The asymptotic behavior of limit-periodic functions on primes and an application to k-free numbers

Markus Hablizel

We use the circle method to evaluate the behavior of limit-periodic functions on primes. For those limit-periodic functions that satisfy a kind of Barban-Davenport-Halberstam condition and whose singular series converge fast enough, we can evaluate their average value on primes. As an application, this result is used to show how tuples of different k-free numbers behave when linear shifts are applied.

1 Introduction

Limit-periodic functions are those arithmetical functions $f : \mathbb{N} \to \mathbb{C}$ which appear as limits of periodic functions with regards to the Besicovitch-seminorm defined via

$$||f||_2 := \left(\limsup_{x \to \infty} \frac{1}{x} \sum_{n \leq x} |f(n)|^2 \right)^{1/2}$$

They have some wonderful properties, e.g., the mean-value as well as the mean-value in residue classes exist always. Limit-periodic functions are a special case of almost-periodic functions that have been explored by Harald Bohr und Abram Besicovitch in the 1920s. The distinction between those two lies in the approximation type: Almost-periodic functions appear as limits with regards to the Besicovitch-seminorm of linear combinations of the functions $k \mapsto e^{2\pi i \alpha k}$ with $\alpha \in \mathbb{R}$, whereas for limit-periodic functions, only $\alpha \in \mathbb{Q}$ is admissible. For further reference on limit-periodic functions, see [11].

The main result of this paper is a statement on the behavior of a limit-periodic function on primes on average. We prove in theorem 3.3 that under certain conditions the asymptotic relation

$$\sum_{p \leq x} f(p) = c_f \frac{x}{\log x} + o\left(\frac{x}{\log x} \right)$$

holds, with a constant c_f explicitly given through an infinite series. Brüdern [2] has considered this result in a more general context.

As an application we show for arbitrary $\alpha_i \in \mathbb{N}_0$ and $r_i \in \mathbb{N}_{>1}$

$$\sum_{p \leq x} \mu_{r_1}(p + \alpha_1) \cdots \mu_{r_s}(p + \alpha_s) = \prod_p \left(1 - \frac{D^*(p)}{\varphi(p^{r_i})} \right) \frac{x}{\log x} + o\left(\frac{x}{\log x} \right)$$

(1)

where μ_k denotes the characteristic function of the k-free numbers and $D^*(p)$ is a computable function of the prime p, depending on the choice of the numbers α_i and r_i.

2 Some basic facts

We state some basic facts and notation for the later discourse.

Definition 2.1 (k-free numbers) For given $k \in \mathbb{N}_{>1}$ the function μ_k denotes the characteristic function of the set of k-free numbers, i.e.

$$\mu_k(n) := \begin{cases} 0 & \text{there is a } p \in \mathbb{P} \text{ with } p^k | n \\ 1 & \text{otherwise} \end{cases}$$

which is multiplicative. On prime powers it has the values

$$\mu_k(p^r) = 1 - \left\lfloor \frac{k}{r} \right\rfloor$$

where $\left\lfloor A \right\rfloor$ shall denote the *Iverson bracket* to the statement A, i.e., it equals 1 if A is true, and 0 otherwise. As it is long known we also have

$$\mu_k(n) = \sum_{d | n} \mu(d)$$

Lemma 2.2 For $x \in \mathbb{R}_{>1}$ we have the asymptotic relation

$$\sum_{n \leq x} \frac{\mu(n)^2}{\varphi(n)} = \log x + \gamma + \sum_p \frac{\log p}{p(p-1)} + O \left(\frac{\log x}{\sqrt{x}} \right)$$

with the Euler-Mascheroni-constant γ, see [1].

Definition 2.3 We define the function e with period 1 as usual through

$$e : \mathbb{R} \rightarrow \{ z \in \mathbb{C} : |z| = 1 \}, \ x \mapsto e^{2\pi ix}$$

We sometimes write e^*_q for the function $n \mapsto e^*_{\frac{m}{q}}$. For $q \in \mathbb{N}$ Ramanujan’s sum c_q is given by

$$c_q(n) := \sum_{a \leq q} e^*_q(n)$$

where the star on the sum shall denote the sum over all $a \leq q$ prime to q only, i.e., their greatest common divisor equals 1.

Lemma 2.4 With the geometric series we have for $a, b \in \mathbb{Z}$, $0 \leq a < b$, $\beta \in \mathbb{R}$ the inequality

$$\left| \sum_{a<n \leq b} e(\beta n) \right| \leq \min \left(b - a, \frac{1}{2||\beta||} \right)$$

where $||\beta||$ denotes the distance to the nearest integer. For a proof, see [8].

The space \mathcal{D}^2 of limit-periodic functions

For $q \in \mathbb{N}$, let \mathcal{D}_q be the set of all q-periodic functions and $\mathcal{D} := \bigcup_{q=1}^{\infty} \mathcal{D}_q$. Write \mathcal{D}^2 for the closure of \mathcal{D} with regards to the Besicovitch-seminorm $||.||_2$ which makes it a normed vector space in a canonical way. Limit-periodic functions are exactly the elements of this vector space.
Theorem 2.5 The vector spaces \(\mathcal{D}_q \) and \(\mathcal{D} \) possess the following bases, see [11],
\[
\mathcal{D}_q = \langle e_a^q : 1 \leq a \leq q \rangle_C \\
\mathcal{D} = \langle e_a^q : 1 \leq a \leq q, q \in \mathbb{N}, (a; q) = 1 \rangle_C
\] (5)

Definition 2.6 (Besicovitch-seminorm) The Besicovitch-seminorm of a function \(f \in \mathcal{D} \) is given through
\[
\|f\|_2 := \left(\limsup_{x \to \infty} \frac{1}{x} \sum_{n \leq x} |f(n)|^2 \right)^{\frac{1}{2}}
\]

Note that for a \(q \)-periodic function we have the identity
\[
\sum_{n \leq x} |f(n)|^2 = \left(\left\lfloor \frac{x}{q} \right\rfloor + O(1) \right) \sum_{n \leq q} |f(n)|^2
\]

Comments 2.7 If \(f \) is a limit-periodic function, so is \(|f|, \text{Re}(f) \) and \(\text{Im}(f) \) as well as with \(a \in \mathbb{Z}, b \in \mathbb{N}, \)
\[
n \mapsto f(n + a) \\
n \mapsto f(bn)
\]

Furthermore, the mean-value
\[
M(f) := \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} f(n)
\]
exists for every \(f \in \mathcal{D}^2 \), as well as the mean-value in residue classes
\[
\eta_f(q, b) := \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x, n \equiv b(q)} f(n)
\] (6)

for arbitrary \(b, q \in \mathbb{N} \). For the respective proofs, see [11].

Comment 2.8 For \(f \in \mathcal{D}^2 \) we have \(\eta_f(q, b) \ll q^{-\frac{1}{2}} \) which is easily seen with the Cauchy-Schwarz-inequality
\[
\frac{1}{x} \left| \sum_{n \leq x, n \equiv b(q)} f(n) \right| \leq \left(\frac{1}{x} \sum_{n \leq x} |f(n)| \right)^{\frac{1}{2}} \left(\frac{1}{x} \sum_{n \leq x, n \equiv b(q)} 1 \right)^{\frac{1}{2}} \ll \left(\frac{1}{x} \left(\frac{x}{q} + 1 \right) \right)^{\frac{1}{2}} \ll q^{-\frac{1}{2}}
\]

where \(\ll \) denotes as usual Vinogradov’s symbol.

Lemma 2.9 (Parseval’s identity) As the basis (5) is an orthonormal basis of \(\mathcal{D}^2 \), Parseval’s identity holds as well
\[
\sum_{q=1}^{\infty} \sum_{a \leq q} |M(f \cdot e_a^q)|^2 = \|f\|_2^2
\]

The following example of a limit-periodic function is used in the application at the end of this paper.

Lemma 2.10 The function \(\mu_k \) is not periodic, but it is limit-periodic.
Proof. Assume we have a natural number R with

$$\mu_k(n + R) = \mu_k(n)$$

for all $n \in \mathbb{N}$. Then we can deduce that for each $p \in \mathbb{P}$ and $m \in \mathbb{N}$ we have

$$p^k \nmid (1 + mR)$$

which is easily seen to be false with the theorem of Fermat-Euler. For the proof of the limit-periodic property, define for $k \in \mathbb{N}$, $k \geq 2$, and $\gamma \in \mathbb{R}_{>2}$ the arithmetical function $\nu_k^{(\gamma)}$ through

$$\nu_k^{(\gamma)}(n) := \begin{cases}
\mu(s) \prod_{p \mid n} [p \leq \gamma] & \text{if } n = s^k \text{ with } s \in \mathbb{N} \\
0 & \text{otherwise}
\end{cases}$$

Then $\nu_k^{(\gamma)}$ is multiplicative. As a Dirichlet-convolution of multiplicative functions, the function

$$\mu_k^{(\gamma)} := \nu_k^{(\gamma)} * 1$$

is multiplicative as well. It is an approximation to μ_k as can be seen, when evaluated on prime powers:

$$\mu_k^{(\gamma)}(p^r) = 1 + \sum_{j \leq r} \left\{ \mu(p) [p \leq \gamma] \quad j = k \right\} = 1 - [p \leq \gamma] [k \leq r]$$

which means

$$\mu_k(n) = \sum_{d \mid n} \mu(d) \quad \mu_k^{(\gamma)}(n) = \sum_{\forall d \mid n \exists p \mid d : p \leq \gamma} \mu(d)$$

With the equations (2) and (9) we get for all $p \in \mathbb{P}$ and $r \in \mathbb{N}_0$

$$\mu_k^{(\gamma)}(p^r) \geq \mu_k(p^r)$$

As both functions are multiplicative and can only attain the values 0 or 1, we get directly for all $n \in \mathbb{N}$

$$\mu_k^{(\gamma)}(n) \geq \mu_k(n)$$

and

$$\left(\mu_k^{(\gamma)}(n) - \mu_k(n) \right) \in \{ 0, 1 \}$$

(10)

The function $\mu_k^{(\gamma)}$ is periodic with period $\tau := \prod_{p \leq \gamma} p^k$, as

$$\mu_k^{(\gamma)}(n) = \sum_{\forall d \mid n \exists p \mid d : p \leq \gamma} \mu(d) = \sum_{\forall d \mid n \exists p \mid d : p \leq \gamma} \mu(d) = \mu_k^{(\gamma)}(n + \tau)$$

From (10) we deduce

$$\left\| \mu_k^{(\gamma)} - \mu_k \right\|_2^2 = \limsup_{x \to \infty} \frac{1}{x} \sum_{n \leq x} \left(\sum_{\exists p \mid d : p > \gamma} \mu(d) \right)^2 = \limsup_{x \to \infty} \frac{1}{x} \sum_{n \leq x} \sum_{\exists p \mid d : p > \gamma} \mu(d)$$
and it follows
\[
\left\| \mu_k^{(y)} - \mu_k \right\|_2^2 \leq \limsup_{x \to \infty} \frac{1}{x} \sum_{d \mid x} \sum_{n \leq x, \exists p \mid d: p > y} 1 = \limsup_{x \to \infty} \frac{1}{x} \sum_{d \leq x} \sum_{n \leq x, \exists p \mid d: p > y} 1 \sum_{n \leq x} 1 \\
\leq \limsup_{x \to \infty} \frac{1}{x} \sum_{d \leq x} \frac{x}{d} = \limsup_{x \to \infty} \sum_{d \leq x} d^{-k} \\
\leq \sum_{d > y} d^{-k} \xrightarrow{y \to \infty} 0
\]

Thereby, we get
\[
\left\| \mu_k - \mu_k^{(y)} \right\|_2 \xrightarrow{y \to \infty} 0 \tag{11}
\]
which shows the limit-periodic property of \(\mu_k \). \(\square \)

Lemma 2.11 For a limit-periodic function \(f \) that is bounded in addition, the function \(\mu_k f \) is limit-periodic as well, which can be easily seen.

The Barban–Davenport–Halberstam theorem for \(D^2 \)

The Barban-Davenport-Halberstam theorem in its original form for primes proves that the error term in the prime number theorem for arithmetic progressions is small in the quadratic mean, see [1], and for further references [5], [6]. We need a corresponding version for limit-periodic functions.

Define the error term in the sum over arithmetic progressions via
\[
E_f(x; q, b) := \sum_{n \leq x, n \equiv b(q)} f(n) - x\eta_f(q, b) \tag{12}
\]
Then the following lemma due to Hooley [7] holds.

Lemma 2.12 If for all \(A \in \mathbb{R} \), \(b, q \in \mathbb{N} \)
\[
E_f(x; q, b) \ll \frac{x}{(\log x)^A}
\]
where the implicit constant in Vinogradov’s symbol is at most dependent on \(A \) or \(f \), then we have for all \(A \in \mathbb{R} \) and \(Q \in \mathbb{R}_{>0} \)
\[
\sum_{q \leq Q} \sum_{b \leq x} |E_f(x; q, b)|^2 \ll Qx + \frac{x^2}{(\log x)^A}
\]
3 Proof of the main theorem with the circle method

In this section we state and prove the main theorem with the circle method of Hardy and Littlewood \[12\]. Let \(f \in \mathcal{D}^2 \) be throughout this section a given function.

Definition 3.1 We define for \(a, q \in \mathbb{N} \) the Gaußian sum of \(f \) via

\[
G_f(q, a) := \sum_{b \leq q} \eta_f(q, b) e\left(\frac{ab}{q}\right)
\]

Comments 3.2 The Gaußian sum is a mean-value, as

\[
G_f(q, a) = \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} n \equiv b(q) f(n) e\left(\frac{an}{q}\right) = \lim_{x \to \infty} \frac{1}{x} \sum_{n \leq x} f(n) e\left(\frac{an}{q}\right) = M(f \cdot e_\frac{a}{q})
\]

With Parseval’s identity we also have

\[
\mathcal{S}_f := \sum_{q=1}^{\infty} \sum_{a \leq q}^* |G_f(q, a)|^2 = \sum_{q=1}^{\infty} \sum_{a \leq q}^* \left| \sum_{b \leq q} \eta_f(q, b) e\left(\frac{ab}{q}\right) \right|^2
\]

\[
= \sum_{q=1}^{\infty} \sum_{a \leq q}^* \left| \sum_{b \leq q} \eta_f(q, b) e\left(-\frac{ab}{q}\right) \right|^2 = \sum_{q=1}^{\infty} \sum_{a \leq q}^* \left| M(f \cdot e_\frac{a}{q}) \right|^2 = ||f||_2^2
\]

(13)

Therefore, for limit-periodic functions the identity \(\mathcal{S}_f = ||f||_2^2 \) holds. The series \(\mathcal{S}_f \) is called *singular series* of \(f \).

We are now able to state the main theorem of this paper.

Theorem 3.3 Let \(f \in \mathcal{D}^2 \) be an arithmetical function with

\[
\sum_{n \leq x} |f(n)|^2 = x ||f||_2^2 + o\left(\frac{x}{\log x}\right)
\]

and the remainder of the corresponding singular series \[13\] satisfies

\[
\sum_{q > w} \sum_{a \leq q}^* |G_f(q, a)|^2 = o\left(w^{-\frac{1}{r}}\right)
\]

(15)

with \(r \in \mathbb{R}_{>1} \). We then set \(Q = Q(x) := (\log x)^r \). Furthermore, we demand for all \(A \in \mathbb{R} \)

\[
\sum_{q \leq Q} \max_{1 \leq b \leq q} |E_f(x; q, b)| \ll \frac{x}{(\log x)^A}
\]

(16)

where the implicit constant in Vinogradov’s symbol is at most dependent on \(A \).

Then we have

\[
\sum_{p \leq x} f(p) = c_f \frac{x}{\log x} + o\left(\frac{x}{\log x}\right)
\]

(17)
with a constant c_f that is represented through the infinite series

$$c_f := \sum_{q=1}^{\infty} \frac{\mu(q)}{\varphi(q)} \sum_{a \leq q}^* G_f(q, a)$$

Comments 3.4

1. The condition (16) implies

$$E_f(x; q, b) \ll \frac{x}{(\log x)^A}$$

for all $A \in \mathbb{R}$, $b, q \in \mathbb{N}$, and we can apply theorem 2.12.

2. The following identity can be verified easily

$$c_f = \sum_{q=1}^{\infty} \frac{\mu(q)}{\varphi(q)} M(f \cdot c_q)$$

In what follows, we assume the conditions of theorem 3.3. For notational simplification, we write $G, E, \eta, \text{etc.}$ instead of $G_f, E_f, \eta_f, \text{etc.}$

3.1 Split in major and minor arcs

Definition 3.5 (Major and minor arcs) With the unit interval $\mathcal{U} := \left(\frac{Q}{x}, 1 + \frac{Q}{x} \right]$ we define for $a, q \in \mathbb{N}$ with $1 \leq a \leq q \leq Q, (a; q) = 1$ the major arcs through

$$\mathfrak{M}(q, a) := \left\{ \alpha \in \mathcal{U} : \left| \alpha - \frac{a}{q} \right| \leq \frac{Q}{x} \right\}$$

Let the symbol \mathfrak{M} denote the union of all major arcs

$$\mathfrak{M} := \bigcup_{q \leq Q} \bigcup_{a \leq q} \mathfrak{M}(q, a)$$

We define the minor arcs as usual as the complement in the unit interval

$$\mathfrak{m} := \mathcal{U} \setminus \mathfrak{M}$$

For sufficient large x each pair of major arcs is disjunct.

Definition 3.6 We define exponential sums S and T for $\alpha \in \mathbb{R}$ via

$$S(\alpha) := \sum_{n \leq x} f(n) e(\alpha n)$$

$$T(\alpha) := \sum_{p \leq x} e(-\alpha p)$$

and have then

$$\sum_{p \leq x} f(p) = \int_{0}^{1} S(\alpha) T(\alpha) d\alpha$$

$$= \int_{\mathcal{U}} S(\alpha) T(\alpha) d\alpha = \int_{\mathfrak{M}} S(\alpha) T(\alpha) d\alpha + \int_{\mathfrak{m}} S(\alpha) T(\alpha) d\alpha$$

(18)
3.2 The major arcs

On \(\mathfrak{M} \) we approximate \(S \) resp. \(T \) by the functions \(S^* \) resp. \(T^* \) that are defined for \(\alpha \in \mathfrak{M}(q, a) \), \(\alpha = \frac{a}{q} + \beta \), via

\[
S^*(\alpha) := G(q, a) \sum_{n \leq x} e(\beta n) \\
T^*(\alpha) := \frac{\mu(q)}{\varphi(q)} \sum_{2 \leq n \leq x} \frac{e(-\beta n)}{\log n}
\]

Lemma 3.7 The function \(T^* \) satisfies on \(\mathfrak{M}(q, a) \) with \(\alpha = \frac{a}{q} + \beta \) the inequality

\[
T^*(\alpha) \ll \frac{\mu(q)^2}{\varphi(q) \log x} \frac{x}{1 + \|\beta\| x}
\]

Proof. The case \(\beta \in \mathbb{Z} \) is trivial. For \(\beta \notin \mathbb{Z} \) the method of partial summation and estimate (14) can be applied:

\[
T^*(\alpha) \ll \frac{\mu(q)^2}{\varphi(q)} \left(\frac{1}{\log x} \sum_{2 \leq n \leq x} e(-\beta n) + \frac{1}{t (\log t)^2} \left| \sum_{2 \leq n \leq t} e(-\beta n) \right| dt \right)
\]

\[
\ll \frac{\mu(q)^2}{\varphi(q)} \left(\frac{1}{\|\beta\| \log x} + \frac{1}{\|\beta\|} \int_{t=2}^{x} \frac{1}{t (\log t)^2} dt \right) \ll \frac{\mu(q)^2}{\varphi(q)} \frac{1}{\|\beta\| \log x} \quad \square
\]

The next lemma makes the approximation through \(S^* \) and \(T^* \) on the major arcs more precise.

Lemma 3.8 We have for \(\alpha \in \mathfrak{M}, \alpha = \frac{a}{q} + \beta \) and arbitrary \(A \in \mathbb{R} \)

\[
S(\alpha) = S^*(\alpha) + \sum_{b \leq q} e\left(\frac{ab}{q} \right) \Xi (x; q, b; \beta) \\
T(\alpha) = T^*(\alpha) + O\left(\frac{x}{(\log x)^A} \right)
\]

where

\[
\Xi (x; q, b; \beta) := e(\beta x) E([x] ; q, b) - 2\pi i \beta \int_{t=1}^{x} e(\beta t) E([t] ; q, b) dt
\]

Proof. If we evaluate \(S \) at the rational number \(\frac{a}{q} \) we get with definition (12)

\[
\sum_{n \leq x} f(n) e\left(\frac{an}{q} \right) = \sum_{b \leq q} e\left(\frac{ab}{q} \right) \sum_{n \leq [x]} f(n) = \sum_{b \leq q} e\left(\frac{ab}{q} \right) \left([x] \eta(q, b) + E([x] ; q, b) \right) \\
= [x] G(q, a) + \sum_{b \leq q} e\left(\frac{ab}{q} \right) E([x] ; q, b)
\]
Applying partial summation twice yields the stated claim:

\[
S(\alpha) = e(\beta x) S\left(\frac{\alpha}{q}\right) - 2\pi i \beta \sum_{t=1}^{x} e(\beta t) \left([t] G(q, a) + \sum_{b \leq q} e\left(\frac{ab}{q}\right) E([t] ; q, b) \right) dt
\]

\[
= G(q, a) \left([x] e(\beta x) - 2\pi i \beta \sum_{t=1}^{x} e(\beta t) dt \right) + \sum_{b \leq q} e\left(\frac{ab}{q}\right) \Xi(x; q, b; \beta)
\]

\[
= S^*(\alpha) + \sum_{b \leq q} e\left(\frac{ab}{q}\right) \Xi(x; q, b; \beta)
\]

For the second statement, we use partial summation another time

\[
T(\alpha) = \frac{1}{\log x} \sum_{p \leq x} e(-\alpha p) \log p + \int_{t=2}^{x} \frac{1}{t (\log t)^2} \sum_{p \leq t} e(-\alpha p) \log p dt
\]

and apply afterwards the estimate

\[
\sum_{p \leq v} e(-\alpha p) \log p = \frac{\mu(q)}{\varphi(q)} \sum_{n \leq v} e(-\beta n) + O\left(\frac{v}{(\log v)^4}\right)
\]

that is valid for all \(v, A \in \mathbb{R}_{>1}\), see [12, Lemma 3.1].

We then get

\[
T(\alpha) = \frac{\mu(q)}{\varphi(q)} \left(\frac{1}{\log x} \sum_{2 \leq n \leq x} e(-\beta n) + \int_{t=2}^{x} \frac{1}{t (\log t)^2} \sum_{n \leq t} e(-\beta n) dt \right) + O\left(\frac{x}{(\log x)^4}\right)
\]

\[
= T^*(\alpha) + O\left(\frac{x}{(\log x)^4}\right)
\]

Corollary 3.9 We have

\[
\int_{\mathbb{N}} |S(\alpha)|^2 d\alpha = x ||f||_2^2 + o\left(\frac{x}{\log x}\right)
\]

Proof. Set

\[
\int_{\mathbb{N}} |S(\alpha)|^2 d\alpha = \Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4
\]

with

\[
\Sigma_1 = \int_{\mathbb{N}} |S^*(\alpha)|^2 d\alpha = \sum_{q \leq Q} \sum_{a \leq q} \left| G(q, a) \right|^2 \int_{|\beta| \leq \frac{Q}{x}} \left| \sum_{n \leq x} e(\beta n) \right|^2 d\beta
\]

\[
\Sigma_2 = \sum_{q \leq Q} \sum_{a \leq q} \left| [\beta] \leq \frac{Q}{x} \right| \sum_{b \leq q} e\left(\frac{ab}{q}\right) \Xi(x; q, b; \beta) \left| \sum_{n \leq x} e(\beta n) \right|^2 d\beta
\]

\[
\Sigma_3 = \sum_{q \leq Q} \sum_{a \leq q} \left| [\beta] \leq \frac{Q}{x} \right| \sum_{b \leq q} S^*\left(\frac{a}{q} + \beta \right) \sum_{b \leq q} e\left(\frac{ab}{q}\right) \Xi(x; q, b; \beta) d\beta
\]

\[
\Sigma_4 = \sum_{q \leq Q} \sum_{a \leq q} \left| [\beta] \leq \frac{Q}{x} \right| \sum_{b \leq q} S^*\left(\frac{a}{q} + \beta \right) \sum_{b \leq q} e\left(\frac{ab}{q}\right) \Xi(x; q, b; \beta) d\beta
\]
To evaluate Σ_1 we complete the integration limits to $\left[-\frac{1}{2}, \frac{1}{2} \right]$ and use properties of the exponential function. For the error term that occurred, we apply (11) and remark that $||\beta|| = |\beta|$ for $|\beta| \leq \frac{1}{2}$. The series converges with Parseval’s identity to the limit $||f||^2_2$.

$$
\Sigma_1 = \sum_{q \leq Q} \sum_{a \leq q}^* |G(q,a)|^2 \left(|x| - \int \frac{\sum e(\beta n)^2}{Q < |\beta| \leq \frac{1}{2}} \right)
= x ||f||^2_2 - x \sum_{q > Q} \sum_{a \leq q}^* |G(q,a)|^2 + O\left(\frac{x}{Q} \right)
$$

The condition (15) of theorem 3.3 implies now together with the definition of Q

$$
\Sigma_1 = x ||f||^2_2 + o\left(\frac{x}{\log x} \right)
$$

For Σ_2 we note that the function Ξ defined in (20) satisfies the following inequality:

$$
\Xi(x; q, b; \beta) \ll (1 + |\beta|x) \max_{1 \leq k \leq x} |E(k; q, b)|
$$

(22)

By neglecting the condition on co-primality for the sum over a, we get

$$
\Sigma_2 \ll \sum_{q \leq Q} \sum_{b \leq q} \int \Xi(x; q, b; \beta) \Xi(x; q, b; \beta) \sum_{a \leq q} e\left(\frac{a}{q} (b_1 - b_2) \right) d\beta
$$

$$
= \sum_{q \leq Q} \sum_{b \leq q} \int |\Xi(x; q, b; \beta)|^2 d\beta
$$

$$
\ll Q \int_{|\beta| \leq \frac{1}{Q}} (1 + |\beta|x)^2 d\beta \max_{1 \leq k \leq x} \sum_{q \leq Q} \sum_{b \leq q} |E(k; q, b)|^2
$$

As f fulfills condition (16), we can use the Barban-Davenport-Halberstam statement for limit-periodic functions, theorem 2.12, and get for all $A \in \mathbb{R}$

$$
\Sigma_2 \ll Q^4 \max_{1 \leq k \leq x} \left(Qk + \frac{k^2}{(\log k)^A} \right) \ll Q^5 + Q^4 \frac{x}{(\log x)^A}
$$

Therefore

$$
\Sigma_2 = o\left(\frac{x}{\log x} \right)
$$

Using the estimates above for Σ_1 and Σ_2 and applying the Cauchy-Schwarz-inequality, we have for all $A \in \mathbb{R}$

$$
\Sigma_3 + \Sigma_4 \ll \sum_{q \leq Q} \sum_{a \leq q}^* \int \left| S^* \left(\frac{a}{q} + \beta \right) \sum_{b \leq q} e\left(\frac{ab}{q} \right) \Xi(x; q, b; \beta) \right| d\beta
$$

$$
\ll (\Sigma_1)^{\frac{1}{2}} (\Sigma_2)^{\frac{1}{2}} \ll x^{\frac{1}{2}} \left(\frac{x}{(\log x)^A} \right)^{\frac{1}{2}} = \frac{x}{(\log x)^{\frac{A}{2}}}
$$

So

$$
\Sigma_3 + \Sigma_4 = o\left(\frac{x}{\log x} \right)
$$
Lemma 3.10 We have for all $A \in \mathbb{R}$

$$\int_{\mathbb{R}} S(\alpha) (T(\alpha) - T^*(\alpha)) \, d\alpha \ll Q^{\frac{3}{2}} \frac{x}{(\log x)^A} \quad (23)$$

and

$$\int_{\mathbb{R}} T^*(\alpha) (S(\alpha) - S^*(\alpha)) \, d\alpha \ll Q \frac{x}{(\log x)^A} \quad (24)$$

PROOF. The Cauchy-Schwarz-inequality can be applied to equation (23) and we get

$$\left| \int_{\mathbb{R}} S(\alpha) (T(\alpha) - T^*(\alpha)) \, d\alpha \right| \leq \left(\int_{\mathbb{R}} |S(\alpha)|^2 \, d\alpha \int_{\mathbb{R}} |T(\alpha) - T^*(\alpha)|^2 \, d\alpha \right)^{\frac{1}{2}}$$

For the first factor we use a trivial estimate from equation (21)

$$\int_{\mathbb{R}} |S(\alpha)|^2 \, d\alpha \ll x$$

For the second factor, we use lemma 3.3 and get for all $A \in \mathbb{R}$

$$\int_{\mathbb{R}} |T(\alpha) - T^*(\alpha)|^2 \, d\alpha \ll \sum_{q \leq Q} \sum_{\alpha \leq q} \sum_{|\beta| \leq \frac{Q}{x}} \frac{x}{(\log x)^A} \, d\beta \ll Q^2 \frac{x}{(\log x)^{2A}}$$

which proves (24).

For the second statement we use the approximation property from lemma 3.3. The left-hand side in (21) is then equal to

$$\sum_{q \leq Q} \sum_{a \leq q} \sum_{|\beta| \leq \frac{Q}{x}} \frac{\mu(q)}{\varphi(q)} \sum_{2 \leq n \leq x} \frac{e(-\beta n)}{\log n} \sum_{b \leq q} e\left(\frac{ab}{q}\right) \Xi(x; q, b; \beta) \, d\beta$$

$$= \sum_{q \leq Q} \sum_{b \leq q} c_q(b) \sum_{|\beta| \leq \frac{Q}{x}} \frac{\mu(q)}{\varphi(q)} \sum_{2 \leq n \leq x} \frac{e(-\beta n)}{\log n} \Xi(x; q, b; \beta) \, d\beta$$

$$\ll \sum_{q \leq Q} \sum_{b \leq q} |c_q(b)| \sum_{|\beta| \leq \frac{Q}{x}} \left| \frac{\mu(q)}{\varphi(q)} \sum_{2 \leq n \leq x} \frac{e(-\beta n)}{\log n} \right| \Xi(x; q, b; \beta) \, d\beta$$

Using the approximation (19) for T^* and (22) for Ξ we get

$$\ll \sum_{q \leq Q} \sum_{b \leq q} \frac{\mu(q)^2}{\varphi(q)} |c_q(b)| \sum_{|\beta| \leq \frac{Q}{x}} \frac{1}{\log x} \left(1 + |\beta| x\right) \frac{1}{1 + |\beta|} \max_{1 \leq k \leq x} |E(k; q, b)| \, d\beta$$

$$\ll \frac{Q}{\log x} \sum_{q \leq Q} \varphi(q) \sum_{b \leq q} \frac{\mu(q)^2}{\varphi(q)} |c_q(b)| \sum_{1 \leq k \leq x} |E(k; q, b)|$$

Exploiting standard properties of Ramanujan’s sum and the divisor function $d(q)$ results in

$$\frac{Q}{\log x} \sum_{q \leq Q} \varphi(q) \max_{1 \leq b \leq q} |E(k; q, b)| \ll Q \max_{1 \leq k \leq x} \sum_{q \leq Q} \max_{1 \leq b \leq q} |E(k; q, b)|$$

Finally, with applying condition (10) we get the desired result (24).
3.3 The main term

Lemma 3.11 On the major arcs we have
\[\int_{\mathfrak{M}} S^* (\alpha) T^* (\alpha) \, d\alpha = c_f \frac{x}{\log x} + o \left(\frac{x}{\log x} \right) \]
with the absolute convergent series
\[c_f := \sum_{q=1}^{\infty} \frac{\mu(q)}{\varphi(q)} \sum_{a \leq q}^* G(q, a) \tag{25} \]

PROOF. Lemma 2.2 and the requirement \((\ref{15})\) imply the absolute convergence of the series, as we have for all \(v, w \in \mathbb{R}_0^+\) and \(v' := \frac{\log v}{\log 2}, w' := \frac{\log w}{\log 2} - 1\)
\[\sum_{v < q \leq w} \left| \frac{\mu(q)}{\varphi(q)} \sum_{a \leq q}^* G(q, a) \right| \leq \sum_{v' \leq k \leq w'} \left(\sum_{2^k < q \leq 2^k + 1} \frac{\mu(q)^2}{\varphi(q)} \right) \left(\sum_{2^k < q \leq 2^k + 1} \sum_{a \leq q}^* |G(q, a)|^2 \right) \]
\[\leq \sum_{k \geq v'} \left(\sum_{q \leq 2^{k+1}} \frac{\mu(q)^2}{\varphi(q)} \right) \left(\sum_{q \geq 2^k} \sum_{a \leq q}^* |G(q, a)|^2 \right) \]
\[\ll \sum_{k \geq v'} \left(\left(\log 2^k \right) \left(2^{-\frac{k}{2}} \right) \right) \left(2^{-\frac{k}{2}} \right) \lim_{v' \to \infty} 0 \]
The number \(r \in \mathbb{R}_+\) exists as we require \((\ref{15})\) to be true and it can be seen easily that the implicit constants can be chosen independently of \(v\) and \(w\). Cauchy’s criterion implies the stated convergence.

To evaluate the integral
\[\int_{\mathfrak{M}} S^* (\alpha) T^* (\alpha) \, d\alpha = \sum_{q \leq Q} \frac{\mu(q)}{\varphi(q)} \sum_{a \leq q}^* G(q, a) \int_{|\beta| \leq \frac{1}{2}} \sum_{m \leq x} e(\beta m) \sum_{2 \leq n \leq x} \frac{e(-\beta n)}{\log n} \, d\beta \]
we complete the integration limits to \([-\frac{1}{2}, \frac{1}{2}]\) and get
\[\int_{\mathfrak{M}} S^* (\alpha) T^* (\alpha) \, d\alpha = \frac{x}{\log x} \sum_{q \leq Q} \frac{\mu(q)}{\varphi(q)} \sum_{a \leq q}^* G(q, a) + \Sigma_5 \]
with
\[\Sigma_5 \ll \left| \sum_{q \leq Q} \frac{\mu(q)}{\varphi(q)} \sum_{a \leq q}^* G(q, a) \right| \left(\frac{x}{(\log x)^2} + \int_{\frac{1}{2} < |\beta| \leq 1} \left| \sum_{m \leq x} e(\beta m) \right| \sum_{2 \leq n \leq x} \frac{e(-\beta n)}{\log n} \, d\beta \right) \]
With the convergence of the series over \(q\) and lemma 3.7 as well as with the approximation \((\ref{11})\), we get
\[\int_{\mathfrak{M}} S^* (\alpha) T^* (\alpha) \, d\alpha = c_f \frac{x}{\log x} + O \left(\frac{x}{\log x} \left(\frac{1}{\log x} + \left| \sum_{q > Q} \frac{\mu(q)}{\varphi(q)} \sum_{a \leq q}^* G(q, a) \right| + \frac{1}{Q} \right) \right) \]
\[= c_f \frac{x}{\log x} + o \left(\frac{x}{\log x} \right) \]
Corollary 3.12 On the major arcs we have

\[
\int_{\mathbb{N}} S(\alpha) T(\alpha) \, d\alpha = c f \frac{x}{\log x} + o \left(\frac{x}{\log x} \right)
\]

(26)

PROOF. Writing

\[
S(\alpha) T(\alpha) = S(\alpha) (T(\alpha) - T^*(\alpha)) + (S(\alpha) - S^*(\alpha)) T^*(\alpha) + S^*(\alpha) T^*(\alpha)
\]

and approximating the terms, yields the stated result. □

3.4 The minor arcs

Lemma 3.13 For the integral on the minor arcs, we have

\[
\int_{\mathbb{M}} S(\alpha) T(\alpha) \, d\alpha = o \left(\frac{x}{\log x} \right)
\]

PROOF. We get with the Cauchy-Schwarz-inequality

\[
\left| \int_{\mathbb{M}} S(\alpha) T(\alpha) \, d\alpha \right| \leq \left(\int_{\mathbb{M}} |S(\alpha)|^2 \, d\alpha \right)^{\frac{1}{2}} \left(\int_{\mathbb{U}} |T(\alpha)|^2 \, d\alpha \right)^{\frac{1}{2}}
\]

An application of the prime number theorem yields then

\[
\int_{\mathbb{U}} |T(\alpha)|^2 \, d\alpha = \sum_{p \leq x} 1 \ll \frac{x}{\log x}
\]

We get with

\[
\int_{\mathbb{M}} |S(\alpha)|^2 \, d\alpha = \int_{\mathbb{U}} |S(\alpha)|^2 \, d\alpha - \int_{\mathbb{N}} |S(\alpha)|^2 \, d\alpha = \sum_{n \leq x} |f(n)|^2 - \int_{\mathbb{N}} |S(\alpha)|^2 \, d\alpha
\]

and, luckily, as of condition (14), we get with corollary 3.9

\[
\int_{\mathbb{M}} |S(\alpha)|^2 \, d\alpha = o \left(\frac{x}{\log x} \right)
\]

Putting altogether: With equation (18), corollary 3.12 and lemma 3.13 we get the statement (17) and this completes the prove of theorem 3.3.
4 An application to k-free numbers

In this section we give an application of theorem 3.3. For this purpose, let $s \in \mathbb{N}$ and $\alpha_1, \ldots, \alpha_s \in \mathbb{N}_0$, $r_1, \ldots, r_s \in \mathbb{N}$ with $2 \leq r_1 \leq \cdots \leq r_s$ be fixed.

Definition 4.1 For $a, q \in \mathbb{N}$ we set the value of $E_a(d_1, \ldots, d_s, q)$ to 1 (resp. 0) if the following system of congruences

\[
\begin{align*}
 n &\equiv -\alpha_j (d_j) \quad (1 \leq j \leq s) \\
 n &\equiv a \quad (q)
\end{align*}
\]

has a solution in n (resp. has no solution).

We choose our function f to be

\[f(n) := \prod_{i} r_i (n + \alpha_i) \]

and

\[\mathcal{F} := \{ n \in \mathbb{N} : f(n) = 1 \} \]

The function f is limit-periodic as is shown when using the lemmas 2.10 and 2.11 and the comments 2.7. It only takes values from the set $\{0, 1\}$ and satisfies the requirements from theorem 3.3 as will be shown below. We will apply similar methods as Brüdern et al. [3], [4] and Mirsky [9], [10].

To exclude the trivial case, we assume further the choice of the parameter $\alpha_1, \ldots, \alpha_s, r_1, \ldots, r_s$ in such a way, that $\mathcal{F} \neq \emptyset$. The following theorem characterizes exactly this case.

Theorem 4.2 (Mirsky) The set \mathcal{F} is non-empty if and only if for every prime p there exists a natural number n with $n \not\equiv -\alpha_i (p^{r_i})$ for $1 \leq i \leq s$. In this case, the set \mathcal{F} even has a positive density [10, theorem 6].

4.1 Proof of the requirements (14) and (16)

Definition 4.3 We define $D(p)$ and $D^*(p)$ as the number of natural numbers $n \leq p^{r_s}$ that solve at least one of the congruences $n \equiv -\alpha_i (p^{r_i})$ ($1 \leq i \leq s$), whereas we demand for $D^*(p)$ in addition the condition $(n; p) = 1$, i.e.,

\[
D(p) := \sum_{n \leq p^{r_s}} 1 \quad \quad \quad D^*(p) := \sum_{n \leq p^{r_s}} [p \mid n]
\]

We set

\[D := \prod_{p} \left(1 - \frac{D(p)}{p^{r_s}} \right) \]

The convergence of this product follows from $D(p) < p^{r_s}$ for every p which is being implied by $\mathcal{F} \neq \emptyset$, see [13], and

\[D(p) \leq \sum_{i \leq s} \sum_{n \leq p^{r_s}} [n \equiv -\alpha_i (p^{r_i})] = \sum_{i \leq s} p^{r_s-r_i} \ll p^{r_s-2} \]
The mean-value of \(f \)

Theorem 4.4 (Mirsky) We have for all \(\epsilon > 0 \)
\[
\sum_{n \leq x} f(n) = \mathcal{O} x + O \left(\frac{x^{\frac{2}{r_1+1} + \epsilon}}{x} \right)
\]

See [10, theorem 5].

As the function \(f \) can only assume the values 0 or 1, we also have
\[
\sum_{n \leq x} |f(n)|^2 = \mathcal{O} x + O \left(\frac{x^{2} r_1 + 1 + \epsilon}{x} \right)
\]
and \(M(f) = ||f||_2^2 = \mathcal{O} \). Therewith the requirement (14) for \(f \) follows.

Definition 4.5 Set \(g(q, a) \) as
\[
g(q, a) = \sum_{d_1, \ldots, d_s = 1}^{\infty} \mu(d_1) \cdots \mu(d_s) \frac{\mathcal{E}_a(d_1, \ldots, d_s, q)}{[d_1, \ldots, d_s]} \left([d_1^r; \ldots ; d_s^r]; q \right)
\]

It can be seen easily that the series converge.

Theorem 4.6 For \(a, q \in \mathbb{N} \) and \(\epsilon > 0 \) we have
\[
\sum_{n \leq x} f(n) = \frac{x}{q} g(q, a) + O \left(\frac{x^{\frac{2}{r_1+1} + \epsilon}}{x} \right)
\]
whereas the implicit constant can be chosen independently from \(a \) or \(q \). The proof works analogous to the one in [10, theorem 5]. It uses the identity (3) for \(\mu_k \) and
\[
\sum_{n \leq x} f(n) = \sum_{n \leq x} \sum_{n \equiv a(q)} \sum_{d_1^r \equiv (n+\alpha_1)} \cdots \sum_{d_s^r \equiv (n+\alpha_s)} \mu(d_1) \cdots \mu(d_s) = \sum_{n \leq x} \sum_{n \equiv a(q)} \mu(d_1) \cdots \mu(d_s)
\]

Hence, the mean-value in residue classes is equal to \(\frac{x}{q} g(q, a) \) and with the error term in (30) the validity of (16) for \(f \) is shown.

This should be compared with the results of Brüdern et al. [4] and Brüdern [2].

4.2 The remainder of the singular series of \(f \)

The validity of condition (15) for \(f \) is still open and will be shown in the following. We start this section with an investigation of the function \(g(q, a) \).

If we write
\[
g(q, a) = \sum_{d_1, \ldots, d_s = 1}^{\infty} \theta_{a,q}(d_1, \ldots, d_s)
\]
with

\[\theta_{a,q}(d_1, \ldots, d_s) := \mu(d_1) \cdot \ldots \cdot \mu(d_s) \left(\frac{[d_1^{r_1}; \ldots; d_s^{r_s}] ; q}{[d_1^{r_1}; \ldots; d_s^{r_s}]} \right) E_a(d_1^{r_1}, \ldots, d_s^{r_s}, q) \]

then \(\theta_{a,q}(d_1, \ldots, d_s) \) is a multiplicative function in \(d_1, \ldots, d_s \), which follows from the multiplicativity of the three factors

\[\mu(d_1) \cdot \ldots \cdot \mu(d_s), \quad \left(\frac{[d_1^{r_1}; \ldots; d_s^{r_s}] ; q}{[d_1^{r_1}; \ldots; d_s^{r_s}]} \right), \quad E_a(d_1^{r_1}, \ldots, d_s^{r_s}, q) \]

We then have

\[g(q, a) = \prod_p \chi^{(q)}_a(p) \]

\[\chi^{(q)}_a(p) := \sum_{\delta_1, \ldots, \delta_s = 0}^{\infty} \theta_{a,q}(p^{\delta_1}, \ldots, p^{\delta_s}) \]

As \(\mu(p^k) = 0 \) for \(k \geq 2 \) it follows

\[\chi^{(q)}_a(p) = \sum_{\delta_1, \ldots, \delta_s \in \{0, 1\}} (-1)^{\delta_1 + \cdots + \delta_s} \left(\frac{[p^{\delta_1 r_1}; \ldots; p^{\delta_s r_s}] ; q}{[p^{\delta_1 r_1}; \ldots; p^{\delta_s r_s}]} \right) E_a(p^{\delta_1 r_1}, \ldots, p^{\delta_s r_s}, q) \] (31)

In the case \(p \nmid q \) we can write

\[\chi^{(q)}_a(p) = \left(1 - \frac{D(p)}{p^{r_s}} \right) \]

with [13] theorem 5. If we set in addition

\[z(q) := \prod_{p \mid q} \left(1 - \frac{D(p)}{p^{r_s}} \right)^{-1} \]

\[h(q, a) := \prod_{p \mid q} \chi^{(q)}_a(p) \] (32)

we get

\[g(q, a) = D z(q) h(q, a) \]

and

\[z(q) \ll 1 \] (33)

by the comments in definition [13.3]

For \(a \equiv b \ (q) \) we have \(h(q, a) = h(q, b) \).

Lemma 4.7 (Quasi-multiplicativity of \(h \)) The function \(h(q, a) \) is quasi-multiplicative, which means for all \(q_1, q_2 \in \mathbb{N} \), \((q_1; q_2) = 1 \) and all \(a_1, a_2 \in \mathbb{N} \) we have

\[h(q_1 q_2, a_1 q_2 + a_2 q_1) = h(q_1, a_1 q_2) h(q_2, a_2 q_1) \]

The proof follows by elementary divisor relations.

Definition 4.8 We set

\[H(q, a) := \sum_{b \leq q} h(q, b) e \left(\frac{ab}{q} \right) \]

\[H(q) := \sum_{a \leq q} |H(q, a)|^2 \]

With the Gaussian sum \(G(q, a) = \sum_{b \leq q} \frac{1}{q} g(q, b) e \left(\frac{ab}{q} \right) \) of \(f \) it follows

\[\sum_{a \leq q} |G(q, a)|^2 = D^2 q^{-2} z(q)^2 H(q) \] (34)
Properties of the function H

Lemma 4.9 The function H has the following useful properties:

1. $H(q)$ is a multiplicative function.

2. On prime powers we have

$$H(p^l) = \begin{cases}
1 & \text{for } l = 0 \\
\frac{1}{p^{3l-2r_s}} \sum_{n,m \leq p^{r_s} \atop n \equiv m \pmod{(p^l-1)}} \left(\left[\frac{n}{m} \equiv \left(p^l \right)^{-1} \right] - \frac{1}{p^l} \right) & \text{for } 1 \leq l \leq r_s \\
0 & \text{for } l > r_s
\end{cases}$$

3. We have the inequalities

$$0 \leq H(p^l) \leq \begin{cases}
sp^{3l-2r_1} & \text{for } 1 \leq l \leq r_1 \\
sp^{2l-r_1} & \text{for } r_1 < l \leq r_s
\end{cases}$$

Proof. To statement [1] Let $q_1, q_2 \in \mathbb{N}$, $(q_1; q_2) = 1$ be given. We then have

$$H(q_1q_2) = \sum_{a \leq q_1q_2} |H(q, a)|^2 = \sum_{a_1 \leq q_1} \sum_{a_2 \leq q_2} |H(q_1q_2, a_1a_2 + a_2q_1)|^2$$

$$= \sum_{a_1 \leq q_1} \sum_{a_2 \leq q_2} \left| \sum_{b \leq q_1q_2} h(q_1q_2, b) e \left(\frac{a_1q_2 + a_2q_1}{q_1q_2} \right) \right|^2$$

and by using the quasi-multiplicative property of h

$$H(q_1q_2) = \sum_{a_1 \leq q_1} \sum_{a_2 \leq q_2} \left| \sum_{b_1 \leq q_1} \sum_{b_2 \leq q_2} h(q_1q_2, b_1q_2 + b_2q_1) e \left(\frac{a_1}{q_1} b_1q_2 \right) e \left(\frac{a_2}{q_2} b_2q_1 \right) \right|^2$$

$$= \sum_{a_1 \leq q_1} \sum_{a_2 \leq q_2} \left| \sum_{b_1 \leq q_1} h(q_1, b_1q_2) e \left(\frac{a_1}{q_1} b_1q_2 \right) \right|^2 \left| \sum_{b_2 \leq q_2} h(q_2, b_2q_1) e \left(\frac{a_2}{q_2} b_2q_1 \right) \right|^2$$

$$= H(q_1) H(q_2)$$

To statement [2] We write

$$H(p^l) = \sum_{a \leq p^l} |H(p^l, a)|^2 - \sum_{a \leq p^l} |H(p^l, a)|^2$$

$$= p^l \sum_{b \leq p^l} h(p^l, b)^2 - p^l \sum_{b_1, b_2 \leq p^l \atop b_1 \equiv b_2 (p^{r_s-1})} h(p^l, b_1) h(p^l, b_2)$$

and $H(p^l) = 0$ for $l > r_s$ follows, as in this case $b_1 \equiv b_2 (p^{r_s})$ and with the definition [3] of \mathcal{E}_a, the truth of $h(p^l, b_1) = h(p^l, b_2)$ is implied. As H is multiplicative, we have $H(1) = 1$. For the
case $1 \leq l \leq r_s$ we first evaluate $\chi_a^{(p^i)}(p)$:

$$\chi_a^{(p^i)}(p) = p^{l-r_s} \sum_{n \leq p^{r_s}} \sum_{\delta_i \leq \delta_s \{0,1\}} (-1)^{\delta_1+\cdots+\delta_s} \frac{E_a(p^{\delta_1 r_i}, \ldots, p^{\delta_s r_s}, p^i)}{[p^{\delta_1 r_i}; \ldots; p^{\delta_s r_s}; p^i]}$$

$$= p^{l-r_s} \sum_{n \leq p^{r_s}} \sum_{\delta_i \leq \delta_s \{0,1\}} (-1)^{\delta_1+\cdots+\delta_s} \prod_{i=1}^{\delta_s} \left[n \equiv -\alpha_i \left(p^{\delta_i r_i} \right) \right]$$

The product has the value 0 (resp. 1) if $n \equiv -\alpha_i \left(p^{r_i} \right)$ for at least one i (resp. for no i at all).

Hence, we have for $1 \leq l \leq r_s$

$$\chi_a^{(p^i)}(p) = p^{l-r_s} \sum_{n \leq p^{r_s}} \sum_{\forall i: n \neq -\alpha_i (p^{r_i})} 1$$

(36)

and with equation (35) and definition (32) of h

$$H(p^i) = p^{3l-2r_s} \sum_{n,m \leq p^{r_s}} \sum_{b \leq p^l} \sum_{\forall i: n \neq -\alpha_i (p^{r_i})} 1 - p^{3l-2r_s-1} \sum_{b_1 \leq p^l} \sum_{b_2 \leq p^l} \sum_{b_1 \equiv n (p^l)} \sum_{b_2 \equiv m (p^l)} 1$$

$$= p^{3l-2r_s} \sum_{n,m \leq p^{r_s}} \sum_{\forall i: n \neq -\alpha_i (p^{r_i})} \left[n \equiv m \left(p^l \right) \right] - p^{3l-2r_s-1} \sum_{n,m \leq p^{r_s}} \sum_{\forall i: n \neq -\alpha_i (p^{r_i})} \left[n \equiv m \left(p^{l-1} \right) \right]$$

$$= p^{3l-2r_s} \sum_{n,m \leq p^{r_s}} \sum_{\forall i: n \neq -\alpha_i (p^{r_i})} \left[n \equiv m \left(p^l \right) \right] - \frac{1}{p} \sum_{n \equiv m \left(p^{l-1} \right)} \left[n \equiv m \left(p^{l-1} \right) \right]$$

(37)

After multiple usages of

$$\sum_{n \leq p^{r_s}} \left[n \equiv m \left(p^u \right) \right] = p^{s-u} - \sum_{n \leq p^{r_s}} \sum_{\forall i: n \equiv -\alpha_i (p^{r_i})} \left[n \equiv m \left(p^u \right) \right]$$

we have for $0 \leq u \leq r_s$:

$$\sum_{n,m \leq p^{r_s}} \sum_{\forall i: n \neq -\alpha_i (p^{r_i})} \left[n \equiv m \left(p^u \right) \right] = p^{2s-u} - 2p^{s-u} \sum_{n \leq p^{r_s}} 1 + \sum_{n,m \leq p^{r_s}} \sum_{\forall i: n \equiv -\alpha_i (p^{r_i})} \left[n \equiv m \left(p^u \right) \right]$$

If we specify $u = l$ and $u = (l-1)$ we get with equation (37):

$$H(p^i) = p^{3l-2r_s} \sum_{n,m \leq p^{r_s}} \sum_{\forall i: n \equiv -\alpha_i (p^{r_i})} \left[n \equiv m \left(p^l \right) \right] - \frac{1}{p} \sum_{n \equiv m \left(p^{l-1} \right)} \left[n \equiv m \left(p^{l-1} \right) \right]$$

(38)

The reader should compare the surprisingly similar representations of $H(p^i)$ in (37) and (38).
To statement 3. With the definition 4.8 of H we always have \(H(p^j) \geq 0 \) and with (33) we have
\[
H(p^j) \leq p^{3l-2s} \sum_{n,m \leq \alpha(p^j)} \sum_{n \equiv m \pmod{p^j}} \leq p^{3l-2s} \sum_{n,m \leq \alpha(p^j)} \sum_{n \equiv m \pmod{p^j}} \sum_{n \equiv m \pmod{p^j}}
\]
\[
\leq p^{3l} \sum_{v,w \leq s} p^{-\max(l,r_v-r_w)} \leq p^{3l-\max(l,r_1-r_1)} \sum_{v,w \leq s} 1 \leq s^2 p^{3l-\max(l,r_1-r_1)}
\]
which completes the proof. \(\square \)

Corollary 4.10 For all \(\epsilon > 0 \) and \(U \in \mathbb{R}_{>0} \), we have
\[
\sum_{U < q \leq 2U} q^{-2} z(q)^2 H(q) \ll U^{-1+\epsilon}
\]

Proof. Using (33) we get \(z(q)^2 \ll 1 \). We start with
\[
\mathcal{J}_3(U) := \sum_{U < q \leq 2U} q^{-2} z(q)^2 H(q) \ll U^{1-1} \sum_{q \leq 2U} q^{-1/2} H(q)
\]
The lemma 4.9 shows that \(H(q) = 0 \) if \(q \) is not \((r_s + 1) \)-free. It can be seen easily that every \((r_s + 1) \)-free number \(q \) possesses a unique representation \(q = q_1 q_2^s \cdots q_r^s \) with pairwise co-prime and squarefree natural numbers \(q_i \). Using lemma 4.9 again, we get
\[
U^{1-1} \sum_{q \leq 2U} q^{-1/2} H(q) \ll U^{1-1+\epsilon} \sum_{q_1 q_2^s \cdots q_r^s \leq 2U} \prod_{l \leq r_1} q_l^{2l-\frac{l}{r} - 2r_1} \prod_{r_1 < l \leq r_s} q_l^{l-\frac{l}{r} - r_1}
\]
To simplify notations, we set \(\nu := r_s - 1 \) and \(\tau(l) := \frac{l}{r_s} \left(r_s - \frac{r_s}{r_1} - 1 + 1 \right) \), and get
\[
\mathcal{J}_3(U) \ll U^{1-1+\epsilon + \tau(1)} \sum_{q_1 q_2^s \cdots q_r^s \leq 2U} \prod_{l \leq r_1} q_l^{2l-\frac{l}{r} - 2r_1 - \tau(l)} \prod_{r_1 < l \leq \nu} q_l^{l-\frac{l}{r} - r_1 - \tau(l)}
\]
\[
\mathcal{J}_3(U) \ll U^{-\frac{r_s-1}{r_s} + \epsilon} \sum_{q_1 q_2^s \cdots q_r^s \leq 2U} \prod_{l \leq r_1} q_l^{l+\frac{1}{r} - 2r_1} \prod_{r_1 < l \leq \nu} q_l^{l-\frac{l}{r} - r_1}
\]
As the exponents can’t be larger than \(-1 \), the sums over \(q_1, \ldots, q_r \) are \(O(U^\epsilon) \). If \(r_1 < r_s \), they are even convergent, which completes the proof. \(\square \)

Now we are finally able to estimate the remainder of the singular series: The function \(f \) satisfies the requirement 15 with \(r := 2r_s \) as with 34 and corollary 4.10
\[
\sum_{q > w} \sum_{a \leq q}^a |G_f(q,a)|^2 = D^2 \sum_{q > w} q^{-2} z(q)^2 H(q) = D^2 \sum_{j=0}^\infty \mathcal{J}_3(2^j w)
\]
\[
\ll w^{-\frac{r_s-1}{r_s} + \epsilon} \sum_{j=0}^\infty \left(2^{\frac{r_s-1}{r_s} + \epsilon} \right)^j = o \left(w^{-\frac{1}{2r_s}} \right)
\]
As all requirements of theorem 3.3 are fulfilled, we have
\[
\sum_{p \leq x} f(p) = c_f \frac{x}{\log x} + o \left(\frac{x}{\log x} \right)
\]
with the absolute convergent series

\[c_f = \mathcal{D} \sum_{q=1}^{\infty} \frac{\mu(q)}{\varphi(q)} \frac{z(q)}{q} \sum_{a \leq q} H(q, a) \]

4.3 Evaluation of the series \(c_f \)

The function \(q \rightarrow \sum_{a \leq q}^* H(q, a) \) is multiplicative. Let \(q_1, q_2 \in \mathbb{N}, (q_1; q_2) = 1 \) be given. Then

\[
\sum_{a \leq q_1q_2}^* H(q_1q_2, a) = \sum_{a \leq q_1}^* \sum_{b \leq q_2}^* h(q_1q_2, b) e\left(\frac{ab}{q_1q_2}\right)
\]

\[
= \sum_{a_1 \leq q_1}^* \sum_{a_2 \leq q_2}^* \sum_{b_1 \leq q_1} \sum_{b_2 \leq q_2} h(q_1, b_1q_2) h(q_2, b_2q_1) e\left(\frac{a_1}{q_1}\right) e\left(\frac{b_1}{q_2}\right) e\left(\frac{a_2}{q_2}\right) e\left(\frac{b_2}{q_1}\right)
\]

\[
= \left(\sum_{a \leq q_1}^* H(q_1, a) \right) \left(\sum_{a \leq q_2}^* H(q_2, a) \right)
\]

The other factors \(\frac{\mu(q)}{\varphi(q)} \) and \(\frac{z(q)}{q} \) in the representation of \(c_f \) are trivially multiplicative. We then can write the series as an Euler product:

\[
c_f = \mathcal{D} \prod_p \left(\sum_{k=0}^{\infty} \frac{\mu(p^k)}{\varphi(p^k)} \frac{z(p^k)}{p^k} \sum_{a \leq p^k}^* H(p^k, a) \right) = \mathcal{D} \prod_p \left(1 - \frac{z(p)}{p(p - 1)} \sum_{a \leq p}^* H(p, a) \right)
\]

Using properties of Ramanujan’s sum, we have

\[
\sum_{a \leq p}^* H(p, a) = \sum_{b \leq p} h(p, b) \sum_{a \leq p}^* e\left(\frac{ab}{p}\right) = \sum_{b \leq p} h(p, b) c_p(b)
\]

\[
= \varphi(p) h(p, p) - \sum_{b < p} h(p, b)
\]

To evaluate \(h(p, p) \) and \(h(p, b) \) we can apply the identity of (36) with \(l = 1 \) and get

\[
h(p, p) = p^{1-r_s} \sum_{n \leq p^r_s} \frac{1}{1 - p^{1-r_s}} \sum_{n \leq p^r_s \equiv 0(p)} \sum_{n \equiv a_i(p^r_s) \forall i: n \equiv -a_i(p^r_s)} 1
\]

as well as

\[
\sum_{b < p} h(p, b) = p^{1-r_s} \sum_{b < p} \sum_{n \leq p^r_s} \frac{1}{1 - p^{1-r_s}} \left(p - 1 \right) - p^{1-r_s} \sum_{b < p} \sum_{n \leq p^r_s \equiv 0(b)} \sum_{n \equiv -a_i(b^r_s) \forall i: n \equiv -a_i(b^r_s)} 1
\]

\[
= (p - 1) - p^{1-r_s} \sum_{b < p} \sum_{n \leq p^r_s \equiv 0(b)} \sum_{n \equiv -a_i(b^r_s)} (1 - |p|n)
\]

\[
= (p - 1) - p^{1-r_s} \sum_{n \leq p^r_s} (1 - |p|n)
\]
Using these results in (39) and noting that \(\varphi(p) = (p - 1) \), then

\[
\sum_{a \leq p} s H(p, a) = p^{1-r_s} \left(D(p) - p \sum_{n \leq p^{r_s}} [p|n] \right)
\]

and

\[
c_f = \mathcal{D} \prod_p \left(1 - \frac{z(p)}{p^{r_s} (p-1)} \left(D(p) - p \sum_{n \leq p^{r_s}} [p|n] \right) \right).
\]

Looking again on the definitions (28) and (32) of \(\mathcal{D} \) and \(z(p) \), we get with those and \(\varphi(p^{r_s}) = p^{r_s-1}(p - 1) \)

\[
 c_f = \prod_p \left(1 - \frac{D(p)}{p^{r_s}} - \frac{1}{p^{r_s} (p-1)} \left(D(p) - p \sum_{n \leq p^{r_s}} [p|n] \right) \right)
\]

\[
= \prod_p \left(1 - \frac{1}{\varphi(p^{r_s})} \left(D(p) - \sum_{n \leq p^{r_s}} [p|n] \right) \right)
\]

\[
= \prod_p \left(1 - \frac{D^*(p)}{\varphi(p^{r_s})} \right)
\]

The product is non-zero if and only if for each prime \(p \) there exists a relatively prime natural number \(n \leq p^{r_s} \) with \(n \neq -\alpha_i (p^{r_s}) \) for all \(1 \leq i \leq s \), see theorem 4.2. In this case we have \(D^*(p) < \varphi(p^{r_s}) \) and the convergence of the product is implied by \(D^*(p) \ll p^{r_s-2} \), see estimate (29).

Hence, we have proven the identity (1).

Acknowledgements. The author wants to thank Jörg Brüdern who was the advisor of the author’s diploma thesis created in 2007 on which this article is mainly based on.

References

[1] J. Brüdern. *Einführung in die analytische Zahlentheorie*. Springer-Verlag, Berlin Heidelberg New York, 1995.

[2] J. Brüdern. Binary additive problems and the circle method, multiplicative sequences and convergent sieves. In W. Chen, editor, *Analytic number theory: essays in honour of Klaus Roth*, pages 91–132. Cambridge University Press, Cambridge, 2009.

[3] J. Brüdern, A. Granville, A. Perelli, R. C. Vaughan, and T. D. Wooley. On the exponential sum over \(k \)-free numbers. *Phil. Trans. R. Soc. Lond. A*, 356:739–761, 1998.
[4] J. Brüdern, A. Perelli, and T. D. Wooley. Twins of k-free numbers and their exponential sum. *Michigan Math. J.*, 47(1):173–190, 2000.

[5] C. Hooley. On the Barban-Davenport-Halberstam theorem: III. *J. London Math. Soc.*, 2(10):249–256, 1975.

[6] C. Hooley. On the Barban-Davenport-Halberstam theorem: IX. *Acta Arith.*, 83(1):17–30, 1998.

[7] C. Hooley. On the Barban-Davenport-Halberstam theorem: X. *Hardy-Ramanujan Journal*, 21:12–26, 1998.

[8] E. Krätzel. *Analytische Funktionen in der Zahlentheorie*, volume 139 of *Teubner Texte zur Mathematik*. Verlag Teubner, Stuttgart, 2000.

[9] L. Mirsky. Note on an asymptotic formula connected with r-free integers. *Quart. J. Math., Oxford Ser.*, 18:178–182, 1947.

[10] L. Mirsky. Summation formulae involving arithmetic functions. *Duke Math. J.*, 16(2):261–272, 1949.

[11] W. Schwarz and J. Spilker. *Arithmetical Functions*, volume 184 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge, 1994.

[12] R. C. Vaughan. *The Hardy-Littlewood method*, volume 125 of *Cambridge tracts in mathematics*. Cambridge University Press, Cambridge, 2nd edition, 1997.