Twisted modules for vertex algebras associated with vertex algebroids

Haisheng Li
Department of Mathematical Sciences, Rutgers University, Camden, NJ 08102
and
Department of Mathematics, Harbin Normal University, Harbin, China

Gaywalee Yamskulna
Department of Mathematics, Illinois State University, Normal, IL 61790
and
Institute of Science, Walailak University, Nakhon Si Thammarat, Thailand

Abstract

We continue with [LY] to construct and classify graded simple twisted modules for the \(N \)-graded vertex algebras constructed by Gorbounov, Malikov and Schechtman from vertex algebroids. Meanwhile we determine the full automorphism groups of those \(N \)-graded vertex algebras in terms of the automorphism groups of the corresponding vertex algebroids.

1 Introduction

For most of the important examples of vertex operator algebras \(V = \coprod_{n \in \mathbb{Z}} V(n) \) graded by the \(L(0) \)-weight (see [FLM, FHL]), the \(\mathbb{Z} \)-grading satisfies the condition that \(V(n) = 0 \) for \(n < 0 \) and \(V(0) = \mathbb{C} \) where \(1 \) is the vacuum vector. For a vertex operator algebra \(V \) with this special property, the homogeneous subspace \(V(1) \) has a natural Lie algebra structure with \([u, v] = u_0 v \) for \(u, v \in V(1) \) and the product \(u_{i} v \) \((\in V(0))\) defines a symmetric invariant bilinear form on \(V(1) \).

In a series of study on Gerbs of chiral differential operators in [GMS] and on chiral de Rham complex in [MSV, MS1,2], Malikov and his coauthors investigated \(\mathbb{N} \)-graded vertex algebras \(V = \coprod_{n \in \mathbb{N}} V(n) \) with \(V(0) \) not necessarily 1-dimensional. In this case, the bilinear operations \((u, v) \mapsto u_{i} v \) for \(i \geq 0 \) are closed on \(V(0) \oplus V(1) \):

\[
u_{i} v \in V(0) \oplus V(1) \quad \text{for } u, v \in V(0) \oplus V(1), \ i \geq 0.
\]

The skew symmetry and the Jacobi identity for the vertex algebra \(V \) give rise to several compatibility relations. Such algebraic structures on \(V(0) \oplus V(1) \) are summarized in the notion of what was called a 1-truncated conformal algebra. Furthermore, the subspace \(V(0) \) equipped with the product \((a, b) \mapsto a_{-1} b \) is a commutative associative algebra with the vacuum vector \(1 \) as the identity and \(V(0) \) as a nonassociative algebra acts on \(V(1) \) by \(a \cdot u = a_{-1} u \) for \(a \in V(0), \ u \in V(1) \). All these structures on \(V(0) \oplus V(1) \) are further summarized in the notion of what was called a vertex \(A \)-algebroid, where \(A \) is a (unital) commutative associative algebra. On the other hand, in [GMS],

\[1\text{Partially supported by an NSA grant}\]
among other important results, Gorbounov, Malikov and Schechtman constructed an \(\mathbb{N} \)-graded vertex algebra \(V = \bigoplus_{n \in \mathbb{N}} V(n) \) from any vertex \(A \)-algebroid, such that \(V(0) = A \) and the vertex \(A \)-algebroid \(V(1) \) is isomorphic to the given one. All the constructed \(\mathbb{N} \)-graded vertex algebras are generated by \(V(0) \oplus V(1) \) with a spanning property of PBW type. As it was demonstrated in [GMS], such \(\mathbb{N} \)-graded vertex algebras are natural and important to study. For example, the vertex (operator) algebra associated with a \(\beta \gamma \) system, which plays a central role in free field realization of affine Lie algebras (see [W, FF1-3, FB]) is such an \(\mathbb{N} \)-graded vertex algebra. The vertex (operator) algebras constructed from toroidal Lie algebras are also of this type (see [BBS, BDT]).

In [LY], we revisited those \(\mathbb{N} \)-graded vertex algebras and we classified all the \(\mathbb{N} \)-graded simple modules in terms of simple modules for certain Lie algebroids. In the theory of vertex algebras, in addition to the notion of module we have the notion of twisted module and twisted modules play a very important role, especially in the study of the so-called orbifold theory. Certainly, twisted modules also play an important role in other studies. In this paper, we continue to study the twisted modules for the \(\mathbb{N} \)-graded vertex algebras associated with vertex algebroids.

Let \(B \) be a vertex \(A \)-algebroid and let \(V_B \) be the associated \(\mathbb{N} \)-graded vertex algebra. In this paper, we define a notion of automorphism of the vertex \(A \)-algebroid \(B \) and we prove that any automorphism of the vertex \(A \)-algebroid \(B \) can be extended uniquely to an automorphism of the \(\mathbb{N} \)-graded vertex algebra \(V_B \) and that the full automorphism group of the \(\mathbb{N} \)-graded vertex algebra \(V_B \) is naturally isomorphic to the full automorphism group of the vertex \(A \)-algebroid \(B \). Let \(g \) be an automorphism of the vertex \(A \)-algebroid \(B \) of order \(T \) (finite). Then the \(g \)-fixed point \(A^0 \) is a subalgebra of \(A \) and the \(g \)-fixed point \(B^0 \) is a vertex \(A^0 \)-algebroid. Furthermore, \(B^0/A^0\partial A^0 \) is a Lie \(A^0 \)-algebroid. It is proved that the category of \(\frac{1}{T} \mathbb{N} \)-graded simple \(g \)-twisted \(V_B \)-modules is equivalent to a subcategory of simple modules for the Lie \(A^0 \)-algebroid \(B^0/A^0\partial A^0 \).

This paper is organized as follows: In Section 2, we review the construction of vertex algebras associated with vertex algebroids and we identify their automorphism groups with the automorphism groups of the vertex algebroids. In Section 3, we classify graded simple twisted modules.

2 Preliminaries

We recall the notions of 1-truncated conformal algebra, vertex algebroid and Lie algebroid, and we review the construction of the \(\mathbb{N} \)-graded vertex algebra \(V_B \) associated with a vertex \(A \)-algebroid \(B \). We also define notions of (endomorphism) automorphism of a 1-truncated conformal algebra and of a vertex \(A \)-algebroid \(B \). We then identify the group of grading-preserving automorphisms of \(V_B \) with the group of automorphisms of the vertex \(A \)-algebroid \(B \).

First, we recall from [GMS] (cf. [Br1-2]) the notions of 1-truncated conformal algebra, vertex algebroid and Lie algebroid.

Definition 2.1. A 1-truncated conformal algebra is a graded vector space \(C = C_0 \oplus C_1 \), equipped with a linear map \(\partial : C_0 \rightarrow C_1 \) and bilinear operations \((u, v) \mapsto u_i v \)
for \(i = 0, 1 \) of degree \(-i - 1\) on \(C \) such that the following axioms hold:

1. (Derivation) for \(a \in C_0, u \in C_1 \),
 \[
 (\partial a)_0 = 0; \quad (\partial a)_1 = -a_0; \quad \partial(u_0a) = u_0\partial a
 \]
 (2.1)

2. (Commutativity) for \(a \in C_0, u, v \in C_1 \),
 \[
 u_0a = -a_0u; \quad u_0v = -v_0u + \partial(v_1u); \quad u_1v = v_1u
 \]
 (2.2)

3. (Associativity) for \(\alpha, \beta, \gamma \in C_0 \oplus C_1 \),
 \[
 \alpha_0\beta_i\gamma = \beta_i\alpha_0\gamma + (\alpha_0\beta)_i\gamma.
 \]
 (2.3)

Remark 2.2. Let \(C = C_0 \oplus C_1 \) be a 1-truncated conformal algebra and let \(\ell \) be any nonzero complex number. Set \(C[\ell] = C_0 \oplus C_1 \) as a vector space. We retain all the structures on \(C \) except that we change the bilinear operation \(C_1 \times C_1 \to C_0 : u \times v \mapsto u_1v \) by multiplying \(1/\ell \) and change the linear operator \(\partial \) by multiplying \(\ell \). Then one can show that \(C[\ell] \) is a 1-truncated conformal algebra.

Definition 2.3. Let \(A \) be a unital commutative associative algebra over \(\mathbb{C} \). A vertex \(A \)-algebroid is a \(\mathbb{C} \)-vector space \(\Gamma \) equipped with

1. a \(\mathbb{C} \)-bilinear map
 \[
 A \times \Gamma \to \Gamma; \quad (a, v) \mapsto a \ast v
 \]
such that \(1 \ast v = v \) for \(v \in \Gamma \).

2. a structure of a Leibniz \(\mathbb{C} \)-algebra \([,] : \Gamma \otimes \mathbb{C} \Gamma \to \Gamma\).

3. a homomorphism of Leibniz \(\mathbb{C} \)-algebras \(\pi : \Gamma \to \text{Der}(A) \).

4. a symmetric \(\mathbb{C} \)-bilinear pairing \(\langle \cdot, \cdot \rangle : \Gamma \otimes \mathbb{C} \Gamma \to A \).

5. a \(\mathbb{C} \)-linear map \(\partial : A \to \Gamma \) such that \(\pi \circ \partial = 0 \).

All the following conditions are assumed to hold:

\[
\begin{align*}
(a \ast (a' \ast v)) - (aa') \ast v &= \pi(v)(a) \ast \partial(a') + \pi(v)(a') \ast \partial(a) \\
[u, a \ast v] &= \pi(u)(a) \ast v + a \ast [u, v] \\
[u, v] + [v, u] &= \partial(\langle u, v \rangle) \\
\pi(a \ast v) &= a\pi(v) \\
\langle a \ast u, v \rangle &= a\langle u, v \rangle - \pi(u)(\pi(v)(a)) \\
\pi(v)([v_1, v_2]) &= \langle [v, v_1], v_2 \rangle + \langle v_1, [v, v_2] \rangle \\
\partial(aa') &= a \ast \partial(a') + a' \ast \partial(a) \\
[v, \partial(a)] &= \partial(\pi(v)(a)) \\
\langle v, \partial(a) \rangle &= \pi(v)(a)
\end{align*}
\]

for \(a, a' \in A, u, v, v_1, v_2 \in \Gamma \).
The following was proved in [LY]:

Proposition 2.4. Let A be a unital commutative associative algebra and let B be a module for A as a nonassociative algebra. Then a vertex A-algebroid structure on B is equivalent to a 1-truncated conformal algebra structure on $C = A \oplus B$ with

\[
\begin{align*}
 a_i a' &= 0, \\
 u_0 v &= [u,v], \quad u_1 v = \langle u, v \rangle, \\
 u_0 a &= \pi(u)(a), \quad a_0 u = -u_0 a = -\pi(u)(a)
\end{align*}
\]

for $a, a' \in A$, $u, v \in B$, $i = 0, 1$, such that

\[
\begin{align*}
 a(a'u) - (aa')u &= (u_0 a)\partial a' + (u_0 a')\partial a, \\
 u_0(av) - a(u_0v) &= (u_0 a)v, \\
 u_0(aa') &= a(u_0 a') + (u_0 a)a', \\
 a_0(a'v) &= a'(a_0 v), \\
 (au)_1 v &= a(u_1 v) - u_0 v_0 a, \\
 \partial(aa') &= a\partial(a') + a'\partial(a).
\end{align*}
\]

Definition 2.5. Let A be a unital commutative associative algebra. A Lie A-algebroid is a Lie algebra g equipped with an A-module structure and a module action on A by derivation such that

\[
\begin{align*}
 [u, av] &= a[u,v] + (ua)v, \\
 a(ub) &= (au)b \quad \text{for } u, v \in g, \ a, b \in A.
\end{align*}
\]

A module for a Lie A-algebroid g is a vector space W equipped with a g-module structure and an A-module structure such that

\[
\begin{align*}
 u(aw) - a(uw) &= (ua)w, \\
 a(uw) &= (au)w \quad \text{for } a \in A, \ u \in g, \ w \in W.
\end{align*}
\]

The following result was due to [Br2]:

Lemma 2.6. Let A be a unital commutative associative algebra (over \mathbb{C}) and let B be a vertex A-algebroid. Then $B/A\partial A$ is naturally a Lie A-algebroid.

Next, we recall the construction of vertex algebras associated with vertex algebroids, following the exposition of [LY].

First, starting with a 1-truncated conformal algebra $C = A \oplus B$ we construct a Lie algebra. Set

\[
L(A \oplus B) = (A \oplus B) \otimes \mathbb{C}[t, t^{-1}].
\]

In the obvious way we define the subspaces $L(A)$ and $L(B)$. Set

\[
\hat{\partial} = \partial \otimes 1 + 1 \otimes d/dt : \ L(A) \to L(A \oplus B).
\]
We define
\[\deg(a \otimes t^n) = -n - 1 \quad \text{for } a \in A, \ n \in \mathbb{Z}, \]
\[\deg(b \otimes t^n) = -n \quad \text{for } b \in B, \ n \in \mathbb{Z}, \]
making \(L(A \oplus B) \) a \(\mathbb{Z} \)-graded vector space. The linear map \(\hat{\partial} \) is homogeneous of degree 1. Set
\[L = L(A \oplus B)/\hat{\partial}L(A). \] (2.18)

Define a bilinear product \([\cdot, \cdot]\) on \(L(A \oplus B) \) such that for \(a, a' \in A, \ b, b' \in B, \ m, n \in \mathbb{Z} \),
\[[a \otimes t^m, a' \otimes t^n] = 0, \] (2.19)
\[[a \otimes t^m, b \otimes t^n] = a_0 b \otimes t^{m+n}, \] (2.20)
\[[b \otimes t^m, a \otimes t^n] = b_0 a \otimes t^{m+n}, \] (2.21)
\[[b \otimes t^m, b' \otimes t^n] = b_0 b' \otimes t^{m+n} + m(b_1 b') \otimes t^{m+n-1}. \] (2.22)

The following result was established in [LY]:

Proposition 2.7. Let \(C = A \oplus B \) be a 1-truncated conformal algebra. The subspace \(\hat{\partial}L(A) \) of the nonassociative algebra \((L(A \oplus B), [\cdot, \cdot]) \) is a two-sided ideal. Furthermore, the quotient nonassociative algebra \(L \) is a \(\mathbb{Z} \)-graded Lie algebra.

Let \(\rho \) be the projection map from \(L(A \oplus B) \) to \(L \). For \(u \in A \oplus B, \ n \in \mathbb{Z} \), we set
\[u(n) = \rho(u \otimes t^n) = u \otimes t^n + \hat{\partial}L(A) \in L. \]

We have graded Lie subalgebras
\[L^{\geq 0} = \rho((A \oplus B) \otimes \mathbb{C}[t]), \]
\[L^{< 0} = \rho((A \oplus B) \otimes t^{-1} \mathbb{C}[t^{-1}]) \]
and we have \(L = L^{\geq 0} \oplus L^{< 0} \) as a vector space.

Considering \(\mathbb{C} \) as a trivial \(L^{\geq 0} \)-module we form the induced module
\[V_L = U(L) \otimes_{U(L^{\geq 0})} \mathbb{C}. \]
We assign \(\deg \mathbb{C} = 0 \), making \(V_L \) naturally an \(\mathbb{N} \)-graded \(L \)-module:
\[V_L = \prod_{n \in \mathbb{N}} (V_L)_{(n)}. \] (2.23)

Throughout this paper, \(\mathbb{N} \) denotes the set of nonnegative integers. Set
\[1 = 1 \otimes 1 \in V_L. \]

By the P-B-W theorem, we have \(V_L = U(L^{< 0}) = S(L^{< 0}) \). In view of this, we can and we do consider \(A \oplus B \) as a subspace:
\[A \oplus B \rightarrow V_L; \ u \mapsto u(-1)1. \]

The following was proved in [LY] (cf. [DLM3]):
Theorem 2.8. There exists a unique vertex algebra structure on V_L with 1 as the vacuum vector and with $Y(u,x) = \sum_{n \in \mathbb{Z}} u(n)x^{-n-1}$ for $u \in A \oplus B$. Moreover, the vertex algebra V_L is naturally an \mathbb{N}-graded vertex algebra and is generated by the subspace $A \oplus B$ with A of degree 0 and B of degree 1.

Remark 2.9. For $n \in \mathbb{Z}$, set $A(n) = \{a(n) \mid a \in A\}$, $B(n) = \{b(n) \mid b \in B\} \subset L$, and we set $B(-) = \bigcup_{n=1}^{\infty} B(-n) \subset L$.

Both $A(-1)$ and $B(-)$ are Lie subalgebras of $L^{<0}$ and we have $L^{<0} = A(-1) \oplus B(-)$ as a vector space. Then

$$V_L = U(L^{<0}) = S(L^{<0}) = S(A(-1) \oplus B(-)) = S(B(-)) \otimes S(A(-1)).$$

Consequently, $(V_L)_{(n)} = S(B(-))_{(n)} \otimes S(A(-1))$ for $n \in \mathbb{N}$. In particular, $(V_L)_{(0)} = S(A(-1))$.

Now, we assume that A is a unital commutative associative algebra with the identity e and B is a vertex A-algebroid. In particular, $C = A \oplus B$ is a 1-truncated conformal algebra. We set

$$E = \text{span}\{e-1, a(-1)a' - aa', a(-1)b - ab \mid a, a' \in A, b \in B\} \subset V_L,$$

$$I_B = U(L)C[D]E.$$

It was proved in [LY] that the L-submodule I_B of V_L is a two-sided graded ideal of the \mathbb{N}-graded vertex algebra V_L. The \mathbb{N}-graded vertex algebra V_B associated with the vertex A-algebroid B is defined to be the quotient vertex algebra

$$V_B = V_L/I_B.$$ (2.25)

We have (see [GMS], [LY]):

Proposition 2.10. Let A be a unital commutative associative algebra with the identity e and B a vertex A-algebroid. Then V_B is an \mathbb{N}-graded vertex algebra such that $(V_B)_{(0)} = A$, $(V_B)_{(1)} = B$ and for $n \geq 1$, $(V_B)_{(n)} = \text{span}\{b_1(-n_1) \cdots b_k(-n_k)1 \mid b_i \in B, n_1 \geq n_2 \geq \cdots \geq n_k \geq 1, n_1 + \cdots + n_k = n\}$.

In particular, V_B is generated by the subspace $A \oplus B$.

Next, we discuss homomorphisms and automorphisms for 1-truncated conformal algebras, vertex A-algebroids and for the \mathbb{N}-graded vertex algebras V_B.

6
Definition 2.11. Let $C = A \oplus B$ and $C' = A' \oplus B'$ be 1-truncated conformal algebras. A homomorphism from C to C' is a linear map $f : C \to C'$ such that $f(A) \subset A'$, $f(B) \subset B'$, $f \partial = \partial f$, and such that

$$f(uv) = f(u)f(v)$$

for $u, v \in C$, $i = 0, 1$.

Lemma 2.12. Let f be an endomorphism of a 1-truncated conformal algebra $C = A \oplus B$. Then the linear endomorphism of $L(A \oplus B)$ defined by

$$\hat{f}(u \otimes t^n) = f(u) \otimes t^n$$

for $u \in A \oplus B$, $n \in \mathbb{Z}$ gives rise to an endomorphism of \mathcal{L}, which we denote by \hat{f} again. Furthermore, \hat{f} preserves the \mathbb{Z}-grading of \mathcal{L}.

Proof. Using the property that $f \partial = \partial f$, we have $\hat{f}\partial = \partial \hat{f}$. For $u, v \in C = A \oplus B$, as $f(uv) = f(u)f(v)$ for $i = 0, 1$, from (2.19)-(2.22) we have

$$\hat{f}([u \otimes t^m, v \otimes t^n]) = [f(u) \otimes t^m, f(v) \otimes t^n] = [\hat{f}(u \otimes t^m), \hat{f}(v \otimes t^n)].$$

Thus \hat{f} gives rise to an endomorphism of the Lie algebra \mathcal{L}. It is clear that \hat{f} preserves the \mathbb{Z}-grading. \qed

Definition 2.13. Let A and A' be unital commutative associative algebras and let B be a vertex A-algebroid, B' a vertex A'-algebroid. A vertex algebroid homomorphism from B to B' is a linear map $f : A \oplus B \to A' \oplus B'$ such that $f(A) \subset A'$, $f(B) \subset B'$ and such that

1. $f|_A$ is an associative algebra homomorphism.
2. $f|_B$ is a Leibniz algebra homomorphism.
3. $f(ab) = f(a)f(b)$ for $a \in A$, $b \in B$.
4. $\langle f(u), f(v) \rangle = f(\langle u, v \rangle)$ for $u, v \in B$.
5. $f \circ \partial = \partial \circ f$.
6. $f(b_0a) = f(b)f(a)$ for $a \in A$, $b \in B$.

An automorphism of a vertex A-algebroid B is a bijective vertex algebroid endomorphism of the vertex A-algebroid B.

Let $(V, Y, 1)$ be a vertex algebra. An endomorphism of V is a linear map $g : V \to V$ such that

$$g(1) = 1,$$

$$g(Y(u, x)v) = Y(g(u), x)g(v)$$

for $u, v \in V$. An automorphism of V is a bijective endomorphism of V. The group of automorphisms of V is denoted by $\text{Aut}(V)$. If $V = \bigsqcup_{m \in \mathbb{Z}} V_m$ is a \mathbb{Z} (or \mathbb{N})-graded vertex algebra, we denote by $\text{Aut}^g(V)$ the group of grading-preserving automorphisms of V.

Lemma 2.14. Let B be a vertex A-algebroid and let g be a grading-preserving automorphism of the vertex algebra V_B. Then g restricted to $A \oplus B$ is an automorphism of the vertex A-algebroid B.

Proof. As $(V_B)_0 = A$ and $(V_B)_1 = B$, g is a linear bijection on $A \oplus B$ that preserves the subspaces A and B. For $a,a' \in A$, $b,b' \in B$, we have

\[
g(aa') = g(a(-1)a') = g(a)_{-1}g(a') = g(a)g(a'),
g(ab) = g(a(-1)b) = g(a)_{-1}g(b) = g(a)g(b),
g([b, b']) = g(b_0b') = g(b)_{0}g(b') = [g(b), g(b')],
g(\langle b, b' \rangle) = g(b_1b') = g(b)_{1}g(b') = \langle g(b), g(b') \rangle),
g(b_0a) = g(b)_{0}g(a),
g(\partial(a)) = g(a(-2)1) = g(a)_{-2}1 = \partial(g(a)).
\]

Thus g is an automorphism of vertex A-algebroid B. \qed

On the other hand, we are going to prove that any automorphism of a vertex A-algebroid B extends canonically to an automorphism of the \mathbb{N}-graded vertex algebra V_B. First we have:

Lemma 2.15. Let $C = A \oplus B$ be a 1-truncated conformal algebra and let g be an automorphism of C. Then g extends uniquely to an automorphism of the \mathbb{N}-graded vertex algebra V_C. Furthermore, if g is an automorphism, then the extension is an automorphism.

Proof. Since $A \oplus B$ generates V_C as a vertex algebra, the uniqueness is clear. It remains to prove the existence. By Lemma 2.14 we have a grading-preserving endomorphism \bar{g} of the Lie algebra C, hence a grading-preserving endomorphism of the universal enveloping algebra $U(L)$. Consequently, \bar{g} preserves the Lie subalgebra $L^{<0}$ and its universal enveloping algebra $U(L^{<0})$. It follows from the construction of V_C that there exists a linear endomorphism \tilde{g} of V_C such that $\tilde{g}(1) = 1$ and

\[
\tilde{g}(u_n v) = g(u_n) \tilde{g}(v)
\]

for $u \in A \oplus B$, $v \in V_C$, $n \in \mathbb{Z}$. Since V_C is generated by $A \oplus B$, it follows (cf. [LLi]) that \tilde{g} is an endomorphism of V_C. It is clear that \tilde{g} extends g.

If g is an automorphism of the 1-truncated conformal algebra $C = A \oplus B$, from the first assertion we have vertex algebra endomorphisms \bar{g} and \bar{g}^{-1} of V_C, extending g and g^{-1}, respectively. Since $gg^{-1} = g^{-1}g = 1$ on $A \oplus B$ and since $A \oplus B$ generates V_C as a vertex algebra, we have $\tilde{g}g^{-1} = g^{-1} \tilde{g} = 1$. Thus, \tilde{g} is an automorphism of V_C. \qed

Proposition 2.16. Let g be an endomorphism of a vertex A-algebroid B. Then g extends uniquely to an endomorphism of V_B as an \mathbb{N}-graded vertex algebra. Furthermore, if g is an automorphism, then the extension is an automorphism.

Proof. The uniqueness is clear, as $A \oplus B$ generates V_B as a vertex algebra. For the existence, first by Lemma 2.15 we have a grading-preserving endomorphism \bar{g} of
the vertex algebra V_L, extending g. Now we show that \bar{g} reduces to an endomorphism of V_B. Recall that $V_B = V_L/I_B$, where I_B is the two-sided ideal of V_L, generated by

$$E = \text{span}\{e - 1, a(-1)a' - aa', a(-1)b - ab \mid a, a' \in A, b \in B\}.$$

Now, we must prove $\bar{g}(I_B) \subset I_B$. As E generates I_B as a two-sided ideal, it suffices to prove that $\bar{g}(E) \subset E$. Let $a, a' \in A, b \in B$. We have

$$\bar{g}(e - 1) = e - 1 \in E, $$
$$\bar{g}(a(-1)a' - aa') = g(a)(-1)g(a') - g(a)g(a) \in E, $$
$$\bar{g}(a(-1)b - ab) = g(a)(-1)g(b) - g(a)g(b) \in E.$$

This proves $\bar{g}(E) \subset E$. Therefore, \bar{g} reduces to an endomorphism of the N-graded vertex algebra V_B. The second assertion follows immediately from the proof of the second assertion of Lemma 2.15.

Recall that $\text{Aut}^o(V_B)$ denotes the group of grading-preserving automorphisms of V_B, namely the group of automorphisms of V_B as an N-graded vertex algebra. Combining Lemma 2.14 with Proposition 2.16, we have:

Theorem 2.17. Let A be a unital commutative associative algebra and let B be a vertex A-algebroid. The group $\text{Aut}^o(V_B)$ of (grading-preserving) automorphisms of the N-graded vertex algebra V_B is isomorphic to the group of automorphisms of vertex A-algebroid B with the restriction map as an isomorphism.

3 Classification of graded simple twisted V_B-modules

In this section we construct and classify graded simple twisted V_B-modules by exploiting a twisted analogue of the Lie algebra \mathcal{L}. First, we recall the definition of the notion of twisted module for a vertex algebra and we discuss several properties of twisted modules.

Let V be a vertex algebra and let g be an automorphism of V of order $T < \infty$. Decompose V into eigenspaces of g:

$$V = \bigoplus_{r=0}^{T-1} V^r,$$

where $V^r = \{v \in V \mid g(v) = e^{2\pi\sqrt{-1}/T}v\}$.

A g-twisted V-module (see [Le], [FLM], [FFR], [D]) is a vector space M equipped with a linear map

$$Y_M: V \rightarrow \text{(End } M)[[x^+, x^-]],$$

$$u \mapsto Y_M(u, x) = \sum_{n \in \frac{1}{T}\mathbb{Z}} u_n x^{-n-1} \quad (3.1)$$

satisfying the following conditions:

1. For $u \in V, w \in M, u_n w = 0$ for $n \in \frac{1}{T}\mathbb{Z}$ sufficiently large.
2. \(Y_M(1, x) = 1_M \) (the identity operator on \(M \)).

3. For \(u \in V^r \) with \(0 \leq r \leq T - 1 \),
\[
Y_M(u, x) = \sum_{n \in \mathbb{Z}} u_n x^{-n-1} \in x^{-\bar{p}} (\text{End } M)[[x, x^{-1}]]. \tag{3.2}
\]

4. For \(u \in V^r \) with \(0 \leq r \leq T - 1 \), \(v \in V \),
\[
x_0^{-1} \delta \left(\frac{x_1 - x_2}{x_0} \right) Y_M(u, x_1) Y_M(v, x_2) - x_0^{-1} \delta \left(\frac{x_2 - x_1}{-x_0} \right) Y_M(v, x_2) Y_M(u, x_1)
= x_2^{-1} \left(\frac{x_1 - x_0}{x_2} \right)^{-r/T} \delta \left(\frac{x_1 - x_0}{x_2} \right) Y_M(Y(u, x_0)v, x_2) \tag{3.3}
\]

(remark the twisted Jacobi identity).

Remark 3.1. Let \((M, Y_M) \) be a \(g \)-twisted \(V \)-module and let \(U \) be any vertex subalgebra of \(V^0 \). Then \(M \) is a \(U \)-module. In particular, if \(g \) is taken to be the identity map, the notion of \(g \)-twisted \(V \)-module reduces to that of \(V \)-module while the twisted Jacobi identity reduces to the ordinary (untwisted) Jacobi identity.

The following was proved in [DLM2] (cf. [DLM1]):

Lemma 3.2. Let \((M, Y_M) \) be a \(g \)-twisted \(V \)-module. Then
\[
Y_M(Dv, x) = \frac{d}{dx} Y_M(v, x) \tag{3.4}
\]
for \(v \in V \), where \(Dv = v_{-2}1 \).

Remark 3.3. For \(v \in V \), \(u \in V^r \), \(p \in \mathbb{Z} \) and \(s, t \in \mathbb{Q} \), comparing the coefficients of \(x_0^{-p-1} x_1^{-s-1} x_2^{-t-1} \) on the both sides of the twisted Jacobi identity \(\text{[3.3]} \), we get
\[
\sum_{m \geq 0} \binom{s}{m} (u_{p+m} v)_{s+t-m} = \sum_{m \geq 0} (-1)^m \binom{p}{m} \{ u_{p+s-m} v_{t+m} - (-1)^p v_{p+t-m} u_{s+m} \}. \tag{3.5}
\]

By taking \(\text{Res}_{x_0} \) of \(\text{[3.3]} \), we obtain the twisted commutator formulae:
\[
[Y_M(u, x_1), Y_M(v, x_2)] = \text{Res}_{x_0} x_0^{-1} \left(\frac{x_1 - x_0}{x_2} \right)^{-r/T} \delta \left(\frac{x_1 - x_0}{x_2} \right) Y_M(Y(u, x_0)v, x_2). \tag{3.6}
\]

Multiplying \(\text{[3.3]} \) by \(\left(\frac{x_1 - x_0}{x_2} \right)^{\bar{p}} \) and then taking \(\text{Res}_{x_1} \), we obtain the twisted iterate formulae:
\[
Y_M(Y(u, x_0)v, x_2) = \text{Res}_{x_1} \left(\frac{x_1 - x_0}{x_2} \right)^{\bar{p}} \cdot X \tag{3.7}
\]
where
\[
X = x_0^{-1} \delta \left(\frac{x_1 - x_2}{x_0} \right) Y_M(u, x_1) Y_M(v, x_2) - x_0^{-1} \delta \left(\frac{x_2 - x_1}{-x_0} \right) Y_M(v, x_2) Y_M(u, x_1).
\]
From the twisted Jacobi identity one has the following *twisted weak associativity*:

For \(u \in V \) with \(0 \leq r \leq T - 1 \) and for \(v \in V, w \in W \),

\[
(x_0 + x_2)^{k + T} Y_M(u, x_0 + x_2) Y_M(v, x_2) w = (x_2 + x_0)^{k + T} Y_M(Y(u, x_0)v, x_2) w
\]

where \(k \) is a nonnegative integer such that \(x_0^{k + T} Y_M(u, x_0) w \in M[[x]] \). One can prove (cf. [Li3]; Lemma 2.8) that the twisted Jacobi identity is equivalent to the twisted commutator formulae and the twisted weak associativity.

Let \(M \) be a \(g \)-twisted \(V \)-module. For a subset \(U \) of \(M \), denote the smallest \(g \)-twisted \(V \)-submodule containing \(U \) by \(\langle U \rangle \), which is called the \(g \)-twisted \(V \)-submodule generated by \(U \). Just as with untwisted modules, from the twisted weak associativity, we have

\[
\langle U \rangle = \text{span}\{v_n w \mid v \in V, n \in \frac{1}{T}\mathbb{Z}, w \in U\}.
\]

We define

\[
\text{Ann}_V(U) = \{v \in V \mid Y(v, x) w = 0 \text{ for } w \in U\},
\]

the *annihilator of \(U \) in \(V \).*

Proposition 3.4. For any subset \(U \) of a \(g \)-twisted \(V \)-module \(M \), the annihilator \(\text{Ann}_V(U) \) is an ideal of \(V \). Moreover,

\[
\text{Ann}_V(U) = \text{Ann}_V(\langle U \rangle).
\]

Proof. It follows immediately from the proof of Proposition 4.5.11 in [LLi] with the weak associativity and the weak commutativity relations being replaced by the twisted associativity and the twisted commutativity relations, respectively.

Let \(S \) be a subset of \(V \). Define

\[
\text{Ann}_M(S) = \{w \in M \mid Y_M(v, x) w = 0 \text{ for } v \in S\},
\]

the *annihilator of \(S \) in \(M \).* By suitably modifying the proof of Proposition 4.5.14 in [LLi] and replacing the weak commutativity and Proposition 4.5.11 (of [LLi]) in the proof of Proposition 4.5.14 in [LLi] by the twisted commutativity relation and Proposition 3.4, respectively, we immediately have:

Proposition 3.5. For a subset \(S \) of \(V \), the annihilator \(\text{Ann}_M(S) \) is a \(g \)-twisted \(V \)-submodule of \(M \). Furthermore,

\[
\text{Ann}_M(S) = \text{Ann}_M(\langle S \rangle).
\]

Here, \(\langle S \rangle \) is the ideal of \(V \) generated by \(S \).

We shall use the following result of [Li3] (Lemma 2.11):
Lemma 3.6. Let V be a vertex algebra with an automorphism g of order T and let $a \in V^k$, $b, u^0, \ldots, u^r \in V$ with $0 \leq k \leq T - 1$. If

$$[Y(a, x_1), Y(b, x_2)] = \sum_{j=0}^r \frac{1}{j!} Y(u^j, x_2) \left(\frac{\partial}{\partial x_2} \right)^j x_1^{-1} \delta \left(\frac{x_2}{x_1} \right)$$

(3.9)

acting on V, then for any g-twisted V-module (M, Y_M) we have

$$[Y_M(a, x_1), Y_M(b, x_2)] = \sum_{j=0}^r \frac{1}{j!} Y_M(u^j, x_2) \left(\frac{\partial}{\partial x_2} \right)^j x_1^{-1} \delta \left(\frac{x_2}{x_1} \right) \left(\frac{x_2}{x_1} \right)^k$$

(3.10)

acting on M. On the other hand, the converse is also true for any faithful g-twisted V-module (M, Y_M).

Definition 3.7. Let $V = \bigoplus_{m \in \mathbb{Z}} V_m$ be a \mathbb{Z}-graded vertex algebra. A $\frac{1}{T} \mathbb{N}$-graded g-twisted V-module is a g-twisted V-module M equipped with a $\frac{1}{T} \mathbb{N}$-grading

$$M = \bigoplus_{n \in \frac{1}{T} \mathbb{N}} M(n)$$

such that

$$v_m M(n) \subset M(n + p - m - 1)$$

for $v \in V_{(p)}$, $m, n \in \frac{1}{T} \mathbb{Z}$ with $p \in \mathbb{Z}$.

Next, we study $\frac{1}{T} \mathbb{N}$-graded g-twisted modules for the \mathbb{N}-graded vertex algebra V_B associated to a vertex A-algebroid B, where g is an automorphism of order $T < \infty$ of the \mathbb{N}-graded vertex algebra V_B and of the vertex A-algebroid B (cf. Theorem 2.17).

Noticing that $A \oplus B$ is a 1-truncated conformal algebra, we start with a general 1-truncated conformal algebra $C = C_0 \oplus C_1$ with an automorphism g of C of order $T < \infty$. Associated with the 1-truncated conformal algebra $C = C_0 \oplus C_1$ we have the Lie algebra $L(C)$ and the vertex algebra $V_{L(C)}$ with C as a generating subspace. In view of Lemma 2.15, g is an order-T automorphism of the vertex algebra $V_{L(C)}$.

The following result can be found in [DLM2] (cf. [B]):

Lemma 3.8. Let V be a vertex algebra and let T be a positive integer. Set

$$L_T(V) = V \otimes \mathbb{C}[t^{\frac{1}{T}}, t^{-\frac{1}{T}}],$$

(3.11)

a vector space, and set

$$\hat{\partial} = \mathcal{D} \otimes 1 + 1 \otimes \frac{d}{dt},$$

a linear operator on $L_T(V)$. Then the bilinear (multiplicative) operation on $L_T(V)$, defined by

$$[u \otimes t^m, v \otimes t^n] = \sum_{i \geq 0} \binom{m}{i} (u_i v \otimes t^{m+n-i})$$

(3.12)
for $u, v \in V$, $m, n \in \frac{1}{T}\mathbb{Z}$, gives rise to a Lie algebra structure on $L_T(V)/\hat{\partial}L_T(V)$, which is denoted by $\mathcal{L}(V, T)$. Furthermore, any order-T automorphism g of C gives rise to an order-T automorphism, also denoted by g, of $\mathcal{L}(V, T)$, where

$$g(v \otimes t^n) = e^{-2\pi \sqrt{-1}}(gv \otimes t^n)$$

for $v \in V$, $n \in \frac{1}{T}\mathbb{Z}$.

Specializing Lemma 3.8 with $V = V_{\mathcal{L}(C)}$, we have a Lie algebra $\mathcal{L}(V_{\mathcal{L}(C)}, T)$ and an automorphism g. For $u \in C$, $m \in \frac{1}{T}\mathbb{Z}$, denote by $u(m)$ the canonical image of $u \otimes t^m$ in $\mathcal{L}(V_{\mathcal{L}(C)}, T)$. We have

$$(\partial a)(m) = -ma(m-1),$$

$$[u(m), v(n)] = \sum_{i=0}^{1} \binom{m}{i} (u_{i}v)(m+n-i)$$

for $a \in C_0$, $u, v \in C$, $m, n \in \frac{1}{T}\mathbb{Z}$. Because $u_i v \in C$ for $u, v \in C$, $i \geq 0$, we see that $u(m) u \in C$, $m \in \frac{1}{T}\mathbb{Z}$ span a Lie subalgebra $\mathcal{L}(C, T)$ of $\mathcal{L}(V_{\mathcal{L}(C)}, T)$. Denote by $\mathcal{L}(C, g)$ the g-fixed point Lie subalgebra:

$$\mathcal{L}(C, g) = \mathcal{L}(C, T)^g.$$ \hfill (3.16)

Using Lemma 3.8 we immediately have:

Proposition 3.9. Let $C = C_0 \oplus C_1$ be a 1-truncated conformal algebra and let g be an order-T automorphism of C. Then

$$\mathcal{L}(C, g) = L(C, g)/\hat{\partial}L(C_0, g),$$

as a vector space, where

$$L(C, g) = \prod_{r=0}^{T-1} C'^{r} \otimes t^{r/T}\mathbb{C}[t, t^{-1}],$$

$L(C_0, g)$ is a subspace defined in the obvious way, and

$$\hat{\partial} = \partial \otimes 1 + 1 \otimes d/dt : L(C_0, g) \rightarrow L(C, g).$$

For $u\in C'^{r}$ with $0 \leq r \leq T-1$ and for $n \in \mathbb{Z}$, denote by $u(n + r/T)$ the canonical image of $u \otimes t^{n+r/T}$ in $\mathcal{L}(C, g)$. Then the following relations hold for $a \in C'^{r}$, $a' \in C'^{r}$, $b \in C'^{s}$, $b' \in C'^{s}$, $m, n \in \mathbb{Z}$:

$$(\partial a)(m + r/T) = -(m + r/T)a(m-1 + r/T),$$

$$[a(m + r/T), a'(n + r'/T)] = 0,$$ \hfill (3.19)

$$[a(m + r/T), b(n + s/T)] = (a_0b)(m + n + (r + s)/T),$$

$$[b(m + s/T), b'(n + s'/T)] = (b_0b')(m + n + (s + s')/T) + (m + s/T)(b_1b')(m + n + (s + s')/T - 1).$$ \hfill (3.22)
We define
\[\deg a(n + r/T) = -n - 1 \quad \text{for } a \in C^0_n, \quad n \in \mathbb{Z}, \]
\[\deg b(n + r/T) = -n \quad \text{for } b \in C^1_n, \quad n \in \mathbb{Z}, \]
making \(\mathcal{L}(C, g) \) a \(\frac{1}{T'} \mathbb{Z} \)-graded Lie algebra. For \(n \in \frac{1}{T'} \mathbb{Z} \), denote by \(\mathcal{L}(C, g)(n) \) the degree-\(n \) subspace. We have the following triangular decomposition
\[\mathcal{L}(C, g) = \mathcal{L}(C, g)_+ \oplus \mathcal{L}(C, g)_0 \oplus \mathcal{L}(C, g)_-, \]
where \(\mathcal{L}(C, g)_+ = \bigoplus_{0 < n \in \frac{1}{T'} \mathbb{Z}} \mathcal{L}(C, g)(\pm n) \). Notice that \(\mathcal{L}(C, g)(0) \) is spanned by the elements \(a(-1), b(0) \) for \(a \in C^0_0 \), \(b \in C^0_1 \).

For \(u \in C^r \) with \(0 \leq r < T - 1 \), form the generating function
\[u(x) = \sum_{n \in \frac{1}{T'} \mathbb{Z}} u(n)x^{-n-1} \in \mathcal{L}(C, g)[[x^{\frac{1}{T'}}, x^{-\frac{1}{T'}}]]. \quad (3.23) \]
For any \(\mathcal{L}(C, g) \)-module \(W \), we consider \(u(x) \) as an element of \((\text{End} W)[[x^{\frac{1}{T'}}, x^{-\frac{1}{T'}}]] \), which we denote by \(u_W(x) \):
\[u_W(x) = u(x) = \sum_{n \in \frac{1}{T'} \mathbb{Z}} u(n)x^{-n-1} \in (\text{End} W)[[x^{\frac{1}{T'}}, x^{-\frac{1}{T'}}]]. \quad (3.24) \]

Lemma 3.10. The commutation relations (3.20)–(3.22) amount to the following relations in terms of generating functions:
\[[a(x_1), a'(x_2)] = 0, \quad (3.25) \]
\[[a(x_1), b'(x_2)] = x_2^{-1} \left(x_1 \over x_2 \right)^{-\frac{1}{T'}} \delta \left(x_1 \over x_2 \right)(a_0 b')(x_2), \quad (3.26) \]
\[[b(x_1), b'(x_2)] = x_2^{-1} \left(x_1 \over x_2 \right)^{-\frac{1}{T'}} \delta \left(x_1 \over x_2 \right)(b_0 b')(x_2) + (b_1 b')(x_2) \left(\partial \over \partial x_2 \right) x_2^{-1} \left(x_1 \over x_2 \right)^{-\frac{1}{T'}} \delta \left(x_1 \over x_2 \right) \quad (3.27) \]
for \(a \in C^0_0 \), \(b \in C^1_0 \), \(a' \in C_0 \), and \(b' \in C_1 \). Moreover, we have
\[(\partial a)(x) = \frac{d}{dx} a(x) \quad \text{for } a \in C_0. \quad (3.28) \]

From these relations we immediately have:

Corollary 3.11. For \(a, a' \in C_0 \), \(b, b' \in C_1 \),
\[[a(x_1), a'(x_2)] = 0, \quad (3.29) \]
\[(x_1 - x_2)[a(x_1), b(x_2)] = 0, \quad (3.30) \]
\[(x_1 - x_2)^2 [b(x_1), b'(x_2)] = 0. \quad (3.31) \]
Definition 3.12. An $L(C,g)$-module W is said to be restricted if for any $w \in W$, $u \in C^n$ with $0 \leq r \leq T - 1$, $u(n + r/T)w = 0$ for $n \in \mathbb{Z}$ sufficiently large, that is, $u_W(x) \in \text{Hom}(W, W((x^{\frac{r}{T}})))$ for $u \in C$.

The following result is analogous to a result of [Li3] for twisted affine Lie algebras:

Proposition 3.13. Let $C = C_0 \oplus C_1$ be a 1-truncated conformal algebra and let g be an automorphism of $V_{L(C)}$ of order T, which is extended from an automorphism of C. Every g-twisted $V_{L(C)}$-module W is naturally a restricted $L(C,g)$-module with $u_W(x) = Y_W(u, x)$ for $u \in C$. Moreover, the set of g-twisted $V_{L(C)}$-submodules of W is precisely the set of $L(C,g)$-submodules of W. On the other hand, for any restricted $L(C,g)$-module W, there exists a unique g-twisted $V_{L(C)}$-module structure Y_W on W such that

$$Y_W(u, x) = u_W(x) \quad \text{for } u \in C = C_0 \oplus C_1 \subset V_{L(C)}. \quad (3.32)$$

Proof. On the vertex algebra $V_{L(C)}$, the following relations hold for $a, a' \in C_0$, $b, b' \in C_1$:

$$[Y(a, x_1), Y(a', x_2)] = 0, \quad (3.33)$$
$$[Y(a, x_1), Y(b', x_2)] = x_2^{-1} \delta \left(\frac{x_1}{x_2}\right) Y(a_0 b', x_2), \quad (3.34)$$
$$[Y(b, x_1), Y(b', x_2)] = x_2^{-1} \delta \left(\frac{x_1}{x_2}\right) Y(b_0 b', x_2) + Y(b_1 b', x_2) \frac{\partial}{\partial x_2} x_2^{-1} \delta \left(\frac{x_1}{x_2}\right). \quad (3.35)$$

From Lemmas 3.6 and 3.10, every g-twisted $V_{L(C)}$-module W is naturally a restricted $L(C,g)$-module with $u_W(x) = Y_W(u, x)$ for $u \in C$. As C generates $V_{L(C)}$ as a vertex algebra, the set of g-twisted $V_{L(C)}$-submodules of W is precisely the set of $L(C,g)$-submodules of W.

Let $S = \text{span}\{u_W(x) \mid u \in C\}$. In view of Corollary 3.11, S is a local subspace of $\text{Hom}(W, W((x^{\frac{1}{T}})))$. Note that $\text{Hom}(W, W((x^{\frac{1}{T}})))$ is naturally $\mathbb{Z}/T\mathbb{Z}$-graded:

$$\text{Hom}(W, W((x^{\frac{1}{T}}))) = \prod_{r=0}^{T-1} x^r \text{Hom}(W, W((x)))$$

and S is a graded subspace. Let σ_T be the linear automorphism of $\text{Hom}(W, W((x^{\frac{1}{T}})))$ defined by

$$\sigma_T(\alpha(x)) = e^{-2\pi i \sqrt{-1}/T} \alpha(x)$$

for $\alpha(x) \in x^r \text{Hom}(W, W((x)))$ with $0 \leq r \leq T - 1$ (cf. (3.23)).

From [Li3], S generates a vertex algebra $\langle S \rangle$ inside $\text{Hom}(W, W((x^{\frac{1}{T}})))$ with the identity operator 1_W as the vacuum vector and with σ_T as an automorphism. Furthermore, W is naturally a faithful σ_T-twisted $\langle S \rangle$-module with $Y_W(\alpha(x), x_0) =$
\[\alpha(x_0). \text{ With the relations (3.25), (3.27), by Lemma 3.6 we have}\]
\[
[Y(a_W(x), x_1), Y(a'_W(x), x_2)] = 0,
\]
\[
[Y(a_W(x), x_1), Y(b'_W(x), x_2)] = x_2^{-1}\delta \left(\frac{x_1}{x_2}\right) Y((a_0b')_W(x), x_2),
\]
\[
[Y(b_W(x), x_1), Y(b'_W(x), x_2)] = x_2^{-1}\delta \left(\frac{x_1}{x_2}\right) Y((b_0b')_W(x), x_2)
\]
\[+ Y((b_1b')_W(x), x_2) \frac{\partial}{\partial x_2} x_2^{-1}\delta \left(\frac{x_1}{x_2}\right)
\]

for \(a \in C_0', b \in C_1', b' \in C_0, \) and \(b' \in C_1.\) We also have
\[
Y((\partial a)_W(x), x_1) = Y \left(\frac{d}{dx} a_W(x), x_1\right) = \frac{\partial}{\partial x_1} Y(a_W(x), x_1)
\]

for \(a \in A.\) By Lemmas 3.6 and 3.10, \((S)\) is naturally an \(\mathcal{L}(C)\)-module with \(u_{(S)}(x_1) = Y(u_W(x), x_1)\) for \(u \in C.\) Furthermore, \((S)\) as an \(\mathcal{L}(C)\)-module is generated by \(1_W\) and we have \(u_W(x)_n 1_W = 0\) for \(u \in C, n \geq 0.\) From the construction of \(V_{\mathcal{L}(C)}\) as an \(\mathcal{L}(C)\)-module, there exists a unique \(\mathcal{L}(C)\)-module homomorphism \(\psi\) from \(V_{\mathcal{L}(C)}\) to \((S),\) sending \(1\) to \(1_W.\) As \(V_{\mathcal{L}(C)}\) as a vertex algebra is generated by \(C,\) \(\psi\) is a vertex algebra homomorphism. We have
\[
\psi(u) = \psi(u(-1)1) = u_W(x)_{-1} 1_W = u_W(x)
\]

for \(u \in C.\) It is clear that \(\psi(C^r) \subset S^r\) for \(0 \leq r \leq T - 1.\) As \(C\) generates \(V_{\mathcal{L}(C)}\) as a vertex algebra, \(\psi\) preserves the \(\mathbb{Z}/T\mathbb{Z}\)-gradings, i.e., \(\sigma_T \psi = \psi g.\) Consequently, \(W\) is a \(g\)-twisted \(V_{\mathcal{L}(C)}\)-module. \(\Box\)

For the rest of this paper, we assume that \(A\) is a unital commutative associative algebra whose identity is denoted by \(e\) and \(B\) is a vertex \(A\)-algebroid and we assume that \(g \in \text{Aut}^o(V_B)\) with \(o(g) = T < \infty.\) Recall that \(C = A \oplus B\) is naturally a \(1\)-truncated conformal algebra. An \(\mathcal{L}(C, g)\)-module of level \(k \in \mathbb{C}\) is an \(\mathcal{L}(C, g)\)-module on which \(e(-1)\) acts as scalar \(k.\)

Immediately from Proposition 3.13 we have:

Proposition 3.14. Every \(g\)-twisted \(V_B\)-module is naturally a restricted \(\mathcal{L}(C, g)\)-module of level 1. Moreover, the set of \(g\)-twisted \(V_B\)-submodules is precisely the set of \(\mathcal{L}(C, g)\)-submodules.

We have the following decompositions into \(g\)-eigenspaces:
\[
V_B = \bigoplus_{r=0}^{T-1} V^r_B
\]

and
\[
A = \bigoplus_{r=0}^{T-1} A^r \quad \text{and} \quad B = \bigoplus_{r=0}^{T-1} B^r.
\]
Clearly, A^0 is a subalgebra of A, containing the identity, and B^0 is a vertex A^0-algebroid. Furthermore, by Lemma 2.6, $B^0/A^0 \partial A^0$ is a Lie A^0-algebroid. Set

$$I = \sum_{r=1}^{T-1} A^r \cdot A^{T-r} \subset A^0. \quad (3.39)$$

It is clear that I is a two-sided ideal of A^0, so that A^0/I is a unital commutative associative algebra. Furthermore, $B^0/(I \cdot B^0 + A^0 \partial A^0)$ is a Lie A^0/I-algebroid.

Proposition 3.15. Let $M = \prod_{n \in \frac{1}{2} \mathbb{N}} M(n)$ be a $\frac{1}{2} \mathbb{N}$-graded g-twisted V_B-module. Then $M(0)$ is a module for the Lie A^0-algebroid $B^0/A^0 \partial A^0$ with

\begin{align*}
 a \cdot w &= a_{-1}w \quad \text{for } a \in A^0, \ w \in M(0), \quad (3.40) \\
 b \cdot w &= b_0w \quad \text{for } b \in B^0, \ w \in M(0). \quad (3.41)
\end{align*}

Furthermore, for $a \in A^r$, $a' \in A^{T-r}$, $b \in B^{T-r}$ with $0 < r \leq T-1$ and for $w \in M(0)$, we have $(aa') \cdot w = 0$ and $(ab) \cdot w = (1 - \frac{r}{T})(a_0b) \cdot w$.

Proof. Let U be the vertex subalgebra of V_B generated by $A^0 \oplus B^0$. As $A^0 \oplus B^0 \subset V_B^0$, U is actually a vertex subalgebra of V_B^0. From Remark 3.11, M is a U-module. With $(V_B)_0 = A$ and $(V_B)_1 = B$, we have $(V_B^0)_0 = A^0$ and $(V_B^0)_1 = B^0$. Consequently, we have $U_0 = A^0$ and $U_1 = B^0$. It follows from the construction of V_B^0 that U is a homomorphic image of the vertex algebra V_B^0, so that W is naturally a V_B^0-module. By [LY] (Proposition 4.8), $W(0)$ is naturally a module for the Lie A^0-algebroid $B^0/A^0 \partial A^0$.

Let $a \in A^r$, $a' \in A^{T-r}$, $b \in B^{T-r}$, $w \in M(0)$ with $0 < r \leq T-1$. By substituting $u = a$, $v = a'$, $p = -1$, $s = -1 + \frac{r}{T}$, $t = -\frac{r}{T}$ in (3.5), we get

\begin{align*}
 (aa') \cdot w &= (aa')_{-1}w \\
 &= (a(-1)a')_{-1}w \\
 &= \sum_{m \geq 0} a_{-2}, a'_{-1}w + a'_{-1}a_{-1}w + a'_{-1}a_{-1}w \\
 &= 0.
\end{align*}

Similarly, by substituting $u = a$, $v = b$, $p = -1$, $s = -1 + \frac{r}{T}$ and $t = 1 - \frac{r}{T}$ in (3.5), we have

\begin{align*}
 (ab) \cdot w &= (ab)_0w \\
 &= (a(-1)b)_0w \\
 &= (1 - \frac{r}{T})(a_0b)_{-1}w + \sum_{m \geq 0} \{ a_{-2}, a_{-1}b_{-1}w + b_{-1}a_{-1}w \} \\
 &= (1 - \frac{r}{T})(a_0b) \cdot w,
\end{align*}

completing the proof. \qed
Let U be a module for the Lie A^0-algebroid $B^0/A^0\partial A^0$ such that $(a a') \cdot u = 0$ and $(ab) \cdot u = (1 - \frac{r}{T})(ab) \cdot u$ for $a \in A'$, $a' \in A^{T-r}$, $b \in B^{T-r}$, $u \in U$, $0 < r \leq T - 1$. We are going to construct a $\frac{1}{T}\mathbb{N}$-graded g-twisted V_B-module $M = \coprod_{n \in \frac{1}{T}\mathbb{N}} M(n)$ with $M(0) = U$ as a module for the Lie A^0-algebroid $B^0/A^0\partial A^0$.

First, U is a module for the Lie algebra $A^0 \oplus B^0\partial A^0$. Recall that $\mathcal{L}(C, g)_{(0)} = A^0 \oplus B^0\partial A^0$. For convenience, we set $\mathcal{L}(C, g)_{\leq 0} = \mathcal{L}(C, g)_{(0)} \oplus \mathcal{L}(g)_{-}$. Then U is an $\mathcal{L}(C, g)_{\leq 0}$-module under the following actions

$$
a(n + \frac{r}{T} - 1) \cdot u = \delta_{n+\frac{r}{T}, 0} au,
$$

$$
b(n + \frac{r}{T}) \cdot u = \delta_{n+\frac{r}{T}, 0} bu
$$

for $a \in A'$, $b \in B'$, $n \geq 0$. Next, we form the induced $\mathcal{L}(C, g)$-module

$$
M_g(U) = \text{Ind}_{\mathcal{L}(C, g)_{\leq 0}}^{\mathcal{L}(C, g)} U = U(\mathcal{L}(C, g)) \otimes U(\mathcal{L}(C, g)_{\leq 0}) U.
$$

We endow U with degree 0, making $M_g(U)$ a $\frac{1}{T}\mathbb{N}$-graded restricted $\mathcal{L}(C, g)$-module. By Proposition 3.13, $M_g(U)$ is naturally a g-twisted $V_{\mathcal{L}(C)}$-module. In view of the P-B-W theorem, we may and we should consider U as the degree-zero subspace of $M_g(U)$.

We set

$$
W_g(U) = \text{span}\{v_nu \mid v \in E, n \in \frac{1}{T}\mathbb{Z}, u \in U\} \subset M_g(U)
$$

and define

$$
M_B(U) = M_g(U)/U(\mathcal{L}(C, g))W_g(U).
$$

Since $U(\mathcal{L}(C, g))W_g(U)$ is an $\mathcal{L}(C, g)$-submodule of $M_g(U)$, by Proposition 3.13, $U(\mathcal{L}(C, g))W_g(U)$ is a g-twisted $V_{\mathcal{L}(C)}$-submodule. Then $M_B(U)$ is a g-twisted $V_{\mathcal{L}(C)}$-module. Clearly, $M_B(U)$ is generated by \bar{U} the image of U in $M_B(U)$. In fact, $M_B(U)$ is a g-twisted V_B-module by the following:

Lemma 3.16. Let (M, Y_M) be a g-twisted $V_{\mathcal{L}}$-module. Suppose that for $a \in A'$, $a' \in A$, $b \in B$ with $0 \leq r \leq T - 1$,

$$
Y_M(e, x)w = w,
$$

$$
Y_M(a(-1)a', x)w = Y_M(aa', x)w,
$$

$$
Y_M(a(-1)b, x)w = Y_M(ab, x)w
$$

for all $w \in K$, where K is a generating subspace of M. Then M is naturally a g-twisted V_B-module.

Proof. Recall that

$$
E = \text{span}\{e - 1, a(-1)a' - aa', a(-1)b - ab \mid a, a' \in A, b \in B\} \subset V_{\mathcal{L}(C)}.
$$

By (3.45)-(3.47), we have $K \subset \text{Ann}_M(E)$. By using Propositions 3.5, we have $\text{Ann}_M(I_B) = \text{Ann}_M(E)$. Since $\text{Ann}_M(I_B)$ is a g-twisted $V_{\mathcal{L}(C)}$ submodule of M and M is generated by K, we have $\text{Ann}_M(I_B) = M$. This implies that M is a g-twisted V_B-module.

\[\square\]
Next, we assume that \(\mathbf{L} \) and \(\mathbf{P} \) have deg \(\mathbf{L}_i \mathbf{P}_j = 0 \) for \(i \neq j \). Theorem 3.17.

Let \(U \) be a module for the Lie \(A^0 \)-algebroid \(B^0/A^0 \partial A^0 \) such that

\[
(aa') \cdot u = 0 \quad \text{and} \quad (ab) \cdot u = (1 - \frac{r}{T})(a_0 b) \cdot u
\]

(3.48)

for \(a \in A', \; a' \in A^{T-r}, \; b \in B^{T-r}, \; u \in U, \; r \neq 0 \). Then \(M_B(U) \) is naturally a \(g \)-twisted \(V_B \)-module such that \(M_B(U)(0) = U \).

Proof. To show that \(M_B(U)(0) = U \), we must prove that \((U(\mathcal{L}(g))W_g(U))(0) = 0 \).

First we show that \(W_g(U)(0) = 0 \). Notice that for \(v \in (V_{\mathcal{L}(g)})^{(m)} \) with \(m \in \mathbb{Z} \), we have deg \(v_{k+r/T} = m - k - r/T - 1 \) for \(k \in \mathbb{Z} \). Then from the definition of \(W_g(U) \), \(W_g(U)(0) \) is spanned by the vectors

\[
(e - 1)_- u, \; (a(-1)a')_- u - (aa')_- u, \; (a(-1)b)_0 u - (ab)_0 u
\]

for \(u \in U, \; a \in A', \; a' \in A^{T-r}, \; b \in B^{T-r} \) with \(0 \leq r \leq T - 1 \). Since \(e \) acts as \(e \) (the identity of \(A^0 \)) on \(U \), we have \((e - 1)_- u = 0 \) for \(u \in U \). If \(r = 0 \), by (3.5), we have

\[
(a_{-1}a')_- u = a(-1)a'(-1)u = a(a'u) = (aa')u = (aa')_- u,
\]

and

\[
(a(-1)b)_0 u = a(-1)b(0)u = a(bu) = (ab)u = (ab)_0 u.
\]

Next, we assume that \(r > 0 \). By (3.5), we have

\[
(a(-1)a')_- u = \sum_{i=0}^{\infty} a(-1 - i + \frac{r}{T})a'(i - 1 - \frac{r}{T})u + \sum_{i=0}^{\infty} a'(-2 - i - \frac{r}{T})a(i + \frac{r}{T})u
\]

\[
= a(-1 + \frac{r}{T})a'(-1 - \frac{r}{T})u
\]

\[
= a(-1 + \frac{r}{T})a(-1 - \frac{r}{T})u
\]

\[
= 0
\]

\[
= (aa')_- u
\]

and

\[
(a(-1)b)_0 u
\]

\[
= \sum_{i=0}^{\infty} a(-1 - i + \frac{r}{T})b(i - \frac{r}{T})u + \sum_{i=0}^{\infty} b(-i - 1 - \frac{r}{T})a(i + \frac{r}{T})u - \frac{r}{T}(a_0 b)_{-1} u
\]

\[
= a(-1 + \frac{r}{T})b(-\frac{r}{T})u - \frac{r}{T}(a_0 b) \cdot u
\]

\[
= b(-\frac{r}{T})a(-1 + \frac{r}{T})u + (a_0 b)_{-1} u - \frac{r}{T}(a_0 b)_{-1} u
\]

\[
= (1 - \frac{r}{T})(a_0 b) \cdot u
\]

\[
= (ab) \cdot u.
\]
Hence, \(W_g(U)(0) = 0 \).

Next, we show that \(\mathcal{L}(C, g) \leq_0 W_g(U) \subset W_g(U) \). Recall from [LY] (Lemma 4.2) that
\[
v_i E \subset E \quad \text{for } v \in C = A \oplus B, \ i \geq 0.
\]
As \(M_g(U) \) is a \(\frac{1}{N} \)-graded \(\mathcal{L}(C, g) \)-module with \(U \) as the degree-zero subspace, we have that \(\mathcal{L}(C, g) \leq_0 U \subset U \). For \(v \in C = A \oplus B, \ c \in E, \ m, t \in \frac{1}{N} \mathbb{Z}, \ u \in U \), from the twisted commutator formula \(3.6 \) (cf. \(3.12 \)), we have
\[
v_m c_t u = c_t v_m u + \sum_{i \geq 0} \left(\frac{m}{i}\right)(v_i c)_{m-i} u.
\]
These immediately imply that \(\mathcal{L}(C, g) \leq_0 W_g(U) \subset W_g(U) \). Then
\[
U(\mathcal{L}(C, g))W_g(U) = U(\mathcal{L}(C, g)_+)W_g(U) = U(\mathcal{L}(C, g)_+)W_g(U) = W_g(U) + \mathcal{L}(C, g)_+ U(\mathcal{L}(C, g)_+) W_g(U),
\]
which implies that \((U(\mathcal{L}(C, g))W_g(U))(0) = 0 \). This completes the proof. \(\square \)

Next, we continue with Theorem 3.17 to construct and classify \(\frac{1}{N} \)-graded simple \(g \)-twisted \(V_B \)-modules. Let \(U \) be a module for the Lie \(A^0 \)-algebroid \(B^0/A^0 \partial A^0 \) as in Theorem 3.17. Let \(J(U) \) be the sum of all graded \(\mathcal{L}(C, g) \)-submodules of \(M_g(U) \) with trivial degree-zero subspaces. Then \(J(U) \) is the unique maximal graded \(\mathcal{L}(C, g) \)-submodule of \(M_g(U) \) with the property that \(J(U) \cap U = 0 \). Set
\[
L_g(U) = M_g(U)/J(U),
\]
(3.49)
a \(\frac{1}{N} \)-graded \(g \)-twisted \(V_B \)-module.

Lemma 3.18. Let \(U \) be a module for the Lie \(A^0 \)-algebroid \(B^0/A^0 \partial A^0 \) as in Theorem 3.17. Then \(L_g(U) \) is a \(\frac{1}{N} \)-graded \(g \)-twisted \(V_B \)-module such that \(L_g(U)(0) = U \) as a module for the Lie \(A^0 \)-algebroid \(B^0/A^0 \partial A^0 \) and such that for any nonzero graded submodule \(W \) of \(L_g(U) \), we have \(W(0) \neq 0 \). Furthermore, if \(U \) is a simple \(B^0/A^0 \partial A^0 \)-module, \(L_g(U) \) is a \(\frac{1}{N} \)-graded simple \(g \)-twisted \(V_B \)-module.

Proof. It is similar to the proof of Theorem 4.12 in [LY]. \(\square \)

Lemma 3.19. Let \(W = \bigsqcup_{n \in \frac{1}{N} \mathbb{Z}} W(n) \) be a \(\frac{1}{N} \)-graded simple \(g \)-twisted \(V_B \)-module with \(W(0) \neq 0 \). Then \(W \cong L_g(W(0)) \).

Proof. It is similar to the proof of Lemma 4.13 in [LY]. \(\square \)

To summarize we have:

Theorem 3.20. Let \(H \) be a complete set of equivalence class representatives of simple modules for the Lie \(A^0 \)-algebroid \(B^0/A^0 \partial A^0 \) satisfying the condition that
\[
(aa')U = 0, \quad ((ab) - (1 - \frac{r}{T})(a b))U = 0
\]
for \(a \in A^r, a' \in A^{T-r}, b \in B^{T-r} \) with \(0 < r < T \). Then \(\{L_g(U) \mid U \in H\} \) is a complete set of equivalence class representatives of \(\frac{1}{N} \)-graded simple \(g \)-twisted \(V_B \)-modules.
Proof. It is similar to the proof of Theorem 4.14 in [LY].

Remark 3.21. Taking $g = 1$ the identity map of V_B, we recover Theorem 4.14 of [LY]: If H is a complete set of equivalence class representatives of simple modules for the Lie A-algebroid $B/A\partial A$, then $\{L_1(U) \mid U \in H\}$ is a complete set of equivalence class representatives of \mathbb{N}-graded simple V_B-modules.

References

[BBS] S. Berman, Y. Billig and J. Szmigielski, Vertex operator algebras and the representation theory of toroidal algebras, in: Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory (Charlottesville, VA, 2000), Contemporary Math. 297, Amer. Math. Soc., Providence, 2002, 1-26.

[BDT] S. Berman, C. Dong and S. Tan, Representations of a class of lattice type vertex algebras, J. Pure Applied Algebra 176 (2002), 27-47.

[B] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 83 (1986), 3068-3071.

[Br1] P. Bressler, Vertex algebroids I, arXiv: math.AG/0202185

[Br2] P. Bressler, Vertex algebroids II, arXiv: math.AG/0304115

[D] C. Dong, Twisted modules for vertex algebras associated with even lattices, J. Algebra 165 (1994), 91-112.

[DLM1] C. Dong, H.-S. Li and G. Mason, Regularity of rational vertex operator algebras, Advances in Math. 132 (1997), 148-166.

[DLM2] C. Dong, H.-S. Li and G. Mason, Twisted representations of vertex operator algebras, Math. Annalen 310 (1998), 571-700.

[DLM3] C. Dong, H.-S. Li and G. Mason, Vertex Lie algebra, vertex Poisson algebras and vertex algebras, in: Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory, Proceedings of an International Conference at University of Virginia, May 2000, Contemporary Math. 297 (2002), 69-96.

[FFR] A. J. Feingold, I. B. Frenkel and J. F. X. Ries, Spinor Construction of Vertex Operator Algebras, Triality, and $E_8^{(1)}$, Contemporary Math. 121, 1991.

[FB] E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, Vol. 88, Amer. Math. Soc., Providence, 2001.

[FF1] B. Feigin and E. Frenkel, A family of representations of affine Lie algebras, Russian Math. Surveys 43 (1988), 221-222.
[FF2] B. Feigin and E. Frenkel, Affine Kac-Moody algebras and semi-infinite flag manifolds, *Commun. Math. Phys.* **128** (1990), 161-189.

[FF3] B. Feigin and E. Frenkel, Representations of affine Kac-Moody Lie algebras and bosonization, in: *Physics and Mathematics of Strings*, World Scientific, 1990, 271-316.

[FLM] I. B. Frenkel, J. Lepowsky and A. Meurman, *Vertex Operator Algebras and the Monster*, Pure and Applied Math., Vol. 134, Academic Press, Boston, 1988.

[GMS] V. Gorbounov, F. Malikov and V. Schechtman, Gerbes of chiral differential operators, II, Vertex algebroids, *Invent. Math.* **155** (2004), 605-680.

[Le] J. Lepowsky, Calculus of twisted vertex operators, *Proc. Natl. Acad. Sci. USA* **82** (1985), 8295-8299.

[LLi] J. Lepowsky and H.-S. Li, *Introduction to Vertex Operator Algebras and Their Representations*, Progress in Math. **227**, Birkhäuser, Boston, 2003.

[Li1] H.-S. Li, Representation theory and tensor product theory for vertex operator algebras, Ph.D. thesis, Rutgers University, 1994.

[Li2] H.-S. Li, Local systems of vertex operators, vertex superalgebras and modules, *J. Pure Appl. Alg.* **109** (1996), 143-195; [hep-th/9406185](http://arxiv.org/abs/hep-th/9406185).

[Li3] H.-S. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, in: *Moonshine, the Monster and Related Topics*, *Proc. Joint Summer Research Conference, Mount Holyoke*, 1994, ed. by C. Dong and G. Mason, Contemporary Math. **193**, Amer. Math. Soc., Providence, 1996, 203-236.

[LY] H.-S. Li and G. Yamskulna, On certain vertex algebras and their modules associated with vertex algebroids, *J. Algebra* **283** (2005), 367-398.

[MS] F. Malikov and V. Schechtman, Chiral de Rham complex, II, arXiv: [math.AG/9901065](http://arxiv.org/abs/math.AG/9901065).

[MSV] F. Malikov, V. Schechtman and A. Vaintrob, Chiral de Rham complex, arXiv: [math.AG/9803041](http://arxiv.org/abs/math.AG/9803041).

[W] M. Wakimoto, Fock representations of affine Lie algebra $A_1^{(1)}$, *Commun. Math. Phys.* **104** (1986), 605-609.