The Effect of DNA-Dependent Protein Kinase on Adeno-Associated Virus Replication

Young-Kook Choi¹, Kevin Nash²*, Barry J. Byrne³, Nicholas Muzyczka², Sihong Song¹*

¹ Department of Pharmaceutics, University of Florida, Gainesville, Florida, United States of America, ² Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America, ³ Department of Pediatrics, University of Florida, Gainesville, Florida, United States of America

Abstract

Background: DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme and plays an important role in determining the molecular fate of the rAAV genome. However, the effect this cellular enzyme on rAAV DNA replication remains elusive.

Methodology/Principal Findings: In the present study, we characterized the roles of DNA-PK on recombinant adeno-associated virus DNA replication. Inhibition of DNA-PK by a DNA-PK inhibitor or siRNA targeting DNA-PKcs significantly decreased replication of AAV in MO59K and 293 cells. Southern blot analysis showed that replicated rAAV DNA formed head-to-head or tail-to-tail junctions. The head-to-tail junction was low or undetectable suggesting AAV-ITR self-priming is the major mechanism for rAAV DNA replication. In an in vitro replication assay, anti-Ku80 antibody strongly inhibited rAAV replication, while anti-Ku70 antibody moderately decreased rAAV replication. Similarly, when Ku heterodimer (Ku70/80) was depleted, less replicated rAAV DNA were detected. Finally, we showed that AAV-ITRs directly interacted with Ku proteins.

Conclusion/Significance: Collectively, our results showed that that DNA-PK enhances rAAV replication through the interaction of Ku proteins and AAV-ITRs.

Introduction

DNA-PK is a nuclear serine/threonine protein kinase that consists of a 460 kDa catalytic subunit (DNA-PKcs) and a heterodimer (Ku70 and Ku80). DNA-PK plays important roles in DNA repair and V(D)J recombination through nonhomologous end joining (NHEJ). When DNA-PK encounters DNA lesions such as DNA double strand break (DSB) damage by ionizing radiation, Ku70/80 binds with high affinity to DNA ends independent of their end sequence or structure [1,2,3]. The Ku heterodimer recruits DNA-PKcs to form an active DNA-PK holoenzyme. LigaseIV/XRCC4 interacts with DNA-PK on DNA ends, which leads to NHEJ [4,5]. Several proteins including Mre11/Rad50/Nbs1 and Artemis are involved in this process [6,7]. Activity of DNA-PKcs may be regulated by autophosphorylation of DNA-PKcs at seven putative phosphorylation sites [6,7]. DNA-PK is a sensor for DNA damage such as DNA double strand break (DSB) damage by ionizing radiation (IR) [12,13]. In addition, wortmannin directly binds to the kinase domain of DNA-PKcs and inhibits the function of DNA-PKcs noncompetitively [14]. DNA-PK is a sensor molecule that determines the cellular fates by regulating cellular proteins related with cell cycles, DNA repair, and apoptosis [9,15,16,17]. Paradoxically, the Ku70/80 complex can also inhibit nonhomologous end joining when it binds to the telomere complex, shelterin [18].

Adeno-associated virus (AAV) is a nonpathogenic human parvovirus that contains a linear single-stranded DNA (ssDNA) genome [19]. The AAV genome encodes two large open reading frames, rep and cap, that are flanked by 145 nucleotide inverted terminal repeats (ITRs). AAV has an interesting biphasic life cycle, either productive infection in the presence of a helper virus, e.g., adenovirus or herpes simplex virus (HSV), or latent infection in the absence of a helper virus. The ITRs comprise the Rep binding elements (RBE and RBE') and the terminal resolution site (trs) and form a T-shaped hairpin structure that serves as the primer for minimal origin of AAV DNA replication and for the site specific nicking of the AAV ITR at the trs that is required for repairing covalently closed ITRs during AAV replication [20,21,22,23]. The
large Rep proteins (Rep68 or Rep78) mediate viral DNA replication and ts nicking [20,24,25,26,27] and regulate AAV gene expression [28,29,30,31,32,33,34] and packaging [35,36]. Rep68 or Rep78 also play important roles for site-specific integration of wild type AAV2 into human chromosome 19q13.3qter, named the AAVS1 locus [37,38,39]. AAV DNA replication requires the ITR, cellular polymerases, and helper virus-derived factors. The p5 promoter region that regulates rep19q13.3qter, named the AAVS1 locus [37,38,39]. AAV DNA integration of wild type AAV2 into human chromosome Rep68 or Rep78 also play important roles for site-specific integration of wild type AAV2 into human chromosome 19q13.3qter, named the AAVS1 locus [37,38,39]. AAV DNA replication requires the ITR, cellular polymerases, and helper virus-derived factors. The p5 promoter region that regulates rep19q13.3qter, named the AAVS1 locus [37,38,39]. AAV DNA integration of wild type AAV2 into human chromosome.

Results

DNA-PK inhibitor, wortmannin Inhibits rAAV replication

In order to test the effect of DNA-PK on rAAV replication, we first employed wortmannin, an inhibitor of DNA-PK [14]. DNA-PK positive (+/+) cell lines, MO59K and 293 cells were infected with rAAV2-UF5 with or without recombinant herpes helper virus (containing the AAV2 rep and cap genes) [52]. Cells were treated with different concentrations of wortmannin and two days after viral co-infection, episomal DNA (Hirt DNA) was isolated. Replicated forms of rAAV-UF5 DNA including double-stranded monomer (about 3.4 kb), double-stranded dimer (about 6.8 kb) and high molecular weight concatamers (over 13 kb) were analyzed by Southern blot analysis using 125P labeled vector specific (CMV) probe. As shown in Figure 1, treatment of wortmannin decreased the rAAV genome replication in dose-dependent manner in both cell lines. No significant cytotoxicity was observed when wortmannin concentration was below 20 μM in MO59K cells, or below 5 μM in 293 cells. We noticed that the conversion of single-stranded AAV genome to double-stranded monomer or concatamers was more efficient in 293 cells than in MO59K cells, probably due to E1 gene expression in 293 cells [53,54,55].

Targeting DNA-PKcs mRNA inhibits rAAV replication

The results above indicated that DNA-PK may play a role in enhancing rAAV replication. However, wortmannin inhibits not only DNA-PK, but also other protein kinases, such as phosphatidylinositol 3-kinase (PI-3). In order to pinpoint the role of DNA-PK, we employed synthetic siRNA to target DNA-PKcs mRNA. Synthetic siRNA at 100 pmole significantly decreased mRNA

Figure 1. rAAV replication in MO59K cells and 293 cell treated with wortmannin. Hirt DNA was purified two days after viral infection and subjected to Southern blot analysis. All samples were triplicated with rAAV2-UF5 with or without recombinant herpes helper virus (containing the AAV2 rep and cap genes) [52]. Cells were treated with different concentrations of wortmannin and two days after viral co-infection, episomal DNA (Hirt DNA) was isolated. Replicated forms of rAAV-UF5 DNA including double-stranded monomer (about 3.4 kb), double-stranded dimer (about 6.8 kb) and high molecular weight concatamers (over 13 kb) were analyzed by Southern blot analysis using 125P labeled vector specific (CMV) probe. As shown in Figure 1, treatment of wortmannin decreased the rAAV genome replication in dose-dependent manner in both cell lines. No significant cytotoxicity was observed when wortmannin concentration was below 20 μM in MO59K cells, or below 5 μM in 293 cells. We noticed that the conversion of single-stranded AAV genome to double-stranded monomer or concatamers was more efficient in 293 cells than in MO59K cells, probably due to E1 gene expression in 293 cells [53,54,55].

Targeting DNA-PKcs mRNA inhibits rAAV replication

The results above indicated that DNA-PK may play a role in enhancing rAAV replication. However, wortmannin inhibits not only DNA-PK, but also other protein kinases, such as phosphatidylinositol 3-kinase (PI-3). In order to pinpoint the role of DNA-PK, we employed synthetic siRNA to target DNA-PKcs mRNA. Synthetic siRNA at 100 pmole significantly decreased mRNA

Figure 1. rAAV replication in MO59K cells and 293 cell treated with wortmannin. Hirt DNA was purified two days after viral infection and subjected to Southern blot analysis. All samples were triplicated with 125P labeled CMV probe. Replicated forms of rAAV include double-stranded monomer (about 3.4 kb), dimer (about 6.8 kb), and concatamers DNA (high molecular weight). Notice that treatment of wortmannin reduced rAAV replication in a dose-dependent manner in both MO59K cells (A) and in 293 cells (B). doi:10.1371/journal.pone.0015073.g001
Western blot for the detection of DNA-PKcs protein using beta-actin. Amplified cDNA fragments were separated on a 1% agarose gel. (B) cells were harvested. (A) RT-PCR for the detection of DNA-PKcs mRNA.

Figure 2. Targeting DNA-PKcs by siRNA. 293 cells are transfected with siRNA (100 pmole) targeting DNA-PKcs mRNA and non-specifically control siRNA using Lipofectamine™ 2000. Two days after transfection, cells were harvested. (A) RT-PCR for the detection of DNA-PKcs mRNA. Amplified cDNA fragments were separated on a 1% agarose gel. (B) Western blot for the detection of DNA-PKcs protein using beta-actin protein as an internal control.

doi:10.1371/journal.pone.0015073.g002

Molecular analysis of replicated rAAV DNA

We and others have previously shown that in latent infections, rAAV DNA forms mainly head-to-tail (H-T) junctions and persists as an episome in liver and muscle cells. Cellular enzymes, such as DNA-PK play important roles in the junction formation and persistence of AAV DNA [50,51] and would be expected to produce circular rAAV genomes with head to tail junctions. Although AAV is known to replicate by a hairpin priming mechanism, a rolling circle mechanism has been proposed during the establishment of latent infections [60,61]. Unlike the self-priming model, which generates head-to-head (H-H) or tail-to-tail (T-T) junctions, the rolling circle model generates head-to-tail (H-T) junctions. In order to evaluate the structures of replicated rAAV junction and the effect of DNA-PK on junction formation, we digested Hirt DNA with unique restriction enzymes, XhoI (1-cutter), SacI (2-cutter), and BglII (2-cutter) as shown in Figure 4A. All of the possible fragments generated from these digests are listed in Figure 4B. Southern blot analysis using two different probes showed that all predicted fragments (H-H, T-T, free ends) were detected, except H-T junctions (Figure 4C). The low or undetectable levels of head to tail junctions suggested AAV-ITR self-priming was still the primary mechanism for AAV DNA replication. Inhibition of DNA-PK did not affect the type of AAV junction formed during AAV replication.

In vitro AAV replication

In order to confirm the observation that inhibition of DNA-PK decreased rAAV replication in cells, we employed a previously developed in vitro replication assay to explore the role of DNA-PK and Ku70/80 [25,43]. In this assay, the reaction contains purified Rep 68, dsAAV DNA template with covalently closed ends and nuclear extract (NE) from adenovirus-infected HeLa cells. Since HeLa cells express high levels of DNA-PK, we tested the effect of selective inhibition of each subunit of the DNA-PK complex by adding anti-DNA-PKcs, anti-Ku70, or anti-Ku80 antibodies to the HeLa NE before starting the AAV replication reaction. As shown in Figure 5A, addition of anti-Ku80 antibody significantly inhibited rAAV replication (70%, \(P < 0.05 \)), while anti-Ku70 antibody showed a moderate decrease of rAAV replication (33%, \(P = 0.074 \)). However, we did not observe inhibition of AAV replication using anti-DNA-PKcs antibodies (Ab-2190-4127 or Ab-4cocktail). In order to rule out a non-specific effect of the antibodies on AAV replication, we performed the assay with HeLa nuclear extracts that had been depleted for DNA-PKcs or Ku heterodimer. Specific depletion of DNA-PKcs by anti-DNA-PKcs Ab-4cocktail and Ku proteins by anti-Ku70/80 (Ku-Ab3) was observed by Western blotting (Figure 5C). As shown in Figure 5D and 5E, depletion of Ku70/80 decreased AAV replication (\(P < 0.05 \) by one-tailed distribution), while depletion of DNA-PKcs did not. The results from these in vitro replication studies confirmed the previous report that Ku70/80 interacts with AAV Rep protein in vivo, and that they can enhance in vitro AAV DNA replication and partially substitute for MCM complex [45].

AAV-ITRs interact with Ku proteins

In order to test for a direct interaction between the AAV ITR and DNA-PK, we built an AAV-ITR by annealing and ligating three synthetic oligonucleotides. This ITR was then linked to a magnetic particle (Figure 6A), and as expected, the ITR interacted with Rep 78 (Figure 6B, right panel). In addition, using the ITR coated magnetic particles, we successfully pulled down and isolated Ku70 and Ku80 proteins (Figure 6B, left panel). To eliminate the possibility that incomplete ITRs or single stranded DNA interacted with the Ku proteins, we treated the ITR coated beads with exonuclease III to remove any partially assembled ITRs. As shown in Figure 6C, exonuclease III treatment did not affect the interaction between the AAV-ITR and Ku proteins. The interaction was also found to be a function of the concentration of Ku proteins. Finally, when free competitor AAV-ITR was added to the reaction, less Ku protein was pulled down (Figure 6D right) although the streptavidin-coated beads alone weekly interact with Ku 70 (Figure 6D left). These results demonstrated that Ku proteins can directly bind to hairpin AAV-ITRs, even in the absence of Rep protein.
Discussion

AAV replication has been intensively investigated and the contributions of AAV ITR sequences and Rep proteins have been reasonably well defined [20,21,22,23,25,62,63,64,65,66,67,68]. However, the effects of cellular proteins on AAV replication are not completely understood. Although the minimum set of proteins required to replicate AAV DNA efficiently \textit{in vitro} has been identified for both Herpes and Ad infected cells [41,42,43,44,46,47,49,69,70,71], it has recently been reported that Rep protein interacts with 188 cellular proteins [45]. Some of these Rep-interacting cellular factors play important roles in cellular DNA replication or repair and are likely to have a role in AAV DNA replication as well. Understanding these mechanism(s) will enable us to enhance rAAV vector production and to develop a safe gene delivery system. In the present study, we focused on the role of the DNA-PK complex (DNA-PKcs and Ku70/80) in AAV DNA replication.

Our results showed that reduction of DNA-PK at the protein or RNA levels decreased rAAV replication, suggesting that one or more components of the DNA-PK complex can enhance AAV replication. \textit{In vitro}, long-term inhibition of DNA-PKcs by wortmannin and siRNA reduced rAAV replication in both MO59K and 293 cells (Figs. 1, 2 and 3), indicating that DNA-PKcs plays an important role in rAAV replication. Furthermore, DNA-PKcs siRNA reduced AAV DNA replication when either Herpes virus or Ad helper functions were used (Fig. 3). However, when cell-free extracts were used in an \textit{in vitro} replication assay, depletion of DNA-PKcs did not affect rAAV replication suggesting that the effect of DNA-PKcs observed \textit{in vivo} was indirectly through acting on downstream factors, such as Ku proteins. Indeed, our results showed that Ku70 and Ku80, had a clear effect \textit{in vitro} when they were depleted by either antibody precipitation or antibody addition (Fig. 5). Finally, we showed that the components of the DNA-PK complex, particularly Ku70/80, could bind to a hairpinned AAV ITR. Because the magnetically tagged substrate used in these binding studies had a DNA end that was blocked with a magnetic bead, our results showed the direct interaction between Ku proteins and close-ended AAT-ITR. These results are consistent with observations reported previously using a ChIP assay [72]. Our results also are consistent with the recent report by Nash et al [45], who showed that purified Ku70/80 could partially substitute for the MCM helicase complex in an AAV DNA replication assay. This group also showed by antibody
co-precipitation that Ku70/80 formed a complex with Rep78 and 68 in vivo that was independent of the presence of DNA. Together, these results suggest that the enhancing effect of DNA-PKcs that we observed in vivo was probably through phosphorylation of Ku proteins, and suggested that Ku protein activated by DNA-Pkcs stimulated AAV replication in vitro in the absence of DNA-PKcs.

DNA-PK is a DNA repair enzyme consisting of a large catalytic subunit (DNA-PKcs), which has ser/thr kinase, and a heterodimeric complex consisting of Ku70 and Ku80 [73]. The Ku heterodimer associates tightly with double stranded DNA breaks and recruits DNA-PKcs, XRCC4 and Ligase IV to repair the DNA break by non-homologous end joining [74,75,76]. Ku also binds to telomeres via a high affinity interaction with TRF1, a component of the telomere shelterin complex and has a role in maintaining the stability of telomeres [18]. In contrast to its role in DNA repair, when Ku binds telomeres, it prevents telomere end joining. Finally, Ku has also been shown to have a 3' to 5' helicase activity and ATPase activity [77] and these activities appear to be unrelated to its binding of DNA ends.

We and others have shown that DNA-PK plays an important role in processing recombinant AAV genomes [51,72,78,79,80,81]. Injection of rAAV into scid mice (DNA-PKcs negative) showed a persistence of linear episomal rAAV DNA containing free ends in mouse tissue, in contrast to normal mice, in which all of the free ends had been joined predominantly in a head to tail fashion [78,79]. This result was consistent with the primary role of the DNA-PK complex in NHEJ, and suggested that this mechanism promoted rAAV DNA circulation, a key step in establishing stable transduction. Curiously, Zentilin et al [72] showed that in short term cell culture experiments (48 hrs), transduction was increased in Ku80 negative cell lines in the presence of hydroxyurea, suggesting that alternative mechanisms for forming transducing genomes can exist in the absence of DNA synthesis. In contrast, the results reported here showed that AAV DNA synthesis in the presence of helper virus functions did not result in circular intermediates or head to tail junctions, regardless of whether Ku70/86 was activated by DNA-PKcs (Fig 5). This suggests that the primary role of Ku70/80 in stimulating AAV DNA replication is unrelated to its role in promoting NHEJ or transduction. Our results are consistent with the recent report that AAV replication in the presence of Ad coinfection stimulated a DNA damage response that was primarily due to DNA-PKcs [58].

Given its inhibition of telomere end joining and its DNA helicase activity, we can suggest two general mechanisms by which Ku70/80 might stimulate AAV DNA synthesis. First, the interaction with Rep and the ITR may prevent NHEJ of AAV DNA replicative intermediates. This would be consistent with the finding that the protein complex containing the Ad E4 orf 6 and E1b 55K proteins targets the Mre11/Rad50/Nbs1 complex (MRN) for degradation [82]. In the absence of these two Ad helper functions for AAV (E1b55K and E4orf6), Ad DNA forms concatemers, thereby inhibiting Ad DNA replication. The MRN complex also localizes to AAV replication centers in the presence of Ad coinfection and inhibits AAV DNA replication in the absence of the E4orf6/E1b complex [83]. Therefore, the helper function provided by E1b and E4orf6 is believed in part to be the inhibition of MRN mediated NHEJ during AAV DNA replication. By binding to AAV ITRs, Ku70/80 may also prevent interaction of the ITR with MRN. Furthermore, by binding to the Rep-ITR complex, Ku itself may be prevented from recruiting the other
components of the DNA-PK NHEJ pathway. Thus, binding of Ku to the ITR and Rep would inhibit the two major NHEJ pathways in mammalian cells.

Ku70/80 may also play a role in strand displacement synthesis. We have shown previously that AAV DNA replication can be reconstituted in vitro with purified proteins, including Rep, pol δ, PCNA and RFC [41,42]. Here and elsewhere, we have also shown that replication can be at least partially reconstituted by substituting Ku for MCM [45]. Both proteins have similar 3\'-DNA helicase activities that prefer a replication fork as a substrate [77,84]; thus, both could function in AAV DNA replication as strand displacement helicases. Neither has activity on blunt ended DNA molecules [77,84] and, therefore, the initial melting of AAV ends may be the function of Rep, which can bind to a Rep binding element within the ITR and unwind the end [85]. Once a nascent fork is established, either Ku or MCM can load onto the 3\' strand and unwind the rest of the ITR to form the hairpin primer required for loading DNA polymerase and executing strand displacement synthesis.

In summary, we have presented evidence both in vivo and in vitro that the DNA-PK complex and in particular Ku70/80 stimulates AAV DNA replication in the presence of both Ad and Herpes coinfection. We have also suggested two possible mechanisms that might account for this activity and guide future experiments.

Materials and Methods

Cells and Reagents

A human glioma cell line (MO59K) was obtained from ATCC and was cultured in DMEM/F-12 medium (Cellgrow). Human embryonic kidney 293 cells (Microbix) were cultured in Dulbecco's Minimal Essential Medium (DMEM). All media were supplemented with 10% fetal bovine serum (Cellgro), penicillin (100 U/ml) and streptomycin (100 μg/ml). Wortmannin (Sigma) was dissolved in DMSO at 10 mM and stored at −80°C.

rAAV transduction

The rAAV2-UF5 vector was produced at the University of Florida Gene Therapy Center as described previously [86]. This vector contains green fluorescent protein (GFP) cDNA driven by cytomegalovirus (CMV) promoter. The titer of the rAAV-UF5 used in this study was 2.5×10^{12} physical particles/ml (1×10^{12} infectious unit/ml). To test AAV replication from viral DNA, cells were infected with rAAV2-UF5 at 1000 particles/cell or co-infected without recombinant HSV helper vector which contains AAV rep and cap genes [32]. To test AAV replication from plasmid DNA, cells were transfected 1.2 μg of helper plasmid (pDG), and 0.8 μg of pTR-UF5 by using Lipofectamine 2000TM (Invitrogen). Hirt DNA was purified two days after viral infection and was used.
for Southern blot analysis to detect replicated forms of AAV genome. The densitometric quantification of AAV genomes was performed with Kodak Gel Image Software.

siRNA transfection

Two double stranded RNA molecules were purchased from Ambion (Austin, TX). The siRNA for DNA-PKcs (5'-GAU CGC ACC UUA CUC UGU U-3') targets the sequences of 352 base and downstream sequences of human DNA-PKcs mRNA [87]. Silencer™ Negative Control #2 siRNA from Ambion which does not induce nonspecific effects on gene expression was used as a transfection control. 293 cells at the number of 2.5 × 10^5 cells/well were cultured in 6-well plates and transfected with 100 pmole of siRNA using Lipofectamine™ 2000 (Invitrogen). Next day, siRNA transfected cells were infected or transfected to test AAV replication as described above.

RT-PCR

Total RNA was extracted from siRNA treated cells using Trizol™ reagent (Invitrogen) and RT-PCR was performed with Access™ RT-PCR kit (Promega) using 1 μg total RNA. Primers were derived from the coding region of DNA-PK cDNA (upstream primer: 5'-ACT GAC AGA GAC TGC AGA TGG AAG-3', downstream primer: 5'-AGG GTG GAA AGA AAG AGA AGG TGG-3'); Beta-actin was used as a control (upstream primer: 5'-TCA CCA TGG ATG ATG ATA TCG CCG-3', downstream primer: 5'-ACA TGA TCT GGG TCA TCT TCT CGC). Synthesis of the first strand cDNA was performed at 48°C for 45 min. The PCR were performed at 96°C for 1 min, 56°C for 1 min and 72°C for 2 min for 35 cycles. The amplified PCR products were fractionated on a 1% agarose gel.

Western blot analysis

For western blot analysis, cell pellets were lysed in M-PER™ mammalian protein extraction reagent (Pierce) supplemented with protease inhibitors (leupeptin, pepstatin, aprotinin, antipain, 1 μg/ml each) and PMSF (at 1 mM). The protein concentration was determined using BCA kit (Pierce). Thirty micrograms of total cellular proteins were separated on 8% SDS-polyacrylamide gel and transferred onto a nitrocellulose membrane (Amersham). The mouse anti-DNA-PKcs (DNA- PKcs Ab-41–4127) or mouse anti-Ku80 (Ku Ab-2610–705) or mouse anti-Ku70 (Ku Ab-4506–541) (all antibodies were purchased from NeoMarkers) was used to detect DNA-PKcs, or Ku80 or Ku70 respectively. Horseradish peroxi-

Figure 6. AAT-ITR interacts with Ku proteins. (A) construction of AAV-ITR on a magnetic particle. (B) ITR on magnetic bead interacts with Rep78 and Ku proteins. AAV-ITR was bound to purified proteins or HeLa nuclear extract (NE) at room temperature or 37°C and then subjected to western blot analysis using antibodies to DNA-PKcs, Ku80 and Ku70. Rep78 are used as a positive control. (C) T-shaped closed ITR interact with Ku proteins in dose-dependent manner. AAV-ITR on the bead were treated with Exonuclease III and incubated with different amount of HeLa NE (65 μg/μl). The ITR binding proteins were subjected to western blot analysis for DNA-PKcs, Ku80 and Ku70. (D) Competition assay (right panel). When AAV-ITR on bead was incubated with HeLa nuclear extract, free AAV-ITR was added (2.5 fold) as a competitor. Streptavidin-coated magnetic beads and the beads with AAT-ITR (left panel) served as a control and showed addition of AAV-ITR increased pull down of Ku proteins.

doi:10.1371/journal.pone.0015073.g006
dNTP, 2 mM dATP, 4 mM ATP, 40 mM creatine phosphate, 1 infected HeLa cell nuclear extract was preincubated with 1 µl of specific antibodies against each subunits of DNA-PK (each 200 µg/ml) for 30 min at 37°C. The AAV DNA replication assay was performed as described previously [25]. Briefly, preincubated Ad-infected HeLa cell extract with antibodies was incubated in a reaction buffer containing 30 mM HEPES (pH 7.5), 7 mM MgCl2, 0.5 mM DTT, 100 µM each dNTP, 25 µCi of [α-32P]dATP, 4 mM ATP, 40 mM creatine phosphate, 1 µg of creatine phosphokinase, 0.1 µg of NE substrate DNA, and 1 to 80 U of Rep68 baculovirus extract for 4 h at 37°C. After incubation, the reaction mixture was treated with Proteinase K and extracted with phenol/chloroform. DNA was precipitated in ethanol. The DNA was digested with DpnI to remove bacterial DNA and was separated by 0.8% agarose gel. X-ray film was exposed on a dried gel.

Immunodepletions

In order to deplete DNA-PK subunits, 25 µg of Ad-infected HeLa cell extract was mixed with 30 µl of anti-DNA-PKcs (DNA-PKcs Ab-1cocktail), anti-Ku70/80 (Ku Ab-3) or control antibody (mouse IgG2a Ab-1, Neomarkers) and incubated at 4°C overnight. Each reaction was added with 50 µl of ProteinG-agarose (Calbiotech) and incubated at 4°C overnight. DNA-PK subunits interacted with the agarose beads were pelleted by centrifugation. Supernatants were harvested carefully. This procedure was repeated three times. The supernatant was used for in vitro AAV replication studies as described above after confirm the DNA-PK depletion by Western blot analysis.

References

1. Blier PR, Griffith AJ, Craft J, Hardin JA (1993) Binding of Ku protein to DNA. Measurement of affinity for ends and demonstration of binding to nick. J Biol Chem 268: 7594–7601.

2. Griffith AJ, Blier PR, Mimori T, Hardin JA (1992) Ku polypeptides synthesized in vitro assemble into complexes which recognize ends of double-stranded DNA. J Biol Chem 267: 331–339.

3. Walker JR, Corippa RA, Goldberg J (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412: 614–618.

4. Chen L, Trujillo K, Sung P, Tomkinson AE (2000) Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase. J Biol Chem 275: 26196–26205.

5. Drouet J, Delteil C, Lefrancois J, Concannon P, Salles B, et al. (2005) DNA-dependent protein kinase and XRCC4-DNA ligase IV mobilization in the cell in response to DNA double strand breaks. J Biol Chem 280: 7060–7069.

6. Ma Y, Pannicke U, Schwarz K, Lieber MR (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 100: 781–794.

7. Moshous D, Cellebaetu I, de Chasseval R, Corno B, Cavazzana-Calvo M, et al. (2001) Artemis, a novel DNA double-strand break repair/D(V)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105: 177–186.

8. Chan DW, Chen BP, Prithivirajsingh S, Kurimasa A, Story MD, et al. (2002) Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16: 2333–2340.

9. Chen BP, Chan DW, Kobayashi J, Burma S, Asaithamby A, et al. (2005) Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks. J Biol Chem 280: 14709–14715.

10. Shinohara ET, Geng L, Tan J, Chen H, Shir Y, et al. (2005) DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. Cancer Res 65: 4987–4992.

11. Daida S, Yamamoto A, Fujiwara K, Sawaya R, Konoe S, et al. (2005) Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by binding autophagy. Cancer Res 65: 4360–4365.

12. Boutsen S, Kyle S, Yalcintire L, Durkacz BW (1996) Wortmannin is a potent inhibitor of double strand break but not single strand break repair in Chinese hamster ovary cells. Carcinogenesis 17: 2285–2290.

Construction of synthetic AAV-ITR

A T-shaped AAV ITR was built by annealing and ligation three synthetic oligos, ITR 1 (63-mer): 5′-GGCGGCTCACT-GAGGCGCCCGGCGAAGCGAAGCGCTGCGCGAC-CTTTGGTGCGCCGGGCGCTA-3′, ITR 2 (33-mer): 5′-GG-TGACGGACGGAGCCGGAGAGAGGAGTTGGCCAA-5′, ITR 3 (19-mer): 5′-GGTGACGGTCCCGTCTGGGGCTC-3′ (Figure 6A). This ITR was ligated with biotinated oligonucleotides, which can bind to streptavidin coated magnetic particles (Roche Inc.).

Assay for interaction between DNA-PK and AAV ITR DNA

AAV ITR on magnetic bead was incubated with purified DNA-PK (containing DNA-PKcs, Ku80 and Ku70), HeLa nuclear extract or Rep78 at room temperature or 37°C. The incubation was performed in one of two buffers overnight containing either 25 mM HEPES (pH7.5), 5 mM MgCl2, 1 mM DTT and 1% BSA or 20 mM HEPES (pH7.6), 1 mM EDTA, 10 mM NH4SO4, 1 mM DTT, 0.2% Tween 20 and 30 mM KCL. After incubation, the magnetic beads were held by a magnet and washed 3 times with the binding buffer. AAV-ITR binding proteins were eluted out, dialyzed overnight following the instruction of the kit, and subjected to western blot analysis.

Author Contributions

Conceived and designed the experiments: Y-KC KN NM SS. Performed the experiments: Y-KC KN SS. Analyzed the data: Y-KC KN NM SS. Contributed reagents/materials/analysis tools: BB NM SS. Wrote the paper: Y-KC KN BB NM SS.

December 2010 | Volume 5 | Issue 12 | e15073
26. Ward P, Urecelay E, Kotin R, Safer B, Berns KI (1994) Adeno-associated virus DNA replication in vitro: activation by a maltose binding protein/Rep 68 fusion protein. J Virol 68: 6029–6037.

27. Ward P, Berns KI (1996) In vitro replication of adeno-associated virus DNA: enhancement by extracts from adenovirus-infected HeLa cells. J Virol 70: 4455–4501.

28. Beaton A, Palumbo P, Berns KI (1989) Expression from the adeno-associated virus p5 and p19 promoters is negatively regulated in trams by the rep protein. J Virol 63: 3169–3175.

29. Lavoie MA, Hermonat PL, Berns KI (1986) Positive and negative autoregulation of the adeno-associated virus type 2 genome. J Virol 60: 251–258.

30. Pereira DJ, McCarty DM, Muzycka N (1997) The adeno-associated virus type 2 p40 promoters require a proximal Sp1 interaction and a p19 CARG-like element to facilitate Rep transcription. J Virol 71: 4300–4309.

31. Pereira DJ, Muzycka N (1997) The cellular transcription factor Sp1 and an unknown cellular protein are required to mediate Rep protein activation of the adeno-associated virus p19 promoter. J Virol 71: 1747–1756.

32. McCarry DM, Chrisitenes M, Muzycka N (1991) Sequences required for coordinate induction of adeno-associated virus p19 and p60 promoters by Rep protein. J Virol 65: 2930–2945.

33. Weger S, Wistuba A, Grimm D, Kleinschmidt JA (1997) Control of adeno-associated virus type 2 cap gene expression: relative influence of helper virus, terminal repeats, and Rep proteins. J Virol 71: 8437–8447.

34. Dubielzig R, King JA, Weger S, Kern A, Kleinschmidt JA (1999) Adeno-associated virus type 2 protein interactions: formation of pre-encapsidation complexes. J Virol 73: 8089–8098.

35. King JA, Dubielzig R, Grimm D, Kleinschmidt JA (2001) DNA helicase-primase packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J 20: 3292–3301.

36. Kotin RM, Smalischco M, Samulski RJ, Zhu XD, Hunter L, et al. (1990) Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A 87: 2211–2215.

37. Samulski RJ, Zhu X, Xiao X, Brook JD, Houman DE, et al. (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10: 3941–3950.

38. Balague C, Kalla M, Zhang WW (1997) Adeno-associated virus Rep/78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome. J Virol 71: 2939–3006.

39. Philpott NJ, Gomos J, Berns KI, Faile-Pedersen E (2002) A p5 integration site-specific endonuclease activity of the adenovirus type 2 protein. J Virol 76: 15477–15487.

40. Nash K, Chen W, McDonald WF, Zhou X, Muzycka N (2007) Purification of adenovirus-associated virus Rep protein. J Virol 81: 5777–5767.

41. Nash K, Chen W, Muzycka N (2008) Complete in vitro reconstitution of adeno-associated virus DNA replication requires the minichromosome maintenance complex proteins. J Virol 82: 14516–1464.

42. Ni TH, McDonald WF, Zolotukhin I, Meneledy T, Waga S, et al. (1998) Cellular proteins required for adeno-associated virus DNA replication in the absence of adenovirus cofactors. J Virol 72: 2777–2797.

43. Stracker TH, Cassell GD, Ward P, Loo YM, van Breukelen B, et al. (2004) The Rep protein of adeno-associated virus type 2 interacts with single-stranded DNA-binding proteins that enhance viral replication. J Virol 78: 441–453.

44. Nash K, Chen W, Salgannik M, Muzycka N (2009) Identification of cellular proteins that interact with the adeno-associated virus Rep protein. J Virol 83: 453–469.

45. Weindler FW, Heilbronn R (1991) A subset of herpes simplex virus replication genes help provide functions for productive adeno-associated virus replication. J Virol 65: 2478–2483.

46. Slanina H, Weger S, Stos ND, Kuhar A, Heilbronn R (2006) Role of the herpes simplex virus helicase-primase complex during adeno-associated virus DNA replication. J Virol 80: 3241–5250.

47. Alzaraa Z, Chang NC, Nikolov A, Plougou A, Strasser R, Greco A, et al. (2009) Definition of herpes simplex virus type 1 hel helper activities for adeno-associated virus early replication events. PLoS Pathog 5: e1000340.

48. Toublanc E, Benraiss A, Bonnin D, Blouin V, Brunnet N, et al. (2004) Identification of a replication-defective herpes simplex virus for recombination of adeno-associated virus type 2 (aaAV2) particle assembly using stable producer cell lines. J Gene Med 6: 555–564.

49. Song S, Morgan M, Ellis T, Porier A, Chesnut K, et al. (1998) Sustained secretion of human alpha-l-antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci U S A 95: 14384–14389.

50. Song S, Lu Y, Choi YK, Han Y, Tang Q, et al. (2004) DNA-dependent PK inhibits adeno-associated virus DNA integration. Proc Natl Acad Sci U S A 101: 2112–2116.

51. Chalupsky JE, Zolotukhin S, Muzycka N, Hayward GS, Byrne BJ (1997) Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 ampiclon expressing Rep and Cap. J Virol 71: 8708–8709.

52. Chang CT, Chen YL, Lee SH, Lue CM, Lin MT (1989) The inhibition of progesterol G1-induced cornal neovascularization by steroid eye drops. Taiwan Yi Xiu Hui Za Zhi 88: 707–711.

53. Chang YN, Hsu HT, Huang MS, Chang CL, Li JG, et al. (1990) Effects of PGE1 on platelet deformability. Physiol Pharn 33: 31–40.

54. Laughlin CA, Jones N, Carter B (1982) Effect of deletions in adenovirus early region I genes upon replication of adeno-associated virus. J Virol 41: 868–876.

55. Alzaraa Z, Chang NC, Nikolov A, Plougou A, Strasser R, Greco A, et al. (2009) Identification of cellular proteins required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 23: 5306–5340.

56. Chalupsky JE, Zolotukhin S, Muzycka N, Hayward GS, Byrne BJ (1997) Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 ampiclon expressing Rep and Cap. J Virol 71: 8708–8709.

57. Chang CT, Chen YL, Lee SH, Lue CM, Lin MT (1989) The inhibition of progesterol G1-induced cornal neovascularization by steroid eye drops. Taiwan Yi Xiu Hui Za Zhi 88: 707–711.

58. Laughlin CA, Jones N, Carter B (1982) Effect of deletions in adenovirus early region I genes upon replication of adeno-associated virus. J Virol 41: 868–876.

59. Alzaraa Z, Chang NC, Nikolov A, Plougou A, Strasser R, Greco A, et al. (2009) Identification of cellular proteins required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 23: 5306–5340.

60. Chalupsky JE, Zolotukhin S, Muzycka N, Hayward GS, Byrne BJ (1997) Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 ampiclon expressing Rep and Cap. J Virol 71: 8708–8709.

61. Chang CT, Chen YL, Lee SH, Lue CM, Lin MT (1989) The inhibition of progesterol G1-induced cornal neovascularization by steroid eye drops. Taiwan Yi Xiu Hui Za Zhi 88: 707–711.

62. Laughlin CA, Jones N, Carter B (1982) Effect of deletions in adenovirus early region I genes upon replication of adeno-associated virus. J Virol 41: 868–876.

63. Alzaraa Z, Chang NC, Nikolov A, Plougou A, Strasser R, Greco A, et al. (2009) Identification of cellular proteins required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 23: 5306–5340.

64. Chalupsky JE, Zolotukhin S, Muzycka N, Hayward GS, Byrne BJ (1997) Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 ampiclon expressing Rep and Cap. J Virol 71: 8708–8709.

65. Chang CT, Chen YL, Lee SH, Lue CM, Lin MT (1989) The inhibition of progesterol G1-induced cornal neovascularization by steroid eye drops. Taiwan Yi Xiu Hui Za Zhi 88: 707–711.
82. Stracker TH, Carson CT, Weitzman MD (2002) Adenovirus oncoproteins inactivate the Mre11-Rad50-Nbs1 DNA repair complex. Nature 418: 348–352.
83. Schwartz RA, Palacios JA, Cassell GD, Adam S, Giacca M, et al. (2007) The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication. J Virol 81: 12936–12945.
84. Kaplan DL, Davey MJ, O'Donnell M (2003) Mcm4,6,7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J Biol Chem 278: 49171–49182.
85. Zhou X, Zolotukhin I, Im DS, Muzyczka N (1999) Biochemical characterization of adeno-associated virus rep68 DNA helicase and ATPase activities. J Virol 73: 1580–1590.
86. Zolotukhin S, Potter M, Hauswirth WW, Guy J, Muzyczka N (1996) A “humanized” green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70: 4646–4654.
87. Peng Y, Zhang Q, Nagasawa H, Okayasu R, Liber HL, et al. (2002) Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation. Cancer Res 62: 6400–6404.