Original

A Study on Acute Ischemia-Reperfusion Models in Rats Treated by Bone Mesenchymal Stem Cells Grafting via Arteries and Veins

Xin-Hui Qu1*, Wan-Song Wang2*, Shi-Min Liu3, Ling-Feng Wu1, Chen Xie1, Xiao-Yan Yang3, Yan He3 and Xiao-Mu Wu3

1 Department of Neurology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
2 Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
3 Medical College of Nanchang University, Nanchang, Jiangxi, China

(Accepted for publication, July 17, 2019)

Abstract: To investigate differences in curative effect of bone mesenchymal stem cells grafting via arteries and veins on 6-hour ischemia-reperfusion. A 2-hour middle cerebral artery ischemia-reperfusion model was established in 27 SD female rats. BMSCs were isolated and cultured using the whole bone marrow adherent technique, identified by flow cytometry. The expression of surface antigen CD90, CD29, CD106, CD11b, CD34 and CD45 on BMSCs was 95.7%, 97.3%, 52.7%, 6.01%, 2.95% and 2.26%, respectively. When compared with two PBS groups, the neurological severity was ameliorated significantly and expression of GFAP and Bcl-2 in infarction border zone were further up-regulated in two BMSCs groups. Moreover, the levels of TNF-α in serum and TUNEL staining in brain tissue were significantly reduced after transplantation. BMSC grafting via caudal veins was the best approach during the early periods of ischemia-reperfusion due to minor trauma and the rich source of BMSCs. It provides a possible way to future clinical treatment of cerebral infarction by stem cell infuson to patients.

Key words: BMSCs, Ischemia-reperfusion cerebral infarction, Transplantation apoptosis

Introduction

Cerebral infarction is the most common cerebral vascular disease. At present, only thrombolysis and interventional therapy can effectively restore revascularization. However, due to narrow treatment time windows, only few patients receive these benefits through the abovementioned therapies. Therefore, there is an urgent need to develop some new therapeutic measures. Some studies have shown that stem cell grafting can greatly improve neurologic impairment1 and widen treatment time windows2. Therefore, stem cell grafting is expected to provide new thoughts to the treatment of cerebral infarction.

Bone mesenchymal stem cells (BMSCs) are capable of multi-directional differentiation, self-renewal and paracrine, and these cells are divided into nerve cells across germ layers3. BMSCs can be obtained from a wide variety of sources, and can be autologous-supplied with convenience, safety and low immunogenicity. Autologous and heterogenous grafting does not cause immunoinflammatory responses4, allowing this to be easily accepted by patients. BMSCs have unique advantages for treating cerebral infarction.

A number of experiments have found that mesenchymal stem cell (MSC) grafting could significantly improve the neurological function of patients with cerebral infarction5-7. Its potential mechanism include cell replacement8, nutritional support9, immune inflammation regulation10, acceleration in the formation of new vessels11, and acceleration in endogenous neurogenesis12. However, its specific mechanism remains controversial. Common grafting pathways for MSCs in treating cerebral infarction include the venous pathway, arterial pathway, and stereotactic pathway. There are pros and cons in all grafting pathways13-15, but the best technique remains controversial. Hence, this experiment focused on the differences in curative effects between trans-arterial and trans-venous BMSC 6-hour grafting, and its specific mechanisms were also preliminarily explored.

Materials and Methods

Isolation, culture, amplification and identification of BMSCs

Sprague-Dawley (SD) rats (3-4 week old) were sacrificed by dislocation and immersed in 75% medical alcohol to sterilize for 10 minutes. The femurs and tibias of these rats were separated on a super clean bench, residual tissues were washed by sterile phosphate buffered saline (PBS), and the epiphysis at two ends was removed. The marrow cavity was repeatedly washed by Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F-12) Media containing 10% fetal bovine serum (FBS) with a sterile syringe. The bone marrow was blown even, inoculated in a 25 cm² cell culture bottle, and placed at 37°C in a 5% CO₂ cell incubator. After 24 hours, half of the amount of the medium was replaced, and the full amount of the medium was replaced after two days. The medium was replaced every 2-3 days. When growing to approximately 90% confluence, the cells were subcultured at a ratio of 1: 2.

Cells at second generation were digested by pancreatic enzyme containing 0.25% EDTA, and then centrifuged at 1,000 rpm at 4°C, and rinsed by PBS solution after the liquid supernatant was discarded. Afterwards, cell density was adjusted to 1×10⁶ by PBS, and surface antigen CD29, CD90, CD106, CD34, CD45 and CD11b (Biolegend, CA, USA) were incubated in dark, and cells were centrifuged at 1,000 rpm. Next,
Establishment of the middle cerebral artery occlusion (MCAO) model

Clean 250-280 g SD female rats (provided by Hunan SJA Laboratory Animal Co., Ltd., Changsha, China) underwent intraperitoneal anesthesia with 10% chloral hydrate at the dosage of 0.3 ml/100 g. Rats were placed in the spinal position, and the four limbs and head were fixed. An incision was performed in the middle of the front neck, and a blunt dissection was made in the common carotid artery, internal carotid artery, external carotid artery and vagus nerves. The common carotid artery and internal carotid artery were clipped, and the external carotid artery was ligatured and cut off. A nylon thread (Beijing Sino Biological Technology Co., Ltd., Beijing, China) with a diameter of 0.26 mm and a head diameter of 0.36 mm was used and inserted into the internal carotid artery from the stump of the external carotid artery at a depth of approximately 18 mm until the thread was blocked. The thread was slowly removed two hours after allowing blood to flow through the middle cerebral artery, in order to relieve obstruction and recirculate blood flow.

Grafting

Rats in the MCAO model were divided into four groups based on a random number table: carotid arterial BMSCs group (n = 8), carotid arterial PBS group (n = 6), and caudal vein PBS group (n = 6). Rats in the carotid arterial BMSCs group and carotid arterial PBS group were treated as follows: rats underwent intraperitoneal anesthesia with 10% chloral hydrate, and the original incision was opened. Blunt separation was made in the common carotid artery and internal carotid artery. A PE-50 catheter was inserted into the internal carotid artery from the stump of the external carotid artery, and 500 μl of cell suspension containing 1×10^6 BMSCs or PBS was injected. The incision was pressed by cotton swabs and sutured. Rats in the caudal vein BMSCs group and caudal vein PBS group were treated as follows: rats were fixed and the tails of these rats were immersed in warm water, transplanted under relatively sterile conditions, and were not treated with antibiotics.

Detection of neurological impairment

Six hours after ischemia-reperfusion and on the 7th day after transplantation, the modified neurologic severity score (mNSS, including evaluation of motor, sensory, balance and reflex functions) was measured. The severity of neurological function was positively correlated with the scores.

Detection by immunohistochemistry

On the 7th day after transplantation, rats were sacrificed, and blood was extracted from the cardiac apex. The brain was taken out and fixed with 4% paraformaldehyde overnight at 4°C. The site of cerebral infarction was cut into 2 mm thick slices through the coronal view. These slices were dehydrated and embedded with paraffin. The paraffin block was cut into 4 μm thick slices, dewaxed and repaired by sodium citrates. These slices were inactivated by 3% H₂O₂ and then the primary antibodies against glial fibrillary acidic protein (GFAP; 1: 3,000, Abcam, Cambridge, UK), B-cell lymphoma 2 protein (Bcl-2; 1: 100, Abcam, Cambridge, UK) and BCL2-associated X protein (Bax; 1: 100, Abcam, Cambridge, UK) were added onto the specimen and incubated overnight at 4°C. Then after PBS washing, the specimens were incubated with secondary antibody at room temperature for 60 min. After that, the sections were counterstained with hematoxylin and incubated with DAB solution and were observed under a light microscopy. Finally, these slices were dehydrated to be transparent, and sealed.

Detection of cytokines

Blood was extracted from the cardiac apex, placed in room temperature for two hours, and centrifuged at 2,000 rpm for 10 minutes. Sub-packed serum was frozen at -80°C, and was unfrozen at room temperature before testing. The detection was performed according to the instructions of the ELISA kits (Xitang, Shanghai, China).

Image collection and analysis

Light microscope (Olympus, Tokyo, Japan; 40 objective lens) and Image Pro Plus6.0 software were used to collect and analyze the images. Each slide carried six images of ischemia penumbra sites, and the mean optical density and positive cell count were calculated.

Statistical treatment

All data were expressed as mean ± standard deviation (SD). One-way analysis of variance was performed using SPSS 19.0 statistical software. In case of homogeneity of data variance, the least significant difference (LSD) method was used to compare the means. In case of heterogeneity of variance, the Dunnett’ T3 method was used to analyze data. P<0.05 was considered statistically significant.

Results

Identification of BMSCs

BMSCs appeared as fusiform spindles and adhered to the wall. Cell surface antigen identification results: The expression of CD90, CD29, CD106, CD11b, CD34 and CD45 was 95.7%, 97.3%, 52.7%, 6.01%, 2.95% and 2.26%, respectively. Various types of cells exist in the narrow cavity of the epiphysis, and we proved that the majority of the cells we obtained were BMSCs.

Measurement and comparison of mNSS

Before transplantation, the mNSS score in the carotid arterial BMSCs group, caudal vein BMSCs group, carotid arterial PBS group and caudal vein PBS group was 9.35±0.92, 9.14±1.06, 9.00±1.2 and 9.17±0.75, respectively. The difference between these four groups was not statistically significant. On the 7th day, the mNSS score was significantly lower in the carotid arterial BMSCs group (5.13±0.64) than in carotid arterial PBS group (6.57±0.58), and in the caudal vein BMSCs group (5.14±0.69) than in caudal vein PBS group, indicating the significant neural protection of BMSCs grafting. Differences in mNSS scores were statistically significant.
between the carotid arterial BMSCs group and caudal vein BMSCs group were not statistically significant. In addition, sample size calculation was conducted based on the mNSS score after BMSCs grafting, and the suggested sample size was 7, 6, 7, and 6, respectively, for the carotid arterial BMSCs group, caudal vein BMSCs group, carotid arterial PBS group, and caudal vein PBS group, proving that the number of animals in each group was reasonable.

1. The number of positive GFAP cells was significantly higher in the carotid arterial BMSCs group (45.38±7.11) than in the carotid arterial PBS group (35.33±3.61), as well as in caudal vein BMSCs group and caudal vein PBS group (47.00±6.27 vs. 34.00±4.34). Differences in the number of positive GFAP cells between the carotid arterial BMSCs group and caudal vein BMSCs group was not statistically significant.

2. The mean optical density value (222.90±22.63) of Bcl-2 was significantly higher in the carotid arterial BMSCs group than in the carotid arterial PBS group (195.26±12.94). This was also the same between the caudal vein BMSCs group and caudal vein PBS group (224.36±17.24). The mean optical density value of Bcl-2 between the carotid arterial BMSCs group and caudal vein BMSCs group was not statistically significant.

3. The mean optical density value of Bax in the carotid arterial BMSCs group, caudal vein BMSCs group, carotid arterial PBS group and caudal vein PBS group was 215.09±36.81, 218.29±42.65, 231.47±46.23 and 230.10±52.17, respectively. The difference between these four groups was not statistically significant. However, the mean optical density value of Bax gradually decreased in the carotid arterial BMSCs group and caudal vein BMSCs group, compared with that in the carotid arterial PBS group and caudal vein PBS group (Figs. 1, 2 and 3).

Figure 1. The number of cells showing positive IHC staining of GFAP was significantly higher in the carotid arterial BMSCs group than in the carotid arterial PBS group. A1: carotid arterial BMSCs group, A2: caudal vein BMSCs group, A3: carotid arterial PBS group, A4: caudal vein PBS group. Scale bar = 100 μm.

Figure 2. The mean optical density value of IHC staining of Bcl-2 was significantly higher in the carotid arterial BMSCs group than in the carotid arterial PBS group. This was also the same between the caudal vein BMSCs group and caudal vein PBS group. B1: carotid arterial BMSCs group, B2: caudal vein BMSCs group, B3: carotid arterial PBS group, B4: caudal vein PBS group. Scale bar = 100 μm.

Figure 3. The mean optical density value of IHC staining of Bax gradually decreased in the carotid arterial BMSCs group and caudal vein BMSCs group, compared with that in the carotid arterial PBS group and caudal vein PBS group. C1: carotid arterial BMSCs group, C2: caudal vein BMSCs group, C3: carotid arterial PBS group, C4: caudal vein PBS group. Scale bar = 100 μm.

Figure 4. The number of positive TUNEL cells was significantly lower in the carotid arterial BMSCs group than in the carotid arterial PBS group, as well as in the caudal vein BMSCs group and caudal vein PBS group. D1: carotid arterial BMSCs group, D2: caudal vein BMSCs group, D3: carotid arterial PBS group, D4: caudal vein PBS group. Scale bar = 100 μm.
Comparison of TUNEL test results

The number of positive TUNEL cells was significantly lower in the carotid arterial BMSCs group (60.75±16.27) than in the carotid arterial PBS group (77.50±10.6), as well as in the caudal vein BMSCs group and caudal vein PBS group (58.70±17.16 vs. 76.67±15.65). Differences in the number of positive TUNEL cells between the carotid arterial BMSCs group and caudal vein BMSCs group was not statistically significant (Fig 4).

Serum TNF-α

Serum TNF-α concentration was significantly lower in the carotid arterial BMSCs group (31.81±4.72 pg/ml) than in the carotid arterial PBS group (55.3±8.35 pg/ml), as well as in the caudal vein BMSCs group and caudal vein PBS group (35.36±9.57 vs. 49.02±9.67). Differences in serum TNF-α concentration between the carotid arterial BMSCs group and caudal vein BMSCs group were not statistically significant. Furthermore, serum TNF-α concentration gradually increased in the carotid arterial PBS group, compared with the caudal vein PBS group; but the difference was not statistically significant (Table 1).

Discussion

Our findings indicate that administration of BMSCs via artery and vein is an effective therapy for middle artery occlusion in rat model. Two delivery routes reveal equally curative effect for promoting neurological recovery, ameliorating brain tissue damage and facilitating the protection mechanisms.

Cerebral infarction is a cascade of deficiencies caused by ischemia-hypoxia, which is featured by the irreversible necrosis of infarct central cells and the apoptosis of damaged cells in the ischemia and penumbra. High-level excitatory toxic substances after ischemia-reperfusion, calcium overload, the activation of free radicals and peripheral circulating inflammatory cells induces secondary damage caused by accelerated cell infiltration and apoptosis in the ischemia penumbra, which promote the further enlargement of the infarct area. Preliminary experiments in this population have proven that continuously high-level inflammatory mediators after ischemia-reperfusion are closely correlated with cell apoptosis in the ischemia-reperfusion band and accelerate neurologic impairment. It can be observed that repairing the ischemia penumbra is the key to improve the prognosis of cerebral infarction.

Serum TNF-α was reduced after BMSCs grafting in rat with acute ischemia reperfusion

After ischemia reperfusion, TNF-α is mainly secreted by activated microglial cells and mononuclear/macrophages. As a very important proinflammatory factor, TNF-α can participate in the damage and repair of cerebral infarction-induced inflammation through multiple mechanisms. Furthermore, TNF-α may destroy the blood brain barrier (BBB) to induce the upregulated expression of the adhesion molecule in vascular endothelial cells and facilitate the infiltration of invasive lesions in peripheral circulating inflammatory cells, thereby aggravating damage. Steiner et al. found that a decrease in TNF-α content can effectively reduce the infarct volume. Research results revealed that when BMSCs and activated-macrophages were co-cultured in vitro, BMSCs significantly decreased the secretion level of macrophage-sourced TNF-α through various factors, including TGF-1 with the regulatory effect on the inflammation, and prostaglandin E2 during paracrine. In the experiment, it was shown that the transplantation of BMSCs contributed to the significant decrease in TNF-α content, thereby improving neurological function.

The protective astrocytes were activated after BMSCs grafting in rat with acute ischemia reperfusion

After the cerebral infarction, activated astrocytes exhibited a high expression of nestin, vimentin and glue fibrin with particular forms and function changes. Hence, these astrocytes can adjust the K+ concentration and PH value, and absorb excess glutamate, in order to withstand glutamate neurotoxicity and improve the local microenvironment of lesions for remediation. In addition, paracrine featured a variety of nutrient and growth factors including brain derived neurotrophic factor (BDNF), nerve growth factor (NGF) and vascular endothelial growth factor (VEGF), in order to provide nutrition support for damaged cells, thereby realizing neurogenesis and revascularization. Our result showed that after the transplantation of BMSCs, the number of astrocytes increased. However, further investigation is required to clarify the specific mechanism. In addition, previous research results also showed that the transplantation of BMSCs can induce activated astrocytes to secrete glial cell line derived neurotrophic factor (GDNF), thereby strengthening the nutrition support of astrocytes.
TUNEL staining was reduced and Bcl-2 expression was upregulated after BMSCs grafting in rat with acute ischemia reperfusion

In recent years, many scholars have conducted the transplantation of BMSCs through various methods, in order to treat cerebral infarction. Although these treatments have effectively improved neurological impairment, the specific mechanism remains elucidated(30,31). Deng et al.(32) found that after the transplantation of BMSCs via caudal veins, cell apoptosis was significantly decreased in the infarction-embraced cortex. In the experiment, it was found that the transplantation of BMSCs decreased apoptosis and improved neurologic impairment. According to the further research, Bcl-2 was upregulated after the transplantation of BMSCs. Bcl-2 can stabilize the mitochondrial outer membrane, regulate calcium overload and inhibit pro-apoptotic protein Bax, thereby restraining apoptosis progression. This anti-apoptosis effect may be one of the curative mechanisms of BMSCs. Although a literature has verified the effect of BMSCs on the downregulated expression of Bax(33), in the present research, there was no difference between the BMSCs groups (carotid arterial BMSCs group and caudal vein BMSCs group) and PBS groups (carotid arterial PBS group and caudal vein PBS group) in terms of the expression of Bax, regardless of the decreasing tendency. The reason may be that the observed sample was relatively less and observation time was slightly shorter. In addition, we need to use more tools and provide more evidence for the reduced apoptosis and its mechanism in future studies.

No difference was found in the curative effect of BMSC grafting on cerebral infarction between the carotid artery pathway and caudal vein pathway

At present, the best transplantation approach of BMSCs for cerebral infarction remains to be determined. The stereotactic pathway can provide BMSCs for lesions to the largest extent, in order to reduce the loss of stem cells. However, it is difficult to apply such method for some factors including complicated operations, severe impairment and complications, and side effects such as increased intracranial pressure and edema oppression in the grafting site. On the contrary, the arterial pathway and venous pathway features stronger operability, less trauma, as well as easy to be clinically performed and accepted. Therefore, in the present research, a comparison was carried out to determine the differences in the curative effects of BMSC grafting on 6-hour ischemia-reperfusion via the trans-carotid artery and trans-caudal vein.

On one hand, the most important advantage of the carotid artery pathway is the avoidance of the first pass elimination effect from peripheral organs. Hence, the quantity of cells entering the lesions was more than those by the caudal veins(34). On the other hand, the disadvantage is that the grafted cells tend to form cell embolus, which obstructs the microvessel in the corresponding blood supply area. This restricts the increase in the number of transplanted cells and is a potential risk. The advantages of the caudal vein pathway is minor trauma and the larger quantity of transplantable cells, while its disadvantage is the retention of many cells among peripheral organs with few cells entering the lesions(35). Considering the above comparisons of advantages and disadvantages, Ruan et al.(36) found that the carotid artery pathway is superior to the caudal vein pathway.

However, in the research, it was found that there was no difference in the curative effect of BMSC grafting on cerebral infarction via the carotid artery pathway and caudal vein pathway. The reasons may be as follows: (1) Grafting via the artery pathway led to differences in the number of stem cells in the lesions but was not the factor to the difference in curative effect. (2) Stem cells grafted via the veins could continue to migrate to the lesions and played a curative role with the help of the effect of the destruction of the BBB and chemotactic factor, thereby offsetting the impact of the first pass elimination. (3) Stem cells could exert therapeutic effects by means of the anti-inflammatory medium and nutritional factors from the paracrine in the peripheral region(37), and it was not necessary for it to enter the bad lesions in the microenvironment.

In conclusion, BMSCs grafting via the carotid artery or caudal vein pathways at six hours after ischemia-reperfusion improved the symptoms of neurologic impairment, which was probably by reducing cell apoptosis in the ischemic penumbra. However, grafting via the caudal vein was the best transplantation option for the treatment of cerebral infarction during the early period, with advantages of minor trauma and the rich source of BMSCs. Therefore, BMSC grafting via the caudal vein can be a potential method to investigate the mechanisms related to the neural protection of BMSCs in rodent models of cerebral ischemia-reperfusion. Also, it provides a possible way to future clinical treatment of cerebral infarction by stem cell infusion to patients.

Acknowledgement

The national natural science fund project (No: 811160248), Jiangxi province natural science fund project (No: 20114BAB205061).

Competing Interests

The authors declare that they have no competing interests.

References

1. Song M, Mohamad O, Gu X, Wei L and Yu SP. Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice. Cell Transplant 22: 2001-2015, 2013
2. Komatsu K, Hommou O, Suzuki J, Houkin K, Hamada H and Kocsis JD. Therapeutic time window of mesenchymal stem cells derived from bone marrow after cerebral ischemia. Brain Res 1334: 84-92, 2010
3. Zhao Y, Xin J, Sun C, Zhao B, Zhao J and Su L. Safrole oxide induced neuronal differentiation of rat bone-marrow mesenchymal stem cells by elevating Hsp70. Gene 509: 85-92, 2012
4. Yuan Y, Lin S, Guo N, Zhao C, Shen S, Bu X and Ye H. Marrow mesenchymal stromal cells reduce methicillin-resistant Staphylococcus aureus infection in rat models. Cytotherapy 16: 56-63, 2014
5. Ishibashi S, Sakaguchi M, Kuroiwa T, Yamasaki M, Kanemura Y, Shizuku I, Shimazaki T, Onodera M, Okano H and Mizusawa H. Human neural stem/progenitor cells, expanded in long-term neurosphere culture, promote functional recovery after focal ischemia in mongolian gerbils. J Neurosci Res 78: 215-223, 2004
6. Borlongan CV, Hadman M, Sanberg CD and Sanberg PR. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35: 2385-2389, 2004
7. Wu J, Sun Z, Sun HS, Wu J, Weisel RD, Keating A, Li ZH, Feng ZP and Li RK. Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant 16: 993-1005, 2008
8. Suzuki J, Sasaki M, Harada K, Bando M, Kataoka Y, Onodera R, Mikami T, Wanibuchi M, Mikuni N, Kocsis JD and Hommou O. Bilateral cortical hyperactivity detected by fMRI associates with improved motor function following intravenous infusion of mesenchymal stem cells in a rat stroke model. Brain Res 1497: 15-22, 2013
9. Ding J, Cheng Y, Gao S and Chen J. Effects of nerve growth factor and Noggin-modified bone marrow stromal cells on stroke in rats. J Neurosci Res 89: 222-230, 2011

10. Bao X, Wei J, Feng M, Lu S, Li G, Dou W, Ma W, Ma S, An Y, Qin C, Zhao RC and Wang R. Transplantation of bone human marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats. Brain Res 1367: 103-113, 2011

11. Liu N, Zhang Y, Fan L, Yuan M, Du H, Cheng R, Liu D and Lin F. Effects of transplantation with bone marrow-derived mesenchymal stem cells modified by Survivin on experimental stroke in rats. J Transl Med 9: 105, 2011

12. Deng YB, Ye WB, Hu ZZ, Yan Y, Wang Y, Takon BF, Zhou GQ and Zhou YF. Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurrol Res 32: 148-156, 2010

13. Li B, Piao CS, Liu XY, Guo WP, Xue YQ, Duan WM, Gonzalez-Toledo ME and Zhao LR. Brain self-protection: the role of endogenous neuronal progenitor cells in adult brain after cerebral cortical ischemia. Brain Res 1327: 91-102, 2010

14. Steiner B, Roch M, Holtkamp N and Kurtz A. Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAO-model mouse for cerebral ischemia. Neurosci Lett 513: 25-30, 2012

15. Kawabori M, Kuroda S, Sugiyama T, Ito M, Shichinohe H, Houkin K, Kuge Y and Tamaki N. Intracerebral, but not intravenous, transplantation of bone marrow stromal cells enhances functional recovery in rat cerebral infarct: an optical imaging study. Neuropathology 32: 217-226, 2012

16. Wu L, Zhang K, Hu G, Yan H, Xie C and Wu X. Inflammatory response and neuronal necrosis in rats with cerebral ischemia. Neural Regen Res 9: 1753, 2014

17. Gregersen R, Lambertsen K and Finsen B. Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20: 53-65, 2000

18. Sharief M, Noori M, Ciardi M, Cirelli A and Thompson EJ. Increased levels of circulating ICAM-1 in serum and cerebrospinal fluid of patients with active multiple sclerosis. Correlation with TNF-α and blood-brain barrier damage. J Neuroimmunol. 43: 15-21, 1993

19. Arango-Dávila CA, Vera A, Londoño AC, Echeverri AF, Cañas F, Cardozo CF, Orozco JL, Rengifo J and Cañas CA. Soluble or soluble/membrane TNF-α inhibitors protect the brain from focal ischemic injury in rats. Int J Neurosci 125: 936-940, 2015

20. Merrill J. Effects of interleukin-1 and tumor necrosis factor-α on astrocytes, microglia, oligodendrocytes, and glial precursors in vitro. Dev Neurosci 13: 130-137, 1991

21. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F, Bluthemann H, Faergeman NJ, Meldgaard M, Deierborg T and Finsen B. Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29: 1319-1330, 2009

22. Zimmermann JA and McDevitt TC. Pre-conditioning mesenchymal stromal cell spheroids for immunomodulatory paracrine factor secretion. Cytotherapy 16: 331-345, 2014

23. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP, Mori T and Götz M. Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci U S A 105: 3581-3586, 2008

24. Giordano G, Kavanagh T J and Costa LG. Mouse cerebellar astrocytes protect cerebellar granule neurons against toxicity of the polybrominated diphenyl ether (PBDE) mixture DE-71. Neurotoxicology 30: 326-329, 2009

25. Miao Y, Qiu Y, Lin Y, Miao Z, Zhang J and Lu X. Protection by pyruvate against glutamate neurotoxicity is mediated by astrocytes through a glutathione-dependent mechanism. Mol Biol Rep 38: 3235-3242, 2011

26. Schwartz JP and Nishiyama N. Neurotrophic factor gene expression in astrocytes during development and following injury. Brain Res Bull 35: 403-407, 1994

27. Shen LH, Li Y and Chopp M. Astrocytic endogenous glial cell derived neurotrophic factor production is enhanced by bone marrow stromal cell transplantation in the ischemic boundary zone after stroke in adult rats. Glia 58: 1074-1081, 2010

28. Schafer S, Calas AG, Vergouts M and Hermans E. Immunomodulatory influence of bone marrow-derived mesenchymal stem cells on neuroinflammation in astrocyte cultures. J Neuroimmunol 249: 40-48, 2012

29. Cai K, Xu J and Zhang Y. Bone marrow stromal cells induce cell cycle arrest in reactive astrocytes in vitro. Neurosci Lett 522: 62-66, 2012

30. Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, Bae E, Yu G, Xu L, McGrogan M, Bankiewicz K, Case C and Borlongan CV. Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev 18: 1501-1514, 2009

31. Heo JS, Choi SM, Kim HO, Kim EH, You J, Park T, Kim E and Kim HS. Neural transdifferentiation of human bone marrow mesenchymal stem cells on hydrophobic polymer-modified surface and therapeutic effects in an animal model of ischemic stroke. Neuroscience 238: 305-318, 2013

32. Deng YB, Ye WB, Hu ZZ, Yan Y, Wang Y, Takon BF, Zhou GQ and Zhou YF. Intravenously administered BMSCs reduce neuronal apoptosis and promote neuronal proliferation through the release of VEGF after stroke in rats. Neurol Res 32: 148-156, 2010

33. Li Z, Pang L, Fang F, Zhang G, Zhang J, Xie M and Wang L. Resveratrol attenuates brain damage in a rat model of focal cerebral ischemia via up-regulation of hippocampal Bel-2. Brain Res 1450: 116-124, 2012

34. Ruan GP, Han YB, Wang TH, Xing ZG, Zhu XB, Yao X, Ruan GH, Wang JX, Pang RQ, Cai XM, He J, Zhao J and Pan XH. Comparative study among three different methods of bone marrow mesenchymal stem cell transplantation following cerebral infarction in rats. Neurol Res 35: 212-220, 2013

35. Yang M, Wei X, Li J, Heine LA, Rosenwater R and Iacovitti L. Changes in host blood factors and brain glia accompanying the functional recovery after systemic administration of bone marrow stem cells in ischemic stroke rats. Cell Transplant 19: 1073-1084, 2010