Induced Matchings and the v-Number of Graded Ideals †

Gonzalo Grisalde, Enrique Reyes and Rafael H. Villarreal *

Abstract: We give a formula for the v-number of a graded ideal that can be used to compute this number. Then, we show that for the edge ideal $I(G)$ of a graph G, the induced matching number of G is an upper bound for the v-number of $I(G)$ when G is very well-covered, or G has a simplicial partition, or G is well-covered connected and contains neither four, nor five cycles. In all these cases, the v-number of $I(G)$ is a lower bound for the regularity of the edge ring of G. We classify when the induced matching number of G is an upper bound for the v-number of $I(G)$ when G is a cycle and classify when all vertices of a graph are shedding vertices to gain insight into the family of W_2-graphs.

Keywords: graded ideals; v-number; induced matchings; edge ideals; regularity; very well-covered graphs; W_2-graphs; simplicial vertices

MSC: Primary 13F20; Secondary 13F55; 05C70; 05E40; 13H10

1. Introduction

Let $S = K[t_1, \ldots, t_s] = \bigoplus_{d=0}^\infty S_d$ be a polynomial ring over a field K with the standard grading, and let I be a graded ideal of S. A prime ideal p of S is an associated prime of S/I if $I: f = p$ for some $f \in S_d$, where $(I: f)$ is the set of all $g \in S$ such that $gf \in I$. The set of associated primes of S/I is denoted by Ass(I), and the set of maximal elements of Ass(I) with respect to inclusion is denoted by Max(I). The v-number of I, denoted $v(I)$, is the following invariant of I that was introduced in [1] to study the asymptotic behavior of the minimum distance of projective Reed–Muller-type codes, Corollary 4.7 in [1]:

$$v(I) := \min\{d \geq 0 \mid \exists f \in S_d \text{ and } p \in \text{Ass}(I) \text{ with } (I: f) = p\}.$$

One can define the v-number of I locally at each associated prime p of I:

$$v_p(I) := \min\{d \geq 0 \mid \exists f \in S_d \text{ with } (I: f) = p\}.$$

For a graded module $M \neq 0$, we define $\alpha(M) := \min\{\deg(f) \mid f \in M \setminus \{0\}\}$. By convention, we set $\alpha(0) := 0$. Part (d) of the next result was shown in Proposition 4.2 in [1] for unmixed graded ideals. The next result gives a formula for the v-number of any graded ideal.

Theorem 1. Let $I \subset S$ be a graded ideal, and let $p \in \text{Ass}(I)$. The following hold:

(a) If $\mathcal{G} = \{g_1, \ldots, g_r\}$ is a homogeneous minimal generating set of $(I: p)/I$, then:

$$v_p(I) = \min\{\deg(g_i) \mid 1 \leq i \leq r \text{ and } (I: g_i) = p\};$$

(b) $v(I) = \min\{v_q(I) \mid q \in \text{Ass}(I)\};$
(c) \(v_p(I) \geq n((I: p)/I) \) with equality if \(p \in \text{Max}(I) \);
(d) If \(I \) has no embedded primes, then \(v(I) = \min\{ n((I: q)/I) : q \in \text{Ass}(I) \} \).

The formulas of Parts (a) and (b) give an algorithm to compute the \(v \)-number using Macaulay2 [2] (Example 1, Procedure A1 in Appendix A).

The \(v \)-number of nongraded ideals was used in [3] to compute the regularity index of the minimum distance function of affine Reed–Muller-type codes, Proposition 6.2 in [3]. In this case, one considers the vanishing ideal of a set of affine points over a finite field. For certain classes of graded ideals, \(v(I) \) is a lower bound for \(\text{reg}(S/I) \), the regularity of the quotient ring \(S/I \) (Definition 1); see [1,4,5]. There are examples of ideals where \(v(I) > \text{reg}(S/I) \) [4]. It is an open problem whether \(v(I) \leq \text{reg}(S/I) + 1 \) holds for any squarefree monomial ideal. Upper and lower bounds for the regularity of edge ideals and their powers were given in [6–15]; see Section 2. Using the polarization technique of Fröberg [16], we give an upper bound for the regularity of a monomial ideal \(I \) in terms of the dimension of \(S/I \) and the exponents of the monomials that generate \(I \) (Proposition 2).

Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). If \(V(G) = \{ t_1, \ldots, t_s \} \), we can regard each vertex \(t_i \) as a variable of the polynomial ring \(S = K[t_1, \ldots, t_s] \) and think of each edge \(\{ t_i, t_j \} \) of \(G \) as the quadratic monomial \(t_it_j \) of \(S \). The edge ideal of \(G \) is the squarefree monomial ideal of \(S \), defined as:

\[
I(G) := \langle t_it_j \mid \{ t_i, t_j \} \in E(G) \rangle.
\]

This ideal, introduced in [17], has been studied in the literature from different perspectives; see [18–26] and the references therein. We use induced matchings of \(G \) to compare the \(v \)-number of \(I(G) \) with the regularity of \(S/I(G) \) for certain families of graphs.

A subset \(C \) of \(V(G) \) is a vertex cover of \(G \) if every edge of \(G \) is incident with at least one vertex in \(C \). A vertex cover \(C \) of \(G \) is minimal if every proper subset of \(C \) is not a vertex cover of \(G \). A subset \(A \) of \(V(G) \) is called stable if no two points in \(A \) are joined by an edge. Note that a set of vertices \(A \) is a (maximal) stable set of \(G \) if and only if \(V(G) \setminus A \) is a (minimal) vertex cover of \(G \). The stability number of \(G \), denoted by \(\beta_0(G) \), is the cardinality of a maximum stable set of \(G \), and the covering number of \(G \), denoted \(\alpha_0(G) \), is the cardinality of a minimum vertex cover of \(G \). We introduce the following two families of stable sets:

\[
\mathcal{F}_G := \{ A \mid A \text{ is a maximal stable set of } G \};
\]
\[
\mathcal{A}_G := \{ A \mid A \text{ is a stable set of } G, \text{ and } N_G(A) \text{ is a minimal vertex cover of } G \}.
\]

According to Theorem 3.5 in [4], \(\mathcal{F}_G \subset \mathcal{A}_G \) and the \(v \)-number of \(I(G) \) is given by:

\[
v(I(G)) = \min\{ |A| : A \in \mathcal{A}_G \}.
\]

The \(v \)-number of \(I(G) \) is a combinatorial invariant of \(G \) that has been used to characterize the family of \(W_2 \)-graphs (see the discussion below after Corollary 1). We can define the \(v \)-number of a graph \(G \) as \(v(G) := v(I(G)) \) and study \(v(G) \) from the viewpoint of graph theory.

A set \(P \) of pairwise disjoint edges of \(G \) is called a matching. A matching \(P = \{ e_1, \ldots, e_r \} \) is perfect if \(V(G) = \bigcup_{i=1}^{r} e_i \). An induced matching of a graph \(G \) is a matching \(P = \{ e_1, \ldots, e_r \} \) of such that the only edges of \(G \) contained in \(\bigcup_{i=1}^{r} e_i \) are \(e_1, \ldots, e_r \). The matching number of \(G \), denoted \(\beta_1(G) \), is the maximum cardinality of a matching of \(G \), and the induced matching number of \(G \), denoted \(\text{im}(G) \), is the number of edges in the largest induced matching.

The graph \(G \) is well-covered if every maximal stable set of \(G \) is of the same size, and \(G \) is very well-covered if \(G \) is well-covered, has no isolated vertices, and \(|V(G)| = 2\alpha_0(G) \). The class of very well-covered graphs includes the bipartite well-covered graphs without isolated vertices [27,28] and the whisker graphs [24] (p. 392) (Lemma 1). A graph without isolated vertices is very well-covered if and only if \(G \) is well-covered and \(\beta_1(G) = \alpha_0(G) \) (Proposition 1). One of the properties of very well-covered graphs that will be used to show
the following theorem is that they can be classified using combinatorial properties of a perfect matching, as was shown by Favaron, Theorem 1.2 in [29] (Theorem 7, cf. Theorem 6).

We come to one of our main results.

Theorem 2. Let \(G \) be a very well-covered graph, and let \(P = \{e_1, \ldots, e_r\} \) be a perfect matching of \(G \). Then, there is an induced submatching \(P' \) of \(P \) and \(D \in \mathcal{A}_G \) such that \(D \subset V(P') \) and \(|e \cap D| = 1 \) for each \(e \in P' \). Furthermore, \(v(I(G)) \leq |P'| = |D| \leq \text{im}(G) \leq \text{reg}(S/I(G)) \).

Let \(G \) be a graph, and let \(W_G \) be its whisker graph (Section 2). As a consequence, we recover a result of [4] showing that the v-number of \(I(W_G) \) is bounded from above by the regularity of the quotient ring \(K[V(W_G)]/I(W_G) \) (Corollary 3). The independent domination number of \(G \), denoted by \(i(G) \), is the minimum size of a maximal stable set, Proposition 2 in [30]:

\[
i(G) := \min\{|A| : A \in \mathcal{F}_G\},
\]

and \(i(G) \) is equal to the v-number of the whisker graph \(W_G \) of \(G \), Theorem 3.19(a) in [4].

A cycle of length \(s \) is denoted by \(C_s \). The inequality \(v(I(G)) \leq \text{reg}(S/I(G)) \) of Theorem 2 is false if we only assume that \(G \) is a well-covered graph, since the cycle \(C_5 \) is a well-covered graph, but one has \(\text{im}(C_5) = 1 < 2 = v(I(C_5)) \). We prove that \(C_5 \) is the only cycle where the inequality \(v(I(C_5)) \leq \text{im}(C_5) \) fails.

Theorem 3. Let \(C_s \) be an s-cycle, and let \(I(C_s) \) be its edge ideal. Then, \(v(I(C_s)) \leq \text{im}(C_s) \) if and only if \(s \neq 5 \).

If \(v \in V(G) \), we denote the closed neighborhood of \(v \) by \(N_G[v] \). A vertex \(v \) of \(G \) is called simplicial if the induced subgraph \(H = G[N_G[v]] \) on the vertex set \(N_G[v] \) is a complete graph. A subgraph \(H \) of \(G \) is called a simplex if \(H = G[N_G[v]] \) for some simplicial vertex \(v \). A graph \(G \) is simplicial if every vertex of \(G \) is either simplicial or is adjacent to a simplicial vertex of \(G \).

If \(A \) is a stable set of a graph \(G \), \(H_i \) is a complete subgraph of \(G \) for \(i = 1, \ldots, r \), and \(A \cup \{V(H_i)\}_{i=1}^r \) is a partition of \(V(G) \), then \(\text{reg}(S/I(G)) \leq r \), Theorem 2 in [15]. We consider a special type of partition of \(V(G) \) that allows us to link \(\mathcal{A}_G \) with induced matchings of \(G \). A graph \(G \) has a simplicial partition if \(G \) has simplexes \(H_1, \ldots, H_r \) such that \(\{V(H_i)\}_{i=1}^r \) is a partition of \(V(G) \). Our next result shows that \(v(I(G)) \leq \text{im}(G) \) if \(G \) has a simplicial partition.

Theorem 4. Let \(G \) be a graph with simplexes \(H_1, \ldots, H_r \), such that \(\{V(H_i)\}_{i=1}^r \) is a partition of \(V(G) \). If \(G \) has no isolated vertices, then there is \(D = \{y_1, \ldots, y_k\} \in \mathcal{A}_G \), and there are simplicial vertices \(x_1, \ldots, x_k \) of \(G \) and integers \(1 \leq j_1 < \cdots < j_k \leq r \) such that \(P = \{\{x_i, y_{j_i}\}_{i=1}^k \} \) is an induced matching of \(G \) and \(H_j \) is the induced subgraph \(G[N_G[x_i]] \) on \(N_G[x_i] \) for \(i = 1, \ldots, k \). Furthermore, \(v(I(G)) \leq |D| = |P| \leq \text{im}(G) \leq \text{reg}(S/I(G)) \).

As a consequence, using a result of Finbow, Hartnell, and Nowakowski that classifies the connected well-covered graphs without four and five cycles, Theorem 1.1 in [31] (Theorem 8), we show other families of graphs where the induced matching number of \(G \) is an upper bound for the v-number of \(I(G) \).

Corollary 1. Let \(G \) be a well-covered graph, and let \(I(G) \) be its edge ideal. If \(G \) is simplicial or \(G \) is connected and contains neither four, nor five cycles, then:

\[
v(I(G)) \leq \text{im}(G) \leq \text{reg}(S/I(G)) \leq \beta_0(G).
\]

A vertex \(v \) of a graph \(G \) is called a shedding vertex if each stable set of \(G \setminus N_G[v] \) is not a maximal stable set of \(G \setminus v \). We prove that every vertex of \(G \) is a shedding vertex if and only if \(\mathcal{A}_G = \mathcal{F}_G \) (Proposition 4).
A graph G belongs to class W_2 if $|V(G)| \geq 2$ and any two disjoint stable sets A_1, A_2 are contained in two disjoint maximum stable sets B_1, B_2 with $|B_i| = \beta_0(G)$ for $i = 1, 2$. A graph G is in W_2 if and only if G is well-covered, $G \setminus v$ is well-covered for all $v \in V(G)$, and G has no isolated vertices, Theorem 2.2 in [32]. A graph G without isolated vertices is in W_2 if and only if $v(\beta(G)) = \beta_0(G)$, Theorem 4.5 in [4]. As an application we recover the only if implication of this result (Corollary 5). Using the fact that a graph G without isolated vertices is in W_2 if and only if G is well-covered and every $v \in V(G)$ is a shedding vertex, Theorem 3.9 in [32]. For other characterizations of graphs in W_2, see [32,33] and the references therein.

In Section 5, we show examples illustrating some of our results. In particular, in Example 3, we compute the combinatorial and algebraic invariants of the well-covered graphs C_7 and T_{10} that are depicted in Figure 1. These two graphs occur in the classification of connected well-covered graphs without four and five cycles, Theorem 1.1 in [31] (Theorem 8). A related result is the characterization of well-covered graphs of girth at least five given in [34].

![Figure 1](image_url)
Figure 1. Two well-covered graphs with no 4 or 5 cycles.

For all unexplained terminology and additional information, we refer to [35,36] for the theory of graphs and [19,21,25] for the theory of edge ideals and monomial ideals.

2. Preliminaries

In this section, we give some definitions and present some well-known results that will be used in the following sections. To avoid repetition, we continue to employ the notations and definitions used in Section 1.

Definition 1 ([37]). Let $I \subset S$ be a graded ideal, and let F be the minimal graded free resolution of S/I as an S-module:

$$F : \quad 0 \rightarrow \bigoplus_{j} S(-j)^{b_{j,i}} \rightarrow \cdots \rightarrow \bigoplus_{j} S(-j)^{b_{j,i}} \rightarrow S \rightarrow S/I \rightarrow 0.$$

The Castelnuovo–Mumford regularity of S/I (regularity of S/I) is defined as:

$$\text{reg}(S/I) := \max\{j - i \mid b_{j,i} \neq 0\}.$$

The integer g, denoted $\text{pd}(S/I)$, is the projective dimension of S/I.

Let G be a graph with vertex set $V(G)$. Given $A \subset V(G)$, the induced subgraph on A, denoted $G[A]$, is the maximal subgraph of G with vertex set A. The edges of $G[A]$ are all the edges of G that are contained in A. The induced subgraph $G[V(G) \setminus A]$ of G on the vertex set $V(G) \setminus A$ is denoted by $G \setminus A$. If v is a vertex of G, then we denote the neighborhood of v by $N_G(v)$ and the closed neighborhood $N_G(v) \cup \{v\}$ of v by $N_G[v]$. Recall that $N_G(v)$ is the set of all vertices of G that are adjacent to v. If $A \subset V(G)$, we set $N_G(A) := \bigcup_{a \in A} N_G(a)$.

Theorem 5 ([38]). If a graph G is well-covered and is not complete, then $G_v := G \setminus N_G[v]$ is well-covered for all v in $V(G)$. Moreover, $\beta_0(G_v) = \beta_0(G) - 1$.

If G is a graph, then $\beta_1(G) \leq a_0(G)$. We say that G is a König graph if $\beta_1(G) = a_0(G)$. This notion can be used to classify very well-covered graphs (Proposition 1).

Theorem 6 ([39], Theorem 5, and [40], Lemma 2.3). Let G be a graph without isolated vertices. If G is a graph without 3, 5, and 7 cycles or G is a König graph, then G is well-covered if and only if G is very well-covered.

Definition 2. A perfect matching P of a graph G is said to have Property (P) if for all $\{a, b\}$, $\{a', b'\} \in E(G)$, and $\{b, b'\} \in P$, one has $\{a, a'\} \in E(G)$.

Remark 1. Let P be a perfect matching of a graph G with Property (P). Note that if $\{b, b'\} \in P$ and $a \in V(G)$, then $\{a, b\}$ and $\{a, b'\}$ cannot be both in $E(G)$ because G has no loops. In other words, G has no triangle containing an edge in P.

Theorem 7 ([29], Theorem 1.2). The following conditions are equivalent for a graph G:

1. G is very well-covered;
2. G has a perfect matching with Property (P);
3. G has a perfect matching, and each perfect matching of G has Property (P).

Let G be a graph with vertex set $V(G) = \{t_1, \ldots, t_k\}$, and let $U = \{u_1, \ldots, u_s\}$ be a new set of vertices. The whisker graph or suspension of G, denoted by W_G, is the graph obtained from G by attaching to each vertex t_i a new vertex u_i and a new edge $\{t_i, u_i\}$. The edge $\{t_i, u_i\}$ is called a whisker or pendant edge. The graph W_G was introduced in [24] as a device to study the numerical invariants and properties of graphs and edge ideals.

Lemma 1. Let G be a graph without isolated vertices. The following hold:

(a) If G is a bipartite well-covered graph, then G is very well-covered;
(b) The whisker graph W_G of G is very well-covered.

Proof. (a) A bipartite well-covered graph without isolated vertices has a perfect matching P that satisfies Property (P), Theorem 1.1 in [28]. Thus, by Theorem 7, G is very well-covered; (b) The perfect matching $P = \{\{t_i, u_i\}\}_{i=1}^n$ of the whisker graph W_G satisfies Property (P) and, by Theorem 7, G is very well-covered.

Proposition 1 ([41], Lemma 17). Let G be a graph without isolated vertices. Then, G is a very well-covered graph if and only if G is well-covered and $\beta_1(G) = a_0(G)$.

Proof. \Rightarrow Assume that G is very well-covered. Then, $|V(G)| = 2a_0(G)$. It suffices to show that $\beta_1(G) = a_0(G)$. In general, $\beta_1(G) \leq a_0(G)$. By Theorem 7, G has a perfect matching $P = \{e_1, \ldots, e_r\}$. Then, $|V(G)| = 2r = 2a_0(G)$ and $r = a_0(G)$. Thus, $a_0(G) = |P| \leq \beta_1(G)$, and one has $a_0(G) = \beta_1(G)$.

\Leftarrow Assume that G is well-covered and $\beta_1(G) = a_0(G)$. Let $P = \{e_1, \ldots, e_r\}$ be a matching of G with $r = \beta_1(G)$. We need only to show that $|V(G)| = 2a_0(G)$. Clearly, $|V(G)|$ is greater than or equal to $2a_0(G)$ because $\bigcup_{i=1}^r e_i \subseteq V(G)$. We argue by contradiction assuming that $\bigcup_{i=1}^r e_i \not\subseteq V(G)$. Pick $v \in V(G) \setminus \bigcup_{i=1}^r e_i$. As v is not an isolated vertex of G, there is a minimal vertex cover C of G that contains v. As G is well-covered, one has that $|C| = a_0(G) = r$. Since $e_i \cap C \neq \emptyset$ for $i = 1, \ldots, r$ and $v \in C$, we obtain $|C| \geq r + 1$, a contradiction.

We say that a graph G is in the family \mathcal{F} if there exists $\{x_1, \ldots, x_k\} \subseteq V(G)$ where for each i, x_i is simplicial, $|N_G[x_i]| \leq 3$, and $\{N_G[x_i] \mid i = 1, \ldots, k\}$ is a partition of $V(G)$.

Theorem 8 ([31], Theorem 1.1). Let G be a connected graph that contains neither four, nor five cycles, and let C7 and T10 be the two graphs in Figure 1. Then, G is a well-covered graph if and only if G ∈ {C7, T10} or G ∈ F.

Theorem 9. Let G be a graph. The following hold:
(a) ([7], Theorem 4.5, [42]) 2(n − 1) + \im(G) ≤ \reg(S/I(G)^n) for all n ≥ 1;
(b) ([7], Theorem 4.7, [43]) If G is a forest or G is very well-covered, then:
\begin{equation*}
\reg(S/I(G)^n) = 2(n − 1) + \im(G) \text{ for all } n ≥ 1;
\end{equation*}
(c) ([44], Theorem 1.3) If G is very well-covered, then \(\reg(S/I(G)) = \im(G) \).

The projective dimension of the edge ideal of a graph, the Wiener index, the independence polynomial, the h-vector, and the symbolic powers of cover ideals of graphs have been studied for very well-covered graphs [45–51].

3. The v-Number of a Graded Ideal

Let \(S = K[t_1, \ldots, t_s] = \bigoplus_{d=0}^\infty S_d \) be a polynomial ring over a field \(K \) with the standard grading, and let \(I \) be a graded ideal of \(S \). In this section, we prove a formula for the v-number of \(I \) that can be used to compute this number using Macaulay2 [2]. To avoid repetition, we continue to employ the notations and definitions used in Sections 1 and 2.

Lemma 2. Let \(I \subseteq S \) be a graded ideal. If \((1 : f) = p \) for some prime ideal \(p \) and some \(f \in S_d \), \(d \geq 0 \), then \(I \subseteq (1 : p) \), and there is a minimal homogeneous generator \(\mathcal{G} := g + I \) of \((1 : p)/I \) such that \(\deg(f) ≥ \deg(g) \) and \((1 : g) = p \).

Proof. The strict inclusion \(I \subseteq (1 : p) \) is clear because \(f \in (1 : p) \setminus I \). Let \(\mathcal{G} = \{\mathcal{G}_1, \ldots, \mathcal{G}_r\} \) be a minimal generating set of \((1 : p)/I \) such that \(g_i \) is a homogeneous polynomial for all \(i \). As \((1 : f) = p \), one has \(f \notin \mathcal{G} \) and \(f \in (1 : p) \). Then, we can choose homogeneous polynomials \(h_1, \ldots, h_r \) in \(S, p \) in \(I \), such that \(f = \sum_{i=1}^r h_i g_i + p \) and \(d = \deg(h_i g_i) \) for all \(i \) with \(h_i \neq 0 \).

One has the inclusion \(\bigcap_{i=1}^r (1 : g_i h_i) \subseteq (1 : f) \). Indeed, if we take \(h \) in \(\bigcap_{i=1}^r (1 : g_i h_i) \), then \(h h_i g_i \in I \) for all \(i \) and \(h f = \sum_{i=1}^r h_i g_i + h p \in I \), thus \(h \in (1 : f) \). Therefore, using the fact that all \(g_i \)'s are in \((1 : p) \), one has the inclusions:

\[p \subseteq \bigcap_{i=1}^r (1 : g_i) \subseteq \bigcap_{i=1}^r (1 : g_i h_i) \subseteq (1 : f) = p, \]

and consequently, \(p = \bigcap_{i=1}^r (1 : g_i h_i) \). Hence, by [25] (p. 74, 2.1.48), we obtain \((1 : g_i h_i) = p \) for some \(1 ≤ i ≤ r \). As \(g_i \in (1 : p) \), we obtain:

\[p \subseteq (1 : g_i) \subseteq (1 : g_i h_i) = p. \]

Hence, \(p = (1 : g_i) \) and \(d = \deg(f) = \deg(g_i h_i) ≥ \deg(g_i) \).

Theorem 10 (The same as Theorem 1). Let \(I \subseteq S \) be a graded ideal, and let \(p \in \Ass(I) \). The following hold:
(a) If \(\mathcal{G} = \{\mathcal{G}_1, \ldots, \mathcal{G}_r\} \) is a homogeneous minimal generating set of \((1 : p)/I \), then:
\[v_p(I) = \min \{ \deg(g_i) \mid 1 ≤ i ≤ r \text{ and } (1 : g_i) = p \}; \]
(b) \(v(I) = \min \{ v_q(I) \mid q \in \Ass(I) \} \);
(c) \(v_p(I) ≥ a((1 : p)/I) \) with equality if \(p \in \Max(I) \);
(d) If \(I \) has no embedded primes, then \(v(I) = \min \{ a((1 : q)/I) \mid q \in \Ass(I) \} \).
Proof. (a) Take any homogeneous polynomial \(f \) in \(S \) such that \((I: f) = p\). Then, by Lemma 2, there is \(g_j \in \mathcal{G} \) such that \(\deg(f) \geq \deg(g_j) \) and \((I: g_j) = p\). Thus, the set \(\{g_i \mid (I: g_i) = p\} \) is non-empty and the inequality:

\[
\nu_p(I) \leq \min\{\deg(g_i) \mid 1 \leq i \leq r \text{ and } (I: g_i) = p\}
\]

follows by the definition of \(\nu_p(I) \). Now, we can pick a homogeneous polynomial \(f \) in \(S \) such that \(\deg(f) = \nu_p(I) \) and \((I: f) = p\). Then, by Lemma 2, there is \(g_j \in \mathcal{G} \) such that \(\deg(f) \geq \deg(g_j) \) and \((I: g_j) = p\). Thus, \(\deg(f) = \deg(g_j) \) and the inequality “\(\geq \)” holds;

(b) This follows at once from the definitions of \(\nu(I) \) and \(\nu_q(I) \);

(c) Pick a homogeneous polynomial \(g \) in \(S \) such that \(\deg(g) = \nu_p(I) \) and \((I: g) = p\).

Then, \(g \notin I \) and \(gp \subset I \), that is \(g \in (I: p) \setminus I \). Thus, \(\nu_p(I) \geq \deg((I: p)/I) \). Now, assume that \(p \in \text{Max}(I) \). To show the reverse inequality, take any homogeneous polynomial \(f \) in \((I: p) \setminus I \). Then, \(fp \subset I \) and \(p \subset (I: f) \). Since \(\text{Ass}(I : f) \) is contained in \(\text{Ass}(I) \), there is \(q \in \text{Ass}(I) \) such that \(p \subset (I: f) \subset q \). Hence, \(p = q \) and \(p = (I : f) \). Thus, \(\nu_p(I) \leq \deg(f) \) and \(\nu_p(I) \leq \deg((I: p)/I) \);

(d) This follows immediately from (b) and (c). \(\square \)

We give a direct proof of the next result, which in particular relates the \(\nu \)-number of a Cohen–Macaulay monomial ideal \(I \subset S \) to that of \((I,h)\), where \(h \in S_1 \) and \((I : h) = I \).

Corollary 2 ([4], Proposition 4.9). Let \(I \subset S \) be a Cohen–Macaulay nonprime graded ideal whose associated primes are generated by linear forms, and let \(h \in S_1 \) be a regular element on \(S/I \). Then, \(\nu(I, h) \leq \nu(I) \).

Proof. Since the ideal \(I \) has no embedded primes, by Theorem 10d, there are \(p \in \text{Ass}(I) \) and \(f \in (I: p) \setminus I \) such that \(\overline{f} = f + I \) is a minimal generator of \(M_p = (I : p)/I \) and \(\deg(f) = \nu(I) \). The associated primes of \((I : f)\) are contained in \(\text{Ass}(I) \); thus, there is \(q \in \text{Ass}(I) \) such that \(p \subset (I : f) \subset q \). Hence, \(p = q \) because \(I \) has no embedded associated primes, and one has the equality \((I : f) = p\). We claim that \(f \) is not in \((I, h)\). We assume, by contradiction, that \(f \in (I, h) \). Then, we can write \(f = f_1 + hf_2 \), with \(f_i \) a homogeneous polynomial for \(i = 1, 2, f_1 \in I, f_2 \in S \). Hence, one has:

\[
p = (I : f) = (I : hf_2) = (I : f_2).
\]

Therefore, \(f_2 \in (I : p) \setminus I \) and \(\overline{f} = h \overline{f_2} \), a contradiction because \(\overline{f} \) is a minimal generator of \(M_p \). This proves that \(f \notin (I, h) \). Next, we show the equality \((p, h) = ((I, h) : f) \). The inclusion “\(\subset \)” is clear because \((I : f) = p\). Take an associated prime \(p' \) of \(((I, h) : f)\). The height of \(p' \) is equal to \(\text{ht}(I) + 1 \) because \((I, h)\) is Cohen–Macaulay and the associated primes of \(((I, h) : f)\) are contained in \(\text{Ass}(I, h) \). Then:

\[
p = (I : f) \subset ((I, h) : f) \subset p',
\]

and consequently, \((p, h) \subset ((I, h) : f) \subset p' \). Now, \((p, h)\) is prime because \(p \) is generated by linear forms, and \(\text{ht}(p, h) = \text{ht}(p) + 1 = \text{ht}(I) + 1 \) because \(I \) is Cohen–Macaulay and \(h \) is a regular element on \(S/I \). Thus, \((p, h) = p', (p, h) = ((I, h) : f) \), and \(\nu(I, h) \leq \nu(I) \). \(\square \)

Proposition 2. Let \(I \subset S \) be a monomial ideal minimally generated by \(G(I) \), and for each \(t_i \) that occurs in a monomial of \(G(I) \), let \(\gamma_i := \max\{\deg_i(g) \mid g \in G(I)\} \). Then:

\[
\text{reg}(S/I) \leq \dim(S/I) + \sum_i(\gamma_i - 1).
\]

Proof. To show the inequality, we use the polarization technique due to Fröberg (see [52] and [25] (p. 203)). To polarize \(I \) we use the set of new variables:

\[
T_I = \bigcup_{i=1}^{\nu_I} \{t_1, \ldots, t_i, \gamma_i\}.
\]
where \(\{t_{1,2}, \ldots, t_{i,\gamma_i}\} \) is empty if \(\gamma_i = 1 \). Note that \(\lvert T_i \rvert = \sum_i (\gamma_i - 1) \). A power \(t_i^{\rho_i} \) of a variable \(t_i \), \(1 \leq c_i \leq \gamma_i \), polarizes to \((t_i^{\rho_i})^{\text{pol}} = t_i \) if \(\gamma_i = 1 \), to \((t_i^{\rho_i})^{\text{pol}} = t_{i,1} \cdots t_{i,\gamma_i+1} \) if \(c_i < \gamma_i \), and to \((t_i^{\rho_i})^{\text{pol}} = t_{i,2} \cdots t_{i,\gamma_i+1} \) if \(c_i = \gamma_i \). Setting \(G(I) = \{g_1, \ldots, g_r\} \), the polarization \(I^{\text{pol}} \) of \(I \) is the ideal of \(S[T_i] \) generated by \(g_i^{\text{pol}}, \ldots, g_r^{\text{pol}} \). According to Corollary 1.6.3 in [21], one has:

\[
\text{reg}(S/I) = \text{reg}(S[T_i]/I^{\text{pol}}) \text{ and } \text{ht}(I) = \text{ht}(I^{\text{pol}}).
\]

As \(I^{\text{pol}} \) is squarefree, by Proposition 3.2 in [4], one has \(\text{reg}(S[T_i]/I^{\text{pol}}) \leq \dim(S[T_i]/I^{\text{pol}}) \). Hence, we obtain:

\[
\text{reg}(S/I) = \text{reg}(S[T_i]/I^{\text{pol}}) \leq \dim(S[T_i]/I^{\text{pol}}) = \dim(S[T_i]) - \text{ht}(I).
\]

To complete the proof, notice that \(\dim(S[T_i]) - \text{ht}(I) = \dim(S/I) + |T_i| \). \(\Box \)

Given \(a = (a_1, \ldots, a_s) \in \mathbb{N}^s \), where \(\mathbb{N} = \{0, 1, \ldots\} \), the monomial \(t_i^{a_1} \cdots t_i^{a_s} \) is denoted by \(t^a \). A result of Beintema [53] shows that a zero-dimensional monomial ideal is Gorenstein if and only if it is a complete intersection. (This is also true in dimension one; see Exercise 4.4.19 in [54].) The next result classifies the complete intersection property using regularity.

Proposition 3. Let \(I \) be a monomial ideal of \(S \) of dimension zero minimally generated by \(G(I) = \{t_1^{a_1}, \ldots, t_s^{a_s}\} \), where \(a_i \geq 1 \) for \(i = 1, \ldots, s \) and \(d_i \in \mathbb{N} \setminus \{0\} \) for \(i > s \). Then, \(\text{reg}(S/I) \leq \sum_{i=1}^s (d_i - 1) \), with equality if and only if \(I \) is a complete intersection.

Proof. The inequality \(\text{reg}(S/I) \leq \sum_{i=1}^s (d_i - 1) \) follows directly from Proposition 2 because \(\dim(S/I) = 0 \). If \(I \) is a complete intersection, then \(I = (t_i^{d_1}, \ldots, t_i^{d_s}) \), and by Lemma 3.5 in [55], we obtain \(\text{reg}(S/I) = \sum_{i=1}^s (d_i - 1) \). Conversely, assume that \(\text{reg}(S/I) \) is equal to \(\sum_{i=1}^s (d_i - 1) \). We argue by contradiction assuming that \(m > s \). Then, the exponents of the monomial \(t_1^{a_1} \cdots t_s^{a_s} \) satisfy \(c_i \leq d_i - 1 \) for \(i = 1, \ldots, s \) because \(t_1^{a_1} \cdots t_s^{a_s} \in G(I) \). The regularity of \(S/I \) is the largest integer \(d \geq 0 \) such that \((S/I)_d \neq 0 \), Proposition 4.14 in [37]. Pick a monomial \(t^a = t_1^{a_1} \cdots t_s^{a_s} \) such that \(t^a \in S_d \setminus I \) and \(d = \sum_{i=1}^s (d_i - 1) \). Then, \(a_i \leq d_i - 1 \) for \(i = 1, \ldots, s \) because \(t^a \) is not in \(I \), and consequently, \(a_i = d_i - 1 \) for \(i = 1, \ldots, s \). Hence, \(t^a = t_1^{d_1} \cdots t_s^{d_s} \) for some \(\delta \in \mathbb{N}^s \), a contradiction. \(\Box \)

Remark 2. Note that Proposition 3 follows also from Corollary 3.17 in [56]. Indeed, assume that \(\text{reg}(S/I) = \text{reg}(S/I_{q_k}) \) is equal to \(\sum_{i=1}^s (d_i - 1) \). Let \(I = \bigcap_{k=1}^s q_k \) be the irreducible decomposition of \(I \), where the \(q_k \)'s are irreducible monomial ideals of \(S \), i.e., ideals generated by powers of variables in \(S \). We argue by contradiction assuming that \(I \) is not a complete intersection. Then, \(I \) is not irreducible and \(\text{reg}(S/I_{q_k}) < \sum_{i=1}^s (d_i - 1) \) for all \(k \) because \((t_1^{d_1}, \ldots, t_s^{d_s}) \subseteq q_k \) for all \(k \). Therefore, by Corollary 3.17 in [56], it follows that \(\text{reg}(S/I) < \sum_{i=1}^s (d_i - 1) \) because \(I \) is \(m \)-primary, \(m = (t_1, \ldots, t_s) \), and \(\text{reg}(S/I) = \max_k \{\text{reg}(S/I_{q_k})\} \), a contradiction.

4. Induced Matchings and the v-Number

In this section, we show that the induced matching number of a graph \(G \) is an upper bound for the v-number of \(I(G) \) when \(G \) is very well-covered, or \(G \) has a simplicial partition, or \(G \) is well-covered connected and contains neither four, nor five cycles. We classify when the induced matching number of \(G \) is an upper bound for the v-number of \(I(G) \) when \(G \) is a cycle and classify when all vertices of a graph are shedding vertices to gain insight into the family of \(W_2 \)-graphs. To avoid repetition, we continue to employ the notations and definitions used in Sections 1 and 2.

Theorem 11 ([4], Theorem 3.5). If \(I = I(G) \) is the edge ideal of a graph \(G \), then \(F_G \subset A_G \) and the v-number of \(I \) is:

\[
v(I) = \min \{|A| : A \in A_G\}.
\]

Lemma 3. Let \(A \) be a stable set of a graph \(G \). If \(N_G(A) \) is a vertex cover of \(G \), then \(A \in A_G \).
Proof. We take any \(b \in N_G(A) \), then there is \(e \in E(G) \) such that \(e \subseteq A \cup \{ b \} \). Furthermore, \(N_G(A) \cap A = \emptyset \), since \(A \) is a stable set of \(G \). Thus,

\[
e \cap N_G(A) \subseteq (A \cup \{ b \}) \cap N_G(A) \subseteq \{ b \},
\]

and consequently, \(e \cap (N_G(A) \setminus \{ b \}) = \emptyset \). Hence, \(N_G(A) \setminus \{ b \} \) is not a vertex cover of \(G \), since \(e \in E(G) \). Therefore, \(N_G(A) \) is a minimal vertex cover of \(G \) and \(A \in A_G \). □

Theorem 12 (The same as Theorem 2). Let \(G \) be a very well-covered graph, and let \(P = \{ e_1, \ldots, e_r \} \) be a perfect matching of \(G \). Then, there is an induced submatching \(P' \) of \(P \) and \(D \subset A_G \) such that \(D \subseteq V(P') \) and \(|e \cap D| = 1 \) for each \(e \in P' \). Furthermore, \(v(I(G)) \leq |P'| = |D| \leq \text{im}(G) \leq \text{reg}(G) \).

Proof. To show the first part, we use induction on \(|P| \). If \(r = 1 \), we set \(P' = P = \{ e_1 \} \) and \(D = \{ x_1 \} \), where \(e_1 = \{ x_1, y_1 \} \). Assume \(r > 1 \). We set \(e_r = \{ x, y \}, G_1 := G \setminus \{ x, y \} \) and \(P_1 := P \setminus \{ e_r \} \). By Theorem 7, \(P \) satisfies Property (P). Then, \(P_1 \) satisfies Property (P) as well. Thus, by Theorem 7, \(G_1 \) is very well-covered with a perfect matching \(P_1 \). Hence, by the induction hypothesis, there is an induced submatching \(P_1' \) of \(P_1 \) and \(D_1 \subset A_G \) such that \(D_1 \subseteq V(P_1') \) and \(|e \cap D_1| = 1 \) for each \(e \in P_1' \). Consequently, \(N_{G_1}(D_1) \) is a minimal vertex cover of \(G_1 \). We consider two cases: \(e_r \cap N_{G_1}(D_1) \neq \emptyset \) and \(e_r \cap N_{G_1}(D_1) = \emptyset \):

Case (I). Assume that \(e_r \cap N_{G_1}(D_1) \neq \emptyset \). Thus, we may assume that there is \(\{ x, d \} \in E(G) \) with \(d \in D_1 \). Then, \(N_G(x) \subseteq N_G(d) \subset N_{G_1}(D_1) \), since \(P \) satisfies Property (P). Hence, \(N_{G_1}(D_1) \) is a vertex cover of \(G \), since \(N_{G_1}(D_1) \) is a vertex cover of \(G \) and \(\{ x \} \subset N_G(x) \subset N_{G_1}(D_1) \). Therefore, by Lemma 3, \(D_1 \in A_G \), so this case follows by making \(D = D_1 \) and \(P' = P_1' \).

Case (II). Assume that \(e_r \cap N_{G_1}(D_1) = \emptyset \). We set \(D_2 := V(P_1') \setminus D_1 \), then \(D_2 \) is a stable set of \(G_1 \) and also of \(G \), since \(P_1' \) is an induced matching of \(G_1 \) and also of \(G \). One has the inclusion:

\[
V(P_1') \cap (N_G(x) \cup N_G(x')) \subseteq D_2,
\]

indeed taking \(z \in V(P_1') \cap N_G(x) \) (the case \(z \in V(P_1') \cap N_G(x') \) is similar). If \(z \notin D_2 \), then \(z \in D_2 \setminus N_G(x), \{ z, x \} \in E(G) \), and \(x \in e_r \cap N_{G_1}(D_1) \), a contradiction. We claim that \(|e_r \cap N_{G_1}(D_1)| \leq 1 \). We assume, by contradiction, that \(x, y \in N_{G_1}(D_1) \). Then, there are \(d_1, d_2 \in D_2 \) such that \(\{ x, d_1 \}, \{ x, d_2 \} \in E(G) \). Thus, \(\{ d_1, d_2 \} \in E(G), \) since \(P \) satisfies Property (P), a contradiction, since \(D_2 \) is a stable set of \(G \). Hence, \(|e_r \cap N_{G_1}(D_1)| \leq 1 \), and we may assume:

\[
e_r \cap N_{G_1}(D_1) \subset \{ x \}.
\]

Next we show that \(V(P_1') \cap N_G(x') = \emptyset \). If the intersection is nonempty, by Equation (1), we can pick \(z \) in \(D_2 \cap N_G(x') \), then \(\{ z, x' \} \in E(G) \) and \(x' \in N_G(D_2) \), a contradiction to Equation (2). Therefore, by Equation (1), we obtain the inclusion:

\[
V(P_1') \cap (N_G(x) \cup N_G(x')) \subseteq D_2 \cap N_G(x) =: A_2.
\]

Thus, the edge set \(Q := \{ e \in P_1' \mid e \cap A_2 = \emptyset \} \cup \{ e_r \} \) is an induced matching, since \(P_1' \) is an induced matching. Setting:

\[
D_3 := \{ y \in D_1 \mid \{ y, y' \} \in P_1' \text{ with } y' \notin A_2 \} \cup \{ x \},
\]

i.e., \(D_3 = (D_1 \cap V(Q)) \cup \{ x \} \), we obtain \(\{ e \cap D_3 \} = 1 \) for each \(e \in Q \), since \(|e \cap D_3| = 1 \) for each \(e \in P_1' \). Note that \(D_3 \) is a stable set of \(G \), since \(D_1 \) is a stable set and \(\{ x \} \cap N_G(D_1) = \emptyset \). Now, take \(e \in E(G) \). We prove that \(e \cap N_G(D_3) \neq \emptyset \). Clearly, \(N_G(x) \subset N_G(D_3) \) because \(x \in D_3 \). If \(x' \in e \), then \(x' \in e \cap N_G(x) \subset e \cap N_G(D_3) \). Now, if \(x \in e \), then \(e = \{ x, y \} \) for some \(y \) in \(V(G) \), and \(y \in e \cap N_G(x) \subset e \cap N_G(D_3) \). Therefore, we may assume \(e \cap \{ x, x' \} = \emptyset \), then \(e \in E(G) \). Thus, there is \(z \in e \cap N_G(D_1) \), since \(N_G(D_1) \) is a vertex cover of \(G_1 \). Then, there is \(d \in D_1 \), such that \(z \in N_G(d) \). If \(d \in D_3 \), then \(z \in N_G(D_3) \cap e \). Finally, if \(d \notin D_3 \), then by Equation (3) and the inclusion \(D_1 \subseteq V(P_1') \),
there is $d' \in A_2$ such that $\{d, d'\} \in P'$. Therefore, $\{x, d'\} \in E(G)$, since $d' \in A_2$. This implies, $\{x, z\} \in E(G)$, since $\{d, z\} \in E(G)$, $\{d, d'\} \in E(G)$, $\{d, d'\} \in P$, and P satisfies Property (P). Thus, $z \in c \cap N_G(x) \subset c \cap N_G(D_3)$. Hence, $N_G(D_3)$ is a vertex cover, and by Lemma 3, $D_3 \in A_G$. Therefore, this case follows by making $P' = Q$ and $D = D_3$. This completes the induction process.

Next, we show the equality $|P'| = |D|$. By the first part, we may assume that $P' = \{e_1, \ldots, e_\ell\}$, $1 \leq \ell \leq r$, $e_i = \{x_i, y_i\}$ for $i = 1, \ldots, \ell$, and $x_1, \ldots, x_\ell \in D$. Thus, $\ell = |P'| \leq |D|$, and since $D \subseteq V(P')$, we obtain $2|D| \leq 2|P'|$. Then, $|P'| = |D|$. The inequality $v(I(G)) \leq |D|$ follows by Theorem 11, and $|P'| \leq \text{im}(G)$ is clear by the definition of $\text{im}(G)$. Finally, the inequality $\text{im}(G) \leq \text{reg}(S/I(G))$ follows directly from Theorem 9. □

Corollary 3 ([4], Theorem 3.19(b)). Let G be a graph, and let W_G be its whisker graph. Then:

$$v(I(W_G)) \leq \text{reg}(K[V(W_G)]/I(W_G)).$$

Proof. By Lemma 1, W_G is very well-covered. Thus, by Theorem 12, the v-number of $I(W_G)$ is bounded from above by the regularity of $K[V(W_G)]/I(W_G)$. □

Lemma 4. Let $\ell \geq 0$ and $s = 4\ell + r$ be integers with $r \in \{0, 1, 2, 3\}$. If $s \geq 3$ and $s \neq 5$, then:

$$\left\lfloor \frac{s}{3} \right\rfloor \geq \ell \text{ if } r = 0 \text{ and } \left\lfloor \frac{s}{3} \right\rfloor \geq \ell + 1 \text{ otherwise.}$$

Proof. By the division algorithm, $s \equiv r' \pmod{3}$, where $r' \in \{0, 1, 2\}$. Then:

$$\left\lfloor \frac{s}{3} \right\rfloor = \frac{4\ell + r - r'}{3} = \ell + \frac{r + r' - 2}{3} \in \mathbb{Z}.$$

Thus, $a := \frac{\ell + r - r'}{3} \in \mathbb{Z}$. If $r = 0$, then $a \geq 0$. This follows using the fact that $0 \leq r' \leq 2$ and $\ell \geq 0$. Hence, $\left\lfloor \frac{s}{3} \right\rfloor \geq \ell$. Now, assume $r \in \{1, 2, 3\}$. We claim that $a \geq 1$. We assume, by contradiction, that $a < 1$, then $\ell + r \leq r'$. If $r = 0$, then $s = r = 3$, since $s \geq 3$, a contradiction, since $3 = \ell + r \leq r'$ and $r' \leq 2$. Thus, $\ell \geq 1$, and we have $2 \leq \ell + 1 \leq \ell + r \leq r' \leq 2$. This implies $\ell = 1 = r$ and $r' = 2$. Consequently $s = 5$, a contradiction. Therefore, $a \geq 1$ and $\left\lfloor \frac{s}{3} \right\rfloor \geq \ell + 1$. □

Theorem 13 (The same as Theorem 3). Let C_s be an s-cycle, and let $I(C_s)$ be its edge ideal. Then, $v(I(C_s)) \leq \text{im}(C_s)$ if and only if $s \neq 5$.

Proof. \Rightarrow Assume that $v(I(C_s)) \leq \text{im}(C_s)$. If $s = 5$, then $v(I(C_s)) = 2$ and $\text{im}(C_s) = 1$, a contradiction. Thus, $s \neq 5$.

\Leftarrow Assume that $s \neq 5$. We can write $C_s = (t_1, e_1, t_2, \ldots, t_L, e_L, t_{L+1}, \ldots, t_s, e_s, t_1)$. The matching $P = \{e_1, e_4, \ldots, e_{3s-2}\}$, where $q := \left\lfloor \frac{s}{3} \right\rfloor$, is an induced matching of C_s and $|P| = q$.

Now, we choose a stable set A of C_s for each one of the following cases:

- Case $s = 4\ell$. If $A = \{t_2, t_6, \ldots, t_{4\ell+4}\}$, then $N_{C_s}(A) = \{t_1, t_3, t_5, t_7, \ldots, t_{s-3}, t_{s-1}\}$ is a vertex cover of G and $|A| = \ell + 1$;
- Case $s = 4\ell + 1$. If $A = \{t_2, t_6, \ldots, t_{4\ell}\} \cup \{t_{4\ell+2}\}$, then $N_{C_s}(A) = \{t_1, t_3, t_5, t_7, \ldots, t_{s-4}, t_{s-2}\}$ is a vertex cover of G and $|A| = \ell + 1$;
- Case $s = 4\ell + 2$. If $A = \{t_2, t_6, \ldots, t_{4\ell}\} \cup \{t_{4\ell+2}\}$, then $N_{C_s}(A) = \{t_1, t_3, t_5, t_7, \ldots, t_{s-3}, t_{s-1}\}$ is a vertex cover of G and $|A| = \ell + 1$;
- Case $s = 4\ell + 3$. If $A = \{t_2, t_6, \ldots, t_{4\ell+2}\}$, then $N_{C_s}(A) = \{t_1, t_3, t_5, t_7, \ldots, t_{s-3}, t_{s-2}, t_s\}$ is a vertex cover of G and $|A| = \ell + 1$.

In each case, $N_{C_s}(A) = \{t_i\}$ if l is odd and $N_{C_s}(A)$ is a vertex cover of G. Therefore, by Lemma 3, $A \in A_{C_s}$. Now, assume $s = 4\ell + r$, with $r \in \{0, 1, 2, 3\}$ and $\ell \geq 0$ an integer. Then, by Lemma 4, $\left\lfloor \frac{s}{3} \right\rfloor \geq \ell$ if $r = 0$ and $\left\lfloor \frac{s}{3} \right\rfloor \geq \ell + 1$ otherwise. Hence, $|P| = \left\lfloor \frac{s}{3} \right\rfloor \geq |A|$. Therefore, $\text{im}(C_s) \leq v(I(C_s))$, since $\text{im}(C_s) \geq |P|$ and $|A| \geq v(I(C_s))$. □
Remark 3. The induced matching number of the cycle C_s is equal to $\lfloor \frac{s}{2} \rfloor$. The regularity of $S/I(C_s)$ is equal to $\lfloor (s + 1)/3 \rfloor,$ Proposition 10 in [15].

Lemma 5. Let G be a graph without isolated vertices, and let z_1, \ldots, z_m be vertices of G such that \{\(N_G(z_i)\)\}_{i=1}^m$ is a partition of $V(G)$. If $G_1 = G \setminus N_G(z_m)$, then:

(i) \(N_G(z)_i = N_G(z_i)\) for \(i < m\);
(ii) \(G_1[N_G(z_i)] = G[N_G(z_i)]\) for \(i < m\).

Proof. (i) Assume that \(1 \leq i \leq m - 1\). Clearly, \(N_{G_1}(z_i) \subseteq N_G(z_i)\) because G_1 is a subgraph of G. To show the inclusion “\(\subset\)”, take $z \in N_{G_1}(z_i)$. Then, $z = z_i$ or \(\{z, z_i\} \in E(G)\). If $z \in N_G(z_m)$, then $z \in N_G(z_m) \cap N_G(z_i)$, a contradiction. Thus, \(z \notin N_G(z_m)\), and since G_1 is an induced subgraph of G, we obtain $z = z_i$ or \(\{z, z_i\} \in E(G_1)\). Thus, $z \in N_{G_1}(z_i)$;

(ii) By Part (i), one has \(N_{G_1}(z_i) = N_G(z_i) \subseteq V(G) \setminus N_G(z_m) = V(G_1)\). Then:

\[
E(G[N_G(z_i)]) = \{e \in E(G) \mid e \subseteq N_G(z_i)\} = \{e \in E(G) \mid e \subseteq N_{G_1}(z_i)\}
\]

Thus, $E(G[N_G(z_i)]) = E(G[N_{G_1}(z_i)])$. \(\square\)

Theorem 14 (The same as Theorem 4). Let G be a graph with simplices H_1, \ldots, H_r, such that \(\{V(H_i)\}_{i=1}^r\) is a partition of $V(G)$. If G has no isolated vertices, then there is $D = \{y_1, \ldots, y_k\} \in A_G$, and there are simplicial vertices x_1, \ldots, x_k of G and integers $1 \leq j_1 < \cdots < j_k \leq r$ such that $P = \{(x_i, y_{j_i})\}_{i=1}^k$ is an induced matching of G and H_{j_i} is the induced subgraph $G[N_G(x_i)]$ on $N_G[x_i]$ for $i = 1, \ldots, k$. Furthermore, $v(I(G)) \leq |D| = |P| \leq \text{im}(G) \leq \text{reg}(S/I(G))$.

Proof. We proceed by induction on r. If $r = 1$, then $V(H_1) = V(G)$, and there is a simplicial vertex x_1 of G such that $H_1 = G[N_G[x_1]]$ is a complete graph with at least two vertices. Picking $y_1, y_2 \in N_G[x_1], y_1 \neq y_2$, one has $\{x_1\} \in A_G$ and \(\{x_1, y_1\}\) is an induced matching. Now, assume that $r > 1$. We set $G_1 := G \setminus V(H_r)$. Note that H_1, \ldots, H_{r-1} are simplices of G_1 (Lemma 5) and \(\{V(H_i)\}_{i=1}^{r-1}\) is a partition of $V(G_1)$. Then, by the induction hypothesis, there is $D_1 = \{y_1, \ldots, y_{k'}\} \in A_{G_1}$, and there are simplicial vertices $x_1, \ldots, x_{k'}$ of G_1 and integers $1 \leq j_1 < \cdots < j_{k'} \leq r - 1$, such that $P_1 = \{\{x_i, y_{j_i}\}_{i=1}^{k'}\}$ is an induced matching of G_1 and $H_{j_i} = G_1[N_G[x_i]]$ for $i = 1, \ldots, k'$. By Lemma 5, one has $G_1[N_G[x_i]] = G[N_G[x_i]]$ for $i = 1, \ldots, k'$. We can write $H_r = G[N_G[x]]$ for some simplicial vertex x of G.

Case (I). Assume that $V(H_r) \setminus \{x\} \subseteq N_G(D_1)$. Then, $N_G(D_1)$ is a vertex cover of G. Indeed, take any edge e of G. If $e \not\in V(H_r)$, then e is an edge of G_1 and is covered by $N_{G_1}(D_1)$. Assume that $e \cap V(H_r) \neq \emptyset$. If $x \notin e$, then there is $z \in e$ with $z \in V(H_1) \setminus \{x\} \subseteq N_G(D_1)$. Now, if $x \in e$, then $e = \{x, z\}$ with $z \in N_G[x] \setminus \{x\} = V(H_r) \setminus \{x\} \subseteq N_G(D_1)$. This proves that $N_G(D_1)$ is a vertex cover of G. Hence, by Lemma 3, $D_1 \in A_G$, and, noticing that P_1 is an induced matching of G, this case follows by making $D = D_1$ and $P = P_1$;

Case (II) Assume that there is $y \in V(H_r) \setminus \{x\}$ such that $y \notin N_G(D_1)$. Then, $D_2 := D_1 \cup \{y\}$ is a stable set of G. Furthermore, $N_G(D_2)$ is a vertex cover of G, since $N_G(D_1)$ is a vertex cover of G_1, H_r is a complete subgraph of G, and $V(H_r) \subseteq N_G[y]$. Thus, by Lemma 3, D_2 is in A_G. We set $y_{k'+1} := x, y_{k'+2} := y$, and $H_{j_{k'+1}} := H_{r-1}$. Then, $\{x_{k'+1}, y_{k'+2}\} \subseteq E(H_r)$ and $P_2 := P_1 \cup \{\{x_{k'+1}, y_{k'+2}\}\}$ is an induced matching of G, since P_1 is an induced matching of G_1, $y \in V(H_r) \setminus N_G(D_1)$ and $H_{j_{k'+1}} = G[N_G[x_i]]$, for $i = 1, \ldots, k'+1$. Therefore, this case follows by making $D = D_2$ and $P = P_2$.

The equality $|D| = |P|$ is clear. The inequality $v(I(G)) \leq |D|$ follows from Theorem 11, and $|P| \leq \text{im}(G)$ is clear by the definition of $\text{im}(G)$. Finally, the inequality $\text{im}(G) \leq \text{reg}(S/I(G))$ follows directly from Theorem 9. \(\square\)
Corollary 4 (The same as Corollary 1). Let G be a well-covered graph, and let $I(G)$ be its edge ideal. If G is simplicial or G is connected and contains neither four, nor five cycles, then:

$$v(I(G)) \leq \text{im}(G) \leq \text{reg}(S/I(G)) \leq \beta_0(G).$$

Proof. Assume that G is simplicial. Let $\{z_1, \ldots, z_\ell\}$ be the set of all simplicial vertices of G. Then, $V(G) = \bigcup_{i=1}^\ell N_G[z_i]$. As G is well-covered, by Lemma 2.4 in [31], for $1 \leq i < j \leq \ell$, either $N_G[z_i] = N_G[z_j] = N_G[z_i] \cap N_G[z_j] = \emptyset$. Thus, there are simplicial vertices x_1, \ldots, x_k of G such that $\{N_G[x_i]\}_{i=1}^k$ is a partition of $V(G)$. Setting $H_i = G[N_G[x_i]]$ for $i = 1, \ldots, k$ and applying Theorem 14, we obtain that $v(I(G)) \leq \text{im}(G) \leq \text{reg}(S/I(G))$. Noticing that $\dim(S/I(G)) = \beta_0(G)$, the inequality $\text{reg}(S/I(G)) \leq \beta_0(G)$ follows from Proposition 2.

Next, assume that G is connected and contains neither four, nor five cycles. Then, by Theorem 8, $G \in \{C_7, T_{10}\}$ or $G \in F$. The cases $G = C_7$ or $G = T_{10}$ are treated in Example 3 (cf. Theorem 13). If $G \in F$, then there exists $\{x_1, \ldots, x_k\} \subset V(G)$ where for each i, x_i is simplicial, $|N_G[x_i]| \leq 3$, and $\{N_G[x_i] | i = 1, \ldots, k\}$ is a partition of $V(G)$. In particular, G is simplicial, and the asserted inequalities follow from the first part of the proof. □

Proposition 4. Let G be a graph. The following conditions are equivalent:

1. Every vertex of G is a shedding vertex;
2. $\mathcal{A}_G = \mathcal{F}_G$.

Proof. $(1) \Rightarrow (2)$ The inclusion $\mathcal{A}_G \supset \mathcal{F}_G$ follows from Theorem 11. To show the inclusion $\mathcal{A}_G \subset \mathcal{F}_G$, we argue by contradiction assuming that there is $D \in \mathcal{A}_G \setminus \mathcal{F}_G$. Then, D is a stable set of G and $N_G(D)$ is a vertex cover of G. Thus, $D \cap N_G(D) = \emptyset$. Furthermore, since $D \notin \mathcal{F}_G$, there is $x \in V(G) \setminus D$ such that $D \cup \{x\}$ is a stable set of G. Then, $x \notin N_G(D)$. However, $N_G(D)$ is a vertex cover of G, then $N_G(x) \subset N_G(D)$ and $A := V(G) \setminus N_G(D)$ is a stable set of G. Therefore, $A \subset V(G) \setminus N_G(x)$ and $A' := A \setminus x$ is a stable set of $V(G) \setminus N_G(x)$. Now, we prove that A' is a maximal stable set of $G \setminus x$. We argue by contradiction assuming that there is $a \in V(G \setminus x) \setminus A'$, such that $A' \cup \{a\}$ is a stable set. Then, $a \notin N_G(D)$, since $V(G) = A \cup N_G(D)$. Furthermore, $D \subset A'$, since $D \cap N_G(D) = \emptyset$ and $x \notin D$, a contradiction, since $a \notin N_G(D)$ and $A' \cup \{a\}$ is a stable set. Hence, A' is a maximal stable set of $G \setminus x$. Therefore, x is not a shedding vertex of G, a contradiction.

$(2) \Rightarrow (1)$ We assume, by contradiction, that there is $x \in V(G)$ such that x is not a shedding vertex. Thus, there is a maximal stable set A of $G \setminus x$ such that $A \subset V\setminus N_G[x]$. Then, $C := V(G \setminus x) \setminus A$ is a minimal vertex cover of $G \setminus x$ and $A \cup \{x\}$ is a stable set of G. Therefore, $A \notin \mathcal{F}_G$. Since C is a minimal vertex cover of $G \setminus x$, we have that for each $z \in C$, there is $z' \in V(G \setminus x) \setminus C = A$ such that $\{z, z'\} \in E(G)$. Consequently, $C \subset N_G(A)$. Furthermore, if $a \in N_G(x)$, then $a \in G \setminus x$ and $a \notin A$. Thus, $a \in N_G(A)$, since A is a maximal stable set of $G \setminus x$. Hence, $N_G(x) \subset N_G(A)$. This implies that $N_G(A)$ is a vertex cover of G, since $C \subset N_G(A)$. Therefore, by Lemma 3, $A \in \mathcal{A}_G$, a contradiction since $A \notin \mathcal{F}_G$. □

Lemma 6 ([32], cf. Corollary 3.3). If $G \in W_2$, then every $v \in V(G)$ is a shedding vertex.

Proof. Let v be a vertex of G. We may assume that G is not a complete graph. Let A be a stable set of $G_v := G \setminus N_G[v]$. We argue by contradiction assuming that A is a maximal stable set of $G \setminus v$. Then, as G and $G \setminus v$ are well-covered, we obtain:

$$\beta_0(G) = \beta_0(G \setminus v) = |A|.$$

According to [57], Theorem 5, the graph G_v is in W_2 and $\beta_0(G_v) = \beta_0(G) - 1$. In particular, G_v is well-covered and $\beta_0(G_v) = \beta_0(G) - 1$ (cf. Theorem 5). However, A is a stable set of G_v and $|A| = \beta_0(G)$, a contradiction. □

Corollary 5 ([4], Theorem 4.5). If G is a W_2-graph and $I = I(G)$, then $v(I) = \beta_0(G)$.

Proof. By Theorem 11, there is $D \in A_G$ such that $v(I) = |D|$. Since G is a W_2-graph, by Lemma 6, every vertex of G is a shedding vertex. Thus, by Proposition 4, $D \in F_G$, i.e., D is a maximal stable set of G. Furthermore, G is well-covered, since G is a W_2-graph. Hence, $|D| = \beta_0(G)$. Therefore, $v(I) = \beta_0(G)$. □

5. Examples

Example 1. Let $S = \mathbb{Q}[t_1, t_2, t_3]$ be a polynomial ring and $I = (t_1^5, t_2^5, t_3^5, t_1^3 t_2^2, t_1^2 t_3, t_2 t_3^2)$. Then, an irredundant primary decomposition of I is given by:

$$I = (t_1^5, t_2^5) \cap (t_3^5, t_1^3 t_2^2, t_1^2 t_3, t_2 t_3^2).$$

The associated primes of I are $p_1 = (t_1, t_2)$ and $p_2 = (t_1, t_2, t_3)$. Setting $g_1 = t_1^2 t_2$, $g_2 = t_1^3 t_2^2 t_3$, and $g_3 = t_1^4 t_2 t_3^3$, and using Procedure A1 in Appendix A, we obtain that $(I : p_1) / I$ and $(I : p_2) / I$ are minimally generated by $\{\overline{g_1}, \overline{g_2}\}$ and $\{\overline{g_3}\}$, respectively. Using Theorem 10 and the equalities:

$$(I : g_1) = (t_1, t_2, t_3^5), \quad (I : g_2) = p_1, \quad (I : g_3) = p_2,$$

we obtain that $v(I) = 11$. The regularity of the quotient ring S / I is equal to 12.

Example 2. Let $S = \mathbb{Q}[t_1, \ldots, t_6]$ be a polynomial ring; let I be the ideal:

$$I = (t_1 t_2, t_2 t_3, t_3 t_4, t_4 t_5, t_5 t_6, t_5 t_7, t_4 t_5, t_1 t_6, t_2 t_6, t_3 t_6, t_4 t_6);$$

let G be the graph defined by the generators of I. The associated primes of I are:

$p_1 = (t_1, t_2, t_3, t_4), \quad p_2 = (t_1, t_3, t_5, t_6), \quad p_3 = (t_2, t_4, t_5, t_6).$

Thus, $I(G)$ is unmixed, G is well-covered, and $a_0(G) = 4$. The graph G is not very well-covered because $|V(G)| \neq 2a_0(G)$. The v-number of I is one because $N_G(t_6) = \{t_1, t_2, t_3, t_4\}$ is a vertex cover of G. Using Macaulay2 [2], we obtain that $\text{reg}(S / I) = 1$. Note that $\text{im}(G) = 1$.

Example 3. Let C_7 and T_{10} be the well-covered graphs of Figure 1. Let R and S be polynomial rings over the field \mathbb{Q} in the variables $\{t_1, \ldots, t_7\}$ and $\{t_1, \ldots, t_{10}\}$, respectively. Using Macaulay2 [2] and Procedure A1 in Appendix A, we obtain $\text{ht}(I(C_7)) = a_0(C_7) = 4$, $\text{pd}(R / I(C_7)) = 5$, and:

$$v(I(C_7)) = 2 = \text{im}(C_7) = \text{reg}(R / I(C_7)) \leq \text{dim}(R / I(C_7)) = \beta_0(C_7) = 3.$$

The neighbor set of $A = \{t_1, t_4\}$ in C_7 is $N_{C_7}(A) = \{t_2, t_3, t_5, t_7\}$, and $N_{C_7}(A)$ is a minimal vertex cover of C_7, that is $A \in A_{C_7}$. Using Macaulay2 [2] and Procedure A1 in Appendix A, we obtain $\text{ht}(I(T_{10})) = a_0(G) = 6$, $\text{pd}(S / I(T_{10})) = 7$, and:

$$v(I(T_{10})) = 2 = \text{im}(T_{10}) \leq \text{reg}(S / I(T_{10})) = 3 \leq \text{dim}(S / I(T_{10})) = \beta_0(T_{10}) = 4.$$

The neighbor set of $A = \{t_1, t_4\}$ in T_{10} is $N_{T_{10}}(A) = \{t_2, t_3, t_5, t_7, t_8, t_{10}\}$, and $N_{T_{10}}(A)$ is a minimal vertex cover of T_{10}, that is $A \in A_{T_{10}}$.

Example 4. Let G be the graph consisting of two disjoint three cycles with vertices x_1, x_2, x_3 and y_1, y_2, y_3. Take two disjoint independent sets of G, say $A_1 = \{x_1\}$ and $A_2 = \{y_1\}$. To verify that G is a graph in W_2, note that $B_1 = \{x_1, y_2\}$ and $B_2 = \{y_1, x_2\}$ are maximum independent sets of G containing A_1 and A_2. And that $|B_i| = \beta_0(G) = 2$ for $i = 1, 2$.

Author Contributions: G.G., E.R. and R.H.V. contributed equally to this work regarding conceptualization, methodology, formal analysis, investigation, writing—original draft preparation, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: The first author was supported by a scholarship from CONACYT, Mexico. The second and third authors were supported by SNI, Mexico.
Acknowledgments: We used Macaulay2 [2] to implement the algorithm to compute the v-number of graded ideals and to compute other algebraic invariants. We thank the referees for a careful reading of the paper and for the improvements suggested.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Procedures

Procedure A1. Computing the v-number and other invariants of a graded ideal I with Macaulay2 [2]. This procedure corresponds to Example 1. One can compute other examples by changing the polynomial ring S and the generators of the ideal I.

S=QQ[t1,t2,t3]
I=ideal(t1^5,t2^5,t2^4*t3^5,t1^4*t3^5)
--This gives the dimension and the height of I
--If I=I(G), G a graph, this gives the stability
--number and the covering number of G
dim(I), codim I
--This gives the associated primes of I
--If I=I(G), this gives the minimal vertex covers of G
L=ass I
--This determines whether or not I has embedded primes
--If I=I(G), this determines whether or not G is well-covered
apply(L,codim)
p=(n)->gens gb ideal(flatten mingens(quotient(I,L#n)/I))
--This computes a minimal generating set for (I:p)/I
MG=(n)->flatten entries p(n)
MG(0), MG(1)
--This gives the list of all minimal generators g of
--(I:p)/I such that (I: g)=p
F=(n)->apply(MG(n),x-> if not quotient(I,x)==L#n then 0 else x)-set{0}
F(0), F(1)
--This computes the v-number of a graded ideal I
vnumber=min flatten degrees ideal(flatten apply(0..#L-1,F))
M=coker gens gb I
regularity M
--This gives the projective dimension of S/I
pdim M

References
1. Cooper, S.M.; Seceleanu, A.; Toháneanu, S.O.; Vaz Pinto, M.; Villarreal, R.H. Generalized minimum distance functions and algebraic invariants of Geramita ideals. Adv. Appl. Math. 2020, 112, 101940. [CrossRef]
2. Grayson, D.; Stillman, M. Macaulay2. 1996. Available online: http://www.math.uiuc.edu/Macaulay2/ (accessed on 1 November 2021).
3. López, H.H.; Soprunov, I.; Villarreal, R.H. The dual of an evaluation code. Des. Codes Cryptogr. 2021, 89, 1367–1403. [CrossRef]
4. Jaramillo, D.; Villarreal, R.H. The v-number of edge ideals. J. Comb. Theory Ser. A 2021, 177, 105310. [CrossRef]
5. Núñez-Betancourt, L.; Pitones, Y.; Villarreal, R.H. Footprint and minimum distance functions. Commun. Korean Math. Soc. 2018, 33, 85–101.
6. Banerjee, A.; Chakraborty, B.; Das, K.; Mandal, M.; Selvaraja, S. Regularity of powers of squarefree monomial ideals. J. Pure Appl. Algebra 2022, 226, 106807. [CrossRef]
7. Beyarslan, S.; Hå, H.T.; Huy, T.; Trung, T.N. Regularity of powers of forests and cycles. J. Algebr. Comb. 2015, 42, 1077–1095. [CrossRef]
8. Dao, H.; Huneke, C.; Schweig, J. Bounds on the regularity and projective dimension of ideals associated to graphs. J. Algebr. Comb. 2013, 38, 37–55. [CrossRef]
9. Herzog, J.; Hibi, T. An upper bound for the regularity of powers of edge ideals. Math. Scand. 2020, 126, 165–169. [CrossRef]
46. Brown, J.I.; Cameron, B. On the unimodality of independence polynomials of very well-covered graphs. *Discret. Math.* 2018, 341, 1138–1143. [CrossRef]
47. Chen, S.Y.; Wang, H.J. Unimodality of independence polynomials of very well-covered graphs. *Ars Comb.* A 2010, 97, 509–529.
48. Hajisharifi, N.; Jahan, A.S.; Yassemi, S. Very well-covered graphs and their h-vectors. *Acta Math. Hungar.* 2015, 145, 455–467. [CrossRef]
49. Kimura, K.; Terai, N.; Yassemi, S. The projective dimension of the edge ideal of a very well-covered graph. *Nagoya Math. J.* 2018, 230, 160–179. [CrossRef]
50. Levit, V.E.; Mandrescu, E. On the roots of independence polynomials of almost all very well-covered graphs. *Discret. Appl. Math.* 2008, 156, 478–491. [CrossRef]
51. Moghimipor, R. On the Wiener index of Cohen-Macaulay and very well-covered graphs. *Australas. J. Comb.* 2021, 81, 46–57.
52. Martinez-Bernal, J.; Morey, S.; Villarreal, R.H.; Vivas, C.E. Depth and regularity of monomial ideals via polarizations and combinatorial optimization. *Acta Math. Vietnam.* 2019, 44, 243–268. [CrossRef]
53. Beintema, M. A note on Artinian Gorenstein algebras defined by monomials. *Rocky Mt. J. Math.* 1993, 23, 1–3. [CrossRef]
54. Bruns, W.; Herzog, J. *Cohen–Macaulay Rings*, Revised ed.; Cambridge University Press: Cambridge, UK, 1998.
55. Chardin, M.; Moreno-Socías, G. Regularity of lex-segment ideals: Some closed formulas and applications. *Proc. Am. Math. Soc.* 2003, 131, 1093–1102. [CrossRef]
56. Bermejo, I.; Gimenez, P. Saturation and Castelnuovo–Mumford regularity. *J. Algebra* 2006, 303, 592–617. [CrossRef]
57. Pinter, M.R. A class of planar well-covered graphs with girth four. *J. Graph Theory* 1995, 19, 69–81. [CrossRef]