Stabilization of three-dimensional charge order through interplanar orbital hybridization in Pr$_x$Y$_{1-x}$Ba$_2$Cu$_3$O$_6+\delta$

Alejandro Ruiz1,14, Brandon Gunn1,14, Yi Lu2,3, Kalyan Sasmal1, Camilla M. Moir1, Rourav Basak1, Hai Huang1,13, Jun-Sik Lee4, Fanny Rodolakis5, Timothy J. Boyle6,7, Morgan Walker8, Yu He8, Santiago Blanco-Canosa9,10, Eduardo H. da Silva Neto6,7,11, M. Brian Maple1 & Alex Frano1,12

The shape of 3d-orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the $d_{x^2−y^2}$ orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders. Using Cu L_3 and Pr M_5 resonant x-ray scattering and first-principles calculations, we report a highly correlated three-dimensional charge order in Pr-substituted YBa$_2$Cu$_3$O$_7$, where the Pr f-electrons create a direct orbital bridge between CuO$_2$ planes. With this we demonstrate that interplanar orbital engineering can be used to surgically control electronic phases in correlated oxides and other layered materials.

The cuprate phase diagram illustrates a quintessential example of a low-dimensional correlated quantum system: a multitude of fascinating electronic phases, including spin-density waves, charge and nematic order, and high-temperature superconductivity (SC), emanating from the combination of complex interactions that govern a simple two-dimensional (2D) chemical structure — the CuO$_2$ planes. These interactions within the CuO$_2$ planes are largely influenced by the underlying characteristics of the anisotropic, planar Cu 3$d_{x^2−y^2}$ orbitals, which dominate the density of states near the Fermi surface due to a sizeable energy splitting of the e_g orbitals. The 2D character of the surviving $d_{x^2−y^2}$ orbital is directly observable in transport measurements, evidenced by its anisotropic electrical and thermal conductances, for example. The 2D character of the system is also observable in scattering measurements, where the lack of coupling pathways between adjacent planes can yield overwhelmingly broad scattering peaks along \mathbf{L} in reciprocal space. Understanding how the dimensionality of the orbital degrees of freedom affect the stability and interplay of these phases could reveal important information about the mechanism of superconductivity with broader applications for modifying the characteristics of correlated oxides and layered materials via orbital engineering.

Among the most important cases of this interplay is the phenomenon of charge order (CO), a phase that is closely interconnected with SC. Incommensurate CO exists in all superconducting cuprates.

1Department of Physics, Center for Advanced Nanoscience, University of California, San Diego, CA 92093, USA. 2National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 210093 Nanjing, China. 3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, China. 4Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. 5Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA. 6Department of Physics, University of California, Davis, CA 95616, USA. 7Department of Physics, Yale University, New Haven, CT 06520, USA. 8Department of Applied Physics, Yale University, New Haven, CT 06511, USA. 9Donostia International Physics Center, DIPC, 20018 Donostia-San Sebastian, Basque Country, Spain. 10IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain. 11Energy Sciences Institute, Yale University, West Haven, CT 06516, USA. 12Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada. 13Present address: Department of Materials Science, Fudan University, 200433 Shanghai, China. 14These authors contributed equally: Alejandro Ruiz, Brandon Gunn. e-mail: afrano@ucsd.edu
as a 2D electronic phenomenon hosted in the CuO$_2$ planes, reflecting the weak interplanar coupling of the planar Cu 3$d_{x^2−y^2}$ orbitals. In diffraction experiments, the 2D character is evidenced by a reciprocal space ‘rod’ that is broad along the out-of-plane direction (Miller index L), and maximized at half-integer values of L due to a weak, but out-of-phase, coupling between adjacent planes19. The strength of this interplanar coupling can be further quantified by extracting the correlation lengths from the widths of the scattered CO peaks along L. In YBa$_2$Cu$_3$O$_{6.5}$ (YBCO), the highest reported out-of-plane correlation length (10 Å) is nearly an order of magnitude smaller than the highest reported in-plane correlation length (95 Å)9, highlighting the 2D nature of the CO phase. It is not clear whether disorder$^{20−22}$ or the low dimensionality of the underlying Cu 3$d_{x^2−y^2}$ orbitals intrinsically limits the out-of-plane correlation length, or if the CO could, in principle, develop into a truly long-range order, as suggested by recent experiments$^{23−25}$.

It has since been observed that the application of certain perturbations – high magnetic fields4,21,22, epitaxial strain in thin films26, or uniaxial strain27,28 – can induce a CO phase with three-dimensional (3D) coherence. Upon the application of these external influences, a second CO peak emerges, this time centered at integer L-values, evidencing an out-of-plane coupling that locks the phase of adjacent CuO$_2$ planes. The 3D CO peaks have significantly increased out-of-plane correlation lengths, achieving up to 55 Å23, 61 Å26, and 94 Å27, respectively. All of these 3D CO correlation lengths are still considerably shorter than the typical crystalline c-axis correlation lengths found in this compound. Furthermore, the 2D rod centered at half-integer L-values gets enhanced upon applying the external influences, showing a persistent coexistence of the 3D and 2D COs. While it is easy to discern the 2D nature of the unperturbed CO upon consideration of the underlying planar Cu 3$d_{x^2−y^2}$ orbitals, the mechanisms by which these external perturbations are able to induce a 3D CO peak remain unclear. Moreover, the in situ application of these perturbations presents complicated technical challenges that preclude many experimental techniques altogether, making it difficult to systematically investigate how the dimensionality of the CO can be tuned and obscuring its connection with SC. Taking an orthogonal route, we hypothesized that 3D CO could instead be stabilized by virtue of tuning the underlying orbital character via hybridization to more directly enhance the out-of-plane coupling between adjacent CuO$_2$ plane layers.

Here we show that, by substituting Pr on the Y sites in Pr$_x$Y$_{1−x}$Ba$_2$Cu$_3$O$_y$ (Pr-YBCO) (Fig. 1a), a highly correlated 3D CO state can be stabilized with an out-of-plane correlation length of - 364 Å (Fig. 1b), a number that is bound by the crystalline correlation length, within our experimental resolution. This material was chosen because substitution by Pr, which is the largest trivalent rare-earth ion, except for Ce which does not form the YBCO structure29, results in the emergence of hybridization between the Pr 4f orbitals and planar CuO$_2$ states30 that yields an electronically relevant, hybridized orbital31 with spatial extension in three dimensions, in stark contrast to the planar Cu 3$d_{x^2−y^2}$ orbitals that dominate the physics of the parent compound. Unlike substitution by other rare-earth elements, such as Dy, which do not significantly alter the parent YBCO phase diagram32, increasing Pr substitution in the Pr$_x$Y$_{1−x}$Ba$_2$Cu$_3$O$_y$ system continually reduces the superconducting T_c, yielding a pseudogap regime33,34 and eventually an antiferromagnetic insulating phase35,36. Furthermore, the in- and out-of-plane zero-temperature superconducting coherence lengths are substantially longer in Pr-YBCO than in YBCO and increase monotonically with Pr concentration$^{37−41}$. This indicates that SC gains additional 3D character with increasing Pr substitution and has been attributed to increased coupling between CuO$_2$ planes through the bonding with the substituted Pr ions. Various results suggest that localized Pr 4f states are appreciably hybridized with the valence band states of the planar O.\π\n
![Fig. 1 Stabilizing three-dimensional charge order.](image)

We used resonant soft x-ray scattering (RSXS) at the Cu L_3 and Pr M_5 edges to investigate the CO properties in a Pr$_x$Y$_{1−x}$Ba$_2$Cu$_3$O$_y$ sample with $x = 0.3$ and a superconducting $T_c = 50$ K; a concentration value chosen because it features pseudogap behavior, as measured by various probes33,34, and because it yields a T_c similar to underdoped...
YBa$_2$Cu$_3$O$_{6.67}$, a doping level where the CO phase is maximal. Due to not having detwinned samples (Methods section), we cannot determine whether the 3D CO peak is biaxial or uniaxial. If the 3D CO is uniaxial, we cannot determine whether it is located along the H or K reciprocal axis. The location of the 3D CO peak is thereby referred to as being along H or K to reflect this, except for places where the position is labeled simply by K for the sake of readability.

Reciprocal space dependence

A reciprocal space map of the $H L$ or $K L$-plane in reciprocal lattice units (r.l.u.), measured at $T_c = 50$ K at 932.4 eV is shown in Fig. 2a. In eminent contrast to all other reports of 3D CO, no scattered intensity was detected in the vicinity of $L = 1.5$, indicating the apparent absence of 2D CO (see Supplementary Methods). This represents the first unique aspect of our work: to within the limits of our instrumental resolution, we only observe a peak at $L = 1$, suggesting an effective isolation of the CO phase with an out-of-plane coupling.

Further inspection of the 3D CO signal displays a reciprocal space structure that is broad along H or K but narrow along L. X-ray absorption fine structure measurements indicate that, while the Pr ions are relatively well-ordered at the Y sites, there is clear disorder in the CuO$_2$ planes and in the oxygen environment around the Pr$^3+$, which makes the enhancement of the correlation length along the c-axis even more striking. The broad shape of the peak along H or K at $L = 1$, shown in Fig. 2b, is consistent with the broad feature observed in many previous RSXS measurements of CO in cuprates that has been attributed to a fluctuating component in YBCO47, suggesting that the actual static contribution may be narrower than it appears.

Another important feature of our discovery is shown in Fig. 2c, which compares reciprocal space cuts along L close to integer values with K centered at the in-plane CO wavevector. The broadest peak (dark green triangles) displays the data reported for 3D CO induced by high magnetic field4. The next broadest peak (red stars) displays the data for 3D CO induced by epitaxial strain in a thin film35. The next broadest peak (lime green squares) displays the data measured under the application of 1.0% uniaxial strain36, which has yielded 3D CO with the previously highest reported out-of-plane correlation length. The Pr-YBCO 3D CO peak (purple circles) is considerably narrower, yielding a correlation length of ~364 Å. This value is found to be similar to the absorption length for this compound, photon energy (~930 eV), and angle of incidence (~10°). The observable correlation length of the 3D CO may thus be limited by the finite penetration depth being of similar magnitude. We believe this is not a significant factor, however, due to the (002) structural reflection (blue diamonds) having a correlation length that is within the experimental uncertainty of the 3D CO, even though it was measured at higher energy (~1750 eV) and angle of incidence (~38°), both of which contribute to a significantly longer absorption length. This suggests that, in this Pr-YBCO system, the 3D CO peak has a width that is limited by the width of the crystallographic Bragg peaks. The measured ~364 Å thus represents a lower bound on the out-of-plane correlation length.

Energy dependence

The energy dependence of the scattered intensity at $Q = (0 -0.335 1)$ is shown in Fig. 3a, overlaid with the corresponding X-ray absorption spectrum (XAS) measured with the electric field of the x-rays parallel to the bond directions in the CuO$_2$ planes. The XAS reveals two resonances that correspond to the Pr M_3 (930.9 eV) and the Cu L_3 (932.6 eV) edges. There are also two peaks observed in the energy dependence of the 3D CO (930.3 eV and 932.8 eV), which most likely correspond to contributions from Pr and Cu, respectively. However, due to the energetic overlap of the Pr M_3 and Cu L_3 edges, the energy dependence of the scattering is unavoidably complex; as such, we refer to them simply as peaks A and B (see Supplementary Discussion). Unlike in YBCO films with 3D CO39, we do not observe a significant shift in spectral weight to higher energy that would indicate CO coupling through the CuO chains. Furthermore, we observe in Fig. 3b that the 3D CO peak can still be detected at energies far below the resonance (850 eV) albeit much more weakly, which is in contrast to all other cuprates where the CO peaks studied by RSXS lack sufficient scattering strength to be observed off-resonance. This indicates a sizeable lattice distortion rarely seen in other cuprate systems, highlighting that in Pr-YBCO the 3D CO becomes more structurally stable than previously reported.

Temperature dependence

The interplay of the 3D CO with superconductivity can be investigated by measuring the temperature dependence of the former. In Fig. 3c, we plot the scattered intensity at $Q = (0 -0.335 1)$ at energies corresponding to peaks A and B in the energy dependence as a function of temperature. While the overall scattering intensity is higher at the peak A energy than the peak B energy, which is consistent with the measured energy dependence, it is notable that the 3D CO scattering signal is still detectable at room temperature for both energies. Upon cooling from $T = 300$ K, the temperature dependence at both energies maintain roughly equivalent slopes until within the vicinity of $T_c = 50$ K. Cooling below T_c produces a cusplike maximum, indicating a competition between SC and the isolated 3D CO phase. This signature behavior confirms that CO is at least a major contributor to the observed scattering, regardless of whether additional structural
contributions exist. This is in contrast to the 3D CO induced by very high magnetic fields, where any competition between 3D CO and SC is obscured by the very presence of the magnetic field which, while necessary to induce 3D coherence, comes with the unavoidable expense of greatly suppressing the SC phase.

Discussion

Having established experimentally that 3D CO can be stabilized with long out-of-plane correlation length, we turn to discuss the possible origin of the c-axis coupling in the Pr-YBCO system. It is already well known that, unlike any other rare earth, Pr substitution uniquely suppresses SC in YBCO by localizing holes via orbital hybridization44,45,48,49. To this end, we performed density-functional theory plus Hubbard U (DFT+U) calculations for both PrBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{6} (PrBCO) and DyBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{6} (DyBCO) structures50 to understand the role of this hybridization within the context of 3D CO and its competition with SC (see Supplementary Methods). Figure 4a schematically depicts the orbital character of the electronic states near the Fermi energy (\(E_F\)) in PrBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{6} (PrBCO), showing a mixed 4\textit{f} (purple) and 2\textit{p} (green) antibonding band crossing \(E_F\). Figure 4b shows the equivalent schematic for DyBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{6} (DyBCO). Figure 4c depicts the calculated electronic level structure for DyBCO, where the top of this band is deep below the Fermi level at around \(-0.8\) eV. This leaves the charge carriers in the two adjacent CuO\textsubscript{2} planes essentially decoupled. This unique antibonding coupling between the Pr 4\textit{f} \(z (x^2-y^2)\) state and its nearest-neighbor O 2\textit{p}\(_z\) states in adjacent CuO\textsubscript{2} planes 48,49 (Fig. 4c, d). We speculate that this orbital coupling with an out-of-plane component locks together the phase of the CO on adjacent CuO\textsubscript{2} planes, resulting in a diffraction peak at \(L=1^{\perp}\). For later rare-earth elements with lower 4\textit{f} energy, the 4\textit{f} \(z (x^2-y^2)\)–2\textit{p}\(_z\) antibonding band is expected to be lowered and removed from the Fermi level. Figure 4b depicts the calculated electronic level structure for DyBCO, where the top of this band is deep below the Fermi level at around \(-0.8\) eV. This leaves the charge carriers in the two adjacent CuO\textsubscript{2} planes essentially decoupled. This unique
aspect of Pr makes it the appropriate rare-earth to substitute into Y to stabilize and isolate 3D CO, which occurs concomitantly with a lattice distortion, according to our data. The exact structural mechanism of stabilization, e.g., phonons, is a subject of future research.

Our discovery of a fully stable 3D CO without a 2D signal has important implications to our understanding of CO and its interplay with SC. First, we confirm that a fully coherent, isolated 3D CO can be stabilized despite the intrinsic disorder inevitably present in cuprates. We note here that our Pr-substituted samples are expected to host at least as much structural and chemical disorder than in pristine YBCO, if not more so, due to the additional defect channel. This result may further elucidate the complex relationship between CO and SC, both of which have now been shown to substantially gain 3D character with increasing Pr concentration in the Pr-YBCO system. Second, we confirm that a stable 3D CO still coexists and competes with SC, implying that the system’s ground state can comprise two long-range, static, coexisting orders. Third, since the 3D coupling does not rely on the CuO chains that are unique to YBCO, perhaps other forms of hybridization can be used to stabilize 3D CO in other cuprate families, which has not yet been observed. Finally, we show that controlling the orbital content of the Fermi surface by assigning it a 4f character with an out-of-plane component can yield a sizable impact on the electronic ordering tendencies of the CuO2 plane. It can be used as a tuning knob to study the validity of 2D models to describe layered systems, like the cuprates or intercalated graphitic systems.

In summary, we have shown how utilizing the hybridization between the 4f states of Pr and planar CuO2 orbitals to tune the underlying orbital character can significantly enhance the out-of-plane coupling, phase-locking the CO across adjacent planes and rendering a stable CO phase that is fully correlated along the out-of-plane direction without the 2D version. The c-axis correlation length has a lower bound following oxygen to maintain full stabilization, e.g., phonons, is a subject of future research.

where gained through scattering experiments carried out at Sector 29 of the Advanced Photon Source (APS). The sample was mounted using silver paint on an in-vacuum multiple-circle diffractometer. The sample temperature was controlled by an open-circle helium cryostat. The incident photon polarization was fixed as σ (vertical linear) polarization. The (0 K L) scattering plane was determined by aligning the (0 0 2), (0 1 1), and (1 1 1) structural Bragg reflections at 1746 eV photon energy. We note that we have also observed this phenomenon in a second sample with a similar Pr concentration (see Supplementary Note). A 256 × 1024 pixel (26 µm × 26 µm pixel size) CCD detector was used. The scattering intensity data were collected within a region-of-interest in the center of the CCD detector. Dark images and data measured by the CCD detector outside of this region-of-interest were used to subtract any background fluorescence contributions, which were generally very small compared to the 3D CO scattered intensity, except for when off-resonance or at high temperature. A beam shutter was used to cut the incoming x-ray beam between two consecutive CCD shots to prevent undesired collection of x-ray photons during read-out. A 100 nm Parylene/100 nm Al filter was placed in front of the CCD to stop photoelectrons emitted from the sample from contributing to the signal on the CCD. Further details about the data collection and analysis methods used may be found in the Supplementary Methods.

Data availability
The data generated in this study have been deposited in the Harvard Dataverse database available at https://doi.org/10.7910/DVN/2BIWWL.

References
1. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
2. Tokura, Y. & Nagaosa, N. Orbital physics in transition-metal oxides. Science 288, 462–468 (2000).
3. Y., Sato, I., Terasaki, S., Miyamoto, S., Tajima, and S., Tanaka. Advances in Superconductivity VII (eds. Kaoru, Y. & Tadataka, M.) p. 89–92 (Springer Japan, Tokyo, 1995).
4. Chang, J. et al. Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3Oy. Nat. Commun. 7, 11494 (2016).
5. Frano, A., Blanco-Canosa, S., Keimer, B. & Burginer, R. J. Charge ordering in superconducting copper oxides. J. Phys. Condens. Matter 32, 734005 (2020).
6. Comin, R. & Damascelli, A. Resonant x-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405 (2016).
7. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).
8. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+. Science 295, 466–468 (2002).
9. Howald, C., Eisaki, H., Kaneko, N. & Kapitulnik, A. Coexistence of periodic modulation of quasiparticle states and superconductivity in Bi2Sr2CaCu2O8+. Proc. Natl Acad. Sci. USA 100, 9705–9709 (2003).
10. Vershinin, M. et al. Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+. Science 303, 1995–1998 (2004).
11. Abbamonte, P. et al. Spatially modulated ‘Mottness’ in La2−xSrxCuO4. Nat. Phys. 1, 155–158 (2005).
12. Ghiringhelli, O. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3Oy. Science 337, 821–825 (2012).
13. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.7. Nat. Phys. 8, 871–876 (2012).

14. Comin, R. et al. Charge order driven by Fermi-arc instability in Bi2Sr2−x−x′LaCuO6.6. Science 343, 390–392 (2014).

15. da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).

16. Tabis, W. et al. Connection between charge-density-wave order and charge transport in the cuprate superconductors. Nat. Commun. 5, 5875 (2014).

17. Blanco-Canosa, S. et al. Resonant x-ray scattering study of charge-density-wave correlations in YBa2Cu3O6.6. Phys. Rev. B 90, 054513 (2014).

18. da Silva Neto, E. H. et al. Charge ordering in the electron-doped superconductor Nd2−x−xLaCuO4. Science 347, 282–285 (2015).

19. Forgan, E. M. et al. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by x-ray diffraction. Nat. Commun. 6, 10064 (2015).

20. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3O6. Nature 477, 191–194 (2011).

21. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007).

22. Wu, T. et al. Incipient charge order observed by NMR in the normal state of YBa2Cu3O6. Nat. Commun. 6, 6438 (2015).

23. Gerber, S. et al. Three-dimensional charge density wave order in YBa2Cu3O6.7 at high magnetic fields. Science 350, 949–952 (2015).

24. Jang, H. et al. Ideal charge-density-wave order in the high-field state of superconducting YBCO. Proc. Natl Acad. Sci. USA 113, 14645–14650 (2016).

25. Vinograd, I. et al. Locally commensurate charge-density wave with three-unit-cell periodicity in YBa2Cu3O6. Nat. Commun. 12, 3274 (2021).

26. Bluschke, M. et al. Stabilization of three-dimensional charge order in YBa2Cu3O6.6. Nat. Commun. https://doi.org/10.1038/s41467-018-05434-8 (2018).

27. Kim, H.-H. et al. Uniaxial pressure control of competing orders in a high-temperature superconductor. Science 362, 1040–1044 (2018).

28. Kim, H.-H. et al. Charge density waves in YBa2Cu3O6.67 probed by resonant x-ray scattering under uniaxial compression. Phys. Rev. Lett. 126, 037002 (2021).

29. Booth, C. H. et al. Local disorder in the oxygen environment around praseodymium in Y1−xPrxBa2CuO4 from x-ray-absorption fine structure. Phys. Rev. B 49, 3432–3442 (1994).

30. Maple, M. B. et al. Extraordinary behaviour of the Pr1−x−x′Y1−x−x′Ba2CuO4 system. J. Supercond. 7, 97–106 (1994).

31. Yu, Y., Cao, G. & Jiao, Z. Investigation of hole distribution in Y1−xPrxBa2Cu3Oy. Chin. Phys. Lett. 15, 525–527 (1998).

32. Betto, D. et al. Impairment of charge and oxygen orders on Dy ions in DyBa2Cu3Oy thin films probed by resonant x-ray scattering. Phys. Rev. B 102, 195149 (2020).

33. Sandu, V. et al. Evidence for vortices in the pseudogap region of Y1−xPrxBa2CuOy from angular magneto-resistivity measurements. Phys. Rev. Lett. 93, 177005 (2004).

34. Lobo, R. P. S. M., Bontemps, N., Racah, D., Dagan, Y. & Deutsch, G. Pseudo-gap and superconducting condensate energies in the infrared spectra of Pr-doped YBa2Cu3O6. Europhys. Lett. 55, 854–860 (2001).

35. Soderholm, L. et al. Incorporation of Pr in YBa2Cu3O7−δ: Electronic effects on superconductivity. Nature 328, 604–605 (1987).

36. Liang, J. K. et al. The superconductive properties and crystal structure of Ba2(Y1−xPrx)Cu3O7−δ, solid solutions. Z. Phys. B: Condens. Matter 69, 137–140 (1987).

37. Dalichaouch, Y. et al. Superconducting and normal state properties of Y1−xMxBa2Cu3O7−δ (M = Pr, Na). Solid State Commun. 65, 1001–1006 (1988).

38. Neumeier, J. J., Bjønhjem, T., Maple, M. B. & Schuller, I. K. Hole filling and pair breaking by Pr ions in YBa2Cu3O6.95±0.02. Phys. Rev. Lett. 63, 2516–2519 (1989).

39. Peng, J. L. et al. Upper critical field and normal-state properties of single-phase Y1−xPrxBa2Cu3O7−δ compounds. Phys. Rev. B 40, 4517–4526 (1989).

40. Radousky, H. B. A review of the superconducting and normal state properties of Y1−xPrxBa2Cu3O7−δ. J. Mater. Res. 7, 1917–1955 (1992).

41. Fehrenbacher, R. & Rice, T. M. Unusual electronic structure of PrBa2−x−x′Cu3O7 compounds: Evidence for 4f electron hybridization. Phys. C 156, 574–578 (1988).

42. Maple, M. B. et al. Hybridization, hole localization and pair breaking in the high Tc superconducting system Y1−xPrxBa2Cu3O7.5. J. Alloy. Compd. 181, 135–152 (1992).

43. da Silva Neto, E. H. et al. Doping-dependent charge order correlations in electron-doped cuprates. Sci. Adv. 2, 1600782 (2016).

44. Neumeier, J. J., Maple, M. B. & Torikachvili, M. S. Pressure dependence of the superconducting transition temperature of (Y1−xPrx) Ba2Cu3O7−δ compounds. Phys. C 209, 229–232 (1993).

45. Liechtenstein, A. I. & Mazin, I. I. Quantitative model for the superconducting transitions under applied magnetic fields. Phys. C 365, 906–910 (2019).

46. Fehrenbacher, R. & Rice, T. M. Unusual electronic structure of PrBa2Cu3O7. Phys. Rev. Lett. 70, 3471–3474 (1993).

47. Wei, L. & Mazin, I. I. Quantitative model for the superconductivity suppression in R1−PrxBa2Cu3O7 with different rare earths. Phys. Rev. Lett. 74, 1000–1003 (1995).

48. Valia, T. et al. Anisotropic electron-phonon coupling and dynamical nesting on the graphene sheets in superconducting CaC6 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 102, 107007 (2009).

49. Yang, S. L. et al. Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions. Nat. Commun. 5, 3493 (2014).

50. Chen, G. et al. Signatures of tunable superconductivity in a trilayer graphene Moire superlattice. Nature 572, 215–219 (2019).

51. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 84–84 (2018).

52. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

53. Paulius, L. M., Lee, B. W., Maple, M. B. & Tsai, P. K. Preparation and characterization of Y1−xMxBa2Cu3O7−δ single crystals. Phys. C 230, 255–262 (1994).

Acknowledgements
We thank Bernhard Keimer, Davide Betto, Fabio Boschini, George Sawatzky, Martin Bluschke, Matteo Minola, Ming Kang, and Riccardo Comin for fruitful discussions. This material is based upon work supported by the National Science Foundation under Grant No.
DMR-2145080. Research at UC San Diego (M.B.M., K.S., and C.M.M.) was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Grant No. DE-FG02-04ER46105 (single crystal growth) and US National Science Foundation under Grant No. DMR-1810310 (materials characterization). Resonant soft x-ray experiments were carried out at the SSRL (beamline 13-3), SLAC National Accelerator Laboratory. This study at the SSRL/SLAC is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. This research also used resources of the Advanced Photon Source (29ID), a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Y.L. acknowledges support by Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). Y.H. acknowledges previous support from the Miller Institute for Basic Research in Sciences. S.B-C acknowledges support from the MINECO of Spain through the project PGC2018-101334-AC22. A.F. was supported by the Research Corporation for Science Advancement via the Cottrell Scholar Award (27551) and the CIFAR Azrieli Global Scholars program. E.H.d.S.N. acknowledges previous support from UC Davis startup funds, as well as current support from the Alfred P. Sloan Fellowship in Physics.

Author contributions

A.F. and M.B.M. conceived and led the project. The RSXS experiments were performed by A.R., B.G., H.H., J.-S.L., F.R., T.J.B., M. W., Y.H., S.B.-C., and E.H.d.S.N. Single crystals were grown and characterized by K.S., C.M.M., and M.B.M. The data analysis was carried out by A.R., B.G., H.H., and J.-S.L. DFT+U calculations performed by Y.L. The manuscript was written by A.F., A.R., B.G., Y.H., E.H.d.S.N, and S.B.C. with input from all the co-authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-33607-z.

Correspondence and requests for materials should be addressed to Alex Frano.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material, this does not affect the other party’s use of the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022