Healthcare (EDQM) extends to certification programmes (WHO, 1999). Risk communication and sharing risk-related knowledge are also addressed in WHO guidelines (WHO, 2013). Finally yet importantly, sharing public alerts and warning alerts for imported drugs or medical devices can prevent similar faulty products from being exported to other markets (WHO, 2017).

WHO identifies the technology transfer as the middle stage in the drug lifecycle where GMP regulations must apply (WHO, 2013, 2014). The organisation requires validation of the process of data transfer (WHO, 2016). Whenever the transfer involves analytical methods, it is required to conduct this validation by the development before transfer to manufacturing quality control. Periodic checks are necessary to ensure the accuracy and reliability of the process (WHO, 2006b). As a general requirement, mechanisms should be addressed to facilitate the transfer of information not only between manufacturers and customers but also to the relevant regulatory bodies (WHO, 2010a).

With regard to IPP, The International Medical Products Anti-Counterfeiting Taskforce (IMPACT) is led by WHO, where the focal point is public health protection from the implications of counterfeiting

Figure 4. Key themes in regulatory guidelines.
The ever-changing business strategies and their accompanying intra- and intercompany transfers of technology obliged the WHO Expert Committee on Specifications for Pharmaceutical Preparations in its 42nd report to assign a special guideline to address this issue (TRS 961 Annexe 7). However, this guideline is meant to be a flexible framework rather than rigid technology transfer guidance. Although a multifunctional team is proposed to manage the transfer process, it is affirmed to be under the umbrella of a quality system (WHO, 2011).

WHO requires pharmaceutical manufacturers to build their quality decisions and regulatory commitments on science-based understanding of the process and QRM which can offer a greater freedom of how to comply, hence enhances innovation (WHO, 2013). Development of quality culture in the pharmaceutical organisation is believed to improve transparency about failures and ensure good data management strategies are in place. Besides, data integrity and protection occupied a featured position in WHO regulations. Pharmaceutical firms are expected to develop appropriate tools and strategies for the management of data integrity risks based upon their own GxP activities, technologies, and processes (WHO, 2016).

3.13. EU GMP

Furthermore, EU Guidelines for Good Manufacturing Practices (EudraLex) have adopted Good Documentation Practices as an enabling tool for knowledge management throughout different stages of product lifecycle (EudraLex, 2015). Similar to WHO, PIC/S and ICH recommendations, the guidelines encourage agents, brokers, distributors, repackers, or relabelers to share regulatory and quality information with the manufacturers and customers (EudraLex, 2014; ICH, 2000; PIC/S, 2017; WHO, 2010b). EudraLex requires analytical method transfer protocol (EudraLex, 2006) with no explicit transfer framework as in WHO TRS961 Annexe 7. However, it confirmed the coverage of technology transfer by cGMP regulations as a part of product lifecycle (EudraLex, 2011).

3.14. FDA

FDA pays special attention to process understanding and knowledge management as effective strategies for preventing and detecting data integrity issues (FDA, 2016c). On the other hand, FDA accentuates on knowledge sharing and transfer in contract manufacturing as explained in the quality agreement (FDA, 2016a). The agency highlights the role of senior management in the creation of communicative organisational culture as a tool for improving knowledge sharing and communication in addition to cross-functional groups to share ideas for improvement purposes (FDA, 2006). In addition, FDA encourages data acquisition and accumulation over the lifecycle as an important way for continuous improvement which in turn can facilitate the scientific communication with the agency (FDA, 2004a). Similarly, following process validation FDA guidelines would support process improvement and innovation (FDA, 2011).

3.15. PIC/S

In response to the increasingly complex global supply chains in the pharma industry, PIC/S facilitates voluntary inspection data-sharing between member authorities. This is deemed to enable risk-based assessment of the need for inspections based on shared confidence in inspected firms (PIC/S, 2011b). It has not escaped our notice that data sharing and transfer in PIC/S guides is focused on inspection data rather than knowledge created in pharmaceutical firms. The statute of the International Medicinal Inspectorates Database (IMID), which aims at establishing a database of GMP inspections carried out by IMID participating Regulatory Authorities, was adopted by PIC/S to reduce the number of duplicative inspections (PIC/S, 2012). Besides, the PIC/S committee is cooperating with other global agencies such as WHO, EMA, the ICMRA (International Coalition of Medicines Regulatory Authorities) and United Nations Children’s Fund (UNICEF) with regard to training and sharing of inspections’ information (PIC/S, 2011a, 2015, 2016b; WHO, 2003).

Because data integrity is essential for successful implementation of GMP, the requirements for good data management are embedded in the current PIC/S guidelines to GMP/GDP for Medicinal products. Good data management practices (GDMP) are envisaged as fundamental enabler for the integrity of the generated data. The manufacturer or distributor undergoing inspection is required to enforce GDMP that ensure the accuracy, completeness, and reliability of data (PIC/S, 2016a).

The data lifecycle (from generation till discard at the end of retention period) is also featured in GMP guidelines including data transfer throughout the product lifecycle. In case of computerised systems, interfaces should be assessed and addressed during computer system validation to guarantee the correct, accurate, and complete transfer of data (PIC/S, 2016a, 2017). Risk review should be considered specially for supply chains and outsourced activities to assess the extent of data integrity controls required (PIC/S, 2016a). It is noteworthy that PIC/S has repeatedly warned of inappropriate interpretation of guidelines making them barriers to technical innovation or the pursuit of excellence (e.g. PIC/S, 2011c).
Organisational culture and behaviour are a complementary part of the effective data governance system when combined with an understanding of data criticality, data risk, and data lifecycle. The value behind this appears in the empowerment of employees to report failures and opportunities for improvement. This reduces the incentive to falsify, alter, or delete data (PIC/S, 2016a). GMP inspectors have to be sensitive to the effects of organisational culture and structure on the organisation behaviour where data reporting differs between open and close cultures. In order to ensure data integrity within the pharmaceutical organisation, appropriate values, beliefs, thinking and behaviours need to be demonstrated consistently by management, team leaders, and quality personnel (PIC/S, 2016a).

4. Discussion and implications

The pharmaceutical industry is not only one of the knowledge-intensive sectors, but also an industry with a direct effect on health promotion (Mehralian et al., 2016). It comprises distinct characters making pharmaceutical knowledge management a unique process. Being research-intensive, highly innovative and a great source of IC (Kamath, 2008), building networks of R&D personnel with research institutions, providing ultimate protection of IP rights, having high influence of political, legal, and administrative factors on technology acquisition (Hemmer, 2004), achieving high level of maturity in project management (Wakefield, 2005), involving suppliers in product development activities (Lawson & Potter, 2012), involving collaborative research with universities and governments (Dooley & Kirk, 2007), presenting sophisticated drug discovery and development systems (Criscuolo, 2005), facing challenges of regulated prescription drugs (Pedroso & Nakano, 2009), being one of the fast growing economic sector (Singh & Kansal, 2011), together with huge economic productivity and high number of employees (Bigliardi et al., 2012) are some of reasons for choice of pharmaceutical industry as empirical research field in KM literature.

Based on an in-depth review of the literature, few trends emerge. Domination of academic authorship (93% of authors) and empirical research (>70%) in 36 countries along with 20% increase in co-authorship reflects the academic maturity of the research area. Participation of practitioners is relatively limited (7%) in spite of the colossal investments in KM by pharma companies (Riddell & Goodman, 2014). This also validates the notion that the role which “knowledge” plays in the pharmaceutical industry is still immature and disabling the ICH Q 10 desired pharmaceutical quality system (Calnan et al., 2018). This can also accentuate what has been described by M. A. F. Ragab and Arisha (2013) as a theory-practice gap in KM literature in general.

Since R&D is considered the key space for knowledge creation (Ingelgard et al., 2002; Parisi et al., 2006), most of the studies ignored other functions (e.g., manufacturing, sales or quality) or other sources of knowledge in pharmaceutical organisation (e.g., process validation studies; manufacturing experience, continual improvement, and change management activities). From a regulatory perspective, managing the knowledge throughout commercialisation and manufacturing phases until product discontinuation is supposed to be as important as managing drug development knowledge (ICH, 2009).

Taxonomical analysis of literature affirms six main knowledge processes/themes extensively covered by researchers (Figure 3). In spite of that, the research in some other potential areas is relatively scarce (e.g., knowledge acquisition). In addition, the current thinking of the pharmaceutical regulatory bodies does not match the trending themes in business literature. For example, technology transfer and method/process transfer are regulated practices under pharmaceutical quality systems (ICH, 2009; WHO, 2011); case studies or empirical research is quite limited in this area.

IC is the most frequently used keyword and research theme in pharmaceutical KM literature. The influence of pharmaceutical IC on profitability, productivity, and market value is addressed in several papers (e.g., Pal & Soriya, 2012). Pharmaceutical IC reporting in BS suffers from inconsistency and lack of standardised guidelines. Yet, Intellectual Capital, knowledge measurement or disclosure are not recognised by cGMP guidelines. While M&A implications were a subject of academic research in pharma companies, regulatory publications focus on knowledge transfer after product/process acquisition or data acquisition during product lifecycle (FDA, 2004a).

Although KM at product and process level is explicitly required in ICH Q10 1.6.1. (ICH, 2008), regulatory authorities did not suggest any framework for either measurement or disclosure of IC. With poor reporting and disclosure of IC in pharma (Abhayawansa & Azim, 2014), further research is needed to induce industry-specific measurement frameworks not only at organisational IC level but also at the individual knowledge level. As a part of company intangible capital, patent-related keywords are mentioned 10 times in the review pool (e.g., patent citation, analysis, research, count, etc.) reflecting the importance of IP rights as a research subject.

Governmental role in innovation, either through the outputs of basic science or public funding of growing industry R&D, is emphasised in the literature. Dynamics of innovation as managed by the Triple Helix model can be a meticulous explication of this phenomenon (Etzkowitz & Leydesdorff, 2000; Leydesdorff & Meyer, 2006). When the FDA announced the Pharmaceutical cGMPs for the Twenty-First Century in 2006; corrective
actions, innovation, and continuous improvement were considered as three complementary improvement approaches in Pharmaceutical Manufacturing (FDA, 2004b). However, only innovation has received enough attention in the surveyed literature. It is worth noting that the term “creation” was mainly used by the regulators to signify creation of data and/or electronic records (FDA, 2016b).

The review explored the role of pharmaceutical organisational culture and structure in knowledge management. The review confirmed the notion that some values are found to be associated with the prosperity of knowledge within workspace (Remy Magnier-Watanabe & Senoo, 2009) and a new technology is not able alone to bring about a successful KM system (Chatzke, 2007). The KM performance of the company was found in general related to its market performance. Unlike pharmaceutical quality system (ICH, 2008), organisational performance as a function of its KM practices was not considered by any of the four regulatory bodies.

5. Conclusion and limitations of research

According to the pharmaceutical regulatory guidelines, personnel must be qualified and knowledgeable with functions related to their work activities (FDA, 2006; WHO, 2014). It is a requirement to manage product and process knowledge throughout the product lifecycle (ICH, 2008). However, the academic research interests in pharmaceutical knowledge as presented in the extant KM literature partially overlap with the regulatory concerns. This incomplete overlap offers an opportunity for business researchers to design their future work to help industry meet regulatory expectations. Regulatory bodies recommended knowledge management but did not provide comprehensive frameworks to manage knowledge of pharmaceutical firms at the time industry practitioners refrain from serious contribution to academic research. This supports the notion that knowledge management in pharmaceuticals is still a growing research area, particularly in non-research and development functions.

The review has the limitation of being restricted to articles extracted from the Emerald Insight and Science Direct databases. Knowledge management conference proceeding and other academic portals can be explored in future studies. Despite the limitations, this paper offers an integrative and comprehensive taxonomy of KM literature in an industry-specific context that offers valuable insights for future research.

Acknowledgement

“The first two authors, Ramy and Ragab, would like to dedicate this paper to the memory of their mentor and third author prof. Amr Arisha who sadly passed away before the article’s publication. He is greatly missed.”

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Abhayawansa, S., & Azim, M. (2014). Corporate reporting of intellectual capital: Evidence from the Bangladeshi pharmaceutical sector. Asian Review of Accounting, 22 (2), 78–97. https://doi.org/10.1108/ARA-10-2013-0067

Akhavan, P., Ghojavand, S., & Abdali, R. (2012). Knowledge sharing and its impact on knowledge creation. Journal of Information & Knowledge Management, 11(2), 1250012. https://doi.org/10.1142/S0219649212500128

Akhavan, P., Hosseini, S. M., Abbasi, M., & Manteghi, M. (2015). Knowledge sharing determinants, behaviors, and innovative work behaviors: An integrated theoretical view and empirical examination. Aslib Journal of Information Management, 67(5), 562–591. https://doi.org/10.1108/AJIM-02-2015-0018

Allarakha, M., & Walsh, S. (2011). Managing knowledge assets under conditions of radical change: The case of the pharmaceutical industry. Technovation, 31(2–3), 105–117. https://doi.org/10.1016/j.technovation.2010.11.001

Allen, T. J., Gloor, P. A., Fronzetti Colladon, A., Woerner, S. L., & Raz, O. (2016). The power of reciprocal knowledge sharing relationships for startup success. Journal of Small Business and Enterprise Development, 23(3), 636–651. https://doi.org/10.1108/SBED-08-2015-0110

Azan, W., & Huber Sutter, I. (2010). Knowledge transfer in post-merger integration management: case study of a multinational healthcare company in Greece. Knowledge Management Research & Practice, 8(4), 307–321. https://doi.org/10.1057/kmpr.2010.17

Bigiardi, B., Dormio, A. I., Galati, F., & Schiuma, G. (2012). The impact of organizational culture on the job satisfaction of knowledge workers. The Journal of Information and Knowledge Management Systems, 42(1), 36–51. https://doi.org/10.1108/03055721211207752

Boasson, V., & Boasson, E. (2015). Firm value, spatial knowledge flow, and innovation: Evidence from patent citations. China Finance Review International, 5(2), 132–160. https://doi.org/10.1108/CFRI-08-2014-0056

Boekestein, B. (2006). The relationship between intellectual capital and intangible assets of pharmaceutical companies. Journal of Intellectual Capital, 7(2), 241–253. https://doi.org/10.1108/14691930610661881

Boekestein, B. (2009). Acquisitions reveal the hidden intellectual capital of pharmaceutical companies. Journal of Intellectual Capital, 10(3), 389–400. https://doi.org/10.1108/14691930910977806

Bollen, L., Vergauwen, P., & Schnieders, S. (2005). Linking intellectual capital and intellectual property to company performance. In Management Decision, 43(Issue 9), 1161–1185. https://doi.org/10.1108/00251740510626254

Bouroumi, A., Noori, S., & Jafari, M. (2015). Knowledge network creation methodology selection in project-based organizations. Aslib Journal of Information Management, 67(1), 74–93. https://doi.org/10.1108/AJIM-08-2014-0106

Brachos, D., Kostopoulos, K., Soderquist, K. E., & Prastacos, G. (2007). Knowledge effectiveness, social context and innovation. Journal of Knowledge Management, 11(5), 31–44. https://doi.org/10.1108/13673270710819780
Buchel, B., Nieminen, L., Armbruster-domey, H., & Denison, D. (2013). Managing stakeholders in team-based innovation: The dynamics of knowledge and trust networks. European Journal of Innovation Management, 16 (1), 22–49. https://doi.org/10.1108/14601061311292841

Calnan, N., Paige, M. J. L., Kane, P. E., & Menezes, J. C. (2018). A lifecycle approach to knowledge excellence in the biopharmaceutical industry (first). CRC Press.

Cardinal, L. B., & Hatfield, D. E. (2000). Internal knowledge generation: The research laboratory and innovative productivity in the pharmaceutical industry. Journal of Engineering and Technology Management - JET-M, 17 (3–4), 247–271. https://doi.org/10.1097/00002478-00025-4

Chang, T. J., Yeh, S. P., & Yeh, I.-J. (2007). The effects of joint reward system in new product development. International Journal of Manpower, 28(3/4), 276–297. https://doi.org/10.1108/01437720710755254

Chatzkel, J. (2007). 2006 KM World Conference Review. Journal of Knowledge Management, 11(4), 159–166. https://doi.org/10.1108/14601060710762783

Chávez, G. A. G., & Viquez, H. G. (2015). Patterns of knowledge flow from industrialized to Latin American and Asian countries in the pharmaceutical industry: A patent citation analysis. (Vol. 60, pp. 31–56). Contaduría Y Administracion.

Chen, J., Jiao, H., & Zhao, X. (2008). Chinese Management Studies A knowledge-based theory of the firm: managing innovation in biotechnology A knowledge-based theory of the firm: managing innovation in biotechnology. Chinese Management Studies (Vol. 22), 12–40. https://doi.org/10.1108/01437720710776734

Chizari, M. hosein, Mehrjardi, R. Z., Sadrabadi, M. M., & Mehrjardi, F. K. (2016). The impact of Intellectual Capital on Pharmaceutical Companies Listed in Tehran Stock Exchange on their Market Performance. Procedia Economics and Finance, 36(16), 291–300. https://doi.org/10.1016/S2212-5671(16)00304-5

Choi, B., Poon, S. K., & Davis, J. G. (2008). Effects of knowledge management strategy on organizational performance: A complementarity theory-based approach. Omega the International Journal of Science, 36(2), 235–251. https://doi.org/10.1016/j.omega.2006.06.007

Chua, C., & Cousins, K. (2002). Measuring researcher-production in information systems. Journal of the Association for Information Systems, 3(1), 145–215. https://doi.org/10.17705/1jais.00026

Coradi, A., Heinzen, M., & Bouttellier, R. (2015). Designing workspaces for cross-functional knowledge-sharing in R&D: The “co-location pilot” of novartis. Journal of Knowledge Management, 19(2), 236–256. https://doi.org/10.1108/JKM-06-2014-0234

Criscuolo, P. (2005). On the road again: Researcher mobility inside the R&D network. Research Policy, 34(9), 1350–1365. https://doi.org/10.1016/j.respol.2005.05.018

Davenport, T. H., & Völpé, S. C. (2001). The rise of knowledge edge towards attention management. Journal of Knowledge Management, 5(3), 212–222. https://doi.org/10.1108/13637320110400816

Davies, H. T., & Crombie, I. K. (1998). Getting to grips with systematic reviews and meta-analyses. Hospital Medicine (London), 59(12), 955–958.

Delaney, E. L. (1999). Maximising reference services in a pharmaceutical R&D library. The Electronic Library, 17 (3), 167–170

Dooley, L., & Kirk, D. (2007). University-industry collaboration: Crafting the entrepreneurial paradigm onto academic structures. European Journal of Innovation Management, 10(3), 316–332. https://doi.org/10.1108/14601060710776734

Ebrahimi, M., Saives, A.-I., & Holford, W. D. (2008). Qualified ageing workers in the knowledge management process of high-tech businesses. Journal of Knowledge Management, 12(2), 124–140. https://doi.org/10.1108/1367370810859569

EFPIA. (2018). The pharmaceutical industry in figures. European Federation of Pharmaceutical Industries and Associations (EFPIA) brussels office.

Erickson, G. S., & Rothenberg, H. N. (2009). Intellectual capital in business-to-business markets. Industrial Marketing Management, 38(2), 159–165. https://doi.org/10.1016/j.indmarman.2008.12.001

Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From national systems and “Mode 2” to a triple helix of university–industry–government relations. Research Policy, 29(2), 109–123. https://doi.org/10.1016/S0048-7333(99)00055-4

EudraLex. (2015). EudraLex eu guidelines for good manufacturing practice for medicinal products for human and veterinary use, annex 15: qualification and validation (Vol. 4, Issue March). European Commission

EudraLex. (2006). Chapter 6: Quality control (In Health (San Francisco) (Issue June)). European Commission

EudraLex. (2011). Part 1: Chapter 1: Pharmaceutical Quality System (Vol. 4, Issue July). European Commission

EudraLex. (2014). Part II: Basic requirements for active substances used as starting materials. In European Journal of Health Law, 11(Issue 3), 38. https://ec.europa.eu/health/sites/health/files/files/eudralex/val-4/2014_08_gmp_part1.pdf

Evans, J., & Brooks, L. (2005). Collaborative working in a large pharmaceutical company: Developing better practices through a structurational schema. International Journal of Information Management, 25(6), 551–564. https://doi.org/10.1016/j.ijinfomgt.2005.06.005

FDA. (2003). Part 11, electronic records; electronic signatures — Scope and application (In FDA Guidance for Industry (Issue August)). US Food and Drug Administration

FDA. (2004a). Guidance for industry PAT: A framework for innovative pharmaceutical development, manufacturing, and quality assurance (In FDA official document (Issue September)). US Food and Drug Administration

FDA. (2004b). Innovation and continuous improvement in pharmaceutical manufacturing pharmaceutical CGMPs for the 21st century. US Food and Drug Administration

FDA. (2006). Guidance for industry quality systems approach to pharmaceutical CGMP regulations (Issue September). US Food and Drug Administration

FDA. (2011). Guidance for industry process validation : General principles and practices guidance for industry process validation : general principles and practices (In Quality (Issue January)).

FDA. (2016a). Contract manufacturing arrangements for drugs: Quality agreements guidance for industry (Issue November). US Food and Drug Administration

FDA. (2016b). Data integrity and compliance with CGMP (In FDA Guidance for Industry (Issue April)). US Food and Drug Administration

FDA. (2016c). Data integrity and compliance with CGMP (draft) (In FDA Guidance for Industry (Issue April)). US Food and Drug Administration

Filieri, R., McNally, R. C., O’Dwyer, M., & O’Malley, L. (2014). Structural social capital evolution and knowledge
transfer: Evidence from an Irish pharmaceutical network. Industrial Marketing Management, 43(3), 429–440. https://doi.org/10.1016/j.indmarman.2013.12.011

Fteimi, N., & Lehner, F. (2016). Main research topics in knowledge management: A content analysis of ECKM publications. Electronic Journal of Knowledge Management, 14(1), 5–17. http://www.ejk.com/volume14/issue1

Garcia Morales, V. J., Matias Reche, F., & HurtadoTorres, N. (2008). Influence of transformational leadership on organizational innovation and performance depending on the level of organizational learning in the pharmaceutical sector. Journal of Organizational Change Management, 21(2), 188–212. https://doi.org/10.1108/09534810810856435

Gassmann, O., & Reepmeyer, G. (2005). Organizing pharmaceutical innovation: From science-based knowledge creators to drug-oriented knowledge brokers. Creativity and Innovation Management, 14(3), 233–245. https://doi.org/10.1111/j.1467-8691.2005.00344.x

Ghosh, S., & Mondal, A. (2009). Indian software and pharmaceutical sector IC and financial performance. Journal of Intellectual Capital, 10(3), 369–388. https://doi.org/10.1108/14691930910977798

Gray, J. V., Roth, A. V., & Leiblein, M. J. (2011). Quality risk in offshore manufacturing: Evidence from the pharmaceutical industry. Journal of Operations Management, 29(7–8), 737–752. https://doi.org/10.1016/j.jom.2011.06.004

Guzman, G. (2008). Sharing practical knowledge in hostile environments: A case study. Journal of Workplace Learning, 20(3), 195–212. https://doi.org/10.1108/13665620810804095

Hemert, M. (2004). The influence of institutional factors on the technology acquisition performance of high-tech firms: Survey results from Germany and Japan. Research Policy, 33(6–7), 1019–1039. https://doi.org/10.1016/j.respol.2004.04.003

Herrmann, A. M., & Peine, A. (2011). When “national innovation system” meet “varieties of capitalism”: arguments on labour qualifications: On the skill types and scientific knowledge needed for radical and incremental product innovations. Research Policy, 40(5), 687–701. https://doi.org/10.1016/j.respol.2011.02.004

Hine, D. C., Helmersson, H., & Mattsson, J. (2008). Individual and collective knowledge. International Journal of Organizational Analysis, 15(4), 358–378. https://doi.org/10.1108/19343880710900151

Hobberger, J. (2016). Does it pay to stand on the shoulders of giants? An analysis of the inventions of star inventors in the biotechnology sector. Research Policy, 45(3), 682–698. https://doi.org/10.1016/j.respol.2015.12.003

Holsapple, C. W., & Wu, J. (2011). An elusive antecedent of superior firm performance: The knowledge management factor. Decision Support Systems, 52(1), 271–283. https://doi.org/10.1016/j.dss.2011.08.003

Hosein Chizari, M., Mehrjardi, R. Z., Sadrabadi, M. M., & Mehrjardi, F. K. (2016). The impact of intellectual capitals of pharmaceutical companies listed in Tehran stock exchange on their market performance. Procedia Economics and Finance, 36(16), 291–300. https://doi.org/10.1016/S2212-5671(16)30040-5

Huang, H. C., Lai, M. C., & Lin, T. H. (2011). Aligning intangible assets to innovation in biopharmaceutical industry. Expert Systems with Applications, 38(4), 3827–3834. https://doi.org/10.1016/j.eswa.2010.09.043

Huang, Y.-C., & Wu, Y.-C. J. (2010). Intellectual capital and knowledge productivity: the Taiwan biotech industry. Management Decision, 48(4), 580–599. https://doi.org/10.1108/002517411011041364

ICH. (2000). Good manufacturing practice guide for active pharmaceutical ingredients Q7 (In ICH Harmonised Tripartite Guideline (Issue November)).

ICH. (2005). Quality risk management Q9 (In ICH Harmonised Tripartite Guideline (Issue November)).

ICH. (2008). ICH pharmaceutical quality system Q10. (In WHO Drug Information (Vol. 22, Issue 3)).

ICH. (2009). Guidance for Industry Q10 Pharmaceutical Quality System (Issue April).

Ingelgård, Å., Roth, J., Styhre, A., & Shani, A. R. (2002). Dynamic learning capability and actionable knowledge creation: Clinical R&D in a pharmaceutical company. The Learning Organization, 9(2), 65–77. https://doi.org/10.1093/infotech/10.1108/09696707410242015

Iwasa, T., & Odagiri, H. (2004). Overseas R&D, knowledge sourcing, and patenting: An empirical study of Japanese R&D investment in the US. Research Policy, 33(5), 807–828. https://doi.org/10.1016/j.respol.2004.01.002

Jesson, J., Matheson, L., & Lacey, F. M. (2011). Doing Your Literature Review Traditional and Systematic Techniques. In SAGE Publications Ltd.

Kale, D., & Little, S. (2005). Knowledge generation in developing countries: A theoretical framework for exploring dynamic learning in high technology firms. Electronic Journal of Knowledge Management, 3(2), 87–96.

Kamath, G. B. (2008). Intellectual capital and corporate performance in Indian pharmaceutical industry. Journal of Intellectual Capital, 9(4), 684–704. https://doi.org/10.1108/14691930810893221

Kazadi, K., Lievens, A., & Mahr, D. (2015). Stakeholder co-creation during the innovation process: Identifying capabilities for knowledge creation among multiple stakeholders. Journal of Business Research, 69(2), 525–540. https://doi.org/10.1016/j.jbusres.2015.05.009

Khemka, M., & Gautam, V. (2010). Innovation in the pharmaceutical industry: Study of select parameters. Journal of Advances in Management Research, 7(1), 127–138. https://doi.org/10.1108/09727981011042892

Kim, T. H., Lee, J.-N., Chun, J. U., & Benbasat, I. (2014). Understanding the effect of knowledge management strategies on knowledge management performance: A contingency perspective. Information & Management, 51(4), 398–416. https://doi.org/10.1016/j.im.2014.03.001

Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering EBSE Technical Report EBSE-2007-01 Keele University, Keele, UK.

Kneller, R. (2003). Autarkic drug discovery in Japanese pharmaceutical companies: Insights into national differences in industrial innovation. Research Policy, 32(10), 1805–1827. https://doi.org/10.1016/S0048-7333(03)00062-3

Lauto, G., & Valentim, F. (2016). How preference markets assist new product idea screening. Industrial Management & Data Systems, 116(3), 603–619. https://doi.org/10.1108/IMDS-07-2015-0320

Lawson, B., & Potter, A. (2012). Determinants of knowledge transfer in inter-firm new product development projects. International Journal of Operations and Production Management, 32(10), 1228–1247. https://doi.org/10.1108/01443571211274530
Leydesdorff, L., & Meyer, M. (2006). Triple Helix indicators of knowledge-based innovation systems. Introduction to the special issue. Research Policy, 35(10), 1441–1449. https://doi.org/10.1016/j.resopol.2006.09.016

Lilleoe, A.-M., & Hansen, E. H. (2011). Knowledge-sharing enablers and barriers in pharmaceutical research and development. Journal of Knowledge Management, 15(1), 53–70. https://doi.org/10.1108/13673271111108693

Lindner, F., & Wald, A. (2011). Success factors of knowledge management in temporary organizations. International Journal of Project Management, 29(7), 877–888. https://doi.org/10.1016/j.ijproman.2010.09.003

Lowman, M., Trotz, P., Hoecht, A., & Sellam, Z. (2012). Innovation risks of outsourcing in pharmaceutical new product development. Technovation, 32(2), 99–109. https://doi.org/10.1016/j.technovation.2011.11.004

Lowry, P. B., Karuga, G. G., & Richardson, V. J. (2007). Assessing leading institutions, faculty, and articles in premier information systems research journals. Communications of the Association for Information Systems, 20(16), 142–203. https://doi.org/10.17705/ICAI2.02016

Magnier-Watanabe, R., Benton, C., & Senoo, D. (2011). A study of knowledge management enablers across countries. Knowledge Management Research & Practice, 9(1), 17–28. https://doi.org/10.1057/kmrp.2011.1

Magnier-Watanabe, R., & Senoo, D. (2009). Congruent knowledge management behaviors as discriminate sources of competitive advantage. Journal of Workplace Learning, 21(2), 109–124. https://doi.org/10.1108/13665620910934816

Magnier-Watanabe, R., & Senoo, D. (2010). Shaping knowledge management: Organization and national culture. Journal of Knowledge Management, 14(2), 214–227. https://doi.org/10.1108/1367327101032364

Magnier-Watanabe, R., & Senoo, D. (2008). Organizational characteristics as prescriptive factors of knowledge management initiatives. Journal of Knowledge Management, 12(1), 21–36. https://doi.org/10.1108/1363270810852368

Malik, T. (2012). Non-exclusive attention-strucuture for inter-organizational knowledge flow and performance of the pharmaceutical firm. Journal of Knowledge-Based Innovation in China, 4(1), 18–35. https://doi.org/10.1108/17561411211208749

Mazzoleni, R., & Nelson, R. R. (1998). The benefits and costs of strong patent protection: A contribution to the current debate. Research Policy, 27(3), 273–284. https://doi.org/10.1016/S0048-7333(98)00048-1

Mehralian, G., A. Nazari, J., Akhavan, P., & Reza Rasekh, H. (2014). Exploring the relationship between the knowledge creation process and intellectual capital in the pharmaceutical industry. The Learning Organization, 21(4), 258–273. https://doi.org/10.1108/TLO-07-2013-0032

Mehralian, G., Akhavan, P., Rasekh, H. R., & Ghafari, A. R. (2013). A framework for human capital indicators in knowledge-based industries: Evidence from pharmaceutical industry. Measuring Business Excellence, 17(4), 88–101. https://doi.org/10.1108/MBE-10-2012-0053

Mehralian, G., Nazari, J. A., Rasekh, H. R., & Hosseini, S. (2016). TOPSIS approach to prioritize critical success factors of TQM. The TQM Journal, 28(2), 235–249. https://doi.org/10.1108/TQM-03-2014-0028

Mehralian, G., Rajaeezadeh, A., Reza Sadeh, M., & Reza Rasekh, H. (2012). Intellectual capital and corporate performance in Iranian pharmaceutical industry. Journal of Intellectual Capital, 13(1), 138–158. https://doi.org/10.1108/14691931211196259

Mehralian, G., Rasekh, H. R., Akhavan, P., & Ghafari, A. R. (2013). Prioritization of intellectual capital indicators in knowledge-based industries: Evidence from pharmaceutical industry. International Journal of Information Management, 33(1), 209–216. https://doi.org/10.1016/j.ijinfomgt.2012.10.002

Mets, T. N. (2006). Creating a knowledge transfer environment: The case of Estonian biotechnology. Management Research News, 29(12), 754–768. https://doi.org/10.1108/01409170610717790

Mohamed, K., Jain, R., & Ramesh, B. (2007). Knowledge networking to support medical new product development. Decision Support Systems, 43(4), 1255–1273. https://doi.org/10.1016/j.dss.2006.02.005

Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015 statement. Syst Rev 4, 1. https://doi.org/10.1186/2046-4053-4-1

Naidenova, I., & Parshakov, P. (2013). Intellectual capital investments: Evidence from panel VAR analysis. Journal of Intellectual Capital, 14(4), 634–660. https://doi.org/10.1108/JIC-01-2013-0011

Nerkar, A. (2003). Old is gold? The value of temporal exploration in the creation of new knowledge. Management Science, 49(2), 211–229. https://doi.org/10.1287/mnsc.49.2.211.12747

Nightingale, P. (2000). Economies of Scale in Experimentation: Knowledge and Technology in Pharmaceutical R&D. Industrial and Corporate Change, 9(2), 315–359. http://www.druid.dk/uploads/ts_pictures/2003-719.pdf

Nito, A. B. E. (2005). The combined effect of technological relatedness and knowledge utilization on explorative and exploitative invention performance post-M & A. Journal of Small Business and Enterprise Development, 12(4), 564–578. https://doi.org/10.1108/02656710210415703

O’Dwyer, M., O’Malley, L., Murphy, S., & McNally, R. C. (2015). Insights into the creation of a successful MNE innovation cluster. Competitiveness Review, 25(3), 288–309. https://doi.org/10.1108/CR-08-2014-0026

Oliver, S., & Kandadi, K. R. (2006). How to develop knowledge culture in organizations? A multiple case study of large distributed organizations. Journal of Knowledge Management, 10(4), 6–24. https://doi.org/10.1108/13673270610679336

Pal, K., & Soriya, S. (2012). IC performance of Indian pharmaceutical and textile industry. Journal of Intellectual Capital, 13(1), 120–137. https://doi.org/10.1108/14691931211196240

Palacios-Marques, D., & Garrigos-Simon, F. J. (2003). Validating and measuring IC in the biotechnology and telecommunication industries. Journal of Intellectual Capital, 4(3), 332. https://doi.org/10.1108/14691930310487798

Palacios-Marqués, D., Popa, S., & Mari, M. P. A. (2016). The effect of online social networks and competency-based management on innovation capability. Journal of Knowledge Management, 20(3), 499–511. https://doi.org/10.2656710210415703

Paris, C., & Hockerts, K. N. (2008). Managerial mindsets and performance measurement systems of CSR-related intangibles. Measuring Business Excellence, 12(2), 51–67. https://doi.org/10.1108/13683040810881199

Parisi, M., L. Schiantarelli, F., & Sembenelli, A. (2006). Productivity, innovation and R&D: Micro evidence for Italy. European Economic Review, 50(8), 2037–2061. https://doi.org/10.1016/j.euroecorev.2005.08.002
Ragab, R. & Lorusso, L. N. (2018). How to write a systematic review of the literature. *Health Environments Research and Design Journal, 11*(1), 15–30. https://doi.org/10.1177/1937586717747384

Pedroso, M. C., & Nakano, D. (2009). Knowledge and information flows in supply chains: A study on pharmaceutical companies. *International Journal of Production Economics, 122*(1), 376–384. https://doi.org/10.1016/j.ijpe.2009.06.012

PIC/S. (2011a). *Annual report 2010* (Issue March).

PIC/S. (2011b). *Pharmaceutical inspection co-operation scheme* (Vol. 95, Issue March).

PIC/S. (2011c). Validation of aseptic processes. *Pharmaceutical inspection convention pharmaceutical inspection co-operation scheme: vol. PI007-6* (Issue January).

PIC/S. (2012). Press release. *Pharmaceutical inspection convention pharmaceutical inspection co-operation scheme* (Vol. 37, Issue February).

PIC/S. (2013). Press Release Pic/S Meetings (Vol. 7, Issue November 2013).

PIC/S. (2016a). Good practices for data management and integrity in regulated Gmp/Gdp environments. *Journal of Chemical Information and Modeling, 1*(August), 35. https://pischeme.org/layout/document.php?id=715

PIC/S. (2016b). Press release : PIC/S meetings in Geneva (Switzerland) Executive Bureau and China Food and Drug Administration (CFDA). (PIC/S strengthens international regulatory co-operation in the field of GMP (Issue May 2015)).

PIC/S. (2017). *Guide to good manufacturing practice for medicinal products Part II: Vol. PE 009-13* (Issue January).

Qureshi, A. M. A., & Evans, N. (2015). Deterrents to knowledge-sharing in the pharmaceutical industry: A case study. *Journal of Knowledge Management, 19*(2), 296–314. https://doi.org/10.1108/JKM-09-2014-0391

Ragab, M., & Arisha, A. (2013a). The mink framework: Towards measuring individual knowledge. *Knowledge Management Research & Practice, 13*(2), 1–9. DOI: 10.1057/kmrp.2013.40

Ragab, M. A. F., & Arisha, A. (2013). Knowledge management and measurement: A critical review. *Journal of Knowledge Management, 17*(6), 873–901. https://doi.org/10.1108/JKM-12-2012-0381

Ramy, A., Floody, J., Ragab, M. A. F., Arisha, A., & Schiuma, G. (2017). Scientometric analysis of Knowledge Management Research and Practice (KMRP): 2003-2015. 12th International Forum on Knowledge Asset Dynamics (IFKAD) conference proceedings 2017, 1–24. https://www.ifkad.org/wp/wp-content/uploads/docs/IFKAD2017_PROGRAM-1.pdf

Rathore, A. S., Garcia-Aponte, O. F., Golabgir, A., Vallejo-Diaz, B. M., & Herwig, C. (2017). Role of knowledge management in development and lifecycle management of biopharmaceuticals. *Pharmaceutical Research, 34*(2), 243–256. https://doi.org/10.1007/s11095-016-2043-9

Ribière, V., & Walter, C. (2013). 10 years of KM theory and practices. *Knowledge Management Research Practice, 11*(1), 4–9. https://doi.org/10.1057/kmrp.2012.64

Riddell, J., & Goodman, E. (2014). Knowledge management in the pharmaceutical industry: Enhancing research, development and manufacturing performance. Ashgate Publishing Limited.

Rossi, M., Thrassou, A., Vrontis, D., & Demetris Vrontis, Dr. Michael Chris, P. (2015). Biotechnological mergers and acquisitions: Features, trends and new dynamics. *Journal of Research in Marketing and Entrepreneurship, 17*(1), 91–109. https://doi.org/10.1108/JRME-07-2014-0013

Roth, J. (2003). Enabling knowledge creation: Learning from an R&D organization. *Journal of Knowledge Management, 7*(1), 32–48. https://doi.org/10.1108/1363720310465608

Russell, M. (2016). The valuation of pharmaceutical intangibles. *Journal of Intellectual Capital, 17*(3), 1–37. https://doi.org/10.1108/JIC-10-2015-0090

Santos, F. M. (2003). The coevolution of firms and their knowledge environment: Insights from the pharmaceutical industry. *Technological Forecasting and Social Change, 70*(7), 687–715. https://doi.org/10.1016/S0040-1625(03)00031-3

Serenko, A., & Bontis, N. (2013). Global ranking of knowledge management and intellectual capital academic journals: 2013 update. *Journal of Knowledge Management, 17*(2), 307–326. https://doi.org/10.1108/13637201311315231

Sharabati, A. A., Jawad, S. N., Bontis, N., Naji Jawad, S., & Bontis, N. (2010). Intellectual capital and business performance in the pharmaceutical sector of Jordan. *Management Decision, 48*(1), 105–131. https://doi.org/10.1108/00251741011014481

Sharma, N. L., & Goswami, S. (2009). The nuances of knowledge creation and development in Indian pharmaceutical industry. *Journal of Knowledge Management, 13*(5), 319–330. https://doi.org/10.1108/13637209110988132

Singh, S., & Kansal, M. (2011). Voluntary disclosures of intangible capital. *Journal of Intellectual Capital, 12*(2), 301–318. https://doi.org/10.1108/13673271111123430

Standing, C., & Kimiti, S. (2011). How can organizations use wikis for innovation? *Technovation, 31*(7), 287–295. https://doi.org/10.1016/j.technovation.2011.02.005

Sternitzke, C. (2010). Knowledge sources, patent protection, and commercialization of pharmaceutical innovations. *Research Policy, 39*(6), 810–821. https://doi.org/10.1016/j.respol.2010.03.001

Stevens, A. J., Jensen, J. J., Wyller, K., Kålgøe, P. C., Chatterjee, S., & Rohrbaugh, M. L. (2011). The role of public-sector research in the discovery of drugs and vaccines. *New England Journal of Medicine, 364*(6), 535–541. https://doi.org/10.1056/NEJMsa1008268

Styhre, A., Ollila, S., Roth, J., Williamson, D., & Berg, L. (2008). Heedful interrelating, knowledge sharing, and new drug development. *Journal of Knowledge Management, 12*(3), 127–140. https://doi.org/10.1108/1363720875912

Styhre, A., Roth, J., & Ingel†rd, A. (2002). Care of the other: Knowledge-creation through care in professional teams. *Scandinavian Journal of Management, 18*(4), 503–520. https://doi.org/10.1016/S0956-5221(01)00022-7

SubbaNaraisinha, P. N., Ahmad, S., & Mallya, S. N. (2003). Technological knowledge and firm performance of pharmaceutical firms. *Journal of Intellectual Capital, 4*(1), 20–33. https://doi.org/10.1108/14691930310455360

Sundgren, M., Dimena, E., Gustafsson, J., & Selarti, M. (2005). Drivers of organizational creativity: A path model of creative climate in pharmaceutical R&D. *R and D Management, 35*(4), 359–374. https://doi.org/10.1111/j.1467-9310.2005.00395.x

Sydler, R., Haefliger, S., & Pruksa, R. (2014). Measuring intellectual capital with financial figures: Can we predict firm profitability? *European Management Journal, 32*(2), 244–259. https://doi.org/10.1016/j.emj.2013.01.008

Tahvanainen, A.-J., & Hermans, R. (2005). Funding intellectual-capital-abundant technology development: Empirical evidence from the Finnish biotechnology business. *Knowledge Management Research & Practice, 3*(2), 69–86.
Wang, J.-K., Ashleigh, M., & Meyer, E. (2006). Knowledge sharing and team trustworthiness: It’s all about social ties! Knowledge Management Research & Practice, 4(3), 175–186.

WHO. (1999). TRS 953 WHO expert committee on specifications for pharmaceutical preparations: Thirty-fifth report (In WHO technical report series Issue 885).

WHO. (2003). TRS1003 Annex 4 Procedure for assessing the acceptability, in principle, of quality control laboratories for use by United Nations agencies (Issue 917).

WHO. (2006a). Public health innovation and intellectual property rights: Report of the commission on intellectual property rights, innovation and public health. WHO library cataloguing-in-publication data commission, p.171.

WHO. (2006b). TRS 973 annex 4 supplementary guidelines on good manufacturing practices: Validation (In WHO technical report series (Vol. 937, Issue 937)).

WHO. (2010a). TRS957 annex 5 WHO good distribution practices for pharmaceutical products(In WHO Technical Report Series (Issue 957)).

WHO. (2010b). TRS 957 annex 2 good manufacturing practices for active pharmaceutical ingredients (In WHO Technical Report Series (Vol. 957, Issue Annex 2)).

WHO. (2011). Annex 7: WHO guidelines on transfer of technology in pharmaceutical manufacturing (In WHO (Issue 961)).

WHO. (2013). TRS 981 annex 2 guidelines on quality risk management.

WHO. (2014). TRS 986 annex 2 WHO good manufacturing practices for pharmaceutical products: Main principles (In WHO (World Health Organization. Technical Report Series, No. 961. (Issue 961)).

WHO. (2016). TRS996 annex 5 guidance on good data and record management practices. (In WHO Technical Report Series (Issue 996)).

WHO. (2017). TRS 1003 annex 4 WHO global model regulatory framework for medical devices including in vitro diagnostic medical devices. WHO medical device technical series.

Yang, Y. Y., Klose, T., Lippy, J., Barcelon-Yang, C. S., & Zhang, L. (2014). Leveraging text analytics in patent analysis to empower business decisions - A competitive differentiation of kinase assay technology platforms by 12E text mining software. World Patent Information, 39, 24–34. https://doi.org/10.1016/j.wpi.2014.09.002