Modification of the ω-Meson Lifetime in Nuclear Matter

M. Kotulla ¹, D. Trnka ¹, P. Mühlich ¹α, G. Anton ², J. C. S. Bacelar ³, O. Bartholomy ⁴, D. Bayadilov ⁴, ⁸, Y.A. Beloglazov ⁸, R. Bogendorfer ², R. Castelijus ³, V. Crede ⁴*, H. Dutz ⁵, A. Ehmanns ⁴, D. Elsner ⁵, R. Ewald ⁵, I. Fabry ⁴, M. Fuchs ⁴, K. Essig ⁴, Ch. Funke ⁴, R. Gothe ⁵*, R. Gregor ¹, A. B. Gridnev ⁸, E. Gutz ⁴, S. Höfgen ⁵, P. Hoffmeister ⁴, I. Horn ⁴, J. Hösli ², I. Jaegle ⁷, J. Junkersfeld ⁴, H. Kalinowsky ⁴, Frank Klein ⁵, Fritz Klein ⁵, E. Klempt ², M. Konrad ⁵, B. Kopf ⁶, ⁹, B. Krusche ⁷, J. Langheinrich ⁵*, H. Löhner ³, I.V. Lopatin ⁸, J. Lotz ⁴, S. Lugert ⁵, D. Menze ⁵, J. G. Messchendorp ³, T. Mertens ⁷, V. Metag ¹, U. Mosel ¹α, M. Nanova ¹, R. Novotny ¹, M. Ostrick ⁵, L. M. Pant ¹¹, H. van Pee ¹, M. Pfeiffer ¹, A. Roy ¹³, A. Radkov ⁸, S. Schadmand ¹*, Ch. Schmidt ⁴, H. Schmieden ⁵, B. Schoch ⁵, S. Shende ³, G. Sift ², V. V. Sumachev ⁸, T. Szczepańek ⁴, A. Süle ⁵, U. Thoma ¹⁴, R. Varma ¹⁵, D. Walther ⁵, Ch. Weinheimer ⁴*, Ch. Wendel ⁴

(The CBELSA/TAPS Collaboration)

¹II. Physikalisches Institut, Universität Giessen, Germany
²Physikalisches Institut, Universität Erlangen, Germany
³Physikalisches Institut, Universität Bonn, Germany
⁴Helmholtz-Institut für Strahlen- u. Kernphysik, Universität Bonn, Germany
⁵Physikalisches Institut, Universität Basel, Switzerland
⁶Institut für Kern- und Teilchenphysik, TU Dresden, Germany
⁷Physikalisches Institut, Universität Göttingen, Germany
⁸Petersburg Nuclear Physics Institute, Gatchina, Russia
⁹Physikalisches Institut, Universität Bochum, Germany
* now at University of South Carolina, Columbia, USA
† now at Florida State University, USA
‡ now at Institut für Kernphysik, FZ Jülich, Germany
+ now at Institut für Kernphysik, Universität Münster, Germany
² now at Department of Physics, I.I.T. Powai, Mumbai, India

(Dated: February 8, 2008)

The photo production of ω mesons on the nuclei C, Ca, Nb and Pb has been measured using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the ω meson cross section on the nuclear mass number has been compared with three different types of models, a Glauber analysis, a BUU analysis of the Giessen theory group and a calculation by the Valencia theory group. In all three cases, the inelastic ω width is found to be $130 - 150$ MeV/c^2 at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the restframe of the ω meson, this inelastic width is in the range of 70 mb.

The investigation and understanding of in-medium properties of hadrons has advanced to one of the most attractive research topics in hadron physics. Several theoretical studies (e. g. ¹, ², ³, ⁴, ⁵) have led to the expectation of a partial restoration of chiral symmetry at high temperatures or with increasing nuclear densities. A consistent picture of corresponding in-medium changes of hadrons has, however, not yet emerged. These investigations have stimulated a series of measurements to study the effect of surrounding strongly interacting matter on the mass and width of hadrons. Recently, several experiments have focused on studying the in-medium properties of vector mesons. For ρ mesons a broadening but no mass shift has been reported in cold ⁶ and heated ⁷ nuclear matter. In contrast, the authors in ⁸ report a mass shift but no broadening of the ρ meson in nuclear matter. Also for ϕ mesons with low momenta a lowering of the in-medium mass has been reported ⁹ as well as for the ω meson ¹⁰. It is important to note that the analysis of the ω data ¹⁰ was not sensitive to the in-medium decay width due to the detector resolution and uncertainties in the separation of in- and out-of-medium decay contributions.

This paper describes an access to the in-medium width of the ω meson via the measurement of the transparency ratio. This method has been motivated in earlier works on the ϕ meson ¹¹, ¹² as well as more recently on the ω meson ¹³, ¹⁴. Experimentally, the LEPS collaboration at Spring8 extracted the transparency ratio for the photo production of ϕ mesons ¹⁵ and reported an unexpect-
The present experiment was performed at the ELE<ref>lectron S<ref>trecher A<ref>ccele<ref>r (ELSA) in Bonn, using a 2.8 GeV electron beam. The photon beam was produced via bremsstrahlung. A magnetic spectrometer (tagger) was used to determine the photon beam energies within the tagged photon range of 0.64 to 2.53 GeV. The C, Ca, Nb, and Pb targets had thicknesses of 20 mm, 10 mm, 1 mm and 0.64 mm, respectively, and 30 mm in diameter. The targets were mounted in the center of the Crystal Barrel detector (CB), a photon calorimeter consisting of 1290 CsI(Tl) crystals (∼ 16 radiation lengths X0) with an angular coverage of 30° up to 168° in the polar angle and a complete azimuthal angular coverage. Inside the CB, covering its full acceptance, a three-layer scintillating fiber detector (513 fibers of 2 mm diameter) was installed for charged particle detection. Reaction products emitted in forward direction were detected in the TAPS detector. TAPS consisted of 528 hexagonally shaped BaF2 detectors (∼ 12 X0) covering polar angles between 4° and 30° and the complete 2π azimuthal angle. In front of each BaF2 module a 5 mm thick plastic scintillator was mounted for the registration of charged particles. The resulting geometrical solid angle coverage of the combined system was 99% of 4π. The BaF2 crystals were read out by photo multipliers providing a fast trigger, the CsI(Tl) crystals via photo diodes. For further details see 12, 13, 14.

The experimental observable for extracting the in-medium width is the transparency ratio, defined as:

\[T = \frac{\sigma_{\gamma A \rightarrow VX}}{A \sigma_{\gamma N \rightarrow VX}} \],

i. e. the ratio of the inclusive nuclear \(\omega \) photo production cross section divided by \(A \) times the same quantity on a free nucleon. \(T \) describes the loss of flux of \(\omega \) mesons in nuclei and is related to the absorptive part of the \(\omega \) nucleus potential and thus to the \(\omega \) inelastic width in the nuclear medium. To avoid systematic uncertainties when comparing to theoretical models, e. g. due to the unknown \(\omega \) production cross section on the neutron or secondary production processes, the transparency ratio has been normalized to the Carbon data, i. e.

\[T_A = \frac{12 \cdot \sigma_{\gamma A \rightarrow VX}}{A \sigma_{\gamma C_{12} \rightarrow VX}}. \] (2)

The result is thereby normalized to a light target with equal numbers of protons and neutrons.

The \(\omega \) meson has been reconstructed via the mode \(\omega \rightarrow \pi^0\gamma \) with the \(\pi^0 \) further decaying into 2 photons, thus requiring three neutral hits in the CB/TAPS detector systems. An identical analysis code has been used for all four nuclear targets. In the analysis incident photon beam energies in the range of 1.2 GeV to 2.2 GeV have been allowed for. The photon flux has been determined by counting the scattered electrons in the tagging system and by correcting for the tagging efficiency. To reduce background a cut on the energy of the decay photon not belonging to the \(\pi^0 \) has been set, \(E_{\gamma} > 200 \text{ MeV} \). Events distorted by final state interactions of the \(\pi^0 \) meson have been removed by applying a cut on the kinetic energy of the decay pions, \(T_{\pi^0} > 150 \text{ MeV} \) (see e.g. 19, 20). The resulting \(\pi^0 \gamma \) invariant mass distributions are shown in Fig. 1 for all four nuclear targets. The \(\omega \) signal has been extracted by fitting a Gaussian function to the signal on top of a background function. Since almost all \(\omega \) mesons decay outside the nuclear target at average momenta of 1.1 GeV/c 11, neither a direct mass shift nor a broadening of the width can be observed in the \(\pi^0 \gamma \) invariant mass distributions (Fig. 1). The statistical error of the fitting procedure was taken to be \(\sqrt{(S + 2B)} \) using the extracted signal \(S \) and background \(B \) events. The systematic errors of the extracted transparency ratios (Eq. 1) include the uncertainties of the target length, the fraction of coherent \(\omega \) production and the \(\gamma \) conver-
The measured cross sections are in good agreement with the cross section on the nuclear mass number A parameterized as:

$$\sigma(p_\omega, A) \propto A^{\alpha(p_\omega)}$$

The measured cross sections are in good agreement with an A^{α} scaling law. The fit to the data yields α values between 0.54 – 0.74 from lower to higher 3-momenta p_ω. This result is in agreement with the data obtained by the KEK collaboration [21] and indicates a strong absorption of ω mesons in the nuclear medium.

In a next step, the transparency ratio as defined in Eq. 2 has been extracted and is shown in Fig. 2 as full (blue) circles. The data in Fig. 2 are compared to two theoretical models, a Monte Carlo type analysis by the Valencia group [23] (left panel) and a BUU transport code calculation by the Giessen group [24] (right panel). The collision width included in the Giessen BUU model code calculation by the Giessen group [24] (right panel).

V alencia group [23] (left panel) and a BUU transport code calculation by the Giessen group [24] (right panel).

We have used the Glauber model in the high energy eikonal approximation to analyze these data points and to extract the momentum dependence of the ω meson inelastic width. The Glauber model [25] was first applied to photoproduction experiments by Margolis [26] to extract the inelastic ρN cross section both from coherent and incoherent ρ photoproduction off nuclei. A very detailed description and application of the Glauber model to photoproduction reactions can be found in [27]. More recently, the Glauber model has been applied to study the effects of color transparency [28] and nuclear shadowing [29] in high energy photnuclear reactions. In the Glauber eikonal approximation, neglecting Fermi motion and Pauli blocking, the total incoherent cross section for the photoproduction of a single vector meson is given by

$$\frac{d\sigma_{\gamma A\rightarrow V X}}{dp} = \frac{d\sigma_{\gamma N\rightarrow V N}}{dp} \int d^3r \rho_N(r) \exp \left(-\int \frac{dP_{\text{abs}}(z')}{dl} dz'\right)$$

where dP_{abs}/dl denotes the absorption probability per unit length of the vector meson in nuclear matter. The absorption probability per unit length is related to the inelastic width in the rest frame of nuclear matter via

$$\frac{dP_{\text{abs}}}{dl} = \frac{dP_{\text{abs}}}{dt} \frac{dt}{dl} = \Gamma_{\text{inel}} v = \frac{E_V}{p} \Gamma_{\text{inel}}$$

with the vector meson energy E_V at 3-momentum p and velocity v. Here, the inelastic width depends on density and on the velocity of the ω meson. Using the low-density approximation we can separate the density- and momentum-dependence

$$\Gamma_{\text{inel}}(\rho_N, p) = \Gamma_0(p) \frac{\rho_N}{\rho_0}$$

with $\rho_0 = 0.16$ fm$^{-3}$. Carrying out some of the integrals in Eq. 3, the nuclear photoproduction cross section can be written as

$$\frac{d\sigma_{\gamma A\rightarrow \omega X}}{dp} = \frac{d\sigma_{\gamma N\rightarrow \omega X}}{dp} \rho_0 \frac{p}{E_V} \Gamma_0(p) \times 2\pi \int b \db \left[1 - \exp \left(-\frac{E_V}{p} \int \frac{dz' \Gamma_{\text{inel}}(|b, z'|, p)}{-\infty} \right)\right]$$
Note that the width Γ_{inel} in the above equation relates to the rest frame of nuclear matter. Equation (8) has been used in order to fit the measured transparency ratio and of the extracted in-medium width. In this way the widths $\Gamma_0(p)$ and their errors were determined separately for each target.

The values for the individual targets were combined into an error weighted average and are shown in in the lower part of Fig. 4. For the different momentum bins an increase of the ω width up to momenta of about 1 GeV/c is observed. The extracted momentum behavior from the Glauber model is in reasonable agreement with the BUU parameterization. In contrast, the Monte Carlo simulation by the Valencia group explicitly assumes no momentum dependence. For a comparison of the ω in-medium width with the ω width in vacuum, the values shown in Fig. 4 have to be transformed to the ω restframe. The observed width of 130-150 MeV/c^2 at 1.1 GeV/c momentum corresponds to a width in the restframe of the ω meson of 225 -- 260 MeV/c^2 . The upper part of Fig. 4 contains the first determination of the inelastic ωN cross section extracted from the classical low-density theorem (Eq. 8).

Similar to the study of the ϕ meson properties in the nuclear medium \cite{2}, the cross section at large momenta exceeds by a factor ≈ 3 the inelastic ωN cross section \cite{3} used as input in the BUU calculations \cite{20,24}. In summary, we have deduced the in-medium width of the ω meson from photo production experiments using the Crystal Barrel/TAPS detector systems at the ELSA accelerator facility in Bonn. It is found that the ω eigenlifetime decreases by a factor ≈ 30 for normal nuclear matter density compared to the vacuum value. Furthermore, the momentum dependence of the transparency ratio and of the extracted in-medium width has been determined for the first time. Deviations of the experimental data from the momentum dependence of the ω in-medium width implemented as input in the BUU code indicate room for improvement in the parameterization of the ωN cross section or a limited applicability of the low density theorem (Eq. 8).

We gratefully acknowledge stimulating discussions with E. Oset and M. Kaskulov. We thank the accelerator group of ELSA as well as the technicians and scientists of the HISKP in Bonn, the PI in Bonn and the II. Physikalisches Institut in Giessen. This work was supported by the Deutsche Forschungsgemeinschaft, SFB/TR-16, and the Schweizerischer Nationalfond.

[1] V. Bernard, U.-G. Meißner, Nucl. Phys. A 489 647 (1988).

[2] G. E. Brown, M. Rho, Phys. Rev. Lett. 66 2720 (1991).
[3] T. Hatsuda, S. H. Lee, Phys. Rev. C 46 R34 (1992).
[4] S. Leupold et al., Nucl. Phys. A 628 311 (1998).
[5] F. Klingl et al., Nucl. Phys. A 624 527 (1997).
[6] R. Nasseripour et al., http://www.arxiv.org/abs/0707.2324
[7] R. Arnaldi et al., Phys. Rev. Lett. 96 162302 (2006).
[8] M. Naruki et al., Phys. Rev. Lett. 96 092301 (2006).
[9] R. Muto et al., Phys. Rev. Lett. 98 042501 (2007).
[10] D. Truka et al., Phys. Rev. Lett. 94 192303 (2005).
[11] D. Cabrera et al., Nucl. Phys. A 733 130 (2004).
[12] P. Mühlisch and U. Mosel, Nucl. Phys. A 765 188 (2005).
[13] M. Kaskulov et al., Eur. Phys. J. A 31 245 (2007).
[14] P. Mühlisch et al., Nucl. Phys. A 773 156 (2006).
[15] I. Ishikawa et al., Phys. Lett. B 608 215 (2005).
[16] E. Aker et al., Nucl. Instr. Meth. A 321 69 (1992).
[17] R. Novotny et al., IEEE Trans. Nucl. Sci. 38 392 (1991).
[18] A. R. Gabler et al., Nucl. Inst. Meth. A 364 164 (1994).
[19] J. G. Messchendorp et al., Eur. Phys. J. A 11 95 (2001).
[20] P. Mühlisch et al., Eur. Phys. J. A 20 499 (2004).
[21] T. Tabaru et al., Phys. Rev. C 74 025201 (2006).
[22] M. Kaskulov, Eur.Phys.J.A 31 245 (2007).
[23] M. Kaskulov, private communication (2007).
[24] P. Mühlisch, private communication (2007).
[25] R. J. Glauber and G. Matthias, Nucl. Phys. B 21, 135 (1970).
[26] B. Margolis, Phys. Lett. B 26, 524 (1968).
[27] T. H. Bauer, R. D. Spital, D. R. Yennie and F. M. Pipkin, Rev. Mod. Phys. 50, 261 (1978) [Erratum-ibid. 51, 407 (1979)].
[28] B. Z. Kopeliovich, J. Nemchick, N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 324, 469 (1994).
[29] T. Falter, S. Leupold and U. Mosel, Phys. Rev. C 62, 031602 (2000).
[30] G. I. Lykasov, W. Cassing, A. Sibirtsev and
M. V. Rzyanin, Eur. Phys. J. A 6 (1999) 71