Research Article

Prediction of College Employment Rate Based on Big Data Analysis

Xuhui Dong

Admission and Employment Office, Henan Vocational College of Agriculture, Zhengzhou 450000, Henan, China

Correspondence should be addressed to Xuhui Dong; dongxuhui@hnca.edu.cn

Received 15 July 2021; Revised 30 September 2021; Accepted 21 October 2021; Published 21 December 2021

Academic Editor: Sang-Bing Tsai

Copyright © 2021 Xuhui Dong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper uses big data technology to predict the employment rate of colleges and universities. In this paper, combined with the current rental price, daily life consumption, and college students’ personal interests and hobbies consumption and other indicators, the individual is simulated by big data, and the individual is associated by using the AI-driven edge fog computing service optimization algorithm to form a cluster, so as to realize the prediction from element to neural network cluster by using edge computing. In addition, this paper takes the employment data of colleges and universities in Hunan province from June 2020 to May 2021 as the research sample to test the prediction model and makes a comparative analysis with the CNN model and LSTM model. The edge fog computing model in this paper has more analytical indexes as tuples compared to the CNN model, so the results show that the prediction accuracy can reach 83.25%. In this case, there is little difference between the two models of data processing and predictive efficiency. Compared with the LSTM based classification prediction model, this model is edge computing, which greatly improves the data quality of model and data parameters, and the calculation efficiency can be increased by 45%–65%. Therefore, the use of big data technology can provide a reference for the research direction of higher education.

1. Introduction

In the analysis and prediction of smart big data employment data, there are a variety of data types. Because different data types have different data structures, the data processing and analysis system will seriously reduce the performance of the system in the process of data extraction for different data structures. In the traditional big data edge computing system, although the user’s private data will not be transferred to other devices and the terminal will upload the local updated data directly to the edge server, there is still the possibility of privacy leakage by uploading data to reverse the user’s private data.

Al-Fuqaha et al. proposed a noninteractive edge computing algorithm for big data to ensure privacy. This method can ensure that privacy will not be disclosed even when multiple big data edge computing participants collude [1]. Klas considered how to verify the correctness of server aggregated data while protecting user privacy and proposed a verifiable privacy protection framework for big data edge computing (verifynet) [2]. The analysis method is based on the above problem. To improve communication speed and diminish communication overhead, on the other hand, is gradually becoming an important matter. Zhang suggested that the mobile end should verify the current parameter updates based on the background information from the central server and therefore decide whether to upload its own data to the controller. But while performing the operation of the proposed algorithm, an extra overhead is required by the mobile endpoints to determine when the number of local errors in updates pertains the amount of global aggregation [3]. Yousefpour et al. designed a control algorithm to adjust the times of local update and global aggregation according to the convergence constraints under a given resource, so as to maximize the resource utilization [4].

Chen proposed that the premise of the algorithm is that the local update consumes the same amount of resources. Considering the differences in terminals and data size, the resources consumed by local updates must be different, which affects the number of local updates [5]. The communication efficiency of Wang has been improved by speeding up the conversion time of the CNN algorithm. Such method may reduce the communication overhead to a
certain extent. But the implementation process of an algorithm still used the CNN framework which does not minimize the time of the model learner [6]. At present, the work of using big data edge computing to protect user privacy in edge computing is relatively small, and although some work has been devoted to research on how to improve the efficiency of big data edge computing, these solutions have more or less some flaws. Therefore, we will study edge intelligent collaborative computing and privacy protection methods based on big data edge computing. Big data edge computing mechanisms are being used to protect user privacy in edge computing, and ways to improve the efficiency of big data edge computing and reduce the cost of mobile devices are being explored [7].

This paper uses big data technology to predict the employment rate of colleges and universities. In this paper, combined with the current rental price, daily life consumption, and college students' personal interests and hobbies consumption and other indicators, the individual is simulated by big data, and the individual is associated by using the AI-driven edge fog computing service optimization algorithm to form a cluster, so as to realize the prediction from element to neural network cluster by using edge computing. In addition, this paper takes the employment data of colleges and universities in Hunan province from June 2020 to May 2021 as the research sample to test the prediction model and makes a comparative analysis with the CNN model and LSTM model.

2. Big Data and Edge Computing Prediction Method

2.1. Human Resource System and Marginal Computing. Referring to the reform direction of "employee system," we should create the economic employment mode of "employee system" platform, guide the platform to sign bilateral agreements with workers, clarify the responsibility boundary and legal guarantee obligations of platform employment management, take social insurance participation and minimum service fee guarantee as the necessary conditions for platform employment, and form a new form of labor relations that adapt to the characteristics of newly employed youth [8]. For the shared employment form with a more complex legal relationship, the responsibility of the original employer should be standardized according to the requirements of platform enterprises. At the same time, the platform enterprises are required to sign an agreement with the original employer to agree on the number, time, service location, service mode, compensation standard, and payment form of workers, so as to eliminate the "blank spots" in the protection of rights and interests. We take the newly employed young people as the key guarantee objects of the protection of rights and interests [12]. In the existing youth vocational skills promotion projects organized by the communist youth league at all levels, in view of the characteristics of new employment and the requirements of employment quality, targeted professional technical training and entrepreneurship training projects are carried out to improve the matching degree between the knowledge and skills of young workers and the new needs of productivity development, so as to create a broader career development space for newly employed youth [13].

In edge computing, servers are deployed at the edge of the network. The edge server is closer to users, which makes the migration time of computing tasks shorter, so it becomes the preferred platform for computing task execution [14, 15]. However, the resource of the edge server is limited. As the number of mobile devices increases, application functionality becomes more complex, queuing time for computing tasks migrating to edge servers increases, and computing delays increase [16, 17]. At the same time, it is inevitable that users' privacy information will be included in the computing task of migrating to the server [18]. This information is stored in the server, making the user uncontrollable to the private data [19, 20].

2.2. Edge Computing Model. Within the coverage of an edge computing server, there are m users using one mobile terminal [21]. D represents the set of M mobile terminals, and DM represents the m-th mobile terminal [22–26]. In total, n rounds of global updates are needed to meet the requirements of big data edge computing or model convergence to stop learning:

\[
DM = \frac{M/ \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \bar{x})^2}
\]

\[
D * \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{(Rn)^2 \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}}
\]

(1)
RN (1 ≤ n ≤ N) represents the set of mobile terminals participating in the nth round of aggregation [24, 25]. The architecture of the edge computing system based on big data edge computing is as follows:

$$Rn_{sim} = 1 - \left(\frac{2\mu_x + \mu_y + C_1}{(\mu_x^2 + \mu_y^2 + C_1)} \right)^{\left(2\sigma_{xy} + N_2\right)}$$

$$N = \beta X + (In - aW)^{-1} \epsilon,$$

$$W_1 = \begin{cases} s - p_1 - x_1, \\ x - p_2 - (1 - x_1). \end{cases}$$

This white paper considers the key generation platform to be a completely reliable platform. In addition, all devices, including all terminals and edge servers, run programs according to big data edge computing protocols but do not preclude the possibility of trying to retrieve the private data of other users. This setting is also widely used as the basis for protecting the privacy of big data edge computing [26, 27].

In big data edge computing, the global aggregation algorithm of the server is

$$\ln N_m = a_0 + a_1 W \ast dt + \sum_{i=1}^{N} b_i X u + \epsilon_m,$$

$$M = \frac{|DM \cap GT|}{GT}$$

The whole process of privacy protection mechanism is shown in

$$In DM_{gt} = a_0 + a_1 Rn \ast dt \ast W + \sum_{i=1}^{N} b_i W + \epsilon_m.$$

Let n denote whether DM participates in the nth round of aggregation

$$DM = aW y + n_1 X - W\beta_2 X + \epsilon.$$

Suppose that in the nth round of global aggregation, the clock period of DM processing a sample is cm, n. The data set used by a local update of a terminal is consistent. Suppose that DM local data set has SM samples in total. DM is used to calculate the sample time:

$$(In - a \ast N3)y = (In - a \ast CM3)X \beta + \epsilon.$$

Where FM is the dominant frequency of DM, the calculation method is as follows:

$$FM = 100\% \times \left(1 - \frac{|SEG| - |GT|}{|GT|} \right).$$

GT is the effective capacitance coefficient of DM in the nth round. Suppose that in the nth round, the amount of data transferred between DM and the server is n, and the calculation expression is as follows:

$$GT_x = \frac{2k}{k + 1} \left[\frac{1}{2} \frac{1}{2k} \right] \left(\frac{c_2 - c_1}{3} \right)^2 + \frac{2(c_2 - c_1)}{3}. \quad (11)$$

In the nth round, the calculation expression of transmission energy consumption MEM generated by DM is as follows:

$$X_{sim} = 1 - \frac{\sum_{a=1}^{H} \sum_{i=1}^{W} SEG(a,b)GT(a,b)}{\sum_{a=1}^{H} \sum_{i=1}^{W} SEG(a,b) + GT(a,b) - SEG(a,b)GT(a,b)}$$

where PM, n represents the transmission power of DM, N in the nth round. The time cost t of all terminals in the whole running period of the model is calculated as follows:

$$P(d_i, w_j) = P(d_i)P(w_j | d_i); P(w_j | d_i) \quad (13)$$

$$= \sum_{k=1}^{K} P(w_j | z_k)P(z_k | d_i).$$

In the process of communication between the terminal and the server, the channel propagation time is relatively small, so the time overhead is ignored in this paper. The energy consumption of all terminals during big data edge computing is expressed as e, and the calculation method is as follows:

$$\lambda m = \frac{2|\lambda m \cap GT|}{|\lambda m| + |GT|} \frac{dm}{d}.$$

$$\lambda M$$ is the learning accuracy of DM after the big data edge calculation, that is, the sample accuracy of DM learning, and $$\lambda M$$ is the target learning accuracy of DM. In the whole process, the processes that have a great influence on the performance and learning efficiency of big data edge computing include participant selection, local update, and global aggregation. The calculation expression of model parameter WN in the (n + 1) round is as follows:

$$FedAvg_{WN+1} = \begin{cases} s - p_1 - kx_2, \\ x - p_2 - k(1 - x_2). \end{cases} \quad (15)$$

This way of parameter aggregation may cause the accuracy of some participants in the next round to be lower than that in the previous round because the server considers all participants equally and ignores the influence between participants.

3. Experimental Design
3.1. Research Methods. This paper uses big data technology to predict the employment rate of colleges and universities. In this paper, combined with the current rental price, daily life consumption, and college students’ personal interests and hobbies consumption and other indicators, the individual is simulated by big data, and the individual is associated by using the AI-driven edge fog computing service optimization algorithm to form a cluster, so as to realize the
prediction from element to neural network cluster by using edge computing. In addition, this paper takes the employment data of colleges and universities in Hunan province from June 2020 to May 2021 as the research sample to test the prediction model and makes a comparative analysis with the CNN model and LSTM model.

3.2. Experimental Design. In the calculation of employment data, there are many types of data acquired by terminal equipment, so the transmission message can be unified to data, there are many types of data acquired by terminal equipment independent filtering, this paper proposes a data filtering scheme based on Gaussian membership analysis. This algorithm calculates the big data edge calculation of employment data and the big data edge calculation of data difference change to obtain the joint membership of the data [28]. Big data edge computing describes the membership degree of data corresponding to the whole from the perspective of data distribution. Big data edge computing discusses the possibility of continuous data when data changes from the perspective of data difference change distribution. The joint membership degree of data reflects its trustworthiness and subordination to the whole data. The higher the degree of membership, the higher the credibility of data. At the same time, combined with the spatiotemporal correlation of data, this paper puts forward the abnormal data filtering based on mobile edge cloud, which further improves the ability of data mining and analysis.

4. Results and Discussion

4.1. Big Data Edge Computing University Employment Rate Analysis. As shown in Figure 1, after passing through the filter, the data is divided into abnormal data, suspicious data, and reasonable data. We upload suspicious data and reasonable data and filter out abnormal data locally. The filtering algorithm based on big data edge computing can only solve the problem of data filtering in the normal data range. However, if there are special cases, mobile edge computing can help the employment data calculation to consider the problem of data anomaly from a higher dimension.

As shown in Figure 2, the big data edge computing method proposed in this paper can greatly reduce the time and energy consumption of big data edge computing compared with the CNN method and LSTM method under the condition that the learning accuracy of each terminal reaches a certain value. At the same time, the privacy protection mechanism proposed in this paper is further optimized, and a more complete mechanism based on a big data edge computing framework to protect user privacy in edge computing is designed.

As shown in Figure 3, although the proportion of determined outliers is relatively accurate, for some nodes with concentrated outlier data, this method of outlier filtering cannot achieve accurate filtering. In addition, the method of the isolated forest is used to filter abnormal data. In the algorithm of the isolated forest, the proportion of outliers is set to 0.005 in the quartile outlier filtering algorithm, and the experimental results determine the proportion of outlier data more accurately. In this experiment, the proportion of outlier data determined in the quartile algorithm is used as the proportion of outlier data of this algorithm.

As shown in Figure 4, in node 1, node 3, and node 6, the proportion of abnormal data is very small and even can be recorded as no normal data, the algorithm does not filter the data set. However, from the experimental results of the isolated forest algorithm, we can see that because the proportion of abnormal data is specified, the algorithm will definitely determine some data as abnormal data, but in practical application, these data are actually normal data. In the experiment, after the completion of abnormal data detection, the linear filling method is used to fill the data detected as abnormal values. This method is relatively simple and can smooth out the abnormal data. It can often replace the data that does not change significantly and changes continuously, such as the temperature data. Simulation results show that the algorithm has a better ability to filter abnormal data and is more robust.

As shown in Table 1, this paper proposes a data filtering method based on big data edge computing analysis. By calculating the edge computing degree of big data, the data is preliminarily filtered. At the same time, based on mobile edge computing, this paper proposes a multinode joint filtering method, which further improves the accuracy of data mining analysis. Simulation results show that the algorithm has a better ability to filter abnormal data, and it is more robust for different real physical data sets. However, the algorithm also has some limitations; for example, it needs enough prior information; the time complexity of the algorithm is relatively high; in addition, it needs to manually specify the membership threshold and the threshold of the number of suspicious nodes, which may need to be continuously optimized for different data sets. Therefore, in the next research, the complexity of the algorithm will be further optimized for different data sets; the design algorithm can automatically determine the membership threshold and the number of nodes threshold.

If the proportion of time delay and energy consumption in the integrated load is reset, the results of the optimal unloading algorithm will also change, as shown in Table 2. In
the table, noff is the number of offloads. It can be seen that
with the decrease of the proportion of energy consumption
in the comprehensive load, the number of offloads of end-
users increases. This is because the unit computing energy
consumption of each edge node in the example is relatively
small compared with the standby computing node and cloud
platform. In the case of not considering the delay and only
considering the energy consumption, the end nodes prefer
to offload tasks. On the other hand, the computing power of the edge node is not as strong as that of the standby
computing node and the cloud, and it takes more time to
calculate the same task. If the time delay accounts for a
higher proportion in the comprehensive load evaluation, the
dge node tends to unload the task to the standby edge
computing node or the cloud for processing, and the specific
number of unloaded tasks is determined by the results of the
optimized unloading strategy.

The task offloading model is compared with the traditional cloud computing model and all in the local computing
model. In the case that each terminal has different accep-
tance preferences for delay and energy consumption, the
delay and energy consumption of different computing
methods (all in local, all uploaded to the cloud, task
offloading combined with edge computing) are compared
and analyzed. Energy consumption and comprehensive load
(after normalization) are shown in Table 3. The mobile edge
computing layer allows you to jointly analyze data from
multiple nodes and determine potential data anomalies. If
the data uploaded by many nodes is suspicious, it can be
considered the result of anomalous changes in the envi-
ronment. For example, if the temperature drops suddenly,
the temperature data collected by all nodes will drop sharply,
and then such data belongs to normal data. By setting the
threshold of the number of suspicious nodes, when the
number of nodes reporting suspicious changes is greater
than the threshold of the number of suspicious nodes, the
suspicious changes of data are considered as normal
changes. If it is less than this threshold, the suspicious
change of data is considered as abnormal change, and fil-
tering is carried out.

As shown in Figure 5, the time delay, energy con-
sumption, and comprehensive load of all local computing
are the largest among the three computing methods. This
is mainly because the computing module of the edge com-
puting node is not its main function module, so the com-
puting capacity is insufficient and the power consumption is
high. If all of them are uploaded to the cloud, the main
ergy consumption is reflected in the upload and download
of calculation data and results. The comprehensive load after
Nash equilibrium is the smallest of the three calculation
methods. The above is based on the preference of each
terminal, and the proportion of energy consumption and
delay is different.

We change the proportion of energy consumption and
delay and analyze three calculation methods, as shown in
Table 4. It can be found that when the terminal is more
sensitive to delay, the advantages of optimal offloading will
be greatly reflected. The main reason is that cloud computing
needs to concentrate on decision-making tasks, and the
computing tasks uploaded from the edge nodes need a larger
queuing delay; considering the intelligent development of
Figure 3: Abnormal data filtering based on the method of the isolated forest.

Figure 4: Proportion of abnormal data in big data edge algorithms.

Table 1: Accuracy of data mining analysis.

Item	Employment	Not righteous	Professionals	Low level	Core material
Professionals	3.3	1.89	5.7	3.49	3.85
Skill	2.43	1.1	1.37	1.88	3.15
Not solid	5.13	3.11	4.95	6.91	1.02
No clear	4.03	6.07	1.06	3.81	6.71
Occupation	5.81	2.99	4.19	6.23	5.66
Comprehensive	2.08	3.08	2.45	3.26	3.34

Table 2: Computing power of edge nodes.

Item	Targeted employment	Self-employed	Flexible	Civil servants	Business unit
Not solid	0.83	0.75	1.07	1.8	1.66
No clear	2.87	2.37	3.82	1.15	3.06
Occupation	5.97	4.38	4.21	4.93	2.81
Career	5.62	2.41	2.52	4.97	5.61
Planning	3.13	4.51	2.31	4.39	4.84
Lack	4.05	3.8	4.05	6.68	4.05
residential load, the preference of various terminals for time delay and energy consumption will be quite different. Nonintrusive power monitoring equipment is more sensitive to time, while photovoltaic equipment is less sensitive to time delay. In this trend, if all of the edge terminal facilities are used for local computing or all of them are uploaded to the cloud for centralized computing, the global optimization cannot be achieved, the optimal offloading computing mode achieves the equilibrium solution through the global game, and the optimal offloading decision is selected. Compared with the traditional edge-cloud cooperation model (without standby edge node participation) and the task offloading model with standby edge node participation, the existing researches consider the application scenarios, and most of the task offloading only includes the participation of both the edge node and the cloud platform, reduces the risk of data loss when uploading to the cloud, and ensures the security and privacy of information transmission.

In addition, the simulation results show that the task offloading model with spare edge nodes is better than the traditional edge-cloud cooperation model without spare edge nodes in terms of time delay and energy consumption. Similarly, 50 terminal devices with different computing tasks, computing power, and sensitivity to delay energy consumption in the example are compared under the two models, and the results are shown in Figure 6. When updating locally, participants learn through big data edge computing. In the parameter aggregation phase, a simple average aggregation method is used. As one of the most classic algorithms of big data edge computing, this method has been used as a comparison method in many articles related to big data edge computing.

As shown in Figure 7, the accuracy of most terminals in q-fedsgd is less than the target accuracy. In libec, only D5 fails to achieve the target accuracy, which indicates that the big data edge computing algorithm can ensure the learning accuracy of the terminal. The difference between the learning accuracy of each terminal and the target accuracy under the three algorithms is shown in the figure, from which we can see the effect of each algorithm in ensuring the learning accuracy. Because CNN can ensure the learning accuracy in big data edge computing, this paper takes 0.99 times of the terminal learning accuracy after running as the target accuracy of each terminal in the big data edge computing algorithm.

As shown in Figure 8, from 2016 to 2021, in terms of income, the average monthly pretax income of the formal employment group is 4232 yuan, and the average monthly pretax income of the informal group is 3503 yuan, which is
20.8% less than that of the formal employment group. Through the quantile statistics, we can find that the income of the informal employment group is not more than that of the formal employment group at each quantile point, and the income gap at each quantile point is basically uniform. Mann–Whitney test is used to analyze whether there are significant differences among different groups of employment forms in order to judge whether there is selection bias in the choice of employment forms. This paper uses the propensity score matching method to balance the selection bias in the choice of employment forms, estimates the average processing effect (ATT) on the basis of controlling the selection bias of employment forms, and analyzes whether and to what extent the two employment forms lead to the income difference of university graduates. Based on the decomposition of wage difference in the form of employment, the two economic schools put forward different theoretical views on the wage determination mechanism.

As shown in Figure 9, compared with the CNN model, the edge fog calculation model in this paper has more available analysis indexes as tuples, so the accuracy rate of prediction can reach 83.25%. In this case, the difference between the two models in data processing and prediction efficiency is small. Compared with the LSTM-based classification prediction model, this model is edge computing, which greatly improves the data quality of the model and data parameters, and the calculation efficiency can be increased by 45%–65%. Therefore, the use of big data technology can provide a reference for the research direction of higher education.

4.2. Discussion. The computing capacity of employment data is precious and limited, so it is particularly important to allocate resources reasonably. Mobile edge computing sinks the function of cloud computing center to edge cloud,
making the cloud computing center closer to the resource
demand side. In the face of large data throughput scenarios,
the use of distributed processing method can effectively
reduce the overall transmission delay of the network and
improve the processing efficiency of the system. Now,
abnormal data processing of employment data has been widely
used in many aspects of employment data calculation. This
paper explores the abnormal data detection of large-scale
employment data. This paper explores how to monitor
abnormal data in wireless sensor networks. This paper ex-
plores the problem of abnormal data processing in em-
ployment data single application and explores the problem
of abnormal data processing in local sensor networks. How-
ever, a single application scenario data solution may
rely on the unique characteristics of the application data,
resulting in the fact that the method is not universal. At the
same time, the solution of abnormal data in the local net-
work cannot meet the “multidata, multitask” scenario of the
employment data scale, so this paper proposes a distributed
abnormal filtering algorithm for heterogeneous data of
employment data level.

Under the influence of mercantilism, the efficiency of the
service industry in developed countries was generally higher
than that of the manufacturing industry in history, but it was
after the establishment of the Ford system that the modern
sector got sustainable development. Therefore, the charac-
teristics of industrial structure in contemporary developed
countries are as follows: the service industry dominates
economic growth and forms the linkage of high-end service
industry and industrial efficiency improvement. The high-
end service industry is reflected in the rapid development of
the modern knowledge-intensive service industry. The de-
velopment of science, education, culture and health, fi-
nancial information, and other industries not only endows
the service industry with high efficiency but also promotes
industrial integration. In contrast, in developing countries in
the process of modernization, the higher proportion of
service industry mostly comes from traditional industries,
which is different from the essence of structural service in
developed countries in that the service industry cannot
provide sustainable efficiency compensation.

5. Conclusions

The role of big data edge computing in predicting the em-
ployment rate of colleges and universities in China’s em-
ployment market is not uniform, and the discriminatory
factors are more obvious in the low-income groups. This may
be due to the fact that most of the informal employees of low-
income groups are employees who lack security, and the
market’s own regulatory mechanism is difficult to play a role
in it, which makes it difficult for the informal employees of
low-income groups to reach the income level consistent with
their own characteristics. In the process of helping college
graduates connect with work, universities and recruitment
units pay more attention to students whose families are in
financial difficulty and lack social resources and respond to
them so that they can get them. You should strive to provide
employment help and guidance jobs that match the char-
acteristics of your human capital. Government departments
should further promote the transparency and standardization
of the labor market, especially in the informal employment
market, should provide more perfect rights and interests
protection mechanism and a more efficient labor market
system for low-income groups, and try to reduce the negative
impact of discriminatory factors on the income of informal
employment college graduates, to provide training and
learning opportunities for informal employment groups, help
them to further develop their own human capital level and
individual competitiveness, so as to enhance the overall level
of the informal employment market, balance the value dif-
ferences between the two employment groups, and make
informal employment form play a greater role in promoting
society under the condition of the socialist market economy.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this article.
References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet of things: a survey on enabling technologies, protocols, and applications," IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015.

[2] G. Klas, "Edge computing and the role of cellular networks," Computer, vol. 50, no. 10, pp. 40–49, 2019.

[3] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, "Data security and privacy-preserving in edge computing paradigm: survey and open issues," IEEE Access, vol. 6, no. 4, pp. 18209–18237, 2018.

[4] A. Yousefpour, C. Fung, T. Nguyen et al., "All one needs to know about fog computing and related edge computing paradigms: A complete survey," vol. 5, no. 4, pp. 72–83, 2018, https://arxiv.org/abs/1808.05283.

[5] Z. Chen, W. Dong, H. Li, P. Zhang, X. Chen, and J. Cao, "Collaborative network security in multi-tenant data center for cloud computing," Tsinghua Science and Technology, vol. 19, no. 1, pp. 82–94, 2014.

[6] W. Wang and Q. Zhang, "A stochastic game for privacy preserving context sensing on mobile phone," in Proceedings of the IEEE INFOCOM 2014-IEEE Conference on Computer Communications, vol. 5, no. 4, pp. 2328–2336, IEEE, Paris, France, April 2015.

[7] L. Li and J. Zhang, "Research and analysis of an enterprise E-commerce marketing system under the big data environment," Journal of Organizational and End User Computing, vol. 36, no. 6, pp. 1–19, 2021.

[8] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and R. Buyya, "DDoS attacks in cloud computing: Issues, taxonomy, and future directions," Computer Communications, vol. 107, no. 10, pp. 30–48, 2019.

[9] J. Cao, B. Yu, F. Dong, X. Zhu, and S. Xu, "Entropy-based denial-of-service attack detection in cloud data center," Concurrency and Computation: Practice and Experience, vol. 27, no. 18, pp. 5623–5639, 2015.

[10] B. Wang, Y. Zheng, W. Lou, and Y. Thomas Hou, "DDoS attack protection in the era of cloud computing and software-defined networking," Computer Networks, vol. 81, no. 4, pp. 308–319, 2019.

[11] I. Mir, A. Hajiq, and D. S. Kim, "Performance analysis and security based on intrusion detection and prevention systems in cloud data centers," in Proceedings of the International Conference on Hybrid Intelligent Systems, vol. 8, no. 4, pp. 456–458, Springer, Marrakech, Morocco, November 2016.

[12] B. K. Alese, A. F. Thompson, and P. Y. Oni, "A location privacy system in mobile network using game theory," in Proceedings of the 2017 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA), vol. 7, no. 21, pp. 1–5, IEEE, London, UK, June 2017.

[13] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P. Mohanty, and A. Y. Zomaya, "Secure and sustainable load balancing of edge data centers in fog computing," IEEE Communications Magazine, vol. 56, no. 5, pp. 60–65, 2018.

[14] N. N. Dao, D. N. Vu, Y. Lee, M. Park, and S. Cho, "MAEC-X: DDoS prevention leveraging multiaccess edge computing," in Proceedings of the Information Networking (ICOIN), 2018 International Conference on, vol. 7, no. 4, pp. 245–248, IEEE, Chiang Mai, Thailand, January 2018.

[15] N. V. Abhishek, T. J. Lim, B. Sikdar, and A. Tandon, "An intrusion detection system for detecting compromised gateways in clustered IoT networks," in Proceedings of the 2018 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR), vol. 4, no. 41, pp. 1–6, IEEE, Austin, TX, USA, May 2018.

[16] A. R. Sfar, Y. Challal, P. Moyal, and E. Natalizio, "A game theoretic approach for privacy preserving model in IoT-based transportation," IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 4, pp. 64–71, 2019.

[17] Z. Lv, D. Chen, and Q. Wang, "Diversified technologies in internet of vehicles under intelligent edge computing," IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 1, pp. 1–12, 2020.

[18] C. Modi, D. Patel, B. Borisaniya, A. Patel, and M. Rajarajan, "A survey of intrusion detection techniques in cloud," Journal Of Network And Computer Applications, vol. 36, no. 1, pp. 42–57, 2019.

[19] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machinetheory and applications," Neurocomputing, vol. 70, no. 1, pp. 489–501, 2020.

[20] J. J. Davis and A. J. Clark, "Data preprocessing for anomaly-based network intrusion detection: A review," Computers & Security, vol. 30, no. 6–7, pp. 353–358, 2011.

[21] S. X. Lu, Y. F. Zhou, and B. Liu, "Condensed nearest neighbor decision rule input weight sequential feed-forward neural networks," Applied Mechanics And Materials, vol. 57, no. 4, pp. 712–717, 2019.

[22] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge computing: vision and challenges," IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[23] K. Zhang, X. Gui, and DeW. Ren, "Survey of computation offloading and edge caching in mobile edge networks," Journal of Software, vol. 30, no. 8, pp. 2491–2516, 2019.

[24] J. Yao, T. Han, and N. Ansari, "On mobile edge caching," IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2525–2553, 2019.

[25] J. Kua, G. Armitage, and P. Branch, "A survey of rate adaptation techniques for dynamic adaptive streaming over HTTP," IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1842–1866, 2017.

[26] H. A. Pedersen and S. Dey, "Enhancing mobile video capacity and quality using rate adaptation, RAN caching and processing," IEEE/ACM Trans on Networking, vol. 24, no. 2, pp. 996–1010, 2019.

[27] T. X. Tran, P. Pandey, A. Haji-Samimi, and D. Pompliu, "Collaborative multi-bitrate video caching and processing in mobile-edge computing networks," in Proceedings of the 13th Annual Conference on Wireless On-demand Network Systems and Services, vol. 8, no. 4, pp. 165–172, IEEE Press, Jackson, WY, USA, February 2017.

[28] H. Song, G. A. Fink, and S. Jeschke, Security and Privacy in Cyber-Physical Systems: Foundations, Principles and Applications, pp. 1–472, Wiley-IEEE Press, Chichester, UK, 2017.