Bacteria from the genus Cronobacter are opportunistic foodborne pathogens capable of causing severe infections in neonates, the elderly and immunocompromised adults. The majority of neonatal infections have been linked epidemiologically to dehydrated powdered infant formulas (PIFs), the majority of which are manufactured using processes that do not ensure commercial sterility. Unfortunately, the osmotolerance, desiccation resistance, mild thermotolerance and wide-ranging minimum, optimum and maximum growth temperatures of Cronobacter spp. are conducive to survival and/or growth during the processing, reconstitution and storage of reconstituted PIFs. Consequently, considerable research has been directed at the development of alternative strategies for the control of Cronobacter spp. in PIFs, including approaches that employ antimicrobial compounds derived from natural sources. The latter include a range of phytochemicals ranging from crude extracts or essential oils derived from various plants (e.g., thyme, cinnamon, clove, marjoram, cumin, mint, fennel), to complex polyphenolic extracts (e.g., muscadine seed, pomegranate peel, olive oil, and cocoa powder extracts), purified simple phenolic compounds (e.g., carvacrol, citral, thymol, eugenol, diacetyl, vanillin, cinnamic acid, trans-cinnamaldehyde, ferulic acid), and medium chain fatty acids (monocaprylin, caprylic acid). Antimicrobials derived from microbial sources (e.g., nisin, other antibacterial peptides, organic acids, coenzyme Q₀) and animal sources (e.g., chitosan, lactoferrin, antibacterial peptides from milk) have also been shown to exhibit antibacterial activity against the species. The selection of antimicrobials for the control of Cronobacter spp. requires an understanding of activity at different temperatures, knowledge about their mode of action, and careful consideration for toxicological and nutritional effects on neonates. Consequently, the purpose of the present review is to provide a comprehensive summary of currently available data pertaining to the antibacterial effects of natural antimicrobial compounds against Cronobacter spp. with a view to provide information needed to inform the selection of compounds suitable for control of the pathogen during the manufacture or preparation of PIFs by end users.

Keywords: natural, antimicrobials, Cronobacter, safety, powdered infant formula
INTRODUCTION

Fatal bacterial infections in neonates caused by “yellow-pigmented coliforms” were first reported in the early 1960s (1). Early clinical isolates were classified as strains of Enterobacter cloacae until comparative analysis by DNA–DNA hybridization showed they belonged to a distinct species that was initially named Enterobacter sakazakii (2). Further genomic analysis by ribotyping, amplified fragment length polymorphism and 16S rDNA sequencing eventually provided evidence to support assignment of E. sakazakii and other closely related Enterobacter species to the novel genus Cronobacter (3). The List of Prokaryotic names with Standing in Nomenclature (LPSN) presently includes seven species of Cronobacter with a validly published and correct name, including Cronobacter sakazakii, Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter universalis, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis and Cronobacter condimenti (https://www.bacterio.net/genus/cronobacter). C. sakazakii is the most frequently reported clinical isolate and is considered to be the prototype species for the genus (4, 5). However, all Cronobacter spp. with the exception of C. condimenti have been recovered from clinical specimens (6). C. sakazakii and C. malonaticus are currently the major species of public health concern, followed by C. turicensis, C. universalis, C. muytjensii, and C. dublinensis (5). Cronobacter infections typically affect hosts with immature or compromised immune systems, primarily neonates and infants, and to a lesser extent the elderly or individuals from all age groups with underlying chronic disease. Consequently, Cronobacter spp. are considered opportunistic human pathogens. Infections in neonates can lead to septicemia, necrotizing enterocolitis or severe meningitis with estimated case-fatality rates of 10, 20, and 42%, respectively, and to severe neurological sequelae upon recovery (7–9). Symptoms of infection in adults include wound and urinary tract infections, gastroenteritis, appendicitis, conjunctivitis, biliary sepsis, pneumonia, sepsis, and osteomyelitis (10). Cronobacter infections were considered exceptional and sporadic occurrences until the late 1980s when several clusters were reported in neonatal care units (11). Clinical investigation of a landmark incident in a US hospital showed that neonates were infected by enteral administration of reconstituted powdered infant formula (PIF) (12). Epidemiological investigations of similar incidents in other jurisdictions have confirmed that PIFs can serve as a vehicle for the foodborne transmission of C. sakazakii to neonates (13–15). Only one suspected foodborne outbreak involving ostensibly healthy and older individuals has been reported to date. Yong et al. (16) presented evidence that food contaminated with Cronobacter spp. consumed in a senior high school canteen led to an outbreak of acute gastroenteritis that resulted in 124 suspected, 12 probable, and 20 confirmed cases. Molecular analysis of isolates recovered from clinical, food, or environmental samples revealed the presence of both C. sakazakii (four isolates from two sequence types determined by multilocus sequence typing) and C. malonaticus (two isolates from one sequence type). However, the whole genome sequences of two C. sakazakii isolates recovered from a food sample and a clinical specimen differed by only five single nucleotide polymorphisms, which was highly suggestive of an epidemiological link.

While Cronobacter infections remain uncommon, alarmingly high case-fatality rates in neonates and uncertainty about transmission outside hospital care settings have prompted considerable research to determine the origin, distribution and fate of this emerging foodborne pathogen in food chains. Despite these efforts, the primary habitats of Cronobacter spp. remain unknown. Infrequent isolation from livestock and limited survival in the animal gut are indicative of a non-zoonotic nature, although contamination of meat and milk have been reported (17–19). A review and meta-analysis of data published between 2008–14 revealed a prevalence of 5.7% in meat products and 19.0% in plant based foods or food ingredients, which is suggestive of a stronger association with plants or environments in which they are grown (20). Irrespective of their primary habitat, Cronobacter spp. have been isolated from diverse dehydrated food products (PIFs, infant cereals, dairy-based preparations, flours, pasta, candies, spices, herbs, and nuts), fresh or frozen vegetables, and both natural (soil, water, insects) and man-made (hospitals, households, food storage and processing facilities) environments (20–23).

Current understanding about the fate of Cronobacter spp. in food systems is primarily derived from research concerned with the role of PIFs in foodborne transmission. PIFs intended to serve as complete or partial substitutes for human milk at birth or after the introduction of solid food (follow-up formulas) contain mixtures of protein, fat, carbohydrates, vitamins, minerals, and other functional ingredients (e.g., essential fatty acids, nucleotides) in proportions needed to achieve nutrient contents mandated by national or international regulatory standards. Intact bovine milk powder is the most common source of protein, although specialized formulas containing hydrolyzed casein or proteins derived from plant sources such as soy bean are used for feeding of neonates with underlying pathologies or to accommodate cultural or religious practices (24). Manufacture of PIF products is accomplished by spray-drying of the mixed ingredients solubilized in water (wet processes), by mixing of heat-labile ingredients with a previously spray-dried base powder (dry processes), or by a combination of both approaches (25). Despite the application of heat at one or more stages of these processes PIF is not a sterile food; Cronobacter spp. are routinely detected in microbiological analysis of commercial products (26, 27). For example, a recent survey of 128 products in Latin American markets revealed a prevalence rate of 4.7% (28). Microbiological assessments of milk powder and PIF manufacturing environments and processes have shown that Cronobacter spp. may derive from extrinsic sources, notably dry ingredients, or intrinsically contaminated sites where specific strains may persist over long periods of time (29–33). Moreover, most strains examined to date have shown higher resistance to potentially lethal osmotic and dessication stresses than other human pathogen belonging to the family Enterobacteriaceae. Dessication resistance likely contributes to the environmental persistence of Cronobacter spp. in some niches within manufacturing plants, and to long term survival in powdered milk and PIF (34–36).

Frontiers in Nutrition | www.frontiersin.org 2 November 2020 | Volume 7 | Article 595964

Polat Yemis and Delaquis Cronobacter in Powdered Infant Formula

Cronobacter in Powdered Infant Formula
The suspected role of PIF in the transmission of infections
has prompted examination of *Cronobacter* behavior during
reconstitution in water and subsequent handling, including
storage for later use. Incipient work by Nazarowec-White and
Farber (37) showed that *C. sakazakii* could survive reconstitution
with water heated to 52–60°C. Data from additional studies
conducted with numerous strains over a wider range of
temperatures and in different substrates suggests that most
Cronobacter spp. are mildly thermostolerant, although strain-
associated stress tolerance or prior heat adaptation can enhance
thermal stability (38–41). In response to the risk implied
by latent contamination of PIFs with infectious bacteria the
WHO recommends reconstitution in water at a minimum
temperature of 70°C, conditions which have been shown to
reduce *C. sakazakii* by >5 log10 cycles (42, 43). Reconstitution
at ≥70°C is often impractical, however, as high temperatures
can lead to curdling or other undesirable organoleptic changes,
cause depletion of heat sensitive nutrients, and introduce
scald or burn hazards particularly in home settings (27,
44). Consequently, lower temperatures are endorsed in some
jurisdictions despite experimental evidence of limited thermal
inactivation at lower temperatures. Moreover, growth of *C.
sakazakii* has been reported to occur in reconstituted PIF
stored between 5.5 and 47°C, conditions that can occur when
feeding is delayed or during storage (15, 21, 41). Additionally,
recent work has shown that *C. sakazakii* is readily transferred
from caregiver hands and utensils to reconstituted PIF, thereby
highlighting the significance of contact surfaces as reservoirs of
contamination (45). Adherence to and biofilm formation have
been demonstrated on a wide range of materials used in the
manufacture of equipment, tools and utensils used in hospital
and home settings (46-48). Biofilm formation also contributes
to the persistence of *Cronobacter* on surfaces by enhancing
resistance to adverse environmental stresses, including chemicals
used in cleaning and sanitation of food processing facilities and
equipment (49).

The risk of contamination with *Cronobacter* spp. is an
enduring food safety challenge for the PIF industry, public
health authorities and consumers worldwide. Manufacturers
have adopted risk mitigation strategies that primarily rely on
rigorous microbiological analysis of raw materials, improved
cleaning and sanitation of the manufacturing environment, and
enhanced testing of finished products. Despite these efforts,
levels of contamination detected through recent surveys clearly
show that the risk persists (28). Because the modification of
existing industrial processes is constrained by the heat lability
of PIF ingredients, alternative non-thermal physical treatments
meant to inactivate microbial contaminants without affecting
ingredient stability have been investigated or are under study
(reviewed in (50, 51)). To date, none have been adapted to the
production of PIF on an commercial scale. The use of
synthetic preservatives is likewise impractical due to regulatory
restrictions and enduring concerns about the negative effects of
man-made food additives on human health. Accordingly, natural
antibacterial compounds (NACs) derived from plant, microbial
or animal sources are under consideration as alternatives to
synthetic chemical preservatives for the control of *Cronobacter*
spp. in PIF. This approach is aligned with increasing consumer
willingness to accept food additives and preservatives of natural
origin over synthetic products (52). The present work is intended
to provide a summary of current knowledge about NACs with
antibacterial activity against *Cronobacter* spp., with a view to
inform their application in the development of improved PIF
manufacturing processes or the formulation of safer products.

For example, NACs that increase the lethality of mild heat may
find value in the development of alternative processes to enhance
bacterial inactivation in manufacture or during reconstitution by
end-users (53). Where possible, the mode of action, toxicological
data, regulatory status and potential health benefits of specific
NACs are provided.

NACs FROM PLANTS WITH ANTIBACTERIAL ACTIVITY AGAINST CRONOBA

The scope of research on plants as sources of natural
antimicrobials and their applications in food preservation or
safety has expanded significantly in recent years (54). Plant
components and extractives thereof are attractive alternative
food additives because many have a long history of use, are
likely to have received regulatory consent or benefit from the
increasing availability of toxicological data needed to support
requests for approval (55). Recognition of PIF as a vector for
foodborne transmission has led to the assessment of numerous
 crude extracts, essential oils recovered by distillation of whole
plants or their parts, and purified phytochemicals for the control
of *Cronobacter* spp. (Table 1). Crude extracts obtained in water or
an alcoholic solvent are generally not modified after evaporation
of the liquid phase and contain several bioactive constituents. For
example, a tea extract examined by Li et al. (61) was reported
to contain catechins, flavonoids, phenolic acids, anthocyanins,
malic acid, and citric acid. The latter is typical of crude plant
extracts which tend to consist of complex mixtures of compounds
from different classes, notably large and diverse fractions of
phenolic compounds referred to collectively as polyphenolics.
Most crude extracts listed in Table 1 contain polyphenolics
known to have antibacterial properties, although additive or
synergistic effects due to co-extracted plant constituents, notably
organic acids, likely contribute to overall antibacterial activity
(57). The mode of action of crude extracts is accordingly
complex, however damage to the bacterial membrane leading to
loss of function and cellular integrity induced by polyphenolics
contributes significantly to overall antibacterial effects (83).
Two extracts (cocoa powder and polyphenolic tea extract)
were shown to exert bacteriostatic effects and reduce the
growth of *Cronobacter* spp. in reconstituted PIF. Crude
plant extracts are economically attractive food additives due
to their low cost of production in comparison purified
phytochemicals. However, variability in antibacterial activity
due to differences in composition resulting from varietal, agronomic
or production factors tend to limit practical applications in
foods. Concentrations of compounds with antibacterial activity
may also be lower than those of co-extracted compounds.
Agents with in vitro antibacterial activity	Composition	Demonstrated or suggested mode of action	Antibacterial activity in PIF	References
Crude extracts				
Aqueous extracts of red muscadine seed; muscadine juice	Malic, tartaric, tannic acids; polyphenols (gallic acid, catechin, epicatechin, ellagic acid, resveratrol)	Not determined. Suggested synergy between components	Not determined	(56, 57)
Cocoa powder	Polyphenol rich	Not determined	Bacteriostatic in reconstituted PIF incubated at 37°C	(58)
Proanthocyanidin- rich methanolic blueberry extract; blueberry juice	Not determined	Loss of membrane integrity, altered fatty acid profile, disruption of metabolism	Not determined	(59)
Methanolic extracts of black pepper and cinnamon bark	Not determined	Inhibition of quorum sensing and biofilm formation at sub-inhibitory concentrations	Not determined	(60)
Polyphenolic tea extract	Not determined	Membrane damage leading to cytoplasmic leakage; pH effects	Bacteriostatic effect in reconstituted PIF incubated at 37°C; enhanced at pH ≤4	(61)
Polyphenolic olive oil extract	Hydroxytyrosol, tyrosol, phenolic acids	Reduction of intracellular ATP, membrane depolarization, decreased protein synthesis	Not determined	(62)
Polyphenolic rich pomegranate peel extract	Ellagitannins, α, β-punicalagin, ellagic acid and derivatives, punicalin	Not determined	Not determined	(63)
Essential oils				
Cinnamon, clove, lemongrass, laurel, oregano essential oils	Not determined	Not determined	Not determined	(64)
Cinnamon, fir essential oils	Not determined	Not determined. Suggested synergy between phenolic compounds, organic acids and other components	Bacteriostatic effects in reconstituted PIF incubated at 37°C with fir and cinnamon oils; bactericidal effects with fir + cinnamon oil	(65)
Thyme, clove, ginger extracts obtained by hydrodistillation	Not determined	Not determined	Not determined	(66)
Thyme, cinnamon, marjoram essential oils	Not determined	Not determined. Suggested synergy between phenolic compounds	Not determined	(67)
Purified phytochemicals				
Carvacrol, thymol, eugenol, diacetyl, cinnamic acid	NA	Not determined	Bactericidal effects in reconstituted PIF incubated at 37 and 8°C; Reduced resistance to acid and heat in reconstituted PIF	(68)
Trans-cinnamaldehyde	NA	No determined. Suggested disruption of bacterial cell membrane	Not determined	(69, 70)
Vanillin, vanillic acid	NA	Disruption of bacterial cell membrane	Reduced heat resistance during reconstitution; Bactericidal effects in reconstituted PIF incubated at 21 and 10°C	(71, 72)
Caprylic acid	NA	Disruption of bacterial cell membrane; synergistic effects when used in combination with citric acid or vanillin	Reduced heat resistance during reconstitution; Bacteriostatic effects in reconstituted PIF incubated at 40°C	(73, 74)
Citral	NA	Reduction of intracellular ATP, cell membrane hyperpolarization, reduction in cytoplasmic pH.	Not determined	(75)
Syringic acid	NA	Reduction of intracellular ATP, cell membrane hyperpolarization, reduction in cytoplasmic pH.	Not determined	(76)
Ferulic acid	NA	Disruption of bacterial cell membrane	Not determined	(77)

(Continued)
that can lend undesirable physico-chemical or organoleptic properties to target food products. Similar constraints hamper food applications for essential oils, complex mixtures of volatile lipophilic terpenoids, phenylpropanoids, or short-chain aliphatic hydrocarbon derivatives (84). Results from four scientific reports listed in Table 1 show that essential oils recovered from several aromatic plant species show antibacterial activity against Cronobacter spp. Moreover, Al-Nabulsi et al. (65) found that growth of C. sakazakii in reconstituted PIF was inhibited by supplementation with cinnamon or fir essential oils and that mixtures of the two were bactericidal, reducing populations by >6 log_{10} after 3 h of incubation at 37°C. These results support the widely held view that the activity of essential oils stems from additive or synergistic antimicrobial effects involving multiple components, and underscores the need to determine concentrations of key active compounds needed to ensure consistent activity in foods (85).

Extraction and purification of NACs from plants circumvents challenges occasioned by variable crude extract or essential oil composition. Purified preparations of the phytochemicals listed in Table 1 are readily available from commercial sources. Most are known to exert antimicrobial effects primarily by disruption of the bacterial cell membrane. Trans-cinnamaldehyde, vanillin, ethyl vanillin, vanillic acid, thymoquinone, and Coenzyme Q\textsubscript{0} have been shown to reduce the thermotolerance of Cronobacter spp. during reconstitution and to provide antibacterial effects during subsequent storage. Overall, the reported nature and magnitude of measured effects vary with type of compound, level of PIF supplementation and temperature. For example, Amalaradjou et al. (69) reported that trans-cinnamaldehyde exerts time- and temperature-dependent bactericidal activity against C. sakazakii in reconstituted PIF during storage at 4, 8, 23, and 37°C. In contrast, supplementation with caprylic acid could only elicit bacteriostatic effects against the same species in reconstituted PIF stored at 40°C (74). The effects of these compounds on the thermotolerance of Cronobacter are more consistent. Amalaradjou et al. (70) showed that complete thermal inactivation of C. sakazakii could be achieved by heating reconstituted PIF supplemented with 70 µM trans-cinnamaldehyde at 60°C for 10 min, but that longer heating times were required to achieved the same effect at lower supplementation levels or temperatures. Likewise, C. sakazakii was completely inactivated by heating reconstituted PIF supplemented with 30 mmol l-1 thymoquinone at 55°C for 10 min, and longer treatment times were needed to achieved the same effect at lower concentrations or temperatures (78). Caprylic acid (73), coenzyme Q\textsubscript{0} (82), vanillin, ethyl vanillin, and vanillic acid (72) have also been found to lower the thermotolerance of C. sakazakii during reconstitution. Moreover, the bactericidal activity of vanillin, ethyl vanillin, and vanillic acid were sustained during subsequent storage at 21 and 5°C, which illustrates that some phytochemical compounds can contribute antibacterial effects at multiple stages during the manufacture or preparation of PIF by end-users.

The volatility, susceptibility to conversion and degradation reactions, intense organoleptic character and poor solubility of many plant extracts, essentials oils or phytochemicals have long

TABLE 1	Continued		
Composition	NA	NA	NA
Thymoquinone	NA	NA	NA
Coenzyme Q\textsubscript{0}	NA	NA	NA
Caprylic acid + carvacrol	NA	NA	NA

Frontiers in Nutrition | www.frontiersin.org 5 November 2020 | Volume 7 | Article 595964
hindered wider use in food preservation. However, considerable progress has been achieved in the development of novel technologies for the delivery of food additives that are intended to overcome these limitations, notably encapsulation methods that stabilize active components and enable their release of over variable time periods, at specific temperatures or at different sites within food matrices (reviewed in (86)). To date, the merit of these technologies for the delivery of NACs for the control of Cronobacter in PIF remains unexplored. Encapsulation platforms that provide controlled release at temperatures applied during the manufacture, preparation or storage of reconstituted PIF could provide the means to ensure delivery when contaminants are most vulnerable to their effects or when the risk of proliferation is highest.

NACs FROM MICROBIAL SOURCES WITH ANTIBACTERIAL ACTIVITY AGAINST CRONOBACTER SPP.

Several NACs from microbial sources and their antibacterial activity against Cronobacter spp. are shown in Table 2. Probiotics, live microorganisms which when administered in adequate amounts confer a health benefit on the host, are presently used in some countries for pediatric care. Commercial PIFs products containing live preparations of Lactobacillus or Bifidobacterium spp. are available in the marketplace but the effect of probiotic supplementation on the behavior of Cronobacter spp. during or after reconstitution is unknown. The use probiotic bacteria for the explicit control of Cronobacter spp. infections was investigated by Collado et al. (93) who showed that species of Lactobacillus, Bifidobacterium and Streptococcus competitively excluded, inhibited and displaced C. sakazakii in a human intestinal model system. Despite evidence of their antibacterial properties, there have been few additional attempts to exploit the use of live probiotic bacteria for the control of human pathogens in PIF, likely in response to on-going controversy about the efficacy, safety, variability, quality, labeling, and lack of standards for the use of probiotic products destined for neonatal care (94, 95). NACs derived from microbial sources continue to attract interest, however, notably whole inactivated cells or crude cell extracts that retain bioactivity, which have been termed "parabiotics" (96), or purified soluble factors (products or metabolic byproducts) secreted by live microorganisms or released after lysis, which have been described as "postbiotics" (97). Hayes et al. (87) showed that addition of a crude cell-free extract prepared from a caseinate medium fermented by the common probiotic bacterium Lactobacillus acidophilus could inhibit C. sakazakii in reconstituted PIF. Antimicrobial effects were attributed to antimicrobial peptides (caseicin A & B) derived from the degradation of bovine casein by microbial enzymes. Charchoghlyan et al. (89) found that a purified heat inactivated aqueous extract of skim milk fermented with a commercial probiotic strain of Lactobacillus acidophilus used to supplement PIF also inactivated C. sakazakii in the reconstituted product stored at 37°C. The composition of the extract was not provided by the authors of the study, who offered that acids released during fermentation were likely responsible for antibacterial effects. A similar conclusion was reached by Kim et al. (90) in reference to the mechanism responsible for inhibition of C. sakazakii by cell free supernatants of laboratory grown cultures of Lactobacillus kefiri and Lactobacillus kefiranofaciens isolated from kefir, and a commercial probiotic strain of Bifidobacterium longum. It must be noted here that acids released during fermentation were likely responsible for antibacterial effects. A similar conclusion was reached by Kim et al. (90) in reference to the mechanism responsible for inhibition of C. sakazakii by cell free supernatants of laboratory grown cultures of Lactobacillus kefiri and Lactobacillus kefiranofaciens isolated from kefir, and a commercial probiotic strain of Bifidobacterium longum. It must be noted here that current international (e.g., CODEX STAN 72-1981) or national standards for ingredients or additives permissible in PIF do not include D-lactic acid, a metabolic by-product released during fermentation by L. acidophilus, L., kefiri, and L. kefiranofaciens. Probiotic bacteria such as Bifidobacterium longum that do not produce D-lactic acid could be used to circumvent the problem. However, uncertainty concerning the composition and variability in bioactive components in crude cell-free extracts

Table 2 | Natural antimicrobials from microbial sources with antibacterial activity against Cronobacter spp.

Antibacterial activity in vitro	Demonstrated or suggested mode of action	Antibacterial activity in PIF	References
Cell-free extract of Lactobacillus acidophilus grown in caseinate, containing antimicrobial peptides casecin A & B	Not determined	Bactericidal effect in reconstituted PIF incubated at 37 and 6°C	(87)
Heat-labile bacteriocins in cell-free extracts of Lactobacillus casei and L. acidophilus	Not determined	Bacteriostatic effect in reconstituted PIF incubated at 37°C	(88)
Cell-free extract of Lactobacillus acidophilus	Not determined, Suggested effect of organic acids released by Lactobacillus acidophilus during growth	Bactericidal effect in reconstituted PIF incubated at 37°C	(89)
Cell-free extracts of Lactobacillus kefiri	Disruption of bacterial cell membrane	Not determined	(90)
Cell-free extracts of Lactobacillus acidophilus, L. bulgaricus L. casei rhamnosus, L. paracasei L. salivarius	Disruption of bacterial cell membrane	Not determined	(91)
Nisin + citric acid	Not determined	Bactericidal effect in reconstituted PIF incubated at room temperature when mixed with citric acid	(92)
TABLE 3 | Natural antimicrobials from animal sources with antibacterial activity against Cronobacter spp.

Antibacterial activity in vitro	Demonstrated or suggested mode of action	Antibacterial activity in PIF	References
Lactoperoxidase	Not determined; Suggested result of oxidation of sulphydryl groups on enzymes and proteins in cytoplasmic membranes.	Bactericidal effect in reconstituted PIF incubated at 21, 30, 37°C	(101)
Bovine lactoferrin	Not determined	Limited bacteriostatic effect when high concentrations were added to reconstituted PIF stored at 21°C; no effect at 10°C	(99)
Iron-saturated bovine lactoferrin	Not determined, Suggested destabilization of bacterial membrane	Not determined; Limited bacteriostatic activity in whey	(102)
Cationic peptides from enzymatic hydrolysis of lactoferrin	Not determined	Limited bacteriostatic effects in combination with native lactoferrin	(103)
Bicarinalin (cationic peptide from ants)	Disruption of bacterial cell membrane	Not determined	(104)
Camel milk	Not determined	Not determined	(105)

NACs FROM ANIMAL SOURCES WITH ANTIBACTERIAL ACTIVITY AGAINST CRONOBACTER SPP.

Selected NACs from animal sources and their antibacterial activity against Cronobacter spp. are shown in Table 3. The first natural antimicrobial derived from animal sources considered for the control of Cronobacter spp. in PIF was lactoperoxidase, an enzyme that occurs in milk, Colostrum, tears, saliva, and other mammalian secretions (101). Lactoperoxidase catalyzes the oxidation of thiocyanate to hypothiocyanous acid and thereby activates H₂O₂ and generates intermediate products with antimicrobial properties. The “lactoperoxidase (LPO) system” relies on the interaction of all three components which must be present in sufficient amounts to initiate the reaction. Gurtler and Beuchat (101) showed that addition of bovine LPO to reconstituted milk-based PIF could inhibit the growth of C. sakazakii at temperatures >21°C. However, use of the LPO system in PIF is hindered by the need for addition of an exogenous source of thiocyanate, a known goitrogen (106). Another antibacterial protein also found in mammalian secretory fluids, lactoferrin, is not bound by this restriction. Lactoferrin, a small glycoprotein, inhibits bacteria indirectly by the sequestration of iron from the environment and through direct antibacterial effects resulting from disruption of the outer Gram-negative bacterial membrane, leading to alterations in cell permeability and loss of viability (107). Indirect antibacterial effects mediated by alteration of host innate immune functions have also been reported (108). Bovine milk is the most common source of lactoferrin and several manufacturers provide purified preparations for use in pharmaceutical, cosmetic, and food applications, including the supplementation of PIF. Usage of lactoferrin supplemented PIF is common in some countries for the prevention of neonatal sepsis and neonatizing enterocolitis despite continued uncertainty about efficacy (109). Experimentation in vitro has shown that Cronobacter spp. are highly susceptible to the direct antibacterial effects of lactoferrin (99). However, the same authors found no evidence
NAC	Reported Health Benefits	Toxicology/safety assessments	Regulatory status
Cocoa powder	Prevention of cardiovascular disease; improved blood pressure regulation, insulin resistance and vascular function; increased production of nitric oxide (NO) and antioxidant effects including delayed oxidation of low-density lipoprotein cholesterol, inhibition of ultraviolet-induced DNA oxidation (113).	Chronic dietary exposure not carcinogenic to rats (114); No evidence of toxic effects on the heart, liver, kidney, lungs, tests, and spleen of rats fed high oral doses (115).	Food ingredient.
Polyphenolic tea extracts	Black teas: prevention of cancer; obesity, antioxidant protective and anti-hyperglycemic effects (118). Green teas: prevention of cancer, obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases (117).	Suspected cytotoxicity of epigallocatechin 3-gallate, the major catechin present in green tea, in adults and children (117, 119).	Generally Recognized as Safe (GRAS) according to US Code of Federal Regulations (USCFR), Title 21, § 182.20, Essential oils, oleoresins (solvent-free), and natural extractives (including distillates (119). Listed as dietary supplements under the Health and Education Act of 1994 (120).
Cinnamon essential oil, trans-cinnamaldehyde	Antitumour, anti-inflammatory and analgesic, anti-diabetic and anti-obesity, antibacterial and antiviral, cardiovascular protective, cytoprotective, neuroprotective, and immunoregulatory effects (121); Treatment of high blood glucose and lipid levels and other symptoms of the metabolic syndrome, poly cystic ovary syndrome (PCOS) and inflammatory disorders (122).	Occasional gastrointestinal disorders and allergic reactions reported (121); Potential nephrotoxicity and hepatotoxicity at higher than recommended daily dose (123).	Trans-cinnamaldehyde: USCFR GRAS, § 182.60.
Vanillin, ethyl vanillin, vanillic acid	Antioxidant, anti-inflammatory, antiscrinking, antimicrobial, and hypolipidemic effects; prevention of cancer, periodontal disease, and bone deterioration (124)	Lack of toxicity at approved levels of intake in foods; Vanillin may induce bronchoconstriction in asthmatics (125), contact dermatitis at high concentrations (126).	Vanilla extracts: USCFR GRAS, §182.20; Vanillin and ethyl vanillin: USCFR GRAS §182.60 (Synthetic flavoring substances and adjuvants, can be from natural sources); Vanillic acid is not listed in the US FDA Code of Federal Regulations; evaluation by the FAO/WHO Expert Committee on Food Additives (JEFOA no. 959) yielded “no safety concern at current levels of intake when used as a flavoring agent” (127).
Caprylic acid	Role in the prevention of infection and inflammation as part of lipid emulsions used in parenteral feeding of neonates (129); Prevention of obesity by decreasing energy intake, possible effects on appetite (129).	No evidence of toxic effects at doses up to 10% in the diet (130).	USCFR GRAS §184.1025; Available as a dietary supplement.
Thymoquinone	Anti-inflammatory, antimicrobial, antiparasitic, antioxidant, antihyperglycemic, and anticancer properties (131).	Concentration dependant in vivo hepatotoxic effects (132); No evidence of cytotoxicity in rats (133); no evidence of toxicity in humans at daily oral doses up to 28 g/kg (134).	Source plant (Nigella sativa L., black seed or black cumin), is listed by USCFR GRAS in § 182.10 (Spices and other natural seasonings and flavorings); Source plant extracts listed as dietary supplements under the Health and Education Act of 1994 (120).
Coenzyme Q₉	Antitumor, anti-inflammatory and anti-angiogenic effects (82).	No evidence of toxicological effects from dietary supplements (135).	Not presently permitted as a food additive. Available as a dietary supplement. USCFR GRAS, §184.1538, antimicrobial for specified uses which do not currently include PIF.
Nisin	Prevention of dental caries (136); anticaner and antibacterial (137).	Effects on the cytoskeleton of keratinocytes derived from normal epithelium; increased blood cholesterol concentrations in rats (138).	USCFR GRAS notice granted for lactoperoxidase system as a processing aid for dairy products pursuant to § 170.30 (Eligibility for classification as generally recognized as safe (GRAS)).
Lactoperoxidase	Inactivation of carcinogens (139); Contributions to cytotoxic effects against human cancer cells (140); Prevention of bone resorption through osteoclastogenesis (141).	Preparations derived from bovine milk could contain proteins which may be allergenic for sensitive individuals.	USCFR GRAS notice granted for cow's milk-derived lactoferrin as an additive ingredient for PIF pursuant to §170.36 (Affirmation of generally recognized as safe (GRAS) status).
Bovine lactoferrin	Contributions to cytotoxic effects against human cancer cells (139, 142); Contribution to gut health and immune development in neonates (143, 144); Prevention of acute gastrointestinal and respiratory symptoms in children aged 12–32 months (145).	No adverse effects in rats fed 2,000 mg/kg/day bovine lactoferrin for 13 days (146); Considered safe for human consumption (147).	USCFR GRAS notice granted for cow’s milk-derived lactoferrin as an additive ingredient for PIF pursuant to §170.36 (Affirmation of generally recognized as safe (GRAS) status).

(Continued)
of antibacterial effects in reconstituted PIF during storage at 10, 21, or 37°C, a result ascribed to interactions with food components that reduced the activity of lactoferrin, notably the divalent cations Ca²⁺, Mg²⁺, and Fe³⁺. Harouna et al. (102) attempted to improve the activity of lactoferrin by saturation with iron cations but the saturated form of the protein had no measurable antibacterial effect against C. sakazakii. Numerous novel antimicrobial peptides with enhanced antimicrobial activity have been synthesized through chemical or enzymatic hydrolysis of lactoferrin (110). Harouna et al. (103) prepared lactoferrin hydrolysates using pepsin, chymosin and microbial rennet that exhibited enhanced antibacterial activity against C. sakazakii in a microbiological medium. None were effective in reconstituted PIF at 37°C, however, which provided further evidence that PIF ingredients interfere with the activity of proteic or peptidic antimicrobials. The majority of NACs from animal sources considered for the enhancement of PIF safety have been derived from bovine milk. Antimicrobial peptides have been detected in the milk of other food animal species including sheep and goats (111). A recent report that growth of C. sakazakii is inhibited by strong, inherent antibacterial factors in camel milk suggested they are likely derived from the protein component (105). A database assembled by Wang et al. (112) lists 1,972 known antimicrobial peptides from animal sources, in addition to 321 from plants and many from fungi, protists or other life forms. One antimicrobial peptide from a non-bovine source, bicarinalin from ants, exhibited stronger bactericidal effects against C. sakazakii than ampicillin and tetracycline (104). Clearly, animals are a rich and largely untapped source of NACs that could find value in the enhancement of PIF safety.

NUTRITIONAL, TOXICOLOGICAL, AND REGULATORY CONSIDERATIONS

Commercial PIF products are subject to regulations and regulatory oversight administered by national governments. All are based on the Codex Alimentarius “Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants (CODEX STAN 72-1981),” which provides recommendations regarding the essential composition, nutritional quality and additives in formula. CODEX recommendations are adopted by national governments in various ways, but there is general consistency in the application of compositional and nutritional quality standards for PIF across the globe. In contrast, some disparities exist with respect to the use of additives due to variable legislative, legal or regulatory frameworks within different jurisdictions. In the United States, food ingredients are subject to provisions in the Code of Federal Regulations. Ingredients that are not listed in the Code can obtain Generally Recognized as Safe (GRAS) designation through a notification program which requires petitioners to provide historical and scientific evidence that a substance added to food is considered safe and suitable for exemption from the food additive tolerance requirements of the United States Food and Drug Administration. The GRAS status of selected NACs with antibacterial activity against Cronobacter spp. in PIF is shown in Table 4, along with health benefits that have been ascribed to them and pertinent toxicological data. The authors recognize that lack of knowledge about the metabolism of food additives old or new, difficulties in determining accurate levels of exposure, and susceptibility to toxicity have historically hindered safety assessments in the neonatal context (150). Likewise, the purported health benefits noted in Table 4 are largely derived from animal studies or human feeding trials conducted with children or adults, and extrapolation of results to the neonatal situation is challenging.

All NACs from plant sources with antibacterial activity in PIF listed in Table 4, with the exception of caprylic acid, are either purified phenolic compounds or contain high concentrations thereof. Vanillin, ethyl vanillin, and trans-cinnamaldehyde have GRAS status, and are widely consumed in food and nutritional supplements. Several vanilla-flavored PIF products containing natural and artificial flavors were once available in the marketplace but have since been withdrawn, although vanilla flavored “toddler” formula is still sold in North America. Whether the level of vanillin or ethyl vanillin supplementation used in these products was sufficient to achieve antibacterial effects against Cronobacter during PIF reconstitution or storage, as reported by Polat Yemiş et al. (72) is unknown. Supplementation of PIF with cocoa powder was also discontinued several years ago. The antibacterial activity of cocoa powder against C. sakazakii in reconstituted PIF described by Pina-Pérez et al. (58) was likely derived from polyphenols, many of which are known to interact with and damage the bacterial cell membrane (83). Polyphenols encompass several groups of compounds including phenolic acids and flavonoids, primarily flavanols present as monomeric epicatechin, catechin, and their oligomers referred to as proanthocyanidins. Research on the nutritional effects of moderate cocoa consumption suggests that the benefits likely outweigh the risks, and that beneficial effects on health are primarily derived from flavanol-mediated...
protection against oxidative insult by the modulation of oxygen radical generation and antioxidant enzyme and non-enzyme defenses (151, 152). There is compelling evidence that most polyphenols are largely beneficial to human health, principally for the prevention and management of chronic diseases (153). On the other hand, the pharmacological properties of some polyphenols introduce concerns about their safety in products intended for use by infants. Isoflavones (genistein, daidzein, and glycitein) derived from soya beans are known activators of estrogen receptors with demonstrable effects on reproductive and endocrine functions in animal models (154). All soy-protein based PIFs contain isoflavones, mainly genistein, but no clear consensus has emerged regarding the short or long term implications of long-term dietary exposure on the development of infants (155, 156). In contrast, consumption of the medium length straight chain fatty acid caprylic acid (octanoic acid) is considered to be comparatively free of toxicological risk (130). Caprylic acid is found naturally in the milk of mammals including humans (157) and in infant formulas as part of the medium chain triglyceride component contributed by vegetable fat, or increasingly bovine milk fat (158). Choi et al. (74) showed that low concentrations of caprylic acid in conjunction with citric acid completely inactivated C. sakazakii in PIF during reconstitution at the relatively low temperature of 45°C. A GRAS compound, it is used as an additive in a range of foods as an adjuvant or, interestingly, as a flavoring agent despite having an odor described as “slightly unpleasant and rancid-like.” Similarly, the monoterpene diketone thymoquinone, also a GRAS compound, could inactivate C. sakazakii during reconstitution (78) but it has a bitter taste and a “pencil-like” odor (159). The ubiquinone coenzyme Q₀ is the only odorless and tasteless NAC from non-microbial or animal sources identified to date with antibacterial activity against Cronobacter spp. Coenzyme Q₀ extracted from the AC mushroom (Antrodia cinnamomea), a parasitic fungus that grows of the camphor tree, has a long history of use in traditional medicine but has only recently been considered for food applications. Toxicological assessment of supplements prepared from the fungus suggest they are safe for human consumption (132). However, toxicological assessments of the purified compound are lacking and coenzyme Q₀ does not currently have GRAS status.

The chemistry, biology, toxicology, pharmacokinetic properties, and functionality of nisin as a food preservative have been extensively investigated. A recent reassessment of toxicological data by the European Food Safety Authority (EFSA) reaffirmed the safety of nisin as a food additive (160). Activity against Cronobacter spp. in PIF relies on synergism with citric acid (92), but the latter is a permitted additive. Hence, there appear to be few regulatory impediments to the use of nisin in foods destined for infants. As noted above, antibacterial activity of lactoperoxidase, another GRAS food additive that is used worldwide for milk preservation, is dependent on a source of thiocyanate, which Gurtler and Beuchat (101) provided exogenously in the form of sodium thiocyanate. Thiocyanates are ubiquitous in food products, however, and it is unfortunate that no attempt was made to determine if endogenous levels could have sustained the reaction. Evidence in support of this presumption was provided by Banks and Board (161) who found that lactoperoxidase catalyzed degradation of endogenous thiocyanates reduced the growth of Enterococcus, Pseudomonas spp., and Enterobacteriaceae in reconstituted PIF stored at 30°C for 48 h, which coincided with the depletion of free SCN⁻ ions. These observations suggest that the value of lactoperoxidase for the control of Cronobacter spp. in PIF merits further investigation. There are also few regulatory obstacles to the application of lactoferrin in PIF since it is already in use for therapeutic purposes, disease prevention or health promotion in neonates (82, 143, 162), and is available in highly purified forms safe for use in infant foods (163). Cell-free extracts derived from microbial cultures present greater regulatory challenges as noted above due to the multiplicity of bioactive compounds and variable composition of extracts which add complexity to toxicological assessments. In this context, the selection of candidate microorganisms for the production of cell-free-extracts among those already permitted as probiotics in PIF or that are considered GRAS on the basis of historical, safe use in food fermentations is highly advisable.

CONCLUSIONS AND FUTURE PROSPECTS

Societal concerns and regulatory response to the risk of exposure to harmful food chemicals in early life provide strong impetus to pursue the search for alternatives. Research on NACs with antibacterial activity against Cronobacter spp. has shown that several could find value in the control of this hazardous pathogen in PIF. However, technological obstacles to practical applications persist and means to overcome them must be the focus of future research in the field. The delivery of NACs with strong antibacterial activity to food systems is often hampered by limited solubility in aqueous matrices, instability, reactions with other food components or adverse effects on sensory properties. For example, the low solubility, volatility, intense sensory characteristics, and reactivity of phenolic compounds and essential oils often hinders their incorporation in foods. Adverse effects on the sensory quality of PIF are a notable concern in light of evidence that exposure to flavors modulates neonatal feeding behavior and food acceptability and choice later in life (164, 165). Recent progress in the use of biopolymers from natural sources for the design of innovative encapsulation systems that provide means to deliver effective yet reduced doses of antibacterial agents, protect active ingredients from undesirable reactions, and provide controlled, quantitative release into food matrices will undoubtedly promote the development of delivery strategies that overcome constraints on both the choice and application of NACs (166, 167). The selection of suitable NACs must also be guided by careful consideration of the regulatory framework governing PIF composition, specifically the use of additives. In the near term, single compounds for which nutritional and toxicological data are available should take preference over preparations likely to contain multiple bioactive compounds. The latter remain eminently worthy of study, however, as possible sources of novel NACs. As a final note, it must be emphasized
that the NACs described in the present work were derived from a limited number of animal, plant and bacterial species. Future efforts should be directed at the assessment of additional sources of NACs for the control of Cronobacter spp., such as mushroom species known to contain compounds with antibacterial activity against other foodborne pathogens (168).

AUTHOR CONTRIBUTIONS

GP and PD equally contributed to a review of the scientific literature, collection of relevant references, writing, and editing of the manuscript. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Urmenyi AM, White-Franklin, A. Neonatal death from pigmented coliform infection. Lancet. (1961) 1:313–15. doi: 10.1016/S0140-6736(61)91481-7
2. Farmer JJ III, Asbury MA, Hickman FW, Brenner DJ, the Enterobacteriaceae Study Group. Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol. (1980) 30:569–84. doi: 10.1099/00207713-30-3-569
3. Iversen C, Lehner A, Mullane N, Bidlasm E, Claranter W, Murrug J, et al. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muylteri sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol. (2007) 7:64. doi: 10.1186/1471-2148-7-64
4. Feeney A, Kropp KA, O’Connor R, Sletor RD. Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen. Gut Microbes. (2014) 5:711–18. doi: 10.4161/gmx.29907.2014.983774
5. Henry M, Foudalkhah A. Outbreak history, biofilm formation, and preventive measures for control of Cronobacter sakazakii in infant formula and infant care settings. Microorganisms. (2019) 7:1–10. doi: 10.3390/microorganisms7030077
6. Jang H, Gopinath GR, Eshwar A, Srikumar S, Nguyen S, Gangiredla S. The taxonomy of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Bacteriol. (1980) 30:569–84. doi: 10.1099/00207713-30-3-569
7. Healy B, Cooney S, O’Brien S, Iversen C, Whyte P, Nally J, Callanan JF. The secretion of toxins and other exoproducts of Cronobacter: role in virulence, adaption, and persistence. Microorganisms. (2020) 8:229. doi: 10.3390/microorganisms8020229
8. Friedemann M. Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. Eur J Clin Microbiol Infect Dis. (2009) 28:1297–304. doi: 10.1007/s10096-009-0779-4
9. Forsythe SJ. Updates on the Enterobacter sakazakii gen. nov. and descriptions of Enterobacter sakazakii subsp. nov., Enterobacter sakazakii subsp. malonaticus. J. Dairy Sci. (2011) 94:3801–10. doi: 10.3168/jds.2011-4318
10. Lai KK. Enterobacter sakazakii in powdered infant formula and infant care settings. Microorganisms. (2019) 7:1–10. doi: 10.3390/microorganisms7030077
11. Simmons BP, Gelfand MS, Haas M, Metts L, Ferguson J, et al. The secretion of toxins and other exoproducts of Cronobacter: role in virulence, adaption, and persistence. Microorganisms. (2020) 8:229. doi: 10.3390/microorganisms8020229
12. Beuchat LR, Kim H, Gurtler JB, Lin LC, Ryu JH, Richards GM. Enterobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. Int J Food Microbiol. (2009) 136:204–13. doi: 10.1016/j.ijfoodmicro.2009.02.029
13. Kandhai MC, Reij MW, Gorris LG, Guillaume-Gentil O, van Schothorst M. Occurrence of Enterobacter sakazakii in food production environments and households. Lancet. (2004) 363:39–40. doi: 10.1016/S0140-6736(03)15169-0
14. Lou X, Liu T, Zhang W, Yu H, Wan, H, Song S, et al. The occurrence and distribution characteristics of Cronobacter in diverse cereal kernels, flour, and flour-based products. Food Microbiol. (2019) 84:103269. doi: 10.1016/j.fm.2019.103269
15. Maldonado J, Gil A, Narbona E, Molina JA. Special formulas in infant nutrition: a review. Early Hu Dev. (1998) 53:23–32. doi: 10.1016/S0140-6736(98)00062-9
16. Masum AKM, Chandrapala J, Huppertz T, Adhikari B, Zisu B. Production and characterization of infant milk formula powders: a review. Dryin. Technol. (2020). doi: 10.1080/07373937.2020.1767645. [Epub ahead of print].
17. World Health Organization. Safe Preparation, Storage and Handling of Powdered Infant Formula Guidelines. Geneva: World Health Organization (2017). Available online at: https://www.who.int/foodsafety/publications/powdered-infant-formula/en/ (accessed October 26, 2020).
18. Kent RM, Fitzgerald GF, Hill C, Stanton C, Ross RP. Novel approaches to improve the intrinsic microbiological safety of powdered infant milk formula. Nutrients. (2015) 7:1217–44. doi: 10.3390/nu7021217
19. Parra-Flores J, Maury-Sintjago E, Rodriguez-Fernández A, Acuña S, Cerda F, Aguirre J, et al. Microbiological quality of powdered infant formula in Latin America. J Food Prot. (2020) 83:534–41. doi: 10.4315/0362-028X-JFP-19-399
20. Reich F, König R, Von Wiese W, Klein G. Prevalence of Cronobacter spp. in a powdered infant formula processing environment. Int J Food Microbiol. (2010) 140:214–7. doi: 10.1016/j.ifmic.2010.03.031
21. Jacobs C, Braun P, Hammer P. Reservoir and routes of transmission of Enterobacter sakazakii (Cronobacter spp.) in a milk powder-producing plant. J Dairy Sci. (2011) 94:3801–10. doi: 10.3168/jds.2011-4318
22. Yan Q, Power KA, Cooney S, Fox, E, Gopinath G, Grim CJ, et al. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Front Microbiol. (2013) 4:256. doi: 10.3389/fmicb.2013.00256
23. Pei X, Li Y, Zhang H, Zhan L, Yu X, Lan G, et al. Surveillance and characterisation of Cronobacter in powdered infant formula processing factories. Food Control. (2019) 96:318–23. doi: 10.1016/j.foodcont.2018.09.009
33. Lu Y, Liu P, Li C, Sha M, Fang J, Gao J, Xu X, Matthews KR. Prevalence and genetic diversity of *Cronobacter* species isolated from four infant formula production factories in China. *Front Microbiol.* (2019) 10:1938. doi: 10.3389/fmicb.2019.01938

34. Gurtler JB, Beuchat LR. Survival of *Enterobacter sakazakii* in powdered infant formula as affected by composition, water activity, and temperature. *J Food Prot.* (2007) 70:1579–86. doi: 10.4315/0362-028X-70.7.1579

35. Caubilla-Barron J, Forsythe S. Dry stress and survival time of *Enterobacter sakazakii* and other Enterobacteriaceae. *J Food Prot.* (2007) 70:2111–7. doi: 10.4315/0362-028X-70.9.2111

36. Breeuwer P, Lardeau A, Riedel K, Eberl L, Breeuwer P, Diep B. Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various *Enterobacter sakazakii* strains: aspects promoting environmental persistence. *Front Microbiol.* (2015) 6:2287–94. doi: 10.4315/0362-028X.JFP-15-628

37. Nazarowec-White M, Farber JM. Thermal resistance of *Enterobacter sakazakii* isolated from powdered infant formula milk. *J Appl Microbiol.* (2010) 95:967–73. doi: 10.1111/j.1365-2672.2009.02067.x

38. Osaili TM, Shaker RR, Al-Haddaq MS, Al-Nabulsi AA, Holley RA. Heat resistance of *Cronobacter* species (*Enterobacter sakazakii*) in milk and special feeding formula. *J Appl Microbiol.* (1989) 107:928–35. doi: 10.1111/j.1365-2672.2009.04271.x

39. Arroyo C, Condon S, Pagan R. Thermobacteriological characterization of *Enterobacter sakazakii*. *Int J Food Microbiol.* (2009) 136:110–8. doi: 10.1016/j.ijfoodmicro.2009.09.013

40. Arku B, Fanning S, Jordan K. Heat adaptation and survival of *Cronobacter* spp. (*formerly Enterobacter sakazakii*). *Foodborne Pathog Dis.* (2011) 8:975–81. doi: 10.1089/fpd.2010.0819

41. Huertas JP, Álvarez-Ordóñez A, Morrissey R, Ros-Chumillas M, Esteban MD, Maté J, et al. Heat resistance of *Cronobacter sakazakii* DPC 6529 and its behavior in reconstituted powdered infant formula. *Food Res Int.* (2015) 69:401–9. doi: 10.1016/j.foodres.2015.01.010

42. World Health Organization. WHO/FAO Guidelines for the Safe Preparation, Storage and Handling of Powdered Infant Formula. (2006). Available online at: www.environline.net/infantformulaguidelines (accessed October 26, 2020).

43. Osali TM, Al-Nabulsi AA, Shaker RR, Ayyash MM, Olaimat AN, Abu Al-Hasan AS, et al. Effects of extended dry storage of powdered infant milk formula on susceptibility of *Enterobacter sakazakii* to hot water and ionizing irradiation. *J Food Prot.* (2008) 71:934–9. doi: 10.4315/0362-028X-JFP-08-715.934

44. Tuck D. Safety aspects in preparation and handling of infant food. *Ann Nutr Metab.* (2012) 60:211–4. doi: 10.1159/000328315

45. Cho TJ, Hwang YJ, Kim HW, Kim YK, Kwon JL, Kim YJ, et al. Underestimated risks of infantile infectious disease from the caregiver’s typical handling practices of infant formula. *Sci Rep.* (2019) 9:47979. doi: 10.1038/s41598-019-46181-0

46. Iversen C, Lane M, Forsythe SJ. The growth profile, thermostolerance and biofilm formation of *Enterobacter sakazakii* grown in infant formula milk. *Lett Appl Microbiol.* (2004) 38:378–82. doi: 10.1111/j.1472-765X.2004.00150.x

47. Lehner A, Riedel K, Eberl L, Breeuwer P, Diep B. Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various *Enterobacter sakazakii* strains: aspects promoting environmental persistence. *J Food Prot.* (2005) 6:2287–94. doi: 10.4315/0362-028X-68.11.2287

48. Hurrell E, Kucerova E, Fan X, Jin T, Niemira BA. Influence of antimicrobial agents on the thermal sensitivity of foodborne pathogens: a review. *J Food Prot.* (2019) 82:628–44. doi: 10.4315/0362-028X.JFP-18-441

49. Cui Y, Liu W, Zhao Q, Li Y, Wang Y, et al. Heat resistance of *Enterobacter sakazakii* isolated from powdered infant formula milk. *Front Microbiol.* (2009) 29:3239–9. doi: 10.1007/s40202-018-0822-0

50. Silva JL, Weng WL, Chen WW, Corbett M, Jung YS, Chen YS. Inactivation of *Enterobacter sakazakii* by water-soluble muscadine seed extracts. *Int J Food Microbiol.* (2012) 149:320–6. doi: 10.1016/j.ijfoodmicro.2012.02.013

51. Polat Yemiş G, Bach S, Delaquis P. Effect of vanillin, ethyl vanillate and vanillic acid on the growth and heat resistance of *Cronobacter* species. *J Food Prot.* (2011) 74:2062–9. doi: 10.4315/0362-028X.JFP-11-230

52. Polat Yemiş G, Bach S, Delaquis P. Thermal tolerance and survival of *Cronobacter sakazakii* in powdered infant formula supplemented
with vanillin, ethyl vanillin, and vanillic acid. J Food Sci. (2012) 77:523–7. doi: 10.1111/j.1750-3841.2012.02834.x

73. Jang HI, Rhee MS. Inhibitory effect of caprylic acid and mild heat on Cronobacter spp. (Enterobacter sakazakii) in reconstituted infant formula and determination of infant formula by flow cytometry. Int J Food Microbiol. (2009) 133:113–20. doi: 10.1016/j.ijfoodmicro.2009.05.009

74. Choi MJ, Kim SA, Lee NY, Rhee MS. New decontamination method based on caprylic acid in combination with citric acid or vanillin for eliminating Cronobacter sakazakii and Salmonella enterica serovar Typhimurium in reconstituted infant formula. Int J Food Microbiol. (2013), 164:499–507. doi: 10.1016/j.ijfoodmicro.2013.08.016

75. Shi C, Song K, Zhang X, Sun Y, cui Y, Chen Y, et al. Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. PLoS ONE. (2016) 11:e0159006. doi: 10.1371/journal.pone.0159006

76. Shi C, Sun Y, Zheng Z, Zhang X, Song K, jia z, et al. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chem. (2016) 197:100–6. doi: 10.1016/j.foodchem.2015.10.100

77. Shi C, Zhang X, Sun Y, Yang M, Song K, Zheng Z, et al. Antimicrobial activity of ferulic acid against Cronobacter sakazakii and possible mechanism of action. Foodborne Pathog Dis. (2016) 13:196–204. doi: 10.1089/fpd.2015.1992

78. Shi C, jia z, Chen Y, Yang M, Liu X, Sun Y, et al. Inactivation of Cronobacter sakazakii in reconstituted infant formula by combination of thymoquinone and mild heat. J Appl Microbiol. (2019) 119:1706–6. doi: 10.1111/jam.12964

79. Shi C, Yan C, Sun Y, Sun Y, guo D, Chen Y, et al. Thymoquinone inhibits virulence related traits of Cronobacter sakazakii ATCC 29541 and has anti-biofilm formation potential. Front Microbiol. (2017) 8:2220. doi: 10.3389/fmicb.2017.02220

80. Chen Y, Wen Q, Chen S, Guo D, Xu Y, liang S, et al. Effect of thymoquinone on the resistance of Cronobacter sakazakii to lactoferrin or nisin in broth and powdered infant formula. Int J Food Microbiol. (2009) 136:221–6. doi: 10.1016/j.ijfoodmicro.2009.08.008

81. Kell DB, Heyden EL, Pretorius E. The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Curr Opin Biotechnol. (2019) 61:160–7. doi: 10.1016/j.copbio.2019.02.023

82. Guo D, Wang S, Li J, Bae Y, Feng Y, xu Y, et al. The antimicrobial activity of coenzyme Q₈ against planktonic and biofilm forms of Cronobacter sakazakii. Food Microbiol. (2020) 86:103337. doi: 10.1016/j.fm.2020.10.0337

83. Bouarab-Chibane L, Forquet V, Lantéri P, Clément Y, Léonard-Akkari L, et al. Potent bactericidal effects of bicarinalin against strains of the Enterobacter sakazakii and the modes of action for thyroid hormone perturbations. Microbiol. (2014) 47:537–63. doi: 10.1080/10408444.2017.1281590

84. Takené N, Roche-Chatain V, Riflet A, Bonnafe E, Lefranc B, Leprince J, et al. Potent bactericidal effects of bicarinalin against strains of the Enterobacter and Cronobacter genera. Food Control. (2014) 42:202–6. doi: 10.1016/j.foodcont.2014.02.026

85. Abushelabi A, Osalii TM, Al-Holy MA, Shaker RR, Ayashy MM, Olaimat AN, Holley, RA. Influence of desiccation on the sensitivity of Cronobacter spp. to lactoferrin or nisin in broth and powdered infant formula. Int J Food Microbiol. (2009) 136:221–6. doi: 10.1016/j.ijfoodmicro.2009.08.008

86. Ellison RT, Giehl TJ, LaForce FM. Damage of the outer membrane of enteric pathogens Cronobacter sakazakii: effect of media and heat treatment. Food Control. (2015) 47:520–5. doi: 10.1016/j.foodcont.2014.07.061

87. Harouna S, Carramiñana JJ, Navarro F, Pérez MD, Calvo M, Sánchez L. Antibacterial activity of bovine milk lactoferrin on the emerging foodborne pathogen Cronobacter sakazakii: effect of media and heat treatment. Front. Microbiol. (2018) 9:1234. doi: 10.3389/fmicb.2018.01234

88. Willemin ME, Lumen A. Thiocyanate: a review and evaluation of the kinetics and the modes of action for thyroid hormone perturbations. Crit Rev Toxicol. (2017) 47:537–63. doi: 10.1080/10408444.2017.1281590

89. Ellison RT, Giehl TJ, LaForce FM. Damage of the outer membrane of Enterobacter sakazakii by lactoferrin and transferrin. Infect Immun. (1988) 56:2774–81. doi: 10.1128/IAI.56.11.2774-2781.1988

90. Kell DB, Heyden EL, Pretorius E. The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front Immunol. (2020) 11:1221. doi: 10.3389/fimmu.2020.01221

91. Gao Y, Hou L, Lu C, Wang Q, Pan B, Wang Q, et al. Enteral lactoferrin supplementation for preventing sepsis and necrotizing enterocolitis in preterm infants: a meta analysis with trial sequential analysis of randomized controlled trials. Front Pharmacol. (2020) 11:1186. doi: 10.3389/fphar.2020.01186

92. Hoek KS, Milne J, Grieve PA, Dionysius DA, Smith R. Antibacterial activity of bovine lactoferrin-derived peptides. Antimicrob Agents Chemother. (1997) 41:54–9. doi: 10.1128/AAC.41.1.54.
151. Katz DL, Doughty K, Ali A. Cocoa and chocolate in human health and disease. *Antioxid Redox Signal.* (2011)15:2779–81. doi: 10.1089/ars.2010.3697

152. Martins TF, Palomino OM, Álvarez-Cilleros D, Martín MA, Ramos S, Goya L. Cocoa flavonols protect human endothelial cells from oxidative stress. *Plant Foods Hum Nutr.* (2020)75:161–8. doi: 10.1007/s11130-020-00807-1

153. Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: a mini-review. *Front Nutr.* (2018) 5:1–9. doi: 10.3389/fnut.2018.00087

154. Liu X, Li FF, Xie JH, Huang DF, Xie MY. Fetal and neonatal genistein exposure aggravates to interfere with ovarian follicle development of obese female mice induced by high-fat diet. *Food Chem Toxicol.* (2020) 135:110982.

doi: 10.1016/j.fct.2019.110982

155. Adgent AA, Umbach DM, Zemel BS, Kelly A, Schall JI, Ford EG, et al. Longitudinal study of estrogen-responsive tissues and hormone concentrations in infants fed soy formula. *J Clin Endocrinol Metab.* (2018) 103:1899–909. doi: 10.1210/jc.2017-02249

156. Testa, I, Salvatori, C, Di Cara, G, Latini A, Frati F, Troiani S, et al. Soy-based infant formula: are phyto-oestrogens still in doubt? *Front Nutr.* (2018) 5:110. doi: 10.3389/fnut.2018.00110

157. Jensen RG, Clark RM, Ferris AM. Composition of the lipids in human milk: a review. *Lipids.* (1980) 15:345–55. doi: 10.1007/BF02 533550

158. Hageman JH, Danielsen M, Nieuwenhuizen AG, Feitsma, AL, Dalgaard TK. Comparison of bovine milk fat and vegetable fat for infant formula: implications for infant health. *Int Dairy J.* (2019) 92:37–49. doi: 10.1016/j.idairyj.2019.01.005

159. Schreiner I, Bauer J, Ortner E, Buettner A. Structure–odor activity studies on derivatives of aromatic and oxygenated monoterpenoids synthesized by modifying p-cymene. *J Nat Prod.* (2020) 83:834–42. doi: 10.1021/acs.jnatprod.9b00339

160. Yones M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipi ˇc M, et al. Safety of nisin (E 234) as a food additive in the light of new toxicological data and the proposed extension of use. *EFSFA J.* (2017) 15:5063. doi: 10.2903/j.efsa.2017.5063

161. Banks J G, Board RG. Preservation by the lactoperoxidase system (LP-S) of a contaminated infant milk formula. *Lett Appl Microbiol.* (1985) 1:81–5. doi: 10.1111/j.1472-765X.1985.tb01495.x

162. Kawaguchi S, Hayashi T, Masano H, Okuyama K, Suzuki T, Kawase K. Effect of lactoferrin-enriched infant formula on low birth weight infants. *Shuusunkigaku.* (1989)19:125–30.

163. Wakabayashi H, Yamauchi K, Abe F. Quality control of commercial bovine lactoferrin. *BioMetals.* (2018) 31:313–9. doi: 10.1007/s10534-018-0098-2

164. Mennella JA, Beauchamp GK. The human infants' responses to vanilla flavors in human milk and formula. *Infant Behav Dev.* (1996) 19:13–9. doi: 10.1016/S0163-6383(96)90040-5

165. Beauchamp GK, Mennella JA. Early flavor learning and its impact on later feeding behavior. *J Pediatr Gastro Nutr.* (2009) 48:25–30. doi: 10.1097/MPG.0b013e31819774a5

166. Valencia GA, Zare EN, Makvandi P, Gutiérrez TJ. Self-assembled carbohydrate polymers for food applications: a review. *Compr Rev Food Sci Food Saf.* (2019) 18:2009–24. doi: 10.1111/1541-4337.12499

167. Sampathkumar K, Tan KK, Loo SCJ. Developing nano-delivery systems for agriculture and food applications with nature-derived polymers. *iScience.* (2020) 23:101055. doi: 10.1016/j.isci.2020.101055

168. Shen HS, Shao S, Chen JC, Zhou T. Antimicrobials from mushrooms for assuring food safety. *Compr Rev Food Sci Food Saf.* (2017) 16:316–29. doi: 10.1111/1541-4337.12255

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.