Fuzzy Foldness of BCI-Commutative Ideals in BCI-Algebras

By Mahasin. A. Ahmed & Esmat A. Amhed

Sudan University of Science and Technology

Abstract- This paper aims to introduce new notions of (fuzzy) n-fold BCI-commutative ideals, and (fuzzy) n-fold weak BCI-commutative ideals in BCI-algebras, and investigate several properties of foldness theory of BCI-commutative ideals in BCI-algebras. Finally, we construct some algorithms for studying the foldness theory of BCI-commutative ideals in BCI-algebras.

Keywords: BCK/BCI algebras, BCI – commutative ideals of BCI-algebras, Fuzzy BCI – a commutative ideal of BCI-algebra, Fuzzy point, (fuzzy) n-fold BCI-commutative ideals, (fuzzy) n-fold weak positive implicative ideals.

GJSFR-F Classification: MSC 2010: 08A72

Strictly as per the compliance and regulations of:

© 2020. Mahasin. A. Ahmed & Esmat A. Amhed. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/, permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Fuzzy Foldness of BCI-Commutative Ideals in BCI-Algebras

Mahasin. A. Ahmed & Esmat A. Amhed

Abstract: This paper aims to introduce new notions of (fuzzy) n-fold BCI-commutative ideals, and (fuzzy) n-fold weak BCI-commutative ideals in BCI-algebras, and investigate several properties of foldness theory of BCI-commutative ideals in BCI-algebras. Finally, we construct some algorithms for studying the foldness theory of BCI-commutative ideals in BCI-algebras.

Keywords: BCK/BCI algebras, BCI – commutative ideals of BCI-algebras, Fuzzy BCI – a commutative ideal of BCI –algebra, Fuzzy point, (fuzzy) n-fold BCI-commutative ideals, (fuzzy) n-fold weak positive implicative ideals.

I. Introduction

The notions of BCK/BCI-algebras were introduced by Iséki [3] and were investigated by many types of research. The concept of fuzzy sets was introduced by Zadeh [12] in 1991, Xi [11] applied the concept to BCK-algebras. From then on, Jun, Meng et al. [10] applied the concept to the ideals.

The notions of n-fold implicative ideal and n-fold weak commutative ideals were introduced by Huang and Chen [1]. Y. B. Jun [4] discussed the fuzzification of n-fold positive implicative, commutative, and implicative ideal of BCK-algebra.

In this paper, we redefined a BCI – commutative ideals of BCI-algebra and studied the foldness theory of fuzzy BCI – commutative ideals, BCI – commutative weak ideals, fuzzy weak BCI – commutative ideals and weak BCI – commutative weak ideals in BCI-algebras. This theory can be considered as a natural generalization of BCI – commutative ideals. Indeed, given any BCI-algebra \(X \), we use the concept of fuzzy point to characterize n-fold BCI-commutative ideals in \(X \). Finally, we construct some algorithms for studying foldness theory of BCI – commutative ideals in BCI-algebra.

Author a: College of Science, Department of Mathematics, Sudan University of Science and Technology, Khartoum, Republic of Sudan. e-mail: mahasinahmed@gmail.com

Author a: College of Electrical Engineering & IT Department of Electrical Engineering, Onaizah Colleges, KSA. e-mail: esmatphysics72@gmail.com
II. Preliminaries

Here we include some elementary aspects of BCI that are necessary for this paper, and for more detail, we refer to [1, 3].

An algebra \((X; *, 0)\) of type (2,0) is called BCI-algebra if

\[\forall x, y, z \in X \text{ the following conditions hold:}\]

BCI-1. \(((x \ast y) \ast (x \ast z)) \ast (z \ast y) = 0;\]

BCI-2. \((x \ast (x \ast y)) \ast y = 0;\)

BCI-3. \(x \ast x = 0;\)

BCI-4. \(x \ast y = 0 \text{ and } y \ast x = 0 \Rightarrow x = y\)

A binary relation \(\leq\) can be defined by

BCI-5. \(x \leq y \iff x \ast y = 0,\)

then \((X, \leq)\) is a partially ordered set with least element 0.

The following properties also hold in any BCI-algebra ([5], [10]):

1. \(x \ast 0 = x;\)

2. \(x \ast y = 0 \text{ and } y \ast z = 0 \Rightarrow x \ast z = 0;\)

3. \(x \ast y = 0 \Rightarrow (x \ast z) \ast (y \ast z) = 0 \text{ and } (z \ast y) \ast (z \ast x) = 0;\)

4. \((x \ast y) \ast z = (x \ast z) \ast y;\)

5. \((x \ast y) \ast x = 0;\)

6. \(x \ast (x \ast (x \ast y)) = x \ast y;\) let \((X, \ast, 0)\) be a BCI-algebra.

Definition 2.1 (Zadeh [12]). A fuzzy subset of a BCI-algebra \(X\) is a function \(\mu : X \rightarrow [0,1].\)

Definition 2.2 (C. Lele [6]). Let \(\xi\) be the family of all fuzzy sets in \(X\). For \(x \in X\) and \(\lambda \in (0,1], x_{\lambda} \in \xi\) is a fuzzy point iff
\[
x_{\lambda}(y) = \begin{cases}
\lambda & \text{if } x = y , \\
0 & \text{otherwise}.
\end{cases}
\]

We denote by \(\tilde{X} = \{ x_{\lambda} : x \in X , \lambda \in (0,1] \} \) the set of all fuzzy points on \(X \) and we define a binary operation on \(\tilde{X} \) as follows :

\[
x_{\lambda} \ast y_{\mu} = (x \ast y)_{\min(\lambda, \mu)}
\]

It is easy to verify \(\forall x_{\lambda} , y_{\mu} , z_{\alpha} \in \tilde{X} \), the following conditions hold:

BCI-1'. \(((x_{\lambda} \ast y_{\mu}) \ast (x_{\lambda} \ast z_{\alpha})) \ast (z_{\alpha} \ast y_{\mu}) = 0_{\min(\lambda, \mu, \alpha)} \);

BCI-2'. \((x_{\lambda} \ast (x_{\lambda} \ast y_{\mu})) \ast y_{\mu} = 0_{\min(\lambda, \mu)} \);

BCI-3'. \(x_{\lambda} \ast x_{\mu} = 0_{\min(\lambda, \mu)} \);

BCK-5'. \(0_{\mu} \ast x_{\lambda} = 0_{\min(\lambda, \mu)} \);

Remark 2.3 (C. Lele [6]). The condition BCI-4 is not true \((\tilde{X} , *) \). So the partial order \(\leq (X , *) \) can not be extended to \((\tilde{X} , *) \).

We can also establish the following conditions \(\forall x_{\lambda} , y_{\mu} , z_{\alpha} \in \tilde{X} \) :

1'. \(x_{\lambda} \ast 0_{\mu} = x_{\min(\lambda, \mu)} \);

2'. \(x_{\lambda} \ast y_{\mu} = 0_{\min(\lambda, \mu)} \) and \(y_{\mu} \ast z_{\alpha} = 0_{\min(\mu, \alpha)} \Rightarrow x_{\lambda} \ast z_{\alpha} = 0_{\min(\lambda, \alpha)} \);

3'. \(x_{\lambda} \ast y_{\mu} = 0_{\min(\lambda, \mu)} \Rightarrow (x_{\lambda} \ast z_{\alpha}) \ast (y_{\mu} \ast z_{\alpha}) = 0_{\min(\lambda, \mu, \alpha)} \) and

\[
(z_{\alpha} \ast y_{\mu}) \ast (z_{\alpha} \ast x_{\lambda}) = 0_{\min(\lambda, \mu, \alpha)};
\]

4'. \((x_{\lambda} \ast y_{\mu}) \ast z_{\alpha} = (x_{\lambda} \ast z_{\alpha}) \ast y_{\mu} \);

5'. \((x_{\lambda} \ast y_{\mu}) \ast x_{\lambda} = 0_{(\lambda, \mu)} \);

6'. \(x_{\lambda} \ast (x_{\lambda} \ast (x_{\lambda} \ast y_{\mu})) = x_{\lambda} \ast y_{\mu} \);

We recall that if \(A \) is a fuzzy subset of a BCI-algebra \(X \), then we have the following:
\[\tilde{A} = \{ x_\lambda \in X : A(x) \geq \lambda \}, \quad \lambda \in (0,1] \} \]

(i)

\[\forall \lambda \in (0,1], \tilde{X}_\lambda = \{ x_\lambda : x \in X \}, \text{ and } A_\lambda = \{ x_\lambda \in \tilde{X}_\lambda : A(x) \geq \lambda \} \]

(ii)

also have \[\tilde{X}_\lambda \subseteq \tilde{X}, \tilde{A} \subseteq \tilde{X}, \tilde{A}_\lambda \subseteq \tilde{A}, \tilde{A}_\lambda \subseteq \tilde{X}_\lambda \] and one can easily check that \((\tilde{X}_\lambda ; *, 0_\lambda) \) is a BCK-algebra.

Definition 2.4 (Iséki [2]). A nonempty subset of BCI-algebra \(X \) is called an ideal of \(X \) if it satisfies

1. \(0 \in I \);
2. \(\forall x, y \in X, (x \ast y \in I \text{ and } y \in I) \Rightarrow x \in I \)

Definition 2.5 (Liu and Meng [7]). A nonempty subset \(I \) of BCI-algebra \(X \) is BCI-commutative ideal if it satisfies:

1. \(0 \in I \);
2. \(\forall x, y, z \in X

 (x \ast y \ast z) \in I \text{ and } z \in I \Rightarrow (x \ast ((y \ast (y \ast x))) \ast (0 \ast (0 \ast (x \ast y)))) \in I

**Definition 2.6 Xi [11] **. A fuzzy subset \(A \) of a BCI-algebra \(X \) is a fuzzy ideal if

1. \(\forall x \in X, A(0) \geq A(x) \);
2. \(\forall x, y \in X, A(x) \geq \min(A(x \ast y), A(y)) \).

Definition 2.7 (Xi [11]). A fuzzy subset \(A \) of a BCI-algebra \(X \) is called a fuzzy BCI-commutative ideal of \(X \) if.

1. \(\forall x \in X, A(0) \geq A(x) \);
2. \(\forall x, y, z \in X

 A \left(x \ast \left((y \ast (y \ast x)) \ast (0 \ast (0 \ast x \ast y)) \right) \right) \geq \left(A \left((x \ast y) \ast z \right), A(z) \right) \)
Definition 2.8 (C. Lele, [6]). \(\tilde{A} \) is a weak ideal of \(X \) if

1. \(\forall \nu \in \text{Im}(A) ; 0_\nu \in \tilde{A} \);
2. \(\forall x_\lambda , y_\mu \in X . \) Such that \(x_\lambda * y_\mu \in \tilde{A} \) and \(y_\mu \in \tilde{A} \), we have \(x_{\min(\lambda, \mu)} \in \tilde{A} \).

Theorem 2.9 (Lele, [6]). Suppose that \(A \) is a fuzzy subset of a BCK-algebra \(X \), then the following conditions are equivalent:

1. \(A \) is a fuzzy ideal;
2. \(\forall x_\lambda , y_\mu \in \tilde{A} , (z_\alpha * y_\mu) * x_\lambda = 0_{\min(\lambda, \mu, \alpha)} \Rightarrow z_{\min(\lambda, \mu, \alpha)} \in \tilde{A} \);
3. \(\forall t \in (0,1], \) the t-level subset \(A^t = \{ x \in X : A(x) \geq t \} \) is an ideal when \(A^t \neq \emptyset \);
4. \(\tilde{A} \) is a weak ideal.

III. Fuzzy N-Fold BCI-Commutative Ideals in BCI-Algebras

Throughout this paper \(\tilde{X} \) is the set of fuzzy points on BCI-algebra \(X \) and \(n \in \mathbb{N} \) (where \(\mathbb{N} \) the set of all the natural numbers).

Let us denote \(\cdots (((x * y) * y) * \cdots) * y \) by \(x * y^n \)

and \(\cdots (((x_{\min(\lambda, \mu)} * 0_\mu) * 0_\mu) * \cdots) * 0_\mu \) by \(x_\lambda * y^n \) (where \(y \) and \(y_\mu \) occurs respectively \(n \) times) with \(x, y \in X , x_\lambda , y_\mu \in \tilde{X} \).

Definition 3.1. A nonempty subset \(I \) of a BCI-algebra \(X \) is an \(n \)-fold BCI-commutative ideal of \(X \) if it satisfies:

1. \(0 \in I \);
2. \(\forall x , y , z \in X ; \)

\[
((x * y) * z) \in I \quad \text{and} \quad z \in I \quad \Rightarrow \quad \left(x * ((y * (y * x))) * (0 * (0 * (x * y^n)))) \right) \in I
\]
Definition 3.2. A fuzzy subset A of X is called a fuzzy n-fold BCI-commutative ideal of X if it satisfies:

1. $\forall x \in X, A(0) \geq A(x)$;

2. $\forall x, y, z \in X$,

$$A\left((x \ast (y \ast (y \ast x))) \ast (0 \ast (0 \ast (x \ast y^n)))\right) \geq \min\left(A\left((x \ast y) \ast z\right), A(z)\right).$$

Definition 3.3. \tilde{A} is BCI-commutative weak ideal of \tilde{X} if

1. $\forall \nu \in \text{Im}(A), 0_\nu \in \tilde{A}$;

2. $\forall x_\lambda, y_\mu, z_\alpha \in \tilde{X}$

$$((x_\lambda \ast y_\mu) \ast z_\alpha) \in I \text{ and } z_\alpha \in I \Rightarrow \left((x_\lambda \ast (y_\mu \ast (y_\mu \ast x_\lambda))) \ast (0_\alpha \ast (0_\alpha \ast (x_\lambda \ast y_\mu)))\right) \in I$$

Definition 3.4. \tilde{A} is n-fold BCI-commutative weak ideal of \tilde{X} if

1. $\forall \nu \in \text{Im}(A), 0_\nu \in \tilde{A}$;

2. $\forall x_\lambda, y_\mu, z_\alpha \in \tilde{X}$

$$((x_\lambda \ast y_\mu) \ast z_\alpha) \in I \text{ and } z_\alpha \in I \Rightarrow \left(x_\lambda \ast \left((y_\mu \ast (y_\mu \ast x_\lambda)) \ast (0_\alpha \ast (0_\alpha \ast (x_\lambda \ast y_\mu)))\right)\right) \in I$$

Example 3.5. Let $X = \{0, a, b, c, d\}$ with $*$ defined by the following table

	0	a	b	c	d
0	0	0	0	0	0
a	a	0	0	0	0
b	b	a	0	a	0
c	c	c	c	0	0
d	d	d	d	d	0

By simple computations, one can prove that $(X, *, 0)$ is BCI-algebra. Let $t_1, t_2 \in (0, 1]$ and define a fuzzy subset $t_1 = A(0) = A(a) = A(b) = A(c) \geq A(d) = t_2$.
One can easily check that for any \(n \geq 3 \)
\[
\tilde{A} = \{ 0_\lambda : \lambda \in (0, t_1] \} \cup \{ a_\lambda : \lambda \in (0, t_1] \} \cup \{ b_\lambda : \lambda \in (0, t_1] \} \cup \{ c_\lambda : \lambda \in [0, t_1) \} \cup \{ d_\lambda : \lambda \in (0, t_2] \}
\]

It is an \(n \)-fold BCI-commutative weak ideal.

Remark 3.6. \(\tilde{A} \) is a 1-fold BCI-commutative weak ideal of a BCK-algebra \(\tilde{X} \) if \(\tilde{A} \) is BCI-commutative weak ideal of \(X \).

Proposition 3.7 An ideal \(I \) of BCI-algebra \(X \) is an \(n \)-fold BCI-commutative ideal if

\[
\forall x, y \in X, x \ast y \in I \implies \left(x \ast \left(y \ast \left(y \ast x \right) \right) \ast \left(0 \ast \left(0 \ast \left(x \ast y^n \right) \right) \right) \right) \in I
\]

Proof. If an ideal \(I \) is an \(n \)-fold BCI-commutative and \(x \ast y \in I \) then \((x \ast y) \ast 0 \in I \) and \(0 \in I \), then we have

\[
\left(x \ast \left(y \ast \left(y \ast x \right) \right) \ast \left(0 \ast \left(0 \ast \left(x \ast y^n \right) \right) \right) \right) \in I
\]

thus this means that the condition satisfies.

Conversely, let an \(I \) an ideal satisfies the condition. If \((x \ast y) \ast z \in I \) and \(z \in I \), then by the definition of ideas we have \(x \ast y \in I \). It follows from the given condition that \((x \ast \left(y \ast \left(y \ast x \right) \right) \ast \left(0 \ast \left(0 \ast \left(x \ast y^n \right) \right) \right) \in I \); this means that \(I \) is an \(n \)-fold BCI-commutative ideal. This finishes the proof.

Proposition 3.8. An \(n \)-fold BCI-commutative weak ideal is a weak ideal.

Proof. \(\forall x_\lambda, y_\mu \in \tilde{X} \), let \(x_\lambda \ast y_\mu = (x_\lambda \ast 0_\lambda) \ast y_\mu \in \tilde{A} \) and \(y_\mu \in \tilde{A} \), since \(\tilde{A} \) \(n \)-fold BCI-commutative ideal we have

\[
x_{\min(\lambda, \mu)} = \left(x_\lambda \ast \left(0_\mu \ast \left(x_\lambda \ast 0_\mu \right) \right) \ast \left(0_\mu \ast \left(x_\lambda \ast 0_\mu \right) \right) \right) = x_{\min(\lambda, \mu)} \in \tilde{A}
\]

Thus \(\tilde{A} \) is a weak ideal.

Proposition 3.9. Any fuzzy \(n \)-fold BCI-commutative ideal of BCI-algebras \(X \) is the fuzzy ideal of \(X \).
Proof. Let \(A \) be a fuzzy \(n \)-fold BCI-commutative ideal of \(X \) and let \(x, z \in X \).

Then

\[
\min \left(A \left(x * z \right), A \left(z \right) \right) = \min \left(A \left((x * 0) * z \right), A \left(z \right) \right)
\]

\[
\leq A \left(\left(x * (0 * (0 * x)) * (0 * (x * 0^r)) \right) \right)
\]

\[
= A \left(\left(x * (0 * (0 * x)) * (0 * (x * 0)) \right) \right)
\]

\[
= A \left(x * 0 \right)
\]

\[
= A \left(x \right)
\]

Thus \(A \) is a fuzzy ideal of \(X \).

Theorem 3.10. If \(A \) is a fuzzy subset of \(X \), then \(A \) is a fuzzy \(n \)-fold BCI-commutative ideal if \(\tilde{A} \) is an \(n \)-fold BCI-commutative weak ideal.

Proof. \(\Rightarrow \) - Let \(\lambda \in \text{Im}(A) \), it is easy to prove that \(0_{\lambda} \in \tilde{A} \);

- Let \((\lambda_{\lambda} * y_{\mu}) * z_{\alpha} \in \tilde{A} \) and \(z_{\alpha} \in \tilde{A} \)

\[
A \left((x * y)^* z \right) \geq \min(\lambda, \mu, \alpha) \quad \text{and} \quad A \left(z \right) \geq \alpha .
\]

Since \(A \) is a fuzzy \(n \)-fold BCI-commutative ideal, we have

\[
A \left(\left(x * (y * (y * x)) * (0 * (x * y^n)) \right) \right) \geq \min \left(A \left((x * y)^* z \right), A \left(z \right) \right)
\]

\[
\geq \min \left(\min(\lambda, \mu, \alpha), \alpha \right) = \min(\lambda, \mu, \alpha).
\]

Therefore

\[
\left(x * \left((y * (y * x)) * (0 * (x * y^n)) \right) \right)_{\min(\lambda, \mu, \alpha)} = (x_{\lambda} * ((y_{\mu} * (y_{\mu} * x_{\lambda}))) * (0_{\alpha} * (x_{\lambda} * y_{\mu}^n))) \in \tilde{A}
\]

\(\Leftarrow \) - Let \(x \in X \), it is easy to prove that \(A(0) \geq A(x) \);
- Let \(x, y, z \in X \) and let \(A((x \ast y) \ast z) = \beta \) and \(A(z) = \alpha \), then

\[
((x \ast y) \ast z)_{\min(\beta, \alpha)} = (x_{\beta} \ast y_{\alpha}) \ast z_{\alpha} \in \tilde{A} \text{ and } z_{\alpha} \in \tilde{A}.
\]

Since \(\tilde{A} \) is \(n \)-fold BCI-commutative weak ideal, we have

\[
\left(x_{\lambda} \ast \left((y_{\mu} \ast (y_{\mu} \ast x_{\lambda}))\right) \ast \left(0_{\alpha} \ast (0_{\alpha} \ast (x_{\lambda} \ast y_{\mu}^{n}))\right)\right) =
\]

\[
\left(x \ast ((y \ast (y \ast x))) \ast \left(0 \ast (0 \ast (x \ast y^{n}))\right)\right)_{\min(\lambda, \mu, \alpha)} \in \tilde{A}
\]

Thus

\[
\left(x \ast ((y \ast (y \ast x))) \ast \left(0 \ast (0 \ast (x \ast y^{n}))\right)\right) \geq \min(\beta, \alpha)
\]

\[
= \min(A((x \ast y) \ast z), A(z))
\]

Theorem 3.11. Suppose that \(\tilde{A} \) is a weak ideal (namely \(A \) is a fuzzy ideal by Theorem 2.12), then the following conditions are equivalent:

1. \(A \) is a fuzzy \(n \)-fold BCI-commutative ideal;
2. \(\forall x_{\lambda}, y_{\mu} \in \tilde{X} \) such that \(x_{\lambda} \ast y_{\mu} \in \tilde{A} \), we have

\[
\left(x_{\lambda} \ast \left((y_{\mu} \ast (y_{\mu} \ast x_{\lambda}))\right) \ast \left(0_{\alpha} \ast (0_{\alpha} \ast (x_{\lambda} \ast y_{\mu}^{n}))\right)\right) \in \tilde{A};
\]

3. \(\forall t \in (0,1] \), the \(t \)-level subset \(A' = \{x \in X : A(x) \geq t\} \) is an \(n \)-fold BCI-commutative ideal when \(A' \neq \emptyset \);
4. \(A\left((x \ast (y \ast (y \ast x))) \ast \left(0 \ast (0 \ast (x \ast y^{n}))\right)\right) \geq A(x \ast y) \)
5. \(\tilde{A} \) is an \(n \)-fold BCI-commutative weak ideal.

Proof. \(1 \Rightarrow 2 \) Let \(x_{\lambda}, y_{\mu} \in \tilde{A} \) such that \(x_{\lambda} \ast y_{\mu} \in \tilde{A} \). Since \(A \) is a fuzzy \(n \)-fold BCI-commutative ideal, we have

\[
A\left((x \ast (y \ast (y \ast x))) \ast \left(0 \ast (0 \ast (x \ast y^{n}))\right)\right) \geq \min(A((x \ast y) \ast (x \ast y)), A(x \ast y))
\]
\[= \min(A(0), A(x \ast y)) = A(x \ast y) \geq \min(\lambda, \mu). \]

Therefore \[(x \ast ((y \ast (y \ast x))) \ast (0 \ast (0 \ast (x \ast y^n)))) \] \[= \min(\lambda, \mu, \alpha) \]

\[\left(x_\lambda \ast ((y_\mu \ast (y_\mu \ast x_\lambda))) \ast (0_\alpha \ast (0_\alpha \ast (x_\lambda \ast y_\mu^n))) \right) \in \tilde{A} \]

2 \(\Rightarrow \) 3 \(\forall t \in (0,1], 0 \in A' \).

Let \((x \ast y) \ast z \in A' \) and \(z \in A \), then we have \(((x \ast y) \ast z) = (x_t \ast y_t) \ast z_t \in \tilde{A} \) and \(z_t \in \tilde{A} \).

Since \(\tilde{A} \) it is a weak ideal, we have \(x_t \ast y_t = (x \ast y)_t \in \tilde{A} \).

Using the hypothesis, we obtain

\[\left(x_t \ast ((y_t \ast (y_t \ast x_t))) \ast (0_t \ast (0_t \ast (x_t \ast y_t^n))) \right) = \]

\[\left(x \ast ((y \ast (y \ast x))) \ast (0 \ast (0 \ast (x \ast y^n))) \right) \in \tilde{A} \] hence

\[\left(x \ast ((y \ast (y \ast x))) \ast (0 \ast (0 \ast (x \ast y^n))) \right) \in A' \]. By Proposition 3.7, we obtain that \(A' = \{ x \in X : A(x) \geq t \} \) is an n-fold BCI - commutative ideal.

3 \(\Rightarrow \) 4 Let \(x, y \in X \) and \(t = A(x \ast y) \), then \(x \ast y \in A' \).

Since \(A' \) is an n-fold BCI – commutative ideal, we have

\[\left(x \ast ((y \ast (y \ast x))) \ast (0 \ast (0 \ast (x \ast y^n))) \right) \in A' \]. Hence

\[A \left(x \ast ((y \ast (y \ast x))) \ast (0 \ast (0 \ast (x \ast y^n))) \right) \geq t = A(x \ast y) \]. \(\Rightarrow \) 5. Let

\[\lambda \in \text{Im}(A) \]. Obviously \(0_\lambda \in \tilde{A} \).

- Let \((x_\lambda \ast y_\mu) \ast z_\alpha \in \tilde{A} \) and \(z_\alpha \in \tilde{A} \). Since \(\tilde{A} \) is a weak ideal, we obtain

\[(x \ast y)_{\min(\lambda, \mu, \alpha)} \in \tilde{A} \]. According to the hypothesis, we obtain
Fuzziness Foldness of BCI-Commutative Ideals in BCI-Algebras

\[A \left(x * ((y * (y * x))) * (0 * (0 * (x * y^n))) \right) \geq A (x * y) \geq \min(\lambda, \mu, \alpha), \text{ hence} \]

\[\left(x * ((y * (y * x))) * (0 * (0 * (x * y^n))) \right)_{\min(\lambda, \mu, \alpha)} = \]

\[\left(x_\lambda * ((y_\mu * (y_\mu * x_\lambda))) * (0_\alpha * (0_\alpha * (x_\lambda * y_\mu^n))) \right) \in \tilde{A}. \]

5. \(\Rightarrow \) 1. Follows from Theorem 3.10

Theorem 3.12 Let \(\{\tilde{A}_i\}_{i \in I} \) be a family of \(n \)-fold BCI–commutative weak ideals and \(\{A_i\}_{i \in I} \) be a family of fuzzy \(n \)-fold BCI–commutative ideals. then: (1) \(\bigcap_{i \in I} \tilde{A}_i \) is an \(n \)-fold BCI–commutative weak ideal.

(2) \(\bigcup_{i \in I} \tilde{A}_i \) is an \(n \)-fold BCI–commutative weak ideal.

(3) \(\bigcap_{i \in I} A_i \) is a fuzzy \(n \)-fold BCI–commutative ideal.

(4) \(\bigcup_{i \in I} A_i \) is a fuzzy \(n \)-fold BCI–commutative ideal.

Proof: (1) \(\forall \lambda \in \text{Im}(\bigcap_{i \in I} \tilde{A}_i) \), then \(\lambda \in \text{Im}(\tilde{A}_i), \forall i \), so, \(0_\lambda \in \tilde{A}_i, \forall i \), i.e. \(0_\lambda \in \bigcap_{i \in I} \tilde{A}_i \).

For every \(x_\mu, y_\mu, z_\alpha \in \tilde{X} \), if \(((x_\lambda * y_\mu) * z_\alpha) \in \bigcap_{i \in I} \tilde{A}_i \) and \(z_\alpha \in \bigcap_{i \in I} \tilde{A}_i \), then

\[((x_\lambda * y_\mu) * z_\alpha) \in \tilde{A}_i \] and \(z_\alpha \in \tilde{A}_i \), \(\forall i \), thus

\[\left(x_\lambda * ((y_\mu * (y_\mu * x_\lambda))) * (0_\alpha * (0_\alpha * (x_\lambda * y_\mu^n))) \right) \in \tilde{A}_i \]

So \(\left(x_\lambda * ((y_\mu * (y_\mu * x_\lambda))) * (0_\alpha * (0_\alpha * (x_\lambda * y_\mu^n))) \right) \in \bigcap_{i \in I} \tilde{A}_i \). Thus \(\bigcap_{i \in I} \tilde{A}_i \) is an \(n \)-fold BCI–commutative weak ideals.

(2) \(\forall \lambda \in \text{Im}(\bigcup_{i \in I} \tilde{A}_i) \), then \(\exists i_0 \in I, such that \lambda \in \tilde{A}_{i_0} \), so, \(0_\lambda \in \tilde{A}_{i_0} \), i.e. \(0_\lambda \in \bigcup_{i \in I} \tilde{A}_i \). For every \(x_\mu, y_\mu, z_\alpha \in \tilde{X} \), if
((x_\alpha \ast y_\mu) \ast z_\alpha) \in \bigcup_{i \in I} \tilde{A}_i \text{ and } z_\alpha \in \bigcup_{i \in I} \tilde{A}_i$,
then \(\exists i_0 \in I \) such that

\((x_\alpha \ast y_\mu) \ast z_\alpha \in \tilde{A}_{i_0} \text{ and } z_\alpha \in \tilde{A}_{i_0} \forall i\), thus

\[(x_\lambda \ast ((y_\mu \ast (y_\mu \ast x_\lambda))) \ast (0_\alpha \ast (0_\alpha \ast (x_\lambda \ast y_\mu^n)))) \in \tilde{A}_{i_0}\]

So \((x_\lambda \ast ((y_\mu \ast (y_\mu \ast x_\lambda))) \ast (0_\alpha \ast (0_\alpha \ast (x_\lambda \ast y_\mu^n)))) \in \bigcup_{i \in I} \tilde{A}_i\). Thus \(\bigcup_{i \in I} \tilde{A}_i \) is an \(n \)-fold BCI – commutative weak ideals.

(3) Follows from (1) and Theorem 3.10.

(4) Follows from (2) and Theorem 3.10.

IV. Fuzzy N - Fold Weak BCI – Commutative Ideals in BCI - Algebras

In this section, we define and give some characterizations of (fuzzy) \(n \)-fold weak BCI - commutative(weak) ideals in BCK-algebras.

Definition 4.1. A nonempty subset \(I \) of \(X \) is called an \(n \)-fold weak BCI – a commutative ideal of \(X \) if it satisfies

1. \(0 \in I \);

2. \(\forall x, y, z \in X, (x \ast y^n) \ast z \in I, \text{ and } z \in I \)

\(\Rightarrow x \ast ((y \ast (y \ast x)) \ast (0 \ast ((x \ast y) \ast y))) \in I \)

Lemma 4.2. An ideal \(I \) of \(X \) is called an \(n \)-fold weak BCI - commutative ideal if

\(\forall x, y, z \in X, (x \ast y^n) \ast z \in I \Rightarrow x \ast ((y \ast (y \ast x)) \ast (0 \ast ((x \ast y) \ast y))) \in I \)

Definition 4.3. A fuzzy subset \(A \) of \(X \) is called a fuzzy \(n \)-fold weak BCI – commutative ideal of \(X \) if it satisfies

1. \(\forall x \in X, A(0) \geq A(x) \);

2. \(\forall x, y, z, A \left(x \ast ((y \ast (y \ast x)) \ast (0 \ast ((x \ast y) \ast y))) \right) \geq \min \left(A \left((x \ast y^n) \ast z \right), A(z) \right) \)
Definition 4.4. \tilde{A} is a weak BCI – commutative weak ideal of \tilde{X} if

1. $\forall \nu \in \text{Im}(A), 0_{\nu} \in \tilde{A}$;
2. $\forall x_{\lambda}, y_{\mu}, z_{\alpha} \in \tilde{X}$

$$(x_{\lambda} * y_{\mu}) * z_{\alpha} \in I, z_{\alpha} \in I \Rightarrow x_{\lambda} * \left((y_{\mu} * (y_{\mu} * x_{\lambda})) * \left(0_{\alpha} * \left(0_{\alpha} * \left((x_{\lambda} * y_{\mu}) * y_{\mu} \right) \right) \right) \right) \in I$$

Definition 4.5. \tilde{A} is an n-fold a weak BCI – commutative weak ideal of \tilde{X} if

1. $\forall \nu \in \text{Im}(A), 0_{\nu} \in \tilde{A}$;
2. $\forall x_{\lambda}, y_{\mu}, z_{\alpha} \in \tilde{X}$;

$$(x_{\lambda} * y_{\mu})^{n} * z_{\alpha} \in I, z_{\alpha} \in I \Rightarrow x_{\lambda} * \left((y_{\mu} * (y_{\mu} * x_{\lambda})) * \left(0_{\alpha} * \left(0_{\alpha} * \left((x_{\lambda} * y_{\mu}) * y_{\mu} \right) \right) \right) \right) \in I$$

Example 4.6 Let $X = \{0, 1, 2, 3\}$ in which $*$ is given by the following table

	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	b	0	0
c	c	c	c	0

Then $(X; *, 0)$ it is a BCI-algebra. Let $t_1, t_2 \in (0, 1]$ and let us define a fuzzy subset $A : X \to [0, 1]$ by

$$t_1 = A(0) = A(a) = A(b) > A(c) = t_2$$

It is easy to check that for any $n > 2$

$$\tilde{A} = \{0_{\lambda} : \lambda \in (0, t_1]\} \cup \{a_{\lambda} : \lambda \in (0, t_2]\} \cup \{b_{\lambda} : \lambda \in (0, t_1]\} \cup \{c_{\lambda} : \lambda \in (0, t_2]\}$$

It is an n-fold weak BCI – commutative weak ideal.

Remark 4.7 \tilde{A} is a 1-fold weak BCI – commutative weak ideal of a BCK-algebra X if \tilde{A} is a weak BCI – commutative weak ideal.
Theorem 4.8 If A is a fuzzy subset of X, then A is a fuzzy n-fold weak BCI–commutative ideal if \tilde{A} is an n-fold weak BCI–commutative weak ideal.

Proof. \Rightarrow - Let $\lambda \in \text{Im}(A)$ obviously $0, \tilde{A}$

- Let $(x_\lambda \ast y_\mu)^{\alpha} z_\alpha \in A$ and $z_\alpha \in \tilde{A}$, then

$$A((x \ast y^n) \ast z) \geq \min(\lambda, \mu, \alpha) \text{ and } A(z) \geq \alpha.$$

Since A is a fuzzy n-fold weak BCI–commutative ideal, we have

$$\forall x, y, z \in A(x \ast ((y \ast (y \ast x))) \ast (0 \ast (0 \ast ((x \ast y) \ast y)))) \geq \min(A((x \ast y^n) \ast z),$$

$$A(z) \geq \min(\min(\lambda, \mu, \alpha), \alpha) = \min(\lambda, \mu, \alpha).$$

Therefore $$\left(x_\lambda \ast ((y_\mu \ast (y_\mu \ast x_\lambda))) \ast (0_\alpha \ast (0_\alpha \ast ((x_\lambda \ast y_\mu) \ast y_\mu)))) \ast (x_\lambda \ast ((y_\mu \ast (y_\mu \ast x_\lambda))) \ast (0_\alpha \ast (0_\alpha \ast ((x_\lambda \ast y_\mu) \ast y_\mu)))) \in \tilde{A} =$$

$$\left(x_\lambda \ast ((y_\mu \ast (y_\mu \ast x_\lambda))) \ast (0_\alpha \ast (0_\alpha \ast ((x_\lambda \ast y_\mu) \ast y_\mu)))) \ast (x_\lambda \ast ((y_\mu \ast (y_\mu \ast x_\lambda))) \ast (0_\alpha \ast (0_\alpha \ast ((x_\lambda \ast y_\mu) \ast y_\mu)))) \in \tilde{A}.$$

\Leftarrow - Let $x \in X$, it is easy to prove that $A(0) \geq A(x)$;

- Let $x, y, z \in X, A((x \ast y^n) \ast z) = \beta$ and $A(z) = \alpha$.

Then $$((x \ast y^n) \ast z)_{\min(\beta, \alpha)} = ((x_\beta \ast y_\beta^n) \ast z_\alpha) \in \tilde{A} \text{ and } z_\alpha \in \tilde{A}$$

Since \tilde{A} is n-fold weak BCI–commutative weak ideal, we have

$$\left(x_\lambda \ast ((y_\mu \ast (y_\mu \ast x_\lambda))) \ast (0_\alpha \ast (0_\alpha \ast ((x_\lambda \ast y_\mu) \ast y_\mu)))) \ast (x_\lambda \ast ((y_\mu \ast (y_\mu \ast x_\lambda))) \ast (0_\alpha \ast (0_\alpha \ast ((x_\lambda \ast y_\mu) \ast y_\mu)))) \in A$$

Hence
Fuzziness Foldness of BCI-Commutative Ideals in BCI-Algebras

\[A\left(x \star \left((y \star (y \star x)) \star \left(0 \star \left(0 \star ((x \star y) \star y)\right)\right)\right)\right) \geq \min(\beta, \alpha) \]

\[= \min\left(A\left((x \star y^n) \star z\right), A(z)\right) \]

Proposition 4.9. Any fuzzy n-fold weak BCI – commutative ideal of \(X \) is the fuzzy ideal of \(X \).

Proof. Let \(A \) be an n-fold weak BCI – commutative ideal of \(X \) and let

\[x, z \in X, \text{ then } \min\{A(x \star z), A(z)\} \]

\[\min\{A((x \star 0) \star z), A(z)\} \]

\[\leq A\left(x \star \left((0 \star (0 \star x)) \star \left(0 \star ((x \star 0) \star 0)\right)\right)\right) \]

\[= A\left(x \star \left((0 \star (0 \star x)) \star (0 \star (0 \star x))\right)\right) \]

\[= A(x \star 0) \]

\[= A(x). \]

Thus \(A \) is a fuzzy ideal of \(X \).

Corollary 4.10. An n-fold weak BCI – commutative weak ideal is a weak ideal.

Theorem 4.11. Suppose that \(\tilde{A} \) is a weak ideal (namely \(A \) is a fuzzy ideal by Theorem 2.9), then the following conditions are equivalent:

1. \(A \) is a fuzzy n-fold weak BCI – commutative ideal;

2. \(\forall x_\lambda, y_\mu \in \tilde{X} \) such that \((x_\lambda \star y_\mu^n)_{\min(\lambda, \mu)} \in \tilde{A}\), we have

\[\left(x_\lambda \star \left((y_\mu \star (y_\mu \star x_\lambda)) \star \left(0_\alpha \star \left(0_\alpha \star ((x_\lambda \star y_\mu) \star y_\mu)\right)\right)\right)\right) \in \tilde{A}. \]

3. \(\forall t \in (0,1], \) the t-level subset \(A' = \{x \in X : A(x) \geq t\} \),
Fuzzy Foldness of BCI-Commutative Ideals in BCI-Algebras

1. \(\forall x, y \in X, A\left(x \ast (y \ast y) \ast (0 \ast ((x \ast y) \ast y)) \right) \geq A\left(x \ast y^n \right) \);

4. \(A \) is an n-fold weak IBCI – commutative ideal when \(A' \neq \phi \);

5. \(A' \) is an n-fold weak BCI – commutative weak ideal

Proof. \(1 \Rightarrow 2 \) - Let \((x, y_{\text{min}(\lambda, \mu)}) \in A' \) . Since \(A \) is a fuzzy n-fold weak BCI – commutative ideal, we have \(A\left(x \ast ((y \ast (y \ast x)) \ast (0 \ast ((x \ast y) \ast y))) \right) \geq \min\left(A\left((x \ast y^n) \ast 0 \right), A(0) \right) \)

\[= A\left(((x \ast y^n)) \right) \geq \min(\lambda, \mu) \geq \min(\lambda, \mu, \alpha). \]

Therefore \(A\left(x \ast ((y \ast (y \ast x)) \ast (0 \ast ((x \ast y) \ast y))) \right) \) \(\geq \min(\lambda, \mu, \alpha) \) \(\in \tilde{A} \)

2. \(\Rightarrow 3 \) – Obviously, \(\forall t \in (0,1], 0 \in A' \). Let \((x \ast y^n) \in A' \), we have \((x \ast y^n)_t = (x_t \ast y^n) \in \tilde{A} \). By the hypothesis, one obtains, \((x_t \ast (y_t \ast (y \ast x))) \ast (0_t \ast ((x \ast y) \ast y)) \) \(\in \tilde{A} \) therefore \((x \ast ((y \ast (y \ast x)) \ast (0 \ast ((x \ast y) \ast y))) \) \(\in A' \). Using Lemma 4.2, we can conclude that \(A' = \left\{ x \in X : A(x) \geq t \right\} \) it is an n-fold weak BCI – commutative ideal.

3. \(\Rightarrow 4 \) - Let \(x, y \in X \) and \(t = A(x \ast y^n) \), then \((x \ast y^n) \in A' \).

Since \(A' \) is an n-fold weak is BCI – commutative ideal, we have
\[
\left(x \ast \left(\left(y \ast (y \ast x) \right) \left(0 \ast \left(0 \ast \left(x \ast y \ast y \right) \right) \right) \right) \right) \in A', \text{ therefore}
\]
\[
A \left(x \ast \left(\left(y \ast (y \ast x) \right) \left(0 \ast \left(0 \ast \left(x \ast y \ast y \right) \right) \right) \right) \right) \geq t = A \left(x \ast y^n \right).
\]

4 \implies 5 \quad \text{Let } \lambda \in \operatorname{Im}(A), \text{ it is clear that } 0, \lambda \in \tilde{A}.

- Let \((x, y, y, x) \ast z, a \in \tilde{A} \text{ and } z, a \in \tilde{A} \). Since \(\tilde{A} \) it is a weak ideal,
\[(x \ast y^n)_{\min(\lambda, \mu)} \in \tilde{A}. \]
Using the hypothesis, we obtain
\[
A \left(x \ast \left(\left(y \ast (y \ast x) \right) \left(0 \ast \left(x \ast y \ast y \right) \right) \right) \right) \geq A \left(x \ast y^n \right) \geq \min(\lambda, \mu, \alpha).
\]

From this, one can deduce that
\[
\left(x \ast \left(\left(y \ast (y \ast x) \right) \left(0 \ast \left(x \ast y \ast y \right) \right) \right) \right)_{\min(\lambda, \mu, \alpha)}
\]
\[
= \left(x, \lambda, \ast \left(\left(y, \ast \left(y, \ast y, \ast x \right) \ast \left(0, a, \ast \left(x, \ast y, \ast y, \ast \right) \right) \right) \right) \right) \in \tilde{A}
\]

5 \implies 1 \text{ Follows from Theorem 4.8}

Theorem 4.12. Let \(\{ \tilde{A}_i \}_{i \in I} \) be a family of \(n \)-fold weak BCI – commutative weak ideals and \(\{ A_i \}_{i \in I} \) be a family of fuzzy \(n \)-fold weak BCI – commutative ideals. then \(\bigcap_{i \in I} \tilde{A}_i \) is an \(n \)-fold weak BCI – commutative weak ideal.

(2) \(\bigcup_{i \in I} \tilde{A}_i \) is an \(n \)-fold weak BCI – commutative weak ideal.

(3) \(\bigcap_{i \in I} A_i \) is a fuzzy \(n \)-fold weak BCI – commutative ideal.

(4) \(\bigcup_{i \in I} A_i \) is a fuzzy \(n \)-fold weak BCI – commutative ideal.

Proof: (1) \(\forall \lambda \in \operatorname{Im} \left(\bigcap_{i \in I} A_i \right), \text{ then } \lambda \in \operatorname{Im} \left(\tilde{A}_i \right), \forall i, \text{ so, } 0, \lambda \in \tilde{A}_i, \forall i, \text{ i.e. } 0, \lambda \in \bigcap_{i \in I} \tilde{A}_i \).

For every \(x, y, z, a \in \tilde{X} \), if \(\left(x, \lambda, \ast y, \ast y, \ast \right) \ast \left(z, a, \ast \left(x, \ast y, \ast y, \ast \right) \right) \in \bigcap_{i \in I} \tilde{A}_i \text{ and } z, a \in \bigcap_{i \in I} \tilde{A}_i \), then \(\left(x, \lambda, \ast y, \ast y, \ast \right) \ast \in \tilde{A}_i \text{ and } z, a \in \tilde{A} \forall i \), thus
\[
\left(x_\lambda \ast \left((y_\mu \ast (y_\mu \ast x_\lambda)) \ast (0_\alpha \ast \left((x_\lambda \ast y_\mu) \ast y_\mu \right)) \right) \right) \in \tilde{A}_i \forall i
\]

So \(\left(x_\lambda \ast \left((y_\mu \ast (y_\mu \ast x_\lambda)) \ast (0_\alpha \ast \left((x_\lambda \ast y_\mu) \ast y_\mu \right)) \right) \right) \in \bigcap_{i \in I} \tilde{A}_i \). Thus \(\bigcap_{i \in I} \tilde{A}_i \) is an \(n \)-fold weak BCI – commutative weak ideals.

(2) \(\forall \lambda \in \text{Im}(\bigcup_{i \in I} \tilde{A}_i) \), then \(\exists i_0 \in I \), such, that \(\lambda \in \tilde{A}_{i_0} \), so, \(0_\lambda \in \tilde{A}_{i_0} \), i.e.

\[
0_\lambda \in \bigcup_{i \in I} \tilde{A}_i \text{.}
\]

For every \(x_\mu, y_\lambda, z_\alpha \in \tilde{X} \), if

\[
(x_\lambda \ast y_\mu)^n \ast z_\alpha \in \bigcup_{i \in I} \tilde{A}_i \text{ and } z_\alpha \in \bigcup_{i \in I} \tilde{A}_i \text{, then } \exists i_0 \in I \text{ such that}
\]

\[
(x_\lambda \ast y_\mu) \ast z_{i_0} \in \tilde{A}_{i_0} \text{ and } z_{i_0} \in \tilde{A}_{i_0} \forall i \text{, thus}
\]

\[
\left(x_\lambda \ast \left((y_\mu \ast (y_\mu \ast x_\lambda)) \ast (0_\alpha \ast \left((x_\lambda \ast y_\mu) \ast y_\mu \right)) \right) \right) \in \tilde{A}_{i_0}
\]

So \(\left(x_\lambda \ast \left((y_\mu \ast (y_\mu \ast x_\lambda)) \ast (0_\alpha \ast \left((x_\lambda \ast y_\mu) \ast y_\mu \right)) \right) \right) \in \bigcup_{i \in I} \tilde{A}_i \). Thus \(\bigcup_{i \in I} \tilde{A}_i \) is an \(n \)-fold weak BCI – commutative weak ideals.

(3) Follows from (1) and Theorem 4.8.

(4) Follows from (2) and Theorem 4.8.

V. Algorithms

Here We Give Some Algorithms For Studing The Structure Of The Foldness Of (Fuzzy BCI- Commutative Ideals In BCI-Algebras)
Algorithm for ABCI- Commutative Ideals of BCI-Algebra

Input (X : BCI-algebra, * : binary operation, I : subset of X);
Output (“I is a BCI-commutative ideal of X or not”);
Begin
If I = φ then
 go to (1.);
End If
If 0 ∉ I then
 go to (1.);
End If
Stop := false;
i := 1;
While i ≤ |X| and not (Stop) do
 j := 1;
 While j ≤ |X| and not (Stop) do
 k := 1;
 While k ≤ |X| and not (Stop) do
 If (x_i * y_j) * z_k ∈ I and z_k ∈ I then
 If (x * (y * (y * x))) * (0 * (0 * (x * y))) ∉ I
 Stop := true;
 EndIf
 EndIf
 Endwhile
 Endwhile
Endwhile
If Stop then
 Output (“I is a BCI-commutative ideal of X”)
Else
 (1.) Output (“I is not a BCI-commutative ideal of X”)
End If
End

Algorithm for N-Fold BCI- Commutative Ideals of BCI-Algebra

Input (X : BCI-algebra, * : binary operation, I : subset of X);
Output (“I is n-fold BCI-commutative ideal of X or not”);
Begin
If $I = \phi$ then
go to (1.);
End If
If $0 \notin I$ then
go to (1.);
End If
$Stop := false$;
i := 1;
While $i \leq |X|$ and not ($Stop$) do

j := 1;
While $j \leq |X|$ and not ($Stop$) do

k := 1;
While $k \leq |X|$ and not ($Stop$) do

If $(x_i * y_j) * z_k \in I$ and $z_k \in I$ then

If $(x * ((y * (y * x))) * (0 * (0 * (x * y'')))) \notin I$

$Stop := true$;
End If
EndWhile
EndWhile
Endwhile
If $Stop$ then

Output (“I is an n-fold BCI-commutative ideal of X”)
End If
Else
(1.) Output (“I is not an n-fold BCI-commutative ideal of X”)
End If
End

Algorithm for Fuzzy BCI-Commutative Ideals of BCI-algebra

Input ($X : BCI$-algebra, $*$: binary operation, A : the fuzzy subset of X);
Output (“A is a fuzzy BCI-commutative ideal of X or not”);
Begin
$Stop := false$;
i := 1;
While $i \leq |X|$ and not ($Stop$) do

If $A(0) < A(x_i)$ then

$Stop := true$;
End If
\[j := 1; \]
\[\text{While } j \leq |X| \text{ and not } (\text{Stop}) \text{ do} \]
\[k := 1; \]
\[\text{While } k \leq |X| \text{ and not } (\text{Stop}) \text{ do} \]
\[\text{If } A\left(x * \left(\left(y * (y * x)\right) * \left(0 * \left(0 * (x * y)\right)\right)\right)\right) < \left(A\left((x * y) * z\right), A\left(z\right)\right) \text{ then} \]
\[\text{Stop} = \text{true}; \]
\[\text{End If} \]
\[\text{Endwhile} \]
\[\text{Endwhile} \]
\[\text{Endwhile} \]
\[\text{If Stop then} \]
\[\text{Output ("A is not a fuzzy BCI-commutative ideal of X")} \]
\[\text{Else} \]
\[\text{Output ("A is a fuzzy BCI-commutative ideal of X")} \]
\[\text{End If} \]
\[\text{End} \]

Algorithm for Fuzzy N-Fold BCI-Commutative Ideals of BCI-Algebra

Input \((X : BCI\text{-algebra}, \ast : \text{binary operation}, A : \text{the fuzzy subset of } X)\);

Output("A is a fuzzy n-fold BCI-commutative ideal of X or not");

Begin
\[\text{Stop} := \text{false}; \]
\[i := 1; \]
\[\text{While } i \leq |X| \text{ and not } (\text{Stop}) \text{ do} \]
\[\text{If } A(0) < A(x_i) \text{ then} \]
\[\text{Stop} := \text{true}; \]
\[\text{End If} \]
\[j := 1; \]
\[\text{While } j \leq |X| \text{ and not } (\text{Stop}) \text{ do} \]
\[k := 1; \]
\[\text{While } k \leq |X| \text{ and not } (\text{Stop}) \text{ do} \]
\[A\left(x * \left(\left(y * \left(y * \left(y * x\right)\right)\right) * \left(0 * \left(0 * \left(x * \left(y^n\right)\right)\right)\right)\right)\right) < \left(A\left((x * y) * z\right), A\left(z\right)\right) \]
\[\text{Stop} = \text{true}; \]
\[\text{End If} \]
\[\text{Endwhile} \]
\[\text{Endwhile} \]
\[\text{Endwhile} \]
If $Stop$ then
 Output ("A is not a fuzzy n- fold BCI- commutative ideal of X")
Else
 Output ("A is a fuzzy n- fold BCI- commutative ideal of X")
End If
End

Algorithm for N-Fold Weak BCI- Commutative Ideals of BCI-Algebra

Input(X:BCI-algebra, I: subset of $X, n \in \mathbb{N}$);
Output("I is an n-fold weak BCI - commutative ideal of X or not");
Begin
 If $I = \emptyset$ then
 go to (1.);
 End If
 If $0 \notin I$ then
 go to (1.);
 End If
 $Stop:=false$;
 $i:=1$;
 While $i \leq |X|$ and not ($Stop$) do
 $j:=1$;
 While $j \leq |X|$ and not ($Stop$) do
 $k:=1$;
 While $k \leq |X|$ and not ($Stop$) do
 If $(x * y^a) * z \in I, and, z \in I$ then
 If $x * ((y * (y * x)) * (0 * ((x * y) * y))) \notin I$
 $Stop:=true$;
 EndIf
 EndIf
 Endwhile
 Endwhile
 If $Stop$ then
 Output ("I is an n-fold weak BCI - commutative ideal of X")
 Else
 (1.) Output ("I is not an n-fold weak BCI - commutative ideal of X")
 End If
End

Notes
In this paper we introduce new notions of (fuzzy) \(n \)-fold BCI-commutative ideals, and (fuzzy) \(n \)-fold weak BCI-commutative ideals in BCI-algebras. Then we studied relationships between different type of \(n \)-fold BCI-commutative ideals and investigate several properties of foldness theory of BCI-commutative ideals in BCI-algebras. Finally, we construct some algorithms for studying foldness theory of BCI-commutative ideals in BCI-algebras.
In our future study of foldness ideals in BCK/BCI algebras, maybe the following topics should be considered:

1. developing the properties of foldness of positive implicative ideals of BCK/BCI algebras.
2. finding useful results on other structures of foldness theory of ideals of BCK/BCI algebras.
3. constructing the related logical properties of such structures.
4. one may also apply this concept to study some applications in many fields like decision making knowledge base systems, medical diagnosis, data analysis, and graph theory.

REFERENCES

1. Y. Huang and Z. Chen, On ideals in BCK-algebra, Math. Japonica, 50 (1999), pp. 211-226.
2. K. Iséki, On ideals in BCK-algebras, Math. Seminar Notes (presently, Kobe J. Math.) 3(1975), 1-12.
3. K. Iséki and S. Tanaka, An Introduction to the theory of BCK-algebra, Math. Japonica, 23(1978), pp. 935-942.
4. Y. B. Jun, On n-fold fuzzy implicative/commutative ideals of BCK-algebras IJMMS, (2001), pp. 419-427.
5. Y. B. Jun, (2017) Neutrosophic subalgebras of several types In BCK /BCI-algebras, Ann. Fuzzy Math Inform 14 (1), PP 75-86.
6. C. Lele, C. Wu, P. Weke, T. Mamadou and C.E. Njock, Fuzzy ideals and weak ideals in BCK-algebras, Scientiae Mathematicae Japonicae, 54 (2001), pp. 323-336.
7. Y. Liu and J. Meng, Fuzzy Ideals in BCI-algebras, Fuzzy sets, and systems 123(2001) 227-237.
8. Muhiuddin, G., Kim S. J. and Jun Y. B. (2019) Implicative N – ideals of BCK – algebras based on Neutrosophic N – structures, Discrete mathematics, algorithms, and Applications 11 (1), 1950011.
9. G. Muhiuddin, Y. B. Jun, Further Results of Neutrosophic subalgebras in BCK/BCI -algebras based on Neutrosophic points, TWMS J. App. Eng. Math. V. 10 N. 2, 2020, PP 232-240.
10. J. Meng, Y. B Jun and H. S. KIM, Fuzzy implicative ideals of BCK-algebras, Fuzzy sets, and systems 89 (1997) pp. 243-248.
11. O. G. XI, Fuzzy BCK-algebras, Math. Japonica, 36 (1991), pp. 935-942.
12. L. A. Zadeh, Fuzzy sets, Inform. and Control 8(1965), pp. 338-353.