Production of Sphere-Like Bacterial Cellulose In Cultivation Media With Different Carbon Sources: A Promising Sustained Release System of Rifampicin

Silmara C. Lazarini
University of Araraquara: Universidade de Araraquara

Caroline Yamada
University of Araraquara: Universidade de Araraquara

Tainá Rosa da Nóbrega
University of Araraquara: Universidade de Araraquara

Wilton Rogério Lustri (✉ wrlustri@yahoo.com.br)
Universidade de Araraquara - UNIARA https://orcid.org/0000-0001-6627-4758

Research Article

Keywords: Sphere-like BC, rifampicin sustained release, agitated cultivation

DOI: https://doi.org/10.21203/rs.3.rs-636011/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Bacterial cellulose (BC) production can be performed using a static or stirred culture method. In the static culture method, the BC is obtained presents three-dimensional thinner network structures and excellent mechanical properties. In the agitated culture method, BC is produced in the form of fibrous granules or threads with a lower degree of polymerization, mechanical resistance, and crystallinity than the films formed in static fermentation. Compared with BC membranes, sphere-like BC (SBC) cultured under agitated conditions showed advantages for adsorption due to its larger surface area. The objectives of this work were to obtain SBC, by the bacterial strain Komagataeibacter hansenii ATCC 23769, in agitated cultivation, using media containing different carbon sources carbon sources, such as fructose (FRU), glucose and sucrose (MS1), sucrose (Y) and glucose (Z and HS), aiming to produce supports for sustained release of rifampicin (RIF). SBC has been produced under agitation at 130 rpm and 25°C. SBC obtained were processed to remove bacteria and residues from the culture media and lyophilized. The SBC characterizations were performed by Fourier transform infrared spectroscopy (FTIR), Field emission gun-scanning electron microscopy (FEG-SEM), thermogravimetric analysis (TGA) and by derivative thermogravimetry (DTG). The SBC produced were impregnated with antibiotic RIF and tested for the sustained release capacity of this drug by diffusion method and Frans cell kinetics. SBC that the best results for all tests were produced in FRU, Z and MS1 media, respectively. The results demonstrate the potential of the SBC to contribute to the design of new drug delivery systems with biomedical applications.

Introduction

Cellulose is a biopolymer that can be produced by several species such as plants, algae and some bacterial genera such as Rococo’s (Tanskul et al. 2013), Acetobacter, Rhizobium, Agrobacterium, Aerobacter, Achromobacter, Azotobacter, Salmonella, Escherichia and Sarcina (Ullah et al. 2016; Islam et al. 2017).

First described in 1886 by Brown, bacterial cellulose (BC) proved to be a biopolymer of great interest for application in several industrial and medical areas, due to its structural characteristics, which prove to be advantageous in relation to CV(Ul-Islam et al. 2012a; Shah et al. 2013; Cacicedo et al. 2016). Although its structure is identical to that of VC, consisting of β-(1→4) glycosidic bonds, BC lacks lignin, pectin and hemicellulose, which gives it a high degree of purity(Kumar et al. 2019). A special emphasis has been given to the cellulose produced by bacteria of the Acetobacteriaceae family mainly of the Gluconacetobacter (Cacicedo et al. 2016) genus, later named G. xylinus and G. hansenii, and currently classified in the genus Komagataeibacter(Yamada 2014), using a variety of natural and synthetic culture media, with different carbon sources(Iguchi et al. 2000; Ul-Islam et al. 2012b, a; Shah et al. 2013; Lustri et al. 2015; Lazarini et al. 2016, 2018)

Hydrated BC membranes have a high capacity for adsorption of different ionic and molecular species or even particle stabilization, as they have a highly hydrated structure of nanometric fibers forming a highly
pores system (Iguchi et al. 2000; Eichhorn et al. 2010). Due to high mechanical resistance, hypoallergenicity, biocompatibility and high degree of liquid absorption (Lazarini et al. 2016, 2018), the BC are widely studied as controlled drug delivery systems, by our research group (de Oliveira Barud et al. 2016; Lazarini et al. 2016, 2018; Machado et al. 2018) and many international groups (Mohd Amin et al. 2014; Juncu et al. 2016; Ullah et al. 2016; Fontes et al. 2017; Treesuppharat et al. 2017; Badshah et al. 2018; Negut et al. 2018).

The BC production can be performed using a static, stirred, or using a bioreactor fermentation method. In the static culture method, the BC is obtained in as a film at the air-liquid interface, promoting thinner three-dimensional network structures and excellent mechanical properties (Wang et al. 2019). In the agitated culture method, BC is produced in the form of fibrous granules or threads with a lower degree of polymerization, mechanical resistance, and crystallinity than the films formed in static fermentation. However, agitated culture is widely used for commercial purposes because it produces BC in less time, as well as possesses economic viability and desired applications (Shah et al. 2013), such as drug release (Wang et al. 2018). Bioreactor using method, which can employ both static and agitated cultures, being an alternative method classified in terms of the use of oxygen-enriched air, a rotating disc, or biofilm support, equipped with a rotating filter or a silicone membrane (Islam et al. 2017; Wang et al. 2018).

Czaja et al. (Czaja et al. 2004) proposed that the continuous shear force during agitation caused the cellulose ribbons to intertwine with each other to form the sphere-like structure.

BC membrane has widely acknowledged as biopolymer with large surface area and 3D nano-pores structure that promotes high capacity for absorbing liquids (Lin et al. 2013; Meng et al. 2019b). Compared with BC membranes, sphere-like BC (SBC) cultured under agitated conditions showed great advantages for adsorption due to its larger surface area (Iguchi et al. 2000; Meng et al. 2019b).

Hoshi et al. (Hoshi et al. 2018) and Wang et al. (Wang et al. 2019) reported that the formation of SBC depends on the bacterial strain used, that is, not all species are capable of producing spheres in an agitated medium and the agitation speed promotes great interference in the formation of fiber networks. Thus, depending on the speed, obtaining more homogeneous spheres can be easily acquired, presenting perfect applicability for drug release.

Study, performed by Meng et al. (Meng et al. 2019a) using various bacterial culturing parameters were assessed with the goal of assembling uniform SBC which has advantages owing to its unique morphology and increased surface areas. The results showed that the uniform SBC was synthesized when the ratio of culture medium to flask volumes (M/F value) was kept at 50%, while the diameter of these uniform SBC could be adjusted by changing the agitation speed and flask volume.

Therefore, SBC could hold huge potential for many high value applications such as slow drug release (Abeer et al. 2014; Meng et al. 2019a). However, the control of properties shape, diameter, moisture
content, adsorption ability, surface area and its uniformity of the SBC are a challenge to be overcome (Meng et al. 2019b).

In addition to different BC production methods, it is interesting to evaluate the effects of using different carbon sources for BC production (Fernandes et al. 2020). Several culture media are reported in the literature for the production of BC as Hestrin-Schramm (HS) (HESTRIN and SCHRAMM 1954), Zhou (Z) (Zhou et al. 2007) and Yamanaka (Y) (Yamanaka et al. 1989). The BC production in this different culture media showed different dry mass yield and physical-chemical characteristics (Mohammadkazemi et al. 2015).

RIF, is a semisynthetic antibiotic synthetized from rifamycin (Sutradhar and Zaman 2021) which has the capacity to penetrate through the biofilm and the fact that around 80% of surgical site infections are associated with the formation of a poorly permeable biofilm (Edmiston Jr. et al. 2015; Shiels et al. 2018).

RIF antibiotic used as a first line treatment for tuberculosis, as well as in the treatment of other infectious diseases (Sutradhar and Zaman 2021) constitute one of the most potent and broad-spectrum antibiotics against others bacterial infection, as endocarditis caused by Gram-positive methicillin-susceptible or resistant Staphylococcus spp, pneumonia, particularly ventilator-associated, caused by S. aureus and Gram-negative bacilli such as Pseudomonas aeruginosa and Enterobacteriaceae and Acinetobacter spp. (Lee et al. 2017), being its bactericidal activity of is due to specific inhibition of bacterial RNA polymerase (Politano et al. 2013; Alifano et al. 2014) was chosen. Due to the fact that RIF has flexible backbone with two phenolic and two aliphatic OH groups in addition to nitrogen and oxygen donor atoms (Saad et al. 2020) which allows the interaction, through hydrogen bonds with BC.

The present work had as aims the evaluation of the production of SBC, by K. hansenii ATCC 23769, using different culture media, already applied in the production of BC (HS, Z and Y) and media with different concentrations and type of carbon sources for determination of the influencing the size and properties of obtained SBC. The obtained SBC were characterized by Field emission gun-scanning electron microscopy (FEG-SEM), Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric and derived thermogravimetry (TGA/DTG) analysis. The sustained release capacity of the antibiotic RIF by the different SBC obtained was also evaluated.

Materials And Methods

2.1. Materials

The bacteria for BC production Komagataeibacter hansenii ATCC 23769 and Staphylococcus aureus ATCC 25923 used for rifampin sustained release test were purchased from André Tosello Foundation. Anhydrous glucose, fructose, sucrose, and ethanol were purchased from Synth, yeast extract, peptone, bacteriological agar, and Müller-Hinton agar were purchased from Kasvi. Corn Steep Liquor and
rifampicin were purchased from Sigma-Aldrich. Citric Acid, Na$_2$HPO$_4$, KH$_2$PO$_4$, (NH$_4$)SO$_4$, and MgSO$_4$.7H$_2$O were purchased from Merck.

2.2. Methods

2.2.1. SBC production and processing

K. hansenii ATCC 23769 was reactivated from stock in glycerol stored at -80°C, in a medium FRU (Table 1) being kept in a B.O.D. oven at 28°C until the growth of a BC membrane, for 7 days. Afterwards, the culture was vigorously shaken. The obtained suspension the was used as pre-inoculum. From the pre-inoculum, was produced a bacterial suspension in the different culture media (Table 1) at an optical density determined on a Cole Parmer 2800 UV/Vis Spectrophotometer at 600nm (OD600), corresponding to McFarland nephelometric scale 1 (3.0x108 CFU/mL) for a final volume of 50mL in Erlenmeyer.

Constituents	MS1	FRU	HS	Z	Y
Glucose (g/L)	20	-	20	40	
Sucrose (g/L)	40	-	-	50	
Fructose (g/L)	-	60	-		
Corn Steep Liquor (mL/L)			20		
Ethanol (mL/L)	50	50	-		
Yeast Extract (g/L)	5.6	5.6	5	5	
Peptone (g/L)	-	-	5		
Citric Acid (g/L)	-	-	1.15		
Na$_2$HPO$_4$ (g/L)	-	-	2.7	-	
KH$_2$PO$_4$ (g/L)	1	-	-	2	3
(NH$_4$)SO$_4$ (g/L)	4	5			
MgSO$_4$.7H$_2$O (g/L)	0.4	0.05			

The bacterial suspensions were kept under constant agitation at 130rpm at 25°C using Shaker Kasvi (Fig. 1), until the formation of CB spheres. The CB spheres produced were washed in distilled water and immersed in NaOH in a water bath at 65°C for 1 hour. After this procedure, they were washed in distilled water, with constant water change until reaching neutral pH. Part of the spheres produced were dried in a drying oven at 65°C and part of the spheres were lyophilized and taken for characterization by SEM, FTIR and TGA/DTG. The lyophilized beads were used in the RFM release assays. The experiment was carried out in triplicate.
Characterization of SCB

The characterizations of the SBC obtained were performed by Fourier transform infrared spectroscopy (FTIR) to evaluate the main functional groups, using the Agilent Cary 630 FTIR spectrometer, in transmittance mode in the region from 4000 to 600 cm$^{-1}$, and by Field emission gun-scanning electron microscopy (FEG-SEM), for analysis of the morphological characteristics in relation to the differences between the entanglements, fiber thicknesses and porosity, using the JEOL JSM-6360 LV microscope, after coating with carbon. The SBC obtained were also characterized by thermogravimetric analysis (TGA) and by derivative thermogravimetry (DTG). The curves were obtained using the TA Instruments SDT q600 equipment. The conditions used were oxygen atmosphere with continuous flow of 100 mL·min$^{-1}$ and heating rate of 10°C·min$^{-1}$. The temperature used in the experiment was between 30–600°C, using an alumina crucible as a reference.

Determination of volume/area ratio of SBC

To determine the swelling mass (Sm), lyophilized SBC produced in the different culture media were measured to determine the approximate volume of SBC (V_{SBC}) using the Eq. 1.

\[
V_{SBC} = \frac{4\pi r^3}{3}
\]

where V_{SBC} corresponds to the approximate volume of SBC, π to the number 3.1416 and r to the SCB radios (mm).

Triplicates of each SBC were chosen to determine the volume and the arithmetic mean was considered to calculate the volume of RIF solution to be used for impregnation of the SBC.

Sustained release capacity of SBCs analysis

For the test to evaluate the sustained release capacity of the antimicrobial drug rifampicin (RIF), the SCBs obtained in the media of different compositions were impregnated with a volume (in µL) corresponding to half the volume, theoretically determined by Eq. (1), of the smallest SBC, with an aqueous RIF solution (stock 20µg·µL$^{-1}$). The SBC-RIF were placed in 24-well microplates kept under refrigeration at 4°C for 24°C for complete RIF impregnation. After this procedure, the microplate containing the SBC was completely dehydrated in a ventilated oven (Novatécnica) at 35°C, a temperature close to normal body temperature and, therefore, did not affect the stability of the RIF. Then, the SBC-RIF were applied to the surface of plates containing Muller-Hinton agar (MH) inoculated with $S. aureus$ ATCC 25923. The plates were initially incubated in a bacteriological incubator at 36°C for 24h. After 24 hours of incubation, measurements of the bacterial growth inhibition halos were performed. Then, the SCB-RIF were removed from the plates and transferred to new Petri dishes containing MH agar, inoculated with $S. aureus$ ATCC 25923, were again incubated for 24 hours, to read 48 hours of release. The same procedure was repeated until there was no more inhibition halo. To carry out the test, the diffusion technique was used (CLSI 2019). The sustained release capacity was too analyzed by Franz cells kinetics as described by Simon et
al. (Simon et al. 2016). A 0.45um pore nitrocellulose (NC) membrane (Millipore) was placed at the interface between the Franz cell owner and receiver compartments filled with 1 mL of phosphate buffer pH 7.4. On NC, in the owner compartment, the different SBC-RIF were deposited. After 24 hours 1mL aliquots of the solution contained in the receiver compartment of the cell were collected and submitted to OD determination in UV-Vis 340nm every 24 hours, until complete drug release. At each analysis, the withdrawn content was completely returned to the receiver compartment. The results were determined by comparison with a previously determined calibration curve.

Results

Production of SBC in different culture media

As can be seen in Fig. 2, SBC were obtained in triplicate cuts, in different culture media with different compositions, however, with different macroscopic characteristics. These results demonstrate that the difference in SBC production is not related to the *K. hansenii* ATCC 23769 strain used, as all cultures were produced from a single pre-inoculum, and under the same agitation conditions, demonstrating that the differences in morphology are related to the different compositions of the media.

Macroscope and FEG-SEM analysis of the SBC produced in different culture media

When the macroscopic characteristics of the lyophilized SBC are compared (Fig. 3), a significant difference was observed between the size of the SBC produced in Z medium compared to those produced in other culture media Y, HS, MS1 and FRU.

The FEG-SEM comparative analysis SBC produced in different culture media showed significative difference in relation to fiber interlacing, thickness, arrangement, and pore size as can observed in greater detail in Fig. 4. It is possible to verify that the variation of the carbon source provided surface morphological differences both related to the thickness and the intertwining of the cellulose fibers.

It is possible to verify that the variation of the carbon source provided microscopic surface morphological differences both related to the thickness and the interlacing of the cellulose fibers. As can be seen, the characteristics of thickness, fiber entanglement and porosity of spheres produced in FRU and Z and MS1 media produced SBC with greater porosity.

The approximate volume of the SBC produced in different culture media were determined as described in item 2.2.3. Table 2 shows the results of the means and standard deviation of the SBC.
Table 2
Results of means and standard deviation of SBC volumes produced in different culture media.

Culture media	Volume	Standard deviation
	mm³	µL
FRU	22.5	22.5 0.098
HS	26.5	26.5 0.10
MS1	31.7	31.7 0.16
Y	21.5	21.5 0.12
Z	53.1	53.1 0.14

However, the internal volume of the SBC produced in the HS and Y media appears to be reduced, in relation to the FRU, Z and MS1 media, as they present, as can be seen in Fig. 4, greater density and degrees of interlacing of the fibers and lower porosity, being smaller, that presented by Y (Fig. 4d) and the one produced in the FRU medium is the one with the lowest degree fiber intertwining and greater porosity (Fig 4a). and, therefore, greater internal volume, which reinforces the results obtained in the Franz cell diffusion and kinetics test.

SBC characterization by FTIR and XDR

The results obtained by the FTIR analysis showed characteristic bands of bacterial cellulose, with the interval of 3350–3500 cm⁻¹ attributed to the O-H stretch, the interval 2800–2900 cm⁻¹ attributed to the C-H stretches, the interval 1160 cm⁻¹ attributed to the stretch C-O-C, while the 1035–1060 cm⁻¹ range is due to C-O 61 stretch. The FTIR spectra of the SCBs shown in Fig. 5 confirm the purity of the CB and reinforce the results obtained by the TGA/DTG, indicating that a media with different compositions do not alter the chemical properties of BC.

The result of the SBC XRD analysis showed that the composition of the media did not affect the BC crystallinity index, since its properties are influenced by the arrangement of molecules within the fibers. XRD demonstrated degrees of crystallinity with a typical BC profile (Fig. 5, Panel B). The main diffraction peaks were found at 2θ 14.7, 16.9 and 22.7 and assigned to the 1 0 1, 1 0 į and 0 0 2 diffraction planes, respectively. The degree of crystallinity ranged from 70 to 80%, and it was not possible to establish a relationship between the different culture media with the degree of crystallinity.

Characterization of CB spheres by TGA/DTG

As in Fig. 6, the variation in the mass loss of the SBC was negligible, and it is also possible to assess that there were no inorganic residues because between the temperatures of 500°C and 550°C 100% of the
mass of the SBC was lost. This result reinforces that the use of culture media with different compositions
does not alter the thermal behavior of the polymer and does not influence the purity of the SBC

Sustained release capacity of SBC analysis

The data of the sustained release capacity of RIF by SBC were performed as described in item 2.2.4. All
SBC were swollen with 10 µL of aqueous RIF solution (stock 20µg·µL).

The SBC produced in the different media produced in the different sustained release capacity, as
observed by the comparative analysis of the growth inhibition zones every 24 hours presented in the Fig.
7 and Table 3.

All SBC produced in different culture media were swollen with the volume of the RIF aqueous solution
corresponding to the volume (20µL), theoretically determined by Eq. (1), of the smallest SBC, which in this
case was produced in the FRU medium. Thus, all SBC contained the same RIF mass (400µg), being the
measure of the inhibition zones, related to fiber interlacing, thickness, arrangement, and pore size
presented in the FEG-SEM comparative analysis (Fig. 2).

The characteristics of thickness, fiber entanglement and higher degree of porosity of SBC produced in
FRU and Z and MS1 media determined greater sustained release capacity compared to SBC produced in
HS and Y media.

These results suggest that the composition of the culture media interfered directly with bacterial
metabolism, a fact that promoted the alterations in the physical characteristics of BC, since the bacterial
strain and the culture conditions were the same for the different culture media.

Culture media	Inhibition Zone (mm)			
	24h	48h	72h	96h
FRU	25.17 ± 1.72*	21.40 ± 1.91*	21.28 ± 1.29*	19.80 ± 1.25*
HS	23.90 ± 1.25*	21.60 ± 1.13*	18.33 ± 3,39*	16.94 ± 2.77*
MS1	27.43 ± 0.49*	21.21 ± 2.31*	20.61 ± 1.62*	18.51 ± 1.45*
Y	25.13 ± 2.35*	14.20 ± 1.93*	14.32 ± 1.63*	12.82 ± 2.44*
Z	23.12 ± 1.32*	22.94 ± 1.51*	21.28 ± 1.39*	19.18 ± 1.15*

* Standard deviation

Sustained release capacity of SBC analysis by kinetics by Franz cells.
In view of the results obtained in the agar diffusion tests, the release kinetics assay was performed using Franz cells. The results of this assay are shown in Fig. 8.

As observed in Fig. 8, the SBC, produced in the different culture media presented dissimilar RIF release capacity. These results demonstrated that SBC produced, respectively, in FRU, Z and MS1 were capable to maintained greater release concentration when compared with SBC produced in HS and Y media.

SBC-RIF characterization by FTIR and FEG-SEM

Because no differences were detected in the FTIR spectra of the SBC, the produced in the FRU medium was chosen, for greater capacity for sustained release of RIF. Pristine SBC SBC-RIF were subjected to comparative analysis. The Fig. 9 shows of the chemical structure of RIF and SBC and possible hydrogen bond (a), and the results of the comparative analysis between the FTIR spectra of pristine SBC, the SBC-RIF and commercial RIF. As can be seen, the FTIR spectrum of the commercial sample of RIF used, similar to that published by Schianti et al. (Schianti et al. 2013), with SBC-RIF and pristine SBC demonstrating antibiotic incorporation.

The proposal interaction between RIF and SBC (Fig. 9a) can be confirmed by FEG-SEM (Fig. 10) of SBC-RIF, with SCB produced by *K. hansenii* ATCC 23769 in FRU (highest concentration released/96 hours) and Y (shorter concentration released/96 hours). The Fig. 10a show surface distribution of the classical crystal structure of RIF, after water dissolution and dry, similar to that published by Agrawal et al. (Agrawal et al. 2004). The Figure show the crystals in the SBC-RIF produced in FRU medium (Panel a) and SBC-RIF in Y medium (Panel b).

As observed in the Fig. 10, the RIF characteristics were maintained two SBC, suggesting that the sustained release capacity is associated with the lower degree of interlacing and thickness of the fibers, and the greater porosity of the SBC produced in FRU media, as can be observed in the Fig. 4a. which allowed greater diffusion between the SBC fibers by RIF in solution, providing major retention after drying.

Thus, the results of this work demonstrate that a product with great possibility of being used as a support for a drug release was obtained, since SBC is a biomaterial known for its hypoallergenic, biocompatible, nanostructured characteristics. It can also be observed that, although the largest volume was of the membrane produced in the Z medium, the microscopic characteristics related to the degree of interlacing, thickness of the fibers, and the porosity were similar to those observed for the SBC produced in the HS medium, MS1, being the SBC produced in the Y medium (Fig. 4d), with greater degree interlacing thickness fiber and less porosity determining a lower permeation of RIF between the fibers of SBC, produced in Y medium, promoting a higher surface concentration and, therefore, less interaction of the RIF with this SBC, that cause a release burst, justifying the lower release capacity by this device. Thus, the relationship can be made between the SCB produced in the FRU medium, which had lower fiber interlacing and thickness, but greater porosity, which determined substantial permeation of RIF in the pores and, consequently, large interaction with the CB, which may justify the greater sustained release capability of this SBC.
Conclusion

The SBC produced in media with different types and concentrations of carbon sources showed different characteristics in relation to thickness, fiber entanglement and degree of porosity, since the bacterial strain and culture conditions were the same for the different culture media. The results suggest that the composition of the culture media may interfere with the biosynthetic metabolism of biopolymer synthesis, leading to the production of SBC with distinct macro and microscopic physical characteristics, The characteristics of interlacing and thickness fiber and higher degree of porosity of SBC produced in FRU and Z and MS1 media, respectively, determined greater sustained release capacity when compared to SBC produced in HS and Y media (lower capacity). Thus, the results of this work demonstrate that a product with great possibility of being used as a support for drug release was obtained, since SBC is a biomaterial known for its hypoallergenic, biocompatible, nanostructured characteristics, reproducibility. In this way, SBC will be able to contribute to the design of new drug delivery systems with biomedical applications.

Declarations

Acknowledgements

This study was supported by grants from the Brazilian Agencies FAPESP (São Paulo Research Foundation, Grants# 2015 / 09833-0, 2018 / 12590-0) and CNPq (National Council of Scientific and Technological Development, PQ Grant # 300968/2016-7). Also, this study was financed in part by the FUNADESP (National Foundation for Development of Private Superior Education - Grant # 2700375). Also, this study was financed in part by the Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) - Finance Code 001. We are grateful to the High-Resolution Scanning Microscope Laboratory of the Chemistry Institute of the State University of Araraquara - IQ-UNESP- Araraquara, São Paulo, Brazil.

Conflict of interest: The authors declare that they have no conflict of interest.

Ethical approval: All ethical rules were obeyed; no human or animal experiments were performed.

References

1. Abeer MM, Amin MCI, Claire M (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. https://doi.org/10.1111/jphp.12234
2. Agrawal S, Ashokraj Y, Bharatam PV et al (2004) Solid-state characterization of rifampicin samples and its biopharmaceutic relevance. Eur J Pharm Sci 22:127–144. https://doi.org/10.1016/j.ejps.2004.02.011
3. Alifano P, Palumbo C, Pasanisi D, Talà A (2014) Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2014.11.024
4. Badshah M, Ullah H, Rahman A et al (2018) Surface modification and evaluation of bacterial cellulose for drug delivery. Int J Biol Macromol 113:526–533. https://doi.org/10.1016/j.ijbiomac.2018.02.135

5. Cacicedo ML, Castro MC, Servetas I et al (2016) Bioresource Technology Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol 213:172–180. https://doi.org/10.1016/j.biortech.2016.02.071

6. CLSI (2019) Performance standards for antimicrobial susceptibility testing. Clin Lab Stand Inst 29

7. Czaja W, Romanovicz D, Brown R (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411. https://doi.org/10.1023/b:cell.0000046412.11983.61

8. de Oliveira Barud HG, da Silva RR, da Silva Barud H et al (2016) A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr Polym 153:406–420. https://doi.org/10.1016/j.carbpol.2016.07.059

9. Edmiston CE Jr, McBain AJ, Roberts C, Leaper D (2015) Clinical and Microbiological Aspects of Biofilm-Associated Surgical Site Infections. Adv Exp Med Biol 1:69–84. https://doi.org/10.1007/978-3-319-11038-7

10. Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. https://doi.org/10.1007/s10853-009-3874-0

11. Fernandes I, de AA, Pedro AC, Ribeiro VR et al (2020) Bacterial cellulose: From production optimization to new applications. Int J Biol Macromol 164:2598–2611. https://doi.org/10.1016/j.ijbiomac.2020.07.255

12. Fontes ML, De, Meneguin AB, Tercjak A et al (2017) Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2017.09.061

13. HESTRIN S, SCHRAMM M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352. https://doi.org/10.1042/bj0580345

14. Hoshi T, Yamazaki K, Sato Y et al (2018) Production of hollow-type spherical bacterial cellulose as a controlled release device by newly designed floating cultivation. Heliyon 4:e00873. https://doi.org/10.1016/j.heliyon.2018.e00873

15. Iguchi M, Yamanaka S, Budhiono a (2000) Bacterial cellulose — a masterpiece of nature’s arts. J Mater Sci 35:261–270. https://doi.org/10.1023/A:1004775229149

16. Islam MU, Ullah MW, Khan S et al (2017) Strategies for cost-effective and enhanced production of bacterial cellulose. Int J Biol Macromol 102:1166–1173. https://doi.org/10.1016/j.ijbiomac.2017.04.110

17. Juncu G, Stoica-Guzun A, Stroescu M et al (2016) Drug release kinetics from carboxymethylcellulose-bacterial cellulose composite films. Int J Pharm 510:485–492.
18. Kumar V, Sharma DK, Bansal V et al (2019) Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacter pasteurianus of RSV-4 bacterium. Bioresour Technol 275:430–433. https://doi.org/10.1016/j.biortech.2018.12.042

19. Lazarini SC, de Aquino R, Amaral AC et al (2016) Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone. Cellulose 23:737–748. https://doi.org/10.1007/s10570-015-0843-4

20. Lazarini SC, Yamada C, Barud HS et al (2018) Influence of chemical and physical conditions in selection of Gluconacetobacter hansenii ATCC 23769 strains with high capacity to produce bacterial cellulose for application as sustained antimicrobial drug-release supports. J Appl Microbiol 125:777–791. https://doi.org/10.1111/jam.13916

21. Lee CY, Huang CH, Lu PL et al (2017) Role of rifampin for the treatment of bacterial infections other than mycobacteriosis. J Infect 75:395–408. https://doi.org/10.1016/j.jinf.2017.08.013

22. Lin WC, Lien CC, Yeh HJ et al (2013) Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611. https://doi.org/10.1016/j.carbpol.2013.01.076

23. Lustri WR, Barud HG, de O, Barud H da S, et al (2015) Microbial Cellulose — Biosynthesis Mechanisms and Medical Applications. Cellul - Fundam Asp Curr Trends 1–3. https://doi.org/10.5772/61797

24. Machado RTA, Meneguin AB, Sábio RM et al (2018) Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production. Ind Crops Prod 122:637–646. https://doi.org/10.1016/j.indcrop.2018.06.048

25. Meng C, Hu J, Gourlay K et al (2019a) Controllable synthesis uniform spherical bacterial cellulose and their potential applications. Cellulose 26:8325–8336. https://doi.org/10.1007/s10570-019-02446-5

26. Meng C, Zhong N, Hu J et al (2019b) The effects of metal elements on ramie fiber oxidation degumming and the potential of using spherical bacterial cellulose for metal removal. J Clean Prod 206:498–507. https://doi.org/10.1016/j.jclepro.2018.09.072

27. Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523. https://doi.org/10.1016/j.carbpol.2014.10.008

28. Mohd Amin MCI, Ahmad N, Pandey M, Jue Xin C (2014) Stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels for oral controlled release drug delivery. Drug Dev Ind Pharm 40:1340–1349. https://doi.org/10.3109/03639045.2013.819882

29. Negut I, Grumezescu V, Grumezescu AM (2018) Treatment Strategies for Infected Wounds. 1–23. https://doi.org/10.3390/molecules23092392

30. Politano AD, Campbell KT, Rosenberger LH, Sawyer RG (2013) Use of Silver in the Prevention and Treatment of Infections. Silver Review 14:8–20. https://doi.org/10.1089/sur.2011.097
31. Saad EA, Kiwan HA, Hassanien MM, Al-adl HE (2020) Synthesis, characterization, and antitumor activity of a new iron-rifampicin complex: A novel prospective antitumor drug. J Drug Deliv Sci Technol 57:101671. https://doi.org/10.1016/j.jddst.2020.101671

32. Schianti JN, Cerize NNP, de Oliveira AM et al (2013) Rifampicin nanoprecipitation using flow focusing microfluidic device. J Nanomedicine Nanotechnol 4:. https://doi.org/10.4172/2157-7439.1000172

33. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr Polym 98:1585–1598. https://doi.org/10.1016/j.carbpol.2013.08.018

34. Shiels SM, Tennent DJ, Wenke JC (2018) Topical rifampin powder for orthopedic trauma part I: Rifampin powder reduces recalcitrant infection in a delayed treatment musculoskeletal trauma model. J Orthop Res 36:3136–3141. https://doi.org/10.1002/jor.24055

35. Simon A, Amaro MI, Healy AM et al (2016) Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. Int J Pharm 512:234–241. https://doi.org/10.1016/j.ijpharm.2016.08.052

36. Sutradhar I, Zaman MH (2021) Evaluation of the effect of temperature on the stability and antimicrobial activity of rifampicin quinone. J Pharm Biomed Anal 197:. https://doi.org/10.1016/j.jpba.2021.113941

37. Tanskul S, Amornthatree K, Jaturonlak N (2013) A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr Polym 92:421–428

38. Treesuppharat W, Rojanapanthu P, Siangsanooh C et al (2017) Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnol Reports. https://doi.org/10.1016/j.btre.2017.07.002

39. Ul-Islam M, Khan T, Park JK (2012a) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88:596–603. https://doi.org/10.1016/j.carbpol.2012.01.006

40. Ul-Islam M, Khan T, Park JK (2012b) Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Carbohydr Polym 89:1189–1197. https://doi.org/10.1016/j.carbpol.2012.03.093

41. Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352. https://doi.org/10.1016/j.carbpol.2016.05.029

42. Wang J, Tavakoli J, Tang Y (2019) Bacterial cellulose production, properties and applications with different culture methods – A review. Carbohydr Polym 219:63–76

43. Wang SS, Han YH, Chen JL et al (2018) Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataebacter sp. W1. Polymers (Basel) 10:. https://doi.org/10.3390/polym1009063
44. Yamada Y (2014) Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and Gluconacetobacter maltaceti to the genus komagataeibacter as komagataeibacter kakiaceti comb. nov., komagataeibacter medellinensis comb. nov. and komagataeibacter maltaceti comb. Int J Syst Evol Microbiol 64:1670–1672. https://doi.org/10.1099/ijs.0.054494-0

45. Yamanaka S, Watanabe K, Kitamura N et al (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145. https://doi.org/10.1007/BF01139032

46. Zhou LL, Sun DP, Hu LY et al (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483–489. https://doi.org/10.1007/s10295-007-0218-4

Figures

Figure 1

SBC production system at room temperature of 25°C under agitation at 130rpm, in different culture media.

Figure 2
SBC produced, in triplicate, in different culture media. Panel a: FRU; Panel b: HS; Panel c: MS1; Panel d: Y; Panel e: Z.

Figure 3

Macroscopic and correspondent microscopic characteristics of the SBC produced in different culture media in triplicate
Figure 4

FEG-MEV (25,000x) of the SBC produced. Panel a: FRU; Panel b: HS; Panel c: MS1; Panel d: Y; Panel e: Z.
Figure 5

FTIR spectra of SBC beads produced by K. hansenii ATCC 23769 in media containing different compositions.
Figure 6

TGA/DTG of SBC produced by K. hansenii ATCC 23769 in media with different compositions. Sustained release capacity of SBC analysis
Figure 7

Results of RIF sustained release assay by SBC produced in different culture media.
Figure 8

Graphic for cumulative RIF release/time Franz cell kinetics assay
Figure 9

Schematic representation of the chemical structure of RIF, SBC, and possible hydrogen bond interactions between them (a), and FTIR spectra of RIF, SBC-RIF, and SBC (b).
Figure 10

FEG-SEM of SBC-RIF, with SCB produced by K. hansenii ATCC 23769 in FRU and Y culture media.