RESEARCH ARTICLE

A Genome-Wide Scan Reveals Important Roles of DNA Methylation in Human Longevity by Regulating Age-Related Disease Genes

Fu-Hui Xiao1,2,3☯, Yong-Han He1,2☯, Qi-Gang Li1,2, Huan Wu1,2, Long-Hai Luo4*, Qing-Peng Kong1,2*

1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan Province, China, 2 KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan Province, China, 3 University of Chinese Academy of Sciences, Beijing, China, 4 Beijing Genome Institute at Shenzhen, Shenzhen, China

☯ These authors contributed equally to this work.
* kongqp@mail.kiz.ac.cn (QPK); luolh@genomics.cn (LHL)

Abstract

It is recognized that genetic factors contribute to human longevity. Besides the hypothesis of existence of longevity genes, another suggests that a lower frequency of risk alleles decreases the incidence of age-related diseases in the long-lived people. However, the latter finds no support from recent genetic studies. Considering the crucial role of epigenetic modification in gene regulation, we then hypothesize that suppressing disease-related genes in longevity individuals is likely achieved by epigenetic modification, e.g. DNA methylation. To test this hypothesis, we investigated the genome-wide methylation profile in 4 Chinese female centenarians and 4 middle-aged controls using methyl-DNA immunoprecipitation sequencing. 626 differentially methylated regions (DMRs) were observed between both groups. Interestingly, genes with these DMRs were enriched in age-related diseases, including type-2 diabetes, cardiovascular disease, stroke and Alzheimer’s disease. This pattern remains rather stable after including methylomes of two white individuals. Further analyses suggest that the observed DMRs likely have functional roles in regulating disease-associated gene expressions, with some genes [e.g. caspase 3 (CASP3)] being down-regulated whereas the others [i.e. interleukin 1 receptor, type 2 (IL1R2)] up-regulated. Therefore, our study suggests that suppressing the disease-related genes via epigenetic modification is an important contributor to human longevity.

Introduction

Human longevity is believed to be an integrating result of genetic and environmental factors. Although previous studies have shown that genetic variation may explain 20–30% contribution
Roles of DNA Methylation in Human Longevity

Results

DNA methylation landscapes across centenarians and middle-aged individuals

In this study, DNA methylation profiles of 4 female healthy centenarians and 4 ethnicity matched middle-aged individuals were obtained by using the MeDIP-Seq method. More than 60 million uniquely mapped paired-end reads were produced. Saturation and coverage analysis indicated that the produced data have sufficient reads to generate a reproducible genome-wide methylation profile for each sample (S1 Fig.) and cover more than 80% CpGs in human genome (S2 Fig.) [20]. As shown in Fig. 1, DNA methylation signal decreased sharply before the transcription start site and increased considerably towards the gene body regions and then was maintained at a plateau until the end of the gene body. This uneven pattern suggests potential roles of methylation in the regulation of gene expression depending on their location.
Numerous differentially methylated regions (DMRs) exist between the centenarians and controls. A total of 887 segments showed significantly different methylation status between the centenarians and controls ($p < 0.0005$). Then 626 differentially methylated regions (DMRs) were identified by leaving those segments with CpGs and merging the adjacent segments with the same direction of DNA methylation change, which seem to have random distribution on each chromosome (Fig. 2A). The FDR of each identified DMR was estimated using permutation test in which the maximum FDR was 6.3% (1000 permutations). The heatmap showed that the identified DMRs were able to separate the samples into younger and longevity group (Fig. 2B). Among these DMRs, 274 (44%) and 350 (56%) were hypermethylated and hypomethylated respectively in centenarians in comparison with the younger controls (Fig. 3A, S1 Dataset). The DMRs were found to locate in promoter (1.3%), exonic (3.5%), intronic (39.8%) and intergenic (58.5%) regions (Fig. 3B). The most common repetitive sequences were LINE 1 repeats (22.8%), Alu repeats (20.6%), LINE 2 repeats (6.5%), and LTR-retrotransposons (13.9%) (Fig. 3C). It should be noted that the preferential hypermethylated DMRs were overlapped with Alu sequences compared with the hypomethylated DMRs (odds ratio = 1.6; fisher’s exact test p value = 0.0028; Fig. 3D). Next, we explored potential functional characteristics of target genome segments with above DMRs using the data of ENCODE (http://genome.ucsc.edu/ENCODE/) and published potential regulatory motif [21]. The results showed that 173 DMRs (28.1%) had potential promoter, enhancer and/or insulator functions, whereas 128 DMRs (20.4%) had potential transcription factor binding site, and 57 DMRs (9.1%) contained potential regulator motif (Table 1), suggesting that these DMRs likely had functional potential to regulate gene transcription.

DMRs are enriched in genes associated with age-related diseases

Based on the human annotation information, the identified DMRs locate in 251 genes (S2 Dataset). Gene ontology (GO) analysis showed that the hypermethylated genes were mainly involved in several important biological processes, such as developmental processes ($p =$
2.64 \times 10^{-5}), cell adhesion \((p = 3.42 \times 10^{-5}) \), signal transduction \((p = 5.94 \times 10^{-5}) \) and cell communication \((p = 1.77 \times 10^{-4}) \), whereas the hypomethylated genes were enriched in signal transduction \((p = 6.27 \times 10^{-6}) \), cell communication \((p = 9.92 \times 10^{-6}) \) and also cell adhesion \((p = 8.27 \times 10^{-6}) \) (Table 2). Moreover, pathway analysis revealed that these genes were significantly enriched in several signaling pathways with the hepermethylated genes in Cadherin signaling \((p = 1.54 \times 10^{-7}) \) and Wnt signaling pathways \((p = 2.19 \times 10^{-7}) \); while the hypomethylated
genes were enriched in Alzheimer disease-presenilin (\(p = 1.08 \times 10^{-4} \)) and Cadherin signaling pathways (\(p = 2.67 \times 10^{-3} \)) (Table 3). Since these pathways show close relationship with age-related diseases such as Alzheimer’s disease, cardiovascular disease, diabetes mellitus and cancer [22–26], to test whether the genes with DMRs are enriched in age-related diseases, we further conducted an analysis for the associations of differentially methylated genes with diseases. The result revealed that these genes did be significantly enriched in type-2 diabetes (\(p = 4.95 \times 10^{-5} \)), stroke (\(p = 2.57 \times 10^{-5} \)), cardiovascular disease (\(p = 1.19 \times 10^{-4} \)), Alzheimer’s disease (\(p = 1.81 \times 10^{-3} \)), and coronary artery disease (\(p = 1.24 \times 10^{-2} \)) (Fig. 4A).

To test whether our observation could be replicated, the reported whole genome bisulfite sequencing data from white people [including a male centenarian (Y103) and a male middle-aged subject (Y26) [19]] were included for reanalysis. Consistent with our former observation that most of the DMRs were in intronic and intergenic regions, a total of 14,177 hyper-DMRs and 21,720 hypo-DMRs were identified in promoter (6.5%), exonic (16.9%), intronic (48.8%) and intergenic (45.1%) regions. Similarly, 154 genes with DMRs were observed in both Chinese and white centenarians compared to their middle-aged controls (S3 Dataset), and the enrichment analysis also showed that the 154 genes were enriched on biological process of cell adhesion (\(p = 1.08 \times 10^{-9} \)), and pathways of Cadherin (\(p = 1.71 \times 10^{-8} \)) and Wnt signaling (\(p = 1.28 \times 10^{-7} \)) (S1 and S2 Tables). Intriguingly, the differentially methylated genes were also observed to be overrepresented in type-2 diabetes (\(p = 6.23 \times 10^{-11} \)), cardiovascular disease (\(p = 4.49 \times 10^{-5} \)), stroke (\(p = 1.96 \times 10^{-4} \)) and Alzheimer’s disease (\(p = 8.74 \times 10^{-4} \)) (Fig. 4B).

Fig 3. DMRs ratio. (A) The percentage of hyper-DMRs and hypo-DMRs. (B) DMRs ratio overlapped with different genomic sequences. (C) DMRs ratio overlapped with different repeat elements. (D) The hyper-DMRs are preferentially overlapped with SINE/Alu repeat compared with hypo-DMRs (** \(p < 0.01 \)).

doi:10.1371/journal.pone.0120388.g003

Regulatory motif	Transcription factor binding site	Chromatin state (promoter, enhancer, insulator)	
DMRs	57 (9.1%)	128 (20.4%)	173 (28.1%)

doi:10.1371/journal.pone.0120388.t001
Hitherto, understanding of the genetic mechanism of human longevity remains highly controversial, with one but prevalent hypothesis suggesting the existence of longevity genes whereas another simply attributing it to the lack of diseases-susceptibility mutations. The latter hypothesis, although well explains the low prevalence of age-related diseases in the long-lived people, finds no support from the recent genetic studies [10, 11]. These observations seem to argue for the longevity-gene model, however, taking into consideration the crucial role of epigenetic modification in gene regulation, it remains plausible that suppressing the disease-related genes in the longevity individuals could be achieved by the epigenetic modification, e.g. DNA methylation.

In the present study, by obtaining the genome-wide landscapes of DNA methylation in Chinese centenarians and middle-aged controls and then identifying their differentially methylated regions (DMRs), our results did show that the identified DMRs were significantly enriched in genes associated with age-related diseases, such as type-2 diabetes ($p = 4.95 \times 10^{-5}$), stroke.

Table 2. Gene Ontology enrichment analysis for the genes with DMRs in Chinese samples.

GO term	Description	P value
Hypermethylated		
GO:0016337	cell-cell adhesion	9.74E-07
GO:0009790	embryo development	4.66E-06
GO:0007399	nervous system development	5.86E-06
GO:0032502	developmental process	2.64E-05
GO:0007155	cell adhesion	3.42E-05
GO:0007398	ectoderm development	5.47E-05
GO:0007165	signal transduction	5.94E-05
GO:0048731	system development	9.27E-05
GO:0007154	cell communication	1.77E-04
GO:0009987	cellular process	3.85E-04
Hypomethylated		
GO:0009987	cellular process	3.82E-06
GO:0007165	signal transduction	6.27E-06
GO:0007155	cell adhesion	8.27E-06
GO:0007154	cell communication	9.92E-06
GO:0016337	cell-cell adhesion	1.10E-04
GO:0007398	ectoderm development	1.36E-04
GO:0007399	nervous system development	1.54E-04

doi:10.1371/journal.pone.0120388.t002

Discussion

Hitherto, understanding of the genetic mechanism of human longevity remains highly controversial, with one but prevalent hypothesis suggesting the existence of longevity genes whereas another simply attributing it to the lack of diseases-susceptibility mutations. The latter hypothesis, although well explains the low prevalence of age-related diseases in the long-lived people, finds no support from the recent genetic studies [10, 11]. These observations seem to argue for the longevity-gene model, however, taking into consideration the crucial role of epigenetic modification in gene regulation, it remains plausible that suppressing the disease-related genes in the longevity individuals could be achieved by the epigenetic modification, e.g. DNA methylation.

In the present study, by obtaining the genome-wide landscapes of DNA methylation in Chinese centenarians and middle-aged controls and then identifying their differentially methylated regions (DMRs), our results did show that the identified DMRs were significantly enriched in genes associated with age-related diseases, such as type-2 diabetes ($p = 4.95 \times 10^{-5}$), stroke.

Table 3. Pathway enrichment analysis for the genes with DMRs in Chinese samples.

Pathway	P value
Hypermethylated	
Cadherin signaling pathway	1.54E-07
Wnt signaling pathway	2.19E-07
Hypomethylated	
Alzheimer disease-presenilin pathway	1.08E-04
Cadherin signaling pathway	2.67E-03

doi:10.1371/journal.pone.0120388.t003
Intriguingly, this pattern remained rather stable after the epigenetic genomes from the white centenarian and younger samples [19] were included. Indeed, when looking further into the expression pattern of the genes containing DMRs, we did find some interesting clues. For instance, the Alzheimer’s disease-associated gene CASP3 shows high expression in the patients [27, 28], which however has a hypermethylated DMR near its transcription start site in centenarians. Similarly, IL1R2 gene has a lower expression in atherosclerotic disease [29, 30] but contains a hypo-DMR near its transcription start site in our centenarians. These results likely reflect a functional role of the observed DMRs in regulating the expression of some disease-associated genes, with some genes (e.g. CASP3) being down-regulated whereas...
the others (i.e. IL1R2) up-regulated. Taken together, these observations seem to be in well agreement with the ability of centenarians in suppressing or escaping the age-related diseases [7, 12, 31].

Although further efforts are needed to shed light on the genuine function of the observed DMRs in our longevity samples, it is difficult to simply attribute their significant enrichment ($p < 0.05$) on the genes associated with age-related diseases to be a random process because of three reasons. First, this enrichment pattern keeps rather stable even the white samples, which are known to have quite different genetic backgrounds from the Chinese [32–34], were included for analysis. Second, much lower prevalence of the age-related diseases in the centenarians is reported by more and more epidemiological surveys [6, 7]. Third, some clues, albeit rather meager at the current stage, between the distilled DMRs and the expression of the susceptibility genes did have been observed, which shall become more pronounced if the methylome and transcriptome data from the same samples are obtained. Taken together, it is then most likely that DNA methylation may contribute to healthy aging in human populations by regulating the genes susceptible to the age-related diseases.

In short, our genome-wide scan does reveal a large number of DMRs existing between the centenarians and younger control subjects, which likely play an important but previously unrecognized role in regulating the genes, especially those that show susceptibility to the age-related diseases. These observations seem to be in accordance with the ability of centenarians in escaping or delaying the age-related diseases. Therefore, our study suggests that suppressing the disease-related genes via the epigenetic modification is likely an important contributor in human longevity.

Materials and Methods

Methylated DNA immunoprecipitation and Illumina Genome Analyzer sequencing

We collected peripheral blood from 4 centenarians and 4 middle-aged controls from four different provinces in China (S3 Table). Investigation has been conducted in accordance with the ethical standards and according to the Declaration of Helsinki and according to national and international guidelines and has been approved by the review board at Kunming Institute of Zoology, Chinese Academy of Sciences. Written informed consent was obtained from each of the participants prior to the study. All of them were local native residents. Approximately 5 μg of DNA from each sample was used for MeDIP-seq library construction as described by Li et al. [18] The genomic DNA was sonicated into random fragments ranging from 100–500 bp. Finally, 49 bp paired-end reads were produced for the methylation profile analysis by next generation sequencing.

Mapping reads and identification of DMRs

We mapped the raw reads onto human genome hg18 build, which was downloaded from the University of California Santa Cruz (UCSC) Bioinformatics Site (http://genome.ucsc.edu/), using the alignment software SOAPaligner v2.21 (http://soap.genomics.org.cn/) with no more than 2 bp mismatched [35]. Here we considered the length of sequenced MeDIP-enriched DNA fragments as 400 bp and thus extended the uniquely mapping short reads to 400 bp to represent the real methylated DNA fragments (S4 Table).

Then, we divided the entire genome into 200 bp non-overlap segments and counted the number of reads mapped within each segment. The segments covered at least by 1 read in each sample and more than 10 reads for the mean depth of 8 samples were used for further study.
The methylation profile data were analyzed to find the genomic regions with different methylation status between the centenarian group and younger group using the edgeR package based on the reads number of each segment [36].

Analysis of published whole genome bisulfite sequencing data

Two white individuals’ WGBS data [one 103-year-old white man (Y103) and one 26-year-old white man (Y26)] [19] were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/) with GSM774849 and GSM848927. The methylation level of each CpG was calculated using the Bismark [37]. The CpGs covered less than 5 reads were first removed and then the differentially methylated CpGs were called based on the methylated and unmethylated numbers of reads in the two white individuals (fisher’s exact test, \(p < 0.05 \); the methylation level of the CpGs between Y103 and Y26 with a minimum difference of > 20%). Then adjacent differentially methylated CpGs (the distance between two CpGs less than 1000 bp) with a same directional change were merged as a big segment and only those segments with no less than 5 CpGs were chosen as final DMRs.

Genome annotation information

The human gene annotation information hg18 build was downloaded from Ensembl database (http://www.ensembl.org/). The promoter regions were defined as 2k bp of upstream region of the transcription start sites in Ensembl database. The human chromatin state and genomic transcription factor binding sites data were downloaded from ENCODE (http://genome.ucsc.edu/ENCODE/).

Gene set enrichment analysis

Using the Protein Analysis Through Evolutionary Relationships (PANTHER) Classification System 8.1 [38], gene ontology biological process and pathway were analyzed. Moreover, gene lists related with age-related diseases (e.g. Alzheimer’s disease, type-2 diabetes, cardiovascular disease) were got from GeneCards version 3.11 [39], and a hypergeometric test was conducted to find the enriched disease terms based on the observed and expected gene numbers.

Statistical analysis

The statistic methods, like hypergeometric test and fisher’s exact test, were calculated using the phyper and fish.test function provided within the R framework (http://www.R-project.org/).

Supporting Information

- **S1 Dataset.** The identified DMRs in Chinese samples. (XLS)
- **S2 Dataset.** The genes with the DMRs in Chinese samples. (XLS)
- **S3 Dataset.** The genes with DMRs in both Chinese and white samples. (XLS)
- **S1 Fig.** Saturation analysis. The result showed that our data can generate a reproducible methylation profile for each sample. (TIF)
S2 Fig. Coverage analysis. The result showed that our data can cover more than 80% CpGs in human genome.

TIF

S1 Table. Gene Ontology enrichment analysis for genes with DMRs in both Chinese and white samples. The genes were enriched in cell adhesion and development-related GO terms.

DOC

S2 Table. Pathway enrichment analysis for genes with DMRs in both Chinese and white samples. The genes were enriched in Cadherin and Wnt signaling pathway.

DOC

S3 Table. Sample information.

DOC

S4 Table. Reads mapping. More than 60 million uniquely mapped paired-end reads were produced for each sample.

DOC

Acknowledgments

We are grateful to Dr. Jia Liu and Dr. Yao-Ting Cheng for their valuable comments and suggestions.

Author Contributions

Conceived and designed the experiments: QPK. Performed the experiments: HW LHL. Analyzed the data: FHX QGL. Contributed reagents/materials/analysis tools: LHL. Wrote the paper: QPK FHX YHH.

References

1. Herskind AM, McGue M, Holm NV, Srensen TIA, Harvald B, Vaupel JW. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet. 1996; 97:319–23. PMID: 8786073

2. McGue M, Vaupel JW, Holm N, Harvald B. Longevity is moderately heritable in a sample of Danish twins born 1870–1880. J Gerontol. 1993; 48:B237–B44. PMID: 8227991

3. Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997; 278:1319–22. PMID: 9360933

4. Guarente L, Tissenbaum HA. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001; 410:227–30. PMID: 11242085

5. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993; 366:461–4. PMID: 8247153

6. Selim AJ, Fincke G, Berlowitz DR, Miller DR, Qian SX, Lee A, et al. Comprehensive health status assessment of centenarians: Results from the 1999 large health survey of veteran enrollees. J Gerontol A-Biol. 2005; 60:515–9. PMID: 15933394

7. Hitt R, Young-Xu Y, Silver M, Perls T. Centenarians: the older you get, the healthier you have been. The Lancet. 1999; 354:652. PMID: 10466675

8. Terry DF, Wilcox MA, McCormick MA, Pennington JY, Schoenhofer EA, Andersen SL, et al. Lower all-cause, cardiovascular, and cancer mortality in centenarians’ offspring. J Am Geriatr Soc. 2004; 52:2074–6. PMID: 15571545

9. Schachter F, Fauredelanalef L, Guenot F, Rouger H, Froqsel P, Lesueurginot L, et al. Genetic Associations with Human Longevity at the Apoe and Ace Loci. Nat Genet. 1994; 6:29–32. PMID: 8138629

10. Beekman M, Nederstigt C, Suchiman HED, Kremer D, van der Breggen R, Lakenberg N, et al. Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proc Natl Acad Sci USA. 2010; 107:18046–9. doi: 10.1073/pnas.1003540107 PMID: 20921414
11. Sebastiani P, Solovieff N, DeWan AT, Walsh KM, Puca A, Hartley SW, et al. Genetic Signatures of Exceptional Longevity in Humans. Plos One. 2012; 7:e229848.

12. Evert J, Lawler E, Bogan H, Perls T. Morbidity profiles of centenarians: survivors, delayiers, and escapers. J Gerontol A-Biol. 2003; 58:232–7. PMID: 12634289

13. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001; 293:1068–70. PMID:11498573

14. Richardson B. Impact of aging on DNA methylation. Ageing Res Rev. 2003; 2:245–61. PMID: 12726774

15. Toperoff G, Aran D, Kark JD, Rosenberg M, Dubnikov T, Nissan B, et al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood. Hum Mol Genet. 2012; 21:371–83. doi:10.1093/hmg/ddr472 PMID: 21994764

16. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002; 21:5400–13. PMID: 12154403

17. Wang J, Li N, Ye MZ, Li YR, Yan ZX, Butcher LM, et al. Whole genome DNA methylation analysis based on high throughput sequencing technology. Methods. 2010; 52:203–12. doi: 10.1016/j.ymeth.2010.04.009 PMID: 20430099

18. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA. 2012; 109:10522–7. doi:10.1073/pnas.1120658109 PMID: 22689993

19. Resinka TJ, Philippovaa M, Joshia MB, Kyriakakisa E, Erneb P. Cadherins in cardiovascular disease. Swiss Med Wkly. 2009; 139:122–34. doi: smw-12429 PMID: 19274489

20. Mazurek MF, Beal MF, Bird ED, Martin JB. Oxytocin in Alzheimer's disease Postmortem brain levels. Neurology. 1987; 37:1001-. PMID:3587615

21. Louneva N, Cohen JW, Han L-Y, Talbot K, Wilson RS, Bennett DA, et al. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer's disease. Am J Pathol. 2008; 173:1488–95. doi: 10.2353/ajpath.2008.080434 PMID: 18818379

22. He YH, Zhang YX, Yang LQ, Liao XP, Zhang QY, Cai WW, et al. Assessment of the Health Status of Centenarians in the South of China: A Cross-Sectional Study. J Am Geriatr Soc. 2014; 62(7):1402–4. doi: 10.1111/jgs.12895 PMID: 25039520

23. Neumann D, Kollewe C, Martin MU, Boraschi D. The membrane form of the type II IL-1 receptor accounts for inhibitory function. J Immunol. 2000; 165:3350–7. PMID: 10975853

24. Pou J, Martínez-González J, Rebollos A, Rodríguez C, Rodríguez-Calvo R, Martín-Fuentes P, et al. Type II interleukin-1 receptor expression is reduced in monocytes/macrophages and atherosclerotic atheroma. J Mol Cell Biol L. 2011; 1811:556–63.

25. He YH, Zhang YX, Yang LQ, Liao XP, Zhang QY, Cai WW, et al. Assessment of the Health Status of Centenarians in the South of China: A Cross-Sectional Study. J Am Geriatr Soc. 2014; 62(7):1402–4. doi: 10.1111/jgs.12895 PMID: 25039520

26. Heyn H, Moran S, Hernando-Herraez I, Sayols S, Gomez A, Sandoval J, et al. DNA methylation contributes to natural human variation. Genome Res. 2013; 23:1363–72. doi: 10.1101/gr.154187.112 PMID: 23908385

27. Consortium GP. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012; 491:56–65. doi: 10.1038/nature11632 PMID: 23128226

28. Consortium IH. A haplotype map of the human genome. Nature. 2005; 437:1299–302. PMID: 16255080
35. Wang J, Li RQ, Yu C, Li YR, Lam TW, Yiu SM, et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 2009; 25:1966–7. doi: 10.1093/bioinformatics/btp336 PMID: 19497933

36. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26:139–40. doi: 10.1093/bioinformatics/btp616 PMID: 19910308

37. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011; 27:1571–2. doi: 10.1093/bioinformatics/btr167 PMID: 21493656

38. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013; 41:D377–D86. doi: 10.1093/nar/gks1118 PMID: 23193289

39. Safran M, Dalah I, Alexander J, Rosen N, Stein TI, Shmoish M, et al. GeneCards Version 3: the human gene integrator. Database-Oxford. 2010; 2010:baq020. doi: 10.1093/database/baq020 PMID: 20689021