A REMARK ON THE HALF WAVE SCHRÖDINGER EQUATION IN THE ENERGY SPACE

ISAO KATO

Abstract. We investigate the Cauchy problem for the half wave Schrödinger equation in the energy space. We derive the local well-posedness in the energy space for the odd power type nonlinearities under certain additional assumption for the initial data, namely $\hat{u}_0 \in L^1_{\xi, \eta}(\mathbb{R}^2)$.

1. Introduction

We study the Cauchy problem for the following equation:

$$i\partial_t u + \partial_x^2 u - |D_y|u = \mu|u|^{p-1}u, \quad (t, x, y) \in [-T, T] \times \mathbb{R}^2,$$

$$u(0, x, y) = u_0(x, y) \in H^{s_1, s_2}(\mathbb{R}^2),$$

where $|D_y| = (-\partial_y^2)^{\frac{1}{2}}, \mu = \pm1, p > 1, T > 0$ and $s_1, s_2 \in \mathbb{R}$. Also, we define the anisotropic Sobolev spaces $H^{s_1, s_2}(\mathbb{R}^2)$ as

$$H^{s_1, s_2}(\mathbb{R}^2) = \{f \in S'(\mathbb{R}^2) : \|f\|_{H^{s_1, s_2}} < \infty\},$$

$$\|f\|_{H^{s_1, s_2}} := \left(\int_{\mathbb{R}^2} \langle \xi \rangle^{2s_1} \langle \eta \rangle^{2s_2} |\hat{f}(\xi, \eta)|^2 \, d\xi \, d\eta\right)^\frac{1}{2},$$

with $\mu = 1, p = 3$ is firstly considered by Xu [5] in the analysis of large time behavior of the solution for smooth data. After [5], Bahri, Ibrahim and Kikuchi [1] obtained the local well-posedness for rough data, namely $s_1 = 0, (1 > s_2 > \frac{1}{2}$ and $1 < p \leq 5$ by the fixed point argument. [1] has the following conservation laws (the mass $M(u)$ and the energy $E(u)$):

$$M(u) = \int_{\mathbb{R}^2} |u|^2 \, dx \, dy,$$

$$E(u) = \frac{1}{2} \int_{\mathbb{R}^2} (|\partial_x u|^2 + |D_y u \cdot \bar{u}|) \, dx \, dy - \frac{\mu}{p + 1} \int_{\mathbb{R}^2} |u|^{p+1} \, dx \, dy.$$

Hence the energy space E for (1.1) lies in $H^{1,0}(\mathbb{R}^2) \cap H^{0,\frac{1}{2}}(\mathbb{R}^2)$ equipped with the norm

$$\|u\|_E := \left(\|\partial_x u\|_{L^2}^2 + \|D_y \frac{1}{2} u\|_{L^2}^2 + \|u\|_{L^2}^2\right)^{\frac{1}{2}}.$$

The well-posedness in E is unknown. In Proposition 5.4 [1], the Strichartz estimates require $s_2 > \frac{1}{2}$, hence we cannot apply it for the problem. Moreover, we cannot apply the Yudovich argument directly to prove uniqueness for (1.1). If we apply the argument, we need to show $\|u\|_{L^q_{t,x,y}} < \infty$ for q large enough. However, the Gagliardo-Nirenberg inequality shows that it only holds for $(2 < q < 6$. These are the main obstacles to obtain well-posedness in E.

In this paper, we verify the following local well-posedness result in $E = H^{1,0}(\mathbb{R}^2) \cap H^{0,\frac{1}{2}}(\mathbb{R}^2)$ under additional assumption on the initial data.

Key words and phrases. Cauchy problem, well-posedness, energy space.
The Duhamel term is estimated as follows. Since

\[u \in C([-T,T]; E) \cap L^\infty_{T,x,y} \quad \text{and} \quad \dot{u} \in L^\infty_T L^1_{\xi,\eta}, \]

\(\dot{u}_0 \in L^1_{\xi,\eta}(\mathbb{R}^2) \) in Theorem 1.1 seems to be somewhat extra assumption. However in order to control \(\|u\|_{L^r_{T,x,y}} \), we need this assumption. Also, we suppose the power \(p \) is odd to estimate the Duhamel term, see section 2 for details. We remark that in Theorem 1.1 \(\|u\|_{L^r_{T,x,y}} \), the norm inflation (ill-posedness) holds in \(E \) for \(p > 5 \), however in our Theorem 1.1, if we additionally suppose \(\dot{u}_0 \in L^1_{\xi,\eta}(\mathbb{R}^2) \), then (local) well-posedness in \(E \) holds even if \(p > 5 \) provided that \(p \) is odd.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. For a Banach space \(X \) and \(r > 0 \), we define \(B_r(X) := \{ f \in X ; \| f \|_X \leq r \} \). Throughout the paper, \(\hat{\cdot} \) denotes the Fourier transform with respect to spatial variables \(x \) and \(y \).

Proof of Theorem 1.1 We prove the local well-posedness for (1.1) with initial data \(u_0 \in E \) and \(\dot{u}_0 \in L^1_{\xi,\eta}(\mathbb{R}^2) \) by the fixed point argument. By the Duhamel formula,

\[
\Phi(u) = S(t)u_0 - i\mu \int_0^t S(t-\tau)(|u|^{p-1}u)(\tau) \, d\tau,
\]

where \(S(t) := \exp \left\{ it(\partial_x^2 - |D_y|^2) \right\} \) be the \(L^2_{x,y} \) unitary operator for (1.1). From (2.1),

\[
\widehat{\Phi(u)}(\xi,\eta) = e^{-it(\xi^2 + |\eta|^2)}\hat{u}_0 - i\mu \int_0^t e^{-(t-\tau)(\xi^2 + |\eta|^2)}|\hat{u}|^{p-1}\hat{u}(\tau) \, d\tau.
\]

Let \(Y := \{ u \in C([-T,T]; E) \cap L^\infty_{T,x,y} ; \hat{\dot{u}} \in L^\infty_T L^1_{\xi,\eta} \text{ and } \| u \|_Y < \infty \} \) endowed with the norm

\[\| u \|_Y := \| u \|_{L^\infty_T E} + \| u \|_{L^\infty_{T,x,y}} + \| \hat{\dot{u}} \|_{L^\infty_T L^1_{\xi,\eta}}. \]

Let us verify \(\Phi \) is a contraction map in \(Y \). Firstly, we show \(\Phi \) is a map in \(Y \). Suppose that \(u_0 \in B_\delta(E), \dot{u}_0 \in B_\delta(L^1_{\xi,\eta}) \) and \(u \in B_r(Y) \). Then by \(S(t)u_0 = e^{-it(\xi^2 + |\eta|^2)}\hat{u}_0 \), it is clear that

\[
\| S(t)u_0 \|_Y = \| S(t)u_0 \|_{L^\infty_T E} + \| S(t)u_0 \|_{L^\infty_{T,x,y}} + \| S(t)u_0 \|_{L^\infty_T L^1_{\xi,\eta}} \leq \| u_0 \|_E + 2\| \dot{u}_0 \|_{L^1_{\xi,\eta}} \leq 3\delta.
\]

The Duhamel term is estimated as follows. Since \(S \) is the unitary operator in \(L^2_{x,y}(\mathbb{R}^2) \) and \(p = 2k + 1, k \in \mathbb{N} \), we obtain

\[
\left\| \int_0^t S(t-\tau)(|u|^{p-1}u)(\tau) \, d\tau \right\|_{L^\infty_T E} \leq \int_0^T \left\| S(t-\tau)(|u|^{p-1}u)(\tau) \right\|_{L^\infty_T E} \, d\tau \leq CT\| u \|^{p-1}_E \leq CT\| u \|^{p-1}_{L^\infty_{T,x,y}} \leq CT\| u \|^{p-1}_{L^\infty_T L^1_{\xi,\eta}} \leq CT\| u \|^{p-1}_{L^\infty_T L^1_{\xi,\eta}} \leq CTp.
\]

By \(p = 2k + 1, k \in \mathbb{N} \) and the Young inequality, we have

\[
\left\| \int_0^t S(t-\tau)(|u|^{p-1}u)(\tau) \, d\tau \right\|_{L^\infty_{T,x,y}} \leq CT\| \hat{u} \|^{p-1}_{L^\infty_T L^1_{\xi,\eta}} \leq CT\| \hat{u} \|^{p-1}_{L^\infty_T L^1_{\xi,\eta}} \leq CTp.
\]
Again by $p = 2k + 1, k \in \mathbb{N}$ and the Young inequality lead
\[
\left\| \int_0^t e^{-i(t-\tau)(\xi^2+|\eta|^2)} |u|^p-1 u(\tau) \, d\tau \right\|_{L_x^p L_t^\infty} \leq CT \|u|^{p-1}u\|_{L_x^p L_t^1} \leq CTr^p. \tag{2.5}
\]

From (2.2)–(2.5), if we take $\delta, T > 0$ such that $3\delta \leq \frac{1}{2}r$ and $3CTr^p \leq \frac{1}{2}r$, then Φ is a map in Y.

Next, we show the contraction of Φ. Set $u, v \in B_r(Y)$. Then from $p = 2k + 1, k \in \mathbb{N}$, we have
\[
\left\| \int_0^t S(t-\tau)(|u|^{p-1}u - |v|^{p-1}v)(\tau) \, d\tau \right\|_{L_x^p L_t^\infty} \leq CT\|u|^{2k}u - |v|^{2k}v\|_{L_x^p L_t^1}.
\]
By induction, we easily check
\[
\|u|^{2k}u - |v|^{2k}v\|_{L_x^p L_t^\infty} \leq (2k + 1)^2 r^{2k}\|u - v\|_{L_x^p L_t^\infty} \cap L_x^p L_t^{1, p}.
\]
Hence we obtain
\[
\left\| \int_0^t S(t-\tau)(|u|^{p-1}u - |v|^{p-1}v)(\tau) \, d\tau \right\|_{L_x^p L_t^\infty} \leq CT(2k + 1)^2 r^{2k}\|u - v\|_{L_x^p L_t^\infty} \cap L_x^p L_t^{1, p} \leq CT(2k + 1)^2 r^{2k}\|u - v\|_Y. \tag{2.6}
\]

From $p = 2k + 1, k \in \mathbb{N}$, we have
\[
\left\| \int_0^t S(t-\tau)(|u|^{p-1}u - |v|^{p-1}v)(\tau) \, d\tau \right\|_{L_x^p L_t^{1, p}} \leq CT\|F_{x,y}\| u|^{2k}u - |v|^{2k}v\|_{L_x^p L_t^{1, p}}. \tag{2.7}
\]
By induction and the Young inequality, we see
\[
\|F_{x,y}\| u|^{2k}u - |v|^{2k}v\|_{L_x^p L_t^{1, p}} \leq (2k + 1)^2 r^{2k}\|\hat{u} - \hat{v}\|_{L_x^p L_t^{1, p}}. \tag{2.8}
\]
From (2.7) and (2.8), we have
\[
\left\| \int_0^t S(t-\tau)(|u|^{p-1}u - |v|^{p-1}v)(\tau) \, d\tau \right\|_{L_x^p L_t^{1, p}} \leq CT(2k + 1)^2 r^{2k}\|u - v\|_Y. \tag{2.9}
\]
From (2.7) and (2.8), we also obtain
\[
\left\| \int_0^t e^{-i(t-\tau)(\xi^2+|\eta|^2)} F_{x,y}[u|^{p-1}u - |v|^{p-1}v](\tau) \, d\tau \right\|_{L_x^p L_t^{1, p}} \leq CT\|F_{x,y}\| u|^{p-1}u - |v|^{p-1}v\|_{L_x^p L_t^{1, p}} \leq CT(2k + 1)^2 r^{2k}\|u - v\|_Y. \tag{2.10}
\]
Collecting (2.10), (2.8), (2.10) and taking $T > 0$ such that $3CT(2k + 1)^2 r^{2k} = \frac{1}{2}$, then
\[
\left\| \int_0^t S(t-\tau)(|u|^{p-1}u - |v|^{p-1}v)(\tau) \, d\tau \right\|_Y \leq \frac{1}{2}\|u - v\|_Y.
\]
Therefore $\Phi : Y \to Y$ is a contraction map. Thus by the fixed point argument, we have the desired result.

\[\square\]

Acknowledgement

The author is grateful to Dr. Masayuki Hayashi JSPS Research Fellow for personal discussion of this work. The author is supported by JSPS KAKENHI Grant Number 820200500051.
REFERENCES

[1] Y. Bahri, S. Ibrahim and H. Kikuchi, Remarks on solitary waves and Cauchy problem for half-wave-Schrödinger equations, Commun. Contemp. Math. 23 (2021), no. 5, Paper No. 2050058, 31 pp.
[2] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323pp. ISBN: 0-8218-3399-5.
[3] M. Hayashi, A note on the nonlinear Schrödinger equation in a general domain, Nonlinear Anal. 173 (2018), 99–122.
[4] I. Kato, Ill-posedness for the half wave Schrödinger equation, arXiv:2112.10326v1, 13pp.
[5] H. Xu, Unbounded Sobolev trajectories and modified scattering theory for a wave guide nonlinear Schrödinger equation, Math. Z. 286 (2017), no.1–2, 443–489.

(Isao Kato) Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan

Email address, Isao Kato: kato.isao.23m@st.kyoto-u.ac.jp