Исследования субмезомасштабной изменчивости верхнего слоя океана по данным спутниковых наблюдений *

Б. Шапрон 1,2,* В. Н. Кудрявцев 2,3, Ф. Коллард 4, Н. Раскл 5, А. А. Кубряков 3, С. В. Станичный 3

1 Institute Francais de Recherche pour l’Exploitation de la Mer, Plouzané, France
2 Российский государственный гидрометеорологический университет, Санкт-Петербург, Россия
3 Морской гидрофизический институт РАН, Севастополь, Россия
4 OceanDataLab, Locmaria-Plouzané, France
5 Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México
* bertrand.chapron@ifremer.fr

Поступила в редакцию 13.08.2020 г.

Цель. Представлен подход, применяемый к анализу спутниковых сканерных оптических изображений высокого пространственного разрешения для идентификации и определения количественных характеристик субмезомасштабных динамических процессов в верхнем слое океана.

Методы и результаты. В качестве спутниковых данных используются сканерные изображения AATSR и MERIS со спутника Envisat, позволяющие определять соответственно температуру поверхности океана и яркость поверхности в видимом диапазоне. Вариации яркости солнечного блика связаны с модуляциями шероховатости морской поверхности (среднеквадратичного наклона коротких волн) на течениях. Показывается, что контрасты шероховатости поверхности коррелируют с пространственными неоднородностями температуры поверхности океана, траксирующими субмезомасштабные процессы в океане (спиральные вихри, филаменты, локальные сдвиги течений). Описывается модель формирования поверхностных проявлений, основанная на взаимодействии экмановского течения и завихренности основного потока.

Выводы. Продемонстрирована возможность обнаружения и количественной оценки интенсивных градиентов течений в окрестности субмезомасштабных фронтов. Эти градиенты проявляются на оптических спутниковых изображениях через модуляции шероховатости поверхности океана. Предложенный подход позволяет изучать и количественно оценивать динамические процессы, действующие в окрестности субмезомасштабных фронтов. Эти процессы, в свою очередь, влияют на обмен импульсом, теплом и газами между океаном и атмосферой. Обсуждаются перспективы применения спутниковых измерений субмезомасштабной изменчивости для развития моделей и систем глобального наблюдения и мониторинга океана.

Ключевые слова: спутниковые наблюдения, взаимодействие океана и атмосферы, динамика верхнего слоя океана, временна изменчивость, пространственная изменчивость.

Благодарности. работа выполнена при поддержке Российского научного фонда в рамках гранта № 17-77-30019 и Госзадания № 0763-2020-0005. Мы также выражаем признательность Европейскому космическому агентству за поддержку проекта SARONG.

Для цитирования: Исследования субмезомасштабной изменчивости верхнего слоя океана по данным спутниковых наблюдений / Б. Шапрон [и др.] // Морской гидрофизический журнал. 2020. Т. 36, № 6. С. 676–690. doi:10.22449/0233-7584-2020-6-676-690

* Расширенный вариант статьи на английском языке опубликован в англоязычной версии журнала Physical Oceanography
© Шапрон Б., Кудрявцев В. Н., Коллард Ф., Раскл Н., Кубряков А. А., Станичный С. В., 2020

676 МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ том 36 № 6 2020
Studies of Sub-Mesoscale Variability of the Ocean Upper Layer Based on Satellite Observations Data

B. Chapron 1,2,*, V. N. Kudryavtsev 2,3, F. Collard 4, N. Rascle 5, A. A. Kubryakov 3, S. V. Stanichny 3

1 Institute Francais de Recherche pour l’Exploitation de la Mer, Plouzané, France
2 Russian State Hydrometeorological University, Saint-Petersburg, Russia
3 Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol, Russia
4 OceanDataLab, Locmaria-Plouzané, France
5 Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, México
*bertrand.chapron@ifremer.fr

Purpose. The approach represented in the article is applied to analysis of satellite scanner optical images of high spatial resolution for identifying and quantitative determining the characteristics of the sub-mesoscale dynamic processes in the ocean upper layer.

Methods and Results. The Envisat AATSR and MERIS SAR-images are used as the satellite data, which permit to determine the ocean surface temperature and surface brightness in the visible range, respectively. Variations in the sea surface glitter contrasts are associated with modulations of the sea surface roughness (rms slope of short waves) on the currents. It is shown that the surface roughness contrasts correlate with the spatial inhomogeneities of the ocean surface temperature, tracing sub-mesoscale processes in the ocean (spiral eddies, filaments, local shears of currents). The described model of formation of surface manifestations is based on interaction between the Ekman current and the main flow vorticity.

Conclusions. Possibility of detecting and quantitative assessing the intense current gradients in the vicinity of sub-mesoscale fronts is shown. These gradients are manifested in the optical satellite images through the ocean surface roughness modulations. The proposed approach makes it possible to study and to assess quantitatively the dynamic processes taking place in the vicinity of the sub-mesoscale fronts. These processes, in their turn, affect the exchange of momentum, heat and gases between the ocean and the atmosphere. The prospects of applying the sub-mesoscale variability defined from the satellite measurements, to development of the models and the systems for the ocean global observations and monitoring are discussed.

Keywords: satellite observations, air-sea interaction, ocean upper layer dynamics, temporal and spatial variability.

Acknowledgements: the study was carried out at support of the Russian Scientific Foundation within the framework of grant № 17-77-30019 and state task No. 0763-2020-0005. We are also grateful to European Space Agency for its support of the SARONG project.

For citation: Chapron, B., Kudryavtsev, V.N., Collard, F., Rascle, N., Kubryakov, A.A. and Stanichny, S.V., 2020. Studies of Sub-Mesoscale Variability of the Ocean Upper Layer Based on Satellite Observations Data. Physical Oceanography, [e-journal] 27(6), pp. 619-630. doi:10.22449/1573-160X-2020-6-619-630

1. Введение

Благодаря развитию систем и платформ глобального наблюдения Земли, включающих наземные станции наблюдений in situ и спутники, значительно улучшились возможности исследования окружающей среды. Океан обычно рассматривается как интегратор быстро меняющегося атмосферного погодного шума, что приводит к относительно медленной изменчивости океана, развивающейся во временных масштабах более длительных, чем у атмосферы. Тем не менее спутниковые измерения изменчивости поверхности океана (уровень океана, поверхностные волны, обрушения волн, течение, температура, соленость, цвет) часто ставят под сомнение эту парадигму, идентификационной морской гидрофизический журнал том 36 № 6 2020 677
цируя и отслеживая в первую очередь проявления динамики короткопериодных процессов в верхнем слое океана, включая интенсивные фронты и филаменты на масштабах менее 100 м.

В определенных регионах и на определенных пространственно-временных масштабах эти локальные процессы, связанные с динамикой океана, могут в значительной степени доминировать над изменчивостью атмосферы и управлять процессами в верхнем перемешанном слое океана. В этом контексте спутниковые изображения высокого разрешения (например, изображения зоны солнечного блика с оптических сканеров) предоставляют уникальные средства наблюдения за верхним слоем океана. Однако полное количественное понимание того, как эти процессы влияют на перераспределение энергии, баланс плавучести, вертикальные движения и физико-биологические взаимодействия в верхнем слое океана, в настоящий момент отсутствует.

Деятельность человека в океане и большая часть океанической жизни сосредоточена в верхних слоях океана. Взаимодействие океан — атмосфера является важным фактором в определении погоды и климата с обратной связью, охватывающей очень широкий временной диапазон. Особую озабоченность вызывает то, что при растворении углекислого газа в воде образуется углекислота, изменяющая условия существования морской жизни. Это, безусловно, делает исследования верхнего слоя океана важной научной проблемой, которая выходит за рамки физики, химии, биологии, метеорологии и климатологии.

Тем не менее никакая система наблюдений или модель не способна описать динамику процессов в верхнем слое океана на всех существующих масштабах. В частности, численные модели могут воспроизводить процессы на ограниченных масштабах, а неразрешаемые масштабы движения параметризуются.

Это во многом объясняет, почему использование мультиспектральных систем наблюдения Земли с глобальным охватом принесло революционные результаты, помогающие идентифицировать данные процессы, которые далее должны быть параметризованы на различных подсеточных масштабах. Например, изменения скорости поверхностного течения и адvection параметров воды (температура, соленость, концентрация хлорофилла и др.) представляют собой синтез множества неизвестных факторов и их взаимодействий, в частности ветровых напряжений, пространственно-временных вариаций состояния нижележащих слоев моря, стратификации атмосферы, перемешивания верхнего слоя океана и др., которые в совокупности и создают наблюдаемое состояние среды.

При переходе к более высокому пространственному разрешению (приблизительно от 10 м до 1 км) сигнатуры вариаций трассеров, идентифицируемые сканерами видимого диапазона, могут дополнительно предоставить количественную информацию, например охарактеризовать взаимодействие внутренних и поверхностных волн с течениями в верхнем слое океана. Постоянно растущее число спутниковых наблюдений с очень высоким разрешением способствует значительному увеличению объема собранных и архивных данных, которое еще предстоит полностью использовать.

Таким образом, хотя многочисленные гидрофизические процессы, развивающиеся на малых пространственных и временных масштабах, и признаны ключевыми факторами, влияющими на горизонтальные и вертикальные потоки импульса и тепла, большая часть спутниковых наблюдений за этими

678 МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ том 36 № 6 2020
процессами используется не в полной мере. Это не позволяет нам до конца понять и количественно оценить роль явлений меньшего масштаба в диссипации энергии в толще океана, в формировании турбулентности в верхнем слое океана, а также их влияние на возникающие когерентные структуры, вихри и филаменты. Такое понимание необходимо для усовершенствования прогноза пространственного распределения меридиональных потоков тепла, соли и других характеристик, для лучшего понимания трансокеанического переноса загрязнений и эволюции морских экосистем.

Следовательно, увеличение пространственно-временного разрешения требует не только развития технологий (активные и пассивные методы, мультичастотные и мультиполяризационные измерения, измерения доплеровского сдвига и т. д.), но и теоретических разработок с алгоритмами для последовательной интерпретации данных, чтобы усовершенствовать использование существующих наблюдений.

2. Фронтальная динамика верхнего слоя

Фронты в море могут обостряться до ширины много меньше 1 км, образуя сильные градиенты течений. В этом отношении их можно назвать океанскими аналогами интенсивных атмосферных фронтов или циклонов. В условиях слабого ветра, следующих за ветровым перемешиванием, субмезомасштабные спирали/вихри [1] – обычное явление, они проявляются в пленках поверхностно-активных веществ, например органических сликов, связанных с накоплением морских микроорганизмов и фитопланктона в зонах конвергенции течений (рис. 1).

Рис. 1. Проявление катабатического ветра со скоростью до 12–15 м/с у западного побережья Корсики на изображении РСА Sentinel-1 19 февраля 2015 г. (слева); изображение РСА Sentinel-1 того же района с проявлениями поверхностно-активных веществ в зонах конвергенции спиральных вихрей (справа)

Фиг. 1. Evidence of katabatic winds with speed up to 12–15 m/s coming off the west coast of Corsica from the Sentinel-1 SAR image on February 19, 2015 (on the left); the Sentinel-1 SAR image of partially the same region showing manifestations of surfactants and spiraling eddies (on the right)
В литературе задокументированы измерения завихренности течений в окрестности субмезомасштабных фронтов от 1 до 10 f, где f – параметр Кориолиса. Например, в работе [2] описывается филамент с циклонической завихренностью 3 f при разрешении 2 км и завихренности более 7,5 f по данным более высокого разрешения (80 м). Совсем недавно в работе [3] были задокументированы фронты и вихри с крайне интенсивной конвергенцией/дивергенцией и циклонической завихренностью от 5 до 10 f на расстоянии более 300 м. В работе [4] описан удивительно острый фронт шириной всего около 50 м, несмотря на то что он был вытянут более чем на 10 км. Это приводит к значению завихренности до 100 f, что на порядок больше, чем описанные ранее.

Локальные узкие фронты в основном выходят из состояния геострофического баланса, влияющего на более крупные вихри, что приводит к развитию вторичной циркуляции в верхних слоях океана с очень большими локализованными вертикальными скоростями. Это, в свою очередь, стимулирует обмен между поверхностью и глубинными слоями [5] и может увеличивать концентрацию и перенос взвеси в этих областях конвергенции [6–8]. Таким образом, эти фронты являются «горячими точками» для биологических процессов [9] и дрейфующих загрязнений [10], включая микропластик и морские водоросли.

При значениях дивергенции и завихренности, локально превышающих частоту Кориолиса в 5–50 раз при ширине фронта от 30 до 100 м [11], океанические субмезомасштабные агеострофические процессы обычно развиваются совместно с апвеллингом, в этих случаях наблюдается интенсивная локальная первичная продукция фитопланктона в эвфотическом слое. Таким образом, высокая интенсивность агеострофических процессов и конвергенция хлорофилла на поверхности часто могут быть связаны. Примечательно, что эти мелкомасштабные особенности систематически сопровождаются аномалиями коротких ветровых волн на морской поверхности, то есть локально поверхность может являться гладкой или шероховатой. Действительно, изменение шероховатости поверхности, особенно среднеквадратичного наклона поверхностных волн (δmss) и/или доли поверхности моря, покрытой обрушениями, по существу связаны с модуляцией коротких волн (с длиной волны менее ~1 м) ветровых волн на горизонтально неоднородных течениях (см. работы [12, 13] и соответствующие ссылки в них).

Понятно, что различные компоненты горизонтального градиента течения могут влиять на характеристики угловой направленности мелкомасштабной шероховатости морской поверхности. В частности, изотропная дивергенция течения имеет идеальную симметрию по направлению, что приводит к аномалиям шероховатости поверхности, не зависящим от азимутального направления наблюдений. В разных случаях анизотропные компоненты градиента течения, такие как завихренность или деформация, могут создавать анизотропные аномалии шероховатости поверхности. В таком случае условия обнаружения градиентов течения будут зависеть от направления ветра.

Для диагностики фронтальной динамики необходимо в первую очередь рассматривать влияние экмановского переноса как один из основных механизмов, генерирующих агеострофическую вторичную циркуляцию вблизи океанических фронтов [14, 15]. Связь вторичной агеострофической циркуляции...
ции со сдвигами течения во фронтальной зоне следует из уравнения сохранения вертикальной завихренности ξ, которое при малых возмущениях имеет вид

$$\left(u_x^x + \frac{\partial \xi}{\partial t} \right) \frac{\partial^2 U_y}{\partial x^2} \approx \left(\frac{\partial U_y}{\partial x} + f \right) \nabla u,$$

где x, y – направлены поперек и вдоль течения; сдвиг основного течения имеет вид $U_y(x, y) = U_0 F((x - \zeta)/L)$, где L – ширина фронта; ζ – смещения положения фронта; u – скорость вторичных агеострофических течений; u^x_E – нормальная к фронту компонента экмановского течения. Как следует из этого уравнения, вертикальные движения на границе фронта, связанные с дивергенцией вторичной агеострофической циркуляции, возникают как при нестационарности границы фронта (например, мандррировании), так и при взаимодействии экмановского течения с градиентом вертикальной завихренности течения на фронте. Включенная в уравнение сохранения завихренности поперечная компонента экмановского потока u^x_E может включать и вклад стоксового течения, взаимодействующего с поверхностными течениями. Этот эффект также усиливает локальную конвергенцию и дивергенцию ∇u. Следует отметить, что вблизи фронтов агеострофические спирали Экмана будут дополнительно модифицированы за счет учета локальной завихренности течения в верхнем слое. Эти изменения могут повлиять на знак и силу результирующих полей конвергенции и дивергенции во фронтальных зонах. Для резких фронтов механизм перемешивания также может играть важную роль, сопоставимую с адvectionным влиянием экмановского потока [13].

3. Контрасты поверхностной шероховатости, связанные с фронтальной динамикой

Многочисленные исследования показали, что течения в верхнем слое океана могут сильно изменить свойства распространения доминирующих волн (см., например, работы [16–18]), а также интегральные свойства коротковолновых ветровых волн, такие как среднеквадратичный наклон (mss) и распределение обрушений волн (см., например, [19–21]).

Таким образом, мелкомасштабные градиенты течений на поверхности океана можно наблюдать и количественно оценивать путем анализа локальных модуляций энергии и направлений доминирующих волн в сочетании с локальными изменениями шероховатости морской поверхности. Если говорить более конкретно, поверхностные волны и мелкомасштабные аномалии шероховатости могут быть связаны с различными компонентами горизонтального градиента течения [22]. В первом порядке пространственное распределение энергии зыби определяется кумулятивным воздействием крупномасштабного поля завихренности на кинематику волновых пакетов. В конечно итоге эти эффекты могут привести к значительному отклонению лучей с возникновением фокусировки/расфокусировки волновых групп в ходе распространения волнового поля.

Модуляция шероховатости поверхности в основном определяется локальной дивергенцией поля течения на морской поверхности, то есть ∇u. МОРСКОЙ ГИДРОФИЗИЧЕСКИЙ ЖУРНАЛ том 36 № 6 2020 681
Приближенно контраст среднеквадратичного наклона \((mss)\), \(\tilde{\varsigma}\), можно оценить следующим образом:

\[
\tilde{\varsigma} \propto \frac{m_{k}}{U_{10}} L_{u}^{1/2} \nabla u,
\]

где \(L_{u}\) — пространственный масштаб градиента, а \(m_{k}\) — показатель волнового числа спектра волнового действия ветровых волн. Контраст шероховатости обратно пропорционален локальной скорости ветра \(U_{10}\). В данном приближении не учитывается адvectionный перенос энергии волн на баланс их энергии. Соответственно, пространственный масштаб поверхностного течения \(L_{u}\) должен быть больше, чем масштаб релаксации коротких ветровых волн. В таком случае горизонтальная протяженность фронтальной ширины аномалий шероховатости морской поверхности точно соответствует фронтальной ширине локального градиента. Для количественной оценки фронтальной динамики наиболее благоприятны наблюдения в направлении, перпендикулярном направлению ветра.

На рис. 2 представлено поле температуры поверхности моря (SST), показывающее динамические процессы в верхнем слое океана в районе Гольфстрима. Обладая высоким разрешением, порядка 1 км, это изображение полностью подходит для выявления мезомасштабных и субмезомасштабных океанических особенностей. Способность Envisat определять одновременно SST (инструмент AATSR) и цвет океана (инструмент MERIS) помогает четко продемонстрировать связь между изменениями шероховатости морской поверхности и фронтальными областями SST. Поле контраста шероховатости морской поверхности (рис. 3) получено за счет высокой чувствительности яркости солнечного блика к локальным вариациям среднеквадратичного наклона морской поверхности \((mss)\). При налажении наблюдаемые поля SST и mss ясно показывают, что синергетический подход важен для количественного анализа динамики верхнего слоя океана (рис. 4). Эти комбинированные наблюдения поддерживают, что субмезомасштабные потоки, вероятно, подпитываются мезомасштабным поверхностным фронтогенезом [23-24]. Границы мезомасштабных особенностей совпадают с резкими градиентами поверхностной плавучести (вызванными температурой). Увеличенное изображение фрагмента рис. 5 на рис. 6, иллюстрирует, как контрасты шероховатости поверхности океана трассируют антициклонические и циклонические вихри, фронты и фиалеты. Как сказано выше, чередующиеся изменения контраста следуют за величиной и знаком дивергенции поля течения на поверхности моря \(\nabla u\).

В целом направление ветра относительно фронтальных зон в значительной степени определяет знак дивергенции, связанный с шероховатыми или гладкими участками поверхности. В частности, фронты, ориентированные под углом \(\pi/4\) по часовой стрелке от направления ветра, будут характеризоваться повышенной шероховатостью поверхности моря. Фронты, ориентированные под углом \(\pi/4\) по часовой стрелке от направления ветра, систематически характеризуются выглаженными участками морской поверхности (рис. 4...
и 5). Причины формирования аномалий поверхности при ориентации фронта относительно ветра на угол ±(π/4) требуют дальнейших исследований.

Рис. 2. Температура поверхности океана (SST) по данным измерений с Envisat AATSR в районе Гольфстрима (1 апреля 2010 г.)

Fig. 2. Sea surface temperature from the Envisat AATSR measurements in the Gulf Stream region (April 1, 2010)

Рис. 3. Контрасты яркости солнечного блика по данным измерений с Envisat MERIS в районе Гольфстрима (1 апреля 2010 г.)

Fig. 3. Sea surface glitter contrasts from the Envisat MERIS measurements in the Gulf Stream region (April 1, 2010)
Рис. 4. Наложение полей поверхностной температуры и яркости солнечного блика, полученных с Envisat AATSR и MERIS в районе Гольфстрима (1 апреля 2010 г.)
Fig. 4. Overlying of the simultaneous sea surface temperature (SST) and sea surface glitter contrasts combined from the Envisat AATSR and MERIS in the Gulf Stream region (April 1, 2010)

Рис. 5. Увеличенный фрагмент изображения Envisat MERIS в районе Гольфстрима. Направление ветра указано стрелкой. Яркие (темные) контрасти соответствуют шероховатой (гладкой) поверхности. Контрасти шероховатости поверхности трассируют антициклонический и циклонический вихри, фронты и филаменты. Пространственное разрешение Envisat MERIS — 250 м
Fig. 5. Zoom for the sea surface glitter contrast extracted from the Envisat MERIS observations in the Gulf Stream region. Wind direction is indicated by the arrow. Bright (dark) contrasts correspond to rough (smooth) sea surface. Sea surface roughness contrasts trace anti-cyclonic and cyclonic eddies, fronts and filaments. The Envisat MERIS pixel resolution is 250 m
Фиг. 6. Увеличенный фрагмент нижней левой части рис. 5 с контрастом яркости солнечного блика, идентифицирующим спиралевидный циклонический вихрь: неустойчивость проявляется в извилистости внешней границы. Разрешение пикселей Envisat MERIS составляет 250 м

4. Резюме и перспективы

В настоящее время наступает новая эра спутниковых наблюдений за верхним слоем океана. Технологии наблюдений и мониторинга крупно- и мезомасштабных процессов доказали свою ценность для океанографии и климатологии (например, спутниковая альтиметрия, профилометры Argo) при ассимиляции данных в моделях циркуляции океана. Следующее поколение численных моделей также столкнется с новыми проблемами, которые обычно в значительной степени выходят за рамки возможностей нынешних детерминированных прогнозов. Это включает в себя работу с локальными и интенсивными экстремальными сдвигами горизонтальной и вертикальной скорости в сочетании с воздействием атмосферы. Исследование этих процессов потребует решения проблемы неопределенности с помощью расширенного стохастического моделирования и математического анализа, применяемого в сочёме...
танции с наблюдениями с высоким разрешением, вложенными сетками, включая улучшенные алгоритмы геофизических модельных функций и анализ больших объемов данных.

В рамках европейской программы *Copernicus*, обеспечивающей долгосрочную перспективу с помощью миссий *Sentinel*, приняты к разработке и запуску нове микроволновые радиометры *Copernicus Imaging Microwave Radiometers, CIMR* (см. [25]) с улучшенной разрешающей способностью. *NASA/CNES* запустит (в 2022 г.) миссию по топографии поверхности океана (*SWOT*) (см. [26]). *SWOT* будет отображать поле высоты поверхности океана на мезомасштабах, а также в значительном диапазоне субмезомасштабов.

Большую часть мультиспектральных наблюдений с очень высоким разрешением, то есть моментальные снимки со всех других доступных будущих сенсоров (активных и пассивных), также следует рассматривать для объединения в новый режим наблюдений со средним и высоким разрешением за верхним слоем океана. На динамику верхних слоев океана влияет множество факторов. К ним относятся потоки тепла, ветер, дождь, речной сток, поверхностные и внутренние волны, лентилюровская циркуляция, перемешивание и биологические процессы. Тем не менее в действительности сами наблюдения часто содержат и объединяют полные сигнатуры всех этих сложных взаимодействующих эффектов [27]. В частности, важнейшим аспектом является исследование локальных и быстро изменяющихся компонентов скорости верхних слоев океана.

Для этого важны датчики, работающие с очень высоким разрешением, особенно для успешного определения местоположения течений и оценки их резких градиентов. Эта информация может быть крайне полезна для оперативных целей, связанных с загрязнением или поисково-спасательными операциями.

Помимо точного определения положения фронтов, измерения с высоким разрешением позволяют точно оценить градиенты течений, чтобы отслеживать области интенсификации в пределах различных субмезомасштабных процессов. В условиях ясного неба оптические инструменты, наблюдающие за поверхностью океана под различными углами с разрешением 10 м, могут быть идеальными для выявления фронтальных процессов, которые параметризуются для различных подсеточных масштабов [18, 28]. Используя всепогодные радиолокационные наблюдения с высоким разрешением, можно использовать поляризационную чувствительность [29] и азимутальное разрешение для количественного разделения вариаций шероховатости полученными с обрушениями волн и резонансными мелкомасштабными волнами, чтобы в последующем разделить эффекты, связанные с поверхностными течениями и изменчивостью ветра [30]. В условиях умеренной скорости ветра обрушение волн имеют относительно малый масштаб релаксации (примерно от 5 до 100 м), чтобы точно определять местонахождение интенсивных градиентов поверхностных течений. Более того, поляризационная чувствительность и азимутальное разрешение также контролируют доплеровские измерения радара с высоким разрешением (см., например, работы [31, 32]) для дальнейшего документирования мгновенных скоростей течения в верхнем слое океана.
которые не могут быть достаточно разрешены в медленных временных и пространственных масштабах.

В статье мы проиллюстрировали подход, применяемый к анализу мгновенных спутниковых наблюдений с высоким пространственным разрешением. Этот подход демонстрирует возможность как обнаружения, так и количественной оценки интенсивных градиентов течений, влияющих на модуляцию шероховатости поверхности, что позволяет изучить и количественно оценить динамические механизмы, действующие в окрестности субмезомасштабных фронтов.

Эти процессы, которые вызывают отчетливые изменения в обмене импульсом, теплом и газами между океаном и атмосферой и влияют на биогеохимию и климат океана, систематически выявляются при получении разовых спутниковых изображений. Однако формальные методы связи мгновенных наблюдений с долгосрочными эволюциями еще предстоит определить.

В этом контексте для объединения информации о параметрах, контролирующих моделирование с высоким разрешением, на основе данных как с низким, так и с высоким разрешением (в пространстве, времени или в обоих измерениях), полученные в результате и мультимодальных спутниковых наблюдений, и наблюдений в точке, должны быть разработаны модели следующего поколения, способные работать с высоким разрешением, а также усваивать нерегулярно поступающие измерения. Для того чтобы предоставить новые мощные инструменты для извлечения информации из больших объемов данных, то есть из ансамбля симуляций и накопленных наблюдений, необходимо машинное обучение, важность которого стремительно растет. Таким образом, безусловно, следует ожидать значительного продвижения в области разработки и применения методов машинного обучения для максимального использования мультимодальных данных большой размерности. Полная характеристика перемежающихся, многомасштабных и переходных процессов и динамики с помощью анализа, основанного на физических данных, безусловно, будет необходима для получения количественного понимания того, как эти процессы влияют на энергетические пути, баланс плавучести, вертикальные движения и физико-биологическое взаимодействие в верхних слоях океана.

Данные, приведенные на рис. 1–6, доступны на сайте www.oceandatalab.com (URL: http://marine.copernicus.eu/services-portfolio/access-to-products/?Option=com_csw & view=details & product_id=MULTIOBS_GLO_PHY_NRT_015_003).

СПИСОК ЛИТЕРАТУРЫ

1. Spirals on the sea / W. Munk [et al.] // Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 2000. Vol. 456, iss. 1997. P. 1217–1280. https://doi.org/10.1098/rspa.2000.0560
2. Flament P., Armi L. The shear, convergence, and thermohaline structure of a front // Journal of Physical Oceanography. 2000. Vol. 30, iss. 1. P. 51–66. https://doi.org/10.1175/1520-0485(2000)030<0051:TSCATS>2.0.CO;2
3. Drifter observations of submesoscale flow kinematics in the coastal ocean / J. C. Ohlmann [et al.] // Geophysical Research Letters. 2017. Vol. 44, iss. 1. P. 330–337. doi:10.1002/2016GL071537
4. Monitoring intense oceanic fronts using sea surface roughness: Satellite, airplane and in situ comparison / N. Rascle [et al.] // Journal of Geophysical Research: Oceans. 2020. Vol. 125, iss. 8. e2019JC015704. https://doi.org/10.1029/2019JC015704
5. Lapeyre G., Klein P. Impact of the small-scale elongated filaments on the oceanic vertical pump // Journal of Marine Research. 2006. Vol. 64, no. 6. P. 835–851. https://doi.org/10.1357/00222406779698369
6. Ocean convergence and the dispersion of flotsam / E. A. D’Asaro [et al.] // Proceedings of the National Academy of Sciences. 2018. Vol. 115, no. 6. P. 1162–1167. doi:10.1073/pnas.1718453115
7. Propagation of the Azov Sea waters in the Black sea under impact of variable winds, geostrophic currents and exchange in the Kerch Strait / A. A. Kubryakov [et al.] // Progress in Oceanography. 2019. Vol. 176. 102119. doi:10.1016/j.pocean.2019.05.011
8. Suspended-matter distribution near the western coast of Crimea under the impact of strong winds of various directions / A. A. Aleskerova [et al.] // Izvestiya, Atmospheric and Oceanic Physics. 2019. Vol. 55, iss. 9. P. 1138–1149. doi:10.1134/s0001433819090044
9. Mahadevan A. The impact of submesoscale physics on primary productivity of plankton // Annual Review of Marine Science. 2016. Vol. 8. P. 161–184. doi:10.1146/annurev-marine-010814-015912
10. A new mixing diagnostic and Gulf oil spill movement / I. Mezić [et al.] // Science. 2010. Vol. 330, iss. 6003. P. 486–489. doi:10.1126/science.1194607
11. Intense deformation field at oceanic front inferred from directional sea surface roughness observations / N. Rascle [et al.] // Geophysical Research Letters. 2017. Vol. 44, iss. 11. P. 5599–5608. doi:10.1002/2017GL073473
12. On radar imaging of current features: 1. Model and comparison with observations / V. Kudryavtsev [et al.] // Journal of Geophysical Research: Oceans. 2005. Vol. 110, iss. C7. C07016. doi:10.1029/2004JC002505
13. Imaging mesoscale upper ocean dynamics using synthetic aperture radar and optical data / V. Kudryavtsev [et al.] // Journal of Geophysical Research: Oceans. 2012. Vol. 117, iss. C4. C04029. doi:10.1029/2011JC007492
14. Garrett C. J. R., Loder J. W. Dynamical aspects of shallow sea fronts // Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1981. Vol. 302, iss. 1472. P. 563–581. doi:10.1098/rsta.1981.0183
15. Klein P., Hua B. The mesoscale variability of the sea surface temperature: An analytical and numerical model // Journal of Marine Research. 1990. Vol. 48, no. 4. P. 729–763. doi:10.1357/002224090784988700
16. Large horizontal surface velocity shears in the ocean obtained from images of refracting swell and in situ moored current data / D. Sheres [et al.] // Journal of Geophysical Research: Oceans. 1985. Vol. 90, iss. C3. P. 4943–4950. https://doi.org/10.1029/jc090ic03p04943
17. Grodsky S., Kudryavtsev V., Ivanov A. Quasisynchronous observations of the Gulf Stream frontal zone with Almaz-1 SAR and measurements taken on board the RV Akademik Vernadsky // The Global Atmosphere and Ocean System. 2000. No. 7. P. 249–272. URL: https://www.researchgate.net/publication/256198018_Quasisynchronous_observations_of_the_Gulf_Stream_frontal_zone_with_ALMAZ-1_SAR_and_measurements_taken_on_board_the_RV_Akademik_Vernadsky (date of access: 10.11.2020).
18. Sun glitter imagery of surface waves. Part 2: Waves transformation on ocean currents / V. Kudryavtsev [et al.] // Journal of Geophysical Research: Oceans. 2017. Vol. 122, iss. 2. P. 1384–1399. doi:10.1002/2016JC012426
19. Dulov V. A., Kudryavtsev V. N. Imagery of the inhomogeneities of currents on the ocean surface state // Soviet Journal of Physical Oceanography. 1990. Vol. 1, iss. 5. P. 325–336. doi:10.1007/BF02196830
20. Lyzenga D. R. Effects of intermediate-scale waves on radar signatures of ocean fronts and internal waves // Journal of Geophysical Research: Oceans. 1998. Vol. 103, iss. C9. P. 18759–18768. doi:10.1029/98jc01189

21. Kubryakov A. A., Kudryavtsev V. N., Stanichny S. V. Application of Landsat imagery for the investigation of wave breaking // Remote Sensing of Environment. 2020. 112144. https://doi.org/10.1016/j.rse.2020.112144 (in press).

22. Phillips O. M. On the response of short ocean wave components at a fixed wavenumber to ocean current variations // Journal of Physical Oceanography. 1984. Vol. 14, iss. 9. P. 1425–1433. https://doi.org/10.1175/1520-0485(1984)014<1425:OTROSO>2.0.CO;2

23. Submesoscale instabilities in mesoscale eddies / L. Brannigan [et al.] // Journal of Physical Oceanography. 2017. Vol. 47, iss. 12. P. 3061–3085. https://doi.org/10.1175/JPO-D-16-0178.1

24. Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the Black Sea / A. Zatsepin [et al.] // Ocean Dynamics. 2019. Vol. 69, iss. 2. P. 253–266. https://doi.org/10.1007/s10236-018-1239-4

25. Expected performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an all-weather and high spatial resolution estimation of ocean and sea ice parameters / L. Kilic [et al.] // Journal of Geophysical Research: Oceans. 2018. Vol. 123, iss. 10. P. 7564–7580. doi:10.1029/2018JC014408

26. Global observations of fine-scale ocean surface topography with the surface water and ocean topography (SWOT) mission / R. Morrow [et al.] // Frontiers in Marine Science. 2019. Vol. 6. 232. doi:10.3389/fmars.2019.00232

27. Lumpkin R., Özgökmen T., Centurioni L. Advances in the application of surface drifters // Annual Review of Marine Science. 2017. Vol. 9. P. 59–81. https://doi.org/10.1146/annurev-marine-010816-060641

28. Sunglint images of current gradients at high resolution: Critical angle and directional observing strategy / N. Rascle [et al.] // Remote Sensing of Environment. 2018. Vol. 216. P. 786–797. doi:10.1016/j.rse.2018.06.011

29. On dual co-polarized SAR measurements of the Ocean surface / V. Kudryavtsev [et al.] // IEEE Geoscience and Remote Sensing Letters. 2013. Vol. 10, no. 4. P. 761–765. doi:10.1109/LGRS.2012.2222341

30. Quad-polarization SAR features of ocean currents / V. Kudryavtsev [et al.] // Journal of Geophysical Research: Oceans. 2014. Vol. 119, iss. 9. P. 6046–6065. doi:10.1002/2014JC010173

31. Chapron B., Collard F., Ardhuin F. Direct measurements of ocean surface velocity from space: Interpretation and validation // Journal of Geophysical Research: Oceans. 2005. Vol. 110, iss. C7. C07008. doi:10.1029/2004JC002809

32. SEASTAR: a mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes in coastal, shelf and polar seas / C. Gommenginger [et al.] // Frontiers in Marine Science. 2019. Vol. 6. 456. doi:103389/fmars.2019.00457

Об авторах:
Шапрон Бертран, научный руководитель Лаборатории спутниковой океанографии, Российский государственный гидрометеорологический университет (192007, Россия, г. Санкт-Петербург, ул. Воронежская, д. 79), старший научный сотрудник Лаборатории спутниковой океанографии, Ифремер (Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280 Plouzané), Scopus Author ID: 56209544000, bertrand.chapron@ifremer.fr

Кудрявцев Владимир Николаевич, заведующий Лабораторией спутниковой океанографии, Российский государственный гидрометеорологический университет (192007, Россия, г. Санкт-Петербург, ул. Воронежская, д. 79), доктор физико-математических наук, ведущий научный сотрудник, Морской гидрофизический институт РАН (299011, Россия, г. Севастополь, ул. Капитанская, д. 2); Scopus Author ID: 7102703183, kudr@rshu.ru

Коллард Фабрис, Президент компании OceanDataLab (870, Route de Deolen – 29280 Locmaria Plouzané, France), Scopus Author ID: 36980751900, dr.fab@oceandatalab.com
Раскл Николас, научный сотрудник, Centro de Investigación Científica y de Educación Superior de Ensenada (Baja California, México), Scopus Author ID: 23006078500, nrascle@cicese.mx

Кубряков Арсений Александрович, старший научный сотрудник, отдел дистанционных методов исследования ФГБУН ФИЦ МГИ (299011, Россия, Севастополь, ул. Капитанская, д. 2), кандидат физико-математических наук, ORCID ID: 0000-0003-3561-5913, arskubr@mhiras.ru

Станичный Сергей Владимирович, старший научный сотрудник, заведующий отделом дистанционных методов исследований, ФГБУН ФИЦ МГИ (299011, Россия, г. Севастополь, ул. Капитанская, 2), кандидат физико-математических наук, ORCID ID: 0000-0002-1033-5678, stanichny@mhi-ras.ru