Distribution, ecology, morphology and reproductive biology of *Sphagnum majus* in the south of its range (Hautes-Fagnes, Belgium)

Amaury Graulich

A. Graulich (amaurygraulich@yahoo.fr), Donceel, Belgium.

Sphagnum majus (Russ.) C. Jens. is a rare dioecious peat moss in its southern range, and in particular, in southern Belgium (Wallonia). Based on original field observations and revision of herbarium material, the distribution of this species in Wallonia is revised and updated. Although it is the most common of the two subspecies, *S. majus* subsp. *norvegicum* is reported from Belgium for the first time. The two subspecies are easily differentiated in the field based on macroscopic features, but high levels of variability of microscopic features were observed between the two subspecies in some populations. *Sphagnum majus* has a very specific niche and is nearly restricted to lithalsas, which are threatened ecological environments in the context of global climatic warming. In Wallonia, male plants of *Sphagnum majus* subsp. *norvegicum* are more common than in northern Europe. Capsule production was, however, observed at only one location.

Keywords: conservation, Cuspidata, ecology, norvegicum, Sphagnum, Sphagnum majus

Sphagnum majus is an allopolyploid dioecious peat moss that belongs to subgenus *Cuspidata* (Cronberg 1991, Sästad et al. 2000, Shaw et al. 2010). Macroscopically, *Sphagnum majus* is characterized by inconspicuous apical bud, green to dark brown capitulum and fascicles of four hardly differentiated branches (Daniels and Eddy 1985). Microscopically, the abaxial surface of branch leaf hyalocysts possesses numerous pores (usually between 8 and 17, Fig. 1C, 2D) while the adaxial surface is usually aporose or possesses few commissural imperfect pores (Crum 1984, Hill 2004, Fig. 1D). Abaxial surface of antheridial bracts has few perfect pores and many commissural pseudopores (Flatberg 1987, Fig. 1E). Heavy staining is usually necessary to see the unringed pores of *S. majus* (Hill 2004). Chlorocysts are exposed on both surfaces but with wider exposure on abaxial surface (Hill 2004, Fig. 1C–D).

Sphagnum majus is common in the boreal and subarctic zones of Europe, northern Asia and eastern North America but rare in western North America (Daniels and Eddy 1985, Laine et al. 2018). *S. majus* is a rare peat moss in southwestern Europe and is not reported from Ireland, Portugal, Andorra and Grand-Duchy of Luxembourg (Sénéca and Söderström 2009, Hodgetts 2015). The southern limit of distribution of *S. majus* is located in Spain and is attributed to subsp. *norvegicum* (Munoz and Aldasoro 1995, Guerra and Cros 2007). In United Kingdom, *S. majus* is mainly known from several locations in northern Scotland (Sénéca and Söderström 2009, National Biodiversity Network 2019). In France, this peat moss is known from several locations in the Vosges mountains (Frahm and Bick 2013, Mahévas et al. 2016). Moreover, scattered records are reported from several departments: Ardennes, Cantal, Corrèze, Finistère, Isère, Loire, Lozère, Puy-de-Dôme and Savoie (Gauthier and Pujos 1994, Hugonnot 2007, De Beer 2017, Legland and Garraud 2018, CNBMC 2020). In the Netherlands, *S. majus* is a rare species mainly known from the northern area of the country (Siebel et al. 2012, VerspreidingsAtlas 2019).

Sphagnum majus includes two subspecies, subsp. *majus* and subsp. *norvegicum* Flatb. The distribution area of the two subspecies is still imperfectly known. Both subspecies are reported from Europe and North America (Flatberg 1987, McQueen and Andrus 2007). In Europe, subsp. *norvegicum* is a lowland taxon. This subspecies has a mainly western distribution and is reported from Norway, Sweden, Finland, Denmark, United Kingdom, France, Spain, Czech Republic, Slovenia and Lithuania (Flatberg 1987, Munoz and Aldasoro 1995, Sénéca and Söderström 2009, Hodgetts 2015, CNBMC 2020). Subspecies *majus* is mainly confined to minerotrophic mires and is an upland to subalpine taxon. This subspecies has a north–eastern distribution and is reported from Norway, Sweden, Denmark, France, the Netherlands, Germany, Austria, Slovenia, Poland, Romania, Estonia, Latvia, Lithuania, Ukraine, Belarus and Russia (Flatberg 1987, Sénéca and Söderström 2009, Hodgetts 2015).
The aim of this study is to report the morphological distinction between the two subspecies of *S. majus* and document their ecology and reproductive biology in southern Belgium.

Material and methods

The distribution of *Sphagnum majus* in Wallonia was investigated based on field work and a revision of herbarium specimens of *S. cuspidatum* and *S. fallax*, with which it could have been confused, from BR and LG, and of one specimen collected by D. De Beer (no. 5967). Fieldwork was conducted in the Hautes-Fagnes nature reserve located in the highlands of eastern Belgium. New localities were recorded according to the IFBL system (Atlas de la Flore de Wallonie 2020), which uses a 1 km2 grid and wherein each 1 km2 pixel is identified with a code of one letter and five numbers.

For stem leaf measurement, the leaves were removed from the part of stem below the capitulum. The breath over length (B/L) ratio was calculated from n leaves ($5 < n < 19$) for each stem, avoiding aberrant leaves (Appendix 1). A calibrated optical microscope was used for the leaf measurements. A saturated hydroalcoholic solution of crystal violet was used for staining to visualize the pores.

Results and discussion

In Belgium, *Sphagnum majus* is a rare peat moss only known from ten locations in Flanders (De Beer 2017) and from Malchamps bogs (IFBL G8.31.12) in Wallonia (Sotiaux and Vanderpoorten 2015). The species was also reported from the minerotrophic fens of Landbruch (IFBL L7.56.32) (De Beer 2017), but re-identification in the course of the present work indicates that this collection (herb.
New records

F8.46.13, Eupen, Allgemeines Venn, 570 m a.s.l., 16 VI 2019, 50°59’53.13”N, 6°18’32.63”E, several mats of subsp. norvegicum in a closed dish evolving towards bog, somewhat shaded oligotrophic location, herb. Graulich no. SMAJUS35/19 dupl. TRH

F8.46.14, Eupen, Steinley, 570 m a.s.l., 16 VI 2019, 50°60’29.96”N, 6°20’73.36”E, several small patches of subsp. norvegicum in a dish along Steinley fen with Sphagnum auriculatum, open oligotrophic location, herb. Graulich no. SMAJUS37/19

F8.46.32, Eupen, Konnerzven, 595 m a.s.l., 01 VI 2019, 50°58’60.53”N, 6°19’93.60”E, subsp. majus and subsp. norvegicum in large mats in a damaged lithalsa by a draining track with S. cuspidatum, S. fallax and Eriophorum angustifolium, open oligotrophic location, herb. Graulich no. SMAJUS27/19maj and SMAJUS27/19norv

F8.46.34, Eupen, Konnerzven, 585 m a.s.l., 07 IV 2019, 50°58’43.01”N, 6°19’27.54”E, subsp. norvegicum in mats in a lithalsa, open oligotrophic location, herb. Graulich no. SMAJUS10/19

F8.56.13, Waimes, Brackvenn sud, 610 m a.s.l., 24 II 2019, 50°56’71.59”N, 6°17’95.48”E, subsp. majus and subsp. norvegicum in large mats in lithalsa with Eriophorum angustifolium and Lyco podiella inundata, open ombrotrophic location, herb. Graulich no. SMAJUS03/19maj and SMAJUS03/19norv

F8.56.13, Waimes, Brackvenn sud, 610 m a.s.l., 16 VI 2019, 50°64’54.2”N, 6°17’70.72”E, subsp. norvegicum in large mats in a lithalsa with Eriophorum angustifolium, Carex rostrata, Sphagnum cuspidatum and Sphagnum fallax, open ombrotrophic location, herb. Graulich no. SMAJUS38/19 dupl. TRH

G7.47.24, Stoumont, Fagne de Panrière, 550 m a.s.l., 12 V 2019, 50°42’81.22”N, 5°82’24.64”E, probably subsp. norvegicum (this population is large but suffers of recurrent droughts), in large mat with Cyperaceae in a lithalsa, open ombrotrophic location, herb. Graulich no. SMAJUS19/19

G8.14.32, Waimes, Fagne Wallonne, 650 m a.s.l., 31 III 2019, 50°52’05.68”N, 6°07’70.01”E, subsp. norvegicum, small population submerged near a Sphagnum papillosum hummock in stagnation zone of a ditch, also on bare peat along the ditch, open oligotrophic location, herb. Graulich no. SMAJUS07/19 and 08/19

G8.15.42, Büttengbach, Schwarzbach, 555 m a.s.l., 23 VI 2020, 50°51’57.31”N, 6°16’54.78”E, subsp. majus and subsp. norvegicum, several carpets in a fen dominated by Sphagnum altern, open oligotrophic location, herb. Graulich no. SMAJUS01/20maj and SMAJUS01/20norv

G8.31.12, Spa, Fagne de Malchamps, 570 m a.s.l., 09 VI 2019, 50°46’38.98”N, 5°91’82.82”E, large mat of mixed male and female plants of subsp. norvegicum in a lithalsa, associated with Eriophorum angustifolium and Carex rostrata, open ombrotrophic location, herb. Graulich no. SMAJUS31/19 and 32/19 dupl. TRH

G8.31.21, Spa, Fagne de Malchamps, 570 m a.s.l., 19 V 2019, 50°46’38.16”N, 5°91’79.91”E, subsp. norvegicum in a lithalsa with Sphagnum cuspidatum, Sphagnum fallax and Warrastoria iliians, open ombrotrophic location, herb. Graulich no. SMAJUS22/19

D. De Beer no. 5967) is in fact S. fallax (H. Klinggr.) H. Klinggr. According to the presented observations, Sphagnum majus was largely overlooked in southern Belgium (Table 1) even if its distribution area is very limited in this territory. Thus in Wallonia, Sphagnum majus is only known from an area restricted to the highest crest of Belgium between Stoumont and Roetgen (Fig. 3). This crest is included in the Hautes-Fagnes nature reserve. Moreover this crest is known to possess a large number of lithalasas dating back to the last glaciation. Typically, an ombrotrophic mire is located in the central depression of these lithalasas and these bogs are suitable habitats for numerous uncommon species in Belgium. Nearly all observations of large mats of S. majus were made in ombrotrophic mires occupying lithalasas. Sphagnum majus is extremely hydrophilous and is confined to the wettest parts of open, ombrotrophic to slightly minerotrophic mires (Fig. 4A). In ombrotrophic mires, Sphagnum majus usually grows with Carex rostrata in an association known as Careticetum rostratae sphenacetosum fallacis (Gauthier and Pujo 1994). In the studied populations, Carex rostrata Stokes is present at Malchamps and at Brackvenn but Eriophorum angustifolium Honck. is much more abundant in these bogs. Sphagnum fallax and S. cuspidatum Ehrl. ex Hoffm. are the more frequently associated peat mires to S. majus in these bogs (Fig. 4A). In these ombrotrophic mires, S. majus is the dominant species and forms large and nearly monospecific mats. The occurrence of small patches of S. majus in ditches (Table 1: G8.14.32 and F8.46.14) is probably the result of vegetative multiplication from upstream stands located in a restricted area of the Hautes-Fagnes nature reserve. Several lithalasas are also present in a small area between Les Tailles and Bihain (IFBL H7.46 and H7.47). In the attempt to find S. majus, I prospected several lithalasas in this area but the species was found in none of them. Indeed, these lithalasas are nearly silted and dominated by S. papillosum Lindlb., S. capillifolium (Ehrh.) Hedw. and S. fallax. This habitat is too dry for S. majus. Nevertheless I observed S. cuspidatum in these lithalasas but only in very small populations.

In the mixed stands both subspecies are easily separated macroscopically due to differences in color, shape of capitula and vigor (Fig. 4B). The distinguishing features between these both subspecies are described in Flatberg (1987). Due to its pale capitulum, subsp. norvegicum could be confused with Sphagnum cuspidatum in the field. Nevertheless S. cuspidatum is less robust and has a more crowded capitulum in ombrotrophic conditions (Flatberg 1987). Macroscopically the differentiation between both subspecies is less obvious (Fig. 1, 2). The breadth/length (B/L) ratio of stem leaf is
clearly the most useful feature to distinguish both subspecies. In all sampled populations, subsp. *norvegicum* possess a B/L ratio of stem leaf comprises between 0.72 and 0.92, whereas subsp. *majus* has a B/L ratio between 0.62 and 0.75 (Appendix 1, Fig. 1A, 2A). This B/L ratio slightly overlaps between both subspecies which is in agreement with plants growing in similar poor-acidic conditions (Flatberg 1987). I recorded mixed stands of *S. majus* subsp. *majus* and *S. majus* subsp. *norvegicum* from Brackvenn (Table 1: F8.56), from Konnerzvenn (Table 1: F8.46) and from Schwarzbach (Table 1: G8.15). The three populations of subsp. *majus* fit well with features defining this subspecies. To the reverse subsp. *norvegicum* is a more variable taxon. In Konnervennn's populations, several very robust green specimens show inter-

image-1.png

Figure 3. Distribution map of *Sphagnum majus* in Wallonia (IFBL grid).

image-2.png

Figure 2. *Sphagnum majus* subsp. *norvegicum*, male plants from ombrotrophic mire. (A) Sterile branche fascicule. (B) Stem leaves. (C) Leaves from middle part of sterile divergent branches. (D) Abaxial surface of leaf from sterile divergent branche. (Brackvenn, herb. Graulich no. SMAJUS44/19, 26 X 2019, dupl. TRH.)

mediate features with stem leaf B/L ratio of 0.72, stem leaf apex acute-obtuse, branch leaf B/L ratio of 0.25. The branch leaf apex is hardly involute and exhibits a *majus*-like porosity. At Malchamps, collected specimens fit very well with the features of subsp. *norvegicum* concerning stem leaf and pore features, but branch leaves are falcate and strongly involute. At Allgemeine Venn, a population growing in a somewhat shaded location has *majus*-like pores but otherwise fits with typical subsp. *norvegicum* features. *Sphagnum majus* is known for its high variability and the value of both subspecies are not always accepted (Crum 1997, Guerra and Cros 2007). Effectively there is no clearcut morphological feature distinguishing both subspecies and subsp. *norvegicum* shows considerable morphological variation in his various habitats. Even the lectotype of *S. majus* is difficult to assign to one of these subspecies (Flatberg 1987). Thus the main difference between these subspecies are the shape of the capitulum and the ability of subsp. *majus* to produce large amount of brown secondary pigments.

Male plants of the *S. majus* subsp. *norvegicum* are reported to be rare in central Norway (Flatberg 1987). In view of the small studied population, male plants of subsp. *norvegicum* are common in Wallonia. During autumn 2019, I found male plants of this subspecies at Malchamps (two ombrotrophic locations), at Brackvenn (one ombrotrophic location, Fig. 4E) and at Allgemeines Venn (one oligotrophic location, Fig. 4D). The antheridial branches appear at the end of summer. The antheridial growth is rapid but spermatogenesis lasts for approximately two months (Pujos 1992). Nevertheless I observed antheridial dehiscence and swimming antherozoids from freshly collected *S. majus* subsp. *norvegicum* on mid-October. At this time archegonia are at the beginning of their development and thus totally immature. This time shift between the maturity of antherozoids and archegonia could certainly reduce the number of antherozoids available for fertilization especially after a hot autumn or after warm spells during winter. Futhermore during autumn 2019 and after the severe drought of that summer, I did not observe any antheridia in the fertile population of Malchamps but male plants were easily spotted by their rusty brown coloration
and the presence of antheridial bracts in some branches. These observations confirm that antheridal growth and maturation are very sensitive to climatic factors with end-summer drought being probably the most limiting factor for capsule production where male and female plants grow in mixture.

Male plants of subsp. *majus* were observed at Konnerzvenn (oligotrophic location). Interestingly, plants from this population show some fascicles with three antheridial branches (Fig. 1A). This presence of antheridia on pendent branches was not known within subgenus *Cuspidata* and is probably due to the fact that branches are nearly isomorphic in *S. majus* (Daniels and Eddy 1985). Moreover this population is lush and very vigorous which could also explain this exceptional presence of functional antheridia in pendent branches.

As many dioecious *Sphagnum* species, the occurrence of sporophytes is rare to occasional in *S. majus* (Cronberg 1991, Hill 2004). In United Kingdom, sporophytes of subsp. *norvegicum* were found only at Glen Affric in Scotland (Blockeel et al. 2014) and according to Flatberg (1987), the sporophytes of both subspecies are not common in Norwegian material. Effectively several factors may

Figure 4. (A) Oligotrophic mire dominated by *S. cuspidatum* (green-yellowish) and *S. majus* subsp. *majus* (brown) (Konnerzvenn, 07 IV 2019). (B) Large green-yellowish capitulum of *S. majus* subsp. *norvegicum* among small dirty mottled green-brown capitula of *S. majus* subsp. *majus* (Konnerzvenn, herb. Graulich no. SMAJUS26/19, 01 VI 2019). (C) Fertile population of *Sphagnum majus* subsp. *norvegicum* in an ombrotrophic bog (Malchamps, herb Graulich no. SMAJUS32/19, dupl. TRH, 09 VI 2019). (D) Mixed stand of male (light rusty) and female (green) *Sphagnum majus* subsp. *norvegicum* associated with male *Sphagnum cuspidatum* (dark rusty) (Allgemeines Venn, herb. Graulich no. SMAJUS39/19 dupl. TRH, 13 X 2019). (E) Male plants of *Sphagnum majus* subsp. *norvegicum* growing in an open ombrotrophic bog (Brackvenn, herb. Graulich no. SMAJUS44/19 dupl. TRH, 26 X 2019).
influence the production of capsules: climatic factors during the formation of sex organs, dispersal abilities of gametes, frequency of male and female plants and availability of water during fertilization period (Cronberg 1991, Sundberg 2000). Nevertheless when all favourable conditions are fulfilled, the production of capsules may be abundant as I observed at Malchamps bog on June 2019 (Fig. 4C). In the examined herbarium material, one sample from Malchamps collected in 1967 shows also several sporophytes. I observed sporophytes only at Malchamps despite attempts at finding them in other locations. The presence of spore-producing populations at Malchamps may explain the abundance of *S. majus* in this location. Effectively *S. majus* occurs in nearly all lithals and holllows in the eastern part of this bog and by this way is much more common that *S. cuspidatum* in this small area.

Conclusion

Even if both subspecies of *S. majus* are easily differentiated in the field, several specimens show intermediate microscopic features. Taking into account the high variability of taxa of the subgenus *Cuspidata*, the taxonomic split within *Sphagnum majus* is still unclear. Futher field observations, culture experiments and genetic evaluations will probably elucidate the relationship between these taxa and their real taxonomic values.

In Wallonia, *Sphagnum majus* is only reported from a limited area totally included in the protected nature reserve of Hautes-Fagnes. Moreover, subsp. *majus* was only observed in three locations. Subspecies *norvegicum* appears to be more common and less threatened as this taxon is able to thrive in various biotopes (bogs and ditches). An increase in temperature associated with recurrent droughts is know to reduce the *Sphagnum* growth, thus reducing carbon accumulation (Bragazza et al. 2016). In the context of global warming, boreal peatmoss populations isolated in temperate area are probably strongly threatened. This update on distribution of *Sphagnum majus* in Wallonia will help to monitor the evolution of this population in the ongoing context of climate change.

Acknowledgements – I thank A. Vanderpoorten for his help and the recture of the manuscript, and D. De Beer for the loan of material from his herbarium.

References

Atlas de la flore de Wallonie. – <http://biodiversite.wallonie.be/fr/atlas-de-la-flore-de-wallonie-ibfl.includehtml?ID=C=807&IDD=1351>, accessed 1 May 2020.
Blockeel, T. L., Bosanquet, S. D. S., Hill, M. O. and Preston, C. D. 2014. Atlas of British and Irish bryophytes. – Pisces, Newbury.
Bragazza, L., Buttler, A., Robroek, B. J., Albrecht, R., Zacone, C., Jassey, V. E. and Signarbieux, C. 2016. Persistent high temperature and low precipitation reduce peat carbon accumulation. – Global Change Biol. 22: 4114–4123.
Centre National Botanique du Massif Central (CNBMC). – <http://cbnmc.fr/cartoview/Chloris/atlas_auv/fiche_des_auv.php?code_taxon=144676>, accessed 1 May 2020.
Cronberg, N. 1991. Reproductive biology of *Sphagnum*. – Lindbergia 17: 69–82.
Crum, H. 1984. North American Flora, Sphagnopsida, Sphagnaceae. – N. Y. Bot. Gard., New York.
Crum, H. 1997. Seasoned view of North American Sphagna. – J. Hattori Bot. Lab. 82: 77–98.
Daniels, R. E. and Eddy, A. 1985. Handbook of European Sphagna. – Institute of Terrestrial Ecology, Huntingdon.
De Beer, D. 2017. Een gedocumenteerde checklist van de veenmossen in Vlaanderen. – Dumortiera 111: 3–33.
Flatberg, K. I. 1987. Taxonomy of *Sphagnum majus* (Russ.) C. Jens. – K. Norske Vidensk. Selsk. 2: 1–42.
Frahm, J.-P. and Bick, E. 2013. La bryoflore des Vosges et des zones limítrofes, 3e ed. – Arch. Bryol. 169: 1–135.
Gauthier, R. and Pujos, J. 1994. Note sur la présence de Sphagnum majus (Russow) C. Jens. en France. – Cryptogamie Bryol. Lichénol. 15: 311–320.
Guerra, J. M. and Cros, R. M. (eds) 2007. *Sphagnaceae: Sphagnum*. – In: Flora Briofitica Iberica, Vol. 1. Univ. de Murcia and Soc. Española de Briología, Murcia, Spain.
Hill, M. O. 2004. Sphagnopsida. – In: Smith, A. (ed.), The moss flora of Britain and Ireland. Cambridge Univ. Press, pp. 43–102.
Hodgetts, N. G. 2015. Checklist and country status of European bryophytes – towards a new Red List for Europe. Irish Wildlife Manuals, No. 84. – National Parks and Wildlife Service, Dept of Arts, Heritage and the Gaeltacht, Ireland.
Hugonnor, V. 2007. Introduction à l’étude du genre *Sphagnum*. – Digitalis 6: 25–37.
Laine, J., Flatberg, K. I., Harju, P., Timonen, T., Minkkinen, K., Laine, A., Tuittila, E.-S. and Vasander, H. 2018. *Sphagnum* mires, the stars of European mires. – Univ. of Helsinki, Dept of Forest Sciences, Sphagna Ky. Helsinki.
Legland, T. and Garraud, L. 2018. Mousse et hépatiques des Alpes françaises. Etat des connaissances, atlas, espèces protégées. – Conservatoire botanique national alpin, 240 p.
Mahévas, T., Schneider, C., Scheinder, T., Cartier, D., Géhin, T. et coll. 2016. Contribution à la connaissance de la bryoflore du massif vosgien. – Les Nouvelles Archives de la Flore jurassienne et du nord-est de la France 14: 2–45.
McQueen, C. B. and Andrus, R. E. 2007. *Sphagnum* species. – *Bryophyte Flora of North America*, <www.eFloras.org>.
Munoz, J. and Aldasoro, J. 1995. *Sphagnum majus* subsp. *norvegicum* and *S. subtile*, new to Iberian Peninsula. – Bryologist 98: 38–40.
National Biodiversity Network Atlas. – <www.species.nbnatlas.org/species/NHMSYS0000310676>, accessed 1 Oct 2019.
Pujos, J. 1992. Life history of *Sphagnum*. – J. Bryol. 17: 93–105.
Sästad, S. M., Flatberg, K. I. and Hansen, L. 2000. Origin, taxonomy and population structure of the allopolyploid peat moss *Sphagnum majus*. – Plant Syst. Evol. 225: 73–84.
Séneca, A. and Söderström, L. 2009. Sphagnothye of Europe and Macaronesia: a checklist with distribution data. – J. Bryol. 31: 243–254.
Shaw, A. J., Cox, C. J., Buck, W. R., Devos, N., Buchanan, A. M., Cave, L., Seppelt, R., Shaw, B., Larrain, J., Andrus, R., Greilhuber, J. and Temsch, E. M. 2010. Newly resolved relationships in early land plant lineage: Bryophyta class Sphagnopsida (peat mosses). – Am. J. Bot. 97: 1511–1531.
Siebel, H. N., Bijlsma, R. J. and Sparrius, L. 2012. Basisrapport voor de Rode Lijst Mossen 2012. – Buxbaumia 96: 1–75.
Sundberg, S. 2000. The ecological significance in sexual reproduction in peat mosses (*Sphagnum*). – Acta Universitatis Upsaliensis.
Sotiaux, A. and Vanderpoorten, A. (et coll.) 2015. Atlas des Bryophytes (mousses, hépatiques et anthocérotes) de Wallonie (1980–2014). – Publication du Département de l’Étude du Milieu Naturel et Agricole (SPW-DGARNE), Série ‘Faune-Flore-Habitats’ no. 9, Gembloux, Tome II.
VerspreidingsAtlas. – <www.verspreidingsatlas.nl/3012>, accessed 1 Jun 2019.
Appendix 1

Additional data for B/L ratio calculation, the measurements were made from n stem leaves per stem. Each ratio corresponds to a single stem.

Herbarium no.	Location	B/L ratio	n
subsp. norvegicum			
02/19	Brackvenn	0.77	7
09/19	Konnerzvenn	0.78	9
10/19	Konnerzvenn	0.82	7
12/19	Konnerzvenn	0.74	10
14/19	Brackvenn	0.81	9
20/19	Malchamps	0.77	8
21/19	Malchamps	0.86	9
22/19	Malchamps	0.92	9
23/19	Malchamps	0.85	5
23/19	Malchamps	0.83	19
26/19 norv	Konnerzvenn	0.72	5
27/19 norv	Konnerzvenn	0.82	7
28/19 norv	Brackvenn	0.73	7
29/19	Malchamps	0.75	5
31/19	Malchamps	0.90	5
32/19	Malchamps	0.79	7
39/19	Allgemeines Venn	0.82	8
39/19	Allgemeines Venn	0.90	8
39/19	Allgemeines Venn	0.92	8
39/19	Allgemeines Venn	0.82	8
39/19	Allgemeines Venn	0.89	8
39/19	Allgemeines Venn	0.84	8
39/19	Allgemeines Venn	0.84	8
39/19	Allgemeines Venn	0.79	8
subsp. majus			
03/19	Brackvenn	0.67	12
03/19	Brackvenn	0.68	7
03/19	Brackvenn	0.63	12
11/19	Konnerzvenn	0.70	11
11/19	Konnerzvenn	0.75	5
25/19	Konnerzvenn	0.69	11
26/19 maj	Konnerzvenn	0.70	12
27/19 maj	Konnerzvenn	0.69	9
28/19 maj	Brackvenn	0.67	10
28/19 maj	Brackvenn	0.62	5