Enterococcus faecalis has the ability to conjugate with the aid of aggregation substance (AS) and inducible sex pheromones to exchange genetic elements in food matrix. To evaluate the food safety condition and the transferable factor, 250 tetracycline-resistant food-borne E. faecalis were collected in Korea. Among the isolates, a majority of tetracycline-resistant isolates (49.6 %) harbored both the tet(M) and tet(L) genes together, followed by tet(M) (19.6 %), and tet(L) (6.8 %) alone. Also, we found the combination of tet(L)/tet(M)/tet(O) or tet(M)/tet(O). We identified two tet(S) genes including the isolate carrying tet(M) + tet(S) genes. Additionally, most E. faecalis were positive for cpd and ccf (both 96.8 %) followed by cob (57.2 %). Through mating experiments, we confirmed E. faecalis possessing the Int-Tn gene and/or any AS gene successfully transferred tet genes to JH2-2 E. faecalis, whereas neither E. faecalis carrying AS genes nor the Int-Tn gene showed the conjugation. Pulsed-field gel electrophoresis results supported a distinct pattern, implying transfer of genetic information. Our study revealed a high occurrence of tetracycline resistance genes in E. faecalis from various foods. The widespread dissemination of tetracycline resistance genes would be promoted to transfer tetracycline resistance genes by pheromone-mediated conjugation systems.
suggesting the possibility of easy and accurate identification of plasmids [25]. Thus, the purposes of the present study were to investigate the distribution of tetracycline resistance (tet) genes in food-borne *E. faecalis* in Korea and the factors involved in the pheromone-responsive conjugation system. Additionally, we evaluated the conjugative transferability of *tet* genes associated with the sex pheromone plasmid.

Materials and Methods

Bacterial Isolates

250 tetracycline-resistant *E. faecalis* isolated from beef (*n* = 47), chicken (*n* = 87), pork (*n* = 65), fish and fishery products (*n* = 47), and processed meat products (*n* = 4) from 2003 to 2010 were provided by National Antimicrobial Resistance Management Program (NARMP) of Korean Food and Drug Administration (Ministry of Food and Drug Safety at present). All the isolates were identified by the VITEK2 Compact (BioMérieuxVitek, Inc., Hazelwood, MO, USA).

Antimicrobial Susceptibility Test

The antimicrobial susceptibility profiles were determined by disk diffusion and agar dilution methods [10]. Nine antibiotics were used as follows: ampicillin (10 μg), vancomycin (30 μg), teicoplanin (30 μg), erythromycin (15 μg), ciprofloxacin (5 μg), chloramphenicol (30 μg), linezolid (30 μg), gentamicin (120 μg), and streptomycin (300 μg) (BD Sensi-disc, Becton–Dickinson, Mannheim, Germany). Tetracycline was diluted to minimum inhibitory concentrations (MICs) of 0.06–256 μg/ml to determine the degree of the tetracycline resistance in the isolates, and the data were interpreted according to CLSI guidelines [10]. *Staphylococcus aureus* ATCC 25923, *E. faecalis* ATCC 29212, and *E. faecalis* ATCC 51299 were used as control strains for the disk diffusion and MIC tests, respectively.

Polymerase Chain Reaction

Of the 250 tetracycline-resistant isolates, polymerase chain reaction (PCR) was carried out to determine the presence of genes encoding tetracycline resistance [tet(K), tet(L), tet(M), tet(O), tet(S), tet(T), and tet(W)] and the Tn916–1545 transposon family for the integrase (*Int-Tn*) gene. AS genes [agg, asa1, prgB, and asa373], inducible pheromones [cpd, cob, and ccf], and the *rep* gene [prgW] were also detected. The primers and PCR conditions used are shown in Table 1.

Amplification reactions were performed in a total volume of 30 μl containing 15 μl of PCR pre-mix with Taq DNA polymerase (Solgent, Seoul, Korea), 2 μl of bacterial template DNA, 1 μl of 10 pmol of each primer, and 11 μl of ultrapure distilled water. The PCR products were visualized on 1.5 % agarose gels (Promega, Madison, WI, USA) stained with ethidium bromide using the Gel Doc system (Bio-Rad, Hercules, CA, USA). Positive controls were used with *E. faecalis* ATCC 29212 (cpd, cob, and ccf) for each target gene, or the sequences were analyzed by Macrogen Inc. (Seoul, South Korea). The sequences were analyzed using the GenBank database of the National Center for Biotechnology Information and the BLAST search engine (http://www.ncbi.nlm.nih.gov/BLAST).

Transferability Test by Filter Mating

The selected tetracycline-resistant isolates were tested for transferability by filter mating [8]. *E. faecalis* JH2-2 was used as the plasmid-free recipient strain [24]. Filter mating was conducted using a 1:10 donor–recipient mixture. Five ml of overnight culture was mixed and harvested for 4 h. The mixture was poured on a 0.45-μm filter membrane and incubated on brain heart infusion (BHI) agar plates at 37 °C overnight. The membrane was diluted in sterile saline (0.85 % NaCl) and spread on a selective BHI agar plate with 10 μg/ml tetracycline, 50 μg/ml rifampin, and 100 μg/ml fusidic acid (triple selective medium). The agar plates were incubated for 24 h at 37 °C, and the typical transconjugants were selected.

Pulsed-Field Gel Electrophoresis (PFGE)

The genetic relationships among tetracycline-resistant *E. faecalis* harboring at least one or more *tet* genes were evaluated based on PFGE carried out with the CHEF-Mapper system (Bio-Rad) [37]. Genomic DNA was digested with 20 U *Smal* (Takara Bio, Kyoto, Japan) and separated on a 0.7 % pulsed-field certified agarose (Bio-Rad). Running conditions were 6.0 V/cm at 14 °C for 20 h with pulse times ramped from 1 to 20 s in 0.5 × TBE buffer. A lambda DNA ladder (Bio-Rad) was used as the size marker. A cluster analysis of the PFGE results was conducted to determine relatedness of tetracycline-resistant isolates using the InfoQuest FP Software version 4.5 (Bio-Rad) with the Dice coefficient and the unweighted pair group method with arithmetic averages. Optimization settings for the dendrogram were 0.5 % with a band tolerance of 0.1 %.

Results

Antimicrobial Resistant Profiles

Tetracycline-resistant *E. faecalis* isolates were resistant to ciprofloxacin (29.2 %), streptomycin (29.2 %), erythromycin (27.6 %), chloramphenicol (18.0 %), and linezolid (16.4 %).
8.8\% of the isolates were resistant to gentamicin. None of the identified isolates was resistant to ampicillin, vancomycin, and teicoplanin. High level of tetracycline resistance (128–256 l/ml) was observed in E. faecalis isolates from chicken, pork, fish and fishery products (Table 2).

Distribution of tet Genes

All except 19 isolates in this study carried at least one of the tet genes. Table 2 shows the tetracycline-resistant gene patterns. In total, 124 tetracycline-resistant isolates carried both the tet(M) and tet(L) genes together. Only 17 isolates had tet(L) gene alone, and the remaining 79 isolates were positive only for tet(M) gene. The combination of tet(L), tet(M), and tet(O) appeared in eight E. faecalis isolates, whereas one isolate was detected with both tet(M) and tet(O). We found two tet(S) genes that have been rarely found in food-borne E. faecalis isolates including tet(M) + tet(S). The tet(M) gene was the most frequently found among E. faecalis, followed by the tet(L) gene. 107 isolates (46\%) possessed the Int-Tn gene carrying the transposon of the Tn916–1545 family. Of them, 104 isolates (97\%) of the tet(M)-carrying isolate were positive for Tn916–1545 element (data not shown here).

Distribution of Virulence Genes

The agg gene was detected in 109 (43.6\%) of 250 tetracycline-resistant isolates through the use of the highly conserved sequence of the pheromone-responsive plasmids.

Table 1 Primers and PCR conditions used in the present study

Description	Target gene	Primer sequence (5’ → 3’)	Product Size (bp)	Reference
Tetracycline resistance	tetK	F: TTAGGGTAAGGGTGTTAG	718	[1]
		R: GCCAAACTCTATCCAGAAGCA		
	tetL	F: ATAAAATTGGTGCTTTGAT	1,077	[40]
		R: AACCGCAACTAATGCAAAATGAT		
	tetM	F: GTTAAATAGTGTCTTGGAG	657	[1]
		R: CTAGATATGGCCTTCAACAA		
	tetO	F: GATGGCCATACAGGCACACAG	614	
		R: CAATTCACCAGAGCCAGGCT		
	tetS	F: TGGACGCAGAGGAGTTAT	660	
		R: ACATAGACGAGCCGTTGACC		
	tetT	F: AAGGTTTATTATATATAAAGT	169	[3]
		R: AGGTGTATCTATGATATTTAC		
	tetW	F: GAGACCTGCTTATGACCAG	168	
		R: GGGCGATCCACAAATGTGAA		
Aggregation substance	agg	F: AAGAAAAGAAGTAGACCAAC	1,553	[18]
		R: AAAGCGCAAGAAGTAGAATAA		
	asa1	F: CAGCCTATTACGAACTATGA	375	[6]
		R: TAAGAAAGAAGATCCACAGCA		
	prgB	F: ATACAAAGGCAAAGTGCG	427	[20]
		R: TAAACAGGCGAAAGACAG		
	asa373	F: GAGACGCACGTACAAAGACTAC	619	[11]
		R: CTGGGGTGATTTCCCGCTT		
Tn916–1545 family integrase	Int-Tn	F: GCCGAGTTGTATCTCCT	1,028	[12]
		R: GACCGTCTCTTCCTTCCCTT		
Sex pheromone	cpd	F: TGGTGGGTATTTTTCAATTC	782	[18]
		R: TACGGCCTGGGTTAACTA		
	cob	F: AACATCCAGCAAAACAAAGC	1,405	
		R: TGTGACAAAGGCGTTGCTAT		
	ccf	F: GGGAATTTGATGATGAAAGAG	543	
		R: AGCCGCTAAAATCGGTAAAAT		
Rep\(^a\) of pCF10	prgW	F: GCTGAGCTTGGTTTCGAG	201	[25]
		R: GCAGACTATGTGTTACCTT		

\(^a\) Replication initiator protein gene
Table 2 Characterization of MIC, tetracycline resistance genes and virulence traits in food-borne Enterococcus faecalis

Origin (No. of isolates)	TE MIC (µg/ml)	TE resistance genes	Int-Tn^c	Virulence traits	Rep^e of pCF10 plasmid								
		Tet(L) tet(L) + tet(M) Tet(M) Tet(S) Tet(L) + tet(M) + tet(O) tet(M) + tet(O) tet(M) + tet(S)											
Beef (47)	32–128	4	20	ND^b	ND	16	18	25	46	43	36		
Chicken (87)	32–258	3	40	33	ND	ND	48	49	41	86	87	83	
Pork (65)	16–256	6	39	15	1	ND	ND	23	18	29	62	63	49
Fish and fishery products (47)	32–256	2	25	12	ND	ND	ND	19	24	47	46	47	42
Meat processed products (4)	64–128	2	ND	1	ND	ND	1	0	1	2	2	1	
Total (250)	17 (6.8)	124 (49.6)	79 (31.6)	8 (3.2)	1 (0.4)	1 (0.4)	10 (42.8)	10	14	24	24	211	

^a Tetracycline

^b Not detected

^c Tn 916–1545 family integrase gene

^d Aggregation substance

^e Replication initiation gene
(pAD1, pPD1, and pCF10) [18]. *E. faecalis* isolates were positive for *cpd* (96.8 %), *ccf* (96.8 %), and *cob* (57.2 %), respectively. At least one or more inducible sex pheromones were detected in all the isolates, and the *agg* virulence determinant was present with all pheromone determinants. *prgW* (84.4 %) gene was identified in 84.4 % of isolates (Table 3).

Identification of Gene Transferability

The transferability was identified in 11 selected isolates (Table 3), and confirmed to transfer to JH2-2 *E. faecalis* from 5 (83.3 %) strains of *tet* (L), 7 (87.5 %) strains of *tet* (M), 2 (66.7 %) strains of *tet* (O), and 2 (100 %) strains of *tet* (S). Of the AS genes, most isolates carried *asa1* (72.7 %), *prgB* (45.4 %), and *asa373* (9.1 %). All AS genes of donor strains were simultaneously and completely transferred to JH 2-2 *E. faecalis*. The *Int-Tn* (36.4 %) gene was found in four isolates, and all *Int-Tn* genes were transferred to JH 2-2 *E. faecalis* with *tet* genes.

Analysis of Genetic Relationship by PFGE

The genetic relationships among the 250 tetracycline-resistant *E. faecalis* isolates were evaluated based on PFGE with *SmaI* restriction digestion. In Fig. 1, clusters consisted of 73 isolates showing the related PFGE types based on 80 % similarity cut-off in the 250 *E. faecalis* isolates. Isolates with over 80 % similarity were clustered again at 60 % similarity cut-off. 15 groups were assigned as new clusters (A–O), with the same or similar patterns of *tet* genes and virulence factors. Cluster A and cluster L showed high genetic homology (over 90 %) compared to other clusters. Especially, the sub-grouping was confirmed by the year of isolation 2003, 2004–2005, and 2010. Clusters B, J, K, and N represented clones that contained isolates from mainly pork origins. The isolates in cluster G and I only harbored *tet* (L) and *tet* (M). Isolates in cluster I showed 100 % similarity in virulence profiles. Fishery product isolates generated cluster O, carrying *tet* (M) except for two isolates without any *tet* gene.

Discussion

One of the main concerns regarding enterococci is their potential role as a reservoir for AMR and virulence traits that can be disseminated to other bacteria. Many of these factors have been found in enterococci, as shown in this study.

Tetracyclines have been used for various purposes; however, overuse of antibiotic causes selective pressure and has helped that bacteria acquire resistance genes [30, 38]. The mechanism of tetracycline resistance has been described as the effect of efflux pumps [*tet* (K), *tet* (L)] and ribosomal protection proteins [*tet* (M), *tet* (O), *tet* (S), *tet* (T), and *tet* (W)] [35]. In a previous study, resistance mediated by *tet* (M) was reported to be the most frequent in the isolates from food animals [1], whereas *tet* (L) is the most frequent determinant responsible for tetracycline resistance.
Fig. 1 Pulsed-field gel electrophoresis (PFGE) dendrogram of tetracycline-resistant *Enterococcus faecalis* originating from retail beef, chicken, pork, fish and fishery products, and processed meat products.

a tetracycline resistance genes; *b* agg, gelE, and esp were detected in a previous study (unpublished data) *c* not detected
enterococci from food [22]. Food-borne *E. faecalis* containing *tet*(M) and *tet*(L), with an MIC range of 128–256 μg/ml against tetracycline resistance, were frequently detected in this study. The expression of high-level tetracycline resistance might help to explain the complementary mechanism of the efflux pump and ribosomal proteins [4].

Besides, we investigated the enterococcal virulence traits including adherence to tissue, invasion formation, and inducible pheromones. Several genes representing the traits have been characterized as enhancer to exchange genetic information such as transmissible antibiotic resistance plasmids or virulence factors by conjugation. The process has been also known to take place in gastrointestinal tract [17]. Among the virulence genes, we found *agg* gene in 109 tetracycline-resistant isolates. The prevalence of *agg* supports the transfer of tetracycline resistance to an inducible pheromone plasmid. *Agg*, targeting the highly conserved region of the sex pheromone plasmids *pAD1*, *pPD1*, and *pCF10*, is a unique virulence trait in *E. faecalis* that allows horizontal transfer of antibiotic resistance and virulence genes at high frequency. In this study, *agg* positive isolates possessed AMR and virulence traits respectively (data not shown here). To demonstrate transfer/acquisition ability of the isolates harboring AS genes, we selected the isolates carrying at least one or more tetracycline resistance genes, then conducted filter mating using *E. faecalis* plasmid-free strain JH2-2. The results showed that the isolates possessing the transposon elements successfully generated transconjugants by transferring tetracycline resistance genes. They could also transfer their *tet* genes, possessing AS genes without transposon elements, which might become activated with the conjugative sex pheromone system and ASs. Of the AS genes, *asa1* was the most commonly found, followed by *prgB* gene. The *asa1* gene encoding AS of the pheromone-responsive plasmid *pAD1* has been well characterized, and the presence of AS genes in *Enterococcus* results in fast conjugation [43]. The *prgB* gene, encoding the surface protein, mediates cell aggregation by conjugative transfer of the pheromone-responsive plasmid *pCF10* in *E. faecalis* which promotes conjugation to share pathogenic information [7, 13]. In our study, the transconjugant isolates had at least one AS gene transferred simultaneously by conjugation with the *tet* genes. Interestingly, two *tet*(S) genes were transferred to *E. faecalis* JH2-2, although they were not associated with effective vehicles such as Tn916–1545 for *tet*(M) and *tet*(S). *tet*(S) is transferred from chromosome to chromosome of other *E. faecalis* isolates by conjugation [19]. It suggests that the transfer mechanism on the chromosome is based on movement of the *pAD1* and *pCF10* plasmids [28]. Therefore, successful conjugation may have been caused by the AS genes (*asa1* and *prgB*) in the two isolates and activated to involve pheromone-inducible plasmids for conjugation. In addition, detection of *tet*(S) in *E. faecalis* from pork in this study is the first report in Korea. In general, *tet*(S) gene is not detected in food-producing animal. *tet*(S) in *Vibrio* sp. from fish was reported in Korea [26]. Besides, the presence of the AS gene asa373 is important in Enterococci. A low incidence of asa373 in Enterococci were found and suggested a correlation between asa1, asa373, and *exp* [42]. We found a positive link among *asa1*, *prgB*, and *asa373* in donor and transconjugant isolates. Our PFGE results supported the transfer of these genes. The PFGE analysis pattern shows transfers by genetic mobile elements such as tetracycline resistance genes, conjugative transposons, and pheromone-inducible plasmids. In addition, several clones showed complete consensus in pheno/genotype profiles in different food sources. Among the isolates showing clonality, food-borne *E. faecalis* isolated in 2005 were highly prevalent, suggesting that serious cross-contamination had occurred during the process of transport or sale steps. For instance, the isolates belonging to cluster I were analyzed with a high consensus of genetic information despite of different origins.

The *cpd*, *cob*, and *ccf* inducible sex pheromone determinants were found in more than one *E. faecalis* isolate tested. These pheromones are relevant to the problems associated with AS genes [17]. The isolates harboring *agg* respond to the recipient *E. faecalis* by producing the pheromones to acquire pheromone-inducible plasmids, indicating that inducible sex pheromone-producing *E. faecalis* can increase virulence traits as well as antimicrobial resistance by acquiring the plasmid [18]. In the present study, all food-borne *E. faecalis* had the ability to acquire sex pheromone plasmids. Among the detected pheromones, the *ccf* gene activates the conjugation of the *pCF10* plasmid. The pheromone responsive *pCF10* plasmid has been associated with the dissemination of tetracycline resistance among *Enterococcus* [2]. Additionally, several studies have shown that pheromone-mediated conjugation systems are associated with acquiring glycopeptide resistance by mating experiments. Through the mating experiments, several studies have revealed that vanA conjugative plasmid is associated with pheromone-responsive* pCF10* [20, 27, 33, 39]. Therefore, the high prevalence of *pCF10* in food-borne *E. faecalis* indicates that various foods might be potential pathogenic factors to acquire multi-antimicrobial resistance genes and virulence traits and act as an effective vehicle for spreading the pathogens.

We must take into account a limitation of this study, the low number of tetracycline-resistant genes. Due to this limitation, it was difficult to draw conclusion regarding the genetic relationship among tetracycline-resistant genes in the isolates. This issue requires further investigation.
The use of antibiotics as feed additives was partially banned in 2005, and tetracyclines were completely banned for use as feed additive in livestock to reduce antibiotic resistance in 2009 in Korea. However, our results show a high occurrence of tetracycline resistance genes, and the diversity of food sources (retail meat, fish, fishery products, and processed meat products) are still functioning as huge reservoirs for tetracycline resistance and virulence factors as well. We showed that the wide dissemination of pathogenic traits might be promoted by transfer of pheromone-mediated conjugation systems. Therefore, a continuous monitoring is needed at the national level such as NARMP in Korea to check the effect of antibiotics as feed additives to decrease antimicrobial resistance and determinants in food-borne pathogens after complete banning of antibiotics as feed additives in Korea.

Acknowledgments This study was supported by grant from the NARMP (09072NARM1143) of the Korean Food and Drug Administration (Ministry of Food and Drug Safety at present). We thank Su-Jin Jo for helpful assistance of experiments. We also thank the Korea Administration (Ministry of Food and Drug Safety at present). We thank Su-

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Aarestrup FM (2000) Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. APMIS Suppl 108:5–6

2. Akhtar M, Hirt H, Zurek L (2009) Horizontal transfer of the tetracycline resistance gene tet(M) mediated by pCF10 among Enterococcus faecalis in the house fly (Musca domestica L.) alimentary canal. Microb Ecol 58:509–518

3. Aminov RI, Garrigues-Jeanjean N, Mackie RI (2001) Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 67:22–32

4. Ammor MS, Guemmonde M, Danielsen M, Zagorec M et al (2008) Two different tetracycline resistance mechanisms, plasmid-carried tet(L) and chromosomally located transposon-associated tet.M), coexist in Lactobacillus sakei Rits 9. Appl Environ Microbiol 74:1394–1401

5. Andrup L, Andersen K (1999) A comparison of the kinetics of plasmid transfer in the conjugation systems encoded by the F plasmid from Escherichia coli and plasmid pCF10 from Enterococcus faecalis. Microbiology 145:2001–2009

6. Billstrom H, Lund B, Sullivan A, Nord C (2008) Virulence and antimicrobial resistance in clinical Enterococcus faecium. Int J Antimicrob Agents 32:374–377

7. Chung JW, Bensing BA, Dunny GM (1995) Genetic analysis of a region of the Enterococcus faecalis plasmid pCF10 involved in positive regulation of conjugative transfer functions. J Bacteriol 177:2107–2117

8. Clewell DB, An FY, White BA, Gawron-Burke C (1985) Streptococcus faecalis sex pheromone (CAM373) also produced by Staphylococcus aureus and identification of a conjugative transposon (Tn918). J Bacteriol 162:1212–1220

9. Clewell DB, Dunny GM (2002). Conjuation and genetic exchange in enterococci. The enterococci: pathogenesis, molecular biology, and antibiotic resistance. ASM Press, Washington, DC, pp 265–300

10. CLSI (2011) Performance standards for antimicrobial susceptibility testing: twenty-first informational supplement CLSI document M100-S21. Clinical and Laboratory Standards Institute (CLSI), Wayne Pa

11. Cret R, Imperi M, Bertuccini L, Fabretti F, Oreifici G, Di Rosa R, Baldassarri L (2004) Survey for virulence determinants among Enterococcus faecalis isolated from different sources. J Med Microbiol 53:13–20

12. Doherty N, Trzciński K, Pickrell P, Zawadzki P, Dowson CG (2000) Genetic diversity of the tet(M) gene in tetracycline-resistant clonal lineages of Streptococcus pneumoniae. Antimicrob Agents Chemother 44:2979–2984

13. Donelli G, Paolelli C, Baldassarri L, Guaglianone E, Di Rosa R et al (2004) Sex pheromone response, clumping, and slime production in enterococcal strains isolated from oiled biliary stents. J Clin Microbiol 42:3419–3427

14. Dunny GM, Brown BL, Clewell DB (1978) Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci USA 75(7):3479–3483

15. Dunny G, Yuhasz M, Ehrenfeld E (1982) Genetic and physiological analysis of conjugation in Streptococcus faecalis. J Bacteriol 151:855–859

16. Dunny GM (1990) Genetic functions and cell–cell interactions in the pheromone-inducible plasmid transfer system of Enterococcus faecalis. Mol Microbiol 4:689–696

17. Dunny GM, Antiporta MH, Hirt H (2001) Peptide pheromone-induced transfer of plasmid pCF10 in Enterococcus faecalis: probing the genetic and molecular basis for specificity of the pheromone response. Peptides 22:1529–1539

18. Eaton TJ, Gasson MJ (2001) Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635

19. François B, Charles M, Courvalin P (1997) Conjugal transfer of tet(S) between strains of Enterococcus faecalis is associated with the exchange of two large fragments of chromosomal DNA. Microbiology 143:2145–2154

20. Heaton MP, Ritts LK, Pucci MJ, Handwerger S (1996) Mobilization of vancomycin resistance by transposon-mediated fusion of a VanA plasmid with an Enterococcus faecium sex pheromone-response plasmid. Gene 171:9–17

21. Hegstad K, Mikalsen T, Coque T, Werner G, Sundsfjord A (2010) Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 16:541–554

22. Hummel A, Holzapfel WH, Franz CMAP (2007) Characterisation and transfer of antibiotic resistance genes from enterococci isolated from food. Syst Appl Microbiol 30:1–7

23. Huys G, D’Haeke N, Collard JM, Swings J (2004) Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl Environ Microbiol 70:1555–1562

24. Jensen LB, Frimodt-Møller N, Aarestrup FM (1999) Presence of erm gene classes in gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett 170:151–158

25. Jensen LB, Garcia-Míguez L, Valenzuela AJ, Lohr MM, Hasman H, Aarestrup FM (2010) A classification system for plasmids from enterococci and other Gram-positive bacteria. J Microbiol Methods 80:25–43

2 Springer
26. Kim SR, Nonaka L, Suzuki S (2004) Occurrence of tetracycline resistance genes \textit{tet}(M) and \textit{tet}(S) in bacteria from marine aquaculture sites. FEMS Microbiol Lett 237:147–156
27. Lim SK, Tanimoto K, Tomita H, Ike Y (2006) Pheromone-responsive conjugative vancomycin resistance plasmids in \textit{Enterococcus faecalis} isolates from humans and chicken feces. Appl Environ Microbiol 72:6544–6553
28. Manson JM, Hancock LE, Gilmore MS (2010) Mechanism of chromosomal transfer of \textit{Enterococcus faecalis} pathogenicity island, capsule, antimicrobial resistance, and other traits. Proc Natl Acad Sci USA 107:12269–12274
29. McEwen SA (2011) Human health importance of use of antimicrobials in animals and its selection of antimicrobial resistance, and other traits. In: antibiotic discovery and development. Springer, New York, pp. 543–568
30. Morris JG Jr, Shay DK, Hebden JN, McCarter RJ Jr, Perdue BE et al (1995) Enterococci resistant to multiple antimicrobial agents, including vancomycin: establishment of endemicity in a university medical center. Ann Intern Med 123:250–259
31. Mundy LM, Sahm DF, Gilmore M (2000) Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 13:513–522
32. Palmer KL, Kos VN, Gilmore MS (2010) Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 13:632–639
33. Paoletti C, Foglia G, Prinicipalli MS, Magi G, Guaglianone E et al (2007) Co-transfer of vanA and aggregation substance genes from \textit{Enterococcus faecalis} isolates in intra- and interspecies matings. J Antimicrob Chemother 59:1005–1009
34. Rizzotti L, La Gioia F, Dellaugi F, Torriani S (2009) Molecular diversity and transferability of the tetracycline resistance gene \textit{tet}(M), carried on Tn916-1545 family transposons, in enterococci from a total food chain. Antonie Van Leeuwenhoek 96:43–52
35. Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203
36. Roberts MC (2012) Acquired tetracycline resistance genes. In: antibiotic discovery and development. Springer, New York, pp. 543–568
37. Saeedi B, Hällgren A, Jonasson J, Nilsson LE, Hanberger H, Isaksson B (2002) Modified pulsed-field gel electrophoresis protocol for typing of enterococci. APMIS 110(12):869–874
38. Tomasz A (1994) Multiple-antibiotic-resistant pathogenic bacteria. A report on the Rockefeller University workshop. N Engl J Med 330:1247–1251
39. Tomita H, Pierson C, Lim SK, Clewell DB, Ike Y (2002) Possible connection between a widely disseminated conjugative gentamicin resistance (pMG1-like) plasmid and the emergence of vancomycin resistance in \textit{Enterococcus faecium}. J Clin Microbiol 40:3326–3333
40. Trzcinski K, Cooper BS, Hryniewicz W, Dowson CG (2000) Expression of resistance to tetracyclines in strains of methicillin-resistant \textit{Staphylococcus aureus}. J Antimicrob Chemother 45:763–770
41. Valenzuela AS, Omar NB, Abriouel H, López RL, Veljovic K et al (2009) Virulence factors, antibiotic resistance, and bacteriocins in enterococci from artisan foods of animal origin. Food Cont 20:381–385
42. Waar K, Muscholl-Silberhorn AB, Willems R JL, Slooff MJH et al (2002) Genotyping and incidence of virulence factors of \textit{Enterococcus faecalis} in liver transplant patients differ from blood culture and fecal isolates. J Infect Dis 185:1121–1127
43. Wardal E, Sadowy E, Hryniewicz W (2010) Complex nature of enterococcal pheromone-responsive plasmids. Pol J Microbiol 59:79–87