Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The PBPK LeiCNS-PK3.0 framework predicts Nirmatrelvir (but not Remdesivir or Molnupiravir) to achieve effective concentrations against SARS-CoV-2 in human brain cells

Mohammed A.A. Saleh, Makoto Hirasawa, Ming Sun, Berfin Gülave, Jeroen Elassaiss-Schaap, Elizabeth C.M. de Lange

1 Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
2 PD-value B.V., Houten, The Netherlands

ARTICLE INFO
Keywords:
LeiCNS-PK3.0
COVID-19
Brain
Pharmacokinetics

ABSTRACT
SARS-CoV-2 was shown to infect and persist in the human brain cells for up to 230 days, highlighting the need to treat the brain viral load. The CNS disposition of the antiCOVID-19 drugs: Remdesivir, Molnupiravir, and Nirmatrelvir, remains, however, unexplored. Here, we assessed the human brain pharmacokinetic profile (PK) against the EC90 values of the antiCOVID-19 drugs to predict drugs with favorable brain PK against the delta and the omicron variants. We also evaluated the intracellular PK of GS443902 and EIDD2061, the active metabolites of Remdesivir and Molnupiravir, respectively. Towards this, we applied LeiCNS-PK3.0, the physiologically based pharmacokinetic framework with demonstrated adequate predictions of human CNS PK. Under the recommended dosing regimens, the predicted brain extracellular fluid PK of only Nirmatrelvir was above the variants’ EC90. The intracellular levels of GS443902 and EIDD2061 were below the intracellular EC90. Summarizing, our model recommends Nirmatrelvir as the promising candidate for (pre)clinical studies investigating the CNS efficacy of antiCOVID-19 drugs.

1. Introduction

Increasing evidence supports that COVID-19 is not only a respiratory disease but may also have serious impact on, among others, the central nervous system (CNS) (Philippens et al., 2021). The neurological manifestations associated with SARS-CoV-2 include headaches, encephalopathy (Chou et al., 2021; Guadarrama-Ortiz et al., 2020), Alzheimer’s disease-like manifestations (Shen et al., 2022), and brain atrophy (Douaud et al., 2022). SARS-CoV-2 has also been demonstrated to infect (Matschke et al., 2020; Veleri, 2022) and persist in neurons for up to 230 days (Stein et al., 2021). A causal relationship of neurotropism and neurological manifestations is still, however, unestablished (Pacheco-Herrero et al., 2021; Shen et al., 2022; Yang et al., 2021). Addressing the viral infection in the brain is therefore relevant to avoid a long-term latent state of virus in the CNS, which could result in recurrent CNS pathologies.

Three small molecule drugs have so far been approved for the treatment of COVID-19 in humans, which include the main protease inhibitor, Nirmatrelvir, in addition to Remdesivir and Molnupiravir that are activated intracellularly to the nucleoside analogues GS443902 and EIDD2061, respectively. The PK profiles of these drugs and their active metabolites in the human brain have not been assessed. We here apply the physiologically based LeiCNS-PK3.0 framework to predict the PK profiles of these drugs in the brain, and relate these to their in vitro EC90 (Gonçalves et al., 2020) values against the delta and omicron variants of SARS-CoV-2. By this approach we select drug(s) that seems to be promising for treating these viruses in the brain.

2. Data and Methods

2.1. Data collection

We first compiled in vitro and preclinical in vivo data on CNS disposition and blood-brain barrier (BBB) transport of Nirmatrelvir, Remdesivir (and its metabolites: GS704277 and GS441524 and active form GS443902), and Molnupiravir (and its metabolite: EID91931 and active form EIDD2061). Molnupiravir is unstable in plasma and is efficiently and rapidly converted to EIDD91931. Therefore, EIDD91931 was...
used as a surrogate to describe Molnupiravir’s plasma and CNS disposition. Also, Molnupiravir dosing was performed in molarity to account for the difference in molecular weight between the parent drug and its metabolite.

In addition, the extent of CNS distribution of these drugs given by $K_{\text{p,brain}}$ (brainECF to plasma unbound drug ratio) was evaluated using the in-silico brain exposure efficiency (BEE) score (Gupta et al., 2020). Population plasma PK models were extracted from literature. Drug physicochemical properties were available from DRUGBANK (Wishart et al., 2017). The model related input is reported in Table 1. Literature data, where required, were digitized with WebPlotDigitizer version 4.2 (https://apps.automeris.io/wpd/).

2.2. LeiCNS-PK3.0 framework

LeiCNS-PK3.0 is a physiologically based pharmacokinetic (PBPK) model of the CNS, which can predict the unbound PK profile in different CNS compartments, including the target sites in the brain extracellular (brainECF) and intracellular (brainICF) compartments and also the lumbar cerebrospinal fluid compartment. The model was previously validated and was shown to predict, independently of clinical brain PK data, the unbound PK profiles of morphine in the human brainICF and of indomethacin, oxycodone, and acetaminophen at the lumbar region of the subarachnoid space cerebrospinal fluid (CSF) compartments, both with less than two-fold error. Additional details on model structure and validation have been reported previously (Saleh et al., 2021). Here, we will use the validated LeiCNS-PK3.0 to predict the human brainECF and brainICF PK profiles of the three antiCOVID-19 drugs. It will not be possible, however, to validate these predictions since relevant brain PK measurements are unavailable.

2.3. LeiCNS-PK3.0 simulations

Model simulations were performed using the physiological parameters of a healthy human adult as reported previously (Saleh et al., 2021) and the plasma PK parameters and drug physicochemical properties presented in Table 1. Fifty simulations were performed to account for interindividual variability of the population plasma PK models and the median and 95 percentiles were reported. Simulations were performed in R (version 4.1.2) (R Core Team, 2019) using the package RxODE (version 1.1.4) (Fidler et al., 2019) and the LSODA (Livermore Solver for Ordinary Differential Equations) Fortran package.

2.4. Brain intracellular PK assessment

Remdesivir is a prodrug and is metabolized intracellularly to GS443902, the active nucleoside analogue. GS443902 is hydrophilic, with long elimination half-life (≈ 43 hours) as measured in human peripheral blood mononuclear cells (Humeniuk et al., 2021), which imply that GS443902 may accumulate intracellularly, producing a sustained effect. We therefore investigated the intracellular brain PK profile of GS443902. The intracellular PK profiles of Remdesivir metabolites were reported in lung epithelium cells (Calu-3 cells) (Gilead Sciences, 2020) and were used to model the intracellular brain PK of GS443902. Briefly, we assumed that the triphosphate active metabolite GS443902 is formed from GS704277 metabolite directly (half-life $= 30.4$ hours), given the low concentrations of the intermediate monophosphate and diphosphate metabolites. The formation rate of GS443902 was multiplied by a factor of 24.9 to correct for the slow metabolic rate of Calu-3 cell line compared to other human cell lines, for example the hepatocellular carcinoma (Huh-7), primary airway epithelium (HAE), and kidney epithelium (293T) (Pruisjers et al., 2020; Tao et al., 2021). No formation of GS443902 from GS441524 was considered, supported by the inefficiency of this process, as demonstrated by the in vitro experiments using the Huh-7, HAE, Calu-3, Caco-2, and 293T cell lines (Gilead Sciences, 2020; Tao et al., 2021). GS443902 is metabolized to GS441524 with a half-life of 43 hours (Humeniuk et al., 2021).

Likewise, Molnupiravir is the prodrug of the parent nucleoside EIDD1931, which undergoes intracellular conversion to EIDD2061, the triphosphate metabolite of EIDD1931. Intracellular PK of EIDD2061 was modeled based on the mouse brain homogenate data of EIDD1931 and EIDD2061 (Painter et al., 2019). The formation and elimination half-lives of EIDD2061 were 3.5 (Painter et al., 2019) and 4.5 (European Medicines Agency, 2021a) hours, respectively.

2.5. Efficacy calculation

Comparison of predicted brainECF PK profile against the EC90 was used to assess if a drug would achieve effective brain PK. Efficacy against the omicron and delta variants was considered as these are the current variants of concern (World Health Organization WHO, 2022). In addition, efficacy at a given time point (t) was calculated using the predicted brainECF Concentrations at given time point ($C_{ECF,t}$) and EC_{90}. Average efficacy (ϵ) of the drug across the PK profile was calculated by integrating ϵ over the treatment duration (D) (Gonçalves et al., 2020). In vitro measured EC_{90} and EC_{90} were available from literature and are reported in Table 1.

$$
\epsilon = \frac{C_{ECF,t}}{EC_{90}} + \frac{C_{ECF,t}}{EC_{90}}
$$

2.6. Sensitivity analysis

A sensitivity analysis was performed to evaluate the impact of the CNS pathophysiological changes associated with COVID-19 on brain PK profiles of the three antiCOVID-19 drugs (Saleh and de Lange, 2021). Changes of all model physiological parameters were assessed including pH values of brainECF, brainICF, lysosomes, plasma, and CSF; effective surface area of paracellular transport across the BBB and blood-CSF (BCSFB); bulk fluid flow as cerebral blood flow, brainECF bulk flow, and CSF flow; surfaces areas of BBB, BCSFB, brain cells, and lysosomes; and the volumes of brain microvasculature, brainECF, brainICF, lysosomes, brain phospholipids, lateral ventricles, third and fourth ventricles, cisterna magna, and subarachnoid space. Model parameters were changed by 10% and 200%, while pH values were altered by 0.1 and 2 pH units. The Cmax, Tmax, AUC, and half-life of the PK profiles from the healthy and altered CNS parameters were then compared.

3. Results

The predicted PK profiles of plasma and brainECF of Remdesivir, GS441524, Nirmatrelvir, and EIDD1931 are presented in Fig. 1. The predicted brainECF PK profiles are depicted against the in vitro EC90 values against the delta and omicron variants, except for GS441524 which is depicted against the EC90 value, as the EC90 values of the delta and omicron variants were not available. Extracellular PK profiles were compared against the EC90 values, since the in vitro EC90 values reflect extracellular and not intracellular drug concentrations.

The predicted brainECF PK profile of Nirmatrelvir was consistently above the EC90 value of both variants, with an average efficacy of 87% and 96% against the delta and omicron variants, respectively. Nirmatrelvir still achieved effective brainECF PK profiles following a 50% reduction of plasma Cmax (supplementary figure 1, online resource 1). The reduction of plasma Cmax was achieved with an 85% lower absorption rate constant to account for the formulation differences between tablets and oral suspensions (European Medicines Agency, 2021b). The predicted brainECF PK profiles of Remdesivir and of GS441524 were below the EC90. The predicted brainECF PK profile of...
Table 1
LeiCNS-PK3.0 input parameters

Drug	Nirmatrelvir Parent	Remdesivir Parent	Metabolites	Molnupiravir Metabolite
			GS704277	GS441524
				EIDD1931
Physicochemical properties (Wishart et al., 2017)				
MW (g/mol)	499.535			
LogP (unitless)	2.12			
pk_{a} (unitless)	7.1			
pk_{b} (unitless)	-1.6			
Q_{cen} (ml min^{-1})	17			
Q_{comp-port} (ml min^{-1})	7.4			
Q_{comp-per1} (ml min^{-1})	0			
V_{muc} (ml)	8200			
V_{per2} (ml)	5650			
V_{per1} (ml)	0			
Ka (min^{-1})	0.3783			
D1 (min)	NA		not applicable	
	NA		not applicable	
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12
	NA		not applicable	48.12

6 Predicted values using the brain uptake efficiency score (Gupta et al., 2020)
7 Kp value was calculated based on mouse brain homogenate (Painter et al., 2019) and was corrected to Kp_{in,BBB} accounting for the plasma and brain binding and brain pH differences
8 assumed the same as Kp_{in,BBB}
9 Molnupiravir dose in the model simulations was performed in units of molarity to account for the difference of molecular weight between Molnupiravir and its metabolite EIDD1931.

MW: molecular weight, LogP: octanol-water partitioning, pk_{a}: acid dissociation constant, pk_{b}: base dissociation constant, Cl_{muc}: drug clearance from central plasma compartment, Q_{comp-port}: Drug clearance between central and peripheral plasma compartments, V_{muc}: volume of central plasma compartment, V_{per}: volume of peripheral plasma compartments, Ka: absorption rate constant, D1: estimated duration, IV: inter-individual variability, fu_{p}: plasma unbound fraction, Kp_{unb}: unbound drug concentration ratio, AF_{ef,c}: asymmetry factor efflux/influx, F_{pg}: P-glycoprotein, BCRP: breast cancer receptor protein, ENT: equilibrative nucleoside transporters, CNT: concentrative nucleoside transporter, EC_{50,90}: drug concentration for 50%/90% efficacy, NA: not available.
GS443902 against the intracellular EC\textsubscript{90} value are depicted in Fig. 2. The intracellular EC\textsubscript{90} value was calculated based on the extracellular EC\textsubscript{90} value of Remdesivir and the average intracellular levels of GS443902 (Pruijssers et al., 2020). Brain ICF concentrations profile of GS443902 increased over time with each dose, but remained, however, below the intracellular EC\textsubscript{90}.

The predicted brain\textsubscript{ECF} PK of EIDD1931 was below the EC\textsubscript{90} of the two variants. EIDD2061 brain\textsubscript{ICF} PK profile, reported in Fig. 2, does not notably accumulate continuously in brain (Painter et al., 2019), mainly because of its short half-life. Data required to calculate the intracellular EC\textsubscript{50/90} of EIDD2061 were not available. The average concentration ratio of EIDD2061 to EIDD1931 is between one-third and two, as measured in mice spleen and brain, respectively (Painter et al., 2019).

This means that the intracellular EC\textsubscript{90} of EIDD2061 can be assumed to be (at best) threefold lower than that measured extracellularly for EIDD1931 or 1.55 nmol/ml, which is still three times higher than the predicted intracellular C\textsubscript{max} of EIDD2061 (0.4 nmol/ml).

In this study, LeiCNS-PK3.0 simulations were performed using the parameters of the healthy human CNS. Therefore, a sensitivity analysis was performed to assess the PK changes caused by the potential COVID-19 alterations of CNS physiology. Changes of pH\textsubscript{ECF} and pH\textsubscript{ICF} resulted in the largest change of brain\textsubscript{ECF} and brain\textsubscript{ICF} PK of Nirmatrelvir (pKa = 7.1, Table 1). Remdesivir and EIDD1931 are neutral molecules and thus not impacted by pH changes. Also, changes of brain cell volume and surface area impacted the PK of EIDD1931.
GS443902 (Remdesivir active metabolite)

EIDD2061 (Molnupiravir active metabolite)

Fig. 2. Median (solid green line) and 95 percentiles (green shaded area) of the predicted intracellular levels of GS443902 (top) and EIDD2061 (bottom), the active triphosphate metabolites of Molnupiravir and Remdesivir, respectively. GS443902 is hydrophilic (logP = -5.3 (NCBI Resource Coordinators, 2018)), with an elimination half-life of 43.4 hours (Humeniuk et al., 2021), which indicate its potential for intracellular accumulation. At the recommended dosing, however, GS443902 predicted levels are below the intracellular EC$_{90}$ value (1.78 pmol/million cell (Pruijssers et al., 2020), dashed blue line) against USA-WA1/2020. EIDD2061 is also hydrophilic, but with a relatively short half-life of 4.5 hr (European Medicines Agency, 2021a) and therefore does not accumulate extensively intracellularly (Painter et al., 2019). Data required for calculating intracellular EC$_{90}$ of EIDD2061 were not available. EIDD2061 intracellular predicted C$_{\text{max}}$ is however ten fold lower than the EC$_{90}$ reported for EIDD1931, while the average concentration ratio of EIDD2061 to EIDD1931 ranges from one-third to two. Thus, intracellular EC$_{90}$ can be as low as 1.55 nmol/ml, which is still three times the C$_{\text{max}}$ of EIDD2061 at the recommended dosing regimen.

4. Discussion

The neurotrophic characteristics and the associated neurological manifestations of SARS-CoV-2 strongly imply the need to eradicate the virus from the brain. CNS penetration of small molecule drugs approved for COVID-19 treatment have not been studied in humans. Using the LeiCNS-PK3.0 PBPK framework and the recommended dosing regimens, we predict that Nirmatrelvir alone achieves adequate brain PK profiles as based on the in vitro EC$_{90}$ values against SARS-CoV-2 variants of interest, i.e. the delta and omicron variants. These results can guide clinical trials on the assessment of efficacy of antiCOVID-19 drugs in the human CNS.

Based on our model simulations, the dose of Remdesivir or Molnupiravir required to achieve effective concentrations in the brain cells will exceed by several folds the highest dose that was tested during the clinical development of both drugs. A minimum dose of 300 mg twice daily of Remdesivir was needed for the brainICF C$_{\text{max}}$ of GS443902 to be higher than the calculated intracellular EC$_{90}$ value (1.78 pmol/million cell (Pruijssers et al., 2020)). With regards to Molnupiravir, a dose of 4000 mg twice daily was required for the intracellular C$_{\text{min}}$ of EIDD2061 to exceed the lowest predicted intracellular EC$_{90}$ value of 1.55 nmol/ml. Both doses were not explored in the dose escalation studies in humans (Humeniak et al., 2020; Painter et al., 2021) and thus the associated potential toxicities have not been investigated.

COVID-19 is associated with distinct CNS pathophysiological alterations. SARS-CoV-2 impaired the integrity of the BBB, either because of the impairment of the basement membrane without affecting tight junctions (Krasemann et al., 2022; Zhang et al., 2021) or the loss of tight junction proteins (Buzhydyan et al., 2020; Erickson et al., 2021; Reynolds and Mahajan, 2021; Wang et al., 2021). Also, the increased protein content in CSF (Jarius et al., 2022; Tandon et al., 2021) suggests a breakdown of the BCSFB (Pellegrini et al., 2020), but could also be a result of decreased CSF flow (Reiber, 1994). SARS-CoV-2 infection might result in brain atrophy, wherein the volume of gray matter significantly reduced than white matter (Douaud et al., 2022; Qin et al., 2021). No direct evidence suggests the changes in the volume and the surface area of brain cells. Many COVID-19 patients, however, present with hypoxemia (Dhoff et al., 2020; Solomon et al., 2020), which in turn, results in the increase of anaerobic metabolism in the mitochondria of brain cells (Abdennour et al., 2012). The accumulation of lactic acid produced by mitochondria can cause swelling of brain cells (Duan et al., 2021). No in vivo or in vitro data on the impact of SARS-CoV-2 on brainECF pH, the accumulation of lactic acid due to anaerobic respiration might result in a lower brain pH (Fan et al., 2020). In addition, influenza virus results in a decreased brainECF pH, by H+ export from cells (Liu et al., 2016). Hence, we performed a sensitivity analysis to study the impact of these pathophysiological changes on brain PK with a focus on C$_{\text{max}}$ and exposure given by the AUC (Supplementary figure 2, online resource 1). An increase of brain cell volume as a result of brain cell swelling will reduce the C$_{\text{max}}$ and AUC of EIDD1931. A decrease of pH$_{\text{ECF}}$ slightly decreased the C$_{\text{max}}$ of brainICF and increased the C$_{\text{max}}$ and exposure of brainECF. Therefore, based on the sensitivity analysis results and the literature summary of CNS pathophysiology in COVID-19, small changes (10%) of CNS physiology as expected in COVID-19 will not notably impact the brain PK profiles. We therefore postulate that our simulation results using healthy CNS parameters still apply for COVID-19 patients, independent of the disease state of the CNS.

In this simulation study, asymmetry factors (AF), which represent active transport activity at BBB, were calculated based on Kp$_{\text{uu,BBB}}$ values provided by “the brain exposure efficiency” (BEE) in silico calculator (Gupta et al., 2020) for Nirmatrelvir and Remdesivir, both drugs being P-glycoprotein substrates. The predicted Kp$_{\text{uu,BBB}}$ of Remdesivir was in line with total brain-to-plasma Remdesivir ratios measured in radiographic imaging studies in rats (Gilledge Sciences, 2020) and in rhesus monkeys (Warren et al., 2016). No in vivo or in vitro data on P-glycoprotein activity were available for Nirmatrelvir. To assess the impact of the uncertainty associated with the predicted Kp$_{\text{uu,BBB}}$ (and consequently AF) on brain PK, we explored the scenario assuming a five-fold increase of BBB p-glycoprotein activity (i.e. a five-fold decrease of Kp$_{\text{uu,BBB}}$). Nirmatrelvir still maintained activity against the omicron, but not the delta, variant (results not shown).
Future in vitro or preclinical in vivo studies addressing the brain penetration of Nirmatrelvir are required to further substantiate these outcomes. Remdesivir and Molnupiravir are prodrugs of the parent nucleosides and undergo intracellular metabolism to the active nucleoside analogues, GS443902 and EIDD2061, respectively. EC outcomes.

References

Bassetti, C., Suarez, J.I., McNett, M., 2021. Global Incidence of Neurological Manifestations among Patients Hospitalized with COVID-19 - A Report for the GCS-Ann. Fr. Anesth. Reanim. 31, 101–107. https://doi.org/10.1016/j.jannfar.2012.04.013.

Buzdaghian, T.P., DeOre, B.J., Baldwin-Leclair, A., Bullock, T.A., McGary, H.M., Khan, J. A., Razmpour, R., Hale, J.F., Galie, P.A., Potula, R., Andrews, A.M., Ramirez, S.H., 2020. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood-brain barrier. Neurobiol. Dis. 146, 105131. https://doi.org/10.1016/j.nbd.2020.105131.

Chou, S.H.Y., Beghi, E., Helleb, R., Moro, E., Sampson, J., Altamirano, V., Mainali, S., Basseti, C., Suarez, J.L., McNett, M., 2021. Global Incidence of Neurological Manifestations among Patients Hospitalized with COVID-19 - A Report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Neurol. Open 4, 1–14. https://doi.org/10.1001/jamanetworkneurol.2021.12313.

Dhont, S., Deron, E., Van Brackel, E., Depuydt, P., Lambech, B.N., 2020. The pathophysiology of ‘happy’ hypoxemia in COVID-19. Respir. Res. 21, 1–9. https://doi.org/10.1186/s12931-021-01614-1.

Gonzalez, A., Bertrand, J., Ke, R., Comets, E., de Lamballerie, X., Malvy, D., Pizzorno, A., Terrier, O., Rosa Calatrava, M., Mentre, F., Smith, P., Perelson, A.S., Guedel, J., 2020. Timing of Antiviral Treatment Initiation is Critical to Reduce SARS-CoV-2 Viral Load. CPT Pharmacometrics Syst. Pharmacol. 9, 509–514. https://doi.org/10.1002/psp4.12543.

Guadarrama-Oritz, F., Choores-Parra, J.A., Sánchez-Martínes, C.M., Pacheco-Sánchez, F. J., Rodríguez-Nava, A.L., García-Quintero, G., 2020. Neurological Aspects of SARS-CoV-2 Infection: Mechanisms and Manifestations. Front. Neurol. 11, 1–14. https://doi.org/10.3389/fneur.2020.01039.

Gupta, M., Bogdanowicz, T., Reed, M.A., Bardeen, C.J., Weaver, D.F., 2020. The Brain Exposure Efficiency (BEE) Score. ACS Chem. Neurosci. 11, 205–224. https://doi.org/10.1021/acschemneuro.9b00650.

Humeniuk, R., Mathias, A., Cao, H., Osnisw, A., Shen, G., Chng, E., Ling, J., Vu, A., German, P., 2020. Safety, Tolerability, and Pharmacokinetics of Remdesivir, an Antiviral for Treatment of COVID-19, in Healthy Subjects. Clin. Transl. Sci. 13, 896–906. https://doi.org/10.1111/cts.12840.

Humeniuk, R., Mathias, A., Kirby, B.J., Lutz, J.D., Cao, H., Osniswi, A., Babusis, D., Porter, D., Wei, X., Ling, J., Redd, Y.S., German, P., 2021. Pharmacokinetic, Pharmacodynamic, and Drug-Interaction Profile of Remdesivir, a SARS-CoV-2 Replication Inhibitor. Clin. Pharmacokinet. 60, 569–583. https://doi.org/10.1007/s40262-021-00984-5.

Jariš, S., Pache, F., Kortvélyesy, P., Jelčić, I., Stettner, M., Franciotta, D., Keller, E., Neumann, B., Ringelstein, M., Menil, M., Regeniter, A., Kalantzis, R., Willms, J.F., Berthele, A., Busch, M., Capobianco, M., Eisle, A., Reichen, I., Dorsch, R., Raser, S., Sandner, K., Ayzenberg, I., Gross, C.C., Hegen, H., Khalil, M., Kleiter, I., Lenhard, T., Han, J., Aktas, O., Angstwurm, K., Kleinichscht, C., Lewenz, H., Paul, F., Stangel, M., Ruprecht, K., Wildemann, B., 2022. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J. Neuroinflammation 19, 1–33. https://doi.org/10.1186/s12974-021-02339-0.

Juanfar, Á., Gutiérrez, G., Echevarría, M., Manzano, M., Mato, N., Gutiérrez, J., 2020. Dynamics of the hypoxia—induced tissue edema in the rat barrel cortex in vitro. Front. Cell. Neurosci. 12, 1–11. https://doi.org/10.3389/fncel.2018.00502.

Kraesemann, S., Haferkamp, U., Pfeiffer, S., Woo, M.S., Heinrich, F., Schweizer, M., Appels-Merenzel, A., Cubaskova, A., Barenberg, J., Leu, J., Hug, M., Ett, J., Littau, J.L., Sepulveda-Falla, D., Zhang, L., Tong, K., Liang, Y., Tumani, H., Paul, F., Stangel, M., Ruprecht, K., Wildemann, B., 2022. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J. Neuroinflammation 19, 1–33. https://doi.org/10.1186/s12974-021-02339-0.

Kraesemann, S., Haferkamp, U., Pfeiffer, S., Woo, M.S., Heinrich, F., Schweizer, M., Appels-Merenzel, A., Cubaskova, A., Barenberg, J., Leu, J., Hug, M., Ett, J., Littau, J.L., Sepulveda-Falla, D., Zhang, L., Tong, K., Liang, Y., Tumani, H., Paul, F., Stangel, M., Ruprecht, K., Wildemann, B., 2022. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J. Neuroinflammation 19, 1–33. https://doi.org/10.1186/s12974-021-02339-0.
Gerloff, C., Pischel, K., Krasemann, S., Aepfelbacher, M., Glatzel, M., 2020. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancer Neurol. 19, 919–929. https://doi.org/10.1016/S1474-4422(20)30538-2.

NCBI Resource Coordinators, 2018. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 46, D8–D13. https://doi.org/10.1093/nanobio/gnx1095.

Pacheco-Herrero, M., Soto-Rojas, L.O., Harrington, C.R., Flores-Martinez, Y.M., Villagrasa, M.M., Leon-Aguilar, A.M., Martinez-Gomez, P.A., Campa-Cordoba, B.B., Apatiga-Perez, R., Corneil-Taveras, C.N., Dominguez-Garcia, J., de J., Blanco-Alvareza, V.M., Luna-Munoz, J., 2021. Elucidating the Neuropathological Mechanisms of SARS-CoV-2 Infection. Front. Neurol. 12, 1–19. https://doi.org/10.3389/fneur.2021.600087.

Painter, G.R., Bowen, R.A., Bluemling, G.R., DeBergh, J., Ap, J., Edpuganti, V., Gruddanti, P.R., Diamond, T., Ackman, J., Steck, B., Stein, S., Lombardi, L., O’Connor, A., Gaudin, N., Lipari, J., 2021. Comparison of antiviral activity and intracellular metabolism of remdesivir and molnupiravir against SARS-CoV-2 Omicron and other variants of concern. Antiviral Res 198, 105252. https://doi.org/10.1016/j.antiviral.2021.105252.

Veiler, S., 2022. Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Exp. Brain Res. 240, 9–25. https://doi.org/10.1007/s00221-021-06244-z.

Wang, P., Jin, L., Zhang, M., Wu, Y., Duan, Z., Chen, W., Wang, C., Liao, Z., Han, J., Guo, Yingqi, Guo, Yaqiong, Wang, Y., Lai, R., Qin, J., 2021. SARS-CoV-2 causes human BBB injury and neuroinflammation indirectly in a linked organ chip platform. bioRxiv.

Warren, T.K., Jordan, L., Ro, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., Siegel, D., Perron, M., Bannister, R., Hui, H.C., Larson, N., Strickley, R., Wells, J., Stuthman, K.S., Van Tongeren, S.A., Garza, N.L., Donnelly, G., Shurtliff, A.C., Retterer, C.J., Gharabeh, D., Zamani, R., Kenny, T., Eaton, B.P., Grimes, E., Welch, L.S., Gomba, L., Wilhelmsen, C.L., Nichols, D.K., Nus, J.E., Nagle, E.R., Kugelman, J.R., Palacios, G., Doerrfles, E., Neville, S., Carra, E., Clarke, M.O., Zhang, L., Lew, W., Ross, B., Wang, Q., Chun, K., Wolfe, L., Babusis, D., Park, Y., Stray, K.M., Trancheva, I., Stein, J.A., Schaum, N., Lee, D.P., Calcuttawala, K., Vest, R.T., Berdnik, D., Lu, N., Hahn, O., Gate, D., McNerney, M.W., Channappa, D., Gobot, I., Ludwig, N., Schulz-Schaeffer, W.J., Klier, A., Wyss-Coray, T., 2021. Dysregulation of brain and choroid plexus in COVID-19 patients. Exp. Brain Res. 240, 9–12. https://doi.org/10.1007/s00221-021-06244-z.

Manyande, A., Xu, F., Wang, J., Zhu, W., 2021. Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J. Clin. Invest. 131, 12. https://doi.org/10.1172/jci147329.