THE STRUCTURAL BASIS FOR BINDING OF COMPLEMENT BY IMMUNOGLOBULIN M*

BY MARY M. HURST, JOHN E. VOLANAKIS, RAYMOND B. HESTER, ROBERT M. STROUD, AND J. CLAUDE BENNETT

(From the Division of Clinical Immunology and Rheumatology and the Department of Microbiology, University of Alabama Medical Center, Birmingham, Alabama 35294)

Knowledge of antibody structure is now sufficient to allow investigation of problems of biological function relative to structural parameters. One such structure-function relationship that can be approached is the molecular basis for complement (C) activation by immunoglobulins. On the basis of structural studies it has been proposed that the homology regions of immunoglobulins are arranged in a series of compact domains, with each domain mediating a biological function (1). In line with this hypothesis it has been suggested that the Cγ2 domain may play a role in C fixation by IgG (2, 3). In 1971 Augener et al. by use of active C1 (C1) fixation assay showed that the 7S subunit of IgM could bind C1 (4). Plaut et al. subsequently demonstrated that the (Fc)stt and Fctt fragments of IgM were capable of fixing C (5). We have investigated the relative capacity of small molecular weight fragments of a human Waldenström IgM protein (Dau) to bind the first component of C and are thus able to present evidence for the localization of this function to a 24 amino acid sequence.

Materials and Methods

Preparation of IgM and Its Subfragments. IgM was isolated from the plasma of a patient (Dau) with Waldenström's macroglobulinemia as previously described (6). (Fc)stt and FabtL fragments were prepared using trypsin digestion at 60°C (6). After separation of (Fc)stt and FabtL on Sephadex G-200 in 1% NH₄HCO₃, pH 8, the (Fc)stt was further purified on Bio-Gel A-15 (Bio-Rad Laboratories, Richmond, Calif.). Cyanogen bromide (CNBr) cleavage of (Fc)stt and FabtL was performed as described by Zikan and Bennett (7). Dau Fcstt is composed of four CNBr fragments (7), designated CNBr 5 through CNBr 8 (Fig. 1). After CNBr cleavage the smaller fragments, CNBr 6 and CNBr 8, were removed by gel filtration (7). The disulfide bonds in the pentameric CNBr 5 plus 7 fragment were then gently cleaved (either by partial oxidative sulfitolysis [8] or using 0.01 M dithiothreitol followed by alkylation with iodoacetamide) and the sample was applied to a Sephadex G-150 column in 5 M guanidine-HCl to obtain CNBr 5 dimers and monomers which were free of CNBr 7, as shown by polyacrylamide disc electrophoresis in sodium dodecyl sulfate.

In addition, 33,000 mol wt Fcαt fragments were prepared by reducing Fcαt with 0.05 M cysteine. The limited tryptic cleavage method of Hester and Schrohenloher (9) was used to release from the Fcαt fragments a homogeneous 6,800 mol wt fragment. This fragment was designated the Cα4 fragment, since a comparison of its amino acid composition and partial sequence as determined in the sequencer* with that published by Putnam et al. (10) for the IgM, Ou, revealed that it was composed of the Cα4 domain of the Fcα minus two tryptic peptides in the center of the loop (residues 468–491 and 513–550 according to the numbering of Ou). Relative to Dau CNBr fragments, Cα4 consisted of the carboxy-terminal 22 residues of CNBr 5 and the first two residues of CNBr 6 disulfide bonded to 36 residues of CNBr 7.

*This work was supported by grants AI-9153 and HL-11310 from the National Institutes of Health.
1 Hester, R. B., J. E. Mole, and R. E. Schrohenloher. Manuscript submitted for publication.

THE JOURNAL OF EXPERIMENTAL MEDICINE • VOLUME 140, 1974 1117
FIG. 1. Fragmentation of human IgM. Flow sheet summarizing the scheme used for isolation of the fragments tested for CT-fixing ability. The site of specific cleavage into Fab and (Fc)_μ fragments by trypsin digestion at 60°C is shown, and the four homology regions of the μ-chain (C_μ1−C_μ4) are identified. Cyanogen bromide cleaves the (Fc)_μ into four fragments, designated CNBr 5 through CNBr 8. Limited tryptic cleavage of Fc_μ produces the C_μ4 fragment which consists of the COOH-terminal segment of CNBr 5 disulfide bonded to a fragment from the center of CNBr 7.

CT-Binding Assay. The C-fixing ability of Dau IgM and its fragments was tested by a modified CT fixation assay (4). The buffer utilized throughout the assay was dextrose-gelatin-veronal buffer of relative salt concentration 0.065 containing optimum amounts of Ca^{++} and Mg^{++} (11). An amount of functionally pure human CT sufficient to yield 63% lysis was incubated with serial dilutions of the test fragments or with buffer as a control for 10 min at 30°C. EAC4 (sheep erythrocytes [E] sensitized with rabbit antibody [A] to E to which C components have been added) (1.5 × 10⁹/ml) were then added and incubation was allowed to proceed for an additional 10 min. The resulting EAC1,4 cells were washed twice to remove unbound CT, and resuspended in the same buffer. An excess of functionally pure C2 (11) was then added, followed by an excess of C3-9 (guinea pig C diluted 1:50 in 0.01 M EDTA buffer which supplies an excess of the late-acting components) and the degree of lysis determined spectrophotometrically at 412 nm. Appropriate controls were included for each experiment (11). The amount of CT fixed by an individual sample was calculated by subtracting the observed z value [− ln (1 − y), where y = percent hemolysis], where z represents the average number of CT molecules per cell, from the buffer control z value (11).

Results

A CT fixation plot for Dau IgM and its C_μ4 fragment is shown in Fig. 2. 50% of the available CT was fixed by 1.5 μg of intact IgM whereas 46 μg of the C_μ4 fragment were required to fix an equivalent amount of CT. The amounts of the other fragments of IgM which were needed to bind 50% of the available CT are summarized in Table I. Whereas only 1.5 μg of Dau IgM were required to bind half of the available CT, to our surprise up to 2,000 μg of (Fc)_μ, which was the
TABLE I

CT Fixation by Dau IgM and Its Fragments

Test material	Molecular weight*	Amount ‡
Dau IgM	840,000 daltons	1.5 μg
Fc$_{14}$	340,000 daltons	>2,000
Fc$_{13}$	34,000 daltons	40 μg
Fab	48,000 daltons	>2,750
Reduced Fab (CNBr 5)$_2$	Unfractionated	>1,575
Fab$_{213}$	40,000 daltons	20 μg
C$_{14}$ Fragment	6,800 daltons	46 μg

* Data on the molecular weights of Dau IgM and its fragments were determined as published [i.e., Fc$_{14}$, Fc$_{13}$, and Fab (6), (CNBr 5)$_2$ (7), and C$_{14}$ Fragment].

‡ Amount required to bind 50% of the available CT.

highest amount tested, did not bind CT. However, if the assay were run such that whole human serum was incubated with the fragment (i.e., CH$_{50}$ fixation assay), there was C consumption as indicated by a drop from 160 CH$_{50}$ U to 95 CH$_{50}$ U. This is in agreement with the data published by Plaut et al. (5) for the (Fc)$_{14}$ of another human monoclonal IgM (Dis). As the latter assay measures total hemolytic activity (11), it might be that (Fc)$_{14}$ activates the late-acting C components and very little, if any, CT is actually fixed. Partial reduction of (Fc)$_{14}$ provided Fc$_{13}$ fragments which were effective in binding CT. Controls, consisting of Fab$_{14}$ and partially reduced Fab$_{13}$, did not bind CT even at high concentrations. The 40,000 mol wt dimer of CNBr 5, which contains the C$_{14}$ and a portion of the C$_{13}$ domain, was found to bind CT effectively (only 20 μg being required). In contrast, the control CNBr digest of Fab$_{13}$ was not capable of.
binding CT. Finally, 46 μg of the 6,800 mol wt Cμ4 fragment were needed to bind 50% of the available CT. Sedimentation velocity analysis of this fragment in the analytical ultracentrifuge in the buffer used for the CT fixation assay failed to reveal observable aggregation. In view of this, it is remarkable that on a molar basis the 60 residue Cμ4 fragment is one-sixth as efficient as the Fcμ fragment.

Discussion

The only primary structure common to the two smallest CT-fixing fragments, Cμ4 and CNBr 5, is the 24 residues on the amino-terminal side of the disulfide loop making up the Cμ4 domain (residues 468-491 in IgM Ou [10]). These data lead us to suggest that this portion of the Fcμ is responsible for CT binding. However, the possibility that the CT-binding site in the intact molecule may also involve other regions of the Fcμ is not necessarily ruled out. In this regard it would be particularly interesting to test the CT-fixing ability of the Cμ3 domain when a method for isolating it is found. It should be noted that the 24 residue sequence common to Cμ4 and CNBr 5 has the highest degree of homology to human β2-microglobulin of any in the terminal domain, having 8 out of 24 identities and a total of 14 out of 24 conservative replacements (see Putnam et al. [10] and Peterson et al. [12] for comparative sequences). The relevance of this is pointed out by the fact that Painter et al. (13) have shown that β2-microglobulin fixes CT with high efficiency. On the other hand, a similar sequence comparison to the IgG domains (14) reveals that the 24 residues of Cμ4 have a higher degree of homology to Cγ3 than to the Cγ2 domain which has been suggested to be responsible for C activation on the basis of data accumulated using the CH₅₀ assay (2, 3). Specifically, there are 11 out of 24 identities and 4 conservative replacements between these 24 residues of the Cμ4 fragment and the analogous 24 residues in Cγ3, compared to 6 out of 24 identities and 3 conservative replacements between these 24 residues in Cμ4 and Cγ2. In view of this and of our data indicating CH₅₀ but not CT fixation by (Fc)μ it would be of interest to compare the CT-fixing ability of Cμ4 with that of Cγ2 and Cγ3.

Summary

An insight into the structural features of human IgM that are responsible for its capacity to bind the first component of complement (C) has been obtained by examining the ability of IgM subfragments to bind active C1 (CT). The smallest two fragments found to bind CT were the major CNBr fragment of the Fc portion of IgM and the Cμ4 fragment of the carboxy-terminal domain. The smallest fragment which fixes CT has a disaggregated mol wt of 6,800, consists of 60 residues, and contains no carbohydrate. Structural considerations and sequence overlaps suggest that the amino-terminal side of the Cμ4 domain (24 amino acid residues) might be responsible for fixing CT.

Received for publication 1 July 1974.
References

1. Edelman, G. M., and W. E. Gall. 1969. The antibody problem. *Annu. Rev. Biochem.* 38:415.
2. Kehoe, J. M., and M. Fougereau. 1969. Immunoglobulin peptide with complement fixing activity. *Nature (Lond.)* 224:1212.
3. Ellerson, J. R., D. Yasmeen, R. H. Painter, and K. J. Dorrington. 1972. A fragment corresponding to the CH2 region of IgG with complement fixing activity. *FEBS (Fed. Eur. Biochem. Soc.) Lett.* 24:319.
4. Augener, W., H. M. Grey, N. R. Cooper, and H. J. Müller-Eberhard. 1971. The reaction of monomeric and aggregated immunoglobulins with C1. *Immunochemistry.* 8:1011.
5. Plaut, A. G., S. Cohen, and T. B. Tomasi, Jr. 1972. Immunoglobulin M: fixation of human complement by the Fc fragment. *Science (Wash. D. C.)*. 176:55.
6. Zikan, J., and J. C. Bennett. 1973. Isolation of F(α)μ and Fabμ fragments of human IgM. *J. Immunol.* 106:1136.
7. Zikan, J., and J. C. Bennett. 1974. Oxidative sulfitolysis of human IgM. *J. Immunol.* 106:1136.
8. Hester, R. B., and R. E. Schrohenloher. 1974. Fragmentation of the Fcμ piece from a human IgM. *Fed. Proc.* 33:747.
9. Putnam, F. W., G. Florent, C. Paul, T. Shinoda, and A. Shimizu. 1973. Complete amino acid sequence of the mu heavy chain of a human IgM immunoglobulin. *Science (Wash. D. C.)*. 182:287.
10. Stroud, R. M., H. S. Shin, and E. Shelton. 1973. Complement components: assays, purification, and ultrastructure methods. *In Methods in Molecular Biology*, Vol. V. Theodore P. Zacharia, editor. Marcel Dekker, Inc., New York. 161.
11. Peterson, P. A., B. A. Cunningham, I. Berggard, and G. M. Edelman. 1972. β2-microglobulin-a free immunoglobulin domain. *Proc. Natl. Acad. Sci. U. S. A.* 69:1697.
12. Painter, R. H., D. Yasmeen, S. N. Assimeh, and M. D. Poulik. 1974. Complement fixing and macrophage opsonizing activities associated with β2 microglobulin. *Immunol. Commun.* 3:19.
13. Edelman, G. M., B. A. Cunningham, W. E. Gall, P. D. Gottlieb, V. Rutishauser, and M. D. Waxdal. 1969. The covalent structure of an entire γG immunoglobulin molecule. *Proc. Natl. Acad. Sci. U. S. A.* 63:78.