Reabilitação Cardíaca Baseada em Exercícios Fortemente Relacionada com Redução do Volume Plaquetário Médio

Exercise-Based Cardiac Rehabilitation Has a Strong Relationship with Mean Platelet Volume Reduction

İsmet Durmuş,¹ Ezgi Kalaycıoğlu,¹ Mustafa Çetin,² Hanife Baykal Şahin¹, Tuncay Kırşঙ³
University of Health Sciences Turkey, Ahi Evren Chest and Cardiovascular Surgery Education and Research Hospital,¹ Trabzon - Turquia
Recep Tayyip Erdogan University,² Faculty of Medicine, Rize – Turquia
zmir Katip Celebi University Ataturk Training and Research Hospital, Department of Cardiology,³ İzmir - Turquia

Resumo

Fundamento: O volume plaquetário médio (VPM), uma medida simples de ativação plaquetária, tornou-se recentemente um tópico interessante no campo da pesquisa cardiovascular. A reabilitação cardíaca (RC) baseada em exercícios é uma intervenção abrangente que diminui a morbidade-mortalidade em pacientes com doença arterial coronariana (DAC). Estudos sobre os efeitos do exercício físico na ativação plaquetária têm produzido resultados conflitantes.

Objetivo: O objetivo deste estudo foi determinar o efeito de um programa de RC baseado em exercícios sobre o VPM em pacientes com DAC estável.

Métodos: A amostra foi composta por 300 pacientes consecutivos com DAC estável. Os pacientes foram divididos em dois grupos: grupo RC (n = 97) e grupo não RC (n = 203). Foi feito um hemograma. As medidas de correlação ponto-biserial foram tiradas para mostrar a relação entre a alteração do VPM e a RC. Valor de p<0,05 foi considerado estatisticamente significativo.

Resultados: A diminuição do VPM foi maior no grupo CR do que no grupo não CR [(-1,10 (-1,40-(-0,90)) vs. (-0,10 (-2,00-0,00)); p<0,001]. ΔVPM teve correlação positiva com Δ neutrófilos (r = 0,326, p < 0,001), ΔTG (r = 0,439, p <0,001), ΔLDL-c (r = 0,478, p <0,001), ΔWBC (r = 0,412, p < 0,001) e ΔPCR (r = 0,572, p <0,001). Foi encontrada uma correlação significativa entre ΔVPM% e CR (r = 0,750, p <0,001).

Conclusões: Pudemos mostrar que a RC baseada em exercícios tem forte relação com a redução do VPM em pacientes com DAC. Consideramos que a diminuição da ativação plaquetária com RC baseada em exercícios pode desempenhar um papel importante na redução do risco trombótico em pacientes com DAC estável. (Arq Bras Cardiol. 2021; 116(3):434-440)

Palavras-chave: Reabilitação Cardíaca; Exercício; Atividade Física; Volume Plaquetário Médio; Plaquetas; Doença da Artéria Coronariana; Prognóstico; Ecocardiografia/métodos.

Abstract

Background: Mean platelet volume (MPV), which is a simple measure of platelet activation, has recently become an interesting topic in cardiovascular research. Exercise-based cardiac rehabilitation (CR) is a comprehensive intervention that decreases mortality-morbidity in patients with coronary artery disease (CAD). Studies on the effects of exercise on platelet activation have yielded conflicting results.

Objective: The purpose of this study was to determine the effect of an exercise-based CR programs on MPV in patients with stable CAD.

Methods: The sample was composed of 300 consecutive stable CAD patients. The patients were divided into two groups: CR group (n = 97) and non-CR group (n = 203). Blood analysis was performed. Point-Biserial correlation measures were performed to show correlation between MPV change and CR. A p value of <0.05 was considered statistically significant.

Results: The decrease in MPV was greater in the CR group than in the non-CR group [(-1,10 (-1,40-(-0,90)) vs. (-0,10 (-2,00-0,00)); p<0,001]. ΔMPV had a positive correlation with Δ neutrophil (r = 0,326, p < 0,001), ΔTG (r = 0,439, p <0,001), ΔLDL-c (r = 0,478, p <0,001), ΔWBC (r = 0,412, p < 0,001) and ΔPCR (r = 0,572, p <0,001). A significant correlation was found between ΔMPV% and CR (r=0.750, p<0.001).

Conclusions: We were able to show that exercise-based CR has a strong relationship with MPV reduction in patients with CAD. We consider that decreased platelet activation with exercise-based CR might play an important role in reducing thrombotic risk in patients with stable CAD. (Arq Bras Cardiol. 2021; 116(3):434-440)

Keywords: Cardiac, Rehabilitation; Exercise; Physical, Activity; Mean Platelet Volume; Blood Platelets; Coronary artery Disease; Echocardiography/methods

Correspondência: Ezgi Kalaycıoğlu •
University of Health Sciences Ahi Evren Chest and Cardiovascular Surgery Education and Research Hospital, Department of Cardiology, Trabzon, Turquia – cardiology - Soguksu Mahallesi, Çamlık Caddesi Trabzon Lütfen Seçiniz 61040
E-mail: ezgikalay@gmail.com
Artigo recebido em 31/07/2019, revisado em 21/11/2019, aceito em 27/12/2019

DOI: https://doi.org/10.36660/abc.20190514
Introdução

A doença cardiovascular (CV) é uma das principais causas de mortalidade e incapacidade e continua sendo uma grande preocupação, apesar da melhora dos resultados clínicos com o tratamento baseado em evidências. As plaquetas são essenciais para a hemostasia primária e reparo do endotélio, mas também desempenham um papel fundamental na patogênese da aterosclerose e trombose arterial. A ativação plaquetária está associada a eventos cardiovasculares. O monitoramento da função das plaquetas pode ajudar na avaliação do prognóstico de pacientes com doença arterial coronariana (DAC).

No entanto, como o teste de função plaquetária é demorado, caro e tecnicamente desafiador, não é amplamente utilizado. Em comparação com plaquetas menores, as plaquetas maiores contêm grânulos densos, expressam mais receptores de adesão e induzem maior atividade trombótica, podendo ser um reflexo do grau de ativação plaquetária. O volume plaquetário médio (VPM) é um parâmetro importante de identificação do tamanho das plaquetas que foi proposto como indicador da reatividade plaquetária e é normalmente determinado por analisadores de contagem completa a um custo relativamente baixo. Níveis elevados de VPM têm sido associados a DAC, infarto do miocárdio, doença arterial periférica, doença cerebrovascular e desfecho desfavorável.

A reabilitação cardiaca (CR) baseada em exercícios é uma intervenção abrangente que inclui treinamento físico supervisionado, gerenciamento de fatores de risco, orientação do paciente e aconselhamento psicossocial. A CR tem se mostrado eficaz na melhora de sintomas isquêmicos de esforço, tolerância ao exercício e fatores de risco coronariano em pacientes com DAC. Além disso, demonstrou reduzir a mortalidade por todas as causas e por eventos cardiovasculares em 20% a 32% entre os pacientes com DAC.

Estudos sobre os efeitos do exercício na ativação plaquetária têm produzido resultados conflitantes. O objetivo deste estudo foi determinar o efeito de um programa de RC baseado em exercícios no VPM em pacientes com DAC estável.

Métodos

População do estudo

O tamanho da amostra foi determinado com poder de 80% e margem de erro de 5% após avaliação preliminar de 5 a 10 casos. O estudo incluiu 300 pacientes ambulatoriais consecutivos que foram submetidos a angiografia coronária (CAG) nos seis meses anteriores devido a angina de peito estável e >50% de estenose detectada em pelo menos uma artéria coronariana, ou tinham histórico de intervenção coronariana percutânea (ICP)/cirurgia coronariana de revascularização do miocárdio (CRM), e foi encaminhado para um programa de RC de fase III. O grupo não RC foi composto por 97 pacientes que não concordaram em participar do programa de reabilitação. Foram excluídos pacientes com doenças imunológicas ou inflamatórias, doenças hematológicas, sepsis, infeções locais ou sistêmicas ativas, doença renal crônica (eTFG <30ml/min/1,73m²), idade ≤18 e >80, fração de ejeção do ventrículo esquerdo (FEVE) <40%, ou com história de malignidade.

Os tratamentos dos pacientes foram otimizados antes da participação, e nenhum deles teve alterações na medicação durante o estudo.

Foi realizado o hemograma nos pacientes incluídos no grupo RC um dia antes do início do programa e um dia após o término do programa (que durou seis semanas), após jejum de 12 horas. Por outro lado, nos pacientes que não foram incluídos no programa, foi coletado sangue para hemograma no momento de inclusão no estudo e seis semanas depois, em jejum de 12 horas. Todas as amostras foram obtidas em tubos padronizados de ácido etilenodiamino tetra-acético (EDTA). O hemograma foi medido em analisador hematológico automatizado Advia 2120 (Siemens). Glicose em jejum, coesterol LDL (LDL-c), triglicerídeos (TG), coesterol HDL (HDL-c), glóbulos brancos (GB), proteína C reativa (PCR), creatinina e hemoglobina foram medidos. O índice de massa corporal (IMC) foi calculado como peso (kg)/altura (m²).

O cálculo do escore de Gensini foi iniciado atribuindo-se um escore de gravidade para cada estenose coronariana: 1 ponto para estreitamento ≤25%, 2 pontos para estreitamento de 26 a 50%, 4 pontos para estreitamento de 51 a 75%, 8 pontos para estreitamento de 76 a 90%, 16 pontos para estreitamento de 91 a 99% e 32 pontos para oclusão total. A partir daí, cada pontuação de lesão foi multiplicada por um fator que leva em consideração a importância da posição da lesão na circulação coronariana (5 para o tronco da coronária esquerda, 2,5 para o segmento proximal da coronária descendente anterior esquerda, 2,5 para a proximal segmento da artéria circunflexa, 1,5 para o segmento médio da artéria coronariana descendente anterior esquerda, 1,0 para a artéria coronária direita, o segmento distal da artéria coronariana descendente anterior esquerda, a artéria póstero-lateral e a artéria marginal obtusa, e 0,5 para outros segmentos). Finalmente, o escore de Gensini foi calculado pela soma das pontuações dos segmentos coronários individuais.

O Ecocardiograma foi feito com base nas diretrizes da Sociedade Americana de Eocardiografia. O volume diastólico final (VDF) e o volume sistólico final (VSF) do ventrículo esquerdo (VE) foram calculados à partir da visualização do corte apical de duas e quatro câmaras usando o método de Simpson modificado. A FEVE foi calculada como FEVE= (VDF-VSF)/VSFX100.

O estudo foi realizado nos termos da Declaração de Helsinque e com a aprovação do conselho de ética local.

Programa de RC

Um teste incremental em cicloergômetro foi aplicado antes do programa de RC em pacientes do grupo RC, para determinar a capacidade de exercício. Durante o teste, o objetivo era atingir a frequência cardíaca máxima esperada de acordo com a idade (220 menos a idade). As indicações
para encerrar o teste de esforço foram: desvio do segmento ST, angina moderada a grave, queda na pressão arterial sistólica >10 mmHg (persistente e pelo menos 10 mmHg) durante o teste ou pressão arterial diastólica >115 mmHg, sintomas do sistema nervoso central (por exemplo, ataxia, tontura ou quase sincope), fadiga, falta de ar, respiração ofegante, cãibras nas pernas ou claudicação. Após descanso de dois minutos, a carga de esforço foi aumentada em 25W a cada dois minutos. A frequência cardíaca e a pressão arterial foram monitoradas durante todo o teste. A carga máxima foi determinada pela capacidade máxima de exercício.

O programa de RC foi realizado com a supervisão de um nutricionista e uma equipe multidisciplinar, incluindo um cardiologista, um fisioterapeuta experiente como coordenador e um especialista em fisioterapia e reabilitação como diretor médico. O programa foi realizado no centro de reabilitação cardíaca do nosso hospital de cardiologia e cirurgia cardiovascular.

O programa de RC consiste em exercícios aeróbicos e exercícios de relaxamento. Com base no resultado do teste ergométrico, a prescrição do exercício foi agendada individualmente. Os pacientes permaneceram no programa cinco dias por semana, por um total de seis semanas. Todos os pacientes no grupo RC concluíram o programa. Cada sessão durava 30 minutos, incluindo o aquecimento de cinco minutos e o relaxamento final de cinco minutos. A intensidade do exercício aeróbico foi prescrita de acordo com a capacidade de exercício de cada indivíduo.

A intensidade começou em 40-50% da reserva de frequência cardíaca máxima e gradualmente aumentou para 70-85% da reserva de frequência cardíaca máxima. A reserva de frequência cardíaca foi avaliada pela fórmula de Karvonen (FCtreino = (FCmáx – FCreposo) x Intensidade do exercício + FCreposo).13 FCtreino sendo a frequência cardíaca durante o exercício aeróbico, FCmáx a frequência cardíaca máxima alcançada no teste de cicloergômetro, e FCreposo a frequência cardíaca em repouso. A Escala de Taxa de Percepção de Esforço (RPE, Rate of Perceived Exertion) de Borg foi usada, e os pacientes se exercitaram com RPE de 13-15. Os pacientes foram monitorados continuamente por eletrocardiografia (ECG) com um transmissor de ECG de 1 canal (Custo med, Ottobrunn, Alemanha) e as medições de pressão arterial sistólica/diastólica eram realizadas automaticamente à cada cinco minutos por meio de um sistema de software (Custo med, Ottobrunn, Alemanha). Durante o estudo, os pacientes também foram encaminhados a um psicólogo, um nutricionista e uma clínica para parar de fumar.

Discussão

Este estudo mostrou que a RC baseada em exercícios tem uma forte relação com a redução do VPM em pacientes com DAC.

Estudos sobre o efeito do exercício na ativação plaquetária têm produzido resultados conflitantes até o momento. Em concordância com nosso estudo, Yazici et al.7 relataram que uma mudança no estilo de vida que incluísse menos 180 minutos/semana de atividades físicas de intensidade moderada diminuiu o VPM em pacientes pré-hipertensos. Além disso, Rauramaa et al.,12 mostraram que o treinamento físico de intensidade baixa e moderada associou-se à diminuição da agregação plaquetária. Contrário a esses resultados, também foi demonstrado que o teste ergométrico aumentou o VPM em pacientes com DAC.11,13 Além disso, há registros de que exercícios resistidos graduais aumentam o VPM.12,14

O treinamento físico pode trazer efeitos benéficos às plaquetas por meio de diferentes mecanismos. Com o treinamento físico, o fluxo pulsátil na aorta aumenta, e isso pode induzir uma liberação aguda e suprarregulação de óxido nítrico (NO), que é um mediador potente dos efeitos antiplaquetários e supressão da reatividade plaquetária.15,16 Sabe-se que a RC aumenta o colesterol HDL, o que pode estimular a produção de plaquetas e, assim, diminuir a ativação plaquetária.9 Em nosso estudo, o colesterol ΔHDL foi correlacionado de forma independente com a diminuição do VPM.

Resultados

A população do estudo (300 pacientes) foi dividida em dois grupos de acordo com seu ingresso no programa de RC. Duzentos e três pacientes participaram do programa de RC (grupo RC) e 97 pacientes, não (grupo não RC). Características demográficas e clínicas, bem como achados laboratoriais da população, estão listados na Tabela 1. Histórico de síndrome coronariana aguda, CRM e ICP foi semelhante nos dois grupos (Tabela 1).

A diminuição no VPM foi maior no grupo RC do que no grupo não RC [((-1,10 (-1,40 - (-0,90)) vs. (-0,10 (-2,00- 0,00)) vs.; p<0,001, Tabela 1]. A correlação entre ΔMPV e as variáveis é mostrada na Tabela 2. Conforme mostrado na Figura 1, o ΔMPV teve forte correlação positiva com a RC (r = 0,750, p <0,001).
O VPM é reconhecido como um marcador inflamatório em doenças cardiovasculares, cerebrovasculares, reumatológicas e gastroenterológicas. Recentemente, demonstrou-se que a presença de megacariócitos ativados na medula óssea se correlaciona com o aumento dos níveis circulantes de IL-6 em pacientes com aterosclerose.

Pesquisas anteriores forneceram evidências de que um estilo de vida fisicamente ativo está associado a biomarcadores inflamatórios inferiores em todo o corpo, e as ações anti-inflamatórias do treinamento físico crônico são evidentes após 2 a 12 semanas de treinamento supervisionado.

Em nosso estudo, demonstramos que ΔPCR foi um dos

Tabela 1 – Características clínicas e laboratoriais dos grupos RC e não-RC
Variáveis
Idade (anos)
Sexo (masc. %)
Hipertensão
Diabetes mellitus (n, %)
Fumante (n, %)
IMC (kg/m²)
Histórico de ICP (n, %)
Histórico de SCA (n, %)
Histórico de CRM (n, %)
LVEF %
Gravidade da DAC
1 vaso
>2 vasos
Score de Gensini
AAS (n, %)
Inibidores de P2Y12 (n, %)
Bloqueadores beta (n, %)
Hipertensão (n, %)
Inibidores RAAS (n, %)
Estatina (n, %)
Glicose plasmática em jejum (pré) (mg/dL)
Creatinina (pré) (mg/dL)
Hemoglobina (pré) (g/dL)
VPM (pré)
VPM (pós)
ΔVPM *
ΔVPM %
ΔDL-c (mg/dL)*
ΔTG (mg/dL)*
ΔHDL-c (mg/dL)*
ΔGB (10³/µL) *
ΔNeutrófilos (10³/µL) *
ΔPCR (mg/dL) *

Dados apresentados como média ± desvio-padrão ou número de pacientes eporcentagem de pacientes. CR: reabilitação cardíaca; Δ: delta; IMC: índice de massa corporal; ICP: intervenção coronária percutânea; SCA: síndrome coronariana aguda; CRM: cirurgia de revascularização do miocárdio; FEVE: fração de ejeção do ventrículo esquerdo; DAC: doença arterial coronariana; AAS: ácido acetilsalicílico; RAAS: renina-angiotensina-aldosterona; VPM: volume plaquetário médio; LDL: lipoproteína de baixa densidade; TG: Triglicerídeos; HDL: lipoproteína de alta densidade; GB: glóbulo branco; PCR: proteína C-reactiva; pré: antes da RC.

*Comparação pelo teste U de Mann-Whitney em p<0,05. Os valores foram descritos como medianas com variação interquartil (percentis 25º e 75º).
Tabela 2 – Correlação entre ΔVPM e variáveis

Variável	\(r \)	\(p \)
ΔNeutrófilos	0,326	<0,001
ΔLDL-c	0,478	<0,001
ΔGB	0,412	<0,001
ΔPCR	0,572	<0,001
ΔTG	0,439	<0,001
FEVE	-0,133	0,021
Hemoglobina (pré)	-0,139	0,019
Glicose plasmática em jejum (pré)	-0,129	0,026
ΔHDL-c	-0,537	<0,001
RC	0,750	<0,001
Idade	0,034	0,563
IMC	-0,022	0,727

Δ: delta; VPM: volume plaquetário médio; LDL: lipoproteína de baixa densidade; TG: Triglicerídeos; FEVE: fração de ejeção do ventrículo esquerdo; HDL: lipoproteína de alta densidade; GB: glóbulo branco; PCR: proteína C-reativa; RC: reabilitação cardíaca; IMC: índice de massa corporal; pré: antes de CR.

Figura 1 - Correlação do ΔVPM com CR.

Preditores independentes de ΔMPV. A redução do VPM após a RC pode ser explicada pelo efeito anti-inflamatório dos programas de RC baseados em exercícios.

As contradições nos resultados dos estudos podem ser explicadas por vários aspectos do exercício que afetam as funções das plaquetas, como diferentes intensidades de exercício, durações e vários níveis de aptidão dos indivíduos.7 Está comprovado que o exercício intenso agudo aumenta as citocinas pró-inflamatórias plasmáticas.18 O VPM pode refletir as mudanças na estimulação plaquetária e no nível de produção de plaquetas.13 Um aumento no VPM após o exercício pode ser atribuído à liberação recente de plaquetas grandes jovens, particularmente do pool esplênico, para a circulação.7 Neste estudo, implementamos o programa de RC cinco dias por semana por um total de seis semanas com
densidade gradativa crescente, de acordo com a capacidade de exercício de cada indivíduo.

A aterosclerose em si pode estimular megacariócitos da medula óssea, que se mostrou associada à síndrome coronariana aguda, por induzir consumo de plaquetas circulantes durante a aterogênese.17,19 Um dos mecanismos da RC baseada em exercícios potencialmente envolvido na redução de infarto e reinfarto do miocárdio pode estar relacionado com a redução do VPM.8,9

As plaquetas reticuladas são maiores e possivelmente mais ativas do que as plaquetas nãoreticuladas.1 Além disso, as reticuladas ou grandes exibem reatividade aumentada após a terapia antiplaquetária.21,22 Uma vez que foi demonstrado que o VPM alto é um fator de risco independente para infarto do miocárdio (IM) futuro e recorrente, estando associados à síndrome coronariana aguda e a fatores de risco cardiovascular,1,19,23 levantou-se o questionamento sobre como diminuir o VPM.23 Embora tenha sido demonstrado anteriormente que o tratamento com estatinas diminui o VPM,23 em nosso estudo a maioria dos pacientes já estava em uso de estatinas, então nos ativemos ao efeito aditivo da RC na redução do VPM.

Limitações do estudo

O presente estudo teve algumas limitações. Primeiro, avaliamos o VPM apenas uma vez e não checamos as mudanças nele ao longo do tempo. Em segundo lugar, alguns medicamentos antiplaquetários podem afetar o tamanho das plaquetas.

Referências

1. Wada H, Dohi T, Miyauchi K, Shiroma J, Endo H, Doi S, et al. Mean platelet volume and long-term cardiovascular outcomes in patients with stable coronary artery disease. Atherosclerosis. 2018 Oct;277:108-12.
2. Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Flaxman A, et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129(14):1493-501.
3. Chu SG, Becker RC, Berger PB, Bhatt DL, Eikelboom JW, Konkle B, et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost. 2010;8(1):148-56.
4. Jiang P, Song Y, Xu J, Wang HH, Jiang L, Zhao W, et al. Two-year prognostic value of mean platelet volume in patients with diabetes and stable coronary artery disease undergoing elective percutaneous coronary intervention. Cardiovasc J. 2019;26(2):138-46.
5. Jakubowski JA, Adler B, Thompson CB, Valeri CR, Deykin D. Influence of platelet volume on the ability of prostacyclin to inhibit platelet aggregation and the release reaction. J Lab Clin Med. 1985;105(2):271-6.
6. Park Y, Schoene N, Harris W. Mean platelet volume as an indicator of platelet activation: methodological issues. Platelets. 2002;13(5-6):301-6.
7. Yazici M, Kaya A, Kaya Y, Albayrak S, Cinemre H, Ozhans H. Life style modification decreases the mean platelet volume in prehypertensive patients. Platelets. 2009;20(1):58-63.
8. Kamakura T, Kawakami R, Nakamishi M, Ibuski M, Ohara T, Yanase M, et al. Efficacy of out-patient cardiac rehabilitation in low prognostic risk patients after acute myocardial infarction in primary intervention era. Circ J. 2011;75(2):315-21.
9. Sandesara PB, Lambert CT, Gordon NF, Fletcher GF, Franklin BA, Wenger NK, et al. Cardiac rehabilitation and risk reduction: time to “rebrand and reinvigorate.” J Am Coll Cardiol. 2015;65(4):389-95.
10. Avci A, Fidan S, Tabakç M, Toprak C, Aizade E, Arcar E, Bayram E, Tellice M, Naser A, Kargen R. Association between the genuinis score and carotid artery stenosis. Korean Circ J. 2016;46(5):639-45.
11. Karvonen M, Kental K, Mustala O. The effects of training heart rate: a longitudinal study. Ann Med Exp Biol Fenn 1957;35(3):307-15.
12. Rauramaa R, Salonen JT, Seppänen K, Salonen R, Venäläinen JM, Ihanainen M, et al. Inhibition of platelet aggregation by moderate-intensity physical exercise: a randomized clinical trial in overweight men. Circulation. 1986;74(5):939-44.
13. Yilmaz MB, Saricam E, Biyikoglu SF, Guray Y, Guray U, Sasmaz H, et al. Mean platelet volume and exercise stress test. J Thromb Thrombolysis. 2004;17(2):115-20.
14. Ahmadizad S, El-Sayed MS. The effects of graded resistance exercise on platelet aggregation and activation. Med Sci Sports Exerc. 2003;35(6):1026-32.
15. Joyner MJ. Effect of exercise on arterial compliance. Circulation. 2000;102(11):1216-32.
16. Lalosevic MS, Markovic AP, Stankovic S, Stojkovic M, Dimitrijevic I, Vujacic IR, et al. Combined diagnostic efficacy of neutrophil-to-lymphocyte ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR), and Mean Platelet Volume (MPV) as biomarkers of systemic inflammation in the diagnosis of colorectal cancer. Dis Markers. 2019 Jan 17;2019:6036979.
17. Yetkin E. Mean platelet volume not so far from being a routine diagnostic and prognostic measurement. Thromb Haemost. 2008;100(1):3-4.

18. Flynn MG, McFarlin BK, Markoński MM. The anti-inflammatory actions of exercise training. Am J Lifestyle Med. 2007;1(3):220-35.

19. Korniluk A, Koper-Lenkiewicz OM, Kamińska J, Kemonoa H, Dymicka-Piekarska V. Mean Platelet Volume (MPV): new perspectives for an old marker in the course and prognosis of inflammatory conditions. Mediators Inflamm. 2019;2019:9213074.

20. Stewart RAH, Held C, Hadziosmanovic N, Armstrong PW, Cannon CP, Granger CB, et al. Physical activity and mortality in patients with stable coronary heart disease. J Am Coll Cardiol. 2017;70(14):1689-1700.

21. Guthikonda S, Lev EI, Patel R, DeLao T, Bergeron AL, Dong JF, et al. Reticulated platelets and uninhibited COX-1 and COX-2 decrease the antiplatelet effects of aspirin. J Thromb Haemost. 2007;5(3):490-6.

22. Guthikonda S, Alviar CL, Vaduganathan M, Arikan M, Tellez A, DeLao T, et al. Role of reticulated platelets and platelet size heterogeneity on platelet activity after dual antiplatelet therapy with aspirin and clopidogrel in patients with stable coronary artery disease. J Am Coll Cardiol. 2008;52(9):743-9.

23. Sivri N, Tekin G, Yalta K, Aksoy Y, Senen K, Yetkin E. Statins decrease mean platelet volume irrespective of cholesterol lowering effect. Kardiol Pol. 2013;71(10):1042-7.