Research on Diagnosis and Evaluation of Physical Assets of Power Grid Enterprises Based on Combined Weight TOPSIS Theory

LIU Fuyan¹, Xiaoyong Yang¹, Min Yu¹, Jie Shen², Jianfeng Shi² and Chao Chen³,a

¹ Economic and Technological Research Institute, State Grid Zhejiang Power Co., Ltd., Hangzhou 310000, China;
² State Grid Zhejiang Power Co., Ltd., Hangzhou 310000, China;
³ School of Economics and Management, North China Electric Power University, Beijing 102206, China.

Email: hbbdcc@126.com

Abstract. Under the new reform requirements, the transmission and distribution price pricing model changes, the sales side is liberalized and competition is introduced, the incremental power distribution business investment is liberalized, and the company’s permitted income is approved on the basis of effective assets. In this paper, the combination weight TOPSIS theory is used to diagnose and evaluate the physical assets of power grid companies, and the accuracy of the model is verified through analysis, and the system's asset status diagnostic analysis and evaluation research is carried out, and the optimization strategy and evaluation calculation are scientifically proposed to provide a research and analysis basis.

1. Introduction

By carrying out research on the management of physical assets of the power grid, on the one hand, it can provide basic information for the mid- and long-term planning of the production and operation of the power grid company, lay a foundation for the continuous deepening of asset management, ensure the safety and integrity of power grid assets, and facilitate the implementation of "governance by law" Implementation, to ensure that the use of physical assets of the power grid is in compliance with laws and regulations, which is conducive to reducing costs and improving asset utilization efficiency and asset contribution.

Literature [3], by combing the relationship between the net asset value rate, power supply reliability (availability coefficient) and other indicators, constructs a matrix correlation evaluation system, and combines the operation data of a power company to carry out the inspection cost of the transmission and distribution assets of the power grid company. Research on the evaluation method of matrix correlation. According to the comprehensive value of the physical assets of the power grid, the literature [4] firstly selected 17 indicators from the four aspects of scale structure, health level, utilization efficiency and management benefits, and constructed the comprehensive value evaluation index system of the physical assets of the power grid. Literature [5] applies the set pair analysis method to establish a comprehensive evaluation model of power grid physical assets, which helps
power companies monitor the health of physical assets and provides a reference for improving the
management of physical assets.

2. Construction of diagnosis and evaluation system for power grid business development

2.1. Principles for constructing indicator system
In the process of building an evaluation index system for physical assets, the following four principles
need to be followed. The establishment of the physical asset evaluation index system should stand at
the height of the company's overall situation, and comprehensively reflect the efficiency of the
company's overall asset operation by summarizing the results of the subordinate units' asset scale
structure, asset health level, asset utilization efficiency and asset retirement and retirement.

2.2. Establishment of indicator system

Serial number	Index category	Index name	unit
1	Asset size indicator	Original value of assets at the end of the period	Billion
2		Original value of newly added fixed assets	Billion
3	Asset utilization indicators	Asset in operation rate	%
4	Asset operation indicators	Equipment defect rate	Times/100 sets/year
5		Proportion of normal state	%
6	Asset cost index	Unit asset operation and maintenance cost	100 million yuan/100 million yuan
7		Unit asset overhaul costs	100 million yuan/100 million yuan
8	Asset efficiency index	Unit sales profit	Yuan/10,000 kWh
9		95598 service satisfaction rate	%

3. Comprehensive evaluation construction
TOPSIS method is a multi-attribute decision-making method, which determines the comprehensive
evaluation value of the evaluated object by calculating the relative distance between the index vector
of each evaluation object and the positive ideal solution and the negative ideal solution. The TOPSIS
method has no strict restrictions on the data distribution, sample size, and index. The original data is
fully utilized and the information loss is relatively small. This method introduces the good value and
bad value in the actual sample into the evaluation model through the determination of the positive
ideal solution and the negative ideal solution, so that the evaluation result fully reflects the group
characteristics of the evaluated object, so that the evaluation result is more objective. An effective
multi-index, multi-objective decision analysis method.

4. Empirical analysis
Select 8 different power supply areas in w area as the object of diagnosis and evaluation of physical
assets, combined with statistical analysis of data, calculate the following results. The comprehensive
weight is calculated by the analytic hierarchy process and entropy method, and the following results are obtained:

Serial number	Evaluation index	Subjective weight	Objective weight	Comprehensive weight
1	Distribution transformer capacity per household	0.15	0	0.12
2	Distribution transformer heavy load ratio	0.15	0.01	0.12
3	Line heavy load ratio	0.10	0	0.08
4	N-1 pass rate	0.10	0.15	0.08
5	Average power supply radius of line	0.13	0.2	0.1
6	Power supply reliability rate	0.08	0.28	0.06
7	Comprehensive voltage qualification rate	0.20	0.16	0.16
8	Unit sales profit	0.20	0.2	0.16
9	Unit investment increase power supply	0.15	0	0.12
10	Average operating life of main transformer	0.15	0	0.12
11	Average operating life of the line	0.15	0.01	0.12

 Calculate the final evaluation result according to the relative posting progress:

Project	A	B	C	D	E	F	G	H
A	0.8122	0.6903	0.4525	0.4402	0.7199	0.5738	0.6140	0.5058

According to the principle of the method, sorting according to the size of the posting progress, the larger the closeness value, the better the solution; the smaller the closeness value, the worse the solution. The areas with relatively large progress are the areas with the best physical assets diagnosis and evaluation. Because area A is the best physical asset diagnosis and evaluation result.

5. Conclusion
This paper proposes a diagnosis and evaluation method for power grid physical assets based on the combined weight TOPSIS theory. Through the construction of physical asset index system and the application of evaluation methods, the physical assets of power grid companies can be comprehensively evaluated to fully grasp the operation and management status of the company’s physical assets. This paper through monitoring and early warning of changes and problems that occur during the operation and management of physical assets of power grid companies, providing auxiliary support for relevant decision-making and deployment, and providing service support for continuous improvement of asset management performance.

References
[1] Li Zhiwei, He Lanfei, Tang Xuejun, Han Wenchang, Wang Jianghua. Design and implementation of a power grid physical asset analysis and evaluation system based on big data[J]. Electrical Technology, 2019, 20(06): 74-80+98.
[2] Mao Lei, Zhai Huichao, Li Xiuling. Construction and application of efficiency-oriented power grid asset operation efficiency evaluation system[J]. Accounting and Learning, 2019 (04): 143-146.
[3] Zhang Weichang, Ren Jian, Jiang Xiufang, Meng Xiangjun. Research on Matrix Correlation Evaluation Method of Transmission and Distribution Assets Operation Inspection Cost of Power Grid Enterprises[J]. Shandong Electric Power Technology, 2018, 45(03): 6-9.

[4] Liu Lu, Liu Hongzhi. Comprehensive value evaluation of power grid physical assets based on grey correlation and TOPSIS model[J]. Shandong Electric Power Technology, 2018, 45(01): 8-13.

[5] You Fei, Ju Xin, Xiao Yanli, Yu Bo. Research on the Comprehensive Evaluation of Power Grid Physical Assets Based on Set Pair Analysis[J]. Inner Mongolia Science Technology and Economy, 2017(11): 44-45.