Quantum gravitational signatures in next-generation gravitational wave detectors

Saurya Das
 theoretical Physics Group and Quantum Alberta, Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada

S. Shankaranarayanan
 Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India

Vasil Todorinov
 theoretical Physics Group and Quantum Alberta, Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4, Canada

Abstract

A recent study established a correspondence between the Generalized Uncertainty Principle (GUP) and Modified theories of gravity, particularly Stelle gravity. We investigate the consequences of this correspondence for inflation and cosmological observables by evaluating the power spectrum of the scalar and tensor perturbations using two distinct methods. First, we employ PLANCK observations to determine the GUP parameter γ_0. Then, we use the value of γ_0 to investigate the implications of quantum gravity on the power spectrum of primordial gravitational waves and their possible detectability in the next-generation detectors, like Einstein Telescope and Cosmic explorer.

Keywords: Quantum gravity phenomenology, GUP, Quadratic gravity, Inflation, Primordial gravitational waves

Since its discovery, the cosmic microwave background (CMB) has been an indispensable tool for understanding the very early universe. Consequently, observational cosmology has made incredible progress over the last three decades and thanks to the observation of temperature fluctuations at the last scattering surface, one has been able to identify the physical origins of the primordial density perturbations in the very early universe [1, 2, 3, 4, 5, 6, 7]. The inflationary paradigm provides a causal mechanism for the origin of these perturbations and the inflationary epoch magnifies the tiny fluctuations in the quantum fields present at the beginning of the epoch into classical perturbations that leave an imprint as anisotropies in the CMB [8, 9, 10, 11, 12, 13]. A key prediction of inflation is the generation of primordial gravitational waves (PGWs) [14, 15, 16].

Therefore, significant effort is currently underway to detect PGWs via B-mode polarization measurements of the CMB [17, 18, 19, 20, 21, 22, 25]. This is because B-modes of CMB are only sourced by the differential stretching of spacetime associated with the PGWs [16, 23]. However, the primordial B-mode polarization signal is weak and could be swamped inside dust emission in our galaxy [24, 20, 5]. Efforts are also underway to directly detect PGWs [25, 26, 27, 28, 29, 30]. In this work, we explicitly show that PGWs carry quantum gravitational signatures that can potentially be observed in the next-generation gravitational wave detectors such as the Einstein Telescope (ET) and Cosmic Explorer (CE).

Theories of Quantum Gravity (QG) predict the existence of a minimum measurable length and/or a maximum measurable momentum of particles [31, 32]. The experimental implications of this scale are explored in Quantum Gravity Phenomenology (QGP) [33]. This QGP/QG scale is most easily realized by deforming the standard Heisenberg uncertainty relation to the so-called Generalized Uncertainty Principle (GUP) [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. Recently, we proposed a Lorentz invariant implementation of GUP, wherein we modified the canonical commutation relation to [80]:

$$[x^\mu, p^\nu] = i\hbar\eta^{\mu\nu}(1 - \gamma p^\sigma p_\sigma) - 2i\hbar p^\mu p^\nu,$$

where in natural units ($\hbar = c = 1$),

$$\gamma = \gamma_0 M_{\text{Planck}}^2 = \gamma_0 \ell_{\text{Planck}},$$

is the Lorentz invariant scale, and γ_0 is a numerical parameter used to fix the scale. Experimental data and QG theories suggest that the intermediate scale γ should be found somewhere between the electroweak length scale $\sim 10^{11}\ell_{\text{Planck}}$ and the Planck length scale.

In a recent study [81], we employed the GUP model with maximum momentum uncertainty in Eq. (1) to establish a relationship between the GUP-modified dynamics of a massless spin-2 field and Stelle gravity with mass degeneracy [82, 83,
We also showed that the mass-degenerate Stelle gravity leads to inflation with a natural exit and can be mapped to Starobinsky gravity in the sense that the dynamics predicted by both models are the same. Using this, we obtained some of the best-known bounds on GUP parameters [81].

Recently, it was shown that the massive spin-2 modes in the Stelle gravity carry more energy than the scalar modes in Starobinsky model [85]. It is also known that the Starobinsky model is in perfect agreement with the Planck observations as it predicts a low value of the scalar-to-tensor ratio (r) [86, 6, 5, 7]. This leads to the following questions: Are there signatures distinguishing mass-degenerate Stelle gravity and Starobinsky model? What are the observable signatures of the GUP modified gravity? In this work, we address these questions by investigating the evolution of the scalar and tensor perturbations in these two scenarios.

In order for the inflationary model of the mass-degenerate Stelle gravity to be successful, it must lead to suitable primordial density perturbations that are consistent with the CMB observations. Fortunately, the massive spin-2 modes in both models are the same. Using this, we obtained some of the best-known bounds on GUP parameters [81].

Next, we perform the following transformation [94]: \(\tilde{g}_{\mu \nu} = g_{\mu \nu} (d f/dR) = \Phi g_{\mu \nu} \), under which the potential transforms as
\[
\Phi = \frac{1}{2k \phi^2} \left[R \frac{df}{dR} - f \right] = \frac{V}{2k \phi^2}.
\]
where \(f(R) \) is given in Eq. (5). Lastly, we redefine the scalar field as: \(\chi = \ln |\phi| / \sqrt{3k} \), for which the potential \(U(\chi) \) takes the form
\[
U(\chi) = \frac{3}{4} \frac{M^2_{\text{Planck}}}{\gamma^3} \left(1 - e^{\sqrt{3k}/M_{\text{Planck}}} \right)^2.
\]
Thus, the action (3) is transformed to
\[
\tilde{S} = \int d^4 x \sqrt{-\tilde{g}} \left[R - 2 \gamma R^{\mu \nu} R_{\mu \nu} + \gamma R^2 \right],
\]
in which the scalar field has been separated from the curvature term. The equations of motion reduce to
\[
\tilde{G}_{\mu \nu} - 2\gamma \tilde{B}_{\mu \nu} = \kappa^2 T^\gamma_{\mu \nu},
\]
and \(T^\gamma_{\mu \nu} \) is the stress-energy tensor of the \(\chi \) field which has the same form as a scalar field stress-energy tensor
\[
T^\gamma_{\mu \nu} \equiv \partial_\mu \chi \partial_\nu \chi - \delta^\mu_\nu \left(\frac{1}{2} \tilde{G}^{\alpha \beta} \partial_\alpha \chi \partial_\beta \chi + U(\chi) \right).
\]
From Eq. (10) we see that the scalar field (\(\chi \)) and the geometrical part can be quantized independently.

As mentioned earlier, in Ref. [81], we analytically showed that Stelle gravity, when applied to a homogeneous, isotropic background, leads to inflation with exit. In this work, to connect to observables, we consider the following perturbed FRW line-element [9, 10]:
\[
d^2 s^2 = a^2(\eta) \left[-(1 + 2\varphi) d\eta^2 + 2\varphi B dx^i dx^i + \left(1 + 2\varphi + \psi - 2\psi E + h_{ij} \right) dx^i dx^j \right],
\]
where the functions \(\varphi, B, \psi \) and \(E \) represent the scalar sector whereas the tensor \(h_{ij} \), satisfying \(h_{ij} = \partial_i \partial_j E = h_{ij} = 0 \), represent gravitational waves. \(a(\eta) \) is the expansion factor in conformal time \(\eta \). Note that all these first-order perturbations are functions of...
(η, x). For convenience, we do not write the dependence explicitly. Interestingly, the GUP modified action (3), like Einstein gravity, leads to scalar and tensor fluctuations [95]. In other words, GUP modified action does not contain any growing vector fluctuations, or additional scalar and tensor fluctuations.

Substituting the above line-element (13) in Eq. (10), scalar perturbation equation (in Fourier 3-space) is [96, 97]:

$$\gamma \left[W^{\mu \nu} - \frac{\partial}{\partial t} W^{\mu \nu} \right] + C_2 W + C_1 W + C_0 W = 0,$$

where $W = \psi - \varphi$, H is the background Hubble parameter, and $\{C_0, C_1, C_2\}$ are coefficients determined by the wavenumber of the scalar perturbations k, the QG scale γ, the scale factor a, the Hubble parameter H, and their derivatives. The EoMs of the tensor perturbations are given by:

$$\Box h_{ij} - 2H h_{ij} - \frac{\gamma}{a^2} \Box^2 h_{ij} = 0.$$ \hfill (15)

In the rest of this work, we use two distinct methods to connect to observables. First, we use the Fakeon procedure [95] to constraint the GUP parameter from the CMB observations [5]. Later, using the constraint on γ_0 from CMB observations, we derive the power spectrum of PGWs [96, 97], and compare with the design sensitivity of ET [25] and CE [29, 30].

Observables: Recently, imposing constraints of locality, unitarity, and renormalizability for quantum gravity, and using the fakeon procedure [98], it was shown that quantum gravity could contain only two more independent parameters than Einstein gravity. This was identified as the inflaton χ and the spin-2 fakeon γ_{χ} [95]. Interestingly, the extra degrees of freedom are turned into fake ones and projected away. Note that the Stelle action and the $f(R) + C^2$ action are renormalizable, although they contain Fadeev-Popov (non-malicious) ghosts.

Repeating the analysis [99, 95], yields the following expressions for the power spectra of the scalar and tensor perturbations, respectively:

$$P(k)_{\gamma} = A_R \left(\frac{k}{k_*} \right)^{n_{\gamma} - 1}, \quad P(k)_T = A_T \left(\frac{k}{k_*} \right)^{n_T},$$

where k_* is the wave-number of the fluctuations at the horizon crossing. $P(k)_{\gamma}$, A_R and n_{γ} are the power spectrum, the amplitude, and the spectral tilt of the scalar perturbations respectively. Analogously, $P(k)_T$, A_T, and n_T are the power spectrum, the amplitude, and the spectral tilt of the tensor perturbations. We will obtain these quantities during slow-roll inflation [10, 11].

During the slow-roll inflation, the number of e-folds of inflation N can be rewritten in terms of the slow-roll parameter (ϵ):

$$N = \int_{\epsilon}^{1} \frac{H(t(\epsilon))}{\dot{H}(t(\epsilon))} d\epsilon \approx \frac{1}{2\epsilon} - \frac{1}{12 \ln \epsilon} + O(\epsilon^0).$$ \hfill (17)

Thus, in the leading order, ϵ and N are inversely proportional, i.e., $\epsilon = 1/2N$. Up to the leading order, the amplitudes and the spectral tilts are given by

$$A_R = \frac{Gm^2}{12\pi^2} \left(1 - \sqrt{3\epsilon} - (n_R - 1)(2 - \gamma_E - \ln 2) \right),$$

$$n_R - 1 = -4 \frac{\epsilon}{3}, \quad \frac{n_T}{2} = -\frac{4\epsilon}{3}. \hfill (18)$$

$$A_T = \frac{8Gm^2}{3\pi} \left[1 - \frac{2}{\sqrt{3}} \sqrt{\epsilon} - \frac{39}{54} \epsilon - n_T(2 - \gamma_E - \ln 2) \right]$$

$$r = \frac{A_T}{A_R} = \frac{32\epsilon}{3} \left[1 - \sqrt{\frac{\epsilon}{3}} + [n_R - 1 - n_T][2 - \gamma_E - \ln 2] \right].$$

where $m_0 = 1/\sqrt{2\gamma}$ is the mass of the spin-0 mode, and γ_E is the Euler-Mascheroni constant. Since Bach tensor is conformally invariant, it vanishes in the conformal flat FRW geometry. To the leading order, the scalar ($P(k)_{\gamma}$) and tensor ($P(k)_T$) power-spectrum are:

$$A_R = \frac{N^2}{18\pi y_0}; \quad A_T = \frac{1}{\pi y_0}.$$ \hfill (19)

This is the first key result regarding which we would like to discuss the following points: First, the spectral tilt n_R and n_T, and the scalar-to-tensor ratio r, depend on γ_0. However, it does not contain additional deviations from the Bach tensor. Second, from the above expressions on A_R and A_T, we can derive bounds on the magnitude of γ_0. We obtain this by comparing Eq. (19) with PLANCK observations [86, 100, 5]. Additionally, we compare the QG modified observables with Starobinsky model [8]. This is because the Starobinsky model perfectly agrees with the Planck observations as it predicts a low value of the scalar-to-tensor ratio and mass-degenerate Stelle gravity leads to inflation with a natural exit and can be mapped to Starobinsky gravity. Third, Fig. 1 contains the comparison of the spectral tilt of the scalar modes n_R and the scalar-tensor ratio r in the Starobinsky and $f(R) + C^2$ gravity model. While the spectral tilt of the scalar power spectrum is the same in both cases, the introduction of $R_{\mu\nu}R^{\mu\nu}$ decreases the ratio between the scalar contribution and the tensor modes. This is because Stelle gravity contains extra massive spin-2 modes and they carry more energy compared to the scalar modes. This is consistent with the recent analysis where it is shown that QG effects suppress the tensor modes [85]. Finally, the bounds on the GUP parameter γ_0 can be obtained from the PLANCK observations [86, 100, 5]:

$$A_R = 2.474 \pm 0.116 \times 10^{-9}. \hfill (20)$$

Comparing the theoretical results of Eq. (19) with the above expression leads to the following value for γ_0 for two different e-folds ($N = 40$ and $N = 60$) of inflation:

$$\gamma_0^{N=40} \approx 3.430 \times 10^{10}, \quad \gamma_0^{N=60} \approx 7.719 \times 10^{10}. \hfill (21)$$

Thus, the values for the intermediate scale are consistent with the bounds obtained in Refs. [81, 80, 89, 90, 88].

Power spectrum of PGWs: The next generation of ground-based GW detectors [25, 29, 30] and LISA [27] are expected to
 Fig. 1: The graph represents the spectral tilt of the scalar perturbations n_s and the tensor to scalar ratio $r = A_t / A_s$ from $N = 40$ to $N = 70$ number of e-folds. One can see the QG suppression of the tensor perturbations.

deliver data that will help to answer some of the deep questions in fundamental physics, astrophysics, and cosmology [101]. Modified theories of gravity have shown an impact on the PGWs power spectrum [102, 103]. Here, we show further that the quantum gravitational signatures in PGWs can potentially be observed in the next-generation gravitational wave detectors. Rewriting Eq. (15) as two second-order differential equations, in the Fourier domain, we have [96, 97]:

$$\frac{d^2 \mu_r^{(2)}}{dz^2} + \left(1 - \frac{2}{z^2}\right) \mu_r^{(1)} = 0,$$

$$\frac{d^2 \mu_0^{(2)}}{dz^2} + \left(1 + \frac{1}{\gamma H^2 z^2}\right) \mu_0^{(2)} = 0,$$

where μ_r ($\mu_0^{(2)}$) corresponds to the standard gravitational wave (massive spin-2 mode from the modified theory), and $z \equiv -k \eta$. For pure de Sitter, the power spectrum can be evaluated exactly [104, 105] and is given by:

$$P_{\text{PGW}}(k) = P_0(\gamma_0, H) \left[1 + \left(\frac{k}{k_c}\right)^2 \right].$$

where $P_0(\gamma_0, H) = (2 \kappa H^2 / \pi^2) (1 + 2 \gamma H^2)$. k_c is the wavenumber at horizon crossing, $H_v^{(1)}$ is the Henkel function of the first kind, H is the Hubble scale during inflation and $v = \frac{1}{2} \sqrt{1 - \frac{\nu \gamma}{\eta}}$. The power spectrum given in Eq. (24) is valid for $\gamma_0 > 0$. For $\gamma_0 = 0$, the unmodified power spectrum for the PGWs is:

$$P_{\text{PGW}}(k) = P_0(\gamma_0, H) \left(\frac{k}{k_c}\right)^{3-n_r}.$$

Evaluating the power spectrum at the horizon crossing (i.e., $\eta \to 0$), for three values of $\gamma_0 = \{0, \gamma_0^{N=40} = 0.950, \gamma_0^{N=60} = 0.970\}$ (21) — we obtain the following values for the normalization constant $P_0(\gamma_0, H)$:

$$P_0(\gamma_0 = 0, H = 10^{15}\text{GeV}) = 1.329 \times 10^{-25},$$

$$P_0(\gamma_0 = 0.950, H = 10^{15}\text{GeV}) = 4.841 \times 10^{-29},$$

$$P_0(\gamma_0 = 0.970, H = 10^{15}\text{GeV}) = 2.152 \times 10^{-29}. $$

Fig. 2 contains the plot of the power spectrum of PGWs (for three different values of γ_0) as a function of frequency. From the figure, we infer that the power spectrum is almost constant for a large range of frequencies and is consistent with standard inflationary scenario [106]. Also, the degenerate Stelle gravity model suppresses the amplitude of PGWs. This implies that the lower the inflation, the larger the suppression of the amplitude of the PGWs. This is because the massive spin-2 modes carry less energy than the scalar modes [85]. Further, to quantify the detectability of PGWs in the upcoming GW detectors, we evaluate the energy density of PGWs [107]:

$$\Omega_{\text{PGW}}(k) = \frac{P(\gamma_0, H)}{(k^2 / 12 H_0^2)}.$$

where we have set the scale factor at the present time to unity, and $H_0 = 100 h \text{ km s}^{-1} \text{ Mpc}^{-1}$. Figure 2 contains the plot of differential energy density is $d\Omega_{\text{PGW}}(k) / d\ln(k)$ as a function of f. From the figure, we infer that the differential energy density is 8-orders of magnitude larger in kHz compared to 1 Hz range for all three values of γ_0. To confirm this, we now compare the projected characteristic strain for PGWs and the characteristic strain of the detectors. The characteristic strain of the PGWs is given by [108]:

$$h_{\text{PGW}} = \int P_{\text{PGW}}(f) df,$$

where $P_{\text{PGW}}(f)$ is given by Eq. (24). Since $P_{\text{PGW}}(f)$ is approximately constant with frequency (cf. Figure 2), we approximate $P_{\text{PGW}}(f) \approx P_0(H, \gamma_0)$. Thus, we get:

$$h_{\text{PGW}} \approx f P_0(H, \gamma_0).$$

Figure 3 contains the characteristic strain of PGWs for three different values of γ_0 (corresponding to different e-folds of inflation) along with the design sensitivity of ET [25] and CE [29, 30]. From the figure, we infer the following: First, the characteristic strain of PGWs for the standard inflation (blue curve) is well within the observational capability of both ET and CE. Second, for degenerate Stelle gravity, as the number of e-folds increases, the suppression of the amplitude of the PGWs is larger (orange and green curves). Hence, it is not possible to confirm their detection with confidence. However, the non-detectability of the PGWs will directly constrain the value of γ_0. Thus, ET [25] and CE [29, 30] can put a severe constraint on the value of the GUP parameter. Third, our analysis shows that LISA will not be able to detect PGWs as the characteristic strain is much larger than PGWs in low-frequency (~ 1 Hz). Lastly and most importantly, our analysis explicitly shows that we can strongly constrain the number of e-folds of inflation from ET and CE.

Conclusions In conclusion, we demonstrated that our model is described by a linear combination of $f(R)$ gravity, particularly the Starobinsky model and Weyl-squared gravity. This allowed us to use the fakeon procedure [95] to obtain the scalar spectral tilt n_s and the tensor-scalar ratio r. Although our model and Starobinsky model are identical in the background FRW universe, they lead to different observable consequences in the
linear order in perturbations. More specifically, we showed that the introduction of $R_{\mu\nu}R^{\mu\nu}$ decreases the ratio between the scalar contribution and the tensor modes. This is consistent with the recent analysis [85]. Using PLANCK observations, we determined the bounds on the GUP parameter γ_0. These bounds are consistent with bounds derived from other analyses [81, 80, 89, 90, 87, 88].

Later, using the constraint on γ_0 from the CMB observations, we explicitly showed that PGWs carry quantum gravitational effects will potentially be observable in the next-generation ground-based gravitational wave detectors such as ET and CE. Additionally, depending on the energy density of detected PGWs, one can strongly constrain the number of e-foldings of inflation using these detectors.

After the historical detection of GWs in the frequency range $100 \to 10^4$ Hz, there is a surge in activity for the possibility of detection of GWs in the MHz-GHz frequency range [109]. As mentioned earlier, for a large frequency range, Ψ_{GW} is approximately constant. This means that high-frequency GW detectors with sensitivity around 10^{-20} can potentially detect PGWs. Such detectors will reveal a disparate view of the early universe compared to their electromagnetic counterparts.

Acknowledgments: The authors thank Avijit Chowdhury, Ashu Kushwaha, Abhishek Naskar and Vijay Nenmeli for their comments on the earlier draft. This work was supported by the Natural Sciences and Engineering Research Council of Canada. SS is supported by SERB-MATRICS grant.

Appendix

From the Relativistic GUP (RGUP) relation (1), it is clear that the position and momentum operators are no longer canonically conjugate. The introduction of a "canonical" 4-momentum p_0^μ satisfying $[x^\mu, p_0^\nu] = i\hbar \delta^\mu_\nu$ simplifies calculations considerably. The "physical" 4-momentum p^μ can be expressed in terms of p_0^μ as:

$$p^\mu = p_0^\mu (1 - \gamma p_0^\nu p_0^\nu).$$

In Ref. [81], we used the field theoretic approach to obtain a one-to-one correspondence between RGUP modified Spin-2 field theory and modified gravity:

1. The Lagrangian for a free spin-2 field must be bilinear in the field and its derivatives, $h_{\mu\nu}$. Relevant bilinears are readily enumerated.
2. Due to the long range of gravitational force, the mediating gauge bosons must be massless. Thus, we can assume that the Lagrangian consists solely of field derivatives and has no mass term.
3. We can create a minimal list by identifying pairs of bilinears that differ by surface terms. Thus, we can fix the action up to coefficients that are undetermined:

$$\mathcal{L} = ah_{\mu\nu}h^{\mu\nu} + bh_{\mu\nu}^{\gamma\alpha\sigma} h^{\mu\nu}_{\gamma\alpha\sigma} + ch_{\mu\nu}^{\gamma\rho} h^{\gamma\rho}_{\sigma\mu} + dh_{\mu\nu}^{\gamma\rho} h^{\gamma\rho}_{\nu\sigma}$$

4. An interaction term of the form $\lambda h_{\mu\nu}T^{\alpha\beta}$ takes into account the matter-gravity interactions. By adding this term to the preceding action and enforcing energy-momentum conservation (i.e. $\delta_{\mu\nu}T^{\alpha\beta} = 0$), we obtain the following result:

$$(2a + b)\nabla h_{\mu\nu}^{\gamma\rho} + (b + c)h_{\mu\nu}^{\gamma\rho \sigma\nu} + (c + 2d)\nabla h_{\mu\nu}^{\gamma\rho} - 0 \quad (31)$$

We can use the above expression to fix the coefficients. The Lagrangian corresponding to the above EOM is

$$\mathcal{L}_{\text{free}} = \frac{1}{2} h_{\mu\nu}h^{\mu\nu} - h_{\mu\nu}^{\gamma\rho} h^{\mu\nu}_{\gamma\rho} - h_{\mu\nu}^{\gamma\rho} h^{\gamma\rho}_{\sigma\nu} - \frac{1}{2} h_{\mu\nu}^{\gamma\rho} h^{\gamma\rho}_{\nu\sigma}$$

$$\mathcal{L}_{\text{free}} = \frac{1}{2} h_{\mu\nu}h^{\mu\nu} - h_{\mu\nu}^{\gamma\rho} h^{\mu\nu}_{\gamma\rho} - h_{\mu\nu}^{\gamma\rho} h^{\gamma\rho}_{\sigma\nu} - \frac{1}{2} h_{\mu\nu}^{\gamma\rho} h^{\gamma\rho}_{\nu\sigma}$$
The RGUP modified EOM are obtained from the position space representation of (30) (i.e. \(\partial_\mu \rightarrow \partial_\mu (1 - \gamma C) \)). We have
\[
G^L_{\mu\nu} + \gamma G^S_{\mu\nu} = 0, \quad (33)
\]
where
\[
G^L_{\mu\nu} = \Box_h h^\mu_{\nu,\sigma} - h^\rho_{\mu,\sigma} \cdot h^\nu_{\rho,\tau} + \eta_{\rho\sigma} h^\rho_{\mu,\tau} - \eta_{\mu\nu} \square h^\rho_{\rho,\sigma}, \quad (34)
\]
\[
G^S_{\mu\nu} = \Box h^\mu_{\nu,\sigma} - \Box h^\rho_{\mu,\sigma} \cdot h^\nu_{\rho,\tau} + \Box h^\rho_{\mu,\tau} + \eta_{\rho\sigma} h^\rho_{\mu,\tau} - \eta_{\mu\nu} \square h^\rho_{\rho,\sigma}. \quad (35)
\]

The above linearized equation of motion is identical to the equation of motion obtained by linearized Stelle action [83, 81]:
\[
S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \alpha R^\mu R_{\mu\nu} + \beta R^2 \right].
\]

We showed that the linearized Stelle gravity equations of motion match (33) perfectly when \(\alpha = 2\beta = \gamma/s^2 \). In other words, we showed that \(\alpha = 2\beta \) Stelle gravity is the minimally modified, metric-only theory of gravity which models the effects of maximal momentum. Hence, the model we have used is a one-parameter model, and this equality is then translated into the \(f(R) + C^2 \) model that we used for the modeling of our inflation parameters.

References

[1] G. F. Smoot, et al. (COBE), Structure in the COBE differential microwave radiometer first year maps, Astrophys. J. Lett. 396 (1992) L1–L5. doi:10.1086/186504.

[2] P. de Bernardis, et al. (Boomerang), A flat universe from high resolution maps of the cosmic microwave background radiation, Nature 404 (2000) 955–959. doi:10.1038/35010035. arXiv:astro-ph/0004040.

[3] D. N. Spergel, et al. (WMAP), First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, Astrophys. J. Suppl. 148 (2003) 175–194. doi:10.1086/377226. arXiv:astro-ph/0302209.

[4] W. W. Q. Ogburn, et al. (BICEP2), CMB polarization experimental results, Phys. Rev. Lett. 114 (2015) 101301. doi:10.1103/PhysRevLett.114.101301. arXiv:1502.00612.

[5] P. R. Ade, et al. (BICEP2, Planck), Joint Analysis of BICEP2/KeckArray and Planck Data, Phys. Rev. Lett. 114 (2015) 101301. doi:10.1103/PhysRevLett.114.101301. arXiv:1502.00612.

[6] P. A. R. Ade, et al. (POLARBEAR), A Measurement of the Cosmic Microwave Backgrand B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR, Astrophys. J. 794 (2014) 171. doi:10.1088/0004-637X/794/2/171. arXiv:1403.2369. [Erratum: Astrophys.J. 848, 73 (2017)].

[7] N. N. Gondolo, et al., The Primordial Inflation Polarization Explorer (PIPER), in: W. S. Holland, J. M. Zmuidzinas (Eds.), Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, volume 8452 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2012, p. 845202. doi:10.1117/12.925464. arXiv:1211.0041.

[8] M. Abney, Reconstructing the inflation potential: An overview, Rev. Mod. Phys. 69 (1997) 373–410. doi:10.1103/RevModPhys.69.373. arXiv:astro-ph/9508078.

[9] H. Kodama, M. Sasaki, Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl. 78 (1986) 1–166. doi:10.1143/PTPS.78.1.

[10] J. E. Lidsey, A. R. Liddle, E. W. Kolb, E. J. Copeland, T. Barreiro, M. Abney, Reconstructing the inflation potential: An overview, Rev. Mod. Phys. 69 (1997) 373–410. doi:10.1103/RevModPhys.69.373. arXiv:astro-ph/9508078.
