Genes from the TAS1R and TAS2R Families of Taste Receptors: Looking for Signatures of Their Adaptive Role in Human Evolution

Cristina Valente1,2,3, Luis Alvarez1,2, Patricia Isabel Marques1,2, Leonor Gusmão4, António Amorim1,2,3, Susana Seixas1,2, and Maria João Prata1,2,3,*

1I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
2IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Portugal
3Faculty of Sciences, University of Porto, Portugal
4DNA Diagnostic Laboratory (LDD), State University of Rio de Janeiro (UERJ), Brazil

*Corresponding author: E-mail: mprata@ipatimup.pt.
Accepted: March 27, 2018

Abstract
Taste perception is crucial in monitoring food intake and, hence, is thought to play a significant role in human evolution. To gain insights into possible adaptive signatures in genes encoding bitter, sweet, and umami taste receptors, we surveyed the available sequence variation data from the 1000 Genomes Project Phase 3 for TAS1R (TAS1R1-3) and TAS2R (TAS2R16 and TAS2R38) families. Our study demonstrated that genes from these two families have experienced contrasting evolutionary histories: While TAS1R1 and TAS1R3 showed worldwide evidence of positive selection, probably correlated with improved umami and sweet perception, the patterns of variation displayed by TAS2R16 and TAS2R38 were more consistent with scenarios of balancing selection that possibly conferred a heterozygous advantage associated with better capacity to perceive a wide range of bitter compounds. In TAS2R16, such adaptive events appear to have occurred restrictively in mainland Africa, whereas the strongest evidence in TAS2R38 was detected in Europe. Despite plausible associations between taste perception and the TAS1R and TAS2R selective signatures, we cannot discount other biological mechanisms as driving the evolutionary trajectories of those TAS1R and TAS2R members, especially given recent findings of taste receptors behaving as the products of pleiotropic genes involved in many functions outside the gustatory system.

Key words: TAS1R and TAS2R, taste receptors, signatures of selection.

Introduction
Several lines of evidence support the idea that taste perception plays a key role in food preference, dietary habits, and many other health issues. Humans are able to discriminate five tastes: sweet, umami, sour, salty, and bitter, which are commonly referred as the basic tastes. However, this apparently limited repertoire seems enough to accommodate the evolutionary demand for recognition of essential dietary elements, while avoiding potential dietary threats with negative impacts on nutritional and physiological status (Chandrashekar et al. 2006).

Sweet, bitter, and umami are considered the most important tastes for food acceptance in humans (Temussi 2009). They depend on the activation of different receptors of the seven-transmembrane G-protein-coupled receptors (GPCRs) superfamily, more specifically from the TAS1R and TAS2R classes, which are proteins coexpressed in distinct subpopulations of taste bud cells of the human gustatory system. So far, umami and sweet have been reported to be perceived uniquely by TAS1R receptors, a small family of GPCR proteins that in humans, as in many other mammals, includes three members—TAS1R1, TAS1R2, and TAS1R3. These proteins only function as heterodimers and, whereas the dimer TAS1R1 + TAS1R3 acts as the main receptor for umami, TAS1R1 + TAS1R2 + TAS1R3 responds to a broad variety of natural and artificial sweet ligands (Li et al. 2002; Nelson et al. 2002). In turn, bitter is mainly mediated by receptors of the TAS2R family, which in humans contains at least 25 members, all of them active as monomeric receptors. The most studied receptors of this GPCR family are TAS2R38, which determines
phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) sensitivity (Kim et al. 2003), and TAS2R16, which responds to \(\beta \)-glucopyranosides such as salicin found in willow bark (Bufo et al. 2002).

Large interindividual variability exists in human taste perception but, to date, its genetic basis is largely unclear (Bachmanov and Beauchamp 2007). Still, it is already known that a substantial proportion of the differences in PTC/PROP sensitivity is explained by the three TAS2R38 nonsynonymous substitutions responsible for amino acid changes at residues 49, 262, and 296 (rs713598, rs1726866, rs10246939, respectively). The haplotypes defined by the various combinations of variants in these positions are strongly correlated with bitter perception, allowing the TAS2R38 haplotypes associated with bitter sensitivity or insensitivity to be classified as “tasters” and “nontasters,” respectively (Wooding et al. 2004). In TAS2R16, the nonsynonymous variant G516T (rs846664) was identified as influencing phenotypic taste variation in response to salicin and other naturally occurring glycosides (Soranzo et al. 2005).

Likewise, TAS1R1 and TAS1R3 contain several coding variants that have been correlated in vitro with a dose response to umami in TAS1R1, the C329T (rs41278020) and G114A (rs34160967), and in TAS1R3 the G13A (rs76755863) and C2269T (rs307377) (Raliou et al. 2009; Shigemura et al. 2009). In addition, two promoter region variants in TAS1R3 (-T1572C (rs307355) and -T1266C (rs35744813)) were recently shown to influence in vitro gene expression and to affect sensitivity to sucrose in humans, explaining almost 16% of sweet taste variability (Fushman et al. 2009). Lastly, a candidate variant in TAS1R2 was reported to possibly affect responsiveness to sweet stimuli; this variant, G571A (rs35874116), is a nonsynonymous substitution found to be associated with habitual consumption of sugars (Eny et al. 2010).

Since diversity in TAS1R2R genes is likely associated with a wide range of food preferences observed across distinct geographic regions and ethnic groups, it has been hypothesized that TAS1R2R evolution was driven by diet-related selective pressures. A few studies have already shed some light on signatures of selection at genes encoding the bitter receptors TAS2R38 (Woody et al. 2004; Campbell et al. 2012; Risso et al. 2016) and TAS2R16 (Soranzo et al. 2005; Li et al. 2011; Campbell et al. 2014), as well as the intriguing departures from neutrality at the three TAS1R genes (Kim et al. 2006).

Here, we use the human variation data released by the 1000 Genomes Project consortium to interrogate the site frequency spectrum of TAS1R1, TAS1R2, TAS1R3, TAS2R16, and TAS2R38, in order to gain further insight into the evolutionary scenarios of these genes across a wider spectrum of human populations. To our knowledge, this represents the first work to: 1) combine the investigation of TAS1R and TAS2R gene families; 2) apply common analytical approaches across several unlinked genes; 3) use the identical panel of human populations for all genomic regions investigated; and 4) analyze TAS1R3 promoter variation in an evolutionary framework.

Overall, the findings of this study reinforce the evidence for adaptive evolution of TAS1R and TAS2R genes throughout more recent (100–600 ka) or ancient (2–7 Ma) human history, respectively, while raising a number of questions to address in the future. Which environmental changes triggered human preference for umami and sweet tastes (TAS1R1 and TAS1R3)? Could this preference be connected with human dependence on cooked food? Which evolutionary forces are maintaining a wide spectrum of bitterness perceptions (TAS2R16 and TAS2R38) over several million years? Why is the TAS2R16 selective signature only observed in Africans?

Materials and Methods

Samples and Sequence Databases

The coordinates, based on the genomic built GRCh37: CM000663.1, for the sequences used in this study are: TAS1R1—chr1: 6,615,241–6,639,817; TAS2R2—chr1: 19,166,093–19,186,176; TAS1R3—chr1: 1,265,014–1,270,651; TAS2R7—chr7: 122,634,759–122,635,754; and TAS2R38—chr7: 141,672,501–141,673,397. All sequences were retrieved from the 1000 Genomes Project Phase 3 database (www.1000genomes.org). After excluding all potentially admixed populations, a panel of 20 populations representing major geographical regions was selected for this study: Eastern Africa—LWK (Luhya, Kenya); Western Africa—YRI (Yoruba, Nigeria), GWD (Gambian, Gambia), MSL (Mende, Sierra Leone), ESN (Esan, Nigeria); North/ Western Europe—CEU (Utah residents with Northern and Western European ancestry), GBR (British, England, and Scotland), FIN (Finnish, Finland); South Europe—IBS (Iberran, Spain), TSI (Tuscan, Italy); South Asia—PIL (Punjabi, Pakistan), BEB (Bengali, Bangladesh), STU (Sri Lankan Tamil, from UK), ITU (Indian Telugu, from UK), GIH (Gujarati Indian, from Houston); and East Asia—CHB (Chinese, from Beijing, China), CHS (Southern Han Chinese, China), JPT (Japanese, Japan), CDX (Chinese Dai, China), KHV (Kinh, Vietnam). For each variant, ancestral allele information was obtained using BioMart tool (http://www.ensembl.org/biomart/martview).

Using the Neanderthal Genome browser (http://neandertal.ensemblgenomes.org/index.html), we inspected the available Neanderthal genome, which is based on the sequencing of three individuals (Vf33.16; Vf33.25; and Vf33.26) at very limited coverage. On the other hand, the UCSC browser (http://genome.ucsc.edu) was used to query the Denisova genome, which results from the sequencing of a single individual at high coverage (30×).

Statistical Analyses

Phased data were retrieved from the 1000 Genomes Project Phase 3 browser (http://phase3browser.1000genomes.org/index.html), and SPIDER software (Lischer and Excoffier 2012) was used to convert .vcf files into .xml files. To
identify signatures of selection, we calculated several statistics based on the allele frequency spectrum for each population. The DivSat program (Soares et al. 2015) was used to estimate the following statistics: number of segregating sites (S), nucleotide diversity (π), or average number of pairwise differences between sequences (Nei and Li 1979), Watterson’s estimator of the population mutation rate parameter (\(θ_w = 4Neμ\)) (Watterson 1975), and Tajima’s D (Tajima 1989). The latter is the statistic most widely used for detecting departures from neutrality by evaluating discrepancies between \(π\) and \(θ_w\) values. Briefly, Tajima’s D is expected to have a value close to 0 under neutrality. A negative value generally indicates an excess of rare variants, probably resulting from positive selection or population expansion, whereas a positive value suggests an excess of intermediate-frequency variants caused either by balancing selection or population structure.

To address the evolutionary significance of Tajima’s D results, we ran 100,000 coalescent simulations using “ms” program (Hudson 2002) in all populations for the constant size model and additionally for the best-fit demographic models suited for specific population sets when Tajima’s D values reached statistical significance under the constant model. The Gravel et al. (2011) models inferred from the 1000 Genomes Phase 1 data for YRI, CEU, and CHB+ JPT, were applied to the identical populations and to other samples located in the same geographical regions. Specifically, the YOR model, which was inferred for a population from Sub-Saharan Africa, was also applied to GWD, MSL, ESN, and LWK; the CEU model, which corresponds to a sample of Utah residents with Northern and Western European ancestry, was also applied to GBR and FIN; and the CHB+ JPT model, which is expected to represent East Asian demography, was also applied to CHS, CDX, and KHV samples. In addition, the Voight et al. (2005) model inferred from 50 noncoding autosomal regions for an Italian population was applied to the two South European samples, TSI and IBS. To our knowledge, no proxy of best-fit model is available for South Asians, and thus no model other than the constant size model was applied to PLJ, ITU, STU, GIH, and BEB samples.

Estimates of the population recombination parameter Rho (ρ), which combines information on effective population size (\(N_e\)) and recombination rate (r) as summarized in the equation \(ρ = 4N_e r\), were based on values of \(r\) for each gene obtained from HapMap Phase II (McVean et al. 2004), assuming an ancestral population size of \(N_{e0} = 7,300\) individuals according to Gravel et al. (2011). Independent of the simulated demographic model, the null distributions of Tajima’s Ds were used to calculate either the 5th (for negative Tajima’s D values) or 95th (for positive Tajima’s D values) percentiles.

Moreover, to perform an empirical comparison for Tajima’s Ds using genome-wide data, tracks available at the POPHUMAN browser (Casillas et al. 2018) were downloaded. POPHUMAN contains Tajima’s D statistics calculated in nonoverlapping sliding windows of 10 kb covering almost 90% of genome data from 1000 Genomes Project Phase 3. For each population tracks from chromosome 1 (where the TAS1R genes locate) and chromosome 7 (where the TAS2R genes locate) were used to build Tajima’s D boxplots.

Phylogenetic relationships between haplotypes were assessed through the median-joining algorithm implemented in the NETWORK v.4.6.1.0 program (Bandelt et al. 1999). Time to Most Recent Common Ancestor (TMRCA) was estimated using the coalescent method implemented in GENETREE v.9.0 software (Griffiths and Tavare 1994), using the maximum likelihood of \(θ\) (theta) also given by GENETREE (Coop and Griffiths 2004). Given that the GENETREE coalescent method does not assume recombination, the rare and recombinant haplotypes producing incompatibilities were removed from the analysis. Mutation rate per generation per base pair, \(\mu = (D_0/2nL)\), was estimated considering: \(D_0\) to be the number of generations elapsed since the human/chimpanzee divergence, \(L\) as the length of genomic sequence. For TAS2R16, due to the unusual TMRCA value obtained with the chimpanzee as reference, the mutation rate per generation was also calculated, using human/orangutan divergence within a time frame of 15.2 Ma (http://www.timetree.org/). Considering that the theta parameter computed by GENETREE is the population mutation rate given by \(θ = 4N_e μ\) (Watterson 1975), it was possible from the \(θ\) values to derive time scaled in \(2N_e\) generations, converting coalescent units into years (\(2N_e t\)).

\(F_{ST}\) measures of genetic distances between African (LWK, YRI, GWD, MSL, ESN), Asian (CHB, CHS, JPT, CDX, KHV, PJL, BEB, STU, ITU, GIH), and European (CEU, GBR, FIN, IBS, TSI) populations were calculated in ARLEQUIN software ver. 3.5.1 (Excoffier and Lischer 2010).

Results

The **TAS1R Family and the Umami and Sweet Tastes Polymorphism Levels and Neutrality Tests**

The TAS1R family comprises the genes TAS1R1, TAS1R2, and TAS1R3, which are distributed throughout chromosome 1 and share a common organization in five exon–introns. Analysis of the site frequency spectrum of TAS1R genes shows that all tend to exhibit substantially higher nucleotide diversity in Africa than in Eurasia (see \(π\) values in tables 1–3), as could be expected from the “Out-of-Africa” model of human migrations. As modern humans originated in Africa ~200,000 years ago and only a small group dispersed into Eurasia <50,000 years ago, European and Asian populations still represent a subset of the genetic variation found in African populations (reviewed in Gomez et al. 2014).
In this family, independent of the population analyzed,
TAS1R2 is the more diverse gene and
TAS1R3 (without the promoter, to be comparable to the other
TAS1R genes) is less polymorphic (table 3). Considering that
TAS1R3 can dimerize with either
TAS1R1 or
TAS1R2, the low variability observed in
TAS1R3 might indicate that this gene has experienced
stronger evolutionary constraints due to its dual role as a functional
unit of *umami* and of sweet receptors.

To search for potential signatures of selection among
TAS1R genes, Tajima’s *D* values were calculated (tables 1–3)
and compared with those from null distributions assuming
a neutral equilibrium model in a population of constant size.
Since Tajima’s *D* is highly influenced by population demography,
its statistical significance was further evaluated by coalescent
simulations with the various best-fit models available for
15 of the 20 populations being studied. In general, for
TAS1R1 and
TAS1R3 only negative Tajima’s *D* values were obtained.
Particularly for
TAS1R3 (promoter region not included), Tajima’s *D* values were significantly lower: not only lower than the constant-size expectations in all samples (except the
YRI) but even lower than the predictions based on best-fit demographic models in several European and African samples. Consistently, in the empirical comparison of Tajima’s *D* values

with those estimated for chromosome 1 in nonoverlapping sliding windows of 10 kb,
TAS1R3 also stood out, fitting in most populations the lower quartile of the distribution (supplementary fig. S1A, Supplementary Material online).

Conversely, Tajima’s *D* values for
TAS1R2 tended to be slightly positive, although none was high enough to reach statistical significance under geographic specific models, including European samples in which the highest scores were obtained (GBR: 1.57 and IBS: 1.38).

Haplotype Structure and Gene Genealogies

The phylogenetic relationships between
TAS1R1 haplotypes revealed a double star-like network (fig. 1A), in which the central haplotypes, CA and CG, are defined by the two non-synonymous variants (C329T and G1114A) in strong linkage disequilibrium (LD), known to influence glutamate sensitivity. These two haplotypes, both displaying a worldwide distribution, diverge by a single substitution at position G1114A that diverges from intermediate perception from intermediate
10(4):1139–1152 doi:10.1093/gbe/evy071 Advance Access publication April 4, 2018

Geographic Region	Population	N	S	\(\pi\)	\(\Theta_W\)	Tajima’s *D*
Africa						
Eastern	LWK	198	294	13.785	50.145	-0.103
Western	YRI	216	241	12.671	40.503	-0.733
	GWD	226	234	13.130	39.029	-0.549
	MSL	170	224	12.741	39.229	-0.652
	ESN	198	211	12.075	35.989	-0.560
Europe						
North/Western	CEU	198	97	3.742	16.545	-1.377*
	GBR	182	92	4.553	15.921	-0.927
	FIN	198	86	3.682	14.668	-1.182
South	IBS	214	115	5.085	19.357	-1.100
	TSI	214	133	5.196	22.387	-1.340
Asia						
South	PJL	192	105	5.220	18.004	-0.898
	BEB	172	122	5.100	21.322	-1.304
	STU	204	126	5.290	21.382	-1.222
	ITU	204	88	5.070	14.933	-0.513
	GIH	206	107	5.110	18.127	-0.955
	CHB	206	156	6.912	26.429	-1.124
	CHS	210	155	6.987	26.174	-1.080
	JPT	208	159	5.142	26.893	-1.665*
	CDX	186	148	8.085	25.516	-0.703
	KHV	198	133	7.972	27.460	-0.906

Table 1 Summary Statistics for
TAS1R1

Geographic Region	Population	N	S	\(\pi\)	\(\Theta_W\)	Tajima’s *D*
Africa						
Eastern	LWK	198	226	18.337	38.547	-0.144
Western	YRI	216	214	19.121	35.965	0.211
	GWD	226	218	20.683	36.360	0.444
	MSL	170	211	20.177	36.952	0.307
	ESN	198	210	19.581	35.818	0.307
Europe						
North/Western	CEU	198	140	16.024	23.879	1.087
	GBR	182	125	16.164	21.632	1.517*
	FIN	198	132	15.366	22.514	1.157
South	IBS	214	135	16.347	22.724	1.381*
	TSI	214	155	15.304	26.091	0.554
Asia						
South	PJL	192	174	15.851	29.835	0.209
	BEB	172	164	16.200	28.662	0.432
	STU	204	184	16.400	31.224	0.170
	ITU	204	169	16.055	28.679	0.388
	GIH	206	176	16.000	29.648	0.242
	CHB	206	137	13.510	23.210	0.523
	CHS	210	154	13.743	26.005	0.189
	JPT	208	112	12.619	18.943	1.044
	CDX	186	124	14.299	21.723	0.991
	KHV	198	137	13.794	23.367	0.579

Table 2 Summary Statistics for
TAS1R2
Table 3
Summary Statistics for TAS1R3

Geographic Region	Population	Genic Region	N	\(S \)	\(\pi \)	\(\Theta_W \)	Tajima’s \(D^* \)
Africa							
Eastern							
LWK	198	Promoter	27	16.000	4.605	-1.172	
		Exon–intron	46	10.000	7.846	-1.523*	
		Total	73	11.489	12.451	-1.464*	
GWD	226	Promoter	27	15.900	4.538	-1.144	
		Exon–intron	44	10.000	7.059	-1.288	
		Total	69	11.705	11.596	-1.301	
MSL	170	Promoter	30	15.100	5.254	-1.494*	
		Exon–intron	46	9.400	8.056	-1.626*	
		Total	76	11.000	13.310	-1.653*	
ESN	198	Promoter	27	15.800	4.605	-1.195	
		Exon–intron	47	10.000	8.016	-1.467*	
		Total	74	11.800	12.622	-1.437*	
Europe							
North/Western							
CEU	198	Promoter	13	5.000	2.2173	-1.537*	
		Exon–intron	26	2.800	4.435	-2.101*	
		Total	39	3.400	6.652	-2.069*	
GBR	182	Promoter	13	6.500	2.250	-1.290	
		Exon–intron	25	3.300	4.326	-1.945*	
		Total	38	4.260	6.577	-1.858*	
FIN	198	Promoter	10	5.900	1.706	-0.989	
		Exon–intron	21	3.500	3.58	-1.664*	
		Total	31	4.200	5.287	-1.575*	
South							
IBS	214	Promoter	15	5.600	2.525	-1.586*	
		Exon–intron	30	2.800	5.050	-2.204*	
		Total	45	3.603	7.575	-2.144*	
TSI	214	Promoter	18	4.800	3.030	-1.923*	
		Exon–intron	42	2.800	7.070	-2.461*	
		Total	60	3.360	10.100	-2.434*	
Asia							
South							
PVL	192	Promoter	19	8.600	3.258	-1.492*	
		Exon–intron	30	4.000	5.144	-1.970*	
		Total	49	5.341	8.402	-1.911*	
BEB	172	Promoter	16	9.800	2.796	-1.086	
		Exon–intron	33	4.900	5.243	-1.819*	
		Total	48	6.311	8.039	-1.668*	
STU	204	Promoter	14	9.200	2.376	-0.879	
		Exon–intron	29	5.100	4.921	-1.668*	
		Total	43	6.291	7.297	-1.506*	
ITU	204	Promoter	12	8.200	2.036	-0.793	
		Exon–intron	31	4.300	5.261	-1.930*	
		Total	43	5.410	7.297	-1.706*	
GIH	206	Promoter	14	8.600	2.372	-0.990	
		Exon–intron	23	4.200	3.897	-1.577*	
		Total	37	5.455	6.268	-1.470*	
East							
CHB	206	Promoter	19	6.300	3.219	-1.777*	
		Exon–intron	25	3.500	4.235	-1.852*	
		Total	44	4.343	7.454	-1.970*	
CHS	210	Promoter	11	6.500	1.857	-0.992	
		Exon–intron	26	4.100	4.390	-1.762*	

(continued)
(Raliou et al. 2009; Shigemura et al. 2009), and was detected only in non-African populations at very low frequencies.

The TAS1R1 tree (fig. 2A) uncovered a recent TMRCA of 129 ± 11 ka, considerably less than the average estimates for other autosomal loci that, according to Blum and Jakobsson (2011), date to ~1.5 Ma (first quartile = 950,000 years; third quartile = 1,700,000 years). The CG haplotype, placed as the ancestral haplotype, was clearly associated with an excess of rare variants that was also observed to a lesser extent in the CA haplotype, which originated ~82 ± 10 ka through the G1114A mutation.

For TAS1R3, given that all populations had significant levels of LD across the promoter and the exon–intron region (supplementary fig. S2, Supplementary Material online), a single network was reconstructed for the whole gene sequence (fig. 1C, but see supplementary fig. S3, Supplementary Material online, for separated networks of promoter and exon–intron regions). Five haplotype classes were defined based on combinations of two promoter variants correlated with human sweet perception, -T1572C and -T1266C, and two exon–intron variants reported to influence umami perception, G13A and C2269T. As figure 1C illustrates, the CCGC haplotype conferring high sweet and umami sensitivity also displays a double star-like structure associated with -T1266C and with another promoter variant rs35946613 (-G1221A). Two less-common haplotypes (<0.022 frequency in the full panel) radiate from the CCGC network core: CCAC (high sweet and intermediate umami sensitivity) and CTGC (intermediate sweet and high umami). The other two detected haplotypes were both associated with low sweet sensitivity and bear either the TTGC configuration (high umami, global frequency 0.06), which is only a few mutations away from the major CCGC haplotype, or the TTGT configuration (intermediate umami, global frequency 0.16), which is separated by multiple positions from the central haplotype.

The genealogy for TAS1R3 (fig. 2B and supplementary fig. S4, Supplementary Material online, for independent trees of the promoter and the exon–intron region) yielded a TMRCA age of ~592 ± 8.75 ka, also quite recent when compared with other autosomal loci estimates (Blum and Jakobsson 2011). In TAS1R3, a strong signal of rapid lineage diversification was detected in the CCGC haplotype; this harbors three derived alleles at the promoter segment (-T1572C, -T1266C, and -G1221A - rs35946613), while retaining the ancestral configuration at the exon–intron region. Consistent with the overall TMRCA estimated for TAS1R3, the three promoter mutations were also young (~589 ± 4.78 ka for -T1266C; ~434 ± 2.17 ka for -T1572C; and ~348 ± 1.3 ka for G1221A). All three predate the G13A (~80 ± 0.72 ka) and C2269T (~255 ± 2.62 ka) substitutions located in the exon–intron region.

For TAS1R2, the haplotype network (fig. 1E) revealed to be extremely reticulated, indicating the strong influence of recombination in the region and highlighting the genomic mechanism driving TAS1R2 to high levels of nucleotide diversity. Analysis of LD patterns within TAS1R2 confirmed the occurrence of a recombination hotspot between exons 3 and 4 (supplementary fig. S5, Supplementary Material online), which was further supported by deCODE recombination maps (Kong et al. 2002). Since the method used to build gene genealogies assumes an infinite-site model without recombination, it was impossible to produce a tree for TAS1R2 due to the excessive number of haplotypes violating that assumption.

The TAS2R Family and the Bitter Receptors

Polymorphism Levels and Neutrality Tests

In the TAS2R family, we investigated TAS2R16 and TAS2R38, two genes on chromosome 7 separated by ~19 Mb that, importantly, are intronless genes. According to previous
studies in different mammalian species, these types of genes may experience quite different evolutionary rates than genes with an exon–intron organization (Shabalina et al. 2010; Yu et al. 2014). Accordingly, a direct comparison of the summary statistics of nucleotide variation between genes from TAS1R and TAS2R families was hampered.

Centering, then, on the TAS2R family, TAS2R16 (table 4) was nearly four times more diverse in Africans than in...
Europeans or Asians, whereas TAS2R38 (table 5) displayed similar levels of diversity across all studied populations. Regarding Tajima’s D, for TAS2R16 (table 4) almost every population exhibited positive values, but only in ESN did the estimated Tajima’s D surpass the expectation under the best-fit demographic model. In the empirical comparison with Tajima’s D values estimated for chromosome 7, TAS2R16 in ESN but also YRI and GWD lied above the upper quartile, whereas in non-African populations in most cases it fell closer to the distribution mean (supplementary fig. S1B, Supplementary Material online). For TAS2R38, significant positive Tajima’s D were found in Europe, and values in three of the five analyzed populations remained statistically significant after assuming the best-fit model (table 5). Consistently, in the comparison with chromosome 7 genome wide distribution of Tajima’s D those three values were near or above the upper quartile of values (supplementary fig. S1B, Supplementary Material online).

Haplotype Structure and Gene Genealogies

The phylogenetic relationships of TAS2R16 haplotypes depicted in figure 3A show that the G516T substitution influencing salicin recognition splits the network into two major haplotype groups: one found only in Africa, characterized by the “low-sensitivity” G allele, and the other, apparently fixed in Eurasian populations, defined by the “high-sensitivity” T allele. In the latter haplotype group, there is a cluster of lineages defined by a nonsynonymous substitution A665G (p.Arg222His, rs860170) that, according to Campbell et al. (2014), does not contribute to salicin sensitivity or to cell surface expression of receptors.

In contrast to the shorter TMRCA estimates of the TAS1R family, the genealogy obtained for TAS2R16 (fig. 4A) coalesced into a much deeper TMRCA of \sim7.02 ± 1.99 Ma (using human–chimpanzee divergence) or \sim4.03 ± 1.99 Ma (using human–orangutan divergence, instead). These age estimates are several times older than the value of \sim1.75 ± 0.75 Ma reported by Campbell et al. (2014), and much greater than the 3.0 Ma upper limit of TMRCA estimates obtained for other autosomal loci (Blum and Jakobsson 2011). The presence of two highly divergent branches corresponding to “low-sensitivity” and “high-sensitivity” haplotypes seems to explain the unusual TMRCA obtained for TAS2R16, as well as the ancient origin estimated for the G516T mutation (\sim6.54 ± 1.70 Ma or \sim3.59 ± 1.70 Ma). Together, these findings place the shift toward an enhanced bitter perception very early in Homo evolution, and long before the emergence of anatomically modern humans \sim200 ka.

The TAS2R38 network (fig. 3B) uncovers four major haplotypes linked through a chain of three amino acid substitutions that explain most of the interindividual differences in

FIG. 2.—Coalescent-based genealogy, TMRCA of global variation, and ages of individual mutations at TAS1R genes. Mutations are represented by black dots, and figures on the bottom of branches correspond to the number of individuals with that haplotype (x means except). (A) TAS1R1 and (B) TAS1R3. Variations in red and blue as in legend for figure 1.

Valente et al.

GBE

Genome Biol. Evol. 10(4):1139–1152 doi:10.1093/gbe/evy071 Advance Access publication April 4, 2018
PTC/PROP taste perception. These haplotypes have previously been called as PAV, for the ancestral “taster” haplotype; AVI, for most derived and “nontaster” configuration; and AAI or AAV for intermediate haplotypes with midsensitivity to PTC/PROP taste perception. These haplotypes have previously been called as PAV, for the ancestral “taster” haplotype; AVI, all of them having originated by single mutational steps preceding the emergence of anatomically modern humans.

Population Differentiation of TAS1R and TAS2R Genes

Levels of genetic differentiation were assessed across worldwide populations by computing intercontinental F_{ST} values for TAS1R and TAS2R sequences. To view the results in a genome-wide context, we referred to the estimates reported by the 1000 Genomes Project (Genomes Project et al. 2010): the mean value of F_{ST} was 0.071 between CEU and YRI, 0.083 between YRI and CHB + JPT, and 0.052 between CEU and CHB + JPT. Akey et al. (2002) had previously calculated the mean as F_{ST}=0.12, using 25,549 autosomal SNPs genotyped in African–American, East Asian, and European–American populations, while Shriver et al. (2004) analyzed 8,525 autosomal SNPs in African–American, European–American, Chinese, and Japanese individuals, and pinpointed a mean of F_{ST}=0.13.

The estimates obtained here, grouping populations into African, Asian, and European, were F_{ST}=0.135 for TAS1R1, F_{ST}=0.075 for TAS1R2, F_{ST}=0.200 for TAS1R3 total, F_{ST}=0.305 for TAS1R3 promoter, F_{ST}=0.102 for TAS1R3 exon-intron, F_{ST}=0.278 for TAS2R16, and F_{ST}=0.070 for TAS2R38.

Table 4
Summary Statistics for TAS2R16

Geographic Region	Population	N	S	π	$Θ_W$	Tajima’s D^*
Africa						
Eastern	LWK	198	11	19.401	1.876	0.087
Western	YRI	216	8	23.843	1.344	1.425
	GWD	226	7	21.689	1.168	1.530
	MSL	170	9	22.407	1.576	0.754
	ESN	198	6	22.830	1.023	2.194*
Europe						
North/Western	CEU	198	3	4.919	0.512	−0.167
	GBR	182	2	5.260	0.346	0.577
	FIN	198	2	6.398	0.341	1.023
South	IBS	214	2	5.369	0.337	0.657
	TSI	214	3	5.191	0.505	−0.067
Asia						
South	PIL	192	10	6.082	1.71465	−1.570*
	BEB	172	4	4.976	0.69908	−0.612
	STU	204	3	5.861	0.50909	0.117
	ITU	204	5	5.314	0.84848	−0.796
	GIH	206	6	6.004	1.01649	−0.909
East	CHB	206	2	5.482	0.339	0.690
	CHS	210	3	5.577	0.50659	0.041
	JPT	208	2	5.410	0.33828	0.666
	CDX	186	2	5.623	0.34481	0.718
	KHV	198	8	6.148	1.36450	−1.280

Table 5
Summary Statistics for TAS2R38

Geographic Region	Population	N	S	π	$Θ_W$	Tajima’s D^*
Africa						
Eastern	LWK	198	8	17.662	1.364	0.356
Western	YRI	216	9	16.959	1.513	0.013
	GWD	226	8	17.531	1.334	0.388
	MSL	170	6	17.537	1.051	1.032
	ESN	198	7	16.998	1.194	0.590
Europe						
North/Western	CEU	198	3	16.296	0.512	2.980*
	GBR	182	3	16.279	0.519	2.946*
	FIN	194	4	16.450	0.682	2.072*
South	IBS	214	5	16.950	0.842	1.533
	TSI	214	3	16.660	0.505	3.109*

Notes.—The total length of the TAS2R16 region analyzed was 995 bp. N, number of chromosomes; S, number of segregating sites; $π$, nucleotide diversity per base pair ($<10^{-4}hW$); population mutation rate parameter: Watterson’s estimator of $θ$ (4Neu) (Watterson 1975) per base pair ($<10^{-3}hW$).

*Tajima’s D statistic (Tajima 1989).

*P<0.05 for best-fit model.

*P<0.05 for constant model.

*P<0.05 for best-fit model (Voight et al. 2005; Gravel et al. 2011).
In light of the above-mentioned reference F_{ST} values, our estimates support an atypically high level of population differentiation on a continental scale in two instances: One was observed in the promoter of $TAS1R3$ (0.305) and the other in $TAS2R16$ (0.278). Conversely, $TAS2R38$ yielded the lowest F_{ST} value (0.070) of the genomic sequences investigated.

Discussion

The sense of taste is crucial for evaluating foods’ toxicity and nutrient content, with consequential impact on nutritional status. Therefore, it is highly likely that taste perception has played a significant role in human evolutionary history, during which food preferences and aversions have changed...
(Breslin 2013; Doty 2015). Our in-depth study of the major forces driving the evolution of bitter, sweet, and umami receptors scrutinized TAS1R1, TAS1R2, TAS1R3, TAS2R16, and TAS2R38 sequence variations across major human populations: Africans (Western and Eastern), Europeans (Northern/Western and Southern), and Asians (Southern and Eastern).

From a global perspective, we demonstrated that two genes from the TAS1R family, TAS1R1 and TAS1R3, experienced an evolution unlike that of the two genes of the TAS2R family, TAS2R16 and TAS2R38. Although some differences would be expected, due to their gene organization in exon-intron or intronless structures, respectively, the departures from neutrality that were detected are more likely attributable to distinct selective pressures that prompted independent adaptive events correlated with umami and sweet perception in TAS1R and bitter taste in TAS2R genes.

In the TAS1R family, the genes encoding TAS1R1 and TAS1R3, which directly interact as heterodimers of umami taste receptors, were found to display patterns of diversity compatible with signatures of positive selection. Our findings agree with those previously reported by Kim et al. (2006), although their conclusions were based on small population sample sizes, a shortcoming seemingly overcome in the current work. First, TAS1R1 and TAS1R3 networks were both associated with star-like structures in which common haplotypes were connected to multiple rare haplotypes differing by only one or two mutations. Second, the genomic sequences coalesced at recent times (< 600,000 years ago), about half as long ago as would be expected for autosomal genes. Third, Tajima’s D neutrality tests were systematically associated with negative values in African, European, and Asian populations, though being considerably lower in TAS1R3 than in TAS1R1.

For TAS1R1, the lack of strong negative Tajima’s D could still be compatible with a model of selection based on standing variation, whereby the target variant is already segregating in a population at the time of the selective event and so can be swept to higher frequencies along with the pre-existing linked neutral variation (Przeworski et al. 2005; Fu and Akey 2013). Once selection on standing variation predictably leaves less striking footprints than a standard selective sweep, the possibility could explain not only our TAS1R1 findings, where two major haplotypes (corresponding to the ancestral CG configuration and its one-step derived CA haplotype) display evidence for a rapid increase in frequency but also the TAS1R3 results that provide similar signs at two CCGC subhaplotypes.

Interestingly, in TAS1R1 and TAS1R3, the haplotypes associated with “star-like” structures, CG/CA and CCGC (with and without rs35946613), respectively, coalesce within very short timescales (130–600 ka), falling in the Middle Pleistocene (126–781 ka; Hedges and Kumar 2009), a geological period during which evolution from archaic hominins to anatomically modern humans took place (reviewed in Groucutt et al. 2015). This finding together with the worldwide distribution of negative Tajima’s D values disclosed by both genes, suggest that a common selective pressure might have shaped TAS1R1 and TAS1R3 diversities, guiding a coordinated evolutionary process at the dawn of modern humans.
The implied phenotypic changes were probably related to the shared role of TAS1R1 plus TAS1R3 in the dimer functioning as an umami receptor, given the possibility that enhanced umami taste perception was instigated by the acquisition of new dietary regimes. Notably, it is currently being claimed that a major dietary shift associated with the introduction of cooked food by Homo occurred precisely in the Middle Pleistocene. According to the cooking hypothesis, humans have adapted to the obligatory usage of cooked food in their diets, without which we cannot survive. When this obligation developed has been the subject of controversy (reviewed in Wrangham 2017). However, the scarce archeological evidence for a controlled domain of fire before 400 ka, together with data supporting that the best-known human adaptations to cooked food date ~550–750 ka, are now relegating such dependence on cooking, with consequent effects on human biology and behavior, to the Middle Pleistocene period (Wrangham 2017).

Although we have argued for a selective advantage associated with an improved perception of umami as the main phenotypic effect, consequences linked to other tastes should not be dismissed. As a matter of fact, the strongest candidate variant of TAS1R3 to have been under selection was -T1266C, located in the promoter sequence, a region that until now was only connected with sugar taste sensitivity, recalling that TAS1R1 + TAS1R2 forms the unique heterodimer known to work as a sugar receptor. To our knowledge, the influence of TAS1R3 promoter variants in umami sensitivity has never been investigated, nor has the contribution of variability at the TAS2R16/7.02–6.25 Ma) with at least two divergent lineages that are generally odd that ancestral substructure could evenly affect all five diversity observed in Africa. But it seems a little arbitrary that ancestral substructure can reproduce patterns of selective forces, given that no significant departure from neutrality was detected (Risso et al. 2016). To the contrary, our results provide evidence for such a departure, at

g516T—are uniquely found in Africa, explaining the atypical high FST value (0.278) observed across continental populations. In Africa, the “low-sensitivity” and “high-sensitivity” haplotypes occur at global frequencies of ~33% and ~67%, respectively, and all populations generated positive Tajima’s Ds, suggesting that in this geographic region balancing selection has acted to maintain high phenotypic variability in perception of bitterness.

Before this study, a selective hypothesis for the evolution of TAS2R16 had already been raised by at least three independent works, all agreeing on proposing the “high-sensitivity” haplotypes as targets of positive selection in Eurasia and Africa (Soranzo et al. 2005; Li et al. 2011; Campbell et al. 2014). Here, after inspecting the 1000 Genomes panel, the single population that could potentially support such hypothesis is PJL, which is associated with a strongly negative Tajima’s D value. However, the “high-sensitivity” lineage is old enough (~6.25–3.59 Ma) to have drifted to higher frequencies in the absence of positive selection; and the Neanderthal and Denisovan genomes were consistently found to carry “high-sensitivity” alleles. Thus, the possible excess of low frequency variants is more likely to be associated with some specific feature of the PJL sample. Conversely, the occurrence of “low-sensitivity” and “high-sensitivity” haplotypes at intermediate frequencies in Africa, and the trend toward overtly positive Tajima’s D values in Western Africa, suggest a scenario of long-standing balancing selection. We recognize that ancestral population substructure can reproduce patterns of genetic variation expected under balancing selection, and that could represent a possible cause for the architecture of TAS2R16 diversity observed in Africa. But it seems a little odd that ancestral substructure could evenly affect all five African groups here examined, which despite representing only Bantu speaking populations, are dispersed across Africa, including the Western and Eastern regions. Taking into account the expectation that long-standing balancing selection will maintain beyond regular coalescent times (1–1.5 Ma) with at least two divergent lineages that are generally correlated with a heterozygous advantage, we hypothesize that balancing selection persisted until the present as a major pressure in modeling TAS2R16 variation in Africa. Plausibly, improved ability to recognize a wide spectrum of bitter tastes provided better discrimination between nutritive raw foods and others containing toxic elements.

Concerning TAS2R38, our findings agree with previous studies that point to balancing selection as the best model to explain the worldwide distribution of “taster” and “nontaster” haplotype classes (Woodying et al. 2004; Campbell et al. 2012). Nevertheless, a recent study revisiting the current patterns of TAS2R38 variation reported signs of ancient balancing selection followed more recently by a relaxation of selective forces, given that no significant departure from neutrality was detected (Risso et al. 2016). To the contrary, our results provide evidence for such a departure, at
least in current-day Europeans, in which Tajima’s D values were often highly significant under best-fit demographic models, residing concordantly above the average Tajima’s D across entire chromosome 7. Notably, the study of Risso et al. differs from the present work by the extension of the sequence analyzed: limited in our study to the coding region (896 bp), while Risso et al. also included additional flanking 5’ and 3’ sequences (1,143 bp). That difference might account for loss of the signal of balancing selection in the latter work, given that signatures of balancing selection are mainly expected to affect short genomic segments (Andrès et al. 2009). On the other hand, Risso et al. only provided averaged Tajima’s D values for African and non-African populations, not showing individual values for each population. Thus, the amalgamation of populations might also have contributed to the loss of significant signals of selection, which we have detected here mainly in European populations.

Collectively, the data gathered in this study, and in Wooding et al. 2004 or in Campbell et al. 2012, are consistent with a scenario of long-standing balancing selection that, for an extended time frame, has maintained two divergent haplotypes of TAS2R38. Furthermore, the discovery of an overlap in the selection mode operating at TAS2R38 and TAS2R16 reinforces the assumption that the capacity of humans to perceive a multiplicity of bitter tastes is, or was until recently, essential to survival worldwide.

Although this study has relied on taste perception to ground the evolutionary hypotheses, we note that taste perception does not exhaust the functions of TAS proteins. Current research is showing that TAS genes are expressed in a plethora of nonoral tissues, and taste receptors are involved in many other biological processes—namely, being integrated into respiratory and gastrointestinal pathways (Behrens and Meyerhof 2011)—and that, for instance, bitter and sweet receptors are implicated in the regulation of human upper respiratory innate immunity (Lee et al. 2014; Gil et al. 2015). Taste receptors’ emergence as the products of pleiotropic genes, which participate in a wide range of signaling pathways outside of taste perception, allows us to anticipate a broader role of TAS genes in human health and evolution (Campa et al. 2012).

In conclusion, our results indicate TAS1R (TAS1R1 and TAS1R3) genes as being recently driven by positive selection in a coevolution process possibly correlated with a better capacity to perceive umami or sweet tastes, which probably represented an adaptation to cooked food. On the other hand, TAS2R (TAS2R16 and TAS2R38) genes appear to have been under balancing selection for a long time before the emergence of modern humans in Africa. Their role was most likely to prevent consumption of dangerous raw foods, taking advantage of a wide spectrum of sensations of bitterness. In the near future, elucidation of the pleiotropic relationships in genes that code for taste receptors and their involvement in diverse biological functions promises to expand our understanding of TAS1R and TAS2R molecular evolution.

Supplementary Material

Supplementary data are available at Genome Biology and Evolution online.

Acknowledgments

IPATIMUP is included in the i3S Consortium, which is partially supported by the Portuguese Foundation for Science and Technology (FCT). This work is also funded by FEDER funds through the Operational Programme Competitiveness Factors (COMPETE) and National Funds through the FCT (projects Pest-C/Sau/LA0003/2013 and POCH-01-0145-FEDER-007274, fellowships SFRH/BD/63343/2009 to C.V., SFRH/BPD/65000/2009 to L.A., and SFRH/BPD/120777/2016 to P.I.M.), and by Programa Operacional Regional do Norte (Norte 2020), through FEDER funds under the Quadro de Referência Estratégico Nacional (QREN; NORTE-01-0145-FEDER-000029). We thank Jacquelyn Beals for the careful editing of the work. We also thank Sônia Casillas for the helpful instructions about the tracks from the PopHuman browser, and Miguel Arenas and Eduardo Conde Sousa for the aid in extracting data from those tracks.

Literature Cited

Akey JM, Zhang G, Zhang K, Jin L, Shriver MD. 2002. Interrogating a high-density SNP map for signatures of natural selection. Genome Res. 12(12):1805–1814.

Andrès AM, et al. 2009. Targets of balancing selection in the human genome. Mol Biol Evol. 26(12):2755–2764.

Bachmanov AA, Beauchamp GK. 2007. Taste receptor genes. Annu Rev Nutr. 27:389–414.

Bandelt HJ, Forster P, Rohl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 16(1):37–48.

Behrens M, Meyerhof W. 2011. Gustatory and extragustatory functions of mammalian taste receptors. Physiol Behav. 105(1):4–13.

Blum MG, Jakobsson M. 2011. Deep diversification of human gene trees and models of human origins. Mol Biol Evol. 28(2):889–898.

Breslin PA. 2013. An evolutionary perspective on food and human taste. Curr Biol. 23(9):R409–R418.

Bufl B, Hofmann T, Krautwurst D, Raguse JD, Meyerhof W. 2002. The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nat Genet. 32(3):397–401.

Campa D, et al. 2012. Bitter taste receptor polymorphisms and human aging. PLoS One 7(11):e45232.

Campbell MC, et al. 2012. Evolution of functionally diverse alleles associated with PTC bitter taste sensitivity in Africa. Mol Biol Evol. 29(4):1141–1153.

Campbell MC, et al. 2014. Origin and differential selection of allelic variation at TAS2R16 associated with salcin bitter taste sensitivity in Africa. Mol Biol Evol. 31(2):288–302.

Casillas S, et al. 2018. PopHuman: the human population genomics browser. Nucleic Acids Res. 46(D1):D1003–D1010.

Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. 2006. The receptors and cells for mammalian taste. Nature 444(7117):288–294.
Coop G, Griffiths RC. 2004. Ancestral inference on gene trees under selection. Theor Popul Biol. 66(3):219–232.

Doty RL. 2015. Handbook of olfaction and gustation. Hoboken, New Jersey: Wiley-Blackwell.

Eny KM, Wolever TM, Corey PN, El-Sohemy A. 2010. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am J Clin Nutr. 92(6):1501–1510.

Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 10(3):564–567.

Fu W, Akey JM. 2013. Selection and adaptation in the human genome. Annu Rev Genomics Hum Genet. 14:467–489.

Fushan AA, Simons CT, Slack JP, Manichaikul A, Drayna D. 2009. Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Curr Biol. 19(15):1288–1293.

Gil S, et al. 2015. Genotype-specific regulation of oral innate immunity by T2R38 taste receptor. Mol Immunol. 68(2 Pt C):663–670.

Gomez F, Hirbo J, Tishkoff SA. 2014. Genetic variation and adaptation in Africa: implications for human evolution and disease. Cold Spring Harb Perspect Biol. 6(7):a008524.

Gravel S, et al. 2011. Demographic history and rare allele sharing among human populations. Proc Natl Acad Sci U S A. 108:11983–11988.

Griffiths RC, Tavare S. 1994. Sampling theory for neutral alleles in a varying environment. Philos Trans R Soc Lond B Biol Sci. 344(1310):403–410.

Groucutt GHS, et al. 2015. Rethinking the dispersal of Homo sapiens. Annu Rev Genomics Hum Genet. 16:341–369.

Hedges B and Kumar S, editors with foreword by Watson JD. 2009. The timetree of life. New York: Oxford University Press.

Hudson RR. 2002. Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18(2):337–338.

Kim UK, et al. 2003. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299(5610):1221–1225.

Kim UK, Wooding S, Riaz N, Jorde LB, Drayna D. 2006. Variation in the human TAS1R1 taste receptor genes. Chem Senses 31(7):599–611.

Kong A, et al. 2002. A high-resolution recombination map of the human genome. Nat Genet. 31(3):241–247.

Lee RJ, et al. 2014. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest. 124(3):1393–1405.

Li H, Pakstis AJ, Kidd JR, Kidd KK. 2011. Selection on the human bitter taste gene, TAS2R16, in Eurasian populations. Hum Biol. 83(3):363–377.

Li X, et al. 2002. Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A. 99(7):4692–4696.

Lischer HE, Excoffier L. 2012. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28(2):298–299.

McVean GA, et al. 2004. The fine-scale structure of recombination rate variation in the human genome. Science 304(5670):581–584.

Nei M, Li WH. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 76(10):5269–5273.

Nelson G, et al. 2002. An amino-acid taste receptor. Nature 416(6877):199–202.

Paterson N, Richter DJ, Gniere S, Lander ES, Reich D. 2006. Genetic evidence for complex speciation of humans and chimpanzees. Nature 441(7097):1103–1108.

Przeworski M, Coop G, Wall JD. 2005. The signature of positive selection on standing genetic variation. Evolution 59(11):2312–2323.

Rallou M, et al. 2009. Nonsynonymous single nucleotide polymorphisms in human tas1r1, tas1r3, and mGluR1 and individual taste sensitivity to glutamate. Am J Clin Nutr. 90(3):785–795.

Riso DS, et al. 2016. Global diversity in the TAS2R38 bitter taste receptor: revisiting a classic evolutionary PROPosal. Sci Rep. 6:25506.

Rozas J. 2009. DNA sequence polymorphism analysis using DnaSP. Methods Mol Biol 537:337–350.

Shabalina SA, et al. 2010. Distinct patterns of expression and evolution of intronless and intron-containing mammalian genes. Mol Biol Evol. 27(8):1745–1749.

Shigemura N, Shirosaki S, Sanematsu K, Yoshida R, Nino-miya Y. 2009. Genetic and molecular basis of individual differences in human umami taste perception. PloS One 4(8):e7117.

Shriver MD, et al. 2004. The genomic distribution of population substructure in four populations using 8,525 autosomal SNPs. Hum Genomics 1(4):274–286.

Soares I, Moleirinho A, Oliveira GN, Amorim A. 2015. DivStat: a user-friendly tool for single nucleotide polymorphism analysis of genomic diversity. PloS One 10(3):e0119851.

Soranzo N, et al. 2005. Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr Biol 15(14):1257–1262.

Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595.

Temussi PA. 2009. Sweet, bitter and umami receptors: a complex relationship. Trends Biochem Sci. 34(6):296–302.

The 1000 Genomes Project Consortium. 2010. A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073.

Voight BF, et al. 2005. Interrogating multiple aspects of variation in a full resequencing data set to infer human population size changes. Proc Natl Acad Sci U S A. 102(51):18508–18513.

Watterson GA. 1975. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 7(2):256–276.

Wooding S, et al. 2004. Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Am J Hum Genet. 74(4):637–646.

Wrangham R. 2017. Control of fire in the Paleolithic: evaluating the cooking hypothesis. Curr Anthropol. 58 (S16):S303–S313.

Yu C, et al. 2014. DFA7, a new method to distinguish between intron-containing and intronless genes. PloS One 9(7):e101363.

Associate editor: Partha Majumder