Abstract. A critical component in the implementation of an efficient tabling system is the design of the table space. The most popular and successful data structure for representing tables is based on a two-level trie data structure, where one trie level stores the tabled subgoal calls and the other stores the computed answers. The Global Trie (GT) is an alternative table space organization designed with the intent to reduce the table's memory usage, namely by storing terms in a global trie, thus preventing repeated representations of the same term in different trie data structures. In this paper, we propose an extension to the GT organization, named Global Trie for Subterms (GT-ST), where compound subterms in term arguments are represented as unique entries in the GT. Experiments results using the YapTab tabling system show that GT-ST support has potential to achieve significant reductions on memory usage, for programs with increasing compound subterms in term arguments, without compromising the execution time for other programs.

Keywords: Tabling, Table Space, Implementation.

1 Introduction

Tabling [1] is an implementation technique that overcomes some limitations of traditional Prolog systems in dealing with redundant sub-computations and recursion. Tabling became a renowned technique thanks to the leading work in the XSB-Prolog system and, in particular, in the SLG-WAM engine [2]. A critical component in the implementation of an efficient tabling system is the design of the data structures and algorithms to access and manipulate the table space. The most popular and successful data structure for representing tables is based on a two-level trie data structure, where one trie level stores the tabled subgoal calls and the other stores the computed answers [3].

Tries are trees in which common prefixes are represented only once. The trie data structure provides complete discrimination for terms and permits look up and possibly insertion to be performed in a single pass through a term, hence resulting in a very efficient and compact data structure for term representation. Despite the good properties of tries, one of the major limitations of tabling, when used in applications that pose many queries and/or have a large number of answers, is the overload of the table space memory [4].
The Global Trie (GT) [5,6] is an alternative table space organization where tabled subgoal calls and tabled answers are represented only once in a global trie instead of being spread over several different trie data structures. The major goal of GT’s design is to save memory usage by reducing redundancy in the representation of tabled calls/answers to a minimum.

In this paper, we propose an extension to the GT organization, named Global Trie for Subterms (GT-ST), where compound subterms in term arguments are represented as unique entries in the GT. Our new design extends a previous design, named Global Trie for Terms (GT-T) [6], where all argument and substitution compound terms appearing, respectively, in tabled subgoal calls and tabled answers are already represented only once in the GT. Experiments results, using the YapTab tabling system [7], show that GT-ST support has potential to achieve significant reductions on memory usage for programs with increasing compound subterms in term arguments, when compared with the GT-T design, without compromising the execution time for other programs.

The remainder of the paper is organized as follows. First, we introduce some background concepts about tries and the original table space organization in YapTab. Next, we present the previous GT-T design. Then, we introduce the new GT-ST organization and describe how we have extended YapTab to provide engine support for it. At last, we present some experimental results and we end by outlining some conclusions.

2 YapTab’s Original Table Space Organization

The basic idea behind a tabled evaluation is, in fact, quite straightforward. The mechanism basically consists in storing, in the table space, all the different tabled subgoal calls and answers found when evaluating a program. The stored subgoal calls are then used to verify if a subgoal is being called for the first time or if it is a repeated call. Repeated calls are not re-evaluated against the program clauses, instead they are resolved by consuming the answers already stored in the table space. During this process, as further new answers are found, they are stored in their tables and later returned to all repeated calls.

The table space may thus be accessed in a number of ways: (i) to find out if a subgoal is in the table and, if not, insert it; (ii) to verify whether a newly found answer is already in the table and, if not, insert it; and (iii) to load answers from the tables to the repeated subgoals. With these requirements, a correct design of the table space is critical to achieve an efficient implementation. YapTab uses tries which is regarded as a very efficient way to implement the table space [3].

A trie is a tree structure where each different path through the trie nodes corresponds to a term described by the tokens labelling the nodes traversed. Two terms with common prefixes will branch off from each other at the first distinguishing token. For example, the tokenized form of the term \(f(X, g(Y, X), Z) \) is the sequence of 6 tokens: \(f/3, VAR0, g/2, VAR1, VAR0 \) and \(VAR2 \), where each variable is represented as a distinct \(VAR_i \) constant [8]. YapTab’s original table
design implements tables using two levels of tries, one level stores the tabled subgoal calls and the other stores the computed answers.

More specifically, each tabled predicate has a table entry data structure assigned to it, acting as the entry point for the predicate’s subgoal trie. Each different subgoal call is then represented as a unique path in the subgoal trie, starting at the predicate’s table entry and ending in a subgoal frame data structure, with the argument terms being stored within the path’s nodes. The subgoal frame data structure acts as an entry point to the answer trie. Each different subgoal answer is then represented as a unique path in the answer trie. Contrary to subgoal tries, answer trie paths hold just the substitution terms for the free variables which exist in the argument terms of the corresponding subgoal call [3]. Repeated calls to tabled subgoals load answers by traversing the answer trie nodes bottom-up. An example for a tabled predicate \texttt{t/2} is shown in Fig. 1.

Initially, the subgoal trie is empty. Then, the subgoal \texttt{t(f(1),Y)} is called and three trie nodes are inserted: one for functor \texttt{f/1}, a second for integer \texttt{1} and one last for variable \texttt{Y (VAR0).} The subgoal frame is inserted as a leaf, waiting for the answers. Next, the subgoal \texttt{t(X,Y)} is also called. The two calls differ in the first argument, so tries bring no benefit here. Two new trie nodes, for variables \texttt{X (VAR0)} and \texttt{Y (VAR1)}, and a new subgoal frame are inserted. Then, the answers for each subgoal are stored in the corresponding answer trie as their values are computed. Subgoal \texttt{t(f(1),Y)} has two answers, \texttt{Y=f(1)} and \texttt{Y=f(2)},

Fig. 1. YapTab’s original table space organization
so we need three trie nodes to represent both: a common node for functor \(f/1 \) and two nodes for integers 1 and 2. For subgoal \(t(X,Y) \) we have four answers, resulting from the combination of the answers \(f(1) \) and \(f(2) \) for variables \(X \) and \(Y \), which requires nine trie nodes to represent them. Note that, for this particular example, the completed answer trie for \(t(X,Y) \) includes in its representation the completed answer trie for \(t(f(1),Y) \).

3 Global Trie

In this section, we introduce the new \textit{Global Trie for Subterms (GT-ST)} design. Our new proposal extends a previous design named \textit{Global Trie for Terms (GT-T)} [6]. We start by briefly presenting the GT-T design and then we discuss in more detail how we have extended and optimized it to our new GT-ST approach.

3.1 Global Trie for Terms

The GT-T was designed in order to maximize the sharing of tabled data which is structurally equal. In GT-T, all argument and substitution compound terms appearing, respectively, in tabled subgoal calls and tabled answers are represented only once in the GT, thus preventing situations where argument and substitution terms are represented more than once as in the example of Fig. 1.

Each path in a subgoal or answer trie is composed of a fixed number of trie nodes, representing, in the subgoal trie, the number of arguments for the corresponding tabled subgoal call, and, in the answer trie, the number of substitution terms for the corresponding answer. More specifically, for the subgoal tries, each node represents an argument term \(\text{arg}_i \), in which the node's token is used to store either \(\text{arg}_i \), if \(\text{arg}_i \) is a simple term (an atom, integer or variable term), or the reference to the path's leaf node in the GT representing \(\text{arg}_i \), if \(\text{arg}_i \) is a compound (non-simple) term. Similarly for the answer tries, each node represents a substitution term \(\text{subs}_i \), where the node's token stores either \(\text{subs}_i \), if \(\text{subs}_i \) is a simple term, or the reference to the path's leaf node in the GT representing \(\text{subs}_i \), if \(\text{subs}_i \) is a compound term. Figure 2 uses the same example from Fig. 1 to illustrate how the GT-T design works.

Initially, the subgoal trie and the GT are empty. Then, the subgoal \(t(f(1),Y) \) is called and the argument compound term \(f(1) \) (represented by the tokens \(f/1 \) and 1) is first inserted in the GT. The two argument terms are then represented in the subgoal trie (nodes \(\text{arg1} \) and \(\text{VAR0} \)), where the node's token for \(\text{arg1} \) stores the reference to the leaf node of the corresponding term representation inserted in the GT. For the second subgoal call \(t(X,Y) \), the argument terms \(\text{VAR0} \) and \(\text{VAR1} \), representing respectively \(X \) and \(Y \), are both simple terms and thus we simply insert two nodes in the subgoal trie to represent them.

When processing answers, the procedure is similar to the one described above for the subgoal calls. For each substitution compound term \(f(1) \) and \(f(2) \), we also insert first its representation in the GT and then we insert a node in the corresponding answer trie (nodes labeled \(\text{subs1} \) and \(\text{subs2} \) in Fig. 2) storing the
reference to its path in the GT. As \(f(1) \) was inserted in the GT at the time of the first subgoal call, we only need to insert \(f(2) \) (represented by the nodes \(f/1 \) and 2), meaning that in fact we only need to insert the token 2 in the GT, in order to represent the full set of answers. So, we are maximizing the sharing of common terms appearing at different arguments or substitution positions. For this particular example, the result is a very compact representation of the GT, as most subgoal calls and/or answers share the same term representations.

On completion of a subgoal, a strategy exists that avoids loading answers from the answer tries using bottom-up unification, performing instead what is called a \textit{completed table optimization} [3]. This optimization implements answer recovery by top-down traversing the completed answer trie and by executing specific WAM-like instructions from the answer trie nodes. In the GT-T design, the difference caused by the existence of the GT is a new set of WAM-like instructions that, instead of working at the level of atoms/terms/functors/lists as in the original design [3], work at the level of the substitution terms. Consider, for example, the loading of four answers for the call \(t(X,Y) \). One has two choices for variable \(X \) and, to each \(X \), we have two choices for variable \(Y \). In the GT-T design, the answer trie nodes representing the choices for \(X \) and for \(Y \) (nodes \texttt{subs1} and \texttt{subs2} respectively) are compiled with a WAM-like sequence of trie instructions, such as \texttt{try_subs_compound} (for first choices) and \texttt{trust_subs_compound} (for second/last choices). GT-T’s compiled tries also include a \texttt{retry_subs_compound} instruction (for intermediate choices), a \texttt{do_subs_compound} instruction (for single
choices) and similar variants for simple (non-compound) terms: do_subs_simple, try_subs_simple, retry_subs_simple and trust_subs_simple.

Regarding space reclamation, GT-T uses the child field of the leaf nodes (that is always NULL for a leaf node in the GT) to count the number of references to the path it represents. This feature is of utmost importance for the deletion process of a path in the GT, which can only be performed when there is no reference to it, this is true when the leaf node’s child field reaches zero.

3.2 Global Trie for Subterms

The GT-ST was designed taking into account the use of tabling in problems where redundant data occurs more commonly. The GT-ST design maintains most of the GT-T features, but tries to optimize GT’s memory usage by representing compound subterms in term arguments as unique entries in the GT. Therefore, we maximize the sharing of the typed data that is structurally equal at a second level, by avoiding the representation of equal compound subterms, and thus preventing situations where the representation of those subterms occur more than once.

Although GT-ST uses the same GT-T’s tree structure for implementing the GT, every different path in the GT can now represent a complete term or a subterm of another term, but still being an unique term. Consider, for example the insertion of the term $f(g(1))$ in the GT. After storing the node representing functor $f/1$, the process is suspended and the subterm $g(1)$ is inserted as an individual term in the GT. After the complete insertion of subterm $g(1)$ in the GT, the insertion of the main term is resumed by storing a node referencing the $g(1)$ representation in the GT, i.e., by storing a node referencing the leaf node that represents $g(1)$ in the GT.

Despite these structural differences in the GT design, all the remaining data structures remain unaltered. In particular, the GT-T’s structure for the subgoal and answer tries, where each path is composed by a fixed number of nodes representing, respectively, the number of arguments for table subgoal calls and the number of substitution terms for tabled answers, is used without changes. Moreover, features regarding the subgoal frame structure used to maintain the chronological order of answers and to implement answer recovery, also remain unchanged. Figure 3 shows an example of how the GT-ST design works by illustrating the resulting data structures for a tabled program with compound subterms.

Initially, the subgoal trie and the GT are empty. Then, a first subgoal call occurs, $t(f(g(1),g(1)),Y)$, and the two argument terms for the call are inserted in the subgoal trie with the compound term being first inserted in the GT. Regarding the insertion of the compound term $f(g(1),g(1))$ in the GT, we next emphasize the differences between the GT-ST and the GT-T designs.

At first, a node is inserted to represent the functor $f/2$, but then the insertion of the first subterm $g(1)$ is suspended, since $g(1)$ is a compound term. The compound term $g(1)$ is then inserted as a distinct term in the GT and two nodes, for functor $g/1$ and integer 1, are then inserted in the GT with the node
for functor $g/1$ being a sibling of the already stored node for functor $f/2$. After storing $g(1)$ in the GT, the insertion of the main term $f(g(1), g(1))$ is resumed and a new node, referencing the leaf node of $g(1)$, is inserted as a child node of the node for functor $f/2$. The construction of the main term then continues by applying an analogous procedure to its second argument, $g(1)$. However, the term $g(1)$ is already stored in the GT, therefore it is only required the insertion of a new node referencing again the leaf node of $g(1)$.

As for the GT-T design, for the second subgoal call $t(X, Y)$, we do not interact with the GT. Both arguments are simple terms and thus we simply insert two nodes, VAR0 and VAR1, in the subgoal trie to represent them.

The procedure used for processing answers is similar to the one just described for the subgoal calls. For each substitution compound term, we first insert the term in the GT and then we insert a node in the corresponding answer trie storing the reference to its path in the GT (nodes labeled subs1 and subs2 in Fig. 3). The complete set of answers for both subgoal calls is formed by the substitution terms $f(g(1), g(1))$ and $f(g(2), g(2))$. Thus, as $f(g(1), g(1))$ was already inserted in the GT when storing the first subgoal call, only $f(g(2), g(2))$ needs to be stored in order to represent the whole set of answers. As we are maximizing the sharing of common subterms appearing at different argument or substitution

Fig. 3. GT-ST’s table space organization
positions, for this particular example, this results in a very compact representation of the GT.

Regarding the completed table optimization and space reclamation, the GT-ST design implements the same GT-T’s mechanisms described previously. In particular, for space reclamation, the use of the child field of the leaf nodes (that is always NULL for a leaf node in the GT) to count the number of references to the path it represents can be used as before for subterm’s counting.

4 Implementation Details

We then describe the data structures and algorithms for GT-ST’s table space design. Figure 4 shows in more detail the table organization previously presented in Fig. 3 for the subgoal call $t(X, Y)$.

Internally, all tries are represented by a top root node, acting as the entry point for the corresponding subgoal, answer or global trie data structure. For the subgoal tries, the root node is stored in the corresponding table entry’s subgoal_trie_root_node data field. For the answer tries, the root node is stored in the corresponding subgoal frame’s answer_trie_root_node data field. For the GT, the root node is stored in the GT_ROOT_NODE global variable.

Regarding trie nodes, they are internally implemented as 4-field data structures. The first field (token) stores the token for the node and the second (child), third (parent) and fourth (sibling) fields store pointers, respectively, to the first child node, to the parent node, and to the next sibling node. Remember that for the GT, the leaf node’s child field is used to count the number of references to the path it represents. For the answer tries, an additional field (code) is used to support compiled tries.

Traversing a trie to check/insert for new calls or for new answers is implemented by repeatedly invoking a trie_token_check_insert() procedure for each token that represents the call/answer being checked. Given a trie node n and a token t, the trie_token_check_insert() procedure returns the child node of n that represents the given token t. Initially, the procedure traverses sequentially the list of sibling nodes checking for one representing the given token t. If no such node is found, a new trie node is initialized and inserted in the beginning of the list. Searching through a list of sibling nodes could be too expensive if we have hundreds of siblings. A threshold value (8 in our implementation) controls whether to dynamically index the nodes through a hash table, hence providing direct node access and optimizing search. Further hash collisions are reduced by dynamically expanding the hash tables. For simplicity of presentation, in what follows, we omit the hashing mechanism.

When inserting terms in the table space we need to distinguish two situations: (i) inserting tabled calls in a subgoal trie structure; and (ii) inserting answers in a particular answer trie structure. These two situations are handled by the trie_subgoal_check_insert() and trie_answer_check_insert() procedures, respectively. The pseudo-code for the trie_subgoal_check_insert() procedure is shown in Fig. 5. The trie_answer_check_insert() procedure works similarly.
For each argument term t of the given subgoal call, the procedure first checks if it is a simple term. If so, t is inserted in the current subgoal trie. Otherwise, t is first inserted in the GT and, then, it uses the reference to the leaf node representing t in the GT (gt_node in Fig. 5) as the token to be inserted in the current subgoal trie.

The main difference to the previous GT-T design relies in the insertion of terms in the GT, and for that we have changed the trie_term_check_insert() procedure in such a way that when a compound term has compound subterms as arguments, the procedure calls itself. Figure 6 shows the pseudo-code for the
trie_subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call) {
 sg_node = te->subgoal_trie_root_node
 arity = get_arity(call)
 for (i = 1; i <= arity; i++) {
 t = get_argument_term(call, i)
 if (is_simple_term(t))
 sg_node = trie_token_check_insert(sg_node, t)
 else { // t is a compound term
 gt_node = trie_term_check_insert(GT_ROOT_NODE, t)
 sg_node = trie_token_check_insert(sg_node, gt_node)
 }
 }
 return sg_node
}

Fig. 5. Pseudo-code for the trie_subgoal_check_insert() procedure

Changes made to the trie_term_check_insert() procedure in order to support the new GT-ST design.

As we can see in Fig. 5, the initial call to the trie_term_check_insert() procedure is always made with GT_ROOT_NODE as the first argument and with a compound term as the second argument (respectively, arguments gt_node and t in Fig. 6).

trie_term_check_insert(TRIE_NODE gt_node, TERM t) {
 if (is_simple_term(t))
 gt_node = trie_token_check_insert(gt_node, t)
 else { // t is a compound term
 if (gt_node == GT_ROOT_NODE) {
 name = get_name(t)
 arity = get_arity(t)
 gt_node = trie_token_check_insert(gt_node, name)
 for (i = 1; i <= arity; i++) {
 sub_t = get_argument_term(t, i)
 gt_node = trie_term_check_insert(gt_node, sub_t)
 }
 } else { // t is a compound subterm of a compound term
 sub_gt_node = trie_term_check_insert(GT_ROOT_NODE, t)
 gt_node = trie_token_check_insert(gt_node, sub_gt_node)
 }
 }
 return gt_node
}

Fig. 6. Pseudo-code for the trie_term_check_insert() procedure

Initially, the trie_term_check_insert() procedure checks if t is a simple term (always false for the initial call) and, if so, t is simply inserted in the GT as a child node of the given gt_node. Otherwise, t is a compound term and two
situations can occur: (i) if \texttt{gt_node} is \texttt{GT_ROOT_NODE}, then the term’s name is inserted in the GT and, for each subterm of \texttt{t}, the procedure is invoked recursively; (ii) if \texttt{gt_node} is not \texttt{GT_ROOT_NODE}, which means that \texttt{t} is a compound subterm of a compound term, the procedure calls itself with \texttt{GT_ROOT_NODE} as the first argument. By doing that, \texttt{t} is inserted as a unique term in the GT. When the procedure returns, the reference \texttt{sub_gt_node} to the leaf node of the subterm’s path representation of \texttt{t} in the GT is inserted as a child node of the given \texttt{gt_node}.

Regarding the traversal of the answer tries to consume answers, the GT-ST design follows the same implementation as in the GT-T design, and, in particular, for compound terms, it uses a \texttt{trie_term_load()} procedure to load, from the GT back to the Prolog engine, the substitution term given by the reference stored in the corresponding token field. The main difference to the previous GT-T design is in the cases of subterm references in the GT, where the \texttt{trie_term_load()} procedure calls itself to first load the subterm reference from the GT.

5 Experimental Results

We next present some experimental results comparing YapTab with and without support for the GT-T and GT-ST designs. The environment for our experiments was a PC with a 2.66 GHz Intel(R) Core(TM) 2 Quad CPU and 4 GBytes of memory running the Linux kernel 2.6.24 with YapTab 6.2.0.

To put the performance results in perspective and have a well-defined starting point comparing the GT-T and GT-ST approaches, first we have defined a tabled predicate \texttt{t/5} that simply stores in the table space terms defined by \texttt{term/1} facts, and then we used a top query goal \texttt{test/0} to recursively call \texttt{t/5} with all combinations of one and two free variables in the arguments. An example of such code for functor terms of arity 1 (1,000 terms in total) is shown next.

```
:- table t/5.
t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).

test :- t(A,f(1),f(1),f(1),f(1)), fail.  term(f(1)).
      ...                                term(f(2)).
      test :- t(A,B,f(1),f(1),f(1),A), fail. term(f(3)).
      ...                                term(f(998)).
      test :- t(f(1),f(1),f(1),f(1),A,B), fail. term(f(999)).
      test.                               term(f(1000)).
```

We experimented the \texttt{test/0} predicate with 9 different kinds of 1,000 \texttt{term/1} facts: integers, atoms, functor (with arity 1, 2, 4 and 6) and list (with length 1, 2 and 4) terms. Table 1 shows the table memory usage (column \texttt{Mem}) in MBytes, and the execution times, in milliseconds, to store (column \texttt{Str}) the tables (first execution) and to load from the tables (second execution) the complete set of answers without (column \texttt{Ld}) and with (column \texttt{Cmp}) compiled tries for YapTab’s original table design (column \texttt{YapTab}) and for the GT-T (column \texttt{GT-T/YapTab}) and GT-ST (column \texttt{GT-ST/YapTab}) designs. For GT-T
and GT-ST, we only show the ratios over YapTab’s original table design. The execution times are the average of five runs.

Terms	YapTab	GT-T/YapTab	GT-ST/YapTab								
Mem	Str	Ld	Cmp	Mem	Str	Ld	Cmp	Mem	Str	Ld	Cmp
1,000 ints	191 1,270 345 344	1.00 1.05 1.00 1.00	1.00 1.09 1.11 1.07								
1,000 atoms	191 1,423 343 406	1.00 1.04 1.01 1.02	1.00 1.04 1.03 1.08								
1,000 f/1	191 1,680 542 361	1.00 1.32 1.16 2.10	1.00 1.34 1.17 2.13								
1,000 f/2	382 2,295 657 450	0.50 1.10 1.14 1.84	0.50 1.06 1.11 1.88								
1,000 f/4	764 3,843 973 631	0.25 0.81 0.98 1.44	0.25 0.78 1.04 1.53								
1,000 f/6	1,146 5,181 1,514 798	0.17 0.72 0.72 1.38	0.17 0.66 0.71 1.36								
1,000 []/1	382 2,215 507 466	0.50 1.08 1.05 1.61	0.50 1.10 1.02 1.58								
1,000 []/2	764 3,832 818 604	0.25 0.80 0.94 1.38	0.25 1.00 1.05 1.48								
1,000 []/4	1,528 6,566 1,841 1,066	0.13 0.63 0.54 0.96	0.13 0.89 0.66 1.14								

Table 1. Table memory usage (in MBytes) and store/load times (in milliseconds) comparing YapTab’s original table design with the GT-T and GT-ST designs

The results in Table 1 suggest that both GT designs are a very good approach to reduce memory usage and that this reduction increases proportionally to the length and redundancy of the terms stored in the GT. In particular, for functor and list terms, the results show an increasing and very significant reduction on memory usage, for both GT-T and GT-ST approaches. The results for the special cases of integer and atom terms are also very interesting as they show that the cost of representing only simple terms in the respective tries. Note that, although, integer and atom terms are only represented in the respective tries, it is necessary to check for these types of terms, in order to proceed with the respective store/load algorithm.

Regarding execution time, the results suggest that, in general, GT-ST spends more time in the store and load term procedures than GT-T. Such behaviour can be easily explained by the fact that, the GT-ST’s storing and loading algorithms have more sub-cases to process in order to support subterms. These results also seem to indicate that memory reduction for small sized terms, generally comes at a price in storing time (between 4% and 32% more for GT-T and between 4% and 34% more for GT-ST in these experiments). The opposite occurs in the tests where term’s length are higher (between 19% and 37% less for GT-T and 11% and 34% less for GT-ST). Note that with GT-T and GT-ST support, we pay the cost of navigating in two tries when checking/storing/loading a term. Moreover, in some situations, the cost of storing a new term in an empty/small trie can be less than the cost of navigating in the GT, even when the term is already stored in the GT. However, our results seem to suggest that this cost decreases proportionally to the length and redundancy of the terms stored in the GT. In particular, for functor and list terms, GT-T and GT-ST support showed
to outperform the original YapTab design when we increase the length of the
terms stored in the GT.

The results obtained for loading terms also show some gains without compiled
tries (around 5% for GT-T and 1% for GT-ST on average) but, when using
compiled tries the results show some significant costs on execution time (around
42% for GT-T and 47% for GT-ST on average). We believe that this cost is
smaller for GT-T as a result of having less sub-cases in the storing/loading
algorithms. On the other hand, we also believe that some cache behaviour effects,
reduce the costs on execution time, for both GT designs. As we need to navigate
in the GT for each substitution term, we kept accessing the same GT nodes, thus
reducing eventual cache misses. This seems to be the reason why for list terms
of length 4, GT-T outperforms the original YapTab design, both without and
with compiled tries. Note that, for this particular case, both GT-T and GT-ST
only consumes 13% of the memory used with the original YapTab design.

Next, we experimented with a new set of tests specially designed to provide
more expressive results regarding the comparison between the GT-ST and the
GT-T designs. In this tests, we have defined a tabled predicate \texttt{t/1} that simply
stores in the table space terms defined by \texttt{term/1} facts and then we used a
\texttt{test/0} predicate to call \texttt{t/1} with a free variable. We experimented the \texttt{test/0}
predicate with 9 different sets of 500,000 term facts of compound terms (with
arity 1, 2, 3) where its arguments are also compound subterms (with arity 1,
3, 5). An example of such code for a functor term \texttt{f/2} with argument subterms
\texttt{g/3} (500,000 terms in total) is shown next.

\begin{verbatim}
:- table t/1.
t(A) :- term(A).
t(A) :- term(A), fail.
test :- t(A), fail.
test.

term(f(g(1,1,1), g(1,1,1))).
term(f(g(2,2,2), g(2,2,2))).
term(f(g(3,3,3), g(3,3,3))).
...
term(f(g(499998,499998,499998), g(499998,499998,499998))).
term(f(g(499999,499999,499999), g(499999,499999,499999))).
term(f(g(500000,500000,500000), g(500000,500000,500000))).
\end{verbatim}

As opposed to the previous experiments, here we just used one free variable
for the tabled predicate \texttt{t/1}. This difference is necessary because, when we have
more than one free variable and we produce different combinations between
those free variables, we are raising the number of nodes represented in the local
tries. More precisely, different combinations of free variables raises the number
of answers and therefore the number of nodes in the local answer tries.

Table 2 shows the table memory usage (columns \textbf{Memory}) composed by two
columns, one for total memory (columns \textbf{Total}) and the other for GT’s memory
only (columns \textbf{GT}), in MBytes, and the execution times, in milliseconds, to store
(columns \textbf{Str}) the tables (first execution) and to load from the tables (second
execution) the complete set of answers without (columns \textbf{Ld}) and with (columns
\textbf{Cmp}) compiled tries using the GT-T table design (column \textbf{GT-T}), and using
the GT-ST design (column \textbf{GT-ST/GT-T}). For the values referring the GT-ST
we only show the ratios over the GT-T design. Since the main purpose of
this second set of experiments is to compare the differences between GT-T and GT-ST, we did not include YapTab’s original table design in these experiments. The execution times are the average of five runs.

Terms	GT-T	GT-ST/GT-T								
	Memory									
	Total	GT	Str	Ld	Cmp	Total	Str	Ld	Cmp	
f/1	500,000 g/1	17.17	7.63	126	28	1.44	2.00	1.55	1.14	1.00
	500,000 g/3	32.43	22.89	198	34	1.24	1.33	3.29	1.12	1.25
	500,000 g/5	47.68	38.15	293	47	1.16	1.20	1.46	1.00	0.99
f/2	500,000 g/1	32.43	22.89	203	38	1.00	1.00	1.28	1.13	1.09
	500,000 g/3	62.94	53.41	45	60	0.76	0.71	1.18	0.84	0.95
	500,000 g/5	93.46	83.92	438	111	0.67	0.64	1.10	0.67	0.80
f/3	500,000 g/1	47.68	38.15	296	50	0.84	0.80	2.87	1.02	1.03
	500,000 g/3	93.46	83.92	616	142	0.59	0.55	1.25	0.80	0.85
	500,000 g/5	139.24	129.7	832	197	0.51	0.47	0.96	0.67	0.74
Average		0.96	0.97	0.93	0.97	0.91				

Table 2. Table memory usage (in MBytes) and store/load times (in seconds) comparing the GT-T and GT-ST designs for subterm representation

The results in Table 2 suggest that GT-ST support has potential to outperform GT-T’s design with significant reductions on memory usage and execution time for programs with increasing redundancy on compound subterms. However, the results also show that, for some base cases, the storing process can be a very expensive procedure when compared with GT-T’s design.

In general, the results suggest three different situations. For f/1 terms, the costs for GT-ST are globally higher. This happens because GT-ST needs to store one extra node for every distinct subterm representation and there is no redundancy in the f/1 subterms. However, the results show that the memory and execution costs can be reduced when the subterm’s arity increases from g/1 to g/5. This occurs because the cost of the extra node for each subterm became diluted in the number of nodes represented in the GT.

For f/2 terms, a particular situation occurs for the case of g/1 subterms, where the memory spent is the same for both designs. This happens because the extra node used by GT-ST, to represent the reference to the subterm representation, is balanced by the arity of the functor term f/2. From this point on, for the remaining f/2 terms and all the f/3 terms, the GT-ST always outperforms the GT-T, not only for the system’s memory, but also for the execution times with and without compiled tries. These results suggest that, at least for some applications, GT-ST support has potential to achieve significant reductions on memory usage and execution time when compared with GT-T’s design.
6 Conclusions

We have presented a new design for the table space organization, named *Global Trie for Subterms (GT-ST)*, that extends the previous *Global Trie for Terms (GT-T)* design. The GT-ST design maintains most of the GT-T features, but tries to optimize GT’s memory usage by avoiding the representation of equal compound subterms, thus preventing situations where the representation of those subterms occur more than once and maximizing the sharing of the tabled data that is structurally equal at a second level.

Experiments results, using the YapTab tabling system, show that GT-ST support has potential to achieve significant reductions on memory usage and execution time for programs with increasing compound subterms in term arguments, without compromising the execution time for other programs.

Further work will include seeking real-world applications, that pose many subgoal queries possibly with a large number of redundant answers, thus allowing us to improve and expand the current implementation. In particular, we intend to study how alternative/complementary designs for the table space organization can further reduce redundancy in term representation.

Acknowledgments

This work has been partially supported by the FCT research projects HORUS (PTDC/EIA-EIA/100897/2008) and LEAP (PTDC/EIA-CCO/112158/2009).

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Programs. *Journal of the ACM* 43(1) (1996) 20–74
2. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order Stratified Logic Programs. *ACM Transactions on Programming Languages and Systems* 20(3) (1998) 586–634
3. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access Mechanisms for Tabled Logic Programs. *Journal of Logic Programming* 38(1) (1999) 31–54
4. Rocha, R., Fonseca, N.A., Santos Costa, V.: On Applying Tabling to Inductive Logic Programming. In: European Conference on Machine Learning. Number 3720 in LNAI, Springer-Verlag (2005) 707–714
5. Costa, J., Rocha, R.: One Table Fits All. In: International Symposium on Practical Aspects of Declarative Languages. Number 5418 in LNCS, Springer-Verlag (2009) 195–208
6. Costa, J., Raimundo, J., Rocha, R.: A Term-Based Global Trie for Tabled Logic Programs. In: International Conference on Logic Programming. Number 5649 in LNCS, Springer-Verlag (2009) 205–219
7. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling to logic programs. *Theory and Practice of Logic Programming* 5(1 & 2) (2005) 161–205
8. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimination Nets. In: International Joint Conference on Theory and Practice of Software Development. Number 668 in LNCS, Springer-Verlag (1993) 61–74