Basic Study

Dysregulation of mRNA profile in cisplatin-resistant gastric cancer cell line SGC7901

Xiao-Que Xie, Qi-Hong Zhao, Hua Wang, Kang-Sheng Gu

Abstract

AIM
To explore novel therapeutic target of cisplatin resistance in human gastric cancer.

METHODS
The sensitivity of SGC7901 cells and cisplatin-resistant SGC7901 cells (SGC7901/DDP) for cisplatin were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. High-quality total RNA which isolated from SGC7901/DDP cells and SGC7901 cells were used for mRNA microarray analysis. Results were analyzed bioinformatically to predict their roles in the development of cisplatin resistance and the expression of 13 dysregulated mRNAs we selected were validated by quantitative real-time polymerase chain reaction (qRT-PCR).

RESULTS
SGC7901/DDP cells highly resistant to cisplatin demonstrated by MTT assay. A total of 1308 mRNAs (578 upregulated and 730 downregulated) were
differentially expressed (fold change ≥ 2 and P-value < 0.05) in the SGC7901/DDP cells compared with SGC7901 cells. The expression of mRNAs detected by qRT-PCR were consistent with the microarray results. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway and protein-protein interaction analysis demonstrated that the differentially expressed mRNAs were enriched in PI3K-Akt, Notch, MAPK, ErbB, Jak-STAT, NF-kappaB signaling pathways which may be involved in cisplatin resistance. Several genes such as PDE3B, VEGFC, IGFBP3, TLR4, HIPK2 and EGF may associated with drug resistance of gastric cancer cells to cisplatin.

CONCLUSION
Exploration of those altered mRNAs may provide more promising strategy in diagnosis and therapy for gastric cancer with cisplatin resistance.

Key words: Gastric cancer; Dysregulate; Cisplatin resistance; Microarray; Biology

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We tested the sensitivity of human gastric cancer cells SGC7901/DDP and SGC7901 for cisplatin and compared their mRNA expression profile using a human mRNA microarray, and then performed bioinformatics analysis to depict comprehensively the properties of the differentially expressed mRNAs. Results demonstrated that the dysregulated mRNA were enriched in functions and pathways that may be involved in cisplatin resistance. Exploration of the dysregulated genes could suggest a promising strategy in diagnosis and therapy of gastric cancer with cisplatin resistance.

Xie XQ, Zhao QH, Wang H, Gu KS. Dysregulation of mRNA profile in cisplatin-resistant gastric cancer cell line SGC7901. World J Gastroenterol 2017; 23(7): 1189-1202 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i7/1189.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i7.1189

INTRODUCTION
Gastric cancer is the fourth most common cancer and the second leading cause of cancer death globally[1], and more than two thirds of patients when diagnosed with unresectable disease[2]. The 5-year overall survival rate of patients with advanced gastric cancer approximately 25%[3]. Currently, platinum-based chemotherapy regimen is the standout chemotherapy frequently used for advanced gastric cancer[4-6], and median overall survival and progression free survival was significantly longer in cisplatin-containing combination therapy compared to non-cisplatin containing regimens[6,7]. However, cisplatin-based chemotherapeutic agents are often limited in chemotherapy due to drug resistance[8,9].

Cisplatin resistance of gastric cancer is multifactorial, accumulating evidence have suggested that the aberrant expression of proteins which associated with decreased cellular accumulation, increased DNA repair capacity, increased drug inactivation[10] play important role in the acquisition of cisplatin resistance. Previous researches have shown that abnormal expression of copper transporter 1 (CTR1) and MRP2 lead to cisplatin resistance by reducing the concentration of cisplatin in cells[11-13]. Moreover, the upregulation of excision repair cross complementing 1 (ERCC1)[14], X-ray repair cross complementing 1 (XRCC1)[15] and breast cancer 1 (BRCA1)[16] have shown to be involved in cisplatin resistance by removal of Pt-DNA adducts[17,18]. Other studies have shown that downregulation of the human epidermal growth factor receptor II (ErbB2) can significantly enhanced the apoptosis-inducing effects of cisplatin in gastric cancer[19,20].

The mechanisms of cisplatin resistance are quite complex and have not been fully revealed till now, so investigation of the molecular mechanisms and biomarkers is urgently needed. This study aims to analyze mRNA expression profiles in SGC7901/DDP cells to explore more chemotherapeutic molecular targets and to guide appropriate chemotherapy for gastric cancer with cisplatin resistance.

MATERIALS AND METHODS

Cell lines and culture
The human cisplatin-resistant gastric cancer cell line SGC7901/DDP and its parental cells SGC7901 were purchased from KeyGEN Biotechnology Company (Nanjing, Jiangsu, China). Cells were cultured in RPMI-1640 medium (Gibco, Grand Island, NY, United States) containing 10% fetal calf serum (Gibco, NY, United States) supplemented with 100 U/mL penicillin and 100 μg/mL streptomycin. Cells were cultured in a humidified atmosphere with 5% CO2 at 37 ℃. Cisplatin (Sigma, CA, United States) with final concentration of 800 ng/mL was added to the culture media for SGC7901/DDP cells to maintain the cisplatin-resistant phenotype.

MTT method assay for SGC7901/DDP and SGC7901 cells viability
SGC7901/DDP and SGC7901 cells were suspended at a density of 1 × 105 cells/mL and planted into 96-well culture plate. After 24 hours, the cells were treated with freshly prepared DDP. The final concentrations were 133.34 μmol/L, 66.67 μmol/L, 6.67 μmol/L, 0.67 μmol/L and 0.067 μmol/L, because the human peak plasma concentration for DDP has been reported...
as 6.67 μmol/L[21]. Cell viability was examined after 48 h and was determined by adding 20 μL MTT (5 mg/mL) to each well and incubated for a further 4 h. The resulting formazan crystal was dissolved by addition of 150 μL dimethyl sulfoxide (DMSO) (sigma, Germany) each well, and then plates were shaken for 10 minutes. The absorbance at 490 nm was measured by spectrophotometer (ELx 800; BioTek; Winooski, VT, United States). The inhibition of growth (IC50) for DDP was calculated by the cells relative viability. Each experiment was performed in triplicate.

Total RNA extraction and mRNA microarray

Cells were harvested when they had grown to 80%-90% confluency and were still in logarithmic phase. Total RNA was extracted from the three matched pairs of SGC7901/DDP and SGC7901 cells using TRIzol reagent (Invitrogen, Carlsbad, CA, United States) according to the manufacturer's instructions. The quality of total RNA was measured by NanoDrop ND-2000 spectrophotometer (Thermo Scientific, Waltham, MA, United States). Total RNA from three paired samples were amplified and transcribed into fluorescent cDNA, and then the fluorescent labeled samples were hybridized to the Agilent LncRNA-mRNA Human Gene Expression Microarray V4.0 (Capital Bio Corp, Beijing, China) which contains 25069 human mRNA according to the manufacturer's recommendations. The microarray was scanned by an Agilent Microarray Scanner. Image processing was conducted using Agilent Feature Extraction software and raw microarray signals normalized using Agilent Gene-Spring software. The normalized mRNA expression profiles data output was received in Excel spreadsheets. The two group of samples data were analyzed by t-test to get the P-values. FC values representing the differently expressed mRNAs between SGC7901/DDP and their parental cells. Cluster 3.0 software was performed to show differential expression patterns of mRNAs.

Bioinformatics analysis

Bioinformatics analysis were generated using KOBAS software and STRING 9.1 software. KOBAS software was used to analyze Ontology, Disease and pathways of the dysregulated mRNAs. KOBAS associated with 1 ontology database (Gene Ontology), 5 disease databases (OMIM, KEGG DISEASE, PID Reactome, FunDO, GAD, NHGRI) and 7 pathway databases (KEGG PATHWAY, PID Curated, PID BioCarta, BioCyc, eactome, Panther). The entire analysis process includes two steps: first, bring the input gene ID map to the gene in the databases, and then annotate pathways, disease and function of these genes involved in. Second step, compare the first step results with background (usually the entire genome of the gene, or the entire probe on the chip), and unearth statistically significant enrichment pathways, disease or function. Fisher’s exact test and χ2 test were used as statistical tests and the FDR was performed to correct the P-value[22]. Additionally, we used STRING 9.1 software to decipher the protein-protein interaction (PPI) network of the differentially expressed proteins. The PPI network may help in understanding the molecular mechanism of cisplatin resistance. All mRNA microarray data were given by Capital Bio Corp.

Quantitative real-time PCR validation of microarray results

To validate the reliability of microarray analysis, we performed quantitative real-time PCR (qRT-PCR). The reverse transcription production cDNA was synthesized using oligo-dT primers and Superscript II reverse transcriptase. PCR was performed with SYBRR Premix Ex TaqTM (TakaRa Bio; Japan) by a Light Cycler PCR system (Agilent Technologies, Palo Alto, CA, United States) according to the manufacturer's instructions. After amplification, melting curves were analyzed. Beta-actin snRNA used as endogenous control, each sample was done in triplicate. The relative expression levels of target mRNAs were calculated using the 2^ΔΔCt method (where ΔΔCt is the difference in threshold cycles for the ΔCt of SGC7901/DDP sample and SGC7901 sample, and ΔCt is the difference between the target gene and endogenous control beta-actin). Sequences of primers for qRT-PCR are provided in supporting Table 1.

Statistical analysis

MTT test and qRT-PCR statistical analysis was performed using GraphPad Prism software (v. 5.0a; GraphPad Software, La Jolla, CA, United States). We used one-way analysis of variance (ANOVA) followed by Student’s t-test to assess the statistical significance of differences between different cell groups. The threshold for statistical significance was P-values < 0.05. Fold changes of mRNAs validated by qRT-PCR in SGC7901/DDP cells compared with SGC7901 cells are shown as mean ± SD.

RESULTS

Sensitivity of SGC7901/DDP and SGC7901 cells to DDP

To determine the chemotherapy sensitivity of SGC7901/DDP and SGC7901 cell line to cisplatin, varying concentrations of cisplatin were added into the 96-well plates and incubated for 48 h. From these data, half maximal inhibitory concentration (IC50) cisplatin dose was calculated. IC50 cisplatin doses for SGC7901/DDP and SGC7901 (after 48 h in DDP-containing media) were 43.47 ± 0.21 μmol/L and 1.24 ± 0.02 μmol/L, respectively, and the resistance index for SGC7901/DDP cell lines was 35.12, confirming that these cells are refractory to cisplatin. Cell viability was checked by MTT assay (Figure 1).
Validation of microarray results by qRT-PCR of 13 mRNAs

First, we concentrated on validating the microarray results. From the abnormally expressed (P < 0.05) mRNAs obtained from the microarray analyses, we selected 8 upregulated (HIPK2, PDE3B, FGF2, TWIST1, ZEB2, VEGFC, SPHK1, BAX) and 5 downregulated (PTEN, HTRA1, CCL5, TGM2, TLR4) mRNAs for qRT-PCR validation. The relative fold-changes (SGC7901/DDP vs SGC7901) detected by qRT-PCR were consistent with the microarray results (Figure 3), indicating the dependability of our microarray platform.

Statistical analysis

To depict comprehensively the properties of the differentially expressed mRNA in SGC7901/DDP cells, GO annotation and enrichment analysis was performed to evaluate which cellular components, molecular functions and biological processes may be are affected by this dysregulation. The GO enrichment analysis showed that the differentially expressed genes were involved in a variety of functions, including locomotion, chemotaxis, cell adhesion, regulation of cell migration, extracellular matrix disassembly, response to xenobiotic chemotaxis, localization of cell adhesion and blood vessel morphogenesis (Figure 4A).

Additionally, 59 human diseases were significant enriched (P < 0.05) in five human disease databases

Validation of microarray results by qRT-PCR of 13 mRNAs

First, we concentrated on validating the microarray results. From the abnormally expressed (P < 0.05) mRNAs obtained from the microarray analyses, we selected 8 upregulated mRNAs (HIPK2, PDE3B, FGF2, TWIST1, ZEB2, VEGFC, SPHK1, BAX) and 5 downregulated (PTEN, HTRA1, CCL5, TGM2, TLR4) mRNAs for qRT-PCR validation. The relative fold-changes (SGC7901/DDP vs SGC7901) detected by qRT-PCR were consistent with the microarray results (Figure 3), indicating the dependability of our microarray platform.

Expression profile of mRNAs in SGC7901/DDP cells

To show mRNA expression profile in cisplatin-resistant SGC7901/DDP cells, we used a stringency cutoff to identify significantly differently mRNAs (P < 0.05, FC ≥ 2) and two-dimensional hierarchical clustering 3.0 to represent expression profiles between samples (Figure 2). The results indicated that 1308 mRNAs were significantly differentially expressed in SGC7901/DDP cells compared with SGC7901 cells. Among these transcripts, 578 mRNAs were upregulated, and 730 mRNAs were downregulated.
Figure 2 mRNA expression levels from microarray. A: The volcano plot image showed the mRNA expression levels of microarray in SGC7901/DDP cells compared with SGC7901 cells. Black dots: equally expressed mRNAs between SGC7901/DDP cells and SGC7901 cells (FC ≤ 2); red dots: mRNAs were over-expressed in SGC7901/DDP cells compared with SGC7901 cells (FC ≥ 2); green dots: mRNAs in SGC7901/DDP cells were down-expressed compared to SGC7901 cells (P-values < 0.05, FC ≥ 2). Fold changes of these mRNAs in SGC7901/DDP cells compared with SGC7901 cells are shown as mean ± SD; B: Two-dimensional hierarchical clustering image of the 1308 dysregulated mRNAs in the SGC7901/DDP cells compared with the SGC7901 cells, each row represents an mRNA, each column represents a sample. 7901-1, 7901-2 and 7901-3 represent the three samples of SGC7901 cells, DDP-1, DDP-2 and DDP-3 represent the three samples of SGC7901/DDP cells. Red: Higher expression levels; green: Lower expression levels.

Figure 3 Quantitative real-time polymerase chain reaction validation of the microarray results of the 13 mRNAs. Relative fold changes in expression between SGC7901/DDP cells and SGC7901 cells were in agreement with microarray.

Interaction network analysis
The STRING 9.1 software (Search Tool for the Retrieval of Interacting Genes) was used to perceive functional relations and generate networks of differential expression of proteins (Figure 6). For all of the 1002 differentially expressed proteins, we extracted a network containing 443 upregulated and 559 downregulated proteins which functionally associated with each other. We found that interacting proteins which participate in angiogenesis, toll-like receptor signaling pathway and cell adhesion had a high level of co-expression.

DISCUSSION
Cisplatin is widely used against a variety of solid neoplasms, including testicular, ovarian, colorectal, bladder, head and neck cancers and gastric cancer[23]. However, the repeated clinical expose to cisplatin often results in the tumor cells evading the apoptosis program initiated by cisplatin. Therefore, there is a need to explore the molecular mechanisms of cisplatin resistance, in order to overcome drug resistance in tumor therapy. Recently, several studies have indicated that many proteins are involved in the recognition of Pt-DNA adducts and cisplatin-induced apoptosis program[24,25]. In this study, we used microarray, GO, KEGG pathway and protein-protein interaction (PPI) analysis to explore the roles of differentially expressed mRNAs in cisplatin resistance and to support other studies.

Many genes which shown differentially expression in the microarray analysis have been demonstrated to be associated with cisplatin resistance in human cancer
Table 4, such as PDE3B, which was substantially upregulated (P value = 0.00029, Fold Chang (FC) = 10.45) in SGC7901/DDP cells. Treatment with a combination of a PDE3B inhibitor and DDP can significantly increase the number of apoptotic and cell growth-suppressive cancer cells in cisplatin resistant
squamous cell carcinoma (SCC) and Hela cells\(^{[26]}\). Research shows that VEGFC, which is upregulated in our data (\(P\) value = 0.00013 FC = 2.93), enhanced cell invasion and cisplatin resistance in gastric cancer\(^{[27]}\). In non-small cell lung cancer, loss of IGFBP-3 expression may activate the PI3K/AKT pathway and induce resistance to cisplatin\(^{[28]}\). In support of this association, our results showed that this mRNA is downregulated (\(P = 0.00007\), FC = 2.93) in SGC7901/DDP cells.

GO enrichment analysis exhibits many functions which the differently expressed mRNAs are involved in, including locomotion, chemotaxis, cell adhesion,
regulation of cell migration, extracellular matrix disassembly, response to xenobiotic chemotaxis, localization of cell adhesion and blood vessel morphogenesis. Functional annotation showed that the differently expressed mRNAs mainly regulate cellular biological behaviors in the progress of regulation of transcription. How the underlying targets of each GO term are implicated in the cisplatin resistance needs further investigation in the future.

Our KEGG pathway analysis showed that the differently expressed mRNAs are enriched in pathways of ECM-receptor interaction, PI3K-Akt, Rap1, MAPK, Notch1, ErbB, ABC transporters, Jak-STAT, NF-κB, HIF-1 and TGF-β. All of those pathways have been confirmed to be involved in cisplatin resistance in different experiments described previously. For example, the inhibition of PI3K-Akt signaling pathway may increase the sensitivity of gastric cancer cells to cisplatin chemotherapy[29]. Another study found that Janus kinase 2 (JAK2) signal transducer and activator of transcription 3 (STAT3) signaling pathways were activated by overexpressed AKT in cisplatin resistant human gastric cancer cells[30]. A study revealed that the canonical NF-κB signaling pathway was involved in APRIL-mediated cisplatin resistance in gastric cancer[31]. Our data are consistent with these previous

Figure 6 Interaction network analyses of differentially express proteins. In the network, nodes represents proteins, lines as functional associations between the abnormal expressed proteins and the thickness of the lines indicates the level of confidence in association reported.

Xie XQ et al. Dysregulated mRNAs in SGC7901/DDP cells
Term	Database	P value	Input gene symbols
Gastric cancer	KEGG DISEASE	0.0016	DCC, CD44, CDH1, VEGFC, EGF, TGFA
Skin diseases	KEGG DISEASE	0.0078	DSP, TGM1, CCL5, IL13RA, SPINK5, HLA, FERM1, KRT14, CTSC, COL17A1, LAMA3, REEP1, RIN2, ALOX3, ABCC6, WNT10A, FBLN5
Skin and soft tissue diseases	KEGG DISEASE	0.0078	DSP, TGM1, CCL5, IL13RA, SPINK5, HLA, FERM1, KRT14, CTSC, COL17A1, LAMA3, REEP1, RIN2, ALOX3, ABCC6, WNT10A, FBLN5
Macular degeneration	KEGG DISEASE	0.0140	C3, FBLN5, CFH, TLR4
Cancers of the digestive system	KEGG DISEASE	0.0439	DCC, CD44, CDH1, VEGFC, EGF, TGFA
Familial thoracic aortic aneurysm and dissection (TAAAD)	KEGG DISEASE	0.0459	MYLK, TGFBR1
Hypomagnesemia	KEGG DISEASE	0.0459	TRPM6, EGF
Multiple epiphyseal dysplasia (MED)	KEGG DISEASE	0.0459	COL9A3, MATN3
Transient neonatal diabetes mellitus (TNDM)	KEGG DISEASE	0.0459	PLAGL1, ZFSP5
Non-syndromic autosomal dominant mental retardation	KEGG DISEASE	0.0461	EPB41L1, Dock8, PACS1, SMARCA4
Cardiac hypertrophy	NHGRI GWAS Catalog	0.0028	PLXNA2, GRIK2, COL17A1, JAG1, SNAP25, BTRD3, SLX4IP
Response to fenofibrate (adiponectin levels)	NHGRI GWAS Catalog	0.0046	OAS2, PMEPA1, SHANK2, SCLUBE1, SCLC0A4, PCK1
Complement C3 and C4 levels	NHGRI GWAS Catalog	0.0094	HLA, CFHR3, CFH, C3
Neutrophil count	NHGRI GWAS Catalog	0.0119	PLC84, TGFA, FGGY, PDDFD, PDDF3
Neoplasia (idiopathic membranous)	NHGRI GWAS Catalog	0.0137	HLA, ITGB6, PLX2R
Sleep duration	NHGRI GWAS Catalog	0.0195	PLP2, TM5, ADAMTS14
Airflow obstruction	NHGRI GWAS Catalog	0.0259	HYYK, LEF1, SERPINB4, GPRI2, MAPIK13, PTTRPD
Cystic fibrosis	NHGRI GWAS Catalog	0.0265	HLA, EHF, AHRR
Metabolic levels (5-HIAA/MHPG Ratio)	NHGRI GWAS Catalog	0.0265	PIEZ2, ROBO2, ADAM212
Bronchopulmonary dysplasia	NHGRI GWAS Catalog	0.0296	PLXCDC2, ZNF770, SPCOK1, TRPS1, RASGFI1, HIVEP3
Major depressive disorder	NHGRI GWAS Catalog	0.0346	PCLO, SLC6A15, ENOX1, SLY2F, IGF1B1, IGF1BP3, C12orf5, ATXN1, PIEZO2, TRPS1, RASGFI1, FGER2, KCN5H
IgA nephropathy	NHGRI GWAS Catalog	0.0346	HLA, ACOX1, TNFSF13
Pelvic floor function decline	NHGRI GWAS Catalog	0.0368	MUSK, CSM1, RORA, FRTK2
Palmatic acid (16:0) plasma levels	NHGRI GWAS Catalog	0.0368	SCN, CNDK3, GRIK2, PTTRPD
Male-pattern baldness	NHGRI GWAS Catalog	0.0439	AUTS2, EDAR2, AR
Response to citralopram treatment	NHGRI GWAS Catalog	0.0439	LAMA1, RORA, EGFALAM
Hyperlipidemia	FunDO	0.0050	IRS1, CCL5, C3, PAPPA, TXNIP, APOC1, F3, SCD
Thrombocytopenia	FunDO	0.0068	GATA1, CCL5, ITGB3, IL1, CXCL8, MPL
Fibromyalgia	FunDO	0.0126	MAO6B, CXCL8, BDNF, IGF1B3
Cirrhosis	FunDO	0.0209	RB5P, KRT18, IGF1B5, RTRG, EGF, F3, FGF2CGBP1
Hepatitis C	FunDO	0.0221	CD274, CCL5, RB5P, MK167, CXCL8, KRT18, TLR4, KRT8, FGF2
Thalassemia	FunDO	0.0345	LCN2, CXCL8, ANK2, KIR3DL1, MUC1
Gingival overgrowth	FunDO	0.0417	EDN1, IL1, FGFP
Pulmonary fibrosis	FunDO	0.0474	CSF1, BDNF, MMP7, EDN1, CCL5, ERBB3
Ovary cancer	FunDO	0.0477	LCN2, IL1, CXCL8, FGFP, CASP1
Esophageal tumor	FunDO	0.0477	CD274, TSPAN8, FRAT1, PCDCHLD2, FGFP2
Hyperlipidemia	GAD	0.0093	CCL5, HLA, CXCL8, CD22, TNFSF18, CDY9
Thrombocytopenia	GAD	0.0114	CSM1D1, PTK4X, GALNT16, SOBP, PLXCD2, SESCNS3, ADAMTS5, EHF, TMCS, LPL, CD109, FAM1178, PDE1C, TACGN1, PTN, FGD4, DYNCH11, GNG4, MUSK, FBLN5, CCD5C4, T9C9, PMEPA1, TL4A, AN6K, EDAR2R, APOCI, BMP2, TOX3, NRK1, ITPK1, PTTRPD, KLFS, PAM, PTPRN, LEPR, KKIF2, LHX5, MCTP2, ANKR5D0, SEMA6D, PLXNA2, DPDY, GRK3, SGAP, ACOX1, TDKRH, FAM135B, VEGFC, CHST2
Fibromyalgia	GAD	0.0136	IRS1, CCL5, ITGCS, NFRP1, NFRP3, APOC1, LPL
Cirrhosis	GAD	0.0204	DPDY, CELF4, CELF2, FAM1178, TDRKRH, LPCAT4, FBLN5, SOBP, PMEPA1, CSM1D1, STOX1, CACNB2, CADMI, VEGFC, SCLC0A4, PCL1, CD109, MCTP2, SCLC0A4, PTTRPD, ITPK1
Hepatitis C	GAD	0.0258	DPDY, CELF4, CELF2, FAM1178, TDRKRH, LPCAT4, FBLN5, SOBP, PMEPA1, CSM1D1, STOX1, CACNB2, CADMI, VEGFC, SCLC0A4, PCL1, CD109, MCTP2, SCLC0A4, PTTRPD, ITPK1
Thalassemia	GAD	0.0362	MCTP2, PSDF, CCDC54, ROBO2, ELOV16
Gingival overgrowth	GAD	0.0419	PLXNA2, ATXN1, IGF2B2, ABCA13, FNI1, FG5T0, NCOA7, SCIN, TNS1, FAM135B, MUC16, ADAM19, ATXN1, MTL1B2, NNX12, KCNQ3, ANPEP, CDH2
Pulmonary fibrosis	GAD	0.0420	CREG2, GALNT16, LINOC1550, KIF168, SHIRGR, TRPS1, PDE1C, NCKAP5, TNFSR21, RYR3, MAGE2, EDIL3, CXCL16, MCF2, DTD1, GPC5, KLF6, IKZF2, KCHN5, AJP1, BTRD3, PHACTR2, ITPK1, IGF5T0, SGAP, C12orf5, AB13BP, FOS, SCLUBE1
Table 3 Cisplatin resistance pathway and input gene (P < 0.05, FC > 2.0)

Pathway	Input gene	Fold change	Regulation	Genomic coordinates	Cyto band
PI3K-Akt signaling pathway	LAMA1	2.68026	Up	Chr18:6958512-6956742	hs
	LAMA1	2.75269	Up	Chr18:69492035-6949176	hs
	GNG4	2.08935	Up	Chr11:23571443-23574384	hs
	ITCG3	2.96629	Up	Chr17:45380027-45389886	hs
	ITCG6	7.72783	Up	Chr2:160964233-160958330	hs
	VEGFC	2.92538	Up	Chr4:177604882-177604823	hs
	PDGF	2.42861	Up	Chr4:177296677-177296618	hs
	JRSI	2.00967	Up	Chr2:93536149-93540155	hs
	GNGT1	2.04479	Up	Chr4:110952689-110952748	hs
	CSF1	2.28628	Up	Chr5:123819301-123819309	hs
	EGF	4.74437	Up	Chr8:123819301-123819307	hs
	FG2	3.02437	Up	Chr11:216288985-216288927	hs
	FG2	2.99240	Up	Chr12:64508971-64508912	hs
	FNI	2.31254	Up	Chr1:59246570-59246511	hs
Ovarian cancer	COLA6	2.08497	Up	Chr10:137399019-137399050	hs
	FG12	10.99211	Up	Chr19:1860574-1860515	hs
	GNG11	2.01984	Up	Chr11:9355564-93555823	hs
	FG7	2.19252	Up	Chr12:157269889-157269869	hs
	LAMA3	2.56116	Down	Chr18:21534735-21534794	hs
	IFNAJ1	2.30808	Down	Chr9:21166331-21166272	hs
	CREB3L3	2.40183	Down	Chr19:4172219-4172278	hs
	TLR4	2.13271	Down	Chr12:90476856-90476915	hs
	COL6A2	2.89458	Down	Chr21:47540686-4754145	hs
	CD19	2.09022	Down	Chr16:28056060-2805659	hs
	COLA4	3.83177	Down	Chr12:67269794-67269735	hs
	COLA4	2.11177	Down	Chr12:22786723-227867464	hs
	PCK1	4.49558	Down	Chr20:56141030-56141089	hs
	VTN	3.82567	Down	Chr17:26694806-26694747	hs
	IL2RG	2.68365	Down	Chr17:472784034-47283975	hs
	COL5A3	7.53410	Down	Chr19:70254554-70254495	hs
	FG13	17.98866	Down	Chr21:37713947-37713888	hs
	FN1C	4.57879	Down	Chr7:128498036-128498597	hs
	FN1C	4.81302	Down	Chr7:128498476-128498535	hs
	CACNB2	7.83203	Down	Chr10:18787305-18787364	hs
	RASGRF1	4.87152	Down	Chr15:79253554-79254495	hs
	FO5	2.17501	Down	Chr14:75748214-75748273	hs
	JUN	2.04000	Down	Chr15:59246570-59246511	hs
	RASGRF2	3.10358	Down	Chr16:64508971-64508912	hs
MAPK signaling pathway	FG13	17.88866	Up	Chr13:37713947-37713888	hs
	TGFBR1	2.93035	Up	Chr9:101961322-101961381	hs
	TGFBR1	4.76437	Up	Chr9:110952689-110952748	hs
	EGF	4.76437	Up	Chr9:110952689-110952748	hs
	FG12	10.99211	Up	Chr19:1860574-1860515	hs
	MAP3K13	2.25019	Up	Chr3:18561379-18561590	hs
	FG2	5.02437	Up	Chr12:63819300-123819300	hs
	FG2	2.99240	Up	Chr12:63819317-123819376	hs
	MAP2K7	2.08267	Up	Chr19:79795032-79795061	hs
	FG7	2.19252	Up	Chr15:49776810-49776869	hs
	CACNG4	8.83585	Up	Chr17:65028139-65028198	hs
	CACNG4	2.94145	Up	Chr17:65028115-65028174	hs
	CACNB4	2.14311	Up	Chr15:215269439-215269480	hs
	GADD45A	2.56699	Up	Chr6:68153371-68153340	hs
	BDNF	2.32411	Up	Chr12:6769591-27697900	hs
	CACNA2D1	2.09452	Up	Chr7:81579504-81579445	hs

Xie XQ et al. Dysregulated mRNAs in SGC7901/DDP cells
Table 4 Dysregulated mRNAs ($P < 0.05$, $FC \geq 2.0$) associated with cisplatin resistance

Gene symbol	P value	FC (abs)	Regulation	Genename	Ref.
FGF7	0.00035	2.19252	Up	Fibroblast growth factor 7	PMID: 22990560
HIF2K	2.63E-06	4.06213	Up	Homeodomain interacting protein kinase 2	PMID: 24846322
EDN1	9.94E-05	2.46437	Up	Endothelin 1	PMID: 21220476
CBS	0.00108	2.39871	Up	Cystathionine-beta-synthase	PMID: 24326104
PDE3B	0.00029	10.4498	Up	Phosphodiesterase 3B, cgmp-inhibited	PMID: 2433626
EZF5	0.00041	2.13295	Up	EZF transcription factor 5, p130-binding	PMID: 22193543
PIN1	0.00104	2.57958	Up	Peptidylprolyl cis/trans isomerase, NIMA-interacting 1	PMID: 26820938
EGF	0.00346	2.76437	Up	Epidermal growth factor	PMID: 2708487
CSF1	0.00025	2.76200	Up	Colony stimulating factor 1 (macrophage)	PMID: 2205523
PCNA	0.00103	2.17028	Up	Proliferating cell nuclear antigen	PMID: 24474685
HIPK2	2.63E-06	4.06213	Up	Homeodomain interacting protein kinase 2	PMID: 24846322
ENTPD6	0.00011	2.43726	Up	Ectonucleoside triphosphate diphosphohydrolase 6 (putative)	PMID: 21519793
AKR1C1	0.00097	2.29064	Up	Aldo-keto reductase family 1, member CI	PMID: 23165153
ASNS	0.00172	2.39491	Up	Asparagine synthetase (glutamine-hydrolyzing)	PMID: 17266043
BDNF	0.00062	2.32411	Up	Brain-derived neurotrophic factor	PMID: 23986506
CAYB	0.01089	2.55664	Up	Calcium binding tyrosine-(Y)-phosphorylation regulated	PMID: 24326251
FGF2	2.15E-06	2.99240	Up	Fibroblast growth factor 2 (basic)	PMID: 12894531
SLC7A1	1.95E-05	2.93256	Up	Solute carrier family 7 member 11	PMID: 24510643
TLRB3	0.00046	2.02123	Up	Tubulin, beta 3 class III	PMID: 25107571
TWIST1	0.00180	2.96340	Up	Twist family bhlh transcription factor 1	PMID: 22673193
JAG1	9.41E-05	3.20086	Up	Jagged 1	PMID: 24659709
ANXA11	0.00031	2.36619	Down	Annexin A1	PMID: 19484149
					PMID: 17982121
studies, and these pathways and input genes deserve our attention in gastric cancer cisplatin resistance. Although protein expression is generally stable when organs mature, under various pathological and physiological conditions, gene expression may change and ultimately result in aberrant protein levels. Therefore, research on proteomics is helpful to illustrate some biological mechanisms, including cisplatin resistance. Protein-protein interaction network analysis might uncover previously unknown molecular mechanisms of cisplatin resistance. Hub proteins of subnetworks which interact with many partners might associate with drug resistance. For example, studies have shown that dysregulation of the genes PDE3B, TLR4, and HIPK2 is associated with cisplatin resistance in human SCC cells, ovarian granulosa tumor cells and bladder cancer cells, respectively.[26,32,33] Moreover, hub proteins and their partners may have similar biological functions. Since downregulation of EGF has been shown to substantially overcome resistance to cisplatin in ovarian cancer,[24] we predict that the proteins EDN1 and DCN, whose hub protein is EGF, may contribute to cisplatin resistance in a similar fashion. We also found that ZEB2, which over-expressed in SGC7901/DDP compared with SGC7901 has a similar expression profile to TWIST1, suggesting that ZEB2 may play an important role in cisplatin resistance by regulating the expression of TWIST1. Nevertheless, more evidence and research is needed.

In conclusion, our study identified mRNAs differentially expressed between gastric cancer cell lines SGC7901/DDP and SGC7901. These results provide a global view of the function of the differentially expressed mRNAs. Several molecular and pathway abnormalities detected in our study have previously been reported to be associated with drug resistance in gastric cancer. The dysregulated mRNAs identified participate in cisplatin resistance through diverse mechanisms, and further investigation is required to confirm the role in drug resistance of these transcripts, pathways and the interaction networks of the proteins they code for.

REFERENCES

1. Ferro A, Peleterio B, Malvezzi M, Bosetti C, Bertuccio P, Levi F, Negri E, La Vecchia C, Lunet N. Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. *Eur J Cancer* 2014; 50: 1330-1344 [PMID: 24650579 DOI: 10.1016/j.ejca.2014.01.029]

2. Wöhler RS, Raderer M, Hejna M. Palliative chemotherapy for advanced gastric cancer. *Ann Oncol* 2004; 15: 1585-1595 [PMID: 15520058 DOI: 10.1093/annonc/mdl1422]

3. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. *CA Cancer J Clin* 2010; 60: 277-300 [PMID: 20610543 DOI: 10.3322/caac.20073]

4. Al-Batran SE, Hartmann JT, Probst S, Schmalenberg H, et al. Dysregulated mRNAs in SGC7901/DDP cells. *WJG* 2017; 23(7): 1200-1288 [PMID: 26983899]
Hollerbach S, Hofheinz R, Rethwisch V, Seipel G, Homann N, Wilhelm G, Schuch G, Stoehlmacher J, Derigs HG, Hegewisch-Becker S, Grossmann J, Pauligk C, Atmaca A, Bokemeyer C, Knuth A, Jäger E. Phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil, leucovorin in plus either oxaliplatin or cisplatin: a study of the Arbeitsgemeinschaft Internistische Onkologie. *J Clin Oncol* 2008; 26: 1435-1442 [PMID: 18349393 DOI: 10.1200/jco.2007.13.9378]

Kang YK, Kang WK, Shin DB, Chen J, Xiong J, Wang J, Lichintser M, Guan Z, Khasanov R, Zheng L, Philco-Salas M, Suarez T, Santamaria J, Forster G, McClusky PL. Cepacitabin/ cisplatin vs 5-fluorouracil/cisplatin as first-line therapy in patients with advanced gastric cancer: a randomised phase III noninferiority trial. *Ann Oncol* 2009; 20: 666-673 [PMID: 19153312 DOI: 10.1093/annonc/mdn717]

Koizumi W, Narahara H, Hara T, Takagane A, Akiya T, Takagi M, Miyashita K, Nishiizaki T, Kobayashi O, Takiyama W, Toh Y, Nagai T, Takagi S, Yamamura Y, Yanaka K, Orita H, Takeuchi M. S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRIT trial): a phase III trial. *Lancet Oncol* 2009; 8: 215-221 [PMID: 18282905 DOI: 10.1016/s1470-4247(08)70035-4]

Wagner AD, Unverzagt S, Groteh J, Kleber G, Grothey A, Metzger R, Rabik CA, Boxem J, Fleig WE. Systemic chemotherapy for advanced gastric cancer. *Cochrane Database Syst Rev* 2010; (3): CD004064 [PMID: 20238327 DOI: 10.1002/14651858.CD004064.pub3]

Rahb CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinum agents. *Cancer Treat Rev* 2007; 33: 9-23 [PMID: 17084534 DOI: 10.1016/j.ctrv.2006.09.006]

García JA, Dreier R. Systemic chemotherapy for advanced bladder cancer: update and controversies. *J Clin Oncol* 2006; 24: 5545-5551 [PMID: 17158540 DOI: 10.1200/jco.2006.08.0564]

Wilson TR, Longley DB, Johnston PG. Chemoresistance in solid tumours. *Ann Oncol* 2006; 17 Suppl 10: x315-x324 [PMID: 17018746 DOI: 10.1093/annonc/mdi280]

Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. *J Natl Cancer Inst* 2000; 92: 1295-1302 [PMID: 10944550]

Hioki M, Gotohda N, Konishi M, Nakagohri T, Takahashi S, Kinoshita T. Predictive factors improving survival after gastrectomy in gastric cancer patients with peritonal carcinomatosis. *World J Surg* 2010; 34: 555-562 [PMID: 20082194 DOI: 10.1007/s00268-010-0396-5]

Yang T, Chen M, Chen T, Thakur A. Expression of the copper transporters hCttr1, ATP7A and ATP7B is associated with the response to chemotherapy and survival in patients with resected non-small cell lung cancer. *Oncol Lett* 2015; 10: 2584-2590 [PMID: 26622894 DOI: 10.3892/ol.2015.3531]

Metzger R, Leichman CG, Danenberg KD, Danenberg PV, Lenz HJ, Hayashi K, Groschen S, Salonga D, Cohen H, Laine L, Crookes P, Silberman H, Haranda J, Konda B, Leichman L. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. *J Clin Oncol* 1998; 16: 309-316 [PMID: 9440758]

Xu W, Chen Q, Wang Q, Sun Y, Wang S, Li A, Xu S, Rhee OD, Wang M, Zhang R, Yang L, Zhou J. JWA reverses cisplatin resistance via the CK2-XRCC1 pathway in human gastric cancer cells. *Cell Death Dis* 2014; 5: e1551 [PMID: 25476899 DOI: 10.1038/cddis.2014.517]

Shim HJ, Yun JY, Hwang JH, Bae WK, Cho SH, Lee JH, Kim HN, Shin MH, Kweon SS, Lee JH, Kim HJ, Chung JI. BRCA1 and XRCC1 polymorphisms associated with survival in advanced gastric cancer treated with taxane and cisplatin. *Cancer Sci* 2010; 101: 1247-1254 [PMID: 20331623 DOI: 10.1111/j.1349-7006.2010.01514.x]

Liu J, Deng N, Xu Q, Sun L, Tu H, Wang Z, Xing C, Yuan Y. Polymorphisms of multiple genes involved in NER pathway predict prognosis of gastric cancer. *Oncotarget* 2016; 7: 48130-48142 [PMID: 27348061 DOI: 10.18632/oncotarget.10173]
Woods DC, White YA, Dau C, Johnson AL. TLR4 activates NF-κB in human ovarian granulosa tumor cells. *Biochem Biophys Res Commun* 2011; 409: 675-680 [PMID: 21616060 DOI: 10.1016/j.bbrc.2011.05.063]

Tang XH, Li M, Deng S, Lu MS. Cross-reacting material 197, a heparin-binding EGF-like growth factor inhibitor, reverses the chemo resistance in human cisplatin-resistant ovarian cancer. *Anticancer Drugs* 2014; 25: 1201-1210 [PMID: 25115341 DOI: 10.1097/cad.0000000000000155]
