Rapamycin protects testes against germ cell apoptosis and oxidative stress induced by testicular ischemia-reperfusion

Morteza Ghasemnejad-berenji 1, 2, 3, Mahmoud Ghazi-Khansari 1, Iraj Yazdani 1, 2, Seyed Soheil Saeedi Saravi 1, 2, 4, Maliehe Nobakht 5, Alireza Abdollahi 6, Javad Mohajer Ansari 5, Hojjat Ghasemnejad-berenji 6, Sarvin Pashapour 7, Ahmad Reza Dehpour 1, 2*

1 Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
2 Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
3 Department of Pharmacology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
4 Department of Pharmacology, Faculty of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
5 Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
6 Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
7 Department of Pathology, Urmia University of Medical Sciences, Urmia, Iran

ABSTRACT

Objective(s): Rapamycin is an immunosuppressant compound with a broad spectrum of pharmacological activities. In recent years, it has been used successfully to decrease ischemia-reperfusion injury in several organs systems. The purpose of the present study was to examine the effect of rapamycin on testicular ischemia-reperfusion injury.

Materials and Methods: Seventy-two adult male Wistar rats were divided into six groups: control (group1), sham-operated (Group2), T/D + DMSO as vehicle group (group3), and groups 4–6; respectively received 0.5, 1, and 1.5 mg kg⁻¹ of rapamycin, IP 30 min before detorsion. Ischemia was achieved by twisting the right testis 720° clockwise for 1 hr. The right testis of 6 animals from each group were excised 4 hr after detorsion for the measurement of lipid peroxidation, caspase-3, and antioxidant enzyme activities. Histopathological changes and germ cell apoptosis were determined by measuring mean of seminiferous tubes diameters (MSTD) and TUNEL test in right testis of 6 animals per group, 24 hr after detorsion.

Results: Testicular T/D caused increases in the apoptosis, malondialdehyde (MDA), and caspase-3 levels and decreases in the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPO) activities in ipsilateral tests (P<0.001). The rats treated with rapamycin had significant decreases in the MDA and caspase-3 levels and significant increases in the SOD, CAT and GPO activities in ipsilateral tests compared with the T/D group (P<0.001); germ cell apoptosis was decreased, and MSTD was improved.

Conclusion: Rapamycin administration during testicular torsion decreased ischemia/reperfusion (I/R) cellular damage.

Introduction

Testicular torsion is a true urologic emergency and a delay in its diagnosis and management can lead to loss of the testicle. Torsion is the most common cause of testicular loss in newborns, children and adolescent boys (1). Testicular torsion/detorsion (T/D) causes morphological and biochemical changes by I/R injury of the testicular tissue. This I/R injury is associated with over generation of reactive oxygen species (ROS) and reactive nitrogen species (2). Rapamycin (sirolimus), an antibiotic derived from Streptomyces hygroscopicus, is an FDA approved immunosuppressant drug (3). Rapamycin is a well-known specific inhibitor of the serine-threonine kinase mammalian target of rapamycin complex-1 (mTORC1). Recently, Calap-Quintana et al. (4) have reported that antioxidant defense mechanism of rapamycin is through the inactivation of mTORC1 signaling. Rapamycin targets several cellular functions such as cell growth, proliferation, and autophagic cell death, and plays a critical role in pathophysiology of cancer (5), diabetes (6), neurological disorders (7), and cardiovascular diseases (8). There is also evidence, indicating that rapamycin inhibited apoptosis by preventing phosphorylation of proapoptotic proteins such as p53 and activation of the mitochondrial cell death pathway (9). In addition, rapamycin enabled to
incision was sutured (4-0 nonabsorbable) and animals were kept until harvesting time. In the sham-operated animals, only surgical stress was applied by immediately retracting and replacing the spermatic cord.

Biochemical assays
To evaluate the oxidative stress damage, biochemical assays in tissue were performed following ipsilateral orchectomy of right testis 4 hr after detorsion. The samples were rapidly stored in -80°C for measurement of tissue malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and caspase-3 levels changes.

Measurement of tissue MDA level
Concentrations of free MDA, an end product, and marker of lipid peroxidation in cell membrane (15), were assayed using thiobarbituric acid reactive substance (TBARS), as described by Ohkawa et al. (16). In brief, testes were homogenized in 1.15% KCl to make a 10% (w/v) homogenate. Then, 0.9 ml of 1.8% sodium dodecyl sulphate (SDS), 1.5 ml of 20% acetic acid solution (pH = 3.5) and 1.5 ml of aqueous TBA solution were regularly added to 0.1 ml of tissue homogenates. The prepared homogenates were centrifuged at 4000 rpm for 10 min. The supernatant was applied to spectrophotometrically determine the MDA level (λ = 532 nm).

CAT activity
CAT activity was spectrophotometrically determined in accordance with the method established by Aebi (17). Tissue sections were homogenized in 1% Triton X-100 and were diluted with potassium phosphate buffer. The reaction was initiated following addition of hydrogen peroxide (H₂O₂), and CAT activity was quantified based on ability of tissue CAT to decompose H₂O₂ by calculating the decrease in absorbance at 240 nm.

GPx activity
GPx activity was measured by modified method of Paglia and Valentine (18). The enzymatic reaction was initiated following addition of H₂O₂ and the alteration in absorbance at 340 nm was applied to measure GPx activity using a spectrophotometer. GPx catalyzed oxidation of glutathione (GSH) by reduction of H₂O₂ to H₂O. This reaction is coupled with oxidation of nicotinamide adenine dinucleotide phosphate (NADPH) to NADPH+.

SOD activity
Using the Paoletti and Mocali method (19), SOD activity level was assayed based on its ability to inhibit NADH oxidation in the reaction mixture and conversion of superoxide anions (O₂⁻) to H₂O₂ and molecular oxygen (O₂). SOD activity was determined by decreased absorbance at 340 nm during the reaction.
Rapamycin protects testis against T/D

Caspase-3 level

The caspase-3 level was measured using ELISA detection kit based on the Biotin double antibody sandwich technology. The colorimetric alteration of samples at 450 nm was applied to measure caspase-3 concentration (ng ml\(^{-1}\)) by drawing a standard curve (20).

Histopathological analysis

Histological alterations were analyzed by ipsilateral orchiectomy 24 hr after detorsion, following a rapid cervical dislocation. The specimens were fixed in 10% phosphate-buffered formalin, and post-fixed in 70% ethanol, then three 5 μm thick sections were prepared from the upper, lower, and mid portions. After deparaffinization of the sections and staining with haematoxylin–eosin (H&E), slides were evaluated using light microscopy at 100× magnification by two independent reviewers who were blinded to the study design (Figure 1).

To quantify testicular histological injury, the 4-level grading scale of Cosentino’s score was used (21):

Grade 1: normal structure with regular arrangement of germ cells

Grade 2: testicular injuries with less orderly, noncohesive germ cells and loosely packed seminiferous tubules

Grade 3: testicular injuries with disordered, sloughed germ cells with shrunken, pyknotic nuclei, and less distinct in seminiferous tubule borders

Grade 4: testicular injuries with coagulative germ cell necrosis and intensely packed seminiferous tubules.

Moreover, for each sample, MSTD was calculated by measurement of 10 separate roundest seminiferous tubules using a light microscope-adaptable micrometer.

Evaluation of germ cell apoptosis using TUNEL assay

Immunohistochemical terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling (TUNEL) staining method distinguishes cleavage of genomic DNA during apoptosis, which presents in situ DNA fragmentation in germ cells. Semi quantitative assessment of apoptotic nuclei in specimens was performed using the APO-Brdu-IHC kit according to the manufacturer’s instructions. 5 μm sections were cut and processed for TUNEL assay. Of each specimen, one hundred seminiferous tubule cross sections were evaluated for the appearance of apoptotic nuclei with intense green staining by manual counting at 200× magnifications under light microscopy by two experts who were unaware of the study design, and the mean number of apoptotic nuclei per tubule cross section was used for statistical analysis. Only circular tubular cross sections cut in bold face were used in these studies (10, 11, 13).

Statistical analysis

All statistical data and significance tests were performed by using Sigma plot version 12. All data were expressed as mean±SD. The differences between the experimental groups were analyzed using ANOVA. Individual groups were compared using Tukey’s multiple comparison tests. \(P<0.05 \) was considered statistically significant.

Results

None of the study groups showed any significant differences in parameters between control and sham-operated groups.

Biochemical assays

The concentration of testicular MDA and SOD, CAT, GPx, and caspase-3 activities in studied groups are shown in Table 1. There was significant difference in the evaluated antioxidant enzyme levels between the T/D and control groups. The tissue MDA levels in the

Group	MDA (nmol g\(^{-1}\) wet tissue)	CAT (IU g\(^{-1}\) wet tissue)	SOD (IU g\(^{-1}\) wet tissue)	GPx (IU g\(^{-1}\) wet tissue)	Caspase-3 activity (ng ml\(^{-1}\))
Control	112.15 ± 6.13	364.19 ± 4.94	199.23 ± 10.71	741.53 ± 52.26	0.264 ± 0.027
Sham-operated	115.24 ± 21.43	357.62 ± 13.02	1961.39 ± 19.78	713.29 ± 28.98	0.303 ± 0.014
T/D	194.02 ± 11.15\(^{***}\)	251.31 ± 16.53\(^{***}\)	1495.15 ± 25.01\(^{***}\)	512.24 ± 31.99\(^{***}\)	0.567 ± 0.021\(^{***}\)
Rapa 0.5 mg kg\(^{-1}\)	163.50 ± 6.42\(^{***}\)	273.24 ± 9.12\(^{***}\)	1641.14 ± 17.21\(^{***}\)	598.49 ± 14.16\(^{***}\)	0.470 ± 0.024\(^{***}\)
Rapa 1 mg kg\(^{-1}\)	137.64 ± 5.47\(^{***}\)	298.42 ± 12.24\(^{***}\)	1706.49 ± 45.47\(^{***}\)	614.10 ± 23.17\(^{***}\)	0.336 ± 0.036\(^{***}\)
Rapa 1.5 mg kg\(^{-1}\)	121.46 ± 14.15\(^{***}\),\(^{***}\)	324.21 ± 20.63\(^{***}\),\(^{***}\)	1881.58 ± 50.34\(^{***}\),\(^{***}\)	641.47 ± 12.54\(^{***}\)	0.315 ± 0.027\(^{***}\),\(^{***}\)

T/D, torsion/detorsion; MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase

\(^{***}\) \(P<0.001 \) compared with the control group

\(^{***}\) \(P<0.001 \) compared with the T/D group

\(^{***}\) \(P<0.01 \) compared with the T/D group

\(^{***}\) \(P<0.05 \) compared with group receiving rapamycin at dose of 0.5 mg kg\(^{-1}\)

\(^{***}\) \(P<0.001 \) compared with groups receiving rapamycin at doses of 0.5 and 1 mg kg\(^{-1}\)

Iran J Basic Med Sci, Vol. 20 No.8, Aug 2017 907
Table 2: Histological evaluation of the testes using mean seminiferous tubular diameter (MSTD) values and Cosentino’s scores 24 hr after detorsion in the studied rats

Group	MSTD (µm)	Grade
Control	291.4 ± 21.52	1
Sham-operated	289.3 ± 8.48	1
T/D	207.0 ± 22.41	3
Rapa 0.5 mg kg⁻¹	232.8 ± 5.81	2
Rapa 1 mg kg⁻¹	248.3 ± 19.71	2
Rapa 1.5 mg kg⁻¹	271.8 ± 22.62	2

MSTD: mean of seminiferous tubules diameters

Grades: 1, Minimal or no evidence of injury; 2, Slight injury; 3, Mild injury; 4, Moderate injury

†P<0.05 compared with control group

***P<0.001 compared with T/D group

†††P<0.001 compared with group receiving rapamycin at dose of 0.5 mg kg⁻¹

‡‡‡P<0.001 compared with group receiving rapamycin at dose of 0.5 mg kg⁻¹

 rapamycin injected animals (0.5, 1, and 1.5 mg kg⁻¹, IP) were significantly lower than T/D animals. These values were significant between T/D and rapamycin 0.5 mg kg⁻¹, rapamycin 0.5 and 1 mg kg⁻¹ and rapamycin 1 and 1.5 mg kg⁻¹; P<0.001, P<0.05, and P<0.01, respectively. The activity of SOD, CAT, and GPx enzymes in the T/D rats significantly increased following injection of dose-dependent rapamycin (P<0.001). On the other hand, treatment with rapamycin could not completely normalize the caspase-3 activity, but dose-dependently reduced caspase-3 activity in ischemic/reperfused tissue (P<0.001).

Histopathological analysis

As expected, the control and sham-operated animals (groups 1 and 2) demonstrated a normal architecture of the seminiferous tubules and interstitium in ipsilateral testes and had intact germinal epithelium with an average thickness of cell layers. There were some histopathological changes such as degeneration, desquamation, and disorganization, reduction in germinal cell counts, interstitial edema, and capillary congestion in the testes of rats from the T/D group (group 3). These histopathological changes were also present to a similar extent in testes of rats from group 4. However, these histopathological changes were improved significantly in groups 5 and 6. In other words, the administration of different doses of rapamycin to rats resulted in an improvement in these histopathological parameters dose-dependently

TUNEL assay

Immunohistochemical studies confirm the index of germ cells following TUNEL assay (Figure 2). By double labeling, alterations of the anatomical structures and proportion of the TUNEL-positive nuclei/surrounding normal nuclei (%) were determined. Germ cell apoptosis indices were significantly higher in T/D and rapamycin groups versus control and sham-operated groups; however, rapamycin treatment dose-dependently reduced the apoptosis in rapamycin groups compared with the T/D group (Table 3).

3. There were differences between groups 4, 5, and 6. MSTD in the testis of group 6 was more than groups 4 and 5. In other words, the administration of different doses of rapamycin to rats resulted in an improvement in these histopathological parameters dose-dependently

Figure 1. Histological appearances in ipsilateral testes groups: control, sham-operated, T/D, rapamycin 0.5 mg Kg⁻¹ + T/D, rapamycin 1 mg kg⁻¹ + T/D and rapamycin 1.5 mg kg⁻¹ + T/D. Ischemic alterations and coagulative necrosis were observed, and the orderly arrangement of germ cells was impaired in the T/D group. After treatment with rapamycin, spermatogenesis was restarted and orderly structure of germ cells with a few mature spermatozoa was observed within seminiferous tubules (H&E; magnification × 100).

Figure 2. Apoptotic nuclei and seminiferous tubules using TUNEL assay. Apoptotic germ cells significantly increased following T/D. After treatment with rapamycin, especially at dose of 1.5 mg kg⁻¹, apoptosis index and percentage of seminiferous tubules significantly decreased and only a few apoptotic nuclei were observed (magnification × 200).
Rapamycin protects testis against T/D

Table 3. Apoptotic germ cell index and percentage of apoptotic tubules in the rat testes determined using the TUNEL assay

Group	Mean apoptotic nuclei/tube	Apoptotic tubules (%)
Control	0.73 ± 0.81	12.43 ± 3.071
Sham-operated	0.81 ± 0.23	16.73 ± 2.429
T/D	9.93 ± 0.76***	61.41 ± 2.361***
Rapa 0.5 mg kg⁻¹	6.49 ± 4.63	49.21 ± 1.481
Rapa 1 mg kg⁻¹	5.12 ± 1.42***	42.37 ± 2.345***
Rapa 1.5 mg kg⁻¹	3.21 ± 2.43***	35.83 ± 2.154***

The percentage of tubules in specimens in which at least 1 TUNEL-stained nucleus is observed.

***P < 0.001 compared with control group

†††P < 0.001 compared with T/D group

Discussion

Testicular torsion is a medical emergency occurring primarily in adolescent males and young men with an incidence estimated to be at least 1 in 158 males by the age of 24 years. Surgical detorsion should be done promptly to avoid loss of function of the ipsilateral testis. Despite the unequivocal benefit of reperfusion of blood to the testis interstitium, ROS over-production, oxidative stress, cellular dysfunction, and promoting apoptosis (23, 24). To date, a number of chemicals and drugs have been successfully used to reduce the I/R injury in animal models of testicular torsion, but few of them are currently in clinical use (25-28).

Rapamycin is a macrolide antibiotic that was initially found to have antifungal effects (29). It has been used for several years as an FDA-approved immunosuppressant to prevent graft/tissue rejection after transplantation (30). By binding with FKBP-12 (FK506-binding protein), rapamycin may inhibit mTOR and prevent further phosphorylation of P70S6K, 4E-BP1, and indirectly, other proteins involved in transcription, translation, and cell cycle control (31). In addition, rapamycin promotes autophagy by inhibiting mTOR and is also widely used as an autophagy inducer (32). Rapamycin also has antitumor effects and inhibits the immune system (33, 34).

In this study for the first time, we report that rapamycin could induce a protective effect against I/R injury in the rat testis. It is well established that 1 hr 720° testicular torsion leads to a decrease in antioxidant enzyme levels as well as an increase in MDA and caspase-3 levels compared to the sham operated group when measured 4 hr after reperfusion. In addition, germ cell-specific apoptosis significantly increases when assessed by the in situ TUNEL technique 24 hr after detorsion. Based on our study, administration of the specific doses of rapamycin significantly decreased the MDA and caspase-3 levels and increased the activity of antioxidant enzymes in the animals undergoing testicular T/D. Furthermore, the germ cell apoptosis index and percentage of apoptotic seminiferous tubules were significantly reduced following intra-peritoneal injection of rapamycin. We found that rapamycin significantly decreases the oxidative stress and our results are also in concurrence with the recent reports which concluded that rapamycin attenuates cisplatin induced oxidative damage (35) and alleviates oxidative stress induced damage in rat erythrocytes (29). Beneficial effects of rapamycin have been shown in I/R models (36-40). Early literature documented its T-cell-independent anti-inflammatory effects by down regulating TNF-α and decreasing neutrophil chemoattractant, in small bowel and liver models (39, 40). Its organ protective effects were also shown in kidneys and pancreases by improving microcirculation post I/R (36, 41). Direct cytoprotective effects of rapamycin were demonstrated in cardiac infarct models and in vitro cell cultures. Rapamycin has been shown to protect cardiomyocytes against necrosis and apoptosis induced by simulated ischemia and reoxygenation (42, 43). The opening of the mitochondrial K_{ATP} channel and activation of JAK2-Stat3 signaling pathway seemed to play key roles (42, 43). Previous studies illustrated that testicular I/R can induce oxidant/antioxidant imbalance which leads to oxidative stress inflammation and ultimately germ cell apoptosis (10). Rapamycin acts through inhibition of mTOR, which has been attributed to supporting an antioxidant defense system by inducing autophagy. Rapamycin induced autophagy ensures the continuous removal of ROS-induced damaged/misfolded macromolecules to maintain the protein homeostasis and physiological functionality of the cells and tissues (44).

Several studies have shown that opening of mitoK_{ATP} channels is one of the common mediators of acute and delayed preconditioning, induced by both pathophysiological stressors (45-47). Opening of mitoK_{ATP} during the ischemic post-Conditioning phase leads to the generation of (ROS) (48, 49). ROS then acts as a second messenger to activate the downstream pathway of protective kinases, including protein kinase C and others (50). This small burst of ROS generated by the mitoK_{ATP} channel prior to ischemia acts to prevent the larger, damaging burst during reperfusion/reoxygenation (47, 51, 52). It is reasonable to speculate that the mitoK_{ATP} opening property of rapamycin may lead to a reduced level of ROS generation during reperfusion/reoxygenation, and thus to the protective effects of this drug against inflammation, cell necrosis, and apoptosis. Although it requires further investigation, there are some...
explanations of how rapamycin may open mitoKATP channels. First of all, as discussed above, rapamycin-induced mTOR inhibition may enhance compensatory upregulation of upstream survival kinases, such as PI3K and Akt (53, 54). These kinases, in turn, are key mediators in the activation of mitoKATP channels (50). In addition, it is certainly possible that spatial colocalization of mTOR with the mitochondria allows for physiological regulation of mitochondrial membrane channel activity (55). Moreover, as also discussed above, rapamycin may upregulate NO and several studies have found that NO consequently plays an important role in the opening of mitoKATP channels (53, 56).

Conclusion

We determined that rapamycin treatment before reperfusion may have the potential to decrease the histologic damage that occurs after testicular torsion. It was found that the most effective dose of different doses of rapamycin administrated was 1.5 mg kg⁻¹. As this drug is used in humans to suppress the immune system, we propose that rapamycin may have the clinical applicability in patients with torsion of the testicle. For this purpose, further clinical studies will be needed.

Acknowledgment

This research has been supported by Tehran University of Medical Sciences and Health Services, Tehran, Iran (grant 28921-30-0924).

References

1. Visser AJ, Heyns CF. Testicular function after torsion of the spermatic cord. BJU Int 2003; 92:200-203.
2. Filho DW, Torres MA, Bordin AL, Creyczynski-Pasa TB, Boveris A. Spermatic cord torsion, reactive oxygen and nitrogen species and ischemia–reperfusion injury. Mol Aspects Med 2004; 25:199-210.
3. Miller JL. Sirolimus approved with renal transplant indication. Am J Health Syst Pharm 1999; 56:2177-2178.
4. Calap-Quintana P, Soriano S, Llorens JV, Al-Ramahi I, Botas J, Moltó MD, et al. TORC1 inhibition by rapamycin promotes antioxidant defences in a drosophila model of Friedreich’s ataxia. PLoS One 2015; 10:e0132376.
5. Wang Y, Liu Y, Lu J, Zhang P, Wang Y, Xu Y, et al. Rapamycin inhibits FBXW7 loss-induced epithelial–mesenchymal transition and cancer stem cell-like characteristics in colorectal cancer cells. Biochem Biophys Res Commun 2013; 434:352-356.
6. Long S, Rieck M, Sanda S, Bollyky JB, Samuels P, Goland R, et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 2012; 61:2340-2348.
7. Chong ZZ, Shang YC, Zhang L, Wang S, Maihese K. Mammalian target of rapamycin: hitting the bull’s-eye for neurological disorders. Oxid Med Cell Longev 2010; 3:374-391.
8. Chong ZZ, Maihese K. Mammalian target of rapamycin signaling in diabetic cardiovascular disease. Cardiovasc Diabetol 2012; 11:45.
9. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110:163-175.
10. Payyavula S, Kümehr S, Tavangar SM, Delphour AR. Ethyl pyruvate reduces germ cell–specific apoptosis and oxidative stress in rat model of testicular torsion/detorsion. J Pediatr Surg 2008; 43:705-712.
11. Turner T, Tung K, Tomomasa H, Wilson LW. Acute testicular ischemia results in germ cell-specific apoptosis in the rat. Biol Reprod 1997; 57:1267-1274.
12. Koji T, Hishikawa Y, Ando H, Nakanishi Y, Kobayashi N. Expression of Fas and Fas ligand in normal and ischemia–reperfusion testes: involvement of the Fas system in the induction of germ cell apoptosis in the damaged mouse testis. Biol Reprod 2001; 64:946-954.
13. Yazdani I, Ghazi-Khamarsi M, Saedii Saravi SS, Nobakht M, Majdani R, Rezayat SM, et al. Nortriptyline protects testes against germ cell apoptosis and oxidative stress induced by testicular ischaemia/reperfusion. Andrologia 2016; 49:2.
14. Zhang WH, Wang H, Wang X, Narayanan MV, Stavrovskaya IG, Kristal BS, et al. Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury. Stroke 2008; 39:455-462.
15. Motaghinejad M, Karimian M, Motaghinejad O, Shabab B, Yazdani I, Fatima S. Protective effects of various dosage of Curcumin against morphine induced apoptosis and oxidative stress in rat isolated hippocampus. Pharmaco 2015; 67:230-235.
16. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95:351-358.
17. Aebi H. Catalase in vitro. Methods Enzymol 1984; 105:121-126.
18. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70:158-169.
19. Paoletti F, Mocalli A. Determination of superoxide dismutase activity by purely chemical system based on NAD (P)H Oxidation. Methods Enzymol 1990; 186:209-220.
20. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomasselli KJ, et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 1998; 18:3659-3668.
21. Osentino MJ, Nishida M, Rabinowitz R, Cockett AT. Histopathology of prepubertal rat testes subjected to various durations of spermatic cord torsion. J Androl 1986; 7:230-235.
22. Turner TT, Bang HJ, Lysiak JL. The molecular pathology of experimental testicular torsion suggests adjunct therapy to surgical repair. J Urol 2004; 172:2574-2578.
23. Lysiak JJ, Nguyen QA, Kirby JL, Turner TT. Ischemia–reperfusion of the murine testis stimulates the expression of proinflammatory cytokines and activation of c-jun N-terminal kinase in a pathway to E-selectin expression. Biol Reprod 2003; 69:202-210.
24. Shimizu S, Saito M, Kinoshita Y, Shomori K, Satoh I, Satoh K. Ischemic preconditioning and post-conditioning to decrease testicular torsion-detorsion injury. J Urol 2009; 182:1637-1643.
25. Barlas M, Hatiboglu C. The effect of nitric oxide in testicular ischemia-reperfusion injury. Int Urol Nephrol 2002; 34:81-86.
Rapamycin protects testis against T/D

26. Beheshtian A, Salmasi AH, Payabvash S, Kioumehr S, Nezami BG, Rahimpour S, et al. Role of endogenous cannabinoids in ischemia-reperfusion injury following testicular torsion in rats. Int J Urol 2008; 15:449-454.
27. Savaş Ç, Dindar H, Aras T, Yücesan S. Pentoxifylline improves blood flow to both testes in testicular torsion. Int Urol Nephrol 2002; 33:81-85.
28. Yıldız H, Durmus AS, Şimşek H, Yaman M. Protective effect of sildenafl citrate on contralateral testis injury after unilateral testicular torsion/detorsion. Clinics 2011; 66:137-142.
29. Singh AK, Singh S, Garg G, Rizvi SI. Rapamycin alleviates oxidative stress induced damage in rat erythrocytes. Biochem Cell Biol 2016; 94:471-479.
30. Podbielski J, Schoenberg L. Use of sirolimus in kidney transplantation. Prog Transplant 2001; 11:29-32.
31. Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 2005; 16:525-537.
32. Kamada Y, Sekito T, Ohsumi Y.Autophagy in yeast: ATOR-mediated response to nutrient starvation. Germany: TQR, Springer; 2004. P. 73-94.
33. Hessol H, Dilling MB, Liu LN, Danks MK, Shikata T, Sekulic A, et al. Studies on the mechanism of resistance to rapamycin in human cancer cells. Mol Pharmacol 1998; 54:815-824.
34. Koehl GE, Andrassy J, Guba M, Richter S, Kroemer A, Scherer MN, et al. Rapamycin protects allografts from rejection while simultaneously attacking tumors in immunosuppressed mice. Transplantation 2004; 77:1319-1326.
35. Fang B, Xiao H. Rapamycin alleviates cisplatin-induced ototoxicity in vivo. Biochem Biophys Res Commun 2014; 448:43-47.
36. Inman SR, Davis NA, Olson KM, Lukašek VA, McKinney MR, Seminero JL. Rapamycin preserves renal function compared with cyclosporine A after ischemia/reperfusion injury. Urology 2003; 62:750-754.
37. Lieberthal W, Fuhr R, Andry CC, Remple H, Abernathy VE, Koh JS, et al. Rapamycin impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Physiol Renal Physiol 2001; 281:F693-F706.
38. Lui SL, Chan KW, Tsang R, Yung S, Lai KN, Chan TM. Effect of rapamycin on renal ischemia-reperfusion injury in mice. Transpl Int 2006; 19:834-839.
39. Matsuda T, Yamaguchi Y, Matsumura F, Akizuki E, Okabe K, Liang J, et al. Immunosuppressants decrease neutrophil chemotactant and attenuate ischemia/reperfusion injury of the liver in rats. J Trauma 1998; 45:475-481.
40. Puglisi RN, Strande L, Santos M, Schultz G, Hewitt CW, Whalen TV. Beneficial effects of cyclosporine and rapamycin in small bowel ischemic injury. J Surg Res 1996; 65:115-118.
41. Serr F, Lauer H, Armann B, Ludwig S, Thierry J, Fiedler M, et al. Sirolimus improves early microcirculation, but impairs regeneration after pancreatic ischemia-reperfusion injury. Am J Transplant 2007; 7:48-56.
42. Das A, Salloum FN, Durrant D, O'kaili R, Kukreja RC. Rapamycin protects against myocardial ischemia–reperfusion injury through JAK2–STAT3 signaling pathway. J Mol Cell Cardiol 2012; 53:858-869.
43. Khan SA, Salloum F, Das A, Xi L, Vetrovec GW, Kukreja RC. Rapamycin confers preconditioning-like protection against ischemia–reperfusion injury in isolated mouse heart and cardiomyocytes. J Mol Cell Cardiol 2006; 41:256-264.
44. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011; 147:728-741.
45. Gross GJ, Peart JN. KATP channels and myocardial preconditioning: an update. Am J Physiol Heart Circ Physiol 2003; 285:H921-H930.
46. Liu Y, Sato T, Seharaseyon J, Szewczyk A, O’rourke B, Marban E. Mitochondrial ATP-dependent potassium channels: viable candidate effectors of ischemic preconditioning. Ann N Y Acad Sci 1999; 874:27-37.
47. O’rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 2004; 94:420-432.
48. Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 2001; 88:802-809.
49. Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, et al. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ Res 2000; 87:460-466.
50. Oldenburg O, Cohen MV, Downey JM. Mitochondrial K(ATP) channels in preconditioning. J Mol Cell Cardiol 2003; 35:569-575.
51. Dzeja PP, Bast P, Ozcan C, Valverde A, Holmuhamedov EL, Van Wylen DG, et al. Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. Am J Physiol Heart Circ Physiol 2003; 284:H1049-H1056.
52. Narayan P, Mentzer RM, Lasley RD. Adenosine A1 receptor activation reduces reactive oxygen species and attenuates stunning in ventricular myocytes. J Mol Cell Cardiol 2001; 33:121-129.
53. O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. mTOR inhibition induces upstream receptor tyrrosine kinase signaling and activates Akt. Cancer Res 2006; 66:1500-1508.
54. Shi Y, Yan H, Frest P, Gera J, Lichtenstein A. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor-substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 2005; 4:1533-1540.
55. Desai BN, Myers BR, Schreiber SL. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc Natl Acad Sci U S A 2002; 99:4319-4324.
56. Sasaki N, Sato T, Ohler A, O’rourke B, Marbán E. Activation of mitochondrial ATP-dependent potassium channels by nitric oxide. Circulation 2000; 101:439-445.