Oxytocin and Vasopressin Agonists and Antagonists as Research Tools and Potential Therapeutics

M. Manning*, A. Misicka†, A. Olma‡, K. Bankowski§, S. Stoev*, B. Chini–, T. Durroux**, B. Mouillac**, M. Corbani** and G. Guillon**

*Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, OH, USA.
†Faculty of Chemistry, University of Warsaw, Warsaw, Poland.
‡Faculty of Chemistry, Institute of Organic Chemistry, Technical University of Lodz, Lodz, Poland.
§Pharmaceutical Research Institute, Warsaw, Poland.
– CNR Institute of Neuroscience, Milan, Italy.
**Institut de Genomique Fonctionnelle, UMR5203-CNRS, U661-INSERM, Univ. Montpellier I & II, Montpellier, Cedex, France.

Introduction

Subsequent to the pioneering original synthesis of oxytocin (OT) (2) and arginine vasopressin (AVP) (3) by Vincent du Vigneaud and his associates, thousands of analogues of both of these neurohypophysial peptides have been synthesised in many laboratories throughout the world. The Merrifield solid phase method (4) has been of inestimable importance in facilitating the rapid and efficient synthesis of agonists and antagonists for the AVP V1a, V1b and V2 receptors and for the OT uterine receptor (5). Many of these ligands have found widespread use as pharmacological tools for studies on the peripheral and central effects of OT and AVP. These design and synthetic studies have been the subject of numerous reviews (1, 6–20).

Structure activity and design studies carried out in other laboratories over the past five decades have laid the foundation for the design studies that we present here. These pivotal contributions by others have been fully documented (11, 14, 18, 20).

Oxytocin and AVP mediate their biological effects by acting on specific receptors (21–23). OT and AVP receptors belong to a G-protein coupled receptor family, characterised by seven putative transmembrane helices. Reviews on AVP and OT receptors are available elsewhere (12, 22, 23). OT receptors are expressed in the uterus, the mammary gland, the ovary, the brain, the kidney, the heart, bone and in endothelial cells (23). In the uterus, OT receptors mediate the uterine contracting (oxytocic) effect of OT (23). The central effects of OT continue to be the focus of intense investigative scrutiny in
animals (24–28) and in humans (29–35), as a possible therapeutic agent for the treatment of autism and other anxiety disorders.

Arginine vasopressin mediates its actions through three known receptors: V$_{1a}$, V$_{1b}$ and V$_2$. V$_{1a}$ receptors are expressed in the liver, vascular smooth muscle cells, brain and in many other tissues (12, 21, 22). In the vasculature, V$_{1a}$ receptors mediate the pressor actions of AVP by a phospholipase C-mediated pathway. In the brain, V$_{1a}$ receptors mediate the anxiety producing responses to AVP (27, 36). V$_{1b}$ receptors, discovered long after the V$_{1a}$ and V$_2$ receptors, present in the anterior pituitary, mediate the adrenocorticotropic hormone-releasing effects of AVP, also by a phospholipase C-mediated pathway (22). Evidence for the presence of V$_{1b}$ receptors in extra-pituitary tissues such as brain, the kidney and the adrenal medulla has also been reported (37). Recently, the V$_{1b}$ receptor has been shown to mediate anxiety and stress in rats and in humans (45). V$_2$ receptors, present in the collecting duct of the kidney, mediate the antidiuretic action of AVP by an adenylyl cyclase-mediated pathway (12, 21, 22).

Scope of the present review

We have previously reviewed the status of developments in the design and synthesis of peptide and nonpeptide AVP and OT agonists and antagonists (1). Here, we focus on the properties of the most widely used peptides requested from the Manning laboratory or purchased from suppliers, together with some recently reported potential clinically useful peptides from the Ferring Laboratory (38, 39). Space considerations preclude our being able to present or to discuss recent synthetic studies carried out in other laboratories (40–43). We also update the current status of the pre-clinical and clinical development of nonpeptide AVP and OT antagonists and of the pre-clinical development of nonpeptide OT agonists (44). The excellent reviews on nonpeptide AVP antagonists (45) and on nonpeptide OT antagonists (46) should be consulted for more in-depth presentations of their chemistry and pharmacology. We also review the merits of peptide versus nonpeptide AVP and OT agonists and antagonists as: (i) research tools and (ii) therapeutic agents. We present human and rat receptor data for a number of selective peptide agonists and for both peptide and nonpeptide antagonists. We illustrate the need to be aware of: (i) species differences, (ii) selectivity differences and (iii) in vitro–in vivo differences when using a specific ligand for receptor characterisation. Finally, we present the highlights of our recent studies aimed at: (i) the development of selective fluorescent ligands for the rat and human V$_{1b}$ receptors (47) and (ii) the development of fluorescence based strategies that have been used to prove the existence of OT receptor dimers in native tissue (48).

Peptide synthesis

All the OT and AVP agonists, antagonists, radiolabelled and fluorescent ligands from our laboratories were synthesised using the Merrifield solid-phase method (4, 49). The synthetic strategy relies very heavily on methodology developed in the du Vigneaud laboratory for the original syntheses of OT and AVP (2, 3). The procedures used are described in the original publications cited here. For other references, see Manning et al. (1).

Bioassays

All of the published peptides from our laboratories, presented in Tables 1, 3–8, were assayed for agonistic and antagonistic activities in in vitro and in vivo rat oxytocic assays, in the rat vasopressor assay and in the rat antidiuretic assay in the laboratories of our collaborators Drs Wilbur H. Sawyer, W. Y. Chan and Hazel Szeto. For agonists, the four-point assay design (50) was used and for antagonists, Schild’s pA$_2$ method (51) was employed. The pA$_2$ is the negative logarithm of the molar concentration of the antagonist that requires a two-fold increase in agonist concentration to achieve the same effect as that found in the absence of antagonist. In practice, this concentration is estimated by finding concentrations above and below the pA$_2$ dose and interpolating on a logarithmic scale.

In the rat in vivo assays, the pA$_2$ (effective dose) is divided by an arbitrarily assumed volume of distribution of 67 ml/kg (52) in an attempt to derive the approximate molar concentration [M] of the pA$_2$ dose in the vicinity of the receptors. Thus, in vivo pA$_2$ values are very approximate estimates. The USP Posterior Pituitary Reference Standard or synthetic OT and AVP, which had been standardised in oxytocic and vasopressor units against this standard, were used as agonists for working standards in all bioassays. In vitro oxytocic assays were performed on isolated uteri from diethylstilbestrol-primed rats in a Mg$^{2+}$-free van Dyke Hasting’s solution (53). In vivo anti-OT potencies were determined in urethane-anaesthetised diethylstilbestrol-primed rats as described previously (54, 55). Vasopressor assays were performed on urethane-anaesthetised and phenoxybenzamine-treated rats as described by Dekanski (55), and antidiuretic assays on water-loaded rats under ethanol anesthesia as described by Sawyer (56).

Receptor binding and functional assays

Membranes and/or cell lines that express the rat and human AVP V$_{1a}$, V$_{1b}$, and V$_2$ receptors (57–64) and the human OT receptor (65) were used for binding and functional assays: inositol phosphate accumulation (66) for V$_{1a}$, V$_{1b}$ and OT receptors and cyclic AMP accumulation (67) for V$_2$ receptors, as described previously (68–74). These receptor studies were carried out in Montpellier and Milan.

Selective oxytocin agonists (Table 1)

The pharmacological properties in rat bioassays for OT and the four analogues (peptides 1–4), which are more potent and/or more selective than OT (75), are given in Table 1. [Thr4,Gly7]OT (peptide 3), also referred to as TGGT, has been widely used as a selective OT agonist. Its human and rat receptor affinities are given in Table 11. The recently reported (38) highly selective OT analogue FE 202767 (peptide 5) has not been evaluated in standard rat bioassays. It exhibits high affinity and selectivity for the human OT receptor. It thus offers promise as a potential new OT therapeutic (38).
The two new OT-related analogues given in Table 2 (1, 2) have not yet been evaluated in standard rat bioassays. The discovery of \([\text{Pro}^8]\text{OT}\) in new world monkeys by Lee et al. (76), independently confirmed by Jeffrey French and colleague (E. B. Harrison and J. A. French, personal communication), is an exciting new development in this field. The novel C-terminal extended analogue of OT; oxytocin-Gly-Lys-Arg, reported by Gutkowska et al. (77) and Danalache et al. (78), opens up new possibilities for the design of potential new cardiomyogenic therapies.

Selective vasopressin \(V_2\) receptor agonists (Table 3)

AVP is equipotent as an antidiuretic agonist and as a vasopressor agonist (79) (Table 3). Thus, it is totally nonselective. It is also not selective with respect to its oxytocic activity. The three analogues of AVP, peptides 1–3 in Table 3 namely; dDAVP, VDAVP and dVDAVP, exhibit striking gains in antidiuretic/vasopressor selectivity. All three peptides have been widely used as selective \(V_2\) agonists. dDAVP, first synthesised by the Zaoral et al. (80) in Prague and later licensed to Ferring, has long been the drug of choice for the treatment of diabetes insipidus. It has been marketed under the trademark Desmopressin (Minirin). The human receptor affinities for dDAVP and dVDAVP given in Table 11 shows clearly that dVDAVP has a ten-fold higher affinity for the human \(V_2\) receptor than dDAVP. However, both peptides also exhibit high affinities for the human \(V_{1b}\) receptor and to somewhat lesser extent for the human OT receptor (Table 11). So clearly they are not selective \(V_2\) agonists in humans with respect to both \(hV_{1b}\) or \(hV_{1a}\) receptors. The search for a \(V_2\) agonist that is selective with respect to the \(V_{1a}\) and \(V_{1b}\) receptors in humans is still a challenging goal in this field. Yet, in the rat, dDAVP could be considered as a relatively good selective \(V_2\) agonist (Table 11).

Selective vasopressin \(V_{1a}\) receptor agonists (Table 4)

In rat bioassays, \([\text{Phe}^2]\text{OVT}\) (peptide 2; Table 4) is a fairly potent vasopressor agonist (81). Its vasopressor (P) activity is 124 units/mg. In antidiuretic (A) assays, it exhibits only 0.55 units/mg. Its P/A ratio is 225 (81). Thus, for many years, it has been considered to be a selective \(V_{1a}\) agonist and has been widely used as a selective \(V_{1a}\) agonist. However, based on its rat \(V_{1a}\) receptor affinity

Table 1. Potent and Selective Agonists for the Uterine Oxytocin Receptor in the Rat.

Number	Peptide	\(\text{OT receptor oxytocic (O)}\) (units/mg)	\(\text{V}_{1a}\) receptor vasopressor (P) (units/mg)	\(\text{V}_2\) receptor antidiuretic (A) (units/mg)	Ratios	Reference	
	OT	520	4	4	130	130	75
1	[Thr\(^4\)]OT	923	0.4	0.9	1025	2307	75
2	HO[Thr\(^4\)]OT	4179	4.92	5.3	790	850	75
3	[Thr\(^4\), Gly\(^7\)]OT	166	\(<0.01\)	\(~0.002\)	83000	\(>16\) 600	75
4	HO[Thr\(^4\), Gly\(^7\)]OT	218	\(<0.01\)	0.004	54500	\(>21\) 800	75
5	Carba-1-[F8BzlGly\(^3\)]dOT(FE 202767)*	ND	ND	ND	ND	ND	38

\(\text{OT, oxytocin; } \text{HO, 1-hydroxy (hydroxyl group replaces } \alpha-\text{amino group); } \text{FBzl, fluorobenzyl. } \text{EC}_{50} \text{ is the concentration of agonist leading to half-maximal activity. ND, Not determined.}

Table 2. New Oxytocin (OT)-Related Peptides.

Number	Peptide	Reference
1	Oxytocin-Gly-Lys-Arg	77, 78
2	[Pro\(^8\)]OT	76

The two new OT-related analogues given in Table 2 (1, 2) have not yet been evaluated in standard rat bioassays. The discovery of [Pro\(^8\)]OT in new world monkeys by Lee et al. (76), independently confirmed by Jeffrey French and colleague (E. B. Harrison and J. A. French, personal communication), is an exciting new development in this field. The novel C-terminal extended analogue of OT; oxytocin-Gly-Lys-Arg, reported by Gutkowska et al. (77) and Danalache et al. (78), opens up new possibilities for the design of potential new cardiomyogenic therapies.

Table 3. Potent and Selective Agonists for the Vasopressin \(V_2\) Receptor in the Rat.

Number	Peptide	\(\text{OT receptor oxytocic (O)}\) (units/mg)	\(\text{V}_{1a}\) receptor vasopressor (P) (units/mg)	\(\text{V}_2\) receptor antidiuretic (A) (units/mg)	Ratios	Reference	
	AVP	14	373	320	0.9	22.8	79
	dDAVP (desmopressin)*	1.5	0.39	1200	3000	800	79, 80
2	VDAVP	0.60	0.037	653	17500	1090	79
3	dVDAVP	8	Antagonist (pA\(_2\) = 7.03)	1230	Infinite	ND	79

\(\text{OT, oxytocin; AVP, arginine vasopressin; } d, 1\text{-deamino; } \text{DAVP, D-Arg}^9\text{VP; } V, \text{Val}^4. \text{ *Desmopressin is the drug of choice for the treatment of diabetes insipidus.}

\(\text{The data given are obtained from Sawyer et al. (79).}

Journal of Neuroendocrinology, 2012, 24, 609–628 © 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd
data in Table 11, it is not selective for the rat V1a receptor in this assay. In this regard, the selective V1a agonist F-180 (82), which is a highly selective V1a agonist in rat bioassays (peptide 3; Table 4), is even more puzzling. In rat receptor assays (Table 11), it is clearly nonselective for V1a receptors. By contrast, F-180 exhibits high affinity and selectivity for the human V1a receptor. The exciting new V1a agonist (peptide 4; Table 5), FE202158, recently reported by Ferring (39, 83) is currently undergoing clinical trials for the treatment of vasodilating hypotension. Compared to F180, this peptide exhibits better selectivity for the human V1a receptor (Table 11). In the rat, this agonist is very specific for the V1a receptor compared to the V2 receptor (selectivity higher than 800), yet it has not been tested for the OT and V1b receptors. This intriguing new V1a agonist is not yet available to other scientists for use as a pharmacological research tool.

V1b receptor agonists (Table 5)

AVP was synthesised in 1954 (3) (Table 5). The first ‘selective’ V1a agonist [Phe²]OVT was synthesised 10 years later in 1964 (81). The first selective V2 agonist dDAVP was reported in 1967 (80). Yet, it was not until 2002, almost 50 years after the synthesis of AVP, that the first selective agonist for the human V1b receptor, d[Cha⁴]AVP was synthesised (69). The reasons why this discovery took so long have been documented by Manning et al. (1).

Table 5 lists four analogues of dAVP (peptides 1–4) that exhibit high affinities for both the rat and human V1b receptors. d[Cha⁴]AVP (peptide 1) was the first V1b agonist that was shown to be selective for the human V1b receptor (69). d[Leu⁴]AVP (peptide 3) has later been shown to be a selective agonist for the human V1b receptor (72). Both (peptides 1 and 3) exhibit high affinities for the rat V1b receptor. However, they also possess high in vivo antidiuretic activity. Thus, neither is a selective V1b agonist in the rat.

Replacement of the Arg⁸ residue in (peptides 1 and 3) by a Lys⁸ residue to give d[Cha⁴,Lys⁸]VP (peptide 2) and d[Leu⁴,Lys⁸]VP, respectively, resulted in the first peptides that are selective V1b agonists in the rat (73, 74). It was subsequently shown that both peptides 1 and 2 are also highly selective for human V1b receptors (86). It bears noting that d[Leu⁴,Lys⁸]VP had been reported to be a weak antidiuretic V2 agonist/weak vasopressor agonist in the rat (87), 30 years before the V1b receptor was first predicted and/or cloned (88). The selective V1b agonists d[Cha⁴]AVP and d[Leu⁴,Lys⁸]VP have been used as a research tool in a number of studies (1, 20, 62, 73, 89, 90). Furthermore, d[Leu⁴,Lys⁸]VP has been utilised in the design of a series of fluorescent ligands for the V1b receptor (47).

Table 4. Potent and Selective Agonists for the Vasopressin V1a Receptor in the Rat.

Number	Peptide	V₁₄ receptor (P) (units/mg)	V₂ receptor (antiuretic) (A) (units/mg)	OT receptor (oxytocic) (O) (units/mg)	Ratios	Reference	
AVP		373	320	14	1.2	26.6	79, 84
LVP	([Lys⁸]VP)	270	284	10	0.95	27	85
1	[Phe²]LVP (felypressin, octapressin)	57	21	0.3	2.7	190	17
2	[Phe²]OVT, [Phe²,Orn⁸]vasotocin	124	0.55	1	225	124	81
3	F-180	164	0.19	863	82		
4	FE 202158*	ND	ND	ND	ND	39, 83	

OT, oxytocin; F180, Hmp-Phe-Ile-Hgn-Asn-Cys-Pro-Dab(Abu)-Gly-NH₂; where Hmp, 2-hydroxy-3-mercaptopropionic acid; Hgn, homoglutamine; Dab, 2,4-diaminobutyric acid; Abu, 2-aminobutyric acid; *FE 202158, [Phe²,Leu⁴,Hgn⁸,Orn(iPr)⁸]AVP, where Hgn is homoglutamine and iPr is isopropyl.

Table 5. Lys⁸ Analogues of d[Cha⁴]AVP (1) and d[Leu⁴]AVP (3) exhibit High Affinities and Selectivities for both Rat and Human V1b Receptors.

Number	Peptide	Rat antidiuretic activity (U/mg)	Affinity (Kd) (nM)								
		rV₁₄-R	hV₁₄-R	rV₂-R	hV₂-R	rV₁₂-R	hV₁₂-R	rOT-R	hOT-R	Reference	
AVP		323	0.29	0.68	0.45	1.2	2.6	1.1	1.7	1.7	74, 84
dAVP		1745	0.20	0.37	0.76	5	10.8	3.8	0.97	74, 84	
1	[dCha⁴]AVP	133.6	1.40	1.2	12.7	750	2297	151	1430	240	69, 72, 74
2	[dCha⁴, Lys⁸]VP	0.82	1.9	2.2	596	11 484	9093	283	586	141	85, 86
3	[dLeu⁴]AVP	378	0.04	0.23	3.1	245	1252	44.1	481	211	72, 74
4	[dLeu⁴, Lys⁸]VP	10.5	0.16	0.51	101	6713	3786	69.3	64	29	74, 86, 87

© 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd
Selective V1a antagonists (Table 6)

d(CH2)5[Tyr(Me)2]AVP, also known as Manning compound (peptide 1; Table 6) is a potent VP V1a antagonist and a weak VP V2 agonist (91). It is thus highly selective for V1a receptors versus V2 receptors. It is, however, a potent in vitro OT antagonist and a fairly potent OT antagonist in vivo (91). It has found widespread use as a selective V1a antagonist in a variety of studies on the peripheral and central effects of AVP. Indeed, it has become the most widely used V1a antagonist reported to date. Isosteric modifications of d(CH2)5[Tyr(Me)2]AVP at position 5 with diaminopropionic acid (Dap) and diaminobutyric acid (Dab) led to d(CH2)5[Tyr(Me)2,Dap5]AVP (peptide 2; Table 6) and d(CH2)5[Tyr(Me)2,Dab5]AVP (peptide 3; Table 6), respectively. Both peptides are devoid of anti OT activity in vivo (92). Although both peptides are much less potent than d(CH2)5[Tyr(Me)2]AVP as V1a antagonists, because they lack anti OT potency in vivo, they are highly selective for V1a receptors in the rat. Their use is recommended for in vivo studies that require discrimination between V1a and OT receptors in the rat.

Nonselective and selective cyclic and linear V2/V1a antagonists for rat receptors

It was not until 1981, almost 30 years after the first laboratory synthesis of OT, that the first cyclic AVP V2/V1a antagonists were reported (8) (Table 7). Six years later, the unexpected discovery of the first linear V2/V1a antagonists was reported (93). The early cyclic and linear V2/V1a antagonists were nonselective for V2 receptors. Further modifications of the early cyclic V2/V1a antagonists led to the discovery of selective cyclic V2 antagonists (94). Some of the

Table 6. Design of Highly Selective V1a Antagonists.

Number	Peptide	Anti-OT (in vitro)	Anti-OT (in vivo)	Anti-V1a (in vivo)	Anti-V1a/anti-OT selectivity	Reference
1	d(CH2)5[Tyr(Me)2]AVP (Manning compound)	8.13	6.62	8.62	100	91
2	d(CH2)5[Tyr(Me)2, Dap5]AVP	5.83	ND	7.49	Infinite	92
3	d(CH2)5[Tyr(Me)2, Dab5]AVP	ND	ND	6.71	Infinite	92

OT, oxytocin; d(CH)5 = β-mercapto-β-cyclopentamethylenepropionyl. *In vitro pA2 values represent the negative logarithm to the base 10 of the molar concentration [u] of the antagonist that reduces the response to 2 × units of agonist to the equal the response seen with 1 × units of agonist administered in the absence of the antagonist. In vivo pA2 values are estimated because the molar concentration for the in vivo pA2 is estimated by dividing the effective dose (ED) by the estimated volume of distribution of (67 ml/kg) (52). ED is defined as the dose (nmol/kg intravenously) of the antagonist that reduces the response to 2 × units of agonist to the response with 1 × units of agonist administered in the absence of the antagonist. ND, not detectable (weak agonist, < 0.03 U/mg).

Table 7. Nonselective and Selective Cyclic and Linear V2/V1a Antagonists for Rat Receptors.

Number	Peptide	Antidiuretic (A) (anti-V2)	Antivaso pressor (P) (anti-V1a)	Antioxytocic In vivo	ED ratio A/P	Reference		
1	d(CH2)5[D-Tyr(Et)2]AVP	1.1	7.81	8.22	7.47*	0.4	98	
2	desGly5,d(CH2)5[D-Tyr(Et)2, Val4]AVP	1.5	7.69	0.45	8.17	6.98*	0.3	99
3	d(CH2)5[D-Ile2, Ile4]AVP	0.67	8.04	0.45	6.42	6.90*	39	94
4	desGly-NH2,d(CH2)5[D-Ile2, Ile4]AVP	0.90	7.88	~5.2	~440	~440	100	
5	d(CH2)5[D-Ile2, Ile4, Ala-NH2] AVP	0.46	8.16	~400	6.25	83	100	
6	d(CH2)5[D-Tyr(Et)2, Ile4, Eda9]AVP	0.77	8.00	38	8.33		101	
7	Aaa-D-Tyr(Et)-Phe-Val-Asn-Abu-Pro-Arg-COOH	0.53	8.11	0.32	7.75	2.3	48, 95	
8	4-HO-Phaa-D-Tyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-NH2(HO-LVA)	0.056 U/mg	1.2	8.47		12, 96, 97		

Aaa, adamantanecetyl; Eda, ethylenediamine; 4-HO-Phaa, 4-hydroxyphenylacetyl. *In vivo anti-oxytocin (OT) potencies were reported previously (10), *The effective dose (ED) is defined as the dose (in nmol/kg) that reduces the response to 2 × units of agonist to equal the response to 1 × unit. Estimated in vivo pA2 values represent the negative logarithms of the EDs divided by the estimated volume of distribution (67 ml/kg) (52).
most commonly used nonselective cyclic and linear V\textsubscript{2}/V\textsubscript{1a} antagonists (peptides 1, 2, 7) and selective cyclic V\textsubscript{2} antagonists (peptides 3–6) are given in Table 7. Peptide 6 (101) has been very useful for the design of a lanthanide cryptate-labelled ligand as a fluorescent probe for measuring receptor dimerisation (48) Peptide the design of a lanthanide cryplate-labelled ligand as a fluorescent

3

affinities for rat receptors are given in Table 12. A number of these V\textsubscript{2}/V\textsubscript{1a} antagonists (peptides 1-3; Table 7) exhibit oxytocic antagonism in vivo. The remaining peptides 4–8 have not been evaluated in anti-OT assays. Caution should be exercised in using any of the peptides in Table 7 as selective V\textsubscript{2} ligands. The affinities of peptides 1 and 5 for the human and rat V\textsubscript{2} receptors are given in Table 12.

Table 8. Some Nonselective and Selective Oxytocin Antagonists in the Rat.

Number	Peptide	Antioxytocic (anti-OT)	Antivasopressor (anti-V\textsubscript{1a})	Antidiuretic activity (V\textsubscript{2})				
		In vitro pA\textsubscript{2}a	In vivo	EDb	pA\textsubscript{2}c	Units/mg	ED ratiod	Ref
1	d[D-Tyr(Et)\textsubscript{2},Thr\textsubscript{4}]OVT (atosiban)	8.29	Antagonist					
				7.71	5.95	7.05		
2	d(CH\textsubscript{2})\textsubscript{5}[Tyr(Me)\textsubscript{2}]OVT	8.52						
3	desGly-NH\textsubscript{2},d(CH\textsubscript{2})\textsubscript{5} [Tyr(Me)\textsubscript{2},Thr\textsubscript{4}]OVT	7.89						
4	d(CH\textsubscript{2})\textsubscript{5}[Tyr(Me)\textsubscript{2},Thr\textsubscript{4}, Tyr-NH\textsubscript{2}\textsubscript{3}]OVT	7.63						
5	desGly-NH\textsubscript{2},d(CH\textsubscript{2})\textsubscript{5} [D-Tyr\textsubscript{2},Thr\textsubscript{4}]OVT	7.77						

aIn vitro pA\textsubscript{2} values represents the negative logarithm to the base 10 of the average molar concentration [\(M\)] of antagonist which reduces the response to 2 \times units of agonist to the response with \(x\) units of agonist. bThe effective dose (ED) is defined as the dose (in \(\mu M\)) of antagonist that reduces the response to 2 \times units of agonist to the response with \(x\) units of agonist administered in the absence of antagonist. cEstimated in vivo pA\textsubscript{2} values represent the negative logarithms of the 'effective dose' divided by the estimated volume of distribution (67 ml/kg) (52). dED ratio = anti-vasopressor ED/antioxytocic ED.

Nonpeptide vasopressin antagonists as pharmacological tools and therapeutic agents (Table 9)

The search for nonpeptide antagonists for the AVP, V\textsubscript{1a}, V\textsubscript{1b}, and V\textsubscript{2} receptors has been pursued with vigour by many pharmaceutical companies, most notably Otsuka, Sanofi, Azevan, Astellas, Wyeth-Ayerst, Johnson & Johnson, Yamanouchi and Pfizer (Table 9). In 1991, Otsuka reported the first nonpeptide V\textsubscript{1a} antagonist OPC-21268 (No. 3; Table 9) (107). During the subsequent 20 years, a number of promising nonpeptide V\textsubscript{1a}, V\textsubscript{1b}, and V\textsubscript{2} antagonists have been reported (1, 45), Table 9 lists a number of these, together with references to: (i) their original synthesis (45, 107, 108, 110, 116–119, 127, 164); (ii) some research uses (115, 117, 120, 124, 126, 147, 148, 150, 152); and (iii) their clinical uses (109, 111–115, 121–123, 128, 129). Most notable, are the Otsuka V\textsubscript{2} antagonist (Tolvaptan, No. 5; Table 9) first reported in 1998 by Yamamura et al. (108) and shown to be effective in the treatment of hyponatraemia (109) and the Astellas V\textsubscript{2}/V\textsubscript{1a} antagonist (Conivaptan, No. 8; Table 9) first reported in 1997 by Tahara et al. (110). Both conivaptan and tolvaptan have been approved for clinical use by the Food and Drug Administration (111–115). The development of nonpeptide V\textsubscript{1a}, V\textsubscript{2}, and V\textsubscript{2} antagonists at other companies has recently been abandoned as a result of failures in clinical trials. Thus, Sanofi, which had reported the V\textsubscript{1a} antagonist SR-49059, Relcovaptan (No.

© 2012 The Authors. Journal of Neuroendocrinology © 2012 Blackwell Publishing Ltd
Table 9. Nonpeptide Vasopressin Antagonists as Pharmacological Tools and Therapeutic Agents.

Number	Receptor Type	Company	Code	Name	Supplier	Status	Reference: synthesis	Reference: pharmacological use	Reference: clinical use
1	V1a	Sanofi	SR49059	Relcovaptan	Tocris	Phase II (terminated)	45, 116	117	
2	V1a	Pfizer	PF-00738245	No name	Pfizer	New compound	118		
3	V1a	Otsuka	OPC-21268	No name	Tocris	Phase II Japan stopped US/Europe	107		
4	V1b	Sanofi	SSR149415	Nelivaptan	Axon Medchem	Preclinical (terminated)	45, 119, 164	120, 147, 148, 150	
5	V2	Otsuka	OPC-41061	Tolvaptan	Shanghai DND Pharm-Technology Co., Inc.	Approved by US Food and Drug Administration oral use (Samsca)	108	115	111–115, 121–123
6	V2	Sanofi	SR121463(B)	Satavaptan	None	Phase III (terminated)	45	124–126	
7	V2	Otsuka	OPC-31260	Mozavaptan	Otsuka; Anhui Pharmaceutical Co., LTD	Approved by US Food and Drug Administration i.v. use (Vaprisol)	127	152	111, 112, 128, 129

1: Table 9, the V1b antagonist SSR-149415, Nelivaptan (No. 4; Table 9) and the V2 antagonist SR-121463 (B) Satavaptan (No. 6; Table 9), all highly promising candidates for therapeutic development (45), has recently abandoned its entire AVP nonpeptide antagonist programme. It should be noted that these three Sanofi nonpeptide antagonists are highly useful pharmacological tools. The commercial availability of some of these nonpeptide VP antagonists is shown in Table 9. Human and rat receptor affinities for all three Sanofi V1a, V1b, and V2 nonpeptides are given in Table 12.

Table 10. Nonpeptide Oxytocin Antagonists and a Nonpeptide Agonist.

Compound	Number	Code (name)	Company	Supplier	Status	Reference: original synthesis, structure and pharmacological properties)	Reference: use
OT antagonist	1	L-368,899	Merck	Tocris	Phase II Discontinued	46, 130	134–136
	2	L-371,257	Merck	Tocris	Phase II Discontinued	46	141
	3	WAY-162720	Wyeth-Ayerst (now Pfizer)	No	Failed in preclinical	131	141
	4	GSK2211149A (Retosiban)	Glaxo SmithKline	Simagchem; Manus Aktteva Biopharma LLP	Phase II completed	132, 133	
OT agonist	1	WAY-267464	Wyeth-Ayerst (now Pfizer)	Tocris	Failed in preclinical	138, 140	137, 141

1: Table 9, the V1b antagonist SSR-149415, Nelivaptan (No. 4; Table 9) and the V2 antagonist SR-121463 (B) Satavaptan (No. 6; Table 9), all highly promising candidates for therapeutic development (45), has recently abandoned its entire AVP nonpeptide antagonist programme. It should be noted that these three Sanofi nonpeptide antagonists are highly useful pharmacological tools. The commercial availability of some of these nonpeptide VP antagonists is shown in Table 9. Human and rat receptor affinities for all three Sanofi V1a, V1b, and V2 nonpeptides are given in Table 12.

Nonpeptide oxytocin antagonists and a nonpeptide oxytocin agonist (Table 10)

A number of companies have been active in this area. In the mid-1990s, Merck reported a number of promising nonpeptide OT antagonists (46, 130) (Table 10). Most notable were L-368,899 (No. 1; Table 10) and L-371, 257 (No. 2; Table 10). Both of these failed in clinical development for the treatment of premature labour. Merck subsequently abandoned its nonpeptide OT antagonist programme.
Similarly, Wyeth-Ayerst (now Pfizer) reported that its nonpeptide OT antagonist WAY-1627720 (131) (No. 3; Table 10) failed in preclinical development. Glaxo SmithKline is now the only company pursuing the clinical development of a nonpeptide OT antagonist. Its promising nonpeptide OT antagonist GSK 2211149A (Retosiban) (132, 133) is currently in a Phase II clinical trial. Its human and rat OT receptor affinities are given in Table 12. Its OT selectivities for human OT/VP receptors are excellent. Although the Merck and Wyeth-Ayerst non-peptide OT antagonists have failed in clinical development, they are proving to be very useful as research tools (134–138) The Merck compounds are now available from TOCRIS. The nonpeptide OT agonist WAY-267464 reported by Pfizer (131) appeared to have promise as a therapeutic agent for the treatment of anxiety disorders such as autism spectrum disorders (139). However, its failure in preclinical development led to the abandonment of the nonpeptide OT agonist programme at Pfizer (44). WAY 267464 is now available from TOCRIS.

Presently, there are no other companies pursuing the development of nonpeptide OT agonists.

The use of radiolabelled molecules, agonists and antagonists for characterising receptor affinities for OT and VP (Tables 11 and 12)

Some history

Initially in the 1960, the affinity, selectivity and potency of analogues for the different VP/OT receptors were deduced by in vivo bioassays such as oxytocic, antidiuretic and pressor tests (see above), which reflected their activity through the OT receptor, V2 and V1a receptors, respectively. The characterisations performed at that time did not take into account the V1b receptor, which was discovered only in the 1980s (142). As noted above, this led to a long delay in the discovery of selective ligands for the V1b receptor. Nevertheless, the use of bioassays allowed the identification of key structure/function relationships of a large number of analogues and still represents a milestone in our understanding of OT/AVP selectivity (1, 7–18). Furthermore, because the data obtained using these in vivo tests integrated several ADME (Absorption, Distribution, Metabolism and Elimination) parameters, the values obtained reflect the in vivo physiological activity of the peptide being studied. These values sometimes differed from those obtained by in vitro pharmacological tests.

In the 1970s, the development of radiolabelled VP/OT analogues (143) and the discovery of second messenger cascades such as cAMP (67), calcium and inositol phosphate (144) made possible the determination of more reliable pharmacological parameters reflecting more precisely the interaction between analogues and their specific receptors. Binding assays with radiolabelled ligands conducted on plasma membrane preparations allowed the determination of the affinity (Kd) of a given molecule for a given VP/OT receptor subtype, a parameter which intrinsiquely characterises the analogue/receptor association (145). Second messenger measurements allowed the characterisation of its functional activity in order to measure precise functional effects. Comparison of the affinities of one analogue for the all receptors of the VP/OT family allowed the determination of its selectivity towards a given receptor iso-

| Table 11. Common Agonists to Oxytocin (OT)/Arginine Vasopressin (AVP) Receptors.

Compound	hOTR	hV1a	hV1β	h2	rOTR	rV1a	rV1β	mOTR	mV1a	mV1β	mV2	Reference
OT	0.8	120	>1000	3500	1.0	71	294	89	0.6a	46.1a	494	71, 146–149, 153
AVP	1.7	1.1	0.7	1.2	1.7	2.6	0.3	0.4	1.8	1.3	0.3	1, 69 154
[Thr4,Gly7]OT	6.6b	305	>10000	>10000	0.8	>10000	8000b	21.9	9.57d	65.2d	149, 151	
WAY-267464	58.4	51.6										138
[Phe8,Orn8]VP = [Phe8,Ile3]OVT	6.6a	305	>10000	>10000	0.8	>10000	8000b	21.9	9.57d	65.2d	149, 151	
F180	520	11.7	2100	>10000	480	750	2000					68
FE202158	>840	4.4a	>5200	>7700								39
d[Cha4]AVP	240	151	1.2a	750	1430	2297	1.4	12.7	5.1b			1, 69 147
d[Leu4,Lys8]VP	29	69.3	0.51	6713	64	3786	0.16c	101	1933c	1.4c	61c	1, 74
dDAVP	203	62.4	5.8	23.3	31c	100	9.3	0.3	192			148, 152
VDAVP												63
dVDAVP	630b	20.7	5.8	2.2	2.2	316	152	0.3				63, 159
d[Thr3]VDAVP	460b	50b	20b	4.3b	34b	1100b	680b	0.3b				159

*aAffinities values (in nM) were obtained on cells expressing the oxytocin receptor (OTR), V1a, V1β and V2 receptor subtypes. Light grey boxes report affinities of selective ligands for a particular receptor subtype as defined by the selectivity criteria: to be selective a ligand must have a K or Kd for that receptor subtypes two orders of magnitude lower than for the other three receptor subtypes in the same species, *bRounded off or representative values from all the data available; *cB. Chini B, unpublished data; *dB. Mouillac, unpublished data; *eG. Guillon, unpublished data.
Moreover, the ability of a given analogue to activate, inhibit or leave unaffected second messenger production in cell cultures, provided important insights into its pharmacological status (agonist, partial agonist, pure antagonist, inverse agonist). Such classical pharmacological assays have efficiently served the scientific community for the last three decades and allowed the characterisation of the numerous VP/OT analogues designed and synthesised during this period (1).

Conundrums posed by pharmacological data

From all the in vitro and in vivo pharmacological studies carried out on OT and VP agonists and antagonists, three intriguing features have emerged; namely: (i) lack of receptor selectivity; (ii) species differences; and (iii) in vitro in vivo difference. In Tables 11 and 12, we have listed the most commonly used agonists and antagonists available for each VP/OT receptor isoform in three mammalian species: human, rat and mouse.

Table 12. Common Antagonists to Oxytocin (OT)/Arginine Vasopressin (AVP) Receptors*.

Receptor subtype	Affinity Kᵢ (nM)	hOTR	hV₁a	hV₁b	hV₂	rOTR	rV₁a	rV₁b	rV₂	mV₁a	mV₁b	Reference
d(CH₂)₅[Tyr(Me)²]OT	3.5	32.7										1, 103
d(CH₂)₅[Tyr(Me)²,Thr⁴,Tyr-NH₂⁹]OT (OTA)	0.6	3.9	>10 000	929	0.2	25.6⁹	>10 000	15.1⁹				12, 104, 105
desGly-NH₂,d(CH₂)₅[D-Tyr²,Thr⁴]OT (OTA)	0.9⁹	100	>1000									104
d[D-Tyr(Et)²,Thr⁴]OT (Atosiban)	76.4	5.1	256	3195	215	1059	241	>1000				160, 161
Phaa-D-Tyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-NH₂	1.4	0.18	92	62								162
L-368,899	7.6						570	370	8.9			163
GSK 221149A	0.6⁶ᵇ	>12 000	>10 000	950					4.1			132
SSR126766A	1.5¹ᵇ	143	223ᵇ	>1000	99	60	>1000	29				147, 161
d(CH₂)₅[Tyr(Me)²]AVP (Manning Compound)	3	1.6ᵇ	359	82	218	0.7	23	313				148
SR49059 (K, measured with a tritiated ligand)	100ᵇ	6.3	265ᵇ	275	76ᵇ	2.2	671					158, 45, 152
SR49059 (K, measured with a iodinated ligand)	130ᵇ						1080ᵇ					164
OPC-21268	170	8800	>10 000	>10 000	350		510					12, 107
SSR149415 (K, measured with a tritiated ligand)	1.5ᵇ	91	1.6ᵇ	1412	28ᵇ	1050	1.3	2897	1446	1.6ᵇ		90, 147
SSR149415 (K, measured with a iodinated ligand)	174ᵇ						270ᵇ					89, 147
d(CH₂)₅[D-Tyr(Et)²]AVP	4.4					1.1	2000	1.1				89
d(CH₂)₅[D-Ile²,Ile⁴,Ala-NH₂]AVP	53	541	88									148
SR121463(A)	1213	460	>10 000	4.1	3220	>10 000	>10 000	1.4	>10 000			124
OPC-31260	1077	860	>10 000	25.4	2096	748	21.7					124

*Affinities values (in nM) were obtained on cells expressing the oxytocin receptor (OTR), V₁a, V₁b and V₂ receptor subtypes. Light grey boxes report affinities of selective ligands for a particular receptor subtype as defined by the following selectivity criteria: to be selective a ligand must have a Kᵢ or Kᵦ for that receptor subtypes two orders of magnitude lower than for the other three receptor subtypes in the same species,ᵇRounded off or representative values from all the data available.

form. From all the in vitro and in vivo pharmacological studies carried out on OT and VP agonists and antagonists, three intriguing features have emerged; namely: (i) lack of receptor selectivity; (ii) species differences; and (iii) in vitro in vivo difference. In Tables 11 and 12, we have listed the most commonly used agonists and antagonists available for each VP/OT receptor isoform in three mammalian species: human, rat and mouse.

The affinities (Kᵢ) of these isoforms have been measured using classical pharmacological tests and their agonist or antagonists properties determined using classical second messenger assays. As proposed in previous reviews (156, 157), receptor subtype selectivity can be defined, within a single species, on the basis of the ability of a compound to bind to a single VP/OT receptor isoform with a nanomolar affinity, at the same time displaying, for the three other receptor isoforms, an affinity at least two orders of magnitude...
lower. The compounds that fulfill these requirements are highlighted with light grey in Tables 11 and 12. It immediately appears from this criterion that only a very few analogues are selective. A major problem is also that selectivity is not conserved among species as a result of subtle but nevertheless crucial differences in receptor pharmacology. Despite these limitations, the use of selective compounds still represents the best experimental strategy to unambiguously characterise VP/OT receptors in a given biological sample, keeping in mind that receptor selectivity for any given compound is: (i) strictly dependent upon the receptor species considered; (ii) usually lost if high doses (100-fold the Kᵢ) of a selective compound are used; and (iii) dependent upon the biological models tested. Experiments performed on membrane preparations or on cell cultures generally need lower concentrations of selective analogue compared to experiments performed on organ slices, where drugs need to diffuse within the tissues and may be rapidly degraded.

It should also be noted that the pharmacological profile of any given compound determined by classical tests on membranes or cell models cannot be directly translated in vivo without adequate controls. Adsorption, distribution in different biological compartments, and metabolism greatly interfere with the biological activity of drugs, sometimes completely altering their pharmacological properties.

For example, [Phe⁵Omn⁶]OT (also known as [Phe⁵]OVT), which does not display any V₁₂ selectivity in classical binding experiments (Table 11), has been characterised as a selective V₁₂ agonist in vivo in rats (Table 4) (81).

Concerning selective agonists, it should also be noted that a major difference exists between the two natural hormones, OT and VP. Although OT is selective for the human OT receptor, VP is not, because it binds with similar affinities to V₁α, V₁β, V₂ and OT receptors. This may explain why VP may trigger physiological functions in vivo via OT receptors, as described previously (158). However, fully characterised selective agonists for human V₁α receptor (F 180, FE202158), human V₁β receptor (δCha⁴)AVP; rat V₁a receptor (δLeu³,Lys⁶)AVP, rat OT receptor (Thr⁸,Gly⁷)OT and rat V₂ receptor (δDAVP) are now available (Table 11). For the rat, V₂ receptor δ[Thi³]VDAVP (15, 159) appears to be the best selective agonist as a result of its good V₂ versus V₁α selectivity.

Among the several antagonists reported and currently employed, only a few have been fully characterised and have been demonstrated to be selective within a species (Table 12).

Among the OT receptor antagonists, SSR126768A has been shown to be a very selective antagonist for both human and rat OTR and GSK 221149A for human OT receptor. Manning compound is relatively selective for the rat V₁a receptor (but not for the human V₁a receptor) for which SSR49059 should be preferred. Finally, SSR494145 (147) is selective for both the human and the rat V₁a receptor isoforms, whereas SSR121463(A) is highly selective for the human V₂ receptor. Concerning the SSR148415 and SSR49059, it should be noted that different laboratories have obtained different values for their affinities, probably depending on the binding assay employed (i.e. competition against a radioactive agonist or antagonist) (89). In our opinion, the values obtained in competition experiments using radiolabelled agonists will better correlate with biological antagonistic activity in vitro and in vivo and should be preferred.

Until now, other analogues commonly employed as ‘selective’ have not been fully characterised and, when they are used at high doses, could lead to ambiguous results in species in which their pharmacological properties have not been assessed. It should be noted that the pharmacology of OT/VP analogues on mouse receptors is still very limited, representing a gap that needs to be filled; in particular, for the relevance that genetically-modified mouse models have acquired in translational medicine.

The lack of selective analogues for some rat, mouse and human receptor isoforms makes the design and synthesis of new molecules very necessary. The restriction of radioactivity approaches in laboratory practice and the need to easily test a large number of molecules led to the development of new assays using the gene reporters. Such tests using the measurement of reporter gene activities allows an easy screening of a large number of molecules and rapid identification of ‘lead molecules’ (83).

Yet, these ‘in vitro methodologies’ also have some limitations. First, they can be used only in transfected cells and not in native models. Moreover, according to the second messenger cascade associated with the receptor being considered (cAMP for the V₂, InsP₃ for the V₁a, V₁β and OT receptor isoforms), such assays require the use of different reporter genes. This may introduce a bias in the determination of receptor selectively. It is also well known that assays using luciferase gene expression and luciferase activity measurements involve a strong amplification of the initial receptor-mediated second messenger accumulation. This prevents the good determination of the agonist or partial agonist properties of the analogue tested. One needs to be aware of the limitations of these recent ‘in vitro methodologies’ and to verify, using classical pharmacological tests, the selectivity, affinity and functional potencies of the lead compounds characterised by this approach. Obviously, to move to clinical development, the best approach would be to test the compounds of interest by in vivo technologies similar to those used to evaluate virtually all of the peptides in Tables 1, 3–8.

New technologies for screening more selective VP/OT analogues

Recently, new physical techniques involving label-free biosensors have been proposed for pharmacological screening of muscarinic and corticotrophic analogues (165). These methods are based on the measurement of cell shape changes induced by ligand-receptor interactions. Such techniques have the advantage of being performed on native cells and do not require the use of radioactive molecules. Their efficiency for testing new VP/OT molecules may represent another alternative for screening new analogues.

Finally, a new bioluminescence or fluorescence resonance energy transfer (BRET or FRET) approach in which analogues could be screened for their capability to promote receptor coupling and activation of single G-protein isoforms has been recently applied to the human OT receptor (166). This technique allows the precise characterisation of which G protein is associated with which recep-
tor isomeric. Thus, for example, d(CH$_3$)$_3$[D-2-Nai2-Thr3,Tyr-NH$_2$9]OT (OTA) and atosiban (160) (Table 12) were found to be entirely biased respectively toward Gi1 or Gi3 activation (166). However, this technique cannot be used on native tissues or primary cultures.

The recent development of fluorescent ligands for a better knowledge of central and peripheral VP/OT receptors

Design and use of classical fluorophores

Receptors of the AVP and OT family are important in the regulation of the stress processes (167). Centrally, the V$_{1a}$, V$_{1b}$ and OT receptors have been involved in stress and especially in learning and memory processes. Important data have been obtained by the use of knockout animals but, after a period of cloning and pharmacological characterisation in the last decade, it became necessary to elucidate the distribution of these receptors to better understand their central functions in vivo.

Although several publications describe the AVP V$_{1a}$, V$_2$ and OT receptor distribution by using autoradiography (105, 168, 169) or immunodetection (170), the lack of selective V$_{1b}$ radio-labelled VP analogues or of receptor antibodies has hindered progress in the detection of receptor distribution in native tissues. Results obtained by molecular approaches such as reverse transcriptase-polymerase chain reaction (62, 88) or mRNA detection by in situ hybridisation (171–173), although more accurate, did not provide clear information regarding the brain regions detected by immunostaining. Thus, developing fluorescent ligands to decipher AVP receptor distribution in the brain and at the periphery, and to study molecular interactions such as receptor dimerisation, appeared as an absolute necessity.

Various fluorescent analogues of AVP and OT have been synthesised for several receptors of the VP/OT family (174). Thus, good fluorescent V$_{1b}$ and OT ligands have been produced, although no good fluorescent specific ligand was available to selectively detect central and peripheral V$_{1b}$ receptors.

In our previous work (69, 73, 74), by replacing the glutamine4 of the natural AVP with a cyclohexylalanine or a leucine, the arginine8 by a lysine and by removing the NH$_2$ of the cysteine1 to increase stability towards aminopeptidases, we produced analogues showing an increased selectivity for the V$_{1b}$ receptors (Table 5). d[Leu$_4$,Lys$_8$]VP (Peptide 4; Table 5) was found to be selective for the rat V$_{1b}$ receptors and, to a lesser extent, for the human hV$_{1b}$ receptors, conserving a nanomolar affinity for these receptor isoforms (73, 74). We have taken advantage of the Lys8 residue in d[Leu$_4$,Lys$_8$]VP with its epsilon NH$_2$ group to introduce fluorophores on its side chain. This allowed us to create fluorescent tools that would conserve the pharmacology of the d[Leu$_4$,Lys$_8$]VP to resist degradation and to selectively decorate the plasma membrane of Chinese hamster ovaries cells expressing V$_{1b}$ and/or OT receptors with an excellent resolution (47).

Different fluorophores were attached to the d[Leu$_4$,Lys$_8$]VP: First, the antraniloyl group (Atn), a small fluorescent molecule of 97 Da highly sensitive to microenvironmental changes (175) may also be a good donor in FRET experiments to identify V$_{1b}$ receptor homodimers in vivo. We have also selected the Alexas (Molecular Probes) for their brightness and their resistance to photobleaching (176). We have used Alexa 488 and Alexa 647, with the latter being one of the brightest fluorescent molecules reported so far (177).

The pharmacological properties (binding, coupling to phospholipase C) of fluorescent analogues of d[Leu$_4$,Lys$_8$]VP indicate that they conserved a very good selectivity for V$_{1b}$ versus V$_{1a}$ and V$_2$ receptors, and remained full agonists. These properties allow receptor labelling and measurement of biological activity at the cellular level. Thus, these new fluorescent analogues are promising tools for the detection of functional V$_{1b}$ or OT receptors in human (47) and in rat native tissues.

Use of long life fluorophores

However, it should be noted that, except for very recent ones, all the ligands previously reported were designed with classical fluorophores, exhibiting short-lived fluorescence properties (fluorescence half-life in the 10 ns range). Most of them were essentially used to follow internalisation in cell lines (146, 178) or to label receptors in a native context (179). Interestingly, a first nonpeptide antagonist with a nanomolar affinity for the human V$_2$ receptor has been developed (180). This ligand will find application in fluorescence polarisation-based binding assays aiming to screen for small organic molecule libraries.

Recently, fluorescence-based strategies have been extensively used to study molecular interactions. Thus, the FRET approach was used to demonstrate G protein-coupled receptors oligomerisation (181, 182). Regarding AVP and OT receptors, various experimental approaches based on chimeric receptor expression in cell lines have been developed to analyse receptor oligomerisation. The studies have used receptors fused either to small tags recognised by fluorescent antibodies (183, 184), or to bioluminescent or fluorescent proteins (185, 186), or to suicide enzymes (48). However, these strategies were not relevant for proving the existence of such receptor complexes in native tissues. Therefore, a FRET strategy based on the

| Table 13. Food and Drug Administration Approved Peptide and Nonpeptide Drugs from the Oxytocin (OT)/Arginine Vasopressin (AVP) Field. |
|---------------------------------|---------------------------------|---------------------------------|
| **OT/AVP field** | **Peptidesa** | **Nonpeptidesb** |
| | Carbetocin (Duratocin, Depotocin, Sofia, Pabal) | Conivaptan hydrochloride (Vaprisol) |
| | Desmopressin (Minirin, DDAVP) | Tolvaptan |
| | Ornithine vasopressin (Omnipressin, POR-8) | |
| | Lypressin (Diapid, LVP) | |
| | Oxytocin | |
| | Terlipressin (glypressin) | |
| | Vasopressin (Pitressin) | |
| | Atosiban (in Europe) | |

aSee Reichert (194). bSee Ferguson-Myrthil (115).
indirect labelling of receptors with fluorescent donor and acceptor ligands has been recently developed (48). Unfortunately, because of the overlap between excitation and emission spectra of the donor and acceptor fluorophores on one hand, and of the high autofluorescence of the biological preparation on the other hand, specific FRET could hardly be detected. To improve the signal-to-noise ratio, lanthanide cryptate-labelled ligands were designed and characterised. Despite the size of the cage, these ligands still display very good affinities for the V1a and OT receptors (48). Lanthanide cryptates display interesting fluorescent properties because they have a fluorescent half-time life of approximately 1 ms [i.e. 100 000-fold greater than classical fluorophores], allowing time-resolved FRET experiments to be set up (187). Experiments using these new probes have been performed not only on AVP V1a and V2 receptors and on OT receptors expressed in cell lines, but also on OT receptors naturally expressed in lactating rat mammary gland. The sensitivity is such that it has been possible to prove the existence of OT receptor dimers in this latter native tissue (48).

These newly-synthesised ligands and those that exhibit high quantum yield have also been used to develop original binding assays. These assays, based on time-resolved FRET between compatible fluorophores carried by tagged receptors and ligands, display very good sensitivities and are safer than radioactive-based assays (188–190).

Therapeutics uses of peptide and nonpeptide oxytocin and vasopressin agonists and antagonists (Table 13)

Table 13 lists the seven peptides and two nonpeptide drugs in the OT and AVP field that have been approved for therapeutic use. Numerous recent studies point to the use of OT as a potential new therapy for the treatment of a broad range of psychiatric disorders (24, 33, 34). Also, a very recent report suggests the exciting prospect that OT may have potential for the treatment of human obesity and type 2 diabetes (191).

To date, only two nonpeptides, the VP V2/V1a antagonist conivaptan and the VP V2 antagonist tolvaptan have been approved for clinical use (112–115, 123, 192). The nonpeptide OT antagonist retosiban (132, 133) is currently in a Phase II clinical trial. Clinical trials with other nonpeptide VP, V1a and V1b antagonists shown in Table 9 and with the other OT antagonists and the OT agonist shown in Table 10 have been terminated (44). No new nonpeptides in this field are currently in clinical trial. Thus, the early promise of nonpeptides as therapeutic agents in this field (45, 46) has clearly not been realised. This should be a cautionary tale for those in the OT field, there is an urgent need for functionally selective OT ligands (166) and for a long lasting OT agonist as a potential therapy for the treatment of autism and other anxiety disorders (139).

Research uses of peptides

During the period 1980–2012, over 3000 samples of OT and AVP agonists and antagonists from the Manning laboratory have been and continue to be donated as research tools to over 700 investigators (some multiple times) in the USA and worldwide for their own independent studies. Studies carried out with these donated peptides and with those purchased from commercial suppliers, such as Sigma, Bachem and Peninsula, have resulted in more than 2000 publications by these and other investigators during this period. Examples of studies carried out since 2008 with some of these peptides are available (90, 117, 195–246).

Research uses of nonpeptides

With the exception of the Sanofi nonpeptide V2 antagonist satavaptan, all of the nonpeptide AVP antagonists listed in Table 9 are now available from Tocris or other suppliers. To date, a small number of studies that have utilised the Sanofi V1a antagonist relcovaptan, the Sanofi V1b antagonist nelivaptan and the Sanofi V2 antagonist satavaptan have been reported (117–120, 125, 126) (Table 9).

The two Merck nonpeptide OT antagonists L-388,899 and L-371,257 and the Pfizer nonpeptide OT agonist WAY-267464 shown in Table 10 are all available from Tocris. The Glaxo SmithKline nonpeptide OT antagonist GSK-221149A (Retosiban) is also available from a number of suppliers. The Pfizer nonpeptide OT antagonist WAY-162720 is not yet commercially available. A number of studies that have utilised some of these nonpeptide ligands as research tools have been reported (138–141, 145) (Table 10).

Conclusions

In our 2008 review (1), we examined the status (as of 2007) of both peptide and nonpeptide agonists and antagonists of the OT receptor and of the VP V1a, V1b and V2 receptors as: (i) research tools and (ii) therapeutic agents. Although the research uses of both peptide and nonpeptide ligands have continued to grow during the intervening 4 years, by contrast, the therapeutic development of nonpeptide AVP and OT antagonists has been drastically curtailed. Merck, Pfizer and Sanofi have all abandoned their nonpeptide programmes. The nonpeptide VP V2/V1a, the antagonist conivaptan and the nonpeptide V2 antagonist tolvaptan, which have been approved by the Food and Drug Administration, have not as yet found widespread acceptance in the clinic (113, 192). Pfizer has also abandoned its nonpeptide OT agonist programme (44). It remains to be seen how the Glaxo SmithKline nonpeptide OT antagonist retosiban will fare in its current Phase II clinical trial. All in all, since our 2008 review (1), interest in the development of nonpeptides as therapeutics has greatly diminished. On the other hand, as noted above, Ferring has a promising V1a agonist (Table 4) and a
promising OT agonist [Table 1], awaiting clinical development. The design and synthesis of: (i) functionally selective OT peptides and (ii) of a long lasting OT analog as a potential therapy for autism spectrum disorders and other anxiety disorders remain as pressing needs in this field. Both OT and VP peptides and nonpeptides are continuing to be very valuable research tools. In this regard, we have addressed here the issues of: (i) lack of receptor selectivity, (ii) species differences and (iii) in vitro–in vivo differences, all of which need to be taken into account when using a given peptide or nonpeptide ligand as a research tool. Finally, the development of new fluorescent ligands as powerful new tools for localising and characterising OT and VP receptors, which we have presented here, points to the continued usefulness of OT and AVP peptide ligands (agonists, antagonists and fluorescent derivatives) as incisive molecular pharmacological probes.

Acknowledgements

Work from the authors’ laboratories was supported in part by research grants from the National Institute of General Medical Sciences (No. GM-25280: Maurice Manning); the MIUR (FIRB grant RBPR05JH2P ITALIANONET) and the Carpilo Foundation (Grant 200610882) (Bice Chini); and INSERM, Institut de la Santé et de la Recherche Médicale and CNRS (Centre National de la Recherche Scientifique) (Thierry Durroux; Bernard Mouillac; Maithe Corbani; Gilles Guillon). We also thank, Dr Rao Makineni, Robert and Suzanne Tyner, and Frederick Paulsen for generous research support (to M.M.). We are greatly indebted to our former collaborators: Dr Suzanne Tyner, and Frederick Paulsen for generous research support and assistance in the preparation of this manuscript. We also wish to thank Ms Ann Chlebowski for her expert assistance in the preparation of this manuscript.

Received 15 February 2012, revised 17 February 2012, accepted 17 February 2012

References

1 Manning M, Stoev S, Chini B, Durroux T, Mouillac B, Guillou G. Peptide and Nonpeptide Agonists and Antagonists for the Vasopressin and Oxytocin V1A, V1B, V2 and OT Receptors: Research Tools and Potential Therapeutic Agents. In: Landgraff R, Neumann I, eds. Prog Brain Res Amsterdam: Elsevier, 2008: 473–512.
2 du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG. The synthesis of oxytocin. J Am Chem Soc 1954; 76: 3115–3121.
3 du Vigneaud V, Gish DJ, Katsoyannis PG. A synthetic preparation possessing biological properties associated with arginine-vasopressin. J Am Chem Soc 1954; 76: 4751–4752.
4 Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 1963; 85: 2149–2154.
5 Manning M. Impact of the Merrifield solid phase method on the design and synthesis of selective agonists and antagonists of oxytocin and vasopressin: a historical perspective. Biopolymers 2008; 90: 203–212.
6 Sawyer WH, Manning M. Synthetic analogues of oxytocin and vasopressin. Annual Rev Pharmacoal 1973; 13: 5–17.
7 Manning M, Grzonka Z, Sawyer WH. Synthesis of posterior pituitary hormones and hormone analogues. In: Beardwell C, Robertson G, eds. The Pituitary. Kent: Butterworth, 1981: 265–296.
8 Sawyer WH, Grzonka Z, Manning M. Neurohypophysyal peptides: design of tissue-specific agonists and antagonists. Mol Cell Endocrinol 1981; 22: 117–134.
9 Manning M, Sawyer WH. Development of Selective Agonists and Antagonists of Vasopressin and Oxytocin. In: Schrier R, ed. Vasopressin. New York, NY: Raven Press, 1985: 131–144.
10 Manning M, Bankowski K, Sawyer WH. Selective agonists and antagonists of vasopressin. In: Gash DM, Boer GJ, eds. Vasopressin: Principles and Properties. New York, NY: Plenum Press, 1987: 335–368.
11 Manning M, Sawyer WH. Discovery, development, and some uses of vasopressin and oxytocin antagonists. J Lab Clin Med 1989; 114: 617–632 [Published erratum appears in J Lab Clin Med 1990; 115: 530].
12 Barberis C, Morin D, Durroux T, Mouillac B, Guillou G, Hilbert M, Tribollet E, Manning M. Molecular pharmacology of vasopressin and oxytocin receptors and therapeutic potential. Manning. Drug News Perspect 1999; 12: 279–292.
13 Manning M, Sawyer WH. Design, synthesis and some uses of receptor specific agonists and antagonists of vasopressin and oxytocin. J Receptor Res 1993; 13: 195–214.
14 Manning M, Sawyer WH. Antagonists of vasopressin and oxytocin: current status and future perspectives. In: Jard S, Jamison R, eds. Vasopressin. London: Coll Inserm/John Libbey Eurotext, 1991: 297–309.
15 Chan WY, Wo NC, Stoev S, Cheng LL, Manning M. Discovery and design of novel and selective vasopressin and oxytocin agonists and antagonists: the role of bioassays. Exp Physiol 2000; 85(Suppl.): 75–185.
16 Manning M. Neurohypophysyal peptide agonists and antagonists: a five decade trail from du Vigneaud to 2004. In: Flegel M, Fritkin M, Gilon C, Slaninova S, eds. Peptides 2004. Geneva: Kennes International, 2005: 101–106.
17 Berde B, Boissonnas RA. Basic pharmacological properties of synthetic analogues and homologues of the neurohypophysyal hormones. In: Berde B, ed. Neurohypophysyal Hormones and Similar Polypeptides, Handbook of Experimental Pharmacology. Berlin: Springer Verlag, 1968: 802–870.
18 Lebl M. Analogs with inhibitory properties. In: Jost K, Lebl M, Brtnik F, eds. Handbook of Neurohypophysyal Hormone Analogs, Vol. 2, Part 1, Part 2. Boca Raton, FL: CRC Press, 1968: 17–72, 127–267.
19 Pierzynski P. Oxytocin and vasopressin V1A receptors as new therapeutic targets in assisted reproduction. Reprod Biomed Online 2011; 22: 9–16.
20 Hruby VJ, Smith CW. Structure-activity relationships of neurohypophysyal peptides. In: Udenfriend S, Meienhofer J, eds. The Peptides: Analysis, Synthesis, Biology, Vol. 8. In: Chemistry, Biology, and Medicine of Neurohypophysyal Hormones and Their Analogs, vol. ed. Smith CW, New York, NY: Academic Press, 1987: 77–207.
21 Frank E, Landgraf R. The vasopressin system – from antidiuresis to psychopathology. Eur J Pharmacol 2008; 583: 226–242.
22 Jard S. Vasopressin receptors. A historical survey. In: Zingg HH, Bourque CW, Bichet DG, eds. Adv Exp Med Biol New York, NY: Plenum Press, 1998: 1–13.
23 Gimpi G, Fahrenholz F. The oxytocin receptor system: structure function and regulation. Physiol Rev 2001; 81: 629–683.

24 Insler TR, Young LJ. The neurobiology of attachment. Nat Rev Neurosci 2001; 2: 129–136.

25 Bosch OJ, Meddle SL, Beiderbeck DJ, Douglas AJ, Neumann ID. Brain oxytocin correlates with maternal aggression: link to anxiety. J Neurosci 2005; 25: 6807–6815.

26 Huber D, Veinante P, Stoop R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 2005; 308: 245–248.

27 Ms A, Shipston MJ, Morilak D, Russell JA. Reduced hypothalamic vasopressin secretion underlies attenuated adrenocorticotropin stress responses in pregnant rats. Endocrinology 2005; 146: 1626–1637.

28 Parker KJ, Buckmaster CL, Schatzberg AF, Lyons DM. Reduced hypothalamic vasopressin and oxytocin receptors.

29 Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhati S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 2005; 25: 11498–11493.

30 Hollander E, Bartz J, Chaplin W, Phillips A, Sumner J, Soorya L, Anagnostou E, Wasserman S. Oxytocin increases retention of social cognition with autistic and Asperger's disorders. Neuropsychopharmacology 2007; 32: 11489–11493.

31 Ellenbogen MA, Linnen AM, Grumet R, Cardoso C, Joober R. The acute effects of intranasal oxytocin and clonidine on maternal rat behaviors. Psychoneuroendocrinology 2005; 30: 924–929.

32 Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhati S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 2005; 25: 11498–11493.

33 Meyer-Lindenberg A, Domes G, Kirsch P, Heinrich M. Oxytocin and clinical evidence for its therapeutic potential. Nat Rev Neurosci 2005; 6: 570–581.

34 Dyckes DF, Nestor JJ Jr, Ferger MF, du Vigneaud V. [1-2 methionine]-vasopressin and of oxytocin. Annals of the New York Academy of Sciences 1960; 525–526.

35 Morel A, O'Carroll AM, Brownstein MJ, Lolait SJ. Molecular cloning encoding the human V1a vasopressin receptor. Proc of the 31st European Peptide Symposium, The European Peptide Society, 2010: 306–307.

36 Laporte R, Kohan A, Heizmann C, Wnisiewski H, Toy J, La E, Terai H, Alagarsamy S, V1a vasopressin receptor in rat adrenal medulla. Endocrinology 1996; 137: 3906–3914.

37 Wisniewski K, Galvey R, Schteingart CD, Tariga H, Croston G, Alagarsamy S, V1a vasopressin receptor in rat adrenal medulla. Endocrinology 1996; 137: 3906–3914.

38 Wisniewski K, Galvey R, Schteingart CD, Tariga H, Croston G, Alagarsamy S, V1a vasopressin receptor in rat adrenal medulla. Endocrinology 1996; 137: 3906–3914.

39 Laporte R, Kohan A, Heizmann C, Wnisiewski H, Toy J, La E, Terai H, Alagarsamy S, V1a vasopressin receptor in rat adrenal medulla. Endocrinology 1996; 137: 3906–3914.

40 Kwiatkowska A, Sobolevskii D, Prahl A, Borovichkova L, Slaninova J, Lamek B. Arginine vasopressin and its analogues—the influence of position 2 modification with 3,3-diphenylalanine enantiomers. Highly potent V2 agonists. Eur J Med Chem 2009; 44: 2862–2867.

41 Magafas V, Borovichkova L, Slaninova J, Cordopatis P. Synthesis and biological activity of oxytocin analogues containing unnatural amino acids in position 9: structure activity study. Amino Acids 2010; 38: 1549–1559.

42 Muttenhaler M, Andersson A, de Araujo AD, Dekan Z, Lewis RJ, Alewood PF. Modulating oxytocin activity and plasma stability by disulfide bond engineering. J Med Chem 2010; 53: 8585–8596.

43 Slusarz R, Slusarz MJ. An influence of the aromatic side chains conformations in positions 2 and 3 of vasopressin analogs on interactions with vasopressin and oxytocin receptors. QSAR Comb Sci 2009; 28: 1166–1175.

44 Manning M, Stoev S, Bankowski K. Peptides versus nonpeptides as therapeutics: an exciting challenge for Big Pharma. In: Lebl M, Meldal M, Jensen KJ, Høeg-Jensen T eds. Nonpeptide vasopressin receptor antagonists: development of selective and orally active V1a, V2 and V1b receptor ligands. Proc Brain Res 2002; 139: 197–210.

45 Freidinger RM, Pettibone DJ. Small molecular ligands for oxytocin and vasopressin receptors. Med Res Rev 1997; 17: 1–16.

46 Corbani M, Trueba M, Stoev S, Mourat B, Miron J, Boulay V, Manning M, Guillón G. Design, synthesis and pharmaceutical characterization of fluorescent peptides for imaging human V1a vasopressin or oxytocin receptors. J Med Chem 2011; 54: 2864–2877.

47 Albizú L, Cottet M, Kraikova M, Stoev S, Seyer R, Baret B, Roux T, Bazin H, Bourrier E, Lamerque L, Breton C, Rives ML, Newman A, Javitch J, Trinquet E, Manning M, Pin JP, Mouillac B, Durroux T. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Biol 2010; 6: 587–594.

48 Stewart JM, Young JD. Solid Phase Synthesis. Rockford, IL: Pierce Chemical Company, 1984.

49 Holton PA. A modification of the method of Dale and Laidlaw for standardization of posterior pituitary extract. Br J Pharmacol 1948; 3: 328–334.

50 Schild HO, p. A new scale of the measurement of drug antagonism. Br J Pharmacol Chemother 1947; 2: 189–206.

51 Dyckes DF, Nestor JJ Jr, Ferger MF, du Vigneaud V. [1-β-mercapto-β,β-diethylpropionic acid]-8-lysine vasopressin, a potent inhibitor of 8-lysine-vasopressin and of oxytocin. J Med Chem 1974; 17: 250–252.

52 Munisick RA. Effect of magnesium ion on the response of the rat uterus to neurohypophysial hormones and analogues. Endocrinology 1960; 66: 451–457.

53 Chan WY, Kelly N. A pharmacological analysis on the significance of the functional groups of oxytocin to its oxytocic activity and on the effect of magnesium on the in vitro and in vivo oxytocic activity of neurohypophysial hormones. J Pharmacol Exp Ther 1967; 156: 150–158.

54 Dekams K. The quantitative assay of vasopressin. Br J Pharmacol 1952; 7: 567–572.

55 Sawyer WH. Biologic assays for oxytocin and vasopressin. Methods Med Res 1961; 9: 210–219.

56 Morel A, O’Carroll AM, Brownstein MJ, Lollait SJ. Molecular cloning and expression of a rat V1b vasopressin receptor. Nature 1992; 356: 523–526.

57 Thibonier M, Auzan C, Madhun Z, Wilkins P, Berti-Mattera L, Clauer E. Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1b vasopressin receptor. J Biol Chem 1994; 269: 3304–3310.

58 Sugimoto T, Saijo M, Mochizuki S, Watanabe Y, Hashimoto S, Kawashima M. Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor. J Biol Chem 1994; 269: 27086–27092.
Oxytocin and vasopressin agonists and antagonists

[60] De Keyzer Y, Auzan C, Lenne F, Beldjord C, Thibonnier M, Bertagna X, Clauser E. Cloning and characterization of the human V1b pituitary vasopressin receptor. FEBS Lett 1994; 356: 215–220.

[61] Birnbaumer M, Seibold A, Gilbert S, Ishido M, Barberis C, Antaramian A, Brabet P, Rosenthal W. Molecular cloning of the receptor for human antidiuretic hormone. Nature 1992; 357: 333–335.

[62] Lolait SJ, O’Carroll AM, McBride OW, Konig M, Morel A, Brownstein MJ. Cloning and characterization of a vasopressin V1 receptor and possible link to nephrogenic diabetes insipidus. Nature 1992; 357: 336–339.

[63] Butlen D, Guillou G, Rajerison RM, Jard S, Sawyer WH, Manning M. Structural requirements for activation of vasopressin-sensitive adenylate cyclase, hormone binding, and antidiuretic actions: effects of highly potent analogues and competitive inhibitors. Mol Pharmacol 1978; 14: 1006–1017.

[64] Kirk CJ, Guillou G, Balestre MN, Jard S. Stimulation, by vasopressin and antidiuretic hormone. Nature 1974; 237: 1934–1941.

[65] Assouline D, Ben Mimoun M, Okayama H. Structure and expression of a human oxytocin receptor. Nature 1992; 356: 526–529.

[66] Bone EA, Fretten P, Palmer S, Kirk CJ, Michell RH. Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to V1-vasopressin and muscarinic cholinergic stimuli. Biochem J 1984; 221: 803–811.

[67] Salomon Y, Londos C, Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem 1974; 58: 541–548.

[68] Andrès M, Trueba M, Guillou G. Pharmacological characterization of F-180: a selective human V1b vasopressin receptor agonist of high affinity. Br J Pharmacol 2002; 135: 1828–1836.

[69] Derick S, Cheng LL, Voiril MJ, Stoey S, Giacomini M, Wo NC, Szeto HH, Ben Mimoun M, Andres M, Gaillard RC, Guillou G, Manning M. Position 4 analogues of [deamino-4-cyclohexylalanine] arginine vasopressin: a potent and specific agonist for vasopressin V1b receptors. Endocrinology 2002; 143: 4655–4664.

[70] Guillou G, Pena A, Murat B, Derick S, Trueba M, Ventura MA, Szeto HH, Wo N, Stoey S, Cheng LL, Manning M. Position 4 analogues of [deamino-Cys4]arginine vasopressin exhibit striking species differences for human and rat V2(V1b) receptor selectivity. J Pept Sci 2006; 12: 190–198.

[71] Cantau B, Peppens S, De Wulf H, Jard S. (1H)-vasopressin-binding to isolated rat hepatocytes and liver membranes: regulation by GTP and relation to glycopren phosphorylation activation. J Recept Res 1980; 1: 137–168.

[72] Cheng LL, Stoey S, Manning M, Derick S, Pena A, Ben Mimoun M, Guillou G. Design of potent and selective agonists for the human vasopressin V1b receptor based on modifications of deamino-[Cys1]arginine vasopressin at position 4. J Med Chem 2004; 47: 2375–2388.

[73] Pena A, Murat B, Trueba M, Ventura MA, Bertrand G, Cheng LL, Stoey S, Szeto HH, Wo NC, Brossard G, Serradeil-Le Gal C, Manning M, Guillou G. Pharmacological and physiological characterization of [de[eu4,Lys8]vasopressin, the first V1b selective agonist for rat vasopressin/V1b receptor. Endocrinology 2007; 148: 4136–4146.

[74] Pena A, Murat B, Trueba M, Ventura MA, Wo NC, Szeto HH, Cheng LL, Stoey S, Guillou G, Manning M. Design and synthesis of the first selective agonists for the rat vasopressin V1b receptor: based on modifications of deamino-[Cys1]arginine vasopressin at positions 4 and 8. J Med Chem 2007; 50: 835–847.

[75] Lowbridge J, Manning M, Haldar J, Sawyer WH. Synthesis and some pharmacological properties of [4-threonine, 7-glycine]oxytocin, [1-L-2-hydroxy-3-mercaptopropanoic acid], 4-threonine, 7-glycineoxytocin (hydroxy)[Thr4,Gly7]oxytocin, and [7-glycine]oxytocin, peptides with high oxytocic-antidiuretic selectivity. J Med Chem 1977; 20: 120–123.

[76] Lee AG, Cool DR, Grunwald WC Jr, Neal DE, Buckmaster CL, Cheng MY, Hyde SA, Lyons DM, Parker KJ. A novel form of oxytocin in New World monkeys. Biol Lett 2011; 7: 584–587.

[77] Gutkowska J, Jankowski M. Oxytocin revisited: its role in cardiovascular regulation. J Neuroendocrinol 2011; 24: 599–608.

[78] Danalache BA, Gutkowska J, Slusarz MJ, Berezowska I, Jankowski M. Oxytocin-Gly-Lys-Arg: a novel cardiomyogenic peptide. PLoS ONE 2010; 5: e13643.

[79] Sawyer WH, Acosta M, Balaspiri L, Judd J, Manning M. Structural changes in the arginine vasopressine, molecule that enhance antidiuretic activity and specificity. Endocrinology 1974; 94: 1106–1115.

[80] Zoaar M, Kolc J, Sorm F. Amino acids and peptides. LXXI. Synthesis of 1-deamino-8-D-arginine-vasopressin. 1-deamino-8-D-lysine-vasopressin, and 1-deamino-8-D-arginine-vasopressin. Coll Czech Chem Commun 1967; 32: 1250–1257.

[81] Huguenin RL. Synthese de la Phe2-Orn8-oxytocine, deux analogues de la vasopressine douse d’une activité pressorique selective. Helv Chim Acta 1964; 47: 1934–1941.

[82] Aurell C-J, Bengtsson B, Ekholm K, Kasprzykowska R, Nilson A, Person R, Trojan J, Abbé M, Melin P. Development of vasopressor specific analogues with prolonged effects. In: Giralt E, Andreu D eds. Peptides 1990. Proc of the 21European Peptide Symposium. Leiden: ESCOM Science Publishers, 1991: 671–673.

[83] Wisniewski K, Galyean R, Tariga H, Alagarsamy S, Croston G, Heitzmann J, Kohan A, Wisniewska H, Laporte R, Riviere PJ, Schteingart CD. New, potent, selective, and short-acting peptide V1 receptor agonists. J Med Chem 2011; 54: 4388–4398.

[84] Manning M, Coy EJ, Sawyer WH, Acosta M. Solid-phase synthesis and some pharmacological properties of 4-threonine analogs of vasopressins and vasotocin and of arginine-vasopressin and arginine-vasotocin. J Med Chem 1973; 16: 463–466.

[85] Boissonnas RA, Guttmann S. Synthese d’analogues de l’oxytocine et de la lysine-vasopressine contenant de la phenylalanine ou de la tyrosine en position 2 et 3. Helv Chim Acta 1960; 43: 190–200.

[86] Guillou G, Murat B, Pena A, Trueba M, Ventura MA, Wo NC, Szeto HH, Stoey S, Cheng LL, Manning M. Selective agonists for human and rat vasopressin V1b receptors. In: Rolka K, Rekowski P, Silberring J, eds. Peptides 2006. Geneva: Knes International, 2007: 742–743.

[87] Dyckes DF, Fberger MF, du Vigneaud V. Synthesis and some of the pharmacological properties of [4-leucine]-B-lysine-vasopressin and [1-deamino,4-leucine]-B-lysine-vasopressin. J Med Chem 1973; 16: 843–847.

[88] Salio M, Sugimoto T, Tahara A, Kawashima H. Molecular cloning and characterization of rat V1b vasopressin receptor: evidence for its expression in extra-pituitary tissues. Biochem Biophys Res Commun 1995; 26: 751–757.

[89] Griffante C, Green A, Currututo O, Haslam CP, Dickinson BA, Arban R. Selectivity of d[Cha4]AVP and SSR149415 at human vasopressin and oxytocin receptors: evidence that SSR149415 is a mixed vasopressin V1a/oxytocin receptor antagonist. Br J Pharmacol 2005; 146: 744–751.

[90] Roper JA, O’Carroll A-M, Young WS III, Lolait SJ. The vasopressin Avpirp receptor: molecular and pharmacological studies. Stress 2011; 14: 98–115.

[91] Kruszynski M, Lammek B, Manning M, Seto J, Haldar J, Sawyer WH. [1-beta-Mercapto-beta,beta-cyclopentamethylenepropionic acid], 2-[O-methyl]tyrosine arginine-vasopressin and [1-beta-mercaptopo-beta,beta-cyclopentamethylenepropionic acid][arginine-vasopressine, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem 1980; 23: 364–368.

[92] Chen WY, Wo NC, Cheng LL, Manning M. Isosteric substitution of Asn5 in antagonists of oxytocin and vasopressin leads to highly selective and...
potential oxytocin and V1a receptor antagonists: new approaches for the design of potential tocolytics for preterm labor. J Pharmacol Exp Ther 1996; 227: 999–1003.

93 Manning M, Przybylski JP, Olma A, Klos WA, Kruszynski M, Wo NC, Pelton GH, Sawyer WH. No requirement of cyclic conformation of antagonists in binding to vasopressor receptors. Nature 1987; 329: 839–840.

94 Manning M, Nawrocka E, Misicka A, Olma A, Klos WA, Seto J, Sawyer WH. Potent and selective antagonists of the antidiuretic responses to arginine-vasopressin based on modifications of [1-(beta-mercapto-beta-pentamethylenpropionic acid),2-D-isouelic,4-valine]-arginine-vasopressin at position A. J Med Chem 1984; 27: 423–429.

95 Manning M, Klos WA, Kruszynski M, Przybylski JP, Olma A, Wo NC, Pelton GH, Sawyer WH. Novel linear antagonists of the antidiuretic (V1a) and vasopressor (V1b) responses to vasopressin. Int J Pept Protein Res 1988; 32: 455–467.

96 Manning M, Bankowski K, Barberis C, Jard S, Elands J, Chan WY. Novel approach to the design of synthetic radiiodinated linear V1a receptor antagonists of vasopressin. Int J Peptide Protein Res 1992; 40: 261–267.

97 Barberis C, Balestre MN, Jard S, Tribollet E, Arsenijevic Y, Dreyfuss JJ, Bankowski K, Manning M, Chan WY, Schlosser Y, Holsboer F, Elands Y. Characterization of a novel, linear radiiodinated vasopressin antagonist: an excellent radioligand for vasopressin V1a receptors. Neuroendocrinology 1995; 62: 135–146.

98 Manning M, Olma A, Klos WA, Kolodziejczyk AM, Seto J, Sawyer WH. Design of more potent antagonists of the antidiuretic responses to arginine-vasopressin. J Med Chem 1982; 25: 45–50.

99 Manning M, Misicka A, Olma A, Klos WA, Bankowski K, Nawrocka E, Kruszynski M, Kolodziejczyk A, Cheng LL, Seto J, Wo NC, Sawyer WH. C-terminal deletions in agonistic and antagonistic analogues of vasopressin that improve their specificities for antidiuretic (V1a) and vasopressor (V1b) receptors. J Med Chem 1987; 30: 2245–2252.

100 Sawyer WH, Bankowski K, Misicka A, Nawrocka E, Kruszynski M, Stoev S, Klos WA, Przybylski JP, Manning M. Potent V1a vasopressin antagonists with structural changes at their C-terminals. Peptides 1988; 9: 157–163.

101 Manning M, Przybylski J, Grzonka Z, Nawrocka E, Lammek B, Misicka A, Cheng LL, Chan WY, Wo NC, Sawyer WH. Potent V1a/V1b vasopressin antagonists with C-terminal ethylenediamine-linked retro-amino acids. J Med Chem 1992; 35: 3895–3904.

102 Akerlund M. Targeting the oxytocin receptor to relax the myometrium. Expert Opin Ther Targets. 2006; 10: 423–427.

103 Bankowski K, Manning M, Seto J, Haldar J, Sawyer WH. Design and synthesis of potent in vivo antagonists of oxytocin. Int J Pept Prot Res 1980; 16: 382–391.

104 Manning M, Miteva K, Pancheva S, Itero S, Stoev S, Wo NC, Chan WY. Design and synthesis of highly selective in vitro and in vivo uterine receptor antagonists of oxytocin: comparisons with atosiban. Int J Peptide Protein Res 1995; 46: 244–252.

105 Elands J, Barberis C, Jard S, Tribollet E, Dreyfuss J-J, Bankowski K, Manning M, Sawyer WH. 11C-labelled d(CH3)5,Tyr(Me)2,Tyr,Arg-NH2: a selective oxytocin receptor ligand. Eur J Pharmacol 1988; 147: 197–207.

106 Melin P, Trojan J, Johansson B, Vilhardt H, Akerlund M. Synthetic antagonists of the myometrial response to vasopressin and oxytocin. J Endocrinol 1986; 111: 125–131.

107 Yamamura Y, Ogawa H, Chiara T, Kondo K, Onogawa T, Nakamura S, Mori T, Tominaga M, Yabuuchi Y. OPC-21268, as an orally effective, nonpeptide vasopressin V1 receptor antagonist. Science 1991; 252: 572–574.

108 Yamamura Y, Nakamura S, Itoh S, Hirano T, Onogawa T, Yamashita T, Yamada Y, Tsujimae K, Aoyama M, Kotosai K, Ogawa H, Yamashita H, Kondo K, Tominaga M, Tsujimoto G, Mori T. OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther 1998; 287: 860–867.

109 Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, Orlandi C; SALT Investigators. Tolvaptan, a selective oral vasopressin V2 receptor antagonist, for hyponatremia. N Engl J Med 2006; 355: 2099–2112.

110 Tahara A, Tomura Y, Wade K-I, Kusakuma Y, Tsukada J, Takanashi M, Yatsu T, Uchida W, Tanaka A. A pharmacological profile of YM087, a novel potent nonpeptide vasopressin V1a and V2 receptor antagonist, in vitro and in vivo. J Pharmacol Exp Ther 1997; 282: 301–308.

111 Ghali JK, Tam SW. The critical link of hypervolemia and hyponatremia in heart failure and the potential role of arginine vasopressin antagonists. J Card Fail 2010; 16: 419–431.

112 Robertson GL. Vaptans for the treatment of hyponatremia. Nat Rev Endocrinol 2011; 7: 151–161.

113 Gross PA, Wagner A, Decaux G. Vaptans are not the mainstay of treatment in hyponatremia: perhaps not yet. Kidney Int 2011; 80: 594–600.

114 Verbalis JG, Adler S, Schrier RW, Berl T, Zhao Q, Czerwiec FS; SALT Investigators. Efficacy and safety of oral tolvaptan therapy in patients with the syndrome of inappropriate antidiuretic hormone secretion. Eur J Endocrinol 2011; 164: 725–732.

115 Ferguson-Myrthil N. Novel agents for the treatment of hyponatremia: a review of conivaptan and tolvaptan. Cardiol Rev 2010; 18: 313–321.

116 Serradeil-Le Gall C, Wagnon J, Garcia C, Lacour C, Guiraudou P, Chris- tophe B, Villanova G, Nisato D, Maffrand JP, Le Fur G. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors. J Clin Invest 1993; 92: 224–231.

117 Mananeko A, Fatnali N, Khatib NN, Lecik T, Hasegawa Y, Martin R, Tang J, Zhang JH. Arginine-vasopressin V1a receptor inhibition improves neurologic outcomes following an intracerebral hemorrhagic brain injury. Neurochem Int 2011; 58: 542–548.

118 Russell R, Doyle R, Turner J, Attikins N, Ramsey S, Weibley L, Bateman L, Bictash M, Neal-Morgan S, Ivason M, Pullen N. In vitro and in vivo pharmacological characterisation of the potent and selective vasopres- sin V(1a) receptor antagonist 4-[4-(4-chloro-phenyl)-5-[1,2,3]triazol-2-ylmethyl-4H-[1,2,4]triazol-3-yl]-piperidin-1-yl-[3,5-diffuoro-phenyl]-methanone (PF-00738245). Eur J Pharmacol 2011; 670: 347–355.

119 Schönberger M, Leggett C, Kim SW, Hooker JM. Synthesis of [11C]SSR149415 and preliminary imaging studies using positron emission tomoscopy. Bioeng Med Lett 2010; 20: 3103–3106.

120 Livin Y, Murakami G, Pfaff DW. Effects of chronic social stress on behavioral and neural correlates of sociality: vasopressin, oxytocin and the vasopressinergic V1a receptor. Physiol Behav 2011; 103: 393–403.

121 Zmily HD, Daifallah S, Ghali JK. Tolvaptan, hyponatremia, and heart fail- ure. Int J Nephrol Renovasc Dis 2011; 4: 57–71.

122 Pang PS, Gheorghiade M, Dihu J, Swedberg K, Khan S, Maggioni AP, Grinfeld I, Lazzard F, Burnett JC Jr, Ouyang J, Udeoson JE, Konstant MA. Effects of tolvaptan on physician-assessed symptoms and signs in patients hospitalized with acute heart failure syndromes: analysis from the efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan (EVEREST) trials. Am Heart J 2011; 161: 1067–1072.

123 Gassanov N, Semmo N, Semmo M, Nia AM, Fuhr U, Er F. Arginine vasopressin (AVP) and treatment with arginine vasopressin receptor antago- nists (vaptans) in congestive heart failure, liver cirrhosis and syndrome of inappropriate antidiuretic hormone secretion (SIADH). Eur J Clin Pharmacol 2011; 67: 333–346.

124 Serradeil-Le Gall C, Lacour C, Valette G, Garcia G, Foulon L, Galindo G, Bankir L, Pouzet B, Guillon G, Barberis C, Chicot D, Jard S, Vilain P, Garcia C, Marty E, Raufaste D, Brossard G, Nisato D, Maffrand JP, Le
Fur G. Characterization of SR 121463A, a highly potent and selective, orally active vasoressin V2 receptor antagonist. J Clin Invest 1996; 98: 2729–2738.

125 Rochdi MD, Vargas GA, Carpentier E, Dloigny-Longpré G, Chen S, Kovoor A, Gietelman SE, Rosenthal SM, von Zastrow M, Bouvier M. Functional characterization of vasoressin type 2 receptor substitutions (R137H/C/L) leading to nephrogenic diabetes insipidus and nephrogenic syndrome of inappropriate antidiuresis: implications for treatments. Mol Pharmacol 2010; 77: 836–845.

126 Ranadive SA, Ersoy B, Favre H, Cheung CC, Rosenthal SM, Miller WL, Vaisse C. Identification, characterization and rescue of a novel vaso-pressin-2 receptor mutation causing nephrogenic diabetes insipidus. Clin Endocrinol (Oxf) 2009; 71: 388–393.

127 Yamamura Y, Ogawa H, Yamashita H, Chihara T, Miyamoto H, Nakamura S, Onogawa T, Yamashita T, Hosokawa T, Mori T. Characterization of a novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasoressin V2 receptor antagonist. Br J Pharmacol 1992; 105: 787–791.

128 Naidech AM, Paparello J, Liebling SM, Bassin SL, Levasseur K, Alberts AW, Yamamura Y, Ogawa H, Yamashita H, Chihara T, Miyamoto H, Nakamura S, Pulicicchio C, Resnick L, Rahman Z, Sukoff Rizzo SJ, Luo B, Beyer CE, Peace S, Philp J, Pollard D, Pullen MA, Shabbir SS, Sollis SL, Westfall EV, Pawluczyk JM, Pettibone DJ, Reiss DR, Veber DF, Woyden CY. 1-(1-[N-acetyl-4-piperidinyl]oxy)-2-methoxybenzoyl-piperidin-4-yl)-4H-3,1-oxytocin, vasopressin, and affiliative behavior. J Med Chem 2002; 45: 2579–2588.

129 Bockaert J, Jard S. Tritium labelling of 8-lysine vasoressin and its purification by affinity chromatography on sepharose bound neurophysins. FEBS Lett 1972; 26: 189–192.

130 Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984; 312: 315–321.

131 Bockaert J, Roy C, Rajerison R, Jard S. Specific binding of [(H)lysine-vasoressin to pig kidney plasma membranes. Relationship of receptor occupancy to adenylate cyclase activation. J Biol Chem 1973; 248: 5922–5931.

132 Thibonnier M, Preston JA, Dulin N, Wilkins PI, Berti-Mattera LN, Mattera R. The human V3 pituitary vasoressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinology 1997; 138: 4109–4122.

133 Bockaert J, Hidalgo DJ, Massoureaux J, Alberts AW, Dupere M. Novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasoressin V2 receptor antagonist. Br J Pharmacol 1992; 105: 787–791.

134 Bockaert J, Roy C, Rajerison R, Jard S. Specific binding of [(H)lysine-vasoressin to pig kidney plasma membranes. Relationship of receptor occupancy to adenylate cyclase activation. J Biol Chem 1973; 248: 5922–5931.

135 Oshikawa S, Tanoue A, Koshimizu TA, Kitagawa Y, Tsujimoto G. Vasopressin stimulates insulin release from islet cells through V1a receptors: a combined pharmacological/knockout approach. Mol Pharmacol 2004; 65: 623–629.

136 Chini B, Mouillac B, Bailleau MN, Elends J, Trumpf-Kallmeyer S, Hoflack J, Hibert M, Barberis C. The binding site of neuropeptide vasoressin in the V1a receptor. Evidence for a major localization within transmembrane regions. J Biol Chem 1995; 270: 25771–25777.

137 Oshikawa S, Tanoue A, Koshimizu TA, Kitagawa Y, Tsujimoto G. Vasoressin stimulates insulin release from islet cells through V1a receptors: a combined pharmacological/knockout approach. Mol Pharmacol 2004; 65: 623–629.

138 Bockaert J, Hidalgo DJ, Massoureaux J, Alberts AW, Dupere M. Novel aquaretic agent, OPC-31260, as an orally effective, nonpeptide vasoressin V2 receptor antagonist. Br J Pharmacol 1992; 105: 787–791.

139 Insel TR. The challenge of translation in social neuroscience: a review of oxytocin, vasoressin, and affiliative behavior. Neuron 2010; 65: 768–779.

140 Rahman Z, Resnick L, Rosenzweig-Lipton SJ, Ring RH. Methods of treatment using oxytocin receptor agonists US Patent 20070117794, Kind Code: A1, Publication date 10/24/2007.

141 Beyer CE, Dwyer JM, Platt BJ, Neal S, Luo B, Ling HP, Lin Q, Mark RJ, Rosenzweig-Lipton S, Schechter LE. Angiotensin IV elevates oxytocin levels in the rat amygdala and produces anxiety-like activity through subsequent oxytocin receptor activation. Psychopharmacology 2010; 209: 303–311.

142 Jard S, Gaillard RC, Guillon G, Marie J, Schoenberg P, Muller AF, Manning M, Sawyer WH. Vasoressin antagonists allow demonstration of a novel type of vasoressin receptor in the rat adenohypophysis. Mol Pharmacol 1988; 36: 171–177.

143 Pradelles P, Morgat JL, Fromageot C, Camier M, Bonne D, Cohen P, Bockaert J, Sard S. Tryptophan labelling of oxytocin receptor. Mol Pharmacol 2002; 62: 189–192.

144 Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984; 312: 315–321.

145 Bockaert J, Roy C, Rajerison R, Jard S. Specific binding of [(H)lysine-vasoressin to pig kidney plasma membranes. Relationship of receptor occupancy to adenylate cyclase activation. J Biol Chem 1973; 248: 5922–5931.

146 Thibonnier M, Preston JA, Dulin N, Wilkins PI, Berti-Mattera LN, Mattera R. The human V3 pituitary vasoressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinology 1997; 138: 4109–4122.

147 Chini B, Mouillac B, Bailleau MN, Elends J, Trumpf-Kallmeyer S, Hoflack J, Hibert M, Barberis C. The binding site of neuropeptide vasoressin in the V1a receptor. Evidence for a major localization within transmembrane regions. J Biol Chem 1995; 270: 25771–25777.

148 Oshikawa S, Tanoue A, Koshimizu TA, Kitagawa Y, Tsujimoto G. Vasopressin stimulates insulin release from islet cells through V1a receptors: a combined pharmacological/knockout approach. Mol Pharmacol 2004; 65: 623–629.

149 Chini B, Mouillac B, Bailleau MN, Elends J, Trumpf-Kallmeyer S, Hoflack J, Hibert M, Andriolo M, Pupier S, Jard S, Barberis C. Two aromatic residues regulating agonist selectivity in the V1a vasopressin receptor. Evidence for a major localization within transmembrane regions. J Biol Chem 1995; 270: 25771–25777.

150 Oshikawa S, Tanoue A, Koshimizu TA, Kitagawa Y, Tsujimoto G. Vasoressin stimulates insulin release from islet cells through V1a receptors: a combined pharmacological/knockout approach. Mol Pharmacol 2004; 65: 623–629.

151 Chini B, Mouillac B, Bailleau MN, Elends J, Trumpf-Kallmeyer S, Hoflack J, Hibert M, Andriolo M, Pupier S, Jard S, Barberis C. Two aromatic residues regulating agonist selectivity in the V1a vasopressin receptor. Evidence for a major localization within transmembrane regions. J Biol Chem 1995; 270: 25771–25777.

152 Tahara A, Saito M, Sugimoto T, Tomura Y, Wada K, Kusayama T, Tsukada J, Ishii N, Yatsu T, Uchida W, Tanaka A. Pharmacological characterization of the human vasopressin V1a receptors using SSR-149415, a nonpeptide V1a receptor ligand. Am J Physiol Regul Integr Comp Physiol 2007; 293: R398–R494.

153 Elands J, Barberis C, Jard S. Tyr115 is the key residue for subsequent oxytocin receptor activation. J Biol Chem 2012; 287: 20577–20577.

154 Elands J, Barberis C, Jard S. Tyr115 is the key residue for subsequent oxytocin receptor activation. J Biol Chem 2012; 287: 20577–20577.
Andrés M, Peña A, Derick S, Raufaste D, Trojan J, Wysiewski K, Trueba M, Serradeil-Le Gal C, Guillou G. Comparative pharmacology of bovine, human and rat vasopressin receptor isoforms. *Eur J Pharmacol* 2004; 501: 59–69.

Chini B, Manning M. Agonist selectivity in the oxytocin/vasopressin receptor family: new insights and challenges. *Biochem Soc Trans* 2007; 35: 737–741.

Chini B, Manning M, Guillou G. Affinity and efficacy of selective agonists and antagonists for vasopressin and oxytocin receptors: an ‘easy guide’ to receptor pharmacology. *Prog Brain Res* 2008; 170: 513–517.

Sala M, Braida D, Lentini D, Busnelli M, Bulgheroni E, Capurro V, Finardi A, Donzelli A, Pattiini L, Rubino T, Parolaro D, Nishimori K, Parenti M, Chini B. Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. *Biol Psychiatry* 2011; 69: 875–882.

Mimoun MB, Derick S, Andres M, Guillou G, Wo NC, Chan WY, Stoev S, Cheng LL, Manning M, Szeto HH, Durroux T, Mouillac B, Barberis C. Design of peptide oxytocin antagonists with strikingly higher affinities and selectivities for the human oxytocin receptor than atosiban. *J Pept Sci* 2005; 11: 593–608.

Serradeil-Le Gal C, Valette G, Foulon L, Hermann G, Advenier C, Nanine L, Bardou M, Martinolle JP, Pouzet B, Raufaste D, Garcia C, Double-Cazanave E, Pauly M, Pascal M, Barberi A, Scatton B, Mannfran JP, Le Fur G. SSR126768A (4-chloro-3-[(3R)-(+)5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1h-indol-3-yl-S-(2,4-pyridylmethyl)-benzamide, hydrochloride): a new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor. *J Pharmacol Exp Ther* 2004; 309: 414–424.

Schmidt A, Audigier S, Barberis C, Jard S, Manning M, Kolodziejczyk AS, Sawyer WH. A radiiodinated linear vasopressin antagonist. *FEBS Lett* 2001; 507: 35–38.

Panchuk-Valoshchina N, Hauagland RP, Bishop-Stewart J, Bhagat MK, Milard PJ, Mao F, Leung W-Y, Haulgland R. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. *J Histochem Cytochem* 1999; 47: 1179–1188.

Ballard JL, Peeva VK, deSilva CJ, Lynch JL, Swanson NR. Comparison of Alexa Fluor and Cy Dye for practical DNA microarray use. *Mol Biotechnol* 2007; 36: 175–183.

Durroux T, Peter M, Turcatti G, Cholet A, Balexte MN, Barberis C, Seyer R. Fluorescent pseudo-peptide linear vasopressin antagonists: design, synthesis and applications. *J Med Chem* 2009; 42: 1312–1319.

Kirk KL, Buku A, Eggena P. Cell specificity of vasopressin binding in renal collecting duct: computer-enhanced imaging of a fluorescent hormone analog. *Proc Natl Acad Sci USA* 1987; 84: 6000–6004.

Bonnet D, Riché S, Loison S, Dagher R, Frantz MC, Boudier L, Rameh R, Mouillac B, Hairch J, Hibert M. Solid-phase organic tagging resins for labeling biomolecules by 1,3-dipolar cycloaddition: application to the synthesis of a fluorescent non-peptide vasopressin receptor ligand. *Chemistry* 2008; 14: 6247–6254.

Maurel D, Kniazeff J, Mathis G, Trinquart E, Pin JP, Ansanay H. Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. *Anal Biochem* 2004; 329: 253–262.

Milligan G, Bouvier M. Methods to monitor the quaternary structure of G protein family subtypes. *Mol Pharmacol* 2006; 70: 1783–1791.

Orcel H, Alizou L, Perkovska S, Durroux T, Mendre C, Ansanay H, Mouillac B, Rabie A. Differential coupling of the vasopressin V1a receptor through compartmentalization within the plasma membrane. *Mol Pharmacol* 2009; 75: 637–647.

Terrillon S, Durroux T, Mouillac B, Breit A, Ayoub MA, Taulan M, Jockers R, Barberis C, Bouvier M. Oxytocin and vasopressin V4 and V2 receptors form constitutive homo- and heterodimers during biosynthesis. *Mol Endocrinol* 2003; 17: 677–691.

Devost D, Zingg HH. Homo- and hetero-dimeric complex formations of the human oxytocin receptor. *J Neuroendocrinol* 2004; 16: 372–377.
Pin JP, Maurel D, Comps-Agrar L, Monnier C, Rives A-L, Doumazane E, Rondard P, Durroux T, Prezeau L, Trinquet E. Time-resolved FRET approaches to study GPCRs complexes: In: Siehler S, Milligan G, eds. G Protein-Coupled Receptors; Structure, Signaling and Physiology. Cambridge: Cambridge University Press, 2011: 67–90.

Albizu L, Teppaz G, Seyer R, Bazin H, Ansanay H, Manning M, Mouillac MJ, Schlichter R, Poisbeau P. Oxytocin-induced antinociception in the spinal cord is mediated by subpopulation of glutamatergic neurons in rat. Pain 2011; 155: 118–126.

Braida D, Donzelli A, Martucci R, Capurro V, Busnelli M, Sala B, Durroux T. Toward efficient drug screening by homogeneous assays based on the development of new fluorescent vasopressin and oxytocin receptor ligands. J Med Chem 2007; 50: 4976–4985.

Zwier JM, Roux T, Cottet M, Durroux T, Douzon S, Bdiou S, Gregor N, Bourrier E, Oueslati N, Nicolas L, Tinel N, Boisseau C, Veyraneau P, Carrier-Savournin F, Fink M, Trinquet E. A fluorescent ligand-binding alternative using Tag-lite(R) Technology. J Biomol Screen 2010; 15: 1248–1259.

Cottet M, Faklaris O, Zwier JM, Trinquet E, Pin J-P, Durroux T. Original fluorescent ligand-based assays open new perspectives in G-protein coupled receptor drug screening. Pharmaceuticals 2011; 4: 202–214.

Deblon N, Veyrat-Durebex C, Bourgoin L, Caillon A, Bussier AL, Petrosino DJ, de Meester K, Grossi AM, Lemière G, Bauduin P, Vranckx P, Carlier-Savournin F. A fluorescent oxytocin ligand for monitoring and imaging in vivo. Bioconjugate Chem 2011; 22: 1127–1136.

Breer AK, Zucker I. Oxytocin and same-sex social behavior in female meadow voles. Neuroscience 2010; 169: 665–673.

Bosch OJ, Neumann ID. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 2011; Doi: 10.1016/j.yhbeh.2011.11.002. [Epub before print].

Braida D, Donzelli A, Martucci R, Capurro V, Busnelli M, Chiri B, Sala M. Neurohypophysial hormones manipulation modulate social and anxiety-related behavior in zebras. Psychopharmacology 2012; 220: 319–330.

Breton J-D, Veinante P, Ulh-Bronner S, Vergnano AM, Freund-Mercier MJ, Schlachter R, Poisbeau P. Oxytocin-induced antinoceception in the spinal cord is mediated by subpopulation of glutamatergic neurons in lamina I–II which amplify GABAergic inhibition. Molecular Pain 2008; 4: 19–31.

Figueira RJ, Peabody MF, Lonstein JS. Oxytocin receptor activity in the common marmoset. In Vivo 2010; 24: 132–133.

Maccioni A, Mameddu C, Chessa P, Panzone F, Lissoni P, Mantovani G. Oxytocin increases Salpha-reductase activity of human prostate epithelial cells, but not stromal cells. Prostate 2008; 68: 115–121.

Beery AK, Zucker I. Oxytocin and same-sex social behavior in female meadow voles. Neuroscience 2010; 169: 665–673.

Bosch OJ, Neumann ID. Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: from central release to sites of action. Horm Behav 2011; Doi: 10.1016/j.yhbeh.2011.11.002. [Epub before print].

Braida D, Donzelli A, Martucci R, Capurro V, Busnelli M, Chiri B, Sala M. Neurohypophysial hormones manipulation modulate social and anxiety-related behavior in zebras. Psychopharmacology 2012; 220: 319–330.

Breton J-D, Veinante P, Ulh-Bronner S, Vergnano AM, Freund-Mercier MJ, Schlachter R, Poisbeau P. Oxytocin-induced antinoceception in the spinal cord is mediated by subpopulation of glutamatergic neurons in lamina I–II which amplify GABAergic inhibition. Molecular Pain 2008; 4: 19–31.
Takada M, Fujimaki-Aoba K, Hokari S. Vasotocin- and mesotocin-induced increases in short-circuit current across tree frog skin. *J Comp Physiol B* 2011; 181: 239–248.

Teruyama R, Lipschitz DL, Wang L, Ramoz GR, Crowley WR, Bealer SL, Armstrong WE. Central blockade of oxytocin receptors during mid-late gestation reduces amplitude of slow afterhyperpolarization in supraoptic oxytocin neurons. *Am J Physiol Endocrinol Metab* 2008; 295: E1167–E1171.

Timmer M, Cordero ML, Sevelinges Y, Sandi C. Evidence for a role of oxytocin receptors in the long-term establishment of dominance hierarchies. *Neuropsychopharmacology* 2011; 36: 2349–2356.

VeenaMAH, Bredewol RD, De Vries GJ. Vasopressin regulates social recognition in juvenile and adult rats of both sexes, but in sex- and age-specific ways. *Harm Behav* 2012; 61: 50–56.

Viero C, Shibuya I, Kitamura N, Verkhatsky A, Fujihara H, Katoh A, Ueta Y, Zingg HH, Chvala A, Sykova E, Dayanithi G. REVIEW: Oxytocin: crossing the bridge between basic science and pharmacotherapy. *CNS Neu-rosci Ther* 2010; 16: e138–e156.

Viviani D, Charlet A, van den Burg E, Robinet C, Hurri N, Abatis M, Magara F, Stoop R. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. *Science* 2011; 333: 104–107.

Vrachnis N, Malamas FM, Sifakis S, Deligeoroglou E, Iliodromiti Z. The oxytocin-oxytocin receptor system and its antagonists as tocolytic agents. *Int J Endocrinol* 2011; 2011: 350546.

Waldherr M, Nyuyki K, Maloumby R, Bosch OJ, Neumann ID. Attenuation of the neuronal stress responsiveness and corticotrophin releasing hormone synthesis after sexual activity in male rats. *Harm Behav* 2010; 57: 222–229.

Wrobel LJ, Reymond-Marron I, Dupre A, Raggenbass M. Oxytocin and vasopressin enhance synaptic transmission in the hypothalamic motor nucleus of young rats by acting on distinct receptor types. *Neurosci-ence* 2010; 165: 723–735.

Yang J, Fan YJ, Zhao Y, Gou PY, Lu L, Li P, Chen F, Yan XQ, Wang DX. Oxytocin in the rat caudate nucleus influences pain modulation. *Pep-tides* 2011; 32: 2104–2107.

Busnardo C, Tavares RF, Correa FM. Mechanisms involved in the pressor response to noradrenaline microinjection into the supraoptic nucleus of unanesthetized rats. *Auton Neu-rosci* 2009; 145: 63–70.

Chen J, Young S, Subbaraju S, Sheppard AK, Atkinson H, Wood S, Lightman S, Serradell-Le Gali C, Aguileras G. Vasopressin does not mediate hypersensitivity of the hypothalamic pituitary adrenal axis during chronic stress. stress, neurotransmitters, and hormones. *Ann NY Acad Sci* 2008; 1148: 349–359.

Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Dobruch J, Gomolka R, Puchalska L. Brain vasopressin V(1) receptors contribute to enhanced cardiovascular responses to acute stress in chronically stressed rats and rats with myocardial infarction. *Am J Physiol Regul Integr Comp Physiol* 2010; 298: R672–R680.

Dutertre S, Croker D, Daly NL, Andersson A, Muttenheimer M, Lumsden NG, Craik DJ, Alewood PF, Guillen G, Lewis RJ. Conus tulipa reveals an antagonist switch in vasopressin-like peptides. *J Biol Chem* 2008; 283: 7100–7108.

Goel M, Zuo CD, Schilling WP. Role of cAMP/PKA signalling cascade in vasopressin-induced trafficking of TRPC3 channels in principal cells of the collecting duct. *Am J Physiol Renal Physiol* 2010; 298: F988–F996.

Koshimizu TA, Tsujiimoto G. New topics in vasopressin receptors and approach to novel drugs: vasopressin and pain perception. *J Pharmacol Sci* 2009; 109: 33–37.

Kublaoui BM, Gemelli T, Tolson KP, Wang Y, Zinn AR. Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. *Mal Endocrinol* 2008; 22: 1723–1734.

Louiset E, Contesse V, Grousset L, Carter D, Duparc C, Perraudin V, Bertherat J, Lefebvre H. Expression of vasopressin receptors in ACTH-independent macronodular bilateral adrenal hyperplasia causing Cushing’s syndrome: molecular, immunohistochemical and pharmacological correlates. *J Endocrinol* 2008; 196: 1–9.

Rehberg S, Ertmer C, Lange M, Morelli A, Whorton E, Dunser M, Strohacker AK, Lipke E, Kampmier TG, Van Aken H, Traber DL, Westphal M. Role of selective V2-receptor-antagonist in septic shock: a randomized, controlled, experimental study. *Crit Care* 2010; 14: R200.

Rodriguez-Borrero E, Riveria-Escalera F, Candelas F, Montalvo J, Munoz-Miranda WJ, Walker JR, Maldonado-Vlaar CS. Arginine vasopressin gene expression changes within the nucleus accumbens during environment elicited cocaine-conditioned response in rats. *Neuropharmacology* 2010; 58: 88–101.

Searcy BT, Bradford CS, Thompson RR, Fitz TM, Moore FL. Identification and characterization of mesotocin and V(1a)-like vasotocin receptors in a urodele amphibian, *Taricha granulosa*. *Gen Comp Endocrinol* 2011; 170: 131–143.

Tanoue A. New topics in vasopressin receptors and approach to novel drugs: effects of vasopressin receptor on regulations of hormone secretion and metabolism of glucose, fat, and protein. *J Pharmacol Sci* 2009; 109: 50–52.

Veitengermeier B, Osborn JW. Role of spinal V(1a) receptors in regulation of arterial pressure during acute and chronic osmotic stress. *Am J Physiol Regul Integr Comp Physiol* 2011; 300: R460–R469.

Yang Z, Han D, Coote JH. Cardiac sympato-exicatory action of PVN-vascular oxytocin neurones. *Auton Neurosci* 2009; 147: 80–85.

Yao Y, Fu LY, Zhang X, van den Pol AN. Vasopressin and oxytocin excite MCH neurons, but not other lateral hypothalamic GABA neurons. *Am J Physiol Regul Integr Comp Physiol* 2012 [Epub ahead of print] PMID:22262306.