Clinical relevance of the \textit{cagA} and \textit{vacA} s1m1 status and antibiotic resistance in \textit{Helicobacter pylori}: a systematic review and meta-analysis

Mohsen Karbalaei1, Amin Talebi Bezmin Abadi2* and Masoud Keikha3*

Abstract

\textbf{Background:} The role of \textit{Helicobacter pylori} (\textit{H. pylori}) virulence factors of such as \textit{vacA} s1m1 and \textit{cagA} in designating clinical outcomes and eradication rate has been deeply challenged in the last decade. The goal of this analysis was to identify the potential relevance between \textit{cagA} and \textit{vacA} genotypes with reported antibiotic resistance observed in clinical \textit{H. pylori} isolates.

\textbf{Methods:} This literature search was conducted in databases such as Clarivate analytics, PubMed, Scopus, EMBASE, DOAJ, and Google Scholar by April 2022, regardless of language restrictions and publication date. Quality of the included studies was assessed by the Newcastle–Ottawa scale. Statistical analysis of retrieved studies was fulfilled using Comprehensive Meta-Analysis software version 2.2. Following quality appraisal of eligible studies, potential association between the status of \textit{cagA} and \textit{vacA} genes with resistance to clarithromycin, metronidazole, amoxicillin, tetracycline, and levofloxacin was measured using odds ratio with 95% confidence interval. We also used sensitivity analyses and meta-regression to eliminate the source of heterogeneity from the overall estimates. Publication bias was assessed using funnel plot, Egger’s test, Begg’s test with the trim and fill procedure to assess the presence and magnitude of publication bias in the included studies.

\textbf{Results:} Our findings suggested that a significant relationship between \textit{cagA} status and increase resistance to metronidazole (OR: 2.69; 95% CI: 1.24–5.83). In subgroup analysis, we found that in the Western population, infection with \textit{cagA}-positive strains could be led to increase in the resistance to metronidazole (OR: 1.59; 95% CI: 0.78–3.32), amoxicillin (OR: 19.68; 95% CI: 2.74–141.18), and levofloxacin (OR: 1.33; 95% CI: 1.39–1.81). After implementation of trim and fill method, the adjusted OR was not significantly differed from original estimates which in turn represented our subgroup analysis was statistically robust. On the other hand, \textit{vacA} genotypes usually reduce the antibiotic resistance of this bacterium, so that \textit{vacA} s1m1 significantly reduces the resistance to metronidazole (OR: 0.41; 95% CI: 0.20–0.86). Surprisingly, resistance of \textit{vacA} s2m2 strains to antibiotics was low, the reason may be due to the non-inflammatory properties of strains containing \textit{vacA} s2m2. The meta-regression and sensitivity analyses successfully reduced the effect of heterogeneity from the overall estimates. In addition, although the pooled OR is reduced after trim and fill adjustment but results do not change the conclusion regarding \textit{vacA} genotypes and antibiotic resistance.

*Correspondence: amin.talebi@modares.ac.ir; Masoud.keykha90@gmail.com

1 Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Full list of author information is available at the end of the article
Conclusions: According to our findings, it was clearly demonstrated that \textit{cagA}-positive strains are resistance to metronidazole, especially in Western countries. In Western countries, \textit{vacA} s1m1 increases resistance to amoxicillin and levofloxacin. Based on the present findings, the \textit{vacA} s1m1 genotype significantly increases resistance to metronidazole, while the \textit{vacA} s1m2 decreases resistance to clarithromycin and metronidazole. Resistance to antibiotics in less virulent (\textit{vacA} s2m2) strains is statistically significant lower than others.

Keywords: Antibiotic resistance, \textit{cagA}, \textit{H. pylori}, Treatment, \textit{vacA}

Background

\textit{Helicobacter pylori} (\textit{H. pylori}) is a S-shaped microorganism that colonize in the surface of gastric mucosa of half the world’s population, maybe even more [1]. Long last colonization with this bacterium leads to a chronic progressive gastric inflammation associated with severe gastrointestinal effects [2]. Nowadays, eradication of \textit{H. pylori} is the main therapeutic strategy in management of patients who suffering from different complications including peptic ulcer disease (PUD), gastric cancer (GC), mucosa associated-lymphoid tissue (MALT) lymphoma, and atrophic gastritis [3]. According to the Kyoto Global Consensus Conference, eradication of \textit{H. pylori} infection among the asymptomatic subjects seems an necessity [4]. Nevertheless, the rate of the treatment for \textit{H. pylori} infection is declining annually; the emergence of clarithromycin-resistant strains has been declared a global threat by the World Health Organization (WHO) [5, 6].

The cure rate of \textit{H. pylori} infection could be affected by both microbial (high bacterial load, point mutations, biofilm formation, efflux pumps, and virulence factors), and non-microbial (cytochrome P450 2C19 polymorphism, multidrug resistance transporter-1, pro-inflammatory cytokines polymorphism, smoking, life style, duration of treatment, high gastric acidity, poor patient compliance) factors; all of these factors play a role in the severity of the infection [3, 7, 8]. Vacuolating cytotoxin A (\textit{vacA}) and cytotoxin associated gene A (\textit{cagA}) are considered as the main virulence factors of \textit{H. pylori} [9]. The toxin encoded by the \textit{vacA} gene causes apoptosis, T-cell activation, and persistent infection (through inhibition of immune system), which these changes are lead to severe gastrointestinal outcomes [10]. Full-length sequence analysis of the \textit{vacA} gene showed that this gene has a mosaic structure and is encoded by different subfamilies s1, m1 and m2 alleles, with its own biological activities [11]. The \textit{vacA} s1/m1 genotype possess the highest toxicity property for host cells, while the \textit{vacA} s2/m2 genotype biologically is inactive [12, 13]. \textit{CagA} is encoded by \textit{cagA} gene; this toxin is highly immunogenic, and upon entering the host cell, it activates kinases through EPIYA motifs in its C-terminal, which in turn disrupt signaling pathways [14].

Studies have shown that this protein induces IL-8 expression, which contributes to the formation of cytokine storms and eventually susceptibility to PUD as well as GC [15]. Both CagA and VacA antigens significantly affect the colonization and pathogenesis of this bacterium, and play a determining role in cure rate of disease [16, 17]. Although chromosomal mutations are considered to be the main mechanism of antibiotic resistance, but, the location of these single nucleotide polymorphisms (SNPs) is not the same in all populations, and therefore, understanding the mechanisms of antibiotic resistance of \textit{H. pylori} is essential for the introduction of rational antibiotic combinations [18]. In recent studies, the eradication results associated with \textit{cagA} and \textit{VacA} status are highly inconsistent [19–22]. Interestingly, in meta-analysis by Wang et al. (collecting the data from 26 papers), it was represented that the eradication rate of infection in patients infected with \textit{vacA} s1/\textit{cagA} positive strains was more conduciive compared to less virulent strains [8].

In this study, we performed a comprehensive literature search to demonstrate the relationship between \textit{cagA} or \textit{vacA} status and antibiotic resistance in \textit{H. pylori}.

Methods

Eligibility of relevant studies

Using international databases such as the Clarivate analytics, PubMed, Scopus, EMBASE, DOAJ, and Google Scholar, related articles to the effect of \textit{cagA} and \textit{vacA} on the antibiotic resistance of \textit{H. pylori} were reviewed, regardless of publication and language restrictions until April 2022. In this regard, we used keywords based on MeSH terms such as “Genotype”, “Antibiotic resistance”, “\textit{Helicobacter pylori}”, “\textit{H. pylori}”, “\textit{VacA}”, “\textit{CagA}”, and “Antimicrobial resistance”. The bibliography of articles was reviewed manually to retrieve missing related studies.

Inclusion and exclusion criteria

Our inclusion criteria were the following: (1) studies on the association between \textit{cagA}/\textit{vacA} status and antibiotic resistance; (2) studies on human subjects; (3) studies based on standard methodology (CLSI); (4) studies without repetitive samples. On the other hand, studies such
as case reports, reviews, congress abstracts, duplicates, studies on non \textit{cagA}/\textit{vacA} genes, in vitro studies, as well as studies without clear results were excluded from this study.

Data extraction
Eligibility of studies was evaluated by the two authors separately, and conflicting of interest was resolved by discussion. The main items were including: first author, country, year of publication, number of \textit{H. pylori} isolates, number of \textit{cagA}+ isolates, number of \textit{vacA} s1m1+ isolates, antimicrobial susceptibility tests, and frequency of each genotype (\textit{cagA} and \textit{vacA} s1m1) resistant to clarithromycin, metronidazole, amoxicillin, tetracycline, and levofloxacin (Table 1) [23–63].

According to the literature, \textit{vacA} s1m1 is the most virulent genotype of \textit{H. pylori}, nevertheless, in the present meta-analysis, we evaluated the frequency of other \textit{vacA} genotypes in all eligible studies. The distribution of antibiotic resistance of three genotypes \textit{vacA} s1m2, \textit{vacA} s2m1, and \textit{vacA} s2m2 was assessed and their results are shown in Table 2.

Quality assessment
The Newcastle–Ottawa scale (NOS) was used to assess the quality of the included studies. The quality of studies was evaluated based on the items such as selection, comparability, and outcome, so that NOS scores in the range of 1–3, 4–6, and 7–9 were considered low, medium, and high respectively. The quality appraisal process was performed separately by the two authors, and the disagreement was resolved through discussion.

Statistical analysis
Retrieved studies was analyzed using Comprehensive Meta-Analysis (CMA) software version 2.2 (Biostat, Englewood, NJ, USA). Frequency of \textit{cagA}– and \textit{vacA}–positive strains was measured based on the event rate with 95% confidence interval (95%CI). Finally, the association between the genotypes of these virulence factors and resistance to clarithromycin, metronidazole, amoxicillin, tetracycline, and levofloxacin was calculated using the odds ratio (OR) and corresponding 95% CI. For measuring heterogeneity, we used from two parameters Cochran’s Q statistic and \(I^2\) statistic. The fixed-effects model was used when there was no significant heterogeneity (\(p\) value \(\geq 0.10\) and \(I^2 \leq 50\%\)) between the studies [64]; a random-effect model based on the DerSimonian and Laird method was used if significant heterogeneity was identified [65]. Eventually, publication bias was assessed by Egger’s \(p\) value test, Begg’s \(p\) value test, and asymmetry of funnel plot [66]. We also used the “trim-fill” method to prove the correction effect on publication bias according to Duval and Tweedie [67, 68]. We performed subgroup analysis based on several items such as ethnicity, study sample size, diagnostic test, and developing/developed status of country. Moreover, the leave-one-out method as sensitivity analyses were performed to estimate the effect of each included study on overall effect [69]. A random effects meta-regression analysis was performed to assess the potential sources of heterogeneity to explore factors that may be associated with between-study variations in \textit{H. pylori} antibiotic resistance.

Results

Characteristics of the included studies
A systematic literature search was conducted based on PRISMA guideline. In the first stage, 509 articles were selected as potential documents. According to the inclusion criteria 471 articles were deleted and finally 38 eligible articles were entered in the present research (Fig. 1). Of all eligible studies, 38 articles had evaluated the relationship of \textit{cagA} and antibiotic resistance, while 23 articles had assessed the effect of \textit{vacA} genotypes on antibiotic resistance. The NOS results showed that the quality of eligible studies was ranged between 6 and 8. All studies in had been performed in regions such as Asia, Europe, and Latin America during 2001–2020. Standard methods for detecting antibiotic resistance included agar dilution, modified disk-diffusion agar, E-test, PCR-RFLP, GenoType HelicoDR kit. In the present study, 5156 of clinical positive samples were evaluated, and consequently the frequency of infection with \textit{cagA} and \textit{vacA} s1m1 was computed 64.6% (95% CI: 58.4–70.4) and 41.9% (95% CI: 34.3–50.0), respectively.

The vacA status and antibiotic resistance
Overall, 23 articles had appraised the \textit{vacA} genotypes status and resistance to clarithromycin, metronidazole, amoxicillin, tetracycline, and levofloxacin. Interestingly, we found that the \textit{vacA} s1m1 significantly reduced the risk of resistance to metronidazole (OR: 0.41; 95% CI: 0.20–0.86) (Fig. 2). After exclusion 4 studies, the sensitivity analysis was similar (OR: 0.34; 95% CI: 0.29–0.40) without significant heterogeneity rate. Moreover, the results were not significant for other antibiotics (Table 3). Due to the presence of a significant asymmetry in funnel plots, we performed trim and fill method to exclude potential publication bias. Adjusted OR according to the trim-and-fill method was lower than the original estimates but results were similar to the original findings (OR: 0.25; 95% CI: 0.11–0.57); however, a significant difference was not noted between before and after filling the potential missing studies (Fig. 3). Thus, trim and fill method did not change conclusion, indicating
First author	Country	Year	Number of H. pylori isolates	Methods	Number of H. pylori resistant to clarithromycin	Number of H. pylori resistant to metronidazole	Number of H. pylori resistant to amoxicillin	Number of H. pylori resistant to tetracycline	Number of H. pylori resistant to levofloxacin	Refs.				
Broutet	France	2001	156	E-test	NR	NR	NR	NR	NR	[23]				
Solca	Switzerland	2001	71	38	NR	NR	NR	NR	NR	[24]				
Toro	Spain	2004	363	E-test	NR	NR	NR	NR	NR	[25]				
Elviss	UK	2005	101	81	NR	NR	NR	NR	NR	[26]				
Broutet	France	2006	62	40	NR	NR	NR	NR	NR	[27]				
Chihu	Mexico	2005	108	NR	NR	NR	NR	NR	NR	[28]				
Francioso	Italy	2006	62	34	NR	NR	NR	NR	NR	[29]				
Lai	Taiwan	2006	31	11	NR	NR	NR	NR	NR	[30]				
Boyanova	Bulgaria	2009	108	NR	NR	NR	NR	NR	NR	[31]				
Taneikie	Ireland	2009	103	70	NR	NR	NR	NR	NR	[32]				
Hu	Taiwan	2009	133	39	NR	NR	NR	NR	NR	[33]				
Trespalacios	Colombia	2010	117	44	NR	NR	NR	NR	NR	[34]				
Ayala	Mexico	2010	299	122	NR	NR	NR	NR	NR	[35]				
Babab	Japan	2011	35	NR	NR	NR	NR	NR	NR	[36]				
Khan	Pakistan	2012	178	83	NR	NR	NR	NR	NR	[37]				
Yula	Turkey	2013	91	68	NR	NR	NR	NR	NR	[38]				
Ghorasou	Malaysia	2014	59	67	NR	NR	NR	NR	NR	[39]				
Altabl	Colombia	2013	149	78	NR	NR	NR	NR	NR	[40]				
Pengo	Colombia	2013	149	78	NR	NR	NR	NR	NR	[41]				
First author	Country	Year	Number of H. pylori isolates	Number of H. pylori isolates	Methods	Number of H. pylori resistant to clarithromycin	Number of H. pylori resistant to metronidazole	Number of H. pylori resistant to amoxicillin	Number of H. pylori resistant to tetracycline	Number of H. pylori resistant to levofloxacin	Refs.			
--------------	---------------	------	-----------------------------	-----------------------------	-------------	---	---	---	---	---	-------			
Karabiber	Turkey	2014	98	50	NR	Disk-diffusion	3/6	NR	NR	NR	NR			
Rasheed	Pakistan	2014	46	37	27	E-test	26/26	NR	NR	NR	NR			
Hussein	Iraq	2015	74	35	42	GenoType HelicoDR kit	3/12	2/12	NR	NR	[46]			
Boyanova	Bulgaria	2015	84	64	21	E-test	9/25	12/25	NR	NR	NR			
Fasciana	Italy	2015	100	48	35	E-test	135/1175	63/578	294/1176	29/1177	NR			
Liou	Taiwan	2015	1395	597	300	Agar dilution	3/8	3/8	NR	NR	NR			
Millian	Mexico	2016	45	35	36	Disk-diffusion	7/7	6/7	34/36	21/36	NR			
Miftahusur	Indonesia	2016	77	73	52	E-test	27/54	21/54	21/35	16/35	NR			
Schwetz	Austria	2016	178	100	72	E-test	18/151	18/151	65/151	66/151	NR			
Bachir	Algeria	2018	163	97	100	E-test	20/23	10/23	52/56	23/56	NR			
Farzi	Iran	2019	68	57	26	Agar dilution	14/35	NR	15/30	NR	NR			
Imkamp	Switzerland	2019	41	19	NR	E-test	13/48	NR	13/48	NR	NR			
Khani	Iran	2019	61	40	25	E-test	15/20	NR	22/35	NR	NR			
Abdollahi	Iran	2019	63	37	NR	Modified disk diffusion	11/12	4/12	25/33	9/33	3/10			
Farzi	Iran	2019	33	29	12	Agar dilution	1/19	2/20	2/2	1/2	9/9			
Wang	China	2019	100	87	42	E-test	OR 2.192; 95% CI: 0.427–11.235	OR 0.763; 95% CI: 0.287–20.27	OR 1.509; 95% CI: 0.499–5.361	OR 0.287; 95% CI: 0.096–0.863	OR 0.434; 95% CI: 0.078–2.420	OR 0.758; 95% CI: 0.215–20.319	OR 5.133; 95% CI: 0.749–1804	[59]
Głowniak	Poland	2019	62	35	12	E-test	3/4	7/11	3/4	11/16	3/4			
Hamdi	Iran	2020	50	27	8	E-test	2/4	3/11	17/34	3/34	5/8			

Note: The table continues with additional rows for other studies with similar data.
First author	Country	Year	Number of H. pylori isolates	Number of cagA + H. pylori isolates	Number of vacA s1m1 + H. pylori isolates	Methods	Number of H. pylori resistant to clarithromycin	Number of H. pylori resistant to metronidazole	Number of H. pylori resistant to amoxicillin	Number of H. pylori resistant to tetracycline	Number of H. pylori resistant to levofloxacin	Refs.
Haddadi	Iran	2020	128	72	NR	Disk diffusion	4/4	47/52	20/23	5/5	NR	[62]
Okullu	Turkey	2020	33	11	NR	GenoType HelicoDR kit	4/13	NR	NR	NR	NR	[63]

NR not reported
First author	vacA genotypes	Clarithromycin	Metronidazole	Amoxicillin	Tetracycline	Levofloxacin	Refs.
Solca	vacA s1/m2	4/12	8/28	NR	NR	NR	[24]
	vacA s2/m1	1/12	1/28	NR	NR	NR	
	vacA s2/m2	3/12	10/28	NR	NR	NR	
Elviss	vacA s1/m2	1/3	NR	NR	NR	NR	[26]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	0/3	2/8	NR	NR	NR	
Elviss	vacA s1/m2	2/3	22/31	NR	NR	NR	[27]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	0/3	1/31	NR	NR	NR	
Francesco	vacA s1/m2	6/15	NR	NR	NR	NR	[29]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	4/15	NR	NR	NR	NR	
Trespalacios	vacA s1/m2	NR	NR	NR	NR	NR	[34]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	2/15	9/15	2/15	NR	NR	
Vega	vacA s1/m2	NR	NR	NR	NR	NR	[36]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	10/83	29/113	NR	NR	NR	
Alfizah	vacA s1/m2	NR	12/28	NR	NR	NR	[42]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	NR	NR	NR	NR	NR	
Rasheed	vacA s1/m2	7/22	13/34	9/25	0/2	NR	[45]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	2/22	3/34	2/25	0/2	NR	
Hussein	vacA s1/m2	2/12	NR	NR	NR	1/3	[46]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	3/12	NR	NR	NR	0/3	
Fasciana	vacA s1/m2	4/25	NR	NR	NR	NR	[48]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	9/25	NR	NR	NR	NR	
Liou	vacA s1/m2	76/643	162/646	13/645	11/634	62/646	[49]
	vacA s2/m1	0/3	2/3	0/3	0/3	0/3	
	vacA s2/m2	0/5	0/5	0/5	0/5	1/5	
Mill’an	vacA s1/m2	0/8	NR	NR	NR	NR	[50]
	vacA s2/m1	0/8	NR	NR	NR	NR	
	vacA s2/m2	2/8	NR	NR	NR	NR	
Schwetz	vacA s1/m2	14/54	6/35	NR	NR	3/21	[52]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	19/54	13/35	NR	NR	3/21	
Bachir	vacA s1/m2	6/38	13/102	NR	NR	NR	[53]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	9/38	19/102	NR	NR	NR	
Farzi	vacA s1/m2	11/23	29/56	9/21	2/3	9/19	[54]
	vacA s2/m1	NR	NR	NR	NR	NR	
	vacA s2/m2	2/23	4/56	4/21	0/3	3/19	
Khani	vacA s1/m2	12/48	NR	NR	NR	NR	[56]
	vacA s2/m1	9/48	NR	NR	NR	NR	
	vacA s2/m2	14/48	NR	NR	NR	NR	
that our results were statistically robust regarding potential association between \textit{vacA} s1m1 and resistance to metronidazole.

The details of overall estimates related to \textit{vacA} s1m1 based on the sample size of the study, diagnostic test, and developing/developed status of country are given in the Table 4.

In subgroup analysis, the results showed that in an Asian population \textit{vacA} s1m1 significantly increases the resistance of \textit{H. pylori} to metronidazole (OR: 0.37; 95% CI: 0.15–0.90), while in Western countries, \textit{vacA} s1m1 increases resistance to amoxicillin and levofloxacin. (OR: 16.58; 95% CI: 1.77–154.58, and OR: 6.25; 95% CI: 1.63–23.84, respectively). We showed that \textit{vacA} s2m2 decreases resistance to all five antibiotics (clarithromycin, metronidazole, amoxicillin, tetracycline and levofloxacin). On the other hand, \textit{vacA} s1m2 decreases resistance to clarithromycin and metronidazole, while \textit{vacA} s2m1 only decreases resistance to clarithromycin. Details on the relationship between non-\textit{vacA} s1m1 genotypes and antibiotic resistance are summarized in Table 5.

A meta-regression was performed to examine the sources of heterogeneity according to the publication year or NOS score; the results of meta-regression showed that \textit{H. pylori} antibiotic resistance was significantly influenced by publication year (Slope intercept: -0.18; 95% CI:

Table 2 (continued)

First author	\textit{vacA} genotypes	Clarithromycin	Metronidazole	Amoxicillin	Tetracycline	Levofloxacin	Refs.
Farzi	\textit{vacA} s1/m2	7/12	14/27	4/10	1/9	5/9	[58]
	\textit{vacA} s2/m1	NR	NR	NR	NR	NR	
	\textit{vacA} s2/m2	1/12	4/27	3/10	2/9	0/2	
Hamidi	\textit{vacA} s1/m2	4/11	14/34	7/16	4/8	5/14	[61]
	\textit{vacA} s2/m1	NR	NR	NR	NR	NR	
	\textit{vacA} s2/m2	2/11	4/34	3/16	1/8	1/14	
Glowniak	\textit{vacA} s1/m2	1/4	3/8	NR	NR	1/4	[60]
	\textit{vacA} s2/m2	1/4	3/8	NR	NR	2/4	

Fig. 1 The flowchart of included studies
-0.24 to -0.12; SE: 0.029; p value: 0.01) or NOS score scale (Slope intercept: -7.30; 95% CI: -8.98 to -5.63; SE: 0.85; p value: 0.01). In subgroup analysis, we found no association between the high virulent strains containing \(\text{cagA} \text{-vacA}_{s1m1}\) and antibiotic resistance (Fig. 4). In general, it seems that the degree of antibiotic resistance in strains with high pathogenicity is not different from the strains with low virulence. Due to heterogeneity and publication bias, we need further studies with larger sample sizes.

The \(\text{cagA}\) status and antibiotic resistance

Association between \(\text{cagA}\) status and resistance to clarithromycin, metronidazole, amoxicillin, tetracycline, and levofloxacin had been measured in 40 articles. Based on the current results, it seems that \(\text{cagA}\) significantly increases metronidazole resistance (OR: 2.69; 95% CI: 1.24–5.83; p value: 0.01), especially in Western countries (Fig. 5). By discovering the potential sources of heterogeneity, we excluded 3 studies. Sensitivity analysis showed a similar OR: 2.67 (95% CI: 1.20–5.94; p value: 0.01). The details of overall estimates related to \(\text{cagA}\) based on the sample size of the study, diagnostic test, and developing/developed status of country are addressed in the Table 6. However, the results of Egger’s regression test and asymmetry of funnel plot showed evidence of publication bias in overall estimates. Thus, we have performed the trim and fill method to adjust for publication bias.

Table 3 Odds ratio (OR) with 95% CI for \(\text{vacA}_{s1m1}\) genotype and antibiotic resistance in *H. pylori*

Antibiotic resistance	Random effects model	Heterogeneity	Publication bias		
	OR (95% CI)	p value	I-squared	Egger’s p value	Begg’s p value
Clarithromycin	0.40 (0.13–1.22)	0.1	94.69	0.01	0.79
Metronidazole	0.41 (0.20–0.86)	0.01	93.54	0.37	0.23
Amoxicillin	0.32 (0.01–5.78)	0.4	96.70	0.05	0.5
Tetracycline	0.19 (0.007–5.49)	0.3	94.80	0.1	0.2
Levofloxacin	0.40 (0.03–4.18)	0.4	97.0	0.04	0.9
and antibiotic resistance (OR: 0.29; 95% CI: 0.13–0.64; \(p \) value: 0.001). Hence, after imputed missing studies by the trim and fill method, the adjusted estimate significantly dropped from OR: 2.69 (95% CI: 1.24–5.83) to OR: 0.29 (95% CI: 0.13–0.64) that revealed there is no relationship between \(cagA \) status and resistance to metronidazole. The population sample size was low in some included studies that may cause to this significant difference between adjusted OR and original estimates. More extensive research is needed to confirm the present findings.

In addition, our findings showed a non-significant association between \(cagA \) status and resistance to clarithromycin, amoxicillin, tetracycline, and levofloxacin. The results of \(cagA \) status and resistance to these antibiotics are listed in Table 7. Sensitivity analysis also confirmed the stability of the overall estimates after excluding studies that may cause significant heterogeneity.

A meta-regression was performed to examine the sources of heterogeneity according to the publication year or NOS score; the results of meta-regression showed that publication year (Slope intercept: \(-0.150; 95\% \text{ CI: } -0.20 \text{ to } -0.10; SE: 0.025; \ p \text{ value: 0.01}) or NOS score scale (Slope intercept: \(-5.26; 95\% \text{ CI: } -6.82 \text{ to } -3.69; SE: 0.79; \ p \text{ value: 0.01}) was disrupted the association between \(cagA \) status and \textit{H. pylori} antibiotic resistance. In the subgroup analysis, our results showed that \(cagA \) increases resistance to metronidazole, amoxicillin, and levofloxacin only in the Western population (OR: 1.59; 95% CI: 0.78–3.21, OR: 19.68; 95% CI: 2.74–141.18, and OR: 11.33; 95% CI: 1.39–91.85, respectively), nonetheless, the results associated with the Asian countries were not significant (Table 8). After the trim and fill method, the adjusted OR was slightly lower than original estimates (but not

Table 4 The \textit{vacA s1m1}-positive status and metronidazole resistance

Factors	Random-effects model	Heterogeneity			
	OR	95%CI	\(p \text{ value} \)	\(p \text{ value} \)	I-squared
Level of country					
Developing country	0.30	0.13–0.68	0.01	0.01	86.26
Developed country	0.55	0.18–1.65	0.01	0.01	93.33
Sample size					
≥ 100	1.13	0.84–1.52	0.01	0.31	24.65
≤ 100	0.28	0.13–0.60	0.01	0.05	64.32
Diagnostic test					
E-test	0.64	0.26–1.57	0.3	0.02	58.32
Agar dilution based	0.25	0.03–1.79	0.17	0.5	32.81
Disk diffusion based	2.12	0.96–4.67	0.05	0.9	0.00
Molecular based	1.33	0.46–3.80	0.03	0.9	0.00
significant difference) which indicates the reliability of the overall estimates.

Publication bias

The results of Egger’s and Begg’s tests, as well as funnel plot asymmetry showed a significant publication bias; however, when the trim-and-fill method was performed to correct the results, the adjusted OR for vacA genotypes was decreased but no significant difference was observed compared to original estimates (Fig. 6). However, the adjusted OR for cagA status and resistance to metronidazole was dropped significantly that represents there is no association between cagA status and antibiotic resistance.

Discussion

The cagA and vacA genes are the most well-known virulence factors of H. pylori, and previous studies have demonstrated that infection with cagA-vacA s1m1 positive strains can increase the risk of severe gastrointestinal disorders [70, 71]. Wang et al. understood that infection with strains carrying both cagA and vacA products could increase the chance of eradicating H. pylori infection, however, the reported heterogeneity was significant [8]. Infection with cagA-positive strains can be led to gastric mucosal inflammation, which in turn increases the diffusion of antibiotic (following an increase in blood flow, disruption of mucosal barrier, and inhibition of IL-1β-induced gastric acid secretion) and ultimately high cure rate [72, 73]. Interestingly, vacA s1-positive strains reduce the risk of treatment failure due to induce sever gastric inflammation and lower expression of somatostatin [74, 75].

To the best of our knowledge, this is the first meta-analysis study that investigated the potential association between H. pylori virulence factor and antibiotic resistance. Based on this analysis, a considerable association exists between the status of vacA-cagA genes and resistance of H. pylori to commonly used antibiotic agents. The results of the present study indicated that cagA-positive
strains can significantly increase resistance to metronidazole (OR: 2.69; 95% CI: 1.24–5.83; p value: 0.01). Although, s1m1 genotype of vacA significantly reduces resistance to metronidazole, vacA s1m2 reduces resistance to both clarithromycin and metronidazole. Moreover, vacA s2m1 decreased resistance to clarithromycin, as well as vacA s2m2 decreased resistance to metronidazole, clarithromycin, amoxicillin, tetracycline, and levofloxacin. We showed that cagA-positive strains in particular in Western countries increase the risk of resistance to metronidazole, amoxicillin, and ciprofloxacin.

In their study, Chisholm et al. asserted that resistance against metronidazole was not merely due to mutation in the rdxA gene, but was influenced by a variety of mechanisms [76]. In a study by Kim et al., they showed that resistance to metronidazole could occur even in the lack
of rdxA expression or truncated RdxA [77]. Correlation between cagA pathogenicity islands (PIA) and resistance to metronidazole first was investigated by Alfizah et al.; they found that strains containing an intact cag-PAI region were sensitive to metronidazole, while strains possessing partially deleted cagPAI regions were resistant to metronidazole [42]. Variations in the 3’ terminal of cagA lead to the differentiation of new subclones with unique genetic characteristics, and due to this fact, Rengifo et al. in their study demonstrated that genetic changes in this region cause the formation of antibiotic-resistant subclones [43, 78]. Recent studies show that in patients treated with antibiotics, new subclones of cagA are formed due to recombination and quorum sensing, which differ in some features and this phenomenon is effective in antibiotic resistance [79, 80]. We showed that gastric colonization with cagA-positive strains, especially in Western countries, can potentially increase the risk of resistance to common antibiotics. In a study conducted by Yue et al., they realized that the prevalence of resistance to metronidazole in strains with Western-type cagA 3’ variable region was significantly higher than East Asian-type strains [81, 82]. Today, evidence suggests that CagA protein is involved in processes such as integron acquisition, biofilm formation, and efflux pump function [83–85]. In general, cagA-positive strains, especially in the Western population, seem to be considered as diagnostic biomarkers in the phenomenon of antibiotic resistance. Recently, Ayibatari et al. revealed that patients carrying Western-type cagA had higher rates of gastritis than East Asian-type cagA [86].

Our results showed that vacA s2m2 genotype was associated with a significant decrease in resistance to antibiotics. Strains containing vacA s2m2 genotype are not able to produce VacA cytotoxic antigen [87]. Krzyżek et al. observed that the change to coccoid form in vacA s1m1 strains was significantly higher than vacA s2m2 strains [88]. Studies show that vacA s2m2 strains have higher nutritional requirements and are also less compatible with antibiotics, so they are more sensitive to antibiotics [89–91]. Though, our results suggested that there is no meaningful association between cagA/vacA s1m1 double positive H. pylori infection and antibiotic resistance. The biofilm formation capacity of vacA s1m1 genotype is higher than other genotypes, which in turn is an effective strategy in antibiotic resistance [92, 93]. Our results (as several cross-sectional studies) showed that the s1m1 and s1m2 genotypes reduce the risk of resistance to metronidazole and clarithromycin [59, 94–96]. Strains containing s1 or m1 are strong immunogens to stimulate the immune system and gastritis, so antibiotic delivery in the stomach lumen increases due to increased blood flow [39]. Nevertheless, the effect of other virulence factors may be ignored, for example Brennan et al. showed that the incidence of infection with s1m1/s1m2 strains was higher in treatment-naïve patients than in those previously treated [91].

Overall, our statistical analysis showed that metronidazole resistance was significantly high in cagA-positive H. pylori strains. As well as, less virulent vacA s2m2 genotype was sensitive to all antibiotics. Our study had several limitation including: (1) small ample size; (2) study only on adult population; (3) high heterogeneity among the included studies; (4) imbalanced geographical distribution; (5) inaccessibility to raw data to assess bacterial density and other factors in cag PAI; (6) publication bias. However, we performed meta-regression and sensitivity analyses to diminish the effects of heterogeneity on the reliability of the pooled estimates. Meta-regression and sensitivity analyses assisted us exclude the impact of some positive data on the overall estimates. Moreover, we used random-effects models to establish associations among the moderate variables with high heterogeneity. Therefore, it is appropriate to present evidence, but the findings should be interpreted with more caution. In the current meta-analysis, publication bias considerably changed the association between cagA status and resistance to metronidazole according to the trim-and-fill method. Meanwhile, adjusted OR for vacA genotype and antibiotic resistance after implementation of the trim and fill producer revealed that results were slightly lower without significant difference with overall estimates.

Table 7 Odds ratio (OR) with 95% CI for cagA genotype and antibiotic resistance in H. pylori

Resistance to	Random-effects model	Heterogeneity	Publication bias			
	OR (95%CI)	p value	p value	I-squared	Egger’s p value	Begg’s p value
Clarithromycin	1.61 (0.63–4.11)	0.31	0.01	95.90	0.01	0.62
Metronidazole	2.69 (1.24–5.83)	0.01	0.01	96.42	0.01	0.27
Amoxicillin	5.14 (0.23–114.5)	0.33	0.01	98.46	0.02	0.21
Tetracycline	1.32 (0.01–122.0)	0.95	0.01	95.59	0.01	0.50
Levofloxacin	8.77 (0.24–310.8)	0.21	0.01	98.21	0.01	0.50
Table 8 Results of subgroup analysis for both Asian and Europe/America (West) populations

Virulence factor	Region	Clarithromycin OR 95% CI	p value	Metronidazole OR 95% CI	p value	Amoxicillin OR 95% CI	p value	Tetracycline OR 95% CI	p value	Levofloxacin OR 95% CI	p value
cagA	Asia	3.12 0.64–15.17	0.1	5.06 1.24–20.12	0.02	3.26 0.10–97.37	0.49	0.73 0.007–83.60	0.9	5.34 0.04–600.0	0.48
	West	0.87 0.31–2.43	0.7	1.59 0.78–3.21	0.1	19.68 2.74–141.18	0.03	NA NA NA	NA	11.33 1.39–91.85	0.02
vacA s1m1	Asia	0.22 0.06–0.81	0.02	0.37 0.15–0.90	0.03	0.08 0.002–2.91	0.16	0.13 0.004–4.76	0.27	0.22 0.01–0.03	0.27
	West	0.65 0.16–2.52	0.05	0.46 0.13–1.58	0.21	16.58 17.7–154.58	0.01	NA NA NA	NA	6.25 1.63–23.84	0.01
vacA s1m2	Asia	0.17 0.04–0.71	0.01	0.47 0.14–1.51	0.2	0.11 0.003–3.94	0.22	0.05 0.001–4.66	0.20	0.23 0.01–3.05	0.26
	West	0.10 0.03–0.32	0.01	0.23 0.03–1.41	0.1	NA NA NA	NA	NA NA NA	NA	0.033 0.006–0.17	0.01
vacA s2m1	Asia	0.04 0.01–0.12	0.07	0.40 0.13–119.23	0.40	0.02 0.01–1.34	0.06	0.02 0.01–1.34	0.06	0.02 0.01–1.34	0.06
	West	0.06 0.01–0.06	0.09	0.01 0.00–0.02	0.5	NA NA NA	NA	NA NA NA	NA	NA NA NA	NA
vacA s2m2	Asia	0.06 0.02–0.19	0.01	0.01 0.006–0.02	0.01	0.044 0.019–0.12	0.01	0.035 0.008–0.14	0.001	0.02 0.007–0.08	0.01
	West	0.07 0.03–0.15	0.01	0.15 0.05–0.42	0.01	0.024 0.003–0.19	0.001	NA NA NA	NA	0.12 0.003–5.75	0.28
cagA-vacA s1m1	Asia	0.53 0.38–0.75	0.07	1.31 0.88–1.94	0.17	NA NA NA	NA	NA NA NA	NA	NA NA NA	NA
	West	1.87 0.67–486	0.23	0.42 0.07–2.45	0.33	NA NA NA	NA	NA NA NA	NA	NA NA NA	NA

NA not available
Conclusions
In the current meta-analysis, our findings showed that infection with cagA-positive strains of H. pylori significantly increases the risk of metronidazole resistance in Western countries. In addition, vacA s1m1 increases resistance to amoxicillin and levofloxacin in Western countries. According to our findings, the vacA s1m1 significantly increases resistance to metronidazole, while the vacA s1m2 decreases resistance to clarithromycin and metronidazole. Additionally, antibiotic resistance to clarithromycin, metronidazole, amoxicillin, tetracycline, and levofloxacin in less virulent H. pylori strains (carrying vacAs2m2 genotype) is significantly lower than others. We also performed the trim and fill method to exclude the potential bias from the overall estimates. Although, the adjusted OR was slightly lower than original estimates but this difference was not significant.

Abbreviations
H. pylori: Helicobacter pylori; PU: Peptic ulcer; MALT: Gastric mucosa associated-lymphoid tissue; GC: Gastric cancer; WHO: World Health Organization; vacA: Vacuolating cytotoxin A; cagA: Cytotoxin associated gene A; PUD: Peptic ulcer disease; SNPs: Single nucleotide polymorphisms; MOS: Newcastle–Ottawa scale; CMA: Comprehensive Meta-Analysis; CI: Confidence interval; OR: Odds ratio.

Acknowledgements
We appreciate from both Mashhad University of Medical Sciences and Jiroft University of Medical Sciences.

Author contributions
ATB and MK2 have contributed to design of the work and analysis of data. MK1 and MK2 have drafted the work and substantively revised it. ATB and MK2 have reviewed and revised the draft manuscript. All authors read and approved the final manuscript.

Funding
We have not received any funding for this research.

Availability of data and materials
All data generated or analyzed during this study are included in this published article.

Declarations
Ethics approval and consent to participate
Not applicable (this paper was provided based on researching in global databases).

Consent for publication
Not applicable.

Competing interests
There is no any conflict of interest among the all authors.

Author details
1Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran. 2Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. 3Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Received: 3 January 2022 Accepted: 15 June 2022
Published online: 25 June 2022

References
1. Hooi JK, Lai WY, Ng WK, Suen MM, Underwood FE, Tanyingoh D, Mallertheiner P, Graham DY, Wong VW, Wu JC. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology. 2017;153(2):420–9.
2. Savoldi A, Carra E, Graham DY, Conti M, Tacciolini E. Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis. World J Gastroenterol. 2018;14(36):1372-1382e137.

3. Sugimoto M, Yamaoka Y. Virulence factor genotypes of Helicobacter pylori reflect cure rates of eradication therapy. Arch Immunol Ther Exp. 2009;57(1):45–56.

4. Sugano K, Tack J, Kuipers EJ, Graham DY, El-Omar EM, Miura S, Haruma K, Asaka M, Uemura N, Malfertheiner P. Kyoto global consensus report on Helicobacter pylori gastritis. Gut. 2015;64(9):1353–67.

5. Keikha M, Askari P, Ghazvini K, Karbalaei M. Levofloxacin-based therapy as an efficient alternative for eradicating Helicobacter pylori infection in Iran: a systematic review and meta-analysis. J Glob Antimicrob Resist. 2021;29:420–9.

6. Organization WHO. WHO publishes list of bacteria for which new antimicrobials are urgently needed. 2017.

7. Papastergiou V, Georgopoulos SD, Karatapanis S. Treatment of Helicobacter pylori infection: meeting the challenge of antimicrobial resistance. World J Gastroenterol. 2014;20(29):9898.

8. Wang D, Li Q, Gong Y, Yuan Y. The association between vacA or cagA status and eradication outcome of Helicobacter pylori infection: a meta-analysis. PLoS ONE. 2017;12(2):e0177455.

9. Kim J-I, Banke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol. 2012;2:37.

10. Sugimoto M, Zali M, Yamaoka Y. The association of vacA genotypes and Helicobacter pylori-related gastroduodenal diseases in the Middle East. Eur J Clin Microbiol Infect Dis. 2009;28(10):1227–36.

11. Rhead JL, Letley DP, Mohammadi M, Hussein N, Mohagheghi MA, Hossein ME, Atherton JC. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology. 2007;133(9):926–36.

12. Letley DP, Rhead JL, Twells RJ, Dove B, Atherton JC. Determinants of non-toxicity in the gastric pathogen Helicobacter pylori. J Biol Chem. 2003;278(29):26734–41.

13. Keikha M, Ali-Hassanazadeh M, Karbalaei M. Association of Helicobacter pylori vacA genotypes and peptic ulcer in Iranian population: a systematic review and meta-analysis. BMC Gastroenterol. 2020;20(1):1–11.

14. Keikha M, Askari P, Ghazvini K, Karbalaei M. Levofloxacin-based therapy as an efficient alternative for eradicating Helicobacter pylori infection in Iran: a systematic review and meta-analysis. J Glob Antimicrob Resist. 2021;29:420–9.

15. López-Brea M, Martínez MJ, Domingo D, Sánchez I, Alarcón T. Metronidazole resistance and virulence factors in Helicobacter pylori strains isolated from Mexican adults with clinical outcome. J Chemother. 2005;17(3):270–6.

16. Francesco VD, Margiotta M, Zullo A, Hassan C, Valle ND, Burattini O, D’Angelo R, Stopingo G, Cea U, Giorgio F. Clarithromycin resistance and Helicobacter pylori genotypes in Italy. J Microbiol. 2006;44(6):660–4.

17. Lai C-H, Kuo C-H, Chen P-Y, Poou S-K, Chang C-S, Wang W-C. Association of antibiotic resistance and higher internalization activity in resistant Helicobacter pylori isolates. J Antimicrob Chemother. 2006;57(3):466–71.

18. Boyanova L, Markovska R, Yordanov D, Marina V, Ivanova K, Panayotov S, Gergova G, Mitov I. High prevalence of virulent Helicobacter pylori strains in symptomatic Bulgarian patients. Diagn Microbiol Infect Dis. 2009;64(4):374–80.

19. Taneke I, Nami A, O’Connor A, Fitzgerald N, Murphy P, Qasim A, O’Connor H, O’Morain C. Analysis of drug resistance and virulence-factor genotype of Irish Helicobacter pylori strains: is there any relationship between the cagA status and the clinical outcome? Alimentary Pharmacol Ther. 2009;30(7):784–90.

20. Hu C-T, Chiou P-Y, Wu C-C, Tseng Y-H, Chang Y-J, Lin N-T. Analysis of resistance to clarithromycin and clinical outcome in Helicobacter pylori strains isolated from Eastern Taiwan. Tzu Chi Med J. 2009;21(1):123–8.

21. Trespalacios AA, Regino WR, Reyes MM. Resistencia de Helicobacter pylori a metronidazol, claritromicina y amoxicilina en pacientes colombianos. Rev Colomb Gastroenterol. 2010;25(1):31–48.

22. Aguado S, Pérez-Pérez G, Alarcón T, López-Brea M. High prevalence of clarithromycin-resistant Helicobacter pylori strains and risk factors associated with resistance in Madrid, Spain. J Clin Microbiol. 2010;48(10):3703–7.

23. Vega AE, Cortiñas TI, Puig ON, Silva HJ. Molecular characterization and susceptibility testing of Helicobacter pylori strains isolated in western Argentina. Int J Infect Dis. 2010;14:e85–92.

24. Ayala G, Galvan-Portillo M, Chihu H, Li Q, Gong Y, Yuan Y. The association between vacA or cagA status and eradication outcome of Helicobacter pylori infection in Iran: a systematic review and meta-analysis. BMC Gastroenterol. 2020;20(1):1–11.

25. López-Brea M, Martínez MJ, Domingo D, Sánchez I, Alarcón T. Metronidazole resistance and virulence factors in Helicobacter pylori as markers for treatment failure in a paediatric population. FEMS Immunol Med Microbiol. 1999;24(2):183–8.

26. Milftahussurur M, Waskito LA, Syam AF, Nusi IA, Siregar G, Richardo M, Bakry AF, Rezkitha YAA, Bilawwa IDN, Yamaoka Y. Alternative eradication regimens for Helicobacter pylori infection in Indonesia regions with high metronidazole and levofloxacin resistance. Infect Disr Exp. 2019;12:345.

27. Elviss NC, Owen RJ, Breathnach A, Palmer C, Shetty N. Helicobacter pylori antibiotic-resistance patterns and genotypes in adult dyspeptic patients from a regional population in North Wales. J Antimicrob Chemother. 2004;54(2):435–40.

28. Elviss NC, Owen RJ, Breathnach A, Palmer C, Shetty N. Helicobacter pylori antibiotic-resistance patterns and genotypes in adult dyspeptic patients from a regional population in North Wales. J Antimicrob Chemother. 2004;54(2):435–40.

29. Khan A, Farooqui A, Manzoor H, Akhtar SS, Quraishy MS, Kazmi SU. Antibiotic resistance and virulence factors in Helicobacter pylori non-toxicity in the gastric pathogen Helicobacter pylori in infections. J Microbiol. 2009;28(8):441–4.

30. Baryshnikova N, Uspenskyy Y, Sus Vorov A, Sus Vorov M. Efficacy of eradication in patients infected with cagA (+) and cagA (−) strains of Helicobacter pylori. In: Helicobacter. USA: Wiley-Blackwell; 2012. p. 105–105.

31. Broutet N, Marais A, Lamouliatte H, de Mascarel A, Samoyeu R, Salamon R, Mégraud F. cagA Status and eradication treatment outcome of anti-Helicobacter pylori triple therapies in patients with nonulcer dyspepsia. J Clin Microbiol. 2001;39(4):1319–22.

32. Solca NM, Bernasconi MW, Valsangiacomo C, Van Doorn L-J, Piffaretti J-C. Population genetics of Helicobacter pylori in the southern part of Switzerland analysed by sequencing of four housekeeping genes (atpD, glnA, scoB and recA), and by vacA, cagA, iceA and IS605 genotyping. The GenBank accession numbers for the sequences reported in this paper are AY004351–AY004662. Microbiology. 2001;147(6):1693–707.

33. Toto C, García-Samaniego J, Alarcón T, Baquero M. Relación entre detección de anticuerpos anti-CagA, sensitibilidad antibiótica y úlcera péptica en pacientes con infección por Helicobacter pylori. Enferm Infect Microbiol Clin. 2003;21(3):137–41.

34. Elviss NC, Owen RJ, Jenny J, Walker AM, Davies K. Helicobacter pylori antibiotic resistance patterns and genotypes in adult dyspeptic patients from a regional population in North Wales. J Antimicrob Chemother. 2004;54(2):435–40.
42. Afzal H, Rukman AH, Norazah A, Hamizah R, Ramelah M. Ethnicity association of Helicobacter pylori virulence genotype and metronidazole susceptibility. World J Gastroenterol. 2013;19(8):1283.

43. Bustamante-Reñigio JA, Marta AJ, Pazos A, Bravo LE. In vitro effect of amoxicillin and clarithromycin on the 3’region of cagA gene in Helicobacter pylori isolates. World J Gastroenterol. 2013;19(36):6044.

44. Karabiber H, Selimoglu MA, Otlu B, Yildirim O, Ozer A. Virulence factors and antibiotic resistance in children with Helicobacter pylori gastritis. J Pediatr Gastroenterol Nutr. 2014;58(5):608–12.

45. Rasheed F, Campbell BJ, Afzal H, Varro A, Zahra R, Yamaoka Y, Pritchard DM. Analysis of clinical isolates of Helicobacter pylori in Pakistan reveals high degrees of pathogenicity and high frequencies of antibiotic resistance. Helicobacter. 2014;19(5):387–99.

46. Hussein N, Tunjel I, Majed H, Yousf S, Aswad S, Assafi M. Duodenal ulcer promoting gene 1 (dupA1) is associated with AZ147G clarithromycin-resistance mutation but not interleukin-8 secretion from gastric mucosa in Iraqi patients. N Microbiol Infect. 2015;6:3–10.

47. Boyanova L, Markovska R, Yordanov D, Gergova G, Mitov I. Clarithromycin resistance mutations in Helicobacter pylori in association with virulence factors and antibiotic susceptibility of the strains. Microb Drug Resist. 2016;22(3):227–32.

48. Fascani T, Cala C, Bonura C, Di Carlo E, Matrangia D, Scarpulla G, Manganaro M, Camillen S, Giammanco A. Resistance to clarithromycin and genotypes in Helicobacter pylori strains isolated in Sicily. J Med Microbiol. 2015;64(11):408–14.

49. Liou J-M, Chang C-Y, Chen M-J, Chen C-C, Fang Y-J, Lee J-Y, Wu W-Y, Luo J-C, Liou T-C, Chiang W-H. The primary resistance of Helicobacter pylori in Taiwan after the national policy to restrict antibiotic consumption and its relation to virulence factors—a nationwide study. PLoS ONE. 2015;10(5): e0124199.

50. Alarcón-Millán J, Fernández-Tilapa G, Cortés-Malagón EM, Castañón-EM, Atherton JC. Toxigenic Helicobacter pylori infection precedes gastric cancer. BMC Microbiol. 2008;8(1):2227–35.

51. Miftahussurur M, Syam AF, Nusi IA, Makmun D, Waskito LA, Zein LH, Akil F, Reiter L, Reicht G, Mörth E, Pavek J, Parsché P. Primary resistance of Helicobacter pylori in Algeria patients. Brazilian J Microbiol. 2016;47(1):206–50.

52. Bacher M, Allem R, Tifrit A, Medjekane M, Drici A-M, Diaf M, Douidi KT. Priming and antibiotic resistance in Helicobacter pylori strains isolated from stomach biopsy specimens in the northeast of Iran. Helicobacter. 2020;25(2).

53. Hamidi S, Badmasti F, Sadeghpour Heravi F, Safapoor MH, Mohammad Ali Tabrizi A, Ghorbani M, Azizi O. Antibiotic resistance and clonal relatedness of Helicobacter pylori strains isolated from stomach biopsy specimens in northeastern of Iran. Helicobacter. 2020;25(2).

54. Faddadi M-H, Negahdari B, Assadollahi R, Bazargani A. Helicobacter pylori antibiotic resistance and correlation with cagA motifs and homB gene. Postgrad Med. 2020;132(6):512–20.

55. Dukkala S, Cekic-Kipritci Z, Kilic E, Seymen N, Mansur-Ozen N, Sezerman U, Gurul Y. Analysis of correlation between the seven important Helicobacter pylori (H. pylori) virulence factors and drug resistance in patients with gastritis. Gastroenterol Res Pract. 2020;2020:1–7.

56. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

57. DerSimonian R, Laird N. Meta-analysis in clinical trials. Contr Clin Trials. 1986;7(3):177–88.

58. Karbalaei M, Keikha M. Potential association between the hopQ alleles of Helicobacter pylori and gastrointestinal diseases: a systematic review and meta-analysis. Meta Gene. 2020;26:100816.

59. M. Structure of cag pathogenicity island in Japanese Helicobacter pylori isolates. Gut Pathogens. 2010;2(1):1–6.

60. Sahara S, Sugimoto M, Uchiyama K, Aoyama Y, Furuta T, Yamaoka Y. Role of Helicobacter pylori cagA EPY motif and vacA genotypes for the development of gastrointestinal diseases in Southeast Asian countries: a meta-analysis. BMC Infect Dis. 2012;12(1):1–13.

61. Rothstein HR, Sutton AJ. Borenstein M. Publication bias in meta-analysis: prevention, assessment and adjustments. USA: Wiley; 2006.

62. Shiota S, Matsunori O, Watada M, Hanada K, Yamaoka Y. Systematic review and meta-analysis: the relationship between the Helicobacter pylori dupA gene and clinical outcomes. Gut Pathogens. 2010;2(1):1–6.

63. Uwan WB, Simanjuntak D, Wibawa IDN. Surveillance of Helicobacter pylori in Southeast Asia: factors and antibiotic susceptibility of the strains. Microb Drug Resist. 2016;22(3):227–32.

64. Zhao JJ, Wang JB, Yang L, Li Y. Influence of cagA genotype on Helicobacter pylori. Am J Med. 2002;112(2):141–3.

65. Hirota Y, Itoh H, Yamaoka Y. Genetic diversity of HopQ gene in association with Helicobacter pylori virulence factors and drug resistance. Meta Gene. 2020;26:100816.

66. Murakami S, Yamaoka Y, Okuda M, Okamoto T, Furuta T, Saito H, Kanai F, Kato N, Shiratori Y, Omata M. Structure of cag pathogenicity island in Japanese Helicobacter pylori isolates. Gut Pathogens. 1999;4(4):336–41.
primary resistance to metronidazole and clarithromycin in Brazil. Antimicrob Agents Chemother. 2002;46(6):2021–3.

83. Kawai M, Furuta Y, Yahara K, Tsuru T, Oshima K, Handa N, Takahashi N, Yoshida M, Azuma T, Hattori M. Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BMC Microbiol. 2011;11(1):1–28.

84. Wong BHJ, Ng CG, Chu K, Tay AC, Peters F, Marshall BJ, Ho B, Goh KL, Vadhvelu J, Lokke MF. Comparative genomics revealed multiple Helicobacter pylori genes associated with biofilm formation in vitro. PLoS ONE. 2016;11(1):e0166835.

85. Kyrtopoulos A, Arora G, Murray B, Rosenwald AG. The presence of phage orthologous genes in Helicobacter pylori correlates with the presence of the virulence factors CagA and VacA. Helicobacter. 2016;21(3):226–33.

86. Aiyibatari A, Galleh RP, Ogo AC, Anzaku AA, Aikyala AI. Prevalence of virulence genes and associated risk factors of Helicobacter pylori infection among adults in gastric cancer risk region of North Central, Nigeria. Eur J Clin Biomed Sci. 2021;7(6):118–25.

87. Correa P, Pizuelo MB. Natural history of Helicobacter pylori infection. Digest Liver Dis. 2008;40(7):490–6.

88. Krzyżek P, Biernat MM, Gocinskiak G. Intensive formation of coccoid forms as a feature strongly associated with highly pathogenic Helicobacter pylori strains. Folia Microbiol. 2019;64(4):273–81.

89. Yaqub M, Ghezzi P. Adding dimensions to the analysis of the quality of health information of websites returned by Google: cluster analysis identifies patterns of websites according to their classification and the type of intervention described. Front Public Health. 2015;3:204.

90. Mendoza-Elizalde S, Arteaga-Resendiz NK, Valencia-Mayoral P, Luna RC, Moreno-Espinosa S, Arenas-Huertero F, Zúñiga G, Velázquez-Guadarrama N. Diversification of the vacAs1m1 and vacAs2m2 Strains of Helicobacter pylori in Meniones unguiculatus. Front Microbiol. 2016;7:1758.

91. Brennan DE, Dowd C, O’Morain C, McNamara D, Smith SM. Can bacterial virulence factors predict antibiotic resistant Helicobacter pylori infection? World J Gastroenterol. 2018;24(9):971.

92. Cellini L, Grande R, Di Campli E, Di Bartolomeo S, Di Giulio M, Traini T, Trubiani O. Characterization of an Helicobacter pylori environmental strain. J Appl Microbiol. 2008;105(3):761–9.

93. McClain MS, Cao P, Iwamoto H, Vinson-Dubiel AD, Szabo G, Shao Z, Cover TL. A 12-amine-acid segment, present in type s2 but not type s1 Helicobacter pylori VacA proteins, abolishes cytoxotin activity and alters membrane channel formation. J Bacteriol. 2001;183(22):6499–508.

94. Boehnke KF, Valdivieso M, Bussalleu A, Sexton R, Thompson KC, Osoiro S, Reyes IN, Crowley JJ, Baker LH, Xi C. Antibiotic resistance among Helicobacter pylori clinical isolates in Lima, Peru Infect Drug Resist. 2017;10:85.

95. Feliciano O, Gutierrez O, Valdés L, Fragoso T, Calderín AM, Valdes AE, Llanes R. Prevalence of Helicobacter pylori vacA, cagA, and iceA genotypes in Cuban patients with upper gastrointestinal diseases. BioMed Res Int. 2015;2015.

96. Pajavand H, Alvandi A, Mohajeri P, Bakhtyari S, Bashiri H, Kalali B, Gerhard M, Najafi F, Abiri R. High frequency of vacA s1m2 genotypes among Helicobacter pylori isolates from patients with gastroduodenal disorders in Kermanshah, Iran. Jundishapur J Microbiol. 2015;8(11).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.