Acoustic Modeling for End-to-End Empathetic Dialogue Speech Synthesis Using Linguistic and Prosodic Contexts of Dialogue History

Yuto Nishimura¹
Yuki Saito¹
Shinnosuke Takamichi¹
Kentaro Tachibana²
Hiroshi Saruwatari¹

¹The University of Tokyo, Japan, ²LINE Corp., Japan
Section
1. Introduction
2. Conventional method
3. Proposed method
4. Experimental evaluation
5. Conclusion
Table of contents

1. Introduction
2. Conventional method
3. Proposed method
4. Experimental evaluation
5. Conclusion
Main topic: dialogue system with empathy

- **Dialogue system**: interact w/ humans by text/speech
 - **Task-oriented**: satisfy user’s request
 - e.g., Tourist information, restaurant reservation
 - **Non task-oriented**: communicate with user
 - e.g., Chit-Chat

- **Empathy**: active attempt to get inside other person [Davis+18]
 - c.f., Sympathy: synchronize self with other person in emotion

How can we develop dialogue system that can talk to users w/ empathetic speaking style?
Task definition

- **Empathetic Dialogue Speech Synthesis (DSS) [Saito+22]**
 - Reflect main elements of empathy (i.e., emotion) on synthetic speech
 - Estimate speech features that contribute to next response, considering **dialogue history** (interaction betw. system & user)

 ![Example Dialogue]

 You seem a little down.

 Teacher, I have a sad announcement...

 Oh, what’s up?

- **Challenging point**
 - Predicting **dialogue context** from linguistic & prosodic features (i.e., modeling **cross-modality** of text & speech)
Overview of our research

- **Conventional DSS method**: using text history only [Guo+20]
 - Learn dialogue context from text embeddings of dialogue history
 - **Limitation**: missing speech modality modeling

- **Proposed DSS method**: using both text & speech history
 - Extract prosody embedding from speech & aggregate two modality
 - Investigate 4 methods for better dialogue context modeling:
 1) pre-trained speech SSL* model, 2) style-guided training,
 3) cross-modal attention, 4) fine-grained embedding modeling

- **Result**: more natural DSS than conventional method

SSL: Self-Supervised Learning
Table of contents

1. Introduction
2. Conventional method
3. Proposed method
4. Experimental evaluation
5. Conclusion
Conventional DSS method [Guo+20]

- Overview: E2E TTS w/ Conversational Context Encoder (CCE)
 - Step 1: obtain text embeddings using sentence BERT
 - Step 2: extract context embedding from chat history w/ CCE
1. Introduction
2. Conventional method
3. Proposed method
4. Experimental evaluation
5. Conclusion
Motivation

- **One-to-many problem in TTS**
 - e.g., “What’s wrong?” w/ various speech prosody

- **Research questions**
 - RQ1: *Can we extract better dialogue context from chat history by considering BOTH text & speech?*
 - RQ2: *How can we learn the cross-modality of text & speech effectively, rather than processing them independently?*
Overview of proposed method

- **Architecture:** FS2-based TTS model w/ **Cross-Modal (CM)CCE**
 - CMCCE: extracting context embedding from text/speech seqs.
 - 4 methods for better context embedding extraction

FS2: FastSpeech 2 [Ren+21]
CMCCE w/ prosody predictor

- **Main components**
 - Sentence BERT for text embedding extraction
 - **Prosody predictor** for prosody embedding extraction
 - Trainable DNN (e.g., [Du+21])
 - SSL model (e.g., wav2vec 2.0)

Diagram:
- User
- Past
- Agent
- User
- Current
- Agent
- "aaa"
- "ddd"
- "eee"
- "fff"
- Prosody embeddings
- Sentence BERT
- Text embeddings
- Prs. pred.
- CCE
- Context embedding
Cross-modal attention

- How to compress past information of dialogue history
 - Guo et al.’s [Guo+20]: bi-directional Gated Recurrent Unit (GRU)
 - Ours: attention using embedding of current text as query
Core idea: Cong et al’s method [Cong+21]
- Associating context embedding with current prosody embedding
Fine-grained context embedding modeling

- **Unit of embedding modeling**
 - Guo et al.’s [Guo+20]: utterance-wise
 - Cannot model change of prosodic variation within one utterance
 - Ours: sentence-wise
 - Divide current utterance into sentences by punctuation symbols
 - Extract text/prosody embedding for each sentence
 - Predict sentence-wise context embedding from extracted embeddings using CMCCE

Sorry to hear that... Better luck next time!

Sorry to hear that... Better luck next time!
1. Introduction
2. Conventional method
3. Proposed method
4. Experimental evaluation
5. Conclusion
| Corpus | STUDIES [Saito+22] (downsampled to 22,050 Hz) |
|----------------------------|---|
| Data splitting | \{ Training, Validation, Test \} = \{ 2,209, 221, 211 \} |
| TTS model (w/o teacher forcing) | Text2Mel: FastSpeech 2 (FS2) [Ren+21] |
| | Vocoder: HiFi-GAN [Kong+20] |
| Dialogue history length | 10 (same setting as [Guo+20]) |
| Compared methods | **Baseline**: FS2 + CCE (Guo et al’s method [Guo+20]) |
| | **Proposed**: FS2 + CMCCE |
| | ● SSL: pretrained SSL model as prosody extractor |
| | ● Attn: attention for cross-modal aggregation |
| | ● SG: style-guided embedding learning |
| | ● FG: fine-grained context modeling |
| Subjective evaluation | Stage 1: Pairwise comparison (AB/XAB tests) |
| | Stage 2: MOS test |
Results of preference AB/XAB tests

- **w/o SSL**
 - Significant improvement by:
 - +SG
 - +SG+Attn and +SG+FG
 - → SG was effective in training for CMCCE w/ prosody predictor.

- **w/ SSL**
 - Significant improvement by:
 - +Attn
 - +SG+Attn
 - → Attn aggregated SSL-derived prosody & text embeddings.

Baseline	Naturalness	Similarity	Proposed (w/o SSL)
	SG	Attn	FG
	0.45 vs. 0.55	0.54 vs. 0.46	✓
	0.44 vs. 0.56	0.53 vs. 0.47	✓
	0.50 vs. 0.50	0.54 vs. 0.46	✓
	0.48 vs. 0.52	0.54 vs. 0.46	✓

Baseline	Naturalness	Similarity	Proposed (w/ SSL)
	SG	Attn	FG
	0.50 vs. 0.50	0.61 vs. 0.39	✓
	0.53 vs. 0.47	0.46 vs. 0.54	✓
	0.51 vs. 0.49	0.44 vs. 0.56	✓
	0.52 vs. 0.48	0.50 vs. 0.50	✓

25 listeners for each comparison (10 answers per listener)
Results of MOS test

- **Compared methods: Baseline vs. Proposed (w/o SSL)**
 - +SG+FG (best combination)
 - +SG, +FG (ablation)
 - +SG+Attn+FG (bonus)

- **Summary of results**
 - +SG+SG achieved the highest MOS.
 - No significant difference betw. Baseline & Proposed...
 - +SG+Attn+FG did not improve the naturalness.
 - Richer model → more difficult training?

Method	Naturalness MOS
Proposed (w/o SSL)	
SG	3.59±0.10
Attn	
FG	
✓	3.62±0.10
✓	3.59±0.10
✓	3.66±0.10
✓	3.55±0.10
Baseline	3.55±0.10

100 listeners (24 answers per listener)

Speech samples (available online)
1. Introduction
2. Conventional method
3. Proposed method
4. Experimental evaluation
5. Conclusion
Conclusion

- **Purpose:** development of more natural voice agent
 - Control speaking style according to user’s emotion with **empathy**

- **This talk:** modeling dialogue context from text/speech history
 - Extract prosody embedding from speech & aggregate two modality
 - Investigate 4 methods for better dialogue context modeling:
 1) pre-trained SSL* model
 2) style-guided training
 3) cross-modal attention
 4) fine-grained embedding modeling

- **Result:** more natural DSS than conventional method

- **Future work:** (semi-)supervised learning using emotion label