THE SPACE OF HOMOGENEOUS PROBABILITY MEASURES ON \(\Gamma \backslash X_{\text{max}}^S \) IS COMPACT

CHRISTOPHER DAW, ALEXANDER GORODNIK, AND EMMANUEL ULLMO

WITH AN APPENDIX BY JIALUN LI

ABSTRACT. In this paper we prove that the space of homogeneous probability measures on the maximal Satake compactification of an arithmetic locally symmetric space is compact. As an application, we explain some consequences for the distribution of weakly special subvarieties of Shimura varieties.

CONTENTS

1. Introduction 1
2. Preliminaries 5
3. Further preliminaries 9
4. Main tools 12
5. The proof 14
6. Appendix: An inequality for simple roots and dual weights 22
References 25

1. INTRODUCTION

In this paper, we study the behaviour of sequences of homogeneous measures. More specifically, given a sequence of such measures, we will be interested in describing its limit points. This problem has been studied by Eskin, Mozes, and Shah [MS95], [EMS96], [EMS97], who showed that, under certain conditions, any limit point is either a homogeneous measure itself or a zero measure. The later case amounts to the existence of a subsequence of measures diverging to infinity and, in [EMS97], a non-divergence condition was established. Such results concerning the convergence of measures have found several remarkable applications in arithmetic geometry (see, for instance, [EMS96], [CU05], [GO11]). However, the applicability of these tools have so far been limited to the case in which divergence to infinity can be ruled out. The goal of the present paper is to investigate limits of divergent sequences by considering them inside a Satake compactification. Ultimately, we show that any limit point is also a homogeneous measure supported on precisely one of the boundary components of the compactification.

2010 Mathematics Subject Classification. 60B10, 28A33, 53C35.

Key words and phrases. Convergence of measures, locally symmetric space, Satake compactification.
We conjectured this result in our previous paper [DGU21], wherein we developed several tools with which to study it and also proved some particular cases, including the locally symmetric space associated with $\text{SL}_3(\mathbb{R})$. We refer to the introduction of [DGU21] for some further historical background in homogeneous dynamics. We simply recall here the importance, for our purposes, of the seminal works of Ratner [Rat91a], [Rat91b] on the dynamics of unipotent flows, and of some of its developments by Dani–Margulis [DM91] and Eskin–Mozes–Shah, as alluded to above.

Formulating the main result. Let G be a semisimple algebraic group defined over \mathbb{Q} and let G denote the connected component of $G(\mathbb{R})$ containing the identity. Let K be a maximal compact subgroup of G and let $\Gamma \subset G(\mathbb{Q}) \cap G$ be an arithmetic lattice. Denote by X the associated Riemannian symmetric space G/K, denote by x_0 the point in X with stabilizer equal to K, and denote by S the associated arithmetic locally symmetric space $\Gamma \backslash X$. Let $\mathcal{P}(S)$ denote the set of Borel probability measures on S.

A \mathbb{Q}–algebraic subgroup $H \subset G$ is said to be of type H if the radical R_H of H is unipotent and the real Lie groups underlying the \mathbb{Q}–simple factors of H are not compact. With an algebraic subgroup $H \subset G$ of type H and some $g \in G$ we can associate a probability measure $\mu_{H,g} \in \mathcal{P}(S)$ with support equal to $\Gamma \backslash \Gamma Hgx_0 \subset S$. Such a measure is called homogeneous and we denote by

$$Q(S) := \{\mu_{H,g}, \text{ H of type H, $g \in G$}\} \subset \mathcal{P}(S)$$

the set of homogeneous probability measures on S.

The maximal Satake compactification of S has a decomposition

$$\Gamma \backslash X_{\text{max}}^S = \Gamma \backslash X \coprod \coprod_{P \in \mathcal{E}} \Gamma_{X_P} \backslash X_P$$

(1)

where \mathcal{P} varies among a (finite) set of representatives \mathcal{E} of the Γ–conjugacy classes of proper \mathbb{Q}–parabolic subgroups of G and the boundary component $\Gamma_{X_P} \backslash X_P$ is the arithmetic locally symmetric space associated with P. As a consequence, for any boundary component $\Gamma_{X_P} \backslash X_P$ of $\Gamma \backslash X_{\text{max}}$, we can define the set $Q(\Gamma_{X_P} \backslash X_P)$ of homogeneous probability measures on $\Gamma_{X_P} \backslash X_P$ as we defined $Q(S)$ for the open boundary component $S = \Gamma \backslash X$ of $\Gamma \backslash X_{\text{max}}$. A probability measure μ on $\Gamma \backslash X_{\text{max}}$ is said to be homogeneous if μ is homogeneous on S or on one of the proper boundary components $\Gamma_{X_P} \backslash X_P$. Then

$$Q(\Gamma \backslash X_{\text{max}}^S) = Q(S) \coprod \coprod_{P \in \mathcal{E}} Q(\Gamma_{X_P} \backslash X_P) \subset \mathcal{P}(\Gamma \backslash X_{\text{max}}^S)$$

is the set of homogeneous probability measures on $\Gamma \backslash X_{\text{max}}^S$. Our main result is the following, which establishes [DGU21, Conjecture 1.1].

Theorem 1.1.

(i) The set $Q(\Gamma \backslash X_{\text{max}}^S)$ of homogeneous probability measures on $\Gamma \backslash X_{\text{max}}^S$ is compact.

(ii) Let $(H_n)_{n \in \mathbb{N}}$ be a sequence of algebraic subgroups of G of type H and let $(g_n)_{n \in \mathbb{N}}$ be a sequence of elements of G. Let $\mu \in \mathcal{P}(\Gamma \backslash X_{\text{max}}^S)$ be a weak limit of the associated sequence $(\mu_{H_n,g_n})_{n \in \mathbb{N}}$ of homogeneous measures on $S = \Gamma \backslash X$. Then μ is a homogeneous measure on $\Gamma \backslash X_{\text{max}}^S$.

In (ii), if \(\mu_{H_n,g_n} \to \mu \) and \(\mu \) is supported on the boundary component \(\Gamma_{X_P,\nu} \backslash X_P \), then there exists a connected algebraic subgroup \(H \) of \(P \) of type \(\mathcal{H} \) and an element \(g \in P \) such that \(\mu = \mu_{H,g} \) and \(H_n \) is contained in \(H \) for \(n \) large enough.

Note that, in Theorem 1.1, (ii) is an immediate consequence of (i), but (ii) (for any \(G \)) implies (i) by simple properties of Satake compactifications (see Proposition 2.3 (ii)).

Sequences of weakly special subvarieties. If we assume, moreover, that \(X \) is hermitian, then, by a fundamental result of Baily–Borel [BB66], the hermitian locally symmetric space \(S = \Gamma \backslash X \) has the structure of a quasi-projective algebraic variety. Such varieties have been studied extensively by Shimura and Deligne as a generalization of the modular curve. As such they are usually called Shimura varieties and they now play a central role in the theory of automorphic forms (in particular, the Langlands program), the study of Galois representations, and Diophantine geometry. The main examples of Shimura varieties are given by the moduli spaces \(\mathcal{A}_g \) of principally polarized abelian varieties of dimension \(g \), in which case \(G = Sp_{2g} \) and \(\Gamma = Sp_{2g}(\mathbb{Z}) \). In general, Shimura varieties are moduli spaces of Hodge structures of a restricted type. They are endowed with special points, special subvarieties, and weakly special subvarieties that play a central role in their theory and are the central objects in the André–Oort and Zilber–Pink conjectures [Pin05a], [Pin05b], [Zan12].

Special points of \(S \) parametrize ‘maximally symmetric’ Hodge structures (more precisely, Hodge structures whose Mumford–Tate groups are tori). In the case of \(\mathcal{A}_g \), they correspond to abelian varieties with complex multiplication. The weakly special subvarieties of \(S \) are the totally geodesic subvarieties, and a special subvariety is a weakly special subvariety containing a special point. A special subvariety can also be described in Hodge theoretic terms as a certain locus of ‘non-generic’ Hodge structures. The relevance of these notions for our purposes is due to the fact that any weakly special subvariety of \(S \) is the support of a homogeneous measure.

The equidistribution of sequences of homogeneous measures associated with special subvarieties of Shimura varieties (in situations where there is no escape of mass) has been studied by Clozel and the third author [CU05], [Ull07], and played a central role in the proof of the André–Oort conjecture under the Generalized Riemann Hypothesis [KY14], [UY14a]. The very successful strategy of Pila–Zannier [PZ08], [Pil11], which has yielded unconditional cases of the André–Oort and Zilber-Pink conjectures, has highlighted the importance of understanding the distribution of weakly special varieties. The Ax–Lindemann conjecture [UY14b], [PT14], [KUY16], at the heart of their strategy, asserts that the Zariski closure of an algebraic flow is weakly special.

The main result of this paper has implications on the equidistribution properties of sequences of weakly special subvarieties, even in the situation when there is escape of mass. In the Shimura case, the Baily–Borel compactification \(S^{BB} \) of \(S \) has the form

\[
S^{BB} = S \bigcup_{\mathcal{P} \in \mathcal{E}_{\max}} \Gamma_{X_{\mathcal{P},\nu}} \backslash X_{\mathcal{P},\nu}
\]
where E_{\max} is a set of representatives for the Γ–conjugacy classes of maximal \mathbb{Q}–parabolic subgroups of G and each boundary component $\Gamma_{X_{h,P}} \setminus X_{h,P}$ is hermitian locally symmetric. As before, we say that a measure μ on \overline{S}^{BB} is homogeneous if μ is supported on the open boundary component S or on one of the proper boundary components and is homogeneous. In this situation, we have the following theorem (which is a consequence of Theorem 1.1 by [DGU21], Theorem 3.4).

Theorem 1.2. Let $(Z_n)_{n \in \mathbb{N}}$ be a sequence of weakly special subvarieties of S. Let $(\mu_n)_{n \in \mathbb{N}}$ be the associated sequence of homogeneous measures. Then in the space $\mathcal{P}(\overline{S}^{BB})$ of probability measures on \overline{S}^{BB} any weak limit μ of $(\mu_n)_{n \in \mathbb{N}}$ is homogeneous.

One can show that the weak limits in Theorem 1.2 need not be supported on a weakly special subvariety.

Applications and developments. The main construction of the paper, Theorem 5.3 (which, via Theorem 4.2, yields Theorem 1.1), has recently been applied in a new proof (due to Richard and the third author) of the so-called géométrique André–Oort conjecture (see [RU], Théorème 1.3). The proof passes through the following “dynamic alter ego” of the aforementioned conjecture.

Theorem 1.3 ([RU], Théorème 1.6). Let V be an irreducible algebraic subvariety of S containing a sequence $(Z_n)_{n \in \mathbb{N}}$ of weakly special subvarieties $Z_n = \Gamma \setminus \Gamma H_n x_n$ for some semisimple \mathbb{Q}–algebraic subgroups H_n of G. There exists a \mathbb{Q}–algebraic subgroup H_∞ of G such that, after possibly replacing $(Z_n)_{n \in \mathbb{N}}$ with a subsequence, H_n is contained in H_∞ and V contains the spaces $\Gamma \setminus \Gamma H_\infty x_n$ for all $n \in \mathbb{N}$.

In fact, the authors obtain the natural generalization of Theorem 1.3 in the setting for which S is replaced by a general arithmetic quotient and V is a real analytic subvariety definable in an o-minimal structure (see [RU], Théorème 1.8). This allows the authors, in an appendix with Chen, to complete the work of the latter author [Che] on the geometric André–Oort conjecture for variations of \mathbb{Z}–Hodge structures (a conjecture due to Klingler [Kli]).

In a recent preprint, Zhang has announced an extension of Theorem 1.1 in the Borel–Serre compactification, in which the type H assumption on the H_n, for $H_n = H$ fixed, is relaxed (see [Zha], Theorem 1.2).

Organisation of the paper. In Section 2, we give the necessary preliminaries to clarify the statement of the main result. In particular, we explain why Theorem 1.1 (ii) implies Theorem 1.1 (i). In Section 3, we give some further definitions and prove some useful results on parabolic subgroups. In Section 4, we state the three main tools used in the proof of Theorem 1.1, namely, two criteria for convergence proved in [DGU21], and an inequality between simple roots and dual weights due to Li. In Section 5, we explain an algorithm combining these three tools, which proves Theorem 1.1 and, in the process, determines the boundary component supporting the limit of a convergent sequence of homogeneous measures. The appendix, due to Li, contains a proof of the aforementioned result regarding root systems.
THE SPACE OF HOMOGENEOUS PROBABILITY MEASURES ON $\Gamma \backslash X^S_{\max}$

Acknowledgements

The authors would like to thank Jialun Li for providing them with a proof of Theorem 4.5.

The first and second authors would like to thank the Institut des Hautes Etudes Scientifiques for hosting them several times during the origination and completion of this work. The key breakthrough was made during a particularly fruitful visit in February 2019.

The first author would like to thank the EPSRC for its support via a New Investigator Award (EP/S029613/1).

The second author was supported by an SNF grant (200021–182089).

2. Preliminaries

In this section, we collect the definitions required in order to explain the main results. We repeat several definitions established in [DGU21].

2.1. Borel probability measures. Let S be a metrizable topological space and let Σ be its Borel σ–algebra. By a Borel probability measure on S, we mean a probability measure on Σ. We let $P(S)$ denote the space of all Borel probability measures on S.

We say that a sequence $(\mu_n)_{n \in \mathbb{N}}$ in $P(S)$ converges (weakly) to $\mu \in P(S)$ if we have

$$\int_S f \, d\mu_n \to \int_S f \, d\mu, \text{ as } n \to \infty,$$

for all bounded continuous functions f on S.

2.2. Algebraic groups. By an algebraic group G, we refer to a linear algebraic group defined over \mathbb{Q} and by an algebraic subgroup of G we again refer to an algebraic subgroup defined over \mathbb{Q}. We will use boldface letters to denote algebraic groups (which, again, are always defined over \mathbb{Q}). By convention, semisimple and reductive algebraic groups are connected.

If G is an algebraic group, we will denote its radical by R_G and its unipotent radical by N_G. We will write G° for the (Zariski) connected component of G containing the identity. We will denote the Lie algebra of G by the corresponding mathfrak letter \mathfrak{g}, and we will denote the (topological) connected component of $G(\mathbb{R})$ containing the identity by the corresponding Roman letter G. We will retain any subscripts or superscripts in these notations.

If M and A are algebraic subgroups of G, we will write $Z_M(A)$ for the centralizer of A in M and $N_M(A)$ for the normalizer of A in M. We will denote by $G_\mathbb{Q}$ the intersection $G(\mathbb{Q}) \cap G$ and we will refer to an arithmetic group of $G(\mathbb{Q})$ contained in $G_\mathbb{Q}$ as an arithmetic subgroup of $G_\mathbb{Q}$.

2.3. Groups of type \mathcal{H}. We say that an algebraic group G is of type \mathcal{H} if R_G is unipotent and the quotient of G by R_G is an almost direct product of almost (\mathbb{Q}–simple) algebraic groups whose underlying real Lie groups are non-compact. In particular, an algebraic group of type \mathcal{H} has no rational characters. Note that the image under a morphism of algebraic groups of any group of type \mathcal{H} is a group of type \mathcal{H}.
2.4. **Homogeneous probability measures on** $\Gamma \backslash G$. Let G denote an algebraic group and let Γ denote an arithmetic subgroup of $G_{\mathbb{Q}}$. If H is a connected algebraic subgroup of G possessing no rational characters, then there is a unique Haar measure on H whose pushforward μ to $\Gamma \backslash G$ is a Borel probability measure on $\Gamma \backslash G$. For $g \in G$, we refer to the pushforward of μ under the right multiplication–by–g map as the homogeneous probability measure on $\Gamma \backslash G$ associated with H and g. More explicitly, this is the $g^{-1}Hg$–invariant probability measure supported on $\Gamma H g$.

2.5. **Parabolic subgroups.** A parabolic subgroup P of a connected algebraic group G is an algebraic subgroup such that the quotient of G by P is a projective algebraic variety. In particular, G is a parabolic subgroup of itself. However, by a maximal parabolic subgroup, we refer to a maximal proper parabolic subgroup. Note that R_G is contained in every parabolic subgroup of G.

2.6. **Cartan involutions.** Let G be a reductive algebraic group and let K be a maximal compact subgroup of G. Then there exists a unique involution θ on G such that K is the fixed point set of θ. We refer to θ as the Cartan involution of G associated with K.

2.7. **Boundary symmetric spaces.** Let G be a semisimple algebraic group and let K be a maximal compact subgroup of G. Let P be a parabolic subgroup of G. As in [BJ06], (I.1.10), we have the real Langlands decomposition (with respect to K)

$$P = N_P M_P A_P,$$

where $L_P := M_P A_P$ is the unique Levi subgroup of P such that $K_P := L_P \cap K = M_P \cap K$ is a maximal compact subgroup of L_P, and A_P is the maximal split torus in the centre of L_P. We denote by X_P the boundary symmetric space M_P / K_P, on which P acts through its projection on to M_P.

2.8. **Maximal Satake compactifications.** Let G be a semisimple algebraic group and let K be a maximal compact subgroup of G. Denote by X the symmetric space G / K and let Γ denote an arithmetic subgroup of $G_{\mathbb{Q}}$. We let

$$q_X^{S_{\max}} := \prod_P X_P,$$

where P varies over the (rational) parabolic subgroups of G. We endow $q_X^{S_{\max}}$ with the topology defined in [BJ06], III.11.2. This topology is defined by a convergence class of sequences, from which one obtains a closure operator which in turn induces a topology; see [BJ06], p113–114. By [BJ06], Proposition III.11.7, the action of $G_{\mathbb{Q}}$ on X extends to a continuous action on $q_X^{S_{\max}}$ and, by [BJ06], Theorem III.11.9, the quotient

$$\Gamma \backslash X^{S_{\max}} := \Gamma \backslash q_X^{S_{\max}},$$

endowed with the quotient topology, is a compact Hausdorff space, inside of which $\Gamma \backslash X$ is a dense open subset. We refer to $\Gamma \backslash X^{S_{\max}}$ as the maximal Satake compactification of $\Gamma \backslash X$.

If \mathcal{E} is any set of representatives for the proper (rational) parabolic subgroup of G modulo Γ-conjugation, the maximal Satake compactification $\Gamma \backslash X^s_{\text{max}}$ is equal to the disjoint union
\begin{equation}
\Gamma \backslash X \bigsqcup \bigsqcup_{P \in \mathcal{E}} \Gamma_{X_P} \backslash X_P,
\end{equation}
where Γ_{X_P} is the projection of $\Gamma_P = \Gamma \cap P$ to M_P.

2.9. Homogeneous probability measures on $\Gamma \backslash X^s_{\text{max}}$

Consider the situation described in Section 2.8 (in particular, X denotes the symmetric space G/K, where K is a maximal compact subgroup of G). If H is a connected algebraic subgroup of G of type \mathcal{H} and $g \in G$, the homogeneous probability measure on $\Gamma \backslash G$ associated with H and g pushes forward to $\Gamma \backslash X^s_{\text{max}}$ under the natural maps
\[\Gamma \backslash G \rightarrow \Gamma \backslash X \rightarrow \Gamma \backslash X^s_{\text{max}}. \]

We refer to this probability measure as the **homogeneous probability measure on $\Gamma \backslash X^s_{\text{max}}$ associated with H and g**.

Similarly, if P is a parabolic subgroup of G, H is a subgroup of P of type \mathcal{H} and $g \in P$, we can define the **homogeneous probability measure on $\Gamma \backslash X^s_{\text{max}}$ associated with P, H and g** in precisely the same way via the natural maps
\[\Gamma_P \backslash P \rightarrow \Gamma_{X_P} \backslash X_P \rightarrow \Gamma \backslash X^s_{\text{max}}. \]
(Recall that $X_P = M_P/K_P$ and the first map is induced by the projection from P to M_P.) We say that a Borel probability measure on $\Gamma \backslash X^s_{\text{max}}$ is **homogeneous** if is a homogeneous probability measure.

2.10. Properties of Satake compactifications.

Consider the situation described in Section 2.8. We first make two elementary remarks.

Remark 2.1. Consider another maximal compact subgroup gKg^{-1} of G, for some $g \in G$ (recall that all maximal compact subgroups of G are of this form). The maximal Satake compactifications of $\Gamma \backslash X$ corresponding to K and gKg^{-1} are homeomorphic. It follows that Theorem 1.1 is equivalent to the same statement in which K is replaced with gKg^{-1} and the g_n are replaced with $g_n g^{-1}$.

Remark 2.2. Similarly, for any $c \in G_Q$, we obtain a homeomorphism
\[\Gamma \backslash Q \backslash X^s_{\text{max}} \rightarrow (c^{-1} \Gamma)c \backslash Q \backslash X^s_{\text{max}} \]
of compactifications induced by the homeomorphism $x \mapsto cx$ on $Q \backslash X^s_{\text{max}}$ (recall that the action is continuous). It follows that Theorem 1.1 is equivalent to the same statement in which we replace Γ with $c^{-1} \Gamma c$ and we replace the H_n with $c^{-1} H_n c$ and the g_n with $c^{-1} g_n$.

Next we prove a result regarding the structure of the Satake compactifications that is presumably well-known to experts.
Proposition 2.3.

(i) Let \(\Gamma_{X_Q} \setminus X_Q \subset \overline{\Gamma \backslash X_{\text{max}}^S} \) be a boundary component as above for some \(Q \in \mathcal{E} \). Then the closure of \(\Gamma_{X_Q} \setminus X_Q \) in \(\overline{\Gamma \backslash X_{\text{max}}^S} \) with respect to the above topology is homeomorphic to the maximal Satake compactification of \(\Gamma_{X_Q} \setminus X_Q \).

(ii) Theorem 1.1 (ii) implies Theorem 1.1 (i).

Proof.

(i) By Remark 2.1, we may assume that \(M_Q \) corresponds to a group \(M_Q \) defined over \(\mathbb{Q} \). Note that \(X_Q \) is equal to \(M_Q^{\text{der}} / K_Q^{\text{der}} \), where \(M_Q^{\text{der}} \) is the derived subgroup of \(M_Q \) and \(K_Q^{\text{der}} = K \cap M_Q^{\text{der}} \). Therefore, to define the maximal Satake compactification, we consider the disjoint union

\[
\overline{\mathbb{Q} \times X_{\text{max}}^S} = \bigsqcup_{P' \subset M_Q^{\text{der}}} X_{P'},
\]

where \(P' \) varies over the (rational) parabolic subgroups of \(M_Q^{\text{der}} \), \(X_{P'} = M_{P'}/K_{P'} \), and \(K_{P'} = K_Q^{\text{der}} \cap M_{P'} \). Note that for each parabolic \(P' \) of \(M_Q^{\text{der}} \) we have a corresponding parabolic subgroup \(P \) of \(G \) contained in \(Q \) (see [BJ06], p276, (III.1.13)) and \(X_P = X_{P'} \). In particular, \(\overline{\mathbb{Q} \times X_{\text{max}}^S} \) is a subset of \(\overline{\mathbb{Q} \times X_{\text{max}}^S} \) and it follows from [BJ06], III.11.2 that it is set-theoretically equal to the closure \(\overline{X_Q} \) of \(X_Q \) in \(\overline{\mathbb{Q} \times X_{\text{max}}^S} \). Furthermore, from the description of convergent sequences given in [BJ06], III.11.2, the Satake topology on \(\overline{\mathbb{Q} \times X_{\text{max}}^S} \) coincides with the induced topology from \(\overline{X_{\text{max}}^S} \).

Replace \(\Gamma_{X_Q} \) with its intersection with \(M_Q^{\text{der}} \). Then we have

\[
\Gamma_{X_Q} \setminus X_Q \subset \overline{\Gamma_{X_Q} \setminus X_{\text{max}}^S} = \bigsqcup_{P' \subset M_Q^{\text{der}}} \Gamma_{X_Q} \setminus \Gamma_{X_Q} \setminus X_{P'} = \bigsqcup_{P \subset Q} \Gamma \setminus \Gamma_{X_P} \subset \overline{\Gamma \setminus X_{\text{max}}^S}.
\]

It follows from the definition of the Satake topology that \(\Gamma_{X_Q} \setminus X_Q \) is dense in \(\bigsqcup_{P \subset Q} \Gamma \setminus \Gamma_{X_P} \) and that \(\bigsqcup_{P \subset Q} \Gamma \setminus \Gamma_{X_P} \) is closed in \(\overline{\Gamma \setminus X_{\text{max}}^S} \). This proves the result.

(ii) Let \((\mu_n)_{n \in \mathbb{N}} \) be a convergent sequence of homogeneous probability measures in \(\mathcal{P}(\overline{\Gamma \setminus X_{\text{max}}^S}) \) supported on a boundary component \(\Gamma_{X_Q} \setminus X_Q \). We want to prove that the limit of \((\mu_n)_{n \in \mathbb{N}} \) is homogeneous. By definition, there exist sequences \((H_n)_{n \in \mathbb{N}} \) and \((g_n)_{n \in \mathbb{N}} \) with \(H_n \) a connected algebraic subgroup of \(Q \) of type \(\mathcal{H} \) and \(g_n \in Q \) such that \(\mu_n \) is the homogeneous probability measure on \(\overline{\Gamma \setminus X_{\text{max}}^S} \) associated with \(Q, H_n, \) and \(g_n \). By Remark 2.1, we may assume that \(M_Q \) corresponds to a group \(M_Q \) defined over \(\mathbb{Q} \). Since \(X_Q \) is equal to \(M_Q^{\text{der}} / K_Q^{\text{der}} \), as in (i), we may replace \(H_n \) with its image in \(M_Q^{\text{der}} \) and \(g_n \) with its image in \(M_Q^{\text{der}} \) and then the result follows from (i).
3. Further preliminaries

In this section, we collect preliminaries used in the proof of Theorem 1.1. Many of these also appeared in [DGU21].

3.1. Rational Langlands decomposition. Let G be a connected algebraic group and let K be a maximal compact subgroup of G. Let P be a parabolic subgroup of G. As in [BJ06], (III.1.3), we have the rational Langlands decomposition (with respect to K)

$$P = N_P M_P A_P.$$

Since $G = PK$, the rational Langlands decomposition of P yields

$$G = N_P M_P A_P K.$$

In particular, if $g \in G$, we can write g as

$$g = nmak \in N_P M_P A_P K.$$

Note that the product $N_P M_P$ is always associated with a connected algebraic group over \mathbb{Q}, which we denote H_P (see [DGU21], Section 2.6).

3.2. Standard parabolic subgroups. Let G be a reductive algebraic group and let A be a maximal split subtorus of G. The non-trivial characters of A that intervene in the adjoint representation of G restricted to A are known as the \mathbb{Q}–roots of G with respect to A.

Let P_0 be a minimal parabolic subgroup of G containing A. We let $\Phi(P_0, A)$ denote the set of characters of A occurring in its action on n, where $N = N_{P_0}$. As explained in [BJ06], III.1.7, $\Phi(P_0, A)$ contains a unique subset $\Delta = \Delta(P_0, A)$ such that every element of $\Phi(P_0, A)$ is a linear combination, with non-negative integer coefficients, of elements belonging to Δ. On the other hand, P_0 is determined by A and Δ. We refer to Δ as a set of simple \mathbb{Q}–roots of G with respect to A.

For a subset $I \subseteq \Delta$, we define the subtorus

$$A_I = (\cap_{\alpha \in I} \ker \alpha)^\circ$$

of A. Then the subgroup P_I of G generated by $Z_G(A_I)$ and N is a parabolic subgroup of G. We refer to P_I as a standard parabolic subgroup of G. Every parabolic subgroup of G containing P_0 is equal to P_I for some uniquely determined subset $I \subseteq \Delta$.

Let K be a maximal compact subgroup of G such that A is invariant under the Cartan involution of G associated with K. Then, as in [DM91], Section 1, $Z_G(A_I)$ is the Levi subgroup of P appearing in the rational Langlands decomposition of P with respect to K. Note that A_I is the maximal split subtorus of the centre of $Z_G(A_I)$ and we can write $Z_G(A_I)$ as an almost direct product $M_I A_I$, where M_I is a reductive group with no rational characters. The rational Langlands decomposition with respect to K is then

$$P_I = N_I M_I A_I,$$
where $N_I = N_{P_I}$. We will also write $H_I = N_I M_I$. For ease of notation, when $I = \Delta \setminus \{\alpha\}$ for some $\alpha \in \Delta$, we will write P_α, A_α, N_α, M_α, and H_α instead of P_I, A_I, N_I, M_I, and H_I, respectively.

The set I restricts to a set of simple roots of M_I for its maximal split torus $A^I = (A \cap M_I)^\circ$. Therefore, for any subset $J \subset I$, we obtain, as before, a standard parabolic subgroup of M_I, which we denote P_J. We let K_I denote the maximal compact subgroup $K \cap M_I$ of M_I and we obtain a rational Langlands decomposition with respect to K_I:

$$P_J = N_J^I M_J^I A_J^I = H_J^I A_J^I,$$

where $N_J^I = N_{P_J}$, $A_J^I = A_J \cap A^I$ is the maximal split torus in the center of $Z_{M_I}(A_J^I)$, $Z_{M_I}(A_J^I)$ is the almost direct product of A_J^I and M_J^I, and $H_J^I = N_J^I M_J^I$. We will require several elementary lemmas.

Lemma 3.1. Let $J \subset I \subset \Delta$. Then $A_I \subset A_J$, $Z_G(A_J) \subset Z_G(A_I)$, and $P_J \subset P_I$.

Proof. The claim $A_I \subset A_J$ is immediate from the definition. From this we obtain $Z_G(A_I) \subset Z_G(A_J)$. Then $P_J \subset P_I$ follows immediately. □

Lemma 3.2. Let $J \subset I \subset \Delta$. Then $N_J = N_J^I M_J^I$, $M_J = M_J^I$, and $A_J = A_J^I A_I$.

Proof. We recall that (as in [BJ06], (I.1.21)) $P_J \subset P_I$ is obtained from P_I by writing $P_J = N_J^I M_J^I A_I$ and replacing M_J by its parabolic subgroup $P_J = N_J^I M_J^I A_J^I$. That is, $P_J = N_J^I M_J^I A_J^I A_I$, from which the claims follow. □

The following corollaries are now immediate.

Corollary 3.3. Let $J \subset I \subset \Delta$. Then $M_J \subset M_I$ and $N_I \subset N_J$.

Corollary 3.4. Let $J \subset I \subset \Delta$. Then $N_J H_J^I = N_J^I N_J^I M_J = N_J M_J = H_J \subset H_I$. (Note that the outer equalities are simply the definitions.)

Lemma 3.5. Let $I_3 \subset I_2 \subset I_1 \subset \Delta$. Then

$$A_{I_3}^{I_1} = A_{I_3}^{I_2} A_{I_2}^{I_1}.$$

Proof. It is immediate that A^{I_2} and $A_{I_2}^{I_1}$ are contained in A^{I_1}. Furthermore, it is easy to show that $A^{I_2} \cap A_{I_2}^{I_1}$ is finite. Therefore, comparing dimensions, we conclude $A^{I_1} = A^{I_2} A_{I_2}^{I_1}$. Since $A_{I_3}^{I_1} = A_{I_3}^{I_2} \cap A_{I_3}^{I_1}$ and $I_3 \subset I_2$, the claim follows. □

Lemma 3.6. Let $J \subset I \subset \Delta$ and $J' \subset I' \subset \Delta$ such that $I \subset I'$ and $J \subset J'$. Then $N_J P_J^I \subset N_J' P_J'^{I'}$.

Proof. First observe that, by Lemma 3.5,

$$A_J^{I'} = A_J^{I'} A_J^{I} = A_J^{I} A_J^{I'}.$$

Now, we have

$$N_J P_J^{I'} = N_J N_J' M_J' A_J' = H_J' A_J' = H_J' A_J' A_J' = H_J' A_J',$$
where the second equality is Corollary 3.4 and the third equality follows from the fact that $A'_J \subset H_J$. Therefore, since $H_J \subset H_J$ (by Corollary 3.4) and $A'_J \subset A'_J$, we obtain
\[N_J A'_J = N_J N'_J M_A A'_J = H_J A'_J \subset N'_J P'_J, \]
as claimed (using Corollary 3.4 for the second equality).

3.3. The $d_{P,K}$ functions. Let G be a reductive algebraic group and let K be a maximal compact subgroup of G. Let P be a proper parabolic subgroup of G and let n_P denote the dimension of n_P. Consider the n_P^{th} exterior product $V_P = \wedge^{n_P} g$ of g and let L_P denote the one-dimensional subspace given by $\wedge^{n_P} n_P$. Then the adjoint representation induces a linear representation of G on V_P and, since P normalizes N_P, we obtain a linear representation of P on L_P. That is, P acts on L_P via a character χ_P.

Fix a K-invariant norm $\| \cdot \|_P$ on $V_P \otimes \mathbb{R}$ and let $v_P \in L_P \otimes \mathbb{Q} \mathbb{R}$ be such that $\|v_P\|_P = 1$. We obtain a function $d_{P,K}$ on G defined by
\[d_{P,K}(g) = \|g \cdot v_P\|_P. \]

Note that, for any $g \in G$, we can write $g = kp$, where $k \in K$ and $p \in P$. Therefore,
\[d_{P,K}(g) = \|g \cdot v_P\|_P = \|p \cdot v_P\|_P = \chi_P(p) \cdot \|v_P\|_P = \chi_P(p) \]
(note that χ_P is necessarily positive on the connected component P). In particular, $d_{P,K}$ is a function on G of type (P, χ_P), as defined in [Bor69], Section 14.1. Furthermore, it does not depend on the choices of $\| \cdot \|_P$ and v_P.

Remark 3.7. Suppose that $\Gamma \subset G(\mathbb{Q})$ is an arithmetic subgroup. Let Γ_P denote $\Gamma \cap P$ and let Γ_{H_P} denote $\Gamma \cap H_P$. We claim that $\Gamma_P = \Gamma_{H_P}$. To see this, write P as the product of H_P with a maximal split subtorus S_P of the centre of a Levi subgroup of P (defined over \mathbb{Q} but not necessarily arising from the rational Langlands decomposition associated with K). Let $\Delta(S_P)$ denote a basis for the character group of S_P and, for each $\chi \in \Delta(S_P)$, let $\tilde{\chi}$ denote the morphism $P \rightarrow \mathbb{G}_m$ defined by $(h,s) \mapsto \chi(s)^n$ for some sufficiently large $n \in \mathbb{N}$ such that the morphism is well-defined. By [Bor69], Section 8.11, $\tilde{\chi}(\Gamma_P)$ is an arithmetic subgroup of \mathbb{Q}^\times for any $\chi \in \Delta(S_P)$. On the other hand, it is contained in $\mathbb{R}_{>0}$ and, therefore, it is trivial. Hence, Γ_P is contained in
\[G_{\Delta(S_P)} = \cap_{\chi \in \Delta(S_P)} \ker \tilde{\chi} \]
and, since $G_{\Delta(S_P)} = H_P$, the claim follows.

3.4. The δ–functions. Let G be a connected algebraic group with no rational characters and let L be a Levi subgroup of G. Then G is the semidirect product of L and $N = N_G$. We denote by π the natural (surjective) morphism from G to L.

Let P_0 be a minimal parabolic subgroup of L and let A be a maximal split subtorus of L contained in P_0. Let K denote a maximal compact subgroup of L such that A is invariant under the Cartan involution of G associated with K. For any proper parabolic subgroup P of L, we obtain a function $d_{P,K}$ on L, as defined in Section 3.3, and, for each $\alpha \in \Delta = \Delta(P_0, A)$, we write $d_\alpha = d_{P_0,K}$.
Let Γ be an arithmetic subgroup of $G_\mathbb{Q}$ and let $\Gamma_L = \pi(\Gamma)$, which is arithmetic subgroup of $L_\mathbb{Q}$. By [Bor69], Théorème 13.1, there exists a finite subset F of $L_\mathbb{Q}$ and a $t > 0$ such that $L = K \lambda(\omega)^{-1} \Gamma_L$, where ω is a compact subset of $H_{\mathbb{P}}$, and

$$A_t = \{ a \in A : \alpha(a) \leq t \text{ for all } \alpha \in \Delta \}.$$

As in [DGU21], we refer to a set F as above as a Γ_L-set for L.

For any connected algebraic subgroup H of G and any $g \in G$, we define

$$\delta(G, K, \Delta, F)(H, g) = \inf \{ d_\alpha(\pi(g)^{-1}\lambda) : \lambda \in \Gamma_L F, \alpha \in \Delta, H \subset \mathbb{N}\lambda_P \alpha^{-1} \}$$

(where we take the value to be ∞ if the infimum is varying over the empty set). By [DGU21], Lemma 4.3, we have $\delta(G, K, \Delta, F)(H, g) > 0$.

4. Main tools

In this section, we describe the three main tools used in the proof of Theorem 1.1.

4.1. The criterion for convergence in $\Gamma \backslash G$. Consider the situation described in Section 3.4. Let $\delta = \delta(G, K, \Delta, F)$. The following result is the combination of [DGU21], Theorem 4.6 and [DGU21], Theorem 2.9. However, it should be emphasized that it is a very modest generalization of a result of Eskin–Mozes–Shah [EMS96], making similar use of the same tools, namely, those of Dani–Margulis, Eskin–Mozes–Shah, Mozes–Shah, and Ratner (see [DM91], [EMS96], [EMS97], [MS95], and [Rat91a]).

Theorem 4.1. For each $n \in \mathbb{N}$, let H_n be a connected algebraic subgroup of G of type \mathcal{H}, let $g_n \in G$ and let μ_n be the homogeneous probability measure on $\Gamma \backslash G$ associated with H_n and g_n. Assume that

$$\liminf_{n \to \infty} \delta(H_n, g_n) > 0.$$

Then the set $\{ \mu_n \}_{n \in \mathbb{N}}$ is sequentially compact in $\mathcal{P}(\Gamma \backslash G)$.

Furthermore, if μ is a limit point in $\{ \mu_n \}_{n \in \mathbb{N}}$, then μ is the homogeneous probability measure on $\Gamma \backslash G$ associated with a connected algebraic subgroup H of G of type \mathcal{H} and an element $g \in G$, and H_n is contained in H for all n large enough.

4.2. The criterion for convergence in $\Gamma \backslash X_{\text{max}}$. Consider the situation described in Section 2.8. For a subgroup H of G, we set $\Gamma_H = \Gamma \cap H$. The following result is [DGU21], Theorem 5.1.

Theorem 4.2. For each $n \in \mathbb{N}$, let H_n denote a connected algebraic subgroup of G of type \mathcal{H}, let g_n denote an element of G and let μ_n denote the homogeneous probability measure on $\Gamma \backslash X_{\text{max}}$ associated with H_n and g_n. Suppose that there exists a parabolic subgroup P of G such that,

(i) for all $n \in \mathbb{N}$, H_n is contained in H_P,

(ii) we can write $g_n = h_n a_n k_n \in H_P A_P K$,

such that $\alpha(a_n) \to \infty$, as $n \to \infty$, for all $\alpha \in \Phi(P, A_P)$,
and,

(iii) if we denote by ν_n the homogeneous probability measure on $\Gamma_{H_0} \backslash H \backslash P$ associated with H_n and h_n, then $(\nu_n)_{n \in \mathbb{N}}$ converges to $\nu \in \mathcal{P}(\Gamma_{H_0} \backslash H \backslash P)$.

Then there exists a connected algebraic subgroup H of P of type H and an element $g \in P$ such that $(\mu_n)_{n \in \mathbb{N}}$ converges to the homogeneous probability measure on $\Gamma \backslash X^S_{\max}$ associated with P, H and g, and, furthermore, H_n is contained in H for n large enough.

Note that, by the results of Mozes–Shah [MS95] and Ratner [Rat91a] condition (iii) is equivalent to the stronger statement that ν not only exists but is also homogeneous (see [DGU21], Theorem 2.9). This is used crucially in the proof of Theorem 4.2 (see [DGU21]).

4.3. A key result on root systems. Let G be reductive algebraic group, let P_0 be a minimal parabolic subgroup of G, and let A be a maximal split subtorus of G contained in P_0. Let $X^*(A)$ denote the character module of A and let $X^*(A)_Q$ denote the Q-vector space $X^*(A) \otimes_{\mathbb{Z}} Q$. Fix a non-degenerate scalar product (\cdot, \cdot) on $X^*(A)_Q$ that is invariant under the action of $N_G(A)(Q)$. Then the Q-roots of G with respect to A equipped with the inner product (\cdot, \cdot) constitute a root system in $X^*(A)_Q$. We refer the reader to [Spr79], Section 3.5 for further details.

Let $\Delta = \Delta(P_0, A)$ and, for each $\alpha \in \Delta$, let $w_\alpha \in X^*(A)_Q$ be the unique element such that $(w_\alpha, \beta) = \delta_{\alpha, \beta}$ for any $\beta \in \Delta$. These elements are usually called dual weights. They are a particular choice of quasi-fundamental weights, as defined in [DGU21], Section 2.9. It follows from [DGU21], Lemma 4.1 that w_α is a positive rational multiple of the character χ_α defined therein (namely, the restriction of χ_{P_0} to A). We therefore deduce the following fact.

Lemma 4.3. Let $\alpha \in \Delta$ and $I = \Delta \setminus \{\alpha\}$. Then w_α is trivial on A^I.

Proof. Since H_I has no rational characters and A^I is contained in H_I, the result follows from the fact that χ_α is the restriction of a character on P_I. \qed

Notice that Δ and $\{w_\alpha\}_{\alpha \in \Delta}$ constitute two bases of $X^*(A)_Q$. By construction, we have

$$w_\alpha = \sum_{\beta \in \Delta} (w_\alpha, w_\beta) \beta \quad \text{and} \quad \alpha = \sum_{\beta \in \Delta} (\alpha, \beta) w_\beta,$$

and it is a simple calculation to see that the matrices with coefficients (w_α, w_β) and (α, β), respectively, are inverse to one another. It follows from [Vin94], Chapter 3, Proposition 1.16 that $(w_\alpha, w_\beta) \geq 0$ for all $\alpha, \beta \in \Delta$ (see also the paragraph following Lemma 6.5 in the appendix). We define $d_\alpha = \sum_{\beta \in \Delta} (w_\alpha, w_\beta)$. In particular, $d_\alpha > 0$.

Definition 4.4. For each $\alpha \in \Delta$, we write $\bar{w}_\alpha = \frac{1}{d_\alpha} w_\alpha$. We refer to the set $\{\bar{w}_\alpha\}_{\alpha \in \Delta}$ as a set of weighted dual weights of G with respect to A. From the above and [DGU21], Section 4.1 (3), we see that \bar{w}_α is a positive rational combination of positive roots.

The key result we need is the following. A proof (due to Jialun Li) is provided in the appendix (see Corollary 6.2).
Theorem 4.5 (Li). Let $\alpha \in \Delta$ and let $I \subset \Delta \setminus \{\alpha\}$ be such that α is connected to $\Delta \setminus (I \cup \{\alpha\})$ in the Dynkin diagram. For each $n \in \mathbb{N}$, let $a_n \in A_I$ and suppose that

$$\beta(a_n) \to \infty, \text{ as } n \to \infty$$

for all $\beta \in \Delta \setminus (I \cup \{\alpha\})$. Furthermore, suppose that

$$\bar{w}_\alpha(a_n) \geq \bar{w}_\beta(a_n) \text{ for all } \beta \in \Delta \setminus I \quad \text{and} \quad \bar{w}_\alpha(a_n) \geq 1.$$

Then

$$\alpha(a_n) \to \infty, \text{ as } n \to \infty.$$

Note that, in the appendix, the condition $\bar{w}_\alpha(a_n) \geq 0$ appears. The calculations there take place in the Lie algebra a_I of A_I. Passing to A_I is via the exponential map, hence the condition $\bar{w}_\alpha(a_n) \geq 1$ above.

The condition “α is connected to $\Delta \setminus (I \cup \{\alpha\})$ in the Dynkin diagram” is to say that if we write Δ as the disjoint union $\Delta_1 \cup \cdots \cup \Delta_m$ according to the decomposition of the root system into irreducible root systems, and $\alpha \in \Delta_k$, then, among the roots in $\Delta \setminus (I \cup \{\alpha\})$, there exists at least one root that also belongs to Δ_k. In other words, $I \cup \{\alpha\}$ does not contain Δ_k.

Lemma 4.6. Let $\alpha \in \Delta$ and let $I \subset \Delta \setminus \{\alpha\}$ be such that α is not connected to $\Delta \setminus (I \cup \{\alpha\})$ in the Dynkin diagram. Let $J \subset \Delta$. Then

$$A^J_{(I \cup \{\alpha\}) \cap J} \subset \ker \alpha.$$

Proof. Let G^{ad} denote the quotient of G by its center, and let $ad : G \to G^{ad}$ denote the natural morphism. Recall that the adjoint representation factors through ad. Furthermore, G^{ad} is equal to a product $G_1 \times \cdots \times G_m$ of \mathbb{Q}-simple groups, $P_0^{ad} = ad(P_0)$ is a product $P_1 \times \cdots \times P_m$ of minimal parabolic subgroups, and $A^{ad} = ad(A)$ is a product $A_1 \times \cdots \times A_m$ of maximal split tori. The decomposition $\Delta = \Delta_1 \cup \cdots \cup \Delta_m$ above is

$$\Delta = \Delta(P_0^{ad}, A^{ad}) = \Delta(P_1, A_1) \cup \cdots \cup \Delta(P_m, A_m).$$

The image of A^J in A^{ad} is therefore equal to the product $A_1^{J_1} \times \cdots \times A_m^{J_m}$, where $J_i = J \cap \Delta_i$. The assumption that α is not connected to $\Delta \setminus (I \cup \{\alpha\})$ in the Dynkin diagram is equivalent to the statement that $I \cup \{\alpha\}$ contains Δ_k. Therefore, the image of $A^J_{(I \cup \{\alpha\}) \cap J}$ in A^{ad} is also a product and its k^{th} component is $A^{J_k}_{k \cap J_k} = \{1\}$. Since $\alpha \in \Delta_k$ is trivial outside of A_k, we conclude that it is trivial on $A^J_{(I \cup \{\alpha\}) \cap J}$.

5. The proof

In this section, we will give the proof of Theorem 1.1. First we will make a useful definition.
5.1. Maximal couples. Consider the situation described in Section 3.4. For each $n \in \mathbb{N}$, let H_n be a connected algebraic subgroup of G of type \mathcal{H} and let $g_n \in G$.

Definition 5.1. A maximal couple for $(H_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ with respect to G, K, Δ, and F is a couple $(\alpha, (\lambda_n)_{n \in \mathbb{N}})$ for some $\alpha \in \Delta$ and $\lambda_n \in \Gamma L F$ such that

$$H_n \subset N \lambda_n P_{\alpha}(\lambda_n)^{-1}$$

for every $n \in \mathbb{N}$ and, whenever $H_n \subset N \lambda'_n P_{\beta}(\lambda'_n)^{-1}$ for some $\beta \in \Delta$ and $\lambda'_n \in \Gamma L F$ and we write

$$\lambda'^{-1}_n g_n = h_n a_n k_n \in NH_{\alpha} A_{\alpha} K \quad \text{and} \quad (\lambda'_n)^{-1} g_n = h'_n a'_n k'_n \in NH_{\beta} A_{\beta} K$$

according to the rational Langlands decompositions, then

$$\bar{w}_\alpha(a_n) \geq \bar{w}_\beta(a'_n),$$

where \bar{w}_α and \bar{w}_β are weighted dual weights for L, as in Definition 4.4.

We have the following important properties of maximal couples.

Proposition 5.2.

(i) After possibly extracting subsequences, a maximal couple for $(H_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ with respect to G, K, Δ, and F exists.

(ii) Suppose that $\liminf_{n \to \infty} \delta(H_n, g_n) = 0$. If $(\alpha, (\lambda_n)_{n \in \mathbb{N}})$ is a maximal couple for $(H_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ with respect to G, K, Δ, and F and we write

$$\lambda'^{-1}_n g_n = h_n a_n k_n \in NH_{\alpha} A_{\alpha} K$$

according to the rational Langlands decomposition, then

$$\alpha(a_n) \to \infty, \quad \text{as } n \to \infty.$$

Proof.

(i) As explained in Section 4.3, each \bar{w}_β is a positive rational multiple of the corresponding d_β. Since there are only finitely many of them, the claim follows from [DGU21], Lemma 4.3.

(ii) Since $\liminf_{n \to \infty} \delta(H_n, g_n) = 0$, after possibly extracting a subsequence, there exists $\beta \in \Delta$ and $(\lambda'_n)_{n \in \mathbb{N}}$ with $\lambda'_n \in \Gamma L F$ such that $H_n \subset N \lambda'_n P_{\beta}(\lambda'_n)^{-1}$ and

$$d_\beta(g_n^{-1} \lambda'_n) \to 0, \quad \text{as } n \to \infty.$$

Therefore, by [DGU21], Lemma 4.2, if we write

$$(\lambda'_n)^{-1} g_n = h'_n a'_n k'_n \in NH_{\beta} A_{\beta} K,$$

according to the rational Langlands decomposition, we have

$$\beta(a'_n) \to \infty, \quad \text{as } n \to \infty.$$

Now, since $(\alpha, (\lambda_n)_{n \in \mathbb{N}})$ is a maximal couple for $(H_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ with respect to G, K, Δ, and F, we have

$$\alpha(a_n) = \bar{w}_\alpha(a_n)^{\frac{1}{\alpha}} \geq \bar{w}_\beta(a'_n)^{\frac{1}{\alpha}} = \beta(a'_n)^{\frac{\beta}{\alpha}},$$
for some $n_\alpha, n_\beta > 0$ (see the description of weighted dual weights in Section 4.3). Therefore,

$$\alpha(a_n) \to \infty, \text{ as } n \to \infty.$$

5.2. Proof of Theorem 1.1. Let P_0 be a minimal parabolic subgroup of G and let A be a maximal split subtorus of G contained in P_0. By Remark 2.1, we may assume that A is invariant under the Cartan involution of G associated with K. Let $I_0 = \Delta = \Delta(P_0, A)$.

By Proposition 2.3 (ii), it suffices to prove Theorem 1.1 (ii). By Remark 2.2 and Theorem 4.2, it suffices to prove the following theorem.

Theorem 5.3. Consider the situation described in Theorem 1.1 (ii). After possibly extracting a subsequence, there exists a parabolic subgroup P of G, an element $c \in G \mathbb{Q}$, and, for each $n \in \mathbb{N}$, an element $\gamma_n \in \Gamma$ such that,

(i) for all $n \in \mathbb{N}$, $c^{-1} \gamma_n^{-1} H_n \gamma_n c$ is contained in H_P,

(ii) we can write

$$c^{-1} \gamma_n^{-1} g_n = h_n a_n k_n \in H_P A_P K,$$

such that

$$\alpha(a_n) \to \infty, \text{ as } n \to \infty, \text{ for all } \alpha \in \Phi(P, A_P),$$

and,

(iii) if we denote by ν_n the homogeneous probability measure on $(c^{-1} \Gamma c \cap H_P) \setminus H_P$ associated with $c^{-1} \gamma_n^{-1} H_n \gamma_n c$ and h_n, then $(\nu_n)_{n \in \mathbb{N}}$ converges to $\nu \in \mathcal{P}((c^{-1} \Gamma c \cap H_P) \setminus H_P)$.

5.3. Outline of the proof of Theorem 5.3. The essence of the proof is to select successive maximal couples. At each stage, up to conjugation and taking subsequences, we have $H_n \subset H_I$ and $h_{I,n} \in H_I$ for some fixed I. We apply the criterion given by Theorem 4.1 and, if it fails, we obtain, by Proposition 5.2, a maximal couple $(\alpha, (\lambda_n)_{n \in \mathbb{N}})$. After conjugation and taking a subsequence, we find $H_n \subset H_{I\cup J}$ and $h_{I\cup J,n} \in H_{I\cup J}$ and we repeat the procedure. After a finite number of steps, the criterion given by Theorem 4.1 holds, which guarantees (iii), namely, convergence of the associated homogeneous measures in a space of the form $\Gamma_{H_J} \setminus H_J$ for some J. The fact that we have chosen maximal couples allows us to apply Theorem 4.5, which in turn yields (ii).

5.4. Proof of Theorem 5.3. The proof is via an iterative procedure.

Step 1. Let F_0 denote a Γ–set for G and let $\delta = \delta(G, K, F_0)$, as defined in Section 3.4. Note that, if

$$\liminf_{n \to \infty} \delta(H_n, g_n) > 0,$$

then Theorem 5.3 follows (with $P = G$ and $c = \gamma_n = 1$) from Theorem 4.1. Therefore, assume otherwise. By Proposition 5.2 (i), after possibly extracting a subsequence, there
exists a maximal couple \((\alpha_{i_1}, (\lambda^{(1)}_n)_{n \in \mathbb{N}})\) for \((H_n)_{n \in \mathbb{N}}\) and \((g_n)_{n \in \mathbb{N}}\) with respect to \(G, K, \Delta,\) and \(F_0\). Therefore, if we write \(I_1 = \Delta \setminus \{\alpha_{i_1}\}\), then
\[
H_n \subset \lambda^{(1)}_n P_{I_1}(\lambda^{(1)}_n)^{-1}
\]
and, by Proposition 5.2 (ii), if we write
\[
(\lambda^{(1)}_n)^{-1} g_n = h^{(1)}_n a^{(1)}_n k^{(1)}_n \in H_{I_1} A_{I_1} K,
\]
according to the rational Langlands decomposition, we have
\[
\alpha_{i_1}(a^{(1)}_n) \to \infty, \text{ as } n \to \infty.
\]

Step 2. We define
\[
H^{(1)}_n = (\lambda^{(1)}_n)^{-1} H_n \lambda^{(1)}_n
\]
and we write \(\lambda^{(1)}_n = \gamma^{(1)}_n c_0 \in \Gamma F_0\). Then \(H^{(1)}_n \subset H_{I_1}\) because \(H^{(1)}_n\) has no rational characters. We let
\[
\tilde{\Gamma}_1 = (\lambda^{(1)}_n)^{-1} \Gamma \lambda^{(1)}_n \cap H_{I_1} = c_0^{-1} \Gamma c_0 \cap H_{I_1}
\]
and we write \(\Gamma_1 = \pi_1(\tilde{\Gamma}_1)\), where \(\pi_1 : H_{I_1} \to M_{I_1}\) denotes the natural projection. We let \(F_1\) denote a \(\Gamma_1\)-set for \(M_{I_1}\) and we let \(K_{I_1} = K \cap M_{I_1}\). Recall that \(I_1\) restricts to a set of simple \(\mathbb{Q}\)-roots for \(M_{I_1}\) with respect to \(A^{I_1}\). We let \(\delta_1 = \delta(H_{I_1}, K_{I_1}, I_1, F_1)\) and we apply Theorem 4.1 to the \(H^{(1)}_n \subset H_{I_1}\) and \(h^{(1)}_n \in H_{I_1}\). If
\[
\liminf_{n \to \infty} \delta_1(H^{(1)}_n, h^{(1)}_n) > 0
\]
then Theorem 5.3 follows with \(P = P_{I_1}\) and \(c = c_0\) and \(\gamma_n = \gamma^{(1)}_n\). Indeed, condition (iii) follows from Theorem 4.1 and condition (ii) was established in Step 1.

Therefore, we assume otherwise. By Proposition 5.2 (i), after possibly extracting a subsequence, there exists a maximal couple \((\alpha_{i_2}, (\lambda^{(2)}_n)_{n \in \mathbb{N}})\) for \((H^{(1)}_n)_{n \in \mathbb{N}}\) and \((h^{(1)}_n)_{n \in \mathbb{N}}\) with respect to \(H_{I_1}, K_{I_1}, I_1,\) and \(F_1\). Therefore, if we write \(I_2 = I_1 \setminus \{\alpha_{i_2}\} = \Delta \setminus \{\alpha_{i_1}, \alpha_{i_2}\}\), then
\[
H^{(1)}_n \subset N_{I_1} \lambda^{(2)}_n P_{I_2}^{(2)}(\lambda^{(2)}_n)^{-1}
\]
and, by Proposition 5.2 (ii), if we write
\[
(\lambda^{(2)}_n)^{-1} h^{(2)}_n = h^{(2)}_n a^{(2)}_n k^{(2)}_n \in N_{I_2} H^{I_2}_I A^{I_2}_I K_{I_1} = H^{I_2}_I A^{I_2}_I K_{I_1}
\]
(the equality justified by Corollary 3.4), then
\[
\alpha_{i_2}(a^{(2)}_n) \to \infty, \text{ as } n \to \infty.
\]

We define
\[
H^{(2)}_n = (\lambda^{(1)}_n \lambda^{(2)}_n)^{-1} H_n \lambda^{(1)}_n \lambda^{(2)}_n
\]
and we write \(\lambda^{(2)}_n = \gamma^{(2)}_n c_1 \in \Gamma_1 F_1\). After possibly enlarging \(F_1\) and extracting a subsequence, we may assume that \(\gamma^{(2)}_n \subset c_0^{-1} \Gamma c_0 \cap M_{I_1}\) (indeed, the latter is an arithmetic subgroup of \(M_{I_1}\) contained, and hence finite index, in \(\Gamma_1\)).
We have $H_n^{(2)} \subset N_{I_r} H_{I_r}^{(1)} = H_{I_r}$ as before (the equality justified by Corollary 3.4). We let
\[\tilde{\Gamma}_2 = c_1^{-1} \Gamma_1 c_1 \cap H_{I_r} = c_1^{-1} c_0^{-1} \Gamma c_0 c_1 \cap H_{I_r} \]
and we write $\Gamma_2 = \pi_2(\tilde{\Gamma}_2)$, where $\pi_2 : H_{I_r} \to M_{I_r}$ denotes the natural projection. We let F_2 denote a Γ_2-set for M_{I_r}.

Now we iterate the following step for $r \geq 2$.

Step $r + 1$. We start with groups
\[H_n^{(r)} = (\lambda_n^{(1)} \lambda_n^{(2)} \cdots \lambda_n^{(r)})^{-1} H_n \lambda_n^{(1)} \lambda_n^{(2)} \cdots \lambda_n^{(r)} \subset H_{I_r} \]
and elements
\[(\lambda_n^{(r)})^{-1} \cdots (\lambda_n^{(2)})^{-1} (\lambda_n^{(1)})^{-1} g_n = (\lambda_n^{(r)})^{-1} \cdots (\lambda_n^{(3)})^{-1} (\lambda_n^{(2)})^{-1} h_n^{(1)} a_n^{(1)} k_n^{(1)} \]
\[= (\lambda_n^{(r)})^{-1} \cdots (\lambda_n^{(3)})^{-1} h_n^{(2)} a_n^{(2)} a_n^{(1)} k_n^{(2)} k_n^{(1)} \]
\[= h_n^{(r)} a_n^{(r)} \cdots a_n^{(1)} k_n^{(r)} \cdots k_n^{(1)}, \]
where $h_n^{(l)} \in H_{I_r}$, $a_n^{(l)} \in A_{I_r}^{(l-1)}$, and $\pi_{l-1} : H_{I_{l-1}} \to M_{I_{l-1}}$ is the natural projection, and $\lambda_n^{(l)} = \gamma_n^{(l)} c_l \in \Gamma_{l-1} F_{l-1}$, where $I_{l-1} = \Delta \setminus \{\alpha_i, \ldots, \alpha_{i-1}\}$,
\[\Gamma_{l-1} = \pi_{l-1}(\tilde{\Gamma}_{l-1}), \]
where $\pi_{l-1} : H_{I_{l-1}} \to M_{I_{l-1}}$ is the natural projection, and F_{l-1} is a Γ_{l-2}-set for $M_{I_{l-1}}$, and $c_l \in F_l$. As before, we may assume that
\[\gamma_n^{(l)} \in c_l^{-1} \cdots c_0^{-1} \Gamma c_0 \cdots c_{l-1} \cap M_{I_{l-1}}. \]

Above, we have made repeated use of the fact that $k_n^{(l)} \in M_{I_{l-1}}$ and so, for $j < l$, it commutes with
\[a_n^{(l-j)} \in A_{I_{l-j}}^{(j-1)} \subset A_{I_{l-j}} \subset A_{I_{l-1}} \]
(the latter inclusion justified by Lemma 3.1).

We let
\[\tilde{\Gamma}_r = c_{r-1}^{-1} \cdots c_0^{-1} \Gamma c_0 \cdots c_{r-1} \cap H_{I_r} \]
and we write $\Gamma_r = \pi_r(\tilde{\Gamma}_r)$, where $\pi_r : H_{I_r} \to M_{I_r}$ denotes the natural projection. We let F_r denote a Γ_r-set for M_{I_r}. The set $I_r = \Delta \setminus \{\alpha_i, \ldots, \alpha_r\}$ restricts to a set of simple \mathbb{Q}-roots for M_{I_r} with respect to A^r. We let $\delta_r = \delta(H_{I_r}, K_{I_r}, I_r, F_r)$ and apply Theorem 4.1 to the $H_n^{(r)} \subset H_{I_r}$ and $h_n^{(r)} \in H_{I_r}$. We assume that
\[\liminf_{n \to \infty} \delta_r(H_n^{(r)}, h_n^{(r)}) = 0. \]

By Proposition 5.2 (i), after possibly extracting a subsequence, there exists a maximal couple $(\alpha_{i+1}, (\lambda^{(r+1)}_n)_{n \in \mathbb{N}})$ for $(H_n^{(r)})_{n \in \mathbb{N}}$ and $(h_n^{(r)})_{n \in \mathbb{N}}$ with respect to H_{I_r}, K_{I_r}, I_r, and F_r. Therefore, if we write $I_{r+1} = I_r \setminus \{\alpha_{i+1}\} = \Delta \setminus \{\alpha_i, \ldots, \alpha_{i+1}\}$, then
\[H_n^{(r)} \subset N_{I_r} \lambda_{n}^{(r+1)} P_{I_{r+1}}^{(r+1)} (\lambda^{(r+1)}_n)^{-1}. \]
and, by Proposition 5.2 (ii), if we write
\[(\lambda^{(r+1)}_n)^{-1}h_n^{(r)} = h_n^{(r+1)}a_n^{(r+1)}k_n^{(r+1)} \in H_{I_{r+1}}A_{I_{r+1}}^{I_{r+1}} K_{I_{r+1}},\]
then \(\alpha_{i_{r+1}}(a^{(r+1)}) \to \infty\) as \(n \to \infty\). We write \(\lambda_n^{(r+1)} = \gamma_n^{(r+1)}c_r \in \Gamma_F r\). After possibly enlarging \(F\) and extracting a subsequence, we may assume that
\[\gamma_n^{(r+1)} \in c_{r-1}^{-1} \cdots c_0^{-1} \Gamma c_0 \cdots c_{r-1} \cap M_{I_{r+1}}.\]
We iterate this step until we can no longer achieve (3). We let \(r \geq 1\) be the maximal integer such that the previous step goes through and then we proceed as follows.

Step \(r + 2\). We have groups
\[H_n^{(r+1)} = (\lambda_n^{(1)}\lambda_n^{(2)} \cdots \lambda_n^{(r+1)})^{-1}H_n^{(1)} \lambda_n^{(1)} \lambda_n^{(2)} \cdots \lambda_n^{(r+1)} \subset H_{I_{r+1}}\]
and elements
\[(\lambda_n^{(1)}\lambda_n^{(2)} \cdots \lambda_n^{(r+1)})^{-1}g_n = (\lambda_n^{(r+1)})^{-1} \cdots (\lambda_n^{(2)})^{-1}(\lambda_n^{(1)})^{-1}g_n = h_n^{(r+1)}a_n^{(r+1)} \cdots a_n^{(1)}k_n^{(r+1)} \cdots k_n^{(1)},\]
as before. We let
\[\tilde{\Gamma}_{r+1} = c_r^{-1} \cdots c_0^{-1} \Gamma c_0 \cdots c_r \cap H_{I_{r+1}}\]
and we write \(\tilde{\Gamma}_{r+1} = \pi_{r+1}(\tilde{\Gamma}_{r+1})\), where \(\pi_{r+1} : H_{I_{r+1}} \to M_{I_{r+1}}\) denotes the natural projection. We let \(F_{r+1}\) denote a \(\Gamma_{r+1}\)-set for \(M_{I_{r+1}}\).

We have a set \(I_{r+1} = \Delta \setminus \{\alpha_1, \ldots, \alpha_{r+1}\}\), which restricts to a set of simple \(\mathbb{Q}\)-roots for \(M_{I_{r+1}}\) with respect to \(A_{r+1}\). We let \(\delta_{r+1} = \delta(H_{I_{r+1}}, K_{I_{r+1}}, I_{r+1}, F_{r+1})\) and we apply Theorem 4.1 to the \(H_n^{(r+1)} \subset H_{I_{r+1}}\) and \(h_n^{(r+1)} \in H_{I_{r+1}}\) to necessarily find
\[\liminf_{n \to \infty} \delta_{r+1}(H_n^{(r+1)}, h_n^{(r+1)}) > 0\]
(otherwise \(r\) was not maximal). We conclude that the set of homogeneous measures on \(\tilde{\Gamma}_{r+1} \setminus H_{I_{r+1}}\) associated with \(H_n^{(r+1)}\) and \(h_n^{(r+1)}\) is sequentially compact.

Therefore, Theorem 5.3 follows (with \(P = P_{I_{r+1}}\), \(c = c_0 \cdots c_r\), and \(\gamma_n = \gamma_n^{(1)} \cdots \gamma_n^{(r+1)}\)) from the following proposition.

Proposition 5.4. For \(j = 1, \ldots, r + 1\), we have
\[\alpha_{i_{j}}(a_n^{(r+1)} \cdots a_n^{(1)}) \to \infty, \text{ as } n \to \infty.\]

Proof. We will prove the proposition by induction. The base case is the following.

Lemma 5.5. We have
\[\alpha_{i_{r+1}}(a_n^{(r+1)} \cdots a_n^{(1)}) \to \infty, \text{ as } n \to \infty.\]

Proof. For \(j \geq 1\), we have
\[a_n^{(r+1-j)} \in A_{I_{r+1-j}} \subset A_{I_{r+1-j}} \subset A_{I_{r+1-j}} \subset \ker \alpha_{i_{r+1}},\]
where the outer inclusions are part of the definitions, and the middle inclusion is justified by Lemma 3.1. We conclude that
\[\alpha_{i_{r+1}}(a_n^{(r+1)} \cdots a_n^{(1)}) = \alpha_{i_{r+1}}(a_n^{(r+1)})\]
and so the result follows from the fact that \(\alpha_{i_{r+1}}(a_{n}^{(r+1)}) \to \infty \), as \(n \to \infty \) (see Step \(r+1 \)).

The inductive step is given by the following lemma.

Lemma 5.6. Let \(0 \leq l \leq r-1 \) and assume that
\[
\alpha_{i_{r+1-j}}(a_{n}^{(r+1)} \cdots a_{n}^{(1)}) \to \infty, \text{ as } n \to \infty
\]
for \(j = 0, \ldots, l \). Then
\[
\alpha_{i_{r-l}}(a_{n}^{(r+1)} \cdots a_{n}^{(1)}) \to \infty, \text{ as } n \to \infty.
\]

Proof. For \(s \geq l + 2 \), we have
\[
a_{n}^{(r+1-s)} \in A_{I_{r+1-s}}^{I} \subset A_{I_{r+1-s}}^{I} \subset A_{I_{r-l}}^{I} \subset \ker \alpha_{i_{r-l}},
\]
where the outer inclusions are part of the definitions, and the middle inclusion is justified by Lemma 3.1. We conclude that
\[
\alpha_{i_{r-l}}(a_{n}^{(r+1)} \cdots a_{n}^{(1)}) = \alpha_{i_{r-l}}(a_{n}^{(r+1)} \cdots a_{n}^{(r-l)}).
\]
and so it suffices to show that
\[
\alpha_{i_{r-l}}(a_{n}^{(r+1)} \cdots a_{n}^{(r-l)}) \to \infty, \text{ as } n \to \infty.
\]

Now we are in the situation of Section 4.3, where the ambient group is \(M_{I_{r-l-1}} \), the maximal split torus is \(A_{I_{r-l-1}}^{I} \), and the set of simple roots is \(I_{r-l-1} \). Note that
\[
\theta_{n} = a_{n}^{(r+1)} \cdots a_{n}^{(r-l)} = a_{n}^{(r+1)} \cdots a_{n}^{(r-l+1)} \cdot a_{n}^{(r-l)} \in A_{I_{r+1}}^{I}. A_{I_{r-l}}^{I} = A_{I_{r+1}}^{I}.
\]
Therefore, if \(\alpha_{i_{r-l}} \) is not connected to
\[
I_{r-l-1} \setminus (I_{r+1} \cup \{ \alpha_{i_{r-l}} \}) = \{ \alpha_{i_{r-l+1}}, \ldots, \alpha_{i_{r+1}} \}
\]
in the Dynkin diagram of \(M_{I_{r-l-1}} \), then we can apply Lemma 4.6 (with \(I = I_{r+1} \), \(\alpha = \alpha_{i_{r-l}} \), and \(J = I_{r-l} \) to conclude that
\[
\alpha_{i_{r-l}}(a_{n}^{(r+1)} \cdots a_{n}^{(r-l)}) = \alpha_{i_{r-l}}(a_{n}^{(r-l)}).
\]
(Note that \((I_{r+1} \cup \{ \alpha_{i_{r-l}} \}) \cap I_{r-l} = I_{r+1} \). Then the result follows from the fact that \(\alpha_{i_{r-l}}(a_{n}^{(r-l)}) \to \infty \), as \(n \to \infty \) (by Step \(r-l \)).

Therefore, suppose that \(\alpha_{i_{r-l}} \) is connected to
\[
I_{r-l-1} \setminus (I_{r+1} \cup \{ \alpha_{i_{r-l}} \}) = \{ \alpha_{i_{r-l+1}}, \ldots, \alpha_{i_{r+1}} \}
\]
in the Dynkin diagram of \(M_{I_{r-l-1}} \). Therefore, by Theorem 4.5 (with \(I = I_{r+1} \), \(\alpha = \alpha_{i_{r-l}} \), and \(a_{n} = \theta_{n} \)), Lemma 5.6 follows from the following lemma. Note that
\[
\tilde{w}_{I_{r-l}}^{I_{r-l-1}}(\theta_{n}) = \tilde{w}_{I_{r-l}}^{I_{r-l-1}}(a_{n}^{(r-l)}) = \alpha_{i_{r-l}}(a_{n}^{(r-l)}) n_{i_{r-l}} \to \infty, \text{ as } n \to \infty,
\]
by Step \(r-l \), where \(n_{i_{r-l}} > 0 \). Hence, \(\tilde{w}_{I_{r-l}}^{I_{r-l-1}}(\theta_{n}) \geq 1 \) for \(n \) large enough.

Lemma 5.7. For \(k = r-l+1, \ldots, r+1 \), we have
\[
\tilde{w}_{I_{r-l}}^{I_{r-l-1}}(\theta_{n}) \geq \tilde{w}_{I_{k}}^{I_{r-l-1}}(\theta_{n}).
\]
Proof. Fix a k as in the statement of the lemma.

From (4), we see that $H_n^{(r-l)} = \lambda_n^{(r-l)} \cdots \lambda_n^{(r)} H_n(\lambda_n^{(r)} \cdots (\lambda_n^{(r-l)})^{-1}$ is contained in

\[\lambda_n^{(r-l)} \cdots \lambda_n^{(r+1)} N_{I_{r+1}} P_{I_{r+1}} (\lambda_n^{(r+1)})^{-1} \cdots (\lambda_n^{(r-l)})^{-1}. \]

Applying Lemma 3.6 (with $I = I_r$, $J = I_{r+1}$, $I' = I_{r-l-1}$, and $J' = I_{r-l-1} \setminus \{a_{ik}\}$), we then see that $H_n^{(r-l)}$ is contained in

\[\lambda_n^{(r-l)} \cdots \lambda_n^{(r+1)} N_{I_{r-l-1}} P_{I_{r-l-1}} (\alpha_{ik}) (\lambda_n^{(r+1)})^{-1} \cdots (\lambda_n^{(r-l)})^{-1}. \]

In other words,

\[(5) \quad H_n^{(r-l)} \subset N_{I_{r-l-1}} \lambda_n^{(r-l)} \cdots \lambda_n^{(r+1)} P_{I_{r-l-1}} (\alpha_{ik}) (\lambda_n^{(r+1)})^{-1} \cdots (\lambda_n^{(r-l)})^{-1}, \]

where we use the fact that $\lambda_n^{(r-l)} \cdots \lambda_n^{(r+1)} \in M_{I_{r-l-1}}(\mathbb{Q})$ which normalizes $N_{I_{r-l-1}}$.

By definition, we have

\[(6) \quad (\lambda_n^{(r+1)})^{-1} \cdots (\lambda_n^{(r-l)})^{-1} h_n^{(r-l)} = h_n^{(r+1)} a_n^{(r+1)} \cdots a_n^{(r-l)} h_n^{(r+1)} \cdots h_n^{(r-l)}. \]

By Lemma 3.5 (with $I_1 = I_{r-l-1}$, $I_3 = I_{r+1}$, and $I_2 = I_{r-l-1} \setminus \{a_{ik}\}$), we have a direct product decomposition

\[A_{I_{r+1}} = A_{I_{r+1}}^{I_{r-l-1}}(\alpha_{ik}) A_{I_{r-l-1}} \]

and so we can write

\[a_n^{(r+1)} \cdots a_n^{(r-l+1)} \cdot a_n^{(r-l)} \in A_{I_{r+1}}^{I_{r-l-1}} \cdot A_{I_{r-l-1}} \]

as

\[b_n^{(r-l-1,k)} \cdot c_n^{(r-l-1,k)} \in A_{I_{r-l-1}}^{I_{r-l-1}}(\alpha_{ik}) \cdot A_{I_{r-l-2}}^{I_{r-l-1}}(\alpha_{ik}) \]

Therefore, from (6), we obtain

\[(7) \quad (\lambda_n^{(r+1)})^{-1} \cdots (\lambda_n^{(r-l)})^{-1} h_n^{(r-l)} = h_n^{(r+1)} b_n^{(r-l-1,k)} \cdot c_n^{(r-l-1,k)} \cdot k_n^{(r+1)} \cdots k_n^{(r-l)}, \]

which is the rational Langlands decomposition in $H_{I_{r-l-1}}(\alpha_{ik}) \cdot A_{I_{r-l-1}}^{I_{r-l-1}}(\alpha_{ik}) \cdot K_{I_{r-l-1}},$

where we use the facts that

\[h_n^{(r+1)} \in H_{I_{r+1}} \subset H_{I_{r-l-1}}(\alpha_{ik}) \quad \text{and} \quad b_n^{(r-l-1,k)} \in A_{I_{r+1}}^{I_{r-l-1}}(\alpha_{ik}) \subset H_{I_{r-l-1}}(\alpha_{ik}). \]

Therefore, since $(\alpha_{i_{r-1}}, (H_n^{(r-l)})_{n \in \mathbb{N}})$ was a maximal couple for $(H_n^{(r-l)})_{n \in \mathbb{N}}$ and $(h_n^{(r-l)})_{n \in \mathbb{N}}$ with respect to $H_{I_{r-l-1}}$, $K_{I_{r-l-1}}$, I_{r-l-1}, and F_{r-l-1}, it follows from (5) and (7) that

\[\bar{w}_{I_{r-l}}^{I_{r-l-1}}(\theta_n) = \bar{w}_{I_{r-l-1}}^{I_{r-l-1}}(a_n^{(r+1)} \cdots a_n^{(r-l)}) = \bar{w}_{I_{r-l-1}}^{I_{r-l-1}}(a_n^{(r-l)}) \]

\[\geq \bar{w}_{I_{r-l-1}}^{I_{r-l-1}}(c_n^{(r-l-1,k)}) \]

\[= \bar{w}_{I_{r-l-1}}^{I_{r-l-1}}(h_n^{(r-l-1,k)}) \]

\[= \bar{w}_{I_{r-l-1}}^{I_{r-l-1}}(a_n^{(r+1)} \cdots a_n^{(r-l)}) = \bar{w}_{I_{r-l-1}}^{I_{r-l-1}}(\theta_n), \]

where the second and third equalities are consequences of Lemma 4.3.

This completes the proof of Lemma 5.6.
This completes the proof of Proposition 5.4.

□

This completes the proof of Theorem 5.3.

6. Appendix: An inequality for simple roots and dual weights

Jialun Li

The purpose of this appendix, is to prove Theorem 4.5. The main ingredient is an inequality between simple roots and dual weights. For this discussion, we refer without further mention to [Bou02].

Let E be a linear space. Let Π be a root system in E, which generates E, and let $\langle \cdot, \cdot \rangle$ be the inner product on E invariant under the Weyl group. Fix a set Δ of simple roots in Π. Let $\{w_\alpha\}_{\alpha \in \Delta}$ be the set of dual weights in E, which are defined by the relations

\[(w_\alpha, \beta) = \delta_{\alpha\beta}\]

for $\beta \in \Delta$, where $\delta_{\alpha\beta}$ is the Kronecker symbol. The set of dual weights and the set of simple roots Δ form two bases of E. Using the inner product, we can easily compute the coefficients in the transition matrix. Then we have a relation between simple roots and dual weights,

\[
\alpha = (\alpha, \alpha)w_\alpha + \sum_{\beta \in \Delta \setminus \{\alpha\}} (\alpha, \beta)w_\beta \quad \text{for } \alpha \in \Delta
\]

and

\[
w_\alpha = \sum_{\beta \in \Delta} (w_\alpha, w_\beta)\beta \quad \text{for } \alpha \in \Delta.
\]

For $\alpha \in \Delta$, set

\[d_\alpha = \sum_{\beta \in \Delta} (w_\alpha, w_\beta).\]

We recall that $(w_\alpha, w_\beta) \geq 0$, and $(w_\alpha, w_\beta) > 0$ if the root system is irreducible. In particular, it follows that $d_\alpha > 0$. We define the weighted dual weights as

\[
\bar{w}_\alpha = w_\alpha/d_\alpha = \frac{\sum_{\beta \in \Delta} (w_\alpha, w_\beta)\beta}{\sum_{\beta \in \Delta} (w_\alpha, w_\beta)}.
\]

We denote by E^* the dual space of E and identify E with $(E^*)^*$. For $I \subset \Delta$, we define

\[
a_I = \bigcap_{\beta \in I} \ker \beta \subset E^*.
\]

Theorem 6.1. Let $\alpha \in \Delta$ and let $I \subset \Delta \setminus \{\alpha\}$. For every $a \in a_I$ satisfying

\[
\bar{w}_\alpha(a) \geq \bar{w}_\gamma(a) \quad \text{for all } \gamma \in \Delta \setminus I \quad \text{and} \quad \bar{w}_\alpha(a) \geq 0,
\]

the estimate $\alpha(a) \geq \bar{w}_\alpha(a)$ also holds.

From this, we deduce the following corollary, which is used in the proof of Theorem 1.1.
Corollary 6.2. Let \(\alpha \in \Delta \) and let \(I \subset \Delta \setminus \{ \alpha \} \) such that \(\alpha \) is connected to \(\Delta \setminus (I \cup \{ \alpha \}) \) in the Dynkin diagram. For each \(n \in \mathbb{N} \), let \(a_n \in a_I \) and suppose that

\[
\beta(a_n) \to \infty, \quad \text{as } n \to \infty
\]

for all \(\beta \in \Delta \setminus (I \cup \{ \alpha \}) \). Furthermore, suppose that

\[
\bar{w}_\alpha(a_n) \geq \bar{w}_\beta(a_n) \quad \text{for all } \beta \in \Delta \setminus I \quad \text{and} \quad \bar{w}_\alpha(a_n) \geq 0.
\]

Then

\[
\alpha(a_n) \to \infty, \quad \text{as } n \to \infty.
\]

Proof of Corollary 6.2. Using Theorem 6.1 and (9), we obtain

\[
\alpha(a_n) \geq \bar{w}_\alpha(a_n) = \frac{1}{d_\alpha} \sum_{\beta \in \Delta \setminus I} (w_\alpha, w_\beta) \beta(a_n),
\]

and

\[
\left(1 - \frac{(w_\alpha, w_\alpha)}{d_\alpha} \right) \alpha(a_n) \geq \frac{1}{d_\alpha} \sum_{\beta \in \Delta \setminus (I \cup \{ \alpha \})} (w_\alpha, w_\beta) \beta(a_n).
\]

Here \((w_\alpha, w_\beta) \geq 0\) and, moreover, it follows from our connectedness assumption that \((w_\alpha, w_\beta) > 0\) for at least one \(\beta \in \Delta \setminus (I \cup \{ \alpha \}) \). In particular, \((w_\alpha, w_\alpha) < d_\alpha\). Hence, the last estimate implies the corollary. \(\square\)

Now we proceed with the proof of Theorem 6.1. We first prove the case when \(I = \emptyset \).

Proof of Theorem 6.1 for \(I = \emptyset \). By (8) and (10), we know

\[
(11) \quad \alpha = (\alpha, \alpha) d_\alpha \bar{w}_\alpha + \sum_{\beta \neq \alpha} (\alpha, \beta) d_\beta \bar{w}_\beta.
\]

The set of simple roots forms a basis of \(E \). By (10), the term \(\bar{w}_{\gamma} \) is a linear combination of simple roots, and the sum of the coefficients in the expression equals 1. Therefore by computing the coefficients of simple roots, (11) implies that

\[
(12) \quad (\alpha, \alpha) d_\alpha + \sum_{\beta \neq \alpha} (\alpha, \beta) d_\beta = 1.
\]

Due to properties of simple roots, we know that \((\alpha, \beta) \leq 0\) for \(\alpha \neq \beta \). Hence, (11), (12), and the hypothesis imply

\[
\alpha(a) = \bar{w}_\alpha(a) + \sum_{\beta \neq \alpha} (- (\alpha, \beta)) d_\beta (\bar{w}_\alpha(a) - \bar{w}_\beta(a)) \geq \bar{w}_\alpha(a).
\]

The proof is complete. \(\square\)

To prove the general case of the theorem, we need the following lemma.

Lemma 6.3. For \(I \subset \Delta \), the set \(I \cup \{ w_\gamma : \gamma \in \Delta \setminus I \} \) forms a basis of \(E \). Moreover, for every \(\alpha \in \Delta \), we have

\[
\alpha = \sum_{\beta \in I} c_\beta \beta + \sum_{\gamma \in \Delta \setminus I} c_\gamma w_\gamma,
\]

where \(c_\delta \leq 0 \) for \(\delta \in \Delta \setminus \{ \alpha \} \).
Proof for the general case of Theorem 6.1. Using the expression in the Lemma 6.3 and (9), by the same argument as for the special case $I = \emptyset$, we see that

$$1 = \sum_{\beta \in I} c_\beta + \sum_{\gamma \in \Delta \setminus I} c_\gamma d_\gamma \leq \sum_{\gamma \in \Delta \setminus I} c_\gamma d_\gamma,$$

where the last inequality is due to Lemma 6.3. Therefore, by the definition of a_I and Lemma 6.3, for any $a \in a_I$,

$$\alpha(a) = \sum_{\gamma \in \Delta \setminus I} c_\gamma d_\gamma \bar{w}_\gamma(a).$$

Hence, using that $c_\gamma \leq 0$ for $\gamma \neq \alpha$, we deduce that

$$\alpha(a) \geq \left(\sum_{\gamma \in \Delta \setminus I} c_\gamma d_\gamma \right) \bar{w}_\alpha(a) \geq \bar{w}_\alpha(a),$$

since $\bar{w}_\alpha(a) \geq 0$. The proof is complete. □

It remains to prove Lemma 6.3. We first recall two facts.

Lemma 6.4. A connected subgraph of a Dynkin diagram is a Dynkin diagram.

Lemma 6.5. The inverse of the Gramm matrix $((\alpha, \beta))_{\alpha, \beta \in \Delta}$ of an irreducible root system Δ is a matrix with positive entries.

Lemma 6.5 is usually formulated in terms of the Cartan matrix of the root system that has entries $\frac{2(\alpha, \beta)}{(\beta, \beta)}$ with $\alpha, \beta \in \Delta$. Since the Cartan matrix is the product of the Gramm matrix and the diagonal matrix with the positive entries $\frac{2}{(\beta, \beta)}$ with $\beta \in \Delta$, the claim is also true for the Gramm matrix as well.

Proof of Lemma 6.3. We index the simple roots $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ so that $I = \{\alpha_1, \ldots, \alpha_m\}$ and so that

$$\{\alpha_1, \ldots, \alpha_{k_1}\}, \{\alpha_{k_1+1}, \ldots, \alpha_{k_1+k_2}\}, \ldots, \{\alpha_{k_1+\cdots+k_{l-1}+1}, \ldots, \alpha_{k_1+\cdots+k_l} = \alpha_m\}$$

are nonadjacent connected subgraphs in the Dynkin diagram of Δ. We observe that

$$t(\alpha_1, \ldots, \alpha_n) = A \cdot t(w_{\alpha_1}, \ldots, w_{\alpha_n})$$

where $A = ((\alpha_i, \alpha_j))_{1 \leq i, j \leq n}$, and

$$t(\alpha_1, \ldots, \alpha_m, w_{\alpha_{m+1}}, \ldots, w_{\alpha_n}) = \begin{pmatrix} B & C \\ 0 & \text{Id}_{n-m} \end{pmatrix} \cdot t(w_{\alpha_1}, \ldots, w_{\alpha_n}),$$

where $B = ((\alpha_i, \alpha_j))_{1 \leq i, j \leq m}$ and $C = ((\alpha_i, \alpha_j))_{1 \leq i \leq m, m+1 \leq j \leq n}$. We note that B is invertible by Lemma 6.4. Therefore,

$$t(\alpha_1, \ldots, \alpha_n) = D \cdot t(\alpha_1, \ldots, \alpha_m, w_{\alpha_{m+1}}, \ldots, w_{\alpha_n}),$$

where

$$D = A \begin{pmatrix} B & C \\ 0 & \text{Id}_{n-m} \end{pmatrix}^{-1} = A \begin{pmatrix} B^{-1} & -B^{-1}C \\ 0 & \text{Id}_{n-m} \end{pmatrix}.$$
By our assumption, the matrix B is block-diagonal consisting of l blocks. By Lemma 6.4, each block is the Gramm matrix of a Dynkin diagram. In particular, it follows that B is invertible and, by Lemma 6.5, the inverse of B has non-negative entries. Since $(\alpha_i, \alpha_j) \leq 0$ for all $i \neq j$, the entries of the matrix C are non-positive. Hence, the matrix $-B^{-1}C$ also has non-negative entries.

Now we can compute the coefficients in Lemma 6.3. When $\alpha \in I$, $c_{\beta} = \delta_{\alpha\beta}$ and, in particular, $c_{\beta} = 0$ for $\alpha \neq \beta$. We suppose that $\alpha \notin I$, so that $\alpha = \alpha_p$ with some $p > m$. Then the coefficients in the expression of α_p with respect to $(\alpha_1, \cdots, \alpha_m, w_{\alpha_{m+1}}, \cdots, w_{\alpha_n})$ are given by

$$(\langle (\alpha_p, \alpha_j) \rangle_{1 \leq j \leq n} \begin{pmatrix} B^{-1} & -B^{-1}C \\ 0 & \text{Id}_{n-m} \end{pmatrix}).$$

Here the matrices B^{-1} and $-B^{-1}C$ have non-negative entries and $(\alpha_p, \alpha_j) \leq 0$ for all $j \neq p$. Hence, performing matrix multiplication, we deduce that all the coefficients except the p^{th} one are non-positive. □

REFERENCES

[BB66] W. Baily and A. Borel. Compactifications of arithmetic quotients of bounded symmetric domains. Ann. of Math., 84:442–528, 1966.

[BJ06] A. Borel and L. Ji. Compactifications of symmetric and locally symmetric spaces. Birkhäuser, Boston, 2006.

[Bor69] A. Borel. Introduction aux groupes arithmétiques. Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341. Hermann, Paris, 1969.

[Bou02] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley.

[Che] J. Chen. On the geometric André-Oort conjecture for variations of Hodge structures. To appear in J. reine angew. Math., available online at https://www.degruyter.com/document/doi/10.1515/crelle-2021-0011/html.

[CU05] L. Clozel and E. Ullmo. Equidistribution de sous-variétés spéciales. Ann. of Math., 161:1571–1588, 2005.

[DGU21] C. Daw, A. Gorodnik, and E. Ullmo. Convergence of measures on compactifications of locally symmetric spaces. Math. Zeit., 297:1293–1328, 2021.

[DM91] S.G. Dani and G.A. Margulis. Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces. Proc. Indian Acad. Sci. (Math. Sci.), 101(1):1–17, 1991.

[EMS96] Alex Eskin, Shahar Mozes, and Nimish Shah. Unipotent flows and counting lattice points on homogeneous varieties. Ann. of Math. (2), 143(2):253–299, 1996.

[EMS97] A. Eskin, S. Mozes, and N. Shah. Non-divergence of translates of certain algebraic measures. Geom. Funct. Anal., 7(1):48–80, 1997.

[GO11] Alex Gorodnik and Hee Oh. Rational points on homogeneous varieties and equidistribution of adelic periods. Geom. Funct. Anal., 21(2):319–392, 2011. With an appendix by Mikhail Borovoi.

[Kli] B. Klingler. Hodge locus and atypical intersections: conjectures. To appear in Motives and complex multiplication, preprint available at https://arxiv.org/abs/1711.09387l.

[KUY16] B. Klingler, E. Ullmo, and A. Yafaev. The hyperbolic Ax-Lindemann-Weierstrass conjecture. Publ. Math. Inst. Hautes Études Sci., 123:333–360, 2016.

[KY14] Bruno Klingler and Andrei Yafaev. The André-Oort conjecture. Ann. of Math. (2), 180(3):867–925, 2014.
[MS95] S. Mozes and N. Shah. On the space of ergodic invariant measures of unipotent flows. *Ergodic Theory Dynam. Systems*, 15(1):149–159, 1995.

[Pil11] Jonathan Pila. O-minimality and the André-Oort conjecture for \(\mathbb{C}^n \). *Ann. of Math. (2)*, 173(3):1779–1840, 2011.

[Pin05a] Richard Pink. A combination of the conjectures of Mordell-Lang and André-Oort. In *Geometric methods in algebra and number theory*, volume 235 of *Progr. Math.*, pages 251–282. Birkhäuser Boston, Boston, MA, 2005.

[Pin05b] Richard Pink. A common generalization of the conjectures of André-Oort, Manin-Mumford, and Mordell-Lang. *Unpublished (Apr. 17th 2005), available at https://people.math.ethz.ch/pink/publications.html*, 2005.

[PT14] Jonathan Pila and Jacob Tsimerman. Ax-Lindemann for \(\mathbb{A}_g \). *Ann. of Math. (2)*, 179(2):659–681, 2014.

[PZ08] Jonathan Pila and Umberto Zannier. Rational points in periodic analytic sets and the Manin-Mumford conjecture. *Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.*, 19(2):149–162, 2008.

[Rat91a] M. Ratner. On Raghunathan’s measure conjecture. *Ann. of Math. (2)*, 134(3):545–607, 1991.

[Rat91b] Marina Ratner. Raghunathan’s topological conjecture and distributions of unipotent flows. *Duke Math. J.*, 63(1):235–280, 1991.

[RU] R. Richard and E. Ullmo. Équidistribution de sous-variétés faiblement spéciales et o-minimalité: André-Oort géométrique. Preprint available at https://arxiv.org/abs/2104.04439.

[Spr79] T.A. Springer. Reductive groups. In *Automorphic forms, representations and L-functions*, Proc. Sympos. Pure Math. Amer. Math. Soc., 1979.

[Ull07] E. Ullmo. Équidistribution de sous-variétés spéciales II. *J. reine angew. Math.*, 606:193–216, 2007.

[UY14a] Emmanuel Ullmo and Andrei Yafaev. Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture. *Ann. of Math. (2)*, 180(3):823–865, 2014.

[UY14b] Emmanuel Ullmo and Andrei Yafaev. Hyperbolic Ax-Lindemann theorem in the cocompact case. *Duke Math. J.*, 163(2):433–463, 2014.

[Vin94] È. B. Vinberg, editor. *Lie groups and Lie algebras, III*, volume 41 of *Encyclopaedia of Mathematical Sciences*. Springer-Verlag, Berlin, 1994. Structure of Lie groups and Lie algebras, A translation of it Current problems in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990 [MR1056485 (91b:22001)], Translation by V. Minachin [V. V. Minakhin], Translation edited by A. L. Onishchik and È. B. Vinberg.

[Zan12] Umberto Zannier. Some problems of unlikely intersections in arithmetic and geometry, volume 181 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 2012. With appendixes by David Masser.

[Zha] R. Zhang. Equidistribution of translates of a homogeneous measure on the Borel-Serre boundary. Preprint available online at https://arxiv.org/pdf/2012.07468.pdf.

DAW: DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF READING, WHITEKNIGHTS, PO BOX 217, READING, BERKSHIRE RG6 6AH, UNITED KINGDOM

Email address: chris.daw@reading.ac.uk

GORODNIK: INSTITUT FÜR MATHEMATIK, UNIVERSITÄT ZÜRICH, WINTERTHURERSTRASSE 190, 8057 ZÜRICH, SWITZERLAND

Email address: alexander.gorodnik@math.uzh.ch

LI: INSTITUT FÜR MATHEMATIK, UNIVERSITÄT ZÜRICH, WINTERTHURERSTRASSE 190, 8057 ZÜRICH, SWITZERLAND

Email address: jialun.li@math.uzh.ch
ULLMO: IHES, Université Paris-Saclay, Laboratoire CNRS Alexander Grothendieck, Le Bois-Marie 35, route de Chartres, 91440 Bures-sur-Yvette, France

Email address: ullmo@ihes.fr