Electrocardiographic characteristics in patients with heart failure and normal ejection fraction: A systematic review and meta-analysis

Theodora Nikolaidou MBChB, MRCP, PhD | Nathan A. Samuel MBChB | Carl Marincowitz MBCHir, MSc, MRCEM, BA | David J. Fox MBChB, MRCP, MD | John G. F. Cleland MD, PhD, FRCP, FESC, FACC | Andrew L. Clark MA, MD, FRCP

Abstract

Background: Little is known about ECG abnormalities in patients with heart failure and normal ejection fraction (HeFNEF) and how they relate to different etiologies or outcomes.

Methods and Results: We searched the literature for peer-reviewed studies describing ECG abnormalities in HeFNEF other than heart rhythm alone. Thirty-five studies were identified and 32,006 participants. ECG abnormalities reported in patients with HeFNEF include atrial fibrillation (prevalence 12%–46%), long PR interval (11%–20%), left ventricular hypertrophy (LVH, 10%–30%), pathological Q waves (11%–18%), RBBB (6%–16%), LBBB (0%–8%), and long JTc (3%–4%). Atrial fibrillation is more common in patients with HeFNEF compared to those with heart failure and reduced ejection fraction (HeFREF). In contrast, long PR interval, LVH, Q waves, LBBB, and long JTc are more common in patients with HeFREF. A pooled effect estimate analysis showed that QRS duration ≥120 ms, although uncommon (13%–19%), is associated with worse outcomes in patients with HeFNEF.

Conclusions: There is high variability in the prevalence of ECG abnormalities in patients with HeFNEF. Atrial fibrillation is more common in patients with HeFNEF compared to those with HeFREF. QRS duration ≥120 ms is associated with worse outcomes in patients with HeFNEF. Further studies are needed to address whether ECG abnormalities correlate with different phenotypes in HeFNEF.

Keywords: atrial fibrillation, ECG, heart failure with normal ejection fraction, heart rhythm

1 | INTRODUCTION

Compared with patients with heart failure and reduced ejection fraction (HeFREF), patients with heart failure and normal ejection fraction (HeFNEF) are older, more likely to be female, have a higher prevalence of hypertension and anemia, and a lower prevalence of coronary artery disease (Olsson et al., 2006; Senni et al., 1998; Yap et al., 2015).
ECG abnormalities in HeFREF are widely described and guide medical and device therapy. However, many studies in HeFNEF do not report ECG characteristics other than heart rhythm. Hence, other than a high prevalence of atrial fibrillation, little is known about ECG features associated with HeFNEF. In recent years, attempts have been made to identify different phenotypic groups among patients with HeFNEF based on comorbidities, such as hypertension, obesity, or lung disease, in order to target therapeutic interventions and predict outcomes (Gorter et al., 2018; Shah et al., 2015). ECG variables may provide an additional noninvasive tool to help identify distinct phenotypes with different trajectories.

2 | METHODS

2.1 | Search strategy and selection criteria

We identified peer-reviewed studies published in English in patients with HeFNEF describing ECG variables other than heart rhythm alone. Participants included were men and women with a diagnosis of HeFNEF. We included the following types of studies performed in any healthcare setting:

1. Randomized controlled trials (RCTs)
2. Controlled trials
3. Observational studies with the following designs:
 a. Single-gate design (all participants had HeFNEF)
 b. Two-gate design (the same study includes participants with and without HeFNEF)

We excluded the following:

1. Studies without information on recruitment methods or study population
2. Case reports or case series
3. Studies reported only in abstract form or in conference proceedings where the full text was not available.

We searched the following databases to identify the published studies that reported ECG variables in patients with HeFNEF (inception to January 2019): CENTRAL, MEDLINE, EMBASE, CINAHL, Web of Science, LILACS, and TRIP. We also searched databases of trial registries and hand-searched the reference list of all relevant publications.

2.2 | Data collection and analysis

We examined abstracts and excluded duplicates, review articles, and articles reporting imaging and ECG variables alone without baseline clinical characteristics of heart failure (Figure 1). We also excluded studies of nonrepresentative cohorts, such as those with a high prevalence of valvular heart disease, in order to minimize the risk of bias (Appendix I). Two review authors (TN and NS) independently assessed the full-text publication of the remaining articles. Disagreements were resolved by a third reviewer (ALC). The process of study selection was documented in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; Figure 1).

2.3 | Statistical analysis

A pooled prevalence of right bundle branch block in HeFNEF and confidence intervals for individual studies were estimated using the Metaprop function (STATA-SE 14) using a random effects model and the Clopper-Pearson exact confidence intervals method (Nyaga, Arbyn, & Aerts, 2014). Between-study heterogeneity was statistically assessed by calculating an I² and chi-square.

Where studies compared adverse outcomes between patients with and without prolonged QRS/bundle branch block, a pooled effect estimate of abnormal QRS was estimated. Analysis was completed using Review Manager 5.3, and a random effects model was used due to between-study heterogeneity (Review Manager (RevMan) Version 5.3. Copenhagen: The Nordic Cochrane Centre).

3 | RESULTS

3.1 | Studies

The literature review identified 219 studies. After reviewing the abstracts, 94 studies were excluded and a further 46 were excluded after reviewing full-text articles (Figure 1; Appendix I); 35 studies were included in the final review (Table 1). When multiple reports from the same cohort were published the report, most representative of ECG variables was included (Table 2).

The definition of HeFNEF varied among studies (Appendix II). In addition, different cutoffs for left ventricular ejection fraction (LVEF) were used to define HeFNEF: ≥40% (Cenkerova, Dubrava, Pokorna, Kaluzay, & Jurkovicova, 2016; Danciu et al., 2006; Hendry, Kristinart, & Erika, 2016), >40% (Hawkins et al., 2007; Olsson et al., 2006), >45% (Adabag et al., 2014; Donal et al., 2014; Joseph et al., 2016; Komajda et al., 2011; Nikolaidou et al., 2017; Shah et al., 2013), >45% (Ho et al., 2013; Lee et al., 2009; Park et al., 2013; Zile et al., 2011), ≥50% (Gigliotti et al., 2017; Gijsberts et al., 2016; Hummel, Skorcz, & Koelling, 2009; Khan et al., 2007; Lund et al., 2013; Martinez Santos et al., 2016; Masoudi et al., 2003; Menet et al., 2014; O’Neal et al., 2017; Pascual-Figal et al., 2017; Peyster, Norman, & Domanski, 2004; Senni et al., 1998; Shenkman et al., 2002; Yap et al., 2015), >50% (Eicher et al., 2012; Oskouie, Prenner, Shah, & Sauer, 2017; Sanchis et al., 2015; Selvaraj et al., 2014; Shah et al., 2015), and ≥55% (Varadarajan & Pai, 2003). The following methods were used to measure ejection fraction: echocardiography, nuclear scintigraphy, and contrast ventriculography. Six studies included patients with heart failure and valvular heart disease (3%–20% of patients with HeFNEF) (Donal et al., 2014; Ho et al., 2013; Lee et al., 2009; Lund et al., 2013; Park et al., 2013; Peyster et al., 2004).

Three studies assessed the risk of future heart failure associated with baseline ECG characteristics in populations without heart failure at baseline (suspected coronary ischemia (O’Neal et
Two studies provided ECG characteristics specifically in patients with heart failure and mid-range ejection fraction 40%–49% (HeFmrEF) (Lund et al., 2013; Pascual-Figal et al., 2017).

3.2 | Participants

A total of 32,006 participants with HeFNEF were included. The mean age was 74 years, and 56% were women. Participant comorbidities are summarized in Appendix II.

3.3 | Atrial fibrillation

In the studies we identified, the prevalence of atrial fibrillation or atrial flutter on ECG was 12%–46% (Adabag et al., 2014; Cenkerova et al., 2016; Donal et al., 2014; Ho et al., 2013; Khan et al., 2007; Lee et al., 2009; Masoudi et al., 2003; Nikolaidou et al., 2017; Olsson et al., 2006; Oskouie et al., 2017; Pascual-Figal et al., 2017; Peyster et al., 2004; Sanchis et al., 2015; Selvaraj et al., 2014; Senni et al., 1998; Shah et al., 2013; Yap et al., 2015). The percentage of patients with a history of atrial fibrillation (where reported) was greater (Lee et al., 2009; Shah et al., 2013). In the studies including patients with HeFREF, the prevalence of atrial fibrillation was lower (15%–36%) in HeFREF than in HeFNEF (16%–46%) (Cenkerova et al., 2016; Hawkins et al., 2007; Nikolaidou et al., 2017; Park et al., 2013; Pascual-Figal et al., 2017; Peyster et al., 2004; Senni et al., 1998; Yap et al., 2015). Only one study (of 2,258 patients admitted with heart failure) found a higher prevalence of atrial fibrillation in patients with reduced ejection fraction (26% vs. 20%) (Varadarajan & Pai, 2003).

In the CHARM program, 7,599 patients with heart failure and NYHA class symptoms II-IV were randomized to candesartan or placebo and followed up for 38 months. 3,023 patients had HeFNEF (ejection fraction > 40%) and 478 (16%) of these had atrial fibrillation at baseline. The presence of atrial fibrillation at baseline was an independent risk factor for cardiovascular death or hospitalization for heart failure and all-cause mortality after adjusting for 32 covariates (Olsson et al., 2006).

3.4 | P/PR duration

First-degree AV block (PR ≥ 200 ms) was present in 11%–21% of patients with HeFNEF (Donal et al., 2014; Khan et al., 2007; Nikolaidou et al., 2017) but was more common in patients with HeFREF (21%–26%) (Khan et al., 2007; Nikolaidou et al., 2017). In a prospective observational study of 539 patients admitted to hospital with clinical signs of heart failure and LVEF > 45%, 11% had 1st-degree heart block (Donal et al., 2014). Higher degree
Study type	Population	Type of HF	N	Age (mean, years)	Men (%)	EF (%)	LA diameter (mm)	AF/flutter on ECG (%)	P wave (ms)	PR (ms)	QRS (ms)	LBBB N (%)	RBBB N (%)	QT (ms)	LVH N (%)	ST/T changes	Other
HFrEF and HFrEF																	
Nikolaidou et al (2018)†	Prospective study	Consecutive patients referred to a community HF clinic with suspected HF 2001-14	No HF	1,155	68'	51	59	Excluded	PRc	QTc	6/1193 (0.1)	163	90	112	418		
Pascual-Figal et al. (2017)	Prospective study	Ambulatory patients with chronic HF from 2 national registries 2003-04, 2007-11	HeFNEF	635	72	43	25	221 (35)	108	47 (7)	55 (9)						
Hendry et al. (2016)	Cross-sectional study	In- and outpatients with chronic HF at one centre 2015	HeFNEF	50	60	56	59	34	N/A	97	124	3 (5)	45 (3)	33 (55)	17 (28)		
Gijsberts et al. (2016)**	Observational study	Patients with HF (in- or outpatient), 839 SHOP cohort and 11,221 SweDEHF 2010-14	All HF	12,060	73	63	5,807 (48)	103	95	1834 (15)							
Sanchis et al (2016)	Prospective study	Consecutive patients with new-onset HF, referred to a clinic 2009-12	No HF	32	73	23	61	17	Excluded	74	158	97					
Cenkerova et al. (2014)	Prospective study	Consecutive patients with HF admitted to one centre 2010-11	HeFNEF	63	74	54	59	50	29 (46)	160	80	435					
Yap et al. (2015)†	Prospective study	Consecutive patients admitted with HF to any public hospital in Singapore 2008-09	HeFNEF	751	73	35	255 (34)	94									
Menet et al. (2014)	Cohort study	Patients hospitalized for HF	No HF-HT	40	68	23	23	23	91	2 (5)							

(Continues)
Study type	Population	Type of HF	N	Age (mean, years)	Men (%)	EF (%)	LA diameter (mm)	AF/flutter on ECG (%)	P wave (ms)	PR (ms)	QRS (ms)	QT (ms)	LVH N (%)	ST/T changes N (%)	Other	
Lund et al. (2013)†	Prospective study	SwedeHF registry (online registry of in- and outpatients with HF)	25,171	75	60	1,452 (46)	11,452	4,028 (16)	7,803 (31)	2,145 (25)	1,151 (18)	5,217 (39)				
Park et al. (2013)†	Prospective registry	Korean Acute Heart Failure Registry 2004-09 (patients admitted to 24 hospitals with HF)	523	70	39	180 (34)	213 (22)	67 (13)	232 (24)							
Eicher et al. (2012)	Cross-sectional study	Consecutive patients admitted for HF (3 months). Controls: CAD or mild valve disease	27	80	52	37	5 (19)	20 (69)	126							
Khan et al. (2007)	Retrospective study	EuroHeart Failure Survey of inpatients with HF in 24 European countries over a period of 6 weeks 2001-02	523	109	66	143 (20)	103 (20)	3,016 (15)	6,70 (13)							
Hawkins et al. (2007)† and Olsson et al. (2006)†	Retrospective study	Patients with HF from the CHARM program F/U: 38 months	108	72	39	30 (28)	13 (12)	13 (12)	25 (23)	1 (1)	44 (1)	1,777 (30)				
Danciu et al. (2006)†	Retrospective study	Patients hospitalized with decompensated HF	97	78	25	22 (23)	39 (26)	59 (61)	52 (35)							
Peyster et al. (2004)	Retrospective study	Consecutive patients aged ≥ 65 with discharge diagnosis of HF	150	76	49	38 (25)	59 (61)	52 (35)								
Varadarajan and Pai (2003)†	Retrospective study	Patients with HF discharge diagnosis and echo 1990-99 F/U: 786 days	963	70	62	193 (20)	19 (2)	366 (38)	777 (60)							
Masoudi et al. (2003)	Retrospective study	Medicaid beneficiaries aged ≥ 65 hospitalized for HF 1998-99	6,754	80	29	2,431 (36)	540 (8)	3,109 (24)	(Continues)							
Study type	Population	Study type	Type of HF	N	Age (mean, years)	Men (%)	EF (%)	LA diameter (mm)	AF/flutter on ECG N (%)	P wave (ms)	PR (ms)	QRS (ms)	QT (ms)	LVH N (%)	ST/T changes N (%)	Other
----------------------------------	------------	------------	------------	-----	------------------	---------	--------	------------------	------------------------	-------------	---------	----------	---------	------------	---------------------	-------
Sherkman et al. (2002)†	Patients from the REACH study 1989–99 F/U 32 months	Retrospective study	All HF	3,471	66	50		1.660				120				
	HeFNEF		HeFREF	1,811					721 (21)			230 (13)				
Sullivan et al. (1993)	HeFNEF		HeFREF	354	55	20		36.5 (7.4)	16 (18)			3 (1.5)				
	HeFNEF		HeFREF	354	55	20		36.5 (7.4)	16 (18)			3 (1.5)				
Senni et al. (1998)	Patients receiving a first diagnosis of HF and echo in 1991 in Olmsted County	Retrospective study	HeFNEF	3,471	66	50		1.660				120				
	HeFREF			1,660								230 (13)				
HeFNEF only												230 (13)				
Gigliotti et al. (2017)†	Patients discharged with a HF diagnosis from one centre and echo 2006–09	Retrospective study	HeFNEF	3,471	66	50		1.660				120				
	HeFREF			1,660								230 (13)				
Oskouie et al. (2017)	Consecutive patients following hospitalization with HeFNEF in a centre 2008–11	Prospective study	HeFNEF	201	64	23		120 (4)				120				
												120				
Martinez Santos et al. (2016)	Consecutive patients admitted with HeFNEF in a centre 2011–12	Prospective study	HeFNEF	123	81	37		120 (4)				120				
												120				
Shah et al. (2015)†	Consecutive patients from outpatient clinic following hospitalization for HF 2008–11	Prospective study	Phenotypic Group 1	128	61	33		120 (4)				120				
	Group 2			120	66	32		120 (4)				120				
	Group 3			149	67	45		120 (4)				120				
Donal et al. (2014)	Consecutive patients with HF in the ED in 10 French and 3 Swedish centres 2007–11	Prospective study	HeFNEF	539	77	44		120 (4)				120				
	HeFNEF at admission			438	77	44		120 (4)				120				
	HeFNEF after 4–8 weeks treatment											120				
Adabag et al. (2016) and Komádka et al. (2011) and Zile et al. (2011)†	I-PRESENTE study on the effect of Telrapirin in patients with HeFNEF F/U: 4.1 years	RCT	HeFNEF (alive at follow-up)	3,247	71	37		120 (4)				120				
	HeFNEF (non-SCD)			650	75	47		120 (4)				120				
	HeFNEF (SCD)			231	74	55		120 (4)				120				

TABLE 1 (Continued)
Study type	Population	F/U (years)	Type of HF	Age (mean, years)	Men (%)	EF (%)	LA diameter (mm)	AF/flutter on ECG N (%)	P wave (ms)	PR (ms)	QRS (ms)	LBBB N (%)	RBBB N (%)	QT (ms)	LVH N (%)	ST/T changes N (%)	Other
Selvaraj et al. (2014)†	Prospective study	Patients with HF identified from inpatient records, reviewed in the outpatient clinic 2008–11	HeFNEF QRST angle 0–26° 27–75° 76–179°	124 125 127	62 66 64	31 37 39	62 61 61	31 33 37	18 (15) 30 (24) 40 (32)	167 174 183	86 94 109	0 (0) 2 (2) 11 (9)	1 (1) 450 17 (13)	447 450 462	18 (15) 31 (26) 81 (68)	1 (1) 8 (6) 12 (9)	
Shah et al. (2013) and Joseph et al. (2016)†	RCT	Patients with HeFNEF enrolled in the TOPCAT trial in six countries 2006–12	HeFNEF	3,445	69 48 57	28% ECG	100 204 (8) 287	18% 11% 29%	QTc 35%	QTc 120	Q wave	399					
Hummel et al. (2009)‡	Retrospective study	Patients admitted to eight Michigan hospitals in two 6-month periods 2002–04	HeFNEF all (QRS < 120 ms) HeFNEF (QRS ≥ 120 ms)	872 679 193	74 72 78	33 31 40	60 60 59	235 (27) 224 (33) 91 (47)	89 148								
O’Neal et al. (2017)	Cohort study	MESA population, no cardiovascular disease at baseline from six field centres 2000–02	No HF Developed HeFNEF	6,420 127 117	62 67 70	47 72 50	No HF Developed HeFNEF	699 (11) 27 (21) 21 (18)	419 (8) 56 (44) 34 (29)	12.39 (19) 19 (15) 15 (13)	16 (1) 5 (3.9) 1 (1)	145 6 (4.7) 7 (5.9) 35 (18)	481 (7.5) 28 (22) 6 (5.1)	236 12 9 (1.5)	852 (13) 8 (5.1) 18 (15)		
Ho et al. (2013)†	Cohort study	Characteristics at baseline FHS participants with HF hospitalization 1980–2008	No HF HeFNEF	5,828 196 261	60 74 72	45 39 64	No HF HeFNEF	22 (11) 24 (10)	9 (5) 10 (4)	14 (7) 15 (5) 15 (5)	35 (18) 69 (26)	14 (7) 69 (26)	35 (18) 69 (26)	35 (18) 69 (26)			
Lee et al. (2009)‡	Cohort study	Characteristics at HF onset FHS participants with HF occurring 1981–2004	HeFNEF HeFREF	178 270	79 77	36 60	HeFNEF HeFREF	61 (34) 53 (2)	103 112	13 (7) 54 (20)	22 (12) 24 (9)	22 (12) 24 (9)	22 (12) 24 (9)	22 (12) 24 (9)			

Abbreviations: AF, atrial fibrillation; CAD, coronary artery disease; echo, echocardiogram; ED, emergency department; EF, ejection fraction; F/U, follow-up; F/U, follow-up; FHS, Framingham heart study; HB, heart block; HF, heart failure; HT, hypertension; IVCD, interventricular conduction delay; LA, left atrium; LVSF, left ventricular systolic function; MI, myocardial infarction; PAF, paroxysmal atrial fibrillation; RCT, randomized controlled trial; RV, right ventricular; SCD, sudden cardiac death.

*Median
**Overlapping cohorts
†Outcome or mortality data available
atrioventricular block (second or third) was present in 2%–6% of patients with HeFNEF in the I-PRESERVE trial (Adabag et al., 2014).

In a population of 3,664 referred to a community clinic with suspected heart failure, 20% of 1,094 patients with HeFNEF and 21% of 1,420 with HeFREF had first-degree heart block (as did 9% of those without heart failure) (Nikolaidou et al., 2017). Among patients with HeFNEF and QRS ≥ 130 ms, the prevalence of first-degree heart block was even higher (40%).

Twenty-seven patients with HeFNEF requiring hospitalization and 27 controls (outpatients referred for echocardiography or with stable coronary disease or mild valve disease but no HeFNEF) underwent ECG and echocardiographic assessment. Patients with HeFNEF had longer P waves and shorter echocardiographic A waves (Eicher et al., 2012).

3.5 | QRS

Left bundle branch block (LBBB) is present in up to 50% of patients with HeFREF (Danciu et al., 2006; Khan et al., 2007; Lund et al., 2013; Senni et al., 1998; Varadarajan & Pai, 2003) but only 0%–8% of patients with HeFNEF (Donal et al., 2014; Khan et al., 2007; Komajda et al., 2011; Lee et al., 2009; Masoudi et al., 2003; Menet et al., 2014; Peyster et al., 2004; Shah et al., 2013; Varadarajan & Pai, 2003). Right bundle branch block (RBBB) is present in 5%–11% of patients with HeFREF (weighted average 7%) (Donal et al., 2014; Khan et al., 2007; Lee et al., 2009; Shah et al., 2013; Varadarajan & Pai, 2003) and in 6%–16% (weighted average 9%) of patients with HeFNEF (Figure 2a) (Danciu et al., 2006; Donal et al., 2014; Hendry et al., 2016; Khan et al., 2007; Lee et al., 2009; Martinez Santos et al., 2016; Pascual-Figal et al., 2017; Selvaraj et al., 2014; Varadarajan & Pai, 2003). RBBB is more common in patients with HeFNEF compared to HeFREF but without reaching statistical significance due to limited data available.

In an analysis of the CHARM trials, which included 3,023 patients with normal LVEF, any bundle branch block was present in 14% of patients with HeFNEF (and 30% of those with HeFREF) (Hawkins et al., 2007). Data from the TOPCAT trial reported QRS duration ≥ 120 ms in 18% of 3,426 patients with HeFREF (Joseph et al., 2016). Similarly, Donal et al reported a prevalence of QRS > 120 ms of 15% among 539 patients admitted to hospital with HeFNEF (3.5% had LBBB and 7.6% had RBBB) (Donal et al., 2014). A study of 3,696 ambulatory patients referred with suspected heart failure reported that 5% of 1,107 patients with HeFNEF had QRS ≥ 150 ms versus 18% of those with HeFREF (Nikolaidou et al., 2017).

Increasing QRS duration (especially with LBBB morphology) is associated with increased mortality in HeFREF (Shamim et al., 1999). Conflicting results have been reported in patients with HeFNEF. In a study of 25,171 patients from the SwedeHF registry, increasing QRS duration was an independent risk factor for increasing all-cause mortality regardless of ejection fraction (Lund et al., 2013). An analysis of the TOPCAT trial showed that the risk of heart failure hospitalization was significantly higher in patients with HeFNEF and QRS ≥ 120 ms (Joseph et al., 2016). Another study of 872 patients admitted to Michigan community hospitals with HeFNEF reported that QRS duration >120 ms on a predischarge ECG was an independent predictor of postdischarge death (Hummel et al., 2009).

Increasing QRS duration was an independent predictor of increasing 2-year cardiovascular mortality but not all-cause mortality in an Asian population with heart failure and ejection fraction >50% (Yap et al., 2015). In a retrospective study of 108 patients admitted with HeFNEF, the presence of intraventricular conduction defects with QRS > 120 ms was associated with higher 180-day readmission and mortality rates (adjusted for age) compared to patients with narrower QRS (Danciu et al., 2006).

In contrast, in the CHARM trials, the presence of bundle branch block increased the risk of the primary outcome of cardiovascular death or unplanned hospital admission for heart failure only in patients with HeFREF and not those with HeFNEF (Hawkins et al., 2007). Similarly, in the REACH (Resource Utilization Among Congestive Heart Failure) study of 3,471 patients with heart failure, 1,811 of whom had normal ejection fraction (LVEF > 45%), longer QRS duration was again only associated with worse survival in patients with HeFREF (Shenkan et al., 2002).

In an observational study of 2,913 inpatients and outpatients with heart failure (Singaporean Asian patients from the SHOP cohort and Swedish patients in the SwedeHF Registry), longer QRS increased the composite risk of heart failure hospitalization or death in patients with HeFREF but not HeFNEF (Gijbbers et al., 2016). The difference between this report and the main SwedeHF registry (Lund et al., 2013) may reflect the fact that this study was designed to assess differences between Singaporean and Swedish cohorts. Only the subset of patients from SwedeHF enrolled after 2009 was included (fewer than half of the total cohort), limiting statistical power, and the patients were followed for a much shorter period of time than in the main study.

In another observational study of 1,107 outpatients with HeFNEF followed up in the heart failure clinic for 3.7 years, QRS duration was associated with worse survival in univariable analysis but not when corrected for other variables (increasing log[NT-ProBNP], male sex, higher New York Heart Association class, age and a faster baseline heart rate) (Nikolaidou et al., 2017). A report from the prospective Korean Acute Heart Failure Registry of patient admitted with heart failure showed that increasing QRS duration was not associated with...
all-cause mortality and heart failure hospitalization in patients with HeFNEF (Park et al., 2013).

We were able to pool outcome data associated with QRS duration in patients with HeFNEF from five studies (Figure 2b), showing increased risk of death and heart failure admission when QRS ≥ 120 ms.

3.6 | Pathological Q waves

The prevalence of pathological Q waves in patients with HeFNEF was 11%–18% (Hendry et al., 2016; Khan et al., 2007; Shah et al., 2013). In a study of 137 patients with a new diagnosis of heart failure, 15% of those with HeFNEF and 42% of those with HeFREF had evidence of previous myocardial infarction on ECG (history of coronary artery disease was present in 31% and 53%, respectively) (Senni et al., 1998). In a study of 963 patients admitted to hospital with heart failure with LVEF ≥ 55%, 35% had evidence of acute myocardial infarction on ECG (compared with 60% of those with reduced ejection fraction) (Varadarajan & Pai, 2003).

3.7 | Ventricular repolarization

Prolonged ventricular repolarization is associated with ventricular arrhythmias and increased risk of death (Moss, 1986). Ventricular repolarization is measured on ECG by the QT interval (or the JT interval which is independent of QRS duration). Measurement of the QT interval is usually corrected for heart rate (QTc) because faster heart rates shorten the QT interval. The corrected JT interval (JTc) is calculated by subtracting QRS duration from the QTc: a JTc of over 350 ms is pathological.

![FIGURE 2](image-url) A. Prevalence of RBBB in HeFNEF. B. The effect of QRS duration ≥120 ms or BBB (whether left or right) on the risk of death or hospitalization for heart failure in patients with HeFNEF.
The JTc interval was longer in 1,107 patients with HeFNEF in an outpatients clinic compared to 1,155 patients in the same clinic found not to have heart failure (p = .01). However, abnormal duration of repolarization is uncommon in HeFNEF with 4.3% of patients with HeFNEF having severe JTc interval prolongation (>400 ms) compared to 4.7% of those without heart failure (Nikolaidou et al., 2017). Similarly, the prevalence of JTc > 400 ms among 5,934 patients hospitalized with a suspected diagnosis of heart failure (excluding patients with ventricular pacing) was 3.1% in patients with no echocardiographic abnormality and 2.8% in those with echocardiographic evidence to support a diagnosis of HeFNEF (Khan et al., 2007). In these studies, the prevalence of JTc > 400 ms in patients with HeFREF was 4%–8% (Khan et al., 2007; Nikolaidou et al., 2017).

In an observational study of 376 outpatients with HeFNEF, increasing frontal QRS-T angle was independently associated with higher B-type natriuretic peptide (BNP) level, worse left ventricular diastolic function and worse right ventricular systolic function. Increasing QRS-T angle was also independently associated with an increase in the composite outcome of cardiovascular hospitalization even after adjusting for BNP (Selvaraj et al., 2014).

3.8 | Left ventricular hypertrophy (LVH)

The prevalence of electrocardiographic evidence of LVH in studies of patients with HeFNEF ranges between 10% and 30% (Hendry et al., 2016; Khan et al., 2007; Komajda et al., 2011; Senni et al., 1998; Shah et al., 2013). LVH may be more common in patients with HeFREF (Hendry et al., 2016; Senni et al., 1998). In six studies where information was available (Adabag et al., 2014; Hawkins et al., 2007; Komajda et al., 2011; Olsson et al., 2006; Shah et al., 2013), criteria used to define LVH included the Sokolow-Lyon (Antikainen et al., 2003), Cornell (Casale, Devereux, Alonso, Campo, & Kligfield, 1987), and Estes criteria (Romhilt & Estes, 1968).

3.9 | Multivariable models

A cross-sectional ECG study of 110 inpatients and outpatients with chronic heart failure in sinus rhythm at a single centre (50 with HeFNEF and EF > 40%) identified ECG variables that helped distinguish patients with HeFREF from those with HeFNEF. Those with HeFREF were more likely to have left atrial hypertrophy, QRS duration >100 ms, LBBB, absence of RBBB, ST-T segment changes, and QT interval prolongation. A model including all these variables separated the two conditions with 96% specificity and 76% sensitivity (Hendry et al., 2016).

In 534 participants with new-onset heart failure from the Framingham heart study, those with HeFREF (LVEF ≤ 45%) were less likely to have atrial fibrillation and more likely to have LBBB and a faster heart rate at heart failure onset compared to patients with HeFNEF in multivariable analysis (Lee et al., 2009).

In an analysis of the Irbesartan in Heart Failure with Preserved Ejection Fraction Study (I-PRESERVE), four ECG variables (heart rate, LVH, LBBB, and atrial fibrillation/flutter) were included among 58 variables in a multivariable model for predicting morbidity and mortality. Only a faster heart rate was an independent predictor of all-cause mortality (Komajda et al., 2011).

A study of 397 patients with HeFNEF previously hospitalized for heart failure used 67 variables (including six ECG variables) and model-based clustering to describe distinct phenotypes among patients with HeFNEF (Shah et al., 2015). Phenogroup 1 included younger patients with fewer symptoms and lower BNP, as well as fewer ECG and echocardiographic abnormalities. Phenogroup 2 had the highest prevalence of obesity, diabetes, and COPD. Phenogroup 3 patients were older with higher BNP and higher prevalence of CKD and with the longest PR, QRS and QTc duration as well as greater QRS-T angle compared to other groups. Phenogroup classification 1-3 was associated with a step-wise increase in the risk of heart failure hospitalization, cardiovascular hospitalization, or death even after adjusting for BNP.

3.10 | Risk of developing future heart failure

In a study of 6,340 participants from the Framingham Heart Study followed for 10 years, 196 developed HeFNEF and 261 HeFREF. There were 14 predictors of incident heart failure. Higher body mass index, smoking, and atrial fibrillation predicted HeFNEF only, while male sex, higher cholesterol, higher heart rate, hypertension, cardiovascular disease, LVH, and LBBB predicted HeFREF (Ho et al., 2013). The MESA (Multi-Ethnic Study of Atherosclerosis) study followed 6,664 participants free from cardiovascular disease at baseline for a median of 12 years. Higher resting heart rate, abnormal P-wave axis, and abnormal QRS-T axis were independent predictors of future HeFNEF (O’Neal et al., 2017).

4 | DISCUSSION

We have found that atrial fibrillation is more common in patients with HeFNEF compared to those with HeFREF. RBBB is also more common in patients with HeFNEF. In contrast, long PR interval, LVH, Q waves, LBBB, and long JTc are more common in patients with HeFREF. Therefore, a combination of variables, such as the presence of atrial fibrillation and the absence of LBBB, may help differentiate patients with HeFNEF compared to those with HeFREF, when echocardiography is not immediately available or in patients with mid-range left ventricular function.

There is high variability in the prevalence of ECG abnormalities among the included studies. This is likely to reflect different populations with different characteristics. There may well be substantial differences between, for example, inpatient and outpatient cohorts, and differences depending upon disease etiology and severity, and differences depending upon the variable prevalence of comorbidities such as COPD and hypertension. Different diagnostic criteria and analysis methods used for interpretation of ECG variables may be a further source of variability. In addition, electrocardiographic intervals can change over time and with treatment and few studies have reported serial measurements.
Only two studies specifically discussed patients with HeFmrEF (LVEF 40%-49%). The data we have found cannot fully address the subject of ECG changes in HeFmrEF, particularly given the different boundary definitions of LVEF in the studies we found. In one study comparing patients across the three ejection fraction groups, QRS duration as well as the prevalence of atrial fibrillation, and LBBB and RBBB were intermediate between those of patients with HeFNEF and HeFREF in patients with HeFmrEF.

Hypertension is the commonest cause of HeFNEF. LVH is one of the diagnostic criteria for HeFNEF (Ponikowski et al., 2016a) and is associated with worse outcomes (Zile et al., 2011). Electrocardiographic LVH is a strong predictor of diastolic dysfunction and treatment of hypertension results in regression of electrocardiographic LVH (Krepp, Lin, Min, Devereux, & Okin, 2014). In an analysis of the I-PRESERVE trial, LVH was present in 59% of patients with HeFNEF using echocardiographic criteria and 28% using ECG criteria (Zile et al., 2011). The overall prevalence of electrocardiographic LVH in patients with HeFNEF included in this review was 10%-30%.

Right ventricular systolic dysfunction as a consequence of increased pulmonary artery pressure is common in HeFNEF. It is present in at least one-fifth of patients with HeFNEF and is associated with worse prognosis (Gorter et al., 2018; Martinez Santos et al., 2016). Right heart failure is a common mode of death in patients with HeFNEF (Aschauer et al., 2017). 9% of patients with HeFNEF have RBBB and a proportion of these patients may have lung disease and/or right heart failure contributing to their symptoms, consistent with phenogroup 2 features (Shah et al., 2015). The prevalence of COPD/lung disease in the studies included in this review was 12%-40%.

Left atrial enlargement is one of the hallmarks of HeFNEF (Ponikowski et al., 2016a) and is associated with atrial fibrillation and worse outcomes (Zile et al., 2011). Only two studies have reported electrocardiographic P-wave duration in patients with HeFNEF. PR interval duration is prolonged in patients with HeFNEF compared to patients without heart failure, which may at least partly reflect atrial enlargement. In the absence of symptoms, an abnormal P-wave axis is independently associated with future HeFNEF (O’Neal et al., 2017).

Clinical variables known to be associated with worse all-cause mortality in HeFNEF include older age and the presence of renal impairment, lower blood pressure, anemia, history of stroke, or dementia (Nikolaaidou et al., 2017; Yap et al., 2015). Our analysis shows that QRS duration ≥ 120 ms is a risk factor associated with worse outcomes in patients with HeFNEF.

ORCID

Theodora Nikolaaidou https://orcid.org/0000-0002-8810-0414

REFERENCES

Adabag, S., Rector, T. S., Anand, I. S., McMurray, J. J., Zile, M., Komajda, M., ... Carson, P. E. (2014). A prediction model for sudden cardiac death in patients with heart failure and preserved ejection fraction.

European Journal of Heart Failure, 16(11), 1175–1182. https://doi.org/10.1002/ejhf.172

Ahmed, A., Rich, M. W., Fleg, J. L., Zile, M. R., Young, J. B., Kitzman, D. W., ... Gheorghiade, M. (2006). Effects of digoxin on morbidity and mortality in diastolic heart failure: The ancillary digitals investigation group trial. Circulation, 114(5), 397–403. https://doi.org/10.1161/CIRCULATIONAHA.106.628347

Antikainen, R., Grodzicki, T., Palmer, A. J., Beevers, D. G., Coles, E. C., Webster, J., & Bulpitt, C. J. (2003). The determinants of left ventricular hypertrophy defined by Sokolow-Lyon criteria in untreated hypertensive patients. Journal of Human Hypertension, 17(3), 159–164. https://doi.org/10.1038/sj.jhh.1001523

Arora, R., Krummerman, A., Vijayaraman, P., Rosengarten, M., Suryadevara, V., Lejemtel, T., & Ferrick, K. J. (2004). Heart rate variability and diastolic heart failure. *Pacing and Clinical Electrophysiology*, 27(3), 299–303. https://doi.org/10.1111/j.1540-8159.2004.00431.x

Aschauer, S., Zottter-Tufaro, C., Duca, F., Kammerlander, A., Dalos, D., Mascherbauer, J., & Bondonner, D. (2017). Modes of death in patients with heart failure and preserved ejection fraction. *International Journal of Cardiology*, 228, 422–426. https://doi.org/10.1016/j.ijcard.2016.11.154

Basnet, B. K., Manandhar, K., Shrestha, R., Shrestha, S., & Thapa, M. (2009). Electrocardiograph and chest X-ray in prediction of left ventricular systolic dysfunction. *Journal of Nepal Medical Association*, 48(176), 310–313. https://doi.org/10.31729/jnma.343

Bauer, A., Barthel, P., Muller, A., Ulm, K., Huiuki, H., Malik, M., & Schmidt, G. (2009). Risk prediction by heart rate turbulence and deceleration capacity in postinfarction patients with preserved left ventricular function retrospective analysis of 4 independent trials. *Journal of Electrocardiology*, 42(6), 597–601. https://doi.org/10.1016/j.jelectrocard.2009.07.013

Beladan, C. C., Popescu, B. A., Calin, A., Rosca, M., Matei, F., Gurzun, M.-M., ... Gheorghiade, M. (2014). Correlation between global longitudinal strain and QRS voltage on electrocardiogram in patients with left ventricular hypertrophy. *Echocardiography*, 31(3), 325–334. https://doi.org/10.1111/eco.12362

Brouwers, F. P., de Boer, R. A., van der Harst, P., Voors, A. A., Gansevoort, R. T., Bakker, S. J., ... van Gilst, W. H. (2013). Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. *European Heart Journal*, 34(19), 1424–1431. https://doi.org/10.1093/eurheartj/eht066

Casale, P. N., Devereux, R. B., Alonso, D. R., Campo, E., & Kligfield, P. (1987). Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: Validation with autopsy findings. *Circulation*, 75(3), 565–572. https://doi.org/10.1161/01.CIR.75.3.565

Cenkerova, K., Dubrava, J., Pokorna, V., Kaluzay, J., & Jurkovicova, O. (2016). Prognostic value of echocardiography and ECG in heart failure with preserved ejection fraction. *Bratislava Medical Journal*, 117(7), 407–412. https://doi.org/10.4149/BML_2016_080

Cleland, J. G., Tendera, M., Adams, J. F., Freemantle, N., Polonski, L., & Taylor, J. (2006). The perindopril in elderly people with chronic heart failure (PEP-CHF) study. *European Heart Journal*, 27(19), 2338–2345. https://doi.org/10.1093/eurheartj/ehl250

Danciu, S. C., Gonzalez, J., Gandhi, N., Sadhu, S., Herrera, C. J., & Kehoe, R. (2006). Comparison of six-month outcomes and hospitalization rates in heart failure patients with and without preserved left ventricular ejection fraction and with and without intraventricular conduction defect. *American Journal of Cardiology*, 97(2), 256–259. https://doi.org/10.1016/j.amjcard.2005.08.031

De Sutter, J., Van de Veire, N. R., Muyldermans, L., De Backer, T., Hoffer, E., Vaerenberg, M., ... Van Camp, G. (2005). Prevalence of mechanical dyssynchrony in patients with heart failure and preserved left ventricular function (a report from the Belgian Multicenter Registry on
dysynchrony. American Journal of Cardiology, 96(11), 1543-1548. https://doi.org/10.1016/j.amjcard.2005.07.062

Donal, E., Lund, L. H., Oger, E., Hage, C., Persson, H., Reynaud, A., … Linde, C. (2014). Baseline characteristics of patients with heart failure and preserved ejection fraction included in the Karolinska Rennes (KaReN) study. Archives of Cardiovascular Diseases, 107(2), 112-121. https://doi.org/10.1016/j.acvd.2013.11.002

Eapen, Z. J., Greiner, M. A., Fonarow, G. C., Yuan, Z., Mills, R. M., Hernandez, A. F., & Curtis, L. H. (2014). Associations between atrial fibrillation and early outcomes of patients with heart failure and reduced or preserved ejection fraction. American Heart Journal, 167(3), 369–375.e2. https://doi.org/10.1016/j.ahj.2013.12.001

Eicher, J.-C., Laurent, G., Mathé, A., Barthez, O., Bertaux, G., Philip, J.-L., … Wolf, J.-E. (2012). Atrial dysynchrony syndrome: An overlooked phenomenon and a potential cause of 'diastolic' heart failure. European Journal of Heart Failure, 14(3), 248–258. https://doi.org/10.1093/ejhf/hfr169

Girolitti, J. N., Sidhu, M. S., Robert, A. M., Zipursky, J. S., Brown, J. R., … Mills, R. M., … Lewis, E. F. (2016). QRS duration is a predictor of adverse outcomes in heart failure with preserved ejection fraction. Journal of the American College of Cardiology Heart Failure, 4(6), 477–486. https://doi.org/10.1016/j.jchf.2016.02.013

Karaye, K. M., & Sani, M. U. (2008). Electrocardiographic abnormalities in patients with heart failure. Cardiovascular Journal of Africa, 19(1), 22–25.

Khan, N. K., Goode, K. M., Cleland, J. G. F., Rigby, A. S., Freemantle, N., Eastaugh, J., … Follath, F. (2007). Prevalence of ECG abnormalities in an international survey of patients with suspected or confirmed heart failure at death or discharge. European Journal of Heart Failure, 9(5), 491–501. https://doi.org/10.1016/j.ejheart.2006.11.003

Komajda, M., Carson, P. E., Hetzel, S., McKelvie, R., McMurray, J., Ptaszynska, A., … Massie, B. M. (2011). Factors associated with outcome in heart failure with preserved ejection fraction: Findings from the Irbesartan in Heart Failure with Preserved Ejection Fraction Study (I-PRESERVE). Circulation Heart Failure, 4(1), 27–35. https://doi.org/10.1161/CIRCHEARTFAILURE.109.932996

Krepp, J. M., Lin, F., Min, J. K., Devereux, R. B., & Okin, P. M. (2014). Relationship of electrocardiographic left ventricular hypertrophy to the presence of diastolic dysfunction. Annals of Noninvasive Electrocardiology, 19(6), 552–560. https://doi.org/10.1111/anec.12166

Lee, D. S., Gona, P., Vasan, R. S., Larson, M. G., Benjamin, E. J., Wang, T. J., … Levy, D. (2009). Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: Insights from the framingham heart study of the national heart, lung, and blood institute. Circulation, 119(24), 3070–3077. https://doi.org/10.1161/CIRCULATIONAHA.108.815944

Lund, L. H., Jurga, J., Edner, M., Benson, L., Dahlström, U., Linde, C., & Alehagen, U. (2013). Prevalence, correlates, and prognostic significance of QRS prolongation in heart failure with reduced and preserved ejection fraction. European Heart Journal, 34(7), 529–539. https://doi.org/10.1093/eurheartj/ehs305

Martin, T. C. (2007). Comparison of Afro-Caribbean patients presenting in heart failure with normal versus poor left ventricular systolic function. American Journal of Cardiology, 100(8), 1271–1273. https://doi.org/10.1016/j.amjcard.2007.05.047

Martinez Santos, P., Vilacosta, I., Batlle López, E., Sánchez Sauce, B., España Barrio, E., Jiménez Valtierra, J., … Campuzano Ruiz, R. (2016). Surface electrocardiogram detects signs of right ventricular pressure overload among acute-decompensated heart failure with preserved ejection fraction patients. Journal of Electrocardiology, 49(4), 536–538. https://doi.org/10.1016/j.jelectrocard.2016.02.021

Masoudi, F. A., Havranek, E. P., Smith, G., Fish, R. H., Steiner, J. F., Ondin, D. L., & Krumholz, H. M. (2003). Gender, age, and heart failure with preserved left ventricular systolic function. Journal of the American College of Cardiology, 41(2), 217–223. S0735109702026967 [pii].

McCullough, P. A., Hassan, S. A., Pallekonda, V., Sandberg, K. R., Nori, D. B., Soman, S. S., … Weaver, W. D. (2005). Bundle branch block patterns, age, renal dysfunction, and heart failure mortality. International Journal of Cardiology, 102(2), 303–308. https://doi.org/10.1016/j.ijcard.2004.10.008

Mckee, P. A., Castelli, W. P., McNamara, P. M., & Kannel, W. B. (1971). The natural history of congestive heart failure: The Framingham study. The New England Journal of Medicine, 285(26), 1441–1446. https://doi.org/10.1056/NEJM197112222852601

McMurray, J. J. V., Adamopoulos, S., Anker, S. D., Auricchio, A., Bohm, M., Dickstein, K., … Ponikowski, P. (2012). ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European society of cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. European Heart Journal, 33(14), 1787–1847. https://doi.org/10.1093/eurheartj/ehs104

McMurray, J. J. V., Carson, P. E., Komajda, M., McKelvie, R., Zile, M. R., Ptaszynska, A., … Massie, B. M. (2008). Heart failure with preserved ejection...
ejection fraction: Clinical characteristics of 4133 patients enrolled in the I-PRESERVE trial. European Journal of Heart Failure, 10(2), 149–156. https://doi.org/10.1016/j.ejheart.2007.12.010

Menet, A., Greffe, L., Ennezet, P.-V., Delelis, F., Guyomar, Y., Castel, A. L., ... Marechaux, S. (2014). Is mechanical dys synchrony a therapeutic target in heart failure with preserved ejection fraction? American Journal Heart, 168(6), 909–916 e901. https://doi.org/10.1016/j.ajh.2014.08.004

Newton, N., Straus, D. G., Rizzi, P., Verrier, R. L., Liu, C. Y., Tereshchenko, L. G., ... Lima, J. A. C. (2016). Screening for cardiac magnetic resonance scar features by 12-Lead ECG, in patients with preserved ejection fraction. Annals of Noninvasive Electrocardiology, 21(1), 49–59. https://doi.org/10.1111/anec.12264

Moss, A. J. (1986). Prolonged QT-interval syndromes. Moss & A. J. (1986). Prolonged QT-interval syndromes.

Murkofsky, R. L., Dangas, G., Diamond, J. A., Mehta, D., Schaffer, A., & Mureddu, G. F., Agabiti, N., Rizzello, V., Forastiere, F.,latini, R., Cesaroni, G., ... Boccanelli, A. (2012). Prevalence of preclinical and clinical heart failure in the elderly. A population-based study in Central Italy. European Journal of Heart Failure, 14(7), 718–729. https://doi.org/10.1093/eurjhf/hfs052

Murod, G. F., Agabiti, N., Rizzello, V., Forastiere, F.,latini, R., Cesaroni, G., ... Boccanelli, A. (2012). Prevalence of preclinical and clinical heart failure in the elderly. A population-based study in Central Italy. European Journal of Heart Failure, 14(7), 718–729. https://doi.org/10.1093/eurjhf/hfs052

Oikonomou, P., Cook, J. R., Navaravong, L., Levine, R. A., Peralta, A., Gaziano, Nyaga, V. N., Arbyn, M., & Aerts, M. (2014). Metaprop: A Stata command

Olsson, L. G., Swedberg, K., Ducharme, A., Granger, C. B., Michelson, E. L., McMurray, J. J. V., ... Pfeffer, M. A. (2006). Atrial fibrillation and risk of clinical events in chronic heart failure with and without left ventricular systolic dysfunction: Results from the Candesartan in Heart Failure-Assessment of Reduction in Mortality and morbidity (CHARM) program. Journal of the American College of Cardiology, 47(10), 1997–2004. https://doi.org/10.1016/j.jacc.2006.01.060

Olueye, O. W., Rector, T. S., Win, S., McMurray, J. J. V., Zile, M. R., Komajda, M., ... Anand, I. S. (2014). History of atrial fibrillation as a risk factor in patients with heart failure and preserved ejection fraction. Circulation Heart Failure, 7(6), 960–966. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001523

O’Neal, W. T., Mazur, M., Bertoni, A. G., Bluemke, D. A., Al-Mallah, M. H., Lima, J. A. C., ... Soliman, E. Z. (2017). Electrocardiographic predictors of heart failure with reduced versus preserved ejection fraction: the multi-ethnic study of atherosclerosis. Journal of the American Heart Association, 6(6), 1–8. https://doi.org/10.1161/JAHA.117.006023

Onoue, Y., Izumiya, Y., Hanatani, S., Kimura, Y., Araki, S., Sakamoto, K., ... Ogawa, H. (2016). Fragmented QRS complex is a diagnostic tool in patients with left ventricular diastolic dysfunction. Heart and Vessels, 31(4), 563–567. https://doi.org/10.1007/s00380-015-0651-7

Oskouie, S. K., Prebner, S. B., Shah, S. J., & Sauer, A. J. (2017). Differences in repolarization heterogeneity among heart failure with preserved ejection fraction subtypes. American Journal of Cardiology, 120(4), 601–606. https://doi.org/10.1016/j.amjcard.2017.05.031

Park, H.-S., Kim, H., Park, J.-H., Han, S., Yoo, B.-S., Shin, M.-S., ... Ryu, K.-H. (2013). QRS prolongation in the prediction of clinical cardiac events in patients with acute heart failure: Analysis of data from the Korean acute heart failure registry. Cardiology, 125(2), 96–103. https://doi.org/10.1159/000348334

Park, H. E., Kim, J.-H., Kim, H.-K., Lee, S.-P., Choi, E.-K., Kim, Y.-J., ... Sohn, D.-W. (2012). Ventricular dyssynchrony of idiopathic versus pacing-induced left bundle branch block and its prognostic effect in patients with preserved left ventricular systolic function. American Journal of Cardiology, 109(4), 556–562. https://doi.org/10.1016/j.amjcard.2011.09.048

Pascual-Figal, D. A., Ferrero-Gregori, A., Gomez-Otero, I., Vazquez, R., Delgado-Jimenez, J., Alvarez-Garcia, J., ... Cinca, J. (2017). Mid-range left ventricular ejection fraction: Clinical profile and cause of death in ambulatory patients with chronic heart failure. International Journal Cardiology, 240, 265–270. https://doi.org/10.1016/j.ijcard.2017.03.032

Paulus, W. J., Tschöpe, C., Sanderson, J. E., Rusconi, C., Flachskampf, F. A., Rademakers, F. E., ... Brutsaert, D. L. (2007). How to diagnose diastolic heart failure: A consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the heart failure and echocardiography associations of the European society of cardiology. European Heart Journal, 28(20), 2539–2550. https://doi.org/10.1093/eurheartj/ehm037

Pérez de Isla, L., Zamorano, J., Hernández, N., Contreras, L., Rodrigo, J. L., Almería, C., ... Macaya, C. (2008). Prognostic factors and predictors of in-hospital mortality of patients with heart failure with preserved left ventricular ejection fraction. Journal of Cardiovascular Medicine (Hagerstown), 9(10), 1011–1015. https://doi.org/10.2459/JCM.0b013e3282fba87

Peyster, E., Norman, J., & Domanski, M. (2004). Prevalence and predictors of heart failure with preserved systolic function: Community hospital admissions of a racially and gender diverse elderly population. Journal of Cardiovascular Medicine, 10(1), 49–54. S1071916403005779

Phan, T. T., Shivu, G. N., Abozguia, K., Davies, C., Nassimizadeh, M., Jimenez, D., ... Frenneaux, M. (2010). Impaired heart rate recovery
The CHARM-Preserved Trial. Lancet, 362(9386), 777–781. https://doi.org/10.1016/S0140-6736(03)14285-7
Zakeri, R., Chamberlain, A. M., Roger, V. L., & Redfield, M. M. (2013). Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction: A community-based study. Circulation, 128(10), 1085–1093. https://doi.org/10.1161/CIRCULATIONAHA.113.004175
Zhang, L., Liebelt, J. J., Madan, N., Shan, J., & Taub, C. C. (2017). Comparison of predictors of heart failure with preserved versus reduced ejection fraction in a multiracial cohort of preclinical left ventricular diastolic dysfunction. American Journal of Cardiology, 119(11), 1815–1820. https://doi.org/10.1016/j.amjcard.2017.03.005
Zile, M. R., Gottdiener, J. S., Hetzel, S. J., McMurray, J. J., Komajda, M., McKelvie, R., ... Carson, P. E. (2011). Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation, 124(23), 2491-2501. https://doi.org/10.1161/CIRCULATIONAHA.110.011031

How to cite this article: Nikolaidou T, Samuel NA, Marincowitz C, Fox DJ, Cleland JGF, Clark AL. Electrocardiographic characteristics in patients with heart failure and normal ejection fraction: A systematic review and meta-analysis. Ann Noninvasive Electrocardiol. 2020;25:e12710. https://doi.org/10.1111/anec.12710

APPENDIX I

Studies excluded	Reason for exclusion
(Tanoue, Kjeldsen, Devereux, & Okin, 2017)	No heart failure symptoms
(van Boven et al., 1998)	No heart failure symptoms
(Ofman et al., 2012)	No heart failure symptoms
(Murkofsky et al., 1998)	No heart failure symptoms
(Okin, Wachtell, Gerdts, Dahlof, & Devereux, 2014)	No heart failure symptoms
(Triola et al., 2005)	No heart failure symptoms
(Onoue et al., 2016)	No heart failure symptoms
(Sauer et al., 2012)	No heart failure symptoms
(Namdar et al., 2013)	No heart failure symptoms
(Basnet, Manandhar, Shrestha, Shrestha, & Thapa, 2009)	No heart failure symptoms
(Nielsen, Hansen, Hilden, Larsen, & Svanegaard, 2000)	No heart failure symptoms
(Okin et al., 2001)	No heart failure symptoms
(Mewton et al., 2016)	No heart failure symptoms, non-representative population
(Wachtell et al., 2007)	No heart failure symptoms
(Wilcox, Rosenberg, Vallakati, Gheorghiade, & Shah, 2011)	No heart failure symptoms
(Sartipy, Dahlstrom, Fu, & Lund, 2017)	No ECG data other than heart rhythm
(West et al., 2011)	No ECG data other than heart rhythm
(Zakeri, Chamberlain, Roger, & Redfield, 2013)	No ECG data other than heart rhythm
(Eapen et al., 2014)	No ECG data other than heart rhythm
(Brouwers et al., 2013)	No ECG data other than heart rhythm
(Perez de Isla et al., 2008)	No ECG data other than heart rhythm
(Martin, 2007)	No ECG data other than heart rhythm
(Gotsman et al., 2008)	No ECG data other than heart rhythm

(Continues)
APPENDIX II

Definition of HF	N	Definition of HeFNEF	Exclusion criteria	Kidney disease N (%)	HT N (%)	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N (%)	BNP median ng/L
Nikolaidou et al (2018)										
No HF	1,155	HeFNEF definition: ESC 2016 (Ponikowski et al., 2016)	-Inability to provide consent	246 (22)	5/1193 (0.4)	Excluded	260 (23)	548		
HeFNEF	1,107	-Symptoms compatible with HF	-Pregnancy	479 (44)	99/1950 (5)		291 (26)			
HeFREF	1,434	-NT-pro-B ≥ 220 ng/ml for patients in sinus rhythm	-Atrial fibrillation/flutter	944 (66)	234/2333 (10)		360 (25)			
		-LVEF ≥ 45%	-Pacemaker even if not pacing at the time of the ECG recording							
Pascual-Figal et al. (2017)										
HeFNEF	635	HF diagnosis:	-Acute coronary syndrome	511 (81)	165 (26)	NT-proBNP	258 (41)	1,023		
HeFMEF	460	-Prior hospitalization for HF	-Severe valvular disease	305 (66)	256 (56)		211 (46)	936		
HeFREF	2,351	-Objective signs of HF confirmed by symptoms, chest X-ray, and/or echocardiography	-Life-limiting comorbidity	1,414 (60)	1,203 (51)		930 (40)	1557		
Hendry et al. (2016)										
HeFNEF	50	HF diagnosis: ESC 2012 or AHA 2013 (McMurray et al., 2012; Yancy et al., 2013)	-Congenital Heart Disease	46 (92)	Excluded		19 (38)			
HeFREF	60	HeFNEF: LVEF > 40%	-Primary valve disease	36 (65)			13 (22)			
Gijsberts et al. (2016)										
All HF	12,060	SHOP cohort Clinical diagnosis of HF based on ESC 2012 guidelines (McMurray et al., 2012)	SHOP cohort:	2,157 (18)	3,126 (26)					
HeFNEF	2,913	SwedeHF registry HF diagnosis: Clinician-judged HF	-Severe valve disease							
HeFREF	9,147	HeFNEF: LVEF ≥ 50%	-ACS							

(Continues)
APPENDIX II (Continued)

Study	Type of HF	N	Definition of HF	Definition of HeFNEF	Exclusion criteria	Kidney disease	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N (%)	BNP median ng/L
Sanchis et al. (2016)	No HF	32		HeFNEF definition: ESC 2007 (Paulus et al., 2007) LVEF > 50%	- Age < 18 years	8 (24)	21 (62)	30 (94)	6 (18)	7 (22)	120†
	HeFNEF	34			- Life expectancy < 1 year						
					- AF or atrial flutter						
					- Significant valvular disease						
Cenkerova et al. (2016)	HeFNEF	63	HeFNEF definition: ESC 2012		Known advanced malignancy with expected survival < 1 year	57 (91)	43 (68)	32 (70)	26 (41)	16 (35)	5,467
	HeFREF	46			NT-proBNP						
Yap et al. (2015)	HeFNEF	751	HeFNEF definition:			603 (80)	107 (14)	308 (41)	354 (47)	5,814	
	HeFREF	1,209				838 (69)	139 (12)	588 (49)	666 (55)	12,323	
Menet et al. (2014)	No HF (HTN)	40	HF definition:	Framingham (McKee, Castelli, McNamara, & Kannel, 1971) and physical and radiographic evidence of pulmonary congestion	- History of MI	40 (100)	1 (3)	2 (5)	15 (38)	54	
	HeFNEF	40			- Atrioventricular						
	HeFREF	40			or sinoatrial conduction defects						
	HeFREF (CRT+)	40			- Atrial fibrillation or flutter						
	HeFREF (QRS < 120)	40			- Primary valvular disease						
					- Prosthetic heart valve						
					- Restrictive or hypertrophic cardiomyopathy						
					- Constrictive pericarditis						
					- Heart failure secondary to chronic kidney disease						
					- High-output HF						
Lund et al. (2013)	All HF	25,171	Clinician judged HF		Excluded	16.017 (64)	11,595 (46)	4,568 (18)	11,891 (47)	5,150/37,974	6,070 (24)
	HeFNEF	6,193	HeFNEF: LVEF 40%–49%								
	HeFREF	13,377	HeFNEF: LVEF ≥ 50%								
	HeFMEF	5,601									

(Continues)
APPENDIX II (Continued)

Study	N	Definition of HeFNEF	Exclusion criteria	Kidney disease N (%)	HT N (%)	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N (%)	BNP median ng/L
Park et al. (2013)		Framingham (McKee et al., 1971)	- Paced rhythm	272 (52)	78 (15)	223 (23)			155 (30)	
HeFNEF	523									
HeFREF	966									
Eicher et al. (2012)		HF diagnosis: ESC guidelines 2007 (Paulus et al., 2007)	- Significant valve disease	20 (74)					5 (19)	
No HF	27									
HeFNEF	29			24 (83)					9 (31)	
Khan et al. (2007)		Included in the study:	A clinical diagnosis of heart failure recorded during admission	1,069 (18)	3,211 (54)	1,731 (29)	3,821 (64)	636 (11)	1,601 (27)	
All	5,935	- A diagnosis of HF at any time in the last 3 years	- Loop diuretic for any reason other than renal failure during the 24 hr prior to death or discharge							
No echo abnormality	523	- Treatment for HF within 24 hr of death or discharge								
LVDD	109									
Mild LVSD	667									
Mod/severe LVSD	735									
Hawkins et al. (2007) and Olsson et al. (2006)		Symptomatic HF NYHA II-IV for at least 4 weeks	- Serum creatinine ≥ 3 mg/dl	52 (2)	1,943 (64)				1817 (60)	
HeFNEF	3,023		- Serum potassium ≥ 5.5 mmol/l	101 (2)	2,243 (49)				244 (8)	
HeFREF	4,576		- Symptomatic hypotension						584 (13)	
			- Bilateral renal artery stenosis						2,535 (55)	
			- Critical aortic or mitral stenosis, MI, stroke, or open-heart surgery in the previous 4 weeks							
			- Use of an ARB in last 2 weeks							
			- Life-limiting comorbidity							
APPENDIX II (Continued)

Definition of HF	N	Definition of HeFNEF	Exclusion criteria	Kidney disease N (%)	HT N (%)	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N(%)	BNP median ng/L
Danciu et al. (2006)†	HeFNEF 108	HF definition: ICD-9 discharge diagnosis of HF HeFNEF: LVEF ≥ 40%	-Implantable devices	69 (64)	90 (83)		63 (58)	59 (55)	52 (48)	
	HeFREF 109			64 (59)	87 (80)		83 (76)			
Peyster et al. (2004)	HeFNEF 59		Framingham (McKee et al., 1971) HeFNEF: LVEF ≥ 50%	32 (33)	95 (98)	COPD	36 (37)	54 (56)	80 (53)	
	HeFREF 78			71 (47)	120 (80)	30 (31)	35 (23)			
Varadarajan and Pai (2003)	HeFNEF 963		Framingham (McKee et al., 1971) HeFNEF: LVEF ≥ 55%							
	HeFREF 1,295			10 (1)	260 (27)	39 (4)	10 (1)	39 (3)	155 (12)	
Masoudi et al. (2003)	HeFNEF 6,754		Patients hospitalized with a diagnosis of HF and prior history of HF or evidence of HF on admission chest X-ray HeFNEF: LVEF ≥ 50%	2,431 (36)	4,660 (69)	2,296 (34)	3,107 (46)	2,499 (37)	5,182 (40)	
	HeFREF 12,956		-Chronic renal failure on hemodialysis -Patient transferred to another facility or self-discharged	6,089 (47)	7,903 (61)	4,016 (31)	8,421 (65)			
Shenkman et al. (2002)	All HF 3,471		A minimum of two outpatient ICD-9-CM codes for HF or one inpatient hospitalization under diagnosis-related group 127 or 124 and one of the above codes HeFNEF: LVEF ≥ 50%	22 (37)	34 (58)	9 (15)	18 (31)			
	HeFNEF 1,811			40 (51)	39 (50)	11 (14)	41 (53)			
	HeFREF 1,660									
Senni et al. (1998)	HeFNEF 59		Modified Framingham criteria (McKee et al., 1971) HeFNEF: LVEF ≥ 50%	22 (37)	34 (58)	9 (15)	18 (31)			
	HeFREF 78			40 (51)	39 (50)	11 (14)	41 (53)			
Gigliotti et al. (2017)	HeFNEF SR AF 57		Framingham (McKee et al., 1971) HeFNEF: LVEF ≥ 50%	-Paced rhythm	46 (81)		31 (54)	32 (56)	4,951*	
			-Atrial flutter	18 (72)			16 (64)	11(44)	6,019*	

(Continues)
Definition of HF	N	Definition of HeFNEF	Exclusion criteria	Kidney disease N (%)	HT N (%)	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N (%)	BNP median ng/L
Oskouie et al. (2017)	HeFNEF 201	HeFNEF definition: All patients met the Framingham (McKee et al., 1971) and ESC (McMurray et al., 2012) criteria for HF LVEF > 50%	- Atrial fibrillation/flutter - Ventricular pacing - T-wave abnormality - TpTe amplitude < 1.5 mV - Heart block - ECGs not accessible	66/201 (33)	155/201 (77)	89/201 (44)	21/397 (5)	65/201 (32)	192	
Martinez Santos et al. (2016)	HeFNEF 123	HF definition: Framingham (McKee et al., 1971) All patients also met the ESC HeFNEF criteria (McMurray et al., 2012; Paulus et al., 2007) HeFNEF: LVEF ≥ 50%	- Advanced renal disease - High-output failure - Congenital heart disease - Mitral or aortic prosthesis - Severe left valvular disease - RBBB	46 (37)						
Shah et al. (2015)	Group 1	HF definition: Framingham (McKee et al., 1971) HeFNEF: LVEF > 50% - BNP > 100 ng/L - Evidence of diastolic dysfunction on echocardiography or - Raised LV filling pressures		8 (6)	84 (66)	43 (34)	54 (42)	12 (9)	72	
	Group 2			41 (34)	108 (90)	46 (38)	58 (48)	63 (52)	188	
	Group 3			79 (53)	112 (75)	56 (38)	75 (50)	50 (34)	607	
Donal et al. (2014)	HeFNEF at admission 539	HeFNEF definition: Framingham (McKee et al., 1971) - Signs and symptoms of HF - BNP > 100 ng/L or NT-proBNP > 300 ng/L - LVEF ≥ 45% - Verified within 72 hr of presentation	- Evidence of primary hypertrophic or restrictive cardiomyopathy - Systemic illness known to be associated with infiltrative heart disease - Known cause of right heart failure not related to LVSD - Pericardial constriction	146 (27)	419 (78)	73 (14)	158 (29)	35 (7)	161 (30)	
	HeFNEF after 4–8 weeks treatment 438							BNP 429 NT-proBNP 2,448	BNP 277 NT-proBNP 1,409	
Definition of HF	N	Definition of HeFNEF	Exclusion criteria	Kidney disease N (%)	HT N (%)	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N(%)	BNP median ng/L
-----------------	---	----------------------	-------------------	---------------------	----------	------------	-----------	-------------------------------	--------------	----------------
Adabag et al. (2014) and Komajda et al. (2011) and Zile et al. (2011)	HeFNEF (alive at follow-up) 3,247	-HF definition:	-<60 years of age	877 (27)	2,889 (89)	260 (8)	1624 (50)	NT-ProBNP 812 (25)	647	
	HeFNEF (non-SCD) 650	-HF symptoms	-Intolerance to ARB	553 (85)	201 (87)	81 (35)	358 (55)	146 (63)	228 (35)	1733
	HeFNEF (SCD) 231	-Hospitalization for HF during the previous 6 months and NYHA class II, III, or IV symptoms with corroborative evidence	-Previous LVEF < 40%	306 (47)	85 (13)	37 (16)	358 (55)	146 (63)	88 (38)	1722
	If not hospitalized, ongoing class III or IV symptoms with corroborative evidence	-ACS, coronary revascularization, or stroke within the previous 3 months	-Significant valvular disease	87 (40)	47 (38)	46 (36)	54 (43)	37 (30)	46 (37)	222
	HeFNEF: LVEF ≥ 45%	-Hypertrophic or restrictive cardiomyopathy	-Pericardial disease	51 (40)	379					
		-Isolated right HF	-Systolic BP < 100 mm Hg or > 160 mm Hg or a diastolic BP > 95 mm Hg despite HF therapy							
		-Life-limiting comorbidity	-Laboratory abnormalities							
Selvaraj et al. (2014)	HeFNEF (QRS-T 0–26°) 124	HF definition:	-Significant valvular disease	47 (38)	92 (74)	50 (40)	40 (32)	32 (26)	123	
		Framingham (McKee et al., 1971)	-Prior cardiac transplantation	74 (59)	100 (80)	47 (38)	37 (30)	46 (37)	222	
		Identified from inpatient records:	-History of overt LV systolic dysfunction (LVEF < 40%)	73 (57)	99 (78)	46 (36)	54 (43)	51 (40)	379	
		-Diagnosis of HF or the term HF in the hospital notes	-Constrictive pericarditis.							
		-BNP > 100 pg/ml or	-Ventricular paced rhythm							
		-Two or more doses of intravenous diuretic administered								
		HeFNEF definition:								
		LVEF > 50% and LV end-diastolic volume index <97 ml/m² (Paulus et al., 2007)								
NIKOLAIDOU et al. (2013)

HeFNEF

Definition of HF

- At least one HF symptom at the time of study screening and at least one HF sign within the 12 months prior to screening.
- At least 1 HF hospitalization in the 12 months prior to study screening or BNP > 100 pg/ml or NT-proBNP > 360 pg/ml within the 60 days prior to screening.
- Controlled systolic BP
- Serum potassium < 5.0 mmol/L
- LVEF ≥ 45%
- Life-limiting comorbidity
- Chronic pulmonary disease
- Infiltrative or hypertrophic cardiomyopathy
- Constrictive pericarditis
- Cardiac transplant or LVAD
- Chronic hepatic disease
- CKD
- Significant hyperkalemia
- Intolerance to aldosterone antagonist
- Recent MI, CABG, or PCI

Exclusion criteria

Kidney disease N (%)	HT N (%)	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N (%)	BNP median ng/L
1,332 (39)	3,147 (91)	403 (12)	2023	269 (8)	1,114 (32)	BNP 234 NT-proBNP 950

Shah et al. (2013)

HeFNEF

Definition of HF

- At least one HF symptom at the time of study screening and at least one HF sign within the 12 months prior to screening.
- At least 1 HF hospitalization in the 12 months prior to study screening or BNP > 100 pg/ml or NT-proBNP > 360 pg/ml within the 60 days prior to screening.
- Controlled systolic BP
- Serum potassium < 5.0 mmol/L
- LVEF ≥ 45%
- Life-limiting comorbidity
- Chronic pulmonary disease
- Infiltrative or hypertrophic cardiomyopathy
- Constrictive pericarditis
- Cardiac transplant or LVAD
- Chronic hepatic disease
- CKD
- Significant hyperkalemia
- Intolerance to aldosterone antagonist
- Recent MI, CABG, or PCI

Exclusion criteria

Kidney disease N (%)	HT N (%)	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N (%)	BNP median ng/L
1,332 (39)	3,147 (91)	403 (12)	2023	269 (8)	1,114 (32)	BNP 234 NT-proBNP 950

Hummel et al. (2009)

HeFNEF

Definition of HF

- No definition of HF.
- HeFNEF: LVEF ≥ 50%

Exclusion criteria

Kidney disease N (%)	HT N (%)	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N (%)	BNP median ng/L
733 (84)	570 (84)	158 (82)	124 (64)			

O’Neal et al. (2017)

HeFNEF

Definition of HF

- Composite of probable and definite HF events
 - Probable:
 - Symptoms of HF
 - Previous physician diagnosis
 - Definite:
 - Evidence of structural defect
- LVEF ≥ 50%
- Prevalent cardiovascular disease
- Missing ECG data or baseline characteristics
- Missing HF follow-up data

Exclusion criteria

Kidney disease N (%)	HT N (%)	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N (%)	BNP median ng/L
2,329 (36)	76 (60)	65 (56)	39 (31)			
APPENDIX II

(Continued)

Definition of HF	N	Definition of HeFNEF	Exclusion criteria	Kidney disease N (%)	HT N (%)	COPD N (%)	IHD N (%)	Pacemaker/defibrillator N (%)	Diabetes N (%)	BNP median ng/L
Ho et al. (2013)										
No HF	5,828	Framingham (McKee et al., 1971)	Inclusion criteria: HF hospitalization with an evaluation of LVEF HeFNEF: LVEF > 45%	152 (78)	209 (80)	44 (22)	88 (34)	47 (24)	77 (30)	
HeFNEF	196									
HeFREF	261									
Lee et al. (2009)										
HeFNEF	220	Framingham (McKee et al., 1971)	On HT medication HeFNEF: LVEF > 45%	130 (59)	177 (56)	49 (22)	86 (27)			
HeFREF	314									

Abbreviations: ARB, angiotensin receptor blocker; BNP, B-type natriuretic peptide; BP, blood pressure; CABG, coronary artery bypass grafting; CHD, congenital heart disease; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; HeFNEF, heart failure with normal ejection fraction; HF, heart failure; HT, hypertension; ICD-9, international classification of diseases, ninth revision; LVAD, left ventricular assist device; LVEF, left ventricular ejection fraction; MI, myocardial infarction; NT-proBNP, N-terminal pro-BNP; NYHA, New York Heart Association; PCI, percutaneous coronary intervention; RV, right ventricular; SR, sinus rhythm.