Jaynes-Cummings model under monochromatic driving

Leonardo Ermann,1,2 Gabriel G. Carlo,2 Alexei D. Chepelianskii,3 and Dima L. Shepelyansky4
1Departamento de Física Teórica, GTyA, Comisión Nacional de Energía Atómica. Av. del Libertador 8250, 1429 Buenos Aires, Argentina
2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
3LPS, Université Paris-Sud, CNRS, UMR 8502, Orsay F-91405, France
4Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
(Dated: March 21, 2020)

We study analytically and numerically the properties of Jaynes-Cummings model under monochromatic driving. The analytical results allow to understand the regime of two branches of multi-photon excitation in the case of close resonance between resonator and driven frequencies. The rotating wave approximation allows to reduce the description of original driven model to an effective Jaynes-Cummings model with strong coupling between photons and qubit. The analytical results are in a good agreement with the numerical ones even if there are certain deviations between the theory and numerics in the close vicinity of the resonance. We argue that the rich properties of driven Jaynes-Cummings model represent a new area for experimental investigations with superconducting qubits and other systems.

PACS numbers:

I. INTRODUCTION

The Jaynes-Cummings model (JCM) [1] is the cornerstone system of quantum optics describing interactions of resonator photons with an atom, considered in a two-level approximation. The usual experimental conditions correspond to a weak coupling constant between photons and atom. In this regime the quantum evolution of the system is integrable demonstrating revival energy exchange between photons and atom [1–4]. Such revival behavior had been first observed in experiments with Rydberg atoms inside a superconducting cavity [5]. The overview of applications of JCM for various physical systems is given in [6–7].

With the appearance of long living superconducting qubits [8] the coupling of such a qubit (or an artificial two-level atom) to microwave photons of cavity quantum electrodynamics (QED resonator or oscillator) became an active field of experimental research [9]. Thus single artificial-atom lasing [10] and a nonlinearity of QED system [11] have been realized and tested experimentally. In the frame of QED coupling between qubit and resonator it is very natural to consider the case of resonator pumping by a monochromatic microwave field (see e.g. [10] [12] [13]). Thus the problem of monochromatically driven resonator with photons coupled to a qubit represents an interesting fundamental extension of JCM. This system can be viewed as a quantum monochromatically driven oscillator coupled to a qubit (or two-level atom or spin-1/2).

The first studies of JCM under monochromatic driving had been performed for the case of a dissipative quantum oscillator studied numerically in the frame of quantum trajectories [14]. It was shown that under certain conditions the qubit is synchronized with the phase of monochromatic driving providing an example of quantum synchronization in this, on a first glance, rather simple system. The unusual regime of bistability induced by quantum tunneling has been reported which still requires a better understanding [14] [15]. It was shown that many photons can be excited even at a relatively weak driving amplitude. It was also shown that two different qubits can be synchronized and entangled by the driving under certain conditions [16]. Thus the driven JCM represents a very interesting example of a fundamental problem of quantum synchronization [17]. From the discovery of synchronization by Christian Huygens in 1665 [18] this fundamental nonlinear phenomenon has been observed and studied in a variety of real systems described by the classical dynamics [19]. At present the development of quantum technologies and especially superconducting qubits led to a significant growth of interest to the phenomenon of quantum synchronization (see e.g. [20] [22] and Refs. there in). Thus the interest to the JCM under driving is growing with appearance of new experiments (see e.g. [23] [25]). The theoretical investigations by different groups are also in progress [14] [15] [26] [27]. With the aim of deeper understanding of the properties of driven JCM we study here the nondissipative case when the system evolution is described by the quantum time-dependent Hamiltonian and the related Schrodinger equation. We present here the comparative analysis of analytical and numerical treatment of this system.

The paper is organized as follows: in Section II we give the system description, the analytical analysis is described in Section III, the numerical results are presented in Section IV, the time evolution of coherent states is described in Section V, discussion of results and conclusion are given in Section VI. Appendix provides additional complementary material.
II. SYSTEM DESCRIPTION

The monochromatically driven JCM is described by the Hamiltonian already considered in [14]:

\[
\hat{H} = \omega_0 \hat{n} + \frac{\Omega}{2} \hat{\sigma}_z + g \omega_0 (\hat{a} \hat{a}^\dagger + \hat{a}^\dagger \hat{a}) \cos (\omega t) \hat{\sigma}_z + f \cos (\omega t) (\hat{a} + \hat{a}^\dagger)
\] (1)

where \(\hat{\sigma}_z\) are the usual Pauli operators describing a qubit, \(g\) is a dimensionless coupling constant, the driving force amplitude and frequency are \(f\) and \(\omega\), the oscillator frequency is \(\omega_0\) and \(\Omega\) is the qubit energy spacing. The operators \(\hat{a}, \hat{a}^\dagger\) describe the quantum oscillator with number of photons being \(\hat{n} = \hat{a}^\dagger \hat{a}\). Here and in the following we take \(\hbar = 1\).

In the rotating wave approximation (RWA) the Hamiltonian (1) takes the form:

\[
\hat{H} = \omega_0 \hat{n} + \frac{\Omega}{2} \hat{\sigma}_z + g \omega_0 (\hat{a} \hat{a}^\dagger + \hat{a}^\dagger \hat{a}) \cos \left(\frac{\omega t}{\Delta}\right) + \frac{f}{2} (\hat{a} e^{i\omega t} + \hat{a}^\dagger e^{-i\omega t})
\] (2)

The Floquet theory can be applied to the time periodic Hamiltonians (1) and (2) that gives the Floquet eigenstates (|Ψ\(_j\)(t)\rangle) and Floquet modes (|Φ\(_j\)(t)\rangle)

\[
|\Psi_j(t)\rangle = \exp (-i \epsilon_j t / \hbar) |\Phi_j(t)\rangle
\] (3)

where \(\epsilon_j\) are quasienergy levels defined in the interval \([0, 2\pi / T]\) and \(|\Phi_j(t)\rangle = |\Phi_j(t + T)\rangle\) are periodic in time.

In the rotating frame the time dependence can be eliminated. Thus a state |Ψ\rangle, evolving via the Schrödinger equation \(i \hbar \partial_t \Psi = \hat{H} \Psi\), can be transformed to \(|\tilde{\Psi}\rangle = U^\dagger |\Psi\rangle = \exp \left(i \hat{A} t / \hbar\right)\) where \(\hat{A}\) is a unitary operator generated by a Hermitian operator \(\hat{A} = \omega (\hat{a}^\dagger \hat{\sigma}_z + \hat{\sigma}_+ \hat{\sigma}_-\). Then the system in the rotating frame of RWA is described by the transformed stationary Hamiltonian

\[
\hat{H}_r = \Delta_0 \hat{n} + \frac{\Delta_\Theta}{2} \hat{\sigma}_z + g \omega_0 (\hat{a} \hat{a}^\dagger + \hat{a}^\dagger \hat{a}) \cos \left(\frac{\omega t}{\Delta}\right) + \frac{f}{2} (\hat{a} + \hat{a}^\dagger)
\] (4)

with \(\Delta_0 = \omega_0 - \omega\) and \(\Delta_\Theta = \Omega - \omega\). In the following we mainly discuss a typical set of system parameters being \(\omega_0 = 1, \Omega = 1.2, g = 0.04\) and \(f = \lambda \sqrt{\pi d} = 0.02 \sqrt{20} = 5^{-\frac{1}{2}} \approx 0.8094\) (this corresponds to the main set of parameters \(\lambda = 0.02\) and \(n_p = 20\) discussed in [14] for the dissipative case with the dissipative constant \(\lambda\) for oscillator). We check also other parameter sets ensuring that the main set corresponds to a typical situation.

The eigenstates \(\psi_j\) of RWA Hamiltonian (4) are determined by the equation \(\hat{H}_r \psi_j(n, \sigma_z) = E_j \psi_j(n, \sigma_z)\). We order the index \(j\) in such a way that the energy eigenvalues \(E_j\) are monotonically growing with \(j\).

The numerical computation of eigenstates \(\psi_j\) is done by a direct matrix diagonalization with a truncated basis of oscillator eigenstates with \(0 \leq n < N - 1\). We checked that the value of \(N = 700\) is sufficient to have stable eigenstates with \(j < 100\) so thus the following numerical results are obtained with this \(N\) value. Thus, with qubit, in total we have \(2N = 1400\) states. We also use the same \(N\) to obtain the time evolution of initial Hamiltonian (1).

The time evolution is obtained by the Trotter decomposition with the time step \(\Delta = 0.005\) (the results are not sensitive to further decrease of the time step).

We characterize the eigenstates of \(H\) and \(H_r\) by their participation ratio (PR) defined as \(\xi_j = \sum_{n, \sigma_z} |\psi_j(n, \sigma_z)|^2 / \sum_{n, \sigma_z} |\psi_j(n, \sigma_z)|^4\) which gives an effective number of decoupled states (at \(g = 0\)) contributing to a given eigenstate. For a given eigenstate we also compute the average photon number \(\langle \hat{n} \rangle = \langle \hat{a}^\dagger \hat{a} \rangle\) and the average qubit (spin) polarization \(\langle \sigma_z \rangle\).

The dependencies of \(\xi_j < n >, < \sigma_z \rangle\), for eigenstates \(\psi_j\) of Hamiltonian (4), on \(j\) and rescaled detuning frequency \(\Delta_\Theta / \omega\) are shown in Figs. 1 and 2 respectively. These results show that in a vicinity of resonance many oscillator states are populated that is rather natural. The polarization dependence is more tricky being close to zero in direct resonance vicinity and becoming mainly negative with detuning increase and later followed by a polarization change from positive to negative. We will return to the discussion of these properties in next Sections.

FIG. 1: Participation ratio \(\xi\) of eigenstates \(\psi_j\) of RWA Hamiltonian (4) as a function of rescaled resonance detuning \(\Delta_\Theta / \omega\) and eigenstate index \(j\) which counts eigenenergies in their monotonically increasing order; here \(f = 5^{-\frac{1}{2}} \approx 0.8094\), \(g = 0.04\) and \(g = 0.08\) in left (a) and right (b) panels respectively; \(xi\) values are shown by color with the corresponding color bar.

FIG. 2: Average oscillator number \(< n >\) for eigenstates of Hamiltonian (4) shown by color for the parameters of Fig. 1 with \(g = 0.04\) and \(g = 0.08\) in left (a) and right (b) panels respectively.
FIG. 3: Average spin $\langle \sigma_z \rangle$ for eigenstates of Hamiltonian (4) shown by color for the parameters of Fig. 1 with $g = 0.04$ and $g = 0.08$ in left (a) and right (b) panels respectively.

III. ANALYTICAL RESULTS

For analytical analysis of driven JCM we perform in (4) an additional transformation using the replacement

$$\hat{a} = \hat{b} - \frac{f^2}{2\Delta_0}$$

that gives us a transformed Hamiltonian

$$\hat{H}_{rt} = \Delta_0 \hat{n}_b + \frac{\Delta \Omega}{2} \hat{\sigma}_z + g\omega_0 \left(\hat{b}\hat{\sigma}_+ + \hat{b}^\dagger\hat{\sigma}_- \right) + B_x \hat{\sigma}_x + K.$$ \hspace{1cm} (5)

This shows an appearance of an effective field $B_x = f \omega_0 / (2\Delta_0)$ and a constant term $K = f^2 / (4\Delta_0)$. The interesting feature of the expression (5) is that even for small g values we obtain an effective JCM with a strong effective values of effective coupling constant $g_{eff} = g\omega_0 / \Delta_0 \gg g$ at small resonance detunings $\Delta_0 \ll \omega_0$.

On the other hand, the semiclassical version of Eq. (4) can be written in spin 1/2 basis as

$$H_{sc} = \frac{p^2}{2} + \frac{\Delta_0^2 x^2}{2} + f \sqrt{\Delta_0} x + \left(\frac{1}{2} \Delta_0 \sqrt{\frac{\Delta_0^2 \omega_0^2}{2}} \left(x + \frac{ip}{\omega_0} \right) \right)$$

which can be diagonalized, with the corresponding solution:

$$h = h_0 + f \sqrt{\frac{\Delta_0}{2}} x \pm \sqrt{\frac{g^2 \omega_0^2}{\Delta_0} h_0 + \frac{\Delta_0^2}{4}}$$

$$h_0 = \frac{p^2}{2} + \frac{\Delta_0^2 x^2}{2}.$$ \hspace{1cm} (7)

Here (x, p) are classical coordinate and momentum of oscillator which mass is taken to be unity $m = 1$. The linear term in x in (7) simply gives a shift of oscillator center position.

The above expressions also allow to obtain the semiclassical expression for the average spin polarization being

$$\langle \sigma_z \rangle = \pm \left(1 + 4g^2 \omega_0^2 \langle n \rangle / \Delta_0^2 \right)^{-\frac{1}{2}}.$$ \hspace{1cm} (8)

FIG. 4: Probability distribution $P(n) = \langle n | \psi_j \rangle^2$ (tracing out spin space) of j^{th} eigenstate of (4) ordered by increasing energy $H | \psi_j \rangle = E_j | \psi_j \rangle$. The values of parameters are $g = 0.04$, and $\Delta_0 = \omega_0 - \omega = 0.01, 0.025, 0.05, 0.1$ in panels (a), (b), (c) and (d) respectively. The green dotted curves show the mean value $\langle n \rangle$ of the corresponding eigenstate ψ_j. The color map goes from black at 0 to yellow at maximum value given by 0.14 for (a), 0.3 for (b), 0.45 for (c) and 0.7 for (d).

FIG. 5: Same quantities and parameters as in Fig. 4 but the eigenstates are obtained from the numerical diagonalization of transformed Hamiltonian (5). The color map goes from black at 0 to yellow at maximum value given by 0.25 for (a), 0.45 for (b), 0.8 for (c) and 0.9 for (d).
The semiclasical theoretical expressions (7) gives us the dependence of RWA energy h_0 on unperturbed energy h which we compare with the results of numerical simulations in the next Section. We also compare the theoretical spin polarization (8) with the numerical results.

IV. NUMERICAL RESULTS

The eigenstates of Hamiltonian (4) are obtained by a direct numerical matrix diagonalization with the numerical parameter described above. The eigenstate probability distribution of $|\psi_j\rangle$ is shown in Fig. 4 as a function of oscillator number n and eigenenergy $E=E_j$. We clearly see the presence of two branches corresponding to two spin polarization. The mean values of $\langle n \rangle$ are shown by green dotted curves marking the average dependence $n(E)$ for each branch.

For comparison in Fig. 5 we show the same characteristics as in Fig. 4 but for eigenstates of transformed Hamiltonian (5). We obtain a good agreement between the eigenstates of these two Hamiltonian confirming the validity of the analytical transformation from one to another. At the same time as very small resonance detunnings $\Delta_0 = 0.01$ there are certain differences between these two representations which we attribute to high order corrections in a resonance vicinity.

The comparison between the numerical results obtained from the eigenstates of Hamiltonian (4) and the semiclassical theory of (7) is shown in Fig. 6. It shows a good agreement between the theory and numerical results.

The validity of the semiclassical description (7) is confirmed by the numerical results presented in Fig. 6 showing the dependence $h_0(h)$ for two spin (or qubit) projections. Indeed, there is a good agreement between the numerical results obtained for the Hamiltonian (4).

It is important to compare the numerical results obtained in the RWA of (4) with the those obtained from the Floquet eigenstates of (4). The index j for Floquet eigenstates is defined for increasing value of ξ such a case next order corrections beyond RWA can produce additional frequency shifts providing rescaling of an effecting value of frequency detuning that would notably affect the values of participation ratio ξ of eigenstates.

According to the above argument the agreement between data obtained from (4), (5), (6) should become better with the increase of resonance detuning Δ_0. We check this determining the dependence of average spin polarization $\langle \sigma_z \rangle$ on average quantum number of oscillator $\langle n \rangle$ as it is presented in Fig. 7. The comparison shows that the semiclassical theory (8) well describes the numerical results of RWA from Hamiltonians of (4), (5).
and $g = 0$ tonian (1), (4) and 5) respectively. Parameter values are middle (b) and bottom (c) panels show the cases of Hamiltonian (1), (4) and the time evolution of coupling strength δg related to higher order corrections related to coupling g.

FIG. 8: Average spin polarization as a function of mean oscillator number ($\langle \sigma_z \rangle$ vs. $\langle n \rangle$) for eigenstates of H. Top (a), middle (b) and bottom (c) panels show the cases of Hamiltonian (1), (4) and (5) respectively. Parameter values are $g = 0.04$, $\omega = 1$, $\Omega = 1.2$ and $f = \hbar \sqrt{\delta n}$ with $\lambda = 0.02$ and $n_0 = 20$, with $\Delta_0 = 0.01, 0.025, 0.05, 0.1$ in black, red, green and blue circles respectively. The semiclassical theoretical dependence $\langle \sigma_z \rangle$ curve given by is shown by red dashed curve for $\Delta_0 = 0.025$.

However, there is a notable deviation between the theory and RWA numerical results from the Floquet results. At the same time, the results presented in Appendix Fig. 12 show that the agreement between the Floquet results of (1) and the RWA results of (4) becomes better with an increase of resonance detuning Δ_0 and decrease of coupling strength g. This confirms our argument that the difference between the Floquet and RWA results are related to higher order corrections related to coupling g which play a more significant role in a close vicinity to the resonance.

In Fig. 9 we show the two branch dependence, corresponding to two spin polarizations, of quantities h_0, h described above. h_0 and h of Fig. 9 are computed for Floquet eigenstates $|\Psi_j(t = 0)\rangle$ valued in initial state $t = 0$ as $h_0 = \langle \Psi_j(t = 0)|\hbar \omega a |\Psi_j(t = 0)\rangle$ and $h = \langle \Psi_j(t = 0)|\hat{H}|\Psi_j(t = 0)\rangle$ where \hat{H} is defined in Eq. 4. We also mark with red and green circles there the values of h_0, h obtained for two given Floquet states described in the next Section.

V. HUSIMI FUNCTION EVOLUTION

In this Section we consider the phase space representation of quantum states. The phase space representation of quantum states is done with the Husimi function which gives the Wigner function smoothed on a scale of Planck constant (see e.g. [28, 29]).

In Fig. 9 we present the Husimi functions for spin up and down for a typical Floquet eigenstate with $\lambda = 0.02$ and system parameters given in Fig. 6. The results clearly show that the eigenstate have double contribution of small and large oscillator numbers n with a small circle in top panels and large circle in bottom panels respectively (this doublet structure is present for both spin projections shown in left and right panels). This example shows that all phases of a circle in (q,p) plane are present but the distribution over the phases is inhomogeneous. The two sizes of the circle corresponds to the two semiclassical branches appearing in (2).

The snapshots of time evolution of the Husimi function of an initial coherent state are shown in Fig. 11. At large times the localized coherent state, shown in videos available at [20], spreads over the whole circle corresponding to a given oscillator number that is in agreement with the Floquet eigenstates structure shown in Fig. 10 where the probability is distributed over all circle phases even if the distribution is inhomogeneous. The videos are obtained from the Floquet system (1) and from the RWA Hamiltonian (2). The evolution in both cases is similar but not exactly the same. More details about videos are given in Appendix. The time of such a spreading t_{sp} over the whole circle is rather long with $\omega_{sp}/2\pi \approx 1000$.

We attribute it to the nonlinear energy dispersion correction appearing in driven JCM due to coupling between the spin and oscillator with $\delta \omega = \delta E_{\Omega} \approx \pm g \omega_0 \sqrt{\eta}/\Delta_0$ of certain initial coherent states. The Husimi function for spin up and down for a typical Floquet eigenstate with $\lambda = 0.02$ and system parameters given in Fig. 6. The results clearly show that the eigenstate have double contribution of small and large oscillator numbers n with a small circle in top panels and large circle in bottom panels respectively (this doublet structure is present for both spin projections shown in left and right panels). This example shows that all phases of a circle in (q,p) plane are present but the distribution over the phases is inhomogeneous. The two sizes of the circle corresponds to the two semiclassical branches appearing in (2).
In this work we analyzed the JCM behavior under a monochromatic driving. Our analytical and numerical results show that the system can be effectively reduced to a modified JCM with a strong coupling between photons and qubit. The obtained results allow to understand the process of two branches of excitation of many photons induced by the driving in presence of nonlinear frequency dispersion induced by coupling between photons and qubit. The obtained analytical formula gives a good description of obtained numerical results. However, in a very close vicinity of the resonance between frequencies of oscillator and monochromatic driving there appear certain deviations which we attribute to high order corrections to RWA approach which become important in close resonance vicinity. The obtained results still keep certain open questions on properties on the driven JCM, in particular the question about the physical estimates of long tunneling times between two branches corresponding to up and down qubit polarization, which are also present in the dissipative case [14].

Since the JCM is the fundamental system of quantum optics we hope that the reach properties of driven JCM will attract interest of experimental groups working with superconducting qubits and other systems of quantum optics.

VI. DISCUSSION

In this work we analyzed the JCM behavior under a monochromatic driving. Our analytical and numerical results show that the system can be effectively reduced to a modified JCM with a strong coupling between photons and qubit. The obtained results allow to understand the process of two branches of excitation of many photons induced by the driving in presence of nonlinear frequency dispersion induced by coupling between photons and qubit. The obtained analytical formula gives a good description of obtained numerical results. However, in a very close vicinity of the resonance between frequencies of oscillator and monochromatic driving there appear certain deviations which we attribute to high order corrections to RWA approach which become important in close resonance vicinity. The obtained results still keep certain open questions on properties on the driven JCM, in particular the question about the physical estimates of long tunneling times between two branches corresponding to up and down qubit polarization, which are also present in the dissipative case [14].

Since the JCM is the fundamental system of quantum optics we hope that the reach properties of driven JCM will attract interest of experimental groups working with superconducting qubits and other systems of quantum optics.
Fig. 12: $\langle \sigma_z \rangle$ vs. $\langle n \rangle$ for eigenstates of H with $\Delta_0 = 0.01$ and different values of g. Black and red circles show the cases of Hamiltonian of Eq. 1 and Eq. 4 respectively. Parameter values are $\omega = 1$, $\Omega = 1.2$ and $f = 5 \times 10^{-2}$ with a different value of g in each panel: 0.0025 (a), 0.005 (b), 0.0088 (c), 0.0138 (d), 0.0375 (e) and 0.05 (f).

Fig. 13: $\langle \sigma_z \rangle$ vs. $\langle n \rangle$ for eigenstates of H with $\Delta_0 = 0.025$. Black and red circles show the cases of Hamiltonian of Eq. 1 and Eq. 4 respectively. Parameter values are the same as in Fig. 12 but with $\Delta_0 = 0.025$. Each panel represent a different value of g: 0.0025 (a), 0.005 (b), 0.0088 (c), 0.0138 (d), 0.0375 (e) and 0.05 (f).

Acknowledgments

This work was supported in part by the Programme Investissements d’Avenir ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT (project THETRACOM).

Appendix

Here we present supplementary figures complementing the main text of the paper. Fig. 12 and Fig. 13 show the average spin polarization as a function of the mean oscillator number ($\langle \sigma_z \rangle$ vs. $\langle n \rangle$) for eigenstates of the Hamiltonian of Eq. 1 (black circles) and Eq 4 (red circles) with $\Delta_0 = 0.01$ and $\Delta_0 = 0.025$ respectively. Each panel on both figures represent a different value of g: 0.0025 (a), 0.005 (b), 0.0088 (c), 0.0138 (d), 0.0375 (e) and 0.05 (f).

Videos in [30] present the time evolution of Husimi function for parameters of Fig. 11; videohusimi1.mp4 is obtained from the time evolution given by Floquet system (1) and videohusimi2.mp4 is obtained from the RWA Hamiltonian (2). Initial state is given by a coherent state centered at $(q_0, p_0) = (5, 0)$ with a spin projection in $|0\rangle$. Parameter values are $g = 0.04$, $\omega = 1$, $\omega_0 = 0.975$, $\Omega = 1.2$ and $f = \hbar \lambda \sqrt{n_p}$ with $\lambda = 0.02$ and $n_p = 20$.

[1] E.T. Jaynes, and F.W. Cummings, *Comparison of quantum and semiclassical radiation theories with application to the beam maser*, Proc. IEEE. 51(1), 89 (1963).
[2] J.J. Sanchez-Mondragon, N.B. Narozhny, and J.H. Eberly, *Theory of spontaneous-emission line shape in an ideal cavity*, Phys. Rev. Lett. 51m 550 (1983).
[3] L. Allen and J.H. Eberly, *Optical resonance and two-level atoms*, Dover Publs. Inc., New York (1987).
[4] M.O. Scully, and M.S. Zubairy, *Quantum optics*, (Cambridge University Press, Cambridge, England, 1997).
[5] G. Rempe, H. Walther and N. Klein, *Observation of
quantum collapse and revival in a one-atom maser, Phys. Rev. Lett. 58(4), 353 (1987).
[6] P. Fom-Diaz, L. Lamata, E. Rico, J. Kono, and E. Solano, Ultrastrong coupling regimes of light-matter interaction, Rev. Mod. Phys. 91, 025005 (2019).
[7] X. Guab, A.F. Kockum, A. Miranowicz, Y-x. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718-719, 1 (2017).
[8] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M.H. Devoret, Manipulating the quantum state of an electrical circuit, Science 296, 886 (2002).
[9] G. Wendin, Quantum information processing with superconducting circuits: a review, Rep. Prog. Phys. 80, 106001 (2017).
[10] O. Astafiev, K. Inomata, A.O. Niskanen, T. Yamamoto, Yu.A. Pashkin, Y. Nakamura, and J.S. Tsai, Single artificial-atom lasing, Nature 449, 588 (2007).
[11] J.M. Fink, M. Goppl, M. Baur, R. Bianchetti, P.J. Leek, A. Blais, and A. Wallraff, Climbing the Jaynes-Cummings ladder and observing its \sqrt{n} nonlinearity in a cavity QED system, Nature 454, 315 (2008).
[12] E. Ilichev, N. Onuhanski, A. Izmalkov, Th. Wagner, M. Grajcar, H.-G. Meyer, A.Yu. Smirnov, A. Maassen van den Brink, M.H.S. Amin, and A.M. Zagoskin, Continuous monitoring of Rabi oscillations in a Josephson flux qubit, Phys. Rev. Lett. 91, 097906 (2003).
[13] J. Claudon, F. Balestro, F.W.J. Hekking, and O. Buisson, Coherent oscillations in a superconducting multilevel quantum system, Phys. Rev. Lett. 93, 187003 (2004).
[14] O.V. Zhirov, and D.L. Shepelyansky, Synchronization and bistability of qubit coupled to a driven dissipative oscillator, Phys. Rev. Lett. 100, 014101 (2008).
[15] Th.K. Mavrogordatos, G. Tancredi, M. Elliott, M.J. Petterer, A. Patterson, J. Rahamim, P.J. Leek, E. Ginossar, and M.H. Szymanska, Simultaneous bistability of a qubit and resonator in circuit quantum electrodynamics, Phys. Rev. Lett. 118, 040402 (2017).
[16] O.V. Zhirov, and D.L. Shepelyansky, Quantum synchronization and entanglement of two qubits coupled to a driven dissipative resonator, Phys. Rev. B 80, 014519 (2009).
[17] O.V. Zhirov, and D.L. Shepelyansky, Quantum synchronization, Eur. Phys. J. D 38, 375 (2006).
[18] C. Huygens, Œvres complètes, vol. 15, Swets & Zeitlinger B.V., Amsterdam (1967).
[19] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: a universal concept in nonlinear sciences, Cambridge University Press, Cambridge UK (2001).
[20] S. Walter, A. Nunnenkamp, and C. Bruder, Quantum synchronization of a driven self-sustained oscillator, Phys. Rev. Lett. 112, 094102 (2014).
[21] A. Roulet, and C. Bruder, Synchronizing the smallest possible system, Phys. Rev. Lett. 121, 053601 (2018).
[22] A. Roulet, and C. Bruder, Quantum synchronization and entanglement generation, Phys/ rev. Lett. 121, 063601 (2018).
[23] R. Lescanne, L. Verney, Q. Ficheux, M.H. Devoret, B. Huard, M. Mirrahimi, and Z. Leghtas, Dynamics of an off-resonantly pumped superconducting qubit in a cavity, arXiv:1805.05198[quant-ph] (2018).
[24] I. Pietikainen, J. Tuorila, D.S. Golubev, and G.S. Paraoanu, Photon blockade and the quantum-to-classical transition in the driven-dissipative Josephson pendulum coupled to a resonator, Phys. Rev. A 99, 063828 (2019).
[25] H. Gothe, T. Valenzuela, M. Cristiani, and J. Eschner, Optical bistability and nonlinear dynamics by saturation of cold Yb atoms in a cavity, Phys. Rev. A 99, 013849 (2019).
[26] K. Fischer, S. Sun, D. Lukin, Y. Kelaita, R. Trivedi, and J. Vuckovic, Pulsed coherent drive in the Jaynes-Cummings model, Phys. Rev. A 98, 021802(R) (2018).
[27] C. S. Munoz, A. F. Kockum, A. Miranowicz, and F. Nori, Ultrastrong-coupling effects induced by a single classical drive in Jaynes-Cummings-type systems, arXiv:1910.12875[quant-ph] (2019).
[28] S.-J. Chang and K.-J. Shi, Evolution and exact eigenstates of a resonant quantum system, Phys. Rev. A 34, 7 (1986).
[29] K.M. Frahn, R. Fleckinger and D.L. Shepelyansky, Quantum chaos and random matrix theory for fidelity decay in quantum computations with static imperfections, Eur. Phys. J. D 29, 139 (2004).
[30] See Supplemental Material at http:XXXX that contains videos of time evolution of Husimi function of initial coherent state corresponding to the parameters of Fig. [13]
[31] B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep. 52, 263 (1979).