Title:
Beyond the Superficial: Disseminated *Trichophyton rubrum* Infection in a Kidney Transplant Recipient

Keywords:
Trichophyton; Transplant; Disseminated Dermatophytosis; Literature Review

Authors:
Caitlin A. Trottier MD\(^1\),\(^2\), Vimal Jhaveri MD\(^2\),\(^3\), Mary Jane Zimarowski MD\(^2\),\(^4\), Barbra M. Blair MD\(^2\),\(^3\), Carolyn D. Alonso MD\(^2\),\(^3\)

\(^1\)Beth Israel Deaconess Medical Center, Department of Medicine, Boston, MA.
\(^2\)Harvard Medical School, Boston, MA
\(^3\)Beth Israel Deaconess Medical Center, Division of Infectious Diseases, Department of Medicine, Boston, MA.
\(^4\)Beth Israel Deaconess Medical Center, Department of Pathology, Boston, MA.

Corresponding Author:
Caitlin A. Trottier, MD, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215; Email: catrotti@bidmc.harvard.edu, Phone: 774-444-5800

Alternate Corresponding Author:
Vimal Jhaveri, MD, Beth Israel Deaconess Medical Center, 110 Francis Street, Suite GB, Boston, MA, 02215; Email: vjhaveri@bidmc.harvard.edu, Phone: 617-632-7706, Fax: 617-632-7626

Contributions:
CT was involved in the entire process including background research, initial draft, and editing of the manuscript. MJZ provided pathology imaging, description of findings, and editing entire manuscript. VJ, BB, and CA provided guidance and editing. All authors have reviewed the final manuscript and approved its contents.

Funding:
There are no funding sources involved in the authorship of this article.

© The Author(s) 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Conflict of Interest:
The authors report no conflicts of interest.

Abstract:
Superficial dermatophyte infections are common in the general population and are readily treated with topical antifungals. Deeper invasion is rare, and dissemination to visceral organs is extremely uncommon. We describe a 66 year old renal transplant recipient who developed disseminated *Trichophyton rubrum* infection while undergoing treatment for acute humoral rejection. The infection presented as a facial rash with subsequent dissemination to the lungs and chest wall. All sites of infection improved with combination administration of oral posaconazole and terbinafine. In this work, we review the available literature regarding management of disseminated *Trichophyton* infection and discuss therapeutic interventions for disseminated dermatophytosis in immunosuppressed hosts.
Case Report:

A 66-year-old male with a past medical history of end stage renal disease as a complication of hypertension and type II diabetes mellitus and preemptive deceased donor renal transplant two months prior, presented to our hospital in October 2018 for management of recurrent surgical site infection.

Due to low level donor specific antibodies at the time of transplant, he received four doses of antithymocyte globulin (ATG), mycophenolate mofetil, pulse dose steroids and tacrolimus. His post-transplant infection prophylaxis included single strength trimethoprim-sulfamethoxazole, valganciclovir and nystatin swish and swallow. In September 2018 he was admitted for a surgical site infection requiring incision, drainage and intravenous (IV) vancomycin. Labs at the time were notable for a creatinine of 1.2 mg/dL (estimated glomerular filtration rated based on the MDRD equation = 64 mL/min/1.73 m²). Urinalysis demonstrated worsening proteinuria. This prompted a transplant kidney biopsy which revealed probable humoral rejection. Treatment was initiated with pulse-dose methylprednisolone followed by an oral prednisone taper, five sessions of therapeutic plasma exchange with intravenous immunoglobulin (IVIG), and continuation of his tacrolimus and mycophenolate mofetil. He completed a 3 ½ week course of intravenous vancomycin followed by daptomycin, with resolution of the erythema and collection. In October 2018, the patient reported symptoms of recurrent erythema and warmth over the kidney transplant site concerning for recurrent infection. He was readmitted and incidentally noted to have a non-pruritic, non-painful nodular erythematous facial rash with an annular border and several necrotic papules under his left eye. The rash had developed slowly over the two months following transplant. Given concern for dermatophytosis, he underwent a punch biopsy of the left cheek rash. While awaiting the results of the skin biopsy, he was placed on twice daily topical ketoconazole 2%. He was discharged with planned outpatient dermatology and infectious diseases follow-up. Of note, further history revealed that the patient’s wife had been recently diagnosed with tinea corporis.

On skin biopsy (Image 1) pathologic examination showed pseudoeipithiomaticous hyperplasia with intradermal neutrophilic microabscesses, dermal acute and chronic inflammation with plasma cells, and both epidermal and dermal fungal hyphal and yeast forms. Routine bacterial culture demonstrated coagulase negative Staphylococcus. KOH stain demonstrated fungal elements with septate hyphae.
Fungal culture was negative and acid-fast stain and culture were negative. Tissue was sent for fungal 18S PCR (University of Washington, Seattle, WA) and revealed *Trichophyton rubrum complex* DNA.

After three weeks of topical treatment, he returned with several new indurated, violaceous plaques extending to the left malar cheek and jaw line and a new nodule on his left chest wall (Image 2). A biopsy of the chest wall lesion was performed. Staging for disseminated infection included a computed tomography (CT) of the chest which revealed a large solid cluster of nodules in the left upper lobe of the lung surrounded by ground glass opacities concerning for a disseminated fungal process (Image 3). Routine bacterial blood cultures and mycolytic blood cultures (Bactec Myco/F Lytic culture, BD, Franklin Parks, NJ) were negative. Serum (1,3)-β-D-glucan (Fungitell assay; Associates of Cape Cod, Inc.) was elevated at >500 pg/mL. Transbronchial and transthoracic sampling of the lung nodules were considered. However, this was deemed too high risk given the proximity of the nodules to the fissure.

The chest wall biopsy revealed fungal hyphae within the follicular contents and numerous pan-dermal irregularly shaped fungal hyphae and yeast like forms, consistent with cutaneous fungal infection with features suggestive of deep dermatophytosis. Pathology demonstrated associated pseudoepithliomatous hyperplasia, intraepidermal and dermal mixed neutrophilic, lymphohistiocytic, and eosinophilic inflammation with a focus of neutrophilic abscess formation. KOH stain demonstrated fungal elements with septate hyphae. Fungal culture revealed *Trichophyton rubrum*. Fungal confirmation and susceptibility testing were subsequently obtained through phenotypic characterization and DNA sequencing at University of Texas Health Science Center Health (San Antonio, TX) (Supplementary Table 1), although not available at the time of initiation of antifungal therapy.

Based on the results of his chest imaging and skin biopsy findings, a presumptive diagnosis of disseminated dermatophytosis with *Trichophyton rubrum* was made. He was initiated on voriconazole (loading dose: 6 mg/kg dose x 2 doses followed by maintenance dose of 4 mg/kg q12 hours) and terbinafine (500 mg PO q12 hours). Multiple concomitant medications (including his tacrolimus) required adjustment due to drug-drug interactions. In light of the recent rejection episode, there was no reduction in his immunosuppressive regimen.

One week into his antifungal therapy, the patient noted visual hallucinations (voriconazole trough: 5.4 mcg/mL) suspected to be related to the voriconazole therapy. Voriconazole was switched to
posaconazole (4 mg/kg daily). Terbinafine 500 mg PO q12 hours was continued as a second antifungal agent. Repeat CT imaging two weeks into systemic treatment showed a decrease in size of the lung nodules with only mild ground-glass changes remaining (Image 3).

At three weeks, there was resolution of the chest wall lesion and dramatic improvement in the facial lesion (Image 2). Combination antifungal therapy was continued until January 2019 (2 months). At that time, the patient had experienced substantial clinical improvement and results of the antifungal susceptibility testing were available. He was consolidated into single agent terbinafine 500 mg PO q12 hours. By February 2019 there was near complete resolution of the skin rash. Only a single faint papule remained on the left cheek. During this time, the patient developed worsening renal failure requiring initiation of dialysis and new onset calciphylaxis and failure to thrive. He died 6 months following his initial kidney transplant of a cardiac arrest related to underlying renal failure and cardiac dysfunction.

Discussion:

This case illustrates the rare syndrome of disseminated dermatophytosis from *T. rubrum* with skin and pulmonary manifestations in the setting of augmented immunosuppression for treatment of renal transplant rejection. Superficial dermatophyte infections are common in both healthy and immunocompromised patients [1, 2], including patients with HIV or after solid organ transplant. [3, 4] However, dissemination is extremely rare. Disseminated disease has been described during treatment for rejection [5, 6] and after administration of anti-thymocyte globulin [7, 8]. In a French case series of invasive dermatophytosis (12 solid organ transplant recipients), half had an episode of rejection prior to developing invasive dermatophytosis [5]. *T. rubrum* was the most commonly isolated organism [2-4, 9]. *M. canis* and *T. violaceum* [2] were the organisms less frequently involved.

In the microbiology laboratory, *T. rubrum* can be identified by using a combination of morphology and microscopy techniques. Isolates are often described as having cotton or wooly appearance. The yield of fungal culture can be optimized by alerting the laboratory to the possibility of dermatophyte infection. This allows for plating on appropriate media and extension of incubation time to improve the diagnostic yield. To prevent bacterial and saprophytic fungal overgrowth, chloramphenicol and cycloheximide may be added [10]. If culture techniques are not successful, PCR-based techniques may
be used to identify the organism. Given reports of drug resistance and the inability to predict resistance patterns based on species level identification, additional drug susceptibility testing is also recommended.

Superficial infections are common and are the prerequisite for any disseminated infection. This concept underlies the importance of early recognition and treatment of this disease. While Majocchi’s granuloma is characterized as fungal invasion that is limited to the perifollicular area, deep dermatophytosis extends beyond that [5]. The diagnosis of invasive disease is made when there is evidence of spread beyond the deep dermis into the internal organs, as was the case with our patient. This diagnosis was further supported by his imaging findings which demonstrated resolution in response to antifungal therapy (Image 3).

Data to support a specific regimen for disseminated *T. rubrum* are lacking. In vitro studies have shown terbinafine, extended spectrum azoles, and griseofulvin have activity, whereas fluconazole does not [11]. Treatment of superficial dermatophyte infections can usually be accomplished with topical agents; however invasive disease requires systemic therapy [12, 13]. While some series have used terbinafine monotherapy [5], which is particularly efficacious in the early stages of disease, dual therapy with terbinafine and an azole have been synergistic in vitro against some fungal species [14, 15]. Given the extent of his infection and ongoing immunosuppression, the patient was initiated on dual therapy while susceptibility data were pending. Once clinical improvement was noted and sensitivity data were known, the patient was narrowed to a single antifungal agent. However, it is important to note that there have been reports of relapse after terbinafine monotherapy [16]. Hence, patients with disseminated infections should have their treatment duration tailored to clinical response and long term follow-up. Some patients may require treatment for months to years [16, 17]. While not possible in all patients, reduction in immunosuppression should be considered as fundamental adjunctive measure [18].

The case illustrates a rare presentation of disseminated dermatophytosis, with presumed dissemination into the lungs after treatment for renal transplant rejection. Immunocompromised patients are at risk for invasive disease. In this population, a superficial dermatophyte infection should prompt providers to carefully evaluate a patient’s net state of immunosuppression, consider early treatment to prevent dissemination, and direct symptom-based imaging at sites of potential dissemination. While there are no standardized treatment guidelines for treatment of this infection, antifungal therapy may include
terbinafine as a first line agent for localized disease or combination therapy with a later generation azole for invasive or disseminated infections. Therapy duration should be based on response to treatment taking into consideration clinical and radiographic improvement.
Image 1: Skin punch biopsy showing: marked epidermal and follicular hyperplasia and marked dermal inflammation (top left), irregular shapes of invasive dermatophyte fungal forms in deep dermis (top right). An opening of a hair follicle with typical dermatophyte fungal forms (GMS stain bottom left, and H&E stain bottom right).
Image 2: Facial lesion and chest lesion on second presentation (far left, center), facial lesion after three weeks of systemic antifungal therapy.
Image 3: Chest CT on presentation (left), and after two weeks of systemic anti-fungal therapy.
1. Nir-Paz, R., et al. “Deep Infection by Trichophyton Rubrum in an Immunocompromised Patient.” *Journal of Clinical Microbiology*, vol. 41, no. 11, 2003, pp. 5298–5301., doi:10.1128/jcm.41.11.5298-5301.2003.

2. Marconi, Vincent C., et al. “Disseminated Dermatophytosis in a Patient with Hereditary Hemochromatosis and Hepatic Cirrhosis: Case Report and Review of the Literature.” *Medical Mycology*, vol. 48, no. 3, 2010, pp. 518–527., doi:10.3109/13693780903213512.

3. Selvi, G. Sentamil, et al. “Clinical and Mycological Features of Dermatophytosis in Renal Transplant Recipients.” *Mycoses*, vol. 42, no. 1-2, 1999, pp. 75–78., doi:10.1046/j.1439-0507.1999.00405.x.

4. Kershenovich, Ruben, et al. “A Unique Clinicopathological Manifestation of Fungal Infection: A Case Series of Deep Dermatophytosis in Immunosuppressed Patients.” *American Journal of Clinical Dermatology*, vol. 18, no. 5, Aug. 2017, pp. 697–704., doi:10.1007/s40257-017-0276-y.

5. Rouzaud, Claire, et al. “Severe Dermatophytosis in Solid Organ Transplant Recipients: A French Retrospective Series and Literature Review.” *Transplant Infectious Disease*, vol. 20, no. 1, 2018, doi:10.1111/tid.12799.

6. Seçkin, Deniz, et al. “Deep Dermatophytosis Caused by Trichophyton Rubrum with Concomitant Disseminated Nocardiosis in a Renal Transplant Recipient.” *Journal of the American Academy of Dermatology*, vol. 51, no. 5, 2004, doi:10.1016/j.jaad.2004.05.008.

7. Gega, A., et al. “Majocchis Granuloma after Antithymocyte Globulin Therapy in a Liver Transplant Patient.” *Transplant Infectious Disease*, vol. 12, no. 2, 2010, pp. 143–145., doi:10.1111/j.1399-3062.2009.00454.x.

8. Issa, Nicolas C., and Jay A. Fishman. “Infectious Complications of Antilymphocyte Therapies in Solid Organ Transplantation.” *Clinical Infectious Diseases*, vol. 48, no. 6, 2009, pp. 772–786., doi:10.1086/597089.

9. Boral, Hazal, et al. “Majocchi’s Granuloma: Current Perspectives.” *Infection and Drug Resistance*, Volume 11, 2018, pp. 751–760., doi:10.2147/idr.s145027.

10. Saunte DML, Hare RK, Jørgensen KM, et al. Emerging Terbinafine Resistance in Trichophyton: Clinical Characteristics, Squalene Epoxidase Gene Mutations, and a Reliable EUCAST Method for Detection. Antimicrob Agents Chemother. 2019;63(10):e01126-19. Published 2019 Sep 23. doi:10.1128/AAC.01126-19

11. Deng, Shuwen, et al. “Comparison of The In Vitro Activities of Newer Triazoles and Established Antifungal Agents against Trichophyton Rubrum.” *Antimicrobial Agents and Chemotherapy*, vol. 59, no. 7, 2015, pp. 4312–4314., doi:10.1128/aac.00244-15.
12. Lestringant, Gilles G., et al. “Deep Dermatophytosis to Trichophyton Rubrum and T. Verrucosum in an Immunosuppressed Patient.” *International Journal of Dermatology*, vol. 27, no. 10, 1988, pp. 707–709., doi:10.1111/j.1365-4362.1988.tb01269.x.

13. Gupta, Aditya K., and Elizabeth A. Cooper. “Update in Antifungal Therapy of Dermatophytosis.” *Mycopathologia*, vol. 166, no. 5-6, 2008, pp. 353–367., doi:10.1007/s11046-008-9109-0.

14. Cantón Emilia, et al. “Synergistic Activities of Fluconazole and Voriconazole with Terbinafine against Four Candida Species Determined by Checkerboard, Time-Kill, and Etest Methods.” *Antimicrobial Agents and Chemotherapy*, vol. 49, no. 4, 2005, pp. 1593–1596., doi:10.1128/aac.49.4.1593-1596.2005.

15. Dorsthorst, D. T. A. Te, et al. “Comparison of Fractional Inhibitory Concentration Index with Response Surface Modeling for Characterization of In Vitro Interaction of Antifungals against Itraconazole-Susceptible and -Resistant Aspergillus Fumigatus Isolates.” *Antimicrobial Agents and Chemotherapy*, vol. 46, no. 3, 2002, pp. 702–707., doi:10.1128/aac.46.3.702-707.2002.

16. Sheikh, Gousia, et al. “Relapse after Oral Terbinafine Therapy in Dermatophytosis: A Clinical and Mycological Study.” *Indian Journal of Dermatology*, vol. 61, no. 5, 2016, p. 529., doi:10.4103/0019-5154.190120.

17. Cheikhrouhou F, Makni F, Ayadi A. La maladie dermatophytique: revue de la littérature. Dermatophytic disease: Literature review. J Mycol Med 2010; 20:61-69

18. Shoham S, Dominguez EA; AST Infectious Diseases Community of Practice. Emerging fungal infections in solid organ transplant recipients: Guidelines of the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019;33(9):e13525.