Efficacy evaluation and systematic review of supramalleolar osteotomy for treatment of varus-type ankle arthritis

Wang Xue¹, Tiannan Chen², Paerhati Wahafu¹, Fei Li¹, Ayiding Xiahatai¹, Aikeremu Wufuer¹, Yanan Tuo¹, Bo Zhao¹ and Chengwei Wang³

Abstract

Background: The current surgical treatment plan for medium-term varus-type ankle arthritis is primarily supramalleolar osteotomy (SMOT), but the reliability of this procedure still lacks high-quality evidence-based medical studies, such as randomized controlled clinical trials and meta-analyses of comparative studies.

Objective: The current study explored whether significant differences were present in the clinical effect, reoperation rate, complications, and failure rate of this type of surgery.

Method: Two researchers searched the relevant literature in seven databases, including PubMed, Cochrane Library, EMBASE, the China Biomedical Literature Database, the China Academic Journals Full-text Database, the Wanfang database, and the Weipu Chinese Science and Technology Journal Database. The retrieval time spanned the establishment of the specific database up to September 2020, and the literature was screened to determine their final inclusion in the study.

Results and conclusions: A total of 20 studies were included, including one Chinese and 19 English language studies. The primary indicators included a definitive effect of SMOT on the treatment of medium-term varus-type ankle arthritis. Concerning secondary indicators, although the surgery effect was satisfactory, some patients may require follow-up surgery, which may be unsuccessful with complications. The study results showed that, based on existing literature reports, the effect of SMOT for varus-type ankle arthritis was a satisfactory surgical method with some clinical value for correcting the ankle force line and relieving or even reversing ankle arthritis. However, its risk of complications and failure rate were comparatively high and, accordingly, requires good preoperative planning and close communication with patients. Due to the limited sample size of this study, more data and longer follow-up times involving this type of surgery should be reviewed to confirm this conclusion.

Keywords
varus-type, ankle arthritis, supramalleolar osteotomy, treatment, meta-analysis

Date received: 14 March 2022; **Received revised** 20 June 2022; **accepted:** 2 August 2022

Introduction

According to statistics, nearly 1% of adults worldwide suffer from ankle osteoarthritis (OA).¹ Several pathogenic factors are involved in this condition, including congenital abnormalities of the tibia, deformed healing following a distal tibial fracture, distal tibial epiphysis injury, infection, ankle instability, and neuromuscular disease.² Ankle varus

¹Department of Orthopedic Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, China
²Department Burn Surgery, People’s Hospital, Yueqing County, Wenzhou, China
³The Third Affiliated Hospital of Xinjiang Medical University, China

Corresponding author:
Chengwei Wang, the president of the Third Affiliated Hospital of Xinjiang Medical University, No. 789, Suzhou east street, Xinsi District, Urumqi, Xinjiang Uyghur Autonomous Region 830000, China.
Email: cheng_we151@126.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
and valgus deformities are the primary manifestations of common ankle malalignment. In patients with symmetric ankle osteoarthritis, it has been reported that varus and valgus ankles account for 70%-80% of symmetric ankle osteoarthritis. Valderrabano et al.4 found that 55% of ankle OA patients had combined ankle varus and 8% had combined ankle valgus.

In 1936, Speed and Boyd5 published a clinical study on designing a method for treating post-ankle trauma deformity and identified three key targets for supramalleolar readjusted surgical procedures as follows: (1) restore the proper force line; (2) restore the proper arrangement of the tibial pitch joint surface; 3) restore the physiological and pain-free activity range of the tibiotalar joint. Subsequently, Takakura and colleagues6 were the first to systematically report the application of SMOT in 1995 and proposed the classification of varus ankle OA. This was mainly classified into four types as follows: stage (1) the joints are parallel, without joint space stenosis, early subchondral osteosclerosis or osteophyte formation; stage (2) the medial joint space is narrow without subchondral bone contact; stage (3) (a) the medial ankle space is occluded, and the subchondral bone contact is medial; (b) subchondral bone contact extends to the fornix of the talus; stage (4) a varus ankle joint with complete bone contact.6,7

In the reports of these scholars, the effect of SMOT on the treatment of medium-term ankle arthritis was predictable. Nonetheless, there are currently no systematic reports that confirm these results. Supramalleolar osteotomy for ankle arthritis still lacks high-quality evidence-based ST, e.g. randomized controlled clinical trials and meta-analyses of comparative studies. Meta-analysis is increasingly being recognized as a key tool for obtaining high-quality evidence.8,9,10 Accordingly, this study adopted a meta-analysis approach to perform a comparative investigation of existing studies to determine whether there were significant differences in clinical scores and reoperation rates: The aim of doing so was to better understand the application of SMOT in varus-type ankle arthritis.

The search was performed in strict accordance with the PICOS (population, intervention, comparison, outcome, study) design principles, and the remaining relevant literature was searched manually. Subject-related terms were combined with free words; the English search terms were ‘supramalleolar osteotomy’, ‘osteotomy’, ‘low tibial osteotomy’ and ‘ankle’, ‘ankle arthrodesis’, ‘ankle osteoarthrosis’, ‘varus ankle’, ‘varus ankle arthritis’, ‘varus ankle osteoarthritis and/or’ ‘treatment’. The Chinese search terms included ‘supramalleolar osteotomy’, ‘ankle arthrodesis’, ‘varus’ and ‘treatment’. The literature search results were not limited in terms of time, country or region. Following an initial electronic search, the authors searched other relevant articles by scanning the bibliographies of all the selected full-text articles.

Selection criteria

Inclusion criteria. The study’s inclusion criteria were as follows: (1) the literature study reported on patients diagnosed with varus ankle arthritis who were treated with SMOT; (2) the study reported on the treatment efficacy of SMOT, preoperative and postoperative effect comparisons, and provided a complete description of various pre-and post-surgery; (3) the study included American Orthopaedic Foot and Ankle Society (AOFAS) scores; (4) the study included pain scores.

Exclusion criteria. The study’s exclusion criteria were as follows: (1) repeated studies; (2) case reports, reviews, meta-analyses, editorials, letters, non-English studies, non-human study cohorts/cadaver experimental studies; (3) studies from which data could not be extracted; 4) literature that was not relevant to the current study.

Data extraction

The data extracted by the researchers included the following: (1) the name of the first author, the publication date, the average age of participants, sample size, patient gender, follow-up time, and the primary indicators (SMOT, varus ankle arthritis) and secondary indicators (complete preoperative and postoperative description, AOFAS score, pain score, postoperative complications elaboration). If disagreement occurred among the researchers during the data extraction process, they sought the help of corresponding authors.

Statistical analysis

Statistical analysis was performed using the SPSS Statistics 21.0 software program. Measurement data were expressed as $\bar{x} \pm s$, and a paired t-test was used for group comparison;
p < 0.05 was considered to indicate a statistically significant difference.

Results

Literature screening process

Using the electronic system search, a total of 1591 Chinese documents and 3725 foreign language documents were retrieved. Subsequently, reviews, meta-analyses, case reports, books and repeated literature were excluded. Following additional review of the article’s title and abstract, 1590 Chinese documents and 3705 foreign language documents were excluded. After further reading of the full article, one article with incomplete data was excluded. Finally, 20 retrospective study articles that met the study criteria were selected for analysis (see Figure 1).

Characteristics of the included studies

The included papers were all retrospective studies. All 20 studies were published between 2006 and 2019 and included 686 cases of varus ankle arthritis. Follow-up procedures were performed between 27.2 and 97 months. Basic information regarding the included literature is shown in Table 1.

Results of the meta-analysis

The correction effect of supramalleolar osteotomy. All of the included literature data were screened. Three data perspectives were included, i.e. tibial articular surface angle (TAS), tibial lateral surface angle (TLS), and talar tilt angle (TT) data were recorded for comparison. Table 2 shows the differences that were found between these categories.
relevant data were not recorded in some of the studies and were automatically screened out in the SPSS software).

According to the statistical software results, the three perspectives noted above showed significantly better postoperative results compared with before surgery. The TAS improved from 84.2° preoperatively to 91.5° postoperatively ($p < 0.001$), TLS improved from 79.7° (P < 0.002) and TT improved from 9.55° preoperatively to 4.78° ($p < 0.001$). It was concluded that the effect of supramolecular osteotomy on varus ankle arthritis had been clearly indicated.

Pain score.
The visual analogue scale (VAS) scores in the literature data were included for statistical analysis.

(relevant data were not recorded in some literature and were automatically screened out in the SPSS software)

Table 1. Basic information of literature.

First author	Research type	Publication time (year)	Average age (years)	Sex ratio male/female, n	Mean follow-up time (months)	Number of cases/ankle, n	Ankle number	Remarks
Y. Tanaka7	Retrospective	2006	54	0 25	99	25 26		
Krähenbühl N11	Retrospective	2019	54.5	31 11	40	44 44		
Hongmou Z12	Retrospective	2016	50.7	13 28	36.6	41 41		1 person lost 2 person lost
Xu Y13	Retrospective	2019	53.7	3 18	87.7	21 21		
Zhao HM14	Retrospective	2019	SMOT3.4; SMOT WITH MDA56.2	3 18	87.7	21 21		
Qu W15	Retrospective	2019	SMOT5.4; SMOT WITH MDA56.2	3 18	87.7	21 21		
Colin F16	Retrospective	2014	50	44 18	42	62 62		
ZHAO Hongmou17	Retrospective	2017	TOT48.8; TOT 8; TFOT52.4	36.6	41 41	36.6 41		
Krähenbühl N18	Retrospective	2017	50.22	73 26	60	99 99		
Koo JW19	Retrospective	2019	58.6	2 13	46.3	15 15		
Lee WC20	Retrospective	2011	55.2	7 9	27.6	16 16		
Kim YS21	Retrospective	2014	52.2	8 21	27.4	29 31		
Colin F22	Retrospective	2014	55	41 11	NR	52 52		
Hintermann B23	Retrospective	2017	44	NR	NR	48 20		
Knupp M24	Retrospective	2011	49	NR	NR	43 31		
Scheidegger P25	Retrospective	2019	47	27 12	21	39 39		
Ahn TK26	Retrospective	2015	57	3 15	34	18 18		
Kobayashi H27	Retrospective	2016	63	6 19	27.2	25 27		
Mann HA28	Retrospective	2012	47	14 5	27.2	25 27		
Choi JY29	Retrospective	2020	61.5	17 14	48.9	31 31		

Note: SMOT: supramalleolar osteotomy; SMOT WITH MDA: supramalleolar osteotomy with medial distraction arthroplasty; TOT: tibia osteotomy; TFOT: tibia and fibula osteotomy

According to the statistical analysis results using the SPSS 21.0 software, the AOFAS score improved from 54.05 preoperatively to 79.67 postoperatively ($p < 0.001$), inferring the conclusion that supramolecular osteotomy benefitted functional improvement in patients with varus ankle arthritis.

Ankle function score.
The AOFAS scores in the literature data were included for statistical analysis.

(see Figure 2).
Table 2. Corrective effect of supramolecular osteotomy (SMOT).

Paired sample statistics

	mean value	N	Standard value	Standard error of mean
Right 1 Preoperative TAS	84.2050	20	3.67086	0.82083
Postoperative TAS	91.4950	20	3.26295	0.72962
Right 2 Preoperative TLS	79.7333	18	3.22071	0.75913
Postoperative TLS	82.1500	18	2.11639	0.49884
Right 3 Preoperative TT	9.5500	20	4.49110	1.00424
Postoperative TT	4.7750	20	3.53416	0.75001

Paired sample correlation coefficient

	N	Standard value	Sig.
Right 1 Preoperative TAS	20	0.041	0.863
Postoperative TAS			
Right 2 Preoperative TLS	18	0.523	0.026
Postoperative TLS			
Right 3 Preoperative TT	20	0.584	0.007
Postoperative TT			

Paired sample test

	Mean value	Standard value	Standard error of mean	95% confidence interval of difference	Upper limit	Lower limit	t	df	Sig(bilateral)
Right 1 Preoperative TAS	-7.29000	4.0963	1.07547	-9.54098 -5.03902	-9.54098	-5.03902	-6.778	19	0.000
Postoperative TAS	-2.41667	2.77918	0.65506	-3.79872 -1.03461	-3.79872	-1.03461	-3.689	17	0.002
Right 3 Preoperative TT	4.77500	3.72006	0.83183	3.03396 6.51604	3.03396	6.51604	5.740	19	0.000

Figure 2. Score of ankle function.
Table 3. Complications of supramalleolar osteotomy (SMOT).

The first author	Published date	complications
Krähenbühl N11	2019	One case developed the infection and improved after dressing change and antibiotics. Three fractures showed delayed healing at an average of 4.8 months (Intersection fill is a bone allogeneic graft)
Hongmou Z12	2016	Three fractures had delayed healing of up to an average of 6 months (The filling is β-tricalcium phosphate) none
Xu Y13	2019	Two cases of needle tract infection occurred in the group of osteotomy combined with medial ankle arthroplasty, and improved after dressing change and antibiotics
Zhao HM14	2019	Two cases of needle tract infection occurred in the group of osteotomy combined with medial ankle arthroplasty, and improved after dressing change and antibiotics
Qu W15	2019	One case had incision infection, which was improved with dressing change and antibiotics. One patient developed venous thrombosis after surgery, and received relevant symptomatic treatment
Colin F16	2014	Ankle fusion was performed in four cases due to persistent arthritis, overcorrection and infection
Zhao H17	2017	Due to pain, one patients received AA and the other TAR.
Krähenbühl N18	2017	Two cases developed infection after surgery and improved after symptomatic treatment. Three fractures showed delayed healing at an average of 4.8 months (Intersection fill is a bone allogeneic graft)
Koo JW19	2019	None
Lee WC20	2011	None
Kim YS21	2014	None
Colin F22	2014	None
Hintermann B23	2017	None
Knupp M24	2011	None
Scheidegger P25	2019	Two patients developed infection and underwent symptomatic treatment. Four patients had delayed fracture healing, two of whom were smokers, and these two patients were renovated and all healed. Eight patients developed ankle fibrosis. Three patients had ankle impact, and underwent surgery for revision
Ahn TK26	2015	Nine patients indicated that the pain originated from the internal fixation device and was removed, and six patients indicated the presence of an ankle impact and performed secondary surgery
Kobayashi H27	2016	Three cases had internal fixation-associated pain and two cases had subcutaneous hematomata. One incision infection was reported. Due to incision infection to remove internal fixation to external fixation, the postoperative recovery was satisfactory, one person developed tarsal syndrome followed by tarsal loosening, and one person developed internal fixation fracture. After removing internal fixation, the degree was lost by 6°
Mann HA28	2012	Four patients had persistent pain symptoms, 2 cases underwent AA and 2 cases TAR
Choi JW29	2020	None
Y. Tanaka30	2006	Four cases showed bone nonunion, and secondary surgery was performed for improvement
Based on the statistical analysis conducted using the SPSS software, the VAS pain score decreased from 5.82 preoperatively to 2.45 postoperatively ($p < 0.001$), inferring the conclusion that supramolecular osteotomy is conducive to pain relief in patients with varus ankle arthritis.

Complications. A total of 69 patients had related complications in the 12 studies, accounting for 10.35%; these included 9 infections (1.3%), 42 cases with delayed fracture healing (2.5%); 42 cases with symptoms (hematoma, pain, impact, joint fibrosis, tarsus syndrome) (6.1%), 1 case with thrombosis and one patient with an internal fixation fracture. The remaining six articles had no reported complications. **Table 3** shows the details in this regard.

Revision rate. Six studies reported 32 patients who underwent amendment surgery (4.7%). The remaining 14 articles reported no such surgeries. The details in this regard are shown in **Table 4**.

Failure rate. The total failures included 62 cases in 13 studies (9%). One of the reasons for these failures was the progression of ankle arthritis; a second reason involved persistent symptoms and serious ankle dysfunction. The remaining seven articles did not report any failure rates. **Table 5** shows the details in this regard.

Discussion

In the 20 literature studies on varus ankle arthritis, the bulk reported on the progression of ankle arthritis slowing, maintaining its current state, or even indicating reversal. A study by Zhao showed that at an average follow-up of 36.6 months, a total of 22 (57%) cases indicated slowed varus ankle arthritis, 13 (33%) cases remained unchanged, and 4 (10%) cases indicated a worsening condition. A study conducted by Qu showed a mean follow-up time of more than 32.2 months; the arthritis stage was improved in 11 (65%) cases, in which 2 cases ranged from stage 2 to 1, 7 cases ranged from stage 3a to 2, and 2 ranged from stage 3b to stage 3a. Six cases indicated no changes, and there was no aggravated cases. A study conducted by Hintermann had an average follow-up of 4 years, during which time 3 ankles deteriorated by one stage (1 ankle, phase I–II; 2 ankles, phase II–III), 11 ankles improved by one stage (3 ankles, phase II–I; 7 ankles, phase III–II; one ankle, phase IV–III) and 6 ankles were unchanged. In these reports, more than 50% of ankle
arthritis showed improvement, and a small number of patients had made progress.

Although SMOT can delay the progression of ankle arthritis, the surgical failure rate is as high as 9% and cannot be ignored. According to the mid-term follow-up results reported by Krahenbuhl, the 5-year survival rate was 75%, while the 5-year survival rate of stage 3b was only 47%, i.e. the patient was very likely to undergo ankle degeneration within 5 years, or persistent symptoms requiring ankle fusion or an ankle replacement. Kim retrospectively assessed 31 patients who received varus wedge SMOT. In all patients, arthroscopic bone marrow stimulation was performed on the medial cartilage lesions. Secondary arthroscopy revealed progressive ankle degeneration in 13 (42%) patients, while follow-up after 1 year revealed a deterioration in both the VAS and AOFAS scores. For SMOT, cartilage lesions were identified as a risk factor for adverse outcomes. Following the failure, the ankle will be sacrificed to improve function.

The statistical method applied in the present study tested the surgical effect of 20 research papers and found that the TAS, TLS and TT angles had been significantly improved, and the AOFAS and VAS pain scores were also significantly improved and with statistical significance. Accordingly, the effect of this surgery on varus ankle arthritis can be considered as positive. However, the procedure also presents common complications, primarily infection, thromboembolism, incision healing problems (including deep infection) and the delayed/non-healing of the fracture, pain and aggravated symptoms. Complications should be actively treated, based on symptomatic presentation. Early superficial infections can be improved by regular cleaning of the surgery area and dressing changes or the application of antibiotics. However, in the case of deep infections, these should be eradicated; this may require removing internal fixtures and performing surgical debridement to prevent infection.

The reasons for delayed fracture healing or non-healing (up to 22%) included anatomical reduction, periosteal dissection, whether the section was fixed, the osteotomy technique, the bone filling material that was used, and completing early functional exercise. Depending on the patient’s condition, secondary bone grafting surgery should be performed if necessary to accelerate healing of the fracture. If the pain or symptoms worsened and could not improve, final amendment surgery will be required, e.g. joint fusion or replacement.

Supramalleolar osteotomy is an ankle-preserving procedure that is conducted in cases of ankle arthritis; it has good short-and medium-term results in terms of pain relief, improved function, and restoring exercise ability, and can also delay and may even reverse the progress of OA. Concurrently, the procedure requires several surgical techniques with high technical

The first author	Published date	Failure rate
Krähenbühl N²	2019	Ten operations eventually failed. Eight underwent TAR at an average of 28.8 months, and two had AD within an average of 7.2 months
Hongmou Z¹²	2016	Two cases underwent AD at 17 and 26 months
Xu Y¹³	2019	One case underwent TAR 3 years later
Zhao HM¹⁴	2019	Three cases (SMOT) underwent AD at 17.26, and 61 months
Qu W¹⁵	2019	None
Colin F¹⁶	2014	Four cases underwent AD
Zhao H¹⁷	2017	Due to pain, one patient received AA and the other TAR.
Krähenbühl N¹⁸	2017	Seventeen operations failed, 3 cases underwent AD and 14 cases underwent TAR
Koo JW¹⁹	2019	None
Lee WC²⁰	2011	None
Kim YS²¹	2014	None
Colin F²²	2014	None
Hintermann B²³	2017	One surgery failed, and TAR was performed
Knupp M²⁴	2011	Ten surgeries failed, and TAR or AD was performed
Scheidegger P²⁵	2019	Nine cases underwent TAR or AD at 21 months
Ahn TK²⁶	2015	One case underwent TAR
Kobayashi H²⁷	2016	None
Mann HA²⁸	2012	Due to persistent pain, 2 cases underwent AA and 2 cases TAR
Choi JY²⁹	2020	None
Y. Tanaka³⁰	2006	Two cases failed, and underwent AD
requirements. Additionally, surgical complications are not uncommon and are accompanied by surgical failure and the need for amendment procedures.12,21,35 The current authors considered SMOT to be a viable option when the following symptoms are present: (1) imaging manifestations of varus ankle OA; (2) force line adjustment before and after ankle arthrodesis or joint replacement; (3) distal tibial fracture malunion. Additionally, SMOT can also be used to correct ankle varus caused by ankle instability or congenital ankle varus.

In conclusion, SMOT of the ankle is an effective and reliable ankle-preserving surgery that can correct the displaced ankle force line and the ankle malalignment in the coronal plane. However, we should bear in mind that this procedure cannot relieve the ankle pain completely in varus ankles. Therefore, more high-level studies such as randomized control trials are needed in the future for a more precise assessment of the indications of the procedures to delay or reverse the progress of varus degeneration of the ankle.

\section*{Acknowledgements}
We would like to express our gratitude to all those who helped us during the writing of this manuscript.

\section*{Authors' contributions}
Xue Wang, Conceptualization, Data curation, Project administration, Writing - original draft, Supervision, Writing - review and editing; Tiannan Chen, Conceptualization, Data curation, Writing - original draft, Writing - review and editing; Paerhati Wahafu, Formal analysis, Investigation, Writing - original draft, Writing - review and editing; Fei Li, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review and editing; Aiyding Xiahatai, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review and editing; Aikeremu Wufuer, Investigation, Methodology, Writing - original draft, Writing - review and editing; Yanan Tuo, Methodology, Resources, Software, Writing - original draft, Writing - review and editing; Bo Zhao; Methodology, Resources, Software, Writing - original draft, Writing - review and editing; Chengwei Wang, Investigation, Supervision, Validation, Visualization, Writing - original draft, Writing - review and editing.

\section*{Declaration of conflicting interests}
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

\section*{Funding}
The author(s) received no financial support for the research, authorship, and/or publication of this article.

\section*{Ethics approval and consent to participate}
This study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of The Sixth Affiliated Hospital of Xinjiang Medical University. All participants signed an informed consent form for inclusion in the study.

\section*{Availability of data and materials}
All data generated or analyzed during this study are included in this published article.

\section*{ORCID iD}
Chengwei Wang \textcopyright https://orcid.org/0000-0001-9324-8184

\section*{References}
1. Chilmi MZ, Desnanto AT, Widhianto L, et al. Low tibial and fibular osteotomy for treating varus-type post-traumatic ankle osteoarthritis: A case report. \textit{Malays Orthop J} 2020; 14(2): 145–148.

2. Lubicky JP and Altiok H. Transphyseal osteotomy of the distal tibia for correction of valgus/varus deformities of the ankle. \textit{J Pediatr Orthop} 2001; 21(1): 80–88.

3. Pagnerstert G, Leumann A, Hintermann B, et al. Sports and recreation activity of varus and valgus ankle osteoarthritis before and after realignment surgery. \textit{Foot Ankle Int} 2008; 29(10): 985–993.

4. Valderrabano V, Horisberger M, Russell I, et al. Etiology of ankle osteoarthritis. \textit{Clin Orthop Relat Res} 2009; 467(7): 1800–1806.

5. Speed JS and Boyd HB. Operative reconstruction of mal-united fractures about the ankle joint. \textit{Bone Joint Surg Am} 1936; 18: 270–286.

6. Takakura Y, Tanaka Y, Kumai T, et al. Low tibial osteotomy for osteoarthritis of the ankle. Results of a new operation in 18 patients. \textit{J Bone Joint Surg Br} 1995; 77(1): 50–54.

7. Tanaka Y, Takakura Y, Hayashi K, et al. Low tibial osteotomy for varus-type osteoarthritis of the ankle. \textit{J Bone Joint Surg Br} 2006; 88(7): 909–913.

8. Yao L, Sun R, Chen YL, et al. The quality of evidence in Chinese meta-analyses needs to be improved. \textit{J Clin Epidemiol} 2016; 74: 73–79.

9. Ge L, Tian JH, Li YN, et al. Association between prospective registration and overall reporting and methodological quality of systematic reviews: a meta-epidemiological study. \textit{J Clin Epidemiol} 2018; 93: 45–55.

10. Tian JK, Zhang J, Ge L, et al. The methodological and reporting quality of systematic reviews from China and the USA are similar. \textit{J Clin Epidemiol} 2017; 85: 50–58.

11. Krähenbühl N, Akkaya M, Deforth M, et al. Extraarticular supramalleolar osteotomy in asymmetric varus ankle osteoarthritis. \textit{Foot Ankle Int} 2019; 40(8): 936–947.

12. Zhao HM, Liu C, Liang XJ, et al. Supramalleolar osteotomy with or without fibular osteotomy for varus ankle \textit{Arthritis Foot Ankle International} 2016; 37(9): 1001–1007.
13. Xu Y and Xu XY. Medial open-wedge supramalleolar osteotomy for patients with takakura 3B ankle osteoarthritis: A mid- to long-term study. *Biomed Res Int* 2019; 2019: 7630868.
14. Zhao HM, Wen XD, Zhang Y, et al. Supramalleolar osteotomy with medial distraction arthroplasty for ankle osteoarthrosis with talar tilt. *J Orthop Surg Res* 2019; 14(1): 120.
15. Qu W, Xin D, Dong S, et al. Supramalleolar osteotomy combined with lateral ligament reconstruction and talofibular immobilization for varus ankle osteoarthritis with excessive talar tilt angle. *J Orthop Surg Res* 2019; 14(1): 402.
16. Colin F, Gaudot F, Odri G, et al. Supramalleolar osteotomy: techniques, indications and outcomes in a series of 83 cases [published correction appears in Orthop Traumatol Surg Res. 2014 Sep;100(5):581]. *Orthop Traumatol Surg Res* 2014; 100(4): 413–418.
17. Zhao H, Zhang Y, Hu D, et al. Supramalleolar osteotomy treatment of varus ankle osteoarthritis with or without fibular osteotomy. *Chinese Journal of Reparative and Reconstructive Surgery* 2017; 31.
18. Krähenbühl N, Zwicky L, Bolliger L, et al. A mid- to long-term results of supramalleolar osteotomy. *Foot Ankle Int* 2017; 38(2): 124–132.
19. Koo JW, Park SH, Kim KC, et al. The preliminary report about the modified supramalleolar tibial osteotomy for asymmetric ankle osteoarthritis. *J Orthop Surg (Hong Kong)* 2019; 27(1): 2309499019829204.
20. Lee WC, Moon JS, Lee K, et al. Indications for supramalleolar osteotomy in patients with ankle osteoarthritis and varus deformity. *J Bone Joint Surg Am* 2011; 93(13): 1243–1248.
21. Kim YS, Park EH, Koh YG, et al. Supramalleolar osteotomy with bone marrow stimulation for varus ankle osteoarthritis: Clinical results and second-look arthroscopic evaluation. *Am J Sports Med* 2014; 42(7): 1558–1566.
22. Colin F, Bolliger L, Horn Lang T, et al. Effect of supramalleolar osteotomy and total ankle replacement on talar position in the varus osteoarthritic ankle: A comparative study. *Foot Ankle Int* 2014; 35(5): 445–452.
23. Hintermann B, Ruiz R and Barg A. Novel double osteotomy technique of distal Tibia for correction of asymmetric varus osteoarthritic ankle. *Foot Ankle Int* 2017; 38(9): 970–981.
24. Knupp M, Stufkens SA, Bolliger L, et al. Classification and treatment of supramalleolar deformities. *Foot Ankle Int* 2011; 32(11): 1023–1031.
25. Scheidegger P, Horn Lang T, Schweizer C, et al. A flexion osteotomy for correction of a distal tibial recurvatum deformity: A retrospective case series. *Bone Joint J* 2019; 101-B(6): 682–690.
26. Ahn TK, Yi Y, Cho JH, et al. A cohort study of patients undergoing distal tibial osteotomy without fibular osteotomy for medial ankle arthritis with mortise widening. *J Bone Joint Surg Am* 2015; 97(5): 381–388.
27. Kobayashi H, Kageyama Y and Shido Y. Treatment of varus ankle osteoarthritis and instability with a novel mortise-plasty osteotomy procedure. *J Foot Ankle Surg* 2016; 55(1): 60–67.
28. Mann HA, Filippi J and Myerson MS. Intra-articular opening medial tibial wedge osteotomy (plafond-plasty) for the treatment of intra-articular varus ankle arthritis and instability. *Foot Ankle Int* 2012; 33(4): 255–261.
29. Choi JY, Kim KW and Suh JS. Low tibial valgization osteotomy for more severe varus ankle arthritis. *Foot Ankle Int* 2020; 41(9): 1122–1132.
30. Gross CE, Barfield W, Schweizer C, et al. The utility of the ankle SPECT/CT scan to predict functional and clinical outcomes in supramalleolar osteotomy patients. *J Orthop Res* 2018; 36(7): 2015–2021.
31. Barg A and Saltzman CL. Single-stage supramalleolar osteotomy for coronal plane deformity. *Curr Rev Musculoskeletal Med* 2014; 7(4): 277–291.
32. Tanaka Y, Takakura Y, Hayashi K, et al. Low tibial osteotomy for varus-type osteoarthritis of the ankle. *J Bone Joint Surg Br* 2006; 88(7): 909–913.
33. Stamatis ED, Cooper PS and Myerson MS. Supramalleolar osteotomy for the treatment of distal tibial angular deformities and arthritis of the ankle joint. *Foot Ankle Int* 2003; 24(10): 754–764.
34. Harstall R, Lehmann O, Krause F, et al. Supramalleolar lateral closing wedge osteotomy for the treatment of varus ankle arthrosis. *Foot Ankle Int* 2007; 28(5): 542–548.
35. Qu W, Xin D, Dong S, et al. Supramalleolar osteotomy combined with lateral ligament reconstruction and talofibular immobilization for varus ankle osteoarthritis with excessive talar tilt angle. *J Orthop Surg Res* 2019; 14(1): 402.