Objective: Petrous internal carotid aneurysm (PA) concomitant with a mass lesion and cranial nerve palsy is relatively rare. Flow-diverter stent implantation is now widely used as an alternative treatment for PA. However, alternative treatments sometimes cannot be used because of tortuosity of the carotid artery, allergies to contrast material, and high costs. The outcomes of different treatment methods should therefore be assessed. Here, we review the available literature on treatments for PA.

Methods: In a search using the terms “aneurysm”, “carotid artery”, and “petrous” on PubMed, MEDLINE, and databases such as OvidSP, 221 articles were identified. We also performed a literature review and discuss and compare the causes, symptoms, treatment methods, and clinical outcomes of PA.

Results and Conclusions: Onset of secondary aneurysm was generally heralded by bleeding (p<0.001), while onset of primary aneurysm was heralded by cranial nerve deficit (p= 0.0014). Outcomes after treatment of 34 cranial nerve palsies in 25 patients are reported. (J Nippon Med Sch 2020; 87: 172–183)

Key words: cerebral aneurysm, hypoglossal nerve, internal carotid artery, systematic review, petrous

Introduction
Extracranial, non-traumatic, non-dissecting saccular internal carotid artery (IC) aneurysms are usually located in the lower cervical region; aneurysms in the petrous portion of the IC are rare. Extracranial IC dissection can cause hypoglossal nerve palsy, and concomitant incidence with IC dissection was reported in 5% of cases. However, no case of hypoglossal nerve palsy due to saccular aneurysm in the petrous IC has been reported. In the largest series, which included 100 cases of hypoglossal nerve palsy, nearly 50% of cases of hypoglossal nerve palsy were caused by tumors. Other causes include trauma, stroke, multiple sclerosis, surgery, Guillain-Barré neuropathy, and infection. Hypoglossal nerve palsy resulting from extracranial aneurysm is rare.

Petrous IC aneurysm (PA) is relatively rare, has a wide variety of causes, including infection, trauma, and pseudoaneurysm, and has been studied since 2004. In recent years, multiple treatments for PA, such as use of a flow diverter, have been reported; however, revascularization surgery remains an important strategy. PA is often difficult to treat intravascularly, particularly in patients with infectious diseases, rupture, and pseudoaneurysm. Furthermore, not all treatment strategies are available for all patients, as some patients are allergic to contrast agents or metals and some have renal dysfunction. Another reason for the unavailability of a treatment may be its high cost. Therefore, the outcomes of available treatment methods need to be compared.

Studies of the symptoms of unruptured PAs commonly report cranial nerve symptoms. Several studies have investigated the effects of treatment for cranial nerve symptoms of internal carotid artery-posterior communicating artery (ICPC) aneurysms and cavernous carotid aneurysms; however, few studies have examined the effects of treatment for cranial nerve symptoms of PAs. Unlike ICPC and cavernous carotid aneurysms, PAs are partially surrounded by bone structure; therefore, the effect of decompression on the cranial nerve may be a characteristic of this lesion site. Further-
more, because symptoms differ in relation to the cause of PA,

 even for aneurysms at the same location, we evalu-

 ated differences in symptoms between primary petrous
carotid aneurysms and traumatic, infectious, and iatro-
genic petrous aneurysms. For this purpose, we per-

formed a systemic review of available studies on PAs. We
also reviewed reports on PAs with different causes.

Systematic Review
To determine future treatment strategies for cranial nerve
palsy due to PAs, we conducted a literature review of
previously reported cases. We searched for all reported case studies and clinical research studies of
PAs that were published in English. PubMed, MEDLINE,
and other databases, such as OvidSP, were searched by
using keywords such as “petrous,” “aneurysm,” and “ca-
rotid artery.” The initial search was completed at the end
of July 2018 and yielded 221 articles; data for 107 pa-
tients (109 sides [2 cases of bilateral aneurysm]) from 79
studies were reviewed. The exclusion criteria were
(1) articles in a language other than English (n = 23); (2) review articles or clinical studies not related to
petrous carotid aneurysm (n = 115); and (3) clinical stud-
ies with no data on the effects of the case study (n = 13).

The included studies are summarized in Table 1. Nine
reports were added by requotation. Using these data, we
compared primary and secondary petrous carotid aneu-
rysms in relation to age, sex, side, and frequency of
bleeding (Table 2). The incidences of complications and
additional interventions in patients who underwent each
type of treatment were also analyzed. Those who under-
went additional treatment were regarded as having un-
dergone 2 treatments. Because of the low radiological di-
agnostic and prognostic accuracy, all cases reported be-
fore 1970 were excluded. Two authors (Y.M. and K.S.) as-

eressed and graded (modified Rankin scale score, 0-2 or

not) postoperative complications reported in each study.

Treatment methods were classified into 5 categories: (1)
surgical or interventional carotid artery occlusion or trap-
ping, without aneurysm embolization, (2) stenting, with
or without coiling, (3) revascularization surgery, (4) aneu-
rys embolization with a coil or balloon, and (5) conserva-
tive or no treatment. All variables were evaluated by
using JMP version 11.0.0 (SAS Institute Inc., Cary, NC,
USA). A P value of less than 0.05 (Pearson analysis) was
considered to indicate statistical significance.

All procedures performed involving human partici-
pants were in accordance with the ethical standards of
the institutional and/or national research committee and

with the 1964 Helsinki Declaration and its later amend-
ments, or with comparable ethical standards.

Results of Systematic Review
The results of the analysis are shown in Table
1. The characteristics of patients with pri-
mary and secondary (infectious, traumatic, radiation in-
duced, or iatrogenic) petrous carotid aneurysm are
shown in Table 2. The treatments selected are shown in
Table 3. The average age of the reported patients was
41.4 years (range, 5-81 years). Among the 94 patients for
which sex was reported, 54 were male and 40 were fe-
male (Table 2). Among the 95 patients for which the side
of the aneurysm was reported, the aneurysm was located
on the right side in 44 cases and on the left side in 51.

Thirty-nine patients developed 1 or more cranial nerve
deficits (Table 1, 4, 5). Only a few studies reported the
interval from symptom onset to treatment, so this vari-
able was excluded from the present study. The most
common sites of cranial nerve deficit were the eighth (n
= 15), sixth (n = 13), seventh (n = 10), and fifth cranial
nerves (n = 8) (Table 4). Thirty-five cranial nerve symp-
toms from 25 patients with a recorded post-treatment
course were examined (Table 4, 5). Cranial nerve symp-
toms did not change in 9 cranial nerves, improved in 19
cranial nerves, and resolved in 7 cranial nerves.

There were 39 cases of bleeding from life-threatening
otorrhagia or epistaxis (Table 1, 2). The cause was de-
scribed in 45 of the 109 cases: 16 involved infectious dis-
eases, including chronic otitis media, and 13 involved
cervical trauma. Radiation therapy was performed for a
cranio-cervical tumor in 10 patients, and the cause was
characterized as iatrogenic in 6 patients.

Statistical analysis revealed that onset of secondary
aneurysm was heralded by bleeding (p < 0.001) and that
onset of primary aneurysm was heralded by cranial nerve
injury (p = 0.0014) (Table 2). Factors associated with
outcomes of treatment for injured cranial nerves were ex-
amined. The number of cases was insufficient to assess
statistically the effect of individual treatments on each
cranial nerve (Table 5). We also compared the incidences
of complications and additional interventions, by treat-
mament type, and studied 78 treatments performed for 75
cases and 10 patients undergoing conservative treatment
(Table 6). Of the reported patients, 93.2% (82/88) were
free of complications. There was no significant difference
in the incidence of any complication. Four cases of rebleeding after treatment were reported, and additional
treatment was required in 3 of these 4 cases.
Author & Year	Age	Sex	Side	Size (mm)	CN symptoms	Other symptoms	Treatment	CN post treatment	Post treatment ischemia	Cause
Barrett et al., 1960	26	M	L	NA	none	otalgia	CCA ligation	NA	none	infection
Guirguis et al., 1961	19	M	L	giant	6,7,8,9	headache	ligation	NA	Dead	
Hirandani et al., 1962	40	M	R	40	none	otalgia	none	NA	none	
Wemple et al., 1966	18	M	L	large	6,8	Horner	IC ligation	diplopia	improved	none
Allen et al., 1967	43	F	R	NA	8	none	conservative	NA	NA	iatrogenic
Busby et al., 1968	29	M	R	NA	6,7,8	epistaxis	ECA ligation	NA	none	trauma
Steffen et al., 1968	47	F	L	NA	none	tinnitus	NA	NA	none	
Conley et al., 1969	7	F	L	NA	NA	direct removal	NA	none	none	
Stallings et al., 1969	9	F	R	3	NA	purulent otorrhea	NA	NA	NA	
Anderson-1 et al., 1972	19	F	L	20	none	otorrhagia	trap (ligation and clip)	NA	none	
Anderson-2 et al., 1972	59	F	R	30	none	tinnitus, otorrhagia	trap (clip and clip)	NA	none	
Teal-1 et al., 1973	36	M	L	NA	none	none	conservative	NA	NA	trauma
Teal-2 et al., 1973	36	M	L	NA	none	headache	conservative	NA	NA	trauma
Morantz et al., 1976	34	F	R	NA	none	hyperacusis, tinnitus	IC ligation	NA	none	
Holtzman et al., 1979	35	M	L	5	none	otorrhagia	IC ligation	end to end anastomosis	NA	infection
Glassock et al., 1983	9	M	L	18	NA	otalgia	NA	none	iatrogenic	
Lynch et al., 1983	28	F	L	50	8	ear pain	ligation	no change	none	
Kelly-1 et al., 1985	61	F	R	NA	7	none	conservative	NA	NA	
Kelly-2 et al., 1985	63	M	L	NA	6	none	NA	NA		
DelBalso et al., 1986	50	F	L	large	none	transient ischemic attack	NA	NA	none	
McGrail et al., 1986	44	M	L	25	5,6	none	IC trap with balloon & STA-MCA	improve (months)	none	infection
Willinsky et al., 1987	35	F	L	5	none	epistaxes, ear pain	AN balloon emboli	NA	none	
Gibson et al., 1989	56	M	L	60	5	temporal pain	conservative	mild facial palsy	NA	
Frank et al., 1989	18	F	R	large	8	bruit	conservative	NA	none	neurofibromatosis
Halbach-1 et al., 1990	19	M	L	NA	5,7	bruit	IC ligation	5 resolved, 7 persistent resolved	amauropenia fugax	none
Halbach-2 et al., 1990	7	M	L	NA	8	headache, amaurosis fugax	ICO with balloon	amauropenia fugax	none	
Halbach-3 et al., 1990	14	F	R	NA	8	headache, tinnitus, vertigo	IC trap with balloon	resolved	none	
Halbach-4 et al., 1990	31	F	L	NA	8	none	IC trap with balloon	resolved	none	
Halbach-5 et al., 1990	62	F	L	NA	5	none	AN balloon emboli	resolved	none	
Halbach-6 et al., 1990	60	F	L	NA	none	headache	ICO with balloon	NA	none	
Halbach-7 et al., 1990	19	M	R	NA	3	none	ICO with balloon	resolved	none	
Costantino et al., 1991	37	F	R	NA	none	epistaxis, otorrhagia	ICO with balloon & coil	NA	none	
Tokimura et al., 1992	64	F	R	large	none	none	end to end anastomosis	NA	none	
Umez et al., 1993	21	M	L	20	7,8	otalgia	PAO with balloon → trap & STA-MCA	NA	none	
Table 1 Patient characteristics of reported petrous carotid aneurysm

Author & Year	Age	Sex	Side	Size (mm)	CN symptoms	Other symptoms	Treatment	CN post treatment	Post treatment ischemia	Cause
Papazian-1 et al., 1993	18	F	NA	NA	none	none	NA	none	NA	infection
Papazian-2 et al., 1993	49	M	NA	NA	none	headache	NA	none	NA	
Papazian-3 et al., 1993	52	F	NA	3.5	none	headache	NA	none	NA	
Cross et al., 1995	31	M	L	giant	none	epistaxis	IC trap with balloon	NA	none	infection
Patrick-1 et al., 1996	70	M	L	giant	none	none	conservative treatment	NA	none	
Patrick-2 et al., 1996	43	F	L	giant	7	none	ICO with balloon with EC-IC bypass	7 persist	none	
Love et al., 1996	50	M	L	NA	7.8	tinnitus	ICO with balloon	7 persist, 8 lessened	none	
Goodman et al., 1996	22	M	R	large	8	Horner	ICO with balloon	8 improved	none	
Coley et al., 1998	15	M	L	giant	8	headache, Horner	ICO with balloon	NA	none	
Zander et al., 1998	45	M	R	5	none	headache, Horner	conservative treatment	improve	none	
Lempert et al., 1998	36	M	L	8	5	NA	coiling	NA	none	trauma
Tanaka et al., 1998	37	F	R	30	12	headache	ICO with balloon & coil	NA	none	infection
Date et al., 1999	46	F	L	40	3,4,5,6	none	ICO with balloon	improve	none	
Reece et al., 1999	21	M	L	large	8	otalgia, tinnitus	ICO with balloon persist	NA	none	
Forshaw et al., 2000	20	M	L	30	none	otorthagia	ICO with balloon resection & SV graft	NA	none	
Couldwell et al., 2001	47	M	L	giant	6	headache	ICO with balloon	NA	none	
Scavée et al., 2001	53	M	R	13	NA	dizziness, neck pain	covered stent	NA	none	trauma
Cheng-1 et al., 2001	54	M	R	NA	none	epistaxis	ICO with coil	NA	none	radiation
Cheng-2 et al., 2001	35	M	R	small	none	otalgia	ICO with coil	NA	none	radiation
Vasama et al., 2001	5	NA	R	NA	none	epistaxis	ICO with balloon	NA	none	trauma
Alexander et al., 2002	42	F	R	6	none	otalgia	covered stent	NA	none	iatrogenic
Depauw et al., 2003	29	M	L	giant	none	cerebral ischemia	ICO with balloon	no ischemia	none	
Auyeung-1 et al., 2003	52	F	R	small	NA	none	epistaxis	covered stent	none	radiation
Auyeung-2 et al., 2003	52	M	L	large	none	epistaxis	covered stent	NA	none	radiation
Saatci-1 et al., 2004	48	F	R	31	none	headache	covered stent	NC	NC	trauma
Saatci-2 et al., 2004	25	M	L	7	none	none	covered stent	NC	NC	trauma
Saatci-3 et al., 2004	18	M	L	14	none	none	covered stent	NC	NC	trauma
Saatci-4 et al., 2004	22	M	R	9	none	none	covered stent	NC	NC	trauma
Saatci-5 et al., 2004	36	F	L	28	none	headache	covered stent	NA	NC	trauma
Horowitz et al., 2005	24	F	R	4	none	epistaxis	stent coil	NA	none	pseu-doAN
Cohen et al., 2007	54	F	R	large	8	tinnitus, headache	covered stent	NA	CNVI palsy	fibromasculardysplasia
Singh et al., 2008	30	M	L	46	none	epistaxis, headaches	ligation	persist	none	
Schmerber et al., 2008	67	M	R	NC	none	otalgia, epistaxis	ICO with balloon	NA	none	iatrogenic
Table 1 Patient characteristics of reported petrous carotid aneurysm

Author & Year	Age	Sex	Side	Size (mm)	CN symp-toms	Other symptoms	Treatment	CN post treatment	Post treatment ischemia	Cause
Ferroli et al., 2009	66	F	R	giant	6	headache	RA graft & IC ligation	persist	none	none
Saylam et al., 2009	28	F	L	small	none	none	PAO with Balloon coil & ligation trap & SV graft	NA	none	iatrogenic infection
Oyama et al., 2010	60	M	R	small	none	otalgia	NA	NA	none	NA
Palacios et al., 2010	27	M	R	NC	5,0	tinnitus	NA	NA	NA	NA
Sun et al., 2010	6	M	L	30	none	headache, Horner	conservative	NA	NA	NA
Rose et al., 2010	33	M	R	NA	6	none	conservative	NA	NA	NA
Endo et al., 2011	62	F	L	small	NA	epistaxis, head-aches, SAH Horner	IC trapping with coil & STA-MCA coil	NA	none	iatrogenic infection
Mangat et al., 2011	15	M	R	large	6	none	PED	improve (5M)	NA	NA
Lerat-1 et al., 2011	64	F	L	19	7	none	PED	improved	none	pseudo-AN
Lerat-2 et al., 2011	64	F	(bilateral)	15	none	none	PED	NA	none	NA
Kim et al., 2012	54	F	R	14	none	pulsatile tinnitus.	AN coil	tinnitus improve	none	none
Rathore et al., 2012	30	NA	R	NA	3	NA	IC ligation	NA	none	radiation infection
Bien et al., 2013	63	M	R	large	none	bloody otorrhea.	ICO with coil	NA	NA	NA
Chen et al., 2013	23	F	L	24	none	none	PAO with coil	NA	none	NA
Hamamoto et al., 2013	77	F	R	large	7	none	coil	NA	none	NA
Kadkhodayan et al., 2013	50	F	L	small	none	otalgia	PED (rebleed additional coil)	NA	NA	NA
Shon et al., 2013	79	M	L	10	none	otalgia, cerebral embolism	conservative	NA	NA	NA
Kalani et al., 2014	51	M	L	NA	NA	NA	ICO with clip & STA-MCA bypass	NA	none	NA
Moon et al., 2014	64	M	L	16	2,5,6	none	PED with coil	improve	none	infection
Mascitelli et al., 2014	64	M	L	17	none	otalgia	PED with coil → (rebleed) covered stent	NA	none	NA
Tsang-1 et al., 2015	40s	NA	R	1.2	NA	epistaxis	PED	NA	none	radiation infection
Tsang-2 et al., 2015	50s	NA	R	2.2	NA	epistaxis	PED	NA	Multiple CI	NA
Tsang-3 et al., 2015	60s	NA	R	1.8	NA	epistaxis	PED with coil	NA	none	radiation infection
Tsang-4 et al., 2015	60s	NA	L	14	NA	epistaxis	PED with coil	NA	none	radiation infection
Tsang-5 et al., 2015	60s	NA	R	3.3	NA	epistaxis	PED	NA	delayed ICO (10M)	NA
Baker et al., 2015	81	M	L	31	none	otalgia, trismus. CI	ICO with clip & bypass stent coil	NA	NA	NA
Lee et al., 2015	18	M	L	15	none	headache, nausea, tinnitus	stent coil	NA	none	neurofibromatosis
Mukher et al., 2016	64	M	R	NA	none	occipital infarction	SV bypass end to end	NA	temporal facial palsy	none
Han et al., 2016	21	M	R	15	7	meningitis	covered stent	NA	infection	none
Petrous Carotid Aneurysm

Author & Year	Age	Sex	Side	Size (mm)	CN symptoms	Other symptoms	Treatment	CN post treatment	Post treatment ischemia	Cause
Akhtar et al., 2017	13	M	R	NA	none	otorrhagia	IC ligation & STA-MCA bypass	NA	none	trauma
Gross-1 et al., 2017	NA	NA	NA	17	none	tinnitus	Neuroform	tinnitus cone	none	
Gross-2 et al., 2017	NA	NA	NA	10	none	none	Enterprise coil	NA	none	
Gross-3 et al., 2017	NA	NA	NA	17	5,6	none	PED with coil	NA	improve	none
Gross-4 et al., 2017	NA	NA	NA	12	none	none	PED with coil	NA	NA	none
Gross-5 et al., 2017	NA	NA	NA	6	6	none	PED with coil	NA	NA	none
Gross-6 et al., 2017	NA	NA	NA	10	none	none	Balloon coil	NA	NA	none
Németh-1 rt et al., 2017	68	F	R	NA	none	otalgia right	flow diverter	NA	NA	infection
Németh-2 lt et al., 2017	68	F	L	NA	none	otalgia left	flow diverter	NA	NA	infection
Hassania-1 et al., 2018	75	M	L	large	NA	otalgia, dysphonia, Horner	ICO with coil	NA	none	infection
Hassania-2 et al., 2018	60	M	R	NA	9,10,12	dysphonia, dysphagia	coil trap	NA	none	infection
Yu LB et al., 2018	58	M	R	giant	none	otorrhagia	coil → bypass & coil removal	NA	NA	none
Murai Y et al., 2018	64	F	L	28	11,12	none	IC ligation & RA graft	improve	none	

AN, aneurysm; CCA, common carotid artery; CI, cerebral ischemia; CN, cranial nerve; EC, external carotid artery; F, female; IC, internal carotid artery; ICO, internal carotid artery occlusion; M, male; MCA, middle cerebral artery; NA, not applicable or no data; PAO, parent artery occlusion; RA, radial artery; SAH, subarachnoid hemorrhage; STA, superficial temporal artery; SV, saphenous vein

Table 2	Clinical characteristics of reported petrous carotid aneurysm				
All	Primary	Secondary	P Value		
----------	----------	-----------	---------		
107 cases 109 side	64	45	0.231		
male:female 54:40	30:26	24:14	0.128		
Side (rt:lt) 44:51	21:32	23:19	0.291		
Age 41.37± 19.77	39.41± 19.74	44.02 ± 19.73	0.0001		
Hemorrhagic onset 11/56 (19.6%)	28/44 (63.6%)	0.089			
mean size (mm) of aneurysm 21.7±15.0	13.8±10.4	0.0014			
Size (mm) range of aneurysm 3-60	1.2-31	64	45	Infection	16
Cranial Nerve symptom 32/60 (53.3%)	7/35 (20%)	10	Radiation	13	
Etiology	64	45	Iatrogen	6	

Variables showing significant difference by Pearson’s analysis (p<0.05) are indicated by boldface.

Data are expressed as mean±SD

Discussion

Treatment Strategies and Results of Literature Review

It was difficult, even in this systematic review, to examine the effects of different treatments for cranial nerves. Treatment outcomes for the cranial nerve were reported in only 25 cases, and only a few studies examined treatment with a flow-diverter stent. The number of studies of flow diverters is
likely to increase, and this may aid in determining the
treatment effects of flow diverters and parent artery occlusion and entrapment.

In this review, 36 patients were treated with interventional or surgical parent-vessel occlusion only, without bypass (Table 3). Surgical revascularization was used in only 14 patients. Among these, only 6 cranial nerve injuries in 5 patients were reported. Of these, 4 cranial nerve injuries improved and 2 cranial nerve injuries were unchanged. Some patients with hemorrhagic PA required re-treatment. Mascitelli et al described a patient requiring an additional covered stenting because of rebleeding after aneurysm coiling, and Umezu et al reported a patient with rebleeding after treatment with balloon parent artery occlusion who needed additional trapping and STA-MCA anastomosis. Recently, Kadkhodayan et al reported a patient who required additional interventional coil trapping of the IC artery because of rebleeding 12 days after placement of a pipeline embolization device.

In addition, Yu et al reported a case in which the coil protruded into the external auditory canal after coiling; surgical extraction of the coil was required. These complications are characteristic of this type of lesion, as the coil is transported outside the body. These characteristics are not seen in the treatment of intracranial cerebral aneurysm. Therefore, treatment selection must consider

Table 3 Treatment selection of reported patients

Treatment	Total
Conservative or NA	19
ICO without bypass	36
Interventional PAO	16
Surgical ligation	10
Interventional trapping	8
Surgical trapping	2
AN embolization (coil or balloon)	8
Stent/flow diverter	29
Revascularization surgery	14
STA-MCA bypass	5
Anastomosis	2
Radial artery graft	3
Saphenous vein graft	3
EC-IC bypass	1
Other	2

AN, aneurysm; EC, external carotid artery; IC, internal carotid artery; ICO, internal carotid artery occlusion; MCA, middle cerebral artery; NA, not applicable or no data; PAO, parent artery occlusion; STA, superficial temporal artery

Table 4 Case number of cranial nerve disturbance and outcome

Cranial Nerve	Unknown	Unchanged	Improved	Resolved	Total
II	0	0	1	0	1
III	1	0	1	1	3
IV	0	0	1	0	1
V	1	1	4	2	8
VI	4	1	7	1	13
VII	6	3	1	0	10
VIII	6	3	3	3	15
IX	2	0	0	0	2
X	1	0	0	0	1
XI	0	1	0	0	1
XII	1	0	1	0	2
Table 5 Rates of recovery after the treatment of cranial nerve injuries according to the factors studied

Predictor	Rate of recovery
All (n)	26/34 (76.5%)
Age	
<20	5/8 (62.5%)
21<	2/3 (66.7%)
41>	15/19 (78.9%)
Sex	
male	11/15 (73.3%)
female	6/9 (66.7%)
Size (mm)	
12>	1/1 (100%)
12<	9/12 (75%)
25<	9/13 (69.2%)
Treatment	
IC ligation or interventional occlusion	12/17 (70.5%)
Flow-diverter or stent w/wo coil	7/7 (100%)
revascularization surgery	4/6 (66.7%)
aneurysm embolization	2/2 (100%)
conservative or no treatment	1/2 (50%)

Rate of injured cranial nerve recovery = number of recovered cranial nerves/total number of injured cranial nerves × 100%

Table 6 Treatment results and complications

Selected Treatment	ratio of mRS 0-2	Details of complications
parent artery occlusion or trapping	28/29 (96.6%)	ischemia
(surgical and interventional)		rebleeding (additional trapping and bypass)
flow diverter or stent w/wo coil	23/26 (88.5%)	ischemia
revascularization surgery	14/14 (100%)	ischemia
aneurysm embolization	8/9 (88.9%)	ischemia
(coil or balloon)		rebleeding (additional IC coil occlusion)
conservative or no treatment	9/10 (90%)	extraction of protruded coil
Total	82/88 (93.2%)	rebleeding (additional covered stent)

features not found in intracranial cerebral aneurysm, especially in patients with sudden onset of epistaxis or otorrhagia.

Future studies are likely to report treatment outcomes for flow diverters. However, flow diverters cannot be used for all patients, including those with tortuous carotid arteries, allergies to contrast agent, and difficulties in angiographic access. In addition, flow diverters are not available in all countries because of their high cost. When considering treatment strategies from a global perspective, revascularization procedures and parent-vessel occlusion are important for treating patients with hemorrhagic PAs requiring emergency surgery who cannot undergo a balloon occlusion test.

Cranial Nerve Symptoms

The mechanism underlying cranial nerve palsy is aneurysm expansion, which causes mechanical compression of adjacent structures, in particular the hypoglossal and glossopharyngeal nerves, and subsequently results in nerve palsy\(^8\). The hypoglossal nerve emerges from the
anterior condylar canal in the skull base and passes downward between the IC and jugular vein. The glossopharyngeal nerve leaves the skull through the jugular foramen and again passes downward between the IC and internal jugular vein.

With regard to endovascular options, we considered a covered stent with coil embolization or a flow-diverter stent for patients with unruptured aneurysms. Endovascular stents are effective, but coil embolization may also be needed13,14,47. Additionally, as this portion was circumscribed by the cranial bone, coil embolization may have worsened aneurysm compression and nerve palsy21,22. A flow-diverter stent is a good option and was reported13,14,47 to be effective for extracranial IC aneurysm. However, placement of the stent in this portion is technically difficult and is associated with high risk because the petrous segment is located near the curved portion of the IC. Additionally, as the aneurysm is circumscribed by the petrous bone, recovery of cranial nerve palsy is uncertain. Moon et al19 reported that pipeline embolization improved cranial neuropathy of the second, third, fifth, and sixth nerves, but there are no reports of extracranial aneurysm with lower cranial nerve palsy.

In open surgery for lower cervical extracranial saccular aneurysm, aneurysmectomy with direct end-to-end anastomosis or an interposition graft is recommended60,65. However, the aneurysm was located from the petrous portion to the higher cervical portion; thus, a direct surgical approach would have been difficult because of the anatomical characteristics60,65. Proximal ligation of the IC is an effective treatment for unruptured cervical IC aneurysm, although direct clipping may be difficult65. We safely performed treatment with proximal ligation and a radial artery graft for unruptured intracranial IC aneurysm in the cavernous portion23. Proximal ligation and EC-IC bypass changes blood flow, and flow alteration promotes aneurysm thrombosis. Thus, EC-IC bypass and proximal ligation might be more effective than endovascular treatment for PA. Recovery of lower cranial nerve palsy due to aneurysmal compression is not well understood. However, in patients with oculomotor nerve palsy and posterior communicating artery aneurysm, clipping tends to result in faster, more complete recovery than coiling, and duration of recovery ranges from 0 to 250 days postoperatively21.

Limitations

A limitation of our literature review is the lack of statistical power to examine the effects of particular treatments. Although all patients had petrous IC artery aneurysm, the causes and incidence rates of hemorrhage were different. Furthermore, progress and changes in endovascular treatment devices during the past decade affected the results. Therefore, we were unable to develop a general treatment strategy.

Conclusions

Treatment of extracranial saccular aneurysm with cranial nerve palsy remains controversial, and the proper treatment must be chosen for each aneurysm. EC-IC bypass and proximal ligation is an effective alternative to endovascular surgery for treatment of petrous carotid aneurysm with cranial nerve palsy. Further studies of patients with aneurysm and cranial nerve palsy are needed.

Conflict of Interest: The authors declare no competing interests. This manuscript is a unique submission and is not being considered for publication elsewhere in any medium. All the authors have read the manuscript and approved this submission. No financial support was provided for this study.

References

1. Rosset E, Albertini JN, Magnan PE, et al. Surgical treatment of extracranial internal carotid artery aneurysms. J Vasc Surg. 2000;31(4):713–23.
2. Okunomiy T, Kageyama T, Suemaga T. Teaching NeuroImages: Isolated hypoglossal nerve palsy due to internal carotid artery dissection. Neurology. 2012;79(4):e37.
3. Riancho J, Infante J, Mateo JJ, et al. Unilateral isolated hypoglossal nerve palsy associated with internal carotid artery dissection. J Neurol Neurosurg Psychiatry. 2013;84(6):706.
4. Wessels T, Sparing R, Neuschafer-Rube C, Klötzsche C. Vocal cord palsy resulting from spontaneous carotid dissection. Laryngoscope. 2003;113(3):537–40.
5. Keane JR. Twelfth-nerve palsy. Analysis of 100 cases. Arch Neurol. 1996;53(6):561–6.
6. Hassannia F, Carr SD, Yu E, Rutka JA. Internal carotid artery aneurysm in skull base osteomyelitis: does the pattern of cranial nerve involvement matter? J Laryngol Otol. 2018;132(10):929–31.
7. Tanaka H, Patel U, Shrier DA, Coniglio JU. Pseudoaneurysm of the petrous internal carotid artery after skull base infection and prevertebral abscess drainage. AJNR Am J Neuroradiol. 1998;19(3):502–4.
8. Liu JK, Gottfried ON, Amin A, Couldwell WT. Aneurysms of the petrous internal carotid artery: anatomy, origins, and treatment. Neurosurg Focus. 2004;17(5):E13.
9. Németh T, Szákás L, Bella Z, et al. The treatment of pseudoaneurysms with flow diverters after malignant otitis externa. Interv Neuroradiol. 2017;23(6):609–13.
10. Akhtar MU, Akram M, Ahmed TM, Bhatti AM. Superficial temporal artery - middle cerebral artery bypass for internal carotid artery petrous aneurysm: A case report. J Pak Med Assoc. 2017;67(1):128–30.
11. Saatci I, Cekirge HS, Ozturk MH, et al. Treatment of internal carotid artery aneurysms with a covered stent: experience in 24 patients with mid-term follow-up results. AJNR Am J Neuroradiol. 2004;25(10):1742–9.
12. Lerat J, Orsel S, Mounayer C, et al. Peripheral facial pa-
ralysis and bilateral carotid pseudoaneurysms of petrous localization: A case report. Skull Base Rep. 2011;1(02):133–8.

13. Gross BA, Moon K, Ducruet AF, Albuquerque FC. A rare but morbid neurosurgical target: petrous aneurysms and their endovascular management in the stent/flow diverter era. J Neurointerv Surg. 2017;9(4):381–3.

14. Tsang AC, Leung K, Lee R, et al. Primary endovascular treatment of post-irradiated carotid pseudoaneurysm at the skull base with the Pipeline embolization device. J Neurointerv Surg. 2015;7(8):603–7.

15. Yu LB, Zhang D, Yang SH, Zhao JZ. Surgical management of giant intrapetrous internal carotid aneurysm presenting with coil exposure after endovascular treatment. Neurosurg Rev. 2018;41(3):891–4.

16. Baker A, Rizz H, Carroll W, Lambert P. Cervical internal carotid artery pseudoaneurysm complicating malignant otitis externa: first case report. Laryngoscope. 2015;125(3):733–5.

17. Mascitelli JR, De Leacy RA, Oermann EK, et al. Cervical-petrous internal carotid artery pseudoaneurysm presenting with otorrhagia treated with endovascular techniques. BMJ Case Rep. 2014;2014(30):1bcr2014011286.

18. Tsang ACO, Nicholson P, Pereira VM. Nickel-related adverse reactions in the treatment of cerebral aneurysms: A narrative review. World Neurosurg. 2018;115:147–53.

19. Moon K, Albuquerque FC, Ducruet AF, et al. Resolution of cranial neuropathies following treatment of intracranial aneurysms with the Pipeline embolization device. J Neurosurg. 2014;121(5):1085–92.

20. Hamamoto Filho PT, Machado VC, Macedo-de-Freitas CC. A giant aneurysm from the petrous carotid presenting with isolated peripheral facial palsy. Rev Assoc Med Bras. 2013;59(6):531–3.

21. McCracken DJ, Lovasik RP, McCracken CE, et al. Resolution of oculomotor nerve palsy secondary to posterior communicating artery aneurysms: comparison of clipping and coiling. Neurosurgery. 2015;77(6):931–9.

22. Hall S, Sadek AR, Dando A, et al. The resolution of oculomotor nerve palsy caused by unruptured posterior communicating artery aneurysms: A cohort study and narrative review. World Neurosurg. 2017;107:581–7.

23. Matano F, Murai Y, Mizunari T, et al. Recovery of visual and ophthalmologic symptoms after treating large or giant internal carotid artery aneurysm by high-flow bypass with cervical ligation. World Neurosurg. 2017;98(2):182–8.

24. Mangat SS, Nayak H, Chandra A. Horner’s syndrome and sixth nerve paresis secondary to a petrous internal carotid artery aneurysm. Semin Ophthalmol. 2011;26(1):23–4.

25. Date I, Sugiu K, Ohmoto T. A giant thrombosed aneurysm of the petrosus carotid artery presenting with cavernous sinus syndrome: case report. Skull Base Surg. 1999;9(1):65–70.

26. Welleweerd JC, Nelissen BGL, Koole D, et al. Histological analysis of extracranial carotid artery aneurysms. PloS One. 2015;10(1):e0117915.

27. Barrett JH, Lawrence VL. Aneurysm of the internal carotid artery as a complication of mastoidectomy. Arch Ottolaryngol. 1960;72:366–8.

28. Guirguis S, Tardos FW. An internal carotid aneurysm in the petrous temporal bone. J Neurol Neurosurg Psychiatry. 1961;24:84–5.

29. Hiranandani LH, Chandra O, Malpani NK, Ahuja KK. An internal carotid aneurysm in the petrous temporal bone. J Laryngol Otol. 1962;76:703–6.

30. Wemple JB, Smith GW. Extracranial carotid aneurysm. Report of four cases. J Neurosurg. 1966;24(3):667–71.

31. Allen GW. Angiography in otolaryngology. Laryngoscope. 1967;77(11):1909–61.

32. Busby DR, Slemmons DH, Miller TF. Fatal epistaxis via carotid aneurysm and eustachian tube. Arch Ottolaryngol. 1968;87(3):295–8.

33. Steffen TN. Vascular anomalies of the middle ear. Laryngoscope. 1968;78(2):171–97.

34. Conley J, Hildyard V. Aneurysm of the internal carotid artery presenting in the middle ear. Arch Ottolaryngol. 1969;90(1):35–8.

35. Stallings JO, McCabe BF. Congenital middle ear aneurysm of internal carotid. Arch Ottolaryngol. 1969;90(1):39–43.

36. Anderson RD, Liebeskind A, Schechtm M, Zingesser LH. Aneurysms of the internal carotid artery in the carotid canal of the petrous temporal bone. Radiology. 1972;102(3):639–42.

37. Teal JS, Bergeron RT, Rumbaugh CL, Segall HD. Aneurysms of the petrous and cavernous portions of the internal carotid artery associated with nonpenetrating head trauma. J Neurosurg. 1973;38(5):568–74.

38. Morantz RA, Kirchner FR, Kishore P. Aneurysms of the petrous portion of the internal carotid artery. Surg Neurol. 1976;6(6):313–8.

39. Holtzman RNN, Parisier SC. Acute spontaneous otorragha resulting from a ruptured petrous carotid aneurysm. J Neurosurg. 1979;51(2):258–61.

40. Glassock ME, Smith PG, Bond AG, et al. Management of aneurysms of the petrous portion of the internal carotid artery by resection and primary anastomosis. Laryngoscope. 1983;93(11 Pt 1):1445–53.

41. Lynch JC, Amaral MA, Pareira A. Giant aneurysm of the petrous portion of the carotid artery. J Neurology Neurosurg Psychiatry. 1983;46(7):685–7.

42. Kelly WM, Harsh GR. CT of petrous carotid aneurysms. AJNR Am J Neuroradiol. 1985;6(5):830–2.

43. DelBalso AM, Bowers JE. Aneurysm of intrapetrous carotid artery: CT and angiographic findings. J Comput Assist Tomogr. 1986;10(4):702–3.

44. McGrail KM, Heros RC, Debrun G, Beyerl BD. Aneurysms of the ICA petrous segment treated by balloon entrapment after EC-IC bypass. J Neurosurg. 1986;65(2):249–52.

45. Willinsky R, Lasjaunias P, Pruvost P, Boucherat M. Petrous internal carotid aneurysm causing epistaxis: balloon embolization with preservation of the parent vessel. Neuroradiology. 1987;29(6):570–2.

46. Gibson RD, Cowan IA. Giant aneurysm of the petrous carotid artery presenting with facial numbness. Neuroradiology. 1989;31(5):440–1.

47. Frank E, Brown BM, Wilson DF. Asymptomatic fusiform aneurysm of the petrous carotid artery in a patient with von Recklinghausen’s neurofibromatosis. Surg Neurol. 1989;32(1):75–8.

48. Halbach VV, Higashida RT, Hieshma GB, et al. Aneurysms of the petrous portion of the internal carotid artery: results of treatment with endovascular or surgical occlusion. AJNR Am J Neuroradiol. 1990;11(2):253–7.

49. Costantino PD, Russell E, Reisch D, et al. Ruptured petrous carotid aneurysm presenting with otorrhagia and epistaxis. A J Otol. 1991;12(5):378–83.

50. Tokimura H, Todoroki K, Asakura T, et al. Coexistence of extracranial internal carotid artery aneurysm and multiple intracranial aneurysms: case report. Neurol Med Chir (Tokyo). 1995;35(7):347–50.
51. Umezu H, Seki Y, Aiba T, Kumakawa K. Aneurysm arising from the petrous portion of the internal carotid artery: case report. Radiat Med. 1993;11(6):251-5.

52. Papazian M, Paparella M, Hames E, Frisk J. Aneurysms of the temporal bone. Ear Nose Throat J. 1993;72(7):474-84.

53. Cross DT, Moran CJ, Brown AP, et al. Endovascular treatment of epistaxis in a patient with tuberculosis and a giant petrous carotid pseudoaneurysm. AJNR Am J Neuroradiol. 1995;16(5):1084-6.

54. Patrick JT. Magnetic resonance imaging of petrous carotid aneurysms. J Neuroradiol. 1996;6(3):177-9.

55. Love MH, Bell KE. Case report: giant aneurysm of the intrapetrous carotid artery presenting as a cerebellopontine angle mass. Clin Radiol. 1996;51(8):587-8.

56. Coley SC, Clifton A, Britton J. Giant aneurysm of the petrous internal carotid artery: diagnosis and treatment. J Laryngol Otol. 1998;112(2):196-8.

57. Zander DR, Just N, Schipper HM. Aneurysm of the intrapetrous carotid artery presenting as isolated Horner’s syndrome: case report. Can Assoc Radiol Journal. 1998;49(1):46-8.

58. Lempert TE, Halbach VV, Higashida RT, et al. Endovascular treatment of pseudoaneurysms with electrolytically detachable coils. AJNR Am J Neuroradiol. 1998;19(5):907-11.

59. Reece PH, Higgins N, Hardy DG, Moffat DA. An aneurysm of the petrous internal carotid artery. J Laryngol Otol. 1999;113(5):55-7.

60. Forshaw MA, Higgins N, Hardy DG, Moffat DA. Rupture of an internal carotid artery aneurysm in the petrous temporal bone. Br J Neurosurg. 2000;14(5):479-82.

61. Gouldwell WT, Zuberb J, Onios E, et al. Giant petrous carotid aneurysm treated by submandibular carotid: saphenous vein bypass. J Neurosurg. 2001;94(5):806-10.

62. Scavée V, De Wispelaere JF, Mormont E, et al. Pseudoaneurysm of the internal carotid artery: treatment with a covered stent. Cardiovasc Intervent Radiol. 2001;24(4):283-5.

63. Cheng KM, Chan CM, Cheung YL, et al. Endovascular treatment of radiation-induced petrous internal carotid artery aneurysm presenting with acute haemorrhage. A report of two cases. Acta Neurochirurg (Wien). 2001;143(4):351-6.

64. Vasama JP, Ramsay H, Markkola A. Petrous internal carotid artery pseudoaneurysm due to gunshot injury. Ann Otol Rhinol Laryngol. 2001;110(5):491-3.

65. Alexander MJ, Smith TP, Tucci DL. Treatment of an iatrogenic petrous carotid artery pseudoaneurysm with a Symbiot covered stent: technical case report. Neurosurgery. 2002;50(3):658-62.

66. Depauw P, Defreyne L, Dewaele F, Caemaert J. Endovascular treatment of a giant petrous internal carotid artery aneurysm. Minim Invasive Neurosurg. 2003;46(4):250-3.

67. Auyeung KM, Lui WM, Chow LCK, Chan FL. Massive epistaxis related to petrous carotid artery pseudoaneurysm after radiation therapy: emergency treatment with covered stent in two cases. AJNR Am J Neuroradiol. 2003;24(7):1449-52.

68. Horowitz M, Levy E, Hathaway B, et al. Endovascular treatment of a petrous internal carotid artery aneurysm with hemotympanum and epistaxis using a coronary stent and detachable platinum coils: report of a case. Arch Otol Head Neck Surg. 2005;131(1):61-3.

69. Cohen JE, Grigoriadis S, Gomori JM. Petrous carotid artery pseudoaneurysm in bilateral carotid fibromuscular dysplasia: treatment by means of self-expanding covered stent. Surg Neurol. 2007;68(2):216-20.

70. Singh H, Thomas J, Hoe WLE, Sethi DS. Giant petrous carotid aneurysm: persistent epistaxis despite internal carotid artery ligation. J Laryngol Otol. 2008;122(08):e18.

71. Schmerber S, Vasdev A, Chahine K, et al. Internal carotid false aneurysm after thromcoagulation of the gasserian ganglion. Otol Neurotol. 2008;29(5):673-5.

72. Ferroli P, Bisleri G, Nakaji P, et al. Endoscopic radial artery harvesting for U-Clip EC-IC bypass in the treatment of a giant petrous internal carotid artery aneurysm: Technical case report. Minim Invasive Neurosurg. 2009;52(04):186-9.

73. Saylam G, Tulgar M, Saatsi I, Korkmaz H. Iatrogenic carotid artery pseudoaneurysm presenting with conductive hearing loss. Am J Otolaryngol. 2009;30(2):141-4.

74. Oyama H, Hattori K, Tanahashi S, et al. Ruptured pseudoaneurysm of the petrous internal carotid artery caused by chronic otitis media. Neurol Med Chir (Tokyo). 2010;50(7):578-80.

75. Palacios E, Gómez J, Alvernia JE, Jacob C. Aneurysm of the petrous portion of the internal carotid artery at the foramen lacerum: anatomic, imaging, and otologic findings. Ear Nose Throat J. 2010;89(7):303-5.

76. Sun T, Zhao J. Multiple saccular aneurysms of the extracranial and intracranial internal carotid artery associated with convexusiobias and arachnoid cyst in a 6-year-old boy: a case report. Childs Nerv Syst. 2010;26(11):113-6.

77. Rose J, Jacob P, Jacob T. Horner syndrome and VI nerve paresis as a diagnostic clue to a hidden lesion. Natl Med J India. 2010;23(6):344-5.

78. Endo H, Fujimura M, Inoue T, et al. Simultaneous occurrence of subarachnoid hemorrhage and epistaxis due to ruptured petrous internal carotid artery aneurysm: association with transsphenoidal surgery and radiation therapy: case report. Neurol Med Chir (Tokyo). 2011;51(3):226-9.

79. Kim DK, Shin YS, Lee JH, Park SN. Pulsatile tinnitus as the sole manifestation of an internal carotid artery aneurysm successfully treated by coil embolization. Clin Exp Otorhinolaryngol. 2012;5(3):170.

80. Rathore YS, Chandra PS, Kumar R, et al. Monitored gradual occlusion of the internal carotid artery followed by ligation for giant internal carotid artery aneurysms. Neurol India. 2012;60(2):174.

81. Bien AG, Cress MC, Nguyen SB, et al. Endovascular treatment of a temporal bone pseudoaneurysm presenting as bloody otorrhea. J Neurol Surg Rep. 2013;74(2):88-91.

82. Chen JB, Sun H, Zhou LX, et al. Successful endovascular treatment of carotid aneurysms in a patient with vascular Ehlers-Danlos syndrome. J Neurol Surg A Cent Eur Neurosurg. 2013;74(5):01:e85-8.

83. Kadkhodayan Y, Shetty VS, Blackburn SL, et al. Pipeline embolization device and subsequent vessel sacrifice for treatment of a bleeding carotid pseudoaneurysm at the skull base: a case report. J Neurointerv Surg. 2013;5(5):e31.

84. Shon AS, Berenson CS. Pseudomonas aeruginosa intrapetrous internal carotid artery mycotic aneurysm—a complication of mastoiditis: first reported case. BMJ Case Rep. 2013;2013(jul08 2):bcr2013200005.

85. Kalani MYS, Ramey W, Albuquerque FC, et al. Revascularization and aneurysm surgery. Neurosurgery. 2014;74(5):482-98.
Petrous Carotid Aneurysm

86. Lee SH, Jang JH, Kim KH, Kim YZ. Stent-assisted coil embolization of petrous ICA in a teenager with neurofibromatosis. J Cerebrovasc Endovasc Neurosurg. 2015;17(3):252–6.

87. Han MS, Jung SH, Kim TS, Joo SP. Reconstructive endovascular treatment of an intracranial infectious aneurysm in bacterial meningitis: A case report and review of literature. World Neurosurg. 2016;90:700.e1–5.

88. Goodman TR, Renowden S, Byrne JV. Case report: petrous internal carotid artery aneurysm: an unusual cause of eustachian tube dysfunction. Clin Radiol. 1996;51(9):658–60.

89. Mukherjee P, Huilgol R, Graham A, Fagan P. Open and endovascular repair of aneurysms affecting the distal extracranial internal carotid artery: case series. J Laryngol Otol. 2016;130(54):529–34.

90. Wilding LJ, Howlett DC, Anderson HJ, et al. Extracranial internal carotid artery aneurysm presenting as symptomatic hypoglossal and glossopharyngeal nerve paralysis. J Laryngol Otol. 2004;118(2):150–2.

91. Kaczynski J, Wilczynska M, Blaszczynski M, Fligelstone L. Extracranial saccular atherosclerotic aneurysm of the internal carotid artery (ICA) treated by an oblique end-to-end primary anastomosis. BMJ Case Rep. 2013;2013(jan08 1):bcr2012007705.

92. Malikov S, Thomassin JM, Magnan PE, et al. Open surgical reconstruction of the internal carotid artery aneurysm at the base of the skull. J Vasc Surg. 2010;51(2):323–9.

93. McCollum CH, Wheeler WG, Noon GP, DeBakey ME. Aneurysms of the extracranial carotid artery. Twenty-one years’ experience. Am J Surg. 1979;137(2):196–200.

94. Elhammady MS, Wolfe SQ, Farhat H, et al. Carotid artery sacrifice for unclippable and uncoilable aneurysms: endovascular occlusion vs common carotid artery ligation. Neurosurgery. 2010;67(5):1431–7.

(Received, December 17, 2019)

(Accepted, February 26, 2020)

(J-STAGE Advance Publication, March 31, 2020)