Study on Combustion Performance of a Diesel Engine Fueled by Synthesized Waste Cooking Oil Biodiesel Blends

Duraid F. Maki
Mechanical Engineering Dep., College of Engineering, University of Babylon, Iraq
duraid.maki@yahoo.com

Abstract
The waste cooking oil or used cooking oil is the best source of biodiesel synthesizing because it enters into the so-called W2E field, whereas not only get rid of the used cooking oils, but produce energy from the waste fuel. In this paper, biodiesel was synthesized from the used cooking oil and specifications are tested. From 1 liter of used cooking oil, 940 ml is gained. The remaining of a liter is glycerine and water. A Blend of 20% of biodiesel with 80% of net diesel by volume is formed. Blends of 100% diesel and 100% biodiesel are prepared too. The diesel engine combustion performance such as Brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, mean effective pressure, and engine outlet temperature are studied in this paper. Cylinder pressure variation with crank angle is analyzed. The concentrations of hydrocarbon and nitrogen pollutants are measured. The results showed a significant enhancement in engine power and pollutant gases emitted. There is positive compatible with other critical researchers.

Keywords: Waste cooking oil, Synthesizing, Biodiesel blends, Energy, Combustion performance.

Introduction
Energy, affairs and demand remain the 21st century wide title and its mover for the advancement of technology and the promotion of peoples. Still, the fossil fuel is the most competitive energy source but its depletion energy. The challenges of diesel engines emissions, which affect the ozone layer and initiated global warming are the other axis in the importance of alternative energy and the needing to find clean and sustainable energy. (The global energy statistical yearbook, 2015). Diesel engines have essential things made it the first choice in the world of engines such as: more desirable and most fuel-efficient engines but most polluting engine as well. Research and studies have been accelerated to find alternative fuels for conventional diesel. Biodiesel, bio alcohols, bio gases and hydrogen all proved that they can be used instead of diesel in part or in whole in diesel engine combustion chamber without...
major modification in engine design as in the researches of (Sangamesh and Navindgi, 2016; Knothe and Steidly, 2015; and Jinlin et al., 2011).

(Gertz, 2000; Choe and Min, 2009; Aladedunyia et al., 2009) studied the oil, fat, greases that might be transferred to be biodiesel. The chemistry of these fats and the control on them are studied too. Biodiesel is one of the biodegradable and promising alternative fuels. All kinds of oils, greases, and fats from plants or animals are the source of the composition of the biodiesel. As a result of the high demand for oils that enter human food, the UN has banned the use of these types of oils in the research of biodiesel production (Rakib et al., 2013).

In critical literature, there are numerous efforts to prepare, produce, synthesize, manufacture of biodiesel from different bio sources and waste cooking oil on of them as in (Carlos et al., 2011; William et al., 2013). The transesterification process is happening with different techniques and methods and all are depending on the catalyst, alcohol, and temperature of oil. (Carlos et al., 2013).

The research of testing the performance of diesel engine fueled by biodiesel can be divided as the following: research of using biodiesel and biodiesel blends with net diesel such as in work of Muhammad et al., 2017; Nitin et al., 2012; Srinivasa, 2016). Research of using biodiesel-diesel blends along with alcohol like ethanol in work of (Shiyasharan and Nitin, 2016; Sandra et al., 2014; Syed et al., 2009). Hence, research of biodiesel-diesel blends in combining with bio gases such as methane or CNG, etc. is presented by work of Fernando et al., 2013. The efforts to utilize the biodiesel – diesel blends along with hydrogen as in work of (Rajshekhar et al., 2015).

In this work, biodiesel is synthesized from waste cooking oil, the reductents filtered are provided the used cooking oil. From reacts of one liter of used cooking oil, 940 ml are produced while the remained is glycerine and other impurities. The economic benefit is calculated. The synthesized biodiesel is tested to recognize its chemical and physical properties. To study the compression ignition engine performances, engine is investigated experimentally. The combustion performance is studied in two ways, first by found the brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, and mean effective pressure. Second way by analyzing the outlet emission gases constituents. A sophisticated results are obtained and good compatible in the results are observed as compared with critical literatures.

Experimental Work

The following subsection explain the experimental works:

1- The Synthesize Of Biodiesel

Most of critical literature described the techniques and methods of biodiesel synthesizing. Also, The author has efforts in this field, (Duraid et al., 2008). Transesterification process is mainly depending on: the catalyst type and amount, the alcohol type and amount, the temperature of oil at reaction time.

In this work, the optimum amounts of catalyst, alcohol, and oil temperature are identified. In glass beaker 1 litre of refined waste cooking oil is heated and maintained at 60°C. In another glass beaker 4 gramm of NaOH are solved in 130 ml of alcohol. The transesterification reaction started when the solution of NaOH added to hot oil and stirred for one hour. The mixture is left for 24 hours. The biodiesel is separated from glycerin by gravity. The transesterification reaction shows by fig. (1). The schemas of synthesized biodiesel and glycerin is schemed in fig (2).
The synthesized biodiesel is tested to get its index of fuel. Table (1) represents the synthesized biodiesel fuel index.

Property	Waste oil	Synthesis biodiesel	Diesel (Talwadel and Navindgi)
Density (kg/m3) at 15 °C	931	897	840
Viscosity (mm2/sec) at 40°C	26.40	5.08	1.9 ~ 2.3
Cetane number	49	54	40~45
Flash point (K)	509	438	340
Pour point (K)	-15	-6	4.4
Net caloric value (MJ/kg)	33.15	35.67	43.5

As a promising fuel, biodiesel might solve the global shortage in traditional diesel and solve green house issues, the economy of biodiesel synthesized has important attention. In this research full cost calculation is made. All prices are shifted to US $ for comparison. Table (2) illustrates the synthesized biodiesel feasibility which mentioned that one liter of synthesized biodiesel is less price as compare with local price of diesel. The results showed that biodiesel is less price than diesel price.
Table (2) The synthesized biodiesel feasibility

No.	Subject	Quantity	Price US $ per litre
1-	Waste cooking oil	1 litre	Zero
2-	Catalist (NaOH)	4 gram	0.05
3-	Methanol	130 mlitre	0.1
4-	Operation	-	0.05
	Total		**0.2**

2- Combustion Performance Utilization

The performance experiments to check synthesized biodiesel combustion are carried out. Biodiesel is blended with net diesel as D100, B20, and B100. It represents net diesel 80% diesel and 20% biodiesel, 100% biodiesel by volume respectively. The combustion performance of biodiesel – diesel blends are tested in experimental setup which contains two parts: single cylinder compression ignition engine and data Acquesting for measuring. Table (3) shows the experimental engine details.

In internal combustion laboratory- department of mechanical engineering / university of Babylon, single cylinder compression ignition engine is fixed on a suitable chasse with all electrical, cooling, and lubricating connections. Engine is joined to electrical dynamometer to measure its output brake power and to control and measure the load of engine. Suitable flow meters are used to measure engine intake air amount and fuel consumption amount as a function of time (rate). Pressure transducer is connected to high speed data logger to give the combustion chamber pressure distribution along with cranck angle decoder which used to measure the cranck angle. Tachometer is utilized to find engine speed. K type thermo couples are used to find the temperatures at different positions on engine. In addition to this, multi gas analyzer is adopted to measure the mono carbon oxides, unburned hydrocarbon, dioxide carbones, and nitrogen oxides that emitted in outlet engine exhaust gases.

Results And Discussion

Tested of combustion performances are divided in two parts, engine thermal characteristic analyzing and find out the emission constituent ratios.

Fig (3) represents the variation of cylinder pressure vs. crank angle in full load and no load at different blend ratio. At no load and full load, its observed that peak pressures of B20 and B100 are advanced than the peak pressure of D100 by 8 to 10 degrees. At full load, this trend is noticed clearly. This combustion behaviour means that the blends of biodiesel-diesel enhanced the combustion performance process and the power stroke is becoming more long to give enough time to convert most of producing thermal power to break power.

Table (3) The diesel engine details

Make	Kirloskar AV-1
Type	Vertical, single cylinder, cooling by water, DI
Bore, stroke	80 mm, 110 mm
Rated power	3.7 kW at 1500 rpm
Compression ratio	12.5 – 17.5
Injection pressure	160 bar
Fig (3) The variation of cylinder pressure vs. crank angle in full load and no load at different blend ratio

Fig (4) gives the relation between the brake thermal efficiency and engine brake power. The brake thermal efficiency of diesel fuel is marginally higher than the efficiency of B20 and biodiesel respectively. Due to the decrease in the caloric value of biodiesel. B20 has decrease in brake efficiency as a comparison with efficiency at net diesel or D100.

Fig (4) the relation between the brake thermal efficiency and brake power at different blends ratio
Fig (5) provides the relation of brake mean effective pressure vs. brake power at different blend ratio. The brake mean effective pressure is generally has same trends and no big difference is observed. The difference in values due to sensible difference in engine brake power at D100, B20, and B100 respectively.

Fig (6) posses the relation of specific fuel consumption vs. brake power at different blend ratio. The specific fuel consumption is decreased with load increment. These trends are reflected in this figure. It is noticed that fuel consumption of diesel less amount than B20 or B100 to produce power. Due to caloric value 1 kg of D100 generate more brake power than B20 and B100. The curves give a clear view to that diesel engine produce more much energy or power than B20 and B100. Specific fuel consumption for B20 is closed to specific fuel consumption of B100 and both have clear difference than fuel consumption at D100. Again, this is due to the caloric value difference between biodiesel and diesel.

Fig (7) shows the relation between the volumetric efficiency and brake power of engine at different blend ratio. For D100, B20, and B100, volumetric efficiency is slightly decreased with brake power increment. The blends of biodiesel leaves more residual gases in cylinder which is meaning less cylinder volum available ton fresh air. Scientific interpretation of this can be explained as at D100 cylinder volume is occupied by less fuel volume. The B20 showed higher value as compare with B100.

Fig (8) provides the relation between the exhaust temperature and brake power at different blends ratio. It observed that exhaust gas temperatures are increased with engine brake power increasing. Whereas more amount of fuel is burned. Due to caloric value the D100 gives the high exhaust gas temperature. The significant observation is the combustion of B20 blends gave low exhaust temperature as a comparison with D100 and B100. The rate of fuel burned is increasing with load increment to keep speed constant. This released more heat and raised the temperature. There is a margin decreased in exhaust gas temperature of B20 flue gases due to enhancement in combustion.

Fig (9) represents the relation between the monoxide and brake power at different blends ratio. Its observed that biodiesel emitted low amount of carbon monoxide. The low carbon content and combustion enhancement due to oxygen exsistence, the carbon monoxide is reduced almost by 50% at B100.
Fig (10) represents the relation between the dioxide carbon and brake power at different blends ratio. The main indicator of combustion efficiency is the CO$_2$ forming. At low load the forming of CO is higher than the forming of CO$_2$ as shown in fig (9) and (10). At high load most of burning carbon forms CO$_2$. The blending of biodiesel is reducing the CO$_2$ widely. Two reasons stand behind this reduction: first the biodiesel contains less carbon than net diesel D100. Second reason is biodiesel contains oxygen which led to improve the combustion. B20 and B100 reduced the CO$_2$ by 19 and 27% respectively.

Fig (11) represents the relation between the unburned hydrocarbon HC and brake power at different blends ratio. The blend of biodiesel with diesel decreased the emission of HC. Due to low carbon in chemical structure of biodiesel and oxygen existence, the combustion is run efficiently. The B20 and B100 decreased the HC of diesel fuel emission by 37 and 68 respectively.

![Image of graph showing the relation between brake specific fuel consumption and brake power at different blends ratio](image-url)
Fig (7) the relation between the volumetric efficiency and brake power at different blends ratio

Fig (8) the relation between the exhaust temperature and brake power at different blends ratio
Fig (9) the relation between the carbon monoxide and brake power at different blends ratio

Fig (10) the relation between the carbon dioxide and brake power at different blends ratio
Fig (11) the relation between unburned hydrocarbon HC and brake power at different blends ratio.

Fig (12) the relation between NO$_X$ and brake power at different blends ratio.
Fig (12) gives the relation between the NO\textsubscript{X} and brake power at different blends ratio. The formation of NO\textsubscript{X} is a function to excess air in combustion chamber and the temperature inside combustion chamber. With increasing of load, the NO\textsubscript{X} formation increased due to increase of sucking air. The rate of NO\textsubscript{X} formation is increased rapidly due to the increase temperature inside combustion chamber. Biodiesel has low Sulphur and aromatic. Biodiesel reduced the NO\textsubscript{X} due to less sufficient air.

Fig (13) represents the relation between the smoke opocity and brake power at different blends ratio. The smoke is most big trouble in running diesel engines. Smoke is increasing with load increment. At full load, the smoke is decreased 3 times than D100 and nearly 2 times at B20. This is due to high viscosity and complicated molecular structures.

Conclusion
In present work, the following points it can be concluded:
- One of efficient solution to treat polution is transfering gram g the waste to energy W2E.
- Four grams of NaOH with 130 ml of alcohol are optimum amounts to synthesize biodiesel from waste cooking oil at 60 oC.
- The economic calculation gives that one liter of biodiesel synthesized in laboratory is cheaper than one liter of diesel.
- Blends of biodiesel with diesel decreases the polutants.
- B20 (20% biodiesel +80% of diesel) is the best to copromize between thermal efficiency and exhaust emissions.
References
Aladedunye FA, Przybylski, 2009 "Protecting Oil During Frying: A Comparative Study", Europe Journal Lipid Sci Tech, vol. 111, pp. 893-901.
Carlos A. Guerrero, Andrés Guerrero-Romero, and Fabio E. Sierra, 2011 , "Biodiesel Production from Waste Cooking Oil, Biodiesel - Feedstocks and Processing Technologies", Dr. Margarita Stoytcheva (Ed.), ISBN: 978-953-307-713-0, InTech, Available from: http://www.intechopen.com/books/biodiesel-feedstocks-and-processing-technologies/biodiesel-production-from-waste-cooking-oil.
Carlos Daniel Mando leside Araújon, Claudia Cristina de Andrade, Erikade Souzae Silva, and Francisco Antonio Dupas , 2013 " Biodiesel production from used cooking oil: A review", RenewableandSustainableEnergyReviews 27, 445–452.
Choe E, Min DB, 2009 . "Chemistry of Deep-Fat Frying Oil", Journal of Food Science 72, pp. 78-86.
Duraid f. Maki, Nahla f. Maki, and Haroun A.k Al janabi, 2008 , "production and testing of biodiesel from waste cooking oil ", 5th International conference on "combustion, Incineration/pyrolysis.
Engine Manufacturers Association (E.M.A), 2006 , "Use of Raw Vegetable Oil or Animal Fats in Diesel Engines".
Fernando José da Silva,Antonio Gilson Barbosa de Lima,Oge Jerônimo Ramos da Costa,Celso Rosendo Bezerra Filho, Marcelo Bezerra Grilo, 2013 " Dual-Fuel (Natural Gas/Biodiesel) Engines: Fundamentals, Performance and Environmental Impact", Alternative Energies pp 47-68.
Gertz C., 2000 , " Chemical and Physical Parameters as Quality Indicators of Used Frying Fats", Euro Lipid Science Technology 102, pp. 566-572.
Global Energy Statistical Yearbook, 2015. ENERDATA., [Online]. https://yearbook.enerdata.net/.
Jinlin Xuea, Tony E. Grifta, and Alan C. Hansena, 2011 "Effect of biodiesel on engine performances and emission", Vol. 15, Issue 2, PP 1098–1116.
Knothe G, Steidly KR, 2015 , "A Comparison of Used Cooking Oils: A Very Heterogeneous Feedstock for Biodiesel", Bio resource Technology 100 (23), pp. 5796-5801.
Muhammad Qasim , Tariq Mahmoood Ansari and Mazhar Hussain, 2017 " Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils", Int journal of energies, pp1-16.
Nitin Shrivastava1, S.N. Varma1, Mukesh Pandey , 2012 , "An experimental investigation of performance and exhaust emission of a diesel engine fuelled with Jatropha biodiesel and its blends", Volume 3, Issue 6, pp.915-926.
Rajshekar S. Hosmath, Nagaraj R. Banapurmath, Mallikarjuna Bhovi, Sanjeevkumar V. Khandal, Ajitkumar P. Madival, Shashikumar S. Dhanur, Varunkumar Gundalli, 2015 "Performance, Emission and Combustion Characteristics of Dual Fuel (DF) Engine Fuelled with Hydrogen Induction and Injection of Homme and Methyl Esters", Energy and Power Engineering, 7, 384-395.
Rakib Uddin M., Kaniz Ferdous, M. Rahim Uddin, Maksudur R. Khan, M. A. Islam, 2013 "Synthesis of Biodiesel from Waste Cooking Oil", Vol. 1, No. 2, pp22-26.
Sandra LuzMartínez, Rubi Romero, Reyna Natividad, Javier González, 2014 "Optimization of biodiesel production from sunflower oil by transesterification using Na2O/NaX and methanol", Catalysis Today, Volumes 220–222. Pages 12-20.
Sangamesh Talwade and M. C. Navindgi, 2016 " Optimization of Mango Seed Biodiesel Blends for CI Engines, Vol. 3 Issue 7, July, pp 2348 – 7968.
Shiyasharan Patel and Nitin Shrivastava, 2016, " Experimental Investigation of Performance and Emission of Diesel Engine Fuelled with Preheated Jatropha Biodiesel and its Blends with Ethanol", International journal of Renewable energy. Vol.6, No.4.
Srinivasa Rao, 2016, "Effect of EGR on Diesel Engine Performance and Exhaust Emission Running with Cotton Seed Biodiesel", International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:16 No:02 64.
Syed Ameer BashaK, Raja Gopal, S.Jebaraj, 2009, "A review on biodiesel production, combustion, emissions and performance", Renewable and Sustainable Energy Reviews, Volume 13, Issues 6–7, Pages 1628-1634.
William R. Morrison and Lloyd M. Smith, 2013, "Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol, journal of lipid research."