Weak convergence theory for Poisson sampling designs

Leo Pasquazzi∗

Dipartimento di Statistica e Metodi Quantitativi
Università degli Studi di Milano-Bicocca
Edificio U7
Via Bicocca degli Arcimboldi, 8
20126 Milano
e-mail: leo.pasquazzi@unimib.it

Abstract: This work provides some general theorems about unconditional and conditional weak convergence of Horvitz-Thompson empirical processes in the case of Poisson sampling designs. The theorems presented in this work are more general than previously published results. Their proofs are based on the symmetrization technique and on a contraction principle.

MSC 2010 subject classifications: Primary 60F05, 60F17; secondary 60B12.

Keywords and phrases: weak convergence, empirical process, Poisson sampling, Donsker class.

1. Introduction

While there is now quite a deal of literature about functional central limit theorems for i.i.d. observations (see e.g. [6], [10], [9], [5]), there are only a few papers about extensions which would be useful in the context of survey sampling. In fact, survey statisticians are often concerned with joint model and design-based inference and are therefore also interested in conditional functional central limit theorems. Depending on the sampling design, survey statisticians can sometimes resort to results from the bootstrap theory which, however, seems to offer solutions only for the case where the sample inclusion indicator random variables are exchangeable (see e.g. [7] or [10]). This approach has been applied for example in [3] and [8]. Extensions to other sampling designs have been investigated in [4], [2] and [1]. [4] deals with high entropy designs, i.e. sampling designs which can be approximated by rejective sampling, and provides sufficient conditions for weak convergence in $D[-\infty, \infty]$ (equipped with the Skorohod topology) of the Horvitz-Thompson and Hájek estimators of a finite population distribution function. [2] considers the class of sampling designs for which the standardized Horvitz-Thompson estimator of the population mean of every uniformly bounded variable is asymptotically normal (almost surely conditional on the

∗This work was supported by the grant 2016-ATE-0459 and the grant 2017-ATE-0402 from Università degli Studi di Milano-Bicocca
sequence of populations) and imposes restrictions on the first four mixed moments of the sample inclusion indicators in order to obtain some uniform central limit theorems for sequences of Horvitz-Thompson and Hájek estimators of a finite population distribution function. Finally, [1] considers Poisson sampling and high entropy sampling designs as in [4], and provides weak convergence theorems for Horvitz-Thompson empirical processes indexed by classes of functions \mathcal{F} which satisfy the uniform entropy condition.

The present paper is quite similar to [1] but focuses only on Poisson sampling designs. However, the results presented in this paper are more general than those given in [1]. In fact, the present paper provides functional central limit theorems which can be applied to a much wider family of function classes \mathcal{F} than the one considered in [1] (the uniform entropy condition will not be required). Moreover, this paper considers also the case where the first order sample inclusion probabilities can be arbitrarily close to zero which has not been treated in [1].

This article is organized as follows. Section 2 introduces the notation and the probability space within which the weak convergence theorems of this paper will be derived. The probabilistic framework that will be introduced in this section is completely general and can be used to derive weak convergence theorems for other sampling designs as well. The main results of this paper will then be derived in Section 3. The first battery of results deals with the case where there is a lower bound on the sample inclusion probabilities (which is the case considered in [1]). Then an analogous set of results will be obtained for the case where the sample inclusion probabilities are proportional to some size variable which can take on values arbitrarily close to zero (this case has not been treated in [1]).

2. Notation and Definitions

Let Y_1, Y_2, \ldots, Y_N denote the values taken on by a study variable Y on the N units of a finite population, and let X_1, X_2, \ldots, X_N denote corresponding values of an auxiliary variable X. In this paper it will be assumed that the N ordered pairs (Y_i, X_i) corresponding to a given finite population of interest are the first N realizations of an infinite sequence of i.i.d. random variables which take on values in the cartesian product of two separable Banach spaces. The latter will be denoted by $Y \times X$. Moreover, as usual in finite population sampling theory, it will be assumed that the values taken on by the auxiliary variable X are known in advance for all the N population units, while those corresponding to the study variable Y are only known for the population units that have been selected into a random sample. The corresponding vector of sample inclusion indicator functions will be denoted by $S_N := (S_{1,N}, S_{2,N}, \ldots, S_{N,N})$, and it will be assumed that the vectors S_N and $Y_N := (Y_1, Y_2, \ldots, Y_N)$ are conditionally independent given $X_N := (X_1, X_2, \ldots, X_N)$. With reference to the sample design, probability and expectation will be denoted by P_d and E_d, respectively. With this notation, the vector of first order sample inclusion probabilities will be given
by
\[
\pi_N := (\pi_{1,N}, \pi_{2,N}, \ldots, \pi_{N,N})
:= (E_d S_{1,N}, E_d S_{2,N}, \ldots, E_d S_{N,N})
= (P_d \{S_{1,N} = 1\}, P_d \{S_{2,N} = 1\}, \ldots, P_d \{S_{N,N} = 1\}),
\]
and from the conditional independence assumption it follows that \(\pi_N\) must be a deterministic function of \(X_N\).

Now, with reference to the Banach space \(Y\), consider the random empirical measure given by
\[
G'_N := \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \left(\frac{S_{i,N}}{\pi_{i,N}} - 1 \right) \delta_{Y_i}.
\]
For \(f : Y \to \mathbb{R}\), the integral of \(f\) with respect to \(G'_N\) can be written as
\[
G'_N f := \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \left(\frac{S_{i,N}}{\pi_{i,N}} - 1 \right) f(Y_i)
\]
so that, for any given class \(F\) of functions \(f : Y \to \mathbb{R}\), the random empirical measure \(G'_N\), as a real-valued function of \(f \in F\), can be interpreted as a stochastic process indexed by the set \(F\). For obvious reasons \(G'_N\) will be called Horvitz-Thompson empirical process (henceforth HTEP). Depending on the values taken on by the study variable \(Y\) and on the class of functions \(F\), a sample path of \(G'_N\) could be either bounded or not. In the former case it will be an element of \(l^\infty(F)\), the space of all bounded and real-valued functions with domain given by the class of functions \(F\). In what follows \(l^\infty(F)\) will be considered as a metric space with distance function induced by the norm \(\|z\|_F := \sup_{f \in F} |z(f)|\).

As already mentioned in the introduction, the present paper investigates conditions under which
\[
G'_N \Rightarrow G' \text{ in } l^\infty(F),
\]
where \(G'\) is a Borel measurable and tight (in \(l^\infty(F)\)) Gaussian process. Both unconditional and conditional (on the realized values of \(X\) and \(Y\)) weak convergence will be considered. Recall that unconditional weak convergence is defined as
\[
E^* h(G'_N) \to E h(G') \quad \text{for all } h \in C_b(l^\infty(F)),
\]
where \(C_b(l^\infty(F))\) is the class of all real-valued and bounded functions on \(l^\infty(F)\). For Borel measurable (in \(l^\infty(F)\)) processes \(G'\), whose realizations lie in a separable subset of \(l^\infty(F)\) almost surely, this is equivalent to
\[
\sup_{h \in BL_1} |E^* h(G'_N) - E h(G')| \to 0,
\]
where \(BL_1\) is the set of all functions \(h : l^\infty(F) \to [0,1]\) such that \(|h(z_1) - h(z_2)| \leq \|z_1 - z_2\|_F\) for every \(z_1, z_2 \in l^\infty(F)\) (see Chapter 1.12 in [10]). Based on
this observation, [10] provides two definitions of conditional weak convergence: conditional weak convergence in outer probability (henceforth opCWC), which in the context of this paper translates to the condition
\[
\sup_{h \in BL_1} |E_d h(G'_N) - Eh(G')| \overset{P^*}{\to} 0
\]
(see page 181 in [10]), and outer almost sure conditional weak convergence (henceforth oasCWC), which in the context of this paper translates to the condition
\[
\sup_{h \in BL_1} |E_d h(G'_N) - Eh(G')| \overset{a.s.}{\to} 0.
\]

As expected, oasCWC implies opCWC (see Lemma 1.9.2 on page 53 in [10]). However, it seems that in absence of asymptotic measurability of the sequence \(\{G'_N\}_{N=1}^\infty \) oasCWC is not strong enough to imply unconditional weak convergence (cfr. Theorem 2.9.6 on page 182 in [10] and the comments thereafter).

Since the very definition of weak convergence relies on the concept of outer expectation, some assumptions about the underlying probability space will be necessary for what follows. Throughout this paper it will always be assumed that the latter is a product space of the form
\[
\prod_{i=1}^\infty (\Omega_{y,x}, \mathcal{A}_{y,x}, P_{y,x}) \times (\Omega_d, \mathcal{A}_d, P_d) \times \prod_{i=1}^\infty (\Omega_{\varepsilon}, \mathcal{A}_\varepsilon, P_\varepsilon)
\]
and that the elements of the random sequence \(\{(Y_i, X_i)\}_{i=1}^\infty \) are the coordinate projections on the first infinite coordinates of the sample points \(\omega \in \Omega_{y,x}^\infty \times \Omega_d \times \Omega_{\varepsilon}^\infty \). On the other hand, the independent Rademacher random variables \(\varepsilon_1, \varepsilon_2, \ldots \), which will be needed for symmetrization, are defined as the coordinate projections on the last infinite coordinates of the sample points \(\omega \in \Omega_{y,x}^\infty \times \Omega_d \times \Omega_{\varepsilon}^\infty \). The joint expectation with respect to all the Rademacher random variables, with the first \(\infty + 1 \) coordinates of the sample points kept fixed, will be denoted by \(E_\varepsilon \). Finally, the sample inclusion indicators \(S_{i,N} \) are allowed to depend on the first \(\infty + 1 \) coordinates of the sample points \(\omega \in \Omega_{y,x}^\infty \times \Omega_d \times \Omega_{\varepsilon}^\infty \) only. As suggested by the notation, it will be assumed that for each value of \(N \) the corresponding sample inclusion indicator functions \(S_{1,N}, S_{2,N}, \ldots, S_{N,N} \) are the elements of one row of a triangular array of random variables. This assumption is needed to make sure that for each value of \(N \) the sample design can be readapted according to all the \(N \) (known) values taken on by the auxiliary variable \(X \) as the population size increases. To make sure that the conditional independence assumption holds, it will be assumed that for each value of \(N \) the corresponding vector \(S_N \) is defined as a function of the random vector \(X_N \) and of random variables \(D_1, D_2, \ldots \) which are functions of the central coordinate of the sample points \(\omega \in \Omega_{y,x}^\infty \times \Omega_d \times \Omega_{\varepsilon}^\infty \) only, i.e. of the coordinate that takes on values in the set \(\Omega_d \) (instead of a random sequence \(\{D_i\}_{i=1}^\infty \), one could also consider a stochastic process \(\{D_t : t \in T\} \) with an arbitrary index set \(T \) but this will not be of interest in the present paper). For example, in the case of a Poisson
sampling design with a given expected sample size \(n_N\) (which could depend on \(X_N\); obviously \(n_N\) cannot be larger than \(N\)), one could define \(\{D_i\}_{i=1}^\infty\) as a sequence of i.i.d. uniform-\([0, 1]\) random variables and define for each value of \(N\) the corresponding row of sample inclusion indicators by

\[
S_{i,N} := \begin{cases}
1 & \text{if } D_i \leq \frac{n_N w(X_i)}{\sum_{j=1}^N w(X_j)} \\
0 & \text{otherwise}
\end{cases} \quad i = 1, 2, \ldots, N
\]

for some function \(w: \mathcal{X} \mapsto (0, \infty)\). Note that in this way the first order sample inclusion probabilities will be given by

\[
\pi_{i,N} := E_d S_{i,N} = P_d\{S_{i,N} = 1\} = \min \left\{ \frac{n_N w(X_i)}{\sum_{j=1}^N w(X_j)}, 1 \right\}, \quad i = 1, 2, \ldots, N,
\]

and that they will sum to \(n_N\) for every realization of \(X_N\). Of course, the above probability space does not only work for Poisson sampling designs, but it can accommodate any non-informative sampling design. To prove this assertion it will be shown that for any non-informative sampling design the vector of sample inclusion indicators \(S_N\) can be defined as a function of \(X_N\) and of a single uniform-\([0, 1]\) random variable \(D\) that depends only on the central coordinate of the sample points \(\omega \in \Omega_{\mathbb{N}^\infty} \times \Omega_d \times \Omega_{\mathbb{N}^\infty}\). To this aim let

\[
p_N(s_N) := p_N(s_N; X_N) \tag{2.3}
\]

denote the probability to select a given sample \(s_N \in \{0, 1\}^N\). Note that the definition of the function \(p_N\) specifies a desired sampling design. Since the values taken on by the auxiliary variable \(X\) are assumed to be already known before the sample is drawn, the sample selection probabilities \(p_N(s_N)\) are allowed to depend on \(X_N\). Now, let \(s_N^{(1)}, s_N^{(2)}, \ldots, s_N^{(2^N)}\) denote the \(2^N\) elements of \(\{0, 1\}^N\) arranged in some fixed order (for example, according to the order determined by the binary expansion corresponding to the finite sequence of zeros and ones in \(s_N\)), and put \(p_N^{(i)} := p_N(s_N^{(i)}), i = 1, 2, \ldots, 2^N\). Then, define the vector of sample inclusion indicators \(S_N\) by

\[
S_N := \begin{cases}
S_N^{(1)} & \text{if } D \leq p_N^{(1)} \\
S_N^{(i)} & \text{if } \sum_{j=1}^{i-1} p_N^{(j)} < D \leq \sum_{j=1}^{i} p_N^{(j)} \text{ for } i = 2, 3, \ldots, 2^N,
\end{cases}
\]

and note that for every \(s_N \in \{0, 1\}^N\) this vector satisfies \(P_d\{S_N = s_N\} = p_N(s_N)\) as desired. This concludes the proof of the above assertion written in italics.

Next, observe that in the above construction the sample selection probabilities \(P_d\{S_N = s_N\}\) are functions of \(X_N\). If for a given \(s_N \in \{0, 1\}^N\) the corresponding sample selection probability \(P_d\{S_N = s_N\}\) is a measurable function of \(X_N \in \mathcal{X}^N\) (this depends on the sampling design), then, with reference
to the probability space of this paper, $P_d\{S_N = s_N\}$ can be interpreted as a conditional probability in the proper sense. Otherwise, $P_d\{S_N = s_N\}$ will just be a non measurable (random) function of X_N. Moreover, in what follows only measurable sample designs will be considered, i.e. sample designs such that for every fixed $s_N \in \{0, 1\}^N$ the corresponding function $g(s_N, \cdot)$ is a measurable function of Y_N, X_N and $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N$ and the function $P_d\{S_N = s_N\}$ is a measurable function of X_N, then, with respect to the probability space of this paper, $E_d g(S_N, Y_N, X_N, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N)$ can be interpreted as a conditional probability in the proper sense. Otherwise, it could either be a measurable or a non measurable function of Y_N, X_N and $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N$.

Throughout this paper it will be assumed that all the vectors of sample inclusion indicators S_N are defined as described in the above construction (the one which involves a single uniform-$[0, 1]$ random variable D). Of course, in this way the random vectors S_N will be dependent for different values of N, but for the purposes of this paper this dependence structure is irrelevant. Moreover, in what follows only measurable sample designs will be considered, i.e. sample designs such that for every fixed $s_N \in \{0, 1\}^N$ the corresponding sample selection probability in (2.3) is a measurable function of X_N. Note that this is a very mild restriction that should be satisfied in virtually every practical setting. However, it entails three important consequences which will be relevant for the proofs presented in this paper. They are: (i) the vectors of sample inclusion indicators S_N are measurable functions of X_N and of the uniform-$[0, 1]$ random variable D, (ii) for every $s_N \in \{0, 1\}^N$ the corresponding probability $P_d\{S_N = s_N\}$ is a conditional probability in the proper sense, and (iii) for g a measurable function of S_N, Y_N, X_N and $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N$ the corresponding expectation $E_d g(S_N, Y_N, X_N, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N)$ is a conditional expectation in the proper sense.

Finally, for the proofs presented in this paper it will be convenient to introduce a special kind of measurable cover function that could differ from the traditional one for functions that depend on the sample inclusion indicators. Recall that, according to the traditional definition (see for example Section 1.2 in [10]), a measurable cover of a real-valued function T defined on some generic
probability space \((\Omega, \mathcal{A}, P)\) is a measurable function \(T^* : \Omega \mapsto \mathbb{R} \cup \{-\infty, \infty\}\) such that (i) \(T^* \geq T\), and (ii) \(T^* \leq U\) for every measurable \(U : \Omega \mapsto \mathbb{R} \cup \{-\infty, \infty\}\) with \(U \geq T\). The existence of measurable cover functions follows e.g. from Lemma 1.2.1 on page 6 in [10]. Note that the very definition of measurable cover implies that it is unique only up to \(P\)-null sets. Moreover, since the definition of measurable cover function depends on the underlying probability measure \(P\), it should actually be called measurable \(P\)-cover function. Now, consider the probability space of this paper and a function \(T : \Omega^y \times \Omega^d \times \Omega^\omega \mapsto \mathbb{R}\) that depends on \(\omega \in \Omega^y \times \Omega^d \times \Omega^\omega\) only through the vector of random elements

\[
(Y_N, X_N, S_N, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N).
\]

Let

\[
\phi : \Omega^\infty \times \Omega^d \times \Omega^\omega \mapsto \Omega^N \times \{0, 1\}^N \times \Omega^N
\]

be the map that transforms the sample points \(\omega \in \Omega^\infty \times \Omega^d \times \Omega^\omega\) into the above vector that is relevant for the computation of \(T\), and note that \(T\) can always be written as \(T = h \circ \phi\) for some \(h : \Omega^N \times \{0, 1\}^N \times \Omega^N \mapsto \mathbb{R}\). Then, with \(h^*\) a measurable \((P^\infty_y \times P_d \times P^\omega) \circ \phi^{-1}\)-cover of \(h\), define a majorant of \(T\) by \(T^{**} := h^* \circ \phi\). Then, \(T^{**} : \Omega^\infty \times \Omega^d \times \Omega^\omega \mapsto \mathbb{R} \cup \{\infty, -\infty\}\) is measurable because \(\phi\) and \(h^*\) are both measurable, (ii) \(T^{**} \geq T^*\) almost surely because \(h^* \circ \phi \geq (h \circ \phi)^*\), and (iii) \(T^{**}\) depends on \(\omega \in \Omega^\infty \times \Omega^d \times \Omega^\omega\) only through the functions that are relevant for the computation of \(\phi\). Moreover, (iv) if \(T := h \circ \phi\) does not depend on \(S_N\), then \(T^{**} = T^*\) almost surely. To prove this claim it will be enough to show that \(T^{**} \leq T^*\) almost surely. To this aim note first that if a function \(T := h \circ \phi\) does not depend on \(S_N\), then \(T\) can be written as \(T := h' \circ \phi'\) for some \(h' : \Omega^N_y \times \Omega^N \mapsto \mathbb{R}\), where \(\phi'\) maps the sample point \(\omega \in \Omega^\infty \times \Omega^d \times \Omega^\omega\) to the vector

\[
(Y_N, X_N, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_N).
\]

Since \(\phi'\) is a coordinate projection on a product probability space with product measure, \(T^* = (h' \circ \phi')^* = h^* \circ \phi'\) for \(h^*\) a measurable \((P^\infty_y \times P_d \times P^\omega) \circ \phi^{-1}\)-cover of \(h'\) (see Lemma 1.2.5 on page 10 in [10]). On the other hand, \(T\) can also be written as \(T = h'' \circ \phi'' \circ \phi\) with \(\phi'' : \Omega^N_y \times \{0, 1\}^N \times \Omega^N \mapsto \Omega^N \times \Omega^N\) defined in obvious way and with the same function \(h''\) as before. Thus,

\[
T^{**} := (h' \circ \phi'')^* \circ \phi \leq h^* \circ \phi'' \circ \phi = h^* \circ \phi' = T^* \quad \text{a.s.,}
\]

where the second-last equality follows from \(\phi' = \phi'' \circ \phi\).

3. Empirical process theory for Poisson sample designs

Now, assume that \(\{S_N\}_{N=1}^\infty\) is a sequence of vectors of sample inclusion indicators corresponding to a sequence of measurable Poisson sampling design, and let \(P_y\) denote the marginal distribution common to the \(\mathcal{Y}\)-valued random variables
In this section it will be shown that, under broad conditions, the sequence of HTEP’s corresponding to \(\{S_N\}_{N=1}^{\infty}\) and a \(P_y\)-Donsker class \(\mathcal{F}\) with \(\sup\{|P_y f| : f \in \mathcal{F}\} < \infty\) converges weakly in \(l^\infty(\mathcal{F})\) to a Borel measurable and tight Gaussian limit process which will be denoted by \(\mathcal{G}'\). Then, it will also be shown that, conditionally on \((Y_{N=\infty}, X_{N=\infty})\),

\[\mathcal{G}'_N \rightsquigarrow \mathcal{G}' \text{ in } l^\infty(\mathcal{F})\]

is still true. This conditional weak convergence result will be shown to hold in the outer probability sense, and, under more stringent conditions, it will be shown to hold in the outer almost sure sense as well. Moreover, as a corollary to the unconditional weak convergence result and to opCWC, it will also be shown that

\[(\mathcal{G}_N, \mathcal{G}'_N) \rightsquigarrow (\mathcal{G}, \mathcal{G}') \text{ in } l^\infty(\mathcal{F}) \times l^\infty(\mathcal{F}),\]

where

\[\mathcal{G}_N := \frac{1}{\sqrt{N}} \sum_{i=1}^{N} (\delta_{Y_i} - P_y),\tag{3.1}\]

is the classical empirical process based on i.i.d. observations, and where \(\mathcal{G}\) is a Borel measurable and tight \(P_y\)-Brownian Bridge which is independent from \(\mathcal{G}'\). Actually, the condition \(\sup\{|P_y f| : f \in \mathcal{F}\} < \infty\) will not appear in the theorems presented in this section, because the latter might apply also to the case where \(\sup\{|P_y f| : f \in \mathcal{F}\} = \infty\). However, in this case the assumptions of the theorems will require that the sequence of Poisson sampling designs satisfies quite restrictive conditions.

Now, to prove any of the above weak convergence results one must first establish sufficient conditions for convergence of the finite-dimensional marginal distributions. The following lemma will take care of this issue. Its conclusion says that for every finite-dimensional vector \(f := (f_1, f_2, \ldots, f_r)^\top \in \mathcal{F}^r\), and for every \(t \in \mathbb{R}^r\),

\[E_d \exp(i t^\top \mathcal{G}'_N f) \to \exp \left(-\frac{1}{2} t^\top \Sigma'(f) t \right)\]

in probability, and, under the almost sure versions of its assumptions, almost surely. \(\Sigma'(f)\) indicates a positive semidefinite covariance matrix that depends on the vector \(f\) and on the sequence of sampling designs, and \(\mathcal{G}'_N f := (\mathcal{G}'_N f_1, \mathcal{G}'_N f_2, \ldots, \mathcal{G}'_N f_r)^\top\). Note that in the statement of the lemma it will be assumed that the sampling designs are measurable so that the conditional characteristic functions are measurable as well.

Lemma 3.1 (Convergence of marginal distributions). Let \(\{S_N\}_{N=1}^{\infty}\) be the sequence of vectors of sample inclusion indicators corresponding to a sequence of measurable Poisson sampling designs, and let \(\{\pi_N\}_{N=1}^{\infty}\) be the corresponding sequence of first order sample inclusion probabilities. Let \(\mathcal{F}\) be an arbitrary class of functions \(f : \mathcal{Y} \to \mathbb{R}\), and let \(\{\mathcal{G}'_N\}_{N=1}^{\infty}\) be the sequence of HTEP’s corresponding to \(\mathcal{F}\) and \(\{S_N\}_{N=1}^{\infty}\). Assume that
A1) there exists a function $\Sigma': \mathcal{F}^2 \mapsto \mathbb{R}$ such that
\[
\Sigma'_N(f, g) := E_dG'_N fG'_N g \xrightarrow{P(a.s.)} \Sigma'(f, g) \quad \text{for every } f, g \in \mathcal{F}.
\]
A2) for every finite-dimensional vector $f := (f_1, f_2, \ldots, f_r)^\top \in \mathcal{F}^r$
\[
\frac{1}{N} \sum_{i=1}^N \frac{1}{\pi_i,N} \|f(Y_i)\|^2 I(||f(Y_i)|| > \pi_i,N \sqrt{N} \epsilon) \xrightarrow{P(a.s.)} 0 \quad \text{for every } \epsilon > 0,
\]
where $\|f(Y_i)\|$ is the euclidean norm of $f(Y_i) := (f_1(Y_i), f_2(Y_i), \ldots, f_r(Y_i))^\top$.

Then, Σ' is a positive semidefinite covariance function, and for every finite-dimensional $f \in \mathcal{F}^r$ and for every $t \in \mathbb{R}^r$
\[
E_d \exp(it^\top G'_N f) \xrightarrow{P(a.s.)} \exp\left(-\frac{1}{2} t^\top \Sigma'(f)t\right),
\]
where $\Sigma'(f)$ is the covariance matrix whose elements are given by $\Sigma'_{(ij)}(f) := \Sigma'(f_i, f_j)$.

Proof. The claim that Σ' is a positive semidefinite covariance function follows immediately from the fact that Σ' is the pointwise probability limit of the sequence of covariance functions $\{\Sigma'_N\}_{N=1}^\infty$.

Now, consider the part of the conclusion concerning the sequence of conditional characteristic functions. If $t \in \mathbb{R}^r$ and $f \in \mathcal{F}^r$ are such that $t^\top \Sigma'(f)t = 0$, then $E_d|t^\top G'_N f|^2 \xrightarrow{P(a.s.)} 0$ and the convergence result about the sequence of conditional characteristic functions is obvious in this case. So, assume that $t^\top \Sigma'(f)t > 0$, and note that in this case the convergence result about the sequence of conditional characteristic functions will certainly be satisfied if a suitable probability limit version (almost sure version) of the Lindeberg condition holds. To provide an explicit expression for the latter, it will be convenient to define
\[
Z_{i,N} := \left(\frac{S_{i,N}}{\pi_i,N} - 1\right) t^\top f(Y_i), \quad i = 1, 2, \ldots, N,
\]
and
\[
q_N^2 := \sum_{i=1}^N E_dZ_{i,N}^2 = N t^\top \Sigma'_N(f)t, \quad N = 1, 2, \ldots,
\]
where $\Sigma'_N(f)$ is the covariance matrix whose elements are given by $\Sigma'_{(ij)}(f) := \Sigma'_N(f_i, f_j)$. Then,
\[
t^\top G'_N f = G'_N t^\top f = \frac{1}{\sqrt{N}} \sum_{i=1}^N Z_{i,N},
\]
and the probability limit version (almost sure version) of the Lindeberg condition can be written as
\[
\frac{1}{q_N^2} \sum_{i=1}^N E_dZ_{i,N}^2 I(|Z_{i,N}| > \epsilon q_N) \xrightarrow{P(a.s.)} 0 \quad \text{for every } \epsilon > 0. \quad (3.2)
\]
In order to prove this condition, note that
\[
E_dZ_{i,N}^2I(|Z_{i,N}| > \varepsilon q_N) = \\
\left(1 - \frac{\pi_{i,N}}{\pi_{i,N}}\right)^2 \left(\frac{1 - \pi_{i,N}}{\pi_{i,N}}|t^Tf(Y_i)| > \varepsilon q_N\right) + \\
+ (1 - \pi_{i,N}) (t^Tf(Y_i))^2 I(|t^Tf(Y_i)| > \varepsilon q_N) \\
\leq \frac{2(1 - \pi_{i,N})}{\pi_{i,N}} \|t\|^2 \|f(Y_i)\|^2 I(||f(Y_i)|| > \pi_{i,N}\varepsilon q_N),
\]
and that, for small enough $\eta > 0$,
\[
q_N^2 = Nt^T\Sigma_N f \geq N(t^T\Sigma'(f)t - \eta) := NC^2_\eta \to \infty
\]
with probability tending to 1 (eventually almost surely). The left side of (3.2) is therefore bounded by
\[
\frac{2}{NC_\eta} \sum_{i=1}^N \frac{1 - \pi_{i,N}}{\pi_{i,N}} \|t\|^2 \|f(Y_i)\|^2 I(||f(Y_i)|| > \pi_{i,N}\varepsilon \sqrt{NC_\eta})
\]
with probability tending to 1 (eventually almost surely), and the random variable in the last display goes to zero in probability (almost surely) by assumption A2.

Remark 3.1. If \mathcal{F} is a \mathcal{P}_y-Donsker class, then condition A2 will certainly be satisfied if

A2* there exists a constant $L > 0$ such that

\[
\min_{1 \leq i \leq N} \pi_{i,N} := \min_{1 \leq i \leq N} E_dS_{i,N} \geq L
\]

with probability tending to 1 (eventually almost surely).

Of course, the conclusion of Lemma 3.1 could also be stated by adapting the definitions of the conditional weak convergence concepts given in the previous section. This will be done in the following corollary. In its statement $G | \mathcal{G}$ will denote the restriction of a generic \mathcal{F}-indexed stochastic process $\{Gf : f \in \mathcal{F}\}$ to a subset $\mathcal{G} \subseteq \mathcal{F}$. Note that for a finite index set \mathcal{G}, $G | \mathcal{G}$ can always be interpreted as a Borel measurable random element of $l^\infty(\mathcal{G})$.

Corollary 3.1. Under the assumptions of Lemma 3.1 it follows that for every finite subset \mathcal{G} of \mathcal{F} the random variable

\[
\sup_{g \in BL_1(l^\infty(\mathcal{G}))} |E_dg(G'_{N} | \mathcal{G}) - Eg(G' | \mathcal{G})|
\]

is measurable, and the conclusion of Lemma 3.1 is equivalent to

\[
\sup_{g \in BL_1(l^\infty(\mathcal{G}))} |E_dg(G'_{N} | \mathcal{G}) - Eg(G' | \mathcal{G})| \rightarrow 0 \quad \text{for every finite } \mathcal{G} \subseteq \mathcal{F},
\]
where $BL_1(l^\infty(G))$ is the set of all functions $h : l^\infty(G) \to [0,1]$ such that $|h(z_1 - h(z_2))| \leq \|z_1 - z_2\|_G$ for every $z_1, z_2 \in l^\infty(G)$, and G' is an F-indexed zero mean Gaussian process with covariance function Σ'.

Proof. By the extension of the Portmanteau theorem in Example 1.3.5 on page 20 in [10] (or by Lévy’s continuity theorem) the conclusion of Lemma 3.1 is equivalent to

$$E_d g(G'_N f) \overset{P_{(as)}}{\to} Eg(N_r(0, \Sigma'(f)))$$

for every continuous and bounded function $g : \mathbb{R}^r \to \mathbb{R}$ and for every $f \in F^r$, where $N_r(0, \Sigma'(f))$ denotes a random vector with r-dimensional centered normal distribution with covariance matrix $\Sigma'(f)$ (note that $E_d g(G'_N f)$ is measurable because in Lemma 3.1 it is assumed that the sampling designs are measurable). Obviously, $N_r(0, \Sigma'(f))$ is a Borel measurable and tight random element of the metric space \mathbb{R}^r endowed with the maximum metric. Thus, by the comments on page 73 in [10], the condition in the previous display is in turn equivalent to

$$\sup_{k \in BL_1(\mathbb{R}^r)} \left| E_d k(G'_N f) - E k(N_r(0, \Sigma'(f))) \right| \overset{P_{(as)}}{\to} 0,$$

where $BL_1(\mathbb{R}^r)$ is the set of all functions $k : \mathbb{R}^r \to [0,1]$ such that $|k(x_1) - k(x_2)| \leq \|x_1 - x_2\|_\infty$ for every $x_1, x_2 \in \mathbb{R}^r$ (here $\|\|_\infty$ denotes the maximum norm on \mathbb{R}^r). Since $BL_1(\mathbb{R}^r)$ is separable with respect to the topology of uniform convergence on compact sets, the supremum on the left side of the previous display can be written as a supremum over a countable subset of $BL_1(\mathbb{R}^r)$ which shows that it is measurable.

To complete the proof of the corollary it is now sufficient to show that the supremum in the statement of the corollary and the supremum in the previous display are the same. To this aim, denote the elements of G by f_1, f_2, \ldots, f_r, and consider the mapping $A : \mathbb{R}^r \to l^\infty(G)$ that transforms the vectors $x := (x_1, x_2, \ldots, x_r) \in \mathbb{R}^r$ into the functions $z \in l^\infty(G)$ which are defined as $z(f_i) := x_i$, $i = 1, 2, \ldots, r$. Then, A is an isometry (recall that we are considering \mathbb{R}^r endowed with the maximum norm), so that for every $g \in BL_1(l^\infty(G))$ the function composition $g \circ A$ is an element of $BL_1(\mathbb{R}^r)$. Since $A(G'_N f) = G'_N \mid G$, it follows that the supremum in the statement of the corollary cannot be larger than the supremum in the previous display. To obtain the opposite inequality, note that for every $k \in BL_1(\mathbb{R}^r)$, the function composition $k \circ A^{-1}$ is an element of $BL_1(l^\infty(G))$. \qed

Now, for finite function classes F, Lemma 3.1 together with Corollary 3.1 would already establish all three the desired weak convergence results. However, to prove any of the three weak convergence results for infinite function classes F requires some additional work. To this aim, Lemma 3.1 is very helpful because it shows that there is only one possible limit process to which the sequence of stochastic processes $\{G'_N\}_{N=1}^\infty$ could possibly converge: an F-indexed zero-mean Gaussian process with covariance function given by the function Σ'. However, for infinite function classes F, convergence of the marginals is not even enough to
make sure that the sample paths of the limit process G' are bounded (and hence elements of $L^\infty(F)$). To prove this and the desired weak convergence results, it must still be shown that the sequence of stochastic processes $\{G'_N\}_{N=1}^\infty$ is (conditionally) asymptotically tight (see Theorem 1.5.4 on page 35 in [10]). By Theorem 1.5.7 on page 37 in [10], this can be done by showing that the index set F is totally bounded with respect to the "G'-intrinsic" semimetric

$$\rho'(f, g) := \sqrt{\Sigma'(f - g, f - g)}, \quad f, g \in F,$$

and, moreover, by showing that $\{G'_N\}_{N=1}^\infty$ is asymptotically ρ'-equicontinuous in a proper sense (see also the comments at the top of page 41 in [10]).

In what follows, in order to allow for greater generality in the statement of the weak convergence results, total boundedness w.r.t. ρ' will be imposed as an assumption. However, it is worth noting that in most applications total boundedness can be easily established with the aid of the following lemma.

Lemma 3.2 (Total boundedness). Let Q be a probability measure on some measurable space, let H be a Q-Donsker class, and let d' be a seminorm on H. If

TB) the centered $L^2(Q)$-semimetric

$$d(f, g) := \sqrt{Q[(f - Qf) - (g - Qg)]^2}, \quad f, g \in H,$$

is uniformly stronger than d',

then H is totally bounded with respect to d'.

If $\sup\{|P_y f| : f \in H\} < \infty$, then condition TB can be weakened to condition

TB* the ordinary $L^2(Q)$-semimetric

$$d_0(f, g) := \sqrt{Q(g - f)^2}, \quad f, g \in H,$$

is uniformly stronger than the semimetric d'.

Proof. If H is a Q-Donsker class, then H is totally bounded with respect to the seminorm d (see Corollary 2.3.12 on page 115 in [10]), and thus, under condition TB, H will be totally bounded w.r.t. d' as well.

The last assertion in the statement of the lemma follows from Problem 2.1.2 on page 93 in [10].

Remark 3.2. Under assumptions A1 and A2* it follows that every P_y-Donsker class F with $\sup\{|P_y f| : f \in F\} < \infty$ is totally bounded w.r.t. ρ'.

Finally, it remains to deal with asymptotic equicontinuity (henceforth AEC). Three different types of AEC will be employed to establish the three desired weak convergence results. To define these three types of AEC it will be convenient to introduce the function classes

$$F'_\delta := \{f - g : f, g \in F, \rho'(f, g) < \delta\}, \quad \delta > 0.$$
Based on these function classes, define the unconditional version of AEC by
\[\| G_N' \|_{F_{\delta_N}} P^* \to 0, \] (3.4)
This type of AEC will be needed to prove the unconditional weak convergence result. Note that this type of AEC is also a necessary condition for unconditional weak convergence (see Theorem 1.5.4 and Theorem 1.5.7 on page 35 and page 37 in [10]). Proving opCWC and oasCWC requires conditional versions of AEC. So, in order to obtain opCWC it will be shown that
\[E_d \| G_N' \|_{F_{\delta_N}} P^* \to 0 \text{ for every } \delta_N \downarrow 0, \] (3.5)
while for proving oasCWC the latter condition will be strengthened to
\[E_d \| G_N' \|_{F_{\delta_N}} \text{ a.s.} \to 0 \text{ for every } \delta_N \downarrow 0. \] (3.6)
Note that condition (3.6) is not strong enough to imply condition (3.4). However, for the Poisson sampling designs considered in this paper it will be shown that, under quite general conditions,
\[E_d \| G_N' \|^{**}_{F_{\delta_N}} P^* (\text{as}) \to 0 \text{ for every } \delta_N \downarrow 0, \]
where the star refers to the argument of the expectation \(E_d \). The two versions of this results are strong enough to proof all the three desired weak convergence results since the probability version implies both (3.4) and (3.5) and since the almost sure versions is stronger than (3.6).

The next two lemmas are of technical nature and will be used to establish both versions of conditional AEC. They are adapted versions of Lemma 2.3.1 on page 108 in [10] (the symmetrization lemma) and of Proposition A.1.10 on page 436 in [10] (the contraction principle), respectively.

Lemma 3.3 (Symmetrization inequality). Let \(F \) be an arbitrary class of measurable functions, let \(S_N \) denote the vector of sample inclusion indicators corresponding to a measurable Poisson sampling design, and let \(G_N' \) denote the HTEP corresponding to \(S_N \) and \(F \). Then,
\[E_d \| G_N' \|_{F_{\delta_N}}^{**} \leq 2 E_d E_\varepsilon \left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \left(\frac{S_{i,N}}{\pi_{i,N}} - 1 \right) \delta_{Y_i} \right)^{**} \text{ a.s.}, \] (3.7)
where the underlying probability space and all the involved random variables are defined as described in Section 2, and where the stars on both sides of the inequality refer to the arguments of the expectations \(E_d \) and \(E_\varepsilon \), respectively.

Proof. Let \(S_1', S_2', \ldots, S_N' \) denote the sample inclusion indicator random variables corresponding to a second Poisson sampling design which is identical to the original one but which is independent from it. To define this additional set of indicator functions recall that, by assumption, the vector \(S_N \) whose elements are
the original indicator functions \(S_{i,N}, S_{2,N}, \ldots, S_{N,N} \), is a function of the random vector \(\mathbf{X}_N \) and of a single uniform-\([0,1]\) random variable \(D \) which depends on the central coordinate of the sample points \(\omega \in \Omega_{y,x}^\infty \times \Omega_d \times \Omega_e^\infty \) only. For the definition of the new indicator functions assume WLOG that the central factor in the definition of the probability space, i.e. the factor \((\Omega_d, \mathcal{A}_d, \mathbb{P}_d) \), is itself a product space of the form \((\Omega_d, \mathcal{A}_d, \mathbb{P}_d) := (\bar{\Omega}_d, \bar{\mathcal{A}}_d, \bar{\mathbb{P}}_d) \times (\check{\Omega}_d, \check{\mathcal{A}}_d, \check{\mathbb{P}}_d) \) where both factors on the right are identical, and assume that the random variable \(D \) which determines the values taken on by \(S_N \) is actually only a function of the first coordinate of this factor space. Then, let \(D' \) be an independent copy of \(D \) that depends only on the second coordinate of this factor space, and define the vector \(S'_N := (S'_{1,N}, S'_{2,N}, \ldots, S'_{N,N}) \) exactly in the same way as \(S_N \) but with the random variable \(D' \) in place of \(D \). In what follows, if \(T \) is a function that depends on \(\omega \in \Omega_{y,x}^\infty \times \Omega_d \times \Omega_e^\infty \) only through

\[
(\mathbf{Y}_N, \mathbf{X}_N, S_N, S'_N, \varepsilon_1, \ldots, \varepsilon_N),
\]

and can thus be represented as \(T = h \circ \phi''' \) for some \(h : \Omega_{y,x}^N \times \{0,1\}^{2N} \times \Omega_e^N \to \Omega_{y,x}^N \times \{0,1\}^{2N} \times \Omega_e^N \) defined in obvious way, then \(T^{***} \) will be defined as \(T^{***} := h^* \circ \phi \circ h'' \circ \phi''' \) and \(h^* \circ \phi \) a measurable \((P_{y,x}^\infty \times P_d \times P_e^\infty) \circ \phi''^{-1} \)cover of \(h \). Of course, \(T^{***} \) has properties analogous to those of \(T^* \) listed at the end of Section 2. In particular, (i) \(T^{***} \) is measurable, (ii) \(T^{***} \geq T^* \) almost surely, (iii) \(T^{***} \) depends on \(\omega \in \Omega_{y,x}^\infty \times \Omega_d \times \Omega_e^\infty \) only through the functions that are relevant for the computation of \(\phi''' \) and (iv) \(T^{***} = T^* \) almost surely if \(T \) does not depend on any of the indicator functions. Moreover, it can also be shown that \(T^{***} = T^* \) almost surely if \(T \) does not depend on \(S'_N \). The proof of the latter assertion is essentially the same as the one given at the of Section 2 for showing that \(T^{**} = T^* \) almost surely if \(T \) does not depend on any of the sample inclusion indicator functions.

Now, consider the \(\mathcal{F} \)-indexed stochastic processes defined by

\[
Z_i := \frac{1}{\sqrt{N}} \left(\frac{S_{i,N}}{\pi_{i,N}} - 1 \right) \delta_{Y_i}, \quad i = 1, 2, \ldots, N,
\]

and the processes \(Z'_i \) which are defined in the same way but with \(S'_{i,N} \) in place of \(S_{i,N} \). Let \(\bar{E}_d \) and \(\check{E}_d' \) denote the expectations only with respect to the random variables \(D \) and \(D' \), respectively, with \((\mathbf{Y}_{N=\infty}, \mathbf{X}_{N=\infty}) \) and \(\varepsilon_1, \varepsilon_2, \ldots \) kept fixed. Moreover, let \(E_d \) denote the joint expectation w.r.t. both random variables \(D \) and \(D' \), still with \((\mathbf{Y}_{N=\infty}, \mathbf{X}_{N=\infty}) \) and \(\varepsilon_1, \varepsilon_2, \ldots \) kept fixed. Note that \(E_dZ_i f = \)
\[\tilde{E}_d Z'_i f = 0 \] for every \(f \in \mathcal{F} \), so that
\[
\|G'_N\|_\mathcal{F} := \sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{N} Z_i f \right|
\]
\[
= \sup_{f \in \mathcal{F}} \left| \sum_{i=1}^{N} (Z_i f - \tilde{E}_d Z'_i f) \right|
\]
\[
\leq \sup_{f \in \mathcal{F}} \tilde{E}_d \left| \sum_{i=1}^{N} (Z_i f - Z'_i f) \right|
\]
\[
\leq \tilde{E}_d \left\| \sum_{i=1}^{N} (Z_i - Z'_i) \right\|_{\mathcal{F}}
\]
and therefore
\[
\|G'_N\|^{**}_{\mathcal{F}} = \|G'_N\|^{***}_{\mathcal{F}} \leq \tilde{E}_d \left\| \sum_{i=1}^{N} (Z_i - Z'_i) \right\|_{\mathcal{F}} \quad \text{a.s.,}
\]
where the stars on the far right side refer to the argument of the expectation. From this it follows that
\[
E_d \|G'_N\|^{**}_{\mathcal{F}} = \tilde{E}_d \|G'_N\|^{***}_{\mathcal{F}}
\]
\[
\leq \tilde{E}_d \tilde{E}_d \left\| \sum_{i=1}^{N} (Z_i - Z'_i) \right\|_{\mathcal{F}}
\]
\[
= E_d \left\| \sum_{i=1}^{N} (Z_i - Z'_i) \right\|_{\mathcal{F}}
\]
(3.8)
almost surely, where all the stars refer to the arguments of the expectations.

Now, let \(h : \Omega_{y,x}^{N} \times \{0,1\}^{2N} \times \Omega_{x}^{N} \mapsto \mathbb{R} \) be such that
\[
T := \left\| \sum_{i=1}^{N} (Z_i - Z'_i) \right\|_{\mathcal{F}} = h \circ \phi^{**}
\]
so that
\[
T^{***} := \left\| \sum_{i=1}^{N} (Z_i - Z'_i) \right\|_{\mathcal{F}} := h^{*} \circ \phi^{**}
\]
Moreover, let \(\theta : \Omega_{y,x}^{N} \times \{0,1\}^{2N} \times \Omega_{x}^{N} \mapsto \Omega_{y,x}^{N} \times \{0,1\}^{2N} \times \Omega_{x}^{N} \) be the mapping that in the range of \(\phi^{**} \) switches the positions of the indicators \(S_{i,N} \) and \(S'_{i,N} \) corresponding to all the indexes \(i \) such that \(\varepsilon_i = -1 \). Note that \(\theta \) is a measurable one-to-one mapping with measurable inverse (in fact, the inverse of \(\theta \) is \(\theta \) itself). Then, consider the mapping
\[
T_{\varepsilon} := \left\| \sum_{i=1}^{N} \varepsilon_i (Z_i - Z'_i) \right\|_{\mathcal{F}} = h \circ \theta \circ \phi^{**}
\]
and note that \(T^{***}_x = h^* \circ \theta \circ \phi''' \) almost surely with the same \(h^* \) as in the definition of \(T^{***} \) (of course, \(h^* \) is an equivalence class). To prove this claim note that
\[
T^{***}_x := (h \circ \theta)^* \circ \phi''' \leq h^* \circ \theta \circ \phi''',
\]
and that the \(h^* \) on the right side is the same as the \(h^* \) from the definition of \(T^{***} \) since \((P_{y,x}^\infty \times P_{y,x}^\infty) \circ \phi''' \circ \theta^{-1} = (P_{y,x}^\infty \times P_{y,x}^\infty) \circ \phi''') \circ \theta^{-1} \cdot \theta^{-1} \cdot \theta = T^{***}_x \), which proves that \(T^{***}_x = h^* \circ \theta \circ \phi''' \) almost surely as claimed above. From the definition of the sample inclusion indicator functions it follows now that
\[
E_dT^{***} = E_dh^* \circ \phi''' = E_dh^* \circ \theta \circ \phi''' = E_dT^*_x \quad \text{a.s.}
\]
Combining this fact with (3.8) yields
\[
E_d\|G'_N\|_{\mathcal{F}}^{**} \leq E_dE_d \left\| \sum_{i=1}^N \varepsilon_i(Z_i - Z'_i) \right\|_{\mathcal{F}}^{***} \quad \text{a.s.}
\]
Now the proof can be completed by applying the triangle inequality to the right side in order to obtain
\[
E_d\|G'_N\|_{\mathcal{F}}^{**} \leq 2E_dE_d \left\| \sum_{i=1}^N \varepsilon_iZ_i \right\|_{\mathcal{F}}^{**}
\]
which is the desired conclusion. \(\square \)

Lemma 3.4 (Contraction principle). Let \(S_N \) denote the vector of sample inclusion indicators corresponding to a measurable sampling design (not necessarily a Poisson sampling design). Let \(\gamma_1, \gamma_2, \ldots, \gamma_N \) be arbitrary measurable random variables which are functions of \(Y_N \) and \(X_N \) only and such that
\[
0 \leq \min_{1 \leq i \leq N} \gamma_i \leq \max_{1 \leq i \leq N} \gamma_i \leq 1
\]
with probability tending to 1 (or eventually almost surely). Let \(\mathcal{F} \) be an arbitrary index set, and let \(\{G_i : f \in \mathcal{F}\} \) be an \(\mathcal{F} \)-indexed stochastic process that is a function of \((Y_i, X_i) \) only, \(i = 1, 2, \ldots, N \). Then,
\[
E_dE_d \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^N \varepsilon_iS_{i,N}\gamma_iG_i \right\|_{\mathcal{F}}^{**} \leq E_d \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^N \varepsilon_iG_i \right\|_{\mathcal{F}}^{*}
\]
with probability tending to 1 (or eventually almost surely), where, for \(\mathcal{F} \)-indexed stochastic processes \(G_i, |G|_\mathcal{F} := \sup_{f \in \mathcal{F}} |G_f| \), and where the stars on both sides of the inequality refer to the arguments of the two expectations \(E_dE_d \) and \(E_d \), respectively. The underlying probability space and all the involved random variables are defined as described in Section 2.
Proof. Define, for \(i = 1, 2, \ldots, N \), the \(\mathcal{F} \)-indexed stochastic processes

\[
Z_i := \begin{cases}
\sum_{j=1}^{N} \varepsilon_j S_{j,N} \gamma_j G_j & \text{for } i = 1, \\
\sum_{j=1}^{i-1} \varepsilon_j G_j + \sum_{j=i+1}^{N} \varepsilon_j S_{j,N} \gamma_j G_j & \text{for } i = 2, 3, \ldots, N - 1, \\
\sum_{j=1}^{N-1} \varepsilon_j G_j & \text{for } i = N.
\end{cases}
\]

Note that in order to prove the inequality in the conclusion of the lemma it is sufficient to prove that all the \(N \) inequalities

\[
\mathbb{E}_\varepsilon \mathbb{E}_d \| \varepsilon_i S_{i,N} \gamma_i G_i + Z_i \|_{\mathcal{F}}^{**} \leq \mathbb{E}_\varepsilon \mathbb{E}_d \| \varepsilon_i G_i + Z_i \|_{\mathcal{F}}^{**}, \quad i = 1, 2, \ldots, N,
\]

hold with probability tending to 1 (or eventually almost surely). In fact, for \(i = 1 \) the left side is the same as the left side of the inequality in the conclusion of the lemma, while for \(i = N \) the right side is the same as the right side of the inequality in the conclusion of the lemma. By Fubini’s theorem the \(N \) inequalities in the last display can also be written as

\[
\mathbb{E}_d \mathbb{E}_\varepsilon \| \varepsilon_i S_{i,N} \gamma_i G_i + Z_i \|_{\mathcal{F}}^{**} \leq \mathbb{E}_d \mathbb{E}_\varepsilon \| \varepsilon_i G_i + Z_i \|_{\mathcal{F}}^{**}, \quad i = 1, 2, \ldots, N.
\]

To show that all these inequalities are true with probability tending to 1 (or eventually almost surely), note that

\[
0 \leq \min_{1 \leq i \leq N} S_{i,N} \gamma_i \leq \max_{1 \leq i \leq N} S_{i,N} \gamma_i \leq 1
\]

with probability tending to one (or eventually almost surely), and note that, by assumption, the random variables \(\gamma_i \) are measurable and independent from the Rademacher random variables. It follows that, for every \(i = 1, 2, \ldots, N \) simultaneously, the left side in the second-last display can be bounded by

\[
\mathbb{E}_d S_{i,N} \gamma_i \mathbb{E}_\varepsilon \| \varepsilon_i G_i + Z_i \|_{\mathcal{F}}^{**} + \mathbb{E}_d (1 - S_{i,N} \gamma_i) \mathbb{E}_\varepsilon \| Z_i \|_{\mathcal{F}}^{**}
\]

with probability tending to 1 (or eventually almost surely). Now, note that by Fubini’s theorem the joint expectation \(\mathbb{E}_\varepsilon \) can be replaced by an iterated expectation of the form \(\mathbb{E}_{\varepsilon_{i_1}} \mathbb{E}_{\varepsilon_{i_2}} \cdots \mathbb{E}_{\varepsilon_{i_N}} \), where \(i_1, i_2, \ldots, i_N \) is an arbitrary permutation of the natural numbers \(i = 1, 2, \ldots, N \), and where \(\mathbb{E}_{\varepsilon_i} \) denotes expectation with respect to the Rademacher random variable \(\varepsilon_i \) with all other variables kept fixed. Since \(\mathbb{E}_{\varepsilon_i} \varepsilon_i = 0 \) for every \(i = 1, 2, \ldots, N \), it follows that the second term on the right in the last display can be written as

\[
\mathbb{E}_d (1 - S_{i,N} \gamma_i) \mathbb{E}_\varepsilon \| G_i \varepsilon_i + Z_i \|_{\mathcal{F}}^{**},
\]

which, by Jensen’s inequality, is bounded by

\[
\mathbb{E}_d (1 - S_{i,N} \gamma_i) \mathbb{E}_\varepsilon \| G_i \varepsilon_i + Z_i \|_{\mathcal{F}}^{**}.
\]

The conclusion of the lemma follows from this. \(\square \)

Lemma 3.5 (Probability version of conditional AEC). Let \(\{S_N\}_{N=1}^\infty \) be defined as in Lemma 3.1, let \(\mathcal{F} \) be a \(\mathcal{P}_f \)-Donsker class, and let \(\{G_N'\}_{N=1}^\infty \) be the sequence of HTEP’s corresponding to \(\mathcal{F} \) and \(\{S_N\}_{N=1}^\infty \). Assume that the probability versions of conditions A1 and A2* hold, and assume that
A3) the semimetric ρ' is uniformly stronger than the $L_2(P_y)$-semimetric

$$\rho(f, g) := \sqrt{P_y(f - g)^2}, \quad f, g \in \mathcal{F},$$

i.e. $\rho(f, g) \leq \zeta(\rho'(f, g))$ for some function $\zeta : [0, \infty) \to [0, \infty)$ such that $\zeta(x) \to 0$ for $x \downarrow 0$.

Then,

$$E_d\|G'_N\|_{\mathcal{F}'_N}^* \rightarrow 0 \quad \text{for every } \delta_N \downarrow 0$$

where the stars refer to the argument of the expectation E_d.

Proof. Assume WLOG that the function ζ from condition A3 is non-decreasing. For $\delta > 0$ define \mathcal{F}_δ in the same way as \mathcal{F}'_δ but with the semimetric ρ' replaced by the semimetric ρ. Then, condition A3 implies that $\mathcal{F}'_\zeta(\delta) \subseteq \mathcal{F}_\delta$ for every $\delta > 0$, and therefore it will be enough to prove that the expectation on the right side of (3.7) with \mathcal{F} replaced by \mathcal{F}'_δ goes to zero in probability. To this aim note that, by the triangle inequality, the latter is bounded by

$$\frac{1}{L}E_dE_d \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \frac{Ls_{i,N}}{\pi_{i,N}} \delta_{Y_i} \right\|_{\mathcal{F}'_N}^* + \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \delta_{Y_i},$$

where the stars refer to the arguments of the expectations. Then, apply the contraction principle in Lemma 3.4 to see that

$$E_dE_d \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \frac{Ls_{i,N}}{\pi_{i,N}} \delta_{Y_i} \right\|_{\mathcal{F}'_N}^* \leq E_d \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \delta_{Y_i} \right\|_{\mathcal{F}'_N}^* \quad \text{(3.9)}$$

with probability tending to 1. Now, observe that

$$E_E \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \delta_{Y_i} \right\|_{\mathcal{F}'_N}^* = E \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \delta_{Y_i} \right\|_{\mathcal{F}'_N}^*$$

$$\leq E \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i (\delta_{Y_i} - P_y) \right\|_{\mathcal{F}'_N}^* + E \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i P_y \right\|_{\mathcal{F}'_N}^*$$

$$= E^* \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i (\delta_{Y_i} - P_y) \right\|_{\mathcal{F}'_N}^* + \|P_y\|_{\mathcal{F}'_N} E \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \right\|_{\mathcal{F}'_N}$$

$$\leq E^* \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i (\delta_{Y_i} - P_y) \right\|_{\mathcal{F}'_N}^* + \delta_N,$$
This expectation goes to zero by Corollary 2.3.12 on page 115 in [10] (use the fact that \(\rho_y \leq \rho \), where \(\rho_y(f, g) := \sqrt{P_y[(f - P_y f) - (g - P_y g)]^2} \) is the centered \(L_2(P_y) \) semimetric on \(\mathcal{F} \)). The conclusion of the lemma follows now upon an application of Markov’s inequality.

Remark 3.3. If assumption A1 holds (assumption A1 implies that \(\rho' \) is well defined), then assumption A3 will certainly be satisfied if

\[A3^* \text{ there exists a constant } U < 1 \text{ such that } \]

\[\max_{1 \leq i \leq N} \pi_{i,N} := \max_{1 \leq i \leq N} E_d S_{i,N} \leq U \]

with probability tending to 1 (or eventually almost surely).

Lemma 3.6 (Almost sure version of conditional AEC). Let \(\{S_N\}_{N=1}^{\infty} \), \(\mathcal{F} \) and \(\{G'_N\}_{N=1}^{\infty} \) be defined as in Lemma 3.5, and assume that the almost sure versions of conditions A1 and A2* as well as condition

\[S) \quad E^* \|\delta Y_1 - P_y\|_F^2 < \infty \]

are satisfied. Then, it follows that

\[E_d \|G'_N\|_{\mathcal{F}'_N}^{*} \quad \text{a.s.} \quad \rightarrow 0 \quad \text{for every } \delta_N \downarrow 0 \]

where the stars refer to the argument of the expectation \(E_d \).

Proof. It will be shown that the right side of (3.7) with \(\mathcal{F}'_N \) in place of \(\mathcal{F} \) goes to zero almost surely. To this aim, go through the steps in the proof of Lemma 3.5 up to inequality (3.9) to see that it suffices to show that the right side of (3.9) goes to zero almost surely. This last assertion is an immediate consequence of the first inequality in the statement of Lemma 2.9.9 on page 185 in [10]. In fact, the latter inequality can be applied with \(\mathcal{F} \) replaced by \(\mathcal{F}_\delta \) with \(\delta > 0 \) arbitrary but fixed, and with \(\xi_i \) and \(Z_i \) replaced by the Rademacher random variables \(\varepsilon_i \) and the \(\mathcal{F}_\delta \)-indexed stochastic processes \(\delta Y_i \), respectively. In this way it is seen that for every \(\delta > 0 \)

\[\limsup_{N \to \infty} E_d \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \delta Y_i \right\|_{\mathcal{F}'_\delta}^{*} \leq 6\sqrt{2} \limsup_{N \to \infty} E_d^* \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \delta Y_i \right\|_{\mathcal{F}_\delta} \quad \text{a.s.} \, (3.10) \]

Now, in the proof of the previous lemma it has already been shown that

\[E_d^* \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \delta Y_i \right\|_{\mathcal{F}'_\delta_N} \rightarrow 0 \quad \text{for every } \delta_N \downarrow 0 \]

which is equivalent to

\[\limsup_{\delta \to 0} \limsup_{N \to \infty} E_d^* \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \delta Y_i \right\|_{\mathcal{F}_\delta}^{*} = 0. \]
In combination with (3.10) this implies that

\[
\lim_{\delta \to 0} \limsup_{N \to \infty} E_\varepsilon \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \delta Y_i \right\|_{F_\delta}^* = 0 \quad \text{a.s.}
\]

and this last display is equivalent to the right side of (3.9) going to zero almost surely for arbitrary \(\delta_N \downarrow 0 \).

Remark 3.4. In the proofs of Lemma 3.5 and Lemma 3.6 assumption A1 is only needed to make sure that the semimetric \(\rho' \) is well defined. It is easy to check that both proofs go through also if \(\rho' \) is replaced by any other semimetric on \(\mathcal{F} \) which is uniformly stronger than the centered \(L_2(P_y) \)-seminorm \(\rho \) and if the definition of the function classes \(\mathcal{F}'_\delta \) is adjusted accordingly.

Having gone through the most difficult technical details it remains to show the desired weak convergence results.

Theorem 3.1 (Unconditional weak convergence). Let \(\{S_N\}_{N=1}^{\infty} \) be the sequence of vectors of sample inclusion indicators corresponding to a sequence of measurable Poisson sampling designs, let \(\mathcal{F} \) be a \(P_y \)-Donsker class, and let \(\{\mathcal{G}'_N\}_{N=1}^{\infty} \) be the sequence of HTEP’s corresponding to \(\mathcal{F} \) and \(\{S_N\}_{N=1}^{\infty} \).

Assume that the probability versions of conditions A1, A2\(^* \), A3 and condition

A4) \(\mathcal{F} \) is totally bounded w.r.t. to the semimetric \(\rho' \)

are satisfied. Then,

\[
\mathcal{G}'_N \Rightarrow \mathcal{G}' \quad \text{in } l^\infty(\mathcal{F}),
\]

where \(\mathcal{G}' \) is a Borel measurable and tight zero-mean Gaussian process with covariance function given by \(\Sigma' \).

Proof. According to the comments at the top of page 41 in [10] the conclusion of theorem is equivalent to

a) the marginal distributions of \(\{\mathcal{G}'_N\}_{N=1}^{\infty} \) converge weakly to the corresponding marginal distributions of \(\mathcal{G}' \) which in the notation of this paper can be expressed as

\[
\mathcal{G}'_N f \Rightarrow \mathcal{G}' f \quad \text{in } \mathbb{R}^r
\]

for every finite dimensional vector \(f := (f_1, f_2, \ldots, f_r) \in \mathcal{F}^r \);

b) \(\{\mathcal{G}'_N\}_{N=1}^{\infty} \) is asymptotically \(\rho' \)-equicontinuous in probability which in the notation of this paper can be expressed as

\[
\lim_{\delta \to 0} \limsup_{N \to \infty} P_* \left\{ \|\mathcal{G}'_N\|_{F'_\delta} > \epsilon \right\} = 0 \quad \text{for every } \epsilon > 0,
\]

where \(P \) is the product measure \(P_{y,\varepsilon} \times P_\delta \times P_{\varepsilon} \);

c) \(\mathcal{F} \) is totally bounded for the semimetric \(\rho' \) used in the definition of the function classes \(\mathcal{F}'_\delta \).
Now, condition a) is an immediate consequence of Lemma 3.1, and condition c) is assumption A4. Thus, it remains to show that condition b) holds. To this aim note that condition b) is equivalent to

$$P^* \left\{ \| G_N' \|_{\mathcal{F}_N} > \epsilon \right\} \to 0 \quad \text{for every } \delta_N \downarrow 0,$$

and that

$$P^* \left\{ \| G_N' \|_{\mathcal{F}_N} > \epsilon \right\} = P \left\{ \| G_N' \|_{\mathcal{F}_N} > \epsilon \right\} \leq E P \left\{ \| G_N' \|_{\mathcal{F}_N} > \epsilon \right\}.\leqno{\text{(2.7)}}$$

Then note that the expectation in the last line goes to zero because its argument is bounded and because, by Markov's inequality and by Lemma 3.5,

$$P \left\{ \| G_N' \|_{\mathcal{F}_N} > \epsilon \right\} \leq \frac{E \| G_N' \|_{\mathcal{F}_N}}{\epsilon} \to 0.$$

This shows that condition b) is also satisfied and completes the proof of the theorem.

Theorem 3.2 (Outer probability conditional weak convergence). Under the assumptions of Theorem 3.1 it follows that

$$\sup_{h \in \text{BL}_1(l^\infty(\mathcal{F}))} |E_d h(G_N') - E h(G')| \xrightarrow{P^*} 0,$$

where \(\text{BL}_1(l^\infty(\mathcal{F})) \) is the set of all functions \(h : l^\infty(\mathcal{F}) \mapsto [0,1] \) such that \(|h(z_1) - h(z_2)| \leq \| z_1 - z_2 \|_{\mathcal{F}} \) for every \(z_1, z_2 \in l^\infty(\mathcal{F}) \), and where \(G' \) is defined as in Theorem 3.1.

Proof. The proof is almost the same as the one of Theorem 2.9.6 on page 182 in [10]. First it will be shown that the Gaussian limit process \(\{ G'_f : f \in \mathcal{F} \} \) exists. To this aim note that by Lemma 3.1 there exists a sequence of discrete probability spaces \(\{(\Omega_N, \mathcal{A}_N, P_N)\}_{N=1}^{\infty} \) and a corresponding sequence of mappings \(G_N : \Omega_N \mapsto l^\infty(\mathcal{F}) \) such that \(G_N f \xrightarrow{N_r} \mathcal{N}_r(0, \Sigma'(f)) \) in \(\mathbb{R}^r \) for every \(f \in \mathcal{F}_r, \ r = 1, 2, \ldots. \) Moreover, note that the class of functions \(\mathcal{F} \) is totally bounded with respect to the semimetric \(\rho' \) by assumption A4, and that \(\| G_N \|_{\mathcal{F}} \xrightarrow{P^*} 0 \) by Lemma 3.5. Thus, \(\{ G_N \}_{N=1}^{\infty} \) is asymptotically tight in \(l^\infty(\mathcal{F}) \) (see Theorem 1.5.7 on page 37 in [10]), and therefore it follows from Theorem 1.5.4 on page 35 in [10] that there exists a Borel measurable and tight stochastic process \(\{ G'_f : f \in \mathcal{F} \} \) such that \(G_N \xrightarrow{\mathcal{N}} G' \) in \(l^\infty(\mathcal{F}) \).

Now, since the class of functions \(\mathcal{F} \) is totally bounded with respect to the semimetric \(\rho' \) (assumption A4), there exists for every \(\delta > 0 \) a finite \(\delta \)-net for \(\mathcal{F} \) (here and in what follows the underlying semimetric will always be \(\rho' \)). Denote these \(\delta \)-nets by \(\mathcal{G}_\delta \), and define corresponding mappings \(\Pi_\delta : \mathcal{F} \mapsto \mathcal{G}_\delta \) by letting \(\Pi_\delta f \) be the element of \(\mathcal{G}_\delta \) that is closest to \(f \in \mathcal{F} \) w.r.t. \(\rho' \). Since \(\mathcal{G}' \) is a Borel
measurable and tight Gaussian process, its sample paths must be uniformly \(\rho'\)-continous almost surely (see the comments on page 41 in [10]) and hence it follows that

\[
\mathcal{G}' \circ \Pi_\delta \xrightarrow{\mathcal{D}} \mathcal{G}' \text{ in } l^\infty(\mathcal{F}) \quad \text{if } \delta \downarrow 0.
\]

From this it follows further that \(\mathcal{G}' \circ \Pi_\delta \overset{\mathcal{D}}{\sim} \mathcal{G}' \) in \(l^\infty(\mathcal{F})\) for \(\delta \downarrow 0\) and the latter condition is equivalent to

\[
\sup_{h \in BL_1(l^\infty(\mathcal{F}))} |E_h(\mathcal{G}' \circ \Pi_\delta) - E(h(\mathcal{G}'))| \to 0 \quad \text{for } \delta \downarrow 0 \quad (3.11)
\]

(see the comments at the top of page 73 in [10]).

Next, it will be shown that for every fixed \(\delta > 0\)

\[
\sup_{h \in BL_1(l^\infty(\mathcal{F}))} |E_d h(\mathcal{G}'_N \circ \Pi_\delta) - E(h(\mathcal{G}'_N))| \xrightarrow{P} 0. \quad (3.12)
\]

To this aim, define for each \(\delta > 0\) the mapping \(A_\delta : l^\infty(\mathcal{G}_\delta) \mapsto l^\infty(\mathcal{F})\) by

\[
A_\delta(z) := z \circ \Pi_\delta,
\]

and note that \(A_\delta\) transforms a function \(z \in l^\infty(\mathcal{G}_\delta)\) into a function \(z' \in l^\infty(\mathcal{F})\) by extending the domain from \(\mathcal{G}_\delta\) to \(\mathcal{F}\): for \(f \in \mathcal{G}_\delta\) the new function \(z'\) remains the same (in fact, \(z'(f) := z(\Pi_\delta(f)) = z(f)\)), and the new function \(z'\) is constant on each level set of \(\Pi_\delta\) (since \(\mathcal{G}_\delta\) is finite there is only a finite number of such level sets and the range of the new function \(z'\) must therefore be finite as well). Then, for \(h : l^\infty(\mathcal{F}) \mapsto \mathbb{R}\) and \(G\) an \(\mathcal{F}\)-indexed stochastic process it follows that \(h(G \circ \Pi_\delta) = h \circ A_\delta(G \mid \mathcal{G}_\delta)\). Moreover, if \(h \in BL_1(l^\infty(\mathcal{F}))\), then

\[
|h \circ A_\delta(z_1) - h \circ A_\delta(z_2)| \leq \|A_\delta(z_1) - A_\delta(z_2)\|_F = \|z_1 \circ \Pi_\delta - z_2 \circ \Pi_\delta\|_F = \|z_1 - z_2\|_{\mathcal{G}_\delta},
\]

and the composition \(h \circ A_\delta\) is therefore a member of \(BL_1(l^\infty(\mathcal{G}_\delta))\), i.e. of the set of all functions \(g : l^\infty(\mathcal{G}_\delta) \mapsto [0, 1]\) such that \(|g(z_1) - g(z_2)| \leq \|z_1 - z_2\|_{\mathcal{G}_\delta}\) for every \(z_1, z_2 \in l^\infty(\mathcal{G}_\delta)\). It follows that the supremum on the left side in (3.12) is bounded by

\[
\sup_{g \in BL_1(l^\infty(\mathcal{G}_\delta))} |E_d g(\mathcal{G}'_N \mid \mathcal{G}_\delta) - E_g(\mathcal{G}' \mid \mathcal{G}_\delta)|,
\]

which is measurable and goes to zero in probability (see Corollary 3.1). This proves (3.12).

Finally, to complete the proof note that for every fixed \(\delta > 0\)

\[
\sup_{h \in BL_1(l^\infty(\mathcal{F}))} |E_d h(\mathcal{G}'_N \circ \Pi_\delta) - E_d h(\mathcal{G}'_N)| \leq \\
\leq \sup_{h \in BL_1(l^\infty(\mathcal{F}))} E_d |h(\mathcal{G}'_N \circ \Pi_\delta) - h(\mathcal{G}'_N)| \\
\leq E_d \|\mathcal{G}'_N \circ \Pi_\delta - \mathcal{G}'_N\|_F \\
\leq E_d \|\mathcal{G}'_N\|_{F_\delta},
\]

and combine this result with (3.11) and (3.12) to conclude that (for every fixed \(\delta > 0\))

\[
\sup_{h \in BL_1} |E_d h(\mathcal{G}'_N) - E(h(\mathcal{G}'))| \leq r(\delta) + R_N(\delta) + E_d \|\mathcal{G}'_N\|_{F_\delta}, \quad (3.13)
\]
where \(r(\delta) \) is a deterministic function of \(\delta \) which goes to zero as \(\delta \downarrow 0 \), and where \(R_N(\delta) = o_P(1) \) for every fixed \(\delta > 0 \). From this and from Lemma 3.5 it follows that there exists a sequence \(\delta_N \downarrow 0 \) such that

\[
 r(\delta_N) + R_N(\delta_N) + E_d\|G'_N\|_{\mathcal{F}_N}^p \xrightarrow{P} 0.
\]

Corollary 3.2 (Joint weak convergence). Under the assumptions of Theorem 3.1 it follows that

\[
 (\mathcal{G}_N, \mathcal{G}'_N) \rightsquigarrow (\mathcal{G}, \mathcal{G}') \text{ in } l^\infty(\mathcal{F}) \times l^\infty(\mathcal{F}),
\]

where \(\mathcal{G}'_N \) and \(\mathcal{G}' \) are defined as in Theorem 3.1, \(\mathcal{G}_N \) is the classical empirical process defined in (3.1), and where \(\mathcal{G} \) is a Borel measurable and tight \(P_\gamma \)-Brownian Bridge which is independent from \(\mathcal{G}' \).

Proof. By Example 1.4.6 on page 31 in [10] it suffices to show that \(\mathcal{G}_N \) and \(\mathcal{G}'_N \) are asymptotically independent, i.e. that

\[
 E^* f(\mathcal{G}_N) g(\mathcal{G}'_N) - E f(\mathcal{G}_N) E^* g(\mathcal{G}'_N) \rightarrow 0
\]

for every \(f, g \in BL(1(l^\infty(\mathcal{F})) \). To this aim note that

\[
 E^* f(\mathcal{G}_N) E^* g(\mathcal{G}'_N) \rightarrow E f(\mathcal{G}) E g(\mathcal{G}')
\]

by Theorem 3.1 and because, by assumption, \(\mathcal{F} \) is a \(P_\gamma \)-Donsker class. To prove the corollary it must hence be shown that

\[
 E^* f(\mathcal{G}_N) g(\mathcal{G}'_N) \rightarrow E f(\mathcal{G}) E g(\mathcal{G}'),
\]

which is equivalent to

\[
 E^*[f(\mathcal{G}_N) g(\mathcal{G}'_N) - E f(\mathcal{G}) E g(\mathcal{G}')] \rightarrow 0.
\]

To this aim note that the argument of the outer expectation can be written as

\[
 f(\mathcal{G}_N)[g(\mathcal{G}'_N) - E g(\mathcal{G}')] + E g(\mathcal{G}')[f(\mathcal{G}_N) - E f(\mathcal{G})] := S_N + T_N,
\]

and that the outer expectation in the second-last display is therefore bounded from above by \(E^* S_N + E^* T_N \), and bounded from below by \(E_* S_N + E_* T_N \). Now, from the definition of \(\mathcal{G}'_N \sim \mathcal{G} \) in \(l^\infty(\mathcal{F}) \) it follows immediately that \(E^* T_N \) and \(E_* T_N = -E^*(-T_N) \) go both to zero. Thus, it remains to show that also \(E^* S_N \) and \(E_* S_N \) go both to zero. Since \(E^* S_N \geq E_* S_N = -E^*(-S_N) \), it suffices to show that \(E^* S_N \) and \(E^*(-S_N) \) are bounded from above by two sequences which go both to zero. So consider first \(E^* S_N \). Note that

\[
 E^* S_N := E^*[f(\mathcal{G}_N)[g(\mathcal{G}'_N) - E g(\mathcal{G}')]]
\]

\[
 \leq E^* f(\mathcal{G}_N)[g(\mathcal{G}'_N) - E dg_*(\mathcal{G}'_N)] + E^*[g(\mathcal{G}'_N) - E g(\mathcal{G}')]
\]

\[
 \leq E^* f(\mathcal{G}_N)[g(\mathcal{G}'_N) - E dg_*(\mathcal{G}'_N)] + E^*[f(\mathcal{G}_N)[E dg(\mathcal{G}'_N) - E g(\mathcal{G}')]]
\]
and observe that the second term in the last line goes to zero by Theorem 3.2. As for the first term, note that

\[
E^* f(G_N)[g(G_N') - E_d g_*(G_N')] \leq E f^*(G_N)[g(G_N') - E_d g_*(G_N')]^*
\]

\[
= E f^*(G_N)[g^*(G_N') - E_d g_*(G_N')]^*
\]

\[
= E f^*(G_N)|E_d g^*(G_N') - E_d g_*(G_N')|
\]

\[
\leq E|E_d g^*(G_N') - E_d g_*(G_N')|
\]

\[
= E E_d|g^*(G_N') - g_*(G_N')|
\]

\[
= E|g^*(G_N') - g_*(G_N')|
\]

and that the expectation in the last line goes to zero because \(G_N' \overset{\text{as}}{\rightarrow} G'\) in \(l^\infty(\mathcal{F})\) by Theorem 3.1, and because \(G_N'\) is therefore asymptotically measurable (see Lemma 1.3.8 on page 21 in [10]). Similar methods can be applied to show that the sequence \(E^*(-S_N)\) goes to zero as well.

Theorem 3.3 (Outer almost sure conditional weak convergence). Let \(\{S_N\}_{N=1}^\infty\), \(\mathcal{F}\) and \(\{G_N'\}_{N=1}^\infty\) be defined as in Theorem 3.1. Assume that the almost sure versions of conditions \(A1\) and \(A2^*\) are satisfied, and moreover assume that conditions \(A3\), \(A4\) and \(S\) are satisfied as well. Then,

\[
\sup_{h \in BL_1(l^\infty(\mathcal{F}))} |E_d h(G_N') - E h(G')| \overset{\text{ass}}{\rightarrow} 0.
\]

Proof. The proof is the same as the proof of Theorem 3.2. In fact, under the conditions of the present theorem all occurrences of convergence in (outer) probability can be strengthened to (outer) almost sure convergence (at the last step of the proof Lemma 3.6 must be applied instead of Lemma 3.5). \(\square\)

Remark 3.5. The proof of Theorem 3.2 (Theorem 3.3) can be applied to any sequence of sampling designs (not necessarily Poisson sampling designs) for which it can be shown that

i) there exists a function \(\Sigma' : \mathcal{F}^2 \mapsto \mathbb{R}\) such that

\[
\Sigma_N' := E_d G_N' f G_N' g \overset{\text{P}(\text{as})}{\rightarrow} \Sigma'
\]

and such that

\[
E_d \exp(it^\top G_N' f) \overset{\text{P}(\text{as})}{\rightarrow} \exp \left(-\frac{1}{2} t^\top \Sigma'(f)t \right)
\]

for every vector \(f \in \mathcal{F}^r\) and for every \(t \in \mathbb{R}^r\), \(r = 1, 2, \ldots\), where \(\Sigma'(f)\) is the covariance matrix whose elements are given by \(\Sigma'_{(ij)}(f) := \Sigma'(f_i, f_j)\);

ii) \(\mathcal{F}\) is totally bounded with respect to the semimetric

\[
\rho' := \sqrt{\Sigma'(f - g, f - g)}, \quad f, g \in \mathcal{F};
\]

iii) \(E_d \|G_N'\|_{\mathcal{F}_N^\delta} \overset{\text{P}(\text{as})}{\rightarrow} 0\) for every \(\delta_N \downarrow 0\).
3.1. Weak convergence results without the lower bound on the first order inclusion probabilities

For many applications the lower bound on the first order inclusion probabilities in assumption A2 is too restrictive. In fact, in many applications the first order inclusion probabilities are defined as in (2.2) with \(w : \mathcal{X} \mapsto (0, \infty) \) a function that can take on values arbitrarily close to 0. To accommodate such cases the above theory needs to be adapted. This can be done by introducing the assumptions

\(B0) \) the sequence of expected sample sizes \(\{n_N\}^\infty_{N=1} \) is such that

\[
\frac{n_N}{N} \overset{P(a.s)}{\to} \theta \in (0, 1),
\]

\(B1) \) \(w : \mathcal{X} \mapsto (0, \infty) \) is a measurable function such that \(Ew(X_1) < \infty \), and by placing restrictions on the class of functions

\[
\mathcal{F}/w_\theta := \{f/w_\theta : f \in \mathcal{F}\},
\]

where \(\mathcal{F} \) is the original class of interest, and where

\[
w_\theta(X_1) := \min\{w(X_1), Ew(X_1)/\theta\}.
\]

Note that the domain of the members of the class \(\mathcal{F}/w_\theta \) is the range of the random vectors \((Y_i, X_i)\) (which in this paper is assumed to be \(\mathcal{Y} \times \mathcal{X} \)), and that the value taken on by \(f/w_\theta \) at a given realization of the random vector \((Y_i, X_i)\) is given by \(f/w_\theta(y_i, x_i) := f(y_i)/w_\theta(x_i) \).

The following lemma establishes convergence of the marginal distributions of the sequence of HTEP’s in the present setup. It is analogous to Lemma 3.1.

Lemma 3.7 (Convergence of marginal distributions). Let \(\{S_N\}^\infty_{N=1} \) be the sequence of vectors of sample inclusion indicators corresponding to a sequence of measurable Poisson sampling designs and assume that the first order sample inclusion probabilities are defined as in (2.2). Let \(\mathcal{F} \) be an arbitrary class of functions \(f : \mathcal{Y} \mapsto \mathbb{R} \), and let \(\{G'_N\}^\infty_{N=1} \) be the sequence of HTEP’s corresponding to \(\mathcal{F} \) and \(\{S_N\}^\infty_{N=1} \). Assume that conditions B0 and B1 are satisfied and that

\(B2) \) the members of \(\mathcal{F}/w_\theta \) are square integrable, i.e. \(E[f(Y_1)/w_\theta(X_1)]^2 < \infty \) for every \(f \in \mathcal{F} \).

Then,

\[
\Sigma'_N(f, g) := E_dG'_NfG'_Ng \overset{P(a.s)}{\to} \Sigma'(f, g) \quad \text{for every } f, g \in \mathcal{F},
\]

where

\[
\Sigma'(f, g) := Ew_\theta(X_1) \left(\frac{Ew(X_2)}{\theta} - w_\theta(X_1) \right) \frac{f(Y_1)g(Y_1)}{w_\theta(X_1)^2}, \quad f, g \in \mathcal{F}
\]
is a positive semidefinite covariance function. Moreover, for every finite-dimensional \(f \in \mathcal{F}^r \) and for every \(t \in \mathbb{R}^r \) (\(r \) can be any positive integer),

\[
E_d \exp(it^\top G'_N f) \xrightarrow{P(a.s.)} \exp\left(-\frac{1}{2}t^\top \Sigma'(f)t\right),
\]

where \(\Sigma'(f) \) is the covariance matrix whose elements are given by \(\Sigma'_{(ij)}(f) := \Sigma'(f_i, f_j) \).

Proof. The definition of \(\Sigma' \) can be obtained through a straightforward limit calculation by using assumptions B0, B1, B2 and the SLLN, and the claim that \(\Sigma' \) is positive semidefinite follows from the fact that it is the pointwise limit of a sequence of covariance functions. As for the other part of the conclusion, it follows from Lemma 3.1 upon noting that assumptions B0, B1 and B2 imply the corresponding (in probability or almost sure) versions of assumptions A1 and A2.

Next consider conditional AEC. Recall that in the proof of Lemma 3.5 the lower bound on the first order sample inclusion probabilities (i.e. assumption A2*) and the assumption that \(\mathcal{F} \) is a \(P_y \)-Donsker class played a fundamental role. In the present setting, rather than assuming that \(\mathcal{F} \) is a \(P_y \)-Donsker class, it will be more convenient to assume that

B2*) the class \(\mathcal{F}/w_\theta \) is a \(P_{y,x} \)-Donsker class

which strengthens assumption B2. Moreover, to take advantage of the fact that under assumption B2* the ordinary \((\mathcal{F}/w_\theta) \)-indexed empirical process is asymptotically equicontinuous (see Corollary 2.3.12 on page 115 in [10]), assumption A3 will be replaced by assumption

B3) the semimetric \(\rho' \) is uniformly stronger than the \(L_2(P_{y,x}) \)-semimetric given by

\[
\rho'_w(f, g) := \sqrt{P_{y,x}[(f/w_\theta) - (g/w_\theta)]^2}, \quad f, g \in \mathcal{F}.
\]

Finally, in order to obtain the almost sure version of conditional AEC it will also be assumed that

S*) \(E^* \|\delta_{(Y_1, X_1)} - P_{y,x}\|_{\mathcal{F}/w_\theta}^2 < \infty \)

which is analogous to assumption S.

Lemma 3.8 (Probability version of conditional AEC). Let \(\{S_N\}_{N=1}^\infty, \mathcal{F} \) and \(\{G'_N\}_{N=1}^\infty \) be defined as in Lemma 3.7. Assume that conditions B0, B1, B2* and B3 hold. Then,

\[
E_d \|G'_N\|_{\mathcal{F}_{\{S_N\}}^*}^* \xrightarrow{P} 0 \quad \text{for every } \delta_N \downarrow 0.
\]

Proof. The proof is very similar to the proof of Lemma 3.5. First, use assumption B3 to see that it is sufficient to prove that

\[
E_d \|G'_N\|_{\mathcal{F}_{\{S_N\}}^*}^* \xrightarrow{P} 0 \quad \text{for every } \delta_N \downarrow 0,
\]
where
\[\mathcal{F}_{\delta}^w := \{ f - g : f, g \in \mathcal{F} \text{ and } \rho_w(f, g) < \delta \}, \quad \delta > 0. \]

Next, use Lemma 3.3 and the triangle inequality to bound the conditional expectation $E_d \| G'_N \|_{\mathcal{F}_{\delta}^w}$ with

\[
E_d \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i S_{i,N} \frac{w_\theta(X_i) \sum_{j=1}^{N} w(X_j)}{w_N(X_i) n_N} \frac{\delta Y_i}{w_\theta(X_i)} \right\|_{\mathcal{F}_{\delta}^w}^{**} + \]

\[
+ E \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \delta Y_i \right\|_{\mathcal{F}_{\delta}^w},
\]

where the stars refer to the arguments of the expectations, and where

\[
w_N(X_i) := \min \left\{ w(X_i), \frac{1}{n_N} \sum_{j=1}^{N} w(X_j) \right\}. \tag{3.15}
\]

Note that

\[
0 \leq \frac{w_\theta(X_i) \sum_{j=1}^{N} w(X_j)}{w_N(X_i) n_N} \leq \max \left\{ \frac{\sum_{j=1}^{N} w(X_j)}{n_N}, \frac{1}{\theta} E_w(X_1) \right\} := M_N,
\]

and rewrite the first term in (3.14) as

\[
M_N E_d \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \gamma_i \frac{\delta Y_i}{w_\theta(X_i)} \right\|_{\mathcal{F}_{\delta}^w}^{**}
\]

with

\[
\gamma_i := S_{i,N} \frac{w_\theta(X_i) \sum_{j=1}^{N} w(X_j)}{M_N w_N(X_i) n_N}.
\]

Since γ_i takes on values in $[0, 1]$, the contraction principle in Lemma 3.4 can be applied to see that the first term in (3.14) is bounded by

\[
M_N E \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \frac{\delta Y_i}{w_\theta(X_i)} \right\|_{\mathcal{F}_{\delta}^w},
\]

Moreover, note that the contraction principle in Lemma 3.4 can also be applied to the second term in (3.14). In fact, the latter can be written as

\[
\frac{E_w(X_1)}{\theta} E \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \frac{\theta w_\theta(X_i) \delta Y_i}{E_w(X_1) w_\theta(X_i)} \right\|_{\mathcal{F}_{\delta}^w}.
\]
and by the contraction principle this is bounded by
\[\frac{E w(X_1)}{\theta} E_x \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \frac{\delta Y_i}{w_\theta(X_i)} \right\|_{F^*_N}. \]

Since \(M_N \to E w(X_1)/\theta < \infty \) almost surely, the proof can now be completed by showing that
\[E_x \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \frac{\delta Y_i}{w_\theta(X_i)} \right\|_{F^*_N} \to P \quad \text{for every } \delta_N \downarrow 0. \quad (3.16) \]

To this aim use the triangle inequality to bound the left side by
\[E_x \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i (Z_i + \|P_{y,x}(f/w_\theta)\|_{F^*_N} E_x \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \right\|_{F^*_N} \leq E_x \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i Z_i \right\|_{F^*_N} + \delta_N, \]

where
\[Z_i := \frac{\delta Y_i}{w_\theta(X_i)} - P_{y,x}(f/w_\theta), \quad i = 1, 2, \ldots, N. \]

Then, use the first inequality in Lemma 2.3.6 on page 111 in [10] to see that the expectation on the right side in the second-last display is bounded by
\[E \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} Z_i \right\|_{F^*_N} \]

and note that this sequence of expectations goes to zero because \(F/w_\theta \) is a \(P_{y,x} \)-Donsker class by assumption \(B2^* \) (use Corollary 2.3.12 on page 115 in [10] and the fact that \(\rho_w \) dominates its expectation centered counterpart).

Lemma 3.9 (Almost sure version of conditional AEC). Let \(\{S_N\}_{N=1}^{\infty} \), \(F \) and \(\{G'_N\}_{N=1}^{\infty} \) be defined as in Lemma 3.7. Assume that conditions \(B0, B1, B2^* \), \(B3 \) and \(S' \) hold. Then,
\[E_d \|G'_N\|_{F^*_N} \overset{as}{\rightarrow} 0 \quad \text{for every } \delta_N \downarrow 0. \]

Proof. Follow the steps of the proof of Lemma 3.8 up to display (3.16) and note that in order to obtain the almost sure version of conditional AEC it is sufficient to show that
\[E_x \left\| \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \varepsilon_i \frac{\delta Y_i}{w_\theta(X_i)} \right\|_{F^*_N} \overset{as}{\rightarrow} 0 \quad \text{for every } \delta_N \downarrow 0. \]

This can be done by the method already seen in the proof of Lemma 3.6. The details are left to the reader.
Remark 3.6. Example 2.10.23 on page 200 in [10] shows that assumption B2* will be satisfied whenever (i) $E(1/w_0^2(X_1)) < \infty$, (ii) \mathcal{F} has an envelope function F such that $P_{y,x}(F^*/w_0)^2 < \infty$, (iii) \mathcal{F} is suitably measurable in the sense defined below, and (iv) \mathcal{F} satisfies the uniform entropy condition

$$ \int_0^\infty \sup_Q \sqrt{\log N(\epsilon \| F \|_{Q,2}, \mathcal{F}, L_2(Q))} d\epsilon < \infty. \quad (3.17) $$

In the last display the supremum is taken over all finitely discrete probability measures Q on \mathcal{Y} such that $\| F \|_{Q,2} := \int F^2 dQ > 0$.

In the context of the present remark, "\mathcal{F} is suitably measurable" means that for every $N = 1, 2, \ldots$ and for every $(e_1, e_2, \ldots, e_N) \in \{-1, 1\}^N$ the maps

$$(Y_N, X_N) \mapsto \left\| \sum_{i=1}^N e_i f(Y_i) \right\|_{\mathcal{F}}$$

are measurable on the completion of the product space $\prod_{i=1}^N (\Omega_{y,x}, A_{y,x}, P_{y,x})$ (cfr. Definition 2.3.3 on page 110 in [10]). It is easily seen that \mathcal{F} is "suitably measurable" whenever it is "pointwise measurable", i.e. whenever \mathcal{F} contains a countable subset \mathcal{G} such that for every $f \in \mathcal{F}$ there is a sequence $\{g_m\}_{m=1}^\infty$ of functions $g_m \in \mathcal{G}$ such that f is the pointwise limit of $\{g_m\}_{m=1}^\infty$ (see Example 2.3.4 on page 110 in [10]).

Finally, it remains to deal with total boundedness. As in the case of the lower bound for the first order sample inclusion probabilities, total boundedness can often be established with the aid of Lemma 3.2. However, since in the present setting the assumption that the class of functions \mathcal{F} of interest is a $P_{y,x}$-Donsker class has been replaced by the assumption that the class of functions \mathcal{F}/w_0 is a $P_{y,x}$-Donsker class (see assumption B2*), Lemma 3.2 must be applied with $H = \mathcal{F}/w_0$ and $Q = P_{y,x}$. In this way it is easily seen that under assumptions B0, B1 and B2 (which make sure that the semimetric ρ' is well defined; see Lemma 3.7) \mathcal{F} will be totally bounded w.r.t. ρ' whenever \mathcal{F}/w_0 is a $P_{y,x}$-Donsker class with $\sup\{|P_{y,x}(f/w_0)| : f \in \mathcal{F}\} < \infty$.

Having established sufficient conditions for marginal convergence, for AEC and for total boundedness, one can now proceed as in the proofs of Theorem 3.1, Theorem 3.2, Corollary 3.2 and Theorem 3.3 to prove the following results:

Theorem 3.4 (Unconditional weak convergence). Let $\{S_N\}_{N=1}^\infty$, \mathcal{F} and $\{\mathcal{G}_N\}_{N=1}^\infty$ be defined as in Lemma 3.7. Assume that conditions B0, B1, B2*, B3 and A4 are satisfied. Then,

$$ \mathcal{G}'_N \rightsquigarrow \mathcal{G}' \text{ in } l^\infty(\mathcal{F}), $$

where \mathcal{G}' is a Borel measurable and tight zero-mean Gaussian process with covariance function given by Σ'.

Theorem 3.5 (Outer probability conditional weak convergence). Under the assumptions of Theorem 3.4 it follows that

$$ \sup_{h \in BL_1(l^\infty(\mathcal{F}))} |E h(\mathcal{G}'_N) - E h(\mathcal{G}')|_{L_2} \xrightarrow{P} 0, $$
where \(G' \) is defined as in Theorem 3.4.

Corollary 3.3 (Joint weak convergence). Under the assumptions of Theorem 3.4 and the additional assumption that \(\mathcal{F} \) is a \(P_y \)-Donsker class it follows that
\[
(G_N, G'_N) \rightsquigarrow (G, G') \text{ in } l^\infty(\mathcal{F}) \times l^\infty(\mathcal{F}),
\]
where \(G'_N \) and \(G' \) are defined as in Theorem 3.4, \(G_N \) is the classical empirical process defined in (3.1), and where \(G \) is a Borel measurable and tight \(P_y \)-Brownian Bridge which is independent from \(G' \).

Remark 3.7. Note that the assumptions of Theorem 3.4 do not imply that \(\mathcal{F} \) is a \(P_y \)-Donsker class.

Theorem 3.6 (Outer almost sure conditional weak convergence). Let \(\{S_N\}_{N=1}^\infty \), \(\mathcal{F} \) and \(\{G'_N\}_{N=1}^\infty \) be defined as in Lemma 3.7. Assume that conditions B0, B1, B2*, B3, A4 and S' are satisfied. Then,
\[
\sup_{h \in BL_1(l^\infty(\mathcal{F}))} |E_d h(G'_N) - Eh(G')| \overset{a.s.}{\rightarrow} 0,
\]
where \(G' \) is defined as in Theorem 3.4.

References

[1] Bertail, P., Chautru, E. and Clémençon, S. (2017). Empirical processes in survey sampling with (conditional) Poisson designs. *Scand. J. Stat.* **44** 97–111. MR3619696

[2] Boistard, H., Lopuhaä, H. P. and Ruiz-Gazen, A. (2017). Functional central limit theorems for single-stage sampling designs. *Ann. Statist.* **45** 1728–1758. MR3670194

[3] Breslow, N. E. and Wellner, J. A. (2007). Weighted likelihood for semiparametric models and two-phase stratified samples, with applications to Cox regression. *Scand. J. Statist.* **34** 86–102. MR2325244

[4] Conti, P. L. (2014). On the estimation of the distribution function of a finite population under high entropy sampling designs, with applications. *Sankhya B* **76** 234–259. MR3302272

[5] Kosorok, M. R. (2008). *Introduction to empirical processes and semiparametric inference*. Springer Series in Statistics. Springer, New York. MR2724368

[6] Pollard, D. (1990). *Empirical processes: theory and applications*. NSF-CBMS Regional Conference Series in Probability and Statistics **2**. Institute of Mathematical Statistics, Hayward, CA; American Statistical Association, Alexandria, VA. MR1089429

[7] Præstgaard, J. and Wellner, J. A. (1993). Exchangeably weighted bootstraps of the general empirical process. *Ann. Probab.* **21** 2053–2086. MR1245301

[8] Saegusa, T. and Wellner, J. A. (2013). Weighted likelihood estimation under two-phase sampling. *Ann. Statist.* **41** 269–295. MR3059418
[9] van der Vaart, A. W. (1998). Asymptotic statistics. *Cambridge Series in Statistical and Probabilistic Mathematics* 3. Cambridge University Press, Cambridge. MR1652247

[10] van der Vaart, A. W. and Wellner, J. A. (1996). *Weak convergence and empirical processes*. Springer Series in Statistics. Springer-Verlag, New York With applications to statistics. MR1385671