INEQUALITIES FOR WEIGHTED SPACES WITH VARIABLE EXPONENTS

PABLO ROCHA

Abstract. In this article we obtain an “off-diagonal” version of the Fefferman-Stein vector-valued maximal inequality on weighted Lebesgue spaces with variable exponents. As an application of this result and the atomic decomposition developed in [16] we prove, for certain exponents $q(\cdot) \in \mathcal{P}_{\log} (\mathbb{R}_n)$ and certain weights ω, that the Riesz potential I_α, with $0 < \alpha < n$, can be extended to a bounded operator from $H^p_\alpha (\mathbb{R}_n)$ into $L^q_\omega (\mathbb{R}_n)$, for $\frac{1}{p(\cdot)} := \frac{1}{q(\cdot)} + \frac{\alpha}{n}$.

Mathematics subject classification (2020): 42B30, 42B25, 42B35, 46E30.

Keywords and phrases: Fefferman-Stein inequalities, weighted variable Hardy spaces, atomic decomposition, Riesz potential.

REFERENCES

[1] H. Q. BUI, Weighted Hardy spaces, Math. Nachr. 103 (1981), 45–62.
[2] C. CAPONE, D. CRUZ-URIBE AND A. FIORENZA, The fractional maximal operator and fractional integral on variable L^p spaces, Rev. Mat. Iberoam. 23 (3) (2007), 743–770.
[3] R. COIFMAN, A real characterization of H^p, Studia Math. 51 (1974), 269–274.
[4] R. COIFMAN AND G. WEISS, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.
[5] D. CRUZ-URIBE, A. FIORENZA AND C. NEUGEBAUER, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl. 394 (2012), 744–760.
[6] D. CRUZ-URIBE AND A. FIORENZA, Variable Lebesgue Spaces, Birkhäuser, 2013.
[7] D. CRUZ-URIBE AND D. WANG, Variable Hardy Spaces, Indiana Univ. Math. J. 63 (2) (2014), 447–493.
[8] L. DIENING, P. HARJULEHTO, P. HÄSTÖ AND M. RUŽIČKA, Lebesgue and Sobolev spaces with variable Exponents, Springer, 2011.
[9] L. DIENING AND P. HÄSTÖ, Muckenhoupt weights in variable exponent spaces, Preprint (2010).
[10] Y. DING, M.-Y. LEE AND C.-C. LIN, Fractional integrals on weighted Hardy spaces, J. Math. Anal. Appl. 282 (1) (2003), 356–368.
[11] C. FEFFERMAN AND E. STEIN, H^p spaces of several variables, Acta Math. 129 (1972), 137–193.
[12] J. GARCÍA-CUERVA, Weighted H^p spaces, Dissertations Math. 162 (1979), 1–63.
[13] L. GRAFAKOS, Classical Fourier Analysis, 3rd edition, Graduate Texts in Mathematics, 249, Springer New York, 2014.
[14] E. HARBOURE, R. MACÍAS AND C. SEGOVIA, Extrapolation results for classes of weights, Amer. J. Math. 110 (3) (1988), 383–397.
[15] K.-P. HO, Singular integral operators, John-Nirenberg inequalities and Triebel-Lizorkin type spaces on weighted Lebesgue spaces with variable exponents, Rev. Un. Mat. Argentina 57 (1) (2016), 85–101.
[16] K.-P. HO, Atomic decompositions of weighted Hardy spaces with variable exponents, Tohoku Math. J. (2) 69 (3) (2017), 383–413.
[17] K.-P. HO, Sublinear operators on weighted Hardy spaces with variable exponents, Forum Math. 31 (3) (2019), 607–617.
[18] K.-P. HO, Fractional integral operators on Orlicz slice Hardy spaces, Fract Calc Appl Anal 25 (2022), 1294–1305.
[19] O. KOVÁČIK AND J. RÁKOSNÍK, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41 (116) (1991), 592–618.
[20] S. Krantz, *Fractional integration on Hardy spaces*, Studia Mathematica, vol 73 (2) (1982), 87–94.
[21] R. H. Latter, *A characterization of $H^p(\mathbb{R}^n)$ in terms of atoms*, Studia Math. 62 (1978), 93–101.
[22] M.-Y. Lee and C.-C. Lin, *The molecular characterization of weighted Hardy spaces*, Journal of Funct. Analysis, 188 (2002), 442–460.
[23] X. Li and L. Peng, *The molecular characterization of weighted Hardy spaces*, Science in China (Series A), vol. 44 (2) (2001), 201–211.
[24] B. Muckenhoupt and R. Wheeden, *Weighted norm inequalities for fractional integrals*, Trans. Amer. Math. Soc., 192 (1974), 261–274.
[25] E. Nakai and Y. Sawano, *Hardy spaces with variable exponents and generalized Campanato spaces*, J. Funct. Anal. 262 (2012), 3665–3748.
[26] W. Orlicz, *Über konjugierte Exponentenfolgen*, Studia Math. 3 (1931), 200–211.
[27] P. Rocha, *A note on Hardy spaces and bounded linear operators*, Georgian Math. J. 25 (1) (2018), 73–76.
[28] P. Rocha, *Boundedness of generalized Riesz potentials on the variable Hardy spaces*, J. Aust. Math. Soc. 104 (2018), 255–273.
[29] P. Rocha, *On the atomic and molecular decomposition of weighted Hardy spaces*, Rev. Un. Mat. Arg., vol. 61 (2) (2020), 229–247.
[30] P. Rocha and M. Urciuolo, *Fractional type integral operators on variable Hardy spaces*, Acta Math. Hung. 143 (2) (2014), 502–514.
[31] E. Stein, *Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals*, Princeton University Press, 1993.
[32] E. Stein and G. Weiss, *On the theory of harmonic functions of several variables I: The theory of H^p spaces*, Acta Math. 103 (1960), 25–62.
[33] M. H. Taibleson and G. Weiss, *The molecular characterization of certain Hardy spaces*, Astérisque 77 (1980), 67–149.
[34] J.-O. Strömberg and A. Torchinsky, *Weighted Hardy Spaces*, Lecture Notes in Mathematics, 1381, Springer-Verlag, Berlin, 1989.
[35] Y. Zhang, D. Yang, W. Yuan and S. Wang, *Real-variable characterizations of Orlicz-slice Hardy spaces*, Anal. Appl. 17 (2019), 597–664.