Imaging of the pancreatic duct by linear endoscopic ultrasound

Malay Sharma, Praveer Rai¹, Chittapuram Srinivasan Rameshbabu², Shalini Arya³
Jaswant Rai Speciality Hospital, Meerut, ¹Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute, Lucknow, Departments of ²Anatomy and ³Medicine, Muzaffarnagar Medical College, Muzaffarnagar, Uttar Pradesh, India

ABSTRACT
The current gold standard investigation for anatomic exploration of the pancreatic duct (PD) is endoscopic retrograde cholangiopancreatography. Magnetic resonance cholangiopancreatography is a noninvasive method for exploration of the PD. A comprehensive evaluation of the course of PD and its branches has not been described by endoscopic ultrasound (EUS). In this article, we describe the techniques of imaging of PD using linear EUS.

Key words: Endoscopic ultrasound, pancreas, pancreatic duct

INTRODUCTION
Recent advances in imaging have enabled in vivo studies of the pancreatic duct (PD). The current gold standard investigation for anatomic exploration of the PD is endoscopic retrograde cholangiopancreatography, which is an invasive technique, requiring anesthesia, and not free of complications. Magnetic resonance cholangiopancreatography is a fast and noninvasive method for exploration of the PD. Its contraindications are limited to those of magnetic resonance imaging (which are rare).¹⁻⁵ The techniques of endoscopic ultrasound (EUS) examination of the pancreas and pancreatic vessels have been described.⁶⁻⁷ Ultrasound imaging has provided a description of PD.⁸ A comprehensive EUS evaluation of the course of the PD and its branches has not been described so far. In this article, we describe the techniques of imaging of the different parts of PD by linear EUS.

EMBRYOLOGY OF PANCREAS AND SEGMENTS
Based on conventional gross anatomy the pancreas is divided into the head, neck, body and tail. On a combined anatomical and embryological basis the pancreas is divided into four segments: The anterior head, posterior head, body and tail.⁹ The ventral bud forms the posterior part of the head of the pancreas including most of the uncinate processes. The dorsal bud forms the anterior part of the head, the body and tail of the pancreas although there are no distinct borders between these segments.¹⁰⁻¹¹ The fusion line between the dorsal and ventral parts of the pancreas has no marked border, but it is the so-called locus minoris resistance, and it is the “pathway” for a duodenal diverticulum to penetrate the pancreas. The fusion line contains fascia that is histologically composed of a loose connective tissue membrane. The fusion fascia of the head of the pancreas is called the “fusion fascia of Treitz” and that of the body and tail of the pancreas is termed the “fusion fascia of Toldt.”¹²⁻¹³
APPLIED ANATOMY OF PANCREAS

The head
The head lies to the right of midline in the right paravertebral gutter in the concavity of the C loop of duodenum (“the abdominal area of romance where the head of the pancreas lies folded in the arms of the duodenum”). It is a flattened antero-posteriorly and has an anterior and posterior surface (A-P dimension-thickness of head 24 ± 3.6 mm). It has a superior border, lateral or duodenal border and an inferior border. The anterior surface is covered by peritoneum, and the posterior surface rests on inferior vena cava (IVC), the right renal vessel, the right crus of the diaphragm and common bile duct (CBD). The intrapancreatic or retropancreatic part of the CBD lies in front of the portal vein (PV), which in turn is identified just anterior to the IVC. The gastroduodenal artery is seen on the anterior surface of the head (neck). The uncinate process is a triangular hook-like leftward extension of the lower left part of the head extending variably behind the superior mesenteric vessels and in front of the abdominal aorta.

Neck
The neck of pancreas is 2 cm wide, and it is often the most anterior part of the pancreas and lies anterior to the vertebral column. The lower part of the neck lies anterior to superior mesenteric vein (SMV) and the upper part lies anterior to PV. The boundary of the head and neck contains a groove anteriorly and posteriorly. The two grooves contain the gastroduodenal artery anteriorly and the PV posteriorly.

Body
The width of the pancreatic body is noticeably less (thickness 16 ± 2.0 mm) than that of the head. The body of pancreas has three surfaces anatomically: Anterosuperior, anteroinferior and posterior. The anterosuperior surface and anteroinferior surfaces are separated by the attachment of transverse mesocolon. Posteriorly the body of the pancreas gently slopes upwards across the left renal vein and the aorta (with the origin of superior mesenteric artery), the left suprarenal gland, hilum and anterior surface of the left kidney. The splenic vein (SV) lies in a groove on the posterior surface of the body of pancreas.

Tail
The tail of pancreas lies in the lienorenal ligament along with splenic vessels (thickness 15.1 ± 1.9 mm). It may or may not reach up to the splenic hilum.

THE MAIN PANCREATIC DUCT

Diameter of the PD ranges from 3 to 3.7 mm in the head 2.1-2.5 mm in the body and from 1.5 to 1.7 mm in the tail. The length of the PD ranges from 9.5 to 25 cm.\[16-18\]

The main PD arises in the tail of the pancreas. Through the tail and body of the pancreas, the duct lies midway between the superior and inferior margins and slightly more posterior than anterior. In the pancreatic parenchyma, the main PD and the accessory duct lie anterior to the major pancreatic vessels. The main duct crosses the vertebral column between the 12th thoracic and the second lumbar vertebrae. In more than one-half of persons, the crossing is at the first lumbar vertebra. The main duct turns caudal and posterior on reaching the head of the pancreas. At the level of the major papilla, the duct turns horizontally to join the caudal surface of the CBD. It then enters the wall of the duodenum, usually at the level of the second lumbar vertebra. The main PD, which is known as Wirsung’s duct in the absence of pancreas divisum, runs along the central segment of the pancreatic gland, that is, in the middle of the pancreas along the tail, body and neck. In the pancreatic head, however, the main PD extends first along the anterior segment of the head, then along the middle of the head of pancreas, and finally along its posterior segment, towards the ampulla of Vater, which lies in the most posterior segment of the pancreatic head. The duct of Santorini drains the anterior head segment, and the posterior segment is drained by the duct of Wirsung, and usually houses the CBD.

Pancreatic duct has a number of side branches in a normal person, (about 20-30) which joins the superior or inferior border at right angles to the course of PD in an alternating manner [Figure 1a and b]. When the accessory PD is prominent, it empties into the main duct at the superior border of the PD in neck of the pancreas. The main duct receives one or two side branches draining the uncinate process. Small side branches in the head may open directly into the intra pancreatic portion of the CBD.

IMAGING OF PANCREATIC DUCT

Many authors prefer to start the examination of the pancreas from the descending duodenum while others prefer to start the examination immediately.
upon entering the stomach. The PD is almost always visualized in the head but may be sometimes difficult to find in body and tail in normal persons. The imaging of PD can be described from three positions.
1. Imaging from stomach.
2. Imaging from bulb.
3. Imaging from descending duodenum.

Sharma, et al.: Imaging of the pancreatic duct

Table 1 demonstrates the scanning position from different parts of stomach and duodenum for evaluation of pancreas. Several general principles are helpful in orientation. The pancreas can be imagined as a four-segmented structure, and the posterior segment can be further divided into two parts: Uncinate process and posterior head of the pancreas.

Imaging from the stomach

** Movements of the scope**

The general orientation of the structures in stomach is as shown in Figure 2. Clockwise rotation of the shaft with up angulation presses the scope against the posterior side of the stomach, and allows the examination of the left portion of the pancreatic body and tail. Anti-clockwise rotation of the shaft with up angulation usually places the echo endoscope along the vertical part of the lesser curve, and allows the examination of right portion of the pancreatic body up to its junction with the neck. Further rotation, up angulation and positioning of the...
scope in the distal part of the body of the stomach can usually allow the examination of the entire head of the pancreas. Changing from one of these positions to the other is usually done by slightly withdrawing the echoendoscope by 1-2 cm to examine the left side of the pancreatic body and tail and by slightly advancing the endoscope 1-2 cm to visualize the right segment of the pancreatic body and neck. During a clockwise rotation the junction of body and tail is approximately located at the midpoint of the total length of the body and tail. This midpoint on clockwise rotation is found approximately at a point where the renal vessels have entered the kidney and are no longer visualized separately in the EUS frame [Figure 3].

Imaging of structures
The pancreas extends diagonally from right to left and bottom to top. The pancreatic tail is usually located above the pancreatic body and is easily seen close to the posterior surface and the greater curve of the stomach. In 10-15% of cases, however, the pancreatic tail is lower than the pancreatic body and lies farther away from the posterior surface and the greater curve of the stomach. This information can be easily available to operator on computed tomography scans and in such cases a linear echoendoscope, allows visualization of the whole of the distal end of the pancreatic tail due to the longer tip and an expanding direction of the beam [Figure 4].

The imaging of PD from stomach may be started in the body of pancreas where it is seen lying in the middle of the pancreatic parenchyma. During imaging of the PD in the body generally maximum magnification should be done, as the PD may not be seen in low magnification. Beginners can make the mistake of looking for the PD near the upper part of the pancreas but the PD generally lies a little towards posterior surface and also a little towards the lower part of the pyramid of the pancreas [Figure 5].

The falls
Most of the anechoic structures (PD, splenic vessels) in and around the the pancreas are closest to the transducer near the body of the pancreas. As the pancreas falls away from the transducer in the paravertebral gutters, the anechoic structures also tend to move away from

![Figure 3](image_url). This figure shows a highly schematic representation of the movement of the ducts on a clockwise and anti-clockwise rotation from the stomach. The head and tail lies in the paravertebral gutter whereas the body lies anterior to the vertebral column. The PD lies closest to the probe in the body of stomach. It tends to fall away from the transducer when the transducer is rotated. This movement of duct away from the transducer can be considered similar to a waterfall and this sign can be named as PD head fall (anti-clockwise rotation) or tail fall (clockwise rotation). The duct of Santorini continues to remain close to the transducer on an anti-clockwise rotation. As the PD is followed in the stomach by anti-clockwise rotation towards the head of the pancreas it tends to move within the pancreatic parenchyma as the communicating duct towards the papilla. PD: Pancreatic duct

![Figure 4](image_url). When the PD is followed from the body of pancreas towards the tail it moves away (Tail fall). The fall of the PD away from the tail is generally less steep as compared to the tail fall. PD: Pancreatic duct; TOP: Tail of pancreas

Table 1. The vascular indices and the imaging of different parts of pancreatic duct from different stations

Scanning position	Vascular indices	Clockwise rotation images	Anti-clockwise rotation images	Movement of scanning area from maximum clockwise rotation
Stomach	SV, RV, SMV, SMA	TOP	HOP	TOP to BOP to neck to HOP (A) to HOP (P) through transition zone to BOP (limited)
Duodenal bulb	Portal vein, HAP, GDA, PV	Papilla	HOP	Papilla to HOP (P) to HOP (A) to NOP through transition zone to BOP (limited)
(long loop)				
D3	Aorta, IVC, MV	HOP (A)	UP, HOP (P)	HOP (A) to UP and HOP (P)
D2	Aorta, IVC, SMV, SMA	HOP (A)	HOP (P)	HOP (A) to HOP (P) to papilla through transition zone
	IVC, PV, GDA HA	HOP (A)	NOP, BOP	HOP (A) to NOP to BOP (limited)

SV: Splenic vessels, RV: Renal vessels, SMV: Superior mesenteric vein, SMA: Superior mesenteric artery, IVC: Inferior vena cava, HAP: Hepatic artery proper, GDA: Gastroduodenal artery, PV: Portal vein, HOP: Head of pancreas, NOP: Neck of pancreas, BOP: Body of pancreas, TOP: Tail of pancreas, A: Anterior, P: Posterior, Limited: Limited evaluation of structure is possible, UP: Upper part, HA: Hepatic artery, MV: Mesenteric vein
Figure 5. (a) The PD is seen going away from the pancreas and also moving towards the caudal part of the screen. The head the pancreas generally lies in a position below the body of pancreas so the head fall is usually associated with caudal movement of the PD. In the image a head fall of the dilated PD along with cranial movement is due to the angulated position of the probe. BOP: Body of pancreas; HOP: Head of pancreas; PD: Pancreatic duct

Figure 6. Initially the PD is identified in the body of the stomach. (a) The PD is seen going away from the pancreas and also moving towards the caudal part of the screen after taking a curve (yellow arrow). In this case the communicating duct, the dorsal duct of Santorini and the duct of Wirsung are equally prominent due to obstruction at the head of pancreas. In both the images the duct of Santorini is seen running close to the transducer. The similarity of (a and b) to the line art diagram can be seen for an analogical explanation. PD: Pancreatic duct

Figure 7. (a) The fall of PD in the neck of pancreas and then PD moves towards the head of pancreas. The movement of PD in this part occurs in an antero-posterior axis. The PD is normally seen in front of IVC in such cases. (b) The dilated PD in the head part of pancreas, which is seen anterior to IVC and also appears within the hypoechoic ventral part of pancreas. RRA = right renal artery, HA = hepatic artery. (c) In the same case slight rotation of the scope shows the PD in the body of pancreas (which is hyperechoic) and the PD in the head of pancreas (which is hypoechoic). A side branch is seen joining the anterior aspect of dilated PD in the head of pancreas. PD = Pancreatic duct. PD: Pancreatic duct; IVC: Inferior vena cava; PV: Portal vein

Figure 8. (a and b) A tuber is called the swollen underground part of the stem of plant. Where the anterior surface of the pancreas joins the neck there is a well-marked prominence, the tuber omentale, which abuts against the posterior surface of the lesser omentum. The tuber omentale lies to the left of SMV. (a) The head fall of the PD is seen and the tuber omentale is identified in fig. b lying below the bifurcation of the hepatic and splenic artery. SA: Splenic artery; SV: Splenic vein; PD: Pancreatic duct; SMV: Superior mesenteric vein
Along with the fall of the head the SV is seen to move away from the transducer to join the SMV coming from the caudal part of the screen to form a butterfly shaped union and continue as the PV and the splenic artery is seen to move away from the transducer to join the hepatic artery coming from bottom part of screen to form a Y shaped union and continue as the celiac artery [Figure 8]. The PD passes from hyperechoic part of the dorsal pancreas to a hypoechoic part of the ventral pancreas [Figure 9].

Imaging from duodenal bulb

Positioning of transducer

The positioning of the scope in the duodenal bulb can be done in a long loop while advancing towards the duodenum or after reinsertion into the duodenal bulb once the scope comes out of the duodenal bulb. Many operators prefer to inflate the balloon during bulb imaging for establishing proper contact whereas others rely on gentle up down and right, left movement with suction of a small amount of air in duodenal bulb to come closer to duodenal wall.

Orientation of structures in bulb

The bulb provides the best opportunity to examine the boundary of the head and neck, which contains a groove anteriorly, and posteriorly. In a long loop the image is inverted in appearance and the left side of the screen normally corresponds to the cranial part of the neck of the pancreas and the right side of the screen corresponds to caudal the part of the neck. The gastroduodenal artery is located in the groove anteriorly and the CBD, and PV are located in the groove posteriorly [Figure 10]. With clockwise and anti-clockwise rotation both the gastroduodenal artery (running close to the duodenal wall) and PV (running away from the duodenal wall,) are seen in the same plane fairly regularly. The entire course of PV can be followed from the point of its formation near the left and the lower part of screen beyond the neck of pancreas by union of SMV with SV up to its bifurcation in the hepatic hilum. In this position the gastroduodenal artery identifies the anterior boundary and the PV identifies the posterior boundary of neck of the pancreas [Figures 10 and 11a]. The superior mesenteric artery, which is visualized beyond the SMV, is sometimes used as an additional landmark for the location of the boundary of the head and neck [Figures 10 and 11b]. The main PD in the neck is almost always visible between the duodenal wall (gastroduodenal artery) and the PV. The CBD and IVC are also located along the posterior part of the neck of the pancreas.

Movements of scope

In the duodenal bulb, a clockwise and anti-clockwise rotation causes significant changes in views [Figure 11]. The most important change in views is the fall of the muscularis propria layer of the duodenal wall in which the ampulla is located along the distal part of the duodenal fall [Figure 12]. On a clockwise rotation, the disappearance of the PV toward the cranial part of the screen and appearance of the CBD from the cranial part of the screen occurs as it proceeds towards the

Figure 9. (a-c) The imaging of transition zone of the dorsal and ventral pancreas can be done from stomach, bulb and descending duodenum. In this case the transition zone of the hyper and hyperechoic pancreas is seen from stomach and the duct is seen traversing from hyperechoic dorsal pancreas to hypoechoic ventral pancreas. Figure a shows hyperechoic head of the pancreas with the PD and hyperechoic dorsal pancreas, Figure b shows movement of the duct through the transitional zone of the hyperechoic head of pancreas to the hyperechoic dorsal pancreas in the same plane with slight angulation and Figure c shows movement of duct through the transitional zone in a different plane. PD: Pancreatic duct

Figure 10. The duodenal imaging after nestling the scope into bulb positions the scope in a natural position to examine the retroduodenal area and in this position the neck of pancreas is usually identified between the gastroduodenal artery and CBD. This schematic diagram shows that five linear structures are normally closely related to the duodenal bulb. These structures are PV, CBD, hepatic artery or gastroduodenal artery and IVC. During imaging from the duodenal bulb in the infraduodenal area the gastroduodenal artery lies to the close to duodenal wall, IVC lies behind the pancreas and the CBD and PV course through the pancreatic parenchyma. IVC: Inferior vena cava; CBD: Common bile duct
papilla [Figures 13 and 14]. On a clockwise rotation, the PD more or less remains stationary in the same place and moves around in a circle as it proceeds toward the muscularis propria layer of the duodenal wall and opens at the ampulla/papilla. An anti-clockwise rotation follows the gastroduodenal artery towards its formation where it joins the common hepatic artery. The PV and CBD are followed-up into hepatoduodenal ligament. In this anti-clockwise rotation the fall of neck is regularly seen as it goes away from the transducer toward the body of the

Figure 11. (a and b) This diagram shows the general location of the mesenteric vessels, PV and IVC during imaging from a duodenal bulb. The aorta and superior mesenteric artery can be also seen from the duodenal bulb near the head of the pancreas. GDA = Gastroduodenal artery. (c) A clockwise rotation moves the image towards the head of pancreas into the infraduodenal area, and in this position the movement of the PD from the dorsal pancreatic to the ventral pancreas can be seen. In this position the PV and IVC are more likely to be seen in the distal part of the screen. (d) An anti-clockwise rotation moves the image towards the supraduodenal area and in this position the body of the pancreas, aorta and superior mesenteric artery are more likely to be seen beyond the neck of the pancreas. The fall of the PD in the neck and the pancreatic parenchyma can be seen only to a limited extent going towards the body of pancreas. The continued movement of anti-clockwise rotation takes the direction of imaging further and higher up towards the hepatoduodenal ligament. PD: Pancreatic duct; IVC: Inferior vena cava

Figure 12. (a) When the imaging from the bulb is done the muscular layer of the duodenum is seen to fall away from the transducer. This fall of the muscular layer is known as the duodenal fall (dotted arrow indicates the general direction of fall and the small yellow arrow is shown within the muscularis layer of the fall of the duodenal wall). The minor papilla is generally seen in the wall of the second part of the duodenum as a small triangular hypoechoic area in the falling muscular layer of the duodenal fall. Any mucosal fold does not cover the minor papilla in the majority of cases. (b) In the second figure the PD is seen joining the CBD near the major papilla which is generally covered by a fold in the duodenum. The distance between the minor and major papilla is approximately 1–2 cm (white arrow). The minor papilla is seen as a triangular hypoechoic area along the duodenal wall close to the hypoechoic ventral pancreas. The size of the minor papilla depends on the amount of pancreas that is drained through the duct of Santorini. Sometimes the course of the duct of Santorini is identified in the hyperechoic ventral pancreas with more difficulty because of the small caliber of the duct. PD: Pancreatic duct; CBD: Common bile duct

Figure 13. The PD in neck is identified in front of PV. In this case a hypoechoic lymph node is seen in the retroportal area. The area shown among the white line demarcates the upper boundary of the neck of the pancreas. The neck of the pancreas is outlined by yellow triangular outline. In this case the superior mesenteric artery is seen beyond the PV and is an additional marker to identify the neck of pancreas. The PD is seen in the pancreatic parenchyma. PD: Pancreatic duct

Figure 14. (a) The PD in the neck is identified between the wall of duodenum where the gastroduodenal artery is present and the bile duct. (b) In this figure the PD in the neck is also identified classically between the duodenal wall and PV. (a) In the IVC, it is seen beyond the dilated CBD and (b) in the superior mesenteric artery, it is seen beyond the PV. PD: Pancreatic duct; IVC: Inferior vena cava; CBD: Common bile duct
pancreas [Figure 15]. Generally, a triangular neck is easily identified between the PV and gastroduodenal artery and an anti-clockwise rotation follows the fall of the PD in body of the pancreas and a clockwise rotation follows it toward the papilla [Figure 16].

Imaging from duodenum

Positioning of the transducer and orientation of structures

Duodenal imaging from horizontal (d3) beyond papilla descending (d2) near papilla or ascending superior (d1) part of the duodenum above papilla (after wedging at the duodenal bulb) is the mainstay of pancreatic head imaging. A combination of movements of withdrawal and rotation is useful. As experience is gained the movements of withdrawal and rotation get combined into a single smooth movement.

Imaging beyond papilla

Repeated pushing of the scope 2 or 3 times and positioning the scope deeper into the third part of the duodenum (d3). Imaging from d3 demonstrates the uncinate process, mesenteric vessels, aorta and IVC. In this position, the UP is generally seen between the transducer and aorta. On the withdrawal when the probe reaches around the inferior duodenal angle UP becomes continuous with the posterior segment of head of the pancreas.

Imaging near papilla

The ampulla is the mainstay of endoscopic imaging for identifying the position of the scope. The ampulla is identified by following the muscular layer where it appears as thickening of the duodenal wall making a rounded five-layered structure protruding into the duodenal lumen. It is better seen after good water coupling, keeping the transducer perpendicular to papilla and in motionless duodenum. If a balloon is used, only a small amount of water should be filled into the balloon to avoid smashing the delicate ampulla [Figure 17].

Following the CBD and PDs as the scope is withdrawn from d3, it also identifies the ampulla. The CBD and PDs are identified as two avascular and anechoic structures within the pancreatic parenchyma. The distal CBD is closer to the duodenal wall than the PD. The PD can take a straight course towards the papilla or it can take a tortuous course by going below the papilla deeper into ventral pancreas before coming up to open at ampulla/papilla. A d3 and d2 clockwise rotation shows the anterior segment of the head of the pancreas and the mesenteric vessels and an anti-clockwise rotation shows the posterior segment of the head of the pancreas and the uncinate process [Figures 18-21]. In general if imaging is started keeping the ampulla in a neutral position a clockwise rotation generally moves the beam anteriorly and follow the course of pancreas and PD from within the ventral pancreas toward the dorsal pancreas and an anti-clockwise rotation generally moves the scanning beam posteriorly and follows the bile duct from within the ventral pancreas towards the posterior surface of the pancreas and finally into the hepatoduodenal ligament and the retroportal area.

Imaging above papilla

Higher up once the scope is positioned/wedged/ fixed in a d1 transversely neutral position clockwise rotation shows the anterior segment of the pancreas where the
duct of Santorini can be identified [Figure 22] whereas
an anti-clockwise rotation shows the structures in the
hepatoduodenal ligament.

CONCLUSION

Recognition and understanding of the imaging anatomy
of the pancreas might lead to better evaluation of
pancreatic disease. Knowledge of segmental anatomy
of the pancreas might be useful for better evaluation
of pancreatic pathology and before considering
intervention by endotherapy or surgery.

Figure 18. Imaging of PD from the 2nd part of the duodenum. (a) The
imaging of the opening of the major and minor PD can be done from the
2nd part of the duodenum. In this case the hypoechoic area close to the
wall of the duodenum indicates the major and minor papilla. (b and c)
On a clockwise rotation from this position the major duct is seen first.
On a continued clockwise rotation the minor duct is seen approximately
1 cm above the major duct. Usually the major PD and aorta are seen
together during imaging from the 2nd part of the duodenum. On a
clockwise rotation of the scope the imaging goes from a ventral plane
to a dorsal plane and the visualization of the minor duct is more often
seen with the SMV. PD: Pancreatic duct; SMV: Superior mesenteric vein

Figure 19. The imaging of the transition zone of the dorsal and ventral
pancreas can be done from the descending duodenum. In these
different cases (a and b) the transition zone of the hyper and
hypoechoic pancreas is seen from the duodenum and the Wirsung
duct is seen traversing from the hypoechoic ventral pancreas to the
hyperechoic dorsal pancreas. From this position a clockwise rotation
with a slight withdrawal of the scope is able to trace the PD into the neck
and body of the pancreas. A duct coming from the uncinate process
(ventral PD) is also seen (a). PD: Pancreatic duct

Figure 20. (a and b) The main duct turns caudal and posterior on reaching
the head of the pancreas. At the level of the major papilla, the duct turns
horizontally to join the caudal surface of the CBD. It then enters the wall
of the duodenum, usually at the level of the second lumbar vertebra. In
this case, the imaging of the PD is done from the second part of duodenum
and as the scope is withdrawn a little the fall of the PD from the head
portion towards the body portion is seen in (b). The CBD has a stent
inside. The fall of PD in the neck of pancreas can be seen both from bulb
as well as from the 2nd part of duodenum. (c) In a normal person, the
uncinate process duct may be visualized only from the second part of the
duodenum. In this case the opening of the PD is seen in the second part
of the duodenum and the uncinate process duct is seen joining the main
PD on the aspect away from the duodenal wall. The course of branch of
the uncinate process is a little caudal and the origin of the duct is about
1 cm above the insertion of main PD into the ampulla. The uncinate
process duct is also called the ventral PD and is visualized in about 30%
of cases in normal people. PD: Pancreatic duct; CBD: Common bile duct
Anatomical segmentectomy

Portal venous system and its tributaries: A radial endosonographic assessment. Eur Radiol 2003;13:277-85.

Assessment of anomalous pancreaticobiliary ductal junction with high-resolution multiplanar reformatted images in MDCT. AJR Am J Roentgenol 2006;187:666-75.

Portal venous system and its tributaries: A radial endosonographic assessment. Endosc Ultrasound 2012;1:96-107.

Standard imaging techniques for assessment of portal venous system and its tributaries by linear endoscopic ultrasound: A pictorial essay. Endosc Ultrasound 2013;2:16-34.

Figure 21. Application of color Doppler can identify the anechoic duct coming to duodenal wall within the dorsal hyperechoic part of the pancreas. During withdrawal the opening of the minor papilla is about 1.5-2 cm. above the major papilla. The length of the duct of Santorini that can be visualized is variable and depends on the amount of pancreatic tissue that it drains. Normally the minor papillary duct is seen only for a distance of about 1-2 cm. In the first case the course of the duct is seen for a longer distance of more than 3 cm whereas the second case the PD is seen only for a distance of about 2 cm.

Figure 22. Once the scope is wedged at the D1, D2 junction the PD is followed by an anti-clockwise rotation to the head fall. The Santorini duct may be seen joining the cranial aspect of this union and can be followed-up towards the duodenal wall. In this case the Santorini duct is well visualized and the communicating duct to Wirsung is also well seen. PD: Pancreatic duct

Acknowledgments

We have no funding or financial support from any institution. We would like to thank Mr. Pran Prakash, our graphic and web designer, for his contribution in image and line diagram.

References

1. Aubé C, Hentati N, Tanguy JY, et al. Radio-anatomic study of the pancreatic duct by MR cholangiopancreatography. Surg Radiol Anat 2003;25:64-9.
2. Türkvatyan A, Erden A, Türkoglu MA, et al. Congenital variants and anomalies of the pancreas and pancreatic duct: Imaging by magnetic resonance cholangiopancreatography and multidetector computed tomography. Korean J Radiol 2013;14:905-13.
3. Borghei P, Sokhandom F, Shirikhoda A, et al. Anomalies, anatomic variants, and sources of diagnostic pitfalls in pancreatic imaging. Radiology 2013;266:28-36.
4. Itoh S, Ikeda M, Ota T, et al. Assessment of the pancreatic and intrapancreatic bile ducts using 0.5-mm collimation and multiplanar reformatted images in multislice CT. Eur Radiol 2003;13:277-85.
5. Itoh S, Fukushima H, Takada A, et al. Assessment of anomalous pancreaticobiliary ductal junction with high-resolution multiplanar reformatted images in MDCT. AJR Am J Roentgenol 2006;187:666-75.
6. Sharma M, Babu CS, Garg S, et al. Portal venous system and its tributaries: A radial endosonographic assessment. Endosc Ultrasound 2012;1:96-107.
7. Rameshbabu CS, Wani ZA, Rai P, et al. Standard imaging techniques for assessment of portal venous system and its tributaries by linear endoscopic ultrasound: A pictorial essay. Endosc Ultrasound 2013;2:16-34.
8. Parulekar SG. New insight of pancreatic imaging: From “unexplored” to “explored”. J Clin Ultrasound 1980;8:457-63.
9. Suda K, Nobukawa B, Takase M, et al. Pancreatic segmentation on an embryological and anatomical basis. J Hepatobiliary Pancreat Surg 2006;13:146-8.
10. Seyama Y, Sakamoto Y, Sano K, et al. Anatomical segmentectomy of the pancreas head: Can this procedure be curatively applied for intraductal papillary mucinous tumors? Pancreas 2003;27:270-2.
11. Sakamoto Y, Nagai M, Tanaka N, et al. Anatomical segmentectomy of the head of the pancreas along the embryological fusion plane: A feasible procedure? Surgery 2000;128:822-31.
12. Kimura W. Surgical anatomy of the pancreas for limited resection. J Hepatobiliary Pancreat Surg 2000;7:473-9.
13. Yu J, Turner MA, Fulcher AS, et al. Congenital anomalies and normal variants of the pancreaticobiliary tract and the pancreas in adults: Part 2, Pancreatic duct and pancreas. AJR Am J Roentgenol 2006;187:1544-53.
14. Tadokoro H, Takase M, Nobukawa B. Development and congenital anomalies of the pancreas. Anat Res Int 2011;2011:351217.
15. Takada T, Yasuda H, Uchiyama K, et al. A proposed new pancreatic classification system according to segments: Operative procedure for a medial pancreatic segmentectomy. J Hepatobiliary Pancreat Surg 1994;1:322-5.
16. Hadidi A. Pancreatic duct diameter: Sonographic measurement in normal subjects. J Clin Ultrasound 1983;11:17-22.
17. Mortelé KJ, Rocha TC, Streeter JL, et al. Multimodality imaging of pancreatic and biliary congenital anomalies. Radiographics 2006;26:715-31.
18. Kochhar R, Goenka MK, Nagi B, et al. Normal pancreatic duct morphology in a north Indian population. Trop Gastroenterol 1996;17:223-5.

How to cite this article: Sharma M, Rai P, Rameshbabu CS, Arya S. Imaging of the pancreatic duct by linear endoscopic ultrasound. Endosc Ultrasound 2015;4:198-207.

Source of Support: Nil. Conflicts of Interest: None declared.