INVENTORY MANAGEMENT PRACTICES OF PHARMACEUTICALS IN PUBLIC HEALTH INSTITUTIONS OF DESSIE CITY ADMINISTRATION, ETHIOPIA: A DESCRIPTIVE CROSS-SECTIONAL STUDY

EWUNETIE MEKASHAW BAYKED*, MESFIN HAILE KAHISSAY, BIRHANU DEMEKE WORKNEH
Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
Email: ewunetie.mekashaw@wu.edu.et

Received: 20 May 2021, Revised and Accepted: 16 June 2021

ABSTRACT

Objective: This study was conducted to assess inventory management practices of pharmaceuticals in public health institutions of Dessie City Administration, Ethiopia.

Methods: The research was conducted from February 5, 2019, to February 24, 2019, in 10 health facilities with a descriptive cross-sectional study using observation checklists.

Results: Receipts, issues, losses, and adjustments were correctly recorded in seven stores. Invoices and bin cards were available in all stores. Logistic and inventory information system, Internal Facility Report and Resupply, and Report and Requisition Form were available in nine stores. Five stores had stock cards, but only three recorded prices correctly. The maximum, minimum, reorder, and buffer stock levels were not properly maintained (or automated). All stores had freezers but wall thermometers and lockable cabinets were absent in eight stores; seven did not use first expired, first-out storage technique. Humidity and fire control mechanisms were absent in all and seven institutions, respectively. Nine institutions lack fireproof areas for combustibles, but eight stores held them with drugs.

Conclusion: The inventory management practices of the institutions were not satisfactory. It is recommended that the health facilities should comply with standard operating procedures.

Keywords: Inventory management, Inventory records, Store management, Pharmaceuticals, Public health institutions.

INTRODUCTION

Inventory management is among the most common factors affecting pharmaceuticals supply network [1]. It is all about ordering, receiving, storing, issuing, and reordering items. It hosts storage, distribution [2], and accurate record-keeping [2-4]. It is an endless struggle [5]. Inventory control and recording are inseparable [3,4]. Common inventory recording and documentation formats are Internal Facility Report and Resupply Form (IFRR) and Report and Requisition Form (RRF) [3], Bin card (BC), and Stock record card (SRC) [2-4]. These records provide information on inventory receipts, issues, losses, orders, balances, suppliers, customers, and prices. They provide information for planning distribution and quantification [4]. Inventory control also hosts a good store management strategy [3,4,6,7]. Maintenance of appropriate storage conditions for pharmaceuticals is essential to assure quality [8] if assisted by quality audit [9]. Pharmaceuticals should be protected from sun, heat, and water [3,4,6,7]. They should always be kept in the first-to-expire, first-out (FEFO) procedure [10], and stored at their temperature requirement, and in humidity not more than 60% [6,11].

Medicines shortage crisis not only increased financial losses but also jeopardizes patients’ health [12,13] through interrupted access to medicines [14], and fluctuations in Ethiopia are about 60% [17] due to inaccurate inventory records [18,19]. Expiry and stock-out of vital medicines are substantial [17]. The poor inventory control system is the main reason for wastage and shortage of essential medicines [20,21] due to stock-outs [22]. Efficient and effective inventory management is the determinant factor for healthcare success [23,24]. However, in sub-Saharan Africa, including Ethiopia, stock-outs are the major cause of health-care service interruptions [25]. Thus, the objective of this study was to assess inventory management practices of pharmaceuticals in public health institutions of Dessie City Administration, Ethiopia.

METHODS

Study area and design
The study was conducted in Dessie City Administration, Ethiopia, from February 5, 2019, to February 24, 2019. Dessie is an administrative city in Amhara regional state. The city was selected for the study because it is the largest urban center in Northeast Ethiopia [26]. There are various private and public health institutions (two public hospitals and eight public health centers) in Dessie. Most of the populations, especially those who are at a low socioeconomic level, were being served in public institutions. Thus, all the public health centers and hospitals were included; whereas, the private institutions were excluded from the study. The research used a descriptive cross-sectional study design.

Data collection and analysis
The data were collected using an observation checklist questionnaire, which was extracted and modified from the standard operating procedure (SOP) manual for the integrated pharmaceutical logistics system in health facilities of Ethiopia, 2nd Edition [3] and SOPs for pharmaceuticals good distribution and storage practices [6], at the central stores of all institutions through direct observation and analysis of inventory transaction indicators from records, inventory record forms, and models, recording status, storage organization and arrangement, furnishing, and functionality of quality control tools in the
stores. The checklists were filled by the data collector (EMB) through reviewing recorded documents and direct observations of activities. All records and documents available have been observed and reviewed. Any technologies important for inventory management systems have been sought for availability and functionality. Data quality assurance measures were taken before, during, and after data collection for the completeness, clarity, and legibility of checklists. The collected data were held confidentially. Finally, the data were analyzed and completed using Microsoft Office Excel 2010 worksheet.

RESULTS

Inventory management methods and transaction
As it is illustrated in Table 1, among the central stores of all 10 institutions, none of the stores had maintained maximum, minimum, reorder stock, and safety stock levels to prevent stock-outs. Three of the institutions did not properly record receipts, issues, losses, and adjustments. None of the institutions did have automated stock transaction methods or inventory management software in their central stores. There was an incidence of stock-outs in six institutions during the past 3 months. On the other hand, three institutions had an experience of overstocks in the past 3 months. There were also expired commodities in four institutions in the past 3 months. Two institutions did not have a standard guideline for commodities inventory management. In six of the institutions, quantities on inventory records were properly matched with the physical count. Three institutions had appropriately recorded the price of each item on SRCs.

Recording and documentation
Regarding recording and documentation status, as it is depicted clearly in Table 2, BCs and invoices (model 19 or receipt invoice and 22 or issuing invoice) were available and used in all institutions, but SRCs were available in five of them. Nine of them had and used RRF and IFRR. Six institutions had separate records for all items. Three of the institutions had detailed written inventory instructions and procedures. Logistic management and information system (LMIS) formats and job aids were available in nine institutions. Neither of the institutions had an electronic data interchange technology system nor maintained a database of their suppliers.

Store management
The store of two institutions completely controlled and operated by pharmacists and all the rest were operated by drugists. Only two institutions had functional wall thermometers to control room temperature. None of the institutions had calibrated hygrometers to control humidity. Fire extinguishers were not available in seven institutions to be used in case of a fire emergency. Only one institution had a fireproof area for combustible substances. The stores of six institutions were properly shelved, clean and dry, ventilated, and out of direct sunlight. Lockable cabinets for controlled drug storage were not available in eight institutions. All of the institutions had cold storage facilities for vaccines and biological products. Three of the institutions used FEP0 storage technique to track out items. The storeroom of one institution was not protected from water penetration. In the stores of seven institutions, cartons were stacked at least 10 cm off the floor; whereas cartons in three institutions were visible on the floor. Each shelf is arranged 30 cm away from the wall and other stacks only in the stores of two institutions but arranged in others with no space between. Cartons stocked no more than 2.5 Ms high in six of the institutions, but contact of cartons with ceiling was visible in four of them. Cartons were arranged with arrows pointing up, and with identification labels, expiry dates, and manufacturing dates to be visible in five of the institutions, but arranged haphazardly in others. Damaged or expired products were properly separated, sorted, and labeled in seven institutions. Non-pharmaceutical products were stored along with drugs in four institutions. Corrosives and combustibles are held separately only in two of the institutions. Six of the institutions had sufficient space for free tracking of goods in their stores (Table 3).

Table 1: Pharmaceuticals inventory management methods and transaction in 10 public health institutions of Dessie City Administration, February 2019

Activities	Response in no.
Records reflect maximum, minimum, and reorder levels maintained	0 10
Tools dictate safety stock maintenance to prevent stock out	0 10
Receipts, issues, losses and adjustments properly recorded	7 3
Automated stock transaction available	0 10
Incidence of stock-outs during the past 3 months	6 4
Experience of overstock in the past 3 months	3 7
The presence of expired commodities in the past 3 months	4 6
Standard guide line for commodities inventory management available	8 2
Quantities on inventory records match with the physical count	6 4
Price of each item properly recorded on the SRC	3 7

SRC: Stock record card

Table 2: Recording and documentation status of the pharmaceuticals inventory management in 10 public health institutions of Dessie City Administration, February 2019

Activities	Response in no.
Availability and proper utilization of BC	10 0
Presence and utilization of SRC	5 5
Availability and utilization of RRF	9 1
IFRR formats available and filled properly	9 1
Vouchers [Model 19 and 22] available and properly used	10 0
Maintain separate records for all commodities	6 4
Detailed written inventory instructions and procedures exist	3 7
The institution maintains a database for their suppliers	0 10
LMIS formats and job aids available	9 1
Electronic Data Interchange Technology available	0 10

BC: Bin card, SRC: Stock record card, RRF: Report and Requisition Form, LMIS: Logistic management and information system, IFRR: Internal Facility Report and Resupply Form

DISCUSSION

Findings from this study revealed that records in all institutions dictate that they did not maintain the maximum, minimum, reorder, and buffer stocks levels to facilitate smooth stock-flow which hinders effective performance [27]. They did not put a benchmark to the amount of these levels by time which can result in inventory inefficiencies [28] and inadequate forecasting of requirements [29]. Similarly, an indicator-based assessment of medicine storage and inventory management in India showed that none of the institutions demarcated maximum and minimum stock levels [30]. This may be due to fluctuations in stock levels [31]. Receipts, issues, losses, and adjustments were properly recorded in most institutions (n=7) with calculation fallacies, but none of the institutions automated their transaction system which is similar to the study conducted on pharmaceutical store management in West Hararghe Zone, Ethiopia [7], that might be due to lack of finance. Similar to Hararghe Zone [7] and a study in Gondar [17], there was an incidence of stock-outs in more than half of the institutions (n=6) during the past 3 months, but unlike the study in Hararghe, which showed nil incidence of overstocks [7], there was an incidence of overstocks in the past...
In most institutions \(n=8\), secured storage of controlled drugs was absent. This is contradictory to most standards specifically to Food, Medicine, and Health care Authority of Ethiopia currently the Ethiopian Food and Drug Administration Authority [6]. This might be because of a lack of follow-up and supervision from the regulatory bodies. Most stores \(n=9\) were protected from water penetration, and six of the stores were properly shelved, clean and dry, ventilated, and out of direct sunlight, but opposite to a study in Hararghe [7], storage by FEFO policy was not used by most \(n=7\) of the institutions. However, cold storage management and maintenance were good in all institutions. Cartons were stacked at least 10 cm off the floor in most \(n=7\) of the institutions. Opposite to the pharmaceuticals supply and fund agency standard [3], which instructs that each shelf should be arranged 30 cm away from the wall and other stacks and no more than 2.5 Ms high, shelves were aligned in contact with each other in eight institutions and cartons touched ceiling was visible in four institutions. Cartons were arranged disorderly in half of the institutions \(n=5\). Unusable items were properly sorted in seven institutions which could be expected from all, but corrosives and combustibles were held with medicines in eight institutions. Six institutions had sufficient space to facilitate free and conducive stock trafficking, but not in the rest of them, similar to the study conducted in the Western Cape [34].

Limitations

The research was conducted only in central stores of public health centers and hospitals. It did not include private health institutions as well as governmental health posts and district office stores. Thus, it cannot be generalizable to both private and governmental institutions. It did not also consider factors affecting the inventory control system.

CONCLUSION

The inventory management, recording, and storekeeping practices were not satisfactory in the institutions. Calculation fallacies, recording errors, improper stock levels maintenance, lack of automatic recording, absence of wall thermometers, absence of humidity and fire control systems, absence of lockable cabinets, fail to use FEFO storage technique, and holding combustibles with drugs were found to be the major pitfalls of these institutions.

ACKNOWLEDGMENT

Our gratitude goes to all the storekeepers of the health institutions for their polite cooperation in accessing all the records, documents, and reports that we were interested to review.

AUTHORS’ CONTRIBUTIONS

EMB designed the study, accomplished literature search and review, performed the data collection and processing, as well as analyzed and interpretation of the result. MHK was involved in the design, literature search, and provided supervision. BDW participated in the literature review and writing stage of the research. All authors approved the manuscript for submission.

CONFLICTS OF INTEREST

Nil.

AUTHORS’ FUNDING

Nil.

REFERENCES

1. Prasath A. Inventory management through extended star-ring supply chain network. Asian J Pharm Clin Res 2017;10:199-201.
2. USAID/Deliver Project. The Logistics Handbook: A Practical Guide for the Supply Chain Management of Health Commodities. 2nd ed. Arlington, VA: USAID/Deliver Project; 2011.
3. Ethiopian Pharmaceuticals Supply Agency (EPSA). Standard Operating Procedures (SOP) Manual for the Integrated Pharmaceuticals Logistics
System in Health Facilities of Ethiopia. 2nd ed. Addis Ababa: Ethiopian Pharmaceuticals Supply Agency (EPSA); 2015.
4. Management Sciences for Health (MSH). MDS-3: Managing Access to Medicines and Health Technologies. United States: Management Sciences for Health (MSH); 2012.
5. Sides K. Inventory Management: Forecasting, Models, Techniques; 2019. Available from: https://www.shipmonk.com/blog/inventory-management-forecasting-models-techniques.
6. Ethiopian Drug Administration and Control Authority (EFDA). Standard Operating Procedures for Pharmaceuticals Good Distribution and Storage Practices. Addis Ababa: Ethiopian Drug Administration and Control Authority (EFDA); 2018.
7. Kassie GM, Mammo S. Assessment of pharmaceutical store management in Woreda health offices of West Hararghe zone, Ethiopia. Int Res J Pharm 2014;5:642-5.
8. Tabash M, Abuqamar M. Assessment of the status of private and non-governmental pharmaceuticals supply warehouses in Gaza Strip, Palestine. Asian J Pharm Clin Res 2018;11:300-7.
9. Agarwal P, Mishra A. Pharmaceutical quality audits: A review. Int J Appl Pharm 2019;11:14-22.
10. John Snow Inc./DELIVER in Collaboration with the World Health Organization. Guidelines for the Storage of Essential Medicines and Other Health Commodities. Arlington, VA: John Snow Inc./DELIVER, for the U.S. Agency for International Development; 2003.
11. Vriesendorp S, Peza LD, Perry GP, Seltzer JB, O'Neil M, Reimann S, et al. Health Systems in Action: An Ehandbook for Leaders and Managers; 2010.
12. Uthayakumar R, Priyan S. Pharmaceutical supply chain and inventory management strategies: Optimization for a pharmaceutical company and a hospital. Oper Res Health Care 2013;2:52-64.
13. Aghzandi R, Griffin J, Jalali MS. Minimization of drug shortages in pharmaceutical supply chains: A simulation-based analysis of drug recall patterns and inventory policies. Complexity 2018;2018:6348413.
14. Postgraduate Healthcare Education (PHE). Keeping up with Supply and Demand: Pharmacy Inventory Management; 2020. Available from: https://www.powerpak.com/course/content/114338.
15. Dwivedi S, Kothiyal P. Inventory management: A tool of identifying items that need greater attention for control. Pharma Innov 2012;1:125-9.
16. Ali AK. Inventory management in pharmacy practice: A review of literature. Arch Pharm Pract 2011;2:151-6.
17. Fentie M, Fenta A, Moges F, Oumer H, Belay S, Sebhat Y, et al. Availability of essential medicines and inventory management practice in primary public health facilities of gonder town, North West Ethiopia. J PharmaSciTech 2015;4:54-6.
18. Mohamed AA, Ahmed AS. Enhancing the inventory control effectiveness of a pharmaceutical distributor in Egypt: A case study. J Supply Chain Oper Manag 2016;14:23-35.
19. Pallangyo NP. The Analysis of the Performance of Medical Stocks Control System: A Case of Dodoma Regional Hospital, Dissertation. Dar es Salaam, Tanzania: The Open University of Tanzania; 2014.
20. Koklaml MB, Joshi HG, Kamath VG. Assessment of pharmaceutical store and inventory management in rural public health facilities—a study with reference to Udupi district, Karnataka. Pharm Methods 2015;6:53-9.
21. Nahanya D. Assessment of Essential Drug Management in the Public Health Facilities in Uganda, PhD Thesis, University of Cape Town; 2007.
22. Adzimah ED, Awaual-Gyawu M, Aikins I, Duah PA. An assessment of health commodities management practices in health care delivery; a supply chain perspective. The case of selected hospitals in Ashanti region-Ghana. Eur J Bus Soc Sci 2014;3:78-103.
23. Hane U, Basri MH, Winarso D. Inventory management of medical consumables in public hospital: A case study. Management 2013;3:128-33.
24. Ohallagh D, Waunganjo E, Wachiuri WE. Effect of inventory management practices on organizational performance in Public health institutions in Kenya: A case study of Kenyatta National Hospital. Int J Educ Res 2015;3:703-14.
25. Leung NH, Chen A, Yadav P, Gallien J. The impact of inventory management on stock-outs of essential drugs in Sub-Saharan Africa: Secondary analysis of a field experiment in Zambia. PLoS One 2016;11:e0156026.
26. Dimon M. The largest cities in ethiopia. In: Ethiopian Gazette; 2018. Available from: https://www.ethiopiangazette.com/the-largest-cities-in-ethiopia.
27. Ng KJ. An assessment of the factors influencing effectiveness of inventory control; ministry of state for provincial administration and internal security, Nairobi-Kenya. Int J Bus Commer 2013;3:33-53.
28. Romero A. Managing medicines in the hospital pharmacy: Logistics inefficiencies. Lect Notes Eng Comput Sci 2013;2:1120-5.
29. Onkundi KE, Biehanga WO. Factors influencing inventory management performance in public health sector: A case study of public health sector in Kisii county. Eur J Bus Manag 2016;8:158-65.
30. Ishbal MJ, Geer MI, Dar PA. Indicator based assessment of medicine storage and inventory management practices in various public sector hospitals of district Srinagar. Int Arch Biomed Clin Res 2015;1:8-15.
31. Atif M, Malik I, Mushaq I, Asghar S. Medicines shortages in Pakistan: A qualitative study to explore current situation, reasons and possible solutions to overcome the barriers. BMJ Open 2019;9:e027028.
32. Rachmania IN, Basri MH. Pharmaceutical inventory management issues in hospital supply Chains. Management 2013;3:1-5.
33. Ondari LM, Muturi W. Factors affecting the efficiency of inventory management in organizations in Kenya: A case of firms in Kisii Town. Int J Econ Commer Manag 2016;4:1019-34.
34. Mahoro A. Examining the Inventory Management of Antiretroviral Drugs at Community Health Centres in the Cape Metropole, Western Cape. Cape Town, South Africa: University of the Western Cape; 2013.