Methodologies of inspiratory muscle training techniques in obstructive lung diseases

Metodologie treningu mięśni wdechowych w chorobach obturacyjnych układu oddechowego

Marek Kaszuba 1(A-F), Agnieszka Śliwicka 1(A-F), Rafał Pliński 1(A-F), Roman Nowobilski 1(A-F), Tomasz Wloch 2(A-F)

1 Unit of Rehabilitation in Internal Diseases, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
2 Unit of Rehabilitation in Internal Diseases, Department of Clinical Rehabilitation, University School of Physical Education, Kraków, Poland

Key words
inspiratory muscle training; respiratory muscle training; pulmonary rehabilitation; pulmonary disease, chronic obstructive; asthma

Abstract
Background: Inspiratory muscle training (IMT) is a non-pharmacological, non-invasive therapeutic method that can improve the quality of life in patients with obstructive lung diseases. The effectiveness of IMT may depend on the type of the device used in the training and the parameters of the training programme.

Objectives: The aim of the review was to present different techniques and protocols of IMT used in patients with obstructive lung diseases.

Methods: The MEDLINE and EMBASE were searched to identify the potentially eligible publications from the previous 5 years. The various protocols of IMT used in different studies were analyzed and described in detail.

Results: A database search identified 333 records, of which 22 were included into the final analysis. All of the finally analyzed studies were conducted in patients with chronic obstructive pulmonary disease (COPD). The protocols of IMT used in the studies differed in the type of the device used, the duration of the training program, the number and the duration of training sessions, the initial load, and the rate at which the load was changed during the training.

Conclusions: IMT is used mainly in studies on patients with COPD and not with asthma. There is no one approved training programme for IMT. The most predominant type of IMT is a training with threshold loading. The most frequently used devices for IMT are POWERbreath and Threshold IMT. The protocols of IMT used in the studies are very diverse.

Słowa kluczowe
trening mięśni wdechowych; trening mięśni oddechowych; rehabilitacja pulmonologiczna; przewlekła obturacyjna choroba płuc; astma

Streszczenie
Wstęp: Trening mięśni oddechowych (IMT) należy do niefarmakologicznych, nieinwazyjnych metod terapeutycznych, które mogą prowadzić do poprawy jakości życia pacjentów z chorobami układu oddechowego. Skuteczność IMT może zależeć od rodzaju urządzenia użytego do treningu oraz sposobu prowadzenia programu treningowego.

Cel: Celem przeglądu było przedstawienie różnych technik i protokołów IMT stosowanych u pacjentów z obturacyjnymi chorobami płuc.

Metody: W celu zidentyfikowania publikacji z ostatnich 5 lat potencjalnie kwalifikujących się do analizy przeszukano elektroniczne bazy MEDLINE i EMBASE. Szczegółowo przeanalizowano i opisano protokoły IMT stosowane w różnych pracach badawczych.

Article received: 15.10.2018; Accepted: 20.03.2019

Please cite as: Kaszuba M., Śliwicka A., Pliński R., Nowobilski R., Wloch T. Methodologies of inspiratory muscle training techniques in obstructive lung diseases. Med Rehabil 2018; 22(4): 49-57. DOI: 10.5604/01.3001.0013.1474

Internet version (original): www.rehmed.pl

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License CC BY-SA (http://creativecommons.org/licenses/by-sa/4.0/)

The individual division of this paper was as follows: A – research work project; B – data collection; C – statistical analysis; D – data interpretation; E – manuscript compilation; F – publication search
INTRODUCTION

Respiratory muscle training includes exercises aimed at increasing the strength and endurance of inspiratory and expiratory muscles. In the case of respiratory system diseases, causing periodic or constantly increased respiratory effort, the ability to provide adequate gas exchange in the lungs depends on the efficiency of the respiratory muscles. This efficiency is also directly related to the intensity of experienced dyspnoea and the limitation of exercise tolerance.

In literature on the subject, we can find the two most commonly used types of inspiratory muscle training (IMT). During training with inspiratory resistance (resistive loading), the patient inhales through a device that has holes with adjustable diameters (providing inspiratory resistance) - a hole with a smaller diameter generates greater resistance of air flow, increasing the training load. In turn, during training consisting in exceeding threshold loading, the resistance is not dependent on air flow. The patient inhales through the spring valve and when such pressure (threshold) is generated, causing the valve to open, air flow begins.

Loads during IMT, through increased work of the inspiratory muscles, lead to improvement of their functional parameters, including strength and endurance, improving muscle performance during exercise. The mechanisms due to which respiratory muscle training increases exercise tolerance are unclear. Alleged mechanisms include delaying respiratory muscle fatigue, redistributing blood flow from the airways to the locomotor muscles and reducing the sensation of respiratory and limb discomfort.

Inspiratory muscle training is a non-pharmacological, non-invasive therapeutic method that can lead to increased strength and endurance of the respiratory muscles, and thus, improving the quality of life of patients with respiratory diseases associated with reducing dyspnoea and increasing effort tolerance (increase in strength during marching). Scientific data does not justify the routine use of inspiratory muscle training as an essential component of pulmonary rehabilitation, but many studies have demonstrated its beneficial effects.

According to ATS/ERS recommendations from 2006 and those of the ACCP/AACVPR from 2011, respiratory muscle training should be considered in patients with respiratory disorders and documented respiratory muscle weakness (e.g. due to cachexia or chronic corticosteroid use) as well as in patients with persistent dyspnoea and limitation of exercise tolerance despite training aimed at increasing the endurance and strength of the peripheral muscles. In combination with other methods of respiratory disease treatment, IMT may improve exercise capacity in patients. Respiratory muscle training of (mainly inspiratory) in patients with low baseline maximal inspiratory pressure (MIP) enhances the effects of classic respiratory training.

It seems that in the majority of well-controlled and rigorously designed tests, respiratory muscle training has a chance to positively influence exercise performance. Presumably, the type of applied IMT methodology may have direct impact on the effectiveness of IMT in improving the efficiency of respiratory muscles and the quality of life of patients with respiratory diseases. However, the development of optimal methodology requires thorough analysis of the existing methods of inspiratory muscle training.

AIM

The aim of this review is to systematise and present the IMT methodology including threshold and resistive loading used in research work including this type of rehabilitation among patients with obstructive respiratory diseases.

METHODS

In order to identify current publications on the discussed subject, the MEDLINE and EMBASE databases were independently searched. Key-words were taken from the MeSH (key words: pulmonary disease, chronic obstructive asthma; inspiratory muscle training; respiratory muscle training) and Emtree dictionaries (keywords: chronic obstructive lung disease; asthma; inspiratory muscle training; respiratory muscle training), respectively.

The search was limited to the publications available in full version, which were published in English or Polish between the years 2014-2018 and containing the selected keywords (Tab. 1). For further analysis, interventional studies containing the description of the IMT methodology and systematic reviews of IMT-related studies were selected. First, the titles and abstracts were analysed, and then the full versions of the identified publications were reviewed (Fig. 1).

The intervention in the studies that were ultimately analysed was the method of IMT (with resisted or threshold loading), which was a separate therapy type or one of the components of the complex procedure of pulmonary rehabilitation.

In order to analyse the additional interventional studies including IMT,
the lists of references included in the systematic reviews identified during this review were checked.

RESULTS

22 publications describing the IMT methodology were qualified for final analysis. All of these studies concerned patients with chronic obstructive pulmonary disease (COPD). Despite the inclusion of asthma in the search criteria, none of the studies qualified for the analysis concerned this disease entity. The literature published in three systematic reviews meeting the assumed search criteria and related to the discussed issue was also analysed.

The process of searching and selecting publications included in the analysis

Based on the analysis of 22 publications in full text that were ultimately qualified for the review, it was found that IMT protocols used in the analysed research presented significant differences in their assumptions (Tab. 2).
The duration of the entire training programme in the analysed studies ranged from 1 week to 4 months. Most often, the training programme lasted 8 weeks. The number of days per week during which IMT was conducted and the number of training sessions per day as part of individual training programmes also varied, ranging from 1 session per day for 3 days a week to 3 sessions a day, 7 days a week. Most often, patients exercised once a day, 7 days a week. The duration of one training session as part of the analysed tests was very different and ranged from 4 to 60 minutes, although information about possible intervals (between cycles) was not always given, hence, it was difficult to deduce how long the training part actually lasted. In the case of some publications, the number and duration of cycles as well as the duration of intervals were given, e.g. 6 cycles of 5 min of training and 3 minutes of rest, or 7 cycles of 2 min of training and 1 min of rest. In part of the work, the number of breaths per cycle was given (e.g. 1 cycle of 30 breaths and 1 min of rest). The duration of the training sessions was being increased only in one trial – from 5 min in the 1st week to 30 min in the 7th and 8th week of training. Resistive loading was usually determined on the basis of the measured MIP. The assumed resistive loading at the beginning of the training programmes ranged from 15% to 60% (for endurance training, most often 50%), and 80% (for strength training) of the current MIP. If the initial resistive loading was set without the MIP measurement, it was between 10 and 15 cmH₂O. In the majority of the trials, resistive during the training programme was systematically increased, which was carried out during training programmes at totally different paces. The value of MIP was measured in such cases before each training session or - most often – regularly, every 1-2 weeks. The resistance was increased gradually (e.g. every week by 5-10% or by 10 cmH₂O) until reaching 60% of the initial/baseline or until 50-60% MIP of the current/previous MIP (measurement every 1-2 weeks). In some works, the intensity of training was based on the degree of exercise tolerance (threshold symptoms). In such cases, resistance was gradually increased every week to the highest tolerated MIP value (e.g. to grade 4-6 on the Borg CR-10 scale or 12-14 on the Borg RPE scale). One work included the use of two types of training: strength and endurance training, for which different threshold pressures and durations of training sessions were assumed.

In the analysed tests, training was carried out using 7 different devices, including 1 prototype containing a one-way spring valve. This suggests the use of a training method with threshold loading, however, the most frequently used trainers were: the POWERbreathe instruments (in 9 trials); in 6 of them, a spring valve (mechanical) was used, while 4 devices included an electronic valve. The Threshold IMT (in 8 trials) as well as the Respifit S Trainer with an electronic valve generating threshold resistance (in 1 trial) were also implemented. In the case of 3 works, devices using resistance training (PFLEX, Portex and TFLR trainers) were used. Thus, the training model with threshold loading dominated. In 2 trials, neither the brand nor the type of the trainer were specified, although (in 1 case), the name suggesting training with inspiratory resistance (tapered flow resistive loading - TFLR) was given (Tab. 2).

SUMMARY AND CONCLUSIONS

The efficacy of the respiratory muscle training method in the treatment of obstructive lung diseases has not been supported by evidence from high-quality scientific research. At the same time, IMT is often used in many research works and in clinical practice. Among clinicians and researchers, the question regards not only whether to use this type of training, but also, how it is to be used in the care of patients so that it is optimal for a given disease, resulting in beneficial therapeutic effects.

The analysed literature shows numerous training protocols differing from one another when considering many variables (intensity, duration and load size). Despite the sugges-

Types of trainers and parameters of inspiratory muscle training programmes applied in patients with chronic obstructive pulmonary disease
Types of trainers

Threshold loading training
• POWERBreath
• Threshold IMT
• Respifit S Trainer
• Prototype device with one-way spring valve
Resistive loading training
• Portex
• PFLEX
• TFLR Trainer
Table 3
Characteristics of inspiratory muscle training programmes in patients with chronic obstructive pulmonary disease

Leading author/Year	Device	Duration of training programme	Number of training days per week	Number of training sessions per day	Total number of days/training sessions	Number of cycles per day and duration of cycle/interval	Duration of training during the day	Changes in duration of training session (change in intensity)	Baseline resistance	Changes in resistance
Basso-Vanelli R, 2016	POWERbreath (POWERbreathe International Ltd, Southam, Warwickshire, UK)	4 months	3 days a week	1 time a day	48 days/48 sessions	7 cycles of 2 min of training and 1 min interval	14 min	-	10 cm H₂O	Initially increased by 10 cm H₂O to 60% of baseline MIP at the end of the first month of training; then, increased every 2 weeks in order to maintain 60% of current MIP
Beaumont M, 2015	Threshold IMT (Philips Respironics, Murrysville, PA, USA)	3 weeks	5 days a week	2 times a day	15 days/30 sessions	15 min	30 min	-	40% MIP	-
Beaumont M, 2018	POWERbreath Medic (POWER-breathe International Ltd, Southam, Warwickshire, UK)	4 weeks	5 days a week	2 times a day	20 days/40 sessions	15 cycles (15 min) of 10 slow breaths with gradually increased respiratory volume and a short interval	-	50% MIP	Increased after 10 days to 60% of baseline MIP	
Charususin N., 2018	POWERbreathe KH2 (z zaworem elektronicznym), (POWERbreathe International Ltd, Southam, Warwickshire, UK)	12 weeks	3-5 days a week	1 time a day	36-60 days/36-60 sessions	60 min	-	50% MIP	Gradually increased every week to the highest tolerated MIP value (increase from 47% ±2% to 84% ±4% of baseline MIP) — training intensity corresponding to levels according to Borg Scale CR-10 within the range of 4-6 for the feeling of dyspnoea after session	
Charususin N., 2013	POWERbreathe KH1 (with electronic valve), (POWER-breathe International Ltd, Southam, Warwickshire, UK)	12 weeks	7 days a week	3 times a day	84 days/252 sessions	2 cycles of 3.5 min of training (30 breaths) and 1 min of rest	21 min	-	40% MIP	Increased to min. 50% MIP measured the prior week
Chuang H-Y., 2017	n.d.	8 weeks	5 days a week	1 time a day	40 days/40 sessions	7 cycles (21-30 min) of 2 min of training 1 min of rest	21 min	-	15 cmH₂O	Gradually increased - after a week – to 20 cm H₂O - after another 3 weeks – to 30 cm H₂O - after another 2 weeks – to 40 cm H₂O
Dacha S., 2017	TFLR Trainer	8 weeks	7 days a week	2 times a day	56 days/112 sessions	4-5 min (30 breaths)	8-10 min	-	50% MIP	Increased every week until reaching highest tolerated resistance (approx. 50% MIP)
Dellweg D., 2017	Respifit S Trainer (Biegler, Mauerbach, Austria)	4 weeks	5 days a week	1 time a day	20 days/20 sessions	-	-	-	80% MIP for strength training, 60% MIP for endurance training	Increased every week to maintain: - 80% of current MIP for strength training - 60% of current MIP for endurance training

MIP – maximal inspiratory pressure
Authors	Equipment	Duration	Frequency	Training Duration	Training Intervals	MIP Level	Notes			
Elmorsi A.S., 2016	Threshold IMT (Healthscan, New Jersey, NJ, USA)	2 months	6 days a week	1 time a day	48 days/48 sessions	30 min	30 min (no information regarding intervals)	30% MIP	Gradually increased by 5-10% until reaching 60% MIP at the end of month 1	
Heydari A., 2015	POWERbreath, (POWERbreathe International Ltd, Southam, Warwickshire, UK)	4 weeks	4 days a week	2 times a day	16 days/32 sessions	15 min	30 min	-	40% MIP	Increased by 5-10% at each session, reaching 60% MIP
Hoffman M., 2018	POWERbreathe K3 (with electronic valve), (POWERbreathe International Ltd, Southam, Warwickshire, UK)	8 weeks	7 days a week	2 times a day	56 days/112 sessions	1 cycle of 30 breaths and 1 min of rest	unclear	-	50% MIP	Increased to 50% MIP if the patient achieved more than 6 or less on the Borg Scale for feeling of dyspnoea after the session
Langer D, 2015	Threshold IMT (Philips Respironics, Brussels, Belgium) \ POWERbreathe KH1 (POWERbreathe International Ltd, Southam, Warwickshire, UK)	8 weeks	7 days a week	2 times a day	56 days/112 sessions	3-5 min (30 breaths)	6-10 min	-	40% MIP	MIP increased in such a way as to start the week with 40% MIP and end the week with 50% MIP
Leelarung-rayub J., 2017	Portex Inspiratory Muscle Trainer, (Smiths Medical ASD Inc., Minneapolis, USA)	6 weeks	7 days a week	1 time a day	42 days/42 sessions	4 cycles of 30 breaths and 3 min of rest	unclear	-	-	Decreasing the hole diameter in the trainer every 2 weeks
Lopez-Garcia A., 2016	Threshold IMT (Philips Respironics, Munroyville, PA, USA), Prototype trainer	4 weeks	3 times a week	2 times a day	12 days/24 sessions	15 min	30 min	-	30% MIP	Increased every week up to the highest tolerated or 60% of baseline MIP
Majewska-Pulsakowska M., 2016	Threshold IMT (Respironics; Philips Healthcare, DA Best, the Netherlands)	8 weeks	5 days a week	2 times a day	40 days/80 sessions	-	10-30 min	Training duration increased every week: - 1 week – 2 x 5 min - 2 week – 2 x 8 min - 3 and 4 week – 2 x 11 min - 5 and 6 week – 2 x 13 min - 7 and 8 week – 2 x 15 min	30% MIP	Gradually increased: - 1 week – 30% MIP - 2 and 3 weeks – 40% MIP - 4 and 5 weeks – 50% MIP - 6, 7 and 8 weeks – 60% MIP
Characteristics of inspiratory muscle training programmes in patients with chronic obstructive pulmonary disease

Study	Description	Duration	Frequency	Sessions	Cycles/Times	Breaths	Increase	Notes
Mehani S.H.M.M., 2017⁴⁴	Prototype trainer (built out of stainless steel with one-way spring valve)	2 months	3 days a week	24 days/24 sessions	6 cycles of 5 deep breaths	30 breaths	15% MIP	Increase by 10% every week up to 60% MIP from the middle of the previous week
Nikoleto D; 2016⁴⁵	POWERbreath (POWERbreathe International Ltd, Southam, Warwickshire, UK)	7 weeks	6 days a week	42 days/84 sessions	30 constant breaths (earliest interval after 5 breaths and not longer than 1 min)	-	30% MIP	1 a week, the value tolerated by the exerciser was increased (approx. 5% of baseline MIP)
Ovechin AV., 2017⁴⁶	Respiration Inc. (Cedar Grove, NJ) + Airlife 001504 (Allegiance Healthcare Corp., McGaw Park, IL)	1 month	5 days a week	20 days/20 sessions	6 sessions (45 min) of 5 min of training and 3 min of rest	30 min	20% MIP	Increased to 40% of baseline MIP at the end of the training programme
Schultz K., 2018⁴⁷	POWERbreath Medic (POWERbreathe International Ltd, Southam, Warwickshire, UK)	3 weeks	7 days a week	21 days/21 sessions	7 cycles (21 min) of 2 min of training and 1 min of rest	14 min	min. 30% MIP	Gradually increased to min 60% MIP
Wang K., 2017⁴⁸	Threshold IMT HS730 (Phillips, Amsterdam, the Netherlands)	8 weeks	3 times a week	24 days/24 sessions	7 cycles of 2 min of training and 1 min of rest	14 min	30% MIP	Increased every week if grade 12-14 RPE was reached
Wu W, 2017⁴⁹	PFLEX (Respironics Inc, Pittsburgh, PA, USA) Threshold IMT (Respironics Inc, Pittsburgh, PA, USA)	8 weeks	7 days a week	56 days/112 sessions	15 min	30 min (no information regarding intervals)	60% MIP	Increased every 2 weeks to maintain MIP at 60% of the current value
Xu W, 2018⁵⁰	Threshold IMT (Respironics, Pittsburgh, USA)	8 weeks	7 times a week	56 days/56 sessions	8 cycles of 3 min of training and 2 min of rest	24 min	30% MIP	Increased by 5% every 2 weeks until reaching 45% MIP

n.d. – no data; TFLR – Tapered Flow Resistive Loading; MIP – Maximal Inspiratory Pressure; RPE – Rating of Perceived Exertion
tions in several publications/recommen-
dations on how to conduct train-
ing (frequency 4-5 days a week, re-
sistance at 30-40% MIP, duration – 1,
30-minute session a day or 2 sessions
lasting 15 minutes, for a period of at
least 2 months),9,25,27, the methodology
for performing IMT is very di-
verse. This is due to the lack of cur-
rent and consistent recommendations
regarding the manner in which IMT is to be performed. It seems that
in many cases, the used methodology
is discretionary, but this obviously
does not undermine its effectiveness.
Various types and models of train-
ers are also used. The effectiveness
of this form of respiratory rehabilita-
tion may be related to the way and
intensity of performing breathing ex-
ercises. Thus, the next step should be
a comparison of the effectiveness of
IMT depending on the characteristics
of the implemented training protocol
and the type of trainer used. Such re-
search would serve to optimise and
refine the range of parameters used
in IMT, including training with resis-
tive or threshold loading. As a result,
this may facilitate the development of
a uniform protocol of exercises to be
performed in patients with COPD,
which will find its place in clinical prac-
tice as a method complementing other
elements of therapy, as in the case
of general training in patients with
COPD, in which the method-
ology is strictly defined, guarantee-
ing the achievement of beneficial ef-
facts: 21, 30-minute sessions at least
3 times a week (continuous or inter-
val training)26,28. In the case of upper
and lower limb strength training, 2-4
series of 6-12 repetitions with a load
requiring 50-85% of maximal force
are recommended29,30.

A different issue regards compari-
son and examination of the effective-
ness of training in the form of super-
vised sessions and those performed
without supervision at a patient’s
home. However, the results of re-
search on home-based rehabilitation
are not promising among patients
with COPD. This is probably con-
ected with experienced fatigue and
shortness of breath during exercise
(even at low intensities). The training
criteria set for healthy people may be
too strict for patients with sympto-
matic COPD. Perhaps the most effect-
ive way of implementing IMT, simi-
lar as in the case of general training,
would be personal training, i.e. per-
forming exercises whenever the pa-
tient has free time (not based strict-
ly on the methodological regime, but
based even on the patient’s avail-
ability). Awareness of not being able
to meet rigorous training criteria may
be a reason for being discouraged
and refraining from continuing ex-
cercise. Nonetheless, the effectiveness
of such a training method requires fur-
ther research.

Conflict of interest: none

References
1. Belman M.J., Shadmehr R. Targeted resis-
tive ventilatory muscle training in chronic ob-
structive pulmonary disease. J Appl Physiol
1988; 65(3): 2726-2735.
2. Silva S., Figueiredo G.A., Dias F.A.L., Ribe-
iro C.T., Guerra R.O., Ferreira G.M. Inspirato-
ry muscle training for asthma. Cochrane Da-
tabase Syst Rev 2013 Suppl 9: CD003798.
3. Gosselink R. Controlled breathing and dysp-
nea in patients with chronic obstructive pul-
monary disease (COPD). J Rehabil Res Dev
2003, 40(5 Suppl 2): 25-33.
4. Nickerson B.G., Keens T.G. Measuring ven-
tilatory muscle endurance in humans as su-
stainable inspiratory pressure. J Appl Physiol
1982; 52(3): 768-772.
5. Gosselink R., Wagenaar R.C., Decramer M.
Reliability of a commercially available thres-
hold loading device in healthy subjects and
in patients with chronic obstructive pulmo-
nary disease. Thorax 1996; 51(6): 601-605.
6. Rochester D.F., Braun N.M. Determinants of
maximal inspiratory pressure in chronic ob-
structive pulmonary disease. Am Rev Respir
Dis 1985; 132(1): 42-47.
7. Perez T., Becquart L.A., Stach B., Wallaert
B., Tonnel A.B. Inspiratory muscle strength
and endurance in steroid-dependent asth-
am. Am J Respir Crit Care Med 1996; 153(2):
610-615.
8. McConnell A.K., Romer L.M. Respirato-
ry Muscle Training in Healthy Humans: Re-
solving the Controversy. Int J Sports Med
2004; 25(4): 284-293.
9. Reis A.L., Bauhofer M., Carlin B.W., Casa-
buri R., Emery C.F., Mahler D.A., et al. Pul-
monary Rehabilitation. Chest 2007; 131(5):
45-425.
10. Weiner P., Magadle R., Beckerman M., Weiner
M., Bera-Yanai N. Maintenance of inspirato-
ry muscle training in COPD patients: one year
follow-up. J Clin Respir Dis 2005; 132(1): 42-47.
11. Geddes E.L., O’Brien K., Reid W.D., Brooks
D., Croteau J. Inspiratory muscle training in
adults with chronic obstructive pulmonary disease:
An update of a systematic review. Respir Med 2008;
102(2): 1715-1729.
12. De Jong W., Van Aalderen W.M., Kraan J.,
Koëter G., Van der Schans C. Inspiratory
Muscle Strength Training in COPD. Chest
2008, 133(3): 610-615.
13. Sawyer E.H., Clapham T.L. Improved pulmo-
nary function and exercise tolerance with inspiratory muscle conditioning in child-
ren with cystic fibrosis. Chest 1993; 104(8):
1490-1497.
14. Enright S., Chatham K., Ionescu A.A., Unni-
than V.B., Shele D.J. Inspiratory Muscle Trai-
ning Improves Lung Function and Exerci-
se Capacity in Adults With Cystic Fibrosis.
Chest 2004; 126(2): 405-411.
15. Asher M.I., Pardyl R., Coates A.L., Thomas
E., Macklem P.T. The effects of inspiratory muscle training in patients with cystic fibrosis.
Am Rev Respir Dis 1982; 126(5): 855-859.
16. Nici L., Donner C., Wouters E., Zwaal-Ramer
R., Ambrosino N., Bourjeau J., et al. Ame-
rican Thoracic Society/European Respiratory
Society Statement on Inspiratory Muscle Reha-
bitation. Am J Respir Crit Care Med 2006;
173(12): 1390-1413.
17. Spruit M.A., Singh S.J., Garvey C., Zwaal-
Ramer R., Nici L., Rocheover C., et al. Manual
American Thoracic Society/European Respira-
tory Society statement: key concepts and
advances in pulmonary rehabilitation. Am J Respir Crit Care Med 2013; 188(8): e13-64.
18. Polskie Towarzystwo Chorób Pulm.
Polish Respiratory Society for palliative care in
chronic lung diseases. Pneumol Alergol Pol 2012;
80(1): 41-64.
19. Larson J.L., Kim M.J., Sharp J.T., Larson D.A.
Inspiratory Muscle Training with a Pressure Threshold Breathing Device in Patients with
Chronic Obstructive Pulmonary Disease. Am Rev
Respir Dis 1988; 138(3): 689-696.
20. Lisboa C., Villafane C., Leiva A., Cruz E., Pertuz
J., Boczone G. Inspiratory muscle training in chronic airflow limitation: effect on exercise performance. Eur Respir J 1997;
10(3): 537-542.
21. Dekhuijzen P.N., Folgering H.T., van Herwa-
arden C.L. Target-flow inspiratory muscle training during pulmonary rehabilitation in pa-
cients with COPD. Chest 1991; 99(1): 128-
133.
22. Wanke T., Formanek D., Lahnmann H., Brath
H., Wild M., Wagner C., et al. Effects of com-
bined inspiratory muscle and cycle ergome-
ter training on exercise performance in pa-
cients with COPD. Eur Respir J 1994; 7(12):
2205-2211.
23. Lotters F., van Tol B., Kwakkel G., Gose-
slink R. Effects of controlled inspiratory musc-
ule training in patients with COPD. Int J Sports
Med 2001; 22(6): 443-445.
24. Dill-megrell S., Ingervall T., Ingervall W.,
Ingervall P., et al. A meta-analysis. Eur Respir J 2002; 20(3): 570-576.
25. Delweig D., Reissig K., Hoehn E., Siemon
K., Haid P., et al. Inspiratory muscle training
during rehabilitation in such patients with
chronic obstructive pulmonary disease with hypercapnic patients with COPD. Respir Med 2017;
123, 116-123.
26. Rodrigues J., Watcher J. Cardiopulmonary and
pulmonary physical therapy treatment. [In:
Wathie J. (ed.). Cardiopulmonary and Pulmo-
mary Physical Therapy: A Clinical Manual. 2nd ed. St. Louis: Saunders/Elsevier, 2010:
298-341.
27. Green R.H., Singh S.J., Williams J., Morgan
M.D. A randomised controlled trial of four
weeks versus seven weeks of pulmonary re-
habilitation in chronic obstructive pulmonary disease. Chest 2001; 120(5): 143-145.
28. Plankeel J.F, McMullen B., Macktyn N.R.
Exercise Outcomes After Pulmonary Reha-
bitation Depend on the Initial Level of Exercise Limitation. Am Rev Respir Dis 2001;
163(4): 903-914.
29. O’Shea S.D., Taylor N.F., Parazz J. Periphe-
ral Muscle Strength Training in COPD. Chest
2004; 126(6): 945-953.
30. Basso-Vanelli R., Di Lorenzo V.A.P., La-
baddessa I.G., Regueiro E.M.G., Jamami M.,
Gomes E.L.F.D., et al. Effects of inspiratory muscle training and calisthenics-and-bre-
athing exercises in COPD with and without
respiratory muscle weakness. Respir Care 2016;
61(1): 50-60.
31. Beaumont M., Malion P., Le Ber-Moy C., Lochn C., Perani L., Pichon R., et al. Inspiratory muscle training during pulmonary rehabilitation in chronic obstructive pulmonary disease: A randomized trial. Chron Respir Dis 2015; 12(4): 305-312.

32. Beaumont M., Malion P., Le Ber C., Le Mevel P., Péran L., Meurisse O., et al. Effects of inspiratory muscle training on dyspnoea in severe COPD patients during pulmonary rehabilitation: controlled randomised trial. Eur Respir J 2018; 51(1): 1701107.

33. Charususin N., Gosselink R., Decramer M., Deney H., McConnell A., Saey D., et al. Randomised controlled trial of adjunctive inspiratory muscle training for patients with COPD. Thorax 2018; 73(10): 942-950.

34. Charususin N., Gosselink R., Decramer M., McConnell A., Saey D., Maltais F., et al. Inspiratory muscle training protocol for patients with chronic obstructive pulmonary disease: IMT-003101.

35. Chuang H-Y., Chang H-Y., Fang Y-Y., Guo A., et al. The effects of threshold inspiratory muscle training on respiratory muscle strength, quality of life and oxidative stress in COPD patients: a preliminary study. Int J Chron Obstruct Pulmon Dis 2017; 12: 1415-1425.

36. Dacha S., Langer D., Ciavaglia C., Webb K., Demeyer H., McConnell A., Saey D., et al. Analysis of inspiratory muscle training on dyspnoea in severe COPD patients during pulmonary rehabilitation: controlled randomised trial. Eur Respir J 2018; 51(1): 1702000.

37. Elmorsi A.S., Eldesoky M.E., Mohsen M.A.A., Mekhail R., et al. Medical Rehabilitation / Rehabilitacja Medyczna (Med Rehabil) 2018, 22 (4): 49-57 DOI: 10.5604/01.3001.0013.1474 eISSN 1896–3 250 © AWF Krakow

38. Heydari A., Farzad M., Ahmadi hosseini S., et al. The effects of inspiratory muscle training on exercise performance and quality of life in patients with chronic obstructive pulmonary disease: a multicentre randomised controlled trial. BMJ Open 2013; 3(8): e003101.

39. Hoffman M., Assis M.G., Augusto V.M., Silva M.B.F., Parreira V.F. The effects of inspiratory muscle training based on the perceptions of patients with advanced lung disease: a qualitative study. Brazilian J Phys Ther 2018; 22(3): 215-221.

40. Langer D., Charususin N., Jacome C., Hoffman M., McConnell A., Decramer M., et al. The effects of threshold inspiratory muscle trainer on inspiratory muscle strength, quality of life and dyspnoea, and oxidative stress in COPD patients: a preliminary study. Int J Chron Obstruct Pulmon Dis 2017; 12: 1415-1425.

41. Lopez-Garcia A., Souto-Camba S., Blanco-Aparicio M., Gonzalez-Doniz L., Saleta J.L., Verea-Hernando H., et al. Effects of a muscular training program on chronic obstructive pulmonary disease patients with moderate or severe exacerbation antecedents. Eur J Phys Rehabil Med 2016; 52(2): 169-175.

42. Majewska-Pulsakowska M., Wytrzychowski K., Rożek-Piechura K. The role of inspiratory muscle training in the process of rehabilitation of patients with chronic obstructive pulmonary disease. Adv Exp Med Biol 2016; 885: 47-51.

43. Mehani S.H. Comparative study of two different respiratory training protocols in elderly patients with chronic obstructive pulmonary disease. Clin Interv Aging 2017; 12: 1705-1715.

44. Nikoletou D., Man W.D-C., Mustfa N., Moore J., Rafferty G., Grant R.L., et al. Evaluation of the effectiveness of a home-based inspiratory muscle training programme in patients with chronic obstructive pulmonary disease using multiple inspiratory muscle tests. Disabil Rehabil 2016; 38(3): 250-259.

45. Ovechkin A.V., Sayenko D.G., Ovechkina E.N., Aslan S.C., Pitts T., Polz R.J. Respiratory motor training and neuromuscular plasticity in patients with chronic obstructive pulmonary disease: A pilot study. Respir Physiol Neurobiol 2016; 229: 59-64.

46. Schultz K., Jeulsic D., Wittmann M., Krämer B., Huber V., Fuchs S., et al. Inspiratory muscle training does not improve clinical outcomes in 3-week COPD rehabilitation: results from a randomised controlled trial. Eur Respir J 2018; 51(1): 1702000.

47. Wang K., Zeng G-Q., Li R., Luo Y-W., Wang M., Hu Y-H., et al. Cycle ergometer and inspiratory muscle training offer modest benefit compared with cycle ergometer alone: A comprehensive assessment in stable COPD patients. Int J COPD 2017; 12: 2655-2668.

48. Wang K., Guan L., Zhang X., Li X., Yang Y., Guo B., et al. Effects of two types of equal-intensity inspiratory muscle training in stable patients with chronic obstructive pulmonary disease: A randomised controlled trial. Respirology 2017; 132: 84-91.

49. Xu W., Li R., Guan L., Wang K., Hu Y., Xu L., et al. Combination of inspiratory and expiratory muscle training in same respiratory cycle versus different cycles in COPD patients: a randomized trial. Respir Res 2018; 19(1): 225.