On bisecants of Rédei type blocking sets and applications

Bence Csajbók*

Abstract

If B is a minimal blocking set of size less than $3(q+1)/2$ in $\text{PG}(2,q)$, q is a power of the prime p, then Szőnyi’s result states that each line meets B in $1 \pmod{p}$ points. It follows that B cannot have bisecants, i.e. lines meeting B in exactly two points. If $q > 13$, then there is only one known minimal blocking set of size $3(q+1)/2$ in $\text{PG}(2,q)$, the so called projective triangle. This blocking set is of Rédei type and it has $3(q-1)/2$ bisecants, which have a very strict structure. We use polynomial techniques to derive structural results on Rédei type blocking sets from information on their bisecants. We apply our results to point sets of $\text{PG}(2,q)$ with few odd-secants.

In particular, we improve the lower bound of Balister, Bollobás, Füredi and Thompson on the number of odd-secants of a $(q + 2)$-set in $\text{PG}(2,q)$ and we answer a related open question of Vandendriessche. We prove structural results for semiovals and derive the non existence of semiovals of size $q + 3$ when $3 \nmid q$ and $q > 5$. This extends a result of Blokhuis who classified semiovals of size $q + 2$, and a result of Bartoli who classified semiovals of size $q + 3$ when $q \leq 17$. In the q even case we can say more applying a result of Szőnyi and Weiner about the stability of sets of even type. We also obtain new proof to a result of Gács and Weiner about $(q + t, t)$-arcs of type $[0, 2, t]$ and to one part of a result of Ball, Blokhuis, Brouwer, Storme and Szőnyi about functions over $\text{GF}(q)$ determining less than $(q + 3)/2$ directions.

*Research supported by the Hungarian National Foundation for Scientific Research, Grant No. K 81310 and by the Italian Ministry of Education, University and Research (PRIN 2012 project “Strutture geometriche, combinatoria e loro applicazioni”)

AMS subject classification: 51E20, 51E21
1 Introduction

A blocking set \(B \) of \(\text{PG}(2,q) \), the Desarguesian projective plane of order \(q \), is a point set meeting every line of the plane. \(B \) is called non-trivial if it contains no line and minimal if \(B \) is minimal subject to set inclusion. A point \(P \in B \) is said to be essential if \(B \setminus \{P\} \) is not a blocking set. For a point set \(S \) and a line \(\ell \) we say that \(\ell \) is a \(k \)-secant of \(S \) if \(\ell \) meets \(S \) in \(k \) points. If \(k = 1 \), \(k = 2 \), or \(k = 3 \), then we call \(\ell \) a tangent to \(S \), a bisecant of \(S \), or a trisecant of \(S \), respectively. We usually consider \(\text{PG}(2,q) \) as \(\text{AG}(2,q) \), the Desarguesian affine plane of order \(q \), extended by the line at infinity, \(\ell_{\infty} \). Throughout the paper \(q \) will always denote a power of \(p \), \(p \) prime. For the points of \(\text{AG}(2,q) \) we use cartesian coordinates. The infinite point (or direction) of lines with slope \(m \) will be denoted by \(m \). The infinite point of vertical lines will be denoted by \(0 \). Let \(U \) be a set of \(q \) points of \(\text{AG}(2,q) \). The set of directions determined by \(U \) is \(\mathcal{D}_U := \left\{ \frac{b_i - b_j}{a_i - a_j} : i \neq j \right\} \). It is easy to see that \(B := U \cup \mathcal{D}_U \) is a blocking set of \(\text{PG}(2,q) \) with the property that there is a line, the line at infinity, which meets \(B \) in exactly \(|B| - q \) points. If \(|\mathcal{D}_U| \leq q \), then \(B \) is minimal. Conversely, if \(B \) is a minimal blocking set of size \(q + N \leq 2q \) and there is a line meeting \(B \) in \(N \) points, then \(B \) can be obtained from the above construction. Blocking sets of size \(q + N \leq 2q \) with an \(N \)-secant are called blocking sets of Rédei type, the \(N \)-secants of the blocking set are called Rédei lines. If the \(q \)-set \(U \) does not determine every direction, then \(U \) is affinely equivalent to the graph of a function, i.e. \(U = \{(x, f(x))\} \), where \(f \) is a GF\((q)\) to GF\((q)\) function. Note that \(f(x) - cx \) is a permutation polynomial if and only if \((c) \) is a direction not determined by the graph of \(f \), see [11] by Evans, Greene, Niederreiter. A blocking set is said to be small, if its size is less than \(q + (q + 3)/2 \). Small minimal Rédei type blocking sets, or equivalently, functions determining less than \((q + 3)/2 \) directions, have been characterized by Ball, Blokhuis, Brouwer, Storme, Szőnyi and Ball, see [3] [2]. From these results it follows that such blocking sets meet each line of the plane in \(1 \mod p \) points. This property holds for any small minimal blocking set, as it was proved by Szőnyi in [22].

It follows from the above mentioned results that minimal blocking sets with bisecants cannot be small. If \(q \) is odd, then the smallest known non-small minimal Rédei type blocking set is the following set of \(q + (q + 3)/2 \) points (up to projective equivalence):

\[
B := \{(0,1,a), (1,0,a), (-a,1,0) : a \text{ is a square in GF}(q)\} \cup \{(0,0,1)\}.
\]

In the book of Hirschfeld [14] Lemma 13.6 (i) this example is called the projective triangle. \(B \) has three Rédei lines and has the following properties.
Through each point of B there passes a bisecant of B. If $\mathcal{H} \subset B$ is a set of collinear points such that there passes a unique bisecant of B through each point of \mathcal{H} and there is a Rédei line ℓ disjoint from \mathcal{H}, then the bisecants through the points of \mathcal{H} are contained in a pencil. In Theorem 2.3 we show that this property holds for any Rédei type blocking set. In fact, we prove the following stronger result. If R_1 and R_2 are points of $B \setminus \ell$, such that for $i = 1, 2$ there is a unique bisecant of B through R_i and there is a point $T \in \ell$, such that TR_1 and TR_2 meet B in at least four points, then for each $M \in \ell$ the lines R_1M and R_2M meet B in the same number of points. The essential part of our proof is algebraic, it is based on polynomials over $\text{GF}(p^q)$. We apply our results to point sets of $\text{PG}(2, q)$ with few odd-secants, which we detail in the next paragraphs.

A semioval S of a finite projective plane is a point set with the property that at each point of S there passes exactly one tangent to S. For a survey on semiovals see [16] by Kiss. In $\text{PG}(2, q)$ Blokhuis characterized semiovals of size $q - 1 + a$, $a > 2$, meeting each line in $0, 1, 2$, or a points. He also proved that there is no semioval of size $q + 2$ in $\text{PG}(2, q)$, $q > 7$, see [8] and [9], where the term seminuclear set was used for semiovals of size $q + 2$. For another characterization of semiovals with special intersection pattern with respect to lines see [12] by Gács. We refine Blokhuis’ characterization to obtain new structural results about semiovals of size $q - 1 + a$ containing a collinear points. As an application, we prove the non-existence of semiovals of size $q + 3$ in $\text{PG}(2, q)$, $7 < q$ odd when $p \neq 3$. For $q \leq 17$ this was proved also by Bartoli in [4]. When q is small, then the spectrum of the sizes of semiovals in $\text{PG}(2, q)$ is known, see [20] by Lisonek for $q \leq 7$ and [17] by Kiss, Marcugini and Pambianco for $q = 9$. When q is even, then a stronger result follows from [24, Theorem 5.3] by Szönyi and Weiner on the stability of sets of even type.

In the recent article [1] by Balister, Bollobás, Füredi and Thompson, the minimum number of odd-secants of an n-set in $\text{PG}(2, q)$, q odd, was investigated. They studied in detail the case of $n = q + 2$. In our last section we improve their lower bound and we answer a related open question of Vandendriessche from [25].

Our Theorem 2.3 yields a new proof to [13, Theorem 2.5] by Gács and Weiner about $(q + t, t)$-arcs of type $[0, 2, t]$. In Section 3 we explain some connections between Theorem 2.3 and the direction problem.
2 Bisecants of Rédei type blocking sets

Lemma 2.1. Let \mathcal{U} be a set of q points in $\AG(2, q)$ and denote by $\mathcal{D}_\mathcal{U}$ the set of directions determined by \mathcal{U}. Take a point $R = (a_0, b_0) \in \mathcal{U}$ and denote the remaining $q - 1$ points of \mathcal{U} by (a_i, b_i) for $i = 1, 2, \ldots, q - 1$. Consider the following polynomial:

$$f(Y) := \prod_{i=1}^{q-1} ((a_i - a_0)Y - (b_i - b_0)) \in \GF(q)[Y].$$ \hfill (1)

For $m \in \GF(q)$ the following holds.

1. The line through R with direction m meets \mathcal{U} in k_m points if and only if m is a $(k_m - 1)$-fold root of $f(Y)$.
2. If $(m) \notin \mathcal{D}_\mathcal{U}$, then $f(m) = -1$.
3. If $(x) \notin \mathcal{D}_\mathcal{U}$, then the coefficient of Y^{q-1} in f is -1.

Proof. We have $(a_j - a_0)m - (b_j - b_0) = 0$ for some $j \in \{1, 2, \ldots, q - 1\}$ if and only if (m), R and (a_j, b_j) are collinear. This proves part a). To prove part b), note that $(a_j - a_0)m - (b_j - b_0) = (a_k - a_0)m - (b_k - b_0)$ for some $j, k \in \{1, 2, \ldots, q - 1\}$, $j \neq k$, if and only if $(a_j - a_k)m - (b_j - b_k) = 0$, i.e. if and only if $(a_j, b_j), (a_k, b_k)$ and (m) are collinear. If $(m) \notin \mathcal{D}_\mathcal{U}$, then this cannot be and hence $\{(a_i - a_0)m - (b_i - b_0): i = 1, 2, \ldots, q - 1\}$ is the set of non-zero elements of $\GF(q)$. It follows that in this case $f(m) = -1$. If $(x) \notin \mathcal{D}_\mathcal{U}$, then $\{a_i - a_0: i = 1, 2, \ldots, q - 1\}$ is the set of non-zero elements of $\GF(q)$, and hence $\prod_{i=1}^{q-1}(a_i - a_0) = -1$. \hfill \square

Remark 2.2. For a set of affine points $\mathcal{U} = \{(a_i, b_i)\}_{i=0}^k$ the Rédei polynomial of \mathcal{U} is $\prod_{i=0}^k(X + a_iY - b_i) = \sum_{j=0}^k h_j(Y)X^{k-j} \in \GF(q)[X, Y]$, where $h_j(Y) \in \GF(q)[Y]$ is a polynomial of degree at most j. Now suppose that \mathcal{U} is a q-set and $(a_0, b_0) = (0, 0)$. Then $h_{q-1}(Y) = \sum_{j=0}^{q-1} \prod_{i \neq j}(a_iY - b_i) = \prod_{i=1}^{q-1}(a_iY - b_i)$ is the polynomial associated to the affine q-set \mathcal{U} as in Lemma 2.1. This polynomial also appears in Section 4 of Ball’s paper [3].

Theorem 2.3. Let \mathcal{B} be a blocking set of Rédei type in $\PG(2, q)$, with Rédei line ℓ.

1. If there is a point in $\mathcal{B} \setminus \ell$ which is not contained in bisecants of \mathcal{B}, then \mathcal{B} is minimal and $|\ell \cap \mathcal{B}| \equiv 1 \pmod{p}$.

4
2. If \(R, R' \in B \setminus \ell \) such that \(R \) and \(R' \) are not contained in bisecants of \(B \), then \(|RM \cap B| = |R'M \cap B| \) for each \(M \in \ell \).

Proof. It is easy to see that if there is a point \(R \in B \setminus \ell \), such that there is no bisecant of \(B \) through \(R \), then \(|B \cap \ell| \leq q - 1 \). First we show that \(B \) is minimal. As \(B \) is of Rédei type, the points of \(B \setminus \ell \) are essential in \(B \). Take a point \(D \in B \cap \ell \). As there is no bisecant through \(R \), it follows that \(DR \) meets \(B \) in at least three points and hence there is a tangent to \(B \) at \(D \), i.e. \(D \) is essential in \(B \).

We may assume that \(\ell = \ell_x \) and \((x) \notin B \). Let \(R = (a_0, b_0) \) be a point of \(B \setminus \ell \) which is not contained in bisecants of \(B \) and let \(U = B \setminus \ell_x = \{(a_i, b_i)\}_{i=0}^{q-1} \). Consider the polynomial \(f(Y) = \prod_{i=1}^{q-1}((a_i - a_0)Y - (b_i - b_0)) \) introduced in (1). Let \(m \in GF(q) \). According to Lemma 2.1 we have the following.

- If \((m) \in B \), then \(f(m) = 0 \).
- If \((m) \notin B \), then \(f(m) = -1 \).
- The coefficient of \(Y^{q-1} \) in \(f \) is \(-1\).

Now let \(\ell_x \setminus (B \cup (x)) = \{(m_1), (m_2), \ldots, (m_k)\} \) and consider the polynomial

\[g(Y) := \sum_{i=1}^{k} (Y - m_i)^{q-1} - k. \]

For \(m \in GF(q) \) we have \(g(m) = f(m) \). As both polynomials have degree at most \(q - 1 \), it follows that \(g(Y) = f(Y) \). The coefficient of \(Y^{q-1} \) is \(k \) in \(g \) and hence \(p \mid k + 1 \). As \(k + 1 = q + 1 - |B \cap \ell_x| \), part 1 follows.

For \((m) \notin B \) the line through any point of \(U \) with slope \(m \) meets \(B \) in \(1 \) point. For \((m) \in B \) the line through \(R \) with slope \(m \) meets \(B \) in \(k_m + 2 \) points if and only if \(m \) is a \(k_m \)-fold root of \(f(Y) \). As \(f(Y) = g(Y) \), and the coefficients of \(g(Y) \) depend only on the points of \(B \cap \ell_x \), it follows that \(k_m \) does not depend on the initial choice of the point \(R \), as long as the chosen point is not contained in bisecants of \(B \). This proves part 2. \(\square \)

Theorem 2.4. Let \(B \) be a blocking set of Rédei type in \(PG(2, q) \), with Rédei line \(\ell \).

1. If there is a point in \(B \setminus \ell \) contained in a unique bisecant of \(B \), then \(|B \cap \ell| \neq 1 \pmod p \).

2. If \(R_1, R_2 \in B \setminus \ell \), each of them is contained in a unique bisecant of \(B \) and there is a point \(T \in \ell \) such that \(R_1T \) and \(R_2T \) both meet \(B \) in at least four points, then for each \(M \in \ell \) we have \(|MR_1 \cap B| = |MR_2 \cap B| \).
3. If \(R_1, R_2 \in \mathcal{B} \setminus \ell \), each of them is contained in a unique bisecant of \(\mathcal{B} \) and the common point of these bisecants is on the line \(\ell \), then for each \(M \in \ell \) we have \(|MR_1 \cap \mathcal{B}| = |MR_2 \cap \mathcal{B}|. \)

Proof. Let \(R \) be a point of \(\mathcal{B} \setminus \ell \) contained in a unique bisecant \(r \) of \(\mathcal{B} \). First suppose \(|\mathcal{B} \cap \ell| = q \). Then part 1 is trivial and there is no line through \(R \) meeting \(\mathcal{B} \) in at least 4 points, otherwise we would get more than one bisecants through \(R \). Suppose that \(R' \) is another point of \(\mathcal{B} \setminus \ell \) contained in a unique bisecant \(r' \) of \(\mathcal{B} \) and \(r \cap r' \in \ell \). Let \(\{Q\} = \ell \setminus \mathcal{B} \). Then \(RQ \) and \(R'Q \) are tangents to \(\mathcal{B} \) and \(|MR \cap \mathcal{B}| = |MR' \cap \mathcal{B}| = 3 \) for each \(M \in (\ell \cap \mathcal{B}) \setminus \{r \cap r'\} \).

From now on, we assume \(k := q - |\mathcal{B} \cap \ell| \geq 1 \).

First we prove the theorem when \(\mathcal{B} \) is minimal. We may assume \(\ell = \ell_{\infty} \) and \(\ell_{\infty} \setminus \mathcal{B} = \{(\infty), (m_1), \ldots, (m_k)\} \).

As in the proof of Theorem 2.3, let \(\mathcal{U} = \mathcal{B} \setminus \ell_{\infty} = \{(a_i, b_i)\}_{i=0}^{q-1} \) and define \(f(Y) \) as in (1). Take \(m \in \text{GF}(q) \) and let \(t \) be the slope of the unique bisecant through \(R \). From Lemma 2.1 we obtain the following.

\[
f(m) = \begin{cases}
-1 & \text{if } (m) \notin \mathcal{B}, \\
0 & \text{if } (m) \in \mathcal{B} \setminus \{t\}, \\
f(t) \neq 0 & \text{if } m = t.
\end{cases}
\]

Consider the polynomial

\[
g(Y) := f(t) + |\mathcal{B} \cap \ell_{\infty}| + \sum_{i=1}^{k} (Y - m_i)^{q-1} - f(t)(Y - t)^{q-1}. \tag{2}
\]

For \(m \in \text{GF}(q) \) we have \(g(m) = f(m) \). As both polynomials have degree at most \(q - 1 \), it follows that \(g(Y) = f(Y) \). The coefficient of \(Y^{q-1} \) is \(-|\mathcal{B} \cap \ell_{\infty}| - f(t) \) in \(g \) and \(-1 \) in \(f \). It follows that \(p \mid |\mathcal{B} \cap \ell_{\infty}| + f(t) - 1 \) and hence \(f(t) \equiv 1 - |\mathcal{B} \cap \ell_{\infty}| \equiv k + 1 \pmod{p} \). If \(|\mathcal{B} \cap \ell_{\infty}| \equiv 1 \pmod{p} \), then \(f(t) = 0 \), a contradiction. This proves part a).

Now consider

\[
\hat{c}_Y g(Y) = -\sum_{i=1}^{k} (Y - m_i)^{q-2} + (k + 1)(Y - t)^{q-2},
\]

and

\[
w(Y) := (Y - t)^{k} \prod_{i=1}^{k} (Y - m_i) \hat{c}_Y g(Y) =
\]

\[-\sum_{i=1}^{k} (Y - m_i)^{q-1}(Y - t) \prod_{j \neq i}^{k} (Y - m_j) + (k + 1)(Y - t)^{q-1} \prod_{j=1}^{k} (Y - m_j).\]
If \((m) \in \mathcal{B} \setminus \ell\), then

\[
w(m) = -\sum_{i=1}^{k} (m - t) \prod_{j \neq i} (m - m_j) + (k + 1) \prod_{j=1}^{k} (m - m_j).
\]

Suppose that the line through \(R\) with direction \(m\) meets \(\mathcal{B}\) in at least four points. Then \(m\) is a multiple root of \(f(Y)\) and hence it is also a root of \(w(Y)\). It follows that \(m\) is a root of \(\tilde{w}(Y)\):

\[
\tilde{w}(Y) := -(Y - t) \sum_{i=1}^{k} \prod_{j \neq i} (Y - m_j) + (k + 1) \prod_{j=1}^{k} (Y - m_j).
\]

(3)

Note that \(\sum_{i=1}^{k} \prod_{j \neq i} (m - m_j) = 0\) and \(\tilde{w}(m) = 0\) would imply \((k + 1) \prod_{j=1}^{k} (m - m_j) = 0\), which cannot be since \((m) \notin \{(m_1), \ldots, (m_k)\}\) and \(p \nmid k + 1\). It follows that \(t\) can be expressed from \(m\) and \(m_1, \ldots, m_k\) in the following way:

\[
t = m - \frac{(k + 1) \prod_{j=1}^{k} (m - m_j)}{\sum_{i=1}^{k} \prod_{j \neq i} (m - m_j)}.
\]

(4)

Now let \(R_1\) and \(R_2\) be two points as in part 2 and let \(T = (m)\). It follows from (4) that the bisecants through these points have the same slope. Then, according to (2), \(f(Y) = g(Y)\) does not depend on the choice of \(R_i\), for \(i = 1, 2\). The assertion follows from Lemma 2.1 part 1.

If \(R_1\) and \(R_2\) are two points as in part 3, then the bisecants through these points have the same slope. It follows that \(f(Y) = g(Y)\) does not depend on the choice of \(R_i\), for \(i = 1, 2\). As above, the assertion follows from Lemma 2.1 part 1.

Now suppose that \(\mathcal{B}\) is not minimal and \(R_1 \in \mathcal{B} \setminus \ell\) is contained in a unique bisecant of \(\mathcal{B}\). As \(\mathcal{B}\) is a blocking set of R\(é\)dei type, the points of \(\mathcal{B} \setminus \ell\) are essential in \(\mathcal{B}\). Let \(C \in \mathcal{B} \setminus \ell\) such that \(\mathcal{B}' := \mathcal{B}\setminus\{C\}\) is a blocking set. In this case for each \(P \in \mathcal{B} \setminus \ell\) the line \(PC\) is a bisecant of \(\mathcal{B}\) and \(R_1C\) is the unique bisecant of \(\mathcal{B}\) through \(R_1\). It follows that there is no bisecant of \(\mathcal{B}'\) through \(R_1\). Then Theorem 2.3 yields that \(|\ell \cap \mathcal{B}'| = 1 \pmod{p}\). As \(|\ell \cap \mathcal{B}| = |\ell \cap \mathcal{B}'| + 1\), we proved part 1.

If \(R_2\) is another point of \(\mathcal{B} \setminus \ell\) such that \(R_2\) is contained in a unique bisecant of \(\mathcal{B}\), then there is no bisecant of \(\mathcal{B}'\) through \(R_2\) and hence parts 2 and 3 follow from Theorem 2.3 part 2. □
3 Connections with the direction problem

Let B be a blocking set in $\text{PG}(2,q)$. We recall $q = p^h$, p prime. The exponent of B is the maximal integer $0 \leq e \leq h$ such that each line meets B in $1 \mod p^e$ points. We recall the following two results about the exponent.

Theorem 3.1 (Szönyi [22]). Let B be a small minimal blocking set in $\text{PG}(2,q)$. Then B has positive exponent.

Theorem 3.2 (Sziklai [21]). Let B be a small minimal blocking set in $\text{PG}(2,q)$. Then the exponent of B divides h.

Proposition 3.3. Let B be a blocking set of Rédei type in $\text{PG}(2,q)$, with Rédei line ℓ. Suppose that B does not have bisecants. Then B has positive exponent and for each point $M \in \ell \cap B$ the lines through M meet B in 1 or in $p^t + 1$ points, where t is a positive integer depending only on the choice of M.

Proof. Theorem 2.3 part 1 yields that ℓ meets B in $1 \mod p$ points. Lines meeting ℓ not in B are tangents to B. For any $M \in \ell \cap B$ Theorem 2.3 part 2 yields that $MR \cap B$ in the same number of points for each $R \in B \setminus \ell$. Denote this number by k. Then k divides $|B \setminus \ell| = q$. As B does not have bisecants, it follows that $k > 1$ and hence $k = p^t$ for some positive integer t.

The following result is a consequence of the lower bound on the size of an affine blocking set due to Brouwer and Schrijver [9] and Jamison [15].

Theorem 3.4 (Blokhuis and Brouwer [7, pg. 133]). If B is a minimal blocking set of size $q + N$, then there are at least $(q + 1 - N)$ tangents to B at each point of B.

Theorem 3.5. Let f be a function from $\text{GF}(q)$ to $\text{GF}(q)$ and let N be the number of directions determined by f. If any line with a direction determined by f that is incident with a point of the graph of f is incident with at least two points of the graph of f, then each line meets the graph of f in p^t points for some positive integer t and

$$q/s + 1 \leq N \leq (q - 1)/(s - 1),$$

where $s = \min\{p^t : \text{there is line meeting the graph of } f \text{ in } p^t > 1 \text{ points}\}$.

Proof. If U denotes the graph of f, then $B := U \cup D_U$ is a blocking set of Rédei type without bisecants. Proposition 3.3 yields that each line meets
\(\mathcal{U} \) in \(p^t \) points for some positive integer \(t \). Take a point \(R \in \mathcal{U} \) and let \(\mathcal{D}_U = \{D_1, D_2, \ldots, D_N\} \). Then \(|D_i R \cap \mathcal{B}| \geq s + 1 \) yields \(|\mathcal{B}| = q + N \geq Ns + 1 \) and hence \((q - 1)/(s - 1) \geq N \). Take a line \(m \) meeting \(\mathcal{U} \) in \(s \) points and let \(M = m \cap \ell_\infty \). According to Proposition 3.3 the lines through \(M \) meet \(\mathcal{U} \) in 0 or in \(s \) points. Theorem 3.4 yields that the number of lines through \(M \) that meet \(\mathcal{U} \) is at most \(N - 1 \). It follows that \((N - 1)s \geq q \) and hence \(N \geq q/s + 1 \).

Applying Theorems 3.5 and 3.1 we can give a new proof to the following result.

Theorem 3.6 (part of Ball et al. [3] and Ball [2]). Let \(f \) be a function from \(\text{GF}(q) \) to \(\text{GF}(q) \) and let \(N \) be the number of directions determined by \(f \). Let \(s = p^t \) be maximal such that any line with a direction determined by \(f \) that is incident with a point of the graph of \(f \) is incident with a multiple of \(s \) points of the graph of \(f \). Then one of the following holds.

1. \(s = 1 \) and \((q + 3)/2 \leq N \leq q + 1 \),
2. \(q/s + 1 \leq N \leq (q - 1)/(s - 1) \),
3. \(s = q \) and \(N = 1 \).

Proof. The point set \(\mathcal{B} := \mathcal{U} \cup \mathcal{D}_U \) is a minimal blocking set of Rédéi type. If \(s = 1 \), then \(\mathcal{B} \) cannot be small because of Szőnyi's Theorem 3.1 and hence \(N \geq (q + 3)/2 \). If \(s > 1 \), then the bounds on \(N \) follows from Theorem 3.5.

In [3] and [2] it was also proved that for \(s > 2 \) the graph of \(f \) is \(\text{GF}(s) \)-linear and that \(\text{GF}(s) \) is a subfield of \(\text{GF}(q) \). Note that Theorem 3.2 generalizes the latter result.

4 **Small semiovals**

An oval of a projective plane of order \(q \) is a set of \(q + 1 \) points such that no three of them are collinear. It is easy to see that ovals are semiovals. The smallest known non-oval semioval, i.e. semioval which is not an oval, is due to Blokhuis.

Example 4.1 (Blokhuis [6]). Let \(S \) be the following point set in \(\text{PG}(2, q) \), \(3 < q \) odd, \(S = \{(0,1,s), (s,0,1), (1,s,0) \} : -s \) is not a square\}. Then \(S \) is a semioval of size \(3(q - 1)/2 \).
Conjecture 4.2 (Kiss et al. [17, Conjecture 11]). *If a semioval in \(\text{PG}(2, q) \), \(q > 7 \), has less than \(3(q-1)/2 \) points, then it has exactly \(q+1 \) points and it is an oval.*

Let \(S \) be a semioval and \(\ell \) a line meeting \(S \) in at least two points. Take a point \(P \in S \cap \ell \). As there is a unique tangent to \(S \) at \(P \), it follows that \(|S\setminus\ell| \geq q - 1 \), and hence \(|S| \geq |S \cap \ell| + q - 1 \geq q + 1 \). It is convenient to denote the size of \(S \) by \(q - 1 + a \), where \(a \geq 2 \) holds automatically. Then each line meets \(S \) in at most \(a \) points.

Theorem 4.3 (Blokhuis [6]). *Let \(S \) be a semioval of size \(q - 1 + a \), \(a > 2 \), in \(\text{PG}(2, q) \) and suppose that each line meets \(S \) in 0, 1, 2, or in \(a \) points. Then \(S \) is the symmetric difference of two lines with one further point removed from both lines, or \(S \) is projectively equivalent to Example 4.1.*

If \(S \) is a semi oval of size \(q + 2 \), then each line meets \(S \) in at most three points, thus Theorem 4.3 yields the following.

Theorem 4.4 (Blokhuis [6]). *Let \(S \) be a semi oval of size \(q + 2 \) in \(\text{PG}(2, q) \). Then \(S \) is the symmetric difference of two lines with one further point removed from both lines in \(\text{PG}(2, 4) \), or \(S \) is projectively equivalent to Example 4.1 in \(\text{PG}(2, 7) \).*

We also recall the following well-known result by Blokhuis which will be applied several times. For another proof and possible generalizations see [23, Remark 7] by Szőnyi, or [10, Corollary 3.5] by Csajbók, Héger and Kiss.

Proposition 4.5 (Blokhuis [6, Proposition 2]). *Let \(S \) be a point set of \(\text{PG}(2, q) \), \(q > 2 \), of size \(q - 1 + a \), \(a \geq 2 \), with an \(a \)-secant \(\ell \). If there is a unique tangent to \(S \) at each point of \(\ell \cap S \), then these tangents are contained in a pencil. The carrier of this pencil is called the nucleus of \(\ell \) and it is denoted by \(N_\ell \). For the sake of simplicity, the nucleus of a line \(\ell_i \) will be denoted by \(N_i \).*

If \(A \) and \(B \) are two point sets, then \(A \Delta B \) denotes their symmetric difference, that is \((A \setminus B) \cup (B \setminus A) \).

Example 4.6 (Csajbók, Héger and Kiss [10, Example 2.12]). *Let \(B' \) be a blocking set of Rédei type in \(\text{PG}(2, q) \), with Rédei line \(\ell \). Suppose that there is a point \(P \in B' \setminus \ell \) such that the bisecants of \(B' \) pass through \(P \) and there is no trisecant of \(B' \) through \(P \). For example, if \(B' \) has exponent \(e \) and \(p^e \geq 3 \) (cf. Section 3), then \(B' \) has no bisecants or trisecants and hence one can choose any point \(P \in B' \setminus \ell \). Take a point \(W \in \ell \setminus B' \) and let \(S = (\ell \Delta B') \setminus (W \cup P) \). Then \(S \) is a semi oval of size \(q - 1 + a \), where \(a = |\ell \cap S| \).*
Remark 4.7. The blocking set B' in Example 4.6 is necessarily minimal. To see this consider any point $R = B' \cap (\ell \cup P)$. As the bisecants of B' pass through P, it follows that there is no bisecant of B' through R and hence Theorem 2.3 part 1 yields that B' is minimal.

Lemma 4.8. Let S be a semioval of size $q - 1 + a$ in $\text{PG}(2, q)$ and suppose that there is a line ℓ which is an a-secant of S. Denote the set of tangents through the points of $S \\setminus \ell$ by L and let $B := \{N_\ell\} \cup (S \Delta \ell)$. Then one of the following holds.

1. S is an oval.

2. L is contained in a pencil with carrier C. Then $C \in \ell$ and $B' := B \setminus \{C\}$ is a blocking set of R\'edei type with R\'edei line ℓ. In this case S can be obtained from B' as in Example 4.6 with $P = N_\ell$ and $W = C$.

3. L is not contained in a pencil. Then B is a minimal blocking set of R\'edei type with R\'edei line ℓ and

 (a) $p \nmid a$,

 (b) for any $R \in S \setminus \ell$ the line RN_ℓ is not a tangent to S,

 (c) If $R_1, R_2 \in S \setminus \ell$ and there is a point $T \in \ell$ such that R_iT meets $S \cup N_\ell$ in at least three points for $i = 1, 2$, then for each $M \in \ell$ we have $|R_1M \cap (S \cup N_\ell)| = |R_2M \cap (S \cup N_\ell)|$.

 (d) If $R_1, R_2 \in S \setminus \ell$ and the tangents to S at these two points meet each other on the line ℓ, then for each $M \in \ell$ we have $|R_1M \cap (S \cup N_\ell)| = |R_2M \cap (S \cup N_\ell)|$.

Proof. First we show that B is a blocking set of R\'edei type. Take a point $R \in S \setminus \ell$. As there is a tangent to S at R it follows that ℓ meets S in at most q points and hence ℓ is blocked by B. Lines meeting ℓ not in S are blocked by B since $\ell \setminus S \subset B$. If a line m meets ℓ in S, then either m is a tangent to S and hence $N_\ell \in m$, or m is not a tangent to S and hence there is a point of $S \setminus \ell$ contained in m. As $\{N_\ell\} \cup (S \setminus \ell) \subset B$, it follows that m is blocked by B and hence B is a blocking set. The line ℓ meets B in $|B| - q$ points, thus B is of R\'edei type and ℓ is a R\'edei line of B.

If $a = 2$, then S is an oval. From now on we assume $a \geq 3$. First suppose that L is contained in a pencil with carrier C. If $C \notin \ell$, then $|L| \leq q + 1 - a$, but $|L| = |S \setminus \ell| = q - 1$. It follows that $C \in \ell$.

Let $B' = B \setminus \{C\}$. In this paragraph we prove that B' is a blocking set. It is enough to show that the lines through C are blocked by B'. This trivially
holds for the \(q - 1 \) lines in \(L \). First we show that \(B' \) blocks \(\ell \) too. Suppose to the contrary that \(\ell \setminus (S \cup \{C\}) = \emptyset \) and hence \(a = q \). As \(a \geq 3 \), we have \(q \geq 3 \) and hence there are at least two points in \(S \setminus \ell \). Take \(R, Q \in S \setminus \ell \) and let \(M = RQ \cap \ell \). Since \(M \neq C \), we have \(M \in S \) and hence there are at least two tangents to \(S \) at \(M \). This contradiction shows that \(\ell \) is blocked by \(B' \).

Now we show \(CN_\ell \notin L \). Suppose to the contrary that \(CN_\ell \) is a tangent to \(S \) at some \(V \in S \setminus \ell \). Then \(VC \) is a trisecant of \(B \). If there were a bisecant \(v \) of \(B \) through \(V \), then, by the construction of \(B \), \(v \) would be a tangent to \(S \) at \(V \). This cannot be since the unique tangent to \(S \) at \(V \) is \(VC \), which is a trisecant of \(B \) and hence \(v \neq VC \). For any \(V' \in S \setminus (\ell \cup V) \), there is a unique bisecant of \(B \) through \(V' \), namely \(V'C \). We obtained that there is a point in \(B \setminus \ell \) contained in no bisecant of \(B \) and there are points in \(B \setminus \ell \) contained in a unique bisecant of \(B \). This cannot be because of Theorem 2.3 part 1 and Theorem 2.4 part 1. It follows that \(CN_\ell \) is not a tangent to \(S \). As \(CN_\ell \) is blocked by \(B' \) and there are \(q \) lines through \(C \), \(\ell \) and the lines of \(L \), are also blocked, it follows that \(B' \) is a blocking set. It is easy to see that \(\ell \) is a Rédei line of \(B' \).

We show that there is no bisecant of \(B' \) through the points of \(S \setminus \ell \). Take a point \(R \in S \setminus \ell \) and suppose to the contrary that there is a bisecant \(b \) of \(B' \) through \(R \). Then, by the construction of \(B' \), the line \(b \) is a tangent to \(S \) at \(R \). This is a contradiction since \(b \neq RC \). It follows that if \(B' \) has bisecants, then they pass through \(N_\ell \). If there were a trisecant \(t \) of \(B' \) through \(N_\ell \), then let \(V = t \cap S \). It follows that \(t \) is a tangent to \(S \) at \(V \). But we have already seen that there is no line of \(L \) containing \(N_\ell \). This finishes the proof of part 2.

Now suppose that \(S \) is as in part 3. If \(B \) were not minimal, then the line set \(L \) would be contained in a pencil with carrier on \(\ell \), a contradiction. Take a point \(R \in S \setminus \ell \). If \(RN_\ell \) is the tangent to \(S \) at \(R \), then there is no bisecant of \(B \) through \(R \), thus \(p \mid a \) (cf. Theorem 2.3 part 1). If \(RN_\ell \) is not a tangent to \(S \) at \(R \), then there is a unique bisecant of \(B \) through \(R \) (the tangent to \(S \) at \(R \)), thus \(p \mid a \) (cf. Theorem 2.4 part 1). It follows that the existence of a tangent to \(S \) through \(N_\ell \), or \(p \mid a \), would imply that \(L \) is contained in the pencil (with carrier \(N_\ell \)), a contradiction. This proves parts (a) and (b). Parts (c) and (d) follow from Theorem 2.4 parts 2 and 3, respectively. \(\square \)

Remark 4.9. The properties (a)-(d) in part 3 of Lemma 4.8 also hold when \(S \) is as in Example 4.6. From the properties of the point \(P \) in Example 4.6 it follows that for \(R \in S \setminus \ell \) the line \(RP \) is not a tangent to \(S \) and this proves (b). As for any two points \(R_1, R_2 \in S \) there is no bisecant of \(B' \) through \(R_1 \) or \(R_2 \), properties (a), (c) and (d) follow from Theorem 2.3. \(\square \)
Lemma 4.11. Let \mathcal{S} be a semi oval of size $q - 1 + a$, $a > 2$, which admits an a-secant ℓ, and let $m \neq \ell$ be a k-secant of \mathcal{S}.

1. For each $R \in \mathcal{S} \setminus \ell$, the line RN_ℓ is not a tangent to \mathcal{S}.

2. If $k \geq 3$, then the tangents to \mathcal{S} at the points of m are contained in a pencil with carrier on ℓ.

3. If $k > (a - 1)/2$, then $k = a$ and $N_\ell \in m$, or $k = \lceil a/2 \rceil$ and $N_\ell \notin m$.

Proof. Part 1 follows from Lemma 4.8 part 3 (b), and part 2 follows from Lemma 4.8 part 3 (c) with $T = m \cap \ell$.

To prove part 3 first suppose $k > (a + 1)/2$ and $N_\ell \notin m$. Let $m \cap \mathcal{S} = \{R_1, R_2, \ldots, R_k\}$. The lines R_iN_ℓ for $i = 1, 2, \ldots, k$ cannot be bisecants of $\mathcal{S} \cup \{N_\ell\}$ since they are not tangents to \mathcal{S}. Thus each of these lines meets $\mathcal{S} \cup \{N_\ell\}$ in at least three points. Let $B_i = \ell \cap R_iN_\ell$, then we have $|R_iB_i \cap (\mathcal{S} \cup \{N_\ell\})| \geq 3$ for $i \in \{1, 2, \ldots, k\}$. We apply Lemma 4.8 part 3 (c) with $T = \ell \cap m$ (note that $k > (a + 1)/2 > 2$). For $j \in \{2, 3, \ldots, k\}$ we obtain $|R_1B_j \cap (\mathcal{S} \cup \{N_\ell\})| = |R_jB_j \cap (\mathcal{S} \cup \{N_\ell\})|$, thus also $|R_1B_j \cap (\mathcal{S} \cup \{N_\ell\})| \geq 3$ for $j \in \{2, 3, \ldots, k\}$. We have $N_\ell \in R_1B_1$ and hence $N_\ell \notin R_1B_j$ for $j \in \{2, 3, \ldots, k\}$. It follows that $R_1B_2 \cup R_1B_3 \cup \ldots R_1B_k \cup m$ contains at least $2(k - 1) + k = 3k - 2$ points of \mathcal{S}. As there is a unique tangent to \mathcal{S} at R_1, we must have $a + (q - 1) - (3k - 2) \geq q - k$. This is a contradiction when $k > (a + 1)/2$. It follows that lines meeting \mathcal{S} in more than $(a + 1)/2$ points have to pass through N_ℓ.

Now suppose that m is a k-secant of \mathcal{S} with $(a - 1)/2 < k < a$ and $N_\ell \in m$. Take a point $R \in m \cap \mathcal{S}$. As $k < a$, there is at least one other line m' through R meeting \mathcal{S} in at least three points. Let $R' \in (m' \cap \mathcal{S}) \setminus \{R\}$. Lemma 4.8 part 3 (c) with $T = m' \cap \ell$ and $M = m \cap \ell$ yields that the line joining R' and $m \cap \ell$ meets \mathcal{S} in $|\mathcal{S} \cup N_\ell| = k + 1 > (a + 1)/2$ points.

Then, according to the previous paragraph, this line also passes through N_ℓ, a contradiction. It follows that either $k = a$, or $(a - 1)/2 < k < (a + 1)/2$.

Lemma 4.11. Let \mathcal{S} be a semi oval of size $q - 1 + a$ in $\text{PG}(2, q)$. For each point $R \in \mathcal{S}$ the number of lines through R meeting \mathcal{S} in at least three points is at most $a - 2$.

Theorem 4.12. Let \mathcal{S} be a semi oval of size $q - 1 + a$, $a > 2$, in $\text{PG}(2, q)$. Suppose that \mathcal{S} has two a-secants, ℓ_1 and ℓ_2, and let $\mathcal{S}' = \mathcal{S} \setminus (\ell_1 \cup \ell_2)$. Then $N_1 \in \ell_2$, $N_2 \in \ell_1$ and the tangents through the points of \mathcal{S}' pass through $\ell_1 \cap \ell_2$. Also, one of the following holds.
1. S is the symmetric difference of ℓ_1 and ℓ_2 with one further point removed from both lines.

2. S is projectively equivalent to Example 4.1.

3. For each $R \in S'$ there are at least three lines through R meeting S in at least three points and $q \leq a + 1 + (a - 2)^2(a - 3)^2/6$.

Proof. Theorem 4.10 yields $N_1 \in \ell_2$ and $N_2 \in \ell_1$. If $S' = \emptyset$, then $S \subseteq \ell_1 \cup \ell_2$ and it is easy to see that S is as in part 1. If $S' \neq \emptyset$, then take a point $R \in S'$. As $a > 2$, there is a line ℓ_3 through R meeting S in at least 3 points. According to Theorem 4.10 part 2, the tangents to S at the points of $\ell_3 \cap S$ pass through a unique point of ℓ_1, and also through a unique point of ℓ_2. It follows that these tangents pass through the point $\ell_1 \cap \ell_2$.

If there is a third a-secant of S, ℓ_3, then Theorem 4.10 yields that ℓ_3 passes through N_1 and N_2. The tangents at the points of S also pass through $\ell_1 \cap \ell_2$, thus this point is N_3. If there were another line meeting S in more than two points, then it would pass through N_1, N_2 and N_3, a contradiction since these three points form a triangle. It follows that S is contained in the sides of a vertexless triangle and $q - 1 + a = 3a$, thus $a = (q - 1)/2$. It is easy to show that S is projectively equivalent to Example 4.1. For the complete description of semiovals contained in the sides of a vertexless triangle see the paper of Kiss and Ruff [18].

Now suppose that there is no a-secant through R. First we show that there are at least three lines through R meeting S in at least three points. Suppose to the contrary that there are only two such lines, h_1 and h_2, and let $b_i = |h_i \cap S|$ for $i = 1, 2$. Then $|S| = 1 + (b_1 - 1) + (b_2 - 1) + q - 2$ and hence $b_1 + b_2 = a + 1$. It follows that at least one of the lines h_1, h_2, meets S in at least $(a + 1)/2$ points. Then Theorem 4.10 yields that this line is an a-secant, a contradiction.

Theorem 4.8 part 3 (d) and Lemma 4.11 yields the existence of an $(a-2)$-set $A_1 \subseteq \ell_1$ and an $(a-2)$-set $A_2 \subseteq \ell_2$ such that the lines through R which meet S in at least three points meet ℓ_1 in A_1 and ℓ_2 in A_2.

Denote by M the set of (non-ordered) pairs of lines $\{m_1, m_2\}$ such that $m_i \cap \ell_j \in A_j$ for $i, j \in \{1, 2\}$. Then for each point $R \in S'$ there exist $\{r_1, r_2\}, \{r_1, r_3\}, \{r_2, r_3\} \in M$ such that $R = r_1 \cap r_2 = r_1 \cap r_3 = r_2 \cap r_3$ and hence $3|S'| \leq |M|$. As the size of M is $(a - 2)^2(a - 3)^2/2$, it follows that $q - 1 - a \leq (a - 2)^2(a - 3)^2/6$ and this finishes the proof.

A (k, n)-arc of $PG(2, q)$ is a set of k points such that each line meets the k-set in at most n points.
Theorem 4.13. Let S be a semioval of size $q + 3$ in $PG(2, q)$. Then $q = 5$ and S is the symmetric difference of two lines with one further point removed from both lines, or $q = 9$ and S is as in Example 4.1, or $p = 3$ and S is a $(q + 3, 3)$-arc.

Proof. It is easy to see that the points of S fall into the following two types:

- TYPE A: points contained in a unique 4-secant and in $q - 1$ bisecants,
- TYPE B: points contained in two trisecants and in $q - 2$ bisecants.

If S does not have 4-secants, then the number of trisecants of S is $p q - 3 q - 2$, thus $3 \mid q$. Now suppose that S has a 4-secant, ℓ. Theorem 4.10 with $a = 4$ yields that S does not have trisecants. The assertion follows from Theorem 4.12.

5 Small semiovals when q is even

We will use the following theorem by Szőnyi and Weiner. This result was proved by the so called resultant method. We say that a line ℓ is an odd-secant (resp. even-secant) of S if $|\ell \cap S|$ is odd (resp. even). A set of even type is a point set H such that each line is an even-secant of H.

Theorem 5.1 (Szőnyi and Weiner, [24]). Assume that the point set H in $PG(2, q)$, $16 < q$ even, has δ odd-secants, where $\delta < (\sqrt{q}) + 1)q + 1 - \lfloor \sqrt{q} \rfloor)$. Then there exists a unique set H' of even type, such that $|H \Delta H'| = \delta \frac{q + 1}{q + 1}$.

As a corollary of the above result, Szőnyi and Weiner gave a lower bound on the size of those point sets of $PG(2, q)$, $16 < q$ even, which do not have tangents but have at least one odd-secant, see [24]. In this section we prove a similar lower bound on the size of non-oval semiovals.

Lemma 5.2. Let S be a semioval in Π_q, that is, a projective plane of order q. If $|S| = q + 1 + \epsilon$, then S has at most $|S|(1 + \epsilon/3)$ odd-secants.

Proof. Take $P \in S$, then there passes exactly one tangent and there pass at most ϵ other odd-secants of S through P. In this way the non-tangent odd-secants have been counted at least three times.

Corollary 5.3. If S is a semioval in $PG(2, q)$, $16 < q$ even, and $|S| \leq q + 3 \lfloor \sqrt{q} \rfloor - 11$, then S is an oval.
Proof. If \(\delta \) denotes the number of odd-secants of \(S \), then Lemma 5.2 yields:

\[
\delta \leq (q + 3 \lfloor \sqrt{q} \rfloor - 11)(\lfloor \sqrt{q} \rfloor - 3) < (\lfloor \sqrt{q} \rfloor + 1)(q - \lfloor \sqrt{q} \rfloor + 1).
\]

By Theorem 5.1 we can construct a set of even type \(H \) from \(S \) by modifying (add to \(S \) or delete from \(S \)) \(\delta \) \(\lfloor \sqrt{q} \rfloor + 1 \) points of \(\text{PG}(2, q) \).

If \(P \in S \) is a modified (and hence deleted) point, then the number of lines through \(P \) which are not tangents to \(S \) and do not contain modified points is at least \(q - \left(\left\lceil \frac{\delta}{q+1} \right\rceil - 1 \right) \). These lines are even-secants of \(H \) and hence they are non-tangent odd-secants of \(S \). It follows that the size of \(S \) is at least \(1 + 2(q - \lfloor \sqrt{q} \rfloor) \), a contradiction.

Thus each of the modified points has been added. Now suppose \(|S| > q + 1 \). As there is a tangent to \(S \) at each point of \(S \), we have \(2 \leq \left\lfloor \frac{\delta}{q+1} \right\rfloor \).

Let \(A \) and \(B \) be two modified (and hence added) points. If the line \(AB \) contains another added point \(C \), then through one of the points \(A, B, C \) there pass at most \((|S| - 1)/3 + 1 \) tangents to \(S \). If \(AB \) does not contain further added points, then \(AB \) cannot be a tangent to \(S \) and hence through one of the points \(A, B \) there pass at most \(|S|/2 \) tangents to \(S \). Let \(A \) be an added point through which there pass at most \(|S|/2 \) tangents to \(S \) and denote the number of these tangents by \(\tau \). Through \(A \) there pass at least \(q + 1 - \tau - \left(\left\lceil \frac{\delta}{q+1} \right\rceil - 1 \right) \) lines meeting \(S \) in at least two points. Thus from \(\tau \leq |S|/2 \) and from the assumption on the size of \(S \) we get

\[
q + 3 \lfloor \sqrt{q} \rfloor - 11 \geq \tau + 2(q + 1 - \tau - \lfloor \sqrt{q} \rfloor) \geq 2(q - \lfloor \sqrt{q} \rfloor + 1) - (q + 3 \lfloor \sqrt{q} \rfloor - 3)/2.
\]

After rearranging we obtain \(0 \geq q - 13 \lfloor \sqrt{q} \rfloor + 38 \), which is a contradiction. It follows that \(|S| \leq q + 1 \), but also \(|S| \geq q + 1 \) and \(S \) is an oval in the case of equality.

\[\square\]

6 Point sets with few odd-secants in \(\text{PG}(2, q) \), \(q \) odd

Some combinatorial results of this section hold in every projective plane. As before, by \(\Pi_q \) we denote an arbitrary finite projective plane of order \(q \).

Definition 6.1. Fix a point set \(S \subseteq \Pi_q \). For a non-negative integer \(i \) and a point \(P \in S \) we denote by \(t_i(P) \) the number of \(i \)-secants of \(S \) through \(P \). The weight of \(P \), in notation \(w(P) \), is defined as follows.

\[
w(P) := \sum_{i \text{ odd}} t_i(P)/i.
\]
For a subset $P \subseteq S$, let $w(P) = \sum_{P \in \mathcal{P}} w(P)$. Suppose that $w(P)$ is known for $P \in \{P_1, P_2, \ldots, P_m\} \subseteq S \cap \ell$, where ℓ is a line meeting S in at least m points. Then the type of ℓ is

$$(w(P_1), w(P_2), \ldots, w(P_m)).$$

Suppose that the value of $t_i(P)$ is known for a point $P \in S$ and for $1 \leq i \leq q + 1$. Let $\{a, b, \ldots, z\} = \{i: t_i(P) \neq 0\}$, then the type of P is

$$(a_{t_a(P)}, b_{t_b(P)}, \ldots, z_{t_z(P)}).$$

Example 6.2 (Balister et al. [1]). Let $S = C \cup \{P\}$, where C is a conic of $\text{PG}(2, q)$, q odd, and $P \notin C$ is an external point of C, that is, a point contained in two tangents to C. Then the type of P is $(1_{(q-1)/2}, 2_2, 3_{(q-1)/2})$ and $w(P) = (q - 1)/2 + (q - 1)/6$. If T_1 and T_2 are the points of C contained in the tangents to C at P, then the type of T_i is (2_{q+1}) and $w(T_i) = 0$ for $i = 1, 2$. Each point of $C \setminus \{T_1, T_2\}$ has type $(1_1, 2_{q-1}, 3_1)$ and weight $4/3$. The number of odd-secants of S is $2q - 2$.

Theorem 6.3 (Balister et al. [1 Theorem 6]). The minimal number of odd-secants of a $(q + 2)$-set in $\text{PG}(2, q)$, q odd, is $2q - 2$ when $q \leq 13$. For $q \geq 7$, it is at least $3(q + 1)/2$.

Conjecture 6.4 (Balister et al. [1 Conjecture 11]). The minimal number of odd-secants of a $(q + 2)$-set in $\text{PG}(2, q)$, q odd, is $2q - 2$.

The following propositions are straightforward.

Proposition 6.5. The number of odd-secants of S is $w(S) = \sum_{P \in S} w(P)$.

Proposition 6.6. Let S be a point set of size $q + 2$ and let P be a point of S in Π_q. The smallest possible weights of P are as follows:

- $w(P) = 0$ if and only if the type of P is (2_{q+1}),
- $w(P) = 4/3$ if and only if the type of P is $(1_1, 2_{q-1}, 3_1)$,
- $w(P) = 2$ if and only if the type of P is $(1_2, 2_{q-2}, 4_1)$,
- $w(P) = 8/3$ if and only if the type of P is $(1_2, 2_{q-3}, 3_2)$,
- $w(P) = 16/5$ if and only if the type of P is $(1_3, 2_{q-2}, 5_1)$,
- $w(P) = 10/3$ if and only if the type of P is $(1_3, 2_{q-3}, 3_1, 4_1)$.

17
Proposition 6.7. Let S be a point set of size $q + 2$ in Π_q and let P be a point of S.

1. If P is contained in a k-secant, then $w(P) \geq k - 2$.

2. If P is contained in at least k trisecants, then $w(P) \geq \frac{4}{3}k$.

Proof. In part 1, the number of tangents to S is at least $q - (q + 2 - k) = k - 2$. In part 2, P is contained in at least $q + 1 - k - (q + 2 - (2k + 1)) = k$ tangents, thus $w(P) \geq k/3 + k$.

Theorem 6.8 (Bichara and Korchmáros [5, Theorem 1]). Let S be a point set of size $q + 2$ in $\text{PG}(2, q)$. If q is odd, then S contains at most two points with weight 0, that is, points of type $(2q + 1)$.

Lemma 6.9. Let S be a point set of size $q + k$ in $\text{PG}(2, q)$ for some $k \geq 3$. Suppose that m_1 is a k-secant of S meeting S only in points of type $(2q, k_1)$. Then the k-secants of S containing a point of type $(2q, k_1)$ are concurrent.

Proof. Let m_2, m_3 be two k-secants of S with the given property and let $R_i \in m_i \cap S$ of type $(2q, k_1)$ for $i = 2, 3$. It is easy to see that $B := m \Delta S$ is a blocking set of Rédei type and there is no bisecant of B through the points R_2, R_3. It follows from Theorem 2.3 part 2 that $m_2 \cap m_3 \in m_1$.

Definition 6.10. A $(q + t, t)$-arc of type $[0, 2, t]$ is a point set T of size $(q + t)$ in $\text{PG}(2, q)$ such that each line meets T in 0, 2 or t points.

Let T be a $(q + t, t)$-arc of type $[0, 2, t]$. It is easy to see that for $t > 2$ there is a unique t-secant through each point of T. It can be proved that $2 \leq t < q$ implies q even, see [19]. As the points of T are of type $(2q, t_1)$, the following theorem by Gács and Weiner also follows from Lemma 6.9.

Theorem 6.11 (Gács and Weiner [13, Theorem 2.5]). Let T be a $(q + t, t)$-arc of type $[0, 2, t]$ in $\text{PG}(2, q)$. If $t > 2$, then the t-secants of T pass through a unique point.

The proof of our next result is based on the counting technique of Segre. A dual arc is a set of lines such that no three of them are concurrent.

Theorem 6.12. Let S be a point set of size $q + k$ in $\text{PG}(2, q)$, q odd.
1. If $k = 1$, then the tangents to S at points of type $(1,2q)$ form a dual arc.

2. If $k = 2$, then there are at most two points of type $(2q+1)$.

3. If $k \geq 3$, then the k-secants of S containing a point of type $(2q,k_1)$ form a dual arc.

Proof. Suppose the contrary. If $k = 1$, then let A, B and C be points of type $(1,2q)$ such that the tangents through these points pass through a common point D. If $k = 2$, then let A, B and C be three points of type $(2q+1)$ and take a point $D \notin (S \cup AB \cup BC \cup CA)$. If $k \geq 3$, then let A, B, C and D be points of type $(2q,k_1)$ such that the k-secants through these points pass through a common point $D \notin AB \cup BC \cup CA$. In all cases A, B, C and D are in general position, thus we may assume $A = (\infty)$, $B = (0,0)$, $C = (0)$ and $D = (1,1)$. Let $S' = S \setminus \{A,B,C\}$. Note that AB, BC and CA are bisecants of S and CA is the line at infinity, thus S' is a set of $q+k-3$ affine points, say $S' = \{(a_i,b_i)\}_{i=1}^{q+k-3}$. For $i \in \{1,2,\ldots,q+k-3\}$ we have the following.

- the line joining (a_i,b_i) and A meets BC in $(a_i,0)$,
- the line joining (a_i,b_i) and B meets AC in (b_i/a_i),
- the line joining (a_i,b_i) and C meets AB in $(0,b_i)$.

The lines AD, BD and CD meet S' in $k-1$ points. The lines AP for $P \in S' \setminus AD$ meet S' in a unique point. Since the first coordinate of the points of $AD \cap S'$ is 1, it follows that $\{a_i\}_{i=1}^{q+k-3}$ is a multiset containing each element of $\text{GF}(q) \setminus \{0,1\}$ once, and containing 1 $k-1$ times. Thus $\prod_{i=1}^{q+k-3} a_i = -1$. Similarly, the lines through B yield $\prod_{i=1}^{q+k-3} b_i/a_i = -1$, and the lines through C yield $\prod_{i=1}^{q+k-3} b_i = -1$. It follows that

$$1 = (-1)(-1) = \left(\prod_{i=1}^{q+k-3} a_i\right)\left(\prod_{i=1}^{q+k-3} b_i/a_i\right) = \left(\prod_{i=1}^{q+k-3} b_i\right) = -1,$$

a contradiction for odd q.

\[\square \]

The following immediate consequence of Theorem 6.12 and Lemma 6.9 will be used frequently.

Corollary 6.13. Let S be a set of $(q+k)$ points, $k \geq 3$, in $\text{PG}(2,q)$. If there exist three k-secants of S, ℓ_1, ℓ_2 and ℓ_3, such that the points of $\ell_1 \cap S$ are of type $(2q,k_1)$ and both $\ell_2 \cap S$ and $\ell_3 \cap S$ contain at least one point of type $(2q,k_1)$, then q is even.

19
Lemma 6.14. Let $\ell_2 \cap \ell_3 \in \ell_1$, but then Theorem 6.12 implies q even.

Proof. Lemma 6.9 yields $\ell_2 \cap \ell_3 \in \ell_1$, but then Theorem 6.12 implies q even.

For the definition of a nucleus N_i of a line ℓ_i see Proposition 4.5.

Lemma 6.14. Let S be a set of $q - 1 + a$ points, $a \geq 3$, and suppose that ℓ_1 and ℓ_2 are a-secants of S such that there is a unique tangent to S at each point of $S \cap \ell_1$, for $i = 1, 2$.

1. Either $N_1 \in \ell_2$ and $N_2 \in \ell_1$, or
2. $N_1 = N_2$, $p \mid a$ and for each $R \in S$ if there is a unique tangent r to S at R, then r passes through the common nucleus.
3. Let ℓ_3 be another a-secant of S such that there is a unique tangent to S at each point of $S \cap \ell_3$. If q or a is odd, then $\ell_3 = N_1N_2$, thus in this case ℓ_3 is uniquely determined.

Proof. If $\ell_1 \cap \ell_2 \in S$, then $|S| \geq 2a + q - 2$ which cannot be since $a \geq 3$.

First assume $N_1 \neq N_2$ and suppose to the contrary $N_2 \notin \ell_1$. Then $B := N_1 \cup (\ell_1 \Delta S)$ is a blocking set of R"edei type. There is a unique bisecant of B at each point of $S \cap \ell_2$ (the tangent to S). This is a contradiction since these bisecants should pass through the same point of ℓ_1 (apply Theorem 2.4 part 2 with $T = \ell_1 \cap \ell_2$).

If $N_1 = N_2$, then we define B in the same way. There is no bisecant of B through the points of $B \cap \ell_2$. Theorem 2.3 yields $p \mid a$. Take a point $R \in S \setminus (\ell_1 \cup \ell_2)$ contained in a unique tangent to S, r. If $N_r \notin r$, then r is the unique bisecant of B through R, a contradiction because of 2.4 part 1.

Suppose that ℓ_3 is an a-secant with properties as in part 3. Then either $\ell_3 = N_1N_2$ and $N_3 = \ell_1 \cap \ell_2$, or $N_3 = N_1 = N_2 := N$ and $p \mid a$. In the latter case Corollary 6.13 applied to $S \cup \{N\}$ and to the lines ℓ_1, ℓ_2 and ℓ_3 yields $p = 2$.

Lemma 6.15. Let S be a set of $q + 2$ points in PG$(2, q)$, q odd, and suppose that ℓ is a trisecant of S of type $(4/3, 4/3, 4/3)$.

1. If $p = 3$, then the tangents at the points of S with weight $4/3$ pass through N_ℓ. There is at most one other trisecant of S of type $(4/3)$. If such line exists, then there is no point of S with weight 0.
2. If $p \neq 3$, then the trisecants of type $(4/3, 4/3)$ pass through N_ℓ. Suppose that there is another trisecant ℓ_1 of type $(4/3, 4/3, 4/3)$. Then there is at most one other trisecant of type $(4/3, 4/3, 4/3)$, which is $N_\ell N_1$. If $N_\ell N_1$
Lemma 6.16. Let ℓ be a trisecant of type $(4/3, 4/3)$, then the tangents at the points of ℓ with weight $4/3$ pass through $\ell \cap \ell_1$.

Proof. Let \mathcal{B} denote the Rédei type blocking set $(\ell \Delta S) \cup \{N_\ell\}$ and let $A \in S \setminus \ell$ such that $w(A) = 4/3$.

First we prove part 1. Denote the tangent to S at A by a. If $N_\ell \notin a$, then there is a unique bisecant of \mathcal{B} through A, thus Theorem 2.4 yields $p \neq 3$, a contradiction. Denote the trisecant through A by ℓ_1. If there were a trisecant ℓ_2 of type $(4/3)$ different from ℓ and ℓ_1, then Corollary 6.13 applied to $S \cup \{N_\ell\}$ and to the lines ℓ, ℓ_1 and ℓ_2 would yield q even, a contradiction. Suppose that there is a point $R \in S$ with $w(R) = 0$. As there is no bisecant of \mathcal{B} through R and there is no bisecant of \mathcal{B} through A, it follows from Theorem 2.3 that the line joining $T := \ell_1 \cap \ell$ and R meets \mathcal{B} in $|\ell_1 \cap \mathcal{B}| = 4$ points. As lines through R meet S in two points, it follows that $TR = RN_\ell$. Applying Corollary 6.13 to the points set $S \cup \{N_\ell\}$ and to the lines ℓ, ℓ_1 and RN_ℓ yields a contradiction.

Now we prove part 2. First suppose to the contrary that there is a trisecant ℓ_2 of type $(4/3, 4/3)$ and $N_\ell \notin \ell_2$. Let $A, B \in \ell_2 \cap S$ such that $w(A) = w(B) = 4/3$. Denote the tangents to S at these two points by a and b, respectively. We have $N_\ell \notin a$ and $N_\ell \notin b$, since otherwise we would get points without tangents to \mathcal{B}, a contradiction as $p \neq 3$. It follows that $N_\ell A$ and $N_\ell B$ are 4-secants of \mathcal{B}. Let $M = N_\ell A \cap \ell$. Then Theorem 2.4 part 2 yields that MB is also a 4-secant of \mathcal{B} and a trisecant of S (we have $N_\ell \notin MB$). A contradiction, since $MB \neq \ell_2$. It follows that $N_\ell \in \ell_2$.

Let ℓ_1 be trisecant of S of type $(4/3, 4/3, 4/3)$. It follows from Lemma 6.14 that $N_\ell \in \ell_1$ and $N_1 \in \ell_1$. It also follows from the previous paragraph that $N_1 \in \ell_2$ and $N_\ell \in \ell_2$, thus $\ell_2 = N_1 N_\ell$. Theorem 2.4 applied to \mathcal{B} and to $(\ell_1 \Delta S) \cup \{N_1\}$ yields that a and b pass through a unique point of ℓ and through a unique point of ℓ_1, thus they pass through $\ell \cap \ell_1$. □

Lemma 6.16. Let S be a set of $q - 1 + a$ points, $a \geq 3$, and suppose that ℓ is an a-secant of S such that there is a unique tangent to S at each point of $S \cap \ell$. If there is a point of S not contained in tangents to S, then $p | a$. If $a = 3$ and there are two points of S not contained in tangents to S, then the line determined by these two points contains N_ℓ.

Proof. Let $\mathcal{B} := (\ell \Delta S) \cup \{N_\ell\}$, which is a Rédei type blocking set. Let T_1 be a point of S such that there is no tangent to S at T_1. Then there is no bisecant of \mathcal{B} through T_1 and hence Theorem 2.3 part 1 yields $p | a$.

Now let $a = 3$ and $T_2 \in S$ such that there is no tangent to S at T_2. Then there is no bisecant of \mathcal{B} through T_2. Suppose to the contrary that
Let $M_1 = T_1N_\ell \cap \ell$. As the lines through T_1 are bisecants of S, we obtain $|T_1N_\ell \cap B| = 4$. Then Theorem 2.3 part 2 yields that M_1T_2 is a trisecant of S, a contradiction.

Theorem 6.17. Let S be a point set of size $q + 2$ in $\text{PG}(2,q)$, $3 < q$ odd. The number of odd-secants of S is at least q^5_8.

Proof. We define the following subsets of S.

$$A := \{ P \in S : w(P) = 0 \},$$

$$B := \{ P \in S : P \text{ is contained in a trisecant of type } (4/3, 4/3, 4/3) \},$$

$$C := \{ P \in S : w(P) \neq 4/3, \text{ P is contained in a trisecant of type } (4/3) \}.$$

Denote the size of C by m and let $C = \{ P_1, P_2, \ldots, P_m \}$. For $i = 1, 2, \ldots, m$, let

$$V_i = \{ Q \in S : w(Q) = 4/3 \text{ and } QP_i \text{ is a trisecant} \} \cup \{ P_i \}.$$

Also, let $D_1 := V_1$ and $D_i := V_i \setminus (\cup_{j=1}^{i-1} V_j)$ for $i \in \{ 2, 3, \ldots, m \}$. Of course the sets D_1, D_2, \ldots, D_m are disjoint and $P_i \in D_i \subseteq V_i$. The point set $D := \cup_{i=1}^m D_i$ contains each point of $S \setminus B$ with weight 4/3. Note that each point of D_i has weight 4/3, except P_i. We introduce the following notion. For a point set $U \subseteq S$ let $\alpha(U)$ denote the average weight of the points in U, that is $\alpha(U) = w(U)/|U|$. First we prove $\alpha(D_i) \geq 8/5$ for each i. If $t_3(P_i) = k$ (cf. Definition 6.1), then we have

$$|D_i| \leq |V_i| \leq 2k + 1. \quad (5)$$

If $k = 1$, then Proposition 6.6 yields $w(P_i) \geq 10/3$ (since $w(P_i) \neq 4/3$), hence in this case we have

$$\alpha(D_i) \geq \frac{10/3 + (|D_i| - 1)4/3}{|D_i|} = 4/3 + \frac{2}{|D_i|} \geq 2. \quad (6)$$

If $k \geq 2$, then Proposition 6.7 yields $w(P_i) \geq 4k/3$, thus

$$\alpha(D_i) \geq \frac{4k/3 + (|D_i| - 1)4/3}{|D_i|} = 4/3 + \frac{(k - 1)4/3}{|D_i|} \geq 2 - \frac{2}{2k + 1} \geq 8/5. \quad (7)$$

We define a further subset of S, $E := S \setminus (A \cup B \cup D)$. Note that $w(D) \geq |D| 4/5$ and $w(E) \geq |E| 2$, since each point of E has weight at least 2 (see Proposition 6.7). The point sets A, B, D and E form a partition of S, thus $w(S) = w(A) + w(B) + w(D) + w(E)$. We distinguish three main cases.
1. There is no trisecant of \(S \) of type \((4/3, 4/3, 4/3)\). If \(d \in \{0, 1, 2\} \) denotes the number of points of \(S \) with weight zero (see Theorem 6.13), then we obtain \(w(S) \geq (q + 2 - d) \frac{5}{3} \geq q^2 \).

2. There is at least one trisecant of \(S \) of type \((4/3, 4/3, 4/3)\) and \(p \neq 3 \). Lemma 6.16 yields that there is no point of \(S \) with weight 0. Denote the number of trisecants of \(S \) of type \((4/3, 4/3, 4/3)\) by \(s \). Lemma 6.15 yields \(s \leq 3 \). If \(s = 1 \), then \(w(s) \geq 3 \frac{4}{3} + (q - 1) \frac{5}{3} = q^2 + \frac{10}{3} \). If \(s = 2 \), then according to Lemma 6.15 there is at most one other trisecant of type \((4/3, 4/3, 4/3)\). Thus in \(5 \) we have \(|D_i| \leq |V_i| \leq k + 2 \), where \(k = t_3(P_i) \). If \(k = 1 \), then similarly to (6) we obtain \(\alpha(D_i) \geq 2 \). If \(k \geq 2 \), then similarly to (7) we obtain \(\alpha(D_i) \geq \frac{7}{3} \). It follows that \(w(S) \geq 6 \frac{4}{3} + (q - 4) \frac{5}{3} = q^2 + \frac{1}{3} \). If \(s = 3 \), then according to Lemma 6.15 there is no other trisecant of type \((4/3, 4/3, 4/3)\). Thus in \(5 \) we have \(|D_i| \leq |V_i| \leq k + 1 \). If \(k = 1 \), then similarly to (6) we obtain \(\alpha(D_i) \geq \frac{7}{3} \). If \(k \geq 2 \), then similarly to (7) we obtain \(\alpha(D_i) \geq \frac{16}{3} \). It follows that \(w(S) \geq 9 \frac{4}{3} + (q - 7) \frac{16}{3} = q^2 + \frac{1}{3} \).

3. There is at least one trisecant \(\ell \) of \(S \) of type \((4/3, 4/3, 4/3)\) and \(p = 3 \). It follows from Lemma 6.15 that the number \(g \) of further trisecants of type \((4/3)\) is at most one. Denote by \(d \in \{0, 1, 2\} \) the number of points of \(S \) with weight zero. First suppose \(g = 0 \). As \(D \) is empty, we obtain \(w(S) \geq 3 \frac{4}{3} + (q - 1 - d)2 \geq 2q - 2 \). If \(g = 1 \), then according to Lemma 6.15 we have \(d = 0 \). Let \(r \neq \ell \) be the other trisecant of \(S \) of type \((4/3)\). Let \(t \in \{1, 2, 3\} \) be the number of points with weight \(4/3 \) in \(r \cap S \). It follows that \(w(S) \geq (3 + t) \frac{5}{3} + (3 - t) \frac{5}{3} + (q - 4)2 \geq 6 \frac{5}{3} + (q - 4)2 = 2q \).

\[\square \]

For a line set \(\mathcal{L} \) of \(AG(2, q) \), \(q \) odd, denote by \(\tilde{w}(\mathcal{L}) \) the set of affine points contained in an odd number of lines of \(\mathcal{L} \). [25] Theorem 3.2] by Vandendriessche classifies those line sets \(\mathcal{L} \) of \(AG(2, q) \) for which \(|\mathcal{L}| + \tilde{w}(\mathcal{L}) \leq 2q \), except for one open case ([25] Open Problem 3.3], which we recall here. For applications in coding theory we refer the reader to the Introduction of the paper of Vandendriessche and the references there.

Example 6.18 (Vandendriessche [25], Example 3.1 (i)]. \(\mathcal{L} \) is a set of \(q + k \) lines in \(AG(2, q) \), \(q \) odd, with the following properties. There is an in-set \(S \subset \ell_\infty \) with \(4 \leq m \leq q - 1 \) and an odd positive integer \(k \) such that exactly \(k \) lines of \(\mathcal{L} \) pass through each point of \(S \) and \(\tilde{w}(\mathcal{L}) = q - k \).

Proposition 6.19. Example 6.18 cannot exist.
Proof. The dual of the line set L in Example 6.18 is a point set B of size $q + k$ in $\text{PG}(2,q)$, such that there is a point $O \notin B$ (corresponding to ℓ_x), with the properties that through O there pass m k-secants of B, $\ell_1, \ell_2, \ldots, \ell_m$, and the number of odd-secants of B not containing O is $q - k$ (q, m and k are as in Example 6.18).

As $q + k$ is even and k is odd, it follows for $i \in \{1, 2, \ldots, m\}$ and for any $R \in \ell_i \setminus (B \cup O)$ that through R there passes at least one odd-secant of B, which is different from ℓ_i. As the number of odd-secants of B not containing O is $q - k$, and $|\ell_i \setminus (B \cup O)| = q - k$, it follows that there is a unique odd-secant of B through each point of $B \cap \ell_i$, namely ℓ_i. But $|B \setminus \ell_i| = q$, thus lines not containing O and meeting ℓ_i in B are bisecants of B (otherwise we would get tangents to B not containing O at some point of $\ell_i \cap B$). Then for $i \in \{1, 2, \ldots, m\}$ the points of $B \cap \ell_i$ are of type $(2q, k_1)$. As $m \geq 3$ and the lines ℓ_1, \ldots, ℓ_m are concurrent, Theorem 6.12 yields a contradiction for odd q. \hfill \Box

Remark 6.20. Together with other ideas, our method yields lower bounds on number of odd-secants of $(q + 3)$-sets and $(q + 4)$-sets as well. We will present these results elsewhere.

References

[1] P. Balister, B. Bollobás, Z. Füredi and J. Thompson, Minimal Symmetric Differences of Lines in Projective Planes, J. Combin. Des. 22(10) (2014), 435–451.

[2] S. Ball, The number of directions determined by a function over a finite field, J. Combin. Theory Ser. A 104 (2003), 341–350.

[3] S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme and T. Szőnyi, On the number of slopes of the graph of a function defined over a finite field, J. Combin. Theory Ser. A 86 (1999), 187–196.

[4] D. Bartoli, On the Structure of Semiovals of Small Size, J. Combin. Des. 22(12) (2014), 525-536.

[5] A. Bichara and G. Korchmáros, Note on $(q + 2)$-sets in a Galois plane of order q, Ann. Discrete Math. 14 (1980), 117–121.

[6] A. Blokhuis, Characterization of seminuclear sets in a finite projective plane, J. Geom. 40 (1991), 15–19.
[7] A. Blokhuis and A.E. Brouwer, *Blocking sets in Desarguesian projective planes*, Bull. London Math. Soc. 18 (1986), 132–134.

[8] A. Blokhuis and A.A. Bruen, *The minimal number of lines intersected by a set of $q+2$ points, blocking sets and intersecting circles*, J. Combin. Theory Ser. A 50 (1989), 308–315.

[9] A.E. Brouwer and A. Schrijver *The blocking number of an affine space*, J. Combin. Theory Ser. A 24 (1978), 251–253.

[10] B. Csajbók, T. Héger and Gy. Kiss, *Semiarcs with a long secant in PG(2, q)*, to appear in Innov. Incid. Geom., available online at http://arxiv.org/abs/1310.7207

[11] R.J. Evans, J. Greene, H. Niederreiter, *Linearized polynomials and permutation polynomials of finite fields*, Michigan Math. J. 39 (1992), 405–413.

[12] A. Gács, *On regular semiovals in PG(2, q)*, J. Alg. Comb. 23 (2006), 71–77.

[13] A. Gács and Zs. Weiner, *On $(q + t, t)$-arcs of type $(0, 2, t)$*, Des. Codes Cryptogr. 29 (2003), 131–139.

[14] J.W.P. Hirschfeld, *Projective Geometries over Finite Fields*, 2nd ed., Clarendon Press, Oxford, 1998.

[15] R. Jamison, *Covering finite fields with cosets of subspaces*, J. Combin. Theory Ser. A 22 (1977), 253–266.

[16] Gy. Kiss, *A survey on semiovals*, Contrib. Discrete Math. 3 (2008), 81–95.

[17] Gy. Kiss, S. Marcugini and F. Pambianco, *On the spectrum of the sizes of semiovals in PG(2, q), q odd*, Discrete Math. 310 (2010), 3188–3193.

[18] Gy. Kiss and J. Ruff, *Notes on Small Semiovals*, Annales Univ. Sci. Budapest 47 (2004), 143–151.

[19] G. Korchmáros and F. Mazzocca, *On $(q + t)$-arcs of type $(0, 2, t)$ in a desarguesian plane of order q*, Math. Proc. Cambridge Philos. Soc. 108 (1990), 445–459.

[20] P. Lisonek, Computer-assisted Studies in Algebraic Combinatorics, Ph.D. Thesis, RISC, J. Kepler University Linz, 1994.
[21] P. Sziklai, *On small blocking sets and their linearity*, J. Combin. Theory Ser. A 115 (2008), 1167–1182.

[22] T. Szőnyi, *Blocking Sets in Desarguesian Affine and Projective Planes*, Finite Fields Appl. 3 (1997), 187–202.

[23] T. Szőnyi, *On the Number of Directions Determined by a Set of Points in an Affine Galois Plane*, J. Combin. Theory Ser. A 74 (1996), 141–146.

[24] T. Szőnyi and Zs. Weiner, *On the stability of the sets of even type*, Adv. Math. 267 (2014), 381-394.

[25] P. Vandendriessche, *On small line sets with few odd-points*, to appear in Des. Codes Cryptogr., doi 10.1007/s10623-014-9920-1

Bence Csajbók
Dipartimento di Tecnica e Gestione dei Sistemi Industriali,
Università di Padova,
Stradella S. Nicola, 3, I-36100 Vicenza, Italy,
and
MTA–ELTE Geometric and Algebraic Combinatorics Research Group,
Eötvös Loránd University,
1117 Budapest, Pázmány Péter Sétány 1/C, Hungary,
e-mail: csajbok.bence@gmail.com