EFFECTIVE METHOD OF COMPUTING LI’S COEFFICIENTS AND THEIR PROPERTIES

KRZYSZTOF MAŚLANKA

Abstract. In this paper we present an effective method for computing certain real coefficients λ_n which appear in a criterion for the Riemann hypothesis proved by Xian-Jin Li. With the use of this method a sequence of over three-thousand λ_n’s has been calculated. This sequence reveals a peculiar and unexpected behavior: it can be split into a strictly growing trend and some tiny oscillations superimposed on this trend.

1. Introduction

Since its formulation almost a century and a half ago the Riemann hypothesis (hereafter called RH) is commonly regarded as both the most challenging and the most difficult task in number theory [14]. It states that all complex zeroes of the zeta function, defined by the following series if $\Re s > 1$

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}
\]

and by analytic continuation to the whole plane, are located right on the critical line $\Re s = \frac{1}{2}$. RH, if true, would shed more light on our knowledge of the distribution of prime numbers. More precisely, the absence of zeroes of $\zeta(s)$ in the half-plane $\Re s > \theta$ implies that (see [6], theorem 30)

\[
\pi(x) = \text{li}(x) + O(x^\theta \log x)
\]

where $\pi(x)$ is the number of primes not exceeding x and li(x) denotes logarithmic integral. Therefore, the value $\theta = \frac{1}{2}$ (as Riemann conjectured) makes the theorem useful since the error term in (1.2) is the smallest possible. We do know that on the critical line lie infinitely many complex zeroes and that among several billions of initial zeroes there is no counterexample to RH, cf. [13], [17].

(Date: 9 May 2004.

Key words and phrases. Riemann zeta function, Riemann hypothesis, Li’s criterion, numerical methods in analytic number theory.

e-mail: maslanka@oa.uj.edu.pl)
2. Li’s Criterion

In 1997 Xian-Jin Li [10] presented an interesting criterion equivalent to the Riemann hypothesis:

Theorem 2.1. RH is true if and only if all coefficients

\[\lambda_n := \frac{1}{\Gamma(n)} \frac{d^n}{ds^n} \left[s^{n-1} \ln \xi(s) \right] \bigg|_{s=1} \]

are non-negative, where

\[\xi(s) = 2(s-1)\pi^{-s/2}\Gamma \left(1 + \frac{s}{2} \right) \zeta(s). \]

An equivalent definition of \(\lambda_n \) is (see [10], formula 1.4):

\[\lambda_n = \sum_{\rho} \left(1 - \left(1 - \frac{1}{\rho} \right)^n \right) \]

where the sum runs over all (paired) complex zeroes of the Riemann zeta-function. However, the above definitions of \(\lambda_n \) are not suitable for numerical calculations. In this paper I shall present an effective method for calculating these coefficients. The gathered data investigated numerically up to \(n = 3300 \) reveals unexpected properties: it contains a strictly growing trend plus extremely small oscillations superimposed on this trend.

The following decomposition of \(\lambda_n \) is implicitly given in a recent paper by Bombieri and Lagarias ([2], Theorem 2):

\[\lambda_n = 1 - \left(\log(4\pi) + \gamma \right) \frac{n}{2} + \sum_{j=2}^{\infty} (-1)^j \binom{n}{j} (1 - 2^{-j}) \zeta(j) \]

Using the language of signal theory (perhaps not very common but sometimes appropriate in number theory) one can say that the decomposition (2.4) uniquely “splits” the behavior of the sequence of \(\{\lambda_n\} \) into a strictly growing trend \(\bar{\lambda}_n \) and certain tiny oscillations \(\tilde{\lambda}_n \) superimposed on it. It may be proved that the trend can be expressed as

\[\bar{\lambda}_n = \frac{1}{\Gamma(n)} \frac{d^n}{ds^n} \left[s^{n-1} \ln \left(\pi^{-s/2} \Gamma \left(1 + \frac{s}{2} \right) \zeta(s) \right) \right] \bigg|_{s=1} \]

while the oscillations are

\[\tilde{\lambda}_n = \frac{1}{\Gamma(n)} \frac{d^n}{ds^n} \left[s^{n-1} \ln \left((s - 1) \zeta(s) \right) \right] \bigg|_{s=1} \]
It may also be proved that the trend is indeed strictly growing as \(n \) tends to infinity. It is evident that (2.5) differs from the main definition (2.1) simply by replacing \(\xi(s) \) by the much simpler function \(\pi^{-s/2}\Gamma(1+s/2) \). On the other hand, the oscillatory behavior of \(\sim \) is not so evident, nevertheless it may be investigated numerically. I shall return to this decomposition later.

The problem of calculating numerically both components of \(\lambda_n \) (i.e. trend and oscillations), using directly (2.5) and (2.6), is rather hopeless, not to say: malicious. One has to take the \(n^{th} \) derivatives of functions which depend of variable \(s \) and are labelled by parameter \(n \). When \(n \) tends to infinity both families of differentiated functions tend to right angle shaped figures and the derivatives are to be taken just at the almost singular point \(s = 1 \). What is interesting, the first derivative in \(s = 1 \) for all functions related to the oscillating part is the same and equal to the Euler constant.

However, it is possible to calculate several tens of initial derivatives using direct numerical approach, for example Mathametica’s ND built-in function. This function has several parameters which enable to control the required accuracy. One must be aware, however, that there is no guarantee that the result will be correct. As with all numerical techniques for evaluating the infinite via finite samplings, it is sometimes possible to "fool" ND into giving an incorrect result.

(Place Figure 2 about here.)

It turns out that the following function fits very well to the numerically tabulated values of (2.5):

\[
(2.7) \quad a(1 + n \ln n) + cn
\]

with

\[
a = \frac{1}{2} \pm 8 \cdot 10^{-9}
\]

\[
c = -1.130330701...
\]

(A choice very similar to (2.7) was suggested to me by J. Lagarias, [9].) Recently I learned that A. Voros [16] using classic technique of saddle-point method calculated the exact value of \(c \)

\[
c = \frac{1}{2} (\gamma - 1 - \ln 2\pi)
\]

where \(\gamma \) is Euler constant. Simple fitting procedure gives also coefficients of consecutive terms which appear to be related to Bernoulli numbers \(B_k \)

\[
(2.8) \quad -\sum_{k=1} B_k \frac{k^{k-1}}{2kn^{k-1}} = \frac{1}{4} - \frac{1}{24n} + \frac{1}{240n^3} - \frac{1}{504n^5} + \frac{1}{480n^7} - \ldots
\]

This series works well for a dozen or so initial terms although it is formally divergent.
The starting point of Li’s approach to RH is a certain transformation of the complex plane into itself using the map $s \mapsto z = 1 - 1/s$ (which is a special case of Möbius transformation). Under this transformation the half-plane $\Re s > \frac{1}{2}$ is mapped into the unit disk (with the critical line $\Re s = \frac{1}{2}$ becoming the unit circle, see Figs. 3 and 4). This was Li’s original idea. However, he was inspired by studying A. Weil’s proof of RH for function fields over finite fields where the critical line is transformed into a unit circle [11].

(Place Figures 3 and 4 about here.)

3. THE MAIN DERIVATION

It has been known since medieval times that the harmonic series $\sum_{k=1}^{\infty} 1/k$ diverges. This was proved long ago with the use of elementary methods by Nicole d’Oresme in the 14th century, and, much later, independently by Pietro Mengoli (in his book on arithmetic series *Novae quadraturae arithmeticae*, 1650) as well as, using yet another method, by the Bernoulli brothers.

A natural question emerges: how fast does this series diverge? It turns out that its divergence is “weak”, more precisely: logarithmic. The quantitative answer to this question implies the definition of the following famous number called the Euler-Mascheroni constant:

\[
\gamma := \lim_{x \to \infty} \left(\sum_{k \leq x} \frac{1}{k} - \log x \right) = 0, 5772156649...
\]

Its natural generalization is the sequence γ_n defined by

\[
\gamma_n := \frac{(-1)^n}{n!} \lim_{x \to \infty} \left(\sum_{k \leq x} \frac{1}{k} (\log k)^n - \frac{(\log x)^{n+1}}{n+1} \right)
\]

where $\gamma_0 = \gamma$. These are the so-called Stieltjes constants. Another “similar” very useful sequence denoted by η_n is defined by

\[
\eta_n := \frac{(-1)^n}{n!} \lim_{x \to \infty} \left(\sum_{k \leq x} \frac{\Lambda(k)}{k} (\log k)^n - \frac{(\log x)^{n+1}}{n+1} \right),
\]

\[\text{It should be noted that the function } \text{StieltjesGamma}[n] \text{ implemented in Wolfram’s Mathematica, which employs Keiper’s algorithm [7], uses a different convention. It is related to our } \gamma_n \text{ via}
\]

\[
\gamma_n = \frac{(-1)^n}{n!} \text{StieltjesGamma}[n]
\]
where $\Lambda(k)$ is the so-called von Mangoldt function defined for any positive integer k as:

(3.4) \[\Lambda(k) = \begin{cases} \log p & \text{if } k \text{ is a prime } p \text{ or any power of a prime } p^n \\ 0 & \text{otherwise} \end{cases} \]

The above sequences are important on their own right since they appear in the Laurent expansions for $\zeta(s)$ and its logarithmic derivative around $s = 1$. (There are different conventions when defining these numbers, here I have adopted those of Bombieri and Lagarias [2]):

(3.5) \[\zeta(s + 1) = \frac{1}{s} + \sum_{n=0}^{\infty} \gamma_n s^n \]

(3.6) \[-\frac{\zeta'}{\zeta}(s + 1) = \frac{1}{s} + \sum_{n=0}^{\infty} \eta_n s^n \]

Integrating the second equation (3.6) with respect to s, inserting the result into the first one and equating coefficients in the appropriate powers of the variable s one can find explicit relations between the γ_n and the η_n:

(3.7) \[\sum_{n=0}^{\infty} \eta_n \frac{s^{n+1}}{n+1} = -\log \left(1 + \sum_{n=0}^{\infty} \gamma_n s^{n+1} \right) \]

\[\sum_{n=0}^{\infty} \eta_n \frac{s^{n+1}}{n+1} = \sum_{k=1}^{\infty} \frac{(-1)^k}{k} s^k \left(\sum_{n=0}^{\infty} \gamma_n s^n \right)^k \]

Now introduce the coefficients $c_n^{(k)}$ defined by

\[\sum_{n=0}^{\infty} c_n^{(k)} s^n = \left(\sum_{n=0}^{\infty} \gamma_n s^n \right)^k \]

Employing a certain formula from [4] (formula 0.314, i.e., raising a power series to an arbitrary integral exponent) one can express the c coefficients by the following recurrence relations:

(3.8) \[c_0^{(k)} = \gamma^k \]

\[c_m^{(k)} = \frac{1}{m^k \gamma} \sum_{i=0}^{m-1} [km - (k + 1) i] \gamma_{m-i} c_i^{(k)} \]
The matrix of coefficients \(c \) depends on \(\{ \gamma_n \} \):

\[
\begin{array}{cccccc}
 k = 1 & \gamma_0 & \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 \\
 k = 2 & \gamma_0^2 & 2\gamma_0\gamma_1 & \gamma_1^2 + 2\gamma_0\gamma_2 & 2\gamma_1\gamma_2 + 2\gamma_0\gamma_3 & \ldots \\
 k = 3 & \gamma_0^3 & 3\gamma_0^2\gamma_1 & 3\gamma_0\gamma_1^2 + 3\gamma_0^2\gamma_2 & \ldots & \ldots \\
 k = 4 & \gamma_0^4 & 4\gamma_0^3\gamma_1 & \ldots & \ldots & \ldots \\
 k = 5 & \gamma_0^5 & \ldots & \ldots & \ldots & \ldots \\
\end{array}
\]

(In what follows only the upper triangular part of this infinite matrix will be needed.)

(Place Figure 5 about here.)

With the help of (3.7) the coefficients \(\eta_n \) may further be expressed using the elements of the matrix \(c \) as

\[
(3.10) \quad \eta_n = (n + 1) \sum_{k=0}^{n} \frac{(-1)^{k+1}}{k+1} c_{n-k}^{(k+1)}
\]

From this we have:

\[
(3.11) \quad \eta_0 = -\gamma_0 \\
\eta_1 = +\gamma_0^2 - 2\gamma_1 \\
\eta_2 = -\gamma_0^3 + 3\gamma_0\gamma_1 - 3\gamma_2 \\
\eta_3 = +\gamma_0^4 - 4\gamma_0^2\gamma_1 + 2\gamma_1^2 + 4\gamma_0\gamma_2 - 4\gamma_3 \\
\eta_4 = -\gamma_0^5 + 5\gamma_0^3\gamma_1 - 5\gamma_0\gamma_1^2 - 5\gamma_0^2\gamma_2 + 5\gamma_1\gamma_2 + 5\gamma_0\gamma_3 - 5\gamma_4, \\
\]

Finally, the oscillating parts of \(\lambda_n \) are expressible as polynomials in the Stieltjes constants:

\[
(3.12) \quad \tilde{\lambda}_n = -\sum_{j=1}^{n} \binom{n}{j} \eta_{j-1}.
\]

Using now (3.11) and (3.12) we finally obtain:

\[
(3.13) \quad \tilde{\lambda}_1 = \gamma_0 \\
\tilde{\lambda}_2 = 2\gamma_0 - \gamma_0^2 + 2\gamma_1 \\
\tilde{\lambda}_3 = 3\gamma_0 - 3\gamma_0^2 + \gamma_0^3 + 6\gamma_1 - 3\gamma_0\gamma_1 + 3\gamma_2 \\
\tilde{\lambda}_4 = 4\gamma_0 - 6\gamma_0^2 + 4\gamma_0^3 - \gamma_0^4 + 12\gamma_1 - 12\gamma_0\gamma_1 + 4\gamma_0^2\gamma_1 - 2\gamma_1^2 + 12\gamma_2 - 4\gamma_0\gamma_2 + 4\gamma_3 \\
\]

......
Here are some numerical values of various numbers used in this paper:

n	γ_n	η_n	$\tilde{\lambda}_n$	λ_n
0	+0.577215664902	-0.577215664902	-	-
1	-0.0728158454837	+0.187546232840	0.577215664902	0.0230957089661
2	-0.00969036319287	-0.0516886320332	0.96688096963	0.0923457352280
3	+0.002357096547	-0.00452447788850	1.37558813187	0.207638920554
4	+0.00793323817301	+0.0144679520453	1.458268956963	0.0923457352280
5	-0.000238769345430	-0.000471544078185	1.48829832721	0.827566012282
6	-0.000527869345430	+0.00144679520453	1.48019084024	1.1246011757
7	-0.000527289567058	+0.00155180294164	1.4829832721	1.827566012282
8	-0.000352123353803	+0.00144679520453	1.48485574412	2.07638920554
9	+0.000793323817301	+0.0144679520453	1.48829832721	2.57557667715
10	+0.000205332814909	+0.00144679520453	1.48829832721	2.57557667715
11	-0.000205332814909	+0.00144679520453	1.48829832721	2.57557667715
12	-0.000027463806638	+0.00144679520453	1.48829832721	2.57557667715
13	-0.000027463806638	+0.00144679520453	1.48829832721	2.57557667715
14	-0.000205332814909	+0.00144679520453	1.48829832721	2.57557667715
15	-0.000205332814909	+0.00144679520453	1.48829832721	2.57557667715
16	-0.000205332814909	+0.00144679520453	1.48829832721	2.57557667715
17	-0.000205332814909	+0.00144679520453	1.48829832721	2.57557667715
18	-0.000205332814909	+0.00144679520453	1.48829832721	2.57557667715
19	-0.000205332814909	+0.00144679520453	1.48829832721	2.57557667715
20	-0.000205332814909	+0.00144679520453	1.48829832721	2.57557667715

4. APPLICATIONS AND CONCLUSIONS

The recurrence formulae (3.8) together with (3.10) and (3.12) allow in principle to compute both η_n and $\tilde{\lambda}_n$ with arbitrary accuracy for any value of n, but it is clear that with increasing n the number of terms increases very rapidly\(^2\). It would be desirable to simplify the polynomials in (3.11) and (3.13), or at least to reveal some hidden regularities in them, but I doubt whether this is possible. The table below demonstrates that it would be even impractical to write down explicit expressions for, say, $\tilde{\lambda}_n$ for n greater than 15 or 20.

\(^2\)Using the On-Line Encyclopedia of Integer Sequences [http://www.research.att.com/~njas/sequences/] one can see that number of terms in η_n is related to the number of partitions of n (partition number, \texttt{PartitionsP}[n] in \texttt{Mathematica} notation), which grows like exp(const \sqrt{n}), whereas the number of terms in $\tilde{\lambda}_n$ is equal to the number of sums S of positive integers satisfying $S \leq n$ (\texttt{Sum[PartitionsP[k],\{k,1,n\}]} in \texttt{Mathematica} notation).
Using the above formulae (3.8), (3.10) and (3.13) I have computed quite a lot of initial values of η_n and λ_n. First it was necessary to tabulate Stieltjes constants γ_n with sufficient number of significant digits. In order to obtain these I used Mathematica 5 which can handle arbitrary precision numbers and performs automatically full control of accuracy in numerical calculations. (For details concerning Mathematica interval arithmetic see e.g. [12]). This part of computations took over 60 hours on AMD 1667 MHz processor.

Recently Kreminski [8] published an effective method of computing Stieltjes gamma using Newton-Cotes integration algorithm. His method would be of considerable interest since, due to some "hardcoded" limitations, the current Mathematica version can’t give γ_n (with sufficient accuracy) beyond $n \approx 2050$.

The main calculations (η_n and λ_n) were also time consuming (about 20 hours) and required also considerable amount of computer memory (3×256 Mb). In particular, having 2000 pre-computed Stieltjes constants, with 800 significant digits each, I calculated 2000 η_n and almost 3300 λ_n. Due to finite accuracy and the obvious phenomenon of error accumulation, the number of significant digits in η_n and λ_n decreases with increasing n (see Fig. 6).

In order to verify the computations as well as to compare various packages I also tried to repeat the whole procedure using Maple 8. However, it turned out that it is impossible to get Stieltjes constants γ_n for relatively small $n = 100$ with the required precision 800 significant digits.

(Place Figure 6 about here.)

The main conclusion which stems from the above calculations is contained in the following plots showing the trend of λ (Fig. 7a) and the oscillating part of λ (Fig. 7b). Their sum gives the coefficients which appear in Li’s criterion for RH. Note that the scales on both plots differ by nearly two
orders of magnitude. As mentioned before, it is easy to show that the trend \((2.5) \) is strictly growing. Therefore, if the oscillations were bounded or, at least, if their amplitude would grow with \(n \) slower than the trend, then RH would be true. In other words, we have a new RH criterion, which is simply a reformulation the original Li’s result, but from the viewpoint of the present paper it has an obvious interpretation. It states that if for all positive integer \(n \)

\[
-\tilde{\lambda}_n \leq \lambda_n
\]

then RH is true. The numerical data gathered so far and presented in Figures 7a and 7b is in its favor. Of course, one should bear in mind that in number theory the numerical evidence, no matter how ”convincing”, may be just illusory. In fact, Oesterlé observed that if the first \(n \) zeta zeros are on the critical line, then the Li positivity should hold for about the first \(n^2 \) Li coefficients (see [1], p. 441). Therefore, direct numerical search for a possible counterexample to RH using Li’s criterion is rather a hopeless task.

Finally I would like to stress out that so far there are no published extensive tables of Li’s coefficients. Several numerical values of \(\lambda_n \) are given in [1]. All the numerical data obtained during preparation of this paper as well as appropriate Mathematica notebook are available from the author.

\(\text{(Place Figures 7a and 7b about here.)} \)

Acknowledgments. I would like to express my gratitude to Prof. Jeffrey C. Lagarias, AT&T Labs, for confirming the effect of tiny oscillations, as well as for several remarks concerning further development of the idea presented in this paper. I would also like to thank Dr. Mark W. Coffey, Department of Physics, Colorado School of Mines, for directing my attention to some misprints as well as for sending me a preliminary version of his paper prior to publication [3]. Finally, the Referee of this paper made many remarks as well as valuable suggestions concerning future development of the ideas presented in this paper.

Note added in proof. After completing the calculations I become aware of the paper by Keiper [7]. His Figure 1 looks similar to Figure 7b of the present paper. However it is not exactly the same, insofar as he is subtracting off an approximation to the ”main term”. But presumably the error is a constant plus \(O(1/n) \) term, in view of my asymptotic series approximation \((2.8) \), so it must be pretty close.

References

[1] Biane, P., Pitman, J., and Yor, M., Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc. 38, 435-465 (2001).

[2] Bombieri, E. and Lagarias, J. C., Complements to Li’s Criterion for the Riemann Hypothesis, J. Number Theory 77, 274-287 (1999)
[3] Coffey, M., Relations and positivity results for the derivatives of the Riemann ξ function, J. Comp. Applied Math. 166, 525-534 (2004)
[4] Gradshteyn, I. S., Ryzhik, I. M., Tables of Integrals, Series, and Products, corr. enl. 4th ed. San Diego, CA: Academic Press, 1980
[5] Hardy, G. H., Sur le Zéros de la Fonction $\zeta(s)$ de Riemann, C. R. Acad. Sci. Paris, 158, 1012-1014 (1914)
[6] Ingham, A. E. The distribution of prime numbers, Cambridge University Press, 1932
[7] Keiper, J. B. Power Series Expansion of Riemann's ξ Function, Math. Comp. 58, 765-773 (1992)
[8] Kreminski, R. Newton-Cotes Integration for Approximating Stieltjes (Generalized Euler) Constants, Math. Comp. 72, 1379-1397 (2003)
[9] Lagarias, J. C., private communication, e-mail of October 30, 2003
[10] Li, X.-J., The Positivity of a Sequence of Numbers and the Riemann Hypothesis, J. Number Theory 65, 325-333 (1997)
[11] Li, X.-J., private communication, 2003
[12] http://library.wolfram.com/infocenter/Articles/2612/
[13] Odlyzko, A. M., The 10**22-nd zero of the Riemann zeta function, in M. van Frankenhuysen, M. L. Lapidus (Eds.): Dynamical, Spectral, and Arithmetic Zeta Functions, American Mathematical Society, Contemporary Mathematics, vol. 290, 139-144 (2001)
[14] Riemann, G. B. F., Uber die Anzahl der Primzahlen unter eine gegebenen Grösse, Monatsberichte Königl. Preuss. Akad. Wiss. Berlin, 671 (1859)
[15] Trott, M., private communication
[16] Voros, A., A Sharpening of Li's Criterion for the Riemann Hypothesis, submitted to C. R. Acad. Sci. Paris, Ser. I; posted at arXiv:math.NT/0404213 v2, 15 April 2004
[17] Wedeniwski, S., ZetaGrid - Verification of the Riemann Hypothesis, available at http://www.zetagrid.net

Figure captions

- Figure 1. Distribution of zeroes of ζ in the complex plane.
- Figure 2. Understanding the Li’s lambda: inevitable difficulties encountered when calculating numerically both parts of λ_n. The sequence of consecutive derivatives is to be taken near $s = 0$.
- Figure 3. Möbius transformation of the complex plane used by Li. The left fragment of the picture is just Fig. 1 reduced to its essential part: the critical strip. The half-plane $\Re s > \frac{1}{2}$ (left picture) is mapped into the unit disk $|z| < 1$ (right picture).
- Figure 4. Plot of $1/|\zeta(\frac{1}{1-z})|$ on a small part of the transformed complex plane containing all nontrivial zeroes. On the right fragment of Fig. 2 this part of complex plane is a small, very narrow rectangle near $z = 1$. Nontrivial zeroes are visible as sharp “pins”. White dots are added to help visualize that the zeroes indeed lie on a circle (which looks rather like an ellipse here since the scales on $\Re z$ and $\Im z$ are different). The apparent lack of peaks in the center is an artifact. All complex zeroes are very crowded near $z = 1$ and the corresponding peaks are increasingly thinner. Obtaining a better picture would require much higher density of points in which values of zeta are calculated (hence more computer memory) and much higher resolution of the picture.
• Figure 5. Signs of the coefficients of matrix c (3.8) for $k = 100$ with rows and columns labelled as in (3.9). Little white squares denote plus sign, black squares denote minus sign; grey squares mark unused entries of the matrix.

• Figure 6. Accuracies of various numbers used in this paper: γ_n, η_n and $\tilde{\lambda}_n$. Having 2000 precomputed Stieltjes constants γ_n, with 800 significant digits each, I could (using Mathematica 5) obtain 2000 coefficients η_n and about 3300 oscillating parts of lambda, $\tilde{\lambda}_n$, both with linearly decreasing accuracy. The accuracies of η_n and $\tilde{\lambda}_n$ decrease with n due to complicated error cumulating but almost perfect linearity of their dependence is a priori not so obvious because the number of terms in (3.11) and (3.13) grows fast with increasing n. In particular, the fact that the accuracy of η_n decreases faster than accuracy of $\tilde{\lambda}_n$ is rather counter intuitive.

• Figures 7a and 7b. The trend of λ_n (7a) in comparison with the oscillating part of λ_n (7b). Note different vertical scales. In fact, the sum of the trend and the oscillating part, i.e. full λ_n, would look exactly like the upper plot since the amplitude of the oscillations is smaller than the thickness of the graph line.

Astronomical Observatory of the Jagiellonian University, Orla 171, 30-244 Cracow, Poland.
Figure 1.
Figure 2.
Figure 3
Figure 4.
