Myopic regression and recurrent Salzmann nodule degeneration after laser in situ keratomeileusis in Ehlers Danlos Syndrome

Grant C. Hoppinga, Anisha N. Somani, Uma Vaidyanathan, Harry Liu, James R. Barnes, Yasmyne C. Ronquillo, Phillip C. Hoopes, Majid Moshirfar

1. Introduction

Ehlers Danlos Syndrome (EDS) is composed of a heterogenous group of inherited connective tissue disorders characterized by mutations altering collagen production or its fibrillar structure. The signs and symptoms associated with EDS vary depending on subtype, but all individuals show joint hypermobility, skin hyperextensibility, and tissue fragility. Other common findings include mitral valve prolapse, joint subluxation, arthralgias, hernia formation, and easy bruising. The prevalence of EDS is estimated to be 1 in 5000 worldwide. Some of the possible complications of LASIK overlap with disease processes that appear more frequently in EDS patients; thus, this syndrome is understood to be relative contraindication to LASIK. To the best of our knowledge, we describe the first case of EDS reported in the English-language ophthalmic literature to have undergone LASIK, placing them at increased risk for complications such as myopic regression, keratectasia, and dry eye syndrome. Aberrant wound healing and collagen dysfunction may have influenced our patient's myopic regression and Salzmann nodule degeneration post-LASIK. Currently, EDS is considered a relative contraindication in LASIK due to a presumed higher risk of postoperative keratectasia; however, we believe it is possible that not all forms of EDS need to be an absolute contraindication to LASIK. More research is warranted to determine preoperative risk stratification for laser vision surgery in each subtype of EDS.

Keywords:
Ehlers danlos
LASIK
Keratoconus
Salzmann nodule
Myopia
dry eye syndrome

Purpose: We describe the first case of Ehlers Danlos Syndrome (EDS) reported in the English language ophthalmic literature to have undergone Laser In Situ Keratomeileusis (LASIK) surgery.

Observations: We review our patient's specific postoperative complications of myopic regression, Salzmann nodular degeneration, and dry eye syndrome, as well as the risks and consequences of performing LASIK on patients with this collagen disorder.

Conclusions and importance: Refractive errors may prompt EDS patients to seek laser vision correction, placing them at increased risk for complications such as myopic regression, keratectasia, and dry eye syndrome. Aberrant wound healing and collagen dysfunction may have influenced our patient's myopic regression and Salzmann nodule degeneration post-LASIK. Currently, EDS is considered a relative contraindication in LASIK due to a presumed higher risk of postoperative keratectasia; however, we believe it is possible that not all forms of EDS need to be an absolute contraindication to LASIK. More research is warranted to determine preoperative risk stratification for laser vision surgery in each subtype of EDS.

Abnormal properties of collagen have been associated with aberrant structural changes in the shape and curvature of the cornea and sclera. Therefore, EDS patients can present with ocular findings, including corneal thinning, keratoconus, cornea plana, ocular fragility, blue sclera, lens subluxation, and high myopia. Significant refractive errors may prompt these patients to seek Laser In Situ Keratomeileusis (LASIK), placing them at increased risk for complications such as myopic regression, keratectasia, dry eye syndrome, and neurotrophic cornea. Some of the possible complications of LASIK overlap with disease processes that appear more frequently in EDS patients; thus, this syndrome is understood to be relative contraindication to LASIK. To the best of our knowledge, we describe the first case of EDS reported in the English-language ophthalmic literature to have undergone LASIK, and we discuss the potential risks and ramifications of performing laser vision correction on patients with this collagen disorder.
1.1. Case report

A 21-year-old, Caucasian woman with past medical history of hypermobile joints and intermittent arthralgias presented for refractive surgery evaluation for correction of myopia. She denied a history of connective tissue disease, diabetes, or abnormal scar formation. Medications included loratadine for seasonal allergies and citalopram for depression and generalized anxiety disorder. Past ocular and surgical histories were non-contributory. The patient was adopted, and her maternal family history included miscarriages while on various fertility regimens. In our clinic, further myopic regression was noted; UDVA was 20/70 OD with −2.50 D in the left eye (OS) without astigmatism. Best corrected distance visual acuity (CDVA) was 20/20 OD and 20/30 OS with −2.00 D in the right eye (OD) and −1.75 × 65 OS.

Over the next several years, the patient developed multiple abdominal hernias, experienced a uterine tear, and underwent multiple reparative surgeries. Additionally, she was diagnosed with hypermobile joints, everted ankles, and severe myopia. The patient continued to experience poor night-time vision and severe, itchy, dry eye symptoms OU refractory to maximal medical treatment and aforementioned surgical management. Therefore, cautery of the left lower punctum was performed after multiple, failed, punctal plugs. Superficial keratectomy of the larger, nasal Salzmann nodule OD was performed carefully to avoid flap dislocation. A short course of prednisolone acetate and Gatifloxacin were added to her treatment regimen. One-week after superficial keratectomy, slit-lamp examination revealed a well-healing epithelial defect OD with no evidence of flap necrosis or epithelial ingrowth.

Seven years after surgery, punctal cautery of the right lower lid was performed after multiple, failed, punctal plugs. Superficial keratectomy of the larger, nasal Salzmann nodule OD was performed carefully to avoid flap dislocation. A short course of prednisolone acetate and Gatifloxacin were added to her treatment regimen. One-week after superficial keratectomy, slit-lamp examination revealed a well-healing epithelial defect OD with no evidence of flap necrosis or epithelial ingrowth.

Over the next several years, the patient developed multiple abdominal hernias, experienced a uterine tear, and underwent multiple reparative surgeries. Additionally, she was diagnosed with hypermobile joints, everted ankles, and severe myopia. The patient continued to experience poor night-time vision and severe, itchy, dry eye symptoms OU refractory to maximal medical treatment and aforementioned surgical management. Therefore, cautery of the left lower punctum was also performed. At 11 years post-LASIK, neo-vascularization of the temporal cornea OD was noted, measuring as 3 mm × 4 mm in dimension and extending into the adjacent Salzmann nodule in the form of a pseudopterygium. At 17 years post-LASIK, the pseudopterygium had progressed to 5 mm × 4 mm without involvement of the center of vision (Fig. 2). Additionally, the previously-

Table 1

Date	Right Eye (OD)	Left Eye (OS)			
	UDVA	Manifest Refraction	CDVA	Manifest Refraction	CDVA
Preoperative	20/20	−2.00	20/20	−2.50	20/20
1 month postoperative	20/20	−0.50	20/20	−0.50	20/20
2 years postoperative	20/40	−0.75 + 0.25 × 66	20/20	−1.00 + 0.25 × 45	20/15
5 years postoperative	20/70	−1.75 + 0.75 × 65	20/20	−2.50	20/15
11 years postoperative	−4.00	+1.00 × 165	20/15	−3.25	20/15
17 years postoperative	20/150	−4.00 + 2.00 × 95	20/20	−5.50 + 0.50 × 151	20/15

Table 2

Date	Right Eye (OD)	Left Eye (OS)						
	K Steep (D)	K Flat (D)	Diff K (D)	BFS A/P (mm)	K Steep (D)	K Flat (D)	Diff K (D)	BFS A/P (mm)
Preoperative	45.8	45.2	0.6	7.64/6.34	45.8	45.2	0.6	7.65/6.38
1 year postoperative	43.9	43.1	8	7.75	43.6	42.8	8	7.75
2 years postoperative	43.3	42.6	8	7.80/6.34	43.4	42.3	1.1	7.84/6.37
7 years postoperative	43.4	41.1	2.2	7.89	43.0	42.3	7	7.84
17 years postoperative*	44.2	41.0	3.2	7.92/6.35	43.0	42.5	5	7.90/6.35
removed Salzmann nodule in the nasal cornea of the right eye reoccurred in the same location (Fig. 3). UDVA was 20/150 OD with a manifest refraction of $-2.00 -2.00 \times 005$ OD representing further worsening of astigmatism in the right eye. UDVA was 20/300 OS with manifest refraction of $-4.50 -0.50 \times 61$, indicating progressive myopic regression in the left eye. Conservative management of dry eye syndrome and Meibomian gland dysfunction was restarted, and no further surgical interventions were warranted at this time.

2. Discussion

Our patient was diagnosed via genetic panel with vascular EDS (vEDS, previously EDS type IV), usually characterized by a defect in type III and more rarely in type I collagen. The human cornea relies on collagen to maintain its structural integrity, with type I collagen composing 75% of the vertebrate eye. Interestingly, type III collagen is expressed in smaller amounts but is increased during wound healing and inflammation. Mutations in collagen present a unique challenge when considering refractive surgery in patients with EDS, as their roles in Salzmann nodular degeneration, myopic regression, keratoconus, and dry eye syndrome remain unclear.

Dysfunctional tear syndrome (DTS) is a common LASIK complication and disorder in EDS patients naïve to refractive surgery. For example a few studies have reported significantly reduced TBUT in EDS patients. Cazzato et al, postulated that dry-eye symptoms could be a part of an underlying small nerve fiber disease in these patients. Perhaps nerve fiber abnormalities in EDS patients in conjunction with the neural destruction caused by LASIK would place these patients at higher risk for postoperative, dry eye syndrome. Some of our patient’s ocular symptoms, such as itchy, uncomfortable eyes, can be explained by the widespread degranulation of inflammatory mediators seen in Mast Cell Activation Syndrome (MCAS). Interestingly, this EDS patient has concurrent POTS disease and MCAS, which has been identified as a possible, novel disease cluster.

Our patient’s chronic dry eye syndrome, along with the abnormal

![Fig. 1. Pachymetry values over the pre- and postoperative period measured with Orbscan (Bausch & Lomb Incorporated, USA). *taken with Pentacam (Oculus Optikgeräte, Wetzlar, Germany).](image)

![Fig. 2. Slit lamp examination at 17 years post LASIK. A = Right eye; two Salzmann nodules are located at the 4 o'clock (nasal; green arrow) and 8 o'clock (temporal; yellow arrow) positions, involving the LASIK flap edge. A 3 mm × 4 mm pseudopterygium (red arrow) is extending into the adjacent Salzmann nodule. B = Left eye; two Salzmann nodules are located at the 5 o'clock (inferotemporal; yellow arrow) and 7 o'clock (inferonasal; green arrow) positions; both involve the LASIK flap edge.](image)

![Fig. 3. Slit lamp examination of the right eye 17 years after LASIK surgery showing the recurrence of the nasal Salzmann nodule located at the 4 o'clock position (green arrow). A pseudopterygium (red arrow) can also be seen extending into the adjacent inferotemporal Salzmann nodule. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)](image)
wound healing in EDS, may have predisposed her to Salzmann nodular degeneration, characterized by subepithelial, nodular thickening of the extracellular matrix. Several case reports have also described Salzmann nodule formation after LASIK surgery. Defects in Bowman's membrane, specifically due to the action of metalloproteinase-2 (MMP-2) or mechanical disruption during LASIK flap formation, allow for keratinocyte migration, fibroblastic differentiation, and subsequent subepithelial deposition of extracellular matrix in the form of Salzmann

Fig. 4. Pentacam (Oculus Optikgeräte, Wetzlar, Germany) topographies of the right and left eye during the 17th postoperative year.
nodoles. These usually resolve with conservative management, and the majority of refractory nodules will not recur after nodulectomy. Our patient's Salzmann nodules abnormally persisted despite conservative medical and surgical treatment. No studies have evaluated the proposed direct association of EDS and Salzmann nodular degeneration; however, defects in wound healing could predispose EDS individuals to longer epithelial regeneration times and provide sufficient conditions for Salzmann nodule formation. In addition, limbal stem cell deficiency secondary to chronic ocular surface disease may explain our patient's pseudopterygium formation.

In cases of high myopia (i.e. ≤ -6.00 D), recurrence of myopia after LASIK is a common complication. Our patient experienced myopic regression after LASIK to values greater than her original prescription, possibly due to secondary changes in the cornea, lenticule, or axial length. No lenticular changes, including cataract formation, were found on exam throughout the postoperative period. However, lenticular myopia cannot be ruled out at this time. Potential corneal mechanisms for this myopic shift include corneal ectasia, corneal edema, stromal synthesis, epithelial ingrowth, and compensatory epithelial hyperplasia. In the last mechanism, the epithelium thickens after flattening of the corneal surface in LASIK for myopic correction, and this is correlated to the degree of regression of myopia. In our patient, pachymetry of the different corneal layers was unfortunately not measured; thus, it is difficult to assess if stromal synthesis or compensatory epithelial hyperplasia are causative factors in her myopic regression.

Another leading theory in the development of myopic regression after LASIK involves decreased corneal integrity due to mechanical weakening and subsequent anterior movement of the cornea. Subsequently, changes in anterior and posterior curvature cause increased positive refractive power leading to myopic regression. Our patient experienced the opposite trend as her corneal refractive power decreased over the postoperative period, outlined by the K flattening and K steep values of the right and left eyes in Table 2. Furthermore, posterior curvature did not significantly change over the postoperative period in either eye. Studies have not evaluated the changes in corneal integrity post-LASIK in EDS patients. However, the classic type of EDS (previously type II or mitis type), associated mainly with defects in collagen type V synthesis, has been shown to be associated with decreased central corneal thickness (CCT) in surgically naïve patients. This finding, along with increased corneal laxity due to structural abnormalities in collagen could possibly place EDS patients at higher risk for anterior movement of the cornea post-LASIK. However, our patient with vEDS did not have significant changes in CCT. These findings suggest a cause of myopic regression in our patient other than corneal changes.

Thus, axial elongation due to scleral weakness may be a causative factor. It is widely accepted in the literature that anterior-posterior length increases in myopic eyes. Several studies inducing myopia in animal models have suggested that changes in collagen synthesis and fibrillar structure play an integral role in the axial elongation seen in myopia. Additionally, mutations leading to structural and quantitative deficiencies in collagen have been linked to autosomal dominant transmission of myopia and axial elongation in a Caucasian population. More research is warranted to determine if mutations in collagen are implicated in the frequent development of myopia in EDS patients. If this is true, perhaps our patient's myopic regression post-LASIK was due to poor scleral integrity and axial elongation, and not as a direct consequence of the surgery itself. However, axial length was not measured in our patient. It is also important to note that whether collagen weakening is a cause or consequence of myopia remains controversial.

Our patient's decline in visual acuity in the right eye is likely also affected by mechanical distortion from Salzmann nodule and pseudopterygium formation (Fig. 2A). For example, Table 1 shows much higher progression of myopia OS and more astigmatism induced OD over the post-operative period. The right eye appears to have less myopic regression than the left eye as their spherical measurements were -2.00 D OD and -4.50 D OS. However, we believe this to be the effect of the pseudopterygium inducing astigmatic change in the right eye and masking its true myopic progression. Pterygia have been shown to demonstrate flattening of the cornea in their respective meridians and centrally at their apex. This is thought to be due to tractional forces from fibrovascular proliferation, although other mechanisms have been proposed. These changes in anterior curvature of the right eye are demonstrated by a larger difference in K-values OD (Table 2) and by asymmetric bow tie pattern on topography in the right eye (Fig. 4) showing flattening in the axis of the pseudopterygium. The effect of the temporal Salzmann nodule OS can be seen as a large positive deviation from the best fit sphere in the inferotemporal cornea in Fig. 4, although it does not involve the visual axis. Removal of the pseudopterygium could potentially reduce refractive astigmatism and topographic irregularity of the right eye at the expense of increasing the myopic spherical power.

Another rare but well-described complication of LASIK is corneal ectasia, described as keratomalacia steepening with or without associated corneal thinning. Risk factors for the development of keratectasia post-LASIK include abnormal preoperative corneal topography, younger age, higher myopia, decreased residual stromal bed thickness, and preoperative corneal thinning. Currently, EDS patients have a presumed higher risk for developing keratectasia, classifying EDS as a contraindication to LASIK surgery.

There has been mixed anecdotal evidence suggesting an association between EDS and keratoconus. Robertson et al. reported 50% of patients with keratoconus had concomitant joint hypermobility, mainly due to classic EDS. Galperin et al. described a patient with benign joint hypermobility syndrome who developed keratectasia after LASIK surgery; however, this disorder is classified as a distinct syndrome, separate from EDS. This area remains controversial as several studies, mainly in patients with classic EDS, have not demonstrated this association. For example, a study by Cameron identified 11 patients with kyphoscoliotic EDS (previously type VI) with limbus-to-limbus corneal thinning but no instances of keratoconus. It is possible that collagen defects may predispose EDS patients to keratectasia post-LASIK, even if keratoconus has not been proven to be associated with surgically-naïve EDS patients. More research needs to be done to elucidate the associations of the different types of EDS with corneal thinning, keratectasia, and keratoconus to better understand the risks involved in performing laser vision correction on these individuals. Of the risk factors for myopic regression post-LASIK, our patient only met criteria for younger age and did not develop keratectasia or keratoconus.

3. Conclusions

In summary, we describe the first patient with Ehlers Danlos Syndrome to have undergone LASIK surgery and be published in the academic literature. Our patient experienced postoperative complications, such as myopic regression, Salzmann nodular degeneration, and dry eye syndrome, possibly influenced by her underlying disorder of collagen synthesis. Due to lack of clinical evidence suggesting a corneal cause of her progressive myopia, it is possible that axial lengthening, influenced by collagen dysfunction, may be an origin of myopia in this patient. Furthermore, the persistence and recurrence of Salzmann nodules documented in this case may be due to aberrant wound healing in EDS in the setting of mechanical disruption of Bowman's membrane from LASIK. Currently, EDS is considered a relative contraindication in LASIK due to a presumed higher risk of developing postoperative keratectasia; however, since the various forms of EDS have differing molecular origins and disruptions in the function of specific types of collagen, we believe it is possible that not all forms of EDS need to be an absolute contraindication to LASIK. More research is warranted to study
ocular manifestations in each subtype of EDS to determine preoperative risk stratification for laser vision surgery.

4. Patient consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images.

Funding

Funding provided by Research to Prevent Blindness, NY, USA.

Authorship

All authors attest that they meet the current ICMJE criteria for authorship.

Declaration of competing interest

All authors report no financial interests to disclose.

Acknowledgements

None.

References

1. Malfait F, Francomano C, Byers P, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet Part C Semin Med Genet. 2017. https://doi.org/10.1002/ajmg.c.31552.
2. Ehlers-Danlos syndrome. Genetics home reference, NIH. https://ghr.nlm.nih.gov/condition/ehlers-danlos-syndrome#:2019, Accessed date: 23 June 2019.
3. Bentzon P, De Paepe A, Danko D, et al. International nosology of heritable disorders of connective tissue, Berlin. Am J Med Genet. 1996. https://doi.org/10.1002/ajmg.1320290316.188.
4. Brighton P, De Paepe A, Steinkmann B, Tsipouras P, Wensevort RJ. Ehlers-danlos syndromes: revised nosology, Villefranche. Am J Med Genet Part C Semin Med Genet. 2018. https://doi.org/10.1002/ajmg.c.30504.
5. Ma J, Wang Y, Wei P, Jhanji V. Biomechanics and structure of the cornea: implications and association with corneal disorders. Surv Ophthalmol. 2018. https://doi.org/10.1016/j.suvoph.2018.05.004.
6. Brighton P. Serious ophthalmological complications in the Ehlers-Danlos syndrome. J Cataract Refract Surg. 2004. https://doi.org/10.1016/j.jcrs.2004.05.002.
7. Cameron JA. Corneal abnormalities in Ehlers-Danlos syndrome type VI. Cornea. 1993. https://doi.org/10.1097/00003226-199301000-00009.
8. Moestrup T. Tenuity of cornea with ehlers-danlos syndrome. Acta Ophthalmol. 1969. https://doi.org/10.1111/j.1755-3058.1969.tb08158.x.
9. Robertson I. Keratoconus and the Ehlers Danlos syndrome: a new aspect of kerato-conus. Med J Aust. 30 Apr 1975;18(1):571–573.
10. Spadera L, Cantera E, Cortes M, Conocchia NE, Stewart CWM. Corneal ectasia after myopic laser in situ keratomileusis: a long-term study. Clin Ophthalmol. 2012. https://doi.org/10.2147/OPHT.A27249.
11. Chayet AS, Assil KK, Barakam CA, Mayrovitz HN. Regression and its mechanisms after laser in situ keratomileusis in moderate and high myopia. Ophthalmology. 1998. https://doi.org/10.1016/S0161-6420(98)97020-8.
12. Toda I. Dry eye after lasik. Refract Surg. 2005;21(8):496. https://doi.org/10.1016/j.jcjo.2008.07.002.
13. Segen F, Héon E, Cole WG, et al. Structural abnormalities of the cornea and lid resulting from collagen mutations. Invest Ophthalmol Vis Sci. 2006. https://doi.org/10.1167/iovs.05-0771.
14. Villani E, Garoli E, Bassotti A, et al. The cornea in classic type ehlers-danlos syndrome: macro- and microstructural changes. Invest Ophthalmol Vis Sci. 2013. https://doi.org/10.1167/iovs.12-8237.
15. Morgan IG, Ohno-Matsui K, Saw S-M. Myopia Lancet. 2012;379(9827):1739–1740. https://doi.org/10.1016/S0140-6736(12)61272-4.
16. McBrien NA, Gentile A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22(3):307–338. https://doi.org/10.1016/S0140-6736(02)00062-6.
17. Norton TT, Rada JA. Reduced extracellular matrix in mammalian sclera with induced myopia. Vis Res. 1995;35(9):1271–1281. https://doi.org/10.1016/0042-6989(95)00099-6.
18. Funata M, Tokoro T. Scleral change in experimentally myopic monkeys. Graefes Arch Clin Exp Ophthalmol. 1999;228(2):174–179. https://doi.org/10.1007/s004170050444.
19. Shinohara K, Yoshida T, Liu H, et al. Establishment of novel therapy to reduce progression of myopia in rats with experimental myopia by fibroblast transplantation on sclera. J Tissue Eng Regen Med. 2018. https://doi.org/10.1002/term.2275.
20. Napolitano T, D’Iorio V, Testa F, et al. Autosomal-dominant myopia associated to a novel P4HA2 missense variant and defective collagen hydroxylation. Clin Genet. 2018;93(5):962–991. https://doi.org/10.1111/cge.13217.
21. Kim TG, Kim W, Chon S, Hyan K, et al. Effects of Scleral Collagen Crosslinking with Different Carbohydrate on Chemical Bond and Ultrastructure of Rabbit Sclera: Future Treatment for Myopia Progression. 2019. https://doi.org/10.1371/journal.pone.0214245.
22. Pavlick MA, Halpern BR. Corneal topographic changes induced by preryg. J Refract Surg. 1995;11(2):92–95.
23. Toda I, Luyken L, Chartier B, Desfoix K, et al. Effects of fibrovascular traction and pooling of tears on corneal topographic changes induced by preryg. Eye. 2003;17:492–496. https://doi.org/10.1038/sj.eye.6700737.
24. Yilmaz S, Yüksel T, Maden A. Corneal topographic changes after four types of priyeg surgery. J Refract Surg. 2008;24(2):160–165. https://doi.org/10.3928/1081597X-20080215-01.
25. Tatar MG, Aylin Kantarcı F, Yıldırım A, et al. Risk factors in post-LASIK corneal ectasia. J Ophthalmol. 2014. https://doi.org/10.1155/2014/204191.
26. Randleman JB, Woodward M, Lynn MJ, Stulting RD. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology. 2008. https://doi.org/10.1016/j.jcoph.2007.03.075.
27. Galgani G, Berra M, Berra A. Keratectasia following laser in situ keratomileusis in a low-risk patient with benign joint hypermobility syndrome. Arg Bras Oftalmol. 2014. https://doi.org/10.1590/S1678-36102014000200002.
28. Mehdizadeh MI, Holladay J, Liu D, Poldini JE, Shin DH, Cowden JW. Corneal topography in Ehlers-Danlos syndrome. J Cataract Refract Surg. 1998. https://doi.org/10.1016/S0886-3350(98)00113-8.
29. Kennedy RH, Bourne WM, Dyer JA. A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol. 1986. https://doi.org/10.3929/ethos.1986.090817.2.