Branching formula for \(q \)-Toda functions of type B

Ayumu Hoshino\(^1\) · Yusuke Ohkubo\(^2\) · Jun’ichi Shiraishi\(^3\)

Received: 11 April 2021 / Revised: 27 August 2021 / Accepted: 28 August 2021 / Published online: 29 September 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
We present a proof of the explicit formula for the asymptotically free eigenfunctions of the \(B_N \) \(q \)-Toda operator which was conjectured by the first and third authors. This formula can be regarded as a branching formula from the \(B_N \) \(q \)-Toda eigenfunction restricted to the \(A_{N-1} \) \(q \)-Toda eigenfunctions. The proof is given by a contiguity relation of the \(A_{N-1} \) \(q \)-Toda eigenfunctions and a recursion relation of the branching coefficients.

Keywords
Toda system · Macdonald symmetric function · Quantum group

Mathematics Subject Classification
33D52 · 37K10 · 81R50

1 Introduction
Let \(f^{A_{N-1}}_{\text{Toda}}(x|s|q) \) and \(f^{B_N}_{\text{Toda}}(x|s|q) \) be the asymptotically free eigenfunctions of the \(A_{N-1} \) and \(B_N \) \(q \)-Toda operators, respectively (Definition 2.2, Definition 2.6). Here, \(q \) is a generic parameter, and \(x = (x_1, \ldots, x_N) \) is an \(N \)-tuple of variables. We introduce an \(N \)-tuple of continuous parameters (or indeterminates) \(s = (s_1, \ldots, s_N) \), while the ordinary \(q \)-Toda functions contain a weight as a set of discrete parameters. A combinatorial explicit formula is known for the asymptotically free eigenfunctions of Macdonald’s difference operator of type A [2,10,12], and the one of the \(A_{N-1} \)
q-Toda functions $f^A_{N-1}Toda(x|s;q)$ can be given by taking a certain limit ($t \to 0$) of that formula. The aim of this paper is to prove the following explicit formula for $f^B_{N}Toda(x|s;q)$ in terms of $f^A_{N-1}Toda(x|s;q)$ that was conjectured in [9].

Theorem. 2.7. The B_N q-Toda function $f^B_{N}Toda(x|s;q)$ is of the form

$$f^B_{N}Toda(x_1, \ldots, x_N|s_1, \ldots, s_N;q) = \sum_{\theta=(\theta_1, \ldots, \theta_N) \in \mathbb{Z}^N_{\geq 0}} e^B_{\theta/A_{N-1}}(s;q) \cdot \prod_{i=1}^N x_i^{\theta_i} \cdot f^A_{N-1}Toda(x_1, \ldots, x_N|q^{-\theta_1}s_1, \ldots, q^{-\theta_N}s_N;q).$$

(1.1)

where we have set

$$e^B_{\theta/A_{N-1}}(s;q) := \prod_{k=1}^N q^{(N-k+1)\theta_k} \frac{(q; q)_{\theta_k} (q/s_k^2; q)_{\theta_k}}{(q/s_j s_j; q)_{\theta_i} (q/s_j s_i; q)_{\theta_j}} \prod_{1 \leq i < j \leq N} \frac{1}{(q/s_j s_i; q)_{\theta_i} (q/s_i s_j; q)_{\theta_j}} (q/s_j s_i; q)_{\theta_i} (q/s_i s_j; q)_{\theta_j},$$

(1.2)

$(a; q)_n := (a; q)_{\infty} / (q^n a; q)_{\infty}$, and $(a; q)_{\infty} := \prod_{k=1}^\infty (1 - q^{k-1}a)$.

The q-Toda system has been studied in the connection with representation theory of the quantum groups. In particular, the eigenfunctions of the q-Toda operators can be constructed by Whittaker functions in the Verma module [3, 11] and expressed via fermionic formulas [4]. Moreover, the q-Toda functions are closely related to characters of Demazure modules [5–7] and the equivariant K-theory of Laumon spaces [1, 8].

The main result (1.1) can be regarded as a branching rule for the B_N q-Toda function restricted to the A_{N-1} q-Toda eigenfunctions. The proof is given by direct calculation, in which we give a contiguity relation of $f^A_{N-1}Toda(x|s;q)$ (Proposition 3.1). It is an interesting problem to find similar branching formulas for q-Toda functions of other types.

This paper is organized as follows. In Sect. 2, we recall the definitions of the q-Toda functions and state the main theorem. The proof is given in Sect. 3.

2 A_{N-1} and B_N q-Toda functions

First, we recall the asymptotically free eigenfunctions for A_{N-1} q-Toda operator. Let q be a generic parameter and let $s = (s_1, \ldots, s_N)$ be an N-tuple of indeterminates. Set

$$\Lambda^A_{Q(s,q)} = Q(s,q)([x_2/x_1, \ldots, x_N/x_{N-1}]).$$

(2.1)
Definition 2.1 Let \(x = (x_1, \ldots, x_N) \). The \(q \)-Toda operator \(D^{A_{N-1}}_{\text{Toda}}(x|s|q) \) of type A acting on \(\Lambda^2_{Q(s,q)} \), is defined to be

\[
D^{A_{N-1}}_{\text{Toda}}(x|s|q) = \sum_{i=1}^{N-1} s_i (1 - x_{i+1}/x_i) T_{q,x_i} + s_N T_{q,x_N}.
\] (2.2)

Here, \(T_{q,x_i} \) is the difference operator defined by

\[
T_{q,x_i} f(x_1, \ldots, x_N) = f(x_1, \ldots, q x_i, \ldots, x_N).
\] (2.3)

The eigenfunctions of \(D^{A_{N-1}}_{\text{Toda}}(x|s|q) \) are given as follows. We use the notation in [9].

Definition 2.2 ([5]). Set

\[
f^{A_{N-1}}_{\text{Toda}}(x|s|q) = \sum_{\theta \in M^{(N)}} c^\text{Toda}_N(\theta; s; q) \prod_{1 \leq i < j \leq N} (x_j/x_i)^{\theta_{i,j}}.
\] (2.4)

Here, \(M^{(N)} = \{ \theta = (\theta_{ij})_{i,j=1}^N | \theta_{ij} \in \mathbb{Z}_{\geq 0}, \theta_{kl} = 0 \text{ if } k \geq l \} \) is the set of \(N \times N \) strictly upper triangular matrices with nonnegative integer entries, and the coefficients \(c^\text{Toda}_N(\theta; s; q) \) are defined by

\[
c^\text{Toda}_N(\theta; s; q) = \prod_{k=2}^{N} \prod_{1 \leq i \leq j \leq k-1} \frac{1}{(q \sum_{a=k+1}^{N} (\theta_{i,a} - \theta_{j+1,a}) q s_{j+1}/s_i; q)_{\theta_{i,k}} (q^{\theta_{i,k}-\theta_{i,k}-\sum_{a=k+1}^{N} (\theta_{i,a} - \theta_{j,a})} q s_i/s_j; q)_{\theta_{i,k}}}. \] (2.5)

Fact 2.3 ([5,9]) We have

\[
D^{A_{N-1}}_{\text{Toda}}(x|s|q) f^{A_{N-1}}_{\text{Toda}}(x|s|q) = \sum_{i=1}^{N} s_i f^{A_{N-1}}_{\text{Toda}}(x|s|q).
\] (2.6)

This formula was originally proved in [5]. A combinatorial explicit formula was given for the asymptotically free eigenfunctions of the Macdonald operator in [2,10,12], and the formula \(f^{A_{N-1}}_{\text{Toda}} \) can also be directly obtained by taking a certain limit \(t \to 0 \) of that combinatorial formula [9]. As for the limit from the Macdonald functions to the Toda functions, see also [5–7].

Notation 2.4 We introduce

\[
a^\text{Toda}_N((\theta_{i,n})_{1 \leq i \leq N-1}; (s_i)_{1 \leq i \leq N}; q) := \frac{c^\text{Toda}_N((\theta_{i,j})_{1 \leq i < j \leq N}; (s_i)_{1 \leq i \leq N}|q)}{c^\text{Toda}_{N-1}((\theta_{i,j})_{1 \leq i < j \leq N-1}; (q^{-\theta_{i,n}} s_i)_{1 \leq i \leq N-1}|q)} \quad (N \geq 2).
\] (2.7)
Then, d_N^{Toda} is of the form

$$
d_N^{\text{Toda}} \left((\theta_i)_{1 \leq i \leq N-1}; (s_i)_{1 \leq i \leq N}; q \right) = \prod_{i=1}^{N-1} \frac{1}{(q; q)^{\theta_i}} \prod_{1 \leq i < j \leq N-1} \frac{1}{(q s_j / s_i; q)^{\theta_i}} \frac{q^{\theta_j}}{(q^{\theta_j - \theta_i + 1} s_i / s_j; q)^{\theta_i}},
$$

and the A_{N-1} q-Toda function can be expressed as

$$
f_{A_{N-1}}^{\text{Toda}}(x | s | q) = \sum_{\theta = (\theta_1, \ldots, \theta_{N-1}) \in \mathbb{Z}^{N-1} \geq 0} d_N^{\text{Toda}}(\theta; s; q) \prod_{i=1}^{N-1} \left(x_N / x_i \right)^{\theta_i} \cdot f_{A_{N-2}}^{\text{Toda}}(x | (q^{\theta_i} s_i)_{1 \leq i \leq N-1} | q).
$$

(2.9)

Although (2.9) follows from the case of the Macdonald functions, we can also prove (2.9) in a similar manner to Sect. 3.

Now, we turn to the case of type B. Set

$$
\Lambda_{Q(s, q)}^{B_N} = Q(s, q)[[x_2/x_1, \ldots, x_N/x_N-1, 1/x_N]].
$$

(2.10)

Definition 2.5 Define the B_N q-Toda operator $D_{B_N}^{\text{Toda}}(x | s | q)$ acting on $\Lambda_{Q(s, q)}^{B_N}$ by

$$
D_{B_N}^{\text{Toda}}(x | s | q) = \sum_{i=1}^{N-1} s_i (1 - x_{i+1} / x_i) T_{q,x_i} + s_N (1 - 1 / x_N) T_{q,x_N}
$$

$$
+ s_1^{-1} T_{q,x_1}^{-1} + \sum_{i=2}^{N} s_i^{-1} (1 - x_i / x_{i-1}) T_{q,x_i}^{-1}.
$$

(2.11)

This operator can be obtained by the limit of the B_N Macdonald operator [9]. As for the description of the q-Toda operators by the quantum groups, see [3,4,11].

Definition 2.6 The asymptotically free eigenfunction $f_{B_N}^{\text{Toda}}(x | s | q) \in \Lambda_{Q(s, q)}^{B_N}$ of the B_N q-Toda operator is defined by

$$
D_{B_N}^{\text{Toda}}(x | s | q) f_{B_N}^{\text{Toda}}(x | s | q) = \sum_{i=1}^{N} (s_i + s_i^{-1}) f_{B_N}^{\text{Toda}}(x | s | q),
$$

(2.12)

$$
\left[f_{B_N}^{\text{Toda}}(x | s | q) \right]_{x,1} = 1.
$$

(2.13)

Here, $[\quad]_{x,1}$ means the constant term with respect to x_i’s.
Note that $f_{BN}^{Toda}(x|s|q)$ is uniquely determined. We obtain an explicit formula for the B_N q-Toda function $f_{BN}^{Toda}(x|s|q)$ in terms of the A_{N-1} q-Toda functions $f_{A_{N-1}}^{Toda}(x|s|q)$.

Theorem 2.7 The B_N q-Toda function $f_{BN}^{Toda}(x|s|q)$ satisfies the branching formula

\[
f_{BN}^{Toda}(x_1, \ldots, x_N|s_1, \ldots, s_N|q) = \sum_{\theta=(\theta_1, \ldots, \theta_N) \in \mathbb{Z}^N_{\geq 0}} e_{\frac{B_N}{A_{N-1}}}(s|q) \cdot \prod_{i=1}^{N} x_i^{-\theta_i} \cdot f_{A_{N-1}}^{Toda}(x_1, \ldots, x_N|q^{-\theta_1} s_1, \ldots, q^{-\theta_N} s_N|q),
\]

(2.14)

where we have set

\[
e_{\frac{B_N}{A_{N-1}}}(s|q) := \prod_{k=1}^{N} \frac{q^{(N-k+1)\theta_k}}{(q;q)_{\theta_k} (q/s_k^2; q)_{\theta_k}} \times \prod_{1 \leq i < j \leq N} \frac{1}{(qs_j/s_i; q)_{\theta_i} (q^{\theta_j-\theta_i} qs_i/s_j; q)_{\theta_i} (qs_i/s_j; q)_{\theta_i} (qs_i/s_j; q)_{\theta_i} (q/s_i s_j; q)_{\theta_i}},
\]

(2.15)

$(\alpha; q)_n := \frac{(\alpha; q)_\infty}{(q^n \alpha; q)_\infty}$, and $(\alpha; q)_\infty := \prod_{k=1}^{\infty} (1 - q^{k-1} \alpha)$. Note that the constant term of $f_{A_{N-1}}^{Toda}$ is 1. Hence, the constant term of (2.14) is also 1.

This formula was conjectured in [9]. The proof is given in the next subsection.

Remark 2.8 The region of convergence of $f_{A_{N-1}}^{Toda}$ can be derived from the case of the Macdonald functions (Proposition 6.1 in [10]) by taking the limit $t \to 0$. It is an interesting problem to consider the convergence of formula (2.14).

3 Proof of Theorem 2.7

In this section, we prove Theorem 2.7. First we give the following relation of the q-Toda functions of type A.

Proposition 3.1 The q-Toda functions of type A satisfy the contiguity relation

\[
f_{A_{N-1}}^{Toda}(x_1, \ldots, x_{N-1}, q x_N|s|q) = \sum_{k=1}^{N} (-1)^{N-k} q^{N-k} \prod_{i=k+1}^{N-1} x_i/s_i \prod_{i=k+1}^{N} (1 - x_i/s_i) (1 - q x_i/s_i) (x_N/x_k) f_{A_{N-1}}^{Toda}(x_1, \ldots, x_N|q^{-\varepsilon_k} s|q).
\]

(3.1)

Here, we used the notation

\[
q^{\pm \varepsilon_i} \cdot s = (s_1, \ldots, s_{i-1}, q^{\pm 1} s_i, s_{i+1}, \ldots, s_N).
\]

(3.2)
Proof First, we show the following equation of the rational functions of \(a_i\) and \(s_i\):

\[
\prod_{i=1}^{N-1} a_i = \sum_{k=1}^{N} (s_k/s_N) \prod_{i=1}^{N-1} \left(1 - a_i s_k/s_i \right) \prod_{1 \leq i < N, i \neq k} (1 - s_k/s_i). \tag{3.3}
\]

Regarding \(s_i\)'s in the RHS as complex variables, we set

\[
F(s) := \sum_{k=1}^{N} (s_k/s_N) \prod_{1 \leq i < N, i \neq k} (1 - s_k/s_i) = \sum_{k=1}^{N} \prod_{i=1}^{N-1} \left(s_i - a_i s_k \right) \prod_{1 \leq i < N, i \neq k} (s_i - s_k). \tag{3.4}
\]

For any \(\ell = 1, \ldots, N\), the residue at \(s_\ell = s_{\ell'} (\ell' \neq \ell)\) is

\[
\text{Res}_{s_\ell = s_{\ell'}} F(s) = \lim_{s_\ell \to s_{\ell'}} F(s)(s_\ell - s_{\ell'}) = \lim_{s_\ell \to s_{\ell'}} \left(- \prod_{i=1}^{N-1} (s_i - a_\ell s_i) + \prod_{i \neq \ell, \ell'} (s_i - s_{\ell'}) \right) = 0. \tag{3.5}
\]

Hence \(F(s)\) is regular on the whole complex plane with respect to each \(s_\ell\), and it is clear that \(F(s)\) is bounded. This indicates that \(F(s)\) is a constant function. By the specialization \(s_i = a_i^{-1} a_{i-1}^{-1} \cdots a_2^{-1} s_1 (i = 2, \ldots, N)\), we have

\[
F(s) = \sum_{k=1}^{N} (A_{N-1} A_{N-2} \cdots a_k) \prod_{i=1}^{N-1} \left(1 - \frac{a_i a_{i-1} \cdots a_1}{a_{k-1} a_{k-2} \cdots a_1} \right) \prod_{1 \leq i < N, i \neq k} (1 - \frac{a_i a_{i-1} \cdots a_1}{a_{k-1} a_{k-2} \cdots a_1}) \tag{3.6}
\]

This gives (3.3).

Substituting \(a_i = q^{b_i}\) into (3.3) yields

\[
\prod_{i=1}^{N-1} q^{b_i} = \sum_{k=1}^{N-1} (-1)^{N-k} q^{N-k} \prod_{i=k+1}^{N} s_i/s_k \prod_{i=k+1}^{N} (1 - s_i/s_k) (1 - q s_i/s_k) \frac{d_{Toda}^{N} (\theta_1, \ldots, \theta_{k-1}, 1, \ldots, \theta_{N-1} | q^{-\varepsilon} s \cdot s)}{d_{Toda}^{N} (\theta_1, \ldots, \theta_{N-1} | s)} + \frac{d_{Toda}^{N} (\theta_1, \ldots, \theta_{N-1} | q^{-\varepsilon} N \cdot s)}{d_{Toda}^{N} (\theta_1, \ldots, \theta_{N-1} | s)}. \tag{3.7}
\]

By (2.9) and (3.7), we obtain formula (3.1). \(\square\)

Proposition 3.2 The branching coefficients \(e_0^{B_N/A_{N-1}} (s | q)\) satisfy the recursion relation

\[
\sum_{i=1}^{N} \left((1 - q^{-b_i}) s_i + (1 - q^{b_i}) s_i^{-1} \right) e_0^{B_N/A_{N-1}} (s | q) = 0. \tag{3.8}
\]
\[\sum_{k=1}^{N} s_N (-1)^{N-k+1} q^{-\theta_N + \delta_k} q^{N-k} \prod_{i=k+1}^{N} (1 - q^{-\theta_i + \theta_k - 1} s_i/s_k) e^{(\theta_1, \ldots, \theta_N)/(s|q)}. \]

Proof By substituting (2.15) into (3.8), it can be shown that (3.8) is equivalent to

\[\sum_{i=1}^{N} (1 - q^{-\theta_i}) s_i + (1 - q^{\theta_i}) s_i^{-1} = -\sum_{k=1}^{N} q^{-\theta_k} s_k \prod_{i \neq k}^{N} (1 - q^{\theta_k - \theta_i} s_i/s_k)(1 - q^{\theta_k + \theta_i}/s_i s_k) \]

(3.9)

By replacing \(q^{\theta_i} \) with generic parameters \(Q_i \) and shifting \(s_i \) to \(Q_i s_i \), Eq. (3.9) becomes

\[\sum_{i=1}^{N} (1 - Q_i) s_i + (1 - Q_i^{-1}) s_i^{-1} = \sum_{k=1}^{N} s_k \prod_{i \neq k}^{N} (1 - s_i/s_k)(1 - 1/s_i s_k) \]

(3.10)

The proof is completed by showing this equation. Regarding \(s_i \)'s as complex variables, we define the function

\[F(s) := \sum_{k=1}^{N} s_k \prod_{i \neq k}^{N} (1 - Q_i s_i/s_k)(1 - Q_i^{-1}/s_i s_k) \]

(3.11)

A direct calculation shows that the residue at \(s_\ell = s_{\ell'}^{\pm 1} (\ell \neq \ell') \) is

\[\text{Res}_{s_\ell = s_{\ell'}^{\pm 1}} F(s) = \lim_{s_\ell \to s_{\ell'}^{\pm 1}} F(s)(s_\ell - s_{\ell'}) = 0 \]

(3.12)

and these singularities are removable. Hence, \(F(s) \) is a regular with respect to each variable \(s_\ell (\ell = 1, \ldots, n) \) on the complex plane except for the origin 0 (and \(\infty \)). Therefore, for arbitrary \(\ell \), the function \(F(s) \) can be given by the Laurent series on \(0 < |s_\ell| < \infty \)

\[F(s) = \sum_{i \in \mathbb{Z}} C_i s_\ell^i, \]

(3.13)

where \(C_i \) is a function of \(s_1, \ldots, s_{\ell-1}, s_{\ell+1}, \ldots, s_N \). Since the orders of the poles at \(s_\ell = 0 \) and \(s_\ell = \infty \) are at most 1, we have \(C_i = 0 \) (\(i < -1 \) or \(i > 1 \)). It can be shown that the residues at \(s_\ell = 0 \) and \(s_\ell = \infty \) are

\[C_{-1} = \text{Res}_{s_\ell = 0} F(s) = 1 - Q_\ell^{-1}, \]

(3.14)

\[C_1 = \text{Res}_{s_\ell = \infty} F(s) = 1 - Q_\ell. \]

(3.15)
Therefore, with a constant \widetilde{C}_0 independent of s_i’s, we can write
\[
F(s) = \sum_{i=1}^{N} \left((1 - Q_i)s_i + (1 - Q_i^{-1})s_i^{-1} \right) + \widetilde{C}_0. \tag{3.16}
\]

Furthermore, we obtain
\[
\widetilde{C}_0 = F \left(\sqrt{Q_1^{-1}}, \sqrt{Q_2^{-1}}, \ldots, \sqrt{Q_N^{-1}} \right)
= \sum_{k=1}^{N} \sqrt{Q_k^{-1}} \prod_{i=1}^{N} (1 - \sqrt{Q_i/Q_k}) (1 - \sqrt{Q_k/Q_i}) (1 - \sqrt{Q_i/Q_k})
= 0. \tag{3.17}
\]

This gives (3.10).

\[\square\]

Proof of Theorem 2.7 The action of $D^{B_N \text{Toda}}(x|s|q)$ on the right-hand side of (2.14) gives
\[
D^{B_N \text{Toda}}(x|s|q) \text{ (RHS of } (2.14))
= \sum_{\theta \in \mathbb{Z}_{\geq 0}^N} e_{B_N/AN-1}^{\theta}(s|q) \prod_{i=1}^{N} x_i^{-\theta_i} \cdot \left\{ D_{AN-1}^{B_N \text{Toda}}(x|s|q) - q^{-\theta_N} s_N/x_N T_{q,x_N}
ight\}
+ D_{AN-1}^{B_N \text{Toda}}((x_{N-i+1}^{-1})^{N}_{i=1} | (q^{\theta_{N-i+1}} s_{N-i+1}^{-1})^{N}_{i=1} | q) \right\}
= \sum_{\theta \in \mathbb{Z}_{\geq 0}^N} e_{B_N/AN-1}^{\theta}(s|q) \prod_{i=1}^{N} x_i^{-\theta_i} \cdot \left\{ \sum_{i=1}^{N} q^{-\theta_i} s_i + \sum_{i=1}^{N} q^{\theta_i} s_i^{-1} - q^{-\theta_N} s_N/x_N T_{q,x_N} \right\}
\times f_{AN-1}^{B_N \text{Toda}}(x|q^{-\theta_i} s_i) | q). \tag{3.18}
\]

Here, we used Fact 2.3 and the symmetry
\[
f_{AN-1}^{B_N \text{Toda}}(x|s|q) = f_{AN-1}^{B_N \text{Toda}}(x_{N-i+1}^{-1} | s_{N-i+1}^{-1}) | q). \tag{3.19}
\]

By Proposition 3.1, we have
\[
D^{B_N \text{Toda}}(x|s|q) \text{ (RHS of } (2.14))
= \sum_{\theta \in \mathbb{Z}_{\geq 0}^N} e_{B_N/AN-1}^{\theta}(s|q) \prod_{i=1}^{N} x_i^{-\theta_i} \cdot \left\{ \sum_{i=1}^{N} (q^{-\theta_i} s_i + q^{\theta_i} s_i^{-1}) f_{AN-1}^{B_N \text{Toda}}(x|q^{-\theta_i} s_i) | q)\right\}
- q^{-\theta_N} \sum_{k=1}^{N} (-1)^{N-k} (s_N/x_k) \frac{q^{N-k} \prod_{i=k+1}^{N-1} (q^{-\theta_i+1} s_i/s_k)}{\prod_{i=k+1}^{N} (1 - q^{-\theta_i+1} s_i/s_k)(1 - qq^{-\theta_i+1} s_i/s_k)}, \tag{3.18}
\]

\[\square\] Springer
\begin{align*}
& \times f^{A_{N-1}}_{\text{Toda}}(x | q^{-\varepsilon_k} \cdot \left(q^{-\theta_l s_i} \right)_{1 \leq l \leq N} | q) \\
& = \sum_{\theta \in \mathbb{Z}^N_{\geq 0}} \prod_{i=1}^N x_i^{-\theta_i} \cdot \left\{ \sum_{i=1}^N \left(q^{-\theta_i s_i} + q^{\theta_i s_i^{-1}} \right) e_B^{B_{N/A_{N-1}}}(s | q) \right\} \\
& + \sum_{k=1}^N s_N^k \prod_{i=k+1}^N \left(1 - q^{-\theta_i + \theta_k - 1} s_i / s_k \right) \left(1 - q^{\theta_i + \theta_k - 1} s_i / s_k \right) e_B^{B_{N/A_{N-1}}}(s | q) \\
& \times f^{A_{N-1}}_{\text{Toda}}(x | (q^{-\theta_l s_i})_{1 \leq l \leq N} | q),
\end{align*}

where we have used that $e_B^{B_{N/A_{N-1}} \cdot 1} = 0$ if $\theta_j = -1$ for some j. Proposition 3.2 shows that this is equal to $\sum_{i=1}^N (s_i + s_i^{-1}) \cdot (\text{RHS of (2.14)})$. This completes the proof. \hfill \Box

Acknowledgements The authors would like to thank B. Feigin, M. Fukuda, M. Noumi, and L. Rybnikov for valuable discussions. The researches of J.S and H.A are partially supported by JSPS KAKENHI (J.S: 19K03512, H.A: 19K03530). Y.O. is partially supported by Grant-in-Aid for JSPS Research Fellow (18J00754).

References

1. Braverman, A., Finkelberg, M.: Finite difference quantum Toda lattice via equivariant K-theory. Transform. Groups 10(3–4), 363–386 (2005). arXiv:math/0503456
2. Braverman, A., Finkelberg, M., Shiraishi, J.: Macdonald polynomials, Laumon spaces and perverse coherent sheaves. Perspectives in representation theory, Contemp. Math 610, 23–41 (2014)
3. Etingof, P.: Whittaker functions on quantum groups and q-deformed Toda operators. arXiv:math/9901053 [math.QA]
4. Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E.: Fermionic formulas for eigenfunctions of the difference Toda Hamiltonian. Lett. Math. Phys. 88(1–3), 39 (2009). arXiv:0812.2306 [math.QA]
5. Gerasimov, A., Lebedev, D., Oblezin, S.: On q-deformed gl (1|1)-Whittaker function I. Commun. Math. Phys. 294(1), 97–119 (2010). arXiv:0803.0145 [math.RT]
6. Gerasimov, A., Lebedev, D., Oblezin, S.: On q-deformed gl (1|1)-Whittaker function II. Commun. Math. Phys. 294(1), 121–143 (2010). arXiv:0803.0970 [math.RT]
7. Gerasimov, A., Lebedev, D., Oblezin, S.: On q-deformed gl (1|1)-Whittaker function III. Lett. Math. Phys. 97(1), 1–24 (2011). arXiv:0805.3754 [math.RT]
8. Gitental, A., Lee, Y.P.: Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups. Inventiones Mathematicae 151(1), 193–219 (2003). arXiv:math/0108105 [math.AG]
9. Hoshino, A., Shiraishi, J.: Branching rules for Koornwinder polynomials with one column diagrams and matrix inversions. SIGMA 16, 084 (2020). arXiv:2002.02148 [math.QA]
10. Noumi, M., Shiraishi, J.: A direct approach to the bispectral problem for the Ruijseenaars-Macdonald q-difference operators. arXiv:1206.5364 [math.QA]
11. Sevostyanov, A.; Quantum deformation of Whittaker modules and the Toda lattice. Duke Math. J. 105(2), 211–238 (2000). arXiv:math/9905128 [math.QA]
12. Shiraishi, J.: A conjecture about raising operators for Macdonald polynomials. Lett. Math. Phys. 73(1), 71–81 (2005). arXiv:math/0503727 [math.QA]

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.