Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Novel Dynamic Fuzzy Decision-Making Framework for COVID-19 Vaccine Dose Recipients

O.S.Albahria, A.A.Zaidan*, A.S.Albahria, HA.Alsattaa, R.Mohammeda, Uwe Aickelinb, Gang Kou c, FM.Jumaaha, M.M.Saliha, A.H.Alamoodia, B.B.Zaidana, Mamoun Alazabd, A.Alnoora, J.R.Al-Obaidie

aDepartment of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
bSchool of Computing and Information Systems, University of Melbourne, 700 Swanston Street, Victoria 3010 Australia
cSchool of Business Administration, Faculty of Business Administration, Southwestern University of Finance and Economics, Chengdu 611130, China
dCollege of Engineering, IT and Environment, Charles Darwin University, NT, Australia
eDepartment of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak 35900, Malaysia

Corresponding email*: aws.alaa@fskik.upsi.edu.my

Author contribution statement:
A.S.Albahri, R.Mohammed, and HA Alsatta: Data curation, Writing-Original draft preparation and Visualization.
A.A.Zaidan, O.S.Albahri, Uwe Aickelin, and A.Alnoor : Conceptualization and Methodology.
M.M.Salih, FM.Jumaah, Mamoun Alazab, and A.H.Alamoodi: Software, Supervision and Editing.
B.B.Zaidan, J.R.Al-Obaidi, and Gang Kou: Investigation, Software, Validation and Writing- Reviewing.

Abstract
Context:
The vaccine distribution for the coronavirus disease of 2019 (COVID-19) is a multicriteria decision-making (MCDM) problem based on three issues, namely, identification of different distribution criteria, importance criteria and data variation. Thus, the Pythagorean fuzzy decision by opinion score method (PFDOSM) for prioritising vaccine recipients is the correct approach because it utilises the most powerful MCDM ranking method. However, PFDOSM weighs the criteria values of each alternative implicitly, which is limited to explicitly weighting each criterion. In view of solving this theoretical issue, the fuzzy-weighted zero-inconsistency (FWZIC) can be used as a powerful weighting MCDM method to provide explicit weights for a criteria set with zero inconstancy. However, FWZIC is based on the triangular fuzzy number that is limited in solving the vagueness related to the aforementioned theoretical issues.
Objectives:
This research presents a novel homogeneous Pythagorean fuzzy framework for distributing the COVID-19 vaccine dose by integrating a new formulation of the Pythagorean fuzzy-weighted zero-inconsistency (PFWZIC) and PFDOSM methods.
Methods:
The methodology is divided into two phases. Firstly, an augmented dataset was generated that included 300 recipients based on five COVID-19 vaccine distribution criteria (i.e., vaccine recipient memberships, chronic disease conditions, age, geographic location severity and disabilities). Then, a decision matrix was constructed on the basis of an intersection of the ‘recipients list’ and ‘COVID-19 distribution criteria’. Then, the MCDM methods were integrated. An extended PFWZIC was developed, followed by the development of PFDOSM.
Results:
(1) PFWZIC effectively weighted the vaccine distribution criteria. (2) The PFDOSM-based group prioritisation was considered in the final distribution result. (3) The prioritisation ranks of the vaccine recipients were subject to a systematic ranking that is supported by high correlation results over nine scenarios of the changing criteria weights values. A comparison with previous work also proved the efficiency of the proposed framework.
Conclusion:
The findings of this study are expected to contribute to ensuring equitable protection against COVID-19 and thus help accelerate vaccine progress worldwide.

Keywords: COVID-19; Vaccine; Multicriteria Decision Making; Pythagorean Fuzzy; PFWZIC; PFOSM.

1. Introduction

Countries worldwide have recently faced great challenges due to the coronavirus disease of 2019 (COVID-19) pandemic, and many companies have succeeded in developing vaccines to stop the disease that has caused millions of deaths worldwide [1]. However, the mortality and morbidity reports and the increasing rate of confirmed infections due to the pandemic are not clear globally [2]. Most countries are facing the new waves of COVID-19 strains, and the need for a vaccine has become more important than ever [3]. Further progress is anticipated in the coming months, but its success depends on the satisfaction of communities worldwide with the progress of distribution. In a fast-evolving pandemic similar to COVID-19, merely identifying a successful mechanism for the allocation of vaccine distribution does not guarantee successful progress against it [4]. Therefore, governments must firstly follow a priority mechanism for allocating COVID-19 vaccine doses amongst the population and avoid randomisation of vaccine distribution. For a clear view of how to support the community with a novel mechanism for COVID-19 vaccine distribution across different kinds of populations, which is considerably needed at the moment, this study emphasises the importance of a fair allocation mechanism when providing COVID-19 vaccination and highlights the current progress with respect to the faced challenges and issues from multifaceted aspects and perspectives.

Healthcare providers and stakeholders have reported that the equity and fairness considerations are becoming high priorities in healthcare policy discussions, and they have even become an important global responsibility [5-8]. The fair allocation mechanism is encouraged by the World Health Organisation (WHO). Moreover, equitable and consistent allocation plans, informed by ethical values and public health needs, are required to maximise public health benefits and ensure that scarce health products are available and accessible to those in need [9]. Hence, developing an effective and dynamic mechanism for vaccine distribution is crucial and viewed as the only progress method for ensuring equity and fairness. In this context, the current progress of the COVID-19 vaccine distribution amidst this global pandemic is posing an obstacle in achieving the aforementioned goal. Whether the progress is encouraging is unclear. On the one hand, the trial phases have been completed, and approval has been received only for a few vaccines; however, the available doses will not be able to cover the current needs of all populations, which can lead to anxiety amongst them [10]. On the other hand, given the limited vaccine doses, some individuals fear that fair allocation will not occur at both the global level (between countries) and local level (amongst different groups of society) where the evaluation of vaccine distribution has become a complex problem and the state of vaccine progress is unclear [11]. Hence, the process of assessing the local distribution of the COVID-19 vaccine is still in its infancy. Consequently, the proper key direction should be determined to establish a suitable and efficacious mechanism for allocating the limited doses of COVID-19 vaccines [12]. Firstly, the types of ‘vaccine recipients’ should be identified. Typically, the recipients who need the vaccine the most should be identified. Then, the attributes/criteria that play a key role and can affect the distribution mechanism amongst those recipients must also be determined [13]. However, several aspects need to be currently investigated on the basis of the literature.

Few community studies have presented elaborate findings on the vaccine distribution process. Few reports have provided a standard framework for the allocation of vaccine distribution amongst populations, the most important of which has been provided by a strategic advisory group of experts on immunisation who work with WHO [14]. This framework offers guidance at a global level on the allocation of COVID-19 vaccines between countries and at the national level with respect to the distribution of groups to be vaccinated within countries as the supply is limited. Moreover, the framework has defined general attributes of prioritisation based on age, health condition and job type at three levels, namely, the global, local and regional levels. Since then, any future work related to COVID-19 vaccine distribution has been provided with a solid basis and starting point. This initiative has also motivated other researchers to present global allocation strategies for COVID-19 vaccine distribution. Dooling [11] divided societal segments into two levels. Firstly, priority is given to health care employees, people who have high health risks, old people, and essential workers who provide services to people. Secondly, priority is given to second-line workers who support healthcare workers and people who face greater barriers of accessing care if they become seriously ill or whose living or working conditions place them at a risk of infection. Bubar [15] utilised an informed approach to prioritise vaccines based on age and serological status. In the study, adults aged between 20 and 49 years should be prioritised to reduce the cumulative infection, whilst adults over 60 years should be prioritised to reduce the mortality rate. Hezam [10] identified four main criteria and 15 sub-criteria, and several groups of people were considered in the prioritisation of the vaccine distribution. In the study, a multicriteria decision-making (MCDM)
approach was utilised to resolve the distribution issue, and the analytic hierarchy process (AHP) method was used to assign the criteria weights (i.e. age index, health state, women state and job kind index). Moreover, the method called technique for order preference by similarity to ideal solution (TOPSIS) was used to evaluate the COVID-19 vaccine alternatives for selecting a suitable vaccine in the early stage. Chen [16] analysed the impact of the COVID-19 pandemic on the availability of alternative supplier selection by also utilising TOPSIS. Ref. [17] explored the most significant factors affecting the demand of vaccines that are not included in the national immunisation campaigns. The cause-and-effect relationships amongst the factors was determined by using the fuzzy decision-making trial and evaluation laboratory method, consequently providing insights for policymakers in terms of improving the vaccine demand forecast and increasing the vaccine uptake.

Ref. [10] focused on prioritising certain groups in the society, but no datasets were used to prove the distribution mechanism. Moreover, the inconsistency problem amongst the criteria weights should be solved to guarantee a fair distribution process. Therefore, the existing published works cannot adequately establish a distribution mechanism for the COVID-19 vaccine allocation/distribution as the relevant criteria have not yet been defined [14]. Thus, before providing our solution direction, the current issues/obstacles with respect to the allocation of vaccine distribution should be considered. Three issues need to be addressed, namely, multi-evaluation criteria, data variation and criteria importance. These parameters can help to bridge the gap in the distribution of the COVID-19 vaccine. The required distribution for potential vaccine recipients is relayed on the basis of different evaluation criteria (e.g. vaccine recipient memberships, chronic disease conditions, age, gender, geographic location severity and disabilities) [2] [10]. This aspect contributes to the first issue, namely, the need to adequately establish a set of multi-evaluation criteria. Moreover, for each COVID-19 vaccine distribution criterion, the values may vary from one criterion to another, resulting in the second issue related to data variation amongst the vaccine distribution criteria. The third issue refers to the different values of importance that are often assigned to each vaccine distribution criterion that further increases the complexity of the task [15]. Thus, according to the aforementioned issues, a dynamic COVID-19 vaccine distribution can be considered to be an MCDM problem. However, charting the distribution progress of vaccine doses for populations and societies in this global pandemic setting is challenging because it requires the several handling methods to be well-coordinated as they occur simultaneously [18]. Moreover, determining how to prioritise the COVID-19 vaccine recipients’ criteria generates another challenge that renders the distribution of vaccine recipients to be a complex task, and a dynamic solution needs to be recommended. A previous study [10] recommended a solution in which the group of decision makers must involve experts from multiple fields to obtain the benefit of their experiences in setting priorities and determining the principal guidelines. Similarly, the MCDM approach should be utilised to overcome the complexity of COVID-19 vaccine distribution. MCDM is an important method in expert systems and operation research entailing several decision alternatives and criteria [19-25], and it involves structuring, planning and solving decision problems by utilising numerous criteria [26-30]. The utilisation of MCDM is rapidly gaining popularity owing to its ability to improve the quality of decisions through a more explicit, rational and efficient process compared with the conventional approaches [31-35]. Over the decades, scholars have developed multiple MCDM methods and approaches to solve multiple discrete problems in different fields [36-40]. MCDM is utilised to address the essential requirement of locating the most eligible alternative(s) amongst a set of alternatives based on the selected criteria, in which this set of alternatives shares the same decision criteria as the decision matrix (DM) to solve the decision-making problems [41-44]. Furthermore, MCDM methods are generally divided into two main approaches, in which each approach provides criteria weighting and/or the ranking of alternatives [45-48]. However, as issues and challenges are oftentimes complex, the MCDM weighting and ranking method should be applied to a candidate method [49].

If MCDM methods are ranked, then the latest and most powerful method is called the fuzzy decision by opinion score method (FDOSM) based on the triangular fuzzy number (TFN). This technique was proposed for considering the idea of an ideal solution, avoid two preferences, reduce the number of comparisons, define fair and implicit understandable comparisons, prevent inconsistencies, reduce vagueness and yield a minimum number of mathematical operations [50]. FDOSM applies the concepts of ideal solution and opinion matrix to overcome the identified challenges under a fuzzy environment with relatively few mathematical equations. FDOSM also provides logical decisions because it depends on the opinion of a decision maker (the expert). FDOSM can mostly overcome inconsistencies, which are the main limitation of the human approach, and decrease time consumption when performing comparisons. Therefore, this method can avoid data loss and provide a logical decision. Moreover, the normalisation and weights in the mathematical approach problems can be resolved. The vagueness in the data can also be addressed using fuzzy numbers [50, 51]. However, FDOSM has two considerable limitations that may result in different ranking results. Firstly, the decision-making approach in an FDOSM technique is based on direct aggregation only. However, other
decision-making approaches, such as distance measurement and compromise ranking, are not used. Thus, these approaches should be adopted to obtain comprehensive insights and understand the variation in the FDOSM results. Secondly, the mathematical operator used in the direct aggregation approach of FDOSM is based on the arithmetic mean (AM) operator only. Other mathematical operators (i.e. AM, geometric mean, harmonic mean and root mean square) are not used. To overcome these limitations of FDOSM, a study [52] proposed an extended version of this approach based on the TFN.

TFN manifests limitations in the handling of vagueness and uncertainty [53]. MCDM techniques contain the decision makers’ preferences and subjective judgments, including quantitative and/or qualitative criteria ratings, in addition to the weights of the criteria. These issues can be imprecise, indefinite and uncertain, thereby complicating the decision-making process when applied to real-world problems [54]. To overcome uncertainty issues and capture much more helpful information under imprecise and uncertain conditions, a study [55] introduced the concept of the Pythagorean fuzzy number (PFN) as a new evaluation format that is defined by membership and non-membership status, the sum of which is less than or equal to 1 [56]. The PFN was recently developed as a modern extension of an intuitionistic fuzzy set to manage the problematic uncertainty in group decision issues [57]. PFN emerged as an effective method of representing the fuzziness and uncertainty of MCDM problems, with the Pythagorean fuzzy set (PFS) being more general than the intuitionistic fuzzy set (IFS) [56, 58, 59]. As for their distinctness, the PFS needs to satisfy the condition in which the square sum of the membership degree and the non-membership degree is equal to or less than 1, whereas the IFS needs to satisfy the condition in which the sum of the two degrees is equal to or less than 1. PFS is more general than IFS because the PFN membership space is greater than the intuitionistic fuzzy number (IFN) membership space [58]. Consequently, the Pythagorean fuzzy decision by opinion score method (PF DOSM) for overcoming the uncertainty issues of TFN was extended on the basis of the power Bonferroni mean (PBM) operator [60]. This approach is utilised in this study to rank the COVID-19 vaccine recipients.

The PF DOSM weighting for the criteria values of each alternative is implicit; it is limited to the explicit calculation of the weight for each criterion, which is considered to be a theoretical issue [50]. In view of resolving this issue, a method should be able to assign weights to the criteria without entailing a pairwise comparison amongst the set of criteria, which was the basis of developing the FDOSM [50]. According to the literature review, the latest method proposed by [61] is called the fuzzy-weighted zero-inconsistency (FWZIC), which can provide weights for criteria with zero inconstancy. The FWZIC method could solve the following limitations of the best worst method, AHP and analytic network process: (i) inability of the procedure to offer the decision maker an instant feedback on the consistency of pairwise comparisons, (ii) absence of accounting for ordinary consistency and (iii) shortage of the consistency threshold value for evaluating the reliability of results [61, 62]. However, FWZIC was developed on the basis of TFN. As mentioned earlier, TFN has limitations in solving uncertainty and vagueness issues. Thus, the FWZIC method must be extended to the PFN environment, an approach called the PFWZIC, to overcome the limitations.

This study proposes a novel homogeneous Pythagorean fuzzy decision-making framework by integrating a new formulation of FWZIC with FDOSM to develop a dynamic COVID-19 vaccine distribution mechanism. The findings of this study are expected to contribute to the equitable protection against COVID-19, with equal respect based on the available vaccine amount and the population demand.

2. Methodology

The methodology of formulating the proposed vaccine distribution framework is divided into two phases. The first phase is the identification. The criteria influencing the COVID-19 vaccine distribution, vaccine recipients as alternatives and dataset augmentation to be utilised in the proposed DM for prioritising the vaccine recipients are discussed in this phase. The second phase proposes an MCDM solution based on the PFWZIC method for determining the weights to be assigned to the criteria and prioritising vaccine recipients by using the PF DOSM method. These phases are discussed in detail in the succeeding sections. A summarised methodology of the proposed framework is shown in Figure 1.
2.1 Phase I: Identification
Three essential stages are presented in this phase. Firstly, the criteria of COVID-19 vaccine recipients and the vaccine recipients (alternatives) are defined and identified. Secondly, the data generation and augmentation of alternatives depending on the identified criteria are performed to offer a new dataset for the COVID-19 vaccine research. Thirdly, the examined selected criteria and alternatives from the new dataset are utilised to propose the prioritisation DM of vaccine recipients.

Identification of COVID-19 vaccine distribution criteria and alternatives
The number of individuals to be prioritised is more than the number of initial vaccine doses, which causes the distribution within population groups to be a crucial process [63-65]. The vaccine distribution will be achieved to serve the vaccine recipients who represent the alternatives. In addition, a review of literature was conducted to identify the criteria for vaccine distribution. In particular, five characteristics were determined to influence the COVID-19 vaccine direction [66-69]. These characteristics represent the criteria of COVID-19 vaccine recipients. The description of each criterion is as follows.

Vaccine recipient memberships are the different population groups engaged to obtain the vaccine doses. The recipients can be frontline health workers or other key workers and frontline staff employees; however, they could also be neither or both of them, such as children and homemakers [70, 71]. Firstly, frontline health workers play vital roles in healthcare services. Nonetheless, a systematic classification of frontline healthcare workers is needed, as they are at a high risk of being infected by the virus and may suffer from high morbidity and mortality [72]. Hence, they should be prioritised to protect the availability of critical essential hospital services during the COVID-19 pandemic. Frontline health workers can be divided into four groups: doctor, pharmacist, nurse and health worker [73]. The doctor is an individual who helps patients based on his/her specialty. The pharmacist is a medical professional who plays a vital role in encouraging patients to achieve the best outcomes from medicines. A nurse is...
an individual who is qualified to take care of patients in hospitals. A health worker is an ordinary individual with little formal education but is responsible for hospital-based services. Secondly, key workers or frontline staff are employees who provide essential service or key public service [74]. The term has been used in many recent government announcements when officials introduce new measures to stop the spread of the COVID-19 outbreak [75]. The list currently includes but is not limited to the following critical workers: teacher, specialist education professional, religious staff, journalist, charity staff, local government, national government, medical goods sales, security, police officer, fire service employee, probation staff, armed forces, air transport employee, water transport employee, road transport employee, postal employee, oil suppliers, delivery worker, electricity supplier and gas suppliers.

Chronic disease conditions are defined broadly as conditions that last for one year or more and require continuous medical attention or limit the activities of daily living. Chronic diseases, such as heart diseases, cancer and diabetes, are the leading causes of death and disability. Human health conditions or a disease state can reflect a single type of disease or the concurrence of multiple diseases [76]. Hence, chronic diseases can be divided into two groups: single condition in which a person has a single chronic disease (e.g. diabetes) and multi-condition in which a person has multi-chronic diseases (e.g. hypertension or cardiovascular disorders) [77].

Age is the number of years since the birth of an individual. The fatality is high amongst the older people because COVID-19 may be due to cytokine storm, immune cell repertoire and change in glucose [78]. Therefore, age-based segregation must be utilised in the prioritisation of vaccine recipients, and the most affected age category must be prioritised [79, 80].

Geographic location severity refers to identified areas with previously reported cases or current cases of COVID-19. This criterion is used to assess the severity and spread of infection, and related findings can offer general recommendations for each severity level. Geographic location severity can be divided into four categories: green, yellow, orange and red. Green indicates that the location is free of COVID-19 infection. Yellow indicates a less-infected location requiring certain actions from the community, such as wearing masks, social distancing, aggressive testing (as needed) and recording of interactions. Orange indicates a ‘dangerous’ location and requires continuous testing, restricted movement and stay-at-home actions. Red indicates a high health risk in the location due to the high number of virus infections. The geographic location severity within each country must be taken into account when distributing the vaccine [50].

Disability is a physical or mental condition that restricts the actions, senses or behaviour of an individual. Disability is any condition that hinders a person from performing certain activities or interacting with the environment around them. This criterion can be divided into four types: hearing difficulty, vision impairment, epilepsy and ability. Hearing difficulty refers to moderate to serious hearing loss. Vision impairment is a term used by professionals to describe some form of vision loss, such as not being able to see at all or partial vision loss. Epilepsy is characterised as having two or more unprovoked seizures. Ability refers to having the means or the desire to perform a certain task. Moreover, the rapidly changing landscape of the COVID-19 has led this outbreak to become a global public health priority, and the best approach is to address the needs and continue to protect the health and well-being of people with disabilities [80]. Incidentally, the existing academic literature on vaccine distribution does not offer an adequate dataset that considers all of the relevant criteria and alternatives. As any single dataset platform will unlikely combine all of the abovementioned criteria and alternatives, a new augmented dataset is introduced in this study.

Dataset augmentation

In the second part of the identification phase, 300 cases of the vaccine recipients were generated as proof of concept. Although the generalisation and inclusion of more than 300 cases are possible, the insights from the generated cases usually can satisfy the concepts of the presented framework, from which the results can then meet the desired goals. A coding scheme using the exception-handling model was developed in Python to generate the augmented dataset of the 300 cases based on the five criteria (Appendix A1). Generating the most suitable probabilities for the identified alternatives and criteria as a proof of concept can help to achieve the study aim and overcome the stated challenges. Subsequently, certain assumptions about COVID-19 vaccine alternatives were considered in this study. Moreover, the rule-based control scheme was based on expert opinions who provided precise descriptions for the criteria. After generating the dataset, a panel of three experts subjectively validated our dataset (i.e. knowledge-driven results) to increase the veracity of the data to the best extent possible and to cover most recipients’ situations. The three expert
panellists were identified and selected from related study areas (i.e. molecular biology, immunology, biomedical engineering, medical biotechnology and clinical microbiology). A new DM for evaluating and differentiating the vaccine recipients based on the criteria would also be considered (to be discussed in the next section).

Proposed DM

A DM for the vaccine recipients’ distribution is proposed in this study. The vaccine recipients should be evaluated and differentiated on the basis of the criteria, in which the intent is to provide guidelines and define a novel priority methodology. The DM is presented in Table 1.

Alternatives	C1	C2	C3	C4	C5
VR 1	C1/VR1	C2/VR1	C3/VR1	C5/VR1	C6/VR1
VR 2	C1/VR2	C2/VR2	C3/VR2	C5/VR2	C6/VR2
VR 3	C1/VR3	C2/VR3	C3/VR3	C5/VR3	C6/VR3
VR 300	C1/VR300	C2/VR300	C3/VR300	C5/VR300	C6/VR300

Remarks: VR= Vaccine recipients; C1= Vaccine recipient memberships; C2= Chronic Disease Conditions; C3= Age; C4=Geographic Location Severity; C5=Disabilities

The proposed DM is designed on the basis of the intersection of criteria (i.e. C1, C2, C3, C4 and C5) and recipients (alternatives). According to MCDM philosophy, the evaluation criteria can be categorised into three types: benefit criteria, cost criteria and critical criteria. Benefit criteria means that a larger value is more important, whereas the exact opposite is for cost criteria. According to the expert panel, C3 and C5 (age and geographic location severity) entail a range of measures and are considered to be the benefit criteria. For example, age is measured on the basis of the number of years. The higher the number of years, the higher the value. Similar to age, geographic location severity is categorised into four levels (green, yellow, orange and red), and the final level has the highest value. All of the other criteria excluding C3 and C4 can neither be considered benefit criteria nor cost criteria as they are fitted to the categorical data, but they can be considered as critical criteria. For example, the disabilities criterion (C5) has four categories of data representation: hearing difficulty, vision impairment, epilepsy and ability. Thus, these items cannot be considered to be benefit or cost criteria. This scenario similarly applies to the remaining criteria.

The vaccine distribution issues (i.e. multi-evaluation criteria, criteria importance and data variation) were previously discussed in Section 1. In addressing these issues, the next phase shall provide an MCDM development solution based on the integrated PFDOSM–PFWZIC methods.

2.2 Phase II: Development

Firstly, the development of a dynamic and comfortable distribution methodology for COVID-19 vaccine recipients is relevant given the diverse policies adopted by different countries. Seemingly different parameters and characteristics are being adopted by the different countries, indicating that the distribution methodology is a dynamic process [81]. Some of these parameters involve population, number of cases, available beds and mortality rate due to COVID-19. Accounting for these values is essential to guide the allocation of vaccines. Thus, this study develops a dynamic vaccine distribution methodology and utilises two MCDM approaches, namely, weighting and ranking. The weighting was achieved using PFWZIC, whilst PFDOSM was used for the ranking. Both weighting and ranking were performed using subjective judgment, which can be equalised to the evaluation of the COVID-19 vaccine distribution criteria according to a country’s needs. In other words, the experts can prioritise a specific set of criteria and compare these with others based on a specific country’s situation. The presented methodology can be dynamically applied to any country’s policy environment. The PFWZIC method entails five phases, whereas the PFDOSM consists of two stages (data transformation and data processing; Figure 1). The succeeding subsections shall separately describe each method along with the relevant mathematical expressions.
2.2.1 Vaccine distribution criteria using a new formulation of PFWZIC

In this section, the identified distributed criteria are utilised in the PFWZIC steps to construct the weight for each criterion. The complete details of the five steps of PFWZIC are as follows.

Step 1: Definition of the set of evaluation criteria
This step entails two processes. The first process is the exploration and presentation of the predefined set of evaluation criteria. The second process is the classification and categorisation of all collected criteria. Furthermore, the defined and selected criteria would be evaluated by the same panel of experts (Section 2.1.2), as explained in the next step.

Step 2: Structured expert judgement (SEJ)
In evaluating and defining the level of importance of the criteria identified in the previous step, a panel of three experts was utilised. After exploring and identifying the list of prospective experts, the selection and nomination commenced, and the SEJ panel was established. Then, an evaluation form was developed to obtain the consensus of all of the SEJ panellists for each criterion, followed by the conversion of the linguistic scale to its equivalent numerical scale.

Identify experts: Anyone who has knowledge about a subject matter cannot be considered an expert. The term ‘expert for a given subject’ is used to designate a person whose present or past field involves the subject in question and who is regarded by others as knowledgeable about the subject. These individuals are occasionally designated in
the literature as ‘domain’ experts or ‘substantive’ experts to distinguish them from ‘normative experts’, i.e. experts in statistics and subjective probability. In the current study, the expert selection method was based on a bibliometric analysis of all authors and co-authors of studies that have listed the vaccine distribution criteria.

Select experts: After identifying the set of experts, the experts who would be involved in the study were selected. In general, the largest number of experts consistent with the level of resources should be considered. In this study, three experts were chosen for a given subject. All potential experts named during the expert identification phase were contacted via e-mail to determine whether they were interested and whether they considered themselves a potential expert for the panel. After the list of candidate experts was established, the three experts collaborated as the expert judgement panelists.

Develop the evaluation form: The development of an evaluation form is a crucial step because this instrument is used to obtain expert consensus. In the current study, before finalising the evaluation form, the questionnaire underwent reliability and validity testing. All of the three experts selected in the previous step reviewed the form.

Define the level of importance scale: In this step, the selected group of three experts were asked to define the level of importance/significance of each criterion by using a five-point Likert scale. In general, no theoretical reason is considered in ruling out the different lengths of the response scale [61]. The options usually reflect an underlying continuum rather than a finite number of possible attitudes. Various lengths, from 2 points to 11 points or higher, are used in surveys. Five points has become the norm in Likert scales probably because this number strikes a balance between the conflicting goals of offering sufficient choices (only two or three options means measuring only the direction rather than the strength of opinion) and making it manageable for respondents (few people have a clear idea of the difference between the eighth and ninth points in an 11-point agree–disagree scale) to answer a questionnaire. Research has confirmed that data from Likert items and those from similar rating scales become significantly less accurate when the number of scale points decreases to below five or increases to above seven. However, these studies provide no reason for preferring five-point scales to seven-point scales.

Convert linguistic scale to equivalent numerical scale: As mentioned previously, all preference values are identified in the subjective form, which cannot be used for further analysis unless they are converted into numerical values. Thus, in this step, the level of importance/significance of each criterion as recorded by each expert on the linguistic Likert scale was converted into an equivalent numerical scale (Table 2).

Numerical scoring scale	Linguistic scoring scale
1	Not important
2	Slight important
3	Moderately important
4	Important
5	Very important

The use of a Likert scale assumes that the vaccine distribution criteria have different important levels that should be assigned by an expert. The importance level is assigned using a linguistic scale that facilitates the process of the evaluation criteria. The importance levels range from ‘not important’ to ‘very important’. However, when an additional analysis needs to be conducted on the scores obtained by the experts, extracting useful information from linguistic scores is difficult unless the items are converted into numerical values. Thus, in this study, an equivalent numerical value was provided along with each linguistic term where measuring the importance level of the vaccine distribution criteria is possible.

Step 3: Building the Expert Decision Matrix (EDM)
The previous step clarified how the experts were selected and how their preferences were determined. In this step, the EDM is constructed that consists of the vaccine distribution criteria and the alternatives. In this EDM, a crossover is conducted between the vaccine distribution criteria and the SEJ panel. Each criterion (Cj) in the attribute intersects with each selective expert (Et) where the expert has scored the suitable level of importance for
each criterion. The EDM is used as the basis for the further analysis of the proposed method, as illustrated in the succeeding subsections.

Step 4: Application of the PFN membership function

In this step, the PFN membership function and the subsequent defuzzification process are applied to the EDM data, in which the data are transformed into a Pythagorean fuzzy EDM to increase their precision and ease of use in further analysis. However, in MCDM, the problem is uncertain and imprecise because assigning a precise preference rate to any criterion is difficult. The advantage of using the fuzzy method is the use of vague numbers instead of crisp numbers to determine the relative value of attributes (criteria) to address the issue of imprecise and uncertain problems [82-84]. The PFNs can be presented in objective form [85, 86] and are defined as Eqs. (1) and (2).

\[P = \{m, (\mu_p(m), v_p(m)) | m \in M\} \tag{1} \]

where \(\mu_p : M \rightarrow [0,1] \) is the membership function, and \(v_p : M \rightarrow [0,1] \) is a non-membership function of element \(m \in M \) to \(p \) that must fulfill the restriction shown in Eq. (2).

\[0 < (\mu_p(m))^2 + (v_p(m))^2 \leq 1, \tag{2} \]

The degree of hesitancy is given by [86]

\[\pi_p(m) = \sqrt{1 - (\mu_p(m))^2 - (v_p(m))^2} \tag{3} \]

The applied arithmetic operation of using PFN can be expressed in the succeeding equations. The PFN summation and aggregation operations are defined as Eqs. (4) [86, 87].

\[\text{PFAG} (\hat{p}_1, \hat{p}_2, ..., \hat{p}_n) = \left(\prod_{i=1}^{n} (1 - (\mu_i)^2) \right)^{1/n} \tag{4} \]

Eq. (5) shows the PFN division operation [86, 88].

\[p(m_i) \bowtie p(m_j) = \left(\mu_{p(m_i)} \prod_{k} \frac{\frac{\mu_{p(m_i)} - v_{p(m_i)}}{1 - v_{p(m_i)}}}{\frac{\mu_{p(m_j)} - v_{p(m_j)}}{1 - v_{p(m_j)}}} \right) \tag{5} \]

if \(v_p(m_i) \geq v_p(m_j) \), \(\mu_p(m_i) \leq \min \left(\mu_p(m_j), \frac{\mu_p(m_i)}{\mu_p(m_j)} \right) \)

Eq. (6) shows the formulation of the PFN division on a crisp value [86, 88]. The value of each linguistic term with PFN is shown in Table 3.

\[p/\lambda = \left(\sqrt{1 - (1 - (\mu_p)^2)} / (v_p)^2 \right)^{1/\lambda} \lambda > 0 \tag{6} \]

The scoring (the defuzzied (crisp) value of PEN) is defined as follows [86]:

\[\alpha = (\mu_a, v_a) \text{ be a PFN, } s(\alpha) = \mu_a^2 - v_a^2 \text{, } \alpha = (\alpha) h \]

where \(\alpha \) is the score and the accuracy degree. For two PFNs \(\alpha_1 = (\mu_{a1}, v_{a1}), \alpha_2 = (\mu_{a2}, v_{a2}) \), the following holds true:

1. If \(s(\alpha_1) > s(\alpha_2) \), then \(\alpha_1 \) is bigger than \(\alpha_2 \), denoted by \(\alpha_1 > \alpha_2 \);
2. If \(s(\alpha_1) = s(\alpha_2) \), then:
 a. If \(h(\alpha_1) > h(\alpha_2) \), then \(\alpha_1 \) is bigger than \(\alpha_2 \), denoted by \(\alpha_1 > \alpha_2 \).
(b) If \(h(\alpha_1) = h(\alpha_2) \), then \(\alpha_1 \) is equal to \(\alpha_2 \), denoted by \(\alpha_1 = \alpha_2 \).

Linguistic scale	PFNs
Not important	(0.20, 0.90)
Slight important	(0.40, 0.60)
Moderately important	(0.65, 0.50)
Important	(0.80, 0.45)
Very important	(0.90, 0.20)

Table 3 shows that all linguistic variables can be converted into PFN, assuming that the fuzzy number is the variable for each criterion for Expert K. In other words, Expert K (vaccine distribution expert) can be asked to identify the importance level of the vaccine distribution criteria within the variables measured using the linguistic scale.

Step 5: Computation of the final values of the weight coefficients of the evaluation criteria

The final values of the weight coefficients of the evaluation criteria \((w_1, w_2, \ldots, w_n)^T\) are calculated according to the fuzzification data for the criteria listed in the previous step.

a) The ratio of the fuzzification data is computed according to Eqs. (3), (4), Error! Reference source not found., as formulated in Eq (8) and the preceding equations are used with PFN [86, 90].

\[
\hat{E}_{ij} \hat{C}_{ij} = \frac{\text{Imp}(E_{ij}/C_{ij})}{\sum_{i=1}^{m} \text{Imp}(E_{ij}/C_{ij})} \quad \text{for } i = 1,2,3,\ldots,m \text{ and } j = 1,2,3,\ldots,n, \tag{8}
\]

Where \(\text{Imp}(E_{ij}/C_{ij}) \) is an importance level for each criterion based on each expert, and \(\text{Imp}(\hat{E}_{ij}/\hat{C}_{ij}) \) represents the fuzzy number for such importance.

b) The mean values are computed to find the final fuzzy values of the weight coefficients of the evaluation criteria \((\hat{w}_1, \hat{w}_2, \ldots, \hat{w}_n)^T\).

The Pythagorean EDM is used to compute the final weight value of each criterion according to Eq. (6). Eq. (9) is a formulation of this process [61].

\[
\hat{w}_j = \sum_{i=1}^{m} \hat{E}_{ij} \hat{C}_{ij} / m, \quad \text{for } i = 1,2,3,\ldots,m \text{ and } j = 1,2,3,\ldots,n \tag{9}
\]

c) Defuzzification is performed to find the final weight, and Eq. Error! Reference source not found. [89] is used as the defuzzification method. In the calculation of the final values of the weight coefficients, the weight of importance of each criterion should be assigned on the basis of the sum of weights of all criteria to be used for the rescaling. The process is depicted in Algorithm 1.
Algorithm 1: Vaccine distribution Criteria Weighting using PFWZIC

Step 1: Define criteria of Vaccine distribution:
identify \(C[i] \)
// C is the set of the identified criteria of vaccine distribution

Step 2: Structured expert judgment:
Define \(E[i] \)
Define EF, Imp
\(m \leftarrow \text{length (E)} \)
For i in \{1..m\}
if E(i) is true then \(E(i) \leftarrow \text{EF(i)} \)
endif
endfor
// E is the set of the potential nominated expert panellists
// The evaluation form (EF) with the level of importance scale (Imp) is defined and built in this step for the criteria.
// The evaluation form of the criteria assigns to the selected experts who had previously accepted (i.e. true) to participate

Step 3: Building the Expert Decision Matrix (EDM):
Initialize \(EDM[i,j] \leftarrow \text{E} \cup C \)
\(J \leftarrow \text{length (C)} \)
\(m \leftarrow \text{length (E)} \)
For j in \{1..J\}
For i in \{1..m\}
\(EDM[i,j] \leftarrow \text{Imp} \left(\frac{E[i,j]}{C[i,j]} \right) \)
endfor
endfor
// A crossover between the selected expert panellists and the vaccine distribution criteria is conducted to build the EDM matrix
// The given score of importance by the selected expert per criterion is assigned in EDM

Step 4: Application of Pythagorean fuzzy membership function:
For j in \{1..J\}
For i in \{1..m\}
\(EDM[i,j] \leftarrow EDM[i,j] \)
endfor
endfor
// The linguistic term of the EDM is transformed into a Pythagorean EDM (\(\hat{EDM} \)) by using PFN similar to that in Eq. (1) and by referring to Table 3

Step 5: Compute the final weight for each criterion:
Step 5.1: Find ratio value
For j in \{1..J\}
For i in \{1..m\}
\(\hat{E}_{ij} = \frac{\text{Imp}(E[i,j]/C[i,j])}{\sum_{i=1}^{m} \text{Imp}(E[i,j]/C[i,j])} \)
endfor
endfor
// The ratio of the fuzzification data is computed according to Eqs. (3) to (5), as formulated in Eq. (8)

Step 5.2: Find the fuzzy value of the final weight:
For j in \{1..J\}
For i in \{1..m\}
\(\hat{w}_j = \frac{\sum_{i=1}^{m} \hat{E}_{ij} \tilde{C}_{ij}}{m} \)
endfor
endfor
// The mean values are computed to find the fuzzy values of the final weight by using Eq. (6) similar to that formulated in Eq. (9)
// A defuzzication is conducted to find the final weight using Eq. (7)
2.2.2 Vaccine distribution using PFDOSM

PFDOSM is the extended version of the FDOSM proposed in [60], and it is used in the proposed COVID-19 vaccine distribution framework (Figure 1). The following section provides information about the first stage of PFDOSM called the data transformation unit. In the second stage of PFDOSM, information about the data processing is presented.

Stage One: Data transformation unit

According to [91], the transformation of a DM into an opinion matrix can be achieved as follows.

Step 1: Select the ideal solution of each subcriterion used in the DM of COVID-19 vaccine distribution. Therefore, the ideal solution can be defined as follows [91]:

\[
A^* = \{[(\max_v \nu_j | j \in J), (\min_v \nu_j | j \in J), (Op_j | j \in J)] | i = 1, 2, 3 \ldots m\},
\]

(10)

where max is the ideal value for the benefit criteria (i.e., C3 and C4), min is the ideal solution for the cost criteria (no cost criteria are identified in the COVID-19 vaccine distribution) and \(Op_j \) is the ideal value for the critical criteria (i.e., C1, C2 and C5) when the ideal value lies between the max and min. The critical value is determined by the decision maker.

Step 2: In this step, a reference comparison is conducted between the ideal solution and other values for each criterion used in the set of COVID-19 vaccine distribution criteria. A five-point Likert scale is adopted. The ideal solution selection step is followed by a comparison of the ideal solution and the value of vaccine recipients in the same criterion, as shown in Eq. (11) [91].

\[
Op_{Lag} = \{[(\nu_j \otimes v_{ij} | j \in J) \cdot i = 1.2.3 \ldots m]\}
\]

(11)

where \(\otimes \) represents the reference comparison between the ideal solution and the value of alternatives in the same criterion.

The final output of this block indicating the linguistic term is the opinion matrix that is ready to be transformed into a fuzzy opinion matrix by using the PFS, as expressed in Eq. (12) [91].

\[
Op_{Lmg} = A_1 [op_{11} \ldots op_{1n}] \ldots A_m [op_{m1} \ldots op_{mn}]
\]

(12)

Stage Two: Data processing unit

The opinion matrix of each Likert scale refers to the output of the transformation unit. The final block begins by transferring the opinion matrix into a fuzzy opinion DM via the conversion of the linguistic terms of the opinion matrix into PFNs based on Table 4.

Table 4: Pythagorean fuzzy opinion matrix [89]

Linguistic Scale	PFNs
No Difference	(0.90, 0.20)
Slight Difference	(0.80, 0.45)
Difference	(0.65, 0.50)
Big Difference	(0.40, 0.60)
Huge Difference	(0.20, 0.90)

This study presents two contexts: individual decision making and group decision making (GDM) with three decision makers for distributing the COVID-19 vaccine.

2.2.2.1 Distribution of COVID-19 vaccine based on individual PFDOSM

PFN is applied with FDOSM in this stage. The obtained explicit weights of each COVID-19 distribution criterion (Section 2.2.1) are introduced into the PFDOSM to thoroughly prioritise the vaccine recipients. However, the original PFDOSM [60] uses the PBM operator to aggregate the fuzzy opinion matrix and produce a score for each
alternative. The PBM operator only integrates the resulting weights from PFWZIC in the COVID-19 distribution; when the PBM operator introduces the effectiveness of criteria weights for ranking purposes, it renders the row data of each criterion to be at the power of the particular weight. In this case, the effect of the relative weight value becomes extremely small compared with the direct weight multiplication operator (e.g. AM operator). However, a previous study [52] proved that the AM operator is generally the most suitable approach for the FDOSM concept. Thus, this study only slightly modified the PFDOsM procedure by replacing the PBM operator with the AM operator. This operator multiplies the weights with each criterion value, and the effectiveness of weights in PFDOsM to be used in COVID-19 distribution is calculated thoroughly. Therefore, the fuzzy opinion matrices resulting from the previous stage are aggregated using the formulation of the AM operator in Eq. (13).

\[PFWA(p(m_1), p(m_2), \ldots, p(m_n)) = \left(\sum_{i=1}^{n} w_i \mu_p(m_i), \sum_{i=1}^{n} w_i \nu_p(m_i) \right), \tag{13} \]

Then, the defuzzification process of each alternative is computed using Eq. (7). After calculating the aforementioned equations in the context of individual PFDOsM, the vaccine recipients can then be prioritised. Each vaccine recipient is assigned a value, and they are ordered according to the best value. The vaccine recipient with the highest score corresponds to the highest priority.

2.2.2.2 Distribution of COVID-19 vaccine based on group PFDOsM

Given the variations in the distribution ranking of the COVID-19 vaccine amongst the decision makers, the aggregated decisions obtained from various evaluators are necessary to unify the distribution ranking. Thus, this study utilised GDM with PFDOsM to unify all of the variations in the distribution ranking of the decision makers and arrive at the final distribution ranking. Furthermore, AM was used to arrive at the final score of GDM. The highest score value is considered to be the best vaccinator. In this case, the decision makers’ opinions were combined after arriving at the final distribution ranking of the vaccine recipients. The details are presented in Algorithm 2.

Algorithm 2: Vaccine distribution using PFDOsM

Step 1: Formulate vaccine distribution Decision Matrix:
- Identify \(C[i] \)
- Identify \(VRs[j] \)
- \(DM[i,j] \leftarrow VRs \cup C \)

Step 2: Formulate the PFDOsM:
- \(DM[i,j] \leftarrow VRs \) Dataset
- Initialize \(OM[i,j] \) // Empty Opinion Matrix.

Step 2.1: Data Transformation
- \(J \leftarrow \text{length (} C \text{)} \)
- \(m \leftarrow \text{length (} VRs \text{)} \)
- For \(j \) in \(\{1..J\} \)
- For \(i \) in \(\{1..m\} \)
- \(A^*[j] \leftarrow \{(\text{max}_i C[i,j]),(\text{min}_i C[i,j])\} \)
- \(OM[i,j] \leftarrow \{A^*[j] \otimes C[i,j]\} \)
- \(\hat{OM}[i,j] \leftarrow OM[i,j] \)

Step 2.2: Data Processing
- \(J \leftarrow \text{length (} C \text{)} \)
- \(m \leftarrow \text{length (} VRs \text{)} \)
- \(n \leftarrow \text{Number of experts} \)
For x in $\{1..n\}$
For i in $\{1..m\}$
For j in $\{1..J\}$

$$IND^x[\mu_j, v_j] \leftarrow \left(\sum_{i=1}^n w_i \mu_p(\hat{OM}_{ij}), \sum_{i=1}^n w_i v_p(\hat{OM}_{ij}) \right)$$

// An aggregation on fuzzy OM (\hat{OM}) multiplied by the criteria weights by using the equation of the AM operator for each individual expert (IND^x) is implemented similar to that in Eq. (13)

$$S^x[j] \leftarrow IND^x[\mu_j] - IND^x[v_j]$$

// The score (S) (i.e. defuzzied) for each alternative (i.e. VR) per expert is computed similar to that in Eq. (7)

endfor
endfor
endfor

$GS[i] \leftarrow \frac{1}{n} \sum_j S^x[j]$ // The grouped decision-making score (GS) is compute using the AM of the score (S) of each alternative (i.e. VR) for all experts

endfor

3. Numerical Example
An illustrative numerical example is presented in this section for the selection of the most appropriate alternative by using the proposed MCDM methods. The selection is achieved on the basis of the following five evaluation criteria:

- $C1$, $C3$, and $C4$ are the benefit criteria;
- $C2$ is the categorical criteria; and
- $C5$ is the cost criteria.

The DM is constructed on the basis of the intersection of the evaluation criteria and alternatives list, as shown in Table 5.

Alternatives	C1	C2	C3	C4	C5
A1	1500	Yes	200	23	18000
A2	2700	No	150	45	22000
A3	2000	No	250	28	42000
A4	1800	Yes	350	40	19500
A5	3250	No	75	30	32500

The selection process is started by weighting the evaluation criteria by using PFWZIC. The first step of PFWZIC is the identification of the criteria set (i.e. $C1$, $C2$, $C3$, $C4$, and $C5$). In the second step, the subjective responses for each criterion are assumed to be from three experts, and then the responses are transformed from the linguistic term to the numerical scale (Table 6).

Criteria	Expert 1	Expert 2	Expert 3			
	Linguistic term	Numerical scale	Linguistic term	Numerical scale	Linguistic term	Numerical scale
C1	Moderately important	3	Important	4	Slight important	2
C2	Important	4	Not important	1	Important	4
C3	Slight important	2	Important	4	Moderately important	3
In the third step of PFWZIC, the importance level of each criterion in line with the experts’ preference is integrated into the constructed EDM (Table 7).

Expert	C1	C2	C3	C4	C5
E1	3	4	2	4	5
E2	4	1	4	5	4
E3	2	4	3	4	5

Table 7: EDM

In the fourth step of PFWZIC, each crisp value of the EDM is converted into an equivalent fuzzy number by using the Pythagorean membership function (Table 8).

Expert	C1	C2	C3	C4	C5
E1	0.65	0.5	0.8	0.45	0.6
E2	0.8	0.45	0.2	0.9	0.45
E3	0.4	0.6	0.8	0.45	0.9

Note: M = Membership and N = Non-membership.

In the fifth step of PFWZIC, the ratio values of the evaluation criteria are determined according to Eqs. (3), (5) and (8), and the fuzzy weight is computed according to Eq. (6). Then, the fuzzy weights are defuzzified and computed by Eq. (7) to obtain the final weight of each criterion. The results of this step are shown in Table 9.

Weights	C1	C2	C3	C4	C5
Fuzzy weight	0.668	0.143	0.713	0.225	0.668
Defuzzification	0.425	0.457	0.425	0.710	0.772
Final weight	0.152	0.164	0.152	0.254	0.277

Table 9: Criteria weights

The PFWZIC results shown in Table 9 indicate that all evaluation criteria can be assigned weights with high accuracy and consistency. C5 has the highest importance weight of 0.277, followed by C4 and C2. C1 and C3 have lowest importance weights with the same values of 0.152. Furthermore, the obtained criteria weights can be integrated into PFDO to evaluate the alternatives and identify the most appropriate one amongst them. In this numerical example, the individual decision-making and GDM contexts are used. In the individual context, according to Eq. (10), the responses of three decision makers are assumed and then used to determine the ideal solution value for each evaluation criterion. The process can be used to generate the opinions and convert the DM into an opinion matrix (Table 10).

Alternatives	C1	C2	C3	C4	C5
A1	BD	ND	D	Y	ND
A2	ND	D	BD	ND	SD
A3	SD	D	SD	SD	HD
A4	BD	ND	ND	ND	SD
A5	ND	D	HD	SD	BD

Table 10: Opinion matrices
The opinion matrices are created by comparing the value of the ideal solution with the other values for each criterion by using linguistic terms. Then, the opinion matrices are transformed into fuzzy opinion matrices based on the results presented in Table 4. The corresponding details are shown in Table 11.

According to Eq. (13), the individual ranking context of each expert can be achieved by aggregating the fuzzy opinion matrices (Table 12).
The highest alternative score has the best rank, whereas the lowest score refers to the worst rank. As shown in Table 12, A4 ranks first based on the first and third decision makers’ opinions, whereas it ranks as second based on the second decision maker’s opinions. A5 represents the worst alternative amongst all decision makers. The individual PFDOsM result clearly show variances in the ranking of the other alternatives (including A4) amongst the three decision makers. Thus, no uniform ranking result has been achieved on the basis of the assumed opinions. Given this variance, the GDM-based PFDOsM is necessary for providing a unique rank. The process can be achieved by averaging the alternatives scores using the AM operator (Table 13).

Table 13: Results of the GDM-based PFDOsM

Alternatives	Score	Rank
A1	0.351	2
A2	0.299	3
A3	0.202	4
A4	0.442	1
A5	0.110	5

As shown in Table 13, the highest-ranked alternative is A4 given the highest score of 0.442. A1 ranks second with a score of 0.351. A2 and A3 rank third and fourth with scores of 0.299 and 0.202, respectively. A5 is the worst alternative, ranking last with the lowest score of 0.110.

4. Results and Discussion

This section presents the evaluation and differentiation results of the COVID-19 vaccine recipients as a means of formulating the vaccine distribution mechanism. The section is divided into four subsections. Section 4.1 provides the data augmentation results, followed by the DM for the COVID-19 vaccine recipients. Section 4.2 presents the augmented dataset. The result of the PFWZIC method and the constructed criteria weights are discussed in Section 4.3. In particular, the three experts’ judgment is converted by mathematical calculations to show the overall weights. Section 4.4 presents the detailed distribution results of the COVID-19 recipients based on PFDOsM.

4.1 Results of data augmentation based on the identified criteria

As discussed in Section 2.1.2, the augmented procedure is used to generate a dataset of 300 COVID-19 vaccines recipients. Table 14 presents a sample of the first 20 sequences of the dataset generation utilisation with Python’s model. The overall dataset for the 300 cases is presented in Table A.2 in the Appendix.

Table 14: Samples of the first 20 sequences of COVID-19 vaccine recipients’ augmented dataset

Seq.	Recipient Memberships	Position	Frontline Health Workers	Key Workers/ Frontline Staff	Chronic Disease Conditions	Age	Geographic Location	Severity	Disabilities
1	Pharmacist				Hypertension, Diabetes	31	Green		χ
2	Pharmacist				χ	59	Yellow	Hearing Difficulty	
3	Doctor				Diabetes	37	Green	X	
4	Pharmacist				Obesity	47	Yellow	X	
5	Community Health Worker				χ	29	Green	Vision Impairment	
6	Electricity Supplier				χ	29	Red	Hearing Difficulty	
The exception-handling model in Python creates datasets that need to be verified initially by experts. The presented dataset can provide scholars of this research domain with the opportunity to explore the various populations of the COVID-19 vaccine recipients. Moreover, the dataset can provide many interesting cases as alternatives to contribute to the functioning of the distribution mechanisms across the different recipients’ memberships with respect to the various criteria. At this point, the complete augmented dataset of the COVID-19 vaccine recipients can be applied to the proposed DM as to be explained in Section 4.2.

4.2 Results of DM applied to COVID-19 vaccine recipients’ dataset

Table 15 presents the results of the DM after achieving the practice process between the augmented dataset (Table A.1 in the Appendix) and the proposed DM (Table 1). However, the first 20 samples of the vaccine recipients do not coincide with the 300 vaccine recipients’ data (Table A.3 in the Appendix).

COVID-19 vaccine recipients’ alternatives	Criteria	C1	C2	C3	C4	C5
VR1 Pharmacist	Hypertension, Diabetes	31	Green	NA		
VR2 Pharmacist	NA	59	Yellow	Hearing Difficulty		
VR3 Doctor	Diabetes	37	Green	NA		
VR4 Pharmacist	Obesity	47	Yellow	NA		
VR5 Community Health Worker	NA	29	Green	Vision Impairment		
VR6 Electricity Supplier	NA	29	Red	Hearing Difficulty		
VR7 Teacher	NA	31	Green	NA		
VR8 Teacher	NA	31	Yellow	NA		
VR9 Police Officer	NA	47	Red	NA		
VR10 Teacher	NA	37	Green	NA		
VR11 NFM	Respiratory Condition	59	Red	NA		
VR12 NFM	NA	7	Red	Autism		
The first criterion (C1) in Table 6 represents the several alternatives’ membership, although all of them are not frontline members (i.e. NFM). For the other criteria, the sign (NA) means that a specific criterion is not applicable to the alternative. For example, the alternative VR 10 is not affected by chronic disease conditions (C2), and his disability specification is normal (C6). However, other recipients have varying specifications for the other criteria, causing the distribution to be significantly complex, as mentioned in Section 1. The novel MCDM solution can address this concern and provide a prioritisation mechanism for the distribution progress as presented in the succeeding two sections.

4.3 Results of vaccine distribution criteria weighting by using PFWZIC

This section describes the weight effects of the vaccine distribution criteria by using the PFWZIC method discussed in Section 2.2.1. On the basis of the philosophy of the proposed PFWZIC, the method can be implemented in five steps. The resulting weight of PFWZIC is generated without inconsistency. According to the methodological approach of PFWZIC, the first step is to identify the criteria set (i.e. the five COVID-19 vaccine distribution criteria, Section 2.1), followed by a data collection from the panel of experts (SEJ), as explained in step 2 of PFWZIC. Three domain experts participate by expressing their expertise in assessing the importance level of each criterion of the COVID-19 vaccine distribution that had been gathered by the developed evaluation form. Then, the important level of each criterion based on the experts’ preference is transformed from a linguistic term to the numerical scale based on Table 2. Consequently, the expert decision matrix (EDM) is formulated, as presented in step 3. The important level of each criterion in line with the experts’ preference that is gained from step 2 is integrated into the EDM, as shown in Table A4.1 (Algorithm 1) in the Appendix.

As mentioned in step 4 of the PFWZIC, the Pythagorean membership function is used to convert each crisp value of the EDM matrix into the equivalent fuzzy number (Table 3). The result of the fuzzification process of the EDM is presented in Table A4.2 in the Appendix. The ratio values of the five COVID-19 vaccine distribution criteria are computed according to Eqs. (3) to (5), as explained in step 5a, and the final fuzzy weight is determined according to Eq. (6) similar to that in step 5b. Lastly, the final weight is calculated using the defuzzification term in Eq. (7) similar to that in step 5c (Table A4.3 in the Appendix). The final weights for each criterion are presented in Table 16 in the order from the highest criterion weight to the lowest one.

Criteria	Weights
C3 = Age	0.2411
C1 = Vaccine Recipient Memberships	0.2061
C2 = Chronic Disease Conditions	0.2055
C4 = Geographic Location Severity	0.1802
C5 = Disabilities	0.1670

The weight findings in Table 16 show the value of the five criteria based on the proposed PFWZIC expansion. In adopting this method, the assigned weights have high accuracy and consistency. C3 has the highest importance weight of 0.2411, followed by C1 and C2 with weights relatively close to each other at 0.2061 and 0.2055, respectively. C4 and C5 have somewhat close weight values at 0.1802 and 0.1670, respectively. These weight results in the proposed mechanism reveal that age plays a key role in the vaccine distribution and can even affect the perception of being a high priority with respect to the other criteria. The final prioritisation results for the
alternatives can be achieved using the PFDOSEM, as to be described in the succeeding section. From a practical perspective, the weight values are needed before the PFDOSEM can compute the distribution results of the 300 recipients.

4.4 PFDOSEM results of COVID-19 vaccine distribution

The results and discussions presented in this section pertain to the distribution of the COVID-19 vaccine and are based on the individual decision making and GDM contexts. The aforementioned five scales were used by the three decision makers to provide their opinions on converting the DM into the opinion matrix. Error! Reference source not found. The full opinion matrices of the decision makers are presented in Table A5 in the Appendix. According to Eq. (10), the decision makers would have to determine the ideal solution value based on the COVID-19 vaccine distribution criteria (i.e. vaccine recipient memberships, chronic disease conditions, age, geographic location severity and disabilities). The opinion matrix was created by comparing the ideal solution with the other values per criterion or each alternative by using the linguistic terms, followed by the transformation of the opinion matrix into PFN. The opinion matrix of each decision maker was converted into a fuzzy opinion matrix by utilising Table 4 (see Table A6 in the Appendix).

Moreover, the PFDOSEM method was applied to the resulting fuzzy opinion matrices for achieving the individual decision-making context of COVID-19 vaccine distribution, as presented in Table 17 (i.e. a sample of 20 vaccine recipients). The remainder of the data are presented in Table A7 in the Appendix.

Table 17: Vaccine distribution results based on individual decision-making context (first 20 alternatives)

Alternatives	Decision Maker 1	Decision Maker 2	Decision Maker 3			
	Score	Rank	Score	Rank	Score	Rank
VR1	−0.422	248	−0.210	210	−0.360	236
VR2	0.204	57	0.310	58	0.273	56
VR3	−0.230	174	−0.081	161	−0.230	199
VR4	−0.312	210	−0.100	176	−0.249	205
VR5	−0.272	205	−0.068	159	−0.101	164
VR6	0.037	99	0.119	114	0.037	123
VR7	−0.501	269	−0.273	232	−0.360	236
VR8	−0.423	250	−0.167	199	−0.249	205
VR9	−0.004	107	0.037	136	0.176	82
VR10	−0.501	269	−0.357	250	−0.360	236
VR11	0.360	23	0.439	28	0.442	17
VR12	0.138	72	0.303	69	0.315	38
VR13	−0.007	115	0.078	127	0.090	110
VR14	−0.101	138	−0.008	155	0.089	113
VR15	0.216	51	0.118	115	0.147	96
VR16	−0.422	248	−0.210	210	−0.360	236
VR17	−0.312	210	−0.100	176	−0.249	205
VR18	0.214	52	0.362	50	0.140	100
VR19	−0.151	156	0.143	104	−0.002	134
VR20	0.233	48	0.383	45	0.315	38

The trends in Table 17 demonstrate the importance of a decision maker’s opinion for each criterion. As mentioned previously in Section 2.2.2, the highest alternative must have the highest score, whereas the lowest alternative must have the lowest score value. Table A7 in the Appendix presents the PFDOSEM results based on the opinion of the decision makers and the final results of the COVID-19 vaccine distribution. As shown in Table 8, some scores have negative values. This scenario indicates that the non-membership value is higher than the membership value for alternatives, which represents the Pythagorean fuzzy concept. Table 18 presents the results of the highest and lowest alternatives of the three decision makers.

Table 18: Vaccine distribution results based on the individual decision making

Decision Makers (Experts)	Highest Vaccine Recipient	Score	Lowest Vaccine Recipient	Score
In conclusion, the results in Table A7 demonstrate clear variances in the ranking of the alternatives amongst the three decision makers. For decision maker 1, 32 of the lowest vaccine recipients (7 to 295) have the same score (−0.501). After reviewing the profile (raw data) of these recipients, most of them were found to have similar values with respect to C5 (geographic location severity) and C6 (disabilities). The most frequent values for these criteria are for the green geographical location and do not manifest a disability, respectively, hence the same lowest score. Additionally, the same context matches that of decision makers 2 and 3 with respect to their lowest vaccine recipients. For the highest vaccine recipient, all decision makers gave a high priority to VR281 who has diabetes, is 83 years old, is in a red geographical location and is disabled with epilepsy (i.e. C2, C3, C4 and C5, respectively). Overall, no unique prioritisation result was observed on the basis of the opinions provided by the three experts. Given this variance, on the basis of GDM and in consideration of all of the experts’ opinions, a final and unique prioritisation should be provided. Furthermore, GDM is necessary for solving the problem of variations in the final rank. Therefore, the results of the GDM context were also collated. As mentioned in Section 0.2, the final results of the three decision makers were aggregated using the AM operator, and the final GDM ranking for the COVID-19 vaccine distribution was obtained (Table 19).
Table 19: Vaccine distribution final rank based on GDM

Vaccine Recipient Seq.	Score	Final Rank	Vaccine Recipient Seq.	Score	Final Rank	Vaccine Recipient Seq.	Score	Final Rank	Vaccine Recipient Seq.	Score	Final Rank	Vaccine Recipient Seq.	Score	Final Rank	Vaccine Recipient Seq.	Score	Final Rank											
1	-0.331	236	51	0.082	104	101	-0.136	170	151	-0.300	233	201	-0.018	139	251	0.345	34											
2	0.262	53	52	-0.275	210	102	-0.501	292	152	0.352	32	202	0.298	48	252	-0.406	258											
3	-0.180	190	53	-0.336	239	103	-0.427	276	153	0.445	14	203	-0.174	187	253	-0.378	247											
4	-0.221	201	54	-0.323	234	104	-0.036	143	154	0.149	89	204	-0.232	207	254	0.139	91											
5	-0.147	183	55	-0.106	163	105	0.046	123	155	0.064	110	205	-0.551	293	255	0.445	13											
6	0.064	111	56	-0.280	222	106	-0.232	207	156	-0.180	190	206	0.565	3	256	-0.288	227											
7	-0.378	247	57	-0.144	182	107	0.037	126	157	-0.224	204	207	-0.275	210	257	-0.067	153											
8	-0.280	222	58	-0.221	201	108	-0.275	210	158	0.476	10	208	-0.337	240	258	-0.078	157											
9	0.069	109	59	-0.088	158	109	0.009	133	159	-0.140	171	209	-0.551	293	259	-0.427	276											
10	-0.406	258	60	-0.134	168	110	0.258	55	160	-0.036	146	210	-0.427	276	260	0.160	87											
11	0.414	20	61	-0.422	271	111	-0.140	171	161	-0.140	211	211	-0.279	219	261	-0.412	262											
12	0.252	61	62	0.041	125	112	-0.288	227	162	0.255	60	212	-0.144	175	262	0.117	96											
13	0.054	116	63	0.116	227	113	-0.020	140	163	-0.475	286	213	-0.412	262	263	-0.380	255											
14	-0.007	137	64	-0.205	194	114	0.127	166	164	-0.427	276	214	0.025	130	264	-0.144	175											
15	0.160	86	65	0.396	23	115	-0.403	257	165	0.057	113	215	0.409	21	265	0.216	71											
16	-0.331	236	66	-0.412	262	116	0.015	131	166	-0.551	293	216	0.028	128	266	0.184	76											
17	-0.221	201	67	0.046	120	117	0.210	73	167	-0.205	194	217	0.249	63	267	-0.280	222											
18	0.238	67	68	-0.105	162	118	0.043	124	168	0.098	100	218	0.091	103	268	0.026	129											
19	-0.003	136	69	-0.279	219	119	-0.072	156	169	0.029	127	219	0.361	31	269	-0.551	293											
20	0.310	44	70	0.074	107	120	0.303	46	170	-0.003	135	220	-0.412	262	270	-0.288	227											
21	-0.007	138	71	0.369	30	121	0.174	78	171	0.375	29	221	0.611	2	271	-0.425	275											
22	-0.551	293	72	-0.412	262	122	0.054	115	172	-0.040	148	222	-0.337	240	272	0.009	132											
23	-0.406	258	73	-0.036	143	123	-0.378	247	173	0.259	54	223	0.405	22	273	-0.179	189											
	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
---	-----	------	-----	-----	------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
24	0.432	0.375	0.213	-0.140	0.118	-0.279	-0.153	0.114	0.164	0.097	-0.036	0.381	-0.106	0.189	-0.275	-0.174	0.114	-0.205	-0.180	0.272	0.347	0.165	0.551	-0.275	-0.205	-0.093		
25	16	246	72	171	95	219	186	97	84	102	146	27	164	75	88	187	97	194	190	51	33	83	7	159	43	99	100	
26	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	91	92	93	94	95	96	97	98	99	100		
27	-0.298	0.174	-0.053	0.046	0.245	0.378	0.076	0.160	-0.042	-0.337	-0.406	0.274	0.243	0.226	-0.275	-0.067	-0.275	-0.412	0.497	-0.144	0.322	0.057	-0.224	-0.076	0.335	0.322		
28	232	124	150	120	65	28	105	87	149	240	50	66	68	120	138	153	190	140	9	144	175	105	100					
29	124	0.058	0.204	0.302	-0.024	-0.330	0.164	0.060	0.054	-0.205	0.306	0.243	0.226	-0.203	-0.475	-0.422	-0.224	0.173	0.166	0.322	0.057	-0.224	-0.076	0.335	0.322			
30	112	174	126	127	141	235	185	181	116	194	45	66	137	193	188	153	205	141	8	144	145	146	147	148	149	150		
31	-0.288	0.428	0.298	0.252	-0.057	-0.230	-0.109	0.138	0.317	0.248	-0.093	-0.067	-0.422	-0.556	-0.224	-0.275	-0.427	0.173	-0.378	-0.380	-0.280	-0.205	-0.076	0.475	0.475	0.322		
32	227	224	48	61	151	55	165	93	42	64	153	239	271	189	286	288	271	240	8	144	247	247	255	222	194	159		
33	274	0.098	0.226	0.248	0.233	0.286	0.233	1.036	0.381	0.383	0.536	1.036	0.556	0.336	1.036	1.036	0.383	0.536	0.381	0.536	0.381	0.536	0.381	0.536	0.381	0.536		
34	0.557	101	0.258	0.230	0.166	0.361	0.139	0.361	0.288	0.381	0.536	0.381	0.536	0.381	0.536	0.381	0.536	0.381	0.536	0.381	0.536	0.381	0.536	0.381	0.536	0.381	0.536	
35																												
As shown in Table 19, the highest-ranked (rank 1) recipient is VR-281, who has obtained the highest score (0.676). VR-281’s criteria specifications are related to C2, C3, C4, C5 and C6 (diabetes, 83 years old, red geographical location and disabled with epilepsy, respectively). Although VR-281 is not a frontline worker (C1), the weight of the age criterion played a major role in the decision-making process and provided the alternative of a high priority. Hence, the remaining criteria seemed to somewhat vary in terms of importance.

VR-76, who is ranked midway in the result (rank 150), obtained a score of −0.053. The criteria specifications of VR-76 are related to C2, C3, C4, and C5 (i.e. single type of chronic disease [respiratory condition], 37 years old, yellow geographical location and non-disabled, respectively). Clearly, a satisfactory ranking result was assigned to this alternative, and the VR criteria specifications are important on the average, thus earning a middle-ranked priority.

The lowest-ranked recipients were the alternatives VR22, VR166, VR190, VR205, VR209, VR229, VR269 and VR285, and they obtained the same score (−0.511). The closeness of the criteria specifications for these alternatives is the reason for identifying them in the same order of priority and subsequently obtaining the same score.

The rank of the COVID-19 vaccine distribution is coherent with the comparison of the GDM results with the opinion matrices. Thus, the results were considered for the final ranking results of the COVID-19 vaccine distribution. This aspect is to be evaluated in Section 5.

5. Evaluation

In this section, the efficiency of the proposed homogeneous Pythagorean fuzzy decision-making framework for the COVID-19 vaccine distribution is evaluated and tested via three assessment processes. Firstly, the systematic ranking of the vaccine recipients’ ranking results is evaluated. Secondly, the impact of changing the criteria weight on the ranking result is examined and analysed over nine different scenarios. Lastly, a comparison analysis is conducted.

5.1 Systematic ranking evaluation

In the first evaluation process, the prioritised vaccine recipients were split into different groups following their prioritisation order to be able to assess the prioritisation results for COVID-19 vaccine distribution and substantiate the corresponding GDM results. The systematic ranking evaluation process for the COVID-19 vaccine distribution results was also explored. The validation process was performed by dividing the vaccine recipients into different groups for substantiating the GDM results. This process was adopted in various MCDM studies [92-96]. The number of groups or the number of vaccine recipients within each group would not affect the validation result [48, 97, 98]. To validate the grouping for the COVID-19 vaccine distribution, the following steps were performed. (1) All opinion matrices were aggregated to produce a unified opinion matrix. (2) The vaccine recipients in the unified opinion matrix were sorted/ordered according to the GDM results. (3) The vaccine recipients were divided into six equal groups. (4) The mean of each group was calculated. The comparison process was based on the result of the mean of each group. The lowest mean values of each group would lead to valid results because the decision makers had assigned the lowest linguistic terms to the ideal solution of each criterion, which is the philosophy of FDOSM. Thus, the first group is assumed to have the lowest mean in the checking of the result’s validity. Then, this finding is compared with the second group and so on. The second group’s mean result must be higher than that of the first group. The same scenario applies for the third, fourth, fifth and sixth groups. If the evaluations are consistent with the assumption, then the results are valid. Table 20 presents the validation results for the group results obtained using the proposed PFDOsM.

Group #	Mean Value
Group 1	2.704
Group 2	3.203
Group 3	3.560
Group 4	3.863
Group 5	4.141
Group 6	4.437

Table 20 shows the initial observation of the ranking results of the six groups. All groups are systematically distributed because the start of the ranking results of the second group coincides with the end of the ranking results of the first group, and the same scenario applies to the other remaining groups. The first group (mean = 2.704) has
the lowest score amongst the six groups. The score of the second group (mean = 3.203) is higher than that of the first group but lower than the third group. The score of the third group (mean = 3.560) is higher than those of the first and the second groups but lower than that of the fourth group. The remaining groups show the same context. The statistical validation results indicate that the PFDOSM results of the COVID-19 vaccine distribution extended by group are valid and systematically ranked.

5.2 Sensitivity analysis evaluation

In this second evaluation process, the sensitivity of the proposed homogeneous Pythagorean fuzzy decision-making framework was analysed against the changing criteria weight. The sensitivity analysis was used to predict the impact of the changing criteria weights on the systematic ranking results of the vaccine distribution results. In sensitivity analysis, the most important criterion should be initially identified. In this study, amongst the five criteria, age was the most important criterion (0.241). Then, nine different scenarios generated from the relative value of the criteria weight were computed according to Eq. (14) to examine the effect of the changing criteria weights [99]. The relative change for each criterion over the most important one (age) was computed using the elasticity coefficient (α_c, Table 21).

\[
O_{p_Lag} = \{ (v_j \otimes \hat{v}_j) | j = 1.2.3....m \},
\]

where:

- w_s is the higher significant contribution,
- w^s represents the original weight values computed using PFWZIC,
- W^s is the total of original weights for the changing criteria weight values, and
- Δx is the range of change applied to the five criteria weight values to represent the limit values of the most significant criterion in this study (age), i.e. $-0.2411 \leq \Delta x \leq 0.7589$.

Criteria	C1	C2	C3	C4	C5
α_c	0.2716	0.2708	0.3177	0.2375	0.2201

The interval range of Δx ($-0.2411 \leq \Delta x \leq 0.7589$) was used to generate the nine new weighting values for each criterion, and it was implemented by splitting them into nine equal relative values based on the number of scenarios (Table 22).

Scenarios	C1	C2	C3	C4	C5
PFWZIC	0.2061	0.2055	0.2411	0.1802	0.1670
S1	0.2716	0.2708	0.0000	0.2375	0.2201
S2	0.2376	0.2370	0.1250	0.2078	0.1926
S3	0.2037	0.2031	0.2500	0.1781	0.1651
S4	0.1697	0.1693	0.3750	0.1484	0.1375
S5	0.1358	0.1354	0.5000	0.1187	0.1100
S6	0.1018	0.1016	0.6250	0.0891	0.0825
S7	0.0679	0.0677	0.7500	0.0594	0.0550
S8	0.0339	0.0339	0.8750	0.0297	0.0275
S9	0.0000	0.0000	1.0000	0.0000	0.0000

These nine new weight values are employed to assess the sensitivity of the 300 vaccine recipients’ prioritisations to the changing criteria weights. Figure 3 illustrates the influences the changes in the criteria weights of the first five ranks only. These changes are similarly shown for the rest of the ranks. The criteria weights play a vital role in changing the priority of each vaccine recipient. These nine scenario results support the research assertion about the
significant contribution of the five criteria considered in this study. Notably, although the change is logical and expected, the consistency of the results in most of the nine scenarios proves the efficiency of the proposed integration framework in handling sensitive cases with a big dataset and producing supporting results for the systematic ranking outcomes.

Figure 3: Sensitivity analysis of the first five vaccine recipients’ ranking in the nine scenarios

A comparison of the five ranks (VR-281, VR-221, VR-206, VR-274 and VR-189 in Figure 3) revealed that the highest five potential vaccine recipients exceed the age of 59 years, have a chronic disease, have a disability condition and are from the orange and red geographical locations. When the changing weights were assigned to each scenario, VR-281 maintained the first rank amongst the eight scenarios but ranked second only in S9. This finding can be explained by the chronic disease condition and the vaccine recipient memberships, which represent the second and third most important criteria and previously recorded as the high data values for VR-281. Similarly, for VR-221, the data were consistent during the weight change (S1 to S6), whereas a drop to the third rank was apparent (S7 to S9). The following two ranks (VR-206 and VR-274) show a bouncing effect towards the weight changing of the criteria with respect to the nine scenarios. VR-189 notably dropped from the fifth rank to eighth and seventh ranks in S1 and S2, respectively. This finding can be attributed to the chronic disease condition and the vaccine recipient membership, which represent the second and third most important criteria, and they recorded low data values for VR-189. The findings further imply that weight would increase the rank, but the age weight would cause its drop. However, this relationship could boost the first three rankings when the age weight is increased in contrast to the scenarios of the other criteria (S4 to S9). Thus, the sensitivity of the priority ranks is influenced by the changing of the criteria weights and the data record of each vaccine recipient with a corresponding criteria importance level. Finally, the Spearman correlation coefficient (SCC) was employed to statistically evaluate the relationships amongst the results of the nine scenarios [99]. Figure 4 shows the high-level correlation results of the nine scenarios for all 300 vaccine recipients.
Figure 4: Correlation of ranks of the nine scenarios for all 300 vaccine recipients

Figure 4 illustrates the correlation analytical results of the vaccine recipients’ ranking for the nine scenarios based on the obtained correlation values (Figure 4). The correlation of the ranks is high in all scenarios. In particular, the SCC values exceed 0.9930 in all nine scenarios. Then, the mean value of the SCC for the nine scenarios of the 300 vaccine recipients was computed, obtaining a result of 0.9978. This high correlation value indicates a significant correlation of the ranks' outcomes, and it supports the systematic ranking results in Table 20.

5.3 Comparison analysis

In this assessment, the comparison analysis of the related work is discussed from two aspects.

Theoretically, the importance level of each vaccine distribution criterion is a critical issue in vaccine distribution, but limited vaccine doses should also be prioritised amongst the vaccine recipients. The proposed new dynamic methodology for prioritising the vaccine distribution is an important tool. This dynamic methodology was formulated by integrating FWZIC and FDOSM under a Pythagorean fuzzy environment. Compared with the non-standard fuzzy set (i.e. IFS), the Pythagorean fuzzy environment can more efficiently handle the membership degrees of the expert preferences by reducing the vagueness and imprecision and increasing the accuracy of the final decision making, which takes into account the differences between membership and non-membership degrees [56, 58, 59]. PFN can enhance the capability of handling the (µ) membership and (ν) non-membership cases when the summation of the membership and non-membership values is greater than 1, which is the most common real-world problem and even relevant in this case study. The intuitionistic fuzzy set fails to satisfy the condition (µ + ν ≤ 1) when the summation of the (µ) membership and (ν) non-membership is greater than 1 [58]. Thus, the proposed homogeneous Pythagorean fuzzy framework is more efficient than the other approaches.

Practically, a previous study [10] proposed an integration framework based on the fuzzy AHP-TOPSIS to prioritise certain groups in the society, but it ignored the vaccine recipients’ records that could highly affect the prioritisation level for certain recipients of the immediate group. The AHP’s inconsistency problem was apparent amongst the criteria weights, indicating that a fair distribution process could not be guaranteed. Moreover, the distance measurement between the best solution (i.e. ideal solution) and all other alternatives was considered an issue in TOPSIS because it is dependent on two references (i.e. positive and negative ideal solution). The best alternative should have the longest distance from the negative ideal solution and the nearest distance to the positive ideal solution. However, this distance ratio cannot fully ensure the closeness to the ideal solution [50]. This study has succeeded in providing a dynamic distribution mechanism for prioritising the vaccine distribution as it not only focuses on the distribution criteria but also considers the details of the dataset. Moreover, the proposed integration of a new formulation of the PFWZIC and PFDSOM methods can provide a dynamic distribution mechanism for
prioritising the vaccine distribution, successfully overcoming the inconsistency problem and the distance measurement presented in the previous studies.

6. Summary points
The summary points of this study are as follows.

Multicriteria requirements for COVID-19 vaccine distribution
The multicriteria requirements for COVID-19 vaccine distribution are identified to eliminate the possibility of random distribution of vaccine doses. This study identifies new criteria characteristics for allocating the COVID-19 vaccine doses by utilising a multi-risk criteria methodology. In this scheme, the differentiations amongst population samples can be highlighted.

New dataset paths for COVID-19 vaccine recipients
Interesting results are generally observed in terms of distribution, and the initial ranking results can sufficiently guarantee that most critical vaccine recipients had been included within the top priority rank. The limited data of COVID-19 vaccine recipients are a valid concern according to the literature. The results of this study were based on the identification of a set of criteria (i.e. beliefs from the knowledge domain) to produce and generate a dataset comprising 300 population samples.

DM of COVID-19 vaccine distribution
The vaccine recipients were evaluated and differentiated on the basis of the proposed DM. The findings can provide solid guidelines in formulating a novel methodology of prioritising COVID-19 vaccine distribution. Moreover, the identified criteria and the generated dataset are considered in the proposed DM.

Dynamic distribution mechanism
This study presented a dynamic distribution mechanism for COVID-19 vaccine doses based on a novel homogeneous Pythagorean fuzzy decision-making framework. Firstly, the PFWZIC was used as a regulated method to assign weights for a number of criteria according to the selected cases and the distribution strategies of the affected countries. Secondly, the PFDOSM method was used to dynamically adjust the vaccine dose allocations to fit the requirements or situations of the different memberships. This framework could automatically rank and eliminate the common gaps in distribution. We expect many countries to eventually use the presented methodology and view it as an urgent approach.

7. Conclusion
The complexity of the COVID-19 vaccine distribution can be solved by using a dynamic distribution framework for COVID-19 vaccine based on the integration of the extended PFWZIC and PFDOSM. The proposed methodology involves two phases, namely, the identification and development processes (Figure 1). The ranking of vaccine recipients was conducted in the individual and group contexts. The result was an inductive methodology based on the use of detailed ranking procedures, which were then adopted for analysing the data presented within each phase. The evaluation process based on the systematic ranking and sensitive analyses was used to assess the rank process. We believe that this study is a useful guide for researchers and practitioners, and it can provide direction and valuable information to future research. However, this study has two limitations. (1) The COVID-19 vaccine distribution was resulted on the bases of using one aggregation operator only. (2) This study has used one defuzzification technique only in both PFDOSM and PFWZIC methods. Several future directions are recommended: (1) presenting and processing a huge dataset of COVID-19 vaccine recipients by considering all probabilities for each alternative and distribution criteria; (2) performing the proposed MCDM method based on two levels: firstly, each vaccine recipient membership (i.e. frontline health workers, key workers and frontline staff employees and none or both children and homemakers will be prioritised, and secondly, each alternative within each membership will be prioritised, followed by accumulating them effectively. This direction might investigate other distribution criteria and their effectiveness including the family income and nutritional habits; and (3) several fuzzy types, such as interval type-2 hesitant fuzzy sets [100], intuitionistic and interval-valued approaches[101] and the neutrosophic [99] and spherical [102] types, can be adopted in FDOSM and/or FWZIC to effectively overcome the uncertainty limitation.
Conflict of Interest
The authors declare that they have no conflict of interest.

Acknowledgment
The authors are grateful to the Universiti Pendidikan Sultan Idris, Malaysia for funding this study under UPSI SIG Grant No. 2020–0150–109–01.

References
[1] Williamson, E. J., Walker, A. J., Bhaskaran, K., Bacon, S., Bates, C., Morton, C. E., ... & Goldacre, B. (2020). Factors associated with COVID-19-related death using OpenSAFELY. Nature, 584(7821), 430-436.
[2] Ornell, F., Schuch, J. B., Sordi, A. O., & Kessler, F. H. P. (2020). “Pandemic fear” and COVID-19: mental health burden and strategies. Brazilian Journal of Psychiatry, 42(3), 232-235.
[3] Aleta, A., Martin-Corra, D., y Piontti, A. P., Ajelli, M., Litvinova, M., Chinazzi, M., ... & Moreno, Y. (2020). Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nature Human Behaviour, 4(9), 964-971.
[4] E. J. Emanuel et al., An ethical framework for global vaccine allocation. Science, 369(6509), 1309-1312.
[5] Liburd, L. C., Hall, J. E., Mpfou, J. J., Williams, S. M., Bouye, K., & Penman-Aguilar, A. (2020). Addressing health equity in public health practice: frameworks, promising strategies, and measurement considerations. Annual review of public health, 41, 417-432.
[6] Albahri, A. S., Hamid, R. A., Alwan, J. K., Al-Qays, Z. T., Zaidan, A. A., Zaidan, B. B., ... & Madhloom, H. T. (2020). Role of biological data mining and machine learning techniques in detecting and diagnosing the novel coronavirus (COVID-19): a systematic review. Journal of medical systems, 44, 1-11.
[7] Albahri, O. S., Al-Obaidi, J. R., Zaidan, A. A., Albahri, A. S., Zaidan, B. B., Salih, M. M., ... & Zulkifli, C. Z. (2020). Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. Computer methods and programs in biomedicine, 196, 105617.
[8] Albahri, A. S., Al-Obaidi, J. R., Zaidan, A. A., Albahri, O. S., Hamid, R. A., Zaidan, B. B., ... & Hashim, M. (2020). Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and group VIKOR methods. International Journal of Information Technology & Decision Making, 19(05), 1247-1269.
[9] del Carmen Munguía-López, A., & Ponce-Ortega, J. M. (2020). Fair allocation of potential COVID-19 vaccines using an optimization-based strategy.
[10] Hezam, I. M., Nayeem, M. K., Foul, A., & Alrasheedi, A. F. (2021). COVID-19 Vaccine: A neutrosophic MCDM approach for determining the priority groups. Results in physics, 20, 103654.
[11] Dooling, K. (2020). COVID-19 vaccine prioritization: Work Group considerations.
[12] Kim, J. H., Marks, F., & Clemens, J. D. (2021). Looking beyond COVID-19 vaccine phase 3 trials. Nature medicine, 27(2), 205-211.
[13] Painter, E. M., Üssery, E. N., Patel, A., Hughes, M. M., Zell, E. R., Moulia, D. L., ... & Messonnier, N. E. (2021). Demographic characteristics of persons vaccinated during the first month of the COVID-19 vaccination program—United States, December 14, 2020–January 14, 2021. Morbidity and mortality weekly report, 70(5), 174.
[14] World Health Organization. (2020). WHO SAGE values framework for the allocation and prioritization of COVID-19 vaccination, 14 September 2020 (No. WHO/2019-nCoV/SAGE_Framework/Allocation_and_prioritization/2020.1). World Health Organization.
[15] Bubar, K. M., Reinholdt, K., Kissler, S. M., Lipsitch, M., Cobey, S., Grad, Y. H., & Larremore, D. B. (2021). Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science, 371(6532), 916-921.
[16] Chen, T., Wang, Y. C., & Wu, H. C. (2021, January). Analyzing the impact of vaccine availability on alternative supplier selection amid the COVID-19 pandemic: a cFGM-FTOPSIS-FWI approach. In Healthcare (Vol. 9, No. 1, p. 71). Multidisciplinary Digital Publishing Institute.
[17] Dizbay, I. E., & Öztürkoğlu, Ö. (2020, July). Determining significant factors affecting vaccine demand and factor relationships using fuzzy DEMATEL method. In International Conference on Intelligent and Fuzzy Systems (pp. 682-689). Springer, Cham.
[18] Koirala, A., Joo, Y. J., Khatami, A., Chiu, C., & Britton, P. N. (2020). Vaccines for COVID-19: The current state of play. Paediatric respiratory reviews, 35, 43-49.
[19] Wu, J. Z., & Tiao, P. J. (2018). A validation scheme for intelligent and effective multiple criteria decision-making. Applied Soft Computing, 68, 866-872.
[20] Albahri, O. S., Albahri, A. S., Mohammed, K. I., Zaidan, A. A., Zaidan, B. B., Hashim, M., & Salman, O. H. (2018). Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: Taxonomy, open challenges, motivation and recommendations. Journal of medical systems, 42(5), 1-27.
[21] Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., Yas, Q. M., & Hashim, M. (2018). A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: coherent taxonomy, open issues and recommendation pathway solution. Health and Technology, 8(4), 223-238.
[22] Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Hashim, M., Albahri, A. S., & Alsalem, M. A. (2018). Real-time remote health-monitoring Systems in a Medical Centre: A review of the provision of healthcare services-based body sensor information, open challenges and methodological aspects. Journal of medical systems, 42(9), 1-47.
[23] Akram, M., Shahzadi, G., & Ahmadini, A. A. H. (2020). Decision-making framework for an effective sanitizer to reduce COVID-19 under fermatean fuzzy environment. Journal of Mathematics, 2020.
[24] Shahzadi, G., & Akram, M. (2021). Group decision-making for the selection of an antivirus mask under fermatean fuzzy soft information. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-16.
[25] Garg, H., Shahzadi, G., & Akram, M. (2020). Decision-making analysis based on Fermatean fuzzy Yager aggregation operators with application in COVID-19 testing facility. Mathematical Problems in Engineering, 2020.
[26] Ju, Y., & Wang, A. (2012). Emergency alternative evaluation under group decision makers: A method of incorporating DS/AHP with extended TOPSIS. Expert Systems with Applications, 39(1), 1315-1323.
[27] Albahri, A. S., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., & Alsalem, M. A. (2018). Real-time fault-tolerant mHealth system: Comprehensive review of healthcare services, opens issues, challenges and methodological aspects. Journal of medical systems, 42(8), 1-56.
[28] Enaizan, O., Zaidan, A. A., Alwi, N. M., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Albahri, A. S. (2020). Electronic medical record systems: Decision support examination framework for individual, security and privacy concerns using multi-perspective analysis. Health and Technology, 10(3), 795-822.
[29] Albahri, O. S., Zaidan, A. A., Albahri, B. B., Abdulkareem, K. H., Al-Qaysi, Z. T., & Rashid, N. A. (2020). Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. Journal of infection and public health.
[30] Albahri, A. S., Hamid, R. A., Albahri, O. S., & Zaidan, A. A. (2021). Detection-based prioritisation: Framework of multi-laboratory characteristics for asymptomatic COVID-19 carriers based on integrated Entropy–TOPSIS methods. Artificial intelligence in medicine, 111, 101983.
[31] Oliveira, M., Fontes, D. B., & Pereira, M. T. R. (2013). Multicriteria decision making: A case study in the automobile industry.
[32] Alsalem, M. A., Zaidan, A. A., Zaidan, B. B., Hashim, M., Albahri, O. S., Albahri, A. S., & Mohammed, K. I. (2018). Systematic review of an automated multiclass detection and classification system for acute Leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects. Journal of medical systems, 42(11), 1-36.
[33] Albahri, O. S., Albahri, A. S., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Mohsin, A. H., & Shareef, A. H. (2019). Fault-tolerant mHealth framework in the context of IoT-based real-time wearable health data sensors. IEEE Access, 7, 50052-50080.
[34] Albahri, A. S., Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Hashim, M., Alsalem, M. A., & Baqer, M. J. (2019). Based multiple heterogeneous wearable sensors: A smart real-time health monitoring structured for hospitals distributor. IEEE access, 7, 37269-37323.
[35] Mohammed, T. J., Albahri, A. S., Zaidan, A. A., Albahri, O. S., Al-Obaidi, J. R., Zaidan, B. B., & Hadi, S. M. (2021). Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component. Applied Intelligence, 51(5), 2956-2987.
[36] Xu, Z., & Zhang, X. (2013). Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information. Knowledge-Based Systems, 52, 53-64.
[37] Jahanshahloo, G. R., Lotfi, F. H., & Izadikhah, M. (2006). Extension of the TOPSIS method for decision-making problems with fuzzy data. Applied mathematics and computation, 181(2), 1544-1551.
[38] Esquinas-Requena, J. L., Lozoya-Moreno, S., García-Nogueras, I., Atienzar-Núñez, P., Sánchez-Jurado, P. M., & Abizanda, P. (2020). La anemia aumenta el riesgo de mortalidad debido a fragilidad y discapacidad en mayores: Estudio FRADEA. Atención Primaria, 52(7), 452-461.

[39] Javadian, N., Kazemi, M., Khaksar-Haghani, F., Amiri-Aref, M., & Kia, R. (2009, December). A general fuzzy TOPSIS based on New Fuzzy positive and negative ideal solution. In 2009 IEEE International Conference on Industrial Engineering and Engineering Management (pp. 2271-2274). IEEE.

[40] Aghaie, H., Shafieezadeh, S., & Moshiri, B. (2011, May). A new modified fuzzy TOPSIS for group decision making using fuzzy majority opinion based aggregation. In 2011 19th Iranian Conference on Electrical Engineering (pp. 1-6). IEEE.

[41] Mohammed, K. I., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, A. S., ... & Hashim, M. (2019). Real-time remote-health monitoring systems: a review on patients prioritisation for multiple-chronic diseases, taxonomy analysis, concerns and solution procedure. Journal of medical systems, 43(7), 1-21.

[42] Alsalem, M. A., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alamoodi, A. H., Albahri, A. S., ... & Mohammed, K. I. (2019). Multiclass benchmarking framework for automated acute Leukaemia detection and classification based on BWM and group-VIKOR. Journal of medical systems, 43(7), 1-32.

[43] Alaa, M., Albakri, I. S. M. A., Singh, C. K. S., Hammed, H., Zaidan, A. A., Zaidan, B. B., ... & Jasim, A. N. (2019). Assessment and ranking framework for the English skills of pre-service teachers based on fuzzy Delphi and TOPSIS methods. IEEE Access, 7, 126201-126223.

[44] Napi, N. M., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., & Albahri, A. S. (2019). Medical emergency triage and patient prioritisation in a telemedicine environment: a systematic review. Health and Technology, 9(5), 679-700.

[45] Kubler, S., Robert, J., Derigent, W., Voisin, A., & Le Traon, Y. (2016). A state-of-the-art survey & testbed of fuzzy AHP (FAHP) applications. Expert Systems with Applications, 65, 398-422.

[46] Almahdi, E. M., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Albahri, A. S. (2019). Mobile-based patient monitoring systems: A prioritisation framework using multi-criteria decision-making techniques. Journal of medical systems, 43(7), 1-19.

[47] Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., Albahri, A. S., & Qahtan, M. Y. (2020). Multi-agent learning neural network and Bayesian model for real-time IoT skin detectors: a new evaluation and benchmarking methodology. Neural Computing and Applications, 32(12), 8315-8366.

[48] Mohammed, K. I., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., & Mohsin, A. H. (2020). Novel technique for reorganisation of opinion order to interval levels for solving several instances representing prioritisation in patients with multiple chronic diseases. Computer methods and programs in biomedicine, 185, 105151.

[49] Almahdi, E. M., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Chen, J., Chyad, M. A., ... & Aleesa, A. M. (2021). Machine learning-based imputation soft computing approach for large missing scale and non-reference data imputation. Chaos, Solitons & Fractals, 151, 112336.

[50] Salih, M. M., Zaidan, B. B., & Zaidan, A. A. (2020). Fuzzy decision by opinion score method. Applied Soft Computing, 96, 106595.

[51] Salih, M. M., Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Jumaah, F. M., & Albahri, A. S. (2021). Benchmarking of AQM methods of network congestion control based on extension of interval type-2 trapezoidal fuzzy decision by opinion score method. Telecommunication Systems, 77(3), 493-522.

[52] Albahri, O. S., Zaidan, A. A., Salih, M. M., Zaidan, B. B., Khatari, M. A., Ahmed, M. A., ... & Alazab, M. (2021). Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. International Journal of Intelligent Systems, 36(2), 796-831.

[53] Abdullah, L., & Goh, P. (2019). Decision making method based on Pythagorean fuzzy sets and its application to solid waste management. Complex & Intelligent Systems, 5(2), 185-198.

[54] Feng, Y., Wang, X., Wang, Y., & Wang, D. (2016, July). Flow distribution strategy in heterogeneous networks based on satisfaction. In 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 966-971). IEEE.

[55] Yager, R. R. (2013). Pythagorean membership grades in multicriteria decision making. IEEE Transactions on Fuzzy Systems, 22(4), 958-965.

[56] Akram, M., & Ali, G. (2020). Hybrid models for decision-making based on rough Pythagorean fuzzy bipolar soft information. Granular Computing, 5(1), 1-15.
Zhang, X. (2016). A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. International Journal of Intelligent Systems, 31(6), 593-611.

Akram, M., & Naz, S. (2018). Energy of Pythagorean fuzzy graphs with applications. Mathematics, 6(8), 136.

Wang, L., & Li, N. (2020). Pythagorean fuzzy interaction power Bonferroni mean aggregation operators in multiple attribute decision making. International Journal of Intelligent Systems, 35(1), 150-183.

A. A. Zaidan. (2021). New Extension of Pythagorean Fuzzy Opinion Score Method based on Power Bonferroni Mean Operator for Evaluating and Benchmarking the Sign Language Recognition Systems. Applied Soft Computing, 45(2), 151-166.

Mohammed, R. T., Zaidan, A. A., Yaakob, R., Sharef, N. M., Abdullah, R. H., Zaidan, B. B., ... & Abdulkareem, K. H. (2021). Determining importance of many-objective optimisation competitive algorithms evaluation criteria based on a novel fuzzy-weighted zero-inconsistency method. International Journal of Information Technology & Decision Making, 1-47.

Krishnan, E., Mohammed, R., Alnoor, A., Albahri, O. S., Zaidan, A. A., Alsattar, H., ... & Alazab, M. (2021). Interval type 2 trapezoidal-fuzzy weighted with zero inconsistency combined with VIKOR for evaluating smart e-tourism applications. International Journal of Intelligent Systems.

Persad, G., Peek, M. E., & Emanuel, E. J. (2020). Fairly prioritizing groups for access to COVID-19 vaccines. Jama, 324(16), 1601-1602.

Buckner, J. H., Chowell, G., & Springborn, M. R. (2020). Optimal dynamic prioritization of scarce COVID-19 vaccines. medRxiv.

Subbaraman, N. (2020). Who gets a COVID vaccine first? Access plans are taking shape. Nature, 585(7826), 492-493.

Nguyen, L. H., Drew, D. A., Graham, M. S., Joshi, A. D., Guo, C. G., Ma, W., ... & Zhang, F. (2020). Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. The Lancet Public Health, 5(9), e475-e483.

Vijayaprabakaran, K., Sathiymurthy, K., & Ponniamma, M. (2020). Video-Based Human Activity Recognition for Elderly Using Convolutional Neural Network. International Journal of Security and Privacy in Pervasive Computing (IJSPPC), 12(1), 36-48.

Boyle, C. A., Fox, M. H., Havercamp, S. M., & Zubler, J. (2020). The public health response to the COVID-19 pandemic for people with disabilities. Disability and Health Journal, 13(3), 100943.

Ward, H., Atchison, C., & Whitaker, M. Antibody prevalence for SARS-CoV-2 following the peak of the pandemic in England: REACT2 study in 100,000 adults. Aug 12, 2020.

Cadogan, C. A., & Hughes, C. M. (2021). On the frontline against COVID-19: Community pharmacists’ contribution during a public health crisis. Research in Social and Administrative Pharmacy, 17(1), 2032-2035.

Subasi, A., Radhwan, M., Kurdi, R., & Khateeb, K. (2018, February). IoT based mobile healthcare system for human activity recognition. In 2018 15th learning and technology conference (L&T) (pp. 29-34). IEEE.

Albahri, A. S., Alwan, J. K., Taha, Z. K., Ismail, S. F., Hamid, R. A., Zaidan, A. A., ... & Alsaleem, M. A. (2021). IoT-based telemedicine for disease prevention and health promotion: State-of-the-Art. Journal of Network and Computer Applications, 173, 102873.

Sherwani, S., & Khan, M. W. A. (2020). Cytokine response in SARS-CoV-2 infection in the Elderly. Journal of Inflammation Research, 13, 737.
Mueller, A. L., McNamara, M. S., & Sinclair, D. A. (2020). Why does COVID-19 disproportionately affect older people?. Aging (Albany NY), 12(10), 9959.

Boyle, C. A., Fox, M. H., Havercamp, S. M., & Zubler, J. (2020). The public health response to the COVID-19 pandemic for people with disabilities. Disability and Health Journal, 13(3), 100943.

del Carmen Munguía-López, A., & Ponce-Ortega, J. M. (2020). Fair allocation of potential COVID-19 vaccines using an optimization-based strategy.

Arqub, O. A. (2017). Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Computing and Applications, 28(7), 1591-1610.

Arqub, O. A., Al-Smadi, M., Momani, S., & Hayat, T. (2017). Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Computing, 21(23), 7191-7206.

Arqub, O. A., Mohammed, A. S., Momani, S., & Hayat, T. (2016). Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Computing, 20(8), 3283-3302.

Mohd, W. W., Abdullah, L., Yusoff, B., Taib, C. M. I. C., & Merigo, J. M. (2019). An integrated MCDM model based on Pythagorean fuzzy sets for green supplier development program. Malaysian Journal of Mathematical Sciences, 13, 23-37.

Peng, X., & Yang, Y. (2016). Pythagorean fuzzy Choquet integral based MABAC method for multiple attribute group decision making. International Journal of Intelligent Systems, 31(10), 989-1020.

Wei, G., & Lu, M. (2018). Pythagorean fuzzy power aggregation operators in multiple attribute decision making. International Journal of Intelligent Systems, 33(1), 169-186.

Peng, X., & Yang, Y. (2015). Some results for Pythagorean fuzzy sets. International Journal of Intelligent Systems, 30(11), 1133-1160.

Akram, M., Dudek, W. A., & Ilyas, F. (2019). Group decision-making based on pythagorean fuzzy TOPSIS method. International Journal of Intelligent Systems, 34(7), 1455-1475.

Wei, G. W. (2019). Pythagorean fuzzy Hamacher power aggregation operators in multiple attribute decision making. Fundamenta Informaticae, 166(1), 57-85.

Salih, M. M., Zaidan, B. B., & Zaidan, A. A. (2020). Fuzzy decision by opinion score method. Applied Soft Computing, 96, 106595.

Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., Albahri, O. S., & Albahri, A. S. (2018). Based on real time remote health monitoring systems: a new approach for prioritization “large scales data” patients with chronic heart diseases using body sensors and communication technology. Journal of medical systems, 42(4), 1-37.

Abulkareem, K. H., Arbaiy, N., Zaidan, A. A., Albahri, O. S., Alsalem, M. A., & Salih, M. M. (2020). A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. International Journal of Information Technology & Decision Making, 19(03), 909-957.

Abulkareem, K. H., Arbaiy, N., Zaidan, A. A., Albahri, B. B., AlAlbahi, O. S., Alsalem, M. A., & Salih, M. M. (2021). A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods. Neural Computing and Applications, 33, 1029-1054.

Zughoul, O., Zaidan, A. A., Albahri, B. B., AlAlbahi, O. S., Alazab, M., Amomeni, U., ... & Amomeni, B. (2021). Novel triplex procedure for ranking the ability of software engineering students based on two levels of AHP and group TOPSIS techniques. International Journal of Information Technology & Decision Making (IJITDM), 20(01), 67-135.

Khatari, M., Zaidan, A. A., Albahri, B. B., AlAlbahi, O. S., Alsalem, M. A., & Albahri, A. S. (2021). Multidimensional benchmarking framework for AQMs of network congestion control based on AHP and Group-TOPSIS. International Journal of Information Technology & Decision Making, 1-38.

Mohammed, K. I., Jaafar, J., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., Abulkareem, K. H., ... & AlAlmoody, A. H. (2020). A uniform intelligent prioritisation for solving diverse and big data generated from multiple chronic diseases patients based on hybrid decision-making and voting method. IEEE Access, 8, 91521-91530.

Abulkareem, K. H., Arbaiy, N., Zaidan, A. A., Albahri, B. B., AlAlbahi, O. S., Alsalem, M. A., & Salih, M. M. (2020). A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. International Journal of Information Technology & Decision Making, 19(03), 909-957.
[99] Pamucar, D., Yazdani, M., Obradovic, R., Kumar, A., & Torres-Jiménez, M. (2020). A novel fuzzy hybrid neutrosophic decision-making approach for the resilient supplier selection problem. International Journal of Intelligent Systems, 35(12), 1934-1986.

[100] Karaaslan, F., & Özlü, Ş. (2020). Correlation coefficients of dual type-2 hesitant fuzzy sets and their applications in clustering analysis. International Journal of Intelligent Systems, 35(7), 1200-1229.

[101] Xian, S., Yin, Y., Xue, W., & Xiao, Y. (2018). Intuitionistic fuzzy interval-valued linguistic entropic combined weighted averaging operator for linguistic group decision making. International Journal of Intelligent Systems, 33(2), 444-460.

[102] Gül, S. (2020). Spherical fuzzy extension of DEMATEL (SF-DEMATEL). International Journal of Intelligent Systems, 35(9), 1329-1353.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects
Corresponding author

Name: prof Dr. Aws Alaa Zaidan (A.A.Zaidan)
Affiliation: Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
Tel.: +60185712175
E-mail address: aws.alaa@gmail.com / aws.alaa@fskik.upsi.edu.my

Conflict of Interest

The authors have declared no conflict of interest

Corresponding author

A.A.Zaidan