The effect of Tb doping on the magnetic properties and microstructure of a TbNdFeCoB/Fe₇Co₃ nanocomposite permanent magnet

Hewei Ding, Chunxiang Cui, Wei Yang and Jibing Sun

Full Key Lab. for New Type of Functional Materials in Hebei Province, Hebei University of Technology, School of Materials Science and Engineering, No. 8, Road No. 1, Dingzigu, Hongqiao District, Tianjin 300130, People’s Republic of China

1 Author to whom any correspondence should be addressed.
E-mail: hutcui@hebut.edu.cn

Keywords: nanocomposite permanent magnets, terbium doping, melt spinning, exchange coupling

Abstract
Melt-spun NdFeB-type nanocomposite magnetic materials are important in a number of applications, including electromagnetic sensors, magnetic resonance imaging, and voice coil motors. Herein we investigated the magnetic properties and microstructures of melt-spun TbₓNd₁₀₋ₓFe₈₀Co₄B₆/Fe₇Co₃ (x = 0.1, 0.2, and 0.3) ribbons by means of x-ray diffractometry, scanning electron microscopy, and magnetization experiments. Tb doping resulted in the formation of a 2:14:1 phase with a higher anisotropy field, which suppressed the separation of Fe₇Co₃ branch crystals and improved the magnetic properties of the material. Optimum magnetic properties that include a remanence (B_r) of 0.62 T, a coercivity (H_c) of 612.0 kA m⁻¹, and a maximum magnetic energy product (B(H)_max) of 94.9 kJ m⁻³ were obtained for the annealed Tb₀.₃Nd₉.₇Fe₈₀Co₄B₆/Fe₇Co₃ ribbon. Furthermore, the effective anisotropy constant, Kₑff, and the saturation magnetization, Mₛ, in the nanocomposite were determined by the LATS (law of approach to saturation) method. In this study, the values of Kₑff and Mₛ were found to lie between those of hard and soft magnetic phases, consistent with the exchange-coupling concept.

1. Introduction
Nanocomposite magnetic materials prepared by the melt spinning technique are predicted to possess excellent magnetic properties based on exchange-coupling interactions between adjacent grains [1–3]. Among these, NdFeB-type nanocomposites have been widely used for applications in a variety of fields, including electromagnetic sensors, magnetic resonance imaging, and voice coil motors due to their low rare-earth contents, excellent corrosion resistance, and temperature stabilities. However, the relatively low coercivity and poor thermal stability are the major practical obstacles for such applications. To improve the coercivity and thermal stability of magnets, researchers in recent years have focused more on modifying the processing conditions [4, 5] and/or doping alloy elements such as Nb, Ti, Pr and Dy [6–8]. Among these, added Tb, prefers to enter the 4f sites in the 2:14:1 phase to form the Tb₂Fe₁₄B intermetallic compound [9–13], which has a significantly higher anisotropy field (Hₐ) and Curie temperature than that of Nd₂Fe₁₄B, then changes the intrinsic characteristics of the permanent magnet, engenders ultra-high coercivity and improves the thermal stability of magnets. Furthermore, Tb-rich phases in the outer regions of the Nd₂Fe₁₄B grains also contribute to enhancing the coercivities of samples. On the other hand, melt spinning is one of the common methods for preparing NdFeB-type nanocomposites, in which, the quenching rate is an important factor that affects magnetic properties. Condensation was shown to decrease, and the nucleation rate was shown to increase with increasing melt-spinning rate, and uniform thin grains were easier to obtain through thermal annealing; these grains enhance exchange coupling between the soft and hard magnetic phases, and engender the material with excellent magnetic properties [14]. Lastly, Fe₇Co₃ which has the highest magnetic moment according to the
Slater-Pauling curve is considered to be the best soft magnetic phase. Based on this background, in this study, we over-quenched TbNdFeCoB/Fe7Co3 nanocomposite permanent magnets at a rate of 40 m s\(^{-1}\); subsequently, they were annealed at the appropriate temperature. Further, the effect of Tb content in the TbNdFeCoB/Fe7Co3 nanocomposite on the magnetic properties and microstructure was studied.

2. Experimental procedures

Alloy ingots with Tb\(_x\)Nd\(_{10-x}\)Fe\(_{80}\)Co\(_4\)B\(_6\)/Fe\(_7\)Co\(_3\) (\(x = 0.1, 0.2, \) and 0.3) chemical compositions were prepared by melting 99.9% pure Nd, Co, Fe, Cr, Tb-Fe (Tb% = 71.5%) alloy and Fe-B (B% = 19.6%) alloy, and then re-melted at least four times to ensure homogeneity. Melt-spun ribbons were prepared at a rate of 40 m s\(^{-1}\) in a high-purity argon environment at a chamber pressure of 0.6 \(\times\) 10\(^5\) Pa, and then hot annealed at 700 °C for 5 min. The thermal stability of the amorphous phase was investigated by differential scanning calorimetry (DSC) (TA Instruments SDT-Q600) over the 20 °C–1000 °C temperature range at 10 °C min\(^{-1}\) under N\(_2\). The microstructures and phases of the ribbons were examined by scanning electron microscopy (SEM, Hitachi S-4800) and x-ray diffractometry (XRD, Bruker D8 FOCUS) with Cu K\(_\alpha\) radiation over the 20°–90° 2\(\theta\) range. Magnetic properties were examined using a vibrating sample magnetometer (VSM, Lake Shore 7407) with the field direction in the ribbon plane; the maximum applied field was 1600 kA m\(^{-1}\).

3. Results and discussion

Figure 1 displays the x-ray diffraction patterns of the as-spun Tb\(_x\)Nd\(_{10-x}\)Fe\(_{80}\)Co\(_4\)B\(_6\)/Fe\(_7\)Co\(_3\) (\(x = 0.1, 0.2, \) and 0.3) ribbons. The diffraction patterns of these ribbons show only smooth broad maxima with no appreciable diffraction peaks that correspond to any crystalline phase, which is characteristic of an amorphous structure and indicates that doping with Tb increases the glass-forming ability of the material.

Figure 2 shows SEM images of the as-spun Tb\(_x\)Nd\(_{10-x}\)Fe\(_{80}\)Co\(_4\)B\(_6\)/Fe\(_7\)Co\(_3\) (\(x = 0.1, 0.2, \) and 0.3) ribbons. The ribbon surfaces appear smooth and to be single phase, which is consistent with the XRD results. When compared to the Tb-free alloy [15, 16], Tb addition promotes the formation of amorphous phases. Amorphous alloys devoid of atomic long range order and crystalline defects are characterized by excellent soft magnetic properties [17]. Table 1, which summarizes relevant magnetic data, reveals that the coercivities (H\(_{ci}\)) and the remanence ratios (\(J_r/J_s\)) of the alloys are very low; the maximum value of H\(_{ci}\) is only 26.3 kA m\(^{-1}\), which confirms the soft magnetic nature of these amorphous alloys.

Figure 3 displays DSC curves for the melt-spun Tb\(_x\)Nd\(_{10-x}\)Fe\(_{80}\)Co\(_4\)B\(_6\)/Fe\(_7\)Co\(_3\) (\(x = 0.1, 0.2, \) and 0.3) ribbons. There are two obvious exothermic peaks (\(x = 0.1 \) and 0.2) that correspond to the crystallization temperatures of the Fe\(_7\)Co\(_3\) and (Tb, Nd)\(_2\)Fe\(_{14}\)B phases, respectively. On the other hand, five exothermic peaks at about 473.2, 633.8, 644.9, 665.2, and 685.9 °C are observed when \(x = 0.3\). It should be noted that the 473.2 °C peak corresponds to the crystallization temperature of the Fe\(_7\)Co\(_3\) phase, while the other exothermic peaks correspond to the crystallization temperatures of the Tb\(_{2}\)Fe\(_{14}\)B, Tb\(_2\)Co\(_{14}\)B, Nd\(_2\)Fe\(_{14}\)B, and Nd\(_2\)Co\(_{14}\)B phases, respectively. Inspection of figure 3 reveals that the 2:14:1 phase initially exhibits only two exothermic peaks.
Figure 2. SEM images of $\text{Tb}_x\text{Nd}_{10-x}\text{Fe}_{80}\text{Co}_4\text{B}_6/\text{Fe}_7\text{Co}_3$ as-spun ribbons. (a) $x = 0.1$, (b) $x = 0.2$, and (c) $x = 0.3$.

Table 1. Magnetic data for $\text{Tb}_x\text{Nd}_{10-x}\text{Fe}_{80}\text{Co}_4\text{B}_6/\text{Fe}_7\text{Co}_3$ melt-spun ribbons ($x = 0.1, 0.2, \text{and } 0.3$).

Alloy	$H_c (\text{kA m}^{-1})$	$J_s(T)$	$J_r(T)$	J_s/J_r
Tb0.1	24.6	0.14	1.69	0.08
Tb0.2	23.9	0.15	1.98	0.08
Tb0.3	26.3	0.17	1.78	0.10

Figure 3. DSC curves of materials with different Tb content.
because of the low Tb content \((x = 0.1 \text{ and } 0.2)\); however, other exothermic peaks were observed with increasing Tb content \((x = 0.3)\). Among these, the Nd\(_2\)Fe\(_{14}\)B main phase was found to crystallize at 665.2 \(^\circ\)C. In addition, doping with Tb was observed to reduce the temperatures at which the two main phases crystallize, which can be explained by the free-volume model \([18]\). The addition of Tb changes the free volume of the melt-spun alloy available for the diffusion of atoms during crystallization; consequently, the short range order of the local ribbon structure changes, and diffusivity increases, resulting in a decrease in the crystallization temperature. Furthermore, the enthalpy of the phase transition is associated with the area under the peak, which reveals that more heat is released during the crystallization of the main phase. Due to glass-transformation temperatures of 400 \(^\circ\)C–700 \(^\circ\)C, we chose 700 \(^\circ\)C as the annealing temperature to ensure the full crystallization of all alloys.

The x-ray diffraction patterns of Tb\(_{x}\)Nd\(_{10-x}\)Fe\(_{80}\)Co\(_{4}\)B\(_6\)/Fe\(_7\)Co\(_3\) \((x = 0.1, 0.2, \text{ and } 0.3)\) ribbons annealed at 700 \(^\circ\)C for 5 min are shown in figure 4. According to previous reports \([19, 20]\), the peaks observed at 20 values of 44.7\(^\circ\), 65.1\(^\circ\), and 82.4\(^\circ\) correspond to the (110), (200), and (211) reflections of Fe\(_7\)Co\(_3\) respectively, with the remaining peaks ascribable to hard magnetic 2:14:1 phases. We also found that the relative intensities of the diffraction peaks that correspond to the Fe\(_7\)Co\(_3\) phase decreased distinctly with the introduction of Tb, which indicates that Tb doping inhibits the growth of Fe\(_7\)Co\(_3\) grains and increases the volume fraction of the hard magnetic phase. At the same time, the diffraction peaks that correspond to the Fe\(_7\)Co\(_3\) and the 2:14:1 phases in the Tb-doped ribbons are clearly broadened compared to those of the Tb-free ribbon, which indicates that Tb doping leads to a decrease in grain size. Indeed, especially for the Tb\(_{0.3}\)Nd\(_{9.7}\)Fe\(_{80}\)Co\(_{4}\)B\(_6\)/Fe\(_7\)Co\(_3\) ribbon, the considerable increases in peak intensities reflect a significant conversion to the 2:14:1 phase; hence, figure 5 only provides the microstructure of this sample. Particles of uniform size and regular spherical structure are clearly observable in figure 5. Furthermore, the mean grain size for the Fe\(_7\)Co\(_3\) and 2:14:1 phases were calculated by Scherrer’s equation to be about 35 nm and 67.1 nm, respectively; consequently, each particle includes approximately many grains.

Figure 6 shows the Curie temperatures of the two phases of the Tb\(_{x}\)Nd\(_{10-x}\)Fe\(_{80}\)Co\(_{4}\)B\(_6\)/Fe\(_7\)Co\(_3\) alloys ribbons annealed at 700 \(^\circ\)C as functions of Tb content \((x = 0.1, 0.2, \text{ and } 0.3)\). The Curie temperature of the soft magnetic phase was observed to increase a little, but basically remained stable with increasing Tb content; however, the Curie temperature of the hard magnetic phase clearly increased with increasing Tb content. These observations are ascribable to the higher Curie temperature \((620\text{ k})\) of the Tb\(_2\)Fe\(_{14}\)B intermetallic compound compared to that of Nd\(_2\)Fe\(_{14}\)B \((585\text{ k})\), which suggests the addition of Tb increases thermal stability and enables the more-expensive use of NdFeB nanocomposite magnets.

Figure 7 shows the magnetic properties of the annealed Tb\(_{x}\)Nd\(_{10-x}\)Fe\(_{80}\)Co\(_{4}\)B\(_6\)/Fe\(_7\)Co\(_3\) \((x = 0.1, 0.2, \text{ and } 0.3)\) ribbons, with the corresponding data listed in table 2. The three key properties of a permanent magnetic material, namely remanence, coercivity, and the maximum magnetic energy product, increase simultaneously with increasing Tb content, which is possibly ascribable to the added Tb entering the Nd\(_2\)Fe\(_{14}\)B-phase lattice to form a \((\text{Tb, Nd})_2(\text{Fe, Co})_4\)B phase with a higher anisotropy field, which suppresses the separation of Fe\(_7\)Co\(_3\) branch crystals and improves the properties of the magnet. However, due to anti-ferromagnetic coupling between elemental Tb and Fe, the saturation magnetic polarization reduces little with increasing Tb content. We conclude that the rather rich combination of magnetic properties of the 0.3 at% Tb alloy ribbon
Figure 5. SEM images of Tb$_{0.3}$Nd$_{9.7}$Fe$_{80}$Co$_4$B$_6$/Fe$_7$Co$_3$ ribbons annealed at 700 °C. (a) ×10k and (b) ×50k.

Figure 6. Curie temperatures of the soft (red) and hard (black) magnetic phases of annealed Tb$_x$Nd$_{10-x}$Fe$_{80}$Co$_4$B$_6$/Fe$_7$Co$_3$ ribbons as functions of Tb content.

Figure 7. Magnetic properties of Tb$_x$Nd$_{10-x}$Fe$_{80}$Co$_4$B$_6$/Fe$_7$Co$_3$ ribbons annealed at 700 °C ($x = 0.1, 0.2, \text{and } 0.3$).
Table 2. Magnetic data of Tb$_{0.1}$Nd$_{0.9}$Fe$_{80}$Co$_{4}$B$_{6}$/Fe$_{7}$Co$_{3}$ (x = 0.1, 0.2, 0.3) annealed ribbons.

alloy	H_{c} (kA m$^{-1}$)	J_{c} (T)	J_{s} (T)	$(BH)_{max}$ (kJ m$^{-3}$)
Tb0.1	326.9	0.46	1.27	47.9
Tb0.2	455.9	0.49	1.12	66.8
Tb0.3	612.0	0.62	1.07	94.9

$(H_{c})_{a} = 612.0$ kA m$^{-1}$, $J_{c} = 0.62$ T, and $(BH)_{max} = 94.9$ kJ m$^{-3}$ is a consequence of its fine microstructure, which significantly enhances the exchange coupling between hard and soft magnetic grains and engenders the material with excellent magnetic properties. The initial magnetic curve for the optimally annealed Tb$_{0.3}$Nd$_{0.7}$Fe$_{80}$Co$_{4}$B$_{6}$/Fe$_{7}$Co$_{3}$ ribbon is also shown in figure 7. At first, the initial magnetic polarization displays a moderately rising trend, and then rises quickly as the field becomes comparable to its intrinsic coercivity, which means that magnetization reversal is governed mainly by a coercive mechanism involving magnetic domain-wall pinning [21, 22], with grain boundaries likely to act as domain-wall-pinning centers. In addition, the effective anisotropy constant, K_{eff}, and the saturation magnetization, M_{s}, of a nanocomposite can be determined by the LATS (law of approach to saturation) method [23, 24], as described by the following formula:

$$M = M_{s}(1 - a/H - b/H^2 - c/H^3 - ...) + \chi_{p}H,$$

where χ_{p} is the paramagnetic susceptibility, and $\chi_{p}H$ can be ignored when the magnetic field is insufficiently large; a, b, c, and χ_{p} are coefficients related to the magnetic properties, M_{s} is the saturation magnetization, and H is the magnetic field. First, the saturation magnetization M_{s} and coefficient a were respectively determined to be about 1.78×10^6 A m$^{-1}$ and 4.13×10^5 A m$^{-1}$ on the basis of the linear relationship between M and 1/H at the higher magnetic field. The relationship between $M + M_{s} \times a/H$ and 1/H^2 is linear in the near-saturation stage; hence, the saturation magnetization M_{s} and coefficient b were determined to be about 1.67×10^6 A m$^{-1}$ and 4.47×10^{10} (A/m)2, respectively. For a tetragonal multi-crystal material, coefficient b is given by the relationship:

$$b = 4K_{eff}^2/15\mu_{0}^{2}M_{s}^{2},$$

where K_{eff}, the effective anisotropy constant, was calculated to be about 0.86×10^6 J m$^{-3}$. Compared to the theoretical values for a 2:14:1 hard magnetic phase ($M_{s} = 1.28 \times 10^6$ A m$^{-1}$, $K_{1} = 4.9 \times 10^7$ J m$^{-3}$), and a Fe$_{7}$Co$_{3}$ soft magnetic phase ($M_{s} = 1.99 \times 10^6$ A m$^{-1}$, $K_{1} = 2 \times 10^4$ J m$^{-3}$), the saturation magnetization M_{s} and the effective anisotropy constant K_{eff} for the Tb$_{0.3}$Nd$_{0.7}$Fe$_{80}$Co$_{4}$B$_{6}$/Fe$_{7}$Co$_{3}$ nanocomposite in this paper lie between those of the hard and the soft magnetic phases, consistent with the exchange-coupling concept.

4. Conclusion

Tb$_{x}$Nd$_{1-x}$Fe$_{80}$Co$_{4}$B$_{6}$/Fe$_{7}$Co$_{3}$ (x = 0.1, 0.2, and 0.3) ribbons were prepared by the melt spinning technique. After hot annealing, the ribbons were composed of Fe$_{7}$Co$_{3}$ and 2:14:1 phases. The mean grain size of the Fe$_{7}$Co$_{3}$ and 2:14:1 phases were determined from Scherrer’s equation to be about 35 nm and 67.1 nm, respectively. This indicates that Tb doping forms a (Tb, Nd)$_{2}$(Fe, Co)$_{14}$B phase with a higher anisotropy field, which suppresses the separation of Fe$_{7}$Co$_{3}$, increases the grain size, and improves the properties of the magnet. The best magnetic properties were observed when 0.3 at% Tb was added; the annealed Tb$_{0.3}$Nd$_{0.7}$Fe$_{80}$Co$_{4}$B$_{6}$/Fe$_{7}$Co$_{3}$ ribbon exhibited a remanence (J_{r}) of 0.62 T, coercivity (H_{c}) of 612.0 kA m$^{-1}$, and a maximum magnetic energy product $(BH)_{max}$ of 94.9 kJ m$^{-3}$. The coercive mechanism was confirmed to involve magnetic domain-wall pinning, as evidenced by the initial magnetic curve. Furthermore, we found that the values of K_{eff} and M_{s} determined by the LATS method lie between the values for the hard and the soft magnetic phases, in agreement with the exchange-coupling concept.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant no. 51271070), Chinese Ministry of Education Doctoral Program (grant no. 20131371110002), Natural Science Foundation Key Project (grant no. E2016202406) and Natural Science Foundation of Tianjin (grant no. 14JCYBJC17900).

ORCID iDs

Chunxiang Cui @ https://orcid.org/0000-0002-4617-5303
References

[1] Ma B, Sun A, Gao X, Bao X, Li J and Lang H 2018 Preparation of anisotropic bonded NdFeB/SmFeN hybrid magnets by mixing two different size powders J. Magn. Magn. Mater. 457 70
[2] Li W, Li H, Zhu S and Cui L 2018 Simultaneously improved corrosion resistance and magnetic properties of α-Fe/Nd$_2$Fe$_{14}$B type nanocomposite magnets by interfacial modification J. Alloys Compd. 762 1
[3] Qiu L, Zhao L, Wang X, Shen L, Zhao G, Wang F and Xie L 2019 A hybrid coercivity mechanism for exchange-coupled nanocomposite permanent magnets J. Rare Earths 37 1030
[4] Zhao L Z, Zhou Q, Zhang J S, Jiao D L, Liu Z W and Greneche J M 2017 A nanocomposite structure in directly cast NdFeB based alloy with low Nd content for potential anisotropic permanent magnets Mater. Des. 117 326
[5] Rahimi H, Ghasemi A, Mozaffaririna R and Tavoosi M 2017 Coercivity enhancement mechanism in Dy-substituted Nd-Fe-B nanopolycrystals synthesized by sol-gel base method followed by a reduction-diffusion process J. Magn. Magn. Mater. 429 182
[6] Derewnicka-Krawczyńska D, Ferrari S, Bilovol V, Pagnola M, Morawiec K and Saccone F D 2018 Influence of Nb, Mo, and Ti as doping metals on structure and magnetic response in NdFeB based melt spun ribbons J. Magn. Magn. Mater. 462 83
[7] Jin C, Chen R, Yin W, Yang Z, Ju J, Lee D and Yan A 2016 Magnetic properties and phase evolution of sintered Nd-Fe-B magnets with intergranular addition of Pr-Co alloy J. Alloys Compd. 670 72
[8] Hamed Rahimi A G and Mozaffarian R 2017 The role of dysprosium on the structural and magnetic properties of (Nd$_{1-x}$Dy$_x$)$_2$Fe$_{14}$B nanoparticles J. Magn. Magn. Mater. 424 199
[9] Kobayashi K, Urushibata K, Matsushita T, Sakamoto S and Suzuki S 2014 Magnetic properties and domain structures in Nd-Fe-B sintered magnets with Tb additive reacted and diffused from the sample surface J. Alloys Compd. 615 569
[10] Marko Soderzink M K and Soderzink K Z 2016 High-coercivity Nd-Fe-B magnets obtained with the electrophoretic deposition of submicron TbF$_3$, followed by the grain-boundary diffusion process Acta Mater. 115 278
[11] Lu K, Bao X, Tang M, Chen G, Mu X, Li J and Gao X 2017 Boundary optimization and coercivity enhancement of high (BH)$_{max}$Nd-Fe-B magnet by diffusing Pr-Tb-Cu-Al alloys Scr. Mater. 138 83
[12] Liu X B and Altounian Z 2012 The partitioning of Dy and Tb in NdFeB magnets: a first-principles study J. Appl. Phys. 111 07A701
[13] Cao X J, Chen L, Guo S, Di J H, Ding G F, Chen R J, Yan A R and Chen K Z 2018 Improved thermal stability of Tb$_x$-coated sintered Nd-Fe-B magnets by electrophoretic deposition J. Alloys Compd. 703 9
[14] Sheng H C, Zeng X R, Fu D J and Deng F 2010 Differences in microstructure and magnetic properties between directly-quenched and optimally-annealed Nd-Fe-B nanocomposites materials Phys. B: Condens. Matter. 405 690
[15] Ding H W, Cui C X, Yang W and Sun J B 2017 The effects of Co addition on the microstructure and magnetic properties of PrNdFeB/Fe$_3$Co$_{1-x}$ nanocomposite J. Rare Earths 35 468
[16] Ding H W, Cui C X and Sun J B 2014 Effect of dysprosium content on the magnetic properties of nanocrystalline (Pr$_{1-x}$Nd$_x$)$_2$Fe$_{14}$B$_{1-x}$ alloys Mater. Sci. Forum. 789 28
[17] Neamţu B V, Chicaşiţ H F, Ababei G, Gabor M, Marinca T F and Lupu N 2017 A comparative study of the Fe-based amorphous alloy prepared by mechanical alloying and rapid quenching J. Alloys Compd. 703 119
[18] Esfahani M et al 2010 Effects of Ti and C additions on the nanostructure and magnetic properties of (Nd, Pr)-(Fe, Co, Ga)-B melt-spun nanocomposite ribbons Phys. B: Condens. Matter. 405 3838
[19] Jing P P, Du J L, Wang J B, Zhu Z T, Feng H M, Liu Z L and Liu Q F 2016 Synthesis, characterization and magnetic performance of FeCo alloy nanoribbons Mater. Lett. 162 176
[20] Yang W, Cui C X, Liu Q Z, Cao B, Liu L and Zhang Y 2014 Fabrication and magnetic properties of Sm$_2$Co$_{17}$ and Sm$_2$Co$_{17}$/Fe$_3$Co$_3$ magnetic nanowires via AAO templates J. Cryst. Growth 399 1
[21] Cui B Z, Huang M Q, Yu R H, Kramp A, Dent J, Miles D D and Liu S 2003 Magnetic properties of (Nd, Pr, Dy)$_2$Fe$_{14}$B/α-Fe nanocomposite magnets crystallized in a magnetic field J. Appl. Phys. 93 8128
[22] Andreev S V, Puskarsky V I, Maltsiev N V, Pamyatnykh L A, Tarasov E N, Kudrevaevkh N V and Goto T 1997 Law of approach to saturation in highly anisotropic ferromagnets Application to Nd-Fe-B melt-spun ribbons J. Alloys Compd. 260 196
[23] Zhang H, Zeng D C and Liu Z W 2010 The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy J. Magn. Magn. Mater. 322 2375
[24] Feng W C, Han G B, Zhu M G and Li W 2004 Exchange-coupling interaction and effective anisotropy of NdFeB nanocomposite permanent magnetic materials Acta Phys. Sinica 53 3171