Rony A. BITAN, Ralf KÖHL et Claudia SCHOEMANN

The twisted forms of a semisimple group over an \mathbb{F}_q-curve

Tome 33, n° 1 (2021), p. 17-38.

<http://jtnb.centre-mersenne.org/item?id=JTNB_2021__33_1_17_0>
The twisted forms of a semisimple group over an \mathbb{F}_q-curve

par Rony A. BITAN, Ralf KÖHL et Claudia SCHOEMANN

Résumé. Soit C une courbe projective, lisse et connexe définie sur un corps fini \mathbb{F}_q. Étant donné un $C - S$-schéma en groupes semisimples où S est un ensemble fini de points fermés de C, nous décrivons l’ensemble de $(\mathcal{O}_S$-classes de) formes tordues de G en termes d’invariants géométriques de son groupe fondamental $F(G)$.

Abstract. Let C be a smooth, projective and geometrically connected curve defined over a finite field \mathbb{F}_q. Given a semisimple $C - S$-group scheme G where S is a finite set of closed points of C, we describe the set of $(\mathcal{O}_S$-classes of) twisted forms of G in terms of geometric invariants of its fundamental group $F(G)$.

1. Introduction

Let C be a projective, smooth and geometrically connected curve defined over a finite field \mathbb{F}_q. Let Ω be the set of all closed points on C. For any $p \in \Omega$ let v_p be the induced discrete valuation on the (global) function field $K = \mathbb{F}_q(C)$, \mathcal{O}_p the ring of integers in the completion \hat{K}_p of K with respect to v_p, and k_p the residue field. Any finite subset $S \subset \Omega$ gives rise to a Dedekind scheme, namely, a Noetherian integral scheme of dimension 1 whose local rings are regular; If S is nonempty it will be the spectrum of the Dedekind domain

$$\mathcal{O}_S := \{x \in K : v_p(x) \geq 0 \ \forall \ p \notin S\}.$$

Otherwise, if $S = \emptyset$, the corresponding Dedekind scheme is the curve C itself, and we denote by \mathcal{O}_S the structural sheaf of C.

Throughout this paper G is an \mathcal{O}_S-group scheme whose generic fiber $G := G \otimes_{\mathcal{O}_S} K$ is almost-simple, and whose fiber $G_p = G \otimes_{\mathcal{O}_S} \mathcal{O}_p$ at any $p \in \Omega - S$ is semisimple, namely, (connected) reductive over k_p, and the rank of its root system equals that of its lattice of weights ([12, Exp. XIX Def. 2.7, Exp. XXI Def. 1.1.1]). Let G^{sc} be the universal (central) cover (being simply-connected) of G, and suppose that its fundamental group $F(G) := \ker[G^{sc} \twoheadrightarrow G]$ (cf. [10, p. 40]) is of order prime to $\text{char}(K)$.

Manuscrit reçu le 17 juin 2019, révisé le 26 novembre 2020, accepté le 21 décembre 2020.

2010 Mathematics Subject Classification. 11G20, 11G45, 11R29.

Mots-clés. Class number, Hasse principle, Tamagawa number, étale cohomology.
A twisted form of G is an O_S-group that is isomorphic to G over some finite étale cover of O_S. We aim to describe explicitly (in terms of some invariants of $F(G)$ and the group of outer automorphisms of G) the finite set of all twisted forms of G, modulo O_S-isomorphisms. This is done first in Section 2 for forms arising from the torsors of the adjoint group G^{ad}, and then in Section 3, through the action of the outer automorphisms of G on its Dynkin diagram, for all twisted forms. More concrete computations are provided in Sections 4, 5 and 6. The case of type A deserves a special consideration, this is done in Section 7. The Zariski topology is treated in Section 8.

Before we start may we quote B. Conrad in the abstract of [11]: “The study of such \mathbb{Z}-groups provides concrete applications of many facets of the theory of reductive groups over rings (scheme of Borel subgroups, automorphism scheme, relative non-abelian cohomology, etc.), and it highlights the role of number theory (class field theory, mass formulas, strong approximation, point-counting over finite fields, etc.) in analyzing the possibilities”.

2. Torsors

A G-torsor P in the étale topology is a sheaf of sets on O_S equipped with a (right) G-action, which is locally trivial in the étale topology, namely, locally for the étale topology on O_S, this action is isomorphic to the action of G on itself by translation. The associated O_S-group scheme $\tilde{P}_G = G'$, being an inner form of G, is called the twist of G by P (e.g., [24, §2.2, Lem. 2.2.3, Exs. 1, 2]). We define $H^1_{\text{ét}}(O_S, G)$ to be the set of isomorphism classes of G-torsors relative to the étale topology (or the flat one; these two cohomology sets coincide when G is smooth; cf. [2, VIII Cor. 2.3]). This set is finite ([5, Prop. 3.9]). The sets $H^1(K, G)$ (denoting the Galois cohomology) and $H^1_{\text{ét}}(\hat{O}_p, G_p)$ are defined similarly.

There exists a canonical map of pointed-sets:

$$\lambda : H^1_{\text{ét}}(O_S, G) \to H^1(K, G) \times \prod_{p \notin S} H^1_{\text{ét}}(\hat{O}_p, G_p).$$

defined by $[X] \mapsto [(X \otimes_{O_S} \text{Sp} K) \times \prod_{p \notin S} X \otimes_{O_S} \text{Sp} \hat{O}_p]$. Let $[\xi_0] := \lambda([G])$. The principal genus of G is then $\ker(\lambda) = \lambda^{-1}([\xi_0])$, namely, the classes of G-torsors that are generically and locally trivial at all points of O_S. More generally, a genus of G is any fiber $\lambda^{-1}([\xi])$ where $[\xi] \in \text{Im}(\lambda)$. The set of genera of G is then:

$$\text{gen}(G) := \{\lambda^{-1}([\xi]) : [\xi] \in \text{Im}(\lambda)\},$$

hence $H^1_{\text{ét}}(O_S, G)$ is a disjoint union of all genera.

The ring of S-integral adèles $A_S := \prod_{p \in S} \hat{K}_p \times \prod_{p \notin S} \hat{O}_p$ is a subring of the adèles A. A G-torsor $P = \text{Iso}(G, G')$ belongs to the principal genus of
Twisted forms of a semisimple group

G if it is both A_S- and K-trivial, hence the principal genus bijects as a pointed-set to the S-class set of G (see [21, Thm. I.3.5]):

$$\text{Cl}_S(G) := G(A_S) \backslash G(A) / G(K).$$

Being finite ([5, Prop. 3.9]), its cardinality, called the S-class number of G, is denoted $h_S(G)$. As G is assumed to have connected fibers, by Lang’s Theorem (recall that all residue fields are finite) all $H^1_{\text{ét}}(O_S,G_p)$ vanish, which indicates that any two G-torsors share the same genus if and only if they are K-isomorphic.

The universal cover of G forms a short exact sequence of étale O_S-groups (cf. [10, p. 40]):

$$1 \to F(G) \to G^{\text{sc}} \to G \to 1.$$

This gives rise by étale cohomology to the co-boundary map of pointed sets:

$$\delta_G : H^1_{\text{ét}}(O_S,G) \to H^2_{\text{ét}}(O_S,F(G))$$

which is surjective by ([13, Cor. 1]) as O_S is of Douai-type (see [17, Def. 5.2 and Exam. 5.4(iii),(v)]). It follows from the fact that $H^2_{\text{ét}}(O_S,G^{\text{sc}})$ (resp., $H^2_{\text{ét}}(O_S,G^{\text{sc}})$) has only trivial classes and in finite number ([13, Thm. 1.1]).

A representation $\rho : G^{\text{sc}} \to \text{GL}_1(A)$ where A is an Azumaya O_S-algebra, is said to be center-preserving if $\rho(Z(G^{\text{sc}})) \subseteq Z(\text{GL}_1(A))$. The restriction of ρ to $F(G) \subseteq Z(G^{\text{sc}})$, composed with the natural isomorphism $Z(\text{GL}_1(A)) \cong \mathbb{G}_m$, is a map $\Lambda_\rho : F(G) \to \mathbb{G}_m$, thus inducing a map: $(\Lambda_\rho)_* : H^2_{\text{ét}}(O_S,F(G)) \to H^2_{\text{ét}}(O_S,\mathbb{G}_m) \cong \text{Br}(O_S)$. Together with the preceding map δ_G we get the map of pointed-sets:

$$(\Lambda_\rho)_* \circ \delta_G : H^1_{\text{ét}}(O_S,G) \to \text{Br}(O_S),$$

which associates any class of G-torsors with a class of Azumaya O_S-algebras in $\text{Br}(O_S)$.

When $F(G) = \mu_m$, the following composition is surjective:

$$(\Lambda_\rho)_* \circ \delta_G : H^1_{\text{ét}}(O_S,G) \to \text{Br}(O_S) \to m \text{Br}(O_S),$$

and coincides with $(\Lambda_\rho)_* \circ \delta_G$.

The original Tits algebras introduced in [26], are central simple algebras defined over a field, associated to algebraic groups defined over that field. This construction was generalized to group-schemes over rings as shown in [22, Thm. 1]. We briefly recall it here over O_S: Being semisimple, G admits an inner form G_0 which is quasi-split (in the sense of [12, XXIV, 3.9], namely, not only requiring a Borel subgroup to be defined over $C-S$ but some additional data involving the scheme of Dynkin diagrams, see [10, Def. 5.2.10.]).
Definition 1. Any center-preserving representation \(\rho_0 : G_0 \to \text{GL}(V)\) gives rise to a “twisted” center-preserving representation: \(\rho : G \to \text{GL}_1(A_\rho)\), where \(A_\rho\) is an Azumaya \(O_S\)-algebra, called the Tits algebra corresponding to the representation \(\rho\), and its class in \(\text{Br}(O_S)\), is its Tits class.

Lemma 2.1. If \(G\) is adjoint, then for any center-preserving representation \(\rho\) of \(G_0^\text{sc}\), and a twisted \(G\)-form \(P G\) by a \(G\)-torsor \(P\), one has: \(((\Lambda_\rho)_* \circ \delta_G)([P G]) = [P A_\rho] - [A_\rho] \in \text{Br}(O_S)\) where \([P A_\rho]\) and \([A_\rho]\) are the Tits classes of \((P G)^\text{sc}\) and \(G^\text{sc}\) corresponding to \(\rho\), respectively.

Proof. By descent \(F(G_0) \cong F(G)\), so we may write the short exact sequences of \(O_S\)-groups:

\[
\begin{align*}
(2.5) \quad &1 \to F(G) \to G^\text{sc} \to G \to 1 \\
&1 \to F(G) \to G_0^\text{sc} \to G_0 \to 1
\end{align*}
\]

which yield the following commutative diagram of pointed sets (cf. [16, IV, Prop. 4.3.4]):

\[
\begin{array}{cc}
H^1_{\text{ét}}(O_S, G_0) & H^1_{\text{ét}}(O_S, G) \\
\downarrow \delta_0 & \downarrow \delta_G \\
H^2_{\text{ét}}(O_S, F(G)) & H^2_{\text{ét}}(O_S, F(G))
\end{array}
\]

in which \(r_G(x) := x - \delta_G([G])\), so that \(\delta_G = r_G \circ \delta_0\) maps \([G]\) to \([0]\). The image of any twisted form \(P G\) where \([P] \in H^1_{\text{ét}}(O_S, G)\) (see in Section 1), under the coboundary map

\[
\delta : H^1_{\text{ét}}(O_S, G_0) \to H^2_{\text{ét}}(O_S, Z(G_0^\text{sc}))
\]

induced by the universal covering of \(G_0\) corresponding to \(\rho\), is \([P A_\rho]\), where \(P A_\rho\) is the Tits-algebra of \((P G)^\text{sc}\) (see [22, Thm. 1]). But \(G_0\) is adjoint, so \(Z(G_0^\text{sc}) = F(G_0) \cong F(G)\), thus the images of \(\delta\) and \(\delta_0\) coincide in \(\text{Br}(O_S)\), whence:

\[
((\Lambda_\rho)_* (\delta_G([G]))) = ((\Lambda_\rho)_* (\delta_0([P G])) - \delta_0([G])) = [P A_\rho] - [A_\rho]. \quad \Box
\]

The fundamental group \(F(G)\) is a finite, of multiplicative type (cf. [12, XXII, Cor. 4.1.7]), commutative and smooth \(O_S\)-group (as its order is assumed prime to \(\text{char}(K)\)).

Lemma 2.2. If \(G\) is not of type A, or \(S = \emptyset\), then \(H^1_{\text{ét}}(O_S, G)\) is isomorphic to \(H^2_{\text{ét}}(O_S, F(G))\).

Proof. Applying étale cohomology to sequence (2.1) yields the exact sequence:

\[
H^1_{\text{ét}}(O_S, G^\text{sc}) \to H^1_{\text{ét}}(O_S, G) \xrightarrow{\delta_G} H^2_{\text{ét}}(O_S, F(G))
\]
in which δ_G is surjective (see (2.2)). If G is not of absolute type A, it is locally isotropic everywhere ([6, 4.3 and 4.4]), in particular at S. This is of course redundant when $S = \emptyset$. Thus $H^1_{\text{ét}}(O_S, G^{sc})$ vanishes ([4, Lem. 2.3]). Changing the base-point in $H^1_{\text{ét}}(O_S, G)$ to any G-torsor P, it is bijective to $H^1_{\text{ét}}(O_S, P_G)$ where P_G is an inner form of G (see Section 1), thus an O_S-group of the same type. Similarly all fibers of δ_G vanish. This amounts to δ_G being injective thus an isomorphism. □

The following two invariants of $F(G)$ were defined in [4, Def. 1]:

Definition 2. Let R be a finite étale extension of O_S. We define:

$$i(F(G)) := \begin{cases} m\text{Br}(R) & F(G) = \text{Res}_{R/O_S}(\mu_m) \\ \ker(m\text{Br}(R) \xrightarrow{N(2)} m\text{Br}(O_S)) & F(G) = \text{Res}_{R/O_S}(1) \mu_m \end{cases}$$

where for a group \ast, $m\ast$ stands for its m-torsion part, and $N(2)$ is induced by the norm map N_{R/O_S}.

For $F(G) = \prod_{k=1}^r F(G)_k$ where each $F(G)_k$ is one of the above, $i(F(G)) := \prod_{k=1}^r i(F(G)_k)$.

We also define for such R:

$$j(F(G)) := \begin{cases} \text{Pic}(R)/m & F(G) = \text{Res}_{R/O_S}(\mu_m) \\ \ker(\text{Pic}(R)/m \xrightarrow{N(1)/m} \text{Pic}(O_S)/m) & F(G) = \text{Res}_{R/O_S}(1) \mu_m \end{cases}$$

where $N(1)$ is induced by N_{R/O_S}, and again

$$j\left(\prod_{k=1}^r F(G)_k \right) := \prod_{k=1}^r j(F(G)_k).$$

Definition 3. We call $F(G)$ admissible if it is a finite direct product of factors of the form:

1. $\text{Res}_{R/O_S}(\mu_m)$,
2. $\text{Res}_{R/O_S}^{(1)}(\mu_m)$, $[R : O_S]$ is prime to m,

where R is any finite étale extension of O_S.

Lemma 2.3. If $F(G)$ is admissible then there exists a short exact sequence of abelian groups:

$$1 \to j(F(G)) \to H^2_{\text{ét}}(O_S, F(G)) \xrightarrow{i} i(F(G)) \to 1.$$

This sequence splits thus reads: $H^2_{\text{ét}}(O_S, F(G)) \cong j(F(G)) \times i(F(G)).$

Proof. This sequence was shown in [4, Cor. 2.9] for the case S is nonempty. The proof based on applying étale cohomology to the related Kummer exact sequence is similar for $S = \emptyset$. The splitting when $F(G)$ is quasi-split was proved in [15, Thm. 1.1]. When $F(G) = \text{Res}_{R/O_S}^{(1)}(\mu_m)$, $[R : O_S]$ prime to
Consider the exact diagram obtained by étale cohomology applied to the Kummer exact sequences related to μ_m over O_S and R:

$$
\begin{align*}
1 & \longrightarrow \text{Pic}(R)/m \longrightarrow H^2_{\text{ét}}(R, \mu_m) \xrightarrow{i^*} \text{Br}(R)[m] \longrightarrow 1 \\
1 & \longrightarrow \text{Pic}(O_S)/m \longrightarrow H^2_{\text{ét}}(O_S, \mu_m) \xrightarrow{i^*} \text{Br}(O_S)[m] \longrightarrow 1.
\end{align*}
$$

The splitting of the two rows then implies the one in the assertion.

As a result we have two bijections as pointed-sets: the first is $\text{gen}(G) \cong i(F(G))$; the affine case shown in [4, Cor. 3.2] holds as aforementioned for $S = \emptyset$ as well, in which case $\text{Br}(C)$ is trivial ([8, Thm. 4.5.1.(v)]) thus G admits a single genus. The second bijection is $\text{Cl}_S(G) \cong i(F(G))$ unless G is anisotropic at S, for which it does not have to be injective [4, Prop. 4.1]; hence when S is empty this bijection is guaranteed. Combining Lemma 2.2 with Lemma 2.3 these form (unless G is anisotropic at S) an isomorphism of finite abelian groups:

$$
H^1_{\text{ét}}(O_S, G) \cong j(F(G)) \times i(F(G)).
$$

3. Twisted-forms

Before continuing with the classification of G-forms, we would like to recall the following general construction due to Giraud and prove one related Lemma. Let R be a unital commutative ring. A central exact sequence of étale R-group schemes:

$$
1 \rightarrow A \xrightarrow{i} B \xrightarrow{\pi} C \rightarrow 1
$$

induces by étale cohomology a long exact sequence of pointed-sets ([16, III, Lem. 3.3.1]):

$$
1 \rightarrow A(R) \rightarrow B(R) \rightarrow C(R) \rightarrow H^1_{\text{ét}}(R, A) \xrightarrow{i_*} H^1_{\text{ét}}(R, B) \rightarrow H^1_{\text{ét}}(R, C)
$$

in which $C(R)$ acts "diagonally" on the elements of $H^1_{\text{ét}}(R, A)$ in the following way: For $c \in C(R)$, a preimage X of c under $B \rightarrow C$ is a A-bitorsor, i.e., $X = bA = Ab$ for some $b \in B(R')$, where R' is a finite étale extension of R ([16, III, 3.3.3.2]). Then given $[P] \in H^1_{\text{ét}}(R, A)$:

$$
c \ast P = P \wedge X = (P \times X)/(p^a, a^{-1}x).
$$

The exactness of (3.2) implies that $B(R) \xrightarrow{\pi} C(R)$ is surjective if and only if $\ker(i_*) = 1$. This holds true starting with any twisted form PB of B, $[P] \in H^1_{\text{ét}}(R, A)$.

Lemma 3.1. The following are equivalent:

1. the push-forward map \(H^1_{\text{ét}}(R, A) \xrightarrow{i_*} H^1_{\text{ét}}(R, B) \) is injective,
2. the quotient map \(P B(R) \xrightarrow{\pi} C(R) \) is surjective for any \([P] \in H^1_{\text{ét}}(R, A)\),
3. the \(C(R) \)-action on \(H^1_{\text{ét}}(R, A) \) is trivial.

Proof. Consider the exact and commutative diagram (cf. [16, III, Lem. 3.3.4])

\[
\begin{array}{ccc}
B(R) & \xrightarrow{\pi} & C(R) & \xrightarrow{i_*} & H^1_{\text{ét}}(R, A) & \xrightarrow{\cong} H^1_{\text{ét}}(R, B) \\
& & & \downarrow{\theta_P} & & \downarrow{r} \\
PB(R) & \xrightarrow{\pi} & C(R) & \xrightarrow{i'_*} & H^1_{\text{ét}}(R, PA) & \xrightarrow{\cong} H^1_{\text{ét}}(R, PB),
\end{array}
\]

where the map \(i'_* \) is obtained by applying étale cohomology to the sequence (3.1) while replacing \(B \) by the twisted group scheme \(PB \), and \(\theta_P \) is the induced twisting bijection.

(1) ⇔ (2). The map \(i_* \) is injective if and only if \(\ker(i'_*) \) is trivial for any \(A \)-torsor \(P \). By exactness of the rows, this is condition (2).

(1) ⇔ (3). By [16, Prop. III.3.3.3(iv)], \(i_* \) induces an injection of \(H^1_{\text{ét}}(R, A)/C(R) \) into \(H^1_{\text{ét}}(R, B) \). Thus \(i_* : H^1_{\text{ét}}(R, A) \to H^1_{\text{ét}}(R, B) \) is injective if and only if \(C(R) \) acts on \(H^1_{\text{ét}}(R, A) \) trivially. \qed

Following B. Conrad in [10], we denote the group of outer automorphisms of \(G \) by \(\Theta \).

Proposition 3.2 ([10, Prop. 1.5.1]). Assume \(\Phi \) spans \(X_Q \) and that \((X_Q, \Phi)\) is reduced. The inclusion \(\Theta \subseteq \text{Aut}(\text{Dyn}(G)) \) is an equality, if the root datum is adjoint or simply-connected, or if \((X_Q, \Phi)\) is irreducible and \((\mathbb{Z}\Phi^\vee)^*/\mathbb{Z}\Phi \) is cyclic.

Remark 3.3. The only case of irreducible \(\Phi \) in which the non-cyclicity in Proposition 3.2 occurs, is of type \(D_{2n}(n \geq 2) \), in which \((\mathbb{Z}\Phi^\vee)^*/\mathbb{Z}\Phi \cong (\mathbb{Z}/2)^2 \) (cf. [10, Ex. 1.5.2]).

Remark 3.4. Since \(G \) is reductive, \(\text{Aut}(G) \) is representable as an \(\mathcal{O}_S \)-group and admits the short exact sequence of smooth \(\mathcal{O}_S \)-groups (see [12, XXIV, 3.10],[11, §3]):

\[
(3.4) \quad 1 \to G^{\text{ad}} \to \text{Aut}(G) \to \Theta \to 1.
\]

Applying étale cohomology we get the exact sequence of pointed-sets:

\[
(3.5) \quad \text{Aut}(G)(\mathcal{O}_S) \to \Theta(\mathcal{O}_S) \to H^1_{\text{ét}}(\mathcal{O}_S, G^{\text{ad}}) \xrightarrow{i_*} H^1_{\text{ét}}(\mathcal{O}_S, \text{Aut}(G)) \to H^1_{\text{ét}}(\mathcal{O}_S, \Theta)
\]
in which by Lemma 3.1 the $\Theta(\mathcal{O}_S)$-action is trivial on $H^1_{\text{ét}}(\mathcal{O}_S, G^{\text{ad}})$ if and only if i_* is injective, being equivalent to the surjectivity of $$(P\text{Aut}(G))(\mathcal{O}_S) = \text{Aut}(P\mathcal{G})(\mathcal{O}_S) \to \Theta(\mathcal{O}_S)$$ for all $[P] \in H^1_{\text{ét}}(\mathcal{O}_S, \Theta)$ (this action is trivial inside each genus).

It is a classical fact that $H^1_{\text{ét}}(\mathcal{O}_S, \text{Aut}(G))$ is in bijection with twisted forms of G up to isomorphism (for a general statement of this correspondence, see [7, §2.2.4]). Therefore this pointed-set shall be denoted from now and on by $\text{Twist}(G)$. This bijection is done by associating any twisted form H of G with the $\text{Aut}(G)$-torsor $\text{Iso}(G, H)$. If H is an inner-form of G, then $[H]$ belongs to $\text{Im}(i_*)$ in (3.5).

Sequence (3.4) splits, provided that G is quasi-split (as in Section 2). Recall that G admits an inner form G_0 which is quasi-split. Then $\text{Aut}(G_0) \cong G_0^{\text{ad}} \rtimes \Theta$ (the outer automorphisms group of the two groups are canonically isomorphic). This implies by [14, Lem. 2.6.3] the decomposition

$$\text{Twist}(G_0) = H^1_{\text{ét}}(\mathcal{O}_S, \text{Aut}(G_0)) = \prod_{[P] \in H^1_{\text{ét}}(\mathcal{O}_S, \Theta)} H^1_{\text{ét}}(\mathcal{O}_S, P(\mathcal{G}^{\text{ad}}))/\Theta(\mathcal{O}_S)$$

where the quotients are taken modulo the action (3.3) of $\Theta(\mathcal{O}_S)$ on the $P(\mathcal{G}^{\text{ad}})$-torsors. But $\text{Twist}(G_0) = \text{Twist}(G)$ and as G_0 is inner:

$$H^1_{\text{ét}}(\mathcal{O}_S, P(\mathcal{G}^{\text{ad}})) = H^1_{\text{ét}}(\mathcal{O}_S, P(\mathcal{G}^{\text{ad}})),$$

hence (3.6) can be rewritten as:

$$\text{Twist}(G) = \prod_{[P] \in H^1_{\text{ét}}(\mathcal{O}_S, \Theta)} H^1_{\text{ét}}(\mathcal{O}_S, P(\mathcal{G}^{\text{ad}}))/\Theta(\mathcal{O}_S).$$

The pointed-set $H^1_{\text{ét}}(\mathcal{O}_S, \Theta)$ classifies étale extensions of \mathcal{O}_S whose automorphism group embeds into Θ. As all $H^1_{\text{ét}}(\mathcal{O}_S, P(\mathcal{G}^{\text{ad}}))$ are finite, $\text{Twist}(G)$ is finite. Together with Lemma 2.2 we get:

Proposition 3.5. If G is not of type A then:

$$\text{Twist}(G) \cong \prod_{[P] \in H^1_{\text{ét}}(\mathcal{O}_S, \Theta)} H^2_{\text{ét}}(\mathcal{O}_S, F(P(\mathcal{G}^{\text{ad}})))/\Theta(\mathcal{O}_S),$$

the $\Theta(\mathcal{O}_S)$-action on each component is carried by Lemma 2.2 from the one on $H^1_{\text{ét}}(\mathcal{O}_S, P(\mathcal{G}^{\text{ad}}))$, cf. (3.3).

Corollary 3.6. When $S = \emptyset$, i.e., over C, any outer form of G has a unique genus on which $\Theta(\mathcal{O}_S)$ acts trivially, hence one has (including for type A):

$$\text{Twist}(G) \cong \prod_{[P] \in H^1_{\text{ét}}(\mathcal{O}_S, \Theta)} j(F(P(\mathcal{G}^{\text{ad}}))).$$
Since \(C \) is smooth, \(\mathcal{O}_S \) is a Dedekind ring and any finite étale covering of it is the normalization of \(\mathcal{O}_S \) (or of \(C \) when \(S = \emptyset \)) in some finite separable extension of \(K \), which is unramified outside \(S \). So we may look on the fundamental groups over the according extension of fields; The following is the list of all types of absolutely almost-simple \(K \)-groups (e.g., [23, p. 333]):

Type of \(G \)	\(F(\text{G}^{\text{ad}}) \)	\(\text{Aut}(\text{Dyn}(\text{G})) \)
\(^1A_{n-1}>0 \)	\(\mu_n \)	\(\mathbb{Z}/2 \)
\(^2A_{n-1}>0 \)	\(R_{L/K}^{(1)}(\mu_n) \)	\(\mathbb{Z}/2 \)
\(B_n, C_n, E_7 \)	\(\mu_2 \)	0
\(^1D_n \)	\(\mu_4, n = 2k + 1 \mu_2 \times \mu_2, n = 2k \)	\(\mathbb{Z}/2 \)
\(^2D_n \)	\(R_{L/K}^{(1)}(\mu_4), n = 2k + 1 \) \(R_{L/K}(\mu_2), n = 2k \)	\(\mathbb{Z}/2 \)
\(^3,6D_4 \)	\(R_{L/K}^{(1)}(\mu_2) \)	\(S_3 \)
\(^1E_6 \)	\(\mu_3 \)	\(\mathbb{Z}/2 \)
\(^2E_6 \)	\(R_{L/K}^{(1)}(\mu_3) \)	\(\mathbb{Z}/2 \)
\(E_8, F_4, G_2 \)	1	0

4. Split fundamental group

In the following we show Proposition 3.5. We start with the simple case in which \(\Theta = 0 \):

Corollary 4.1. If \(\mathcal{G} \) is of the type \(B_{n>1}, C_{n>1}, E_7, E_8, F_4, G_2 \), for which \(F(\text{G}^{\text{ad}}) \cong \mu_m \) there exists an isomorphism of finite abelian groups\n
\[
\text{Twist}(\mathcal{G}) \cong \text{Pic}(\mathcal{O}_S)/m \times m \text{Br}(\mathcal{O}_S).
\]

Proof. As \(\mathcal{G} \) is not of type A this derives from Proposition 3.5, together with the fact that \(\Theta(\mathcal{O}_S) = 0 \) whence there is a single component \(H^1_{\text{et}}(\mathcal{O}_S, \mathcal{G}^{\text{ad}}) \) on which the action of \(\Theta(\mathcal{O}_S) \) is trivial, and the description of the isomorphic group \(H^2_{\text{et}}(\mathcal{O}_S, F(\mathcal{G}^{\text{ad}})) \) is as in the split case in Lemma 2.3. \(\square \)

Example 4.2. Given a regular quadratic \(\mathcal{O}_S \)-form \(Q \) of rank \(2n + 1 \), its special orthogonal group \(\mathcal{G} = SO_Q \) is smooth and connected of type \(B_n \) ([9, Thm. 1.7]). Since \(F(\mathcal{G}) = \mu_2 \) we assume \(\text{char}(K) \) is odd. According to Corollary 4.1 we then get

\[
\text{Twist}(\mathcal{G}) \cong \text{Pic}(\mathcal{O}_S)/2 \times 2 \text{Br}(\mathcal{O}_S).
\]

In case \(|S| = 1 \) and \(Q \) is split by an hyperbolic plane, an algorithm producing explicitly the inner forms of \(Q \) is provided in [3, Algorithm 1].
5. Quasi-split fundamental group

Unless G is of absolute type D_4, Θ is either trivial or equals \{id, $\tau: A \mapsto (A^{-1})^t$\}. In the latter case, τ acts on the G^{ad}-torsors via $X = G^{\text{ad}}b$, where b is an outer automorphism of G, defined over some finite étale extension of \mathcal{O}_S (see (3.3)). In particular:

$$\tau \ast G^{\text{ad}} = (G^{\text{ad}} \times X)/(ga, a^{-1}x),$$

which is the opposite group $(G^{\text{ad}})^{\text{op}}$, as the action is via $a^{-1}x = x(a^t)$, (a is viewed as an element of G^{ad}, not as an inner automorphism). Now if τ is defined over \mathcal{O}_S, then $\text{Aut}(G)(\mathcal{O}_S) \to \Theta(\mathcal{O}_S)$ is surjective and $(G^{\text{ad}})^{\text{op}}$ is \mathcal{O}_S-isomorphic to G^{ad}, hence as τ is the only non-trivial element in $\Theta(\mathcal{O}_S)$, the map $H^1_{\text{ét}}(\mathcal{O}_S, P\text{Aut}(G)) \to H^1_{\text{ét}}(\mathcal{O}_S, \Theta)$ is surjective for all $[P] \in H^1_{\text{ét}}(\mathcal{O}_S, \Theta)$. This implies by Remark 3.4 that $\Theta(\mathcal{O}_S)$ acts trivially on $H^1_{\text{ét}}(\mathcal{O}_S, G^{\text{ad}})$. Otherwise, G^{ad} and $(G^{\text{ad}})^{\text{op}}$ represent two distinct classes in $H^1_{\text{ét}}(\mathcal{O}_S, G^{\text{ad}})$, being identified by $\Theta(\mathcal{O}_S)$.

For any extension R of \mathcal{O}_S and L of K, we denote $G_R := G \otimes_{\mathcal{O}_S} R$ and $G_L := G \otimes_K L$, respectively. Let $[A_G]$ be the Tits class of the universal covering G^{sc} of G (see Definition 1). This class does not depend on the choice of the representation ρ of G^{sc}, thus its notation is omitted. Recall that when $F(G)$ splits w_G^{ad} defined in (2.4) coincides with $\Lambda_* \circ \delta_G$. Similarly, when $F(G) = \text{Res}_{R/\mathcal{O}_S}(\mu_m)$ (quasi-split) where R/\mathcal{O}_S is finite étale, $\Lambda_* \circ \delta^R_G$ and w_G^{ad} defined over R, coincide.

Proposition 5.1. Suppose $\Theta \cong \mathbb{Z}/2$ and that $F(G^{\text{ad}}) = \text{Res}_{R/\mathcal{O}_S}(\mu_m)$, R is finite étale over \mathcal{O}_S. Then TFAE:

1. G_R admits an outer automorphism,
2. $[A_G]$ is 2-torsion in $\text{Br}(R)$,
3. $\Theta(R)$ acts trivially on $H^1_{\text{ét}}(R, G^{\text{ad}}_R)$.

If, furthermore, G is not of type A, or $S = \emptyset$, then these facts are also equivalent to:

4. G admits an outer automorphism,
5. $[A_G]$ is 2-torsion in $\text{Br}(R)$,
6. $\Theta(\mathcal{O}_S)$ acts trivially on $H^1_{\text{ét}}(\mathcal{O}_S, G^{\text{ad}})$.

Proof. By Lemma 2.1 the map $\Lambda_* \circ \delta^{\text{ad}}_G : H^1_{\text{ét}}(R, G^{\text{ad}}_R) \to \text{Br}(R)$ maps $[H^{\text{ad}}]$ to $[A_R] - [A_{G_R}]$, where $[A_R]$ is the Tits class of H^{sc} for a G^{ad}_R-torsor H^{ad}_R. Consider this combined with the long exact sequence obtained by applying
étale cohomology to the sequence (3.4) tensored with R:

\[\text{Cl}_R(G_{fr}) \]

\[\text{Aut}(G_R)(R) \longrightarrow \Theta_R \longrightarrow H^1_{\text{ét}}(R, G_{fr}) \xrightarrow{i_*} \text{Twist}(G_R) \]

(5.1)

\[\text{Cl}_R(G_{fr}) \]

where \(\text{Cl}_R(G_{fr}) \) is the principal genus of \(G_{fr} \) (see [4, Prop. 3.1]) noting that \(F(G_{fr}) = \mu_m \). Being an inner form of \(G_{fr} \), \((G_{fr})^{op} \) is obtained by a representative in \(H^1_{\text{ét}}(R, G_{fr}) \). Its \(w_{G_{fr}} \)-image: \([A_{G_{fr}}^{op}] - [A_{G_{fr}}] \) is trivial if and only if \(A_{G_{fr}} \) is of order \(\leq 2 \) in \(m \text{Br}(R) \), which is equivalent to \(\text{Aut}(G_R)(R) \) surjecting on \(\Theta(R) \), and \(\Theta(R) \) acting trivially on \(H^1_{\text{ét}}(R, G_{fr}) \) (see at the beginning of Section 5).

If, furthermore, \(G \) is not of type \(A \) or \(S = \emptyset \), then by Lemma 2.2, together with the Shapiro Lemma we get the isomorphisms of abelian groups:

\[H^1_{\text{ét}}(O_S, G_{fr}) \cong H^2_{\text{ét}}(O_S, F(G_{fr})) \cong H^2_{\text{ét}}(R, \mu_m) \cong H^1_{\text{ét}}(R, G_{fr}) \]

(5.2)

So if \(\Theta(R) \) acts trivially on \(H^1_{\text{ét}}(R, G_{fr}) \), then so does \(\Theta(O_S) \) on \(H^1_{\text{ét}}(O_S, G_{fr}) \). On the other hand if it does not, this implies that \(\text{Aut}(G_R)(R) \rightarrow \Theta(R) \cong \mathbb{Z}/2 \) is not surjective, thus neither is \(\text{Aut}(G)(O_S) \rightarrow \Theta(O_S) \), which is equivalent to \(\Theta(O_S) \) acting non-trivially on \(H^1_{\text{ét}}(O_S, G_{fr}) \) by Remark 3.4. Moreover, since \(i(F(G_{fr})) = i(F(G_{fr})) = m \text{Br}(R) \) (Definition 2), the identification (5.2) shows that \(\text{Cl}_R(G_{fr}) \) bijects to \(\text{Cl}_S(G_{fr}) \), whence \([A_{G_{fr}}] \) is 2-torsion in \(m \text{Br}(R) \) if and only if \([A_{G}] \) is.

If we wish to interpret a \(G \)-torsor as a twisted form of some basic form, we shall need to describe \(G \) first as the automorphism group of such an \(O_S \)-form.

Example 5.2. Let \(A \) be a division \(O_S \)-algebra of degree \(n > 2 \). Then \(G = SL(A) \) of type \(A_{n-1} > 1 \) is smooth and connected ([10, Lem. 3.3.1]). It admits a non-trivial outer automorphism \(\tau \). If the transpose anti-automorphism \(A \cong A^{op} \) is defined over \(O_S \) (extending \(\tau \) by inverting again), then \(\tau \in \text{Aut}(G)(O_S) \). Otherwise, as \((G_{fr})^{op} \) is not \(O_S \)-isomorphic by some conjugation to \(G_{fr} = \text{PGL}(A) \), it represents a non-trivial class in \(H^1_{\text{ét}}(O_S, G_{fr}) = \text{Im}(G) \), whilst its image in \(\text{Twist}(G) \) is trivial by the inverse isomorphism \(x \mapsto x^{-1} \) defined over \(O_S \) (say, by the Cramer rule). So finally \(\Theta(O_S) \) acts trivially on \(H^1_{\text{ét}}(O_S, \text{PGL}(A)) \) if and only if \(\text{ord}(A) \leq 2 \) in \(\text{Br}(O_S) \), as Proposition 5.1 predicts.
5.1. Type D_{2k}. Let A be an Azumaya \mathcal{O}_S-algebra (char(K) $\neq 2$) of degree $2n$ and let (f, σ) be a quadratic pair on A, namely, σ is an involution on A and $f : \text{Sym}(A, \sigma) = \{x \in A : \sigma(x) = x\} \to \mathcal{O}_S$ is a linear map. The scalar $\mu(a) := \sigma(a) \cdot a$ is called the multiplier of a. For $a \in A^\times$ we denote by $\text{Int}(a)$ the induced inner automorphism. If σ is orthogonal, the associated similitude group is:

$$
\text{GO}(A, f, \sigma) := \{a \in A^\times : \mu(a) \in \mathcal{O}_S^\times, \ f \circ \text{Int}(a) = f\},
$$

and the map $a \mapsto \text{Int}(a)$ is an isomorphism of the projective similitude group $\text{PGO}(A, f, \sigma) := \text{GO}(A, f, \sigma)/\mathcal{O}_S^\times$ with the group of rational points $\text{Aut}(A, f, \sigma)$. Such a similitude is said to be proper if the induced automorphism of the Clifford algebra $C(A, f, \sigma)$ is the identity on the center; otherwise it is said to be improper. The subgroup $G = \text{PGO}^+(A, f, \sigma)$ of these proper similitudes is connected and adjoint, called the projective special similitude group. If the discriminant of σ is a square in \mathcal{O}_S^\times, then G is of type 1^1D_n. Otherwise of type 2^1D_n.

When $n = 2k$, in order that Θ captures the full structure of $\text{Aut}(\text{Dyn}(G))$, we would have to restrict ourselves to the two edges of simply-connected and adjoint groups (see Remark 3.3).

Corollary 5.3. Let G be of type $2^1D_{2k}, k \neq 2$, simply-connected or adjoint. For any $[P] \in H^1_{\text{et}}(\mathcal{O}_S, \mathbb{Z}/2)$ let R_P be the corresponding quadratic étale extension of \mathcal{O}_S. Then:

$$
\text{Twist}(G) \cong \prod_{[P] \in H^1_{\text{et}}(\mathcal{O}_S, \mathbb{Z}/2)} \text{Pic}(R_P)/2 \times \text{Br}(R_P).
$$

Proof. Any form $P(G^{\text{ad}})$ has Tits class $[A_{P_G}]$ of order ≤ 2 in $2\text{Br}(R_P)$. Hence as $\Theta \cong \mathbb{Z}/2$ and G is not of type A, by Proposition 5.1 $\Theta(\mathcal{O}_S)$ acts trivially on $H^1_{\text{et}}(\mathcal{O}_S, P(G^{\text{ad}}))$ for all P in $\Theta(\mathcal{O}_S)$. All fundamental groups are admissible, so the Corollary statement is Proposition 3.5 together with the description of each $H^2_{\text{et}}(\mathcal{O}_S, F(P(G^{\text{ad}})))$ as in Lemma 2.3. \hfill \square

6. Non quasi-split fundamental group

When $F(G^{\text{ad}})$ is not quasi-split, we cannot apply the Shapiro Lemma as in (5.2) to gain control on the action of $\Theta(\mathcal{O}_S)$ on $H^1_{\text{et}}(\mathcal{O}_S, F(G^{\text{ad}}))$. Still under some conditions this action is provided to be trivial.

Remark 6.1. As opposed to $m\text{Br}(K)$ which is infinite for any integer $m > 1$, $m\text{Br}(\mathcal{O}_S)$ is finite. To be more precise, if $S \neq \emptyset$, $\text{Sp}(\mathcal{O}_S)$ is obtained by removing $|S|$ points from the projective curve C, hence $|m\text{Br}(\mathcal{O}_S)| = m^{|S|−1}$ (see the proof of [4, Cor. 3.2]). When $S = \emptyset$ we have $\text{Br}(C) = 1$. In particular, if G is not of absolute type A and $F(G^{\text{ad}})$ splits over an extension R such that the number of places in $\text{Frac}(R)$ which lie above
places in S is 1, or when $S = \emptyset$, then G^ad can posses only one genus and consequently the $\Theta(O_S)$-action on $H^2_{\text{ét}}(O_S, G^\text{ad})$ is trivial.

E. Artin in [1] calls a Galois extension L of K imaginary if no prime of K is decomposed into distinct primes in L. We shall similarly call a finite étale extension of O_S imaginary if no prime of O_S is decomposed into distinct primes in it.

Lemma 6.2. If R is imaginary over O_S and m is prime to $[R : O_S]$, then $m \text{Br}(R) = m \text{Br}(O_S)$.

Proof. If $S = \emptyset$ and R/C is imaginary then $\text{Br}(R) = \text{Br}(O_S) = 1$. Otherwise, the composition of the induced norm N_{R/O_S} with the diagonal morphism coming from the Weil restriction

$$\mathbb{G}_m, O_S \to \text{Res}_{R/O_S} (\mathbb{G}_m, R) \xrightarrow{N_{R/O_S}} \mathbb{G}_m, O_S$$

is the multiplication by $n := [R : O_S]$. It induces together with the Shapiro Lemma the maps:

$$H^2_{\text{ét}}(O_S, \mathbb{G}_m, O_S) \to H^2_{\text{ét}}(R, \mathbb{G}_m, R) \xrightarrow{N^{(2)}} H^2_{\text{ét}}(O_S, \mathbb{G}_m, O_S)$$

whose composition is the multiplication by n on $H^2_{\text{ét}}(O_S, \mathbb{G}_m, O_S)$. Identifying $H^2_{\text{ét}}(*, \mathbb{G}_m)$ with $\text{Br}(*)$ and restricting to the m-torsion subgroups gives the composition

$$m \text{Br}(O_S) \to m \text{Br}(R) \xrightarrow{N^{(2)}} m \text{Br}(O_S)$$

being still multiplication by n, thus an automorphism when n is prime to m. This means that $m \text{Br}(O_S)$ is a subgroup of $m \text{Br}(R)$. As R is imaginary over O_S, it is obtained by removing $|S|$ points from the projective curve defining its fraction field, so $|m \text{Br}(R)| = |m \text{Br}(O_S)| = m^{|S| - 1}$ by Remark 6.1, and the assertion follows.

Corollary 6.3. If $F(G) = \text{Res}_{R/O_S}^{(1)}(\mu_m)$ is admissible and R/O_S is imaginary, then $i(F(G)) = \ker(m \text{Br}(R) \to m \text{Br}(O_S))$ (see Definition 2) is trivial, hence G admits a single genus (cf. [4, Cor. 3.2]).

6.1. Type E_6

A hermitian Jordan triple over O_S is a triple (A, \mathfrak{X}, U) consisting of a quadratic étale O_S-algebra A with conjugation σ, a free of finite rank O_S-module \mathfrak{X}, and a quadratic map $U : \mathfrak{X} \to \text{Hom}_A(\mathfrak{X}^\sigma, \mathfrak{X}) : x \mapsto U_x$, where \mathfrak{X}^σ is \mathfrak{X} with scalar multiplication twisted by σ, such that (\mathfrak{X}, U) is an (ordinary) Jordan triple as in [20]. In particular if \mathfrak{X} is an $Albert$ O_S-algebra, then it is called an hermitian Albert triple. In that case the associated trace form $T : A \times A \to O_S$ is symmetric non-degenerate and it follows that the structure group of \mathfrak{X} agrees with its group of norm similarities. Viewed as an O_S-group, it is reductive with center of rank 1 and its semisimple part, which we shortly denote $G(A, \mathfrak{X})$, is simply connected.
of type E_6. It is of relative type $^{1}E_6$ if $A \cong O_S \times O_S$ and of type $^{2}E_6$ otherwise.

Groups of type $^{1}E_6$ are classified by four relative types, among them only $^{1}E_{6,2}'$ has a non-commutative Tits algebra, thus being the only type in which $\Theta(O_S) \cong \mathbb{Z}/2$ may act non-trivially on $H^1_{\text{et}}(O_S, \mathcal{G}_{\text{ad}})$. More precisely, the Tits-algebra in that case is a division algebra D of degree 3 (cf. [25, p. 58]) and the $\Theta(O_S)$-action is trivial if and only if $\text{ord}(D) \leq 2$ in $\text{Br}(O_S)$. But $\text{ord}(D)$ is odd, thus this action is trivial if and only if D is a matrix O_S-algebra.

In the case of type $^{2}E_6$, one has six relative types (cf. [25, p. 59]), among which only $^{2}E_{6,2}$ has a non-commutative Tits algebra (cf. [26, p. 211]). Its Tits algebra is a division algebra of degree 3 over R, and its Brauer class has trivial corestriction in $\text{Br}(O_S)$. By Albert and Riehm, this is equivalent to D possessing an R/O_S-involution.

From now on \sim denotes the equivalence relation on the Brauer group which identifies the class of an Azumaya algebra with the class of its opposite.

Corollary 6.4. Let G be of (absolute) type E_6. For any $[P] \in H^1_{\text{et}}(O_S, \mathbb{Z}/2)$ let R_P be the corresponding quadratic étale extension of O_S. Then

$$\text{Twist}(G) \cong \text{Pic}(O_S)/3 \times 3 \text{Br}(O_S)/\sim \prod_{1 \neq [P]} \ker(\text{Pic}(R_P)/3 \to \text{Pic}(O_S)/3) \times (\ker(3\text{Br}(R_P) \to 3\text{Br}(O_S)))/\sim,$$

where $[P]$ runs over $H^1_{\text{et}}(O_S, \mathbb{Z}/2)$. The relation \sim is trivial in the first component unless \mathcal{G}_{ad} is of type $^{1}E_{6,2}'$ and is trivial in the other components unless $P(G_{\text{ad}})$ is of type $^{2}E_{6,2}''$.

Proof. The group $\Theta(O_S)$ acts trivially on members of the same genus, so it is sufficient to check its action on the set of genera for each type. Since $F(P(G_{\text{ad}}))$ is admissible for any $[P] \in H^1_{\text{et}}(O_S, \Theta)$, by [4, Cor. 3.2] the set of genera of each $P(G_{\text{ad}})$ bijects as a pointed-set to $i(F(P(G_{\text{ad}})))$, so the assertion is Proposition 3.5 together with Lemma 2.3. The last claims are retrieved from the above discussion on the trivial action of $\Theta(O_S)$ when $P(G_{\text{ad}})$ is not of type $^{1}E_{6,2}'$ or $^{2}E_{6,2}''$. \qed
Example 6.5. Let C be the elliptic curve $Y^2Z = X^3 + ZX^2 + Z^3$ defined over \mathbb{F}_3. Then:

$$C(\mathbb{F}_3) = \{(1 : 0 : 1), (0 : 1 : 2), (0 : 1 : 1), (0 : 1 : 0)\}.$$

Removing the \mathbb{F}_3-point $\infty = (0 : 1 : 0)$ the obtained smooth affine curve C^af is $y^2 = x^3 + x + 1$. Letting $O_{(\infty)} = \mathbb{F}_3[C^\text{af}]$ we have $\text{Pic}(O_{(\infty)}) \cong C(\mathbb{F}_3)$ (e.g., [3, Ex. 4.8]). Among the affine supports of points in $C(\mathbb{F}_3) - \{\infty\}$:

$$\{(1, 0), (0, 1/2) = (0, 2), (0, 1)\},$$

only $(1, 0)$ has a trivial y-coordinate thus being of order 2 (according to the group law there), to which corresponds the fractional ideal $P = (x - 1, y)$ of order 2 in $\text{Pic}(O_{(\infty)})$. As $\text{Pic}(O_{(\infty)})/3 = 1$ and $\text{Br}(O_{(\infty)}) = 1$, a form of type 1E_6 has no non-isomorphic inner form, while a form of type 2E_6 may have more; for example $R = O_{(\infty)} \oplus P$ being geometric and étale cannot be imaginary over $O_{(\infty)}$, which means it is obtained by removing two points from a projective curve, thus

$$\text{ker}(3\text{Br}(R) \to 3\text{Br}(O_{(\infty)}))/\sim = 3\text{Br}(R)/\sim$$

$$= \{[R], [A], [A^{op}]\}/\sim = \{[R], [A]\},$$

hence an $O_{(\infty)}$-group of type E_6 splitting over R admits a non-isomorphic inner form.

6.2. Type D_{2k+1}. Recall from Section 5.1 that an adjoint O_S-group G of absolute type D_n can be realized as $\text{PGO}^+(A, \sigma)$ where A is Azumaya of degree $2n$ and σ is an orthogonal involution on A. Suppose n is odd. If G is of relative type 1D_n then $F(G) = \mu_4$ is admissible, thus not being of absolute type A, $\text{Cl}_S(G)$ bijects to $j(\mu_4) = \text{Pic}(O_S)/4$ and $\text{gen}(G)$ bijects to $i(\mu_4) = 4\text{Br}(O_S)$. Otherwise, when G is of type 2D_n, then $F(G) = \text{Res}_{R/O_S}^{(1)}(\mu_4)$ where R/O_S is quadratic. Again not being of absolute type A, $\text{Cl}_S(G) \cong j(F(G)) = \ker(\text{Pic}(R)/4 \to \text{Pic}(O_S)/4)$, but here, as $F(G)$ is not admissible, by [4, Cor. 3.2] $\text{gen}(G)$ only injects in $i(F(G)) = \ker(4\text{Br}(R) \to 4\text{Br}(O_S))$. If R/O_S is imaginary, then by Lemma 6.2 $i(F(G)) = 1$. Altogether by Proposition 3.5 we get:

Corollary 6.6. Let G be of (absolute) type D_{2k+1}. For any $[P] \in H^1_{\text{ét}}(O_S, \mathbb{Z}/2)$ let R_P be the corresponding quadratic étale extension of O_S. Then there exists an exact sequence of pointed-sets

$$\text{Twist}(G) \hookrightarrow \text{Pic}(O_S)/4 \times \prod_{1 \neq [P]} \ker(\text{Pic}(R_P)/4 \to \text{Pic}(O_S)/4)$$

$$\times \left(4\text{Br}(O_S)/\sim \times \prod_{1 \neq [P]} (\ker(4\text{Br}(R_P) \to 4\text{Br}(O_S)))/\sim \right),$$
where $[P]$ runs over $H^1_0(\mathcal{O}_S, \mathbb{Z}/2)$ and $[A] \sim [A^{op}]$. This map surjects onto the first component. Whenever R_P/\mathcal{O}_S is imaginary $\ker(4\text{Br}(R_P) \to 4\text{Br}(\mathcal{O}_S)) = 1$ and this map is a bijection.

Example 6.7. Let $\mathcal{O}_\{\infty\} = \mathbb{F}_q[x]$ (q is odd) obtained by removing $\infty = (1/x)$ from the projective line over \mathbb{F}_q. Suppose $q \in 4\mathbb{N} - 1$ so $-1 \not\in \mathbb{F}_q^2$, and let $G = \text{SO}_{10}$ be defined over $\mathcal{O}_\{\infty\}$. The discriminant of an orthogonal form Q_B induced by an $n \times n$ matrix B is $\text{disc}(Q_B) = (-1)^{\frac{n(n-1)}{2}} \det(B)$. As $\text{disc}(Q_{110}) = -1$ is not a square in $\mathcal{O}_\{\infty\}$, G is considered of type 2D_5. It admits a maximal torus T containing five 2×2 rotations blocks $(a \ b \ c \ d)$: $a^2 + b^2 = 1$ on the diagonal. Over $R = \mathcal{O}_\{\infty\}[i]$ such block is diagonalizable; it becomes $\text{diag}(t, t^{-1})$. The obtained diagonal torus $T'_s = PT_sP^{-1}$ where $T_s = T \otimes R$ and P is some invertible 10×10 matrix over R, is split and 5-dimensional, so may be identified with the 5×5 diagonal torus, whose positive roots are:

$$\alpha_1 = \varepsilon_1 - \varepsilon_2, \ \alpha_2 = \varepsilon_2 - \varepsilon_3, \ \alpha_3 = \varepsilon_3 - \varepsilon_4, \ \alpha_4 = \varepsilon_4 - \varepsilon_5, \ \alpha_5 = \varepsilon_4 + \varepsilon_5.$$

Let g be the matrix differing from the 10×10 unit only at the last 2×2 block, being $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Then $\det(g) = -1$ thus $\text{disc}(Q_g) = 1$ where Q_g is the induced quadratic form. This means that $G' = \text{SO}(Q_g)$ of type 1D_5 is the unique outer form of G (up to \mathcal{O}_S-isomorphism). Then $\Theta = \text{Aut}(\text{Dyn}(G))$ acts on $\text{Lie}(gT'_s g^{-1})$ by mapping the last block $\begin{pmatrix} 0 & \ln(t) \\ -\ln(t) & 0 \end{pmatrix}$ to $\begin{pmatrix} 0 & -\ln(t) \\ \ln(t) & 0 \end{pmatrix}$ and so swapping the above two roots α_4 and α_5. Since $\mathcal{O}_\{\infty\}$ and R are PIDs, their Picard groups are trivial. As only one point was removed in both domains also $\text{Br}(\mathcal{O}_\{\infty\}) = \text{Br}(R) = 1$. We remain with only the two above forms, i.e., $\text{Twist}(G) = \{ [G], [G'] \}$.

The same holds for $\mathcal{O}_S = \mathbb{F}_q[x, x^{-1}]$: again it is a UFD thus $G = \text{SO}_{10}$ defined over it still possesses only one non-isomorphic outer form. As \mathcal{O}_S is obtained by removing two points from the projective \mathbb{F}_q-line, this time $4\text{Br}(\mathcal{O}_S)$ is not trivial, but still equals $4\text{Br}(\mathcal{O}_S)$, so: $\ker(4\text{Br}(R) \to 4\text{Br}(\mathcal{O}_S)) = 1$.

6.3. Type D_4. This case deserves a special regard as Θ is the symmetric group S_3 when G is adjoint or simply-connected (cf. Proposition 3.2). Suppose C is an Octonion \mathcal{O}_S-algebra with norm N. For any similitude t of N (see Section 5.1) there exist similitudes t_2 and t_3 such that

$$t_1(xy) = t_2(x) \cdot t_3(y) \ \forall x, y \in C.$$

Then the mappings:

$$\alpha : [t_1] \mapsto [t_2], \ \beta : [t_1] \mapsto [t_3]$$

(6.1)
where $\hat{t}(x) := \mu(t)^{-1} \cdot t(x)$, satisfy $\alpha^2 = \beta^3 = \text{id}$ and generate $\Theta = \text{Out}(\text{PGO}^+(N)) \cong S_3$.

$$1^1D_4$$

Having three conjugacy classes, there are three classes of outer forms of G (cf. [10, p. 253]), which we denote as usual by 1^1D_4, 2^2D_4 and 3^3D_4. The groups in the following table are the generic fibers of these outer forms, L/K is the splitting extension of $F(G^{\text{ad}})$ (note that in the case 6^2D_4 L/K is not Galois):

Type of G	$F(G^{\text{ad}})$	$[L : K]$
1^1D_4	$\mu_2 \times \mu_2$	1
2^2D_4	$R_{L/K}(\mu_2)$	2
3^3D_4	$F_{L/K}^{(1)}(\mu_2)$	3

Starting with G of type 1^1D_4, one sees that $F(P(G^{\text{ad}}))$ (splitting over some corresponding extension R/O_S) is admissible for any $[P] \in H^1_{\text{ét}}(O_S, \Theta)$, thus according to Lemma 2.3

$$\forall [P] \in H^1_{\text{ét}}(O_S, \Theta) : H^2_{\text{ét}}(O_S, F(P(G^{\text{ad}}))) \cong j(F(P(G^{\text{ad}}))) \times i(F(P(G^{\text{ad}}))).$$

The action of $\Theta(O_S)$ is trivial on the first factor, classifying torsors of the same genus, so we concentrate on its action on $i(F(P(G^{\text{ad}})))$. Since $\Theta \neq \mathbb{Z}/2$ we cannot use Proposition 5.1, but we may still imitate its arguments:

The group $\Theta(O_S)$ acts non-trivially on $H^1_{\text{ét}}(O_S, P(G^{\text{ad}}))$ for some $[P] \in H^1_{\text{ét}}(O_S, \Theta)$ if it identifies two non isomorphic torsors of $P(G^{\text{ad}})$. The Tits algebras of their universal coverings lie in $(2\text{Br}(O_S))^2$ if $P(G^{\text{ad}})$ is of type 1^1D_4, i.e., if P belongs to the trivial class in $H^1_{\text{ét}}(O_S, \Theta)$, in $2\text{Br}(R)$ for R quadratic étale over O_S if $P(G^{\text{ad}})$ is of type 1^1D_4, i.e., if $[P] \in 2H^1_{\text{ét}}(O_S, \Theta)$, and in $\ker(2\text{Br}(R) \to 2\text{Br}(O_S))$ for a cubic étale extension R of O_S if $P(G^{\text{ad}})$ is one of the types 3^3D_4, i.e., if $[P] \in 3H^1_{\text{ét}}(O_S, \Theta)$. Therefore these Tits algebras must be 2-torsion, which means that the two torsors are O_S-isomorphic in the first case and R-isomorphic in the latter three. If $F(P(G^{\text{ad}}))$ is quasi-split this means (by the Shapiro Lemma) that $\Theta(O_S)$ acts trivially on $H^1_{\text{ét}}(O_S, P(G^{\text{ad}}))$. If $F(P(G^{\text{ad}}))$ is not quasi-split, according to Corollary 6.3 if R is imaginary over O_S then $i(F(P(G^{\text{ad}}))) = 1$.

If a quadratic form Q has a trivial discriminant on a vector space V, the Tits algebras of the group are $\text{End}(V)$ and the two components $C_+(Q)$, $C_-(Q)$ of the even Clifford algebra of Q, and the triality automorphism cyclically permutes those three. More generally, if the group is represented as $\text{PGO}^+(A, \sigma)$ for some orthogonal involution of trivial discriminant on a central simple algebra A of degree 8, triality automorphisms permute A.
and the two components of the Clifford algebra $\mathbf{C}(A, \sigma)$; Altogether we finally get:

Corollary 6.8. Let G be of (absolute) type D_4 being simply-connected or adjoint. For any $[P] \in H^1_{\text{ét}}(\mathcal{O}_S, \Theta)$ let R_P be the corresponding étale extension of \mathcal{O}_S. Then:

$$\text{Twist}(G) \cong \left(\text{Pic}(\mathcal{O}_S)/2 \times 2\text{Br}(\mathcal{O}_S) \right)^2 \coprod_{1 \neq [P] \in 2H^1_{\text{ét}}(\mathcal{O}_S, \Theta)} \text{Pic}(R_P)/2 \times 2\text{Br}(R_P) \coprod_{1 \neq [P] \in 3H^1_{\text{ét}}(\mathcal{O}_S, \Theta)} \ker(\text{Pic}(R_P)/2 \to \text{Pic}(\mathcal{O}_S)/2) \times (\ker(2\text{Br}(R_P) \to 2\text{Br}(\mathcal{O}_S)))/\Theta(\mathcal{O}_S).$$

If R_P is imaginary over \mathcal{O}_S, then $\ker(2\text{Br}(R_P) \to 2\text{Br}(\mathcal{O}_S)) = 1$.

7. The anisotropic case

Now suppose that G does admit a twisted form such that the generic fiber of its universal covering is anisotropic at S. As previously mentioned, such group must be of absolute type \mathbf{A} and $S \neq \emptyset$. Over a local field k, an outer form of a group of type \mathbf{A} which is anisotropic, must be the special unitary group arising by some hermitian form h in r variables over a quadratic extension of k or over a quaternion k-algebra ([27, §4.4]).

A unitary \mathcal{O}_S-group is $U(B, \sigma) := \text{Iso}(B, \sigma)$ where B is a non-split quaternion Azumaya defined over an étale quadratic extension R of \mathcal{O}_S and σ is a unitary involution on B, i.e., whose restriction to the center R is not the identity. The special unitary group is the kernel of the reduced norm:

$$\text{SU}(B, \sigma) := \ker(\text{Nrd} : U(B, \tau) \to GL_1(R)).$$

These are of relative type $2\mathbf{C}_2m$ ($m \geq 2$) ([27, §4.4]) and isomorphic over R to type \mathbf{A}_{2m-1}.

So in order to determine exactly when $H^1_{\text{ét}}(\mathcal{O}_S, GL_1(A))$ does not vanish, we may restrict ourselves to \mathcal{O}_S-groups whose universal covering is either $\mathbf{SL}_1(A)$ or $\mathbf{SU}(B, \sigma)$. In the first case, the reduced norm applied to the units of A forms the short exact sequence of smooth \mathcal{O}_S-groups:

$$1 \to \mathbf{SL}_1(A) \to \mathbf{GL}_1(A) \xrightarrow{\text{Nrd}} \mathbb{G}_m \to 1.$$ (7.1)

Then étale cohomology gives rise to the long exact sequence:

$$1 \to \mathcal{O}_S^\times / \text{Nrd}(A^\times) \to H^1_{\text{ét}}(\mathcal{O}_S, \mathbf{SL}_1(A)) \xrightarrow{\iota} H^1_{\text{ét}}(\mathcal{O}_S, \mathbf{GL}_1(A)) \xrightarrow{\text{Nrd}} H^1_{\text{ét}}(\mathcal{O}_S, \mathbb{G}_m) \cong \text{Pic}(\mathcal{O}_S)$$ (7.2)
in which \(\text{Nrd}_* \) is surjective since \(\text{SL}_1(A) \) is simply-connected and \(\mathcal{O}_S \) is of Douai-type (see above).

Definition 4. We say that the local-global Hasse principle holds for \(G \) if
\[h_S(G) = |\text{Cl}_S(G)| = 1. \]

Thus the Hasse principle says that an \(\mathcal{O}_S \)-group is \(\mathcal{O}_S \)-isomorphic to \(G \) if and only if it is \(K \)-isomorphic to it. This is automatic for simply-connected groups which are not of type A or when \(S = \emptyset \) for which by Lemma 2.2 \(H^1_{\text{et}}(\mathcal{O}_S, G) \cong H^2_{\text{et}}(\mathcal{O}_S, F(G)) \) is trivial.

Corollary 7.1. Let \(G = \text{SL}_1(A) \) where \(A \) is a quaternion \(\mathcal{O}_S \)-algebra.

1. If \(\text{Nrd} : A^\times \to \mathcal{O}_S^\times \) is not surjective, then the Hasse principle does not hold for \(G \).
2. If the generic fiber \(G \) is isotropic at \(S \), then \(\text{Twist}(G) \) is in bijection as a pointed-set with the abelian group \(\text{Pic}(\mathcal{O}_S)/2 \times 2\text{Br}(\mathcal{O}_S) \).

Proof. (1). The generic fiber \(\text{SL}_1(A) \) is simply-connected thus due to Harder \(H^1(K, \text{SL}_1(A)) = 1 \), which indicates that \(\text{SL}_1(A) \) admits a single genus (cf. Section 2), i.e., \(H^1_{\text{et}}(\mathcal{O}_S, \text{SL}_1(A)) \) is equal to \(\text{Cl}_S(\text{SL}_1(A)) \). By the exactness of sequence (7.2), \(H^1_{\text{et}}(\mathcal{O}_S, \text{SL}_1(A)) \) cannot vanish if \(\text{Nrd}(A^\times) \neq \mathcal{O}_S^\times \).

(2). Being of type \(A_1 \), \(G = \text{SL}_1(A) \) does not admit a non-trivial outer form, which implies that \(\text{Twist}(G) = H^1_{\text{et}}(\mathcal{O}_S, G_{\text{ad}}) \). The short exact sequence of the universal covering of \(G_{\text{ad}} = \text{PGL}_1(A) \) with fundamental group \(\mu_2 \), induces the long exact sequence (cf. (2.2)):
\[H^1_{\text{et}}(\mathcal{O}_S, \text{SL}_1(A)) \to H^1_{\text{et}}(\mathcal{O}_S, \text{PGL}_1(A)) \xrightarrow{\delta_{G_{\text{ad}}}} H^2_{\text{et}}(\mathcal{O}_S, \mu_2) \]
in which since \(H^1_{\text{et}}(\mathcal{O}_S, \text{SL}_1(A)) \) is trivial (due to strong approximation when \(G \) is isotropic at \(S \)), the rightmost term is isomorphic by Lemma 2.3 to \(\text{Pic}(\mathcal{O}_S)/2 \times 2\text{Br}(\mathcal{O}_S) \). \(\square \)

Example 7.2. Let \(C \) be the projective line defined over \(\mathbb{F}_3 \) and \(S = \{t, t^{-1}\} \). Then \(K = \mathbb{F}_3(t) \) and \(\mathcal{O}_S = \mathbb{F}_3[t, t^{-1}] \). For the quaternion \(\mathcal{O}_S \)-algebra \(A = (i^2 = -1, j^2 = -t)\mathcal{O}_S \) we get:
\[\forall x, y, z, w \in \mathcal{O}_S : \text{Nrd}(x + yi + zj + wk) = x^2 + y^2 + t(z^2 + w^2) \]
which shows that \(\text{Nrd}(A^\times) = \mathcal{O}_S^\times = \mathbb{F}_3^\times \cdot t^n, n \in \mathbb{Z} \). As \(\mathcal{O}_S \) is a UFD, the Hasse principle holds for \(G = \text{SL}_1(A) \), though its generic fiber \(G \cong \text{Spin}_q \) for \(q(x, y, z) = x^2 + y^2 + tz^2 \) is anisotropic at \(S \) (cf. [19, Lemma 6]). We have two distinct classes in \(\text{Twist}(G) \), namely, \([G] \) and \([G_{\text{op}}] \). For \(A = (-1, -1)\mathcal{O}_S \), however, we get:
\[\text{Nrd}(x + yi + zj + wk) = x^2 + y^2 + z^2 + w^2 \]
which does not surject on \(\mathcal{O}_S^\times \) as \(t \notin \text{Nrd}(A^\times) \), so the Hasse principle does not hold for \(\text{SL}_1(A) \).
Similarly, applying étale cohomology to the exact sequence of smooth \(\mathcal{O}_S \)-groups:

\[
1 \to \mathbf{SU}(B, \sigma) \to \mathbf{U}(B, \sigma) \xrightarrow{\text{Nrd}} \mathbf{GL}_1(R) \to 1
\]

induces the exactness of:

\[
1 \to R^\times / \text{Nrd}(\mathbf{U}(B, \sigma)(\mathcal{O}_S)) \to H^1_{\text{ét}}(\mathcal{O}_S, \mathbf{SU}(B, \sigma)) \\
\quad \to H^1_{\text{ét}}(\mathcal{O}_S, \mathbf{U}(B, \sigma)) \xrightarrow{\text{Nrd}} H^1_{\text{ét}}(\mathcal{O}_S, \text{Aut}(R)).
\]

Let \(A = D(\mathbf{B}, \sigma) \) be the discriminant algebra. If \(R \) splits, namely, \(R \cong \mathcal{O}_S \times \mathcal{O}_S \), then \(B \cong A \times A^{\text{op}} \) and \(\sigma \) is the exchange involution. Then \(\mathbf{U}(B, \sigma) \cong \mathbf{GL}_1(A) \) and \(\mathbf{SU}(B, \sigma) \cong \mathbf{SL}_1(A) \), so we are back in the previous situation.

Corollary 7.3. If \(\mathbf{U}(B, \sigma)(\mathcal{O}_S) \xrightarrow{\text{Nrd}} R^\times \) is not surjective then the Hasse-principle does not hold for \(\mathbf{SU}(B, \sigma) \).

8. In the Zariski topology

A \(\mathcal{G} \)-torsor \(P \) is Zariski, if the twisted form \(P^\mathcal{G} \) is generically and locally everywhere away of \(S \) isomorphic to \(\mathcal{G} \), i.e., if it belongs to the principal genus of \(\mathcal{G} \) (see Section 2). Let \(\mathcal{G}_0 \) be a quasi-split semisimple \(\mathcal{O}_S \)-group with an almost-simple generic fiber. The continuous morphism between the categories of open subsets of \(\mathcal{O}_S: (\mathcal{O}_S)_{\text{ét}} \to (\mathcal{O}_S)_{\text{Zar}} \) results, given a variety \(X \) defined over \(\mathcal{O}_S \), in the opposite inclusion of cohomology sets \(H^r_{\text{Zar}}(\mathcal{O}_S, X) \subseteq H^r_{\text{ét}}(\mathcal{O}_S, X) \) for all \(r > 0 \). The restriction of the decomposition (3.6)

\[
(8.1) \quad \text{Twist}(\mathcal{G}_0) \cong H^1_{\text{ét}}(\mathcal{O}_S, \text{Aut}(\mathcal{G}_0)) \cong \prod_{[P]} H^1_{\text{ét}}(\mathcal{O}_S, P(\mathcal{G}_0^{\text{ad}}))/\Theta(\mathcal{O}_S)
\]

to Zariski torsors gives (compare with [18, p. 181]):

\[
(8.2) \quad \text{Twist}_{\text{Zar}}(\mathcal{G}_0) \cong H^1_{\text{Zar}}(\mathcal{O}_S, \text{Aut}(\mathcal{G}_0)) \cong H^1_{\text{Zar}}(\mathcal{O}_S, \mathcal{G}_0^{\text{ad}})/\Theta(\mathcal{O}_S).
\]

But as aforementioned, \(H^1_{\text{Zar}}(\mathcal{O}_S, \mathcal{G}_0^{\text{ad}}) \) is equal to the principal genus of \(\mathcal{G}_0^{\text{ad}} \) on which the action of \(\Theta(\mathcal{O}_S) \) is trivial, hence (8.2) refines to:

\[
(8.3) \quad \text{Twist}_{\text{Zar}}(\mathcal{G}_0) \cong H^1_{\text{Zar}}(\mathcal{O}_S, \mathcal{G}_0^{\text{ad}}).
\]

Moreover, restricting the bijection \(H^1_{\text{ét}}(\mathcal{O}_S, \mathcal{G}_0^{\text{ad}}) \cong H^2_{\text{ét}}(\mathcal{O}_S, F(\mathcal{G}_0^{\text{ad}})) \) (Lemma 2.2) to the Zariski topology, \(H^1_{\text{Zar}}(\mathcal{O}_S, \mathcal{G}_0^{\text{ad}}) \) can be replaced with \(H^2_{\text{Zar}}(\mathcal{O}_S, F(\mathcal{G}_0^{\text{ad}})) \). All twisted forms of \(\mathcal{G}_0 \) in the Zariski topology being \(K \)-isomorphic are isotropic, so this time this includes groups of type A. Suppose \(F(\mathcal{G}_0^{\text{ad}}) \) is admissible, splitting over an étale extension \(R \) of \(\mathcal{O}_S \). Then \(H^2_{\text{Zar}}(\mathcal{O}_S, \mathcal{G}_m) \cong \text{Pic}(\mathcal{O}_S) \) while as \(R \) is locally factorial \(H^2_{\text{Zar}}(R, \mathcal{G}_m) \) is trivial ([8, Rem. 3.5.1]) thus \(i(F(\mathcal{G}_0)) \) as well (see Definition 2). Hence
similarly as was done for $H^2_{\text{ét}}(\mathcal{O}_S, F(G_0^{\text{ad}}))$ in Lemma 2.3, we get that $H^2_{\text{Zar}}(\mathcal{O}_S, F(G_0^{\text{ad}})) \cong j(F(G_0))$.

Corollary 8.1. Let G_0 be a semisimple \mathcal{O}_S-group with an almost-simple generic fiber and an admissible fundamental group. Then: $\text{Twist}_{\text{Zar}}(G_0) \cong j(F(G_0))$.

Acknowledgements. The authors thank P. Gille, B. Kunyavski˘ı and A. Quéguiner-Mathieu for valuable discussions concerning the topics of the present article. They would like also to thank the anonymous referee for a careful reading and many constructive remarks.

References

[1] E. Artin, “Quadratische Körper im Gebiete der höheren Kongruenzen. I”, Math. Z. 19 (1927), p. 153-206.

[2] M. Artin, A. Grothendieck & J.-L. Verdier, Théorie des Topos et Cohomologie Étale des Schémas (SGA 4), Lecture Notes in Mathematics, vol. 269, Springer, 1972.

[3] R. A. Bitan, “On the classification of quadratic forms over an integral domain of a global function field”, J. Number Theory 180 (2017), p. 26-44.

[4] ———, “On the genera of semisimple groups defined over an integral domain of a global function field”, J. Théor. Nombres Bordeaux 30 (2018), no. 3, p. 1037-1057.

[5] A. Borel & G. Prasad, “Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups”, Publ. Math., Inst. Hautes Étud. Sci. 69 (1989), p. 119-171.

[6] F. Bruhat & J. Tits, “Groupes réductifs sur un corps local. III: Compléments et applications à la cohomologie galoisienne”, J. Fac. Sci. Univ. Tokyo 34 (1987), p. 671-688.

[7] B. Calmèes & J. Fasel, “Groupes Classiques”, in On group schemes. A celebration of SGA3, Panoramas et Synthèses, vol. 46, Société Mathématique de France, 2015, p. 1-133.

[8] J.-L. Colliot-Thélène & A. N. Skorobogatov, “The Brauer-Grothendieck group”, https://wwwf.imperial.ac.uk/~anskor/brauer.pdf.

[9] B. Conrad, “Math 252. Properties of orthogonal groups”, http://math.stanford.edu/~conrad/252Page/handouts/O(q).pdf.

[10] ———, “Reductive group schemes”, http://math.stanford.edu/~conrad/papers/luminysga3.pdf.

[11] ———, “Non-split reductive groups over Z”, in On group schemes. A celebration of SGA3, Panoramas et Synthèses, vol. 46, Société Mathématique de France, 2015, p. 193-253.

[12] M. Demazure & A. Grothendieck (eds.), Séminaire de Géométrie Algébrique du Bois Marie - 1962–64 - Schémas en groupes Tome II, Documents Mathématiques, Société Mathématique de France, 2011, réédition de SGA3.

[13] J.-C. Douai, “Cohomologie des schémas en groupes semi-simples sur les anneaux de Dedekind et sur les courbes lisses, complètes, irréductibles”, C. R. Math. Acad. Sci. Paris 285 (1977), p. 325-328.

[14] P. Gille, “Sur la classification des schémas en groupes semi-simples”, in On group schemes. A celebration of SGA3, Panoramas et Synthèses, vol. 47, Société Mathématique de France, 2015, p. 39-110.

[15] J. Gillibert & P. Gillibert, “On the splitting of the Kummer sequence”, Publ. Math. Besançon, Algèbre Théorie Nombres 2019 (2019), no. 2, p. 19-27.

[16] J. Giraud, Cohomologie non abélienne, Grundlehren der Mathematischen Wissenschaften, vol. 179, Springer, 1971.

[17] C. D. González-Avilés, “Quasi-abelian crossed modules and nonabelian cohomology”, J. Algebra 360 (2012), p. 235-255.

[18] G. Harder, “Halbeinfache Gruppenschemata über Dedekindringen”, Invent. Math. 4 (1967), p. 165-191.
[19] G. Ivanyos, P. Kutas & L. Rónyai, “Explicit equivalence of quadratic forms over $\mathbb{F}_q(t)$”, *Finite Fields Appl.* **55** (2019), p. 33-63.

[20] K. McCrimmon, “The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras”, *Trans. Am. Math. Soc.* **139** (1969), p. 495-510.

[21] Y. Nisnevich, “Étale Cohomology and Arithmetic of Semisimple Groups”, PhD Thesis, Harvard University (USA), 1982.

[22] V. Petrov & A. Stavrova, “Tits indices over semilocal rings”, *Transform. Groups* **16** (2011), no. 1, p. 193-217.

[23] V. Platonov & A. Rapinchuk, *Algebraic Groups and Number Theory*, Pure and Applied Mathematics, vol. 139, Academic Press Inc., 1994.

[24] A. N. Skorobogatov, *Torsors and Rational Points*, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, 2001.

[25] J. Tits, “Classification of algebraic semisimple groups”, Proceedings of Symposia in Pure Mathematics, vol. 9, American Mathematical Society, 1966, p. 33-62.

[26] ———, “Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque”, *J. Reine Angew. Math.* **247** (1971), p. 196-220.

[27] ———, “Reductive groups over local fields”, in *Automorphic Forms, Representations and L-Functions*, Proceedings of Symposia in Pure Mathematics, vol. 33, American Mathematical Society, 1979, p. 29-69.

Rony A. Bitan
Afeka, Tel-Aviv Academic College of Engineering
Tel-Aviv, Israel
Bar-Ilan University
Ramat-Gan, Israel
E-mail: ronyb@afeka.ac.il

Ralf Köhl
JLU Giessen
Mathematisches Institut
Arndtstr. 2
35392 Giessen, Germany
E-mail: ralf.koehl@math.uni-giessen.de

Claudia Schoemann
Leibniz University Hannover
Institute for Algebraic Geometry
Welfengarten 1
30167 Hannover, Germany
E-mail: schoemann@math.uni-hannover.de