Nuclear transfer and the development of genetically modified/gene edited livestock

Ramiro Alberio* and Eckhard Wolf*

1School of Biosciences, University of Nottingham, LE12 5RD, UK
2Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, DE

* Correspondence: Ramiro.alberio@nottingham.ac.uk; ewolf@genzentrum.lmu.de

Short title: Genetic modification of livestock by NT

Keywords: nuclear reprogramming, CRISPR/Cas9, gene editing, xenotransplantation, sustainable agriculture

Word count: 4822
Abstract

The birth and adult development of “Dolly” the sheep, the first mammal produced by transfer of a terminally differentiated cell nucleus into an egg, provided unequivocal evidence of nuclear equivalence among somatic cells. This ground-breaking experiment challenged a long-standing dogma of irreversible cellular differentiation that prevailed for over a century and enabled the development of methodologies for reversal of differentiation of somatic cells, also known as nuclear reprogramming. Thanks to this new paradigm, novel alternatives for regenerative medicine in humans, improved animal breeding in domestic animals and approaches to species conservation through reproductive methodologies have emerged. Combined with the incorporation of new tools for genetic modification, these novel techniques promise to i) transform and accelerate our understanding of genetic diseases and the development of targeted therapies through creation of tailored animal models, ii) provide safe animal cells, tissues and organs for xenotransplantation, iii) contribute to the preservation of endangered species, and iv) improve global food security whilst reducing the environmental impact of animal production. This review discusses recent advances that build on the conceptual legacy of nuclear transfer and - when combined with gene editing - will have transformative potential for medicine, biodiversity and sustainable agriculture. We conclude that the transformative potential of these technologies depends on further fundamental and translational research directed at improving the efficiency and safety of these methods.

What did Dolly teach us?

The germ plasm theory by August Weismann proposed that cells of a developing organism lost developmental plasticity during differentiation (Weismann, et al. 1889). Observations in the roundworm *Parascaris equorum* made by Theodor Boveri, showing chromosome diminution in the somatic compartment whilst a full chromosome set was retained in the germline, contributed to Weismann’s concept. Hans Spemann proposed that transferring the nucleus of a cell into an egg would be a “fantastical experiment” that would put this idea to the test (Spemann 1938). Early experimental attempts in amphibians supported this idea, as embryonic development failed after nuclear transfer of gastrula-derived somatic cells into oocytes (King and Briggs 1955). Furthermore, when primordial germ
cells (PGCs) from the same stages were used as nuclear donors normal tadpoles developed, implying that developmental plasticity was restricted in cells adopting a somatic identity (Smith 1965). However, subsequent work by using more advanced developmental stages, such as embryonic gut epithelial cells, resulted in the development of normal adult frogs after nuclear transfer (NT). Although the efficiency was very low (~1%), this experiment offered the first evidence that the genetic content of differentiated cells was equivalent to that of an undifferentiated blastomere (Gurdon and Uehlinger 1966). However, adult frogs were never obtained after NT with adult cells, thus demonstration of complete reprogramming of an adult somatic cell remained unanswered for another three decades. A report of four cloned cattle made from NT embryos reconstructed with cultured inner cell mass (ICM) cells suggested that partially differentiated donor cells supported full term development in mammals (Sims and First 1994). The year 1996 saw the culmination of extensive efforts by many groups over previous decades in overcoming the technical challenges of performing NT in mammals. For the first time cultured cells derived from established cell lines derived from the embryonic disc of a sheep embryo were successfully used as nuclear donors. These experiments resulted in the birth of two lambs, Megan and Morag, who grew to fertile adults (Campbell, et al. 1996b). Following this experiment, the team used cells isolated from the mammary gland of a 6-year-old Finn Dorset sheep and performed 277 NT experiments, from which 1 lamb, Dolly, was born (Wilmut, et al. 1997). A key insight for the success of these experiments was the understanding of the critical need for cell cycle co-ordination between the donor cell and the recipient oocyte (Campbell and Alberio 2003). Previous work by Campbell and colleagues had established the importance of using cells in the non-replicative phase of the cell cycle for NT into metaphase II oocytes (Campbell, et al. 1996a). This was achieved very ingeniously via the “starvation” of cells for several days, in order to slow down cell cycle progression and enrich for cells in G0. As a result, reconstructed embryos had normal ploidy. This was in contrast to embryonic blastomeres, which have a long S-phase and undergo DNA damage after transfer into an MII oocyte (Campbell, et al. 1993). DNA damage contributes to widespread chromosomal abnormalities, consistent with those reported in early studies in amphibians.

The biological significance of Dolly the sheep, the first cloned mammal by using an adult somatic cell, was far reaching. Firstly, it answered the long-standing question of genetic/cellular equivalence among cells in the adult organism, which had occupied the minds of scientists for over a century. Secondly, it represented a new dawn for biotechnological applications in medicine and agriculture. Importantly, NT
carried out under optimized conditions can erase epigenetic memory of somatic cells enabling multiple rounds of re-cloning without loss of developmental potential (Wakayama, et al. 2013), emphasizing the powerful reprogramming capacity of oocytes (Alberio, et al. 2006, Halley-Stott, et al. 2013). Indeed, the physiological parameters of 6-year-old Dolly clones were equivalent to age-matched control animals, which indicates that NT does not have long-term detrimental effects on ageing (Sinclair, et al. 2016). Thus, although the overall efficiency of NT remains low, the animals that develop full-term can be clinically healthy and fertile.

Genetic modification in livestock

Genetic modification of animals has primarily relied on the genetic modification of mouse embryonic stem cells (ESC) and generation of chimeric founders that are bred to homozygosity (Doetschman, et al. 1987, Thomas and Capecchi 1987). Mice have a short intergenerational interval and stem cell technologies have been available since 1981 (Evans and Kaufman 1981, Martin 1981). Hitherto, these methods have not been adopted in livestock because germline competent ESC were not available. However, two recent reports suggest that this may no longer be a limitation. They demonstrated two novel sources of embryonic stem cells derived from pig and horse pre-implantation embryos capable to robustly generate PGCs in vitro and can contribute to chimeric foetuses (Gao, et al. 2019, Yu, et al. 2020). The authors indicate that this technology can also work in other species, which would offer exciting opportunities for genetic engineering (GE) in livestock species. However, demonstration of efficient germline contribution in chimeric offspring is still needed before the broad use of livestock stem cells for GE can be realised. Thus far, however, NT has been a valuable alternative strategy for the generation of GE livestock. It has been used for multiple purposes, such as the generation of animal models of disease, the development of genetically multi-modified organ donor pigs for xenotransplantation, the production of nutraceuticals, preservation of endangered species, and as a platform technology for enhancing livestock genetic selection. Examples of these applications and some of the challenges and future directions are presented in the following sections.

Tailored large animal models for human diseases
Livestock species share many anatomical and physiological characteristics with humans, such as a large body size, similar metabolism and long lifespan, which are desirable when modelling human development and studying disease. Furthermore, livestock species are mostly outbred, making phenotypic observations more relevant to humans. Among livestock, the pig stands out as the species of choice for human disease modelling due to similarities in organ anatomy, size and physiology. Genetically engineered pig models of cardiovascular disease (Schneider, et al. 2020), diabetes (Renner, et al. 2020, Renner, et al. 2010), cystic fibrosis (Bartlett, et al. 2016, Caballero, et al. 2021, Rogers, et al. 2008), several types of cancer (Perleberg, et al. 2018), Duchenne muscular dystrophy (DMD) (Klymiuk, et al. 2013, Moretti, et al. 2020) and neurodegenerative disorders (such as Huntington’s disease and spinal muscular atrophy) have shown to closely recapitulate the physiopathology of these human diseases) (Baxa, et al. 2013, Holm, et al. 2016, Yang, et al. 2010). Importantly, these models are currently being used as platforms for developing new treatments and diagnostic tools (Moretti, et al. 2020, Regensburger, et al. 2019, Renner, et al. 2016).

Notably, all these models have been generated via NT by using genetically modified somatic cells. The creation of gene targeted animals by using somatic cells is very laborious, requires intensive cell screening, multiple rounds of NT, and results in low numbers of viable healthy offspring, which explains the relatively small numbers of animals generated thus far. However, the development of gene editing techniques by using the CRISPR/Cas9 system promises to drastically increase the efficacy of gene modification in somatic cells as well as directly in zygotes, which would remove the need for NT. For example, a new DMD pig model that displayed robust disease phenotype has been created by zygotic injection of Cas9 mRNA and guide RNA (Yu, et al. 2016). However, DNA repair following double strand breaks (DSB) caused by CRISPR endonucleases in zygotes is primarily driven by non-homologous end-joining (NHEJ), which results in a high proportion of mosaic embryos. One way to reduce mosaicism has been to optimize the injection of the Cas9/gRNA complex during the first few hours (~5 hrs in pig and ~10 hrs in bovine), before the onset of S-phase in the zygote, greatly reducing mosaicism (Lamas-Toranzo, et al. 2019, Park, et al. 2017). Another key aim of gene editing is the generation of a targeted knock-in via homologous recombination (HR). Since homology-directed repair (HDR) is not the preferred mechanism for DSB repair, methods that promote this process are needed. Complementation of Cas9/gRNA complex with RAD18, a component of the post-replicative repair pathway, increases HDR in cell lines, however no data exist for embryos (Nambiar, et al. 2019).
use of chemical compounds promoting HDR in bovine embryos has shown promising results yielding >50% gene targeting (Lamas-Toranzo, et al. 2020). The simplicity of zygotic injection represents a major technological advantage over NT for the generation gene targeted animals and may replace the need of the latter in the future. It is also possible that microinjection may become less critical as methods for delivering one or multiple ribonucleoprotein complexes by electroporation are becoming more efficient in livestock (Hirata, et al. 2020, Tanihara, et al. 2016). A note of caution however needs to be made with regards to high frequency of whole- or segmental-chromosome loss determined after DSB caused by on- and off-target Cas9 cleavage during zygote gene editing (Zuccaro, et al. 2020). These observations call for the use of alternative approaches that do not require DSB to convert a targeted DNA into a new desired sequence, such as base or prime editors (Anzalone, et al. 2020). Recently, transgenic chickens and pigs expressing Cas9 were reported as new resources for genome editing in livestock (Rieblinger, et al. 2021).

Genetically multi-modified donor pigs for xenotransplantation

The "opt-out" system introduced as part of the changes to organ donation law in several countries was supposed to alleviate the waiting lists for organ transplantation. However, data from the UK shows that demand for organ transplants is growing at 1% per year, and the number of suitable donors is decreasing at a rate of 1-4% per annum. Reasons for the decline in available organs include older age of donors and obesity, both factors that contribute to adverse effects on transplant outcomes. The highest organ demand is for kidneys, pancreata, hearts and livers. The use of animal organs from livestock, such as pigs, offers a possible solution to this growing problem. The pig has many advantages, including human-like size and physiology, broad availability and breeding characteristics (large litters and short reproductive cycles). Furthermore, pigs are amenable to advanced reproductive and genetic engineering platforms (reviewed in (Kemter, et al. 2020)). Public acceptance for using pigs as organ sources is growing, although strict regulatory measures that ensure safe and ethically sustainable sourcing of organs are imperative (Kogel and Marckmann 2020). The technology has now reached a stage that offers hopes for clinical applications in the not-so-distant future.

Pig heart transplantation to non-human primates has been widely used over decades as a model system (Cooper, et al. 2014). NT technology was used to produce multi-modified pigs devoid of alpha-
1,3-galactosyltransferase (GGTA1) and expressing human complement regulatory protein CD46 and human thrombomodulin have provided hearts that can survive for over 900 days after heterotopic abdominal transplantation in baboons (Mohiuddin, et al. 2016). Remarkably, pig hearts with these genetic modifications showed consistent life-supporting function after orthotopic transplantation in baboons with survival times of up to 195 days (Langin, et al. 2018, Reichart, et al. 2020). Survival for a longer period was mainly limited by the continued growth of the pig hearts in the small chests of the recipient baboons. Inactivation of the growth hormone receptor gene (GHR) in the donor pigs is a potential strategy to overcome this problem (Hinrichs, et al. 2021).

Besides the heart, multi-modified pigs (GGTA1-deficient/human CD55 transgenic) made by NT have been used for kidney transplantation in a baboon that survived for 136 days (Iwase, et al. 2017a, Iwase, et al. 2017b). Moreover, transplantation of similar kidneys into macaques resulted in more than 1-year survival (Kim, et al. 2019). For liver and lung xenotransplantation the survival is more limited, however best results were obtained by using multi-modified pigs. Multiple other genetic modifications have been proposed to overcome humoral and cellular rejection of xenotransplants, to prevent coagulation disorders and other physiological incompatibilities, and to reduce/eliminate the risk of transmission of porcine endogenous retroviruses (Table 1; reviewed in Kemter, et al. 2020).

Recently, the combined use of CRISPR/Cas9 technology plus transposon-mediated transgenesis in somatic cells has been used to create NT-engineered pigs with multiple gene knockouts and human transgenes (Yue, et al. 2020). The efficacy of these modifications was demonstrated in in vitro assays, but transplantation experiments in non-human primates still need to be performed. Newly created multi-modified pigs carrying 8 human transgenes encoding for coagulation regulators, negative regulators of the immune response and complement system, plus the inactivation of three pig xeno-antigens were successfully used as donors of skin xenografts in Cynomolgus monkeys without the need of immunosuppressants for 25 days (Zou, et al. 2020).

Thus, future milestones directed to reducing the size of the organs produced, compatible with humans, and increased tolerance through targeted gene modifications will pave the way to clinical assessment of these organs (Reichart, et al. 2020, Sykes and Sachs 2019). The recent progress demonstrates the critical need of NT technologies for the generation of these models of xenotransplantation that can now be enhanced by the incorporation of efficient gene editing and targeting technologies.
Another avenue that is being explored for autologous transplantation considers the creation of human organs in organogenesis-disabled pigs through interspecies chimerism. The proof of concept for this idea comes from a study showing the creation of a mouse with a rat pancreas following blastocyst complementation and interspecies chimerism (Kobayashi, et al. 2010). Notably, in a reciprocal experiment a mouse pancreas was created in a rat by blastocyst complementation. Isolated islets of Langerhans transplanted into a diabetic mouse restored normal glycemia, demonstrating functional complementation (Yamaguchi, et al. 2017). This experiment demonstrated the potential for creating functional organs using interspecies chimeras. As an alternative for human organogenesis, pigs and sheep are the desired host species. An initial study showed very limited contribution of human cells into pig chimeric foetuses following blastocyst complementation (Wu, et al. 2017). The causes of the very limited chimerism are unclear, but they could be due to differences in the developmental stages represented by the stem cells and the host embryo (Mascetti and Pedersen 2016). The type of stem cell and the culture conditions can also determine the viability of the cells in interspecies chimeras (Aksoy, et al. 2021, Fu, et al. 2020). It is also noteworthy that the greater evolutionary divergence between pigs and human (>90 million years) compared to that between mice and rats (< 20 million years) renders this approach incompatible under these experimental conditions. However, a better understanding of the signalling pathways and pluripotency features operating in the early embryo could lead to developing better stage-matched complementation strategies. Comparative embryology using scRNASeq has revealed that conventional and naïve human cells are more closely matched to late pig blastocysts, suggesting that more advanced stages of pig development could be better hosts for human cells (Ramos-Ibeas, et al. 2019).

The combination of strategies aiming at the “humanisation” of pig organs via i) elimination of pig antigens, ii) introduction of human immunomodulatory genes, and iii) genetic ablation of pig organs followed by embryo complementation constitute avenues that are technically possible. Indeed, a recent study shows the generation of human-pig chimeric embryos using a combination of techniques. First, ablation of the ETV2 gene, a master regulator of haemato-endothelium, was performed in porcine somatic cells. ETV2 mutant embryos created by NT were then complemented with human induced pluripotent stem cells (iPSC). Remarkably, the embryos generated contained blood vessels made exclusively of human endothelial cells (Das, et al. 2020). The colonization of pig embryos was facilitated by the overexpression of BCL2, an anti-apoptotic gene. Previous work showed that inhibition of BCL2
can overcome the staged-related barriers to colonization in chimeric embryos (Masaki, et al. 2016). More recently, a new approach for increasing interspecies chimerism was reported, based on the creation of Igf1r mutant mouse embryos complemented with wild-type rat ESC (Nishimura, et al. 2021). This resulted in generation of neonatal mice having extensive contribution of rat cells in diverse organs, predominantly those in which IGF signalling is very important, including the kidney, heart, lung and thymus. Although future studies should focus on the phenotypic analysis of such animals, this work shows the prospect of using pigs for creating organs containing autologous human vasculature, thus greatly reducing the chances of immune-rejection.

The impact of gene editing in animal production and welfare

The challenges of improving sustainable animal production whilst meeting the increased demand for healthier and nutritious animal products by the growing world population demands the use of new approaches to enhance the quality and productivity of livestock. One approach suggested to improve the health benefits of meat consumption is to modify the proportion of unsaturated fats. Since dietary interventions to feed animals with sources of such fats is not environmentally friendly, transgenic approaches could be used. Examples of cattle, sheep and pigs expressing the C. elegans fat1 desaturase gene in fibroblasts prior to NT have been reported (Lai, et al. 2006, Wu, et al. 2012, Zhang, et al. 2013). These animals had a richer content in omega-3 fatty acids, making them a prime example of a nutraceutical produced by NT. Other examples include the generation of hypoallergenic milk through abolition of β-lactoglobulin production in cows (Jabed, et al. 2012), and lactoferrin and lysozyme-containing cow milk (Kaiser, et al. 2017). However, current regulations for the consumption of products from genetically modified animals are very restrictive.

Another strategy to improving specific traits not reliant on transgenesis is to incorporate specific mutations that can alter animal phenotypes. For example, the naturally occurring mutation at the MSTN gene is the cause of the “double muscle” phenotype in some cattle (Grobet, et al. 1997, McPherron and Lee 1997) and sheep (Clop, et al. 2006) breeds, resulting in 20% more muscle mass. These mutations were introduced into other sheep and cattle breeds (Proudfoot, et al. 2015), but also into pigs (Wang, et al. 2015a) and goats (Wang, et al. 2015b) by gene editing via NT or zygotic injections. Gene editing offers an alternative means for accelerated introduction of naturally-occurring alleles, albeit in different...
species. From a regulatory and consumer perspective, the acceptability of such products may be less
controversial.

Importantly, herd productivity is also dependant on a robust health status of the animals reared. Gene
editing can be used to generate disease resistant animals. The porcine reproductive and respiratory
syndrome virus (PRRSV)-resistant pigs were created following the mutation of CD163, which prevents
viral infection (Burkard, et al. 2017, Whitworth, et al. 2016). Similarly, transmissible gastroenteritis virus
(TGEV) resistant pigs were created by gene editing of the putative viral receptor ANPEP (Whitworth, et
al. 2019). Other strategies include the use of gene introgressions to create disease resistant pigs. The
RELA gene from the warthog, naturally resistant to African swine fever, was introgressed into domestic
pigs (Lillico, et al. 2016). Although a delayed onset of infection was determined this introgression did
not confer complete protection against the clinical symptoms, suggesting that additional modifications
may be needed (McCleary, et al. 2020). Another recent study reports the use of a CRISPR/Cas9
nickase strategy combined with NT to generate cattle with a targeted insertion of a natural resistance-
associated macrophage protein-1 (NRAMP1) expression cassette making them resistant to
tuberculosis (Gao, et al. 2017).

Part of improving production systems will require changes in the ways in which animals are reared. A
good example of a step towards improving welfare is the propagation of the POLLED genotype across
cattle breeds. By using gene editing and NT the POLLED alleles were introgressed and resulted in the
birth of homozygous polled bulls (Carlson, et al. 2016), which after crossing with horned cows delivered
hornless offspring (Young, et al. 2020).

Probably the most important goal of future animal production is environmental sustainability. Genetic
engineering was thus used to overcome inefficient feed digestion in pigs, which results in excessive
release of phosphorus and nitrogen to the environment. Transgenic pigs expressing microbial phytase
in the salivary gland had an increased ability to digest phosphorus from dietary phytate and showed a
markedly reduced faecal phosphorus concentration (Golovan, et al. 2001). Recently, this approach was
extended to transgenic pigs expressing beta-glucanase, xylanase, and phytase in the salivary glands.
As a consequence, digestion of non-starch polysaccharides and phytate was enhanced, faecal nitrogen
and phosphorus outputs were reduced (23-45%), and growth rate (∼25%) and feed conversion rate (12-
15%) were significantly improved (Zhang, et al. 2018).
These examples demonstrate that favourable traits (e.g. disease resistance and feed conversion efficiency) can be rapidly introduced to improve sustainable production, health and welfare of animal production systems.

Advanced animal breeding and genetic selection

The long generation intervals in domestic animals hinders the progress of genomic selection requiring novel approaches to accelerate the pace at which new animal phenotypes can be created. As discussed above, the combination of robust and safe gene/base editing methods and reproductive techniques, such as in vitro fertilization and NT can drastically accelerate the rate of genetic gain. However, the bottleneck of meiosis still remains. This critical step in the reproductive cycle of animals ensures genetic diversity, however in breeding programmes it represents a major hurdle due to the long time needed to generate mature gametes in livestock. Breeders and geneticists have been working on technological solutions to shorten this period for decades. A vision for utilizing in vitro systems to growing gametes as a means to reduce generation intervals, also known as “velogenetics”, was proposed in the early ’90’s when genotype databases and assisted reproduction were beginning to be used (Georges and Massey 1991). More recently, these ideas have resurfaced as a result of developments in genetic selection, stem cell technologies and the possibilities of in vitro gamete production in domestic animals (Rexroad, et al. 2019). In vitro breeding (IVB) was proposed as a platform combining the use of quantitative trait loci (QTL) datasets and reproductive techniques as a method of enhanced genetic selection (Goszczynski, et al. 2019). This approach would yield a ten-fold increase in genetic selection without genetic manipulation. The use of gene/base editing methods could further enhance the rate of genetic gain of this platform by multiplexing the incorporation of new alleles (Jenko, et al. 2015).

However, this technology is contingent on a complete in vitro system for making gametes. Recent advances in our understanding of gamete development in large mammals is paving the way for the generation of mature gametes (Kobayashi, et al. 2017). Remarkably there are close similarities in the transcriptional program between human, pig and cattle germline development (Soto and Ross 2020, Zhu, et al. 2021), which offers advantages when it comes to translating findings from one species to another. This is particularly important, because progress in human germ cell differentiation shows that mature oogonia can be generated, albeit at very low efficiency (Yamashiro, et al. 2018). Detailed
molecular understanding of the biology of germ cells has also enabled the creation of oocyte-like cells directly from mouse embryonic stem cells by expression of eight specific transcription factors (Hamazaki, et al. 2021). These oocyte-like cells were capable of chromosome segregation but failed to undergo normal meiosis. Nevertheless, these advances offer exciting opportunities for adapting some of these conditions for the generation of animal gametes from novel stem cells.

Considering the challenges of accomplishing meiosis in vitro, the technology of surrogate sires could serve as an alternative. The idea is to generate males that lack their own spermatogonia, but their testis can act as a developmental niche for spermatogonia from other males. Testis of *NANOS2* KO males support allogeneic spermatogonial transplantation and full spermatogenesis (Ciccarelli, et al. 2020). The use of this technology could significantly increase the genetic merit of sires used in breeding programs (Gottardo, et al. 2019), but can also serve as a tool for the genetic preservation of endangered species.

**Preservation of endangered species**

Nuclear transfer offers an avenue for the rescue of endangered species, provided a compatible cytoplast can be obtained from closely related species. Some successes were reported with wild African cats and grey wolves, but limited success was reported with an extinct subspecies of goat (Folch, et al. 2009, Gomez, et al. 2004, Kim, et al. 2007). A critical aspect of this approach is the reliance on compatible cytoplasts. Importantly, a major breakthrough in the generation of synthetic cytoplasts from embryonic stem cells was recently reported (Hamazaki, et al. 2021). Future experiments will determine whether this technology can be used as an alternative source of compatible cytoplasts suitable for nuclear transfer. This platform would offer a reproductive alternative for rescuing species such as the Northern White rhinoceros (Hildebrandt, et al. 2018). In this case in vitro fertilized embryos and embryonic stem cells have been produced from the last two female specimen of the species. Generation of gametes from these stem cells as well as the generation of cytoplasts would enable the propagation of these last remaining animals by both natural reproduction and nuclear transfer. Although a limited gene pool could represent an obstacle for expanding endangered species, the establishment of induced pluripotent stem cells from frozen tissues/blood could offer an alternative route for the generation of gametes that could be used for in vitro breeding.
Concluding Remarks

In this review we summarized the critical impact that nuclear transfer had in facilitating the generation of genetically modified animals over the past 25 years. The impact of this technology has undoubtedly been more significant in livestock species due to the lack of embryonic stem cells, the standard route of gene targeting in mice. Thus, gene modification of donor cells prior to NT has been the preferred avenue for creating genetically modified livestock. Although the technique remains quite labour intensive, significant progress has been made in the procedures resulting in better efficiency. New sources of livestock embryonic stem cells have been reported, suggesting that gene manipulation and chimera generation may be simplified in the future. However, the long generation interval of livestock species makes the process of breeding to homozygosity of chimeric animals a lengthy and expensive process compared to mice. In contrast, NT allows the instant generation of transgenic animals, suggesting that it will remain a valuable technology for years to come.

We have come a long way since this landmark experiment, with improved knowledge of the molecular mechanisms of cellular reprogramming and more efficient techniques of NT. We can look forward to the next 25 years in which NT, in combination with other modern gene manipulation technologies, can offer solutions to urgent biomedical needs, improve sustainable animal production and facilitate species conservation.

Declaration of interests

The authors declare no competing interests.

Author contributions

R.A and E.W. performed literature research and wrote the manuscript. E.W prepared the figure and Table. Both authors reviewed and approved the final version of the article.

Funding
This work was supported by the Biotechnology and Biological Sciences Research Council [grant number BB/S000178/1] to R.A. and by the German Research Council (DFG; TRR127) and the German Center for Diabetes Research (DZD; 82DZD00802) to E.W.

Acknowledgements

We apologize to authors whose work was not cited due to space limitations. Writing this review has brought back many memories of the excitement and the mystique that surrounded the Dolly the sheep experiment. Doubts were soon dispelled and a race to develop better understanding of NT started in many labs around the world. Having just started my PhD studies (RA), I struggled to fully envision the impact of the discovery, but I realized the magnitude of the findings for the understanding of cell plasticity.

Only two years after starting as Chair for Molecular Animal Breeding and Biotechnology at LMU Munich (EW), I was incredibly lucky to have Valeri Zakhartchenko in the team who was among the first worldwide to establish NT in bovine. I am also very grateful to Hiroshi Nagashima for sharing his porcine NT technology that was the basis of our pipeline of genetically modified pig models.

Figure legend

Figure 1. Nuclear transfer using genetically modified cells as technological pipeline for the generation of large animal models for translational medicine, organ donor pigs for xenotransplantation, and new developments for sustainable animal agriculture. Abbreviations: PUFA = polyunsaturated fatty acid; hfat = humanized version of the C. elegans fat1 desaturase gene; appA = expression cassette for microbial phytase; BgEgXyAp = polycistronic expression cassette for beta-glucanase, xylanase, and phytase.

References

Aksoy, I, Rognard, C, Moulin, A, Marcy, G, Masfaraud, E, Wianny, F, Cortay, V, Bellemin-Menard, A, Doerflinger, N, Dirheimer, M, et al. 2021 Apoptosis, G1
Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells. Stem Cell Reports 16 56-74.

Alberio, R, Campbell, KH, and Johnson, AD 2006 Reprogramming somatic cells into stem cells. Reproduction 132 709-720.

Anzalone, AV, Koblan, LW, and Liu, DR 2020 Genome editing with CRISPR-Cas nuclease, base editors, transposases and prime editors. Nat Biotechnol 38 824-844.

Bartlett, JA, Ramachandran, S, Wohlford-Lenane, CL, Barker, CK, Pezzulo, AA, Zabner, J, Welsh, MJ, Meyerholz, DK, Stoltz, DA, and McCray, PB, Jr. 2016 Newborn Cystic Fibrosis Pigs Have a Blunted Early Response to an Inflammatory Stimulus. Am J Respir Crit Care Med 194 845-854.

Baxa, M, Hruska-Plochan, M, Juhas, S, Vodicka, P, Pavlok, A, Juhasova, J, Miyanohara, A, Nejime, T, Klima, J, Macakova, M, et al. 2013 A transgenic minipig model of Huntington's Disease. J Huntington's Dis 2 47-68.

Burdak, C, Lillico, SG, Reid, E, Jackson, B, Mileham, AJ, Ait-Ali, T, Whitelaw, CB, and Archibald, AL 2017 Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 13 e1006206.

Caballero, I, Ringot-Destrez, B, Si-Tahar, M, Barbry, P, Guillon, A, Lantier, I, Berri, M, Chevaleyre, J, Fleurot, I, Barc, C, et al. 2021 Evidence of early increased sialylation of airway mucins and defective mucociliary clearance in CFTR-deficient piglets. J Cyst Fibros 20 173-182.

Campbell, KH, and Alberio, R 2003 Reprogramming the genome: role of the cell cycle. Reprod Suppl 61 477-494.

Campbell, KH, Loi, P, Otaegui, PJ, and Wilmut, I 1996a Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev Reprod 1 40-46.

Campbell, KH, McWhir, J, Ritchie, WA, and Wilmut, I 1996b Sheep cloned by nuclear transfer from a cultured cell line. Nature 380 64-66.

Campbell, KH, Ritchie, WA, and Wilmut, I 1993 Nuclear-cytoplasmic interactions during the first cell cycle of nuclear transfer reconstructed bovine embryos: implications for deoxyribonucleic acid replication and development. Biol Reprod 49 933-942.

Carlson, DF, Lancto, CA, Zhang, B, Kim, ES, Walton, M, Oldeschulte, D, Seabury, C, Sonstegard, TS, and Fahrenkrug, SC 2016 Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34 479-481.

Ciccarelli, M, Giassetti, MI, Miao, D, Oatley, MJ, Robbins, C, Lopez-Biladeau, B, Waqas, MS, Tibary, A, Whitelaw, B, Lillico, S, et al. 2020 Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proc Natl Acad Sci U S A 117 24195-24204.

Clop, A, Marcq, F, Takeda, H, Pirottin, D, Tordoir, X, Bibe, B, Bouix, J, Caient, F, Elsen, JM, Eychenne, F, et al. 2006 A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38 813-818.

Cooper, DK, Satyananda, V, Ekser, B, van der Windt, DJ, Hara, H, Ezzelarab, MB, and Schuurman, HJ 2014 Progress in pig-to-non-human primate transplantation models (1998-2013): a comprehensive review of the literature. Xenotransplantation 21 397-419.

Das, S, Koyano-Nakagawa, N, Gafni, O, Maeng, G, Singh, BN, Rasmussen, T, Pan, X, Choi, KD, Mickelson, D, Gong, W, et al. 2020 Generation of human endothelium in pig embryos deficient in ETV2. Nat Biotechnol 38 297-302.

Doetschman, T, Gregg, RG, Maeda, N, Hooper, ML, Melton, DW, Thompson, S, and Smithies, O 1987 Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330 576-578.

Evans, MJ, and Kaufman, MH 1981 Establishment in culture of pluripotential cells from mouse embryos. Nature 292 154-156.
Folch, J, Cocero, MJ, Chesne, P, Alabart, JL, Dominguez, V, Cognie, Y, Roche, A, Fernandez-Arias, A, Marti, JJ, Sanchez, P, et al. 2009 First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology 71 1026-1034.

Fu, R, Yu, D, Ren, J, Li, C, Wang, J, Feng, G, Wang, X, Wan, H, Li, T, Wang, L, et al. 2020 Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs. Protein Cell 11 97-107.

Gao, X, Nowak-Imialek, M, Chen, X, Chen, D, Herrmann, D, Ruan, D, Chen, ACH, Eckersley-Maslin, MA, Ahmad, S, Lee, YL, et al. 2019 Establishment of porcine and human expanded potential stem cells. Nat Cell Biol 21 687-699.

Gao, Y, Wu, H, Wang, Y, Liu, X, Chen, L, Li, Q, Cui, C, Liu, X, Zhang, J, and Zhang, Y 2017 Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 18 13.

Georges, M, and Massey, J 1991 Velogenetics, or the synergistic use of marker assisted selection and germ-line manipulation. Theriogenology 35 151-159.

Golovan, SP, Meidinger, RG, Ajakaiye, A, Cottrill, M, Wiederkehr, MZ, Barney, DJ, Plante, C, Pollard, JW, Fan, MZ, Hayes, MA, et al. 2001 Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19 741-745.

Gomez, MC, Pope, CE, Giraldo, A, Lyons, LA, Harris, RF, King, AL, Cole, A, Godke, RA, and Dresser, BL 2004 Birth of African Wildcat cloned kittens born from domestic cats. Cloning Stem Cells 6 247-258.

Goszczynski, DE, Cheng, H, Demyda-Peyras, S, Medrano, JF, Wu, J, and Ross, PJ 2019 In vitro breeding: application of embryonic stem cells to animal production. Biol Reprod 100 885-895.

Gottardo, P, Gorjanc, G, Battagin, M, Gaynor, RC, Jenko, J, Ros-Freixedes, R, Bruce, AWC, Mileham, AJ, Herring, WO, and Hickey, JM 2019 A Strategy To Exploit Surrogate Sire Technology in Livestock Breeding Programs. G3 (Bethesda) 9 203-215.

Grobet, L, Martin, LJ, Poncelet, D, Pirottin, D, Brouwers, B, Riquet, J, Schoeberlein, A, Dunner, S, Menissier, F, Massabanda, J, et al. 1997 A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17 71-74.

Gurdon, JB, and Uehlinger, V 1966 "Fertile" intestine nuclei. Nature 210 1240-1241.

Halley-Stott, RP, Pasqué, V, and Gurdon, JB 2013 Nuclear reprogramming. Development 140 2468-2471.

Hamazaki, N, Kyogoku, H, Araki, H, Miura, F, Horikawa, C, Hamada, N, Shimamoto, S, Hikabe, O, Nakashima, K, Kitajima, TS, et al. 2021 Reconstitution of the oocyte transcriptional network with transcription factors. Nature 589 264-269.

Hildebrandt, TB, Hermes, R, Colleoni, S, Diecke, S, Holtze, S, Renfree, MB, Stejskal, J, Hayashi, K, Drukker, M, Loi, P, et al. 2018 Embryos and embryonic stem cells from the white rhinoceros. Nat Commun 9 2589.

Hinrichs, A, Riedel, EO, Klymiuk, N, Blutke, A, Kemter, E, Langin, M, Dahlhoff, M, Kessler, B, Kurome, M, Zakharchenko, V, et al. 2021 Growth hormone receptor knockout to reduce the size of donor pigs for preclinical xenotransplantation studies. Xenotransplantation 28 e12664.

Hirata, M, Wittayarat, M, Namula, Z, Le, QA, Lin, Q, Nguyen, NT, Takebayashi, K, Sato, Y, Tanihara, F, and Otoi, T 2020 Evaluation of multiple gene targeting in porcine embryos by the CRISPR/Cas9 system using electroporation. Mol Biol Rep 47 5073-5079.

Holm, IE, Alstrup, AK, and Luo, Y 2016 Genetically modified pig models for neurodegenerative disorders. J Pathol 238 267-287.

Iwase, H, Hará, H, Ezzelarab, M, Li, T, Zhang, Z, Gao, B, Liu, H, Long, C, Wang, Y, Cassano, A, et al. 2017a Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation 24.
Iwase, H, Liu, H, Schmelzer, E, Ezzelarab, M, Wijkstrom, M, Hara, H, Lee, W, Singh, J, Long, C, Lagasse, E, et al. 2017b Transplantation of hepatocytes from genetically engineered pigs into baboons. Xenotransplantation 24.

Jabed, A, Wagner, S, McCracken, J, Wells, DN, and Laible, G 2012 Targeted microRNA expression in dairy cattle directs production of beta-lactoglobulin-free, high-casein milk. Proc Natl Acad Sci U S A 109 16811-16816.

Jenko, J, Gorjanc, G, Cleveland, MA, Varshney, RK, Whitelaw, CB, Woolliams, JA, and Hickey, JM 2015 Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genet Sel Evol 47 55.

Kaiser, GG, Mucci, NC, Gonzalez, V, Sanchez, L, Parron, JA, Perez, MD, Calvo, M, Aller, JF, Hozbor, FA, and Mutto, AA 2017 Detection of recombinant human lactoferrin and lysozyme produced in a bitransgenic cow. J Dairy Sci 100 1605-1617.

Kemter, E, Schnieke, A, Fischer, K, Cowan, PJ, and Wolf, E 2020 Xeno-organ donor pigs with multiple genetic modifications - the more the better? Curr Opin Genet Dev 64 60-65.

Kim, MK, Jang, G, Oh, HJ, Yuda, F, Kim, HJ, Hwang, WS, Hossein, MS, Kim, JJ, Shin, NS, Kang, SK, et al. 2007 Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 9 130-137.

King, Tj, and Briggs, R 1955 Changes in the Nuclei of Differentiating Gastrula Cells, as Demonstrated by Nuclear Transplantation. Proc Natl Acad Sci U S A 41 321-325.

Klymiuk, N, Blutke, A, Graf, A, Krause, S, Burkhardt, K, Wuensch, A, Krebs, S, Kessler, B, Zakhartchenko, V, Kurome, M, et al. 2013 Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Hum Mol Genet 22 4368-4382.

Kobayashi, T, Yamaguchi, T, Homanaka, S, Kato-Itoh, M, Yamazaki, Y, Ibata, M, Sato, H, Lee, YS, Usui, J, Knisely, AS, et al. 2010 Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142 787-799.

Kobayashi, T, Zhang, H, Tang, WW, Irie, N, Withey, S, Kirsch, D, Sybirna, A, Dietmann, S, Contreras, DA, Webb, R, et al. 2017 Principles of early human development and germ cell program from conserved model systems. Nature 546 416-420.

Kogel, J, and Marckmann, G 2020 "Xenotransplantation challenges us as a society": What well-informed citizens think about xenotransplantation. EMBO Rep 21 e50274.

Lai, L, Kang, JX, Li, R, Wang, J, Witt, WT, Yong, HY, Hao, Y, Wax, DM, Murphy, CN, Rieke, A, et al. 2006 Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24 435-436.

Lamas-Toranzo, I, Galliano-Cogolludo, B, Cornudella-Ardiaca, F, Cobos-Figueroa, J, Ousine, O, and Bermejo-Alvarez, P 2019 Strategies to reduce genetic mosaicism following CRISPR-mediated genome edition in bovine embryos. Sci Rep 9 14900.

Lamas-Toranzo, I, Martinez-Moro, A, E, OC, Millan-Blanca, G, Sanchez, JM, Lonergan, P, and Bermejo-Alvarez, P 2020 RS-1 enhances CRISPR-mediated targeted knock-in in bovine embryos. Mol Reprod Dev 87 542-549.

Langin, M, Mayr, T, Reichart, B, Michel, S, Buchholz, S, Guethoff, S, Dashkevich, A, Baehr, A, Egerer, S, Bauer, A, et al. 2018 Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564 430-433.

Lillico, SG, Proudfoot, C, King, TJ, Tan, W, Zhang, L, Mardjuki, R, Paschon, DE, Rebar, EJ, Urnov, FD, Mileham, AJ, et al. 2016 Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci Rep 6 21645.

Martin, GR 1981 Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78 7634-7638.

Masaki, H, Kato-Itoh, M, Takahashi, Y, Umino, A, Sato, H, Ito, K, Yanagida, A, Nishimura, T, Yamaguchi, T, Hirabayashi, M, et al. 2016 Inhibition of
Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in Mouse Embryos. *Cell Stem Cell* **19** 587-592.

Mascetti, VL, and Pedersen, RA 2016 Contributions of Mammalian Chimeras to Pluripotent Stem Cell Research. *Cell Stem Cell* **19** 163-175.

McCleary, S, Strong, R, McCarthy, RR, Edwards, JC, Howes, EL, Stevens, LM, Sanchez-Cordon, PJ, Nunez, A, Watson, S, Mileham, AJ, et al. 2020 Substitution of warthog NF-kappaB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus. *Sci Rep* **10** 8951.

McPherron, AC, and Lee, SJ 1997 Double muscling in cattle due to mutations in the myostatin gene. *Proc Natl Acad Sci U S A* **94** 12457-12461.

Mohiuddin, MM, Singh, AK, Corcoran, PC, Thomas Iii, ML, Clark, T, Lewis, BG, Hoyt, RF, Eckhaus, M, Pierson Iii, RN, Belli, AJ, et al. 2016 Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. *Nat Commun* **7** 11138.

Moretti, A, Fonteyne, L, Giesert, F, Hoppmann, P, Meier, AB, Bozoglu, T, Baehr, A, Schneider, CM, Sinnecker, D, Klett, K, et al. 2020 Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. *Nat Med* **26** 207-214.

Nambiar, TS, Billon, P, Diedenhofen, G, Hayward, SB, Taglialatela, A, Cai, K, Huang, JW, Leuzzi, G, Cuella-Martin, R, Palacios, A, et al. 2019 Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. *Nat Commun* **10** 3395.

Nishimura, T, Suchy, FP, Bhadury, J, Igarashi, KJ, Charlesworth, CT, and Nakauchi, H 2021 Generation of Functional Organs Using a Cell-Competitive Niche in Intra- and Inter-species Rodent Chimeras. *Cell Stem Cell* **28** 141-149 e143.

Park, KE, Powell, A, Sandmaier, SE, Kim, CM, Mileham, A, Donovan, DM, and Telugu, BP 2017 Targeted gene knock-in by CRISPR/Cas ribonucleoproteins in porcine zygotes. *Sci Rep* **7** 42458.

Perleberg, C, Kind, A, and Schnieke, A 2018 Genetically engineered pigs as models for human disease. *Dis Model Mech* **11**.

Proudfoot, C, Carlson, DF, Huddart, R, Long, CR, Pryor, JH, King, TJ, Lillico, SG, Mileham, AJ, McLaren, DG, Whitelaw, CB, et al. 2015 Genome edited sheep and cattle. *Transgenic Res* **24** 147-153.

Ramos-Ibeas, P, Sang, F, Zhu, Q, Tang, WWC, Withey, S, Klisch, D, Wood, L, Loose, M, Surani, MA, and Alberio, R 2019 Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. *Nat Commun* **10** 500.

Regensburger, AP, Fonteyne, LM, Jungert, J, Wagner, AL, Gerhalter, T, Nagel, AM, Heiss, R, Flenkenthaler, F, Qurashi, M, Neurath, MF, et al. 2019 Detection of collagen by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. *Nat Med* **25** 1905-1915.

Reichart, B, Langin, M, Denner, J, Schweizer, R, Cowan, PJ, and Wolf, E 2020 Pathways to Clinical Cardiac Xenotransplantation. *Transplantation Publish Ahead of Print*.

Renner, S, Blutke, A, Clauss, S, Deeg, CA, Kemter, E, Merkus, D, Wanke, R, and Wolf, E 2020 Porcine models for studying complications and organ crosstalk in diabetes mellitus. *Cell Tissue Res* **380** 341-378.

Renner, S, Blutke, A, Streckel, E, Wanke, R, and Wolf, E 2016 Incretin actions and consequences of incretin-based therapies: lessons from complementary animal models. *J Pathol* **238** 345-358.

Renner, S, Fehlmann, C, Herbach, N, Hofmann, A, von Waldthausen, DC, Kessler, B, Ulrichs, K, Chodnovskaja, I, Moskalenko, V, Amselgruber, W, et al. 2010 Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. *Diabetes* **59** 1228-1238.
Rexroad, C, Vallet, J, Matukumalli, LK, Reecy, J, Bickhart, D, Blackburn, H, Boggess, M, Cheng, H, Clutter, A, Cockett, N, et al. 2019 Genome to Phenome: Improving Animal Health, Production, and Well-Being - A New USDA Blueprint for Animal Genome Research 2018-2027. Front Genet 10 327.

Rieblinger, B, Sid, H, Duda, D, Bozoglu, T, Klinger, R, Schlickenrieder, A, Lengyel, K, Flisikowski, K, Flisikowska, T, Simm, N, et al. 2021 Cas9-expressing chickens and pigs as resources for genome editing in livestock. Proc Natl Acad Sci U S A 118.

Rogers, CS, Stoltz, DA, Meyerholz, DK, Ostedgaard, LS, Rokhlina, T, Taft, PJ, Rogan, MP, Pezzulo, AA, Karp, PH, Itani, OA, et al. 2008 Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321 1837-1841.

Schneider, JW, Oommen, S, Qureshi, MY, Goetsch, SC, Pease, DR, Sundsbak, RS, Guo, W, Sun, M, Sun, H, Kuroyanagi, H, et al. 2020 Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat Med 26 1788-1800.

Sims, M, and First, NL 1994 Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc Natl Acad Sci U S A 91 6143-6147.

Soto, DA, and Ross, PJ 2020 Similarities between bovine and human germline development revealed by single-cell RNAseq. Reproduction.

Tanihara, F, Takemoto, T, Kitagawa, E, Rao, S, Do, LT, Onishi, A, Yamashita, Y, Kosugi, C, Suzuki, H, Sembon, S, et al. 2016 Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv 2 e1600803.

Thomas, KR, and Capecchi, MR 1987 Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51 503-512.

Wakayama, S, Kohda, T, Obokata, H, Tokoro, M, Li, C, Terashita, Y, Mizutani, E, Nguyen, VT, Kishigami, S, Ishino, F, et al. 2013 Successful serial recloning in the mouse over multiple generations. Cell Stem Cell 12 293-297.

Whitworth, KM, Rowland, RR, Ewen, CL, Tribe, BR, Kerrigan, MA, Cino-Ozuna, AG, Samuel, MS, Lightner, JE, McLaren, DG, Mileham, AJ, et al. 2016 Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34 20-22.

Whitworth, KM, Rowland, RRR, Petrovan, V, Sheahan, M, Cino-Ozuna, AG, Y, Hesse, R, Mileham, A, Samuel, MS, Wells, KD, et al. 2019 Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res 28 21-32.

Wilmut, I, Schnieke, AE, McWhir, J, Kind, AJ, and Campbell, KH 1997 Viable offspring derived from fetal and adult mammalian cells. Nature 385 810-813.
Wu, J, Platero-Luengo, A, Sakurai, M, Sugawara, A, Gil, MA, Yamauchi, T, Suzuki, K, Bogliotti, YS, Cuello, C, Morales Valencia, M, et al. 2017 Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell 168 473-486 e415.

Wu, X, Ouyang, H, Duan, B, Pang, D, Zhang, L, Yuan, T, Xue, L, Ni, D, Cheng, L, Dong, S, et al. 2012 Production of cloned transgenic cow expressing omega-3 fatty acids. Transgenic Res 21 537-543.

Yamaguchi, T, Sato, H, Kato-Itoh, M, Goto, T, Hara, H, Sanbo, M, Mizuno, N, Kobayashi, T, Yanagida, A, Umino, A, et al. 2017 Interspecies organogenesis generates autologous functional islets. Nature 542 191-196.

Yamashiro, C, Sasaki, K, Yabuta, Y, Kojima, Y, Nakamura, T, Okamoto, I, Yokobayashi, S, Murase, Y, Ishikura, Y, Shirane, K, et al. 2018 Generation of human oogonia from induced pluripotent stem cells in vitro. Science 362 356-360.

Yang, D, Wang, CE, Zhao, B, Li, W, Ouyang, Z, Liu, Z, Yang, H, Fan, P, O'Neill, A, Gu, W, et al. 2010 Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum Mol Genet 19 3983-3994.

Young, AE, Mansour, TA, McNabb, BR, Owen, JR, Trott, JF, Brown, CT, and Van Eenennaam, AL 2020 Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nat Biotechnol 38 225-232.

Yu, HH, Zhao, H, Qing, YB, Pan, WR, Jia, BY, Zhao, HY, Huang, XX, and Wei, HJ 2016 Porcine Zygote Injection with Cas9/sgRNA Results in DMD-Modified Pig with Muscle Dystrophy. Int J Mol Sci.

Yu, L, Wei, Y, Sun, HX, Mahdi, AK, Pinzon Arteaga, CA, Sakurai, M, Schmitz, DA, Zheng, C, Ballard, ED, Li, J, et al. 2020 Derivation of Intermediate Pluripotent Stem Cells Amenable to Primordial Germ Cell Specification. Cell Stem Cell.

Yue, Y, Xu, W, Kan, Y, Zhao, HY, Zhou, Y, Song, X, Wu, J, Xiong, J, Goswami, D, Yang, M, et al. 2020 Extensive germline genome engineering in pigs. Nat Biomed Eng.

Zhang, P, Liu, P, Dou, H, Chen, L, Chen, L, Lin, L, Tan, P, Vajta, G, Gao, J, Du, Y, et al. 2013 Handmade cloned transgenic sheep rich in omega-3 Fatty acids. PLoS One 8 e55941.

Zhang, X, Li, Z, Yang, H, Liu, D, Cai, G, Li, G, Mo, J, Wang, D, Zhong, C, Wang, H, et al. 2018 Novel transgenic pigs with enhanced growth and reduced environmental impact. Elife 7.

Zhu, Q, Sang, F, Withey, S, Tang, W, Dietmann, S, Klisch, D, Ramos-Ibeas, P, Zhang, H, Requena, CE, Hajkova, P, et al. 2021 Specification and epigenomic resetting of the pig germline exhibit conservation with the human lineage. Cell Rep 34 108735.

Zou, L, Zhang, Y, He, Y, Yu, H, Chen, J, Liu, D, Lin, S, Gao, M, Zhong, G, Lei, W, et al. 2020 Selective germline genome edited pigs and their long immune tolerance in Non Human Primates. bioRxiv 2020.2001.2020.912105.

Zuccaro, MV, Xu, J, Mitchell, C, Marin, D, Zimmerman, R, Rana, B, Weinstein, E, King, RT, Palmerola, KL, Smith, ME, et al. 2020 Allele-Specific Chromosome Removal after Cas9 Cleavage in Human Embryos. Cell 183 1650-1664 e1615.
| Aim                                                         | Genetic modification                                      |
|------------------------------------------------------------|-----------------------------------------------------------|
| Deletion of sugar moieties of pig cells with pre-formed recipients’ antibodies | Knockout of the GGTA1, CMAH, B4GALNT2 genes               |
| Inhibition of complement activation                        | Transgenic expression of human complement regulatory proteins (hCD46, hCD55, hCD59) |
| Prevention of coagulation dysregulation                    | Transgenic expression of human THBD, EPCR, TFPI, ENTPD1, CD73 (NT5E) |
| Prevention of T-cell mediated rejection                    | Transgenic expression of human CTLA4-Ig, LEA29Y, PD-L1; knockout or knockdown of swine leukocyte antigens |
| Inhibition of natural killer cells                         | Transgenic expression of HLA-E/human β2-microglobulin    |
| Inhibition of macrophages                                  | Transgenic expression of human CD47                      |
| Prevention of inflammation                                | Transgenic expression of human TNFAIP3 (A20), HO-1, soluble TNFRI-Fc |
| Reduction of the risk of transmission of porcine endogenous retroviruses (PERV) | Knockdown of PERV expression; genome-wide knockout of the PERV pol gene |
Genetic modification
Genome editing

Nuclear transfer

Tailored large animal models for translational medicine

Proof of concept → Translational model → Clinical trial in patients

Improved efficacy and safety of new therapies, discovery of biomarkers

Genetically multi-modified organ donors for xenotransplantation

Multi-modified donor pig → Heart, Kidney, Liver, Lungs, Skin, Islets, Cornea → Recipient patient

Safe and functional xenogeneic tissues and organs for transplantation

Development of genetically improved livestock for agriculture

Disease resistance → Horned, Polled, n-3 PUFAs↑, Phosphorus and nitrogen output↓

Animal welfare → Healthier food, Environmental sustainability

Targeted introgression of desired traits, correction of genetic defects