Lyapunov statistics and mixing rates for intermittent systems

Carlos J.A. Pires,\textsuperscript{1} Alberto Saa,\textsuperscript{2} and Roberto Venegeroles\textsuperscript{1}\textsuperscript{*}

\textsuperscript{1}Centro de Matemática, Computação e Cognição, UFABC, 09210-170, Santo André, SP, Brazil
\textsuperscript{2}Departamento de Matemática Aplicada, UNICAMP, 13083-859, Campinas, SP, Brazil

(Dated: January 30, 2013)

We consider here a recent conjecture stating that correlation functions and tail probabilities of finite time Lyapunov exponents would have the same power law decay in weakly chaotic systems. We demonstrate that this conjecture fails for a generic class of maps of the Pomeau-Manneville type. We show further that, typically, the decay properties of such tail probabilities do not provide significant information on key aspects of weakly chaotic dynamics such as ergodicity and instability regimes. Our approaches are firmly based on rigorous results, particularly the Aaronson-Darling-Kac theorem, and are also confirmed by exhaustive numerical simulations.

PACS numbers: 05.45.Ac, 02.50.Ga, 74.40.De

I. INTRODUCTION

It has been well known since the seminal works of Sinai, Ruelle, and Bowen (SRB)\textsuperscript{3} that the strongest chaotic systems (Smale’s axiom A and Anosov systems) have SRB measures with exponentially decaying mixing rates (see also Ref.\textsuperscript{4}). For these systems, the difference between temporal and spatial averages is statistically described by a Gaussian distribution (the central limit theorem) and the convergence of both averages towards a unique value is assured. On the other hand, there is a wide range of systems where mixing rates and other related correlation functions decay as power laws. Such class of dynamical systems, dubbed weakly chaotic in the Physics literature, typically exhibits weak statistical properties when compared with the chaotic ones. Examples of weakly chaotic systems include maps with indifferent fixed points\textsuperscript{5,6}, billiards\textsuperscript{7}, and Hamiltonian systems with sticky islands in phase space\textsuperscript{8}, among others. These systems have in common an intermittent dynamical behavior, exhibiting a transition from regular to chaotic regimes which has attracted the attention of physicists and mathematicians in the last 20 years. We recall that the so-called mixing rate of a pair of phase space observable functions $\phi$ and $\psi$ for maps of the type

$$\begin{equation}
    x_{t+1} = f(x_t)
\end{equation}$$

is defined as being the correlation function

$$\begin{equation}
    C_t(\phi, \psi) = \left| \int \phi(x) \psi(f^t(x)) \, d\mu(x) \right|
\end{equation}$$

where $\mu(x)$ is the invariant measure under the map $f$. A map is said to be mixing if $C_t \to 0$ as $t \to \infty$ for any pair of phase space smooth observables $(\phi, \psi)$.

Since correlation functions as the mixing rate\textsuperscript{2} might characterize the transition from strong to weak chaos, the attempt to relate them to more fundamental dynamical quantities is a goal that looks, at first glance, really promising. In Ref.\textsuperscript{9}, for instance, the finite time Lyapunov exponents

$$\begin{equation}
    \Lambda_t(x) = \frac{1}{t} \sum_{k=0}^{t-1} \ln |f'(f^k(x))|,
\end{equation}$$

were considered for one-dimensional maps like\textsuperscript{1} for which $\Lambda_\infty > 0$, i.e., for strongly chaotic cases. Essentially, they show that if there exist two positive constants $\Lambda_0$ and $\gamma > 1$ such that

$$\begin{equation}
    M_t(\Lambda_0) = \int_{\Lambda_0}^{\infty} \eta(\Lambda) \, d\Lambda_t \leq a_1 t^{-\gamma},
\end{equation}$$

where $\eta(\Lambda_t)$ stands for the distribution of finite time Lyapunov exponents for the system in question, then we also have the following upper bound for the mixing rates

$$\begin{equation}
    C_t(\phi, \psi) \leq a_2 t^{-(\gamma-1)},
\end{equation}$$

of any pair of Hölder continuous observables $(\phi, \psi)$. In other words, they have proved rigorously that if the finite time Lyapunov exponents tail probability is bounded by $t^{-\gamma}$ for large $t$, then correlations will be also bounded asymptotically by $t^{-(\gamma-1)}$. These important results have inspired a recent work\textsuperscript{10} in which a related conjecture is made for weakly chaotic systems, i.e., irrespective of having $\Lambda_\infty > 0$. The main results of\textsuperscript{10} can be summarized as follows.

1. They argue that scrutinizing the way in which $1 - M_t$ decays for large $t$ provides an “extremely efficient way” of studying quantitatively the decay of correlations.

2. They conjecture, in view of recent results of\textsuperscript{11}, that the estimates of\textsuperscript{4} and\textsuperscript{5} are not optimal, and the decay properties of $1 - M_t$ and of $C_t - \int \phi \, d\mu \int \psi \, d\mu$ should be, in fact, both polynomial with the same exponent.

\textsuperscript{*}Electronic address: carlosamado@ig.com.br
\textsuperscript{†}Electronic address: asaa@ime.unicamp.br
\textsuperscript{‡}Electronic address: roberto.venegeroles@ufabc.edu.br
3. They check numerically such a conjecture for an one-dimensional intermittent map with two indifferent fixed points of the Pomeau-Manneville type \(^{13}\), for which the polynomial decay rates of correlations are known exactly. Two other types of two-dimensional intermittent maps are also numerically considered to support the conjecture.

Here, we show that this conjecture is false by presenting an explicit class of counter-examples. We will consider a general class of Pomeau-Manneville maps \(^{13}\) and show that their Lyapunov exponents tail probability \(^{14}\) do exhibit a power law decay. Our approaches are firmly based on rigorous results, particularly on the Aaronson-Darling-Kac theorem \(^{14, 19, 20}\), and are also confirmed by exhaustive numerical simulations. For all maps in this class, correlation functions decay slowly than the Lyapunov exponents tail probability, suggesting that bounds of the type \(^{1}\) and \(^{5}\) can be physically relevant also for weakly chaotic systems.

II. LYAPUNOV STATISTICS

Our counter-examples consist in a general class of Pomeau-Manneville (PM) intermittent dynamical systems of type \(^{11}\) with \(f : [0,1] \rightarrow [0,1]\), where

\[ f(x) \sim x(1 + ax^{-1}) \tag{6} \]

for \(x \rightarrow 0\), with \(a > 0\) and \(z > 1\). The global form of \(f\) is irrelevant, provided it respects the axioms of an AFN-system \(^{13}\). For maps of the type \(^{6}\), \(x = 0\) is an indifferent (neutral) fixed point, i.e., \(f(0) = 0\) and \(f'(0) = 1\). Such systems are known to have power law invariant measures near their indifferent fixed points. More specifically, we have \(d\mu(x) = \omega(x) dx\), where \(\omega(x) \sim bx^{-1/\alpha}\) near the fixed point \(x = 0\), with \(\alpha = (z - 1)^{-1}\) \(^{10}\). As consequence, such systems have diverging invariant measure near this points for \(z > 2\). Moreover, finite invariant measure \((1 < z < 2)\) implies ergodicity and the usual Lyapunov exponential instability, whereas the diverging case \((z > 2)\) implies nonergodicity and subexponential instability. We will consider each of these cases separately and show that the conjecture proposed in \(^{12}\) fails for both.

A. Exponential instability

Let us first consider the statistics of finite time Lyapunov exponents \(^{13}\) for randomly distributed initial conditions \(x \in [0,1]\), in the case of finite invariant measure cases \((1 < z < 2)\). It is well known that ergodicity properties can determine completely such statistics. For instance, Birkhoff theorem \(^{15}\) states that, in an ergodic regime, the time average of an arbitrary observable function \(\vartheta\), \(t^{-1} \sum_{k=0}^{t-1} \vartheta(f^k(x))\), converges uniformly to the spatial average \(\int \vartheta d\mu\). Then, for almost all initial conditions \(x \in [0,1]\), the local expansion rate \(\Lambda_t(x)\) in \(^3\) converges to the unique positive Lyapunov exponent \(\Lambda_\infty\) as \(t \to \infty\). On the other hand, if \(t\) is finite, \(\Lambda_t(x)\) assumes different values depending on the initial condition \(x\). The corresponding probability density function \(\eta(\Lambda_t) = \eta(\Lambda, t)\) is given by

\[ \eta(\Lambda, t) = \int \delta(\Lambda_t(x) - \Lambda) d\mu(x). \tag{7} \]

For large \(t\), \(\eta(\Lambda, t)\) takes the scaling form \(^{15}\)

\[ \eta(\Lambda, t) \sim \eta(\Lambda_\infty, t) \exp[-t\Omega(\Lambda)], \tag{8} \]

where \(\Omega(\Lambda) \geq 0\) is a concave function with minimum at \(\Omega(\Lambda_\infty) = 0\). Then we have \(\Omega(\Lambda) \sim c_1(\Lambda - \Lambda_\infty)^2\) and \(\eta(\Lambda_\infty, t) \sim (c_1 t/\pi)^{1/2}\), with \(c_1 > 0\). Now, a simple calculation by using Laplace’s method leads to

\[ M_t \sim \frac{1}{2} \text{erfc}(\sqrt{\Omega_0 t}), \tag{9} \]

where \(\Omega_0 = \Omega(\Lambda_0)\). The decaying properties of Eq. \(^8\) are definitively different than those ones predict by \(^{12}\). In fact, one has

\[ M_t \sim \frac{1}{2\sqrt{\pi}} \frac{\exp(-\Omega_0 t)}{\sqrt{\Omega_0 t}}, \tag{10} \]

for \(\Lambda_0 \neq \Lambda_\infty\) and \(M_t(\Lambda_\infty) \sim 1/2\). It is important to stress that there are many rigorous results in the literature establishing polynomial bounds for the decay of correlations of Pomeau-Manneville maps in the regime \(1 < z < 2\), see \(^3\) and references therein. Most notably, Sarig \(^6\) and Gouëzel \(^7\) have achieved optimal polynomial bounds for such correlations in this regime. Therefore, contrary to the conjecture proposed in \(^{12}\), polynomial decay of correlations can occur simultaneously with exponential decay of Lyapunov tail probability distributions. In fact, any conjecture stating that \(M_t\) should decay as a power law is generically violated for ergodic regimes. For the PM map with \(1 < z < 2\), this is indeed predicted by Theorem 2 (exponential level I result) of \(^8\).

B. Subexponential instability

Let us consider now the cases for which the invariant measure diverges locally at the indifferent fixed point \(x = 0\), i.e., \(z > 2\). For such cases, the system typically exhibits a nonergodic behavior and, hence, time averages do not converge to a unique constant value. Nevertheless, the Aaronson-Darling-Kac (ADK) theorem \(^{14, 15, 20}\) ensures that a suitable time-weighted average does converge uniformly in distribution terms towards a Mittag-Leffler distribution of unit first moment. More specifically, for a positive function \(\vartheta\) and a random variable \(x\) with an absolutely continuous measure with respect to
the Lebesgue measure on the interval $[0,1]$, there is a
(return) sequence $\{a_t\}$ for which

$$\frac{1}{a_t} \sum_{k=0}^{t-1} \vartheta(f^k(x)) \xrightarrow{a_t \to \infty} \xi_\alpha \int \vartheta \, d\mu$$

for $t \to \infty$, where $\xi_\alpha$ is a non-negative Mittag-Leffler ran-
dom variable of index $\alpha \in (0,1)$ and with unit expected
value. The return sequence $\{a_t\}$ for PM systems like (6)
and $0 < \alpha < 1$ is given by [15, 21]

$$a_t \sim \frac{1}{\vartheta_0} \left( \frac{\alpha}{\alpha} \right)^\alpha \sin(\pi \alpha) \pi x \alpha$$

for $t \to \infty$. What the ADK theorem is really point-
ing out here is the explicit necessity of dealing with finite
time subexponential Lyapunov exponents

$$\lambda^{(\alpha)}(x) = \frac{1}{\vartheta_0} \sum_{k=0}^{t-1} \ln \left| f'(f^k(x)) \right|$$

instead of the usual exponents (3) for PM systems of the
AFN type (see also Ref. [22]). From Eq. (11), we have

$$\frac{\lambda^{(\alpha)}(\lambda)}{\langle \lambda \rangle} \xrightarrow{t \to \infty} \xi_\alpha,$$

for $t \to \infty$, where the ADK average value $\langle \lambda \rangle$ is given by

$$\langle \lambda \rangle = \frac{1}{\vartheta_0} \left( \frac{\alpha}{\alpha} \right)^\alpha \sin(\pi \alpha) \pi \int_0^1 \ln \left| f'(x) \right| \omega(x) \, dx.$$

The ADK theorem completely determines the correlations
and the tail probability of Lyapunov exponents for the
maps of the type (6), as one can see by considering
a randomly distributed initial condition $x \in [0,1]$ with
probability density $h(x) > 0$ in Eq. (11), leading to

$$\frac{1}{a_t} \sum_{k=0}^{t-1} \vartheta(f^k(x)) \xi_\alpha \xrightarrow{a_t \to \infty} \xi_\alpha \int \vartheta \, d\mu$$

for $t \to \infty$. We can rearrange this expression and write

$$C_t(\phi, \vartheta) - \int \phi \mu \int \vartheta \mu \sim \alpha(\vartheta) t^{\alpha-1},$$

for $t \to \infty$, where $\phi(x) = h(x)/\omega(x)$ and the ADK aver-
age $\langle \vartheta \rangle$ is given by an expression analogous to Eq. (15).
It remains now to show that the tail probability of Lyapun-
ov exponents for systems of the type (6) does not de-
ay as predicted by Eq. (17). From Eq. (13), one can ob-
tain $M_t$ for the map (6) by recalling that $\lambda^{(\alpha)}_t = t^{1-\alpha} \Lambda_t$
(1-0.8.10)

$$\eta(\Lambda_t) = \frac{t^{1-\alpha} \Lambda_t}{\langle \lambda \rangle} \rho^{(\alpha)}(\frac{t^{1-\alpha} \Lambda_t}{\langle \lambda \rangle}),$$

where $\rho^{(\alpha)}(s)$ is a Mittag-Leffler probability density
function with unit first moment, which corresponds to choice $r^\alpha = \alpha \Gamma(\alpha)$, according
to the definitions of [23]. Then, we have finally from Eqs. (4) and (18)

$$M_t = \int_0^\infty \rho^{(\alpha)}(s) \, ds,$$

for $t \to \infty$, where $u(t) = t^{1-\alpha} \Lambda_t/\langle \lambda \rangle$. The behavior of
$\rho^{(\alpha)}(x)$ for large $x$ was recently discussed in [23], based on
the known relation between Mittag-Leffler and one-sided Lévy distributions [24] and the Mikusinski’s asymptotic
analysis [25] of the latter. In particular, one has

$$\rho^{(\alpha)}(x) \sim \sqrt{\frac{A}{2\pi x}} \exp\left(\frac{-A x^{1/1-\alpha}}{1-\alpha}\right),$$

for $r^\alpha = \alpha \Gamma(\alpha)$, valid for $x \to \infty$, where

$$A = \frac{1-\alpha}{\alpha} \Gamma(\alpha)^{1/(1-\alpha)}.$$

The integral of Eq. (20) can be written in terms of the
complementary error function, leading simply to

$$M_t \sim \frac{1}{\sqrt{2\pi t}} \text{erfc}\left(\frac{\sqrt{B}t}{\alpha}\right),$$

for large $t$, where

$$B = \frac{1-\alpha}{\alpha} \left(\frac{\Lambda_0 \Gamma(\alpha)}{\langle \lambda \rangle}\right)^{1/(1-\alpha)}.$$

The decaying properties of Eq. (22) are also definiti-
vely different than those ones predict by Eq. (17), in
the context of conjecture proposed in [12]. Once more we have

$$M_t \sim \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{Bt}{\alpha}\right),$$

for large $t$, demonstrating finally that the conjecture pre-
ented in [12] is false. It is noteworthy that Lyapunov
exponents tail probability given by (24) is essentially the
same we would expect from finite measure cases, i.e.,
Eq. (10). This shows that the way in which $M_t$ decays
does not provide significant information on key aspects
of weakly chaotic dynamics.

### III. NUMERICAL SIMULATIONS

In order to test and illustrate the conclusions of the last
Section, we perform an exhaustive numerical analysis of
two particular AFN-maps of the type (6), namely the
Thaler map [10], defined for $z > 2$ as

$$f(z) = \frac{x}{1+z}$$

(23)

$$f(x) = x \left[ 1 + \left( \frac{x}{1+z} \right)^{z-2} - x^{z-2} \right]^{-1/(z-2)}.$$

(24)
mod 1, and the modified Bernoulli map [22], defined also for $z > 2$ as

$$f(x) = \begin{cases} x + 2^{z-1}x, & 0 \leq x \leq \frac{1}{2} \\ x - 2^{z-1}(1-x)^z, & \frac{1}{2} < x \leq 1. \end{cases} \tag{26}$$

The Thaler map [25] is very convenient here because its invariant measure density is explicitly known, namely

$$\omega(x) = x^{-1/\alpha} + (1 + x)^{-1/\alpha}, \tag{27}$$

where $\alpha = (z - 1)^{-1}$, allowing in this way the explicit evaluation of the ADK averages like [16]. In contrast with the Thaler map, there is no explicit expression for the invariant measure of the modified Bernoulli map, but it is known to have the form $\omega(x) \sim b_k|x - x_k|^{-1/\alpha}$, also with $\alpha = (z - 1)^{-1}$, in the neighborhood of each of the two indifferent fixed points $x_0 = 0$ and $x_1 = 1$ [20]. Note that the ADK theorem is also valid for systems with more than one indifferent fixed point [13]. For the Bernoulli map [20], we also have return rates in the form $a_k \sim t^\alpha$ for $0 < \alpha < 1$ [13]. However, since its corresponding explicit expression for the invariant measure is lacking, we cannot evaluate the ADK averages for the modified Bernoulli map. We will show that this problem can be circumvented by exploiting the numerical data.

## A. Tail probability of Lyapunov exponents

Our first task here is to determine if the tail probability of finite time Lyapunov exponents [4] for the maps [25] and [20] do indeed decay as predicted by Eq. [22]. From Sect. II, we known that such decaying behavior is assured if the the distribution of finite time Lyapunov exponents were effectively given by Eq. [18]. We compute numerically the distribution of finite time Lyapunov exponents $\Lambda_t$ for the maps [25] and [20] for random initial condition and large $t$, and confront the obtained numerical data with the theoretically predicted distribution [18]. The algorithm for the numerical computation of Mittag-Leffler distributions with arbitrary index $\alpha$ introduced in [23] was instrumental to perform such task. The key point of our analysis is to check if a given distribution is well described or not by a generic Mittag-Leffler probability density function. We recall that a Mittag-Leffler probability density $\rho^{(r)}_\alpha(x)$ is defined from its Laplace transform as

$$\int_0^\infty e^{-sx}\rho^{(r)}_\alpha(x)\,dx = \frac{1}{\Gamma(n)} \sum_{n=0}^{\infty} \frac{(-sx^n)}{(1+n\alpha)}, \tag{28}$$

for $s \geq 0$, with $0 < \alpha < 1$. The choice $r^\alpha = \alpha \Gamma(\alpha)$ assures that $\langle x \rangle = 1$, where the average here is evaluated with respect to $\rho^{(r)}_\alpha(x)$. From Eqs. [18] and [28], we have

![Image](image_url)

FIG. 1: Graphics of $\langle \Lambda^2 \rangle / \langle \Lambda \rangle^2$ as a function of $\alpha$ for Mittag-Leffler distributions with unit first moment, see Eq. [30]. The Mittag-Leffler index $\alpha$ can be determined from the value of $\langle \Lambda^2 \rangle / \langle \Lambda \rangle^2 \in [1, 2]$.

the following constraints on the high order moments

$$\frac{\langle \Lambda^n \rangle}{\langle \Lambda \rangle^n} = \frac{n \Gamma(n\alpha)}{n! \Gamma(\alpha)}, \tag{29}$$

do not the probability density [18]. One can evaluate $\langle \Lambda^n \rangle$ easily from the numerical data and the constraints [29] can be objectively used to decide if a given distribution is well described or not by a Mittag-Leffler probability density. In particular, notice that one can determine the two free parameters of the distribution [18], $\langle \Lambda \rangle$ and $\alpha$, by considering, for instance, $\langle \Lambda \rangle = t^{a-1} \langle \lambda \rangle$ and

$$\frac{\langle \Lambda^2 \rangle}{\langle \Lambda \rangle^2} = \frac{\alpha \Gamma(\alpha)}{\Gamma(2\alpha)}. \tag{30}$$

It is very instructive to inspect the graphics of $\langle \Lambda^2 \rangle / \langle \Lambda \rangle^2$ as a function of $\alpha$, see Fig. [1]. For Mittag-Leffler distributions with unit first moment, one has necessarily $1 \leq \langle \Lambda^2 \rangle / \langle \Lambda \rangle^2 \leq 2$, with the boundaries corresponding, respectively, to $\alpha = 1$ and $\alpha = 0$. For such values of $\alpha$, the Mittag-Leffler probability density function approaches, respectively, a $\delta$-function centered in $x = 1$ and a simple exponential $e^{-x}$, see [23]. The violation of such boundaries would point out unequivocally that one is not leading with Mittag-Leffler distributions with first unit moment. Analogous bounds hold also for higher order moments [29], $1 \leq \langle \Lambda^n \rangle / \langle \Lambda \rangle^n \leq n!$.

For the case of the Thaler map, both parameters $\langle \lambda \rangle$ and $\alpha$ in the distribution [18] are predicted theoretically by the ADK theorem, allowing the inspection of the convergence rate of Eq. [14] with respect to $t$ and to the number of initial conditions used to evaluate the Lyapunov exponents. On the other hand, for the modified Bernoulli map one cannot determine exactly the average $\langle \lambda \rangle$, but it is possible to infer its value by computing $\langle \Lambda \rangle$ from the numerical data and then using $\langle \lambda \rangle = t^{1-\alpha} \langle \Lambda \rangle$. 

\[\text{Equation} \text{Number} \text{Explanation} \text{Here} \text{if} \text{needed}\]
Fig. 2 depicts the distribution of finite time Lyapunov exponents for the Thaler map \( f \). The plots show clearly that the distribution of Lyapunov exponents becomes peaked around the origin for \( t \to \infty \), leading to \( \langle \Lambda^n \rangle \to 0 \) for large \( t \). In particular, one has \( \Lambda_\infty = 0 \), in perfect agreement with the predicted distribution \( \langle \Lambda^n \rangle \) and the fact that the Thaler map is known to be weakly chaotic. Fig. 3 illustrates the case of the modified Bernoulli map \( f \). For all cases, we see, graphically and according to the higher order moments constraints, that the distribution of finite time Lyapunov exponents is very well described by a Mittag-Leffler probability density according to the prediction of Eq. (18). The tail probability \( \langle \lambda \rangle \) is then guaranteed for these maps.

Our numerical examples are, in fact, illustrating the convergence of Eq. (14), which is a consequence of ADK theorem. As expected, for large values of \( t \) and for large numbers of initial conditions, the histograms of both Figs. 2 and 3 approach the Mittag-Leffler probability density with the theoretical predicted values of \( \alpha \) and \( \langle \lambda \rangle \). We could, however, detect another very interesting property. For a given value of \( t \) and a given number of initial conditions, the corresponding histograms are already very well described by a Mittag-Leffler probability density! With the increasing of \( t \) and the number of initial condition, such “instantaneous” Mittag-Leffler probability density approaches the ADK ones, as it is illustrated, for the Thaler map, in Fig. 4 and in Table I. The solid lines in both Figs. 2 and 3, for instance, are the instantaneous Mittag-Leffler probability densities, i.e., their parameters \( \alpha \) and \( \langle \lambda \rangle \), although close to the theoretically predicted values, were calculated from the numerical data by using \( \langle \lambda \rangle = t^{1-\alpha} \langle \Lambda \rangle \) and Eq. (30). Table I shows the values of the higher order moments constraints for the data sets presented in Fig. 4.

### Table I: Statistical data for the graphics in Fig. 4.

|       | (a) | (b) | (c) | (d) | ADK |
|-------|-----|-----|-----|-----|-----|
| \( \lambda \) | 0.853 | 0.840 | 0.829 | 0.822 | 0.807 |
| \( \langle \lambda \rangle \) | 1.036 | 1.043 | 1.030 | 1.026 | 1.020 |
| \( \langle \lambda \rangle \) | 1.956 | 1.947 | 1.935 | 1.921 | 1.899 |
| \( \langle \lambda \rangle \) | 3.216 | 3.192 | 3.155 | 3.117 | 3.051 |
| \( \langle \lambda \rangle \) | 5.674 | 5.598 | 5.510 | 5.414 | 5.242 |
| \( \langle \lambda \rangle \) | 10.589 | 10.383 | 10.168 | 9.927 | 9.497 |

\( 15 \alpha = 10.81, 10.84, 10.88, 10.92, 11 \)

B. Correlation functions

The numerical computation of the correlation functions \( \gamma \) is rather tricky for the maps in question due to the highly discontinuous nature of the iterated maps \( f^t(x) \) for large \( t \). For both cases \( f \) and \( f \), for in-
variable. Fig. 5 depicts such distribution and one can converge in distribution terms to a Mittag-Leffler random variable for large $\theta$ as predicted by Eq. (17) provided the ADK theorem does assure such a convergence. As an example, demonstrated in Section 2, the correlation decaying (17) is also firmly based on the ADK theorem. As an example, the iterated map $f^t(x)$ has $2^t - 1$ discontinuous points. An accurate numerical computation for large $t$ of a correlation function as $C_t$ would require an extremely fine subdivision of the interval $[0,1]$, rendering the task practically and computationally unviable. Nevertheless, in order to establish the correlation function decaying (17), it is enough to assure that, for some value of $0 < \alpha < 1$, the quantity

$$\theta_t^{(\alpha)} = \frac{1}{t^\alpha} \sum_{k=0}^{t-1} \vartheta (f^k(x)),$$

(31)

where $\vartheta(x)$ is an integrable function, converges uniformly in distribution terms towards a random variable for large $t$. The ADK theorem does assure such a convergence with $\alpha = (z - 1)^{-1}$ for the maps in question, and, as demonstrated in Section 2, the correlation decaying (17) is also firmly based on the ADK theorem. As an example, let us consider the observable function $\vartheta(x) = \sin^z \pi x$ for the case of the modified Bernoulli map. According to the discussion of Section II, the correlation $C_t(h, \vartheta)$ for any smooth observable function $h(x) > 0$ will exhibit a power law decay as predicted by Eq. (17) provided $\theta_t^{(\alpha)}$ does converge in distribution terms to a Mittag-Leffler random variable. Fig. 5 depicts such distribution and one can confirm the very good agreement with the predictions of the ADK theorem, assuring the validity of the correlation decaying (17). Similar results hold also for the Thaler map (25) and for other observables.

We notice that the validity of Eq. (17) is stronger than the ADK theorem, in the sense that the convergence to a Mittag-Leffler distribution given by Eq. (11) is not a necessary condition to establish Eq. (17). In fact, the existence of a sequence $a_t \sim t^\alpha$ such that $a_t^{-1} \sum_{k=0}^{t-1} \vartheta(f^k(x))$ does converge in distribution terms towards a random variable, not necessarily of the Mittag-Leffler type, is enough to assure the decaying (17).

IV. FINAL REMARKS

We close by noticing that the first map presented in [12] to support the conjecture we have just proved to be false is also a map with indifferent fixed points, namely the so-called Pikovsky map, which is defined implicitly by

$$x = \begin{cases} 
\frac{1}{2z} (1 + f(x))^z, & 0 < x < \frac{1}{2z}, \\
\frac{1}{2z} (1 - f(x))^z, & \frac{1}{2z} < x < 1.
\end{cases}$$

(32)

The Pikovsky map is defined on the interval $[-1,1]$. For negative $x$, one has simply $f(x) = -f(-x)$. This map has two indifferent fixed points located at $x = \pm 1$ for $z > 1$. The correlation functions for the Pikovsky map are known to decay as a power law [27, 28]. The authors of [12] present some numerical evidence suggesting that the tail probability $M_t$ for the map (32) would also decay with the same power law. This fact seems to contradict
our results of Section II. However, a closer inspection of Eq. (32) reveals that the Pikovsky map is not an AFN-map [15] and, hence, the ADK theorem cannot be invoked here to determine the distribution of finite time Lyapunov exponents. From the first equation of map (32), we have

\[ \frac{f''}{(f')^2} = (1 - z) (2zx)^{-1/z}, \]

showing that the axiom A (Adler’s condition) [15] is not satisfied for \( x = 0 \) and positive \( z \). The violation of Adler’s condition here is related to the infinity slope of the map at the origin, and this is known to be capable of inducing some new dynamical properties as, for instance, the existence of a regular invariant measure in spite of the indifferent fixed points, see Example 1 of [29], for instance. The failure of Adler’s condition might explain why the authors of [12] have arrived to the conclusion that \( M_t \) decays as a power law for the map (32), but certainly a deeper investigation of the Pikovsky map would be interesting and revealing.

Acknowledgments

This work was partially supported by CNPq (AS and RV), FAPESP (AS), and UFABC (CJAP). RV wishes to thank V. Pinheiro for enlightening discussions.

[1] Ya. Sinai, Russian Math. Surveys 27, 21 (1972).
[2] R. Bowen, Lecture Notes in Mathematics Vol. 470 (Springer-Verlag, New York, 1975).
[3] D. Ruelle, Amer. J. Math. 98, 619 (1976).
[4] A. Bunimovich and Y. Sinai, Commun. Math. Phys. 78, 247 (1981); Commun. Math. Phys. 78, 479 (1981).
[5] L.-S. Young, Israel J. Math. 110, 153 (1999); I. Melbourne, Proc. Amer. Math. Soc. 137, 1735 (2009).
[6] O.M. Sarig, Invent. Math. 150, 629 (2002).
[7] S. Gouëzel, Israel J. Math. 139, 29 (2004).
[8] M. Pollicott and R. Sharp, Nonlinearity 22, 2079 (2009).
[9] N. Chernov and H.-K. Zhang, Nonlinearity 18, 1527 (2005); J. Machta, J. Stat. Phys. 32, 555 (1983); J. Machta and B. Reinhold, J. Stat. Phys. 42, 949 (1986).
[10] C.F.F. Karney, Physica 8D, 360 (1983); R. Venegeroles, Phys. Rev. Lett. 102, 064101 (2009); Phys. Rev. E 77, 027201 (2008).
[11] J.F. Alves, S. Luzzatto, and V. Pinheiro, Ergod. Th. Dynam. Sys. 24, 637 (2004).
[12] R. Artuso and C. Manchein, Phys. Rev. E 80, 036210 (2009).
[13] Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189 (1980); P. Manneville, J. Phys. (Paris) 41, 1235 (1980).
[14] J. Aaronson, An Introduction to Infinite Ergodic Theory (American Mathematical Society, Providence, 1997).
[15] R. Zweimüller, Ergod. Th. Dynam. Sys. 20, 1519 (2000).
[16] M. Thaler, Studia Math. 143, 103 (2000).
[17] G.D. Birkhoff, Proc. Natl. Acad. Sci. USA 17, 656 (1931).
[18] R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer-Verlag, New York, 1985).
[19] J. Aaronson, J. Anal. Math. 39, 203 (1981).
[20] D.A. Darling and M. Kac, Trans. Amer. Math. Soc. 84, 444 (1957).
[21] M. Thaler and R. Zweimüller, Probab. Theory Relat. Fields 135, 15 (2006).
[22] P. Gaspard, X.-J. Wang, Proc. Natl. Acad. Sci. USA 85, 4591 (1988); T. Akimoto and Y. Aizawa, J. Korean Phys. Soc. 50, 254 (2007); Chaos 20, 033110 (2010); N. Korabel and E. Barkai, Phys. Rev. Lett. 102, 050601 (2009); Phys. Rev. E 82, 016209 (2010).
[23] A. Saa and R. Venegeroles, Phys. Rev. E 84, 026702 (2011).
[24] W. Feller, An Introduction to Probability Theory and its Applications - Vol. II (Wiley, New York, 1971).
[25] J. Mikusiński, Studia Math. 18, 191 (1959).
[26] M. Thaler, Isr. J. Math. 37, 303 (1980).
[27] A.S. Pikovsky, Phys. Rev. A 43, 3146 (1991).
[28] S. Grossmann and H. Horner, Z. Phys. B, 60, 79 (1985).
[29] R. Zweimüller, Nonlinearity 11, 1263 (1998).