Apolipoprotein E polymorphism is associated with lower extremity deep venous thrombosis: color-flow Doppler ultrasound evaluation

ShuangLi Zhu1,2, ZhiGang Wang1*, XiaoPing Wu3, Yan Shu3 and DunXiang Lu2

Abstract

Introduction: Apolipoprotein E (apoE) is a member of apolipoprotein family, and its gene polymorphisms seem to have some impact among patients with cardiovascular disease. However, its role in the lower extremity deep venous thrombosis (LEDVT) has not been well studied. The objective of this study was to investigate the potential association between APOE gene polymorphisms and LEDVT.

Materials and methods: A hospital-based case–control study was conducted in 300 patients with LEDVT by color-flow Doppler ultrasound and 300 age- and gender-matched healthy controls. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay was applied to assess the APOE gene polymorphisms.

Results: Patients with LEDVT had a significantly higher frequency of APOE E3/E4 genotype [odds ratio (OR) = 1.48, 95% confidence interval (CI) = 1.05, 2.10; P = 0.03] than healthy controls. When stratifying by family history of LEDVT, it was found that patients with positive family history of LEDVT had a significantly higher frequency of APOE E3/E4 genotype (OR = 1.68, 95% CI = 1.04, 0.95; P = 2.70). When stratifying by smoking status, presence of varicose veins, type 2 diabetes mellitus and any hormone administration before, no significant differences were found in any groups.

Conclusion: Our study suggested that APOE E3/E4 genotype was associated with a higher LEDVT risk. Additional studies are needed to confirm this finding.

Keywords: Apolipoprotein E, Gene polymorphism, Lower extremity deep venous thrombosis, Case–control study

Introduction

The lower extremity deep venous thrombosis (LEDVT) and its complications remain a finding of high incidence in hospitalized patients [1]. The use of color-flow Doppler ultrasound has achieved a higher accuracy in diagnosis of LEDVT than clinical examination alone [1,2]. The advantages of color-flow Doppler ultrasound have also provided conditions to restart investigations concerning the incidence of bilateral LEDVT in patients with a single symptomatic limb [1,3]. LEDVT is a multifactorial medical problem with genetic and acquired risk factors playing in concert in its pathogenesis [4-8]. Strong genetic factors have been implicated in the aetiology of LEDVT [9,10].

Apolipoprotein E (apoE) is a member of apolipoprotein family. APOE gene, located on the long arm of chromosome 19, codes for a 299-amino acid protein (apoE). ApoE is a polymorphic glycoprotein involved in cholesterol transport and cell membrane maintenance and repair [11,12]. APOE exists in three common allelic forms: E2, E3, and E4, giving six possible genotypes (E2/E2, E2/E3, E2/E4, E3/E3, E3/E4 and E4/E4) [13-15]. APOE gene polymorphisms seem to have some impact among patients with cardiovascular disease [16-18].

Recently, a few studies with different results were performed to investigate the association between APOE gene polymorphisms and DVT [19,20]. However, its role in the LEDVT has not been well studied. The objective of this study was to investigate the potential association between APOE gene polymorphisms and LEDVT.
Materials and methods

Study population
A hospital-based case–control study was conducted in 300 patients with LEDVT and 300 age- and gender-matched healthy controls during the years 2010 to 2013 from the institute of ultrasound imaging in the second affiliated hospital of Chongqing Medical University, China. The diagnosis of LEDVT was made by combining the results of color-flow Doppler ultrasound, D-dimer levels, and phlebography. To confirm the diagnosis, two physicians reviewed the hospital records and validated each case. The healthy control subjects were matched with the patients for age and sex. Healthy control subjects were recruited from the Second Affiliated Hospital of Chongqing Medical University where they were attending a clinic for routine examination. The Ethical Committee of the Second Affiliated Hospital of Chongqing Medical University approved the study protocols, and all participants gave written informed consent according to the Declaration of Helsinki.

DNA extraction and genotyping
The commercially available Qiagen kit (QIAGEN Inc., Valencia, CA, USA) was used to extract DNA from peripheral blood leukocytes. Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) assay was applied to assess the APOE gene polymorphisms. Based on the GenBank reference sequence, the PCR primers were as follows: sense, ACAGAAATTCGCCCCGGCTGTCCA GTACAC; antisense, TAAGCTTGGACGCACGGCTGTCCA AGGA. The amplified DNA was digested with Hha I at 37°C for 2 hours, and analyzed by 6% polyacrylamide gel electrophoresis (PAGE). For quality control, all genotyping personnel were blinded to clinical and imaging data.

Statistical analysis
The allele and genotype frequencies of APOE gene in patients were compared to controls by Chi-square test. The P value of statistical significance was adjusted by Fisher’s exact test where appropriate. We applied multivariate logistic regression to calculate crude and adjusted odds ratios (OR) and 95% confidence intervals (CI) for the association between the APOE genotypes and LEDVT risk. The Hardy–Weinberg equilibrium was tested for goodness-of-fit chi-square test with one degree of freedom to compare the observed genotype frequencies among the subjects with the expected genotype frequencies. A Pvalue was considered significant at a level of <0.05. All analyses were performed with Stata software (College Park, Tex.).

Results
The demographical and clinical features of the participants were showed in Table 1. The mean age was 51.7 ± 10.7 years for the LEDVT cases and 52.0 ± 11.9 years for the controls. The 63.3% participants were male for the LEDVT cases and 61.7% for the controls. No significant differences were found between the patients and the controls in gender, age, smoking status, presence of varicose veins, type 2 diabetes mellitus and any hormone administration before (Table 1).

Patients with LEDVT had a significantly higher frequency of APOE E3/E4 genotype (OR = 1.48, 95% CI = 1.05, 2.10; P = 0.03) than healthy controls (Table 2). When stratifying by family history of LEDVT, it was found that patients with positive family history of LEDVT had a significantly higher frequency of APOE E3/E4 genotype (OR = 1.68, 95% CI = 1.04, 0.95; P = 2.70) (Table 3). When stratifying by smoking status, presence of varicose veins, type 2 diabetes mellitus and any hormone administration before, no significant differences were found in any groups (Table 3).

Discussion
Many studies have been performed to investigate an association of genetic polymorphism and DVT. A case–control study found that subjects carrying endothelial

| Table 1 The demographical and clinical features of the participants |
|-------------------|---|---|---|
| | LEDVT | HC | P |
| Total no. | 300 | 300 | |
| Gender (Male/female)| 190/110 | 185/115 | 0.67 |
| Age (Year) | 51.7 ± 10.7 | 52.0 ± 11.9 | 0.75 |
| Smoking status (Ever/never) | 122/178 | 116/184 | 0.62 |
| Presence of varicose veins (YES/NO) | 72/228 | 55/245 | 0.09 |
| Type 2 diabetes mellitus (YES/NO) | 25/275 | 14/286 | 0.07 |
| Any hormone administration before (YES/NO) | 30/270 | 18/282 | 0.07 |
| Family history of LEDVT (Positive/negative) | 58/242 | - | - |

| Table 2 Frequencies of APOE gene polymorphisms in LEDVT and HC groups |
|-------------------|---|---|---|
| Genotype | LEDVT n (%) | HC n (%) | OR (95% CI) | P |
| E2/E2 | 3(1.0) | 2(0.7) | 1.51(0.25,9.07) | 0.66 |
| E2/E3 | 1(0.3) | 2(0.7) | 0.50(0.05,5.53) | 0.57 |
| E2/E4 | 1(0.3) | 2(0.7) | 0.50(0.05,5.53) | 0.57 |
| E3/E3 | 185(61.7) | 206(68.7) | 0.73(0.52,1.03) | 0.07 |
| E3/E4 | 105(35.0) | 80(26.6) | 1.48(1.05,2.10) | 0.03 |
| E4/E4 | 5(1.7) | 8(2.6) | 0.62(0.20,1.91) | 0.40 |
| E2 allele frequency | 8(1.3) | 8(1.3) | 1.00(0.37,2.68) | 1.00 |
| E3 allele frequency | 476(79.3) | 494(82.3) | 0.82(0.62,1.10) | 0.19 |
| E4 allele frequency | 116(19.3) | 98(16.3) | 1.23(0.91,1.65) | 0.18 |

LEDVT, lower extremity deep venous thrombosis; HC, healthy control; OR, odds ratio; CI, confidence interval.
protein C receptor (EPCR) gene 6936AG genotype likely had an increased risk of DVT [21]. The 20210A allele of the prothrombin gene was a common risk factor among Swedish outpatients with verified DVT [22]. A case control study found an excess of rare coding single-nucleotide variants of the ADAMTS13 gene in patients with DVT [22]. A case control study suggested that tumor necrosis factor –alpha (TNF-alpha) -308A allele was associated with the severity of coronary artery disease [34]. The E2 allele of the APOE gene polymorphism was predictive for obesity status in Roma minority population of Croatia [35]. A meta-analysis included 29 studies involving 2,737 CI cases and 2,689 controls suggested that APOE E4 allele was a risk factor of gallbladder stone disease, especially in elder people and Chinese population [44].
Some limitations of this study should be noted. First of all, this is a hospital-based case control study, so the selection bias cannot be avoided and the subjects may not be representative of the general population. Second, the sample size of this study is relatively small, which may not have enough statistical power to explore the real association. Third, these results should be interpreted with caution because the population was only from China, which reduces the possibility of confounding from ethnicity, so it does not permit extrapolation of the results to other ethnic groups.

Conclusion

In conclusion, our study suggested that APOE E3/E4 genotype was associated with a higher LEDVT risk. When stratifying by family history of LEDVT, it was found that patients with positive family history of LEDVT had a significantly higher frequency of APOE E3/E4 genotype. Additional studies are needed to confirm this finding.

Competing interest

The authors declare that they have no competing interests.

Authors’ contributions

SLZ and ZGW carried out the molecular genetic studies and drafted the manuscript. XPW and YS carried out the genotyping. YS, DXL participated in the design of the study and performed the statistical analysis. SLZ, ZGW conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Drs. Yong-Zhou for providing helpful information.

Author details

1Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, 76 Riverside Road, Yuzhong District, Chongqing 400010, P. R. China. 2Institute of Ultrasound Imaging, Mentougou Hospital, Beijing 102300, P. R. China. 3Institute of Ultrasound Imaging, The First Affiliated Hospital of Inner Mongolia Medical University, Huhhot 010059, China.

Received: 24 December 2013 Accepted: 9 January 2014

Published: 24 January 2014

References

1. Casella IB, Bosch MA, Sábbag CR. Incidence and risk factors for bilateral deep venous thrombosis of the lower limbs. Angiology 2009; 60:99–103.
2. Habetscheid W, Hohmann M, Wilhelm T, Epping J. Real-time ultrasound in the diagnosis of acute deep venous thrombosis of the lower extremity. Angiology 1990; 41:599–608.
3. Archie JP Jr, McDaniel DN, Dean VH, Jester JE, Hall DC. Doppler ultrasound evaluation for lower extremity deep venous thrombosis in a community hospital. N C Med J 1989; 50:457–460.
4. Rosendaal FR. Risk factors for venous thrombotic disease. Thromb Haemost 1999; 82:610–619.
5. Muller-Buhl U, Leutgeb R, Engeser P, Achankegn EN, Szeczyfi J, Laux G. Varicose veins are a risk factor for deep venous thrombosis in general practice patients. Vasa 2012; 41:360–365.
6. Chandrakasan S, Sood S, Harn S, Moltz K, Frey MJ, Rajpurkar M. Risk factors and management of deep venous thrombosis in children following post-surgical hypopituitarism in craniopharyngioma. Pediatr Blood Cancer 2011; 57:175–177.
7. Niki Y, Matsumoto H, Hakoizuki A, Mochizuki T, Momohara S. Rheumatoid arthritis: a risk factor for deep venous thrombosis after total knee arthroplasty? Comparative study with osteoarthritis. J Orthop Sci 2010; 15:57–63.
8. Koopman K, Uyttenboogaart M, Vroemen PC, van der Meer J, De Keyser J, Luijckx GJ. Risk factors for cerebral venous thrombosis and deep venous thrombosis in patients aged between 15 and 50 years. Thromb Haemost 2009; 102:620–622.
9. Vanga EA, Kajovic JL. Management of inherited thrombophilia: guide for genetics professionals. Clin Genet 2012; 81:7–17.
10. Rosendaal FR, Retimo PH. Genetics of venous thrombosis. J Thromb Haemost 2009, 7(Suppl 1):301–304.
11. Mahley RW: Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988, 240:622–630.
12. Poinier J. Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 1994, 17:525–530.
13. Mahfouz RA, Sabbagh AS, Zahed LF, Mahfoud ZR, Kaimone RF, Otrock ZK, Taher AT, Zaatari GS. Apolipoprotein E gene polymorphism and allele frequencies in the Lebanese population. Mol Biol Rep 2006, 33:145–149.
14. Laskowdit W, Horsburgh K, Rose DJ, Apolipoprotein E and the CNS response to injury. J Cereb Blood Flow Metab 1998, 18:465–471.
15. Boulenouar H, Bencherkor SM, Meroufel DN, Hetaif SA, Djebliou HO, Hermant X, Grenier-Botley M, Medjajou IH, Nehtor NG, Amouyel P, et al. Impact of APOE gene polymorphisms on the lipid profile in an Algerian population. Lipids Health Dis 2013; 12:155.
16. Eichner JE, Dunn ST, Perveen G, Thompson DW, Stewart KE, Stroehla BC. Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 2002, 155:487–495.
17. Loktionov A, Vorster H, Oosthuizen MS, van der Walt HJ, Cummings JH. Apolipoprotein E and methyleneetrahydrofolate reductase genetic polymorphisms in relation to other risk factors for cardiovascular disease in UK Caucasians and Black South Africans. Atherosclerosis 1999, 145:125–135.
18. Smalinskaie A, Petkeviene J, Lukseide N, Jurieniene K, Lumbskienje I, Lesauskaite V. Association between APOE, SCARB1, PPARalpha polymorphisms and serum lipids in a population of Lithuanian adults. Lipids Health Dis 2013, 12:120.
19. Nagato LC, de Souza Pinhel MA, de Godoy JM, Souza DR. Association of ApoE genetic polymorphisms with proximal deep venous thrombosis. J Thromb Thrombolysis 2012, 33:116–119.
20. Katrancioglu N, Manduz S, Cenli F, Yilmaz MB, Atahan E, Ozdemir O, Berkan O. Association between ApoE4 allele and deep vein thrombosis: a pilot study. Clin Appl Thromb Hemost 2011, 17:225–228.
21. Chen XD, Tian L, Li M, Jin W, Zhang HK, Zheng CF. Relationship between endothelial cell protein C receptor gene 6936A/G polymorphisms and deep venous thrombosis. Chin Med J (Engl) 2011, 124:72–75.
22. Hillarp A, Zoller B, Svensson PJ, Dahlbäck B. The 2010 A allele of the prothrombin gene is a common risk factor among Swedish outpatients with verified deep venous thrombosis. Thromb Haemost 1999, 81:990–992.
23. Lotta LA, Tiana G, Yu J, Martinelli I, Wang M, Yu F, Passamonti SM, Pappalardo E, Valsecchi C, Scherer SE, et al. Next-generation sequencing study finds an excess of rare, coding single-nucleotide variants of ADAMTS13 in patients with deep vein thrombosis. J Thromb Haemost 2013, 11:1228–1239.
24. Acquila M, Bocchi MP, Mori PG, Ondino S, Valletto A, Bottini F. A homoyzosity state for 20210A prothrombin variant in a young woman as cause of a deep vein thrombosis during pregnancy. Eur J Haematol 2000, 65:80–81.
25. Akhter MS, Biswas A, Ranjan R, Sharma A, Kumar S, Saxena R. The nitric oxide synthase 3 gene polymorphisms and their association with deep vein thrombosis in Asian Indian patients. Clin Chim Acta 2010, 411:469–652.
26. Van Hylckama VA, Komanian N, Ariens RA, Poort SR, Grant PJ, Bertina RM, Rosendaal FR. Factor XII Val34Leu polymorphism, factor XII antigen levels and activity and the risk of deep venous thrombosis. Br J Haematol 2002, 119:169–175.
27. Austin H, De Staercke C, Lally C, Bezemer ID, Rosendaal FR, Hooper WC. New gene variants associated with venous thrombosis: a replication study in White and Black Americans. J Thromb Haemost 2011, 9:489–495.
28. Ahmad-Nejad P, Demptje CE, Weins C, Bugert P, Borggreve M, Neumaier M. The G534E-polymorphism of the gene encoding the factor VII-activating protease is a risk factor for venous thrombosis and recurrent events. Thromb Res 2012, 130:441–444.
29. Horakova K, Chylkova A, Kolarz M, Bartosova L, Pechacek V, Starostka D, Wrobleva K. Polymorphism G-308A in the promoter of the tumor necrosis factor-alpha gene and its association with the risk of venous thromboembolism. Blood Coagul Fibrinolysis 2012, 23:316–319.
30. Bezemer ID, Bare LA, Arellano AR, Reitsma PH, Rosendaal FR: Updated analysis of gene variants associated with deep vein thrombosis. *JAMA* 2010, 303:421–422.

31. Bouaziz-Borgi L, Nguyen P, Hezard N, Musharrafieh U, Almawi WY, Mahjoub T: A case control study of deep venous thrombosis in relation to factor V G1691A (Leiden) and A4070G (HR2 Haplotype) polymorphisms. *Exp Mol Pathol* 2007, 83:480–483.

32. Nizankowska-Mogilnicka E, Adamek L, Grzanka P, Domagala TB, Sanak M, Krzanowski M, Szczechlik A: Genetic polymorphisms associated with acute pulmonary embolism and deep venous thrombosis. *Eur Respir J* 2003, 21:25–30.

33. Alvim RO, Freitas SR, Ferreira NE, Santos PC, Cunha RS, Mill JG, Krieger JE, Pereira AC: APOE polymorphism is associated with lipid profile, but not with arterial stiffness in the general population. *Lipids Health Dis* 2010, 9:128.

34. Bahri R, Esteban E, Moral P, Hassine M, Ben Hamda K, Chaabani H: Apolipoprotein gene polymorphisms and plasma levels in healthy Tunisians and patients with coronary artery disease. *Lipids Health Dis* 2008, 7:46.

35. Željko HA, Škaric-Juric T, Narančić NS, Tomus Z, Barešić A, Šalihović MP, Starčević B, Jančijević B: E2 allele of the apolipoprotein E gene polymorphism is predictive for obesity status in Roma minority population of Croatia. *Lipids Health Dis* 2011, 10:9.

36. Wang QY, Wang WJ, Wu L, Liu L, Han LZ: Meta-analysis of APOE epsilon2/epsilon3/epsilon4 polymorphism and cerebral infarction. *J Neural Transm* 2013, 120:1479–1489.

37. Stoumpos S, Hamodrakas SJ, Anthopoulos PG, Bagos PG: The association between apolipoprotein E gene polymorphisms and essential hypertension: a meta-analysis of 45 studies including 13,940 cases and 16,364 controls. *J Hum Hypertens* 2013, 27:245–255.

38. Rubino E, Vacca A, Gavone F, De Martino P, Pinesi L, Rainero I: Apolipoprotein E polymorphisms in frontotemporal lobar degeneration: a meta-analysis. *Alzheimers Dement* 2013, 9:706–713.

39. Meng HX, Qi MG, Yi YY, Liu YP: Association between apolipoprotein E gene polymorphism and the risk of recurrent pregnancy loss: a meta-analysis. *J Assist Reprod Genet* 2013, 30:1547–1552.

40. Han Y, Liu T, Lu L: Apolipoprotein E gene polymorphism in psoriasis: a meta-analysis. *Arch Med Res* 2013, 44:46–53.

41. Zhou TB, Qin YH, Xu HL: Association of apoE gene expression and its gene polymorphism with nephrotic syndrome susceptibility: a meta-analysis of experimental and human studies. *Mol Biol Rep* 2012, 39:9347–9354.

42. Yin YW, Zhang YD, Wang JZ, Li BH, Yang QW, Fang CQ, Gao CY, Li JC, Zhang LL: Association between apolipoprotein E gene polymorphism and the risk of multiple sclerosis: a meta-analysis of 6977 subjects. *Gene* 2012, 511:2–17.

43. Yin YW, Li JC, Wang JZ, Li BH, Pi Y, Yang QW, Fang CQ, Gao CY, Zhang LL: Association between apolipoprotein E gene polymorphism and the risk of vascular dementia: a meta-analysis. *Neurosci Lett* 2012, 514:6–11.

44. Xue P, Niu WQ, Jiang ZY, Zheng MPH, Fei J: A meta-analysis of apolipoprotein E gene epsilon2/epsilon3/epsilon4 polymorphism for gallbladder stone disease. *PLoS One* 2012, 7:e49849.

doi:10.1186/1476-511X-13-21
Cite this article as: Zhu et al.: Apolipoprotein E polymorphism is associated with lower extremity deep venous thrombosis: color-flow Doppler ultrasound evaluation. *Lipids in Health and Disease* 2014 13:21.

Submit your next manuscript to *BioMed Central* and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit