PAINLEVÉ IV: ROOTS AND ZEROS

P.L. ROBINSON

Abstract. We consider the (real) fourth Painlevé equation in which both parameters vanish, analyzing the square-roots of its solutions and paying special attention to their zeros.

INTRODUCTION

In [2] we offered elementary proofs for fundamental properties of the unique triple-zero solution to the first Painlevé equation. In [3] we treated in a similar fashion all solutions to the second Painlevé equation whose graphs pass through the origin. Here we consider aspects of what is arguably the next case: the fourth Painlevé equation, which was discovered by Gambier. The general form of this equation is

\[
\frac{d^2w}{dz^2} = 1 + \frac{3}{2}w^3 + 4zw^2 + 2(z^2 - \alpha)w + \frac{\beta}{w}
\]

where \(\alpha \) and \(\beta \) are parameters. As is suggested by its form, this equation is properly complex: in fact, each of its solutions is meromorphic in the plane, with simple poles of residue \(\pm 1 \); see [1] and references therein. Note the presence of the dependent variable in denominators: this separates the fourth Painlevé equation from the first and second; of course, it engenders some complications.

In line with the setting of our previous papers, we shall consider the fourth Painlevé equation in purely real terms; moreover, we shall only consider the case in which \(\alpha = 0 \) and \(\beta = 0 \). Accordingly, our version of the fourth Painlevé equation (P IV) is

\[
\dddot{s} = \frac{1}{2s}s^2 + \frac{3}{2}s^3 + 4ts^2 + 2t^2s
\]

to be solved for real \(s \) as a function of real \(t \); our preference here for \(\dddot{s} \) over \(s' \) as notation for the derivative is largely on account of the otherwise awkward \(s'^2 \) or \((s')^2 \) for its square. If the solution \(s \) is strictly positive then its (positive) square-root \(\sqrt{s} \) satisfies a second-order equation that is simpler than P IV in having no first-derivative term and no awkward denominators; in the opposite direction, the squares of nowhere-zero solutions to this simpler equation satisfy P IV. Those circumstances in which solutions to P IV or the simpler equation have (isolated) zeros call for separate handling. All of these matters are discussed under the sections Square-roots (on the differential equations themselves) and Isolated zeros (on the special handling of zeros); in our final section on Remarks we address some related issues without proof.

Square-roots

We begin with some elementary observations regarding our version of the fourth Painlevé equation, which we restate for the record as

\[
\ddot{s} = \frac{1}{2s}s' + \frac{3}{2}s^3 + 4ts^2 + 2t^2s,
\]

where the ratio on the right side is to be understood as a limit when necessary.
Observe that \mathbb{P} may be reformulated in a number of ways. First we may clear the awkward denominator, thus:

$$2s^{\dddot{y}} - \dot{s}^2 = 3s^4 + 8ts^3 + 4t^2s^2.$$

Further, we may factor the right side, thus:

$$2s^{\ddot{y}} - \gamma^2 = s^2(3s + 2t)(s + 2t).$$

Observe also that reversing the sign of the dependent variable leads to the equation

$$\mathbb{P}: \quad 2s^{\ddot{y}} - \gamma^2 = \frac{1}{2}s^2 + 3s^3 - 4ts^2 + 2t^2s;$$

of course, sign-reversal in \mathbb{P} leads to \mathbb{P} likewise. Incidentally, passage between \mathbb{P} and \mathbb{P} may also be effected by reversal of the independent variable. Of course, \mathbb{P} admits reformulations akin to those for \mathbb{P} itself.

Let us agree to write \mathbb{P} for the set comprising all solutions to the Painlevé equation \mathbb{P}; when extra clarity is called for, we may write $\mathbb{P}(I)$ for the set comprising all solutions to \mathbb{P} on the open interval (more generally, open set) $I \subseteq \mathbb{R}$. Similarly, we write \mathbb{P} for the set of all solutions to \mathbb{P} (on some interval, which we may indicate for clarity). We observed above that multiplication by -1 yields a bijection $\mathbb{P} \to \mathbb{P}: s \mapsto -s$;

also, that reversal of the independent variable yields a bijection from $\mathbb{P}(I)$ to $\mathbb{P}(-I)$.

Now, let $s \in \mathbb{P}$ be a strictly positive solution to \mathbb{P} and write $\sigma := \sqrt{s} = s^{1/2}$ for its positive square-root. Certainly, σ is twice-differentiable. Further, from $s = \sigma^2$ it follows that

$$\dot{s} = 2\sigma \dot{\sigma}$$

so that

$$\sigma^2 = \frac{s^2}{4\sigma^2} = \frac{s^2}{4s}$$

and

$$\ddot{s} = 2\sigma^2 + 2\dot{\sigma} = \frac{s^2}{2s} + 2\sigma \ddot{\sigma}$$

so that

$$\ddot{s} - \frac{s^2}{2s} = 2\sigma \ddot{\sigma}.$$

All of this requires only that the twice-differentiable function s be strictly positive. Recalling that s is a solution to \mathbb{P} we deduce that

$$2\sigma \dddot{s} = \dddot{s} - \frac{s^2}{2s} = \frac{3}{2}s^3 + 4ts^2 + 2t^2s = \frac{1}{2}s(3s + 2t)(s + 2t)$$

or

$$\dddot{s} = \frac{1}{4}\sigma(3\sigma^2 + 2t)(\sigma^2 + 2t).$$

This finding prompts us to formalize the auxiliary differential equation

$$\mathbb{P}^{1/2}: \quad 4\dddot{\sigma} = \sigma(3\sigma^2 + 2t)(\sigma^2 + 2t)$$

alongside its companion

$$\mathbb{P}^{1/2}: \quad 4\dddot{\sigma} = \sigma(3\sigma^2 - 2t)(\sigma^2 - 2t).$$

It also prompts us to introduce $\mathbb{P}^{1/2}$ and $\mathbb{P}^{1/2}$ for the corresponding spaces of solutions. Notice that the map $\sigma \mapsto -\sigma$ preserves the spaces $\mathbb{P}^{1/2}$ and $\mathbb{P}^{1/2}$ while the map $t \mapsto -t$ interchanges them.

The following result was established in the motivating lead-up to equation $\mathbb{P}^{1/2}$.
The hypotheses ensure that not only

\[\text{Proof.} \]

\[\text{Theorem 4.} \]

with a zero would vanish throughout its interval of definition.

\[\sigma \text{ now ensures that} \]

\[\text{vanishing of} \]

\[s \]

\[\text{Painlevé uniqueness theorem. On the other hand,} \]

\[q \text{ automatically} \]

\[\text{We wish to explore the extendibility of Theorem 1 and Theorem 2 to this context.} \]

\[\text{rational but has} \]

\[s \]

\[\text{between a polynomial; consequently, the initial value problem for} \]

\[\text{a} \]

\[\text{for initial data involving a zero of} \]

\[s \]

\[\text{Theorem 3.} \]

\[\text{Theorem 2.} \]

\[\text{or} \]

\[s \]

\[\text{We shall address such situations carefully in the next section; naturally,} \]

\[\text{we may ignore the identically zero function.} \]

\[\text{Isolated zeros} \]

As announced, we here consider situations in which \(s \in \mathbb{P} \) or \(\sigma \in \mathbb{P}^{1/2} \) has a zero. Specifically, we shall assume that such a function has an isolated zero at the point \(a \) in the open interval \(I \): more specifically, we shall assume that the function vanishes at \(a \) but at no other point of \(I \). We wish to explore the extendibility of Theorem 1 and Theorem 2 to this context.

Observe at once from \([\mathbb{P}] \) (say in a reformulation) that if \(s \in \mathbb{P} \) satisfies \(s(a) = 0 \) then automatically \(\dot{s}(a) = 0 \). In like but more straightforward manner, \([\mathbb{P}^{1/2}] \) tells us that if \(\sigma \in \mathbb{P}^{1/2} \) satisfies \(\sigma(a) = 0 \) then automatically \(\dot{\sigma}(a) = 0 \). We shall use these observations throughout the subsequent discussion, perhaps without comment.

Before proceeding further, it is convenient to draw attention to an important difference between \([\mathbb{P}] \) and \([\mathbb{P}^{1/2}] \). On the one hand, \([\mathbb{P}^{1/2}] \) has the form \(\ddot{\sigma} = \Phi(t, \sigma) \) in which \(\Phi(t, \sigma) \) is a polynomial; consequently, the initial value problem for \([\mathbb{P}^{1/2}] \) has a standard local existence-uniqueness theorem. On the other hand, \([\mathbb{P}] \) has the form \(\ddot{s} = F(t, s, \dot{s}) \) in which \(F(t, s, \dot{s}) \) is rational but has \(s \) in the denominator: the standard local existence-uniqueness theorem breaks down for initial data involving a zero of \(s \). In fact, we have seen that if \(s \) satisfies \([\mathbb{P}] \) then the vanishing of \(s(a) \) forces that of \(\dot{s}(a) \); were standard local uniqueness to apply, a solution to \([\mathbb{P}] \) with a zero would vanish throughout its interval of definition.

Theorem 3. Let \(\sigma \in \mathbb{P}^{1/2} \) and let \(\sigma \geq 0 \) on \(I \ni a \). If \(\sigma(a) = 0 \) then \(\sigma = 0 \).

Proof. The hypotheses ensure that not only \(\sigma(a) = 0 \) but also \(\dot{\sigma}(a) = 0 \). The identically zero function satisfies \([\mathbb{P}^{1/2}] \) on \(I \) with the same initial data. The local uniqueness theorem for \([\mathbb{P}^{1/2}] \) now ensures that \(\sigma = 0 \).

It follows at once that Theorem 1 has no direct extension allowing an isolated zero.

Theorem 4. If \(s \in \mathbb{P} \) is strictly positive except for an isolated zero at \(a \in I \) then \(\sqrt{s} \notin \mathbb{P}^{1/2} \).

Proof. The (positive) square-root \(\sqrt{s} \) is zero at \(a \in I \) but strictly positive on \(I \setminus \{a\} \); Theorem 3 therefore excludes \(\sqrt{s} \) from \(\mathbb{P}^{1/2} \).

Notwithstanding this negative result, we have the following.
Theorem 5. If \(s \in \mathbb{P} \) is strictly positive except for an isolated zero at \(a \in I \) then there exists \(\sigma \in \mathbb{P}^{1/2} \) such that \(s = \sigma^2 \).

Proof. To the left of \(a \) there are only two continuous square-roots of \(s \), namely \(\pm \sqrt{s} \); likewise to the right of \(a \). Since the taking of like signs on each side of \(a \) leads to failure, we mix signs: thus, well-define \(\sigma \) on \(I \) by
\[
\sigma(t) = \begin{cases}
-\sqrt{s(t)} & \text{if } I \ni t \leq a, \\
+\sqrt{s(t)} & \text{if } I \ni t \geq a.
\end{cases}
\]

Theorem 4 easily places \(\pm \sigma \) in \(\mathbb{P}^{1/2} \) on \(I \setminus \{a\} \); we must show that \(\sigma \) is twice-differentiable at its zero \(a \) with \(\ddot{\sigma}(a) = 0 \). Let \(I \ni t \neq a \); as \(s = \sigma^2 \),
\[
\dot{\sigma}(t) = \frac{\tilde{s}(t)}{2\sigma(t)}
\]
while as \(s \in \mathbb{P} \) and \(s(a) = 0 \),
\[
\frac{\tilde{s}(t)^2}{2s(t)} = \tilde{s}(t) - \frac{1}{2}s(t)\left(3s(t) + 2t\right)(s(t) + 2t)
\]
and
\[
\lim_{t \to a} \frac{\tilde{s}(t)^2}{4s(t)^2} = \lim_{t \to a} \frac{\tilde{s}(t)^2}{4s(t)} = \frac{1}{2} \tilde{s}(a).
\]
Checking signs, the taking of square-roots yields
\[
\lim_{t \to a} \ddot{\sigma}(t) = \sqrt{\frac{1}{2} \tilde{s}(a)};
\]
as \(\sigma \) is continuous on \(I \), it follows that \(\sigma \) is (continuously) differentiable throughout \(I \) by an application of the mean value theorem. As \(\sigma \) satisfies \(\mathbb{P}^{1/2} \) on \(I \setminus \{a\} \), it follows that
\[
\lim_{t \to a} \dddot{\sigma}(t) = \lim_{t \to a} \frac{1}{4}\sigma(t)\left(3\sigma(t)^2 + 2t\right)(\sigma(t)^2 + 2t) = 0
\]
whence a further application of the mean value theorem to the continuous function \(\ddot{\sigma} \) shows that \(\sigma \) is twice-differentiable at \(a \) with \(\dddot{\sigma}(a) = 0 \) as required. \(\square \)

Of course, a similar argument shows that if \(s \in \mathbb{P} \) is strictly negative except for an isolated zero at \(a \in I \) then there exists \(\sigma \in \mathbb{P}^{1/2} \) such that \(s = -\sigma^2 \); again, \(\sigma \) takes opposite signs on opposite sides of \(a \).

Theorem 4 and Theorem 5 are complements to Theorem 1 for cases in which \(s \in \mathbb{P} \) has an isolated zero. There are analogous complements to Theorem 2 for cases in which \(\sigma \in \mathbb{P}^{1/2} \) has an isolated zero.

The appropriate counterpart of Theorem 4 is immediate.

Theorem 6. If \(\sigma \in \mathbb{P}^{1/2} \) is strictly positive except for an isolated zero at \(a \in I \) then \(\sigma^2 \notin \mathbb{P} \).

Proof. If \(\sigma^2 \) were to lie in \(\mathbb{P} \) then its positive square-root would lie outside \(\mathbb{P}^{1/2} \) according to Theorem 4 but this positive square-root is \(\sigma \) itself. \(\square \)

The appropriate counterpart of Theorem 5 requires just a little more work.

Theorem 7. If \(\sigma \in \mathbb{P}^{1/2} \) takes opposite signs on opposite sides of \(a \in I \) then \(\sigma^2 \in \mathbb{P} \).

Proof. The twice-differentiable square \(s := \sigma^2 \) satisfies \(\mathbb{P} \) on \(I \setminus \{a\} \) by Theorem 2. Notice that if \(t \in I \) then \(\ddot{s}(t) = 2\sigma(t)\dot{\sigma}(t) \) and
\[
\dddot{s}(t) = 2\sigma(t)\ddot{\sigma}(t) + 2\dot{\sigma}(t)^2.
\]
Consequently, as $\sigma(a) = 0$ it follows that
\[\ddot{s}(a) - \frac{1}{2} s(a)(3s(a) + 2a)(s(a) + 2a) = 2\dot{\sigma}(a)^2 \]
and
\[\lim_{t \to a} \frac{\ddot{s}(t)^2}{2s(t)} = \lim_{t \to a} \frac{(2\sigma(t)\dot{\sigma}(t))^2}{2\sigma(t)^2} = \lim_{t \to a} 2\dot{\sigma}(t)^2 = 2\dot{\sigma}(a)^2. \]
This shows that s satisfies $[P]$ at a also and concludes the demonstration. □

We close by remarking that the case of $s \in \mathbb{P}$ with an isolated zero at which the second derivative also vanishes is as tidy as can be: in fact, the case does not arise! Our first step towards this result is perhaps a little peculiar in hindsight.

Theorem 8. Let $s \in \mathbb{P}$ have an isolated zero at a. If $\dddot{s}(a) = 0$ then each derivative of s vanishes at a.

Proof. The second reformulation of $[P]$ informs us that
\[2s \dddot{s} - s^2 = s^2(3s + 2t)(s + 2t) = s^2Q \]
say, where Q is quadratic in s and t. Away from the isolated zero, we may differentiate: the resulting terms $\pm 2s \dddot{s}$ on the left cancel, to yield
\[2s \dddot{s} = 2s\dot{\sigma}Q + s^2\dot{Q} \]
whence
\[2s \dddot{s} = 2\dot{s}Q + s\dot{Q} \]
away from a and hence at a also. All that remains is to differentiate inductively. □

We can now see that this case is indeed vacuous: taking the (difficult!) meromorphicity of s for granted, the identity theorem implies that s is zero throughout the open interval in which a is an isolated zero; this is absurd!

In particular, it follows that $s \in \mathbb{P}$ cannot change sign at an isolated zero.

Remarks

We round out our account with some miscellaneous comments on related topics of interest.

Recall that the fourth Painlevé equation is properly a complex differential equation. The process of passing to a square-root is naturally more elaborate in the complex setting: as we mentioned, solutions to the fourth Painlevé equation are meromorphic, with simple poles; square-roots of such functions cannot be meromorphic! Nonetheless, there is sufficient reason for further study of the relevant auxiliary equation
\[4\frac{d^2 \omega}{dz^2} = \omega(3\omega^2 + 2z)(\omega^2 + 2z). \]

We have seen in our study of the fourth Painlevé equation $[P]$ that the auxiliary differential equation $[P^{1/2}]$ is of definite theoretical interest. In fact, this auxiliary equation is also of considerable practical help, aside from its ability to handle initial data involving a zero. We began exploring solutions of the fourth Painlevé equation with the aid of WZGrapher, a valuable freeware program developed by Walter Zorn. Quite early in our explorations, we noticed apparent graphical instabilities: for example, solutions of $[P]$ with certain initial data would at first appear to be oscillatory; upon zooming out, such a solution might seem to suffer a catastrophe, oscillations disappearing and being replaced by a blow-up or spike; upon zooming out further, oscillations might reappear; and so on. Not surprisingly, such catastrophic behaviour manifests itself at a zero of the solution and so involves the awkward denominator in $[P]$. These apparent graphical instabilities seem to be removed by passage to the corresponding solutions of $[P^{1/2}]$ as the reader may care to see using WZGrapher.
The factorized form of the fourth Painlevé equation \[P \]

\[\ddot{s} - \frac{\dot{s}^2}{2s} = \frac{1}{2} s(3s + 2t)(s + 2t) \]

indicates that the lines ‘\(s = 0 \)’, ‘\(s = -2t/3 \)’ and ‘\(s = -2t \)’ have geometric significance for its solutions. Similarly, ‘\(\sigma = 0 \)’ and the parabolas ‘\(\sigma^2 = -2t/3 \)’ and ‘\(\sigma^2 = -2t \)’ have geometric significance for solutions to the auxiliary equation \[P^{1/2} \]

\[4\dot{\sigma} = \sigma(3\sigma^2 + 2t)(\sigma^2 + 2t). \]

This geometric significance can be seen in a concavity diagram. The curves ‘\(\sigma = 0 \)’, ‘\(\sigma^2 = -2t/3 \)’ and ‘\(\sigma^2 = -2t \)’ divide the (\(t, \sigma \))-plane into regions. The sign of \(\sigma \) is negative/positive in the regions directly above/below the half-parabola ‘\(\sigma = +\sqrt{-2t/3} \)’ so that solutions to \[P^{1/2} \] have the opportunity to oscillate about this half-parabola; similarly, solutions to \[P^{1/2} \] may oscillate about ‘\(\sigma = -\sqrt{-2t/3} \)’.

In fact, experimentation with WZGrapher reveals that solutions to \[P^{1/2} \] that do not suffer blow-up in both time directions tend to display steadily decaying oscillations about the upper or lower half of the parabola ‘\(\sigma^2 = -2t/3 \)’ as \(t \to -\infty \); and that solutions often tend to linger alongside ‘\(\sigma = 0 \)’ or ‘\(\sigma^2 = -2t \)’ as they make more or less extended approaches to tangency. Also, it not infrequently happens that a minuscule change in initial data causes a solution ‘\(\sigma \)’ to flip its oscillations from one half-parabola to the other, or to flip the direction of its finite-time blow-up, in such a way that the sudden transition is not detectable in \(\sigma^2 \). On a more aesthetic note, when oscillations of ‘\(\sigma \in P^{1/2} \)’ occur about a half-parabola ‘\(\sigma = \pm\sqrt{-2t/3} \)’ they are quite evenly balanced. By contrast, when oscillations of ‘\(s \in P \)’ occur about the line ‘\(s = -2t/3 \)’ they are uneven, displaying larger arches on the side of the line away from ‘\(s = 0 \)’. Of course, squaring accounts for the difference.

One relatively simple family of illustrative examples takes ‘\(\sigma \in P^{1/2} \)’ with ‘\(\sigma(0) = 0 \)’ and ‘\(\dot{\sigma}(0) \)’ strictly positive. As ‘\(\dot{\sigma}(0) \)’ increases from 0 to a little beyond 1.169868591, two gradual changes to the solution ‘\(\sigma \)’ take place simultaneously: on the one hand, ‘\(\sigma \)’ oscillates about ‘\(\sigma = -\sqrt{-2t/3} \)’, the amplitude of the oscillations initially decreasing and finally increasing; on the other hand, ‘\(\sigma \)’ lingers initially along ‘\(\sigma = 0 \)’ and finally along ‘\(\sigma = -\sqrt{-2t} \)’; when ‘\(\dot{\sigma}(0) \)’ is around 0.65 the oscillations have their least amplitude and there is no lingering along either curve. As ‘\(\dot{\sigma}(0) \)’ increases from 1.169868591 to 1.169868592 the oscillations disappear, to be replaced by a negative blow-up in finite negative time; thereafter, the lingering along ‘\(\sigma = -\sqrt{-2t} \)’ gradually disappears and the finite-time blow-up accelerates. Throughout, ‘\(\sigma \in P^{1/2} \)’ has a unique zero, at which it changes sign; accordingly, its square lies in \(P \).

We leave to the reader the pleasure of exploring this family of examples in WZGrapher (or some similar program). Among many other families to explore, we recommend the following: take ‘\(\sigma(0) = 1 \)’ and let ‘\(\dot{\sigma}(0) \)’ run from ‘\(-0.933899363 \)’ to ‘\(1.579186627 \)’, noting the several transitions with reference to ‘\(\sigma = 0 \)’, ‘\(\sigma^2 = -2t/3 \)’ and ‘\(\sigma^2 = -2t \)’; take ‘\(\sigma(-6) = 2 \)’ and let ‘\(\dot{\sigma}(-6) \)’ run from ‘\(-0.170889967 \)’ to ‘\(-0.170889968 \)’ (!).

REFERENCES

[1] V.I. Gromak, I. Laine and S. Shimomura, *Painlevé Differential Equations in the Complex Plane*, de Gruyter (2002).

[2] P.L. Robinson, *The Triple-Zero Painlevé I Transcendent*, arXiv 1607.07088 (2016).

[3] P.L. Robinson, *Homogeneous Painlevé II Transcendent*, arXiv 1608.02139 (2016).