The forcing monophonic and the forcing geodetic numbers of a graph

J. John

Department of Mathematics, Government College of Engineering,
Tirunelveli 627 007, India
john@gcetly.ac.in

Abstract

For a connected graph $G = (V, E)$, let a set S be a m-set of G. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique m-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing monophonic number of S, denoted by $f_m(S)$, is the cardinality of a minimum forcing subset of S. The forcing monophonic number of G, denoted by $f_m(G)$, is $f_m(G) = \min\{f_m(S)\}$, where the minimum is taken over all minimum monophonic sets in G. We know that $m(G) \leq g(G)$, where $m(G)$ and $g(G)$ are monophonic number and geodetic number of a connected graph G respectively. However there is no relationship between $f_m(G)$ and $f_g(G)$, where $f_g(G)$ is the forcing geodetic number of a connected graph G. We give a series of realization results for various possibilities of these four parameters.

Keywords: geodetic number, monophonic number, forcing geodetic number, forcing monophonic number
Mathematics Subject Classification : 05C12, 05C38
DOI: 10.19184/ijc.2020.4.2.5

1. Introduction

By a graph $G = (V,E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to Harary [1]. The distance $d(u,v)$ between two vertices u and v in a connected graph G is the length of shortest $u-v$ path in G. An $u-v$ path of length $d(u,v)$ is called an $u-v$...
geodesic. A vertex \(x \) is said to be lie a \(u - v \) geodesic \(P \) if \(x \) is a vertex of \(P \) including the vertices \(u \) and \(v \). A geodesic set of \(G \) is a set \(S \subseteq V \) such that every vertex of \(G \) is contained in geodesic joining some pair of vertices in \(S \). The geodetic number \(g(G) \) of \(G \) is the minimum order of its geodetic sets and any geodetic set of order \(g(G) \) is a minimum geodetic set or simply a \(g \)-set of \(G \). The geodetic number of a graph was introduced in [1] and further studied in [3, 4, 5, 7, 8, 9, 16, 17, 18, 20, 23, 25]. A subset \(T \subseteq S \) is called a forcing subset for \(S \) if \(S \) is the unique \(g \)-set of \(G \) containing \(T \). A forcing subset for \(S \) of minimum cardinality is a minimum forcing subset of \(S \). The forcing geodetic number of \(S \), denoted by \(f_g(S) \), is the cardinality of a minimum forcing subset of \(S \). The forcing geodetic number of \(G \), denoted by \(f_g(G) \), is \(f_g(G) = \min \{ f_g(S) \} \), where the minimum is taken over all minimum \(g \)-sets of \(G \). The forcing geodetic number of a graph was introduced in [3] and further studied in [19, 21, 22]. A chord of the path \(P \) is an edge joining to non-adjacent vertices of \(P \). An \(u - v \) path \(P \) is called monophonic path if it is a chordless path. A monophonic set of \(G \) is a set \(S \subseteq V \) such that every vertex of \(G \) is contained in a monophonic path joining some pair of vertices in \(M \). The monophonic number \(m(G) \) of \(G \) is the minimum order of its monophonic sets and any monophonic set of order \(m(G) \) is a minimum monophonic set or simply a \(m \)-set of \(G \). The monophonic number of a graph was introduced in [6] and further studied in [2, 6, 10, 11, 12, 13, 14, 15, 19, 24]. A vertex \(v \) is said to be monophonic vertex of \(G \) if \(v \) belongs to every minimum monophonic set of \(G \). A vertex \(v \) is an extreme vertex of a graph \(G \) if the sub graph induced by its neighbours is complete. A vertex \(v \) is said to be geodetic(monophonic) vertex if \(v \) belongs to every \(g \)-set (\(m \)-set) of \(G \). Every extreme vertices are geodetic(monophonic) vertices of \(G \). In fact there are monophonic (monophonic) vertices which are not extreme vertices of \(G \). Let \(G \) be a connected graph and \(S \) a \(m \)-set of \(G \). A subset \(T \subseteq S \) is called a forcing subset for \(S \) if \(S \) is the unique \(m \)-set of \(G \) containing \(T \). A forcing subset for \(S \) of minimum cardinality is a minimum forcing subset of \(S \). The forcing monophonic number of \(S \), denoted by \(f_m(S) \), is the cardinality of a minimum forcing subset of \(S \). The forcing monophonic number of \(G \), denoted by \(f_m(G) \) is defined by \(f_m(G) = \min \{ f_m(S) \} \), where the minimum is taken over all \(m \)-sets \(S \) in \(G \). The forcing monophonic number of a graph was introduced in [11]. The Throughout the following \(G \) denotes a connected graph with at least two vertices. The following theorems are used in the sequel.

Theorem 1.1. [4, 12] If \(v \) is an extreme vertex of a connected graph \(G \), then \(v \) belongs to every geodetic (monophonic) set of \(G \).

Theorem 1.2. [1, 12] For a connected graph \(G \), \(g(G) = p \ (m(G) = p) \) if and only if \(G = K_p \).

Theorem 1.3. [3, 11] Let \(G \) be a connected graph, then
\[a) \quad f_g(G) = 0 = f_m(G) = 0 \] if and only if \(G \) has a unique minimum geodetic (monophonic) set.
\[b) \quad f_g(G) = g(G) - |W|, \ (f_m(G) = m(G) - |W|) \], where \(W \) is the set of all geodetic (monophonic) vertices of \(G \).

Theorem 1.4. [3, 11] For the complete graph \(G = K_p \), \(f_g(G) = f_m(G) = 0 \).

2. The Forcing Monophonic and the Forcing Geodetic Numbers of a Graph

We know that \(m(G) \leq g(G) \). From the following examples, we observe that there is no relationship between \(f_m(G) \) and \(f_g(G) \).
Example 2.1. For the graph G given in Figure 2.1, $M = \{v_1, v_3\}$ is the unique m-set of G so that $f_m(G) = 0$ and $m(G) = 2$. Also $S_1 = \{v_1, v_5, v_6\}$ and $S_2 = \{v_1, v_5, v_7\}$ are the only two g-sets of G such that $f_g(S_1) = f_g(S_2) = 1$ so that $f_g(G) = 1$ and $g(G) = 3$. Thus $f_m(G) < f_g(G) < m(G) < g(G)$.

Example 2.2. For the graph G given in Figure 2.2, $M_1 = \{v_1, v_8, v_{12}\}$, $M_2 = \{v_1, v_9, v_{12}\}$ and $M_3 = \{v_1, v_{10}, v_{12}\}$ are the only three m-set of G so that $f_m(M_1) = f_m(M_2) = f_m(M_3) = 1$ so that $f_m(G) = 1$ and $m(G) = 3$. Also $S_1 = \{v_1, v_7, v_9, v_{12}\}$ is the unique g-set of G so that $f_g(G) = 0$ and $g(G) = 4$. Thus $f_g(G) < f_m(G) < m(G) < g(G)$.

3. Special graphs

In this section, we present some graphs from which various graphs arising in theorem are generated using identification.

Let $P_i : u_i, v_i$ be a copy of paths on two vertices. Let G_a be the graph given in Figure 3.1 obtained from P_i ($i \leq a$) by introducing new vertices s, t and joining each u_i ($1 \leq i \leq a$) with s and joining each v_i ($1 \leq i \leq a$) with t and join s with t.
Let $P_i : n_i, p_i$ ($1 \leq i \leq b$) be a copy of path on two vertices and $P : l, m, n$ be a path on three vertices. Let Z_b be the graph given in Figure 3.2 obtained from P_i ($1 \leq i \leq b$) and P by joining each n_i ($1 \leq i \leq b$) with l, each p_i ($1 \leq i \leq b$) with q.

Let $P_i : r_i, h_i, k_i$ ($1 \leq i \leq c$) be a copy of path on three vertices and let $P : e, f, g$ be a path on three vertices. Let H_c be the graph given in Figure 3.3 obtained from P_i ($1 \leq i \leq c$) and P by joining e and f with each h_i and r_i ($1 \leq i \leq c$), joining g with each k_i ($1 \leq i \leq c$), joining h_i ($1 \leq i \leq c$) with k_i ($1 \leq i \leq c$), and joining r_i ($1 \leq i \leq c$) with k_i ($1 \leq i \leq c$).
4. Some realization results

Theorem 4.1. For every pair a, b of integers with $0 \leq a < b$ and $b \geq 2$, there exists a connected graph G such that $f_m(G) = f_g(G) = 0$, $m(G) = a$ and $g(G) = b$.

Proof. If $a = b$, let $G = K_a$. Then by Theorem 1.2, $m(G) = g(G) = a$. Also by Theorem 1.3(a), $f_m(G) = f_g(G) = 0$. For $1 \leq a < b$, let G be the graph obtained from H_{b-a} by adding new
vertices \(x, z_1, z_2, \ldots, z_{a-1} \) and joining the edges \(xe, g_{z_1}, g_{z_2}, \ldots, g_{z_{a-1}} \). Let \(Z = \{ x, z_1, z_2, \ldots, z_{a-1} \} \) be the set of all end-vertices of \(G \). Then it is clear that \(Z \) is a monophonic set of \(G \) and so by Theorem 1.1, \(Z \) is the unique \(m \)-set of \(G \) so that \(m(G) = a \) and hence by Theorem 1.3(a), \(f_m(G) = 0 \). Since the vertices \(h_i, k_i \) and \(r_i \) \((1 \leq i \leq b - a) \) does not lie on any geodesic joining a pair of vertices in \(Z \), we see that \(Z \) is not a geodetic set of \(G \). It is easily verified that every \(g \)-set of \(G \) contains each \(h_i \) \((1 \leq i \leq b - a) \) and so \(g(G) \geq b \). Now it is easily seen that \(W = Z \cup \{ h_1, h_2, \ldots, h_{b-a} \} \) is the unique \(g \)-set of \(G \) and hence by Theorem 1.1 and Theorem 1.3(a) \(g(G) = b \) and \(f_g(G) = 0 \).

\[\square \]

Theorem 4.2. For every integers \(a, b \) and \(c \) with \(0 \leq a < b < c \) and \(c > a + b \), there exists a connected graph \(G \) such that \(f_m(G) = 0, f_g(G) = a, m(G) = b \) and \(g(G) = c \).

Proof. Case 1. \(a = 0 \). Then the graph \(G \) constructed in Theorem 4.1 satisfies the requirements of this theorem.

Case 2. \(a \geq 1 \). Let \(G \) be the graph obtained from \(Z_a \) and \(H_{c-(a+b)} \) by identifying the vertex \(q \) of \(Z_a \) and \(e \) of \(H_{c-(a+b)} \) and then adding new vertices \(x, z_1, z_2, \ldots, z_{b-1} \) and joining the edges \(xl, g_{z_1}, g_{z_2}, \ldots, g_{z_{b-1}} \). It is clear that \(Z \) is a monophonic set of \(G \) and by Theorem 1.1, \(Z \) is the unique \(m \)-set of \(G \) so that \(m(G) = b \) and hence by Theorem 1.3(a), \(f_m(G) = 0 \). Next we show that \(g(G) = c \). Let \(S \) be any geodetic set of \(G \). Then by Theorem 1.1, \(Z \subseteq S \). It is clear that \(Z \) is not a geodetic set of \(G \). For \(1 \leq i \leq a \), let \(Q_i = \{ n_i, p_i \} \). We observed that every \(g \)-set of \(G \) must contain at least one vertex from each \(Q_i \) \((1 \leq i \leq a) \) and each \(h_i \) \((1 \leq i \leq c - b - a) \) so that \(g(G) \geq b + a + c - a - b = c \). Now \(W = Z \cup \{ h_1, h_2, \ldots, h_{c-a-b} \} \cup \{ n_1, n_2, \ldots, n_a \} \) is a geodetic set of \(G \) so that \(g(G) \geq b + a + c - a - b = c \). Thus \(g(G) = c \). Since every \(g \)-set contains \(W_1 = Z \cup \{ h_1, h_2, \ldots, h_{c-a-b} \} \) it follows from that from Theorem 1.3 (b) that \(f_g(G) \leq g(G) - | W_1 | = c - (c-a) = a \). Now, since \(g(G) = c \) and every \(g \)-set of \(G \) contains \(W_1 \), it is easily seen that every \(g \)-set \(S \) is of the form \(W_1 \cup \{ d_1, d_2, \ldots, d_a \} \) where \(d_i \in Q_i \) \((1 \leq i \leq a) \). Let \(T \) be any proper subset of \(S \) with \(| T | < a \). Then it is clear that there exists some \(j \) such that \(T \cap Q_j = \emptyset \), which shows that \(f_j(G) = a \).

\[\square \]

Theorem 4.3. For every integers \(a, b \) and \(c \) with \(0 \leq a < b \leq c \) and \(b > a + 1 \) there exists a connected graph \(G \) such that \(f_g(G) = 0, f_m(G) = a, m(G) = b \) and \(g(G) = c \).

Proof. Case 1. \(a = 0 \). Then the graph \(G \) constructed in Theorem 4.1 satisfies the requirements of this theorem.

Case 2. \(a \geq 1 \).

Subcase 2a. \(b = c \). Let \(G \) be the graph obtained from \(R_a \) by adding new vertices \(x, z_1, z_2, \ldots, z_{b-a-1} \) and joining the edges \(xu, v_{z_1}, v_{z_2}, \ldots, v_{z_{b-a-1}} \). Let \(Z = \{ x, z_1, z_2, \ldots, z_{b-a-1} \} \) be the set of all end-vertices of \(G \). Let \(S \) be any geodetic set of \(G \). Then by Theorem 1.1, \(Z \subseteq S \). It is clear that \(Z \) is not a geodetic set of \(G \). For \(1 \leq i \leq a \), let \(H_i = \{ x_i, w_i \} \). We observe that every \(g \)-set of \(G \) must contain only the vertex \(y_i \) from each \(H_i \) \((1 \leq i \leq a) \) and so \(g(G) \geq b - a + a = b \). Now \(S = Z \cup \{ y_1, y_2, y_3, \ldots, y_a \} \) is a geodetic set of \(G \) so that \(g(G) \leq b - a + a = b \). Thus \(g(G) = b \). Also it is easily seen that \(W \) is the unique \(g \)-set of \(G \) and so \(f_g(G) = 0 \). Now it is clear that \(Z \) is not a monophonic set of \(G \). We observe that every \(m \)-set of \(G \) must contain at least one vertex from each \(H_i \) \((1 \leq i \leq a) \). Hence by Theorem 1.1, \(m(G) \geq b - a + a = b \). Now
$W_1 = Z \cup \{y_1, y_2, y_3, \ldots, y_a\}$ is a monophonic set of G so that $m(G) \leq b - a + a = b$. Thus $m(G) = b$. Next we show that $f_m(G) = a$. Since every m-set contains Z, it follows from Theorem 1.3 (b) that $f_m(G) \leq m(G) - |Z| = b - (b - a) = a$. Now, since $m(G) = b$ and every m-set of G contains Z, it is easily seen that every m-set S is of the form $Z \cup \{d_1, d_2, d_3, \ldots, d_a\}$, where $d_i \in H_i (1 \leq i \leq a)$. Let T be any proper subset of S with $|T| < a$. Then it is clear that there exists some j such that $T \cap H_j = \emptyset$, which shows that $f_m(G) = a$.

Subcase 2b. $b < c$. Let G be the graph obtained from R_a and H_{c-b} by identifying the vertex v of R_a and g of H_{c-b} and then adding the new vertices $x, z_1, z_2, \ldots, z_{b-a-1}$ and joining the edges $xu, gz_1, gz_2, \ldots, g(z_{b-a-1})$. Let $Z = \{x, z_1, z_2, \ldots, z_{b-a-1}\}$ be the set of end vertices of G. Let S be any geodetic set of G. Then by Theorem 1.1 $Z \subseteq S$. It is clear that Z is not a geodetic set of G. For $1 \leq i \leq a$, let $H_i = \{x_i, y_i, w_i\}$. We observe that every g-set of G must contain only the vertex y_i $(1 \leq i \leq a)$ from each $H_i (1 \leq i \leq a)$ and each h_i $(1 \leq i \leq c - b)$ and so $g(G) \geq b - a + a + c - b = c$. Now $W = Z \cup \{y_1, y_2, y_3, \ldots, y_a\} \cup \{h_1, h_2, h_3, \ldots, h_{c-b}\}$ is a geodetic set of G so that $g(G) \leq b - a + a + c - b = c$. Thus $g(G) = c$. Also it is easily seen that W is the unique g-set of G and so $f_g(G) = 0$. It is clear that Z is not a monophonic set of G. We observe that every m-set of G must contain at least one vertex from each $H_i (1 \leq i \leq a)$ and so $m(G) \geq b - a + a = b$. Now, $S_1 = Z \cup \{y_1, y_2, y_3, \ldots, y_a\}$ is a monophonic set of G so that $m(G) \leq b - a + a = b$. Thus $m(G) = b$. Next we show that $f_m(G) = a$. Since every m-set contains Z, it follows from Theorem 1.3 (b) that $f_m(G) \leq m(G) - |Z| = b - (b - a) = a$. Now, since $m(G) = b$ and every m-set of G contains Z, it is easily seen that every m-set S is of the form $Z \cup \{d_1, d_2, d_3, \ldots, d_a\}$, where $d_i \in H_i (1 \leq i \leq a)$. Let T be any proper subset of S with $|T| < a$. Then it is clear that there exists some j such that $T \cap H_j = \emptyset$, which shows that $f_m(G) = a$.

Theorem 4.4. For every pair a, b and c of integers with $0 \leq a \leq b \leq c$, $b > a + 1$ there exists a connected graph G such that $f_g(G) = f_m(G) = a$, $m(G) = b$ and $g(G) = c$.

Proof. Case 1. $a = 0$, then the graph G constructed in Theorem 4.1 satisfies the requirements of this theorem.

Case 2. $a \geq 1$,

Subcase 2a. $b = c$. Let G be the graph obtained from G_a by adding new vertices $x, z_1, z_2, \ldots, z_{b-a-1}$ and joining the edges $xs, tz_1, tz_2, \ldots, tz_{b-a-1}$. Let $Z = \{x, z_1, z_2, \ldots, z_{b-a-1}\}$ be the set of end-vertices of G. First we show that $m(G) = b$. Let M be any monophonic set of G. Then by Theorem 1.1, $Z \subseteq M$. It is clear that Z is not a monophonic set of G. Let $F_i = \{u_i, v_i\}$ $(1 \leq i \leq a)$. We observe that every m-set of G must contain at least one vertex from each $F_i (1 \leq i \leq a)$. Thus $m(G) \geq b - a + a = b$. On the other hand since the set $W = Z \cup \{v_1, v_2, \ldots, v_a\}$ is a monophonic set of G, it follows that $m(G) \leq |W| = b$. Hence $m(G) = b$. Next we show that $f_m(G) = a$. By Theorem 1.1, every monophonic set of G contains Z and so it follows from Theorem 1.3(b) that $f_m(G) \leq m(G) - |Z| = a$. Now, since $m(G) = b$ and every m-set of G contains Z, it is easily seen that every m-set S is of the form $Z \cup \{c_1, c_2, \ldots, c_a\}$, where $c_i \in F_i (1 \leq i \leq a)$. Let T be any proper subset of S with $|T| < a$. Then it is clear that there exists some j such that $T \cap H_j = \emptyset$, which shows that $f_m(G) = a$. By similar way we can prove $g(G) = b$ and $f_g(G) = a$.

Subcase 2b. $b < c$. Let G be the graph obtained from G_a and H_{c-b} by identifying the vertex t of
First we show that \(m(G) = b \). Let \(Z = \{ z_1, z_2, \ldots, z_{b-a-1} \} \) be the set of all end-vertices of \(G \). Since the vertices \(u_i, v_i \) do not lie on any monophonic path joining a pair of vertices of \(Z \), it is clear that \(Z \) is not a monophonic set of \(G \). Let \(F_i = \{ u_i, v_i \} \) (\(1 \leq i \leq a \)). We observe that every \(m \)-set of \(G \) must contain at least one vertex from each \(F_i \) (\(1 \leq i \leq a \)). Thus \(m(G) \geq b - a + a = b \). On the other hand since the set \(W = Z \cup \{ v_1, v_2, v_3, \ldots, v_a \} \) is a monophonic set of \(G \), it follows that \(m(G) \leq |W| = b \). Hence \(m(G) = b \). Next, we show that \(f_m(G) = a \).

By Theorem 1.1, every monophonic set of \(G \) contains \(Z \) and so it follows from Theorem 1.3(b) that \(f_m(G) \leq m(G) - |Z| = a \). Now, since \(m(G) = b \) and every \(m \)-set of \(G \) contains \(Z \), it is easily seen that every \(m \)-set \(S \) is of the form \(Z \cup \{ c_1, c_2, c_3, \ldots, c_a \} \), where \(c_i \in F_i \) (\(1 \leq i \leq a \)). Let \(T \) be any proper subset of \(S \) with \(|T| < a \). Then it is clear that there exists some \(j \) such that \(T \cap H_j = \emptyset \), which shows that \(f_m(G) = a \). Next we show that \(g(G) = c \). Since the vertices \(u_i, v_i, h_i \) (\(1 \leq i \leq a \)) do not lie on any geodesic joining a pair of vertices of \(Z \), it is clear that \(Z \) is not a geodetic set of \(G \). We observe that every \(g \)-set of \(G \) must contain each \(H_i \) (\(1 \leq i \leq a \)) and each \(h_i \) (\(1 \leq i \leq c - b \)) so that \(g(G) \geq b - a + a + c - b = c \). On the other hand, since the set \(S_1 = Z \cup \{ h_1, h_2, h_3, \ldots, h_{c-b} \} \cup \{ u_1, u_2, \ldots, u_a \} \) is a geodetic set of \(G \), so that \(g(G) \leq |S_1| = c \). Hence \(g(G) = c \). Next we show that \(f_g(G) = a \). By Theorem 1.1, every geodetic set of \(G \) contains \(W_1 = Z \cup \{ h_1, h_2, h_3, \ldots, h_{c-b} \} \) and so it follows from Theorem 1.3(b) that \(f_g(G) \leq g(G) - |W_1| = a \). Now, since \(g(G) = c \) and every \(g \)-set of \(G \) contains \(Z \), it is easily seen that every \(g \)-set \(S \) is of the form \(W_1 \cup \{ c_1, c_2, c_3, \ldots, c_a \} \), where \(c_i \in F_i \) (\(1 \leq i \leq a \)). Let \(T \) be any proper subset of \(S \) with \(|T| < a \). Then it is clear that there exists some \(j \) such that \(T \cap H_j = \emptyset \), which shows that \(f_g(G) = a \). This is true for all \(g \)-sets of \(G \) so that \(f_g(G) = a \). □

Theorem 4.5. For every integers \(a, b, c \) and \(d \) with \(2 \leq c < d \), \(0 \leq a \leq b \leq d \) and \(d > c - a + b \), there exists a connected graph \(G \) such that \(f_m(G) = a \), \(f_g(G) = b \), \(m(G) = c \) and \(g(G) = d \).

Proof.

Case 1. \(a = b = 0 \). Then the graph \(G \) constructed in Theorem 4.1 satisfies the requirements of this theorem.

Case 2. \(a = 0, b > 1 \). Then the graph \(G \) constructed in Theorem 4.2 satisfies the requirements of this theorem.

Case 3. \(1 \leq a = b \). Then the graph \(G \) constructed in Theorem 4.4 satisfies the requirements of this theorem.

Case 4. \(1 \leq a < b \). Let \(G_1 \) be the graph obtained from \(G_a \) and \(Z_{b-a} \) by identifying the vertex \(t \) of \(G_a \) and the vertex \(l \) of \(Z_{b-a} \). Now let \(G \) be the graph obtained from \(G_1 \) and \(H_{d-(c-a+b)} \) by identifying the vertex \(q \) of \(G_1 \) and the vertex \(e \) of \(H_{d-(c-a+b)} \) and adding new vertices \(x, z_1, z_2, \ldots, z_{c-a-1} \) and joining the edges \(xs, gz_1, gz_2, \ldots, gz_{c-a-1} \). Let \(Z = \{ x, z_1, z_2, \ldots, z_{c-a-1} \} \) be the set of end vertices of \(G \). For \(1 \leq i \leq a \) let \(F_i = \{ u_i, v_i \} \). It is clear that any \(m \)-set is of the form \(S = Z \cup \{ c_1, c_2, c_3, \ldots, c_a \} \) where \(c_i \in F_i \) (\(1 \leq i \leq a \)). Then as in earlier theorems it can be seen that \(f_m(G) = a \) and \(m(G) = c \). For \(1 \leq i \leq a \) let \(Q_i = \{ n_i, p_i \} \). It is clear that any \(g \)-set is of the form \(W = Z \cup \{ h_1, h_2, h_3, \ldots, h_{d-(c-a+b)} \} \cup \{ c_1, c_2, c_3, \ldots, c_a \} \cup \{ d_1, d_2, d_3, \ldots, d_{b-a} \} \), where \(c_i \in F_i \) (\(1 \leq i \leq a \)) and \(d_j \in Q_j \) (\(1 \leq j \leq b - a \)). Then as in earlier theorems it can be seen that \(f_g(G) = b \) and \(g(G) = d \). □
The forcing monophonic and the forcing geodetic numbers of a graph | J. John

Theorem 4.6. For every integers \(a, b, c\) and \(d\) with \(0 \leq a \leq b < c \leq d\) and \(c \geq b + 1\) and \(c, d \geq 2\) there exists a connected graph \(G\) such that \(f_g(G) = a, f_m(G) = b, m(G) = c\) and \(g(G) = d\).

Proof.

Case 1. \(a = b = 0\). Then the graph \(G\) constructed in Theorem 4.1 satisfies the requirements of this theorem.

Case 2. \(a = 0, b \geq 1\). Then the graph \(G\) constructed in Theorem 4.2 satisfies the requirements of this theorem.

Case 3. \(1 \leq a = b\). Then the graph \(G\) constructed in Theorem 4.4 satisfies the requirements of this theorem.

Case 4. \(1 \leq a < b\).

Subcase 4a. \(c = d\). Let \(G\) be the graph obtained from \(G_a\) and \(R_{b-a}\) by identifying the vertex \(t\) of \(G_a\) and the vertex \(q\) of \(R_{b-a}\) and then adding the new vertices \(x, z_1, z_2, \ldots, z_{c-b-1}\) and joining the edges \(xs, qz_1, qz_2, \ldots, qz_{c-b-1}\). First we show that \(m(G) = c\). Let \(Z = \{x, z_1, z_2, \ldots, z_{c-b-1}\}\) be the set of end vertices of \(G\). Let \(F_i = \{u_i, v_i\} (1 \leq i \leq a)\) and \(H_i = \{x_i, y_i, w_i\} (1 \leq i \leq b - a)\). It is clear that any \(m\)-set of \(G\) is of the form \(S = Z \cup \{c_1, c_2, c_3, \ldots, c_a\} \cup \{d_1, d_2, d_3, \ldots, d_{b-a}\}\) where \(c_i \in F_i (1 \leq i \leq a)\) and \(d_j \in H_j (1 \leq j \leq b - a)\). Then as in earlier theorems it can be seen that \(f_g(G) = b\) and \(m(G) = c\). It is clear that any \(g\)-set is of the form \(W = Z \cup \{y_1, y_2, y_3, \ldots, y_{b-a}\} \cup \{c_1, c_2, c_3, \ldots, c_a\}\), where \(c_i \in F_i (1 \leq i \leq a)\). Then as in earlier theorems it can be seen that \(f_g(G) = a\) and \(g(G) = d\).

In the realization results we have given some restrictions on the parameters. So we leave the following as open question.

Problem 1. For any four positive integers \(a, b, c\) and \(d\) with \(a \geq 0, b \geq 0\) and \(2 \leq c \leq d\), does there exist a connected graph \(G\) with \(f_m(G) = a, f_g(G) = b, m(G) = c\) and \(g(G) = d\).

5. The Upper Forcing Monophonic number of a graph

In [25], P. Zhang introduced the concept of the upper geodetic number of a graph. In the similar manner we define the upper forcing monophonic number of a graph as follows.

Definition 5.1. Let \(G\) be a connected graph and \(S\) a \(m\)-set of \(G\). A subset \(T \subseteq S\) is called a forcing subset for \(S\) if \(S\) is the unique \(m\)-set containing \(T\). A forcing subset for \(S\) of minimum cardinality is a minimum forcing subset of \(S\). The **forcing monophonic number** of \(S\), denoted by \(f_m(S)\), is
the cardinality of a minimum forcing subset of S. The forcing monophonic number of G, denoted by $f_m(G)$ is defined by $f_m(G) = \min \{ f_m(S) \}$, where the minimum is taken over all m-set S in G and the upper forcing monophonic number of G, denoted by $f_m^+(G) = \max \{ f_m(S) \}$, where the maximum is taken over all m-sets S in G.

Theorem 5.2. For every connected graph G, $0 \leq f_m(G) \leq f_m^+(G) \leq m(G)$.

Example 5.3. The bounds in Theorem 5.2 is sharp. For $G = K_{1,p-1}$, $f_m(G) = 0$. For $G = C_5$, $f_m(G) = f_m^+(G) = 2$. Also the inequalities in Theorem 5.2 can be strict. For the graph G given in Figure 5.1, $M_1 = \{v_1, v_4, v_5\}$, $M_2 = \{v_1, v_4, v_6\}$ and $M_1 = \{v_1, v_3, v_6\}$ are only three m-sets of G so that $f_m(M_1) = 2$, $f_m(M_2) = 1$ and $f_m(M_3) = 2$ so that $f_m(G) = 2$, $f_m^+(G) = 2$ and $m(G) = 3$. Thus $0 < f_m(G) < f_m^+(G) < m(G)$.

So we leave the following as a open question.

Problem 2. For any three positive integers a, b and c with $0 \leq a \leq b \leq c$, does there exists a connected graph G with $f_m(G) = a$, $f_m^+(G) = b$ and $m(G) = c$.

References

[1] H.A. Ahangara, S. Kosarib, S.M. Sheikholeslamib, and L. Volkmannnc, Graphs with large geodetic number, *Filomat*. 29:6 (2015), 1361 – 1368.

[2] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.

[3] J. Caceres, O. Oellermann, and M. Puertas, Minimal trees and monophonic convexity, *Discuss. Math. Graph Theory*, 32, (2012), 685 – 704.

[4] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, *Discuss. Math. Graph Theory*, 19, (1999), 45 – 58.
The forcing monophonic and the forcing geodetic numbers of a graph

[5] G. Chartrand, F. Harary, and P. Zhang, On the geodetic number of a graph, *Networks*, (2002), 1 – 6.

[6] M.C. Dourado, F. Protti, D. Rautenbach, and J.L. Szwarcfiter, Some remarks on the geodetic number of a graph, *Discrete Math.*, 310, (2010), 832 – 837.

[7] M.C. Dourado, F. Protti, and J.L. Szwarcfiter, Algorithmic aspects of monophonic convexity, *Electron. Notes Discrete Math.*, 30, (2008), 177 – 182.

[8] F. Harary, E. Loukakis, and C. Tsouros, The geodetic number of a graph, *Math. Comput. Modeling*, 17(11), (1993), 89 – 95.

[9] C. Hernando, T. Jiang, M. Mora, I.M. Pelayo, and C. Seara, On the Steiner, geodetic and hull number of graphs, *Discrete Math.* 293, (2005), 139 – 154.

[10] J. John and P.A.P. Sudhahar, The forcing edge monophonic number of a graph , *SCIENTIA Series A: Mathematical Sciences*, 23, (2012), 87-98

[11] J. John and S. Panchali, The forcing monophonic number of a graph, *IJMA*-3 (3), (2012), 935 – 938.

[12] J. John and S. Panchali, The upper monophonic number of a graph, *Int. J. Math. Combin.* 4, (2010), 46 – 52

[13] J. John and K.U. Samundeswari, The forcing edge fixing edge-to-vertex monophonic number of a graph, *Discrete Math. Algorithms Appl.* 5(4), (2013), 1 – 10.

[14] J. John and K.U. Samundeswari, The edge fixing edge-to-vertex monophonic number of a graph, *Appl. Math. E-Notes*, 15, (2015), 261 – 275.

[15] J. John and K.U. Samundeswari, Total and forcing total edge-to-vertex monophonic numbers of graph, *J. Comb. Optim.* 34, (2017), 1 – 14.

[16] J. John and D. Stalin, Edge geodetic self decomposition in graphs, *Discrete Math. Algorithms Appl.* 12(5), (2020), 2050064, 7 pages.

[17] J. John and D. Stalin,The edge geodetic self decomposition number of a graph, *RAIRO Oper. Res.*, DOI:10.1051/ro/2020073.

[18] J. John and D. Stalin, Distinct edge geodetic decomposition in graphs, *Commun. Comb. Optim.*, DOI: 10.22049/CCO.2020.26638.1126

[19] E.M. Paluga and S.R. Canoy, Jr, Monophonic numbers of the join and composition of connected graphs, *Discrete Math.* 307, (2007), 1146 – 1154.

[20] I.M. Pelayo, Geodesic Convexity in Graphs, Springer Briefs in Mathematics, 2013.

124
[21] A.P. Santhakumaran and J. John, On the forcing geodetic and forcing Steiner numbers of a graph, *Discuss. Math. Graph Theory*, 31, (2011), 611 – 624.

[22] Li-Da Tong, Geodetic sets and Steiner sets in graphs, *Discrete Math.* 309(12), (2009), 3733 – 4214.

[23] Li-Da Tong, The forcing hull and forcing geodetic numbers of graphs, *Discrete Appl. Math.* 157(5), (2009), 875 – 1164.

[24] Li-Da Tong, The \((a, b)\)-forcing geodetic graphs, *Discrete Math.* 309(6), (2009), 1199 – 1792.

[25] P. Zhang, The upper forcing geodetic number of a graph, *Ars Combin.*, DOI: 10.7151/dmgt.1084.