Goldstone modes in renormalizable supersymmetric SO(10) model

Xian-Zheng Bai\(^a\), Da-Xin Zhang\(^b\)

School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China

Received: 5 January 2018 / Accepted: 9 March 2018 / Published online: 16 March 2018
© The Author(s) 2018

Abstract We solve the Goldstone modes in the renormalizable SUSY SO(10) model with general couplings. The Goldstones are expressed by the Vacuum Expectation Values and the Clebsch–Gordan coefficients of relevant symmetries without explicit dependence on the parameters of the model.

1 Introduction

Grand Unified Theories (GUTs) are very important candidates for the physics beyond the Standard Model (SM). The Pati–Salam \(G_{422} = SU(4)_C \otimes SU(2)_L \otimes SU(2)_R\) [1], the Georgi–Glashow \(SU(5)\) [2], the flipped \(SU(5)\) of \(G_{51} = (SU(5) \otimes U(1))^{Flipped}\) [3], the SO(10) \([4,5]\) and the \(E_6\) [6] models have all been studied extensively in the literature. Except \(SU(5)\), the GUT symmetries of these models are larger in ranks than the SM symmetry \(G_{321} = SU(3)_C \otimes SU(2)_L \otimes U(1)_Y\). Consequently, they have several different routines to break into the SM symmetry, since the SM symmetry \(G_{321}\) is not the maximal subgroup of the GUT symmetries.

The supersymmetric (SUSY) GUT models are even more important in realizing gauge coupling unification \([7–15]\). Again, except in the \(SU(5)\) models, these GUT symmetries have different routines in the symmetry breaking chains.

Spontaneously Symmetry Breaking (SSB) generates the massless Goldstone bosons corresponding to the broken generators \([16–18]\). In gauge theories, these Goldstone bosons act as the longitudinal components of the gauge bosons. In model buildings, we need to check the spectra to verify the existence of these Goldstone bosons. When more than one Higgs multiplets contribute to the SSB, we need to check that there are massless eigenstates in the mass squared matrices with correct representations.

In SUSY models, there are easier ways to get the Goldstone bosons. The Goldstinos, which are the fermionic partners of the Goldstone bosons, are also massless which mix with gauginos, the SUSY partners of the gauge bosons. Then, we can get the Goldstinos by solving the massless eigenstates of the mass matrices. Being the SUSY partners, the Goldstone bosons are determined accordingly.

Usually in building GUT models, the Higgs sectors relevant to SSB are complicated. Hereafter we will focus on SUSY SO(10) \([19–36]\). Even in the minimal renormalizable SUSY SO(10) model \([26]\), Higgs in \(210 + 126 + \overline{126}\) are needed to break SO(10) into \(G_{321}\). There are Goldstinos in \((1, 1, 0), (1, 1, 1), (3, 1, \frac{2}{3}, 3, 2, -\frac{5}{3}, 3, 2, \frac{1}{3})\) and the conjugates under \(G_{321}\). None of these representations has only one field in the spectrum. To verify the Goldstone modes, usually people need to calculate the eigenvalues of the mass matrices for the Goldstinos \([26,32]\). In more general models with also 45 + 54 in the SSB of the GUT symmetry, the Goldstino check is done numerically \([23,29]\).

In this work, we will study the Goldstone modes within SUSY. In \([37]\) it has been realized that for the SSB of \(U(1)\) symmetries in SUSY models, in the Goldstone mode a component is proportional to the charge and to the Vacuum Expectation Value (VEV). Furthermore, it has been shown in the Non-Abelian cases \([38]\), that in any Goldstone mode, the component from a representation is proportional to the VEV from the same representation and the CGCs determine the remainder dependence. Examples on the simplest \(SU(2)\) SSB are given in \([38]\). Here we will show test explicitly in the SUSY SO(10) model. We will give the Goldstone modes for the SSB of SO(10) into \(G_{321}\) in the general renormalizable model.

In Sect. 2 we will give a general discussion on the method to solve the Goldstone modes. Then, in Sect. 3, we associate in \(SO(10)\) the Goldstinos and the corresponding broken symmetries. In Sects. 4 and 5, Goldstinos associated with the SSB of \(G_{422}\) and \(SU(5)\) are solved, respectively, and relevant identities among the CGCs are examined. In Sect. 6,
Goldstones associated with the SSB of the flipped $SU(5)$ are solved. The relevant CGCs, which are not available in the literature, are presented and the identities are examined. The mass matrix for the Goldstones is given in the Appendix. Finally we summarize in Sect. 7.

2 General SSB in SUSY models

Following [38], we consider the SSB of $G_1 \rightarrow G_2$ in SUSY models. For models with only real fields, the general Higgs superpotential can be written as

$$W = \frac{1}{2} \sum_{i,j} m_{ij}(I_i)^2 + \sum_{IJ,K,jk} \lambda^{IJK} I_i J_j K_k,$$ \hspace{1cm} (1)

where I, J, K denotes the superfields, i, j, k denote the representations of group G_1. Under G_2, the couplings in (1) are of the forms

$$\lambda^{IJK} I_a J_b K_c C^{IJJK}_{abc},$$ \hspace{1cm} (2)

where a, b, c are the representations under G_2, and C^{IJJK}_{abc} is the Clebsch–Gordan coefficient (CGC). A singlet of G_2, denoted by I_i, etc., can have a VEV \hat{I}_i in the SSB. SUSY requires the F-flatness conditions for the singlets,

$$0 \equiv F_{I_i} = \left(\frac{\partial W}{\partial I_i} \right) = m_I \hat{I}_i + \sum_{J K, j k} \lambda^{IJK} \hat{J}_j \hat{K}_k C^{IJJK}_{i j k},$$ \hspace{1cm} (3)

The Goldstinos in the SSB will be denoted by $\alpha, \bar{\alpha}$ under G_2. A mass matrix element for the Goldstinos is

$$M_{Ia j a} = \left(\frac{\partial^2 W}{\partial I_a J_{j a}} \right) = m_I \delta_{I j} \delta_{i a} + \sum_{k, k} \lambda^{IJK} \hat{K}_k C^{IJJK}_{i a j k},$$

For G^I_{Ia} denotes the element of the Goldstino corresponding to α, the zero-eigenvalue equation is

$$0 \equiv \sum_{J, J} M_{I a j a} G^j_{J a} = m_I G^I_{Ia} + \sum_{J K, j k} \lambda^{IJK} G^j_{J a} \hat{K}_k C^{IJJK}_{i a j k},$$ \hspace{1cm} (4)

Eliminating M_I in (3) and (4) gives

$$0 = G^I_{Ia} \sum_{J K, j k} \lambda^{IJK} \hat{J}_j \hat{K}_k C^{IJJK}_{i j k} - \hat{I}_i \sum_{J K, j k} \lambda^{IJK} G^j_{J a} \hat{K}_k C^{IJJK}_{i a j k}.$$ \hspace{1cm} (5)

It follows that if a representations of G_1 does not contain a G_2 singlet, even if it may contain representations of the Goldstinos, it does not contribute to the Goldstino modes since the M_I term in (4) cannot be eliminated unless multiplied by zero.

The superpotential parameters can be arbitrary so that we can focus on a specified coupling λ^{IJK}, and the summation over different λs is unnecessary. Furthermore, denoting

$$T^{Ii}_a = \frac{G^I_{Ia}}{I_i},$$

(6)

(5) becomes

$$0 = T^{Ii}_a \lambda^{IJK} \hat{J}_j \hat{K}_k C^{IJJK}_{i j k} - T^{Jj}_a \lambda^{IJK} \hat{J}_j \hat{K}_k C^{IJJK}_{i j k} + \hat{T}^{Ii}_a \lambda^{IJK} \hat{J}_j \hat{K}_k C^{IJJK}_{i j k}.$$ \hspace{1cm} (7)

The nonzero $\lambda^{IJK} \hat{J}_j \hat{K}_k$ can be eliminated and we can reiterate the same operation for J, K, λ.

Similar result is given for the Goldstino in α. (7) is followed by an identity that the determinant of the square matrix in (7) is zero, which must hold for any SSB.

Some special cases need to be clarified now.

(1) If k does not contain $\alpha, \bar{\alpha}$, (7) is simplified into

$$0 = \left(\begin{array}{c} -C^{IJJK}_{i j k} C^{IJJK}_{i j k} \bar{C}^{IJJK}_{i j k} \bar{C}^{IJJK}_{i j k} \\ C^{IJJK}_{i j k} C^{IJJK}_{i j k} \bar{C}^{IJJK}_{i j k} \bar{C}^{IJJK}_{i j k} \end{array} \right) \left(\begin{array}{c} T^{Ii}_a \\ T^{Jj}_a \end{array} \right).$$ \hspace{1cm} (8)

which gives an identity that the determinant of the square matrix is zero, and a simple ratio between the two components. Taking all different couplings λs setup all relations among the Goldstino components. This determines the Goldstino content up to an overall normalization.

(2) For $J = K$ and $j = k$, we have

$$0 = \left(\begin{array}{c} -C^{JJJK}_{i j j} 2C^{JJJK}_{i j j} \bar{C}^{JJJK}_{i j j} \bar{C}^{JJJK}_{i j j} \\ C^{JJJK}_{i j j} C^{JJJK}_{i j j} \bar{C}^{JJJK}_{i j j} \bar{C}^{JJJK}_{i j j} \end{array} \right) \left(\begin{array}{c} T^{Ii}_a \\ T^{Jj}_a \end{array} \right).$$ \hspace{1cm} (9)

(3) For $I = J = K$ and $i = j = k$, the result is

$$C^{III}_{i i i} = 2C^{III}_{i i i},$$

(10)

without information on T.

Generalization to the models with complex fields is straightforward with the general results given in [38]. We have also identities among the CGCs and equations for the Goldstinos involving the CGCs. Two types of special superpotentials might be relevant in the $SO(10)$ study.

(4) For I, T, K contain Goldstones and K is real, if

$$W = m_I I T + \frac{1}{2} m_K^2 + \lambda T^2 K + \hat{T}^2 K,$$
which gives

\[
0 = \begin{pmatrix}
-C_{i1i1k1}^{IJK} & C_{i1i1k1}^{IJK} & C_{i1i1k1}^{IJK} \\
X C_{i1i1k1}^{IJK} & -C_{i1i1k1}^{IJK} & C_{i1i1k1}^{IJK} \\
C_{i1i1k1}^{IJK} & -C_{i1i1k1}^{IJK} & C_{i1i1k1}^{IJK}
\end{pmatrix}
\begin{pmatrix}
T_{i1}^{Ji} \\
T_{i1}^{Kk} \\
T_{i1}^{Ii}
\end{pmatrix},
\] \quad (11)

where \(X = C_{i1i1k1}^{IJK} / C_{i1i1k1}^{IJK} \).

(5) For \(I, \bar{T}, K \) contain Goldstones and \(K \) is real, if

\[
W = m_I \bar{T} + \frac{1}{2} m_K^2 + \lambda_I \bar{T} K,
\]

which gives

\[
0 = \begin{pmatrix}
-C_{i1i1k1}^{IJK} & C_{i1i1k1}^{IJK} & 0 \\
C_{i1i1k1}^{IJK} & -C_{i1i1k1}^{IJK} & C_{i1i1k1}^{IJK} \\
0 & C_{i1i1k1}^{IJK} & -C_{i1i1k1}^{IJK}
\end{pmatrix}
\begin{pmatrix}
T_{i1}^{Ji} \\
T_{i1}^{Kk} \\
T_{i1}^{Ii}
\end{pmatrix},
\] \quad (12)

Furthermore, in case that \(I_i \) (\(\bar{T} \)) contains only \(\alpha (\bar{\alpha}) \) but not \(\bar{\alpha} (\alpha) \), we have

\[
0 = \begin{pmatrix}
-C_{i1i1k1}^{IJK} & C_{i1i1k1}^{IJK} & 0 \\
C_{i1i1k1}^{IJK} & -C_{i1i1k1}^{IJK} & C_{i1i1k1}^{IJK}
\end{pmatrix}
\begin{pmatrix}
T_{i1}^{Ji} \\
T_{i1}^{Kk}
\end{pmatrix}.
\] \quad (13)

We summarize in this section that the Goldstino and thus the Goldstone components are proportional to the VEVs, and the remaining determinations of these components need only the calculations of the CGCs. This is the approach which we will use to determine the Goldstones in the following sections, and the identities of the CGC determinants will be used to check the consistencies of these calculations.

3 SSB and Goldstones in SO(10)

We study the most general renormalizable couplings containing Higgs \(H(10), D(120), \bar{A}(\overline{126}) + A(126), A(45), E(54) \) and \(\Phi(210) \) in the SUSY \(SO(10) \) models. The most general renormalizable Higgs superpotential is \([29]\)

\[
W = \frac{1}{2} m_1 \Phi^2 + m_2 \Delta \Delta + \frac{1}{2} m_3 H^2 + \frac{1}{2} m_4 A^2 + \frac{1}{2} m_5 E^2 + \frac{1}{2} m_6 D^2
\]

\[
+ \lambda_1 \Phi^4 + \lambda_2 \Phi \overline{\Delta} \Delta + (\lambda_3 \Delta + \lambda_4 \overline{\Delta}) H \Phi + \lambda_5 A^2 \Phi
\]

\[
- i \lambda_6 \Phi \Delta \overline{A} + \frac{\lambda_7}{120} \Phi A^2
\]

\[
+ E (\lambda_8 E^2 + \lambda_9 A^2 + \lambda_{10} \Phi^2 + \lambda_{11} \Delta^2 + \lambda_{12} \overline{\Delta}^2 + \lambda_{13} H^2)
\]

\[
+ D^2 (\lambda_{14} E + \lambda_{15} \Phi)
\]

\[
+ D \left(\lambda_{16} HA + \lambda_{17} H \Phi + \lambda_{18} \Delta + \lambda_{19} \overline{\Delta} \right) A
\]

\[
+ \left(\lambda_{20} \Delta + \lambda_{21} \overline{\Delta} \right) \Phi \right)
\] \quad (14)

When we study the SSB of a \(SO(10) \) subgroup \(G_1 \) into \(G_2 \), we firstly decompose the \(SO(10) \) representations into \(G_1 \) representations, and the couplings are now of the form

\[
\chi_{i j k}^{I J K} = \lambda_{i j k}^{I J K} \sum_{i j k} c_{i j k}^{I J K} I_i J_j K_k,
\] \quad (15)

where, for example, \(I_i \) stands for the representations \(i \) of \(G_1 \) from \(SO(10) \) superfield \(I \). Then, under \(G_2 \), \(i, j, k \) are further decomposed, (15) is

\[
\chi_{i j k}^{I J K} = \lambda_{i j k}^{I J K} \sum_{i j k} c_{i j k}^{I J K} I_{i a} J_{j b} K_{k c}
\]

\[
\equiv \lambda_{i j k}^{I J K} \sum_{i j k} c_{i j k}^{I J K} I_{i a} J_{j b} K_{k c},
\] \quad (16)

where \(I_{i a} \) is a representations \(a \) of \(G_2 \) coming from \(I_i \), and \(c_{i j k}^{I J K} \) is the \(SO(10) \) CGC. Most of these CGCs have been given \([29,36]\) so that no separate calculations of \(c_{i j k}^{I J K} \) and \(c_{i j k}^{I J K} \) are needed. A special kind of CGCs relevant for the SSB of the flipped \(SU(5) \) symmetry will be given later.

To study SSB of \(SO(10) \) into \(G_{321} \), it is necessary to decompose the Higgs representations of \(SO(10) \) under the \(G_{321} \) subgroup. There are \(45 - 12 = 33 \) Goldstone modes. We link the Goldstones of a SM representation with the SSB of a specific subgroup of \(SO(10) \), as is summarized in Table 1. In Table 1, the first three modes can be studied by the \(SO(10) \) CGCs using \(G_{422} \) as the maximal subgroup\([29]\), the \((3, 2, -\frac{5}{2}) + c.c. \) modes need the CGCs using \(SU(5) \)\([36]\), and \((3, 2, \frac{5}{2}) + c.c. \) using \(G_{51} \) CGCs which will be given below.

4 Goldstone modes for SSB of \(G_{422} \)

Under \(G_{422} \), the following representations

\[
A_1 \equiv \hat{A}_{(1,1,3)}, \quad A_2 \equiv \hat{A}_{(15,1,1)}, \quad E \equiv \hat{E}_{(1,1,1)},
\]

\[
u_R \equiv \hat{\nu}_{(10,1,3)}, \quad \nu_R \equiv \hat{\nu}_{(10,1,3)}, \quad \Phi_1 \equiv \hat{\Phi}_{(1,1,1)}, \quad \Phi_2 \equiv \hat{\Phi}_{(15,1,1)}, \quad \Phi_3 \equiv \hat{\Phi}_{(15,1,3)},
\] \quad (17)

contain the SM singlets \((1, 1, 0)\) whose VEVs will be denoted in the same symbols. Obviously, \(E \) and \(\Phi_1 \) contain no Goldstones relevant for the \(G_{422} \) breaking, \(A_1 \) contains Goldstone components relevant for the \(SU(2)_R \) breaking, \(A_2 \), \(\Phi_2 \) for the \(SU(4)_C \) breaking, and \(\nu_R, \nu_R, \Phi_3 \) for both. The needed CGCs are taken from \([29]\) and are summarized in Tables 2, 3 and 4.
4.1 Goldstone (1, 0, 0) under G_{321}

This Goldstone is the result of the SSB of $U(1)_R \otimes U(1)_B \rightarrow U(1)_Y$ into $U(1)_Y$ and has been studied in [37]. In the renormalizable models, only $\Delta(126) + \bar{\Delta}(126)$ have the SM singlets with nonzero $U(1)_R$, $U(1)_B \rightarrow U(1)_Y$ charges. Furthermore, if we include also fields in the spinor representations $\Psi(16) + \bar{\Psi}(16)$ of SO(10), which are usually used in building non-renormalizable models and have halves of the charges of $\Delta(126) + \bar{\Delta}(126)$, the Goldstino and thus the Goldstone mode is found to be

$$\frac{\langle \Delta \rangle}{N} \mathcal{A}_{(1,1,0)}^{(10,1,3)} - \frac{\langle \bar{\Delta} \rangle}{N} \bar{\mathcal{A}}_{(10,1,3)}^{(1,1,0)} + \frac{1}{2} \frac{\langle \Psi \rangle}{N} \Psi_{(4,1,2)}^{(1,1,0)} - \frac{1}{2} \frac{\langle \bar{\Psi} \rangle}{N} \bar{\Psi}_{(4,1,2)}^{(1,1,0)}$$

(18)

where N is a simple normalization factor. Equation (18) tells us two important conclusions in the U(1) symmetry break-
ing. First, the component of a field in the Goldstone mode is proportional to its charge under the breaking $U(1)$ and to its VEV. Second, there is no dependence on the superpotential parameters of the model, besides through the VEV determinations indirectly.

In the model (14), we have
\[
\overrightarrow{G} (1,1,0) = v \Delta_{(1,1,0)} - \overrightarrow{v} \Delta_{(10,1,3)},
\]
up to an obvious normalization.

4.2 [(1, 1, 1) + c.c.]

They are relevant for the SSB of $SU(2)_R$ into $U(1)_{I_{3R}}$. The fields contain $\bar{a} = (1, 1, 1)$ are
\[
\overrightarrow{A} (1,1,1), \overrightarrow{D} (1,1,1), \overrightarrow{\Delta} (1,1,1), \overrightarrow{\Phi} (1,1,1),\]
Note that D has no VEV, the Goldstone corresponding to $\bar{a} = (1, 1, 1)$ of G_{321} is written as
\[
\overrightarrow{G} (1,1,1) = T_{\bar{a}} A_1 \hat{A} (1,1,3) + T_{\bar{a}} v \Delta_{(10,1,3)} + T_{\bar{a}} \overrightarrow{\Phi} (1,1,1),
\]
Here $A_1 \ldots$ are the VEVs, $\hat{A} \ldots$ are the fields and Ts are what will be solved. We will first classify the couplings and discuss their results, both on solve the Goldstones and on the identities among the Ts. These couplings lead to relations of CGCs such as
\[
0 = C_{A_1 A_2 E} - C_{\bar{a} \bar{a} A_2} = \sqrt{3} \left(\frac{2}{\sqrt{5}} \right) - \sqrt{2} \left(\frac{2}{\sqrt{3}} \right),
\]
\[
0 = C_{\Phi_3 \Phi_1 \Phi_1} - C_{\bar{a} \bar{a} \bar{a}} = \frac{1}{6\sqrt{6}} - \frac{1}{6\sqrt{6}},
\]
which are trivial.

(2) Any coupling of E, A_2, Φ_1, Φ_2 with two different representations will set up a relation of the two Ts. Following (8), the coupling $A_1 \Phi_3 A_2$ gives
\[
0 = \left(\begin{array}{cc} -C_{A_1 \Phi_3 A_2} & C_{A_1 \Phi_3 A_2} \\ C_{\bar{a} \bar{a} A_2} & -C_{\bar{a} \bar{a} A_2} \end{array} \right) \left(\begin{array}{c} T_{\bar{a}}^A_1 \\ T_{\bar{a}}^F_3 \end{array} \right)
\]
\[
= \left(\begin{array}{cc} -1 & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & -1 \end{array} \right) \left(\begin{array}{c} T_{\bar{a}}^A_1 \\ T_{\bar{a}}^F_3 \end{array} \right),
\]
where the determinant is zero, so
\[
\frac{T_{\bar{a}}^A_1}{T_{\bar{a}}^F_3} = \frac{C_{A_1 \Phi_3 A_2}}{C_{\bar{a} \bar{a} A_2}} = \frac{-\frac{1}{\sqrt{6}}}{\frac{1}{\sqrt{6}}} = -1.
\]
The coupling $A_1 \Phi_3 \Phi_2$ also gives
\[
\frac{T_{\bar{a}}^A_1}{T_{\bar{a}}^F_3} = \frac{C_{A_1 \Phi_3 \Phi_2}}{C_{\bar{a} \bar{a} \bar{a}}} = \frac{-\frac{1}{\sqrt{6}}}{\frac{1}{\sqrt{6}}} = -1.
\]
(3) $\Phi_3 v_R \overline{v_R}$ and $A_1 v_R \overline{v_R}$ are couplings with all three representations contain the Goldstone modes. However, v_R contains only $\overline{v_R}$ while $\overline{v_R}$ contains only α. Following (13), the coupling $\Phi_3 v_R \overline{v_R}$ gives

$$\frac{T_{\alpha}^{\Phi_3}}{T_{\alpha}^{v_R}} = \frac{C_{\alpha}^{\Phi_3} V_{\alpha}^{v_R} \overline{v_R}}{C_{\alpha}^{\Phi_3} V_{\alpha}^{v_R} \overline{v_R}} = -\frac{1}{10} \left/ \frac{1}{10} \right. = -1,$$

and $A_1 v_R \overline{v_R}$ gives

$$\frac{T_{\alpha}^{A_1}}{T_{\alpha}^{v_R}} = \frac{C_{\alpha}^{A_1} V_{\alpha}^{v_R} \overline{v_R}}{C_{\alpha}^{A_1} V_{\alpha}^{v_R} \overline{v_R}} = -\frac{1}{5} \left/ \frac{1}{5} \right. = 1.$$

Altogether, we have consistently $T_{\alpha}^{A_1} : T_{\alpha}^{v_R} : T_{\alpha}^{\Phi_3} = 1 : 1 : (-1)$, so the Goldstone mode is

$$\overrightarrow{\Delta}^{(1,1,1)} = A_1 \Delta_1^{(1,1,1)} + v_R \Delta_1^{(1,1,1)} - \Phi_3 \Phi_3^{(15,1,1)}$$

with an obvious normalization.

4.3 [(3, 1, $\frac{2}{3}$) + c.c.]

They are the Goldstones for $SU(4)_C$ SSB into $SU(3)_C \otimes U(1)_{B-L}$. The fields corresponding to $\alpha = (3, 1, \frac{2}{3})$ are

$$\Delta_1^{(1,1,1)}, \Delta_2^{(1,1,1)}, \Delta_3^{(1,1,1)}, \Delta_4^{(1,1,1)}, \Delta_5^{(1,1,1)}, \Delta_6^{(1,1,1)}.$$

Again, D does not have a VEV, the Goldstone mode is

$$\overrightarrow{G}^{(3,1,\frac{2}{3})} = T_{\alpha}^{A_1} A_1 \Delta_1^{(3,1,\frac{2}{3})} + T_{\alpha}^{\Phi_3} \Phi_3^{(3,1,\frac{2}{3})}$$

(1) According to (10), Φ_3^2 leads to

$$0 = C_{\alpha}^{\Phi_3^2} \Phi_3^2 - 2 C_{\alpha}^{\Phi_2 \Phi_3} \Phi_2 \Phi_3 = \frac{1}{9\sqrt{2}} - 2 \left. \frac{1}{18\sqrt{2}} \right.$$

(2) A_1, E, Φ_1 does not contain α or $\overline{v_R}$ and are SU(4) singlets, their couplings with the same fields, $A_2^2 E, \Phi_2^2 E, \Phi_2^2 \Phi_1$ lead to only trivial results. In the couplings of one of them with two different fields, according to (8), they give relations between two Goldstone components. $A_2 \Phi_3 A_1$ gives

$$\frac{T_{\alpha}^{A_2}}{T_{\alpha}^{\Phi_3}} = \frac{C_{\alpha}^{A_2} \Phi_3 A_1}{C_{\alpha}^{A_2} \Phi_3 A_1} = -\frac{\sqrt{3}}{6} \left/ \frac{\sqrt{3}}{6} \right. = -1.$$

$A_2 \Phi_2 \Phi_1$ gives

$$\frac{T_{\alpha}^{A_2}}{T_{\alpha}^{\Phi_2}} = \frac{C_{\alpha}^{A_2} \Phi_2 \Phi_1}{C_{\alpha}^{A_2} \Phi_2 \Phi_1} = -\frac{\sqrt{3}}{5} \left/ \frac{\sqrt{3}}{5} \right. = -1,$$

and $\Phi_2 \Phi_3 A_1$ gives

$$\frac{T_{\alpha}^{A_2}}{T_{\alpha}^{\Phi_3}} = \frac{C_{\alpha}^{A_2} \Phi_3 A_1}{C_{\alpha}^{A_2} \Phi_3 A_1} = -\frac{\sqrt{3}}{6} \left/ \frac{\sqrt{3}}{6} \right. = -1.$$

(3) ν_R contains only \overline{v} while $\overline{v_R}$ contains only α. According to (13), $\nu_R \overline{v_R} \Phi_2$ gives

$$\frac{T_{\alpha}^{\Phi_2}}{T_{\alpha}^{\nu_R}} = \frac{C_{\alpha}^{\nu_R} \overline{v_R} \Phi_2}{C_{\alpha}^{\nu_R} \overline{v_R} \Phi_2} = -\frac{1}{10\sqrt{3}} \left/ \frac{1}{10\sqrt{3}} \right. = -\frac{\sqrt{5}}{3},$$

$\nu_R \overline{v_R} \Phi_3$ gives

$$\frac{T_{\alpha}^{\Phi_3}}{T_{\alpha}^{\nu_R}} = \frac{C_{\alpha}^{\nu_R} \overline{v_R} \Phi_3}{C_{\alpha}^{\nu_R} \overline{v_R} \Phi_3} = -\frac{1}{5\sqrt{6}} \left/ \frac{1}{10} \right. = -\frac{\sqrt{5}}{3},$$

and $\nu_R \overline{v_R} A_2$ gives

$$\frac{T_{\alpha}^{A_2}}{T_{\alpha}^{\nu_R}} = \frac{C_{\alpha}^{A_2} \nu_R A_2}{C_{\alpha}^{A_2} \nu_R A_2} = -\frac{1}{5} \left/ \frac{1}{5} \right. = 1.$$

(4) According to (9), Φ_2^2 gives

$$0 = \left. \frac{C_{\alpha}^{\Phi_2^2} \Phi_2^2}{C_{\alpha}^{\Phi_2^2} \Phi_2^2} \right. - 2 \left. \frac{C_{\alpha}^{\Phi_2 \Phi_3} \Phi_2 \Phi_3}{C_{\alpha}^{\Phi_2 \Phi_3} \Phi_2 \Phi_3} \right. \left(\frac{T_{\alpha}^{\Phi_2}}{T_{\alpha}^{\Phi_3}} \right)$$

$$= \left. \frac{C_{\alpha}^{\Phi_2 \Phi_3} \Phi_2 \Phi_3}{C_{\alpha}^{\Phi_2^2} \Phi_2^2} \right. \left/ \left(\frac{1}{9\sqrt{2}} \right) \right. = \left. \frac{1}{18\sqrt{2}} \right. = 1.$$

So:

$$\frac{T_{\alpha}^{\Phi_3}}{T_{\alpha}^{\Phi_2}} = \frac{C_{\alpha}^{\Phi_2^2} \Phi_2^2}{C_{\alpha}^{\Phi_2^2} \Phi_2^2} \left/ \left(\frac{1}{9\sqrt{2}} \right) \right. = \left. \frac{1}{18\sqrt{2}} \right. = 1.$$

Similarly, $\Phi_2 A_2^2$ gives

$$\frac{T_{\alpha}^{A_2}}{T_{\alpha}^{A_2^2}} = \frac{C_{\alpha}^{A_2^2} \Phi_2 A_2^2}{C_{\alpha}^{A_2^2} \Phi_2 A_2^2} = \left. \frac{C_{\alpha}^{A_2^2} \Phi_2 A_2^2}{C_{\alpha}^{A_2^2} \Phi_2 A_2^2} \right. \left/ \left(\frac{1}{3\sqrt{2}} \right) \right. = \left. \frac{1}{3\sqrt{2}} \right. - \left. \frac{1}{3\sqrt{2}} \right. = -1.$$

or:

$$\frac{T_{\alpha}^{A_2}}{T_{\alpha}^{A_2^2}} = \frac{C_{\alpha}^{A_2^2} \Phi_2 A_2^2}{C_{\alpha}^{A_2^2} \Phi_2 A_2^2} = \left. \frac{1}{3\sqrt{2}} \right. \left/ \left(\frac{2}{3 \sqrt{2}} \right) \right. = -1.$$

$A_2 \Phi_3^2$ gives

$$\frac{T_{\alpha}^{A_2}}{T_{\alpha}^{A_2^2}} = \frac{2 C_{\alpha}^{A_2^2} \Phi_3^2}{2 C_{\alpha}^{A_2^2} \Phi_3^2} = \left. \frac{2 C_{\alpha}^{A_2^2} \Phi_3^2}{2 C_{\alpha}^{A_2^2} \Phi_3^2} \right. \left/ \left(\frac{\sqrt{2}}{3} \right) \right. = \left. \frac{2}{3} \right. \left/ \left(\frac{2}{3} \right) \right. = -1.$$

or:

$$\frac{T_{\alpha}^{A_2}}{T_{\alpha}^{A_2^2}} = \frac{C_{\alpha}^{A_2^2} \Phi_3^2}{C_{\alpha}^{A_2^2} \Phi_3^2} = \left. \frac{2 C_{\alpha}^{A_2^2} \Phi_3^2}{2 C_{\alpha}^{A_2^2} \Phi_3^2} \right. \left/ \left(\frac{\sqrt{2}}{3} \right) \right. = \left. \frac{2}{3} \right. \left/ \left(\frac{2}{3} \right) \right. = -1.$$
Table 5 CGCs for the SM singlets (1, 1, 0) under SU(5).

Here, for example, a_2 stands for $\lambda_{(24)}^{(1,1,0)}$ etc.

X	Y	XYa_1	XYa_2	XYS	$XY\phi_1$	$XY\phi_2$	$XY\phi_3$
$\lambda_{(1)}^{(1,1,0)}$	$\lambda_{(1)}^{(1,1,0)}$	0	0	0	$\frac{4}{\sqrt{15}}$	0	0
$\lambda_{(24)}^{(1,1,0)}$	$\lambda_{(24)}^{(1,1,0)}$	0	0	$\frac{1}{\sqrt{15}}$	$-\frac{1}{\sqrt{15}}$	$-\frac{2}{3\sqrt{15}}$	$\frac{5}{3\sqrt{15}}$
$\lambda_{(24)}^{(1,1,0)}$	$\lambda_{(24)}^{(1,1,0)}$	0	0	$\sqrt{\frac{2}{5}}$	0	$\sqrt{\frac{2}{5}}$	0
$\tilde{E}_{(1,1,0)}^{(1,1,0)}$	$\tilde{E}_{(24)}^{(1,1,0)}$	0	0	$\frac{1}{\sqrt{5}}$	0	0	0
$\tilde{E}_{(24)}^{(1,1,0)}$	$\tilde{E}_{(24)}^{(1,1,0)}$	$-\frac{i}{\sqrt{5}}$	0	0	$\frac{1}{\sqrt{15}}$	0	0
$\tilde{E}_{(24)}^{(1,1,0)}$	$\tilde{E}_{(24)}^{(1,1,0)}$	0	$\frac{2\sqrt{2}}{5\sqrt{3}}$	$\frac{2\sqrt{2}}{5\sqrt{3}}$	0	$\frac{2}{\sqrt{15}}$	0
$\tilde{E}_{(75)}^{(1,1,0)}$	$\tilde{E}_{(75)}^{(1,1,0)}$	0	0	0	0	0	0
$\tilde{E}_{(75)}^{(1,1,0)}$	$\tilde{E}_{(75)}^{(1,1,0)}$	$-\frac{4\sqrt{2}}{5\sqrt{3}}$	$\frac{8}{15\sqrt{15}}$	$\frac{1}{\sqrt{5}}$	$\frac{1}{\sqrt{15}}$	$-\frac{7}{9\sqrt{15}}$	$\frac{5}{3\sqrt{15}}$
$\tilde{E}_{(75)}^{(1,1,0)}$	$\tilde{E}_{(75)}^{(1,1,0)}$	$\frac{2}{\sqrt{7}}$	$\frac{2}{\sqrt{7}}$	$\frac{8}{15\sqrt{15}}$	0	$\frac{5}{3\sqrt{15}}$	$-\frac{8}{9\sqrt{15}}$
$\tilde{E}_{(75)}^{(1,1,0)}$	$\tilde{E}_{(75)}^{(1,1,0)}$	$\frac{2\sqrt{2}}{5\sqrt{3}}$	$\frac{32}{15\sqrt{15}}$	$\frac{4}{\sqrt{3}}$	$-\frac{1}{\sqrt{15}}$	$\frac{8}{9\sqrt{15}}$	$\frac{8}{9\sqrt{3}}$

All together we have $T_A = \sqrt{\frac{2}{3}}T_a^{\Phi_2} = -T_a^{\Phi_3} = -T_a^{\Phi_1}$, then the Goldstone is

$$
\overrightarrow{G}_{(3,1,\overline{2})} = A_2\hat{A}_{(15,1,\overline{1})} + \sqrt{\frac{2}{15}}\overrightarrow{E}_{(10,1,\overline{3})}
- \Phi_2\hat{\Phi}_{(15,1,\overline{1})} - \Phi_3\hat{\Phi}_{(15,1,\overline{3})}
$$

(21)

5 Goldstone modes for SSB of SU(5): [(3, 2, $-\frac{5}{6}$) + c.c.]

In study SSB of SU(5), the fields need to be decomposed into SU(5) representations and use the CGCs calculated in [36]. Under SU(5), the following representations

$$a_1 \equiv \hat{A}_{(1)}, \quad a_2 \equiv \hat{A}_{(24)}, \quad S \equiv \hat{E}_{(24)},$$

$V_R \equiv \hat{\Lambda}_{(1)}, \quad V_R \equiv \hat{\Lambda}_{(1)},$

$\phi_1 \equiv \hat{\Phi}_{(1)}, \quad \phi_2 \equiv \hat{\Phi}_{(24)}, \quad \phi_3 \equiv \hat{\Phi}_{(75)}$, (22)

contain the SM singlets whose VEVs will be denoted by the same symbols. Here the subscripts are the representations under SU(5).

Since the SU(5) singlets do not contribute to the Goldstone modes, the fields contain $\hat{a} = (3, 2, 0)$ are

$$\hat{A}_{(24)}, \quad \hat{E}_{(24)}, \quad \hat{\Phi}_{(24)}, \quad \hat{\Phi}_{(75)}.$$

The Goldstone corresponding to $(3, 2, -\frac{5}{6})$ is denoted as

$$\overrightarrow{G}_{(3,2,-\frac{5}{6})} = T_a^{a_2}a_2\hat{A}_{(24)}^{(3,2,-\frac{5}{6})} + T_a^{S}S\hat{E}_{(24)}^{(3,2,-\frac{5}{6})} + T_a^{\Phi_2}\phi_2\hat{\Phi}_{(24)}^{(3,2,-\frac{5}{6})} + T_a^{\Phi_3}\phi_3\hat{\Phi}_{(75)}^{(3,2,-\frac{5}{6})}.$$

The needed CGCs are taken from [36] and summarized in Tables 5 and 6.
Table 6 CGCs for the Goldstones (3, 2, $-\frac{1}{6}$) + c.c. of SU(5) SSB

X	Y	XY	XYa_1	XYa_2	XYs	$XY\phi_1$	$XY\phi_2$	$XY\phi_3$
$A_2^{(24)}$	$A_2^{(24)}$	0	0	$\frac{1}{3\sqrt{15}}$	$-\frac{1}{3\sqrt{15}}$	$-\frac{1}{3\sqrt{15}}$	$\frac{1}{3\sqrt{15}}$	
$A_2^{(24)}$	$E_8^{(24)}$	$-\frac{1}{3\sqrt{5}}$	$-\frac{1}{3\sqrt{5}}$	0	0	0	0	
$A_2^{(24)}$	$\Phi_8^{(24)}$	$-\frac{1}{3\sqrt{5}}$	$-\frac{1}{3\sqrt{5}}$	0	$\frac{2\sqrt{5}}{3\sqrt{5}}$	$-\frac{4}{15\sqrt{15}}$	$-\frac{2}{15\sqrt{15}}$	
$A_2^{(24)}$	$\Phi_8^{(75)}$	0	$\frac{3\sqrt{19}}{3\sqrt{15}}$	0	0	$-\frac{2\sqrt{5}}{3\sqrt{5}}$	$\frac{4\sqrt{5}}{15\sqrt{15}}$	
$E_8^{(24)}$	$E_8^{(24)}$	0	0	$\frac{1}{3\sqrt{5}}$	$\frac{1}{3\sqrt{5}}$	0	0	
$E_8^{(24)}$	$\Phi_8^{(24)}$	0	0	0	$\frac{1}{3\sqrt{5}}$	$\frac{1}{3\sqrt{5}}$	0	
$E_8^{(24)}$	$\Phi_8^{(75)}$	0	0	0	$\frac{1}{3\sqrt{5}}$	$\frac{1}{3\sqrt{5}}$	0	
$\Phi_8^{(24)}$	$\Phi_8^{(24)}$	0	0	0	0	$\frac{1}{3\sqrt{5}}$	$\frac{1}{3\sqrt{5}}$	
$\Phi_8^{(24)}$	$\Phi_8^{(75)}$	0	0	0	0	$\frac{1}{3\sqrt{5}}$	$\frac{1}{3\sqrt{5}}$	
$\Phi_8^{(75)}$	$\Phi_8^{(75)}$	0	0	0	0	$\frac{1}{3\sqrt{5}}$	$\frac{1}{3\sqrt{5}}$	

(3) According to (9), $\phi_2\phi_3$ gives

$$\frac{T_{\alpha}^{\phi_2}}{T_{\alpha}^{\phi_3}} = \frac{2c_{\phi_2\phi_3}}{C_{\alpha\alpha}^{\phi_2\phi_3}} C_{\alpha\alpha}^{\phi_2\phi_3}$$

$$= 2 \left(\frac{-\sqrt{2}}{9\sqrt{3}} \right) \left(\frac{-8}{9\sqrt{15}} \right) = \frac{5}{8},$$

or:

$$\frac{T_{\alpha}^{\phi_2}}{T_{\alpha}^{\phi_3}} = \frac{2c_{\phi_2\phi_3}}{C_{\alpha\alpha}^{\phi_2\phi_3}} C_{\alpha\alpha}^{\phi_2\phi_3}$$

$$= \left(\frac{-8}{9\sqrt{15}} - \frac{11}{18\sqrt{15}} \right) \left(\frac{-\sqrt{2}}{9\sqrt{3}} \right) = \frac{5}{8}. $$

$\phi_2^2\phi_3$ gives

$$\frac{T_{\alpha}^{\phi_2}}{T_{\alpha}^{\phi_3}} = \frac{C_{\alpha\alpha}^{\phi_2\phi_3}}{C_{\alpha\alpha}^{\phi_2\phi_3}}$$

$$= \frac{\sqrt{5}}{\sqrt{9\sqrt{6}}} \left(\frac{5}{18} - \frac{1}{18} \right) = \frac{\sqrt{5}}{8},$$

or:

$$\frac{T_{\alpha}^{\phi_2}}{T_{\alpha}^{\phi_3}} = \frac{C_{\alpha\alpha}^{\phi_2\phi_3}}{2C_{\alpha\alpha}^{\phi_2\phi_3}}$$

$$= \left(\frac{5}{18} \right) \left(2 \frac{\sqrt{5}}{9\sqrt{6}} \right) = \frac{5}{8}. $$

$\phi_2^2\phi_2$ gives

$$\frac{T_{\alpha}^{\phi_2}}{T_{\alpha}^{\phi_3}} = \frac{C_{\alpha\alpha}^{\phi_2\phi_2}}{C_{\alpha\alpha}^{\phi_2\phi_2}}$$

$$= \frac{1}{3\sqrt{15}} \left(\frac{-2}{3\sqrt{15}} - \frac{-1}{3\sqrt{15}} \right) = -1,$$

or:

$$\frac{T_{\alpha}^{\phi_2}}{T_{\alpha}^{\phi_3}} = \frac{C_{\alpha\alpha}^{\phi_2\phi_2}}{C_{\alpha\alpha}^{\phi_2\phi_2}}$$

$$= \frac{8}{15\sqrt{15}} \left(\frac{-4}{15\sqrt{15}} \right) = -1.$$
\(\phi_2^2 a_2 \) gives

\[
\frac{T_{a_{2a}}^{a_{2a}}}{T_{a_{2\bar{a}}}} = 2 \left(\frac{4 \sqrt{3}}{15 \sqrt{3}} \right) \left(- \frac{32}{15 \sqrt{15}} \right) = - \frac{\sqrt{5}}{8},
\]

or:

\[
\frac{T_{a_{2a}}^{a_{2a}}}{T_{a_{2\bar{a}}}} = \frac{C_{\phi_2 a_{2a}} - C_{\phi_2 a_{2\bar{a}}}}{C_{\phi_2 a_{2a}}} = \left(- \frac{32}{15 \sqrt{15}} \right) \left(- \frac{22}{15 \sqrt{15}} \right) = - \frac{\sqrt{5}}{8},
\]

\(S a_2^2 \) gives

\[
\frac{T_{a}^{S a_{2a}}}{T_{a}^{a_{2a}}} = 2 \left(\frac{1}{2 \sqrt{15}} \right) \left(\frac{1}{\sqrt{15}} \right) = -1,
\]

or:

\[
\frac{T_{a}^{S a_{2a}}}{T_{a}^{a_{2a}}} = \frac{C_{a_{2a} a_{2a}} - C_{a_{2\bar{a}} a_{2a}}}{C_{a_{2a} a_{2a}}} = \left(\frac{1}{2 \sqrt{15}} \right) \left(\frac{1}{\sqrt{15}} \right) = -1,
\]

\(S \phi_2^2 \) gives

\[
\frac{T_{a}^{S \phi_2}}{T_{a}^{a_{2a}}} = 2 \left(\frac{1}{6 \sqrt{15}} \right) \left(\frac{1}{6 \sqrt{15}} \right) = 1,
\]

or:

\[
\frac{T_{a}^{S \phi_2}}{T_{a}^{a_{2a}}} = \frac{C_{\phi_2 a_{2a}} - C_{\phi_2 a_{2\bar{a}}}}{C_{\phi_2 a_{2a}}} = \left(\frac{1}{6 \sqrt{15}} \right) \left(\frac{1}{12 \sqrt{15}} \right) = \left(\frac{1}{6 \sqrt{15}} \right) \left(\frac{1}{12 \sqrt{15}} \right) = 1,
\]

and \(S \phi_2^2 \) gives

\[
\frac{T_{a}^{S \phi_3}}{T_{a}^{a_{2a}}} = 2 \left(\frac{1}{3 \sqrt{6}} \right) \left(\frac{4}{3 \sqrt{15}} \right) = \sqrt{5} \frac{\sqrt{5}}{8}
\]

or:

\[
\frac{T_{a}^{S \phi_3}}{T_{a}^{a_{2a}}} = \frac{C_{\phi_2 a_{2a}} - C_{\phi_2 a_{2\bar{a}}}}{C_{\phi_2 a_{2a}}} = \left(\frac{1}{3 \sqrt{6}} \right) \left(\frac{11}{12 \sqrt{15}} \right) = \sqrt{5} \frac{\sqrt{5}}{8}.
\]

(4) According to (7), \(a_2 \phi_2 \phi_3 \) gives

\[
0 = \begin{pmatrix}
-C_{a_{2a} a_{2a}} & C_{a_{2a} a_{2a}} & C_{a_{2a} \bar{a}} \\
C_{a_{2a} \bar{a}} & -C_{a_{2a} a_{2a}} & C_{a_{2a} \bar{a}} \\
-C_{a_{2a} \bar{a}} & C_{a_{2a} \bar{a}} & -C_{a_{2a} a_{2a}}
\end{pmatrix}
\begin{pmatrix}
T_{a_{2a}}^{a_{2a}} \\
T_{a_{2\bar{a}}}^{a_{2a}} \\
T_{a_{2\bar{a}}}^{a_{2\bar{a}}}
\end{pmatrix},
\]

so that

\[
T_{a_{2a}}^{a_{2a}}, T_{a_{2\bar{a}}}^{a_{2a}}, T_{a_{2\bar{a}}}^{a_{2\bar{a}}} = 1 : -1 : \left(- \frac{\sqrt{8}}{5} \right),
\]

and \(S \phi_2 \phi_3 \) gives

\[
0 = \begin{pmatrix}
-C_{a_{2a} a_{2a}} & C_{a_{2a} a_{2a}} & C_{a_{2a} \bar{a}} \\
C_{a_{2a} \bar{a}} & -C_{a_{2a} a_{2a}} & C_{a_{2a} \bar{a}} \\
-C_{a_{2a} \bar{a}} & C_{a_{2a} \bar{a}} & -C_{a_{2a} a_{2a}}
\end{pmatrix}
\begin{pmatrix}
T_{a_{2a}}^{S a_{2a}} \\
T_{a_{2\bar{a}}}^{a_{2a}} \\
T_{a_{2\bar{a}}}^{a_{2\bar{a}}}
\end{pmatrix},
\]

so that

\[
T_{a_{2a}}^{S a_{2a}}, T_{a_{2\bar{a}}}^{a_{2a}}, T_{a_{2\bar{a}}}^{a_{2\bar{a}}} = 1 : 1 \sqrt{\frac{\sqrt{8}}{5}}.
\]

Altogether, the Goldstone mode is

\[
\bar{G}_{(3.2, -\frac{1}{6})} = a_2 \Phi_{(24)}^{(3.2, -\frac{1}{6})} - S E_{(24)}^{(3.2, -\frac{1}{6})}
\]

\[= \phi_2 \Phi_{(24)}^{(3.2, -\frac{1}{6})} - \frac{8}{5} \phi_3 \Phi_{(75)}^{(3.2, -\frac{1}{6})}.
\]

6 Goldstone modes for SSB of \(G_{51} : [3, 2, \frac{1}{6}] + c.c. \)

In studying the SSB of the flipped \(SU(5) \), the fields need to be decomposed into \(G_{51} = (SU(5) \otimes U(1))^{flipped} \) representations and use the CGCs accordingly. Under \(G_{51} \), the following representations
contain the SM singlets whose VEVs will be denoted by the same symbols. Here the subscripts are the representations under G_{51}. These VEVs are related to those under G_{422} and $SU(5)$ by

$$
\tilde{S} = E = S, \quad \delta = \nu_R = V_R, \quad \tilde{\delta} = \nu_R' = \bar{V}_R.
$$

(25)

and

$$
\begin{align*}
\begin{pmatrix}
\tilde{\phi}_1 \\
\tilde{\phi}_2 \\
\tilde{\phi}_3
\end{pmatrix} &= \begin{pmatrix}
\frac{\sqrt{2}}{\sqrt{3}} & -\frac{\sqrt{2}}{\sqrt{3}} \\
\frac{\sqrt{2}}{3} & -\frac{\sqrt{2}}{3} \\
\frac{\sqrt{2}}{3} & \frac{\sqrt{2}}{3}
\end{pmatrix}
\begin{pmatrix}
\Phi_1 \\
\Phi_2 \\
\Phi_3
\end{pmatrix} \\
&= \begin{pmatrix}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{pmatrix}
\begin{pmatrix}
\phi_1 \\
\phi_2 \\
\phi_3
\end{pmatrix}.
\end{align*}
$$

(27)

The fields contain to $\tilde{a} = (3, 2, \frac{1}{3})$ are

$$
\begin{align*}
\bar{\tilde{a}}_1 &\equiv \bar{A}_{(1,0),} \quad \bar{\tilde{a}}_2 \equiv \bar{A}_{(24,0),} \quad \tilde{S} \equiv \tilde{E}_{(24,0),} \\
\delta &\equiv \bar{\Delta}_{(50,2),} \quad \tilde{\delta} \equiv \tilde{\Delta}_{(50,2),} \\
\tilde{\phi}_1 &\equiv \tilde{\Phi}_{(1,0),} \quad \tilde{\phi}_2 \equiv \tilde{\Phi}_{(24,0),} \quad \tilde{\phi}_3 \equiv \tilde{\Phi}_{(75,0),}
\end{align*}
$$

(24)

they are related to the fields under G_{422} and $SU(5)$ by

$$
\begin{align*}
\bar{A}_{(24,0)} &\equiv \bar{A}_{(6,2,2)} = \bar{A}_{(10,4),} \\
\tilde{E}_{(24,0)} &\equiv \tilde{E}_{(6,2,2)} = \tilde{E}_{(15,4),} \\
\bar{D}_{(10,6)} &\equiv \bar{D}_{(15,2,2)} = \bar{D}_{(15,6),} \\
\tilde{A}_{(50,2)} &\equiv \tilde{A}_{(15,2,2)} = \tilde{A}_{(15,6),} \\
\bar{\Delta}_{(50,2)} &\equiv \bar{\Delta}_{(15,2,2)} = \bar{\Delta}_{(15,6),} \\
\tilde{\Delta}_{(50,2)} &\equiv \tilde{\Delta}_{(15,2,2)} = \tilde{\Delta}_{(15,6),}
\end{align*}
$$

Note that $\bar{D}_{(10,6)}$ and $\bar{\Delta}_{(45,2)}$ do not contain any VEV, so the Goldstone mode can be denoted as

$$
\begin{align*}
\bar{G}_{(3,2,\frac{1}{3})} = T_{\bar{g}}^{\bar{\phi}_1} \bar{A}_{(24,0)} + T_{\bar{g}}^{\bar{\phi}_2} \tilde{E}_{(24,0)} + T_{\bar{g}}^{\bar{\phi}_3} \bar{D}_{(10,6)} + T_{\bar{g}}^{\bar{\phi}_4} \tilde{A}_{(50,2)} + T_{\bar{g}}^{\bar{\phi}_5} \bar{\Delta}_{(50,2)} + T_{\bar{g}}^{\bar{\phi}_6} \tilde{\Delta}_{(50,2)}.
\end{align*}
$$

The needed CGCs can be transformed from those under G_{422} through (25)–(28), and are summarized in Tables 7 and 8. For completeness, the full mass matrix for $[(3, 2, \frac{1}{3}) + c.c.]$ can be also transformed through (25)–(28) and is given in the Appendix, for the readers to check the results of this section.

(1) According to (10), the coupling $\bar{\phi}_2$ gives

$$
0 = C_{\bar{g}a_1a_1}^{\bar{\phi}_2\phi_1\phi_2} - 2 C_{\bar{g}a_1a_1}^{\bar{\phi}_2\phi_1\phi_2} = -\frac{7}{9\sqrt{15}} - 2 \ast \left(\frac{7}{18\sqrt{15}}\right),
$$

and \tilde{S}^3 gives

$$
0 = C_{\bar{g}a_1a_1}^{\tilde{S}^3} - 2 C_{\bar{g}a_1a_1}^{\tilde{S}^3} = \frac{8}{9\sqrt{3}} - 2 \ast \frac{4}{9\sqrt{3}}.
$$

(2) $\bar{\phi}_1, \bar{\phi}_1, \tilde{a}_1$ contain neither Goldstones, the couplings $\bar{\phi}_2^2 \tilde{\phi}_1 \tilde{\phi}_3 \tilde{\phi}_1 \tilde{\phi}_3 \tilde{\phi}_2 \tilde{\phi}_2 \tilde{\phi}_3 \tilde{a}_1$ lead to only trivial results. The coupling $\bar{\delta} \bar{\delta} \bar{a}_2$ according to (8), gives

$$
\begin{align*}
\frac{T_{\bar{g}}^{\bar{\phi}_2}}{T_{\bar{g}}^{\bar{\phi}_2}} &= C_{\bar{g}a_1a_1}^{\bar{\delta} \bar{\delta} \bar{a}_2} = \left(\frac{-1}{30}\right) / \left(\frac{-1}{5\sqrt{15}}\right) = \frac{\sqrt{15}}{6}, \\
\frac{T_{\bar{g}}^{\bar{\phi}_3}}{T_{\bar{g}}^{\bar{\phi}_3}} &= C_{\bar{g}a_1a_1}^{\bar{\phi}_3\phi_3} = \left(\frac{-\sqrt{2}}{15}\right) / \left(\frac{1}{5\sqrt{3}}\right) = -\frac{\sqrt{6}}{3}, \\
\frac{T_{\bar{g}}^{\bar{\phi}_3}}{T_{\bar{g}}^{\bar{\phi}_3}} &= C_{\bar{g}a_1a_1}^{\bar{\phi}_3\phi_3} = \left(\frac{-1}{5}\right) / \left(\frac{-2\sqrt{3}}{5\sqrt{5}}\right) = \frac{\sqrt{15}}{6}.
\end{align*}
$$
Table 7 CGCs for the SM singlets (1, 1, 0) through G51. Here, for example, $\tilde{\phi}_5$ stands for $\tilde{\phi}^{(1,1,0)}_{(75,0)}$

X	Y	XY\tilde{a}_1	XY\tilde{a}_2	XY\tilde{S}	XY$\tilde{\phi}_1$	XY$\tilde{\phi}_2$	XY$\tilde{\phi}_3$
$\tilde{\lambda}^{(1,1,0)}_{(1,0)}$	$\tilde{\lambda}^{(1,1,0)}_{(1,0)}$	0	0	0	$\frac{4}{\sqrt{15}}$	0	0
$\tilde{\lambda}^{(1,1,0)}_{(24,0)}$	$\tilde{\lambda}^{(1,1,0)}_{(24,0)}$	0	0	$\frac{1}{\sqrt{15}}$	$-\frac{1}{\sqrt{15}}$	$\frac{2}{3\sqrt{15}}$	$\frac{5}{3\sqrt{15}}$
$\tilde{\lambda}^{(1,1,0)}_{(1,0)}$	$\tilde{\lambda}^{(1,1,0)}_{(24,0)}$	0	0	$\sqrt{\frac{5}{3}}$	0	$\sqrt{\frac{5}{3}}$	0
$\tilde{\phi}^{(1,1,0)}_{(1,0)}$	$\tilde{\phi}^{(1,1,0)}_{(24,0)}$	0	0	$\sqrt{\frac{1}{5}}$	0	0	0
$\tilde{\phi}^{(1,1,0)}_{(50,0)}$	$\tilde{\phi}^{(1,1,0)}_{(50,0)}$	$\frac{i}{\sqrt{10}}$	$-\frac{2\sqrt{3}}{5\sqrt{5}}$	0	$-\frac{1}{5\sqrt{15}}$	$\frac{1}{5\sqrt{15}}$	$\frac{1}{5\sqrt{15}}$
$\tilde{\phi}^{(1,1,0)}_{(1,0)}$	$\tilde{\phi}^{(1,1,0)}_{(24,0)}$	$\frac{6\sqrt{2}}{5\sqrt{5}}$	0	0	$\sqrt{\frac{1}{5}}$	0	0
$\tilde{\phi}^{(1,1,0)}_{(1,0)}$	$\tilde{\phi}^{(1,1,0)}_{(24,0)}$	0	$\frac{2\sqrt{3}}{5\sqrt{5}}$	$\sqrt{\frac{3}{5}}$	0	$\frac{1}{\sqrt{15}}$	0
$\tilde{\phi}^{(1,1,0)}_{(1,0)}$	$\tilde{\phi}^{(1,1,0)}_{(75,0)}$	0	0	0	0	$-\frac{1}{\sqrt{15}}$	0
$\tilde{\phi}^{(1,1,0)}_{(24,0)}$	$\tilde{\phi}^{(1,1,0)}_{(24,0)}$	$\frac{4\sqrt{2}}{5\sqrt{5}}$	$-\frac{8}{15\sqrt{15}}$	$\frac{1}{6\sqrt{15}}$	$\frac{1}{12\sqrt{15}}$	$\frac{7}{9\sqrt{15}}$	$\frac{5}{18\sqrt{3}}$
$\tilde{\phi}^{(1,1,0)}_{(75,0)}$	$\tilde{\phi}^{(1,1,0)}_{(75,0)}$	$-\frac{2\sqrt{2}}{5\sqrt{5}}$	$\frac{32}{15\sqrt{15}}$	$\frac{4}{3\sqrt{15}}$	$-\frac{1}{15}$	$-\frac{8}{9\sqrt{15}}$	$\frac{8}{9\sqrt{15}}$

Table 8 CGCs for the Goldstone (3, 2, $\frac{1}{2}$) + c.c. of G51 SSB

X	Y	XY\tilde{a}_1	XY\tilde{a}_2	XY\tilde{S}	XY$\tilde{\phi}_1$	XY$\tilde{\phi}_2$	XY$\tilde{\phi}_3$
$\tilde{\lambda}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\lambda}^{(3,2,\frac{1}{2})}_{(24,0)}$	0	0	$\frac{1}{2\sqrt{15}}$	0	0	$-\frac{1}{\sqrt{15}}$
$\tilde{\lambda}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\sqrt{\frac{2}{5}}$	$\frac{1}{2\sqrt{15}}$	0	0	0	0
$\tilde{\lambda}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	0	0	0	$-\frac{1}{\sqrt{5}}$	0	0
$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\sqrt{\frac{2}{5}}$	$-\frac{1}{3\sqrt{15}}$	0	0	0	$2\sqrt{\frac{2}{5}}$
$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	0	$-\frac{\sqrt{5}}{3\sqrt{5}}$	0	0	0	$2\sqrt{\frac{2}{5}}$
$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(75,0)}$	0	0	$\sqrt{\frac{1}{3}}$	0	0	0
$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\frac{4\sqrt{2}}{5\sqrt{5}}$	$-\frac{4}{15\sqrt{15}}$	$\frac{1}{12\sqrt{15}}$	0	$\frac{7}{18\sqrt{15}}$	$\frac{1}{18\sqrt{3}}$
$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(75,0)}$	$-\frac{2\sqrt{2}}{3\sqrt{15}}$	$-\frac{5}{3\sqrt{3}}$	0	0	0	$-\frac{\sqrt{2}}{9\sqrt{6}}$
$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(75,0)}$	$-\frac{2\sqrt{2}}{3\sqrt{15}}$	$\frac{11}{12\sqrt{15}}$	0	$-\frac{1}{\sqrt{15}}$	$-\frac{11}{18\sqrt{15}}$	$\frac{4}{9\sqrt{3}}$
$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(75,0)}$	0	0	0	$-\frac{1}{\sqrt{5}}$	0	0
$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(24,0)}$	$\tilde{\phi}^{(3,2,\frac{1}{2})}_{(75,0)}$	0	0	0	0	0	0
\(\bar{a}_2\bar{\phi}_2\bar{a}_1 \) gives
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{C_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = 1,
\]
\(\bar{a}_2\bar{\phi}_2\bar{\phi}_1 \) gives
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{C_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{2\sqrt{3}}{5\sqrt{5}}\right) / \left(\frac{2\sqrt{3}}{5\sqrt{5}}\right) = 1,
\]
\(\bar{S}_2\bar{a}_1\bar{a}_1 \) gives
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{C_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = 1,
\]
and \(\bar{S}_2\bar{\phi}_2\bar{a}_1 \) gives
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{C_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{3}}{2\sqrt{5}}\right) / \left(\frac{\sqrt{3}}{2\sqrt{5}}\right) = 1.
\]
(3) According to (9), \(\bar{\phi}_2\bar{\phi}_3 \) gives
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{2C_{\bar{a}a}\bar{a}_1\bar{a}_1}{C_{\bar{a}a}\bar{a}_1\bar{a}_1} = 2 \times \left(\frac{\sqrt{3}}{2\sqrt{5}}\right) / \left(\frac{\sqrt{3}}{2\sqrt{5}}\right) = -\frac{5}{8},
\]
or:
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = -\frac{5}{8}.
\]
\(\bar{\phi}_2\bar{\phi}_3 \) gives
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = -\frac{5}{8}.
\]
(or:
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = -\frac{5}{8}.
\]
\(\bar{a}_2\bar{\phi}_2 \) gives
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = -\frac{5}{8}.
\]
(or:
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = -\frac{5}{8}.
\]
\(\bar{a}_2\bar{\phi}_2 \) gives
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = -\frac{5}{8}.
\]
(or:
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = -\frac{5}{8}.
\]
\(\bar{S}_2\bar{a}_2 \) gives
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = -\frac{5}{8}.
\]
(or:
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = -\frac{5}{8}.
\]
\(\bar{S}_2\bar{a}_2 \) gives
\[
\frac{T_{\bar{a}}^\bar{a}}{T_{\bar{a}}^\phi} = \frac{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1}{\bar{C}_{\bar{a}a}\bar{a}_1\bar{a}_1} = \left(\frac{\sqrt{2}}{\sqrt{3}}\right) / \left(\frac{\sqrt{2}}{\sqrt{3}}\right) = -\frac{5}{8}.
\]
or: \[
\frac{T^\tilde{\phi}_2}{T^{\tilde{\alpha}}} = \frac{2C_{\tilde{\alpha}}^{\tilde{\phi}_2\phi}}{C_{\tilde{\phi}_2}\phi_2} = 2 \times \left(\frac{1}{\sqrt{15}} - \frac{1}{12\sqrt{15}} \right) = \frac{\sqrt{5}}{12},
\]

\[2\phi_2\tilde{\phi}_3 \]
gives
\[
\frac{T^\tilde{\phi}_3}{T^{\tilde{\phi}_2}} = \frac{2C_{\tilde{\phi}_2}\phi_2}{C_{\tilde{\phi}_3}^{\phi_2}} = 2 \times \left(\frac{1}{\sqrt{15}} - \frac{1}{6\sqrt{15}} \right) = \frac{\sqrt{5}}{6},
\]

(4) According to (7), \(\tilde{\alpha} \tilde{\phi}_2 \tilde{\phi}_3 \)
gives
\[
0 = \left(\begin{array}{ccc}
\tilde{\alpha}^{\tilde{\phi}_2\phi_3} & \tilde{\alpha}^{\tilde{\phi}_2\phi_2} & \tilde{\alpha}^{\tilde{\phi}_2\phi_1} \\
\tilde{\alpha}^{\tilde{\phi}_2\phi_3} & \tilde{\alpha}^{\tilde{\phi}_2\phi_2} & \tilde{\alpha}^{\tilde{\phi}_2\phi_1} \\
\tilde{\alpha}^{\tilde{\phi}_2\phi_3} & \tilde{\alpha}^{\tilde{\phi}_2\phi_2} & \tilde{\alpha}^{\tilde{\phi}_2\phi_1}
\end{array} \right) \left(\begin{array}{c}
T^{\tilde{\alpha}} \\
T^{\tilde{\phi}_2} \\
T^{\tilde{\phi}_3}
\end{array} \right)
\]

so that
\[
T^{\tilde{\alpha}}, T^{\tilde{\phi}_2}, T^{\tilde{\phi}_3} = 1:1: \left(\frac{\sqrt{5}}{5} \right).
\]

7 Summary

We have studied the Goldstone modes of SSB in the SUSY SO(10) model with general renormalizable couplings. VEVs and CGCs determine the contents of these Goldstone modes while the parameters of the model are irrelevant. Identities among the CGCs are examined to be in accord with the general conclusions in [38].

Acknowledgements We thank Z.-Y. Chen and Z.-X. Ren for early collaborations. DXZ also thank Y.-X. Liu and D. Yang for helpful discussions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

Appendix: Mass matrix for \([3, 2, \frac{1}{6}] + \text{c.c.}\]

For the SSB of \(G_{422}\) and \(SU(5)\), the mass matrices for the Goldstone representations can be found in [29,36], respectively. Here we give the mass matrix for \([3, 2, \frac{1}{6}] + \text{c.c.}\)
using \(G_{51} \) as the maximal subgroup of SO(10). This matrix is transformed from [29] through (25)–(28). \([3, 2, \frac{1}{2}] + \ldots \).

\[
\begin{align*}
\mathbf{c} & : A_z^{(3, 2, \frac{1}{2})}, E_z^{(3, 2, \frac{1}{2})}, D_z^{(3, 2, \frac{1}{2})}, \Delta_z^{(3, 2, \frac{1}{2})}, \\
\mathbf{r} & : A_z^{(3, 2, -\frac{1}{2})}, E_z^{(3, 2, -\frac{1}{2})}, D_z^{(3, 2, -\frac{1}{2})}, \Delta_z^{(3, 2, -\frac{1}{2})}, \\
\Delta_{(55, -2)} & = \Phi_{(24, 0)}, \Phi_{(75, 0)}.
\end{align*}
\]

where:

\[
\begin{align*}
m_{11} &= m_4 + \frac{\delta \lambda}{2\sqrt{15}} - \lambda \sqrt{\frac{2}{3}} \phi_1 - \lambda \phi_2 - \frac{\sqrt{2}}{\sqrt{3}} \phi_3, \\
m_{16} &= \sqrt{\frac{2}{15}} a_1 \lambda_5 - \lambda_2 \phi_3 + \frac{\sqrt{2}}{3} \sqrt{\frac{\lambda_5}{3}} - \frac{\lambda_2 \phi_3}{\sqrt{3}} - \frac{\phi_3}{\sqrt{3}}, \\
m_{17} &= -\frac{1}{\sqrt{3}} a_2 \lambda_5 - \frac{\sqrt{2}}{3} \sqrt{\frac{\lambda_7}{3}} - \frac{4 \lambda_7 \phi_1}{3} - \frac{\lambda_7 \phi_1}{15}, \\
m_{26} &= \lambda_1 \phi_2 + \frac{\lambda_1 \phi_3}{2}, \\
m_{27} &= -\frac{1}{\sqrt{3}} \phi_2, \\
m_{33} &= m_6 - \frac{\delta \lambda_1}{3\sqrt{15}} - \lambda_1 \phi_3 - \frac{2 \lambda_1 \phi_3}{3\sqrt{15}} + \frac{\lambda_1 \phi_3}{3\sqrt{15}}, \\
m_{34} &= -\frac{\lambda_1 \phi_3}{3\sqrt{15}} - \frac{\lambda_1 \phi_3}{3\sqrt{15}}, \\
m_{35} &= \lambda_1 \phi_3 - \frac{1}{\phi_3}, \\
m_{41} &= \lambda_2 \phi_3 - \frac{1}{\phi_3}, \\
m_{44} &= \lambda_2 \phi_3 - \frac{1}{\phi_3}, \\
m_{53} &= \lambda_2 \phi_3 - \frac{1}{\phi_3}, \\
m_{55} &= \lambda_2 \phi_3 - \frac{1}{\phi_3}.
\end{align*}
\]

References

1. J.C. Pati, A. Salam, Unified lepton–hadron symmetry and a gauge theory of the basic interactions. Phys. Rev. D 8, 1240 (1973)
2. H. Georgi, S.L. Glashow, Unity of all elementary particle forces. Phys. Rev. Lett. 32, 438 (1974)
3. S.M. Barr, A new symmetry breaking pattern for SO(10) and proton decay. Phys. Lett. 112B, 219 (1982)
4. H. Georgi, The state of the art gauge theories. AIP Conf. Proc. 23, 575 (1975)
5. H. Fritzsch, P. Minkowski, Unified interactions of leptons and hadrons. Ann. Phys. 93, 193 (1975)
6. F. Gursey, P. Ramond, P. Sikivie, A universal gauge theory model based on E6. Phys. Lett. 60B, 177 (1976)
7. S. Dimopoulos, S. Raby, F. Wilczek, Supersymmetry and the scale of unification. Phys. Rev. D 24, 1681 (1981)
8. W.J. Marciano, G. Senjanovic, Predictions of supersymmetric grand unified theories. Phys. Rev. D 25, 3092 (1982)
9. U. Amaldi, W. de Boer, H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Phys. Lett. B 260, 447 (1991)
10. J. Ellis, S. Kelley, D.V. Nanopoulos, Probing the desert using gauge coupling unification. Phys. Lett. B 260, 131 (1991)
11. P. Langacker, M. Luo, Implications of precision electroweak experiments for \(m_1, \phi_0, \sin^2 \theta_\text{w} \), and grand unification. Phys. Rev. D 44, 817 (1991)
12. C. Giunti, C.W. Kim, U.W. Lee, Running coupling constants and grand unification models. Mod. Phys. Lett. A 06, 17 (1991)
13. B. Brahmachari, R.N. Mohapatra, Low alpha(strong) (M(Z)), intermediate scale SUSY SO(10) and its implications. Phys. Lett. B 357, 566 (1995)
14. M.K. Parida, B. Purkayastha, C.R. Das, B.D. Cajeef, Precision and uncertainties in mass scale predictions in SUSY SO(10) with SU(2)L x SU(2)(R) x U(1)(B-L) x SU(3)C intermediate breaking. Eur. Phys. J. C 28, 353 (2003)
15. M.K. Parida, Intermediate left-right gauge symmetry, unification of couplings and fermion masses in SUSY SO(10) x S(4). Phys. Rev. D 78, 053004 (2008)
16. J. Goldstone, Field theories with superconductor solutions. Nuovo Cim. 19, 154 (1961)
17. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. 1. Phys. Rev. 122, 345 (1961)
18. J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965 (1962)
19. T.E. Clark, T.K. Kuo, N. Nakagawa, An SO(10) supersymmetric grand unified theory. Phys. Lett. B 115, 26 (1982)
20. C.S. Aulakh, R.N. Mohapatra, Implications of supersymmetric SO(10) grand unification. Phys. Rev. D 28, 217 (1983)
21. X.-G. He, S. Meljanac, Symmetry breaking and mass spectra in supersymmetric SO(10) models. Phys. Rev. D 41, 1620 (1990)
22. D.-G. Lee, Symmetry breaking and mass spectra in the minimal supersymmetric SO(10) grand unified theory. Phys. Rev. D 49, 1417 (1994)
23. J. Sato, A SUSY SO(10) GUT with an intermediate scale. Phys. Rev. D 53, 3884 (1996)
24. C.S. Aulakh, B. Bajc, A. Melfo, A. Rasin, G. Senjanovic, SO(10) theory of R-parity and neutrino mass. Nucl. Phys. B 597, 89 (2001)
25. C.S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic, F. Vissani, The minimal supersymmetric grand unified theory. Phys. Lett. B 588, 196 (2004)
26. B. Bajc, A. Melfo, G. Senjanovic, F. Vissani, Minimal supersymmetric grand unified theory: symmetry breaking and the particle spectrum. Phys. Rev. D 70, 035007 (2004)
27. T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac, N. Okada, General formulation for proton decay rate in minimal supersymmetric SO(10) GUT. Eur. Phys. J. C 42, 191 (2005)
28. T. Fukuyama, T. Kikuchi, A. Ilakovac, S. Meljanac, N. Okada, Detailed analysis of proton decay rate in the minimal supersymmetric SO(10) model. JHEP 0409, 052 (2004)
29. T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac, N. Okada, SO(10) group theory for the unified model building. J. Math. Phys. 46, 033505 (2005)
30. C.S. Aulakh, A. Girdhar, SO(10) MSGUT: spectra, couplings and threshold effects. Nucl. Phys. B 711, 275 (2005)
31. C.S. Aulakh, S.K. Garg, MSGUT: from bloom to doom. Nucl. Phys. B 757, 47 (2006)
32. M. Malinský, Higgs sector of the next-to-minimal renormalizable SUSY SO(10), arXiv:0807.0591
33. C.S. Aulakh, S.K. Garg, The new minimal supersymmetric GUT: spectra, RG analysis and fermion fits. Nucl. Phys. B 857, 101 (2012)
34. C.S. Aulakh, I. Garg, C.K. Khosa, Baryon stability on the Higgs dissolution edge: threshold corrections and suppression of baryon violation in the NMSGUT. Nucl. Phys. B 882, 397 (2014)
35. P. Nath, R.M. Syed, An analysis of B-L = -2 operators from matter-Higgs interactions in a class of supersymmetric SO(10) models. Phys. Rev. D 93(5), 055005 (2016)
36. Z.-Y. Chen, D.-X. Zhang, X.-Z. Bai, Couplings in renormalizable supersymmetric SO(10) models. Int. J. Mod. Phys. A 32(36), 1750207 (2017)
37. Z. Ren, D.-X. Zhang, On the seesaw scale in supersymmetric SO(10) models. Eur. Phys. J. Plus 132(7), 322 (2017)
38. X.-Z. Bai, D. Yang, D.-X. Zhang, Goldstone modes and Clebsch–Gordan coefficients. arXiv:1801.00300