GROWTH OF THE EIGENSOLUTIONS OF LAPLACIANS ON RIEMANNIAN MANIFOLDS I: CONSTRUCTION OF ENERGY FUNCTION

WENCALI LIU

Abstract. In this paper, we consider the eigen-solutions of
\[-\Delta u + Vu = \lambda u,\]
where \(\Delta\) is the Laplacian on a non-compact complete Riemannian manifold. We develop Kato's methods on manifold and establish the growth of the eigen-solutions as \(r\) goes to infinity based on the asymptotical behaviors of \(\Delta r\) and \(V(x)\), where \(r = r(x)\) is the distance function on the manifold. As applications, we prove several criteria of absence of eigenvalues of Laplacian, including a new proof of the absence of eigenvalues embedded into the essential spectra of free Laplacian if the radial curvature of the manifold satisfies \(K_{\text{rad}}(r) = -1 + o(1)\).

1. Introduction and main results

Let \((M, g)\) be a connected \(n\)-dimensional noncompact complete Riemannian manifold \((n \geq 2)\). The Laplace-Beltrami operator on \((M, g)\) is essentially self-adjoint on \(C^\infty_0(M)\). We denote the self-adjoint extension by \(\Delta\) (the Laplacian).

Assume there exists \(U \subset M\) such that \(M \setminus U\) is connected and the induced outward normal exponential map \(\exp^\perp_{\partial U} : N^+(\partial U) \to M \setminus \overline{U}\) is a diffeomorphism, where \(N^+(\partial U) = \{v \in T(\partial U) \mid v\ \text{is outward normal to } \partial U\}\). As in [17, 19], let \(r\) be the distance function from \(\partial U\) defined on \(M \setminus U\).

We are interested in the spectral theory of \(\Delta\) and asymptotic behavior of the eigen-solutions of
\[-\Delta u + Vu = \lambda u\]
as \(r(x)\) goes to infinity.

For Euclidean space \(\mathbb{R}^n\), that is \(M = \mathbb{R}^n\), there are rich results about spectral theory of \(-\Delta + V\) with decaying potential \(V\). A typical application of Weyl's theorem states that the essential spectrum \(\sigma_{\text{ess}}(-\Delta + V) = [0, \infty)\) if \(\limsup |V(x)| = 0\). It is interesting to investigate if there exists eigenvalue embedded into the essential spectrum. Kato [13] addressed this problem and showed that there is no eigenvalue \(\lambda > a^2\) if \(\limsup |x||V(x)| = a\). This implies there is no eigenvalue embedded into the essential spectrum if \(V(x) = o(1)\). There is an alternative proof similar to Kato’s by Vakulenko [31]. By Neuman-Wigner type functions [32], \(V(x) = \frac{o(1)}{1 + |x|}\) is optimal so that \(V(x) = \frac{o(1)}{1 + |x|}\) is a spectral transition for eigenvalue embedded into the essential spectrum. For more examples about (finite or dense) eigenvalues embedded into essential spectrum, see [18, 23, 29]. Under stronger assumption on the perturbation, for example \(V(x) = \frac{O(1)}{(1 + |x|)^{1+\delta}}\) for some \(\delta > 0\) or \(V \in L^p(\mathbb{R}^n)\) for proper \(p > 0\), the limiting absorption principle holds, originally from Agmon’s theory [2, 25]. Thus operator \(-\Delta + V\) has no singular continuous spectrum. See the survey paper [27] for more details. For one dimensional case, there are more results. For example, \(V(x) = \frac{O(1)}{1 + |x|}\) is a spectral transition for singular continuous spectrum embedded into the essential spectrum [3, 14]. Agmon [1].
and Simon [28], using Kato’s methods, independently obtained the quantitative bounds for a class of potentials \(V(x) = V_1(x) + V_2(x)\), where \(\limsup |x| |V_1(x)| < \infty\), \(\limsup V_2(x) = 0\) and \(\limsup |x| \left| \nabla V_2 \right| < \infty\) (\(\nabla V_2\) is the derivative with radial direction). We refer the readers to Simon’s review [30] for the full details on Kato’s method, its applications and related topics.

There are a series of Kumura’s and Donnlley’s papers [4, 5, 16, 17, 19] studying the eigenvalues embedded into essential spectrum of the Laplacian on manifolds. See Donnlley’s review [6]. The results are based on construction of energy functions. However they do not fully use Kato’s method. As a result, they need some geometric condition that we have shown to be unnecessary.

Our goal is to develop Kato’s method (also Agmon’s and Simon’s generalizations) on manifolds. This is the first of our series papers, which in particular implies sharp bounds for asymptotically hyperbolic manifolds. Let us consider the eigen-solution \(-\Delta u + Vu = \lambda u\). We show that under some weak convexity assumption on a manifold, asymptotical behaviors of \(\Delta r\) and potentials \(V\) can determine whether there is an eigenvalue embedded into essential spectrum, where \(\Delta r\) is the Laplacian of distance function \(r(x)\). \(\Delta r\) comes from geometry and \(V\) comes from the Schrödinger operator on Euclidean space. The interesting thing is that \(\Delta r\) is the only term involved in the geometry, completely determining the threshold for embedded eigenvalue. For example, even to obtain our Corollary 1.2, Kumura [17] needs an extra condition on Ricci curvature of a manifold.

The original idea of Kato [13] to study the growth of eigen-solutions on Euclidean space contains four steps: construct energy function for eigen-equation; prove the monotonicity of energy function with respect to \(r\) (\(r = |x|\) in the Schrödinger case); set up the positivity of initial energy; obtain the growth of eigen-solution. The first challenge is to construct the energy function since the simple sum of potential energy and kinetic energy does not work well even for Euclidean space in higher dimensions. We will give the general construction of energy functions on manifolds, which can be adapted to various situations easily. During the process, we borrow some derivative estimates from [17] to set up the monotonicity of energy function (see \$2\). However, we improve the previous arguments significantly in several aspects, including the subtle geometry analysis. Another main novelty here is that we give universal method to treat all cases of manifolds and potentials. Here, we just fix some indices to make energy functions work for this paper. We believe our method has a wider applicability. For example, in the following [22], we give a new way to verify the positivity of initial energy, which works well for the asymptotically flat manifolds.

The results of [8, 16] show that \(\sigma_{\text{ess}}(-\Delta) = [\frac{a^2}{4}, \infty)\) if \(\lim \Delta r = a\).

In order to describe our results, some notations are necessary. Let \(g\) be the metric and \(\nabla\) be the covariant derivative. Denote Hessian of \(r\) by \(\nabla^2 r\). For simplicity, let \(dx\) be volume form (or restriction on sphere if necessary). Sometimes we also use \(|\cdot|\) as the norm of vector.

All the functions \(f\) on the manifolds in this paper depend on \(x\). For simplicity, we ignore the dependence on sphere and use \(f(r)\) instead of \(f(x)\).

Let \(u\) be a nonzero real solution\(^1\) of eigen-equation \(^{11}\) and define
\[
M(r) = M(r; u) = \left(\int_{|r(x)|=r} |u(x)|^2 dx \right)^{\frac{1}{2}},
\]
\[
N(r) = N(r; u) = \left(\int_{|r(x)|=r} \left| \frac{\partial u}{\partial r} \right|^2 dx \right)^{\frac{1}{2}}.
\]

Our first main result is

\(^1\) Actually, all the results in the paper hold for complex solution \(u\). We give up it here because it is not our main goal.
Theorem 1.1. [Basic version] Let the potential \(V(r) = V_1(r) + V_2(r) \). Assume

\[
\limsup_{r \to \infty} |rV_1(r)| \leq a_1, \limsup_{r \to \infty} |V_2(r)| = 0, \limsup_{r \to \infty} r |\frac{\partial V_2}{\partial r}| \leq a_2,
\]

for some non-negative constants \(a_1, a_2 \).

Assume

\[
\liminf_{r \to \infty} |r\nabla dr - a_3 \hat{g}| \geq 0,
\]

for some \(a_3 > 0 \), where \(\hat{g} = g - dr \otimes dr \), and

\[
\limsup_{r \to \infty} r |\Delta r - a_4 - \frac{a_5}{r}| \leq \delta,
\]

for some non-negative constants \(a_4, a_5, \delta \).

Suppose

(2) \(\mu > \delta, 2a_3 > \mu + \delta, a_3 > 1 + \delta \), and

(3) \(\lambda > \max \{ \frac{a_3^2}{4} + \frac{a_2}{\mu - \delta} + \frac{1}{4} \frac{(2a_1 + \delta a_4)^2}{\mu^2 - \delta^2}, \frac{a_3^2}{4} + \frac{a_2}{2(a_3 - \delta)} \} \).

Then we have

\[
\liminf_{r \to \infty} r^\mu [M(r)^2 + N(r)^2] = \infty.
\]

Based on Theorem 1.1\(^2\), we have several immediate corollaries.

Corollary 1.2. Let the potential \(V(r) = V_1(r) + V_2(r) \). Suppose

\[
|V_1(r)| = o(1), |V_2(r)| = o(1), |r \frac{\partial V_2}{\partial r}| = o(1),
\]

as \(r \) goes to infinity.

Suppose

\[
\liminf_{r \to \infty} |r\nabla dr - (1 + \epsilon) \hat{g}| \geq 0,
\]

for some \(\epsilon > 0 \), and

\[
\Delta r = a + \frac{b}{r} + \frac{o(1)}{r}.
\]

Then for any \(\lambda > \frac{a_3^2}{4} \) and \(\mu > 0 \), we have

\[
\liminf_{r \to \infty} r^\mu [M(r)^2 + N(r)^2] = \infty.
\]

In particular, \(-\Delta\) admits no eigenvalue larger than \(\frac{a_3^2}{4} \).

Corollary 1.3. Suppose

\[
\limsup_{r \to \infty} r |\nabla dr - \hat{g}| \leq A,
\]

and \((n - 1)A < 1 \). Then \(-\Delta\) does not have eigenvalue larger than \(\frac{(n-1)^2}{4} + \frac{(n-1)^4 A^2}{4(n-1)^2 A^2} \).

Remark 1.4. By some direct modifications, a similar result can also be obtained under the assumption

\[
-\frac{B}{r} \leq \nabla dr - \hat{g} \leq \frac{A}{r},
\]

as \(r \) goes to infinity. Thus the corollary improves Theorem 1.1 in \(^2\) by removing extra assumption on the Ricci curvature.

\(^2\)By the fact that \(\Delta + V \) is essentially selfadjoint, we have \(\nabla u \in L^2(M) \) if the eigensolution \(u \in L^2(M) \).
Corollary 1.5. Suppose there exists a $r_0 > 0$ such that
\[\nabla dr \geq 0 \]
for $r = r_0$, and
\[-1 - \frac{2A}{r} \leq K_{\text{rad}}(r) \leq -1 + \frac{2A}{r} < 0, \]
for $r \geq r_0$, where $K_{\text{rad}}(r)$ is the radial curvature. Suppose
\[(n-1)A < 1. \]
Then $-\Delta$ does not have eigenvalues larger than
\[\frac{(n-1)^2}{4} + \frac{(n-1)^4 A^2}{4(n-1)^2 A^2}. \]
In particular, $-\Delta$ does not have eigenvalue larger than
\[\frac{(n-1)^2}{4} \text{ if } K_{\text{rad}}(r) + 1 = o(1). \]

Just we mentioned in the introduction, in Theorem 1.1 Δr is from the geometry and V is the potential from Schödinger operator on Euclidean space. For the potential part, we develop Agmon-Simon’s generalization on manifolds. For the geometric part, we just develop Kato’s method so that there is no derivative of Δr involved in. Our next two theorems are to develop Agmon-Simon’s generalization on geometric part of manifolds. Namely, if we know the information of $\frac{\partial \Delta r}{\partial r}$ (or gradient of Δr), we can get similar results to Theorem 1.1.

Theorem 1.6. [Gradient version] Let the potential $V(r) = V_1(r) + V_2(r)$. Suppose
\[\limsup_{r \to \infty} rV_1(r) \leq a_1, \limsup_{r \to \infty} |V_2(r)| = 0, \limsup_{r \to \infty} r|\partial V_2/\partial r| \leq a_2, \]
for some non-negative constants a_1, a_2.
Suppose
\[\liminf_{r \to \infty} r\nabla dr - a_3 \hat{g} \geq 0, \]
for some $a_3 > 1$. Suppose
\[\Delta r = a_4 + \frac{a_5}{r} + \frac{\delta(r)}{r} \]
and
\[\limsup_{r \to \infty} \frac{\partial \delta(r)}{\partial r} \leq \delta_1, \limsup_{r \to \infty} |(\nabla - \frac{\partial}{\partial r})\delta(r)| \leq \delta_2, \limsup_{r \to \infty} |\delta(r)| \leq \delta, \]
for some non-negative constants $a_4, a_5, \delta_1, \delta_2, \delta$.
Suppose
\[2a_3 > \mu, \]
(4)
\[\lambda > \frac{a_1^2}{4} + \frac{1}{\mu}[a_2 + \frac{(2a_1 + \delta_1)^2}{4\mu} + \frac{\delta_2^2}{8a_3 - 4\mu} + \frac{a_4\delta_1}{2}], \]
and
\[\lambda > \frac{a_1^2}{4} + \min_{2 \leq s_0 \leq a_3} \left\{ \frac{a_2}{s_0} + \frac{a_4\delta_1}{2s_0} + \frac{\delta_2^2}{(8a_3 - 4s_0)s_0} \right\}, \]
(5)
Then we have
\[\liminf_{r \to \infty} r^\mu [M(r)^2 + N(r)^2] = \infty. \]

Remark 1.7. • The bounds on the right of (4) and (5) depend on δ_1, not δ.
• We can also obtain some interesting corollaries like Corollaries 1.2 and 1.3.

3In Geometry, radial curvature is the sectional curvature with one fixed direction $\frac{\partial}{\partial r}$. We refer the reader to [10] for formal definition and applications.
Theorem 1.8. [Mixed version] Let the potential $V(r) = V_1(r) + V_2(r)$. Suppose

$$\limsup_{r \to \infty} |rV_1(r)| \leq a_1, \limsup_{r \to \infty} |V_2(r)| = 0, \limsup_{r \to \infty} r|\frac{\partial V_2}{\partial r}| \leq a_2,$$

for non-negative constants a_1, a_2.

Suppose

$$\liminf_{r \to \infty} [r\nabla dr - a_3\hat{g}] \geq 0,$$

for some $a_3 > 1$. Suppose

$$\Delta r = a_4 + a_5 \frac{\delta(r)}{r} + \frac{\delta(r)}{r}$$

and

$$\limsup_{r \to \infty} |\frac{\partial \delta(r)}{\partial r}| \leq \delta_1, \limsup_{r \to \infty} \delta(r) \leq \delta,$$

for some non-negative constants $a_4, a_5, \delta_1, \delta$.

Suppose

$$\mu > \delta, 2a_3 > \mu + \delta, a_3 > 1 + \delta,$$

and

$$\lambda > \max \{ \frac{a_2^2}{4 \mu - \delta} + \frac{a_2^2}{2(\mu - \delta)}, \frac{a_4^2}{\mu^2 - \delta^2}, \frac{a_4^2}{4a_3 - \delta} \}.$$

Then we have

$$\liminf_{r \to \infty} r^\mu [M(r)^2 + N(r)^2] = \infty.$$

Corollary 1.9. Suppose there exists a $r_0 > 0$ such that

$$\nabla dr \geq 0$$

for $r = r_0$, and

$$-1 - \frac{2A}{r} \leq K_{\text{rad}}(r) \leq -1 + \frac{2A}{r} < 0,$$

for $r \geq r_0$, where $K_{\text{rad}}(r)$ is the radial curvature. Suppose

$$(n - 1)A < 1.$$

Then $-\Delta$ does not have eigenvalue larger than $\frac{(n-1)^2}{4} + \frac{2(n-1)^2A}{1-(n-1)A}$.

Remark 1.10. The lower bound $\frac{(n-1)^2}{4} + \frac{2(n-1)^2A}{1-(n-1)A}$ is exactly the bound given in [17].

We should remind that Corollaries 1.5 and 1.9 gave different bounds, and n and A will decide which one is better. However by the combination of energy functions in Theorems 1.6 and 1.8 we can get a universal bound, which is better than that in Corollaries 1.5 and 1.9.

Theorem 1.11. Suppose there exists a $r_0 > 0$ such that

$$\nabla dr \geq 0$$

for $r = r_0$, and

$$-1 - \frac{2A}{r} \leq K_{\text{rad}}(r) \leq -1 + \frac{2A}{r} < 0,$$

for $r \geq r_0$, where $K_{\text{rad}}(r)$ is the radial curvature. Suppose

$$(n - 1)A < 1.$$
and
\[\lambda > \frac{(n-1)^2}{4} + \min_{\sigma \in (0,1]} \{ \sigma^2 \frac{(n-1)^4 A^2}{4(1-(n-1)^2 A^2)} + (1-\sigma) \frac{2(n-1)^2 A}{1-(n-1)A} \}. \]
Then \(\lambda \) can not be an eigenvalue of the free Laplacian.

Remark 1.12. Actually, by the combination of energy functions in Theorems 1.6 and 1.8 we can set up a generally stronger Theorem with more generality. We do not want to explore the general case here, we just give a better bound than that in Corollaries 1.5 and 1.9.

We want to see more about Corollaries 1.5, 1.9 and Theorem 1.11. Radial curvature \(K_{\text{rad}}(r) \) is a feature of hyperbolic manifold and flat manifold.

For the asymptotically hyperbolic case, the sharp transition is given by Kumura [17] by studying the eigen-solutions directly. He excludes eigenvalues greater than \(\frac{(n-1)^2}{4} \) under the assumption that \(K_{\text{rad}}(r)+1 = o(r^{-1}) \), and also constructs a manifold with the radial curvature \(K_{\text{rad}}(r)+1 = O(r^{-1}) \) and with an eigenvalue \(\frac{(n-1)^2}{4} + 1 \) embedding into its essential spectrum \(\left[\frac{(n-1)^2}{4}, \infty \right) \). Before that some partial results on the absence of eigenvalues were obtained in papers [4, 24].

For the asymptotically flat case, several authors [5, 7, 9, 19] showed the absence of positive eigenvalues of free Laplacian under some assumptions on the radial curvature. Roughly speaking, they assume \(|K_{\text{rad}}(r)| \leq \frac{\delta}{1+r^2} \) for small \(\delta \). See Donnelly’s review paper [6] for more results.

Jitomirskaya and Liu also constructed examples which show that dense eigenvalues and singular continuous spectrum can embed into essential spectrum of Laplacian in both cases [11, 12]. We mentioned that Kumura also studied other related topics in papers [18, 20, 21]. There are also other topics about asymptotically flat and asymptotically hyperbolic manifolds. See [26] and the references therein.

The rest of the paper is organized as follows: in §2, we present some basic knowledge. In §3, we will give the general construction of energy functions. In §4, by fixing some indices in the energy functions, we prove Theorem 1.1 and Corollaries 1.2, 1.3, 1.5. In §5, by adapting the energy functions, we prove Theorem 1.6. In §6, by adapting the energy functions, we prove Theorems 1.8, 1.11 and Corollary 1.9. Our proof is self-contained except the unique continuation theorem and some basic geometry results (Lemma 4.5).

2. Preliminaries and derivative lemma

Let \(S_t = \{ x \in M : r(x) = t \} \), \(\omega \in S_r \) and \(x \in M \). Thus \((r, \omega) \) is a local coordinate system for \(M \). Let \(< \cdot, \cdot > \) be the metric on the Riemannian manifold.

Choose a function \(\rho(r) \), which will be specified later. Let \(\hat{L} = e^\rho L e^{-\rho} \), where \(L = -\Delta + V \). Then
\[
\begin{align*}
L^2(M, dg) & \xrightarrow{\Delta + V} L^2(M, dg) \\
& \xrightarrow{e^\rho} L^2(M, e^{-2\rho} dg) \\
& \xrightarrow{\hat{L}} L^2(M, e^{-2\rho} dg)
\end{align*}
\]

Let
\[v = e^\rho u. \]

\[^4 \omega \text{ depends on } r. \text{ We ignore the dependence for simplicity.} \]
Then, one has
\[\nabla u = -\rho' e^{-\rho} \nabla r + e^{-\rho} \nabla v, \]
and
\[\Delta u = \text{div} \nabla u = e^{-\rho} \Delta v - 2\rho' e^{-\rho} \frac{\partial v}{\partial r} + (\rho'^2 - \rho'' - \rho' \Delta r) e^{-\rho} v. \]

So the eigen-equation (11) becomes
\[-\Delta v + 2\rho' \frac{\partial v}{\partial r} + (V + V_0) v = \lambda v, \]
where
\[V_0 = \rho' \Delta r + \rho'' - \rho'^2. \]

Lemma 2.1. Let \(X \) be a vector field. Then
\[\frac{\partial}{\partial r} \int_{S_r} < X, \nabla r > e^{-2\rho} dx = \int_{S_r} (\text{div} X - 2\rho' < X, \nabla r >) e^{-2\rho} dx. \]

Proof. First, one has
\[\text{div}(X e^{-2\rho}) = e^{-2\rho} \text{div}(X) - 2\rho' e^{-2\rho} < X, \nabla r > \]
Integration by part, we get
\[\int_{S_{t_2}} < X, \nabla r > e^{-2\rho} dx - \int_{S_{t_1}} < X, \nabla r > e^{-2\rho} dx = \int_{t_1 \leq |r(x)| \leq t_2} (\text{div} X - 2\rho' < X, \nabla r >) e^{-2\rho} dx, \]
which implies (10). \(\square \)

Lemma 2.2.
\[\frac{\partial}{\partial r} \int_{S_r} f e^{-2\rho} dx = \int_{S_r} \frac{\partial f}{\partial r} + f (\Delta r - 2\rho') e^{-2\rho} dx. \]

Proof. Let \(X = f \nabla r. \) By direct computation, one has
\[\text{div} X = \text{div}(f \nabla r) = \frac{\partial f}{\partial r} + f \Delta r. \]
Putting \(X \) into Lemma 2.1, Lemma 2.2 follows. \(\square \)

Now we always assume \(u \) is a nonzero solution of \(-\Delta u + Vu = \lambda u\), where \(V = V_1 + V_2 \). Let
\[v_m = r^m v \]
with \(m \geq 0 \). By (11), we get the equation of \(v_m \),
\[\Delta v_m - \left(\frac{2m}{r} + 2\rho' \right) \frac{\partial v_m}{\partial r} + \left(\frac{m(m+1)}{r^2} + \frac{m}{r} (2\rho' - \Delta r) - V_0 - V_1 - V_2 + \lambda \right) v_m = 0. \]

3. Construction of the energy functions

In this section, we will give the general construction of energy functions and derive the formulas for their derivatives.

Let \(A_r \) be the Laplacian on sphere \(r \). Using \(\Delta u = \frac{\partial^2 u}{\partial r^2} + \Delta r \frac{\partial u}{\partial r} + A_r u \), (11) becomes
\[\frac{\partial^2 v_m}{\partial r^2} - (-\Delta r + \frac{2m}{r} + 2\rho') \frac{\partial v_m}{\partial r} + A_r v_m + \left(\frac{m(m+1)}{r^2} + \frac{m}{r} (2\rho' - \Delta r) - V_0 - V_1 - V_2 + \lambda \right) v_m = 0. \]

Let us mention our intuition to construct energy functions. We view (12) as one dimensional Schrödinger operator \(r \) is the variable. (12) is not the normal form \(-D^2 + q \) since \(-\Delta r + \frac{2m}{r} + 2\rho' \) is not 0. So the first step we need to do is to choose \(\rho \) such that \(-\Delta r + \frac{2m}{r} + 2\rho' \) is
smaller than $O(1)$. The energy function for equation $u'' + qu = 0$ is $\frac{1}{2}u'^2 + \frac{1}{2}qu^2$. Similarly, the usual energy functions of (12) are taken with the form as $\frac{1}{2}|\frac{\partial v_m}{\partial r}|^2 + \frac{1}{2}q_1 v_m^2$ with average on the sphere. Since we can not make $-\Delta r + \frac{2m}{r} + 2\rho'$ zero, extra term $q_1 \frac{\partial v_m}{\partial r} v_m$ should be added into the energy functions. By the fact

$$
\int_{S_r} \left[\frac{1}{2} \frac{\partial v_m}{\partial r}^2 + \frac{1}{2} (A_r v_m, v_m) \right] dx = \int_{S_r} \left[\frac{\partial v_m}{\partial r}^2 - \frac{1}{2} |\nabla v_m|^2 \right] dx,
$$

it is natural to construct

$$
F(m, r, t, s) = r^s \int_{S_r} \left[\frac{1}{2} (q_1 \frac{\partial v_m}{\partial r} v_m + \frac{m(m+1)}{r^2} - t + q_2 + \lambda) v_m^2 \right] e^{-2\rho} dx
$$

$$
+ r^s \int_{S_r} \left[|\frac{\partial v_m}{\partial r}|^2 - \frac{1}{2} |\nabla v_m|^2 \right] e^{-2\rho} dx
$$

$$
= I + II + III,
$$

where

$$
I = r^s \int_{S_r} \left[|\frac{\partial v_m}{\partial r}|^2 - \frac{1}{2} |\nabla v_m|^2 \right] e^{-2\rho} dx
$$

$$
= \frac{1}{2} r^s \int_{S_r} \left[|\frac{\partial v_m}{\partial r}|^2 - |\nabla v_m|^2 \right] e^{-2\rho} dx,
$$

and

$$
II = \frac{1}{2} r^s \int_{S_r} \left[\frac{m(m+1)}{r^2} - t + q_2 + \lambda \right] v_m^2 e^{-2\rho} dx,
$$

and

$$
III = \frac{1}{2} r^s \int_{S_r} \left[q_1 \frac{\partial v_m}{\partial r} v_m \right] e^{-2\rho} dx.
$$

We begin with the derivation of $\frac{\partial I}{\partial r}$.

By Lemma 2, one has

$$
\frac{\partial}{\partial r} I = s r^{s-1} \int_{S_r} \left[\frac{1}{2} \frac{\partial v_m}{\partial r}^2 - \frac{1}{2} |\nabla v_m|^2 \right] e^{-2\rho} dx + r^s \int_{S_r} \left[\frac{\partial v_m}{\partial r} \frac{\partial^2 v_m}{\partial r^2} - \frac{1}{2} \frac{\partial}{\partial r} < \nabla v_m, \nabla v_m > \right] e^{-2\rho} dx
$$

$$
+ r^s \int_{S_r} \left[(\frac{1}{2} (\Delta - 2\rho')) |\frac{\partial v_m}{\partial r}|^2 - |\nabla v_m|^2 \right] e^{-2\rho} dx.
$$

Using $\Delta v_m = \frac{\partial^2 v_m}{\partial r^2} + \frac{\partial v_m}{\partial r} + \Delta v_m$, we get

$$
\frac{\partial}{\partial r} I = \int_{S_r} \left[r^{s-1} \frac{\partial v_m}{\partial r}^2 - 2 r^s \rho' \frac{\partial v_m}{\partial r} |\nabla v_m|^2 + r^s \frac{\partial v_m}{\partial r} \Delta v_m + \frac{r^s}{2} (2\rho' - \Delta r) |\frac{\partial v_m}{\partial r}|^2 \right] e^{-2\rho} dx
$$

$$
+ r^s \int_{S_r} \left[\frac{1}{2} (\Delta - 2\rho')) |\frac{\partial v_m}{\partial r}|^2 - |\nabla v_m|^2 \right] e^{-2\rho} dx
$$

$$
+ r^s \int_{S_r} \left[< \nabla v_m, \nabla v_m > - \frac{1}{2} \frac{\partial}{\partial r} < \nabla v_m, \nabla v_m > \right] e^{-2\rho} dx.
$$

By some basic computation, one has

$$
< \nabla v_m, \nabla v_m > = \frac{1}{2} \frac{\partial}{\partial r} < \nabla v_m, \nabla v_m >
$$

$$
= < \nabla v_m, \nabla v_m > - < \nabla \frac{\partial v_m}{\partial r}, \nabla v_m >
$$

$$
= \left(\nabla dr \right) (\nabla v_m, \nabla v_m).
$$
Finally we get

\[
\frac{\partial}{\partial r} I = \int_{S_r} \left[\frac{s}{2} r^{s-1} \left(r^2 \frac{\partial v_m}{\partial r} \right)^2 - 2r^s \rho' \frac{\partial v_m}{\partial r} + r^s \frac{\partial v_m}{\partial r} \Delta v_m + \frac{r^s}{2} (2\rho' - \Delta r) \left(\frac{\partial v_m}{\partial r} \right)^2 \right] e^{-2\rho} dx
\]

(13)

\[+ r^s \int_{S_r} \left[(\nabla dr + (- \frac{s}{2r} + \frac{1}{2} (2\rho' - \Delta r)) \hat{g}) (\nabla v_m, \nabla v_m) \right] e^{-2\rho} dx.
\]

Now we are in the position to obtain \(\frac{\partial}{\partial r} II. \)

By Lemma 2.2 again, one has

\[
\frac{\partial}{\partial r} II = \int_{S_r} \left[\frac{\partial}{\partial r} \left(\frac{m(m+1)}{r^2} - \frac{t}{r} + q_2 + \lambda \right) v_m e^{-2\rho} dx \right]
\]

\[+ \int_{S_r} (\Delta r - 2\rho') \frac{r^s}{2} \left(\frac{m(m+1)}{r^2} - \frac{t}{r} + q_2 + \lambda \right) v_m e^{-2\rho} dx
\]

\[= \int_{S_r} \left[\frac{s-2}{2} r^{s-3} m(m+1) - \frac{s-1}{2} r^{s-2} + r^s \frac{\partial q_2}{\partial r} + \frac{s}{2} r^{s-1} q_2 + \frac{s^2}{2} r^{s-1} v_m e^{-2\rho} \right]
\]

\[+ r^s \int_{S_r} \left[\frac{m(m+1)}{r^2} - \frac{t}{r} + q_2 + \lambda \right] v_m e^{-2\rho} dx
\]

(14)

Similarly, by Lemma 2.2 again, we have

\[
\frac{\partial}{\partial r} III = \int_{S_r} \left[\frac{1}{2} r^s q_1 \frac{\partial v_m}{\partial r} (\Delta r - 2\rho') + \frac{\partial}{\partial r} \left(r^s \frac{1}{2} q_1 \frac{\partial v_m}{\partial r} \right) v_m \right] e^{-2\rho} dx
\]

\[= \int_{S_r} \left[\frac{s}{2} r^{s-1} q_1 (\Delta r - 2\rho') + \frac{1}{2} r^s q_1 v_m \frac{\partial^2 v_m}{\partial r^2} \right] e^{-2\rho} dx
\]

\[+ \int_{S_r} \left[r^s \frac{1}{2} q_1 \left(r^2 v_m \right)^2 + \frac{r^s q_1}{2} \frac{\partial v_m}{\partial r} v_m \right] e^{-2\rho} dx
\]

\[= \int_{S_r} \left[\frac{s}{2} r^{s-1} q_1 (\Delta r - 2\rho') + \frac{r^s}{2} q_1 v_m (\Delta v_m - \Delta r \frac{\partial v_m}{\partial r} - \Delta_{\omega} v_m) \right] e^{-2\rho} dx.
\]

(15)

Putting (13), (14), (15) together and using (11), we conclude that

\[
\frac{\partial F(m, r, t, s)}{\partial r} = \frac{\partial I}{\partial r} + \frac{\partial II}{\partial r} + \frac{\partial III}{\partial r}
\]

(16)
\[
\int_{S_r} |r^s((\nabla dr) - \left(\frac{s}{2r} - \frac{1}{2}(2p' - \Delta r)\right)\tilde{g})(\nabla v_m, \nabla v_m) + \frac{1}{2} q_1 r^s v_m (-\Delta w v_m)e^{-2\rho} dx
\]
\[
+ \int_{S_r} [2mr^{s-1} + \frac{r^s}{2}(2p' - \Delta r) + \frac{1}{2} q_1 r^s + \frac{s}{2} r^{s-1}]|\nabla v_m|\partial r v_m e^{-2\rho} dx
\]
\[
+ \int_{S_r} [r^s(V_0 + V_1 + V_2 + q_2 - \bar{a}_1) + r^{s-1} m(\Delta r - 2p')|\nabla v_m|\partial r v_m e^{-2\rho} dx
\]
\[
+ \int_{S_r} \frac{1}{2} s^r q_1 + mr^{s-1} q_1 + \frac{1}{2} r^{s-1} q_1 + \frac{1}{2} s^r q_2 + \frac{1}{2} r^{s-1} q_2 + \lambda s^r m e^{-2\rho} dx
\]
\[
\int_{S_r} \left[\frac{s-2}{2} r^{s-3} m(m+1) + \frac{s-1}{2} \partial r v_m + \frac{s}{2} \partial v_m + \frac{s}{2} \partial v_m + \lambda r^{s-1} |v_m|^2 e^{-2\rho} dx
\]
\[
\int_{S_r} \frac{s}{2} \partial r v_m + \frac{m(m+1)}{r^2} + \frac{m}{r} (2p' - \Delta r) - V_0 - V_1 - V_2 + \lambda |v_m|^2 e^{-2\rho} dx
\]

4. **Proof of Theorem 1.1** and Some Corollaries

Let
\[
\tilde{\delta}(r) = r(\Delta r - a_4 - \frac{a_5}{r})
\]
\[
\tilde{a}_1(r) = rV_1(r)
\]
\[
\tilde{a}_2(r) = r \frac{\partial V_2}{\partial r}
\]

By the assumptions of Theorem 1.1
\[
\limsup_{r \to \infty} |\tilde{\delta}(r)| \leq \delta, \limsup_{r \to \infty} |\tilde{a}_1(r)| \leq a_1, \limsup_{r \to \infty} |\tilde{a}_2(r)| \leq a_2.
\]

Let 0 < t < 1 be small enough, 2p' = a_4 + \frac{a_5}{r} and q_1 = 0. Direct computation of (9) implies that
\[
V_0 = \frac{a_4^2}{4} + \frac{a_4 a_5}{2r} + \frac{a_4}{2r} + O(1) \frac{1}{r^2}.
\]

We should mention that O(1) and o(1) only depend on constants in the assumptions of Theorem 1.1 not depend on m, t.

Let \(q_2 = -\frac{a_4^2}{4} - \frac{a_4 a_5}{2r} - V_2 \). By (19), we have

\begin{align}
\frac{\partial F(m, r, t, s)}{\partial r} &= r^{s-1} \int_{S_r} [(r(\nabla dr) - \left(\frac{s}{2} + \frac{1}{2} \tilde{\delta}\right)\tilde{g})(\nabla v_m, \nabla v_m)]e^{-2\rho} dx \\
&+ r^{s-1} \int_{S_r} [2m - \frac{s}{2} + \frac{1}{2} \tilde{\delta} m] \frac{\partial v_m}{\partial r} e^{-2\rho} dx \\
&+ r^{s-1} \int_{S_r} [a_1 + \frac{\tilde{a}_4}{2} + \tilde{\delta} m - \frac{a_2}{2} + o(1)] \frac{\partial v_m}{\partial r} v_m e^{-2\rho} dx \\
&+ r^{s-1} \int_{S_r} [(\lambda - \frac{a_4^2}{4})(s + \frac{\tilde{\delta}}{2}) - \frac{a_2}{2} + o(1)] \frac{\partial v_m}{\partial r} v_m e^{-2\rho} dx \\
&+ r^{s-1} \int_{S_r} m(m+1) \frac{r^{s-2}}{2} + \frac{\delta}{2} \frac{v_m^2}{r^2} e^{-2\rho} dx
\end{align}
Theorem 4.1. Under the assumptions of Theorem 1.1, there exist \(s_0, R_0, m_0 > 0 \) such that for \(m \geq m_0 \) and \(r \geq R_0 \),

\[
\frac{\partial F(m, r, t, s_0)}{\partial r} > 0.
\]

Proof. Let \(s_0 \) be such that \(s_0 < 2a_3 - \delta \) and sufficiently close to \(2a_3 - \delta \). By the assumption \(a_3 > 1 + \delta \) (see (2)), one has

\[
r(\nabla dr) - \left(\frac{s_0}{2} + \frac{1}{2}\delta\right)\hat{g} \geq 0,
\]

for large \(r \), which implies

(22)

\[
(17) > 0.
\]

By assumption \(a_3 > 1 + \delta \) (see (2)) again and \(\lambda > \frac{a_3^2}{4} + \frac{a_2}{2(a_3 - \delta)} \) (see (3)), one has

\[
(\lambda - \frac{a_3^2}{4})(\frac{s_0}{2} + \frac{\delta}{2} - \frac{a_2}{2}) > 0,
\]

and

\[
\frac{s_0}{2} - \frac{\delta}{2} > 0.
\]

By Cauchy-Schwartz inequality, one has

\[
\begin{align*}
\frac{m(m+1)}{r^2} & \left(\frac{s_0 - 2}{2} + \frac{\delta}{2}\right) + (\lambda - \frac{a_3^2}{4})(\frac{s_0}{2} + \frac{\delta}{2}) - \frac{a_2}{2} \right)v_m^2 + \left|\frac{a_1}{2} + \frac{\delta a_4}{2} - t + \delta r\right|v_m & > \left|\frac{a_1}{2} + \frac{\delta a_4}{2} - t + \delta r\right|v_m
\end{align*}
\]

for large \(m \) and \(r \). Thus, one has

(23)

\[
(19) < (18) + (20) + (21)
\]

for large \(m \) and \(r \).

By (22) and (23), we obtain Theorem 4.1. \(\square \)

Theorem 4.2. Let \(s < \mu \) and \(s \) be sufficiently close to \(\mu \). Then under the conditions of Theorem 1.1, we have

\[
\frac{\partial F(0, r, 0, s)}{\partial r} > 0,
\]

for large \(r \).

Proof. Let \(m = 0, t = 0 \) in (17)-(21), one has

\[
\begin{align*}
\frac{\partial F(0, r, 0, s)}{\partial r} &= \int_{S_r} r^{s-1} \left[r(\nabla dr) - \left(\frac{s}{2} + \frac{1}{2}\delta\right)\hat{g}\right](\nabla v, \nabla v) e^{-2\rho} \, dx \\
&+ r^{s-1} \int_{S_r} \frac{\delta}{2} + \frac{s}{2} \left|\frac{\partial v}{\partial r}\right|^2 e^{-2\rho} \, dx \\
&+ r^{s-1} \int_{S_r} \left[\frac{a_1}{2} + \frac{\delta a_4}{2} + o(1)\right] \left|\frac{\partial v}{\partial r}\right| v e^{-2\rho} \, dx \\
&+ r^{s-1} \int_{S_r} \left[\left(\lambda - \frac{a_3^2}{4}\right)\left(\frac{s}{2} + \frac{\delta}{2}\right) - \frac{a_2}{2} + o(1)\right] v^2 e^{-2\rho} \, dx.
\end{align*}
\]

We will show that for large \(r \),

\[
\frac{\partial F(0, r, 0, s)}{\partial r} > 0.
\]

By Cauchy Schwartz inequality, it suffices to prove

(24)

\[
4\left[\left(\lambda - \frac{a_3^2}{4}\right)\left(\frac{s}{2} + \frac{\delta}{2}\right) - \frac{a_2}{2}\right] - \left[\frac{\delta}{2} + \frac{\delta}{2}\right] > \left|\frac{a_1}{2} + \frac{\delta a_4}{2}\right|^2.
\]
Solving inequality (24), we get

\[\lambda > \frac{a_1^2}{4} + \frac{a_2}{s + \delta} + \frac{1}{4} \left(\frac{2a_1 + \delta a_4}{s^2 - \delta^2} \right) \]

(25)

It is clear that (25) holds if

\[\lambda > \frac{a_1^2}{4} + \frac{a_2}{s - \delta} + \frac{1}{4} \left(\frac{2a_1 + \delta a_4}{s^2 - \delta^2} \right), \]

which follows from the assumption (3) and the fact \(s \) is close to \(\mu \).

\[\square \]

Theorem 4.3. There exist \(m_0 \geq 0 \) and \(R_0 > 0 \) such that

\[F(m_0, r, t, 0) > 0 \]

for all \(r \geq R_0 \).

Proof. It is easy to check that

\[
F(m, r, t, 0) = \int_{S_r} \left[\frac{1}{2} \left(\frac{m(m+1)}{r^2} - \frac{t}{r} + q_2 + \lambda \right) v_m^2 + \left(|\frac{\partial v_m}{\partial r}|^2 - \frac{1}{2} |\nabla v_m|^2 \right) \right] e^{-2\rho} \mathrm{d}x \\
= \frac{r^{2m}}{2} \int_{S_r} \left[\left(\frac{2m^2 + m}{r^2} - \frac{t}{r} + q_2 + \lambda \right) v^2 + \left| \frac{\partial v}{\partial r} \right|^2 + \frac{2m}{r} \frac{\partial v}{\partial r} - |\nabla v|^2 \right] e^{-2\rho} \mathrm{d}x.
\]

By unique continuation theorem and fact that \(u \) is nonzero, there exists large enough \(R_0 \) such that \(\int_{S_{R_0}} v^2 e^{-2\rho} \mathrm{d}x \neq 0 \). Let \(m_0 \) be large enough so that

\[F(m_0, R_0, t, 0) > 0. \]

By Theorem 4.1, we get

\[F(m_0, r, t, 0) > 0, \]

for all \(r > R_0 \).

\[\square \]

Theorem 4.4. Assume that \(\int_{S_r} v^2 e^{-2\rho} \mathrm{d}x \) is not monotone increasing (with respect to \(r \)) in any semi-infinite interval \(r \geq R \). Then there exists a sequence \(r_n \) goes to infinity such that

\[F(0, 0, r_n, 0) > 0, \]

Proof. By the assumption, there exists a sequence \(r_n \) goes to infinity and such that

\[\frac{\partial}{\partial r} \int_{S_r} v^2 e^{-2\rho} \mathrm{d}x < 0 \]

for \(r = r_n \). By Lemma 2.2, one has

\[\int_{S_r} [2v \frac{\partial v}{\partial r} + (\Delta r - 2\rho v) v^2] e^{-2\rho} \mathrm{d}x < 0 \]

(27)
for $r = r_n$. By some direct computation, we have

$$ F(m_0, r, t, 0) = \int_{S_r} \left(\frac{1}{2} \left(\frac{m_0(m_0 + 1)}{r^2} - \frac{t}{r} + q_2 + \lambda \right) v^2_{m_0} + \left(\frac{\partial v_{m_0}}{\partial r} \right)^2 - \frac{1}{2} |\nabla v_{m_0}|^2 \right) e^{-2\rho} dx $$

$$ = \frac{r^{2m_0}}{2} \int_{S_r} \left(\frac{m_0(m_0 + 1)}{r^2} - \frac{t}{r} + q_2 + \lambda \right) v^2 + \left| \frac{\partial v}{\partial r} \right|^2 - |\nabla \omega|^2 e^{-2\rho} dx $$

$$ = \frac{r^{2m_0}}{2} \int_{S_r} \left(\frac{2m_0^2 + m_0}{r^2} - \frac{t}{r} \right) v^2 + 2 \frac{m_0}{r} \frac{\partial v}{\partial r} e^{-2\rho} dx $n$$

$$ + \frac{r^{2m_0}}{2} \int_{S_r} \left(\frac{2m_0^2 + m_0}{r^2} - \frac{t}{r} - m_0 \frac{\Delta r - 2\rho |}{|} \right) v^2 e^{-2\rho} dx. $$

(28)

For large r, one has

$$ \frac{r^{2m_0}}{2} \int_{S_r} \left(\frac{2m_0^2 + m_0}{r^2} - \frac{t}{r} - m_0 \frac{\Delta r - 2\rho |}{|} \right) v^2 e^{-2\rho} dx < 0, $$

since $t > 0$.

Combining with (27) and (28), one has

$$ F(m_0, r_n, t, 0) < F(0, r_n, 0, 0). $$

By Theorem 4.3 we have $F(m_0, r_n, t, 0) > 0$. Thus we get

$$ F(0, 0, r_n, 0) > 0. $$

□

Proof of Theorem 1.1

Proof. It suffices to assume $\int_{S_r} v^2 e^{-2\rho} dx$ is not monotone increasing (with respect to r) in any semi-infinite interval $r \geq R$.

By Theorems 4.2 and 4.4 there exits $\gamma > 0$ such that

$$ F(0, r, s) \geq \gamma, $$

for large r. Thus

$$ r^n \int_{S_r} \left(v^2 + \frac{\partial v}{\partial r} \right) e^{-2\rho} dx \geq \gamma_0 $$

for some $\gamma_0 > 0$.

By the fact $v = e^\rho u$, we get that

$$ \lim_{r \to \infty} r^n [M(r)^2 + N(r)^2] > 0. $$
Recalling that $s < \mu$, we have

$$\liminf_{r \to \infty} r^\mu [M(r)^2 + N(r)^2] = \infty.$$

\[\square\]

Proof of Corollary 1.2

Proof. The Corollary 1.2 follows from Theorem 1.1 directly. \[\square\]

Proof of Corollary 1.3

Proof. The Corollary 1.3 follows from Theorem 1.1 and the fact that Δr is the trace of ∇dr. \[\square\]

Before we finish the proof of Corollary 1.5, a lemma is necessary.

Lemma 4.5. Suppose there exists a $r_0 > 0$ such that

$$\nabla dr \geq 0$$

for $r = r_0$, and

$$-1 - \frac{2A}{r} \leq K_{rad}(r) \leq -1 + \frac{2A}{r} < 0,$$

for $r \geq r_0$, where $K_{rad}(r)$ is the radial curvature.

Then

(29) $$|\nabla dr - \hat{g}| \leq \frac{A + o(1)}{r},$$

and

(30) $$\frac{\partial \Delta r}{\partial r} \leq \frac{4(n-1)A + o(1)}{r}.$$

Proof. (29) and (30) can be proved by comparison theorem and Weitzenböck formula. See [17] for details. \[\square\]

Proof of Corollary 1.5

Proof. Under the curvature condition of Corollary 1.3 and Lemma 4.5 one has

$$\limsup_{r \to \infty} |\nabla dr - \hat{g}| \leq \frac{A}{r}.$$

Now Corollary 1.5 follows from Corollary 1.3. \[\square\]
5. PROOF OF THEOREM 1.6

Let $q_1 = \Delta r - 2\rho$, $q_2 = -\frac{a_2^2}{2} - \frac{a_3^2}{2} - \frac{a_4^2}{2} - V_2$ and the others as the same in (4) By (16) and integration by part, one has

$$\frac{\partial F(m, r, t, s)}{\partial r} = r^{s-1} \int_{S_r} \left[(r(\nabla dr) - \frac{s}{2})\hat{g}(\nabla v_m, \nabla v_m) + \frac{1}{2} r^s v_m < \nabla \omega q_1, \nabla \omega v_m > \right] e^{-2\rho} dx$$

$$+ r^{s-1} \int_{S_r} \left[2m + \frac{s}{2} \right] \left| \frac{\partial v_m}{\partial r} \right|^2 e^{-2\rho} dx$$

$$+ r^{s-1} \int_{S_r} \left[\frac{s}{2} q_1 + \frac{1}{2} r \frac{\partial q_1}{\partial r} + 2mq_1 \right] \frac{\partial v_m}{\partial r} v_m e^{-2\rho} dx$$

$$+ r^{s-1} \int_{S_r} \left[\frac{s}{2} q_2 - \frac{t}{r} + V_0 + V_1 + V_2 \right] \frac{\partial v_m}{\partial r} v_m e^{-2\rho} dx$$

$$+ r^{s-1} \int_{S_r} \left[\frac{s}{2} q_2 - \frac{t}{r} + V_0 + V_1 + V_2 \right] \frac{\partial v_m}{\partial r} v_m e^{-2\rho} dx$$

$$+ \int_{S_r} \frac{s}{2} q_1 \left[-\frac{t}{r} + \frac{m}{2} q_1 + q_2 + V_0 + V_1 + V_2 \right] v_m^2 e^{-2\rho} dx.$$

Let

$$\frac{\partial \delta(r)}{\partial r} = \delta_1, (\nabla - \frac{\partial}{\partial r}) \delta(r) = \delta_2.$$

By the assumptions of Theorem 1.6 we get

$$\frac{\partial F(m, r, t, s)}{\partial r} = r^{s-1} \int_{S_r} \left[(r(\nabla dr) - \frac{s}{2})\hat{g}(\nabla v_m, \nabla v_m) + \frac{1}{2} r^s v_m < \nabla \omega q_1, \nabla \omega v_m > \right] e^{-2\rho} dx$$

$$+ r^{s-1} \int_{S_r} \left[2m + \frac{s}{2} \right] \left| \frac{\partial v_m}{\partial r} \right|^2 e^{-2\rho} dx$$

$$+ r^{s-1} \int_{S_r} \left[-\frac{t + \tilde{a}_1}{r} + \frac{1}{2} \delta_1 + 2\delta \frac{m}{r} + o(1) \right] \frac{\partial v_m}{\partial r} v_m e^{-2\rho} dx$$

$$+ r^{s-1} \int_{S_r} \left[-\frac{a_4 \delta_1}{4} - \frac{s}{8} q_1 + \frac{s}{2} \lambda - \frac{a_2}{2} + o(1) \right] v_m^2 e^{-2\rho} dx$$

$$+ r^{s-1} \int_{S_r} \frac{s}{2} \frac{m(m + 1)}{r^2} + \frac{\delta^2 m}{r^2} v_m^2 e^{-2\rho} dx.$$

(31)

Theorem 5.1. Under the conditions of Theorem 1.6, there exist $s_0, R_0, m_0 > 0$ such that for $m \geq m_0$ and $r \geq R_0$,

$$\frac{\partial F(m, r, t, s_0)}{\partial r} > 0.$$

Proof. Let $2 < s_0 < 2a_3$, which will be specified later. One has

$$\frac{1}{2} v_m < \delta_2, \nabla v_m > \frac{\sigma^2}{v_m^2} + (a_3 - \frac{s_0}{2} + \epsilon(\sigma))|\nabla \omega v_m|^2,$$

where σ is any constant such that

$$\sigma < \frac{16a_3 - 8s_0}{|\delta_2|^2},$$

and $\epsilon(\sigma) > 0$ is small. Let σ be close to $\frac{16a_3 - 8s_0}{|\delta_2|^2}$. By assumption (5), there exists s_0 with $2 < s_0 < 2a_3$ such that

$$-\frac{a_4 \delta_1}{4} - \frac{s}{8} q_1 + \frac{s}{2} \lambda - \frac{a_2}{2} - \frac{1}{\sigma} > 0.$$
By Cauchy Schwartz inequality, we have

\begin{equation}
4\left[\frac{s_0 - 2}{2} m(m + 1) + \frac{3}{2} m - \frac{a_4 \delta_1}{4} - \frac{s_0}{8} a_4^2 + \frac{s_0}{2} \lambda - \frac{\tilde{a}_2}{2} - \frac{1}{\sigma} \right] [2m + s_0] > [-\tilde{t} + \tilde{a}_1 + \frac{1}{2} \delta_1 + 2\delta \frac{m}{r}]^2
\end{equation}

for large \(m \) and large \(r \). Putting all the estimates together, we obtain

\[
\frac{\partial F(m, r, t, s_0)}{\partial r} > 0
\]

for large \(m \) and \(r \).

Theorem 5.2. Under the assumptions of Theorem 1.4, we have

\[
\frac{\partial F(0, r, 0, s)}{\partial r} > 0.
\]

for large \(r \).

Proof. Let \(m, t = 0 \) in (31), one has

\[
\frac{\partial F(0, r, 0, s)}{\partial r} = r^{s-1} \int_{S_r} \left(r (\nabla dr) - \frac{s}{2} \hat{g} \right) (\nabla v, \nabla v) + \frac{1}{2} r^{s-1} v < \delta \tilde{2}, \nabla \omega v > e^{-2\rho} dx
\]

\[
+ r^{s-1} \int_{S_r} \frac{s}{2} |\nabla v|^2 e^{-2\rho} dx
\]

\[
+ r^{s-1} \int_{S_r} \left[a_4 + \frac{1}{2} \delta_1 + o(1) \right] \frac{\partial v}{\partial r} e^{-2\rho} dx
\]

\[
+ r^{s-1} \int_{S_r} \left[\frac{a_4 \delta_1}{4} - \frac{s}{8} a_4^2 + \frac{s}{2} \lambda - \frac{\tilde{a}_2}{2} + o(1) \right] v^2 e^{-2\rho} dx
\]

By the proof of (32), it suffices to show that

\[
4\left[\frac{a_4 \delta_1}{4} - \frac{s}{8} a_4^2 + \frac{s}{2} \lambda - \frac{\tilde{a}_2}{2} - \frac{1}{\sigma} \right] [s_0] > [\tilde{a}_1 + \frac{1}{2} \delta_1]^2.
\]

This holds by assumption (4). \(\square \)

Proof of Theorem 1.6

Proof. The proof follows from the proof of Theorem 1.4. We only need to replace Theorems 1.1 and 4.2 with Theorems 5.1 and 5.2. \(\square \)

6. PROOF OF THEOREMS 1.8, 1.11 AND COROLLARY 1.9

Let \(q_1 = 0, q_2 = -\frac{a_4^2}{4} - \frac{a_4 \delta_1}{2} - \frac{a_4 m}{2} \) and the others as before. By (10), we have

\begin{equation}
\frac{\partial F(m, r, t, s)}{\partial r} = r^{s-1} \int_{S_r} \left(r (\nabla dr) - \frac{s}{2} \hat{g} \right) (\nabla v_m, \nabla v_m) e^{-2\rho} dx
\end{equation}

\begin{equation}
+ r^{s-1} \int_{S_r} \left[\frac{2m - \tilde{\delta}}{2} + \frac{s}{2} |\nabla v_m|^2 e^{-2\rho} dx
\end{equation}

\begin{equation}
+ r^{s-1} \int_{S_r} \left[a_4 + t + \frac{m}{r} + o(1) \right] \frac{\partial v_m}{\partial r} v_m e^{-2\rho} dx
\end{equation}

\begin{equation}
+ r^{s-1} \int_{S_r} \left[\left(\lambda - \frac{a_4^2}{4} \right) \frac{s}{2} + \frac{\tilde{\delta}}{2} \right] \frac{\tilde{a}_2}{2} + \frac{1}{4} a_4 \delta_1 + o(1) \right] v_m^2 e^{-2\rho} dx
\end{equation}

\begin{equation}
+ r^{s-1} \int_{S_r} \frac{m(m + 1)}{r^2} \left| \frac{s}{2} - \frac{\tilde{\delta}}{2} \right| v_m^2 e^{-2\rho} dx.
\end{equation}
Theorem 6.1. Under the conditions of Theorem 1.8, there exist $s_0, R_0, m_0 > 0$ such that for $m \geq m_0$ and $r \geq R_0$,
\[
\frac{\partial F(m, r, t, s_0)}{\partial r} > 0.
\]

Proof. Let s_0 be such that $s_0 < 2a_3 - \delta$ and sufficiently close to $2a_3 - \delta$. By the assumption $a_3 > 1 + \delta$ (see (3)), one has
\[
r(\nabla dr) - \left(s_0 + \frac{1}{2}\delta\right)\hat{g} \geq 0,
\]
for large r, which implies
(38) \[\frac{s_0 - \frac{2}{2}}{2} + \frac{\delta}{2} > 0.\]

By Cauchy-Schwartz inequality again, one has
\[
\frac{m(m + 1)}{2} \left[(s_0 - \frac{\delta}{2}) + (\lambda - \frac{a_3^2}{4}) (s_0 - \frac{\delta}{2}) - \frac{\tilde{a}_2}{2} - \frac{a_4}{4}\tilde{\delta}_1 \right] v^2 + \frac{1}{2} \left| \nabla v \cdot \nabla v \right| e^{2\rho} dx > \left| \left[\frac{1}{2} - \frac{\tilde{a}_1}{2} \right] \frac{\partial v}{\partial r} + \frac{\partial v_m}{\partial r} v \right|^2
\]
for large m and r. Thus, one has
(39) \[\frac{1}{2} \left| \nabla v \cdot \nabla v \right| e^{2\rho} dx > \left| \left[\frac{1}{2} - \frac{\tilde{a}_1}{2} \right] \frac{\partial v}{\partial r} + \frac{\partial v_m}{\partial r} v \right|^2\]
for large m and r.

Now Theorem 6.1 follows from (38) and (39). \[\square\]

Theorem 6.2. Let $s < \mu$ and s be sufficiently close to μ. Then under the conditions of Theorem 1.8 we have
\[
\frac{\partial F(0, r, 0, s)}{\partial r} > 0,
\]
for large r.

Proof. Let $m = 0, t = 0$ in (33), one has
\[
\frac{\partial F(0, r, 0, s)}{\partial r} = \int_{S_r} r^{s-1} \left[r(\nabla dr) - \left(s + \frac{1}{2}\delta\right)\hat{g} \right] e^{-2\rho} dx
\]
for large r.

We will show that for large r,\[
\frac{\partial F(0, r, 0, s)}{\partial r} > 0.
\]

By Cauchy Schwartz inequality, it suffices to prove
(40) \[4 \left| \left[\lambda - \frac{a_3^2}{4} \right] \left(s + \frac{1}{2}\delta\right) - \frac{\tilde{a}_2}{2} - \frac{a_4}{4}\tilde{\delta}_1 \right| > \left| \tilde{a}_1 \right|^2,\]
which holds by assumption (3) and s is close to μ. □

Proof of Theorem 1.6

Proof. The proof follows from the proof of Theorems 1.1 and 1.6. We only need to replace Theorems 4.1 and 4.2, with Theorems 6.1 and 6.2. □

Proof of Corollary 1.9

Proof. The proof follows from Theorem 1.6 and Lemma 4.5. □

Proof of Theorem 1.11

In the proof Theorems 1.1 and 1.8, we let $q_2 = -\frac{a^2}{4} - \frac{a \sigma a}{2r} - V_2$ and $q_2 = -\frac{a^2}{4} - \frac{a \sigma a}{2r} - V_2 - \frac{a \sigma}{2r}$ respectively. Now we only need to let $q_2 = -\frac{a^2}{4} - \frac{a \sigma a}{2r} - V_2 - (1 - \sigma) \frac{a \sigma}{2r}$, and following the proof of Theorems 1.1 and 1.8 we can prove Theorem 1.11. We omit the details.

Acknowledgments

I would like to thank Svetlana Jitomirskaya for introducing to me paper [17] and inspiring discussions on this subject. I also want to thank Songying Li for telling me details about the unique continuation theorem. The author was supported by the AMS-Simons Travel Grant 2016-2018 and NSF DMS-1700314. This research was also partially supported by NSF DMS-1401204.

References

[1] S. Agmon. Lower bounds for solutions of Schrödinger equations. *J. Analyse Math.*, 23:1–25, 1970.

[2] S. Agmon. Spectral properties of Schrödinger operators and scattering theory. *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)*, 2(2):151–218, 1975.

[3] S. A. Denisov and A. Kiselev. Spectral properties of Schrödinger operators with decaying potentials. In *Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday*, volume 76 of *Proc. Sympos. Pure Math.*, pages 565–589. Amer. Math. Soc., Providence, RI, 2007.

[4] H. Donnelly. Negative curvature and embedded eigenvalues. *Math. Z.*, 203(2):301–308, 1990.

[5] H. Donnelly. Spectrum of the Laplacian on asymptotically Euclidean spaces. *Michigan Math. J.*, 46(1):101–111, 1999.

[6] H. Donnelly. Spectral theory of complete Riemannian manifolds. *Pure Appl. Math. Q.*, 6(2, Special Issue: In honor of Michael Atiyah and Isadore Singer):439–456, 2010.

[7] H. Donnelly and N. Garofalo. Riemannian manifolds whose Laplacians have purely continuous spectrum. *Math. Ann.*, 293(3):143–161, 1992.

[8] H. Donnelly and P. Li. Pure point spectrum and negative curvature for noncompact manifolds. *Duke Math. J.*, 65(1):1–21, 1992.

[9] J. F. Escobar and A. Freire. The spectrum of the Laplacian of manifolds of positive curvature. *Duke Math. J.*, 65(1):1–21, 1992.

[10] R. E. Greene and H. Wu. *Function theory on manifolds which possess a pole*, volume 699 of *Lecture Notes in Mathematics*. Springer, Berlin, 1979.

[11] S. Jitomirskaya and W. Liu. Noncompact complete Riemannian manifolds with dense eigenvalues embedded in the essential spectrum of the Laplacian. *https://arxiv.org/pdf/1805.01072.pdf*.

[12] S. Jitomirskaya and W. Liu. Noncompact complete Riemannian manifolds with singular continuous spectrum embedded into the essential spectrum of the Laplacian. *Preprint*.

[13] T. Kato. Growth properties of solutions of the reduced wave equation with a variable coefficient. *Comm. Pure Appl. Math.*, 12:403–425, 1959.

[14] A. Kiselev. Imbedded singular continuous spectrum for Schrödinger operators. *J. Amer. Math. Soc.*, 18(3):571–603, 2005.

[15] A. Kiselev, C. Remling, and B. Simon. Effective perturbation methods for one-dimensional Schrödinger operators. *J. Differential Equations*, 151(2):290–312, 1999.

[16] H. Kumura. On the essential spectrum of the Laplacian on complete manifolds. *J. Math. Soc. Japan*, 49(1):1–14, 1997.
[17] H. Kumura. The radial curvature of an end that makes eigenvalues vanish in the essential spectrum. I. Math. Ann., 346(4):795–828, 2010.
[18] H. Kumura. The lower bound of the Ricci curvature that yields an infinite discrete spectrum of the Laplacian. Ann. Inst. Fourier (Grenoble), 61(4):1557–1572 (2012), 2011.
[19] H. Kumura. The radial curvature of an end that makes eigenvalues vanish in the essential spectrum II. Bull. Lond. Math. Soc., 43(5):985–1003, 2011.
[20] H. Kumura. Perturbation of a warped product metric of an end and the growth property of solutions to eigenvalue equations. Kyoto J. Math., 52(2):249–276, 2012.
[21] H. Kumura. Limiting absorption principle on manifolds having ends with various measure growth rate limits. Proc. Lond. Math. Soc. (3), 107(3):517–548, 2013.
[22] W. Liu. Growth of the eigensolutions of Laplacians on Riemannian manifolds II: positivity of the initial energy. https://arxiv.org/pdf/1709.02916.pdf, 2017.
[23] S. N. Naboko. On the dense point spectrum of Schrödinger and Dirac operators. Teoret. Mat. Fiz., 68(1):18–28, 1986.
[24] M. A. Pinsky. Spectrum of the Laplacian on a manifold of negative curvature. II. J. Differential Geom., 14(4):609–620, 1979.
[25] M. Reed and B. Simon. Methods of modern mathematical physics. III. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory.
[26] I. Rodnianski and T. Tao. Effective limiting absorption principles, and applications. Comm. Math. Phys., 333(1):1–95, 2015.
[27] W. Schlag. Dispersive estimates for Schrödinger operators: a survey. In Mathematical aspects of nonlinear dispersive equations, volume 163 of Ann. of Math. Stud., pages 255–285. Princeton Univ. Press, Princeton, NJ, 2007.
[28] B. Simon. On positive eigenvalues of one-body Schrödinger operators. Comm. Pure Appl. Math., 22:531–538, 1969.
[29] B. Simon. Some Schrödinger operators with dense point spectrum. Proc. Amer. Math. Soc., 125(1):203–208, 1997.
[30] B. Simon. Tosio Kato’s Work on Non–Relativistic Quantum Mechanics. arXiv preprint arXiv:1711.00528, 2017.
[31] A. F. Vakulenko. A variant of commutator estimates in spectral theory. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 163(Kraev. Zadachi Mat. Fiz. i Smezhn. Vopr. Teor. Funktsii 19):29–36, 186, 1987.
[32] J. von Neuman and E. Wigner. Über merkwürdige diskrete Eigenwerte. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen. Zhurnal Physik, 30:467–470, 1929.

(Wencai Liu) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, CALIFORNIA 92697-3875, USA
E-mail address: liuwencai1226@gmail.com