Non-headache symptoms in migraine patients [version 1; referees: 2 approved]

Ping-Kun Chen¹-³, Shuu-Jiun Wang⁴-⁶

¹School of Medicine, China Medical University, Taichung, Taiwan
²Bo-Zhi Neurology Clinic, Taichung, Taiwan
³Department of Neurology, China Medical University Hospital, Taichung, Taiwan
⁴School of Medicine, National Yang-Ming University, Taipei, Taiwan
⁵Brain Research Center, National Yang-Ming University, Taipei, Taiwan
⁶Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan

Abstract
Migraine is one of the most common neurological disorders. In addition to severe headaches, non-headache symptoms associated with migraine attacks as well as co-morbid disorders frequently aggravate the disabling of migraine patients. Some of these symptoms are related to poor outcomes. In this review, we update the advances of studies on certain non-headache symptoms, including visual disturbance, gastrointestinal symptoms, allodynia, vestibular symptoms, and symptoms of co-morbid restless legs syndrome and psychiatric disorders.
Introduction
Migraine is a very common neurological disorder characterized by recurrent episodes of disabling headache. In addition to headaches, there are many different non-headache symptoms during or between migraine attacks. These non-headache symptoms of migraine also impact patients’ daily activities as well as their quality of life. In this brief review, we focus on the recent findings of several common non-headache symptoms of migraine, including visual disturbance, gastrointestinal symptoms, allodynia, vestibular symptoms, and symptoms of co-morbid restless legs syndrome (RLS) and psychiatric disorders. Of note, there are a variety of other symptoms, such as phonophobia, neck pain, cognitive dysfunction, and fatigue, which are not discussed in this review.

Visual disturbance
Visual disturbance is common in patients with migraine. It is an important premonitory symptom: 32% of patients experience light sensitivity and 21% have difficulties in focusing vision. Photophobia and visual aura are two major types of visual disturbance. Photophobia is more persistent, whereas visual aura is more transient and discrete. In fact, photophobia may begin in the premonitory phase and persist throughout the migraine attack. Up to 80% of migraine patients have experienced photophobia during an attack. In addition, visual aura is the most common aura and usually occurs in isolation, whereas the other forms of aura usually occur with visual symptoms. Actually, different types of aura, which may reflect the activation of different parts of the brain (for example, visual and sensory aura), could start at the same time or in succession. In a Brazilian study on 122 migraine with aura patients, the most common visual symptoms were blurred vision (54.1%) and small bright dots (47.5%), whereas the frequencies of classic zigzag or jagged lines and the typical “C” crescentic shape were 41.8% and 16.4%, respectively. Hansen et al. analyzed more than 1,000 attacks of migraine aura without headache in a single patient for 18 years. The classic aura initially propagated predominantly in the central visual fields and then spread to upper and temporal fields on both sides. They also found that the visual auras disappeared for several minutes before reappearing in a distant location. In this patient, the auras propagating from V1 to V2 regions of the occipital cortex were suspected to correspond to the visual percept from a scintillating wave to a scotoma.

Visual snow is very rare and is described as a persistent disturbance in the entire visual field similar to the noise of an analogue television. It is frequently reported to be persistent at all times when eyes are both open and closed. Patients with visual snow were often diagnosed as having persistent visual aura. However, visual snow is frequently concomitant with migraine but usually not responsive to standard migraine treatment. In addition, patients with visual snow comorbid with migraine frequently have other visual symptoms such as photopsia, nystagia, and palinopsia. In an [18F]-Fluorodeoxyglucose PET study, hypermetabolism of the right lingual gyrus and the anterior lobe of the left cerebellum were noted in patients with visual snow but not seen for interictal migraine patients alone.

Schankin et al. suggest that visual snow is a unique visual disturbance, distinct from migraine with aura. However, the pathophysiology may be associated with migraine as well.

Gastrointestinal disturbance
Gastrointestinal symptoms are common accompanying symptoms of migraine. Nausea occurs in 70–80% and vomiting in 30% of migraine patients. Anorexia is also common in migraine patients. However, because of the different study methods, the frequency of anorexia is variable from less than 20 to more than 82%. In addition, migraine patients experienced delayed gastric emptying during and outside of a migraine attack. The head-HUNT study in Norway showed that gastrointestinal complaints increased with increasing headache frequency, including migraine. In a recent report of the American Migraine Prevalence and Prevention (AMPP) study, persistent frequent headache-related nausea, defined as nausea frequency of more than 50% within 2 years, was common (43.7%) among subjects with episodic migraine. Migraine patients with frequent nausea were twice as likely to progress to chronic migraine (CM) compared to those with no or a low frequency of nausea. Autonomic nervous system dysfunction is suspected to be related to migraine patients with gastrointestinal symptoms.

In one PET study, activation of the rostral dorsal medulla and periaqueductal gray was noted in patients with nausea as a premonitory symptom. Anorexia is a major symptom of abdominal migraine, a variant of migraine with recurrent abdominal pain, mainly in children. About 70% of them develop migraine in adults. Abdominal migraine can persist into adulthood in some patients.

Alldynia
Alldynia is a painful sensation caused by innocuous stimuli, such as light touch, brushing hair, wearing glasses, and so on. It was reported in 70% of episodic migraine and in 90% of CM patients and was associated with anxiety, depression, and disability. The risk factors of alldynia in migraine patients included obesity, high frequency of headache, and female gender. Alldynia usually develops within a few hours after migraine attack and is associated with inconsistency of response to triptans from one attack to another within patients. The AMPP study showed that alldynia was associated with a lower efficacy of acute medications. The poor and inconsistent response to triptans and other abortive medications is explained by the fact that alldynia is the clinical manifestation of central sanitization. The activation of second-order neurons in the brainstem, particularly the trigeminal nucleus caudalis, is related to cephalic alldynia. If the alldynia is noted in other sites outside of the head, sensitization of the third-order trigeminal neurons in the posterior thalamic nuclei is suspected.

Two blood oxygen level-dependent (BOLD)-fMRI studies demonstrated abnormal activations in migraine patients with alldynia. However, the activation sites were not consistent. In one study, the activation of the dorsal pons and contralateral inferior parietal lobe were lower in migraine patients with alldynia. In the other study, greater activation at the anterior
corticospinal tract was found in migraine patients with allodynia during moderate-noxious trigeminal heat stimulation (51°C) but lower activation in the secondary somatosensory cortices was seen during high-noxious trigeminal heat stimulation (53°C)\(^\text{31}\). The authors suspected a dysfunctional analgesic compensatory mechanism and an abnormal internal representation of pain in migraine patients with allodynia\(^\text{32,33}\). Very recently, a PET study with \(^{\text{11}}\text{C}\) raclopride found that there is a transient dopamine reduction in the striatum region during migraine attacks and allodynia. However, a relatively sudden increased dopamine release in the insula was noted during allodynia, the late stage of migraine attack. The authors suspected that the reduction and imbalance of dopamine between striatum region and insula account for the pathogenesis of the allodynia\(^\text{34}\).

Schwedt et al. showed that, in addition to allodynia during migraine attack, low heat pain thresholds between migraine attacks were found in migraine patients and the thresholds were positively correlated with the number of hours until the next migraine attack. The authors suspected that the lowered pain threshold was an early sign of a migraine attack\(^\text{35}\). Similar findings were also found in a small-sized study: the lower pain thresholds were detected during the pre-attack phase of migraine but not during the interictal period\(^\text{36}\).

Vestibular symptoms

About 30–50% of migraine patients report vertigo, dizziness, or balance disturbances associated with migraine attack\(^\text{37,38}\). The frequency of vestibular symptoms is much higher in patients with migraine than in those with other headache types\(^\text{39,40}\).

Several terms have been used to describe vertigo occurring with migraine. The term “vestibular migraine” was co-defined by the International Headache Society and Barany Society. The criteria for vestibular migraine are listed in the Appendix of International Classification of Headache Disorders, third beta edition\(^\text{41}\). Both migraine and vestibular symptoms are very common in the population and therefore co-existence is possible. It is important to note the similarity of migraine with brainstem aura and vestibular migraine. In migraine patients with brainstem aura, vertigo is one of the aura symptoms. Of note, at least two aura symptoms of brainstem origin are necessary to make the diagnosis of migraine with brainstem aura, including dysarthria, vertigo, tinnitus, hypacusis, diplopia, ataxia, and decreased level of consciousness. The auras should be accompanied or followed by the headache within 60 minutes\(^\text{42}\). The diagnosis of vestibular migraine requires the exclusion of other potential causes of the vestibular symptoms. It usually consists of a detailed history of both headache and vestibular components in addition to potential testing, such as imaging and audiometry. The auditory symptoms, such as hearing loss, tinnitus, and aural pressure/fullness, are common but usually mild in vestibular migraine patients\(^\text{43}\).

The vertigo symptoms vary in patients with migraine. They can occur spontaneously without any trigger or may be provoked by positional change\(^\text{44}\). The frequency of spontaneous vertigo seems to be much higher than positional vertigo in patients with vestibular migraine\(^\text{45}\). In a recent study with a nine-year follow-up, the accompanying vertigo could be persistent during migraine attacks, which caused a severe impact on quality of life. The authors also reported increased interictal ocular motor abnormalities from 16 to 41% at follow-up\(^\text{46}\).

The pathophysiology of vestibular migraine is still unclear. The activation of vestibular and cranial nociceptive pathways at the same time was suspected to be one possible cause. Recently, several neuroimaging studies support the possibility. One wholebrain BOLD-fMRI study showed abnormal thalamic functional response to vestibular stimulation in patients with vestibular migraine\(^\text{47}\). In a recent MRI study for structural changes, increased gray matter volume of the left thalamus, left temporal lobe, frontal lobe, and occipital lobes as well as decreased gray matter volume of the left cerebellum were found in patients with vestibular migraine compared to migraine patients without vestibular symptoms\(^\text{48}\). During the attacks of vestibular migraine, fluridoxylucose PET scans demonstrated increased metabolism in the temporo-parieto-insular areas and bilateral thalamic regions. The finding indicates activation of the vestibulo-thalamocortical pathway\(^\text{49}\).

There are only a few studies focusing on the treatment of vestibular migraine\(^\text{50}\). Patients are often treated with typical migraine prophylaxis. Flurbiprofen was reported to be better than placebo during acute attack of vestibular migraine\(^\text{51}\). In addition, flunarizine was shown to be an effective preventive agent for vestibular migraine\(^\text{52}\).

Actually, vertigo is very common in the general population\(^\text{53}\). The associations between migraine and benign paroxysmal positional vertigo (BPPV) have been reported. One study revealed that migraine was three times more common in patients with BPPV than in the general population\(^\text{54}\). Another population-based study in Taiwan showed that patients with migraine had a 2.03-fold increased risk of developing BPPV compared with the control group\(^\text{55}\).

Restless legs syndrome

The relationship between migraine and sleep has been known for more than a century\(^\text{56}\). Sleep disturbance is not only a common complaint of migraine patients but also a trigger of migraine attacks\(^\text{57}\). There is accumulating evidence to show that RLS, an important cause of sleep disturbance, is one of the comorbidities of migraine\(^\text{57-64}\). Some similarities are noted between migraine and RLS—e.g. female predominant, episodic attacks, and fluctuations in levels of certain biogenic amines during attacks—and are postulated as crucial factors in the pathophysiology\(^\text{65-67}\). The frequency of RLS in migraine patients is variable (about fourfold increased odds compared to healthy controls); however, it is lower in Asians but higher in non-Asians. The frequency of RLS in migraine patients did not differ between genders or those with and without aura\(^\text{57-64}\).

The pathophysiology of the association is still unknown. However, some clinical findings provide clues. A recent study of a temporal relationship between migraine and RLS attacks
showed bidirectional triggering association between migraine and RLS attacks in migraine patients with comorbid RLS. In addition, migraine patients with RLS were more likely to have photophobia, phonophobia, exacerbation due to physical activities, vertigo, dizziness, tinnitus, and neck pain. The results suggest that migraine severity is related to RLS frequency and explain the reason why the propensity of RLS is higher in clinic-based studies as compared to community studies. Valente et al. reported a higher familial predisposition to serotonergic drugs in migraine patients with RLS. In a genetic study, Fuh et al. demonstrated that MEIS1 variants, a known gene for RLS alone, are also associated with an increased risk of RLS in migraine patients. All of these reports hint that the balance of dopaminergic and serotonergic systems could be crucial in the association between migraine and RLS.

Psychiatric disorders
Migraine is comorbid with many psychiatric disorders. Of them, depression, bipolar disorder, and anxiety disorder are common and cause disability in affected patients.

Depression
Epidemiology studies demonstrate that migraine subjects are at two- to fourfold increased risk of developing lifetime major depression in comparison with subjects without migraine. The association is stronger in migraine with aura than in migraine without aura. In addition, CM patients had a higher risk of depression as compared to patients with episodic migraine.

The pathophysiology of this comorbid association is not known, but genetic factors, serotonergic dysfunction, ovarian hormone influences, and hypothalamic-pituitary adrenal axis dysregulation are suspected to be involved long term. Lirng et al. recently measured brain metabolite concentrations, including myo-inositol (mi) and total creatine (tCr), by MR spectroscopy. They demonstrated that migraine patients with major depression had higher mean mf:tCr ratios in the left and right dorsolateral prefrontal cortex compared to migraine patients without major depression.

Bipolar disorder
Migraine patients are reported to have a higher risk of comorbid bipolar disorder. Bipolar patients are also reported to have a higher frequency of migraine, particularly among bipolar disorder II subjects. Of note, bipolar disorder relative risk is increased to 3.88 in CM compared to normal controls and 1.81 compared to episodic migraine. In addition, patients comorbid with migraine and bipolar disorder seem to be more likely to have a rapid cycling illness course.

Anxiety
The prevalence of anxiety is about two to five times higher in patients with migraine than in the general population. Similar to other psychiatric comorbidities, anxiety is much more common in CM patients than in those with episodic migraine. Alessandra et al. recruited 1,261 migraine patients in Brazil and classified them into four groups based on migraine frequency. In comparison with controls, CM patients had a higher risk of generalized anxiety disorder and the risk increased with headache frequency. Similar comorbid associations were also noted in panic disorder and obsessive-compulsive disorder. The risk of panic disorder was also reported to be 3.6 times higher in migraine patients in a meta-analysis from 1990–2012. The presence of panic disorder in migraine patients is associated with more frequent attacks, increased disability, a higher risk for chronication, and medication overuse. In addition, osmophobia in migraine patients is reported to be associated with significant anxiety symptoms.

Conclusions
Migraine is a disabling neurological disorder, not only because of the headaches. Many non-headache symptoms and comorbidities of migraine have a significant negative impact on patients’ quality of life. There are many more studies focusing on this issue. For better quality and strategy of migraine patients’ care, more studies need to be conducted to explicitly investigate these problems from a therapeutic point of view, given the clinical implications.

Competing interests
The authors declare that they have no competing interests.

Grant information
This study was supported in part by grants from Brain Research Center, National Yang-Ming University and Ministry of Health and Welfare, Taiwan [MOHW 105-TDU-B-211-113-003, MOHW 106-TDU-B-211-113001].

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References
1. Laurell K, Arto V, Bendtsen L, et al. Premonitory symptoms in migraine: A cross-sectional study in 2714 persons. Cephalalgia. 2016; 36(10): 951–9.
2. Choi JY, Oh K, Kim BJ, et al. Usefulness of a photophobia questionnaire in patients with migraine. Cephalalgia. 2009; 29(9): 953–9.
3. Russell MB, Olesen J. A nosographic analysis of the migraine aura in a general population. Brain. 1996; 119(Pt 2): 355–61.
4. Viana M, Linde M, Saences G, et al. Migraine aura symptoms: Duration, succession and temporal relationship to headache. Cephalalgia. 2016; 36(5): 413–21.
5. Queiroz LP, Friedman DI, Rapoport AM, et al. Characteristics of migraine visual
aura in Southern Brazil and Northern USA. Cephalalgia. 2011; 31(16): 1652–8.

6. **Hansen JM, Baca SM, Vanvelkenburgh P, et al.: Distinctive anatomical and physiological features of migraine aura revealed by 18 years of recording.** Brain. 2013; 136(Pt 12): 3588–96.

7. Schankin CJ, Maniyar FH, Sprenger T, et al.: The relation between migraine, typical migraine aura and “visual snow”. Headache. 2014; 54(6): 957–68.

8. Schankin CJ, Maniyar FH, Dore KB, et al.: ‘Visual snow’ – a disorder distinct from persistent migraine aura. Brain. 2014; 137(Pt 5): 1419–28.

9. Kurth T, Hofmann G, Neufang-Hüber J, et al.: Prevalence of unexplained upper abdominal symptoms in patients with migraine. Cephalalgia. 2006; 26(5): 506–10.

10. Lipton RB, Stewart WF, Diamond S, et al.: Prevalence and burden of migraine in the United States: data from the American Migraine Study II: Headache. 2001; 41(7): 646–57.

11. Martins KM, Bordini CA, Bialik ME, et al.: Migraine in the elderly: a comparison with younger migraineurs. Headache. 2006; 46(2): 312–6.

12. Rasmussen BK, Jensen R, Olesen J: The Link Between Migraine and Cerebellar Ataxia. The Head-HUNT Study. Headache. 2013; 54(1): 144–51.

13. Cutaneous allodynia in the migraine preattack phase. Cephalalgia. 1991; 11(3): 129–34.

14. Lipton RB, Stewart WF, Diamond S, et al.: Persistent frequent nausea is a predictor of migraine chronification. Headache. 2013; 53(7): 1026–40.

15. Schankin CJ, Maniyar FH, Sprenger T, et al.: The relation between migraine, typical migraine aura and “visual snow”. Headache. 2014; 54(6): 957–68.

16. Lipton RB, Munjal S, Buse DC, et al.: Predicting Inadequate Response to Acute Migraine Medication: Results From the American Migraine Prevalence and Prevention (AMPP) Study. Headache. 2016; 56(10): 1635–48.

17. Lipton RB, Munjal S, Buse DC, et al.: Alloidity Is Associated With Initial and Sustained Response to Acute Migraine Treatment: Results from the American Migraine Prevalence and Prevention Study. Headache. 2017; 57(7): 1026–40.

18. de Tommaso M, Sciriicio V: Migraine and Central Sensitization: Clinical Features, Main Comorbidities and Therapeutic Perspectives. Curr Rheumatol Rep. 2016; 12(2): 119–26.

19. Burstein C, Burstein R: Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. Cephalalgia. 2012; 32(8): 89–99.

20. Cheng N, Zhang J, Wang P, et al.: Functional alterations of pain processing pathway in migraine patients with cutaneous allodynia. Pain Med. 2015; 16(6): 1211–20.

21. Russo A, Esposito F, Conte F, et al.: Functional interictal changes of pain processing in migraine with ictal cutaneous allodynia. Cephalalgia. 2017; 37(4): 305–14.

22. Patel VB, Vickers AJ, Kim CH, et al.: Acupuncture for the Management of Migraine. JAMA Intern Med. 2013; 173(3): 224–34.

23. F1000Recommendation: a sympathetic view of “2003 Wolff Award: possible sympathetic involvement in migraine: the case for a somatic origin of migraine aura?” Headache. 2004; 44(7): 762–67.

24. F1000Recommendation: Persistent frequent nausea is a predictor of migraine chronification. Headache. 2013; 53(7): 1026–40.

25. F1000Recommendation: The Link Between Migraine and Cerebellar Ataxia. The Head-HUNT Study. Headache. 2013; 54(1): 144–51.

26. F1000Recommendation: Predicting Inadequate Response to Acute Migraine Medication: Results From the American Migraine Prevalence and Prevention (AMPP) Study. Headache. 2016; 56(10): 1635–48.

27. F1000Recommendation: Alloidity Is Associated With Initial and Sustained Response to Acute Migraine Treatment: Results from the American Migraine Prevalence and Prevention Study. Headache. 2017; 57(7): 1026–40.

28. F1000Recommendation: Migraine and Central Sensitization: Clinical Features, Main Comorbidities and Therapeutic Perspectives. Curr Rheumatol Rep. 2016; 12(2): 119–26.

29. F1000Recommendation: Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. Cephalalgia. 2012; 32(8): 89–99.

30. F1000Recommendation: Functional alterations of pain processing pathway in migraine patients with cutaneous allodynia. Pain Med. 2015; 16(6): 1211–20.

31. F1000Recommendation: Functional interictal changes of pain processing in migraine with ictal cutaneous allodynia. Cephalalgia. 2017; 37(4): 305–14.

32. F1000Recommendation: Persistent frequent nausea is a predictor of migraine chronification. Headache. 2013; 53(7): 1026–40.

33. F1000Recommendation: The Link Between Migraine and Cerebellar Ataxia. The Head-HUNT Study. Headache. 2013; 54(1): 144–51.

34. F1000Recommendation: Predicting Inadequate Response to Acute Migraine Medication: Results From the American Migraine Prevalence and Prevention (AMPP) Study. Headache. 2016; 56(10): 1635–48.

35. F1000Recommendation: Alloidity Is Associated With Initial and Sustained Response to Acute Migraine Treatment: Results from the American Migraine Prevalence and Prevention Study. Headache. 2017; 57(7): 1026–40.
propylaxis of migrainous vertigo: a randomized controlled trial. Eur Arch Otorhinolaryngol. 2014; 271(11): 2931–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

52. von Brevem M, Neuhauser H: Epidemiological evidence for a link between vertigo and migraine. J Vestib Res. 2011; 21(6): 299–304. PubMed Abstract | Publisher Full Text

53. Unen A: Migraine and benign paroxysmal positional vertigo: an outcome study of 476 patients. Ear Nose Throat J. 2004; 83(12): 814–5. PubMed Abstract

54. Chu CH, Liu CJ, Lin LY, et al.: Migraine is associated with an increased risk for benign paroxysmal positional vertigo: a nationwide population-based study. J Headache Pain. 2015; 16: 62. PubMed Abstract | Publisher Full Text | Free Full Text

55. Jemmum P, Jensen R: Sleep and headache. Sleep Med Rev. 2002; 6(6): 471–9. PubMed Abstract | Publisher Full Text

56. Kelman L: The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007; 27(5): 492–504. PubMed Abstract | Publisher Full Text

57. Chen PK, Fuh JL, Chen SP, et al.: Association between restless legs syndrome and migraine in women. Cephalalgia. 2012; 32(5): 382–9. PubMed Abstract | Publisher Full Text | Free Full Text

58. Winter AC, Schürks M, Berger K, et al.: Migraine and restless legs syndrome in men. Cephalalgia. 2013; 33(2): 130–5. PubMed Abstract | Publisher Full Text | Free Full Text

59. Winter AC, Schürks M, Berger K, et al.: Migraine and restless legs syndrome in women. Cephalalgia. 2013; 33(2): 130–5. PubMed Abstract | Publisher Full Text | Free Full Text

60. Dickoff DJ, Dennis SM: Restless legs syndrome (RLS) and migraine: A common clinical triad. Am Neurol. 2013; 74(Suppl 17): S47. Reference Source

61. Karthik N, Kulkarni GB, Taly AB, et al.: Sleep disturbances in ‘migraine without aura’ – a questionnaire based study. J Neurol Sci. 2012; 321(1–2): 73–6. PubMed Abstract | Publisher Full Text

62. Seidel S, Böck A, Schlegel W, et al.: Increased RLS prevalence in children and adolescents with migraine: a case-control study. Cephalalgia. 2012; 32(9): 693–9. PubMed Abstract | Publisher Full Text

63. Lucchesi C, Bonanni E, Maestri M, et al.: Evidence of increased restless legs syndrome occurrence in chronic and highly disabling migraine. Func Neurol. 2012; 27(2): 91–4. PubMed Abstract | Publisher Full Text | Free Full Text

64. Rhode AM, Hösing VG, Happe S, et al.: Increased restless legs syndrome prevalence in the young: a population-based study. J Neurol Sci. 2012; 321(1–2): 73–6. PubMed Abstract | Publisher Full Text

65. D’Andrea G, Leon A: Pathogenesis of migraine: from neurotransmitters to neuromodulators and beyond. Neuropsychiatr Dis. 2005; 3(1): 1–17. PubMed Abstract | Publisher Full Text

66. Salas RE, Gamaldo CE, Allen RP: Update in restless legs syndrome. Curr Opin Neurol. 2010; 23(4): 401–6. PubMed Abstract | Publisher Full Text | Free Full Text

67. Sakai Y, Dobson C, Diksic M, et al.: Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis. Neurology. 2008; 70(6): 431–9. PubMed Abstract | Publisher Full Text

68. Chen PK, Fuh JL, Wang SJ: Bidirectional triggering association between migraine and restless legs syndrome: A diary study. Cephalalgia. 2016; 36(5): 431–6. PubMed Abstract | Publisher Full Text

69. Valente M, James F, Russo V, et al.: Prevalence of Restless Legs Syndrome in Migraine Patients: A Case-Control Study. Analysis of Risk Factors for Restless Legs Syndrome in Migraine Patients. Headache. 2017; 57(7): 1088–95. PubMed Abstract | Publisher Full Text | F1000 Recommendation

70. Fuh JL, Chung MY, Yao SC, et al.: Susceptible genes of restless legs syndrome in migraine. Cephalalgia. 2016; 36(11): 1028–37. PubMed Abstract | Publisher Full Text

71. Bjal ME, Lipton RB: The epidemiology, burden, and comorbidities of migraine. Neurol Clin. 2009; 27(3): 521–34. PubMed Abstract | Publisher Full Text

72. Whiteford HA, Degenhardt L, Rehm J, et al.: Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013; 380(9844): 1757–62. PubMed Abstract | Publisher Full Text

73. Breslau N, Davis GC: Migraine, physical health and psychiatric disorders: a prospective epidemiologic study in young adults. J Psychiatr Res. 1993; 27(2): 211–21. PubMed Abstract | Publisher Full Text

74. Breslau N, Lipton RB, Stewart WF, et al.: Comorbidity of migraine and depression: investigating potential etiology and prognosis. Neurology. 2003; 60(8): 1308–12. PubMed Abstract | Publisher Full Text

75. Antonacci F, Nappi G, Gali F, et al.: Migraine and psychiatric comorbidity: a review of clinical findings. J Headache Pain. 2011; 12(2): 115–20. PubMed Abstract | Publisher Full Text | Free Full Text

76. Peterlin BL, Katsnelson MJ, Calhoun AH: The associations between migraine, unipolar psychiatric comorbidities, and stress-related disorders and the role of estrogen. Curr Pain Headache Rep. 2009; 13(5): 404–12. PubMed Abstract | Publisher Full Text | Free Full Text

77. Oedegaard KJ, Neckelmann D, Mykletun A, et al.: Migraine with and without aura: association with depression and anxiety disorder in a population-based study. The HUNT Study. Cephalalgia. 2006; 26(1): 1–6. PubMed Abstract | Publisher Full Text

78. Tietjen GE, Brandes JL, Digre KB, et al.: High prevalence of somatic symptoms and depression in women with disabling chronic headache. Neurology. 2007; 68(2): 134–40. PubMed Abstract | Publisher Full Text

79. Buse DC, Silberstein SD, Manack AN, et al.: Psychiatric comorbidities of episodic and chronic migraine. J Neurol Sci. 2013; 326(1–2): 1860–9. PubMed Abstract | Publisher Full Text

80. Baskin SM, Smitherman TA: Migraine and psychiatric disorders: comorbidities, mechanisms, and clinical applications. Neurol Sci. 2009; 30(Suppl 1): 561–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation

81. Lirm JF, Chen HC, Fuh JL, et al.: Increased myo-inositol level in dorsolateral prefrontal cortex in migraine patients with major depression. Cephalalgia. 2015; 35(6): 702–9. PubMed Abstract | Publisher Full Text

82. Menkangas KR, Merkangas JR, Angst J: Headache syndromes and psychiatric disorders: association and familial transmission. J Psychiatr Res. 1993; 27(2): 197–210. PubMed Abstract | Publisher Full Text

83. Breslau N, Davis GC, Andreski P: Migraine, psychiatric disorders, and suicide attempts: an epidemiologic study of young adults. Psychol Sci. 1991; 3(1): 11–23. PubMed Abstract | Publisher Full Text

84. Low NC, Du Fort GG, Cervantes P: Prevalence, clinical correlates, and treatment of migraine in bipolar disorder. Bipolar Disord. 2010; 12(4): 397–403. PubMed Abstract | Publisher Full Text

85. Ortiz A, Cervantes P, Zlotnik G, et al.: Cross-prevalence of migraine and bipolar disorder. Bipolar Disord. 2010; 12(4): 397–403. PubMed Abstract | Publisher Full Text

86. Chen YC, Tang CH, Ng K, et al.: Comorbidity profiles of chronic migraine sufferers in a national database in Taiwan. J Headache Pain. 2013; 14(1): 1–6. PubMed Abstract | Publisher Full Text | Free Full Text

87. Gordon-Smith E, K, Forty L, Chan C, et al.: Rapid cycling as a feature of bipolar disorder and comorbid migraine. J Affect Disord. 2015; 175: 302–4. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

88. Gigante AD, Barneboim IY, Dias Rda S, et al.: Rapid cycling bipolar disorder is associated with a higher lifetime prevalence of migraine. Acta Psychiatr Scand. 2015; 132(4): 308–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

89. Breslaun N: Psychiatric comorbidity in migraine. Cephalalgia. 1998; 18(Suppl 22): 56–8; discussion 56–8. PubMed Abstract

90. Baskin SM, Lipchik GL, Smitherman TA: Mood and anxiety disorders in chronic headache. Headache. 2006; 46(Suppl 3): 576–87. PubMed Abstract | Publisher Full Text

91. Gouart AC, Santra IS, Brunori AR, et al.: Migraine headaches and mood/anxiety disorders in the ELSA Brazil. Headache. 2014; 54(8): 1310–9. PubMed Abstract | Publisher Full Text

92. Smitherman TA, Kolivas ED, Bailey JR: Panic disorder and migraine: comorbidity, mechanisms, and clinical implications. Headache. 2013; 53(1): 23–45. PubMed Abstract | Publisher Full Text

93. Rocha-Filho PA, Marques KS, Torres RC, et al.: Migraine, Osmophobia, and Anxiety. Pain Med. 2016; 17(4): 776–80. PubMed Abstract | Publisher Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✅ ✅

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Andrew Charles Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
 Competing Interests: No competing interests were disclosed.
1 Charly Gaul Migraine and Headache Clinic Königstein, Königstein im Taunus, Germany
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com