The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

Castro-Tirado, A.J.; Sokolov, V.; Gorosabel, J.; Castro Ceron, J.M.; Greiner, J.; Wijers, R.A.M.J.; Jensen, B.L.; Hjorth, J.; Toft, S.; Pedersen, H.; Palazzi, E.; Pian, E.; Masetti, N.; Sagar, R.; Mohan, V.; Pandey, A.K.; Pandey, S.B.; Dodonov, S.N.; Fatkhullin, T.A.; Afanasiev, V.L.; Komarova, V.N.; Moiseev, A.V.; Hudec, R.; Simon, V.; Vreeswijk, P.M.; Rol, E.; Klose, S.; Stecklum, B.; Zapatero-Osorio, M.R.; Caon, N.; Blake, C.; Wall, J.; Heinlein, D.; Henden, A.A.; Benetti, S.; Magazzù, A.; Ghinassi, F.; Tommasi, L.; Bremer, M.; Kouvéliotou, C.; Guziy, S.; Shlyapnikov, A.; Hopp, U.; Feulner, G.; Dreizler, S.; Hartmann, D.; Boehnhardt, H.; Paredes, J.M.; Marti, J.; Xanthopoulos, E.; Kristen, H.E.; Smoker, J.; Hurley, K.

DOI
10.1051/0004-6361:20010247

Publication date
2001

Document Version
Final published version

Published in
Astronomy & Astrophysics

Citation for published version (APA):
Castro-Tirado, A. J., Sokolov, V., Gorosabel, J., Castro Ceron, J. M., Greiner, J., Wijers, R. A. M. J., Jensen, B. L., Hjorth, J., Toft, S., Pedersen, H., Palazzi, E., Pian, E., Masetti, N., Sagar, R., Mohan, V., Pandey, A. K., Pandey, S. B., Dodonov, S. N., Fatkhullin, T. A., ... Hurley, K. (2001). The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy. Astronomy & Astrophysics, 370, 398-406. https://doi.org/10.1051/0004-6361:20010247

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Download date:02 Mar 2025
The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

A. J. Castro-Tirado1,2, V. V. Sokolov3,4, J. Gorosabel5, J. M. Castro Cerón6, J. Greiner7, R. A. M. J. Wijers8, B. L. Jensen9, J. Hjorth9, S. Toft9, H. Pedersen9, E. Palazzi10, E. Pian10, N. Masetti10, R. Sagar11, V. Mohan11, A. K. Pandey11, S. B. Pandey11, S. N. Dodonov3, T. A. Fatkhullin3, V. L. Afanasiev3, V. N. Komarova3,4, A. V. Moiseev3, R. Hudec12, V. Simon12, P. Vreeswijk13, E. Rol13, S. Klose14, B. Stecklum14, M. R. Zapatero-Osorio15, N. Caon15, C. Blake16, J. Wall16, D. Heinlein17, A. Henden18,19, S. Benetti20, A. Magazzù20, F. Ghinassi20, L. Tommasi21, M. Bremer22, C. Kouveliotou23, S. Guziy24, A. Shlyapnikov24, U. Hopp25, G. Feulner25, S. Dreizler26, D. Hartmann27, H. Boehnhardt28, J. M. Paredes29, J. Martí30, E. Xanthopoulos31, H. E. Kristen32, J. Smoker33, and K. Hurley34

1 Instituto de Astrofísica de Andalucía (IAA-CSIC), PO Box 03004, 18080 Granada, Spain
2 Laboratorio de Astrofísica Espacial y Física Fundamental (LAEFF-INTA), PO Box 50727, 28080 Madrid, Spain
3 Special Astrophysical Observatory of the Russian Academy of Sciences, Karachanai-Cherkessia, Nizhnii Arkhyy, 357147, Russia
4 Isaac Newton Institute of Chile, SAO Branch
5 Danish Space Research Institute, Copenhagen, Denmark
6 Real Instituto y Observatorio de la Armada, Sección de Astronomía, 11110 San Fernando–Naval, Cádiz, Spain
7 Astrophysikalisches Institut, Potsdam, Germany
8 Department of Physics and Astronomy, SUNY Stony Brook, NY, USA
9 Astronomical Observatory, University of Copenhagen, Copenhagen, Denmark
10 Istituto di Tecnologie e Studio Radiazioni Extraterrestri, CNR, Bologna, Italy
11 U. P. State Observatory, Manora Peak, Nainital 263 129, India
12 Astronomical Institute of the Czech Academy of Sciences, 251 65 Ondrejov, Czech Republic
13 Anton Pannekoek Institute, Amsterdam, The Netherlands
14 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany
15 Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain
16 Oxford University, AX1 4AU Oxford, UK
17 Deutsches Zentrum für Luft- und Raumfahrt, Lilienstrasse 3, 86156 Augsburg, Germany
18 U. S. Naval Observatory, Flagstaff station, AZ, USA
19 Universities Space Research Association, Flagstaff station, AZ, USA
20 Centro Galilei Galilei, Canary Islands, Spain
21 Università di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italia
22 Institut de Radio Astronomie Millimetrique, Grenoble, France
23 University of California at Berkeley, USA
24 Nikolaev University Observatory, Nikolaevka 24, 327030 Nikolaev, Ukraine
25 University of Tübingen, Tübingen, Germany
26 European Southern Observatory, Santiago, Chile
27 Department d’Astronomia i Meteorologia, Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona, Spain
28 Departmentamento de Física, Escuela Politécnica Superior, Universidad de Jaén, Virgen de la Cabeza 2, 23071 Jaén, Spain
29 University of Manchester, Jodrell Bank Observatory, Macclesfield, Cheshire SK11 9DL, UK
30 Harvard – Smithsonian Center for Astrophysics, Harvard, USA
31 University of California at Berkeley, USA
32 Space Science Laboratory, University of California at Berkeley, USA

\textcopyright ESO 2001

Received 20 December 2000 / Accepted 19 February 2001

Send offprint requests to: A. J. Castro-Tirado, e-mail: ajct@laeff.esa.es

A&A 370, 398–406 (2001)
Abstract. Broad-band optical observations of the extraordinarily bright optical afterglow of the intense gamma-ray burst GRB 991208 started \~2.1 days after the event and continued until 4 Apr. 2000. The flux decay constant of the optical afterglow in the \(R\)-band is \(-2.30 \pm 0.07\) up to \~5 days, which is very likely due to the jet effect, and it is followed by a much steeper decay with constant \(-3.2 \pm 0.2\), the fastest one ever seen in a GRB optical afterglow. A negative detection in several all-sky films taken simultaneously with the event, that otherwise would have reached naked eye brightness, implies either a previous additional break prior to \~2 days after the occurrence of the GRB (as expected from the jet effect) or a maximum, as observed in GRB 970508. The existence of a second break might indicate a steepening in the electron spectrum or the superposition of two additional breaks prior to the galaxy.

1. Introduction

Gamma–ray bursts (GRBs) are flashes of cosmic high energy (\(\lesssim 1\) keV – 10 GeV) photons (Fishman & Meegan 1995). For many years since their discovery in 1967 they remained without any satisfactory explanation, but with the advent of the Italian–Dutch X–ray satellite BeppoSAX, it became possible to conduct deep counterpart searches only a few hours after a burst was detected. This led to the first detection of X-ray and optical afterglow for GRB 970228 (Costa et al. 1997; van Paradijs et al. 1997) and the determination of the cosmological distance scale for the bursts on the basis of the first spectroscopic measurements taken for GRB 970508, implying \(z \geq 0.835\) (Metzger et al. 1997).

Subsequent observations in 1997–2000 have shown that about a third of the well localized GRBs can be associated with optical emission that gradually fades away over weeks to months. Now it is widely accepted that long duration GRBs originate at cosmological distances with energy releases of \(10^{51}–10^{53}\) ergs. The observed afterglow satisfies the predictions of the “standard” relativistic fireball model, and the central engines that power these extraordinary events are thought to be the collapse of massive stars (see Piran 1999; van Paradijs et al. 2000 for a review).

The detection of GRB host galaxies is essential in order to understand the nature of hosts (morphology, star forming rates) and to determine the energetics of the bursts (redshifts) and offsets with respect to the galaxy centres. About 25 host galaxies have been detected so far, with redshifts \(z\) in the range 0.43–4.50 and star-forming rates in the range 0.5–60 \(M_\odot\) year\(^{-1}\). See Klose (2000), Castro-Tirado (2001) and references therein.

Here we report the detection of the optical afterglow from GRB 991208 as well as its host galaxy. This GRB was detected at 04:36 universal time (UT) on 8 Dec. 1999, with the Ulysses GRB detector, the Russian GRB Experiment (KONUS) on the Wind spacecraft and the Near Earth Asteroid Rendezvous (NEAR) detectors (Hurley et al. 2000) as an extremely intense, 60 s long GRB with a fluence >25 keV of \(10^{-4}\) erg cm\(^{-2}\) and considerable flux above 100 keV. Radio observations taken on 1999 December 10.92 UT with the Very Large Array (VLA) at 4.86 GHz and 8.46 GHz indicated the presence of a compact source which became a strong candidate for the radio afterglow from GRB 991208 (Frail et al. 1999).

2. Observations and data reduction

We have obtained optical images centered on the GRB location starting 2.1 days after the burst (Table 1). Photometric observations were conducted with the 1.04-m Sampurnanaud telescope at Uttar Pradesh State Observatory, Nainital, India (1.0 UPSO); the 1.34-m Schmidt telescope at Tautenburg, Germany (1.3 TBG); the 1.5-m telescope at Observatorio de Sierra Nevada (1.5 OSN), Granada, Spain; the 2.5-m Isaac Newton Telescope (2.5 INT), the 2.56-m Nordic Optical Telescope (NOT), the 3.5-m Telescopio Nazionale Galileo (3.5 TNG) and the 4.2-m William Herschel Telescope (4.2 WHT) at Observatorio del Roque de los Muchachos, La Palma, Spain; the 1.23-m, 2.2-m and 3.5-m telescopes at the German-Spanish Calar Alto Observatory (1.2, 2.2 and 3.5 CAHA respectively), Spain; the 3.5-m telescope operated by the Universities of Wisconsin, Indiana, Yale and the National Optical Astronomical Observatories (3.5-m WIYN) at Kitt Peak, USA; and the 6.0-m telescope at the Special Astrophysical Observatory of the Russian Academy of Sciences in Nizhniy Arhyz, Russia.

For the optical images, photometry was performed by means of SExtractor (Bertin & Arnouts 1996), making use of the corrected isophotal magnitude, which is appropriate for star-like objects. The DAOPHOT (Stetson 1987) profile-fitting technique was used for the magnitude determination on the later epoch images, when the source is much fainter. Zero-points, atmospheric extinction and color terms were computed using observations of standard
fields taken throughout the run. Magnitudes of the secondary standards in the GRB fields agree, within the uncertainties, with those given in Henden (2000). Zeropoint uncertainties are also included in the given errors.

Prompt follow-up spectroscopy of the OA was attempted at several telescopes (Table 2), but we only achieved a reasonable signal-to-noise ratio (S/N) at the 6-m telescope SAO RAS using an integral field spectrograph MPFS (Dodonov et al. 1999a). One 2700-s spectrum and one 4500-s spectrum were obtained on 13 and 14 Dec. 1999 UT. On the latter, the observing conditions were good; the seeing was $\sim 1.5''$ (at a zenithal distance of 60°), and there was good transparency. We used 300 lines/mm grating blazed at 6000 Å giving a spectral resolution of about 5 Å/pixel and effective wavelength coverage of 4100–9200 Å. The spectrophotometric standards HZ44 and BD+75°325 (Oke et al. 1995) were used for the flux calibration.

3. Results and discussion

3.1. The optical afterglow

At the same location of the variable radiosources, a bright optical afterglow (OA) was identified on images taken at Calar Alto, La Palma and Tautenburg (Castro-Tirado et al. 1999a,b). The astrometric solution was obtained using 16 USNO-A stars, and coordinates were $\alpha_{2000} = 16^h33^m53.50^s; \delta_{2000} = +46^\circ27'21.0'' (+0.2'')$. A comparison among optical images acquired on 10 and 11 Dec. allowed us to confirm the variability in intensity of the proposed OA. About 2.1 d after the burst, we measured $R = 18.7 \pm 0.1$ for the OA, and 19 h later we found $R = 19.60 \pm 0.03$. In these images the object is point-like (resolution $\sim 1''$) and there is no evidence of any underlying extended object, as seen at later epochs (Fig. 1).

Coincident (within errors) with the location of optical and radio afterglows, Shepherd et al. (1999) detected at millimeter wavelengths the brightest afterglow of a GRB reported so far. At 15 GHz and 240 GHz, the GRB 991208 afterglow was observed at Ryle (Pooley et al. 1999) and Pico Veleta (Bremer et al. 1999a,b), respectively.

Our B, V, R, I light curve (Fig. 2) shows that the source was declining in brightness. The optical decay slowed down in early 2000, indicating the presence of an underlying source of constant brightness: the host galaxy. The decay of previous GRB afterglows appears to be well characterized by a power law (PL) decay $F(t) \propto (t-t_0)^{-\alpha}$, where $F(t)$ is the flux of the afterglow at time t since the onset of the event at t_0 and α is the decay constant. Assuming this parametric form and by fitting least square linear regressions to the observed magnitudes as function of time, we derive below the value of flux decay constant for GRB 991208. The fits to the B, V, R and I light curves are given in Table 3, but the poor quality of the PL fit is reflected in the relatively large reduced chi-squared values. This is specially noticeable in the R-band light curve.

3.2. The NIR afterglow

The NIR afterglow (NIR) is the second brightest afterglow; the host galaxy is not visible. The NIR data were obtained on 14 Dec. 1999 UT. The astrometric solution was obtained at 3 telescopes: 2.5 m NOT at Cabo de Gata (Spain), 2.3 m CAHA at Calar Alto, and 1.3 m HET at WHT. The positions of the NIR afterglow were also included in Table 3.
due to the data obtained after one month, that will be discussed in Sect. 3.1.2.

3.1.1. The existence of two breaks

The R and I-band data up to $t_0 + 10$ days are better fitted by a broken PL with a break time $t_{\text{break}} \sim 5$ days. For the B and V-band, such a fit is not possible due to the scarcity of the data in these bands. See Table 4. Hence, we adopt a value of $\alpha_1 = -2.30 \pm 0.07$ for 2 days < $(t - t_0) < 5$ days and $\alpha_2 = -3.2 \pm 0.2$ for 5 days < $(t - t_0) < 10$ days as flux decay constants in further discussions.

Further support for the existence of an additional break at $(t - t_0) < 2$ days in GRB 991208 comes from the extrapolation of the R-band data towards earlier epochs (Fig. 3), that predicts an optical flux that should have been seen with the naked eye by observers in Central Europe.

The optical event exceeding magnitude 11 could be detected by the Czech stations of the European Fireball

Table 3. PL fits to the $BVRI$ observations of GRB 991208

Filter	α	χ^2/dof
B	-1.37 ± 0.04	24.6/3
V	-1.75 ± 0.07	16.0/6
R	-2.22 ± 0.04	91.5/11
I	-2.58 ± 0.12	19.3/8

Table 4. Broken PL fits to the RI observations of GRB 991208

Filter	α_1	χ^2/dof	α_2	χ^2/dof
R	-2.30 ± 0.07	3.9/6	-3.18 ± 0.22	5.7/3
I	-2.51 ± 0.27	0.4/3	-3.33 ± 0.39	1.1/3
Network. Unfortunately, it was completely cloudy during the night of Dec. 8/9 in the Czech Republic, so none of the 12 stations of the network was able to take all-sky photographs. The first photographs after the GRB trigger were taken on Dec. 8, 16:25 UT, i.e. nearly 12 h after the event, and shows no object at its position brighter than mag \(V \sim 10 \). However, sky patrol films taken for meteor research were exposed in Germany during Dec. 8/9, 1999 but no OA exceeding \(R \sim 4 \) with a duration of 10 s or more is detected simultaneous to the GRB event. This upper limit derived from the films implies that this additional break in the power-law decay of GRB 991208 has to be present at 0.01 days < \((t-t_0) < 2 \) days although a maximum in the light curve similar to GRB 970508 (Castro-Tirado et al. 1998) cannot be excluded.

The flux decay of GRB 991208 is one of the steepest of all GRBs observed so far (Sagar et al. 2000). Before deriving any conclusion from the flux decays of these GRBs, we compare them with other well studied GRBs. Most OAs exhibit a single power-law decay index, generally \(\sim 1.2 \), a value reasonable for spherical expansion of a relativistic blast wave in a constant density interstellar medium (Mészáros & Rees 1997; Wijers et al. 1997; Waxman 1997; Reichart 1997). For other bursts, like GRB 990123, the value of \(\alpha = -1.13 \pm 0.02 \) for the early time (3 hr to 2 day) light curve becomes \(-1.75 \pm 0.11 \) at late times (2-20 day) (Kulkarni et al. 1999; Castro-Tirado et al. 1999c; Fruchter et al. 1999) while the corresponding slopes for GRB 990510 are \(-0.76 \pm 0.01 \) and \(-2.40 \pm 0.02 \) respectively with the \(t_{\text{break}} \sim 1.57 \) day (Stanek et al. 1999; Harrison et al. 1999). If the steepening observed in both cases is due to beaming, then one may conclude that it occurs within \(<2 \) days of the burst.

Rapid decays in OAs have been seen in GRB 980326 with \(\alpha = -2.0 \pm 0.1 \) (Bloom et al. 1999a), GRB 980519 with \(\alpha = -2.05 \pm 0.04 \) (Halpern et al. 1999), GRB 990510 with \(\alpha = -2.40 \pm 0.02 \) (Stanek et al. 1999; Harrison et al. 1999) and GRB 000301C with \(\alpha = -2.2 \pm 0.1 \) (Masetti et al. 2000; Jensen et al. 2001; Rhoads & Fruchter 2001), and have been interpreted as the sideways expansion of a jet (Rhoads 1997, 1999; Mészáros & Rees 1999). For GRB 991208, \(\alpha_1 = -2.30 \pm 0.07 \) and we therefore argue that the observed steep decay in the optical light curve up to \(<5 \) days may be due to a break which occurred before our first optical observations starting \~2.1 day after the burst. The break is expected in several physical models, but beaming is the most likely cause in GRB 991208 taking into account that the rapid fading of optical afterglows is considered as evidence for beaming in GRBs (Huang et al. 2000).

According to the current view, the forward external shock wave would have led to the afterglow as observed in all wavelengths. The population of electrons is assumed to be a power-law distribution of Lorentz factors \(\Gamma_e \), following \(dN/d\Gamma_e \propto \Gamma_e^{p} \) above a minimum Lorentz factor \(\Gamma_{\text{min}} \), corresponding to the synchrotron frequency \(\nu_{\text{min}} \). The value of \(p \) can be determined taking into account the occurrence of the \textit{jet effect}: the break due to a lateral expansion in the decelerating jet occurs when the initial Lorentz factor \(\Gamma \) drops below \(\theta_{\text{jet}}^{-1} \) (with \(\theta_{\text{jet}} \) the initial opening angle), i.e. the observer “sees” the edge of the jet. A change in the initial power-law decay exponent \(\alpha_0 \) (unknown to us) from \(\alpha_0 = (1-p)/4 \) to \(\alpha_1 = -p \) (for \(\nu_{\text{min}} < \nu < \nu_{c} \)), or from \(\alpha_0 = (2-3p)/4 \) to \(\alpha_1 = -p \) (for \(\nu \geq \nu_{c} \)) is expected (Rhoads 1997, 1999). If this is the case, then \(p = -\alpha_1 = 2.30 \pm 0.07 \), in the observed range for other GRBs.

Whether the jet was expanding into a constant density medium or in an inhomogeneous medium (Chevalier & Li 1999; Wei & Lu 2000) cannot be determined with our data alone, as we do not have information on \(\alpha_0 \). For a density gradient of \(s = 2 \), as expected from a previously ejected stellar wind \(\rho \propto r^{-s} \), the light curve should steepen by \(\Delta \alpha = (\alpha_1 - \alpha_0) = (3-s)/(4-s) = 0.5 \) whereas \(\Delta \alpha = 0.75 \) for a constant density medium.

What is the reason for the second break observed in GRB 991208 after \~5 days? The passage of the cooling frequency \(\nu_{c} \) through the optical band (that would steepen the light curve by \(\Delta \alpha \sim 0.25 \), Sari et al. 1998) can be discarded: following Sari et al. (1999), if \(\nu < \nu_{c} \) then we should expect a spectral index \(\beta \) (\(F_{\nu} \propto \nu^{-\beta} \) such as
have used SN1998bw because of its likely relationship to GRB 980425.

Thus, GRB 991208 would be the sixth event for which contribution from a SN is proposed, after GRB 970228 (Reichart 1999; Galama et al. 2000b), GRB 970508 (Sokolov et al. 2001a), GRB 980326 (Castro-Tirado & Gorosabel 1999; Bloom et al. 1999a), GRB 990712 (Hjorth et al. 1999; Sahu et al. 2000) and GRB 000418 (Klose et al. 2000; Dar & De Rújula 2001). This reinforces the GRB-SN relationship for some long duration bursts and supports the scenario in which the death of a massive star produces the GRB in the “collapsar” model (MacFadyen & Woosley 1999). Our results do not support the “supernova” model (Vietri & Stella 1998) for this event as the SN should have preceeded the GRB by few months.

Could the observations be explained by a dust echo instead? Esin & Blandford (2000) presented an alternative explanation for the excess of red flux observed 20–30 days after GRB 970228 and GRB 980326, being scattering off dust grains, peaking around ~4000 Å in the rest frame (i.e. in the R-band at z = 0.706, as observed in GRB 991208). On the basis of VRIJK observations for GRB 970228, Reichart (2001) concluded that the late-time afterglow of that event cannot be explained by a dust echo. For GRB 991208, only V- and R-band data (plus an upper limit in the I-band) are available at the time of the maximum, i.e. the light curve is not sufficiently well sampled to distinguish between a SN and a dust echo.

3.2. The host galaxy

Evidence for a bright host galaxy came from the BTA/MPSF 4500-s spectrum of the GRB 991208 optical transient taken on 14 Dec. (see Fig. 5). We found four emission lines at ($\lambda =$ 6350 Å, 8300 Å, 8550 Å, and 8470 Å, with the most likely identifications of these emission lines being: [OII] 3727 Å, H$_{\beta}$ 4861 Å, [OIII] 4959 Å, 5007 Å at a redshift of $z = 0.7063 \pm 0.0017$ (Dodonov et al. 1999b), a value confirmed by other measurements taken late (Djorgovski et al. 1999). Line parameters are measured with a Gaussian fit to the emission line and a flat fit to the continuum.

Considering the redshift of $z = 0.7063 \pm 0.0017$, $H_0 = 60$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_0 = 1$ and $\Lambda_0 = 0$, the luminosity distance to the host is $d_L = 1.15 \times 10^{28}$ cm, implying an isotropic energy release of 1.15 10^{53} erg. Taking into account the time of the break, $t_{\text{break}} < 2$ d, this implies an upper limit on the jet half-opening angle $\theta_0 < 8^\circ n^{1/8}$ with n the density of the ambient medium (in cm$^{-3}$) (see Wijers & Galama 1999), and thus the energy release should be lowered by >100, i.e. the energy released is $< 1.15 \times 10^{53}$ erg.

For the galaxy, which is present in the late images (March-April 2000), the astrometric solution also obtained using the same 16 USNO-A stars was $\alpha_{2000} = 16^h33^m53.53^s$; $\delta_{2000} = +46^\circ27'21.0''$ (±0.2''), which is consistent with the OA position. See also Fruchter et al. (2000).

![Fig. 4. The GRB 991208 R-band light curve (solid line) fitted with a SN1998 bw-like component at $z = 0.706$ (long dashed line) superposed on the broken power-law OA light curve displaying the second break at $t_{\text{break}} \sim 5$ d (with $\alpha_1 = -2.3$ and $\alpha_2 = -3.2$, short dotted lines) and the constant contribution of the host galaxy ($R = 24.27 \pm 0.15$, dotted line).](image-url)
the present-day rate in our Galaxy. In any case, this estimation, (11) \[\text{[O II]} \text{ 3727 Å flux (Kennicutt 1998), which is (18)} \]

\[\Omega_0 \text{ (Schechter 1976).} \]

\[\text{The BTA/MPSF optical 4500-s spectrum of the GRB 991208 afterglow on Dec. 14.14, 1999 UT in the 4000–8800 Å spectral range. The spectrum has been boxcar smoothed with a 10 Å window. The detection of the four emission lines led to a redshift of } z = 0.7063 \pm 0.0017, \text{ that of the host galaxy.} \]

\[\text{Table 5. Journal of the GRB 991208 line identifications} \]

Line ID	Fluxes (10^{-16} \text{ erg cm}^{-2} \text{ s}^{-1})	–EW (Å)	PWHM (Å)
[OII] 3727	(1.79 ± 0.22)	20	15.4 ± 2.0
H2	(3.84 ± 0.33)	93	22.3 ± 2.2
[OIII] 4958.9	(1.61 ± 0.32)	80	18.7 ± 4.5
[OIII] 5006.9	(4.90 ± 0.33)	244	20.8 ± 1.9

Our broad-band measurements of \[B = 25.19 \pm 0.17, \]

\[V = 24.55 \pm 0.16, \]

\[R = 24.27 \pm 0.15 \text{ on 31.9 Mar. and } I = 23.3 \pm 0.2 \text{ on 4.2 Apr., once dereddened by the Galactic extinction, imply a spectral distribution } F_\nu \propto \nu^{-\beta} \text{ with } \beta = 1.45 \pm 0.33 \text{ (} x^2/\text{dof} = 1.20). \]

See Sokolov et al. (2000) for further details. The unobscured flux density at 7510 Å, the redshifted effective wavelength of the B-band, is ~0.65 \(\mu Jy \), corresponding to an absolute magnitude of \(M_B = -18.2 \), well below the knee of the galaxy luminosity function, \(M_B \sim -20.6 \) (Schechter 1976).

The star-forming rate (SFR) can be estimated in different ways. Again, we have assumed \(H_0 = 60 \text{ km s}^{-1} \text{ Mpc}^{-1} \)

\[\text{and } \Omega_0 = 1, \Lambda_0 = 0. \]

From the \(H_\beta \) flux which is \((3.84 \pm 0.33) \times 10^{-16} \text{ erg cm}^{-2} \text{ s}^{-1} \), this corresponds to \((18.2 \pm 0.6) M_\odot \text{ yr}^{-1} \) (Pettini et al. 1998). From the \([\text{O II}] \text{ 3727 Å flux (Kennicutt 1998), which is (1.79 ± 0.22) 10^{-16} erg cm}^{-2} \text{ s}^{-1} \) we get \((4.8 ± 0.2) M_\odot \text{ yr}^{-1} \). The mean value, \((11.5 ± 7.1) M_\odot \text{ yr}^{-1} \), is much larger than the present-day rate in our Galaxy. In any case, this estimate is only a lower limit on the SFR due to the unknown rest frame host galaxy extinction. See also Sokolov et al. (2001b).

3.3. The multiwavelength spectrum on Dec. 12.0

We have determined the flux distribution of the GRB 991208 OA on Dec. 12.0, 1999 UT by means of our broad-band photometric measurements (Dec. 12.2) and other data points at mm and cm wavelengths (Dec. 11.6–11.8) (Fig. 6). We fitted the observed flux distribution with a power law \(F_\nu \propto \nu^{-\beta} \), where \(F_\nu \) is the flux at frequency \(\nu \), and \(\beta \) is the spectral index. Optical flux at the wavelengths of \(B, V, R \) and \(I \) passbands has been derived subtracting the contribution of the host galaxy and assuming a redening \(E(B-V) = 0.016 \) from (Schlegel et al. 1998). The long dashed lines are the fits to the multiwavelength spectrum. Rough estimates of the self-absorption (\(\nu_{\text{abs}} \)) and synchrotron frequencies (\(\nu_{\text{sync}} \)) are also indicated.

Fig. 5. The BTA/MPSF optical 4500-s spectrum of the GRB 991208 afterglow on Dec. 14.14, 1999 UT in the 4000–8800 Å spectral range. The spectrum has been boxcar smoothed with a 10 Å window. The detection of the four emission lines led to a redshift of \(z = 0.7063 \pm 0.0017 \), that of the host galaxy.

Fig. 6. The multiwavelength spectrum of GRB 991208 afterglow on Dec. 12.0 UT, 1999. Circles are the extrapolation of the \(B V R I \) measurements following the power-law derived in this paper. The diamond is the Pico Veleta measurement (Bremer et al. 1999a,b), the square is the OVRO data point (Shepherd 1999), the triangle-up is the flux density obtained at the Ryle telescope (Pooley et al. 1999) and the triangles-down are the VLA data points (Frail et al. 1999; Hurley et al. 2000). The correction for galactic extinction has been considered taking into account \(E(B-V) = 0.016 \) from (Schlegel et al. 1998). The long dashed lines are the fits to the multiwavelength spectrum. Rough estimates of the self-absorption (\(\nu_{\text{abs}} \)) and synchrotron frequencies (\(\nu_{\text{sync}} \)) are also indicated.
From the maximum observed flux (Shepherd et al. 1999), we derive a rough value of \(\nu_m \sim 100 \text{ GHz} \). The low-frequency spectrum below \(\nu_m \) (\(F_\nu \propto \nu^{1/3} / \nu^2 \)) is in agreement with the expected tail of the synchrotron radiation plus a self absorption that becomes important below a critical frequency \(\nu_c \sim 13 \text{ GHz} \), taking into account that \(F_\nu \propto \nu^{1-4} \) in the range 4.86–8.46 GHz (Frail et al. 1999), deviating from \(F_\nu \propto \nu^{1/3} / \nu^2 \) as seen for 15 GHz < \(\nu < 100 \text{ GHz} \) (Pooley et al. 1999). Much more accurate estimates for \(\nu_c \) and \(\nu_m \) are given by Galama et al. (2000a). Above \(\nu_m \), the IRAM observations (Bremer et al. 1999c,b) indicate a \(F_\nu \propto \nu^{-0.6} \), with a cooling frequency 3 \(10^{11} \text{ GHz} < \nu_c < 3 \ 10^{14} \text{ GHz} \). Then we expect a slope between \(\nu_m \) and \(\nu_c \) of \(\beta = (p-1)/2 = 0.68 \pm 0.06 \), consistent with the observed value. As we have already mentioned, if the \(p \sim 2.3 \) jet model is correct, by this time (Dec. 12.0 UT), the cooling break should be already below the optical band, with an optical synchrotron spectrum \(F_\nu \propto \nu^{-p/2} = \nu^{-1.15} \) that is in agreement with our optical data (\(\beta = -1.05 \pm 0.09 \)). Therefore our Dec. 12.0 observations support a jet model with \(p = 2.30 \pm 0.07 \), marginally consistent with \(p = 2.52 \pm 0.13 \) as proposed by Galama et al. (2000a) on the basis of a fit to the multiwavelength spectra from the radio to the R-band data.

4. Conclusion

Most currently popular theories imply a direct correlation between star formation and GRB activity. How does GRB 991208 fit into this picture? The angular coincidence of the OA and the faint host argues against a compact binary merger origin of this event (Fryer et al. 1999) and in favor of the involvement of a massive star (Bodenheimer & Woosley 1983; Woosley 1993; Dar & De Rújula 2001). The very rapid photometric decline of the afterglow of GRB 991208 provided hope for the detection of the much fainter light contamination from the underlying supernova, what we have confirmed on the basis of the late-time \(R \)-band measurements, thus giving further support to the massive star origin. There are still many unsolved riddles about GRBs, like the second break in the light curve of this event, i.e. responsible for the steep decay seen after 5 days. The community continues to chase GRB afterglows, and with every new event we make progress by finding more clues and creating even more new puzzles.

Acknowledgements. The Calar Alto German-Spanish Observatory is operated jointly by the Max-Planck Institut für Astronomie in Heidelberg, and the Comisión Nacional de Astronomía, Madrid. The Sierra Nevada Telescope is operated by the Instituto de Astrofísica de Andalucía (IAA). The Nordic Optical Telescope (NOT) is operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in the Spanish Observatorio del Roque de los Muchachos (ORM) of the Instituto de Astrofísica de Canarias (IAC). The data presented here have been taken using ALFOSC, which is owned by the IAA and operated at the NOT under agreement between the IAA and the NBIfA of the Astronomical Observatory of Copenhagen. This paper is also based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Centro Galileo Galilei of the CNAO (Consorzio Nazionale per l’Astronomia e l’Astrofisica) at the Spanish ORM of the IAC. We thank P. Garnavich and A. Noriega-Crespo for making available to us the VATT image taken on Dec. 12.52 UT, A. Fruchter for his comments and appreciate the generous allocation of observing time at the Calar Alto, Roque and Teide observatories. We are grateful to R. Gredel, U. Thiele, J. Aceituno, A. Aguirre, M. Alises, F. Hoyos, F. Prada and S. Pedraz for their support at Calar Alto, C. Packham (INT Group) for his help to obtain the WHT spectra, the TNG staff for their support and to J. M. Trigo (Univ. Jaime I) for pointing us the existence of the German meteor films. KH is grateful for Ulysses support under JPL Contract 59505. J. Gorosabel acknowledges the receipt of a Marie Curie Research Grant from the European Commission. This research was partially supported by the Danish Natural Science Research Council (SNF) and by a Spanish CICYT grant ESP95-0389-C02-02. V. V. Sokolov, T. A. Pathkhullin and V. N. Komarova thank the RFBR under JPL Contract 95805. J. Gorosabel acknowledges the financial support of this work.

References

Bertin, E., & Arnouts, S. 1996, A&A, 117, 393
Bessell, M. S. 1979, PASP, 91, 589
Bessell, M., & Brett, J. M. 1988, PASP, 100, 1134
Bhargavi, S. G., & Cowsk, R. 2000, ApJ, 545, L77
Bloom, J. S., et al. 1999a, Nature, 401, 453
Bloom, J. S., et al. 1999b, GCN Circ., No. 464
Bodenheimer, P., & Woosley, S. E. 1983, ApJ, 269, 281
Bremer, M., et al. 1999a, GCN Circ., No. 459
Bremer, M., et al. 1999b, IAU Circ., No. 733
Castro-Tirado, A. J., et al. 1998, Science, 279, 1011
Castro-Tirado, A. J., & Gorosabel, J. 1999, A&A, 138, 449
Castro-Tirado, A. J., et al. 1999a, GCN Circ., No. 451
Castro-Tirado, A. J., et al. 1999b, IAU Circ., No. 7332
Castro-Tirado, A. J., et al. 1999c, Science, 283, 2009
Castro-Tirado, A. J. 2001, ESA-SP Conf. Proc., in press [astro-ph/0102122]
Chevalier, R. A., & Li, Z.-Y. 1999, ApJ, 520, L29
Costa, E., et al. 1997, Nature, 387, 783
Dar, A., & De Rújula, A. 2001, A&A, submitted [astro-ph/0008474]
Dodonov, S., et al. 1999a, GCN Circ., No. 461
Dodonov, S., et al. 1999b, GCN Circ., No. 475
Djorgovski, S. G., et al. 1999, GCN Circ., No. 481
Esin, A. A., & Blandford, R. 2000, ApJ, 534, L151
Fishman, G. J., & Meegan, C. A. 1995, AR&A, 33, 415
Frayl, D., et al. 1999, GCN Circ., No. 451
Fruchter, A., et al. 1999a, ApJ, 519, L13
Fruchter, A., et al. 2000, GCN Circ., No. 872
Fryer, C. L., Woosley, S. E., & Hartmann, D. H. 1999, ApJ, 526, 152
Galama, T. J., et al. 1998, Nature, 395, 670
Galama, T. J., et al. 1999, ApJ, 536, 185
Galama, T. J., et al. 2000a, ApJ, 541, L45
Galama, T. J., et al. 2000b, ApJ, 536, 185
Garnavich, P., & Noriega-Crespo, A. 1999, GCN Circ., No. 456
Henden, A. A. 2000, GCN Circ., No. 631
