Supporting Information

A One-Pot Suzuki-Hydrogenolysis Protocol for the Modular Synthesis of 2,5-Diaryl Tetrazoles

Keith Livingstone,¹ Sophie Bertrand² and Craig Jamieson*¹

¹Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK
²GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, UK, SG1 2NY.

*Email: Craig.Jamieson craig.jamieson@strath.ac.uk
Contents

General Procedures

S3
Optimization of Reaction
S5

NMR Spectra of Selected Compounds S33

References S72
1 General Procedures

1.1 A: Optimization of Suzuki Reaction Using High-Throughput Screening

In a glovebox, a 24 or 96-well plate containing 1 mL or 250 uL vials was charged with a relevant Pd precatalyst (10 mol%). 1-benzyl-5-bromo-1H-tetrazole (1 equiv.) and an aryl boronic acid (1.5 equiv.) were then added as a solution/slurry in a specified solvent (0.1 M). An inorganic base (2 equiv.) was then added as a solution in water (20 % volume of solvent). The plate was then sealed, removed from the glovebox and stirred at 100 °C for 24 hours. The reaction mixtures were diluted to a concentration of around 4 mM with acetonitrile containing a known concentration of internal standard, and analyzed by HPLC. Conversion values obtained were first normalized using the internal standard peak, and reported as relative values of the most successful reaction mixture.

1.2 B: Targeted Optimization of Suzuki Reaction

1-benzyl-5-bromo-1H-tetrazole (1 equiv.) and an aryl boronic acid were added to either 0.5-2 mL microwave vials or 2 mL HPLC vials. The vessels were then charged with the relevant palladium precatalyst as a solution in the solvent. In the instances where a palladium source and ligand was employed, both catalyst and ligand were added as a solution in the solvent. In the instances where the palladium source was not soluble in the solvent, the catalyst was added as a solid prior to the solvent. Base was added as a solution in water, and the vessel was sealed and purged with nitrogen. In the instances where extremely low equivalents of water were used, the base was added as a solid after the addition of water. Following reaction completion, the reaction mixture was diluted with a solution of caffeine (0.5 equiv.) in acetonitrile. The mixture was further diluted to a concentration of around 4 mM, analyzed by LCMS, and conversion values obtained.

1.3 C: Optimization of Debenzylation Using High-Throughput Screening

To a 24 or 96-well plate containing 1 mL vials was added a palladium on carbon catalyst, which was weighed using a Mettler Toledo QX-96 automated weighing instrument. 1-benzyl-5-phenyl-1H-tetrazole (1 equiv.) was added as a solution in the relevant solvent (0.17 M), and in some specified cases, acetic acid (1 equiv.) was added at this stage. The vials were sealed using caps that had been pierced 5-10 times with a blunt needle, and exposed to a hydrogen atmosphere of known pressure for 24 hours at either 40 °C or room temperature. Following reaction completion, the reaction mixtures were diluted to concentration of around 4 mM with acetonitrile and analyzed by HPLC. Conversion values are reported as a ratio of debenzylated product relative to remaining starting material.
1.4 D: Targeted Optimization of Debenzylation

To eight HEL HP ChemScan reaction vessels was added a palladium on carbon catalyst. 1-benzyl-5-phenyl-1\(H\)-tetrazole (1 equiv.) was added as a solution in ethanol (0.1 M). The vessels are then sealed and exposed to a hydrogen atmosphere of a known pressure at room temperature for 16 hours. Following reaction completion, the reaction mixtures were diluted to concentration of around 4 mM with acetonitrile and analyzed by HPLC. Conversion values are reported as a ratio of debenzylated product relative to remaining starting material.

1.5 E: Optimization of One-Pot Suzuki Hydrogenolysis

To eight Biotage Endeavor reaction vessels was added a solution of 1-benzyl-5-phenyl-1\(H\)-tetrazole (1 equiv.), phenylboronic acid (1.3 equiv.), and XPhos Pd G3 (3 mol%) as a solution in a known volume of solvent. Evonik Noblyst® P1071 20% palladium on carbon was added to each vessel, before cesium carbonate (1.5 equiv.) was added as a solution in water (100 equiv.). The vessels were purged with nitrogen, and heated at 100 °C for 4 hours. The vessels were then cooled to 40 °C, and in some instances ethanol was added to the mixture at this stage. The reaction mixture was then stirred under a hydrogen atmosphere of a specified pressure at 40 °C for between 16 and 24 hours. Following reaction completion, the reaction mixture was diluted with a solution of caffeine (0.5 equiv.) in acetonitrile. The mixture was further diluted to a concentration of around 4 mM, analyzed by LCMS, and conversion values obtained.
2 Optimization of Reaction Conditions

2.1 Optimization of Suzuki Reaction

High-Throughput Screen 1

The screen was conducted as outlined in general procedure A using 24 x 250 μL vials, each containing 1-benzyl-5-bromo-1H-tetrazole (0.60 mg, 2.5 μmol), phenylboronic acid (0.46 mg, 3.75 μmol), XPhos, SPhos, DTnBuP, AmPhos, DTBPF, or tBu3P Pd G3 precatalysts (all 0.25 μmol), potassium carbonate (0.70 mg, 5 μmol) or potassium phosphate (1.06 mg, 5 μmol), toluene or dioxane (both 240 μL), and water (60 μL). The results obtained are detailed in Table S1.

Entry	Catalyst	Solvent	Base	Conversion°
1	XPhos	Toluene	K3PO4	0.36
2	SPhos	Toluene	K3PO4	0.14
3	DTnBuP	Toluene	K3PO4	0.03
4	AmPhos	Toluene	K3PO4	0.01
5	DTBPF	Toluene	K3PO4	0.09
6	tBu3P	Toluene	K3PO4	0.02
7	XPhos	Toluene	K2CO3	1.00
8	SPhos	Toluene	K2CO3	0.17
9	DTnBuP	Toluene	K2CO3	0.25
10	AmPhos	Toluene	K2CO3	0.37
11	DTBPF	Toluene	K2CO3	0.13
No.	Catalyst	Solvent	Base	Conversion
-----	---------------	---------	-----------------	------------
12	tBu₃P	Toluene	K₂CO₃	0.06
13	XPhos	Dioxane	K₃PO₄	0.17
14	SPhos	Dioxane	K₃PO₄	0.24
15	DTnBuP	Dioxane	K₃PO₄	0.08
16	AmPhos	Dioxane	K₂CO₃	0.05
17	DTBPF	Dioxane	K₃PO₄	0.06
18	tBu₃P	Dioxane	K₃PO₄	0.03
19	XPhos	Dioxane	K₂CO₃	0.18
20	SPhos	Dioxane	K₂CO₃	0.16
21	DTnBuP	Dioxane	K₂CO₃	0.15
22	AmPhos	Dioxane	K₂CO₃	0.10
23	DTBPF	Dioxane	K₂CO₃	0.03
24	tBu₃P	Dioxane	K₂CO₃	0.04

<Conversions determined by HPLC and reported relative to the highest recorded value with reference to an internal standard.

High-Throughput Screen 2

The screen was conducted as outlined in general procedure A using 96 x 1 mL vials, each containing 1-benzyl-5-bromo-1H-tetrazole (2.40 mg, 10 μmol), 4-methoxyphenylboronic acid, 4-fluorophenylboronic acid, 4-cyanophenylboronic acid, or 4-pyridinylboronic acid (all 15 μmol), XPhos, SPhos, DTnBuP, AmPhos, DTBPF, or tBu₃P Pd G3 precatalysts (all 1 μmol), potassium carbonate (2.80 mg, 20 μmol) or cesium carbonate (2.50 mg, 20 μmol), toluene or acetonitrile (both 960 μL), and water (240 μL). The results obtained are detailed in Table S2.
Table S2: Conversion values obtained from high-throughput screen 2

Entry	Boronic Acid	Catalyst	Solvent	Base	Conversion*
1	4-methoxyphenyl	XPhos	MeCN	Cs₂CO₃	0.27
2	4-methoxyphenyl	SPhos	MeCN	Cs₂CO₃	0.19
3	4-methoxyphenyl	DTnBuP	MeCN	Cs₂CO₃	0.22
4	4-methoxyphenyl	AmPhos	MeCN	Cs₂CO₃	0.03
5	4-methoxyphenyl	DTBPF	MeCN	Cs₂CO₃	0.12
6	4-methoxyphenyl	tBu₃P	MeCN	Cs₂CO₃	0.01
7	4-methoxyphenyl	XPhos	MeCN	K₂CO₃	0.30
8	4-methoxyphenyl	SPhos	MeCN	K₂CO₃	0.22
9	4-methoxyphenyl	DTnBuP	MeCN	K₂CO₃	0.31
10	4-methoxyphenyl	AmPhos	MeCN	K₂CO₃	0.03
11	4-methoxyphenyl	DTBPF	MeCN	K₂CO₃	0.02
12	4-methoxyphenyl	tBu₃P	MeCN	K₂CO₃	0.04
13	4-methoxyphenyl	XPhos	Toluene	Cs₂CO₃	0.93
14	4-methoxyphenyl	SPhos	Toluene	Cs₂CO₃	0.73
15	4-methoxyphenyl	DTnBuP	Toluene	Cs₂CO₃	1.00
16	4-methoxyphenyl	AmPhos	Toluene	Cs₂CO₃	0.18
17	4-methoxyphenyl	DTBPF	Toluene	Cs₂CO₃	0.11
18	4-methoxyphenyl	tBu₃P	Toluene	Cs₂CO₃	0.15
19	4-methoxyphenyl	XPhos	Toluene	K₂CO₃	0.67
20	4-methoxyphenyl	SPhos	Toluene	K₂CO₃	0.79
21	4-methoxyphenyl	DTnBuP	Toluene	K₂CO₃	0.61
22	4-methoxyphenyl	AmPhos	Toluene	K₂CO₃	0.18
	4-fluorophenyl	Ligand	Solvent	Base	Yield
---	----------------	----------	---------	--------	--------
23	4-methoxyphenyl	DTBPF	Toluene	K$_2$CO$_3$	0.11
24	4-methoxyphenyl	tBu$_3$P	Toluene	K$_2$CO$_3$	0.20
25	4-fluorophenyl	XPhos	MeCN	Cs$_2$CO$_3$	0.22
26	4-fluorophenyl	SPhos	MeCN	Cs$_2$CO$_3$	0.16
27	4-fluorophenyl	DTnBuP	MeCN	Cs$_2$CO$_3$	0.23
28	4-fluorophenyl	AmPhos	MeCN	Cs$_2$CO$_3$	0.02
29	4-fluorophenyl	DTBPF	MeCN	Cs$_2$CO$_3$	0.02
30	4-fluorophenyl	tBu$_3$P	MeCN	Cs$_2$CO$_3$	0.01
31	4-fluorophenyl	XPhos	MeCN	K$_2$CO$_3$	0.20
32	4-fluorophenyl	SPhos	MeCN	K$_2$CO$_3$	0.15
33	4-fluorophenyl	DTnBuP	MeCN	K$_2$CO$_3$	0.20
34	4-fluorophenyl	AmPhos	MeCN	K$_2$CO$_3$	0.06
35	4-fluorophenyl	DTBPF	MeCN	K$_2$CO$_3$	0.06
36	4-fluorophenyl	tBu$_3$P	MeCN	K$_2$CO$_3$	0.01
37	4-fluorophenyl	XPhos	Toluene	Cs$_2$CO$_3$	1.00
38	4-fluorophenyl	SPhos	Toluene	Cs$_2$CO$_3$	0.95
39	4-fluorophenyl	DTnBuP	Toluene	Cs$_2$CO$_3$	0.38
40	4-fluorophenyl	AmPhos	Toluene	Cs$_2$CO$_3$	0.16
41	4-fluorophenyl	DTBPF	Toluene	Cs$_2$CO$_3$	0.08
42	4-fluorophenyl	tBu$_3$P	Toluene	Cs$_2$CO$_3$	0.14
43	4-fluorophenyl	XPhos	Toluene	K$_2$CO$_3$	0.98
44	4-fluorophenyl	SPhos	Toluene	K$_2$CO$_3$	0.71
45	4-fluorophenyl	DTnBuP	Toluene	K$_2$CO$_3$	0.32
46	4-fluorophenyl	AmPhos	Toluene	K$_2$CO$_3$	0.15
No.	Ligand	Additive	Solvent	Base	Yield
-----	------------------	----------	---------	--------	-------
47	4-fluorophenyl	DTBPF	Toluene	K$_2$CO$_3$	0.07
48	4-fluorophenyl	tBu$_3$P	Toluene	K$_2$CO$_3$	0.10
49	4-cyanophenyl	XPhos	MeCN	Cs$_2$CO$_3$	0.33
50	4-cyanophenyl	SPhos	MeCN	Cs$_2$CO$_3$	0.00
51	4-cyanophenyl	DTnBuP	MeCN	Cs$_2$CO$_3$	0.00
52	4-cyanophenyl	AmPhos	MeCN	Cs$_2$CO$_3$	0.00
53	4-cyanophenyl	DTBPF	MeCN	Cs$_2$CO$_3$	0.19
54	4-cyanophenyl	tBu$_3$P	MeCN	Cs$_2$CO$_3$	0.00
55	4-cyanophenyl	XPhos	MeCN	K$_2$CO$_3$	0.33
56	4-cyanophenyl	SPhos	MeCN	K$_2$CO$_3$	0.28
57	4-cyanophenyl	DTnBuP	MeCN	K$_2$CO$_3$	0.21
58	4-cyanophenyl	AmPhos	MeCN	K$_2$CO$_3$	0.07
59	4-cyanophenyl	DTBPF	MeCN	K$_2$CO$_3$	0.00
60	4-cyanophenyl	tBu$_3$P	MeCN	K$_2$CO$_3$	0.17
61	4-cyanophenyl	XPhos	Toluene	Cs$_2$CO$_3$	1.00
62	4-cyanophenyl	SPhos	Toluene	Cs$_2$CO$_3$	0.56
63	4-cyanophenyl	DTnBuP	Toluene	Cs$_2$CO$_3$	0.73
64	4-cyanophenyl	AmPhos	Toluene	Cs$_2$CO$_3$	0.14
65	4-cyanophenyl	DTBPF	Toluene	Cs$_2$CO$_3$	0.58
66	4-cyanophenyl	tBu$_3$P	Toluene	Cs$_2$CO$_3$	0.61
67	4-cyanophenyl	XPhos	Toluene	K$_2$CO$_3$	0.81
68	4-cyanophenyl	SPhos	Toluene	K$_2$CO$_3$	0.00
69	4-cyanophenyl	DTnBuP	Toluene	K$_2$CO$_3$	0.00
70	4-cyanophenyl	AmPhos	Toluene	K$_2$CO$_3$	0.00
	Ligand	Phosphine	Solvent	Base	Conversion
----	------------------	-----------	----------	---------	------------
71	4-cyanophenyl	DTBPF	Toluene	K$_2$CO$_3$	0.33
72	4-cyanophenyl	tBu$_3$P	Toluene	K$_2$CO$_3$	0.12
73	4-pyridinyl	XPhos	MeCN	Cs$_2$CO$_3$	0.00
74	4-pyridinyl	SPhos	MeCN	Cs$_2$CO$_3$	0.00
75	4-pyridinyl	DTnBuP	MeCN	Cs$_2$CO$_3$	0.00
76	4-pyridinyl	AmPhos	MeCN	Cs$_2$CO$_3$	0.00
77	4-pyridinyl	DTBPF	MeCN	Cs$_2$CO$_3$	0.00
78	4-pyridinyl	tBu$_3$P	MeCN	Cs$_2$CO$_3$	0.00
79	4-pyridinyl	XPhos	MeCN	K$_2$CO$_3$	0.00
80	4-pyridinyl	SPhos	MeCN	K$_2$CO$_3$	0.00
81	4-pyridinyl	DTnBuP	MeCN	K$_2$CO$_3$	0.00
82	4-pyridinyl	AmPhos	MeCN	K$_2$CO$_3$	0.00
83	4-pyridinyl	DTBPF	MeCN	K$_2$CO$_3$	0.00
84	4-pyridinyl	tBu$_3$P	MeCN	K$_2$CO$_3$	0.00
85	4-pyridinyl	XPhos	Toluene	Cs$_2$CO$_3$	0.00
86	4-pyridinyl	SPhos	Toluene	Cs$_2$CO$_3$	0.00
87	4-pyridinyl	DTnBuP	Toluene	Cs$_2$CO$_3$	0.00
88	4-pyridinyl	AmPhos	Toluene	Cs$_2$CO$_3$	0.00
89	4-pyridinyl	DTBPF	Toluene	Cs$_2$CO$_3$	0.00
90	4-pyridinyl	tBu$_3$P	Toluene	Cs$_2$CO$_3$	0.00
91	4-pyridinyl	XPhos	Toluene	K$_2$CO$_3$	0.00
92	4-pyridinyl	SPhos	Toluene	K$_2$CO$_3$	0.00
93	4-pyridinyl	DTnBuP	Toluene	K$_2$CO$_3$	0.00
94	4-pyridinyl	AmPhos	Toluene	K$_2$CO$_3$	0.00
The screen was conducted as outlined in general procedure B using 5 x microwave vials, each containing 1-benzyl-5-bromo-1H-tetrazole (12.0 mg, 50 μmol), phenylboronic acid (9.1 mg, 75 μmol), XPhos Pd G3 (4.2 mg, 5 μmol), potassium carbonate (14 mg, 100 μmol), toluene (500 μL), and water (1-50 equivalents). The reaction was stirred at 100 °C for 3 hours. The results obtained are detailed in Table S3.

Table S3: Conversion values obtained from targeted screen 1

Entry	Water Stoichiometry (equivs)	Conversiona
1	1	64
2	5	73
3	10	76
4	20	75
5	50	70

*a*Conversions determined by LCMS with reference to caffeine as an internal standard.
Targeted Screen 2

The screen was conducted as outlined in general procedure B using 5 x microwave vials, each containing 1-benzyl-5-bromo-1H-tetrazole (12.0 mg, 50 µmol), phenylboronic acid (9.1 mg, 75 µmol), an XPhos precatalyst (5 µmol), potassium carbonate (14 mg, 100 µmol), toluene (500 µL), and water (9 µL, 500 µmol). In the instance where XPhos (2.7 mg, 5 µmol) was employed, palladium(II) acetate (1.1 mg, 5 µmol) was also added as a palladium source. The reaction was stirred at 100 °C for 3 hours. The results obtained are detailed in Table S4.

Table S4: Conversion values obtained from targeted screen 2

Entry	(Pre)catalyst	Conversion*
1	XPhos + Pd(OAc)$_2$	50
2	XPhos Pd G1	65
3	XPhos Pd G2	66
4	XPhos Pd G3	63
5	XPhos Pd G4	70

*Conversions relative to highest recorded value with reference to caffeine as an internal standard.

Targeted Screen 3

The screen was conducted as outlined in general procedure B using 48 x 2 mL HPLC vials, each containing 1-benzyl-5-bromo-1H-tetrazole (12.0 mg, 50 µmol), (4-(trifluoromethyl)phenyl)boronic acid (14.2 mg, 75 µmol), (4-cyanophenyl)boronic acid (11.0 mg, 75 µmol), (4-(trifluoromethyl)phenyl)boronic acid pinacol ester (20.4 mg, 75 µmol), or (4-cyanophenyl)boronic acid pinacol ester (17.2 mg, 75 µmol), XPhos Pd G3 (4.2 mg, 5.0 µmol) or SPhos Pd G3 (3.9 mg, 5.0
µmol), cesium carbonate (32.6 mg, 100 µmol), potassium phosphate (21.2 mg, 100 µmol) or potassium carbonate (13.8 mg, 100 µmol), toluene or n-butanol (both 500 µL), and water (45 µL, 2500 µmol). The reaction was stirred at 100 °C for 16 hours. The results obtained are detailed in Table S5.

Table S5: Conversion values obtained from targeted screen 3

Entry	Boron Species	Catalyst	Solvent	Base	Conversion*
1	(4-CF₃)PhB(OH)₂	XPhos	Toluene	K₂CO₃	54
2	(4-CF₃)PhB(OH)₂	XPhos	Toluene	Cs₂CO₃	59
3	(4-CF₃)PhB(OH)₂	XPhos	Toluene	K₃PO₄	52
4	(4-CF₃)PhB(OH)₂	SPhos	Toluene	K₂CO₃	32
5	(4-CF₃)PhB(OH)₂	SPhos	Toluene	Cs₂CO₃	30
6	(4-CF₃)PhB(OH)₂	SPhos	Toluene	K₃PO₄	39
7	(4-CF₃)PhB(OH)₂	XPhos	n-Butanol	K₂CO₃	13
8	(4-CF₃)PhB(OH)₂	XPhos	n-Butanol	Cs₂CO₃	10
9	(4-CF₃)PhB(OH)₂	XPhos	n-Butanol	K₃PO₄	9
10	(4-CF₃)PhB(OH)₂	SPhos	n-Butanol	K₂CO₃	9
11	(4-CF₃)PhB(OH)₂	SPhos	n-Butanol	Cs₂CO₃	7
12	(4-CF₃)PhB(OH)₂	SPhos	n-Butanol	K₃PO₄	8
13	(4-CF₃)PhBPin	XPhos	Toluene	K₂CO₃	4
14	(4-CF₃)PhBPin	XPhos	Toluene	Cs₂CO₃	9
15	(4-CF₃)PhBPin	XPhos	Toluene	K₃PO₄	15
16	(4-CF₃)PhBPin	SPhos	Toluene	K₂CO₃	5
17	(4-CF₃)PhBPin	SPhos	Toluene	Cs₂CO₃	5
	Reaction	Catalyst	Solvent	Base	Yield
---	-----------	----------	----------	------------	-------
18	(4-CF₃)PhBPin	SPhos	Toluene	K₃PO₄	8
19	(4-CF₃)PhBPin	XPhos	n-Butanol	K₂CO₃	15
20	(4-CF₃)PhBPin	XPhos	n-Butanol	Cs₂CO₃	11
21	(4-CF₃)PhBPin	XPhos	n-Butanol	K₃PO₄	12
22	(4-CF₃)PhBPin	SPhos	n-Butanol	K₂CO₃	0
23	(4-CF₃)PhBPin	SPhos	n-Butanol	Cs₂CO₃	8
24	(4-CF₃)PhBPin	SPhos	n-Butanol	K₃PO₄	8
25	(4-CN)PhB(OH)₂	XPhos	Toluene	K₂CO₃	7
26	(4-CN)PhB(OH)₂	XPhos	Toluene	Cs₂CO₃	6
27	(4-CN)PhB(OH)₂	XPhos	Toluene	K₃PO₄	3
28	(4-CN)PhB(OH)₂	SPhos	Toluene	K₂CO₃	13
29	(4-CN)PhB(OH)₂	SPhos	Toluene	Cs₂CO₃	12
30	(4-CN)PhB(OH)₂	SPhos	Toluene	K₃PO₄	7
31	(4-CN)PhB(OH)₂	XPhos	n-Butanol	K₂CO₃	11
32	(4-CN)PhB(OH)₂	XPhos	n-Butanol	Cs₂CO₃	9
33	(4-CN)PhB(OH)₂	XPhos	n-Butanol	K₃PO₄	5
34	(4-CN)PhB(OH)₂	SPhos	n-Butanol	K₂CO₃	4
35	(4-CN)PhB(OH)₂	SPhos	n-Butanol	Cs₂CO₃	2
36	(4-CN)PhB(OH)₂	SPhos	n-Butanol	K₃PO₄	2
37	(4-CN)PhBPin	XPhos	Toluene	K₂CO₃	9
38	(4-CN)PhBPin	XPhos	Toluene	Cs₂CO₃	27
39	(4-CN)PhBPin	XPhos	Toluene	K₃PO₄	21
Entry	Catalyst Loading (mol%)	Conversion			
-------	-------------------------	------------			
1	10	52			
2	5	47			
3	2.5	14			

*Conversion values determined by LCMS with reference to caffeine as an internal standard.

Targeted Screen 4

The screen was conducted as outlined in general procedure B using 5 x microwave vials, each containing 1-benzyl-5-bromo-1H-tetrazole (12.0 mg, 50 μmol), 4-fluorophenylboronic acid (10.5 mg, 75 μmol), XPhos Pd G3 (0.5-10 mol%), cesium carbonate (32.6 mg, 100 μmol), toluene (500 μL), and water (9 μL, 500 μmol). The reaction was stirred at 100 °C for 16 hours. The results obtained are detailed in Table S6.

Table S6: Conversion values obtained from targeted screen 4
Conversion values determined by LCMS with reference to caffeine as an internal standard.

Targeted Screen 5

The screen was conducted as outlined in general procedure B using 8 x 2 mL HPLC vials, each containing 1-benzyl-5-bromo-1H-tetrazole (12.0 mg, 50 μmol), (4-(trifluoromethyl)phenyl)boronic acid (14.2 mg, 75 μmol), (4-cyanophenyl)boronic acid (11.0 mg, 75 μmol), (4-(trifluoromethyl)phenyl)boronic acid pinacol ester (20.4 mg, 75 μmol), or (4-cyanophenyl)boronic acid pinacol ester (17.2 mg, 75 μmol), XPhos Pd G3 (2.1 mg, 2.5 µmol) or tetrakis(triphenylphosphine)palladium(0) (2.9 mg, 2.5 µmol), cesium carbonate (32.6 mg, 100 μmol), toluene (400 μL), and water (90 μL, 5000 μmol). The reaction was stirred at 100 °C for 16 hours. The results obtained are detailed in Table S7.

Table S7: Conversion values obtained from targeted screen 5

Entry	Catalyst	Boron Species	Conversion\(^a\)
1	XPhos Pd G3	(4-CF\(_3\))PhB(OH)_2	60
2	XPhos Pd G3	(4-CF\(_3\))PhBPin	20
3	XPhos Pd G3	(4-CN)PhB(OH)_2	13
4	XPhos Pd G3	(4-CN)PhBPin	8
5	Pd(PPh\(_3\))\(_4\)	(4-CF\(_3\))PhB(OH)_2	16
6	Pd(PPh\(_3\))\(_4\)	(4-CF\(_3\))PhBPin	4
7	Pd(PPh\(_3\))\(_4\)	(4-CN)PhB(OH)_2	22
8	Pd(PPh\(_3\))\(_4\)	(4-CN)PhBPin	36

\(^a\)Conversion values determined by LCMS with reference to caffeine as an internal standard.
Targeted Screen 6

![Chemical Structures]

The screen was conducted as outlined in general procedure B using 24 x 2 mL HPLC vials, each containing 1-benzyl-5-bromo-1H-tetrazole (12.0 mg, 50 µmol), (4-(trifluoromethyl)phenyl)boronic acid (14.2 mg, 75 µmol), (4-cyanophenyl)boronic acid (11.0 mg, 75 µmol), (4-(trifluoromethyl)phenyl)boronic acid pinacol ester (20.4 mg, 75 µmol), or (4-cyanophenyl)boronic acid pinacol ester (17.2 mg, 75 µmol), 3BuXPhos Pd G1 (1.7 mg, 2.5 µmol), RockPhos Pd G3 (2.1 mg, 2.5 µmol), BrettPhos Pd G3 (2.3 mg, 2.5 µmol), RuPhos Pd G3 (2.1 mg, 2.5 µmol), XPhos Pd G3 (2.1 mg, 2.5 µmol) or tetrakis(triphenylphosphine)palladium(0) (2.9 mg, 2.5 µmol), cesium carbonate (32.6 mg, 100 µmol), toluene (400 µL), and water (90 µL, 5000 µmol). The reaction was stirred at 100 °C for 16 hours. The results obtained are detailed in Table S8.

Table S8: Conversion values obtained from targeted screen 6

Entry	Catalyst	Boron Species	Conversion*
1	Pd(PPh₃)₄	(4-CF₃)PhB(OH)₂	17
2	Pd(PPh₃)₄	(4-CF₃)PhBPin	4
3	Pd(PPh₃)₄	(4-CN)PhB(OH)₂	18
4	Pd(PPh₃)₄	(4-CN)PhBPin	22
5	XPhos Pd G3	(4-CF₃)PhB(OH)₂	31
6	XPhos Pd G3	(4-CF₃)PhBPin	25
7	XPhos Pd G3	(4-CN)PhB(OH)₂	2
8	XPhos Pd G3	(4-CN)PhBPin	29
9	3BuXPhos Pd G1	(4-CF₃)PhB(OH)₂	2
10	3BuXPhos Pd G1	(4-CF₃)PhBPin	1
11	3BuXPhos Pd G1	(4-CN)PhB(OH)₂	0
#	Pd Source	Boronic Acid	Conversion Value
----	---------------------------	-----------------------	------------------
12	'BuXPhos Pd G1	(4-CN)PhBPin	1
13	BrettPhos Pd G3	(4-CF$_3$)PhB(OH)$_2$	20
14	BrettPhos Pd G3	(4-CF$_3$)PhBPin	15
15	BrettPhos Pd G3	(4-CN)PhB(OH)$_2$	9
16	BrettPhos Pd G3	(4-CN)PhBPin	17
17	RockPhos Pd G3	(4-CF$_3$)PhB(OH)$_2$	3
18	RockPhos Pd G3	(4-CF$_3$)PhBPin	0
19	RockPhos Pd G3	(4-CN)PhB(OH)$_2$	0
20	RockPhos Pd G3	(4-CN)PhBPin	0
21	RuPhos Pd G3	(4-CF$_3$)PhB(OH)$_2$	9
22	RuPhos Pd G3	(4-CF$_3$)PhBPin	6
23	RuPhos Pd G3	(4-CN)PhB(OH)$_2$	9
24	RuPhos Pd G3	(4-CN)PhBPin	14

*Conversion values determined by LCMS with reference to caffeine as an internal standard

Targeted Screen 7

The screen was conducted as outlined in general procedure B using 6 x microwave vials, each containing 1-benzyl-5-bromo-1H-tetrazole (12.0 mg, 50 µmol), 4-(trifluoromethyl)phenylboronic acid (14.2 mg, 75 µmol), (Pd(dppf)Cl)$_2$ (1.8 mg, 2.5 µmol), palladium(II) chloride (0.4 mg, 2.5 µmol), palladium(II) acetate (0.6 mg, 2.5 µmol), Pd(PPh$_3$)$_2$Cl$_2$ (1.8 mg, 2.5 µmol), Pd$_2$(dba)$_3$ (1.1 mg, 1.25 µmol) or XPhos Pd G3 (2.1 mg, 2.5 µmol), XPhos (2.4 mg, 5.0 µmol), cesium carbonate (32.6 mg, 100 µmol), toluene (500 µL), and water (90 µL, 5000 µmol). The reaction was stirred at 100 °C for 16
hours. The results obtained are detailed in Table S9. Note that no XPhos was added to the reaction vessel where XPhos Pd G3 was used.

Table S9: Conversion values obtained from targeted screen 7

Entry	Palladium Source	Conversion
1	XPhos Pd G3	48
2	PdCl₂	3
3	Pd(OAc)₂	7
4	Pd[PPh₃]₂Cl₂	0
5	Pd(dpdpf)Cl₂	20
6	Pd₂dba₃	4

*aConversion values determined by LCMS with reference to caffeine as an internal standard.

Targeted Screen 8

```
1
```

The screen was conducted as outlined in general procedure B using 35 microwave vials, each containing 1-benzyl-5-bromo-1H-tetrazole (12.0 mg, 50 μmol), 4-fluorophenylboronic acid (55 μmol – 125 μmol), XPhos Pd G3 (0.5 μmol – 5 μmol), cesium carbonate (55 μmol – 125 μmol), toluene (50 – 500 μL), and water (250 μmol - 5000 μmol). The reaction was stirred at 100 °C for 3 hours. The results obtained are detailed in Table S10. Design of experiment analysis was conducted on the results of this screen (Figure S1) using Design Expert® software by StatEase."
Entry	Catalyst Loading (mol%)	Boronic Acid Stoichiometry (eq.)	Base Stoichiometry (eq.)	Water Stoichiometry (eq.)	Concentration (M)	Conversion^{a,b}
1	10	2.5	1.1	100	0.1	49
2	1	1.1	1.1	100	0.1	21
3	10	2.5	1.1	5	1	32
4	1	1.1	2.5	5	0.1	2
5	10	1.1	1.1	100	1	13
6	10	1.1	1.1	5	0.1	50
7	10	1.1	2.5	100	0.1	52
8	1	2.5	1.1	5	0.1	5
9	10	2.5	2.5	5	0.1	54
10	1	1.1	1.1	5	1	2
11	10	1.1	2.5	5	1	21
12	1	1.1	2.5	100	1	1
13	1	2.5	2.5	5	1	2
14	10	2.5	2.5	100	1	12
15	1	2.5	1.1	100	1	1
16	1	2.5	2.5	100	0.1	10
17	5.5	1.8	1.8	52.5	0.55	10^c

*Conversions values determined by LCMS with reference to caffeine as an internal standard.

^aReported values are averages of two runs.

^bAverage of three runs.
Figure S1: A. A half-normal plot of the factors investigated during targeted screen 8, demonstrating that catalyst and concentration have the greatest impact on conversion. B. A graphical representation of this effect.
Targeted Screen 9

The screen was conducted as outlined in general procedure B using 32 microwave HPLC vials, each containing 1-benzyl-5-bromo-1H-tetrazole (12.0 mg, 50 µmol), (4-fluorophenyl)boronic acid (9.1 mg, 65 µmol), XPhos Pd G3 (0.5 µmol – 5 µmol), cesium carbonate (24.4 mg, 75 µmol), toluene (500 µL - 2500 µL), and water (90 µL, 5000 µmol). The reaction was stirred at 100 °C for a defined time period. The results obtained are detailed in Table S11.

Table S11: Conversion values obtained from targeted screen 9

Entry	Catalyst Loading (mol%)	Time (h)	Concentration (M)	Conversiona
1	1	4	0.1	38
2	2	4	0.1	66
3	3	4	0.1	71
4	4	4	0.1	70
5	5	4	0.1	71
6	6	4	0.1	71
7	7	4	0.1	69
8	10	4	0.1	70
9	1	4	0.02	37
10	2	4	0.02	58
11	3	4	0.02	67
12	4	4	0.02	68
---	---	---	---	---
13	5	4	0.02	66
14	6	4	0.02	73
15	7	4	0.02	73
16	10	4	0.02	58
17	1	16	0.1	38
18	2	16	0.1	74
19	3	16	0.1	69
20	4	16	0.1	72
21	5	16	0.1	71
22	6	16	0.1	72
23	7	16	0.1	72
24	10	16	0.1	72
25	1	16	0.02	34
26	2	16	0.02	57
27	3	16	0.02	69
28	4	16	0.02	81
29	5	16	0.02	74
30	6	16	0.02	71
31	7	16	0.02	66
32	10	16	0.02	58

Conversion values determined by LCMS with reference to caffeine as an internal standard.
Targeted Screen 10

\[\text{Br} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{Ph} \quad \text{N} \quad \text{N} \quad \text{N} \quad \text{N} \]

\[\text{1} \xrightarrow{\text{Ph\text{B}(OH)\text{H}_2 (x \text{ equiv.})}} \text{2a} \]

XPhos Pd G3 (3 mol %)
Cs\textsubscript{2}CO\textsubscript{3} (x \text{ equiv.}), H\textsubscript{2}O, solvent
100 °C, 3 h
+ additive

The screen was conducted as outlined in general procedure B using 6 x microwave vials, each containing 1-benzyl-5-bromo-1\textsubscript{H}-tetrazole (12.0 mg, 50 µmol), phenylboronic acid (65 µmol or 75 µmol), XPhos Pd G3 (1.3 mg, 1.5 µmol), cesium carbonate (75 µmol or 100 µmol), toluene or n-butanol (both 500 µL), and water (90 µL, 5000 µmol). The reaction was stirred at 100 °C for 3 hours. The results obtained are detailed in Table S12. Evonik Noblyst® P1071 20% palladium on carbon (5.3 mg, 5 µmol) was also added to two of the vessels.

Table S12: Conversion values obtained from targeted screen 10

Entry	Solvent	Boronic Acid (eq.)	Base (eq.)	Additive	Conversiona
1	Toluene	1.3	1.5	-	77
2	Toluene	1.3	1.5	+ Pd/C	72
3	Toluene	1.5	2	-	76
4	n-Butanol	1.3	1.5	-	16
5	n-Butanol	1.3	1.5	+ Pd/C	22
6	n-Butanol	1.5	2	-	18

aConversions values determined by LCMS with reference to caffeine as an internal standard.
2.2 Optimization of Debenzylation Reaction

High-Throughput Screen 1

The screen was conducted as outlined in general procedure C using 48 x 1 mL vials, each containing 1-benzyl-5-phenyl-1H-tetrazole (15.0 mg, 63 μmol), a palladium on carbon catalyst (30% wt.), and ethanol, ethyl acetate, or tetrahydrofuran (all 375 μL). Acetic acid (13 μL, 63 μmol) was added to half of the vessels. The reaction was stirred at 40 °C for 16 hours. The results obtained are detailed in Table S13.

Table S13: Conversion values obtained from high-throughput screen 1

Entry	Pd/C Catalyst	Solvent	Additive	Conversiona
1	JM A405-028-5	Ethanol	-	97
2	JM A405-032-5	Ethanol	-	98
3	JM A503-032-5	Ethanol	-	29
4	Evonik P1070	Ethanol	-	96
5	Evonik P1071	Ethanol	-	97
6	Evonik P1090	Ethanol	-	90
7	BASF 10318	Ethanol	-	97
8	BASF 10321	Ethanol	-	96
9	JM A405-028-5	Ethyl Acetate	-	67
10	JM A405-032-5	Ethyl Acetate	-	71
11	JM A503-032-5	Ethyl Acetate	-	12
12	Evonik P1070	Ethyl Acetate	-	71
	Product Code	Solvent		
---	--------------	-----------	---	---
13	Evonik P1071	Ethyl Acetate	-	76
14	Evonik P1090	Ethyl Acetate	-	66
15	BASF 10318	Ethyl Acetate	-	76
16	BASF 10321	Ethyl Acetate	-	10
17	JM A405-028-5	THF	-	84
18	JM A405-032-5	THF	-	94
19	JM A503-032-5	THF	-	14
20	Evonik P1070	THF	-	97
21	Evonik P1071	THF	-	97
22	Evonik P1090	THF	-	91
23	BASF 10318	THF	-	97
24	BASF 10321	THF	-	2
25	JM A405-028-5	Ethanol	AcOH	57
26	JM A405-032-5	Ethanol	AcOH	98
27	JM A503-032-5	Ethanol	AcOH	33
28	Evonik P1070	Ethanol	AcOH	97
29	Evonik P1071	Ethanol	AcOH	97
30	Evonik P1090	Ethanol	AcOH	61
31	BASF 10318	Ethanol	AcOH	98
32	BASF 10321	Ethanol	AcOH	9
33	JM A405-028-5	Ethyl Acetate	AcOH	82
34	JM A405-032-5	Ethyl Acetate	AcOH	81
The screen was conducted as outlined in general procedure C using 10 x 1 mL vials, each containing 1-benzyl-5-phenyl-1H-tetrazole (30.0 mg, 127 μmol), a palladium on carbon catalyst (10 % wt. or 20 % wt.), and ethanol (750 μL). The reaction was stirred at 40 °C for 16 hours. The results obtained are detailed in Table S14.
Table S14: Conversion values obtained from high-throughput screen 2

Entry	Pd/C Catalyst	Catalyst Loading (wt. %)	Conversion^a
1	JM A405-028-5	10	24
2	JM A503-032-5	10	20
3	Evonik P1070	10	67
4	Evonik P1071	10	99
5	BASF 10318	10	97
6	JM A405-028-5	20	38
7	JM A503-032-5	20	33
8	Evonik P1070	20	99
9	Evonik P1071	20	98
10	BASF 10318	20	99

^aConversions reported as a percentage of total peak area of product and starting material.

Targeted Screen 1

The screen was conducted as outlined in general procedure D using 8 x 10 mL reaction vessels, each containing 1-benzyl-5-phenyl-1H-tetrazole (70.9 mg, 300 μmol), a palladium on carbon catalyst (7.5 μmol) and ethanol (3 mL). The reaction was stirred at room temperature for 16 hours. The results obtained are detailed in Table S15.

Table S15: Conversion values obtained from targeted screen 1

Entry	Pd/C Catalyst	H₂ pressure (bar)	Conversion^a
1	Evonik P1071	4	59

^aConversions reported as a percentage of total peak area of product and starting material.
	Products	Conversion (%)
2	Evonik P1071	3 56
3	Evonik P1071	2 50
4	Evonik P1071	1 47
5	BASF 10318	4 48
6	BASF 10318	3 44
7	BASF 10318	2 40
8	BASF 10318	1 40

Conversions reported as a percentage of total peak area of product and starting material.
2.3 Optimization of One-Pot Suzuki-Hydrogenolysis Reaction

Screen 1

The screen was conducted as outlined in general procedure E using 8 x 10 mL reaction vessels, each containing 1-benzyl-5-phenyl-1H-tetrazole (120 mg, 500 μmol), phenylboronic acid (79 mg, 650 μmol), XPhos Pd G3 (12.7 mg, 15 μmol), Noblyst® P1071 20% Pd/C (13 μmol - 50 μmol), cesium carbonate (244 mg, 750 μmol), water (901 μL, 50 mmol), toluene (5 mL) and ethanol (2.5 mL). The reaction was stirred at 100 °C under a nitrogen atmosphere for 4 hours, and at 40 °C under a hydrogen atmosphere of either 4 or 2 bar for 20 hours. The results obtained are detailed in Table S16.

Entry	Pd/C loading (mol%)	H₂ pressure (bar)	Conversiona
1	10	4	43
2	7.5	4	48
3	5	4	29
4	2.5	4	17
5	10	2	65
6	7.5	2	52
7	5	2	34
8	2.5	2	35

aConversions values determined by LCMS with reference to caffeine as an internal standard.
Screen 2

The screen was conducted as outlined in general procedure E using 7 x 10 mL reaction vessels, each containing 1-benzyl-5-phenyl-1H-tetrazole (120 mg, 500 μmol), phenylboronic acid (79 mg, 650 μmol), XPhos Pd G3 (12.7 mg, 15 μmol), Noblyst® P1071 20% Pd/C (53.2 mg, 50 μmol), cesium carbonate (244 mg, 750 μmol), water (901 μL, 50 mmol), toluene (2.5 mL - 5 mL) and ethanol or n-butanol (both 1 - 2.5 mL). The reaction was stirred at a specified temperature under a nitrogen atmosphere for 4 hours, and at 40 °C under a hydrogen atmosphere of 2 bar for 24 hours. The results obtained are detailed in Table S17.

Table S17: Conversion values obtained from screen 2

Entry	Solvent	Suzuki Temperature (°C)	Conversion\(^a\)
1	PhMe	100	24
2	4:1 (PhMe:nBuOH)	100	24
3	3:2 (PhMe:nBuOH)	100	4
4	1:1 (PhMe:nBuOH)	100	34
5	4:1 (PhMe:EtOH)	70	37
6	3:2 (PhMe:EtOH)	70	22
7	1:1 (PhMe:EtOH)	70	15

\(^a\)Conversions values determined by LCMS with reference to caffeine as an internal standard.
3 NMR Spectra of Selected Compounds

1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
^{1}H NMR (400 MHz, CDCl$_3$)

^{19}F NMR (376 MHz, CDCl$_3$)
13C NMR (101 MHz, CDCl$_3$)

1H NMR (400 MHz, CDCl$_3$)
19F NMR (376 MHz, CDCl$_3$)

13C NMR (121 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
1H NMR (400 MHz, DMSO)

13C NMR (101 MHz, DMSO)
1H NMR (400 MHz, DMSO)

19F NMR (376 MHz, DMSO)
13C NMR (101 MHz, DMSO)

1H NMR (400 MHz, DMSO)
19F NMR (376 MHz, DMSO)

13C NMR (101 MHz, DMSO)
1H NMR (400 MHz, DMSO)

13C NMR (101 MHz, DMSO)
1H NMR (400 MHz, DMSO)

13C NMR (101 MHz, DMSO)
1H NMR (400 MHz, DMSO)

13C NMR (101 MHz, DMSO)
1H NMR (400 MHz, DMSO)

13C NMR (101 MHz, DMSO)
1H NMR (400 MHz, DMSO)

13C NMR (101 MHz, DMSO)
1H NMR (500 MHz, DMSO)

13C NMR (126 MHz, DMSO)
1H NMR (400 MHz, DMSO)

13C NMR (101 MHz, DMSO)
\(^1\)H NMR (500 MHz, DMSO)

\(^{13}\)C NMR (126 MHz, DMSO)
1H NMR (400 MHz, DMSO)

13C NMR (101 MHz, DMSO)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
1H NMR (400 MHz, DMSO)

C NMR (101 MHz, DMSO)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

19F NMR (471 MHz, CDCl$_3$)
13C NMR (101 MHz, CDCl$_3$)

![Chemical Structure](image)
1H NMR (400 MHz, DMSO)

19F NMR (471 MHz, DMSO)
13C NMR (101 MHz, DMSO)

![NMR Spectrum]

S61
1H NMR (400 MHz, CDCl$_3$)

19F NMR (471 MHz, CDCl$_3$)
\[{ }^{13}\text{C} \text{ NMR (101 MHz, CDCl}_3 \]
1H NMR (400 MHz, CDCl$_3$)

19F NMR (471 MHz, CDCl$_3$)
13C NMR (101 MHz, CDCl$_3$)

![Chemical structure](image)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (101 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
1H NMR (400 MHz, DMSO)

13C NMR (101 MHz, DMSO)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (101 MHz, CDCl$_3$)
1H NMR (500 MHz, CDCl$_3$)

13C NMR (126 MHz, CDCl$_3$)
4 References

1 P. M. Murray, F. Bellany, L. Benhamou, D.-K. Bučar, A. B. Tabor and T. D. Sheppard, *Org. Biomol. Chem.*, 2016, **14**, 2373–2384.

2 WO2015001024A1, 2014.

3 A. Khalafi-Nezhad and S. Mohammadi, *RSC Adv.*, 2013, **3**, 4362.

4 M. Begtrup, P. Larsen and U. Edlund, *Acta Chem. Scand.*, 1990, **44**, 1050–1057.

5 S. Wiedemann, M. Bio, L. Brown, K. Hansen and N. Langille, *Synlett*, 2012, **23**, 2231–2236.