Inhibition of Phosphatidylinositol 3-Kinase by c-Abl in the Genotoxic Stress Response*

(Received for publication, June 19, and in revised form, July 21, 1997)

Zhi-Min Yuan, Taiju Utsugisawa, Yinyin Huang, Takatoshi Ishiko, Shuji Nakada, Sureshkar Harkanda, Ralph Weichselbaum‡, and Donald Kufe

From the Department of Cancer Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115 and the ‡Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois 60637

Activation of phosphatidylinositol (PI) 3-kinase by growth factors results in phosphorylation of phosphatidylinositol lipids at the D3 position. Although PI 3-kinase is essential to cell survival, little is known about mechanisms that negatively regulate this activity. Here we show that the c-Abl tyrosine kinase interacts directly with the p85 subunit of PI 3-kinase. Activation of c-Abl by ionizing radiation exposure is associated with c-Abl-dependent phosphorylation of PI 3-kinase. We also show that phosphorylation of p85 by c-Abl inhibits PI 3-kinase activity in vitro and in irradiated cells. These findings indicate that c-Abl negatively regulates PI 3-kinase in the stress response to DNA damage.

The product of the c-abl gene is a nonreceptor tyrosine kinase that shares certain structural features, including SH3, SH2, and catalytic domains, with the Src kinase family. In addition, c-Abl contains nuclear localization signals, a bipartite DNA-binding domain, and F- and G-actin binding domains (reviewed in Ref. 1). Cells exposed to ionizing radiation (IR)1 and certain DNA-damaging agents respond with activation of c-Abl (1–4). Signals downstream of c-Abl activation include induction of the stress-activated kinase protein and p38 mitogen-activated protein kinase (1, 2, 5). The activation of c-Abl by genotoxic stress is also associated with interaction of c-Abl with the p53 tumor suppressor protein in the G1 arrest response (6, 7). Other studies have provided support for involvement of c-Abl in DNA damage-induced apoptosis (8).

One issue concerning the genotoxic stress response is how DNA damage is converted into informational intracellular signals that affect cell behavior. Whereas IR induces DNA double-strand breaks (9), the DNA-dependent protein kinase (DNA-PK) is activated by double-strand breaks and other DNA lesions (10–12). Recent studies have demonstrated that DNA-PK phosphorylates and activates c-Abl (13). In a potential feedback mechanism, c-Abl phosphorylates and inhibits DNA-PK activity (13). Other work has shown that c-Abl interacts with the product of the ataxia telangiectasia mutated (ATM) gene and that ATM may also be responsible for activating c-Abl as a consequence of genotoxic stress (14, 15). The findings that cells defective in DNA-PK or ATM are hypersensitive to the lethal effects of IR (16, 17), whereas c-Abl-deficient cells are resistant to IR-induced killing (8), has suggested that functional interactions between c-Abl and DNA-PK or ATM may contribute to cell fate.

The DNA-PK catalytic subunit and ATM are related to members of the PI 3-kinase family, such as Tor1p, Tor2p, FKBP-rapamycin-associated protein, and Schizosaccharomyces pombe Rad 3, involved in cell cycle control and DNA repair (18). PI 3-kinase is activated by growth factor receptors and has been implicated in transducing survival signals (19). Inositol lipids phosphorylated at the D3 position by PI 3-kinase function in part in the activation of the Akt (protein kinase B) serine/threonine protein kinase (20–23). The PI 3-kinase/Akt pathway inhibits the induction of apoptosis by serum withdrawal (24) and the c-Myc protein (25). Activation of Akt thus promotes survival, whereas inhibition of PI 3-kinase with wortmannin induces apoptosis (24, 26). These findings suggest that signaling mechanisms that down-regulate PI 3-kinase would be pro-apoptotic. However, whereas autophosphorylation of PI 3-kinase on serine inhibits PI 3-kinase activity (27, 28), little is known about other signals that negatively regulate this kinase.

The present studies demonstrate that c-Abl associates with PI 3-kinase. Phosphorylation of the p85 subunit of PI 3-kinase by c-Abl inhibits PI 3-kinase activity. The results also show that c-Abl phosphorylates and inhibits PI 3-kinase in IR-treated cells.

MATERIALS AND METHODS

Cell Culture—Human U-937 myeloid leukemia cells (ATCC, Rockville, MD) were grown as described (29). AblΔ1–30 (30) and AblΔ1 (1) fibroblasts were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% heat-inactivated fetal bovine serum. MCF-7 cells were transfected with pSRαMSVH/Kneo or pSRαMSV-AblK/rTkneo (31) as described in G418 (6). Irradiation was performed at room temperature using a Gammacell 1000 (Atomic Energy of Canada) under aerobic conditions with 137Cs source emitting at a fixed dose rate of 0.76 Gy min−1 as determined by dosimetry.

Immunoprecipitation and Immunoblot Analysis—Immunoprecipitation was performed as described (1). Soluble proteins were incubated with anti-c-Abl (Ab-3; Oncogene Science) or anti-p85 (06–195; Upstate Biotechnology Inc.) and precipitated with protein A-Sepharose for an additional 1 h. The immune complexes were washed with lysis buffer (50 mM HEPES, pH 7.5, 0.5% Nonidet P-40, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM sodium orthovanadate, 1 mM dithiothreitol, 1 mM NaF, 2 mM phenylmethylsulfonyl fluoride, and 10 μg/ml each of pepstatin, leupeptin, and aprotonin), separated by electrophoresis in SDS/polyacrylamide gels and then transferred to nitrocellulose paper. The filters were incubated with anti-p85 (P13020; Transduction Laboratories), anti-c-Abl, or anti-P-Tyr (4G10; Upstate Biotechnology Inc.). The antigen-antibody complexes were visualized by enhanced chemiluminescence (ECL, Amersham Corp.).

Phosphorylation of PI 3-Kinase—Recombinant kinase active c-Abl

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ The abbreviations used are: IR, ionizing radiation; PI, phosphatidylinositol; DNA-PK, DNA-dependent protein kinase; ATM, ataxia telangiectasia mutated; Gy, gray; GST, glutathione S-transferase; HI, heat-inactivated.

© 1997 by The American Society for Biochemistry and Molecular Biology, Inc.

Vol. 272, No. 38, Issue of September 19, pp. 23485–23488, 1997

Printed in U.S.A.

THE JOURNAL OF BIOLOGICAL CHEMISTRY

This paper is available on line at http://www.jbc.org

23485
Down-regulation of PI 3-Kinase by c-Abl

RESULTS AND DISCUSSION

c-Abl interacts with the PI 3-kinase-related DNA-PK and ATM proteins (13, 15). To determine if c-Abl associates with PI 3-kinase, anti-c-Abl immunoprecipitates were analyzed by immunoblotting with an antibody against the p85 subunit of PI 3-kinase. The results demonstrate constitutive binding of c-Abl and PI 3-kinase (Fig. 1A). The activation of c-Abl by IR treatment (1) had little effect on the interaction (Fig. 1A). The finding that the p85 protein detected in the anti-c-Abl immunoprecipitates exhibits a slightly decreased electrophoretic mobility compared with that in total cell lysates supports binding of c-Abl to only certain post-translationally modified forms or specific isoforms of p85. Analysis of anti-p85 immunoprecipitates with anti-c-Abl in the reciprocal experiment confirmed binding of c-Abl and PI 3-kinase in control and irradiated cells (Fig. 1B). Incubation of cell lysates with GST fusion proteins demonstrated binding of p85 to full-length c-Abl and to Abl SH3 but not to the N-terminal SH3 domain of Grb2 (Fig. 1C). The c-Abl SH3 domain binds to proline-rich sequences with the PXG consensus (33, 36). The presence of potential sequences for c-Abl binding in the p85 subunit suggested that there may be a direct interaction. The finding that GST-p85 binds to recombinant c-Abl purified from baculovirus by cleavage of the GST with thrombin (32). The recombinant c-Abl was incubated with GST or GST-p85. The adsorbates were analyzed by immunoblotting with anti-c-Abl.

To assess the functional significance of the interaction between c-Abl and p85, we asked if PI 3-kinase is a substrate for c-Abl. Incubation of recombinant kinase-active c-Abl with GST-p85 resulted in phosphorylation of p85 (Fig. 2A). c-Abl exhibited no detectable phosphorylation of GST alone (data not shown), and there was no phosphorylation of p85 with heat-inactivated c-Abl (Fig. 2A). To determine whether DNA damage induces c-Abl-dependent phosphorylation of p85, anti-P-Tyr immunoprecipitates were assayed from mouse fibroblasts subjected to immunoprecipitation was used as a positive control for the immunoblot analysis. C, cell lysate was incubated with 5 μg of GST-Grb2 SH3, GST-Abl SH3, or GST-c-Abl (full-length) (32) for 2 h at 4 °C. The adsorbates were analyzed by immunoblotting with anti-p85. Lysate was used directly as a positive control. D, recombinant c-Abl was purified from GST-c-Abl prepared in baculovirus by cleavage of the GST with thrombin (32). The recombinant c-Abl was incubated with GST or GST-p85. The adsorbates were analyzed by immunoblotting with anti-c-Abl.

FIG. 1. c-Abl associates with PI 3-kinase. A and B, U-937 cells (1) were exposed to 20 GY of IR and harvested at 1 h. Lysates from control (C) and irradiated (IR) cells were subjected to immunoprecipitation with anti-c-Abl or anti-p85. The immunoprecipitates were separated in 8% SDS-polyacrylamide gels, transferred to nitrocellulose, and analyzed by immunoblotting (IB) with anti-p85 or anti-c-Abl. Lysate not subjected to immunoprecipitation was used as a positive control for the immunoblot analysis. C, cell lysate was incubated with 5 μg of GST-Grb2 SH3, GST-Abl SH3, or GST-c-Abl (full-length) (32) for 2 h at 4 °C. The adsorbates were analyzed by immunoblotting with anti-p85. Lysate was used directly as a positive control. D, recombinant c-Abl was purified from GST-c-Abl prepared in baculovirus by cleavage of the GST with thrombin (32). The recombinant c-Abl was incubated with GST or GST-p85. The adsorbates were analyzed by immunoblotting with anti-c-Abl.

FIG. 2. c-Abl phosphorylates PI 3-kinase in vitro and in irradiated cells. A, II and kinase-active recombinant c-Abl were incubated with GST-p85 and [γ-32P]ATP. Phosphorylated proteins were separated in 8% SDS-polyacrylamide gels and analyzed by autoradiography. B, Abl+/− and Abl−/− cells were exposed to 20 GY of IR and harvested at the indicated times. Cell lysates were subjected to immunoprecipitation with anti-P-Tyr. The immunoprecipitates were analyzed by immunoblotting (IB) with anti-p85. Lysates from Abl+/− and Abl−/− cells not subjected to immunoprecipitation were used as controls for the immunoblot analysis. C, MCF-7/p/SR and MCF-7/c-Abl(K-R) cells were exposed to 20 GY of IR and harvested at 1 h. Lysates were subjected to immunoprecipitation with anti-p85, and the precipitates were analyzed by immunoblotting with anti-P-Tyr.

Lipid Kinase Assays—PI 3-kinase activity was measured as described (35) in lipid kinase buffer (10 mM Tris, pH 7.5, 100 mM NaCl, 1 mM EDTA, 100 μM sodium vanadate, 1 mM dithiothreitol) containing 2 μg/ml phosphatidylinositol (Avanti Polar Lipids, Alabaster, AL) and [γ-32P]ATP. The reaction was stopped by the addition of 6 N HCl and chloroform/methanol (1:1). The organic layer was separated and spotted on a Silica Gel-60 plate (Sigma). Phosphorylation was assessed by thin layer chromatography and autoradiography.
Down-regulation of PI 3-Kinase by c-Abl

The demonstration that cells deficient in c-Abl are resistant to IR-induced apoptosis has supported a pro-apoptotic function for c-Abl in the cell death response to DNA damage (8). By contrast, Bcr-Abl expression inhibits the apoptotic response to DNA-damaging agents (41). The Akt/protein kinase B kinase is a downstream effector of PI 3-kinase that participates in suppression of apoptosis (20, 21, 24, 25, 42, 43). Taken together with the functional interaction found between c-Abl and PI 3-kinase in the present studies, these findings suggest that c-Abl could contribute to the regulation of cell fate through down-regulation of PI 3-kinase. The present results also provide the first evidence for a tyrosine kinase that negatively regulates PI 3-kinase.

REFERENCES

1. Kharbanda, S., Ren, R., Pandey, P., Shafman, T. D., Feller, S. M., Weichselbaum, R. R., and Kufe, D. W. (1995) Nature 376, 785–788
2. Weichselbaum, R., Pandey, P., Ren, R., Feller, S., Mayer, B., Ten, L., and Kufe, D. (1995) J. Biol. Chem. 270, 30278–30281
3. Kharbanda, S., Bharti, A., Pei, D., Wang, J., Pandey, P., Ren, R., Weichselbaum, R., Walsh, C. T., and Kufe, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 6888–6892
4. Liu, E., Hjelle, B., Morgan, R., Hecht, F., and Bishop, J. M. (1987) Nature 330, 186–188
5. Pandey, P., Raingeaud, J., Kaneki, M., Weichselbaum, R., Davis, R., Kufe, D., and Kharbanda, S. (1996) J. Biol. Chem. 271, 23775–23779
6. Yuan, Z. M., Huang, Y., Whang, Y., Sawyers, C., Weichselbaum, R., Kharbanda, S., and Kufe, D. (1998) Nature 392, 272–274
7. Yuan, Z. M., Huang, Y., Fan, M. M., Sawyers, C., Kharbanda, S., and Kufe, D. (1998) J. Biol. Chem. 273, 26457–26460
8. Yuan, Z. M., Huang, Y., Ishiko, T., Kharbanda, S., Weichselbaum, R., and Kufe, D. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 7725–7730
9. Kemp, L. M., Sedwick, S. G., and Jeggo, P. A. (1984) Mutat. Res. 132, 189–196
10. Carter, T., Vancurova, I., Sun, I., Lou, W., and DeLeon, S. (1990) Mol. Cell. Biol. 10, 6460–6471
11. Jackson, S. P., MacDonald, J. J., Lees-Miller, S., and Tijan, R. (1990) Cell 63, 155–165
12. Lees-Miller, S. P., Chen, Y., and Anderson, C. W. (1990) Mol. Cell. Biol. 10, 6472–6481
13. Kharbanda, S., Pandey, P., Jin, S., Inoue, S., Bharti, A., Yuan, Z. M., Weichselbaum, R., Weaver, D., and Kufe, D. (1997) Nature 386, 732–735
14. Baskaran, R., Wood, L. D., Whitaker, L. J., Xu, Y., Barlow, C., Canman, C. E., Morgan, S. E., Baltimore, D., Wynshaw-Boris, A., Kastan, M. B., and Wang, J. Y. J. (1997) Nature 387, 516–519
15. Shafman, T., Khanna, K. K., Kedar, P., Yen, T., Spring, K., Koslov, S., Gastei, M., Zhang, N., Watters, D., Egerton, M., Shiloh, Y., Kharbanda, S., Kufe, D., and Lavin, M. F. (1997) Nature 397, 520–523
16. Jeggo, P. A., Taccioli, G. E., and Jackson, S. P. (1995) Bioessays 17, 949–957
17. Segal, R. A., Kaplan, D. R., and Greenberg, M. E. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 132, 453–458
18. Kapeller, R., Toker, A., Cantley, L. C., and Carpenter, C. L. (1995) J. Biol. Chem. 270, 25985–25991
19. Segal, R. A., Kaplan, D. R., and Greenberg, M. E. (1997) Science 275, 565–568
20. Frank, T. F., Kaplan, D. R., Cantley, L. C., and Toker, A. (1997) Science 275, 665–668
21. Duden, H., Datta, S. R., Franke, T. F., Birnbaum, M. J., Yao, R., Cooper, G. M., Segal, R. A., Kaplan, D. R., and Greenberg, M. E. (1997) Science 275, 661–665
22. Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., and Hemmings, B. A. (1996) EMBO J. 15, 6541–6551
23. Klippel, A., Kavanagh, W. M., Pet, D., and Williams, L. T. (1997) Mol. Cell. Biol. 17, 338–344
24. Kennedy, S. G., Wagner, A. J., Conzen, S. D., Jordan, J., Bellacosa, A., Tsichlis, P. N., and Hay, N. (1997) Genes & Dev. 11, 701–713
25. Kaufmann-Zeh, A., Rodriguez-Viciana, P., Ulrich, E., Gilbert, C., Coffer, P., Downward, J., and Evan, G. (1997) Nature 385, 544–548
26. Yoo, R. S., and Cooper, G. M. (1998) Science 276, 2003–2005
27. Carpenter, C. L., Auger, K. R., Duckworth, B. C., Hou, W. M., Schaffhausen, B., and Cantley, L. C. (1993) Mol. Cell. Biol. 13, 1657–1665
28. Dhand, R., Hiles, I., Panayotou, G., Roche, S., Fry, J. M., Geist, I., Totty, N. F., Truong, O., Viendo, P., Yonezawa, K., Kasuga, M., Courtneidge, S. A., and Waterfield, M. D. (1994) EMBO J. 13, 522–533
29. Kharbanda, S., Saleem, T., Emoto, Y., Weichselbaum, R., Woodgett, J., Arruv, J., Kyriakis, J., and Kufe, D. (1995) J. Biol. Chem. 270, 18871–18874
30. Tybulewicz, V. L. J., Crawford, C. E., Jackson, P. K., Bronson, R. T., and Mulligan, R. C. (1993) Cell 75, 1153–1163
31. Sawyers, C. L., McLaughlin, J., Goga, A., Havilik, M., and Witte, O. (1994) Cell 77, 121–131
32. Mayer, B., and Baltimore, D. (1994) Mol. Cell. Biol. 14, 2883–2894
33. Ren, R., Ye, Z.-S., and Baltimore, D. (1994) Genes Dev. 8, 783–795
34. Kapeller, R., Toker, A., Cantley, L. C., and Carpenter, C. L. (1995) J. Biol. Chem. 270, 25985–25991
35. Sung, C. K., Sanchez-Margalet, V., and Goldfin, I. D. (1994) J. Biol. Chem. 269, 12503–12507
36. Feller, S., Ren, R., Hanafusa, H., and Baltimore, D. (1994) Trends Biochem. Sci. 19, 453–458
37. Klippel, A., Escobedo, J. A., Hirano, M., and Williams, L. T. (1994) Mol. Cell Biol. 13, 2675–2685
38. Liu, Z.-G., Baskaran, R., Lea-Chou, E. T., Wood, L., Chen, Y., Karin, M., and Wang, J. Y. J. (1996) Nature 384, 273–276
39. Varticovski, L., Daley, G. Q., Jackson, P., Baltimore, D., and Cantley, L. C. (1991) Mol. Cell. Biol. 11, 1107–1113
40. Skorski, T., Kanakaraj, P., Nieborowska-Skorska, M., Ratajczak, M. Z., Wen, S.-C., Zon, G., Gewirtz, A. M., Perussia, B., and Calabretta, B. (1995) Blood 86, 726–736
41. Bedi, A., Barber, J. P., Bedi, G. C., El-Deiry, W. S., Sidransky, D., Vala, M. S., Akhtar, A. J., Hilton, J., and Jones, R. J. (1995) Blood 86, 1148–1158
42. Franke, T. F., Yang, S.-I., Chan, T. O., Datta, K., Kazlauskas, A., Morrison, D. K., Kaplan, D. R., and Tsichlis, P. N. (1995) Cell 81, 727–736
43. Burgering, B. M., and Coffer, P. J. (1995) Nature 376, 599–602
Inhibition of Phosphatidylinositol 3-Kinase by c-Abl in the Genotoxic Stress Response
Zhi-Min Yuan, Taiju Utsugisawa, Yinyin Huang, Takatoshi Ishiko, Shuji Nakada, Surender Kharbanda, Ralph Weichselbaum and Donald Kufe

J. Biol. Chem. 1997, 272:23485-23488.
doi: 10.1074/jbc.272.38.23485

Access the most updated version of this article at http://www.jbc.org/content/272/38/23485

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 43 references, 21 of which can be accessed free at http://www.jbc.org/content/272/38/23485.full.html#ref-list-1