Integral inequalities of Hermite–Hadamard type for logarithmically h-preinvex functions

Muhammad Aslam Noor, Khalida Inayat Noor, Muhammad Uzair Awan and Feng Qi

Cogent Mathematics (2015), 2: 1035856
Integral inequalities of Hermite–Hadamard type for logarithmically h-preinvex functions

Muhammad Aslam Noor1, Khalida Inayat Noor1, Muhammad Uzair Awan1 and Feng Qi2,3

Abstract: In the paper, the authors introduce the notion “logarithmically h-preinvex functions”, reveal that the class of h-preinvex functions include several new and known classes of preinvex functions, and establish several integral inequalities of Hermite–Hadamard type.

Subjects: Advanced Mathematics; Analysis - Mathematics; Functional Analysis; Mathematical Analysis; Mathematics & Statistics; Real Functions; Science; Special Functions

Keywords: Hermite–Hadamard type inequality; logarithmically h-preinvex function; convex functions

AMS subject classifications: 26B25; 26B35; 26B99; 26D15

1. Introduction

Due to extensive applications of convex functions in different fields of pure and applied sciences, many researchers have paid much attention to study and investigate the theory of convex functions. As a result, the concepts of classical convex functions have been extended and generalized in several directions using various innovative approaches (see, e.g. Bai, Qi, & Xi, 2013; Breckner, 1978; Cristescu & Lupsa, 2002; Dragomir, Pečarić, & Persson, 1995; Godunova & Levin, 1985; Jiang, Niu, & Qi, 2014; Noor, Awan, & Noor, 2013; Noor, Noor, & Awan, 2014; Varošanec, 2007; Wang & Qi, 2014; Wang, Wang, & Qi, 2013; Wang, Xi, & Qi, 2014; Weir & Mond, 1988).

PUBLIC INTEREST STATEMENT

The Hermite–Hadamard type inequalities for convex functions and sequences are a milestone of the theory of convex analysis. The concept of convexity for functions has been generalized and extended in many directions and in diverse forms. In the paper, the authors introduce a new notion “logarithmically h-preinvex functions”, reveal that the class of h-preinvex functions include the logarithmically s-preinvex functions, logarithmically P-preinvex functions, and logarithmically Q-preinvex functions, and establish several integral inequalities of Hermite–Hadamard type for these convex functions.
Motivated by this ongoing research, we now introduce a new class of preinvex functions, which are called logarithmically h-preinvex functions, and derive several new integral inequalities of Hermite–Hadamard type for logarithmically h-preinvex functions.

2. Definitions and a lemma

Let K be a nonempty closed set in \mathbb{R}^n, let $f : K \rightarrow \mathbb{R}$ be a continuous function, and let $\eta(\cdot, \cdot) : K \times K \rightarrow \mathbb{R}^n$ be a continuous bi-function.

Definition 2.1 (Weir & Mond, 1988) A set K is said to be invex with respect to $\eta(\cdot, \cdot)$, if $a + t\eta(b, a) \in K$ for $a, b \in K$ and $t \in [0, 1]$. The invex set K is also called an η-connected set.

Remark 2.1 (Antczak, 2005) The above Definition 2.1 has a geometric interpretation. This definition essentially says that there is a path starting from a point a which is contained in K. The point b may not be one of the end points of the path. This observation plays an important role in our analysis. If b is an end point of the path for every pair of points $a, b \in K$, then $\eta(b, a) = b - a$ and, consequently, invexity reduces to convexity. Thus, it is true that every convex set is also an invex set with respect to $\eta(b, a) = b - a$, but not conversely (see Mohan & Neogy, 1995; Weir & Mond, 1988 and related references therein). For the sake of simplicity, we always assume that $K = [a, a + \eta(b, a)]$ unless otherwise specified.

Definition 2.2 (Weir & Mond, 1988) A function f is said to be preinvex with respect to an arbitrary bi-function $\eta(\cdot, \cdot)$, if

$$f(a + t\eta(b, a)) \leq (1 - t)f(a) + tf(b)$$

is valid for $a, b \in K$ and $t \in [0, 1]$.

A function f is said to be preconcave if and only if its negative $-f$ is preinvex. For different aspects and applications of the preinvex functions in variational inequalities (see Antczak, 2005; Barani, Ghazanfari, & Dragomir, 2012; Farajzadeh, Noor, & Noor, 2009; Jiang, Niu, Hua, & Qi, 2012; Matloka, 2013; Mishra & Noor, 2005; Mohan & Neogy, 1995; Noor, 2005, 2007a, 2007b, 1994; Noor, Qi, & Awan, 2013; Sarikaya, Alp, & Bzkurt, 2013; Sarikaya, Saglam, & Yildirim, 2008; Wang & Qi, 2014; Wang et al., 2013, 2014; Weir & Mond, 1988; Yang, Yang, & Teo, 2003).

For $\eta(b, a) = b - a$ in Equation 2.1, the preinvex function becomes a convex function in the classical sense.

Definition 2.3 (Noor, Noor, Awan, & Li, 2015) Let $h : J \rightarrow \mathbb{R}$, where $(0, 1) \subseteq J$ and $h \not\equiv 0$, be an interval in \mathbb{R} and let K be an invex set with respect to $\eta(\cdot, \cdot)$. A nonnegative function $f : K \rightarrow \mathbb{R}$ is called h-preinvex with respect to $\eta(\cdot, \cdot)$, if

$$f(a + t\eta(b, a)) \leq h(1 - t)f(a) + h(t)f(b)$$

holds for $a, b \in K$ and $t \in (0, 1)$.

In Noor et al. (2015), it was shown that the class of h-preinvex functions generalizes several other classes of convex functions. For example, if we take $h(t) = t, h(t) = \frac{1}{2}, h(t) = t^2$, and $h(t) = 1$ in (2.2), then the h-preinvex function reduces to the preinvex function in Weir and Mond (1988), the Q-preinvex function, the s-preinvex function, and the P-preinvex function, respectively. If we take $\eta(b, a) = b - a$, then the definition of h-preinvex functions reduces to the definition of h-convex functions, which was introduced in Varošanec (2007). Noor (2007a) showed that a function f is preinvex if and only if...
The double inequality Equation 2.3 is known as the Hermite–Hadamard–Noor inequality for preinvex functions. If \(\eta(b, a) = b - a \), then the double inequality Equation 2.3 reduces to the classical Hermite–Hadamard inequality for convex functions. For recent developments and applications (see Sarıkaya et al., 2013).

Definition 2.4 A function \(f : K \to (0, \infty) \) is said to be logarithmically \(h \)-preinvex with respect to \(\eta(\cdot, \cdot) \), if

\[
 f(a + t\eta(b, a)) \leq [f(a)]^{h^{1-t}}[f(b)]^{ht^t} \leq f(a) + f(b)
\]

for \(a, b \in I \) and \(t \in (0, 1) \).

Remark 2.2 From Definition 2.4, we may obtain

\[
\ln f(a + t\eta(b, a)) \leq \ln[f(a)]^{h^{1-t}}[f(b)]^{ht^t} = \ln[f(a)]^{h^{1-t}} + \ln[f(b)]^{ht^t} = h(1-t)\ln f(a) + h(t)\ln f(b)
\]

Remark 2.3 If \(h(t) = t^t \), then the definition of logarithmically \(h \)-prinvex function reduces to the definition of logarithmically \(s \)-preinvex function.

Definition 2.5 A function \(f : K \to (0, \infty) \) is said to be logarithmically \(s \)-preinvex, where \(s \in (0, 1) \), with respect to \(\eta(\cdot, \cdot) \), if

\[
 f(a + t\eta(b, a)) \leq [f(a)]^{1-s} [f(b)]^s
\]

for \(a, b \in I \) and \(t \in [0, 1) \).

Remark 2.4 If \(h(t) = 1 \), then the definition of logarithmically \(h \)-preinvex function reduces to the definition of logarithmically \(P \)-preinvex function.

Definition 2.6 A function \(f : K \to (0, \infty) \) is said to be logarithmically \(P \)-preinvex with respect to \(\eta(\cdot, \cdot) \), if

\[
 f(a + t\eta(b, a)) \leq [f(a)]^t[f(b)]
\]

for \(a, b \in I \) and \(t \in [0, 1) \).

Remark 2.5 If \(h(t) = \frac{1}{t} \), then the definition of logarithmically \(h \)-preinvex function reduces to the definition of logarithmically \(Q \)-preinvex function.

Definition 2.7 A function \(f : K \to (0, \infty) \) is said to be logarithmically \(Q \)-preinvex with respect to \(\eta(\cdot, \cdot) \), if

\[
 f(a + t\eta(b, a)) \leq [f(a)]^{1/t} [f(b)]^{1/t}
\]

for \(a, b \in I \) and \(t \in (0, 1) \).

To prove some results in this paper, we need the following well-known Condition C introduced by Mohan and Neogy.
\textbf{Condition C \ (Mohan & Neogy, 1995)} Let $K \subset \mathbb{R}$ be an invex set with respect to the bi-function $\eta(\cdot, \cdot)$. Then for any $a, b \in K$ and $t \in [0, 1]$, we have

$$\eta(b, b + t\eta(a, b)) = -t\eta(a, b) \quad \text{and} \quad \eta(a, b + t\eta(a, b)) = (1 - t)\eta(a, b)$$

From Condition C, it follows that

$$\eta(b + t_2\eta(a, b), b + t_1\eta(a, b)) = (t_2 - t_1)\eta(a, b)$$

for every $a, b \in K$ and $t_1, t_2 \in [0, 1]$.

It is worth mentioning that Condition C plays a crucial and significant role in the development of the variational-like inequalities and optimization problems (see Farajzadeh et al., 2009; Mohan & Neogy, 1995; Noor, 1994; Noor et al., 2013 and related references therein).

The following lemma is also necessary for us.

\textbf{Lemma 2.1 \ (Barani et al., 2012)} Let $f : K \to (0, \infty)$ be a differentiable mapping on $[a, a + \eta(b, a)] \subseteq K$ with $\eta(b, a) > 0$. If $f' \in L_1[a, a + \eta(b, a)]$, then

$$\frac{1}{\eta(b, a)} \int_a^{a + \eta(b, a)} f(x)dx - \frac{f(a) + f(a + \eta(b, a))}{2} = \frac{\eta(b, a)}{2} \int_0^1 (1 - 2t)f'(a + t\eta(b, a))dt$$

\section{Main results}

We now start out to establish several new integral inequalities of Hermite–Hadamard type for logarithmically h-preinvex functions.

\textbf{Theorem 3.1} \ Let f be a logarithmically h-preinvex function such that $h(\frac{1}{2}) \neq 0$. Also suppose that Condition C holds for η, then, for $\eta(b, a) > 0$, we have

$$\ln f\left(\frac{2a + \eta(b, a)}{2}\right)^{1/2h(1/2)} \leq \frac{1}{\eta(b, a)} \int_a^{a + \eta(b, a)} \ln f(x)dx$$

$$\leq \left[\ln f(a) + \ln f(b)\right] \int_0^1 h(t)dt$$

Consequently,

$$f\left(\frac{2a + \eta(b, a)}{2}\right)^{1/2h(1/2)} \leq \exp\left[\frac{1}{\eta(b, a)} \int_a^{a + \eta(b, a)} \ln f(x)dx\right] \leq \left|f(a)f(b)\right|^{1/h}\int_0^1 h(t)dt$$

\textbf{Proof} \ Since f is logarithmically h-preinvex, using Condition C, we have

$$f\left(\frac{2a + \eta(b, a)}{2}\right) = f\left(a + (1 - t)\eta(b, a) + \frac{\eta(a + t\eta(b, a), a + (1 - t)\eta(b, a))}{2}\right)$$

$$\leq \left|f(a + t\eta(b, a))\right|^{h^{1/2}}\left|f(a + (1 - t)\eta(b, a))\right|^{h^{1/2}}$$

$$= \left[\left|f(a + t\eta(b, a))\right|f(a + (1 - t)\eta(b, a))\right]^{h^{1/2}}$$

Taking the logarithm on both sides of the above inequality yields

$$\ln f\left(\frac{2a + \eta(b, a)}{2}\right) \leq \ln f(a + t\eta(b, a))f(a + (1 - t)\eta(b, a))^{h^{1/2}}$$

$$= h\left(\frac{1}{2}\right) \ln f(a + t\eta(b, a))f(a + (1 - t)\eta(b, a))$$
which implies that

\[
\frac{1}{h(1/2)} \ln f \left(\frac{2a + \eta(b, a)}{2} \right) \leq \ln [f(a + t\eta(b, a))f(a + (1 - t)\eta(b, a))] \\
= \ln f(a + t\eta(b, a)) + \ln f(a + (1 - t)\eta(b, a))
\]

Integrating on both sides of the above inequality with respect to \(t \in [0, 1] \) gives

\[
\frac{1}{h(1/2)} \ln f \left(\frac{2a + \eta(b, a)}{2} \right) = \frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx \\
+ \frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx = \frac{2}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx
\]

which means that

\[
\frac{1}{2h(1/2)} \ln f \left(\frac{2a + \eta(b, a)}{2} \right) \leq \frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx \tag{3.1}
\]

Integrating on both sides of

\[
\ln f(a + t\eta(b, a)) \leq h(1 - t) \ln f(a) + \ln h(t)f(b)
\]

with respect to \(t \in [0, 1] \) shows

\[
\frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx \leq [\ln f(a) + \ln f(b)] \int_0^1 h(t) dt \tag{3.2}
\]

Combining Equations 3.1 and 3.2 reveals that

\[
\ln f \left(\frac{2a + \eta(b, a)}{2} \right)^{1/2h(1/2)} \leq \frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx \\
\leq [\ln f(a) + \ln f(b)] \int_0^1 h(t) dt
\]

which is equivalent to

\[
f \left(\frac{2a + \eta(b, a)}{2} \right)^{1/2h(1/2)} \leq \exp \left[\frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx \right] \\
\leq \exp^{\ln f(a) + \ln f(b)} \int_0^1 h(t) dt \\
= \exp^{[f(a)f(b)]^{1/h(b,a)}} \\
= [f(a)f(b)]^{1/h(b,a)}
\]

The proof of Theorem 3.1 is complete.

Corollary 3.1 Let \(f \) be a logarithmically \(s \)-preinvex function. Also suppose that Condition C holds for \(\eta \), then, for \(\eta(b, a) > 0 \), we have

\[
\ln f \left(\frac{2a + \eta(b, a)}{2} \right)^{2^{s-1}} \leq \frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx \leq \frac{\ln f(a) + \ln f(b)}{s + 1}
\]

Consequently,

\[
f \left(\frac{2a + \eta(b, a)}{2} \right)^{2^{s-1}} \leq \exp \left[\frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx \right] \leq [f(a)f(b)]^{1/(s+1)}
\]
Proof This follows from taking \(h(t) = t^s \) for \(s \in (0, 1) \) in Theorem 3.1.

Corollary 3.2 Let \(f \) be a logarithmically \(P \)-preinvex function. Also suppose that Condition C holds for \(\eta \), then, for \(\eta(b, a) > 0 \), we have

\[
\ln f\left(\frac{2a + \eta(b, a)}{2} \right) \leq \frac{2}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx \leq 2[\ln f(a) + \ln f(b)]
\]

Consequently,

\[
f\left(\frac{2a + \eta(b, a)}{2} \right) \leq \exp \left[\frac{2}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx \right] \leq [f(a)f(b)]^2
\]

Proof This follows from letting \(h(t) = 1 \) in Theorem 3.1.

Corollary 3.3 Let \(f \) be a logarithmically \(Q \)-preinvex function. Also suppose that Condition C holds for \(\eta \), then, for \(\eta(b, a) > 0 \), we have

\[
\frac{1}{4} \ln f\left(\frac{2a + \eta(b, a)}{2} \right) \leq \frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx
\]

Consequently,

\[
f\left(\frac{2a + \eta(b, a)}{2} \right)^{1/4} \leq \exp \left[\frac{1}{\eta(b, a)} \int_a^{a+\eta(b, a)} \ln f(x) dx \right]
\]

Proof This follows from setting \(h(t) = \frac{1}{4} \) in Theorem 3.1.

Remark 3.1 When \(\eta(b, a) = b - a \), the above results reduce to ones for classical logarithmically \(h \)-convex functions, logarithmic \(s \)-convex functions, logarithmic \(P \)-convex functions, and logarithmic \(Q \)-convex functions, respectively (see Noor et al., 2013).

Theorem 3.2 Let \(f, g : \mathbb{K} \rightarrow \mathbb{R} \) be logarithmically \(h \)-preinvex functions and \(a, a + \eta(b, a) \in \mathbb{K} \) with \(\eta(b, a) > 0 \). Then

\[
\int_a^{a+\eta(b, a)} f(x)g(x)dx \leq a \int_0^1 \{f(a)\}^{h1-t}/\alpha \{f(b)\}^{h1-t}/\beta dt + \beta \int_0^1 \{g(a)\}^{h1-t}/\alpha \{g(b)\}^{h1-t}/\beta dt
\]

Proof Using Young’s inequality \(ab \leq a^{1/s} + b^{1/\beta} \) for \(a, \beta > 0 \) and \(a + \beta = 1 \) produces

\[
\int_a^{a+\eta(b, a)} f(x)g(x)dx = \int_0^1 f(a + t\eta(b, a))g(a + t\eta(b, a))dt
\]

\[
\leq \int_0^1 \{a[f(a + t\eta(b, a))]^{1/s} + \beta[g(a + t\eta(b, a))]^{1/\beta}\} dt
\]

\[
\leq \int_0^1 \{a[(f(a))^{h1-t}f(b)]^{h1-t}/\alpha + \beta[(g(a))^{h1-t}g(b)]^{h1-t}/\beta\} dt
\]

\[
= a \int_0^1 [(f(a))^{h1-t}/a[f(b)]^{h1-t}/\beta] dt + \beta \int_0^1 [(g(a))^{h1-t}/\alpha [(g(b))]^{h1-t}/\beta] dt
\]

The proof of Theorem 3.2 is complete.

Theorem 3.3 Let \(f : \mathbb{K} \rightarrow (0, \infty) \) be a differentiable function such that \(f' \in L_1[a, a + \eta(b, a)] \). If \(|f'|^q \) is logarithmically \(h \)-preinvex on \(K \) for \(q > 1 \), \(h(t) + h(1-t) = 1 \) and \(\eta(b, a) > 0 \), then

\[
\int_a^{a+\eta(b, a)} f(x)g(x)dx \leq a \int_0^1 \{f(a)\}^{h1-t}/\alpha \{f(b)\}^{h1-t}/\beta dt + \beta \int_0^1 \{g(a)\}^{h1-t}/\alpha \{g(b)\}^{h1-t}/\beta dt
\]
\[
\frac{1}{\eta(a, b)} \int_{a}^{a+\eta(b, a)} f(x)dx - \frac{f(a) + f(a + \eta(b, a))}{2} \\
\leq \frac{(b - a)|f'(a)|}{2^q} \left(\int_{0}^{1} |1 - 2t| f'(b)\left(\frac{h(t)}{f'(a)}\right)^q dt \right)^{1/q}
\]

Proof Using Lemma 2.1, the well-known power mean inequality, and the condition that \(|f'|^q \) is logarithmically \(h \)-preinvex gives

\[
\frac{1}{\eta(a, b)} \int_{a}^{a+\eta(b, a)} f(x)dx - \frac{f(a) + f(a + \eta(b, a))}{2} \\
= \frac{\eta(b, a)}{2} \left(\int_{0}^{1} |1 - 2t| f'(a + t\eta(b, a))dt \right) \\
\leq \frac{\eta(b, a)}{2} \left(\int_{0}^{1} |1 - 2t| dt \right)^{1-1/q} \left(\int_{0}^{1} |1 - 2t| f'(a + t\eta(b, a))|^{q(1-1/t)} dt \right)^{1/q} \\
\leq \frac{\eta(b, a)}{2} \left(\frac{1}{2} \right)^{1-1/q} \left(\int_{0}^{1} |1 - 2t| f'(a + t\eta(b, a))|^{qh(t)} dt \right)^{1/q} \\
= \frac{\eta(b, a)|f'(a)|}{2^{2^{q-1}/q}} \left(\int_{0}^{1} |1 - 2t| f'(b)\left(\frac{h(t)}{f'(a)}\right)^q dt \right)^{1/q}
\]

This completes the proof of Theorem 3.3

Remark 3.2 For different suitable choices of \(h \), we can obtain corresponding results for logarithmically \(s \)-preinvex functions, and logarithmically \(P \)-preinvex functions.

Corollary 3.4 Let \(f : K \to \mathbb{R} \) be a differentiable function such that \(f' \in L_1[a, a + \eta(b, a)] \). If \(|f'|^q \) is logarithmically \(h \)-preinvex on \(K \), then, for \(\eta(b, a) > 0 \), we have

\[
\frac{1}{\eta(a, b)} \int_{a}^{a+\eta(b, a)} f(x)dx - \frac{f(a) + f(a + \eta(b, a))}{2} \\
\leq \frac{\eta(b, a)|f'(a)|}{2} \left(\int_{0}^{1} |1 - 2t| f'(b)\left(\frac{h(t)}{f'(a)}\right)^q dt \right)^{1/q}
\]

Proof This is a direct consequence of Theorem 3.3 for \(q = 1 \).

Theorem 3.4 Let \(f : K \to (0, \infty) \) be a differentiable function such that \(f' \in L_1[a, a + \eta(b, a)] \). If \(|f'|^q \) is logarithmically \(h \)-preinvex on \(K \) for \(q > 1 \) such that \(\frac{1}{p} + \frac{1}{q} = 1 \) and if \(h(t) + h(1-t) = 1 \), then, for \(\eta(b, a) > 0 \), we have

\[
\frac{1}{\eta(a, b)} \int_{a}^{a+\eta(b, a)} f(x)dx - \frac{f(a) + f(a + \eta(b, a))}{2} \\
\leq \frac{\eta(b, a)|f'(a)|}{2} \left(\frac{1}{p+1} \right)^{1/p} \left(\int_{0}^{1} |1 - 2t| f'(b)\left(\frac{h(t)}{f'(a)}\right)^q dt \right)^{1/q}
\]

Proof This directly follows from the proof of Theorem 3.3.
Noor et al., Cogent Mathematics (2015), 2: 1035856
http://dx.doi.org/10.1080/23311835.2015.1035856

Muhammad Uzair Awan
E-mail: awaan.uzair@gmail.com
Feng Qi
E-mails: qifeng618@gmail.com; qifeng618@hotmail.com; qifeng518@iqcc.com
ORCID ID: http://orcid.org/0000-0001-6329-2968
1 Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan.
2 Department of Mathematics, College of Science, Tianjin Polytechnical University, Tianjin City 300387, China.
3 Institute of Mathematics, Henan Polytechnical University, Jiaozuo City, Henan Province 454010, China.

Citation information
Source: Feng Qi.

References

Antczak, T. (2005). Mean value in invexity analysis. Nonlinear Analysis: Theory, Methods & Applications, 60, 1473–1484. doi:10.1016/j.na.2004.11.005

Bai, R.-F., Qi, F., & Xi, B.-Y. (2013). Hermite–Hadamard type inequalities for functions whose derivatives absolute values are preinvex. Journal of Inequalities and Applications, 2012, 247, 9 pp. doi:10.1186/1029-242X-2012-247

Breckner, W. W. (1978). Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen [Continuity statements for a class of generalized convex functions in topological vector spaces]. Publications of the Institute of Mathematics (Beograd) (New Series) (Beograd (N.S.)), 23, 13–20 (German).

Cristescu, G., & Lupşa, L. (2002). Non-connected convexities and applications, applied optimization (Vol. 68). Dordrecht: Kluwer.

Dragomir, S. S., Pečarić, J., & Persson, L. E. (1999). Some inequalities of Hadamard type. Soochow Journal of Mathematics, 21, 335–341.

Farajzadeh, A., Noor, M. A., & Noor, K. I. (2009). Vector nonsmooth variational-like inequalities and optimization problems. Nonlinear Analysis, 71, 3471–3476. doi:10.1016/j.na.2009.02.011

Godunova, E. K., & Levin, V. I. (1985). Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. Numerical mathematics and mathematical physics, 166, 138–142 (Moskov. Gos. Ped. Inst., Moscow Russian).

Jiang, W.-D., Niu, D.-W., & Qi, F. (2011). Generalizations of Hermite–Hadamard inequality to n-time differentiable functions which are s-convex in the second sense. Analysis (Munich), 32, 209–220. doi:10.1524/anly.2012.1161

Jiang, W.-D., Niu, D.-W., & Qi, F. (2014). Some inequalities of Hermite-Hadamard type for r-preinvex functions. Tamkang Journal of Mathematics, 45, 31–38. doi:10.5556/tjm.v45i1.2014.1261

Matloka, M. (2013). On some Hadamard-type inequalities for (h, h)-preinvex functions on the co-ordinates. Journal of Inequalities and Applications, 2013, 227, 12 pp. doi:10.1186/1029-242X-2013-227

Mishra, S. K., & Noor, M. A. (2005). On vector variational-like inequality problems. Journal of Mathematical Analysis and Applications, 311, 69–75. doi:10.1016/j.jmaa.2005.01.070

Mohon, S. R., & Neogoy, S. K. (1995). On invex sets and preinvex functions. Journal of Mathematical Analysis and Applications, 189, 901–908. doi:10.1016/j.jmaa.1995.1057

Noor, M. A. (1994). Variational-like inequalities. Optimization, 30, 323–330. doi:10.1080/03052109408843995

Noor, M. A. (2005). Invex equilibrium problems. Journal of Mathematical Analysis and Applications, 302, 463–475. doi:10.1016/j.jmaa.2004.08.014

Noor, M. A. (2007c). Hermite–Hadamard integral inequalities for log-preinvex functions. Journal of Mathematical Analysis and Approximation Theory, 2, 126–131.

Noor, M. A. (2007b). On Hadamard integral inequalities involving two log-preinvex functions. Journal of Inequalities and Applications, 8, 6 pp. Art. 75. Retrieved from http://www.emis.de/journals/JIPAM/article883.html

Noor, M. A., Awan, M. U., & Noor, K. I. (2013). On some inequalities for relative semi-convex functions. Journal of Inequalities and Applications, 2013, 332, 16 pp. doi:10.1186/1029-242X-2013-332

Noor, M. A., Noor, K. I., & Awan, M. U. (2014). Hermite–Hadamard inequalities for functions whose derivatives absolute values are preinvex. Journal of Inequalities and Applications, 2012, 247, 9 pp. doi:10.1186/1029-242X-2012-247

Varošanec, S. (2007). On Hermite–Hadamard type integral inequalities for preinvex and log-preinvex functions. Contemporary Analysis and Applied Mathematics, 1, 237–252.

Noor, M. A., Qi, F., & Awan, M. U. (2013). Some Hermite–Hadamard type inequalities for log -h-convex functions. Analysis (Berlin), 33, 367–375. doi:10.1524/anly.2013.1223

Sarikaya, M. Z., Alp, N., & Bozkurt, H. (2013). On Hermite–Hadamard type integral inequalities for preinvex and log-preinvex functions. Contemporary Analysis and Applied Mathematics, 1, 237–252.

Sarikaya, M. Z., Saglam, A., & Yıldırım, H. (2008). On some Hadamard-type inequalities for h-convex functions. Journal of Mathematical Inequalities, 2, 335–341. doi:10.7153/jmi-02-30

Varošanec, S. (2007). On convexity. Journal of Mathematical Analysis and Applications, 326, 303–311. doi:10.1016/j.jmaa.2006.02.086

Wang, S.-H., & Qi, F. (2014). Hermite–Hadamard type inequalities for n-times differentiable and preinvex functions. Journal of Inequalities and Applications, 2014, 49, 9 pp. doi:10.1186/1029-242X-2014-49

Wang, Yang, S.-H., & Qi, F. (2013). Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex. Facta Universitatis, Series: Mathematics and Informatics, 28, 151–159.

Wang, Y., Xi, B.-Y., & Qi, F. (2014). Hermite–Hadamard type integral inequalities when the power of the absolute value of the first derivative of the integrand is s-preinvex. Matematicheskie (Catania), 69, 89–96. doi:10.4418/2014.69.1.6

Weir, T., & Mond, B. (1988). Pre-invex functions in multiple objective optimization. Journal of Mathematical Analysis and Applications, 136, 29–38. doi:10.1016/0022-247X(88)90113-8

Yang, X. M., Yang, X. Q., & Teo, K. L. (2003). Generalized invexity and generalized invariant monotonicity. Journal of Optimization Theory and Applications, 117, 607–625. doi:10.1023/A:1023953823177

Page 9 of 10
