UPLC-QTOF/MS-Based Nontargeted Metabolomic Analysis of Mountain- and Garden-Cultivated Ginseng of Different Ages in Northeast China

Hailin Zhu, Hongqiang Lin, Jing Tan, Cuizhu Wang, Han Wang, Fulin Wu, Qinghai Dong, Yunhe Liu, Pingya Li * and Jinping Liu *

Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; 13578965875@163.com (H.Z.); linhq17@mails.jlu.edu.cn (H.L.); tanjing17@mails.jlu.edu.cn (J.T.); wangcz15@mails.jlu.edu.cn (C.W.); hanw17@mails.jlu.edu.cn (H.W.); wuf17@mails.jlu.edu.cn (F.W.); dongqh17@mails.jlu.edu.cn (Q.D.); lyh133700@163.com (Y.L.)

* Correspondence: lipy@jlu.edu.cn (P.L.); liujp@jlu.edu.cn (J.L.); Tel.: +86-431-85619803 (P.L.)

Received: 3 December 2018; Accepted: 21 December 2018; Published: 21 December 2018

Abstract: Aiming at further systematically comparing the similarities and differences of the chemical components in ginseng of different ages, especially comparing the younger or the older and mountain-cultivated ginseng (MCG), 4, 5, 6-year-old cultivated ginseng (CG) and 12, 20-year-old MCG were chosen as the analytical samples in the present study. The combination of UPLC-QTOF-MS E UNIFI platform and multivariate statistical analysis were developed to profile CGs and MCGs. By the screening analysis based on UNIFI, 126 chemical components with various structural types were characterized or tentatively identified from all the CG and MCG samples for the first time. The results showed that all the CG and MCG samples had the similar chemical composition, but there were significant differences in the contents of markers. By the metabolomic analysis based on multivariate statistical analysis, it was shown that CG 4–6 years, MCG 12 years and MCG 20 years samples were obviously divided into three different groups, and a total of 17 potential age-dependent markers enabling differentiation among the three groups of samples were discovered. For differentiation from other two kinds of samples, there were four robust makers such as α-linolenic acid, 9-octadecenoic acid, linoleic acid and panaxydol for CG 4–6 years, five robust makers including ginsenoside Re1, -Re2, -Rs1, malonylginsenoside Rb2 and isomer of malonylginsenoside Rb1 for MCG 20 years, and two robust makers, 24-hydroxyoleanolic acid and palmitoleic acid, for MCG 12 years were discovered, respectively. The proposed approach could be applied to directly distinguish MCG root ages, which is an important criterion for evaluating the quality of MCG. The results will provide the data for the further study on the chemical constituents of MCG.

Keywords: mountain-cultivated ginseng; identification; metabolomic analysis; UPLC-QTOF-MS

1. Introduction

Ginseng, the king of herbs in the Orient, has always received a lot of attention, not only as a therapeutic medicinal herb, but also as a health supplement. According to the different growing environments and diverse cultivation methods, there are two kinds of ginseng are distinguished in the Chinese Pharmacopoeia: cultivated ginseng (CG) and mountain-cultivated ginseng (MCG). CG is cultivated artificially in gardens, while MCG is grown for at least 10 years [1,2]. MCG, also called “Lin-Xia-Shan-Shen”, can be regarded as a replacement of wild ginseng. MCG is of better quality than CG and offers more production than wild ginseng [3]. Actually, the adulteration or falsification of the cultivation age of MCG has always been a serious problem in the MCG commercial market. As we all know, the chemical components and biological activities of ginseng with different cultivation ages are
distinct [4,5], and more aged ginseng is usually of higher economic value. In an investigation of the characteristic components for distinguishing CG (4–7-year of age) and MCG (with 15-years of growth), 12 compounds, including ginsenoside Ra3/isomer, gypenoside XVII, quinquenoside R4, ginsenoside Ra7, notoginsenoside Fe, ginsenoside Ra2, ginsenoside Rs6/Rs7, malonyl ginsenoside Rc, malonyl ginsenoside Rb1, malonyl ginsenoside Rb2, palmiteoleic acid, and ethyl linoleate were regarded as the characteristic chemical markers for the discrimination [6]. Recently, a UPLC/QTOF-MS-based metabolomics approach was applied to the global metabolite profiling of MCG leaf samples aged from 6 to 18 years, and the authors claimed that the approach could also be applied to discriminate MCG root ages indirectly [7]. It is undoubted that the developed method can be used as a standard protocol for discriminating and predicting MCG leaf ages directly, but there might be some inaccuracy and uncertainty when discriminating MCG root ages indirectly.

In the past decades, some analytical methods focusing on ginsenosides had been used to distinguish MCG from CG, such as thin layer chromatography (TLC), or high performance liquid chromatography (HPLC) [8,9]. However, these technologies require lots of time and energy, and the results cannot provide a comprehensive or accurate discrimination between them. Currently, untargeted metabolomics, combined with multivariate statistical methods such as principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), are widely used to profile diverse classes of metabolites and to better understand the chemical diversity and the multiple pharmacological effects of ginsenosides or ginseng [10,11]. Given the multi-component property, the combination of LC-MS-based metabolomic profiling with multivariate statistical analysis methods was used as a rapid means of characterization and was increasingly applied for analyzing ginseng from different herbs, cultivation environments/areas, cultivation ages or different parts [12,13]. As an example, for different herbs belonging to the same genus, specific biomarkers including chikusetsusaponin IVA, ginsenoside Rf and ginsenoside Rc were selected and verified for ginseng [14]. In another example of different parts analysis, the metabolic profiles of root, leaf, flower bud, berry and seed of ginseng were investigated [12,15]. In addition, the approach for the discrimination of different red ginseng root parts was reported. As a result, fine roots had the highest protopanaxadiol (PPD)/protopanaxatriol (PPT) ratio, which could clearly distinguish the main roots from the lateral roots and fine roots parts [16]. Such analysis was also applied to make metabolite profiling and age discrimination of 4- and 6-year-old red ginseng [17], or 1–6 years ginseng [18].

In addition, UNIFI, the automated data processing software, is an integrated informatics platform that possesses the ability to incorporate scientific library into a streamlined workflow, aiming at identifying chemical components from complex raw data [19]. The combination of UPLC separation, Q/TOF-MS detection and UNIFI platform has been frequently applied in the characterization of chemical constituents of herbs [20,21].

Normally, CG is harvested after a 4–6 years cultivation period, and MCG is collected at ages of 10–20 years. To develop a more direct and more efficient discrimination method for the cultivation ages and to explore potential age-dependent markers, we chose 4, 5, 6-year-old CG and 12, 20-year-old MCG as the analytical samples in the present study. UPLC-QTOF-MS, UNIFI platform and multivariate statistical analysis were then used to profile these two kinds of ginseng. The aims were to systematically screen the chemical components and to perform the non-targeted metabolomic analysis, and in turn will lay the foundation for the establishment of CG and MCG quality criteria in the future. In one hand, this study will reveal the structural diversity of secondary metabolites and the different patterns in CG and MCG. In the other hand, the present study could provide a reference point for a reliable, accurate method for distinguishing among CG and MCG samples of different ages.
2. Materials and Methods

2.1. Materials and Reagents

A total of 40 batches of CG and MCG root products, including 24 batches of CGs and 16 batches of MCGs, were collected from different cultivation areas in Jilin Province, the main source of ginseng in China. A detailed sample list is given in Table 1. All samples were harvested and collected by Professor Li Ping-ya from Jilin University Institute of Frontier Medical Science, according to China Pharmacopoeia (2015 version) [22]. Voucher specimens have been deposited at the Research Center of Nature Drug, School of Pharmaceutical Sciences, Jilin University, Changchun, China.

Sample No.	Source	Collection Time
CG_{3years-1}, CG_{3years-2}; CG_{4years-1}, CG_{4years-2}; CG_{5years-1}, CG_{5years-2}; MCG_{12years-1}, MCG_{12years-2}; MCG_{20years-1}, MCG_{20years-2}	Ji’an City, Jilin Province, China	2017.09–2017.10
CG_{3years-3}, CG_{3years-4}; CG_{4years-3}, CG_{4years-4}; CG_{5years-3}, CG_{5years-4}; MCG_{12years-3}, MCG_{12years-4}; MCG_{20years-3}, MCG_{20years-4}	Fusong County, Jilin Province, China	2017.09–2017.10
CG_{3years-5}, CG_{3years-6}; CG_{4years-5}, CG_{4years-6}; CG_{5years-5}, CG_{5years-6}; MCG_{12years-5}, MCG_{12years-6}; MCG_{20years-5}, MCG_{20years-6}	Tonghua City, Jilin Province, China	2017.09–2017.10
CG_{3years-7}, CG_{3years-8}; CG_{4years-7}, CG_{4years-8}; CG_{5years-7}, CG_{5years-8}; MCG_{12years-7}, MCG_{12years-8}; MCG_{20years-7}, MCG_{20years-8}	Jingyu Country, Jilin Province, China	2017.09–2017.10

Acetonitrile, methanol were all UPLC-MS pure grade (Fisher Scientific Inc., Geel, Belgium). Formic acid (MS grade) was purchased from Sigma-Aldrich (St. Louis, MO, USA). Leucine enkephaline was provided by Waters (Waters Technologies, Milford, MA, USA). Distilled water was prepared in-house via a Millipore water purification system (Millipore, Billerica, MA, USA). All other chemicals were analytical grade. For reference substances, ginsenoside F1 (R20151040), -F2 (R20151040), notoginsenoside R1 (R20170210), notoginsenoside R4 (R20170212) were provided by the Research Center of Natural Drugs, School of Pharmaceutical Sciences, Jilin University, China. Ginsenoside Rb1, -Rb2, -Rb3, -Rc, -Rd, -Re, -Rf, -F3, -Rg1, 20(R)-Rg2, 20(S)-Rh1, 20(R)-Rh2, 20(S)-Rh3, 20(R)-Rh3, -Ro, gypenoside XVII, ginsenoside Rs1, -Rs2 were isolated in our laboratory and identified by spectroscopic data. Adenine (101774299), tryptophane (73-22-2), palmitoleic acid (101491588) were purchased from Sigma-Aldrich. Notoginsenoside Fe (8105-29-5), D-adenosine (110879- 200502), histidine (624-200304) were purchased from the National Institutes for Food and Drug Control. Ginsenoside Kg5 (wkq16051002, Victory Biological Technology Co., Ltd., Sichuan, China), α-linoleic acid (B21469; Yuanye Biological Technology Co., Ltd., Shanghai, China), D-arginin (130701; Nuove Biological Engineering Co., Ltd., Anhui, China) and phenylpropionic acid (A20160211), quillacil acid (A20171109) were purchased from Beijing Zhongke Quality Inspection Biotechnology Co., Ltd. (Beijing, China) with the Chinese National Standard Sieve No. 3 (R40/3 series).

2.2. Sample Preparation and Extraction

All the CG and MCG samples were air-dried, grinded (Baijie Stainless Steel Grinder, BJ-800A, Deqing Baijie Electric Appliance Co. Ltd., Zhejiang, China) and sieved (Chinese National Standard Sieve No. 3, R40/3 series) to get the homogeneous powder respectively. Then, the powder of 40 samples (200 mg accurately weighed per sample) were refluxed respectively with 85% methanol (2 L) at 80 °C for three times (2 h, 2 h, 1 h each time, respectively). Then, the extracts of each sample were combined, concentrated and evaporated to dryness. Each powder was dissolved in 5.0 mL of 80% methonal. After being filtered, each methanolic solution was injected directly into UPLC system.
Meanwhile, 20 µL aliquots of each CG and MCG sample were mixed to obtain a quality control (QC) sample, which contained all of the components in the analysis. The QC sample was run randomly to monitor the stability of the system. All of the above solutions were stored at 4 °C prior to LC-MS analysis and the injection volume was 2 µL.

2.3. UPLC/QTOF-MS

The chromatographic separation and mass spectrometry detection were conducted on the Waters Acquity UPLC system coupled with a Xevo G2-S QTOF mass spectrometer equipped with an electrospray ionization source (ESI). Separation was performed on Waters ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 µm) at 40 °C. The mobile phase consisted of eluent A (0.1% formic acid aqueous solution) and eluent B (0.1% formic acid in acetonitrile) at flow rate of 0.4 mL/min with the following gradient program: 0~2 min, 10% (B); 2~26 min, 10%~100% (B); 26~28 min, 100% (B); 28~28.1 min, 100%~10% (B); 28.1~30 min, 10% (B). Mixtures of 10/90 and 90/10 water/acetonitrile were the strong wash and the weak wash solvent, respectively. The optimized conditions were employed: source temperature was 120 °C, the desolvation temperature was 300 °C, capillary voltage was 2.6 kV (ESI⁺) or 2.2 kV (ESI⁻), cone voltage was 40 V, desolvation gas flow was 800.0 L/h, cone gas flow was 50 L/h. The energy of low energy function and the collision energy of high energy function were set at 6 V and 20 V~40 V respectively in MS² mode. The mass spectrometer was calibrated with sodium formate in the range of 200–1500 Da. The lockmass compound used was leucine-enkephalin (external reference to the ion m/z 556.2771 in positive mode and 554.2615 in negative mode). Data were collected with Masslynx™ V4.1 workstation in continuum mode.

2.4. Chemical Information Database for the Components of CG and MCG

In addition to the Waters Traditional Medicine Library in UNIFI software, a systematic investigation of chemical constituents from the target herbs based on the literature was conducted. A self-built database of compounds, such as saponins, flavonoids, volatile oil, amino acids and so on, isolated from CG and MCG was established by searching online databases such as China Journals of Full-Text Database (CNKI), PubMed, Medicine, Web of Science and ChemSpider. The name, molecular formula and structure of components from CG and MCG were obtained in the database.

2.5. The Screening Analysis Based on UNIFI Platform

UNIFI 1.7.0 software (Waters, Manchester, UK) was used to perform the screening analysis on the structural characteristics and MS fragmentation behaviors, especially for characteristic fragments. Main parameters were set as follows: peak intensity of high energy over 200 counts and the peak intensity of low energy over 1000 counts were the selected parameters in peak detection; mass error up to ±10 ppm for identified compound; retention time tolerance was set in the range of ±0.1 min; positive adducts containing +H, +Na or negative adducts containing −H, +HCOOH were all selected; the reference compound was leucine-enkephalin (556.2766 for positive ion, 554.2620 for negative ion). The MS raw data were processed using the streamlined workflow of UNIFI software to quickly identify the chemical components that met the match criteria with the in-house Traditional Medicine Library and the self-built database [20,21].

2.6. The Metabolomics Analysis Based on Multivariate Statistical Analysis

To differentiate MCG and CG, MarkerLynx XS V4.1 software (Waters, Milford, DE, USA) was used to process the raw data by deconvolution, alignment, data reduction and to perform the multivariate statistical analysis [20,21]. The following steps were performed: acquiring data, creating a MarkerLynx processing method, processing the acquired data and viewing results Extended Statistics (XS) Viewer. The main parameters in the method set to process the raw data were as follows: retention time range 5–28 min, mass range 200–1400 Da, mass tolerance 5 mDa, intensity threshold 2000 counts, mass...
window 0.05 Da, retention time window 0.20 min. In resulting database list, RT-\(m/z\) pairs represent an identifier of ion in the order of their elution time. The same value of RT and \(m/z\) in different batches of samples were regarded as the same compound. Multivariate statistical analysis was then performed to find the potential biomarkers that significantly contributed to the difference among the groups. During the analysis, principal component analysis (PCA) was firstly used to show the maximum variation and pattern recognition in order to get the overview and classification, and the orthogonal projections to latent structures discriminant analysis (OPLS-DA) was then performed aiming to get the maximum separation between two groups. S-plots was then available to provide visualization of the OPLS-DA predictive component loading to facilitate model interpretation. Variable importance for the projection (VIP) was also used to help screen the different components, and the metabolites with VIP value above 1.0 were considered as potential markers. Additionally, a permutation test was performed to provide reference distributions of the \(R^2/Q^2\)-values that could indicate the statistical significance. Simca 15.0 software (Umetrics, Malmö, Sweden) was used to show the analysis results.

3. Results and Discussion

3.1. Identification of Components from MCG and CG Based on UNIFI Platform

As a result of our analysis, a total of 126 compounds, including triterpenoids (the main ingredients), flavonoids, organic acids and organic acid esters, alcohol phenols, aldehyde ketones and amino acids, etc., were characterized or tentatively identified from the MCG and CG in both ESI\(^+\) and ESI\(^-\) modes. 85 compounds were identified in ESI\(^+\) mode and 41 compounds were identified in ESI\(^-\) mode. Base peak intensity (BPI) chromatograms are shown in Figure 1, the identification information is listed in Table 2, and the chemical structures are shown in Figure 2.
Figure 1. The representative BPI chromatograms of CG and MCG in positive and negative modes.
Table 2. Compounds identified from MCG and CG by UPLC-QTOF-MSE.

No.	\(t_r \) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MSE Fragmentation	Identification	Sources	Ref.
1	0.49	C$_{24}$H$_{34}$N$_{10}$O$_{5}$	176.0431	176.0433	-1.5	177.0503[M + H]$^+$; 130.0495[M – 2 × OH – NH$_2$]$^+$	Dencichine	CG, MCG$_{12}$, MCG$_{20}$	[23]
2	0.54	C$_{26}$H$_{36}$N$_{12}$O$_{2}$	174.1115	174.1117	-1.1	116.0704[M – NH$_2$ – CN$_{2}$H$_{5}$]$^+$; 114.1615[M – NH$_2$ – CH$_{3}$O$_{2}$]$^+$	Adipodihydrizide	CG, MCG$_{12}$, MCG$_{20}$	a
3	0.55	C$_{30}$H$_{22}$O$_{10}$	542.1257	542.1213	8.1	242.1025[M – OH – C$_{15}$H$_{10}$O$_{5}$]$^+$; 116.0703[M – 2 × OH – C$_{21}$H$_{12}$O$_{4}$]$^+$; 99.0284[M – C$_{24}$H$_{14}$O$_{3}$]$^+$	Chamaejasmine	CG, MCG$_{12}$, MCG$_{20}$	a
4	0.59	C$_{12}$H$_{22}$O$_{11}$	342.1156	342.1162	-1.6	365.1059[M + Na]$^+$; 203.0550[M – OH – C$_{4}$H$_{8}$O$_{4}$]$^+$	α-Maltose	CG, MCG$_{12}$, MCG$_{20}$	[24]
5	0.69	C$_{12}$H$_{22}$N$_{12}$O$_{2}$	174.1115	174.1117	-0.9	175.1188[M + H]$^+$	D-Arginine	CG, MCG$_{12}$, MCG$_{20}$	s
6	0.74	C$_{19}$H$_{18}$O$_{11}$	422.0842	422.0849	-1.7	423.0915[M + H]$^+$; 226.1040[M + H – C$_{6}$H$_{8}$O$_{3}$]$^+$	Isomangiferin	CG, MCG$_{12}$, MCG$_{20}$	[25]
7	0.75	C$_{6}$H$_{20}$N$_{10}$	135.0546	135.0545	0.5	136.0618[M + H]$^+$; 119.0352[M – NH$_2$]$^+$	Adenine	CG, MCG$_{12}$, MCG$_{20}$	s
8	0.76	C$_{10}$H$_{12}$N$_{5}$O$_{4}$	267.0974	267.0968	2.4	268.1050[M + H]$^+$; 136.0618[M – C$_{6}$H$_{8}$O$_{4}$]$^+$	D-Adenosine	CG, MCG$_{12}$, MCG$_{20}$	s
9	0.80	C$_{20}$H$_{15}$O$_{10}$	365.0876	365.0899	-2.4	366.0949[M + H]$^+$	Intergiamide	CG, MCG$_{12}$, MCG$_{20}$	a
10	0.81	C$_{26}$H$_{50}$O$_{12}$	538.1677	538.1686	-1.7	561.1569[M + Na]$^+$; 393.1138[M – C$_{12}$H$_{8}$O$_{4}$]$^+$	Linearoside	CG, MCG$_{12}$, MCG$_{20}$	[26]
11	0.82	C$_{6}$H$_{11}$NO$_{2}$	165.0782	165.0790	-0.5	164.0723[M – COOH – NH$_2$]$^+$	Phenylpropionic acid	CG, MCG$_{12}$, MCG$_{20}$	s
12	0.91	C$_{6}$H$_{11}$N$_{2}$O$_{2}$	155.0762	155.0695	-3.5	156.0762[M + H]$^+$	Histidine	CG, MCG$_{12}$, MCG$_{20}$	s
13	1.05	C$_{11}$H$_{12}$N$_{2}$O$_{2}$	204.0898	204.0899	-0.5	205.0971[M + H]$^+$; 188.0706[M – NH$_2$]$^+$; 143.0723[M – NH$_2$ – COOH – H]$^+$	Tryptophan	CG, MCG$_{12}$, MCG$_{20}$	s
14	1.06	C$_{25}$H$_{35}$N$_{10}$O$_{2}$	174.1117	174.1117	0.0	175.1190[M + H]$^+$	Argentine	CG, MCG$_{12}$, MCG$_{20}$	[27]
15	3.13	C$_{26}$H$_{35}$N$_{10}$O$_{2}$	392.2009	392.1988	5.5	393.2082[M + H]$^+$	Glabrol	CG, MCG$_{12}$, MCG$_{20}$	[28]
16	3.27	C$_{25}$H$_{35}$O$_{4}$	404.1646	404.1624	5.1	405.1719[M + H]$^+$	Puerarol	CG, MCG$_{12}$, MCG$_{20}$	[29]
17	4.42	C$_{27}$H$_{35}$O$_{4}$	458.2716	458.2668	10.0	481.2609[M + Na]$^+$; 436.2642[M – COOH]$^+$	Luedicaric acid	CG, MCG$_{12}$, MCG$_{20}$	a
18	4.64	C$_{36}$H$_{56}$O$_{5}$	618.4107	618.4132	-4.0	619.4180[M + H]$^+$; 421.3446[M – Glc – OH]$^+$	β-D-Glucopyranosyl oleanolate	CG, MCG$_{12}$, MCG$_{20}$	[30]
19	4.89	C$_{4}$H$_{2}$O$_{19}$	962.5484	962.5450	3.3	985.5312[M + Na]$^+$; 765.4795[M – Glc – OH]$^+$; 541.2637[M – Glc – OH – C$_{15}$H$_{20}$O$_{5}$]$^+$; 421.3463[M – Glc – C$_{6}$H$_{8}$O$_{4}$ – Rha – 2 × OH]$^+$	Majoroside F6	CG, MCG$_{12}$, MCG$_{20}$	[31]
20	5.21	C$_{31}$H$_{40}$O$_{6}$	546.3248	546.3193	9.7	569.3140[M + Na]$^+$; 133.0859[M – C$_{2}$H$_{3}$O$_{3}$]$^+$	Methyl ganoderate G	CG, MCG$_{12}$, MCG$_{20}$	a

\[\text{Mass (Da)} \]

\[\text{Compounds identified from MCG and CG by UPLC-QTOF-MS}^E. \]

\[\text{Identification} \]

\[\text{Sources} \]

\[\text{Ref.} \]
Table 2. Cont.

No.	\(t_R \) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS\(^8\) Fragmentation	Identification	Sources	Ref.
21	5.53	C\(_{35}\)H\(_{48}\)O\(_9\)	612.3344	612.3298	7.4	613.341[\(\text{M + H}\)^+]，613.3264[\(\text{M − OCH}_3\)^+]，526.2986[M − C\(_4\)H\(_2\)O\(_2\)]^+	Cinobufagin 3-hemisuberate methyl ester	CG, MCG\(_{12}\), MCG\(_{20}\)	a
22	5.56	C\(_{45}\)H\(_{24}\)O\(_17\)	886.4877	886.4926	−5.4	909.4769[M + Na]^+，474.4383[M − CH\(_3\)OH − C\(_4\)H\(_2\)O\(_2\)]^+，729.4136[M − OH − C\(_4\)H\(_2\)O\(_2\)]^+，601.2768[M − 2 × OH − C\(_6\)H\(_2\)O\(_2\)]^+，431.1870[M − Glc − C\(_6\)H\(_2\)O\(_2\)]^+，541.1873[M + H]^+，347.0906[M − CH\(_3\)O − C\(_2\)H\(_4\) − C\(_4\)H\(_2\)O\(_2\)]^+，195.1008[M − Glc − C\(_2\)H\(_4\)O\(_2\) − C\(_2\)H\(_2\)O\(_2\)]^+，271.0917[M + Na]^+，195.1008[M − C\(_2\)H\(_4\) − COH]^+]，189.1348[M − OH − COOH]^+，909.4773[M + Na]^+，707.4360[M − Glc]^+，689.4262[M − Glc − C\(_6\)H\(_2\)O\(_2\)]^+，673.3636[M − Glc − OH − 2 × CH\(_3\)]^+，609.3646[M − Glc − C\(_6\)H\(_2\)O\(_2\)]^+，523.3626[M − Glc − Glc − C\(_3\)H\(_4\)]^+，799.4851[M + H]^+，439.3563[M − Glc/Rha − 2 × OH]^+，421.3441[M − Glc/Rha − 3 × OH − H\(_2\)O]^+，503.1767[M − H]^+，457.1715[M − OH − C\(_6\)H\(_2\)O\(_2\)]^+，293.0878[M − CH\(_3\)O − C\(_2\)H\(_4\) − C\(_4\)H\(_2\)O\(_2\)]^+，481.1667[M + H]^+，317.0803[M − C\(_6\)H\(_2\)O\(_2\)]^+，1147.5835[M + Na]^+，1147.5835[M + Na]^+，585.2870[M − C\(_4\)H\(_2\)O\(_2\)]^+，325.1130[M − C\(_4\)H\(_2\)O\(_2\)]^+，985.5302[M + Na]^+，865.4789[M − C\(_4\)H\(_2\)O\(_2\)]^+，823.4787[M − C\(_4\)H\(_2\)O\(_2\)]^+，805.4668[M − C\(_4\)H\(_2\)O\(_2\)]^+，555.2763[M − C\(_4\)H\(_2\)O\(_2\)]^+，423.3620[M − Glc − Glc/Glc − OH]^+，405.3500[M − Glc − Glc/OH − 2 × OH]^+，481.1660[M + H]^+，317.0810[M − C\(_4\)H\(_2\)O\(_2\) − C\(_4\)H\(_2\)O\(_2\)]^+，481.1667[M + H]^+，317.0803[M − C\(_6\)H\(_2\)O\(_2\)]^+，1147.5835[M + Na]^+，1147.5835[M + Na]^+，585.2870[M − C\(_4\)H\(_2\)O\(_2\)]^+，325.1130[M − C\(_4\)H\(_2\)O\(_2\)]^+，985.5302[M + Na]^+，865.4789[M − C\(_4\)H\(_2\)O\(_2\)]^+，823.4787[M − C\(_4\)H\(_2\)O\(_2\)]^+，805.4668[M − C\(_4\)H\(_2\)O\(_2\)]^+，555.2763[M − C\(_4\)H\(_2\)O\(_2\)]^+，423.3620[M − Glc − Glc/Glc − OH]^+，405.3500[M − Glc − Glc/OH − 2 × OH]^+，481.1660[M + H]^+，317.0810[M − C\(_4\)H\(_2\)O\(_2\) − C\(_4\)H\(_2\)O\(_2\)]^+，481.1667[M + H]^+，317.0803[M − C\(_6\)H\(_2\)O\(_2\)]^+，1147.5835[M + Na]^+，1147.5835[M + Na]^+，585.2870[M − C\(_4\)H\(_2\)O\(_2\)]^+，325.1130[M − C\(_4\)H\(_2\)O\(_2\)]^+，985.5302[M + Na]^+，865.4789[M − C\(_4\)H\(_2\)O\(_2\)]^+，823.4787[M − C\(_4\)H\(_2\)O\(_2\)]^+，805.4668[M − C\(_4\)H\(_2\)O\(_2\)]^+，555.2763[M − C\(_4\)H\(_2\)O\(_2\)]^+，423.3620[M − Glc − Glc/Glc − OH]^+，405.3500[M − Glc − Glc/OH − 2 × OH]^+	Ginsenoside Re\(_1\)	CG, MCG\(_{12}\), MCG\(_{20}\)	**, *
No.	\(t_R \) (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS* Fragmentation	Identification	Sources	Ref.
---	---	---	---	---	---	---	---	---	---
38	6.82	C₁₇H₂₄O₈	356.1460	356.1472	−3 1	3.1	Erigaside II	CG, MCG₁₂, MCG₂₀	[42]
39	6.96	C₁₇H₂₄O₈	392.5410	392.5345	6.7	4.3	Notoginsenoside	R₁	
40	6.99	C₂₈H₄₄O₁₂	572.2810	572.2833	−3 9	3.1	Picrasinoside G	CG, MCG₁₂, MCG₂₀	a
41	7.05	C₄₈H₅₂O₁₉	962.5425	962.5450	−2 6	2.1	Notoginsenoside	N	
42	7.20	C₄₈H₅₂O₁₉	985.5314	703.4371	−2 9	7.18	Ginsenoside Re₂	CG, MCG₁₂, MCG₂₀	[40]
43	7.34	C₄₂H₂₂O₁₄	800.4934	800.4922	1.4	2.1	Ginsenoside Rg₁	CG, MCG₁₂, MCG₂₀	s
44	7.36	C₄₈H₅₂O₁₈	946.5524	946.5501	2.3	1.1	Ginsenoside Re	CG, MCG₁₂, MCG₂₀	s
45	7.74	C₄₃H₂₄O₁₇	886.4925	886.4926	−0 1	1.1	Malonylginsenoside	Rg₁	CG, MCG₁₂, MCG₂₀
46	7.93	C₄₃H₂₄O₁₇	956.4960	956.4981	−2 2	1.1	Isomer of ginsenoside Ro	# CG, MCG₁₂, MCG₂₀	[31]
47	8.04	C₅₁H₄₄O₂₁	1032.5532	1032.5505	2.6	1.1	Malonylginsenoside	Re	CG, MCG₁₂, MCG₂₀
48	8.08	C₅₁H₄₄O₂₁	956.4950	956.4981	−3 1	1.1	Isomer of ginsenoside Ro	CG, MCG₁₂, MCG₂₀	[44]
49	8.09	C₄₄H₂₄O₁₅	842.5032	842.5028	0.5	1.1	Yesanchinoside D	CG, MCG₁₂, MCG₂₀	[45]
50	8.10	C₄₃H₂₄O₁₇	886.4931	886.4926	0.6	1.1	Isomer of malonylginsenoside	Rg₁	CG, MCG₁₂, MCG₂₀
51	8.49	C₄₁H₃₀O₁₃	770.4801	770.4816	−1 5	1.1	Notoginsenoside	R₂	CG, MCG₁₂, MCG₂₀
52	8.50	C₃₆H₄₀O₂₄	1150.6124	1150.6135	−1 1	1.1	Quinquenoside	CG, MCG₁₂, MCG₂₀	[46]
No.	t_R (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS # Fragmentation	Identification	Sources	Ref.
-----	-----------	---------------------	----------------------	-----------------------	------------------	----------------------------	--------------------------	---------	------
53	8.60	C_{22}H_{30}O_{17}	406.1957	406.1992	−8.5	407.2030[M + H]$^+$; 376.1859[M − OCH$_3$]$^+$	Nigakilactone K	CG, MCG$_{12}$, MCG$_{20}$	[47]
54	8.87	C_{48}H_{52}O_{19}	962.5445	962.5450	−0.5	1007.5427[M + HCOO]$^-$; 797.4709[M − Glc]$^-$; 1187.5821[M + Na]$^+$; 1147.5803[M − OCH$_3$]$^+$	Ginsenoside Re	CG, MCG$_{12}$, MCG$_{20}$	[37]
55	8.96	C$_{36}$H$_{42}$O$_{25}$	1164.5929	1164.5928	0.1	805.4305[M − Ara/Glc − CH$_2$OH − CH$_3$]$^+$; 434.3868[M − Ara/Glc − Glc/Glc(mal)]$^+$	Malonylginensoside Rb$_2$	CG, MCG$_{12}$, MCG$_{20}$	[44]
56	9.41	C$_{59}$H$_{106}$O$_{27}$	1240.6488	1240.6452	2.8	913.5184[M − (Glc/Glc)]$^-$; 783.4900[M − (Ara/Xyl) − Glc]$^-$; 845.4903[M + HCOO]$^+$; 637.4319[M − Glc]$^-$; 475.3786[M − (Glc/Glc)]$^-$; 13A$_{21}$β22.0658; 161.0439[Glc − H − H$_2$O]$^+$; 2.5A$_{18}$101.0235	Notoginsenoside R$_4$	CG, MCG$_{12}$, MCG$_{20}$	s
57	9.56	C$_{42}$H$_{72}$O$_{14}$	800.4921	800.4922	−0.1	815.4791[M + HCOO]$^-$; 475.3783[M − (Glc/Xyl)]$^-$; 161.0437[Glc − H − H$_2$O]$^-$	Ginsenoside Rf	CG, MCG$_{12}$, MCG$_{20}$	s
58	9.79	C$_{18}$H$_{34}$O$_{5}$	330.2398	330.2406	−2.3	1315.6617[M + HCOO]$^-$; 841.4991[M − Glc/Glc − OH − C$_4$H$_4$]$^-$; 769.4777[M − Glc/Glc/Glc − CH$_3$]$^-$; 1255.6340[M + HCOO]$^-$; 1077.5833[M − Xyl]$^-$	Ginsenoside F$_3$	CG, MCG$_{12}$, MCG$_{20}$	s
59	9.87	C$_{41}$H$_{50}$O$_{13}$	770.4809	770.4816	−1.0	1047.5719[M − Glc]$^-$; 955.4871[M − Glc − OH − C$_4$H$_4$]$^-$; 783.4902[M − Glc/Xyl/Rha]$^-$; 469.1084[M + Na]$^+$; 429.1154[M − OCH$_3$]$^-$; 385.0884[M − OCH$_3$ − CH$_3$ − OH]$^-$; 341.0661[M − C$_8$H$_6$O$_3$]$^+$; 237.0746[M − C$_{10}$H$_3$O$_3$]$^+$; 193.0483[M − C$_{12}$H$_6$O$_3$]$^+$	Ginsenoside Ra$_3$	CG, MCG$_{12}$, MCG$_{20}$	[50]
60	9.94	C$_{58}$H$_{48}$O$_{26}$	1210.6358	1210.6346	1.0	1187.5821[M + Na]$^+$; 1147.5803[M − OCH$_3$]$^+$	Notoginsenoside F$_a$	CG, MCG$_{12}$, MCG$_{20}$	s
61	10.00	C$_{22}$H$_{22}$O$_{10}$	446.1192	446.1213	−4.5	1285.6444[M + HCOO]$^-$; 1107.5964[M-Xyl]$^-$; 945.5424[M − (Glc/Xyl)]$^-$; 783.4912[M − Xyl − Glc/Glc]	Glycitin	CG, MCG$_{12}$, MCG$_{20}$	a
62	10.01	C$_{59}$H$_{106}$O$_{27}$	1240.6462	1240.6452	0.8	1187.5821[M + HCOO]$^-$; 945.5437[M − Glc]$^-$; 783.4988[M − (Glc − Glc)]$^-$; 621.4382[M − (Glc − Glc) − Glc]$^-$; 459.3835[M − (Glc − Glc) − (Glc − Glc)]$^-$; 2.5A$_{18}$101.0235	Notoginsenoside Rb$_1$	CG, MCG$_{12}$, MCG$_{20}$	s
63	10.05	C$_{54}$H$_{52}$O$_{23}$	1108.6101	1108.6029	6.2	1193.6015[M − H]$^+$; 1149.6098[M − CO$_2$]$^-$; 783.4908[M − Glc/Glc]$^-$; 179.0545[Glc − H]$^-$	Ginsenoside Rb$_3$	CG, MCG$_{12}$, MCG$_{20}$	[34]
64	10.10	C$_{42}$H$_{70}$O$_{12}$	766.4863	766.4867	−0.5	829.4979[M + HCOO]$^-$; 637.4336[M − Rha]$^-$; 475.3809[M − (Glc/Rha)]$^-$; 161.0449[Rha − H]$^-$; 683.4389[M + HCOO]$^-$; 161.0449[Glc − H − H$_2$O]$^-$	GInsenoside Rg$_4$	CG, MCG$_{12}$, MCG$_{20}$	s
65	10.20	C$_{37}$H$_{46}$O$_{26}$	1194.6087	1194.6033	4.5	1193.6015[M − H]$^+$; 1149.6098[M − CO$_2$]$^-$; 783.4908[M − Glc/Glc]$^-$; 179.0545[Glc − H]$^-$	Isomer of malonylginensoside Rb$_p$	CG, MCG$_{12}$, MCG$_{20}$	s
66	10.22	C$_{42}$H$_{22}$O$_{13}$	784.4997	784.4973	2.9	829.4979[M + HCOO]$^-$; 637.4336[M − Rha]$^-$; 475.3809[M − (Glc/Rha)]$^-$; 161.0449[Rha − H]$^-$; 683.4389[M + HCOO]$^-$; 161.0449[Glc − H − H$_2$O]$^-$	(20R)-Ginsenoside Rg$_2$	CG, MCG$_{12}$, MCG$_{20}$	s
67	10.25	C$_{36}$H$_{42}$O$_{9}$	638.4407	638.4394	2.9	829.4979[M + HCOO]$^-$; 637.4336[M − Rha]$^-$; 475.3809[M − (Glc/Rha)]$^-$; 161.0449[Rha − H]$^-$; 683.4389[M + HCOO]$^-$; 161.0449[Glc − H − H$_2$O]$^-$	Ginsenoside Rh$_1$	CG, MCG$_{12}$, MCG$_{20}$	s

Table 2. Cont.
No.	t_r (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS[®] Fragmentation	Identification	Sources	Ref.
69	10.27	C₄₁H₇₀O₁₃	770.4779	770.4816	-4.7	793.4672[M + Na]⁺; 587.4276[M – Ara(p) – 2 × OH]⁻; 423.3589[M – Ara(p)/Glc – 2 × OH]⁻; 621.4835[M + H]⁺; 390.2277[M – C₆H₅H₂]⁻; 187.1473[M – OH – Glc – C₆H₂OH]⁻; 1101.5805[M + Na]⁺; 939.5312[M – Glc]⁻; 929.5452[M – Ara(f)]⁻; 789.4784[M – Ara(f) – Glc]⁻	Ginsenoside F₃	CG, Δ_α MCG₁₂, MCG₂₀	[34]
70	10.29	C₃₆H₆₄O₈	620.4292	620.4288	0.7	Malonylginsenoside F₃	Ginsenoside Rh₄	CG, MCG₁₂, MCG₂₀	[40]
71	10.32	C₅₃H₈₀O₂₂	1078.5939	1078.5924	1.3	Malonylginsenoside F₃	Ginsenoside Rc	CG, MCG₁₂, MCG₂₀	s
72	10.34	C₅₈H₈₀O₂₆	1210.6356	1210.6346	0.7	Malonylginsenoside F₃	Ginsenoside R_a	CG, MCG₁₂, MCG₂₀	[50]
73	10.38	C₅₂H₇₀O₁₂	766.4872	766.4867	0.6	Malonylginsenoside F₃	Ginsenoside R_g	CG, MCG₁₂, MCG₂₀	s
74	10.47	C₅₆H₈₂O₂₅	1164.5947	1164.5928	1.6	Malonylginsenoside F₃	Malonylginsenoside Rc	CG, MCG₁₂, MCG₂₀	[44]
75	10.51	C₄₈H₇₆O₁₉	956.5001	956.4981	2.1	Malonylginsenoside F₃	Ginsenoside R_o	# CG, MCG₁₂, MCG₂₀	s
76	10.57	C₅₇H₈₄O₂₆	1194.6059	1194.6033	2.2	Malonylginsenoside F₃	Malonylginsenoside Rb₁	CG, MCG₁₂, MCG₂₀	[39]
77	10.63	C₅₃H₈₀O₂₂	1078.5979	1078.5924	4.9	Malonylginsenoside F₃	Ginsenoside Rb₂/Rb₃	CG, MCG₁₂, MCG₂₀	s
78	10.77	C₅₆H₈₂O₂₅	1164.5986	1164.5928	5.0	Malonylginsenoside F₃	Malonylginsenoside Rb₂	CG, MCG₁₂, MCG₂₀	[44]
79	11.06	C₃₆H₆₄O₈	638.4391	638.4394	-0.4	Malonylginsenoside F₃	20(R)-Ginsenoside Rb₁	CG, MCG₁₂, MCG₂₀	s
80	11.14	C₃₆H₆₄O₉	638.4399	638.4394	0.7	Malonylginsenoside F₃	Ginsenoside F₁	CG, MCG₁₂, MCG₂₀	s
81	11.15	C₅₆H₈₂O₂₅	1164.5971	1164.5928	3.7	Malonylginsenoside F₃	Malonylginsenoside Rb₃	CG, MCG₁₂, MCG₂₀	[39]
82	11.27	C₄₈H₈₂O₁₈	946.5482	946.5501	-1.9	Malonylginsenoside F₃	Ginsenoside Rd	CG, MCG₁₂, MCG₂₀	s
83	11.31	C₃₅H₆₂O₁₃	1120.6049	1120.6029	1.7	Malonylginsenoside F₃	Ginsenoside Rs₁	CG, MCG₁₂, MCG₂₀	[44]
84	11.36	C₄₂H₇₀O₁₂	766.4875	766.4867	1.0	Malonylginsenoside F₃	Ginsenoside Rs₂	CG, MCG₁₂, MCG₂₀	s
85	11.42	C₅₁H₈₄O₂₁	1032.5515	1032.5505	0.9	Malonylginsenoside F₃	Malonylginsenoside Rd	CG, MCG₁₂, MCG₂₀	[45]
86	11.53	C₃₅H₆₂O₁₃	1120.6065	1120.6029	3.0	Malonylginsenoside F₃	Ginsenoside Rs₂	CG, MCG₁₂, MCG₂₀	s
Table 2. Cont.

No.	t_R (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS^b Fragmentation	Identification	Sources	Ref.	
87	11.69	C_{42}H_{56}O_{13}	782.4738	782.4816	-9.7	805.4631[M + Na]^+; 621.4354[M – Glc]^+]	Ginsenoside Rg10	CG, MCG, MCG, MCG	s	
88	11.79	C_{48}H_{56}O_{18}	946.5494	946.5501	-0.7	991.5476[M + HCOO]^−; 927.5308[M – OH]^−	Gyrenoside XVII	CG, MCG, MCG, MCG	a	
89	11.81	C_{51}H_{64}O_{21}	1032.5504	1032.5505	-0.1	1031.5431[M – H]^+]	Isomer of malonylginsenoside Rd	CG, MCG, MCG, MCG	[49]	
90	11.88	C_{48}H_{56}O_{18}	946.5476	946.55021	-2.6	969.5380[M + Na]^+; 605.4394[M – Glc/Glc]^+]	Chikusetsusaponin FK1	CG, MCG, MCG, MCG	a	
91	12.18	C_{42}H_{56}O_{17}	916.5398	916.5396	0.2	Notoginsenoside Fe	CG, MCG, MCG, MCG	s		
92	12.39	C_{50}H_{56}O_{19}	988.5565	988.5607	-4.1	1011.5458[M + Na]^+; 831.4819[M – Glc]^+]	Quinoneside III	CG, MCG, MCG, MCG	s	
93	12.45	C_{47}H_{64}O_{17}	916.5376	916.5396	-2.1	939.5268[M + Na]^+; 789.4754[M – 2 × OH – CH_3O]^+	Vinagesinsenoside R16	CG, MCG, MCG, MCG	a	
94	12.59	C_{42}H_{56}O_{17}	916.5361	916.5396	-3.7	939.5253[M + Na]^+; 407.3672[M – Glc/(Gly/ Xyl) – OH]^+]	Ginsenoside IX	CG, MCG, MCG, MCG	a	
95	12.91	C_{50}H_{64}O_{19}	988.5569	988.5607	-3.8	1011.5461[M + Na]^+; 789.4764[M – Glc – 2 × OH]^+]	Quinoneside III isomer	CG, MCG, MCG, MCG	a	
96	13.29	C_{32}H_{64}O_{19}	1014.5763	1014.5763	-1.0	1037.5645[M + Na]^+; 857.5032[M – C_2H_4O_2 – 2 × OH]^+]	Quinoneside I	CG, MCG, MCG, MCG	a	
97	13.34	C_{42}H_{64}O_{13}	784.4984	784.4973	1.4	829.4966[M + HCOO]^−; 621.4373[M – Glc]^−	Ginsenoside F2	CG, MCG, MCG, MCG	a	
98	13.55	C_{42}H_{64}O_{13}	784.4977	784.4973	0.5	829.4966[M + HCOO]^−; 621.4373[M – Glc]^−	20(R)-Ginsenoside Rg3	CG, MCG, MCG, MCG	a	
99	13.57	C_{17}H_{24}O_{2}	260.1774	260.1776	-0.8	261.1847[M + H]^+]	Panaxydol	CG, MCG, MCG, MCG	[54]	
100	13.77	C_{42}H_{64}O_{14}	794.4464	794.4453	1.4	793.4391[M – H]^−; 731.4375[M – CO_2 – OH]^−; 613.3746[M – Glc]^−	Chikusetsusaponin Iva	CG, MCG, MCG, MCG	a	
101	14.02	C_{52}H_{64}O_{19}	1014.5763	1014.5763	-1.3	1037.5642[M + Na]^+; 789.4732[M – Glc – C_2H_4O_2]^+]	Isomer of Quinoneside I	CG, MCG, MCG, MCG	a	
102	14.38	C_{17}H_{26}O_{3}	278.1879	278.1882	-1.1	279.1952[M + H]^+	Panaxtriol	CG, MCG, MCG, MCG	a	
103	14.46	C_{42}H_{64}O_{13}	784.4970	784.4973	-0.3	829.4966[M + HCOO]^−; 621.4373[M – Glc]^−	20(S)-Ginsenoside Rg3	CG, MCG, MCG, MCG	s	
104	15.05	C_{18}H_{32}O_{4}	314.2444	314.2457	-3.8	337.2336[M + Na]^+	Dibutyl sebacate	CG, MCG, MCG, MCG	a	
105	17.90	C_{16}H_{24}O_{4}	278.1516	278.1518	-0.7	301.1408[M + Na]^+; 149.0230[M – C_4H_8 – C_4H_8O]^+]	s-Butyl isobutyl phthalate	CG, MCG, MCG, MCG	a	
No.	t_r (min)	Formula	Calculated Mass (Da)	Theoretical Mass (Da)	Mass Error (ppm)	MS8 Fragmentation	Identification	Sources	Ref.	
-----	------------	---------	---------------------	---------------------	-----------------	-------------------	----------------	---------	------	
106	17.93	C$_{30}$H$_{52}$O$_4$	476.3856	476.3866	-2.2	499.3747[M + Na]$^+$; 441.3728[M - 2 × OH]$^+$; 423.3590[M - 3 × OH]$^+$; 317.2049[M - 2 × CH$_3$ - C$_6$H$_5$O]$^+$	20(R)-Protopenaxatriol	CG, MCG, MCG$_{12}$, MCG$_{20}$	[56]	
107	17.95	C$_{16}$H$_{30}$O$_2$	254.2246	254.2268	8.2	277.2161[M + Na]$^+$	Palmitoleic acid	CG, MCG, MCG$_{12}$, MCG$_{20}$	s	
108	18.07	C$_{14}$H$_{26}$O$_3$	294.1258	294.1256	0.5	317.1150[M + Na]$^+$	Tashinone IIA	CG, MCG, MCG$_{12}$, MCG$_{20}$	[57]	
109	18.08	C$_{30}$H$_{48}$O$_2$	472.3546	472.3553	-1.4	495.3438[M + Na]$^+$	β-Amyrone	CG, MCG, MCG$_{12}$, MCG$_{20}$	[58]	
110	18.08	C$_6$H$_{12}$O$_3$	126.0331	126.0317	9.4	149.0223[M + Na]$^+$	Pyrogallol	CG, MCG, MCG$_{12}$, MCG$_{20}$	a	
111	18.09	C$_{30}$H$_{46}$O$_4$	472.3546	472.3553	-1.8	495.3438[M + Na]$^+$	24-Hydroxyoleanolic acid	CG, MCG, MCG$_{12}$, MCG$_{20}$	[59]	
112	18.09	C$_{24}$H$_{38}$O$_5$	406.2720	406.2719	0.3	429.2613[M + Na]$^+$; 319.1950[M - CH$_3$ - C$_6$H$_5$O]$^+$; 261.2213[M - 2 × C$_2$H$_4$O$_2$ - C$_2$H$_3$]$^+$	Vitetin trifolin	CG, MCG, MCG$_{12}$, MCG$_{20}$	a	
113	20.14	C$_{31}$H$_{42}$O$_2$	450.3535	450.3498	8.0	473.3428[M + Na]$^+$; 430.2889[M - C$_2$H$_2$]$^+$	Vitamin K$_1$	CG, MCG, MCG$_{12}$, MCG$_{20}$	[60]	
114	20.97	C$_{18}$H$_{28}$O$_3$	278.2224	278.2252	-7.9	277.2151[M - H]$^+$; 232.2172[M - COOH]$^+$	α-Linolenic acid	CG, MCG, MCG$_{12}$, MCG$_{20}$	[61]	
115	21.18	C$_{21}$H$_{30}$O$_3$	354.2758	354.2770	-3.1	377.2650[M + Na]$^+$; 265.2525[M + H]$^+$; 149.1320[M - CH$_2$ - C$_6$H$_5$O]$^+$; 135.1166[M - CH$_2$ - C$_6$H$_5$O]$^+$; 121.1008[M - CH$_2$ - C$_6$H$_5$O]$^+$; 109.1010[M - C$_6$H$_5$O - C$_2$H$_3$]$^+$	β-Monolinolein	CG, MCG, MCG$_{12}$, MCG$_{20}$	[62]	
116	22.11	C$_{18}$H$_{28}$O$_3$	264.2452	264.2453	-0.5	(Z)-9,17-Octadecadienol	Linoleic acid	CG, MCG, MCG$_{12}$, MCG$_{20}$	[63]	
117	22.49	C$_{18}$H$_{26}$O$_2$	280.2386	280.2402	-5.9	279.2313[M - H]$^+$; 234.2325[M - COOH]$^+$	Thymyl isobutyrate	CG, MCG, MCG$_{12}$, MCG$_{20}$	[64]	
118	23.85	C$_{14}$H$_{24}$O$_2$	220.1478	220.1463	5.6	265.1460[M + HCOO]$^-$	9-Octadecenoic acid	CG, MCG, MCG$_{12}$, MCG$_{20}$	a	
119	24.25	C$_{18}$H$_{32}$O$_2$	282.2541	282.2559	-6.3	281.2468[M - H]$^+$; 236.2481[M - COOH]$^+$	Compound K	CG, MCG, MCG$_{12}$, MCG$_{20}$	[40]	
120	24.40	C$_{36}$H$_{64}$O$_3$	622.4454	622.4445	1.6	623.4527[M + H]$^+$; 316.2842[M - OH - Glc - C$_6$H$_5$O]$^+$	Violaxanthin	CG, MCG, MCG$_{12}$, MCG$_{20}$	[65]	
121	24.89	C$_{30}$H$_{50}$O$_2$	600.4219	600.4179	6.7	601.4292[M + H]$^+$; 557.4021[M - C$_2$H$_3$]$^+$	Ethyloleate	CG, MCG, MCG$_{12}$, MCG$_{20}$	a	
122	25.31	C$_{20}$H$_{32}$O$_2$	310.2862	310.2872	-3.2	311.2935[M + H]$^+$; 277.1995[M - C$_2$H$_3$]$^+$	Neoalexanthin	CG, MCG, MCG$_{12}$, MCG$_{20}$	[65]	
123	25.35	C$_{40}$H$_{56}$O$_2$	600.4212	600.4179	5.6	461.0285[M + H]$^+$; 497.3080[M - OH - C$_4$H$_8$O$_2$]$^+$	Bis(2-ethylhexyl) phthalate	CG, MCG, MCG$_{12}$, MCG$_{20}$	a	
124	26.38	C$_{24}$H$_{40}$O$_4$	390.2758	390.2770	-2.8	189.0153[M - C$_2$H$_5$ - C$_6$H$_9$ - C$_4$H$_7$]$^+$; 167.0327[M - 2 × C$_2$H$_7$]$^+$	Quilliac acid	CG, MCG, MCG$_{12}$, MCG$_{20}$	s	
125	28.01	C$_{30}$H$_{48}$O$_3$	486.3334	486.3345	-2.2	509.3226[M + Na]$^+$	Pentadecanol	CG, MCG, MCG$_{12}$, MCG$_{20}$	[66]	
126	29.04	C$_6$H$_{12}$O$_3$	100.0512	100.0524	-10.0	123.0404[M + Na]$^+$				
Figure 2. Cont.
Organic acids and organic acid esters

![Chemical structures of compounds identified in MCG and CG.](image)

Figure 2. Chemical structures of compounds identified in MCG and CG.

For the isomers, they could be compared with the retention time of the standards or distinguished by the characteristic MS fragmentation patterns reported in literature. Taking compounds 82 and 88 as example, both of them had the same protonated ion \([M + HCOO]^−\) at \(m/z\) 991.5464 and 991.5476. In a result, one of them was identified as ginsenoside Rd due to the same retention time, and the other one was tentatively identified as gypenoside XVII because it was matched with the characteristic MS fragmentation pattern of gypenoside XVII reported in the literature [31].

3.2. Biomarker Discovery for Distinguishing MCG and CG

The MS² data of CG and MCG samples were statistically analyzed via PCA and OPLS-DA. As seen in PCA 2D plots (Figure 3), there was no obvious difference among of 4–6-year-old CG samples, but the MCG20 years, MCG12 years and CG4–6 years groups were obviously separated, indicating that these three groups could be differentiated. With the aim of distinguishing MCG from CG, or MCG20 years from MCG12 years, OPLS-DA plot, permutation test, and S-plot, VIP values were obtained to understand which variables were responsible for the separation (Figures 4–6). The variables showing VIP > 1 and \(p < 0.05\) (in \(t\)-test) were considered as potential biomarkers. The robust known biomarkers enabling the differentiation between CG and MCG were discovered and marked in S-plots. In order to systematically evaluate the biomarkers, heatmaps (Figure 7) were generated from these biomarkers. The hierarchical clustering heatmaps, intuitively visualizing the differential levels of potential biomarkers concentration in different ginseng groups, are shown in Figure 7. The larger contents were represented by red squares and smaller values by green squares.

![PCA plots](image)

Figure 3. The PCA of CG and MCG in positive mode (A) and negative mode (B).
4. Discussion

Although MCG and CG both belong to Panax ginseng, their chemical ingredients and pharmacological activities are different due to their significantly different growth environment [3,67]. As we all know, MCG has been regarded as a replacement of wild ginseng. Recently, the UPLC-QTOF-MS/MS-based approach has been developed to distinguish MCG (grown for 15 years) and CG (grown for 4–7 years) [68]. As a result, 40 ginsenosides in both MCG and CG were unambiguously identified and tentatively assigned, and the potential chemical markers identifying different ginseng products were characterised [68]. Additionally, the study on 6–18-year-old Mountain Cultivated Ginseng Leaves (MGL) samples showed that the MGL were obviously divided into three main groups according to different age brackets (6~10, 11~13 and 14~18 years) [7]. Although the sample of the study was the leaf of MCG, it could be indirectly speculated that the MCG roots with different cultivation ages are also different. In order to further systematically compare the similarities and differences at the chemical level between different ages of ginseng, especially to compare the younger...
4. Discussion

Although MCG and CG both belong to Panax ginseng, their chemical ingredients and pharmacological activities are different due to their significantly different growth environment [3, 67]. As we all know, MCG has been regarded as a replacement of wild ginseng. Recently, the UPLC-QTOF-MS/MS-based approach has been developed to distinguish MCG (grown for 15 years) and CG (grown for 4–7 years) [68]. As a result, 40 ginsenosides in both MCG and CG were unambiguously identified and tentatively assigned, and the potential chemical markers identifying different ginseng products were characterised [68]. Additionally, the study on 6–18-year-old Mountain Cultivated Ginseng Leaves (MGL) samples showed that the MGL were obviously divided into three main groups according to different age brackets (6~10, 11~13 and 14~18 years) [7]. Although the sample of the study was the leaf of MCG, it could be indirectly speculated that the MCG roots with different cultivation ages are also different. In order to further systematically compare the similarities and differences at the chemical level between different ages of ginseng, especially to compare the younger

Between the CG4–6 years and MCG12 years groups, the contents of 24-hydroxyoleanolic acid, ginsenoside F3 and palmitoleic acid in MCG12 samples were significantly higher. While, the contents of α-linolenic acid, 9-octadecenoic acid, linoleic acid and panaxydol in all the CG samples were significantly higher.

Between the CG4–6 years and MCG20 years groups, the contents of ginsenoside Re1, -Re2, -Rs1, malonylginsenoside Rb2, -Rf, isomer of malonylginsenoside-Rb1 and quinquenoside R1 in the samples of MCG20 years were higher. On the contrary, the contents of ginsenoside Ro and the isomer of ginsenoside Ro, 12,13,15-trihydroxy-9-octadecenoic acid, linoleic acid, 9-octadecenoic acid, α-linolenic acid, panaxydol were rather higher in CG samples.

Between the MCG12 years and MCG20 years groups, the contents of palmitoleic acid and 24-hydroxyoleanolic acid in MCG12 years samples were significantly high, while the contents of ginsenoside Re1, -Rs1, malonylginsenoside Rb2, -Re2 and isomer of malonylginsenoside Rb1 were rather higher in MCG20 years samples.

Overall, on one hand, the contents of α-linolenic acid, linoleic acid, 9-octadecenoic acid and panaxydol in CG samples were significantly higher than those in all MCG samples. On the other hand, ginsenoside Re1, -Re2, -Rs1, malonylginsenoside Rb2 and isomer of malonylginsenoside Rb1 in MCG20 years samples were really higher than those both in MCG12 years and in all of CG samples, but there is no significant difference between MCG12 years and CG4–6 years samples. The summary with variable identity, VIP and p value were shown in Table 3.
Table 3. The summary table with variable identity, VIP and p value.

Groups for Comparison	Marker Name	VIP Value	p Value
CG4-6 years vs. MCG12 years	α-linolenic acid	1.23	<0.001
	9-octadecenoic acid	2.17	<0.001
	linoleic acid	2.57	<0.001
	panaxydol	1.49	<0.001
	24-hydroxyoleanolic acid	4.13	<0.001
	ginsenoside F3	2.15	<0.001
	palmityoleic acid	1.54	0.037
MCG12 years	ginsenoside Re1	1.60	<0.001
	ginsenoside Re2	1.75	<0.001
	ginsenoside Rs1	1.59	<0.001
	malonylginsenoside Rb2	4.10	<0.001
	ginsenoside Rf	1.83	<0.001
	isomer of malonylginsenoside Rb1	2.30	<0.001
	quinquenoside R1	1.21	<0.001
MCG20 years	ginsenoside Ro	1.39	0.017
	isomer of ginsenoside Ro	2.31	0.022
	12,13,15-trihydroxy-9-octadecenoic acid	1.25	0.003
	linoleic acid	7.08	<0.001
	9-octadecenoic acid	3.45	<0.001
	α-linolenic acid	1.86	<0.001
	panaxydol	1.12	<0.001
CG4-6 years vs. MCG20 years	ginsenoside Re1	1.16	0.002
	ginsenoside Rs1	1.89	0.024
	malonylginsenoside Rb2	2.76	0.026
	ginsenoside Re2	1.60	<0.001
	isomer of malonylginsenoside-Rb1	3.87	<0.001

4. Discussion

Although MCG and CG both belong to *Panax ginseng*, their chemical ingredients and pharmacological activities are different due to their significantly different growth environment [3,67]. As we all know, MCG has been regarded as a replacement of wild ginseng. Recently, the UPLC-QTOF-MS/MS-based approach has been developed to distinguish MCG (grown for 15 years) and CG (grown for 4–7 years) [6]. As a result, 40 ginsenosides in both MCG and CG were unambiguously identified and tentatively assigned, and the potential chemical markers identifying different ginseng products were characterised [6]. Additionally, the study on 6–18-year-old Mountain Cultivated Ginseng Leaves (MGL) samples showed that the MGL were obviously divided into three main groups according to different age brackets (6~10, 11~13 and 14~18 years) [7]. Although the sample of the study was the leaf of MCG, it could be indirectly speculated that the MCG roots with different cultivation ages are also different. In order to further systematically compare the similarities and differences at the chemical level between different ages of ginseng, especially to compare the younger or the older MCG, 4, 5, 6-year-old CG and 12, 20-year-old MCG were chosen as the analytical samples in the present study.

Firstly, based on UNIFI platform, intelligent and automatic workflows, the screening analysis of metabolites in different cultivation ages of ginseng were rapidly performed. As a result, a total of 126 compounds were characterized from CG4-6 years, MCG12 years and MCG20 years samples. Among of them, ginsenosides were the main ingredients. Both CG and MCG had the similar chemical composition, but the components were variously distributed in CG and MCG samples at different contents. That means in CG and MCG, the secondary metabolites had the features of structural diversity and the different content patterns. As far as we know, this is the first time that the comprehensive
screening analysis of MCG_{12\text{ years}} and MCG_{20\text{ years}} samples by using UPLC-QTOF-MSE combined with UNIFI platform. It could provide the scientific data for clarifying the chemical composition of MCG.

Secondly, the combination of LC-MS based metabolomic profiling with multivariate statistical analysis method was used to profile the CG, MCG_{12\text{ years}} and MCG_{20\text{ years}} samples. A total of 17 potential age-dependent markers enabling differentiation among the CG and MCG samples were discovered. (1) There were four robust markers including α-linolenic acid, 9-octadecenoic acid, linoleic acid and panaxydol being the characteristic components for CG samples, that distinguished them from both MCG_{12\text{ years}} and MCG_{20\text{ years}} samples. The results showed that CG samples contained more non-ginsenosides. Both linoleic acid and α-linolenic acid, the main products of the acetate-malonate pathway, are two essential fatty acids necessary for health. Linoleic acid is used in the biosynthesis of arachidonic acid and thus some prostaglandins, leukotrienes, and thromboxane [68,69]. Panaxydol, one of the C17 polycyclic compounds, originates from acetyl-CoA/malonyl-CoA via fatty acids with crepenynate as the intermediate [70]. It is considered a potential antitumor agent due to its significant anticancer activity [71]. (2) In CG samples, there were three other characteristic components such as ginsenoside Ro, the isomer of ginsenoside Ro, and 12,13,15-trihydroxy-9-octadecenoic acid, that could be used to differentiate them from MCG_{20\text{ years}} samples. From this, we could draw a conclusion that pentacyclic triterpenoids decreased significantly in older MCG samples. (3) Five robust biomarkers including ginsenoside Re$_1$, -Re$_2$, -Rs$_1$, malonylginsenoside Rb$_2$ and isomer of malonylginsenoside Rb$_1$ were found to enable differentiation of MCG_{20\text{ years}} from CG and MCG_{12\text{ years}} samples. These five compounds might be used for rapid identification of MCG_{20\text{ years}} samples. A proposed biosynthetic pathway of ginsenosides is as follows: with the action of squalene epoxidase, squalene was converted to 2,3-oxidosqualene. Dammarenes can be synthesized by dammarenediolsynthase, and oleananes by β-amyrin synthase [72]. Ginsenosides were found to have both antimicrobial and antifungal properties and the molecules are naturally bitter-tasting, discouraging insects and other animals from consuming the plant, so ginsenosides likely serve as mechanisms for plant defense [73,74]. (4) In MCG_{20\text{ years}} samples, another two markers, ginsenoside Rf and quinquenoside R$_1$, were discovered that distinguished them from all CG samples. (5) In MCG_{12\text{ years}} samples, 24-hydroxyoleanolic acid and palmitoleic acid were the two robust markers for distinguished from both CG and MCG_{20\text{ years}} samples. These two compounds might be used for rapid identification of MCG_{12\text{ years}} samples. Palmitoleic acid is biosynthesized from palmitic acid by the action of the enzyme stearoyl-CoA desaturase-1, a key enzyme in fatty acid metabolism [75]. (6) Ginsenoside F$_3$ was another marker for MCG_{12\text{ years}} samples that differentiated them from CG samples. However, there are still some unresolved issues. For example, as shown in BPI chromatograms, though 126 compounds were identified, there are still some unidentified components. Further research should be carried out based on the formula of these unknown compounds.

5. Conclusions

By combining the UPLC-Q/TOF-MSE and UNIFI platform, 126 chemical components with various structural types, such as triterpenoids, flavonoids, organic acids and organic acid esters, etc., were characterized or tentatively identified from CG$_{4–6\text{ years}}$, MCG$_{12\text{ years}}$ and MCG$_{20\text{ years}}$ samples for the first time. All the CG and MCG samples had the similar chemical composition, but there were significant differences in the content of each component. Further nontarget metabolomic analysis combined with multivariate statistical analysis showed that CG$_{4–6\text{ years}}$, MCG$_{12\text{ years}}$ and MCG$_{20\text{ years}}$ samples were obviously divided into three different groups. A total of 17 potential age-dependent markers enabling differentiation among the CG and MCG samples were discovered. Among of these markers, four robust markers, including α-linolenic acid, 9-octadecenoic acid, linoleic acid and panaxydol, could be the characteristic components for differentiation of CG from all other MCG samples. Five robust markers including ginsenoside Re$_1$, -Re$_2$, -Rs$_1$, malonylginsenoside Rb$_2$ and isomer of malonylginsenoside Rb$_1$ were found to enable differentiate MCG$_{20\text{ years}}$ samples from all other samples, while 24-hydroxyoleanolic acid and palmitoleic acid were the robust markers for
distinguishing MCG_{12\text{years}} samples from all the CG samples and MCG_{20\text{years}} samples. The proposed approach could be applied to directly distinguish MCG root ages, which is an important criterion for evaluating the quality of MCG. The results will provide the data for the deficient study on the chemical constituents of MCG and provide reference for the quantitative determination in the quality control criterion of MCG.

Author Contributions: The individual contributions of authors are specified as following: Data curation, InvestigationWriting-original draft, H.Z.; Methodology, Software, H.L.; Formal analysis, Writing-original draft, J.T.; Components identification, Writing editing, C.W.; Conceptualization, Methodology, H.W.; Investigation, E.W.; Data curation, Q.D.; Writing-review and editing, Y.L.; Funding acquisition, P.L.; Supervision, J.L.

Funding: This research was supported by the Jilin Province Science and Technology Department for Science and Technology Development Project of Jilin Province [No. 20160307008YY].

Conflicts of Interest: The authors declare that they have no conflict of interest concerning this article.

References

1. Liu, D.; Li, Y.G.; Xu, H.; Sun, S.Q.; Wang, Z.T. Differentiation of the root of Cultivated Ginseng, Mountain Cultivated Ginseng and Mountain Wild Ginseng using FT-IR and two-dimensional correlation IR spectroscopy. *J. Mol. Struct.* 2008, 883, 228–235. [CrossRef]

2. Jung, C.H.; Seog, H.M.; Choi, I.W.; Cho, H.Y. Antioxidant activities of cultivated and wild Korean ginseng leaves. *Food Chem.* 2005, 92, 535–540. [CrossRef]

3. Kim, S.J.; Shin, S.S.; Seo, B.I.; Je, S.Y. Effect of mountain grown ginseng radix, mountain cultivated ginseng radix, and cultivated ginseng radix on apoptosis of HL-60 cells. *J. Herb.* 2004, 19, 19–41.

4. Pan, H.Y.; Qu, Y.; Zhang, J.K.; Kang, T.G.; Dou, D.Q. Antioxidant activity of ginseng cultivated under mountainous forest with different growing years. *J. Ginseng Res.* 2013, 37, 355–360. [CrossRef] [PubMed]

5. Xiao, D.; Yue, H.; Xiu, Y.; Sun, X.L.; Wang, Y.B.; Liu, S.Y. Accumulation characteristics and correlation analysis of five ginsenosides with different cultivation ages from different regions. *J. Ginseng Res.* 2015, 39, 338–344. [CrossRef] [PubMed]

6. Xu, X.F.; Cheng, X.L.; Lin, Q.H.; Li, S.S.; Jia, Z.; Han, T.; Lin, R.C.; Wang, D.; Wei, F.; Li, X.R. Identification of mountain-cultivated ginseng and cultivated ginseng using UPLC/oa-TOF MSE with a multivariate statistical sample-profiling strategy. *J. Ginseng Res.* 2016, 40, 344–350. [CrossRef] [PubMed]

7. Chang, X.W.; Zhang, J.J.; Li, D.K.; Zou, D.Z.; Zhang, Y.L.; Wang, J.C.; Hu, B.; Ju, A.C.; Ye, Z.L. Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain cultivated ginseng leaves using UHPLC/QTOF-MS. *J. Pharm. Biomed. Anal.* 2017, 141, 108–122. [CrossRef] [PubMed]

8. Corthout, J.; Naessens, T.; Apers, S.; Vlietinck, A.J. Quantitative determination of ginsenosides from *Panax ginseng* roots and ginseng preparations by thin layer chromatography-densitometry. *J. Pharm. Biomed.* Anal. 1999, 21, 187–192. [CrossRef]

9. Wei, S.; Wang, Y.T.; Li, J.; Zhang, H.Q.; Ding, L. Investigation of ginsenosides in different parts and ages of *Panax ginseng*. *Food Chem.* 2007, 102, 664–668.

10. Yong, E.C.; Yong, S.K.; Yi, M.J.; Park, W.G.; Yi, J.S.; Chun, S.R.; Han, S.S.; Lee, S.J. Physiological and chemical characteristics of field-and mountain-cultivated ginseng roots. *J. Plant Biol.* 2007, 50, 198–205.

11. Wu, W.; Jiao, C.X.; Li, H.; Ma, Y.; Jiao, L.L.; Liu, S.Y. LC-MS based metabolic and metabonomic studies of *Panax ginseng*. *Phytochem. Anal.* 2015, 29, 331–340. [CrossRef] [PubMed]

12. Qiu, S.; Yang, W.Z.; Yao, C.L.; Qiu, Z.D.; Shi, X.J.; Zhang, J.X.; Hou, J.J.; Wang, Q.R.; Wu, W.Y.; Guo, D.A. Nontargeted metabolomic analysis and “commercial-homophyletic” comparison-induced biomarkers verification for the systematic chemical differentiation of five different parts of *Panax ginseng*. *J. Chromatogr. A* 2016, 183, 78–87. [CrossRef] [PubMed]

13. Pace, R.; Martinelli, E.M.; Sardone, N.; Combarieu, E.D.E. Metabolomic evaluation of ginsenosides distribution in Panax genus (*Panax ginseng* and *Panax quinquefolius*) using multivariate statistical analysis. *Fitoterapia* 2015, 101, 80–91. [CrossRef] [PubMed]

14. Wang, H.P.; Liu, Y.; Chang, C.; Xiao, H.B. Screening Specific Biomarkers of Herbs Using a Metabolomics Approach: A Case Study of *Panax ginseng*. *Sci. Rep.* 2017, 7, 1–9. [CrossRef] [PubMed]
15. Chang, X.W.; Li, D.K.; Wang, T.; Wu, Y.C.; Zhao, Y.; Zhou, D.Z.; Zhang, T.; Ye, Z.L. Application of metabolomics approach to study of different parts of Mountain Cultivated Ginseng using UHPLC-QTOF/MS. Acta Pharm. Sin. B 2016, 51, 1609–1615.

16. In, G.; Seo, H.K.; Park, H.W.; Jang, K.H. A Metabolomic Approach for the Discrimination of Red Ginseng Root Parts and Targeted Validation. Molecules 2017, 22, 471. [CrossRef] [PubMed]

17. Shin, J.S.; Park, H.W.; In, G.; Seo, H.K.; Won, T.H.; Jang, K.H.; Cho, B.G.; Han, C.K.; Shin, J.H. Metabolomic approach for discrimination of four- and six-year-old red ginseng (Panax ginseng) using UPLC-QToF-MS. Chem. Pharm. Bull. 2016, 64, 1293–1303. [CrossRef]

18. Kim, N.; Kim, K.; Choi, B.Y.; Lee, D.H.; Shin, Y.S.; Bang, K.H.; Cha, S.W.; Lee, J.W.; Choi, H.K.; Jang, D.S.; et al. Metabolomic approach for age discrimination of Panax ginseng using UPLC-Q-TOF MS. J. Agric. Food Chem. 2011, 59, 10435–10441. [CrossRef]

19. Zhang, F.X.; Li, M.; Qiao, L.R.; Yao, Z.H.; Li, C.; Shen, X.Y.; Wang, Y.; Yu, K.; Yao, X.S.; Dai, Y. Rapid characterization of Ziziphi Spinosae Semen by UPLC/Qtof MS with novel informatics platform and its application in evaluation of two seeds from Ziziphus species. J. Pharm. Biomed. Anal. 2016, 122, 59–80. [CrossRef]

20. Wang, C.Z.; Zhang, N.Q.; Wang, Z.Z.; Qi, Z.; Zhu, H.L.; Zheng, B.Z.; Li, P.Y.; Liu, J.P. Nontargeted Metabolomic Analysis of Four Different Parts of Platycodon grandiflorum Grown in Northeast China. Molecules 2017, 22, 1280. [CrossRef]

21. Wang, Y.R.; Wang, C.Z.; Lin, H.Q. Discovery of the Potential Biomarkers for Discrimination between Hedyotis diffusa and Hedyotis corymbosa by UPLC-QTOF/MS Metabolome Analysis. Molecules 2018, 23, 1525. [CrossRef] [PubMed]

22. National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, 2015 Version; China Medical Science and Technology Press: Beijing, China, 2015.

23. Koh, L.H.; Lau, A.J.; Chan, C.Y. Hydrophilic interaction liquid chromatography with tandem mass spectrometry for the determination of underivatized dencichine (β-N-oxalyl-l-α,β-diaminopropionic acid) in Panax medicinal plant species. Rapid Commun. Mass Spectrom. 2005, 19, 1237–1244. [CrossRef] [PubMed]

24. Tüting, W.; Adden, R.; Mischnick, P. Fragmentation pattern of regioselectively O-methylated maltooligosaccharides in electrospray ionisation-mass-spectrometry/collision induced dissociation. Int. J. Mass Spectrom. 2004, 232, 107–115. [CrossRef]

25. Wang, H.; Sun, H.; Zhang, A.; Li, Y.; Wang, L.; Shi, H.; Li Dizou, X.; Wang, X. Rapid identification and comparative analysis of the chemical constituents and metabolites of Phellodendri amurenensis cortex and Zhibai dihuang pill by ultra-performance liquid chromatography with quadrupole TOF-MS. J. Sep. Sci. 2013, 36, 3874–3882. [PubMed]

26. Chen, M.L.; Chang, W.Q.; Zhou, J.L.; Yin, Y.H.; Xia, W.R.; Liu, J.R.; Liu, L.F.; Xin, G.Z. Comparison of three officinal species of Callicarpa based on a biochemome profiling strategy with UHPLC-IT-MS and chemometrics analysis. J. Pharm. Biomed. Anal. 2017, 145, 666–674. [CrossRef]

27. Fuhrer, T.; Heer, D.; Begemann, B.; Zamboni, N. High-throughput, accurate mass metabolome profiling of cellular extracts by flow injection-time-of-flight mass spectrometry. Anal. Chem. 2011, 83, 7074–7080. [CrossRef]

28. Song, W.; Qiao, X.; Chen, K.; Wang, Y.; Ji, S.; Feng, J.; Li, K.; Lin, Y.; Ye, M. Biosynthesis-Based Quantitative Analysis of 151 Secondary Metabolites of Licorice to Differentiate Medicinal Glycyrrhiza Species and Their Hybrids. Anal. Chem. 2017, 89, 3146–3153. [CrossRef]

29. Li, Y.; Li, C.; Yu, J.; Gao, Y.; Zhao, Y.; Xue, D.; Zhang, G.Q.; Chai, Y.F.; Ke, Y.; Zhang, H. Rapid separation and characterization of comprehensive ingredients in Yangxinshi tablet and rat plasma by ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. J. Liq. Chromatogr. Relat. Technol. 2017, 59, 339–354. [CrossRef]

30. Wang, H.Y.; Hua, H.Y.; Liu, X.Y.; Liu, J.H.; Yu, B.Y. In vitro biotransformation of red ginseng extract by human intestinal microflora: Metabolites identification and metabolic profile elucidation using LC-Q-TOF/MS. J. Pharm. Bio. Anal. 2014, 98, 296–306. [CrossRef]

31. Yang, W.Z.; Ye, M.; Qiao, X.; Liu, C.F.; Miao, W.J.; Bo, T.; Tao, H.Y.; Guo, D.A. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Anal. Chim. Acta 2012, 739, 56–66.
32. Jaiswal, Y.; Liang, Z.; Ho, A.; Chen, H.; Zhao, Z. A Comparative Tissue-specific Metabolite Analysis and Determination of Protodioscin Content in Asparagus Species used in Traditional Chinese Medicine and Ayurveda by use of Laser Microdissection, UHPLC-QTOF/MS and LC-MS/MS. *Phytochem. Anal.* 2014, 25, 514–528. [CrossRef] [PubMed]

33. Li, H.; Yao, W.; Liu, Q.; Xu, J.; Bao, B.; Shan, M.Q.; Cao, Y.D.; Cheng, F.F.; Ding, A.; Zhang, L. Application of UHPLC-ESI-Q-TOF-MS to Identify Multiple Constituents in Processed Products of the Herbal Medicine Ligustri Lucidi Fructus. *Molecules* 2017, 22, 689. [CrossRef]

34. Wu, W.; Sun, L.; Zhang, Z.; Guo, Y.Y.; Liu, S.Y. Profiling and multivariate statistical analysis of *Panax ginseng* based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. *J. Pharm. Bio. Anal.* 2015, 107, 141–150. [CrossRef]

35. Yang, L.; Ying, P.; Wang, M.Y.; Zhou, G.S.; Zhang, Y.L.; Li, X. Rapid screening and identification of the differences between metabolites of Cistanche deserticola, and *C*. tubulosa, water extract in rats by UPLC-Q-TOF-MS combined pattern recognition analysis. *J. Pharm. Bio. Anal.* 2016, 131, 364–372.

36. Zhang, Y.; Cheng, Y.; Liu, Z.; Ding, L.Q.; Qiu, T.Y.; Chai, L.W.; Qiu, F.; Wang, Z.Z.; Xiao, W.; Zhao, L.S.; Chen, X.H. Systematic screening and characterization of multiple constituents in Guizhi Fuling capsule and metabolic profiling of bioactive components in rats using ultra-high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. *J. Chromatogr. B* 2017, 1061, 474–486. [CrossRef]

37. Tang, S.Y.; Liu, S.; Liu, Z.Q.; Song, F.R.; Liu, S.Y. Analysis and Identification of the Chemical Constituents of Ding-Zhi-Xiao-Wan Prescription by HPLC-IT-MSn and HPLC-Q-TOF-MS. *Chinese J. Chem.* 2015, 33, 451–462. [CrossRef]

38. Chen, L.L.; Qi, J.; Chang, Y.X.; Zhu, D.N.; Yu, B.Y. Identification and determination of the major constituents in Traditional Chinese Medicinal formula Danggui-Shaoyao-San by HPLC-DAD-ESI-MS/MS. *J. Pharm. Biomed. Anal.* 2009, 50, 127–137. [CrossRef] [PubMed]

39. Chen, Y.J.; Xu, L.; Zhao, Y.C.; Zhao, Z.Z.; Chen, H.B.; Yi, T.; Qin, M.J.; Liang, Z.T. Tissue-specific metabolite profiling and quantitative analysis of ginsenosides in Panax quinquefolium, using laser microdissection and liquid chromatography–quadrupole/time of flight-mass spectrometry. *Chem. Cent. J.* 2015, 9, 66–72. [CrossRef]

40. Qiu, S.; Yang, W.Z.; Shi, X.J.; Yao, C.L.; Yang, M.; Liu, X.; Jiang, B.H.; Wu, W.Y.; Guo, D.A. A green protocol for efficient discovery of novel natural compounds: Characterization of new ginsenosides from the stems and leaves of *Panax ginseng* as a case study. *Anal. Chim. Acta* 2015, 893, 65–76. [CrossRef] [PubMed]

41. Dan, M.; Su, M.M.; Gao, X.F.; Zhao, T.; Zhao, A.H.; Xie, G.X.; Qiu, Y.P.; Zhou, M.M.; Liu, Z.; Jia, W. Metabolite profiling of Panax notoginseng using UPLC-ESI-MS. *Phytochemistry* 2008, 69, 2237–2244. [CrossRef]

42. Wu, Q.I.; Wang, M.F.; Simon, J.E.; Yu, S.C.; Xiao, P.G.; Ho, C.T. Studies on the Chemical Constituents of Loquat Leaves (Eriobotrya japonica). *ACS Sym.* 2003, 28, 292–306.

43. Wang, L.L.; Han, L.F.; Yu, H.S.; Sang, M.M.; Liu, E.W.; Zhang, Y.; Fang, S.M.; Wang, T.; Gao, X.M. Analysis of the constituents in “Zhu She Yong Xue Shuan Tong” by Ultra High Performance Liquid Chromatography with Quadrupole Time-of-Flight Mass Spectrometry Combined with Preparative High Performance Liquid Chromatography. *Molecules* 2015, 20, 20518–20537. [CrossRef] [PubMed]

44. Li, S.L.; Lai, S.F.; Song, J.Z.; Qiao, C.F.; Liu, X.; Zhou, Y.; Cai, H.; Cai, B.C.; Xu, H.X. Decoction-induced chemical transformations and global quality of Du-Shen-Tang, the decoction of ginseng evaluated by UPLC-Q-TOF-MS/MS based chemical profiling approach. *J. Pharm. Biomed. Anal.* 2010, 53, 946–957. [CrossRef] [PubMed]

45. Liang, Z.T.; Chen, Y.J.; Liang, X.; Qin, M.J.; Yi, T.; Chen, H.B.; Zhao, Z.Z. Localization of ginsenosides in the rhizome and root of *Panax ginseng*, by laser microdissection and liquid chromatography–quadrupole/time of flight-mass spectrometry. *J. Pharm. Biomed. Anal.* 2015, 105, 121–133. [CrossRef]

46. Peng, J.; Dou, S.S.; Liu, L.; Zhang, W.D.; Chen, Z.L.; Xu, R.L.; Ding, J.M. Identification of Multiple Constituents in the TCM-Formula Shexiang Baoxin Pill by LC Coupled with DAD-ESI-MS/MS. *Chromatographia* 2009, 70, 133–142.

47. Murae, T.; Sugie, A.; Moriyama, Y.; Tsuyuki, T.; Takahashi, T. Mass spectra of the bitter principles from Picrasma ailanthoides Planchon. *J. Mass Spectrom.* 1974, 8, 291–301. [CrossRef]

48. Castro, O.N.; Benites, J.L.; Rodilla, J.; Santiago, J.; Simirgiotis, M.; Sepulveda, B.; Areche, C. Metabolomic Analysis of the Lichen *Everniopsis trulla* Using Ultra High Performance Liquid Chromatography-Quadrupole-Orbitrap Mass Spectrometry (UHPLC-Q-OT-MS). *Chromatographia* 2017, 80, 1–7. [CrossRef]
49. Peng, L.; Yu, H.S.; Zhang, L.J.; Song, X.B.; Kang, L.P.; Liu, J.Y.; Zhang, J.; Cao, M.; Yu, K.; Kang, T.J.; Ma, B.P. A rapid method for chemical fingerprint analysis of Panax notoginseng powders by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Chin. J. Nat. Med. 2015, 13, 471–480.

50. Lai, C.M.; Li, S.P.; Yu, H.; Wan, K.W.; Wang, Y.T. A rapid HPLC-ESI-MS/MS for qualitative and quantitative analysis of saponins in “XUESETONG” injection. J. Pharm. Biomed. Anal. 2006, 40, 669–678. [CrossRef] [PubMed]

51. Sun, J.H.; Chen, P. Differentiation of Panax quinquefolius, grown in the USA and China using LC/MS-based chromatographic fingerprinting and chemometric approaches. Anal. Bioanal. Chem. 2011, 399, 1877–1889. [CrossRef]

52. Wan, J.Y.; Wang, C.Z.; Liu, Z.; Zhang, Q.H.; Musch, M.; Bissonnette, M.; Chang, E.B.; Li, P.; Qi, L.W.; Yuan, C.S. Determination of American ginseng saponins and their metabolites in human plasma, urine and feces samples by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Chromatogr. B 2016, 62, 1015–1016. [CrossRef] [PubMed]

53. Qi, L.W.; Wang, H.Y.; Zhang, H.; Wang, C.Z.; Li, P.; Yuan, C.S. Diagnostic ion filtering to characterize ginseng saponins by rapid liquid chromatography with time-of-flight mass spectrometry. J. Chromatogr. A 2012, 1230, 93–99. [CrossRef] [PubMed]

54. Xu, G.H.; Choo, S.J.; Ryoo, I.J.; Kim, Y.H.; Paek, K.Y.; Yoo, I.D. Polycyclicnes from the tissue cultured adventitious roots of Panax ginseng C.A. meyer. Nat. Prod. Sci. 2008, 14, 177–181.

55. Yang, H.; Liu, L.; Gao, W.; Liu, K.; Qi, L.W.; Li, P. Direct and comprehensive analysis of ginsenosides and diterpene alkaloids in Shenfu injection by combinatory liquid chromatography-mass spectrometric techniques. J. Pharm. Biomed. Anal. 2014, 92, 13–21. [CrossRef] [PubMed]

56. Yan, L.; Guan, T.Y.; Zhou, Y.Y.; Liu, Y.N.; Xing, L.; Zheng, X.; Dai, C.; Du, P.; Rao, T.; Zhou, L.J.; Yu, X.Y.; Hao, K.; Xie, L.; Wang, G.J. Effect of mobile phase additives on qualitative and quantitative analysis of ginsenosides by liquid chromatography hybrid quadrupole-time of flight mass spectrometry. J. Chromatogr. A 2013, 1297, 29–36.

57. Yang, X.H.; Cheng, X.L.; Qin, B.; Cai, Z.Y.; Cai, X.; Liu, S.; Wang, Q.; Qin, Y. Ultra-high performance liquid chromatography coupled with quadrupole/time of flight mass spectrometry based chemical profiling approach for the holistic quality control of complex Kang-Jing formula preparations. J. Pharm. Biomed. Anal. 2016, 124, 319–336. [CrossRef] [PubMed]

58. Coqueiro, A.; Regasini, L.O.; Leme, G.M.; Polese, L.; Nogueira, C.T.; Cistia, M.D.; Graminha, M.A.S. Leishmanicidal activity of Brosimum glaziovii (Moraceae) and chemical composition of the bioactive fractions by using high-resolution gas chromatography and GC-MS. J. Braz. Chem. Soc. 2014, 25, 1839–1847.

59. Wang, C.Z.; Zhang, N.Q.; Wang, Z.Z.; Qi, Z.; Zheng, B.Z.; Li, P.Y.; Liu, J.P. Rapid characterization of chemical constituents of Platycodon grandiflorum and its adulterant Adenophora stricta by UPLC-QTOF-MS/MS. J. Mass Spectrom. 2017, 52, 643–657. [CrossRef] [PubMed]

60. Huang, B.F.; Zheng, F.F.; Fu, S.S.; Yao, J.H.; Tao, B.H.; Ren, Y.P. UPLC-ESI-MS/MS for determining trans-and cis-vitamin K1 in infant formulas: Method and applications. Eur. Food Res. Tech. 2012, 235, 873–879. [CrossRef]

61. Hurtadofernández, E.; Pacchiarotta, T.; Gómezromero, M. Ultra high performance liquid chromatography-time of flight mass spectrometry for analysis of avocado fruit metabolites: Method evaluation and applicability to the analysis of ripening degrees. J. Chromatogr. A 2011, 1218, 7723–7738. [CrossRef]

62. Doshi, G.M.; Nalawade, V.V.; Mukadam, A.S. Structural elucidation of chemical constituents from Benincasa hispida seeds and Carissa congestaroots by gas chromatography: Mass spectroscopy. Pharmacognosy Res. 2015, 7, 282–293. [CrossRef] [PubMed]

63. Montserrat, R.A.; Liliana, V.; Stefania, V.; Josep, M.G.; Elvira, L.T.; Susana, B. Characterisation of volatile composition of white salsify (Tragopogon porrorolius L.) by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation-extraction (SDE) coupled to GC-MS. Food Chem. 2011, 129, 557–564.

64. Mathela, C.S.; Singh, K.K.; Gupta, V.K. Synthesis and in vitro antibacterial activity of thymol and carvacrol derivatives. Acta Pol. Pharm. 2010, 67, 375–380. [PubMed]

65. Wang, N.; Manabe, Y.K.; Sugawara, T.; Paul, N.A.; Zhao, J. Identification and biological activities of carotenoids from the freshwater alga Oedogonium intermedium. Food Chem. 2017, 20, 247–255. [CrossRef] [PubMed]
66. Lee, M.J.; Chung, I.M.; Kim, H.J.; Jung, M.J. High resolution LC–ESI-TOF-mass spectrometry method for fast separation, identification, and quantification of 12 isoflavones in soybeans and soybean products. Food Chem. 2015, 176, 254–262. [CrossRef] [PubMed]
67. Hwang, J.W.; Oh, J.H.; Yoo, H.S.; Lee, Y.W.; Cho, C.K.; Kwon, K.R.; Yoon, J.H.; Park, J.S.; Her, S.; Lee, Z.W. Mountain ginseng extract exhibits anti-lung cancer activity by inhibiting the nuclear translocation of NF-κB. Am. J. Chin. Med. 2012, 40, 187–202. [CrossRef] [PubMed]
68. Carvalho, E.B.T.; Melo, I.L.P.; Mancini-Filho, J. Chemical and physiological aspects of isomers of conjugated fatty acids. Food Sci. Technol. 2010, 30, 295–307. [CrossRef]
69. Harwood, J.L. Recent advances in the biosynthesis of plant fatty acids. Biochim. Biophysica. Acta 1996, 1301, 7–56. [CrossRef]
70. Kim, H.S.; Lim, J.M.; Kim, J.Y.; Park, S.; Sohn, J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int. J. Cancer. 2016, 138, 1432–1441. [CrossRef]
71. Nihat, K.; Elena, O.; Nicholas, S.; Huber, C.; Luis, M.; Bonfill, M. Biosynthesis of Panaxynol and Panaxydol in Panax ginseng. Molecules 2013, 18, 7686–7698.
72. Liang, Y.; Zhao, S. Progress in understanding of ginsenoside biosynthesis. Plant Biol. 2010, 10, 415–421. [CrossRef] [PubMed]
73. Kim, Y.J.; Zhang, D.; Yang, D.C. Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv. 2015, 33, 717–735. [CrossRef] [PubMed]
74. Leung, K.W.; Wong, A.S. Pharmacology of ginsenosides: A literature review. Chin. Med. 2010, 5, 20–27. [CrossRef] [PubMed]
75. Velisek, J.; Cejpek, K. Biosynthesis of food constituents: Lipids. 1. Fatty acids and derived compounds—A review. Czech J. Food Sci. 2006, 24, 193–216. [CrossRef]

Sample Availability: Samples of the compounds are available from the authors.