Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Chapter 9

Respiratory viral infections

Ann Regina Falsey

University of Rochester, Rochester, NY, United States, Rochester General Hospital, Rochester, NY, United States

Introduction

Respiratory viruses are a major cause of morbidity and mortality throughout the world and affect persons of all ages [1–4]. In addition to >100 million office visits for upper respiratory infections each winter, hospitals fill to capacity with admissions due to community acquired pneumonia, acute exacerbations of chronic obstructive pulmonary disease, asthma and bronchitis and many of these illnesses are due to viral infection. “Pneumonia and Influenza” consistently ranks as the fourth most common discharge diagnosis, and each year, 270,000 to 540,000 hospitalizations and 7600 to 72,000 deaths in the United States are attributable to influenza [3, 5–8]. Due to their epidemic nature influenza and RSV are widely recognized as pathogens in adults and children, respectively. However, the true burden of disease and the contributions of other viruses such parainfluenza viruses (PIV), human metapneumoviruses (hMPV), coronaviruses (CoV), and rhinoviruses (HRV) now being more fully recognized using modern molecular detection methods [9–13]. In addition to sensitive and rapid diagnostic testing, new molecular techniques allow an understanding of viral evolution, mechanisms and predictors of severe disease, interrogation of vaccine responses, improved bacterial and viral diagnostics and associations of viral infections with non-respiratory medical events. In this chapter the many ways molecular and precision medicine have impacted the field of respiratory viral disease will be reviewed.

Molecular virology of respiratory viruses

Viral diagnosis

In the past defining the epidemiology and impact of viral respiratory pathogens was significantly hampered by slow and/or insensitive diagnostic techniques such as cell culture and antigen detection [13, 14]. Polymerase chain reaction (PCR) has revolutionized the study of respiratory viruses and provides
extremely sensitive, specific and rapid means for the detection of fastidious and non-cultivatable respiratory viruses [13]. PCR based epidemiologic studies now provide a more complete understanding of the clinical spectrum and age ranges of populations affected [15–20]. In one study, conventional methods yielded a viral diagnosis in 14% of pneumonia cases, while use of PCR increased the yield to 56% [21]. Technology has rapidly evolved from single-plex PCR and gel electrophoresis to multiplex real time assays where products are detected by luminescent signals proportional to the target amplified [14]. There are currently a variety of commercially available assays that detect from 2 to 20 viral respiratory pathogens and maintain excellent sensitivity [14]. Many clinical microbiology laboratories are now moving to primarily molecular methods for viral detection and PCR formats are becoming increasingly simple so that nucleic acid extraction and PCR is fully automated with little operator input. Molecular point of care assays will soon be feasible [22].

Viral discovery

In addition to providing more sensitive means of detecting known viruses, molecular methods are extremely useful for viral discovery [23–25]. Over the past several decades a number of new respiratory viruses or variants have been identified including hMPV, novel strains of coronaviruses (HKU1, NL63, SARS-CoV, MERS-CoV), rhinovirus C, Human Boca virus, parechoviruses and new strains of avian influenza viruses. Molecular methods have been critical for the rapid identification of new viruses associated with dramatic lethal outbreaks but also for pathogen discovery for routine respiratory illnesses. Despite intensive investigation, in 12–62% of lower respiratory illnesses no pathogen can be identified suggesting additional agents may yet be discovered [26–28]. Several different genomic approaches for pathogen discovery have been used successfully and include random primer amplification, pan-viral DNA microarray and next generation sequencing (Fig. 1) [24].

If a viral class of an unknown pathogen or variant virus is suspected, consensus PCR using degenerate primers to detect sequences broadly conserved between members of a group can be used as was done to identify two new coronaviruses, HKU1 and MERS-CoV [29, 30]. Another technique for viral discovery is random primer amplification with conventional shotgun sequencing of PCR products [31–33]. Such was the case when Van den Hoogen discovered a new respiratory virus in 2001, in young children with bronchiolitis who tested negative for RSV [31]. After detecting paramyxovirus like particles in cell culture, RNA was subjected to random primer PCR and viral sequences were compared to all known pathogens. The new virus most closely aligned to avian pneumovirus but was determined to be a unique human pathogen and named human metapneumovirus (HMPV). Similarly, in 2003 Peiris identified a novel coronavirus as the cause of severe acute respiratory syndrome (SARS-CoV) using degenerate/random primers PCR
amplification [32]. Using pan viral micro array investigators at the Center for Disease Control and Prevention independently identified the same SARS-CoV [34]. In this technique, after random primer amplification, PCR products are hybridized to microarrays consisting of 70mer oligonucleotides derived from every fully sequenced viral genome. Hybridized sequences are scraped from the microspot, amplified, cloned and finally sequenced [25]. Identification of completely novel infectious agents requires unbiased and sequence independent methods for universal amplification [23, 24, 35]. Conventional Sanger sequencing may have poor sensitivity for genomes at low quantity. Next Generation Sequencing (NGS) involves the analysis of millions of sequences and can detect small amounts of novel nucleic acid sequences in clinical samples. Continuous sequences are assembled, host sequences are subtracted and the residual sequences are analyzed for similarity to known microbial sequences. NGS has led to the discovery a numerous novel human and animal pathogens [24]. A recent study of nasopharyngeal aspirates of Thai children with respiratory illness using NGS identified a number of mammalian viral sequences belonging to newly described families of viruses such Anelloviridae as well as novel strains of HRV, enteroviruses
and HBoV [35]. A critical step in viral discovery is the availability of bioinformatic tools to efficiently identify unique viral sequences in complex mixtures of host, bacterial and fungal sequences. New computational tools for analysis of the virome such as “VirusSeeker” are being developed [36]. Of note, detection does equate with causation and after discovery further studies are necessary to infer more than association.

Viral evolution

The genetic and antigenic evolution of error prone RNA respiratory viruses, particularly influenza, has been of interest for several decades [37, 38]. Understanding the selective pressure exerted by pre-existing immunity on viral evolution may help design more effective influenza vaccines and surveillance of animal populations can be critical for early identification of emerging influenza viruses [39]. Advances in deep sequencing make it possible to measure low frequency within host viral diversity and factors such as antigenic diversity, antiviral resistance, and tissue specificity can now be studied to understand the complexities of viral evolution [40]. Influenza evolution at a population level has been studied years, yet, new antigenic variants are initially generated and selected at the level of the individual infected host. Within a host, influenza viruses exist as a “swarm” of genetically distinct viruses [41]. Sanger sequencing defines consensus sequences and cannot resolve minority variants below 20% of the viral population. Deep sequencing has been used in natural infection and human challenge studies to characterize between and within host genetic diversity [41, 42]. The identification of low frequency mutations in the hemagglutinin (HA) antigenic sites or near the receptor-binding domain in vaccinated and unvaccinated influenza infected persons highlight viral evolution within a host due to selective immune pressure [41]. Similarly, NGS can reveal the rapid evolution of drug resistant variants during therapy [43]. Using samples collected over time, the mutational spectrum of H3N2 influenza A virus in an immunocompromised child was delineated [44]. Individual resistance mutations appeared weeks before they became dominant, evolved independently on cocirculating lineages. The within host evolution of antiviral resistance reflected a combination of frequent mutation, natural selection, and a complex pattern of segment linkage and reassortment. Within host sequencing diversity has also been examined in an infant with severe combined immune deficiency with persistent RSV infection [45]. NGS was performed on 26 samples obtained before and after bone marrow transplantation. The viral population appeared to diversify after engraftment with most variation occurring in the attachment protein (G). In addition, minority viral populations with palivizumab resistance mutations emerged after its administration. Deep sequencing of HRV during human challenge studies has shown that HRV generates new variants rapidly during the course of infection with accumulation of changes in “hot spots” in the capsid, 2C, and 3C genes [46].
Host genetic variation and genomic response to respiratory viral infection

Genome-wide association studies (GWAS)

A genome-wide association study (GWAS) involves rapidly scanning sets of DNA, or genomes, of many people to find genetic variations associated with a particular disease. Typically, the genomes of cases are compared to non-affected controls and search for single nucleotide polymorphisms (SNPS) or polygenic changes that are associated with risk or protection from susceptibility or severity of the condition. GWAS have been useful to find genetic variations and risk for asthma, cancer, diabetes, heart disease and autoimmune illnesses with relatively limited studies relating to infectious diseases [47, 48]. Recent studies examining host genetic factors conferring susceptibility to respiratory viruses such as pandemic H1N1 2009 influenza A, SARS-CoV and RSV now provide some insight into host genetic factors for respiratory viral infections [49–51]. Previously most influenza research focused on viral genetics of novel viruses, yet experience with H1N1 2009 and H5N1 clearly indicate host factors also influence disease severity [49, 50]. A number of candidate genes influencing respiratory virus susceptibility have been identified in animal and human studies and involve host virus interactions, innate immune signaling, interferon related pathways and cytokine responses (Table 1) [49–51, 69–75]. Over 20 studies have evaluated genetic polymorphisms associated with severe RSV disease and none demonstrates dramatic results [51]. Most focused on one or a few candidate genes resulting in only modestly increased odds ratios of severe illness. A relatively large study of almost 500 hospitalized children that examined 384 SNPS in 220 candidate genes demonstrated that susceptibility to RSV is complex with a several associations to a few innate immunity genes. These included a Vitamin D receptor gene associated with down regulating interleukin 12 (IL-12), gamma interferon (IFN-γ), nitrous oxide synthase (NOS2A), the JUN oncogene, an important transcriptional regulator for innate immune pathways, and IFN-α (IFNA5) an antiviral cytokine [68].

Host response to investigate mechanisms of disease

The host transcriptional response can be analyzed to investigate disease pathogenesis using a variety of methods including in-vitro studies of bronchial epithelial cells (BEC), animal models and infection both natural and experimental challenge [76–79]. In addition, two compartments, the respiratory epithelium and blood can be sampled in human studies and interrogated using different viruses or viral strains to develop gene signatures for prognosis, as indicators of severity and to identify potential therapeutic targets.

Mechanisms of disease

Most respiratory viral mechanistic studies have been performed using influenza viruses, RSV, HRV and coronaviruses [80–83]. Using BEC, the common and
Gene	Polymorphism	Significance	Virus	References
CCR5	CCR5Δ32	Increased allele frequency in Canadian ICU cases	H1N1, H5N1	[52, 53]
KIR	2DL2/L3	Increased allele frequency in Canadian ICU cases	H1N1	[54]
IFTIM3	rs12252 altered splice receptor	Increased in hospitalized English and Scottish cases	H1N1	[55]
FcyRlla	IGHG2 *n/*−n	IgG2 subclass deficiency	H1N1	[56, 57]
NLRP3	rs4612666(intron 7)	Dysregulation of inflammasome	H1N1	[58, 59]
	rs10754558 (3′UTR)	Alteration of NLRP3 mRNA stability and enhancer activity		
HLA	Various alleles	Influenza specific CTL	H1N1	[60]
MBL2	230G/A	Mannose-binding lectin	SARS	[61, 62]
MxA	-88G/T(rs2071430)	Encode IFN induced antiviral proteins	H5N1, SARS	[63, 64]
	-123C/A (rs17000900)			
OAS1	rs2660(3′UTR A/G)	IFN induced antiviral proteins	H5N1, SARS, West Nile	[64–66]
	rs3741981 (exon 3A/G)			
	rs1077467			
Gene	SNP	Function	Virus	Reference
--------	--------	---	-------	------------
TLR3	908T/C	Missense mutation in patient with encephalopathy	H5N1	[67]
VDR	Thr1met	Vitamin D receptor, downregulate IL-12 and IFNγ	RSV	[68]
JUN	G750A	Transcriptional regulator for innate immune pathways	RSV	[68]
IFNA5	C435T	Antiviral cytokines	RSV	[68]
NOS2A	G275A	Antimicrobial and anti-inflammatory	RSV	[68]
FCER1A	T-66C	Innate immunity	RSV	[68]

(Adapted from references Juno J, Fowke KR, Keynan Y. Immunogenetic factors associated with severe respiratory illness caused by zoonotic H1N1 and H5N1 influenza viruses. Clin Dev Immunol 2012;2012:797180; Keynan Y, Malik S, Fowke KR. The role of polymorphisms in host immune genes in determining the severity of respiratory illness caused by pandemic H1N1 influenza. Public Health Genomics 2013;16(1–2):9–16; Miyairi I, DeVincenzo JP. Human genetic factors and respiratory syncytial virus disease severity. Clin Microbiol Rev 2008;21(4):686–703.)
divergent pathways used by four virulent viruses (H1N1 2009, H5N1, SARS Co-V and MERS Co-V) to antagonize interferon stimulated genes (ISG) responses was demonstrated (Fig. 2) [84]. H5N1 exhibited early strong up and down regulation of ISG subsets, whereas, less virulent H1N1 did not. SARS Co-V and MERS Co-V also demonstrated delayed ISG allowing early viral replication. In a similar experiment Josset et al. infected BEC with different influenza viruses (H5N1, H7N7, H3N2 and H7N9) and analyzed cellular responses using microarray [83]. Common proinflammatory cytokines and antigen presentation were identified although each viral response was unique and notably, H7N9 responses were most similar to H3N2. The response of different clinical isolates of RSV in A549 cells, and monocyte derived human macrophages
demonstrated that the pattern of innate immune activation was both host cell and viral strain specific [85]. Using RNA seq, differences in IL-6 and CCL5 were noted among the responses to different clinical isolates suggesting different RSV strains may vary in inherent virulence. Human studies have shown significant differences in the blood transcriptional profiles which change over time and differ depending on the infecting respiratory virus. Mejias and colleagues were able to differentiate RSV, HRV and influenza in young children based on the blood gene profile (Fig. 3). HRV infection exhibited the mildest innate and adaptive responses compared to RSV and influenza and neutrophil gene expression was greatest in RSV infection with marked suppression of B and T cell and lymphoid responses [79]. Notably, gene expression changes persisted up to 1 month after infection. Similarly, studies of H7N9 infected patients showed transcriptional profile changes persisting up to 1 month with a transition from innate to adaptive immunity [86].

Rhinovirus (HRV) association with asthma

Because of the association of HRV and exacerbations of asthma, the host response to HRV has been of particular interest [87–90]. Studies using BECs from asthmatic and healthy donors demonstrate different transcriptional profiles when infected with HRV [87]. HRV, similar to other picornaviruses induces gene expression down regulation by the 2A and 2C proteins. In both asthmatic and healthy control derived cells the majority of genes were down regulated after exposure to HRV. However, some significant expression differences in inflammatory, tumor suppressor, airway remodeling and metalloproteinase pathways have been noted in asthmatic derived cells. Asymptomatic HRV infection is quite common and its role in asthma pathogenesis has been questioned. Interestingly, Heinonen et al. did not find a difference in the blood transcriptome of asymptomatic HRV infected children compared to non-infected controls [91]. Whereas, Wesolowska-Anderson and colleagues demonstrated over 100 differentially expressed genes in the nasal epithelium of asymptomatic infected HRV patients [90]. Thus, the blood transcriptome may not be as informative as the nasal epithelial transcriptional response for asymptomatic HRV infection. Given the significant host response to asymptomatic infection, HRV may play a role in asthma exacerbations in the absence of clinically evident disease. Lastly, it may be possible to identify patients with asthma who are prone to frequent HRV related exacerbations by examining the gene expression response of their PBMCs stimulated with HRV [89].

Disease severity

Respiratory syncytial virus

Gene expression studies focusing on illness severity may enhance our understanding of disease pathogenesis, can identify potential therapies to modulate
FIG. 3 Transcription profiles from blood samples of children with influenza, RSV and HRV Lower Respiratory Tract Infection (LRTI). 70 top ranked genes best discriminated influenza, RSV and HRV. Mean modular transcriptional fingerprint for influenza (n=16 and 10 matched controls), RSV (n=44 and 14 matched controls), and HRV LRTI (n=30 and 14 matched controls). The outer dark circles highlight the disease group (influenza, RSV, or HRV) with greater (red) or lower (blue) modular activation. Children with HRV infection demonstrated a milder activation of the innate and adaptive immune responses, compared with children with influenza or RSV infection. Children with influenza displayed a stronger activation of genes related to interferon (M1.2, M3.4, M5.12), inflammation (M4.6, M5.1, M6.13), monocytes (M4.14), and innate immune response (M3.2, M4.2, M4.13) compared with children with RSV or HRV. Several type I interferon and type II interferon genes were expressed only in influenza and RSV infection. In addition, the magnitude of the type I interferon and type II interferon response present was 2- to 22-fold higher in children with influenza compared with children with RSV or HRV. Similarly, genes related to inflammation, monocytes, and innate immune response were greatly overexpressed in children with influenza compared to children with RSV or HRV LRTI. Neutrophil-related genes (M5.15) were significantly overexpressed in RSV infection, followed by HRV infection and, at a lower level, influenza infection. The suppression of genes related to B cells (M4.10), T cells (M4.1, M4.15), lymphoid lineage (M6.19), and antimicrobial response (M2.1) observed in RSV infection was significantly milder or not present in children with influenza or HRV LRTI. (Reproduced with permission from Mejias A, Dimo B, Suarez NM, Garcia C, Suarez-Arrabal MC, Jartti T, et al. Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection. PLoS Med 2013;10(11):e1001549. https://doi.org/10.1371/journal.pmed.1001549.g005.)
harmful host responses and can be used to develop biomarkers for predicting life-threatening disease [79, 92–94]. A number of studies have been undertaken to understand the pathogenesis of severe RSV in young children and have identified a variety of gene expression patterns in blood including under expression of T cell cytotoxicity/NK cells and plasma cell genes, as well as upregulation of JAK/STAT, prolactin, IL-9 signaling, cell to cell signaling, and immune activation pathways [79, 92]. Using nasal epithelial gene expression analysis, van den Kieboom identified 5 differentially expressed genes in 30 children with mild, moderate and severe RSV infection [81]. Ubiquitin D, tetraspanin 8, mucin 13, β microseminoprotein, chemokine ligand 7 were upregulated and differentiated mild from severe illness. Lastly, nasal gene expression is complicated by interactions of the nasal microbiota and host cell gene responses [95]. In nasal samples from children with RSV infection, *H. influenzae* and *S. pneumoniae* dominated microbiota, Toll like receptors and neutrophil/macrophage signaling were over expressed and the presence of *H. influenzae* and *S. pneumoniae* along with age and sex were predictive of risk of hospitalization due to RSV.

Influenza

Transcriptional profiling related to severity has been analyzed in seasonal influenza as well as emerging avian pathogens with a recognition that disease is not only due to an infection with a novel virus in a non-immune host but may also be due to an exaggerated host immune response [78, 96]. In a study of primarily seasonal influenza (H1N1, H3N2), influenza infection was associated with a significantly stronger antiviral, cytokine, attenuation of T/NK cell response compared to patients with respiratory illnesses of unknown etiology regardless of severity [96]. Notably, IFN and ubiquitination was significantly down regulated in those with severe vs. mild to moderate disease. In a study of the lethality of 1918 H1N1 influenza and H5N1 Vietnam influenza virus in Macaques, upregulation of key components of the innate immune response and cell death pathways were noted were noted with 1918 H1N1 infection but were down regulated with H5N1 [78]. Early up regulation of the inflammasome likely resulted in some of the severe tissue damage noted with the 1918 H1N1 influenza infections.

Identification of potential therapeutic targets

In vitro, animal and human challenge studies have been used to identify new strategies control or prevent symptomatic or severe infection [82, 97]. In HRV challenge studies, virperin expression correlated with rhinorrhea and chilliness. Knockdown of expression resulted in increased viral replication in BECs suggesting virperin has antiviral actions and might have potential therapeutic use. Influenza challenge studies clearly show a definable transcriptomic profile in the blood prior to the onset of symptoms offering the possibility of earlier and more effective oseltamivir treatment [77, 98].
Associations with respiratory viral infection with non-respiratory medical events

Lastly, host gene expression studies may allow investigation into links between respiratory viral infections and specific non-respiratory events. There is ample epidemiologic evidence that influenza epidemics are linked with increased rates of strokes and myocardial infarction (MI) [99, 100]. Increased rates of falls and functional decline in nursing homes have also been associated with increased influenza activity [101, 102]. However, direct links of events to viral infection are scarce in part due the event of interest may follow the infection by several weeks when the virus is no longer detectable by traditional testing. Several gene profiling studies have identified viral infection signatures that may persist up to 1-month post infection [79, 86]. Thus, it might be possible to study patients with falls or cardiac events for evidence of recent viral infection using a host response viral signature. In addition, evaluating the host response can provide information on mechanisms of disease. A viral gene signature was used to evaluate patients undergoing cardiac catheterization [103]. Notably, 25% vs. 12%, \(P = 0.04 \) of those with a viral gene signature present vs. those without viral signatures, suffered an MI. Furthermore, H1N1 infected patients showed an increased gene platelet expression signature providing insight into how infection may induce a prothrombotic state.

Host response for diagnosis

Diagnosis of viral infection based on host response

Given the availability of rapid and accurate Multiplex PCR for viral detection, host-based diagnostics might seem unnecessary. However, current PCR assays use conserved known viral sequences but can miss novel or significantly mutated viruses. This issue was seen in 2009 with pandemic H1N1 when influenza PCR assays had to be adapted to optimally detect the new influenza strain [104]. The emergence of novel respiratory viruses are a persistent threat and methods to detect a “viral signature” in the setting of clusters of severe pneumonia cases could be very useful. Zaas and colleagues developed an acute respiratory viral gene signature using microarray analysis of the blood from volunteers experimentally infected with influenza A, HRV or RSV [105]. The signature was subsequently 89% sensitive and 94% specific in classifying as viral 25 influenza and 3 HRV infected patients presenting to an emergency room. Additionally, a distinct blood transcriptome signature was noted in patients with severe H1N1 pneumonia [106]. Upregulated genes included those related to cell cycle, DNA damage, apoptosis, protein degradation, and T helper cells. Down regulated genes were primarily in immune response pathways suggesting immunosuppression as a mechanism of severe influenza pneumonia. Investigators developed a 29 gene classifier which predicted H1N1 influenza A regardless of concomitant bacterial infection and such a predicator could guide antiviral therapy in the face of negative pathogen detection methods.
Distinguishing viral and bacterial respiratory infections

In most cases of respiratory infection, the precise microbial etiology is unknown and antibiotics are frequently administered empirically [27, 107]. Although sensitive molecular diagnostics (PCR) now allow rapid diagnosis of a wide variety of respiratory viruses, their impact on patient management and antibiotic prescription has been modest primarily due to concern about bacterial co-infection [108–110]. Approximately 40% of adults hospitalized with a documented viral respiratory infection have evidence of concomitant bacterial infection and thus clinician concerns are reasonable [109]. Importantly, sensitive and specific diagnostic tests for bacterial lung infection are currently lacking [111, 112]. Although the site of infection is the respiratory tract, blood is a convenient sample comprised of components of the innate immune system (neutrophils, natural killer cells), as well as the adaptive immune system (B and T lymphocytes) [113]. Recent studies indicate that viral and bacterial infections trigger pathogen specific host transcriptional patterns in blood, yielding unique “bio-signatures” that may discriminate viral from bacterial causes of infection [114–117]. In the largest study to date, Tsalik et al. used gene expression in blood to discriminate bacterial from viral infection or non-infectious illness in 273 subjects with respiratory illness [118]. These investigators defined 130 predictor genes in a model with an accuracy of 87% to discriminate clinically adjudicated bacterial, viral, and non-infectious illness. Most studies to date have used micro array but recently RNAseq has been used to differentiate viral and bacterial respiratory illness and in one study 141 genes were noted to be differentially expressed [119]. Three pathways (lymphocyte, α-linoleic acid metabolism, IGF regulation pathways) which included 11 genes as predictors for bacterial infection from non-bacterial infection (naive AUC=0.94; nested CV-AUC=0.86). To date, a number of gene expression studies of adults and children have developed predictors with similar accuracy (AUC ranging from 78% to 94%), yet there has been little overlap in classifying genes identified [105, 106, 114–116, 118–122]. Diverse populations, types of infection, plus alternate analytic tools used, likely explain the different genes identified. More work needs to be done to refine predictive gene sets including patients with mixed viral-bacterial respiratory tract infection. Most studies to date have focused on blood; however, analysis of the nasal respiratory epithelium which is the site of infection might offer advantages. Although data are limited, several recent papers demonstrate that nasopharyngeal host response can also be used as a diagnostic for respiratory viruses [93, 123, 124].

Influenza vaccine response

Immune response to influenza vaccine is variable and influenced by a variety of factors including prior vaccinations and infections, age, the presence of underlying conditions and the type of vaccine administered. Yet, even among a relatively homogeneous cohort of young healthy adults, antibody responses to
vaccine can be variable [125]. Transcriptional profiling of whole blood provide insights into the mechanisms of variability, the effects of age, and vaccine types. The ability to predict vaccine response at baseline based on a transcriptomic signature would have significant clinical implications. To understand the biologic effects of live attenuated influenza vaccine (LAIV) compared to trivalent inactivated vaccine (TIV) blood transcription profiles from 85 young children were assessed by microarray at day 7 post vaccination [126]. Many more genes were differentially expressed in children receiving LAIV compared to TIV (245 vs. 49, respectively) and many modulated type 1 IFN. The efficacy of LAIV has been problematic in recent years and assessing stimulation of type 1 IFN genes could represent a potential biomarker for response to LAIV [126]. Bucasa and colleagues evaluated gene expression at multiple time points after vaccination of healthy young men with TIV [127]. They noted marked up regulation of gene expression of IFN signaling, IL-6 regulation, antigen processing and presentation genes within 24h of vaccination and were able to define a 494 gene expression signature that correlated with the magnitude of antibody response. In another study, a gene profile predictive of antibody response 28 days after influenza vaccination of young and older adults was developed [128]. Notably, the predictive genes were the same in young and old as well as a subgroup of subjects with diabetes suggesting similar pathways were involved despite differences in age and underlying medical conditions. Additionally, transcriptional profiling has been used to signatures in blood associated with B cell memory responses to vaccination. In a study of 150 older and middle aged adults vaccinated with TIV including an H1N12009 antigen, metabolic, cell migration/adhesion, MAP kinase and NF-κB cell genes correlated with peak memory B cell ELISPOTs [129]. Finally, in a study of over 500 subjects vaccinated over several seasons, a predictive signature of nine genes and three gene modules were significantly associated with the magnitude of the serum antibody response (Fig. 4) [130]. Interestingly and in contrast to a previous study, the signature was distinct to the younger cohort. For example, inflammatory genes were associated with better response in the young but a worse response in the elderly. In summary, gene expression studies could be used to evaluate new vaccines and develop predictors of vaccine response in different subgroups of patients based on age and disease state allowing for individualized vaccine regimens.

Conclusions

Molecular analysis of respiratory viruses and the host response to both infection and vaccination have transformed our understanding of these ubiquitous pathogens. The ability to accurately diagnosis viral infections has not only impacted patient care but also changed our perceptions of the burden of disease and populations effected. Transcriptional profiling of blood and nasal epithelium may provide therapeutic targets to prevent and ameliorate illness as well as offer predictors of severe disease.
FIG. 4 Gene expression signatures at baseline as a predictor of influenza response in young adults. (A) The geographic mean of predictive genes (GRB2, ACTB, MVP, DPP7, ARPC4, PLEKHB2, ARRB1) z-scored expression values (response scores) was calculated for low, moderate and high responders. (B) Receiver Operator Characteristic (ROC) curves for classifiers designed to separate high from low to moderate responders. (C) Temporal behavior of response score in the validation cohort for low, moderate and high responders. Each point = individual subject and each group at a time point is summarized by a boxplot with significant P values for high vs. low responders above the date. (Reproduced with permission from HIPC-CHI Signatures Project Team and HIPC-I Consortium. Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Sci Immunol 2017;2(14).)

References

[1] Bloom B, Cohen RA. Summary health statistics for U.S. children: National health interview survey. Vital Health Stat 10 2006; 2007. 234:1–79.

[2] Scheltema NM, Gentile A, Lucion F, Nokes DJ, Munywoki PK, Madhi SA, et al. Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series. Lancet Glob Health 2017;5(10):e984–91.
[3] Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 2003;289(2):179–86.

[4] Monto AS. Epidemiology of viral respiratory infections. Am J Med 2002;112(Suppl. 6A):4S–12S.

[5] Monto AS. Epidemiology of influenza. Vaccine 2008;26(Suppl. 4):D45–8.

[6] Fry AM, Shay DK, Holman RC, Curns AT, Anderson LJ. Trends in hospitalizations for pneumonia among persons aged 65 years or older in the United States, 1988-2002. JAMA 2005;294(21):2712–9.

[7] Zhou H, Thompson WW, Viboud CG, Ringholz CM, Cheng PY, Steiner C, et al. Hospitalizations associated with influenza and respiratory syncytial virus in the United States, 1993-2008. Clin Infect Dis 2012;54(10):1427–36.

[8] Thompson WW, Moore MR, Weintraub E, Cheng PY, Jin X, Bridges CB, et al. Estimating influenza-associated deaths in the United States. Am J Public Health 2009;99(Suppl. 2):S225–30.

[9] Oosterheert JJ, van Loon AM, Schuerman R, Hoepelman AI, Hak E, Thijssen S, et al. Impact of rapid detection of viral and atypical bacterial pathogens by real-time polymerase chain reaction for patients with lower respiratory tract infection. Clin Infect Dis 2005;41(10):1438–44.

[10] Walsh EE, Peterson DR, Falsey AR. Human metapneumovirus infections in adults: another piece of the puzzle. Arch Intern Med 2008;168(22):2489–96.

[11] Gorse GJ, O’Connor TZ, Hall SL, Vitale JN, Nichol KL. Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease. J Infect Dis 2009;199(6):847–57.

[12] Greenberg SB. Update on human rhinovirus and coronavirus infections. Semin Respir Crit Care Med 2016;37(4):555–71.

[13] Mahony JB. Detection of respiratory viruses by molecular methods. Clin Microbiol Rev 2008;21(4):716–47.

[14] Buller RS. Molecular detection of respiratory viruses. Clin Lab Med 2013;33(3):439–60.

[15] Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med 2005;352(17):1749–59.

[16] Johansson N, Kalin M, Tiveljung-Lindell A, Giske CG, Hedlund J. Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods. Clin Infect Dis 2010;50(2):202–9.

[17] van Elden LJ, van Kraaij MG, Nijhuis M, Hendriksen KA, Dekker AW, Rozenberg-Arskka M, et al. Polymerase chain reaction is more sensitive than viral culture and antigen testing for the detection of respiratory viruses in adults with hematological cancer and pneumonia. Clin Infect Dis 2002;34(2):177–83.

[18] Jennings LC, Anderson TP, Beynon KA, Chua A, Laing RT, Werno AM, et al. Incidence and characteristics of viral community-acquired pneumonia in adults. Thorax 2008;63(1):42–8.

[19] Howard LM, Johnson M, Gil AI, Griffin MR, Edwards KM, Lanata CF, et al. Molecular epidemiology of rhinovirus detections in young children. Open Forum Infect Dis 2016;3(1):ofw001.

[20] Maitre NL, Williams JV. Human metapneumovirus in the preterm neonate: current perspectives. Res Rep Neonatol 2016;6:41–9.

[21] Johnstone J, Majumdar SR, Fox JD, Marrie TJ. Viral infection in adults hospitalized with community-acquired pneumonia: prevalence, pathogens, and presentation. Chest 2008;134(6):1141–8.

[22] Wang H, Deng J, Tang YW. Profile of the Alere i Influenza A & B assay: a pioneering molecular point-of-care test. Expert Rev Mol Diagn 2018;18(5):403–9.
Respiratory viral infections

Chapter 9

Lipkin WI, Firth C. Viral surveillance and discovery. Curr Opin Virol 2013;3(2):199–204.

Chiu CY. Viral pathogen discovery. Curr Opin Microbiol 2013;16(4):468–78.

Wang D, Urisman A, Liu YT, Springer M, Ksiazek TG, Erdman DD, et al. Viral discovery and sequence recovery using DNA microarrays. PLoS Biol 2003;1(2):E2.

Iwane MK, Edwards KM, Szilagyi PG, Walker FJ, Griffin MR, Weinberg GA, et al. Population-based surveillance for hospitalizations associated with respiratory syncytial virus, influenza virus, and parainfluenza viruses among young children. Pediatrics 2004;113(6):1758–64.

Jain S, Self WH, Wunderink RG, Team CES. Community-acquired pneumonia requiring hospitalization. N Engl J Med 2015;373(24):2382.

Jartti T, Lehtinen P, Vuorinen T, Osterback R, van den Hoogen B, Osterhaus AD, et al. Respiratory picornaviruses and respiratory syncytial virus as causative agents of acute expiratory wheezing in children. Emerg Infect Dis 2004;10(6):1095–101.

Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 2005;79(2):884–95.

Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367(19):1814–20.

van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 2001;7(6):719–24.

Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003;361(9366):1319–25.

Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA 2005;102(36):12891–6.

Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003;348(20):1953–66.

Prachayangprecha S, Schapendonk CM, Koopmans MP, Osterhaus AD, Schurh AC, Pas SD, et al. Exploring the potential of next-generation sequencing in detection of respiratory viruses. J Clin Microbiol 2014;52(10):3722–30.

Zhao G, Wu G, Lim ES, Droit L, Krishnamurthy S, Barouch DH, et al. VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 2017;503:21–30.

Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelewaan GF, Osterhaus AD, et al. Mapping the antigenic and genetic evolution of influenza virus. Science 2004;305(5682):371–6.

Bedford T, Suchard MA, Lemy P, Dudas G, Gregory V, Hay AJ, et al. Integrating influenza antigenic dynamics with molecular evolution. Elife 2014;3:e01914.

Du Y, Chen M, Yang J, Jia Y, Han S, Holmes EC, et al. Molecular evolution and emergence of H5N6 avian influenza virus in Central China. J Virol 2017;91(12):e00143-17.

Xue KS, Moncla LH, Bedford T, Bloom JD. Within-host evolution of human influenza virus. Trends Microbiol 2018;9:781–93.

Dinis JM, Florek NW, Fatola OO, Moncla LH, Mutschler JP, Charlier OK, et al. Deep sequencing reveals potential antigenic variants at low frequencies in influenza A virus-infected humans. J Virol 2016;90(7):3355–65.

Sobel Leonard A, McClain MT, Smith GJ, Wentworth DE, Halpin RA, Lin X, et al. Deep sequencing of influenza A virus from a human challenge study reveals a selective bottleneck and only limited intrahost genetic diversification. J Virol 2016;90(24):11247–58.
[43] Ghedin E, Holmes EC, DePasse JV, Pinilla LT, Fitch A, Hamelin ME, et al. Presence of oseltamivir-resistant pandemic A/H1N1 minor variants before drug therapy with subsequent selection and transmission. J Infect Dis 2012;206(10):1504–11.

[44] Rogers MB, Song T, Sebra R, Greenbaum BD, Hamelin ME, Fitch A, et al. Intrahost dynamics of antiviral resistance in influenza A virus reflect complex patterns of segment linkage, reassortment, and natural selection. MBio 2015;6(2):e02464-14.

[45] Grad YH, Newman R, Zody M, Yang X, Murphy R, Qu J, et al. Within-host whole-genome deep sequencing and diversity analysis of human respiratory syncytial virus infection reveals dynamics of genomic diversity in the absence and presence of immune pressure. J Virol 2014;88(13):7286–93.

[46] Cordey S, Junier T, Gerlach D, Gobbini F, Farinelli L, Zdobnov EM, et al. Rhinovirus genome evolution during experimental human infection. PLoS One 2010;5(5):e10588.

[47] Newport MJ, Finan C. Genome-wide association studies and susceptibility to infectious diseases. Brief Funct Genomics 2011;10(2):98–107.

[48] Khor CC, Hibberd ML. Host-pathogen interactions revealed by human genome-wide surveys. Trends Genet 2012;28(5):233–43.

[49] Juno J, Fowke KR, Keynan Y. Immunogenetic factors associated with severe respiratory illness caused by zoonotic H1N1 and H5N1 influenza viruses. Clin Dev Immunol 2012;2012:797180.

[50] Keynan Y, Malik S, Fowke KR. The role of polymorphisms in host immune genes in determining the severity of respiratory illness caused by pandemic H1N1 influenza. Public Health Genomics 2013;16(1–2):9–16.

[51] Miyairi I, DeVincenzo JP. Human genetic factors and respiratory syncytial virus disease severity. Clin Microbiol Rev 2008;21(4):686–703.

[52] Keynan Y, Juno J, Meyers A, Ball TB, Kumar A, Rubinstein E, et al. Chemokine receptor 5 big up tri, open32 allele in patients with severe pandemic (H1N1). Emerg Infect Dis 2009;2010. 16(10):1621–2.

[53] Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol 2000;156(6):1951–9.

[54] La D, Czarnecki C, El-Gabalawy H, Kumar A, Meyers AF, Bastien N, et al. Enrichment of variations in KIR3DL1/S1 and KIR2DL2/L3 among H1N1/09 ICU patients: an exploratory study. PLoS One 2011;6(12):e29200.

[55] Everitt AR, Clare S, Perelt T, John SP, Wash RS, Smith SE, et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 2012;484(7395):519–23.

[56] Chan JF, To KK, Tse H, Lau CC, Li IW, Hung IF, et al. The lower serum immunoglobulin G2 level in severe cases than in mild cases of pandemic H1N1 2009 influenza is associated with cytokine dysregulation. Clin Vaccine Immunol 2011;18(2):305–10.

[57] Zuniga J, Buendia-Roldan I, Zhao Y, Jimenez L, Torres D, Romo J, et al. Genetic variants associated with severe pneumonia in A/H1N1 influenza infection. Eur Respir J 2012;39(3):604–10.

[58] Hitomi Y, Ebisawa M, Tomikawa M, Imai T, Komata T, Hirota T, et al. Associations of functional NLRP3 polymorphisms with susceptibility to food-induced anaphylaxis and aspirin-induced asthma. J Allergy Clin Immunol 2009;124(4). 779-85.e6.

[59] Verma D, Lerm M, Blongran Julinder R, Eriksson P, Soderkvist P, Sarnahd E. Gene polymorphisms in the NALP3 inflammasome are associated with interleukin-1 production and severe inflammation: relation to common inflammatory diseases? Arthritis Rheum 2008;58(3):888–94.
[60] Boon AC, de Mutsert G, Graus YM, Fouchier RA, Sint Nicolaas K, Osterhaus AD, et al. The magnitude and specificity of influenza A virus-specific cytotoxic T-lymphocyte responses in humans is related to HLA-A and -B phenotype. J Virol 2002;76(2):582–90.

[61] Ip WK, Chan KH, Law HK, Tso GH, Kong EK, Wong WH, et al. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J Infect Dis 2005;191(10):1697–704.

[62] Zhang H, Zhou G, Zhi L, Yang H, Zhai Y, Dong X, et al. Association between mannose-binding lectin gene polymorphisms and susceptibility to severe acute respiratory syndrome coronavirus infection. J Infect Dis 2005;192(8):1355–61.

[63] Ching JC, Chan KY, Lee EH, Xu MS, Ting CK, So TM, et al. Significance of the myxovirus resistance A (MxA) gene -123C>A single-nucleotide polymorphism in suppressed interferon beta induction of severe acute respiratory syndrome coronavirus infection. J Infect Dis 2010;201(12):1899–908.

[64] He J, Feng D, de Vlas SJ, Wang H, Fontanet A, Zhang P, et al. Association of SARS susceptibility with single nucleic acid polymorphisms of OAS1 and MxA genes: a case-control study. BMC Infect Dis 2006;6:106.

[65] Hamano E, Hijikata M, Itoyama S, Quy T, Phi NC, Long HT, et al. Polymorphisms of interferon-inducible genes OAS-1 and MxA associated with SARS in the Vietnamese population. Biochem Biophys Res Commun 2005;329(4):1234–9.

[66] Lim JK, Lisco A, McDermott DH, Huynh L, Ward JM, Johnson B, et al. Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog 2009;5(2):e1000321.

[67] Hidaka F, Matsuo S, Muta T, Takeshige K, Mizukami T, Nuno H. A missense mutation of the toll-like receptor 3 gene in a patient with influenza-associated encephalopathy. Clin Immunol 2006;119(2):188–94.

[68] Janssen R, Bont L, Siezen CL, Hodemaekers HM, Ermers MJ, Doornbos G, et al. Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes. J Infect Dis 2007;196(6):826–34.

[69] Stark JM, Barnada MM, Winterberg AV, Majumber N, Gibbons Jr. WJ, Stark MA, et al. Genomewide association analysis of respiratory syncytial virus infection in mice. J Virol 2010;84(5):2257–69.

[70] Larkin EK, Hartett TV. Genes associated with RSV lower respiratory tract infection and asthma: the application of genetic epidemiological methods to understand causality. Future Virol 2015;10(7):883–97.

[71] Hull J, Ackerman H, Isles K, Usen S, Pinder M, Thomson A, et al. Unusual haplotypic structure of IL8, a susceptibility locus for a common respiratory virus. Am J Hum Genet 2001;69(2):413–9.

[72] Hull J, Rowlands K, Lockhart E, Moore C, Sharland M, Kwiatkowski D. Variants of the chemokine receptor CCR5 are associated with severe bronchiolitis caused by respiratory syncytial virus. J Infect Dis 2003;188(6):904–7.

[73] Hull J, Thomson A, Kwiatkowski D. Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. Thorax 2000;55(12):1023–7.

[74] Wilson J, Rowlands K, Rockett K, Moore C, Lockhart E, Sharland M, et al. Genetic variation at the IL10 gene locus is associated with severity of respiratory syncytial virus bronchiolitis. J Infect Dis 2005;191(10):1705–9.

[75] Zhou J, To KK, Dong H, Cheng ZS, Lau CC, Poon VK, et al. A functional variation in CD55 increases the severity of 2009 pandemic H1N1 influenza A virus infection. J Infect Dis 2012;206(4):495–503.
[76] Statnikov A, Lytkin NI, McVoy L, Weitkamp JH, Aliferis CF. Using gene expression profiles from peripheral blood to identify asymptomatic responses to acute respiratory viral infections. BMC Res Notes 2010;3:264.

[77] Barton AJ, Hill J, Pollard AJ, Blohmke CJ. Transcriptomics in human challenge models. Front Immunol 2017;8:1839.

[78] Cilloniz C, Shinya K, Peng X, Korth MJ, Proll SC, Aicher LD, et al. Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes. PLoS Pathog 2009;5(10):e1000604.

[79] Mejias A, Dino B, Suarez NM, Garcia C, Suarez-Arrabal MC, Jartti T, et al. Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection. PLoS Med 2013;10(11):e1001549. https://doi.org/10.1371/journal.pmed.1001549.g005.

[80] Reza Etemadi M, Ling KH, Zainal Abidin S, Chee HY, Sekawi Z. Gene expression patterns induced at different stages of rhinovirus infection in human alveolar epithelial cells. PLoS One 2017;12(5):e0176947.

[81] van den Kieboom CH, Ahout IM, Zomer A, Brand KH, de Groot R, Ferwerda G, et al. Nasopharyngeal gene expression, a novel approach to study the course of respiratory syncytial virus infection. Eur Respir J 2015;45(3):718–25.

[82] Gralinski LE, Bankhead 3rd A, Jeng S, Menachery VD, Proll S, Belisle SE, et al. Mechanisms of severe acute respiratory syndrome coronavirus-induced acute lung injury. MBio 2013;4(4):e00271-13.

[83] Josset L, Zeng H, Kelly SM, Tumpey TM, Katze MG. Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options. MBio 2014;5(1). e01102-13.

[84] Menachery VD, Eisdorf AJ, Schafer A, Josset L, Sims AC, Proll S, et al. Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. MBio 2014;5(3):e01174-14. https://doi.org/10.1128/mBio.01174-14.

[85] Levitz R, Gao Y, Dozmorov I, Song R, Wakeland EK, Kahn JS. Distinct patterns of innate immune activation by clinical isolates of respiratory syncytial virus. PLoS One 2017;12(9):e0184318.

[86] Guan W, Yang Z, Wu NC, Lee HHY, Li Y, Jiang W, Shen L, et al. Clinical correlations of transcriptional profile in patients infected with avian influenza H7N9 virus. J Infect Dis 2018;218:1238–48.

[87] Bochkov Y A, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, Gern JE. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol 2010;3(1):69–80.

[88] Gern JE. How rhinovirus infections cause exacerbations of asthma. Clin Exp Allergy 2015;45(1):32–42.

[89] Gardeux V, Berghout J, Achour I, Schissler AG, Li Q, Kenost C, et al. A genome-by-environment interaction classifier for precision medicine: personal transcriptome response to rhinovirus identifies children prone to asthma exacerbations. J Am Med Inform Assoc 2017;24(6):1116–26.

[90] Wesolowska-Andersen A, Everman JL, Davidson R, Rios C, Herrin R, Eng C, et al. Dual RNA-seq reveals viral infections in asthmatic children without respiratory illness which are associated with changes in the airway transcriptome. Genome Biol 2017;18(1):12.
[91] Heinonen S, Jartti T, Garcia C, Oliva S, Smithener C, Anguiano E, et al. Rhinovirus detection in symptomatic and asymptomatic children: value of host transcriptome analysis. Am J Respir Crit Care Med 2016;193(7):772–82.

[92] Mariani TJ, Qiu X, Chu C, Wang L, Thakar J, Holden-Wiltse J, et al. Association of dynamic changes in the CD4 T-cell transcriptome with disease severity during primary respiratory syncytial virus infection in young infants. J Infect Dis 2017;216(8):1027–37.

[93] Do LAH, Pellet J, van Doorn HR, Tran AT, Nguyen BH, Tran TTL, et al. Host transcription profile in nasal epithelium and whole blood of hospitalized children under 2 years of age with respiratory syncytial virus infection. J Infect Dis 2017;217(1):134–46.

[94] Morrison J, Katze MG. Gene expression signatures as a therapeutic target for severe H7N9 influenza—what do we know so far? Expert Opin Ther Targets 2015;19(4):447–50.

[95] de Steenhuijsen Piters WA, Heinonen S, Hasrat R, Bunsow E, Smith B, Suarez-Arrabal MC, et al. Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection. Am J Respir Crit Care Med 2016;194(9):1104–15.

[96] Hoang LT, Tolfvenstam T, Ooi EE, Khor CC, Naim AN, Ho EX, et al. Patient-based transcriptome-wide analysis identify interferon and ubiquination pathways as potential predictors of influenza A disease severity. PLoS One 2014;9(11):e111640.

[97] Proud D, Turner RB, Winther B, Wiehler S, Tiesman JP, Reichling TD, et al. Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med 2008;178(9):962–8.

[98] McClain MT, Nicholson BP, Park LP, Liu TY, Hero 3rd AO, Tsalik EL, et al. A genomic signature of influenza infection shows potential for presymptomatic detection, guiding early therapy, and monitoring clinical responses. Open Forum Infect Dis 2016;3(1):ofw007.

[99] Warren-Gash C, Hayward AC, Hemingway H, Denaxas S, Thomas SL, Timmis AD, et al. Influenza infection and risk of acute myocardial infarction in England and Wales: a CALIBER self-controlled case series study. J Infect Dis 2012;206(11):1652–9.

[100] Kwong JC, Schwartz KL, Campitelli MA, Chung H, Crowcroft NS, Karnauchow T, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 2018;378(4):345–53.

[101] Gozalo PL, Pop-Vicas A, Feng Z, Gravenstein S, Mor V. Effect of influenza on functional decline. J Am Geriatr Soc 2012;60(7):1260–7.

[102] Barker WH, Borisute H, Cox C. A study of the impact of influenza on the functional status of frail older people. Arch Intern Med 1998;158(6):645–50.

[103] Rose JJ, Voora D, Cyr DD, Lucas JE, Zaas AK, Woods CW, et al. Gene expression profiles link respiratory viral infection, platelet response to aspirin, and acute myocardial infarction. PLoS One 2015;10(7):e0132259.

[104] Zaas AK, Garner BH, Tsalik EL, Burke T, Woods CW, Ginsburg GS. The current epidemiology and clinical decisions surrounding acute respiratory infections. Trends Mol Med 2014;20(10):579–88.

[105] Zaas AK, Chen M, Varkey J, Veldman T, Hero 3rd AO, Lucas J, et al. Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans. Cell Host Microbe 2009;6(3):207–17.

[106] Parnell GP, McLean AS, Booth DR, Armstrong NJ, Nalos M, Huang SJ, et al. A distinct influenza infection signature in the blood transcriptome of patients with severe community-acquired pneumonia. Crit Care 2012;16(4):R157.

[107] Harris AM, Hicks LA, Qaseem A. Appropriate antibiotic use for acute respiratory tract infection in adults. Ann Intern Med 2016;165(9):674.
Genomic and precision medicine

[108] Lautenbach E, Lee I, Shiley KT. Treating viral respiratory tract infections with antibiotics in hospitals: no longer a case of mistaken identity. LDI Issue Brief 2010;16(3):1–4.

[109] Falsey AR, Becker KL, Swinburne AJ, Nylen ES, Formica MA, Hennessey PA, et al. Bacterial complications of respiratory tract viral illness: a comprehensive evaluation. J Infect Dis 2013;208(3):432–41.

[110] Brendish NJ, Malachira AK, Armstrong L, Houghton R, Aitken S, Nyimbili E, et al. Routine molecular point-of-care testing for respiratory viruses in adults presenting to hospital with acute respiratory illness (ResPOC): a pragmatic, open-label, randomised controlled trial. Lancet Respir Med 2017;5:P401–11.

[111] Muller B, Harbarth S, Stolz D, Bingisser R, Mueller C, Leuppi J, et al. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect Dis 2007;7:10.

[112] Tenover FC. Developing molecular amplification methods for rapid diagnosis of respiratory tract infections caused by bacterial pathogens. Clin Infect Dis 2011;52(Suppl 4):S338–45.

[113] Chaussabel D, Pascual V, Banchereau J. Assessing the human immune system through blood transcriptomics. BMC Biol 2010;8:84.

[114] Suarez NM, Bunsow E, Falsey AR, Walsh EE, Mejias A, Ramilo O. Superiority of transcriptional profiling over procalcitonin for distinguishing bacterial from viral lower respiratory tract infections in hospitalized adults. J Infect Dis 2015;212(2):213–22.

[115] Ramilo O, Allman W, Chung W, Mejias A, Ardura M, Glaser C, et al. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood 2007;109(5):2066–77.

[116] Hu X, Yu J, Crosby SD, Storch GA. Gene expression profiles in febrile children with defined viral and bacterial infection. Proc Natl Acad Sci USA 2013;110(31):12792–7.

[117] Sweeney TE, Wong HR, Khatri P. Robust classification of bacterial and viral infections via integrated host gene expression diagnostics. Sci Transl Med 2016;8(346):346ra91.

[118] Tsalk EL, Henao R, Nichols M, Burke T, Ko ER, McClain MT, et al. Host gene expression classifiers diagnose acute respiratory illness etiology. Sci Transl Med 2016;8(322):322ra11.

[119] Bhattacharya S, Rosenberg AF, Peterson DR, Grzesik K, Baran AM, Ashton JM, et al. Transcriptomic biomarkers to discriminate bacterial from nonbacterial infection in adults hospitalized with respiratory illness. Sci Rep 2017;7(1):6548.

[120] Herberg JA, Kafourou M, Wright VJ, Shaiels H, Eleftherohorinou H, Hoggart CJ, et al. Diagnostic test accuracy of a 2-transcript host RNA signature for discriminating bacterial vs viral infection in febrile children. JAMA 2016;316(8):835–45.

[121] Mahajan P, Kuppermann N, Mejias A, Suarez N, Chaussabel D, Casper TC, et al. Association of RNA biosignatures with bacterial infections in febrile infants aged 60 days or younger. JAMA 2016;316(8):846–57.

[122] Zaas AK, Burke T, Chen M, McClain M, Nicholson B, Veldman T, et al. A host-based RT-PCR gene expression signature to identify acute respiratory viral infection. Sci Transl Med 2013;5(203):203ra126.

[123] Yahya M, Rulli M, Toivonen L, Waris M, Peltola V. Detection of host response to viral respiratory infection by measurement of messenger RNA for MxA, TRIM21, and viperin in nasal swabs. J Infect Dis 2017;216(9):1099–103.

[124] Landry ML, Foxman EF. Antiviral response in the nasopharynx identifies patients with respiratory virus infection. J Infect Dis 2018;217(6):897–905.

[125] Franco LM, Bucasas KL, Wells JM, Nino D, Wang X, Zapata GE, et al. Integrative genomic analysis of the human immune response to influenza vaccination. Elife 2013;2:e00299.
[126] Zhu W, Higgs BW, Morehouse C, Streicher K, Ambrose CS, Woo J, et al. A whole genome transcriptional analysis of the early immune response induced by live attenuated and inactivated influenza vaccines in young children. Vaccine 2010;28(16):2865–76.

[127] Bucasas KL, Franco LM, Shaw CA, Bray MS, Wells JM, Nino D, et al. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J Infect Dis 2011;203(7):921–9.

[128] Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN, et al. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol 2011;12(8):786–95.

[129] Haralambieva IH, Ovsyannikova IG, Kennedy RB, Zimmermann MT, Grill DE, Oberg AL, et al. Transcriptional signatures of influenza A/H1N1-specific IgG memory-like B cell response in older individuals. Vaccine 2016;34(34):3993–4002.

[130] HIPC-CHI Signatures Project Team, HIPC-I Consortium. Multicohort analysis reveals baseline transcriptional predictors of influenza vaccination responses. Sci Immunol 2017;2(14):1–28.