BALLISTIC RESISTANCE TESTS OF MULTI-LAYER PROTECTIVE PANELS

BADANIA ODPORNOŚCI NA PRZEBICIE OSŁON O STRUKTURZE WIELOWARSTWOWEJ*

Modern light-weight ballistic amours are usually multi-layer structures with low density. The aim of the study was to evaluate the possibility of using multi-layer structures for lightweight armour systems which may be applied as bulletproof ballistic panels of combat helicopters and other lightweight military equipment. The tested multi-layer structures were prepared on the basis of aramid fabrics, thin sheets of 2024-T3 aluminium alloy and Al₂O₃ and SiC ceramics. Additionally, the influence of adhesive connections between the components of the ballistic panels on their protective properties has been assessed. Absorbing energy of a spherical projectile was determined with the use of a laboratory stand consisted of a one-stage helium gas gun and a digital high speed camera. A penetration study on the selected multi-layer panels was also carried out with the use of Parabellum ammunition. It has been shown that the laminated structures composed of thin layers of metal and aramid fabric indicate a lower absorb energy-to-composite basic weight ratio than analogous ratios for metal sheets or fabrics used to produce laminated structures. Similarly, the sandwiches of loose aramid fabrics demonstrate greater ballistic resistance compared to the polymer composites made of such fabrics. There has been also demonstrated the desirability of the use of a ceramic component as a separate layer in which ceramic segments are glued between two layers of a thin metal sheet.

Keywords: ballistic tests, terminal ballistics, multi-layer armour, penetration resistance.

1. Introduction

Multi-layer armour systems are used increasingly for many military and civil applications, for instance, in lightweight ships, vehicles, airplane protection or body armours [10, 18, 23]. In the past, the armours were typically monolithic and made of high-strength steel plates. However, over the recent few decades, there has been observed a tendency to apply armours providing maximum ballistic protection at minimum weight. Among many original concepts of ballistic protection systems, there should be distinguished multilayer lightweight armours that seems to be the most perspective ones [10, 14, 18, 23]. These armour systems consist of a number of layers performing a specific role in destroying a projectile and absorbing the impact energy. In general, there can be distinguished hard and soft layers. First of them are made mostly of high-strength light alloy or ceramic and are responsible for the “wear” of the projectile and dissipation of the projectile kinetic energy during the penetration process. The second type of layers called “soft” or “low mechanical impedance” act as a shock absorber and a medium which captures fragments resulting from destruction of both the projectile and the hard armour layer.

A modern lightweight armour is a system of several or even more than ten layers of different materials, combined or separated, forming a so-called “multi-layered composite structure”. The type of the layers materials used and their thickness and a structure system determine the protective properties of a given armour. The simplest structure configuration of a modern light-weight armour consists of three layers, i.e., a front ceramic layer placed directly on a soft layer supported by the light alloy or a fibre composite layer (support layer).

The ceramic layers are usually made of aluminium oxide (Al₂O₃), silicon carbide (SiC) and boron carbide (B₄C) [10, 18, 21]. As materials applied for light-weight armours, there were also tested silicon nitride (Si₃N₄), titanium diboride (TiB₂), aluminum nitride (AlN), stator (SiAlON), glasses [4, 10, 18] and ceramic composites reinforced with metal or intermetallic phases [7]. For technological reasons, ce-
ramic armour layers are made of segments fastened to the support. As a support layer - in the case of modern light-weight armours - high strength elastomers (e.g. rubber, synthetic elastomers, polyurea, hardener Z1. The application of epoxy adhesive, instead of a saturant, resulted from the fact that the used aramid fabrics are not practically possible to be impregnated and typical saturants used to impregnate the fabrics are characterized by worse adhesion to metals as compared with adhesives.

Before being glued, the sheets surface were prepared through abrasion with the use of an abrasive cloth (50 grit size) attached to a sponge and washing with petroleum cleaner. There were also made attempts of sandblasting of the sheets surfaces, however it was abandoned because of plastic sheets deformations and, consequently, the problems with gluing them on the whole surface. The adhesive layers in the joints of the specimens were pre-cured at room temperature using surface pressures of 0.05 MPa for 24 hours and subsequently for 6 hrs at 60 °C. As a result, the raw plates with the dimensions of 150 × 250 mm were obtained and afterwards, with the use of an abrasive water jet technology, they were cut into the plates in the shape and with the dimensions shown in Fig. 1.

The cut-out specimens of the multi-layer armours were mounted into a steel frame (Fig. 2b) which was then positioned in the vice opposite the muzzle of the helium gas gun (Fig. 2a). The ballistic resistance of the panels was tested by shooting at the specimens with the spherical steel projectiles of an 8 mm diameter placed into Teflon sabots (Fig. 3). During the shooting at the light-weight armours specimens, the ball trajectory was recorded with the use of a digital high speed camera (Phantom v12). The camera observation area was selected as to include both the space in front of and behind the armour (Fig. 4). Owing to such a recording configuration, it was possible to obtain the experimental data based on which the projectile velocity before the impact into the target and after its perforation was able to be calculated. As a measure of ballistic resistance, there was accepted the value of the energy absorbed by the armour during its perforation, in short called as the absorbing energy (E_{abs}) – a difference of kinetic energies of the projectile before and after the perforation of the armour specimen.
The first stage of the ballistic tests aimed at comparing the ballistic resistance of three configurations of the protective panels made of AW 2024-T3 alloy, i.e. the sheet with thickness of 3 mm, a package of 3 mm thickness formed from ten metal sheets with thickness of 0.3 mm and packages consisting of two and three metal sheets with thickness of 3 mm each. The purpose of the experiment was to assess if the sheets packages are characterized with higher ballistic resistance compared with the uniform plates, and whether the absorbing energy depends linearly on the protective panel thickness. The energy was calculated from equation (1).

\[E_{abs} = \frac{m(V_1^2 - V_2^2)}{2} \]

where: \(E_{abs} \) – absorbing energy, \(m \) – ball mass, \(V_1 \) – ball velocity before the impact, \(V_2 \) – residual velocity

The research results are shown in Table 1. The absorbing energy-to-the package thickness ratio of the tested specimens was similar regardless of its construction. The difference between absorb energy of the metal sheet and the package of ten metal sheets with the same thickness was equal to 2.5%. With the increase of thickness of the package, the absorbing energy-to-the unit thickness ratio decreased slightly (about 8%, compared with a 3 mm sheet and a three-sheet package of the same thickness of 3 mm each).

The second stage of the dynamic tests involved research of aramid-epoxy composites consisting of layers of different aramid fabrics bonded with Epidian 57/Z1 adhesive. Additionally, the armour panel obtained by gluing 7 XPS102 fabrics were tested. As a result, the specimens of armour composed of the same number of layers as previously prepared aramid-epoxy laminate (L XPS102) were obtained. The research results are shown in Table 2.

The absorbing energy in the ballistic test relative to the basic weight of the tested laminates proved to be comparable to absorbing energy of AW 2024-T3 aluminum alloy sheet. Considering the four tested fabrics, XPS102 fabric is characterized with the best protective properties. The absorbing energy of the loose XPS102 fabric (stitching on the specimen edge) was almost two times higher than the puncture energy of the laminate made of this fabric.

The next stage concerned the FML type composites consisting of alternately arranged layers of thin metal sheets (8 layers) and aramid fabric (7 layers) adhesive bonded using Epidian 57/Z1 adhesive. All the fabrics were adhesive bonded to the AW 2024-T3 alloy sheets, and additionally the XPS102 fabric bonded to the stainless steel sheets. The results are presented in Table 3.
The bonded layer of SiC covered with one additional layer of carbon fabric saturated with Epidian 57/Z1 adhesive. In the case of ceramic – aramid – metal panels, shooting tests with the use of a steel ball and a helium gas gun proved no perforation of two of the tested specimens (Tab. 4). Therefore, for comparative purposes, two remaining specimens were tested for ballistic resistance using Parabellum pistol bullets (kinetic energy of a Parabellum bullet is equal to 450 J, which is comparable with the energy of the steel ball shooting from the helium propellant system). The aim of such the proceedings was the need to find out whether, based on the test results obtained using a helium gas gun, it is possible to conclude on ballistic resistance of the tested panels with use of live ammunition. As expected, Parabellum bullets did not penetrate the tested composites panels (Fig. 5, Fig. 6).

Table 1. Ballistic resistance of aluminium alloy sheets (AW 2024-T3)

Material	Thickness [mm]	Density [g/cm³]	Absorbing energy [J]	Energy/ Thickness [J/mm]	Basic weight [kg/m²]	Energy/ Basic weight [J/kg/m²]
AW 2024-T3	3	2.7	142.39	47.46	8.1	17.57
	2x3	2.7	271.48	45.25	16.2	16.76
	3x3	2.7	393.15	43.68	24.3	16.18
	10x0.3	2.7	146.12	48.71	8.1	18.04

Table 2. The ballistic resistance of laminates (L) and the loose fabric aramid layers (7W)

Material	Thickness [mm]	Density [g/cm³]	The absorbing energy [J]	Energy/ Thickness [J/mm]	Basic weight [kg/m²]	Energy/ Basic weight [J/kg/m²]
L CT709	1.75	1.2	failed recording		2.1	?
L XPS102	3.9	1.18	80.49	20.64	4.6	17.49
L Microflex	2.15	1.23	39.94	18.58	2.64	15.11
L T750	4.1	1.05	72.71	17.73	4.3	16.89
XPS102-7W	3.2	1.18	118.18	36.93	3.78	31.30

Table 3. Ballistic resistance of composites FML prepared on based AW 2024-T3 alloy or steel sheets (S) and aramid fabrics

Material	Thickness [mm]	Density [g/cm³]	The absorbing energy [J]	Energy/ Thickness [J/mm]	Basic weight [kg/m²]	Energy/ Basic weight [J/kg/m²]
K CT709	4.1	2.03	100.37	24.48	8.32	12.06
K XPS102	6.35	1.69	159.33	26.67	10.73	15.78
K Microflex	4.65	1.91	112.32	24.15	8.89	12.64
K T750	6.79	1.69	182.17	26.83	11.48	15.88
K XPS102S	4.85	2.23	159.99	32.99	10.82	14.79
K XPS102S	4.85	2.23	162.52	33.51	10.82	15.03

Table 4. FML types composites based on 2024-T3 alloy and aramid fabrics with SiC type ceramic

Material	Basic weight with ceramic [g/cm²]	Thickness with ceramic [mm]	Density [g/cm³]	Velocity [m/s]	The absorbing energy [J]	Energy/ Thickness [J/mm]	Basic weight [kg/m²]	Energy/ Basic weight [J/kg/m²]
KC CT709	22.80	8.75	2.61	655	>448	>51	19.54	
KC XPS102	24.55	11	2.23	657	>451	>41	18.39	
KC Microflex	23.36	9.3	2.51	Parabellum lead projectile	>52.7	>20.98		
KC T750	25.96	11.44	2.27	Parabellum lead projectile	>42.8	>18.88		

Fig. 5. View of KC Microflex specimen after shooting test using Parabellum projectile: a – view from the ceramic side, b – deformation and fracture of the last metal layer, c – delamination of the specimen

Fig. 6. View of KC T750 specimen after shooting test using Parabellum bullet: a – view from the ceramic side, b – deformation of the last metal layer, c – delamination of the specimen
In both cases, the bullet did not perforate the test specimens (Fig. 7, Fig. 8). Ceramic segments bonded with the use of Epidian 57 adhesive to the composite made of T750 fabric separated from plastically deformed material (Fig. 8). In the case of the ceramic segments stuck between two layers of aluminum alloy thin sheets, only one ceramic segment was destroyed. The other segments glued to the metal sheet still provided protection. (Fig. 7). Furthermore, it was observed that the head portion of the deformed bullet (Fig. 9) was expanded by fragments of a ceramic and metal layer which integrated with a jacketed and lead bullet core.

4. Evaluation of test results

While constructing light armours of aircrafts, a quotient of the absorbing energy-to-basic weight ratio should be assumed as the main parameter allowing the comparison of their quality. Comparing the values of this parameter, it can be concluded that the armour panel made of 2024-T3 aluminum alloy and the tested aramid fabrics are characterized by comparable antiballistic properties. The research also shows that loose packages of thin layers indicate higher ballistic resistance compared with monolithic structures - in the case of metal layers, an increase was observed at the level of only 8%, however, in the case of XPS102 fabrics it was two-fold. Further studies should check whether stitching the fabrics could have an influence on the significant increase of ballistic resistance and whether the arrangement of seams can affect the ballistic properties of the aramid fabric packages.

The worse ballistic resistance of the monolithic structures compared with the structures composed of loose thin layers shows that the adhesive bonding of them is not an appropriate solution, what has been proven in the research of FML composites. Their ballistic resistance measured with an absorbing energy-to-basic weight ratio proved to be less than the ballistic resistance of laminates and metal sheets. FML materials are characterized by high fatigue life resulted from slow propagation of the cracks suppressed by delamination of the adhesive bondings. During the destruction of FML specimens, local delamination occurred, however it did not affect their ballistic resistance.

The studies have confirmed the usefulness of applying an outer rigid ceramic layer to deformation of the bullets and dissipating the kinetic energy. None of the specimens with a ceramic layer was perforated neither by the steel ball nor Parabellum bullet. Due to the small dimensions of ceramic segments, they should be joined into larger segments. A reasonable solution to obtain larger segments is adhesive bonding the plates to fabrics, metal sheets or other materials. Due to the efficiency of the armour, it is important that a single projectile destroys a relatively small surface of the ceramic layer. The test has shown that in the case of one-sided bonding of the ceramic segments, the impact with the projectile crushes one plate and causes separation of several neighboring segments at the same time. Adhesive sticking of the ceramic segments between two thin sheets of aluminum alloy forms a sandwich structure with increased bending stiffness, which results in reduction of the ceramic layer destruction to a single segment.

5. Conclusions

The results of the tests on light-weight ballistic panels presented in the article allow formulation of the following conclusions:

1. The selected adhesive bonding structures consisting of thin metal layers and aramid fabrics layers indicate lower ballistic resistant related to their weight than metal sheets and fabrics which were produced
2. The packages of loose aramid fabrics indicate higher ballistic resistance compared to the polymer composites made of the same fabric.
3. The ceramic layers significantly increase ballistic resistance of protection panels and their usage in such armours seems fully justified.
4. Adhesive bonding of the ceramic segments between two thin sheets of aluminum alloy and not bonding them directly with aramid fabrics prevents from damage of the ceramic segments adjacent to the area of the direct impact of the projectile.
References

1. Arias A, López-Puente J, Navarro C, Zaera R. The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study. International Journal of Impact Engineering 2005; 32: 321-336, http://dx.doi.org/10.1016/j.ijimpeng.2005.07.014.

2. Atiq S, Boccaccini A R, Boccaccini D N, Dlouhy I, Kaya C. Fracture behaviour of multilifibre reinforced-mullitematrix composites under quasi-static and ballistic impact loading. Composites Science and Technology 2005; 65: 325-333, http://dx.doi.org/10.1016/j.compscitech.2004.08.002.

3. Bansal S, Krishnan K, Rajan S D, Sockalingam S. Numerical simulation of ceramic composite armor subjected to ballistic impact. Composites: Part B 2010; 41: 583-593, http://dx.doi.org/10.1016/j.compositesb.2010.10.001.

4. Bell W C, Grujicic M, Pandurangan B. Design and material selection guidelines and strategies for transparent armor systems. Materials and Design 2012; 34: 808-819, http://dx.doi.org/10.1016/j.matdes.2011.07.007.

5. Bogetti T A, Cheeseman B A. Ballistic impact into fabric and compliant composite laminates. Composite Structures 2003; 61: 161-173, http://dx.doi.org/10.1016/S0263-8223(03)00029-1.

6. Bogetti T A, Fink B K, Gama B A, et al. Aluminium foam integral armor: a new dimension in armor design. Composite Structures 2001; 52: 381-395, http://dx.doi.org/10.1016/S0263-8223(01)00029-0.

7. Bojar Z, Dolata-Groszc A, Formanek B, Jóźwiak S, Szczucka-Lasota B. Intermetallic alloys with oxide particles and technological concept for high loaded materials. Journal of Materials Processing Technology - J MATER PROCESS TECHNOLOG 2005; 162:46-51.

8. Cheeseman B A, Grujicic M, Pandurangan B, Randow C L, Yenb C F. Computational investigation of impact energy absorption capability of polyurea coatings via deformation-induced glass transition. Materials Science and Engineering A 2010; 527: 7741-7751, http://dx.doi.org/10.1016/j.msea.2010.08.042.

9. Ching T W, Tan V B C. Computational simulation of fabric armour subjected to ballistic impacts. International Journal of Impact Engineering 2006; 32: 1737-1751, http://dx.doi.org/10.1016/j.ijimpeng.2005.05.006.

10. Dekel E, Rosenberg Z. Terminal Ballistics. Springer-Verlag. Berlin Heidelberg 2012.

11. D'entremont B, Grujicic M, Pandurangan B. The role of adhesive in the ballistic/structural performance of ceramic/polymer-matrix composite hybrid armor. Materials and Design 2012; 41: 380-393, http://dx.doi.org/10.1016/j.matdes.2012.05.023.

12. Deshpande V S, Fleck N A, Karihaloo K, Russell B P, Wadley H N G. The effect of shear strength on the ballistic response of laminated composite plates. European Journal of Mechanics A/Solids 2013; 42: 35-53, http://dx.doi.org/10.1016/j.euromechsol.2013.04.002.

13. Ekici B, Hartomacioglu S, Kilic N. Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools. Defence Technology 2015: 1-13 (in press).

14. Falzon B G, Iannucci L, Yong M. Efficient modelling and optimisation of hybrid multilayered plates subject to ballistic impact, International Journal of Impact Engineering 2010; 37: 605-624, http://dx.doi.org/10.1016/j.ijimpeng.2009.07.004.

15. Fernández-Fdz D, Zaera R. A new tool based on artificial neural networks for the design of lightweight ceramic-metal armour against high-velocity impact of solids. International Journal of Solids and Structures 2008, 45: 6369-6383, http://dx.doi.org/10.1016/j.ijsolstr.2008.08.009.

16. Fragiaadakis D, Gamache R M, Roland C M. Elastomer - steel laminate armor, Composite Structures 2010; 92: 1059-1064, http://dx.doi.org/10.1016/j.compstruct.2009.09.057.

17. Hall I W, Tasdemirci A. Development of novel multilayer materials for impact applications: A combined numerical and experimental approach, Materials and Design 2009; 30: 1533-1541, http://dx.doi.org/10.1016/j.matdes.2008.07.054.

18. Hazell P J. Ceramic Armour: Design and Defeat Mechanisms. Argos Press. Canberra 2006.

19. Javadpour G, Shokrieh M. Penetration analysis of a projectile in a ceramic composite armor. Compos. Struct 2008; 82 (2): 269-276, http://dx.doi.org/10.1016/j.compstruct.2007.01.023.

20. Mendis P, Mohotti D, Ngor T, Raman S N. Polyurea coated composite aluminium plates subjected to high velocity projectile impact. Materials and Design 2013; 52: 1-16, http://dx.doi.org/10.1016/j.matdes.2013.05.060.

21. Plonka B, Senderski J, Wiśniewski A, Witkowski Z. Wielowarstwowe metalowo-ceramiczne pasywne pancery dla helikopterów i pojazdów specjalnych. Problemy Techniki Uzbrojenia 2011; 40: 57-64.

22. Sánchez-Gálvez V, Zaera R. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours. Int. J. Impact Eng. 1998; 21 (3): 133-148, http://dx.doi.org/10.1016/S0734-743X(97)00035-3.

23. Wiśniewski A. Pancere - budowa, projektowanie i badanie. Wydawnictwa Naukowo-Techniczne. Warszawa 2001.

Jan GODZIMIRSKI
Jacek JANISZEWSKI
Marek ROŚKOWICZ
Zbigniew SURMA
Military University of Technology
Faculty of Mechatronics and Aviation
ul. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
E-mail: jan.godzimirski@wat.edu.pl, jacek.janiszewski@wat.edu.pl, marek.roskowicz@wat.edu.pl, zbigniew.surma@wat.edu.pl