Is Ureter Visualization Possible on Tc-99m DMSA Scintigraphy with Vesicoureteral Reflux Patients?

Vezikoüreteral Reflü’lü hastalarda Tc-99m DMSA Sintigrafisinde Üreter Vizualizasyonu Mümkün mü?

DMSA'da Üreter Vizualizasyonu / Ureter Visualization on DMSA

Hasan İkbal Atilgan1, Murat Sadic1, Meliha Korkmaz2, Sinem Ozyurt3, Gökhan Koca2
1Ministry of Health Kahramanmaraş Necip Fazıl City Hospital, Division of Nuclear Medicine, Kahramanmaraş, 2Ministry of Health Ankara Training and Research Hospital, Department of Nuclear Medicine, Ankara, 3Ministry of Health Sami Ulus Children Hospital, Division of Nuclear Medicine, Ankara, Turkey

Abstract
Aim: Ureter or pelvicalveal system is not be visualized with 99mTechnetium-dimercaptosuccinic acid (99mTc-DMSA) which is accumulated by renal cortex normally. In this study the cases whose ureters are visible were reviewed with 99mTc-DMSA scintigraphy. Material and Method: 18 patients (5 females, 13 males) with median age 3.5 years (min 2 months-max 18 years) were included in this study. Twenty ureters and/or pelvis of 18 patients were visible in 99mTc-DMSA scintigraphy. In two patients’s both ureters were visible. Vesicoureteral reflex (VUR) grade, 99mTc-DMSA uptake, renal size, status of pelvicalveal system, urea, creatinine levels were evaluated in all patients. Results: Three of the visible ureters were actually due to pelvicaliectasis. These pelvicaliectasic patients were excluded from the study. In the evaluation of the remaining 17 ureters of patients, congenital megaureter was present in three patients. Grade 3 VUR was detected in three patients, grade 4 was in three patients. VUR is seen as grade five in eight kidneys of seven patients because one of these patients has bilateral visualized ureter. Discussion: In patients with congenital megaureter and VUR, ureters can be visible with 99mTc-DMSA scintigraphy and further imaging modalities are recommended for these patients.

Keywords
Vesicoureteral Reflux (VUR); Megaureter; 99mTechnetium-Dimercaptosuccinic Acid (99mTc-DMSA)
Introduction

Vesicoureteral reflux (VUR) which is the reverse flow of the urine from bladder to the ureter or renal pelvis causes urinary system infections and renal scars in children [1]. It is usually mild or moderate and heals spontaneously, but in very rare cases it persists and causes pyelonephritis, renal scars and even renal failure [2]. Voiding cystourethrogram (VCUG), radionuclide cystography and voiding urosonography are used for the diagnosis of VUR [3]. VCUG is the most commonly used method for the diagnosis [4]. 99mTechnetium-dimercaptosuccinic acid (99mTc-DMSA) is used in the diagnosis and follow up of pyelonephritis in VUR patients. Size, number, morphology, anatomic localization and functional capacity of the kidneys can be determined with 99mTc-DMSA scintigraphy [5]. 99mTc-DMSA scintigraphy is the most sensitive method with high specificity for the detection of renal parenchymal hypoactive/defective regions [6]. Diffusely decreased uptake of 99mTc-DMSA or hypoactive regions are seen in the presence of pyelonephritis. 99mTc-DMSA is filtered in the glomeruli and then reabsorbed by proximal renal tubular epithelial cells via megalin- and cubulin-mediated endocytosis [7]. In normal urological system, 99mTc-DMSA is only accumulated by renal cortex and ureter or pelvicalyceal system cannot be visualized with this agent.

Dilatation of collecting system is seen due to VUR, obstruction and urinary tract infections (UTI). Acute UTI may cause dilatation of the ureter beside the pelvicalyceal system. Increase in ureteral dilatation is correlated to grade of VUR [8]. Congenital wide ureters can also be observed and named as megaureter. Megaureter was first described by Caulk in a patient with wide ureter and normal pelvicalyceal system [9]. In case of ureter dilatation due to VUR and megaureter, ureter can be visualized by 99mTc-DMSA scintigraphy and up to date, only one case was presented with visibly dilated ureter [10]. In this study the cases of 99mTc-DMSA scintigraphy in which the ureters are visible were evaluated.

Material and Method

3251 patients were referred to our nuclear medicine clinic for the evaluation of renal parenchymal scars and split function between July 2007 and April 2013. VUR history was present in 894 (27%) of 3251 patients. Twenty ureters and/or pelvis of 18 patients were visible with 99mTc-DMSA scintigraphy. These 18 patients (5 females and 13 males) ranging in age from 2 months to 18 years (median age: 3.5) were included in this study. Patients were evaluated according to age, gender, urea and creatinine levels, kidney size, pelvic dilatation, 99mTc-DMSA uptake ratios and hypoactive/defective regions.

After written informed consents were obtained from their parents, 99mTc-DMSA scintigraphies were taken. Dosage of 99mTc-DMSA was arranged in relation to the weights of patients and was injected intravenously between 800 μCi and 5 mCi (27.2-170 MBq). The images were taken 3-4 hours after the injection of the radiopharmaceutical with low energy high resolution parallel hole gamma camera (General Electric GE, Millennium MG, USA) in 140 keV±%20 peaks. Anterior, posterior and posterior oblique static images were obtained. Relative uptakes of the kidneys were calculated quantitatively and hypoactive/defective regions were recorded. A kidney uptake of 45–55 % of the total renal activity was considered as normal (symmetrical renal split function). VUR grades were noted according to their previous VCUG. Size of the kidneys and diameter of the pelvis were calculated by ultrasonography (USG) [Table 1].

Results

Twenty ureters and/or pelvis of 18 patients were visible in 99mTc-DMSA scintigraphy. In two patients both ureters were visible. Proximal part of the three ureters of three patients were visible with 99mTc-DMSA scintigraphy, yet it was realized that these were due to the dilatation of renal pelvis resembling the ureter with 99mTc MAg3 and/or USG imaging. These three patients were excluded from the study. Remaining 17 ureters had congenital megaureter or VUR. Three of the ureters were dilated and visualized due to congenital megaureter [Figure 1] and the remaining 14
Four ureters of two patients, six right ureters and seven left ureters were visible in two patients both ureters were visible [Figure 3], the distal parts of the two and whole part of the four right ureters, the distal part of the one and whole part of the six left ureters were visible with 99mTc-DMSA imaging. [Table 2]. VUR is seen in grade three in three kidneys, grade four in three kidneys, grade five in eight kidneys with seven patients. Three patients had megaureter and VUR wasn’t observed [Figure 4]. Six of the patients had elevated urea and creatinine levels. These six patients all were in the wholly visible ureter group on right or left.

Two patients had solitary kidney due to renal agenesis. Both had grade 5 VUR in their solitary kidney [Figure 5].

Six of the kidney sizes were large, six were in normal size and five were small. Eight of the pelvicalyceal system on visible side were in normal size, five of the pelvicalyceal system were dilated. Additionally, pelvicalyceal systems of the patients who have bilateral visualized ureter were dilated in both kidneys. Eight kidneys had hypoactive/defective regions and/or low grade 99mTc-DMSA uptake, five kidneys had normal cortical functions. Additionally, cortical functions were normal beside dilated pelvicalyceal system in the bilateral visualized ureter patient, but the other patient who has bilateral visualized ureter had bilateral hypoactive/defective regions and right kidney has...
Table 2. Demographic, biochemical and VCGU findings of the patients

Patient no	Age	Gender	Urea Level (mg/dL)	Creatinine Level (mg/dL)	Visible side	VUR grade
1	11 months	Boy	25	0.5	Left distal ureter	3
2	10	Girl	42	1.42	Left whole ureter	3
3	6	Girl	34	1.35	Right whole ureter	3
4	1	Boy	27	0.6	Left whole ureter	Megaureter
5	2	Boy	30	0.62	Right 1/2 distal ureter	4
6	10 months	Girl	7	0.4	Right whole ureter	4
7	3	Boy	33	0.74	Left whole ureter	Megaureter
8	9	Boy	27	0.9	Bilateral whole ureter	Bilateral 5
9	18	Girl	69	1.32	Left whole ureter	5
10	5	Boy	24	0.77	Left whole ureter	Megaureter
11	4	Boy	26	0.81	Right distal ureter	5
12	7	Girl	42	1.41	Left whole ureter	5
13	13	Boy	32	1.28	Right whole ureter	5
14	2 months	Boy	18	0.59	Right whole ureter	5
15	2	Boy	40	0.67	Bilateral whole ureter	Left VUR 5, Right VUR 4

Table 3. Side and part of the visible ureter with the 99mTc-DMSA, uptake ratios of the same side of the kidney are shown.

Patient no	Visible side	DMSA uptake of kidney (%) (Side of visible ureter)	DMSA uptake of nonvisible kidney (%)
1	Left distal ureter	18	82
2	Left whole ureter	52	48
3	Right whole ureter	3	97
4	Left whole ureter	50	50
5	Right 1/2 distal ureter	11	89
6	Right whole ureter	31	69
7	Left whole ureter	100	0
8	Bilateral whole ureter	Left 53, Right 47	
9	Left whole ureter	57	43
10	Left whole ureter	92	8
11	Right distal ureter	90	10
12	Left whole ureter	20	80
13	Right whole ureter	76	24
14	Right whole ureter	100	0
15	Bilateral whole ureter	Left 85, Right 15	

low grade 99mTc-DMSA uptake [Table 3].

Discussion

VUR is graded into five grades (grade 1-5) according to the severity the dilatation and tortuosity of ureter and pelvicalyceal system in case reflux reaches the kidney [11]. VUR is the most common cause of antenatal hydronephrosis for 40% of intratuerer cases [12]. 30% of the children with attack of acute pyelonephritis had also VUR [13]. In our study, VUR is seen in grade five in eight kidneys with seven patients, grade four in three kidneys, grade three in three kidneys. VUR influences the diameter of the ureter, but ureters may be widened without VUR in case of UTI. Bacterial infection may cause smooth muscle dysfunction in ureteral wall and so UTI may cause dilatation of the ureter [8]. In long standing ureters widen excessively and tortuoused in high grade VUR cases. By USG examination, findings of pelvic and/or calyeal dilatation, ureteral dilatation, pelvic and/or ureteral wall thickening are to be considered as warning for VUR. Normal appearing urinary tract normally does not usually coexist with VUR [12]. VUR may effict the growth of kidneys. In unscarrned kidneys as well as most of the kidneys with moderate scarri, normal growth is expected. Growth is impaired in case of severe scarri with little functioning parenchyma and dite ureters. In unilateral VUR cases, the abnormal kidney growth is impaired and the opposite normal kidney may get larger to compansate the excretion function [14]. First studies about VUR were based on intravenous urography. Later on, these were replaced with 99mTc-DMSA scintigraphy due to its high sensitivity for the detection on renal defects [15]. In our study, eight patients had abnormal 99mTc-DMSA imaging with hypoactive/defective regions and/or low grade activity accumulation. And also, one of the patient in bilateral visualized group had bilateral hypoactive/defective regions and his right kidney has low grade 99mTc-DMSA uptake. Congenital dysplastic kidneys may be seen with dilated and tortuous ureter in case of high grade VUR [16]. VUR related congenital dysplasia is seen as dilated ureter and pelvicalyceal system with abnormally thin parenchyma and loss of cortico-medullary differentiation in USG examination. 99mTc-DMSA imaging varies in these cases, as asymmetrical uptake of activity with small kidney around dilated pelvicalyceal system may be seen in severe cases [17]. In antenatal diagnosed dysplastic kidney, two normal neonate renal USG can exclude significant abnormalities and so VCUG is not needed in the evaluation of VUR [18]. VCUG is indicated for the first examination of VUR in boys, inadequate visualization of the bladder of kidney and specific request for for urethral or bladder imaging [19]. When renal developmental abnormalities are recognized prenatally, VCUG is indicated 4-6 weeks after birth [20]. 99mTc-DMSA scintigraphy is used for the diagnosis and follow up of pyelonephritis with detecting the renal cortical defective/hypoxic regions and calculate the differential renal functions. 90% of 99mTc-DMSA is bound to plasma proteins and 0%-5% to red blood cells. 40-50% of injected activity is taken by the kidney within 3-4 hours of injection and 6%-9% of the dose is present in the blood at 14 hours after injection [21]. In normal conditions, 99mTc-DMSA is concentrated only by the cortex and pelvicalyceal system and ureters are invisible. Megaureter is the presence of enlarged ureter with or without dilatation of the upper collecting system and is possibly caused by congenital (primary) or abnormalities of bladder or urethra [22]. Diameter of normal ureter is almost always smaller than 5 mm [8]. Zelenko et al. defined the normal ureter diameter in ureterolithiasis patients by comparing the symptomatic and asymptomatic kidneys with unenhanced helical computed tomography. They described that in 96% of patients; normal ureter diameter was less than 3 mm with 6.6% of the patients’ ureter less than 3 mm and mentioned that 3 mm should be consid-
ered as upper limit of normal size for nonobstructed ureters [23]. If megaureter is not due to VUR, diuresis renography is indicated [24]. In our cases, three of the patients had megaureter and don't have VUR. In three cases, the proximal part of the ureter seemed widened, but in their USG and/or 99mTc MAG3 images, extremely dilated pelvicalyceal system were observed. Two of 15 patients had only one kidney and their left kidney was agenetic. Pelvicalyceal system on the visible side was dilated in eight kidneys of six patients in USG and other patients’ pelvicalyceal system was not dilated.

In conclusion, ureters may become visible with 99mTc-DMSA scintigraphy in patients with congenital megaureter and VUR, more even so in high grade VUR. Ureter visualization with 99mTc-DMSA scintigraphy should urge the clinician to perform further imaging methods like VCUG to define the grade and therapy of the patients even if 99mTc-DMSA scintigraphy is normal.

Disclosure
The authors stated that they had no interests which might be perceived as posing a conflict or bias.

Competing interests
The authors declare that they have no competing interests.

References
1. Garin EH, Olavarria F, Garcia Nieto V, Valenciano B, Campos A, Young L. Clinical significance of primary vesicoureteral reflux and urinary antibiotic prophylaxis after acute pyelonephritis: a multicenter, randomized, controlled study. Pediatrics 2006;117(3):626-32.
2. Coulandh MG. Vesicoureteric reflux is not a benign condition. Pediatr Nephrol 2009;24(2):227-32.
3. Darge K, Riedmiller H. Current status of vesicoureteral reflux diagnosis. World J Urol 2004;22(2):88-95.
4. Schneider K, Krüger-Stollfuss I, Ernst G, Kohn MM. Paediatric fluoroscopy—a survey of children's hospitals in Europe. J Staffing, frequency of fluoroscopic procedures and investigation technique. Pediatr Radiol 2001;31(4):238-46.
5. Goldraich NP, Goldraich IH. Update on dimercaptosuccinic acid renal scanning in children with urinary tract infection. Pediatr Nephrol 1999;9(2):221-6.
6. Merrick MV, Littleley WS, Wild SR. The detection of pyelonephritic scarring in children by radioisotope imaging. Br J Radiol 1980;53(630):544-6.
7. Lee BH, Lee SH, Choi HJ, Kang HG, Oh SW, Lee DS, et al. Decreased renal uptake of (99m)Tc-DMSA in patients with tubular proteinuria. Pediatr Nephrol 2009;24(2):2211-6.
8. Hellström M, Jodal U, Märlid S, Wettergren B. Ureteral dilatation in children with febrile urinary tract infection or bacteriuria. AJR Am J Roentgenol 1987;148(3):483-6.
9. Robinowitz R, Barkin M, Schilling JC, Jeffs RD. Surgical treatment of the massively dilated primary megaureter in children. Br J Urol 1978;51(1):19-23.
10. Turkolmez S, Ors D, Korkmaz M. Megaureter visualization on 99mTc-DMSA scintigraphy. Ann Nucl Med 2005;19(5):421-3.
11. Jaswon MS, Dibble L, Puri S, Davis J, Young J, Dave R, et al. Prospective study of outcome in antenatally diagnosed renal pelvis dilatation. Arch Dis Child Fetal Neonatal Ed 1999;80(2):135-8.
12. Ami EF, Ayadi K, Rypens F, Hall M, Schulman CC. Can careful ultrasound examination of the urinary tract exclude vesicoureteric reflux in the neonate? Br J Radiol 1997;70(836):977-82.
13. Rosenberg AR, Rossleigh MA, Normand IC, Prescod N. Effect of vesicoureteral reflux on renal growth in children with urinary tract infection. Arch Dis Child 1981;56(8):593-600.
14. Flatin JM, Edwards D, Normand IC, Prescod N. Effect of vesicoureteric reflux on renal growth in children with urinary tract infection. Arch Dis Child 1981;56(8):593-600.
15. Gratton-Smith JD, Little SB, Jones RA. Evaluation of reflux nephropathy, pyelonephritis and renal dysplasia. Pediatr Radiol 2008;38(1):103-105.
16. Risdon RA. The small scarred kidney in childhood. Pediatr Nephrol 1993;7(4):361-4.
17. Coulthard MG. Vesicoureteric reflux is not a benign condition. Pediatr Nephrol 2009;24(2):227-32.
18. Ismail K, Ami FE, Alexander M, Schulman C, Collier F, Hall M. Routine voiding cystourethrography is of no value in neonates with unilateral multicystic dysplastic kidney. J Pediatr 2005;146(6):759-63.