1. Technical Details

1.1. Decision models.

The decision model used in the main paper is the same DenseNet [3] as the one used in STEEX [4]. However, in addition to the ‘Move Forward’ class, we also study ‘Stop’, ‘Can turn Left’, ‘Can turn Right’ classes which were not discussed in STEEX.

1.2. BlobGan backbone.

The original BlobGAN [1] was trained on datasets of indoor scenes. We present here the changes we made to train it on BDD. Firstly, in order to generate rectangle images, we change the size of the input feature grid from 16×16 to 8×16, but increase the number of convolutional and up-sampling blocks by 1, resulting in outputs images of resolution 256×512. Secondly, the number of objects in the driving scenes is usually larger compared to the indoor scenes. Therefore, we increase the number of blobs from $K = 10$ to $K = 40$. However, multiplying the number of blobs by 4 increases the number of layout network parameters. To keep the complexity reasonable, we decrease the size of the feature vectors describing the blobs from $d_w = 768$, $d_{style} = 512$ to $d_w = d_{style} = 256$. This model has 69.9M parameters in the generator (28.6M in the layout network and 41.2M in the synthesis network). We trained the generator for 17 days (1.5M iteration) on one NVIDIA A100 GPU with a batch size of 10.

1.3. Training the encoder

The encoder E is trained to predict the blob parameters from input images. Its architecture is similar to that of the discriminator of StyleGAN-2, except for the output size of the last layer. One challenge of predicting the blob parameters is that we have a large number of blobs, leading to a large number of trainable parameters in the encoder. To avoid this issue, we opt to have the encoder not output directly the blob parameters but instead the features of the penultimate layer of the layout network. The output layer of the encoder is then a vector, which we denote h, of size 1024; h can easily be mapped to the blob parameters by forwarding them through the last layer of the layout network.

The encoder is first pre-trained using generated images with the following reconstruction objective:

$$L_{\text{pretrain encoder}} = L_2(h, E(G(h))),$$

where h is obtained by sampling a noise vector and forwarding it through the first layers of the layout network. For the sake of clarity, we omitted the layout network final layer that has to be applied to h before being used as input to G.

Pre-training is done for 150k iterations using ADAM optimizer with a learning rate of 0.005 and batch size of 8.

Then, in the second stage, the encoder is fine-tuned on real and generated images with the following objective:

$$L_{\text{encoder \ fine-tune}} = L_2(x, G(E(x))) + \lambda_{\text{PIPS}} L_{\text{PIPS}}(x, G(E(x))) + \lambda_{\text{latent}} L_2(h, E(G(h))) + \lambda_{\text{decision}} L_2(f_M(x), f_M(G(E(x)))),$$

where h is obtained by sampling a noise vector and forwarding it through the first layers of the layout network. For the sake of clarity, we omitted the layout network final layer that has to be applied to h before being used as input to G.
where \(h \) is obtained in the same way as during pre-training of the encoder, and \(x \) by sampling from the dataset. This objective focuses on three different aspects of image inversion. First, we have to make sure that images that we encode as latent parameters with \(E \) can be reconstructed by re-applying the generator using these latents. This cycle consistency is enforced by a perceptual \(L_{\text{LPPS}} \) loss [6] and the \(L_2 \) loss between real and reconstructed images. Second, we also ensure that generated images \(G(z) \) can be encoded back into latent space using an \(L_2 \) loss between the generative latent parameters \(z \) and their estimation by the encoder \(E(G(z)) \). This helps keeping the latents predicted by the encoder in the generator domain; this term is only used for generated images. Finally, to encourage the reconstructed image to be faithful to the decision model, we use an \(L_2 \) distance between the features \(f_M(x) \) of the input and the reconstructed image \(f_M(G(E(x))) \). This term makes sure to preserve the features that are important to the decision model \(M \). Those features must contain both the decision semantics that led to the decision. In particular, for the DenseNet decision model that we have, we consider activations at the last convolutional layer of the decision model (DenseNet). This is to ensure that the decisions are kept unchanged on the reconstruction but also that features that led to those decisions remain the same. This finetuning stage is conducted with ADAM, for 150k steps, with a learning rate of 0.002. Hyper-parameters are found after coarse manual inspection on some qualitative samples, \(\lambda_{\text{LPPS}} = 1 \), \(\lambda_{\text{latent}} = 0.1 \), \(\lambda_{\text{decision}} = 0.05 \). The choice of these hyper-parameters is not critical as obtained latent codes \(z \) are then refined in an optimization phase, as explained in the main paper (Sec. 3.4).

1.4. Time complexity

OCTET takes \(\sim 28s \) per counterfactual image, in a batch of 16. The inversion step amounts to 85% of that time and the CF optimization 15%.

Eq.	FID (↓)	LPIPS (↓)	Decision preserv. (↑)
Eq. 3	53.3	42.3	91.3%
w/o \(L_1 \), (image)	50.2	56.2	92.8%
w/o \(L_2 \), (image)	57.0	42.7	91.4%
w/o \(L_2 \), (decision feat.)	54.4	41.5	73.0%
w/o \(L_2 \), (latent)	52.0	41.8	91.3%

Table 1. Ablation of the image inversion optimization process (Eq. 3). The ‘Decision preserv.’ is the percentage of images that yield the same decisions as their reconstruction using \(M \).

2. Further ablations

We present in this section ablation studies for the image inversion optimization process. In particular, we ablate the different terms of the loss. Moreover, we recall that the initial values in this optimization process are given by the output of an encoder, and we ablate its training objectives as well. In addition to the visual reconstruction metrics (FID, LPIPS and pixel-wise distances), we also evaluate the semantic fidelity of the reconstructions with a ‘Decision preservation’ score. More precisely, the score measures the proportion of reconstructions that yield the same decision as the original image when presented to the model \(M \). This property is important as decision switches that occur during the reconstruction phase are guided neither by the target class nor by the studied model \(M \) and therefore can hinder the downstream task of creating a reliable counterfactual explanation.

2.1. Image inversion

We present in Tab. 1 an ablation study of the terms of Eq. 3 of the main paper that we recall below:

\[
\phi^q, \psi^q = \arg \min_{\phi, \psi} L_{\text{LPPS}}(G(\phi, \psi), x^q) + L_2(G(\phi, \psi), x^q) + L_2(f_M(x^q), f_M(G(\phi, \psi))) + L_2((\phi, \psi), E(x^q)). \tag{3}
\]

We observe that the first two terms improve FID and LPIPS while the last two do not seem to influence those scores. However, without the third term, we note a huge drop (91.3% vs. 73.0%) in the number of reconstructed images that conserve the model’s original decision. The last term is a standard safeguard in the literature [7]: although there is no improvement in terms of LPIPS and FID, we observed that, without it, some objects were lost in the reconstruction, especially grey cars that blend in the road.

2.2. Encoder training

Tab. 2 reports results for the ablation of the encoder training losses (Eq. 1 and Eq. 2). The ‘Decision preserv.’ is the percentage of images that yield the same decisions as their reconstruction using \(M \).

	LPIPS (↓)	\(L_2 \) (↓)	Decision preserv. (↑)
Pretrained enc. (after Eq. 1)	57.2	0.230	63.1%
Finetuned enc. (after Eq. 2)	54.6	0.175	71.5%
w/o \(L_2 \) on \(f_M \)	54.8	0.176	61.4%
\(L_2 \) instead of \(L_2 \)	55.3	0.285	66.3%

Table 2. Ablation of the finetuning of the encoder (Eq. 2). The ‘Decision preserv.’ is the percentage of images that yield the same decisions as their reconstruction using \(M \).
some qualitative results of: truth segmentation maps, unlike STEEX. Moreover, we stress that OCTET does not use any ground-means that they are closer to the original data distribution. (lower LPIPs) but also more realistic (lower FID) which optimization) leads to images that are closer to the input im-
struct real images. To measure the reconstruction quality, we use the FID [2] between all reconstructions and the set of real query images. We also measure the mean L_{LPIPS} [6] distances between all pairs of real and reconstructed images.

In Tab. 3, we report FID and LPIPS scores for recon-
structed images. Overall, we observe that the backbone used in OCTET and our inversion strategy (encoder + op-
ject in the scene. We here explain how, taking advantage of
tance of specific blobs with OCTET. But for practical use,
model learns to associate certain blobs with certain objects. We observed that similar properties emerge when training the model on outdoor driving scenes. For instance, in Fig. 3, we visualize the correlation between blobs and the semantic classes for cars and roads. We use a pre-trained semantic segmentation network to measure the number of pixels that disappeared from each class when removing a blob by setting its size to a negative number. Using such figures, we are able to determine for instance that blobs 14, 18, 23, 29, 30, and 35 are very likely to correspond to car-blobs. We then visualize in Fig. 4 the distribution of the spatial positions of the center of the blobs on the canvas. To be clear, for each blob index, we plotted the location of its center and accumulated the plots over 10k generated images. This figure shows that the blobs have a localized position which is consistent with the fact that the blobs have a semantic meaning. Combining the location and the semantic class of the blob, we can infer that blob 30 is likely to correspond to a car in the middle of the image, while blob 35 is a car on the right for instance.

Using this knowledge, we can then directly intervene on the spatial parameters of the blobs to see how it affects the image and confirm our hypothesis. We show the results of such manipulation in Fig. 5 and Fig. 6. These findings are

	FID (↓)	LPIPS (↓)
STEEX	60.2	0.435
OCTET	53.3	0.423

Table 3. Reconstruction capacities of OCTET and STEEX. We check the quality of reconstruction with FID (is the reconstructed image realistic?) and LPIPS (is the reconstructed image close to the input image?). The values below were computed on the validation set of BDD segmentation dataset (1000 images). Note that STEEX uses ground truth segmentation masks as additional input.

Also, we chose the L_2 pixel loss as in the BlobGAN paper. With L_1, results are slightly degraded.

3. Reconstruction quality

We compare the ability of OCTET and STEEX to recon-
struct real images. To measure the reconstruction quality, we use the FID [2] between all reconstructions and the set of real query images. We also measure the mean L_{LPIPS} [6] distances between all pairs of real and reconstructed images.

In Tab. 3, we report FID and LPIPS scores for recon-
structed images. Overall, we observe that the backbone used in OCTET and our inversion strategy (encoder + op-

3.1. Discussion on sparsity of changes

Sometimes, counterfactual explanations do not display sparse changes with respect to the original query image. In fact, the main source of non-sparsity comes from the challenges of GAN inversion. Despite our efforts and contrib-
utions allowing us to outperform previous works in this regard, our reconstruction already introduces changes (see Fig. 1). The counterfactual optimization step itself does not degrade LPIPS further (see Fig. 4 of the main paper and Tab. 3). In Fig. 2 (not cherry-picked), we illustrate the sparsity of the CF optimization itself by starting from generated queries to build the CF, thus not necessitating a reconstruction step. As the sparsity in this step is satisfac-
tory, we decided not to add a pixel-level regularization that would also heavily penalize explanations involving object displacement.

4. Finding the blob index to target

We discussed in the main paper how to assess the impor-
tance of specific blobs with OCTET. But for practical use, we need to identify which blob corresponds to a given object in the scene. We here explain how, taking advantage of BlobGAN [1], the generative backbone we use, we are able to find the blob identity.

BlobGAN learns to represent scenes as a collection of blobs distributed on a canvas in an unsupervised fashion. As discussed in the original paper for indoor scenes, even without supervision from object positions and classes, the model learns to associate certain blobs with certain objects. We observed that similar properties emerge when training the model on outdoor driving scenes. For instance, in Fig. 3, we visualize the correlation between blobs and the semantic classes for cars and roads. We use a pre-trained semantic segmentation network to measure the number of pixels that disappeared from each class when removing a blob by setting its size to a negative number. Using such figures, we are able to determine for instance that blobs 14, 18, 23, 29, 30, and 35 are very likely to correspond to car-blobs. We then visualize in Fig. 4 the distribution of the spatial positions of the center of the blobs on the canvas. To be clear, for each blob index, we plotted the location of its center and accumulated the plots over 10k generated images. This figure shows that the blobs have a localized position which is consistent with the fact that the blobs have a semantic meaning. Combining the location and the semantic class of the blob, we can infer that blob 30 is likely to correspond to a car in the middle of the image, while blob 35 is a car on the right for instance.

Using this knowledge, we can then directly intervene on the spatial parameters of the blobs to see how it affects the image and confirm our hypothesis. We show the results of such manipulation in Fig. 5 and Fig. 6. These findings are
5. Details on the User Study

5.1. Protocol details

Here, we describe more precisely the details of the user study (Sec. 4.5). The experiment was conducted as an online form, with no interaction with any operator. The respondents are all voluntary, and we targeted participants that have familiarity with deep learning. Participants are randomly split across the two groups (Control group and group with explanations). We show in Fig. 7 a description of the study and the templates we used for the forms.

To build the online form, we needed 28 distinct query images: 16 were used for the observation phase and 12 for the questionnaire. Those were randomly sampled, with consistent across images and make it fairly straightforward to identify the correct blob for object-targeted counterfactuals presented in the main paper.

Figure 1. Examples of inversion results for OCTET (ours) and STEEX [4].

Figure 2. Counterfactual explanations on generated query images. Neither the images nor the target classes are cherry-picked.
Figure 3. **Blobs semantic meaning.** We visualize the correlation between the blobs and the semantic classes ‘car’ (top) and ‘road’ (bottom). The x-axis displays blob ids, while values in the y-axis represent the mean number of pixels that are no longer from class c when removing blob k computed by sampling 200 different latent codes. The number of pixels for class c is estimated using a pre-trained semantic segmentation network.

For the bias detection study, we first presented them with one additional test image, the same to all participants, for which they had to predict the output of the decision model. We were not interested in their prediction this time, but we then asked them: "On the last image, please explain the factors that drove your choice in a few words". We also asked them two additional questions:

- "Did you manage to identify any particular behavior of the decision model?"
- "Did you manage to identify any problem or unexpected behavior in the decision model?"

The goal of those questions was to lead them to describe any peculiar behavior they would have inferred from the observation phase.

5.2. Collected responses

The collected answers to the free-form questions are presented in Tab. 4. Unknown to the participants, the decision model looked at the presence of cars on both the left and the right side of the road to make its prediction on the ‘Turn Right’ label. No participant in the control group mentioned
We visualize the spatial distribution of blob centroids. By combining the information about the semantic meaning of the blobs and their spatial localization, we can precisely label main blobs (e.g., blobs representing the front car vs. blobs representing cars on the right).

6. Preliminary experiments on LSUN dataset

In Fig. 8, we present preliminary results using the official pre-trained BlobGAN [1] generator on 3 classes of LSUN. The decision model is a 3-class classifier trained on LSUN to distinguish between kitchens, living rooms and dining rooms. We use generated images as queries. We can observe for instance that while the presence of a sofa is a clear distinguishing feature for the decision model, chair style contributes as well (last column). Also, while the explanations include layout changes impossible with STEEX [4], the position of objects does not seem as important as in the BDD experiments as objects are not displaced as much.
Figure 5. Resizing cars. We change the size of certain blobs representing cars. In addition to being able to change their size, we can make them appear and disappear. We stress that we are doing manual edition by intervening on the size parameter of the blobs. This contrasts with other figures of the main paper where we are doing counterfactual explanations and changes are automatically found with the optimization process to explain the decision of a model.

References

[1] Dave Epstein, Taesung Park, Richard Zhang, Eli Shechtman, and Alexei A. Efros. Blobgan: Spatially disentangled scene representations. In ECCV, 2022. 1, 3, 6
[2] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS, 2017. 3
[3] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected convolutional networks. In CVPR, 2017. 1
[4] Paul Jacob, Éloi Zablocki, Hedi Ben-Younes, Mickaël Chen, Patrick Pérez, and Matthieu Cord. STEEX: steering counterfactual explanations with semantics. In ECCV, 2022. 1, 4, 6
[5] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. CoRR, abs/1506.03365, 2015. 9
[6] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR, 2018. 2, 3
[7] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-domain GAN inversion for real image editing. In ECCV, 2020. 2
Figure 6. **Moving cars.** We change the position of certain blobs representing cars as pointed by the arrow by changing their centroid coordinates. We stress that we are doing *manual edition* by intervening on the position parameters of the blobs. This contrasts with other figures of the main paper where we are doing *counterfactual explanations* and changes are automatically found with the optimization process to explain the decision of a model.
Figure 7. **User study overview.** The study is conducted as an online form in two phases. First, in the observation phase, the participant is shown examples to analyze the prediction of the model. Then, in the questionnaire, they are asked to guess the prediction of the model. The control group (bottom part) is only shown images and associated decision in the observation phase. The OCTET group (top part) has, in addition, access to counterfactual explanations.

Figure 8. **Qualitative results on LSUN dataset [5].**
Table 4. Responses to the free-form questions in the user-study. The participant had the option to leave the fields blank; they are still shown in the table. We highlight in bold every occurrence of the word ‘left’.