On-farm Production of Arbuscular Mycorrhizal (AM) Fungi Using Trap Crop Cycles

S.B. Raut¹*, C.D. Deokar², A.M. Navale¹ and J.A. Dahatonde³

¹Department of Plant Pathology and Agriculture Microbiology, Post Graduate Institute, MPKV, Rahuri, India
²Plant Pathology and Agriculture Microbiology Section, College of Agriculture, Dhule, India
³Department of Agriculture Entomology, DVVPF’s College of Agriculture, Ahmednagar, India

*Corresponding author

Abstract

The method of preparation of mass inoculum (MI) of native AM fungi was standardized following the principle of multiplying the nucleus inoculum (NI) of AMF (consortium of native soils) under partially sterilized in situ. Inoculation of arbuscular mycorrhizal fungi in root zone soils of different agricultural crops for which treatment no. 17 (Fenugreek –Maize-Sorghum) host trap crops was found to be suitable for their mass multiplication.

Keywords
AM fungi, On-farm production, Nucleus inoculums and mass inoculum

Introduction

The microbial communities have become an integral part of the biosphere. They play a key role in maintaining the biological equilibrium in biosphere. The living components developed certain relationships such as symbiotic, mutualistic and antagonistic. These relationships helped to maintain biological equilibrium of nature. The word Mycorrhiza (Greek: mykes = mushroom; rhiza = root) was coined by Albert Bernard Frank in 1885. The German Forest Plant Pathologist, to describe the mutual association of two different organisms, plant and fungus, which benefit from each other in a mutualistic symbiosis under ideal conditions, i.e. the plant provides carbohydrates for the fungus, which in turn makes nutrients available for the plant (Harley, 1959).

The inocula of AM fungi are commercially available, production of AM fungus inoculum on the farm is an attractive alternative.
Purchasing the large amounts of inoculum necessary for large-scale agriculture may cost prohibitive. Producing the inoculum on-farm saves processing and shipping costs included in the price of commercial inocula. These factors are the primary reason why most on-farm methods have been utilized in developing nations. Another benefit of on-farm production of inoculum is that locally adapted isolates, which may be more effective than introduced ones in certain situations (Sreenivasa, 1992), can be produced when the farmers indigenous AMF communities are used as starter inocula.

Materials and Methods

Laboratory instruments

Different laboratory instruments used during the course of investigation were pH meter, electronic weighing balance, water bath, sieves (500 µm - 250 µm - 125 µm -105 µm - 75 µm – 45 µm) spectrophotometer, stereoscopic zooming microscope, compound microscope, microscope attached with digital camera, etc.

Glassware

Different types of Borosil make glassware, viz., petri dishes, glass slides, cover slips, pipettes, conical flasks and beakers of various capacities, glass rods, volumetric flasks, funnels, measuring cylinders of different capacities etc. were used.

Chemicals

The laboratory grade standard and pure chemicals used for study were HgCl₂, KOH, potassium dichromate, concentrated hydrochloric acid (HCL), phosphoric acid (H₃PO₄), sodium fluoride (NaF), ferrous sulphate, boric acid, potassium permanganate, sodium hydroxide, sulphuric acid (H₂SO₄), Darco-G 60, sodium bicarbonate, ammonium molybdate, stannous chloride solution etc.

Miscellaneous materials

These included spade, shovel, plastic ghamela, non-absorbent cotton, plastic pots, sand, F.Y.M., zip loc polythene bags, white labels, rubber bands, Whatman no.1 filterpaper, Whatman no.42 filter paper, buffer solutions of pH 7.0, 4.0 and 9.2, denatured spirit, ethyl alcohol, stains (cotton blue, lactophenol and acid fuchsin), polyvinyl alcohol-lactoglycerol (PVLG), Meltzer’s reagent, ferroin indicator, hand instruments (cutter, inoculating needle, forceps), pencil, foot scale, test tube stand, glass marker, trap crop seeds viz., maize (Zea mays), fenugreek (Trigonella foenum-graecum), sorghum (Sorghum bicolor), pearl millet (Pennisetum typhoides L.) and coriander (Corriandrum sativum), LDPE mulching transparent sheet (25 micron), Arc GIS 10.2 software (for map preparation) etc.

On-farm production technology

Preparation of Nucleus inoculum (NI)

Nucleus inoculum of native AMF (consortium) was prepared by the following method. Surface sterilized (used ‘Chloramin T’ for 1 minute) chlamydomospores of native AMF consortium, predominated by Glomus spp., Aculospora spp., Sceutellospora spp., Rhizophagus spp. and Gigaspora albida isolated from natural root zone soils of eleven fruit crops from the central campus MPKV, Rahuri collected by wet sieving and decanting method were multiplied on sorghum (host plant) roots grown in 40 plastic pots filled with sterilized soil : sand : FYM mixture (1:1:1; v:v:v;) (SSF substrate) by inoculating with native AMF chlamydomospores (@ 200-300 / 400g SSF substrate). Surface sterilized (using 0.01% HgCl₂) sorghum seeds (@ 4 seeds / pot) were sown and grown with regular
watering in glass house (day temperature maintained up-to 35+5°C) for 30 days to prepare NI. The aerial plant parts were removed and the substrate was air dried with root pieces under shade for 24 hours.

**Production of Mass Inoculum (MI)**

In the field experiment, 25 m² area was selected at the Instructional Research Farm, Department of Plant Pathology and Agricultural Microbiology, Mahatma Phule Krishi Vidyapeeth, Rahuri and well prepared. The whole area was divided into twenty plots with irrigation channels. Twenty plots represented twenty different treatment combinations. Three trap crop cycles of various host plants were cultivated for mass production technology of AM fungi.

**Experimental details**

**Selection of trap host plant**

The most important factor in choosing a host plant is selecting a plant that supports mycorrhizal growth. Crops such as spinach, sugar beet, lupine and members of mustard family do not form a symbiosis with AM fungi. Mainly monocots and plants with extensive root system are very good hosts for propagation of AM fungi. The five different trap crops *viz.*, maize (*Zea mays*), fenugreek (*Trigonella foenum-graecum*), sorghum (*Sorghum bicolor*), pearl millet (*Pennisetum typhoides* L.) and coriander (*Corriandrum sativum*) were selected as host crops.

Soil solarization was done with LDPE mulching transparent sheet (25 micron) for 30 days (06 November 2017 to 06 December 2017).

The traps crops were sown randomly in twenty plots. Experiments were repeated three times in successive cycles. Each cycle had 30 days. After 30 days, the trap crops were cut at the base (topping). Sampling was done for observations. Second cycle sowing was started immediately after topping of first trap cycle crop. Locations of trap crops were changed. Similarly after 30 days, trap crops of second cycle were cut at the base and third round cycle sowing was done. Sampling was done after each production cycle.

**Sowing of trap crops**

Seeds of trap crops were sown according to their agronomic requirements. The sowing date of trap crop cycles were as follows, 

| Trap crop cycle | Date              |
|-----------------|-------------------|
| I               | 06 December 2017  |
| II              | 04 January 2018   |
| III             | 02 February 2018  |

**Irrigation**

Irrigation schedule was followed as and when required for trap crops.

**Results and Discussion**

**On-farm production technology**

**Preparation of Nucleus Inoculum (NI)**

NI of native AMF (consortium) was prepared by the following method. Surface sterilized (used ‘Chloramin T’ for 1 minute) chlamydospores of native AMF consortium, predominated by *Glomus* spp., *Aculospora* spp., *Sceutellospora* spp., *Rhizophagus* spp. and *Gigaspora albida* isolated from the natural root zone soils of eleven fruit crops from central campus MPKV, Rahuri by wet sieving and decanting method were multiplied on Sorghum (host plant) roots grown in 40 plastic pots filled with sterilized soil : sand : FYM mixture (1:1:1; v:v:v;) (SSF substrate) inoculated with native AMF chlamydospores
Production of Mass Inoculum (MI)

A field experiment for on-farm production of AM fungi was carried out at the Instructional Farm, Department of Plant Pathology and Agricultural Microbiology, Post Graduate Institute, Mahatma Phule Krishi Vidyapeeth, Rahuri.

The trap crops as host crop were sown randomly consisting of 20 treatments represented by five different trap crops viz., maize (Zea mays), fenugreek (Trigonella foenum-graecum), sorghum (Sorghum bicolor), pearl millet (Pennisetum typhoides L.) and coriander (Corriandrum sativum). Each treatment was grown in three successive trap crop cycle for 21 days duration (Plate 6). Each treatment was inoculated with Nucleus inoculum. The observations on AM fungal root colonization, number of spores and number of infective propagules were recorded after each trap cycle. These results are presented in the following tables.

Trap crop cycle I

AM fungi percent root colonization

The results from the above study showed that the treatment no. T16 (sorghum) (Table 1.1) had maximum per cent root colonization (46.33 %) followed by the treatment no. T3 (fenugreek) (45.33 %) and treatment no. T17 (fenugreek) (44.00 %). The treatment no. T2 (sorghum) showed the least per cent root colonization (21.33 %) (Fig. 1).

Number of AM fungal spores (100 g⁻¹) of root zone soils

The maximum number of AM fungal spores per 100g of soil was observed in treatment T₁₇ (fenugreek) (323.00) (Table 1.2) followed by the treatment T₄ (maize) (321.66) and treatment T₁₈ (maize) (317.00) whereas least number of AM fungal spores per 100 g of soil was observed treatment T₁ (pearl millet) (225.33) (Fig. 2).

Infective propagules (100 g⁻¹) of the root zone soils

The infective propagules (IP) per 100g of soil showed that treatment T₁₇ (fenugreek) had maximum IP 559.66 (Table 1.3) followed by treatment T₁₅ (fenugreek) 555.66 and treatment T₃ (fenugreek) 552.33. The lowest value was recorded in treatment T₂₀ (pearl millet) 392.33 (Fig. 3).

Trap crop cycle II

AM fungi root colonization (%)

The per cent root colonization of AM fungi showed highest in treatment T₃ (fenugreek-sorghum) 56.33 per cent followed by treatment T₄ (maize-pearl millet) 56.33 per cent and treatment T₁₇ (fenugreek- maize) 55.00 per cent (Table 2.1). The lowest per cent root colonization was observed in treatment T₂₀ (pearl millet- sorghum) 33.66 per cent (Fig. 4).

Number of spores (100 g⁻¹) of root zone soils

The number of AM fungal spores (per 100 g of soil) in TC-II were recorded in treatment T₁₇ (fenugreek - maize) 523.00 followed by treatment T₁₁ (maize- fenugreek) 533.66 and treatment T₄ (maize -pearl millet) 513.33 (Table 2.2). Lowest number of AM fungal spores (per 100g of soil) was recorded in
Infective propagules (100 g⁻¹) of root zone soils

After the second trap crop cycle treatment T₁₅ (Fenugreek-Coriander) recorded the maximum IP count 577.33 per 100 g of soil followed by treatment T₁₇ (Fenugreek-Maize) 572.33 per 100 g of soil (Table 2.3) while the minimum count was recorded in treatment T₂₀ (Pearl Millet-Sorghum) 409.00 per 100 g of soil.

The traps crops inoculated with nucleus inoculum produced significant number of spores for each trap crop cycle. The treatment T₁₇ (fenugreek -maize-sorghum) showed highest spore count 693.66 (Table 3.2) whereas the lowest value was recorded in treatment T₉ (pearl millet-coriander-fenugreek) 444.33 (Fig. 8).

Verma (2011) found methi-berseem-maize the best combination among the twenty treatments, showing the highest average spore count per gram of soil.

Infective propagules (100 g⁻¹) of root zone soils

Infective propagules of AM fungi include spores, fungal hyphae, extra radical mycelium, vesicles and arbuscules which are able to initiate new infection. The IP number per 100 gram of rhizosphere soil recorded shows significant differences among all the treatments. The highest value recorded was 620.33 in treatment T₁₇ (fenugreek – maize -sorghum) and lowest observed was 354.66 in treatment T₂ (sorghum- coriander- fenugreek) (Table 3.3 and Fig. 9). Comparisons of results of MPKV bioassays and spore populations indicated that vast majority of propagules are in the form other than spores, i.e., extraradical hyphae and colonized root pieces.
Table 1.1 Root colonization (%) of AM fungi in the root samples of selected trap crops

| Treatment No. | Trap Crop    | Root Colonization (%) | Type of AM Colonization |
|---------------|--------------|------------------------|-------------------------|
| T1            | Pearl Millet | 23.33                  | H,V,A                   |
| T2            | Sorghum      | 21.33                  | H                       |
| T3            | Fenugreek    | 45.33                  | H,A                     |
| T4            | Maize        | 35.33                  | H,V                     |
| T5            | Coriander    | 37.33                  | H,V                     |
| T6            | Fenugreek    | 25.66                  | H,A                     |
| T7            | Maize        | 27.33                  | H,V,A                   |
| T8            | Coriander    | 33.33                  | H,V,A                   |
| T9            | Pearl Millet | 26.33                  | H,V,A                   |
| T10           | Sorghum      | 41.66                  | H,V                     |
| T11           | Maize        | 27.00                  | H,A                     |
| T12           | Coriander    | 23.00                  | H,V                     |
| T13           | Pearl Millet | 35.00                  | H,A                     |
| T14           | Sorghum      | 36.33                  | H,A                     |
| T15           | Fenugreek    | 40.00                  | H,V,A                   |
| T16           | Sorghum      | 46.33                  | H,V,A                   |
| T17           | Fenugreek    | 44.00                  | H,A                     |
| T18           | Maize        | 33.33                  | H,A                     |
| T19           | Coriander    | 22.00                  | H,V                     |
| T20           | Pearl Millet | 38.66                  | H,A                     |

S.E. ± 2.18
CD at 5 % 6.23
CD at 1 % 8.34

H-Hyphal colonization, V-Vesicular colonization, A-Arbuscular colonization
**Table 1.2** Number of AM fungal spores (100 g⁻¹) recovered from the root zone soils of selected trap crops

| Treatment No. | Trap Crop      | Number of AM fungal spores (100 g⁻¹ of soil) |
|---------------|----------------|---------------------------------------------|
| T₁            | Pearl Millet   | 225.33                                      |
| T₂            | Sorghum       | 275.66                                      |
| T₃            | Fenugreek     | 296.00                                      |
| T₄            | Maize         | 321.66                                      |
| T₅            | Coriander     | 265.66                                      |
| T₆            | Fenugreek     | 304.00                                      |
| T₇            | Maize         | 312.00                                      |
| T₈            | Coriander     | 259.66                                      |
| T₉            | Pearl Millet  | 232.33                                      |
| T₁₀           | Sorghum       | 273.00                                      |
| T₁₁           | Maize         | 312.66                                      |
| T₁₂           | Coriander     | 265.00                                      |
| T₁₃           | Pearl Millet  | 220.33                                      |
| T₁₄           | Sorghum       | 278.33                                      |
| T₁₅           | Fenugreek     | 301.66                                      |
| T₁₆           | Sorghum       | 283.00                                      |
| T₁₇           | Fenugreek     | 323.00                                      |
| T₁₈           | Maize         | 317.00                                      |
| T₁₉           | Coriander     | 263.00                                      |
| T₂₀           | Pearl Millet  | 227.00                                      |
| S.E. ±        |                | 1.98                                        |
| CD at 5 %     |                | 5.66                                        |
| CD at 1 %     |                | 7.57                                        |
Table 1.3 Infective propagules (100 g\(^{-1}\)) recovered from root zone soils of selected trap crops

| Treatment No. | Trap Crop   | Infectious propagules (IP) (100 g\(^{-1}\) of soil) |
|---------------|-------------|-----------------------------------------------------|
| T₁            | Pearl Millet| 408.66                                              |
| T₂            | Sorghum     | 496.00                                              |
| T₃            | Fenugreek   | 552.33                                              |
| T₄            | Maize       | 507.33                                              |
| T₅            | Coriander   | 478.33                                              |
| T₆            | Fenugreek   | 550.00                                              |
| T₇            | Maize       | 510.00                                              |
| T₈            | Coriander   | 482.00                                              |
| T₉            | Pearl Millet| 410.00                                              |
| T₁₀           | Sorghum     | 507.33                                              |
| T₁₁           | Maize       | 509.00                                              |
| T₁₂           | Coriander   | 478.33                                              |
| T₁₃           | Pearl Millet| 397.66                                              |
| T₁₄           | Sorghum     | 494.66                                              |
| T₁₅           | Fenugreek   | 555.66                                              |
| T₁₆           | Sorghum     | 494.66                                              |
| T₁₇           | Fenugreek   | 559.66                                              |
| T₁₈           | Maize       | 507.33                                              |
| T₁₉           | Coriander   | 474.66                                              |
| T₂₀           | Pearl Millet| 392.33                                              |

S.E. ± 1.89

CD at 5 % 5.40

CD at 1 % 7.23
### Table 2.1 Root colonization (%) of AM fungi in the root samples of selected trap crops

| Treatment No. | Previous Crop (TCC-I) | Trap Crop | Root Colonization (%) | Type of AM Colonization |
|---------------|-----------------------|-----------|-----------------------|-------------------------|
| T₁            | Pearl Millet          | Fenugreek | 34.66                 | H,V,A                   |
| T₂            | Sorghum              | Coriander | 35.00                 | H,A                     |
| T₃            | Fenugreek             | Sorghum   | 56.33                 | H,A                     |
| T₄            | Maize                 | Pearl Millet | 56.00             | H,V                     |
| T₅            | Coriander             | Maize     | 44.33                 | H,V                     |
| T₆            | Fenugreek             | Pearl Millet | 44.66             | H,A                     |
| T₇            | Maize                 | Sorghum   | 35.33                 | H,V,A                   |
| T₈            | Coriander             | Fenugreek | 45.66                 | H,V,A                   |
| T₉            | Pearl Millet          | Coriander | 34.66                 | H,V,A                   |
| T₁₀           | Sorghum               | Maize     | 50.33                 | H,V,A                   |
| T₁₁           | Maize                 | Fenugreek | 35.33                 | H,A                     |
| T₁₂           | Coriander             | Sorghum   | 45.66                 | H,V                     |
| T₁₃           | Pearl Millet          | Maize     | 38.66                 | H,A                     |
| T₁₄           | Sorghum               | Pearl Millet | 37.33            | H,A                     |
| T₁₅           | Fenugreek             | Coriander | 43.66                 | H,V,A                   |
| T₁₆           | Sorghum               | Fenugreek | 54.33                 | H,V,A                   |
| T₁₇           | Fenugreek             | Maize     | 55.00                 | H,A                     |
| T₁₈           | Maize                 | Coriander | 48.66                 | H,A                     |
| T₁₉           | Coriander             | Pearl Millet | 46.00          | H,V                     |
| T₂₀           | Pearl Millet          | Sorghum   | 33.66                 | H,V,A                   |
|               | **S.E. ±**            |           | **1.77**              |                         |
|               | **CD at 5 %**         |           | **5.07**              |                         |
|               | **CD at 1 %**         |           | **6.79**              |                         |

**H**-Hyphal colonization,   **V**-Vesicular colonization, **A**-Arbuscular colonization
Table 2.2 Number of AM fungal spores (100 g\(^{-1}\)) recovered from root zone soils of selected trap crops

| Treatment No. | Previous Crop (TCC-I) | Trap Crop | Number of AM fungal spores (100 g\(^{-1}\) of soil) |
|---------------|-----------------------|-----------|---------------------------------------------------|
| T\(_1\)       | Pearl Millet          | Fenugreek | 407.33                                            |
| T\(_2\)       | Sorghum               | Coriander | 464.66                                            |
| T\(_3\)       | Fenugreek             | Sorghum   | 490.00                                            |
| T\(_4\)       | Maize                 | Pearl Millet | 513.33                                      |
| T\(_5\)       | Coriander             | Maize     | 453.00                                            |
| T\(_6\)       | Fenugreek             | Pearl Millet | 492.00                                      |
| T\(_7\)       | Maize                 | Sorghum   | 502.00                                            |
| T\(_8\)       | Coriander             | Fenugreek | 426.66                                            |
| T\(_9\)       | Pearl Millet          | Coriander | 413.00                                            |
| T\(_{10}\)    | Sorghum               | Maize     | 475.33                                            |
| T\(_{11}\)    | Maize                 | Fenugreek | 533.66                                            |
| T\(_{12}\)    | Coriander             | Sorghum   | 458.33                                            |
| T\(_{13}\)    | Pearl Millet          | Maize     | 422.33                                            |
| T\(_{14}\)    | Sorghum               | Pearl Millet | 475.33                                      |
| T\(_{15}\)    | Fenugreek             | Coriander | 509.66                                            |
| T\(_{16}\)    | Sorghum               | Fenugreek | 463.33                                            |
| T\(_{17}\)    | Fenugreek             | Maize     | 523.00                                            |
| T\(_{18}\)    | Maize                 | Coriander | 512.33                                            |
| T\(_{19}\)    | Coriander             | Pearl Millet | 454.00                                      |
| T\(_{20}\)    | Pearl Millet          | Sorghum   | 426.00                                            |
|               | **S.E. ± 1.49**       |           |                                                   |
|               | **CD at 5 % 4.27**   |           |                                                   |
|               | **CD at 1 % 5.71**   |           |                                                   |
**Table 2.3** Infective propagules (100 g⁻¹) recovered from root zone soils of selected trap crops

| Treatment No. | Previous Crop (TCC-I) | Trap Crop | Infective propagules (IP) (100 g⁻¹ of soil) |
|---------------|-----------------------|-----------|-------------------------------------------|
| T₁            | Pearl Millet          | Fenugreek | 431.33                                    |
| T₂            | Sorghum               | Coriander | 509.66                                    |
| T₃            | Fenugreek             | Sorghum   | 566.33                                    |
| T₄            | Maize                 | Pearl Millet | 514.66                                    |
| T₅            | Coriander             | Maize     | 497.00                                    |
| T₆            | Fenugreek             | Pearl Millet | 557.00                                    |
| T₇            | Maize                 | Sorghum   | 523.00                                    |
| T₈            | Coriander             | Fenugreek | 495.66                                    |
| T₉            | Pearl Millet          | Coriander | 422.66                                    |
| T₁₀           | Sorghum               | Maize     | 523.33                                    |
| T₁₁           | Maize                 | Fenugreek | 536.00                                    |
| T₁₂           | Coriander             | Sorghum   | 492.66                                    |
| T₁₃           | Pearl Millet          | Maize     | 422.66                                    |
| T₁₄           | Sorghum               | Pearl Millet | 511.33                                    |
| T₁₅           | Fenugreek             | Coriander | 577.33                                    |
| T₁₆           | Sorghum               | Fenugreek | 514.66                                    |
| T₁₇           | Fenugreek             | Maize     | 572.33                                    |
| T₁₈           | Maize                 | Coriander | 524.00                                    |
| T₁₉           | Coriander             | Pearl Millet | 484.33                                    |
| T₂₀           | Pearl Millet          | Sorghum   | 409.00                                    |
| **S.E. ±**    |                       |           | 1.78                                      |
| **CD at 5 %** |                       |           | 5.10                                      |
| **CD at 1 %** |                       |           | 6.83                                      |
Table 3.1 Root colonization (%) of AM fungi in the root samples of selected trap crops

| Treatment No. | Previous Crop (TCC-I) | Previous Crop (TCC-II) | Trap Crop | Root Colonization (%) | Type of AM Colonization |
|---------------|-----------------------|------------------------|-----------|-----------------------|-------------------------|
| T1            | Pearl Millet          | Fenugreek              | Maize     | 47.33                 | H,V,A                   |
| T2            | Sorghum               | Coriander              | Fenugreek | 45.66                 | H,A                     |
| T3            | Fenugreek             | Sorghum                | Coriander | 58.33                 | H,A                     |
| T4            | Maize                 | Pearl Millet           | Sorghum   | 62.66                 | H,V                     |
| T5            | Coriander             | Maize                  | Pearl Millet | 54.66              | H,V,A                   |
| T6            | Fenugreek             | Pearl Millet           | Sorghum   | 55.00                 | H,A                     |
| T7            | Maize                 | Sorghum                | Pearl Millet | 45.33              | H,V,A                   |
| T8            | Coriander             | Fenugreek              | Maize     | 48.33                 | H,V,A                   |
| T9            | Pearl Millet          | Coriander              | Fenugreek | 47.00                 | H,V,A                   |
| T10           | Sorghum               | Maize                  | Coriander | 58.33                 | H,V,A                   |
| T11           | Maize                 | Fenugreek              | Coriander | 47.00                 | H,A                     |
| T12           | Coriander             | Sorghum                | Pearl Millet | 58.00             | H,V,A                   |
| T13           | Pearl Millet          | Maize                  | Sorghum   | 47.66                 | H,A                     |
| T14           | Sorghum               | Pearl Millet           | Fenugreek | 53.66                 | H,A                     |
| T15           | Fenugreek             | Coriander              | Maize     | 56.00                 | H,V,A                   |
| T16           | Sorghum               | Fenugreek              | Pearl Millet | 59.66             | H,V,A                   |
| T17           | Fenugreek             | Maize                  | Sorghum   | 59.66                 | H,A                     |
| T18           | Maize                 | Coriander              | Fenugreek | 53.33                 | H,V,A                   |
| T19           | Coriander             | Pearl Millet           | Maize     | 55.66                 | H,V                     |
| T20           | Pearl Millet          | Sorghum                | Coriander | 59.00                 | H,V,A                   |
| S.E. ±        |                       |                        |           |                       | 1.85                    |
| CD at 5 %     |                       |                        |           |                       | 5.30                    |
| CD at 1 %     |                       |                        |           |                       | 7.09                    |

H-Hyphal colonization, V-Vesicular colonization, A-Arbuscular colonization
**Table 3.2** Number of AM fungal spores (100 g⁻¹) recovered from root zone soils of selected trap crops

| Treatment No. | Previous Crop (TCC-I) | Previous Crop (TCC-II) | Trap Crop | Average number of AM fungal spores (100 g⁻¹ of soil) |
|---------------|-----------------------|------------------------|-----------|-----------------------------------------------------|
| T₁            | Pearl Millet          | Fenugreek              | Maize     | 520.66                                              |
| T₂            | Sorghum               | Coriander              | Fenugreek | 554.00                                              |
| T₃            | Fenugreek             | Sorghum                | Coriander | 653.00                                              |
| T₄            | Maize                 | Pearl Millet           | Sorghum   | 562.66                                              |
| T₅            | Coriander             | Maize                  | Pearl Millet | 524.33                                             |
| T₆            | Fenugreek             | Pearl Millet           | Sorghum   | 501.33                                              |
| T₇            | Maize                 | Sorghum                | Pearl Millet | 609.00                                             |
| T₈            | Coriander             | Fenugreek              | Maize     | 497.66                                              |
| T₉            | Pearl Millet          | Coriander              | Fenugreek | 444.33                                              |
| T₁₀           | Sorghum               | Maize                  | Coriander | 501.66                                              |
| T₁₁           | Maize                 | Fenugreek              | Coriander | 594.00                                              |
| T₁₂           | Coriander             | Sorghum                | Pearl Millet | 480.33                                             |
| T₁₃           | Pearl Millet          | Maize                  | Sorghum   | 466.33                                              |
| T₁₄           | Sorghum               | Pearl Millet           | Fenugreek | 508.00                                              |
| T₁₅           | Fenugreek             | Coriander              | Maize     | 532.00                                              |
| T₁₆           | Sorghum               | Fenugreek              | Pearl Millet | 493.66                                             |
| T₁₇           | Fenugreek             | Maize                  | Sorghum   | 693.66                                              |
| T₁₈           | Maize                 | Coriander              | Fenugreek | 632.66                                              |
| T₁₉           | Coriander             | Pearl Millet           | Maize     | 491.00                                              |
| T₂₀           | Pearl Millet          | Sorghum                | Coriander | 454.33                                              |
| S.E. ±        |                       |                        |           | 1.85                                                |
| CD at 5 %     |                       |                        |           | 5.30                                                |
| CD at 1 %     |                       |                        |           | 7.09                                                |
Table 3.3 Infective propagules (100 g⁻¹) recovered from the root zone soils of selected trap crops

| Treatment No. | Previous Crop (TCC-I) | Previous Crop (TCC-II) | Trap Crop | Infectious propagules (IP) (100 g⁻¹ of soil) |
|---------------|-----------------------|------------------------|-----------|---------------------------------------------|
| T₁            | Pearl Millet          | Fenugreek              | Maize     | 462.33                                      |
| T₂            | Sorghum               | Coriander              | Fenugreek | 354.66                                      |
| T₃            | Fenugreek             | Sorghum                | Coriander | 547.33                                      |
| T₄            | Maize                 | Pearl Millet           | Sorghum   | 588.00                                      |
| T₅            | Coriander             | Maize                  | Pearl Millet | 532.33                                    |
| T₆            | Fenugreek             | Pearl Millet           | Sorghum   | 557.33                                      |
| T₇            | Maize                 | Sorghum                | Pearl Millet | 585.00                                    |
| T₈            | Coriander             | Fenugreek              | Maize     | 527.66                                      |
| T₉            | Pearl Millet          | Coriander              | Fenugreek | 445.66                                      |
| T₁₀           | Sorghum               | Maize                  | Coriander | 557.33                                      |
| T₁₁           | Maize                 | Fenugreek              | Coriander | 611.00                                      |
| T₁₂           | Coriander             | Sorghum                | Pearl Millet | 525.33                                  |
| T₁₃           | Pearl Millet          | Maize                  | Sorghum   | 457.66                                      |
| T₁₄           | Sorghum               | Pearl Millet           | Fenugreek | 544.33                                      |
| T₁₅           | Fenugreek             | Coriander              | Maize     | 572.00                                      |
| T₁₆           | Sorghum               | Fenugreek              | Pearl Millet | 547.66                                |
| T₁₇           | Fenugreek             | Maize                  | Sorghum   | 620.33                                      |
| T₁₈           | Maize                 | Coriander              | Fenugreek | 559.66                                      |
| T₁₉           | Coriander             | Pearl Millet           | Maize     | 512.33                                      |
| T₂₀           | Pearl Millet          | Sorghum                | Coriander | 457.00                                      |
| S.E. ±        |                       |                        |           | 3.65                                        |
| CD at 5 %     |                       |                        |           | 10.43                                       |
| CD at 1 %     |                       |                        |           | 13.96                                       |
Fig. 1 AM fungi root colonization (%) in Trap Crop Cycle-I

Fig. 2 Number of spores per 100g of rhizosphere soil in Trap Crop Cycle-I

Fig. 3 Infectious propagules of AMF per 100 gram of rhizosphere soil in Trap Crop Cycle-I
**Fig. 4** AM fungi root colonization (%) in Trap Crop Cycle-II

**Fig. 5** Number of spores per 100g of rhizosphere soil in Trap Crop Cycle-II

**Fig. 6** Infectious propagules of AMF per 100 gram of rhizosphere soil in Trap Crop Cycle-II
**Fig. 7** AM fungi root colonization (%) in Trap Crop Cycle-III

**Fig. 8** Number of spores per 100g of rhizosphere soil in Trap Crop Cycle-III

**Fig. 9** Infectious propagules of AMF per 100 gram of rhizosphere soil in Trap Crop Cycle-III
Hawkins and George (1997) had used *Sorghum bicolor* as plant host for AM fungal propagule production in substrate-free cultivation by hydroponics method.

Gaur and Adholeya (2000) used *Zea mays* as plant host for the production of AM fungi which produce about 100 IP/g/substrate.

The infective propagules (IP) population of AMF ranged between 26.3-33.1 IP/g in natural soil in a study carried out by Maiti *et al.*, (2009)

These variations may be attributed to soil moisture content in treatment plots, soil P levels, organic carbon and soil pH (Kaushal, 2000). However, there was continuous increase in IP numbers per 100 gram of rhizosphere (Boswell *et al.*, 1998)

**Acknowledgement**

I express the depth of gratitude to, my Research Guide and Chairman of my Advisory Committee Dr.C.D. Deokar, Professor, College of Agriculture, Dhule. I am obligated to all the researchers and scientists whose literature helped me throughout the course of the investigation and to prepare this manuscript properly.

**References**

Boswell, E.P., Koide, R.T., Shumway, D.L. and Addy, H.D. 1998. Winter wheat cover cropping, VA mycorrhizal fungi and maize growth and yield. Agric. Ecosys. Environ., 67: 55-65.

Gaur, A. and Adholeya, A. 2000. Effect of the particle size of soil- less substrates upon AM fungus inoculum production. Mycorrhiza, 10(1): 43-48.

Hawkins, H.J. and George, E. 1997. Hydroponic culture of the mycorrhizal fungus *Glomus mosseae* with *Linum usitatissimum L.* *Sorghum bicolor* L. and *Triticum aestivum* L. *Plant Soil*, 196: 143-149.

Harley, J.L. 1959. The Biology of Mycorrhiza. Interscience Publishers, Inc. New York. Pp. 234.

Kadian Nisha, Yadav Kuldeep and Aggarwal Ashok. 2018. Mass multiplication of arbuscular mycorrhizal fungi associated with some leguminous plants: an eco-friendly approach. *Indian J. Exp. Biol.*, 56: 258-266.

Kaushal Sangeeta, 2000. Influence of edaphic factor on VA Mycorrhizal fungal spore population and root colonization in *Acacia nilotica* in Rajasthan. *J. Mycol. And Pl. Pathol.* 30(3): 380-388.

Maiti, D., Barnwal, M.K., Singh, R.K. and Variar, M. 2009. A new protocol for on-farm production of arbuscular mycorrhizal mass inoculum for rained upland rice. *Indian Phytopath.*, 62(1): 31-36.

Sreenivassa, M.N. 1992. Selection of an efficient vesicular-arbuscular mycorrhizal fungus for Chilli (*Capsicum annuum* L.) *Sci. Hortic.*, 50: 53-58.

Verma, V.K. 2011. Studies on on-farm production techniques of arbuscular mycorrhizal fungi. M.Sc. (Agri.) thesis submitted to MPKV, Rahuri.

How to cite this article:

Raut, S.B., C.D. Deokar, A.M. Navale and Dahatonde. 2019. On-farm Production of Arbuscular Mycorrhizal (AM) Fungi Using Trap Crop Cycles. *Int.J.Curr.Microbiol.App.Sci.* 8(10): 1084-1101. doi: [https://doi.org/10.20546/ijcmas.2019.810.128](https://doi.org/10.20546/ijcmas.2019.810.128)