Supplemental Figure 1

a

CASC15, Putative copy-number alterations from GISTIC

CASC15 mRNA Expression z-scores (RNA Seq V2 RSEM)

Hetloss Diploid Gain Amp

**

**

C

LOC100132354, Putative copy-number alterations from GISTIC

LOC100132354 mRNA Expression z-scores (RNA Seq V2 RSEM)

Hetloss Diploid Gain Amp
Supplemental Figure 5

(a) Graph showing relative CASC14 levels (LOG$_2$ n+1) for Melanocytes (n=2) and Melanoma cell lines (n=30).

(b) Box plot comparing relative CASC14 levels (LOG$_2$ n+1) for BRAF-wt (9) and BRAF-mt (20).
Supplemental Figure 6

(a) Diagram showing correlation between Exons 10-11 and Exon 8, with a correlation coefficient of $r=0.61^{**}$.

(b) Diagram showing correlation between Exons 11-12 and Exon 8, with a correlation coefficient of $r=0.70^{**}$.

(c) Diagram showing correlation between Exons 11-12 and Exons 10-11, with a correlation coefficient of $r=0.94^{**}$.
Nevus/Normal skin (n=15)
Stage I (10)
Stage II (7)
Stage III (8)
Other organ mets (11)
Brain/Lung mets (19)

Exons 10-11 vs. Exon 8

Relative levels (LOG\(_2\) n+1)

Stage IV

Supplemental Figure 7

a

b

r=0.83**

Log Rank: 1.08
p=0.3

High, n=38
Low, n=103

Overall survival

Years after LNM surgery

Log Rank: 1.08
p=0.3
Supplemental Figure Legends

Figure S1. The CASC15 locus is expressed in melanoma tumors. TCGA RNA sequencing (RNASeq Version 2, z-score +/- 1.5) and gene copy number (GISTIC2) data for the CASC15 (a) and LOC100132354 (b) lincRNA loci. Results show a positive correlation between CASC15 expression and CASC15 copy number status of 278 melanoma specimens. (**P<0.01, Mann-Whitney test).

Figure S2. Copy number alterations identified by SNP 6.0 of chromosome 6p in 78 metastatic melanoma specimens. The upper plot represents the CN value for 21,302 regions located on the short arm of the chromosome 6. The middle panel represents the CN value for 2,457 regions located between the region sub-band 3 and sub-band 2 of the region 2, band 2 of the short arm of the chromosome 6 (6p22.3-6p22.2). The lower panel represents the CN value for 250 regions located in the CASC15 locus.

Figure S3. Normal and pan-cancer CASC15 expression. (a) Illumina Body Map data RNA-seq data (EMBL-EBI Expression Atlas) from 16 normal human tissues was interrogated for CASC15, HOTAIR, and MALAT1 expression levels. Absolute CASC15 levels (FPKM values) were extremely low in normal tissues, and similar to the well-characterized HOTAIR lincRNA. The levels of the ubiquitous MALAT1 lincRNA are shown as a comparison. (b) TCGA RNAseq Version 2 data (RSEM values) from 23 different tumor types were downloaded from the cBioPortal (cbioportal.org). Median CASC15 levels are shown. Bars represent the range of values (Min to Max). AC: Adrenocortical Carcinoma (n=79), AML: Adult Myeloid Leukemia (n=173), BC: Bladder Urothelial Carcinoma (n=129), BrC: Breast Carcinoma (n=1098), CA: Colorectal Adenocarcinoma (n=365), CM: Cutaneous Melanoma (n=470), CSSC: Cervical Squamous Cell Carcinoma (n=253), DG: Diffuse Glioma (n=527), DLBCL: Diffuse Large B-Cell

1 Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Skin Cutaneous Melanoma (Metastatic cohort) - 15 July 2014. Broad Institute of MIT and Harvard. doi:10.7908/C18P5Z9Z
Lymphoma (n=28), EC: Endometrial Carcinoma (n=170), GM: Glioblastoma Multiforme (n=166), HNSSC: Head and Neck Squamous Cell Carcinoma (n=498), KRCCC: Kidney Renal Clear Cell Carcinoma (n=532), KRPCC: Kidney Renal Papillary Cell Carcinoma (n=290), LHC: Liver Hepatocellular Carcinoma (n=269), LSCC: Lung Squamous Cell Carcinoma (n=501), LuA: Lung Adenocarcinoma (n=490), OSC: Ovarian Serous Cystadenocarcinoma (n=179), PaA: Pancreatic Adenocarcinoma (n=179), PrA: Prostatic Adenocarcinoma (n=487), Src: Sarcoma (n=261), TC: Thyroid Carcinoma (n=509), UC: Uterine Carcinosarcoma (n=57).

Figure S4. Multiple isoforms are transcribed from the CASC15 locus. UCSC genome browser representation of the CASC15 locus on chromosome 6p22.3 (GRCh37/hg19 assembly), along with RefSeq (release 58) and GENCODE v17 annotated genes, Human spliced ESTs, and CaptureSeq data of a foot fibroblast sample (Mercer, T.R., et al, Nature Biotechnology, 2011). The CR739395 EST and CaptureSeq transcripts assemblies aligning with CASC15 exon 1b are highlighted in red. Several ESTs and CaptureSeq isoforms also fully or partially align with splice variants identified in 3'-RACE experiments.

Figure S5. Expression of CASC14 in melanoma cell lines. (a) RT-qPCR detection of CASC14 (exon 3) levels in melanocytes (grey bars, n=2; ψ: pMEL-NRAS; π: primary melanocytes) and melanoma cell lines (black bars, n=30). (LOG2 (n+1) of 2^{(ddCq)} relative values) (b) CASC14 expression (RT-qPCR; exon 3) in BRAF BRAFwt (N=9) and BRAFmt (N=20) melanoma cell lines. BRAFmt includes V600E (N=16), V600K (N=3), and V600R (N=1). (LOG2 (n+1) of 2^{(ddCq)} relative values; Whiskers Min to Max; T-test, P>0.05).

Figure S6. Expression of CASC15 isoforms in melanoma cell lines. Dot blots depicting the correlation between the expression levels of CASC15 (a) exon 8- and 10-11-containing isoforms, (b) exon 8- and 11-12-containing isoforms, and (c) exon 10-11 and 11-12-containing isoforms. (RT-qPCR, N=30; LOG2 (n+1) of 2-(ddCq) relative values; Pearson r, **P<0.01).
Figure S7. Expression of CASC15 in melanoma specimens. (a) Dot blot depicting the correlation between CASC15 exon 8- and 10-11 isoforms in normal, nevus, and melanoma tumor specimens (RT-qPCR, LOG2 (n+1) of 2−(ddCq) relative values; Pearson r, **P<0.01, N=70.** (b) RT-qPCR detection of CASC15 expression levels (exon 10-11-containing isoforms) as a function of tumor stage. See **Table S1** for details. (LOG2 (n+1) of 2−(ddCq) relative values; T-test; **, P<0.01; Mean +/- SEM). (c) Kaplan-Meier curves representing the relationship between CASC15 expression in stage III melanoma LN mets and 10-year OS.

Figure S8. Efficiency of CASC15 knockdown is melanoma cell lines. Efficiency of CASC15 siRNA transfection in (a) WP, (b) M16, and (c) RKTJ-CB1 cells. (RT-qPCR, 2−(ddCq) value of siPool1 or siPool2 relative to siCTRL condition, T-test, **, P<0.01; Mean +/- SEM, N=4).

Figure S9. Effect of CASC15 knockdown on cell proliferation and baseline cell survival. (a) BrdU cell proliferation assays in WP, M16, and RKTJ-BI3 cells. Bars represent the average fold difference in the rate of DNA synthesis in siPool conditions relative to siCTRL (T-test, **, P<0.01; *, P<0.05; Mean +/- SEM, N=4). (b) Annexin V-PI assays in WP, M16, and RKTJ-BI3 cells. Bars represent the average fold difference in the percent number of cell death in siPool conditions relative to siCTRL (T-test, **, P<0.01; *, P<0.05; Mean +/- SEM, N=4 (N=3 for WP)).

Figure S10. Assessment of CASC15 expression in melanoma cells using the RNAscope Fluorescent Assay. Photographs are representative of CASC15 RNA-ISH staining of WP (a-b) and M16 (c-d) melanoma cells transfected with control siRNA (a, c) or CASC15 siRNA (b, d). Two fields per condition are presented. Zoom in of 40X photographs. Scale bars = 10µm. CASC15 cytoplasmic and nuclear expression was visualized using a FITC-labeled probe (green dots). Cell nuclei were counterstained with DAPI (blue). We observed robust CASC15 knockdown in both cytoplasmic and nuclear compartments upon siRNA treatment (b1-b2, d1-d2).
Supplemental Materials and Methods

Melanoma specimens and cell lines

Previously described YDFR.C, YDFR.SB3, and RKTJ-CB1 cell lines were derived from a mouse xenograft model of human melanoma brain metastasis (Izraely et al., 2012). The three cell lines used for siRNA knockdown studies (RKTJ-CB1, WP, and M16) were selected due to their high CASC15 expression levels as well as efficient CASC15 silencing upon siRNA treatment (Figure S8). RKTJ-CB1 brain metastasis cells are derived from a first round of intracardiac injection of parental RKTJ.C. cells (Izraely et al., 2012). WP (WP-0614-ME) cells are derived from a melanoma stage IV left frontal parietal brain lesion (Marzese et al., 2014). M16 (M16-ME) cells originate from a melanoma stage IV right anterior parietal brain lesion (Marzese et al., 2014). WP and M16 cells were also used for genome-wide exon array gene expression profiling (Figure 5d, Table S1). A list of specimens and cell lines used in this study is provided in Table S1.

DNA copy number profiling

The Contrast Quality Control algorithm was used for array quality control, with a minimal call rate >95%. The HapMap reference (release 28) was used as the reference model for CNA analyses of the 2367 intergenic domains (chromosome X domains excluded; Tables S2-S3) assessed in this study (Khalil et al., 2009). RefSeq (release 59) and GENCODE v17 databases were used to identify 6p-annotated lincRNAs.

Reverse transcription and quantitative real-time PCR (RT-qPCR)

For both cell line and tissue samples, the amount of cDNA was normalized to the SDHA housekeeping gene expression levels and analyzed with the delta-delta Cq (ddCq). For absolute RNA quantification, a 7-log serial dilution (10^1 to 10^7 copies) of a pME18SFL3 plasmid
containing the full-length CASC15 cDNA clone (Clone ID HRC13155, NBRC, Japan) was used to estimate RNA copy number per 15ng of input RNA. Determination of nuclear to cytoplasmic enrichment was performed using the following calculation:

\[\text{ddCq (Cytoplasm-Nucleus)} = \text{dCq (target gene-SDHA)}_{\text{cytoplasm}} - \text{dCq (target gene-SDHA)}_{\text{nucleus}} \]

A list of all qPCR primers used in this study is provided in Table S4.

Rapid amplification of cDNA ends (RACE)

Following the final round of amplification with inner primers, PCR products were separated by gel electrophoresis and extracted using the QIAquick Gel Extraction Kit (Qiagen, Valencia, CA). Amplicons were then cloned into a pCR-2.1 vector (TOPO TA Cloning Kit, Life Technologies, Carlsbad, CA) and submitted to Sanger sequencing (Eurofins, Huntsville, AL) using M13 primers provided with the cloning kit.

Melanoma tissue microarray (TMA)

The previously described AJCC stage III melanoma TMA (Nguyen et al., 2011) includes 160 lymph node metastasis specimens (160 patients, duplicate cores) with well-annotated clinical follow-up. The TMA also contains tumor negative lymph nodes (negative control) and melanoma cell lines (positive control). Detached/damaged cores, cores with no evidence of tumor tissue, and cores with strong melanin expression were excluded from the analysis, leaving specimens from 141 patients.

RNA in situ hybridization (RNA-ISH)

For normal skin, CASC15 expression was assessed in the basal epidermal layer. A scoring scale assessing the percentage of tumor cells with 0, 1-3, 4-10, and >10 dots/cell was used to quantify CASC15 expression levels. For tissue imaging, sections were scanned using the Leica SCN400 scanner (Leica Biosystems, Buffalo Grove) and analyzed using the Aperio
ImageScope software (Leica Biosystems). For cellular immunoflorescence imaging, the Nuance Fx system (Perfin Elmer, Foster City, CA) was used for image acquisition and the Aperio ImageScope software (Leica Biosystems) for analysis.

RNA interference

Custom Mission siRNA pools (siPool1 and siPool2) and the Mission Universal Negative Control #1 (siCTRL) were obtained from Sigma-Aldrich, St.Louis, MO. CASC15-targeting sequences are provided in Table S4. WP, M16, and RKTJ-CB1 metastatic melanoma cell lines were seeded 24h before transfection at a density of 2-2.5 x 10^5 cells per 60mm dish, and subsequently transfected (24h) with jetPRIME reagent (VWR) at a final siRNA concentration of 30nM.

Invasion assay

WP, M16, and RKTJ-CB1 cells were transfected with siRNAs for 48h and then seeded into the upper chambers in duplicate at 2.5 x 10^4 cells per well. Cells were allowed to settle for 2h in complete medium (RPMI 1640 with 10% FBS) before the addition of serum-free RPMI 1640 in the upper chambers and complete medium in the lower chambers. After 24h, cells were fixed and stained in 2% crystal violet and 20% methanol in PBS. Photographs were taken under a Nikon Eclipse Ti microscope (Nikon) at 10X, with four random fields taken per chamber, for a total of eight fields per condition. Cells were counted by two independent investigators (L.L. and M.L.).

Cell proliferation and apoptosis assays

Analysis of DNA synthesis was done using the FITC BrdU Flow kit (BD Biosciences, San Diego, CA) following the manufacturer's instructions, with a 1h BrdU incorporation pulse. Quantification of apoptosis was performed using the FITC Annexin V Apoptosis Detection Kit
(BD Biosciences). A BD FACSVerse flow cytometer (BD Biosciences) was used for both assays that were performed 48h following siRNA transfection.

mRNA sequencing and expression analysis

The mRNA seQuant-iT RiboGreen RNA Assay (Life Technologies) was used to quantitate 1.0 µg of high quality total RNA (RIN > 8.0) extracted using the Ambion Paris Kit (Life Technologies). Libraries enriching for mRNA from the total RNA were prepared using the TruSeq Stranded mRNA Library Prep Kit (Illumina Inc., San Diego, CA) according to the manufacturer’s recommended protocol. The final mRNA libraries were quantitated using the Agilent High Sensitivity D1000 TapeStation system (Agilent Technologies, Santa Clara, CA) and Qubit dsDNA HS Assay kit (Life Technologies). The pooled libraries were sequenced on the Illumina HiSeq 2500 in rapid mode with 100 bp paired-end reads. An average sequencing depth of 75 million pass-filter reads was achieved per sample. The resulting bcl files for each condition were demultiplexed and converted to fastq files using the CASAVA v.1.8.2 software (Illumina Inc.). Sequencing quality was assessed using FastQC[^2] for each sample. Adapter trimming was performed using cutadapt[^3] with the adapter sequence provided by Illumina (AGATCGGAAGAGC). All samples were aligned to the hg19 reference genome downloaded from Illumina iGenome[^4] with bowtie2 (default parameters; (Langmead and Salzberg, 2012)). Raw counts were generated using the subread package’s featureCounts tool (Liao et al., 2013). The extracted feature counts were then normalized using DEseq2 package (Love et al., 2014).

Statistics

The Mann-Whitney or the Kruskal-Wallis tests were used to compare the non-parametric variables between two or more groups, respectively. The Student’s T-test was used to compare

[^2]: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
[^3]: https://github.com/marcelm/cutadapt
[^4]: http://support.illumina.com/sequencing/sequencing_software/igenome.html
parametric distributions between two groups. The Spearman’s rho correlation test was used to measure the correlations between CASC15 isoform expression levels (RT-qPCR), as well as the correlations between CASC15 expression and proliferative/invasive signature genes (HuEx). Kaplan-Meier and Log-Rank analyses were conducted to compare time of disease-free survival (DFS) and overall survival (OS) between high CASC15-expressing (>75th percentile) and low CASC15-expressing (≤75th percentile) lymph node metastasis specimens. Univariate and multivariate Cox proportional hazard models were used to assess survival and estimate hazard ratios (HR) adjusted for age, gender, primary tumor thickness, primary tumor ulceration, and number of positive lymph nodes (Table S6). The percentage of CASC15 positive cells per specimen was coded as a continuous variable. The Akaike information criterion (AIC) was used to estimate the predictive strength of multivariate models.

Supplemental References

Izraely S, Sagi-Assif O, Klein A, et al. (2012) The metastatic microenvironment: brain-residing melanoma metastasis and dormant micrometastasis. International journal of cancer Journal international du cancer 131:1071-82.

Khalil AM, Guttman M, Huarte M, et al. (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106:11667-72.

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nature methods 9:357-9.
Liao Y, Smyth GK, Shi W (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. *Nucleic acids research* 41:e108.

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome biology* 15:550.

Marzese DM, Scolyer RA, Huynh JL, *et al.* (2014) Epigenome-wide DNA methylation landscape of melanoma progression to brain metastasis reveals aberrations on homeobox D cluster associated with prognosis. *Human molecular genetics* 23:226-38.

Nguyen T, Kuo C, Nicholl MB, *et al.* (2011) Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. *Epigenetics: official journal of the DNA Methylation Society* 6:388-94.
Table S8. RNA sequencing analysis of proliferative and invasive gene signatures upon CASC15 knockdown

Motif	Genes	M16 siPool2	M16 siCTRL	RKTJ-BI3 siPool2	RKTJ-BI3 siCTRL	WP siPool2
Motif 1	PLP1	12624.24	16740.34	14710.28	19214.8	12587.77
Motif 1	EDNRB	7489.09	13041.58	3252.63	5704.37	4009.9
Motif 1	LZTS1	7977.23	11771.63	3584.9	5442.67	3868.34
Motif 1	PHACTR1	100.58	241.32	93.8	273.23	232.3
Motif 1	GPR56	8581.64	10390.56	10109.36	16053.64	3856.55
Motif 1	AP1S2	9783.07	14374.91	3146.39	5936.1	3205.93
Motif 1	ERBB3	2993.42	4537.3	3926.21	5805.83	10478.92
Motif 1	INPP4B	698.53	11771.63	3584.9	5442.67	3868.34
Motif 1	S100A1	100.58	241.32	93.8	273.23	232.3
Motif 1	GPRC5B	1312.16	2119.78	1078.18	2208.89	765.87
Motif 1	ST3GAL6	3207.5	2811.61	1026.19	901.54	395.64
Motif 1	PLA1A	498.29	457.46	27.12	19.6	45.37
Motif 1	CAPN3	2205.39	3536.44	1702.03	4020.04	441.92
Motif 1	PIR	1335.23	1067.7	1121.13	1172.46	326.67
Motif 1	SOX10	8588.1	13288.11	9378.14	15606.33	9993.45
Motif 1	IRF4	1551.15	1979.15	209.08	788.56	3112.46
Motif 1	GK	278.67	469.62	179.7	398.89	183.3
Motif 1	TFAP2A	2683.38	3239.56	1491.82	1371.91	2721.36
Motif 1	GPRC5B	1312.16	2119.78	1078.18	2208.89	765.87
Motif 1	ST3GAL6	3207.5	2811.61	1026.19	901.54	395.64
Motif 1	PLA1A	498.29	457.46	27.12	19.6	45.37
Motif 1	CAPN3	2205.39	3536.44	1702.03	4020.04	441.92
Motif 1	PIR	1335.23	1067.7	1121.13	1172.46	326.67
Motif 1	SOX10	8588.1	13288.11	9378.14	15606.33	9993.45
Motif 1	Gene	Motif 1				
--------	------	----------	----------	----------	----------	----------
Motif 1	TRAF4	1049.17	1117.18	1531.38	2787.63	1265.86
Motif 1	APOC1	14.76	7.81	3.39	1.15	0
Motif 1	CLCN7	3309.93	3099.81	1905.46	1780.02	1958.22
Motif 1	CDK5R1	635.78	664.93	441.9	544.15	1088
Motif 1	ITPKB	1039.95	1669.26	567.34	91.08	321.23
Motif 1	RAB38	2906.68	3066.82	528.92	1112.51	2833.88
Motif 1	PMEL	21810.28	26663.02	492.75	517.64	3349.3
Motif 1	TRPM1	490.91	748.26	0	0	2.72
Motif 1	APOE	310.05	315.1	176.31	306.66	968.22
Motif 2	CXCL8	796.34	466.14	142.4	28.82	213.24
Motif 2	PTX3	36.91	34.72	5.65	5.76	315.78
Motif 2	CEMIP	1791.99	1143.22	617.07	2673.49	152.45
Motif 2	CXCL2	12	6.08	0	0	0.91
Motif 2	IL6	34.14	43.4	3.39	4.61	1.81
Motif 2	CDH2	726.21	1001.73	1184.42	1175.92	1039
Motif 2	CTGF	1303.86	1458.32	9147.59	3274.14	4017.16
Motif 2	TPM1	2916.83	3686.61	2331.54	2015.21	2487.25
Motif 2	CTGF	1303.86	1458.32	9147.59	3274.14	4017.16
Motif 2	TPM1	2916.83	3686.61	2331.54	2015.21	2487.25
Motif 2	FGF2	501.06	493.05	315.32	327.41	622.49
Motif 2	DKK1	2995.27	2045.99	82.5	55.34	857.51
Motif 2	PLAGL1	0	0	3.39	4.61	8.17
Motif 2	CYR61	859.09	953.12	1062.36	338.94	1336.63
Motif 2	THBS1	764.97	1134.54	21423.48	8178.42	9503.44
Motif 2	ELL2	513.98	357.64	620.46	246.71	578.03
Motif 2	ADAM12	176.25	294.27	573	863.5	74.41
Motif 2	PDGFC	207.62	98.09	274.63	112.98	223.23
Motif 2	NTM	194.7	347.22	331.14	455.38	30.85
Motif 2	INHBA	42.45	28.65	96.06	229.42	17.24
Motif 2	LOXL2	1188.51	889.75	2185.75	845.05	6744.88
Motif 2	DSE	110.73	96.35	103.98	100.3	21.78
Motif 2	NRP1	863.7	822.04	875.88	591.42	235.02
Motif 2	CDH13	4.61	6.94	1.13	0	39.93
Motif 2	DKK3	2057.75	1718.74	2.26	2.31	2627.9
Motif 2	TPM2	2175.86	1499.12	31.64	40.35	109.8
Motif 2	TAGLN	41.52	32.12	20.34	28.82	34.48
Motif 2	AXL	104.27	190.97	136.75	168.32	1126.11
Motif 2	THY1	1.85	1.74	0	0	33.57
Motif 2	PODXL	33.22	24.31	1792.45	570.67	1542.62
Motif 2	FBN1	190.09	130.21	120.93	58.8	177.85
Motif 2	AMIGO2	0.92	0.87	29.38	16.14	20.87
Motif 2	EHD2	584.11	232.64	1950.67	516.48	931.02
Motif 2	FOXD1	155.02	144.1	396.69	463.45	384.75
Motif 2	NUAK1	134.72	149.3	387.65	267.46	303.99
Motif 2	TGFBI	1745.86	1477.42	705.23	85.31	3440.95
Motif 2	Gene	Motif 2				
--------	-------------	---------	---------	---------	---------	---------
	TNFRSF11B	17.53	11.28	6.78	6.92	6.35
	WNT5B	44.29	45.14	22.6	5.76	360.25
	NID2	4.61	5.21	4.52	8.07	8.17
	SERPINE1	14.76	6.94	53.12	17.29	45.37
	LOX	585.95	405.38	93.8	65.71	606.16
	NID2	4.61	5.21	4.52	8.07	8.17
	SERPINE1	14.76	6.94	53.12	17.29	45.37
	WNT5B	44.29	45.14	22.6	5.76	360.25
	NID2	4.61	5.21	4.52	8.07	8.17
	SERPINE1	14.76	6.94	53.12	17.29	45.37
	LOX	585.95	405.38	93.8	65.71	606.16
	NID2	4.61	5.21	4.52	8.07	8.17
	SERPINE1	14.76	6.94	53.12	17.29	45.37
	WNT5B	44.29	45.14	22.6	5.76	360.25
	NID2	4.61	5.21	4.52	8.07	8.17
	SERPINE1	14.76	6.94	53.12	17.29	45.37
	LOX	585.95	405.38	93.8	65.71	606.16
	NID2	4.61	5.21	4.52	8.07	8.17
	SERPINE1	14.76	6.94	53.12	17.29	45.37
	LOX	585.95	405.38	93.8	65.71	606.16
	NID2	4.61	5.21	4.52	8.07	8.17
	SERPINE1	14.76	6.94	53.12	17.29	45.37
	LOX	585.95	405.38	93.8	65.71	606.16
	NID2	4.61	5.21	4.52	8.07	8.17
	SERPINE1	14.76	6.94	53.12	17.29	45.37
	LOX	585.95	405.38	93.8	65.71	606.16
	NID2	4.61	5.21	4.52	8.07	8.17
	SERPINE1	14.76	6.94	53.12	17.29	45.37
	LOX	585.95	405.38	93.8	65.71	606.16
	NID2	4.61	5.21	4.52	8.07	8.17
	SERPINE1	14.76	6.94	53.12	17.29	45.37
	LOX	585.95	405.38	93.8	65.71	606.16
WP siCTRL	Genes*	siPool2/siCTRL ratio				
-----------	----------------	----------------------				
		M16	RKTJ-B13	WP		
25287.28	PLP1	0.75412088	0.76557029	0.49779059		
11249.96	EDNRB	0.57424714	0.57019969	0.35643682		
6020.87	LZTS1	0.67766571	0.65866569	0.64248854		
665.5	PHACTR1	0.41679098	0.34330052	0.34906086		
5992.29	GPR56	0.82590736	0.62972385	0.64358534		
5064.09	AP1S2	0.68056565	0.53004329	0.63307129		
13451.09	ERBB3	0.65973597	0.67625301	0.77903872		
1034.2	INPP4B	0.86157433	1.08920881	0.71772384		
762.29	S100A1	1.16200165	1.17715772	0.8142308		
1918.16	DCT	0.60041546	0.46070619	0.69162635		
1350.36	CAPN3	0.62361867	0.42338633	0.32726088		
500.51	PIR	1.25056664	0.95622025	0.65267427		
12967.18	SOX10	0.64629959	0.60091899	0.77067257		
4884.35	IRF4	0.78374555	0.26514152	0.63723116		
320.77	GK	0.59339466	0.45050014	0.57143748		
6027.32	TFAP2A	0.82831619	1.08740369	0.45150415		
1790.04	GPRC5B	0.61900763	0.48810941	0.42785077		
592.69	ST3GAL6	1.14080545	1.13826342	0.66753277		
64.52	PLA1A	1.08925371	1.38367347	0.70319281		
513.41	SNCA	1.22552774	1.38740732	0.98622933		
119.83	CITED1	0.82149037	0.58983125	0.96169574		
12427.95	TYR	0.66892663	0.43434469	0.38807285		
364.09	RENBP	0.69464151	0.46409867	0.41121701		
2665.7	NSG1	0.71526926	0.6289702	0.4095097		
453.5	BCL2A1	1.24697921	0.77121004	0.59228225		
1671.13	GREB1	1.12946094	0.90543815	0.74988182		
430.46	GMPR	1.83750247	1.3535729	0.90224411		
3128.42	GPM6B	0.80123564	0.33942962	0.44320775		
848.93	RRAKD	1.21929462	0.96951873	1.10845417		
7099.32	MITF	0.71976031	0.55963097	0.50475398		
878.43	SLC45A2	0.59449754	0.6125768	0.52786221		
114.3	GALNT3	0.62171201	0.34288774	0.46045494		
460.87	GYG2	1.20808416	#DIV/0!	1.31327706		
1132.83	MLANA	0.80388821	0.55238882	0.43335717		
13440.03	TYRP1	0.63734899	0.81671003	0.67921575		
2246.3	MREG	1.36604772	0.60995155	0.49646975		
1094.12	TNFRSF14	0.64701627	0.49817845	0.51503491		
543.83	GPR143	1.02073733	1.96521739	0.82593825		
525.4	PLXNC1	0.5375439	0.72696262	0.33679102		
4801.39	MBP	0.55098718	0.17504249	0.36891192		
Gene	Log2FC	Log10FC1	Log10FC2	Log10FC3		
-------	--------	----------	----------	----------		
TRAF4	0.939	0.549348	0.625659	0.625659		
APOC1	1.899	2.947826	0.625659	0.625659		
CLCN7	1.067	1.070471	1.153971	1.153971		
CDK5R1	0.956	0.812092	0.907976	0.907976		
ITPKB	0.623	0.651499	0.657482	0.657482		
RAB38	0.947	0.475429	0.583056	0.583056		
RGS20	1.042	1.079491	0.902839	0.902839		
PMEL	0.818	0.951916	1.048971	1.048971		
TRPM1	0.656	0.184407	#DIV/0!	#DIV/0!		
APOE	0.984	0.574936	0.9985	0.9985		
CXCL8	1.708	4.941013	1.31443	1.31443		
PTX3	0.894	2.793891	2.41051	2.41051		
CEMIP	1.567	0.230811	0.298004	0.298004		
CXCL2	1.974	#DIV/0!	#DIV/0!	#DIV/0!		
IL6	0.787	0.735357	1.967391	1.967391		
CDH2	0.725	1.007228	0.590468	0.590468		
CTGF	0.894	2.793891	2.41051	2.41051		
TPM1	0.791	1.156971	1.20357	1.20357		
FGF2	1.016	0.963074	1.424756	1.424756		
DKK1	1.464	1.490784	2.704363	2.704363		
PLAG1	#DIV/0!	0.735357	1.266667	1.266667		
CYR61	0.901	3.13436	2.762088	2.762088		
THBS1	0.674	2.619513	2.036786	2.036786		
ELL2	1.437	2.514936	2.056095	2.056095		
ADAM12	0.599	0.663578	0.183703	0.183703		
PDGFC	2.116	2.430784	1.021881	1.021881		
NTM	0.560	0.727173	0.656243	0.656243		
INHBA	1.481	0.418708	1.439065	1.439065		
LOXL2	1.336	2.586533	2.123468	2.123468		
DSE	1.149	1.036689	0.421929	0.421929		
NRP1	1.051	1.480978	1.15899	1.15899		
CDH13	0.664	#DIV/0!	2.548181	2.548181		
DKK3	1.197	0.978354	0.938133	0.938133		
TPM2	1.451	0.784139	1.134531	1.134531		
TAGLN	1.292	0.705759	1.700197	1.700197		
AXL	0.546	0.812441	1.517648	1.517648		
THY1	1.063	#DIV/0!	2.602325	2.602325		
PODXL	1.366	3.140597	1.435316	1.435316		
FBN1	1.459	2.056632	1.692519	1.692519		
AMIGO2	1.057	1.820322	2.514458	2.514458		
EHD2	2.510	3.776854	2.767269	2.767269		
FOXD1	1.076	0.855949	1.53458	1.53458		
NUAK1	0.902	1.449376	1.421510	1.421510		
TGFBI	1.182	8.266674	1.838949	1.838949		
Gene	Ratio 1	Ratio 2	Ratio 3			
--------	---------	---------	---------			
TNFRSF11B	1.55407801	0.97976879	1.1482821			
WNT5B	0.98116969	3.92361111	3.15179353			
NID2	0.88483685	0.56009913	0.98433735			
SERPINE1	2.12680115	3.07229612	3.78714524			
LOX	1.44543391	1.4274844	1.30739367			
NNMT	1.88637904	5.39334779	5.69767442			
PDGFRB	1.86167147	2.09423052	2.80629409			
F3	1.11757755	2.52332196	1.24024236			
WNT5A	0.9019026	0.55192958	0.51668771			
BGN	1.03942652	0	0.8188178			
HS3ST3A1	1.46253602	1.39042308	4.55725191			
TCF4	0.85632	1.06037444	0.79014989			
ABCC3	1.70046083	0	2.73477999			
EGFR	#DIV/0!	1.47071584	1.96918403			
COL5A1	0	3.08054523	2.04422638			
VEGFC	1.7718894	2.10037175	0.98443396			
CRISPLD2	1.06340058	0.94879687	0.85754288			
PTGFR	3.18809981	#DIV/0!	0.49051491			
STC2	1.16401536	#DIV/0!	1.63670852			
MICAL2	0.81826241	7.86086957	3.66863905			

*Highlighted genes (selected for Figure 5D) follow the same trend in a
	LOG2 values			
	M16	RKTJ-BI3	WP	
	-0.40713229	-0.38539325	-1.00638914	
	-0.80025633	-0.81046084	-1.48828171	
	-0.56135432	-0.60238169	-0.63825736	
	-1.26260403	-1.54245607	-1.51844951	
	-0.27594812	-0.66720878	-0.63579663	
	-0.55519375	-0.91581789	-0.6596012	
	-0.60003934	-0.56436499	-0.36023305	
	-0.59855419	-1.11808113	-0.53193526	
	-0.68126398	-1.23995339	-1.61148694	
	-0.62972503	-0.73475759	-0.37581004	
	-0.35154275	-1.91516547	-0.65011129	
	-0.75293615	-1.15040055	-0.80733243	
	-0.6919709	-1.03472352	-1.22482039	
	-0.28368444	-0.76162584	-0.05634757	
	-0.58008012	-1.20308769	-1.36560058	
	-0.52565946	-1.10749652	-1.28202816	
	-0.48344166	-0.66893644	-1.28803048	
	-0.31970151	-1.55881562	-1.17394497	
	-0.47441154	-0.83745229	-0.98634772	
	-0.75025727	-0.70703737	-0.92176671	
	-0.68568164	-1.54419178	-1.1188681	
	-0.31493321	-0.85624397	-1.20637153	
	-0.64984453	-0.29210415	-0.55805819	
	-0.62812611	-1.00526548	-0.95725786	
	-0.8955455	-0.4600469	-1.57007444	
	-0.85990934	-2.51422294	-1.43865169	
-------	-------	-------	-------	
-0.09061319	-0.86420677	-0.67654961		
0.09462092	0.09824587	0.2066073		
-0.06467484	-0.30028447	-0.13927446		
-0.68269452	-0.60790268	-0.6049768		
-0.07737124	-1.07269687	-0.77829341		
-0.02330886	-0.79852569	-0.00217383		
0.77262121	2.30480691	0.39443746		
0.54988696	0.57607148	1.43530661		
0.52320412	1.33052201	1.03990696		
-0.73951721	-0.59166104	-2.41655143		
1.08176745	1.28142183	0.03122782		
-0.83459717	-0.45962964	-0.60769719		
0.41768211	1.37101979	1.08642289		
0.07132169	0.5665502	0.21286817		
0.45050218	1.65120425	0.52136819		
0.54584239	1.04028413	0.75917287		
0.08061846	0.86419382	1.33024736		
1.32814091	1.91718535	1.46846292		
0.24085786	3.04730708	0.87888171		
Highlighted genes (selected for Figure 5D) follow the same trend in all 3 cell lines (up- or down-regulated; ratio > or < 1)

-0.17651662	-0.8362459	-0.02277526
1.08868515	1.61931728	1.92111075
0.53150265	0.51347498	0.38669361
0.91561959	2.43118107	2.51037318
0.8965985	1.06642025	1.4886662
0.16037494	1.3353243	0.31062207
-0.14895645	-0.8574439	-0.95263553
0.54847216	0.47552394	2.18816412

II 3 cell lines (up- or down-regulated; ratio > or < 1)