Comparison of the Ability of Basement Membranes Produced by Corneal Endothelial and Mouse-derived Endodermal PF-HR-9 Cells to Support the Proliferation and Differentiation of Bovine Kidney Tubule Epithelial Cells In Vitro

DENIS GOSPODAROWICZ, JEROME LEPINE, SHARON MASOGLIA, and IRMAGARD WOOD
Cancer Research Institute and the Departments of Medicine and Ophthalmology, University of California Medical Center, San Francisco, California 94143

ABSTRACT The proliferation and morphological differentiation of bovine kidney collecting-tubule epithelial cells has been examined as a function of substrata and plasma factors. Collecting kidney tubule explant maintained in vitro gave rise to two distinct cell populations; one was composed mostly of fibroblastic cells whereas the other was epithelioid (EP cells). The proliferation of fibroblastic cells when exposed to serum-supplemented medium was best expressed when cells were maintained on a basement membrane produced by bovine corneal endothelial cells. This basement membrane has a composition, which in previous studies has been shown to favor the proliferation of mesenchymal cells. In contrast, the proliferation of EP cells was best expressed when cells were maintained on a basement membrane produced by the mouse-derived endodermal cell line PF-HR-9 (HR-9-BM). This basement membrane has a biochemical composition very similar to the basement membrane underlying the kidney tubules. Although the fibroblast confluent monolayer maintained on bovine corneal endothelial cell extracellular matrix did not undergo morphogenesis, the confluent monolayer of EP cells maintained on HR-9-BM shows hemicyst formation, suggesting that they were capable of vectorial fluid transport. They also built a complex three-dimensional kidney tubulelike network. Some tubules became grossly visible and floated into the tissue culture medium, remaining tethered to the cell monolayer at either end of the tubule. On an ultrastructural level, the tubules consisted of cells held together with junctional complexes arranged so as to form a lumen. The smallest lumina were bordered by 2–3 cells, and the largest ones by 8–15 cells. The lumens of the larger tubules did contain granular fibrillar and amorphous debris.

Low-density EP cell cultures maintained on HR-9-BM could be induced to proliferate at a rate approaching that of cultures exposed to serum when they were exposed to medium supplemented with high-density lipoprotein (HDL, 750 μg protein/ml) and transferrin (50 μg/ml). When exposed to HDL concentrations equal or lower than 250 μg protein/ml, low-density cultures proliferated at a slow rate and readily formed tubulelike structures. This observation indicates that EP cells do not need to reach confluence to undergo morphogenesis, and that HDL, which in the presence of transferrin supports the cell proliferation, can favor their differentiation into tubulelike structures once its concentration becomes limiting for mitogenesis.
An intact basement membrane scaffold is required in vivo for the maintenance of orderly tissue structure and regeneration. By its presence, the membrane scaffold defines the spatial relationships among similar and dissimilar types of cells. Such a substrate plays an important role not only in cell attachment and migration (1–3), but also in the cell response to various growth-promoting agents present in plasma, lymph, or interstitial fluid (4). It enables multicellular organisms to reconstitute histological structures of most tissue and organs to what they were before loss of cells (5). In the early stage of embryonic development, when different tissues composing a given organ are formed as a result of strictly timed and spatially interrelated proliferative and differentiative events, interaction of cells with newly formed basement membrane has been shown to result in cell proliferation and the expression of new phenotypes (6–8). Such is the case in the formation of the kidney nephron resulting from the invasion of the ureter bud into the metanephric mesenchyme. Metanephric mesenchymal cells are embedded in an extracellular matrix composed in part of collagen isotypes I and III and of fibronectin (9–12). Under the direct influence of the invading ureter bud, mesenchymal cells condense and synthesize a basement membrane composed mainly of collagen type IV, heparan sulfate proteoglycan, and laminin (9–12). This closely correlates with the synchronized development of the epithelial part of the glomeruli and associated nephron tubule (9–12). Induction by the ureter bud therefore stimulates the production of laminin, type IV collagen, and heparan sulfate proteoglycan, resulting in the formation of a proper substratum for epithelial cell attachment and further differentiation.

In the present studies, we have compared the ability of basement membrane produced by cultured bovine corneal endothelial cells versus that produced by a mouse teratocarcinoma-derived endodermal cell line PF-HR-9, to support the growth and differentiation of kidney epithelial cells derived from collecting tubules isolated from the outer medulla of adult bovine kidney. Of those two types of basement membrane, only that produced by the PF-HR-9 cell line, which has a composition similar to that of the kidney tubule basement membrane, fully supports the growth of the bovine kidney epithelial cells. Among the serum components required for optimal proliferation of the cells when maintained in serum-free conditions, are the high-density lipoproteins (HDL) and transferrin. Once confluent, bovine kidney epithelial cells maintained on HR-9 basement membrane (HR-9-BM) started to form tubular structures, reminiscent of those seen in vivo. The present study therefore further supports the concept of specificity of basement membranes in regard to their ability to support the proliferation of kidney epithelial cells into tubules, as well as their differentiation into complex tubular structures.

MATERIALS AND METHODS

Materials: Dulbecco’s modified Eagle’s medium (DME) and F-12 medium were obtained from Grand Island Biological Co. (Grand Island, NY).

Abbreviations used in this paper: BCE, bovine corneal endothelial (cells); BM, basement membrane; DF medium, mixture of Dulbecco’s modified Eagle’s medium and F12 medium; DME, Dulbecco’s modified Eagle’s medium; EGF, epidermal growth factor; EP cells, epithelialoid cells; FB cells, fibroblastic cells; FCS, fetal calf serum; FGF, fibroblast growth factor; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MDCK, Madin-Darby canine kidney; STV solution: sodium phosphate, trypsin, and EDTA solution.

Calf serum and fetal calf serum (FCS) were obtained from HyClone (Sterile Systems Inc., Logan, UT). Tissue culture dishes were from Falcon Plastics (Oxnard, CA), Gentamicin from Schering Co. (Kenilworth, NJ), and Fungizone from Squibb (Princeton, NJ). BSA and cholera toxin were obtained from Schwarz-Mann Div., Becton, Dickinson & Co. (Orangeburg, NY). Dextran T-40, insulin, hydrocortisone, triiodothyronine, cholesterol, and vasopressin were obtained from Sigma Chemical Co. (St. Louis, MO).

Fibronectin was purified from bovine plasma as described by Engvall et al. (13). When analyzed by SDS PAGE under reduced conditions, the purified fibronectin from plasma fibronectin ran as a doublet with a molecular weight in the range of 220,000. Brain fibroblast growth factor (FGF) was purified by isoelectric focusing, as already described (14). FGF-2 (14) was used in the present study. When the homogeneity of that fraction was analyzed by slab gel electrophoresis, a single band was observed (14). Epidermal growth factor (EGF) was purified as described by Savage and Cohen (15). Human low-density lipoprotein (LDL, 1.019 < d < 1.063 g/cm3) and high-density lipoproteins (1.07 < d < 1.21 g/cm3) were obtained from human plasma by differential ultracentrifugal flotation (16). To remove possible contamination by fractions of higher density, each lipoprotein was washed by flotation through a solution corresponding to its respective upper limiting density. Protein concentrations were determined by the method of Lowry et al. (17), as modified by Maxwell et al. (18).

Each lipoprotein fraction migrated as a homogeneous band on agarose electrophoretic gels. The purity of HDLs and LDL also was analyzed by double immunodiffusion using rabbit antiserum directed against the a1- and a2-apoprotein (anti-HDL and anti-LDL, respectively), and PAGE as previously described (19, 20). The degree of cross-contamination between the lipoprotein fractions was <0.2%, and no extraneous plasma proteins were detectable in either fraction. Contamination by transferrin in HDL preparations was on the basis of bioassay using bovine vascular endothelial cells (22), below the level of detection (20 pg/ml) when an HDL concentration as high as 1 mg protein/ml was tested. Contamination by platelet-derived growth factors would not have been expected inasmuch as HDL is purified from plasma. This was supported by the fact that the addition of 1 mg of HDL protein/ml to bovine vascular smooth muscle cells exposed to plasma-supplemented medium did not stimulate cell proliferation.

Cell Culture Conditions: Cultures of bovine corneal endothelial (BCE) cells were established from steer eyes as already described (23, 24). Stock cultures were maintained on tissue culture dishes in DME supplemented with 10% FCS, 5% calf serum, 50 µg/ml Gentamicin, and 0.25 µg/ml Fungizone. Before being used, all media were passed through a Millipore filter (0.2 µm; Millipore Corp., Bedford, MA). Brain FGF (50 ng/ml) was added every other day until the cells were nearly confluent. The endothelial cell line PF-HR-9 originally derived from the mouse endodermal carcinoma line PF-HR-9 was generously provided by Dr. J. Van Wyk (University of California, San Francisco). PF-HR-9 cells were maintained on tissue culture dishes in DME supplemented with 10% FCS and passaged upon reaching confluence.

Preparation of Extracellular Matrix-coated Dishes: For production of basement membrane (BM)-coated dishes, BCE cells were seeded at an initial density of 4 x 10^4 cells per 35-mm dish and grown in the presence of DME supplemented with 10% calf serum, 5% Dextran T-40, and FGF (5 ng/ ml added every other day) (25). HR-9 cells were seeded at high density (2 x 10^5 cells per 35-mm dish). To reinforce the adhesion of the HR-9 BM to the plastic, we seeded the cells on fibronectin-coated dishes. Coating was done as previously described (26, 27), and cells were grown in the presence of DME supplemented with 10% calf serum. Once cultures had been confluent for 5 d (HR-9 cell cultures) or 7 d (BCE cell cultures), the media were removed and the confluent cultures were washed once with PBS. The cells were then exposed to 0.02 M NH,OH in distilled water for 5 min, followed by washing with PBS (25, 28). This results in the denudation of the BM produced by both types of cells. While cellular elements are absent from the BM produced by BCE cells (25), little cellular debris remains closely associated with the HR-9-BM (Fig. 1) (29). These debris were only seen in areas where PF-HR-9 cells grew in small papillomallike structures. It probably reflects cell death with necrotic debris left strongly attached to the BM.

Initiation of Primary Bovine Kidney Tubule Cell Cultures: Bovine kidneys were obtained from a local slaughterhouse. The outer medullary region from one pyramid was isolated and put into a 10-cm plastic dish, where it was minced into 3-mm fragments. The tissue fragments were

3 J. Lepine, personal communication.

3 J. Van Wyk and P. Chatelain, personal communication.

948 THE JOURNAL OF CELL BIOLOGY • VOLUME 99, 1984
FIGURE 1 Scanning and transmission micrographs of HR-9 cell cultures and their extracellular matrix. (A) Scanning electron micrograph of a confluent culture of HR-9 cells before treatment with 20 mM NH₄OH (x 600). (B) After treatment, the cell monolayer has disappeared and the BM produced by the cells is denuded (x 2,000). A bit of cellular debris adhering firmly to the BM can be seen. The arrows point to a hole in the BM where the plastic can be seen. (C) Transmission electron micrograph showing a cross section of a part of an HR-9 cell resting on its BM. p, plastic. (x 6,400). (D) BM after removal of the cell layer by treatment with 20 mM NH₄OH in water. A bit of cell debris can be seen on top of the matrix (arrowheads). p, plastic. (x 23,300).

then suspended in PBS and pipetted up and down five times in a 10-ml plastic pipette. The suspension was then left to sediment for 5 min at room temperature, the cloudy supernatant was discarded, and the same process repeated five times. The supernatant of the last suspension was then put in a 10-cm tissue culture dish and observed using a Nikon phase-contrast microscope (Nikon Inc., Garden City, NY). Single segments of collecting kidney tubules were isolated using an automatic pipette equipped with a 200-μl pipette tip. Alternatively, segments of collecting kidney tubules were microdissected from the outer medulla. The isolated segments (Fig. 2A) were then put in a 35-mm BCE-BM-coated dish containing 2 ml of a 50:50 mixture of DME and F12 medium (DF medium) supplemented with 10% FCS, 50 μg/ml Gentamicin, 0.25 μg/ml Fungizone, and 5 × 10⁻⁴ M selenium. Cultures were kept in a humidified 37°C incubator in a 5% CO₂/95% air environment. After 1 wk cells migrated out of the explant and the medium was renewed on a weekly basis. After 3 wks in culture, the cultures became confluent (Fig. 2B). To isolate the island of cells with an epithelioid morphology (EP cells), the primary cultures were washed with PBS and then exposed for 5 min at 37°C to a solution containing 0.9% NaCl, 0.01 M sodium phosphate (pH 7.4), 0.05% trypsin, and 0.02% EDTA (STV solution). Within 5 min most of the fibroblastic cells had rounded up and could be removed by washing the dishes with PBS. Cells with a fibroblastic appearance (FB cells) were passaged on BCE-BM-coated dishes in DF medium supplemented with 10% FCS, 50 μg/ml Gentamicin, 0.25 μg/ml Fungizone, and 5 × 10⁻⁴ M selenium (Fig. 2C). The isolated islands of EP cells were mechanically removed using an automatic pipette equipped with a 200-μl pipette tip. EP cell aggregates were resuspended in DF medium supplemented with 10% FCS, 50 μg/ml Gentamicin, 0.25 μg/ml Fungizone, and 5 × 10⁻⁴ M selenium (Fig. 2D). Both cell types were passaged weekly as described below at a split ratio of 1 to 40.

Cell Seeding: FB cell monolayers from stock plates grown in the presence of serum-supplemented medium were washed with PBS and then exposed to STV solution as described above. After 5 min at 37°C the STV solution was removed and the rounded cells were resuspended in DF medium supplemented with 10% FCS. Aliquots of the cell suspension were counted in a Coulter counter (Coulter Electronics Inc., Hialeah, FL). Cells were seeded in 2 ml of DF medium at the initial density described in the legends to Figs. 2, 3, and 10-12 on 35-mm plastic tissue culture dishes coated or not with a BCE- or HR-9-BM. To trypsinize EP cells, we increased the EDTA concentration to 0.3% and the cells' monolayer was exposed to STV solution for 10-15 min at 37°C. In contrast to FB cells which trypsinize easily, EP cells dissociated in clumps of three to five cells. EP cell aggregates were resuspended in DF medium supplemented with either 10% FCS (for cultures exposed to serum-supplemented medium) or with 2 mg/ml BSA (for cultures exposed to serum-free medium). The cell aggregates were spun down and resuspended in DF medium supplemented or without 10% FCS. EP cell density was determined using an hemacytometer. Cell viability was assessed by trypan blue exclusion test. Only free blue nuclei were observed. All cells within aggregates did not stain. Similar results were obtained when cell survival was assessed by cellular uptake and hydrolysis of fluorescein diacetate, as described earlier (30, 31). Aliquots containing the appropriate cell number were then seeded onto uncoated or coated 35-mm tissue culture dishes.

Cell Growth Measurement and Culture Lifetime Determination: For cell growth measurements and culture lifetime determinations, cells were seeded, as described above, on 35-mm plastic, BCE-BM- or HR-9-BM-coated dishes. When cultures were to be grown in serum-supplemented medium, the seeding of the cultures was done in the presence of 2 ml of DF medium supplemented with 50 μg/ml Gentamicin, 0.25 μg/ml Fungizone, 5 × 10⁻⁴ M selenium, and with various factors being analyzed for their ability to support cell growth. When cultures were to be grown in serum-supplemented medium,
FIGURE 2 Cell types growing out of a segment of collecting kidney tubule dissected from the medullary region of an adult bovine kidney. (A) Collecting kidney tubule explants were seeded as described in Materials and Methods on 35-mm BCE-BM-coated dishes and exposed to DF medium supplemented with 50 μg/ml Gentamicin, 0.25 μg/ml Fungizone, 5 × 10^-8 M selenium, and 10% FCS. (B) After 3 wk in culture, two distinct cell populations have migrated from the kidney tubule explant, one cell type forming a uniform monolayer composed of cells with a fibroblastic appearance in which a few islands (arrows) of epithelioid cells growing in isolated colonies can be seen. (C) First-passage kidney tubule cells with a fibroblastic appearance (FB cells) were seeded as described in Materials and Methods on BCE-BM-coated dishes and grown in the presence of serum-supplemented medium. Cells at confluency form a monolayer from which islands of epithelioid cells are now absent. (D) First-passage kidney tubule cells with an epithelioid appearance (EP cells) were seeded as described in Materials and Methods on HR-9-BM matrix and grown in the presence of serum-supplemented medium. At confluency a monolayer composed of small epithelioid cells from which fibroblastic cells are absent can be observed. Phase-contrast micrograph. (x 100).

Morphological Studies: For scanning electron microscopy the cultures, or denuded BM-coated dishes were fixed for 1 h in 1.5% paraformaldehyde-glutaraldehyde fixative in 0.2 M sodium cacodylate (pH 7.4), 0.2% calcium chloride, and 0.05% potassium chloride. The plates were then washed in a 1:1 rinse solution of 0.5 M sucrose and 0.2 M sodium cacodylate buffer. The samples were critically point dried using the Polaron Instruments E-300 (Doylestown, PA) and CO2. The samples were coated with gold using the Polaron sputter coater model E-5100. A JEOL scanning microscope (model 35 U, JEOL USA, Electron Optics Div., Peabody, MA) was used to examine and photograph the samples.

For electron microscopy the culture medium was removed from the dishes and replaced with 1.5% paraformaldehyde-glutaraldehyde fixative in 0.2 M sodium cacodylate buffered at pH 7.4 and 0.2% calcium chloride and 0.05% potassium chloride. The plates were fixed in the paraformaldehyde-glutaraldehyde mixture, washed in a 1:1 rinse solution of 0.5 M sucrose and 0.2 M sodium cacodylate buffer, and postfixed for 2 h in 1% osmium tetroxide buffered with 0.2 M sodium cacodylate. After postfixation with osmium, the cells were washed three to six times in the rinse solution before being stained en bloc in Kellenberger's uranyl acetate stain for 1 h, dehydrated in graded 50-100% alcohol solution, and embedded in Araldite 502. Sections of 600-800Å were cut with a Sorvall MT-2B Ultramicrotome (DuPont Instruments, Sorval...
Div., Newtown, CT) and stained with uranyl acetate and lead citrate. A JEOL electron microscope (model 100C) was used to examine and photograph the samples.

For light microscopy 1-μm sections were placed on microslides. Sections were then stained with toluidine blue and basic Fuchsin. Photomicrographs were taken with a Zeiss photomicroscope (Carl Zeiss, Inc., New York).

RESULTS

Maintenance and Propagation of Primary Bovine Kidney Cell Cultures: Substrate Requirement

Bovine kidney tubule explant (Fig. 2A) maintained on BCE-BM-coated dishes attach to the BM within 1 wk. Within 2–3 wk the dishes become covered with a cell monolayer composed of two distinct cell populations. The major cell population had a fibroblastic appearance (FB cells). The minor cell population composed of small epithelioid-looking cells (EP cells) did form discrete islands within the confluent monolayer of tightly packed fibroblastic cells (Fig. 2B). The FB cell population was propagated successfully on BCE-BM-coated dishes (Fig. 2C), whereas the islands of EP cells were best propagated on HR-9-BM-coated dishes (Fig. 2D). The behavior of the two cell types on both types of substrate, was further analyzed by looking at their respective growth rate as a function of substrate and as a function of initial cell density.

As shown in Fig. 3A, second-passage FB cells seeded at an initial cell density of 2 × 10^6 cells per 35-mm dish and exposed to serum-supplemented medium did not grow appreciably over a period of 1 wk when maintained on plastic dishes. The cells adopted the morphological appearance of large and flattened cells (Fig. 3a). In contrast, when maintained under similar conditions on either HR-9- or BCE-BM, the cells grew rapidly, and became confluent within 1 wk. The average doubling time of the cultures during their logarithmic growth phase was 27 h for cells maintained on HR-9-BM and 19 h for cells maintained on BCE-BM. The final density of cultures maintained on BCE-BM, after 5 d (8 × 10^6 cells/35-mm dish) was higher than that of cultures maintained on HR-9-BM (3 × 10^6 cells/35-mm dish). While cultures maintained on BCE-BM were composed of small tightly apposed cells (Fig. 3b), cultures maintained on HR-9-BM were composed of larger cells (Fig. 3c). One could therefore conclude that BCE-BM, when compared to HR-9-BM, supports the growth of FB cells.

![FIGURE 3](https://example.com/figure3.png)

FIGURE 3 Proliferation of kidney tubule epithelial cells on BCE-BM versus HR-9-BM-coated dishes. (A) 2 × 10^6 FB cells were seeded on 35-mm plastic tissue culture dishes or on either BCE-BM- or HR-9-BM-coated dishes. Cultures were exposed to DF medium supplemented with 50 μg/ml Gentamicin, 0.25 μg/ml Fungizone, 5 × 10^-8 M selenium, and 10% FCS. Triplicate plates were trypsinized at regular intervals and cells were counted with a Coulter counter. Standard deviation was <10%. In the micrographs, a–c show the final morphology of the culture after 8 d. (a) Plastic dishes. (b) BCE-BM. (c) HR-9-BM. × 100. (B) 4 × 10^4 EP cells were seeded on 35-mm plastic tissue culture dishes or on either BCE-BM or HR-9-BM-coated dishes. Cultures were exposed to DF medium supplemented with 50 μg/ml Gentamicin, 0.25 μg/ml Fungizone, 5 × 10^-8 M selenium, and 10% FCS. Triplicate plates were trypsinized at regular intervals, and cells were counted with a Coulter counter. In the micrographs, d–f show the final morphology of the cultures after 8 d. (d) Plastic dishes. (e) BCE-BM. (f) HR-9-BM. × 100. (C) Proliferation of EP cells on HR-9-BM-coated dishes as a function of their initial cell density. EP cells were seeded at an initial cell density ranging from 5 × 10^3 to 2 × 10^5 cells per 35-mm dish on plastic dishes (A) or dishes coated with BCE-BM (C) or HR-9-BM (D). Cultures were exposed to DF medium supplemented with 50 μg/ml Gentamicin, 0.25 μg/ml Fungizone, 5 × 10^-8 M selenium, and 10% FCS. After 8 d in culture for cells seeded at an initial cell density of 50, 100, or 200 × 10^3 cells per 35-mm dish, or after 14 d for cells seeded at an initial cell density of 5, 10, or 20 × 10^3 cells per 35-mm dish, cultures were trypsinized and cells were counted in a Coulter counter. Standard deviation was <15%.
best. Completely opposite results were obtained when the proliferation of EP cells was analyzed as a function of substrate (Fig. 3B). EP cells seeded at low density (1.5 x 10^4 cells/35-mm dish) on BCE-BM started to proliferate after a lag time of 4–6 days. Their growth rate was very slow (average doubling time of 48–96 h), and cells grew in small islands composed of extremely small rounded and tightly packed cells (Fig. 3C). When EP cells were seeded on plastic, after a lag phase of 4–6 days they started to proliferate with an average doubling time of 29 h. The culture, however, did not reach the state of confluence; instead, the cells formed discrete islands composed of very large and flattened cells with prominent ridges (Fig. 3D). In contrast, when seeded on HR-9-BM, EP cells started to proliferate without a lag phase, with an average doubling time of 29 h. After 8 d in culture, the cells formed a confluent monolayer (9 x 10^5 cells/35-mm dish). Cell proliferation continued over the following week, albeit at a diminished rate and cultures reached a final cell density by day 14 of 2 x 10^6 cells/35-mm dish. By that time the confluent monolayer was composed of extremely small, rounded, and tightly packed cells (Fig. 3E).

Cell proliferation in vitro is not only a function of substrate but also a function of the initial cell density to which cultures are initiated. To see whether EP cells seeded at high density could grow better on either plastic or BCE-BM, we analyzed the ability of EP cells seeded at densities ranging from 5 x 10^3 to 2 x 10^5 cells/35-mm dish to reach confluence as a function of the substrate upon which the cells were maintained (Fig. 3C).

While EP cells maintained on HR-9-BM and seeded at densities ranging from 5 x 10^3 to 2 x 10^5 cells per 35-mm dish became confluent within a period of 8 or 14 d (depending on their initial seeding density), neither culture maintained on BCE-BM or plastic became confluent, even when they were seeded at a cell density as high as 2 x 10^5 cells/35-mm dish. This observation therefore confirms that, irrespective of the initial cell density to which EP cell cultures were started, HR-9-BM better supported the growth of EP cells than either plastic or BCE-BM.

Morphological Differentiation of EP Cells Maintained on HR-9-BM

Light microscopy examination of confluent EP cell monolayers indicates that the cells were cuboidal or slightly elongated in shape (Fig. 4A). Although EP cells grew on the HR-9-BM as a monolayer, they could be present in collections of two or more cells in thickness. Occasionally they were arranged as very small papillary growths of four to six cells deep. Ultrastructural study using thin-section perpendicular to the culture plane revealed that the cuboidal EP cells have a luminal surface studded with short microvillilike extensions directed toward the medium (Fig. 4B). The cells were attached to one another by intracellular occluding junctions consistently present at the border between the luminal and basolateral surfaces (Fig. 4, B and C). EP cells interdigitated with one another on their lateral surfaces by complex infoldings and widened intercellular spaces were frequent and often located in the junction vicinity (Fig. 4, B and C). Interconnecting desmosomal and puncta adhering junctions could be observed on the lateral and abluminal surfaces (Fig. 4C). The nuclei containing a single prominent nucleolus was located in the central or basal part of the cells (Fig. 4C). Organelles consisting mainly of elongated mitochondria and cisternae of the endoplasmic reticulum were randomly distributed in the cytoplasm; numerous free ribosomes made up the bulk of the cytoplasm.
Figure 6 Scanning electron micrograph of confluent monolayer of EP cells showing tubular formation. (A) Confluent monolayer of EP cells maintained on HR-9-BM in the presence of serum-supplemented media and showing an extensive network of tubules (x 300). (B) An area from which the tubules originate. Numerous rounded cells are in the process of forming tubules (x 300) which in (C) can be seen floating in the media above the cell monolayer (x 400). (D) Three tubules have formed and start to intertwine (x 1,600); while in (E) the tubules still attached to the cell monolayer run, as in vivo, in parallel (x 1,000). (F) Point of attachment of tubules floating free in the medium to the cell monolayer (x 1,200). (G) Intertwined tubules (x 860) with numerous villi (H) present on their abluminal surface (x 3,600).

cytoplasm. A prominent Golgi complex could be observed in the basal part of the cells (Fig. 4C). Numerous dense core (secretory) granules and glycogen granules could be seen distributed evenly in the cytoplasm (Fig. 4C). A basement membrane underlying the abluminal cell surface could be seen readily. It could be either the original HR-9-BM coating the dishes, or newly formed basement material secreted by EP cells in response to their close contact with the HR-9-BM.

1 wk after reaching the stage of a cell monolayer, the EP cells started to show signs of functional differentiation. Hemicyst formation indicative of vectorial fluid transport was observed (Fig. 5, A and B), together with the formation of a complex network of tubular structures (Fig. 5, C and D). When observed by scanning electron microscopy (Fig. 6), this network was arranged as branching strands that varied in diameter and appeared randomly distributed throughout the culture dish. In places the tubular structures were closely associated with the luminal surface of the cell monolayer, and tubules ran in parallel strands thereby adopting a morphological configuration reminiscent of that shown by collecting kidney tubules in vivo (Fig. 6E). In other areas individual strands detached partially from the monolayer, and floated in
the medium (Fig. 6C). They either remained single or intertwined forming even larger collections of tubules, which could be observed visually (Fig. 6, D and G). Light microscopy examination of perpendicular thin sections of the large tubules floating in the medium revealed that their lumen, bordered by 8–12 cuboidal cells, was filled up with amorphous material (Fig. 7). The cells forming tubules had numerous tight junctions, an interdigitated plasmalemma, and formed junctional complexes (Figs. 8 and 9). Indications that the polarity of the cells forming large tubular structures was reversed from that seen in vivo could be deduced from the presence of a basement membrane on their luminal surface and from the presence of numerous microvillilike extensions on the abluminal surface facing the medium (Fig. 9). In the case of small tubules, however, the cell polarity seems to be the same as in vivo because the lumen was free of extracellular material other than a small amount of cell debris and the cells had microvillilike extensions on their luminal surface (Fig. 8). Cells organized within large tubular structures floating in the medium were not terminally differentiated. When structures were isolated with a pipetman equipped with a 200-µl pipette tip, tubular structures could be propagated in cultures seeded on HR-9-BM-coated dishes. Recapitulation of the events shown in Fig. 2 was observed with the difference that only EP cells were present in the first passage.

Growth Requirement of EP Cells Maintained on HR-9-BM

Previous studies (32) have shown that HDL and transferrin could support the growth and the long-term passage under serum-free conditions of kidney epithelial cell lines such as the Madin-Darby canine kidney (MDCK) cell line. Others (33) have reported that, in the case of primary cultures of rabbit kidney epithelial cells expressing proximal tubule function, a combination of transferrin, insulin, hydrocortisone, triiodothyronine, and EGF could support cell growth. Slightly different growth requirements were reported for the porcine proximal kidney tubule epithelial cell line LLC DK-1 which required transferrin, insulin, hydrocortisone, vasopressin, and cholesterol in order to grow at a rate approaching that observed when cells were exposed to serum-supplemented medium (34). We therefore have looked at the ability of these various factors to support the proliferation of EP cells.

Figure 7 Organization at various stages of tubule formation of confluent EP cell cultures maintained on HR-9-BM. (A) In the first step in the formation of a tubule, the cells have started overgrowing each other and formed a multiple cell layer (× 960). (B) A lumen formed by apposition of cell processes has appeared between the cells (× 960). (C) A cross section of a fully formed tubule floating in the media over the cell monolayer. The inside of the lumen is filled with amorphous material (× 960). (D) Tubular formation bordered by two cells. Cytoplasmic extensions of one cell engulf the lumen (A). The cell membrane (b) with an intercellular junction (c) near the cell surface opens to the lumen (d). The luminal contents consists of amorphous (e) and some electron dense material (f). Dense core granules are present in both cells (g) (× 7,953).
As shown in Fig. 10A, low-density (4 × 10^4 cells/35-mm dish) EP cells previously maintained in the presence of medium supplemented with 10% FCS did not proliferate actively over a period of 7 d when seeded on HR-9-BM and exposed to medium supplemented with transferrin alone (50 μg/ml), or HDL alone (750 μg protein/ml). Addition of both transferrin and HDL resulted in active cell proliferation, and cultures after 7 d in culture each had a final cell density that was 72% of that found in control cultures exposed to serum-supplemented medium. Neither the addition of EGF (20 ng/ml), nor of insulin (5 μg/ml) to cultures exposed to both transferrin and HDL had any significant effect on cell proliferation. Addition of cholera toxin (10 mg/ml) had a small but significant effect which was potentiated by the presence of EGF (20 mg/ml). One could therefore conclude that the two major plasma factors involved in the control of proliferation of EP cells are HDL and transferrin.

The proliferation of FB cells (4 × 10^5 cells/35-mm dish) exposed to serum-free medium was also markedly improved by the addition to the medium of 50 μg of transferrin/ml and 750 μg of HDL protein/ml. The requirements for a proper substrate in order for FB cells to proliferate actively when exposed to serum-free conditions were even more stringent then when they were exposed to serum-supplemented medium. Their final cell density after 8 d in culture were 5.64 × 10^5 cells for cultures maintained on BCE-BM versus 1.6 × 10^5 cells and 3.2 × 10^4 for cultures maintained on HR-9-BM and plastic, respectively (unpublished observation).

The effect of increasing concentrations of HDL on the proliferation of low-density (2 × 10^5 cells/35-mm dish) EP cells maintained on HR-9-BM-coated dishes and exposed to medium supplemented with transferrin (50 μg/ml) is shown in Fig. 10B. HDL had a minimal effect when present at concentrations of 100 μg of protein/ml or less. In that range of HDL concentration, the cells differentiated readily forming small tubular structures. Concentrations of HDLs in the range of 250–2,000 μg of protein/ml induced active cell proliferation, with saturation at 1,000 μg of protein/ml. When the growth-promoting effect of transferrin was analyzed using low-density EP cell cultures maintained on HR-9-BM-coated dishes and exposed to medium supplemented with 750 μg of protein/ml, it had a marginal mitogenic effect at concentrations of 1 μg/ml and saturated at concentrations of 50 μg/ml (Fig. 10C).

In order to confirm the ability of HDL and transferrin to support the growth of EP cells, we have compared their growth rate and final cell density when maintained on HR-9-BM and exposed to medium supplemented with serum versus medium supplemented with either HDL and transferrin, or transferrin alone (Fig. 10D). Cultures exposed to serum supplemented medium divided during their logarithmic growth phase with a doubling time of 29–32 h and reached a final cell density of 2 × 10^6 cells/35-mm dish after 8 d in culture. A slower growth rate (48 h) was observed when cultures were exposed to medium supplemented with HDL and transferrin, but, after 10 d in culture, the final cell density was the same as that of cells exposed to serum. When cells were exposed to transferrin alone they did not divide and started to die after 4 d in culture. The ability of transferrin and HDL to support the proliferation of EP cells was not limited in time in that cells could be passaged repeatedly in absence of serum. While cultures exposed to serum-supplemented medium had a limited lifespan in culture of 50 generations, the lifespan of EP cells exposed to HDL and transferrin was 32 generations (Fig. 11). Organization into large tubular structure could be observed until passage 12 (43 generations) with cultures propagated in the presence of serum-supplemented medium and passage 9 (30 generations) with cultures passaged in serum-free medium.

The growth promoting effect of HDL could not be replaced by a combination of a variety of factors including insulin (10 μg/ml), EGF (20 ng/ml), hydrocortisone (2 × 10^-7 M), triiodothyronine (10^-9 M), vasopressin (10 μg/ml), and cholesterol (10^-4 M) (Fig. 12). Likewise, prostaglandin E1 (25 ng/ml) substituting for vasopressin had no mitogenic effect (unpublished observation), and FGF (20 ng/ml had no effect either (unpublished observation). It was only when HDL was added on top of the factors listed above that EP cells started to proliferate actively. Since one of the roles of HDL could be to indirectly increase the cell cholesterol supply by activating 3-hydroxy-3-methylglutaryl coenzyme A reductase, we have analyzed whether or not delivery of cholesterol by LDL (50 μg protein/ml) to the cells could replace the requirement for HDL. As shown in Fig. 12 it did not; instead, it markedly reduced the growth stimulus provided by HDL.

DISCUSSION

The present study emphasizes the role of basement membrane produced by cultured cells in the control of proliferation and differentiation of kidney tubule epithelial cells. While the BM produced by cultured BCE cells favors the proliferation of the fibroblastic population, the BM produced by the mouse teratocarcinoma-derived endodermal cell line PF-HR-9 favors the proliferation of the epithelioid population.

The behavior of both cell types on these BMs correlates with their known composition. The basement membrane produced by BCE cells is mostly composed of collagens, proteoglycans, laminin, fibronectin, and elastin (35–37). The type of collagen present is mostly type III, with smaller amounts of collagen type I and BM collagen type IV and V associated with it (35). Proteoglycans are mostly heparan and chondroitin sulfate proteoglycans (36). This type of BM has been shown to best support the proliferation and differentiation of squamous epithelial cells such as vascular and corneal endothelial cells (38–40), as well as fibroblast and vascular smooth muscle cells. In contrast, the HR-9-BM is mostly composed of basement membrane collagen type IV, heparan sulfate proteoglycans, laminin, and entactin (41–43). It therefore has a composition very similar to that of the kidney epithelial cell BM and would have been expected to support...
Figure 9 Ultrastructural characteristics of EP cells lining the lumen of a large tubule. (A) Transmission electron micrograph showing a large tubular structure. Microvilli are covering the surface of the cells (a) that are lining the tubular lumen. The contents of the lumenal space are composed of amorphous, fine granular and vesicular material (b). Material of similar consistency is deposited on the basal side of the tubule (c) (x 6,600). (B) A higher-magnification electron micrograph with a cell portion lining the tubular lumen (a). The material within the lumen consists of filamentous material (b) and fine granular substances (c). A few pinocytic vesicles are also present (d) (x 17,500).
the proliferation and differentiation of that cell type.

Among the plasma factors involved in the control of proliferation of kidney epithelial cells maintained on HR-9-BM are transferrin and high-density lipoproteins. Both of these factors are normal plasma components and have been shown in previous studies to support the proliferation of the MDCK cell line (32) originally derived from the distal part of the kidney tubule (44, 45). Although it is likely that the role of transferrin is to deliver iron to the cells (46), that of HDL could be its ability to stimulate 3-hydroxy-3-methylglutaryl coenzyme A reductase activity (47), thereby resulting in increased mevalonate production. This metabolite is a precursor of nonsterol isoprene products such as dolichols, ubiquinones, and isopentenyl tRNA (48-51), which could be critical for cell growth (52, 53) as well as for cell shape maintenance (54).

A requirement for transferrin in order for kidney nephrons to appear within the metanephric mesenchyme maintained in organ culture and induced by the spinal cord has recently been reported by Eckblom et al. (55, 56). Whether the acquisition of transferrin responsiveness is caused by the de novo appearance of transferrin receptors or whether it is related to changes in basement membrane composition during the induction process is not known (56). It nevertheless raises the possibility that one of the mechanisms by which the HR-9-BM supports the growth of EP cells could be through its ability to stimulate the appearance of the transferrin receptor.
Alternatively, since previous studies have outlined the importance of cell shape in the proliferative response of cultured cells to plasma or serum factors (57–59), it is possible that only on HR-9-BM would the EP cells adopt a shape which would let them respond to the growth stimulus provided by both HDL and transferrin.

The growth requirement of bovine kidney epithelial cells derived from the collecting tubules differed from that shown by other kidney tubule segments. Taub and Sato (60) have reported that insulin, transferrin, prostaglandin E2, triiodothyronine, and hydrocortisone support the growth of baby mouse kidney epithelial cells, a similar requirement has also been shown by MDCK cells (61), a cell line of canine origin. Chuman et al. have reported (34) that in the case of proximal tubular kidney epithelial cells of porcine origin (LLC-PK1 cell line) transferrin, triiodothyronine, vasopressin, hydrocortisone, insulin, and cholesterol were required. Similar requirements, although quantitatively different, were reported by Chung et al. (33) to support the growth of primary rabbit kidney cultures that express proximal tubule function in a hormonally defined medium. In our hands, none of these factors supported the growth of EP cells. Proliferation was only observed when HDL was added to the various combinations of factors cited above. This could be due to the origin of the EP cells, which are derived from collecting tubules, versus cells derived from proximal and distal segments of the kidney tubule. It could also reflect a species difference, in that EP cells are from bovine origin in contrast to other kidney epithelial cells, which are from species as different as rodents (60), dogs (61), lagomorphs (33), or pigs (34).

Once reaching confluence, EP cells maintained in serum supplemented medium did show signs of differentiation as reflected by their morphological polarity unique to transporting epithelia with apical microvilli extending upward into the medium and occluding functions joining adjacent cells at the apical and basolateral membrane border. Evidence from vectorial transport of fluid can be inferred from the presence of hemicycst formation similar to those formed by MDCK cell cultures (62).

The unexpected finding, however, was that EP cells maintained on HR-9-BM can be induced to mold into a tissue by themselves, building a complex three-dimensional kidney tubule network. Although in cultures exposed to serum-supplemented medium, this network formed only when the cells reached the stage of a confluent monolayer, in the case of cultures maintained in transferrin-supplemented medium and exposed to concentrations of HDL below 250 μg of protein/ml, it did appear even in sparse cultures. This indicates that cells do not need to become confluent in order to form tubular structures. It is more likely that these structures can form only when the rate at which EP cells divide starts to decrease. This would occur either at confluency in the case of cultures exposed to serum-supplemented medium, or in sparse cultures in the case of cells exposed to medium supplemented with low HDL concentrations. The importance of the composition of the BM, on which cells rest, to induce them to form tubules is evident, inasmuch as no such formation was observed when EP cells were maintained on either plastic or BCE-BM, despite the fact that cells proliferated at a slow rate, a condition that did favor tubule formation for cells maintained on HR-9-BM.

Others have reported that MDCK cells growing as a monolayer on collagen gel can undergo reorganization when overlaid with another collagen layer and coalesced to form large cavities comparable in size to a tubule (63). No tubule formation was, however, observed (63). This is therefore the first report of kidney tubule formation from single cells in vitro.

Two types of tubules can be observed in the cultures. Those with a small lumen bordered by three to four cells had their lumen free of amorphous material and have microvilli on the luminal surface as well as BM material closely associated with their abluminal surface. Such tubules therefore exhibit a morphological polarity similar to that seen in vivo. In contrast, the larger tubules had an inverse polarity, their lumen bordered by 8–12 cells held together with junctional complexes and an interdigitating plasma membrane was filled with amorphous material. BM material could be seen closely associated with their luminal surface while their abluminal surface were covered with microvilli. Initial attempts to reverse the polarity of such tubules by adding gelatin to the medium as described by Mauchamp et al. (64) for thyroid follicles has been unsuccessful. The reverse polarity of the cells forming large tubules is not unlike that observed for capillary, venous, or arterial endothelial cells forming tubules in vitro (65–67). Cells forming large tubular structures were not terminally differentiated because isolated tubules when seeded on HR-9-BM matrix gave rise to homogenous EP cell cultures. Such cultures could be successfully passaged, and did reorganize at confluency into tubular structures.

In conclusion, the present study demonstrates that when maintained on the proper substratum, kidney epithelial cells
still retain morphogenetic capabilities that can be analyzed in culture. This relatively simple model may prove valuable for the study of the various steps involved in cellular organization into tissues and the role of the various components of the BM in that process.

We are thankful to Mrs. M. T. Maglio for the scanning electron microscopy studies (facilities supported by Core grant EY-02162). This work was supported by grants EY-02186 and HL-20197 from the National Institutes of Health.

Received for publication 24 October 1983, and in revised form 16 May 1984.

REFERENCES

1. Hay, E. D. Extracellular matrix. 1981. J. Cell Biol. 91:63. Pt. 2:2055-2335.

2. Kit Parker, H. F., K. J. Klebe, and G. R. Martin. 1981. Role of collagenous matrices in the adhesion and growth of cells. J. Cell Biol. 88:473-485.

3. Yamada, K. 1983. Cell surface interaction with extracellular materials. 1983. Annu. Rev. Biochem. 52:761-799.

4. Gospodarowicz, D., and J.-P. Tauber. 1980. Growth factors and extracellular matrix. Annu. Rev. Cell Biol. 2:273-304.

5. Vracko, R. 1974. Basal lamina scaffold-anatomy and significance for maintenance of normal human growth. M. Ritz, editor. Raven Press, New York. 117-127.

6. Warszaj, N. K. 1977. In tissue interactions and development. W. A. Benjamin, Menlo Park, CA. 104.

7. Saxen, L., P. Ekblom, and E. Lehtonen. 1982. The kidney as a model system for determination and differentiation. In The biology of normal human growth. M. Ritz, editor. Raven Press, New York. 117-127.

8. Ekblom, P., E. Lehtonen, L. Saxen, and R. Tempil. 1981. Shift in collagen type is an early response to induction of the metanephric mesenchyme. J. Cell Biol. 89:276-283.

9. Ekblom, P., K. Ailtalo, A. Vaheri, R. Tempil, and L. Saxen. 1980. Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in organogenesis. J. Cell Biol. 87:483-499.

10. Ekblom, P. 1981. Formation of basement membranes in the embryonic kidney. An immunohistological study. J. Cell Biol. 91:1-10.

11. Ekblom, P., A. Miettinen, L. Vatine, A. Dewey, T. Wahnstrom, and L. Saxen. 1981. In vitro segregation of the metanephric neprhen. Dev. Biol. 84:88-95.

12. Engvall, E., E. Ruoslahti, and E. J. Miller. 1978. Affinity of fibronectin to collagens of different genetic types and to fibrinogen. Z. Naturforsch 33:267-276.

13. Lowry, O. H., N. J. Rosebrough, A. L. Faar, and J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:263-275.

14. Isherwood, M., H. L. Bishop, C. T. Brown, E. Toclet, and J. MacNee. 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein cultures of a teratocarcinoma-derived endoderm cell line. J. Cell Biol. 70:247-257.

15. Ekblom, P., J. C. Smith, K. S. Smith, and K. R. Marotti. 1980. Hormonal induction of differentiation and localization of laminin in cultured vascular endothelial cells. J. Cell Biol.93:269-277.

16. Barnes, D., and G. Sato. 1980. Serum-free cell culture a unifying approach. Cell 22:649-655.

17. Gospodarowicz, D., C. R. Ill. 1980. The extracellular matrix and the control of proliferation of vascular endothelial cells. J. Cell. Biol. 85:131-136.

18. Lowo, I., K. Ailtalo, L. Riteli, A. Vaheri, R. Tempil, and J. Wartiovaara. 1982. Basal lamina glycoproteins and type IV collagen assembled into a fine fibrillar matrix in cultures of a teratocarcinoma-derived endodermal cell line. Exp. Cell Res. 137:15-23.

19. Strickland, K., S. K. Smith, and J. Wartiovaara. 1982. Basement membrane domain in the control of proliferation and differentiation of vascular endothelial cells. In vitro 2:275-283.

20. Tauber, J.-P., J. Cheng, S. Massoglia, and D. Gospodarowicz. 1981. High density cultures of a teratocarcinoma-derived endoderm cell line. J. Cell Biol. 76:5056-5060.

21. Quesney-Huneeus, V., M. Wiley, and M. Siperstein. 1980. Isopentenyladenine as a mediator of mevalonate-regulated DNA replication. Proc. Natl. Acad. Sci. USA. 80:276-281.

22. Gospodarowicz, D., M. S. Brown, and M. S. Brown. 1979. Synthesis of ubiquinone and cholesterol in human fibroblasts: regulation of a branched pathway. Arch. Biochem. Biophys. 192:86-99.

23. Hertzlinger, D. A., T. G. Easton, and G. K. Oakian. 1982. The MDCK epithelial cell line that expresses a cell surface marker: the kidney distal tubule. J. Cell Biol. 93:269-277.

24. Biechim. Bitphys. Acta. 107:173-183.

25. Brown, M., and J. Goldstein. 1980. Multivalent feedback regulation of HMG CoA reductase: a control mechanism coordinating isoprenoid synthesis on cell growth. J. Biol. Chem. 255:21-257.

26. Faust, J. R., J. L. Goldstein, and M. S. Brown. 1979. Synthesis of ubiquinone and cholesterol in human fibroblasts: control of a branched pathway. J. Cell Biol. 93:269-277.

27. Gospodarowicz, D., R. Gonzalez, and K. R. Marotti. 1980. The extracellular matrix and the control of proliferation of vascular endothelial cells. J. Cell. Biol. 93:269-277.

28. Gospodarowicz, D., and C. R. Ill. 1980. The extracellular matrix and the control of proliferation of vascular endothelial cells. J. Cell. Biol. 85:131-136.

29. Gospodarowicz, D., J. L. Goldstein, and M. S. Brown. 1979. Inhibition of cholesterol synthesis with compactin renders growth of cultured cells dependent on the low density lipoprotein receptor. J. Cell Biol. 254:5403-5409.

30. Gospodarowicz, D., J. L. Goldstein, and M. S. Brown. 1979. Inhibition of cholesterol synthesis with compactin reduces growth of cultured cells dependent on the low density lipoprotein receptor. J. Cell Biol. 254:5403-5409.

31. Sekse-Hulteen, V., M. Wiley, and M. Siperstein. 1979. Essential role for mevalonate synthesis in DNA replication. Proc. Natl. Acad. Sci. USA. 76:86-90.

32. Gospodarowicz, D., J. L. Goldstein, and M. S. Brown. 1980. The extracellular matrix and the control of proliferation of vascular endothelial cells. J. Cell. Biol. 99:118-126.

33. Gospodarowicz, D., J. L. Goldstein, and M. S. Brown. 1980. The extracellular matrix and the control of proliferation of vascular endothelial cells. J. Cell. Biol. 93:269-277.