Calculation of energy-deposition distributions of a 9C beam using the PHITS code

Davide Mancusi1, Lembit Sihver1,2, Koji Niita3, Qiang Li4, Tatsuhiko Sato5, Hiroshi Iwase6, Yosuke Iwamoto5, Norihiro Matsuda5, Yukio Sakamoto5 and Hiroshi Nakashima5

1 Nuclear Engineering, Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
2 Department of Mathematics, Computer Science and Physics, Roanoke College, Salem, VA, USA
3 Research Organisation for Information Science and Technology, Tokai-mura, Japan
4 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
5 Japan Atomic Energy Agency, Tokai-mura, Japan
6 Radiation Science, KEK, Oho 1, 305-0801 Tsukuba, Japan

E-mail: mancusi@chalmers.se

Abstract. Carbon-9 beams represent one of the possible alternatives (presently under consideration and investigation) to conventional 12C beams for heavy-ion cancer treatment. Interest in this exotic isotope stems from the expected boost in biological effectiveness due to the β-delayed emission of two α particles and a proton that takes place at the ion stopping site. Experiments have been performed [1] to characterise 9C beams physically and models have been developed [2] to estimate quantitatively its biological effect.

In this work, we have used the PHITS code [3] to calculate energy-deposition and LET distributions for a 9C beam in water and we have compared the results with some published data [1]. Even though PHITS fails to reproduce some of the features of the distributions, its result is that decay gives a negligible contribution to the energy-deposition distributions, thus contradicting the previous interpretation of the measured data.

1. Introduction
Heavy-ion cancer therapy is nowadays a well-established tool for the treatment of certain types of tumours [4], thanks to its peculiar characteristics. The most popular choice for the beam by far is 12C, which is believed to strike the best compromise between high biological effectiveness in the tumour volume and low damage to the surrounding healthy tissue. However, attention has been paid to the possibility of using other beams: one of the most recent candidates is 9C, which could have a more favourable peak-plateau ratio with respect to conventional 12C beams; such expectations are based on the fact that 9C is a β^+ emitter, with a half-life of 126.5 ms, a
Q-value of about 16.5 MeV and the following decay scheme [5]:

\[^{8}\text{Be} + p \rightarrow ^{9}\text{B} \]

\[^{9}\text{C} \beta^{+} \rightarrow ^{9}\text{B} \]

\[2\alpha + p. \]

\[^{5}\text{Li} + \alpha \]

The half-life of ^{9}C is sufficiently long to hinder in-flight decay; once a projectile comes to a stop in the cancer region, however, its decay will generate three high-LET particles that could possibly boost the local biological effect and would remain mostly confined to the target volume due to their short ranges (in the µm–mm range). Experimental verification of these expectations is obviously necessary if one wants to implement ^{9}C beams in treatment-planning systems; moreover, accurate models for the eventual decay-related boost in biological effect must be developed; some work has already been performed in both directions [6, 7, 1, 2].

The purpose of the present work is to use the PHITS code [3] to calculate energy-deposition distributions for a ^{9}C beam traversing different thicknesses of water, compare with experimental data [1] and help with the physical interpretation of the latter. A more extensive account of the simulation strategy and of the results will be available in a coming paper [8].

2. Materials and methods
2.1. The PHITS code
The PHITS (Particle and Heavy-Ion Transport System) code [3] is a three-dimensional Monte Carlo code, designed with the purpose of simulating the transport of nuclei and other particles in complicated geometries and calculating fluxes, doses, energy-deposition distributions and many other observables. It is currently maintained by a cooperation among RIST (Research Organisation for Information Science and Technology, Japan), JAEA (Japan Atomic Energy Agency, Japan), KEK (High-Energy Accelerator Research Organisation, Japan) and Chalmers University of Technology (Sweden).

2.2. The experiment
The experiment we have simulated with PHITS is described in Li et al.'s paper [1] and it will only be briefly outlined here.

The experiment was performed at the Secondary Beam Line of HIMAC (Heavy Ion Medical Accelerator in Chiba, Chiba, Japan), where ^{9}C ions were produced as spallation products of the reaction between 430 MeV/n ^{12}C and a 40-mm-thick beryllium target. Beam characterisation [7] has revealed that, under optimal conditions, the resulting ^{9}C beam contains several contaminating fragments with broad energy distributions and that the ^{9}C component has a Gaussian momentum distribution, centred at 838.9 MeV/c/n and with a standard deviation of 26.1 MeV/c/n.

The purpose of the experiment [1] was to measure energy-deposition (ΔE) distributions (i.e. number of events as a function of energy deposition in the detector) of the ^{9}C beam after traversal of different thicknesses of water; this was accomplished by means of a water column of adjustable thickness and a gas-flowing-type multi-wire parallel-plate proportional chamber, filled with P-10 gas, acting as an LET counter.
Figure 1. Measured energy-deposition distribution at a depth of 14.22 cm, together with the results of the transport simulations for 14.2, 14.4 and 14.6 cm. The calculated energy depositions have been converted to LET by dividing by the detector thickness.

3. Simulation
The purpose of the simulation was to calculate the ΔE distributions and identify their different components, in order to help with their physical interpretation. The strategy of the calculation was the following:

(i) transport 9C ions through the water column to their stopping point, neglecting β decay, and tally their stopping density;

(ii) use the stopping density as a source for a second calculation, that simulates 9C decay and transport of the decay products.

We then summed up corresponding ΔE distributions in the two calculation steps; the resulting distributions are not the same as one would obtain by considering transport and decay in one step. This procedure is justified by the consideration that the half-life of 9C (126.5 ms) is much longer than the typical detector dead time; thus, any energy deposition in the detector due to decay will trigger the data-acquisition system separately and will be registered as an additional event.

4. Results
The experimental ΔE distribution at a depth of 14.22 cm is shown in figure 1, together with the results of the transport simulations at 14.2, 14.4 and 14.6 cm. The calculated energy depositions have been converted to LET by dividing by the detector thickness.

The distributions can be schematically divided in three parts:

(i) below ~ 10 keV/µm one can observe low-energy-deposition events, caused by deep spallation of the primary 9C projectiles;
(ii) between ~ 10 and 20 keV/μm the experimental distribution shows a flat peak which is absent in the calculated distributions;

(iii) above ~ 20 keV/μm there is the broad primary peak, due to events in which the 9C ions did not lose charge in nuclear reactions and managed to hit the detector.

The physical interpretation of the events in regions (i) and (iii) is very straightforward and has been given above; the events in region (ii) require some discussion. It is claimed in Li et al’s work [1] that the flat peak is due to decay products from 9C; however, even if this is consistent with the results in figure 1 (that do not take decay into account), we will show in the next section that this interpretation is probably wrong.

The PHITS code appears to be able to reproduce the overall features of the energy-deposition distribution quite accurately. The calculated distribution at 14.4 cm seems to fit the experimental primary peak best; the simulated depth is slightly larger than the experimental one; this is probably due to an underestimation of the reaction cross section in PHITS — or, rather, in the model it uses [9, 10, 11] — which has already been observed for other systems [12, 13].

4.1. Decay

Figure 2 shows the contributions of 9C transport and decay to the total ΔE distribution, for a simulated depth of 14.4 cm. We remind the reader that the measured ΔE distribution should be compared with the sum of the transport and the decay distributions (see section 3). It is apparent that the contribution of decay is several orders of magnitude smaller than the contribution of transport; it is therefore unlikely that the flat peak in region (ii) can be ascribed to decay, as it is claimed by Li et al [1].

However, one might wonder what the peak in region (ii) really is, and why PHITS cannot reproduce it. One plausible explanation is that the peak is due to events where the leading fragment is a boron fragment; this is supported by figure 3, where the calculated LET distribution (i.e. number of particles entering the detector as a function of their nominal LET) at 14.4 cm...
Figure 3. Calculated energy-deposition and LET distributions at 14.4 cm. An artificially boosted boron peak is superimposed for illustration purposes (see text).

Energy (MeV/n)	\(\sigma_B \) (mb)
113.0	231
168.0	232
175.0	225
241.0	210
670.0	215

Table 1. Cross sections for the production of boron fragments from \(^{12}\text{C}\) in water. The energy for the calculated cross section is equal to the central energy of the \(^{9}\text{C}\) beam; the measurements were performed by Golovchenko et al [14, 15, for 113, 168, 175 and 241 MeV/n] and Schall et al [16, for 670 MeV/n].

is superimposed on the \(\Delta E \) distribution. The LET distribution shows clear peaks for carbon, boron and beryllium ions, whereas the \(\Delta E \) distribution does not because of energy straggling; as a rule of thumb, the \(\Delta E \) distribution can be thought as being derived from the LET distribution by “blurring” the peaks.

It can be seen that the boron peak of the LET distribution lies approximately in region (ii); if the calculated peak height were underestimated (if e.g. the boron yield in nuclear reactions were underestimated), the missing peak in the calculated \(\Delta E \) distribution would then be explained.

There is in fact evidence that PHITS underestimates boron yields for light systems. Table 1 shows cross sections for the production of boron fragments from \(^{12}\text{C}\) in water; measured data for a number of energies are presented, together with the result of a PHITS calculation for 329.5 MeV/n \(^{12}\text{C}\), which is the central energy of the \(^{9}\text{C}\) beam. The PHITS result, as can be seen, underestimates the measurements by a factor of 2.5–3. This trend has been observed for a number of light systems and is currently object of investigation.
If one makes the hypothesis that the boron yields from 9C are underestimated by a similar factor, one can renormalise "by hand" the boron peak in the LET distribution and obtain the result shown as a dotted line in figure 3, which seems to suggest that this would most likely compensate for the missing peak in the ΔE distribution.

5. Conclusions
We have used the PHITS code to calculate energy-deposition distributions for a 9C beam in water and compared with the results of an experiment [1]. The simulation indicated that the 9C-decay contribution to the energy-deposition distributions is negligible, thereby contradicting the previous interpretation of the experimental data. PHITS failed to reproduce the boron fragment peak in the energy-deposition distribution; similar behaviour has already been observed for other light systems.

References
[1] Q. Li, M. Komori, T. Kanai, A. Kitagawa, E. Urakabe, M. Kanazawa, T. Tomitani, and S. Sato. The LET spectra at different penetration depths along secondary 9C and 11C beams. *Phys. Med. Biol.*, 40(22):5119–5133, November 2004.
[2] Q. Li, Y. Furusawa, M. Kanazawa, T. Kanai, A. Kitagawa, M. Aoki, E. Urakabe, S. Sato, and W. Wei. Enhanced biological effect induced by a radioactive 9C-ion beam at the depths around its Bragg peak. *Nucl. Instr. Meth. B*, 245(1):302–305, April 2006.
[3] H. Iwase, K. Niita, and T. Nakamura. Development of general-purpose Particle and Heavy Ion Transport Monte Carlo code. *J. Nucl. Sci. Technol.*, 39(11):1142–1151, 2002.
[4] U. Amaldi and G. Kraft. Radiotherapy with beams of carbon ions. *Rep. Prog. Phys.*, 68(8):1861–1882, August 2005.
[5] E. Gete, L. Buchmann, R. E. Azuma, D. Anthony, N. Bateman, J. C. Chow, J. M. D’Auria, M. Dombsky, U. Giesen, C. Iliadis, K. P. Jackson, J. D. King, D. F. Measday, and A. C. Morton. β-delayed particle decay of 9C and the $A = 9, T = 1/2$ nuclear system: Experiment, data, and phenomenological analysis. *Phys. Rev. C*, 61(6):064310, May 2000.
[6] Q. Li, T. Kanai, and A. Kitagawa. A model to evaluate the biological effect induced by the emitted particles from a β-delayed particle decay beam. *Phys. Med. Biol.*, 48(18):2971–2986, September 2003.
[7] Q. Li, A. Kitagawa, T. Kanai, M. Kanazawa, E. Urakabe, T. Tomitani, S. Sato, and Z. Wei. Therapeutic purpose 9C beams produced in the secondary beam line at HIMAC. *Nucl. Instr. Meth. B*, 222(1–2):270–284, July 2004.
[8] D. Mancusi, L. Sihver, K. Niita, Q. Li, T. Sato, H. Iwase, Y. Iwamoto, N. Matsuda Y. Sakamoto, and H. Nakashima. Calculation of energy-deposition distributions and microdosimetric estimation of the biological effect of a 9C beam. *Phys. Med. Biol.*, 2007. submitted.
[9] R. K. Tripathi, F. A. Cucinotta, and J. W. Wilson. Accurate universal parametrization of absorption cross sections. *Nucl. Instr. Meth. B*, 155(1–2):302–305, April 1999.
[10] R. K. Tripathi, J. W. Wilson, and F. A. Cucinotta. Accurate universal parametrization of absorption cross sections II — neutron absorption cross sections. *Nucl. Instr. Meth. B*, 129(1):11–15, June 1997.
[11] R. K. Tripathi, F. A. Cucinotta, and J. W. Wilson. Accurate universal parametrization of absorption cross sections III — light systems. *Nucl. Instr. Meth. B*, 155(4):349–356, September 1999.
[12] D. Mancusi, L. Sihver, K. Gustafsson, C. La Tessa, S. B. Guetersloh, C. J. Zeitlin, J. Miller, L. H. Heilbronn, K. Niita, T. Sato, H. Nakashima, T. Murakami, and Y. Iwata. PHITS — benchmark of partial charge-changing cross sections for intermediate-mass systems. *Nucl. Instr. Meth. B*, 254(1):30–38, January 2007.
[13] L. Sihver, D. Mancusi, T. Sato, K. Niita, H. Iwase, Y. Iwamoto, N. Matsuda, H. Nakashima, and Y. Sakamoto. Recent developments and benchmarking of the phits code. *Adv. Space Res.*, 2006. submitted.
[14] A. N. Golovchenko, J. Skvarč, N. Yasuda, M. Giacomelli, S. P. Tretyakova, R. Ilie, R. Bimbott, M. Touloumonde, and T. Murakami. Total charge-changing and partial cross-section measurements in the reactions of $\sim 110–250$ MeV/nucleon 12C in carbon, paraffin, and water. *Phys. Rev. C*, 66(1):014609, July 2002.
[15] A. N. Golovchenko, J. Skvarč R. Ilie, L. Sihver, V. P. Bamblevski, S. P. Tretyakova, D. Scharf, R. K. Tripathi, J. W. Wilson, and R. Bimbott. Fragmentation of 200 and 244 MeV/u carbon beams in thick tissue-like absorbers. *Nucl. Instr. Meth. B*, 159(4):233–240, December 1999.
beams ($5 \leq Z \leq 10$) passing through thick absorbers. *Nucl. Instr. Meth. B*, 117(3):221–234, September 1996.