Annihilator large-superfluous submodules

M. S. ABBAS
AL-Zahraa University for women, College of Education, Karbala, Republic of Iraq.

Email: mhdsabass@gmail.com

ABSTRACT: In this paper, we investigate certain class of submodules which contains that of superfluous submodules. A submodule W of an R-module M is annihilator large-superfluous, if $\ell_S(V) \neq 0$ implies that $W + V \neq M$ where V is a large in M and $S = \text{End}_R(M)$. Several properties and characterizations of such submodules are consider. For $\alpha \in S$, we study under what conditions the image of α, $\text{Im}(\alpha)$ being annihilator large-superfluous submodule in M. We show that $W_S(M) = \{ \alpha \in S \mid \text{Im}(\alpha) \text{ is annihilator large-superfluous in } M \}$ equal to $\{ \alpha \in S \mid \ell_S(\alpha) \text{ is large-superfluous } \}$ under certain class of projectivity. The sum $E_R(M)$ of all such submodules of M contains $J_e(M)$ and $Z_s(M)$. If M is cyclic, then $E_R(M)$ is the unique largest annihilator large-superfluous in M. MSC (2010): Primary :16010; Secondary :16080.

Keywords: large-superfluous submodules, annihilators, annihilator-superfluous submodules, annihilator large-superfluous submodules.

1. Introduction

Throughout, all rings consider are associative with identity, and modules are unitary right modules. The ring of endomorphism $\text{End}(M)$ is denoted by S,. We abbreviate the Jacobson radical $J(M)$ of M. For simplicity, $N \leq_e M$ (resp. $N \leq_{\max} M$) mean N is a large (resp. maximal) in M. $\ell_S(X)$, (resp. $\gamma_M(\alpha)$) where X is a submodule of M (resp. $\alpha \in S$) represents the left (resp. right) annihilator of X (resp. α) in S (resp. in M).

In the field of modules and rings, the concept of superfluity is very important. A submodule W of M is superfluous ($N \leq_s M$ for short) if $W + A$ is proper in M for all proper submodules A in M. A lot of author’s generalized this concept in the literature. In [1] introduced the notion of superfluity with respect to large submodules. A submodule N of a module M is called large-superfluous ($1 - \text{superfluous}$) in M (denoted by $N \leq_{ls} M$) if for each proper large submodule L of M, $N + L$ is proper in M. In [1], they write $N \ll_e M$. Also, they studied the large Jacobson radical (denoted by $J_e(M)$) as the intersection of all large and
maximal submodules and showed that \(J_e(M) \) is equal to the sum of all large – superfluous submodules in \(M \).

T. Amouzegor-kalati and D. Keskin- Tutuncu [2] consider other type of generalizations. Let \(M \) be a module with \(N \leq M \). \(N \) is called annihilator – superfluous, if \(\ell_S(X) \neq 0 \), then \(N + X \) is proper in \(M \), for all \(X \leq M \). In this case we write \(N \leq_{als} M \). They consider the sum \(A_R(M) \) of all such submodules which includes \(J(M) \) and the left singular submodule \(Z_S(M) \).

This work organized by the above two generalizations of superfluous submodules. We investigate the following. Let \(M \) be an \(R \)-module and \(K \leq M \). We say that \(K \) is annihilator large – superfluous in \(M \), if for each large submodule \(X \) in \(M \) with \(\ell_S(X) \neq 0 \), we have \(K + X \) is proper in \(M \). Obviously, the class of such submodules contains both that of annihilator (resp. large) – superfluous submodules. We prove that under coretractibility or quasi – duality of the modules, annihilator large– superfluous concides with large – superfluous submodules.

Let \(M \) be a semi – projective \(R \)-module and \(\alpha \in S \). Then we prove the following. The submodule \(\text{Im}(\alpha) \) is annihilator large - superfluous in \(M \) if and only if \(\beta\alpha(M) \leq \beta(M) \) for all nonzero \(\beta \in S \) whose kernel is large in \(M \) if and only if \(\ell_S(1 - \alpha s) \cap L_S(M) = 0 \) for all \(s \in S \) if and only if \(\ell_S(1 - s\alpha) \cap L_S(M) = 0 \) for all \(s \in S \) where \(L_S(M) = \{ f \in S | \ker(f) \) is large in \(M \} \). Also we prove that if \(M \) is epiprojective \(R \)-module. Then \(\{ f \in S | \text{Im}(f) \) is annihilator large - superfluous in \(M \} \). Finally we study \(E_R(M) \) which is the sum of all annihilator large – superfluous submodules of an \(R \)-module \(M \).

2. Annihilator large – superfluous submodules.

Definition (2.1). A submodule \(W \) of an \(R \) – module \(M \) is said to be annihilator large - superfluous(for short al- superfluous), if given large submodule \(X \) of \(M \) with \(\ell_S(X) \neq 0 \), then \(W + X \) is proper in \(M \). For this case we write \(W \leq_{als} M \).

The module \(M \) is never al – superfluous in \(M \). In semisimple modules every submodule is al - superfluous, but \(0 \) is the only superfluous submodule. In particular, in \(Z_6 \) as \(Z \)-module, every submodule is al - superfluous, but \(2Z_6 \) is not a-superfluous. It is clear the following implications hold.

\[
\begin{align*}
N \leq M & \quad \text{implies that} \quad \ell_S(X + Y) = 0 \quad \text{for every complement } Y \text{ of } X \text{ in } M.
\end{align*}
\]

In the \(Z \)-module \(Z_{24} \), \(4Z_{24} \) (\(8Z_{24} \) and \(12Z_{24} \)) is large - superfluous in \(Z_{24} \), but not a-superfluous in \(Z_{24} \).

We give a characterization of al – superfluous submodules in the following

Proposition (2.2). For a submodule \(W \) of a module \(M \), the following are equivalent

1. \(N \leq_{als} M \)

2. \(W + X = M \), implies that \(\ell_S(X + Y) = 0 \) for every complement \(Y \) of \(X \) in \(M \).
Proof. (1) → (2) Let Y be a complement of X in M. Then X + Y is large in M. Since W + X + Y = M, then by (1), we have \(\ell_S(X + Y) = 0 \). (2) → (1). Let X be a large submodule in M with W + X = M. Then \(\ell_S(X + Y) = 0 \). But X is large, then Y = 0 and hence \(\ell_S(X) = 0 \).

Directly from the definition, we have

Lemma (2.3). If \(K \leq N \) are submodules of M with \(N \leq_{als} M \), then \(K \leq_{als} M \).

An R-module M is coretractable, if for every proper submodule \(H \) of M satisfies \(\alpha(H) = 0 \) for some \(\alpha (\neq 0) \in S \). equivalently, for every proper large submodule \(H \) of M, there exists a nonzero \(\alpha \) in S with \(\alpha(H) = 0 \) [3]. An R-module M is called quasi-dual, if for every large submodule \(N \) of M we have \(N = \gamma_M(\ell_S(N)) \) [4]

Proposition (2.4). Let M be R-module which satisfies any one of the following

1. M is coretractable
2. M is quasi-dual.

If \(N \) is a submodule of M, then \(N \leq_{ls} M \) if and only if \(N \leq_{als} M \).

Proof. The "only if" part is clear from the definition.

1. Let X be a large submodule of M with \(N + X = M \). Then \(\ell_S(X) = 0 \). But M is coretractable, then X is not proper and hence \(X = M \).
2. Assume \(N + X = M \) where X is large in M. Then \(\ell_S(X) = 0 \). Since M is quasi-dual, then \(X = \gamma_M(\ell_S(X)) \). Thus \(X = M \).

Corollary (2.5). Let N be a submodule of quasi-dual module M. Then \(N \leq_{als} M \) if and only if \(\gamma_M(\ell_S(N)) \leq_{als} M \).

Proof. The "if" part follows from lemma (2.3). Let X be a large submodule of M with \(\gamma_M(\ell_S(N)) + X = M \). Then \(0 = \ell_S(N) \cap \ell_S(X) = \ell_S(N + X) \) and so \(M = N + X \). But \(N \leq_{als} M \), then \(\ell_S(X) = 0 \).

Let M be a right R-module. We set \(Z_S(M) = \{ m \in M \mid \ell_S(m) = \ell_S(mR) \text{ is large - superfluous left ideal in } S \} \)

Proposition (2.6). Let M be an R-module and N a submodule of M. If \(N \leq_{als} M \) and \(m \in Z_S(M) \), then \(N + mR \leq_{als} M \).

Proof. Assume that \(N + mR + X = M \) for some \(X \leq M \). Then \(0 = \ell_S(mR + X) = \ell_S(mR) \cap \ell_S(X) \). Since \(\ell_S(mR) \leq_{ls} S \), then \(\ell_S(X) = 0 \).

Corollary (2.7). Let N be a submodule of an R-module M. If \(N \leq_{ae} M \) and \(Z_S(M) \) is countably generated, then \(N + Z_S(M) \leq_{als} M \).
Proposition (2.8). Let M be a finitely generated R–module with submodules K and N. If $N \leq_{als} M$ and $K \leq_{ls} M$, then $N + K + Z_S(M) \leq_{als} M$.

Proof. Assume that $N + K + Z_S(M) + X = M$ for some large submodule X in M. Then $N + Z_S(M) + X = M$, since $K \leq_{ls} M$. Let $\{m_1, m_2, \ldots, m_n\}$ be a generating set of M. Then $m_i = n_i + z_i + x_i$ for some $n_i \in N$, $z_i \in Z_S(M)$, $x_i \in X$ and $i = 1, 2, \ldots, n$. Thus $M = N + \sum_{i=1}^{n} z_i R + X$. Since $N \leq_{als} M$, then Proposition (2.6), $N + \sum_{i=1}^{n} z_i R \leq_{als} M$ and hence $\ell_S(X) = 0$.

\square

Corollary (2.9). Let M be a finitely generated R-module. If $N \leq_{als} M$, then so is $N + J(M) + Z_S(M)$.

Corollary (2.10). The sum of al–superfluous submodule and l–superfluous submodule is al–superfluous.

Recall that an R-module M is semi-projective if for any given $N \leq M$ and R-epimorphism $f : M \to N$, for any R-homomorphism $g : M \to N$, there exists $h \in S$ such that $fh = g$.

We define $L_S(M)$ be the set of all elements of S whose kernel large in M.

Lemma (2.11). Consider the following assertion for an R – module M and $\alpha \in S$

1. $\text{Im}(\alpha) \leq_{als} M$
2. $\beta \alpha(M) \trianglelefteq \beta(M)$ for all nonzero $\beta \in S$ whose kernel is large in M,
3. $\ell_S(1 - \alpha s) :\ell_S(M) = 0$ for all $s \in S$
4. $\ell_S(1 - \alpha s) :\ell_S(M) = 0$ for all $s \in S$
5. $\ell_S(\alpha - \alpha s) :\ell_S(M) \subseteq \ell_S(\alpha)$ for all $s \in S$.

Then $(1) \to (2) \to (3) \to (4) \to (5).$ And $(5) \to (1)$ if M is semi-projective.

Proof. $(1) \to (2).$ Let $\beta \in \ell_S(M)$ with $\beta \alpha(M) = \beta(M).$ Then for each $m \in M$, there exists $m' \in M$ such that $\beta(m) = \beta \alpha(m').$ This implies that $m - \alpha(m') \notin \gamma_M(\beta)$ and hence $M = \alpha(M) + \gamma_M(\beta)$. Since $\text{Im}(\alpha) \leq_{als} M$, then $\ell_S(\gamma_M(\beta)) = 0$ and hence $\beta = 0$. $(2) \to (3)$. Let $s \in S$ and $\beta \in \ell_S(1 - \alpha s) :\ell_S(M)$. Then $\beta = \beta \alpha s$ and this implies that $M = \beta \alpha s(M) \subseteq \beta \alpha(M).$ Thus $\beta = 0$, by(2) and hence $\ell_S(1 - \alpha s) :\ell_S(M) = 0$. $(3) \to (4)$. Let $\beta \in S$ and $\beta \in \ell_S(1 - \alpha s) :\ell_S(M)$. Then $(1 - \alpha s) = 0$ implies that $\beta s(1 - \alpha s) = \beta s - \alpha s = \beta(1 - \alpha s)s = 0$. Thus $\beta S = 0$, by(3) and so $\beta = \beta \alpha s = 0$. $(4) \to (5)$. Let $s \in S$ and $\beta \in \ell_S(1 - \alpha s) :\ell_S(M)$. Since $\beta \alpha \in L_S(M)$. By (4) $\beta \alpha = 0$ and hence $\beta \in \ell_S(\alpha)$. $(5) \to (1)$. Assume that M is semi-projective and X a large submodule of M with $\text{Im}(\alpha) + X = M$. Let $\beta \in \ell_S(X)$ and $m \in M$. Then there exists $m' \in M$ and $x \in X$ such that $m = \alpha(m') + x$. Now $m = \beta \alpha(m')$ and so $\beta(M) = \beta \alpha(M)$. By semi-projectivity of M, there exists $s \in S$ such that $\beta \alpha s = \beta$ and hence $\beta \alpha s \alpha = \beta \alpha$, so $\beta \in \ell_S(\alpha - \alpha s \alpha) :\ell_S(M)$. By (5) $\beta \alpha = 0$ and hence $\beta = 0$.

Corollary (2.12). The following statements are equivalent for an element k in R

1. $k R \leq_{als} R$
2. $b k R \leq_{als} b K$ for all nonzero $b \in Z_k(R)$
3. For all \(r \in \mathbb{R} \), \(\ell_R(1 - kr) \cap Z_r(R) = 0 \)
4. For all \(r \in \mathbb{R} \), \(\ell_R(1 - rk) \cap Z_r(R) = 0 \)
5. For all \(r \in \mathbb{R}, \ell_R(k - krk) \cap Z_r(R) \subseteq \ell_R(k) \)

Corollary (2.13). The following are equivalent of a right singular ring \(R \) and element \(k \in R \).

1. \(kR \leq_{als} R \)
2. For all \(b (\neq 0) \in R \), \(bkR \supseteq bR \)
3. For all \(r \in \mathbb{R} \), \(\ell_R(1 - kr) = 0 \)
4. For all \(r \in \mathbb{R} \), \(\ell_R(1 - rk) = 0 \)
5. For all \(r \in \mathbb{R}, \ell_R(k - krk) = \ell_R(k) \)

The following Corollary follows (2.13) and Corollary (2.8) in [2]

Corollary (2.14). Let \(R \) be a right singular ring and \(k \in R \). Then \(kR \leq_{als} R \) if and only if \(kR \leq_{als} R \).

Corollary (2.15). Let \(M \) be an \(M \) - injective \(R \)-module and \(\alpha \in S \). Consider the following condition

1. \(\text{Im}(\alpha) \subseteq_{als} M \)
2. \(\beta(M) \supseteq \beta(M) \) for all \(\beta (\neq 0) \in J(S) \)
3. \(\ell_S(1 - \alpha s) \cap J(S) = 0 \) for all \(s \in S \)
4. \(\ell_S(1 - s\alpha) \cap J(S) = 0 \) for all \(s \in S \)
5. \(\ell_S(\alpha - \alpha s) \cap J(S) \leq \ell_S(\alpha) \) for all \(s \in S \).

Then \(1 \) \(\rightarrow\) \(2 \) \(\rightarrow\) \(3 \) \(\rightarrow\) \(4 \) \(\rightarrow\) \(5 \) if \(M \) is semi-projective.

In [2], the authors consider for any module \(M \), the set \(K_S(M) = \{ \alpha \in S \mid \text{Im}(\alpha) \subseteq_{als} M \} \).

We define the set \(W_S(M) = \{ \alpha \in S \mid \text{Im}(\alpha) \subseteq_{als} M \} \). Trivially \(K_S(M) \subseteq W_S(M) \).

Corollary (2.16). Let \(\alpha \in W_S(M) \). Then \(\alpha S \subseteq W_S(M) \). And \(S\alpha \subseteq W_S(M) \) if \(M \) is semi-projective.

Proof. Lemma (2.3) implies that \(\alpha S \subseteq W_S(M) \). Assume that \(M \) is semi-projective and \(s \in S \).

We prove that \(s\alpha \in W_S(M) \). Let \(\beta \in S \). Then by lemma (2.12), \(\ell_S(1 - gs\alpha) \cap L_S(M) = 0 \), since \(\alpha \in W_S(M) \). Again by lemma (2.12), \(s\alpha(M) \leq_{als} M \) and hence \(S\alpha \subseteq W_S(M) \).
Proposition (2.17). \(W_S(M) \subseteq \gamma_S(\text{soc}(S) \cap L_S(M)) \) for any \(R \)-module \(M \), where \(\text{soc}(S) \) is the sum of all simple right ideals of \(S \).

Proof. Let \(s \in W_S(M) \) and \(t \) a nonzero element in \(\text{soc}(S) \cap L_S(M) \). Then \(t \in (S_i \cap L_S(M) \) \(\bigoplus (S_j \cap L_S(M) \) \(\bigoplus \ldots \bigoplus (S_n \cap L_S(M)) \) where \(S_i \) is a simple right ideal of \(S \) (\(i = 1, 2, \ldots, n \)). We prove that \(ts = 0 \), if not \(t = t_L + t_2 + \ldots + t_n \) where \(t_i \in S_i \cap L_S(M) \) for \(i = 1, 2, \ldots, n \). There exists \(j \in \{ 1, 2, \ldots, n \} \) such that \(t_j s \neq 0 \). Since \(S_j \) is simple, then \(t_j S_j = S_j \cap L_S(M) \) and there is \(\alpha \in S \) such that \(t_j s = t_j \) and hence \(t_j = \ell_S(1 - \alpha) \cap L_S(M) \). Since \(s(M) \subseteq \text{als} \) \(M \), then by Lemma (2.12), \(\ell_S(1 - \alpha) \cap L_S(M) = 0 \) and hence \(t_j = 0 \), a contradiction. Thus \(ts = 0 \) and so \(W_S(M) \subseteq \gamma_S(\text{soc}(S) \cap L_S(M)) \).

Recall that an \(R \)-module \(M \) is epi–projective, if any \(R \)-epimorphisms \(q, f : M \rightarrow A \) where \(A \) is any module then \(q \circ f' = f \) for some \(f' \in S \) \([5]\).

It is well-known that if \(M \) is epi–projective, then \(J(S) = \nabla(M) = \{ \varphi \in S \mid \text{Im}(\varphi) \leq_{I_k} M \} \) for any \(R \)-module \(M \). It is clear that \(\nabla(M) \subseteq \nabla_I(M) \).

Proposition (2.18). Let \(M \) be epi–projective \(R \)-module. Then \(W_S(M) = \nabla_I(M) \).

Proof. Let \(f \in W_S(M) \) and \(f(M) + N = M \) for some large submodule \(N \) of \(M \). Let \(\pi : M \rightarrow M/N \) be the natural epimorphism. Then \(\pi f(M) = f(M) + N = M \) and hence \(\pi f = \text{epimorphism} \). So there exists \(\beta \in S \) such that \(\pi = \pi f \beta \), and hence \(\pi = \ell_S(1 - f \beta) \cap L_S(M) \). Since \(f(M) \leq_{\text{als}} M \), then by Lemma (2.12), \(\ell_S(1 - f \beta) \cap L_S(M) = 0 \). Thus \(\pi = 0 \) and hence \(N = M \). Therefore \(W_S(M) \subseteq \nabla_I(M) \) and the other inclusion is clear.

Corollary (2.19). Let \(M \) be epi–projective \(R \)-module and \(\alpha \in S \). Then \(\alpha(M) \leq_{\text{als}} M \) if and only if \(\alpha(M) \leq_{I_k} M \).

Corollary (2.20). Let \(M \) be an epi–projective \(R \)-module, then \(J(S) \leq W_S(M) \).

Proposition (2.21). Let \(M \) be an epi–projective \(R \)-module in which \(\ell_S(\alpha) \cap L_S(M) = 0 \), \(\alpha \in S \) implies \(\alpha S = S \). Then \(J(S) = W_S(M) \).

Proof. First \(J(S) \subseteq W_S(M) \) follows from Corollary (2.20). Let \(k \in W_S(M) \). Then \(k(M) \leq_{\text{als}} M \), so \(\ell_S(1 - ks) \cap L_S(M) = 0 \) for all \(s \in S \), by Lemma (2.12). Hence \((1 - ks)S = S \) by hypothesis. Therefor \(k \in J(S) \).

An element \(m \in M \) is called al - superfluous, if \(mR \leq_{\text{als}} M \) and set \(L_R(M) = \{ m \in M \mid m \text{ is al - superfluous in } M \} \).

It is clear that \(L_R(M) \) may not be closed under addition for example in the \(Z \)-module \(Z \), \(-2, 3 \in L_Z(Z) \), but \(1 \notin L_Z(Z) \). We have proved that the sum of al – superfluous submodule and 1 – superfluous submodule is al - superfluous, but the sum of al – superfluous submodules need not be al - superfluous, for example, consider \(3Z + (-2)Z \) in the \(Z \)-module \(Z \).

Let \(M \) be an \(R \)-module. we define \(E_R(M) = \sum \{ K \leq_{I_k} M \mid K \leq_{\text{als}} M \} \).
clearly $L_R(M) \subseteq E_R(M)$ for any R-module M, but the equality may not be true (consider the Z-module Z).

Proposition (2.22). Let M be an R-module. Then

1. $E_R(M) = \{ x_1 + x_2 + \ldots + x_n \mid x_i \in L_R(M) \text{ for each } i, n > 1 \}$

2. $E_R(M) = L_R(M)$

3. $J_e(M) \subseteq L_R(M)$ and $Z_S(M) \subseteq L_R(M)$.

Proof.

1. Assume that $X = \{ x_1 + x_2 + \ldots + x_n \mid x_i \in L_R(M) \text{ for each } i, n > 1 \}$. If $x \in E_R(M)$, then $x = x_1 + x_2 + \ldots + x_n$ where $x_i \leq a_l M$ for each i. Thus if $x = x_1 + x_2 + \ldots + x_n$ where $x_i \in X$, then $x \in x_i \leq a_l M$, by lemma (2.3). Hence $x_i \in L_R(M)$ for each i. Thus $E_R(M) \subseteq X$ and the inclusion $X \subseteq E_R(M)$ is clear.

2. By part (1), $L_R(M) \subseteq E_R(M)$.

3. Let $x \in J_e(M)$. Then $xR \ll a_l M$, by ([1], Theorem 2.10), and hence $xR \ll a_l M$. So $x \in L_R(M)$. Thus $J_e(M) \subseteq L_R(M)$. Let $y \in Z_S(M)$. Then $yR \ll a_l S$. By ([2], lemma 2.5) $yR \ll a_l M$ and hence $yR \ll a_l M$. So $y \in L_R(M)$. Thus $Z_S(M) \subseteq L_R(M)$.

The authors in [1] define $Soc_S(M) = \sum \{ N \leq a_l M \mid N \text{ is minimal in } M \}$ for any R-module M and they proved that $Soc_S(M) = \bigcap \{ L \leq a_l M \mid L \leq a_l M \}$ where a submodule N of an R-module M is said to be superfluous-large in M (denoted by $N \leq a_l M$); if $N \cap L = 0$ with $L \leq a_l M$ implies that $L = 0$. Also $Soc_S(M) \subseteq J(M) \subseteq J_e(M)$ and $Soc_S(M) \subseteq Soc(M) \subseteq J_e(M)$.

Corollary (2.23). Let M be an R-module. Then $Soc_S(M)$, $Soc(M)$, and $J(M)$ is contained in $L_R(M)$.

Proposition (2.24).

1. Let M be a coretractable or quasi-dual R-module. Then $J_e(M) = E_R(M) = L_R(M)$.

2. Let M be a coretractable and semi-injective. Then

$$\gamma_M(Soc(\quad S)) \subseteq J_e(M) = E_R(M) = L_R(M).$$

Proof. By Proposition (2.4) $J_e(M) = E_R(M) = L_R(M)$. This proves (1). Now Assume that M is coretractable semi-injective R-module. Then by ([3], Corollary 4.7) we have $J(M) = \gamma_M(Soc(\quad S))$. Then by (1) we have $\gamma_M(Soc(\quad S)) \subseteq J_e(M) = E_R(M) = L_R(M)$.

Proposition (2.25). Let M be an R-module. Consider the following conditions

1. If $K, L \leq a_l M$, then $K + L \leq a_l M$.

2. $L_R(M)$ is closed under addition.

3. $E_R(M) = L_R(M)$.

4. $E_R(M) \leq a_l L_R(M)$.

5. Clearly $L_R(M) \subseteq E_R(M)$ for any R-module M, but the equality may not be true (consider the Z-module Z).

6. **Proposition (2.22).** Let M be an R-module. Then

1. $E_R(M) = \{ x_1 + x_2 + \ldots + x_n \mid x_i \in L_R(M) \text{ for each } i, n > 1 \}$

2. $E_R(M) = L_R(M)$

3. $J_e(M) \subseteq L_R(M)$ and $Z_S(M) \subseteq L_R(M)$.

Proof.

1. Assume that $X = \{ x_1 + x_2 + \ldots + x_n \mid x_i \in L_R(M) \text{ for each } i, n > 1 \}$. If $x \in E_R(M)$, then $x = x_1 + x_2 + \ldots + x_n$ where $x_i \leq a_l M$ for each i. Thus if $x = x_1 + x_2 + \ldots + x_n$ where $x_i \in X$, then $x_i \leq a_l M$, by lemma (2.3). Hence $x_i \in L_R(M)$ for each i. Thus $E_R(M) \subseteq X$ and the inclusion $X \subseteq E_R(M)$ is clear.

2. By part (1), $L_R(M) \subseteq E_R(M)$.

3. Let $x \in J_e(M)$. Then $xR \ll a_l M$, by ([1], Theorem 2.10), and hence $xR \ll a_l M$. So $x \in L_R(M)$. Thus $J_e(M) \subseteq L_R(M)$. Let $y \in Z_S(M)$. Then $yR \ll a_l S$. By ([2], lemma 2.5) $yR \ll a_l M$ and hence $yR \ll a_l M$. So $y \in L_R(M)$. Thus $Z_S(M) \subseteq L_R(M)$.

The authors in [1] define $Soc_S(M) = \sum \{ N \leq a_l M \mid N \text{ is minimal in } M \}$ for any R-module M and they proved that $Soc_S(M) = \bigcap \{ L \leq a_l M \mid L \leq a_l M \}$ where a submodule N of an R-module M is said to be superfluous-large in M (denoted by $N \leq a_l M$); if $N \cap L = 0$ with $L \leq a_l M$ implies that $L = 0$. Also $Soc_S(M) \subseteq J(M) \subseteq J_e(M)$ and $Soc_S(M) \subseteq Soc(M) \subseteq J_e(M)$.

Corollary (2.23). Let M be an R-module. Then $Soc_S(M)$, $Soc(M)$, and $J(M)$ is contained in $L_R(M)$.

Proposition (2.24).

1. Let M be a coretractable or quasi-dual R-module. Then $J_e(M) = E_R(M) = L_R(M)$.

2. Let M be a coretractable and semi-injective. Then

$$\gamma_M(Soc(\quad S)) \subseteq J_e(M) = E_R(M) = L_R(M).$$

Proof. By Proposition (2.4) $J_e(M) = E_R(M) = L_R(M)$, This proves (1). Now Assume that M is coretractable semi-injective R-module. Then by ([3], Corollary 4.7) we have $J(M) = \gamma_M(Soc(\quad S))$. Then by (1) we have $\gamma_M(Soc(\quad S)) \subseteq J_e(M) = E_R(M) = L_R(M)$.

Proposition (2.25). Let M be an R-module. Consider the following conditions

1. If $K, L \leq a_l M$, then $K + L \leq a_l M$.

2. $L_R(M)$ is closed under addition.

3. $E_R(M) = L_R(M)$.

4. $E_R(M) \leq a_l L_R(M)$.

5. Clearly $L_R(M) \subseteq E_R(M)$ for any R-module M, but the equality may not be true (consider the Z-module Z).
Then (1) → (2) → (3) and (4) → (1). If M is cyclic, then (3) → (4).

Proof. (1) → (2) For each $x, y \in L_R(M)$. Since $(x + y)R \subseteq R + yR$. Then by (1) $xR + yR \subseteq_{als} M$ and hence $(x + y)R \subseteq_{als} M$ by lemma (2.3). Thus $x + y \in L_R(M)$. (2) → (3). It is clear that $L_R(M) \subseteq E_R(M)$. By (2) and Proposition (2.22) we have $E_R(M) \subseteq L_R(M)$. (3) → (4). Let $M = mR$ be a cyclic R-module for some $m \in M$ and X be a large submodule of M with $E_R(M) + X = M$. By (3), $L_R(M) + X = M$. There exist $k \in L_R(M)$ and $x \in X$ such that $k + x = m$, then $kR + X = M$ and since $KR \subseteq_{als} M$, then $f_S(X) = 0$, so $E_R(M) \subseteq_{als} L_R(M)$. (4) → (1). Let $L, K \subseteq_{als} M$. Then $L, K \subseteq E_R(M)$, and hence $L + K \subseteq E_R(M)$. By (4) $E_R(M) \subseteq_{als} M$, so by lemma (2.3), $L + K \subseteq_{als} M$.

Proposition (2.26). Let $M = mR$ be a cyclic R-module and one of the condition in (2.25) holds. Then

1. $E_R(M)$ is the unique largest al – superfluous submodule of M
2. $E_R(M) = \cap \{ U \leq_{e} M \mid U \text{ is maximal in } M \text{ and } E_R(M) \subseteq U \}$

Proof. 1. is clear by (4) and the Definition of $E_R(M)$.

2. If $a \notin E_R(M)$, then by (3) aR is not al - superfluous in M, so there is a large submodule X of M with $aR + X = M$ and $f_S(X) \neq 0$. Since $E_R(M) \subseteq_{als} M$, by (4), then $E_R(M) + X \neq M$, there is a maximal submodule L of M with $E_R(M) + X \subseteq L \subseteq M$. In fact U is large in M, then $a \notin L$ and this proves (2)

Proposition (2.27). Let M be a finitely generated R-module. If $E_R(M) \subseteq J(M) + Z_S(M)$, then the sum of any two al – superfluous submodules is al - superfluous

Proof. Let N_1 and N_2 be two al – superfluous submodule of M, then $N_1 + N_2 \subseteq E_R(M)$ and hence $N_1 + N_2 \subseteq J(M) + Z_S(M)$. By Corollary (2.9), $J(M) + Z_S(M) \subseteq_{als} M$ and then by lemma (2.3), $N_1 + N_2 \subseteq_{als} M$.

References

[1] D. X. Zhau and X. R. Zhang, Small –essential submodules and Morita duality, South east Asian Bull. Math. 35 (2011) 1091 – 1062.
[2] T. Amouzegar – Kalati and D. Keskin – Tutuncu, Annihilator – small submodules, Bull. Iranian Mathematical soc. vol. 39 No. 6 (2013) 1053 – 1063
[3] B. Amini, M. Ershad and H. sharif, Coretractable modules, J. Aust. Math. Soc. 86 (2009). No 3, 289 – 304.
[4] M. Tamer Kosani, Quasi – Dual Modules, Turk. J.Math 30 (2006) 177 – 185.
[5] J. Clark, C. Lomp, N. Vaniju and R. Wisbauer, Lifting modules, Frontiers in Mathematics Birkhauser Verlag, Basel, 2006.