Development of new shell structure in pf-shell nuclei

S. N. Liddick1,2,3, P. F. Mantica2,3, R. V. F. Janssens4, R. Broda5, B. A. Brown3,6, M. P. Carpenter4, B. Fornal5, M. Honna7, M. Horoi8, T. Mizusaki9, A. C. Morton3, W. F. Mueller3, T. Otsuka10, J. Pavan11, A. Stolz3, S. L. Tabor11, B. E. Tomlin2,3, M. Wiedeking11

1 UNIRIB, Oak Ridge Associated Universities, Oak Ridge, TN, 37831
2 Department of Chemistry, Michigan State University, East Lansing, MI 48824
3 NSCL, Michigan State University, East Lansing, MI 48824
4 Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
5 Niewodniczanski Institute of Nuclear Physics, PL-31342 Cracow, Poland
6 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824
7 Center for Mathematical Sciences, University of Aizu, Tsuruga, Ikki-machi, Aizu-Wakamatsu, Fukushima 965-8580, Japan
8 Department of Physics, Central Michigan University, Mount Pleasant, MI 48859
9 Institute of Natural Sciences, Senshu University, Higashimita, Tama, Kawasaki, Kanagawa 214-8580, Japan
10 Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan and RIKEN, Hirosawa, Wako-shi, Saitama 351-0198, Japan
11 Department of Physics, Florida State University, Tallahassee, Florida 32306

E-mail: liddick@phy.ornl.gov

Abstract. β-delayed γ-ray measurements have been part of an experimental program at the NSCL to understand the role of the πf7/2 − νf5/2 proton-neutron monopole interaction in neutron-rich pf-shell nuclei above 48Ca. Central to this study has been an attempt to observe the development of new shell structure at N = 32, 34 through the systematic observation of E(2+1) as a function of neutron number. Additionally, the ground state spin and parity of odd-odd and odd-A nuclei were interpreted in an extreme single-particle model to follow the monopole migration of the νf5/2 as protons are removed from the πf7/2 state.

1. Introduction

The proton-neutron monopole interaction has a substantial impact on the ordering of single-particle states in neutron-rich nuclei. In the pf shell, the proton-neutron monopole interaction between the spin-orbit partners πf7/2 and νf5/2 was expected to result in the emergence of new shell structure at N = 32 and 34 [1]. A number of β-delayed γ-ray spectroscopy experiments have been performed [2, 3, 4, 5, 6, 7, 8] at the National Superconducting Cyclotron Laboratory (NSCL) to understand the extent of the νf5/2 monopole shift and the development of new shell structure in the πf7/2 − νpf region of the chart of the nuclides (see Fig. 1 for isotopes studied). The monopole shift of the νf5/2 state was followed by systematic measurements of E(2+1) in even-even isotopes and ground state spin and parity assignments in odd-odd and odd-A nuclei.
2. Experiment

β decay provides a sensitive and selective means for probing the low-energy quantum states in daughter nuclei. Our interests at the NSCL were focused on the decay of odd-odd parent states with $J > 1$, where the energies of the first excited 2^+ states could be obtained for the first time by delayed γ-ray spectroscopy. The pf nuclides of interest were produced in fragmentation reactions of a 86Kr beam on a 9Be target. The nuclides were separated using the A1900 fragment separator [9] and implanted into a double-sided silicon microstrip detector, part of the β counting system [10]. Twelve detectors from the NSCL Segmented Germanium Array [11] surrounded the counting system and were used to monitor emitted γ rays. Experimental properties deduced from the studies included β-decay half-lives, apparent branching ratios and tentative ground state spin and parity assignments for the parent nuclides, as well as the low-energy level schemes in the daughter nuclei.

3. Beta decay of odd-odd nuclei

The β decay of the odd-odd nuclei 54,56Sc and 56,58V were studied to determine the low-energy level structure of the even-even 54,56Ti and 56,58Cr nuclei, most importantly the energy of the first excited 2^+ state, $E(2^+_1)$. A comparison between the systematic variations of $E(2^+_1)$ and $E(4^+_1)$ along both the $N = 32, 34$ isotonic chains is shown in Fig. 2. There is a clear rise in the $E(2^+_1)$ as a function of proton number in the $N = 32$ isotones from Fe to Ca due to the monopole migration of the $\nu f_{5/2}$ single-particle state. A qualitatively different behavior is observed in the $E(2^+_1)$ values for the $N = 34$ isotones where the trend in $E(2^+_1)$ is flat from Fe to Cr. A slight rise in the $E(2^+_1)$ in 56Ti may be an indication of a developing single-particle energy gap.

The experimental $E(2^+_1)$ values for the Ti and Cr isotopes at $N = 32, 34$ were compared with the results of shell model calculations using the GXPF1 effective interaction [12, 13] to further understand the monopole migration of the $\nu f_{5/2}$ state as protons are removed from the the $\pi f_{7/2}$ level and the resulting effects on the low energy structure of 54,56Ti and 56,58Cr. GXPF1 is based on effective two-body matrix elements with some replacement by the G matrix and was derived by fitting 699 levels from pf-shell nuclei with $A \geq 47$ and $Z \leq 32$ [12]. One result of shell-model calculations using the GXPF1 interaction is an increase in the $\nu f_{5/2}$ effective single-particle
energy, relative to the $\nu p_{3/2}$, as protons are removed from the $\pi f_{7/2}$ state and appears to arise from the proton-neutron monopole interaction. Beginning in the Cr isotopes and continuing in Ti and Ca nuclei the energy separation between the neutron $p_{3/2}$ orbital and the $p_{1/2}$ and $f_{5/2}$ orbitals leads to the development of an $N = 32$ shell closure, evidenced by the systematic variation of the energies of the first excited 2^+ states as a function of neutron number, which peak at $N = 32$ [6, 8]. Further evidence of the existence of an $N = 32$ shell closure come from high-spin data [3], where a significant gap between the $\nu p_{1/2}$ and $\nu f_{5/2}$ single-particle states was inferred based on a large energy separation between the 6^+_1 and the cluster of $8^+_1, 9^+_1, 10^+_1$ levels in ^{54}Ti.

In the Ti and Ca isotopes, the continued increase in energy of the $f_{5/2}$ neutron orbital was expected to culminate in a substantial energy separation between the $\nu p_{1/2}$ and $\nu f_{5/2}$ orbitals and the emergence of an $N = 34$ shell closure [12]. However, in $^{56}\text{Ti}_{34}$, the energy of the 2^+_1 level was \sim0.4 MeV lower than the shell model results obtained with the GXPF1 interaction. The experimental 2^+_1 energy in ^{56}Ti was better reproduced in the shell model using the modified GXPF1A effective interaction [14]. The difference between the GXPF1 and GXPF1A interactions is the alteration of five matrix elements in the latter, four of which have to do with the $p_{1/2}$ and $f_{5/2}$ orbitals. The expected energy separation between the $\nu p_{1/2}$ and $\nu f_{5/2}$ levels in $^{54}\text{Ca}_{34}$ based on shell model calculations with the GXPF1A interaction was reduced slightly, but is still large enough to suggest a shell closure at $N = 34$ but an experiment investigating the low-energy structure of ^{54}Ca is needed.

In addition to the $E(2^+_1)$ and $E(4^+_1)$ values, the migration of the $\nu f_{5/2}$ state as a function of proton number can also be followed by investigating the ground state spin and parities of the parent odd-odd nuclei $^{54,56}\text{Sc}$ and $^{56,58}\text{V}$. The spin and parities for these ground states of the odd-odd nuclei are shown in Fig. 3 along with schematic neutron single-particle levels. Working from the presumed $N = 32$ shell closure identified through $E(2^+_1)$ values as mentioned above, the spin and parities can be interpreted in an extreme single-particle model as the coupling of the odd proton with the odd neutron.

In the odd-odd nuclei discussed here, $^{54,56}\text{Sc}$ and $^{56,58}\text{V}$, the odd proton is located in the
πf7/2 single-particle state based on ground state spin and parity systematics of lighter odd-A Sc and V isotopes. Beyond N = 32, in an extreme single-particle model, the νp3/2 state is filled and the odd proton in the πf7/2 can be coupled with an odd neutron in either the νf5/2 or νp1/2. Nordheim rules [15, 16] and Paar parabolas [17] can be used to determine whether the tentative experimental ground state spin and parity assignment is consistent with the odd proton coupling to an odd neutron in the νf5/2 or νp1/2 single-particle states. The possible spins obtainable from the coupling of an odd proton in the πf7/2 state to an odd neutron in the νf5/2 is (1-6)+. Both the proton and neutron can be considered particles (as opposed to holes) in their respective single-particle orbits and the relative energies of the (1-6)+ levels in the πf7/2 - νf5/2 multiplet as a function of spin are shown in Fig. 3, using the prescription of Paar [17]. It is observed that the energy of the levels as a function of spin form a parabola that is concave down with the 1+ state located at the minimum energy, in agreement with Nordheim’s strong rule. It should also be noted that the 6+ state is a local minimum and if populated could be an isomeric state. The relative energies of the (3,4)+ levels obtained from the coupling of the πf7/2 - νp1/2 single-particle states is shown in Fig. 3 again obtained using the description of Paar [17]. Here, the 3+ level is located below the 4+ level.

Both 56,58V have been assigned 1+ ground states based on the observation of large β decay branches to the 0+ ground states of 56,58Cr [8], respectively. From the discussion above and the Paar parabolas shown in Fig. 3 the 1+ assignment to the 56,58V ground states can only be obtained with the placement of the odd neutrons into the νf5/2 level and is more likely than a 6+ assignment. This suggests that in both 56,58V nuclei the νf5/2 state is below the νp1/2 level.

The odd neutron in 54Sc can be placed either in the νf5/2 or νp1/2 single-particle orbits. The spin and parity of 54Sc has been tentatively assigned as (3,4)+. As can be seen from Fig. 3 this assignment in inconsistent with the placement of the odd neutron in the νf5/2 single-particle state and is instead most likely due to the πf7/2 - νp1/2 coupling scheme. In 56Sc, with two additional neutrons, the experimentally determined ground state spin and parity is tentatively 1+ [5], consistent with the placement of the odd neutron in the νf5/2 state. Additionally, the presence of an isomeric state, tentatively assigned as 6+, has been inferred in 56Sc [6] based on the population of high-spin levels in the daughter 56Ti. A 6+ isomer is consistent with the Paar parabolas describing the πf7/2 - νf5/2 multiplet. Thus, from the ground state spin and parity assignments made to the odd-odd Sc ground states the νp1/2 appears to be lower in energy than the νf5/2 state. The monopole migration of the νf5/2 leads to an inversion of single particle ordering of the νf5/2 and νp1/2 between the V and Sc nuclei.

4. Beta decay of odd mass nuclei

To complement the data on odd-odd nuclei numerous experimental results have been obtained on the β decays of odd-A nuclei in the pf-shell region, including 55Sc, 55,57Ti, and 57,59V. Tentative ground state spin and parities for these nuclei along with schematic single-particle neutron levels are shown in Fig. 3 and can further our understanding of the monopole migration of the νf5/2 level as protons are removed from the πf7/2 state.

The β decay of 55Ti has been previously studied and compared to GXPF1 shell-model calculations [7]. The complex β decay feeding observed from the 55Ti ground state to states in 55V suggested that the νp1/2 state was not the dominant single-particle configuration, leading to the placement of the the νf5/2 state below the νp1/2 state in 55Ti. This conclusion was strengthened following the experimental investigation of the 55Sc β decay [6]. With an odd proton in the πf7/2 state the spin and parity of 55Sc is predicted to be 7/2−, consistent with the systematic trend of other odd-A πf7/2 nuclei. The half-life of 55Sc compares well with GXPF1 shell model calculations assuming a 7/2− ground state for 55Sc. The experimental indication of a large β decay branch from 55Sc to the ground state of 55Ti tends to support a 5/2− or 7/2−
Figure 3. V, Ti, and Sc isotopes in the neutron-rich pf-shell region with tentatively assigned ground state spin and parities. The ground state spin and parities can be examined using an extreme single-particle model to infer the schematic neutron single-particle states shown. The lower portion of the figure show the energy splitting of the multiplets formed through the coupling of the $\pi f_7/2$ - $\nu f_5/2$ or $\pi f_7/2$ - $\nu p_{1/2}$ single-particle levels.

The ground state spin and parity of 57Ti was expected to be $5/2^-$ based on shell model calculations using the GXPF1 interaction obtained from the placement of the odd neutron in the $\nu f_5/2$ state. There was an overall remarkable agreement between shell model calculations of the 57Ti β decay assuming a $5/2^-$ ground state and the experimental decay scheme presented in Ref. [4]. Many experimental features including a large β decay branch to the 57V ground state, a significant β feeding to four states above 1500 keV, and a low-energy triplet of levels in 57V were reproduced by GXPF1 calculations. The similarities between experiment results and theoretical expectations lead to the placement of the $\nu f_5/2$ below the $\nu p_{1/2}$ state in 57Ti.

Interpretation of the 57V β decay were initially complicated by a wide range of possibilities for the 57V ground state spin and parity of $(3/2, 5/2, 7/2)^-$. The first tentative 57V ground state spin and parity assignment of $3/2^-$ [19] was at odds with more recent measurements favoring higher ground state spins based on a larger observed β decay branch to the 57Cr ground state [8].

The last odd-A nucleus studied in the pf-shell region was the β decay of 59V [4]. The deduced level scheme resulted in the inversion of the level ordering of the two lowest energy states compared to previous experimental results [18]. The low-energy level scheme for 59Cr calculated using GXPF1 was shown in Ref. [18] and included seven negative parity states below 1.6 MeV. Experimentally, eight levels below 1.6 MeV were identified and are all most likely have spins $\leq 9/2$ with negative parity. The presence of an excited $9/2^+$ state in 59Cr at 503 keV indicates the increasing importance of the $\nu g_{9/2}$ intruder state. Therefore, disagreement between theory and experiment is not unexpected since the $\nu g_{9/2}$ state is not included in the
GXPFP1 model space.

5. Summary

In summary, a large program investigating the low-energy structure of neutron-rich pf-shell nuclei through β-delayed γ-ray spectroscopy has been carried out at the NSCL over the past few years. The central theme of these investigations was an attempt to understand the role of the proton-neutron monopole migration of the $\nu f_{5/2}$ state as protons are removed from the $\pi f_{7/2}$ level.

From the β decay of odd-odd nuclei the shell closure at $N = 32$ was identified based on the systematic increase of the $E(2^+)$ state as a function of neutron number. The $N = 34$ shell closure predicted by shell model calculations, using the GXPFP1 effective interaction, in the Ti isotopes was not observed. The $E(2^+)$ in 56Ti has been observed at an energy ~ 0.4 MeV lower than predicted. This discrepancy in the theoretical predictions was remedied with a small alteration to GXPFP1 and resulted in the introduction of the GXPFP1A effective interaction. The new effective interaction successfully reproduces $E(2^+)$ for the Ca, Ti, and Cr isotopes. The shell gap at $N = 34$ is reduced slightly in magnitude but should still be observable in 54Ca and experiments to verify these predictions are underway.

The ground state spin and parity of odd-odd and odd-A nuclei in the pf shell region were interpreted in an extreme single-particle model to follow the monopole migration of the $\nu f_{5/2}$ single-particle state as protons are removed from the $\pi f_{7/2}$ state. The results indicated that the $\nu f_{5/2}$ state is below the $np_{1/2}$ state in both the V and Ti nuclei. The situation is reversed in the Sc isotopes with the $\nu f_{5/2}$ state above the $np_{1/2}$ state. The migration of the $\nu f_{5/2}$ state follows the same qualitative trend predicted by GXPFP1 calculations but, as already mentioned, the shell gap at $N = 34$ fails to develop in the Ti isotopes but still could be present in 54Ca.

Acknowledgments

The work was supported in part by NSF Grants PHY-01-10253, PHY-97-24299, PHY-01-39950, and PHY-02-44453, and by the US DOE, Office of Nuclear Physics, under contract W-31-109-ENG-38. The authors would like to thank the NSCL operations staff and members of the NSCL γ group for their assistance during the experiments. Travel to the SENUF06 conference was provided by the UNIRIB consortium under DOE grant DE-AC05060R23100 (ORAU).

References

[1] T. Otsuka, R. Fujimoto, Y. Utsuno, B.A. Brown, M. Honma, T. Mizusaki, Phys. Rev. Lett. 87 (2001) 082502.
[2] J.I. Prisciandaro et al., Phys. Lett. B 510 (2001) 17.
[3] R.V.F. Janssens et al., Phys. Lett. B 546(2002) 55.
[4] S.N. Liddick et al., Phys. Rev. C 72 (2005) 054321.
[5] S.N. Liddick et al., Phys. Rev. Lett. 92 (2004) 072502.
[6] S.N. Liddick et al., Phys. Rev. C 70 (2004) 064303.
[7] P.F. Mantica et al., Phys. Rev. C 68 (2003) 044311.
[8] P.F. Mantica et al., Phys. Rev. C 67 (2003) 014311.
[9] D.J. Morrissey et al., Nucl. Instrum. Methods Phys. Res. B, 204, 90 (2003).
[10] J. I. Prisciandaro, A. C. Morton and P. F. Mantica, Nucl. Instrum. Methods Phys. Res. A505, (2003), 140.
[11] W. F. Mueller, J.A. Church, T. Glasmacher, D. Gutknecht, G. Hackman, P.G. Hansen, Z.Hu, K.L. Miller, P. Quirin, Nucl. Instrum. Methods Phys. Res. A446, (2001), 492.
[12] M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Phys. Rev. C65, (2002), 061301.
[13] M. Honma, T. Otsuka, B.A. Brown, T. Mizusaki, Phys. Rev. C69, (2004), 034335.
[14] M.Honma, et al., Eur. Phys. J. A, 25 (2005) s01 499.
[15] L.Nordheim, Rev. Mod. Phys. 23, 322 (1951).
[16] M.H.Brennan and A.M. Bernstein, Phys. Rev. 120, 927 (1960).
[17] V.Paar, Nucl. Phys. A 331, (1979) 16.
[18] S. Freeman, et al., Phys. Rev. C69, (2004), 064301.
[19] O. Sorlin, et al., Nucl. Phys. A 632, (1998) 205.