Efficacy and Safety of Ticagrelor and Clopidogrel in Patients with Stable Coronary Artery Disease Undergoing Percutaneous Coronary Intervention

Jianan Li, Hong Qiu, Lirong Yan, Tingting Guo, Yong Wang, Yang Li, Jianfeng Zheng, Yida Tang, Bo Xu, Shubin Qiao, Yuejin Yang and Runlin Gao

Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

Aim: The efficacy and safety of ticagrelor and clopidogrel in patients with stable coronary artery disease (SCAD) undergoing percutaneous coronary intervention (PCI) remain uncertain. Thus, this study aimed to compare the efficacy and safety of ticagrelor and clopidogrel in patients with SCAD treated with PCI.

Methods: A total of 9,379 patients with SCAD undergoing PCI who received dual antiplatelet therapy (DAPT) were consecutively enrolled in two groups, namely, ticagrelor (n=1,081) and clopidogrel (n=8,298) groups. Major adverse cardiovascular and cerebrovascular events (MACCEs) and bleeding events according to ticagrelor or clopidogrel use were compared.

Results: After propensity matching (n=1,081 in each group), ticagrelor was associated with fewer MACCEs (3.6% vs. 5.7%, hazard ratio [HR] = 0.62, 95% confidence interval [CI] 0.41–0.93, \(p = 0.019 \)), and the difference between ticagrelor and clopidogrel for bleeding events was nonsignificant (4.0% vs. 3.2%, HR = 1.24, 95% CI 0.79-1.93, \(p = 0.356 \)). On the other hand, the difference between ticagrelor and clopidogrel for net adverse clinical events was significant (4.1% vs. 6.0%, HR = 0.67, 95% CI 0.46–0.98, \(p = 0.039 \)). In a multivariate analysis, the use of ticagrelor, number of stents, previous history of diabetes, previous history of smoking, and ACC/AHA type B2 or C lesions were considered independent predictors of MACCEs, while radial artery access, previous history of stroke, and weight <60kg were independent predictors of bleeding events.

Conclusions: Ticagrelor was associated with a lower incidence of MACCEs without an increased risk of bleeding events in patients with SCAD receiving PCI.

Key words: Ticagrelor, Clopidogrel, Stable coronary artery disease, Percutaneous coronary intervention

Introduction

Clopidogrel and aspirin have long been used as the standard dual antiplatelet therapy (DAPT) for patients undergoing percutaneous coronary intervention (PCI). The antiplatelet effect of clopidogrel is slow, variable, and irreversible, and it is reported that approximately 15–30% of patients are nonresponsive to clopidogrel. The multifactorial phenomenon of clopidogrel hyporesponsiveness is associated with an increased risk of thromboembolic events after PCI. Ticagrelor is a reversible, nonthienopyridine, P2Y12 oral inhibitor that has a faster onset and offset of action and a higher inhibitory effect on platelet aggregation compared with clopidogrel, which requires metabolic activation through a multistep process involving multiple cytochrome P450 isoenzymes. Ticagrelor can bind directly to the P2Y12 receptor and inhibit platelet aggregation induced by...
adenosine diphosphate\(^9\).

The Platelet Inhibition and Patient Outcomes (PLATO) trial and other studies have compared the efficacy and safety of ticagrelor and clopidogrel in patients with acute coronary syndrome (ACS), acute myocardial infarction (AMI), ST-segment elevation myocardial infarction (STEMI), non-ST-segment elevation myocardial infarction (NSTEMI), or non-ST-segment elevation acute coronary syndrome (NSTE-ACS)\(^{10-14}\). No other previous study comprehensively evaluated the efficacy and safety of ticagrelor in patients with stable coronary artery disease (SCAD) for a 1-year follow-up period. Therefore, we sought to investigate the efficacy and safety of ticagrelor vs. clopidogrel in patients with SCAD undergoing PCI.

Methods

Patients

A total of 9379 consecutive patients with SCAD who underwent PCI from January 2017 to December 2018 were enrolled in this single-center study. Patients were divided into two groups according to the medication at discharge, namely, the ticagrelor group (\(n=1,081\)) and the clopidogrel group (\(n=8,298\)). All patients were then followed up for 1 year. The inclusion criteria were as follows: patients aged \(\geq 18\) years, those with a confirmed final diagnosis of SCAD, those who underwent PCI with drug-eluting stent (DES), and those prescribed aspirin and a P2Y12 inhibitor (ticagrelor or clopidogrel) upon admission and at discharge. The exclusion criteria were as follows: patients who were diagnosed with ACS; those with unsuccessful PCI; those with acute or severe complications of PCI; those who needed long-term oral anticoagulant drugs; those who discontinued P2Y12 blockers or switched between ticagrelor and clopidogrel; those for whom aspirin, clopidogrel, or ticagrelor are contraindicated; and those with coagulopathy, severe liver and kidney dysfunction, active major bleeding, major surgical history within 3 months, severe valvular heart disease, dilated cardiomyopathy, hypertrophic cardiomyopathy, tumor, hyperthyroidism, pulmonary embolism, and other basic diseases. The study flowchart is shown in Fig. 1. The Fuwai Hospital approved this study (2018-WJY01), and the study protocol conforms to the ethical guidelines of the Declaration of Helsinki and its later amendments. Informed consent for access to their medical records during hospitalization was obtained from all patients.

Treatment

Dual antiplatelet agents were administered to all patients prior to the PCI, with a 300-mg loading dose of aspirin, a 300–600-mg loading dose of clopidogrel, or a 180-mg loading dose of ticagrelor. After PCI, patients received 100-mg aspirin once daily indefinitely and 75-mg clopidogrel once daily or 90-mg ticagrelor twice daily for at least 12 months. The antiplatelet agents were chosen based on the discretion of

Fig. 1. Flow chart
individual cardiologists. According to the current standard procedure guidelines, all patients underwent coronary angiography during PCI. Interventional cardiologists identified specific PCI techniques and stent types for coronary lesions. All patients received standard care and medications for the secondary prevention of coronary artery disease.

Endpoints and Definitions
The primary efficacy endpoints were major adverse cardiovascular and cerebrovascular events (MACCEs), defined as the composite of all-cause death, myocardial infarction (MI), any revascularization, and stroke at 1-year follow-up. The secondary efficacy endpoints were all-cause death, cardiovascular death, MI, stroke, and stent thrombosis. MI was defined according to the universal definition. Any revascularization was defined as revascularization involving either the target or nontarget vessels. Stroke was defined as the focal loss of neurologic function caused by either ischemia or hemorrhage, with residual symptoms lasting at least 24 h or leading to death. Stent thrombosis was evaluated in accordance with the Academic Research Consortium criteria. The safety endpoints were thrombolysis in MI (TIMI) bleeding events, which include major and minor bleeding events. The net adverse clinical events were defined as the composite of all-cause death, MI, stroke, or TIMI major bleeding.

Statistical Analysis
Continuous variables with normal distributions were expressed as the mean ± standard deviation and were compared using Student’s t-test. Continuous variables with non-normal distributions were expressed as the median (interquartile range) and were compared using the Mann-Whitney U test. Meanwhile, categorical variables were expressed as numbers and percentages and were compared using the chi-square test or Fisher’s exact test. Propensity score was employed to minimize the impact of selection bias in the direct comparison between ticagrelor and clopidogrel. We used the 1:1 nearest neighbor matching to match the patients in each cohort, without replacement, with a caliper width of 0.2 of the standard deviation. Differences between the matched pairs were evaluated using the paired t-test or the Wilcoxon signed-rank test for continuous variables and McNemar’s test for categorical variables.

A Kaplan-Meier analysis was employed to establish survival plots with MACCEs or bleeding events, with the two groups compared using the log-rank test. The Cox regression model was used to estimate hazard ratios (HR) and 95% confidence intervals (CI). The independent predictors of efficacy and safety endpoints in the matched cohort were determined using a Cox proportional hazards regression model, including factors considered significant (p value < 0.1) by univariate analysis or deemed clinically important in the multivariate model. A p value of < 0.05 was considered statistically significant. All statistical analyses were performed using SPSS 25.0 (IBM) and STATA 12.0 (StataCorp).

Results
Patient Characteristics
A total of 9379 patients who underwent PCI from January 2017 to December 2018 were consecutively enrolled in this study, including patients with SCAD. Of these patients, 1081 received ticagrelor, and 8298 received clopidogrel. Table 1 lists the patients’ baseline characteristics. Patients with the following characteristics were more likely to receive ticagrelor: a previous history of hyperlipidemia, MI, PCI, congestive heart failure, a higher creatinine clearance and low-density lipoprotein cholesterol (LDL-C), a lower left ventricular ejection fraction, more ACC/AHA type B2 or C lesions and stents, longer total stent length, and the use of medications serving as proton pump inhibitors. However, older patients, patients with a previous history of stroke, and patients treated with the transradial approach were more likely to receive clopidogrel.

After propensity score matching was performed for all patients, 1081 matched pairs of patients were selected (Table 1). In these matched patients, no significant differences were observed between ticagrelor and clopidogrel for any baseline clinical and procedural characteristics and medications.

Efficacy Endpoints
The incidence of MACCEs in the ticagrelor group was significantly lower than that in the clopidogrel group (3.6% vs. 6.1%, log-rank test, p < 0.001) (Table 2, Fig. 2A). Patients in the ticagrelor group had lower rate of any revascularization than did those in the clopidogrel group (2.1% vs. 3.3%, p = 0.040; Table 2). No significant differences were observed in the incidences of all-cause death, MI, stroke, and stent thrombosis between the two groups (Table 2).

After propensity score matching, the incidence of MACCEs was significantly lower in the ticagrelor group than in the clopidogrel group (3.6% vs. 5.7%, log-rank test, p = 0.019) (Table 2, Fig. 2D). Ticagrelor was associated with lower incidences of all-cause death and cardiovascular death compared with clopidogrel.
Table 1. Baseline clinical characteristics

	All Patients	Propensity-matched patients	p value
	Ticagrelor	Clopidogrel	
	(n = 1081)	(n = 8298)	
Male, n (%)	842 (77.9)	6315 (76.1)	0.193
Age (years)	57.8 ± 9.8	59.5 ± 9.9	<0.001
Systolic blood pressure (mmHg)	130.5 ± 15.4	131.1 ± 16.2	0.259
Diastolic blood pressure (mmHg)	78.5 ± 9.6	78.7 ± 10.0	0.570
Heart rate (beats/min)	70.1 ± 10.7	70.1 ± 10.9	0.895
Height (cm)	168.8 ± 7.2	168.3 ± 7.3	0.048
Body weight (kg)	74.7 ± 12.7	74.0 ± 12.0	0.052
BMI (kg/m²)	26.2 ± 3.6	26.0 ± 3.4	0.290
Hypertension, n (%)	697 (64.5)	5335 (64.3)	0.905
Diabetes, n (%)	378 (35.0)	2754 (33.2)	0.243
Hyperlipidemia, n (%)	761 (70.4)	5438 (65.5)	0.001
Smoker, n (%)	604 (55.9)	4720 (56.9)	0.530
MI, n (%)	229 (21.2)	1069 (12.9)	<0.001
PCI, n (%)	368 (34.0)	1900 (22.9)	<0.001
CABG, n (%)	18 (1.7)	120 (1.4)	0.574
Congestive heart failure, n (%)	28 (2.6)	129 (1.6)	0.013
Stroke, n (%)	87 (8.0)	955 (11.5)	0.001
Peripheral vascular disease, n (%)	54 (5.0)	452 (5.4)	0.536
COPD, n (%)	8 (0.7)	66 (0.8)	0.847
Chronic renal insufficiency, n (%)	12 (1.1)	63 (0.8)	0.223
White blood cells (10^9/l)	6.60 ± 1.68	6.58 ± 1.68	0.971
Total platelets (10^9/l)	228.23 ± 67.6	225.25 ± 58.09	0.116
Hemoglobin (g/l)	145.67 ± 15.18	146.25 ± 14.50	0.245
Creatinine clearance (ml/min/1.73m²)	94.19 ± 27.23	90.95 ± 26.44	<0.001
Blood glucose (mmol/l)	6.40 ± 2.24	6.39 ± 2.16	0.845
LDL-C (mmol/l)	2.45 ± 0.92	2.43 ± 0.91	0.007
CK-MB (mg/ml)	12.11 ± 8.56	12.03 ± 8.96	0.776
CRP (mg/l)	3.91 ± 5.19	3.96 ± 6.26	0.818
Troponin I (ng/ml)	0.07 ± 0.22	0.10 ± 0.67	0.209
Left ventricular ejection fraction (%)	62.26 ± 6.71	62.89 ± 6.07	0.003
Number of diseased vessels, n (%)			
One-vessel disease	544 (50.3)	4290 (51.7)	0.395
Two-vessel disease	298 (27.6)	2431 (29.3)	0.239
Three-vessel disease	147 (13.6)	1004 (12.1)	0.158
Left main disease	92 (8.5)	573 (6.9)	0.053
ACC/AHA lesion classification, n (%)			
Type A or B1	196 (18.1)	1823 (22.0)	0.004
Type B2 or C	885 (81.9)	6475 (78.0)	0.004
Number of stents	1.97 ± 0.96	1.79 ± 0.87	<0.001
Stent diameter (mm)	3.16 ± 0.54	3.13 ± 0.51	0.088
Total stent length (mm)	37.91 ± 22.36	35.46 ± 20.45	0.001
Radial artery access, n (%)	969 (89.6)	7734 (93.2)	<0.001
ACEI/ARB, n (%)	903 (83.5)	6788 (81.8)	0.163
Beta-blocker, n (%)	984 (91.0)	7493 (90.3)	0.445
Statin, n (%)	1079 (99.8)	8290 (99.9)	0.401
Calcium channel blockers, n (%)	111 (10.3)	763 (9.2)	0.254
Proton pump inhibitor, n (%)	544 (50.3)	3908 (47.1)	0.046

Data are expressed as mean ± standard deviation, or number (percentage).
BMI, body mass index; MI, myocardial infarction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; COPD, chronic obstructive pulmonary disease; LDL-C, low density lipoprotein cholesterol; CK-MB, creatine kinase-MB; CRP, C-reactive protein; ACC/AHA, American College of Cardiology/American Heart Association; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker.
Multivariate Cox regression analysis demonstrated that the use of ticagrelor (HR 0.52, 95% CI 0.29–0.92, p=0.027), number of stents (HR=1.37, 95% CI 1.18–1.71, p=0.008), his-
grel groups (Table 2). The incidences of non-cardiovascular death, MI, stroke, any revascularization, and stent thrombosis were comparable between the ticagrelor and prasu-
adverse clinical events in the ticagrelor group was lower compared with that in the clopidogrel group (4.1% vs. 6.0%, log-rank test, \(p = 0.036 \)) (Table 2, Fig. 2F). On multivariate Cox regression analysis, the independent predictors of bleeding events include radial artery access (HR = 0.35, 95% CI 0.12–0.65, \(p = 0.002 \)) (Fig. 2B).

Safety Endpoints

The incidence of bleeding events was significantly higher in the ticagrelor group compared with that in the clopidogrel group (4.0% vs. 2.7%, log-rank test, \(p = 0.016 \)) (Table 2, Fig. 2B). The TIMI major bleeding rates tended to increase in the ticagrelor group compared with those in the clopidogrel group (1.7% vs. 1.0%, \(p = 0.046 \)) (Table 2). No significant difference was observed in net adverse clinical events between the two groups (4.1% vs. 4.7%, log-rank test, \(p = 0.350 \)) (Table 2, Fig. 2C).

After propensity score matching, no significant difference was observed in bleeding events between the two groups (4.0% vs. 3.2%, log-rank test, \(p = 0.332 \)) (Table 2, Fig. 2E). Moreover, no significant differences were observed in the rates of major and minor bleeding events between the ticagrelor and clopidogrel groups (Table 2). The incidence of net adverse clinical events in the ticagrelor group was lower compared with that in the clopidogrel group (4.1% vs. 6.0%, log-rank test, \(p = 0.036 \)) (Table 2, Fig. 2F). On multivariate Cox regression analysis, the independent predictors of bleeding events include radial artery access (HR = 0.35, 95% CI 0.12–0.65, \(p = 0.002 \)), stroke (HR = 1.73, 95% CI 1.25–2.37, \(p = 0.030 \)), and weight <60kg (HR = 2.57, 95% CI 1.39–3.89, \(p = 0.021 \)) (Fig. 3B).

Discussion

We sought to compare the efficacy and safety of using ticagrelor vs. clopidogrel in patients with SCAD. The main finding of this study is that the use of ticagrelor was associated with reduced ischemic risk and similar bleeding risk compared with the use of clopidogrel at 1-year follow-up. Patients discharged on ticagrelor had lower incidences of all-cause death, cardiovascular death, and net adverse clinical events, as well as similar rates of TIMI major or minor bleeding events.

Ticagrelor is a direct oral P2Y12 receptor antagonist that is used to prevent atherosclerotic thrombosis.
in patients with ACS. The efficacy and safety of ticagrelor in patients with ACS were investigated in the PLATO trial. Ticagrelor, in combination with aspirin, reduced the incidence of the composite of death from vascular causes, MI, or stroke compared with clopidogrel plus aspirin. No significant differences were observed in the incidence of major bleeding between the ticagrelor group and the clopidogrel group. Previous studies have compared the efficacy and safety of ticagrelor vs. clopidogrel in patients with ACS, AMI, STEMI, NSTEMI, and NSTE-ACS. However, there is currently no study comparing the efficacy and safety of ticagrelor vs. clopidogrel in patients with SCAD undergoing PCI. Until now, this is the first real-world study that comprehensively evaluated the efficacy and safety of ticagrelor in patients with SCAD at 1-year follow-up.

Ticagrelor is a reversible and direct-acting oral antagonist of P2Y12 inhibitors, providing greater, faster, and more consistent P2Y12 inhibition than clopidogrel. In the multicenter, randomized, double-blind ONSET/OFFSET study, patients with SCAD were randomized into the ticagrelor group and the clopidogrel group. Ticagrelor achieved more rapid and greater platelet inhibition (IPA) than clopidogrel at 0.5, 1, 2, 4, 8, and 24 h after loading and at 6 weeks (p < 0.0001). This inhibitory effect persists in the maintenance phase and was faster in offset after drug discontinuation (–1.04 vs. –0.48, p < 0.0001). In the RESPOND study, the antiplatelet effect of ticagrelor was similar in patients who were responsive vs. nonresponsive to clopidogrel. Other pharmacokinetic and pharmacodynamic studies have demonstrated that ticagrelor has a faster onset and greater IPA than clopidogrel.

Some studies showed that ticagrelor was associated with an increased risk of bleeding events compared with clopidogrel in patients with AMI, NSTEMI, and ACS. However, the PLATO study and other studies revealed that ticagrelor did not increase the bleeding risk compared with clopidogrel in patients with ACS, NSTE-ACS, and STEMI. Presently, the safety of ticagrelor in patients with different types of coronary artery disease undergoing PCI is controversial. However, this study was not a randomized study; thus, selection bias may affect the results in a meaningful way. In addition, some factors such as all Chinese patients with SCAD, age younger than those in other studies regarding ticagrelor, lower proportion of patients with chronic kidney disease, and weight less than 60 kg may be the reasons why the bleeding events were not higher in the ticagrelor group than in the clopidogrel group in our study.

Our study was based on Chinese patients with SCAD, but our results may be applied to East Asian patients. East Asians have unique characteristics: thrombogenicity, the inhibition of platelet P2Y12-receptor, and the tendency to have bleeding complications. It is well known that East Asians share a common genetic homogeneity. In addition, previous pharmacokinetic studies have shown that the levels of active metabolites for ticagrelor and prasugrel in East Asians are similar. Therefore, our findings may be generalized to East Asian patients.

Although there is no randomized clinical trial comparing the efficacy and safety of ticagrelor or prasugrel with clopidogrel in the treatment of patients with SCAD, when clopidogrel is inadequate or when the risk of ischemia increases significantly, ticagrelor or prasugrel can be used in selected patients with stable coronary artery disease (class of recommendation, IIb; level of evidence, C). Aggregometry studies have shown that prasugrel and ticagrelor have stronger antiplatelet effects than clopidogrel; however, the net clinical benefits of these new antiplatelet drugs in patients with SCAD (which may reduce ischemic events but not significantly increase bleeding) have not yet been confirmed. In addition, ticagrelor is used in patients with SCAD who receive PCI, and its use is increasing, especially in high-risk diabetic patients or in complex coronary artery disease. This real-world study will provide important insight into the efficacy and safety of ticagrelor in patients with SCAD.

Our study has several limitations. First, our study only has a small sample size and a short follow-up time; therefore, a larger and high-quality randomized controlled trial with longer follow-up periods to validate our findings is needed. Second, this was a nonrandomized study, which may lead to selection bias. Third, although we conducted a propensity matching analysis, unmeasured factors may still exist, and the possible effects of unmeasured residual confounding factors cannot be ruled out. Fourth, medication side effects during clinical follow-up were not evaluated. Finally, patients usually receive DAPT for at least 12 months after PCI, but the duration of DAPT for patients with SCAD became shorter in recent ESC, AHA, and JCS guidelines. Thus, shorter duration of DAPT may change our results. The optimal duration of DAPT in patients with SCAD who underwent PCI with DES is uncertain, and the optimal duration of DAPT needs to be proven by a large randomized controlled trial in the future.

Conclusion

Compared with clopidogrel, the use of ticagrelor...
in patients with SCAD undergoing PCI was associated with a lower incidence of MACCEs without an increased incidence of bleeding events. The results of our study warrant further investigations on the optimal use of ticagrelor in patients with SCAD undergoing PCI.

Funding Source

This study was supported by the Department of Pharmaceutical Affairs, National Health Commission (No. 2018–WJY01).

Conflicts of Interest

The authors have no conflicts of interest to declare.

References

1) Paarup Dridi N, Johansson PI, Lønborg JT, Clemmensen P, Radu MD, Qayyum A, Pedersen F, Kollsild R, Helqvist S, Saunamäki K, Kelbæk H, Jørgensen E, Engstrøm T, Holmvang L. Tailored antiplatelet therapy to improve prognosis in patients exhibiting clopidogrel low-response prior to percutaneous coronary intervention for stable angina or non-ST elevation acute coronary syndrome. Platelets, 2015; 26: 521-529
2) Patrono C, Baigent C, Hirsh J, Roth G. Antiplatelet drugs: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest, 2008; 133: 199S-233S
3) Kuličzkowski W, Witkowski A, Polonski L, Watala C, Filipiak K, Budaj A, Golanski J, Siktiewicz D, Pregowski J, Gorski J, Zembala M, Opolski G, Huber K, Arnesen H, Kristensen SD, De Caterina R. Interindividual variability in the response to oral antiplatelet drugs: a position paper of the Working Group on antiplatelet drugs resistance appointed by the Section of Cardiovascular Interventions of the Polish Cardiac Society, endorsed by the Working Group on Thrombosis of the European Society of Cardiology. Eur Heart J, 2009; 30: 426-435
4) Hochholzer W, Trenk D, Bestehorn HP, Fischer B, Valina CM, Ferenc M, Gick M, Caputo A, Büttner HJ, Neumann FJ. Impact of the degree of peri-interventional platelet inhibition after loading with clopidogrel on early clinical outcome of elective coronary stent placement. J Am Coll Cardiol, 2006; 48: 1742-1750
5) Sibbing D, Morath T, Braun S, Stegherr J, Mehilli J, Vogt W, Schömig A, Kastrati A, von Beckerath N. Clopidogrel response status assessed with Multiplate point-of-care analysis and the incidence and timing of stent thrombosis over six months following coronary stenting. Thromb Haemost, 2010; 103: 151-159
6) Clemmensen P, Dridi NP, Holmvang L. Dual antiplatelet therapy with prasugrel or ticagrelor versus clopidogrel in interventional cardiology. Cardiovasc Drugs Ther, 2013; 27: 239-245
7) Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H, Mahaffey KW, Scirica BM, Skene A, Steg PG, Storey RF, Harrington RA; PLATO Investigators, Freij A, Thorsén M. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med, 2009; 361: 1045-1057
8) Dansette PM, Rosi J, Bertho G, Mansuy D. Cytochromes P450 catalyze both steps of the major pathway of clopidogrel bioactivation, whereas paraoxonase catalyzes the formation of a minor thiol metabolite isomer. Chem Res Toxicol, 2012; 25: 348-356
9) van Giesen JJ, Nilsson L, Berntsson P, Wising BM, Gior danetto F, Tomlinson W, Greasley P. Ticagrelor binds to human P2Y12 independently from ADP but antagonizes ADP-induced receptor signaling and platelet aggregation. J Thromb Haemost, 2009; 7: 1556-1565
10) Cannon CP, Harrington RA, James S, Ardissino D, Becker RC, Emanuelsson H, Husted S, Katus H, Keltai M, Khurmi NS, Konyny F, Lewis BS, Steg PG, Storey RF, Woydyla D, Wallentin L; PLATElet inhibition and patient Outcomes Investigators. Comparison of ticagrelor with clopidogrel in patients with a planned invasive strategy for acute coronary syndromes (PLATO): a randomised double-blind study. Lancet, 2010; 375: 283-293
11) Kang J, Han JK, Ahn Y, Chae SC, Kim YJ, Chae IH, Hur SH, Seong IW, Chae JK, Cho MC, Seung KB, Jeong MH, Yang HM, Park KW, Kang HJ, Koo BK, Kim HS; investigators for Korea Acute Myocardial Infarction Registry-National Institute of Health (KAMIR-NIH). Third-Generation P2Y12 Inhibitors in East Asian Acute Myocardial Infarction Patients: A Nationwide Prospective Multicentre Study. Thromb Haemost, 2018; 118: 591-600
12) Velders MA, Abatan J, Angiolillo DJ, Ardissino D, Harrington RA, Hellkamp A, Himmelmann A, Husted S, Katus HA, Meier B, Schulte PJ, Storey RF, Wallentin L, Gabriel Steg P, James SK; PLATO Investigators. Safety and efficacy of ticagrelor and clopidogrel in primary percutaneous coronary intervention. Heart, 2016; 102: 617-625
13) Sim DS, Jeong MH, Kim HS, Gwon HC, Seung KB, Rha SW, Chae SC, Kim CJ, Cha KS, Park JS, Yoon JH, Chae JK, Joo SJ, Choi DJ, Hur SH, Seong IW, Cho MC, Kim DI, Oh SK, Ahn TH, Hwang TJY; KAMIR-NIH Registry Investigators. Association of potent P2Y12 blockers with ischemic and bleeding outcomes in non-ST-segment elevation myocardial infarction. J Cardiol, 2019; 73: 142-150
14) Pollack CV Jr, Davoudi F, Diercks DB, Becker RC, James S, Mahaffey KW, Scirica BM, Skene A, Steg PG, Storey RF, Himmelmann A, Wallentin L, Cannon CP; PLATO Investigators. Relative efficacy and safety of ticagrelor vs clopidogrel as a function of time to invasive management in non-ST-segment elevation acute coronary syndrome in the PLATO trial. Clin Cardiol, 2017; 40: 390-398
15) Kristian Thygesen, Joseph S Alpert, Harvey D White, Joint ESC/ACC/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal Definition of Myocardial Infarction. Eur Heart J, 2007; 28: 2525-2538
16) Cutlip DE, Windecker S, Mehran R, Boam A, Cohen DJ,
van Es GA, Steg PG, Morel MA, Mauri L, Vanckx P, McFadden E, Lansky A, Hamon M, Krucoff MW, Serruys PW; Academic Research Consortium. Clinical endpoints in coronary stent trials: a case for standardized definitions. Circulation, 2007; 115: 2344-2351.

17) Rao AK, Pratt C, Berke A, Jaffe A, Ockene I, Schreiber TL, Bell WR, Knatterud G, Robertson TL, Terrin ML. Thrombolysis in Myocardial Infarction (TIMI) Trial--phase I: hemorrhagic manifestations and changes in plasma fibrinogen and the fibrinolytic system in patients treated with recombinant tissue plasminogen activator and streptokinase. J Am Coll Cardiol, 1988; 11: 1-11.

18) James S, Akerblom A, Cannon CP, Emanuelsson H, Husted S, Katus H, Skene A, Steg PG, Storey RF, Harrington R, Becker R, Wallentin L. Comparison of ticagrelor, the first reversible oral P2Y(12) receptor antagonist, with clopidogrel in patients with acute coronary syndromes: rationale, design, and baseline characteristics of the PLATElet inhibition and patient Outcomes (PLATO) trial. Am Heart J, 2009; 157: 599-605.

19) Tapp L, Shantsila E, Lip GY. Role of ticagrelor in clopidogrel nonresponders: resistance is futile? Circulation, 2010; 121: 1169-1171.

20) van Giezen JJ, Sidaway J, Glaves P, Kirk I, Björkman JA. Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J Cardiovasc Pharmacol Ther, 2012; 17: 164-172.

21) Gurbel PA, Bleden KP, Butler K, Tantry US, Gesheff T, Wei C, Teng R, Antonino MJ, Patil SB, Karunakaran A, Kereiakes DJ, Parris C, Purdy D, Wilson V, Ledley GS, Storey RF. Randomized double-blind assessment of the ONSET and OFFSET of the antiplatelet effects of ticagrelor versus clopidogrel in patients with stable coronary artery disease: the ONSET/OFFSET study. Circulation, 2009; 120: 2577-2585.

22) Gurbel PA, Bleden KP, Antonino M, Antonino MJ, Wei C, Teng R, Rasmussen L, Storey RF, Nielsen T, Eikelboom JW, Sabe-Affaki G, Husted S, Kereiakes DJ, Henderson D, Patel DV, Tantry US. Response to ticagrelor in clopidogrel nonresponders and responders and effect of switching therapies: the RESPONSE study. Circulation, 2010; 121: 1188-1199.

23) Husted SE, Storey RF, Bleden K, Tantry US, Hoimark L, Butler K, Wei C, Teng R, Gurbel PA. Pharmacokinetics and pharmacodynamics of ticagrelor in patients with stable coronary artery disease: results from the ONSET-OFFSET and RANDOMIZE study. Clin Pharmacokinet, 2012; 51: 397-409.

24) Price MJ, Clavijo L, Angiolillo DJ, Carlson G, Caplan R, Teng R, Maya J. A randomised trial of the pharmacodynamic and pharmacokinetic effects of ticagrelor compared with clopidogrel in Hispanic patients with stable coronary artery disease. J Thromb Thrombolysis, 2015; 39: 8-14.

25) Li H, Guo J, Carlson GF, Teng R. Pharmacodynamics, pharmacokinetics, and safety of ticagrelor in Chinese patients with stable coronary artery disease. Br J Clin Pharmacol, 2016; 82: 352-361.

26) He M, Liu B, Sun D, Pan Y, Zheng W, Shi J, Zhao S, Dong X, Lu S, Li M, Han Y, Li Y. One-quarter standard-dose ticagrelor better than standard-dose clopidogrel in Chinese patients with stable coronary artery disease: A randomized, single-blind, crossover clinical study. Int J Cardiol, 2016; 215: 209-213.

27) Åstrand M, Amilon C, Röshammar D, Himmelmann A, Angiolillo DJ, Storey RF, Gurbel PA, Bonaca MP, Hamrén B. Pharmacokinetic-pharmacodynamic modelling of platelet response to ticagrelor in stable coronary artery disease and prior myocardial infarction patients. Br J Clin Pharmacol, 2019; 85: 413-421.

28) Keun-Ho Park, Myung Ho Jeong, Youngkeun Ahn, Tae Hoon Ahn, Ki Bae Seong, Dong Joo Oh, Dong-Joo Choi, Hyo-Soo Kim, Hyeon Cheol Gwon, In Whan Seong, Kyung Kuk Hwang, Shung Chull Chae, Kwon-Bae Kim, Young Jo Kim, Kwang Soo Cha, Seok Kyu Oh, Jae Keon Chae, KAMIR-NIH registry investigators. Comparison of Short-Term Clinical Outcomes Between Ticagrelor Versus Clopidogrel in Patients With Acute Myocardial Infarction Undergoing Successful Revascularization; From Korea Acute Myocardial Infarction Registry-National Institute of Health. Int J Cardiol, 2016; 215: 193-200.

29) Anders Sahlen, Christoph Varenhorst, Bo Lagerqvist, Henrik Renlund, Elmir Omerovic, David Erlinge, Lars Wallentin, Stefan K James, Tomas Jernberg. Outcomes in Patients Treated With Ticagrelor or Clopidogrel After Acute Myocardial Infarction: Experiences From SWEDHEART Registry. Eur Heart J, 2016; 37: 3335-3342.

30) Goto S, Huang CH, Park SJ, Emanuelsson H, Kimura T. Ticagrelor vs. clopidogrel in Japanese, Korean and Taiwanese patients with acute coronary syndrome – randomized, double-blind, phase III PHILO study. Circ J, 2015; 79: 2452-2460.

31) Jeong Cheon Choe, Kwang Soo Cha, Jinhee Ahn, Jin Sup Park, Hye Won Lee, Jun-Hyok Oh, Jung Hyun Choi, Han Cheol Lee, Taek Jong Hong, Myung Ho Jeong, Korea Acute Myocardial Infarction Registry–National Institutes of Health Investigators. Comparison of Prescription Rates and Clinical Outcomes in Acute Coronary Syndrome Patients Who Underwent Percutaneous Coronary Intervention Using Different P2Y 12 Inhibitors in a Large Observational Study. Int J Cardiol, 2019; 274: 21-26.

32) Hyun-Jae Kang, Robert M Clare, Runlin Gao, Claes Held, Anders Himmelmann, Stefan K James, Soo Teik Lim, Anwar Santosoo, Cheuk-Man Yu, Lars Wallentin, Richard C Becker, PLATO Investigators. Ticagrelor Versus Clopidogrel in Asian Patients With Acute Coronary Syndrome: A Retrospective Analysis From the Platelet Inhibition and Patient Outcomes (PLATO) Trial. Am Heart J, 2015; 169: 899-905.

33) Jessica Ristorto, Nathan Messas, Benjamin Marchandot, Marion Kibler, Sébastien Hess, Nicolas Meyer, Michael Schaeffer, Nicolas Tuzin, Patrick Ohlmann, Laurence Jesel, Olivier Morel. Antiplatelet Therapy in ACS Patients: Comparing Appropriate P2Y12 Inhibition by Clopidogrel to the Use of New P2Y12 Inhibitors. J Atheroscler Thromb, 2018; 25: 674-689.

34) Xiuying Tang, Runjun Li, Quanmin Jing, Qingsheng Wang, Peng Liu, Peidong Zhang, Yingfeng Liu. Assessment of Ticagrelor Versus Clopidogrel Treatment in Patients With ST-elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. J Cardiovasc Pharmacol, 2016; 68: 115-120.
Banzhoff N, Erol C, Frank H, Funck-Brentano C, Gaemperli O, Gonzalez-Juanatey JR, Hamilos M, Hasdai D, Husted S, James SK, Kervinen K, Kolh P, Kristensen SD, Lancellotti P, Maggioni AP, Piepoli MF, Pries AR, Romeo F, Rydén L, Simoons ML, Sirnes PA, Steg PG, Timmis A, Wijns W, Windecker S, Yildirim A, Zamorano JL. ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J, 2013; 34: 2949-3003

Nusca A, Patti G, Di Sciascio G. Influence of platelet reactivity on clinical outcome of patients with stable coronary artery disease. J Cardiovasc Transl Res, 2013; 6: 346-354

Piqueras-Flores J, Jurado-Román A, López-Lluva MT, Sánchez-Pérez I, Abellán-Huerta M, Lozano-Ruiz Poveda F. Efficacy and Safety of Loading Doses With P2Y12-Receptor Antagonists in Patients Without Dual Antiplatelet Therapy Undergoing Elective Coronary Intervention. J Cardiovasc Pharmacol, 2019; 73: 56-59

Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, Prescott E, Storey RF, Deaton C, Cuisset T, Agewall S, Dickstein K, Edvardsen T, Escaned J, Gersh BJ, Svitil P, Gilard M, Hasdai D, Hatala R, Mahfoud F, Masip J, Muneretto C, Valgimigli M, Achenbach S, Bax JJ; ESC Scientific Document Group. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J, 2020; 41: 407-477

Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, Granger CB, Lange RA, Mack MJ, Mauri L, Mehran R, Mukherjee D, Newby LK, O’Gara PT, Sabatine MS, Smith PK, Smith SC Jr. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol, 2016; 68: 1082-1115

Masato Nakamura, Kazuo Kimura, Takeshi Kimura, Masaharu Ishihara, Fumiyuki Otsuka, Ken Kozuma, Masami Kosuge, Toshio Shinke, Yoshihisa Nakagawa, Masahiro Natsuaki, Satoshi Yasuda, Takashi Akasaka, Shun Kohsaka, Kazuo Haze, Atsushi Hirayama. JCS 2020 Guideline Focused Update on Antithrombotic Therapy in Patients With Coronary Artery Disease. Circ J, 2020; 84: 831-865