Qualitative and Quantitative Composition of Gas Emissions of Energy-Technological Equipments

E V Sazonov¹, N A Drapalyuk¹, E E Burak¹ and Y A Vorobeva¹

¹Department of housing and communal services, Voronezh State Technical University, Moscow avenue, 14, Voronezh, 394026, Russia

E-mail: edsazonov36@mail.ru, u00076@vgasu.vrn.ru, burak.e@mail.ru, cccp38@yandex.ru

Abstract. Power-generating plants are devices for producing heat, electrical and mechanical energy. They are widely used as internal combustion engines for ground and air vehicles. A significant drawback of internal combustion engines is their exhaust gases - the main environmental pollutants. The article identifies benchmarks (CO, NOx, CmHn, SOx) and secondary chemical compounds in the exhausts of internal combustion engines, their percentage and degree of toxicity are given. The influence of the highway on the surrounding territory and processes that reduce the migration of pollutants into the airspace are considered. Recommendations are given on reducing the number of parameters for analyzing the state of the environment and the possible penetration of pollutants into the human body.

1. Introduction

Energy and technological equipment includes power and heating boiler houses, technological furnaces and energy and industrial equipment, motor vehicles, including aircraft, gas-diesel generators or internal combustion engines, mini-CHPP. The main pollutants contained in the gas emissions of the following equipment: nitrogen oxide, sulfur oxide, carbon oxide, compounds of heavy metals, ash, benz (a) pyrene, vanadium five-oxy and other emissions, whose impact to the environment is very small.

Emissions from road transport include waste and crankcase gases, fuel vapor [10]. Clean soot does not apply to harmful pollutants. However, it has strong adsorbing properties and therefore it may contain carcinogens: benz (a) pyrene, vanadium five-oxy and hydrocarbons [6, 7, 11, 12].

The main pollutants in urban and roadside areas are the exhaust gases (EG) of cars, since the impact of emissions of industrial and agricultural objects on pollution is less significant [4, 12, 13, 14]. In the exhaust of automobile gases more than two hundred substances, of which reference are: CO, NOx, CmHn, SOx, compounds of heavy metals, in particular lead. Technological and ventilation emissions of accompanying production (for example, the preparation of dust-resistant solid fuel in boiler rooms) contain a significant amount of dust of various composition [15, 16, 17].

Quantitative analysis shows that the absolute contribution of toxic emissions of cars to environmental pollution is 2.6% sulfur anhydride, 17.5% nitrogen oxides, 63% carbon monoxide and 75% heavy metals (lead compounds) [1, 9].

Pollution by toxic emissions of cars is increasing in large cities and locality [4, 5, 10]. This is due to the restriction of migratory processes of pollutants in the air, which is hampered by the multi-story urban development, irrational planning of streets and highways [18, 19, 20]. The greatest concentrations of...
toxic substances are observed in the zone of influence of highways. Three areas of road impact on the surrounding area can be identified [1, 9]:
- the reserve process zone is located at a distance of up to 30 m. from the edge of the road; within this zone, the concentration of pollutants is higher or equal to the maximum permissible concentration (maximum permissible concentration – MPC);
- the sanitary gap is 150…300 m, on the outer boundary of which the concentrations of pollutants should not exceed the maximum permissible concentration;
- the area of influence of the road is up to 3000 m, in which the concentrations of toxic substances are below the MPC, but the overall effect of pollutants on the environment is quite significant.

The concentration of toxic components in exhaust gases depends mainly on the type of engine of vehicles and its modes of operation (table 1) [2, 3].

Analysis table 1 indicates that the pollution of the environment by toxic exhaust gas components is minimal for diesel engines. However, studies by Swedish scientists [9] show that the exhaust gases in the burning of diesel fuel contain traces of lead compounds in the amount of 0.0205 g / km of the road. In addition, the content of oxides of nitrogen and hydrocarbons has been increased by 1.5 to 2 times in diesel gases.

Table 1. The content of harmful substances in the exhaust gases of motor transport.

Groups of vehicles (engine type)	Harmful substances, g/km.			
	CO	C\textsubscript{2}H\textsubscript{8}n	NO\textsubscript{x}	Pb
Trucks with a load capacity of up to 6 tons (internal combustion engine)	98.7	4.8	26.2	0.06
Trucks with a load capacity of more than 6 tons (internal combustion engine)	101.5	4.93	26.2	0.07
Buses (internal combustion engine)	128.7	6.25	34.2	0.08-0.09
Cars (internal combustion engine)	13.2	2.4	1.6	0.049
Trucks (diesel engine)	24.4	3.75	47.9	0.0205

The products of combustion of heat-generating plants contain up to 6 types of nitrogen oxides, the physico-chemical properties of which are very different from each other (table 2). This does not allow us to find the only effective method of capturing them.

Table 2. Physical and chemical properties of nitrogen oxides.

Properties nitrogen oxides	N\textsubscript{2}O	NO	N\textsubscript{2}O\textsubscript{3}	NO\textsubscript{2}	N\textsubscript{2}O\textsubscript{4}	N\textsubscript{2}O\textsubscript{5}
Molecular weight (atomic mass unit)	44.01	30.01	76.01	46.0	92.02	108.01
Density, kg/m3	1.98	1.34	-	1.491	1.491	-
Critical pressure, MPa	7.0	6.35	-	98.0	-	0.14
Critical temperature, °C	36.4	-93.2	-	158.0	-	41.0
Boiling point under normal conditions, °C	-89.5	-151.8	3.5	21.15	-	45.0
Melting temperature, °C	-102.4	-163.6	-102.0	-	-11.2	29-30

Piston, gas turbine and rocket engines of aircraft emit toxic components dispersed in the atmosphere: carbon and nitrogen oxides, hydrocarbons, soot, aldehydes, etc. [3, 9], and when rocket fuel is burned - water vapor, carbon monoxide, hydrochloric acid vapor, chlorine, carbon dioxide and nitrogen dioxide, aluminum trioxide.

According to GOST 17.2.1.01-76 [8] emissions from internal combustion engines and aircraft are divided into the following groups:
gaseous and ferries - oxides of sulfur, nitrogen, etc.;
liquid emissions – acids, alkalis, organic compounds, solutions of salts and liquid metals;
solid emissions – lead compounds, organic and inorganic dust, soot, resin substances, etc.

The composition and concentration of pollutants contained in the exhaust gases of air transport engines depend on the mode of their operation. Pollution of the environment in the airport area by certain types of pollution is: for carbon oxides 55%; for nitrogen oxides 77%; for hydrocarbons 93%; for aerosols 97%.

Pollution of the surface layer of the atmosphere from rocket engines is local and short-term in nature during the launch and landing of the spacecraft. The visual analysis of diffusion processes shows [3, 20] that a high-temperature aerosol cloud rises above the starting pad to a height of 3 km, which under the influence of the wind moves to a distance of 30 - 60 km and contributes to the formation of acid rain.

In order to reduce the number of parameters under study that affect the process, environmental pollution analysis is promising to conduct in dimensionless parameters, for example, in the dimensionless concentration of the component expressed in the shares of the MPC.

Another dimensionless parameter is the width of the road lane or the width of the flight corridor of aircraft, given to the conditional width. At the boundary of the conditional width, the concentration of the component is close to the background. When determining the toxicity of the internal combustion engine, the maximum concentration of exhaust gases should be determined by a coefficient of reduction using the formula [2, 9, 21]

\[k_{np,i} = \alpha_i \lambda_i \beta_i \]

where \(\alpha_i \) – the relative risk of contamination in the air \((\alpha_i = 1 \ldots 5)\); \(\alpha_j \) – an amendment that takes into account the probability of accumulation of harmful substances or secondary pollutants in the atmosphere and other environmental components, as well as their entry into the human body \((a_{jCO} = 1, a_{jNox} = 41,1, a_{j} = 3,16, a_{jPb} = 22400) \); \(\delta_i \) – a factor that takes into account the impact of harmful substances on different recipients, except humans \((\delta_i = 1 \ldots 2)\); \(\lambda_i \) – a factor that takes into account the probability of secondary admixture entering the atmosphere after settling on the surface (turbulence, wind behind the vehicle, tire impact on the road surface, etc.) \((\lambda_i = 1 \ldots 1,2)\); \(\beta_i \) – a coefficient that takes into account the probability of formation with the participation of initial harmful substances emitted into the atmosphere of other (secondary) contaminants, more dangerous than the initial ones \((\beta_i = 1 \ldots 5)\).

2. References

[1] Alexandrov I A 1975 Massoproceted in the rectification and absorption of multi-component mixtures (Leningrad: Chemistry) 320
[2] Beckman G and Gilly P 1987 Heat energy storage: Per. with Angle (Moscow: Mir) 272
[3] Brethschneider B and Kurfürst I 1989 Air basin protection against pollution (Leningrad: Chemistry) 288
[4] Burak E E, Fonova S I and Mironenko N I 2019 Features of accommodation of road zone objects taking into account the ecological influence of motor transport Environmental engineering surveys - the regulatory framework, modern methods and equipment Materials of the All-Russian Scientific and Practical Conf (Moscow: AESB) pp 68-71
[5] Vorob’eva Y A and Misilina E G 2016 Analysis of the impact of motor transport on reconstructed residential development on the example of Voronezh Scientific Bulletin of the Voronezh State University of Architecture and Civil Engineering Series: Student and Science 9 (Voronezh: VSUACE) pp 77-81
[6] Garmonov K V 2014 Modeling of atmospheric surface layer pollution by harmful gas emissions Complex problems of technosphere safety Materials of the international scientific-practical conference (Voronezh: VSTU) pp 127-132
[7] Polosin I I, Garmonov K V and Plotnikov A V 2015 Modelling of pollution of the natural environment by harmful gaseous emissions Ecology of urbanized areas 1 (Moscow: Fork) pp 12-14
[8] GOST 17.2.1.01-76* Nature protection. The atmosphere is perfect. Classification of emissions by composition Date of update: 10.10.2019

[9] Jaegalin O I and Lupachev P D 1985 Reducing the toxicity of automotive engines (Moscow: Transport) 120

[10] Luknin V N and Trofimenko Y V 1996 Reduction of environmental loads in road transport The results of science and technology Ser. Car and urban transport Tom 19 (Moscow: VINITI) 340

[11] Sazonov E V 2011 Environmental pollution from linear sources of gas emissions Sustainable development of cities and territories: problems, solutions, innovations (Voronezh: VSUACE) pp 54-60

[12] Sazonov E V 2008 Scientific and methodological bases for measures to protect the atmosphere of cities from pollution Scientific Bulletin of the Voronezh State University of Architecture and Civil Engineering Series: Physico-chemical problems of building materials science 1 (Voronezh: VSUACE) pp 126-133

[13] Sazonov E V 2011 Protection of the atmosphere of city settlements from pollution News of Southwestern State University Series: Technics and Technologies 1 (Kursk: Southwestern State University) pp 61-68

[14] Sazonov E V 2017 Security of the city's air basin Housing and communal infrastructure 1(1) (Voronezh: VSTU) pp 31-35

[15] Sazonov E V 2010 Ecology of the urban environment (St. Petersburg) 310

[16] Sazonov E V 2017 Ecology of the urban environment Ser. 11 Universities of Russia (Moscow: Publishing URAIT) 308

[17] Sazonov E V, Ledenev V I and Ledeneva G L 2016 Environmental problems of modern urban development Questions of modern science and practice University named V I Vernadsky 4(62) (Tambov: TSTU) pp 53-60

[18] Sazonov E V and Smolyaninov V V 2011 Analysis of realization of ecological tasks in the general plan of the city Sustainable development of cities and territories: problems, solutions, innovations (Voronezh: VSUACE) pp 60-63

[19] Sazonov E V and Smolyaninov V V 2010 Territory zoning in town-planning in the context of ecological safety 3(19) (Voronezh: VSUACE) pp 120-130

[20] Yaremenko S A and Garmonov K V 2018 Calculation of concentrations of harmful substances in the lower atmosphere using the theory of ventilation Bulletin of MGSU je vol 13 issue 2(113) (Moscow: MGSU) pp 222–230

[21] Sevastianov A A, Korovin K V, Zotova O P, Solovev D B 2018 Features of the Geological Structure and Estimation of the Extraction Potential of the Sediments of the Bazhenov Formation in the Territory of Khanty-Mansiysk Autonomous Okrug IOP Conference Series: Materials Science and Engineering 463 Paper № 022004. [Online]. Available: https://doi.org/10.1088/1757-899X/463/2/022004