The mechanisms underlying antigenic variation and maintenance of genomic integrity in *Mycoplasma pneumoniae* and *Mycoplasma genitalium*

Mohamad S. Hakim¹,2 · Luthvia Annisa¹ · Rizka O. A. Jariah³ · Cornelis Vink⁴

Received: 28 May 2020 / Revised: 2 August 2020 / Accepted: 12 September 2020 / Published online: 24 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Mycoplasma pneumoniae and *Mycoplasma genitalium* are important causative agents of infections in humans. Like all other mycoplasmas, these species possess genomes that are significantly smaller than that of other prokaryotes. Moreover, both organisms possess an exceptionally compact set of DNA recombination and repair-associated genes. These genes, however, are sufficient to generate antigenic variation by means of homologous recombination between specific repetitive genomic elements. At the same time, these mycoplasmas have likely evolved strategies to maintain the stability and integrity of their ‘minimal’ genomes. Previous studies have indicated that there are considerable differences between mycoplasmas and other bacteria in the composition of their DNA recombination and repair machinery. However, the complete repertoire of activities executed by the putative recombination and repair enzymes encoded by *Mycoplasma* species is not yet fully understood. In this paper, we review the current knowledge on the proteins that likely form part of the DNA repair and recombination pathways of two of the most clinically relevant *Mycoplasma* species, *M. pneumoniae* and *M. genitalium*. The characterization of these proteins will help to define the minimal enzymatic requirements for creating bacterial genetic diversity (antigenic variation) on the one hand, while maintaining genomic integrity on the other.

Keywords Antigenic variation · DNA repair · Homologous DNA recombination · *M. genitalium* · *M. pneumoniae*

Introduction

Mycoplasma pneumoniae and *Mycoplasma genitalium* are pathogenic bacteria that cause significant health problems in the human population. These pathogens are genetically very similar (Himmelreich et al. 1997), and belong to the *Mollicutes* class of bacteria. While the genome of *M. pneumoniae* is significantly longer than that of *M. genitalium* (816 kb versus 580 kb) (Fraser et al. 1995; Himmelreich et al. 1996), the ~479 orthologous proteins encoded by these species on average display ~67% identity (Himmelreich et al. 1997).

M. pneumoniae causes both upper respiratory tract infections (RTIs), such as pharyngitis and tracheobronchitis, and lower RTIs, such as pneumonia. *M. pneumoniae* infection and transmission occurs during both endemic and epidemic settings in developed as well as developing countries. It has been reported that *M. pneumoniae* is responsible for up to 40% of the cases of community-acquired bacterial pneumonia (CABP) found during epidemic situations, many of which concern children (Waites et al. 2017). In addition, this bacterium was found to induce extrapulmonary infections...
as well as post-infectious, immune-mediated diseases, such as Guillain–Barre syndrome (Meyer Sauteur et al. 2014a, 2016). Interestingly, M. pneumoniae can also be found in the respiratory tract of asymptomatic children (Spuesens et al. 2016, 2013), challenging both the diagnosis and treatment of M. pneumoniae infections in this patient group (Meyer Sauteur et al. 2014b, 2018; Spuesens et al. 2014).

M. genitalium is an etiological agent of various diseases of the human reproductive tract, such as non-gonococcal urethritis (NGU) in men, and cervicitis, endometritis, pelvic inflammatory disease (PID) and tubal-factor infertility in women (Deborde et al. 2019; McGowin and Totten 2017). The prevalence of M. genitalium infections is about 1.3–3.9% in the general population and significantly higher in specific groups such as female commercial sex workers (15.9%) (Baumann et al. 2018). M. genitalium infections are also relatively common in human immunodeficiency virus (HIV)-infected patients (Deborde et al. 2019). Therefore, it was considered to include M. genitalium screening and treatment interventions as part of HIV prevention strategies (Napierala Mavedzenge et al. 2015).

As human pathogens, Mycoplasma spp. continuously evolve due to external pressures exerted by the host immune system as well as the use of antibiotic drugs. Among the most common strategies employed by pathogenic microorganisms to evade immune surveillance and control by the host is antigenic variation. Antigenic variation is successfully employed by various bacterial pathogens, including Neisseria spp., Mycoplasma spp., and Treponema pallidum (Vink et al. 2012). It is also effectively used by viral pathogens, such as influenza virus (Shao et al. 2017). Antigenic variation leads to continuous alterations or modifications of the surface molecules that are mainly targeted by the host immune systems. Consequently, the humoral (antibody) response generated against the previous (“old”) surface molecules cannot effectively recognize and neutralize the modified (“new”) molecules, allowing the pathogen to persist in the infected host for a prolonged period of time (Dehon and McGowin 2017; Qin et al. 2019). Antigenic variation is also hypothesized to be involved in the repeated epidemics caused by M. pneumoniae (Dumke et al. 2008). In this species, as well as in M. genitalium, this antigenic variation is predicted to be generated through homologous recombination between specific, repetitive DNA elements that are dispersed throughout their genomes (Rocha and Blanchard 2002). These repetitive elements encode the antigenic surface molecules P1 and MgPa of M. pneumoniae and M. genitalium, respectively (Fig. 1).

Fig. 1 Repetitive elements in the genome of Mycoplasma pneumoniae and Mycoplasma genitalium. a The P1 gene (ORF MPN141) of M. pneumoniae contains two variable DNA elements, RepMP2/3 and RepMP4. Multiple variants of RepMP2/3 and RepMP4 elements are dispersed within the genome of M. pneumoniae. There are ten variants of RepMP2/3 and each variant is labeled ‘a’ to ‘j’ in blue. For RepMP4, there are eight variants and each variant is labeled ‘a’ to ‘h’ in red. The drawing is a modification of figures that were previously published by Spuesens et al. (Spuesens et al. 2009, 2011). b The MgPa operon of M. genitalium contains two variable genes, mgpB (ORF MG191) and mgpC (ORF MG192). There are three MgPar homologous regions within the MG191 gene, indicated as repeat regions B (orange), EF (yellow), and G (green), while there is only one, large MgPar homologous region within the MG192 gene, indicated as repeat region JKLM (light blue). Invariable, conserved regions within each gene are indicated in black. Nine homologous MgPar sequences, containing diverse copies of mgpB- and mgpC-associated homologous regions, are present in the genome of M. genitalium. Homologous sequences are indicated in the same color. The drawing is a modification of a figure that was previously published by McGowin and Totten (2017)
While antigenic variation through homologous recombination may be crucial for the propagation of Mycoplasma species in human populations, a major issue for these organisms is the maintenance of the integrity of their genomes, in particular because these genomes are much more compact than the genomes of most other bacterial taxa. Interestingly, the DNA repair systems that are involved in maintaining genome integrity in M. pneumoniae and M. genitalium may also be involved in the aforementioned recombination between repetitive DNA elements. Consequently, the DNA repair machinery of these organisms may be directly involved in antigenic variation.

The aim of this paper is to review our current knowledge on the genes and proteins that likely form part of the DNA repair and recombination pathways of M. pneumoniae and M. genitalium. Several previous studies have indicated that considerable differences exist between mycoplasmas and other bacteria in the composition of their sets of DNA recombination and repair-related genes. Thus, characterization of these genes and the encoded proteins will help to define the minimal enzymatic requirements for creating bacterial genetic diversity (antigenic variation) on the one hand, while maintaining genomic integrity on the other.

The role of homologous DNA recombination between repetitive elements in antigenic variation of M. pneumoniae and M. genitalium

Mechanism of antigenic variation and the role of repetitive element recombination

Mycoplasmas are the smallest known self-replicating organisms, both regarding cell dimensions and genome size (Wilson and Collier 1976). As mentioned above, the genomes of M. pneumoniae (strain M129) and M. genitalium (strain G-37) are only 816 kb and 580 kb in length, respectively (Fraser et al. 1995; Himmelreich et al. 1996). By comparison, the genome of ‘model’ bacterium Escherichia coli strain K12 is 4.639 kb in length (Blattner et al. 1997). It is remarkable that, in spite of their limited sizes, the genomes of M. pneumoniae and M. genitalium consist of a significant portion of repeated DNA elements, which constitute approximately 8% and 4% of the genome, respectively (Himmelreich et al. 1996; Peterson et al. 1993). These multiple repeated elements, which are dispersed throughout the genome, display a high level of sequence similarity, but are not identical. In M. pneumoniae, these are referred to as Rep MP (RepMP2/3 and RepMP4) elements; while in M. genitalium they are termed MgPa repeats (MgPars) (Fraser et al. 1995; Peterson et al. 1995; Ruland et al. 1990; Su et al. 1988).

Interestingly, some of the copies of the repeated DNA elements were found to form part of genes encoding antigenic surface proteins. Among these proteins are the cytadhesins P1 of M. pneumoniae (Himmelreich et al. 1996) and MgPa of M. genitalium (Aparicio et al. 2018; Fraser et al. 1995). It has been demonstrated that the repeated DNA elements (including those in the P1 and MgPa operon) can undergo homologous DNA recombination, which may result in sequence variation (i.e. antigenic variation) of the P1 and MgPa proteins (Ma et al. 2007; Peterson et al. 1995; Ruland et al. 1990; Spuesens et al. 2009).

Basic mechanisms of homologous DNA recombination

For general DNA editing and repair, bacteria can employ homologous DNA recombination, in which a stretch of DNA is eventually exchanged with an identical (or almost identical) sequence that originates either from another site of the genome or from extrachromosomal DNA. Much of our knowledge of homologous recombination is derived from studies performed in E. coli (Kowalczykowski et al. 1994). However, the basic mechanisms as well as genes or proteins involved in this process are conserved across eubacteria (Kuzminov 1999).

The initial step of homologous recombination requires single-stranded breaks or nicks at corresponding regions of two homologous DNA sequences by a specific endonuclease (Fig. 2). Subsequently, the two homologous single strands from each DNA molecule exchange positions in a reciprocal manner, resulting in basepair formation between the transferred (donor) and recipient DNA (heteroduplex formation). This reciprocal strand exchange produces a so-called Holliday junction (or Chi structure), a point at which two single DNA strands from two homologous double-stranded (ds) DNA molecules exchange. Migration of the Holliday junction (branch migration) allows further extension of the stretch of heteroduplex DNA. As the final step, resolution (cutting) of the Holliday junction by a resolvase enzyme, and subsequent ligation of the remaining single-stranded nicks by DNA ligase, will produce two intact, recombined DNA molecules (Fig. 2a) (Bianco et al. 1998; Kowalczykowski et al. 1994; Kuzminov 1999).

In E. coli, homologous recombination requires a coordinated action of more than 20 different proteins. Of these, RecA is involved in the initial step of pairing of the two homologous DNA sequences and single-strand invasion onto the other DNA template. While RuvA and RuvB are proteins that are necessary for branch migration, the resolution of the Holliday junction is executed by RuvC (Eggleston and West 1996; Kowalczykowski et al. 1994). Although the aforementioned process of homologous recombination involves the reciprocal, bidirectional
exchange of DNA strands, homologous recombination can also be non-reciprocal and unidirectional, through a process termed gene conversion. In gene conversion, the original recipient sequences are replaced by the donor sequences.
Fig. 2. The basic mechanism of homologous DNA recombination. a Reciprocal homologous recombination. This process is initiated by generation of single-strand breaks or nicks at corresponding regions of two homologous sequences by a specific endonuclease. Subsequently, the two homologous single strands from each DNA molecule exchange positions in a reciprocal manner (crossing over), resulting in heteroduplex formation. This reciprocal strand exchange produces a Holliday junction. Branch migration of the Holliday junction allows further extension of the stretch of heteroduplex DNA. Resolution of the Holliday junction is executed by a resolvase enzyme. As the final step, ligation of the remaining single-strand nicks is performed by DNA ligase, resulting in two intact, recombinated DNA molecules. b Non-reciprocal homologous recombination (gene conversion). This process is initiated by the generation of a double-strand break. The resulting 5′ ends are then resected, generating 3′ ssDNA tails. In the example shown, one of the 3′ tails transfers to -and basepairs with- another, homologous DNA molecule, forming a displacement (D)-loop. The newly formed heteroduplex DNA is extended by DNA polymerase. The invading strand, including the newly synthesized stretch of DNA, is then displaced from the template strand and reanneals to the DNA strand it was originally attached to (strand transfer). Remaining single-stranded gaps are subsequently filled by the combined action of DNA polymerase I and DNA ligase and are eventually lost from the bacterial genome (Fig. 2b) (Bianco et al. 1998; Chen et al. 2007).

Evidence of homologous recombination-induced antigenic variation in M. pneumoniae and M. genitalium

For M. pneumoniae, it has been hypothesized that homologous recombination between RepMP elements may occur through gene conversion-like processes. This hypothesis was supported by analysis of the RepMP elements from a collection of 23 M. pneumoniae isolates. Sequence analysis of all 10 variants of RepMP2/3 and all 8 variants of RepMP4 from these isolates indicated that one or more ‘donor’ RepMP variants appeared to have been copied to other (‘recipient’) RepMP variants, including those located within the P1 operon (Spuesens et al. 2009). The same phenomenon was also observed among RepMP5 variants, resulting in amino acid changes in another surface-exposed cytadhesin protein, named P40 (Spuesens et al. 2011). In addition, analysis of an additional set of 23 M. pneumoniae clinical isolates also showed a significant rate of reorganization through recombination events between these repetitive elements (Lluch-Senar et al. 2015).

Sequence analysis of the M. genitalium mgpB and mgpC genes (the second and third gene within the MgPa operon) provided strong support for the hypothesis that recombination occurs between MgPars, and results in antigenically distinct MgPa variants both in vitro and in clinical isolates (Fookes et al. 2017; Iverson-Cabral et al. 2006, 2007; Ma et al. 2007, 2014). In an experimental chimpanzee model of M. genitalium infection, sequence variation within the mgpC gene initially occurred within five weeks post infection and accumulated progressively (Ma et al. 2015).

Interestingly, in the majority of the cases, MgPa recombination events in M. genitalium were found to be caused by reciprocal DNA recombination events, in contrast to the homologous recombination events found in M. pneumoniae, which all appeared to have resulted from gene conversion events. Another difference between the recombination processes in these mycoplasmas is that recombination events occur at a significantly higher frequency in M. genitalium than in M. pneumoniae (Vink et al. 2012).

Because both the M. pneumoniae P1 protein and the M. genitalium MgPa protein are highly immunogenic (Razin and Jacobs 1992), the recombination-induced antigenic variation of these proteins may play a crucial role in the pathogenicity of both pathogens and their evasion from the host’s immune system (Vink et al. 2012). Consequently, antigenic variation may be a critical factor in allowing M. pneumoniae and M. genitalium to persist in infected humans for prolonged periods of time (Atkinson et al. 2008; Hardy et al. 2002; Iverson-Cabral et al. 2006; Vink et al. 2012). In support of this notion, persistent infections with these bacteria were observed in animal models of infection (Hardy et al. 2002; McGowin et al. 2010; Wood et al. 2017). In addition, the antigenic variation of P1 and MgPa may facilitate adaptation of the bacteria to different host microenvironments, because both P1 and MgPa proteins are surface-exposed proteins that function in the attachment of the bacteria to host cells (Ma et al. 2014).

The Mycoplasma genes and proteins involved in DNA recombination

Due to the compact nature of all metabolic pathways in mycoplasmas, it is likely that the enzymatic machinery that governs recombination between repeated DNA elements in M. pneumoniae and M. genitalium largely overlaps with the machinery involved in general DNA recombination and repair in these bacteria (Estevao et al. 2011). As shown in Table 1, the predicted set of genes and proteins involved in DNA recombination and repair in these mycoplasmas is limited in number. Notably, M. pneumoniae and M. genitalium lack a significant number of enzymes known to be involved in DNA repair in other bacterial classes. These enzymes include LexA, PhrI, PhrII, RecBCD, AddAB, RecFOR, RecQ and RecJ, as well as proteins involved in mismatch repair, such as MutS, MutL, and MutH (Carvalho et al. 2005).

The functions of several of the proteins listed in Table 1 have been investigated. These proteins include SSB (Sluijter et al. 2008), RecA (Sluijter et al. 2009), RuvA (Ingleston et al. 2002; Sluijter et al. 2012), RuvB (Estevao et al. 2011), and RecU (Sluijter et al. 2011, 2010). Remarkably, as detailed below, some of these proteins showed significantly
different activities than their homologs from other bacterial classes.

SSB_{Mpn}

The MPN229 ORF of *M. pneumoniae* encodes a single-stranded DNA-binding protein (SSB_{Mpn}) consisting of 166 amino acids. Functional characterization of this ~18-kDa protein revealed that it possesses similar activities as its counterpart from *E. coli*. SSB_{Mpn} was reported to form tetramers that efficiently and selectively bind to single-stranded DNA (ssDNA) substrates. This activity was independent of the presence of divalent cations, such as Mg²⁺ (Sluijter et al. 2008). Importantly, SSB_{Mpn} efficiently supported *E. coli* Recombinase A (*RecA_{Eco}*)-promoted homologous DNA recombination.

The *M. genitalium* counterpart of SSB_{Mpn}, SSB_{Mge}, is encoded by the MG091 gene. Although SSB_{Mpn} and SSB_{Mge} are 61% identical on the amino acid sequence level (Sluijter et al. 2008), the latter protein has not yet been subjected to functional analyses.

RecA_{Mpn} and RecA_{Mge}

The MPN490 and MG339 ORFs of *M. pneumoniae* and *M. genitalium*, respectively, were reported to encode homologs of Recombinase A (*RecA*) proteins. These ~37-kDa proteins, which were designated RecA_{Mpn} and RecA_{Mge}, respectively, were found to have a high similarity on the amino acid sequence level (79% identity) (Sluijter et al. 2009). Functional in vitro studies demonstrated that both RecA_{Mpn} and RecA_{Mge} possess similar activities as their counterpart from *E. coli*, by mediating recombination events between homologous DNA substrates in an ATP-, pH- and divalent cation (Mg²⁺)-dependent manner. Also, the recombinase activity of RecA_{Mpn} and RecA_{Mge} was found to be dependent on the presence of SSB_{Mpn} (Sluijter et al. 2009). In vivo, it was shown that RecA_{Mge} efficiently mediates MgpB and MgpC phase and antigenic variation in *M. genitalium*. However,
this protein was not found to play a role in DNA repair (Burgos et al. 2012).

RuvA_{Mpn} and RuvA_{Mge}

Both *M. pneumoniae* and *M. genitalium* were also found to encode homologs of RuvA and RuvB. The RuvA homologs of these species are encoded by ORFs MPN535 and MG358, and were named RuvA_{Mpn} and RuvA_{Mge}, respectively. Although the sequence similarity between these ~23.7-kDa proteins is high (68.8% identity), both proteins demonstrated notably different in vitro activities. RuvA_{Mpn} exhibits a relatively high binding affinity for both Holliday junction (HJ) and ssDNA substrates, in contrast to both RuvA_{Mge} and RuvA_{Eco}, which preferentially bind to HJs. Additionally, while RuvA_{Mpn} was not found to stimulate RuvB activity, RuvA_{Mge} was shown to stimulate the helicase and ATPase activities of RuvB_{Mge} (Ingleston et al. 2002; Sluijter et al. 2012).

RuvB_{FH}, RuvB_{M129} and RuvB_{Mge}

The ORFs MPN536 and MG359 have been shown to encode RuvB homologs of *M. pneumoniae* and *M. genitalium*, respectively, with a molecular mass of ~35.0 kDa. Interestingly, the two main subtypes of *M. pneumoniae* were found to encode variants of RuvB that only differ at a single amino acid position; subtype 1 strains were shown to encode a RuvB homolog (termed RuvB_{M129}) carrying a tryptophan residue at position 140, whereas subtype 2 strains have a leucine residue at this position in the protein (RuvB_{FH}) (Estevao et al. 2011). Interestingly, this sequence difference was reported to have a major impact on the in vitro activities of these proteins. While RuvB_{FH} was found to have significant divalent cation- and ATP-dependent DNA helicase activity, RuvB_{M129} only displayed marginal levels of DNA-unwinding activity. The *M. genitalium*-encoded RuvB homolog (RuvB_{Mge}), which shares 84.4% of its amino acid sequence with its *M. pneumoniae* counterparts, also showed a relatively low DNA-unwinding activity (Estevao et al. 2011).

RecU_{Mpn} and RecU_{Mge}

The MG352-encoded RecU protein of *M. genitalium* (RecU_{Mge}) was found to be a potent HJ-resolving enzyme. However, this protein has unique properties compared to its homologs from other bacterial classes. Specifically, the HJ-resolving activity of RecU_{Mge} was only detected in the presence of Mn²⁺ and not Mg²⁺. Remarkably, the RecU protein encoded by the MPN528a ORF of *M. pneumoniae* subtype 2 strains (RecU_{Mpn}) did not possess any in vitro HJ-binding or cleavage activities. It was demonstrated that this inactivity was caused by the presence of a glutamic acid residue at position 67 of the protein, which is not conserved in RecU_{Mge}. Even more striking was the finding that the MPN528a gene of *M. pneumoniae* subtype 1 strains is unable to encode a full-length RecU homolog, because it contains a premature TAA translation termination codon at position 181–183. Consequently, subtype 1 strains of *M. pneumoniae* cannot produce a functional RecU protein (Sluijter et al. 2010). Taken together, *M. pneumoniae* strains may not encode functional homologs of RecU, which may explain the relatively low level of recombination that is observed within the *M. pneumoniae* genome (Sluijter et al. 2010).

In conclusion, functional studies of the various proteins that are putatively involved in DNA recombination in *Mycoplasma* spp. revealed significantly different in vitro activities between these proteins and their homologs from other bacterial classes. These findings emphasize the important notion that functionalities or activities of certain genes or proteins cannot be based solely on sequence homology. Moreover, these studies also showed that the DNA recombination machineries of *M. pneumoniae* and *M. genitalium* differ markedly from those of other bacteria (Sluijter et al. 2012).

Another important aspect of DNA recombination is its regulation. In 2014, it was shown that MgPar recombination in *M. genitalium* was positively regulated by a novel putative transcription factor encoded by ORF MG428 (Burgos and Totten 2014). Notably, mutants lacking MG428 were defective in generating mgpBC gene variants (Burgos and Totten 2014). Interestingly, overexpression of MG428 increased expression of rva, ruvb, recA, as well as other genes, and was associated with increased mgpBC gene variation (Burgos and Totten 2014; Torres-Puig et al. 2015). These findings highlight the complexity of the regulation of recombination events in *M. genitalium*, and possibly in *M. pneumoniae*, that should be extensively explored.

Additionally, it is important to note that homologous recombination can be employed for experimental genome alteration of mycoplasmas. Experimental gene modification through homologous recombination has previously been performed to analyze the function of specific genes or proteins of *M. pneumoniae* and *M. genitalium* (Dhandayuthapani et al. 1999; Krishnakumar et al. 2010).

The role of DNA repair machinery to maintain genomic integrity of *Mycoplasma* spp.

Because maintenance of the integrity of the genome is essential for all living organisms, they all have DNA repair systems in place that both detect and repair DNA lesions. These DNA lesions can arise due to physical triggers (e.g. UV light, extreme temperatures and desiccation) and
various chemical agents (e.g. H₂O₂ and cisplatin) causing chemical modifications of the DNA structure. The most important physical trigger of DNA damage is UV light, which is able to induce the covalent linkage of two adjacent pyrimidines (pyrimidine dimers), including cyclobutane pyrimidine dimers (CPD) and pyrimidine–pyrimidone (6–4) photoproducts [(6–4)PP] (Goosen and Moolenaar 2008). Chemical damage to DNA can be caused by compounds such as cisplatin (cis-platinum (II) diaminodichloride), methylmethanesulfonate, ethylmethanesulfonate, N-ethyl-N-nitrosourea, leading to lesions like cisplatin cross-links, thymine glycol products, psoralen monoad-
tride), methylmethanesulfonate, ethylmethanesulfonate, O⁶-methyl guanine, and abasic sites. For pathogenic bacteria, including Mycoplasma spp., such lesions can also be induced through immune responses of the host (e.g., through reactive oxygen species [ROS] generated by macrophages) and the action of antibiotics.

In Mycoplasma spp., DNA repair is probably also involved in the recombination-induced antigenic variation. As the recombining repeated elements are not identical (Spuesens et al. 2009), heteroduplex DNA formed at the sites of homologous DNA recombination between donor and recipient repeats will also include mismatched base pairs which have to be corrected. Therefore, a DNA repair system is required to correct mismatched bases after each recombination event. This repair system may not only be involved in the recombination of repeated DNA elements, but also in the maintenance of the integrity of the Mycoplasma genomes (Carvalho et al. 2005). This maintenance is especially important for the mycoplasmas, as their genomes (which are often designated as ‘minimal genomes’) have a limited length and gene content, and do not exhibit significant redundancy of gene or protein functions (Fraser et al. 1995; Glass et al. 2006; Himmelreich et al. 1996).

Various DNA repair systems have evolved in prokaryotes. Of these, nucleotide excision repair (NER) and base excision repair (BER) represent the major DNA repair pathways. Another mechanism includes direct repair by a photolyase (photoreactivation) and UV-damage endonuclease (UVDE) (Goosen and Moolenaar 2008; Hu et al. 2017).

A comparative analysis of the gene content of nine different Mycoplasma species has indicated that both M. pneumoniae and M. genitalium contain genes that are putatively involved in NER. This pathway may be the only ‘complete’ DNA repair pathway in these species. While these species also have genes potentially involved in BER and recombination repair, they do not encode the full set of BER proteins, as found in other groups of prokaryotes. These isolated genes could complement the NER activity in the mycoplasmas (Carvalho et al. 2005).

The NER pathway in E. coli and Mycoplasma spp.

NER is a universal process that is involved in the repair of a wide variety of DNA lesions produced by different DNA damaging agents. These lesions include single-base modifications (caused by ionizing radiation, psoralen, etc.), intra- and inter-strand cross-links (caused by UV irradiation, mitomycin C, cisplatin, etc.), mismatched bases, and backbone modifications (Van Houten et al. 2005).

Basically, NER is a multi-step process, involving (1) damage recognition, (2) dual incision of a damaged DNA-containing oligomer, (3) removal of the incised oligomer, and (4) repair DNA synthesis, followed by (5) ligation (Hu et al. 2017). In Homo sapiens, NER requires the participation of at least 16 proteins (Mu et al. 1995). Prokaryotes, by contrast, require only three proteins, UvrA, UvrB, and UvrC, which are collectively termed the UvrABC system. The UvrABC system of E. coli has been studied extensively and serves as a model for NER (Van Houten 1990; Van Houten et al. 2005).

In E. coli, the DNA repair pathway is initiated through the formation of a DNA damage-recognition protein complex containing the UvrA and UvrB proteins (Cordone et al. 2011; Verhoeven et al. 2002) (Fig. 3). UvrA plays a key role in damage recognition, since it preferentially binds to damaged DNA in the absence of other NER components (Stracy et al. 2016). UvrA seems to recognize the unwinding and bending of the ‘damaged’ DNA, as well as aberrations of the global conformation of the double helix, but does not seem to probe the stability of the base interactions. This mechanism allows UvrA to detect various DNA lesions and achieves broad specificity (Jaciuk et al. 2011). UvrA is also required for the loading of UvrB to form the preincision complex at the site of a DNA lesion (Truglio et al. 2006).

After damage identification, the UvrAB complex unwinds the DNA around the lesion, allowing direct access of UvrB to the lesion (Zou and Van Houten 1999). UvrA then loads UvrB onto the damaged DNA site (Stracy et al. 2016). Following dissociation of UvrA from the complex, UvrB forms a stable UvrB-DNA preincision complex (Theis et al. 2000). The pre-incision complex is subsequently bound by UvrC, which makes incisions around the damaged DNA. It first makes a cut at the fourth or fifth nucleotide from the 3’ side of the damage, followed by incision at the eighth nucleotide from the 5’ side of the damage (Verhoeven et al. 2000). The resulting 12- to 13-nt fragment is ultimately removed by UvrD (helicase II) and the resulting single-nucleotide gap is filled by DNA polymerase I. In the final step, DNA ligase joins the two ends of the nick (Fig. 3).

The importance of the proteins involved in NER was previously shown in several studies using mutant bacteria that were unable to express these proteins (LeCuyer et al. 2010). Missing one component of the system causes reduced survival rates in the bacteria that were exposed to
DNA-damaging agents. For example, *Mycobacterium tuberculosis* strains that lack either *uvrA* or *uvrB* are more sensitive than the wild-type strain to UV light and other DNA-damaging agents, such as mitomycin C, reactive oxygen, and nitrogen intermediates (Rossi et al. 2011). Similar results were reported for a *Mycobacterium smegmatis* *uvrA* mutant (Cordone et al. 2011). Furthermore, *E. coli* *uvrA*−, *uvrB*− or *uvrC*− mutants were unable to excise UV-induced pyrimidine dimers from their genomes, and were highly mutable (Howard-Flanders and Boyce 1966; Ishii and Kondo 1975; Kato 1972).

UvrA homologs from *M. pneumoniae* and *M. genitalium*

The UvrA proteins belong to the ATP-binding cassette (ABC) superfamily of ATPases (ABC-type ATPases).

Proteins that belong to this superfamily use energy derived from ATP hydrolysis to catalyze a variety of biochemical reactions (Thomas et al. 1986; Wilkens 2015). ABC ATPases share several conserved functional regions in their structures, such as the Walker A/P loop, Q loop, ABC signature, Walker B, D loop, and H loop (Hopfner and Tainer 2003; Thomas et al. 1986; Wilkens 2015). As shown in **Fig. 4**, those regions are highly conserved among the predicted UvrA proteins from several bacterial species, including the representatives from *M. genitalium* and *M. pneumoniae*, UvrA*MG* and UvrA*MP*, respectively. The latter two proteins are encoded by ORFs MG421 and MPN619, respectively (Fraser et al. 1995; Himmelreich et al. 1996), and are 85% identical on the amino acid level. To date, the functions of these predicted mycoplasma proteins have not yet been determined.
Himmelreich et al. 1996). These homologs, termed UvrB as genes that encode UvrB homologs (Fraser et al. 1995; Rupp 1997), respectively, have previously been predicted.

Gordienko and recognition and UvrC-mediated incision (Gordienko and Machius et al. 1999). The multiple sequence alignment shown in Fig. 5 also indicates the relatively conserved β-hairpin region of UvrB proteins. It has been shown for E. coli UvrB that this region is involved in DNA damage recognition and UvrC-mediated incision (Gordienko and Rupp 1997).

The MG073 and MPN211 ORFs of M. genitalium of M. pneumoniae, respectively, have previously been predicted as genes that encode UvrB homologs (Fraser et al. 1995; Himmelreich et al. 1996). These homologs, termed UvrB and UvrB, respectively, display 76% identity, while the similarity between UvrB and UvrB is 45%. These Mycoplasma genes have not yet been subjected to functional analyses.

UvrB homologs from M. pneumoniae and M. genitalium

As explained above, E. coli UvrB is a specific DNA damage-binding protein with helicase and strand-separating activities that plays a central role in the multistep process of DNA damage recognition and incision. It interacts first with UvrA, then with UvrC, and finally with UvrD and DNA polymerase I to complete the excision repair (Theis et al. 1999).

UvrB proteins contain five domains, termed 1a, 1b, 2, 3 and 4, with ATP-binding sites located between domains 1a and 3. These proteins have six helicase motifs, three of which [helicase motif I (Walker A), II (Walker B), and III] are located within domain 1a, whereas the other three (helicase motif IV, V, and VI) are located within domain 3 (Linton 2007; Theis et al. 1999, 2000), indicating that UvrB is a member of the helicase superfamily. As depicted in Fig. 5, the six helicase motifs are more conserved among bacterial species than are the other regions, indicating the important functional role of these motifs. UvrB uses its helicase-like activity to locally unwind DNA at the site of DNA damage (Linton 2007; Machius et al. 1999). The multiple sequence alignment shown in Fig. 5 also indicates the relatively conserved β-hairpin region of UvrB proteins. It has been shown for E. coli UvrB that this region is involved in DNA damage recognition and UvrC-mediated incision (Gordienko and Rupp 1997).

The MG073 and MPN211 ORFs of M. genitalium of M. pneumoniae, respectively, have previously been predicted as genes that encode UvrB homologs (Fraser et al. 1995; Himmelreich et al. 1996). These homologs, termed UvrB and UvrB, respectively, display 76% identity, while the similarity between UvrB and UvrB is 45%. These Mycoplasma genes have not yet been subjected to functional analyses.

UvrC homologs from M. pneumoniae and M. genitalium

As described above, E. coli UvrC can produce single-strand cuts on either side of a DNA lesion. These cuts are executed by two endonuclease domains located at the N-terminal and C-terminal parts of the protein. These domains are separated by a highly variable linker region (Goosen and Moelenaar 2008). While UvrC can bind the DNA-containing lesions alone, the binding efficiency is increased significantly in complex with UvrB (Uphoff and Sherratt 2017).

Although M. genitalium MG206 was annotated as an ORF that has the potential to encode a homolog of UvrC proteins (Fraser et al. 1995), the MG206-derived amino acid sequence demonstrated only 25% similarity with the UvrC protein from E. coli (UvrC). A significantly higher similarity was observed between UvrC and the UvrC homolog from M. pneumoniae M129 (59%) (Fig. 6). Interestingly, a M. genitalium mutant with a deletion of MG206 was reported to have a growth deficiency as well as an increased sensitivity to UV-induced DNA damage (Burgos et al. 2012), indicating that the MG206-encoded protein (UvrC) has a potential role in DNA repair in M. genitalium.

Functional UvrD homologs from M. pneumoniae and M. genitalium

Interestingly, both M. pneumoniae and M. genitalium do not possess obvious uvrD gene homologs in their genomes (Table 1) (Carvalho et al. 2005). Instead, these bacteria possess ORFs (MPN340 and MPN341 of M. pneumoniae, and MG244 of M. genitalium; Table 1) that encode PcrA helicases that belong to the same family (superfamily 1, SF1) as UvrD (Esteve et al. 2013). PcrA homologs are found in all gram-positive bacteria, including Bacillus subtilis and Staphylococcus aureus, as well as in bacteria belonging to the Firmicutes and Mollicutes classes (Petit and Ehrlich 2002; Singleton et al. 2007).

M. genitalium MG244 encodes a single PcrA helicase (PcrA) that represents the ortholog of the M. pneumoniae MPN341-encoded protein termed PcrA. The second ORF encoding a PcrA homolog in M. pneumoniae, MPN340, is not found in other Mycoplasma spp. Interestingly, the length of this ORF (1,590 bp) is considerably shorter than that of MPN341 (2,148 bp). Sequence analysis of the MPN340-encoded proteins (PcrA and PcrA) from subtype 1 and subtype 2 strains, respectively showed that they lacked a so-called 2B subdomain that is found in most SF1 DNA helicases. Surprisingly, all four proteins were found to have divergent cation- and ATP-dependent DNA helicase activity (Esteve et al. 2013). It is therefore possible that these proteins may be involved in UvrD-like activities in NER in both M. pneumoniae and M. genitalium.
Although the *E. coli* UvrD protein only has functional counterparts (but not orthologs) in both *Mycoplasma* spp., the conservation of the other actors of the UvrABC system suggests that the NER pathway in the mycoplasmas may function in a similar way as in *E. coli* (Carvalho et al. 2005).

Fig. 5 Multiple alignment of UvrB(-like) amino acid sequences. The multiple alignment was generated with the amino acid sequences predicted to be encoded by the following ORFs (The code in parentheses refers to the GenBank accession numbers (https://www.ncbi.nlm.nih.gov/)): *Mycoplasma genitalium* G37 (AAC71291.1), *Mycoplasma pneumoniae* M129 (NP_109899.1), *Ureaplasma urealyticum* serovar 13 str. (ZP_02931962.1), *Bacillus caldotenax* (2PDC_A), *Staphylococcus aureus* subsp. aureus VRS4 (EIK14428.1), *Lactobacillus vaginalis* ATCC49540 (ZP_03959610.1), and *Escherichia coli* str. K-12 (POA8F8.2). The program Clustal W (https://www.ebi.ac.uk/Tools/msa/clustalw2) was used to generate the multiple alignment of amino acid sequences. The program BOXSHADE, version 3.21 (https://www.ch.embnet.org/software/BOX_form.html), was used to generate white letters on black boxes (for residues that are identical in at least four out of seven sequences) and white letters on gray boxes (for similar residues). The annotation of the helicase motifs I-VI (HM I-VI) and β-hairpin (β-H) is based on the crystal structure of UvrB from *B. caldotenax* (Theis et al. 1999)

The BER pathway in *E. coli* and *Mycoplasma* spp.

BER is a major pathway to repair DNA damage due to nucleobase hydrolysis, alkylations, deaminations, or oxidation processes (Wallace 2014). Due to its essential role in maintaining the genomic integrity, BER pathway is highly...
Fig. 6 Multiple alignment of UvrC(-like) amino acid sequences. Multiple alignment was generated with the amino acid sequences predicted to be encoded by the following ORFs (The code in parentheses represents the GenBank accession numbers https://www.ncbi.nlm.nih.gov/): Mycoplasma genitalium G37 (AAC71424.1), Mycoplasma pneumoniae M129 (NP_109813.1), Mycoplasma gallisepticum str. F (YP_005880751.1), Mycoplasma putrecaiens Ks1 (YP_004790386.1), Bacillus cereus ATCC 4342 (ZP_04286196.1), Bacillus mycoides Rock 3–17 (ZP_04158785.1) and Escherichia coli str. K-12 (POA860.1). The program Clustal W (https://www.ebi.ac.uk/Tools/msa/clustalw2) was used to generate multiple alignment of amino acid sequences. The program BOXHAYDE, version 3.21 (https://www.ch.embnet.org/software/BOX_form.html), was used to generate white letters on black boxes (for residues that are identical in at least four out of seven sequences) and white letters on gray boxes (for similar residues).
Failure to remove AP sites in genomic DNA will result in blockade of DNA replication or mutation of the genome.

Nfo_{MPn} and Nfo_{Mge}

In contrast to other bacterial classes, which are known to harbor multiple enzymes coordinately involved in BER, *M. pneumoniae* and *M. genitalium* were hypothesized to possess only a single BER-associated enzyme, i.e. a homolog of Nfo (or EndoIV) proteins (Fraser et al. 1995; Himmelreich et al. 1996).

The best characterized Nfo protein is the one derived from *E. coli* (Nfo_{Eco}). Nfo_{Eco} is a multifunctional protein that is known to participate in BER by recognizing and removing AP sites at 5′ of damaged residues. It also has an intrinsic 3′ → 5′ exonuclease activity (Kerins et al. 2003). In addition to BER, the Nfo protein has been demonstrated to be involved in an alternative, overlapping pathway of DNA repair, termed nucleotide incision repair (NIR). In this system, Nfo functions in the initial incision step of various types of oxidative stress-induced DNA damage to provide target sites for DNA polymerase to finalize the repair process (Golan et al. 2010; Ischenko and Saparbaev 2002). Characterization of Nfo homologs derived from other distantly related species, such as *Thermus thermophilus* (Nfo_{Tth}), *Thermotoga maritima* (Nfo_{Tma}), and *Chlamydia pneumoniae* (Nfo_{Cpn}), demonstrated that they all have similar activities as Nfo_{Eco} (Back et al. 2006; Kerins et al. 2003; Liu et al. 2007).

The Nfo homologs from *M. pneumoniae* (Nfo_{MPn}) and *M. genitalium* (Nfo_{Mge}) are encoded by ORFs MPN328 and MG235, respectively. Both proteins possess a high degree of similarity (65% identity) and are capable of removing AP sites at the phosphodiester bond immediately 5′ to the damaged DNA. Nfo_{MPn} and Nfo_{Mge} were also found to possess 3′ → 5′ exonuclease activity in the presence of Mg²⁺. In addition, both proteins were shown to recognize and remove larger DNA lesions, such as cholesteryl-modified bases in the DNA (Estevao et al. 2014).

Conclusion and future perspectives

Antigenic variation in *M. pneumoniae* and *M. genitalium* is likely generated through homologous recombination between specific, repetitive DNA elements that are dispersed throughout the bacterial genomes. Characterization of the complete set of proteins involved in homologous DNA recombination in *M. pneumoniae* and *M. genitalium* has indicated that the functional activities of at least some of these proteins are different compared to those of other bacteria.

Additionally, mycoplasmas have evolved strategies to maintain the integrity of their ‘minimal’ genomes through an efficient DNA repair system. Comparative genomic analysis indicated that the NER pathway may be the only ‘complete’ DNA repair pathway in these species. While both human mycoplasmas also harbor genes potentially involved in BER, they do not encode a full set of BER-associated proteins, as found in other bacterial taxa.

Further characterization of the protein repertoire involved in homologous DNA recombination and repair in *M. pneumoniae* and *M. genitalium* is important, as it will identify the minimal enzymatic requirements for both generating bacterial genetic diversity (antigenic variation) and maintaining genomic integrity.

Acknowledgements M. S. H. is financially supported by Scholarship for International Postgraduate Study, the Directorate General of Higher Education (DIKTI), Ministry of Education and Culture, Indonesia (2011–2013) and the Indonesia Endowment Fund for Education (LPDP), Ministry of Finance, Indonesia (2014–2018).
Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

References

Aparicio D, Torres-Puig S, Ratera M, Querol E, Pinol J, Pich OQ, Fita I (2018) Mycoplasma genitalium adhesin P110 binds sialic-acid human receptors. Nat Commun 9(1):4471

Atkinson TP, Balish MF, Waites KB (2008) Epidemiology, clinical manifestations, pathogenesis and laboratory detection of Mycoplasma pneumoniae infections. FEMS Microbiol Rev 32(6):956–973

Back JH, Chung JH, Park JH, Han YS (2006) A versatile endonuclease IV from Thermus thermophilus has uracil-excision and 3′→5′ exonuclease activity. Biochem Biophys Res Commun 346(3):889–895

Baumann L, Cina M, Egli-Gany D, Goutaki M, Halbeisen FS, Lohrer GR, Ali H, Scott P, Low N (2018) Prevalence of Mycoplasma genitalium in different population groups: systematic review and meta-analysis. Sex Transm Infect 94(4):255–262

Bianco PR, Tracy RB, Kowalczykowski SC (1998) DNA strand exchange proteins: a biochemical and physical comparison. Front Biosci 3:D570–603

Blaatnkr PR, Plunkett G 3rd, Ritz J, Pettersson R, Jones SD, Tiedje JM, Wolter J, Nierhaus KH, Plunkett G (2000) The complete genome sequence of Mycoplasma genitalium: a minimal gene complement. Proc Natl Acad Sci USA 97(14):7640–7645

Burgos R, Totten PA (2014) MG428 is a novel positive regulator of RecA-mediated MgPB and MgPC phase and antigenic variation in Mycoplasma genitalium. Mol Microbiol 94(2):290–306

Burgos R, Wood GE, Young L, Glass JI, Totten PA (2012) RecA mediates MgPB and MgPC phase and antigenic variation in Mycoplasma genitalium, but plays a minor role in DNA repair. Mol Microbiol 85(4):669–683

Carvalho FM, Fonseca MM, Batistuzzo De Medeiros S, Scortecchi KC, Blaha CA, Agnez-Lima LF (2005) DNA repair in reduced genome: the Mycoplasma model. Gene 360(2):111–119

Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8(10):762–775

Cordone A, Andrain B, Calabrese I, Uprichard D, Reyrat JM (2011) Characterization of a Mycobacterium smegmatis uvrA mutant impaired in dormancy induced by hypoxia and low carbon concentration. BMC Microbiol 11:231

Deborde M, Pereyre S, Pugues M, Bebear C, Desclaux A, Hassamfar M, Le Roy C, Le Marec F, Dabis F, Cazanave C (2019) High prevalence of Mycoplasma genitalium infection and macrolide resistance in patients enrolled in HIV pre-exposure prophylaxis program. Med Mal Infect 49(5):347–349

Dehon PM, McGowin CL (2017) The immunopathogenesis of Mycoplasma genitalium infections in women: a narrative review. Sex Transm Dis 44(7):428–432

Dhandayuthapani S, Rasmussen WG, Baseman JB (1999) Disruption of gene mg218 of Mycoplasma genitalium through homologous recombination leads to an adherence-deficient phenotype. Proc Natl Acad Sci USA 96(9):5227–5232

Dianov G, Lindahl T (1994) Reconstitution of the DNA base excision-repair pathway. Curr Biol 4(12):1069–1076

Dumke R, Schurwanz N, Jacobs E (2008) Characterisation of subtype- and variant-specific antigen regions of the P1 adhesin of Mycoplasma pneumoniae. Int J Med Microbiol 298(5–6):483–491

Eggleston AK, West SC (1996) Exchanging partners: recombination in E. coli. Trends Genet 12(1):20–6

Esteva S, Sluijter M, Hartwig NG, van Rossum AM, Vink C (2011) Functional characterization of the RuvB homologs from Mycoplasma pneumoniae and Mycoplasma genitalium. J Bacteriol 193(23):6425–6435

Esteva S, van der Heul HU, Sluijter M, Hoogenboezem T, Hartwig NG, van Rossum AM, Vink C (2013) Functional analysis of the superfamily 1 DNA helicases encoded by Mycoplasma pneumoniae and Mycoplasma genitalium. PLoS ONE 8(7):e70870

Esteva S, van der Spek PE, van Rossum AM, Vink C (2014) Uncoupling of the apyrimidinic/apurinic endonucleolytic and 3′→5′ exonucleolytic activities of the Nfo protein of Mycoplasma pneumoniae through mutation of specific amino acid residues. Microbiology 160(6):1087–1100

Fookes MC, Hadfield J, Harris S, Parmar S, Unemo M, Jensen JS, Thomson NR (2017) Mycoplasma genitalium: whole genome sequence analysis, recombination and population structure. BMC Genom 18(1):993

Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV, Sandusky M, Fruhman M, Nguyen D, Utterback TR, Saudek JM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bae BS, Foster G, Lucier TS, Peterson SN, Smith HO, Hutchinson CA, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270(5235):397–403

Glass JJ, Assaad-Garcia N, Alperovich N, Yoossef S, Lewis MR, Maruf M, Hutchinson CA, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103(2):425–430

Golan G, Ishchenko AA, Khassenov B, Shoham G, Saparbaev MK (2010) Coupling of the nucleotide incision and 3′→5′ exonuclease activities in Escherichia coli endonuclease IV: structural and genetic evidences. Mutat Res 685(1–2):70–78

Goosen N, Mooienaar GF (2008) Repair of UV damage in bacteria. DNA Repair (Amst) 7(3):353–379

Gordienko I, Rupp WD (1997) The limited strand-separating activity of the UvrAB protein complex and its role in the recognition of DNA damage. EMBO J 16(4):889–895

Hardy RD, Jafri HS, Olsen K, Hatfield J, Iglehart J, Rogers BB, Patel P, Cessell G, McCracken GH, Ramilo O (2002) Mycoplasma pneumoniae induces chronic respiratory infection, airway hyperreactivity, and pulmonary inflammation: a murine model of infection-associated chronic reactive airway disease. Infect Immun 70(2):649–654

Himmelreich R, Hilbert H, Plagens H, Pirkel E, Li BC, Herrmann R (1996) Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24(22):4420–4449

Himmelreich R, Plagens H, Hilbert H, Reiner B, Herrmann R (1997) Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium. Nucleic Acids Res 25(4):701–712

Hopfner KP, Tainer JA (2003) Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr Opin Struct Biol 13(2):249–255

Howard-Flanders P, Boyle RP (1966) DNA repair and genetic recombination: studies on mutants of Escherichia coli defec- tive in these processes. Radiat Res Suppl 6:156–164

Hu J, Selby CP, Adar S, Adeloli A, Sancar A (2017) Molecular mechanisms and genomic maps of DNA excision repair in Escherichia coli and humans. J Biol Chem 292(38):15588–15597

Ingleston SM, Dickman MJ, Grasby JA, Hornby DP, Sharpley GJ, Lloyd RG (2002) Holliday junction binding and processing by
Sluijter M, Aslam M, Hartwig NG, van Rossum AM, Vink C (2011) Identification of amino acid residues critical for catalysis of Holliday junction resolution by Mycoplasma genitalium RecU. J Bacteriol 193(15):3941–3948

Sluijter M, Estvao S, Hoogenboezem T, Hartwig NG, van Rossum AM, Vink C (2012) The RuvA homologues from Mycoplasma genitalium and Mycoplasma pneumoniae exhibit unique functional characteristics. PLoS ONE 7(5):e38301

Sluijter M, Hoogenboezem T, Hartwig NG, Vink C (2008) The Mycoplasma pneumoniae MPN229 gene encodes a protein that selectively binds single-stranded DNA and stimulates recombinase A-mediated DNA strand exchange. BMC Microbiol 8:167

Sluijter M, Kaptein E, Spuesens EB, Hoogenboezem T, Hartwig NG, Van Rossum AM, Vink C (2010) The Mycoplasma genitalium MG352-encoded protein is a Holliday junction resolvase that has a non-functional orthologue in Mycoplasma pneumoniae. Mol Microbiol 77(5):1261–1277

Sluijter M, Spuesens EB, Hartwig NG, van Rossum AM, Vink C (2009) The Mycoplasma pneumoniae MPN490 and Mycoplasma genitalium MG339 genes encode reca homologs that promote homologous DNA strand exchange. Infect Immun 77(11):4905–4911

Spuesens EB, Brouwer RW, Mol KH, Hoogenboezem T, Kockx CE, Jansen R, Van IWF, Van Rossum AM, Vink C (2016) Comparison of Mycoplasma pneumoniae genome sequences from strains isolated from symptomatic and asymptomatic patients. Front Microbiol 7:1701

Spuesens EB, Fraaij PL, Visser EG, Hoogenboezem T, Hop WC, van Adrichem LN, Weber F, Moll HA, Broekman B, Berger MY, van Rijssoot-Vos T, van Belkum A, Schutten M, Pas SD, Osterhaus AD, Hartwig NG, Vink C, van Rossum AM (2013) Carriage of Mycoplasma pneumoniae in the upper respiratory tract of symptomatic and asymptomatic children: an observational study. PLoS Med 10(5):e1001444

Spuesens EB, Meyer Sautere PM, Vink C, van Rossum AM (2014) Mycoplasma pneumoniae infections—does treatment help? J Infect 69(Suppl 1):S42–S46

Spuesens EB, Oduber M, Hoogenboezem T, Sluijter M, Hartwig NG, van Rossum AM, Vink C (2009) Sequence variations in RepMP2/3 and RepMP4 elements reveal intragenomic homologous DNA recombination events in Mycoplasma pneumoniae. Microbiology 155(Pt 7):2182–2196

Spuesens EB, van de Kreeke N, Estvao S, Hoogenboezem T, Sluijter M, Hartwig NG, van Rossum AM, Vink C (2011) Variation in a surface-exposed region of the Mycoplasma pneumoniae P40 protein as a consequence of homologous DNA recombination between RepMP5 elements. Microbiology 157(Pt 2):473–483

Stracy M, Jaciuk M, Uphoff S, Kapanidis AN, Nowotny M, Sherratt DJ, Zawadzki P (2016) Single-molecule imaging of UvrA and UvrB recruitment to DNA lesions in living Escherichia coli. Nat Commun 7:12568

Su CJ, Chavoya A, Baseman JB (1988) Regions of Mycoplasma pneumoniae cytodshin P1 structural gene exist as multiple copies. Infect Immun 56(12):3157–3161

Theis K, Chen PJ, Skorvaga M, Van Houten B, Kisker C (1999) Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J 18(24):6899–6907

Theis K, Skorvaga M, Machius M, Nakagawa N, Van Houten B, Kisker C (2000) The nucleotide excision repair protein UvrB, a helicase-like enzyme with a catch. Mutat Res 460(3–4):277–300

Thomas DC, Kunkel TA, Casna NJ, Ford JP, Sancar A (1986) Activities and incision patterns of ABC excinuclease on modified DNA containing single-base mismatches and extrahelical bases. J Biol Chem 261(31):14496–14505

Torres-Puig S, Broto A, Querol E, Pinol J, Pich QQ (2015) A novel sigma factor reveals a unique regulon controlling cell-specific recombination in Mycoplasma genitalium. Nucleic Acids Res 43(10):4923–4936

Truglio JJ, Croteau DL, Van Houten B, Kisker C (2006) Prokaryotic nucleotide excision repair: the UvABC system. Chem Rev 106(2):233–252

Uphoff S, Sherratt DJ (2017) Single-molecule analysis of bacterial DNA repair and mutagenesis. Annu Rev Biophys 46:411–432

Van Houten B (1990) Nucleotide excision repair in Escherichia coli. Microbiol Rev 54(1):18–51

Van Houten B, Croteau DL, DellaVecchia MJ, Wang H, Kisker C (2005) 'Close-fitting sleeves': DNA damage recognition by the UvABC nucleosome system. Mutat Res 577(1–2):92–117

Verhoeven EE, van Kesteren M, Moolenaar GF, Visse R, Goosen N (2000) Catalytic sites for 3’ and 5’ incision of Escherichia coli nucleotide excision repair are both located in UvrC. J Biol Chem 275(7):5120–5123

Verhoeven EE, Wyman C, Moolenaar GF, Goosen N (2002) The presence of two UvR subunits in the UvRAB complex ensures damage detection in both DNA strands. EMBO J 21(15):4196–4205

Vink C, Rudenko G, Seifert HS (2012) Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol Rev 36(5):917–948

Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP (2017) Mycoplasma pneumoniae from the respiratory tract and beyond. Clin Microbiol Rev 30(3):747–809

Wallace SS (2014) Base excision repair: a critical player in many games. DNA Repair (Amst) 19:14–26

Wilkins S (2015) Structure and mechanism of ABC transporters. F1000Prime Rep 7:14

Wilson MH, Collier AM (1976) Ultrastructural study of Mycoplasma pneumoniae in organ culture. J Bacteriol 125(1):332–339

Wood GE, Patton DL, Cummings PK, Iverson-Cabral SL, Totten PA (2017) Experimental infection of pig-tailed macaques (Macaca nemestrina) with Mycoplasma genitalium. Infect Immun. https://doi.org/10.1128/IAI.00738-16

Zou Y, Van Houten B (1999) Strand opening by the UvrA(2)B complex allows dynamic recognition of DNA damage. EMBO J 18(17):4889–4901

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.