The Collagen-like Protein gp12 Is a Temperature-dependent Reversible Binder of SPP1 Viral Capsids*

Mohamed Zairi1,†, Asita C. Stiege2,†, Naima Nhiri3, Eric Jacquet1‡, and Paulo Tavares1‡,‡

From the †Unité de Virologie Moléculaire et Structurale, UPR 3296 CNRS, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France, the ‡Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany, the ‡Institut de Chimie des Substances Naturelles, UPR 2301 CNRS, Centre de Recherche de Gif, Gif-sur-Yvette, France, and the †IMAGIF CTPF and qPCR Platform, Centre de Recherche de Gif, 91190 Gif-sur-Yvette, France

Background: Auxiliary proteins bind to viral capsid surfaces, forming symmetric arrays of polypeptides.
Results: Collagen-like gp12 binds cooperatively to multiple sites of the bacteriophage SPP1 capsid in a reversible fashion.
Conclusion: The collagen fold and interaction with the capsid determine gp12 thermostability and folding/association properties.
Significance: Gp12 represents a novel type of viral capsid binders characterized by thermostwitchable properties.

Icosahedral capsids of viruses are lattices of defined geometry and homogeneous size. The (quasi-)equivalent organization of their protein building blocks provides, in numerous systems, the binding sites to assemble arrays of viral polypeptides organized with nanometer precision that protrude from the capsid surface. The capsid of bacterial virus (bacteriophage) SPP1 exposes, at its surface, the 6.6-kDa viral polypeptide gp12 that binds to the center of hexamers of the major capsid protein. Gp12 forms an elongated trimer with collagen-like properties. This is consistent with the fold of eight internal GXY repeats of gp12 to build a stable intersubunit triple helix in a prokaryotic setting. The trimer dissociates and unfolds at near physiological temperatures, as reported for eukaryotic collagen. Its structural organization is reacquired within seconds upon cooling. Interaction with the SPP1 capsid hexamers strongly stabilizes gp12, increasing its \(T_m \) to 54 °C. Above this temperature, gp12 dissociates from its binding sites and unfolds reversibly. Multivalent binding of gp12 trimers to the capsid is highly cooperative. The capsid lattice also provides a platform to assist folding and association of unfolded gp12 polypeptides. The original physicochemical properties of gp12 offer a thermostwitchable system for multivalent binding of the polypeptide to the SPP1 capsid surface.

Viruses are infectious agents characterized by an extracellular state, the virus particle or virion, which protects the viral genome from environmental aggression and ensures its highly efficient delivery to host cells for virus multiplication. The viral particle is a protein nanocage, sometimes combined with a lipid membrane, surrounding the nucleic acid molecule(s) that code(s) for the hereditary genetic information of the virus. A large number of prokaryotic and eukaryotic virions have an icosahedral protein shell of homogeneous size, termed the capsid. Its self-assembly exploits (quasi-)equivalent interactions between a large number of identical protein subunits (1–3). Viruses with long dsDNA genomes, like tailed bacterial viruses (bacteriophages or phages) and the eukaryotic pathogen herpesvirus, first assemble an icosahedral protein lattice, the procapsid (4, 5) (Fig. 1). This structure is formed by major capsid protein subunit hexamers found at the planar faces of the icosahedron and by pentamers that define its angular vertices (2, 3). Viral DNA is then translocated to the procapsid interior through a specialized portal vertex by a powerful nanomotor, leading to tight packing of dsDNA in the capsid interior. During DNA packaging, the capsid undergoes a major conformational change called expansion. It leads to a gain in volume, stability, and, in numerous viral systems, to the creation of capsid auxiliary protein binding sites (3, 6–9). Those proteins cement structurally weak capsid points by establishing additional interhexamer bonding or attach to the center of hexamers (9–16). In both cases, they establish a symmetrically organized array of polypeptides at the capsid surface. In contrast to the conserved fold of the major capsid protein of the tailed bacteriophage-herpesviruses lineage (3, 5), their auxiliary proteins can have diverse length, structure, and biochemical properties (9–16).

The high fidelity of viral capsids assembly yields a population of homogeneous, robust particles. Their symmetric elements are arranged accurately with nanometer precision, offering excellent systems to engineer versatile enzymatic or bioactive nanoparticles (17–21). This can be efficiently achieved by molecular biology and chemical approaches (22, 23) that rely on detailed knowledge of the molecular structure of the virion and of the biochemical behavior of its components.

SPP1, like all other tailed bacterial viruses and herpesviruses, assembles a procapsid that serves as a container for subsequent viral DNA packaging (Fig. 1). The structure is composed of 415 subunits of the major capsid protein gp13, organized following quasi-equivalent interaction rules to build an icosahedron with a triangulation number \((T) \) of 7 (16, 24). DNA pumping to the procapsid interior through a specialized portal vertex is accompanied by a major rearrangement of the capsid lattice that acquires a clear icosahedral outfit, increasing in diameter more than 50 Å (24, 25). This expansion process creates the binding
A Collagen-like Binder of the SPP1 Viral Capsid

site for gp12 (Fig. 1) (26) at the center of each of the 60 gp13 hexamers in the icosahedral lattice (16). Viral DNA packaging is followed by binding of a tail to the DNA-filled capsid, yielding the infectious virion (Fig. 1) (27, 28). To uncover the molecular principles of how auxiliary proteins interact with the surfaces of viral particles, we investigated the properties of gp12. This 6.6-kDa polypeptide is shown to adopt a collagen-like fold with the remarkable property of binding reversibly in a temperature-dependent fashion to its 60 sites at the SPP1 capsid surface.

EXPERIMENTAL PROCEDURES

Cloning Procedures and Creation of the Gene 12 Knockout SPP1 Strain

Gene 12 was cloned into plasmid pRSET A (Invitrogen) for protein overproduction in Escherichia coli using the strategy described by Lurz et al. (29). The resulting plasmid, pBT453, codes for tag-gp12, in which the gp12 amino terminus is fused in-frame to a 36-amino acid-long tag that includes a hexahistidine sequence. To engineer a cleavage site for tobacco etch virus (TEV) protease (ENLYFQG) between the tag and the gp12 amino acid sequence, gene 12 was amplified from pBT453 DNA with oligonucleotides TGS (TAAGGTACCGGATCCAGAATACTGCTACTTTCAAGGGCATGTCTAAGCGTATACAGTCGTTCC; the BamHI site is underlined, the sequence coding for a TEV protease cleavage site is italicized, and the beginning of gene 12 is shown in boldface) and TGA (ATACGTAGGACAGCTGCAATTATATATGCGTATACCGCGTTTTCTTGCG; the BamHI site is underlined, the gene 12 complementary coding sequence is shown in boldface, and stop codons are double-underlined). The PCR fragment was then cleaved with BamHI-PstI and cloned into pRSET A, generating pMZ1.

Plasmid pBT450 was constructed in two steps. First a SflI fragment bearing genes 15 and 16 of SPP1 (coordinates 8830–9787 of the SPP1 genome sequence, GenBank™ accession number X97918 (30)) was treated with a Klenow fragment to produce blunt ends and cloned in the Smal site of pBluescript SK- (Stratagene). Secondly, the resulting plasmid was used to clone a NruI-EarI blunt-ended fragment (coordinates 6699–8778 of the SPP1 sequence), bearing genes 11–13, in the HincII site of the pBluescript SK- polylinker. The cloning strategy generated a polycistronic unit composed of SPP1 genes 11–13 and 15 and 16 under the control of a T7 promoter. A DNA fragment containing gene 11 and the beginning of gene 12 was produced by cleavage of pBT450 with BglII, treated with T4 polymerase to produce blunt ends, and digested with Asp718. This fragment was cloned into pBT450 previously digested with SmaI and KpnI to generate pBT451. In pBT451, gene 12 is disrupted by an out-of-frame deletion between its internal BglII and SmaI sites (coordinates 7618–7646 of the SPP1 sequence). The E. coli-Bacillus subtilis shuttle vector pHP13 (31) cut with PstI-Sall was used for cloning a PstI-Xhol fragment of pBT451 spanning genes 11–13, determining gp12, whereas SPP1sus9 and SPP1sus9del12 were used to produce tailless DNA-filled capsids with (capsid H) and without gp12 (capsid HA12). Gp12 trimers are also highlighted in red.

Production and Purification of SPP1 Virions and DNA-filled Capsids

Procapsids, DNA-filled capsids, and viral particles were produced and purified as described previously (16, 33). Procapsids were kept in buffer R (50 mm potassium glutamate, 10 mm EDTA, 50 mm Hepes-KOH (pH 7.6), and 1 mm PMSF, added...
freshly (33)), whereas all other structures were stored stably and manipulated in TBT buffer (100 mM NaCl, 10 mM MgCl₂, and 100 mM Tris-Cl (pH 7.5)). All interactions of tag-gp12/gp12 with viral structures were carried out in TBT buffer.

The concentration of capsid physical particles was estimated on the basis of their DNA content. Ultraviolet absorbance spectra of capsid suspensions were used to assess sample purity and the value at 260 nm to determine DNA concentration. This value was then used to calculate the concentration of capsid physical particles according to the following equation:

\[T = \frac{(c \cdot N_A) / (n_{bp} \times 660)}{ } \]

(Eq. 1)

where \(T \) is the concentration of physical particles/liter, \(c \) is the DNA concentration in grams/liter, \(N_A \) is the Avogadro constant, and \(n_{bp} \) is the average number of base pairs per SPP1 DNA molecule. The SPP1-packaged molecules were considered to have an average length of 45.9 kbp (16).

Production and Purification of Tag-gp12

Tag-gp12 was overproduced in *E. coli* BL21 (DE3) (pBT453). Cells were grown at 37 °C in Luria broth medium supplemented with 100 μg/ml ampicillin. An overnight culture was diluted 50-fold, grown to an optical density at 600 nm between 0.6 and 0.8, induced with isopropyl-β-D-galactopyranoside to a final concentration of 1 mM and shaken for 3 h. Cells were harvested (30,000 g, 30 min, 4 °C), resuspended in buffer A (500 mM NaCl, 10 mM imidazole, and 50 mM NaH₂PO₄ (pH 8.0)) supplemented with protease inhibitor mixture (Completeᵀᴹ EDTA-free, Roche Applied Science) and disrupted by sonication on ice using three cycles of 2 min each spaced by 2-min pauses (Vibra Cell 72405, Fisher Bioblock, Illkirch, amplitude 60, pulse 3, 30–40 watt). The total soluble proteins extract obtained after centrifugation (30,000 × g, 1 h, 4 °C) was filtered through a 0.22-μm membrane. The filtrate was then loaded on a 5-m HisTrapᵀᴹ HP metal affinity column (GE Healthcare) coupled to an ÄKTA purification system (GE Healthcare). A three-step gradient was applied at 16 °C: 2% buffer B (500 mM NaCl, 500 mM imidazole, and 50 mM NaH₂PO₄ (pH 8.0)) for a first wash, 10% buffer B for a second wash, and 100% buffer B for elution. The tag-gp12 peak fractions were pooled and run through a preparative size exclusion chromatography column (HiLoad 26/60 Superdexᵀᴹ 200pg, GE Healthcare) pre-equilibrated in buffer C (500 mM NaCl and 50 mM NaH₂PO₄ (pH 8.0)) at 16 °C coupled to an ÄKTA purification system. Aggregates and contaminants were found mostly in the void volume, whereas tag-gp12 eluted as a single peak. Tag-gp12 was obtained at a yield of 3 mg/g wet cell weight and was more than 95% pure, as judged from SDS-PAGE analysis. Purified protein was stored in buffer C and dialyzed against other buffers immediately before use. Protein concentration was estimated using the Bio-Rad protein assay following the instructions of the manufacturer. Tag-gp12 was used to immunize rabbits following the protocols established for protein (pC)CAT (34) to obtain anti-tag-gp12 polyclonal serum.

TagTEV-gp12 was produced and purified according to the same protocol. The purified protein was then incubated at 16 °C for 4 h with TEV protease at a ratio of 1:20 (w/w). To remove the tag, the digestion product was loaded onto a 1-ml HisTrapᵀᴹ HP metal affinity column. Gp12 was eluted with 80 mM imidazole. The tag and the TEV protease eluted at 500 mM imidazole. The purified gp12 carries an additional glycine at its amino terminus, preceding the initial methionine residue.

Mass Spectrometry

The collagenase digestion of tag-gp12 followed by trypsinization was stopped by adding solid guanidine hydrochloride to a final concentration of 6 M, followed by incubation at 90 °C for 15 min. Peptides were precipitated at −20 °C over a weekend by adding 5 volumes of cold acetone. Peptides were recovered by centrifugation, dried, and resuspended in ammonium carbonate at 1 μg/μl. They were then analyzed by MALDI-TOF and nano-LC-MS/MS.

MALDI Peptide Mass Fingerprinting—Peptides (0.5 μl) were mixed with an equal volume of either α-cyano-4-hydroxycinnamic acid (10 mg/ml and 50% CH₃CN, Sigma-Aldrich) or 2,5-dihydroxybenzoic acid (10 mg/ml and 20% CH₃CN, Sigma-Aldrich). Peptide mixtures were analyzed by MALDI-TOF (Voyager-DESTR, Applied Biosystems) after external calibration. Crystals were obtained using the dried droplet method, and 500 MALDI mass spectra were averaged per spot. Mass spectrometry measurements were carried out at a maximum accelerating potential of 20 kV in positive reflectron mode. Peak lists were generated by Data Explorer software (Applied Biosystems), and processed data were submitted to the FindPept tool (available on the Expasy portal) using the following parameters: data bank gp12 protein; mass tolerance, 300 ppm; digest reagents, none.

Nano-LC-ESI-MS/MS Analyses—The peptide mixture was then analyzed with the Q/TOF Premier mass spectrometer (Waters) coupled to a nanoRSLC chromatography unit (Dionex) equipped with a trap column (Acclaim PepMap100 C18, 75 μm inner diameter × 2 cm, 3 μm, nanoViper) and an analytical column (Acclaim PepMapRSLC C18, 75 μm inner diameter × 15 cm, 2 μm, 100 Å, nanoViper). The loading buffer was H₂O/CH₃CN/TFA (98/2/0.5%). Buffer A and B were H₂O/HCOOH (0.1%) and CH₃CN/HCOOH (0.1%), respectively. A 2–50% B gradient was set for 40 min with a flow rate of 300 nl/min. Data-dependent scanning was applied to generate MS/MS spectra with a collision energy ramp of 15–40 volts. Standard MS/MS acquisitions were performed on the top of the three most intense parent ions of the previous MS scan. Raw data were processed with ProteinLynx Global Server (Waters). Peptide identification was achieved using the Mascot software with the following parameters: data bank gp12 protein; peptide tolerance, 15 ppm; fragment tolerance, 0.1 Da; digest reagent, none.

Digestion of Tag-gp12 with Collagenase

Collagenase VII from *Clostridium histolyticum* (8.8 units/mg) was purchased from Sigma-Aldrich. A stock solution was prepared at 1 mg/ml in buffer D (250 mM NaCl, 10 mM CaCl₂, 10 mM 2-mercaptoethanol, and 20 mM HEPES-Na (pH 7.6)) and diluted 10-fold before use. Tag-gp12 (50 μg) was digested with 0.23 μg of collagenase for 4 h at 16 °C. The same result was obtained by digestion for 30 min at 37 °C. Digestion products...
A Collagen-like Binder of the SPP1 Viral Capsid

were analyzed on SDS-PAGE gel stained with Coomassie Blue and by mass spectrometry as described above.

Analytical Size Exclusion Chromatography (SEC)

100 μl of purified tag-gp12 at 2 mg/ml was run at 16 °C using a flow of 0.5 ml/min on a Superdex™ 200 10/300 GL (GE Healthcare) column equilibrated in buffer C (500 mM NaCl and 50 mM Na₂HPO₄ (pH 8.0)) and coupled to an ÄKTA purification system. Column calibration and Stokes radius estimation were carried out as described previously (35).

Analytical Ultracentrifugation

Analytical ultracentrifugation was carried out on a Beckman Optima XL-A ultracentrifuge (Beckman Coulter, Palo Alto, CA) equipped with 12-mm central cells on an ANTi-60 rotor. Runs were performed in buffer C at 16 °C and monitored by absorption at 280 nm. The tag-gp12 partial specific volume was analyzed using the SEDFIT software, assuming a non-interacting species model.

Equilibrium sedimentation was performed at 16,300 × g using protein loading concentrations of 0.3, 0.5, and 0.8 mg/ml. Data were analyzed using SEDFIT for average mass determination.

CD Measurements

CD measurements were carried out on a Jasco J810 spectropolarimeter equipped with a Peltier temperature controller. The protein, at 2 mg/ml, was dialyzed against either buffer C or TBT buffer and loaded to a 0.1-mm path length quartz cell. Spectra at fixed temperatures were recorded at an equilibrium of between 190–260 nm every 0.2 nm using a bandwidth of 1 nm and a scanning speed of 20 nm/min. Each spectrum was an accumulation of five spectra after baseline correction using the buffer spectrum as blank. Thermal transition profiles were incubated separately for 1 h at 16 or 45 °C for the desired reaction time according to the experimental schematic in Fig. 7, left panels. Samples were analyzed by FBTSA or incubated with 1 μg of trypsin at 45 °C for 30 min to proteolyse free tag-gp12 (not associated with capsids). Care was taken to avoid any cooling below 45 °C for samples whose mixtures were incubated at this temperature before FBTSA or trypsination. This was necessary to prevent rapid refolding/reassociation of free tag-gp12, which would facilitate assembly of free trimers and their binding to capsids. Capsids in trypsinated samples were separated on 0.8% agarose gels prepared in TAMg running buffer was TAMg, and the applied electric field intensity was 70 mA. Gels were stained with ethidium bromide in TAE buffer (40 mM Tris-acetate supplemented with 1 mM EDTA) in which EDTA led to disruption of capsids in situ, rendering viral DNA accessible to ethidium bromide binding, a more sensitive detection method than protein staining with Coomassie Blue.
Bioinformatics

Protein secondary structure predictions were carried out using Jpred (38), and the three-dimensional structure was predicted using HHpred (39).

RESULTS

Gp12 Has a Collagen-like Sequence Motif—The SPP1 capsid auxiliary protein gp12 is a 64-amino acid-long polypeptide with a molecular mass of 6613 Da and a theoretical isoelectric point of 8.14. Its carboxyl terminus is predicted to form α-helices, whereas the central part features eight GXY repeats (Fig. 2A) (40). The repeated GXY motif is a sequence signature of collagen-like proteins in which three polypeptides are brought together to form an intermolecular, left-handed triple helix (41, 42).

Gp12 Is an Elongated Trimer in Solution—The gp12 amino terminus was fused to a 36-amino acid-long peptide including a hexahistidine tag to enhance protein production and allow easy purification. The 10.7-kDa recombinant protein (tag-gp12) eluted from a Superdex 200 analytical SEC column as a single...
symmetric peak (Fig. 2B). Its hydrodynamic radius \(R_h \) on the basis of a protein calibration data set was 35 Å. The gp12 elongated shape observed in electron microscopy reconstructions of the bacteriophage SPP1 capsid (16) rendered SEC not suitable to estimate its native mass (43). The shape and oligomerization state of tag-gp12 were therefore investigated by analytical ultracentrifugation at 16 °C. Tag-gp12 behaved as a homogeneous species with a sedimentation coefficient of 1.7 S \((s_{20,w} = 2.2 S) \) (Fig. 2C) at all loading concentrations tested in sedimentation velocity experiments (0.5–2 mg/ml). Sedimentation equilibrium centrifugation was then used for shape-independent measurement of the tag-gp12 mass (Fig. 2D). The determined molecular mass (31,270 ± 590 Da) was only 3% lower than the theoretical mass of a tag-gp12 trimer. Using this experimental value and the sedimentation coefficient, we calculated a friction ratio \(f/f_0 \) of 1.79, showing that tag-gp12 is an elongated trimer in solution.

Gp12 Has a Collagen-like Fold—To probe that the \((GXY)_8\) repeats of tag-gp12 form a collagen-like triple helix, the protein was challenged with collagenase VII, which cuts the triple helix at defined environments (44). The control SPP1 proteins gp6 and H16, a tagged form of gp16 (45), were insensitive to proteolysis (not shown), whereas tag-gp12 was cleaved (Fig. 2E, inset). MALDI-TOF (Fig. 2E) and nano-LC-MS/MS (Fig. 2F) identified the cut between Gln-19 and Gly-20 of tag-gp12 (Fig. 2A, arrow). This site, found at the beginning of the GXY repeat region, matches one of the expected cutting sites for collagenase VII (44).

Collagen left-handed triple helices are also characterized by a CD signature with a deep minimum of negative ellipticity at around 200 nm and a slightly positive ellipticity maximum at around 220 nm (46). The CD spectrum of native tag-gp12 had a strong minimum at 200 nm and a second minimum at 222 nm, where the ellipticity of \(\alpha \)-helices masked the positive signal of the collagen helix (Fig. 3A). This profile strongly supports that tag-gp12 combines a collagen-like fold with \(\alpha \)-helical regions.

Gp12 Dissociates and Unfolds Reversibly at Physiological Temperature—CD spectra showed a loss of tag-gp12 structure between 30 and 45 °C (Fig. 3A). The CD spectra from 45–80 °C were characteristic of an unfolded polypeptide chain. Fast (\(<1\) min) or progressive cooling of the sample back to 10 °C led to complete recovery of the secondary and quaternary structure content, with a CD spectrum identical to the one of the native protein (Fig. 3A, pink dotted line).

To further analyze the dissociation-unfolding and refolding-reassociation transitions, a CD experiment was monitored at 200 nm (corresponding to the collagen-like helix minimum) by challenging the sample against a heating cycle from 10 – 60 °C (unfolding) and back to 10 °C (refolding) (Fig. 3B). Tag-gp12 showed a sharp transition with a \(T_m \) of 41 °C in the protein-high salt buffer and of 38 °C in a low monovalent salt solution with magnesium (TBT buffer that stabilizes SPP1 viral particles) (Fig. 3B). Unfolding and refolding followed the same kinetic profile upon heating and cooling (Fig. 3B). The thermal stability

\[T_m \text{ monitored as in Fig. 3B. The dotted vertical lines in A and B are a visual aid to show the transition midpoints (} T_m \text{) in buffer C and TBT. The experiment was repeated twice independently.} \]
study of tag-gp12 by CD revealed a unique transition with complete loss of secondary structure and dissociation of the collagen-like triple helix (Fig. 3, A and B). The behavior of tag-free gp12 was identical to tag-gp12 (data not shown and Fig. 3C), revealing that the tag influenced neither the protein CD signature nor its dissociation/unfolding and refolding/reassociation properties. The SEC profiles of native and unfolded-refolded tag-gp12 were also indistinguishable, with a single symmetric peak of trimers and no detectable intermediate states (Fig. 2B). The complete population of refolded tag-gp12, therefore, retrieved its initial RH.

To define whether the tag-gp12 polypeptide chains physically separate upon thermal denaturation, we carried out a chimerization experiment between tag-gp12 (10.7 kDa subunit mass) and tag-free gp12 (6.6 kDa subunit mass). The hexahistidine-tagged tag-gp12 bound strongly to a metal affinity column and eluted only in the presence of 500 mM imidazole (Fig. 4, first panel). Gp12 also adsorbed to the column matrix but was completely released by a wash with 100 mM imidazole (Fig. 4, second panel). Loading of a tag-gp12:gp12 mixture kept at 16 °C led to differential elution of gp12 at 100 mM imidazole and of tag-gp12 at 500 mM imidazole (Fig. 4, third panel). When the tag-gp12:gp12 mixture was denatured at 60 °C and reassociated by cooling to 16 °C, there was a fraction of non-tagged gp12 that coeluted with tag-gp12 at 500 mM imidazole (Fig. 4, fourth panel). This behavior is explained by the presence of heterotrimers in which the tag-gp12-tagged subunit(s) led to retention of the non-tagged gp12 form present in the heterotrimer. The formation of chimeras showed that the gp12 and tag-gp12 trimers physically dissociated upon thermal denaturation and that reassociation led to the formation of heterotrimers, although homotrimerization appeared to be favored when comparing the intensity of bands in Fig. 4, fourth panel.

Binding of gp12 to the Capsid Lattice Is Reversible and Increases the Trimer Thermal Stability of 20 °C—To characterize the interaction of gp12 with SPP1 capsids, we generated viral particles (SPP1 del12) and tailless expanded capsids (H/H9004 12) lacking gp12 by genetic engineering (Figs. 1 and 5A). These particles bound tag-gp12 in vitro, whereas wild-type virions whose capsid carries gp12 did not (Fig. 5B). Therefore, tag-gp12 interacts strongly and exclusively with specific sites in the SPP1 capsid lattice without any detectable exchange between free (tag-gp12) and capsid-bound (gp12) subunits.
The FBTSA method allows monitoring independently of the thermal denaturation of gp12 and of the major capsid protein gp13 (16). The assay quantifies binding of the Sypro Orange dye to exposed hydrophobic regions of proteins challenged to a temperature gradient (47). In an aqueous environment, Sypro Orange has a low quantum yield, and in protein solutions, the dye access to non-polar environments is normally shielded by the protein fold. Protein thermal denaturation exposes hydrophobic regions where the dye binds, resulting in strong fluorescence emission. Isolated tag-gp12 exhibited the opposite behavior. An increase of temperature led to progressive loss of fluorescence, followed by a sharp transition at a T_m of $33.4 \pm 0.7 \degree C$ in TBT buffer (Fig. 6A, red curve), which is 4.6 °C lower than the unfolding T_m determined by CD (Fig. 3B). Gp12 without a tag showed the same behavior. The profile of this transition revealed that Sypro Orange has one or several binding sites in native tag-gp12 that were destroyed when the protein started to lose its secondary and quaternary structure. Such a rare property provided a specific signature for tag-gp12 unfolding.

The FBTSA profile of infectious SPP1 phage particles (Fig. 6A, green curve) was marked by two transitions similar to the ones found for the tailless capsids (data not shown) (16), showing that only the capsid proteins of phage particles gave a detectable signal under our experimental conditions. Both structures carry gp12 (Fig. 5A). The first transition, at $53.6 \pm 0.2 \degree C$, displayed the tag-gp12 signature and was absent from particles lacking gp12 (SPP1del12, Fig. 6A, blue curve). Mixing of SPP1del12 phages with tag-gp12 in vitro restored the signal at 53.6 °C, whereas the excess of free protein led to the typical T_m transition at 33.4 °C (Fig. 6A, violet curve). The identical T_m of gp12 and tag-gp12 was 20.2 °C higher than the one observed for isolated tag-gp12, showing that binding to the capsid lattice led to a major stabilization of the gp12 trimer. The second signal transition of viral particles with or without gp12 was characterized by a strong increase of fluorescence at 75 ± 0.3 °C because of cooperative denaturation of gp13.

The distinct melting temperatures of isolated tag-gp12 (33.4 °C), of capsid-bound tag-gp12 or gp12 (53.6 °C), and of major capsid protein (75 °C) allowed us to follow the behavior of the three species in gp12-capsid binding experiments. At 40 °C, capsid-bound gp12 was easily distinguished from isolated tag-gp12 because it was the only folded gp12 form at this temperature, whereas, at 60 °C, only the capsid protein was stable (Fig. 6B). Isolated tag-gp12, wild-type SPP1, and SPP1del12 particles were submitted to cycles of heating to 60 °C and cooling to 15 °C. The experiment was finished with a denaturation step to 99 °C. The pink discontinuous line shows the temperature variation (coordinates are shown on the right). D, the same samples and a mix of SPP1del12 virions with a 5.5 molar excess of tag-gp12 (violet curve) challenged with two cycles of heating to 60 °C and cooling to 40 °C. Experiments were repeated at least twice independently.
tag-gp12 exhibited a loss of signal upon heating, and its partial reacquisition when cooling to 15 °C showed that the fluorophore binding site(s) was/were not completely restored in the tag-gp12 population (Fig. 6C, red curve) in spite of the fact that the protein fully reacquired its quaternary structure CD signature (Fig. 3). The temperatures of transition were remarkably reproducible, revealing that tag-gp12 underwent dissociation/unfolding and folding/reassociation cycles. Gp12 bound to SPP1 capsids exhibited a transition corresponding to a T_m of 53.6 °C (Fig. 6C, continuous green curve). The process was reversible upon cooling and reheating, except for a slight loss of fluorescence from one cycle to another. Therefore, gp12 dissociated/unfolded reversibly from wild-type capsids and maintained its binding activity to the capsid.

To assess whether the capsid lattice influences gp12 refolding/reassociation, the cycling experiment was repeated with cooling steps to 40 °C (15–60–40–60–40–99 °C program, Fig. 6D), a temperature at which free tag-gp12 remained unfolded after the first heating step (Fig. 3D, red curve). Gp12 bound to phage capsids kept its signature (T_m of 53.6 °C) in heating cycles to 60 °C. Cooling to 40 °C led to recovery of some fluorescence signals (Fig. 6D, green curve) but significantly less than when the temperature was reduced to 15 °C (Fig. 6C). Therefore, at 40 °C, a subpopulation of gp12 rebound to phage capsids, yielding folded trimers that fixed Sypro Orange. Addition of a 5.5-fold molar excess of exogenous tag-gp12 to wild-type capsids restored most of the gp12 signal associated with capsids after each 60–40 °C cycle (Fig. 6D, violet curve), showing that tag-gp12 had efficiently replaced gp12, which left its capsid...
sites upon denaturation. Restoration of the tag-gp12 signal at 40 °C occurred exclusively in presence of the capsid lattice, showing that this structure promoted tag-gp12 refolding and reassociation.

Native and Unfolded gp12 Binds to SPP1 Capsids in a Distinct Way—The finding that both native and unfolded tag-gp12 bound to SPP1 phage capsids (Fig. 6, C and D) suggested two distinct types of interaction, prompting their characterization. Tailless capsids without gp12 (HΔ12) and purified tag-gp12 were preincubated separately at 16 or 45 °C, followed by mixing at different ratios for interaction at the two temperatures (Fig. 7). Reactions were then incubated at 45 °C with trypsin, which degraded free gp12/tag-gp12 (Fig. 8A). The tag of capsid-bound tag-gp12 was prone to trypsin attack, but the gp12 moiety attached to the capsid remained intact (Fig. 8B), explaining the lower electrophoretic mobility of capsids loaded with tag-gp12 not treated with trypsin when compared with those that were trypsinated (Fig. 7, A and B). This step prevented subsequent interactions of free tag-gp12 with capsids during downstream sample manipulation at room temperature and separation by gel agarose electrophoresis. SPP1 capsids with gp12 (H capsids) or HΔ12 loaded with tag-gp12 had a slower electrophoretic mobility than capsids lacking gp12 (Fig. 7), most likely because gp12/tag-gp12 reduces the capsid surface electronegative charge. In contrast, gp12 does not have a major effect on capsid diameter, which is almost identical in H and HΔ12 (~610 Å (16)).

When HΔ12 capsids were mixed at 16 °C with increasing amounts of tag-gp12 native trimers, the capsid species shifted from tag-gp12-free to capsids fully loaded with tag-gp12 (Fig. 7, A, B, and D). At a ratio (R = 60 tag-gp12 trimers/capsid) of 0.5, most capsids lacked tag-gp12, but a minority was already saturated with tag-gp12, whereas, at R = 1.5, almost all capsids were decorated with tag-gp12. Species with intermediate electrophoretic mobility were poorly detected, revealing that capsids partially occupied with tag-gp12 were a minor population, even at limiting amounts of tag-gp12 (e.g. R = 0.5). We attribute this behavior to high cooperative binding of tag-gp12 trimers to its 60 sites in the SPP1 capsid.

To characterize the interaction of unfolded tag-gp12 with the capsid, the two species were preheated individually at 45 °C and mixed at the same temperature (Fig. 7C). A significant excess of tag-gp12 per capsid (R between 4 and 13) was needed to promote a change of capsid electrophoretic mobility. Their discrete bands showed a migration pattern that progressed from the capsids lacking gp12 band behavior (R < 3) to the full tag-gp12-loaded capsid band (R ≥ 13) (Fig. 7C). Similar results were obtained when the interaction reaction was prolonged overnight at 45 °C (not shown). Furthermore, preheating of capsids at 16 °C or 45 °C showed that temperature did not affect their binding properties (Fig. 7). Stable interaction of unfolded tag-gp12 with HΔ12 capsids therefore required an excess of tag-gp12 that bound in an inefficient manner, leading to a population of capsids whose binding sites are only partially occupied by tag-gp12 at molar ratios as high as R = 11 (Fig. 7, C and E). The increase of occupancy with the rise of R correlated with an augmentation of the tag-gp12 signal in FBTSa experiments, consistent with the formation of tag-gp12 trimers in the capsid lattice (Fig. 9).

DISCUSSION

The 6.6-kDa gp12 polypeptide of bacterial virus SPP1 was shown here to build an elongated trimer. Its properties indicate
the presence of an intermolecular collagen-like triple helix that correlates with presence of eight GXY repeats at the center of the gp12 sequence, revealing a modular organization in which the collagen-like elongated segment connects two short amino and carboxyl terminus domains. Collagens are well studied protein components of the extracellular matrix of animals. They are characterized by the presence of 4-hydroxyproline at position Y of the GXY triplet, which is considered a major determinant of collagen stability (42). However, stable triple helices are built in synthetic model peptides by repeats longer than (GXY)₉, showing that their association requires no amino acid posttranslational modifications (48). This property is consistent with the presence of collagen-like segments in prokaryote systems reported for streptococcal surface proteins (49, 50) and tail fibers of bacterial viruses (51), where several dozens of GXY triplets assemble long, flexible filaments. The remarkable feature of gp12 is that its short (GXY)₈ stretch confers to the overall polypeptide a collagen-like behavior with a characteristic loss of quaternary structure, corresponding to a sharp transition at temperatures around 40 °C, like animal collagen (52, 53), that is rapidly and fully reversible upon cooling (Fig. 3). The process is accompanied by physical separation of the polypeptide chains that can reassociate into heterotrimers (Fig. 4). The unusual binding of Sypro Orange dye to folded gp12 resulting in fluorescence emission reveals the presence of an accessible hydrophobic binding environment in the trimer that is lost at the beginning of denaturation, correlating with a fast drop of fluorescence (Fig. 6). The gp12 native structure is, therefore, mainly stabilized by its intermolecular collagen-like triple helix rather than by a buried hydrophobic core that would become exposed for high-affinity binding of Sypro Orange upon unfolding, in contrast to the usual behavior of proteins (54).

The interaction of gp12 with SPP1 capsids does not change its capacity to bind Sypro Orange (Fig. 6A). However, it increases the protein gp12 thermal stability by 20.2 °C, to 53.6 °C. Such stability is not limited anymore by the collagen fold intrinsic stability, being strongly enhanced by gp12 binding to the capsid lattice. This stabilization mechanism ensures the perennial association of gp12 to viral particles that are liberated to the environment when infected cells lyse. Native trimers bind cooperatively to their 60 sites in the capsid, as best appreciated when gp12 is provided in limiting concentrations to interact with H₁₂ capsids. A mixed population of capsids whose majority is either fully loaded with gp12 trimers or devoided of this auxiliary protein is observed under such conditions (Figs. 7, A, B, and D, and 10A). We hypothesize that initial binding of one trimer to a capsid hexamer creates a tectonic effect that spreads across the overall icosahedral shell, promoting a conformational change of other hexamers that strongly favors interaction with gp12 trimers. Such a maturation event uncovers a novel dynamic role of the expanded capsid surface that has previously been viewed as a rather passive lattice of independent binding sites for auxiliary viral polypeptides. The rearrangement resulting from the cross-talk between the 60 gp12 attachment sites is subtle, leading to no detectable
A Collagen-like Binder of the SPP1 Viral Capsid

difference when the structure of capsids before and after gp12 binding is compared at nanometer resolution (16).

Denatured gp12 also binds to capsid lattices (Fig. 7, C and E), leading to assembly of folded trimers when present in molar excess, as assessed by Sypro Orange binding experiments (Fig. 9). Therefore, the SPP1 capsid provides a platform for attachment of unfolded gp12 polypeptide chains. When three chains meet at a gp13 hexamer interaction site, their physical proximity likely provides a window of opportunity to twist together to trimerize at a temperature (45 °C) at which free gp12 chains remain fully unstructured (Fig. 10B). If unfolded gp12 is provided at less than a 13-fold excess relative to the number of its capsid binding sites, the reaction yields a relatively homogeneous population of capsids but those are only partially filled with gp12 (Fig. 7, C and E). Such behavior, resulting from the complexity of the interaction, contrasts with the very efficient cooperative binding of folded trimers.

CONCLUSIONS

The precise architecture of viral particles achieved by tightly regulated assembly of a few different polypeptides is an excellent system to understand how the polypeptide fold and how their physicochemical properties are exploited to build megadalton biomolecular assemblies of precise architecture with exquisite efficiency. The small capsid auxiliary protein gp12 of bacterial virus SPP1 exhibits novel and noteworthy properties. It uses a collagen-like fold to assemble an elongated trimer whose thermal stability properties render it a temperature-dependent binder to the capsid multivalent icosahedral platform. Cooperative binding ensures very efficient full occupancy of gp12 sites in the capsid (Figs. 7, A, B, and D, and 10A), providing experimental evidence that an initial interaction of the viral auxiliary protein exerts long-range effects in the capsid lattice, favoring attachment to its other sites in the capsid. These properties of gp12, combined with its capacity to undergo fast reversible cycles of dissociation-unfolding and refolding-reassociation to capsids, offer a versatile system to engineer the SPP1 viral particle.

Acknowledgments—We thank Anja Dröge for generously communicating the initial identification of GXY repeats in the gp12 sequence. We also thank Manuela Argentini and David Cornu for mass spectrometry analyses (mass spectrometry platform of IMAGIF); Christophe Velours and Karine Madiona for CD and analytical ultracentrifugation analyses (biophysics platform of IMAGIF); and Isabelle Auzat, Sandrine Brasilès, Charlène Cornilleau, Stéphane Roche, and Stéphane Bressanelli for advice and experimental training (Unité de Virologie Moléculaire et Structurale).

REFERENCES

1. Caspar, D. L., and Klug, A. (1962) Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24
2. Baker, T. S., Olson, N. H., and Fuller, S. D. (1999) Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63, 862–922
3. Prasad, B. V., and Schmid, M. F. (2012) Principles of virus structural organization. Adv. Exp. Med. Biol. 726, 17–47
4. Casjens, S., and King, J. (1975) Virus assembly. Annu. Rev. Biochem. 44, 555–611
5. Prevelige, P. E., and Fane, B. A. (2012) Building the machines: scaffolding protein functions during bacteriophage morphogenesis. Adv. Exp. Med. Biol. 726, 325–350
6. Ren, Z. J., Lewis, G. K., Wingfield, P. T., Locke, E. G., Steven, A. C., and Black, L. W. (1996) Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci. 5, 1833–1843
7. Yang, F., Forrer, P., Dauter, Z., Conway, J. F., Cheng, N., Cerrettii, M. E., Steven, A. C., Plückthun, A., and Wlodawer, A. (2000) Novel fold and capsid-binding properties of the λ-phage display platform protein gpD. Nat. Struct. Biol. 7, 230–237
8. Roos, W. H., Radtké, K., Knesmeier, E., Geertsema, H., Sodeik, B., and Wuite, G. J. (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc. Natl. Acad. Sci. U.S.A. 106, 9673–9678
9. Parent, K. N., Khayat, R., Tu, L. H., Sukhanovsky, M. M., Cortines, J. R., Teschke, C. M., Johnson, J. E., and Baker T. S. (2010) P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks. Structure 18, 390–401
10. Tang, L., Gilcrease, E. B., Casjens, S. R., and Johnson, J. E. (2006) Highly discriminatory binding of capsid-cementing proteins in bacteriophage L. Structure 14, 837–845
11. Effantin, G., Boulanger, P., Neumann, E., Letellier, L., and Conway, J. F. (2006) Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. J. Mol. Biol. 361, 993–1002
12. Lander, G. C., Evilevitch, A., Jeembaeva, M., Potter, C. S., Carragher, B., and Johnson, J. E. (2008) Bacteriophage λ stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM. Structure 16, 1399–1406
13. Yang, Q., Maluf, N. K., and Catalano, C. E. (2008) Packaging of a unit-length viral genome: the role of nucleotides and the gpD decoration protein in stable nucleocapsid assembly in bacteriophage λ. J. Mol. Biol. 383, 1037–1048
14. Li, Q., Shivachandra, S. B., Zhang, Z., and Rao, V. B. (2007) Assembly of the small outer capsid protein, Soc, on bacteriophage T4: a novel system for high density display of multiple large anthrax toxins and foreign proteins on phage capsid. J. Mol. Biol. 370, 1006–1019
15. Qin L., Fokine, A., O’Donnell, E., Rao, V. B., and Rossmann M. G. (2010) Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages. J. Mol. Biol. 395, 728–741
16. White, H. E., Sherman, M. B., Brasiles, S., Jacquet, E., Seavers, P., Tavares, P., Orlova, E. V. (2012) Capsid structure and its stability at the late stages of bacteriophage SPP1 assembly. J. Virol. 86, 6768–6777
17. Lucon, J., Qazi, S., Uchida, M., Bedwell, G. J., LaFrance, B., Prevelige, P. E., Jr., and Douglas, T. (2012) Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nat. Chem. 4, 781–788
18. O’Neill, A., Prevelige, P. E., Basu, G., and Douglas T. (2012) Coconfinement of fluorescent proteins: spatially enforced communication of GFP and mCherry encapsulated within the P22 capsid. Biomacromolecules 13, 3902–3907
19. Clark, J. R., and March, J. B. (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol. 24, 212–218
20. Fischlechner, M., and Donath, E. (2007) Viruses as building blocks for materials and devices. Angew. Chem. Int. Ed. Engl. 46, 3184–3193
21. Tao, P., Mahalingam, M., Marasa, B. S., Zhang, Z., Chopra, A. K., and Rao, V. B. (2013) In vitro and in vivo delivery of genes and proteins using the bacteriophage T4 DNA packaging machine. Proc. Natl. Acad. Sci. U.S.A. 110, 5846–5851
22. Steinmetz, N. F., Lin, T., Lomonossoff, G. P., and Johnson, J. E. (2009) Structure-based engineering of an icosahedral virus for nanomedicine and nanotechnology. Curr. Top. Microbiol. Immunol. 327, 23–58
23. Strable, E., and Finn, M. G. (2009) Chemical modification of viruses and virus-like particles. Curr. Top. Microbiol. Immunol. 327, 1–21
24. Dröge, A., Santos, M. A., Steige, A. C., Alonso, J. C., Lurz, R., Trautner, T. A., and Tavares, P. (2000) Shape and DNA packaging activity of bacteriophage SPP1 procapsid: protein components and interactions during
A Collagen-like Binder of the SPP1 Viral Capsid

25. Oliveira, L., Tavares, P., and Alonso, J. C. (2013) Headful DNA packaging: bacteriophage SPP1 as a model system. *Virology Res.* **173**, 247–259

26. Isidro, A., Henriques, A. O., and Tavares, P. (2004) The portal protein plays essential roles at different steps of the SPP1 DNA packaging process. *Virology* **322**, 253–263

27. Plisson, C., White, H. E., Auzat, I., Zafarani, A., Sá-José, C., Huhillier, S., Tavares, P., and Orlov, E. V. (2007) Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. *EMBO J.* **26**, 3720–3728

28. Auzat, I., Dröge, A., Weise, F., Lurz, R., and Tavares, P. (2008) Origin and function of the two major tail proteins of bacteriophage SPP1. *Mol. Microbiol.* **70**, 557–569

29. Lurz, R., Orlov, E. V., Günther, D., Dube, P., Dröge, A., Weise, F., van Heel, M., and Tavares, P. (2001) Structural organisation of the head-to-tail interface of a bacterial virus. *J. Mol. Biol.* **310**, 1027–1037

30. Alonso, J. C., Lüder, G., Stiege, A. C., Chai, S., Weise, F., and Trautner, T. A. (1997) The complete nucleotide sequence and functional organisation of *Bacillus subtilis* bacteriophage SPP1. *Gene* **204**, 201–212

31. Haima, P., Bron, S., and Venema, G. (1987) The effect of restriction on shotgun cloning and plasmid stability in *Bacillus subtilis* Marburg. *Mol. Gen. Genet.* **209**, 335–342

32. Dröge, A., and Tavares, P. (2000) *In vivo* packaging of DNA of the *Bacillus subtilis* bacteriophage SPP1. *J. Mol. Biol.* **296**, 103–115

33. Becker, B., de la Fuente, N., Gassel, M., Günther, D., Tavares, P., Lurz, R., Trautner, T. A., and Alonso, J. C. (1997) Head morphogenesis genes of the *Bacillus subtilis* bacteriophage SPP1. *J. Mol. Biol.* **268**, 822–839

34. Isidro, A., Santos, M. A., Henriques, A. O., and Tavares, P. (2004) The high-resolution functional map of bacteriophage SPP1 portal protein. *Mol. Microbiol.* **51**, 949–962

35. Poh, S. L., el Khadali, F., Berrier, C., Lurz, R., Melki, R., and Tavares, P. (2008) Oligomerization of the SPP1 scaffolding protein. *J. Mol. Biol.* **378**, 551–564

36. Philo, J. S. (1997) An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. *Biophys. J.* **72**, 435–444

37. Jakutyte, L., Baptista, C., Sá-José, C., Daugelavičius, R., Carballido-López, R., and Tavares, P. (2011) Bacteriophage infection in rod-shaped gram-positive bacteria: evidence for a preferential polar route for phage SPP1 entry in *Bacillus subtilis*. *J. Bacteriol.* **193**, 4893–4903

38. Cole, C., Barber, J. D., and Barton, G. J. (2008) The Ipre3d secondary structure prediction server. *Nucleic Acids Res.* **36**, W197–W201

39. Söding, J., Biegert, A., and Lupas, A. N. (2005) The HHpred interactive server for protein homology detection and structure prediction. *Nucleic Acids Res.* **33**, W244–W248

40. Dröge, A. (1998) *Capsidmorphogenese des Bakteriophagen SPP1*. Doctoral thesis, Technische Universität Berlin, Berlin, Germany

41. Bella, J., Eaton, M., Brodsky, B., and Berman, H. M. (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution. *Science* **266**, 75–81

42. Bella, J., Brodsky, B., and Berman, H. M. (1995) Hydration structure of a collagen peptide. *Structure* **3**, 893–906

43. Cabré, F., Canela, E. L., and Canela, M. A. (1989) Accuracy and precision in the determination of Stokes radii and molecular masses of proteins by gel filtration chromatography. *J. Chromatogr.* **472**, 347–356

44. Seifert, S., and Gallop, P. M. (1962) Collagenase from *Clostridium histolyticum*: collagen + H₂O → peptides gelatin + H₂O → peptides. *Methods Enzymol.* **5**, 659–665

45. Orlov, E. V., Gowen, B., Dröge, A., Stiege, A., Weise, F., Lurz, R., van Heel, M., and Tavares, P. (2003) Structure of a viral DNA gatekeeper at 10 Å resolution by cryo-electron microscopy. *EMBO J.* **22**, 1255–1262

46. Wallace, B. A., and Janes, R. W. (2001) Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. *Curr. Opin. Chem. Biol.* **5**, 567–571

47. Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N., and Nordlund, P. (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. *Anal. Biochem.* **357**, 289–298

48. Persikov, A. V., Ramshaw, J. A., and Brodsky, B. (2005) Prediction of collagen stability from amino acid sequence. *J. Biol. Chem.* **280**, 19343–19349

49. Xu, Y., Keene, D. R., Buñicki, J. M., Höök, M., and Lukomska, S. (2002) Streptococcal Sc1 and Sc2 proteins form collagen-like triple helices. *J. Biol. Chem.* **277**, 27312–27318

50. Mohs, A., Silva, T., Yoshida, T., Amin, R., Lukomska, S., Inouye, M., and Brodsky, B. (2007) Mechanism of stabilization of a bacterial collagen triple helix in the absence of hydroxyproline. *J. Biol. Chem.* **282**, 29757–29765

51. Ghosh, N., McKillop, T. J., Jowitt, T. A., Howard, M., Davies, H., Holmes, D. F., Roberts, I. S., and Bella J. (Jun 6, 2012) Collagen-like proteins in pathogenic *E. coli* strains. *PLoS ONE* **7**, e303782

52. Leikina, E., Mertts, M. V., Kuznetsova, N., and Leikin, S. (2002) Type I collagen is thermally unstable at body temperature. *Proc. Natl. Acad. Sci. U.S.A.* **99**, 1314–1318

53. Cao, H., and Xu, S.-H. (2008) Purification and characterization of type II collagen from chick sternal cartilage. *Food Chem.* **108**, 439–445

54. Kranz, J. K., and Schalk-Hihi, C. (2011) Protein thermal shifts to identify low molecular weight fragments. *Methods Enzymol.* **493**, 277–298