Dear Editor,

Central nervous system involvement is common in coronavirus disease 2019 (COVID-19), and may be driven by many mechanisms [1]. Reports of brain X-ray computed tomography [2] or magnetic resonance imaging (MRI) [3] findings in individual patients or small case series have generally focused on discrete pathologies such as stroke or focal abnormalities. However, these reports do not elucidate more generalized abnormalities of central nervous function, such as the alteration of mental status in a third of patients [4], or quantitative imaging correlates of reported brainstem pathology [5].

We report MRI findings in six patients with severe COVID-19-related respiratory failure (WHO Ordinal Scale 7), imaged 19 days (range 16–26) post admission, using conventional MRI and diffusion tensor imaging (DTI, Supplementary Table 1). The scans were performed for clinical reasons while the patients were in the intensive care unit with data prospectively collected. Indications included: persistent unresponsiveness after washout of sedative agents \((n=4)\); severe delirium \((n=1)\); or generalized myoclonus \((n=1)\). Three patients had small acute ischemic lesions in the frontal deep white matter and two of these also had subarachnoid, intraventricular, or small parenchymal hemorrhage. However, none of the patients had abnormalities on conventional MRI that explained their clinical presentation or indicated hypoxic-ischemic injury.

DTI characterizes the diffusion of water molecules in tissue environments which are influenced by the microstructural organization of tissues. The diffusion tensor can be used to represent the magnitude of water diffusion (quantified as mean diffusivity (MD), which quantifies overall diffusion of water in tissue compartments), describe whether such diffusion is directionally non-uniform (fractional anisotropy, which classically changes with white matter pathology), and characterize the orientation of that direction (eigenvectors/eigenvalues, used for tractography; a modeling technique was used to map out white matter tracts, see Supplementary Tables 3, 4 and 5 for tract names).

All of the COVID-19 patients showed pervasive abnormalities on quantitative DTI compared to controls (Fig. 1A–B, Supplementary Tables 2–5), with increased mean diffusivity (MD) in frontal, temporal, parietal, and occipital cortices and hippocampi, consistent with vasogenic edema. In contrast, the mesencephalic and pontine reticular formations showed significant MD reductions, suggesting cytotoxic edema. No significant differences were seen in the basal ganglia or thalami. COVID-19 patients had significantly lower fractional anisotropy in several white matter tracts (Fig. 1B), suggesting microstructural disruption (e.g. edema, inflammation). All reported differences remained significant after stringent correction for multiple comparisons \((p<0.05,\) Bonferroni corrected).

These findings suggest pervasive vasogenic edema in cortical gray and white matter tracts, recapitulating post-mortem findings in sepsis-associated encephalopathy [6]. The presence of edema in brainstem regions, however,
requires alternate explanation. The mesencephalic and pontine reticular formations are key glutamatergic nuclei, suggesting possible excitotoxic injury. Alternatively, restricted diffusion may arise from inflammatory cell infiltration, as described in other viral encephalitides [7]. Such brainstem involvement may reflect direct SARS-CoV-2 infection, perhaps entering the brain through cranial nerves [1].

One patient (Patient 2, Supplementary Table 1) underwent a post-mortem examination. There was no evidence of established hypoxic-ischaemic brain injury and no vascular micro-thrombi were seen. In the dorsal medulla, there was a moderate parenchymal infiltrate of T-lymphocytes (CD3+CD8+), and activated microglia (CD68+) involving the motor nucleus of the vagus nerve, nucleus ambiguus, solitary tract nucleus and inferior cerebellar peduncle (Fig. 1C–D). The inflammatory infiltrate did not involve ventral medullary structures, such as the pyramidal tracts or olivary nuclear complexes. A mild perivascular infiltrate of T-lymphocytes (CD3+CD8+) was found in the cerebral and cerebellar leptomeninges, cerebral white matter, and basal ganglia. Both ISH and

Fig. 1 Quantitative DTI. Panel A shows boxplots of mean diffusivity (MD) in gray matter regions where COVID-19 patients show significant differences compared to age- and sex-matched control subjects. Panel B shows the group wise comparison of parcellated white matter tracts. Tracts in color (not gray) have significantly lower fractional anisotropy (FA) in the COVID-19 cases when compared to age and sex-matched controls. The color coding reflects directionality of fibers, with green denoting anterior/posterior, blue superior/inferior, and red right/left directionality. **Histology of the dorsal medulla (patient 2).** Panel C, CD3 (x 200 magnification) immunohistochemistry showing a moderate parenchymal infiltrate of T-cells. Panel D, CD68 immunohistochemistry showing micogliosis with microglial nodules.
RT-PCR for SARS-CoV-2 RNA were negative in paraffin-embedded tissue sampled from the area of encephalitis in the medulla.

These novel findings are important for three reasons. First, we show that quantitative DTI may be abnormal in brain tissue that appears radiologically normal. Second, the widespread cortical and hippocampal abnormalities may explain mental status alterations seen in many patients. Finally, abnormalities in key brainstem arousal nuclei provide plausible neuroanatomical substrates for alteration of the sensorium in our patients. Further work is needed to ascertain whether these features reflect generic sepsis-related encephalopathy or are specific to SARS-CoV-2.

Electronic supplementary material
The online version of this article (https://doi.org/10.1007/s00134-020-06241-w) contains supplementary material, which is available to authorized users.

Author details
1 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom. 2 Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom. 3 Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom. 4 BioMedIA group, Department of Computing, Imperial College, London, United Kingdom. 5 Department of Pathology, Addenbrooke’s Hospital, Box 93, Cambridge, United Kingdom.

Acknowledgements
Fahim Anwar, Edward Bullmore, Alasdair Coles, Jonathan Coles, Joanne Jones, Victoria Lupson, Edward Needham, James Rowe, Stephen Sawcer, Fernanda Valerio. These studies were supported by the Addenbrooke’s Charities Trust and the Cambridge NIHR Biomedical Research Centre.

Author contributions
VFJN and DCM designed the study. VFJN, LRBS, SW and EAS analysed the data. TD provided neuroradiology input. KA provided neuropathology input. All authors interpreted the data and contributed to the writing of the letter.

Compliance with ethical standards
Conflict of interest
All the authors declare no conflict of interest.

Ethical approval
The Local Research Committee approved the use of the data used in this study (NIHR BioResource REC reference, 17/EE/0025, IRAS project ID 220277). Assent was obtained from next of kin. For control data ethical approval was obtained from the Local Research Ethics Committee (LREC 97/290 and 17/EE/0032, IRAS project ID 204052) and written consent was obtained.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accepted: 2 September 2020
Published online: 9 October 2020

References
1. Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S (2020) Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.2065
2. Castellano A, Anzalone N, Pontesilli S et al (2020) Pathological brain CT scans in severe COVID-19 ICU patients. Intensive Care Med. https://doi.org/10.1007/s00134-020-06222-z
3. Gulko E, Oleksk ML, Gomes W et al (2020) MRI brain findings in 126 patients with COVID-19: initial observations from a descriptive literature review. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A6805
4. Varatharaj A, Thomas N, Ellul M, et al; On Behalf of the CoroNerve Studies Group (2020) UK-wide surveillance of neurological and neuropsychiatric complications of COVID-19: The first 153 patients. Lancet Psychiatry 5:221–229
5. Sharshar T, Gray F, Poron F, Raphael JC, Gajdos P, Annane D (2002) Multifocal necrotizing leukoencephalopathy in septic shock. Crit Care Med 30(10):2371–2375
6. von Weyhern CH, Kaufmann I, Neff F, Kremer M (2020) Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet. https://doi.org/10.1016/S0140-6736(20)31282-4
7. Koehler KK, Shih RY (2017) Viral and prion infections of the central nervous system: radiologic-pathologic correlation: from the radiologic pathology archives. Radiographics 37:199–233

118