Anisotropic strange star with de Sitter spacetime

Mehedi Kalam
Department of Physics, Aliah University, Sector - V, Salt Lake, Kolkata 700091, India

Farook Rahaman
Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India

Saibal Ray
Department of Physics, Government College of Engineering & Ceramic Technology, Kolkata 700010, West Bengal, India

Sk. Monowar Hossein
Department of Mathematics, Aliah University, Sector - V, Salt Lake, Kolkata 700091, India

Indrani Karar
Department of Basic Science and Humanities, Saroj Mohan Institute of Technology, Guptipara, West Bengal, India.

Jayanta Naskar
Department of Physics, Purulia Zilla School, Purulia, West Bengal, India

(Dated: December 21, 2013)

Stars can be treated as self-gravitating fluid. Krori and Barua [1] gave an analytical solutions to that kind of fluids. In this connection, we propose a de-Sitter model for an anisotropic strange star with the Krori-Barua spacetime. We incorporate the existence of cosmological constant in a small scale to study the structure of anisotropic strange stars and come to conclusion that this doping is very much compatible with the well known physical features of strange stars.

PACS numbers: 04.40.Nr, 04.20.Jb, 04.20.Dw

I. INTRODUCTION

Recent observational data and results in modern cosmology revealed that the dark energy which is described in majority by the cosmological constant \(\Lambda \) is of dominant importance in the dynamics of our Universe. Measurements conducted by Wilkinson Microwave Anisotropic Probe (WMAP) indicate that almost three fourth of total mass-energy in the Universe is Dark Energy [2,3] and the leading theory of dark energy is based on the cosmological constant characterized by repulsive pressure which was introduced by Einstein in 1917 to obtain a static cosmological model. Later on Zel’dovich [4] interpreted this quantity physically as a vacuum energy of quantum fluctuation whose size is of the order of \(\sim 3 \times 10^{-56} \text{ cm}^{-2} \). [5,6].

However, for viability of the present-day accelerated Universe with dark energy the erwhile cosmological constant \(\Lambda \), in general, assumed to be time-dependent in the cosmological realm [2,3]. On the other hand, space-dependent \(\Lambda \) has an expected effect in the astrophysical context as argued by several authors [2,10] in relation to the nature of local massive objects like galaxies and elsewhere. In the present context of compact stars, however, we assume the dark energy in the form of Einstein’s cosmological constant as a purely constant quantity as follows: either \(\Lambda_{eff} = \Lambda_0 - \Lambda(r) \), where \(\Lambda_{eff} \) is the effective cosmological parameter [11] or \(\Lambda_{eff} = \Lambda_0 + 8\pi E \), where \(E \) is the energy density of the energy state [12] so that, for the time being, variation of time and/or space-dependence of \(\Lambda \) is ignored. This constancy of \(\Lambda \) can not be ruled out for the systems of very small dimension like compact star systems or elsewhere with different physical requirements [13–16].

To study mass and radii of neutron star Egeland [17] incorporated the existence of cosmological constant proportionality depending on the density of vacuum. Egeland did it by using the Fermi equation of state together with the Tolman-Oppenheimer-Volkov (TOV) equation. Motivated by the above facts we incorporate the existence of cosmological constant in a small scale to study the structure of strange stars and arrived to a conclusion that incorporation of \(\Lambda \) describes the well known strange stars for examples strange stars - X ray buster, 4U 1820 – 30, X ray pulsar Her X – 1, Millisecond pulsar SAX J 1808.4 – 3658 etc., in good manners. Dey et al. [18], Usov [19], Ruderman [20], Mak and Harko [21–23], Li et al. [24, 25], Chodos et al. [26] and many more have also studied structure of strange stars in different way. If we look at the anisotropy and TOV equation of strange stars then our model fit appropriately with the...
above said stars.
In the present work, we modelled a strange star which have been proposed by Alcock et al. and Haensel et al. 27 28 through their fundamental works. However, our model of strange star is associated with cosmological constant which satisfies all the energy conditions including the TOV-equation. We have checked the stability and mass-radius relation. Finally, we have calculated the surface redshift for our solutions which may be interesting to the observers for possible detection of strange stars.

II. ANISOTROPIC DE-SITTER MODEL

To describe the space-time of the strange stars stellar configuration, we take the Krori and Barua 1 metric (henceforth KB) given by

\[ds^2 = -e^{\nu(r)} dt^2 + e^{\lambda(r)} dr^2 + r^2 (d\theta^2 + \sin^2 \theta d\phi^2), \]

(1)

with \(\lambda(r) = Ar^2 \) and \(\nu(r) = Br^2 + C \) where \(A, B \) and \(C \) are arbitrary constants to be determined on physical grounds. We further assume that the energy-momentum tensor for the strange matter filling the interior of the star may be expressed in the standard form as

\[T_{ij} = \text{diag}(\rho, -p_r, -p_t, -p_t) \]

where \(\rho, p_r \) and \(p_t \) correspond to the energy density, radial pressure and transverse pressure of the baryonic matter, respectively.

The Einstein’s field equations for the metric (1) in presence of \(\Lambda \) are then obtained as (with \(G = c = 1 \) under geometrized relativistic units)

\[8\pi \rho + \Lambda = e^{-\lambda} \left(\frac{\lambda'}{r} - \frac{1}{r^2} \right) + \frac{1}{r^2}, \]

(2)

\[8\pi \rho_r - \Lambda = e^{-\lambda} \left(\frac{\nu'}{r} + \frac{1}{r^2} \right) - \frac{1}{r^2}, \]

(3)

\[8\pi \rho_t - \Lambda = e^{-\lambda} \left(\frac{\nu'^2}{2r^2} + \frac{\nu' - \lambda}{r} + \lambda'' \right). \]

(4)

Now, from the metric (1) and equations (2) - (4), we get the energy density (\(\rho \)), the radial pressure (\(p_r \)) and the tangential pressure (\(p_t \)) as

\[\rho = \frac{1}{8\pi} \left[e^{-\lambda} \left(2A - \frac{1}{r^2} \right) + \frac{1}{r^2} - \Lambda \right], \]

(5)

\[p_r = \frac{1}{8\pi} \left[e^{-\lambda} \left(2B + \frac{1}{r^2} \right) - \frac{1}{r^2} + \Lambda \right], \]

(6)

\[p_t = \frac{1}{8\pi} \left[e^{-\lambda} \left((B^2 - AB)r^2 + (2B - A) \right) + \Lambda \right]. \]

(7)

Using equations (5) - (7) the equation of state (EOS) corresponding to radial and transverse directions may be written as

\[\omega_r(r) = \frac{e^{-\lambda} \left(2B + \frac{1}{r^2} \right) - \frac{1}{r^2} + \Lambda}{e^{-\lambda} \left(2A - \frac{1}{r^2} \right) + \frac{1}{r^2} - \Lambda}. \]

(8)

\[\omega_t(r) = \frac{e^{-\lambda} \left((B^2 - AB)r^2 + (2B - A) \right) + \Lambda}{e^{-\lambda} \left(2A - \frac{1}{r^2} \right) + \frac{1}{r^2} - \Lambda}. \]

(9)

III. PHYSICAL ANALYSIS

It is known that \(\Lambda > 0 \) implies the space is open. To explain the present acceleration state of the universe, it is believed that energy in the vacuum is responsible for this expansion. As a consequence, Vacuum energy provides some gravitational effect on the stellar structures. It is suggested that cosmological constant plays the role of energy of the vacuum. In this section we will study the following features of our model assuming the value of \(\Lambda = 0.00018 \text{ km}^{-2} \). We have assumed this value as required for the stability of the strange star and mathematical consistency.

A. Anisotropic Behavior

From the equation (5) we have,

\[\frac{d\rho}{dr} = -\frac{1}{8\pi} \left[\left(4A^2 r - \frac{2A}{r} - \frac{2}{r^2} \right) e^{-\lambda} - \frac{2}{r^2} \right] < 0, \]

and equation (6) leads to

\[\frac{dp_r}{dr} < 0. \]

The density and pressure are decreasing with the increase of radius of the star.

Figs. 1 and 2 support the above results.

FIG. 1: Density variation at the stellar interior of Strange Star-Her X-1

We observe that, at \(r = 0 \), our model provides

\[\frac{d\rho}{dr} = 0, \quad \frac{dp_r}{dr} = 0, \]
We note that measure of anisotropy is independent of Λ. In other words, vacuum energy does not affect on the anisotropic force. The ‘anisotropy’ will be directed outward when $P_t > P_r$ i.e. $\Delta > 0$, and inward if $P_t < P_r$ i.e. $\Delta < 0$. Fig. 4 of our model indicates that $\Delta > 0$ i.e. a repulsive ‘anisotropic’ force exists for Strange Star-4U 1820-30, Her X-1 and SAX J 1808.4-3658. The positivity of Δ allows the construction of more massive distributions.

\[\Delta = \frac{1}{8\pi} \left[e^{-\Lambda r^2} \left((B^2 - AB)r^2 - A - \frac{1}{r^2} \right) + \frac{1}{r^2} \right]. \]

(10)

The measure of anisotropy, $\Delta = (p_t - p_r)$ in this model is obtained as

\[\Delta = \frac{1}{8\pi} \left[e^{-\Lambda r^2} \left((B^2 - AB)r^2 - A - \frac{1}{r^2} \right) + \frac{1}{r^2} \right]. \]

(10)

B. Matching Conditions

Here we match the interior metric to the Schwarzschild de Sitter exterior

\[ds^2 = - \left(1 - \frac{2M}{r} - \frac{\Lambda r^2}{3} \right) dt^2 + \left(1 - \frac{2M}{r} - \frac{\Lambda r^2}{3} \right)^{-1} dr^2 + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right), \]

(11)

at the boundary $r = R$. Continuity of the metric functions g_{tt}, g_{rr} and $\partial g_{tt}/\partial r$ at the boundary surface S yields

\[A = -\frac{1}{R^2} \ln \left[1 - \frac{2M}{R} - \frac{1}{3} \Lambda R^2 \right], \]

(12)

\[B = \frac{1}{R} \left[\frac{M}{R^2} - \frac{1}{3} \Lambda R \right] \left[1 - \frac{2M}{R} - \frac{1}{3} \Lambda R^2 \right]^{-1}, \]

(13)

\[C = \ln \left[1 - \frac{2M}{R} - \frac{1}{3} \Lambda R^2 \right] - \frac{R \left[\frac{M}{R^2} - \frac{1}{3} \Lambda R \right]}{1 - \frac{2M}{R} - \frac{1}{3} \Lambda R^2}. \]

(14)

Imposing the boundary conditions $p_r(r = R) = 0$ and $\rho(r = 0) = b (=a constant)$, where b is the central density, we have A and B in the following forms:

\[A = \frac{8\pi b + \Lambda}{3}, \]

(15)

\[B = \frac{1}{2} \left[e^{-\frac{3}{4} \Lambda r^2} \left(\frac{1}{R^2} - \Lambda \right) - \frac{1}{R^2} \right]. \]

(16)
Combining, equations (12) and (15), we get

\[A = \frac{8\pi b + A}{3} = -\frac{1}{R^2} \ln \left[1 - \frac{2M}{R} - \frac{1}{3}AR^2 \right]. \quad (17) \]

At this juncture, to get an insight of our model, we have evaluated the numerical values of the parameters \(A, B \) and \(b \) for the Strange Star-4U 1820-30, Her X-1 and SAX J 1808.4-3658 (see Table 1).

We have verified for particular choices of the values of mass and radius leading to solutions for the unknown parameters, satisfy the following energy conditions namely, the null energy condition (NEC), weak energy condition (SEC) and dominant energy condition (DEC) through out the configuration:

\[\rho \geq 0, \rho + p_r \geq 0, \rho + p_t \geq 0, \rho + p_r + 2p_t \geq 0, \rho > |p_r|, \]

and \(\rho > |p_t| \).

It is interesting to note here that the model satisfies the strong energy condition, which implies that the space-time does contain a black hole region.

The anisotropy, as expected, vanishes at the centre i.e., \(p_t = p_r = p_0 = \frac{2B - A + \lambda}{8\pi} \) at \(r=0 \). The energy density and the two pressures are also well behaved in the interior of the stellar configuration.

C. TOV Equation

For an anisotropic fluid distribution, the generalized TOV equation is given by

\[\frac{d}{dr} \left(p_r - \frac{\Lambda}{8\pi} \right) + \frac{1}{2} \nu' (\rho + p_r) + \frac{2}{r} (p_r - p_t) = 0. \quad (18) \]

According to Ponce de León [30], the above TOV equation can be rewritten as

\[-\frac{M_G}{r^2} e^{\frac{\nu}{2}} - \frac{d}{dr} \left(p_r - \frac{\Lambda}{8\pi} \right) + \frac{2}{r} (p_t - p_r) = 0, \quad (19) \]

where \(M_G = M_G(r) \) is the gravitational mass inside a sphere of radius \(r \) and is given by

\[M_G(r) = \frac{1}{2} r^2 e^{\frac{\nu}{2}} \nu', \quad (20) \]

which can easily be derived from the Tolman-Whittaker formula and the Einstein’s field equations. This new form of TOV equation provides the equilibrium condition for the strange star subject to gravitational and hydrostatic plus another force due to the anisotropic nature of the stellar object. Using equations (10) - (17), the above equation can be written as

\[F_g + F_h + F_a = 0, \quad (21) \]

where,

\[F_g = -Br (\rho + p_r), \quad (22) \]

\[F_h = -\frac{d}{dr} \left(p_r - \frac{\Lambda}{8\pi} \right), \quad (23) \]

\[F_a = \frac{2}{r} (p_t - p_r). \quad (24) \]

The profiles of \(F_g, F_h \) and \(F_a \) for our chosen source are shown in Fig. 5. This figure indicates that the static equilibrium can be attained due to pressure anisotropy, gravitational and hydrostatic forces.

![FIG. 5: Behaviours of pressure anisotropy, gravitational and hydrostatic forces at the stellar interior of Strange Star Her X-1](image)

D. Stability

The velocity of sound \(v_s^2 = \left(\frac{dp_r}{d\rho} \right) \) should be less than one for a realistic model. [31, 32]. Now, we calculate the radial and transverse speed for our anisotropic model,

\[v_{sr}^2 = \frac{dp_r}{d\rho} = -1 + \frac{4Are^{-Ar^2}(A + B)}{e^{-Ar^2} \left(4A^2r - \frac{2A}{r} - \frac{2}{r^2} \right) + \frac{2}{r^2}}. \quad (25) \]
\[v_{st}^2 = \frac{dp_r}{d\rho} = e^{-Ar^2} \left[2r (A^2 + B^2 - 3AB) - 2A(B^2 - AB)r^3 \right] e^{-Ar^2} \left(4A^2r - \frac{2A}{r} - \frac{2}{r^2} \right) + \frac{2}{r^2} \] (26)

To check whether the sound speeds lie between 0 and 1, we plot the radial and transverse sound speeds in Fig. 6 and observe that these parameters satisfy the inequalities 0 ≤ \(v_{sr}^2 \) ≤ 1 and 0 ≤ \(v_{st}^2 \) ≤ 1 everywhere within the stellar object.

Equations (25) and (26) lead to

\[v_{st}^2 - v_{sr}^2 = 1 - e^{-Ar^2} \left[2r (3A^2 + B^2 - AB) + 2AB(A - B)r^3 \right] e^{-Ar^2} \left(4A^2r - \frac{2A}{r} + \frac{2}{r^2} \right) + \frac{2}{r^2} \] (27)

As sound speeds lie between 0 and 1, therefore, |\(v_{st}^2 - v_{sr}^2 \)| ≤ 1.

In few years back, Herrera’s [31] proposed a technique for stability check of local anisotropic matter distribution. This technique is known as cracking (or overturning) concept which states that the region for which radial speed of sound is greater than the transverse speed of sound is a potentially stable region. In our case, Fig. 7 indicates that there is no change of sign for the term \(v_{st}^2 - v_{sr}^2 \) within the specific configuration. Also, the plot for \(v_{st}^2 - v_{sr}^2 \) (Fig. 7) shows negativity in its nature. Therefore, we conclude that our strange star model is stable.

![Fig. 6: Variation of radial and transverse sound speed of Strange Star-Her X-1](image)

E. Surface redshift

To get observational evidence of anisotropies in the internal pressure distribution, it is necessary to study redshift of light emitted at the surface of the compact objects. At first, we try to see whether our model will follow Buchdahl [29] maximum allowable mass radius ratio limit. We have calculated \(\frac{M_{eff}}{R} = \frac{4\pi}{R} \int_0^R \rho dr \) for Strange Star Her X-1 of our model and have found that \(\left(\frac{M_{eff}}{R} \right)_{max} = 0.336 \). Thus our model satisfies Buchdahl’s limit and hence physically acceptable. It is worthwhile to mention that our model provides the same mass radius ratio for the observed Strange Star Her X-1.

The compactness of the star is given by

\[u = \frac{M_{eff}}{R} = \frac{1}{2} \left(1 - e^{-Ar^2} \right) - \frac{\Lambda R^2}{6}. \] (28)

The surface redshift (\(Z_s \)) corresponding to the above compactness (\(u \)) is obtained as

\[1 + Z_s = \left[1 - (2u + \frac{\Lambda R^2}{3}) \right]^{-\frac{1}{2}}, \] (29)

where

\[Z_s = e^{\frac{\Lambda R^2}{6}} - 1. \] (30)

Thus, the maximum surface redshift for a strange star Her X-1 of radius 7.7 km turns out to be \(Z_s = 0.022 \) (see Fig. 8).

IV. DISCUSSION

We have studied in the present work a self-gravitating fluid of strange star under the metric of KB [1]. The spacetime turns out to be de Sitter type and anisotropic in nature due to the presence of tangential pressure. We have incorporated the erstwhile cosmological constant \(\Lambda \) in the field equation to study the structure of anisotropic strange stars. Successfully we find out an analytical solution to the fluids which are quite interesting in connection to several physical features of strange stars.
In this regard it is to note that the present investigation is a sequel of the earlier works with KB models. Varela et al. considered KB model in the context of electrically charged system whereas Rahaman et al. studied it under the influence of anisotropic charged fluids with Chaplygin equation of state. Also, Rahaman et al. studied dark energy star constituted by two fluids, namely ordinary fluid and dark energy. Very recently Rahaman et al. have uniquely considered the system of strange star with MIT Bag model under KB metric. However, in the present investigation we have considered a de-Sitter model for an anisotropic strange star with the same KB spacetime. It is yet unclear to what extent the strange stars can be described by the KB metric. At least, at this stage of theoretical investigation on strange star, the question of 'if they exist at all' is not a serious issue or adding one more arbitrary ingredient to match with the observational data can not seriously disprove the subject.

We would like to mention here that we have doped here Λ as a purely constant quantity and have shown that the results are very much compatible with the well known physical features of strange stars. This at once demands a space-variable Λ to be incorporated to see the effect of this inclusion in the astrophysical system like strange star. Another issue, possibly very intriguing one, the assumed value of the cosmological constant here as Λ = 0.00018 km⁻². This has certainly nothing to do with the standard “cosmology” of mainstream arena as it looks quite artificial. However, all these issues related to Λ may be considered in a future project.

Acknowledgments

MK, FR and SR gratefully acknowledge support from IUCAA, Pune, India for providing Visiting Associateship under which a part of this work was carried out. SMH thanks to IUCAA for giving him an opportunity to visit IUCAA where a part of this work was carried out. FR is also thankful to UGC for providing financial support. Finally, we are expressing our deep gratitude to the anonymous referee for suggesting some pertinent issues that have led to significant improvements.

[1] K.D. Krori and J. Barua, J. Phys. A.: Math. Gen. 8, 508 (1975).
[2] S. Perlmutter et al., Nature 391, 51 (1998).
[3] A.G. Riess et al., Astrophys. J. 607, 665 (2004).
[4] Y. B. Zel'dovich, JETP letters 4, 75 (1967); Sov. Phys. Uspekhi 11, 381 (1968).
[5] P.J.E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).
[6] T. Padmanabhan, Phys. Rep. 380, 235 (2003).
[7] W. Chen and Y.S. Wu, Phys. Rev. D 310, 695 (1990).
[8] J.V. Narlikar, J.-C Pecker, J.-P Vigier, J. Astrophys. Astr. 12, 7 (1991).
[9] S. Ray and D. Ray, Astrophys. Space Sci. 203, 211 (1993).
[10] R.N. Tiwari and S. Ray, Ind. J. Pure Appl. Math. 27, 907 (1996).
[11] S. Ray and S. Bhadra, Phys. Lett. A 322, 150 (2004).
[12] D.A. Demir, Found. Phys. 39, 1407 (2009).
[13] M. K. Mak and P.N. Dobson, JR., Mod. Phys. Lett. A 15, 2153 (2000).
[14] I. Dymnikova, Class. Quantum Grav. 19 725 (2002).
[15] I. Dymnikova, Int. J. Mod. Phys. D 12, 1015 (2003).
[16] C.G. Böhmer and T. Harko, Physics Letters B 630 (2005) 73
[17] E. Egeland, Compact Stars (Trondheim, Norway, 2007).
[18] M. Dey et al., Phys. Lett. B. 438, 123 (1998), addendum:447, 352 (1999), erratum:467, 303 (1999).
[19] V.V. Usov, Phys. Rev. D. 70, 067301 (2004).
[20] R. Ruderman, Ann. Rev. Astron. Astrophys. 10, 427 (1972).
[21] M.K. MaK and T. Harko, Chin. J. Astron. Astrophys. 2, 248 (2002).
[22] M.K. Mak and T. Harko, Proc. R. Soc. Lond. 459, 393 (2003).
[23] M.K. Mak and T. Harko, Int. J. Mod. Phys. D. 13, 149 (2004).
[24] X.-D. Li et al., Phys. Rev. Lett. 82, 3776 (1999).
[25] X.-D. Li et al., Astrophys. J. 527, L51 (1999).
[26] A. Chodos et al., Phys. Rev. D. 9, 3471 (1974).
[27] C. Alcock, E. Farhi and A. Olinto, Astrophys. J. 310, 261 (1986).
[28] P. Haensel, J. L. Zdunik and R. Schaeffer, Astron. Astrophys. 160, 121 (1986).
[29] H.A. Buchdahl, Phys. Rev. 116, 1027 (1959).
[30] J. Ponce de León, Gen. Relativ. Gravit. 25, 1123 (1993).
[31] L. Herrera, Phys. Lett. A, 165 206, (1992).
[32] H. Abreu, H. Hernandez and L.A. Nunez, Class. Quantum Gravit. 24, 4631 (2007).
[33] V. Varela, F. Rahaman, S. Ray, K. Chakraborty and M. Kalam, Phys. Rev. D 82, 044052 (2010).
[34] F. Rahaman, S. Ray, A. K. Jafry and K. Chakraborty, Phys. Rev. D 82 104055 (2010).

[35] F. Rahaman, R. Maulick, A. K. Yadav, S. Ray, R. Sharma, Gen.Rel.Grav. 44 107 (2012) arXiv:1102.1382 [gr-qc]

[36] F. Rahaman, R. Sharma, S. Ray, R. Maulick and I. Karar, arXiv:1108.6125 [gr-qc] (2011) (to appear in Eur.Phys.J. C (2012)).