Colored Non-Crossing Euclidean Steiner Forest

Sergey Bereg1 Krzysztof Fleszar2 Philipp Kindermann2
Sergey Pupyrev3,4 Joachim Spoerhase2 Alexander Wolff2

November 7, 2016

Abstract

Given a set of \(k \)-colored points in the plane, we consider the problem of finding \(k \) trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For \(k = 1 \), this is the well-known Euclidean Steiner tree problem. For general \(k \), a \(k\rho \)-approximation algorithm is known, where \(\rho \leq 1.21 \) is the Steiner ratio.

We present a PTAS for \(k = 2 \), a \((5/3 + \varepsilon)\)-approximation algorithm for \(k = 3 \), and two approximation algorithms for general \(k \), with ratios \(O(\sqrt{n} \log k) \) and \(k + \varepsilon \).

1 Introduction

Steiner tree is a fundamental problem in combinatorial optimization. Given an edge-weighted graph and a set of vertices called terminals, the task is to find a minimum-weight subgraph that connects the terminals. For Steiner forest, the terminals are colored, and the desired subgraph must connect, for each color, the terminals of that color.

In this paper, we consider Steiner forest in a geometric setting and add to it the requirement of planarity. More precisely, we consider the problem of computing, for a \(k \)-colored set of points in the plane (which we also call terminals), \(k \) pairwise non-crossing Euclidean Steiner trees, one for each color. Note that such trees exist for every given set of points. We call the problem of minimizing the total length of these trees \(k \)-Colored Non-Crossing Euclidean Steiner Forest (\(k \)-CESF). Figure 1 shows some interesting instances of \(k \)-CESF.

The problem is motivated by a method that Efrat et al. [EHKP14] suggested recently for visualizing embedded and clustered graphs. They visualize clusters by regions in the plane that enclose related graph vertices. Their method attempts to reduce visual clutter and optimize “convexity” of the resulting regions by reducing the amount of “ink” necessary to connect all elements of a cluster. Efrat et al. [EHKP14] proposed the problem \(k \)-CESF and provided a simple \(k\rho \)-approximation algorithm, where \(\rho \) is the Steiner ratio, that is, the supremum, over all finite point sets in the plane, of the ratio of the total edge length of a minimum spanning tree over the total edge length of a Euclidean Steiner tree (EST). Chung and Graham [CG85] showed that \(\rho \leq 1.21 \).

1University of Texas, Dallas, USA.
2Lehrstuhl für Informatik I, Universität Würzburg, Germany.
3Department of Computer Science, University of Arizona, Tucson, Arizona, USA.
4Institute of Mathematics and Computer Science, Ural Federal University, Russia.
Our contribution. The middle column of Table 1 shows our results. For k-CESF, we present a deterministic $(k + \varepsilon)$- and a randomized $O(\sqrt{n \log k})$-approximation algorithm; see Section 2. The main result of our paper is that 2-CESF admits a polynomial-time approximation scheme (PTAS); see Section 3. By a non-trivial modification of the PTAS, we prove that 3-CESF admits a $(5/3 + \varepsilon)$-approximation algorithm; see Section 4.

Our PTAS for 2-CESF uses some ideas of Arora’s algorithm [Aro98] for EST, which is equivalent to 1-CESF. Since, in a solution to 2-CESF, the two trees are not allowed to cross, our approach differs from Arora’s algorithm in several respects. We use a different notion of r-lightness, and by a portal-crossing reduction we achieve that each portal is crossed at most three times. More care is also needed in the perturbation step and in the base case of the dynamic program.

k	k-CESF	planar graph
1	EST: NP-hard [GJ79], $1 + \varepsilon$ [Aro98,Mit99]	ST: NP-hard [GJ79], $1 + \varepsilon$ [BKM09]
2	$1 + \varepsilon$ (Theorem 1)	k const.-size nets on 2 faces, exact [KMN01]
3	$5/3 + \varepsilon$ (Theorem 5)	$O(\sqrt{n \log k})$ (Theorem 3)
general k	$k + \varepsilon$ (Theorem 1)	$O(\sqrt{n \log k})$ (Theorem 3)
$n/2$	NP-hard [BF98]	k size-2 nets on h faces, exact [EN11]
	$O(\sqrt{n \log n})$ [CHKL13]	

Table 1: Known and new results for k-CESF (hardness and approximation ratios).

Related Work. Apart from the result of Efrat et al. [EHKP14], so far the only two variants of k-CESF that have been studied are those with extreme values of k. As mentioned above, 1-CESF is the same as EST, which is NP-hard [GJ79]. Arora [Aro98] and Mitchell [Mit99] showed independently that EST admits a PTAS. The other extreme value of k, for which k-CESF has been considered, is $k = n/2$. This is the problem of joining specified pairs of points via non-crossing curves of minimum total length. Liebling et al. [LMM+95] gave some heuristics for this problem. Bastert and Fekete [BF98] claimed that $(n/2)$-CESF is NP-hard, but their proof has not been formally published. Recently, Chan et al. [CHKL13] considered $(n/2)$-CESF in the context of embedding planar graphs.
at fixed vertex locations. They gave an $O(\sqrt{n \log n})$-approximation algorithm based on an idea of Liebling et al. [LMM95] for computing a short non-crossing tour of all given points.

Several set visualization techniques assume the same setting where the input is a multicolored point set [ARRC11, HKK+13, CPC09, RBvK+08]. These techniques allow regions to cross, while the regions that correspond to (the geodesic hulls of) the trees in our approach are non-crossing. Reinbacher et al. [RBvK+08] consider the problem of computing a minimum-perimeter red polygon inside a given red polygon that contains red and blue points.

There is substantial work on the case where there are obstacles in the plane. Note that, in contrast to k-CESF, a valid solution may not exist in that setting. For a single color (that is, 1-CESF with obstacles), Müller-Hannemann and Tazari [MHT10] give a PTAS. The same variant is considered by Razaghpour [Raz08]. Papadopoulou [Pap99] gave an algorithm for finding minimum-length non-crossing paths joining pairs of points (that is, $n/2$-CESF) on the boundary of a single polygon. Erickson and Nayyeri [EN11] generalize the problem to the case of points on the boundaries of h polygonal obstacles; their algorithm is exponential in h. A practical aspect of the problem—computing non-crossing paths of specified thickness—was studied by Polishchuk and Mitchell [PM07]. Their algorithm computes a representation of the thick paths inside a simple polygon; they also show how to find shortest thick disjoint paths joining endpoints on the boundaries of polygonal obstacles (with exponential dependence on the number of obstacles). They also prove that the problem is hard to approximate. The main difficulty with multiple obstacles is deciding which homotopy class of the paths gives the minimum length. If the homotopy class of the paths is specified, then the problem is significantly easier [Bes03, EKL06, Ver13].

The graph version of the problem has been studied in the context of VLSI design.

Given an edge-weighted plane graph G and a family of k vertex sets (called nets), the goal is to find a set of k non-crossing Steiner trees interconnecting the nets such that the total weight is minimized. The problem is clearly NP-hard, as the special case $k = 1$ is the graph Steiner tree problem (ST), which is known to be NP-hard [GJ79]. ST admits a PTAS [BKM09]. On planar graphs, k-CESF can be solved in $O(2^{O(h^2)}n \log k)$ time [EN11] for k terminal pairs (that is, size-2 nets) if all terminals lie on h faces of the given n-vertex graph and in $O(n \log n)$ time for $h = 2$ and k constant-size nets [KMN01]. We list these results in Table 1; many entries are still open.

A restricted version of the problem in which all nets consist of exactly two terminals (that is, $k = n/2$) was considered by Takahashi et al. [TSN96]. They show that, if G satisfies the so-called 2-face condition, that is, if all terminals lie on at most two of the face boundaries of G, then such a set of k non-crossing paths can be found in time $O(n \log n)$. Subsequently, Kusakari et al. [KMN01] extended this result by providing an optimal $O(n \log n)$-time algorithm for the variant without the two-terminal restriction (but still requiring the 2-face condition). The general case, where terminals lie on at most h face boundaries, was studied by Erickson and Nayyeri [EN11]. They presented an algorithm that connects the given k terminal pairs by non-crossing paths of minimum total length in $O(2^{O(h^2)}n \log k)$ time. The complexity of the problem on planar graphs for arbitrary $h > 2$ seems to be open.

In the group Steiner tree problem, one is given a k-colored point set and the task is to find a minimum-length tree that connects at least one point of each color. The problem is discussed in a survey by Mitchell [Mit00]. Another related problem is that of constructing a minimum-length non-crossing path through a given sequence of points in the plane. Its complexity status remains open [PM05, Lof11].
2 Algorithms for k-CESF

Despite its simple formulation, the k-CESF problem seems to be rather difficult. There are instances where the optimum contains no straight-line edges or contains paths with repeated line segments; see Figures 1a and 1b. This shows that obvious greedy algorithms fail to find an optimal solution, as Liebling et al. [LMM+95] observed. They also provided an instance of the problem in a unit square for $k = n/2$ in which the length of an optimal solution is in $\Omega(n \sqrt{n})$, whereas the trivial lower bound (the sum of lengths of straight-line segments connecting the pairs of terminals) is only $O(n)$. The example is based on the existence of expander graphs with a quadratic number of edge crossings. In Figure 1c, we provide an example in which the length of one of the curves in the optimal solution can be arbitrarily bigger than the trivial lower bound for the corresponding color.

Efrat et al. [EHKP14] suggested an approximation algorithm for k-CESF. The key ingredient of their algorithm is the following observation, which shows how to make a pair of given trees non-crossing: reroute one of the trees using a “shell” around the other tree. For any geometric graph G, we denote its total edge length by $|G|$.

Lemma 1 (Efrat et al. [EHKP14]). Let R and B be two trees in the plane spanning red and blue terminals, respectively. Then, there exists a tree R' spanning the red terminals such that

(i) R' and B are non-crossing and

(ii) $|R'| \leq |R| + 2|B|.

Efrat et al. [EHKP14] start with k (possibly intersecting) minimum spanning trees, one for each color. Then, they iteratively go through these trees in order of increasing length. In every step, they reroute the next tree by laying a shell around the current solution as in Lemma 1. Their algorithm has approximation factor $k\rho$. We now show that the algorithm even yields approximation factor $k + \varepsilon$ if we use a PTAS for EST for the initial solution to each color.

Theorem 1. For every $\varepsilon > 0$, there is a $(k + \varepsilon)$-approximation algorithm for k-CESF.

Proof. Fix an optimal solution T. For $i = 1, \ldots, k$, let T_i be the length of the Steiner tree spanning color i in T. Hence, $\text{OPT} = \sum_{i=1}^{k} T_i$. For each color i, use a PTAS to compute a Steiner tree of length $P_i \leq (1 + \varepsilon)T_i$. Now, consider the trees one by one in non-decreasing order of their lengths. W.l.o.g., assume that $P_1 \leq \ldots \leq P_k$.

Denote by S_i the length of the Steiner tree spanning color i in our solution S. Then Lemma 1 yields $S_1 = P_1$ and $S_2 \leq P_2 + 2P_1$. For the i-th tree, we add a shell around every tree $j < i$. Observe that the tree and the shell give us a Steiner tree for i that does not intersect any tree built in step $j < i$. Thus, we get $S_i \leq P_i + \sum_{j=1}^{i-1} 2P_j$ and $|S| = \sum_{i=1}^{k} (P_i + \sum_{j=1}^{i-1} 2P_j)$. Let $\overline{P} = (\sum_{i=1}^{k} P_i)/k$ be the average length of the Steiner trees. Since the Steiner trees P_i are ordered by non-decreasing lengths, it holds for all i that $\sum_{j=1}^{i} P_j \leq i \cdot \overline{P}$. This yields

$$S_i = P_i + \sum_{j=1}^{i-1} 2P_j = \sum_{j=1}^{i-1} P_j + \sum_{j=1}^{i} P_j \leq (2i - 1)\overline{P},$$

which sums up to

$$|S| \leq \sum_{i=1}^{k} (2i - 1)\overline{P} = k^2 \cdot \overline{P},$$

which completes the proof.
Since $k \cdot \mathcal{P} = \sum_i P_i \leq (1 + \varepsilon) \text{OPT}$, we have $\mathcal{P} \leq (1 + \varepsilon) \text{OPT} / k$. Hence, the total length of our solution is

$$|S| \leq k^2 \cdot \mathcal{P} \leq (1 + \varepsilon) k \text{OPT}.$$ \hfill \(\square\)

For even k, we can slightly improve on this by using our PTAS for 2-CESF (Theorem 1).

Theorem 2. For every $\varepsilon > 0$, there is a $(k - 1 + \varepsilon)$-approximation algorithm for k-CESF if k is even.

Proof. Fix an optimal solution \mathcal{T}. For $1 \leq i \leq k$, let P_i be the set of terminals of color i. Call the terminals in $Q_1 = \bigcup_{i=1}^{k/2} P_i$ red and those in $Q_2 = \bigcup_{j=1+k/2}^{k} P_j$ blue. Let \mathcal{T}^* be an optimal solution to the resulting 2-CESF instance I^*. Obviously, $|\mathcal{T}^*| \leq |\mathcal{T}|$.

We use the PTAS for 2-CESF of Theorem 1 to compute a solution \mathcal{S}^* to I^* with $|\mathcal{S}^*| \leq (1 + \varepsilon')|\mathcal{T}^*|$, where $\varepsilon' = \varepsilon / (k - 1)$. In general, \mathcal{S}^* is not a valid solution to I. Let S_1 and S_2 be the trees connecting Q_1 and Q_2 in \mathcal{S}^*, respectively. We now create, for $1 \leq i \leq k/2$, a tree R_i connecting the terminals in P_i, as follows. Let R_1 be the smallest subtree of S_1 spanning the terminals in P_1. Thus, $|R_1| \leq |S_1|$. Then, we create R_2 by laying a shell around R_1 that goes through all terminals in P_2. Note that, R_2 still contains a cycle that has R_1 in its interior. We iteratively create R_i, $3 \leq i \leq k/2$, by laying a shell around the outer boundary of R_{i-1} that goes through all terminals in P_i. Finally, we cut the cycles of $R_{2}, \ldots, R_{k/2}$ at some point to create trees. Since each of these trees consists of a shell around S_1, it holds that $|R_i| \leq 2 |S_1|$, $2 \leq i \leq k/2$. Analogously, we compute $R_{1+k/2}, \ldots, R_k$ with $|R_{1+k/2}| \leq |S_2|$ and $|R_j| \leq 2 |S_2|$ for $2 + k/2 \leq j \leq k$.

Our solution \mathcal{R} to I consists of R_1, \ldots, R_k; its total length is

$$|\mathcal{R}| = |R_1| + \sum_{i=2}^{k/2} |R_i| + |R_{1+k/2}| + \sum_{j=2+k/2}^{k} |R_j|$$

$$\leq |S_1| + (k/2 - 1) \cdot 2 |S_1| + |S_2| + (k/2 - 1) \cdot 2 |S_2|$$

$$= (k - 1) |S_1| + (k - 1) |S_2| = (k - 1) |\mathcal{S}^*|$$

$$\leq (k - 1) (1 + \varepsilon') |\mathcal{T}^*| \leq (k - 1 + (k - 1) \varepsilon') |\mathcal{T}|$$

Next, we present an approximation algorithm for k-CESF whose ratio depends only logarithmically on k, but also depends on \sqrt{n}. The algorithm employs a space-filling curve through a set of given points. The curve was utilized in a heuristic for $(n/2)$-CESF by Liebling et al. [LMM+95]. Recently, Chan et al. [CHKL13] showed that the approach yields an $O(\sqrt{n} \log n)$-approximation for $(n/2)$-CESF. We show that similar arguments yield approximation ratio $O(\sqrt{n} \log k)$ for general k.

Theorem 3. k-CESF admits a (randomized) $O(\sqrt{n} \log k)$-approximation algorithm.

Proof. Chan et al. [CHKL13] gave a randomized algorithm to construct a curve C through the given set P of n points. Their curve has small stretch, that is, the ratio between the Euclidean distance $d(p, q)$ of two points $p, q \in P$ and their distance $d_C(p, q)$ along the curve is small. Assuming that the points are scaled to lie in a unit square, Chan et al. showed, for a fixed pair of points $p, q \in P$,

$$\mathbb{E}[d_C(p, q)] \leq O(\sqrt{n} \log(\frac{1}{d(p, q)})) \cdot d(p, q).$$

5
Figure 2: (a) A low-stretch curve C through the terminals; (b) a 3-CESF solution to the instance created by wrapping paths around C.

Using C, we construct a solution to k-CESF so that, for every color, the terminals are visited in the order given by the curve; and thus, the solution to every color is a path. All paths can be wrapped around the curve without intersecting each other; see Figure 2.

If the order of the points along the curve for a specific color i is $p_{i1}^i, \ldots, p_{in_i}^i$, then the length of the corresponding path is

$$\sum_{j=1}^{n_i-1} d_C(p_{ij}^i, p_{ij+1}^i) = d_C(p_{i1}^i, p_{in_i}^i).$$

Let $\bar{d} = \sum_{i=1}^k d(p_{i1}^i, p_{in_i}^i)/k$. The total (expected) length of the solution is

$$\text{ALG} = \sum_{i=1}^k \mathbb{E}[d_C(p_{i1}^i, p_{in_i}^i)] \leq \sum_{i=1}^k O(\sqrt{n} \log(1/d(p_{i1}^i, p_{in_i}^i))) \cdot d(p_{i1}^i, p_{in_i}^i) \leq \sum_{i=1}^k O(\sqrt{n} \log(1/\bar{d})) \cdot \bar{d}.$$

Since the optimal solution to P connects all pairs of terminals of the same color (possibly using non-straight-line curves), $\text{OPT} \geq \sum_{i=1}^k d(p_{i1}^i, p_{in_i}^i) = k\bar{d}$. Hence,

$$\text{ALG} \leq \sum_{i=1}^k O(\sqrt{n} \log(k/\text{OPT})) \cdot \text{OPT}/k \leq O(\sqrt{n} \log k) \cdot \text{OPT}. \quad \Box$$

3 PTAS for 2-CESF

In this section, we show that 2-CESF admits a PTAS. We follow the Arora’s approach for computing EST [Aro98], which consists of the following steps. First, Arora performs a recursive geometric partitioning of the plane using a quadtree and snaps the input points to the corners of the tree. Next, he defines an r-light solution, which is allowed to cross an edge of a square in the quadtree at most r times and only at so-called portals. Then he builds an optimal portal-respecting solution using dynamic programming, and finally trims the edges of the solution to get the result. To get an algorithm for 2-CESF, we modify these steps as follows:

(i) The perturbation step, which snaps the terminal to a grid, is modified to avoid crossings between trees. Similarly, the reverse step transforming a perturbed instance to an original one is different; see Lemmas [2] and [3].
(ii) We use a different notion of an \(r \)-light solution in which every portal is crossed at most \(r \) times. We devise a portal-crossing reduction that reduces the number of crossings to \(r = 3 \); see Lemma 5.

(iii) The base case of dynamic programming needs a special modification; it computes a set of crossing-free Steiner trees of minimum total length (see Lemma 6).

We assume that the bounding rectangles of the two sets of input terminals overlap; otherwise, we can use a PTAS for the Steiner tree of each input set individually. We first snap the instance to an \((L \times L)\)-grid with \(L = O(n) \). We proceed as follows. Let \(L_0 \) be the diameter of the smallest bounding box of the given 2-CESF instance. We place an \((L \times L)\)-grid of granularity \(g = L_0/L \) inside the bounding box. By scaling the instance appropriately, we can assume that the granularity is \(g = 1 \). We move each terminal of one color to the nearest grid point in an even row and column, and each terminal of the other color to the nearest grid points in an odd row and column. Thus, the grid point for each terminal is uniquely defined, and no terminals of different color end up at the same location. If there are more terminals of the same color on a grid point, we remove all but one of them. We call the resulting instance a perturbed instance.

Lemma 2. Let \(\text{OPT}_I \) be the length of an optimal solution to a 2-CESF instance \(I \) of \(n \) terminals and let \(\varepsilon > 0 \). There is an \((L \times L)\)-grid with \(L = O(n/\varepsilon) \) such that \(\text{OPT}_{I^*} \leq (1 + \varepsilon) \text{OPT}_I \), where \(\text{OPT}_{I^*} \) is the length of an optimal solution for the perturbed instance \(I^* \).

Proof. Choose \(L \) to be a power of 2 within the interval \([3\sqrt{2}n/\varepsilon, 6\sqrt{2}n/\varepsilon]\) and perturb the instance as described above. Consider an optimal solution to \(I \) and connect each terminal of \(I^* \) to the tree of its respective color. For every terminal of \(I^* \), proceed as follows: Connect the terminal to the closest point of the same color lying on the optimal solution. If this line segment crosses the tree of the other color, then reroute this tree around the line segment by using two copies of the line segment. Two copies suffice even if the other tree is crossed more than once since all crossing edges can be connected to the two new line segments. The distance between the terminal and the tree is at most the distance between the terminal and the corresponding terminal in \(I \), which is bounded by \(\sqrt{2} \) as we are assuming the unit grid. Hence, we pay at most \(3\sqrt{2} \) for connecting the terminal. Since the bounding rectangles of the input terminals overlap, \(\text{OPT}_I \geq L \). Thus, the additional length of an optimal solution to \(I^* \) is

\[
\text{OPT}_{I^*} - \text{OPT}_I \leq 3\sqrt{2}n \leq \varepsilon \cdot \text{OPT}_I.
\]

The next lemma, proven analogously to Lemma 2, shows that we can transform a solution to the perturbed instance into one to the original instance.

Lemma 3. Given a solution \(T \) to the perturbed instance as defined in Lemma 2, we can transform \(T \) into a solution to the original instance, increasing its length by at most \(\varepsilon \cdot \text{OPT}_I \).

In the following, we assume that the instance is perturbed. We place a quadtree in dependence of two integers \(a, b \in [0, \ldots, L - 1] \) that we choose independently uniformly at random. We place the origin of the coordinate system on the bottom left corner of the bounding box of our instance. Then we take a box \(B \) whose width and height is twice the width and height of the bounding box. We place it such that its bottom left corner has coordinates \((-a, -b)\). Note that the bounding box is inside \(B \). We extend the \((L \times L)\)-grid to cover \(B \). Thus, we have an \((L' \times L')\)-grid with \(L' = 2L \).

Then we partition \(B \) with a quadtree along the \((L' \times L')\)-grid. The partition is stopped when the current quadtree box coincides with a grid cell. We define the level of a quadtree
square to be its depth in the quadtree. Thus, B has level 0, whereas the level of a leaf is bounded by $\log L' = \log(2L) = O(\log n)$. Then, for each grid line ℓ, we define its level as the highest (that is, of minimum value) level of all the quadtree squares that touch ℓ (but which are not crossed by it).

Let $m = \lceil 4 \log L'/\varepsilon \rceil$. On each grid line ℓ of level i, we place $2^i \cdot m$ equally spaced points. We call these points portals. Thus, each square contains at most m portals on each of its edges. A solution that crosses the grid lines only at portals is called portal-respecting. We show that there is a close-to-optimal portal-respecting solution. Note that, in contrast to Arora, we first make the solution portal-respecting before reducing the number of crossings on each grid line. The proof of the following lemma is similar to the Arora’s prove.

Lemma 4. Let OPT_I be the length of an optimal solution to a 2-CESF instance I, and let $\varepsilon > 0$ be the same as defined for m. There exists a position of the quadtree and a portal-respecting solution to I of length at most $(1 + \varepsilon) \text{OPT}_I$.

Proof. Fix an optimal solution T. Move all crossings on the grid lines to the closest portals by adding a line segment on each side of the grid. Note that the modified solution remains crossing-free.

Consider a grid line ℓ that has a non-empty intersection with the bounding box B. Let $t(\ell)$ be the number of crossing points between ℓ and T. If i is the level of ℓ, then the inter-portal distance on ℓ is $L'/2^i \cdot m$. Since the position of the quadtree has been chosen uniformly at random, the probability that the level of ℓ is i is at most $2^i L'/m \leq \varepsilon$. Thus, the expected length increase of T due to moving the crossings to the portals of ℓ is at most $\sum_{i=1}^{\log L'} 2^i \cdot t(\ell) \cdot \frac{L'}{2^i \cdot m} \leq \frac{t(\ell) \log L'}{m} \leq \frac{\varepsilon t(\ell)}{4}$, where the last inequality follows from $m \geq 4 \log L'/\varepsilon$. Thus, the expected total length increase is at most $(\varepsilon/4) \sum_{\text{gridline } \ell} t(\ell)$.

It holds that $\sum_{\text{gridline } \ell} t(\ell) \leq 4 \text{OPT}$. To see this, consider any line segment of the solution. Let l be the length of the line segment. Given the granularity $g = 1$ of the grid, the line segment crosses at most $l + 1$ horizontal grid lines and at most $l + 1$ vertical grid lines; hence, its contribution to the left-hand side of the equation is at most $4 \cdot l$.

Thus, we have shown that the expected length increase is at most εOPT. But then, there exists a position of the quadtree for which the total length increase is bounded by εOPT. We can try out all positions of the quadtree which increases the total running time by the factor of $O(n^2)$.

The last ingredient for our dynamic programming is to reduce the number of crossings in every portal. We call a solution r-light if each portal is crossed at most r times. (Note that we use a different definition than Arora. He defined a solution to be r-light if a grid line is crossed at most r times.)

In the following, we explain an operation which we call a portal-crossing reduction. We are given a portal-respecting solution consisting of two Steiner trees R and B (red and blue) and we want to reduce (that is, modify without increasing its length) it such that R and B pass through each portal at most three times in total.

Lemma 5. Every portal-respecting solution of 2-CESF can be transformed into a 3-light portal-respecting solution without increasing its length.
Proof. Consider a sequence of passes through a portal. We assume that there are no terminals in the portals. If two adjacent passes belong to the same tree, then we can eliminate one of them by snapping it to the other one. Note that this may create cycles, but they can be broken by removing the longest part of each cycle. Therefore, we can assume that the passes form an alternating sequence. It suffices to show that any alternating sequence of four passes can be reduced to two passes by shortening the trees. Let $a, b, c,$ and d be such a sequence as shown in Figure 3a. We cut the passes b and c. This results in two connected components in each tree. W.l.o.g., a and the upper part of c belong to the same connected component; see Figure 3b. Otherwise, we can change the colors because (i) a and the lower part of c are connected, and (ii) the upper part of b and d are connected.

Since R and B are disjoint, d and the lower part of b are in the same connected component; see Figure 3c. Then, we connect the component as shown in Figure 3d and shorten the trees (e.g., the lower part of b can be reduced to a terminal of R). Note that the passes a and d remain in the solution, while the passes b and c are eliminated. We repeat the procedure for the remaining passes, until there are at most three passes left. The length of the solution does not increase because the portal has zero width.

With the next Lemma 6 we show how to find a close-to-optimal 3-light portal-respecting solution to the perturbed instance. We assume that an appropriate quadtree (as defined in Lemma 4) is given.

Lemma 6. Let I be an instance of 2-CESF with n terminals, and OPT_I be the length of an optimal 3-light portal-respecting solution to I. For every $\varepsilon > 0$, there is an algorithm finding a solution to I of length at most $(1 + \varepsilon) \text{OPT}_I$ in time $O(n^{O(1/\varepsilon)})$ using $O(n^{O(1/\varepsilon)})$ space.

Proof. We use dynamic programming with a subproblem consisting of

(a) a square of the quadtree,

(b) a sequence of up to three red and blue points on each portal on the border of the square, and

(c) a non-crossing partition of these points into sets of the same color.

A partition of these points is non-crossing if for no four points a, b, c, d, occurring in that order on the boundary of the square, it holds that a and c belong to one set of the partition, and b and d to another one. The goal is to find an optimal collection of crossing-free red and blue Steiner trees, such that each set of the partition and each terminal inside the square is contained in a tree of the same color.

The base case of dynamic programming is a unit square, which is either empty or contains terminals only at corners of the square. If the square is empty, we consider each set of the partition as an instance of 1-CESF and solve it by the PTAS for EST [Aro98].
For each point set, we force its Steiner tree to lie inside its convex hull, by projecting any part of the solution outside the convex hull to its border. Since the partition is non-crossing, the convex hulls of its point sets are pairwise disjoint. Therefore, the Steiner trees and their union is also a close-to-optimal solution to the base case. If the square contains (constantly many) terminals at the corners, these terminals are treated in the same way as portals.

For composite squares in the quadtree, we proceed as follows. For the four squares that subdivide the composite square, we consider all combinations of all possible sequences and partitions that match together and match the subproblem. In dynamic programming, we already have computed a close-to-optimal solution to every choice of sequence and partition of each of the four squares; taking the best combination gives a close-to-optimal solution.

The size of the dynamic programming table is proportional to the number of subproblems, that is, \(n^2 \times (b) \times (c) \). There are \(O(n^2) \) squares in the quadtree in total. Each square contains \(O(\log n/\epsilon) \) portals. For each portal, there is a constant number of possible sequences of up to three colored points. Thus, there are \(2^{O(\log n/\epsilon)} = n^{O(1/\epsilon)} \) possible sequences. Since the number of non-crossing partitions of a set of \(k \) elements is the \(k \)-th Catalan number \(C_k \), we have \(C_{O(\log n/\epsilon)} < 2^{O(\log n/\epsilon)} = n^{O(1/\epsilon)} \) possible partitions. In total, we consider \(n^{O(1/\epsilon)} \) subproblems in the dynamic programming.

The running time to solve the base case is polynomial in \(m = O(\log n/\epsilon) \). The running time to handle a composite square is polynomial in \((n^{O(1/\epsilon)})^4 \), which is \(n^{O(1/\epsilon)} \). Thus, the total running time is bounded by \(n^{O(1/\epsilon)} \).

Now we prove the main result of the section.

Theorem 4. 2-CESF admits a PTAS.

Proof. Consider an instance \(I \) of 2-CESF, let OPT be the length of the optimum, and choose \(\epsilon > 0 \). By Lemmas 2, 4 and 5, the length, \(\text{OPT}' \), of an optimal 3-light portal-respecting solution to the perturbed version of \(I \) is at most \((1 + \epsilon)\OPT\). Using Lemma 6, we find a 3-light portal-respecting solution to the perturbed instance of length at most

\[
(1 + \epsilon)\OPT' \leq (1 + \epsilon)(1 + \epsilon)\OPT.
\]

By Lemma 8 we transform the solution into a solution to \(I \) by increasing its length by at most \(\epsilon \cdot \OPT \). Therefore, for every \(\epsilon' > 0 \), we can construct a solution to \(I \) of length

\[
(1 + \epsilon)(1 + \epsilon)\OPT + \epsilon \cdot \OPT \leq (1 + \epsilon')\OPT
\]

by choosing \(\epsilon > 0 \) appropriately.

\(\square \)

4 Algorithm for 3-CESF

The approach for 2-CESF described in Section 3 cannot be directly applied to 3-CESF since optimal trees may need to pass portals many times. For example, the three paths crossing the portal in Fig. 4 are difficult because we cannot locally reroute to make them \(O(1) \)-light as in Lemma 5.

Instead, we now improve the approximation ratio of \(3 + \epsilon \) (from Theorem 1) to \(5/3 + \epsilon \). We re-use some ideas of the approach for 2-CESF.

To this end, take an optimal solution \(T \) for 3-CESF. The terminals are red, green, and blue; we call the corresponding trees \(R, G, \) and \(B \). We assume that \(B \) is the cheapest among the three trees. Now, we construct a quadtree partitioning the plane and
choose the portals, for a given \(\varepsilon \), as described in Section 3. We then make the solution portal-respecting, which results in a solution \(T^* \) consisting of trees \(R^* \), \(G^* \), and \(B^* \). In expectation, this increases the length of each of the trees (and hence, of \(T \)) by a factor of at most \(1 + \varepsilon \).

First, we show that we need few portal passes if the blue and the green tree do not meet at any portal, that is, no blue and green passes are adjacent.

Lemma 7. Consider a portal-respecting solution \(T^* \) to 3-CESF consisting of trees \(R^* \), \(G^* \), \(B^* \). If \(B^* \) and \(G^* \) do not meet at any portal, then \(T^* \) can be transformed into a 7-light portal-respecting solution.

Proof. Apply the portal-crossing reduction from Lemma 5 and consider a portal. Recall that, after this operation, there are no \(rbrb \) and \(rgrg \) subsequences in the passes of the portal. Here, \(r \), \(b \), and \(g \) correspond to the passes of the trees \(R^* \), \(B^* \), and \(G^* \), respectively. If the portal has only one blue or one green pass, then the solution is already 7-light at the portal (with the longest possible sequences \(rgrbrgr \) and \(rbrgrbr \), respectively). Otherwise, it contains at least two blue and at least two green passes. Notice that the sequence of passes must be \(r \)-alternate, that is, of the form \(\ldots r \circ r \circ r \ldots \) since blue and green do not meet. Thus, a sequence of more than 7 passes must contain a subsequence \(grbrgrb \) (or a symmetric one, \(brgrbrg \)). These subsequences are reducible. See Figure 6 for one of the possible cases, the other cases are analogous.

Now, we show that \(T^* \) can be transformed into a 10-light portal-respecting solution \(T' \) of length at most \(|R^*| + |G^*| + 3|B^*| \).

Lemma 8. A portal-respecting solution \(T^* \) to 3-CESF, consisting of trees \(B^* \), \(R^* \), and \(G^* \), can be transformed into a portal-respecting solution \(T' \) such that

(i) \(T' \) passes at most 10 times through each portal, and

(ii) \(|T'| \leq |R^*| + |G^*| + 3|B^*| \).

Proof. We define a BG-solution; informally, this is a solution in which we are allowed to connect green branches to the blue tree. Formally, a BG-solution is a set of three non-intersecting curves spanning the terminals of the corresponding color such that the blue and the red curves are connected (that is, they are trees) and every green component is attached to the blue tree. Note that, in general, a BG-solution is not a valid 3-CESF solution. We prove the lemma in two steps. First, we show that \(T \) can be transformed to a portal-respecting BG-solution \(T^{BG} \) with at most 6 passes per portal having the same (or smaller) length. Then, we show how \(T^{BG} \) can be further modified to get a portal-respecting solution \(T^* \) with at most 10 passes per portal and the desired length.

In order to construct \(T^{BG} \) from \(T^* \), we first replace, as in Lemma 5, all uni-colored sequences of passes (that is, consisting of passes of the same color) in a portal by a single
pass, and all bi-colored sequences of passes by at most 3 passes. We call this procedure the initial reduction. Consequently, uni-colored and bi-colored portals have at most 3 passes; hence, we focus on the portals containing passes of all three colors.

We can assume that there is a portal in which a blue and a green pass are adjacent (otherwise, we already have a 7-light instance by Lemma 7). We eliminate the green pass by connecting it to its neighboring blue pass; see Figure 5b. We thus may consider the blue and the green tree to be connected and together to form a blue-green tree. Its length is $|B^\ast| + |G^\ast|$. After this step, the sequence of passes is R-alternate.

Consider now a tri-colored portal in T after the initial reduction. Let (p_1, \ldots, p_m) be a sequence of passes through the portal and suppose that pass p_i ($1 \leq i \leq m$) is the leftmost blue pass; see Figure 5a. Split the sequence into two subsequences $s_l = (p_1, \ldots, p_{i-1})$ and $s_r = (p_i, \ldots, p_m)$. Since p_i is the leftmost blue pass, s_l is bi-colored and, by the initial reduction, $|s_l| \leq 3$. Regarding s_r, we apply the portal-crossing reduction according to Lemma 5 by viewing the blue and the green passes as passes of a single blue-green tree; see Figure 5c. As a result, we get a new instance s'_r with $|s'_r| \leq 3$. Recall that, before this step, the blue and the green tree are connected; thus, every blue and green pass is connected to the left-most pass p_i. Further, after disconnecting a blue pass in the proof of Lemma 5, one part remains connected to p_i by a blue path, and the other part gets connected to p_i by a blue segment. For the green passes, one part remains connected to p_i, while the other part gets connected to p_i by a green segment. Since the blue segments where connected before this step, the blue tree remains connected after the portal-crossing reduction. The green tree is split into subtrees that are connected to the blue tree. Therefore, the new instance is a BG-solution. The sequence of passes in the portal for T^{BG} is a concatenation of s_l and s'_r and, hence, has at most 6 passes per portal.

Note that the constructed solution T^{BG} has at most 2 blue passes per portal. We add a green shell to B to connect green branches. This increases the number of passes per portal by at most 4. The resulting solution T^\ast has length bounded by $|R^\ast| + |G^\ast| + 3|B^\ast|$ and at most 10 passes per portal. □

Before we describe our approximation algorithm, we first need to discuss the perturba-

\begin{figure}[h]
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{a.png}
\caption{a tri-colored portal after the initial reduction}
\end{subfigure}\hfill
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{b.png}
\caption{eliminating the green passes that meet a blue pass}
\end{subfigure}\hfill
\begin{subfigure}{0.3\textwidth}
\centering
\includegraphics[width=\textwidth]{c.png}
\caption{applying the portal reduction to s_l and s_r}
\end{subfigure}
\caption{Construction of a BG-solution to a portal.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{6.png}
\caption{Constructing a 7-light solution to an instance without adjacent blue-green passes (one of several possible cases).}
\end{figure}
The perturbation itself is the same as in Section 3; we move each terminal to a uniquely defined closest grid point (we assign the grid points of even row and odd column to the third color) and merge terminals of the same color to one terminal. However, we need a different technique to transform a solution to the original instance into a solution to the perturbed instance and vice versa.

Lemma 9. Let I be a 3-CESF instance with n terminals, let OPT_I be the length of an optimal solution to I, and let $\varepsilon > 0$. Then, we can place an $(L \times L)$-grid with $L = O(n/\varepsilon)$ such that, for the perturbed instance I^* of I, $OPT_{I^*} \leq (1 + \varepsilon)OPT_I$.

Proof. We proceed similar to the proof of Lemma 2 by connecting each terminal of I^* to the nearest point of its corresponding tree. Since this connection can cross segments of two colors, we have to be more careful with the rerouting. We choose L as a power of 2 within the interval $[7\sqrt{2n}/\varepsilon, 14\sqrt{2n}/\varepsilon]$.

Fix an optimal solution to I. Consider a terminal v of I^* of, say, green color. Connect it to the nearest point of the green tree by a straight-line segment s. Note that the length $|s|$ of this segment is bounded by the distance of v to its corresponding terminal in I, which is at most $\sqrt{2}$ as we are assuming a unit grid.

Assume that s intersects σ red or blue segments. We order the segments by non-increasing distance between v and their intersection point with s; see Figure 7 for an example. We reroute the first three segments along s going around v. This yields a 3-layer shell around v. Consider the next segment according to the ordering and reroute it along s and around v. We can view the crossing point of this segment with the shell as a portal on one side of s. This portal contains four bi-colored passes. Using Lemma 3 we reduce the number of passes to at most three. Now, we stretch this portal around v along s until it reaches the crossing point on the other side of s. Since the portal has at most three passes, the shell around v still consists of three layers. We repeat this until all segments are rerouted around v.

By using this rerouting for every terminal in I^*, the total length of the solution increases by at most $(\sqrt{2} + 6 \cdot \sqrt{2})n = 7\sqrt{2}n$. Since $OPT_I \geq L$, the length of an optimal solution to I^* is at most

$$OPT_I + 7\sqrt{2}n \leq (1 + \varepsilon)OPT_I.$$

Analogously to the proof of Lemma 9, we transform a solution to a perturbed instance back into one to the original instance not increasing the length by much. Then, we combine the lemmas to prove the main result of this section.

Lemma 10. We can transform a solution T to the perturbed instance I^* into a solution to the original instance I, increasing the length by at most εOPT_I.

Proof. Iteratively connect each terminal of the original instance to the solution T analogously to the proof of Lemma 9. Again, we pay at most 14 units per terminal, which yields the claim.

Using Lemmas 8, 9 and 10, we are now ready to prove the main result of this section.

Theorem 5. For every $\varepsilon > 0$, 3-CESF admits a $(5/3 + \varepsilon)$-approximation algorithm.

Proof. Let $\varepsilon' = \sqrt{\frac{1}{3} + 3\varepsilon/5} - 1$. Let T be an optimal solution to a 3-CESF instance I with trees R, G and B. W.l.o.g., assume that $|B| \leq |R| + |G|$. Denote by $OPT_T = |R| + |G| + |B|$ the length of T. We first construct a portal-respecting solution T^* of length

$$|T^*| = |R^*| + |G^*| + |B^*| \leq (1 + \varepsilon')(|R| + |G| + |B|).$$
Figure 7: An example for the rerouting in the proof of Lemma 9.
Then, Lemma 8 yields an optimal 10-light portal-respecting solution \(T' \) of length
\[
|T'| \leq |R^*| + |G^*| + 3|B^*| \leq 5/3 \cdot |T^*| \leq 5/3 \cdot (1 + \varepsilon') \cdot (|R| + |G| + |B|) = 5/3 \cdot (1 + \varepsilon') \cdot \text{OPT}_I.
\]

Using a dynamic program similar to the one described in Section 3 and Lemma 9, we find a 10-light portal-respecting solution of length \((1 + \varepsilon')|T'|\) to the perturbed instance \(I^* \) of \(I \). By Lemma 10 we can transform our solution to \(I^* \) into a solution to \(I \) whose total length is bounded by
\[
(1 + \varepsilon')^2|T'| \leq 5/3(1 + \varepsilon')^3 \text{OPT}_I < (5/3 + \varepsilon) \text{OPT}_I.
\]

5 Conclusion

We have presented approximation algorithms for \(k \)-CESF. We leave the following questions open. For \(k = 2 \), we achieved a PTAS, for \(k = 3 \), a ratio of \(5/3 + \varepsilon \), and for general \(k \), ratios \(k + \varepsilon \) and \(O(\sqrt{n} \log k) \).

Apart from improving approximation algorithms for \(k \)-CESF with \(k \geq 3 \), a number of interesting questions remain open. Is \(k \)-CESF APX-hard for some \(k \geq 3 \)? Can we improve the running time of the PTAS for 2-CESF from \(O(n^{O(1/\varepsilon)}) \) to \(O(n(\log n)^{O(1/\varepsilon)}) \) as Arora \cite{Arora98} did for EST?

Currently, we are studying an “anchored” version of \(k \)-CESF where the only allowed Steiner points are input points of a different color. Any \(\alpha \)-approximation for \(k \)-CESF yields an \(\alpha(1 + \sqrt{3})/2 \)- approximation for the anchored version.

Acknowledgments. We are grateful to Alon Efrat, Jackson Toeniskoetter, and Thomas van Dijk for the initial discussion of the problem.

References

\[\text{[Aro98]}\] Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. \textit{J. ACM}, 45(5):753–782, 1998.

\[\text{[ARRC11]}\] Basak Alper, Nathalie Henry Riche, Gonzalo Ramos, and Mary Czerwinski. Design study of LineSets, a novel set visualization technique. \textit{IEEE Trans. Vis. Comput. Graphics}, 17(12):2259–2267, 2011.

\[\text{[Bes03]}\] Sergey Bespamyatnikh. Computing homotopic shortest paths in the plane. \textit{J. Algorithms}, 49(2):284–303, 2003.

\[\text{[BF98]}\] Oliver Bastert and Sandor P. Fekete. Geometric wire routing. Technical Report 96.247, Universität zu Köln, 1998. Available at http://e-archive.informatik.uni-koeln.de/247.

\[\text{[BKM09]}\] Glencora Borradaile, Philip Klein, and Claire Mathieu. An \(O(n \log n) \) approximation scheme for Steiner tree in planar graphs. \textit{ACM Trans. Algorithms}, 5(3):31, 2009.

\[\text{[CG85]}\] F. R. K. Chung and R. L. Graham. A new bound for Euclidean Steiner minimal trees. \textit{Annals New York Acad. Sci.}, 440(1):328–346, 1985.
[CHKL13] Timothy M. Chan, Hella-Franziska Hoffmann, Stephen Kiazyk, and Anna Lubiw. Minimum length embedding of planar graphs at fixed vertex locations. In Stephen Wismath and Alexander Wolff, editors, Graph Drawing (GD’13), volume 8242 of LNCS, pages 376–387. Springer, Heidelberg, 2013.

[CPC09] Christopher Collins, Gerald Penn, and Sheelagh Carpendale. Bubble sets: Revealing set relations with isocontours over existing visualizations. IEEE Trans. Vis. Comput. Graphics, 15(6):1009–1016, 2009.

[EHKP14] Alon Efrat, Yifan Hu, Stephen G. Kobourov, and Sergey Pupyrev. Mapsets: Visualizing embedded and clustered graphs. In Christian Duncan and Antonios Symvonis, editors, Graph Drawing (GD’14), volume 8871 of LNCS, pages 452–463. Springer, Heidelberg, 2014.

[EKL06] Alon Efrat, Stephen G. Kobourov, and Anna Lubiw. Computing homotopic shortest paths efficiently. Comput. Geom. Theory Appl., 35(3):162–172, 2006.

[EN11] Jeff Erickson and Amir Nayyeri. Shortest non-crossing walks in the plane. In Proc. ACM-SIAM Symp. Discrete Algorithms (SODA’11), pages 297–308, 2011.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[HKK+13] Ferran Hurtado, Matias Korman, Marc Kreveld, Maarten Löffler, Vera Sacristán, Rodrigo I. Silveira, and Bettina Speckmann. Colored spanning graphs for set visualization. In Stephen Wismath and Alexander Wolff, editors, Graph Drawing (GD’13), volume 8242 of LNCS, pages 280–291. Springer, Heidelberg, 2013.

[KMN01] Yoshiyuki Kusakari, Daisuke Masubuchi, and Takao Nishizeki. Finding a noncrossing Steiner forest in plane graphs under a 2-face condition. J. Combin. Optim., 5:249–266, 2001.

[LMM+95] Thomas M. Liebling, François Margot, Didier Müller, Alain Prodon, and Lynn Stauffer. Disjoint paths in the plane. ORSA J. Comput., 7(1):84–88, 1995.

[Löf11] Maarten Löffler. Existence and computation of tours through imprecise points. Int. J. Comput. Geom. Appl., 21(1):1–24, 2011.

[MHT10] Matthias Müller-Hannemann and Siamak Tazari. A near linear time approximation scheme for Steiner tree among obstacles in the plane. Comput. Geom. Theory Appl., 43(4):395–409, 2010.

[Mit99] Joseph S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput., 28(4):1298–1309, 1999.

[Mit00] Joseph S.B. Mitchell. Geometric shortest paths and network optimization. In J. Urrutia and J.-R. Sack, editors, Handbook of Computational Geometry, chapter 15, pages 633–701. North-Holland, 2000.
[Pap99] Evanthia Papadopoulou. k-pairs non-crossing shortest paths in a simple polygon. *Int. J. Comput. Geom. Appl.*, 9(6):533–552, 1999.

[PM05] Valentin Polishchuk and Joseph S. B. Mitchell. Touring convex bodies – A conic programming solution. In *Canadian Conf. Comput. Geom.*, pages 290–293, 2005.

[PM07] Valentin Polishchuk and Joseph S. B. Mitchell. Thick non-crossing paths and minimum-cost flows in polygonal domains. In *Proc. ACM Symp. Comput. Geom. (SoCG’07)*, pages 56–65, 2007.

[Raz08] Mina Razaghpour. The Steiner ratio for the obstacle-avoiding Steiner tree problem. Master’s thesis, University of Waterloo, 2008. Available at http://hdl.handle.net/10012/4055.

[RBvK+08] Iris Reinbacher, Marc Benkert, Marc J. van Kreveld, Joseph S. B. Mitchell, Jack Snoeyink, and Alexander Wolff. Delineating boundaries for imprecise regions. *Algorithmica*, 50(3):386–414, 2008.

[TSN96] J. Takahashi, H. Suzuki, and T. Nishizeki. Shortest noncrossing paths in plane graphs. *Algorithmica*, 16:339–357, 1996.

[Ver13] Kevin Verbeek. Homotopic C-oriented routing. In Walter Didimo and Maurizio Patrignani, editors, *Graph Drawing (GD’12)*, volume 7704 of *LNCS*, pages 272–278. Springer, Heidelberg, 2013.