FACILE AND SIMPLE SYNTHESIS OF N-ALKYL AND N-ARYL 2-BENZAZEPINES BY NUCLEOPHILIC HETEROANNULATION

A. K. Srinivasan, K. Rajashekar, B. Shyamapada, and U. K. Syam Kumar
Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Limited, Hyderabad, India

GRAPHICAL ABSTRACT

Abstract An efficient and practical synthesis of N-alkyl and N-aryl 2-benzazepine has been developed. The key steps involved in the synthesis were palladium-mediated Heck reaction followed by aza heterocyclic ring construction by nucleophilic heteroannulation. This four-step sequence synthetic protocol gave moderate to good yields for a wide range of substrates. Subsequently, functionalization of the synthesized compound was carried out under Heck and Suzuki reaction conditions.

Keywords 2-Benzazepine; Heck reaction; nucleophilic heteroannulation; Suzuki reaction

INTRODUCTION

2-Benzazepine is not only a unique aromatic fused aza-heterocyclic structure but also a core component of a number of pharmacologically important compounds.[1] Benzazepine derivatives exhibit a variety of biological activities such as analgesic, antiarrhythmic, anticonvulsant, and hypertensive activities[2] and are peptide mimics of the RGD motif.[3] Further, they would be useful antagonists of muscarinic (M3) receptors. In addition, these compounds are helpful for treatment of mental disorders and hypoxia.[4] Recently benzazepine derivatives are reported as potential drug candidates to prevent cell–cell adhesion.[5] The benzazepine skeleton is a main part for many naturally available alkaloids of the amaryllidaceae group.

Received March 23, 2014.
Address correspondence to A. K. Srinivasan, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Limited, Bollaram Road, Miyapur, Hyderabad, India. E-mail: srinicasanak@drreddys.com
such as cripowellin A, lycoramine, narwedine, etc., and equally the benzazepine core structure is found in various active pharmaceuticals ingredients such as mirtazapine and galanthamine.[6] Because of their diverse pharmacological properties, benzazepine heterocycles have drawn our attention to the synthesis of novel 2-benzazepines via an efficient methodology.

There are several known synthetic reports available in the literature for the synthesis of 2-benzazepine, such as Pictet–Spengler cyclization,[7] Bischler–Napieralski protocol,[8] Beckmann or Schmidt rearrangements of 3,4-dihydro-1(2H)-naphthalenone,[9] ring-closing metathesis methodology,[10] functionalized benzyl amine or benzyl chlorides cyclization,[11] and one-pot transformation of the Bayliss–Hillman adducts via the simultaneous Ritter and Houben–Hoesch reactions.[12] Other striking syntheses are TMSOTf-promoted Friedel–Crafts reaction of vinyloxirane,[13] rhodium-catalyzed hydroaminomethylation,[14] construction of 2-benzazepine by TiCl4-mediated tandem Mannich reaction,[15] and from substituted cinnamylamide via an intramolecular Friedel–Crafts reaction.[16] Though synthesis of 2-benzazepine was widely reported, significant efforts have been made to develop a simple and efficient synthesis of 2-benzazepine.

Palladium-mediated coupling reactions are very interesting because of their versatility and high functional group tolerance. Among all palladium-mediated coupling reactions, the Heck reaction is more attractive because of their clean reaction profile and formation of fewer side products in the formation of C–C bond of aryl halides or vinyl halide with activated olefins.[17] The Heck cross coupling was employed for the synthesis of the key intermediate 3-(2-(hydroxymethyl)phenyl)propan-1-ol (4), which is the structural requirement for the synthesis of benzazepine framework. It could be easily converted into 2-benzazepine derivatives by nucleophilic heteroannulation reaction. In our present work, we now report preparation of N-alkyl and N-aryl 2-benzazepines and also further functionalization of 2-benzazepine for generating novel and structurally diversified benzazepines derivatives.

RESULTS AND DISCUSSION

Our approach started with the synthesis of 2-benzazepine from commercially accessible methyl 2-bromobenzolate (1) (Scheme 1). It was treated with methyl acrylate using Heck reaction protocol, which afforded E-arylalkene diester 2.[18] To find the best experimental conditions for the Heck coupling reaction we have carried out the reaction with different palladium catalysts in various solvents and bases. The details are listed in Table 1. The best result was obtained when the reaction was carried out with 5 mol% Pd(PPh3)2Cl2 in the presence of triethylamine in toluene at 100 °C. The prepared diester intermediate 2 was subjected to LAH reduction, but failed to get a cleaner reaction profile even at higher temperature. This was due to the presence of a different functional group in ester 2. Hence, intermediate 2 was hydrogenated with 5% Pd/C, which yielded saturated diester 3. The ester 3 was subjected to LAH reduction and to our delight the reaction proceeded smoothly and afforded the diol 4 in a cleaner profile with more than 95% yield.[19] The obtained diol 4 was converted into bismesylated product (5) by using 2.5 equiv. of methanesulfonyl chloride and triethylamine condition, which could act as a better leaving group[20] during nucleophilic heteroannulation reaction. It has been observed that
mesylated product (5) was quite unstable during distillation, so we planned to move forward with next step without isolation. With bismesylated (5) product in hand, our approach was to evaluate the synthesis of benzazepine (6) ring via heteroannulation with a nitrogen nucleophile. Initially we have checked the heteroannulation with methanolic ammonia, but the reaction did not proceed well because of the weak nucleophilicity of ammonia. Then the reaction was carried out with methanolic ammonia in the presence of 15–20 psi of ammonia pressure at room temperature. The reaction went well and 2-benzazepine 6a was isolated.\[21\] To assess the scope and limitations of synthesis of 2-benzazepine 6 via versatile nucleophilic heteroannulation (Table 2), a series of N-substituted 2-benzazepines 6(b–l) were prepared in moderate to good yields with various nucleophiles (aliphatic and aromatic amines). The reactivity of heteroannulation reaction was varied with respect to the nucleophile. If the nucleophile is an aliphatic amine

![Scheme 1. Preparation of 2-benzazepine via nucleophilic heteroannulation. Reagents and conditions: (a) Pd(PPh3)2Cl2, Et3N, toluene, methyl acrylate, 100 °C, 6 h, 94%; (b) 5% Pd/C, methanol, rt, 1 h, 96%; (c) LAH, THF, rt, 3 h, 95%; (d) MsCl, Et3N, CH2Cl2, 0 °C, 3 h; (e) (i) methanolic ammonia, 15–20 psi of ammonia, rt 7 h; (ii) aliphatic amine, CH2Cl2, 0 °C, 3 h to 8 h; (iii) aryl amine, CH2Cl2, rt, 18 h to 26 h.](image)

Table 1. Optimization of reaction conditions for the Heck reaction

Entry	Catalyst	Solvent	Base	Temp. (°C)	Time (h)	Yield\(^a\) (%)
1	Pd(PPh3)4	DMF	Na₂CO₃	130	14	84
2	Pd(PPh3)4	DMF	TEA	130	24	60
3	Pd(PPh3)4	Toluene	TEA	110	24	45
4	Pd(dppf)Cl2·CH2Cl2	DMF	TEA	130	24	66
5	Pd(dppf)Cl2·CH2Cl2	Toluene	TEA	100	18	71
6	Pd(PPh3)2Cl2	Toluene	TEA	100	6	94
7	Pd(PPh3)2Cl2	DMF	TEA	130	18	81
8	PdCl2	DMF	TEA	130	24	24
9	PdCl2	Toluene	TEA	100	36	48

Note. Conditions: All reactions were carried out by using compound 1 (1.0 equiv), methylacrylate (1.5 equiv), catalyst (5 mol%), and base (3 equiv.).

\(^a\)Isolated yield by column purification. Remaining unreacted starting material was recovered.
Table 2. Scope and generality of nucleophilic heteroannulation reactions

Entry	Amine	Product (6)	Yield (%)	Time (h)
a	Methanolic·NH₃	![Image](image1)	73	7
b	![Image](image2)	![Image](image3)	79	3
c	![Image](image4)	![Image](image5)	74	4
d	![Image](image6)	![Image](image7)	73	5
e	![Image](image8)	![Image](image9)	69	4
f	![Image](image10)	![Image](image11)	71	8
g	![Image](image12)	![Image](image13)	71	18
h	![Image](image14)	![Image](image15)	78	18

(Continued)
the reaction was fast at 0°C, whereas with aromatic amine the reaction was slow even at room temperature. Nevertheless, the reaction proceeded well and the pure products were isolated by column chromatography. The structures of the compounds were characterized by spectral data.

As we prepared 2-(2-bromophenyl)-2,3,4,5-tetrahydro-1H-benzo[c]azepine (6i), it was picked further for structural elaboration through various palladium-mediated coupling reactions for molecular assortment (Scheme 2). Accordingly, bromo derivative 6i was subjected to Heck and Suzuki coupling reactions (Table 3). The Suzuki reaction was carried out by using 6i (1.0 equiv), a boronic acid (1.15 equiv.), Pd(PPh3)4 (5 mol%), and K3PO4 (2 equiv) in dimethoxy ethane at 90°C (Table 3, entries a–c). The Heck reaction was carried out by using 6i (1.0 equiv), methyl

Entry	Amine	Product (6)	Yield (%)	Time (h)
i	![Image]	![Image]	75	20
j	![Image]	![Image]	70	21
k	![Image]	![Image]	69	18
l	![Image]	![Image]	61	26
acrylate (2.0 equiv), Pd(PPh₃)₂Cl₂ (5 mol%), and K₂CO₃ (2.5 equiv) in toluene at 100°C (Table 3, entry d). After usual workup, the corresponding coupled products were isolated with good yields.

Table 3. Heck and Suzuki coupling reactions of 6i

Entry	Reactants	Product (7)	Yield (%)	Time (h)
a	(HO)₂B	!Screen Shot 2023-01-14 at 12.26.13 PM.png	87	12
b	(HO)₂B	!Screen Shot 2023-01-14 at 12.26.22 PM.png	86	13
c	(HO)₂B	!Screen Shot 2023-01-14 at 12.26.31 PM.png	84	12
d	!Screen Shot 2023-01-14 at 12.26.40 PM.png	!Screen Shot 2023-01-14 at 12.26.49 PM.png	93	10
CONCLUSION

In summary, we have developed a novel methodology for the preparation of 2-benzazepine derivatives from commercially available methyl 2-bromobenzolate in four steps. The methodology involves heteroanuulation of in situ–prepared bismesylated diol with various nitrogen nucleophiles to afford the 2-benzazepine derivatives in moderate to good yields. The molecular diversity of 2-benzazepine derivatives was demonstrated by Heck and Suzuki cross-coupling reactions. Studies are in progress to expand the scope of this methodology for the synthesis of more complex natural products.

EXPERIMENTAL

All reactions were carried out in oven-dried glassware under an atmosphere of N₂. ¹H and ¹³C NMR spectra were recorded in CDCl₃ and dimethylsulfoxide (DMSO-d₆) on a Varian Gemini 400-MHz FT spectrometers. Proton chemical shifts (δ) are relative to tetramethylsilane (TMS, δ 0.00) as internal standard and expressed in parts per million (ppm). Spin multiplicities are given as s (singlet), d (doublet), t (triplet), and m (multiplet). Coupling constants (J) are given in hertz. Mass spectra were obtained on a HP-5989A mass spectrometer. Thin-layer chromatography (TLC) was performed on silica-gel plates (SRL 230–400 mesh). All solvents used are commercially available and were distilled before use.

General Procedure for Synthesis of N-Alkyl and N-Aryl 2-Benzazepine (6b–l)

Triethylamine (3.4 g, 30.1 mmol) was added to a solution of 3-(2-(hydroxymethyl)phenyl)propan-1-ol (4) (1 g, 6.02 mmol) and dichloromethane (20 mL). The reaction mixture was cooled to 0°C; methanesulfonyl chloride (1.72 g, 15.1 mmol) was added at 0°C and stirred for 3 h. The reaction mixture was washed with water and brine, and dried over MgSO₄. To the mesylate solution, respective amine (6.3 mmol) was added. Upon reaction completion the reaction mass was washed with water and concentrated under reduced pressure. The products were purified by column chromatography over silica gel using hexane–ethyl acetate to afford the pure product (61–79% yield).

General Procedure for Suzuki Coupling Reaction (7a–c)

Boronic acid (117 mg, 0.76 mmol) and K₃PO₄ tribasic (280 mg, 1.32 mmol) were added to a solution of 2-(2-bromophenyl)-2,3,4,5-tetrahydro-1H-benzo[c]azepine (6i) (200 mg, 0.66 mmol) in 10 mL of dimethoxyethane. The mixture was degassed and then Pd(PPh₃)₄ (38 mg, 0.03 mmol) was added. The reaction mixture was stirred at 90°C for 12 h. The reaction mixture was cooled to room temperature, filtered on a celite bed, and washed with EtOAc (20 mL). The organic layer was washed with water and brine, dried (MgSO₄), and concentrated under reduced pressure. The products were purified by column chromatography over silica gel using hexane–ethyl acetate to afford the pure product (84–87% yield).
ACKNOWLEDGMENTS

The authors thank Vilas H. Dahanukar for his constant encouragement and support. We also thank the analytical department of Dr. Reddy’s Laboratories for providing the analytical support.

SUPPORTING INFORMATION

Supplemental data for this article can be accessed on the publisher’s website.

REFERENCES

1. Kouznetsov, V.; Palma, A.; Ewert, C. Synthesis and applicability of partially reduced 2-benzazepines. *Curr. Org. Chem.* 2001, 5, 519–551.

2. (a) Banwell, M. G.; Kokas, O. J.; Willis, A. C. Chemoenzymatic approaches to the montanine alkaloids: A total synthesis of (+)-brunsvigine. *Org. Lett.* 2007, 9, 3503–3506; (b) Mach, U. R.; Hackling, A. E.; Perachon, S.; Ferry, S.; Wermuth, C. G.; Schwartz, J. C.; Sokoloff, P.; Stark, H. Development of novel 1,2,3,4-tetrahydroisoquinoline derivatives and closely related compounds as potent and selective dopamine D3 receptor ligands. *Chem. Bio Chem.* 2004, 5, 508–518; (c) Sha, C. K.; Hong, A. W.; Huang, C. M. Synthesis of aza bicyclic enones via anionic cyclization: Application to the total synthesis of (+)-brunsvigine. *Org. Lett.* 2001, 3, 2177–2179; (d) Clark, M. T.; Chang, J.; Navran, S. S.; Huizoor, A.; Mukhopadhyay, A.; Amin, H.; Feller, D. R.; Miller, D. D. Synthesis and investigation of the α-adrenoceptor agonist and platelet antiaggregatory properties of 1,7,8-trisubstituted 2,3,4,5-tetrahydro-1H-2-benzazepine analogs of trimetoquinol. *J. Med. Chem.* 1986, 29, 181–185; (e) Trybulski, E. J.; Fryer, R. I.; Reeder, E.; Walser, A.; Blount, J. 2-Benzazepines, 6: Synthesis and pharmacological properties of the metabolites of 9-chloro-7-(2-chlorophenyl)-5H-pyrimido[5,4-d][2]benzazepine. *J. Med. Chem.* 1983, 26, 1596–1601.

3. (a) Miller, W. H.; Alberts, D. P.; Bhatnagar, P. K.; Bondinell, W. E.; Callahan, J. F.; Calvo, R. R.; Cousins, R. D.; Erhard, K. F.; Heerding, D. A.; Keenan, R. M.; Kwon, C.; Manley, P. J.; Newlander, K. A.; Ross, S. T.; Samanen, J. M.; Uzinskas, I. N.; Venslavsky, J. W.; Yuan, C. C.-K.; Haltiwanger, R. C.; Gowen, M.; Hwang, S.-M.; James, I. E.; Lark, M. W.; Rieman, D. J.; Stroup, G. B.; Azzarano, L. M.; Salyers, K. L.; Smith, B. R.; Ward, K. W.; Johanson, K. O.; Huffman, W. F. Discovery of orally active nonpeptide vitronectin receptor antagonists based on a 2-benzazepine Gly-Asp mimic. *J. Med. Chem.* 2000, 43, 22–26; (b) Feuston, B. P.; Culberson, J. C.; Dugan, M. E.; Harman, G. D.; Leu, C.-T.; Rodan, S. B. Binding model for nonpeptide antagonists of αvβ3 integrin. *J. Med. Chem.* 2002, 45, 5640–5648.

4. Bradshaw, B.; Evans, P.; Fletcher, J.; Lee, A. T. L.; Mwashimba, P. G.; Oehrlich, D.; Thomas, E. J.; Davies, R. H.; Allen, B. C. P.; Broadley, K. J.; Hamrouni, A.; Escargueil, C. Synthesis of 5-hydroxy-2,3,4,5-tetrahydro-[1H]-2-benzazepin-4-ones: Selective antagonists of muscarinic (M3) receptors. *Org. Biomol. Chem.* 2008, 6, 2138–2157.

5. (a) Sargent, P. A.; Sharpley, A. L.; Williams, C.; Goodall, E. M.; Cowen, P. J. 5-HT2C receptor activation decreases appetite and body weight in obese subjects. *Psychopharmacology* 1997, 133, 309–312; (b) Matsuura, M.; Kuratani, T.; Gondo, T.; Kamimura, A.; Inui, M. Promotion of skin epithelial cell migration and wound healing by a 2-benzazepine derivative. *Eur. J. Pharmacol.* 2007, 563, 83–87.

6. (a) Lewis, J. R. Amaryllidaceae and sceletium alkaloids. *Nat. Prod. Rep.* 1996, 13, 171–176; (b) Malachowski, W. P.; Paul, T.; Phounsavath, S. The enantioselective synthesis of
(-)-lycoramine with the Birch–Cope sequence. J. Org. Chem. 2007, 72, 6792–6796;
(c) Guillou, C.; Beunard, J. L.; Gras, E.; Thal, C. An efficient total synthesis of
(±)-galanthamine. Angew. Chem., Int. Ed. 2001, 40, 4745–4746; (d) Jin, J.; Weinreb,
S. M. Enantioselective total syntheses of the 5,11-methanomorphanthridine amaryllidaceae
alkaloids (–)-pancracine and (–)-coccinine. J. Am. Chem. Soc. 1997, 119, 2050–2051.
7. (a) Kim, H. J.; Yoon, U. C.; Jung, Y. S.; Park, N. S.; Cederstrom, E. M.; Mariano, P. S.
Oxidative Pictet–Spengler cyclizations. J. Org. Chem. 1998, 63, 3606–3604; (b) Meyers, A. I.; Hutchings, R. H. The asymmetric synthesis of 1-alkyl-2,3,4,5-
tetrahydro-benzazepines and benzo[b]-1-azabicyclo[5,3,1]decanes. Tetrahedron 1993, 49,
1807–1820; (c) Tafesse, L.; Kyle, D. J. An efficient parallel synthesis of capsazepine and
capsazepine analogs. Comb. Chem. High Throughput Screening 2004, 7, 151–159.
8. Schlu¨ter, G.; Meise, W. Isochino[1,2-a][2]benzazepine, II Herstellung von 1-Phenyl-2-
benzazepindervatien durch Bischler-Napieralski-Reaktion. Liebigs. Ann. Chem. 1988,
833–837.
9. Ueno, H.; Yokota, K.; Hoshi, J.; Yasue, K.; Hayashi, M.; Hase, Y.; Uchida, I.; Aisaka,
K.; Katoh, S.; Cho, H. Synthesis and structure–activity relationships of novel selective
factor Xa inhibitors with a tetrahydroisoquinoline ring. J. Med. Chem. 2005, 48,
3586–3604; (b) Hoyt, S. B.; London, C.; Park, M. Synthesis of substituted 1-benzazepin-
2-ones via ring-closing olefin metathesis. Tetrahedron Lett. 2009, 50, 1911–1913.
10. Molino, B. F.; Liu, S.; Sambandam, A.; Guzzo, P. R.; Hu, M.; Zha, C.; Nacro, K.;
Manning, D. D.; Isherwood, M. L.; Fleming, K. N.; Cui, W.; Olson, R. E. Aryl- and
heteroaryl-substituted tetrahydrobenzazepines and use thereof to block reuptake of nor-
epinephrine, dopamine, and serotonin. WO Patent 2007011820, 2007.
11. Basavaiah, D.; Satyanarayana, T. A novel, tandem construction of C–N and C–C bonds:
Facile and one-pot transformation of the Baylis–Hillman adducts into 2-benzazepines.
Chem. Commun. 2004, 32–33.
12. Liangxi, L.; Zhiming, L.; Quanrui, W. A novel construction of 2-benzazepine scaffold
based on TiCl4-mediated tandem Mannich reaction–aromatic electrophilic substitution.
Helv. Chim. Acta 2009, 92, 2754–2761.
13. Battace, A.; Zair, T.; Doucet, H.; Santelli, M. Heck vinylation using vinyl sulfide,
viny sulfoxide, vinyl sulfone, or vinyl sulfonate derivatives and aryl bromides catalyzed
by a palladium complex derived from a tetraphosphine. Synthesis 2006, 3495–3505; (b)
Kantchev, E. A. B.; Peh, G. R.; Zhang, C.; Ying, J. Y. Practical Heck–Mizoroki coupling
protocol for challenging substrates mediated by an N-heterocyclic carbene-ligated palla-
dacycle. Org. Lett. 2008, 10, 3949–3952; (c) Whitcombe, N. J.; Kuok, K. H.; Gibson,
S. E. Advances in the Heck chemistry of aryl bromides and chlorides. Tetrahedron
2001, 57, 7449–7476.
18. (a) Patel, B. A.; Ziegler, C. B.; Cortese, N. A.; Plevyak, J. E.; Zebovitz, T. C.; Terpko, P.; Heck, R. F. Palladium-catalyzed vinylic substitution reactions with carboxylic acid derivatives. *J. Org. Chem.* 1977, 3903–3907; (b) Bernini, R.; Cacchi, S.; Fabrizi, G.; Forte, G.; Niembro, S.; Petrucci, F.; Pleixats, R.; Prastarto, A.; Sebastian, R. M.; Soler, R.; Tristany, M.; Vallribera, A. Phosphine-free perfluoro-tagged palladium nanoparticles supported on fluorous silica gel: Application to the Heck reaction. *Org. Lett.* 2008, 4, 561–564; (c) Bernini, R.; Cacchi, S.; Fabrizi, G.; Forte, G.; Petrucci, F.; Prastarto, A.; Niembro, S.; Shafir, A.; Vallribera, A. Perfluoro-tagged, phosphine-free palladium nanoparticles supported on silica gel: Application to alkynylation of aryl halides, Suzuki–Miyaura cross-coupling, and Heck reactions under aerobic conditions. *Green Chem.* 2010, 150–158; (d) Murray, P. M.; Bower, J. F.; Cox, D. K.; Galbraith, E. K.; Parker, J. S.; Sweeney, J. B. A robust first-pass protocol for the Heck–Mizoroki reaction. *Org. Process Res. Dev.* 2013, 17, 397–405.

19. Miyamoto, K.; Ochiai, M.; Tada, N. Activated iodosylbenzene monomer as an ozone equivalent: Oxidative cleavage of carbon–carbon double bonds in the presence of water. *J. Am. Chem. Soc.* 2007, 129, 2772–2773.

20. Quallich, G. J.; Makowski, T. W.; Sanders, A. F.; Urban, F. J.; Vazquez, E. Synthesis of 1,2,3,4-tetrahydroisoquinolines containing electron-withdrawing groups. *J. Org. Chem.* 1998, 63, 4116–4119.

21. (a) Meyers, A. I.; Hutchings, R. H. The asymmetric synthesis of 1-alkyl-2,3,4,5-tetrahydro-benzazepines and benzo[β]-1-azabicyclo[5,3,1]decanes. *Tetrahedron* 1993, 49, 1807–1820; (b) Ching, P.; Criscione, K. R.; Dahanukar, V. H.; Grunewald, G. L.; Ching, P. Effect of ring size or an additional heteroatom on the potency and selectivity of bicyclic benzylamine-type inhibitors of phenylethanolamine N-methyltransferase. *J. Med. Chem.* 1996, 39, 3539–3546.