Diterpenoids from the genus *Illicium* and Their Bioactivities

Yingying Fu,* Junyan Chu, a and Jifeng Liu a,b

a School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, Henan 450001, China

b Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan 450001, China

Email: liuj2009y@126.com (J. L.)

Abstract Diterpenoids are important chemical constituents isolated from the genus *Illicium*, which possess many pharmacological effects such as anti-inflammatory, antiviral activities, cytotoxicity, and so on. Up to now, 68 diterpenoids have been isolated from the genus *Illicium*, and they are classified as abietane-type, pimarane-type and podocarpane-type. In this paper, the chemical constituents and bioactivities of the diterpenoids from the genus *Illicium* are reviewed.

Keywords *Illicium*, diterpenoids, abietane-type, bioactivities

Introduction

The genus *Illicium* (family Illiciaceae) contains nearly 50 species worldwide, which mainly is distributed in east and southeast Asia. There are 28 species and 2 varieties in the genus that primarily are distributed in southern regions of China. The plants in this genus can be shrub or small tree, and they have the smell of fragrance.[1] However, many plants of the genus *Illicium* are considered toxic. Its bark and fruit often are used as folk medicine to treat cough, rheumatism, lumbar muscle strain, skin inflammation, and cancer in ancient China.[2] Previous phytochemical investigations on this genus have resulted in the isolation of some diterpenoids with anti-inflammatory, antiviral activities, cytotoxicity.[3] Thus, the *Illicium* species have attracted widespread attention in recent years. About 68 diterpenoids have been isolated from the genus *Illicium*. Diterpenoids can be categorized into abietane-type, pimarane-type, and podocarpane-type. Among them, abietane-type diterpenoids are the primary type. Herein, we summarize chemical constituents and pharmacological effects of diterpenoids from the genus *Illicium*.

Different Types of Diterpenoids

Up to date, 68 diterpenoids have been found in many plants of this genus, such as *I. minwanense*, *I. majus*, *I. jiadifengpi*, *I. merrillianum*, and so on. Chemical components of diterpenoids mainly contain abietane-type, pimarane-type, and podocarpane-type.

Abietane-type diterpenoids

Among these diterpenoids, 54 abietane-type diterpenoids have been isolated and identified. Yokoyama et al.[4] obtained a new abietane-type diterpene from a methanol extract of the pericarps of *I. minwanense*, named (+)-8,11,13,15-abietatetraene (1). From the twigs and leaves of *I. majus*. Fang et al.[5] found four new diterpenes, named majusanic acid A—D (2—5), and majusanic acid B exhibited significant anti-inflammatory activity. From the roots of *I. jiadifengpi*. Zhang et al.[6] obtained nine new diterpenes, named jiadifenoc acid A—G (6—12). Among them, jiadifenoc acid A is a novel dimeric diterpene with a rare spiro[bicyclo[2.2.2]-oct-5-ene-2,10-cyclopentan]-3-one, and jiadifenoc acid B exhibited significant antiviral activities against Coxsackie virus B. From the fruits of *I. wardii*. Gao et al.[7] purified two novel abietane diterpenes, wardinol A (13) and wardinol B (14) by intensive spectroscopic analysis. From ethanol extract of branches and leaves of *I. merrillianum*. Tian et al.[8] isolated three new diterpenes, merrilliadione (15), 8β,14α-dihydroxy-12,13α-epoxyabietane (16), and 8α,14α-dihydroxy-9,13β-epoxyabietane (17). Compound 15 has a unique isopropyl (13→11)-abeo-9,11-seco-abietane skeleton, which displayed moderate cytotoxicity against human cancer cells. From the aerial parts of *I. angustisepalum*. Sy et al.[9] obtained twelve novel diterpenes, angustanopic acid A (18), angustanolic acid B (19), angustanoic acid C (20), 4-epi-palustric acid-9α,13β-endo-peroxide (21), angustanoic acid C—F (22—25), angustanol (26), and angustanoic acid G—I (27—29). Wang et al.[10] isolated compounds, majusanic acid E (30), majusanic acid F (31), and majusanic acid A—C (32—34) from the roots of *I. majus*. Zhang et al.[11] found jiadifenoc acid J—L (35—37) from the stems of *I. jiadifengpi*. Huang et al.[12] isolated and identified 4-epi-dehydroabietic acid (38), 4-epi-abietic acid (39) and 8,11,13,15-abietatetraen-19-ol acid (40) from the bark of *I. jiadifeng*. In addition, lambertic acid (41) was afforded from the roots of *I. majus*. From the twigs and leaves of *I. majus*. majusanic (42) was obtained.[13] Besides, twelve known compounds from the genus *Illicium* have been isolated and identified as 7-hydroxy-1,4α-dimethyl-1,2,3,4,4a,9,10,10a-octahydro-phena-nitrene-1-carboxylic acid (43), 7α-hydroxy-

Pimarane-type diterpenoids

In addition to abietane-type diterpenoids, pimarane-type diterpenoid was also found in this genus. Six pimarane-type
Figure 1 Chemical structures of abietane-type diterpenoids isolated from the genus *Illicium*.
diterpenoids[6,9,11,12,15] have been isolated and identified from the genus \textit{Illicium}, named as jiadifenoic acid M (55), jiadifenoic acid N (56), 4-epi-sandalacopimaric acid (57), 4-epi-isopimaric acid (58), wulingzhic acid V (59), and isopimara-7,15-dien-19-ol (60), respectively. Among the compounds mentioned above, jiadifenoic acid M (55) exhibited reasonable activity against CVB3 (Coxsackie virus B3). Their chemical structures are shown in Figure 2.

![Figure 2](image_url)

Figure 2 Chemical structures of pimarane-type diterpenoids isolated from the genus \textit{Illicium}.

Podocarpane-type diterpenoids

Six podocarpane-type diterpenoids[5,6,11] were found, named jiadifenoic acid H (61), jiadifenoic acid I (62), jiadifenoic acid O (63), jiadifenoic acid P (64), (+)-13-methoxypodocarpa-8,11,13-trien-19-ol (65), and 13-oxopodocarp-8(14)-en-19-ol (66). Among them, jiadifenoic acid P exhibited reasonable activity against CVB3. Their chemical structures are shown in Figure 3.

![Figure 3](image_url)

Figure 3 Chemical structures of podocarpane-type diterpenoids isolated from the genus \textit{Illicium}.

Diterpene glycosides

From the ethanol extract of \textit{I. brevistylum} (Illiciaceae), Chen \textit{et al.}[16] identified two new diterpene glycosides, brevistyllumside A (67) and brevistyllumside B (68). Their chemical structures are shown in Figure 4.

![Figure 4](image_url)

Figure 4 Chemical structures of diterpenes glycosides isolated from the genus \textit{Illicium}.

Bioactivities of Diterpenoids from the genus \textit{Illicium}

Diterpenoids from the genus \textit{Illicium} have various pharmacological effects such as anti-inflammatory, antiviral activities and cytotoxicity.

Anti-inflammatory activity

Majusanic acid B (3) inhibited the \(\beta\)-glucuronidase release in rat PMNs induced by PAF (IC\textsubscript{50} = 0.26 ± 0.03 \(\mu M\)), which is about 10 times higher than that of ginkgolide B[5] (IC\textsubscript{50} = 2.91 ± 0.47 \(\mu M\)). Compounds 8,11,13,15-abietatetraen-19-ol acid (40), methyl-16-nor-15-oxodehydroabietate (54), and 12-hydroxydehydroabietic acid (45) have strong NF-\(\kappa\)B inhibitory activity, which can reduce LPS-induced 293-NF-\(\kappa\)B-luc fluorescence intensity[19] indicating that abietane-type diterpenes are the main anti-inflammatory ingredient from \textit{I. brevistylum}. Compound methylabieta-8,11,13,15-tetraen-18-oate (53)[15] shows good anti-inflammatory activity. Chen[15] found that the total extracts of \textit{I. brevistylum} and all extracts parts have good NF-\(\kappa\)B-inflammation inhibitory effect.

Antiviral activity

In recent years, many diseases were caused by virus infection, which had been a worldwide problem. Thus, it is urgent to find new antiviral drugs. Jiadifenoic acid B (7), jiadifenoic acid C (8), and 7\(\alpha\)-hydroxycallitrisic acid (44) exhibited significant antiviral activities against Coxsackie virus B (RNA virus), which was the first report of diterpenes with anti-Coxsackie virus activity[16]. It can be clearly seen from the above reports, abietane-type diterpenoids are the main chemical constituents against Coxsackie virus B, providing potential anti-Coxsackie virus drugs in the future. Majusanic acid E (30), majusanic acid F (31), 4-epi-dehydroabietic acid (38), majusanic acid B (33), and majusanic acid D (5) displayed moderate antiviral activity against the Coxsackie virus B3 with IC\textsubscript{50} values of 3.3–51.7 \(\mu M\)[5,10,12] Jiadifenoic acid M (55), jiadifenoic acid N (56), jiadifenoic acid P (64) and 13-oxopodocarp-8(14)-en-19-ol acid (66) exhibited reasonable activity against CVB3 with IC\textsubscript{50} values of 7.0–22.2 \(\mu M\) and selective index values (SI = TC\textsubscript{50}/IC\textsubscript{50}) of 49.3, 37.1, 31.3, and 40.9,[11] respectively.

Cytotoxicity

According to the previous reports, few diterpenoids in this
genus exhibited cytotoxicity. Tian et al. reported that merrilladiene (15), 8β,14α-dihydroxy-12,13α-epoxyabietane (16), 8α,14α-dihydroxy-9,13β-epoxyabietane (17), and dehydroabietinol (47) displayed moderate cytotoxicity against A549, HCT116, MDA-MB-231, and BEL-7404 cell lines with IC₅₀ values of 9.04–31.81 µM.

Other bioactivities

Li et al. found that the crude extract of *I. lanceolatum* has antimicrobial activity. De et al. studied the antimicrobial properties of star anise (*I. verum*). The results indicated some compounds isolated from star anise can inhibit the bacterial growth.

Conclusion and Perspective

The plants from the genus *Illicium* have widespread medicinal values. Many chemical constituents have been isolated and identified by spectroscopic analysis and chemical methods. In this paper, we reviewed the main diterpenoids from the genus *Illicium*, including abietane-type, pimarane-type, and podocarpane-type. Some of them possess pharmacological effects such as anti-inflammatory, antiviral activity, and cytotoxicity. At present, researchers have studied many plants from the genus *Illicium*. Some new chemical constituents and bioactivities are being found, which will offer better medicinal values for clinical application in the future. However, in-depth investigations on the bioactive mechanism are rarely reported in modern researches, and they should be strengthened on this aspect.

Acknowledgement

This work was supported by the Science and Technology Tackling Project of Henan Science Technology Department (No. 182102310053), the Key Scientific Research Project in University of Henan Province (No. 17A350013), and the National Natural Science Foundation of China (No. 81673322, U1904136)

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Richard, M. K.; Saunders, F. L. S. Systematics of the genus *Illicium* (Liliaceae) in Malesia. *Bot. J. Linn. Soc.* 1995, 117, 333–352.
[2] Zhao, L. Q.; Luo, Y. M. The terpenoids and their chemotaxonomic significance in *Illicium*. *Guangxi Zhiwu* 2007, 27, 272–276.
[3] Fukuyama, Y.; Shida, N.; Kodama, M. Isodunnianin: a new sesquiterpene enhancing neurite outgrowth in primary culture of fetal rat cerebral hemisphere from *Illicium tashiroi*. *Plant Med.* 1993, 59, 181–182.
[4] Yokoyama, R.; Huang, J. M.; Hosoda, A.; Kino, K.; Yang, C. S.; Fujimaya, Y. Seco-preizaane-type sesquiterpenes and an abietane-type diterpene from *Illicium minwanense*. *J. Nat. Prod.* 2003, 66, 799–803.
[5] Fang, Z. F.; Zhang, G. J.; Chen, H.; Bai, J.; Yu, S. S.; Liu, Y.; Wang, W. J.; Ma, S. G.; Qu, J.; Xu, S. Diterpenoids and sesquiterpenoids from the twigs and leaves of *Illicium majus*. *Plant Med.* 2013, 79, 142–149.
[6] Zhang, G. J.; Li, Y. H.; Jing, J. D.; Yu, S. S.; Qu, J.; Ma, S. G.; Liu, Y. B.; Yu, D. Q. Anti-Coxsackie virus B diterpenes from the roots of *Illicium iadifengi*. *Tetrahedron* 2013, 69, 1017–1023.
[7] Gao, Y. P.; Shen, Y. H.; Zhang, W. D. Two novel abietane diterpenoids from *Illicium wardii* A.C.Sm. *Helv. Chim. Acta* 2014, 97, 122–127.
[8] Tian, X. H.; Yue, R. C.; Zhang, S. D.; Shen, Y. H.; Ye, J.; Shan, L.; Li, H. L.; Wen, B.; Xu, X. K.; Zhang, W. D. Merrilladiene – a rare isopropyli (13–11)-aboe-9,11-seco abietane diterpene from *Illicium merrillianum*. *Eur. J. Org. Chem.* 2014, 4753–4758.
[9] Sy, L. K.; Brown, G. D. Abietane diterpenes from *Illicium angustisepalum*. *J. Nat. Prod.* 1998, 61, 907–912.
[10] Wang, Y. D.; Zhang, G. J.; Qu, J.; Li, Y. H.; Jing, J. D.; Liu, Y. B.; Ma, S. G.; Li, Y.; Lv, H. N.; Yu, S. S. Diterpenoids and sesquiterpenoids from the roots of *Illicium majus*. *J. Nat. Prod.* 2013, 76, 1976–1983.
[11] Zhang, G. J.; Li, Y. H.; Jing, J. D.; Yu, S. S.; Wang, X. J.; Zhuang, P. Y.; Zhang, Y.; Qu, J.; Ma, S. G.; Li, Y.; Liu, Y. B.; Yu, D. Q. Diterpenes and sesquiterpenes with anti-Coxsackie virus B3 activity from the stems of *Illicium iadifengi*. *Tetrahedron* 2014, 70, 4494–4499.
[12] Huang, P.; Gloria, K.; Peter G. Abietane diterpene acids from the bark of *Illicium iadifengi*. *Nat. Prod. Res. Dev.* 2005, 3, 309–312.
[13] Li, C. T. Ph.D. Dissertation, Anti-inflammatory constituents from three plants of genus *Illicium* and their chemotaxonomic significance. The Second Military Medical University, Shanghai, China, 2014.
[14] Fang, Z. F.; Liu, X.; Zhang, L.; Zhang, T. A new abietane type diterpene from the twigs and leaves of *Illicium majus* Hout et Thoms. *Chin. Pharm. J.* 2016, 51, 2009–2012.
[15] Chen, C. M. S. Dissertation, Study on the chemical constituents from stem bark of *Illicium brevistylum* A.C.Smith and the anti-inflammatory activity. The Second Military Medical University, Shanghai, China, 2013.
[16] Chen, Y. H.; Dong, Z. Y.; Huang, D. D.; Chen, W. S.; Yao, F. Y.; Xue, Y. D.; Sun, L. N. Brevistylumisides A and B, diterpene glycosides from *Illicium brevistylum*. *Phytochem. Lett.* 2015, 14, 27–30.
[17] Li, H. J.; Li, H. R.; Wang, X. L.; Pei, Y. L.; Fan, G. Y. Study on the antibacterial activity of plants of the genus *Illicium*. *Helongjiang Xumu Shouyi* 2016, 12, 178–180.
[18] De, M.; De, A. K.; Sen, P.; Banjee, A. B. Antimicrobial properties of star anise (*Illicium verum* Hook f.). *Phytother. Res.* 2002, 16, 94–95.
[19] Chen, W.; Lv, S. S.; Wang, X.; Chen, C.; Sun, L. N. Diterpenes from *Illicium brevistylum* and their anti-inflammatory activities. *Zhangchengyao* 2019, 41, 97–101.

Received April 16, 2020
Accepted April 30, 2020