Shear strain determination of the polymer polydimethysiloxane (PMDS) using digital image correlation in different temperatures

G N de Oliveira¹, L C S Nunes² and P A M dos Santos³

¹Pós-graduação em Engenharia Mecânica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Pátria, 156, Niterói, R.J., Brazil, Cep.: 24.210-240.
²Laboratório de Mecânica Teórica e Aplicada, Departamento de Engenharia Mecânica, Universidade Federal Fluminense, Rua Passo da Pátria, 156, Niterói, R.J., Brazil, Cep.: 24.210-240.
³Instituto de Física, Laboratório de Óptica Não-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoatá, Niterói, R.J., Brazil, Cep.: 24.210-346.

Abstract. In the present work a digital image correlation (DIC) method is used in order to analyze the adhesive shear modulus of polydimethysiloxane (PDMS) submitted to different loads and temperatures. This is an optical-numerical full-field surface displacement measurement method. It is based on a comparison between two images of a specimen coated by a random speckled pattern in the undeformed and in the deformed states. A single lap joint testing is performed. This is a standard test specimen for characterizing adhesive properties and it is considered the simplest form of adhesive joints. For the single lap joint specimen, steel adherends are bonded using a flexible rubber elastic polymer (PDMS), which is a commercially available silicone elastic rubber.

1. Introduction
Polydimethylsiloxane (PDMS) is the most common and commercially available silicone rubber. Due to important characteristics, such as flexibility and stability, this material has a wide range of applications in mechanical sensors [1],[2], electronic products [3] and medical devices [4]. It is usually used in a range of temperature from 10 °C to 50 °C. Then, the main idea of this work is to analyze the adhesive deformation in the single lap joint specimen using the DIC method in different temperatures considering different loads. The arrangement and the mechanical behavior of the single lap joint are taken into account obeying the Volkersen’s model [5],[6],[7],[8]. An experimental configuration that generates pure shear is considered. This analysis assumes that the polymer (PDMS) is a perfectly elastic solid, i.e., typical viscoelastic behavior is avoided. In order to support this hypothesis, the experiments were conducted at room temperature considering small strain condition and quasi-static processes.

2. Methods and materials

⁴corresponding author (pams@if.uff.br)

Published under licence by IOP Publishing Ltd
The digital image correlation method (DIC) is an optical-numerical full-field surface displacement measurement method. It is based on a comparison between two images of a specimen coated by a random speckled pattern in the undeformed and in the deformed states. The advantages of this method are encompass non-contact measurements, simple optic setups, no special preparation of specimens and no special illumination. The basic principle of the DIC method is to search for the maximum correlation between small zones (subsets) of the specimen in the undeformed and deformed states. From a given image-matching rule, the displacement field at different positions in the analysis region can be computed. The simplest image-matching procedure is the cross-correlation, which provides the in-plane displacement field \(u(x, y) \) and \(v(x,y) \) by matching different zones of the two images [9].

In order to obtain the experimental results, the geometry model for the single lap joint for load transfer from one adherend to another by a simple pure shearing mechanism is considered. In this model, the adherends are assumed in tension and the adhesive is in shear only, and both are constant across the thickness.

A simple shear can be obtained using the geometry presented in figure 1 and the previous assumptions, i.e., the shear stress cause sliding in an element of material as shown in figure 2.

![Figure 1. (a) Simple shear condition and (b) Typical single joints.](image)

Considering small strain conditions, fixed temperature and a quasi-static process, the mechanical behavior of rubber elastic polymers can be assumed as perfectly elastic solids, i.e., the stress is directly proportional to the strain and not affected by the rate of strain, obeying Hooke’s law. For isotropic and homogeneous materials undergoing small strains the following relationship, which is the definition of the shear modulus, is generally true.

\[
G = \frac{\tau}{\gamma} \tag{1}
\]

where the shear stress and angular distortion are given respectively by

\[
\tau = \frac{F}{A}, \quad \gamma = \frac{\Delta u}{h} \tag{2}
\]
Thus, knowing the area A, the adhesive thickness h, the horizontal displacement Δu and the applied load F, the shear modulus G is readily found.

The experimental setup for conducting shear testing involves an apparatus developed for applying strain in a single lap joint, a CCD camera (Sony XCD-SX910) set perpendicularly to the specimen and a computer for capturing and processing the images, as shown in figure 2. It is used to record the images of the specimen has a resolution of 1376 x 1024 pixels. In this experimental configuration, one pixel of the CCD camera corresponds to an area approximately equal to 4.65 x 4.65 m² on the specimen. The single lap joint, fixed in the strain apparatus, was covered with painted speckles (random black and white pattern). It is in agreement with the geometrical model, as seen in figure 1. The length of restraint against transversal motion is, d = 25 mm; segment of length, D = 55 mm; joint length, L = 25 mm; joint width, w = 20 mm; adherend and adhesive thickness, t = 1.9 mm and ta = 1.6 mm, respectively. The upper and lower adherends have the same characteristics and the material properties of adherends and adhesive are shown in table 1. The bonded region of the adherend received a treatment at surface. The procedure consisted of abrading the adherend surface at the overlap region with fine sandpaper and cleaning with acetone before the application of the adhesive. In order to control and to guarantee adhesive thickness, the test specimen (single-lap joint) was manufactured in a mold (apparatus). The applied cure cycle was 24 h at room temperature.

Table 1. Materials properties

Material	Shear modulus	
Adherend	Steel A36	79.6 (GPa)
Adhesive	Silicone rubber (polydimethysiloxane)*	100 KPa–3 MPa

The basic idea of experimental procedure is to take the images of specimen in the undeformed and deformed states for different temperatures. A thermostatic heater was fixed on adherends in order to heat the system. A thermal camera (FLIR A325) is used to measure the adhesive temperature. The geometry model for the single lap joint, schematically illustrated in figure 2, was considered applying different forces, F = 10 N, 20 N, 30 N, 40 N, 50 N, 60 N, 70 N and 80 N, for each temperature value, θ = 23°C, 31°C, 40°C, 50°C. In the present methodology, the adhesion integrity can be guaranteed, taking into consideration the low loads applied and the dimension of the bonded area. For example,
two images of the single lap joint cover with painted speckles are taken in the same region, considering two different loads of 0 and 80 N, as illustrated in figure 3 and figure 4. These images were used to compute full-field displacement, using the DIC method.

Figure 3. Analysis region.

Figure 4. Pattern of the coating specimen.

Figure 3 illustrates the single lap joint without the random speckle pattern, whereas figure 4 shows the specimen painted. Clearly, it is observed the adhesive and adherent regions. The lines A, B and C draw in picture will be used to evaluate the adhesive deformation. The squares draw in figure 3 and figure 4 are considered as the analysis region.

3. RESULTS AND DISCUSSION
The results were obtained considering the procedure presented previously, i.e., two images of the single lap joint, in the undeformed and deformed states, were taken using the experimental arrangement and then were processed by means DIC program. The full-field displacement $u(x,y)$ associated with the horizontal direction is analyzed in three different positions; x equal to A, B and C as shown in figure 4. The vertical deformations $v(x,y)$ can be neglected when compared with horizontal deformations [9].
The curves y versus u in the adhesive range for different temperatures, submitted to a load of 80 N, is obtained (figure 5). We can observe that the angular coefficient γ of each curve does not change. Taking in account (1) and considering the same applied force 80 N, the shear modulus G will be the same for the temperature range of 23°C to 50°C.

![Figure 5. Horizontal displacement.](image)

The figure 6 shows shear stress x shear strain curve. For each applied load, for the temperature of 50 °C, the angular distortion (γ) was evaluated using
\[u = u_0 + \frac{\partial u}{\partial y} \Delta y \quad , \quad \gamma = \frac{\partial u}{\partial y} \]

We can observe, in figure 6, that shear modulus (G) is 0.29 MPa, which can be evaluated according (1).

4. CONCLUSION
In the present work, the digital image correlation (DIC) measurement method was used to analyze the adhesive shear strain behavior submitted to different loads in different temperatures. The test is carried out using a single lap joint specimen, in which a simple shear is expected. The angular distortion was obtained through data of the adhesive shear deformation taken experimentally as a result of full-field displacement. For a temperature range of 23°C to 50°C, the angular distortion for a load of 80N remained constant. Therefore, the known PDMS shear modulus can be considered the same since it does not show any significant changes for temperature range analyzed. This means that this material, widespread used in many different applications, is thermo mechanically stable at least in the temperature range here analyzed.

5. ACKNOWLEDGEMENTS
The present work received financial support from the Brazilian agencies Conselho Nacional e Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

6. REFERENCES
[1] Kim J H, Lau K T, Shepherd R, Wu Y, Wallace G and Diamond D 2008 Performance characteristics of a polypyrrole modified polydimethylsiloxane (PDMS) membrane based microfluidic pump Sensor Actuat A 44 148-239
[2] Lin Y H, Kang S W and Wu T Y 2009 Fabrication of polydimethylsiloxane (PDMS) pulsating heat pipe Appl. Therm. Eng. 29 573-80
[3] Tiercelin N, Coquet P, Sauleau R, Senez V and Fujita H 2006 Polydimethylsiloxane membranes for millimeter-wave planar ultra flexible antennas J. Micromech Microeng 16 2389-95
[4] Lawrence B D, Marchant J K, Pindrus M A, Omenetto F G and Kaplan D L 2009 Silk film biomaterials for cornea tissue engineering Biomaterials 30 1299-308
[5] da Silva L F M, das Neves P J C, Adams R D and Spelt J K 2009 Analytical models of adhesively bonded joints-part I literature survey Int. J. Adhes. 29 319-30
[6] Dillard D A and Pocius A V 2002 Adhesion science and engineering – I Elsevier Science
[7] Nunes L C S, Dias R A C, Nascimento V M F and Santos P A M 2007 Analysis of adhesive bonding using digital image correlation technique 19th international congress of mechanical engineering – Cobem 2007 (Brasilia, DF) 5–9.
[8] ASTM 2001 Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (metal-to-metal) D 1002-01 (West Conshohocken, PA)
[9] Nunes L C S 2009 Shear modulus estimation of the polymer polydimethylsiloxane (PDMS) using digital image correlation J Mater Design