Validating clinical practice guidelines for the management of febrile infants presenting to the emergency department in the UK and Ireland

Thomas Waterfield,1 Mark D Lyttle,2,3 Charlotte Munday,2 Steven Foster,4 Marc McNulty,4 Rebecca Platt,5 Michael Barrett,6,7 Emma Rogers,6 Sheena Durnin,8,9 Nida Jameel,10 Julie-Ann Maney,11 Claire McGinn,11 Lisa McFetridge,12 Hannah Mitchell,12 Deepika Puthucode,13 Damian Roland14,15
On behalf of Paediatric Emergency Research in the UK and Ireland (PERUKI)

ABSTRACT
Objective To report the performance of clinical practice guidelines (CPGs) in the diagnosis of serious/invasive bacterial infections (SBI/IBI) in infants presenting with a fever to emergency care in the UK and Ireland. Two CPGs were from the National Institutes for Health and Care Excellence (NICE guidelines NG51 and NG143) and one was from the British Society for Antimicrobial Chemotherapy (BSAC).

Design Retrospective multicentre cohort study.

Patients Febrile infants aged 90 days or less attending between the 31 August 2018 to 1 September 2019.

Main outcome measures The sensitivity, specificity and predictive values of CPGs in identifying SBI and IBI.

Setting Six paediatric Emergency Departments in the UK/Ireland.

Results 555 participants were included in the analysis. The median age was 53 days (IQR 32 to 70), 447 (81%) underwent blood testing and 421 (76%) received parenteral antibiotics. There were five participants with bacterial meningitis (1%), seven with bacteraemia (1%) and 66 (12%) with urinary tract infections. The NICE NG51 CPG was the most sensitive: 1.00 (95% CI 0.95 to 1.00). This was significantly more sensitive than NICE NG143: 0.91 (95% CI 0.82 to 0.96, p=0.0233) and BSAC: 0.82 (95% 0.72 to 0.90, p=0.0005). NICE NG51 was the least specific 0.0 (95% CI 0.0 to 0.01), and this was significantly lower than the NICE NG143: 0.09 (95% CI 0.07 to 0.12, p<0.0001) and BSAC: 0.14 (95% CI 0.1 to 0.17, p<0.0001).

Conclusion None of the studied CPGs demonstrated ideal performance characteristics. CPGs should be improved to guide initial clinical decision making.

Trial registration number NCT04196192.

INTRODUCTION
Young febrile infants (90 days of age and younger) are at high risk of serious and invasive bacterial infections (SBI/IBI), with approximately 10%-20% having either bacteraemia, meningitis or urinary tract infection.1–4 Correctly identifying those with SBI/IBI is challenging, and no single laboratory test can reliably identify the diagnosis.5–13 These challenges, combined with the higher risk of SBI/IBI, has led to a cautious approach to the assessment and initial management of these infants in the UK and Ireland, where the majority undergo blood testing, lumbar puncture (LP), administration of parenteral antibiotics and admission. Internationally, there are a number of validated approaches to the assessment and management of febrile infants including the Pediatric Emergency Care Applied Research Network (PECARN) and StepByStep clinical practice guidelines (CPGs).14–16 These CPGs describe a tailored approach to the management of febrile infants dependent on age, clinical appearance and laboratory results. Using these, some infants can be identified as low risk of serious bacterial infection.
risk and discharged without LP and parenteral antibiotics. However, these CPGs cannot currently be widely used or validated in the UK and Ireland as they require the measurement of blood procalcitonin, a test that is not widely available in this setting.14 15

In the UK and Ireland, two CPGs from the National Institute for Health and Care Excellence (NICE) that do not use procalcitonin are therefore widely used to guide initial assessment and management of febrile infants.14 15 These are ‘Sepsis: recognition, diagnosis and early management’ (NICE NG51) and ‘Fever in under 5 s: assessment and initial management’ (NICE NG143).14 15 These differ in approach despite both applying to febrile young infants. NG51 advises all febrile infants under 3 months of age should be treated for suspected sepsis, irrespective of their clinical appearance and laboratory results. NICE NG143 advocates a tailored approach based on clinical appearance and laboratory results advising that parenteral antibiotics are given to all infants younger than 1 month with fever, all infants aged 1–3 months with fever who appear unwell and all infants aged 1–3 months with WCC less than 5×10⁹/L or greater than 15×10⁹/L.

A third UK CPG has been derived by the British Society for Antimicrobial Chemotherapy (BSAC), which also advocates a tailored approach. The BSAC guidance advises that all infants under 1 month of age with a fever, all infants aged 1–3 months with a fever who appear unwell and all infants with positive urinalysis or C reactive protein (CRP) >20 mg/L received parenteral antibiotics.16

The aims of this retrospective observational study were to report rates of SBI/IBI among febrile infants under 90 days of age presenting to UK and Irish hospitals, to validate CPGs in use in this setting and to describe predictors of SBI/IBI.

METHODS
Study design
The protocol is available at www.clinicaltrials.gov and adheres to the TRIPOD statement for prediction model validation (TRIPOD checklist in online supplemental material).17 This retrospective multicentre observational study was conducted at six UK and Irish tertiary paediatric Emergency Departments (EDs) selected from the PERUKI network. Infants aged 90 days or younger attending between 31 August 2018 and 1 September 2019 were screened for inclusion by searching emergency clinical software databases for all infants under 90 days of age presenting to UK and Irish hospitals, to validate CPGs in use in this setting and to describe predictors of SBI/IBI.

Outcome measures
The primary outcome measures were:
► Performance accuracy of CPGs (NICE NG51, NICE NG143 and BSAC) in identifying infants with IBI/SBI.
► Performance accuracy of clinicians in identifying infants with IBI/SBI.
Secondary outcomes were:
► Rates and types of SBI/IBI.
► Length of stay, procedures performed and use of antimicrobial drugs.
► Clinical predictors of IBI/SBI.

Reference standards and definitions
Definitions were based on existing published standards.1 2 3 4 IBI was defined as bacterial meningitis or bacteraemia (non-contaminant) confirmed by culture or molecular diagnostic testing of a sterile site (eg, blood or cerebrospinal fluid). Coagulase negative Staphylococcus, Propionibacterium acnes, Streptococcus viridans or diphtheroids were considered contaminants. SBI was defined as urinary tract infection (UTI) with growth of ≥100 000 cfu/mL of a single organism. Abnormal urinalysis was defined as presence of leucocyte esterase, nitrates or pyuria (>5 white cell counts per high-power field (WCC/hpf)). An elevated CRP was defined as greater than 20 mg/L. This threshold was chosen based on the common cut-off used by current UK and International guidance.15 13 16 Reference standard testing was performed by technicians blinded to clinical assessment.

Identifying missed cases of SBI/IBI
All sites performed a check of electronic records to identify unplanned reattendances within 7 days of discharge, to determine whether any participants with SBI/IBI may have been initially discharged without treatment.

Identifying clinical risk factors
Potential predictor variables for SBI and IBI were identified by reviewing clinical features listed in the NICE CPGs14 15 and included in the case report form (FIDO_CRF; online supplemental material). These included background information (age, gender and vaccination status), duration of illness, appearance of infant, presence of signs of shock and meningitis and other symptoms (eg, reduced conscious level, respiratory symptoms and poor feeding), initial vital signs and blood results. The BSAC CPG was published after data collection had commenced and could not be used in the CRF development process.16 By coincidence, all of the characteristics included in the BSAC CPG were included in the CRF already.

Study procedures
The study was conducted retrospectively and only included anonymised, non-personal, routinely collected clinical data. All infants received usual care and there were no additional interventions.

Data management
Data were collected and managed using Research Electronic Data Capture electronic data capture tools.18 Participants with incomplete clinical assessment data were excluded from the analysis. Prior to statistical analysis three authors (TW, LM and HM) checked completeness of data using IBM statistical package for social sciences (SPSS) V.23. Two authors (TW and CM) applied the three CPGs to the data set. Not all infants underwent blood testing. Where blood test data were not reported, multiple imputation with chained equations to create five imputed datasets was undertaken to provide imputed values. To minimise bias the analysis was repeated, excluding imputed data.

Data analysis
The study population’s demographic characteristics, vaccination status, risk factors, parenteral antibiotic use, admission to hospital, admission to intensive care units and survival are presented using descriptive statistics. Performance accuracy of the three CPGs and clinician practice are presented using descriptive statistics.
sensitivity, specificity, negative predictive value and positive predictive value (with 95% CIs), and McNemar’s test was used to assess difference in sensitivities and specificities between CPGs. The clinical risk factors were assessed in a stepwise approach. Initially, all identified predictor variables were assessed using univariate analysis with χ²/Fisher’s exact testing of categorical data and the Mann-Whitney U test for continuous data. Age-dependent predictors such as heart rate, respiratory rate and blood pressure were converted to categorical data and classified as normal or abnormal based on published normal ranges.¹⁹ Predictor variables with a statistically significant association with SBI (p<0.20) were included in a binary multivariable logistic regression model. A liberal level of significance (p<0.20) was chosen to avoid falsely excluding a significant variable based on univariate analysis alone. Those identified from the univariate analysis were then included in the logistic regression modelling. Empirical binary multivariable forward and backward logistic regression modelling was used to identify a best-fit model to identify children at highest risk of SBI/IBI.

Office for Research Ethics Committees and local research governance
National research ethics committee approval was not necessary for this study based on the results from the Health Research Association decisions tool.²⁰ The study was however registered with, and approved by, research governance offices at the respective sites.

Study registration
The study was registered at https://www.clinicaltrials.gov on the 19 December 2019.

Findings
A total of 1942 eligible infants were screened, of which 1379 were ineligible, 8 had incomplete data sets and 555 were included in the final analysis (figure 1). Recruitment by site is presented in table 1. The median age of participants was 53 days (IQR 32–70; range 1–90), and there were 325 male participants (59%). In total, 78 (14%) participants had a confirmed SBI/IBI including 12 (2%) with IBI and 66 (12%) with UTI. The 12 participants with IBI included five (1%) with bacterial meningitis and seven (1%) with bacteraemia (tables 1 and 2).

A total of 447 participants (81%) underwent blood testing, 328 (59%) underwent a LP and 52 (9%) were discharged home without either test. Of these, three reattended, but none were subsequently diagnosed with a SBI/IBI. Fifteen (3%) blood cultures had suspected contaminants, including coagulase-negative staphylococcal species (13), Streptococcus viridans (1) and diphtheroid (1). Of the participants that underwent phlebotomy and LP 52/447 (12%) and 133/328, (41%), respectively had the number of attempts recorded. The median number of attempts at intravenous cannulation was 1 (IQR 1–3), and the median number of attempts at LP was 3 (IQR 1–4).

Of the 555 participants, 421 (76%) received parenteral antibiotics, 79 (14%) were observed without parenteral antibiotics and 53 (10%) were discharged without parenteral antibiotics. The median length of stay (LOS) of admitted participants with no confirmed SBI/IBI was 48 hours (IQR 25–69), compared with a median LOS of 72 hours (IQR 48–116) in those with SBI/IBI, a statistically significant difference (p<0.0001). No participants required intensive care and all participants survived.

Performance accuracy of the CPGs is presented in table 3. NG51 displayed greatest sensitivity (1.00; 95% CI 0.95 to 1.00), significantly higher than NG143 (p=0.023) and BSAC (p=0.0005). NG51 also demonstrated the lowest specificity.
(0.0; 95% CI 0.0 to 0.01), significantly lower than NG143 and BSAC (p<0.0001). The sensitivity of clinician practice was 0.96 (95% CI 0.89 to 0.99) and specificity of 0.27 (95% CI 0.24 to 0.32). While the sensitivity showed no significant difference to the best performing CPG (NG51; p=0.25), the specificity was significantly higher than that seen for all CPGs (p<0.0001). Analyses performed with imputed values excluded (n=12) were almost identical to the primary analysis (available in online supplemental material). All of the infants with excluded data were well appearing infants without subsequent diagnosis of SBI/IBI.

The univariate analysis is shown in table 4. Following multivariable analysis, receipt of vaccination in the preceding 24 hours (p=0.031) and age >28 days (p=0.049) were associated with not having a SBI/IBI. There were no cases of confirmed SBI/IBI in well-appearing infants presenting within 24 hours of vaccination. The median CRP, white cell count and neutrophil counts were higher in participants with SBI/IBI compared with those without SBI, but there was no difference in lymphocyte counts between the two groups (table 5).

### Interpretation

This study represents the largest UK and Irish study of febrile infants presenting to ED. The study was conducted at six different tertiary sites distributed across the UK and Ireland and likely provides a true reflection of current practices. Of the 555 included infants 78 (14%) were diagnosed with a SBI/IBI including five (1%) with bacterial meningitis and seven (1%) with bacteraemia. These values are similar to those reported by international studies.4–7

None of the assessed CPGs performed sufficiently well. The NICE NG51 CPG was the most sensitive (1.00) but required all infants to receive parenteral antibiotics. While this approach

### Table 3  Performance of CPGS (imputed data)

| Guideline | Outcome | SBI | No SBI | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) |
|-----------|---------|-----|--------|----------------------|----------------------|-------------|-------------|
| Clinician practice | Treat | 75  | 346    | 0.96 (0.89 to 0.99)  | 0.27 (0.24 to 0.32)  | 0.18 (0.14 to 0.22) | 0.98 (0.94 to 1.00) |
| Do not treat | 3     | 131 |        | 1 (0.95 to 1.00)    | 0 (0.00 to 0.01)    | 0.14 (0.11 to 0.17) | N/A (0.00 to 1.00) |
| NG51 | Treat | 78  | 477    | 0.91 (0.82 to 0.96) | 0.09 (0.07 to 0.12) | 0.14 (0.11 to 0.17) | 0.86 (0.74 to 0.94) |
| Do not treat | 7     | 44  |        | 0.82 (0.72 to 0.90) | 0.14 (0.11 to 0.17) | 0.13 (0.11 to 0.17) | 0.82 (0.72 to 0.90) |
| NG143 | Treat | 64  | 411    | 0.82 (0.72 to 0.90) | 0.14 (0.11 to 0.17) | 0.13 (0.11 to 0.17) | 0.82 (0.72 to 0.90) |
| Do not treat | 14    | 66  |        | 0.82 (0.72 to 0.90) | 0.14 (0.11 to 0.17) | 0.13 (0.11 to 0.17) | 0.82 (0.72 to 0.90) |

BSAC, British Society for Antimicrobial Chemotherapy; CPGS, clinical practice guidelines; NPV, negative predictive value; PPV, positive predictive value; SBI, serious bacterial infection.

### Table 4  Univariate analysis of variables (Fisher’s exact test for categorical variables, Mann-Whitney U test for continuous variables)

| Variable | Complete data, n (%) | Without SBI, n (%) | With SBI, n (%) | P value |
|----------|----------------------|--------------------|----------------|---------|
| Gender (male) | 555 (100) | 275 (57.7) | 50 (64.1) | 0.32 |
| Age in days (median and IQR) | 555 (100) | 56 (34–70) | 44 (22–69) | 0.030 |
| Temperature (median and IQR) | 555 (100) | 38.3 (38.1–38.7) | 38.4 (38.2–38.7) | 0.087 |
| Received vaccine in preceding 24 hours | 555 (100) | 76 (15.9) | 3 (3.8) | 0.0027 |
| Normal colour | 555 (100) | 138 (28.9) | 23 (29.5) | 0.89 |
| Alert/responding to social cues | 555 (100) | 152 (31.9) | 23 (29.5) | 0.79 |
| Normal cry | 555 (100) | 70 (14.7) | 11 (14.1) | 1.00 |
| Normal skin/eyes | 555 (100) | 90 (18.9) | 18 (23.1) | 0.44 |
| Moist mucous membranes | 555 (100) | 105 (22.0) | 23 (29.5) | 0.14 |
| Appears well | 555 (100) | 91 (19.1) | 7 (9.0) | 0.036 |
| Decreased activity | 555 (100) | 102 (21.4) | 23 (29.5) | 0.14 |
| Tachycardia | 555 (100) | 370 (77.6) | 60 (76.9) | 0.88 |
| Prolonged capillary refill time | 555 (100) | 68 (14.3) | 19 (24.4) | 0.029 |
| Reduced feeding | 555 (100) | 213 (44.7) | 43 (55.1) | 0.088 |
| Reduced wet nappies | 555 (100) | 38 (8.0) | 7 (9.0) | 0.82 |
| Mottled/ashen/pale/blue colour | 555 (100) | 175 (36.7) | 34 (43.6) | 0.25 |
| Not responding to social cues | 555 (100) | 31 (6.5) | 5 (6.4) | 1.000 |
| Appears unwell | 555 (100) | 65 (13.6) | 11 (14.1) | 0.86 |
| Lethargic on examination | 555 (100) | 11 (2.3) | 4 (5.1) | 0.25 |
| Respiratory symptoms | 555 (100) | 113 (23.7) | 20 (25.6) | 0.77 |
| Dehydration | 555 (100) | 23 (4.8) | 4 (5.1) | 0.78 |
| Non-blanching rashes | 555 (100) | 20 (4.2) | 2 (2.6) | 0.75 |
| Meningism | 555 (100) | 25 (5.2) | 7 (9.0) | 0.19 |

Bold: statistically significant.
Number and (%) with feature shown for categorical variables and median for continuous variables unless otherwise stated.
SBI, serious bacterial infection.
could be considered safe in the acute phase, there is increasing evidence that the excessive use of broad-spectrum antibiotics in infancy can alter the microbiota and contribute to long-term health complications including atopy and asthma.\textsuperscript{21-23} A more tailored approach, if equally safe, would therefore be desirable. StepByStep (sensitivity and specificity of 0.92 and 0.47, respectively)\textsuperscript{4} and the PECARN CPG (sensitivity and specificity of 0.98 and 0.60, respectively), appear to offer this profile when assessed in other settings. However, both include procalcitonin testing, which is not currently recommended for use in the UK.\textsuperscript{26} Of the tailored approaches available in our setting (NICE NG143 and the proposed BSAC CPG), both demonstrated higher specificities than NGS1 (0.09 and 0.14, respectively); however, any benefit was offset by an associated drop in sensitivity to 0.91 and 0.82, respectively. These tailored tools also performed unfavourably in comparison with StepByStep and the PECARN CPG.\textsuperscript{1,4}

Clinician performance accuracy appeared to confer better balance in the sensitivity versus specificity trade-off than national guidance. The overall sensitivity of clinician practice was 0.96, displaying no significant difference to the most cautious guideline (NG51). Despite this remarkably high sensitivity clinicians managed to avoid administering parenteral antibiotics to all infants with a specificity of 0.27. This was significantly (p<0.0001) higher than any CPG studied. The reasons for this are unknown and require further research. It is possible that clinicians were combining clinical experience with the underpinning principles provided by NICE guidance.

In this study, the vast majority of infants were admitted (90%) and most received parenteral antibiotics (76%) despite the majority of infants not having a serious bacterial infection. In addition, 59% of infants underwent a LP with each infant undergoing an average of three attempted LPs before a sample of cerebrospinal fluid could be collected. This would suggest that the implementation of a new CPG that could correctly and reliably identify low-risk infants could reduce length of stay, improve antimicrobial stewardship and reduce the need for invasive procedures such as LP. There is, however, very limited evidence available to demonstrate the real-world effect of implementing tailored CPGs in this cohort.\textsuperscript{27} Further research is required to determine if clinicians would comply with any new guidance and if this would alter outcomes in a meaningful way that is, reduce the pain and distress from unnecessary procedures or safely reduce the use of parenteral antibiotics.

The univariate and multivariable analysis of clinical features failed to demonstrate any clear predictors of SBI/IBI in this cohort, in keeping with similar other international studies.\textsuperscript{3-9} The combination of appearing well and having received a vaccination within the preceding 24 hours did, however, confer lower risk. Of the 70 infants that had received vaccination within the preceding 24 hours, only two had SBI (both UTIs). Well-appearing infants presenting within 24 hours of vaccination may represent a lower risk group suitable for limited investigation and observation without the need for parenteral antibiotics.

### Summary

This study demonstrates that the rates of SBI/IBI among young febrile infants presenting to UK and Irish hospitals is 14%, similar to international estimates from similar populations. Of the three CPGs studied, NICE NG51 represents the safest approach but requires all infants to receive parenteral antibiotics. NICE NG143 and BSAC offered a more tailored approach but will classify some infants with SBI as low risk. If NICE NG143 or BSAC guidance are to be used safely, then a period of observation or close follow-up in the community is required for those identified as low risk.

### Strengths/limitations

The strengths of this study are that it is large study including a number of sites from across the UK and Ireland and the first to attempt to validate the NICE and BSAC clinical practice guidelines. There were no specific exclusion criteria in this study as NICE and BSAC guidance do not exclude any specific groups from their guidance. The findings should, however, be interpreted with extreme caution when considering infants with a background of extreme prematurity, chronic ill health or immunodeficiency.

The limitations are that the study was performed retrospectively and as such will not include all febrile infants that have attended at all sites (it is, however, reassuring that the reported rates of SBI/IBI are broadly similar to international estimates). The nature of the retrospective data collection will also introduce some bias into the study and with all sites being tertiary level children’s hospitals, the results are less transferrable to non-tertiary settings. The study population was also relatively small with only 12 IBIs, and the study may therefore have been underpowered to reliably identify clinical predictors of IBI.

### Author affiliations

1. Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, UK
2. Emergency Department, Bristol Royal Hospital for Children, Bristol, UK
3. Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
4. Emergency Department, Barts Health NHS Trust, London, UK
5. Emergency Department, Children’s Health Ireland at Crumlin, Crumlin, Ireland
6. Women’s and Children’s Health, School of Medicine, University College Dublin, Dublin, Ireland
7. Emergency Department, Children’s Health Ireland at Tallaght, Dublin, Ireland
8. Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland
9. Emergency Department, Children’s Health Ireland at Tallaght, Dublin, Ireland
10. Mathematical Sciences Research Centre, Queen’s University Belfast, Belfast, UK
11. Children’s Emergency Department, Leicester Royal Infirmary, Leicester, UK
12. Department of Health Sciences, University of Leicester, Leicester, UK
13. Paediatric Emergency Medicine Leicester Academic (PEMLA) Group, University Hospitals of Leicester NHS Trust, Leicester, UK

Twitter Julie-Ann Maney @julieannmaney and Damian Roland @damian_roland

---

**Table 5** Investigations performed and comparisons between cohorts

| Test                  | Performed, n (%) | Without serious bacterial infection, median (IQR) | With serious bacterial infection, median (IQR) | P value |
|-----------------------|------------------|-----------------------------------------------|-----------------------------------------------|---------|
| White Cell Count, 10\(^9\)/L | 441 (79.5)       | 11.2 (8.0 to 15.1)                            | 13.0 (9.1 to 17.7)                            | 0.020   |
| Neutrophil Count, 10\(^9\)/L | 425 (76.6)       | 4.8 (3.2 to 8.01)                             | 6.9 (4.3 to 9.6)                              | 0.0043  |
| Lymphocyte Count, 10\(^9\)/L | 414 (74.6)       | 3.9 (2.6 to 5.5)                              | 3. (2.4 to 5.5)                               | 0.75    |
| CRP, mg/L             | 447 (80.5)       | 13.0 (5.0 to 31.0)                            | 33.0 (11.0 to 79.0)                           | <0.0001 |

Bold: statistically significant.

CRP, C reactive protein.
Acknowledgements We would like to thank all sites and their staff for contributing to this study. We also acknowledge the contributions of: Dr Anna Wallace (data entry), Dr Turlough Bolger (governance approvals), Alex Turner (data entry), Sarah Sheedy (data entry) and Mai Baquedano (REDCap support).

Collaborators Performed on behalf of the Paediatric Emergency Research in the UK and Ireland (PERUK) Collaborators, TW, MDL, DR and J-AM contributed to the design of the study, TW and CM coordinated the running of the study including data management and site training. MDL and TW designed the electronic CRFs. MDL, J-AM, DR, RP, SD and MB were site leads. LM and HM provided statistical expertise and performed the statistical analysis. All authors contributed to data collection and the writing of the manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval National research ethics committee approval was not necessary for this study based on the results from the Health Research Association decisions tool. The study was, however, registered with, and approved by, research governance offices at the respective sites.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available in a public, open access repository.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

ORCID IDs

Thomas Waterfield http://orcid.org/0000-0001-9452-7716
Sheena Durnin http://orcid.org/0000-0002-5109-3417
Damian Roland http://orcid.org/0000-0001-9334-5144

REFERENCES

1. McCaig LF, Nwar EW. National Hospital ambulatory medical care survey: 2004 emergency department summary. Adv Data 2006;372:1–29.
2. Woll C, Neuman MI, Aronson PL. Management of the febrile young infant: update for the 21st century. Pediatr Emerg Care 2017;33:748–53.
3. Kuppermann N, Dayan PS, Levine DA, et al. A clinical prediction rule to identify febrile infants 60 days and younger at low risk for serious bacterial infections. JAMA Pediatr 2019;173:342.
4. Gomez B, Mintegi S, Bressan S, et al. Validation of the "Step-by-Step" Approach in the Management of Young Febrile Infants. Pediatrics 2016;138:e20154381.
5. Aronson PL, Wang ME, Shapiro ED, et al. Risk stratification of febrile infants ≤60 days old without routine lumbar puncture. Pediatrics 2018;142:e20181879.
6. Baker MD, Bell LM, Avner JR. Outpatient management without antibiotics of fever in selected infants. N Engl J Med 1993;329:1437–41.
7. Baskin MN, Fleisher GR, O’Rourke EJ. Identifying febrile infants at risk for a serious bacterial infection. J Pediatr 1993;123:489–90.
8. Cruz AT, Mahajan P, Bousk BK, et al. Accuracy of complete blood cell counts to identify febrile infants 60 days or younger with invasive bacterial infections. JAMA Pediatr 2017;171:e172927.
9. Dagan R, Sofer S, Phillip M, et al. Ambulatory care of febrile infants younger than 2 months of age classified as being at low risk for having serious bacterial infections. J Pediatr 1988;112:355–60.
10. Herr SM, Wald ER, Petti RI, et al. Enhanced urinalysis improves identification of febrile infants ages 60 days and younger at low risk for serious bacterial illness. Pediatrics 2001;108:866–71.
11. Mintegi S, Bressan S, Gomez B, et al. Accuracy of a sequential approach to identify young febrile infants at low risk for invasive bacterial infection. Emerg Med J 2014;31:e19–24.
12. Lacour AG, Zamora SA, Gervais A. A score identifying serious bacterial infections in children with fever without source. Pediatr Infect Dis J 2008;27:654–6.
13. Gomez B, Mintegi S, Benito J, et al. Blood culture and bacteremia predictors in infants less than three months of age with fever without source. Pediatr Infect Dis J 2010;29:43–7.
14. Sepsi: recognition, diagnosis and early management. NICE guideline [NG51], 2017. Available: https://www.nice.org.uk/guidance/ng51
15. Fever in under 5s: assessment and initial management. NICE guideline [NG143], 2019. Available: https://www.nice.org.uk/guidance/ng143
16. Horner C, Cunney R, Demirjian A. Paediatric common infections pathways: improving antimicrobial stewardship and promoting ambulation for children presenting with common infections to hospitals in the UK and Ireland. JAC-Antimicrobial Resistance.
17. Collins GS, Reitsma JB, Altman DG, et al. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 2015;350:g7594.
18. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377–81.
19. Samuels M, Wieteska S. Advanced paediatric life support: a practical approach to emergencies. 6th edn. John Wiley & Sons, Ltd, 2016.
20. The Health Research Authority. Is my study research? Available: http://www.hra-decisiontools.org.uk/research (Accessed 31 May 2021).
21. Toivonen L, Schuz-Havupalo L, Karpinnen S, et al. Antibiotic treatments during infancy, changes in nasal microbiota, and asthma development: population-based cohort study. Clin Infect Dis 2021;72:1546–54.
22. Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol 2019;20:1279–90.
23. Fujimura KE, Sitark AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 2016;22:1187–91.
24. Arrieta M-C, Stiemsma LT, Dimitriu PA, et al. The impact of gut microbiota on respiratory health. Clin Infect Dis 2021;72:1546–54.
25. Procalcitonin testing for diagnosing and monitoring sepsis, 2016. Available: https://www.nice.org.uk/guidance/dg18
26. Foster LZ, Beiner J, Duh-Leong C, et al. Implementation of febrile infant management guidelines reduces hospitalization. Pediatr Qual Saf 2020;5:e252.