INTRODUCTION

Solar ultraviolet (UV) radiation is essential for Vitamin D production but is also detrimental to human skin. UV rays are divided into three types based on the wavelength range: UVC (100-290 nm), UVB (290-320 nm), and UVA (320-400 nm). UVC is predominantly filtered out by the ozone layer in the stratosphere, whereas UVB and UVA reach the earth's surface and thus interact with the skin. Although UVB is a minor constituent of the total solar UV radiation, it is more active than UVA because it is 1,000 times more capable of causing photodamage [1]. UVB directly causes the formation of cyclobutane pyrimidine dimers (CPDs), which are the primary UVB-induced DNA lesions. CPDs are responsible for cell death, mutation, and neoplastic transformation.

Aesculus hippocastanum (horse chestnut) seed extract has traditionally been used for venotonic treatments and also as a raw material for cosmetics. This study aimed to characterize the antioxidant properties of the phenolic contents of extracts from A. hippocastanum seed shell and endosperm and to investigate their effects on CPD repair in UVB-exposed human dermal fibroblasts in vitro.

Materials and Methods: Crude 60% aqueous ethanol extracts (v/v) were prepared, and their total polyphenol contents, antioxidant activities, and oxygen radical absorbance capacity (ORAC) values were measured by Folin–Ciocalteu, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity, and ORAC assays, respectively. The levels of CPDs induced by UVB irradiation were measured by cell-based immunoassays after 6 h treatment with the extract of A. hippocastanum seed shell at a concentration of 100 µg/ml and 9 h treatment with it at concentrations of 50, 100, and 200 µg/ml.

Results: A. hippocastanum seed shell extract had 602 ± 1.6 mg gallic acid equivalent per gram of extract and exhibited 4990 ± 70.9 and 7140 ± 835 µmol Trolox equivalents per gram of extract as DPPH radical-scavenging activity and ORAC value, respectively; these values were comparable to those of extracts from green tea and Mallotus japonicus leaves. However, these values of the seed endosperm extract were relatively low. A 9 h treatment of cells with seed shell extracts at concentrations of 50, 100, and 200 µg/ml after UVB exposure significantly reduced CPD levels compared with those in UVB-exposed cells without treatment.

Conclusion: This study indicated that A. hippocastanum seed shell extract possesses a potential to limit the harmful effects of human skin exposure to UVB and that this could be the first step toward identifying novel benefits of this extract.

KEY WORDS: Antioxidant activity, Aesculus hippocastanum, cyclobutane pyrimidine dimers, DNA repair, horse chestnut seed
a defect of the NER system causing the hereditary disorder xeroderma pigmentosum is characterized by an extremely high incidence of skin cancer in sun-exposed areas [3], indicating that CPDs are strongly correlated with cancer development. Human skin exposure to UV irradiation also leads to the generation of reactive oxygen species (ROS). ROS not only induce oxidative stress, including damage to the cell structure, DNA, proteins, and lipids but also activate intracellular signaling by stimulating mitogen-activated protein kinases. Such kinase activation initiates the expression of matrix metalloproteinases and reduces collagen synthesis, causing wrinkle formation on the skin surface, which is a clinical hallmark of photoaged human skin [4].

In recent years, both in vivo and in vitro studies have revealed that several phytochemicals exhibit chemopreventive potential against UVB radiation-induced adverse effects, including DNA damage, inflammation, oxidative stress, and photocarcinogenesis [5]. At present, natural products exhibiting a wide range of biological activities, such as antioxidant, anti-inflammatory, and antitumor effects, are promising candidates for treating UV-damaged skin. Previously, we had conducted a systematic screening focusing on antioxidant activities and had found that among 52 edible plant extracts, Mallotus japonicus leaf extract exhibits the strongest activity [6,7]. Our screening had also identified that the antioxidant activities of 60% aqueous ethanol extract of Aesculus hippocastanum (horse chestnut) seed shell extract are comparable to those of M. japonicus leaf extract. A. hippocastanum, commonly known as horse chestnut, is a native species of urban and rural landscapes and is widely distributed in temperate climates. It has been utilized in Europe as drugs and folk medicines, and its seed extract has traditionally been used for treating chronic venous insufficiency, phlebitis (inflammation of the veins), diarrhea, fever, enlargement of the prostate gland, rheumatism, neuralgia, and rectal complaints [8,9]. In addition, A. hippocastanum seed extract has been shown to exhibit anti-inflammatory [10], and antitumor [11] activities and the recent study indicated its beneficial effects on the functional properties of the kidney and microscopic improvements in diabetic nephropathy [12]. However, it has not yet been studied with regard to its beneficial effects in human skin against harmful UV damage. One study demonstrated that the incorporation of A. hippocastanum extract into 2% solution of a synthetic sunscreen containing octyl methoxycinnamate increases the sun protection factor value, although it does not display significant UV-absorbing properties when used alone [13].

In this study, we obtained the total phenolic contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities, and oxygen radical absorbance capacity (ORAC) values of A. hippocastanum seed shell and endosperm extracts and compared them to those of M. japonicus and green tea leaf extracts. To assess whether they could be potential candidates for preventing UVB damage in human skin, their effects on CPD repair in cultured human dermal fibroblasts with or without extract treatments were also investigated.

MATERIALS AND METHODS

Chemicals

Hoechst 33342, propidium iodide, and 4’ ,6-diamidino-2-phenylindole (DAPI) were obtained from Dojindo Molecular Technologies, Inc., Kumamoto, Japan. Penicillin-streptomycin solution, o-phenylenediamine, Triton X-100, and bovine serum albumin (BSA) were obtained from Sigma-Aldrich Japan, Tokyo, Japan. Streptavidin-horseradish peroxidase (HRP), SuperBlock Blocking buffer in PBS and Alexa Fluor 488 Phalloidin were obtained from Thermo Fisher Scientific K.K., Yokohama, Japan. All other reagents and chemicals were of analytical grade and obtained from Wako Pure Chemical Industries Ltd., Osaka, Japan, unless otherwise stated.

Sample Preparation

A. hippocastanum seeds from healthy trees growing at Dahlemer Weg in the district of Berlin-Zehlendorf, Germany, were collected in September 2014. Seeds were opened, and their shell and endosperm parts were separated. After freeze-drying, the samples were soaked in 60% ethanol water (v/v) at room temperature for 16 h in a flask with continuous mechanical stirring. The extraction ratio between the dried material and 60% ethanol water was 1:10 by mass. After centrifugation, each supernatant was collected and concentrated using a rotary evaporator at 40°C and finally lyophilized. For comparison, green tea (Camellia sinensis) and M. japonicus leaves were collected in September 2014 from Shimane Prefecture, Japan, and their extracts were prepared using the same procedure as that used for preparing A. hippocastanum extracts. The extraction yields of A. hippocastanum seed shells, endosperm, green tea leaves, and M. japonicus leaves were 8.35% (w/w), 20.7% (w/w), 10.0% (w/w), and 18.6% (w/w), respectively. All extracts were dissolved in 60% ethanol for performing the assays described below.

Antioxidant Activities

The levels of total soluble phenolics and DPPH radical-scavenging capacity of extracts were measured, as previously described [7]. ORAC assay was performed in accordance with the method described by Watanabe et al. [14]. All measurements were obtained using a plate reader (EnSpire; PerkinElmer, Inc., Wellesley, MA, USA).

Cell Culture and UV Irradiation

Normal human dermal fibroblasts (NHDFs) were obtained from Lonza, Inc. (Walkersville, MD, USA) and incubated at 37°C in a humidified atmosphere of 5% CO2 (v/v) with the Minimum Essential Medium Eagle (MEM; Sigma-Aldrich Japan, Tokyo, Japan) containing 10% (v/v) fetal bovine serum (FBS, Gibco, Invitrogen Japan, Tokyo, Japan) and 1% (v/v) penicillin-streptomycin solution. For experiments, cells from passages 5-7 were seeded at a density of 2.0 × 104 cells/well in 96-well plates and cultured in MEM for 2 days to obtain confluence. Just before UVB irradiation, the culture medium was replaced.
by 100 µL phosphate-buffered saline (PBS) in every well to avoid the formation of medium derived toxic photoproducts induced by UV exposure. Subsequently, the UVB and sham treatments (UV light off) were performed. Cells were exposed to UVB irradiation from a lamp emitting a peak wavelength of approximately 306 nm (G15T8; Sanko Denki, Japan) placed 25 cm above the cells. The irradiance of the lamp was measured using a Radiometer Sensor, UVX-31 (UVP Inc, Upland, CA, USA), and the total UVB dose to cells was found to be 6 mJ/cm² at 310 nm. After UVB or sham treatment, PBS was removed, and a part of the cells were immediately fixed in chilled methanol/acetone (1:1) for the 0 h treatment and the others were cultured in fresh culture medium with or without A. hippocastanum seed extracts at concentrations of 50, 100, and 200 µg/ml (0.005%, 0.010%, and 0.020% [w/v]). The plate was further incubated in the 5% (v/v) CO₂ incubator. To measure CPD repair kinetics, cells were fixed 6 and 9 h after UVB exposure.

Cell-based Immunoassays for CPDs

CPDs caused by UVB irradiation in cells were measured using the microplate-formatted cell-based immunoassay [15] with slight modifications. Cells were washed 3 times with PBS containing 0.05% (v/v) Tween-20 (MP Biomedicals LLC, Solon, OH, USA) and were treated by 100 µL PBS containing 0.2 µg/ml DAPI. After 20 min incubation at room temperature in the dark, cells were imaged at four fields in every well under ×4 magnification using an imaging cytometer (Cytell Cell Imaging System, GE Healthcare UK Ltd., England). Imaged nuclei were enumerated as the cell number using an image analysis software (IN Cell Analyzer 1000 Workstation, GE Healthcare UK Ltd., England). After image acquisition, the levels of CPDs in NHDFs were determined by monoclonal antibodies of TDM-2 (Cosmo Bio, Tokyo, Japan) for capture in triplicate, as described previously [15,16]. Briefly, cells were treated with 2 M HCl to denature cellular DNA at room temperature for 30 min, and non-specific binding sites were blocked by SuperBlock Blocking buffer in PBS. 100 µL of a solution of the monoclonal antibody, diluted 1:1,000 in PBS, were added to well, and plates were incubated at 37°C for 30 min. Then, cells were treated with 100 µL of a solution of the biotin-labeled F(ab’) fragment of goat anti-mouse IgG (H+L) (Abcam, Cambridge, UK), diluted 1:1,000 in PBS, for 5 min at room temperature. After blocking with 1% (w/v) BSA in PBS for 30 min, cells were stained with 5 units/ml Alexa Flour 488 Phalloidin in 1% (w/v) BSA, followed by nuclei staining with 0.4 µg/ml DAPI. Each staining was performed for 30 min at 37°C in the dark. Cells were imaged under ×10 magnifications using an imaging cytometer (Cytell Cell Imaging System, GE Healthcare UK Ltd., England).

Statistical Analysis

Statistical analyses were performed by one-way ANOVA with Tukey’s post hoc test using R [17]. All P < 0.05 were considered statistically significant.

RESULTS

Antioxidant Properties and Phenolic Contents

The total phenolic contents, antioxidant activities, and ORAC values of A. hippocastanum seed extracts were measured by the Folin–Ciocalteu, DPH radical-scavenging capacity, and ORAC assays method, respectively, as well as those of green tea and M. japonicus leaf extracts for comparison. The total phenolic contents of A. hippocastanum seed shell and endosperm extracts, expressed as mg gallic acid equivalent per gram of extract, were 602 ± 1.6 and 10.66 ± 0.2 mg/g, respectively, whereas the phenolic contents of green tea and M. japonicus leaf extracts were 331 ± 7.7 and 288 ± 5.2 mg/g, respectively. DPH radical-scavenging activity of A. hippocastanum seed shell, endosperm, green tea, and M. japonicus leaf extracts, expressed as µmol Trolox equivalent per gram of extract, were 4990 ± 70.9, 29.0 ± 0.40, 3920 ± 42.6, and 3010 ± 70.6 µmol/g, respectively. The ORAC value of A. hippocastanum seed shell, endosperm, green tea, and M. japonicus leaf extract were 7140 ± 835, 739 ± 109, 5020 ± 484, and 2280 ± 103 µmol/g, respectively. The results of these analyses are summarized in Table 1.

CPD Repair In Vitro

NHDF’s were irradiated with 6 mJ/cm² UVB and then treated with or without 100 µg/ml of A. hippocastanum seed shell extract.
Table 1: Antioxidant activity of extracts

Parts	A. hippocastanum seed shell	A. hippocastanum seed endosperm	C. sinensis leaves	M. japonicus leaves
Phenolic content (mg/g)	602±1.6	10.66±0.2	331±7.7	288±5.2
DPPH radical-scavenging activity (µmol/g)	4990±70.9	29.0±0.40	3920±42.6	3010±70.6
ORAC value (µmol/g)	7140±835	739±109	5020±484	2280±103

1Data are presented as mean±standard deviation of three separate measurements. 2mg gallic acid equivalent per gram of dry weight of extracts. 3µmol Trolox equivalent per gram of dry weight of extracts. A. hippocastanum: Aesculus hippocastanum, C. sinensis: Camellia sinensis, M. japonicus: Mallotus japonicas, DPPH: 1,1-diphenyl-2-picrylhydrazyl, ORAC: Oxygen radical absorbance capacity.

DISCUSSION

The total phenolic content of A. hippocastanum seed shell extract was higher than those of green tea and M. japonicus leaf extracts. This is noteworthy since our previous systematic screening for antioxidant activity among 52 edible plant extracts had showed the M. japonicus leaf extract exhibits the highest antioxidant activity, followed by the green tea leaf extract. In addition, Dudonné et al. have also reported the total phenolic contents of extracts from plants used industrially for fragrance, cosmetic, and food-flavoring applications [18]. The phenolic content value of A. hippocastanum seed shell extract was found to be higher than their reported values. Further, a significant correlation between total polyphenol contents and antioxidant activities has been suggested [18-20]. As expected, A. hippocastanum seed shell extract, but not endosperm extract, exhibited higher DPPH radical-scavenging activity than green tea and M. japonicus leaf extracts. The ORAC value of A. hippocastanum seed shell extract was 7140 ± 835 µmol Trolox equivalents/g, which is significantly higher than that of green tea (3920±42.6 µmol Trolox/g) and M. japonicus (3010±70.6 µmol Trolox/g). This suggests that A. hippocastanum seed shell extract has a higher antioxidant capacity than green tea and M. japonicus leaves.

in culture medium for 6 and 9 h, followed by quantification of CPD levels. The relative CPD levels in cells treated with A. hippocastanum seed shell extract were significantly decreased compared with those in cells that were not treated [Figure 1a]. Subsequently, the effects in cells treated with A. hippocastanum seed shell extract at concentrations of 50, 100, and 200 µg/ml were examined. The results showed that CPD levels reduced with the 9 h treatment in a dose-dependent manner [Figure 1b]. CPD levels in cells that underwent a 9 h treatment with extract at a concentration of 200 µg/ml, which was the highest concentration of A. hippocastanum seed shell extract used in this experiment, had decreased by approximately 40% compared with those at baseline. Treatments with UVB irradiation at 6 mJ/cm² and 50 µg/ml A. hippocastanum seed shell extract did not significantly inhibit cell viability at 6 and 9 h (without UVB: 99.81 ± 0.144% and 99.75 ± 0.20%; UVB: 99.75 ± 0.07% and 99.57 ± 0.16%; and 50 µg/ml treatment: 98.69 ± 0.86% and 98.67 ± 0.67% at 6 and 9 h, respectively; Figure 2) and had little effect on cell morphology [Figure 3]. Although treatments with at 100 and 200 µg/ml A. hippocastanum seed shell extracts significantly decreased cell viability and induced cell contraction slightly, most cells still remained viable (100 µg/ml treatment: 97.59 ± 1.19% and 97.64 ± 1.30% and 200 µg/ml treatment: 97.17 ± 1.56% and 97.25 ± 1.16% at 6 and 9 h, respectively; Figure 2) and at the well bottom [Figure 3]. The effect of A. hippocastanum seed endosperm extract on CPD repair was not able to evaluate under our experimental conditions because of cell detachment.

Figure 1: (a) Cyclobutane pyrimidine dimers (CPD) repair kinetics in normal human dermal fibroblasts. Cells were incubated for the indicated periods after ultraviolet B irradiation and processed for CPD detection. Open squares and open circles indicate relative CPD levels in cells treated with or without Aesculus hippocastanum seed shell extracts at a concentration of 100 µg/ml, respectively. (b) The relative CPD levels at 9 h after treatment with different concentrations of A. hippocastanum seed shell extracts. Results are expressed as mean ± standard deviation (% of the CPD level at 0 h) from three independent experiments and with different superscript letters are significantly different.

Figure 2: Cell viability of ultraviolet B (UVB)-irradiated NHDFs treated with Aesculus hippocastanum seed shell extracts. Before UVB irradiation, the culture medium was replaced with PBS, and cells were irradiated with 6 mJ/cm² UVB. PBS was then removed, and fresh medium containing different concentrations of A. hippocastanum seed shell extracts was added to the cells. At 6 and 9 h after treatment, percent cell viability was assessed by fluorescence imaging. Results are presented as a mean ± standard deviation from three independent experiments and with different superscript letters are significantly different.
Makino, et al.: Aesculus hippocastanum seed shell extract, suggesting the enhancement of UVB-damaged CPD repair. Further, studies are necessary to elucidate whether the enhancement of CPD repair by A. hippocastanum seed shell extracts is mediated through the functional NER mechanism and also to identify the main active components. Such studies are now underway.

CONCLUSION

This preliminary study demonstrated that A. hippocastanum seed shell extracts had high total phenolic contents and exhibited relatively strong antioxidant properties, suggesting their potential utility against UVB-induced DNA damage via aiding CPD repair. Further, studies are necessary to elucidate whether the enhancement of CPD repair by A. hippocastanum seed shell extracts is mediated through the functional NER mechanism and also to identify the main active components. Such studies are now underway.

ACKNOWLEDGMENT

The authors thank Ms. Miyuki Ninose for sample preparation.

REFERENCES

1. Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 2004; 195:298-308.
2. Reardon JT, Sancar A. Nucleotide excision repair. Prog Nucleic Acid Res Mol Biol 2005;79:183-235.
3. Bradford PT, Goldstein AM, Tabata H, Ohta Y, Iwatsuki A, Matsuoka T, et al. Cancer and neurologic degeneration in xeroderma pigmentosum: Long term follow-up characterises the role of DNA repair. J Med Genet 2011;48:168-76.
4. Yaar M, Gilchrest BA. Photoageing: Mechanism, prevention and therapy. Br J Dermatol 2007;157:874-87.
5. Katayir SK. Green tea prevents non-melanoma skin cancer by enhancing DNA repair. Arch Biochem Biophys 2011:508:152-8.
6. Tabata H, Katsube T, Tsueta T, Ohta Y, Iwatsuki A, Matsuoka T, et al. Screening for antioxidant activity in edible plant products: Comparison of low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and Folin-Ciocalteau assay. J Agric Food Chem 2004;52:2391-6.
7. Katsube T, Tabata H, Ohta Y, Yamasaki Y, Anuurad E, Shiwaiku K, et al. Antioxidant activity of the antioxidant in the seeds of edible plant. Plant Foods Hum Nutr 2008;63:126-31.
8. Newall C, Anderson L, Phillipson J. Herbal Medicines: A Guide for Health Professionals. London: Pharmaceutical Press; 1996. p. 166-7.
9. Newell C, Anderson L, Phillipson J. Herbal Medicines: A Guide for Health Professionals. London: Pharmaceutical Press; 1996. p. 166-7.
10. Guillaume M, Padoueau F. Veinotonic extract, vascular protection, anti-inflammatory and free radical scavenging activities of horse chestnut extract. Arzneimittelforschung 1994;44:26-36.
11. Mojžišová G, Mojžiš J, Plíšťová M, Varinská L, Ivanová L, Strojný L, et al. Antiproapoptotic and antiangiogenic properties of horse chestnut extract. Phytotherapy Res 2013:27:159-65.
12. Elmas O, Erbas O, Yigitgur G. The efficacy of Aesculus hippocastanum seeds on diabetic nephropathy in a streptozotocin-induced diabetic rat model. Biomed Pharmacother 2016;83:392-6.
13. Ramos MF, Santos EP, Baroni CH, Mattos HA, Padilha MR, Duarte HM. Preliminary studies towards utilization of various plant extracts as antioxidants. Int J Cosmet Sci 1996;18:87-101.
14. Watanabe J, Oki T, Takebayashi J, Yamasaki K, Takano-Ishikawa Y, Hino A, et al. Method validation by interlaboratory studies of improved hydrophilic oxygen radical absorbance capacity methods for the determination of antioxidant capacities of antioxidant solutions and food extracts. Anal Sci 2012;28:159-65.
15. Nishinaga M, Kurata R, Onishi K, Kuriyama K, Wakezaki M, Matsunaga T. Establishment of a microplate-formatted cell-based immunoassay for rapid analysis of nucleotide excision repair ability in human primary cells. Photochem Photobiol 2012;88:356-62.
16. Mori T, Nakane M, Hatton T, Matsunaga T, Ibara M, Nkaido O.
Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6-4) photoproduct from the same mouse immunized with ultraviolet-irradiated DNA. Photochem Photobiol 1991;54:225-32.

17. R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2016. Available from: https://www.R-project.org. [Last accessed on 2016 Sep 27].

18. Dudonné S, Vitrac X, Coutière P, Woillez M, Méridon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 2009;57:1768-74.

19. Odbayar T, Ichihomi M, Jun W, Tojiro T, Badamkhand D, Toshinori K, et al. Antioxidant capacities and total quercetin content of several species of Polygonaceae in Mongolia. Food Sci Technol Res 2010;16:169-74.

20. Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, et al. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 1999;47:3954-62.

21. Barnes J, Anderson LA, Phillipson JD. Herbal Medicines. 3rd ed. London: Pharmaceutical Press; 2007. p. 363-6.

22. Santos-Buelga C, Kolodziej H, Treutter D. Procyanidin trimers possessing a doubly linked structure from Aesculus hippocastanum. Phytochemistry 1995;38:499-504.

23. Morimoto S, Nonaka G, Nishioka I. Tannins and related compounds. LIX. Aescultannins, novel proanthocyanidins with doubly-bonded structures from Aesculus hippocastanum L. Chem Pharm Bull (Tokyo) 1987;35:4717-29.

24. Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 2010;302:71-83.

25. Meeran SM, Mantena SK, Elmett CA, Katiyar SK. (-)-Epigallocatechin-3-gallate prevents photocarcinogenesis in mice through interleukin-12-dependent DNA repair. Cancer Res 2006;66:5512-20.

26. Katiyar SK, Mantena SK, Meeran SM. Silimarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism. PLoS One 2011;6:e21410.

27. Vaid M, Sharma SD, Katiyar SK. Procyanidins inhibit photocarcinogenesis through enhancement of DNA repair and xeroderma pigmentosum group A-dependent mechanism. Cancer Prev Res (Phila). 2010;3:1621-9.

28. Downey MO, Hanlin RL. Comparison of ethanol and acetone mixtures for extraction of condensed tannin from grape skin. S Afr J Enol Vitic 2010;31:154-9.