MicroRNA-194-5p Levels Decrease during Deep Hypothermic Circulatory Arrest

Xiaohua Wang1,2,3, Zerong You5, Guoguang Zhao2,3,4 & Tianlong Wang1,2,3

Hypothermia has been reported to be effective in protecting the brain in various clinical conditions, including resuscitation after cardiac arrest and complex cardiovascular surgery, and is considered to be a promising therapy for stroke. The present study aimed to confirm the pivotal role that miRNA-194-5p plays in deep hypothermia circulation arrest. On the basis of reductions in expression of miR-194-5p in the circulation of 21 aortic dissection patients who underwent deep hypothermia circulatory arrest, the specific expression, target, and function of miR-194-5p was investigated using primary neuron culture, polymerase chain reaction, in situ hybridization, and flow cytometry methods. Our results showed that miR-194-5p expression was significantly downregulated in hypothermia oxygen glucose deprivation-treated neurons in vitro. Cortical neurons transfected with miR-194-5p mimic exhibited increased death due to oxygen-glucose deprivation. MiR-194-5p mediated the regulation of neuronal death, which involves the downregulation of the specific target protein SUMO2, which is crucial to ischemia tolerance. Collectively, these data highlight the unique role of miR-194-5p in mediating the deep hypothermia circulation arrest response via the regulation of SUMO2. These findings suggest that miR-194-5p could be a potential therapeutic target for intervention in ischemic disease.

Deep hypothermic circulatory arrest (DHCA) has long been practiced in the repair of aneurysms of the thoracic aorta, giant intracranial aneurysms in adult patients, and complex congenital heart disease in neonates1–5. Although the potential of deep hypothermia to protect organs from ischemia damage is well established, little is known about the mechanisms underlying organ protection, or strategies to maximize its efficacy. Elucidating the mechanisms underlying the protection of organs using deep hypothermia is, therefore, of tremendous clinical interest. Understanding these mechanisms would be a pivotal step toward designing therapeutic strategies to activate these processes and, thus, induce a state of tolerance to transient ischemia without risking the occurrence of adverse events associated with deep hypothermia.

MicroRNAs (miRNAs) are short, non-coding RNAs that serve as translation inhibitors through promotion of messenger RNA (mRNA) degradation by imperfect base-pairing between the seed region in miRNA and the miRNA binding site in the 3′-untranslated region (3′ UTR) of target mRNAs. miRNAs can potentially target hundreds of distinct mRNAs and have been increasingly recognized as key regulators of gene expression involved in neuronal protection6–8. Surprisingly, miRNAs withstand repetitive freeze-thaw cycles, blood haemodialysis, and are even resistant to nuclease digestion9. Due to size, tissue specificity, and inherent molecular stability, miRNAs afford the opportunity to investigate potential new treatments to activate endogenous neuroprotective pathways before performing surgical procedures that require a period of circulatory arrest, increasing the resistance of neurons to a transient interruption in blood supply.

The present series of experiments was designed to demonstrate changes in miR-194-5p expression after DHCA in patient blood. We also tested miR-194-5p expression after hypothermic oxygen-glucose deprivation (OGD) in neurons. To further investigate the important role of miR-194-5p in DHCA, miR-194-5p mimics were transfected into neurons, which lead to increases in neuronal death in OGD-triggered neurons mediated by the downregulation of small ubiquitin-like modifier (SUMO2). This study aimed to provide new insights into the regulatory mechanisms underlying deep hypothermia protection.
understanding of DHCA, suggests that miR-194-5p plays a key role in DHCA and, furthermore, may have important therapeutic applications in ischemic conditions.

Results

Significant decreases in MiR-194-5p levels after DHCA compared with preoperative levels in vivo. The present study investigated patients undergoing total arch replacement surgery with DHCA. Coincident with results reported previously, miR-194-5p is downregulated in the hippocampus after DHCA in the piglet model (Supplementary Table). The baseline characteristics of these patients and their intraoperative information are summarized. All the values are given using mean ± SD. BSA: body surface area; EF: ejection fraction; DHCA: Deep hypothermic circulation arrest; CPB: Cardiopulmonary bypass; ICU: Intensive Care Unit.

Variables	Means ± standard deviation
Age (y)	52.7 ± 9.3
Weight (kg)	69.9 ± 12.7
BSA (m²)	1.80 ± 0.2
EF (%)	59.4 ± 6.1
Operation time (h)	6.80 ± 1.5
CPB time(min)	188.0 ± 48.5
Cooling time(min)	67.6 ± 30.3
Rewarming time (min)	120.7 ± 27.6
Aortic cross clamp time(min)	94.5 ± 29.1
DHCA time(min)	21.4 ± 9.3
Nasopharyngeal temperature (°C)	19.8 ± 2.4
Ventilation time (h)	18.9 ± 11.7
ICU length of stay (h)	107.8 ± 128.9
Hospital length of stay (day)	12.6 ± 3.2

Table 1. Demographic and peri-operative data. The study was conducted with patients undergoing total arch replacement surgery under deep hypothermic circulatory arrest. The baseline characteristics of those patients and intraoperative information are summarized. All the values are given using mean ± SD. BSA: body surface area; EF: ejection fraction; DHCA: Deep hypothermic circulation arrest; CPB: Cardiopulmonary bypass; ICU: Intensive Care Unit.
the expression of both SUMO2 mRNA (Fig. 5B) and protein (Fig. 5C) in primary rat neurons. To further confirm whether the effect of miR-194-5p on SUMO2 was direct and specific, primary neurons were co-transfected with miR-194-5p mimic in the presence of a target protector oligo (TP-SUMO2) that specifically protected the miR-194-5p binding site on the endogenous SUMO2 3′-UTR. As shown in Fig. 6b, in the presence of TP-SUMO2, miR-194-5p mimic failed to downregulate the expression of SUMO2. Consistent with this finding, transfection of primary neurons with the TP-SUMO2 specific for the miR-194-5p binding site resulted in amelioration of miR-194-5p mimic-mediated induction of neuronal death (Fig. 7A,B).

Discussion
In summary, our in vivo and in vitro studies demonstrated the following: MiR-194-5p levels significantly decreased in human blood after DHCA in vivo and in neurons under hypothermia OGD in vitro; upregulated miR-194-5p decreased neuronal viability after oxygen and glucose deprivation and re-oxygenation, and SUMO2 was a functional and specific target of miR-194-5p in neurons.

This study is the first to report that miR-194-5p expression decreases in the blood of patients undergoing DHCA. Moreover, the miR-194-5p expression profile in hypothermic neurons exposed to ischemia in vitro surprisingly coincided with our previous results using hippocampi from piglets after DHCA. Previously, we reproduced the DHCA model in piglets; harvested hippocampi underwent miRNA microarray analysis using significance analysis of microarrays, and this result was further confirmed by the qRT-PCR assay. Thirty-five miRNAs were differentially expressed in the hippocampus after the DHCA procedure: 13 were upregulated, 22 were downregulated, and miR-194-5p levels decreased significantly in the DHCA group (Supplement-table). More recently, gene expression in the hippocampus after DHCA has been reported to play a critical role in the pathogenesis of neurological injury. Compared with other DHCA pathological mechanisms, much less is known about regulation at the post-transcriptional level in cerebral ischemia after DHCA.

Additionally, for the first time, we revealed that the expression of miR-194-5p can directly upregulate SUMO2 production at the post-transcriptional level. SUMO-2/3 conjugation was involved in the protective effects induced by deep hypothermia and may play a role in DNA repair, transcription regulation, and subcellular localization. The profound reduction in body temperature would be lethal in most mammalian species. During the torpor phase in hibernating animals, brain SUMO2 conjugation and levels of SUMO2 proteins exhibit a marked increase, which indicates the presence of a protective response shielding neurons from damage induced by low blood flow and substrate deprivation. A series of studies verified that global increases in SUMO2 and activation...
of SUMO2 conjugation at the same time are endogenous neuroprotective stress responses to severe stress. Our results, which demonstrated a significant decrease in the levels of SUMO2-conjugated proteins after upregulation of miR-194-5p expression in neurons, support the concept that elevated miR-194-5p expression and downregulated SUMO2 levels could inhibit a protective stress response. Using the Target-Protect SUMO2 (TP-SUMO2), we further verified that SUMO2 is functionally and specifically downstream of miR-194-5p.

Nevertheless, there are several issues that warrant further consideration. First, astrocytes, oligodendrocytes, and endothelial cells involved in the neurovascular unit may also be targets of miR-194-5p and participate in a hypothermia protection mechanism, which warrants further study. Second, miR-194-5p may be also involved in the potential protection of hypothermia under ischemia. Subsequent steps of this study will use transgenic mice to test the miR-194-5p function in vivo in a DHCA model, and a subsequent preclinical study. Third, whether miR-194-5p expression levels truly correlate with long-term outcomes of the patients undergoing DHCA remains to be fully assessed. Lastly, we will design moderate hypothermia groups at different temperatures in animal studies, to test whether different degrees of hypothermia affect the expression of miR-194-5p.

Collectively, the results of our study provide new insights into the role of miR-194-5p in human blood undergoing DHCA and via hypothermia OGD in vitro. MiR-194-5p mimic increases neuronal death linked to OGD. These data suggest a unique mechanism of miRNA and hypothermia protection efficiency via post-transcriptional regulation. Modulation of miR-194-5p/SUMO2 can be envisioned as a potential therapeutic strategy for ischemic brain injury.

Methods

Study population, operation process, and blood sample collection. This study was a randomized single-blind prospective cohort trial. It was registered at http://www.ClinicalTrials.com (ClinicalTrial-NCT-03339414) (https://clinicaltrials.gov/). The use of human blood in our study (ID 2013-026283-1) was approved by the institutional review board (IRB) of Xuanwu Hospital (No. Xuanwu 130-63528), and informed consent was obtained from each subject. Furthermore, the studies were conducted as outlined in the IRB protocol. This case-control study included 21 aortic dissection patients who were classified according to the Stanford classification: Stanford A1 (n = 13); A2 (n = 4); A3 (n = 1); B1 (n = 1); and B3 (n = 1); and aortic dilation (n = 1). Patients received standard perioperative monitoring and conventional intravenous inhalation anaesthesia. A median sternotomy was performed, an arterial cannula was inserted into the right axillary artery, and a dual-stage atrio caval cannula was placed in the right atrium, as routinely established for cardiopulmonary bypass. Cardiopulmonary bypass flow rate was maintained between 2.5 and 2.8L/min/m^2. During the cooling phase, the
Antegrade perfusion of cold-blood cardioplegia solution was directly infused into the coronary ostia. Circulatory arrest was established when the nasopharyngeal temperature reached 18–20 °C. An alpha-stat acid-base management strategy was used while nasopharyngeal temperatures were ≥28 °C; a pH-stat acid-base management strategy was used throughout the DHCA procedure when the nasopharyngeal temperature was <18 °C. The carotid artery and subclavian artery were clamped, and antegrade selective cerebral perfusion commenced via the right axillary artery at a rate of 10 mL/kg/min. The details of these procedures have been described previously.

Blood samples were drawn preoperatively, and at 0, 8, 12, 24, 36 h postoperatively from all patients. Whole blood samples (5–10 mL) were collected into sodium EDTA tubes, of which 0.25 μL was mixed immediately with 0.75 μL of TRIpure LS Reagent (BioTake Co.). The resulting mixture was frozen at −80 °C until analysed.

Primary neuron cultures. Primary neuron cultures were prepared from cerebral cortices of embryonic day 17 Sprague-Dawley rat embryos as described previously. Briefly, cortices were dissected and dissociated, and the cells were cultured at 37 °C in a humidified chamber (95% air, 5% CO₂). Cultures were used for experiments 7 to 10 days after seeding.

RNA extraction and real-time polymerase chain reaction. Total RNA was extracted from the primary cultured cells using a commercially available kit (RNeasy Plus Mini Kit [50], QIAGEN, USA), according to manufacturer’s instructions. For the miRNA assay, total RNA (containing miRNAs) was reverse-transcribed
using hairpin-loop primers designed to target the specific miRNA (miR-194-5p) at a concentration of 600 ng/μL used for complementary DNA (cDNA) synthesis PrimeScript™ 1st strand cDNA Synthesis Kit (TaKaRa Clontech, Cat#6110 A). Semi-quantitative real-time polymerase chain reaction (PCR) was performed using RT2 SYBR Green ROX qPCR Mastermix (QIAGEN, Cat. No. 330520), with U6 expression levels as an internal reference. For the mRNA assay, total RNA was reverse-transcribed with oligoDT primers at a concentration of 600 ng/μL used for cDNA synthesis PrimeScript™ 1st strand cDNA Synthesis Kit (TaKaRa Clontech, Cat#6110 A). TaqMan mRNA assays (Applied Biosystems Inc., Carlsbad, CA, USA) were used to quantify SUMO2 mRNA (Rn00821719-g1, Invitrogen) expression levels, in accordance with the manufacturer’s protocol. B2m (Rn00560865-m1, Invitrogen) expression levels were used as an internal reference. The CT values of the different samples were compared using the $2^{-\Delta\Delta CT}$ method. Quantitative real-time PCR (qRT-PCR) was performed using 20 ng of cDNA in a 20 μL volume and the ABI 7500 System. qRT-PCR measurements were performed to obtain a mean CT value for each sample.

In situ hybridization. Primary mouse cortical neurons (day 7 in vitro) were fixed at 4 °C overnight and treated with 5 ug/mL proteinase K for 5 min in room temperature. The cells were washed three times with phosphate-buffered saline (PBS) for 5 min per wash. Mature miR-194-5p was detected using miR-194-5p DIG-labelled LNA at both the 5’ and 3’ ends with digoxigenin probe (TCCACATGGAGTTGCTGTTAGA; Exiqon) and were prehybridized in hybridization buffer (50% formamide, 5× SSC, 200 ug/mL yeast tRNA, 200 ug/mL salmon sperm DNA, 1 × Denhardt’s solution, 10% dextran sulphate (wt/vol). LNA-modified miR-194-5p were diluted to a final concentration of 40 nM in hybridization buffer, heated to 90 °C for 5 min and separately hybridized to the sections at 55 °C for 2 h in a hybridization oven (Shake N Bake, Boekel, Feasterville, PA, USA). The slides were then washed three times in 0.1× SSC (without probe) at 42°C, followed by washing twice in 2× SSC at room temperature, then incubated in 3% H2O2 for 10 min at room temperature. They were then blocked with 1% bovine serum albumin, in 1 × PBS for 1 h at room temperature and incubated with anti-digoxigenin conjugated with horseradish peroxidase (1:400, Roche Diagnostics, Mannheim, Germany) for 30 min at room temperature. The slides were washed twice with PBST and incubated for signal amplification (for the in situ, now labelled with horseradish peroxidase) using the TSA Cy5 kit (PerkinElmer, Waltham, MA) according to the manufacturer’s protocol. After three PBST washes (5 min each), the slides were mounted and stained with DAPI (Invitrogen). The specificity of the miR-194-5p signal in fluorescence in situ hybridization (FISH) experiments was confirmed when compared with a scrambled control. The scrambled probes emitted no signal in the neurons.

MiR-194 mimic transfection and flow cytometry. The Rno-miR-194-5p mirVana™ miRNA mimic ID:AM10004 (Ambion, AM17000); or Scramble ID:AM10004 (Ambion, AM17000), mixed with Lipofectamine
RNAi-MAX Reagent (Invitrogen, 13778-075), were added to the primary rat neuron (7 days in vitro) culture medium according to manufacturer’s instructions. For the transfection efficiency assay, primary rat neurons were transfected with miR-194-5p were labelled with FAM fluorescence (miRCURY LNA Power Inhibitor of miR-194-5p in-vivo grade, 5′ FAM) (Exiqon, CAC00036303) for flow cytometry analysis. Briefly, attached neurons were gently trypsinized and centrifuged at 1,000 × g for 5 min, then labelled with Zombie VioletTM Fixable Viability Kit (Biolegend, 423113) to identify dead cells, 1 µl Zombie VioletTM reagent was added into the 1-ml culture medium, then incubated for 10 min at culture temperature. After being washed in PBS, neurons were fixed with 4% paraformaldehyde (PFA). FAM fluorescence was assayed using LSR II (BD Biosciences) and used for fluorescence acquisition. Unstained neurons (as control group) also fixed were used to determined appropriate gating parameters and voltages. The data were analysed using Flow Jo software.

Western Blot analysis and Immunocytochemistry. Cultures were rinsed twice with PBS and the cells were collected into Pro-PREP Protein Extraction Solution (iNTRON Biotechnology, 17081). Equal amounts of protein for each sample were loaded onto 4–20% Tris-glycine gels. After electrophoresis and transferring to nitrocellulose membranes (Novex), the membranes were blocked in Tris-buffered saline containing 0.1% (vol/vol) Tween 20 and 0.2% (wt/vol) I-block (Tropix, T2015) for 90 min at room temperature. Membranes were then incubated overnight at 4°C with following primary antibodies, anti-β-actin (1 : 1,000, Sigma-Aldrich, A5441, Dorset, UK), SUMO2/3-specific antibody (1 : 1,000, Abcam, ab3742, Cambridge, MA, USA). After incubation with appropriate horseradish peroxidase-conjugated secondary antibodies (GE Healthcare, NA931 (anti-mouse), or NA934 (anti-rabbit), Pittsburgh, PA, USA), the blots were developed using Pierce ECL Western Blotting Substrate Plus. Densitometric analysis was performed using Image Studio Lite software (LI-COR Biosciences) after scanning with the GE Healthcare Imager 600. For the immunocytochemistry, cells were and fixed with 4% paraformaldehyde (4% PFA) in PBS as described previously and incubated with primary antibodies against SUMO2/3 (1 : 200, Abcam, ab3742). MAP2 (1 : 500, Abcam, ab5392) After staining with primary antibody, fluorescent-tagged
secondary antibody, nuclei were counter-stained with 4,6-diamidino-2-phenylindole. Immunostaining was analysed with a fluorescence microscope (Nikon ECLIPSE Ti-S, Los Angeles, CA, USA) interfaced with a digital charge-coupled device camera and an image analysis system.

OGD, re-oxygenation, and hypothermia OGD. OGD experiments were performed using a specialized, humidified chamber (Heidolph, incubator 1000, Brinkmann Instruments) maintained at 37 °C, which contained an anaerobic gas mixture (90% N₂, 5% H₂, and 5% CO₂). For hypothermia OGD, the OGD chamber was set to room temperature (25 °C). To initiate OGD, culture medium was replaced with deoxygenated, glucose-free DMEM (Life Technologies, USA). After a 2 h challenge, cultures were removed from the anaerobic chamber, and the OGD solution in the cultures was replaced with maintenance medium. Neurons were then allowed to recover for 18 h in a regular incubator before the neurotoxicity assay.

Determination of cell viability. Cell viability was quantified using the Cell Counting kit-8 (CCK-8, Dojindo) according to manufacturer’s instructions. CCK-8 solution (10 μL) was added to each well of the plate, and the cells were incubated at 37 °C for 2 h. The optical density at a wavelength of 450 nm was measured using a microplate reader. The relative assessments of neuronal injury were normalized by comparison with control neurons, in which cell survival was defined to be 100%. Cell viability was also assessed after staining of neuron cultures with propidium iodide (PI) to distinguish between living and dead cells (0.001 mg/mL for 5 minutes with subsequent rinsing) and five images per well were taken and quantified as ratios versus all neurons under bright light.

Statistical analysis. All values are presented as mean ± standard deviation (SD) of at least three independent experiments. For measurement data, multiple comparisons were evaluated using one-way ANOVA followed by
3. Levati, A.

References

1. Reith, J. et al. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet. 347, 422–425 (1996).
2. Bernard, S. A. et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. New Engl. J. Med. 346, 557–563, https://doi.org/10.1056/NEJMoa032389 (2002).
3. Levati, A. et al. Giant intracranial aneurysms treated with deep hypothermia and circulatory arrest. J. Neurosurg. Anesthesiol. 19, 25–30, https://doi.org/10.1097/01.anu.000021022.96054.4d (2007).
4. Stier, G. R. & Verde, E. W. The postoperative care of adult patients exposed to deep hypothermic circulatory arrest: pathophysiology of ischemic neuronal injury and protective strategies. Ann. Thorac. Surg. 80, 1955–1964, https://doi.org/10.1016/j.athoracsur.2004.12.040 (2005).
5. Amir, G., Ramamoorthy, C., Riemer, R. K., Reddy, V. M. & Hanley, F. L. Neonatal brain protection and deep hypothermic circulatory arrest; pathophysiology of ischemic neuronal injury and protective strategies. Ann. Thorac. Surg. 80, 1955–1964, https://doi.org/10.1016/j.athoracsur.2004.12.040 (2005).
6. Saugstad, J. A. MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J. Cereb. Blood. Flow. Metab. 30, 1564–1576, https://doi.org/10.1038/jcbfm.2010.101 (2010).
7. Madathil, S. K., Nelson, P. T., Saatman, K. E. & Wilfred, B. R. MicroRNAs in CNS injury: potential roles and therapeutic implications. BioEssays. 33, 21–26, https://doi.org/10.1002/bies.201000069 (2011).
8. Fiedler, J. & Thum, T. MicroRNAs looping around angiogenesis. Arterioscler. Thromb. Vasc. Biol. 31, 2367–2368, https://doi.org/10.1161/ATVBaha.111.237602 (2011).
9. Martino, F. et al. Circulating microRNAs are not eliminated by hemodialysis. PloS one 7, e38269, https://doi.org/10.1371/journal.pone.0038269 (2012).
10. Wang, X. H. et al. Identification and modulation of microRNA in hippocampus during deep hypothermic circulatory arrest. Chin. J. E.C.C. 10, 114–119 (2012).
11. Allen, J. G. et al. Hawley H. Seiler Resident Award. Transcriptional profile of brain injury in hypothermic circulatory arrest and cardiopulmonary bypass. Ann. Thorac. Surg. 89, 1965–1971, https://doi.org/10.1016/j.athoracsur.2010.02.051 (2010).
12. Datwyler, A. L. et al. SUMO2/3 conjugation is an endogenous neuroprotective mechanism. J. Cereb. Blood. Flow. Metab. 31, 2152–2159, https://doi.org/10.1038/jcbfm.2011.112 (2011).
13. Wilkinson, K. A. & Henley, J. M. Mechanisms, regulation and consequences of protein SUMOylation. Biochem. J. 428, 133–145, https://doi.org/10.1042/bj20100158 (2010).
14. Meulmeester, E. & Melchior, F. Cell biology: SUMO. Nature. 452, 709–711, https://doi.org/10.1038/452709a (2008).
15. Lee, Y. J. et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J. Cereb. Blood. Flow. Metab. 27, 950–962, https://doi.org/10.1038/jcbfm.9600395 (2007).
16. Yang, W., Ma, Q., Mackensen, G. B. & Paschen, W. Deep hypothermia markedly activates the small ubiquitin-like modifier conjugation pathway; implications for the fate of cells exposed to transient deep hypothermic cardiopulmonary bypass. J. Cereb. Blood. Flow. Metab. 29, 886–890, https://doi.org/10.1038/jcbfm.2009.16 (2009).
17. Lofthus, L. T. et al. Sumo–23ylation following in vitro modeled ischemia is reduced in delayed ischemic tolerance. Brain. Res. 1272, 71–80, https://doi.org/10.1016/j.brainres.2009.03.034 (2009).
18. Lee, Y. J. et al. SUMOylation participation in induction of ischemic tolerance. J. Neurochem. 109, 257–267, https://doi.org/10.1111/j.1471-4159.2009.05957.x (2009).

Figure 7. miR-194-5p mimic co-transfected with SUMO2 target protect (TP) demonstrates that SUMO2 is the independent functional target of miR-194-5p. (A) Propidium iodide (PI) staining show TP-SUMO2 functionally reverse the neuron death back to the level of the control group. (B) Cell viability after transfection of scramble was 80.5569 ± 2.9359, miR-194-5p mimic was 66.5388 ± 6.7488 (P < 0.01), and miR-194-5p mimic co-transfection with TP-SUMO2 was 80.9443 ± 3.4828 (P < 0.01).

the Tukey-Kramer test for pair-wise comparisons between all groups. A repeated-measures two-way ANOVA was followed by Bonferroni test. An unpaired t-test was used only for two-group comparisons. Differences with P < 0.05 was considered to be statistically significant.

Data Availability Statement

The data are available from the corresponding author on reasonable request.
19. Wang, X. et al. Real-time continuous neuromonitoring combines transcranial cerebral Doppler with near-infrared spectroscopy cerebral oxygen saturation during total aortic arch replacement procedure: a pilot study. ASAIO. J. 58, 122–126, https://doi.org/10.1097/MAT.0b013e318241abd3 (2012).

20. Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 535, 551–555, https://doi.org/10.1038/nature18928 (2016).

Acknowledgements
The National Natural Science Foundation of China (No. 81401084); Beijing Municipal Administration of Hospital Ascent Plan (No. DFL20150802); Beijing 215 High Level Healthcare Talent Plan Academic Leader (No. 008–0027); Beijing Municipal Commission of Health and Family Planning (No. PXM2017_026283_000002); Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX201706); (No. 303-01-005-0137-11; 65683.00) in part funded this work.

Author Contributions
X.W. contributed to data acquisition and interpretation, as well as drafting the manuscript. Z.Y. contributed to data analysis, and repeated the experimental results. G.Z. contributed manuscript revision, and approved the manuscript submitted for publication. T.W. contributed to the design of the work and agreed to be accountable for all aspects of this work.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-32426-x.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018