Unconventional superfluidity in quasi-one dimensional systems

Shun Uchino, Akiyuki Tokuno, and Thierry Giamarchi

DPMC-MaNEP, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland

(Dated: May 11, 2014)

PACS numbers: 67.85.-d,03.75.Ss,05.30.Fk

We show that an unconventional superfluid triggered by spin-orbit coupling is realized for repulsively interacting quasi-one-dimensional fermions. A competition between spin-singlet and -triplet pairings occurs due to the breaking of inversion symmetry. We show that both superfluid correlations decay algebraically with the same exponent except for special coupling constants for which a dominant superfluid is controlled by the spin-orbit coupling. We also discuss a possible experiment to observe such phases with cold atoms.

I. INTRODUCTION

Fermionic superfluids (SFs)—superconductors for charged particles—are ubiquitous in diverse fields ranging from condensed matter to elementary particle physics. The first realizations of such systems are described by the s-wave pairing picture of the celebrated BCS theory. Alternatively, fermionic SFs, which cannot be described by the standard BCS scenario, are called unconventional SFs. Such systems are quite rare and since the example of SF 3He [11] there have been very few new candidates. Unconventional superfluidity or superconductivity is thus one of the extremely challenging topics in many-body physics.

This interest has been revived with the arrival of cuprates as high-T_c superconductors [2]. Superconductivity in noncentrosymmetric systems [3] has provided a novel route to unconventional superconductors. In these systems an admixture of spin-singlet and -triplet pairings is believed to be realized due to spin-orbit coupling (SOC) attributed to the breaking of inversion symmetry [4–7]. However the presence of strong correlations in this class of materials makes it difficult to analyze theoretically such an admixture with a well defined starting point.

When dealing with strong correlations, one or quasi-one dimensional systems provide some insight into their counterparts in higher dimensions by allowing the use of powerful analytical and numerical approaches [8]. For a standard SF, it is exactly known that the evolution from the BCS to Bose-Einstein condensation (BEC) is continuous by using Bethe ansatz [9, 10]. For unconventional SFs, the suggestion of a resonant valence bond mechanisms [2] and non-Fermi liquids [11] has been investigated for fermionic ladders. It has been established that in a ladder, a spin-singlet SF is present with purely repulsive interactions [12, 17].

In addition to the realizations in condensed matter, ultracold atomic gases have offered an ideal playground for studying strongly interacting SFs due to the high controllability of the microscopic parameters and Hamiltonians [18]. By tuning an interatomic interaction with a Feshbach resonance, the BCS-BEC crossover has been achieved for two component fermions [19]. To go beyond the standard BCS scenario, experimental efforts [20, 25] are devoted to realizing p-wave SFs by using a p-wave Feshbach resonance [26] and Fulde-Ferrell-Larkin-Ovchinnikov [27, 28] SFs by preparing spin-imbalanced gases. In addition, currently available synthetic gauge fields [29, 41], where electromagnetic fields and SOC can be mimicked in both continuum and lattice spaces by using Raman lasers and driving an optical lattice, pave the way for the realization of nontrivial SFs in cold atoms. In fact, some theoretical works point out that such SFs emerge in higher dimensions [42–47]. However, it is also a challenging issue to demonstrate SFs with an admixture between spin singlet and triplet pairings in strongly-correlated optical lattice systems.

In this paper, we propose a novel system of two fermionic chains with SOCs, which breaks inversion symmetry. As a result, an unconventional SF with an admixture between spin singlet and triplet pairings emerges, which originates from the repulsive interaction and whose mechanism thus differs from a standard BCS scenario for attractive atom gases with SOCs in continuum space. Since such an admixture is controlled by the SOC, this model can also be used to realize an ideal spin-triplet SFs in cold atoms. Furthermore, we show by using a mapping between attractive and repulsive situations that our findings are directly relevant for present experiments and discuss the observable consequences.

II. MODEL

We consider two coupled fermionic chains with SOCs. There are two different way to include the SOC effect: along the chain and along rung directions. The SOC along the chain direction corresponds to a modification of the boundary condition of the chains [48] as long as the effect of the SOC is equal.
in the two chains [49]. Thus we focus on the case where the SOC is applied to the rung direction (Fig. 1), and the Hamiltonian is given as

$$
H_{\Phi}^{(c)} = -t_x \sum_{j,p} (c_{j+1,\sigma}^\dagger d_{j,\sigma} + h.c.) + U \sum_{j,p} n_{j,p}^+ n_{j,p}^- \nonumber$$

$$-t_y \sum_{j,p,\alpha,\alpha'} ((e^{i\phi_\sigma} \sigma_x \delta_{\alpha,\alpha'}) c_{j+1,\alpha}^\dagger c_{j,\alpha'} + h.c.), \tag{1}
$$

where $p = \pm 1$ and j are chain and site indices, respectively. The vector $\hat{\sigma} = (\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z)$ denotes Pauli matrices. The Peierls phase $\Phi \cdot \sigma$ acts on the spin sector, and the direction of Φ determines the type of the SOC: For Φ parallel and perpendicular to a spin-quantization axis, the SOC effect works as a spin-dependent hopping and as a spin-flip hopping, respectively. We note that in the presence of the SOC, inversion symmetry along the rung direction is explicitly broken. The parameters t_x, t_y, and U, respectively, denote intra- and inter-chain hopping, and the Hubbard interaction. In this paper we restrict ourselves to the following parameter regime in which the two-band nature in the ladder is relevant in the low-energy physics:

$$t_x \gg t_y, \quad \text{or} \quad t_x \approx t_y \leq U. \tag{2}
$$

In addition, we consider only the incommensurate case for which a gapless charge excitation exists.

We briefly review the physics of a repulsively interacting fermionic ladder for $\Phi = 0$. In the presence of the rung hopping t_x, the two energy bands coming from the chains are split, and the two-band structure and their competition become crucial for the low-energy physics as long as the system is in the parameter regime (2). Correlation of inter-chain spin-singlet SF are dominant. (50) This result is well-established from the analytical (12,17) and numerical viewpoint (51-54). The inter-chain SF operator relevant for the repulsion is given by

$$O_{\Phi}^{(c)} = c_{i+1,\alpha} c_{j+1,\beta} - c_{i,\alpha} c_{j,\beta}, \tag{3}
$$

which is also called d-wave-like SF operator because the symmetry resembles the d_{ij} pairing (16) where in Fourier space, the components with transverse wave vector, 0 and π have opposite signs, and thus the sign of the operator changes with a $\pi/2$ rotation.

III. UNCONVENTIONAL SUPERFLUID IN THE PRESENCE OF SPIN-ORBIT COUPLING

We now show the emergence in this model of an unconventional SF induced by the SOC. As mentioned, we have different types of SOC depending on the vector Φ, and we discuss the three orthogonal cases: $\Phi_x = (0,0,0)$, $\Phi_y = (0,\Phi,0)$, and $\Phi_z = (\Phi,0,0)$ where $-\pi < \Phi \leq \pi$.

Let us start with $\Phi = \Phi_z$. We use the following canonical transformation

$$c_{j,\sigma} = d_{j,\sigma}, \quad c_{j,-\sigma} = e^{-i\phi_\sigma} d_{j,-\sigma}, \tag{4}
$$

which twists the spins in the $p = -1$ chain around the Φ_z direction. Due to Eq. (4), the phase $e^{-i\phi_\sigma}$ is absorbed into $d_{j,\sigma}$, and thus the form of the Hamiltonian (1) becomes $H_{\Phi}^{(d)}$ identical, in term of the operators $d_{j,\sigma}$, to the original one (1) but for $\Phi = 0$. Thus the present problem is mapped onto one without the SOC, for which one can directly use the above solution for fermionic ladders. The ground-state in the d representation in our situation, incommensurate filling and parameter regime (2), is thus dominated by the inter-chain SF pair correlation represented by the operator (9).

We next consider how the ground state in the d representation is described in the original c representation via the transformation (4). In addition to the spin-singlet SF (3) we also look at the inter-chain spin-triplet SF along the z direction, which is represented as

$$O_{\Phi}^{(c)} = c_{i+1,1} c_{j-1,1} + c_{i,1} c_{j-1,1}, \tag{5}
$$

Due to Eq. (4), the operators $O_{\Phi}^{(c)}_{\text{TSC}}$ and $O_{\Phi}^{(c)}_{\text{SSC}}$ are transformed as follows:

$$O_{\Phi}^{(c)}_{\text{TSC}} = \cos \Phi O_{\Phi}^{(d)} - i \sin \Phi O_{\Phi}^{(d)}, \tag{6}
$$

$$O_{\Phi}^{(c)}_{\text{SSC}} = \cos \Phi O_{\Phi}^{(d)} + i \sin \Phi O_{\Phi}^{(d)}. \tag{7}
$$

Note that both the spin-singlet and -triplet SF operators share $O_{\Phi}^{(d)}$, and there is no other operator, including $O_{\Phi}^{(SSC)}$, in the c representation. Therefore, recalling that the $O_{\Phi}^{(d)}$, correlation is dominant in the d representation, the asymptotic form of the correlation of $O_{\Phi}^{(c)}_{\text{SSC}}$ and $O_{\Phi}^{(c)}_{\text{TSC}}$ is written as

$$\langle O_{\Phi}^{(c)}_{\text{TSC}}(r) O_{\Phi}^{(c)}_{\text{TSC}}(0) \rangle_{c} \sim \cos^2 \Phi \langle O_{\Phi}^{(d)}_{\text{TSC}}(r) O_{\Phi}^{(d)}_{\text{TSC}}(0) \rangle_{d} \tag{8}
$$

$$\langle O_{\Phi}^{(c)}_{\text{SSC}}(r) O_{\Phi}^{(c)}_{\text{SSC}}(0) \rangle_{c} \sim \sin^2 \Phi \langle O_{\Phi}^{(d)}_{\text{SSC}}(r) O_{\Phi}^{(d)}_{\text{SSC}}(0) \rangle_{d}, \tag{9}
$$

where $\langle \cdots \rangle_{\Phi}$ represents correlations in the Φ representation. As can be seen from Eqs. (8) and (9), the two different correlations in the original representation are described by the same asymptotic form except for the prefactor given by the SOC parameter Φ. Since the algebraic decaying function $\langle O_{\Phi}^{(d)}_{\text{SSC}}(r) O_{\Phi}^{(d)}_{\text{SSC}}(0) \rangle_{d}$ is independent of Φ, the relevancy of $\langle O_{\Phi}^{(c)}_{\text{SSC}}(r) O_{\Phi}^{(c)}_{\text{SSC}}(0) \rangle_{c}$ and $\langle O_{\Phi}^{(c)}_{\text{TSC}}(r) O_{\Phi}^{(c)}_{\text{TSC}}(0) \rangle_{c}$ is determined solely by the coefficients $\cos^2 \Phi$ and $\sin^2 \Phi$. For example, the inter-chain spin-singlet and -triplet pairing are dominant, respectively, for $0 \leq \Phi < \pi/4$ and for $\pi/4 < \Phi \leq \pi/2$. The ideal spin-singlet and -triplet pair states are realized only at $\Phi = 0$ and $\Phi = \pi/2$, respectively, and the spin-singlet and -triplet pairings are equally mixed at $\Phi = \pi/4$. In Fig. 2 we show the phase diagram as a function of Φ.

In the case of $\Phi = \Phi_y$, we first implement a global spin rotation as

$$f_{j,\rho,\sigma} = \sum_{\eta,\eta'} \left[e^{-i\frac{\Phi_\eta}{2}} \right]_{\eta,\eta'} c_{j,\rho \eta'}. \tag{10}
$$

The Hamiltonian is then transformed into the one for Φ_z, which was already studied above. By using the same transformation (4) for $f_{j,\rho,\sigma}$, the Hamiltonian is reduced again to the one without the SOC. The fermion operators in the consequent Hamiltonian is again $d_{j,\rho,\sigma}$. As a result the following
fluctuation operators in the original c representation are found to include the most relevant $O^{(d)}_{\text{SSC}}$ in the d representation:

$$O^{(c)}_{\text{TSC}} = \cos \Phi O^{(d)}_{\text{SSC}} + i \sin \Phi O^{(d)}_{\text{TSC}},$$

$$O^{(c)}_{\text{TSC}} = i \cos \Phi O^{(d)}_{\text{TSC}} - \sin \Phi O^{(d)}_{\text{SSC}},$$

where the spin-triplet SF operator along the y direction has been defined as

$$O^{(c)}_{\text{TSC}} = c_{j,1} c_{j,-1} + c_{j,1} c_{j,-1}.$$

As in the case of Φ_z, the dominant fluctuations are found to be the spin-singlet and -triplet SF pair as a function of Φ, and their weight are determined by Φ, as illustrated in Fig. 4. A similar analysis can be applied for $\Phi = \Phi_y$, and find that the spin-triplet SF along the x direction competes with the spin-singlet SF.

We can also discuss an arbitrary Φ case using the above result. Taking into account the SU(2) spin rotational symmetry in the Hamiltonian of each chain, the appropriate spin rotation reduces the general Φ problem to the Φ_z one, as seen in the discussion in the Φ_z and Φ_x cases. Thus, admixture of the spin singlet and triplet pairings is concluded to be also obtained in an arbitrary direction of the SOC.

To summarize, unconventional spin-triplet SF pairs are found to be induced by the SOC, accompanying spin-singlet SF pairs, which occurs for the repulsive interaction. The weight of the spin-triplet pair is determined by the magnitude of the SOC parameters. The direction of the spin-triplet pairs, which is the so-called d vector in a spin-triplet p-wave SF [11], corresponds to the one of the SOC vector Φ. The results are summarized in Table I. The most important point is that one can control the unconventional SF pair through the SOC.

Let us discuss the physical reason of the emergence of spin-triplet SF pairs. As mentioned above, the canonical transformation [4] physically rotates spins on the $p = -1$ chain around Φ_z by Φ, which is a direct way to change spin singlets to spin triplets. This can be easily confirmed by operating the spin rotation to one spin of a pair, $Z_2(\theta) = e^{i\theta} \hat{S}_z$, to a singlet spin pair $|s\rangle = \frac{1}{\sqrt{2}} (|1\rangle_1 |\bar{1}\rangle_2 - |\bar{1}\rangle_1 |1\rangle_2)$: For $\theta = \pi/2$, it gives $Z_2(\theta) |s\rangle = -\frac{1}{\sqrt{2}} (|1\rangle_1 |\bar{1}\rangle_2 + |\bar{1}\rangle_1 |1\rangle_2)$ which is exactly a triplet spin pair. In other words the SOC we considered rotates one spin of the inter-chain spin pair. Therefore, one concludes that the essential mechanism of the SF is identical to the inter-chain spin-singlet SF in the conventional fermionic ladder, and the one spin twisting by the SOC transforms the spin-singlet pair into a spin-triplet one [55].

Finally let us comment on effects of disorder, on the unusual SF described above. For the system without the SOC, an analysis with bosonization and renormalization group methods predicts that in the presence of non-magnetic disorder, the inter-chain SF realized for $U > 0$ is vulnerable to disorder while the intra-chain SF realized for $U < 0$ is much more stable [56]. Since a non-magnetic disorder favors SU(2) symmetry, these properties survive in the presence of the SOC. This is interpreted as the one dimensional analog of the fact that an isotropic s-wave SF is robust against disorder (Anderson’s theorem) while an anisotropic SF could be destroyed by disorder.

IV. ATTRACTIVE ROUTE

We now discuss the experimental possibilities to probe the unconventional SF predicted here. Because of the difficulty of confirming SFs directly in one-dimensional fermionic optical lattices, we alternatively employ the idea of the so-called attractive route to indirectly check it with a particle-hole transformation [57]. We first consider $\Phi = \Phi_z$ case. The particle-hole transformation is well-defined on a bipartite lat-

TABLE I. Relationship between the direction of the SOC and competing interchain spin triplet and singlet pairings.

Direction	Spin-triplet pairing	Spin-singlet pairing
$\Phi_x = (0, 0)$	$O^{(c)}_{\text{TSC}}$	$O^{(c)}_{\text{SSC}}$
$\Phi_y = (0, 0, \Phi)$	$O^{(c)}_{\text{TSC}}$	$O^{(c)}_{\text{SSC}}$
$\Phi_z = (0, 0, 0)$	$O^{(c)}_{\text{TSC}}$	$O^{(c)}_{\text{SSC}}$

TABLE II. Correspondence among different quantities under the particle-hole transformation.

Original repulsive model	Corresponding attractive model
Away from half filling	Half filling
Spin balance	Spin imbalance
SOC along the z direction	U(1) gauge field in the charge sector

Fig. 2. (Color online) Phase diagram as a function of the SOC parameter Φ for a repulsive Hubbard interaction U. The parentheses denote subdominant fluctuations. The subdominant fluctuations disappear at $\Phi = 0, \pm \pi/2, \pi$ (dotted line), and both the pairing types are equally balanced at $\Phi = \pm \pi/4, \pm 3\pi/4$.

TABLE I. Relationship between the direction of the SOC and competing interchain spin triplet and singlet pairings.
tice as
\[c_{j,p} = h_{j,p}, \quad c_{j,p}^\dagger = (-1)^{j+\Theta(-p)} h_{j,p}^\dagger, \]
where \(\Theta \) is the Heaviside step function. Due to Eq. (14), \(n_{j,p} \rightarrow -n_{j,p} \), and the inter-chain hopping changes as
\[-t_j \sum_{\sigma} (\epsilon^\Theta h_{j,\downarrow \sigma}^\dagger h_{j,-\downarrow \sigma} + \text{h.c.}). \]

Therefore the transformation (14) maps the Hamiltonian (1) on the one of the attractive fermionic ladder with a U(1) gauge field along the rung direction. While this type of U(1) gauge field already exists for \(^{87}\text{Rb}\) Bose atom experiments [35, 39], this experimental technique can be applied in principle regardless of atom statistics. In addition, the transformation (14) exchanges the roles of the particle filling and magnetization of a state: spin-imbalanced states at half-filling is transformed into spin-balanced away from half-filling, and vice versa. (See Table II.) The attractive system after the mapping by Eq. (14) is thus potentially easily realizable in experiments, since the filling, one particle per site, is more naturally formed around a trap center by tuning trapping frequency and particle number.

From Eq. (14), the inter-chain spin-singlet SF is changed to
\[\text{Re,Im}(\tilde{O}_{\text{SSC}}^{(c)}) = (-1)^{j+1} \sum_{\alpha \sigma} \rho(\sigma^{\alpha \gamma}) \sigma_{\alpha \sigma} h_{j,\alpha \sigma}^\dagger h_{j,-\alpha \sigma}, \]
which is an operator for a staggered spin flux phase on a plaquette in which there is no global spin flux but a local spin flux. This local staggered spin flux (16) is measurable because the technique to observe local phases on a four-square plaquette has been experimentally demonstrated in Refs. [33, 41], and a scheme for the spatially-resolved measurement of the current is also proposed [58]. On the other hand, the inter-chain spin-triplet SF \(\tilde{O}_{\text{TSC}}^{(c)} \) is changed to
\[\text{Re,Im}(\tilde{O}_{\text{TSC}}^{(c)}) = (-1)^{j+1} \sum_{\alpha \sigma} (\sigma^{\alpha \gamma}) \sigma_{\alpha \sigma} h_{j,\alpha \sigma}^\dagger h_{j,-\alpha \sigma}, \]
which is an operator for a bond antiferromagnetic density wave along the rung direction. Such a correlation (17) may be measured in a similar way than the recently implemented measurement of the nearest-neighbor spin correlations [59, 60].

Next we consider the case of \(\tilde{O} = \tilde{O}_x \) or \(\tilde{O}_y \). Then it turns out that Eq. (14) contains \(h_{j,\downarrow \uparrow}^\dagger h_{j,-\downarrow \uparrow} \) from the rung hopping term, in which the number of particles is not conserved. Indeed, the off-diagonal spin operators, i.e., spin flip hoppings, correspond to \(\eta \) pairings which constitute the off-diagonal ones of SU(2) algebra in the charge sector [61]. Since Hamiltonians in cold atoms conserve the total number of particles, the attractive route would be much less useful in the \(\Phi = \Phi_x \) and \(\Phi_y \) cases.

Finally, we estimate the possible parameter regime to measure the states predicted in this paper. First we need a sufficiently low temperature, \(T < t_c, U, \Delta \) where \(\Delta \) means an energy scale of gaps characterizing the realized state. If we choose \(t_c = t_r \) and \(4 < U/t_c \leq 8 \) as a specific case in the parameter regime (2), this energy scale is estimated to be of the order of the exchange energy \(\Delta = 4t_r^2/U [51, 54] \), and thus the necessary temperature would be \(\leq 10^{-1} t_c \). Let us note that this estimation works well even in the presence of a trap potential. From the point of view of the local density approximation, the realized state can form around the trap center, which can be regarded as bulk, while it should be broken on the edges. The contribution from such bulk-like regime must thus be non-negligible for the state to be observed. This would be possible as long as the trapped system size is large enough, which should possible given the existing experiments [60] and the proposal [62].

V. SUMMARY

We have analyzed two coupled fermionic chains with a repulsive interactions and found that an unusual SF emerges because of SOCs along the rung direction. The properties such as the dominance and the \(\alpha \) vector of a triplet pair are controllable. We have also discussed how to observe experimentally such a SF state via a particle-hole transformation and the use of attractive interactions. A staggered spin flux and bond antiferromagnetic correlations are possibly measurable observables associated with our predicted SF state. We finally point out that the discussion based on the canonical transformation (1) can be widely applied, e.g., to systems with a long range interaction and with spin imbalance, which allows for further explorations of unconventional quantum states.

ACKNOWLEDGEMENT

This work was supported by the Swiss National Foundation under MaNEP and division II.

[1] A. J. Leggett, Rev. Mod. Phys., 47, 331 (1975)
[2] P. W. Anderson et al., The Theory of Superconductivity in the High-Tc Cuprate Superconductors (Princeton University Press Princeton, 1997).
[3] E. Bauer and M. Sigrist, Non-centrosymmetric Superconductors: Introduction and Overview (Springer, 2012).
[4] V. M. Edelstein, Sov. Phys. JETP, 68, 1244 (1989).
[5] V. M. Edelstein, Phys. Rev. Lett., 75, 2004 (1995).
[6] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett., 87, 037004 (2001).
[7] P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist, Phys. Rev. Lett., 92, 097001 (2004).
[8] T. Giamarchi, Quantum physics in one dimension (Oxford University Press, 2003).
[9] I. V. Tokatly, Phys. Rev. Lett., 93, 090405 (2004).
[10] J. N. Fuchs, A. Recati, and W. Zwerger, Phys. Rev. Lett., 93, 090408 (2004).
[11] H.-C. Jiang, M. S. Block, R. V. Mishmash, J. R. Garrison, D. Sheng, O. I. Motrunich, and M. P. Fisher, Nature, 493, 39 (2012).
[12] A. M. Finkel’stein and A. I. Larkin, Phys. Rev. B, 47, 10461 (1993).
[13] M. Fabrizio, Phys. Rev. B, 48, 15838 (1993).
[14] D. V. Khveshchenko and T. M. Rice, Phys. Rev. B, 50, 252 (1994).
[15] N. Nagaosa, Solid state communications, 94, 495 (1995).
[16] H. J. Schulz, Phys. Rev. B, 53, R2959 (1996).
[17] L. Balents and M. P. A. Fisher, Phys. Rev. B, 53, 12133 (1996).
[18] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys., 80, 885 (2008).
[19] W. Zwerger, The BCS-BEC crossover and the unitary Fermi gas (Springer, 2011).
[20] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science, 311, 492 (2006).
[21] G. B. Partridge, W. Li, R. I. Kamar, Y.-A. Liao, and R. G. Hulet, Science, 311, 503 (2006).
[22] G. B. Partridge, W. Li, Y. A. Liao, R. G. Hulet, M. Haque, and H. T. C. Stoof, Phys. Rev. Lett., 97, 190407 (2006).
[23] Y.-I. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, Nature, 451, 689 (2008).
[24] S. Nascimbène, N. Navon, K. J. Jiang, L. Tarruell, M. Teichmann, J. McKeeber, F. Chevy, and C. Salomon, Phys. Rev. Lett., 103, 170402 (2009).
[25] Y.-A. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet, S. K. Buhr, and E. J. Mueller, Nature, 467, 567 (2010).
[26] C. Chinn, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys., 82, 1225 (2010).
[27] P. Fulde and R. A. Ferrell, Phys. Rev., 135, A550 (1964).
[28] A. Larkin and I. Ovchinnikov, Sov. Phys. JETP, 20, 762 (1965).
[29] X.-J. Liu, M. F. Borunda, X. Liu, and J. Sinova, Phys. Rev. Lett., 102, 046402 (2009).
[30] Y.-J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Nature, 462, 628 (2009).
[31] Y.-J. Lin, R. L. Compton, K. Jiménez-García, W. D. Phillips, J. V. Porto, and I. B. Spielman, Nature Physics, 7, 531 (2011).
[32] Y.-J. Lin, K. Jiménez-García, and I. Spielman, Nature, 471, 83 (2011).
[33] M. Aidselsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Phys. Rev. Lett., 107, 255301 (2011).
[34] K. Jiménez-García, L. J. LeBlanc, R. A. Williams, M. C. Beeler, A. R. Perry, and I. B. Spielman, Phys. Rev. Lett., 108, 225303 (2012).
[35] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger, Phys. Rev. Lett., 108, 225304 (2012).
[36] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Phys. Rev. Lett., 109, 095301 (2012).
[37] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Phys. Rev. Lett., 109, 095302 (2012).
[38] J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, and J.-W. Pan, Phys. Rev. Lett., 109, 115301 (2012).
[39] J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, and L. Mathey, ArXiv e-prints (2013), arXiv:1304.5520 [cond-mat.quant-gas].
[40] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod. Phys., 83, 1523 (2011).
[41] M. Aidselsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, and I. Bloch, Applied Physics B, 103 (2013).
[42] J. P. Vyasanakere and V. B. Shenoy, Phys. Rev. B, 83, 094515 (2011).
[43] J. P. Vyasanakere, S. Zhang, and V. B. Shenoy, Phys. Rev. B, 84, 014512 (2011).
[44] M. Gong, S. Tewari, and C. Zhang, Phys. Rev. Lett., 107, 195303 (2011).
[45] H. Hu, L. Jiang, X.-J. Liu, and H. Pu, Phys. Rev. Lett., 107, 195304 (2011).
[46] Z.-Q. Yu and H. Zhai, Phys. Rev. Lett., 107, 195305 (2011).
[47] L. Jiang, X.-J. Liu, H. Zhai, and H. Pu, Phys. Rev. A, 84, 063618 (2011).
[48] N. Byers and C. N. Yang, Phys. Rev. Lett., 7, 46 (1961).
[49] If the effect of the SOC is not equal in the two chains, non-trivial states may emerge since such a effect introduces a spin flux in the system. As for a charge flux, see, e.g., G. Roux, E. Orignac, S. R. White, and D. Poilblanc, Phys. Rev. B, 75, 195105 (2007); A. Jaafari and E. Fradkin, Phys. Rev. B, 85, 035104 (2012).