The ongoing COVID-19 pandemic has already caused over a million deaths worldwide, and this death toll will be much higher before effective treatments and vaccines are available. The causative agent of the disease, the coronavirus SARS-CoV-2, shows important similarities with the previously emerged SARS-CoV-1, but also striking differences. First, SARS-CoV-2 possesses a significantly higher transmission rate and infectivity than SARS-CoV-1 and has infected in a few months over 60 million people. Moreover, COVID-19 has a systemic character, as in addition to the lungs, it also affects the heart, liver, and kidneys among other organs of the patients and causes frequent thrombotic and neurological complications. In fact, the term “viral sepsis” has been recently coined to describe the clinical observations. Here I review current structure–function information on the viral spike proteins and the membrane fusion process to provide plausible explanations for these observations. I hypothesize that several membrane-associated serine proteinases (MASPs), in synergy with or in place of TMPRSS2, contribute to activate the SARS-CoV-2 spike protein. Relative concentrations of the attachment receptor, ACE2, MASPs, their endogenous inhibitors (the Kunitz-type transmembrane inhibitors, HAI-1/SPINT1 and HAI-2/SPINT2, as well as major circulating serpins) would determine the infection rate of host cells. The exclusive or predominant expression of major MASPs in specific human organs suggests a direct role of these proteinases in e.g., heart infection and myocardial injury, liver dysfunction, kidney damage, as well as neurological complications. Thorough consideration of these factors could have a positive impact on the control of the current COVID-19 pandemic.

Coronaviruses cause important diseases in humans, most notably severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). According to the currently accepted mechanism of viral infection, both SARS-CoV (also termed SARS-CoV-1) and the related, recently emerged SARS-CoV-2 rely on two membrane-bound host peptidases for entry into target cells: the carboxypeptidase, angiotensin-converting enzyme 2 (ACE2), and a serine proteinase known as TMPRSS2/TMPS2 or epitheliasin. (TMPRSS stands for “Transmembrane Protease, Serine”). The protruding spike (S) glycoproteins of SARS-CoVs interact first with ACE2 and are then proteolytically cleaved by TMPRSS2 to trigger fusion of the viral envelope with the host cell membrane (1–9). (See Fig. 1A for the domain organization of the viral S protein and Fig. 1, B–C for its three-dimensional (3D) structure). TMPRSS2 plays a dual role in the infection process as it also cleaves ACE2, which increases uptake of SARS-CoV and likely also SARS-CoV-2 virions (3). In addition, TMPRSS2 also activates other human pathogenic coronaviruses that cause the common cold as well as several strains of influenza A viruses, although these pathogens use unrelated attachment receptors for host cell entry (10).

The extraordinarily rapid spread of the COVID-19 pandemic caused by SARS-CoV-2, the absence of a vaccine and of pharmacological drugs capable of inhibiting viral infection and its large economic impact have spurred intense research on the cell entry mechanism, a key factor in viral pathogenesis. Among several unresolved issues, there are two questions of particular clinical relevance. First, why does the virus show a much higher transmission rate and infectivity than SARS-CoV, despite highly similar protein structures, including about 90% conserved residues of their spike proteins? Second, why is SARS-CoV-2 capable of infecting different human organs, in contrast to the rather restricted cell tropism of SARS-CoV? A plausible answer to these questions follows, based on a careful analysis of available structure–function information regarding coronavirus spike proteins and the membrane fusion process.

Furin cleavage preactivates SARS-CoV-2 spike proteins

The spike proteins of SARS-CoV-1 and 2 are activated (“primed”) upon proteolysis of two peptide bonds: the first one, corresponding to Arg685-Ser686 in the SARS-CoV-2 protein, separates the so-called S1 and S2 subunits (Fig. 1A) (2). The N-terminal S1 subunit contains the receptor-binding domain (RBD) responsible for ACE2 binding (8, 11, 12), while the C-terminal S2 subunit remains attached to the viral envelope after proteolysis at the S1/S2 site and is ultimately responsible for its fusion with the host cell membrane. This initial cleavage...
is followed by proteolysis at the S2' site (Arg815-Ser816 in SARS-CoV-2; Fig. 1D), which exposes the highly antigenic Ser816-Phe833 fusion peptide, and elicits major, irreversible conformational changes. This results in a radically different conformation of the S protein, which is competent for membrane fusion and infection (see e.g., refs. (2, 13) and Fig. 1C). As a major difference with SARS-CoV, the S1/S2 peptide bond in SARS-CoV-2 S proteins is efficiently severed by another host cell proteinase, the proprotein convertase furin, within the secretory pathway of infected cells (7). (For a review on the roles of furin in homeostasis and disease, see ref. (14)). Because of furin-mediated proteolysis, the spike proteins in the
SARS-CoV-2 virions are found in a preactivated state and require cleavage of a single bond, Arg815-Ser816, for activation of the fusion machinery. This unique feature of SARS-CoV-2 is essential for S protein-mediated cell–cell fusion and entry into human cells and thus, an important determinant of viral infectivity and pathogenesis (6).

Several membrane-associated serine proteinases might synergize with or replace TMPRSS2 as cellular activator of SARS-CoV-2

The canonical activator of SARS-CoV-1/-2, TMPRSS2, belongs to a subfamily of multidomain, transmembrane serine proteinases with important roles in development and homeostasis (15–19). (The domain organization of TMPRSS2 and related, membrane-associated serine proteinases (MASPs) is schematically represented in Fig. 2; relevant information on these enzymes is summarized in Table 1). Notably, most MASPs are exclusively or predominantly expressed in specific human organs, including the heart (corin/TMPRSS10), liver (hepsin/TMPRSS1), esophagus (TMPRSS4 and TMPRSS11A to F), prostate (TMPRSS2 and prostasin/PRSS8), and testes (matriptase-3/TMPRSS7, testisin/PRSS21, T-SP1/PRSS41, and T-SP1/PRSS55) (Figs. 3A and 4A).

Most MASPs possess basal activity in their zymogenic, single-chain forms and could generate full proteolytic activity after clustering on the cell membrane, which triggers autoactivation in trans. Prostasin, which does not autoactivate (20), has been shown to form an evolutionary conserved proteolytic cascade with matriptase essential for epithelial development (see e.g., refs. (21, 22)). Further, matriptase is also activated by androgen-induced TMPRSS2 (23). These and other MASPs are predicted to function as initiators of cascades of trans- and coactivating proteases (16), which signal through important physiological substrates such as the G-protein-coupled receptor, protease-activated receptor 2 (PAR2), the epithelial sodium channel (ENaC), several matrix metalloproteinases (MMPs), and prohepatocyte growth factor (pro-HGF). This is in addition to only poorly understood cross talk between MASPs and the blood coagulation and fibrinolytic cascades, including the activation of urokinase-type plasminogen activator (uPA) (see e.g., refs. (24, 25) and below).

Colocalization of ACE2 and priming serine proteinases is essential for SARS-CoV-2 infection

ACE2 and TMPRSS2 colocalize on the surface of certain cell types and act, de facto, as an entry platform for SARS-CoV-1 and -2 (6). ACE2 and TMPRSS2 are coexpressed at particularly high levels in ciliated and secretory cells of the nasal cavity, which probably function as portals for initial infection by SARS-CoV-2 (26). The two genes and FURIN are primarily coexpressed in the lungs in a subset of bronchial cells differentiating from secretory to ciliated identity (27), in line with the more frequent and potentially life-threatening complication of COVID-19, pneumonia. Finally, high ACE2 expression levels in differentiated enterocytes, the intestinal absorptive cells, might also explain the fact that the intestine is another important viral target (28). However, it has now become evident that SARS-CoV-2 is capable of infecting not only cells of the respiratory and intestinal tracts but several other human organs as well, and COVID-19 is currently considered a systemic disease, for
Table 1
Summary of information regarding human membrane-associated serine proteinases (MASPs)

Recommended MASP name\(^a\) / Other names	EC/MEROPS\(^b\)	Gene name	Length (residues)	Expression pattern and relevance for pathology
Hepsin TMPRSS1	3.4.21.106/ S01.224	HPSN (TMPRSS1)	417	Expressed at highest levels in the liver. Also expressed at high levels in the kidneys and pancreas. Other expression organs: stomach and thyroid gland. Overexpressed in several primary tumors, in particular in prostate and ovarian cancers.
TMPRSS2, epitheliaisin, serine protease 10 (PRSS10)	3.4.21./-S01.247	TMPRSS2 (PRSS10)	492	Highest expression in the prostate, stomach, small intestine, and colon. Expressed also in the airway and alveolar cells. Overexpressed in most prostate cancer patients. Proteolytically cleaves and activates SARS-CoV-1 and 2 as well as MERS-CoV S proteins, which triggers virus-cell membrane fusion.
TMPRSS3, tumor-associated differentially expressed gene 12 protein (TADG-12)	3.4.21./-S01.079	TMPRSS3 (ECHOS1, TADG12)	454	TTSIP also reported as an endothelium reticulum protein. Expressed in the inner ear and linked to deafness. Expressed also at low levels in the stomach and breast, among other organs.
TMPRSS4, channel-activating protease 2 (CAPH2), membrane-type serine protease 2 (MT-SP2)	3.4.21./-S01.034	TMPRSS4	437	Highest expression levels in the esophagus. Broadly expressed in the kidney, bladder, colon, small intestine, prostate, and vagina, among other tissues. Uregulated in prostate, colon, and gastric cancers.
TMPRSS5, spinal cord–enriched trypsin-like protease (spinesin)	3.4.21./-S01.313	TMPRSS5	457	Predominantly expressed in neurons, their axons, and at the synapses of motor neurons in the spinal cord. Expressed at highest levels in the tibial nerve. Expressed throughout the brain.
TMPRSS6, matriptase-2 (MT2)	3.4.21./-S01.308	TMPRSS6	811	Highest expression levels in the liver. Also expressed in the testis and in the pituitary gland. Plays a critical role in the regulation of iron homeostasis through cleavage of the cell surface BMP coreceptor, hemopoietin.
TMPRSS7, matriptase-3 (MT3)	3.4.21./-S01.072	TMPRSS7	843	Highest expression levels in the testis. Also expressed at significant levels in the skin, brain, lungs, as well as pituitary, thyroid, and minor salivary glands.
TMPRSS9, polymeprin protease 1, polymeprinase-1	3.4.21./-S01.357	TMPRSS9	1059	Highest expression levels in the testis, but also expressed in the spleen and liver.
Corin TMPRSS10, atrial natriuretic peptide-converting enzyme, heart-specific serine pro tease ATC2	3.4.21./-S01.019	CORIN (CRN, TMPRSS10)	1042	Highly expressed in the heart (left ventricle and atrial appendage). Also expressed in the skin, uterus, and vagina, among other organs. Activates the cardiac hormone, atrial natriuretic peptide, and thus involved in blood pressure regulation.
TM110A, TM110A, airway trypsin-like protease 1, (HAT11), esophageal cancer susceptibility gene 1 protein, epithelial type II transmembrane serine protease	3.4.21./-S01.292	TM110A, TM110A, ECRG1, HESP	421	Expressed at highest levels in the esophagus, vagina, and cervix. Also expressed in the lungs.
TM110B, TM110B, airway trypsin-like protease 5 (HAT115)	3.4.21./-S01.365	TM110B	416	Expressed at highest levels in the cervix, esophagus, and oral cavity. Significantly decreased in cervical, esophageal, and head and neck carcinomas. Highly upregulated in the lung squamous cell carcinoma.
TM111D, TM111D, airway trypsin-like protease (HAT)	3.4.21./-S01.047	TM111D (HAT)	418	Expressed at highest levels in the vagina and esophagus. Expressed also in the cells of the submucosal serous glands of the bronchi and trachea.
TM111E, TM111E, differentially-expressed in squamous cell carcinoma gene 1 (DESC1)	3.4.21./-S01.021	TM111E (DESC1)	423	Expressed at highest levels in the esophagus and vagina. Also expressed in the bladder. Uregulated in tumors of different origin.
TM11 F, TM11 F, airway trypsin-like protease 4 (HATL4)	3.4.21./-S01.321	TM111F (HATL4)	438	Expressed at highest levels in the esophagus and vagina. Also expressed in the skin. Unique function in epidermal barrier formation.
TMPSC, TMPRSS12	3.4.21./-S01.291	TMPRSS12	348	Type I transmembrane protein expressed almost exclusively in the testis. Expressed in colorectal cancer.
TMPSD, TMPRSS13, membrane-type mosaic serine protease (MSP, MSP1L, MSP5)	3.4.21./-S01.087	TMPRSS13 (MSP, TMPRSS11)	586	Predominantly expressed in the skin. Also expressed in the esophagus and vagina, among other organs. Cell-surface expression regulated by phosphorylation of its intracellular peptide.
ST14, TMPRSS14, matriptase, membrane-type serine protease 1 (MT-SP1), tumor-associated	3.4.21.109/ S01.302	ST14 (PRSS14, SNC19, TADG15)	855	Ubiquitously expressed, at highest levels in the colon and small intestine, but also in the skin, lung, kidneys, breast, and vagina. Proteolytic activity essential for epithelial integrity.
which the term “viral sepsis” has been recently coined (29). In this regard, it is noteworthy that ACE2 and TMPRSS2 are not coexpressed in the majority of tested cells (ref. (26); see also Fig. 4A). Such results suggest that other MASPs might either potentiate priming of the S protein in ACE2+/TMPRSS2+ cells (for instance, by simultaneously targeting two or all three S2' sites in a trimeric S protein, thus exposing multiple fusion peptides at once) or even replace TMPRSS2 altogether in cells of organs/tissues that do not express significant levels of this serine proteinase.

Noncatalytic domains do not influence the position of MASP active sites relative to the cell membrane

At first sight, it could be thought that members of the MASp subfamily with longer, more complex noncatalytic chains than TMPRSS2 would be less likely to function as activators of SARS-CoV-2 spike protein or to do so less efficiently (compare Fig. 2). However, several lines of evidence indicate that the actual MASP domain architecture is essentially irrelevant in this regard.

First, it is striking that diverse MASPs activate transmembrane or membrane-proximal substrates by cleaving the same peptide bond. Although matriptase is considered the most potent PAR2 activator (30, 31), activation of the GPCR by TMPRSS2, TMPRSS11D, and testisin (32–35) as well as more poorly by hepsin (36) has also been reported (recently reviewed in ref. (37)). Further, TMPRSS3, TMPRSS4, matriptase, and prostasin have all been reported as ENaC activators (38–42). Several MASPs cleave and activate pro-uPA (24, 32, 43–46), presumably bound to its cell surface receptor, uPAR, which is additionally targeted by TMPRSS11D (47). Both hepsin and matriptase have been identified as efficient, physiologically relevant activators of pro-HGF (43, 48–50) and of the matrix metalloproteinases, proMMP-1 and -3 (36, 51, 52). Finally, TMPRSS13 has also been reported as a pro-HGF activator (53).

On the other hand, regardless of the architecture of their noncatalytic chains, all well-characterized MASPs are inhibited by either one or both transmembrane inhibitors, hepatocyte growth factor activator inhibitor-1/serine proteinase inhibitor, Kunitz type 1 (HAI-1/SPINT1) or the related HAI-2/SPINT2 (see Fig. 4B for their domain organization). Kinetic analysis has been reported so far for hepsin inhibition by the first Kunitz domain of HAI-1 (54) as well as for the matriptase-HAI-1 pair (55, 56). In addition, HAI-1 and/or HAI-2 have been identified as physiologically relevant inhibitors of hepsin (50), TMPRSS2 (57–59), TMPRSS3 (57), TMPRSS4 (57, 60), matriptase-2 (61, 62), HAT11/TMPRSS11A (57), HAT/TMPRSS11D (63), DESC1/TMPRSS11E (64), TMPRSS13 (53, 57, 65), matriptase (58, 60, 66–70), enteropeptidase/
The relative positions of SRCR and serine proteinase modules in the crystal structure of hepsin strongly suggest that the catalytic domain of the proteinase lies essentially flat against the plasma membrane (ref. (74); see also Fig. 3B). In the light of the shared substrate and inhibitor profiles of several MASPs discussed above, a similar localization should be expected for the catalytic domains of other MASPs, which implies that the Arg815-Ser816 bond in the S protein would be cleaved close to the cell membrane, facilitating rapid interaction with the exposed viral fusion peptide and escape from immune surveillance.

Three major features would facilitate MASP access to the S2’ sites of an ACE2-bound, trimeric viral S protein: (1) the fluidity of phospholipid membranes, which allows lateral displacements of the viral protein and of its cellular receptors, (2) the high degree of structural plasticity of the spike protein, exemplified by the transition between “up” (ACE2 accessible) and “down” (ACE2 inaccessible) conformations, and finally (3) the flexibility provided to ACE2 and MASPs by some of their interdomain linkers, which would support both large rotations and displacements of protein modules relative to each other and to the cell membrane. The combined result would be the rapid (re)positioning of the S2’ sites of the spike protein in the catalytic cleft of the activating proteinase, in a conformation compatible with proteolysis of the Arg815-Ser816 bond.

The catalytic domains of most MASPs could efficiently cleave the Arg815-Ser816 peptide bond in SARS-CoV-2 spike protein

Another issue arises when assessing the capability of MASPs other than TMPRSS2 to activate viral S proteins: could unique features of this serine proteinase favor recognition and proteolysis of the Arg815-Ser816 peptide bond? Despite highly divergent domain architectures (Fig. 2), all MASPs share well-conserved, trypsin-like catalytic domains. (Mechanism and specificity of serine proteases are reviewed in ref. (75)). Crystal structures have been reported for the catalytic domains of hepsin (48, 74, 76, 77) (see also Fig. 3, B–C), DESC1 (78),
Figure 4. Expression patterns of human ACE2, MASPs and their endogenous inhibitors. A, comparison of the expression levels of human ACE2 and a selection of those MASPs with restricted expression patterns. Spinesin/TMPrRSS5 is predominantly expressed in the brain and the tibial nerve, corin in the heart, and TMPRSS12, PRSS21, PRSS41 as well as PRSS51 in the testis. Further, matriptase-2 and hepsin are expressed at highest levels in the liver or in liver and kidney, respectively. The members of the airway tract subgroup, TMPRSS11A–11F are predominantly expressed in the mucosa of the esophagus and in the vagina. B, schematic representation of domain organization in the endogenous Kunitz-type inhibitors of membrane-associated serine proteinases, HAI-1/SPINT1 and HAI-2/SPINT2. C–D, expression patterns of human HAI-1 (C) and HAI-2 (D). Note the overall complementarity of expression profiles in different organs (e.g., HAI-2 but not its paralog is expressed in the brain and arteries), although both inhibitors are similarly expressed in several organs, including kidneys, prostate, and vagina. The extremely low expression of both Kunitz inhibitors in the heart is also noteworthy, which suggests that the proteolytic activity of the heart-specific MASP, corin/TMPRSS10, would only be controlled by circulating serpins. The expression values are given as Transcripts per Million (TPM), as reported in the GTEx Portal (gtexportal.org). HAI, hepatocyte growth factor activator inhibitor; MANEC, motif at N-terminus with eight-cysteines; SPINT, serine protease inhibitor Kunitz type.
matriptase (79–88), enterokinase (89), and prostasin (90–92), either free (unliganded) or, more commonly, bound to natural or synthetic inhibitors. This wealth of structural information allows generation of high-quality 3D models for the remaining members of the subfamily, including TMPRSS2.

A detailed analysis of the substrate and inhibitor specificity of all MASPs in the light of these structures/models has important implications for the mechanism of viral S protein cleavage. In particular, it can be predicted that most MASPs could target the Arg815(P1)-Ser816(P1) bond of SARS-CoV-2 spike protein with similar efficiency as the canonical activator, TMPRSS2. Prominent exceptions would be enterokinase and TMPRSS11B, which appear to have quite restricted substrate specificities: acidic residues at the P3–P4 positions and side-chain-less glycines at P1' and P2', respectively.

Thus, furin-mediated cleavage at the S1/S2 site would enhance infectivity of SARS-CoV-2 because S protein monomers would not need to be repositioned in the active site cleft of the activating MASP, but most importantly so because several MASPs would be able to attack the Arg815-Ser816 bond at a similar rate as TMPRSS2, which would not be the case if they had to target the S1/S2 site first. (Because bulky and basic arginine residues are present at positions P3 and P4 of this site (Fig. 1A), the Arg685-Ser686 peptide bond is much less likely to be efficiently targeted by multiple MASPs. Matriptase, for instance, prefers substrates with basic Arg/Lys residues at positions P3 or P4, but not both, and also TMPRSS9 has been shown to be a poor activator of substrates with polybasic sequences). Of note, the presence of a furin-cleavage site in the influenza fusion protein, hemagglutinin, sets apart low from high pathogenicity avian influenza viruses (93).

Several MASPs are able to activate viral fusion machineries

In addition to TMPRSS2, other MASPs have been reported as activators of diverse viral fusion proteins, at least in vitro. It was recently shown that TMPRSS2 and TMPRSS4 synergize to promote infection of small intestinal enterocytes by SARS-CoV-2 (94). TMPRSS13 had been previously shown to prime both SARS- and MERS-CoV S proteins (95), and a recent investigation suggests that it is even a more efficient activator of SARS-CoV-2 spike protein than TMPRSS2 (96). These authors also demonstrate significant priming potential of three members of the HAT/DESC subgroup of membrane serine proteinases, TMPRSS11D, TMPRSS11E, and TMPRSS11F, but only limited activity for TMPRSS11A and TMPRSS11B. By contrast, another recently presented work suggests that TMPRSS11A might process SARS-CoV-2 spike protein even more efficiently than TMPRSS2, at least in vitro (97). This is in line with previous reports on the activator activity of these MASPs: TMPRSS11A had been shown to activate MERS spike protein as well as hemagglutinin (64), TMPRSS11D primes SARS-CoV S protein for membrane fusion and also cleaves ACE2 (3, 98), while TMPRSS11E had been reported as an activator of SARS and MERS coronaviruses (95).

In addition to these reports on the activation of SARS-CoV-1/-2 and MERS-CoV by multiple MASPs, a large body of experimental evidence indicates that hepsin, TMPRSS4, TMPRSS11D, TMPRSS12, TMPRSS13, matriptase, and prostasin activate certain influenza strains among other respiratory viruses, although significantly less efficiently than TMPRSS2 in most cases (99–110). Considering the experimentally verified involvement of certain MASPs in SARS-CoV-1/-2 priming in model systems, activation of the fusion process in other viruses, expression levels, and similarity of their catalytic machineries to that of TMPRSS2, a putative ranking of MASPs expected ability to prime SARS-CoV-2 spike protein can be postulated: TMPRSS4, TMPRSS13 > TMPRSS11D, 11E, 11F > TMPRSS11A > matriptase/prostasin > matriptase-2, hepsin, TMPRSS5 > testisin, matriptase-3, corin > TMPRSS9, TMPRSS12, PRSS41 > PRSS55, TMPRSS3 > TMPRSS11B > enterokinase.

TMPRSS11B is unlikely to be an efficient activator of SARS-CoV-2 S protein but might be involved in an alternative pathway of viral cell entry

Analysis of MASP active site machineries suggests that only side-chain-less glycine residues would be well tolerated at the positions following a basic Arg/Lys-P1 residue in TMPRSS11B substrates. The only bona fide substrate of this MASP reported to date is the transmembrane protein, basigin (CD147/EMMPRIN) (111). The presence of a K↓GG site suggests that cleavage after Lys57 in the common basigin isoform would shed (“solubilize”) the receptor from the cell surface, as reported by Updegraff and coworkers.

Basigin has been proposed as an alternative receptor for SARS-CoV-2 S protein (112), although other authors have failed to detect interactions between the viral protein and human basigin (113). By contrast to ACE2, basigin is ubiquitously expressed at high levels, most notably in the heart. Of note, the receptor could also be targeted by TMPRSS11D (114), which reminds of the reported cleavage of ACE2 by TMPRSS2 and other MASPs. Along these lines, basigin had been previously identified as a receptor essential for erythrocyte invasion by the malaria parasite, Plasmodium falciparum (115), as well as for vascular colonization by Neisseria meningitidis (116), and has also been linked to cytomegalovirus infection of both endothelial and epithelial cells (117). Thus, the pathological relevance of a cell entry pathway involving basigin—and perhaps also its closest relatives within the immunoglobulin superfamily, neuropilin and embigin—deserves careful examination, as emergence of a second high-affinity receptor for the spike protein in SARS-CoV-2 mutants might have catastrophic consequences.
“Proteolytic surveillance”: endogenous MASP inhibitors are likely to regulate SARS-CoV-2 infection in vivo

The physiological activities of all MASPs are tightly controlled by endogenous proteinaceous inhibitors that belong to either the Kunitz or the serpin families (I1 and I4 in the MEROPS classification, respectively). The transmembrane members of the Kunitz family, HAI-1/SPINT1 and HAI-2/SPINT2, have been experimentally shown to inhibit the catalytic activity of every MASP tested so far. (See above and Fig. 4B for a schematic representation of HAI-1/2 domain organization). Indeed, as expected from the high degree of sequence conservation at and around the active site of these proteinases, current structural information supports formation of stable MASP-HAI-1/HAI-2 complexes (80, 118). Overall, the two Kunitz inhibitors show a complementary pattern of expression in human organs/tissues, which would allow inhibition of MASP activity throughout the body, with the notable exception of the heart (Fig. 4, C–D). Thus, HAI-1 and HAI-2, as master regulators of all MASPs, would play an important role in SARS-CoV-2 propagation by regulating the availability of serine proteinase active sites on host cell membranes. Indeed, it has been recently shown that HAI-2 reduces cleavage/activation and growth of several influenza viruses by inhibiting TMPRSS2 or matriptase (58).

On the other hand, recently published results demonstrate that TMPRSS2 is targeted by the serpin, α1-antitrypsin (AAT/SERPINA1), which inhibits SARS-CoV-2 infection in vitro (119, 120). Notably, other reports show that AAT inhibits protease-mediated cell entry by SARS-CoV-2 at concentrations much lower than those found in serum and bronchoalveolar tissues, which suggests that the serpin is a physiologically relevant inhibitor of viral infection (121). AAT, however, is more specific for elastase-like serine proteinases, as indicated by the presence of a hydrophobic methionine as P1 residue. Noteworthy, several additional, trypsin-like MASPs (hepsin, all three matriptases, and DEC1) are potentially inhibited in vitro by the most important circulating serpin, antithrombin (AT/SERPINC1) (122–124). A similar inhibitory capacity has been reported for other abundant serpins with broad specificities such as plasminogen activator inhibitor 1 (PAI-1/SERPINE1), α2-antiplasmin (α2-AP/SERPINF2), and protein C inhibitor (PCI/SERPINA5). Prostasin activity is regulated in vivo by the closest phylogenetic relative of PAI-1, protease nexin-1/SERPINE2 (125), which also potently inhibits matriptase, at least in vitro (126). Finally, the ubiquitously expressed SERPINB12 has been reported as a slow-binding inhibitor of hepsin (127). AT and other serpins interact with proteoglycans and glycosaminoglycans present in large amounts on cell membranes and in the extracellular matrix. This interaction allows serpin trapping near the cell membrane and therefore increases the probability of productive complex formation with active MASPs.

Similar to the transmembrane Kunitz-type inhibitors, the high degree of conservation of residues that shape the active-site clefts of these serine proteinases strongly suggests that major circulating serpins would also target most, if not all, members of the subfamily. Altogether, the fusion activation potential of TMPRSS2 and other MASPs in vivo would be critically codetermined by the concentrations of cognate inhibitors of the Kunitz and serpin classes and their relative affinities for the priming proteinase. It is likely that imbalance in the expression levels of MASPs, on the one side, and HAI-1/2 and serpins, on the other, would determine the likelihood of SARS-CoV-2 infection of a given cell and thus ultimately of COVID-19 progression, similar to the well-documented situation in cancer (128, 129). I propose the term “proteolytic surveillance” to refer to this up to now unappreciated level of control of viral infection.

Signaling, endocytosis, and shedding

I finally mention two only poorly understood features of MASPs, but that potentially impact the life cycle of these proteinases, and therefore their capacity to prime S proteins and contribute to viral infection. It is noteworthy that the cytoplasmic domains of several members of the subfamily possess consensus phosphorylation sites for protein kinase C and/or casein kinase II (reviewed in ref. (15)). This observation suggests that phosphorylation and perhaps also other post-translational modifications of the cytoplasmic tails of MASPs could promote endocytosis. This is in addition to the presence of specific, short linear peptide motifs in the cytoplasmic domains of MASPs important for proteinase trafficking, as recently reported for matriptase (130).

The role of the endocytic pathway in the replication process of coronaviruses, and in particular of SARS-CoV-1/2, remains disputed, with strong evidence indicating that major autophagy factors of the host cell are not required for viral infection (reviewed in ref. (112)). It is currently unknown whether engagement of ACE2 and TMPRSS2 or other MASPs by viral proteins elicits intracellular signaling pathways that might enhance cellular uptake of virions. Overall, it is believed that the MASP-mediated proteolytic cleavage and concomitant direct cell–cell fusion (the so-called “early” pathway) are the pathologically relevant events in SARS-CoV-1 infection of respiratory epithelia in vivo, while endocytic trafficking (the “late” pathway) plays a secondary role in this regard (131). Similar considerations would likely apply for SARS-CoV-2 and are probably at the heart of the poor results of autophagy inhibitors, chloroquine and its derivative, hydroxychloroquine, both for prophylaxis and treatment of COVID-19.

Another issue that deserves consideration is the frequent detection of soluble MASP forms (reviewed in ref. (15)). Although alternative splicing could explain the presence of some circulating variants of these proteinases, active shedding from the cell membrane upon proteolytic cleavage seems to be the predominant mechanism. At least in the cases of hepsin, TMPRSS2, and matriptase, the same proteinases are responsible for ectodomain shedding, following cleavage in trans (132). However, the identity of proteinases that shed other MASPs has not been established; matrix metalloproteinases (ADAMs and MT-MMPs) are also likely to play a role in this regard, as demonstrated for HAI-1. These “sheddases” might
represent yet another control element of viral uptake (e.g., the higher the sheddase activity, the lower the density of MASPs on cell membranes, and thus the lower the probability that a given cell would be infected).

Implications for the cell tropism of SARS-CoV-2 and clinical manifestations of COVID-19

The presence of several MASPs capable of priming the spike proteins of SARS-CoV-2 virions, in synergy with or in place of TMPRSS2, offers straightforward explanations for clinical data on COVID-19 that remain unresolved to date (Table 2). Noteworthy, some family members are exclusively or predominately expressed in male reproductive organs, alone four of them in the testis (TMPRSS12, PRSS21/testisin, PRSS41/TESSP-1 and PRSS55/T-SP1; Figs. 3A and 4A). Along these lines, ACE2 is expressed at relatively high levels in the testis, only second to the small intestine (Fig. 4A). These features, together with the upregulation of TMPRSS2 expression by androgens (23, 133), might explain the more severe complications of COVID-19 in male compared with age-matched female patients, including a much higher death rate (2.8 versus 1.7%; see e.g., refs. (134, 135)). The relative contribution of MASPs other than TMPRSS2 to this sex bias is highlighted by the fact that the outcome of influenza infection is generally worse for women instead (136). (Of note, almost all MASPs reported to activate specific influenza strains—hepsin, TMPRSS4, TMPRSS13, and in particular, TMPRSS11D; see above—are predominantly expressed in the female, rather than in the male reproductive organs. Even the matriptase–prostasin pair is ubiquitously expressed and at similar levels in both male and female organs).

These observations raise the hypothesis that male reproductive organs could be infected with SARS-CoV-2 and perhaps serve as viral reservoirs. Indeed, the testis is one of the organs in which more interactions between viral and host proteins were detected in a systematic study of the viral interactome, only second to the lungs (137). Of note, orchitis is a SARS complication, and the testes of patients who died of SARS-CoV-1 infection displayed widespread germ cell destruction with few or no spermatozoa (138). Persistent infection of this immune-privileged site by other unrelated, single-stranded RNA viruses has also been reported. Sertoli cells serve as reservoir for the Zika virus (139), and the testes are the preferred replication site of this flavivirus (140). Long-term testicular persistence of Ebola and Marburg viruses has been well documented and is responsible for sexual transmission of these filoviruses (141, 142).

The presence of multiple priming MASPs exposed on different human organs might account for the establishment of putative SARS-CoV-2 reservoirs. Identification of these reservoirs is an urgent need in the light of the growing number of patients with persistent COVID-19 symptoms (chronic or long COVID), as well as first reports of placental infection with SARS-CoV-2 (143–145) and vertical (transplacental) transmission of the virus to the fetus (146). In addition to the testes, other immune-privileged organs such as the eyes and brain might serve as sanctuary for the coronavirus.

The preferential expression of specific MASPs in organs/tissues that are well-known targets of SARS-CoV-2 infection is also striking (Fig. 3A) and may have important pathological implications. Most notably, members of the HAT/DESC subgroup, TMPRSS11A and 11D to 11F, together with other MASPs expressed in the airway tract (TMPRSS4, 7, 13, and 14), could contribute to the severe pneumonia observed in an important subset of COVID-19 patients. Further, engagement of corin/TMPRSS10 by SARS-CoV-2 in cardiomyocytes may explain the frequent myocardial damage reported in COVID-19 patients (147, 148). Myocardial infection by SARS-CoV-2 might be facilitated by the extremely low expression levels of HAI-1 and HAI-2 in the heart (Fig. 4, B–C), which suggests that the proteolytic activity of corin would be less tightly controlled than other members of the subfamily. Indeed, first autopsy findings reveal relatively high viral RNA titers in the heart, liver, brain, kidneys, blood, and/or gastrointestinal tract.

Table 2

Hypothesized correlations between expression patterns of MASPs other than TMPRSS2 and pathological observations in COVID-19 patients

Putative priming MASP	Relevant expression organ/tissue	Likely relevance for SARS-CoV-2 infection and COVID-19 pathology
TMPRSS12, PRSS21 (testisin), PRSS41 (TESSP-1), and PRSS55 (T-SP1) + TMPRSS6 (matriptase-2) + TMPRSS7 (matriptase-3)	Male reproductive organs (prostate, testis)	Possible viral reservoir. More severe complications of COVID-19 in male patients, leading to significantly higher mortality rates.
Airway trypsin-like proteases TMPRSS11A (HATL1), TMPRSS11D (HAT), TMPRSS11E (DESC1), and TMPRSS11F (HATL4) + TMPRSS4 + TMPRSS7 (matriptase-3) + TMPRSS14 (matriptase) + PRSS8 (prostasin)	At highest levels in the esophagus and minor salivary gland, but also expressed in the bronchi, trachea, and lungs	Alternative entry portals for SARS-CoV-2. Might contribute to and/or worsen lung infection/pneumonia.
TMPRSS5 (spinesin) + TMPRSS7 (matriptase-3)	Brain/tibial nerve	Might explain the neurological complications reported for some patients, as well as impaired motor functions.
TMPRSS6 (matriptase-2) + TMPRSS1 (hepsin)	Liver	Might contribute to liver damage.
TMPRSS10 (corin)	Cardiomyocytes	Might be responsible for heart damage. Might indirectly contribute to thrombotic complications through dysregulation of blood pressure.
TMPRSS1 (hepsin) + TMPRSS4 + TMPRSS14 (matriptase) + PRSS8 (prostasin)	Kidney	Might contribute to acute kidney injury (AKI).
TMPRSS14 (matriptase) + PRSS8 (prostasin)	Ubiquitously expressed in epithelial cells.	Involved in u-PA activation. Might be linked to thrombotic complications. Might also be linked to intestinal infection.

Note that both PRSS41 and PRSS55 are termed "testes serine protease 1".
of several patients who died of confirmed SARS-CoV-2 infection (149–151). Also along these lines, SARS-CoV-2 RNA was detected in the heart and brain of infected mice in a recently presented model of the disease (152). The situation is also reminiscent of the systemic character of the influenza (H5N1) infection in cats, in which the virus could be detected most often in the heart, brain, liver, and kidney, in addition to respiratory tissues (153).

The matriptase–prostasin axis might also play an important role as viral activator, as these proteinases have the broadest expression patterns of all MASPs and are essential for the maintenance of epithelial barrier integrity. Indeed, infection of epithelial cells by SARS-CoV-2 in severe COVID-19 patients has been recently reported (154). The matriptase–prostasin pair could in particular contribute to intestinal infection.

It is also noteworthy that several MASPs are directly involved in plasminogen activation and fibrinolysis via proteolytic cascades (155). In direct cardiomycocyte damage, these complications might be at least partly related to the "hijacking" of matriptase and other proteinases by SARS-CoV-2 and/or to their reduced expression/enhanced endocytosis, as part of negative feedback mechanisms. Finally, MASP engagement in other organs might explain a number of additional manifestations of COVID-19 reported so far, among them neurological complications including cognitive dysfunction (156) as well as acute kidney injury (151, 157).

An integrated mechanism of SARS-CoV-2 spike protein cleavage and activation: an explanation for enhanced viral infectivity

In summary, current structural and functional information suggests that several related, transmembrane trypsin-like serine proteinases decisively contribute to prime SARS-CoV-2 S protein either in synergy with or in place of TMPRSS2 and therefore promote infection of ACE2-coexpressing cells in vivo. A mechanism of viral protein activation that integrates current structural and functional information is schematically summarized in Figure 5.

The viral infection process could be viewed as a race, in which successful membrane fusion and infection depend on the balance between multiple competing protein–protein interactions. On the one hand, the viral spike protein requires simultaneous or highly synchronized binding to ACE2 and to the catalytic cleft of the priming MASP, in a conformation compatible with proteolysis of the S2' cleavage site. Formation of these complexes and cleavage/activation of membrane fusion could be counteracted by circulating immunoglobulins directed against e.g., the RBD in its exposed, "up" conformation, or against the fusion peptide exposed upon cleavage of the Arg815-Ser816 bond.

It is important to realize that S protein priming is followed by dramatic structural rearrangements, which lead to an unstable conformation of the S1 "crown" with all three RBDs up and its concomitant shedding. Thus, released S1 subunits might function as decoy antigens for circulating antibodies. This feature needs to be considered in the light of current efforts to develop vaccines based on immunization with the viral S protein or its RBD, as it might compromise the effectiveness of this approach.

In addition to immune surveillance, the fusion machinery is under proteolytic surveillance by both proximal, transmembrane Kunitz inhibitors (HAI-1/HAI-2) and circulating serpins. Finally, pericellular proteolysis of host proteins could either enhance virion uptake, as in the case of TMPRSS2-mediated cleavage of ACE2, or abort the whole membrane fusion process, upon MASP shedding.

An important element of the mechanism, revealed upon inspection of the 3D structures of SARS-CoV-2 S protein in its S1/S2-cleaved, prefusion conformation (13, 158), is the fact that the S2' activation cleavage site is not accessible to proteolytic attack. Most notably, the side chain of the specificity-determining P1 residue, Arg815, occupies a cleft between two prominent α-helices comprising the N-terminal residues of the fusion peptide (Phe817-Asn824) and the following Asp867–Ile882 stretch, with its guanidinium group compensated by the carboxylates of neighboring acidic residues (Fig. 1, C–D). The side chain of this basic arginine residue stacks on the aromatic ring of Phe823, one of the critical residues for membrane fusion. The P1' residue, Ser816, is even less accessible to bulk solvent, as it points toward the core of the subunit (Fig. 1D). In this manner, Arg815 and surrounding residues stabilize the prefusion conformation and avoid untimely exposure of the fusion machinery.

It follows that an important degree of flexibility ("breathing") of the S2 subunit, in particular of residues surrounding the S2' activation cleavage site, is required for formation of productive MASP-S protein complexes and proteolysis. Although the positions of Arg815 and neighboring residues are essentially conserved in the spike proteins of SARS-CoV-1 and MERS-CoV, there are also important sequence and structural differences, which might have a bearing on their relative infectivities (Fig. 1, E–F). In particular, the Arg815-pocket in SARS-CoV-1 and MERS-CoV is more acidic and overall better shaped to accommodate the Arg815 side chain. Therefore, I hypothesize that the S2' activation cleavage site of SARS-CoV-2 spike protein would be more frequently exposed to activating proteinases than those of the related coronaviruses, which would contribute to its enhanced infectivity.

Summary and perspectives

Unique adaptations of SARS-CoV-2 for human infection (e.g., higher affinity of the S protein for human ACE2, its presence in a preactivated state in the virions following furin cleavage at the S1/S2 site, and its higher capacity for membrane fusion) are at the heart of the current COVID-19 pandemic. In addition, MASPs other than TMPRSS2 appear to prime SARS-CoV-2 S protein in vivo, which is likely to play
an important role in determining the viral cell tropism as well as disease progression. Among the critical questions that remain unanswered are:

- Which MASPs serve as viral activating factors? The substrate and inhibitor profiles of these proteinases need to be carefully characterized, including structural investigations and rigorous quantum mechanical/molecular dynamics (QM/MD) simulations of their mechanism of S protein recognition and proteolysis.

- Which MASPs colocalize with human ACE2 in cells from different organs and tissues? Are there sex- and age-related differences that could contribute to explain current clinical observations, such as the higher mortality rate in male patients? Animal models might be useful to study the contribution of each MASP to SARS-CoV-2 infection of relevant cell types, (e.g., by crossing transgenic mice over-expressing human ACE2 (152) with conditional knockouts of individual MASPs).

- Are there correlations between the levels of circulating forms of specific MASPs and their endogenous inhibitors (HAI-1/HAI-2 and serpins) and clinical parameters of hospitalized COVID-19 patients? In particular, do relative expression levels of these factors are related to differences in disease evolution such as mild versus severe respiratory distress and infection of organs/tissues other than the lungs? Are these levels predictive markers of disease evolution? (For instance, are higher relative concentrations of inhibitors predictors of a less virulent infection or even protect against infection?).

- Preliminary investigations provide direct evidence of SARS-CoV-2 infection in e.g., the heart, liver, kidneys, and testes of COVID-19 patients (149–151). How frequently are these organs infected by the coronavirus, and does this frequency correlate with measured viral titers and the relative expression levels of specific MASPs? Which are the histopathological and ultrastructural consequences of viral infection in these organs?

- The correlation between COVID-19 and other comorbidities, in particular cancer, needs to be better understood. TMPRSS2 is an androgen-induced prostate cancer-specific marker, thus its overexpression is straightforwardly linked to a higher risk of infection in prostate cancer patients. Indeed, patients receiving androgen-deprivation therapy showed a significantly lower risk of SARS-CoV-2 infection compared with those not treated with antiandrogens (159). Since most other MASPs are overexpressed in several cancer types (Table 1), also patients diagnosed with colorectal, skin, breast, or ovarian cancers are more likely to be infected and/or have more complications than sex- and age-matched individuals. Indeed, substantial rates of hospitalization and more severe outcomes have been reported in cancer patients diagnosed with COVID-19 (160). These patients deserve particularly close follow-up, and they should be advised to...
adopt the most restrictive measures suggested within their respective communities to avoid viral infection and transmission.

The answers to these questions would help diagnosis and treatment of the current COVID-19 pandemic but also future coronavirus diseases.

Data availability

3D models of the catalytic domains of all MASPs not experimentally characterized to date have been deposited in the Protein Model DataBase (http://srv00.recas.ba.infn.it/PMDB/main.php). In all cases, residues are numbered according to the topology-based chymotrypsin numbering system, and coordinates have been superimposed on the hepsin crystal structure (PDB code 1P57) to facilitate comparisons.

Acknowledgments—Drs R. Antón, M. Barro, M. Cardellach, E. Estébanez-Perpiñá, F. García, A. T. Hagler, M. Nadal, P. Rodríguez, and J. W. Skiles are warmly acknowledged for comments, suggestions, and encouragement. I thank M. N. for help with formatting the article and M. Bonastre for help with the figures. I also want to thank the editors and anonymous reviewers for valuable comments and suggestions.

Author contribution—P. F.-P. reviewed available literature and three-dimensional structures, generated the hypotheses, and wrote the article.

Funding and additional information—The support of the Spanish Ministry of Science, Innovation and Universities (grant RTI2018-101500-B-I00) is greatly acknowledged.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: α2-AP, α2-antiplasmin; ACE2, angiotensin-converting enzyme 2; MASPs, membrane-associated serine proteinases; MERS, Middle East respiratory syndrome; PAI-1, plasminogen activator inhibitor 1; PCI, protein C inhibitor; QM/MD, quantum mechanical/molecular dynamics; SARS, severe acute respiratory syndrome; uPA, urokinase-type plasminogen activator.

References

1. Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., and Farzan, M. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454
2. Belouzard, S., Chu, V. C., and Whittaker, G. R. (2009) Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. U. S. A. 106, 5871–5876
3. Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O., and Pöhlmann, S. (2014) TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 88, 1293–1307
4. Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., Pallesen, J., Yassine, H. M., Turner, H. L., Corbett, K. S., Graham, B. S., McLellan, J. S., and Ward, A. B. (2016) Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118–121
5. Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Wu, Y., Yan, J., Shi, Y., Zhang, X., and Gao, G. F. (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 8, 15092
6. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., and Pöhlmann, S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280.e278
7. Shang, J., Yan, W., Luo, C., Ye, G., Geng, Q., Auérbach, A., and Li, F. (2020) Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U. S. A. 117, 11727–11734
8. Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., and Wang, X. (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220
9. Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuan, K.-Y., Wang, Q., Zhou, H., Yan, J., and Qi, J. (2020) Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894–904.e899
10. Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., and Yuen, K. Y. (2016) Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov. 15, 327–347
11. Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auérbach, A., and Li, F. (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224
12. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., and Zhou, Q. (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448
13. Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., and McLellan, J. S. (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263
14. Thomas, G. (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753–766
15. Hooper, J. D., Clements, J. A., Quigley, J. P., and Antalis, T. M. (2001) Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J. Biol. Chem. 276, 857–860
16. Qiü, D., Owen, K., Gray, K., Bass, R., and Ellis, V. (2007) Roles and regulation of membrane-associated serine proteases. Biochem. Soc. Trans. 35, 583–587
17. Choi, S. Y., Bertram, S., Glowacka, I., Park, Y. W., and Pöhlmann, S. (2009) Type II transmembrane proteolytic enzymes of cell surface proteolytic enzymes. J. Biol. Chem. 284, 31305–31317
18. Bugge, T. H., Antalis, T. M., and Wu, Q. (2009) Type II transmembrane serine proteases. J. Biol. Chem. 284, 23177–23181
19. Szabo, R., and Bugge, T. H. (2011) Membrane-anchored serine proteases in vertebrate cell and developmental biology. Annu. Rev. Cell Dev. Biol. 27, 213–235
20. Shipway, A., Danahay, H., Williams, J. A., Tully, D. C., Backes, B. J., and Harris, J. L. (2004) Biochemical characterization of prostasin, a channel activating protease. Biochem. Biophys. Res. Commun. 324, 953–963
21. Friis, S., Uzzun Sales, K., Godiínsen, S., Peters, D. E., Lin, C. Y., Vogel, L. K., and Bugge, T. H. (2013) A matriptase-prostasin reciprocal zymogen activation complex with unique features: prostasin as a non-enzymatic co-factor for matriptase activation. J. Biol. Chem. 288, 19028–19039
22. Drees, L., Königsmann, T., Jaspers, M. H. J., Pflanz, R., Riedel, D., and Schuh, R. (2019) Conserved function of the matriptase-prostasin proteolytic cascade during epithelial morphogenesis. PLoS Genet. 15, e1007882
23. Ko, C.-J., Huang, C.-C., Lin, H.-Y., Juan, C.-P., Lan, S.-W., Shyu, H.-Y., Wu, S.-R., Hsiao, P.-W., Huang, H.-P., Shun, C.-T., and Lee, M.-S. (2015) Androgen-induced TMPRSS2 activates matriptase and promotes extracellular matrix degradation, prostate cancer cell invasion, tumor growth, and metastasis. Cancer Res. 75, 2949–2960
24. Kilpatrick, L. M., Harris, R. L., Owen, K. A., Bass, R., Ghorayeb, C., Baro, A., and Ellis, V. (2006) Initiation of plasminogen activation on the
Channels are fully activated by furin- and prostatasin-dependent release of an inhibitory peptide from the y-subunit. J. Biol. Chem. 282, 6153–6160
41. Passero, C. J., Mueller, G. M., Myerburg, M. M., Carattino, M. D., Hughey, R. P., and Kleyman, T. R. (2012) TMPRSS4-dependent activation of the epithelial sodium channel requires cleavage of the y-subunit distal to the furin cleavage site. Am. J. Physiol. 302, F1–F8
42. Giupponi, M., Vuagniaux, G., Wattenhofer, M., Shibuya, K., Vazquez, M., Dougherty, L., Scamuffa, N., Guida, E., Okui, M., Rossier, C., Hancock, M., Buchet, K., Reymond, A., Hummler, E., Marzella, P. L., et al. (2002) The transmembrane serine protease (TMPRSS) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum. Mol. Genet. 11, 2829–2836
43. Lee, S.-L., Dickson, R. B., and Lin, C.-Y. (2000) Activation of hepatocyte growth factor and urokinase/plasminogen activator by matritape, an epithelial membrane serine protease. J. Biol. Chem. 275, 36720–36725
44. Moran, P., Li, W., Fan, B., Vij, R., Eigenbrot, C., and Kirchhofer, D. (2006) Pro-urokinase-type plasminogen activator is a substrate for hepsin. J. Biol. Chem. 281, 30439–30446
45. Min, H.-J., Lee, M. K., Lee, J. W., and Kim, S. (2014) TMPRSS4 induces cancer cell invasion through pro-uPA processing. Biochem. Biophys. Res. Commun. 446, 1–7
46. Fontanil, T., Mohamedi, Y., Esteban, M. M., Obaya, A. J., and Cal, S. (2014) Polyserase-1/TMPRSS9 induces pro-tumor effects in pancreatic cancer cells by activation of pro-uPA. Oncol. Rep. 31, 2792–2796
47. Beaufort, N., Leduc, D., Eguchi, H., Mengele, K., Hellmann, D., Masegi, T., Kamimura, T., Yasuoka, S., Fend, F., Chignard, M., and Pidard, D. (2007) The human airway trypsin-like protease modulates the urokinase receptor (uPAR, CD87) structure and functions. Am. J. Physiol. Lung Cell Mol. Physiol. 292, L1263–L1272
48. Herter, S., Piper, D. E., Aaron, W., Gabriele, T., Cutler, G., Cao, P., Bhatt, A. S., Choe, Y., Craik, C. S., Walker, N., Meiningier, D., Hoey, T., and Austin, R. J. (2005) Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochem. J. 390, 125–136
49. Owen, K. A., Qiu, D., Alves, I., Schumacher, A. M., Kilpatrick, L. M., Li, J., Harris, J. L., and Ellis, V. (2010) Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matritape and hepsin, but not by the membrane-associated protease uPA. Biochem. J. 426, 219–228
50. Kirchhofer, D., Peek, M., Lipari, M. T., Billeci, K., Fan, B., and Moran, P. (2005) Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1 (HAI-1B) and HAI-2. FEBs Lett. 579, 1945–1950
51. Jin, X., Yagi, M., Akiyama, N., Hirotsuki, T., Higashi, S., Lin, C.-Y., Dickson, R. B., Kitamura, H., and Miyazaki, K. (2006) Matritape activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci. 97, 1327–1334
52. Milner, J. M., Patel, A., Davidson, R. K., Swingler, T. E., Desilets, A., Young, D. A., Kelso, E. B., Donell, S. T., Cawston, T. E., Clark, I. M., Ferrell, W. R., Plevin, R., Lockhart, J. C., Leduc, R., and Rowan, A. D. (2010) Matritape is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum. 62, 1955–1966
53. Hashimoto, T., Kato, M., Shimozumi, T., and Kitamura, N. (2010) TMPRSS5III, a type II transmembrane serine protease, is inhibited by hepatocyte growth factor activator inhibitor type 1 and activates pro-hepatocyte growth factor. FEBs J. 277, 4888–4900
54. Li, W., Wang, B.-E., Moran, P., Lipari, T., Ganesan, R., Corpuz, R., Ludlam, M. J. C., Gogineni, A., Koeppen, H., Bunting, S., Gao, W.-Q., and Kirchhofer, D. (2009) Pegylated kunitz domain inhibitor suppresses hepsin-mediated invasive tumor growth and metastasis. Cancer Res. 69, 8395–8402
55. Kirchhofer, D., Peek, M., Li, W., Stamos, J., Eigenbrot, C., Kadkhodayan, S., Elliott, J. M., Corpuz, R. T., Lazarus, R. A., and Moran, P. (2003) Tissue expression, protease specificity, and kunitz domain functions of hepatocyte growth factor activator inhibitor-1 (HAI-1B), a new splice variant of HAI-1. J. Biol. Chem. 278, 36341–36349
56. Kojima, K., Tsuzuki, S., Fushiki, T., and Inouye, K. (2008) Roles of functional and structural domains of hepatocyte growth factor activator
inhibitor type 1 in the inhibition of matriptase. *J. Biol. Chem.* **283**, 2478–2487

57. Faller, N., Gautschi, I., and Schild, L. (2014) Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea. *PLoS One* **9**, e94267

58. Straus, M. R., Kinder, J. T., Segall, M., Dutch, R. E., and Whitaker, G. R. (2020) SPINT2 inhibits proteases involved in activation of both influenza viruses and metapneumoviruses. *Virology* **543**, 43–53

59. Ko, C.-J., Hsu, T.-W., Wu, S.-R., Lan, S.-W., Hsiao, T.-F., Lin, H.-Y., Lin, H.-H., Tu, H.-F., Lee, C.-F., Huang, C.-C., Chen, M.-J. M., Hsiao, P.-W., Huang, H.-P., and Lee, M.-S. (2020) Inhibition of TMPRSS2 by HAI-2 reduces prostate cancer cell invasion and metastasis. *Oncogene* **39**, 5950–5963

60. Cheng, H., Fukushima, T., Takahashi, N., Tanaka, H., and Kataoka, H. (2008) Potent inhibition and global co-localization implicate the C1r/C1s-Na+ cotransporter in the regulation of epithelial matriptase. *J. Biol. Chem.* **283**, 13863–13873

61. Beckmann, A.-M., Maurer, E., Lülsdorff, V., Wilms, A., Furtmann, N., Zmora, P., Hoffmann, M., Kollmus, H., Moldenhauer, A. S., Danov, O., Murray, A. S., Varela, F. A., Hyland, T. E., Schoenbeck, A. J., White, J., Szabo, R., Hobson, J. P., List, K., Molinolo, A., Lin, C.-Y., and Bugge, T. H. (2012) Reduced prostasin (CAP1/PRSS8) activity eliminates the potency of peptide phosphonate protease inhibitors. *Biochem. J.* **450**, 583–593

62. Kato, M., Hashimoto, T., Shimomura, T., Kataoka, H., Ohi, H., and Kitaumara, N. (2011) Hepatocyte growth factor activator inhibitor type 1 regulates epithelial to mesenchymal transition through membrane-bound serine proteinases. *Cancer Res.* **69**, 1828–1835

63. Szabo, R., Uzzun Sales, K., Kosa, P., Shylo, N. A., Godiksen, S., Hansen, K. K., Friis, S., Gutkind, J. S., Vogel, L. K., Hummeler, E., Camerer, E., and Bugge, T. H. (2012) Reduced prostasin (CAP1/PRSS8) activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation. *PLoS Genet.* **8**, e1002937

64. Wb, Liu, L.-C. O., Huang, N., Lai, Y.-J. I., Barndt, R. J., Tseng, C.-C., Wang, J.-K., Jia, B., Johnson, M. D., and Lin, C.-Y. (2017) Selective inhibition of prostasin in human enterocytes by the integral membrane kunitz-type serine protease inhibitor HAI-2. *PLoS One* **12**, e0170944

65. Somova, J. R., Ho, J. D., Luong, C., Ghate, M., Sprenger, P. A., Mortara, K., Shrader, W. D., Spandrio, D., Chan, H., McGrath, M. E., and Katz, B. A. (2003) The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain. *Structure* **11**, 1123–1131

66. Bedstrom, L. (2002) Serine protease mechanism and specificity. *Chem. Rev.* **102**, 4501–4524

67. Katz, B. A., Luong, C., Ho, J. D., Somova, J. R., Gjerstad, E., Tang, J., Williams, S. R., Verner, E., Mackman, R. L., Young, W. B., Sprenger, P. A., Chan, H., Mortara, K., Janc, J. W., and McGrath, M. E. (2004) Dissecting and designing inhibitor selectivity determinants at the S1 site using an artificial Ala190 protease (Ala190 uPA). *J. Mol. Biol.* **344**, 527–547

68. Koschubs, T., Deng, S., Dürr, H., Kaluza, K., Georges, G., Hartl, C., Jennewein, S., Lanzendörfer, M., Auer, J., Stern, A., Huang, K. S., Packman, K., Gubler, U., Kostrewa, D., Ries, S., et al. (2012) Allosteric antibody inhibition of human hepsin protease. *Biochem. J.* **442**, 483–494

69. Kyrieleis, O. J., Huber, R., Ong, E., Oehler, R., Hunter, M., Madison, E. L., and Jacob, U. (2007) Crystal structure of the catalytic domain of DESC1, a new member of the type II transmembrane serine protease family. *FEBS Lett.* **574**, 2148–2160

70. Friedrich, R., Fuentes-Prior, P., Ong, E., Coombs, G., Hunter, M., Oehler, R., Pierson, D., Gonzalez, R., Huber, R., Bode, W., and Madison, E. L. (2002) Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine protease. *J. Biol. Chem.* **277**, 2160–2168

71. Hao, B., Yuan, C., Li, P., Qu, D., Huang, M., and Ngo, J. C. (2013) Crystal structures of matriptase in complex with its inhibitor hepatocyte growth factor activator inhibitor-1. *J. Biol. Chem.* **288**, 11155–11164

72. Steinmetzer, T., Schweinitz, A., Stürzebecher, A., Dönncke, D., Uhlrand, K., Schuster, O., Steinmetzer, P., Müller, F., Friedrich, R., Than, M. E., Bode, W., and Stürzebecher, J. (2006) Secondary amides of sulfonated 3-amidinophenylalanine. New potent and selective matriptase inhibitors. *J. Med. Chem.* **39**, 2203–2207

73. Schneider, E. L., Lee, M. S., Babaruddin, A., Goetz, D. H., Farady, C. J., Ward, M., Wang, C.-I., and Craik, C. S. (2012) A reverse binding motif that contributes to specific protease inhibition by antibodies. *J. Mol. Biol.* **415**, 699–715

74. Goswami, R., Mukherjee, S., Wohlfahrt, G., Ghadiyaram, C., Nagaraj, L., Chandra, B. R., Sistla, R. K., Satyam, L. K., Subbarao, K., Palakurthy, R. K., Gopinath, S., Subramanya, H. S., and Ramachandra, M. (2013) Discovery of pyridyl bis(oxo) dibenzimidamide derivatives as selective matriptase inhibitors. *ACS Med. Chem. Lett.* **4**, 1152–1157

75. Goswami, R., Mukherjee, S., Ghadiyaram, C., Wohlfahrt, G., Nagaraj, L., Satyam, L. K., Subbarao, K., Park, H., Gopinath, S., Krishnamurthy, N. R., Ikonen, T., Moilanen, A., Subramanya, H. S., and Ramachandra, M. (2013) Discovery of pyridyl bis(oxo) dibenzimidamide derivatives as selective matriptase inhibitors. *ACS Med. Chem. Lett.* **4**, 1152–1157

76. Goswami, R., Mukherjee, S., Ghadiyaram, C., Wohlfahrt, G., Gopinath, S., Krishnamurthy, N. R., Subramanya, H. S., and Ramachandra, M. (2015) Discovery of O-(3-carbamimidoylphenyl)-l-serine amides as matriptase inhibitors using a fragment-linking approach. *Bioorg. Med. Chem. Lett.* **25**, 616–620
88. Tamberg, T., Hong, Z., De Scheppe, D., Skovbjerg, S., Dupont, D. M., Vitting, L., Schar, C. R., Skjodt, K., Vogel, L. K., and Jensen, J. K. (2019) Blocking the proteolytic activity of zymogen matriltase with antibody-based inhibitors. J. Biol. Chem. 294, 314–326

89. Lu, D., Füttner, K., Korolev, S., Zheng, X., Tan, K., Waksman, G., and Sandler, J. E. (1999) Crystal structure of enteropeptidase light chain complexed with an analog of the trypsinogen activation peptide. J. Mol. Biol. 292, 361–373

92. Tully, D. C., Vidal, A., Chatterjee, A. K., Williams, J. A., Roberts, M. J., Petrassi, H. M., Spraggon, G., Bursulaya, B., Pacoma, R., Shipway, A., Schumacher, A. M., Danahay, H., and Harris, I. L. (2008) Discovery of inhibitors of the channel-activating protease (CAP1/PRSS8) utilizing structure-based design. Bioorg. Med. Chem. Lett. 18, 5895–5899

93. Horimoto, T., and Kawaoka, Y. (2005) Influenza: lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol. 3, 591–600

94. Zmora, P., Blażejewska, P., Moldenhauer, A. S., Welsch, K., Hammami, M., Schwalm, F., Steinmetzer, T., Stiewe, T., Nist, A., and Böttcher-Friebertshäuser, E. (2016) The proteolytic activation of (H3N2) influenza A and B viruses in murine airway. J. Virol. 90, 101–1014

95. Kühn, N., Bergmann, S., Kösterke, N., Lambert, R. L. O., Keppner, A., van den Brand, J. M. A., Pöhlmann, S., Weiß, S., Hummler, E., Hatesuer, B., and Schughart, K. (2016) The proteolytic activation of (H3N2) influenza A virus hemagglutinin is facilitated by different type II transmembrane serine proteases. J. Virol. 90, 4298–4307

96. Hoffmann, M., Hofmann-Winkler, H., Smith, J. C., Krüger, N., Zmora, P., Blazejewska, P., Moldenhauer, A. S., Welsch, K., Nehlmeier, E. J., Jahn, O., Steffen, I., and Pöhlmann, S. (2011) Cleavage and regulatory changes of prostasin provide a new mechanism of protease regulation by divalent cations. Protein Sci. 18, 1014–1016

97. Danahay, H., Harris, J. L., and Lesley, S. A. (2009) Active site conformational changes of matriptase provide a new mechanism of protease regulation by divalent cations. Protein Sci. 18, 1014–1016

98. Donnell, K. A. (2018) Transmembrane protease serine 2 (TMPRSS2) is an activating protease for subtype B avian metapneumovirus. J. Virol. 92, 11231–11246

102. Danahay, H., Harris, J. L., and Lesley, S. A. (2009) Active site conformational changes of matriptase provide a new mechanism of protease regulation by divalent cations. Protein Sci. 18, 1014–1016

103. Harbig, A., Kernberger, M., Bittel, L., Pleschka, S., Schughart, K., Steinmetzer, T., Stiewe, T., Nist, A., and Böttcher-Friebertshäuser, E. (2020) Transcriptome profiling and protease inhibition experiments identify proteases that activate H3N2 influenza A and influenza B viruses in murine airway. J. Virol. 93, e00469–19

104. Limburg, H., Harbig, A., Bestle, D., Stein, A. D., Mouton, H. M., Jaeger, J., Janga, H., Hardes, K., Koepcke, I., Schulte, L., Koczulla, A. R., Schmeck, B., Klenk, H. D., and Böttcher-Friebertshäuser, E. (2019) TMPRSS2 is the major activating protease of influenza A virus in primary human airway cells and influenza B virus in human type II pneumocytes. J. Virol. 93, e00469–19

105. Limburg, H., Harbig, A., Bestle, D., Stein, A. D., Mouton, H. M., Jaeger, J., Janga, H., Hardes, K., Koepcke, I., Schulte, L., Koczulla, A. R., Schmeck, B., Klenk, H. D., and Böttcher-Friebertshäuser, E. (2019) TMPRSS2 is the major activating protease of influenza A virus in primary human airway cells and influenza B virus in human type II pneumocytes. J. Virol. 93, e00469–19

106. Yun, B., Zhang, Y., Liu, Y., Qian, X., Wang, Y., Qi, X., Cui, H., Liu, C., Zhang, Y., Gao, H., Gao, L., Li, K., Gao, Y., and Wang, X. (2016) TMPRSS12 is an activating protease for subtype B avian metapneumovirus. J. Virol. 90, 11231–11246

108. Tarnow, C., Engels, G., Arendt, A., Schwalm, F., Sudderth, J., Rodriguez-Tirado, C., Girard, L., Minna, J. D., Mishra, P. S., Garten, W., Klenk, H. D., and Gabriel, G., and Böttcher-Friebertshäuser, E. (2014) TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J. Virol. 87, 4744–4751

109. Abe, M., Tahara, M., Sakai, K., Yamaguchi, H., Kanou, K., Shirato, K., Kawa, M., Noda, M., Kimura, N., Matsuyama, S., Fukuhara, H., Mizuta, K., Maenaka, K., Aimi, Y., Esumi, M., et al. (2013) TMPRSS2 is an activating protease for respiratory influenza viruses. J. Virol. 87, 11930–11935

110. Okumura, Y., Takahashi, E., Yano, M., Ohuchi, M., Daidoji, T., Nakaya, T., Böttcher, E., Garten, W., Klenk, H.-D., and Kido, H. (2010) Novel type II transmembrane serine proteases, MSPL and TMPRSS13, proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication. J. Virol. 84, 5089–5096

111. Updegraff, B. L., Zhou, X., Guo, Y., Padanad, M. S., Chen, P. H., Yang, S., Cudd, S., Sudderth, J., Rodriguez-Tirado, C., Girard, L., Minna, J. D., Mishra, P. S., DeBerardinis, R. J., and O’Donnell, K. A. (2018) Transmembrane protease TMPRSS11B promotes lung cancer growth by enhancing lactate export and glycolytic metabolism. Cell Rep. 25, 2223–2233.e2226

112. Wang, K., Chen, W., Zhou, X.-S., Lian, J.-Q., Zhang, Z., Du, P., Gong, L., Zhang, Y., Cui, H.-Y., Geng, J.-J., and Wang, B. (2016) Cancer cells acquire drug resistance by activating and downregulating TMPRSS2 expression. J. Biol. Chem. 291, 534–537

113. Bernard, S. C., Simpson, N., Join-Lambert, O., Federici, C., Laran-Chich, M.-P., Maïssa, N., Bouzinba-Ségard, H., Morand, P. C., Chretien, F., Tsouji, S., Chevet, E., Janel, S., Lafont, F., Coureuil, M., Segura, A., et al. (2014) Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nat. Med. 20, 725–731
JBC REVIEWS: On the mechanism of SARS-CoV-2 spike protein activation

152. Jiang, R. D., Liu, M. Q., Chen, Y., Shan, C., Zhou, Y. W., Shen, X. R., Li, Q., Zhang, L., Zhu, Y., Si, H. R., Wang, Q., Min, J., Wang, X., Zhang, W., Li, B., et al. (2020) Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182, 50–58.e8

153. Rimmelzwaan, G. F., van Riel, D., Baars, M., Bestebroer, T. M., van Amerongen, G., Fouchier, R. A., Osterhaus, A. D., and Kuiken, T. (2006) Influenza A virus (H5N1) infection in cats causes systemic disease with potential novel routes of virus spread within and between hosts. Am. J. Pathol. 168, 176–183

154. Bost, P., Giladi, A., Liu, Y., Bendjelal, Y., Xu, G., David, E., Blecher-Gonen, R., Cohen, M., Medaglia, C., Li, H., Deczkowska, A., Zhang, S., Schwikowski, B., Zhang, Z., and Amit, I. (2020) Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell 181, 1475–1488.e12

155. Klok, F. A., Kruip, M., van der Meer, N. J. M., Arbous, M. S., Gommers, D., Kant, K. M., Kaptein, F. H. J., van Paassen, J., Stals, M. A. M., Husman, M. V., and Endeman, H. (2020) Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb. Res. 191, 148–150

156. Li, Z., Liu, T., Yang, N., Han, D., Mi, X., Li, Y., Liu, K., Vuylsteke, A., Xiang, H., and Guo, X. (2020) Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front. Med. 10, 533–541

157. Ronco, C., and Reis, T. (2020) Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat. Rev. Nephrol. 16, 308–310

158. Walls, A. C., Park, Y. I., Tortorici, M. A., Wall, A., McGuire, A. T., and Veesler, D. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 180, 281–292

159. Montopoli, M., Zumerle, S., Vettor, R., Rugge, M., Zorzi, M., Catapano, C. V., Carbone, G. M., Cavalli, A., Pagano, F., Ragazzi, E., Prayer-Galetti, T., and Alimonti, A. (2020) Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (n=4532). Ann. Oncol. 31, 1040–1045

160. Robilotti, E. V., Babady, N. E., Mead, P. A., Rolling, T., Perez-Johnston, R., Bernardes, M., Bogler, Y., Caldararo, M., Figueiroa, C. J., Glickman, M. S., Joanow, A., Kaltsas, A., Lee, Y. J., Lucca, A., Mariano, A., et al. (2020) Determinants of COVID-19 disease severity in patients with cancer. Nat. Med. 26, 1218–1223

161. Walls, A. C., Tortorici, M. A., Snijder, J., Xiong, X., Bosch, B.-J., Rey, F. A., and Veesler, D. (2017) Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc. Natl. Acad. Sci. U. S. A. 114, 11157–11162

162. Liu, M., Yuan, C., Jensen, J. K., Zhao, B., Jiang, Y., Jiang, L., and Huang, M. (2017) The crystal structure of a multidomain protease inhibitor (HAI-1) reveals the mechanism of its auto-inhibition. J. Biol. Chem. 292, 8412–8423