Dynamics of the electrospondilography indices of the individuals with back pain under the influencing of the physical rehabilitation program.

Physical rehabilitation of the individuals with back pain

O. K. Nikanorov, V. V. Kormiltsev, I. O. Zharova, O. B. Lazareva, L. D. Kravchuk

National University of Ukraine on Physical Education and Sport, Kyiv

A – research concept and design; B – collection and/or assembly of data; C – data analysis and interpretation; D – writing the article; E – critical revision of the article; F – final approval of the article

Back pain (BP) is an important link in neurological pathology and one of the most common complaints in general medicine practice.

The purpose of the research was: scientifically and strategically substantiate and develop a comprehensive physical rehabilitation program of persons with dorsalgia in the thoracic spine and to prove its effectiveness according to the data of the electrospondilography.

Materials and methods. The study was conducted on the basis of the sports and rehabilitation club “Fifth Element” in Kyiv. 67 patients (25 men and 42 women) were taking part in our research, of the working-age with BP on the thoracic level.

Results. Based on the results of previous studies, we have developed a complex physical rehabilitation program for patients with BP on the thoracic spine, which included various tools and forms of physical rehabilitation, elements of modern fitness techniques, soft tissue and connective tissue manipulative techniques, and a cognitive method - conductive therapy.

Conclusion. The effectiveness of the developed program of patients with BP in the thoracic department was evaluated after the completion of the course – after 12 weeks. According to the data of ESG, the positive dynamics of indicators K1, K2, K3, K4 was observed in both the MG and CG. However, only in the MG of changes in K3 and K4 indicators were statistically significant.
clinical examination, and patients were referred to an ESG and a doctor’s consultation.

A total of 67 patients with BP in the thoracic spine were examined and created the following groups: the main group (MG) – patients with BP in the thoracic spine (n = 34). The control group (CG) – patients with BP in the thoracic spine (n = 33).

Between the main and control groups, there were no statistically significant differences in the indicators of sex-age distribution.

Mathematical processing of numerical data of work was carried out using methods of variation statistics. Statistica 7.0 and IBM SPSS Statistics 21 applications were used for mathematical processing of numerical data.

Results

ESG diagnosis showed the results of the primary examination by the four coefficients: K1 was the total integral coefficient we had not calculated, due to the change in the norm, depending on the season, since the course of rehabilitation was 12 weeks, which corresponds to a change in the indicators norms of the total integral coefficient, then it was reliable could not have been, but we got the following results: \(x = 57.0 \text{ i.u.} \); \(S = 21.2 \text{ i.u.} \); \(V = 37.1 \text{ %} \); on the indicator of the coefficient of lateral asymmetry (K2) higher than the “physiological corridor” was 14 people; in the norm, the same indicator has 38 people; lower than the “physiological corridor” the same indicator has 13 people. Coefficient K4, as the indicator of adaptive asymmetry, higher than the “physiological corridor” have 34 people; in the norm, the same indicator has 18 people, lower than the “physiological corridor” in the same indicator has 15 people.

Coefficient K3, in the ascertainment experiment, 66 patients had a K3 out of normal range, and 1 (1.5 %) had a K3 score corresponding to the norm, of which the indicator was higher than the norm had 12 patients (18 %) and lower than norm had 54 patients (80.5 %).

Based on the results of previous studies, we have developed a complex physical rehabilitation program for patients with BP on the thoracic spine, which included various tools and forms of physical rehabilitation, elements of modern fitness techniques, soft tissue and connective tissue manipulative techniques, and a cognitive method - conductive therapy.

The developed program was different from the generally accepted aim of gradually restoring the maximum possible physical and social activity of patients by reducing the manifestations of CBP through methods of physical rehabilitation and the formation of self-confidence in patients and a new model of behavior by the tools of the cognitive-behavioral therapy.

In accordance with the goals set, the tools and forms of physical rehabilitation that were adapted to the individual characteristics of patients, bringing the period of rehabilitation and motor settings, were selected.

The main tasks of the adaptation period were: preparation for increasing loads; improvement of metabolic processes and trophic tissues; decompression of the vertebral column. Duration: 28–30 days. Motor settings: gentle. Applying therapeutic exercises session according to the developed methodology (duration of session – 25–35 minutes, frequency – 4–5 times per week), session in the pool of the low and medium intensity (load was 40–55 % of maximum heart rate, duration of training – 35 minutes, frequency – 2 times per week), soft tissue manual technique. From 3–4 weeks, individual classes of the advanced functional training started. Classes were built differentially, bringing the gender-age characteristics and level of physical condition. Method of classes performing was individual, the load was on the 15–35 % relative to the repeated maximum, the frequency was 1–2 times per week.

The main tasks of the training and correctional period were: the direction of the applied tools on the correction of the posture disorders, the formation of normal musculoskeletal stereotypes, stimulation of patients for independent exercise by physical exercises and increasing daily activity. Duration: 28–30 days. Motor settings: gentle and training. In this period, sessions of the therapeutic exercise were continued (duration of the session was 35–45 minutes, frequency was 3–4 times per week) and functional training (frequency was 2–3 times per week, load was on the 15–45 % relative to repeated maximum), getting exercises to strengthen the muscle corset, as much as possible for patients. Motor density increased in classes of the aquatic exercises (load was 55–65 % of maximum heart rate, duration of training was 35 minutes, the frequency was 2 times per week). Therapeutic massage provided for the using of connective tissue techniques.

The tasks of the stabilization period of rehabilitation were: strengthening the correct posture skills, strengthening the muscle corset, ensuring stability and variability of the normal motor stereotype, increasing the physical condition of the patients. Duration: 28–30 days. Motor settings: training. Gradually, the intensity of the load in classes with functional training increased (load was 15–55 % relative to repeated maximum, frequency was 2 times per week) and aquatic exercises (load was 65–80 % of maximum heart rate, duration of training was 45 minutes, frequency was 2 times for a week) increased the exposure of static load in exercises of therapeutic gymnastics (duration of classes – 50–60 minutes, frequency – 3–4 times a week).

Thus, at the end of the study, the value of the K1 indicator in the MG of patients at the end of the course of rehabilitation changed from 0.98 to 1.02 i.u., while in the CG, the corresponding changes were made – from 1.02 to 1.03 i.u. The value of K2 has changed from 1.27 to 1.01 i.u., in the MG and from 1.15 to 1.05 in the CG.

However, it should be noted that changes in the K1 and K2 indices were statistically insignificant.

The dynamics of indicators K3 and K4 in the MG were statistically significant, in contrast to changes in the CG. In MG, an increase in the values of K3 from 0.91 to 0.99 i.u., and a decrease of K4 from 58.47 to 46.38 i.u. (P < 0.05).

An individual analysis of the relevance of the K3 indicator to the normative values among the patients in the MG and CG was conducted. The results of the formative experiment
showed that the number of patients with the K3 index in
the norm and the number of patients with the K3 index outside
the norm, in the MG and CG varies statistically significant,
which is confirmed by Fisher’s exact criterion at the level
of $P < 0.05$.

Discussion

The current stage of development of rehabilitation and health­care is in the difficult social and economic conditions asso­ciated with the transition to economically new methods for managing the available resources and ensuring the possibility of more efficient use of personnel and financial capacity of treatment and prevention institutions. In connection with this, the issue of development and application of complex differential diagnostic and rehabilitation programs in the treatment of pain syndromes in the trunk is becoming urgent, allowing to short-term to hold the necessary list of manipulations, to achieve a reduction in the timing of treatment and to increase the period of remission.

CBP by frequency occupies the first place in the structure of all diseases of the musculoskeletal system is about 80% and is the most common cause of temporary disability. Signi­ficant losses of society, associated with disability, high rates of disease in young people of working age, give a special social significance to this problem.

The obtained results of the performed study confirm and supplement the data on the positive effects of physical rehabilita­tion on the body of patients with BP (I. O. Zarhova, 2011; O. B. Lazarieva, 2013; V. V. Kormil’tsev, 2014; A. M. Sain­chuk, 2016), and also confirm the opinion of the group of authors that a comprehensive program of physical rehabilitation is more effective than separate elements of recovery in patients with BP (A. M. Aksonova, 2009; K. L. Boyle, 2011; N. V. Vasilieva, 2014) [8–14]. Data on the effective­ness of behavioral therapy in the complex rehabilitation of indi­viduals with chronic non-specific back pain also con­firmed (J. Chevan, P. Clapis, 2013; M. J. Stochkendahl et al., 2018) [15,16].

The obtained results confirm and supplement the data on the positive impact of physical rehabilitation on the body of patients with BP and based on the above facts, we can judge the effectiveness of our proposed the physical rehabilitation program in comparison with the previously used.

Conclusions

Physical rehabilitation of persons with BP in the thoracic spine remains a little investigated problem; also need additional study of the problem of the creating the comprehensive physical rehabilitation programs in the remission stage that could be implemented in the conditions of sports and rehabilitation complexes and be aimed at prolonging the re­mission stage and motivating patients to adhere to a healthy lifestyle.

The physical rehabilitation program of the patients with BP in the thoracic spine was developed on the basis of the analysis of literary sources, the experience of leading specialists, results of the primary examination and taking into account pedagogical principles. The developed program differs from the generally accepted focus on the gradual maximum possible restoration of physical and social activity of patients by reducing the manifestations of chronic pain through methods of physical rehabilitation and the development of self-con­fidence in patients and a new model of behavior through cognitive-behavioral therapy.

The effectiveness of the developed program of patients with BP in the thoracic department was evaluated after the completion of the course – after 12 weeks. According to the data of ESG, the positive dynamics of indicators K1, K2, K3, K4 was observed in both the MG and CG. However, only in the MG of changes in K3 and K4 indicators were statistically significant.

Conflicts of interest: authors have no conflict of interest to declare.

Information about authors:

Nikanorov O. K., PhD, Associate Professor, Professor of the Department of Physical Therapy and Ergotherapy, National University of Physical Education and Sport of Ukraine, Kyiv.

Kormil’tsev V. V., PhD, Lecturer, Department of Physical Therapy and Ergotherapy, National University of Physical Education and Sport of Ukraine, Kyiv.

Zharova I. O., PhD, DSc, Associate Professor, Department of Physical Therapy and Ergotherapy, National University of Physical Education and Sport of Ukraine, Kyiv.

Lazareva O. B., PhD, DSc, Professor, Head of the Department of Physical Therapy and Ergotherapy, National University of Physical Education and Sport of Ukraine, Kyiv.

ORCID ID: 0000-0002-7435-2127

Kravchuk L. D., PhD, Senior Lecturer, Department of Physical Therapy and Ergotherapy, National University of Physical Education and Sport of Ukraine, Kyiv.

Відомості про авторів:

Ніканоров О. К., д-р наук з фізичного виховання та спорту, доцент, професор каф. фізичної терапії та ерготерапії, Національний університет фізичного виховання і спорту України, м. Київ.

Кормільцев В. В., канд. наук з фізичного виховання та спорту, викладач каф. фізичної терапії та ерготерапії, Національний університет фізичного виховання і спорту України, м. Київ.

Жарова І. О., д-р наук з фізичного виховання та спорту, доцент каф. фізичної терапії та ерготерапії, Національний університет фізичного виховання і спорту України, м. Київ.

Лазарева О. Б., д-р наук з фізичного виховання та спорту, професор, зав. каф. фізичної терапії та ерготерапії, Національний університет фізичного виховання і спорту України, м. Київ.

Кравчук Л. Д., канд. наук з фізичного виховання та спорту, старший викладач каф. фізичної терапії та ерготерапії, Національний університет фізичного виховання і спорту України, м. Київ.

Свідочення об авторах:

Ніканоров А. К., д-р наук по фізичному воспитанию и спорту, доцент, профессор каф. фізической терапии и реабилитации, Национальный университет физического воспитания и спорта Украины, г. Киев.

Кормильцев В. В., канд. наук по фізичному воспитанию и спорту, преподаватель каф. фізической терапии и реабилитации, Национальный университет физического воспитания и спорта Украины, г. Киев.

Жарова И. А., д-р наук по фізичному воспитанию и спорту, доцент каф. фізической терапии и реабилитации, Национальный университет физического воспитания и спорта Украины, г. Киев.
Україна, г. Київ.
Национальний університет фізичного воспитання і спорту
старший преподаватель каф. фізичної терапії і ерготерапії,
Кравчук Л. Д., канд. наук по фізичному воспитанню і спорту,
Україна, г. Київ.
Национальний університет фізичного воспитання і спорту
професор, зав. каф. фізичної терапії і ерготерапії,
Лазарева Е. Б., д-р наук по фізичному воспитанню і спорту

References

[1] Pshik, S. S., Bozhenko, N. L., Pshik, R. S., & Bozhenko M. I. (2017). Deiaki aspekty patohenykhi terapii boli spyny [Some aspects of the pathogenetic therapy of back pain]. Family medicine, 1, 127-134. [in Ukrainian].

[2] Bozhenko, N. L. (2015). Bil u spyny: deiaki aspekti diahnostyky ta likuvannia [Backache: some aspects of diagnostics and treatment]. Medicines of Ukraine, 4 (190), 58-65. [in Ukrainian].

[3] Bozhenko, N. L. (2013). Bolovi syndromy spyny: deiaki psykhoe-motsoni aspekti i mozhlyvosti yikh korektii [Backache syndromes: some psychoemotional aspects and possibilities for their correction]. International Neurological Journal, 8(62), 103-108. [in Ukrainian].

[4] Byuon, S., & Son, H. (2012). The effects of proprioceptive neuromuscular facilitation and stabilizing exercise on trunk repositioning errors. Journal Of Physical Therapy Science, 24(10), 1017-1020. doi: 10.1589/jpts.24.1017

[5] Lazareva E. B. (2012). Fizicheskaya reabilitatsiya pri hirurgicheskym lechenii vertebrorogennykh pojaschadnykh syndromov [Physical rehabilitation after surgical treatment of lumbar spinal pain syndromes]. Kyiv. [in Russian].

[6] Danilov A. B., & Danilova A. B. (2012). Upravlenie bolju. Biopsihosocialnyj podkhod. [Pain management Biopsychosocial approach]. Moscow: AMM PRESS. [in Russian].

[7] Vitoula, K., Venneri, A., Varrassi, G., Paladini, A., Sykioti, P., Adewusi, J., & Zis, P. (2018). Behavioral Therapy Approaches for the Management of Low Back Pain: An Up-To-Date Systematic Review. Pain And Therapy, 7(1), 1-12. doi: 10.1007/s40122-017-0099-4

[8] Zharova I., & Shvetsova A. (2011). Obgruntuvannia vykorystannia zasobiv fizychnoi reabilitatsiyi v osib iz hipertonichnoiu khvoroboiu ta shyino-hrudnym osteokhondrozom [The substational using of physical rehabilitation measures of persons with arterial hypertension and cervical thoracic osteochondrosis]. Young sport science of Ukraine, 3, 126-130. [in Ukrainian].

[9] Lazarieva, O. B., & Fedorenko, S. M. (2012). Efektyvist vkyorkorystannya zasobiv fitnesu v prohromi fizychnoi reabilitatsiyi osib z vertebrorochen-
noiu patokhii [Effective use of the fitness tools in the program of physical rehabilitation of patients with vertebral pathology]. Theory and Methods of Physical Education and Sports, 4, 40-44. [in Ukrainian].

[10] Kormiltsiev, V. (2014). The dynamic of heart rate variability under the physical rehabilitation process in office workers with low back pain. Theory and Methods of Physical Education and Sports, 2, 89-92.

[11] Sainchuk, A., & Skomorokha, O. (2016). Vplyv kompleksnoi dy-
ferentsiiovanoi prohromy fizychnoi reabilitatsiyi na yakist zhytтя ta bolovyj syndrom patsiyentiv iz shyino-hrudnym osteokhondrozom ta hipertoniuchnoiu [Influence of complex differentiated program of physical rehabilitation on life quality and pain syndrome of patients with thoracocervical osteochondrosis and hypertension]. Retrieved from http://esnuir.eenu.edu.ua/bitstream/123456789/12005/1/ Anna%20Sainchuk%2c%20Oxana%20Skomoroxa.pdf

[12] Aksenova A. M. (2009). Ispolzovanie massazha, uprazhnenij i mjagkih tehnik dija lechenija boli v pojasnice [The use of deep reflex-muscule massage, stretching exercises and osteopathic manipulative medicine in the treatment of lumbosacralis osteochondrosis]. Physical therapy and sports medicine, 10, 19-24. [in Russian].

[13] Boyle, K. (2011). Managing a female patient with left low back pain and sacroiliac joint pain with therapeutic exercise: a case report. Physiotherapy Canada, 63(2), 154-163. doi: 10.3138/ptc.2009-37

[14] Vasileva N. V. (2014). Jejektivnost konservativnogo kombinirovan-
ogono lechenia nevrologicheskih projavlenij degenerativno-distrofich-
eskikh zabolevaniy shejnogo otdela pozvonochnika [Effective use of the conservative combined treatment of neurological manifestations of degenerative-dystrophic diseases of the cervical spine]. Russian Neurosurgical Journal Named After Professor Polenov, 6(4), 310-311. [in Russian].

[15] Chevan, J., & Clapis, P. A. (2012). Physical therapy management of low back pain: a case-based approach. Physiotherapy Canada, 64(4), 428. doi: 10.3138/ptc.64.4.428

[16] Stockkendahl, M., Kjaer, P., Hartvigsen, J., Kongsted, A., Aaboe, J., & Andersen, M. et al. (2017). National Clinical Guidelines for non-surgical treatment of patients with recent onset low back pain or lumbar radiculopathy. European Spine Journal, 27(1), 60-75. doi: 10.1007/s00586-017-5099-2