Evaluation of Growth, Morphology, Biomass Production of Commercial Bamboo Species under Rainfed Condition on Agricultural Wastelands

V. M. Ilorkar* and P. D. Raut

AICRP on Agroforestry, Agroforestry Farm, PDKV- College of Agriculture Nagpur, India

*Corresponding author

A B S T R A C T

Investigations on growth, morphology, biomass production of ten commercially important bamboo species was undertaken under rainfed conditions on agricultural wastelands. The study showed that at the end of 6th year maximum total biomass (ton/ha) was produced by *Bamboosa bambos* (261.89) followed by *Bamboosa balcoa* (224.40) followed by *Dendrocal musstocksi* (171.38) followed *Bamboosa tulda* (161.96). The lowest biomass production was estimated in *Bamboosa multiplex* (70.62). Growth characters culm height, emergence of new culms, total number of culms showed significant variation with respect to different bamboo species. A first harvesting (50% removal of culms) was carried out at 6th year. In this first harvesting the maximum biomass yield (ton/ha) was recorded by *Bamboosa bambos* (42.37) followed by *Bamboo balcoa* (41.80) followed by *Dendrocal musstocksi* (35.09) followed *Bamboo satulda* (28.61). The lowest biomass yield was estimated in *Bamboosa multiplex* (11.77). The Cost of cultivation and monetary returns were worked out. A more than two benefit-cost ratio was worked out for *Bamboosa balcoa* (2.44) followed by *Dendrocal musstocksi* (2.39) and *Bamboosa bambos* (2.25) .Suggested these three species for commercial plantation in this region.

Keywords
Bamboo, Biomass Productivity, B:C ratio

Article Info
Accepted: 04 December 2020
Available Online: 10 January 2021

Introduction

Present demand for bamboo is estimated to 26.9 million ton as against the supply of 13.47 million tonne. Demand is drastically increasing due to industrial revolution like pulp for paper and rayon, laminated bamboo, parquet flooring, ply bamboo, bamboo composites, and charcoal coupled with mechanization of traditional sector like shoot processing, chopsticks, agarbatti, toothpick production and bamboo handicrafts. According to estimates, bamboo-based activities could easily generate 8.6 million additional jobs in India and thus enable 5.01 million families to cross the poverty line. Therefore, there is good scope of bamboo based agroforestry systems in the country (Patil, et. al. 1994) and (Patel et al., 2019).

Section of appropriate combination of suitable bamboo species, silvicultural practices and water conservation technique can however increase the productivity of bamboo to meet out the challenges of growing demand (Ilorkar, 2016) and (Kumari Reena, 2018).
Materials and Methods

A field experiment was conducted at AICRP on Agroforestry, PDKV, College of Agriculture, Nagpur. Thirteen different bamboo species were collected from State Forest Department, Tropical Forest Research Institute, Jabalpur, Forest Research Institute, Dehradun in the year (2013-14). The collected bamboo species were planted in field at 3 x 3m spacing in a randomized block design. Six plants per replication were maintained and three plants across the diagonal were taken for observation. The plantation raised on shallow to medium deep (40cm), clay loam soil. Soil fertility ranges from medium to low. The mean annual rainfall at Nagpur is 1140 mm. The maximum temperature is recorded during summer 47°C. Winter is dry and cool.

Standard agronomic practices recommended by National Bamboo Mission (BTSG-KFRI, 2015) were followed for bamboo cultivation and maintenance. Observations on growth, morphology, biomass productivity were recorded in the month of March. Data were analyzed statistically. Biomass Productivity estimated, cost of production, monetary return and Benefit Cost ratio was calculated from the data. The selling price of bamboo was assumed Rs. 5000/ton.(BILT, 2019) Presented in following tables (1 to 4).

Results and Discussion

Observations on growth characters Culm Height (cm), Number of New culm/clump/year, Total Number of culm/clump/year are given in table 1.

Culm height (cm): The culm height for three successive years was measured (2018, 2019 & 2020). Pooled mean was worked out. The culm height varied from 114.33 to 506.67. The highest culm height 506.67 was recorded for bamboo species *Bamboosa bambose*. Height variations’ were found significant.

Number of new culm/clump/year: The number of new culm produced for three successive years was measured (2018, 2019 & 2020). Pooled mean was worked out. The new culms varied from 2.00 to 13.67. The highest number of new culm 13.67 was recorded for bamboo species *B. multiplex*. Variations’ were found significant.

Total number of culm/clump/year: The number of new culm produced for three successive years was measured (2018, 2019 & 2020). Pooled mean was worked out. The total culm varied from 6.00 to 80.00. The highest number of total culm 80.00 were recorded for bamboo species *B. multiplex*. Variations’ were found significant. Observations on Morphological Characters number of branches, Culm diameter, Wall thickness, number of internodes, inter nodal distance are given in table 2.

Number of branches/culm: The number of branches produced for three successive years were recorded. The total number of branches produced varied from 26.00 to 91.00. The highest number of branches 91.00 were produced for bamboo species *Bamboosa bambose*.

Culm diameter at Base (mm): The Culm diameter leading culm at the base of the culm was recorded. The Culm diameter varied from 12.00 to 40.27. The highest Culm diameters 40.27 was recorded for bamboo species *Bamboosa bambose*.

Wall thickness at base (mm): The Wall thickness at Base of the culm was recorded. The Wall thickness of culm varied from 0.80 to 15.95. The highest Wall thickness 15.95 was recorded for bamboo species *Bamboosa bambose*.
Table 1: Growth characteristics of different bamboo species planted on waste land under rainfed condition

S.N.	BAMBOO SPECIES	CULM HEIGHT CM	NO. OF NEW CULMS /CLUMP/YEAR	TOTAL NO. OF CULMS /CLUMP/YEAR									
		20 18	20 19	20 20	Poled mean	20 18	20 19	20 20	Pooled Mean	20 18	20 19	20 20	Pooled mean
T1	Dendrocalmus strictus (control)	310	320	542	390.67	2	2	2	2.00	4	6	8	6.00
T2	Bamboosa vulgaris	300	310	523	377.67	3	3	4	3.33	7	9	10	8.67
T3	Bamboosa bambose	380	490	650	506.67	6	7	2	5.00	16	20	24	20.00
T4	Dendrocalmus asper	225	235	572	344.00	4	2	3	3.00	9	11	14	11.33
T5	Bamboosa multiplex	90	105	148	114.33	20	7	14	13.67	50	83	107	80.00
T6	Dendrocal musstockssii	354	385	623	454.00	5	8	4	5.67	12	18	20	16.33
T7	Bamboosa tulda	275	285	693	417.67	4	5	2	3.67	8	12	18	12.67
T8	Bamboosa nutans	285	295	555	378.33	3	4	3	3.33	7	9	10	8.67
T9	Bamboosa balcooa	280	291	650	407.00	4	3	3	3.33	8	12	20	13.33
T10	Bamboosa brandice	310	320	542	390.67	4	2	2	2.00	7	10	12	6.00

Table 2: Morphological characters of bamboo spp. on waste land under rainfed condition

Sr.No.	Name of Bamboo spp.	Culm Height cm	No. Branches	Base Dia mm	Dia 5ft. mm	Dia 10 ft mm	Dia 15ft. mm	Wall Thickness mm	No. of Internodes	Inter nodal dist. cm
T1	Dendrocalmus strictus (control)	542	84.00	37.39	28.95	21.75	13.44	13.00	23	21.32
T2	Bamboosa vulgaris	523	57.00	39.10	34.61	27.13	15.02	12.12	23	38.21
T3	Bamboosa bambose	650	91.00	40.27	35.23	30.32	25.30	15.95	27	27.32
T4	Dendrocalmus asper	572	63.00	33.20	28.84	20.72	10.54	12.58	21	30.42
T5	Bamboosa multiplex	148	26.00	12.00	9.60	9.62	6.54	0.80	7.0	8.98
T6	Dendrocal musstockssii	623	84.00	38.34	27.07	19.62	15.14	16.00	28	29.87
T7	Bamboosa tulda	693	69.00	40.37	33.20	22.14	10.00	12.81	23	30.32
T8	Bamboosa nutans	555	63.00	30.86	25.49	14.61	11.11	11.72	20	31.67
T9	Bamboosa balcooa	650	66.00	37.49	28.94	21.24	12.90	14.38	20	30.32
T10	Bamboosa brandice	542	81.00	38.12	32.27	29.63	13.71	15.18	24	27.34
Table 3 Biomass production, yield /ha of different bamboo species on waste land under rainfed condition

Sr. No.	Name of Bamboo Sp.	No. of culm/ clump	Biomass kg /culm			Biomass Yield tonn /ha				
			Stem	Branch + leaves	Rhizome	Root	Total	Kg /clump	Tons /hectare	
T1	*Dendrocalamus strictus*(control)	8	2.80	1.41	2.1	0.70	7.01	56.08	61.69	12.32
T2	*Bambooosa vulgaris*	10	3.12	4.1	2.34	0.78	10.34	103.40	113.74	17.16
T3	*Bambooosa bambose*	24	3.21	3.5	2.40	0.80	9.92	238.08	261.89	42.37
T4	*Dendrocalmus asper*	14	2.47	1.85	1.85	0.61	6.79	95.06	104.57	19.02
T5	*Bambooosa multiplex*	107	0.20	0.2	0.15	0.05	0.60	64.20	70.62	11.77
T6	*Dendrocalmus musstockii*	20	3.19	1.41	2.39	0.79	7.79	155.80	171.38	35.09
T7	*Bambooosa tulda*	18	2.89	2.4	2.16	0.72	8.18	147.24	161.96	28.61
T8	*Bambooosa nutans*	10	2.21	2.5	1.65	0.55	6.92	69.20	76.12	12.16
T9	*Bambooosa balcooa*	20	3.38	2.6	2.85	0.95	10.20	204.00	224.40	41.80
T10	*Bambooosa brandicee*	20	2.62	1.26	1.96	0.65	6.50	78.00	85.80	17.29

Table 4 Biomass yield, gross monetary return, cost and B/C ratio of bamboo production on waste land under rainfed condition

Sr. No.	Name of Bamboo spp.	Biomass Yield tons/ha	Gross Monetary Return Rs/ha	Net Monetary Return Rs/ha	Establishment Cost Rs/ha	Maintance 1 To 5yrs. Rs/ha	Harvesting Cost Rs/ha	Cost of Production Rs /ha.	B/C Ratio
T1	*D. strictus*	12.32	61600	14940	33000	7500	6160	46660	1.32
T2	*B. vulgaris*	17.16	85800	23220	44000	10000	8580	62580	1.37
T3	*Bambooosa bambose*	42.37	211860	117632	33000	12500	48727	94228	2.25
T4	*D. asper*	19.02	95095	40085	33000	12500	9509	55010	1.73
T5	*B. multiplex*	11.77	23540	-16814	33000	5000	2354	40354	0.58
T6	*D. stocksii*	35.09	178959	103932	49500	15000	10527	75027	2.39
T7	*B. tulda*	28.61	143055	66166	44000	10000	22888	76889	1.86
T8	*B. nutan*	12.16	60775	-2949	44000	10000	9724	63724	0.95
T9	*B. balcooa*	41.80	213180	125640	55000	20000	12540	87540	2.44
T10	*B. brandicee*	17.29	86460	26168	33000	10000	17292	60292	1.43
Number of internodes: The number of internodes per culm was recorded. The number of internodes per culm varied from 7.00 to 28.00. The highest number of internodes per culm 28.00 were recorded for bamboo species *Dendrocal musstocksii*.

Inter nodal distance (cm): The inter nodal distance per culm were recorded. The intermodal distance per culm varied from 8.98 to 38.21. The largest inter nodal distance in culm 38.21 were recorded for bamboo species *Bamboosa vulgarise*. Observations on Biomass Productivity – biomass of stem, branch + leaves, root, rhizome, total biomass/clump, biomass /ha and biomass yield /ha are given in table 3.

Stem biomass (Kg): The stem biomass per culm were recorded. The stem biomass per culm varied from 0.20 to 3.38. The highest stem biomass per culm 3.38 were recorded for bamboo species *Bamboosa balcooa* followed by *Bamboosa bambose* 3.21 and *Dendrocal musstocksii* 3.19.

Total biomass/clump (Kg): Total biomass/clump were recorded. The Total biomass/clump varied from 64.20 to 238.08. The highest total biomass/clump 238.08 was recorded for bamboo species *Bamboosa balcooa* followed by *Bamboosa bambose* 204.00 and *Dendrocal musstocksii* 155.80.

Biomass tonn/ha: Total biomass/ha were recorded. The biomass/ha varied from 70.62 to 261.89. The highest total biomass/ha 261.89 was recorded for bamboo species *Bamboosa bambose* 261.89 followed by *Bamboosa balcooa* 224.40 and *Dendrocal musstocksii* 171.38.

Culm biomass yield tonn/ha: For maintaining the sustainability of bamboo plantations the fifty percent harvestable biomass yield is allowed as per silvicultural rules (Tewari, 1994). The biomass yield tons /ha were recorded.

The biomass yield /ha varied from 11.77 to 42.37. The highest total biomass yield /ha 42.37 was recorded for bamboo species *Bamboosa balcooa* followed by *Bamboosa balcooa* 41.80 and *Dendrocal musstocksii* 35.09.

Observations on Monetary returns –Gross, monetary return, Net monetary returns, Cost of establishment, maintenance cost for 5 years, harvesting cost, total cost /ha and benefit Cost ratio were worked out and are given in table 4.

Gross monetary return Rs/ha: Considering the biomass yield the gross monetary return Rs/ha from each bamboo spp were worked out. The gross monetary return varied from Rs. 23540 to 213180. The highest gross monetary return Rs /ha 213180 was worked out for bamboo species *Bamboosa balcooa* followed by *Bamboosa balcooa* Rs. 211860 and *Dendrocal musstocksii* Rs.178959.

Net monetary return Rs/ha: Considering the biomass yield the net monetary return Rs/ha from each bamboo spp were worked out. The net monetary return varied from Rs. (-) 2949 to Rs.125640. The highest net monetary return Rs /ha 125640 was worked out for bamboo species *Bamboosa balcooa* followed by *Bamboosa balcooa* Rs. 117632 and *Dendrocal musstocksii* Rs.103932.

Cost of establishment Rs/ha: The Cost of establishment Rs/ha from each bamboo spp were worked out. The Cost of establishment varied from Rs. 33000 to Rs.55000. The highest Cost of establishment Rs /ha 55000 was worked out for bamboo species *Bamboosa balcooa* (because of higher cost of tissue culture origin planting material) followed by *Dendrocal musstocksii* Rs.49500.
The lowest cost Rs.33000 was worked out for *Bamboosa bambos* and three more spp.

Cost of production Rs/ha: Considering the cost establishment + cost of maintenance for five years + cost of harvesting and transportation the cost of Production was worked out. The Cost of production varied from Rs. 46660 to Rs.94228. The highest Cost of production Rs /ha 94228 was worked out for bamboo species *Bamboosa bambos* (because of higher cost of harvesting) followed by *Bamboosa balcooa* Rs.87540. The lowest cost Rs.46660 was worked out for *Dendrocal musstrictus*.

Benefit /Cost ratio: Considering the cost of production vs gross monetary returns the benefit-cost ratio (B/C) of cultivation of ten bamboo spp. was worked out. The benefit-cost ratio varied from 0.581 to 2.44. The highest benefit-cost ratio 2.44 was worked out for bamboo species *Bamboosa balcooa* (*Bhima*) followed by *Dendrocal musstocksii* (*Manga*) 2.39 and *Bamboosa bambose* (*Katang*) 2.25.

In conclusion the basis of six years filed experimentation, assessment of growth and morphological characters, estimation of biomass productivity, cost of production and calculation of higher Benefit /Cost Ratio (> 2) it can be concluded that three bamboo spp. namely *Bamboosa balcooa* (*Bhima*) 2.44 followed by *Dendrocal musstocksii* (*Manga*) 2.39 and *Bamboosa bambose* (*Katang*) 2.25 are suitable for cultivation on waste and wastelands under rainfed conditions (Patel et al., 2017).

Acknowledgement

Authors are grateful to ICAR- Central Agroforestry Research Institutes, Jhansi for arranging funding for carrying the research work under the programme of AICRP on Agroforestry.

References

BILT, (2019). Personal communication with General Manager, Ballarsha Paper Mills. Ltd. Ballarsha. Maharashtra (India).

BTSG-KFRI. (2015). Manual for Establishment and Management of Bamboo Plantations. Kerala. Department of Land Resources. (2010). Wasteland Atlas of India.

Ilorkar, V. M. (2016). Annual report AICRP on Agroforestry, PDKV- College of Agriculture, Nagpur.

Kumari Reena, Ramesh singh, R. M. Singh, R K Tiwari, S K Dhyani, Inder Dev, BablooSharma, A. K. singh (2014) . Impact of rain water harvesting structure on water table behavior and ground water recharge in Parasi- Sindh watershed of Central India.: .rj naidnI yrteroforgA Vol. 16 No. 2: 47- 52

Kumar. Muktesh. (2002). Field Identification Key to Native Bamboos of Kerala. KFRI Handbook No.9 Kerala Forest Research Institute Pechi- 680 653, Thrissur, Kerala, India.

Patel, B., Gami, B. and Patel, P. (2017). Carbon Sequestration by Bamboo Farming on Marginal Land and Sustainable Use of Wood Waste for Bioenergy: Case Studies from Abellon Clean Energy. In K. Krishna, V. Pandey, S. S. Ramakantha, A. N. Chauhan and A. Kumar (Ed.) Wood is Good Current Trends and Future Prospects in Wood Utilization (pp. 451-467). Singapore: Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978981-10-3115-1_43.

Patel, Beena; Bharat Gami; Akash Patel Pankaj Patel (2019). Wasteland Utilization for *B. balcooa* Cultivation: Socio-economic and Environmental Impacts through Bamboo-based
Product Development: *European Journal of Sustainable Development Research* 3(4), Patil, V. C., Patil, S. V. and Hanamashetti, S. I. (1994). Bamboo Farming: An Economic Alternative on Marginal Lands. In Proceedings of the 4th International Bamboo Workshop on Bamboo in Asia and the Pacific, Chiangmai, Thailand, 27-30 November 1991 (pp. 133-135). Forest Research Support Programme for Asia and the Pacific, Bangkok, Thailand.

Tewari D.N. (1994). A Monograph on Bamboo. Director General Indian Council of Forestry Research and Education Dehradun. International Book Distributor Rajpur Road, Deheradun-248001 India. ISBN: 81-7089-176-0.

How to cite this article:

Ilorkar, V. M. and Raut, P. D. 2021. Evaluation of Growth, Morphology, Biomass Production of Commercial Bamboo Species under Rainfed Condition on Agricultural Wastelands. *Int.J.Curr.Microbiol.App.Sci.* 10(01): 193-199. doi: https://doi.org/10.20546/ijcmas.2021.1001.023