Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms

S Mascheretti1,5, A De Luca2,3,5, V Trezzi1, D Peruzzo2, A Nordio2,3, C Marino1,4 and F Arrigoni2

Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging–genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging–genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging–genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of ‘biologically at-risk’ children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.

INTRODUCTION

Reading is a cognitive skill unique to humans and crucial for living in the modern society. To be a successful reader, one must rapidly integrate a vast circuit of brain areas with both great accuracy and remarkable speed. This ‘reading circuit’ is composed of neural systems that support language as well as visual and orthographic processes, working memory, attention, motor functions and higher-level comprehension and cognition. Nevertheless, for about 5 to 12% of the population, learning to read is extremely difficult. These individuals are affected by a complex neurodevelopmental disorder called developmental dyslexia (DD), which represents the most common learning disability among school-aged children and across languages. DD is a lifelong impairment characterized by impaired reading acquisition in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. This difficulty in reading is often associated with undesirable outcomes for children as well as with social impact and economic burden.

Although the field is immature, the role of genetics in DD is rapidly growing and much has been learned regarding the possible downstream effects of DD risk genes on the brain structure, function and circuitry. Similarly, cognitive and psychophysic studies have provided initial evidence about the usefulness of testing well-identified cognitive and sensorial deficits associated with and causative of DD to pursue the biological and genetic components of this disorder. Following the increasing findings provided by molecular genetic, cognitive and imaging–genetic studies of DD, this review aims to propose an interdisciplinary, multilevel, imaging–genetic approach to disentangle the pathways from genes to behavior. An interdisciplinary integration of particular cognitive/sensorial, selective genetic, and imaging data, will provide a critically important bridge for ‘connecting the dots’ between genes, cells, circuits, neurocognition, functional impairment and personalized treatment selection, and will pave the way for new candidate gene–candidate phenotype imaging association studies.

GENETICS OF DD

Following earlier descriptions of strong familial aggregation of the disorder, substantial heritability typical of a complex trait has been reported with estimates across DD and DD-related quantitative phenotypes ranging from 0.18 to 0.72. Since the
loss of CNTNAP2 function has come from a study of an old-order Amish population in which 13 probands were found to carry the same homozygous point mutation within CNTNAP2, that is, 3709delG. 59 This change introduced a premature stop codon (I1253X) predicted to produce a non-functional protein. 59,60

Recent evidence has shown that DD-susceptibility genes affect neuronal migration, neurite outgrowth, cortical morphogenesis and ciliary structure and function. 25,27,50,61-63 The protein encoded by DDX1C1 has been linked to neuronal migration, estrogen receptor transport and cilia structure and functions. 64-66,71,74,78,81 Animal studies showed that in utero RNAi of DDX1C1 is related to deficits in both RAP, spatial working memory performance, as well as learning and memory performance. 98 The expression pattern of KIAA0319 in the developing neocortex is consistent with its hypothesized role in neuronal migration, and recent bioinformatics analysis has suggested its involvement in ciliary functions. 69,70,72,75,79,80,84 The embryonic RNAi of KIAA0319 expression results in RAP and spatial learning deficits. 98,95 The DCDC2 gene encodes a protein with two DCX domains which are essential for neurite outgrowth and neuronal migration and it is involved in ciliary functions. 27,50,67,81,86 DCDC2 knockout mice show impairments in visuospatial memory, visual discrimination and long-term memory, auditory processing, working memory and reference memory. 87,88 Similarly, animal studies have shown that the Glun2b subunit is required for neuronal pattern formation in general and for channel function and formation of dendritic spines in hippocampal pyramidal cells in particular. 68,89-91 Recently, DCDC2 knockout mice were shown to have increased excitability and decreased temporal precision in action potential firing, 92 as well as increased functional excitator connectivity between layer 4 lateral connections in the somatosensory neocortex, 93 mediated by subunit Grin2B. Focused functional investigations of cellular and mouse models uncovered connections between FOXP2 and neurite outgrowth. 77,79 FOXP2 was first implicated in a family segregating a severe form of dyspraxia of speech, designated the KE family. 94,95 Since its original identification, many studies reported that rare variants disrupting one copy of FOXP2 cause language-based learning (dis)abilities-related impairment. 31 Mice carrying mutant Foxp2 exhibit abnormal ultrasonic vocalizations as well as other disorders including developmental delay, deficits in motor-skill learning and impairments in auditory–motor association learning. 96-101 FOXP2 encodes a forkhead domain transcription factor expressed in several brain structures 102 and modulates the DNA transcription at numerous loci throughout the genome. CNTNAP2 is one of its gene targets 103 and it has recently been implicated in a broad range of phenotypes including autism spectrum disorder, schizophrenia, intellectual disability, DD and language impairment. 104 CNTNAP2 encodes a cell-surface neurexin protein, that is, CASPR2, implicated in neuronal connectivity at the cellular and network level, interneuron development/function, synaptic organization and activity and migration of neurons in the developing brain. 105 Recently, a genetic knockout of the rodent homolog Cntnap2 has been associated with poor social interactions, behavioral perseveration and reduced vocalizations, as well as with delayed learning and cross-modal integration. 105,106 In contrast, little is known about the C2ORF3 and MRPL19 candidate genes. C2ORF3 protein is suggested to have a potential function in ribosomal RNA (rRNA) processing, 107 and, as for MRPL19, is highly expressed in all areas of fetal and adult brain. 108 Furthermore, their expression was strongly correlated with DDX1C1, ROBO1, DCDC2 and KIAA0319 across different brain regions. 106 All these findings depict DD as a disorder at the mild end of the spectrum of a number of pathways producing developmental disturbances in neuronal positioning and axonal outgrowth, 109 consistent with the neuroanatomical
findings of focal architectonic dysplasia and neuronal ectopias in the brains of people with DD.

IMAGING IN DD

Postmortem studies in DD patients showed reduced left-right asymmetry of the planum temporale,\(^{1,11}\) as well as neuronal ectopias and architectonic dysplasias in the left perisylvian regions.\(^{1,10}\) More recently, magnetic resonance imaging (MRI) has been extensively used to investigate both morphological, structural and functional brain abnormalities in DD patients (Figure 1). Being noninvasive and allowing in vivo studies, MRI is a unique and valuable tool for disentangling tissue modifications and functional (re)organization in developmental disorders like DD. Among different MRI-based techniques, voxel-based morphometry (VBM) is used to quantify gray and white matter (GM and WM, respectively) volumes, while diffusion tensor imaging (DTI), which probes water diffusivity in the micron scale, detects alterations in WM structure and indirectly in the architecture of fiber pathways. Finally, functional MRI (fMRI) investigates brain activations during cognitive and sensory tasks, and when at rest.

VBM analysis

By applying VBM, altered GM density has been identified in several areas, that is, in the left temporal and parietal regions,\(^{1,12} – 119\) bilaterally in the fusiform gyrus, lingual gyrus, temporo-parieto-occipital junction, frontal lobe, planum temporale, inferior temporal cortex, caudate, thalamus and cerebellum,\(^{1,15} – 118, 126\) and in the right parietal lobe.\(^{1,123, 125}\) Moreover, VBM analysis has revealed altered WM density in the bilateral temporal and frontal lobes, in the left cuneus and arcuate fasciculus, and in the right precuneus and cerebellum.\(^{1,13, 116} – 119, 122, 124, 125}\)

DTI analysis

Alterations of WM structure have been found in bilateral tracts within the frontal, temporal, occipital and parietal lobes,\(^{1,12, 127} – 129\) in the superior longitudinal fasciculus,\(^{1,30, 131}\) in the left superior corona radiata, in the left centrum semiovale,\(^{1,32}\) in the left inferior frontal gyrus and temporo-parietal WM,\(^{1,132}\) in the left middle and inferior temporal gyri\(^{1,133}\) and in the left arcuate fasciculus.\(^{1,13, 134}\) Moreover, several studies have reported significant differences in the corpus callosum.\(^{1,35, 136}\)

fMRI analysis

fMRI has had an important role in understanding the pathophysiology of DD by analyzing the brain areas activated while performing specific tasks. The brain activations associated with the reading process have been extensively analyzed using fMRI, as well as other reading-related functions, such as phonological processing, integration of letters and speech, visual perception and attention, working memory and acoustic stimuli.\(^{1,37, 138}\) Depending on the task performed during fMRI, several altered activation patterns have been reported.

With reading-related tasks, altered activations were found in the DD subjects in the left hemispheric temporo-parietal regions (Brodman’s areas (BAs) 20, 21, 37, superior and middle temporal gyrus, operculum, supplementary motor area), and in the bilateral frontal and occipital areas (BAs 44 and 45, inferior and middle frontal gyrus, visual areas and extrastriate cortex).\(^{1,39} – 148\)

Subjects with DD showed abnormal activity during phonological tasks in the left hemispheric temporal areas (Rolandioc operculum, middle and superior temporal gyrus, fusiform gyrus, planum temporale and Wernicke’s area), in bilateral parietal (superior and inferior parietal gyrus, BA40), frontal (BAs 44 and 45, middle and inferior frontal gyrus, precentral gyrus, superior medial gyruus and prefrontal cortex), occipital cortex (middle and superior occipital gyrus, lingual gyrus, calcarine sulcus, BAs 18 and 19, striate cortex), cerebellum, and right hemispheric subcortical structures (putamen, basal ganglia).\(^{1,149} – 161\)

During semantic tasks, diffuse activations have been reported in DD subjects in the left hemispheric temporal (BA22, fusiform gyrus, parahippocampal gyrus and middle and superior temporal gyrus) and occipital (V5/MT), as well as bilateral parietal (inferior parietal lobule, supramarginal gyrus), frontal (BAs 44 and 45, precentral gyrus, superior frontal gyrus) cortex, cerebellum and subcortical structures.\(^{1,162}\)

Children with DD showed altered activations during auditory tasks in the right temporal areas (middle and superior temporal gyrus, BAs 41 and 42, Heschl gyrus, superior temporal cortex), anterior insular cortex, cingulate cortex, thalamus and cerebellum, in the left occipital (cuneus) and parietal (inferior parietal region, supramarginal gyrus, angular gyrus) regions and in bilateral frontal areas (supplementary motor area, inferior and middle frontal gyrus, precentral gyrus, inferior frontal sulcus, prefrontal cortex).\(^{1,152, 153, 163} – 169\)

Working memory-related tasks elicited altered activations in the bilateral parietal (superior parietal cortex, inferior parietal lobule) and frontal (BA46, prefrontal cortex, inferior frontal gyrus) areas in children with DD.\(^{1,170} – 173\)

The reduced activation of the primary visual cortex, extrastriatal areas and the V5/MT area during fMRI using visual stimuli,\(^{1,174} – 176\) as well as increased right frontal activation in areas 44 and 45 (ref. 152) have been consistently reported in subjects with DD. Visual spatial tasks elicited altered activation in the right temporal (temporal pole, fusiform gyrus, temporal gyrus, motor/premotor cortex) and frontal (precentral gyrus, frontal gyrus) areas, and in bilateral parietal (intraparietal sulcus, inferior and superior parietal lobes, precuneus), occipital (cuneus, BAs 17–19), subcortical structures (putamen, basal ganglia), anterior cingulate and cerebellum.\(^{1,157, 166, 177}\)

Altered activations in bilateral temporal (inferior temporal cortex), parietal, frontal (middle frontal cortex), occipital (striate and extrastriate visual cortex) and cingulate cortex have been reported during attentional tasks in children with DD.\(^{1,179} – 181\)

Interestingly, the fMRI activation patterns in response to tasks requiring the processing of several demands (visuospatial, orthographic, phonologic and semantic) showed that subjects with DD tend to process using the visuospatial areas instead of the normal language processing areas.\(^{1,150, 169}\)

Results of imaging studies on pre-reading children at risk for DD are in agreement with results found for children with DD.\(^{1,182} – 185\) suggesting that neural alterations in DD predate reading onset, reflect the differential developmental trajectory of reading brain networks and may serve as early biomarkers of risk for DD.

Given the heterogeneity of imaging modalities and findings, it is difficult to summarize MR results into a unifying perspective (Figure 1). According to previous findings showing a consistent link between reading and both subcortical structures and cortical systems, structural techniques (VBM and DTI) identify temporo-parietal and, partially, middle frontal areas as the targets of cerebral derangement that may occur in DD, whereas more anterior and occipital areas seem to be less frequently involved. It is even harder to sum up the findings derived from functional MR studies. In broad terms, a pattern of cerebral hypoactivation seem to prevail over hyperactivity during task-based fMRI. Circuits involving temporo-basal, parietal and frontal lobes are more frequently impaired, without a clear lateralization between the left and right hemispheres.

The details about the study design and results are reported in Supplementary Information 1 and 2.
Taken together, these findings show how neuroimaging and genetic research have substantially enhanced understanding of the mechanisms underlying atypical reading development. Despite the successful characterization of DD-susceptibility genes, we are far from achieving a comprehensive understanding of the pathways underlying the development of DD. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results, including negative findings for the DD-candidate genes. This could be ascribed to at least three possible sources: (1) as complex traits are substantially polygenic, with each variant having a small effect, larger sample...
Locus	Location	Gene	Function	Reliability	Imaging	Results
DYX1	15q21	DYX1C1	Neuronal migration, estrogen receptor transport, and cilia structure and function	Ten independent samples (Finnish, British, two Italian, German, Canadian, Australian, American, Indian, Chinese)	Structural	rs3743205 is significantly correlated with the inferior cerebellar network in both subjects with SKZ and in controls; the magnitude of the relationship did not differ between groups. On the contrary, the gender-matched subsample showed a stronger correlation in subjects with SKZ compared with controls (Jamadar et al.203)
DYX2	6p22.3-p21.3	DCDC2	Neurite outgrowth, neuronal migration and ciliary functions	Ten independent samples (two American, two British, German, Australian, Canadian, Italian, Chinese, Indian)	Structural	rs793842 is significantly associated with WM volume of the temporo-parietal region containing WM pathways connecting the MTG with the inferior parietal lobe, that is, the SLF and the posterior part of CC (Darki et al.203, 204) rs793842 is significantly associated with the thickness of left AG and SG as well as the left LOC (Darki et al.204) rs1087266 is significantly correlated with the superior prefrontal, occipital and temporal networks in subjects with SKZ but not in controls. rs793862 is significantly correlated with the superior cerebellar network in both subjects with SKZ and in controls; the magnitude of the relationship did not differ between groups. On the contrary, in the gender-matched subsample the correlation in subjects with SKZ do not reach significance while it is significant in controls (Jamadar et al.203)
						DCDC2d is significantly correlated with higher GM volumes in left TG, FG, H/PHG, IOPG, IFG, and IMG (Meda et al.200) DCDC2d is associated with FA decreases in the bilateral ILF and in the genu of the CC in subjects with DD, and with FA reductions in the genu of the CC bilaterally and in the body of the CC in the right hemisphere, in the left ILF, AF and IFOF, and in the right IFOF, and in the body and splenium of CC in controls (Marino et al.207) rs1087266 and rs793862 significantly correlate with Broca-Medial-Parietal network in both subjects with SKZ and controls (Jamadar et al.205)
						During PC, BV677278 complex tandem repeat is associated with left APL and right LOTG. During AC, BV677278 complex tandem repeat is associated with right LOTG. During reading tasks, BV677278 complex tandem repeat is nominally associated with the SACC, PCG, left PCL and IFG, and rs2143340 with the bilateral APL (Cope et al.199) rs4504469 is significantly correlated with the superior cerebellar network in both subjects with SKZ and in controls; the magnitude of the relationship did not differ between groups. On the contrary, in the gender-matched subsample the correlation in subjects with SKZ do not reach significance while it is significant in controls (Jamadar et al.203)

Neurogenetics of developmental dyslexia
S Mascheretti et al
Translational Psychiatry (2017), 1–15
Table 1. (Continued)

Locus	Location	Gene	Function	Reliability	Imaging	Results	
			rs6935076 is significantly associated with WM volume of the temporo-parietal region containing WM pathways connecting the MTG with the inferior parietal lobe, that is, the SLF and the posterior part of CC (Darki et al., 2003, 2004)	Functional			
rs9461045 is associated with cortical thickness in the left orbitofrontal region and FA in the CC (Eicher et al., 2008)			rs17243157 is associated with asymmetry in functional activation of the STS (Pinel et al., 2007)				
rs2038136 and rs2038137 significantly correlate with the left Broca-superior/inferior parietal network in controls, and with the left Wernicke-fronto-occipital network in both subjects with SKZ and controls. rs4504469 is significantly correlated with the bilateral Wernicke-fronto-parietal network in controls (Jamadar et al., 2002).			rs917235 is significantly associated with WM structure in the posterior part of the CC and cingulum, connecting large parts of the cortex in the parietal, occipital and temporal lobes (Scerri et al., 2008).				
rs917235 and rs6732511 show suggestive association with cortical thickness in the left middle temporal region and cortical volume in the right fusiform region, respectively. rs2298248 is associated with cortical thickness in the right middle temporal region and with cortical volume in the right inferior temporal region (Eicher et al., 2008).				rs917235 is significantly associated with WM volume of the temporo-parietal region containing WM pathways connecting the MTG with the inferior parietal lobe, that is, the SLF and the posterior part of CC (Darki et al., 2003, 2004)			
rs6980093 is associated with higher levels of activation in the bilateral IFG during both reading and speech listening tasks (Pinel et al., 2009)			rs12533005 modulates the activation in occipital and inferior temporal brain areas, the AG, the insula and inferior frontal brain areas, during phonological and visual processing tasks (Wilcke et al., 2017).				
Table 1. (Continued)

Gene	Function	Location	Structural Imaging	Reliability
DCDC2	deletion in intron 2 of the DCDC2 gene	14q32.33	Two independent samples (British and German)	Functional connectivity at the cellular and network level, interneuron development/function, synaptic organization and activity, migration of neurons
ISPD	deletion in intron 1 of the ISPD gene	11p15.5	Two independent samples (British and German)	Functional connectivity at the cellular and network level, interneuron development/function, synaptic organization and activity, migration of neurons

Abbreviations: AC, auditory categorization; AF, arcuate fasciculus; AG, angular gyrus; AIPL, anterior inferior parietal lobe; ASD, autism spectrum disorder; BA, Brodmann’s area; CC, corpus callosum; DCC17F; DD, developmental dyslexia; FA, fractional anisotropy; FG, fusiform gyrus; GM, gray matter; H/PHG, hippocampal/parahippocampal gyrus; IFG, inferior frontal gyrus; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; IMG, inferior medial gyrus; IOPG, inferior occipito-parietal gyrus; LOC, lateral occipital cortex; LOG, lateral occipital gyrus; MCG, middle occipital gyrus; PCG, posterior cingulate gyrus; PCL, paracentral lobule; SACG, superior anterior cingulate gyrus; SG, supramarginal gyrus; SKZ, schizophrenia; SLF, superior longitudinal fasciculus; STS, superior temporal sulcus; TG, temporal gyrus; WM, white matter.
subjects with SKZ and healthy controls. In healthy adults, an allelic variation in the DCDC2 gene has been associated with individual differences in cortical thickness, and in fiber tracts, which are commonly found altered in neuroimaging studies of reading and DD (that is, the connection of the left medial temporal gyrus with the angular and supramarginal gyri, the superior longitudinal fasciculus and the corpus callosum). Interestingly, in a sample of subjects with SKZ and controls, DCDC2 was found to be associated with distributed cortical structural abnormalities in language-related superior prefrontal, temporal and occipital networks, and with inter-individual variations in functional connectivity in a Broca-medial parietal network. Furthermore, in healthy adults, DCDC2 has been associated with altered GM volumes in reading/language-related brain regions especially in the left hemisphere, and with both common and unique alterations of WM fiber tracts in subjects with DD. In an fMRI study, Cope et al. found significant associations between DCDC2-READ1 and brain activations in the left antero-inferior parietal lobe and in the right lateral occipital temporal gyrus during reading tasks, and a nominally significant association between DCDC2 and activation in the left antero-inferior parietal lobule. Further imaging–genetic studies investigated the effects of C2orf3/MRPL19 and GRIN2B genes upon neuroanatomical structures. By using VBM, Scerri et al. revealed that WM volume in the bilaterally posterior part of the corpus callosum and the cingulum varied depending on one variant in the C2orf3/MRPL19 region. Finally, in healthy individuals, GRIN2B correlated negatively with dorsolateral prefrontal cortex activity during a working-memory-related task. Imaging–genetics of FOXP2 and CNTNAP2 has implicated common genetic variants spanning these genes. Multiple imaging studies of the KE family have found both structural and functional alterations in subjects with dyspraxia of speech and the mutant FOXP2. Even if no evidence for effects of FOXP2 on variability in brain structures in a sample of > 1300 people from the general population have been recently reported, common variants spanning this gene were associated with altered levels of activation in temporoparietal and inferior frontal brain areas during both reading and speech listening tasks in DD samples. CNTNAP2 has been associated with structural brain connectivity and brain activation in BA7, BA44 and BA21 during a language processing task in healthy individuals. Moreover, it has been significantly associated with FA in the uncinate fasciculus of subjects with SKZ, with reduction of GM and WM volume and low FA in the cerebellum-fusiform gyrus, occipital and frontal cortices, and with modulations in functional frontal lobar connectivity in subjects with a diagnosis of autism spectrum disorder.

LIMITATIONS OF CURRENT IMAGING–GENETIC STUDIES

Clearly, neuroimaging is playing a fundamental part in disentangling the role of genetic variants in the etiology of complex cognitive functions like reading. However, the complexity of the ‘reading circuit’ is still far from being completely understood, as revealed by the heterogeneous and sometimes conflicting results of brain MRI studies. Study design and data processing are important factors increasing complexity and heterogeneity in neuroimaging research. The inclusion of subjects with an unknown genetic profile will likely enhance inter-subject variability, as different DD genes may cause different deficits in different, particular cognitive and sensorial phenotypes (see ‘Genetics of DD’ paragraph). Nevertheless, even if some imaging–genetic studies of DD have been proposed, the number of these works is still too low to draw definitive conclusions about the role of each DD-candidate gene. Moreover, it is interesting to note some technical evidence that might limit the integration of these results. Of the 19 aforementioned imaging–genetic studies, 10 have used 1.5T scanners, eight were performed with 3T scanners, and one acquired with a 4T scanner. Two of them used similar acquisition protocols and performed VBM to investigate GM, but their results were only partially overlapping. These different findings may be owing to the different disorders included in the studies (that is, DD and SKZ) and/or to the different analysis pipelines (linear regression versus independent component analysis). Genetic data can be integrated with every parametric map derived from MRI, whether a simple measure of volume, a microstructure-related metric or a measure of chemical properties. Three of the aforementioned studies integrated genetic data in the VBM analysis of WM volume as an attempt to reveal genetically related alterations, limiting the analysis of DTI data to the detection of the major fiber bundles included in altered WM areas. Nevertheless, DTI analysis can provide parameters that are more specific to WM microstructure than VBM, including fractional anisotropy (FA) and measures of diffusivity along different spatial axes. These maps can be analyzed similarly to VBM, but may provide additional characterization of the genetic effect at the microstructural level. To date, only three studies have used DTI-derived maps to detect voxel-based WM modifications related to DD-candidate genes. One of the studies computed FA maps and tried to perform region-of-interest-based analysis of covariance regression with the SNPs of CNTNAP2; however, only one genotype was a significant predictor of FA in the uncinate fasciculus after Bonferroni correction, despite the relatively high number of subjects included in the study (n = 125). Further studies with rigorous advanced diffusion MRI protocols (that is, high-field magnets, multiple directions and b-values) and populations with a specific genetic characterization are therefore needed. Moreover, more complex diffusion-based techniques, such as NODDI (Neurite Orientation Dispersion and Density Imaging), have recently provided more specific metrics of GM and WM in several applications. The application of NODDI or other affine techniques might be beneficial to the study of DD, providing additional disentanglement of the connections between genetic variations and structural alterations.

Similar considerations apply to fMRI, where the choices of stimuli and the analysis pipeline are fundamental. To date, functional imaging–genetic studies of DD have investigated the effects of DD-candidate genes only during reading tasks, irrespective of the deficits each DD gene is likely to produce (see ‘Genetics of DD’ paragraph). Moreover, while task-based fMRI might help investigate the effects of DD-candidate genes on specific brain functions through correlation analysis or linear regressions, resting-state fMRI might offer a more reproducible/reliable approach to the investigation of genetic effects on brain functionality. It is worth noticing that while imaging–genetic studies are at their early stages in DD, they are more popular in the context of other diseases. For example, the ADNI (Alzheimer’s Disease Neuroimaging Initiative) has performed MRI and positron emission tomography acquisitions with genetic profiling in more than 1000 subjects over time. Along with genetic profiling, the success of the initiative is strongly supported by the standardization of multicentric acquisition protocol and processing methods, all factors that are unfortunately still lacking in imaging–genetic studies on DD.

TOWARD A NEW APPROACH

As aforementioned, learning to read requires the accurate, fast and timely integration of different neural systems supporting different cognitive and sensorial processes. Molecular genetic studies have consistently identified DD-candidate genes and provided initial evidence of the presence of putative functional genetic variants influencing gene expression. Recent findings in
both animal and humans studies support the role of specific genetic variants on the different cognitive and sensorial processes underlying reading acquisition. Similarly, neuroimaging data can be considered IPs to genetics in identifying the causes of DD.198 New studies must therefore gain momentum to understand the function of neuronal migration genes and their relationships with specific cognitive and sensorial vulnerability, and to establish links between such susceptibility variants and neuroanatomical phenotypes. Following a probabilistic and multifactorial etiological model of reading acquisition, the emergence of DD is rooted at multiple levels, and may reflect the global failure of interacting mechanisms, each with degrees of impairment that vary across children.2186,229,231 It is therefore reasonable to predict a low specificity and high heterogeneity of imaging findings, especially when dealing with small sample sizes. Furthermore, according to this model, the fundamental role of genetics in the selection of homogeneous DD subtypes population suitable for imaging investigation appears reasonable. The integration of specific cognitive/sensorial, selective genetic and imaging data can lead to the identification of regions with gene- and cognitive/sensorial-specific effects (that is, only a risk genetic variant alters structure/function in this region tapping specific cognitive/sensorial mechanisms) or with universal effects (that is, all/many-risk gene function in this region). Identifying the dots connecting putative mechanisms or with universal effects (that is, all/many-risk gene function in this region). Identifying the dots connecting putative mechanisms or with universal effects (that is, all/many-risk gene function in this region).

The integration of specific cognitive/sensorial, selective genetic and imaging data can lead to the identification of regions with gene- and cognitive/sensorial-specific effects (that is, only a risk genetic variant alters structure/function in this region tapping specific cognitive/sensorial mechanisms) or with universal effects (that is, all/many-risk gene function in this region). Identifying the dots connecting putative mechanisms or with universal effects (that is, all/many-risk gene function in this region). Identifying the dots connecting putative mechanisms or with universal effects (that is, all/many-risk gene function in this region).

One may argue that some areas, that have been reported more consistently in literature, are more consistently altered and thus require a smaller sample size to be detected. The problem is worsened by the variability introduced by MRI techniques and methods as the multiple comparisons correction, that greatly limits the comparability of results across studies. New candidate gene–candidate phenotype imaging association studies should integrate investigations of the effects of selective genetic variants upon neuroanatomical pathways underlying the specific reading-related cognitive and sensorial processes each gene is supposed to target by applying the most sensitive and robust neuroimaging techniques. Future hypothesis-driven imaging–genetics studies should therefore take advantage of recent genetic findings in both animal and human studies to focus their attention on innovative interdisciplinary analyses of well-defined, specific cognitive and sensorial, imaging and selective genetic data. In this way, the effect of a known genetic diversity, naturally occurring among human populations, is studied by brain imaging to determine whether one of its forms can cause a difference in the level of such cognitive/sensorial phenotypes and hence could make people more vulnerable to neurodevelopmental disorders.4 A fruitful outcome is particularly possible when fMRI is used to examine the neurobiological effect of a well-validated gene. If DD-candidate genetic variants are selectively associated with inter-individual variation in one of the reading-related processes at brain level, children carrying these genetic variants would be considered as ‘biologically at-risk’. Early identification of these children would be crucial to defining adequate and well-timed prevention strategies.197,242 Furthermore, candidate gene–candidate phenotype might be fundamental to understanding the relationship between traditional diagnostic categories and the new classifications of mental disorders based on dimensions of observable behavior and neurobiological measures.186,187,195,196,198

Neuroimaging may provide evidence for or against existing theories, or provide unique and sensitive insight unexplained solely by behavioral measures.198 Although producing interesting results, the hypothesis-driven approach of imaging genetics represents a way for validation/replication studies of selective genes and do not reveal other genetic contributors to the overall neurobehavioral reading deficits nor the imaging phenotype changes associated with DD.9,12,31 By implementing a ‘gene hunting’ strategy,6 hypothesis-free approach, similar to those commonly seen in human genetics such as genome-wide association studies and new DNA sequencing technologies, could detect common variants with small effect sizes and could reveal new genes and pathways, rare and de novo variants, that contribute to alterations in brain imaging phenotypes, and how they contribute to the ultimate neurobehavioral phenotypes.12,23,125 However, the question that arises from imaging–genetics as a hypothesis-free field is how to use and analyze such large and diverse datasets. Data reduction or hypothesis-free processing methods, such as parallel independent component analysis,201,202 multivariate pattern analysis,227...
endophenotype ranking value, polygenic risk score, as well as new analytical methods to collapse and/or integrate a variety of data types into relevant risk models (for example, support vector machine analysis) are potentially needed.

CONCLUSION

This review aimed to highlight the promising imaging–genetics approach as a way to unravel new insights behind the pathophysiology of reading (dis)ability. As the presence of putative functional genetic variants influencing the expression of some of the DD-candidate genes has been provided and as genetic associations with specific, well-defined cognitive/sensorial mechanisms have been reported, current knowledge of genetics of DD could help target imaging more selectively. The integration of particular cognitive/sensorial, selective genetic and imaging data, as well as the implementation of candidate gene–candidate phenotype imaging association studies would result in a better consideration of what constitutes a phenotype. Clearly, such an approach is essentially interdisciplinary given the multiple levels of analysis simultaneously achieved. Even if there are weaknesses despite strengths in this perspective, such hypothesis-driven approach in imaging–genetics as a field would lead to the optimization of criteria to diagnose DD and to the early identification of ‘biologically at-risk’ children. This means the definition of adequate and well-timed prevention strategies and the implementation of novel, specific and evidence-based remediation approach training specifically the reading-related cognitive/sensorial impairment. These insights will aid in the earlier detection of children with DD and aid their overall academic and remediation potential. Naturally, these developments should be considered in parallel with the advance made by the hypothesis-free approach that will aid in the identification of new mechanisms (genetic and imaging) that contribute to reading deficits in DD.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

We thank Courtney K Greenlaw for English text revision. This research was funded by the Italian Ministry of Health Grant RC 2016 to Dr Arrigoni.

REFERENCES

1 Norton ES, Wolf M. Rapid automated naming (RAN) and reading fluency: implications for understanding and treatment of reading disabilities. Annu Rev Psychol 2012; 63: 427–452.
2 Peterson RL, Pennington BF. Developmental dyslexia. Annu Rev Clin Psychol 2015; 11: 283–307.
3 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th edn. Washington, DC, 2013.
4 Arslan A. Genes, brains, and behavior: imaging genetics for neuropsychiatric disorders. J Neuropsychiatr Clin Neurosci 2015; 27: 81–92.
5 Hallgren B. Specific dyslexia (congenital word-blindness): a clinical and genetic study. Acta Psychiatr Neurol 1950; 65: 1–287.
6 Fisher SE, Defries JC. Developmental dyslexia: genetic dissection of a complex cognitive trait. Nat Rev 2002; 3: 767–780.
7 Plomin R, Kovas Y. Generalist genes and learning disabilities. Psychol Bull 2005; 131: 592–617.
8 Scerri TS, Schulte-Korne G. Genetics of developmental dyslexia. Eur Child Adolesc Psychiatry 2010; 19: 179–197.
9 Carron-Castillo A, Franke B, Fisher SE. Molecular genetics of dyslexia: an overview. Dyslexia 2013; 19: 214–240.
10 Zhang Y, Li J, Song S, Tardif T, Burmeister M, Villafuerte SM et al. Association of DCDC2 polymorphisms with normal variations in reading abilities in a Chinese population. PLoS One 2016; 11: e0153603.
11 Zhao H, Chen Y, Zhang B-P, Zuo P-X. KIAA0319 gene polymorphisms are associated with developmental dyslexia in Chinese Uygur children. J Hum Genet 2016; 61: 745–752.
12 Eicher JD, Gruen Jr. Imaging-genetics in dyslexia: connecting risk genetic variants to brain neuroimaging and ultimately to reading impairments. Mol Genet Metab 2013; 110: 201–212.
13 Skeide MA, Kraft I, Muller B, Schadat G, Neef NE, Brauer J et al. NR5F1 associated grey matter volume of the visual word form area reveals dyslexia before school. Brain 2016; 139: 2792–2803.
14 Pagnamenta AT, Bacchelli E, de Jonge MV, Mirza G, Scerri TS, Minopoli F et al. Characterization of a family with rare deletions in CNTNAP5 and DCDC4 suggests novel risk loci for autism and dyslexia. Biol Psychiatry 2010; 68: 320–328.
15 Newbury DF, Paracchini S, Scerri TS, Winchester L, Addis L, Richardson AJ et al. Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behav Genet 2011; 41: 90–104.
16 Peter B, Raskind WH, Matsushita M, Lisowski M, Vu T, Berninger VW et al. Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample. J Neurodev Disord 2011; 3: 39–53.
17 Wilcke A, Liggges C, Burkhardt J, Alexander M, Wolf C, Quente E et al. Imaging genetics of FOXP2 in dyslexia. Eur J Hum Genet 2012; 20: 224–229.
18 Ludwig KU, Roeseke D, Herrns S, Schumacher J, Wamke A, Plume E et al. Variation in GRIN2B contributes to weak performance in verbal short-term memory in children with dyslexia. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 2010; 153B: 503–511.
19 Konig IR, Schumacher J, Hoffmann P, Kleinsang A, Ludwig KU, Grimm T et al. Mapping for dyslexia and related cognitive trait loci provides strong evidence for further risk genes on chromosome 6p21. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 36–43.
20 Mascheretti S, Facoetti A, Giorda R, Beri S, Riva V, Trezzi V et al. GRIN2B mediates susceptibility to intelligence quotient and cognitive impairments in developmental dyslexia. Psychiatr Genet 2015; 25: 9–20.
21 Scerri TS, Morris AP, Buckingham LJ, Newbury DF, Miller LL, Monaco AP et al. DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biol Psychiatry 2011; 70: 237–245.
22 Mattson H, Huss M, Persson H, Einarsdottir E, Tiraboschi E, Nopola-Hemmi J et al. Polymorphisms in DCDC2 and S100B associate with developmental dyslexia. J Hum Genet 2015; 60: 399–401.
23 Kong R, Shao S, Wang J, Zhang X, Guo S, Zou L et al. Genetic variant in DIP2A gene is associated with developmental dyslexia in Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B: 203–208.
24 Veerappa AM, Saldanha M, Padakannaya P, Ramachandra NB. Family-based genome-wide copy number scan identifies five new genes of dyslexia involved in dendritic spinal plasticity. J Hum Genet 2013; 58: 539–547.
25 Massinen S, Wang J, Laiuvori K, Bieder A, Tapia-Paez I, Jiao H et al. Genomic sequencing of a dyslexia susceptibility haplotype encompassing ROBO1. J Neurodev Disord 2016; 8: 4.
26 Roeseke D, Ludwig KU, Neuhoff N, Becker J, Bartling J, Bruder J et al. First genome-wide association scan on neurophysiological endophenotypes points to trans-regulation effects on SL2CA3 in dyslexic children. Mol Psychiatry 2011; 16: 97–107.
27 Massinen S, Hokkanen ME, Mattson H, Tamminemies K, Tapia-Paez I, Dahlstrom-Huemer V et al. Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons. PLoS One 2011; 6: e20580.
28 Luciano M, Evans DM, Hansell NK, Medland SE, Montgomery GW, Martin NG et al. A genome-wide association study for reading and language abilities in two population cohorts. Genes Brain Behav 2013; 12: 645–652.
29 Galluati A, Newbury DF, Wilcutt EG, Olson RK, Defries JC, Brandler WM et al. Genome-wide screening for DNA variants associated with reading and language traits. Genes Brain Behav 2014; 13: 686–701.
30 Einarsdottir E, Svensson I, Darki F, Peyrard-Janvid M, Lindvall JM, Ameur A et al. Mutation in CEP63 co-regulating with developmental dyslexia in a Swedish family. Hum Genet 2015; 134: 1239–1248.
31 Graham SA, Fisher SE. Decoding the genetics of speech and language. Curr Opin Neurobiol 2013; 23: 43–51.
32 Taipale M, Kaminen N, Nopola-Hemmi J, Halta M, Mylllyosmaa B, Lyrtinyinen H et al. A candidate gene for developmental dyslexia encodes a nuclear tetracopeptide repeat domain protein dynamically regulated in brain. Proc Natl Acad Sci USA 2003; 100: 11553–11558.
33 Marino C, Crittero A, Giorda R, Facoetti A, Menozzi G, Vanzin L et al. Association of short-term memory with a variant within DYSX1C1 in developmental dyslexia. Genes Brain Behav 2007; 6: 640–646.
34 Marino C, Meng H, Mascheretti S, Rusconi M, Cope N, Giorda R et al. DCDC2 genetic variants and susceptibility to developmental dyslexia. Psychiatr Genet 2012; 22: 25–30.
The role of gene

Powers NR, Eicher JD, Butter F, Kong Y, Miller LL, Ring SM

Evaluatie of candidate genes for DYX1 and DYX2 in families with dyslexia, Am J Med Genet B, Neuropsychiatr Genet 2007; 144B: 556–560.

Dahdouh F, Anthoni H, Tapia-Paez I, Peyrard-Janvid M, Schulte-Korne G, Warnke A, Plume E

Lim CK, Ho CS, Chou CH, Waye MM. Association of the rs3743205 variant of

Dennis MY, Paracchini S, Scerri T, Dennis M, Cope N, Hill G

Lind PA, Luciano M, Wright MJ, Montgomery GW, Martin NG, Bates TC. Dyslexia

Powers NR, Eicher JD, Butter F, Kong Y, Miller LL, Ring SM

Luciano M, Lind PA, Smith GD, Richards AJ, Scerri TS, Cardon LR et al. A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet 2004; 75: 1046–1058.

Dennis MY, Paracchini S, Scerri TS, Prokunina-Olsson L, Knight JC, Wade-Martins R et al. A common variant associated with dyslexia reduces expression of the KIAA0319 gene. Neurosci Biobehav Rev 2017; 80: 1078–1098.

Luciano M, Lind PA, Duffy DL, Castles A, Wright MJ, Montgomery GW et al. A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability. Biol Psychiatry 2007; 62: 811–817.

Paracchini S, Steer CD, Buckingham LL, Morris AP, Ring S, Scerri T et al. Association of the KIAA0319 dyslexia susceptibility gene with reading skills in the general population. Am J Psychiatry 2008; 165: 1576–1584.

Meng H, Powers NR, Tang L, Cope NA, Zhang PX, Fuleihan R et al. A dyslexia-associated variant in DCDC2 changes gene expression. Behav Genet 2011; 41: 58–66.

Powers NR, Eicher JD, Butter F, Kong Y, Miller LL, Ring SM et al. Alleles of a polymorphic ETV6 binding site in DCDC2 confer risk of reading and language impairment. Am J Hum Genet 2013; 93: 19–28.

Lind PA, Luciano M, Wright MJ, Montgomery GW, Martin NG, Bates TC. Dyslexia and DCDC2: normal variation in reading and spelling is associated with DCDC2 polymorphisms in an Australian population sample. Eur J Hum Genet 2010; 18: 668–673.

Flint J, Timpson N, Munafò M. Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric diseases. Trends Neurosci 2014; 37: 733–741.

Cicchini GM, Marino C, Mascheretti S, Perani D, Morrone MC. Strong motion defects in dyslexia associated with DCDC2 gene alteration. J Neurosci 2015; 35: 8059–8064.

Gori S, Mascheretti S, Giora E, Ronconi L, Ruffino M, Quadrelli E et al. The DCDC2 intron 2 deletion impairs illusory motion perception unveiling the selective role of magnocellular-dorsal stream in reading (dis)ability. Cereb Cortex 2015; 25: 1685–1695.

Neurogenetics of developmental dyslexia
S Mascheretti et al
82. Peña-garikano O, Abrahms BS, Herman EL, Winden KD, Gdalyahu A, Dong H et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 2011; 147: 235–246.

83. Rendall AR, Tarkar A, Contreras-Mora HM, LoTurco JJ, Fitch RH. Deficits in learning and memory in mice with a mutation of the candidate dyslexia susceptibility gene Dyrx1. Brain Lang 2015; doi:10.1016/j.bandl.2015.04.008.

84. Szallkowski CE, Fionda GA, Truong DT, Rosen GD, LoTurco JJ, Fitch RH. The effects of Kiao0319 knockout on cortical and subcortical anatomy in male rats. Int J Dev Neurosci 2013; 31: 116–122.

85. Centanni TM, Booker AB, Sloan AM, Chen F, Maher BJ, Caraway RS et al. Knockdown of dyslexia gene Dcc2c2 interferes with speech sound discrimination in continuous streams. J Neurosci 2016; 36: 4895–4906.

86. Schito AM, Pizzuti A, Di Maria E, Schoneone A, Ratti A, Defferrari R et al. mRNAs distribution in adult human brain of GRNB2, a N-methyl-D-aspartate (NMDA) receptor subunit. Neurot Lett 1997; 239: 49–53.

87. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Trends Neurosci 2001; 11: 327–335.

88. Kim MJ, Dunah AW, Yang YT, Sheng M. Differential roles of NR2A and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 2005; 46: 745–760.

89. Che A, Argirgenti MJ, LoTurco J. The dyslexia-associated gene DCDc2 is required for spike-timing precision in mouse neocortex. Biol Psychiatry 2014; 76: 387–396.

90. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Trends Neurosci 2001; 11: 327–335.

91. Liu L, You W, Wang W, Guo X, Peng D, Booth J. Altered brain structure in Chinese dyslexic children. Neurogenetics of developmental dyslexia. Brain map book 2008; 29: 613–625.

92. Steinbrink C, Vogt K, Kastrup A, Müller H-F, Juengling FD, Kassubek J et al. The contribution of white and gray matter differences to developmental dyslexia: insights from DTI and VBM at 3.0 T. Neurophysiology 2006; 48: 1170–1178.

93. Li L, You W, Wang W, Guo X, Peng D, Booth J. Altered brain structure in Chinese dyslexic children. Neurogenetics of developmental dyslexia. Brain map book 2008; 29: 613–625.

94. Kere J. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochem Biophys Res Commun 2014; 452: 236–243.

95. Galaburda AM, Sherman GF, Rosen GD, Abbotz F, Geschwind N. Developmental dyslexia: four consecutive patients with cortical anomalies. Ann Neurol 1985; 18: 222–233.

96. Galaburda AM, Kemper TL. Cytoarchitectonic abnormalities in developmental dyslexia: a case study. Ann Neurol 1979; 6: 94–100.

97. Vinckenbosch E, Robichon F, Eliez S. Gray matter alteration in dyslexia: converging evidence from volumetric and voxel-by-voxel MRI analyses. Neuropsychologia 2005; 43: 324–331.

98. Silani G, Frith U, Demonet J-F, Fazio F, Perani D, Price C et al. Brain abnormalities underlying altered activation in dyslexia: a voxel based morphometry study. Brain 2005; 128: 2453–2465.

99. Hoeft F, Ueno T, Reiss AL, Meyler A, Whitfield-Gabrieli S, Glover GH et al. Prediction of children’s reading skills using behavioral, functional, and structural neuroimaging measures. Behav Neurosci 2007; 121: 602–613.

100. Pernet CR, Poline JB, Demonet JF, Rousselet GA. Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neurosci 2009; 10: 67.

101. Dole M, Meunier F, Hoen M. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry. PloS One 2013; 8: e76823.

102. Knauf AJ, Flowers DL, Luette MM, Napolieoli EM, Eden GF. An investigation into the origin of anatomical differences in dyslexia. J Neurosci 2014; 34: 901–908.

103. Tamboer P, Scholte HS, Vorst HCM. Dyslexia and voxel-based morphometry: correlations between five behavioral measures of dyslexia and gray and white matter volumes. Ann Dyslexia 2015; 65: 121–141.

104. Xia Z, Hoeft F, Zhang L, Shu H. Neuroanatomical anomalies of dyslexia: disambiguating the effects of disorder, performance, and maturation. Neuro-psychologia 2016; 81: 68–78.

105. Brown WE, Eliez S, Menon V, Rumsey JM, Reiss AL. Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology 2010; 75: 781–783.

106. Brambati SM, Terme C, Ruffino M, Stella G, Fazio F, Cappa SF et al. Regional reductions of gray matter volume in familial dyslexia. Neurology 2004; 63: 742–745.

107. Eckert MA, Leonard CM, Wilke M, Eckert M, Richards T, Richards A et al. Anatomical signatures of dyslexia in children: unique information from manual and voxel based morphometry brain measures. Cortex 2005; 41: 304–315.

108. Kronbichler M, Wimmer H, Staffen W, Hutzler F, Mair A, Ladurner G. Developmental dyslexia: gray matter abnormalities in the occipitotemporal cortex. Hum Brain Map 2008; 29: 613–625.

109. Carter JC, Lanham DC, Cutting LE, Clements-Stephens AM, Chen X, Hadzipasic M et al. A dual DTI approach to analyzing white matter in children with dyslexia. Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuro 2000; 25: 493–500.

110. Deutsch GK, Dougerty RF, Bammer R, Siok WT, Gabrieli JDE, Wandell B. Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex 2005; 41: 354–363.

111. Richards T, Stevenson J, Crouch J, Johnson LC, Maravilla K, Stock P et al. Tract-based spatial statistics of diffusion tensor imaging in adults with dyslexia. Am J Neuroradiol 2008; 29: 1134–1139.

112. Carter JC, Lanham DC, Cutting LE, Clements-Stephens AM, Chen X, Hadzipasic M et al. A dual DTI approach to analyzing white matter in children with dyslexia. Psychiatry Res 2009; 172: 215–219.

113. Rolls NK, Vachha B, Sinnavan P, Chia J, Pickering J, Hughes CW et al. Simple disordered visual cognition in children: alterations in diffusion-tensor metrics of white matter tracts at 3T. Radiology 2009; 251: 882–891.

114. Odegard TN, Farris EA, Ring J, McColl R, Black J. Brain connectivity in non-reading impaired children and children diagnosed with developmental dyslexia. Neuro-psychologia 2009; 47: 1972–1977.

115. Odegard TN, Farris EA, Ring J, McColl R, Black J. Brain connectivity in non-reading impaired children and children diagnosed with developmental dyslexia. Neuro-psychologia 2009; 47: 1972–1977.

116. Vandermosten M, Boets B, Poelmans H, Sunaert S, Wouters J, Ghesquiere P. A tractography study in dyslexia: neuroanatomic correlates of orthographic, phonological and speech processing. Brain 2012; 135: 935–948.
135 Hynd GW, Hall J, Novere ES, Elpopulos D, Black K, Gonzalez JJ et al. Dyslexia and corpus callosum morphology. Arch Neurol 1995; 52: 32–38.
136 Robichon F, Habib M. Abnormal callosal morphology in male adult dyslexics: relationships to handedness and phonological abilities. Brain Lang 1998; 62: 127–146.
137 Pausius E, Danelli L, Berlinger M. Reading the dyslexic brain: multiple dys- functional routes revealed by a new meta-analysis of PET and fMRI activation studies. Front Hum Neurosci 2014; 8: 830.
138 Elnakib A, Soliman A, Nitzken M, Casanova MF, Gimel'tz G, El-Baz A. Magnetic resonance imaging findings for dyslexia: a review. J Biomed Nanotechnol 2014; 10: 2778–2805.
139 Seki A, Koeda T, Sugihara S, Kambra M, Hirata Y, Ogawa T et al. A functional magnetic resonance imaging study during sentence reading in Japanese dys-lexic children. Brain Dev 2001; 23: 312–316.
140 Georgiouva P, Rizanny R, Gaser C, Gerhard U, Vieweg U, Freesmeyer D et al. Phonological processing in dyslexic children: a study combining functional imaging and event related potentials. Neurosci Lett 2002; 318: 5–8.
141 Kami A, Moroz IA, Bitan T, Shaul S, Kushnir T, Breznitz Z. An fMRI study of the differential effects of word presentation rates (reading acceleration) on dyslexic readers’ brain activity patterns. J Neurolinguistics 2005; 18: 197–219.
142 Brambati SM, Termine C, Ruffino M, Danina M, Lanzi G, Stella G et al. Neuro psychological deficits and neural dysfunction in familial dyslexia. Brain Res 2006; 1113: 174–185.
143 Hoeft F, Meyler A, Hernandez A, Juel C, Taylor-Hill H, Martindale J et al. Func tional and morphometric brain dissociation between dyslexia and reading ability. Brain Dev 2007; 30: 423–429.
144 Rimondt SL, Clements-Stephens AM, Pugh KR, Courtney SM, Gau P, Pekar JI et al. Functional MRI of sentence comprehension in children with dyslexia: beyond word recognition. Cereb Cortex 2009; 19: 402–413.
145 Wimmer H, Schurz M, Storm D, Richlan F, Klackl J, Kronbichler M et al. A dualroute perspective on poor reading in a regular orthography: an fMRI study. Cortex 46: 1284–1298.
146 Olulade OA, Flowers DL, Napoliello EM, Eden GF. Developmental differences for word processing in the ventral stream. Brain Lang 2013; 125: 134–145.
147 Olulade OA, Flowers DL, Napoliello EM, Eden GF. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex. Neuroimage Clin 2015; 7: 742–754.
148 Salarigil I, Ontaño JM, Fernandez-Ruanova B, Garcia-Zapirain B, Basterra A, Sanz-Arjiga EJ. Reading networks in children with dyslexia compared to children with occular motility disturbances revealed by fMRI. Front Hum Neurosci 2014; 8: 936.
149 Shaywitz BA, Shaywitz SE, Pugh KR, Mencel WE, Fullbright RK, Skudlarski P et al. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry 2002; 52: 101–110.
149 Backes W, Vuurman E, Wennenes R, Spronk P, Wuisman M, van Engelshoven J et al. Atypical brain activation of reading processes in children with develop mental dyslexia. J Child Neurol 2002; 17: 867–871.
150 Desroches AS, Cone NE, Bolger DJ, Bitan T, Burman DD, Booth JR. Children with reading difficulties show differences in brain regions associated with ortho graphical processing during spoken language processing. Brain Res 2010; 1356: 73–84.
151 Heim S, Grande M, Pape-Neumann J, van Ermingen M, Meffert E, Grabowska A et al. Interaction of phonological awareness and ‘magnoceullar’ processing during normal and dyslexia reading: behavioral and fMRI investigations. Dyslexia 2010; 16: 258–282.
152 Steinbrink C, Groth K, Lachmann T, Riecker A. Neural correlates of temporal auditory processing in developmental dyslexia during German vowel length discrimination: an fMRI study. Brain Lang 2012; 121: 1–11.
153 Peyrin C, Lallier M, Démonet JF, Permet C, Baciu M, Le Bas JF et al. Neural dissociation of phonological and visual attention span disorders in develop mental dyslexia: fMRI evidence from two case reports. Brain Lang 2012; 120: 381–394.
154 Diaz B, Hintz F, Kiebel SJ, von Kriegstein K. Dysfunction of the auditory thalamus in developmental dyslexia. Proc Natl Acad Sci USA 2012; 109: 13841–13846.
155 Liu L, Wang W, You W, Li Y, Awati N, Zhao X et al. Similar alternations in brain function for phonological and semantic processing to visual characters in Chi nese dyslexia. Neuropsychologia 2012; 50: 2224–2232.
156 Olulade OA, Giljer JW, Talavage TM, Hynd GW, McAteer CI. Beyond phonological processing deficits in adult dyslexics: atypical FMRI activation patterns for spatial problem solving. Dev Neurosci 2012; 37: 617–635.
157 van Ermingen-Marbach M, Pape-Neumann J, Grande M, Grabowska A, Heim S. Distinct neural signatures of cognitive subtypes of dyslexic effects of lexicality during phonological processing. Acta Neurobiol Exp (Wars) 2013; 73: 404–416.
158 Hernandez N, Andersson F, Edjali M, Hommet C, Cottier JP, Destreeu C et al. Cerebral functional asymmetry and phonological performance in dyslexic adults. Psychophysiology 2013; 50: 1226–1238.
prereading children at familial risk for dyslexia. Cereb Cortex 2014; 24: 2489–2501.

186 Pennington BF. From single to multiple deficit models of developmental disorders. Cognition 2006; 101: 385–413.

187 Bishop D V. The interface between genetics and psychology: lessons from developmental dyslexia. Proc Biol Sci 2015; 282: 20143139.

188 Zhou L, Chen W, Shao S, Sun Z, Zhong R, Shi J et al. Genetic variant in KIAA0319, but not in DYSX1C1, is associated with risk of dyslexia: an integrated meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2012; 159B: 970–976.

189 Zhong R, Yang B, Tang H, Zou L, Song R, Zhu LQ et al. Meta-analysis of the association between DCDC2 polymorphisms and risk of dyslexia. Mol Neurobiol 2013; 47: 435–442.

190 Becker J, Czamara D, Scerri TS, Ramus F, Csepe V, Talcott JB et al. Meta-analysis of association studies of the FTO gene in disordered eating. Eur J Hum Genet 2013; 15: 1147–1150.

191 Jamadar S, Powers NR, Meda SA, Gelernter J, Gruen JR, Pearlson GD. Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered MRI tissue compartments in typically developing children. Neuroimage 2016; 133: 194–200.

192 Gottesman II, Gould TD. The endophenotype concept in psychiatry: etiology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

193 Poelmans G, Buitelaar JK, Pauls DL, Franke B. A theoretical molecular network for dyslexia: integrating available genetic findings. Mol Psychiatry 2011; 16: 365–382.

194 Brav FL. The importance of endophenotypes in schizophrenia research. Schizophr Res 2015; 160: 1–8.

195 Liégeois F, Baldeweg T, Connelly A, Gadian DG, Mishkin M, Vargha-Khadem F. Language fMRI abnormalities associated with FOXP2 gene mutation. Nat Neurosci 2003; 6: 1230–1237.

196 Konrad A, Vucurevic G, Musso F, Winterer G. VBM-DTI correlates of verbal intelligence: a potential link to Broca’s area. J Cogn Neurosci 2012; 24: 888–895.

197 Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical MRI analysis of an inherited speech and language disorder: structural brain abnormalities. Brain 2002; 125: 465–478.

198 Belton E, Salmond CH, Watkins KE, Vargha-Khadem F, Gadian DG. Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia. Brain 2003; 126: 1–8.

199 Sepehrband F, Clark KA, Ullmann JF, Kurniawan ND, Leango G, Reutens DC et al. Brain tissue compartment density estimated using diffusion-weighted MRI yields tissue parameters consistent with histology. Hum Brain Mapp 2015; 36: 3687–3702.

200 Liu B, Zhang X, Cui Y, Qin W, Tao Y, Li J et al. Polygenic risk for schizophrenia influences cortical gyriﬁcation in 2 independent general populations. Schizophr Bull 2016; doi:10.1093/schbul/bsw051.

201 Qin L, He Y, Tang H, Zhou Y, Wang J, Zhang W et al. Genetically-mediated grey and white matter alteration in normal elderly individuals with the CLU-C allele gene. Curr Alzheimers Res 2016; http://www.ncbi.nlm.nih.gov/pubmed/27396407.

202 Ramirez LM, Goukasian N, Porat S, Hwang KS, Eastman JA, Hurtz S et al. Five describing factors of dyslexia. Cortex 2014; 48: 393–406.

203 Weiner MW, Veltich DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J et al. Impact of the Alzheimer’s Disease Neuroimaging Initiative, 2004 to 2014. Alzheimers Dement 2015; 11: 865–884.

204 Carroll JM, Sollity J, Shapiro LR. Predicting dyslexia using prereading skills: the role of sensorimotor and cognitive abilities. J Child Psychol Psychiatry 2016; 57: 750–758.

205 Gabrieli JD. Dyslexia: a new synergy between education and cognitive neuroscience. Science 2009; 325: 280–283.

206 Menghini D, Finzi A, Maffini M, Bolzani R, Facocetti A, Giovagnoli S et al. Different underlying neurocognitive deﬁcits in developmental dyslexia: a comparative study. Neuropsychologia 2010; 48: 863–872.

207 Tamboer P, Vorst HC, Oort FJ. Five describing factors of dyslexia. J Learn Disabil 2014; 49: 466–483.

208 Flint J, Timpson N, Munafò M. Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease. Trends Neurosci 2014; 37: 733–741.

209 Ioannidis JPA. Why most published research ﬁndings are false. PLoS Med 2005; 2: e124.
236 Yamase H. Using endophenotypes to examine molecules related to candidate genes as novel therapeutics: The ‘endophenotype-associated surrogate end-point (EASE)’ concept. *Neurosci Res* 2015; **99**: 1–7.

237 Grigorenko EL, Wood FB, Meyer MS, Hart LA, Speed WC, Shuster A et al. Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. *Am J Hum Genet* 1997; **60**: 27–39.

238 Addis L, Friederici AD, Kotz SA, Sabisch B, Barry J, Richter N et al. A locus for an auditory processing deficit and language impairment in an extended pedigree maps to 12p13.31-q14.3. *Genes Brain Behav* 2010; **9**: 545–561.

239 Shao S, Niu Y, Zhang X, Kong R, Wang J, Liu L et al. Opposite associations between individual KIAA0319 polymorphisms and developmental dyslexia risk across populations: a stratified meta-analysis by the study population. *Sci Rep* 2016; **6**: 30454.

240 Mann A, Machado NM, Liu N, Mazin A-H, Silver K, Afzal KI. A multidisciplinary approach to the treatment of anti-NMDA-receptor antibody encephalitis: a case and review of the literature. *J Neuropsychiatry Clin Neurosci* 2012; **24**: 247–254.

241 Homberg JR, Kyzar EJ, Stewart AM, Nguyen M, Poudel MK, Echevarria DJ et al. Improving treatment of neurodevelopmental disorders: recommendations based on preclinical studies. *Expert Opin Drug Discov* 2016; **11**: 11–25.

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)