Epidemiology of native kidney disease in Flanders: results from the FCGG kidney biopsy registry

Wim Laurens1,2; Dries Deleersnijder3,4; Amélie Dendooven5,6; Evelyne Lerut7,8; An S. De Vriese2,9; Tom Dejagere10; Mark Helbert11; Rachel Hellemans6,12; Priyanka Koshy,8; Bart Maes13; Lissa Pipeleers14; Amaryllis H. Van Craenenbroeck4,15; Steven Van Laecke16; Johan Vande Walle2,17; Marie M. Coutteneye6,12; Johan De Meester1 and Ben Sprangers3,4 on behalf of the FCGG collaborative group

1 Department of Nephrology and Dialysis, AZ Nikolaas Hospital, Sint-Niklaas, Belgium
2 Department of Internal Medicine and Pediatrics, Ghent University, Belgium
3 Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Leuven, Belgium
4 Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
5 Division of Pathology, University Hospital Ghent, Ghent, Belgium
6 Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium
7 Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
8 Department of Pathology, University Hospitals Leuven, Leuven, Belgium
9 Division of Nephrology and Infectious Diseases, AZ Sint-Jan, Brugge, Belgium
10 Department of Nephrology, Jessa Hospital, Hasselt, Belgium
11 Department of Nephrology, ZNA Middelheim Hospital, Antwerp, Belgium
12 Department of Nephrology, Antwerp University Hospital, Edegem, Belgium
13 Department of Nephrology, AZ Delta, Roeselare, Belgium
14 Department of Nephrology, University Hospital Brussels, Brussels, Belgium
15 Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
16 Renal Division, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
17 Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium

Members of the FCGG collaborative group are mentioned in the Appendix. These members are collaborators, unless also mentioned in the author list above, in which case they are authors.

* Both authors contributed equally

Correspondence to: Ben Sprangers; E-mail: ben.sprangers@uzleuven.be
ABSTRACT

Background. The Flemish Collaborative Glomerulonephritis Group (FCGG) registry is the first population-based native kidney biopsy registry in Flanders, Belgium. In this first analysis, we report on patient demographics, frequency distribution and incidence rate of biopsied kidney disease in adults in Flanders.

Methods. From January 2017 until December 2019, a total of 2,054 adult first native kidney biopsies were included. A ‘double diagnostic coding’ strategy was used, in which every biopsy sample received a histopathological and final clinical diagnosis. Frequency distribution and incidence rate of both diagnoses are reported and compared with other European registries.

Results. The median age at biopsy was 61.1 years (IQR, 46.1-71.7), male patients were more prevalent (62.1%) and biopsy incidence rate was 129.3 per million persons per year. IgA nephropathy was the
most frequently diagnosed kidney disease (355 biopsies, 17.3% of total) with a similar frequency as in previously published European registries. The frequency of tubulointerstitial nephritis (220 biopsies, 10.7%) and diabetic kidney disease (154 biopsies, 7.5%) was remarkably higher, which may be attributed to changes in disease incidence as well as biopsy practices. Discordances between histopathological and final clinical diagnoses were noted and indicate areas for improvement in diagnostic coding systems.

Conclusions. The FCGG registry, with its ‘double diagnostic coding’ strategy, provides useful population-based epidemiological data on a large Western-European population and allows subgroup selection for future research.

Keywords: biopsy, epidemiology, incidence, frequency, native kidney, observational, pathology, registry
INTRODUCTION

Kidney histology remains the gold standard for the diagnosis and classification of many kidney diseases.\(^1,2\) Kidney biopsy registries provide valuable data that describe the epidemiology of kidney diseases, ideally in a well-defined geographical area.\(^3\) Additionally, these data can help in the design of and recruitment for clinical trials to develop new preventive and therapeutic strategies. However, kidney biopsy registries are also prone to pitfalls that may bias observations. First, single-center registries may suffer from referral bias, and population-based multicenter registries are therefore preferred. On the other hand, granular data is much easier collected in a single-center setting. Second, the lack of a uniform coding system for registration of diagnoses hampers comparison between studies.\(^4\) Third, most registries solely report the histopathological diagnosis, while the final clinical nephrological diagnosis, which integrates both clinical and histopathological information, is rarely included.

As the epidemiology of kidney disease in Flanders (Dutch-speaking part of Belgium) was unknown, the Flemish Collaborative Glomerulonephritis Group (FCGG) initiated a population-based kidney biopsy registry in the region of Flanders in 2017, that aims to include all native kidney biopsies performed in its population of approximately 6.5 million inhabitants. The registry implemented a ‘double diagnostic coding’ strategy, in which both a histopathological and final clinical diagnosis are recorded for each biopsy. In this first analysis, we report on patient demographics, frequency distribution and incidence rate of biopsied kidney disease in Flanders from 2017 until 2019 and compare with previously published European kidney biopsy registries.
MATERIALS AND METHODS

Ethics

This study was conducted in accordance with all applicable regulatory requirements, the principles of the Declaration of Helsinki and Good Clinical Practice Guidelines. The study was approved by the Ethical Committee of the University Hospitals Leuven (study reference S59182) and local committees of all participating centers. All patients or their legal representative provided written informed consent prior to inclusion in the registry.

Organization and participating centers

All 24 nephrology departments in Flanders and two departments in Brussels participated in the registry. Four centers were university hospitals (university hospitals of Antwerp, Brussels, Ghent and Leuven), the remaining centers general hospitals. Biopsies were analyzed by 19 (nephro)pathologists from 10 Flemish pathology departments and one department in Brussels.

Patient eligibility and biopsy inclusion

From 1st of January 2017 until 31st of December 2019, 2,419 adult and pediatric native kidney biopsies were identified from the registry, to which additional selection criteria were applied (Fig. 1). First, only official Flemish inhabitants (based on ZIP-codes) were retained. Next, repeat biopsies in the time frame of 2017-2019 were excluded unless the result of the first biopsy was not diagnostic and the patient underwent a second biopsy procedure within the following 4 months, in which case the first biopsy was excluded, and the repeat biopsy included instead. Finally, pediatric patients (<18 years old) were excluded (124 biopsies), resulting in 2,054 adult kidney biopsies available for analysis.
Data collection

Patient demographics and clinical data were provided by the treating nephrologist through a standardized data form. Histopathological data were provided by the (nephro)pathologist in a standardized report; two nephropathologists examined 58.7% of all biopsies. After biopsy results were available, the treating nephrologist provided the final clinical diagnosis.

Histopathological diagnosis

The primary histopathological diagnosis was coded by the (nephro)pathologist reading the biopsy according to a proprietary coding system created for this registry (https://www.nbvn.be/blog/organisatie/fcgg-in-english). The histopathological diagnosis list (FCGG level 0) was categorized at two levels with decreasing detail (Fig. 2, Supplemental Table 1). At the first level (FCGG level 1), different etiologies, classes or manifestations of the same disease were pooled together to define 39 individual kidney diseases. At the second level (FCGG level 2), five categories were defined according to the most frequently affected kidney tissue compartment: ‘Glomerular’, ‘Tubulointerstitial’, ‘Vascular’, ‘All/Any compartment(s)’ and ‘No kidney disease/No diagnosis/Tumor’.

Final clinical diagnosis

The final clinical diagnosis was coded by the treating nephrologist according to the ERA-EDTA Primary Renal Disease (PRD) coding system. The ERA-EDTA PRD list (ERA level 0) was categorized at two levels with decreasing detail, analogous to the histopathological diagnosis list (Fig. 2, Supplemental Table 2). At the first level (ERA level 1) 46 individual kidney diseases were defined. At the second level (ERA level 2) six categories were defined: ‘Glomerular’, ‘Tubulointerstitial’, ‘Vascular’, ‘All/Any compartment(s)’, ‘No kidney disease/Tumor’ and ‘Postrenal’.
Diagnostic concordance between histopathological and final clinical diagnosis

When the histopathological and final clinical diagnosis of a biopsy were the same (on FCGG level 1 and ERA level 1, respectively), diagnoses were considered concordant. When both diagnoses differed, they were considered discordant.

Statistical analysis

Numerical variables were described using median and interquartile range (IQR) as they did not fit the normal distribution and were calculated with GraphPad Prism version 9.1.1 for Mac OS, GraphPad Software (www.graphpad.com). Kidney disease frequencies were shown as absolute numbers and percentages of total biopsies. Incidence rates were calculated using the sum of case biopsies in 2017, 2018 and 2019 in the numerator and the person-year follow-up from 2017 until 2019 in the denominator and reported as biopsies per million persons per year (p.m.p./year).

RESULTS

Patient demographics and kidney biopsy rate

From January 2017 until December 2019, 2,054 adult native kidney biopsies were included for analysis. The incidence rate of Flemish adults undergoing first kidney biopsy was 129.3 p.m.p./year. The median age at biopsy was 61.1 years (IQR, 46.1-71.7) and biopsy rate was higher in the elderly (>74 years) when compared to younger adults (<65 years, Fig. 3A). Males were more often biopsied and predominant (62.1% males, Fig. 3B-C), although patients with a final clinical diagnosis of lupus nephritis (LN), Alport syndrome/thin basement membrane disease (Alport/TMD) and amyloidosis were more often female (64.4%, 64.0% and 50.7% females, respectively, Fig. 3C).
Frequency and incidence rate of biopsied kidney diseases

Every biopsy sample received a histopathological and final clinical diagnosis (Tables 1-2, detailed data shown in Supplemental Tables 3-4). The majority of patients had a clinical diagnosis of glomerular disease (1,152 biopsies, 56.1%, Fig. 4). Remaining diagnoses consisted of tubulointerstitial disease (293 biopsies, 14.3%), vascular disease (186 biopsies, 9.1%), disease that affects all or any kidney tissue compartment(s) (408 biopsies, 19.9%), no kidney disease or incidental diagnosis of malignancy (11 biopsies, 0.5%) and postrenal disease (4 biopsies, 0.2%, Fig. 4). Overall, the top five most frequent diagnoses were IgA nephropathy (IgAN), tubulointerstitial nephritis (TIN), focal segmental glomerulosclerosis (FSGS), diabetic kidney disease (DKD) and ANCA-associated vasculitis/pauci-immune glomerulonephritis (AAV, Fig. 5).

IgAN (including IgA vasculitis) was the most frequently diagnosed glomerular disease (355 biopsies, 17.3% of total patients, incidence rate of 22.3 p.m.p./year, Table 2). Other primary glomerular diseases included FSGS (192 biopsies, 9.3%, 12.1 p.m.p./year), membranous nephropathy (MN, 113 biopsies, 5.5%, 7.1 p.m.p./year) and minimal change disease (MCD, 96 biopsies, 4.7%, 6.0 p.m.p./year). Membranoproliferative glomerulonephritis (MPGN) was infrequently diagnosed (15 biopsies, 0.7%, 0.9 p.m.p./year). AAV and LN were the most frequent secondary glomerular diseases (7.2% and 4.2%, 9.3 and 5.5 p.m.p./year, respectively). Alport/TMD was diagnosed in 25 biopsies (1.2%, 1.6 p.m.p./year).

Less prevalent glomerular diseases included infection-related immune-complex glomerulonephritis (GN), anti-glomerular basement membrane (GBM) nephritis, cryoglobulin-associated glomerulonephritis and immunotactoid/fibrillary glomerulopathy (Table 2).

TIN covered 75% of all diagnoses with tubulointerstitial disease (220 biopsies, 10.7% of total patients, incidence rate of 13.8 p.m.p./year, Table 2). Acute tubular necrosis (ATN) pooled all diagnoses of
hemodynamic-mediated ATN (acute kidney injury due to hypovolemia, sepsis or circulatory failure, Supplemental Table 4) and was much less frequent (33 biopsies, 1.6%, 2.1 p.m.p./year). Other rare tubulointerstitial diseases included monoclonal immunoglobulin-associated tubular disease, tubular crystal/cylinder deposition disease, medication-induced nephropathy (i.e. secondary to cisplatin or lithium) and acute pyelonephritis (Table 2).

Nephrosclerosis was diagnosed in approximately two thirds of patients in the category of vascular disease (127 biopsies, 6.2% of total patients, incidence rate of 8.0 p.m.p./year), followed by thrombotic microangiopathy (TMA, 42 biopsies, 2.0%, 2.6 p.m.p./year). Remaining infrequent diagnoses included non-AAV vasculitis, cholesterol emboli and sickle cell nephropathy (Table 2).

In the category of diseases that affect all or any kidney compartment(s), DKD was most frequent (154 biopsies, 7.5% of total patients, incidence rate of 9.7 p.m.p./year), followed by amyloidosis (69 biopsies, 3.4%, 4.3 p.m.p./year). Less frequent diagnoses included non-amyloid monoclonal deposition disease, medication-induced nephropathy (i.e. nonspecific nephrotoxicity or due to calcineurin inhibitors or analgesic drugs) and various congenital disorders. Nonspecific diagnoses of acute or chronic kidney failure were pooled under ‘AKI/CKD, NOS’ (Table 2).

In 7 patients (0.3% of total), the clinician concluded that kidney disease was absent (Table 2). An incidental malignancy was found in 4 patients (0.2%). Biopsied postrenal disease was very rare (4 biopsies, 0.2%).

Diagnostic concordance between histopathological and clinical diagnoses

In most glomerular diseases (IgAN, FSGS, MCD, MN, AAV, LN and Alport/TMD), the concordance between histopathological and final clinical diagnoses of a biopsy was high (Supplemental Table 5). The histopathological diagnosis was withheld as the clinical diagnosis in 79.3-89.9% of biopsies. Vice versa, clinical diagnoses were made with corresponding histopathological diagnoses in 64.6-92.0% of patients.
Discordances were mainly seen in biopsies with a histopathological diagnosis of C3 glomerulopathy (C3GP) or infection-related immune complex GN, as the ERA-EDTA PRD list does not provide corresponding diagnostic coding terms. In TIN and ATN, the diagnostic concordance differed considerably. In TIN, concordance was high (histopathological diagnosis withheld as clinical diagnosis in 86.6% of biopsies and clinical diagnosis based on similar histopathological diagnosis in 73.6%). However, in biopsies with a histopathological diagnosis of ATN, corresponding clinical diagnoses were much more diverse and only 16.1% of biopsies received a clinical diagnosis consistent with ATN secondary to hypovolemia, sepsis or circulatory failure, while other clinical diagnoses were mainly nonspecific diagnoses of kidney injury (Supplemental Table 5). In vascular diseases (nephrosclerosis and TMA), the histopathological diagnosis was withheld as the clinical diagnosis in 66.4-68.8% of biopsies and a clinical diagnosis was based on a similar histopathological diagnosis in 62.2-78.6% of patients. In both DKD and amyloidosis, concordance was very high (histopathological diagnosis withheld as clinical diagnosis in 95.7% of biopsies and clinical diagnosis based on similar histopathological diagnosis in 85.7-95.7%). Finally, in 30 out of 33 patients (90.9%) with normal kidney histology, the clinician deemed that kidney disease was present, most frequently MCD (13 patients, Supplemental Table 5).

DISCUSSION

This study describes the epidemiology of all adult native kidney biopsies in Flanders from 2017 until 2019, using a ‘double diagnostic coding’ strategy. The overall biopsy rate was high and elderly patients were more frequently biopsied than young adults. Although more than half of all patients were diagnosed with glomerular disease, TIN was the second most frequent diagnosis after IgAN. Discordances between histopathological and final clinical diagnoses differed considerably between kidney diseases.
In Flanders, the median age of biopsied adults was rather old (61.1 yrs.) when compared to other recent Western-European registries that cover adult biopsies (44.5-55.6 years in time frame 1994-2011, Table 3). A temporal trend is observed in European registries, in which the age at kidney biopsy is gradually increasing, supporting this observation. Male patients were predominant (62.1%), which is in line with previous European data (54-62% males, Table 3), although studies from Romania and Serbia found a more equal sex distribution (50-52% males). The percentage of male patients with LN in Flanders was unusually high (36% males) when compared to previous studies (9-24% males), warranting further research. The biopsy rate in Flemish adults (129.3 p.m.p./year) is amongst the highest in national and regional European registries and resembles data from Scotland (126 biopsies p.m.p./year, Supplemental Table 6). Biopsy rates are influenced by disease incidence, but also confounded by many additional factors. The high socio-economic status of the Flemish population, resembling neighboring Western-European countries, might contribute to these high biopsy rates. A temporal trend is also observed in European studies towards higher biopsy rates in more recent time periods. Finally, biopsy rate was calculated in the adult population, while some other European studies included the pediatric population, yielding lower total biopsy rates (Supplemental Table 6).

Comparing disease frequency and incidence between kidney biopsy registries is complicated by a number of factors. First, registries do not always report both disease frequency and incidence rates. Second, disease frequencies are often calculated in variably defined subgroups instead of total biopsies. Third, diagnostic terms used for registration of kidney diseases differ considerably. Previous literature reviews have used older diagnostic terms and disease frequencies were not always calculated relative to the total number of biopsies. We therefore reviewed the incidence rate and frequency distribution of native kidney disease in 16 studies that cover the region of Europe (including Scotland, Table 3, Supplemental Table 6). Some disease frequencies were recalculated relative to the total
number of adult biopsies13,15–17,24 or the total number of adult and pediatric biopsies when data on the adult subgroup was limited.11,12,20 All studies covered a reference population of >1 million inhabitants and were organized on the international24, national7,9,10,12–14,20,22, regional6,8,11,15,23 or single-center level16,17.

The frequency of IgAN, FSGS and MCD in Flanders resembled most other European studies (Table 3). Interestingly, we observed relatively less MN cases (5.5% vs. 4.7-17.3%12,16 in other European registries). Further research will need to clarify whether this represents a real difference in disease incidence, or whether it already reflects a decrease in kidney biopsy procedures in patients with a serological diagnosis of anti-phospholipase A2-receptor (anti-PLA2R) antibody positive MN. MPGN was very infrequently diagnosed in the FCGG registry (0.7%), partially because chronic infections that cause MPGN in Europe have decreased in the last decades23, but more importantly because MPGN is a histopathological pattern and many patients received etiological diagnoses instead. The frequency of LN in Flanders was quite low (4.2% vs. 6.7-8.8%13,20 in European registries [excluding outlying values in Lithuania12 and Serbia16,17]), while the frequency of AAV was rather high (7.2% vs. 2.3-7.8%13,17 in European registries, Table 3). This observation resembled data from the Scottish registry, which noted a similar overall biopsy rate, an equally low incidence rate of LN (3.0-5.0 vs. 5.5 p.m.p./year in Flanders) and even higher rate of AAV (14.0-16.0 vs. 9.3 p.m.p./year in Flanders).8 The high frequency of TIN in Flanders is striking (10.7% vs. 1.5-6.2%15,24 in most European registries), which was only surpassed by data from Finland (9.0-14.7%)11, where the Puumala hantavirus is endemic. The rising incidence of TIN in Europe25 and the increased use of immune checkpoint inhibitors (ICI) that potentially cause ICI-related acute TIN26,27 may partially explain this observation, although we hypothesize that kidney biopsies are currently more frequently performed to confirm a suspected diagnosis of TIN. We also observed a remarkably higher frequency of biopsies with DKD (7.5% vs. 1.0-5.4%13,24 in European registries). Flemish DKD patients had less severe symptoms (49.7% had nephrotic-range proteinuria, 20.9% had nephrotic
syndrome (NS)] when compared to patients from the Spanish registry28 (50.0% of DKD patients with NS) and the Polish registry14 (76.4% of DKD patients with nephrotic-range proteinuria). This suggests that, currently in Flanders, the threshold to perform a kidney biopsy in patients with diabetes mellitus appears to be lower and patients are biopsied earlier in the disease course.

In this study, we found two main causes for the observed discrepancy between what the (nephro)pathologist withholds as the primary diagnosis of kidney disease vs. the final clinical diagnosis made by the nephrologist. First, the histopathological diagnosis was not always withheld as clinically relevant and the clinical diagnosis was not solely based on pathology results. For example, in some patients, the nephrologist made a clinical diagnosis of TIN, while the primary histopathological diagnosis may have been an unrelated disease, or TIN was only considered to be a secondary histopathological diagnosis. In such examples, the clinical course and biochemical parameters may have enabled the clinician to confidently make a diagnosis despite discordant or less conclusive biopsy results. This stresses the importance of clinicopathological correlation between pathologist and nephrologist.

Second, some discordances were attributed to differences in the FCGG histopathological coding system and the ERA-EDTA PRD clinical coding system. The ERA-EDTA PRD list does not contain updated and well-categorized coding terms for newer disease entities, such as C3GP and monoclonal immunoglobulin-associated kidney diseases. Furthermore, the list does not provide a general diagnostic term for ATN, but neither differentiates between ATN secondary to sepsis, hemodynamic injury/ischemia or nephrotoxins, which explains the various and often nonspecific corresponding final clinical diagnoses in our study. The ERA-EDTA PRD coding system was initially designed to be applied to end-stage kidney disease registries and its application to a kidney biopsy registry therefore has inherent limitations. Future updates or alternative coding systems may allow more detailed diagnostic coding.

Our study has several advantages. First, we were able to report on population data and two experienced nephropathologists together examined approximately 60% of all biopsies, which reduces inter-observer
variability. Second, our ‘double diagnostic coding’ strategy enabled clinicopathological correlation, which uncovered some limitations in the ERA-EDTA PRD coding system and highlights the importance of more frequent updates and clinical feedback in such coding lists. Our study also has limitations. We only covered biopsy-proven kidney diseases and therefore may have underestimated the incidence of less frequently biopsied pathologies such as DKD, or kidney diseases that nowadays can be alternatively diagnosed with serological markers, such as MN with circulating anti-PLA2R antibodies. Additionally, using the ERA-EDTA PRD coding system, our registry underestimated clinical diagnoses of C3GP, ATN and infection-related GN, which are more reliably estimated with the FCGG histopathological coding system.

In conclusion, the FCGG registry provides useful population-based epidemiological data on a large Western-European population and allows subgroup selection for future observational, interventional and translational research.

ACKNOWLEDGEMENTS

The authors wish to thank all collaborating nephrologists in Flanders and Brussels and responsible persons at the data entry centers (Elsie De Man, Sabine Verhofstede, Ben Sprangers) for their participation in the FCGG registry.

The FCGG registry was initiated in collaboration with the Nederlandstalige Belgische Vereniging voor Nefrologie (NVNB), the organization that represents nephrologists in Flanders.

This study was approved by the Ethical Committee of the University Hospitals Leuven and local committees of all participating centers.
FUNDING

Dries Deleersnijder is supported by a PhD Fellowship grant fundamental research from the Research Foundation Flanders (F.W.O., grant number 11L5622N).

Ben Sprangers is a senior clinical investigator of The Research Foundation Flanders (F.W.O., grant number 1842919N).

The FCGG registry is funded by the Nederlandstalige Belgische Vereniging voor Nefrologie (NBVN).

CONFLICT OF INTEREST STATEMENT

Ben Sprangers is member of the CKJ editorial board. The results presented in this paper have not been published previously in whole or part, except in abstract format.

AUTHORS’ CONTRIBUTIONS

WL, DD, AD, EL, ADV, TD, MH, RH, PK, BM, LP, AVC, SVL, JVW, MC, JDM and BS were responsible for the conception, design and data acquisition of the study. WL, DD, JDM, AD, AVC and BS were responsible for analysis and interpretation of the data.

WL, DD, AD, EL, ADV, TD, MH, RH, PK, BM, LP, AVC, SVL, JVW, MC, JDM and BS drafted the work and revised it critically for important intellectual content.
WL, DD, AD, EL, ADV, TD, MH, RH, PK, BM, LP, AVC, SVL, JVW, MC, JDM and BS approved the submitted version of the manuscript.

WL, DD, AD, EL, ADV, TD, MH, RH, PK, BM, LP, AVC, SVL, JVW, MC, JDM and BS agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

DATA AVAILABILITY STATEMENT

The data underlying this article are available in the article and in its online supplementary material.
APPENDIX

‘FCGG reference nephrologists’ and collaborating pathologists of participating centers

Reference nephrologist	Center
An De Vriese	AZ Sint-Jan, Brugge
Anja De Rycke	AZ Sint-Blasius, Dendermonde
Anne-Marie Bogaert	AZ Glorieux, Ronse
Annemie Woestenburg	AZ Voorkempen, Malle
Bart Denys	Onze-Lieve-Vrouwziekenhuis, Aalst
Bart Maes	AZ Delta, Roeselaere
Domien Peeters	Sint-Trudo Ziekenhuis, Sint-Truiden
Hilde Vanbelleghe	Jan Yperman ziekenhuis, Ypres
Jan Donck	AZ Sint-Lucas, Ghent
Johan Scharpé, Nele De Clippeleir	GZA, Antwerp
Joris Vanparys	Kliniek Sint-Jan, Brussels
Karen Meyvis	AZ Monica, Antwerp
Kurt Vandepitte	Heilig-Hartziekenhuis, Lier
Liza-Maria Reyns	AZ Sint-Lucas, Brugge
Luc Verresen	Ziekenhuis Oost-Limburg, Genk
Marc Decupere	AZ Groeninge, Kortrijk
Mark Helbert	ZNA, Antwerp
Miranda Zeegers	AZ Turnhout, Turnhout
Nathalie Neirynck	AZ Nikolaas, Sint-Niklaas
Pascale Bernaert	AZ Maria Middelares, Ghent
Tom Dejagere	Jessa Ziekenhuis, Hasselt
Wim Lemahieu	Imeldaziekenhuis, Bonheiden
Ben Sprangers	University Hospitals Leuven, Leuven
Lissa Pipeleers	University Hospital Brussels, Brussels
Rachel Hellemans	Antwerp University Hospital, Antwerp
Steven Van Laecke	Ghent University Hospital, Ghent
Elena Levchenko	Pediatric nephrology department, University Hospitals Leuven, Leuven
Sevasti Karamaria
Koen Van Hoeck, Dominique Trouet
Reiner Mauel

Pediatric nephrology department, Ghent University Hospital, Ghent
Pediatric nephrology department, Antwerp University Hospital, Antwerp
Pediatric nephrology department, University Hospital Brussels, Brussels

Pathologist
Amélie Dendooven
Anne Hooorens, Jo Van Dorpe, Marleen Praet
Caroline Geers
Evelyne Lerut, Priyanka Koshy, Tania Roskams
Selda Aydin
Vasiliki Siozopoulou
Anne-Marie Schelfhout, Hendrik De Raeye
Edwin Steenkiste, Francesca Dedeurwaerdere
Ignace Dalle
Kristof Cokelaere, Stijn Deloose
Pascale De Paepe
Peter Van Eyken

Center
Antwerp University Hospital, Antwerp
Ghent University Hospital, Ghent
University Hospital Brussels, Brussels
University Hospitals Leuven, Leuven
Cliniques Universitaires Saint-Luc, Brussels
Antwerp University Hospital, Antwerp
Onze-Lieve-Vrouwziekenhuis, Aalst
AZ Delta, Roeselaere
AZ Sint-Lucas, Brugge
Jan Yperman ziekenhuis, Ypres
AZ Sint-Jan, Brugge
Ziekenhuis Oost-Limburg, Genk
REFERENCES

1. Hogan JJ, Mocanu M, Berns JS. The Native Kidney Biopsy: Update and Evidence for Best Practice. Clinical Journal of the American Society of Nephrology 2016; 11: 354–362.

2. Sethi S, Haas M, Markowitz GS et al. Mayo Clinic/Renal Pathology Society Consensus Report on Pathologic Classification, Diagnosis, and Reporting of GN. Journal of the American Society of Nephrology 2016; 27: 1278–1287.

3. Fiorentino M, Bolignano D, Tesar V et al. Renal Biopsy in 2015 - From Epidemiology to Evidence-Based Indications. American Journal of Nephrology 2016; 43: 1–19.

4. Dendooven A, Peetermans H, Helbert M et al. Coding practice in national and regional kidney biopsy registries. BMC Nephrology 2021; 22: 193.

5. Venkat-Raman G, Tomson CRV, Gao Y et al. New primary renal diagnosis codes for the ERA-EDTA. Nephrology Dialysis Transplantation 2012; 27: 4414–4419.

6. Zaza G, Bernich P, Lupo A. Incidence of primary glomerulonephritis in a large North-Eastern Italian area: a 13-year renal biopsy study. Nephrology Dialysis Transplantation 2013; 28: 367–372.

7. Maixnerova D, Jancova E, Skibova J et al. Nationwide biopsy survey of renal diseases in the Czech Republic during the years 1994–2011. Journal of Nephrology 2015; 28: 39–49.

8. McQuarrie EP, Mackinnon B, Young B et al. Centre variation in incidence, indication and diagnosis of adult native renal biopsy in Scotland. Nephrology Dialysis Transplantation 2009; 24: 1524–1528.

9. Heaf JG, Sørensen SS, Hansen A. Increased incidence and improved prognosis of glomerulonephritis: a national 30-year study. Clinical Kidney Journal 2021; 14: 1594–1602.

10. López-Gómez JM, Rivera F. Spanish Registry of glomerulonephritis 2020 revisited: past, current data and new challenges. Nefrologia 2020; 40: 371–383.

11. Wirta O, Mustonen J, Helin H, Pasternack A. Incidence of biopsy-proven glomerulonephritis. Nephrology Dialysis Transplantation 2008; 23: 193–200.

12. Brazdziute E, Miglinas M, Grudysyte E et al. Nationwide renal biopsy data in Lithuania 1994–2012. International Urology and Nephrology 2015; 47: 655–662.

13. Rivera F, López-Gómez JM, Pérez-Garcia R. Frequency of renal pathology in Spain 1994-1999. Nephrology Dialysis Transplantation 2002; 17: 1594–1602.

14. Perkowska-Ptasinska A, Bartczak A, Wagrowska-Danilewicz M et al. Clinicopathologic correlations of renal pathology in the adult population of Poland. Nephrology Dialysis Transplantation 2017; 32: ii209–ii218.

15. Covic A, Schiller A, Volovat C et al. Epidemiology of renal disease in Romania: a 10 year review of two regional renal biopsy databases. Nephrology Dialysis Transplantation 2006; 21: 419–424.

16. Brkovic V, Milinkovic M, Kravlja M et al. Does the pathohistological pattern of renal biopsy change during time? Pathology - Research and Practice 2018; 214: 1632–1637.
17. Naumovic R, Pavlovic S, Stojkovic D, Basta-Jovanovic G, Nesic V. Renal biopsy registry from a single centre in Serbia: 20 years of experience. Nephrology Dialysis Transplantation 2008; 24: 877–885.

18. Heaf J, Løkkegaard H, Larsen S. The epidemiology and prognosis of glomerulonephritis in Denmark 1985–1997. Nephrology Dialysis Transplantation 1999; 14: 1889–1897.

19. Hanly JG, O’Keeffe AG, Su L et al. The frequency and outcome of lupus nephritis: results from an international inception cohort study. Rheumatology 2016; 55: 252–262.

20. Schena FP. Survey of the Italian Registry of Renal Biopsies. Frequency of the renal diseases for 7 consecutive years. Nephrology Dialysis Transplantation 1997; 12: 418–426.

21. Woo KT, Chan CM, Lim C et al. A Global Evolutionary Trend of the Frequency of Primary Glomerulonephritis over the Past Four Decades. Kidney Diseases 2019; 5: 247–258.

22. Gesualdo L, Di Palma AM, Morrone LF, Strippoli GF, Schena FP. The Italian experience of the national registry of renal biopsies. Kidney International 2004; 66: 890–894.

23. Stratta P, Segoloni GP, Canavese C et al. Incidence of biopsy-proven primary glomerulonephritis in an Italian Province. American Journal of Kidney Diseases 1996; 27: 631–639.

24. O’Shaughnessy MM, Hogan SL, Thompson BD, Coppo R, Fogo AB, Jennette JC. Glomerular disease frequencies by race, sex and region: results from the International Kidney Biopsy Survey. Nephrology Dialysis Transplantation 2018; 33: 661–669.

25. Goicoechea M, Rivera F, Lopez-Gomez JM. Increased prevalence of acute tubulointerstitial nephritis. Nephrology Dialysis Transplantation 2013; 28: 112–115.

26. Oleas D, Bolufer M, Agraz I et al. Acute interstitial nephritis associated with immune checkpoint inhibitors: a single-centre experience. Clinical Kidney Journal 2021; 14: 1364–1370.

27. Gupta S, Short SAP, Sise ME et al. Acute kidney injury in patients treated with immune checkpoint inhibitors. Journal for ImmunoTherapy of Cancer 2021; 9: e003467.

28. Rivera F, López-Gómez JM, Pérez-Garcia R. Clinicopathologic correlations of renal pathology in Spain. Kidney International 2004; 66: 898–904.
Table 1. Primary histopathological diagnoses of adult kidney biopsies in Flanders

Primary histopathological diagnosis	N	%	Incidence rate (p.m.p./year)
Glomerular			
IgA nephropathy	357	17.4	22.5
Focal segmental glomerulosclerosis (FSGS)	185	9.0	11.6
ANCA-associated vasculitis and pauci-immune glomerulonephritis	150	7.3	9.4
Membranous nephropathy	113	5.5	7.1
Lupus nephritis	85	4.1	5.3
Minimal change disease (MCD)	69	3.4	4.3
Glomerulopathy, NOS	45	2.2	2.8
Infection-related immune-complex GN	38	1.9	2.4
Alport syndrome/thin membrane disease	29	1.4	1.8
Anti-GBM nephritis	11	0.5	0.7
C3 glomerulopathy	10	0.5	0.6
Cryoglobulinemic GN	8	0.4	0.5
Monoclonal immunoglobulin-associated glomerulonephopathy	8	0.4	0.5
FSGS/MCD	7	0.3	0.4
Non-amyloid deposition glomerulonephopathy	4	0.2	0.3
Tubulointerstitial	376	18.3	23.7
Tubulointerstitial nephritis	187	9.1	11.8
Acute tubular necrosis (ATN)	137	6.7	8.6
Tubulointerstitial pathology, NOS	18	0.9	1.1
Monoclonal immunoglobulin-associated tubular disease	17	0.8	1.1
Crystal/cylinder deposition	16	0.8	1.0
Chronic pyelonephritis	1	<0.1	0.1
Vascular	173	8.4	10.9
Nephrosclerosis	119	5.8	7.5
Thrombotic microangiopathy	48	2.3	3.0
Cholesterol emboli	4	0.2	0.3
Vasculitis without glomerulonephritis	1	<0.1	0.1
Kidney infarction	1	<0.1	0.1
All/Any compartment(s)	248	12.1	15.6
Diabetic kidney disease	138	6.7	8.7
Amyloidosis	69	3.4	4.3
Non-amyloid monoclonal deposition disease	17	0.8	1.1
End-stage kidney disease	7	0.3	0.4
Medication-induced nephropathy	7	0.3	0.4
Idiopathic nodular glomerulosclerosis	5	0.2	0.3
Congenital/hereditary syndromes	4	0.2	0.3
Storage disease	1	<0.1	0.1
No kidney disease/No diagnosis/Tumor	138	6.7	8.7
No diagnosis	101	4.9	6.4
Normal	33	1.6	2.1
Tumor	4	0.2	0.3
Total	2,054	100.0	129.3
The primary histopathological diagnoses (FCGG level 1) are categorized per kidney tissue compartment (FCGG level 2).

Abbreviations: Anti-GBM nephritis: anti-glomerular basement membrane nephritis; FSGS/MCD: focal segmental glomerulosclerosis or minimal change disease, subdivision not possible; NOS: not otherwise specified; GN: glomerulonephritis.
Table 2. Final clinical diagnoses of adult kidney biopsies in Flanders

Final clinical diagnosis	N	%	Incidence rate (p.m.p./year)
Glomerular			
Glomerular	1,152	56.1	72.5
IgA nephropathy	355	17.3	22.3
Focal segmental glomerulosclerosis (FSGS)	192	9.3	12.1
ANCA-associated vasculitis and pauci-immune glomerulonephritis	148	7.2	9.3
Membranous nephropathy	113	5.5	7.1
Minimal change disease (MCD)	96	4.7	6.0
Lupus nephritis	87	4.2	5.5
Glomerulopathy, NOS	76	3.7	4.8
Alport syndrome/ thin membrane disease	25	1.2	1.6
Membranoproliferative GN	15	0.7	0.9
Infection-related immune-complex GN	13	0.6	0.8
Anti-GBM nephritis	10	0.5	0.6
Cryoglobulinemia	8	0.4	0.5
Nephrotic syndrome, no histology	6	0.3	0.4
Immunotactoid/fibrillary nephropathy	6	0.3	0.4
Hematuria and proteinuria, no histology	2	0.1	0.1
Tubulointerstitial			
Tubulointerstitial nephritis	220	10.7	13.8
Acute tubular necrosis (ATN)	33	1.6	2.1
Monoclonal immunoglobulin-associated tubular disease	20	1.0	1.3
Crystal/cylinder deposition	15	0.7	0.9
Medication-induced nephropathy	3	0.1	0.2
Acute pyelonephritis	2	0.1	0.1
Vascular			
Nephrosclerosis	127	6.2	8.0
Thrombotic microangiopathy	42	2.0	2.6
Non- AAV vasculitis	11	0.5	0.7
Cholesterol emboli	4	0.2	0.3
Vascular, NOS	1	<0.1	0.1
Sickle cell nephropathy	1	<0.1	0.1
All/Any compartment(s)			
All/Any compartment(s)	408	19.9	25.7
Diabetic kidney disease	154	7.5	9.7
AKI/CKD, NOS	129	6.3	8.1
Amyloidosis	69	3.4	4.3
Non- amyloid monoclonal deposition disease	22	1.1	1.4
Medication-induced nephropathy	17	0.8	1.1
Isolated proteinuria or hematuria, no histology	11	0.5	0.7
Congenital/ hereditary syndromes	5	0.2	0.3
Iatrogenic	1	<0.1	0.1
No kidney disease/ Tumor			
No kidney disease/ Tumor	11	0.5	0.7
Normal	7	0.3	0.4
Tumor	4	0.2	0.3
Postrenal	4	0.2	0.3
Retroperitoneal fibrosis	2	0.1	0.1
Acquired obstructive uropathy/ nephropathy	2	0.1	0.1
Total	2,054	100.0	129.3
The final clinical diagnoses (ERA level 1) are categorized per kidney tissue compartment (ERA level 2).

Abbreviations: non-AAV vasculitis: non-ANCA-associated vasculitis; AKI/CKD, NOS: non-specific diagnoses of acute kidney injury or chronic kidney disease; Anti-GBM nephritis: anti-glomerular basement membrane nephritis; GN: glomerulonephritis; NOS: not otherwise specified.
Author	Region Population	Timeframe (yrs.) Biopsies	Age (yrs.)	Freq.	IgAN (%)	FS(GS) (%)	MCD (%)	MN (%)	MPGN (%)	LN (%)	AAV (%)	AMY (%)	DKD (%)	TIN (%)	NSci (%)	Dx.	Comments	
Rivera et al. 17 2002	Spain National	1994-1999 6,525 biopsies	NA 60/40	A	14.6	9.7	6.6	10.3	4.5	8.8	7.8	4.3	1.0	NA	5.9	Pr.	Spanish renal registry, 70.4% participation of centers in Spain	
López-Gómez et al. 16 2020	Spain National 40 million	1994-2019 25,440 biopsies (A) 1,231 biopsies (P)	50 (A+P) 60/40 (A)	A+P	14.6	8.0	6.8	9.9	3.9	8.7	6.8	3.8	4.8	NA	5.3	Pr.	Spanish renal registry	
Schena et al. 20 1997	Italy National 56.8 million	1987-1993 13,835 biopsies (A+P)	NA 65/35 (A+P)	A+P	21.1	7.1	4.7	12.4	4.0	6.7	3.4	2.7	4.0	NA	4.0	PRD	ERA-EDTA PRD	Italian Registry of renal biopsies, 96% participation of centers in Italy *: not mentioned; population of Italy in 1993
Gesualdo et al. 22 2017	Italy National 56.9 million	1996-2000 13,122 biopsies (A+P)	NA NA	A+P	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	~5.3	NA	ERA-EDTA PRD	Italian Registry of renal biopsies *: not mentioned; population of Italy in 1998
Zaza et al. 4 2013	Italy Regional* 5 million	1998-2010 4,378 biopsies (A)	50.4 (A) 62/38 (A)	A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	~5.5	NA	Pr.	Triveneto's Register of Renal Biopsies; North-Eastern region of Italy
Maixnerova et al. 7 2004	Czech Republic National 10.3 million	1994-2011 9,051 biopsies (A) 1,421 biopsies (P)	44.5 (A) 58/42 (A)	A+P	20.5	6.9	6.1	7.1	3.2	7.1	5.7	3.1	4.1	3.3	3.0	Pr.	Czech Registry of Renal Biopsies	
Perkowska et al. 15 2018	Poland National 38.5 million	2009-2014 7,349 biopsies (A) 2,939 biopsies (P)	NA 54/46 (A)	A	20.0	15.0	5.5	11.2	4.6	8.4	5.5	4.5	3.7	1.9	0.7	Pr.	Polish Registry of Renal Biopsies	
Brazdziute et al. 12 2015	Lithuania National 3.4 million	1994-2012 3,213 biopsies (A) 427 biopsies (P)	43.2 (A+P) 58/42 (A+P)	A+P	20.2	7.8	4.9	4.7	7.4	3.3	NA	6.6	1.2	6.1	2.7	Pr.	No formal registry, 11 centers *: population of Lithuania in 2003	
McCuirrie et al. 8 2009	UK Regional* 4.2 million	2002-2006 2,480 biopsies (A)	55.6 (A) 57/43 (A)	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ERA-EDTA PRD	Scottish renal biopsy registry *: 8-9 Scottish regions (82.4% of Scottish population)	
Wirta et al. 11 2008	Finland Regional* 0.4 million 0.8 million	1980-2000 3,310 biopsies (A+P)	38-52 (A+P) 59/41 (A+P)	A+P	21.7	2.4	3.1	7.3	2.4	NA	NA	NA	NA	9.0±14.7%	NA	SNO MED	No formal registry, 6 centers *: Western Finland, one university hospital (UH, 0.4 million) + 5 central hospitals (CH, 0.8 million) *: 38 yrs. in 1976, 52 yrs. in 2000 ± 9% at CH, 14.7% at UH	
Covic et al. 15 2006	Romania Regional* 6.2 biopsies (A)	1995-2004 506 biopsies (A)	38.5 (A) 52/48 (A)	A	19.1	7.6	5.6	7.4	19.5	7.8	5.4	3.1	1.5	NA	1.5	Pr.	Two referral centers, > 50% of all biopsies performed in Romania *: North-Eastern and Western Romania	
Naumovic et al. 17 2009	Serbia 1 center* 7.5 million	1987-2006 1,626 biopsies (A)	39.1 (A) 51/49 (A)	A	7.7	12.1	4.8	12.6	6.7	10.1	2.3	1.4	NA	2.7	3.6	Pr.	Single nephrology center in Serbia *: covers ~70% of all biopsies in Serbia	
Brkovic et al. 16 2018	Serbia 1 center* 7.2 million	2007-2014 665 biopsies (A)	42 (A) 50/50 (A)	A	9.0	12.5	3.8	17.3	4.8	17.7	4.4	0.9%	NA	~2.1	NA	Pr.	Single nephrology center in Serbia *: covers ~70% of all biopsies in Serbia	
O'Shaughnessy et al. 31 2018	Europe International NA	2006-2018 19,302 biopsies (A+P)	48 (A+P) 56/44 (A+P)	A+P	16.2	11.6	5.0	9.8	2.8	7.8	6.2	3.4	5.4	6.2	7.7	Pr.	13 centers in Europe and 1 in Saudi Arabia *: exact time frame not mentioned; †: inclusion of pediatric biopsies not explicitly mentioned in study	
FCGG registry	Belgium Regional 5.3 million	2017-2019 2,054 biopsies (A)	61.1 (A) 62/38 (A)	A	17.3	9.3	4.7	5.5	0.7	4.2	7.2	3.4	7.5	10.7	6.2	ERA-EDTA PRD	Flemish Collaborative Glomerulonephritis Group (FCGG) biopsy registry *: adult population	
Abbreviations: A: adult; AAV: ANCA-associated vasculitis and pauci-immune glomerulonephritis; AMY: amyloidosis; DKD: diabetic kidney disease; Dx: column showing the coding practice/list used in the study or registry; Freq.: column showing age category in which disease frequency was calculated (adult and/or pediatric biopsies); FSGS: focal segmental glomerulosclerosis; GN: glomerulonephritis; IgAN: IgA nephropathy; LN: lupus nephritis; MCD: minimal change disease; M/F: male/female distribution; MN: membranous nephropathy; MPGN: membranoproliferative glomerulonephritis; NA: not mentioned or not applicable; NScl: nephrosclerosis; P: pediatric; Pr.: proprietary coding list; TIN: tubulointerstitial nephritis; Yrs.: years.
Figure 1: Flowchart of kidney biopsy selection for final analysis
Figure 2: Categorization of histopathological and final clinical coding systems in the FCGG registry
Figure 3: Demographics and biopsy rate of biopsied adult patients

A. Biopsy rate according to age category in Flemish adult patients from 2017-2019.
B. Biopsy rate according to sex category in Flemish adult patients from 2017-2019.
C. Sex distribution in adult patients, shown for the total number of biopsies and for individual kidney diseases (ERA level 1, male proportion in blue, female proportion in red).

Abbreviations: AAV: ANCA-associated vasculitis and pauci-immune glomerulonephritis; Alp/TMD: Alport syndrome and thin basement membrane disease; AMY: amyloidosis; DKD: diabetic kidney disease; FSGS: focal segmental glomerulosclerosis; IgAN: IgA nephropathy; LN: lupus nephritis; MCD: minimal change disease; MN: membranous nephropathy; NScl: nephrosclerosis; TIN: tubulointerstitial nephritis; TMA: thrombotic microangiopathy.
Final clinical diagnoses of biopsied adult patients per kidney tissue compartment

Final clinical diagnoses are categorized according to the most frequently affected kidney tissue compartment (ERA level 2).
Figure 5: Most frequently biopsied kidney diseases in Flanders

The 10 most frequent final clinical diagnoses are shown (ERA level 1). Frequencies were calculated relative to the total number of adult biopsies (N=2,054). The nonspecific clinical categories ‘AKI/CKD, NOS’ (6.3%) and ‘glomerulopathy, NOS’ (3.7%) were omitted from the chart.

Abbreviations: AAV: ANCA-associated vasculitis and pauci-immune glomerulonephritis; AMY: amyloidosis; DKD: diabetic kidney disease; FSGS: focal segmental glomerulosclerosis; IgAN: IgA nephropathy; LN: lupus nephritis; MCD: minimal change disease; MN: membranous nephropathy; NScl: nephrosclerosis; TIN: tubulointerstitial nephritis.