High-order threshold corrections for top-pair and single-top production

Nikolaos Kidonakis

Department of Physics
Kennesaw State University, Kennesaw, GA 30144, USA

I present results for high-order corrections from threshold resummation to cross sections and differential distributions in top-antitop pair production and in single-top production. I show aN^3LO results for the total $t\bar{t}$ cross section as well as for the top-quark transverse-momentum (p_T) and rapidity distributions, and the top-quark forward-backward asymmetry in $t\bar{t}$ production. I compare with the most recent Tevatron and LHC data, including at 13 TeV. I also present $aNNLO$ results for cross sections and p_T distributions in t-channel, s-channel, and tW-channel single-top production.

PRESENTED AT

DPF 2015
The Meeting of the American Physical Society
Division of Particles and Fields
Ann Arbor, Michigan, August 4–8, 2015

This material is based upon work supported by the National Science Foundation under Grant No. PHY 1519606.
1 Introduction

Top-quark physics has been a centerpiece of high-energy collider experiments, first at the Tevatron and then at the LHC. The correct understanding of the production mechanisms of the top is thus of fundamental importance. Total cross sections and differential distributions of the top quark have been calculated to high theoretical precision and measured by the experiments.

In this talk I present the most recent and most accurate theoretical results for the production of top-antitop pairs, and for single top production. Soft-gluon threshold corrections are added at one order higher than known complete fixed-order results in each case. Thus, I present approximate N^3LO (aN^3LO) results for $t\bar{t}$ production \cite{1} based on NNLL resummation \cite{2}. I show that they are in excellent agreement with recent LHC and Tevatron data \cite{3-10}. An expansion of the NNLL resummed cross section \cite{2} is used through N^3LO in \cite{1}, thus avoiding the need for a prescription. We prefer fixed-order expansions \cite{11} because the minimal or other prescriptions have chronically produced results that severely underestimate the size of the true cross section, while our fixed-order expansions have been exceedingly accurate in predicting the higher-order corrections. I also present approximate NNLO (aNNLO) results for single-top production \cite{12} which are also in excellent agreement with recent LHC and Tevatron data \cite{13-17}.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Cross sections at aN^3LO for $t\bar{t}$ production at the LHC.}
\end{figure}

2 Top-antitop pair production

I begin my presentation with aN^3LO results for $t\bar{t}$ production. MSTW2008 NNLO pdf \cite{18} are used for all numerical results. I show in Fig. \ref{fig:1} the aN^3LO theoretical
predictions for the total $t\bar{t}$ cross section as a function of LHC energy. The central result as well as the variations with scale and pdf uncertainties are shown. The theoretical predictions are compared with LHC data from ATLAS and CMS at 7 TeV [3] and 8 TeV [4], and with the newest data at 13 TeV [5] from Run 2 at the LHC. Remarkable agreement is found for all energies. The recent 13 TeV LHC data have of course still rather large uncertainties, much larger than those of theory. Also excellent agreement is found with 1.96 Tevatron data [6] as shown in [19].

Next I discuss the theoretical results for the p_T distributions. In the left plot of Fig. 2 I show the central aN3LO results for the top-quark transverse-momentum distributions at 7, 8, 13, and 14 TeV LHC energies. The right plot of Fig. 2 shows the normalized top-quark p_T distributions at 8 TeV (bottom half) compared with CMS data in the dilepton (black) and lepton+jets (red) channels [7]; and at 13 TeV (top half) compared with CMS dilepton data [8]. Excellent agreement is found between our aN3LO results and the data at both energies (and also at 7 TeV as shown in [19]).

We continue with theoretical results for the rapidity distributions. In the left plot of Fig. 3 I show the central aN3LO results for the top-quark rapidity distributions at 7, 8, 13, and 14 TeV LHC energies. The right plot of Fig. 3 shows the normalized top-quark rapidity distribution at 8 TeV (bottom half) compared with CMS data in the dilepton (black) and lepton+jets (red) channels [7]; and the normalized distribution of the absolute value of the top rapidity at 13 TeV (top half) compared with CMS dilepton data [8]. Excellent agreement of aN3LO theory with data is found at 8 TeV energy (as well as at 7 TeV [19]). At 13 TeV, the error bars of the data are large but there is good overall agreement with theory.

In Fig. 4 I present aN3LO results for differential distributions at the Tevatron collider at 1.96 TeV energy. The left plot shows the top-quark p_T distribution, with
The top-quark forward-backward asymmetry, A_{FB}, is defined by $A_{FB} = [\sigma(Y > 0) - \sigma(Y < 0)]/\sigma \equiv \Delta\sigma/\sigma$. Writing explicitly the perturbative series for numerator and denominator, including both electroweak and aN^3LO QCD corrections, we can write the expression for A_{FB} as

$$A_{FB} = \frac{\Delta\sigma^{EW} + \alpha_s^3 \Delta\sigma^{(1)} + \alpha_s^4 \Delta\sigma^{(2)} + \alpha_s^5 \Delta\sigma^{(3)} + \cdots}{\alpha_s^2 \sigma^{(0)} + \alpha_s^3 \sigma^{(1)} + \alpha_s^4 \sigma^{(2)} + \alpha_s^5 \sigma^{(3)} + \cdots}$$ \hspace{1cm} (1)
In Table 1, I show results for the top-quark forward-backward asymmetry at the Tevatron collider at 1.96 TeV energy in both the $p\bar{p}$ frame and the $t\bar{t}$ frame. I provide results using both Eq. (1) and Eq. (2). The inclusion of the high-order corrections resolves the past disagreement with Tevatron data [10].

3 Single-top production

Next, I discuss aNNLO results for single-top production at the LHC and the Tevatron.

![Single-top cross sections and p_T distributions](image)

Figure 5: Single-top cross sections (left) and p_T distributions (right) at aNNLO for t-channel, s-channel, and tW production.

In the left plot of Fig. 5, I display the aNNLO single-top total cross sections in the t-channel, s-channel, and tW-channel, as functions of collider energy. At 1.96 TeV
Tevatron energy, I compare with t-channel data from CDF and D0 [13]. At 7 and 8 TeV LHC energies, I compare with t-channel data from ATLAS and CMS [14] and with tW-channel data from ATLAS and CMS [15]. At 8 TeV LHC energy I compare with s-channel data from ATLAS and CMS [16]. Finally, at 13 TeV LHC energy I compare with the very recent t-channel data from CMS [17]. Excellent agreement of theory with data is found for all collider energies.

In the right plot of Fig. 5 the aNNLO top-quark p_T distributions in single-top production are displayed in all three channels. The t-channel distribution is numerically the largest, followed by that for tW production, and last by the s-channel distribution.

4 Conclusions

I have presented the latest theoretical results for top quark production, both in top-antitop pair and in single-top processes. For tt production, I have presented the total cross sections and the top quark differential distributions in p_T and rapidity through aN3LO at LHC and Tevatron energies, as well as the forward-backward asymmetry at the Tevatron. Results for single-top production have been presented through aNNLO for total cross sections and p_T distributions. The high-order corrections are significant, and all theoretical results are in very good agreement with recent analyses from the LHC and the Tevatron.

References

[1] N. Kidonakis, Phys. Rev. D 90, 014006 (2014) [arXiv:1405.7046 [hep-ph]]; Phys. Rev. D 91, 031501(R) (2015) [arXiv:1411.2633 [hep-ph]]; Phys. Rev. D 91, 071502(R) (2015) [arXiv:1501.01581 [hep-ph]].

[2] N. Kidonakis, Phys. Rev. Lett. 102, 232003 (2009) [arXiv:0903.2561 [hep-ph]]; Phys. Rev. D 82, 114030 (2010) [arXiv:1009.4935 [hep-ph]]; Phys. Rev. D 84, 011504 (2011) [arXiv:1105.5167 [hep-ph]].

[3] ATLAS and CMS Collaborations, ATLAS-CONF-2012-134, CMS-PAS-TOP-12-003.

[4] ATLAS and CMS Collaborations, ATLAS-CONF-2014-054, CMS-PAS-TOP-14-016.

[5] ATLAS Collaboration, ATLAS-CONF-2015-033; CMS Collaboration, CMS-PAS-TOP-15-005.
[6] CDF and D0 collaborations, Phys. Rev. D 89, 072001 (2014) [arXiv:1309.7570 [hep-ex]].

[7] CMS Collaboration, arXiv:1505.04480 [hep-ex].

[8] CMS Collaboration, CMS-PAS-TOP-15-010.

[9] D0 Collaboration, Phys. Rev. D 90, 092006 (2014) [arXiv:1401.5785 [hep-ex]].

[10] CDF Collaboration, Phys. Rev. D 87, 092002 (2013) [arXiv:1211.1003 [hep-ex]]; D0 Collaboration, Phys. Rev. D 90, 072011 (2014) [arXiv:1405.0421 [hep-ex]].

[11] N. Kidonakis, Phys. Rev. D 64, 014009 (2001) [hep-ph/0010002]; Phys. Rev. D 73, 034001 (2006) [hep-ph/0509079].

[12] N. Kidonakis, Phys. Rev. D 81, 054028 (2010) [arXiv:1001.5034 [hep-ph]]; Phys. Rev. D 82, 054018 (2010) [arXiv:1005.4451 [hep-ph]]; Phys. Rev. D 83, 091503 (2011) [arXiv:1110.32792 [hep-ph]]; Phys. Part. Nucl. 45, 714 (2014) [arXiv:1210.7813 [hep-ph]]; Phys. Rev. D 88, 031504 (2013) [arXiv:1306.3592 [hep-ph]].

[13] CDF and D0 Collaborations, arXiv:1503.05027 [hep-ex].

[14] ATLAS Collaboration, Phys. Rev. D 90, 112006 (2014) [arXiv:1406.7844 [hep-ex]]; CMS Collaboration, JHEP 12, 035 (2012) [arXiv:1209.4533 [hep-ex]]; ATLAS and CMS Collaborations, ATLAS-CONF-2013-098, CMS-PAS-TOP-12-002.

[15] ATLAS Collaboration, Phys. Lett. B 716, 142 (2012) [arXiv:1205.5764 [hep-ex]]; CMS Collaboration, Phys. Rev. Lett. 110, 022003 (2013) [arXiv:1209.3489 [hep-ex]]; ATLAS and CMS Collaborations, ATLAS-CONF-2014-052, CMS-PAS-TOP-14-009.

[16] ATLAS Collaboration, Phys. Lett. B 740, 118 (2015) [arXiv:1410.0647 [hep-ex]]; CMS Collaboration, CMS-PAS-TOP-13-009.

[17] CMS Collaboration, CMS-PAS-TOP-15-004.

[18] A.D. Martin, W.J. Stirling, R.S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009) [arXiv:0901.0002 [hep-ph]].

[19] N. Kidonakis, PoS(DIS2015)169 [arXiv:1506.04068 [hep-ph]]; PoS(DIS2015)170 [arXiv:1506.04072 [hep-ph]]; PoS(RADCOR2015)033 [arXiv:1509.02528 [hep-ph]].