Abstract. In this paper, we define the recurrence and “non-wandering” for decompositions. The following inclusion relations hold for codimension one foliations on closed 3-manifolds: p.a.p. \subset recurrent \subset non-wandering. Though each closed 3-manifold has codimension one foliations, no codimension one foliations exist on some closed 3-manifolds.

1. Introduction and preliminaries

In 1927, Birkhoff introduced the concepts of non-wandering points and recurrent points [Bi]. Using these concepts, we can describe and capture sustained or stationary dynamical behaviors and conservative dynamics. In this paper, we define the recurrence and “non-wandering” for decompositions. As usual dynamical systems, the following relations hold:

pointwise almost periodic \subset recurrent \subset non-wandering.

In particular, the above inclusions hold for codimension one foliations on closed 3-manifolds. Though each closed 3-manifold has codimension one foliations, no codimension one foliations exist on some closed 3-manifolds. Let \mathcal{F} be a codimension one non-wandering foliation on a closed 3-manifold. When the ends of each leaf of \mathcal{F} is countable, we show that \mathcal{F} is R-closed if and only if \mathcal{F} has either no compact leaves or no locally dense leaves. On the other hand, there are codimension one smooth foliations without compact leaves which are not R-closed.

By a decomposition, we mean a family \mathcal{F} of pairwise disjoint nonempty subsets of a topological space X such that $X = \sqcup \mathcal{F}$. For $L \in \mathcal{F}$, we call that L is proper if $\overline{L} - L$ is closed, and it is recurrent if it is either closed or non-proper. Denote by Cl (resp. P) the set of closed elements (resp. the set of elements which are not closed but proper). Then the complement of P is the set of recurrent. A decomposition \mathcal{F} is recurrent (resp. non-wandering) if $P = \emptyset$ (resp. $\text{int} P = \emptyset$). Then a decomposition is recurrent if and only if each element of it is recurrent. For any $x \in X$, denote by L_x the element of \mathcal{F} containing x. Recall that \mathcal{F} is pointwise almost periodic (p.a.p.) if the set of all closures of elements of \mathcal{F} also is a decomposition and it is R-closed if $R := \{(x, y) \mid y \in \overline{L_x}\}$ is closed.

Lemma 1.1. Let \mathcal{F} be a decomposition on X. If \mathcal{F} is pointwise almost periodic, then \mathcal{F} is recurrent. If \mathcal{F} is recurrent, then \mathcal{F} is non-wandering.

Proof. By definition, recurrence implies non-wandering property. Suppose that \mathcal{F} is pointwise almost periodic. Fix any non-closed element $L \in \mathcal{F}$. Since L is not
closed, there is an element \(x \in \overline{L} - L \). Since \(\mathcal{F} \) is pointwise almost periodic, we obtain \(\overline{\mathcal{F}} = \overline{L} \). Then \(\overline{\mathcal{F}} = \mathcal{F} \supseteq \overline{L} - L = \overline{L} - L \supseteq \overline{L} - L \). Thus \(\overline{L} - L \) is not closed. This shows that \(L \) is not proper. Therefore \(P = \emptyset \). \(\square \)

2. Codimension one foliations on 3-manifolds

Note that each codimension one non-wandering foliation on a closed surface is either minimal or compact because of Theorem 2.3 [Y2]. However the 3-dimensional case is different from the 2-dimensional case. For instance, in [H], the author has constructed a codimension one continuous non-wandering foliation on a closed 3-manifold \(M \) such that \(\overline{LD} = E = M = LD \sqcup E \) (resp. \(E = M \)), where \(LD \) is the union of locally dense leaves and \(E \) is the union of exceptional leaves. This shows that \(LD \) (resp. \(E \sqcup Cl \)) is neither open nor closed in general. Recall that \(\mathcal{F} \) is \(\pi_1 \)-injective if each inclusion of a leaf \(L \) of \(\mathcal{F} \) induces an injective map \(\pi_1(L) \to \pi_1(M) \) for some base point in \(L \). Now we state some properties of non-wandering codimension one continuous foliations.

Lemma 2.1. Let \(\mathcal{F} \) be a codimension one non-wandering continuous foliation on a closed 3-manifold \(M \). Then \(\mathcal{F} \) is \(\pi_1 \)-injective. Moreover if \(\pi_2(M) \) is trivial, then the universal cover of \(M \) is homeomorphic to \(\mathbb{R}^3 \).

Proof. By non-wandering property, there are no Reeb components. By the \(C^0 \) Novikov Compact Leaf Theorem [Sa], there are no vanishing cycles. By Th3.4.VIII [HH], we have that \(\mathcal{F} \) is \(\pi_1 \)-injective. Suppose that \(\pi_2(M) \) is trivial. By Corollary 2.4 [P], the universal cover of \(M \) is homeomorphic to \(\mathbb{R}^3 \). \(\square \)

This implies the non-existence of codimension one foliations on homological spheres.

Corollary 2.2. There are no codimension one non-wandering continuous foliations on homology 3-spheres.

From now on, we consider \(C^2 \) foliations on closed 3-manifolds.

Proposition 2.3. Let \(\mathcal{F} \) be a codimension one non-wandering \(C^2 \) foliation on a closed connected 3-manifold \(M \). Suppose there are no leaves of \(\mathcal{F} \) whose ends are uncountable. Then the following holds:
1) \(\mathcal{F} \) is \(R \)-closed.
2) \(\mathcal{F} \) is either minimal or compact.
3) \(\mathcal{F} \) either has no compact leaves or has no locally dense leaves.

Proof. By Theorem 5.2 [Y], we have that 1) and 2) are equivalent. Suppose that \(\mathcal{F} \) is minimal or compact and so \(\mathcal{F} \) either has no compact leaves or has no locally dense leaves. Conversely, we show that 3) implies 2). Suppose that \(\mathcal{F} \) has either no compact leaves or no locally dense leaves. By the Duminy theorem for ends [CtC2], there are no exceptional leaves. If there are no compact leaves, then the minimal set is the whole manifold \(M \) and so \(\mathcal{F} \) is minimal. Thus we may assume that there are no locally dense leaves. Assume \(\mathcal{F} \) is not compact. Since the union of compact leaves are closed, the union of non-compact leaves are nonempty open and consists of non-compact proper leaves. This contradicts to non-wandering property. Thus \(\mathcal{F} \) is compact. \(\square \)

The following statement shows that the above countable condition is necessary and that pointwise almost periodicity does not correspond to recurrence.
Proposition 2.4. There is a smooth codimension one foliation F on a closed 3-manifold $\Sigma_4 \times S^1$ which is not pointwise almost periodic but recurrent such that F consists of exceptional leaves and locally dense leaves, where Σ_k is the genus k closed orientable surface.

Proof. Let G be the group generated by a circle diffeomorphisms f, g in [Sac] with a unique Cantor minimal set \mathcal{M} and $f_1, f_2 : (1/3, 2/3) \rightarrow (1/3, 2/3)$ smooth diffeomorphisms such that each orbit of the group generated by f_1, f_2 is dense. Note that $(1/3, 2/3)$ is a connected component of $S^1 - \mathcal{M}$. We can choose f_1, f_2 such that the extensions of f_i are circle smooth diffeomorphism $F_i : S^1 \rightarrow S^1$ whose supports are $(1/3, 2/3)$. Consider the product foliation $\{\Sigma_4 \times \{x\} \mid x \in S^1\}$ and four disjoint loops $\gamma_f, \gamma_g, \gamma_1, \gamma_2$ in Σ_4 such that $\Sigma_4 - \sqcup_i=1,2 \gamma_i$ is a punctured disk. Taking holonomy maps $\text{id} \times F_i : \gamma_i \times S^1 \rightarrow \gamma_i \times S^1$ for a circle bundle over Σ, we obtain a codimension one foliation F such that each leaf is exceptional or locally dense. Therefore F is not pointwise almost periodic but recurrent. \qed

The following statement shows that recurrence does not correspond to non-wandering property.

Proposition 2.5. There is a smooth codimension one foliation on $\Sigma_3 \times S^1$ which is not recurrent but non-wandering.

Proof. Let f, g_1, g_2 be circle homeomorphisms such that each orbit of f is non-compact proper except one fixed point and that the set of fixed points of g_i is the union of the fixed point of f and some non-compact proper orbit of f. Moreover we can require each regular orbits of the group generated by g_1 and g_2 is locally dense. As above, we can construct a codimension one foliation on $\Sigma_3 \times S^1$ which consists of one compact leaf, one non-compact proper leaf, and locally dense leaves. Hence F is not recurrent but non-wandering. \qed

References

[Bi] Birkhoff, G. D., *Dynamical systems* With an addendum by Jurgen Moser. American Mathematical Society Colloquium Publications, Vol. IX American Mathematical Society, Providence, R.I. 1966 xii+305 pp.

[CtC] Cantwell, J., Conlon, L., *Reeb stability for noncompact leaves in foliated 3-manifolds* Proc. Amer. Math. Soc. 83 (1981), no. 2, 408–410.

[CtC2] Cantwell, J., Conlon, L., *Endsets of exceptional leaves; a theorem of G. Duminy* Foliations: Geometry and Dynamics (Warsaw, 2000), 225–261.

[H] Hector, G., *Quelques exemples de feuilletages especes rares* Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, xi, 239–264.

[HH] Hector, G., Hirsch, U., *Introduction to the geometry of foliations. Part B. Foliations of codimension one* Second edition. Aspects of Mathematics, E3. Friedr. Vieweg & Sohn, Braunschweig, 1987.

[P] K. Parwani *On 3-manifolds that support partially hyperbolic diffeomorphisms* Nonlinearity 23 (2010) 589–606.

[Sac] Sacksteder, R., *On the existence of exceptional leaves in foliations of co-dimension one* Ann. Inst. Fourier (Grenoble) 14 1964 fasc. 2, 221–225.

[So] V. V. Solodov., *Components of topological foliations* Mat. Sb. (N.S.), 119(161)(3): 340–354, 447, 1982.

[Y] T. Yokoyama, *Recurrence, pointwise almost periodicity and orbit closure relation for flows and foliations* [atXiv:1205.3635]

[Y2] T. Yokoyama, *Topological characterizations for non-wandering surface flows* [atXiv:1210.7624]
Department of Mathematics, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan,

E-mail address: yokoyama@math.sci.hokudai.ac.jp