Natural compounds in the regulation of proteostatic pathways: An invincible artillery against stress, ageing, and diseases

Arun Upadhyay

Department of Biochemistry, Central University of Rajasthan, Bandar Sindari, Kishangarh, Ajmer, Rajasthan 305817, India

Received 2 September 2020; received in revised form 12 October 2020; accepted 3 November 2020

Abstract Cells have different sets of molecules for performing an array of physiological functions. Nucleic acids have stored and carried the information throughout evolution, whereas proteins have been attributed to performing most of the cellular functions. To perform these functions, proteins need to have a unique conformation and a definite lifespan. These attributes are achieved by a highly coordinated protein quality control (PQC) system comprising chaperones to fold the proteins in a proper three-dimensional structure, ubiquitin-proteasome system for selective degradation of proteins, and autophagy for bulk clearance of cell debris. Many kinds of stresses and perturbations may lead to the weakening of these protective cellular machinery, leading to the unfolding and aggregation of cellular proteins and the occurrence of numerous pathological conditions. However, modulating the expression and functional efficiency of molecular chaperones, E3 ubiquitin ligases, and autophagic proteins may diminish cellular proteotoxic load and mitigate various pathological effects. Natural medicine and small molecule-based therapies have been well-documented for their effectiveness in modulating these pathways and reestablishing the lost proteostasis inside the cells to combat disease conditions. The present article summarizes various similar reports and highlights the importance of the molecules obtained from natural sources in disease therapeutics.

Abbreviations: 17-AAG, 17-allylamino-geldanamycin; APC, anaphase-promoting complex; BAG, BCL2-associated athanogene; CAP, chaperone-assisted proteasomal degradation; CASA, chaperone-assisted selective autophagy; CMA, chaperone-mediated autophagy; CHIP, carboxy-terminus of HSC70 interacting protein; DUBs, deubiquitinases; EGCG, epigallocatechin-3-gallate; ESCRT, endosomal sorting complexes required for transport; HECT, homologous to the E6-AP carboxyl terminus; HSC70, heat shock cognate 70; HSF1, heat shock factor 1; HSP, heat shock protein; KFERQ, lysine-phenylalanine-glutamate-arginine-glutamine; LAMP2a, lysosome-associated membrane protein 2a; LC3, light chain 3; NBR1, next to BRCA1 gene 1; PQC, protein quality control; RING, really interesting new gene; Ub, ubiquitin; UPS, ubiquitin–proteasome system.

E-mail address: aarkya@gmail.com.

Peer review under responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

https://doi.org/10.1016/j.apsb.2021.01.006

2211-3835 © 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A eukaryotic cell represents a well-evolved architecture, made up of many small components working independently and coherently. A highly efficient and coordinated way of functioning of multiple subsystems towards the fitness and survival of individual cells and the organism is a highly complex biological phenomenon. It remains a great challenge to understand the intricacies and complexities of the living systems. For a very long period, the central dogma, i.e., the idea of sequential flow of information from DNA to RNA, followed by its retrieval into the form of proteins, remained a mystery for the scientists. However, the improvements in the techniques and adaptations of the newer approaches to decipher the molecular arrangements have led to a higher understanding of the fine details of the cells’ structure and functional arrangements. The involvement of biochemical and molecular biology approaches has led to the deduction of most of the metabolic pathways and their subsequent impact on the cellular physiology. At the same time, structural and computational biologists have played a critical role in providing crucial insights about the mysteries of the genetic codes, amino acid sequences, and structural plans of the proteins. Many other tools have also helped in devising various ways of visualizing and interpreting the intermolecular interactions involved in different cellular pathways and mechanisms.

With all the advancements and our current understanding of cellular architecture, we can believe that a functional proteome is a prerequisite for regulating the essential physiological pathways and maintaining good cellular health. To preserve an advantageous proteome, the cells have a well-developed protein quality control (PQC) machinery that ensures a healthy set of proteins is called proteostasis. Chaperones are the first line of molecules that orchestrate most of the physiological and metabolic tasks and are significant components of the cellular QC pathways is presented in Fig. 1. QC pathways in this section. An intracellular overview of these pathways and their subsequent impact on the cellular physiology. At the same time, structural and computational biologists have played a critical role in providing crucial insights about the mysteries of the genetic codes, amino acid sequences, and structural plans of the proteins. Many other tools have also helped in devising various ways of visualizing and interpreting the intermolecular interactions involved in different cellular pathways and mechanisms.

In the past many years, substantial efforts have been made to affect the functional efficiency of many components of the PQC systems to establish and maintain the homeostatic conditions inside cells. Small molecules obtained from plants and other natural sources may have diverse medicinal values, as they can modulate many cellular proteins and affect several associated signaling pathways. The primary sources of these molecules of immense medicinal values include bacterial or fungal isolates, extracts of marine animals or plant sources, and few specific mammalian tissue secretions, etc. The upcoming sections describe the significance of these crucial cellular subsystems in regulating multiple molecular networks. The article further provides a brief overview of the available reports describing various naturally-derived molecules with the proposed medicinal values.

2. Cellular protein quality control system

A battery of multifaceted enzymes is involved in the replication and transcriptional processes, exhibiting highly efficient proof-reading activity to preserve the genomic contents of the cell. Similarly, in association with an array of extremely proficient molecular chaperones, a well-organized ribosomal quality control (RQC) machinery maintains the robustness of the cellular proteome. Additionally, a specialized pathway of quality assurance of newly synthesized polypeptides (called ERAD) operates inside the endoplasmic reticulum and associated secretory pathways. Several molecular chaperones and additional proteins get involved in these QC pathways, regulating the folding and degradation processes inside the cells and maintain a healthy and functional cellular proteome. All the cellular proteins have their unique turnover rate regulated by the ubiquitin-proteasome system (UPS) that involves a few hundred E3 ubiquitin ligase enzymes to provide the substrate specificity.

Under some physiological conditions, the E3 ubiquitin ligases, along with few other adapter proteins, may take part in identifying and redirecting aberrant or aggregated forms of intracellular proteins to another proteolytic pathway, called autophagy, which is not as specific as UPS and is chiefly take part in the degradation of the bulk of cellular debris. Similarly, heat shock proteins (HSPs) or molecular chaperones also play crucial roles in the triage of polypeptides inside the cytoplasm by switching among different quality control pathways. Here, we are providing a very brief outline of these major QC pathways in this section. An intracellular overview of these significant components of the cellular QC pathways is presented in Fig. 1.

2.1. Molecular chaperones

Proteins are large (macro-) molecules inside the cells, which orchestrate most of the physiological and metabolic tasks and are inclusively involved in the structural organization of the cellular components. Therefore, the maintenance of their native conformations is a prerequisite for the cells to be healthy. Such a condition of a stable and healthy set of proteins is called proteostasis. Chaperones are the first line of molecules that start their work immediately after the newly synthesized peptide exits from the ribosome. Different classes of molecular chaperones have already been reported in various forms of life across different kingdoms, including prokaryotes and eukaryotes. The de novo folding of nascent polypeptides is orchestrated by family chaperones and is accomplished by multiple cycles of ‘binding and release’ in an energy-dependent manner. Folding of a proportion of proteins is governed by HSP70 and HSP40,
whereas the rests of the proteins are transferred to HSP90 proteins. These chaperones are also implicated in refolding and disaggregating aberrantly folded polypeptides, or unfolding and degrading aggregated proteins. In fact, a large number of chaperones and chaperonins are coherently involved in the folding, refolding, and disaggregation processes of all the cellular proteins. Chaperones can guide the substrate proteins towards two well-established systems of proteins degradation, i.e., UPS and autophagy. They may interact with crucial proteins implicated in these two pathways, e.g., sequestosome-1 (SQSTM1/P62), BCL2 associated athanogene 1 or 3 (BAG1/3), carboxy-terminus of heat shock cognate 70 (HSC70) interacting protein (CHIP), next to BRCA1 gene 1 (NBR1), and several E3 ubiquitin ligases. The mechanisms that are driven by chaperones in concerted action with the other pathways are chaperone-mediated autophagy (CMA), chaperone-assisted selective autophagy (CASA), and chaperone-assisted proteasomal degradation (CAP).

2.2. Autophagy

The idea of autophagy originated in the 1960s when Christian de Duve identified lysosome, an organelle that contains hydrolytic enzymes, and got involved in removing cytoplasmic waste materials. Nobel Prize in Medicine to Christian De Duve in 1974, and Yoshinori Ohsumi in 2014 for the discovery of the lysosome and detailed investigation of this degradation pathway confirm the importance of the autophagy machinery for the cells. This lysosomal degradation process targets not only the damaged organelles but also different forms of cellular proteins, either ubiquitylated or non-ubiquitylated. Multiple lysosomal degradation pathways have been identified in the past with different roles and specificities; for example, the formation of a double-membrane bound structure, called the autophagosome, is a characteristic of macroautophagy that engulfs a large amount of cellular debris along with bulky proteinaceous inclusions.

Aggrephagy is often used to describe selective targeting of bulky protein aggregates or inclusion bodies for degradation.
through macroautophagy in a process facilitated by adapter proteins, like P62 and NBR1 and light chain 3 (LC3), a phagophore membrane receptor45,46. A double-membrane structure called autophagosome is formed as a result of the closure of phagophore, which is followed by fusion with late endosomal vesicle or lysosomal sacs47,48. The contents within this newly formed structure, referred to as amphisome, are degraded by various lysosomal enzymes49,50. Similar to aggrephagy, few other pathways of selective degradation of cytoplasmic proteins are orchestrated by cytosolic chaperones HSC70 along with its regulatory co-chaperones51,52. For example, microautophagy involves selective transport of cytosolic proteins to vesicles using endosomal sorting complexes required for transport (ESCRT I and III) in the HSC70-dependent manner53,54. However, the microautophagy pathway involves invagination and tube formation, followed by vesicle expansion and degradation55,56.

Another highly selective proteolytic pathway is CMA that could be defined as a process of selective identification of the KFERQ motif-containing cellular proteins by HSC70 and co-chaperones57,58. The HSC70-conjugated substrates are internalized after binding to LAMP-2a (a lysosome-associated membrane protein) and later degraded by membrane-bound proteases59,60. BAG3-mediated selective degradation pathway, CASA is also governed by chaperones HSC70 and HSPB8, in concerted action with CHIP (an E3 ligase) that mediates the ubiquitination of the proteins before their disposal to the lysosomal compartment in a P62-dependent manner61,62.

2.3. Ubiquitin–proteasome system (UPS)

The ubiquitin–proteasome pathway is a multistep process of protein degradation, in which a series of enzymes sequentially catalyze the substrate proteolysis inside a large barrel-shaped, cylindrical protein complex called proteasome63,64. The 20S proteasome is a multi-subunit complex containing a 20S core particle and one or two regulatory 19S sub-particles to regulate the entry of the ubiquitylated chains into the core63,64. The 20S core proteasome subunit contains three types of protease activities governing the cleavage of incoming polypeptides into smaller fragments65,66. Out of four heptameric rings forming the core, two
inner rings, termed β-rings, contain the proteolytic activities of
different types: post-glutamyl peptide hydrolase (β1), trypsin (β2),
and chymotrypsin (β5)95,96. In the first ATP-dependent step, an E1
ubiquitin-activating enzyme activates the small 8 kDa ubiquitin
molecule (Ub) and forms a thioester bond11,12. A transacylation
reaction transfers this ubiquitin to the thiol group present on
another class of enzymes called E2 ubiquitin-conjugating
enzyme3,24. These thiol esters (ubiquitin-E2 conjugates) provide
ubiquitin molecules to the third class of enzymes called E3
ubiquitin ligases for tagging the substrate proteins79,80. The
C-terminus glycine of the ubiquitin polypeptide forms an iso-
peptide bond with one of the lysine residues present on the cellular
proteins86.

According to the long-standing notion, attachment of single
ubiquitin (monoubiquitination) generally does not target substrate
proteins for proteolytic pathways; however, recent advancements
also oppose this belief77. In addition, more than one ubiquitin
molecules might get attached to the substrate proteins, independ-
ently (multi-monoubiquitination) or one over the other (poly-
ubiquitination) through lysine residues present in the already
conjugated ubiquitin or the N terminal methionine residue of
ubiquitin78. This may result in an array of signals, and ubiquitin
codes interpreted and dealt in different manners by cellular sub-
systems99,80. The patterns of attachment of subsequent ubiquitin
moieties may govern differential fates of the targeted proteins. For
example, a Lys-63 linked ubiquitin chain preferentially directs the
proteins towards autophagic degradation11,82. Contrarily, highly
abundant K-48 linked polyubiquitin chains are majorly targeted
for proteasomal degradation83. Other ubiquitin chains formed with
K6, K11, K27, K29, and K33 linkages form different kinds of
signals and regulate multiple physiological processes, including
cell cycle control, cellular transport, and DNA repair84–86.

Altogether, the involvement of the UPS has been reported in
immune pathways, hormonal signaling, cellular metabolism,
apoptosis, etc.10,87. Considering the coexistence of all these pro-
teolytic processes inside the eukaryotic cells, we can assume that
maintenance of proteostasis requires a very tightly regulated co-
ordination between different components and arms of the cellular
protein quality control85,89. Their involvement in the pathologies
of cancer, neurodegeneration, and aging processes has led scient-
ists to identify their therapeutic potential and devise methods or
ways to modulate them for exploitation for remedial purposes.
Natural molecules have remained a primary therapeutic tool over
the years showing enormous potential to modulate crucial regul-
atory proteins inside the cells. Several reports over the past few
years, as shown in Table 2, have been published describing various
kinds of possible regulation of different UPS components, which
ultimately govern many disease-associated pathways.

3. Pathological conditions affected by altered protein quality
control

Aging, neurodegeneration, and cancer have always remained
significant challenges before the scientific community. Many
theories and hypotheses have been formulated and postulated to
explain these pathologies, but none has succeeded in under-
standing why these pathological changes occur. Genetic, envi-
ronmental, infections and metabolic alterations are among the
many possible reasons behind most proteopathies10,91. However,
one of these could solely be held responsible for pathological
conditions; instead, a blend of multiple factors contribute towards
a highly diverse disease condition. This diversity among the in-
dividual cases of these pathologies further complicates the
research processes and leads to failure of treatment options92–94.
However, in the past few decades, tremendous progress is
observed in our understanding of many of these pathologies. At
the same time, these advancements have led to the evolution of
multiple lines of research methodologies and approaches to un-
derstand a given problem. This has given rise to speculations and
multiple lines of theories behind the origin, development, suste-
nance, and progression of these pathologies.

The declined competence of cellular defense mechanisms
and pathways are suggested to be one such notion that has
attained wide acceptance in recent decades2,3. Inefficient func-
tions of quality control systems that regularly monitor the well-
being of the genomic and proteomic repertoire of the cells could
be a possible cause of instigating multiple pathways leading
towards aging4. The compromised capacity of molecular chap-
erones to fold the nascent polypeptides into the proper three-
dimensional shape and deficient functioning of autophagy and
the proteasomal system could be credited for over-burdening the
cytosplasmic milieu with misfolded proteins95,96. Aggregation of
multiple types of aberrant proteins could lead to the formation of
large perinuclear/cytosplasmic inclusion bodies that may further
mount a heightened reaction by initiating immunological re-
sponses97. The increased burden of the aggregates may lead to
increased neuronal deaths, as observed in many disease models of
neurodegeneration98,99.

Aging encompasses several other attributes or hallmarks,
which may include but is not limited to the genomic instability,
mitochondrial loss, telomere shortening, metabolic alterations,
etc.91,100. These pathways and alterations in their physiological
conditions are also among the crucial factors responsible for most
types of cancers101,102. Altogether, the conditions discussed above
have many common features. One of the similarities is the
compromised proteostasis caused due to the inefficient protein
folding and degradation in cells103,104. Many other diseases, like
diabetes, cataract, cystic fibrosis, myopathies, etc. are directly
affected by the aggregation of one or more proteins2,105. An
imbalance in proteostasis may directly or indirectly link with many
other life-threatening diseases associated with lungs, heart, liver,
kidneys, etc.15,106. Based on the recommendations made by the
International Society of Amyloidosis, a depiction of various
amyloidogetic proteins, their aggregatory forms, and the affected
organs in many associated diseases is presented in Fig. 2107–109.
However, drawing a common line across all these diseases would
be difficult at the present state of our understanding of these
intracellular systems. Based on their common connecting links,
i.e., perturbed proteostasis and the cellular PQC machinery,
various strategies have been postulated in the past, while some are
currently under trial.

4. Small natural molecules: An effective therapeutic armory
targeting severe pathological conditions

Humans have learned the art of extraction and effectively uti-
lizing naturally occurring bioactive components and chemical
molecules towards medical purposes for centuries. Many
groundbreaking discoveries about the inherent medicinal prop-
erties of natural compounds against numerous life-threatening
diseases have been awarded Nobel Prizes in the past. The mid-
nineteenth century discoveries of antibiotics penicillin and
streptomycin have thoroughly changed the idea of drug discovery and accelerated the pursuit of more such compounds for other medicinal purposes in the following decades. Technological advancements, the inclusion of computational approaches, and the reincarnation of the vast literature of ancient Indian and Chinese medicine have substantially assisted and overwhelmed the field of drug discovery. The recent Nobel Prize for recognizing the medical importance of avermectins and artemisinin has again pressed upon the hidden potential of the small molecule-based drug substances.

In previous sections, we have discussed how the formation of inclusion bodies follows an aberrant protein aggregation. The inefficiency of cellular QC mechanisms to fight back and address the loss of proteostasis-like conditions may lead to an array of systemic

Table 2

Small natural compounds having chaperone-modulating activities. A broad array of natural molecules have been identified over the years, which can enhance or suppress the cellular chaperoning activity by elevating the expression or interfering with the functioning of major chaperones belonging to HSP70, HSP90, small HSPs or co-chaperones.

Compound	Source	Target protein	Target disease	Model system	Ref.
Actinomycin D	*Streptomyces parvulus*	HSP70	Huntington’s disease	*S. cerevisiae*	42
Celastrol	*Tripterygium wilfordii*	HSF1, SSA3/4	Stress response	*S. cerevisiae*	43
Compound A	Salsola tuberculatiformis	HSP70	Inflammation	A549 cells	44
Curcumin	*Curcuma longa*	HSF1, HSP70	Stress response	C6 cells, rats	45
Geldanamycin	*Streptomyces spp.*	HSP70	Neurodegeneration	H4 cells	46
Glycyrrhizin	*Glycyrrhiza glabra*	HSP70	Stress response	*HeLa* cells	47
Handelina	*Handelia trichophylla*	HSP70	Neuroinflammation	BV2, HEK293T	48
Lanostanol	*Metabolic intermediate*	CHIP	Neurodegeneration	*Cos7* cells	49
Myricetin	Fruits and berries	HSF1, HSP70	Stress response	*HeLa* cells	50
Paoniflorin	*Paeonia lactiflora*	HSF1, HSP70	Stress response	*HeLa* cells	51
Prostaglandins	Human	HSF1, HSP70	Stress response	C6 cells	52
Withaferin A	*Withania somnifera*	HSP25, HSP70	ALS	*Mice*	53
HSP90 inhibitors					
Argentoside A	*Tabebuia argentea*	HSP90	Epithelial carcinoma	*HeLa* cells	54
Celastrol	*Tripterygium wilfordii*	HSP90	Prostate cancer	*LNCaP* cells	55
Clorobiocin	*Streptomyces spp.*	HSP90	Breast cancer	SKBR3, MCF7	56
Coumermycin A1	*Streptomyces spp.*	HSP90	Breast cancer	SKBR3, MCF7	57
Cruentaran A	*Byssosorax cruenta*	HSP90	Lung, breast cancer	A549, MCF-7	58
Curcumin	*Curcuma longa*	HSP90	Viral infection	*HELF* cells	59
Deggulian	*Derris trifoliata*	HSP90	Cancer	*Mice*	60
Derrubone	*Derris robusta*	HSP90	Breast cancer	SKBR3, MCF-7	61
EgCG	*Camellia sinensis*	HSP90	Hepatoma	HePa, HspG2	62
Gambogic acid	*Garinia harburyi*	HSP90	Cancer	SKBR3, MCF7	63
Gedunin	*Azadirachta indica*	HSP90	Prostate cancer	*LNCalp cells*	64
Geldanamycin	*Streptomyces spp.*	HSP90, HSF1	Cancer	H3T cells	65
Herbinycin A	*Streptomyces spp.*	HSP90	Cancer	H3T cells	66
Hypercin	*Hypericum spp.*	HSP90	Squamous carcinoma	*SQ2* cells	67
Kotschyn D	*Astragalus lentiginosus*	HSP90	Cancer	*In silico*	68
Macbein	*Actinomyces spp.*	HSP90	Prostate, lung cancer	DU145, H460	69
Monocillin I	*Monocillium nordii*	HSP90	Breast cancer	MCF-7 cells	70
Novobiocin	*Streptomyces niveus*	HSP90	Breast cancer	SKBR3, MCF-7	71
Pochonins	*Pochonia chlamydospora*	HSP90	Cancer	*In vitro*	72
Radiocil	*Monosporium bonorden*	HSP90	Cancer	NH3T3 cells	73
Sansalvamide A	*Fusarium spp.*	HSP90	Colon cancer	HCT-116	74
Withanolides	*Withania somnifera*	HSF1, HSP90	Thyroid cancer	*DRO, NPA* cells	75
Quercetin	Fruits and berries	HSF1, HSP90	Breast cancer	*HeLa*	76
Triptolide	*Tripterygium wilfordii*	HSP90	Cancers	*HeLa* cells	77
HSP70 inhibitors					
Apidaecin	Insect peptides	DNAK, GROEL	Microbial infection	*E. coli*	78
Cantharidin	*Epicauta funebris*	HSP70	Colorectal cancer	HCT-116 cells	79
Drosopepin	Insect peptides	DNAK, GROEL	Microbial infection	*E. coli*	80
Fisetin	Fruits and berries	HSP70, HSF1	Colorectal cancer	HCT-116 cells	81
Myricetin	Fruits and berries	DNAK	Colorectal cancer	HCT-116 cells	82
Novolactone	Fungal metabolites	HSP70	Colon cancer	HCT-116 cells	83
Pycnocrin	Insect peptides	DNAK, GROEL	Microbial infection	*E. coli*	84
Quercetin	Fruits and berries	HSP70, HSF1	Proteostasis	BHK cells	85
adasGC	Fungi	HSP70	Lung cancer	A549, H460 cells	86
Spergulain	*Bacillus subtilis*	HSC70	Immune reaction	Jurkat cells	87
Triptolide	*Tripterygium wilfordii*	HSF1, HSP70	Cancers	*HeLa, HEK293T*	88
Tubocapsenolid A	*Tubocapsicum anomalous*	HSP90-HSP70	Breast cancer	MDA-MB-231	89
and non-systemic diseases. With the available knowledge and experimental evidence, it could be understood that reestablishing the lost activities of these pathways, by inducing chaperone function or enhancing the activities of proteolytic machinery (proteasome and autophagy), etc., may exhibit the tremendous potential to delay the onset of pathologies or aging-associated changes inside the organ-isms. Results from many studies converge towards the consensus advocating for small molecule-based therapies as beneficial and low-cost strategic tools to suppress the aggregation of most kinds of disease-associated amyloidogenic aggregates. Notably, many recently recognized molecules, termed as pharmacological chaperones, have a strong potential of precisely facilitating the folding and stabilization of aberrant proteins, thereby assist in restoring their native functions.

The bulk degradation pathway of the cells, termed as ‘autophagy’ soon after its discovery by Christian de Duve, derived its name from Greek words meaning self-eating. In later years, it was found that the autophagic degradation, which was initially considered a non-specific degradation system of the cells, could also be a part of much-targeted protein degradation pathways in association with chaperones or UPS components. It joins hands with the UPS and plays a balancing act of degradation with the protein synthesis and folding machinery concurrently working in the cells. Many studies also suggest that autophagy and proteasome pathways may also compensate each other under different stress conditions; therefore, a few drugs suppressing UPS activity, e.g., MG132 and lactacystin, may lead to activation of autophagic responses. Contrarily, inhibition of autophagy overwhelms the cells with accumulating protein inclusions causing impairment of proteasomal degradation. In truth, a clear understanding of how the two systems balance each other while protecting the cells from proteotoxic stresses is not known. Here, a comprehensive overview is provided for those molecules or drug candidates, which can bind and modulate the activity or functions of one or multiple cellular PQC machinery components.

4.1. Modulating cellular chaperoning potential: Provides additional buffer against stress conditions

Chaperones are essential regulators of cell homeostasis, and their anomalous functioning can lead to perturbation of many normal and stress-related pathways. The primary functions that the HSP family proteins perform inside the cells are recognizing any unusual change in the cellular homeostasis, encountering spontaneous stress condition, and providing a piece of machinery to

Figure 2 An overview of amyloidosis. Various amyloid-forming proteins (left), their normal precursor protein forms (middle), and tissues or organs affected in one or more similar diseases caused by individual proteins. The left column shows a list of amyloidic forms of various proteins shown in the center as precursors. These proteins may aggregate in such amyloidic structures in their full, cleaved, or modified forms, while several mutations contribute to their amyloidogenicity. The structural modification of these proteins may lead to abnormal metabolic or signaling alterations at the molecular level in different tissues and organs. These changes may lead to a possible functional loss or decline, causing multiple pathological conditions. Many proteins are found to be involved in multiple diseases of different organs, whereas some diseases may have several proteins involved together in the pathogenesis. The figure was prepared using RAWGraphs, an open source platform for data representation (http://rawgraphs.io).
The associated diseases and studied model systems are also presented in adjacent columns. The associated diseases and studied model systems are also presented in adjacent columns.

Compound	Source	Subunit	Pathway/disease	Model system	Ref.
Betaeinic acid	Betula sp.	β5	Neurodegeneration	MT4 cells	84
Canthinn-6-one	Alkanthus alitissima	β5	Parkinson's disease	Mice	85
Fatty acids	Animal sources	β1	Ageing	Rats	86
Harmine	Animal sources	β2	Ageing	Human erythrocytes	88
Lyso sphospholipids	Animal sources	β5	Acrosome formation	Sea urchin sperm	89
Oleuropein	Oilea europea	β1, β2, β5	Ageing	IMR90, WI38 cells	90
Oxophylla A	Alpinia oxypylla	β5	Parkinson's disease	Mice	91
Sulfonides	Animal sources	β5	Ageing	Human erythrocytes	88
Sulforaphene	Brassica oleracea	β1, β2, β5	Neurodegeneration	Mice	92
Zernobone	Zingiber zerumbet	β5	Neurodegeneration	Hepa1c1c7 cells	93

Proteasomal inhibitors

Compound	Source	Subunit	Pathway/disease	Model system	Ref.
Aaptamine	Aaptops suberitoides	β1, β5	Cancer	HeLa cells	94
Acaarubicin	Streptomyces galilaeus	β5	Cancer	Bovine pituitary	95
Agosterol C	Spongia sp.	β5	Cervical carcinoma	HeLa cells	96
Antiprotealide	Salinispora tropica	β5	Multiple myeloma	RPMI 8226 cells	97
Argynin A	Archangium glypha	β1, β2, β5	Cancer	HeLa, SW480 cells, mice	98
Belactosin A/C	Streptomyces sp.	β5	Muscle wasting	Rats	99
Carmaphycin-17	Symplocos sp.	β1, β7	Trichomoniases	Trichromonas vaginalis	100
Ciclosporine A	Tolypocladium inflatum	β5	Inflammation	RAW, murine brain	101
Cinnarabimides	Streptomyces sp.	β5	Cancer	PBMC cells	102
Cystargolide A	Kitasatospora cystarginea	β5	Cancer	Purified 20S proteasome	103
Dibromophakellin	Phakellia flabellata	β1, β5	Cancer	HeLa cells	104
Epoxymycin	Streptomyces sp.	β5	Murine thymoma	EL4 cells	105
Epoxymycin	Actinomyces sp.	β2, β5	Inflammation	HUVEC cells	106
Fellutamide B	Penicillium fellutanum	β5	Nerve injury	Mouse fibroblasts	107
Glidobactins	Polysaccharide brachyosporum	β2, β5	Cancer	Phaseolus vulgaris	108
Gliotoxin	Aspergillus fumigatus	β5	Cancer	HeLa cells	109
Halicyclamine B	Halicionia sp.	β1, β2, β5	Cancer	HeLa cells	110
Heteronemin	Hyrtios sp.	β2, β5	Leukemia	K562, Jurkat T cells	111
Lactacystin	Streptomyces lactaccyrticus	β1, β2, β5	Neuroblastoma	Neuro2a	112
Lovastatin	Pleuortus ostreatus	β5	Breast cancer	MDA-MB-157 cells	113
Marizobin	Salinospora sp.	β5	Colon carcinoma	HCT-116	114
Mevatatin	Penicillium citinum	β5	Neuroblastoma	NB2 cells	115
Mycolalides	Mycale sp.	β5	Neuroblastoma	Neuro2a	116
Omuralide	Streptomyces sp.	β5	Neuroblastoma	HeLa cells	117
Palamine	Stylophora aequinata	β5	Cancer	NIH-3T3 cells	118
Petrosaspigonioides M	Petrosaspigonia nigra	β1, β5	Inflammation	THP cells	119
Rhabdastrellic acid-A	Rhabdastrella globostellata	β2, β5	Leukemia	HL-60 cells	120
Syringolins	Pseudomonas syringae	β1, β2, β5	Cancer	Phaseolus vulgaris	121
TMC-95	Apiospora montagnei	β1, β5	Cancer	HCT-116, HL-60 cells	122
Tyropeptin A	Kitasatospora sp.	β2, β5	Cancer	HeLa cells	123

Plant products

Compound	Source	Subunit	Pathway/disease	Model system	Ref.
Ajoene	Allium sativum	β2, β5	Leukemia	HL-60 cells	124
Apigenin	Portulaca oleracea	β5	Breast cancer	MDA-MB-231, mice	125
Bisibenzyls	Bryophytes	β5	Prostate cancer	LNCaP cells	126
Capsaicin	Capsicum annum	β1, β2, β5	Prostate cancer	PC-3 cells	127
Celestrol	Tripterygium wilfordii	β5	Prostate cancer	PC-3 cells, mice	128
Chrysin	Passiflora caerulea	β2, β5	Cancer	HepG2, HL-60, A549	129
Curcumin	Curcuma longa	β1, β2, β5	Cancer	Neuro 2a cells	130
Catechin-gallate	Camellia sinensis	β5	Cancer	Jurkat T cells	131
Emodin	Rheum palmatum	β1, β2, β5	Cancer	HeLa cells, mice	132
Fangchinoline	Stephania tetrandra	β1	Breast cancer	LNCaP, PC-3 cells	133
Genistein	Glycine max	β5	Cancer	LNCaP, MCF-7 cells	134
Gynenosides	Panax ginseng	β5	Cancer	RBCs	135
Isoginkgetin	Ginkgo biloba	β1, β2, β5	Cancer	HeLa cells	136
Kaempferol	Fruits and vegetables	β5	Leukemia	Jurkat T cells	137
Luteolin	Cichorium endivia	β2, β5	Cancer	HepG2, HL-60, A549	138
Marchantin M	Marchantia sp.	β1, β5	Prostate cancer	PC-3 cells	139
monitor and establish the structures and functioning of other cellular proteins. The term ‘chemical chaperone’ has been widely used in the past decade for a group of potentially active molecules that can stabilize cellular proteins in a non-specific way and help in reversing the mislocalization or aggregation. These molecules mostly act on the proteins’ active domains or sites, providing them an increased opportunity to form hydrogen, electrostatic, and van der Waals interactions and potentially stabilize the overall structure of the proteins. Additionally, an array of naturally occurring substances and their derivatives have shown modulatory potential over inherent chaperoning capacity inside the cells.

These bioactive chemical molecules can bind and alter the structure, activity, and overall functions of the most active HSP70 and HSP90 chaperone complexes, along with many of their co-chaperones and accessory factors. They also provide cushion for structural rearrangements of unfolded or misfolded proteins inside the cytosol, thus help in ameliorating the accumulation of aberrant proteins. However, the initial attempts to exploit chaperones for therapeutic purposes started with identifying the inhibitory activity of radicicol against HSP90 ATP-binding pockets. It was initially used against malignant fibroblasts. Although promising, the drug failed in delivering the promises because of several pharmacokinetic challenges. The other prominent molecule in this category is a bacterial isolate geldanamycin that was later proved to be toxic to the liver. In later years, advancements in the medicinal chemistry tools have led to the synthesis of many derivatives of these less successful drug candidates, e.g., monocillin I, pochonins, 17-allylamino-geldanamycin (17-AAG), etc.

Small molecules can shatter the interaction of major chaperones with their co-chaperones, thereby affecting chaperoning activities. For example, celestrol, a triterpene, and gambogenic acid, a xanthonoid, can interfere with the interaction of HSP90 with its co-chaperone CDC37; while curcumin blocks HSP90–P23 binding, leading to the induction of cell death signaling pathways. Other drug candidates with similar cell death-inducing effects are herbimycin A and derrubone. Quercetin, one of the most studied flavonoids, shows an upstream regulation of heat-shock response inside the cells by suppressing the heat shock factor (HSF1), the major transcription factor that regulates the intracellular levels of most of the chaperones. A green tree extracted molecule, epigallocatechin-3-gallate (EGCG), can also inhibit multiple chaperones, including HSP90, HSP70, and ER-resident GRP78, and suppress the growth of cancer cells. Interestingly, other mechanisms of functional suppression of HSP90 are increased ubiquitination (by hypericin), destruction of chaperone cycle (by sansalvamide A), and oxidation (by tubocapsenolide A) of HSP90 itself. All these can interfere with the turnover of the substrate proteins of the chaperones, thus deregulating the proteostasis balance of the cell.

Modulation of HSP70 functions by myricetin and spregualin may also help suppress cancerous cells’ growth, possibly by inhibiting the ATPase activity of the chaperone. Few reports further suggest the possible activation of upstream regulator HSF1 in response to drug-mediated suppression of one or the other molecular chaperones; however, more work is required to understand the feedback mechanisms involved in this mechanism. A few studies have shown that geldanamycin-mediated HSP90 inhibition may, in turn, upregulate the activities of HSP70 and HSP40, which could be helpful and may benefit the neuronal cells under different stress or pathology conditions, e.g., HD, ALS, cerebral ischemia, etc. Similarly, treatment of curcumin and withafarin A may also exert neuroprotective effects on the cells and mouse models; the effects could be due to improved activities of HSP70, HSP27, and α-crystallin chaperones. A summarized overview of various such kinds of molecules of natural origin that can help in reestablishing the proteostasis inside the cells by modulating the inherent chaperoning capacity of the cell has been presented in Table 3.

4.2. Regulating the UPS components: Playing with the fine balance

UPS is the next line of defense in most subcellular compartments and works continuously to regulate the proteostasis inside these organelles. As described previously, ubiquitination and proteasomal degradation are a kind of intracellular regulatory mechanisms that often is crucial for many cellular pathways. Therefore, any disturbances in these systems may have deleterious effects on cellular health. The proteasomal system comprises several components that could be regulated by different mechanisms and may exert varying effects on cellular physiology. For example, regulating the activities of proteasomal subunits has been shown to have a direct effect on the overall cellular protein degradation scheme and the overall proteostasis. Many proteasome modulators have been proposed, and a few of them are under clinical trials for diseases like cancer and neurodegeneration. A plethora of naturally-derived chemicals has been reported over the years, which have shown a substantial modulation of the activities of various enzymes of the pathway. Thus, their use may enhance or suppress the proteostasis provided by these enzymes.
The proteasomal system is very specific in its activity and takes part in the precise regulation of the majority of physiological pathways; therefore, very tightly-controlled modulation is needed in order to exploit it for therapeutic purposes153,154. Bortezomib was the initial drug having the proteasomal inhibitory potential and has been widely used as an anticancer drug for long155. Later, another synthetic molecule, carfilzomib, was also approved by the U.S. Food and Drug Administration (FDA) for anti-cancer therapy160. Following the identification of these two FDA approved drugs, many other drugs with similar inhibitory activity against different proteolytic subunits (\(\beta_1\), \(\beta_2\), and \(\beta_5\)) of 20S proteasome have been identified and thoroughly investigated for their therapeutic applications in many diseases161,162. Lactacystin is the most well-known natural molecule of this class that was initially reported to be effective against neuroblastoma cells and is currently one of the widely used drugs in the research163. Eponemycin and epoxymycin specifically target chymotrypsin-like activity containing \(\beta_5\) subunits of the 20S core and help in suppressing the inflammation in cancer cells164,165. Mevastatin, belactosin A, and fellutamide B are other similar bacterial isolates that have been presented with the anti-protease activity of the proteasome in different experimental model systems166--168.

Fungi and marine animals are other prominent sources of many biologically active molecules having critical therapeutic properties. Many proteasomal inhibitors have been isolated from these animals also. For example, gliotoxin and cyclosporine A from fungal sources and agosteryl C and aptamine from sponges are prominent inhibitors of 20S proteases169--172. These molecules could affect one or multiple protease subunits of the 20S core particle of the proteasome. Interestingly, the toad venom contains a compound called arenobufagin that has the potential to inhibit all three activities simultaneously173. An exhaustive list of such natural molecules obtained from various biological sources has been presented in the form of Table 3. Plant-based molecules have specifically dragged lots of attention for their proteasome-modulatory activity and have been widely covered in other descriptive reviews174,175.

Flavonoids make the most comprehensively explored class and have shown tremendous potential to be used in therapeutics against many diverse kinds of diseases. For example, genistin, EGCG, and physalin B have anti-cancerous roles, while pectolinarin has positive effects on tuberculosis due to its anti-inflammatory potential176--178. Apigenin, myricetin, quercetin, and luteolin are anti-atherogenic and may also help suppress tumor growth179--182. PM15011 is an ethanolic preparation obtained from a herb, Artemisia dracunculus, and shows pathological improvements in diabetes mice183. Polyphenols like vinblastine, capsaicin, resveratrol, tamic acid, and curcumin184--186, along with some well-known terpenoids, e.g., celestrol, pristimerin, etc., further adds up to the list187,189,190. The compounds like amthraquinones, saponins, sulfur-derivatives, and plant-derived lactones come next into this long list (Table 3) of compounds with different types of inhibitory potential against \(\beta_1\), \(\beta_2\), or \(\beta_5\) activities of proteasome.

Contrary to proteasomal suppression, which is widely exploited in cancer therapeutics, enhancing the proteasomal activities could be useful in many stressful conditions and in the diseases associated with protein misfolding and aggregation. Two widely explored terpenoids, zerumbone and betulinic acid, have activated the \(\beta_5\) activities and thus presented neuroprotective effects191,192. Myricetin, oleuropein, and sulfureaphane are other plant-derived molecules representing the proteasomal activators that may upregulate one or multiple 20S core subunits193,194. Few other molecules were identified that might delay the aging and neurodegenerative processes by increasing proteasomal degradation of the substrate proteins. These are heparin, sulfatides, and lysosphospholipids, a few metabolic byproducts or those obtained from other animal sources195,196. Unlike proteasome inhibition, the effects of proteasome activation are not widely explored and need a more rigorous investigation to identify new molecules with a positive effect on proteasome functioning and their downstream impact on protein clearance.

A few recent studies have given clear insights into Parkinson’s disease models that activation of proteasome function by hermine, oxyphylla A, and canthin-6-one can significantly upregulate the clearance of alpha-synuclein, the major constituent of the Lewy bodies formed in the substantia nigra197,198. Apart from proteasome subunits of 20S particle, many other components involved in protein ubiquitination have been looked for their applicability as a possible drug target in aging, neurodegeneration, and many other diseases. Modulation of the major enzymes involved in the ubiquitination process, e.g., E1, E2s, E3s, and deubiquitinas (DUBs), could be a vital strategy to regulating several critical signaling and metabolism pathways19,200. E1 ubiquitin-activating enzyme is a unique protein required for the ubiquitination of all the possible cellular substrate proteins. Therefore, interfering with its activity may compromise the whole UPS and may have devastating effects11. However, this observation can be utilized in anticancer therapeutics as previously exemplified by hyrttiorieticulins largazole, himeic acid A and panepophenanthrin201--204.

The next line of drug targets is E2 ubiquitin-conjugating enzymes, which transfer ubiquitin molecules from the E1 enzymes to the E3 ligases. Not too many drugs have been identified, which can interfere with the enzymatic activities of E2; however, a few known naturally-occurring compounds are vetixin, a polyphenolic extract from Byrsonima crassifolia, and a few poriferan-derived leucetamol A, manadoesters A and B, etc.205--207. Deubiquitinas (DUBs) are a group of enzymes that are crucial for breaking down the ubiquitin chains, replenishing the ubiquitin pool of the cells, and playing regulatory roles in many biological pathways208,209. Betulinic acid and one curcumin analog are a few known inhibitors of this class of enzymes, which have shown tremendous promises as anti-cancer molecules210,211. Cruciferous vegetables have a group of compounds called isothiocyanates, which are prominent inhibitors of DUBs, and have shown significant anti-tumor properties12. A diterpenoid candidate, 15-oxospiramialactone, is another DUB inhibiting molecule that has a positive effect on the restoration of the mitochondrial network212.

Interestingly, the molecules that have the potency to modulate the most diverse class of enzymes of this pathway, the E3 ubiquitin ligases, has widely been explored for specific regulation of substrates and related pathways13. However, some molecules may inhibit multiple E3s simultaneously. Hectin is a recently developed molecule that can suppress many HECT domain-containing E3 ligases. Additionally, a few ubiquitin variants were prepared, which have shown tremendous inhibitory potential against RING and U-box domains of the E3 ligases215--217. A line of studies proposes several natural molecules as probable drug candidates against many life-threatening diseases. Inhibition of Mdm2 by matrine at the RNA level and by berberine via self-ubiquitination mechanism are prominent examples of regulating the turnover of P53, the primary tumor suppressor protein218,219. Oxorolvin-A, apigenin, and genistein are plant flavonoids that may initiate a high apoptotic response in cancerous cells220--222. Many terpenoids (e.g., triptolide, imulanolide, etc.), saponins, chalcones, and polyphenols extracted from
therefore can target specific molecular targets and pathways that are involved in many harmful diseases. Altering the autophagic flux, increase the protein degradation or interfere with different steps of autophagosome biogenesis or lysosome fusion, therefore can target specific molecular targets and pathways that are involved in many harmful diseases.

Table 4: Small natural molecules affecting the cellular autophagy pathway. A concise representation of the potential candidates that can alter the autophagic flux, increase the protein degradation or interfere with different steps of autophagosome biogenesis or lysosome fusion, therefore can target specific molecular targets and pathways that are involved in many harmful diseases.

Compound	Source	Target pathway	Physiological condition	Model system	Ref.
Actinonin	Streptomyces sp.	AMPK, mRNA	Cancers	HeLa cells	146
Araguspongine C	Xestospongia sp.	PI3K/AKT/mTOR	Breast cancer	BT-474 cells	147
Chromonycin A2	Streptomyces sp.	LC3	Melanoma	MALME-3M cells	148
Clionamine B	Cliona celata	LC3	Breast cancer	MCF-7 cells	149
Coibamide A	Leptolyngbya sp.	LC3	Glioblastoma	U87-MG cells	150
Hirutosanol A	Chondrostereum sp.	LC3	Hepatic carcinoma	Hep3B cells	151
Ilimauquinone	Hipspongisia sp.	p53	Colon cancer	RKO cells	152
Isonapantamine	Aaptos sp.	LC3	Breast cancer	T-47D cells	153
Monanchoxin D	Monanthora pulchra	P38, ERK	Germ cell tumors	NCCIT cells	154
Overholt大海	Paracenonotus lividus	Beclin-1, LC3	Hepatic carcinoma	HepG2 cells	155
Papainine	HalicIonica sp.	LC3, JNK	Breast cancer	MCF-7 cells	156
Psammatin A	Psammaplystila sp.	P73	Glioblastoma	U87-MG cells	157
Rapamycin	Streptomyces hygropicus	mTOR	Polyglutamine diseases	PC12, Cos7 cells	158
Rhabdastrelic acid A	Rhabdastrella	AKT	Various human cancers	Hep3B, A549 cells	159
Salinosporamide A	Salinospora tropica	elf2α	Prostate cancer	LNCaP-Pro5	160
Stelliton B	Jaspsp stellifera	PI3K/AKT/mTOR	Lung cancer	A549 cells	161
SD118-xanthicilin-X	Penicillium commune	MEK/ERK	Hepatic carcinoma	HepG2 cells	162
Trehalose	Streptomyces cerevisiae	mTOR	Neurodegeneration	SK-N-SH, PC12 cells	163
Urolithin A	Gut microbeome	AMPK	Ageing	C. elegans	164
Xestospongine B	Xestospongia exigua	IP3, R	Cervical adenocarcinoma	HeLa cells	165
Plant products	**Plant products**	**Target pathway**	**Physiological condition**	**Model system**	**Ref.**
Terpenes					
Bigelovin	Inula helianthus	AKT/mTOR/S6K	Liver cancer	HepG2, mice	166
Erioclyxan B	Isodon erioclyx	AKT/mTOR/S6K	Breast cancer	MCF-7, MDA-MB-231	167
Gossypol	Gossypium sp.	Beclin-1, ATG5,	Breast adenoecarcinoma	MCF-7, HeLa cells	168
Grifolin	Albatrellas confuence	AKT/mTOR/S6K	Ovarian cancer	A2780, SKOV3 cells	169
Oridonin	Rabdosia rubescens	P21	Prostate cancer	PC-3, LNCaP cells	170
Platycodin-D	Platycodon grandiflorum	PI3K/AKT/mTOR	Lung cancer	NCI-H460, A549 cells	171
Triptolide	Tripterygium willofordii	mTOR	Neurodegeneration	SK-N-SH, PC12 cells	172
Ursolic acid	Ocimum sanctum	JNK, BCL-2	Colorectal carcinomas	HCT-15 cells, mice	173
Flavonoids	**Flavonoids**	**Target pathway**	**Physiological condition**	**Model system**	**Ref.**
Ampelopsis	Ampelopsis sp.	AKT/mTOR/S6K	Breast cancer	MDA-MB-231, MCF-7	174
Apigenin	Fruits, vegetables	mTOR, S6	Leukemia	HL60, TF1 cells	175
Curcumin	Curcuma longa	FOXO1, beclin-1	Oxidative stress	HUVEC cells	176
Deliciaflavone	Selaginella doederleini	AKT/mTOR/S6K	Breast cancer	A549, PC-9	177
5-Demethylobutein	Sideritis tragergamanum	JNK	Lung cancer	A549 and CL-1-5 cells	178
Galangin	Alpinia officinarum	P53	Hepatic carcinoma	HepG2 cells	179
Glabridin	Glycyrrhiza glabra	JNK1/2, P38, ERK	Hepatoma	HepG2 cells	180
Juglalin	Juglans mandsharica	JNK	Breast cancer	MCF-7 cells, mice	181
Kaemperol	Fruits and berries	AMPK, AKT	Hepatic cancer	SK-HEP-1 cells	182
Licochalcone A	Glycyrrhiza sp.	AKT/mTOR/S6K	Cervical cancer	SiHa cells	183
Luteoloside	Gentiana macrophylla	AKT/mTOR/S6K	Lung cancer	A549, H292 cells	184
Myricetin	Fruits, vegetables	mTOR	Hepatic carcinoma	HepG2 cells	185
Quercetin	Fruits and berries	PI3K, beclin-1	Leukemia	P39 cells, mice	186
Resveratrol	Vitis viniferae	SIRT1, RAB7	Oxidative stress	Mice	187
Alkaloids	**Alkaloids**	**Target pathway**	**Physiological condition**	**Model system**	**Ref.**
Berbine	Coptidis Rhizoma	AKT/mTOR, beclin-1	Hepatic carcinoma	HepG2, MHCC97-L cells	188
Capsaicin	Capsicum annuum	Beclin-1, LC3	Hepatic carcinoma	HepG2 cells	189
Coryoxine B	Uncaria rhynchophylla	Beclin-1	Parkinson’s disease	N2a,SHSY-5Y cells	190
Fangchinoline	Stephania tetrandra	Sestrin2	Hepatic carcinoma	HepG2 cells	191
Harmol A	Peganum harmala	Survivin	Glioma	U251MG cells	192
Isohynochynoline	Uncaria rhynchophylla	Beclin-1	Parkinson’s disease	N2a, PC12, SH-SY5	193
Matrine	Sophora flavescens	mTOR, P53	Hepatic carcinoma	HepG2, SMMC-721	194
Piperlongumine	Piper longum	AKT/mTOR	Various cancers	786-O, PC-3, MCF7	195
Vinblastine	Vinca rosea	Cathespin D	Stress conditions	Rat hepatocytes	196
Other natural molecules	**Other natural molecules**	**Target pathway**	**Physiological condition**	**Model system**	**Ref.**
Areobufagin	Toad venom	PI3K/AKT/mTOR	Breast cancer	HepG2 cells	197
Benzyliothiocyanate	Lepidium sativum	AKT, mTOR	Prostate cancer	Rv-1, PC-12 cells	198
Bisbichenyls	Bryophytes	LC-3	Prostate cancer	LNCaP cells	123

(continued on next page)
Table 4 (continued)

Compound	Source	Target pathway	Physiological condition	Model system	Ref.
Bufalin	*Bufo gargarizans*	JNK, ATG5, beclin-1	Colorectal cancer	HT-29 and Caco-2 cells	199
Cinobufagin	*Bufo gargarizans*	PARP, JNK/P38	Osteosarcoma	U2OS cells	200
Concanavalin A	*Canavalia ensiformis*	LC3, BNIP3, AKT	Hepatoma	ML-1 cells	201
Daucosterol	*Smilax glabra Roxb.*	Beclin-1, LC-3	Breast cancer	MCF-7 cells	202
Docosahexaenoic acid	Metabolic intermediate	NFE2L2	Neurodegeneration	ARPE-19	203
Embelin	*Embelia ribes*	ATG-5, ATG-12	Oral cancer	Ca9-22 cells	204
Lanosterol	Metabolic intermediate	CHIP	Neurodegeneration	Cos-7	49
Noggin	*Xenopus*	LC3, beclin-1	Acute pancreatitis	AR42J cells, mice	205
Ophiopogonin B	Radix ophiopogon var.	P3K/ATK/mTOR	Lung cancer	NCI-H157, NCI-H460	206
Polyphyllin G	*Paris yunnanensis*	AKT, MAPK	Nasopharyngeal carcinoma	HONE-1 and NPC-039	207
Rottlerin G	*Mallotus philippinensis*	P3K/ATK/mTOR	Pancreatic cancer	Cancer stem cells	208
6-Shogaol	*Zingiber officinale*	AKT/mTOR	Lung cancer	AS49	209
Sitosterol	Plant sterols	P38	Sirotosteloma	Mice macrophages	210
Spermidine	Natural polyamine	ATG7	Ageing	Yeast, fly, worm, PBMC	211
Sulforaphane	*Brassica oleracea*	ERK	Huntington’s disease	Mice	212

Autophagy inhibitors

Asparagine	Natural amino acid	Lysosome fusion	Proteopathies	Rat hepatocytes	213
Cytochalasin	Aspergillus sp.	Microfilaments	Proteopathies	Rat kidney cells	214
Emodin	*Fallopia japonica*	LC3, beclin-1	Acute pancreatitis	Rats	215
Estrogen	Natural hormone	CXCL12	Endometriosis	Endometrial stromal cells	216
Leupeptin	*Streptomyces sp.*	Serine proteases	Proteopathies	Rat hepatocytes	217
3-Methyladenine	Metabolic intermediate	P3K	Proteopathies	Hepatocytes	218
Pepstatin A	*Streptomyces sp.*	Aspartyl peptidases	Proteopathies	Rats, hearts	219
Vinblastine	*Catharanthus rosea*	Microtubules	Proteopathies	Rat fibroblasts	220
Vincristine	*Catharanthus rosea*	Microtubules	Proteopathies	Rat fibroblasts	220
Wortmanninin	*Penicillium sp.*	P3K	Acute pancreatitis	Rats	221

4.3. Natural modulators of autophagic pathway: Boosting the cellular stress response

The autophagic pathway was initially identified as an intracellular lysosomal degradation mechanism that targets consumed, unusable, or toxic cell material using protease enzymes present within membrane-bound organelles\(^11\). Autophagic clearance pathways may have many variants that select and degrade cellular proteins and debris differentially through varying mechanisms using multiple selections and targeting mechanisms using several adapters and membrane-bound receptor proteins\(^35,229\). In a way, this leads to a variety of opportunities to regulate these pathways of degradation at various points. An array of reports has shown that autophagy regulation using small natural molecules could also be achieved and used for drug discovery purposes\(^229,230\). Modulation of autophagic pathways is proposed for therapies against cancer and neurodegeneration in a large number of studies\(^231,232\). As shown in Table 4, different types of proteinopathies, neurogenerative disorders, cancers, and several systemic diseases could be targeted by derivatives of natural molecules with modulatory effects on various effectors of the autophagy pathway. Several reports could still not be included in the present article due to space restrictions. The most prominent members of this class of natural autophagy inducers are resveratrol and trehalose\(^33,234\). Both these inducers have shown the tremendous potential of relieving neurons from various stresses by reducing free radicals and degrading protein aggregates\(^234,235\).

Interestingly, autophagy plays very crucial roles in the clearance of many infectious agents, including HIV, *Mycobacterium*, or other parasites\(^236\). Triggering this pathway by vitamin D or starvation mechanisms have shown improvements in various pathological conditions, ranging from viral/bacterial infections to tuberculosis and malaria\(^237-240\). Autophagy also performs vital roles in cell metabolism and signaling, as evidenced by multiple lines of studies, which are covered in detail in several previous articles\(^231,232\). The influence of autophagy induction has been investigated in many metabolism-related disorders, including diabetes, glucose intolerance, obesity, and atherosclerosis\(^15\). It was evident from the past studies that modulation of autophagy may have enormous potential to counter the stress conditions and protect from several incurable diseases\(^243-245\). Likewise, the autophagy inducers, e.g., bigelovin, oridonin, and stellettin B may accelerate the apoptotic pathways in various types of cancer cells\(^246-248\). The majority of molecules (e.g., cinobufagin,
juglanin, ursolic acid, amelopsin, etc.) act on the target proteins, like PI3K, AKT, mTOR, S6K, MAPK, JNK, P38, ERK, etc., which are explicitly involved in the autophagy regulation. For the past many decades attempts to upregulate the autophagic degradation of large aggregates of proteins have been made, and considerable success has been achieved. The research on exogenous autophagy induction using exercise/starvation like lifestyle changes or natural molecule-based food habits has shown enormous promises to deliver in many stress-related changes like neurodegeneration and aging. Use of curcumin and triptolide in oxidative stress conditions in cells and Parkinson’s disease animal models have shown neuroprotective effects of these drugs via the upregulation of autophagy. Docosahexaenoic acid, sulforaphane, and lanosterol are other natural inducers of autophagy, which have shown multifactorial effects in ameliorating the stress conditions of the cells and alleviate the degenerative conditions in the brain. Although a vast literature is available on the induction of autophagy by small molecules, there are limited reports of inhibitors that can demonstrate beneficial effects on disease conditions. Emodin, wortmanin, and 3-methyladenine are few known autophagy suppressors with disease modulating potential. A comprehensive list of naturally derived inducers and inhibitors of the autophagy pathway is prepared in Table 4.
5. Conclusions and future perspectives

Aberrant protein’s accumulation inside cells is very well-described as a leading factor of aging, neurodegeneration, and multiple other pathologies, including cancer, diabetes, cystic fibrosis, etc. Researchers and clinicians have made multiple efforts to understand the underlying causes and mechanisms for these diseases. The molecular mechanisms whose failures can lead to inappropriate protein folding events and the common features across all these pathologies are still unclear. Some unique features across all these diseases and a noticeable genetic diversity in various conditions have prevented the scientific community from reaching a common conclusion and devising possible solutions for these life-threatening diseases.35,261 However, continuous efforts are made worldwide to identify underlying causes, including the most common genetic mutations and contributing environmental or lifestyle-associated factors. A comprehensive picture of all these factors, associated changes, and the pathological conditions caused by them is presented in Fig. 3. Unfortunately, none of the hypotheses and explanations addressing the mechanisms and causes behind such detrimental changes leading to the age-associated decline in the efficiency of physiological systems have led us to develop a proper understanding and possible solutions to these conditions.

In the past, many attempts, both successful and unsuccessful, have been made for devising novel therapeutic approaches against various diseases. Numerous molecules have been proposed for their efficacy for mitigating the proteotoxicity generated by intracellular protein aggregates or inclusion bodies.106,110,111 One consensus that most of the studies meet is that natural products could be medicinally very active and useful. They were used for centuries in ancient traditional natural medicinal approaches in old-world countries. Based on all the observations mentioned above, it could be stated that targeting cellular PQC machinery by modulating their activities using small molecules may have vast potential. Plant extracts were used by ancient researchers and physicians to cure deadly infections and diseases, described in many primitive Indian, Unani, and Chinese literature.262,263 Most natural molecules posit lesser toxicity and side effects than synthetic chemicals when administered to cells or animals in laboratory tests.264 This makes them preferred choices over costly synthetic chemicals in experimental studies. Many less-invaded human territories, like the Himalayas, are the homeland of such medicinally rich natural resources and are yet to be explored and utilized for treatments of life-threatening diseases in these regions. A thorough and well-managed exploration could be done in order to identify and delve into more effective and easily derived drugs.

Several naturally extracted drugs obtained from microbial and fungal isolates, marine and land animals, many aquatic and terrestrial plants, are currently in research allowing us to identify and investigate more such drugs. These small natural molecules may have several unexplored applications that need further studies. The primary benefit of these naturally derived molecules is a low-cost therapeutic alternative to many treatment strategies, which are in the pipeline against these diseases and may need a much higher cost, although many challenges remain unaddressed.19,206 The identification, isolation, purification, and characterization of new molecules are a highly tedious and lengthy process, requiring lots of hard work, funds, and time.19,206 Many times, designing or synthesizing some derivatives of already known drugs seems a more straightforward and cost-effective strategy in comparison to looking for new molecules.

Repurposing older drugs could also be a beneficial drug discovery model to save much time, effort, and cost. Additionally, these small plant-based molecules could be used as food supplements to reduce the overall risk of many diseases.

Acknowledgments

The author apologizes to various groups and scientists whose work could not have been cited due to space and time constraints. Author thanks the Central University of Rajasthan for providing space and resources while the manuscript was prepared. The author also appreciates Servier (http://smart.servier.com/) for providing templates for the preparation of medical illustrations under Creative Commons Attribution 3.0 Unported License.

Author contributions

Arun Upadhyay is responsible for all work of this review.

Conflicts of interest

The author has no conflict of interest to declare.

Supporting information

Supporting data to this article can be found online at https://doi.org/10.1016/j.apsb.2021.01.006.

References

1. Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci 2014;69 Suppl 1: S33–8.
2. Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science 2016;353:aae4354.
3. Chen B, Retzlaff M, Roos T, Frydman J. Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 2011;3:a003574.
4. Schneider K, Bertolotti A. Surviving protein quality control catastrophes—from cells to organisms. J Cell Sci 2015;128:3861–9.
5. Dubnikov T, Ben-Gedalya T, Cohen E. Protein quality control in health and disease. Cold Spring Harb Perspect Biol 2017;9:a023523.
6. Cromm PM, Crews CM. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem Biol 2017;24:1181–90.
7. Li G, Lou HK. Strategies to diversify natural products for drug discovery. Med Res Rev 2018;38:1255–94.
8. Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci 2005;78:431–41.
9. Lindahl T, Wood RD. Quality control by DNA repair. Science 1999;286:1897–905.
10. Isken O, Maquat LE. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function, vol. 21; 2007. p. 1833–56.
11. Maquat LE, Carmichael GG. Quality control of mRNA function. Cell 2001;104:173–6.
12. Ibaa M, Söö D. Quality control mechanisms during translation. Science 1999;286:1893–7.
13. Baku B, Weissman J, Horwich A. Molecular chaperones and protein quality control. Cell 2006;125:443–51.
14. Bengtson MH, Joaheiro CAP. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 2010;467:470.
15. Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science 1999;286:1882–8.
Cellular proteostasis by natural molecules

16. Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999; 286: 1888–93.

17. Amo I, Sommer T, Wolf DH. Protein quality control and elimination of protein waste: the role of the ubiquitin–proteasome system. Biochim Biophys Acta 2014; 1843:182–96.

18. Lenk U, Sommer T. Ubiquitin-mediated proteolysis of a short-lived regulatory protein depends on its cellular localization. J Biol Chem 2000; 275:39403–10.

19. Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteolysis: novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38: 1916–73.

20. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000; 290:1717–21.

21. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43:67–93.

22. Amanullah A, Upadhyay A, Joshi V, Mishra R, Jana NR, Mishra A. Progressing neurobiological strategies against proteostasis failure: challenges in neurodegeneration. Prog Neurobiol 2017; 159:1–38.

23. Díaz-Villanueva JF, Díaz-Molina R, García-González V. Protein folding and mechanisms of proteolysis. Int J Mol Sci 2015; 16: 17193–230.

24. Craig EA, Eisenman HC, Hundley HA. Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding?. Curr Opin Microbiol 2003; 6:157–62.

25. Wegele H, Müller L, Buchner J. Hsp70 and Hsp90—a relay team for protein folding. In: Reviews of physiology, biochemistry and pharmacology. Berlin Heidelberg: Springer; 2004. p1–44.

26. Freeman BC, Morimoto RI. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J 1996; 15:2969–79.

27. Hartl FU. Molecular chaperones in cellular protein folding. Nature 1996; 381:571–80.

28. Mayer MP, Bukau B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 2005; 62:670.

29. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 2002; 295:1825–8.

30. Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011; 475:324.

31. Lee S, Tsai FT. Molecular chaperones in protein quality control. J Biochem Mol Biol 2005; 38:259–65.

32. Ellis RJ, Hemmingsen SM. Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 1989; 14:339–42.

33. Walter S, Buchner J. Molecular chaperones—cellular machines for protein folding. Angew Chem Int Ed Engl 2002; 41:1098–113.

34. Shibler A, Ravid T. Chaperoning proteins for destruction: diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome. Biomolecules 2014; 4: 704–24.

35. Demand J, Alberti S, Patterson C, Höhfeld J. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 2001; 11:1569–77.

36. Wong E, Cuervo AM. Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2010; 2: a006734.

37. Kettern N, Dreiseidler M, Tawo R, Hohfeld J. Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 2010; 391: 481–9.

38. Upadhyay A, Amanullah A, Chhngani D, Mishra R, Prasad A, Mishra A. Mahogunin ring finger-1 (MGRN1), a multifaceted ubiquitin ligase: recent unraveling of neurobiological mechanisms. Mol Neurobiol 2016; 53:4484–96.

39. de Duve C. The separation and characterization of subcellular particles. Harvey Lect 1965; 59:49.

40. de Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol 1966; 28: 435–92.

41. Kim PK, Hayley DW, Mullen RT, Lippincott-Schwartz J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A 2008; 105:20567–74.

42. Watanabe Y, Tanaka M. p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate. J Cell Sci 2011; 124:2692–701.

43. Mizushima N. The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 2005; 12:1535.

44. Fung Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res 2013; 24:24.

45. Lamark T, Johansen T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int J Cell Biol 2012; 2012: 736905.

46. Overbye A, Fengsrud M, Seglen PO. Proteomic analysis of membrane-associated proteins from rat liver autophagosomes. Autophagy 2007; 3:300–22.

47. Liou W, Geuze JJ, Geelen MJ, Slot JW. The autophagic and endocytic pathways converge at the nascent autophagic vacuoles. J Cell Biol 1997; 136:61–70.

48. Gordon PB, Hoyvik H, Seglen PO. Prelysosomal and lysosomal connections between autophagy and endocytosis. Biochem J 1992; 283 Pt 2:361–9.

49. Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO. Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J Cell Biol 1998; 142:21883–92.

50. Lawrence BP, Brown WJ. Autophagic vacuoles rapidly fuse with pre-existing lysosomes in cultured hepatocytes. J Cell Sci 1997; 102(Pt 3):515–26.

51. Agarraberes FA, Dice JF. A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 2001; 114:2491–9.

52. Chhangani D, Mishra A. Protein quality control system in neurodegeneration: a healing company hard to beat but failure is fatal. Mol Neurobiol 2013; 48:141–56.

53. Shpiwka T, Elazar Z. Shedding light on mammalian microautophagy. Dev Cell 2011; 20:1–2.

54. Sahu R, Kaushik S, Clement CC, Ciancioso ES, Scharf B, Follenzi A, et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20:131–9.

55. Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 2011; 7: 673–82.

56. Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci 2012; 69:1125–36.

57. Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 2012; 22: 407–17.

58. Dice JF, Chiang HL, Spencer EP, Backer JM. Regulation of catabolism of microinjected ribonuclease A. Identification of residues 7–11 as the essential pentapeptide. J Biol Chem 1986; 261:6853–9.

59. Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 2008; 28: 5747–63.

60. Dice JF. Chaperone-mediated autophagy. Autophagy 2007; 3:295–9.

61. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr Biol 2010; 20:43–8.

62. Gamerainger M, Hajieva P, Kay A, Wolfum U, Hartl FU, Behl C. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 2009; 28:899–901.

63. Glickman MH, Ciechanover A. The ubiquitin–proteasome proteolytic pathway. Destruct Sake Construct 2002; 82:373–428.

64. Liu CW, Corboy MJ, DeMartino GN, Thomas PJ. Endoproteolytic activity of the proteasome. Science 2003; 299:408–11.

65. Coux O, Tanaka K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996; 65:801–47.

66. Lupas A, Koster AJ, Baumeister W. Structural features of 26S and 20S proteasomes. Enzyme Protein 1993; 47:252–73.
67. Wilk S, Orlowski M. Evidence that pituitary cation-sensitive neutral endopeptidase is a multicatalytic protease complex. J Neurochem 1983;40:842–9.
68. Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R. The proteasome. Annu Rev Biophys Biomol Struct 1999;28:295–317.
69. Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 2009;85:12–36.
70. Orlowski M, Wilk S. Catalytic activities of the 20 S proteasome, a multicatalytic protease complex. Arch Biochem Biophys 2000;383:1–16.
71. Ciechanover A. The ubiquitin–proteasome pathway: on protein death and cell life. EMBO J 1998;17:7151–60.
72. Ciechanover A. The ubiquitin–proteasome proteolytic pathway. Cell 1994;79:13–21.
73. Haas AL, Warms YJ, Hershko A, Rose IA. Ubiquitin-activating enzyme. Mechanism and role in protein–ubiquitin conjugation. J Biol Chem 1982;257:2543–8.
74. Hershko A, Heller H, Elias S, Ciechanover A. Components of ubiquitin–protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 1983;258:8206–14.
75. Jentsch S. The ubiquitin-conjugation system. Annu Rev Genet 1992;26:179–207.
76. Ciechanover A. The ubiquitin–proteasome pathway: on protein death and cell life. EMBO J 1998;17:7151–60.
77. Ciechanover A. The ubiquitin–proteasome proteolytic system and autophagy. Trends Biochem Sci 2017;42:873–86.
78. Dittmer G, Selbach M. Deciphering the ubiquitin code. Mol Cell 2017;65:779–80.
79. Komander D, Rape M. The ubiquitin code. Ann Rev Biochem 2012;81:203–29.
80. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. Recognition of the polyubiquitin proteolytic signal. EMBO J 2000;19:94–102.
81. Clague MJ, Urbei S. Ubiquitin: same molecule, different degradation pathways. Cell 2010;143:682–5.
82. Wong ESP, Ho MWL, Tay SP, Tan JMM, Lim KL, Ko HS, et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 2007;17:431–9.
83. Chau V, Tobias JW, Bachmair A, Marrodi D, Ecker DJ, Gonda DK, et al. A multihistubiquitin complex is confined to specific lysine in a targeted short-lived protein. Science 1989;243:1576–83.
84. Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. EMBO Rep 2008;9:536–42.
85. Chen ZJ, Sun LJ. Nongenotypeic functions of ubiquitin in cell signaling. Mol Cell 2009;33:275–86.
86. Trempe JF. Reading the ubiquitin postal code. Curr Opin Struct Biol 2011;21:792–801.
87. Ciechanover A. The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology 2006;66:57–19.
88. Lillenbaum A. Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 2013;4:1–26.
89. Chhangani D, Chinchwadkar S, Mishra A. Autophagy coupling interplay: can improve cellular repair and aging?; vol. 49; 2014. p. 1270–81.
90. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.
91. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013;153:1149–217.
92. Orme T, Guerreiro R, Bras J. The genetics of dementia with Lewy bodies: current understanding and future directions. Curr Neurol Neurosci Rep 2018;18:67.
93. Mroz EA, Rocco JW. The challenges of tumor genetic diversity. Cancer 2017;123:917–27.
94. Upadhyay A. Cancer: an unknown territory; rethinking before going ahead. Gene Dis 2020. Available from: https://doi.org/10.1016/j.gendis.2020.09.002.
95. Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: the importance of exquisite quality control. Ageing Res Rev 2011;10:205–15.
96. Arslan MA, Csermely P, Soti C. Protein homeostasis and molecular chaperones in aging. Biogerontology 2006;7:383–9.
97. Currais A, Fischer W, Maher P, Schubert D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J 2017;31:5–10.
98. Beyer K, Domingo-Sábat A, Atita A. Molecular pathology of Lewy body diseases. Int J Mol Sci 2009;10:724–45.
99. Buciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zardo J, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002;416:507.
100. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol 2012;22:R741–52.
101. Jiang X, Overholzer M, Thompson CB. Autophagy in cellular metabolism and cancer. J Clin Invest 2015;125:47–54.
102. Ellisdon AM, Bottomley SP. The role of protein misfolding in the pathogenesis of human diseases. IUBMB Life 2004;56:119–23.
103. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biomed Sci 2006;57:333–66.
104. Dobson CM. Protein folding and misfolding. Nature 2003;426:884–90.
105. Chaudhuri TK, Paul S. Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 2006;273:1331–49.
106. Cohen FE, Kelly JW. Therapeutic approaches to protein-misfolding diseases. Nature 2003;426:905–9.
107. Rambaran RN, Serpell LC. Amyloid fibrils: abnormal protein assembly. Prion 2008;2:112–7.
108. Sipe JD, Benson MD, Buxbaum JN, Ikeda SI, Merlini G, Saraiva MJ, et al. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification international society of amyloidosis 2016 nomenclature guidelines. Amyloid 2016;23:209–13.
109. Mauri M, Elli T, Caviglia G, Uboldi G, Azzi M. Proceedings of the 12th biannual conference on Italian SIGCHI chapter. Cagliari, Italy; ACM press; 2017. p. 28.
110. Luo LW, Clarke DM. Chemical and pharmacological chaperones as new therapeutic agents. Expert Rev Mol Med 2007;9:1–18.
111. Deh Y, Bhattacharya R, Mukherjee A, Pandey DK. Natural products against Alzheimer’s disease: pharmacotherapeutics and biotechnological interventions. Biotechnol Adv 2017;35:178–216.
112. Bernier V, Lagace M, Bichet DG, Bouvier M. Pharmacological chaperones: potential treatment for conformational diseases. Trends Endocrinol Metabol 2004;15:222–8.
113. Morello JP, Petaja-Repo UE, Bichet DG, Bouvier M. Pharmacological chaperones: a new twist on receptor folding. Trends Pharmacol Sci 2000;21:466–9.
114. de Duve C. Lysosomes ciba foundation symposium. Postgrad Med 1964;40:557.
115. Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore protein stability defects in multiple diseases?. Med Res Rev 2020;40:1385–439.
116. Upadhyay A, Amanullah A, Chhangani D, Mishra R, Mishra A. Selective multifaceted E3 ubiquitin ligases barricade extreme defenses: potential therapeutic targets for neurodegeneration and aging. Ageing Res Rev 2015;24:138–59.
117. Upadhyay A. Structure of proteins: evolution with unsolved mysteries. Prag Biophys Mol Biol 2019;149:160–72.
118. Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, et al. Linking of autophagy to ubiquitin–protein system is important for the regulation of endoplasmic reticulum stress and cell viability. *Am J Pathol* 2007;171:513–24.

119. Tang B, Cai J, Sun L, Li Y, Qu J, Snider BJ, et al. Proteasome inhibitors activate autophagy involving inhibition of PI3K-Akt-mTOR pathway as an anti-oxidation defense in human RPE cells. *PLoS One* 2014;9:e103364.

120. Wang D, Xu Q, Yuan Q, Jia M, Niu H, Liu X, et al. Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. *Oncogene* 2019;38:3458–74.

121. Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Auto- phagy inhibition compromises degradation of ubiquitin–proteasome pathway substrates. *Mol Cell* 2009;33:517–27.

122. Dandage R, Bandypadhyay A, Jayaraj GG, Saxena K, Dalal V, Das A, et al. Classification of chemical chaperones based on their effect on protein folding landscapes. *ACS Chem Biol* 2015;10:813–20.

123. Perlmutter DH. Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking. *Pediatr Res* 2002;52:832–6.

124. Ringe D, Petsko GA. What are pharmacological chaperones and why are they interesting?. *J Biol Chem* 2009;284:8a80.

125. Pereira David M, Valenta˜o P, Andrade PB. Tuning protein folding in stress proteins in oncogenic transformation. *Oncogene* 2009;28:5853–6.

126. Amolins MW, Blagg BSJ. Natural product inhibitors of Hsp90: potential leads for drug discovery. *Mini Rev Med Chem* 2009;9:140–52.

127. Jinwal UK, Miyata Y, Koren 3rd J, Jones JR, Trotter JH, Chang L, et al. Linking of autophagy to ubiquitin–protein system is important for the regulation of endoplasmic reticulum stress and cell viability. *Am J Pathol* 2007;171:513–24.

128. Kwon HJ, Yoshida M, Abe K, Horinouchi S, Beppu T. Radicicol, a triterpene saponin, inhibits heat shock protein 70 and protects against MPTP-induced neurotoxicity in mice. *J Biol Chem* 2005;280:39962–9.

129. Sharma SV, Agatsuma T, Nakano H. Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol. *Oncogene* 1998;16:2639–45.

130. Whitesell L, Minnaugh EG, de Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90 pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. *Proc Natl Acad Sci U S A* 1994;91:8324–9.

131. Münster PN, Srethapakdi M, Moasser MM, Rosen N. Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells. *Cancer Res* 2001;61:2945.

132. Moulin E, Zoete V, Barluenga S, Karplus M, Winssinger N. Design, synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues. *J Am Chem Soc* 2005;127:6999–7004.

133. Turbiville TJ, Wijeratne EM, Liu MX, Burns AM, Seligia CJ, Luveano LA, et al. Search for Hsp90 inhibitors with potential anti-cancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. *J Nat Prod* 2006;69:178–84.

134. Sreeramulu S, Gande SL, Göbel M, Schwabbe H. Molecular mechanism of inhibition of the human protein complex Hsp90–Cdc37, a kinase chaperone–co-chaperone, by triterpene celastrol. *Angew Chem Int Ed Engl* 2009;48:5853–5.

135. Davenport J, Manjarete JR, Peterson L, Krumm B, Blagg BS, Matts RL. Gambogenic acid, a natural product inhibitor of Hsp90. *J Nat Prod* 2011;74:1085–92.

136. Hadden MK, Galam L, Gestwicki JE, Matts RL, Blagg BS. Derrubone, an inhibitor of the Hsp90 protein folding machinery. *J Nat Prod* 2007;70:2014–8.

137. Nagai N, Nakai A, Nagata K. Quercetin suppresses heat shock response by down regulation of HSF1. *Biochem Biophys Res Comm* 1995;208:1099–105.

138. Palermo CM, Westlake CA, Gasiewicz TA. Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein. *Biochemistry* 2005;44:5041–52.

139. Tran PL, Kim SA, Choi HS, Yoon JH, Ahn SG. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. *BMC Cancer* 2010;10:276.

140. Blank M, Mandel M, Keisari Y, Menum U, Lavie G. Enhanced ubiquitylation of heat shock protein 90 as a potential mechanism for mitotic cell death in cancer cells induced with hypericin. *Cancer Res* 2003;63:8241–7.

141. Vasko RC, Rodriguez RA, Cunningham CN, Ardi VC, Agard DA, McAlpine SR. Mechanistic studies of sansalvamide A-amide: an allosteric modulator of Hsp90. *ACS Med Chem Lett* 2010;1:4–8.

142. Chen WY, Chang FR, Huang ZY, Chen JH, Wu YC, Wu CC. Tubocapsenolide A, a novel withanolid, inhibits proliferation and induces apoptosis in MDA-MB-231 cells by thiol oxidation of heat shock protein 90. *J Biol Chem* 2008;283:17184–93.

143. Chang L, Miyata Y, Ung PM, Bertelsen EB, McQuade TJ, Carlson HA, et al. Chemical screens against a reconstituted multi-protein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. *Chem Biol* 2011;18:210–21.

144. Nadler SG, Tepper MA, Schacter B, Mazzucco CE. Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. *Science* 1992;258:846–6.

145. Bagatell R, Paine-Murrieta GD, Taylor CW, Pulcini EJ, Akina ega S, Benjamim JI, et al. Induction of a heat shock factor 1-dependent stress response alters the cytoxic activity of Hsp90-binding agents. *Clin Cancer Res* 2006;12:3132–8.

146. Kim HR, Kang HS, Kim HD. Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. *J Immunol* 2007;168:429–33.

147. Lu A, Ran R, Parmentier-Batteu S, Nee A, Sharp FR. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischaemia. *J Neurochem* 2002;81:355–64.

148. Batulan Z, Taylor DM, Aarons RJ, Minotti S, Dordouchi MM, Nalbantoglu J, et al. Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. *Neuromuscul Dis* 2006;16:213–25.

149. Shen HY, He JC, Wang Y, Huang Q, Chen JF. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. *J Biol Chem* 2005;280:39962–9.

150. Sittler A, Lurz R, Laeder G, Friller J, Lehrhach H, Hayer-Hartl MK, et al. Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. *Hum Mol Genet* 2001;10:1307–15.

151. Kato I, Ito H, Kamei K, Iwamoto I. Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo. *Cell Stress Chaperones* 1998;3:152–60.

152. Patel P, Julien JP, Križ J. Early-stage treatment with withaferin A reduces levels of misfolded superoxide dismutase 1 and extends lifespan in a mouse model of amyotrophic lateral sclerosis. *Neurotherapeutics* 2015;12:217–33.

153. Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin–proteasome system by protein aggregation. *Science* 2001;292:1552–5.

154. Leestemaker Y, de Jong A, Witting KF, Gestwicki JE, Matts RL. Gambogenic acid, a natural product inhibitor of Hsp90. *J Biol Chem* 2005;280:5041–52.

155. Bonfili L, Cecarini V, Amici M, Cuccioloni M, Angeletti M, Keller JN, et al. Natural polyphenols as proteasome modulators and their role as anti-cancer compounds. *FEBS J* 2008;275:5512–26.
and is a potential therapeutic reagent for Huntington’s disease. *J Neurochem* 2014;129:539–47.

195. Ohtsuka I, Gasa S, Namikawa C, Makita A, Sasaki M. Human erythrocyte multicatalytic proteinase: activation and binding to sulfated galacto- and lactosylceramides. *Biochem Biophys Res Commun* 1991;174:1133–40.

196. Matsumura K, Aketa K. Activation of proteasome in sea urchin sperm by lysophosphatidilinositol and by sperm lipids: (proteasome/sea urchin/sperm/acroosome reaction/lysophospholipid). *Dev Growth Differ* 1991;33:259–66.

197. Cai CZ, Zhou HF, Yuan NN, Wu MY, Lee SMY, Ren JY, et al. Natural alkaloid haridine promotes degradation of alpha-synuclein via PANK-mediated ubiquitin-proteasome system activation. *Phytochemistry* 2019;61:152842.

198. Yuan NN, Cai CZ, Wu MY, Zhu Q, Su H, Li M, et al. Canthin-6-One accelerates alpha-synuclein degradation by enhancing UPS activity: drug target identification by crisper-cas9 whole genome-wide screening technology. *Front Pharmacol* 2019;10:16.

199. Zhou H, Li S, Li C, Yang X, Li H, Zhong H, et al. Oxyphytilla A promotes degradation of alpha-synuclein for neuroprotection via activation of immunoproteasome. *Aging Dis* 2020;11:559.

200. Buckley DL, Crews CM. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system. *Angew Chem Int Ed* 2014;53:2312–30.

201. Sekizawa R, Ikeno S, Nakamura H, Naganawa H, Matsui S, Iinuma H, et al. Panepophenanthrin, from a mushroom strain, a novel inhibitor of the ubiquitin-activating enzyme. *J Nat Prod* 2002;65:1491–3.

202. Tsukamoto S, Hirota H, Imachi M, Fujimori M, Onuki H, Ohba T, et al. Himeic acid A: a new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, Aspergillus sp. *Bioorg Med Chem Lett* 2005;15:191–4.

203. Ungermannova D, Parker SJ, Nasveschuk CG, Wang W, Quade B, Zhang G, et al. Largazole and its derivatives selectively inhibit ubiquitin activating enzyme (E1). *PLoS One* 2012;7:e29208.

204. Yamanoku R, Imada K, Miyazaki M, Kato H, Watanabe T, Fujimori M, et al. Hyrtioreucilin A-E: Indole alkaloids inhibiting the ubiquitin-activating enzyme, from the marine sponge *Hyrtios reticulatus*. *Bioorg Med Chem* 2012;20:4437–42.

205. Helms KM, Wilson RC, Oungbve IV, Setzer WN, Twigg PD. Vitexin inhibits polyubiquitin synthesis by the ubiquitin-conjugating enzyme E2-25K. *Nat Prod Commun* 2011;6:1411–6.

206. Tsukamoto S, Takeuchi T, Rotinisolu H, Manginanda RE, van Lissoorth RW, Uliak K, et al. Leucettamol A: A new inhibitor of Ubc13-Uev1A interaction isolated from a marine sponge *Leucetta aff Micro dendryx fibrosa*. *J Nat Prod* 2012;75:1495–9.

207. Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. *Cellular proteostasis by natural molecules* 3013

208. Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. *Nat Rev Mol Cell Biol* 2010;11:1381–92.

209. Lawson AP, Long MIC, Coffey RT, Qian Y, Weerapana E, El Oualid F, et al. Naturally occurring isothiocyanates exert antitumor effects by inhibiting deubiquitinating enzymes. *Cancer Res* 2015;75:5130–42.

210. Yue W, Chen Z, Liu H, Yan C, Chen M, Feng D, et al. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. *Cell Res* 2014;24:482–96.

211. Upadhyay A, Joshi V, Amanullah A, Mishra R, Arora N, Prasad A, et al. E3 ubiquitin ligases neurobiological mechanisms: development to degeneration. *Front Mol Neurosci* 2017;10:151.

212. Chen D, Gehringer M, Lorenz S. Developing small-molecule inhibitors of HECT-type ubiquitin ligases for therapeutic applications: challenges and opportunities. *Chembiochem* 2018;19:2123–55.

213. Gabrielsen M, Buetow L, Nakasone MA, Ahmed SF, Sibbet GJ, Smith BO, et al. A general strategy for discovery of inhibitors and activators of RING and U-box E3 ligases with ubiquitin variants. *Mol Cell* 2017;68:456–70. e10.

214. Mund T, Lewis MJ, Maslen S, Pelham HR. Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. *Proc Nat Acad U S A* 2014;111:16736–41.

215. Zhou N, Li J, Li T, Chen G, Zhang Z, Si Z. Matrine-induced apoptosis in Hep3B cells via the inhibition of MDM2. *Mol Med Rep* 2017;15:442–50.

216. Zhang X, Gu L, Li J, Shah N, He J, Yang L, et al. Degradation of MDM2 by the interaction between berberine and DAXX leads to potent apoptosis in MDM2-overexpressing cancer cells. *Cancer Res* 2010;70:9895–904.

217. Mu R, Qi Q, Gu H, Wang J, Yang Y, Rong J, et al. Involvement of p53 in oroxylin A-induced apoptosis in cancer cells. *Mol Carcinog* 2009;48:1159–69.

218. Fang J, Jiang C, Cao Z, Zheng JZ, Reed E, Jiang BH. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. *FASEB J* 2005;19:542–53.

219. Li M, Zhang Z, Hill DL, Chen X, Wang H, Zhang R, Genestein, a dietary isoflavone, down-regulates the MDM2 oncogene at both transcriptional and posttranslational levels. *Cancer Res* 2005;65:8200–8.

220. Qin JJ, Wang W, Sarkar S, Voruganti S, Agarwal R, Zhang R. Inulanolide A as a new dual inhibitor of NFKAT-MDM2 pathway for breast cancer therapy. *Oncotarget* 2016;7:32566–78.

221. Qin JJ, Li X, Hunt C, Wang W, Wang H, Zhang R. Natural products targeting the p53–MDM2 pathway and mutant p53: recent advances and implications in cancer medicine. *Gene Dis* 2018;5:204–19.

222. Lee SJ, Langhans SA. Anaphase-promoting complex/cyclosome protein Cdc27 is a target for curcumin-induced cell cycle arrest and apoptosis. *BMC Cancer* 2012;12:44.

223. Upadhyay A, Amanullah A, Mishra R, Kumar A, Mishra A. Lano- steroid suppresses the aggregation and cytotoxicity of misfolded proteins linked with neurodegenerative diseases. *Mol Neurobiol* 2018;55:1169–82.

224. Joshi V, Mishra R, Upadhyay A, Amanullah A, Poluri KM, Singh S, et al. Polyphenolic flavonoid (myricetin) upregulated proteasomal proteins linked with neurodegenerative diseases. *J Nat Prod* 2012;65:442–7.

225. Qin JJ, Wang W, Sarkar S, Voruganti S, Agarwal R, Zhang R. Inulanolide A as a new dual inhibitor of NFKAT-MDM2 pathway for breast cancer therapy. *Oncotarget* 2016;7:32566–78.

226. Casarejos MJ, Peruchico J, Lopez-Sendon JL, Garcia de Yebenes J, Bettencourt C, Gomez A, et al. Trehalose improves human fibroblast deficits in a new CHIP-mutation related ataxia. *PLoS One* 2014;9:e106931.

227. Law BYK, Chan WK, Xu SW, Wang JR, Bai LP, Liu L, et al. Natural small-molecule enhancers of autophagy induce autophagic cell death in apoptosis-defective cells. *Sci Rep* 2014;4:a5510.

228. Lin SR, Fu YS, Tsai MJ, Cheng H, Weng CF. Natural compounds from herbs that can potentially execute as autophagy inducers for cancer therapy. *Int J Mol Sci* 2017;18:1412.

229. Marinković M, Sprung M, Buljubašić M, Novak I. Autophagy modulation in cancer: current knowledge on action and therapy. *Oxid Med Cell Longev* 2018;2018:93:a8023821.

230. Rahman MA, Rhim H. Therapeutic implication of autophagy in neurodegenerative diseases. *BMB Rep* 2017;50:345–54.

231. Sarkar S, Davies JE, Huang Z, Tunnaccliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. *J Biol Chem* 2007;282:5641–52.
234. Wang B, Yang Q, Sun YY, Xing YF, Wang YB, Lu XT, et al. Resveratrol-enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. *J Cell Mol Med* 2014;18:1599–611.

235. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. *Nat Med* 2004;10:148–54.

236. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. *Cell* 2008;132:27–42.

237. Campbell GR, Spector SA. Hormonally active vitamin D3 (1α,25-dihydroxycholecalciferol) triggers autophagy in human macrophages that inhibits HIV-1 infection. *J Biol Chem* 2011;286:18890–902.

238. Campbell GR, Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and *Mycobacterium tuberculosis* infection in macrophages through the induction of autophagy. *PLoS Pathog* 2012;8:e1002689.

239. Deretic V. Autophagy in tuberculosis. *Cold Spring Harb Perspect Med* 2014;4:a018481.

240. Joy S, Thirunavukkarasu L, Agrawal P, Singh A, Sagar BKC, Manjithaya R, et al. Basal and starvation-induced autophagy mediates parasite survival during intraerythrocytic stages of *Plasmodium falciparum*. *Cell Death Disc* 2018;4:85.

241. Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. *Cell Death Differ* 2005;12:1509–18.

242. Rabinowitz JD, White E. Autophagy and metabolism. *Science* 2010;330:1344–8.

243. Brophy ML, Dong Y, Wu H, Rahman HNA, Song K, Chen H. Eating the dead to keep atherosclerosis at bay. *Front Cardiovasc Med* 2017;4:a2.

244. Bugliani M, Mosutto S, Grano F, Suleiman M, Marselli L, Boggi U, et al. Modulation of autophagy influences the function and survival of human pancreatic beta cells under endoplasmic reticulum stress conditions and in type 2 diabetes. *Front Endocrinol* 2019;10:a52.

245. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. *Nature* 2012;481:511–5.

246. Wang B, Zhou TY, Nie CH, Wan DL, Zheng SS. Bigelovin, a sesquiterpene lactone, suppresses tumor growth through inducing apoptosis and autophagy via the inhibition of mTOR pathway regulated by ROS generation in liver cancer. *Biochem Biophys Res Commun* 2018;499:156–63.

247. Li X, Li X, Wang J, Ye Z, Li JC. Oridonin up-regulates expression of PT21 and induces autophagy and apoptosis in human prostate cancer cells. *Int J Biol Sci* 2012;8:901–12.

248. Wang R, Zhang Q, Peng X, Zhou C, Zhong Y, Chen X, et al. Stellettin B induces G1 arrest, apoptosis and autophagy in human non-small cell lung cancer A549 cells via blocking PI3K/Akt/mTOR pathway. *Sci Rep* 2016;6:27071.

249. Zhou Y, Liang X, Chang H, Shu F, Wu Y, Zhang T, et al. Ampelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt—mTOR pathway via endoplasmic reticulum stress. *Cancer Sci* 2014;105:1279–87.

250. Ma K, Zhang C, Huang MY, Li WY, Hu GQ. Cinobufagin induces autophagy-mediated cell death in human osteosarcoma U2OS cells through the ROS/JNK/p38 signaling pathway. *Oncol Rep* 2016;36:90–8.

251. Sun ZL, Dong JL, Wu J. Juglanin induces apoptosis and autophagy in human breast cancer progression via ROS/JNK promotion. *Biomed Pharmacother* 2017;85:303–12.

252. Xavier CP, Lima CF, Pedro DF, Wilson JM, Kristiansen K, Pereira-Wilson C. Ursolic acid induces cell death and modulates autophagy through JNK pathway in apoptosis-resistant colorectal cancer cells. *J Nutr Biochem* 2013;24:706–12.

253. Rabinstein DC, Maríno G, Kroemer G. Autophagy and aging. *Cell* 2011;146:682–95.

254. Frake RA, Ricketts T, Menzies FM, Rabinstein DC. Autophagy and neurodegeneration. *J Clin Invest* 2015;125:65–74.

255. Hu G, Gong X, Wang L, Liu M, Liu Y, Fu X, et al. Triptolide promotes the clearance of α-synuclein by enhancing autophagy in neuronal cells. *Mol Neurobiol* 2017;54:2361–72.

256. Han J, Pan XY, Xu Y, Xiao Y, An Y, Tie L, et al. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. *Autophagy* 2012;8:812–25.

257. Johansson I, Monsen VT, Pettersen K, Mildenberger J, Misund K, Kaarniranta K, et al. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. *Autophagy* 2015;11:1636–51.

258. Yu X, Li C, Song H, Wang X, Guo Y, Cui L, et al. Emodin attenuates autophagy response to protect the pancreas from acute pancreatitis failure. *Pancerus* 2018;47:892–7.

259. Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. *Proc Natl Acad Sci U S A* 1982;79:1889–92.

260. Abliz A, Deng W, Sun R, Guo W, Zhao L, Wang W, Wortmannin, PI3K/Akt signaling pathway inhibitor, attenuates thyroid injury associated with severe acute pancreatitis in rats. *Int J Clin Exp Pathol* 2015;8:13821–33.

261. Wang YA, Kammenga JE, Harvey SC. Genetic variation in neurodegenerative diseases and its accessibility in the model organism *Caenorhabditis elegans*. *Hum Genom* 2017;11:12.

262. Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Chand RPB, Aparna SR, Mangalapandi P, et al. IMPPAT: a curated database of traditional medicine from natural products. *PLoS One* 2016;11:e0147215.

263. Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine to target angiogenesis. *Curr Sci* 2007;92:1251–7.