Coprinuslactone protects the edible mushroom *Coprinus comatus* against biofilm infections by blocking both quorum-sensing and MurA

Maira P. de Carvalho¹, Giuseppe Gulotta², Matheus W. do Amaral¹, Heinrich Lünsdorf³,

Florenz Sasse⁴, Wolf-Rainer Abraham¹∗

¹Chemical Microbiology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany; ²Microbial Interactions and Processes, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany; ³Central Facility for Microscopy, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany; ⁴Chemical Biology, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany

Correspondence: W.-R. Abraham, Research Group Chemical Microbiology, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany, phone: +49-531-6181 4300, fax: +49-531-6181 4699, E-mail: wolf-rainer.abraham@helmholtz-hzi.de

Running title: Coprinuslactone protects against biofilms

Originality-Significance Statement. The colonization of fruiting bodies was used as a guideline for the search of biofilm controlling compounds in clinical applications.

Conflict of interest: The authors declare that there are no conflicts of interest
Abstract

Pathogens embedded in biofilms are involved in many infections and are very difficult to treat with antibiotics because of higher resistance compared to planktonic cells. Therefore, new approaches for their control are urgently needed. One way to search for biofilm dispersing compounds is to look at defense strategies of organisms exposed to wet environments, which makes them prone to biofilm infections. It is reasonable to assume that mushrooms have developed mechanisms to control biofilms on their sporocarps (fruiting bodies). A preliminary screening for biofilms on sporocarps revealed that ectomycorrhizal fungi (living symbiotic with plant roots) harbored the highest bacterial diversity, but saprophytic ones (feeding on dead organic matter) showed few or no bacteria on their sporocarps. From the edible mushroom *Coprinus comatus* where no bacteria on the sporocarp could be detected (3R,4S)-2-methylene-3,4-dihydroxypentanoic acid 1,4-lactone, named coprinuslactone, was isolated. Coprinuslactone interfered with quorum-sensing in *Pseudomonas aeruginosa*, where it also reduced the formation of the pathogenicity factors pyocyanin and rhamnolipid B. Furthermore, it inhibited UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), essential for bacterial cell wall synthesis. These two modes of action ensure the inhibition of a broad spectrum of pathogens on the fruiting body but may also be useful for future clinical applications.

Keywords: biofilm, mushroom, quorum-sensing, MurA, chemical ecology
Introduction

In nature most bacteria are settled in biofilms, a self-organizing and dynamic lifeform where the cells are embedded in polymers representing a protected means of growth that allows survival in hostile environments (Hall-Stoodley et al., 2004). Biofilms are involved in up to 80% of all microbial infections in humans (Davies, 2003), from rhinosinusitis and urinary tract infections to infection on all type of implants (Burmolle et al., 2010). Biofilms are typically connected with chronic conditions (Hentzer & Givskov, 2003) and can cause severe complications in infections (Herwaldt et al., 2006). For the treatment of biofilm infections on implants antibiotic treatment at elevated doses is the first approach to control the infection, however, sometimes substitution of the implant is the only solution which is accompanied by complication risks of the surgery and high costs (Fux et al., 2005). Staphylococcus spp. followed by Pseudomonas aeruginosa is usually related with many of these infections (Costerton et al., 1999). When organized in biofilms bacterial cells resist clearance by the host immune system and display highly increased resistance to antimicrobial agents (Olsen, 2015). This protection, however, is reversible and lost when the biofilm is dissolved and planktonic cells are set free.

Due to the failure of available methods to treat biofilms infections, new therapies which specifically prevent biofilm formation or actively eradicate already established biofilms are urgently needed (Ranall et al. 2012, Estrela et al., 2009). One promising target for these new drugs is quorum-sensing (QS), the communication of microbial cells to form and maintain biofilms (Schauder & Bassler 2001). Interfering with bacterial communication pathways leads to reduced biofilm formation and attenuates expression of virulence factors (Rasmussen et al., 2006). Because quorum quenchers only stop
biofilm formation but do not kill the bacteria it is assumed that there is a lower pressure for the development of resistances, however, some resistance has been reported (Garcia-Contreras et al., 2015). Some fungal metabolites capable of inhibiting QS and biofilm formation are already known, e.g. patulin and penicillic acid from *Penicillium* sp. active against *Pseudomonas aeruginosa* biofilms (Rasmussen et al., 2005) or cis-cyclo (leucyl-tyrosyl) from a marine *Penicillium* sp. targeting *Staphylococcus epidermidis* biofilms (Scopel et al., 2013).

One way to search for quorum-quenching or biofilm dissolving compounds is to look at organisms which are exposed to wet environments making them prone to biofilm infections. As it is reasonable to assume that these organisms have developed several strategies to control their biofilms we decided to look for fungi, used to have their sporocarps (fruiting body) exposed to humid air, as source for novel quorum-sensing inhibitors. A preliminary screening for biofilms on sporocarps revealed that ectomycorrhizal fungi (living symbiotic with plant roots) harbored the highest bacterial diversity, but saprophytic ones (feeding on dead organic matter) showed little or no association with bacteria. Screening of several of these fungi for antimicrobial and antibiofilm activities demonstrated the ability of saprophytic fungi to modulate biofilm colonization on their sporocarps (de Carvalho et al., 2015). This approach led to the isolation of (3R,4S)-2-methylene-3,4-dihydroxypentanoic acid 1,4-lactone, named here coprinuslactone, from the fruiting bodies of the edible mushroom *Coprinus comatus*. This compound, known before only as a synthetic intermediate, was also found in vegetative mycelia and culture media extracts of isolates. Its biological activities and its mode of action are described here together with its proposed ecological role.
Results

Identification of the active compound

Extracts obtained after 42 days of *C. comatus* cultivation showed antimicrobial activity against all tested bacteria as listed in Materials and Methods. The active compound was purified, yielding approximately 2 mg L\(^{-1}\) in BAF medium or 100 mg kg\(^{-1}\) of mycelia or fruiting bodies. Mass spectra showed a peak at \(m/z\) 129 [M + H]\(^{+}\). \(^1\)H NMR analysis revealed an exo-methylene moiety at \(\delta_H\) 6.34 and 5.98, a doublet of a methyl group at \(\delta_H\) 1.44 and two protons at \(\delta_H\) 4.45 and 4.34. Using \(^1\)H-\(^{13}\)C-correlated NMR (Fig. 1A) spectra, structure elucidation led to its identification as 2-methylene-3,4-dihydroxypentanoic acid 1,4-lactone 1. *Trans*-configuration of the compound was deduced from the resonances of the methyl group at \(\delta_H\) 1.44 instead of 1.40 and of 4-H at \(\delta_H\) 4.34 instead at 4.7-5.0 reported for the *cis*-isomer (Barbier & Benezra, 1983). Absolute configuration was determined from the negative sign of the optical rotation to be 3R,4S as reported for this compound prepared by asymmetric synthesis (Bernardi *et al.*, 1985). Compound 1 was therefore identified as (3R,4S)-2-methylene-3,4-dihydroxypentanoic acid 1,4-lactone and named coprinuslactone after the producing fungus.

Together with 1 a second metabolite was isolated with [M+H]\(^{+}\) of 131 and the composition C\(_6\)H\(_{10}\)O\(_3\). Its NMR spectra proved this compound to be dihydrocoprinuslactone 2. The relative configuration of the ring substituents were determined by comparison with NMR resonances of known compounds. NMR data of (2R,3R,4S)- and
(2S,3R,4S)-2-methyl-3,4-dihydroxypentanoic acid 1,4-lactone, 5S,3’R,4’S,5’S- and 5S,3’S,4’S,5’S-hydroxyancepsenolide as well as (2S*,3R*,4S*)-2-n-hexadecyl-3,4-dihydroxypentanoic acid 1,4-lactone (Lorenzo et al., 2006) revealed that a trans-configuration of the 3-OH to the 4-methyl group causes a shielding of about δ_H 0.3-0.7 ppm and a deshielding of about δ_C 5 ppm compared to a cis-arrangement. 1H NMR and optical rotation data of both the (2R,3R,4S)-trans,trans- and (2S,3R,4S)-cis,trans-coprinuslactone reported by Bernardi et al. 1985 led to the identification of 2 as (2S,3R,4S)-2-methyl-3,4-dihydroxypentanoic acid 1,4-lactone (Fig. 1). The dihydro-derivative 2 of coprinuslactone, not yet known as natural product, did not show any bioactivity in our tests.

Coprinuslactone does not prevent biofilm formation but dissolves existing ones

Optical density (OD$_{600}$) measurements indicated a minimal inhibitory concentration (MIC) of coprinuslactone of 150 µg mL$^{-1}$ for Pseudomonas aeruginosa PA14. However, after 24 h incubation in fresh LB agar 294 CFU were counted indicating a bacteriostatic effect. At the concentrations of 300 µg mL$^{-1}$ and 600 µg mL$^{-1}$, coprinuslactone acted as an antibiotic and no CFUs formed on the plates. Coprinuslactone had also moderate MICs against several bacteria from 37.25 to 150 µg mL$^{-1}$ (Tab. S1) but no activity was observed against yeasts. To verify quorum quenching properties of coprinuslactone, serial dilutions started at 75 µg mL$^{-1}$ because within this concentration range, there was no effect on bacterial growth, as shown in Fig. 2.

After establishing MICs for P. aeruginosa PA14 and S. aureus DSM 1104 biofilm inhibition at subtoxic concentrations was evaluated. For both strains biofilm formation
was not inhibited when coprinuslactone was employed below its MIC. This was different for *in vitro* established biofilms where 100 µg mL\(^{-1}\) of coprinuslactone were effective in damaging 90% ± 10% of the staphylococcal biofilms. When 50 µg mL\(^{-1}\) were used, still 65% ± 15% of the cells were stained red, demonstrating that even at sub-MIC-concentrations, coprinuslactone could cause cellular disturbance (Fig. 3 A-D). A similar effect was seen for *P. aeruginosa* PA14 where treatments with the established MIC of coprinuslactone (150 µg mL\(^{-1}\)) were effective in damaging 99.9% ± 0.3% of the *in vitro* developed biofilms with a remaining biofilm volume of only 1% ± 0.5% compared to the control. When biofilms were treated with 50% of the MIC, still a severe damage was found with a remaining biofilm volume of 7.5 ± 1% and 1% ± 0.6% of living bacterial cells. Reducing the treatment to 25% of MIC still decreased the biofilm volume to 15% ± 2% but 88% ± 5% of the cells remained alive (Fig. 3 E-H).

Coprinuslactone has two modes of action

As the activity of coprinuslactone against established biofilms had been demonstrated, its influence on *quorum sensing* systems was tested. When the *Escherichia coli* mutant MT102 (pSB403) - a reporter strain for *lux* genes of *Vibrio fischeri*, responding to short chain HSLs - was treated with 62.5 µg mL\(^{-1}\) of coprinuslactone antibacterial activity was observed. Nevertheless, 3.75 ± 0.25 µg mL\(^{-1}\) of coprinuslactone showed a complete abolishment of the QS response of the autoinducer 3-oxo-C\(_6\)-HSL. The *Pseudomonas putida* mutant F117 (pKR-C12) was less sensitive to coprinuslactone where 30 µg mL\(^{-1}\) decreases the QS response of 3-oxo-C\(_{12}\)-HSL by 80% ± 5%. Again, 62.5 µg mL\(^{-1}\) showed antibacterial activity. Having shown that coprinuslactone interferes at subtoxic concentrations with quorum-sensing in Gram-negative bacteria its effects on the
production of pathogenicity factors of *P. aeruginosa* PA14 was assessed. 75 µg mL\(^{-1}\) of coprinuslactone were able to reduce the production of pyocyanin by 80% ± 3% and of rhamnolipid B by 100%. When 37.5 µg mL\(^{-1}\) of coprinuslactone were applied, 48% ± 5% of pyocyanin production was inhibited, as well as 97.4% ± 2% of rhamnolipid B and even treatments using 18.75 µg mL\(^{-1}\) of coprinuslactone allowed the production of only 44% ± 10% of rhamnolipid B but pyocyanin production reached almost 80% compared to the untreated control.

After establishing the interference of coprinuslactone with the quorum-sensing mechanisms in Gram-negative cells we determined its effects on cell morphology. Cells of *P. aeruginosa* PA14, treated with coprinuslactone, showed a high amount of intracellular electron dense bodies (Fig. S1, arrows 1-5; 1D, arrows 2 and 3), which in general appeared to be in contact with the cytoplasmic membrane. These electron dense bodies were far less frequent in the methanol treated controls (Fig. S1, arrows 2 and 3). The appearance of extracellular fibrillar matter, similar to that seen in the chromosome area (Fig. S1, arrow 1), could be observed, undoubtedly representing leaking DNA. Coprinuslactone inhibited also the growth of *S. aureus* which cannot be explained by interference with its quorum-sensing system. Treatment of *Staphylococcus aureus* DSM 1104 with coprinuslactone caused a reduction of the cell diameter by 31% compared to the methanol treated control (Fig. S2 arrow 1). Interestingly, only very few cells were observed in the division state (Fig. S2, arrow 2). A myelin-like organization of the cytoplasmic membrane was strictly correlated with the lactone influence (Fig. S2, arrows 2 and 3).
These ultrastructural features, especially the leakage of DNA from the cells, indicated an influence of coprinuslactone on the integrity of the cell membrane. To elucidate this further we were looking at the effects of coprinuslactone on the activity of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), catalyzing the first step in peptidoglycan biosynthesis (Brown et al., 1995). Because the MurA gene is conserved across bacteria (Gautam et al., 2011) MurA of P. aeruginosa PA14 was cloned, overexpressed, purified and incubated with several concentrations of coprinuslactone. From these experiments an IC$_{50}$ (inhibitory concentration showing 50% of inhibition) of 10 µg mL$^{-1}$ was determined for coprinuslactone which was well below the MIC for P. aeruginosa PA14.

Coprinuslactone has low cytotoxicity

Above 3 µg ml$^{-1}$ coprinuslactone lowered cell viability in the MTT assay but even at 30 µg ml$^{-1}$ it did not kill all cells. Immunofluorescence images of treated cells stained with anti-α-tubulin and with DAPI revealed an increase of multinucleated cells (Fig. 3 I, arrows 1 and 2). Nevertheless, the majority of the cells still presented a normal microtubular distribution and nuclear morphology (Fig. 3 K, arrow 3) corroborating the finding from the MTT assay of cytostatic but not cytotoxic effects.

Discussion

Our working hypothesis was that organisms exposed to a wet environment are used to be threatened by biofilm infections and have therefore developed strategies to control
biofilm formation on their bodies. This hypothesis was confirmed by a preliminary screen for biofilms on basidiocarps collected in Northern Germany which revealed that ectomycorrhizal fungi harbored the highest biofilm diversity, but saprophytic ones showed little or no association with bacteria (de Carvalho et al., 2015). Because no bacteria could be detected on the basidiocarps of *Coprinus comatus* collected at different sites in Germany we expected an antimicrobial compound being produced by the fungus. *C. comatus*, an edible mushroom of cosmopolitan occurrence and cultivated in China and Taiwan (Ju et al., 2011), is known as a medicinal fungus. A number of biological activities, including anticancer (Zaidman et al., 2008), antioxidant (Li et al., 2010; Tsai et al., 2009), nematocidal (Luo et al., 2004) and analgesic activities (Ren et al., 2012) have been reported. *C. comatus* fruiting bodies also display antimicrobial activity (Stojković et al., 2013; Vamanu, 2013) but the underlying chemical compounds have not yet been identified. Activity-directed fractionation led to the isolation of (3R,4S)-2-methylene-3,4-dihydroxypentanoic acid 1,4-lactone, named coprinuslactone. It was detected both in its fruiting bodies contributing to the activity of this medicinal fungus, in mycelium and in fermentation broths of different isolates. Alpha-methylene-gamma-butyrolactones are mainly known from plants (Kitson et al., 2009). Among the few reports from fungi are 2-methyl-2-pentene-4-olide 3 (Fig. 1 C), a flavor compound of *C. comatus* (Dijkstra & Wiken, 1976), and (3S,4R)-3-carboxy-2-methylene-heptan-4-olide 4 from the plant pathogen *Lasiodiplodia theobromae* (He et al., 2004).

Coprinuslactone has bacteriostatic properties against both Gram-positive and Gram-negative bacteria. Because Gram-negative and Gram-positive bacteria have rather distinct quorum-sensing mechanisms the activity of coprinuslactone could not only be
explained by quorum-quenching and another mode of action had to be suspected. Membrane damage, causing cytoplasmic leakage, was clearly observed in *P. aeruginosa* PA14 micrographs. For *S. aureus* DSM 1104, myelin-like structures could be seen in treated cells, also observed after lysozyme treatment (Wecke *et al.*, 1982). Lysozyme catalyses hydrolysis of the β-1-4 bond between *N*-acetylmuramic acid and *N*-acetylglucosamine, the building blocks of the bacterial cell wall peptidoglycan (Chipman & Sharon, 1969). This could imply interference of coprinuslactone with peptidoglycan synthesis.

To confirm this hypothesis we looked for related compounds and their molecular targets. Closely related to coprinuslactone are tulipalin A 5 and B 6 (Fig. 1 C), first isolated from *Tulipa gesneriana* (Bergman *et al.*, 1967; Tschesche *et al.*, 1969). Tulipalins have antimicrobial activities and are recognized as chemical self-defense compounds, acting against microbial infections and insect predations (Shigetomi *et al.*, 2010). The prime target of tulipalin B is MurA, (Shigetomi *et al.*, 2013). Because of its essential role in bacterial cell wall synthesis this enzyme has been evaluated as a target for antibacterial drugs, however, fosfomycin is still the only MurA inhibitor in clinical use (Bachelier *et al.*, 2006; Mendgen *et al.*, 2010). Moreover, MurA appears to be upregulated in *E. coli* and *Streptococcus suis* biofilms compared to planktonic cells, suggesting a possible role in biofilms resistance against antibiotics (Schembri *et al.*, 2003; Wang *et al.*, 2012). Congruously, the MurA-blocker fosfomycin combined with antibiotics has been successfully used to treat biofilms (Anderson *et al.*, 2013). Within this work we demonstrated that coprinuslactone binds MurA, inactivating the enzyme. However, considering the ultrastuctural modifications of the bacterial cells the second proposed
mechanism of action is membrane destabilization. In this case, coprinuslactone would interact with negatively charged lipids, causing membrane permeabilization.

Not only being an inhibitor of MurA, coprinuslactone also interferes with acyl-homoserinlactone (AHL) quorum-sensing autoinducers. It was able both to damage and to disperse in vitro grown biofilms of *P. aeruginosa* PA14. Coprinuslactone inhibited both QS systems of the mutants *E. coli* MT102 (pSB403) and *P. putida* F117 (pKR-C12) revealing quorum quenching properties. It is tempting to speculate that the γ-butyrolactone moiety of coprinuslactone, closely related to homoserine lactone, interacts with the active sites of acyl-homoserine lactone receptor proteins. Although QS inhibition could be confirmed, no initial biofilm inhibition was observed and the impact of coprinuslactone on the formation of virulence factors was assessed. *P. aeruginosa* AHL-mediated QS systems control not only biofilm formation but also the expression of several virulence factors such as pyocyanin, rhamnolipid B, cyanide and superoxide dismutase (Jakobsen *et al.*., 2013). Rhamnolipid B affects polymorphonuclear leukocytes (PMNs), causing necrosis and enabling *P. aeruginosa* persistence in lungs (Jensen *et al.*, 2007). Pyocyanin alters calcium concentrations in the cytoplasmic matrix of the epithelial cells, inhibiting their ciliary activity and leading to lung damage. It was reported that pyocyanin also inhibits the expression of interleukin (IL)-2 and its receptor and stimulates IL-8 release in human epithelial cells (Fuse *et al.*, 2013).

Using HPLC-MS-MS quantification, we showed that coprinuslactone inhibits the QS products pyocyanin and rhamnolipid B in *P. aeruginosa* PA14. Working with a *P. aeruginosa* PAO1 mutant, unable to synthesize rhamnolipids, Davey *et al.*, 2003, demonstrated that those molecules regulate biofilm architecture, without affecting initial...
biofilm formation. This corroborates our data, where 3D reconstructions of the treated biofilms showed a volume decrease of approximately 85% under the influence of 0.5 MIC of coprinuslactone. Usually, a spectrophotometric method (Essar et al., 1990) is used to measure pyocyanin. Here, a more sensitive HPLC-MS-MS method for quantification in culture media was established, revealing that coprinuslactone inhibited pyocyanin production by 80% even at 0.5 MIC. This confirms a recent study where synthetic autoinducer-mimics were found to antagonize pyocyanin production, however, no structure activity relations could be established (Morkunas et al., 2012). The finding that coprinuslactone attenuated virulence factors of *P. aeruginosa* may have not only implications for the chemical ecology of the compound but also for any potential application in the treatment of biofilm infections. In this context it may be interesting that coprinuslactone also damaged *S. aureus* DSM 1104 biofilm, although no inhibition on biofilm formation was detected. Even at concentrations below the MIC this activity was observed. We hypothesize that coprinuslactone may also have an impact on virulence factors of *S. aureus* because attenuation of the prominent virulence factor α-hemolysin by a related α-methylene-γ-butyrolactone was recently reported (Kunzmann et al., 2014).

Results obtained with the impedance method assay, showed no cytotoxicity of coprinuslactone towards eukaryotic cells. Cell morphology visualized by fluorescence microscopy suggested that coprinuslactone acts as a weak cytostatic agent. Contrary to coprinuslactone, it was reported that tulipalin A, lacking both the hydroxyl- and the methyl-moiety of coprinuslactone, possesses an IC\textsubscript{50} value of 0.8 µg ml-1 (Perry & Brennan, 1997). It also causes contact allergies among workers in the tulip fields.
(Lepoittevin et al., 2009). Guinea pigs have been used for sensitization against allergenic compounds and both enantiomers of tulipalin A showed positive reactions. On the other hand, when tulipalin B and synthetic β-hydroxy-γ-methyl-α-methylene-γ-butyrollactone were evaluated, the positive reactions were enantiospecific (Papageorgiou et al., 1988).

With the data obtained within this work in combination with those reported for tulipalins some structure-activity relations can be proposed. The hydroxy group decreases the toxicity of tulipalin B and coprinuslactone against fungi and mammalian cells but increases at the same time the toxicity against bacteria. The methylene group is essential for biological activities, since (2S,3R,4S)-2-methyl-3,4-dihydroxypentanoic acid 1,4-lactone did not show any activity in the tests.

Judging from its biological activities the ecological role of coprinuslactone is the defence of the basidiocarps of C. comatus against bacteria. Its failure to block formation of biofilms and its ability to dissolve them, hints to the control of the microbial community rather than to its prevention. This is in line with similar observations on other saprophytic fungi (de Carvalho et al., 2015). Such characteristics together with its low cytotoxicity, activity against both Gram-negative and Gram-positive bacteria, and simple structure qualify coprinuslactone as a lead compound for the development of biofilm-dissolving drugs. Especially in combination with antibiotics this may be a novel route in controlling biofilm infections (Estrela & Abraham, 2010). Further investigations of its impact on mammals are needed in order to evaluate possible applications concerning biofilm infections in humans. A better knowledge on fungal interactions with their bacterial neighbours is a valuable approach to apply chemical ecology in drug discovery.
programs (Hall-Stoodley et al., 2012). An intensive search in saprophytic fungi for their biofilm modulating compounds will not only lead to a deeper understanding of the chemical ecology between fungi and their attached bacteria but also to novel secondary metabolites which may find their way into clinical applications.

Experimental procedures

Strains of microorganisms

For antimicrobial assays *Bacillus cereus* DSM 626, *Escherichia coli* DSM 498, *Micrococcus roseus* DSM 20447, *Pseudomonas aeruginosa* PA14, *Staphylococcus aureus* DSM 1104, *S. epidermidis* ATCC 35984, *Streptococcus mutans* UA159, *Candida albicans* DSM 11225, *C. guilliermondii* DSM 70052, *C. krusei* DSM 6128, *C. parapsilosis* DSM 5784, *C. tropicalis* DSM 70151, *Rhodotorula glutinis* DSM 70398 and *Yarrowia lipolytica* DSM 70561 were used, purchased from the German collection of microorganisms and cell cultures (DSMZ). Quorum-quenching was assessed using *P. putida* F117 (pKR-C12) a strain reporter for the las QS-system of *P. aeruginosa*, responding to long chain HSLs (Steidle et al., 2001) - and *E. coli* MT102 (pSB403) - a strain reporter for *lux* genes of *Vibrio fischeri*, responding to short chain HSLs (Winson et al., 1998), both kindly provided by Prof. Katharina Riedel. Rhamnolipid B and pyocyanin biosyntheses were evaluated employing *P. aeruginosa* PA14.

Isolation and identification of fungi

Coprinus comatus was collected in Braunschweig, Germany, and isolated on Potato Dextrose Agar (PDA): small tissue fragments from the inner part of the fruiting bodies were excised and placed on PDA. After mycelial development, DNA from fungal colonies
was extracted using the NucleoSpin® PlantII kit (Macherey-Nagel). Fungal primers ITS1F and ITS4 were used for PCR amplification (Bruns et al., 1990); amplicons were sequenced on an Applied Biosystems 377 genetic analyser and analyzed with Sequencher 4.10.1.

Fermentations

From Petri dishes with yeast and malt extract (YEM) agar at 22°C, 5 x 5 mm pellets of C. comatus mycelium were transferred to 100 ml Erlenmeyer flasks containing 35 ml of either biotin-aneurin-folic acid (BAF), potato dextrose (PD) or YEM broth, at pH 5.0, pH 7.0 or pH 9.0, respectively. After 14, 21, 28, 35 and 42 days of static incubation at 20°C or 25°C in the dark, the broth was filtrated, mycelia obtained from cultivation, as well as its fruiting bodies were macerated and treated with PBS buffer pH 7.0. After 1 h, pH was adjusted to 4.0, supernatants were extracted with EtOAc and tested for antimicrobial and antibiofilm activities.

Antimicrobial activity and inhibition of biofilm formation

The microdilution method was used for the determination of minimal inhibitory concentrations (MIC).

Bacteria were incubated in LB medium, at 37°C, containing serial diluted coprinuslactone, using a concentration range from 600 µg mL⁻¹ to 15 µg mL⁻¹. Bacterial growth was evaluated over 20 h, employing one OD₆₀₀ measurement each hour in a Bioscreen-C automated growth curve analysis system. Sterile LB medium was set as background. Experiments were performed in duplicate. To evaluate antibiotic or bacteriostatic effects, 10 µL culture aliquot was diluted in 90 µL of fresh LB broth and
plated in LB agar plates after OD measurements. Plates were incubated at 37°C during 24 h. Yeasts were incubated in RPMi (Sigma Aldrich) at 37°C for 24 to 48 h using the same coprinuslactone incubation range (Radetsky et al., 1986).

S. aureus DSM 1104 and *P. aeruginosa* PA14 were used in biofilm inhibition assays in 96-well plates (Falcon® Micro Test™). After overnight incubation at 37°C, bacteria were inoculated in CASO broth with the active compound (300 µg mL⁻¹ to 0.3 µg mL⁻¹, MeOH as control). Biofilms were quantified with crystal violet (Merrit et al., 2005).

Purification and identification of active compounds

Fractionation of the active extracts was carried out in a gradient with an Agilent HPLC 1200 series system (C18 analytical column Nucleosil® 125 mm x 20 mm). Solvent A: acetonitrile, solvent B: Milli-Q® water, with the gradient from 5% A at 0 min to 100% A at 15 min; UV absorbance was detected at 210, 230, 254, 260 and 400 nm; flow rate: 0.5 mL min⁻¹. Fractions were collected every 15 s in a microtiter plate, dried (N₂ stream) and then antimicrobial and biofilm inhibition tests using *P. aeruginosa* PA14 and *S. aureus* DSM 1104 were performed. The active compound was purified with the same method using a C18 column (Varian, Agilent Technologies 250 x 10 mm). Structures were elucidated by ¹H- and ¹³C-NMR including ¹H-¹H- and ¹H-¹³C-COSY, recorded on a Bruker 600 MHz spectrometer, in CD₃OD in a 5 mm tube, TMS was i. standard.

Assessment of bacterial biofilms architecture

Overnight cultures of *P. aeruginosa* PA14 and *S. aureus* DSM 1104 were adjusted to 1x10⁶ CFU mL⁻¹ in CASO broth and 200 µL aliquots/well were added to an 8-well glass chamber system for *S. aureus* DSM 1104 and an 8-well Permanox chamber (Nunc,
Thermo Fisher Scientific) for *P. aeruginosa* PA14. Chamber systems were incubated for 16 h for bacterial attachment and then washed with PBS to remove planktonic cells. Fresh CASO broth containing two-fold serial dilutions of the active compound, starting from 300 µg mL⁻¹ for *P. aeruginosa* PA14 and from 150 µg mL⁻¹ for *S. aureus* DSM 1104, were added in a final volume of 200 µL and incubated (37°C, 18-20 h, 10 µL of MeOH as control). Then, wells were washed with PBS, stained with Live/dead® BacLight™ bacterial viability kit (Invitrogen™) and finally examined under a Leica TCS SP1 confocal laser scanning microscope with 63 x 0.9 NA lenses (laser lines 488 nm and 561 nm). The thickness of *P. aeruginosa* PA14 biofilms were determined using Z-stacking, where the Z values are set for the beginning and end of a sample. Damage of the biofilm was calculated according to the area covered by green or red cells (softwares ImageJ and Fiji). Imaris was used for biofilm 3D reconstruction.

Quorum sensing inhibition

Strains F117 and MT102 were incubated overnight, 30°C, in LB broth with ampicillin or tetracycline. Cell suspensions (5 ml) were added to 20 mL of fresh media containing the homoserine lactones (HSLs), 50 nM 3-oxo-C₁₂-HSL for F117 and 100 nM of 3-oxo-C₆-HSL for MT102. One hundred µl were added with the active compound in two-fold serial dilutions, ranging from 250 µg mL⁻¹ to 0.025 µg mL⁻¹, to the wells of a black microtiter plate. Background control was fresh inoculated media without HSLs, MeOH was used as control. After 4 and 8 h of incubation fluorescence or bioluminescence was measured. QS inhibition was calculated relative to the control.

Pyocyanin and rhamnolipid B quantification
P. aeruginosa PA14 (1 x 10^8 cells) was inoculated in LB media plus two-fold serial dilutions of the active compound (300 µg mL^{-1} to 0.3 µg mL^{-1}) in a microtiter plate. MeOH was used as control. After 30 h of incubation at 37°C, 1 mL of media were extracted with EtOAc. Pyocyanin and rhamnolipid B were quantified in triplicate using HPLC-MS/MS (Agilent 1200 series system, C18 analytical column (Nucleosil® 250 x 20 mm, Macherey-Nagel). A 6460 TripleQuad with electrospray ionization (ESI) was used for mass spectrometry, under the following conditions: Solvent A: acetonitrile/formic acid (0.1 %), solvent B: Milli-Q® water/formic acid (0.1 %); gradient from 95% B at 0 min to 0% B at 15 min; flow rate: 0.8 mL min^{-1}; UV absorbance was detected at 210, 230, 254, 260 and 400 nm. Ionization was performed in the positive mode, N₂ flow 9 L min⁻¹. The target parent ions (211 m/z [M + H]^+ for pyocyanin and 652 m/z [M + H]^+ for rhamnolipid B) were selected and fragmented (30 V collision energy). The two most intense product ions (pyocyanin: 168 m/z and 77 m/z; rhamnolipid B: 217 m/z and 70 m/z) were monitored in multiple reaction monitoring (MRM) mode. Compound concentrations were calculated by the Quantitative Analysis MassHunter software (Agilent Technologies) using a pyocyanin commercial standard. Rhamnolipid B concentration was calculated relative to the control.

Transmission electron microscopy (TEM)

P. aeruginosa PA14 and S. aureus DSM 1104 were cultured in LB broth overnight at 37°C, centrifuged, cell pellets were washed with PBS and resuspended in fresh media containing the MIC of the active compound, diluted in 5 µl MeOH (controls only MeOH). After overnight incubation, cells were washed with PBS, fixed, stained (Yakimov et al.,
1998) and examined using a Libra120plus (Zeiss) TEM microscope at 120 kV acceleration voltage in the elastic brightfield mode (10 eV energy-slit width).

MurA expression - MurA inhibition assays

Plasmid pQE30TEV-120.1s, coding for a TEV (Tobacco Etch Virus) protease recognition site C-terminal of a His$_6$-Tag, was produced by PCR using vector pQE30 (Qiagen) as template (Gulotta, 2015). Endonuclease digestion of plasmids pQE30TEV-120.1s (25 µL) was achieved by using 1 µL FastDigest™ enzyme BamHI and EcoRV and 5 µL FastDigest™ Buffer (Thermo Scientific), in 50 µL for 1 h at 37°C. The digested plasmid was isolated and purified with NucleoSpin® Gel and PCR Clean-up Kit (Macheray-Nagel), following manufacturer's instructions. The plasmid was analyzed by agarose gel electrophoresis (1% wt/vol agarose), stained with ethidium bromide and visualized using a Kodak Image Station 2000 (Carestream Health).

Coding regions corresponding to the mature full length of *P. aeruginosa* PA14 Mur A proteins were amplified by PCR using specific primers (murA_FW GCGGATCCATGGATAAACTGATTATTACCGGC and murA_Rev GCGATATCTTACTAGCCCGTACGCGGCG). An initial denaturation (98°C, 30 s) was followed by 25 cycles of denaturation (98°C, 10 s), annealing (55°C, 30 s) and amplicon specific elongation (72°C, 60 s). Final elongation was carried out at 72°C for 5 min. The PCR product was cloned between the BamHI and EcoRV cleavage site of the pQE30TEV-120.1s vector. For overexpression of the Mur A protein *E. coli* M15 pRep4 (Qiagen) was transformed with the produced plasmids and cultured in Luria-Bertani medium supplemented with ampicillin 100 µg mL$^{-1}$ and kanamycin 25 µg mL$^{-1}$ to an OD$_{600}$ of 0.5. Then, protein expression was induced by adding 1 mM isopropyl β-D-
thiogalactopyranoside and the cells were cultivated overnight at 30 °C. Bacteria were harvested by centrifugation (15 min; 18.000 × g), resuspended in LEW Buffer (Macherey-Nagel) containing protease inhibitor (cOmplete, Mini, EDTA-free, Roche) and homogenized using a French Press at 1000 psi. After centrifugation (20 min, 31.000 × g) proteins were isolated from the lysate by affinity chromatography using Protino Ni-TED 2000 packed columns (Macherey-Nagel) following manufacturer's protocol.

Mur A was incubated together with the active compound, in a concentration range of 80 – 2.5 µg mL⁻¹. Enzyme inhibition was measured using Lanzetta reagent (Lanzetta et al., 1979), as described previously (Baum et al., 2001).

Cytotoxicity assays

Mouse fibroblast L-929 cells (DSMZ ACC2) were challenged with the active compound, added in two-fold serial dilutions, starting with with 30 µg mL⁻¹. Cell viability was assessed by MTT assay (Berridge et al., 2005). Cell morphology was evaluated using α-tubulin and DAPI staining, where cells were challenged with 30 µg mL⁻¹ of the active compound and visualized under a fluorescent microscope, described in detail by Schneider et al., 2012.

Acknowledgements

MPC is grateful for the German Academic Exchange Service (DAAD) scholarship and MWA for the support by a stipend of the “Science without border (Ciência sem Fronteiras)” program of Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico.
(CNPq) from Brazil and DAAD. We thank Prof. Katharina Riedel for providing the mutant strains, Mathias Müsken (Twincore, Hannover) for help in image analysis and Bettina Hinkelmann and Inge Kirsten for technical support.

Conflict of Interest
The authors declare no conflict of interest.

Supplementary information is available at the journal website.

References

Anderson, G.G., Kenney, T.F., MacLeod, D.L., Henig, N.R., and O'Toole, G.A. (2013). Eradication of *Pseudomonas aeruginosa* biofilms on cultured airway cells by a fosfomycin/tobramycin antibiotic combination. *Pathog Dis* 67: 39-45.

Bachelier, A., Mayer, R., and Klein, C.D. (2006). Sesquiterpene lactones are potent and irreversible inhibitors of the antibacterial target enzyme MurA. *Bioorg Med Chem Lett* 16: 5605-5609.

Barbier, P., and Benezra, C. (1983). Allergenic alpha-methylene-gamma-butyrolactones. Beta-hydroxy-alpha-methylene-gamma-butyrolactones. 2. Syntheses from ethyl 2-(phenylthio)propionate and alpha-acetoxy aldehydes. *J Org Chem* 48: 2705-2709.
Baum, E.Z., Montenegro, D.A., Licata, L., Turchi, I., Webb, G.C., Foleno, B.D., et al. (2001). Identification and characterization of new inhibitors of the *Escherichia coli* MurA enzyme. *Antimicrob Agents Chemother* **45**: 3182-3188.

Bergman, B.H.H., Beijersbergen, J.C.M, Overeem, J.C., and Sijpesteijn, A.K. (1967). Isolation and identification of α-methylene-butyrolactone, a fungitoxic substance from tulips. *Recl Trav Chim Pays-Bas* **86**: 709-714.

Bernardi, A., Beretta, M.G., Colombo, L., Gennari, C., Poli, G., and Scolastico, C. (1985). Synthetic opportunities offered by anti alpha-methylene-beta-hydroxy-gamma-alkoxy esters: stereoselective reactions at the double bond. *J Org Chem* **50**: 4442-4447.

Berridge, M.V., Herst, P.M., and Tan, A.S. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. *Biotechnol Ann Rev* **11**: 127-152 (2005).

Brown, E.D., Vivas, E.I., Walsh, C.T., and Kolter, R. (1995). MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in *Escherichia coli*. *J Bacteriol* **177**: 4194-4197.

Bruns, T.D., Fogel, R., White, T.J., and Palmer, J.D. (1990). Amplification and sequencing of DNA from fungal herbarium specimens. *Mycologia* **82**: 175-184.

Burmolle, M., Thomsen, T.R., Fazli, M., Dige, I., Christensen, L., Homoe, P., et al. (2010). Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections. *FEMS Immunol Med Microbiol* **59**: 324-336.

Chipman, D.M., and Sharon, N. (1969). Mechanism of lysozyme action. *Science* **165**: 454-465.
Costerton, J.W., Stewart, P.S., and Greenberg, E.P. (1999). Bacterial biofilms: a common cause of persistent infections. *Science* **284**: 1318-1322.

Davey, M.E., Caiazza, N.C., and O'Toole, G.A. (2003). Rhamnolipid surfactant production affects biofilm architecture in *Pseudomonas aeruginosa* PAO1. *J Bacteriol* **185**: 1027-1036.

Davies, D. (2003). Understanding biofilm resistance to antibacterial agents. *Nat Rev Drug Discov* **2**: 114-122.

de Carvalho, M.P., Türck, P., and Abraham, W.-R. (2015). Secondary metabolites control the associated bacterial communities of saprophytic Basidiomycotina fungi. *Microbes Environ* **30**: 196-198.

Dijkstra, F.Y., and Wiken, T.O. (1976). Studies on mushroom flavours 2. Flavour compounds in *Coprinus comatus*. *Z Lebensm Unters Forsch* **160**: 263-269.

Essar, D.W., Eberle, L., Hadero, A., and Crawford, I.P. (1990). Identification and characterization of genes for a second anthranilate synthase in *Pseudomonas aeruginosa*: interchangeability of the two anthranilate synthases and evolutionary implications. *J Bacteriol* **172**: 884-900.

Estrela, A.B., and Abraham, W.-R. (2010). Combining biofilm controlling compounds and antibiotics as a promising new way to control biofilm infections. *Pharmaceuticals* **3**: 1374-1393.

Estrela, A.B., Heck, M.G., and Abraham, W.-R. (2009). Novel approaches to control biofilm infections. *Curr Med Chem* **16**: 1512-1530.
Fuse, K., Fujimura, S., Kikuchi, T., Gomi, K., Iida, Y., Nukiwa, T. et al. (2013). Reduction of virulence factor pyocyanin production in multidrug-resistant *Pseudomonas aeruginosa*. *J Infect Chemother* **19**: 82-88.

Fux, C.A., Costerton, J.W., Stewart, P.S., and Stoodley, P. (2005). Survival strategies of infectious biofilms. *Trends Microbiol* **13**: 34-40.

García-Contreras, R., Peréz-Eretza, B., Jasso-Chávez, R., Lira-Silva, E., Roldán-Sánchez, J.A., González-Valdez, A., et al. (2015). High variability in quorum quenching and growth inhibition by furanone C-30 in *Pseudomonas aeruginosa* clinical isolates from cystic fibrosis patients. *Pathog Dis* **73**: ftv040.

Gautam, A., Rishi, P., and Tewari, R. (2011). UDP- N-acetylglucosamine enolpyruvyl transferase as a potential target for antibacterial chemotherapy: recent developments. *Appl Microbiol Biotechnol* **92**: 211-225.

Gulotta, G. (2015). Elucidating the molecular mechanisms of streptococcal M protein-induced autoimmune sequelae. PhD thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig.

Hall-Stoodley, L., Costerton, J.W., and Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. *Nat Rev Micro* **2**: 95-108.

Hall-Stoodley, L., Stoodley, P., Kathju, S., Høiby, N., Moser, C., and Costerton, J.W. (2012). Towards diagnostic guidelines for biofilm associated infections. *FEMS Immunol Med Microbiol* **65**: 127-145.
He, G., Matsuura, H., and Yoshihara, T. (2004). Isolation of an alpha-methylene-gamma-butyrolactone derivative, a toxin from the plant pathogen Lasiodiplodia theobromae. *Phytochemistry* **65**: 2803-2807.

Hentzer, M., and Givskov, M. (2003). Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. *J Clin Invest* **112**: 1300-1307.

Hertwaldt, L.A., Cullen, J.J., Scholz, D., French, P., Zimmerman, M.B., Pfaller, M.A. *et al.* (2006). A prospective study of outcomes, healthcare resource utilization, and costs associated with postoperative nosocomial infections. *Infect Cont Hosp Ep* **27**: 1291-1298.

Jakobsen, T.H., Bjarnsholt, T., Jensen, P.O., Givskov, M., and Hoiby, N. (2013). Targeting quorum sensing in *Pseudomonas aeruginosa* biofilms: current and emerging inhibitors. *Future Microbiol* **8**: 901-921.

Jensen, P.O., Bjarnsholt, T., Phipps, R., Rasmussen, T.B., Calum, H., Christoffersen, L. *et al.* (2007). Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum sensing controlled production of rhamnolipid by *Pseudomonas aeruginosa*. *Microbiology* **153**: 1329-1338.

Ju, Y.M., Hsieh, H.M., and He, X.S. (2011). *Xylaria coprinicola*, a new species that antagonizes cultivation of *Coprinus comatus* in China. *Mycologia* **103**: 424-430.

Kitson, R.R.A., Millemaggi, A., and Taylor, R.J. (2009). The renaissance of alpha-methylene-gamma-butyrolactones: new synthetic approaches. *Angew Chem Int Ed* **48**: 9426-9451.
Kunzmann, M.H., Bach, N.C., Bauer, B., and Sieber, S.A. (2014). α-Methylene-γ-butyrolactones attenuate Staphylococcus aureus virulence by inhibition of transcriptional regulation. Chem Sci 5: 1158-1167.

Lanzetta, P.A., Alvarez, L.J., Reinach, P.S., and Candia, O.A. (1979). An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100: 95–97.

Lepoittevin, J.P., Berl, V., and Giménez-Arnau, E. (2009). Alpha-methylene-gamma-butyrolactones: versatile skin bioactive natural products. Chem Rec 9: 258-270.

Li, B., Lu, F., Suo, X., Nan, H., and Li, B. (2010). Antioxidant properties of cap and stipe from Coprinus comatus. Molecules 15: 1473-1486.

Lorenzo, M., Brito, I., Cueto, M., D’Croz, L., and Darias, J. (2006). 13C NMR-based empirical rules to determine the configuration of fatty acid butanolides. Novel gamma-dilactones from Pterogorgia spp. Org Lett 8: 5001-5004.

Luo, H., Mo, M., Huang, X., Li, X., and Zhang, K. (2004). Coprinus comatus: A basidiomycete fungus forms novel spiny structures and infects nematode. Mycologia 96: 1218-1224.

Mendgen, T., Scholz, T., and Klein, C.D. (2010). Structure-activity relationships of tulipalines, tuliposides, and related compounds as inhibitors of MurA. Bioorg Med Chem Lett 20: 5757-5762.

Merritt, J.H., Kadouri, D.E., and O’Toole, G.A. (2005) Growing and analyzing static biofilms. Current Protocols in Microbiology Chapter 1: Unit 1B.
Morkunas, B., Galloway, W.R., Wright, M., Ibbeson, B.M., Hodgkinson, J.T., O’Connell, K.M.G. et al. (2012). Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem 10: 8452-8464.

Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 34: 877-886.

Papageorgiou, C., Stampf, J.L., and Benezra, C. (1988). Allergic contact dermatitis to tulips: an example of enantiospecificity. Arch Dermatol Res 280: 5-7.

Perry, N.B., and Brennan, N.J. (1997). Antimicrobial and cytotoxic phenolic glycoside esters from the New Zealand tree Toronia toru. J Nat Prod 60: 623-626.

Radetsky, M., Wheeler, R.C., Roe, M.H., and Todd, J.K. (1986). Microtiter broth dilution method for yeast susceptibility testing with validation by clinical outcome. J Clin Microbiol 4: 600-606.

Ranall, M.V., Butler, M.S., Blaskovich, M.A., and Cooper, M.A. (2012). Resolving biofilm infections: current therapy and drug discovery strategies. Curr Drug Targets 13: 1375-1385.

Rasmussen, T.B., and Givskov, M. (2006). Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296: 149-161.

Rasmussen, T.B., Skindersoe, M.E., Bjarnsholt, T., Phipps, R.K., Christensen, K.B., Jensen, P.O., et al. (2005). Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151: 1325-1340.
Ren, J., Shi, J.L., Han, C.C., Liu, Z.Q., and Guo, J.Y. (2012). Isolation and biological activity of triglycerides of the fermented mushroom of *Coprinus comatus*. *BMC Complement Altern Med* **12**: 52.

Schauder, S., and Bassler, B.L. (2001) The languages of bacteria. *Genes Dev* **15**: 1468-1480.

Schembri, M.A., Kjaergaard, K., and Klemm, P. (2003). Global gene expression in *Escherichia coli* biofilms. *Mol Microbiol* **48**: 253-267.

Schneider, T., Muthukumar, Y., Hinkelmann, B., Franke, R., Döring, M., Jacob, C., et al. (2012). Deciphering intracellular targets of organochalcogen based redox catalysts. *Med Chem Commun* **3**: 784-787.

Scopel, M., Abraham, W.-R., Henriques, A.T., and Macedo, A.J. (2013). Dipeptide cis-cyclo(leucyl-tyrosyl) produced by sponge associated *Penicillium* sp. F37 inhibits biofilm formation of the pathogenic *Staphylococcus epidermidis*. *Bioorg Med Chem Lett* **23**: 624-626.

Shigetomi, K., Olesen, S.H., Yang, Y., Mitsuhashi, S., Schönbrunn, E., and Ubukata, M. (2013). MurA as a primary target of tulipalin B and 6-tuliposide B. *Biosci Biotechnol Biochem* **77**: 2517-2519.

Shigetomi, K., Shoji, K., Mitsuhashi, S., and Ubukata, M. (2010). The antibacterial properties of 6-tuliposide B. Synthesis of 6-tuliposide B analogues and structure-activity relationship. *Phytochemistry* **71**: 312-324.
Steidle, A., Sigl, K., Schuhbegger, R., Ihring, A., Schmid, M., Gantner, S., et al. (2001). Visualization of N-acylhomoserine lactone mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. *Appl Environ Microbiol* **67**: 5761-5770.

Stojković, D., Reis, F.S., Barros, L., Glamočlija, J., Ćirić, A., van Griensven, L.J., et al. (2013). Nutrients and non-nutrients composition and bioactivity of wild and cultivated *Coprinus comatus* (O.F. Müll.) Pers. *Food Chem Toxicol* **59**: 289-296.

Tsai, S.Y., Tsai, H.L., and Mau, J.L. (2009). Antioxidant properties of *Coprinus comatus*. *J Food Biochem* **33**: 368-389.

Tschesche, R., Kämmerer, F.-J., and Wulff, G. (1969). Über Glykoside mit lacton-bildendem Aglykon, II. Über die Struktur der antibiotisch aktiven Substanzen der Tulpe (*Tulipa gesneriana* L.). *Chem Ber* **102**: 2057-2071.

Vamanu, E. (2013). *In vitro* antioxidant and antimicrobial activities of two edible mushroom mycelia obtained in the presence of different nitrogen sources. *J Med Food* **16**: 155-166.

Wang, Y., Yi, L., Wu, Z., Shao, J., Liu, G., Fan, H. et al. (2012). Comparative proteomic analysis of *Streptococcus suis* biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins. *PLoS ONE* **7**: e33371.

Wecke, J., Lahav, M., Ginsburg, I., and Giesbrecht, P. (1982). Cell wall degradation of *Staphylococcus aureus* by lysozyme. *Arch Microbiol* **131**: 116-123.

Winson, M.K., Swift, S., Fish, L., Throup, J.P., Jorgensen, F., Chhabra, S.R. et al. (1998). Construction and analysis of luxCDABE-based plasmid sensors for investigating
N-acyl homoserine lactone mediated quorum sensing. *FEMS Microbiol Lett* **163**: 185-192.

Yakimov, M.M., Golyshin, P.N., Lang, S., Moore, E.R.B., Abraham, W.-R., Lünsdorf, H., et al. (1998). *Alcanivorax borkumensis* gen. nov., sp. nov., a new, hydrocarbon degrading and surfactant producing marine bacterium. *Int J Syst Bacteriol* **48**: 339-348.

Zaidman, B.Z., Wasser, S.P., Nevo, E., and Mahajna, J. (2008). *Coprinus comatus* and *Ganoderma lucidum* interfere with androgen receptor function in LNCaP prostate cancer cells. *Mol Biol Rep* **35**: 107-117.
Figure 1 (A) HMBC (Heteronuclear Multiple Bond Correlation) spectrum from coprinuslactone 1; (B) 1H and 13C NMR data (d4-methanol) of coprinuslactone 1 and dihydro-coprinuslactone 2. In brackets: coupling constants in Hz and (C) chemical structures of: 1 - (3R,4S)-2-methylene-3,4-dihydroxypentanoic acid 1,4-lactone (coprinuslactone); 2 - (2S,3R,4S)-2-methyl-3,4-dihydroxypentanoic acid 1,4-lactone; 3 - 2-methyl-pentene-olide, isolated from C. comatus; 4 – (3S,4R)-3-carboxy-2-methylene-heptan-4-olide, isolated from L. theobromae; 5- tulipalins A and 6 tulipalins B, isolated from T. gesneriana.

Figure 2 Growth curve of Pseudomonas aeruginosa PA14 under different concentrations of coprinuslactone. Triangels: untreated culture, rhombs: 75 µg ml$^{-1}$ coprinuslactone, squares: 150 µg ml$^{-1}$ coprinuslactone. While 150 µg ml-1 coprinuslactone are bacteriostatic half of the concentration had no effect on growth.

Figure 3 Effects of different concentrations of coprinuslactone 1 on S. aureus (A-D) and P. aeruginosa (E-H) in vitro biofilms and on L-929 mouse fibroblast cells (I, K). Biofilms were stained using the Live/Dead® staining kit and visualized under a confocal laser scanning microscope. (A) S. aureus biofilm treated with MeOH (control); (B) treatment with isopropanol (negative control); (C) treatment with 50 µg mL$^{-1}$ and (D) treatment with 100 µg mL$^{-1}$ of coprinuslactone 1. (E) P. aeruginosa biofilm treated with MeOH (positive control); (F) treatment with 37.5 µg mL$^{-1}$ of coprinuslactone 1; (G) treatment with 75 µg mL$^{-1}$ and (H) treatment with 150 µg mL$^{-1}$ of coprinuslactone. L-929
mouse fibroblast cells immunofluorescence images, stained with anti-α-tubulin and DAPI. (I) cells treated with MeOH, the control; (K) cells treated with 30 μg mL⁻¹ of coprinuslactone 1. Multinucleated and normal cells can be discerned.
figure 1
figure 3