Corrosion of AISI 316 Stainless Steel Embedded in
Green Concrete with Low Volume of Sugar Cane Bagasse
Ash and Silica Fume exposed in Seawater

Miguel Angel Baltazar-Zamora, Laura Landa-Ruiz, Aldo Emelio Landa-Gómez,
Griselda Santiago-Hurtado, Victor Moreno-Landeros, Ce Tochiti Méndez Ramírez,
Víctor Fernandez Rosales, and René Croche

Abstract — In the present research the corrosion behavior of AISI 316 Stainless Steel was analyzed, as reinforcement in Green Concrete made with Low Volume of Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF), compared to AISI 1018 steel. Four concrete mixtures were made, all with a ratio w / c = 0.65, the percentages of substitution were 0%, 10%, 20% and 30%. The specimens were exposed in seawater as an aggressive medium, corrosion was evaluated by monitoring the corrosion potential Ecorr (ASTM C-876-15) and corrosion rate Icorr (ASTM G59). The results of Ecorr and Icorr after 150 days of exposure show a better performance of AISI 316 steel, with a 10% of probability corrosion and a negligible level of corrosion respectively, the Green Concrete with 30% partial replacement of the CPC by the combination of SCBA-SF presented the best protection against corrosion.

Keywords — AISI 316, Corrosion, Green Concrete, SCBA, SF, Seawater.

I. INTRODUCTION

For a couple of decades, researchers have pointed out that the corrosion process is one of the main deteriorations of reinforced concrete, considering it as an affection of the performance of structures [1]-[4]. The corrosion in concrete structures is a very important economic, by billions of dollars in the world [5]-[10] concentrating these repair costs mainly on the infrastructure built in marine environments [11]-[21], it is for the above that in recent years, the scientific community has worked to counteract this phenomenon with different perspectives, from innovation in concrete technology, as well as cement, special additions of inhibitors, among others, as well as studies of different media, marine, urban, both real and simulated [22]-[26]. One of the most aggressive means is where the structures are exposed in marine environments, where high concentrations of chlorides are present, and the phenomenon of corrosion is more accelerated [27]-[34] also the sulfate ions are also considered as aggressive agents [35]-[46]. To diminish this phenomenon, there is a history of the use of additions or substitutions of portland cement for such as rice clay ash [47], fly ash [48], [49], sugar cane bagasse ash [50]-[52] and slag from blast furnace [53]. Likewise, the use of stainless steel 316 to reduce the phenomenon of corrosion and therefore increase the durability of concrete structures exposed in marine environments [54]. In this investigation, reinforced concrete specimens with sustainable concrete and reinforcement steels of 304 stainless steel and AISI 1018 steel were made. The ternary concretes were made with substitutions of sugarcane bagasse ash (SCBA) and silica fume (SF) agroindustry and industrial waste products respectively. Likewise, a conventional concrete was developed to be used as reference and comparison for ternary concrete. Results of Ecorr and Icorr from the steels of a 180-day evaluation period are presented for the sustainable concrete exposed to a marine environment as an aggressive environment and drinking water as a means of control. The main objective of this research is to contribute to the scientific society with information necessary to build sustainable concrete structures that help increase the durability of these exposed in marine environments, and likewise, that present an environmental and economic benefit to our society.

II. MATERIALS AND METHODS

A. Materials

1) Dosage of Concrete Mixtures

The dosage of concrete mixtures was carried out according to the method of ACI 211.1 [55].

| TABLE I: SUMMARY OF AGGREGATE CHARACTERIZATION RESULTS |
|----------------------------------------------------------|
| **Physical properties of materials** | **Coarse aggregate** | **Fine aggregate** |
| Specific Mass (MES) g/cm³ | 2.60 | 2.20 |
| Bulk Volumetric Mass (BVM) Kg / cm³ | 1332 | 1442 |
| Absorption (%) | 1.7 | 1.8 |
| Module of Fineness | - | 2.94 |
| Maximum Size Nominal (TMN) | 3/4" | - |

Submitted on January 07, 2022.
Published on January 28, 2022.
Miguel Angel Baltazar-Zamora, Universidad Veracruzana, México.
(e-mail: mbaltazar@uv.mx)
Laura Landa-Ruiz, Universidad Veracruzana, México.
(e-mail: lalanda@uv.mx)
Aldo Emelio Landa-Gómez, Universidad Veracruzana, México.
(e-mail: aldlanda@uv.mx)
Griselda Santiago-Hurtado, Universidad Autónoma de Coahuila, México.
(e-mail: grey.shg@gmail.com)

Victor Moreno-Landeros, Universidad Autónoma de Coahuila, México.
(e-mail: vnmorlan@gmail.com)
Ce Tochiti Méndez, Universidad Veracruzana, México.
(e-mail: cmendez uv.mx)
Víctor Fernandez Rosales, Universidad Veracruzana, México.
(e-mail: vifernandez@uv.mx)
René Croche Belín, Universidad Veracruzana, México.
(e-mail: rcroche@uv.mx)

DOI: http://dx.doi.org/10.24018/ejers.2022.7.1.2716
Vol 7 | Issue 1 | January 2022 | 57
This method is based on the quality of the concrete required, taking into account mainly the resistance to strength compression (Fc), the settlement (workability or consistency), and in addition to the characterization of the physical properties of the aggregates (sand and gravel) to be used, knowing these parameters it is possible to perform the necessary concrete dosage, which determines the quantity of materials (cement, water, gravel and sand). Table I summarizes the physical characteristics of the aggregates, the tests were performed in accordance with the ASTM standards [56]-[59].

Table II summarizes the dosages of the Green Concretes produced. The study mixtures were with relation w / c = 0.65. The reference mixture (REF) with 100% composite portland cement (CPC). Subsequent mixtures were made partial portland cement substitutions from 10% to 30%, these percentages were formed by 50% of each addition used, for example, the second mixture with partial replacement of 10% CPC by SCBA and SF it contains is of 5% Sugar Cane Bagasse Ash and 5% of Silica Fume.

| Materials     | REF   | 10% (05SCBA05FS) | 20% (10SCBA10FS) | 30% (15SCBA15FS) |
|---------------|-------|------------------|------------------|------------------|
| Water         | 205.00| 205.00           | 205.00           | 205.00           |
| Cement        | 315.00| 283.5            | 252.00           | 220.50           |
| Sugar Cane Bagasse Ash | 0.00  | 15.75            | 31.50            | 47.25            |
| Silica Fume   | 0.00  | 15.75            | 31.50            | 47.25            |
| Fine aggregate| 746   | 746              | 746              | 746              |
| Coarse aggregate | 881  | 881              | 881              | 881              |

**B. Method**

1) Characterization of Fresh and Hardened of Green Concrete

In accordance with the ONNCCE and ASTM standards [60]-[63], the tests were carried out to determine the physical and mechanical characteristics of the fresh and hardened concrete. The tests performed were slump, temperature, volumetric mass, and compressive strength (Fc), the results are summarized in Table III.

| TEST          | REF   | 10% (05SCBA05FS) | 20% (10SCBA10FS) | 30% (15SCBA15FS) |
|---------------|-------|------------------|------------------|------------------|
| Slump, cm     | 8     | 7                | 6.5              | 6                |
| Temperature, °C | 25    | 24.5             | 24.0             | 23.5             |
| Density, kg/m³ | 2254  | 2268             | 2273             | 2289             |
| Fc, Kg/cm²    | 337   | 313              | 346              | 358              |

2) Specifications of the test specimens

The following steel bars were embedded in the study specimens: an AISI 1018 steel bar with a 3/8 "diameter, the second 316 stainless steel bar with a 3/8" diameter and a third 304 stainless steel bar with a diameter of 1/16 ". The first two bars were used as working electrodes (WE) for the evaluation of the corrosion behavior (monitoring of Ec and Icorr) as indicated in the literature [64], the two bars delimit an area of exposure as shown in Fig. 1. A 304 stainless steel rod was used as the auxiliary electrode.

![Fig. 1. Characteristics of bars embedded in Green Concrete.](image)

3) Nomenclature of the specimens

For the identification of laboratory tests and steels for electrochemical evaluation, the nomenclature presented in Table IV is established. It is mainly based on the Green Concrete mixtures, the exposure medium and the steels embedded in the concrete.

| REF (100% CPC)                  | 10% (05SCBA05FS) | 20% (10SCBA10FS) | 30% (15SCBA15FS) |
|--------------------------------|------------------|------------------|------------------|
| REF-1-8 05SCBA05FS-1-8          | 10SCBA10FS-1-8   | 15SCBA15FS-1-8   |
| REF-1-6 05SCBA05FS-1-6          | 10SCBA10FS-1-6   | 15SCBA15FS-1-6   |
| REF-2-8 05SCBA05FS-2-8          | 10SCBA10FS-2-8   | 15SCBA15FS-2-8   |
| REF-2-6 05SCBA05FS-2-6          | 10SCBA10FS-2-6   | 15SCBA15FS-2-6   |

- **REF** = Concrete (100% CPC)
- **05SCBA05FS** = Concrete with 10% of SCBA-SF.
- **10SCBA10FS** = Concrete with 20% of SCBA-SF.
- **15SCBA15FS** = Concrete with 30% of SCBA-SF.
- **1** = Water (Control environment).
- **2** = Seawater (Aggressive environment).
- **6** = AISI 316 Stainless Steel.
- **8** = AISI 1018 Carbon Steel.

4) Specimens exposed to seawater (Electrochemical cell).

For the evaluation of the electrochemical behaviour of the steels embedded in the Green Concrete, concrete cubes were made (15×15×15 cm). The electrochemical cell was manufactured in accordance with what is established in ASTM G59 [65] to be able to use linear polarization resistance electrochemical (LPR). Corrosion current density (Icorr) was estimated from resistance to charge transference (Rct) using:

\[
\text{Corrosion Current Density (I}_{\text{corr}}) = \frac{B}{\text{Rct}} \left(\mu\text{A/cm}^2\right)
\]

where B is the Stern-Geary constant (B = 26 mV for uniform corrosion) [67].

DOI: http://dx.doi.org/10.24018/ejers.2022.7.1.2716
This monitoring was conducted weekly with the concrete cubes immersed in Water as Control environment and Seawater as Aggressive environment.

![Study specimens exposed to seawater.](image)

**Fig. 2.** Study specimens exposed to seawater.

## III. RESULTS AND DISCUSSION

### A. Corrosion Potential ($E_{cor}$)

Table V shows the values obtained according to the ASTM C876-15 [68], to interpret the results of the corrosion potential of each of the test specimens, adding a rank according to the literature [69].

**TABLE V: CORROSION POTENTIAL IN REINFORCED CONCRETE ($E_{cor}$).**

| Corrosion potentials mV vs Cu/CuSO$_4$ |  |
|---------------------------------------|--|
| $< -500$                              | Severe corrosion |
| $-350$ to $-200$                      | 90% Probability of Corrosion |
| $> -200$                              | 10% Probability of Corrosion |

In Fig. 3, we can observe the behavior of the corrosion potential of AISI 316 embedded in the Green Concretes exposed to a control environment (H$_2$O), in the stage of curing the stainless steels present $E_{cor}$ values in a range of -40 to -180 mV. Then there is a trend with a decrease in $E_{cor}$ values, which we can observe from day 28 to 63. Subsequently, the $E_{cor}$ values are maintained in an area of 10% probability of corrosion, and we can observe a better performance of the stainless steel embedded in the concrete with 20% and 30% substitution of CPC by the combinations SCBA and SF in low volume.

![Graph](image)

**Fig. 3.** $E_{cor}$ of 316 and 1018 steel in concrete exposed to control environment.

The AISI 1018, have a greater variability in the corrosion potentials values ($E_{cor}$), this showed more negative $E_{cor}$ values in the stage of curing (until 28 day), with $E_{cor}$ values in a range of -190 to -345 mV. The results after 28 days are in a range of -105 mV to -230 mV, the mixture that presents a best behaviour with $E_{cor}$ values located in the zone of 10% probability of corrosion, is the substitution of 20% of combination of SCBA and SF (10SCBA10FS-1-8).

Nevertheless, the mixtures with 10 and 30% of combination of SCBA and SF in the last days of monitoring, present $E_{cor}$ values that indicate indicating according to the ASTM C-876 standard corrosion uncertainty.

In Fig. 4, the behaviour of stainless steel 316 exposed to a seawater (Aggressive environment) is presented, a similarity of potentials in the reference mixture and with substitutions in the curing stage is observed. During the exposure time we can observe that the mixtures are maintained in an area of 10% probability of corrosion, the ranges are of the order of -160 mV and -20 mV. The stainless steels that present a greater positive tendency are those that are found within the 15SCBA15FS and 10SCBA10FS mixtures.

![Graph](image)

**Fig. 4.** $E_{cor}$ of 316 and 1018 steel in concrete exposed to a marine environment.

In the case of AISI 1018, there is a trend of more negative $E_{cor}$ results compared with AISI 316, the AISI 1018 embedded in 05SCBA05FS and REF-2-8 concretes present more negative $E_{cor}$ values, in a range of -240 mV to -430 mV. The opposite case of the 10SCBA10FS and 15SCBA15FS mixtures at the beginning of the evaluation presented more positive $E_{cor}$ results and from day 63 they tended to an area of greater negativity to reach an area of 90% probability of corrosion.

### A. Corrosion Current Density ($I_{cor}$)

**TABLE VI: LEVEL OF CORROSION ACCORDING TO $I_{cor}$**

| Corrosion rate ($I_{cor}$) µA / cm$^2$ | Level of Corrosion |
|---------------------------------------|-------------------|
| $<0.1$                                | Despicable |
| $0.1$ to $0.5$                        | Moderate |
| $0.5$ to $1$                          | High |
| $>1$                                  | Very high |

The results of the Corrosion Current Density ($I_{cor}$), were interpreted according to the criteria of the Red Durar Manual (70), see Table VI.

In Fig. 5 present of the results of $I_{cor}$ of all specimens’ study in a period of 180 days of exposure in a control medium (H$_2$O). The 316 stainless steel has an excellent anti-corrosion behavior with values that are in a negligible area below 0.1 µA/cm$^2$. In the case of AISI 1018 steels embedded in a reference concrete and in a 10% substitution, they show an activation from the beginning of the evaluation period oscillating between a high and moderate level of corrosion.

![Graph](image)

**Fig. 5.** $I_{cor}$ of all specimens’ study in a period of 180 days of exposure in a control medium (H$_2$O).
The AISI 1018 steels that are found in the mixtures with 20% and 30% substitutions (10SCBA10FS and 15SCBA15FS) present an activation in the first 14 days appearing at the high and moderate level of corrosion level and later reach at the age of 63 days a passivity when positioning in a zone of negligible corrosion level. According to the above we can see a benefit to add SCBA and FS in the concrete conventional.

In Fig. 6, the $I_{corr}$ results of steels embedded in Green Concrete exposed to a seawater (Aggressive environment) are presented. The specimens with AISI 316 show an excellent behavior when kept in an area of negligible corrosion level, the best behavior is contributed to the 15SCBA15FS mixture when obtaining values of 0.11 to 0.01 μA/cm².

The specimens with AISI 1018 presents a greater value of $I_{corr}$ from the beginning of the evaluation to the end. The specimen made with the reference concrete (100% CPC) is maintained in a zone of high corrosion level all time. However, the $I_{corr}$ results of the specimens of the Green Concretes made with 10 and 20% substitutions of SCBA and FS (5SCBA5FS and 10SCBA10FS) from the day 35 they have a tendency to a zone of moderate corrosion level. The best performance is attributed to the Green Concrete made with a 30% substitution (15SCBA15FS) present the AISI 1018 steel embedded activation in the first 14 days of exposure, later passing to an area of corrosion level moderate until day 49 and subsequently remained in a zone of negligible corrosion level to obtain 0.92 to 0.06 μA/cm².

IV. CONCLUSIONS

The specimens with AISI 316 embedded in Green Concrete made with 30% (15% of Suggar Cane Bagasse Ash and 15% of Silica Fume) showed the better behavior or corrosion resistance after the 180 of exposition in Seawater (Aggressive environment), with values of $I_{corr}$ below 0.10 μA/cm².

The specimens with AISI 1018 steel embedded in the Green Concrete, made with 30% (15% of Suggar Cane Bagasse Ash and 15% of Silica Fume), presents a very acceptable behavior; with a moderate corrosion level until day 49, for to present values of $I_{corr}$ of 0.92 to 0.06 μA/cm² to the end the monitoring due to the denser concrete matrix of Green Concrete.

The best percentage of substitution in Green Concretes was 30% (15% of Suggar Cane Bagasse Ash and 15% of Silica Fume), presenting the best performance against corrosion when using AISI 316 stainless steel when exposed to very aggressive media such as seawater.

The results show that Green Concretes can be used to build Civil Infrastructure in marine environments, presenting great resistance against corrosion by seawater as well as contributing to sustainability due to the use of agro-industrial and industrial waste that the least in Mexico is not used in the proportions and combinations presented in this research.

ACKNOWLEDGMENT

MA Baltazar-Zamora et al., thank PRODEP for the support granted by the SEP, the Academicians UV-CA-458 “Sustainability and Durability of Materials for Civil Infrastructure” under the Call 2018 for Strengthening Academic Bodies with IDCA 28593. Thanks for the technical support to Brenda Paola Baltazar García.

REFERENCES

[1] G. Cosoli, A. Mobili, N. Giulietti, P. Chiarionti, G. Pandarese, F. Tuttarelli, T. Bellezze, N. Mikanoce, G.M. Revel, Performance of concretes manufactured with newly developed low-clinker cements exposed to water and chlorides: Characterization by means of electrical impedance measurements. Construction and Building Materials. 2020;271:121546.

[2] M.A. Baltazar-Zamora, J.M. Mendoza-Rangel, R. Croche, C. Gaona-Tiburcio, C. Hernández, L. López, F. Olguín, F. Almeraya-Calderón. Corrosion Behavior of Galvanized Steel Embedded in Concrete Exposed to Soil Type MH Contaminated with Chlorides. Frontiers in Materials. 2019;6:1-12.

[3] C. Pan, X. Li, J. Mao. The effect of a corrosion inhibitor on the rehabilitation of reinforced concrete containing sea sand and seawater. Materials. 2020;13:1480.

[4] G. Santiago-Hurtado et al, Electrochemical Evaluation of a Stainless Steel as Reinforcement in Sustainable Concrete Exposed to Chlorides. International Journal of Electrochemical Science. 2016;11(4):2994-3006.

[5] M. Ormellese, M. Berra, F. Bolzoni, T. Pastore. Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures. Cement and Concrete Research. 2006;36(3):536–547.

[6] V. Volpi-León, L.D. López-León, J. Hernández-Avila, M.A. Baltazar-Zamora, F.I. Olguín-Coca, A.L. López-León. Corrosion study in reinforced concrete made with mine waste as mineral additive. International Journal of Electrochemical Science. 2017;12(1):22-31.

[7] W. Raczkiewicz, A. Wójcicki. Temperature Impact on the Assessment of Reinforcement Corrosion Risk in Concrete by Galvanostatic Pulse Method. Applied Sciences. 2020:10:1089.

[8] M.A. Baltazar-Zamora, S. Márquez-Montero, L. Landa-Ruiz, R. Croche, O. López-Yza. Effect of the type of curing on the corrosion
behavior of concrete exposed to urban and marine environment. *European Journal of Engineering Research and Science.* 2020;5(1):91-95.

9. R. E. Melchers, C.Q. Li. Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments. *Cement and Concrete Research.* 2009;39(11):1068–1077.

10. O. Troconis de Rincón et al. Reinforced Concrete Durability in Marine Environments DURACON Project: Long-Term Exposure. *Corrosion.* 2016;72(6):824-833.

11. S.D. Cramer, B.S. Covino, S.J. Bullard, G.R. Holcomb, J.H. Russell, F.J. Nelson, H.M. Taylor, S. M. Soltesz. Corrosion prevention and remediation strategies for reinforced concrete coastal bridge. *Cement and Concrete Composites.* 2002;24(1):101–117.

12. L. Landa-Ruiz, H. Ariza-Figueroa, G. Santiago-Hurtado, V. Moreno-Landeros, L. Pérez Meraz, R. Villegas-Apaez, S. Márquez-Montero, M. Roche, M.A. Baltazar-Zamora. Evaluation of the Behavior of The Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. *European Journal of Engineering Research and Science.* 2020;5(11):1353-1356.

13. R. B. Figueira. Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: A review. *Applied Sciences.* 2017;7:1157.

14. M.A. Baltazar-Zamora, L. Landa-Ruiz, Y. Rivera, R. Roche. Electrochemical Evaluation of Galvanized Steel and AISI 1018 as Reinforcement in a Soil Type MH. *European Journal of Engineering Research and Science.* 2020;5(3):250-263.

15. V. Farhangi, M. Karakouzian. Effect of fiber reinforced polymer tubes filled with recycled materials and concrete on structural capacity of pile foundations. *Applied Sciences.* 2020;10:1554.

16. L. Landa-Ruiz et al. Evaluation of the Influence of the Level of Corrosion of the Reinforcing Steel in the Moment-Curvature Diagrams of Rectangular Concrete Columns. *European Journal of Engineering and Technology Research.* 2021;6(3):139-145.

17. W. Rachziewicz. Use of polypropylene fibres to increase the resistance of reinforcement to chloride corrosion in concrete. *Science and Engineering of Composite Materials.* 2021;28(1):555-567.

18. A. Landa-Gutierrez. Corrosion Behavior of 304 and 316 Stainless Steel as Reinforcement in Sustainable Concrete Based on Sugar Cane Bagasse Ash Exposed to Na2SO4. *ECS Transactions.* 2018;84(1):179-188.

19. W. Rachziewicz, P.G. Kossakovski. Electrochemical diagnostics of sprayed fiber-reinforced concrete corrosion. *Applied Sciences.* 2019; 9:3763.

20. A. Landa-Gómez et al. Correlation of Compression Resistance and Rupture Module of a Concrete of Ratio w/c=0.50 with the Corrosion Potential, Electrical Resistivity and Ultrasonic Pulse Speed. *ECS Transactions.* 2018;84(1):217-227.

21. G.P. Millán Ramirez et al. Deterioration and Protection of Concrete Elements Embedded in Contaminated Soil: A Review. *Materials.* 2021;14:3253.

22. G. Cosoli, A. Mobili, P. Tittarelli, G.M. Revel, P. Chiariotti. Electrical Resistivity and Electrical Impedance Measurement in Mortar and Concrete Elements: A Systematic Review. *Applied Sciences.* 2020;10:9152.

23. W. Rachziewicz et al. Influence of the Type of Cement and the Addition of an Air-Entraining Agent on the Effectiveness of Concrete Cover in the Protection of Reinforcement against Corrosion. *Materials.* 2021;14:4657.

24. M.T. Liang, J.J. Lan. Reliability analysis for the existing reinforced concrete pile corrosion of bridge structure. *Cement and Concrete Research.* 2005;35(3):540–550.

25. L. Landa-Ruiz, S. Márquez-Montero, G. Santiago-Hurtado, V. Moreno-Landeros, J.M. Mendoza-Rangel, and M.A. Baltazar-Zamora. Effect of the Addition of Sugar Cane Bagasse Ash on the Compaction Properties of a Granular Material Type Hydraulic Base. *European Journal of Engineering and Technology Research.* 2021;6(1):76–79.

26. O. Ojeda-Farias, J.M. Mendoza-Rangel, M.A. Baltazar-Zamora. Influence of the bagasse ash inclusion on compacting, CBR and unconfined compressive strength of a subgrade granular material. *Revista ALCONPAT.* 2018;8(2):194-208.

27. H.A.F. Dehwar, M. Maslehiuddin, S.A. Austin. Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concrete. *Cement and Concrete Composites.* 2002;24(1):17–25.

28. M.A. Baltazar-Zamora et al. Efficiency of Galvanized Steel Embedded in Concrete Previously Contaminated with 2, 3 and 4% of NaCl. *International Journal of Electrochemical Science.* 2012;7(4):2997-3007.
[50] L. Landa-Ruiz et al. Physical, Mechanical and Durability Properties of Ecofriendly Ternary Concrete Made with Sugar Cane Bagasse Ash and Silica Fume. *Crystals.* 2021;11:1012.

[51] L. Landa-Ruiz et al. Evaluation of the Behavior of the Physical and Mechanical Properties of Green Concrete Exposed to Magnesium Sulfate. *Prime Archives in Material Science.* 2021;3:1-12.

[52] E. Ariz, M.W. Clark, N. Lake. Sugar cane bagasse ash from a high-efficiency co-generation boiler as filler in concrete. *Construction and Building Materials.* 2017;151:692–703.

[53] R.K. Patra, B.B. Mukharjee. Influence of incorporation of granulated blast furnace slag as replacement of fine aggregate on properties of concrete. *J. Clean. Prod.* 2017;165:468–476.

[54] ACI. Provision of mixtures, normal concrete, heavy and massive ACI 211.1. p. 29. Ed. IMCYC, Mexico (2004).

[55] ASTM C29 / C29M–07 – Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate; ASTM International, West Conshohocken, PA, 2007, www.astm.org.

[56] ASTM C127–15 – Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org.

[57] ASTM C128–15 – Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM International, West Conshohocken, PA, 2015, www.astm.org.

[58] ASTM C136 / C136M–14 – Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; ASTM International, West Conshohocken, PA, 2014, www.astm.org.

[59] NMX-C-156-ONNCCCE-2010: Determinación del revenimiento en el concreto fresco. ONNCCE S.C., México, (2010).

[60] ASTM C 1064/C1064M - 08 Standard, (2008). Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete. ASTM International, West Conshohocken, PA, 2008, www.astm.org.

[61] NMX-C-162-ONNCCCE-2014: Determinación de la masa unitaria, cálculo del rendimiento y contenido de aire del concreto fresco por el método gravimétrico., ONNCCE S.C., México, (2014).

[62] NMX-C-083-ONNCCCE-2014: Determinación de la resistencia a la compresión de especímenes – Método de prueba, ONNCCCE S.C., México, (2014).

[63] G. Santiago-Hurtado, M.A. Baltazar-Zamora, A. Galindo D, J.A. Cabral M, F.H. Estupiñán L, P. Zambrano Robledo, C. Gaona-Tiburcio. Anticorrosive Efficiency of Primer Applied in Carbon Steel AISI 1018 as Reinforcement in a Soil Type MH. *International Journal of Electrochemical Science.* 2013;8(6):8490-8501.

[64] ASTM G 59-97 (2014) – Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA, 2014, www.astm.org.

[65] M. Criado, D.M. Bastidas, S. Fajardo, A. Fernández-Jiménez, J.M. Bastidas. Corrosion behaviour of a new low-nickel stainless steel embedded in activated fly ash mortars. *Cement and Concrete Composites.* 2011;33(6):644-652.

[66] S. Feliz, J. A. González, and C. Andrade, Techniques to Assess the Corrosion Activity of Steel Reinforced Concrete Structures, ASTM STP 1276. ASTM, 1996.

[67] ASTM C 876-15, Standard Test Method for Corrosion potentials of uncoated reinforcing steel in concrete, ASTM (2015).

[68] H.W. Song, V. Saraswathy. Corrosion Monitoring of Reinforced Concrete Structures – A Review, *International Journal of Electrochemical Science.* 2007;2(1):1-28.

[69] O. Troconis De Rincón et al. Manual de Inspección, Evaluación y Diagnóstico de Corrosión en Estructuras de Hormigón Armado, p. 134. Red DURAR. CYTED. Venezuela (1997).