Topology

The hyperelliptic mapping class group of a nonorientable surface of genus $g \geq 4$ has a faithful representation into $GL(g^2 - 1, \mathbb{R})$

Le groupe modulaire hyperelliptique d’une surface non orientable de genre $g \geq 4$ a une représentation fidèle dans $GL(g^2 - 1, \mathbb{R})$

Michał Stukow

Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland

1. Introduction

Let $N_{g,n}$ be a smooth, nonorientable, compact surface of genus g with n punctures. If n is zero, then we omit it from the notation. Recall that N_g is a connected sum of g projective planes and $N_{g,n}$ is obtained from N_g by specifying the set Σ of n distinguished points in the interior of N_g.

Let $\text{Diff}(N_{g,n})$ be the group of all diffeomorphisms $h: N_{g,n} \to N_{g,n}$ such that $h(\Sigma) = \Sigma$. By $\mathcal{M}(N_{g,n})$ we denote the quotient group of $\text{Diff}(N_{g,n})$ by the subgroup consisting of maps isotopic to the identity, where we assume that maps and isotopies fix the set Σ. $\mathcal{M}(N_{g,n})$ is called the mapping class group of $N_{g,n}$.

The mapping class group $\mathcal{M}(S_{g,n})$ of an orientable surface $S_{g,n}$ of genus g with n punctures is defined analogously, but we consider only orientation-preserving maps. If we include orientation reversing maps, we obtain the so-called extended mapping class group $\mathcal{M}^e(S_{g,n})$. Suppose that the closed orientable surface S_{g-1}, where $g-1 \geq 2$, is embedded in \mathbb{R}^3 as shown in Fig. 1, in such a way that it is invariant under reflections across xy, yz, xz planes. Let $j: S_{g-1} \to S_{g-1}$ be the...
symmetry defined by \(j(x, y, z) = (-x, -y, -z) \). Denote by \(C_{\mathcal{M}^+(S_{g-1})}(j) \) the centraliser of \(j \) in \(\mathcal{M}^+(S_{g-1}) \). The orbit space \(S_{g-1}/(j) \) is a nonorientable surface \(N_g \) of genus \(g \) and it is known (Theorem 1 of [3]) that the orbit space projection induces an epimorphism
\[
\pi_j : C_{\mathcal{M}^+(S_{g-1})}(j) \rightarrow \mathcal{M}(N_g)
\]
with kernel \(\ker \pi_j = \langle j \rangle \). In particular
\[
\mathcal{M}(N_g) \cong C_{\mathcal{M}^+(S_{g-1})}(j)/\langle j \rangle.
\]
As was observed in the proof of Theorem 2.1 of [10], projection \(\pi_j \) has a section
\[
i_j : \mathcal{M}(N_g) \rightarrow C_{\mathcal{M}(S_{g-1})}(j) \subset \mathcal{M}(S_{g-1}).
\]
In fact, for any \(h \in \mathcal{M}(N_g) \), we can define \(i_j(h) \) to be an orientation preserving lift of \(h \).

Let \(\varrho \in C_{\mathcal{M}^+(S_{g-1})}(j) \) be the hyperelliptic involution, i.e. the half turn about the \(y \)-axis. The hyperelliptic mapping class group \(\mathcal{M}^h(S_{g-1}) \) is defined to be the centraliser of \(\varrho \) in \(\mathcal{M}(S_{g-1}) \). The hyperelliptic mapping class group turns out to be a very interesting and important subgroup, in particular its finite subgroups correspond to automorphism groups of hyperelliptic Riemann surfaces – see for example [9] and references therein.

Recently, we extended the notion of the hyperelliptic mapping class group to nonorientable surfaces [10], by defining \(\mathcal{M}^h(N_g) \) to be the centraliser of \(\pi_j(\varrho) \) in the mapping class group \(\mathcal{M}(N_g) \). This definition is motivated by the notion of hyperelliptic Klein surfaces – see for example [4,5]. We say that \(\pi_j(\varrho) \) is the hyperelliptic involution of \(N_g \) and by abuse of notation we write \(\varrho \) for \(\pi_j(\varrho) \).

Since \(\varrho \in C_{\mathcal{M}^+(S_{g-1})}(j) \), we have restrictions of \(\pi_j \) and \(i_j \) to the maps
\[
\pi_j : C_{\mathcal{M}^+(S_{g-1})}((j, \varrho)) \rightarrow \mathcal{M}^h(N_g)
\]
\[
i_j : \mathcal{M}^h(N_g) \rightarrow C_{\mathcal{M}(S_{g-1})}((j, \varrho)) \subset \mathcal{M}^h(S_{g-1}).
\]

2. **Linear representations of the hyperelliptic mapping class group**

Mapping class groups of projective plane \(N_1 \) and of Klein bottle \(N_2 \) are finite, hence the first nontrivial case is the group \(\mathcal{M}(N_3) \). This is an interesting case, because it is well known [3,8] that
\[
\mathcal{M}(N_3) = \mathcal{M}(N_3) \cong \text{GL}(2, \mathbb{Z}).
\]
In particular, \(\mathcal{M}(N_3) \) has a faithful linear representation of real dimension 2.

For \(g \geq 4 \), we can produce a faithful linear representation of the hyperelliptic mapping class group \(\mathcal{M}^h(N_g) \) as a composition of the section
\[
i_j : \mathcal{M}^h(N_g) \rightarrow C_{\mathcal{M}(S_{g-1})}((j, \varrho)) \subset \mathcal{M}^h(S_{g-1})
\]
and a faithful linear representation of \(\mathcal{M}^h(S_{g-1}) \) obtained by Korkmaz [6] or by Bigelow and Budney [2]. Recall that both of these representations of \(\mathcal{M}^h(S_{g-1}) \) are obtained form the Lawrence–Krammer representation of the braid group [1,7].

The above argument is immediate, but the resulting representation of \(\mathcal{M}^h(N_g) \) is far from being optimal. In fact, if we use the Bigelow–Budney representation of \(\mathcal{M}^h(S_{g-1}) \) (which has much smaller dimension than the one obtained by Korkmaz), the dimension of the obtained representation of \(\mathcal{M}^h(N_g) \) is equal to
\[
2g \cdot \binom{2g-1}{2} + 2(g-1) = 2(1)(2g^2 - g + 1).
\]
Theorem 1. If \(g \geq 4 \), then the hyperelliptic mapping class group \(\mathcal{M}^h(N_g) \) has a faithful linear representation of real dimension \(g^2 - 1 \).

Proof. Let \(\mathcal{M}^d(S_{0,g+1}) \) be the extended mapping class group of a sphere with \(g + 1 \) punctures \(\{p_1, \ldots, p_{g+1}\} \), and let \(\mathcal{M}^d(S_{0,g},1) \) be the stabiliser of \(p_{g+1} \) with respect to the action of \(\mathcal{M}^d(S_{0,g+1}) \) on the set of punctures. By Theorem 2.1 of [10], the orbit space projection \(\mathcal{M}^h(N_g) \rightarrow \mathcal{M}^d(S_{0,g},1) \) induces an epimorphism
\[
\pi_0: \mathcal{M}^h(N_g) \rightarrow \mathcal{M}^d(S_{0,g},1)
\]
with \(\ker \pi_0 = \langle \rho \rangle \). Moreover, by rescaling the Lawrence–Kramer representation of the braid group \([1]\), Bigelow and Budney constructed in the proof of Theorem 2.1 of \([2]\) a faithful linear representation
\[
\mathcal{L}' : \mathcal{M}(S_{0,g},1) \rightarrow \text{GL}\left(\left(\frac{g}{2}\right), \mathbb{R}\right).
\]
To be more precise, they obtained a representation over \(\mathbb{C} \); however, their argument works without any changes over \(\mathbb{R} \).
Since \(\mathcal{M}(S_{0,g},1) \) is a subgroup of index 2 in \(\mathcal{M}^d(S_{0,g},1) \), the latter group has an induced faithful linear representation of dimension \(2 \cdot \left(\frac{g}{2}\right) = g^2 - g \). This gives us a linear representation
\[
\mathcal{L}_1 : \mathcal{M}^h(N_g) \rightarrow \text{GL}\left(\left(\frac{g^2 - g}{2}\right), \mathbb{R}\right)
\]
with kernel \(\ker \mathcal{L}_1 = \langle \rho \rangle \). It is straightforward to check that if
\[
\mathcal{L}_2 : \mathcal{M}^h(N_g) \rightarrow H_1(N_g; \mathbb{R}) \subset \text{GL}(g - 1, \mathbb{R})
\]
is a standard homology representation then \(\mathcal{L}_1 \oplus \mathcal{L}_2 \) is a required faithful linear representation of \(\mathcal{M}^h(N_g) \) of dimension \(g^2 - g + g - 1 = g^2 - 1 \). \(\Box \)

Remark 1. The above theorem gives an upper bound \(g^2 - 1 \) on the minimal dimension of a faithful linear representation of the hyperelliptic mapping class group \(\mathcal{M}^h(N_g) \). As we mentioned in the introduction, the hyperelliptic mapping class group \(\mathcal{M}^h(N_3) \) has a faithful linear representation of real dimension 2, hence it seems very unlikely that the obtained bound is sharp.

Acknowledgement

The author wishes to thank the referee for his/her helpful suggestions.

References

[1] S.J. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2) (2001) 471–486.
[2] S.J. Bigelow, R.D. Budney, The mapping class group of a genus two surface is linear, Algebraic Geom. Topol. 1 (2001) 699–708.
[3] J.S. Birman, D.R.J. Chillingworth, On the homeotopy group of a non-orientable surface, Math. Proc. Camb. Philos. Soc. 71 (1972) 437–448.
[4] E. Bujalance, A.F. Costa, J.M. Gamboa, The hyperelliptic mapping class group of Klein surfaces, Proc. Edinb. Math. Soc. 44 (2) (2001) 351–363.
[5] E. Bujalance, J.J. Etayo, J.M. Gamboa, Hyperelliptic Klein surfaces, Quart. J. Math. Oxford 36 (2) (1985) 141–157.
[6] M. Korkmaz, On the linearity of certain mapping class groups, Turk. J. Math. 24 (4) (2000) 367–371.
[7] D. Kramer, Braid groups are linear, Ann. Math. 155 (1) (2002) 131–156.
[8] M. Schramm, The complex of curves on non-orientable surfaces, J. Lond. Math. Soc. 25 (2) (1982) 171–184.
[9] M. Stukow, Conjugacy classes of finite subgroups of certain mapping class groups, Turk. J. Math. 28 (2) (2004) 101–110.
[10] M. Stukow, A finite presentation for the hyperelliptic mapping class group of a nonorientable surface, Osaka J. Math. 52 (2) (2015) 495–515.