Unraveling the Species Dilemma in *Capsicum frutescens* and *C. chinense* (Solanaceae): A Multiple Evidence Approach Using Morphology, Molecular Analysis, and Sexual Compatibility

Jit B. Baral and Paul W. Bosland

Department of Agronomy and Horticulture, MSC 3Q, New Mexico State University, Las Cruces, NM 88003-8003

Additional Index Words. *Capsicum chinense*, *C. frutescens*, species, RAPD, polymorphism, multiple evidence, genetic relationships

Abstract. The species status of two morphologically closely related species, *Capsicum frutescens* L. and *C. chinense* Jacq., was investigated using typological, phylogenetic, and biological species concepts. Diagnostic morphological differences, randomly amplified polymorphic DNA (RAPD) marker-based cluster analysis, and hybrid analyses were used to delimit *C. frutescens* and *C. chinense*. In many cases two morphological characters, calyx constriction and flower position, can separate accessions of *C. frutescens* from *C. chinense*. The RAPD-based analysis clearly separated accessions of *C. frutescens* and *C. chinense* into two distinct groups. The average genetic similarity within *C. frutescens* and *C. chinense* accessions was 0.85 and 0.8, respectively, whereas the average genetic similarity between *C. frutescens* and *C. chinense* accessions was only 0.38. The progenies obtained from *C. frutescens* and *C. chinense* hybridization had reduced fertility. Based on these evidences, *C. frutescens* and *C. chinense* represent two morphologically diagnosable, phylogenetically distinct, and reproductively isolated species.

Two *Capsicum* L. species, *C. frutescens* and *C. chinense*, are morphologically similar. One of the most lingering questions in *Capsicum* taxonomy is whether *C. frutescens* and *C. chinense* are two different species or botanical varieties of the same species. A species is defined as a group of actually or potentially interbreeding natural populations that are reproductively isolated from other such groups (Mayr, 1970). On the other hand, botanical variety is a distinct morphological subgroup within a species. It has been argued that *C. frutescens* and *C. chinense* are separate species (Smith and Heiser, 1957), and conversely that they are both one species, but different varieties (Eshbaugh et al., 1983). However, the genetic relationship between these two species is still in speculation.

Capsicum frutescens has maintained its species recognition since Linnaeus (1753). He described it as having paired pedicels per node and a frutescent stem, i.e., perennial plant habit. Shaw and Khan (1928) added waxy greenish-white corolla as a unique character of *C. frutescens*. In addition, Standley (1931) stated that *C. frutescens* has small fruits and the pedicel is generally longer than the fruit.

The name *C. sinense* (*C. chinense*) was first given by Jacquin in 1776. But this recognition was unknown until Smith and Heiser (1957) re-examined these materials and suggested separating Jacquin’s *Capsicum sinense* from *C. frutescens* and renaming it as *C. chinense*. Smith and Heiser (1957) described *C. chinense* as having glabrous leaves and stem, with ovate to ovate lanceolate leaves. There are two to five flower buds per node, pedicels are declinate and relatively short and thick. In addition, it has a calyx without teeth, but with a marked constriction between the pedicel and calyx. However, there are accessions that possess one or a few diagnostic morphological characters from one species and the rest of the characters from the other species, creating difficulties in species assignment. Smith and Heiser (1957) compared these two species systematically for the first time, and concluded that *C. frutescens* and *C. chinense* could be distinguished morphologically. Their hybridization experiment between *C. frutescens* and *C. chinense* resulted in a very low seed set as well as a very low pollen viability in plants of the F1 generation. The F1 plants produced nonviable seeds. As more accessions of both species were studied, they were found to be closely related. The relationship appeared to be so close that separate species treatment was eventually questioned by many researchers (Eshbaugh, 1993; McLeod et al., 1983; Pickersgill, 1988). The conflicting reports have confounded the biological and taxonomic relationships between these two species.

Capsicum frutescens and *C. chinense* are sympatrically distributed throughout their range in Peru, Brazil, Colombia, and Bolivia (Pickersgill, 1971). A numerical taxonomic analysis using morphological characters could not separate the accessions of *C. frutescens* and *C. chinense* according to species (Pickersgill et al., 1979). Similarly, use of various enzyme loci also could not distinguish *C. annum*, *C. frutescens*, and *C. chinense* accessions (Jensen et al., 1979). Egawa and Tanaka (1984) reported fertile interspecific hybrids between *C. frutescens* and *C. chinense* with regular meiosis.

Herein, we describe a more comprehensive examination of *C. frutescens* and *C. chinense* using morphological, phylogenetic, and sexual compatibility as evidence. The morphological, phylogenetic, and sexual compatibility approaches correspond with typological, phylogenetic, and biological species concepts, respectively. Morphological characters were examined to determine whether fixed differences exist between *C. frutescens* and *C. chinense* (typological species concept). Randomly ampli-
ified polymorphic DNA (RAPD) marker-based cluster analysis determined if *C. frutescens* and *C. chinense* are two separate species, based on the phylogenetic species concept. The sexual compatibility between *C. frutescens* and *C. chinense* was investigated to understand whether *C. frutescens* and *C. chinense* are reproductively isolated (biological species concept).

Materials and Methods

Plant materials. A total of 191 accessions of *C. frutescens* and 223 accessions of *C. chinense* were acquired from the USDA, Regional Plant Introduction Station, Griffin, Ga., and 20 accessions of *C. frutescens* were obtained from the New Mexico Capsicum Accession (NMCA) collection at New Mexico State Univ. These accessions represent collections from various regions of the World.

Morphology. Morphological data were collected from plants in field plots for the following diagnostic morphological characters: leaf texture, number of flowers per axil, flower position, calyx margin, calyx constriction, corolla color, anther color, filament color, fruit persistence, and fruit size. The morphological data from the field observations were analyzed by discriminant function analysis (SAS Institute, 2001) to determine if any combination of characteristics could separate these two species.

RAPD analysis. RAPD produced polymorphic DNA markers. Accessions were selected for RAPD analysis based on morphological characterizations. Plants fitting the current taxonomic description of *C. frutescens* and *C. chinense* and showing uniformity in the field were selected for RAPD analysis. Among the 75 accessions selected for the analysis, 41 accessions were *C. frutescens* and the other 34 accessions were *C. chinense*. In addition, ‘Greenleaf Tabasco’, an interspecific hybrid between *C. frutescens* and *C. chinense*, was also included. This accession possesses most of the characters of *C. frutescens*, but contains some features, such as a constricted calyx and virus resistance from *C. chinense* (Greenleaf et al., 1970). One accession of *C. annum* L. was used as an outgroup. A list of accessions including the PI number and the country of origin is provided in Table 1.

DNA isolation. From each accession, six plants were randomly selected. Collection of tissue samples, DNA isolation, and DNA quantification methods were as described by Votava and Bosland (2002). After quantification, the DNA was diluted to 10 ng mL$^{-1}$ in a TE buffer (10 mM Tris and 0.1 mM EDTA) for further use.

PCR for RAPD analysis. The cellular DNA was amplified using the polymerase chain reaction method (PCR) to generate RAPD markers (Williams et al., 1993). PCR was performed on a Geneamp 9600 PCR system (Perkin Elmer Corp., Foster City, Calif.). The decamer primers obtained from Operon Technology (Alameda, Calif.) were diluted in distilled water. Primers used in this analysis were: OPAA-11, OPE-05, OPM-04, OPA-04, OPA-07, OPE-12, OPC-06, OPA-16, OPE-02, OPA-17, OPF-05, OPM-09, and OPA-02. The total volume of each PCR reaction was 20 mL containing: 20 ng template DNA, 10 mM Tris-HCl, 10 mM KCl, 356 mM MgCl$_2$, 101 mM each dNTP, 2 units AmpliTaq polymerase (Stoeffel fragment), and 0.24 mM primer.

The PCR thermal profile was as described by Gallego and Martínez (1997). There was a preliminary step of 2 min at 94 °C for the template denaturation. The first 10 cycles consisted of 30 s at 94 °C, 1 min at 55 °C, and 4.5 min at 72 °C. The primer annealing temperature (55 °C) was reduced by 1 °C in each cycle. The next 25 cycles also followed the same thermal profile except the annealing temperature was held constant at 45 °C. There was a hold of 1 min at 72 °C for the final extension. In order to verify the reliability and repeatability of the RAPD, 10% of the total samples were duplicated. If each pair of duplicated samples failed to produce identical bands, the gel was discarded. There was always one blank sample as a negative control, which contained all reagents for the PCR reaction, except the DNA template.

The PCR product was separated by electrophoresis in a 1.85% agarose gel in TBE buffer (89 mM Tris, 89 mM Borate, and 2.5 mM EDTA), stained with ethidium bromide, and viewed under ultraviolet light. The computer software alpha imager gel documentation system (Alpha Inno-tech Corp., St. San Leandro, Calif.) generated a digital image of the gel. The presence or absence of RAPD bands was scored manually in a gel image analysis software, RFLP-Pro (DNA Pro Scan, Nashville, Tenn.). If a RAPD band was present in a particular accession, it was scored as “1”; if the band was not present it was scored as “0.” The frequency for each RAPD marker was calculated as a proportion of the presence of a particular RAPD marker, divided by the total number of accessions included in the analysis for that species.

Distribution of RAPD frequency among the accessions of each species was plotted on a graph. The unweighted pair-group with arithmetic averages (UPGMA) method was used in the cluster analysis (Sneath and Sokal, 1973), which was available in the computer software numerical taxonomy and multivariate analysis system, NTSYS (Rohlf, 1998). The similarity coefficient for all possible pairwise combinations was calculated using NTSYS. The Simqual program of NTSYS uses an algorithm to calculate the Dice similarity coefficient for all possible pairwise combinations (Dice, 1945). The value of similarity coefficient lies between “0” and “1.” The pairwise similarity coefficient matrix was used for the cluster analysis using UPGMA method. The result of the cluster analysis was represented in the form of a dendrogram.

Hybridization study. For the hybridization study, five *C. chinense* and five *C. frutescens* accessions were selected based on the results of the RAPD analysis to maximize the genetic distance among the hybridizing parent. All possible combinations including reciprocal hybridizations were made. The hybridizations were accomplished in a climate-controlled greenhouse. The flowers were emasculated at the white bud stage. A fresh opened flower was detached from the male parent and the dehisced anthers were rubbed on the stigma surface of the emasculated flower. Initially five hybridizations per combination were attempted, but if the flower aborted after pollination, the hybridization was repeated. Up to 15 hybridizations were made for some combinations. The mature fruits were harvested and the number of seeds set in each fruit was recorded.

Analysis of F$_1$ plants. The F$_1$ seeds obtained from the hybridizations were germinated in the laboratory. The seedlings were transplanted into pots in the greenhouse. Three F$_1$ plants from each hybrid combination were selected for pollen viability testing. Three flowers prior to anthesis were collected from each plant. Anthers were carefully removed with forceps and placed on a microscope slide. A drop of 0.75% aceto-carmine (Carolina Biological Supply Co., N.C.) was added to each slide. The anthers were ruptured with the forceps to release the pollen grains. The slide was briefly exposed to a flame and spread with forceps to allow better staining. The total number of pollen grains and the total number of viable pollen grains in a microscope field were counted. Three counts were taken per slide.
Table 1. List of Capsicum frutescens and C. chinense accessions used in the RAPD analysis.

Accession ID	Origin†	Species	Accession ID	Origin†	Species
PI 3939497	Costa Rica	C. frutescens	NMCA 40029	Columbia	C. frutescens
PI 439498	Costa Rica	C. frutescens	NMCA 40028	SA218	C. frutescens
PI 439502	Costa Rica	C. frutescens	Greenleaf Tabasco	United States	C. frutescens
PI 439506	Cuba	C. frutescens	PI 213918	Bolivia	C. chinense
PI 439508	El Salvador	C. frutescens	Grief 9269	Costa Rica	C. chinense
PI 439509	Fiji	C. frutescens	Grief 9304	Colombia	C. chinense
PI 439514	Mexico	C. frutescens	PI 215734	Peru	C. chinense
PI 260479	Peru	C. frutescens	PI 224424	Costa Rica	C. chinense
PI 273427	United States	C. frutescens	Grief 9238	Costa Rica	C. chinense
PI 281347	India	C. frutescens	Grief 9302	Colombia	C. chinense
PI 281396	Mexico	C. frutescens	PI 224446	Costa Rica	C. chinense
PI 355395	Ecuador	C. frutescens	PI 241668	Ecuador	C. chinense
PI 355808	Ecuador	C. frutescens	PI 238052	Peru	C. chinense
PI 358811	Malaysia	C. frutescens	PI 238047	Guyana	C. chinense
PI 358968	Ecuador	C. frutescens	PI 593612	United States	C. chinense
PI 238059	Guatemala	C. frutescens	PI 439455	Peru	C. chinense
PI 238060	Suriname	C. frutescens	PI 439448	Peru	C. chinense
PI 439492	Brazil	C. frutescens	PI 439447	Peru	C. chinense
PI 439490	Brazil	C. frutescens	PI 439442	Peru	C. chinense
PI 439489	Brazil	C. frutescens	PI 439426	Costa Rica	C. chinense
PI 39488	Bolivia	C. frutescens	PI 439476	United States	C. chinense
PI 439494	Costa Rica	C. frutescens	PI 439463	Peru	C. chinense
PI 439493	Colombia	C. frutescens	PI 439462	Peru	C. chinense
PI 439491	Brazil	C. frutescens	PI 439460	Peru	C. chinense
PI 224416	Costa Rica	C. frutescens	PI 438614	Mexico	C. chinense
PI 195296	Guatemala	C. frutescens	PI 438630	Mexico	C. chinense
PI 593613	United States	C. frutescens	PI 438648	Mexico	C. chinense
PI 856675	United States	C. frutescens	PI 438643	Mexico	C. chinense
PI 441686	Brazil	C. frutescens	PI 260477	Peru	C. chinense
PI 441653	Brazil	C. frutescens	PI 260471	Peru	C. chinense
PI 441647	Brazil	C. frutescens	PI 260558	Peru	C. chinense
PI 441645	Brazil	C. frutescens	PI 260522	Peru	C. chinense
PI 441642	Brazil	C. frutescens	PI 260492	Bolivia	C. chinense
Grif 9331	Costa Rica	C. frutescens	PI 315010	Peru	C. chinense
PI 593614	Philippines	C. frutescens	PI 315019	Peru	C. chinense
NMCA 40040	Zimbabwe	C. frutescens	PI 315021	Peru	C. chinense
NMCA 40035	Ecuador	C. frutescens	PI 315026	Peru	C. chinense
NMCA 40030	Columbia	C. frutescens			

†USDA, Plant Introduction Number.
†Country from where the material was originally collected.

Results

Morphological characterization. Morphological characterization was completed for a total 301 accessions. Capsicum frutescens and C. chinense accessions were assigned to the corresponding species, based on morphological characteristics. According to the morphological characteristics, 70% of the accessions agreed with the species assignment at the germplasm repository. Among the accessions assigned to C. frutescens in the germplasm repository, 8% belonged to C. chinense after field observations. Similarly, among the C. chinense accessions, 9% were found to belong to C. frutescens. In addition, 8% of the accessions possessed an intermediate phenotype, making it difficult to be assigned to either C. frutescens or C. chinense species based morphology.

Variations were observed on fruit related characteristics such as fruit shape, size, and color. There were some accessions in C. frutescens that had large, persistent (nondeciduous) fruits. Accessions PI 439498, PI 439502, PI 238059, PI 238060, and PI 195296 fell into this category. These accessions were originally collected in Costa Rica and Guatemala. The large, pendent fruit accessions suggest that some accessions of C. frutescens exist in a domesticated form in addition to the cultivated ‘Tabasco’.

Discriminant function analysis. Discriminant function analysis evaluated the ability of diagnostic characters to classify the accessions used in the RAPD analysis.

Table 2. Results of discriminant analysis in Capsicum using calyx constriction and flower position.

Species	C. chinense	C. frutescens	Total
From			
C. chinense	32†	2 (94.12)†	34 (100.00)
C. frutescens	2	38 (5.88)	40 (100.00)
Total	34	40	74

†Number of observations.
†Percent classified into species.
the accessions to their corresponding species. From this analysis, calyx constriction and flower position were found to be the most useful combination of diagnostic characters to differentiate the two species (Table 2). When these two characteristics were used in the analysis, 95% of the C. frutescens accessions could be correctly identified. Similarly, 94% of the C. chinense accessions could be correctly identified with the same two diagnostic characters.

The character erect flower position (Fig. 1) was present in 98% of the C. frutescens accessions and only in 8% of the C. chinense accessions. The second character separating these two species was the presence of a distinct circular constriction between the pedicel and the calyx in C. chinense. Calyx constriction was present in more than 92% of the C. chinense accessions, whereas in C. frutescens it was found in only 5% of the accessions.

Five percent of the C. chinense accessions had a single flower per axil, 5% had a mixture of single and double flowers per axil on the same plant, and 90% had two or more flowers per axil. Among the C. frutescens accessions, 57% of the plants had a single flower per axil, 33% had a single and two flowers, and 10% had two or more flowers per axil.

DISTRIBUTION OF RAPD MARKERS. The PCR method generated RAPD markers among the accessions of C. frutescens and C. chinense (Fig. 2). The RAPD markers varied in size from 200 bp to 2000 bp. Using 13 primers, 106 reproducible polymorphic RAPD markers were obtained among the 75 accessions.

The majority of RAPD markers were found to be present either in a very few accessions or in the majority of the accessions in both species (bimodal distribution). If a RAPD marker frequency was greater than 0.95 in one species and <0.05 in the other species, that marker was considered as fixed (Wiens and Servedio, 2000). Two RAPD markers were found to be fixed in C. frutescens (OPA7_{250} and OPM9_{195}) and three RAPD markers were found to be fixed in C. chinense (OPAA11_{325}, OPAA11_{300}, and OPC6_{320}). Furthermore, C. chinense had 25 unique RAPD markers that were not present in C. frutescens. However, 17 of these unique RAPD markers in C. chinense had a frequency of <0.05. Capsicum frutescens had seven unique RAPD markers, but five of them had a frequency of <0.05.

GENETIC SIMILARITY AND CLUSTER ANALYSIS. The genetic similarities within a species and between the species were calculated by averaging the Dice’s similarity coefficient for pairwise comparison. The average genetic similarity between C. frutescens and C. chinense was 0.38, whereas the average genetic similarity within C. frutescens was 0.85 and within C. chinense was 0.86.

The cluster analysis results were graphically represented in the form of a dendrogram (Fig. 3). There were two clusters, one containing all the C. frutescens accessions, and the other containing all the C. chinense accessions. The RAPD-based cluster analysis placed ‘Greenleaf Tabasco’ in the C. frutescens group indicating high genetic similarity (Fig. 3). But, it was distinctly separated from rest of the C. frutescens accessions occupying an intermediate position between C. frutescens and C. chinense group.

SEXUAL COMPATIBILITY. In the sexual compatibility study, five accessions of C. frutescens (PI 439497, PI 439498, PI 939489, PI 441642, and PI 195296) and five accessions of C. chinense (PI 213918, Grif 9269, Grif 9302, PI 438648, and PI 315026) were tested. A total of 819 hybridizations were performed, 352 of which were between species, and 467 of which were within species. From 93 hybridization combinations, 87 combinations developed fruits with seeds, and six combinations developed fruits without seeds. The paired t-test of reciprocal hybridization was not significant (P = 0.80), indicating the absence of unidirectional incompatibility between these two species. Selfing in C. frutescens gave only a 15% fruit set, whereas the hybridization among the accessions of C. frutescens produced a 36% fruit set. The difference between selfing and sibbing the plants indicates the presence of a weak self-incompatibility system in C. frutescens.

COMPARISON OF FERTILITY IN F1. The pollen viability of F1 plants derived from the interspecific hybridizations was very low as compared to the intraspecific hybrid plants. The pollen grains...
of *C. frutescens* and *C. chinense* were similar in shape, size, and appearance under the microscope. The aceto-carmine staining technique successfully discriminated normal, viable pollen from nonviable pollen. The viable pollen appeared as large, smooth, bright red, turgid, and triangular structures (Fig. 4). Dead pollen grains appeared very small with a wrinkled surface, probably from the result of cell collapse. Pollen viability was 28% in interspecific hybrid plants, and 75% in intraspecific hybrids.

Discussion

In most cases, *Capsicum frutescens* and *C. chinense* could be identified by the combination of two diagnostic morphological characters: calyx constriction and flower position. The presence of species-specific RAPD markers also provided evidence that fixed differences exist between the two species at the molecular level. *Capsicum frutescens* and *C. chinense* represent two diag-
With introgressive hybridization, genes of one species move into another through the process of interspecific hybridization followed by successive backcrosses to one of the parents (Anderson, 1949). Natural hybridizations between two species have been reported in many plant species such as in *Helianthus* L. (Riesenberg, 2000), *Iris* L. (Arnold and Bennett, 1993), *Pinus* L. (Wang et al., 1990), and *Stephanomeria* Nutt. (Galliez and Gottlieb, 1982). The cultivar Greenleaf Tabasco offered an excellent example of introgression. This particular cultivar was developed by interspecific hybridization between *C. frutescens* and *C. chinense* followed by repeated backcrossing to *C. frutescens* (Greenleaf et al., 1970). ‘Greenleaf Tabasco’ resembles *C. frutescens*, but also possesses a few morphological characters of *C. chinense*. The RAPD analysis revealed that ‘Greenleaf Tabasco’ indeed possessed some DNA from *C. chinense*, as indicated by the presence of *C. chinense* specific RAPD markers. Thus, the *Capsicum* accessions with intermediate phenotypes represent introgressive hybridization, not intraspecific variation.

Capsicum frutescens and *C. chinense* are reproductively isolated. The development of partial sterility in the interspecific hybrid progenies of *C. frutescens* and *C. chinense* provided evidence for reproductive isolation. The pollen viability of F1 progenies derived from the interspecific hybridizations was 28%, whereas the pollen viability of the F1 progenies derived from the intraspecific hybridization was 75%. In addition, the interspecific hybrid plants generally had lower fruit set. Embryo abortions were clearly visible as small brown scars on the placental surface of the fruits. Some plants even failed to produce fruit with seeds. The reduced pollen viability of interspecific hybrids has been reported in other crops. The pollen viability of the interspecific hybrid between *Nuphar microphylla* Fernald and *N. variegata* Engelm. ex Clinton was 23% (Padgett et al., 1998). The pollen viability of interspecific hybrid among *Helianthus* species ranged from 11% to 42%. Thus, there appears to be a genetically controlled mechanism(s) that is preventing gene flow between *C. frutescens* and *C. chinense*.

Morphological observations, RAPD-based cluster analysis, and sexual compatibility provided evidence that *C. frutescens* and *C. chinense* are distinct species. Whether the species concept used is typological, phylogeographic, or biological, they all unequivocally support the preposition that these two groups of plants are separate species. Furthermore, the RAPDs have explanatory power and can be used as a basis for establishing species identification. Two particularly important features of RAPDs were ability to support the preposition that these two groups of plants are separate species.

Literature Cited

Anderson, E. 1949. Introgressive hybridization. Wiley, New York.
Arnold, M.L. and B.D. Bennett. 1993. Natural hybridization in Louisiana irises: Genetic variation and ecological determinants, p. 115–139. In: R.J. Harrison (ed.). Hybrid zones and evolutionary process. Oxford Univ. Press, Oxford, England.
Baral, J. and P.W. Bosland. 2002. Genetic diversity of a *Capsicum* germplasm collection from Nepal as determined by randomly amplified polymorphic DNA markers. J. Amer. Soc. Hort. Sci. 127:316–324.
Chan, K.F. and M. Sun. 1997. Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of *Amaranthus*. Theor. Appl. Genet. 95:865–873.

DICE, L.R. 1945. Measures of the amount of ecological association between species. Ecology 26:297–302.

Egawa, Y. and M. Tanaka. 1984. Cytogenetic relationships among three species of chili peppers, *Capsicum chinense*, *Capsicum frutescens* and *Capsicum baccatum*. Jpn. J. Breeding 34:50–56.

Eshbaugh, W.H. 1993. Peppers: History and exploitation of a serendipitous new crop discovery, p. 132–139. In: J. Janick and J.E. Simon (eds.). New crops. Wiley, New York.

Eshbaugh, W.H., S.I. Guttman, and M.J. McLeod. 1983. The origin and evolution of domesticated *Capsicum* species. J. Ethnobiol. 3:49–54.

Gallez, G.P. and L.D. Gottlieb. 1982. Genetic evidence for the hybrid origin of the diploid plant *Stephonomeria diegensis*. Evolution 36:1158–1167.

Gallego, F.J. and I. Martinez. 1997. Method to improve reliability of random amplified polymorphic DNA markers. Biotechniques 22:663–664.

Greenleaf, W.H., J.A. Martin, J.G. Lease, E.T. Sims, and L.O. Van Blaricom. 1970. Greenleaf Tabasco, A new tobacco etch virus resistant ‘Tabasco’ pepper variety (*Capsicum frutescens* L.). Alabama Agr. Expt. Sta., Auburn Univ. Ala.

Jacquin, N.J. 1776. Hortus Botanicus Vindobonensis 3 pl. 82.

Jensen, R.J., M.J. McLeod, W.H. Eshbaugh, and S.I. Guttman. 1979. Numerical taxonomic analyses of allozymic variation in *Capsicum* (Solanaceae). Taxon 28:315–327.

Lange, O. and M.T. Schifino Wittmann. 2000. Isozyme variation in wild and cultivated species of the genus *Trifolium* L. (Leguminosae). Ann. Bot. 86:339–345.

Linnaeus, C. 1753. Species plantarum. Laurentii, Salvi, Stolkholm.

Mayr, E. 1970. Populations, species and evolution: an abridgement of animal species and evolution. Harvard Univ. Press, Cambridge, Mass.

McLeod, M.J., S.I. Guttman, W.H. Eshbaugh, and R.E. Rayle. 1983. An electrophoretic study of the evolution in *Capsicum* (Solanaceae). Evolution 37:562–574.

Padgett, D.J., D.H. Les, and G.E. Crow. 1998. Evidence for the hybrid origin of *Nuphar rubrodisca* (Nymphaeaceae). Amer. J. Bot. 85:1468–1476.

Pickersgill, B. 1971. Relationships between weedy and cultivated forms in some species of chili peppers (Genus *Capsicum*). Evolution 25:683–691.

Pickersgill, B. 1988. The genus *Capsicum*: A multidisciplinary approach to the taxonomy of cultivated and wild plants. Biologisches Zentralblatt 107:381–389.

Pickersgill, B., C.B. Heiser, and J. McNeill. 1979. Numerical taxonomic studies on variation and domestication in some species of *Capsicum*, p. 679–700. In: Hawkes, J.G., R.N. Lester, and A.D. Skelding (eds.). The biology and taxonomy of the Solanaceae. Academic, London.

Rieseberg, L.H. 2000. Crossing relationships among ancient and experimental sunflower hybrid lineages. Evolution 54:859–865.

Rohlf, F.J. 1998. Numerical taxonomy and multivariate analysis system (NTSYSpc): Ver. 2.0. Exeter Publ., Setauket, N.Y.

SAS Inst. 2001. SAS Software release 8.2. SAS Inst., Cary, N.C.

Shaw, F.J.F. and A.R. Khan. 1928. Studies in Indian chillies. Memoirs Dept. Agr. India, Bot. Ser. 16:59–82.

Smith, P.G. and C.B. Heiser, Jr. 1957. Breeding behavior of cultivated peppers. Proc. Amer. Soc. Hort. Sci. 70:286–290.

Sneath, P.H.A. and R.R. Sokal. 1973. Numerical taxonomy. W.H. Freeman, San Francisco.

Standley, P.C. 1931. Flora of the Lancetilla Valley, Honduras. Field Museum of Natural History, Bot. Ser. 10.

Wang, X.R., A.E. Szmidt, A. Lewandowski, and G.R. Wang. 1990. Evolutionary analysis of *Pinus densata* (Masters): A putative tertiary hybrid. Theor. Appl. Gen. 80:635–640.

Wiens, J.J. and M.R. Servedio. 2000. Species delimitation in systematics: inferring diagnostic differences between species. Proc. Royal Soc. London, Ser. B 267:631–636.

Williams, J.G.K., M.K. Hanafey, J.A. Rafalski, and S.V. Tingey. 1993. Genetic analysis using random amplified polymorphic DNA markers. Methods Enzymol. 218:704–740.

Votava, E.J. and P.W. Bosland. 2002. A cultivar by any other name: Genetic variability in an heirloom bell pepper—*Capsicum annuum* var. *annuum* ‘California Wonder’. HortScience 37:1100–1102.