Tree diversity of Pasighat town of Arunachal Pradesh

Sanjeev Kumar, BP Mishra, Rakesh Kumar, Dinesh Gupta, Naresh Kumar, Bikram Singh and JK Chauhan

DOI: https://doi.org/10.22271/phyto.2021.v10.i1Sf.13522

Abstract
This study was carried out to assess the tree species diversity and distribution in Pasighat town of Arunachal Pradesh. Trees are important component of vegetation because of their economic value to mankind. There is high pressure on forest estates due to high demand on forest economic resources as a result of geometric increase of human population in the region. The results of the study showed that a total of 103 tree species representing 85 genera and belonging to 45 families were recorded from the study area. Fabaceae with 19 species was the dominant family of tree species. Co-dominant families were Rutaceae, Meliaceae, Anacardiaceae, Arecaceae, Moraceae, Myrtaceae, Lauraceae, Euphorbiaceae and Sapotaceae. The structural pattern showed a heterogeneous distribution of trees which is the chief character of forests of Eastern Himalaya. The area is rich with diverse plant species and by obtaining proper information about it, prime efforts can be made to conserve it.

Keywords: Tree, species, diversity, Himalaya, regeneration

Introduction
India is a treasure chest of biodiversity which hosts a large variety of plants and has been identified as one of the eight important “Vavilovian centres of origin” and crop diversity (Anil et al., 2014) [1]. India accounts for 8% of the total global biodiversity with an estimated 49,000 species of plants of which 4900 are endemic (Kumar and Asija, 2000) [13]. Himalayas are one of the largest and youngest mountain chains in the world and cover roughly 10 percent of India’s total land surface. The Himalayan region harbors nearly 10,000 plant species constituting approximately 2.5% of the global angiosperm diversity of which over 4,000 are endemics (Kumar and Pandit, 2018) [14]. The diverse climate and varied environmental conditions prevailing in the Himalayas support diverse habitat and ecosystems with equally diverse plant forms. Variation in terms of its size, climate and altitudinal ranges have created environment which are unique and characteristics of these regions only. It provides important habitat to the flora and fauna including 9000 species of angiosperms, hence it is considered as biodiversity hotspot.

However, rapid increase in human population created an environmental imbalance in urban as well as in rural areas in most part of the country. It is estimated that 50% people are now living in less than 3% of the earth’s urbanized surface. In addition, on the face of climate change, adaptation and mitigation actions for cities in India are critically required where the urban population is likely to grow by around 500 million over the next 50 years (Pandey and Kumar, 2018) [16]. The impacts of uncontrolled population, industrialization and urbanization on biodiversity are clearly visible in form of rapid, large and frequent changes in land and resource use, increased frequency of biotic invasion, reduction in species number, creation of stresses and the potential for changes in climatic systems (Bargali et al., 2013) [2]. The continuous elimination and other anthropological activities have resulted in loss of biodiversity. If these naturally occurring plant resources are not timely conserved, then they may become extinct, and this genetic erosion coupled with soil erosion may retard the prospects of future economic development and welfare of people. Trees are important to mankind not only economically, environmentally and industrially but also spiritually, historically and aesthetically, for they sustain human life through direct and indirect gains by providing a wide range of products for survival and prosperity (Seth, 2003) [21]. Trees play a great part in making the environment beautiful and refining the minds of inhabitants. Beside environmental services urban forests and trees have positive impacts on the physical and
psychological healthiness of the human being, provide healthy environment for stressed residents of city (Schroeder and Anderson, 1984; Hunter, 2001) [20, 8]. Arunachal Pradesh (26°28'-29°30’ N and 91°30'-97°30’ E) is recognized as global biodiversity hotspot and forms a complex hill system of Siwalik and Himalayan origin. It is criss-crossed by six major rivers and their tributaries (Damand Kumar, 2018) [4]. Pasighat is the oldest town of Arunachal Pradesh. The town was established in 1911 by the Britishers. It is the headquarter of the East Siang district. The town is spread over in an area of 14.6 km². The town got its name from the ‘Pasis’ an Adi tribe of the area. The British Government had appointed a Political Officer for the area. Due to its ‘strategic’ situation where the Siang leaves the mountains, Pasighat has been often called the gateway to the state of Arunachal Pradesh. In the process of development, the existing natural ecosystems are disturbed and artificial ecosystems are established and new plants to the area were introduced either for shade, avenue, timber etc. By virtue of its location, the town falls under the Northern Tropical wet evergreen forest type (Champion & Seth, 1968) [3], these forests are the most species rich terrestrial ecosystems in the tropics of South-East Asia. Unfortunately, anthropogenic interference and infrastructural development in the last few decades have seen a major transformation of once pristine landscape in this region which highlights the need to undertake the present investigation. During the last two decades, Pasighat has experienced a tremendous change in its dimensions, this town is of economic significance to the Central Arunachal as it is the main business area for the people of East Siang, Upper Siang and Dibang valley. This town also has historical significance. Keeping the economic, strategic, historical and ecological significance of the town, the present study was undertaken to know the tree diversity of the town area with a view that such information would be helpful to the planners for the conservation of the rich biodiversity of the town. Knowledge on tree species diversity and distribution would serve as baseline information to know the status of the tree species in the study area; which is basic in understanding regeneration processes, such as tree growth, tree mortality, under-story development, and the spread of disturbances (Isango, 2007; Francisco et al., 2017) [9, 5].

![Map of Arunachal Pradesh](image)

Fig 1: Map of Arunachal Pradesh

Study site

Pasighat is situated in the foot hills of Eastern Himalayan range near the banks of the River Siang at an average elevation of 153m AMSL. The latitude of Pasighat is 28°04’ N and longitude is 95°22’ E. The climate is hot and humid in summers and temperate during winters. The average daytime temperature varies from around 32 °C in summer to around 23 °C in winter. The monsoon starts in the month of June and often remains active upto September.
Methodology

In the course of investigation, frequent explorations were made for collection during different seasons. Intensive field survey was done with the help of students, field workers and local inhabitants for the identification of plant species. The tree species growing naturally, cultivated and introduced were collected from different localities like, roadside, gardens, parks, cultivated areas, residential areas, schools, hospitals and other Government premises during 2013-2016. Efforts were made to collect species during flowering and fruiting stage for identification of species. The plants were identified with the help of Flora of British India, Flora of Assam, Flora of Namdapha, Working Plan of Pasighat Forest division and local people. Biodiversity values and ecosystems services are tangible and intangible benefits provided by the species are based on the utility to local inhabitants and also from other secondary literature.

Results and discussion

The stability of ecosystem depends upon its biodiversity, which is the sum total of all flora and fauna. Biodiversity is desirable indicator of environmental health, as the environmental stresses are expressed at different levels of biological organization. Biodiversity can be measured at three levels namely, genetic diversity, species diversity and habitat/ecosystem diversity. A total of 103 tree species representing 85 genera belonging to 45 families were recorded from the study area. Fabaceae with 19 species was the dominant family of tree species. Co-dominant families were Rutaceae, Meliaceae, Anacardiaceae, Arecaceae, Moraceae, Myrtaceae, Lauraceae, Euphorbiaceae and Sapotaceae. The structural pattern showed a heterogeneous distribution of trees which is the chief character of forests of Eastern Himalaya. Some of the tree species are reported as dominating canopy elements for low land area in the North East region (Kaul & Haridassan, 1987; Proctor et al., 1998) [11, 18]. On the riverine areas leguminous species showed dominance and although they are considered to be seral in nature, their progression to climax does not takes place (Mohan & Puri, 1955) [15]. The species richness of the studied area is close to the floristic richness recorded in the various parts of Western Ghats, another global hot spot of biodiversity, which varied from 17 species in Kalakad Mundanthurian Tiger Reserve (Ganesh et al., 1996) to 92 species in Kadamakal Reserve (Ghate et al., 1988) [7].

The enumerated species belonged to 45 families in the present study area. It falls well within the range of 16-58 families found in the tropical forests (Swamy et al., 2000; Parthasarathy & Karthikkeyan, 1997) [22, 17]. The comparative species dominance in any given area is a function of tree (Keel & Prance, 1979) [12] and past damage (Jacob, 1987, Swamy et al., 2000) [10, 22]. The dominance of few species could be attributed to the evolution and colonization of the species in various stages of development, varied environmental conditions also results in accumulation of diverse species in the area (Richards, 1996) [19].

Biodiversity values and ecological services

Biodiversity values and ecosystems services are tangible and intangible benefits provided by the species. Based on the utility to local inhabitants and also from other secondary literature, these were grouped into timber, fruit, ornamental, medicinal, fodder, NTFP yielding trees and exotic categories.

Trees of timber value

The species of timber value are Ailanthus grandis, Duabangagrandiflora, Canarium strictum, Acrocarpus fraxinifolius, Terminalia myriocarpa, T. arjuna, T. chebula, Castanopsis indica, Mesua ferrea, Chukrasia tabularis, Tectona grandis, Gmelina arborea etc.

Trees of Fruit value

The tree species where fruit has economic value are Annona squamosa, Dillenia indica, Eleocarpus floribundus, Emblica officinalis, Artocarpus heterophyllum, Psidium guajava, Syzygium cumini, Zizyphus, Prunus, Aegle, Citrus, Litchi etc.
Trees of ornamental value
The trees with beautiful foliage, inflorescence, flowers, and aesthetic value found in the study area are, Polyaltheia, Alstonia, Cäsia fistula, Delonix, Peltophorum, Mimosa, Anthocephalus indicus, Araucaria spp., Bauhinia variegata, Caesalpinia pulcherrima, Callistemon lanceolatus, Jacaranda mimosaefolia, Lagerstroemia speciose, Michelia champaca etc.

Table 1: Enumeration of tree species of Pasighat Town (Arunachal Pradesh)

S. No.	Name of Species	Common Name	Family
1	Acacia catechu Wild.	Khoira, Khyar	Fabaceae
2	Acacia auricilformis Benth.	Golden shower	Fabaceae
3	Acacia mangium Wild.	Australsabool	Fabaceae
4	Acrocarpus fraxinolius Arn.	Silchhal, Mandane	Fabaceae
5	Aegle marmelos L.	Bael tree	Rutaceae
6	Alstonia grandi Prain	Dorpat	Simaroubaceae
7	Albizia chinensis (Osbeck) Merr.	Koroi, Chakua	Fabaceae
8	Albizia Lucida Benth.	Mauj	Fabaceae
9	Albizia procera Roxb.	Siris	Mimosoideae
10	Alstonia scholaris (L.) R. Br.	Sattin, chatin	Apocynaceae
11	Anona macranthia King	Amari	Anacardiaceae
12	Anacardiun occidentalis L.	Kaju	Anacardiaceae
13	Annona squamosa L.	Sitaphal	Anonaceae
14	Neolamarckia cadamba (Roxb.) Bosser	Kadam	Rubiaceae
15	Araucaria spp.	Araucaria	Araucariaceae
16	Areca catechu L.	Tamul	Areceae
17	Artocarpus chaplasha Roxb.	Sam	Moraceae
18	Artocarpus heterophyllus Lamk.	Jackfruit	Moraceae
19	Averrhoa carambola L.	Kamarak	Oxalidaceae
20	Azadirachta indica A.Juss.	Nim, nimgachhi	Meliaceae
21	Bauhinia variegata L.	Bogakatra	Fabaceae
22	Bixa orellana L.	Sinduri	Bixaceae
23	Bombax ceiba L.	Himalo, simul	Bombacaceae
24	Caesalpinia pulcherrima (L.) Sw.	Peacock Flower	Fabaceae
25	Callistemon lanceolatus Sweet.	Bottle brush	Myrtaceae
26	Canarium resiniferum Roxb.	Dhuna	Burseraceae
27	Canarium strictum Roxb.	Dhuna	Burseraceae
28	Carica papaya L.	Papaya	Cariceae
29	Cassia fistula L.	Honalu, amultash	Fabaceae
30	Cassia javanica L.	Pink shower	Fabaceae
31	Castanospsis armata Roxb.	Taongasing	Fagaceae
32	Castanospsis castanacarpus Spach.	Angkehe	Fagaceae
33	Castanospsis indica (Roxb. ex Lindl.) A.DC.	Katus, Hinguri	Fagaceae
34	Chelidonium album L.	Honey berry tree	Ullmaceae
35	Chukrasia tabularis A. Juss.	Bogapoma	Meliaceae
36	Cinnamomum camphora (L.) Presl.	Kapur	Lauraceae
37	Cinnamomum cassia Daphne Meiun.	Gonserai	Lauraceae
38	Cinnamomum tamala Fr. Nees.	Teipatta	Lauraceae
39	Cinnamomum verum Presl.	Dalchini, Siripori	Lauraceae
40	Citrus reticulate Blanco	Mandarin	Rutaceae
41	Citrus limon Burm.	Lemon	Rutaceae
42	Cocos nucifera L.	Nariyal	Arecaceae
43	Cocos nucifera L.	Nariyal	Arecaceae
44	Dalbergia sissoo Roxb.	Sissu	Fabaceae
45	Delonix regia Raf.	Radhachura	Fabaceae
46	Dillenia indica L.	Outenga, sompa	Dilleniacae
47	Duabanggranderflora Roxb.	Khokan	Lythraceae
48	Diospyryum binecarifurum (Roxb.) Hook. f. ex Bedd.	Banderdima	Meliaceae
49	Elaeis guineensis Jacq.	Oil palm	Arecaceae
50	Elaeocarpus floribundus Roxb.	Jalpai	Elocarpaece
51	Emblica officinalis Gaertn.	Amloki	Euphorbiaceae
52	Eucalyptus spp.	Eucalyptus	Myrtaceae
53	Ficus benghalensis L.	Banyan	Moraceae
54	Ficus religiosa L.	Pipal tree	Moraceae
55	Gmelina arborea L.	Gomari, Gamar	Verbenaceae
56	Grevillea robusta A.Cunn. ex R.Br.	Silver Oak	Proteaceae
57	Grewia dispersa Roxb	Kakkri	Tiliaceae
58	Hemitiera macrophylla Wall. ex Kurz	Sundari	Sterculiaceae
59	Hevea brasiliensis (Willd. ex A.Juss.) Mill.Arg.	Rubber	Euphorbiaceae
60	Jacaranda mimosaefolio D.Don	Blue Gumehar	Bignoniaceae
61	Jatropha curcas L.	Ratanjot	Euphorbiaceae

~ 343 ~
Table 2: Tree species distribution according to their families

Sr. No.	Family	Number of species
1.	Fabaceae	19
2.	Rutaceae	3
3.	Simaroubaceae	1
4.	Mimosoideae	1
5.	Apocynaceae	1
6.	Meliaceae	5
7.	Anacardiaceae	3
8.	Annmoniaceae	1
9.	Rubiaceae	1
10.	Aracniariaceae	1
11.	Areaceae	5
12.	Moraceae	7
13.	Oxalidaceae	1
14.	Bixaceae	1
15.	Bombacaceae	1
16.	Myrtaceae	4
17.	Burseraceae	2
18.	Caricaceae	1
19.	Fagaceae	3
20.	Ulmaceae	1
21.	Lauraceae	5
22.	Cymaceae	1
23.	Dilieniaceae	1

Sr. No.	Plant species number range	Number of belonging family
1.	0-4	40
2.	5-8	4
3.	9-12	-
4.	13-16	-
5.	17-20	1

Table 3: Range of distributed tree species with their family

Conclusion

Based on the result of this finding in the study area, a total of 103 tree species belonging to 85 genera and 45 families were enumerated in the study area. The results also revealed that Fabaceae had the highest number of tree species (19). There is the need to make proper implementation of conservation and sustainable management strategies. State departments should design programmes to create awareness among the people to understand the need of protecting tree species in the surrounding area.

References

1. Anil MNV, Kumari K, Wate SR. Loss of Biodiversity and Conservation Strategies: An Outlook of Indian Scenario. Asian Journal of Conservation Biology 2014;3(2):105-114.
2. Bargali K, Bisht P, Khan A, Rawat YS. Diversity and regeneration status of tree species at Nainital Catchment, Uttarakhand, India. International Journal of Biodiversity and Conservation 2013;5(5):270-280.
3. Champion HG, Seth SK. A Revised Survey of the Forest Types of India. Government of India Publication, New Delhi, India 1968.
4. Dam D, Kumar A. Fish Fauna of D’ering Memorial Wildlife Sanctuary and adjacent areas, Arunachal Pradesh. Records of zoological Survey of India 2018;118(2):162-173.
5. Francisco MP Gonçalves, Rasmus Revermann, Amândio L Gomes, Marcos, Aidar PM, Finckh M, et al. Tree species diversity and composition of Miombo Woodlands in South-Central Angola: A Chrono sequence of forest recovery after shifting Cultivation. International Journal of Forestry Research 2017, pp:1-13.
6. Ganesh T, Ganesan R, Devy MS, Davidar P, Bawa KS. Assessment of plant biodiversity at a mid-elevation evergreen forests of Kalakad-Mundanthurai Tiger Reserve Western Ghats, India, Current Science 1996;71:379-392.
7. Ghate U, Joshi NV, Gadgil M. On the patterns of tree diversity in the Western Ghats of India. Current Scienorest types of Arunachal Pradesh, a preliminary study. Journal of Economic and Taxonomic Botany 1988;9:379-389.
8. Hunter IR. What do people want from urban forestry? The European experience. Urban Ecosystems 2001;5:277–284.
9. Isango JA. Stand structure and tree species composition of Tanzania miombo wood lands: A case study from miombo woodlands of community based forest management in Iringa District, Working Papers of the Finnish Forest Research Institute 2007;50:43-56.
10. Jacob M. The Tropical rainforests. Springer-Verlag, New York 1987.
11. Kaul RN, Haridasan K. Forest types of Arunachal Pradesh- A preliminary study. Journal of Economic and Taxonomic Botany 1987;9(2):397-389.
12. Keel SHK, Prance GT. Studies on the vegetation of a white sand black water igapó (Rio Negro, Brazil). ActaAmazonica 1979;9:645-655.
13. Kumar V, Asija. Biodiversity Conservation. In: Biodiversity Principles and Conservation. Agrobiosis (India), Jodhpur 2000.
14. Kumar M, Pandit MK. Geophysical upheavals and evolutionary diversification of plant species in the Himalaya. Peer Journal 2018. doi: 10.7717/peerj.5919.
15. Mohan N, Puri GS. The Himalayan conifersIII- the succession of forest communities in oak-conifer forests of Bashahr Himalaya. Indian Forester 1955;181:465-711.
16. Pandey RK, Kumar H. Tree species diversity and composition in urban green spaces of Allahabad city (UP). Plant Archives 2018;18(2): 2687-2692.
17. Parthasarathy N, Karthikeyan R. Biodiversity and population density of woody species in a tropical evergreen forests in Courtallum Reserve Western Ghats, India. Tropical Ecology 1997;38(2):297-306.
18. Proctor J, Haridasan K, Smith GW. How far does the low land evergreen forest go Global ecology and Biogeography letters? 1998;7:141-146.
19. Richards PW. The tropical rainforests (2nd edn) Cambridge University Press 1996.
20. Schroeder HW, Anderson LM. Perception of personal safety in urban recreation sites. Journal of Leisure Research 1984;16:178-194.
21. Seth MK. Trees and Their Economic Importance. The Botanical Review 2003;69(4):321-376.
22. Swamy PS, Sundrapandian SM, Chandrasekhar P, Chandrasekhar S. Plant species diversity and tree population structure of humid tropical forests in Tamil Nadu, India. Biodiversity and Conservation. 2000;9:1643-1669.