ON THE LOG CANONICAL RING WITH KODAIRA DIMENSION TWO

HAIDONG LIU

Abstract. We prove that the log canonical ring of a projective log canonical pair with Kodaira dimension two is finitely generated.

1. Introduction

In this paper, we prove the following main result:

Theorem 1.1 (Main Theorem). Let (X, Δ) be a projective log canonical pair such that Δ is a \mathbb{Q}-divisor. Assume that $\kappa(X, K_X + \Delta) = 2$. Then the log canonical ring

$$R(X, \Delta) = \bigoplus_{m \geq 0} H^0(X, \mathcal{O}_X(|m(K_X + \Delta)|))$$

is a finitely generated \mathbb{C}-algebra.

This is a special case of the well-known finite generation conjecture for log canonical pairs (cf. [13, Conjecture 1.1]). In [13], Fujino and the author listed some recent progress on the finite generation conjecture, and proved it under the assumptions that (X, Δ) is plt and $\kappa(X, K_X + \Delta) = 2$. Their proof used the lc-trivial fibration (in the sense of [11]) to deal with fibrations by using a Hodge theoretic approach rather than by running the relative minimal model program as in [2]. We will follow the basic idea in [13] and prove the main result by using a more general kind of connectedness lemma (Subsection 2.2) and the slc-trivial fibration theory (Section 3).

This paper can be viewed as a continuation of [13]. Some of the notation and proofs here are the same as those in that paper, so we recommend the interested readers to read [13] as a warm-up.

Acknowledgments. The author would like to thank Professor Osamu Fujino for answering some questions on the theory of slc-trivial fibrations. He would also like to thank the referees for useful comments.

We work over \mathbb{C}, the complex number field, throughout this paper. We also freely use the basic notation of the minimal model program as in [6] and [7]. A variety means a reduced separated scheme of finite type over \mathbb{C}. In this paper, we do not use \mathbb{R}-divisors. We only use \mathbb{Q}-divisors.

2. Preliminaries

In this section, we prepare some results needed in our proof of the main theorem. For the notation and conventions of this paper, we refer to [13, Preliminaries].

\textit{Date:} 2020/9/19, version 0.10.
\textit{2010 Mathematics Subject Classification.} Primary 14E30; Secondary 14N30.
\textit{Key words and phrases.} log canonical ring, canonical bundle formula.
2.1. Variation of mixed Hodge structures. Let S be a path connected and locally 1-connected topological space. A local system on S is a locally constant sheaf V of \mathbb{Q}-vector spaces on S (cf. [20, Lemma B.34]). In particular, a constant system is a constant sheaf V. One example of the local systems is the so-called variation of (mixed) Hodge structures. We follow the notation and definitions in [9] and recommend the interested readers to read [9] for more details.

The following theorem is taken out from [9, Theorem 7.1]. It shows that for any graded polarizable variation of \mathbb{Q}-mixed Hodge structures given in this paper, the \mathcal{O}_D-module V is directly defined as $\mathcal{O}_D \otimes V$. It follows that $\alpha : V \to V := \mathcal{O}_D \otimes V$ is given by simply tensoring \mathcal{O}_D and thus induces trivially an identification $\mathcal{O}_D \otimes V \simeq V$ of \mathcal{O}_D-modules. We can omit the morphism α since there is no danger of confusion.

Theorem 2.1 ([9, Theorem 7.1]). Let (V, T) be a simple normal crossing pair such that T is reduced, and $f : V \to W$ a projective surjective morphism onto a smooth variety W. Assume that every stratum of (V, T) dominates W. Let Σ be a simple normal crossing divisor on W such that every stratum of (V, T) is smooth over $W^* = W \setminus \Sigma$. Put $V^* = f^{-1}(W^*)$, $T^* = T|_{V^*}$. Let $\iota : V^* \setminus T^* \to V^*$ be the natural open immersion. Then the local system $V_k := R^k(f|_{V^*})_* \mathcal{L}(\iota|_{\mathcal{L}(V^*) \setminus T^*})$ underlies a graded polarizable admissible variation of \mathbb{Q}-mixed Hodge structure $V = ((V, W), (V, W, F), \text{id})$ on W^* for every k. Note that $V_k := \mathcal{O}_{W^*} \otimes V_k$.

2.2. Connectedness lemma. [13, Section 4] showed a kind of connectedness lemma for plt pairs. But it is not sufficient if we try to deal with finite generation conjecture for lc pairs. For our purposes, we need a more general kind of connectedness lemma as follows. Note that it is also a special case of adjunction formula for quasi-log canonical pairs (cf. [7, Theorem 6.3.5]).

Lemma 2.2 (Connectedness). Let $f : V \to W$ be a surjective morphism from a smooth projective variety V onto a normal projective variety W. Let B_V be a \mathbb{Q}-divisor on V such that $K_V + B_V \sim_{\mathbb{Q}, f} 0$, (V, B_V) sub lc, and $\text{Supp } B_V$ a simple normal crossing divisor.

Assume that the natural map

$$\mathcal{O}_W \to f_*\mathcal{O}_V([-B_V^{<1}])$$

is an isomorphism. Let Z be a union of some images of stratum of $B_V^{\leq 1}$ such that $Z \subseteq W$. Let S be the union of strata of $B_V^{\leq 1}$ mapping into Z. Assume that S is a union of irreducible components of $B_V^{\leq 1}$. Put $K_S + B_S = (K_V + B_V)|_S$ by adjunction. Then (S, B_S) is sub slc and the natural map

$$\mathcal{O}_Z \to g_*\mathcal{O}_S([-B_S^{\leq 1}])$$

is an isomorphism, where $g := f|_S$. In particular, S is connected if Z is connected.

Proof. The proof is very similar to [13, Lemma 4.1 and Corollary 4.2]. We can easily check that (S, B_S) is sub slc by adjunction. Consider the following short exact sequence

$$0 \to \mathcal{O}_V([-B_V^{<1}]) - S) \to \mathcal{O}_V([-B_V^{\leq 1}]) \to \mathcal{O}_S([-B_S^{\leq 1}]) \to 0.$$

Note that $B_V^{\leq 1}|_S = B_S^{\leq 1}$ holds. By [7, Theorem 5.6.3] and our assumptions of Z and S, no lc stratum of $(V, \{B_V\} + B_V^{<1} - S)$ are mapped into Z by f. By the same proof of [7, Theorem 6.3.5 (i)], the natural map $\mathcal{O}_Z \to g_*\mathcal{O}_S([-B_S^{\leq 1}])$ is an isomorphism. In particular, the natural map $\mathcal{O}_Z \to g_*\mathcal{O}_S$ is an isomorphism. This implies that S is connected if Z is connected.

The following corollary allows us to remove those strata of $B_V^{<1}$ in S which are not dominant onto Z when Z is normal.
Corollary 2.3. Notation as in Lemma [2,2]. Assume further that Z is irreducible and normal. Let S' be the union of irreducible components of B_{V}^{-1} dominant onto Z. Put $K_{S'} + B_{S'} = (K_{V} + B_{V})|_{S'}$ by adjunction. Then $(S', B_{S'})$ is also sub slc and the natural map

$$\mathcal{O}_{Z} \to g'_*\mathcal{O}_{S'}(\lceil -(B_{S'}^{\leq 1}) \rceil)$$

is an isomorphism, where $g' = f|_{S'}$. In particular, S' is connected.

Proof. Consider the following commutative diagram:

$$
\begin{array}{ccc}
S' & \xrightarrow{\iota} & S \\
g' \downarrow & & \downarrow g \\
\tilde{Z} & \xrightarrow{p} & Z
\end{array}
$$

where $\iota : S' \to S$ is the natural closed immersion and p is the normalization by [12, Claim 1]. Since Z is normal, p is an isomorphism. Then the rest of the proof is exactly the same as [12, Claim 2]. \qed

2.3. MMP for projective dlt surfaces. Finally, we give a special case of the minimal model program for projective dlt surfaces. It plays the same role in this paper as [13, Lemma 6.1] in [13, Theorem 1.2]. The proof is exactly the same as [13, Lemma 6.1], so we omit it here.

Lemma 2.4. Let (X, B) be a projective dlt surface such that B is a \mathbb{Q}-divisor and let M be a nef \mathbb{Q}-divisor on X. Assume that $K_X + B + M$ is big. Then we can run the minimal model program with respect to $K_X + B + M$ and get a sequence of extremal contraction morphisms

$$(X, B + M) =: (X_0, B_0 + M_0) \xrightarrow{\varphi_0} \cdots \xrightarrow{\varphi_{k-1}} (X_k, B_k + M_k) =: (X^*, B^* + M^*)$$

with the following properties:

(i) each φ_i is a $(K_{X_i} + B_i + M_i)$-negative extremal birational contraction morphism,

(ii) $K_{X_i+1} = \varphi_i K_{X_i}$, $B_{i+1} = \varphi_i B_i$, and $M_{i+1} = \varphi_i M_i$ for every i,

(iii) M_i is nef for every i, and

(iv) $K_{X^*} + B^* + M^*$ is nef and big.

3. ON slc-trivial fibrations

Recently, Fujino generalized the klt-trivial fibration in [11] and the lc-trivial fibration in [11] to the so-called slc-trivial fibration in [8], where using some deep results of theory of variations of mixed Hodge structures on cohomology with compact support. For more details about slc-trivial fibrations, see [8] and [10].

Let $f : V \to W$ be a projective surjective morphism from a projective simple normal crossing variety V onto a normal projective variety W such that every stratum of V is dominant onto W and $f_*\mathcal{O}_V = \mathcal{O}_W$. Let B_V be a \mathbb{Q}-divisor on V such that (V, B_V) is sub slc and Supp B_V a simple normal crossing divisor. Put

$$B_W := \sum_{P} (1 - b_P)P,$$

where P runs over prime divisors on W and

$$b_P := \max \{ t \in \mathbb{Q} \mid (V, B_V + tf^*P) \text{ is sub slc over the generic point of } P \}.$$
It is easy to see that B_W is a well-defined \mathbb{Q}-divisor on W (cf. [8 4.5]). We call B_W the discriminant \mathbb{Q}-divisor of $f: (V, B_V) \to W$. We assume that the natural map

$$\mathcal{O}_W \to f_*\mathcal{O}_V([-B_V^{1}])$$

is an isomorphism. Then the same as [13, Lemma 5.1], we immediately get that B_W is a boundary \mathbb{Q}-divisor on W.

From now on, we assume that $K_V + B_V \sim_{\mathbb{Q}, f} 0$. Let $b = \min\{m \in \mathbb{Z}_{>0} \mid m(K_F + B_F) \sim 0\}$ where F is a general fiber of f and $K_F + B_F = (K_V + B_V)|_F$. Then we can take a \mathbb{Q}-Cartier \mathbb{Q}-divisor D on W and a rational function $\varphi \in \Gamma(V, K_V)$ (see [8 Section 6]) such that

$$K_V + B_V + \frac{1}{b}(\varphi) = f^*D.$$

Then put

$$M_W := D - K_W - B_W,$$

where K_W is the canonical divisor of W. We call M_W the moduli \mathbb{Q}-divisor of $K_V + B_V + \frac{1}{b}(\varphi) = f^*D$. Under above assumptions and definitions, such a morphism $f: (V, B_V) \to (W, D)$ is a kind of (basic) slc-trivial fibrations defined in [8 Definition 4.1] and we call

$$D = K_W + B_W + M_W$$

the structure decomposition. Note that D is uniquely determined by φ once K_V, K_W and B_V are fixed (cf. [18 (2.6.i)], [14, Proposition 4.2] or [1, Remark 2.5]); thus so is M_W. Note also that φ can be viewed as a b-divisor in the sense of [1 1.2 and Example 1.1 (2)] or [8 Definition 2.12].

Based on the theory of slc-trivial fibrations, we get a useful corollary from [10] which is a generalization of [1 Theorem 0.1] and [1 Theorem 1.4].

Theorem 3.1 ([10 Corollary 1.4]). Notation as above. If $\dim W = 1$, then the moduli \mathbb{Q}-divisor M_W is semi-ample.

The same as [13 Corollary 5.4], we immediately get that

Corollary 3.2. Notation as above. If $\dim W = 1$ and D is nef, then D is semi-ample.

The following lemma seems to be a simple fact hidden behind the proof of Theorem 3.1. But it will play a very key role in this paper. It shows that if the moduli part of an slc-trivial fibration is numerically trivial, then this moduli part defines a local system coming from the variation of (mixed) Hodge structures, and the difference between the moduli part and the local system is given by the rational section φ. This property makes the moduli parts possible to be glued together in the non-normal cases.

Lemma 3.3. Notation as above. If $\dim W = 1$ and $M_W \equiv 0$, then there exists a positive integer k such that $\mathcal{O}_W(kM_W) \cdot (\sqrt[k]{\varphi^k}) = \mathcal{O}_W$.

Proof. We can assume that the morphism $f: (V, B_V) \to W$ satisfies the following conditions (a)–(g). They are nothing but the conditions stated in [8 Proposition 6.3] and [10 Section 5]:

(a) W is a smooth curve and V is a projective simple normal crossing variety.
(b) Σ_W and Σ_V are simple normal crossing divisors on W and V respectively.
(c) f is a projective surjective morphism.
(d) B_V and B_W, M_W are supported by Σ_V and Σ_W respectively.
(e) every stratum of (V, Σ_V^b) is smooth over $W^* := W \setminus \Sigma_W$.
(f) $f^{-1}(\Sigma_W) \subset \Sigma_V$, $f(\Sigma_W^b) \subset \Sigma_W$.
(g) $(B_V^b)^{1}$ is Cartier.
By [8 Lemma 7.3, Theorem 8.1], there exists a finite surjective morphism $\pi: C \to W$ (unipotent reduction) and a Cartier divisor M_C such that $M_C = \pi^* M_W$. Note that there is also an induced (pre-basic) slc-trivial fibration (see [8 4.3]) $f': (V', B_{V'}) \to (C, \pi^* D)$ with

$$K_{V'} + B_{V'} + \frac{1}{b}(\phi') = f'^*(\pi^* D).$$

where ϕ' is the pullback of ϕ. By the proof of [10 Theorem 1.3] (see also [11 Lemma 5.2]), $\mathcal{O}_C(M_C) \cdot (\sqrt[n]{\phi'})|_{C^*}$ is a direct summand of $F^0 \text{Gr}_i^W((\mathcal{V}', \phi'))$ where $C^* = \pi^{-1}(W^*)$, and $\text{Gr}_i^W((\mathcal{V}', \phi'))$ is a polarizable variation of \mathbb{Q}-Hodge structures. By definitions and Theorem 2.1,

$$\text{Gr}_i^W((\mathcal{V}', \phi')) = \mathcal{O}_{C^*} \otimes \mathbb{V}$$

where \mathbb{V} is a local system on C^*. Note that the induced filtration $F^0(\mathbb{V})$ is not necessary a local subsystem of \mathbb{V}. But by [8 Proposition 6.3] and the assumption that $M_C = \pi^* M_W \equiv 0$, there is an induced identification:

$$\mathcal{O}_C(M_C) \cdot (\sqrt[n]{\phi'})|_{C^*} = \mathcal{O}_{C^*} \otimes \mathcal{M}$$

where $\mathcal{M} \subset \mathbb{V}$ is a local subsystem of rank one by [10 Lemma 4.8]. Then by [3 Corollaire (4.2.8) (iii) b)], there is a positive integer t such that $\mathcal{M} \otimes t$ is a constant system and

$$\mathcal{O}_C(tM_C) \cdot (\sqrt[n]{\phi'})|_{C^*} = \mathcal{O}_{C^*} \otimes \mathcal{M} \otimes t.$$

Therefore, we can take a canonical extension such that

$$\mathcal{O}_C(tM_C) \cdot (\sqrt[n]{\phi'}) = \mathcal{O}_C \otimes \mathcal{M} \otimes t$$

by [9 Theorem 7.1] (see also [16 Lemma 1], [19 Theorem 1] or [17 Theorem 2.6]). That is, $tM_C + t(\sqrt[n]{\phi'}) = 0$ by viewing as Cartier divisors. By pushing forward, we have that

$$t \cdot \deg \pi \cdot (M_W + (\sqrt[n]{\phi})) = 0.$$

Let $k = t \cdot \deg \pi$. Then $\mathcal{O}_W(kM_W) \cdot (\sqrt[n]{\phi}) = \mathcal{O}_W$. \hfill \Box

Remark 3.4. Note that on W, we can show that $\mathcal{O}_W(M_W)(\sqrt[n]{\phi})|_{W^*}$ defines a local subsystem by the same proof of [10 Theorem 1.3]. Then by [3 Corollaire (4.2.8) (iii) b)], there is a positive integer k such that $\mathcal{O}_W(kM_W) \cdot (\sqrt[n]{\phi})|_{W^*}$ is a constant system. This k coincides with that k in Lemma 3.3.

Now we are ready to prove the following corollary.

Corollary 3.5. Notation as above. If $\dim W = 2$, (W, B_W) is dlt, and D is nef and big, then D is semi-ample.

Proof. Let $C = B_W^{\leq 1}$ and assume that $C = \sum C_i$ is connected for simplicity. Note that $D = K_W + B_W + M_W$ where $B_W = C + B_W^{\leq 1}$ is a boundary \mathbb{Q}-divisor and M_W is nef by [8 Theorem 1.2]. Then $2D - (K_W + B_W) = D + M_W$ is nef and big. Therefore, to prove that D is semi-ample, it suffices to prove that $D|_C$ is semi-ample by Kawamata–Shokurov basepoint-free theorem (cf. [13 Lemma 4.3]). Let $C = A + B$ where $A = \sum_{D(C) > 0} C_i$ and $B = \sum_{D(C) > 0} C_j$. Then $D|_A$ is numerically trivial on A and $D|_B$ is ample on B. If we can prove that $D|_A$ is \mathbb{Q}-linearly trivial, then $D|_C$ is semi-ample by [15 Lemma 2.16]. Note that $D|_A$ is numerically trivial is equivalent to

$$(K_W + A + B + B_W^{\leq 1} + M_W) \cdot A = 0.$$
This implies that \(2p_a(A) - 2 = \deg K_A = (K_W + A) \cdot A \leq 0 \). If \(p_a(A) = 0 \), then it is obvious that \(D|_A \) is \(\mathbb{Q} \)-linearly trivial. Thus we assume that \(p_a(A) = 1 \). It follows that

\[
(K_W + A) \cdot A = B \cdot A = B_{W}^{1} \cdot A = M_{W} \cdot A = 0.
\]

We can see that \(A \) does not intersect \(B \) by \(B \cdot A = 0 \). Since we assume that \(C \) is connected at the beginning, it follows that \(B = 0 \) in this case. That is, \(C = A \). Moreover, \((K_W + C) \cdot C = (K_W + A) \cdot A = 0 \) implies that \(C \) is either a smooth elliptic curve or a nodal rational curve or a cycle of smooth rational curves (taking analytic dlt pairs into consideration). When \(C \) is a smooth elliptic curve, \(D|_C \) is \(\mathbb{Q} \)-linearly trivial by Corollary 3.2. When \(C \) is a nodal rational curve and \(P \) is the nodal point, we blow up \(W \) at point \(P \) and denote it as \(\pi: W' \to W \). Note that \(W' \) is smooth at around \(\pi^{-1}(P) \) since \(W \) is smooth at the nodal point \(P \). Let \(B_{W'} \) be the \(\mathbb{Q} \)-divisor such that \(K_{W'} + B_{W'} = \pi^{*}(K_W + B_W) \), \(D' = \pi^{*}D \) and \(M_{W'} = \pi^{*}M_W \). Then it is easy to see that \(C' = B_{W}^{1} \) is a cycle of two smooth rational curves and \(D' \) is semi-ample if and only if \(D \) is semi-ample. Thus we reduce the case to that \(C \) is a cycle of smooth rational curves. Then \(M_{W'} \cdot A = M_{W} \cdot C = 0 \) implies that \(M_{W'} \cdot C_i = 0 \) for every \(i \) since \(M_{W} \) is nef. Let \(S \) be the union of strata of \(B_{W}^{1} \) mapping into \(C \). By further resolutions, we can assume that \(S \) is a union of irreducible components of \(B_{W}^{1} \) (cf. \([7, \text{Proposition 6.3.1}]\)). By Lemma 2.2, the natural map \(\mathcal{O}_C \to g_i^{*}\mathcal{O}_S([-B_{S}^{1}]) \) is an isomorphism, where \(K_S + B_S = (K_V + B_V)|_S \) and \(g = f|_S \). Similarly, let \(S_i \) be the union of irreducible components of \(B_{V}^{1} \) dominant onto (not only mapping into) \(C_i \) for every \(i \). By Lemma 2.2 and Corollary 2.3, \(\mathcal{O}_{C_i} \to g_{i*}\mathcal{O}_{S_i}([-B_{S_i}^{1}]) \) is an isomorphism where \(K_{S_i} + B_{S_i} = (K_V + B_V)|_{S_i} \) and \(g_i = f|_{S_i} \). Then by adjunction,

\[
K_S + B_S + \frac{1}{b}(\varphi)|_S = (K_V + B_V + \frac{1}{b}(\varphi))|_S = g^{*}(D|_C)
\]

and

\[
K_{S_i} + B_{S_i} + \frac{1}{b}(\varphi)|_{S_i} = (K_V + B_V + \frac{1}{b}(\varphi))|_{S_i} = g_{i*}^{*}(D|_{C_i}).
\]

Note that the number \(b_i := \min\{m \in \mathbb{Z}_{>0} | m(K_{F_i} + B_{F_i}) \sim 0 \} \) is a factor of \(b \) where \(F_i \) is the general fiber of \(g_i \) for every \(i \). That is, there exists a positive integer \(s_i \) such that \(b = s_i b_i \) for every \(i \). Then the morphism \(g_i: (S_i, B_{S_i}) \to C_i \) satisfies our definition of slc-trivial fibrations with \(K_{S_i} + B_{S_i} + \frac{1}{b_i}(\varphi)|_{S_i} = g_{i*}^{*}(D|_{C_i}). \) and

\[
D|_{C_i} = K_{C_i} + B_{C_i} + M_{C_i}.
\]

By Lemma 3.3 there exists a positive integer \(k \) (not depending on \(i \)) such that

\[
\mathcal{O}_{C_i}(kM_{C_i}) \cdot (\sqrt[k]{\varphi}|_{C_i}) = \mathcal{O}_{C_i}.
\]

By adjunction, we have

\[
D|_{C_i} = (K_W + C + M_W)|_{C_i} = K_{C_i} + (C - C_i)|_{C_i} + M_W|_{C_i}.
\]

Comparing (3.1) and (3.2), it is easy to get that \(B_{C_i} = (C - C_i)|_{C_i} \) consists of two reduced points on \(C_i \) and \(M_{C_i} = M_W|_{C_i} \). Therefore,

\[
(\mathcal{O}_{C}(kM_W) \cdot (\sqrt[k]{\varphi}|_{C_i}))|_{C_i} = \mathcal{O}_{C_i}(kM_{C_i}) \cdot (\sqrt[k]{\varphi}|_{C_i}) = \mathcal{O}_{C_i}.
\]

Since the right hand side is the structure sheaf for every \(i \), we can glue them together and get \(\mathcal{O}_{C} \) exactly. That is, \(\mathcal{O}_{C}(kM_W) \cdot (\sqrt[k]{\varphi}|_{C}) = \mathcal{O}_{C} \). Then \(\mathcal{O}_{C}(M_W) \sim_{\mathbb{Q}} \mathcal{O}_{C} \) and thus \(M_W|_{C} \sim_{\mathbb{Q}} 0 \). Therefore,

\[
D|_{C} = K_{C} + M_{W}|_{C} \sim M_{W}|_{C} \sim_{\mathbb{Q}} 0,
\]

and this is what we want. \(\square \)
Remark 3.6. In fact, we showed that if dim\(W = 2\), \((W, B_W)\) is dlt, \(D\) is nef and there is some number \(a > 0\) such that \(aD - (K_W + B_W)\) is nef and big, then \(D\) is semi-ample. The proof is without any change.

proof of the main theorem. By the same proof of [13, Theorem 1.2], we can reduce to prove that the ring \(R(Y, D)\) is finitely generated for an slc-trivial fibration \(f: (V, B_V) \to (Y, D)\) where \(D = K_Y + B_Y + M_Y\), \((Y, B_Y)\) is dlt and \(D\) is big. By Lemma 2.4, we can further assume that \(D\) is nef. Then our conclusion follows from Corollary 3.5. \(\Box\)

References

[1] F. Ambro, Shokurov’s boundary property, J. Differential Geom. 67 (2004), no. 2, 229–255.
[2] C. Birkar, P. Cascini, C. D. Hacon, J. M’Kernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405–468.
[3] P. Deligne, Théorie de Hodge, II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57.
[4] E. Floris, Inductive approach to effective b-semiampleness, Int. Math. Res. Not. IMRN 2014, no. 6, 1465–1492.
[5] O. Fujino, A canonical bundle formula for certain algebraic fiber spaces and its applications, Nagoya Math. J. 172 (2003), 129–171.
[6] O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), no. 3, 727–789.
[7] O. Fujino, Foundations of the minimal model program, MSJ Memoirs, 35. Mathematical Society of Japan, Tokyo, 2017.
[8] O. Fujino, Fundamental properties of basic slc-trivial fibrations, to appear in Publ. Res. Inst. Math. Sci.
[9] O. Fujino, T. Fujisawa, Variations of mixed Hodge structure and semipositivity theorems, Publ. Res. Inst. Math. Sci. 50 (2014), no. 4, 589–661.
[10] O. Fujino, T. Fujisawa, H. Liu, Fundamental properties of basic slc-trivial fibrations, II, to appear in Publ. Res. Inst. Math. Sci.
[11] O. Fujino, Y. Gongyo, On the moduli b-divisors of lc-trivial fibrations, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 4, 1721–1735.
[12] O. Fujino, H. Liu, On normalization of quasi-log canonical pairs, Proc. Japan Acad. Ser. A Math. Sci. 94 (2018), no. 10, 97–101.
[13] O. Fujino, H. Liu, On the log canonical ring of projective plt pairs with the Kodaira dimension two, to appear in Ann. Inst. Fourier (Grenoble).
[14] O. Fujino, S. Mori, A canonical bundle formula, J. Differential Geom. 56 (2000), no. 1, 167–188.
[15] Y. Gongyo, On weak Fano varieties with log canonical singularities, J. Reine Angew. Math. 665 (2012), 237–252.
[16] Y. Kawamata, Kodaira dimension of algebraic fibre spaces over curves, Inv. Math. 66 (1982), 57–71.
[17] J. Kollár, Higher direct images of dualizing sheaves, II, Ann. of Math. 124 (1986), 171–202.
[18] S. Mori, Classification of higher-dimensional varieties, Proc. Symp. Pure Math. 46 (1987), 269–331.
[19] N. Nakayama, Hodge filtrations and the higher direct images of canonical sheaves, Inv. Math. 85 (1986), no. 1, 217–221.
[20] C. A. M. Peters, J. H. M. Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 52. Springer-Verlag, Berlin, 2008.

Peking University, Beijing International Center for Mathematical Research, Beijing, 100871, China

Email address: hdliu@bicmr.pku.edu.cn