Community Antibiotic Use at the Population Level During the SARS-CoV-2 Pandemic in British Columbia, Canada

Abdullah A Mamun, MBBS, MPH1, Ariana Saatchi, BASc,2 Max Xie BSc4, Hannah Lishman, PhD3, Edith Blondel-Hill, MD4, Fawziah Marra, BSc(Pharm), PharmD, FSCHP2, David M Patrick, MD, MHS1,3

1 British Columbia Centre for Disease Control, Vancouver, Canada
2 Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
3 School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
4 Interior Health Authority, Kelowna, BC, Canada

Author’s contribution: AM, FM and DP – conceptualized the study, developed methods of data analysis, critically reviewed the manuscript; AM - wrote the manuscript, interpreted the results; AS, HL and EB-H - interpreted results, critically reviewed and helped developing the manuscript; MX – analyzed the data, interpreted results and critically reviewed the manuscript.

Corresponding Author
Abdullah Al Mamun
Email: abdullah.mamun@bccdc.ca
Tel 604-707-5640

Alternate corresponding Author
David M. Patrick
Email: david.patrick@bccdc.ca
Tel 604-707-2519

© The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Objectives: To examine the aggregate rates of antibiotic use at population level and compare these rates over time against historical averages to identify the effect of SARS-CoV-2 and the resulting control measures, upon community prescribing.

Methods: We collected antibiotic prescriptions and physician office visits from January 1, 2016 to July 21, 2020. We calculated monthly prescription rates stratified by sex, age group, profession, diagnosis type and antibiotic class. We looked at monthly prescription rate as a moving average over time. Using interrupted time series analysis method we estimated the changes in prescription rates after March 2020.

Results: The moving average of overall monthly prescription rates during January to June of 2020 were below the minimum of the historical years’ moving averages (2016-2019). We observed >30% reduction in overall monthly prescription rates in April, May and July of 2020 compared to the same months of 2019. We observed overall monthly prescription rates experienced a significant level change of -12.79 (p < 0.001) after COVID-19 after March 2020, with the greatest level change of -18.02 among 1-4 years (p<0.001). We estimated an average -5.94 (p<0.001) change in RTI-associated monthly prescription rates after March 2020. Overall prescription rates comparing January – July 2019 and their 2020 counterparts showed a decrease in monthly prescribing ranging from -1 to -5 for: amoxicillin, amoxicillin and enzyme inhibitors, azithromycin, clarithromycin and sulfamethoxazole.

Conclusion: In BC, Canada, overall and RTI-specific monthly antibiotic prescription rates declined significantly during April to July 2020 compared to the same months in pre-pandemic years.

Key words: Antibiotics, pandemic, COVID-19, SARS-CoV2, Canada
Introduction

The impact of the emergence and subsequent pandemic escalation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) on healthcare has been unequivocal. The Pandemic has drastically altered modes of healthcare delivery and access to care. Outpatient care has had to adapt swiftly to diverse limitations and new societal norms imposed by SARS-CoV-2. As public health measures called for social distancing and much of the public sphere abruptly transferred home, telehealth became increasingly utilized in Canada, and globally, to ensure continuity of care for outpatient illness. However, a key limitation underlying this route of care is the physician’s inability to perform a thorough physical examination of the patient.

The potential impact of telehealth on quality of care is especially a concern with respect to the use of antibiotics in outpatient setting. With the World Health Organization (WHO) officially declaring antimicrobial resistance (AMR) a global health crisis in 2015, outpatient antibiotic prescribing has been increasingly scrutinized for both quantity as well as quality of use.[1-4] The overuse of antibiotics in the treatment of potential co-infections in COVID-19 inpatients has been well documented in the current literature.[5-9] Despite WHO guidelines supporting the absence of antibiotic use and/or prophylaxis in the presence of mild or moderately symptomatic COVID-19 patients,[10] recent studies have shown that prescribing has well-exceeded historical averages of use.[5-9] These studies, however, have been overwhelmingly targeted to the inpatient setting and COVID-19 patients specifically.

With respect to the current global context of SARS-CoV-2, both the short term effects on community prescribing, as well as long term implications for resistance are still unknown.[11] Pre-pandemic studies have demonstrated higher rates of suboptimal antibiotic use in direct-to-consumer modes of healthcare delivery, like telehealth.[12-14] However, given
the reduced opportunities for transmission of pathogens as communities continue to isolate, as well as increased measures of infection prevention and control at the individual level (i.e. hand washing, usage of non-medical masks) the direction of effect of SARS-CoV-2 upon the use of antibiotics in the outpatient setting remains a question. The purpose of this study was to examine the rates of prescribing of outpatient antibiotics in British Columbia (BC), Canada, to determine the effects of SARS-CoV-2 on antibiotic prescribing. Using a retrospective cohort design, the goals of this research are twofold: first, to examine the aggregate rates of antibiotic use at the population level and second, to compare these rates over time against historical averages in order to identify the effect of SARS-CoV-2, and the resulting control measures, upon community prescribing.

Methods

Antibiotic prescriptions data from January 1, 2016 to July 30, 2020 were extracted from BC PharmaNet, a centralized database that contains information on all prescriptions dispensed from community pharmacies (with the exception of some medications used for HIV and STI treatment) for all residents of BC.[15] We also collected data on physician office visits from the Medical Service Plan (MSP): an outpatient billing system. Indications of interest were identified using diagnostic codes from the ninth revision of the International Classification of Diseases (ICD-9).[16] We haven’t used ICD-10 as the outpatient billing system in BC is still using ICD-9 diagnostic codes. Both PharmaNet and MSP data were extracted by a third party within the BC Ministry of Health and all patient identifiers were replaced with an anonymized study ID. Using the unique ID, a prescription was assigned a diagnostic code using an algorithm that matched the date on which the medication was dispensed, to a practitioner service date within five days prior, via the office visit billing claim. If a practitioner service date was associated with more than 1 diagnostic code, or multiple service dates fell within the 5-day period of a prescription dispensing date, then a
hierarchy was applied to link only the most relevant diagnostic code to the prescription. Oral antibiotics were defined by the Anatomical Therapeutic Chemical (ATC) classification system developed by the WHO, and included six major classes: Tetracyclines (J01A), Penicillins (J01C), Cephalosporins (J01D), Sulfonamides and Trimethoprim (J01E), Macrolides (J01F), and Quinolones (J01M).[17] Population estimates were obtained from the BC Vital Statistics database.[18]

For this study, the pre-pandemic duration comprised of January 2016 to December 2019 (historical 4 years) and pandemic duration comprised of January 2020 to July 2020. Additionally, we further delineated the antibiotic pandemic year data into two distinct segments: January – March 2020 and April – July 2020. In BC, public health measures such as strict physical distancing, the provincial state of emergency, and business shutdowns were all mandated mid-March 2020.[19] This segmentation allowed for statistical analysis to observe whether prescription rates were significantly changed by the implementation of provincial public health measures.

Monthly antibiotic prescription rates per 1,000 population in BC between January 2016 to July 2020 were calculated. Monthly prescription rates were also stratified by sex, age group, profession, and diagnosis type. Age groups were categorized as: <1, 1-4, 5-19, 20-49, 50-64 and 65+ years. Prescription rates were calculated both for matched and overall prescriptions. Matched prescriptions were those with a successful match to an MSP service date, as defined above. Overall prescription rate comprised of all the prescriptions (matched and unmatched).

We looked at the monthly prescription rate as a moving average over time; centered and calculated using a 3-month time window. This rate was calculated for January 2020 – June 2020 and compared to the maximum, minimum, and the mean of 4-years (2016 – 2019) of moving averages in the same months - broken down by sex, age group, profession, and diagnosis type. Prescription rates were calculated for the following diagnosis types:
respiratory tract infections (RTI), skin and soft tissue infections (SSTI), and urinary tract infections (UTI). For classes of antibiotics, a heat map was created to visually summarise changes in monthly prescription rates comparing 2020 to 2019 for the months January – July. Color intensity was categorized as 0, less than 1, 1-5, and 5+ differences in monthly prescription rate per 1,000 population.

We also conducted an interrupted time series analysis (ITSA) using the Box and Tiao approach \cite{20} to test for significant change in prescription rates after March 2020. The ITSA model includes a transfer function (intervention coefficient) capturing the intervention and a seasonal autoregressive integrated moving average (SARIMA) error portion. The transfer function is coded as 0 for periods before March 2020, 0.5 for the month of March 2020 because of COVID-19 restrictions beginning mid-month, and 1 for periods after March 2020. The ITSA model was fit for the overall, RTI, less than 1 and 1-4 years of age, physician, and dentist prescription rates.

The structure of the SARIMA model is \((p,d,q) \times (P,D,Q)S\) where \(p, d,\) and \(q\) are non-seasonal terms for the autoregressive order, number of differences, and the moving average order respectively. \(P, D,\) and \(Q\) are the seasonal terms for the autoregressive order, number of differences, and seasonal moving average order respectively. \(S\) is the seasonal period, which is 12 in this study due to the annual pattern of prescription rates. We used Box and Jenkin’s SARIMA modeling methodology.\cite{21} First, necessary seasonal and non-seasonal differencing were applied to identify potential \((d)\) and \((D)\) values, and the Augmented Dickey–Fuller (ADF) test was used to check for data stationary. Second, the autocorrelation coefficient (ACF) and partial autocorrelation coefficient (PACF) plots were assessed to identify potential \((p,q)\) and \((P,Q)\) values. Third, optimal coefficients were those that minimized model AIC. Fourth, using the Ljung-Box test we checked for autocorrelation of residuals. The Ljung-Box tests for each SARIMA model yielded a \(p > 0.05\) indicating no auto-correlation of residuals.
Results

Overall, the monthly antibiotic prescription rate in 2020 declined starting in the month of March. During pre-pandemic years, the monthly prescription rate per 1000 population ranged from 39.1 to 57.8, whereas during January-July of 2020, monthly prescription rate ranged from 22.1 to 49.5 per 1000 population. We observed more than 30% reduction in overall monthly prescription rates in April, May and July of 2020 compared to the same months of 2019 (Table 1). January-March 2020 did not see significant reductions in prescription rates when compared to the same months in the previous 4 years (2016 – 2019), however a significant reduction was observed in April-July 2020 when compared to the same historical prescribing rates of previous pre-pandemic years. The decrease of April – July 2020 in comparison to historical prescribing rates remained significant when stratified by sex, and across all age groups. The results of ITSA showed that on average overall monthly provincial prescription rates experienced a significant level change of -12.79 (p < 0.001) after COVID-19 restrictions were put into place in March 2020, with the greatest level change -18.02 observed among those 1-4 years of age (p<0.001) (Table 2).

When looking only at prescriptions matched to diagnoses, across all age groups monthly RTI-associated prescription rates decreased significantly during April to July 2020 compared to the same 4 months in 4 pre-pandemic years. For January to March 2020, monthly RTI prescription rates decreased significantly for patients those aged <1 year, 1-4, 50-64, and 65+ years. However, for UTI- and SSTI-related prescriptions, the decrease in monthly prescription rates was not observed until July 2020 (Suppl. Figure 1).

The moving average of overall monthly prescription rates during January to June of 2020 were below the minimum of the pre-pandemic years’ moving averages (Fig 1). However, this trend was not consistent across various diagnoses: for RTI-related prescribing the trend was very similar to the overall, with a sharp reduction in prescribing rates beginning
in April 2020. We estimated an average -5.94 (p<0.001) change in RTI-associated monthly prescription rates after March 2020. For UTI and SSTI-related prescribing, we observed a moving average slightly below the minimum historical moving average, which plateaued throughout January – May 2020 and started to fall in June 2020 (Fig 1). The moving averages of overall monthly prescription rates for 2020 were very similar for males and females, and across all age groups – consistently below the minimum historical moving average (Suppl. Figure 1, Suppl. Figure 2). When looking at prescription rates by healthcare profession, we observed a moving average below the historical 4 year moving average for physicians, dentists and naturopaths during March – June 2020. Although dentists average prescription rates were below the historical moving average, we noticed an increasing trend during May - June 2020. For midwives, registered nurses and pharmacists, the moving average in 2020 was above the historical 4 years moving average (Figure 2). The estimated level change in monthly prescription rates after March 2020 for physicians and dentists were -10.03 (p<0.001) and -1.36 (p<0.001), respectively (Table 2).

For medications of interest, a heat map of monthly overall prescription rates comparing January – July 2019 and their 2020 counterparts showed a decrease in the monthly prescribing with a range of -1 to -5 prescriptions per 1000 population for: amoxicillin, amoxicillin and enzyme inhibitors, azithromycin, clarithromycin and sulfamethoxazole and trimethoprim during April and June (Fig 3). In July, monthly prescription rates decreased for: cephalexin, ciprofloxacin, doxycycline and nitrofurantoin at a range of -1 to -5 prescriptions per1000 population. When limited to only RTI-related prescribing, amoxicillin had the greatest decrease during March to July of 2020 at a range of -1 to -5 prescriptions per 1000 population. Azithromycin, doxycycline and levofloxacin showed a more modest decrease at a range of less than 0 to greater than -1 prescriptions per 1000 population during the months of April to July of 2020.
Discussion

To our knowledge, this is the first study of its kind both in Canada and worldwide, that has reviewed the impact of the SARS-CoV-2 pandemic on antibiotic prescribing rates by age, sex, profession, diagnosis and antibiotic type, at the population-level; compared with pre-pandemic years. Most published studies have reported overall antibiotic use during the current pandemic with a specific lens on hospitalized patients, specific healthcare professions, like dentistry, or based on projected data as opposed to actual patient information” and were not linked to specific diagnoses."[5-7, 22, 23] This study identified that the overall monthly prescription rates during April-July 2020 were significantly lower when compared to four years of historical data, with a level change of 12.79 in monthly prescription rates after March 2020. Furthermore, the overall monthly moving average of prescription rates fell below historical averages, as of March 2020 and continued to fall through June. In contrast, Buehrle DJ et. al. reported that most commonly prescribed antibiotics in the United States saw a reduction in use for the month of April 2020 but rebounded swiftly throughout May to July, ultimately exceeding pre-pandemic prescribing rates."[24] However, a recent US study reported 39% and 42% reduction in patients dispensed antibiotic prescriptions in April and May of 2020, respectively, compared to 2017-2019."[22]

While in BC, the overall monthly moving averages of prescription rates were significantly lower in 2020, when compared to the minimum historical moving average; this trend was not consistent across the indications of interest included in this study. RTI-associated prescribing saw significant reductions across the monthly moving averages of 2020, when compared to historical trends. However, UTI- and SSTI-associated antibiotic use in 2020 both had monthly moving averages just below historical trends for January to March, with a slight decrease in March and April before plateauing. In 2019, SSTI- and UTI-associated monthly antibiotic use declined after August and October, respectively. This
observed decline can be explained by the community antibiotic stewardship program’s targeted diagnosis and age group specific interventions during that time.[25] We observed a significant reduction in both overall and RTI-specific monthly prescription rates after March 2020. Across all age groups, the overall monthly prescription rates decreased significantly after March 2020, with the highest reduction observed in <1 and 1-4 years of age, both for overall and RTI-related monthly prescription rates.

The abrupt reduction of prescriptions rates, beginning in April 2020, can be explained by reduced opportunities for infectious disease transmission due to public health measures implemented gradually in BC. Restrictions on mass gatherings, mandatory self-isolation periods for travellers, service restrictions and the closure of the US-Canada border were all introduced in the latter half of March, 2020.[19] These restrictions further coincided with the shift to a telehealth platform for the delivery of outpatient care. These radical changes in tandem likely led to a multitude of overlapping potential scenarios, all of which resulted in the decreased use of antibiotics in BC. Perhaps a number of individuals eventually ended up consulting a physician virtually while others were less likely to seek care for mild respiratory illnesses that may previously have resulted in antibiotic prescriptions; clinicians were less pressurized or less likely to prescribe an antibiotic when consulted virtually,[26] less bacterial infection/co-infection due to public health measures, increased hand washing, and/or hand sanitizer use at the individual-level.

This finding in BC is encouraging as most of the previous studies reported that antibiotic use had increased significantly since the beginning of the pandemic even in the absence of bacterial/fungal co-infection among patients with RTI or when the public health measures were relaxed and some healthcare services resumed.[5, 6] On the other hand, this prescription rate reduction in BC could be a reflection of following the BC provincial and
WHO guidelines on empirical use of antibiotic among outpatient with mild to moderate respiratory illness.\cite{25,27,28}

We observed a significant reduction of some of the most commonly prescribed antibiotics, especially for RTI-related use in BC. Among them: amoxicillin, azithromycin, cefixime, clindamycin, cloxacillin, doxycycline and levofloxacin had the highest reduction in monthly prescription rate from March/April through July 2020, when compared to the same months of 2019. This is in contrast to the US study that reported no significant changes in prescription fills of azithromycin and levofloxacin from April to July 2020 and further observed a significant increase in the monthly prescriptions fills of other antibiotics during the same months.\cite{6} This increase in monthly prescription fills reported by the US study, following April 2020, could have resulted from the reinstitution of in-person healthcare services. However, another US study reported an increase in azithromycin prescription from February to March of 2020 with a significant decrease from March to May of 2020.\cite{22} It should be noted that, azithromycin was widely used along with hydroxychloroquine which is not currently recommended outside the COVID clinical trials.\cite{10} However, in BC, the relaxation of community control measures occurred in several phases beginning mid-May 2020, and continued over the following months.\cite{19}

Overall monthly prescription rates in BC reduced significantly, immediately after the implementation of public health measures due to the pandemic and continued to decrease even as control measures were eased. Although causation cannot be assumed, a strong temporal correlation exists. A historically significant transmission vector: the closure of schools and daycare centres with gradual re-openings using face masks/shields, policies of physical distancing, and enhanced hand hygiene might also have played a role in children not contracting, and subsequently spreading, SARS-CoV-2 or other transmissible viruses or bacteria and not having bacterial co-infection. As a result, perhaps there were less illness and
so fewer antibiotics were needed. Apart from all these pandemic-era mitigation measures, since 2005, a provincial antimicrobial stewardship program has been advocating for the reduction of antibiotic consumption in order to combat antimicrobial resistance. This stewardship program has been successful in reducing the overall antibiotic consumption in BC with a significant reduction among children 0-5 years of age during pre-pandemic years.

This study has several limitations. Although PharmaNet captures >90% of all community prescriptions in BC neither PharmaNet nor MSP had information available on whether the visit was: in-person or virtual. As such, we were not able to quantify the antibiotic prescription rates for telehealth visits in contrast to in-person evaluation. However, the impact of telemedicine versus in-person visits on the likelihood of prescribing an antibiotic remains unclear in the literature. The PharmaNet data used for this study didn’t include drugs prescribed and dispensed for HIV and STIs. We did not have information about each of the physician visits and we could not compare changes between consultation rates and prescription rates per consultation. The proportion of prescription linkage to a single diagnosis in our data set ranged from 77%-79%. Although we described overall antibiotic prescription rates in BC, we couldn’t include all the prescriptions when prescription rate was described by diagnosis.

Conclusion

In BC, Canada, overall and RTI specific monthly antibiotic prescription rates declined significantly during April to July 2020 compared to the same months in pre-pandemic years. Prescription rates for the most RTI-associated antibiotics declined significantly in 2020, when compared to 2019, especially amoxicillin, azithromycin, levofloxacin and doxycycline. Although community prescription rates continued to decline through July 2020, the final
month of our study period, it is important that we continue to monitor these trends to better understand the long-term effect of the SARS-CoV-2 pandemic on antibiotic use and its impact on the healthcare system, especially given the context of increasing use of telemedicine and antimicrobial resistance.

Funding and conflict of interest

No author has a potential conflict of interest or funding source for this study. The Community Antimicrobial Stewardship program, formerly known as Do Bugs Need Drugs program is funded by the BC Ministry of Health.

Acknowledgement

We acknowledge the BC Ministry of health to fund the Community Antimicrobial stewardship program, formerly known as Do Bugs Need Drugs program.

Patient consent statement:

No written or verbal consent were obtained from patients as this study used administrative data which was provided by the BC Ministry of Health. For this study, we received Institutional Research Board approval through the University of British Columbia (certificate H09-00650).
References:

1. WHO, Global action plan on AMR. 2020.
2. Fleming-Dutra KE, Hersh AL., Shapiro DJ, et al., Prevalence of Inappropriate Antibiotic Prescriptions Among US Ambulatory Care Visits, 2010-2011. 2016. 315(17): p. 1864-1873.
3. Saatchi A. and Marra F., Increasing paediatric prescribing rates in British Columbian children: cause for concern? Can J Public Health, 2020.
4. Spivak ES, Cosgrove SE., Srinivasan A., Measuring Appropriate Antimicrobial Use: Attempts at Opening the Black Box. Clin Infect Dis., 2016. 63(12): p. 1-6.
5. Abelenda-Alonso G, Padullés A, Rombauts A, et al., Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infect Control Hosp Epidemiol., 2020. 41(11): p. 1371-137.
6. Buehrle DJ, Decker BK., Wagener MM, et al., Antibiotic Consumption and Stewardship at a Hospital outside of an Early Coronavirus Disease 2019 Epicenter. Antimicrob Agents Chemother., 2020. 64(11).
7. Nestler MJ., Godbout E., Lee K, et al., Impact of COVID-19 on pneumonia-focused antibiotic use at an academic medical center. Infect Control Hosp Epidemiol., 2020(Published online undefined/ed): p. 1-3.
8. Vaughn VM, Gandhi T., Petty LA, et al., Empiric Antibacterial Therapy and Community-onset Bacterial Co-infection in Patients Hospitalized with COVID-19: A Multi-Hospital Cohort Study. . Clin Infect Dis., 2020. cia1239.
9. Furukawa D. and Garber CJ., Antimicrobial Stewardship in a Pandemic: Picking Up the Pieces. Clin Infect Dis., 2020. cia1273.
10. WHO. Clinical management of COVID-19 Interim Guidance - May 2020. 2020; Available from: https://www.who.int/publications-detail/clinical-management-of-covid-19 [cited 2020 Jun 4].
11. Rawson TM., Ming D., Ahmad R., et al., Antimicrobial use, drug-resistant infections and COVID-19. Nat Rev Microbiol., 2020. 18(8): p. 409-410.
12. Interventions stem antibiotic prescribing rates in telemedicine | Children’s National Hospital. November 9, 2020; Available from: http://childrensnational.org/news-and-events/childrens-newsroom/2020/decreasing-antibiotic-prescribing-rates-in-telemedicine.
13. Martinez KA, Rood M., Jhangiani N., et al., Association Between Antibiotic Prescribing for Respiratory Tract Infections and Patient Satisfaction in Direct-to-Consumer Telemedicine. JAMA Intern Med., 2018. 178(11): p. 1558-1560.
14. Ray KN., Shi Z., Gidengil CA., et al., Antibiotic Prescribing During Pediatric Direct-to-Consumer Telemedicine Visits. Pediatrics., 2019. 143(5).
15. BC Ministry of Health (2020): PharmaNet. BC Ministry of Health. Data Extract. Data Stewardship Committee (2020). . Available from: http://www.health.gov.bc.ca/data/.
16. British Columbia Ministry of Health (2020): Medical Services Plan (MSP) Payment Information File. British Columbia Ministry of Health. Data Extract. MOH (2020). . Available from: http://www.health.gov.bc.ca/data/.
17. WHO. Guidelines for ATC classification and DDD assignment. 1996.
18. BC Statistics, Province of British Columbia December 4, 2020; Available from: https://www2.gov.bc.ca/gov/content/data/statistics/people-population-community/population.
19. British Columbia (BC) COVID-19 Situation Report Week 50: December 6 - December 12, 2020. January 6, 2020; Available from: http://www.bccdc.ca/Health-Info-Site/Documents/COVID_sitrep/Week_50_BC_COVID-19_Situation_Report.pdf.
20. Box GE. and Tiao GC., Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical association, 1975. 70(349): p. 70-79.
21. Box GE, Jenkin GM., Reinsel GC., et al., Time series analysis: forecasting and control. John Wiley & Sons, 2015.
22. Laura M. King, Maribeth C.Lovegrove., Nadine Shehab, et. al., Trends in U.S. outpatient antibiotic prescriptions during the COVID-19 pandemic. Clinical Infectious Diseases, 2020. ciaa1896.
23. Sagar Shah, Valerie Wordley and Wendy Thompson, How did COVID-19 impact on dental antibiotic prescribing across England? . British Dental Journal, 2020. 229(9).
24. Deanna J. Buehrle, M. Hong Nguyen, Marilyn M. Wagener, et al., Impact of the Coronavirus disease 2019 Pandemic on Outpatient Antibiotic Prescriptions in the United States. Open Forum Infectious Diseases, 2020. 7(12).
25. Community Antimicrobial Stewardship. Available from: http://www.bccdc.ca/our-services/programs/community-antimicrobial-stewardship.
26. Kristen M. Johnson, Lisa E. Dumkow, Kayla W. Burns, et al. Comparison of Diagnosis and Prescribing Practices Between Virtual Visits and Office Visits for Adults Diagnosed With Sinusitis Within a Primary Care Network. Open Forum Infectious Diseases, 2019. 6(9).
27. Antibioticwise.ca. January 06, 2020; Available from: https://antibioticwise.ca/.
28. WHO. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected interim guidance. June 4, 2020]; Available from: http://apps.who.int/iris/bitstream/10665/178529/1/ WHO_MERS_Clinical_15.1_eng.pdf.
29. Antibiotic Utilization Summary. December 6, 2020 December 6, 2020]; Available from: http://www.bccdc.ca/health-professionals/data-reports/antimicrobial-resistance-utilization/antimicrobial-utilization-summary.
30. Peter Yao, Sunday Clark, Kriti Gogia, et al., Antibiotic Prescribing Practices: Is There a Difference Between Patients Seen by Telemedicine Versus Those seen In-Person? Telemed J E Health. , 2020. 26(1): p. 107-109.
Table 1: Monthly overall antibiotic prescription rate from January 2016 to July 2020 and relative percent change in antibiotic prescription rate in BC, Canada

Months	Year	Prescription rate/1000 population	Relative percent change (2019 vs 2020)			
	2016	2017	2018	2019	2020	
Jan	53.0	57.9	54.3	50.5	49.6	-1.8
Feb	52.3	46.9	44.4	32.2	44.6	3.5
Mar	52.0	41.2	49.0	48.7	44.5	-8.6
Apr	46.7	44.4	43.6	43.3	30.2	-30.1
May	44.6	47.8	43.5	43.2	30.2	-32.1
Jun	43.4	43.8	40.9	39.6	32.1	-18.7
Jul	40.7	39.7	39.2	40.8	22.1	-45.8
Aug	41.5	40.4	39.1	39.1	22.1	-45.8
Sep	42.8	41.3	39.9	40.4	22.1	-45.8
Oct	45.9	45.8	45.1	46.0	39.1	-45.8
Nov	48.3	45.4	43.9	43.1		
Dec	52.5	48.3	46.7	46.1		

Downloaded from https://academic.oup.com/ofid/advance-article/doi/10.1093/ofid/ofab185/6224328 by guest on 28 April 2021
Table 2: Interrupted time series analysis showing the monthly prescription rate change after March 2020 in BC, Canada

Prescription rate category	Model parameters (p, d, q) s(P, D, Q)12	Intervention coefficient (95% CI)	Standard Error	p-value
Overall	SARIMA (0,1,1)(0,1,0)12	-12.79 (-15.848, -9.743)	1.557	<0.001
RTI	SARIMA (0,1,2)(0,1,0)12	-5.94 (-8.241, -3.648)	1.172	<0.001
<1 year	SARIMA (0,0,1)(1,1,0)12	-10.91 (-14.286, -7.528)	1.724	<0.001
1-4 years	SARIMA (0,1,1)(1,1,0)12	-18.02 (-23.080, -12.959)	2.582	<0.001
Physician	SARIMA (0,1,1)(0,1,1)12	-10.03 (-12.695, -7.373)	1.358	<0.001
Dentist	SARIMA (0,1,3)(1,0,0)12	-1.36 (-1.546, -1.172)	0.096	<0.001

Note: Prescription rates for categories were selected for time series analysis based on the significant changes observed in the exploratory and descriptive analysis. p, d, and q are non-seasonal terms for the autoregressive order, number of differences, and the moving average order respectively. P, D, and Q are the seasonal terms for the autoregressive order, number of differences, and seasonal moving average order respectively. S is the seasonal period, which is 12 in this study due to the annual pattern of prescription rates. SARIMA - seasonal autoregressive integrated moving average.
Figure legends:

Figure 1: Comparison of overall and diagnosis-specific moving average of prescription rates between January-June of 2016-2019 and January-June of 2020 in BC, Canada

Figure 2: Profession specific moving average of prescription rates comparing 2020 to 2016-2019 in BC, Canada

Figure 3: Heat map showing the overall and RTI specific monthly prescription rate difference during January to July comparing 2020 to 2019 in BC, Canada
Figure 1

a) 2020 Prescription Rate Moving Average & Average of 2016 - 2019 Moving Averages Comparison - All Provincial Prescriptions in BC

b) 2020 Prescription Rate Moving Average & Average of 2016 - 2019 Moving Averages Comparison - Respiratory Tract Infections

c) 2020 Prescription Rate Moving Average & Average of 2016 - 2019 Moving Averages Comparison - Skin & Soft Tissue Infections

d) 2020 Prescription Rate Moving Average & Average of 2016 - 2019 Moving Averages Comparison - Urinary Tract Infections
Figure 2

a) 2020 Prescription Rate Moving Average & Average of 2016 - 2019 Moving Averages Comparison - Physicians

b) 2020 Prescription Rate Moving Average & Average of 2016 - 2019 Moving Averages Comparison - Dentists

c) 2020 Prescription Rate Moving Average & Average of 2016 - 2019 Moving Averages Comparison - Registered Nurses

d) 2020 Prescription Rate Moving Average & Average of 2016 - 2019 Moving Averages Comparison - Midwives

e) 2020 Prescription Rate Moving Average & Average of 2016 - 2019 Moving Averages Comparison - Pharmacists

f) 2020 Prescription Rate Moving Average & Average of 2016 - 2019 Moving Averages Comparison - Naturopaths
Figure 3

(a) Heat map of differences in provincial monthly prescription rate per 1,000 population for January - July comparing 2020 to 2019.

(b) Heat map of differences in provincial RTI monthly prescription rate per 1,000 population for January - July comparing 2020 to 2019.