Nano-based adsorbent and photocatalyst use for pharmaceutical contaminant removal during indirect potable water reuse

Sofia K. Fanourakis1,2, Janire Peña-Bahamonde1, Pasan C. Bandara1 and Debora F. Rodrigues1,2*

Increasing human activity, including commercial and noncommercial use of pharmaceuticals, personal care products, and agricultural products, has introduced new contaminants that can be challenging to remove with currently available technologies. Pharmaceuticals, in particular, can be especially challenging to remove from the water supply and can pose great harm to people and local ecosystems. Their highly stable nature makes their degradation with conventional water treatment techniques difficult, and studies have shown that even advanced treatment of water is unable to remove some compounds. As such, decontamination of water from pharmaceuticals requires the development of advanced technologies capable of being used in indirect and direct potable water reuse. In this review, we discuss pharmaceutical removal in indirect potable water treatment and how recent advancements in adsorption and photocatalysis technologies can be used for the decontamination of pharmaceutical-based emerging contaminants. For instance, new materials that incorporate graphene-based nanomaterials have been developed and shown to have increased adsorptive capabilities toward pharmaceuticals when compared with unmodified graphene. In addition, adsorbents have been incorporated in membrane technologies, and photocatalysts have been combined with magnetic material and coated on optical fibers improving their usability in water treatment. Advancements in photocatalytic material research have enabled the development of highly effective materials capable of degradation of a variety of pharmaceutical compounds and the development of visible-light photocatalysts. To understand how adsorbents and photocatalysts can be utilized in water treatment, we address the benefits and limitations associated with these technologies and their potential applicability in indirect potable water reuse plants.

npj Clean Water (2020) 3:1; https://doi.org/10.1038/s41545-019-0048-8

INTRODUCTION

Potable water can be considered the most important human need. However, human activities have introduced dangerous contaminants in water systems requiring a multibarrier treatment approach to purify water for potable use. From the Ganges River Basin in India to the surface water in Milan, contaminants such as pharmaceuticals and personal care products have been detected.1–9 These contaminants are difficult to remove and can cause harm not only to humans but to wildlife and local ecosystems as well. Pharmaceuticals, personal care products, persistent organic pollutants, methanesulfonic acids, artificial sweeteners, transformation products, and engineered nanomaterials have all been identified as current contaminants of emerging concern (CECs).10–13 In this review, we focus on emerging pharmaceutical contaminants (EPCs) because of their potential adverse effects to humans and the ecosystem (Table 1). For instance, EPCs such as antibiotics can give rise to antibiotic resistant bacteria, which can cause irreparable harm to humans and the ecosystem.

Although detection of alarming concentrations of EPCs in wastewater streams has been a major concern for years, the true fate of some EPCs continues to be understudied. With the currently available information, it can be clearly seen that EPCs bioaccumulate in animal and plant tissues and often persist in the environment.14,15 For example, antibiotic presence in water and related ecosystems is already leading to an increase in antibiotic resistant bacteria.16 More alarming is the amount of these contaminants ending up in effluent streams as a result of their continuous usage in the treatment of various diseases. As such, the existence of EPCs in water sources is a globally important issue requiring increased attention on how non-target organisms are affected and how EPCs can be removed from potable water.

Due to the multiple concerns surrounding the decline of freshwater resources and increasing water demand, water reclamation and reuse projects are widely popularizing all around the world.17–19 With CEC detection in freshwater sources and revelations about CEC harm on human health and safety, potable water treatment facilities require careful design of additional steps to ensure water is safe for consumption.20–22 Conventionally, harmful contaminants are removed from wastewater with a multiple barrier approach.20,22,23 Primary and secondary treatment techniques are well established and capable in removing dissolved organic matter as well as larger particles (suspended particles and biodegradable solids are removed via physical and biological means, respectively).19,24 In the case of CECs, many stable and non-biodegradable compounds can survive these steps requiring further treatment.23,25

The next treatment step is determined by different water reuse downstream approaches, which can be categorized as unplanned, direct, and indirect. The unplanned potable reuse water cycle is the simplest, where treated water is released to a natural water system after the primary and secondary treatment steps.19,23,24
processes. However, even these energy-intensive methods are often removed with advanced contaminants that are not removed by primary and secondary operations in a water treatment plant is important as system downstream. The ef

Both direct and indirect potable reuse plants contain a tertiary (advanced) treatment step before being released from the plant. This step can include one or more of the following processes: membrane filtration, carbon adsorption, ion exchange, chlorination, and advanced oxidation processes (AOPs), such as ozone and UV radiation. Selection of the appropriate combination of tertiary operations in a water treatment plant is important as contaminants that are not removed by primary and secondary processes, such as CECs, are often removed with advanced processes. However, even these energy-intensive methods may not fully decontaminate water from CECs and may result in the generation of harmful byproducts.

While direct potable reuse water plants feed treated water from the tertiary step to the distribution system located before a drinking water treatment plant, indirect potable reuse plants purposely release it to a natural water source such as a surface water reservoir, river, sea, or groundwater aquifer (Fig. 1). Direct potable reuse is a common practice in areas with few source waters and high demands. Indirect potable reuse plant operation is plausible only when there is an adequate natural system downstream. The effluent from the treatment plant is expected to be held in the environmental buffer for a specified retention time where the water can be treated by natural processes such as direct photolysis, adsorption, filtration through natural media, and natural microbiota. Certain CECs can travel through the water subsurface for up to 60 days, therefore, a longer time in the buffer may reduce CEC concentrations in the source water making it cleaner for the subsequent drinking water treatment step. However, communities with limited natural recharge opportunities may be unable to accommodate long lag times between the discharge and reuse steps. The possibility of artificial recharge systems resembling natural buffers has been raised as a method overcoming such limitations.

It is important to note that uncertainties related to removal and potential hazards of unremoved contaminants can account for a considerably larger proportion of the associated risk of maintaining the plant. In terms of cost, indirect potable water treatment can cost more than the direct potable treatment mainly due to the environmental buffer used along with the indirect potable reuse plant. Although, the cost of water treatment after the environmental buffer is less for the indirect potable reuse plants as they receive much cleaner source water making it easier to treat. Furthermore, inclusion of reverse osmosis or other advanced treatment techniques increases treatment plant cost, however, currently, these techniques are the most successful in removing most pharmaceutical contaminants. Therefore, application

Table 1. EPCs, examples, and their effects.

EPC class	EPC examples	EPC function	Harmful effects
Analgesic	Acetaminophen, phenazopyridine, non-steroidal anti-inflammatory drugs (NSAID) such as diclofenac, ibuprofen, naproxen	Pain relief, NSAID also reduce inflammation	Ibuprofen can interfere with cardiac benefits of aspirin; analogues can cause negative developmental effects; diclofenac can be bioaccumulated
Antibiotics	Tetracycline, ciprofloxacin, ofloxacin, sulfonamides (ex. sulfadiazine), amoxicillin, cefixime, metronidazole, trimethoprim	Kill or inhibit bacterial growth	Antibiotics have been shown to create antibiotic resistant bacteria (tetracycline resistant enterococci, antibiotic resistant Escherichia coli) and can negatively affect plant growth. Sulfonamides are found to be associated with birth defects
Anticoagulant	Warfarin	Disrupt blood clotting factor synthesis or function to avert formation of blood clots	Warfarin, after prolonged exposure, could lead to severe bleeding due to its prolonged inhibition of vitamin K
Anticonvulsant	Carbamazepine	Treat epileptic seizures	Could cause cancer and negatively affect reproduction and development
Antidiabetic	Metformin, insulin, pramlintide, acarbose, chlorpropamide	Lower glucose levels in the blood	Antidiabetics, such as metformin, can act as an endocrine disruptor, and is not easily degradable and is highly mobile in the environment
Antihistamine	Diphenhydramine	Block histamine action to treat allergic reactions	Diphenhydramine has been shown to cause acute and chronic toxicity to a variety of aquatic organisms
Antipsychotic	Loxapine, Olanzapine, Risperidone, Clozapine	Treat psychosis and other emotional or mental health conditions	Olanzapine, risperidone, chlorpromazine, clozapine are shown to be persistent, bioaccumulative, and toxic to human health and the ecosystem. They are up-taken from hospital effluent contaminated soil and bioaccumulate in plant tissues
Antipyretic	Antipyrine, NSAIDs	Lower fever	Antipyrine is toxic to the mucosa and lungs and can cause organ damage
Beta-blocker	Metoprolol, propranolol	Lower blood pressure	Can be toxic on organisms in aquatic environments and shows more toxicity to phytoplankton and zoo plankton
Fibrate	Gemfibrozil	Lower blood triglyceride levels	Developmental side effects and carcinogenic in rodents; toxic to aquatic organisms
X-ray contrast agent	Iopromide, diatrizoic acid	Enhance visibility of internal organs or structures for diagnostic X-rays	While x-ray contrast agents are generally non-toxic they persist in the environment and chlorination has been shown to cause mutagenicity and acute toxicity of iopromide

Published in partnership with King Fahd University of Petroleum & Minerals
of low-cost EPC removal techniques can have a clear effect on reducing water purification costs, and development of such techniques can potentially guarantee the complete removal of EPCs.

In this review, we focus on the advancements in nanotechnologies using adsorption or photocatalysis to decontaminate water from pharmaceutical contaminants. Adsorption and photocatalysis are the two most widely studied water purification methods due to their effectiveness and potential scalability. Due to the popularity of such material in research, literature presenting carbon-based adsorbents and/or photocatalysts for the removal of pharmaceuticals have been published in recent years. In this review, we compile additional recent studies on graphene-based adsorbents and a wide range of photocatalysts without limiting the material presented to TiO$_2$-based photocatalysts. In addition, we present recent advancements on modifications that have been made on adsorbents and photocatalysts to increase their applicability in water treatment. For instance, we present studies incorporating adsorbents on membranes and studies on magnetic photocatalysts and photocatalysts immobilized on optical fibers. Furthermore, we focus on discussing the limitations of the material as well as the limitations of available research in determining whether these materials can be utilized in water treatment facilities to reduce EPCs released in the environment, which has not been previously discussed in other review articles.

TECHNOLOGICAL ADVANCEMENTS

Utilization of nanomaterials such as graphene and metal-based nanoparticles in water treatment has shown promise due to their superior adsorptive and photocatalytic properties enabling removal and breakdown of harmful EPCs. Figure 2 shows a pictorial representation of the adsorptive and photocatalytic removal of contaminants.

In this section, we present some of the recent investigations on pharmaceutical removal from water using nanomaterials such as carbon-based nanomaterials and photocatalysts. We focus on understanding these technologies and their applicability in indirect potable water treatment processes. Additionally, we address the benefits and limitations of the nanomaterials and speculate about potential new research strategies.

Advancements in adsorption using nanomaterials

Adsorption processes utilizing carbon-based nanomaterials are considered effective in removing organic and inorganic matter from water. Adsorption is defined as a surface phenomenon where organic and inorganic matter attaches to an adsorbent's surface by adhesion arising from physical-chemical forces mainly caused by van der Waals and electrostatic interactions.

An effective adsorbent must present a number of different properties such as being inert, biocompatible, resistant to mechanical forces, and needs to exhibit a high adsorption capacity to guarantee waste removal. These features are
important as they can determine the utility of the material. Adsorption processes depend on a number of factors including: temperature, pH, concentration of pollutants, contact time, particle size, and the physical and chemical nature of the adsorbate and adsorbent. For example, pH can influence adsorption capacity by altering the surface groups present on the adsorbent and the pollutant charge, and an increase in temperature can improve adsorption capacity in endothermic reactions. In ibuprofen adsorption on activated carbon (AC), adsorption is more favorable at pH 3 than at pH 7. Additionally, as temperature is increased at pH 3, adsorption of ibuprofen has shown to increase. Depending on the adsorbent utilized, increasing contact time with the pollutant can increase the adsorbed amount since the time required for the adsorbent to become saturated varies depending on the surface and solution chemistry. Thus, a material can be a good adsorbent in a certain system and not in other systems.

The number of aromatic rings and the chemical structure of EPCs make the adsorption process suitable for their removal from water. EPCs with more aromatic rings show faster adsorption rates. Generally, in graphene-based nanomaterials, this process is dominated by non-electrostatic interactions such as π–π interactions between the aromatic rings, hydrophobic interactions, H-bonding interactions due to the presence of COOH, OH and NH₂ functional groups, and electrostatic interactions.

Nanotechnology, while unexplored in industrial scale adsorption processes, creates a great opportunity to guarantee effectiveness of water treatment processes for EPC removal. AC is the current industrially used adsorbent. However, there are different adsorbents suitable for EPC removal that can replace AC including materials such as graphene, carbon nanotubes (CNTs), clay minerals, siliceous adsorbents, and polymeric materials. Graphene and graphene-based nanomaterials are being considered above all as good candidates for water treatment applications due to their unique structures and properties. They demonstrate appreciably fast adsorption kinetics due to their large surface area to volume ratio and other physiochemical properties, such as the π–π electron donor acceptor and electrostatic interaction with contaminants. The conjugated π region of graphene is capable of removing organic and inorganic contaminants by attracting aromatic pollutants. Graphene has been employed for several applications and is receiving increasingly more attention in water treatment. Different attempts have been made to modify graphene’s surface to increase its adsorption capacity and reusability (see Table 2).

Reduced graphene oxide and graphene have shown lower adsorption capacities for the majority of the reported EPCs compared to graphene oxide. This can be attributed to the increased hydrophobicity and decreased number of oxygen functional groups on the surface, which would hinder adsorption of EPCs present in water. The modification of graphene oxide with Fe₃O₄, MnO₂, Fe/Cu and the preparation of graphene hydrogels exhibit low surface area, however, show larger adsorption capacities compared to the unmodified graphene. These modifications can alter the hydrophobicity of the composites and introduce different functional groups on its surface that promote more EPC removal. It is worth to note that while these material properties seem to enhance the adsorption capacity, the surface area can also play a role in the adsorption process. Increasing the surface area can effectively increase the number of sites EPCs can adsorb to, thus, increasing the adsorption capacity of the material. Comparing the adsorption capacity of magnetic chitosan grafted GO composite and activated graphene, we can see that activated carbon has a higher adsorption capacity towards ciprofloxacin (194.6 mg/g) than the magnetic chitosan grafted GO composite material (36.17 mg/g). This could be due to the differences in surface area. Activated graphene has a larger surface area (512.65 m²/g) than the magnetic chitosan grafted GO composite (388.3 m²/g), which can allow for increased adsorption of ciprofloxacin. While surface area can play an important role, comparison of material based on the resulting adsorption capacity can be more informative since it can be a better indicator as to the performance of the material. For instance, several materials with large surface area have lower adsorption capacities than materials with smaller surface areas. For example, graphene hydrogel.
Table 2. Examples of adsorbents for the removal of EPCs.

EPC class	EPC	Adsorbent material	EPC concentration (ppm)	Removal (%)	Surface area (m²/g)	Adsorption capacity (mg/g)	Ref	
Antibiotic	Amoxicillin	Graphene	0.2	100	49.4	NA	158	
		Magnetic graphene nanoplatelets (M-GNPs)	10	40–90	543.2	14.1	159	
Cephalaxin		Graphene	0.25	81	570.2	10.9	62	
		Graphene	6.7e-5	100	–	NA	160	
Ciprofloxacin		Graphene hydrogel	50	NA	–231.4	235.6	65	
		Non-covalent functionalized graphene oxide	10	96.2	237.4	NA	66	
		Fibers of 6% graphene oxide/calcium alginate	9.8	78.9	–	39.1	162	
		Reduced graphene oxide/magnetite composites (rGO-M)	5	NA	–	10.9	59	
		Magnetic chitosan grafted graphene oxide composite	200	~95%	388.3	36.2	63	
Norfloxacin		Activated graphene	150	NA	512.6	194.6	64	
		Reduced graphene oxide/magnetite composites (rGO-M)	5	NA	–	11.1	59	
Ofloxacin		Graphene	0.2	100	49.4	NA	158	
Sulfadiazine		Graphene	0.2	100	49.4	NA	158	
Sulfamethazine		Graphene	0.2	100	49.4	NA	158	
Sulfamethoxazole		Graphene	0.1	34	570.2	6.2	62	
		Graphene	0.2	100	49.4	–	158	
		Graphene	0.125	98	–	NA	160	
		TiO₂-reduced graphene oxide	5	92	–	–	114	
		Graphene oxide	40	98	–	240	161	
Tetracycline		Graphene	0.2	100	49.4	NA	158	
		Graphene oxide	266	NA	–	370	50	
		Fe/Cu/graphene	100	100	108.6	201.9	165	
		40%MnO₂/graphene	200	99.4	106	198	164	
		Fe₃O₄@graphene	1	96.7	–	423	165	
Oxytetracycline		Fe₃O₄@graphene	1	96.7	–	336	165	
Analgesic	Acetaminophen	Graphene	20	97.4	635.2	12.7	58	
		Graphene	0.445	99	–	NA	160	
		TiO₂@Graphene	–	96 (degradation)	131.0	–	168	
		GO/β-Bi₂O₃/TiO₂/Bi₂Ti₂O₇ heterojuncted nanocomposite	20 µM	>99	–	NA	167	
Aspirin		Graphene	20	81	–	17.0	58	
Diclofenac		Graphene	10	97	890	NA	168	
		Graphene oxide	70	NA	–	653.9	169	
		Three-dimensional reduced graphene oxide (rGO)-based hydrogels	100	>80	–	56.2	60	
	Sodium diclofenac drug		rGO	20–200	–	98	59.7	61
Ibuprofen		Graphene	10	95.5	890	NA	168	
		Metal-organic Frameworks	2–35	NA	990–3030	114–185	170	
		TiO₂-reduced graphene oxide	5	81	–	–	114	
		Three-dimensional reduced graphene oxide (rGO)-based hydrogels	100	>70	–	12.6	60	
Naproxen		Metal-organic Frameworks	2–35	NA	990–3030	114–185	170	
		Three-dimensional reduced graphene oxide (rGO)-based hydrogels	100	>65	–	39.5	60	
Salicylic acid		Functionalized graphene	50	55	68.7	NA	171	
Antihistamine		Reduced graphene oxide–TiO₂ composites	1000	~100	148	NA	123	
Diphenhydramine		Iaccase-GO/alginate	40	98	–	–	69	
Cetirizine		Iaccase-GO/alginate	40	98	–	–	69	
Antidiabetic		Metformin	10	80	108.7	47.1	46	
As we can see in Table 2, the adsorption process by nanomaterials is a fast and effective method for EPC removal from aquatic environments. Most examples showed more than 50% removal of different EPCs, and several demonstrated removal efficiencies of more than 99%. However, adsorption processes have the disadvantage that the EPC attaches to the adsorbent limiting material reusability and creating a potential new environmental contaminant after disposal. While the interaction between the EPC and the adsorbent is not permanent, an extra step in the removal process must be included to separate the two. Some investigations propose the use of organic solvents or changes in the pH of the media to remove the organic molecule from the adsorbent.46,67

Currently, high cost and reusability are the two main problems associated with graphene oxide and graphene-based nanomaterials. Therefore, the subsequent purification of such materials are exhausting and time-consuming processes. While production of reusable nanomaterial can reduce the overall cost, the strong electrostatic interactions of the material might influence the adsorption/desorption equilibrium and also influence its reusability making this nanomaterial inefficient for reuse.68 For example, methods such as washing of the material such as washing with water and acetate buffer after each removal step need to be performed to remove the CEC. Thus, making large-scale production, high cost, and reusability some of the unresolved problems associated with GO and GO-based nanomaterials, which can hinder their use in environmental pollution management.66,67

However, keeping in mind the rapid growth and development in science and technology, material reusability problems are expected to be solved in the near future, which is an important factor for the potential application of GO and GO-based nanomaterials on a commercial scale. Although only a few studies investigate graphene-based adsorbent reusability for EPCs, advancements in graphene nanomaterial reusability have allowed increased utilization of single batch of material reducing the need for additional material purchases. For instance, GO has demonstrated high removal of metformin even after undergoing five sorption/desorption cycles in which sodium hydroxide and Milli-Q water were used to desorb metformin from the GO. The GO had a 31.60 mg/g absorption capacity after five cycles.46 Furthermore, a laccase-GO/alginate composite was used to remove cetirizine from solution where the material was washed with distilled water and acetate buffer after each removal experiment to recycle the adsorbent, and demonstrated a 23% reduction from the original 98% in cetirizine removal after four cycles.69 Adsorbents can also be modified with catalysts or photocatalysts to increase their removal capacity. Modification of graphene with catalysts, for instance, can make the sorption process easier and faster since CEC degradation will occur.71

Ultimately, as with any material, the lifetime of graphene-based material is finite, as such, its disposal will be required. Used graphene-based material can undergo similar disposal procedures to the currently utilized adsorbents in water treatment plants, which tend to forgo regeneration procedures in the United States. While the biocompatibility of graphene and graphene-based nanomaterials in terms of their antibacterial properties,72–79 antifungal properties,80,81 and cytotoxicity on human cells82–86 has been demonstrated for biomedical and environmental applications, only a few human cell lines have been studied. Hence, additional research is necessary before determining the health and environmental impacts of graphene.

Table 2 (continued)

EPC class	EPC	Adsorbent material	EPC concentration (ppm)	Removal (%)	Surface area (m²/g)	Adsorption capacity (mg/g)	Ref
Anticonvulsant	Carbamazepine	Graphene	10	97.0	890	NA	168
		Graphene-P25 (Gr-P25) nanocomposites	0.168	100	45.0--48.1	–	172
		(GO)/β-Bi2O3/TiO2/Bi2Ti2O7 heterojunctioned nanocomposite	20 µM	>99	–	NA	162
		TiO2-reduced graphene oxide	5	54	–	–	114

(surface area of approximately 231.38 m²/g) has an adsorption capacity of 235.6 mg/g of ciprofloxacin, while the magnetic chitosan grafted graphene oxide composite66 (surface area of 388.3 m²/g) has an adsorption capacity of 36.17 m²/g.
EPC Class	EPC	Material	Reaction Source	EPC Concentration (ppm)	Removal	Reaction rate, k (x10^{−3}/min)	Ref
Analgesic	Acetaminophen	BaTiO$_3$/TiO$_2$ composite	UV-Visible, 200–800 nm, 500 W	10	82.8	9.2	173
		WO$_3$/TiO$_2$/SiO$_2$ composite	UV-Visible, 200–800 nm, 500 W	10	88	11.7	174
		Graphene/titanium dioxide nanotubes	UV, 14 W	5	–	24.8	166
		ZnO/Seepiolite	UV < 320 nm, 450 W/m2	10	85	3.1	175
		ZnO/Fe$_3$O$_4$/Seepiolite	UV < 320 nm, 450 W/m2	55	1.3	–	175
		ZnO/SiO$_2$/Seepiolite	UV < 320 nm, 450 W/m2	20	0.7	–	175
		Carbon doped TiO$_2$	440–490 nm, 5 W	15.1	94	5.0	177
		TiO$_2$/montmorillonite	UVA with ozonation, 8 W	5	50.1	–	176
Analgesin (paracetamol specifically)	Acetaminophen	Magnetic ZnFe-CLDH/RGO composites	Solar light (>300nm), 500 W	5	95	7.4	177
		TiO$_2$, TiO$_2$/cellulosic fiber	200–280 nm, 11 W	40.1	–	10.2	178
Diclofenac (NSAID)		Ag$_2$PO$_4$/TiO$_2$ nanotube arrays	Simulated sunlight, 350 W	–	100	–	121
		g-C$_3$N$_4$/BiVO$_4$ photoanode	Visible light, >420 nm	10	30.1	3.2	118
		C-TiO$_2$	Visible light, >400 nm, 150 W	0.05	100	33.4	119
		PVDF membrane with TiO$_2$	Low-pressure UV, 254 nm, 40W	0.2–0.4	Too fast for analysis	–	136
		C doped TiO$_2$ coated on zeolites	Solar, 300–400 nm (65 W/m2), 400–570 nm (1,844 W/m2)	0.1	>95	–	135
		TiO$_2$	Solar light, 19° 19′ 42″ S and 146° 45′ 36″ E, sunny days between July and September	250	100	9.5	179
Diclofenac sodium (NSAID)		Co$_3$O$_4$-g-C$_3$N$_4$	Visible light, >420 nm, 300 W	10	20	4.7	116
Ibuprofen (NSAID)		BiOCl nanosheets	UV, 400 W	10	–	280	180
		g-C$_3$N$_4$/TiO$_2$/Fe$_2$O$_3$@SiO$_2$ heterojunction	Visible light, 64 W	2	98	–	130
		Zn-Fe mixed metal oxides	Solar light, >300 nm, 500 W	250–1000	95.7	15.8	181
		TiO$_2$–2.7% rGO SOFs	High pressure UV, 160 W	5	81	9.0	114
		TiO$_2$ (in reactor with UV-LEDs)	Low pressure UV, 39W	41	41	3.3	114
		TiO$_2$ rutile nanorods	Visible, 40 W	18	1.3	–	114
		ZnO/Seepiolite	UV < 320 nm, 450 W/m2	10	80	–	114
		ZnO/Fe$_3$O$_4$ Seepiolite	UV < 320 nm, 450 W/m2	10	100	6.4	175
		ZnO/SiO$_2$/Seepiolite	UV < 320 nm, 450 W/m2	95	4.6	–	175
Naproxen (NSAID)		POM-γ-Fe$_2$O$_3$/SrCO$_3$	Solar light, N = 36° 18′ 41.6", E = 59° 31′ 54.2"	10	–	–	184
		ZnO	UV, 365 nm, 6 W	4.5	–	11.0	185
		TiO$_2$	–	4.0	–	6.0	185
		ZnO–TiO$_2$	–	0.7	–	7.6	185
Phenazopyridine		TiO$_2$	Solar light, 19° 19′ 42″ S and 146° 45′ 36″ E, sunny days between July and September	250	96	9.2	179
Analgesic, antipyretic	Antipyrine	TiO$_2$-P25 nanoparticles in photoreactor	UV-C, 254 nm, up to 13 W	10	100	–	186
		Antipyrine	UV < 320 nm, 450 W/m2	10	70	2.2	175
		Antipyrine	UV < 320 nm, 450 W/m2	50	1.2	–	175
		Antipyrine	UV < 320 nm, 450 W/m2	50	1.3	–	175
Antibiotic	4-chlorophenol	ZnO2/Fe$_2$O$_3$	Sunlight, 30 × 103 ± 100 lx	20	66	4.3	187

S.K. Fanourakis et al. (2020)**

Published in partnership with King Fahd University of Petroleum & Minerals

npj Clean Water (2020) 1.
EPC Class	EPC	Material	Reaction Source	EPC Concentration (ppm)	Removal	Reaction rate, k \(\times 10^{-3} \text{/min} \)	Ref
Cefixime		Nano N-TiO2/graphene oxide/titan grid sheets	Visible, 7.45 W/m²	5	29 w/o ozone	9.9 w/ ozone	131
Cefixime trihydrate		Nano α-Fe2O3/ZnO	UV–Vis, <365 nm (4 W), 480 nm (60 W)	10.1	99.1	–	168
Ciprofloxacin		Mesoporous carbon (GMCS-I-TiO2) nanocomposite	UV, 254 nm, 14 W	15	100	–	169
TiO2/montmorillonite		UVA with ozonation, 8 W	5	80.6	–	176	
Levofoxacin		Bi2WO6 nanocuboids	Visible, 400–520 nm, 150 W	10	80	8.5	128
				15	69	–	
				20	60	–	
Metronidazole		SnO2·ZnO/clinoptilite	Maximum at 435.8 nm, 35 W	2	–	13.0	190
		ZnO/NIO	Maximum at 435.8 nm, 35 W	2	–	16.6	191
		TiO2/montmorillonite	UVA with ozonation, 8 W	25	64.6	–	176
Oxytetracycline		Graphene/TiO2/ZSM-5 composites	Visible light, 300 W	10	–	40	132
		Cobalt promoted TiO2/GO	Solar/visible, 300 W	10	>75	27.2	
		T1⁺⁻ self-doped TiO2 (r-TiO2) nano-catalyst	Full spectrum sunlight, 35 W	100	98.7	–	
Sulfadiazine		TiO2	UV-C, 28 W	1	91.8	2092	192
		GAC-TiO2		10	93.3	21.2	
		Zeolite coated with TiO2 (TiO2/ZEO)	UV, 265 nm, 20 W	10	93.3	21.2	
Sulfamethoxazole		TiO2–rGO SOFs	High pressure UV, 160 W	5	–	12.6	79
		PVDF membrane with 25 ppm TiO2	Low-pressure UV, 254 nm, 40 W	0.2–0.4	Too fast for analysis		
Sulfathiazole		Lu2Al5O12:Ce Nanoparticles/ZnO nanostuctures	UV–Vis, 350–800 nm, 1 kW	25.5	100	–	
Tetracycline		TiO2 (P25)	UV, 254 nm, 9 W	10	–	21.9	194
		AgInS2/SnIn5S8 heterojunction	Visible light, >420 nm, 300 W	10	77.2	–	
		FeNi4@SiO2@TiO2	UV, 254 nm, 18 W	10	100	25	129
		Ag/AgIn5S8	UV, 254 nm, 9 W	10	95.3	23	
		CuInS2/Bi2WO6 heterojunction	Visible light, >420 nm, 300 W	10	–	17.6	117
		MWNT/TiO2	UV, 240 nm, 12 W	10	100	64.2	115
Trimethoprim		PVDF membrane with TiO2	Low-pressure UV, 254 nm, 40 W	0.2–0.4	–	28	136
Penicillin antibiotic		Ampicillin	Solar light, 150 W	10	96	13	196
		WO3/ZnO		10	100	17.3	
Synthetic antibiotic		Norfloxacin	Visible, >420 nm, 300 W	5	100	26.3	125
		AgPO4/BIVO4 electrode		5	100	26.3	
Anticoagulant		Warfarin	Low-pressure UV, 254 nm, 40 W	0.2–0.4	–	34	136
Anticonvulsant		Carbamazepine	Low-pressure UV, 254 nm, 40 W	0.2–0.4	–	39	
		BiOCl microspheres	Visible, >420 nm, 350 W	2.5	70	93.5	134
		TiO2–rGO SOFs	High pressure UV, 160 W	5	–	4.3	
		C–TiO2	Visible light, >400 nm, 150 W	0.050	100	34.8	119
		PVDF membrane with TiO2	Low-pressure UV, 254 nm, 40 W	0.2–0.4	–	39	
		C doped TiO2 coated on zeolites	Solar, 300–400 nm (65 W/m²), 400–570 nm (1,844 W/m²)	0.1	>95	–	135
Antihistamine		Diphenhydramine	UV, 254 nm, 6 W	100	100	–	124
Antipsychotic		Loxapine	TiO2, SrTiO3	10	99.8	–	197
Table 3 (continued)

Material	EPC Class	EPC	Reaction Source	Reaction rate, k (x10^7 min^-1)	Reaction rate, k	Ref
Beta-blocker Metoprolol	PVDF membrane with TiO2	Low-pressure UV, 254 nm, 40 W	0.2	Too fast for analysis	N/A	136
X-ray contrast agent Iopromide	PVDF membrane with TiO2	Low-pressure UV, 254 nm, 40 W	0.2	Too fast for analysis	N/A	137
Diatrizoic acid	C doped TiO2 coated on zeolites	Solar, 300-400 nm (65 W/m²), 400-570 nm	0.1	35% mineralization efficiency	N/A	135
Pharmaceutical wastewater	Octahedral CdS/SnIn4S8 nanoheterojunction	Visible, >420 nm, 300 W	35% COD removal	COD removal	N/A	198
Pharmaceutical wastewater	Fe-TiO2	Solar light, 30.3398° N, 76.3869° E, October-November from 10 am to 4 pm, 788 W/m²	35% COD removal	COD removal	N/A	199
Pharmaceutical wastewater	CuInS2/Bi2WO6 heterojunction	Visible light, >420 nm, 300 W	53.7 COD removal	COD removal	N/A	117
Pharmaceutical wastewater	MWCNT/TiO2	UV, 240 nm, 12 W	84.9 COD removal	COD removal	N/A	115

S.K. Fanourakis et al.

Recent advancements in photocatalysts have effectively enabled the degradation of numerous EPCs as shown in Table 3. However, photocatalysts present several limitations that need to be overcome to increase their effectiveness. Inherently, they require energy to overcome the bandgap energy required for electron excitation. However, they may require additional energy...
due to insubstantial light penetration and absorption, which effectively increase cost requirements due to the increased power needed for UV lamps.109,110 Furthermore, recombination rate, charge carrier transfer rate, and charge carrier travel time can further limit the photocatalytic efficiency of the material.111 To improve efficiency, material alterations, such as structural changes or doping can be performed.109 These methods can make the bandgap smaller and may also decrease recombination rates. In addition to bandgap engineering, use of plasmonic material can further lower energy requirements.109,110

Another limitation of photocatalytic material is their potential impact to the environment. The possible transformation products are of great concern especially if released in the environment. In some cases, as in the case of diclofenac degradation, the degradation can result in harmful constituents such as phenol derivatives.28 Pharmaceuticals commonly have aromatic rings which, if not degraded, can form phenolic compounds that are known for their toxicity.29 Additionally, they could form acids (as in the case of paracetamol degradation)26) which could alter environmental conditions causing harm to local organisms. Another concern with photocatalyst release in the environment arises due to their instability in water. The ions released during their dissolution in water can have harmful effects to the environment.112 Thus, the photocatalysts’ degradation mechanisms as they pertain to EPCs and photocatalyst stability in water need to be understood prior to their use in water treatment facilities. Additionally, generating composites and using stabilizing agents, whether natural or chemical in nature, can improve photocatalyst stability and efficiency.113 Furthermore, by improving their stability their harmful effects in the environment can be reduced.

Despite their limitations, photocatalysts offer great possibilities in commercial applications. For example, titanium dioxide, a UV activated photocatalyst, has been introduced in commercially available water purification products and could be potentially applied to the AOPs to help degrade a variety of contaminants. With advancements in photocatalytic materials, photocatalysts are becoming increasingly more cost effective and their large-scale utilization. While they are highly suitable for use in indirect potable water treatment, without a full examination of their properties and environmental impact, measures should be taken to ensure they are not released in the environment.

Advanced applications of photocatalysts

In an effort to increase usability of photocatalysts, a variety of materials have been developed, namely magnetic nanocomposites and optical fiber coated materials. Magnetic composites can make the removal of the photocatalysts from water easier and more effective reusing the chance that they may unintentionally end up in the environment. Furthermore, their degradative properties have been shown to increase with the introduction of magnetic materials in the composite.137,138 Recently, magnetic FeNi\textsubscript{5}/SiO\textsubscript{2}/CuS has been synthesized for tetracycline removal,139 while magnetic fluorinated mesoporous graphitic carbon nitride140 and a magnetic TiO\textsubscript{2}-GO-Fe\textsubscript{3}O\textsubscript{4}137 have been synthesized for amoxicillin removal.

In addition to magnetic material, photocatalytic materials loaded on optical fibers have been developed. Immobilization of photocatalysts on optical fibers can allow light to better reach the nanoparticles as less light is absorbed by other particles present in the solution. Furthermore, the nanoparticles do not require specialized methods for recovery. TiO\textsubscript{2} has been successfully coated on optical fibers, which has resulted in the development of a compact, easy-to-use reactor utilizing light-emitting diodes for photocatalytic water treatment.141 Furthermore, TiO\textsubscript{2}-rGO composites have also been used to coat optical fibers and have been shown to be capable of degrading pharmaceutical compounds such as sulfamethoxazole and ibuprofen.142

Use of magnetic materials in photocatalyst composites and coating photocatalysts on optical fibers can be promising in potable water treatment. However, without modification of the existing potable water treatment plant equipment or processes, their use may not be as feasible. Inclusion of photocatalysts in membrane technologies, similar to the introduction of graphene-based material in membranes, can greatly improve the functionality of the membranes and can be easily introduced in water treatment plants. While photocatalysts can reduce fouling and degrade contaminants, they can also degrade membrane materials reducing the lifetime of the membranes. For instance, use of TiO\textsubscript{2} in polyacrylonitrile membranes has been determined to be unsuitable for long-term use.143 Thus, additional research is needed to explore potential use of photocatalysts in membrane technologies.

CONCLUSIONS AND PERSPECTIVES

This review presents recent studies related to pharmaceutical removal with nanoparticles involving two different processes, adsorption and photocatalysis. We presented studies where nanomaterial demonstrated superior adsorptive or photocatalytic properties in the removal of EPCs. We also included photocatalysts modified with graphene in order to combine both properties, adsorption and degradation of organic molecules. These studies

Published in partnership with King Fahd University of Petroleum & Minerals
quantify EPC removal in simple solutions or in wastewater. However, most of these studies do not examine material use in actual water treatment systems. To fill the gap between fundamental research and practical applications there needs to be a focus on the potential practical applications of the different EPC removal techniques in indirect potable reuse water systems. While EPC removal efficiencies are important, it is important to investigate at what concentration these EPCs pose a threat to humans, animals, and the ecosystem regardless of the fact that many recent research articles demonstrate high EPC removal efficiencies. Little is known about nanoparticle stability in solution, and the effects of ingestion of the particles or their solutes is largely unknown. Furthermore, the production of toxic byproducts from EPC degradation should be of concern since disinfection byproducts account for a different class of regulated contamin-

ants. Intermediate degradation products can exhibit increased solubility as compared to that of the original contaminant, and higher toxicity values. Thus, it is important to thoroughly evaluate nanoparticle toxicity (toxic amount and maximum exposure time) and the risks associated with the employment of nanoparticles in water treatment.

Currently, AOPs are the best strategy to remove EPCs from water. However, associated costs are a major concern in communities with limited financial support. Scaling techniques to match industrial levels will be required. As seen in recent studies, inclusion of different nanomaterials in membranes or on optical fibers and use of magnetic photocatalysts result in significant EPC removal. Use of such technologies can help meet safe drinking water demands while reducing EPCs entering the environment. However, when used in indirect potable water cycles, these techniques need to break down a great variety of EPCs.

To guarantee water safety, the indirect potable reuse process requires understanding environmental and health standards. As such, the employment of recent technologies needs thorough risk assessments and health and safety evaluations performed to mitigate potential risks of the technology itself. While no legislation pertaining to EPC maximum allowable concentrations in water has been established, legislations regulating drinking water processes tend to be very strict to ensure human health and environmental safety. For instance, in an ongoing effort to maintain the safety of drinking water and lessen the effect of EPCs, the European Union has added additional requirements for pharmaceuticals whereby more extensive environmental risk assessments need to be conducted for each pharmaceutical’s use to be allowed.144 Furthermore, pharmaceutical contaminants in the environment are to be potentially monitored more extensively in order to be able to better evaluate their risk and environmental effects. Still, maximum EPC removal may be necessary, and the employment of nanotechnology in water treatment can be critical when it comes to human health and EPC persistence in environmental systems.

REFERENCES

1. He, S. et al. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China). Environ. Sci. Pollut. Res. 25, 24003–24012 (2018).
2. Kapelewskas, J. et al. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchem. J. 137, 292–301 (2018).
3. Peng, F.-J. et al. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China. Sci. Total Environ. 589, 46–55 (2017).
4. Miraji, H., Othman, O. C., Ngassapa, F. N. & Mureithi, E. W. Research trends in emerging contaminants on the aquatic environments of Tanzania. Sci. (Cairo). 2016, 3769690 (2016).
5. Riva, F. et al. Monitoring emerging contaminants in the drinking water of Milan and assessment of the human risk. Int. J. Hyg. Environ. Health. 221, 451–457 (2018).
6. Riva, F., Zaccato, E., Davoli, E., Fattore, E. & Castiglioni, S. Risk assessment of a mixture of emerging contaminants in surface water in a highly urbanized area in Italy. J. Hazard. Mater. 361, 103–110 (2019).
7. Lapworth, D. J. et al. Deep urban groundwater vulnerability in India revealed through the use of emerging organic contaminants and residence time tracers. Environ. Pollut. 240, 938–949 (2018).
8. Sharma, B. M. et al. Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India. Sci. Total Environ. 646, 1459–1467 (2019).
9. Lindim, C. et al. Exposure and ecotoxicological risk assessment of mixtures of top prescribed pharmaceuticals in Swedish freshwaters. Chemosphere 220, 344–352 (2018).
10. Schwurer, M., Brauch, H.-J. & Lange, F. T. in Transformation Products of Emerging Contaminants in the Environment 525–544 (John Wiley and Sons Ltd, 2014). https://doi.org/10.1002/9781118395588.ch17.
11. Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).
12. Richardson, S. D. & Ternes, T. A. Water analysis: emerging contaminants and current issues. Anal. Chem. 90, 398–428 (2018).
13. Bennett, R. et al. White paper: aquatic life criteria for contaminants on emerging concern. Part I General challenges and recommendations. USEPA 46 (2008).
14. David, A., Lange, A., Tyler, C. R. & Hill, E. M. Concentrating mixtures of neuc- reactive pharmaceuticals and altered neurotransmitter levels in the brain of fish exposed to a wastewater effluent. Sci. Total Environ. 621, 782–790 (2018).
15. Xiang, J. et al. The fate and risk assessment of psychiatric pharmaceuticals from psychiatric hospital effluent. Ecotoxicol. Environ. Saf. 150, 289–296 (2018).
16. Mirzaei, R., Mesdaghinia, A., Hoseini, S. S. & Yunesian, M. Antibiotics in urban wastewater and rivers of Tehran, Iran: consumption, mass load, occurrence, and ecologi- cal risk. Chemosphere. https://doi.org/10.1016/0010-4060(82)90154-6 (2018).
17. Sorenson, S. B., Morsink, C. & Campos, P. A. Safe access to safe water in low income countries: water fetching in current times. Soc. Sci. Med. 72, 1522–1526 (2011).
18. Ahmed, Y., Huang, Y.-L., Martin, A. & Otten, B. Assessment of the relation between water quality and water quantity for international metropolitan cities. In World Environmental and Water Resources Congress 2015 669–684 (American Society of Civil Engineers, 2015). https://doi.org/10.1061/9780784479162.062.
19. Wilcox, J., Nasiri, F., Bell, S. & Rahaman, M. S. Urban water reuse: a triple bottom line framework and review. Sustain. Cities Soc. 27, 448–456 (2016).
20. Wintgens, T., Salehi, F., Hochstrat, R. & Melin, T. Emerging contaminants and treatment options in water recycling for indirect potable use. Water Sci. Technol. 57, 99–107 (2008).
21. Huerta-Fontela, M., Galceran, M. T. & Ventura, F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res. 45, 1432–1442 (2011).
22. Mominiski, P. et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: a review. Sci. Total Environ. 648, 1052–1081 (2019).
23. Roccaro, P. Treatment processes for municipal wastewater reclamation: the challenges of emerging contaminants and direct potable reuse. Curr. Opin. Environ. Sci. Heal. 2, 46–54 (2018).
24. Rome D. R., A-M. J. & M. H. Handbook of Wastewater Reclamation and Reuse. (Lewis Publishers, 1995).
25. Foureaux, A. F. S. in Separation and Purification Technology Vol. 212 (Elsevier 2018).
26. Rojas, M. R. et al. Assessment of the effectiveness of secondary wastewater treatment technologies to remove trace chemicals of emerging concern. Crit. Rev. Environ. Sci. Technol. 43, 1281–1314 (2013).
27. Heberer, T., Reddersen, K., Handtke, K. A. & Melin, T. From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Sci. Technol. 46, 81–88 (2002).
28. Banaschik, R., Jablonowski, H., Bednarski, P. J. & Kolb, J. F. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water. J. Hazard. Mater. 342, 651–660 (2018).
29. Yang, L., Yu, L. E. & Ray, M. B. Photocatalytic oxidation of paracetamol: dominant reactants, intermediates, and reaction mechanisms. Environ. Sci. Technol. 43, 460–465 (2009).
30. Drewes, J. E. & Khan, S. J. Contemporary design, operation, and monitoring of potable reuse systems. J. Water Reuse Desalin. 5, 1–7 (2015).
Kyzas, G. Z., Deliyanni, E. A. & Matis, K. A. Graphene oxide and its application as an adsorbent for wastewater treatment. **Environ. Sci. Technol.** 49, 7938–7958 (2015).

Avra, D., Atea, M., Fuji, M., Johnson, M. S. & Yoshimura, C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO$_2$ composites: a critical review of recent literature. **Water Res.** 142, 26–45 (2018).

Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. **Carbon** 126, 432–443 (2017).

Yang, D. & Pignatello, J. J. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. **Environ. Sci. Technol.** 39, 2033–2041 (2005).

Cortés Arriagada, D., Sanhueza, L. & Wrightson, K. Removal of 4-chlorophenol using graphene, graphene oxide, and doped graphene (A = N, B): a computational study. **Int. J. Quantum Chem.** 113, 1931–1939 (2013).

Ozcan, C. et al. Adsorption and removal of toxic cationic dyes from aqueous solution by graphene oxide. **J. Colloid Interface Sci.** 368, 540–546 (2012).

Swathi, R. S. & Sebastian, K. L. Long range resonance energy transfer from a dye molecule to graphene has (distance)-4 dependence. **J. Chem. Phys.** 130, 086101 (2009).

Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. **Adv. Mater.** 22, 3906–3924 (2010).

Zhu, D. & Pignatello, J. J. Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. **Environ. Sci. Technol.** 39, 2033–2041 (2005).

Kyzas, G. Z., Deliyanni, E. A. & Matis, K. A. Graphene oxide and its application as an adsorbent for wastewater treatment. **J. Chem. Technol. Biotechnol.** 89, 196–205 (2014).

Yasuf, M., Elfishi, F. M., Zadie, S. A., Abdullah, E. C. & Khan, M. A. Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: a systematic and comprehensive overview. **RSC Adv.** 5, 50392–50420 (2015).

Ren, X., Liu, J., Tan, X. & Wang, X. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. **Dalt. Trans.** 42, 5266–5274 (2013).

Al-Khateeb, L. A., Almotry, S. & Salam, M. A. Adsorption of pharmaceutical pollutants on graphene nanoplatelets. **Chem. Eng. J.** 248, 191–199 (2014).

Tang, Y. et al. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance for fluoroquinolone antibiotics. **Colloids Surf. A: Physicochem. Eng. Asp.** 424, 74–80 (2013).
87. Yang, G. C. C., Chen, Y. C., Yang, H. X. & Yen, C. H. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofenton process. Chemosphere 155, 274–282 (2016).

88. Chu, K. H. et al. Evaluation of removal mechanisms in a graphene oxide-coated ceramic filtration membrane for retention of natural organic matter, pharmaceuticals, and inorganic salts. ACS Appl. Mater. Interfaces 9, 40369–40377 (2017).

89. Javier Benitez, F., Acero, J. L., Real, F. J., Roldán, G. & Rodríguez, E. Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water. J. Chem. Technol. Biotechnol. 86, 858–866 (2011).

90. Zambianchi, M., Zambianchi, M. & Cittadini, P. Removal of river and wastewater contaminants using graphene oxide adsorbers for the removal of organic contaminants from water. Chem. Eng. J. 326, 130–140 (2017).

91. Quire, M. et al. Stability and removal of naproxen and its metabolite by advanced membrane wastewater treatment plant and micelle-clay complex. Clean.—Soil, Air, Water 42, 594–600 (2014).

92. Nghiêm, L. D. & Hawkes, S. Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): mechanisms and role of membrane pore size. Sep. Purif. Technol. 57, 176–184 (2007).

93. Simon, A., Nghiêm, L. D., Le-Clech, P., Khan, S. J. & Drewes, J. E. Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes. J. Membr. Sci. 340, 16–25 (2009).

94. Zazouli, M. A., Susanto, H., Nasser, S. & Ulbricht, M. Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residues by nanofiltration. Water Res. 43, 3270–3280 (2009).

95. Košutić, K., Dolar, D., Alperger, D. & Kunst, B. Removal of antibiotics from a model wastewater by RO/NF membranes. Sep. Purif. Technol. 53, 244–249 (2007).

96. Verliefde, A. R. D. et al. Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Res. 41, 3227–3240 (2007).

97. Radjenović, J., Petrović, M., Ventura, F. & Barceló, D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42, 3601–3610 (2008).

98. Kang, Guodong & Cao, Yiming Development of anti fouling reverse osmosis membranes for water treatment: a review. Water Res. 46, 584–600 (2012).

99. Musico, Y. L. F., Santos, C. M., Dalida, M. L. P. & Rodrigues, D. F. in ACS Sustainable Chemistry and Engineering. Vol. 2, 1559–1565 (American Chemical Society, 2014).

100. Hu, M. & Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

101. Cao, B., Ansari, A., Yi, X., Rodrigues, D. F. & Hu, Y. Gypsum scale formation on memorandum, Cao, B., Ansari, A., Yi, X., Rodrigues, D. F. & Hu, Y. Gypsum scale formation on. Chem. Eng. J. 326, 130–140 (2017).

102. Peña-Bahamonde, J., San-Miguel, V., Cabanelas, J. C. & Rodrigues, D. F. Biological degradation and biostability of nanocomposites based on polysulfone with different concentrations of reduced graphene oxide. Macromol. Mater. Eng. 303, 1700359 (2018).

103. Smith, S. C. & Rodrigues, D. F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon N.Y. 91, 122–143 (2015).

104. Liu, M. K. et al. Effective removal of tetracycline antibiotics from water using NF and RO membranes. J. Environ. Chem. Eng. 5, 757–767 (2017).

105. Liu, J. et al. Enhanced photocatalytic degradation of tetracycline under visible light: mechanism and biotoxicity. J. Environ. Monit. Manag. 186, 55–63 (2017).

106. Shao, H. et al. Synergistic activation of peroxymonosulfate by Co3O4 modified g–C3N4 for enhanced degradation of diclofenac sodium under visible light irradiation. Appl. Catal. B Environ. 210, 810–818 (2017).

107. Lu, X. et al. The facile fabrication of novel visible-light-driven Z-scheme CuInS2/ Bi2WO6 heterojunction with intimate interface contact by in situ hydrothermal growth strategy for extraordinary photocatalytic performance. Chem. Eng. J. 356, 819–829 (2019).

108. Sun, J. et al. H2O2 assisted photocatalytic degradation of diclofenac sodium at g-C3N4/BiVO4 photoanode under visible light irradiation. Chem. Eng. J. 332, 312–320 (2018).

109. Surenjan, A., Sambandam, B., Pradeep, T. & Philip, L. Synthesis, characterization and performance of visible light active C-TiO2 for pharmaceutical photo-degradation. J. Environ. Chem. Eng. 5, 757–767 (2017).

110. Lu, J. et al. Visible light driven photocatalytic decomposition of penicillin G by TiO2/Ag3PO4 nanocomposite, TiO2/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: structural and operational comparison. J. Environ. Chem. Eng. 5, 5707–5720 (2017).

111. Cao, D., Wang, Y., Qiao, M. & Zhao, X. Enhanced photocatalytic degradation of norfloxacin by an Ag3PO4/BiVO4 electrode with low bias. J. Catal. 360, 240–249 (2018).

112. Zammouri, L. et al. Enhanced degradation under UV–visible and visible light of the ZnO photocatalytic activity for the antibiotic removal from aqueous media using Ce-doped Lu2Al2O7 nanoparticles. Mater. Res. Bull. 106, 162–169 (2018).

113. de Luna, M. D. G., Lin, J. C., Te, Gotostos, M. J. N. & Lu, M. C. Photocatalytic oxidation of acetylamphetamine using carbon self-doped titanium dioxide. Sustain. Environ. Res. 26, 161–167 (2016).

114. Kaur, A. & Kansal, S. K. Bi2WO6 nanocubes: an efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. Environ. Sci. J. 302, 194–203 (2016).

115. Deng, F. et al. One-step hydrothermal fabrication of visible-light-responsive AgIn5S8/SnInS2 heterojunction for highly-efficient photocatalytic treatment of organic pollutants and real pharmaceutical industry wastewater. Appl. Catal. B Environ. 219, 163–172 (2017).

116. Kumar, A., Khan, M., Zeng, X. & Lo, I. M. C. Development of g-C3N4/TiO2/ FeO2O5@SiO2 heterojunction via sol-gel route: a magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage effluent under visible light. Chem. Eng. J. 353, 645–656 (2018).

117. Sheydaei, M., Shadheh, H. R. K., Ayoubi-Feiz, B. & Ezzati, R. Preparation of nano N-doped g-C3N4 for enhanced degradation of oxytetracycline and Congo Red. Appl. Catal. B Environ. 201, 159–168 (2017).

118. Pastrana-Martínez, L. M. et al. Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenylamine-pharmaceutical and methyl orange dye. Appl. B. Environ. 123–124, 241–256 (2012).

119. Davari, N., Farhadian, M., Nazar, A. R. S. & Homayoonfam, M. Degradation of diphenyldimine by the photocatalysts of ZnO/Fe2O3 and TiO2/Fe2O3 based on clinoptilolite: structural and operational comparison. J. Environ. Chem. Eng. 5, 5707–5720 (2017).

120. Li, J. et al. Visible light driven photocatalytic decomposition of cinchonine by TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. J. Environ. Chem. Eng. 5, 200–203 (2017).

121. Alvarado, P., Chávez, J. C., Elmelech, M., Halas, N. J. & Villagráñ, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018).

122. Zhang, T. C. et al. Nanotechnologies for Water Environment Applications (American Society of Civil Engineers (ASCE), 2009). https://doi.org/10.1061/9780784410301.
134. Gao, X., Peng, W., Tang, G., Guo, Q. & Luo, Y. Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine. J. Alloy. Compd. 757, 455–465 (2018).
135. An, Y. et al. Adsorption and photocatalytic degradation of pharmaceuticals and pesticides by carbon doped-TiO2 coated on zeolites under solar light irradiation. Water Sci. Technol. 73, 2868–2881 (2016).
136. Paredes, L. et al. Application of immobilized TiO2 on PVDV dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices. Appl. Catal. B Environ. 240, 9–18 (2018).
137. Li, Q., Kong, H., Li, P., Shao, J. & He, Y. Photo-Fenton degradation of amoxicillin via magnetic TiO2-graphene-oxide-Fe3O4 composite with a submersed magnetic separation membrane photocatalytic reactor (SMMSPR). J. Hazard. Mater. 373, 437–446 (2019).
138. Sun, Q., Hong, Y., Liu, Q. & Dong, L. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2. Appl. Surf. Sci. 430, 399–406 (2018).
139. Nasseh, N., Taghavi, L., Barkibin, B. & Nasserii, M. A. Synthesis and characterizations of a novel FeNi/SiO2/Cu5 magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater. J. Clean. Prod. 179, 42–54 (2018).
140. Mirzaei, A., Chen, Z., Haghhighat, F. & Yerushalmi, L. Magnetic fluoronitrogen mesoporous g-C3N4 for photocatalytic degradation of amoxicillin: transformation mechanism and toxicity assessment. Appl. Catal. B Environ. 242, 337–348 (2019).
141. O’Neal Tugaoen, H., Garcia-Segura, S., Hristovski, K. & Westerhoff, P. Compact light-emitting diode optical water treatment. Water Sci. Technol. 76, 421–426 (2018).
142. Amalraj Appavoo, I., Hu, J., Huang, Y., Li, S. F. Y. & Ong, S. L. Response surface methods with identifications of pharmaceuticals and personal care products from water with functionalized metal–organic frameworks: remarkable adsorbents with hydrogen-bonding abilities. J. Hazard. Mater. 367, 349–359 (2018).
143. Rechert, J. F., Souza, D. M. & Martins, A. F. Antipsychotic drugs in hospital wastewater and a preliminary risk assessment. Ecotoxicol. Environ. Saf. 170, 559–567 (2019).
144. Tail, C. et al. Degradation of antipyrine by UV, UV/H2O2 and UV/PS. J. Hazard. Mater. 260, 1008–1016 (2013).
145. Fent, K., Weston, A. C. & Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 76, 122–159 (2006).
146. Steger-Hartmann, T., Länge, R. & Schweinfurt, H. Environmental risk assessment for the widely used iodinated X-ray contrast agent iopromide (ultrastar). Ecotox. Environ. Saf. 42, 274–281 (1999).
147. Matsushita, T. et al. Changes in mutagenicity and acute toxicity of solutions of iodinated X-ray contrast media during chlorination. Chemosphere 135, 101–107 (2015).
148. Peng, B. et al. Adsorption of antibiotics on graphene and biochar in aqueous solutions induced by n-n interactions. Sci. Rep. 6, 11192 (2016).
149. Kerkez-Kuyumcu, O., Bayazit, S. S. & Salam, M. A. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. J. Ind. Eng. Chem. 36, 198–205 (2016).
150. Yang, G. C. C., Tang, P. L. & Yen, C. H. Removal of micropollutants from municipal wastewater by graphene adsorption and simultaneous electrocoagulation/ electrofiltration process. Water Sci. Technol. 75, 1882–1888 (2017).
151. Chen, H., Gao, B. & Li, H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. J. Hazard. Mater. 282, 201–207 (2015).
152. Wu, S. et al. Adsorption of ciprofloxacin onto biocomposite fibers of graphene oxide/calcium alginate. Chem. Eng. J. 230, 389–395 (2013).
153. Tabrizian, P., Ma, W., Bakr, A. & Rahaman, M. S. pH-sensitive and magnetically separable Fe/Cu bimetallic nanoparticles supported by graphene oxide (GO) for high-efficiency removal of tetracyclines. J. Colloid Interface Sci. 534, 549–562 (2019).
154. Song, Z., Ma, Y. L. & Li, C. E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite. Sci. Total Environ. 651, 580–590 (2019).
155. Zhang, Y. et al. Removal of tetracycline and oxytetracycline from water by magnetic Fe3O4@graphene. Environ. Sci. Pollut. Res. 24, 2987–2995 (2017).
156. Tao, H., Liang, X., Zhang, Q. & Chang, C. T. Enhanced photocatalytic degradation of graphene/ titanium dioxide nanotubes for removal of Acetaminophen. Appl. Surf. Sci. 324, 258–264 (2015).
157. Lee, G. et al. Fabrication of graphene-oxide/Bi2O3/TiO2/Bi2O3 heterojunctioned nanocomposite and its sonocatalytic degradation for selected pharmaceuticals. Chemosphere 212, 723–733 (2018).
158. Rizzo, L., Fiorentino, A., Grassi, M., Attanasio, D. & Guida, M. Advanced treatment of urban wastewater by sand filtration and graphene adsorption for wastewater reuse: effect on a mixture of pharmaceuticals and toxicity. J. Environ. Chem. Eng. 3, 122–128 (2015).
159. Hiew, B. Y. Z. et al. Adsorptive removal of diclofenac by graphene oxide: optimization, equilibrium, kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 6, 1–11 (2016).
160. Lee, X. J., Chemmangattuvallapal, N. & Lee, L. Y. Adsorptive removal of salicylic acid from aqueous solutions using new graphene-based nanosorbents. Chem. Eng. Trans. 45, 1387–1392 (2015).
161. Kanakaraju, D., Motti, C. A., Glass, B. D. & Oelgemöller, M. Solar photolysis versus photolysis under UV and sun light irradiation of Carbamazepine (CBZ) removal by Graphene-P25 nanocomposites/UV process using central composite design. Water Res. 57, 270–279 (2014).
162. Kurniawan, T. A., Yanyan, L., Ouyang, T., Albadarin, A. B. & Walker, G. Enhanced photocatalytic degradation of diclofenac in aqueous solution by photocatalytic ozonation in the presence of TiO2/p-phenolixide process. J. Membr. Sci. 275, 202–211 (2006).
163. Seo, P. W., Bhadrta, B. N., Khan, N. A. & Jhung, S. H. Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: remarkable adsorbents with hydrogen-bonding abilities. Sci. Rep. 6, 1–11 (2016).
164. Ying, C. et al. Adsorption of diclofenac and ibuprofen on GO and GO@MnO2: Photocatalytic activities. Chem. Eng. Sci. 73, 1–8 (2012).
165. Hassani, A., Khataee, A., Karaca, S. & Fathinia, M. Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO2/mon–morillonite nanocomposite: simultaneous determination and intermediates identification. J. Environ. Chem. Eng. 5, 1964–1976 (2017).
166. Zhu, J. et al. Calculined layerd double hydroxides/reduced graphene oxide composites with improved photocatalytic degradation of paracetamol and efficient oxidation-adsorption of As(III). Appl. Catal. B Environ. 225, 550–562 (2018).
167. Jalouli, N., Elghniji, K., Trabelsi, H. & Kibbi, M. Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sun light irradiation. Arab. J. Chem. 18, 53640–53645 (2017).
168. Kanakaraju, D., Motti, C. A., Glass, B. D. & Delgellmøller, M. Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices. Environ. Sci. Pollut. Res. 23, 17437–17448 (2016).
169. Arthur, R. B. et al. Photocatalytic degradation of ibuprofen over BOCl nanoshells with identification of intermediates. J. Hazard. Mater. 358, 1–9 (2018).
170. Di, G. et al. Simultaneous removal of several pharmaceuticals and arsenic on Zn–Fe mixed metal oxides: combination of photocatalysis and adsorption. Chem. Eng. J. 328, 141–151 (2017).
171. Jalouli, N. et al. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chem. Eng. J. 334, 976–984 (2018).
183. Huyen, T., Chi, T., Dung, N., Kosslick, H. & Liem, N. Enhanced photocatalytic activity of [110]-faceted TiO2 rutile nanorods in the photodegradation of hazardous pharmaceuticals. Nanomaterials 8, 276 (2018).

184. Bastami, T. R. & Ahmadianpour, A. Preparation of magnetic photocatalyst nano-hybrid decorated by polyoxometalate for the degradation of a pharmaceutical pollutant under solar light. Environ. Sci. Pollut. Res. 23, 8849–8860 (2016).

185. Strbac, D. et al. Photocatalytic degradation of Naproxen and methylene blue: comparison between ZnO, TiO2 and their mixture. Process Saf. Environ. Prot. 113, 174–183 (2018).

186. Shargh, M. & Behnajady, M. A. A high-efficient batch-recirculated photoreactor packed with immobilized TiO2-P25 nanoparticles onto glass beads for photocatalytic degradation of phenazopyridine as a pharmaceutical contaminant: artificial neural network modeling. Water Sci. Technol. 73, 2804–2814 (2016).

187. Kumar, A. et al. Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination & mineralization of 4-chlorophenol from simulated waste water. RSC Adv. 6, 13251–13263 (2016).

188. Shoshtari, N. M. & Ghazi, M. M. An investigation of the photocatalytic activity of nano α-Fe2O3/ZnO on the photodegradation of cefixime trihydrate. Chem. Eng. J. 315, 527–536 (2017).

189. Zheng, X. et al. Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. J. Colloid Interface Sci. 527, 202–213 (2018).

190. Derikvandi, H. & Nezamzadeh-Ejhieh, A. A comprehensive study on electro-chemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. J. Mol. Catal. A Chem. 426, 158–169 (2017).

191. Derikvandi, H. & Nezamzadeh-Ejhieh, A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater. 321, 629–638 (2017).

192. Yadav, M. S. P., Neghi, N., Kumar, M. & Varghese, G. K. Photocatalytic-oxidation and photo-peroxulfate-oxidation of sulfadiazine in a laboratory-scale reactor: analysis of catalyst support, oxidant dosage, removal-rate and degradation pathway. J. Environ. Manag. 222, 164–173 (2018).

193. Liu, X., Liu, Y., Lu, S., Guo, W. & Xi, B. Performance and mechanism into TiO2/Zeolite composites for sulfadiazine adsorption and photodegradation. Chem. Eng. J. 350, 131–147 (2018).

194. Wang, X., Jia, J. & Wang, Y. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline. Chem. Eng. J. 315, 274–282 (2017).

195. Khodadadi, M., Ehrampoush, M. H., Ghanieian, M. T., Allahresani, A. & Mahvi, A. H. Synthesis and characterizations of FeNi3@SiO2@TiO2 nanocomposite and its application in photo-catalytic degradation of tetracycline in simulated wastewater. J. Mol. Liq. 255, 224–232 (2018).

196. Gar Alalm, M., Ookawara, S., Fukushi, D., Sato, A. & Tawfik, A. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbafuran and ampicillin. J. Hazard. Mater. 320, 225–231 (2016).

197. Jakub, T., Robert, S. & Pawel, S. Investigation of the photolysis and TiO2, SrTiO3, H2O2-mediated photocatalysis of an antipsychotic drug loxapine—evaluation of kinetics, identification of photoproducts, and in silico estimation of properties. Chemosphere 204, 1–10 (2018).

198. Deng, F. et al. One-step in situ hydrothermal fabrication of octahedral CdS/SnS nanoheterojunction for highly efficient photocatalytic treatment of nitrophenol and real pharmaceutical wastewater. J. Hazard. Mater. 340, 85–95 (2017).

199. Bansal, P., Verma, A. & Talwar, S. Detoxification of real pharmaceutical wastewater by integrating photocatalysis and photo-Fenton in fixed-mode. Chem. Eng. J. 349, 838–848 (2018).

ACKNOWLEDGEMENTS
This work was supported by the following funds: NSF BEINM Grant Number: 1705511; NSF CHE Grant Number: 1904472; the USDA National Institute of Food and Agriculture, AFRI Project No. 2018-67022-27969, the Welch foundation award number (E-2011-20190330) and the US Department of Interior, Bureau of Reclamation under the Desalination and Water Purification Research and Development Program (Agreement No. R16AC00123); NPPR grant no. [9-318-1-064] from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors.

AUTHOR CONTRIBUTIONS
All authors contributed equally to the manuscript and have read and approved the final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to D.F.R.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.