Optical Integral and Sum Rule Violation

Saurabh Maiti, Andrey V. Chubukov

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA

(Dated: January 13, 2010)

The purpose of this work is to investigate the role of the lattice in the optical Kubo sum rule in the cuprates. We compute conductivities, optical integrals W, and ΔW between superconducting and normal states for 2-D systems with lattice dispersion typical of the cuprates for four different models – a dirty BCS model, a single Einstein boson model, a marginal Fermi liquid model, and a collective boson model with a feedback from superconductivity on a collective boson. The goal of the paper is two-fold. First, we analyze the dependence of W on the upper cut-off (ω_c) placed on the optical integral because in experiments W is measured up to frequencies of order bandwidth. For a BCS model, the Kubo sum rule is almost fully reproduced at ω_c equal to the bandwidth. But for other models only 70%-80% of Kubo sum rule is obtained up to this scale and even less so for ΔW, implying that the Kubo sum rule has to be applied with caution. Second, we analyze the sign of ΔW. In all models we studied ΔW is positive at small ω_c, then crosses zero and approaches a negative value at large ω_c, i.e. the optical integral in a superconductor is smaller than in a normal state. The point of zero crossing, however, increases with the interaction strength and in a collective boson model becomes comparable to the bandwidth at strong coupling. We argue that this model exhibits the behavior consistent with that in the cuprates.

I. INTRODUCTION

The analysis of sum rules for optical conductivity has a long history. Kubo, in an extensive paper in 1957, used a general formalism of a statistical theory of irreversible processes to investigate the behavior of the conductivity in electronic systems. For a system of interacting electrons, he derived the expression for the integral of the real part of a (complex) electric conductivity $\sigma(\Omega)$ and found that it is independent on the nature of the interactions and reduces to

$$\int_0^\infty Re \sigma(\Omega) d\Omega = \frac{\pi ne^2}{2 m}$$ \hspace{1cm} (1)

Here n is the density of the electrons in the system and m is the bare mass of the electron. This expression is exact provided that the integration extends truly up to infinity, and its derivation uses the obvious fact that at energies higher than the total bandwidth of a solid, electrons behave as free particles.

The independence of the r.h.s. of Eq. (1) on temperature and the state of a solid (e.g., a normal or a superconducting state – henceforth referred to as NS and SCS respectively) implies that, while the functional form of $\sigma(\Omega)$ changes with, e.g., temperature, the total spectral weight is conserved and only gets redistributed between different frequencies as temperature changes. This conservation of the total weight of $\sigma(\Omega)$ is generally called a sum rule.

One particular case, studied in detail for conventional superconductors, is the redistribution of the spectral weight between normal and superconducting states. This is known as Ferrel-Glover-Tinkham (FGT) sum rule:

$$\int_0^\infty Re \sigma_{NS}(\Omega) = \int_0^\infty Re \sigma_{sc}(\Omega) + \frac{\pi n_s e^2}{2m}$$ \hspace{1cm} (2)

where n_s is the superfluid density, and $\pi n_s e^2/(2m)$ is the spectral weight under the δ-functional piece of the conductivity in the superconducting state.

In practice, the integration up to an infinite frequency is hardly possible, and more relevant issue for practical applications is whether a sum rule is satisfied, at least approximately, for a situation when there is a single electron band which crosses the Fermi level and is well separated from other bands. Kubo considered this case in the same paper of 1957 and derived the expression for the “band”, or Kubo sum rule

$$\int_0^\infty Re \sigma(\Omega) d\Omega = W_K = \frac{\pi e^2}{2N} \sum \nabla_{k_x}^2 \varepsilon_k n_k$$ \hspace{1cm} (3)

where n_k is the electronic distribution function and ε_k is the band dispersion. Prime in the upper limit of the integration has the practical implication that the upper limit is much larger than the bandwidth of a given band which crosses the Fermi level, but smaller than the frequencies of interband transitions. Interactions with external objects, e.g., phonons or impurities, and interactions between fermions are indirectly present in the distribution function which is expressed via the full fermionic Green’s function as $n_k = T \sum_m G(\tilde{k}, \omega_m)$. For $\epsilon_k = k^2/2m$, $\nabla_{k_x}^2 \varepsilon_k = 1/m$, $W_K = \pi n e^2/(2m)$, and Kubo sum rule reduces to Eq. (1). In general, however, ε_k is a lattice dispersion, and Eqs. (1) and (3) are different. Most important, W_K in Eq. (3) generally depends on T and on the state of the system because of n_k. In this situation, the temperature evolution of the optical integral does not reduce to a simple redistribution of the spectral weight – the whole spectral weight inside the conduction band changes with T. This issue was first studied in detail by Hirsch who introduced the now-frequently-used notation “violation of the conductivity sum rule”.

In reality, as already pointed out by Hirsch, there is no true violation as the change of the total spectral weight...
in a given band is compensated by an appropriate change of the spectral weight in other bands such that the total spectral weight, integrated over all bands, is conserved, as in Eq. \(\text{(1)} \). Still, non-conservation of the spectral weight within a given band is an interesting phenomenon as the degree of non-conservation is an indicator of relevant energy scales in the problem. Indeed, when relevant energy scales are much smaller than the Fermi energy, i.e., changes in the conductivity are confined to a near vicinity of a Fermi surface (FS), one can expand \(\varepsilon_N \) near \(k_F \) as \(\varepsilon_N = v_F (k - k_F) + (k - k_F)^2 / (2m_B) + O((k - k_F)^3) \) and obtain \(\nabla_{k_F}^2 \varepsilon_N \approx 1 / m_B \) [this approximation is equivalent to approximating the density of states (DOS) by a constant]. Then \(W_K \) becomes \(\pi n e^2 / (2m_B) \) which does not depend on temperature. The scale of the temperature dependence of \(W_K \) is then an indicator how far in energy the changes in conductivity extend when, e.g., a system evolves from a normal metal to a superconductor. Because relevant energy scales increase with the interaction strength, the temperature dependence of \(W_K \) is also an indirect indicator of whether a system is in a weak, intermediate, or strong coupling regime.

In a conventional BCS superconductor the only relevant scales are the superconducting gap \(\Delta \) and the impurity scattering rate \(\Gamma \). Both are generally much smaller than the Fermi energy, so the optical integral should be almost \(T \)-independent, i.e., the spectral weight lost in a transition there is no exact relation between increased \(W(c) \) and \(\varepsilon_F \). So the optical integral should be still non-conservation of the spectral weight, integrated over all bands, is conserved, as in Eq. \(\text{(1)} \).

This is the essence of FGT sum rule \(\text{(2)} \). In a dirty limit, this scale is larger, \(O(\Gamma) \), but still \(W_K \) is \(T \)-independent and there was no “violation of sum rule”.

The issue of sum rule attracted substantial interest in the studies of high \(T_c \) cuprates \(8–16,18–20 \), in which pairing is without doubts a strong coupling phenomenon. From a theoretical perspective, the interest in this issue was originally triggered by a similarity between \(W_K \) and the kinetic energy \(K = 2 \sum \varepsilon_{l F} \delta_{l F} \). For a model with a simple tight binding cosine dispersion \(\varepsilon_k \propto (\cos k_x + \cos k_y) \), \(\pi^2 \varepsilon_F^2 \sim -\varepsilon_F \) and \(W_K = -K \). For a more complex dispersion there is no exact relation between \(W_K \) and \(K \), but several groups argued \(17,19,28 \) that \(W_K \) can still be regarded as a good monitor for the changes in the kinetic energy. Now, in a BCS superconductor, kinetic energy increases below \(T_c \) because \(n_k \) extends to higher frequencies (see Fig.2). At strong coupling, \(K \) not necessary increases because of opposite trend associated with the fermionic self-energy: fermions are more mobile in the SCS due to less space for scattering at low energies than they are in the NS. Model calculations show that above some coupling strength, the kinetic energy decreases below \(T_c \). While, as we said, there is no one-to-one correspondence between \(K \) and \(W_K \), it is still likely that, when \(K \) decreases, \(W_K \) increases.

A good amount of experimental effort has been put into addressing the issue of the optical sum rule in the \(c \)-axis and in-plane conductivities \(14–15 \) in overdoped, optimally doped, and underdoped cuprates. The experimental results demonstrated, above all, outstanding achievements of experimental abilities as these groups managed to detect the value of the optical integral with the accuracy of a fraction of a percent. The analysis of the change of the optical integral between normal and SCS is even more complex because one has to (i) extend NS data to \(T < T_c \) and (ii) measure superfluid density with the same accuracy as the optical integral itself.

The analysis of the optical integral showed that in underdoped cuprates it definitely decreases below \(T_c \), in consistency with the expectations at weak coupling \(1 \). For overdoped cuprates, all experimental groups agree that a relative change of the optical integral below \(T_c \) gets much smaller. There is no agreement yet about the sign of the change of the optical integral: Molegraaf \(et \ al. \) and Santander-Syro \(et \ al. \) argued that the optical integral increases below \(T_c \), while Boris \(et \ al. \) argued that it decreases.

Theoretical analysis of these results \(21,22,25,28,30 \) added one more degree of complexity to the issue. It is tempting to analyze the temperature dependence of \(W_K \) and relate it to the observed behavior of the optical integral, and some earlier works \(25,28,30 \) followed this route. In the experiments, however, optical conductivity is integrated only up to a certain frequency \(\omega_c \), and the quantity which is actually measured is

\[
W(\omega_c) = \int_0^{\omega_c} \text{Re} \sigma(\Omega) \, d\Omega = W_K + f(\omega_c)
\]

\[
f(\omega_c) = -\int_{\omega_c}^{\infty} \text{Re} \sigma(\Omega) \, d\Omega
\]

The Kubo formula, Eq. \(\text{(3)} \) is obtained assuming that the second part is negligible. This is not guaranteed, however, as typical \(\omega_c \sim 1–2 \text{eV} \) are comparable to the bandwidth.

The differential sum rule \(\Delta W \) is also a sum of two terms

\[
\Delta W(\omega_c) = \Delta W_K + \Delta f(\omega_c)
\]

where \(\Delta W_K \) is the variation of the r.h.s. of Eq. \(\text{(3)} \) and \(\Delta f(\omega_c) \) is the variation of the cutoff term. Because conductivity changes with \(T \) at all frequencies, \(\Delta f(\omega_c) \) also varies with temperature. It then becomes the issue whether the experimentally observed \(\Delta W(\omega_c) \) is predominantly due to “intrinsic” \(\Delta W_K \), or to \(\Delta f(\omega_c) \). [A third possibility is non-applicability of the Kubo formula because of the close proximity of other bands, but we will not dwell on this.]

For the NS, previous works \(21,22 \) on particular models for the cuprates indicated that the origin of the temperature dependence of \(W(\omega_c) \) is likely the \(T \) dependence of the cutoff term \(f(\omega_c) \). Specifically, Norman \(et \ al. \) approximated a fermionic DOS by a constant (in which
The problem is not resolved in the previous calculation of W_K due to the T dependence of $W(\omega_c)$ and the T dependence of the cut-off term. They found a good agreement between previous calculations with experiments. This still does not solve the problem fully as the T dependence of W_K in the same model with a lattice dispersion has not been analyzed. For a superconductor, which of the two terms contributes more, remains an open issue. At small frequencies, $\Delta W(\omega_c)$ between a SCS and a NS is positive simply because $\sigma(\Omega)$ in a SCS has a δ-functional term. In the models with a constant DOS, for which $\Delta W_K = 0$, previous calculations \cite{31} show that $\Delta W(\omega_c)$ changes sign at some ω_c, becomes negative at larger ω_c and approaches zero from a negative side. The frequency when $\Delta W(\omega_c)$ changes sign is of order Δ at weak coupling, but increases as the coupling increases, and at large coupling becomes comparable to a bandwidth ($\sim 1\text{eV}$). At such frequencies the approximation of a DOS by a constant is questionable at best, and the behavior of $\Delta W(\omega_c)$ should generally be influenced by a nonzero ΔW_K. In particular, the optimal integral can either remain positive for all frequencies below interband transitions (for large enough positive ΔW_K), or change sign and remain negative (for negative ΔW_K). The first behavior would be consistent with Refs. \cite{11,21,22,33}, while the second would be consistent with Ref. \cite{10}. ΔW can even show more exotic behavior with more than one sign change (for a small positive ΔW_K). We show various cases schematically in Fig.1.

![Diagram](image_url)

FIG. 1: Schematic behavior of ΔW vs ω_c, Eq. (1). The limiting value of ΔW at $\omega_c = \infty$ is ΔW_K given by Eq. (3). Depending on the value of ΔW_K, there can be either one sign change of ΔW (panels a and c), or no sign changes (panel b), or two sign changes (panel d).

In our work, we perform direct numerical calculations of optical integrals at $T = 0$ for a lattice dispersion extracted from ARPES of the cuprates. The goal of our work is two-fold. First, we perform calculations of the optical integral in the NS and analyze how rapidly $W(\omega_c)$ approaches W_K, in other words we check how much of the Kubo sum is recovered up to the scale of the bandwidth. Second, we analyze the difference between optical integral in the SCS at $T = 0$ and in the NS extrapolated to $T = 0$ and compare the cut off effect $\Delta f(\omega_c)$ to ΔW_K term. We also analyze the sign of $\Delta W(\omega_c)$ at large frequencies and discuss under what conditions theoretical $W(\infty)$ increases in the SCS.

We perform calculations for four models. First is a conventional BCS model with impurities (BCSI model). Second is an Einstein boson (EB) model of fermions interacting with a single Einstein boson whose propagator does not change between NS and SCS. These two cases will illustrate a conventional idea of the spectral weight in SCS being less than in NS. Then we consider two more sophisticated models: a phenomenological “marginal Fermi liquid with impurities” (MFLI) model of Norman and Pépin \cite{30}, and a microscopic collective boson (CB) model \cite{31} in which in the NS fermions interact with a gapless continuum of bosonic excitations, but in a d-wave SCS a gapless continuum splits into a resonance and a gaped continuum. This model describes, in particular, interaction of fermions with their own collective spin fluctuation via

$$\Sigma(k, \Omega) = 3g^2 \int \frac{d\omega}{2\pi} \frac{d^2q}{(2\pi)^2} \chi(q, \omega)G(k + q, \omega + \Omega) \quad (6)$$

where g is the spin-fermion coupling, and $\chi(q, \omega)$ is the spin susceptibility whose dynamics changes between NS and SCS.

From our analysis we found that the introduction of a finite fermionic bandwidth by means of a lattice has generally a notable effect on both W and ΔW. We found that for all models except for BCSI model, only $70\% - 80\%$ of the optical spectral weight is obtained by integrating up to the bandwidth. In these three models, there also exists a wide range of ω_c in which the behavior of $\Delta W(\omega_c)$ is due to variation of $\Delta f(\omega_c)$ which is dominant comparable to the ΔW_K term. This dominance of the cut off term is consistent with the analysis in Refs. \cite{21,22,33}.

We also found that for all models except for the original version of the MFLI model the optical weight at the highest frequencies is greater in the NS than in the SCS (i.e., $\Delta W < 0$). This observation is consistent with the findings of Abanov and Chubukov \cite{21}, Benfatto et. al \cite{23}, and Karakozov and Maksimov \cite{31}. In the original version of the MFLI model \cite{20} the spectral weight in SCS was found to be greater than in the NS ($\Delta W > 0$). We show that the behavior of $\Delta W(\omega_c)$ in this model crucially depends on how the fermionic self-energy modeled to fit ARPES data in a NS is modified when a system becomes a superconductor and can be of either sign. We also found, however, that ω_c at which ΔW becomes negative rapidly increases with the coupling strength and at strong coupling becomes comparable to the bandwidth. In the CB model, which, we believe, is most appropriate for the application to the cuprates, $\Delta W_K = \Delta W(\infty)$ is quite small, and at strong coupling a negative $\Delta W(\omega_c)$ up to $\omega_c \sim 1\text{eV}$ is nearly compensated by the optical integral between ω_c and “infinity”, which, in practice, is
an energy of interband transitions, which is roughly 2eV. This would be consistent with Refs. 8,30

We begin with formulating our calculational basis in the next section. Then we take up the four cases and consider in each case the extent to which the Kubo sum is satisfied up to the order of bandwidth and the functional form and the sign of \(\Delta W(\omega_c) \). The last section presents our conclusions.

II. OPTICAL INTEGRAL IN NORMAL AND SUPERCONDUCTING STATES

The generic formalism of the computation of the optical conductivity and the optical integral has been discussed several times in the literature21–23,26,29 and we just list the formulas that we used in our computations. The conductivity \(\sigma(\Omega) \) and the optical integral \(W(\omega_c) \) are given by (see for example Ref. 33).

\[
\sigma'(\Omega) = \text{Im} \left[\frac{\Pi(\Omega)}{\Omega + i\delta} \right] = -\frac{\Pi''(\Omega)}{\Omega} + \pi \delta(\Omega) \Pi'(\Omega)
\]

(7a)

\[
W(\omega_c) = \int_0^{\omega_c} \sigma'(\Omega) d\Omega = -\int_0^{\omega_c} \frac{\Pi''(\Omega)}{\Omega} d\Omega + \frac{\pi}{2} \Pi'(0)
\]

(7b)

where ‘\(X' \) and ‘\(X'' \) stand for real and imaginary parts of \(X \). We will restrict with \(T = 0 \). The polarization operator \(\Pi(\Omega) \) is (see Ref. 36)

\[
\Pi(\Omega) = T \sum_{\omega} \sum_{\vec{k}} (\nabla_{\vec{k}} \varepsilon_{\vec{k}})^2 \left(G(i\omega, \vec{k})G(i\omega + i\Omega, \vec{k}) + F(i\omega, \vec{k})F(i\omega + i\Omega, \vec{k}) \right)
\]

(8a)

\[
\Pi''(\Omega) = -\frac{1}{\pi} \sum_{\vec{k}} (\nabla_{\vec{k}} \varepsilon_{\vec{k}})^2 \int_{-\Omega}^{0} d\omega \left(G''(\omega, \vec{k})G''(\omega + \Omega, \vec{k}) + F''(\omega, \vec{k})F''(\omega + \Omega, \vec{k}) \right)
\]

(8b)

\[
\Pi'(\Omega) = \frac{1}{\pi^2} \sum_{\vec{k}} (\nabla_{\vec{k}} \varepsilon_{\vec{k}})^2 \int_{-\Omega}^{0} \int_{-\Omega}^{0} dx dy \left(G''(x, \vec{k})G''(y, \vec{k}) + F''(x, \vec{k})F''(y, \vec{k}) \right) \frac{n_F(y) - n_F(x)}{y - x}
\]

(8c)

where \(\int' \) denotes the principal value of the integral, \(\sum_{\vec{k}} \) is understood to be \(\frac{1}{N} \sum_{\vec{k}} \), \(N \) is the number of lattice sites, \(n_F(x) \) is the Fermi function which is a step function at zero temperature, \(G \) and \(F \) are the normal and anomalous Greens functions, given by27

For a NS, \(G(\omega, \vec{k}) = \frac{1}{\omega - \Sigma(k, \omega) - \varepsilon_{\vec{k}} + i\delta} \) (9a)

For a SCS, \(G(\omega, \vec{k}) = \frac{Z_{k,\omega} \omega + \varepsilon_{\vec{k}}}{Z^2_{k,\omega} (\omega^2 - \Delta_{k,\omega}^2) - \varepsilon_{\vec{k}}^2 + i\delta \text{sgn}(\omega)} \) (9b)

\[
F(\omega, \vec{k}) = \frac{Z_{k,\omega} \Delta_{k,\omega}}{Z^2_{k,\omega} (\omega^2 - \Delta_{k,\omega}^2) - \varepsilon_{\vec{k}}^2 + i\delta \text{sgn}(\omega)}
\]

(9c)

where \(Z_{k,\omega} = 1 - \frac{\Sigma(k, \omega)}{\omega} \), and \(\Delta_{k,\omega} \) is the SC gap. Following earlier works21,23, we assume that the fermionic self-energy \(\Sigma(k, \omega) \) predominantly depends on frequency and approximate \(\Sigma(k, \omega) \approx \Sigma(\omega) \) and also neglect the frequency dependence of the gap, i.e., approximate \(\Delta_{k,\omega} \) by a \(d^- \) wave \(\Delta_k \). The lattice dispersion \(\varepsilon_{\vec{k}} \) is taken from Ref. 8. To calculate \(W_K \), one has to evaluate the Kubo term in Eq(3) wherein the distribution function \(n_{\vec{k}} \), is calculated from

\[
n(\varepsilon_{\vec{k}}) = -2 \int_{-\infty}^{0} \frac{d\omega}{2\pi} G''(\omega, \vec{k})
\]

(10)

The 2 is due to the trace over spin indices. We show the distribution functions in the NS and SCS under different circumstances in Fig 2.

The \(k \)-sumation is done over first Brillouin zone for a 2-D lattice with a 62x62 grid. The frequency integrals are done analytically wherever possible, otherwise performed using Simpson’s rule for all regular parts. Contributions from the poles are computed separately using Cauchy’s theorem. For comparison, in all four cases we also calculated FGT sum rule by replacing \(f d^2k = d\Omega_k d\epsilon_{kx,\Omega_k} \) and keeping \(\nu \) constant. We remind that the FGT is the result when one assumes that the integral in \(W(\omega_c) \) predominantly comes from a narrow region around the Fermi surface.

We will first use Eq(3) and compute \(W_K \) in NS and SCS. This will tell us about the magnitude of \(\Delta W(\omega_c = \infty) \). We next compute the conductivity \(\sigma(\omega) \) using the equations listed above, find \(W(\omega_c) \) and \(\Delta W(\omega_c) \) and compare \(\Delta f(\omega_c) \) and \(\Delta W_K \).

For simplicity and also for comparisons with earlier studies, for BCSI, EB, and MFLI models we assumed that the gap is just a constant along the FS. For CB model, we used a \(d^- \) wave gap and included into consideration the fact that, if a CB is a spin fluctuation, its propagator develops a resonance when the pairing gap is \(d^- \) wave.
constant DOS and then extend the discussion to the case where the same calculations are done in the presence of a particular lattice dispersion.

![Diagram](image)

FIG. 2: Distribution functions in four cases (a) BCSI model, where one can see that for $\varepsilon > 0$, SC$>$NS implying KE increases in the SCS. (b) The original MFLI model of Ref. 30, where for $\varepsilon > 0$, SC$<$NS, implying KE decreases in the SCS. (c) Our version of MFLI model (see text) and (d) the CB model. In both cases, SC$>$NS, implying KE increases in the SCS. Observe that in the impurity-free CB model there is no jump in $n(\varepsilon)$ indicating lack of fermionic coherence. This is consistent with ARPES.

A. The BCS case

In BCS theory the quantity $Z(\omega)$ is given by

$$Z_{BCSI}(\omega) = 1 + \frac{\Gamma}{\sqrt{\Delta^2 - (\omega + i\delta)^2}}$$

and

$$\Sigma_{BCSI}(\omega) = \omega Z(\omega) - 1 = i\Gamma \frac{\omega}{\sqrt{(\omega + i\delta)^2 - \Delta^2}}$$

This is consistent with having in the NS, $\Sigma = i\Gamma$ in accordance with Eq. In the SCS, $\Sigma(\omega)$ is purely imaginary for $\omega > \Delta$ and purely real for $\omega < \Delta$. The self-energy has a square-root singularity at $\omega = \Delta$.

It is worth noting that Eq. is derived from the integration over infinite band. If one uses Eq. for finite band, Eq. acquires an additional frequency dependence at large frequencies of the order of bandwidth (the low frequency structure still remains the same as in Eq. In principle, in a fully self-consistent analysis, one should indeed evaluate the self-energy using a finite bandwidth. In practice, however, the self-energy at frequencies of order bandwidth is generally much smaller than ω and contribute very little to optical conductivity which predominantly comes from frequencies where the self-energy is comparable or even larger than ω. Keeping this in mind, below we will continue with the form of self-energy derived form infinite band. We use the same argument for all four models for the self-energy.

For completeness, we first present some well known results about the conductivity and optical integral for a constant DOS and then extend the discussion to the case where the same calculations are done in the presence of a particular lattice dispersion.

![Diagram](image)

FIG. 3: The BCSI case with a dispersion linearized around the Fermi surface. Evolution of the difference of optical integrals in the SCS and the NS with the upper cut-off ω. Observe that the zero crossing point increases with impurity scattering rate Γ and also the ‘dip’ spreads out with increasing Γ. $\Delta = 30$ meV.

For a constant DOS, $\Delta W(\omega_c) = W_{SC}(\omega_c) - W_{NS}(\omega_c)$ is zero at $\omega_c = \infty$ and Kubo sum rule reduces to FGT sum rule. In Fig. we plot for this case $\Delta W(\omega_c)$ as a function of the cutoff ω_c for different Γ’s. The plot shows the two well known features: zero-crossing point is below 2Δ in the clean limit $\Gamma << 2\Gamma$ and is roughly 2Γ in the dirty limit. The magnitude of the ‘dip’ decreases quite rapidly with increasing Γ. Still, there is always a point of zero crossing and $\Delta W(\omega_c)$ at large ω_c approaches zero from below.

We now perform the same calculations in the presence of lattice dispersion. The results are summarized in Figs. and .

Fig. shows conductivities $\sigma(\omega)$ in the NS and the SCS and Kubo sums W_K plotted against impurity scattering Γ. We see that the optical integral in the NS is always greater than in the SCS. The negative sign of ΔW_K is simply the consequence of the fact that n_k is larger in the NS for $\varepsilon_k < 0$ and smaller for $\varepsilon_k > 0$, and $\nabla^2 \varepsilon_k$ closely follows $-\varepsilon_k$ for our choice of dispersion. Hence n_k is larger in the NS for $\nabla^2 \varepsilon_k > 0$ and smaller for $\nabla^2 \varepsilon_k < 0$ and the Kubo sum rule, which is the integral of the product of n_k and $\nabla^2 \varepsilon_k$ (Eq.), is larger in the normal state.

We also see from Fig. that ΔW_K decreases with Γ reflecting the fact that with too much impurity scattering there is little difference in n_k between NS and SCS.

Fig. shows the optical sum in NS and SCS in clean and dirty limits (the parameters are stated in the figure). This plot shows that the Kubo sums are almost completely recovered by integrating up to the bandwidth of 1eV: the recovery is 95% in the clean limit and ~ 90% in the dirty limit. In Fig. we plot $\Delta W(\omega_c)$ as a function of ω_c in clean and dirty limits. $\Delta W(\infty)$ is now non-zero, in agreement with Fig. and we also see that there is
little variation of \(\Delta W(\omega_c) \) at above 0.1 - 0.3 meV what implies that for larger \(\omega_c, \Delta W(\omega_c) \approx \Delta W_K >> \Delta f(\omega_c) \).

To make this more quantitative, we compare in Fig. 4 \(\Delta W(\omega_c) \) obtained for a constant DOS, when \(\Delta W(\omega_c) = \Delta f(\omega_c) \), and for the actual lattice dispersion, when \(\Delta W(\omega_c) = \Delta W_K + \Delta f(\omega_c) \). In the clean limit there is obviously little cutoff dependence beyond 0.1 eV, i.e., \(\Delta f(\omega_c) \) is truly small, and the difference between the two cases is just \(\Delta W_K \). In the dirty limit, the situation is similar, but there is obviously more variation with \(\omega_c \), and \(\Delta f(\omega_c) \) becomes truly small only above 0.3 eV. Note also that the position of the dip in \(\Delta W(\omega_c) \) in the clean limit is at a larger \(\omega_c \) in the presence of the lattice than in a continuum.

![Conductivities (BCSI)](image1)

FIG. 4: Top - a conductivity plot for the BCSI case in the presence of a lattice. The parameters are \(\Delta = 30 \) meV, \(\Gamma = 3.5 \) meV. Bottom – the behavior of Kubo’s parameters. Note that (a) the spectral weight in the NS is always greater in the SCS, (b) the spectral weight decreases with \(\Gamma \), and (c) the difference between NS and SCS decreases as \(\Gamma \) increases.

B. The Einstein boson model

We next consider the case of electrons interacting with a single boson mode which by itself is not affected by superconductivity. The primary candidate for such mode is an optical phonon. The imaginary part of the NS self-energy has been discussed numerous times in the literature. We make one simplifying assumption – approximate the DOS by a constant in calculating fermionic self-energy. We will, however, keep the full lattice dispersion in the calculations of the optical integral. The advantage of this approximation is that the self-energy can be computed analytically. The full self-energy obtained with the lattice dispersion is more involved and can only be obtained numerically, but its structure is quite similar to the one obtained with a constant DOS.

The self-energy for a constant DOS is given by

\[
\Sigma(i\omega) = -\frac{i}{2\pi} \lambda_n \int d\epsilon k d(i\Omega) \chi(i\Omega) G(\epsilon k, i\omega + i\Omega)
\]

where

\[
\chi(i\Omega) = \frac{\omega_0^2}{\omega_0^2 - (i\Omega)^2}
\]

and \(\lambda_n \) is a dimensionless electron-boson coupling. Integrating and transforming to real frequencies, we obtain

\[
\Sigma''(\omega) = -\frac{\pi}{2} \lambda_n \omega_0 \Theta(|\omega| - \omega_0)
\]

\[
\Sigma'(\omega) = -\frac{1}{2} \lambda_n \omega_0 \log \frac{|\omega + \omega_0|}{|\omega - \omega_0|}
\]

In the SCS, we obtain for \(\omega < 0 \)

\[
\Sigma''(\omega) = -\frac{\pi}{2} \lambda_n \omega_0 \text{Re} \left(\frac{\omega + \omega_0}{\sqrt{(\omega + \omega_0)^2 - \Delta^2}} \right)
\]

![Normal State Optical Sum (BCSI)](image2)

FIG. 5: The evolution of optical integral in NS(top) and SCS(bottom) for BCSI case. Plots are made for clean limit (solid lines, \(\Gamma = 3.5 \) meV) and dirty limit (dashed lines, \(\Gamma = 150 \) meV) for \(\Delta = 30 \) meV. Observe that (a) \(W(0) = 0 \) in the NS, but has a non-zero value in the SCS because of the \(\delta \)-function (this value decreases in the dirty limit), and (b) the flat region in the SCS is due to the fact that \(\sigma'(\omega) = 0 \) for \(\Omega < 2\Delta \). Also note that ~90 - 95% of the spectral weight is recovered up to 1 eV.
\[\Sigma'(\omega) = -\frac{1}{2} \lambda n \omega_o \text{Re} \int d\omega' \frac{1}{\omega_o^2 - \omega'^2 - i\delta \sqrt{(\omega + \omega')^2 - \Delta^2}} \]

Observe that \(\Sigma''(\omega) \) is no-zero only for \(\omega < -\omega_o - \Delta \).

Also, although it does not straightforwardly follow from Eq. 16 but real and imaginary parts of the self-energy do satisfy
\[\Sigma'(\omega) = -\Sigma'(-\omega) \text{ and } \Sigma''(\omega) = \Sigma''(-\omega). \]

Fig 7 shows conductivities \(\sigma(\omega) \) and Kubo sums \(W_K \) as a function of the dimensionless coupling \(\lambda \). We see that, like in the previous case, the Kubo sum in the NS is larger than that in the SCS. The difference \(\Delta W_K \) is between 5 and 8 meV.

Fig 8 shows the evolution of the optical integrals. Here we see the difference with the BCSI model – only about 75% of the optical integral is recovered, both in the NS and SCS, when we integrate up to the bandwidth of 1 eV. The rest comes from higher frequencies.

In Fig 9 we plot \(\Delta W(\omega_c) \) as a function of \(\omega_c \). We see the same behavior as in the BCSI model in a clean limit – \(\Delta W(\omega_c) \) is positive at small frequencies, crosses zero at some \(\omega_c \), passes through a deep minimum at a larger frequency, and eventually saturates at a negative value at the largest \(\omega_c \). However, in distinction to BCSI model, \(\Delta W(\omega_c) \) keeps varying with \(\omega_c \) up a much larger scale and saturates only at around 0.8 eV. In between the dip at 0.1 eV and 0.8 eV, the behavior of the optical integral is predominantly determined by the variation of the cut-off term \(\Delta f(\omega_c) \) as evidenced by a close similarity between the behavior of the actual \(\Delta W \) and \(\Delta W \) in the absence.
of the lattice (the dashed line in Fig. 9).

C. Marginal Fermi liquid model

For their analysis of the optical integral, Norman and Pépin24 introduced a phenomenological model for the self energy which fits normal state scattering rate measurements by ARPES41. It constructs the NS $\Sigma''(\omega)$ out of two contributions - impurity scattering and electron-electron scattering which they approximated phenomenologically by the marginal Fermi liquid form of $\alpha\omega$ at small frequencies2 (MFLI model). The total Σ'' is

\begin{equation}
\Sigma''(\omega) = \Gamma + \alpha|\omega|f\left(\frac{\omega}{\omega_{\text{sat}}}\right)
\end{equation}

where ω_{sat} is about $\frac{1}{2}$ of the bandwidth, and $f(x) \approx 1$ for $x < 1$ and decreases for $x > 1$. In Ref20 $f(x)$ was assumed to scale as $1/x$ at large x such that Σ'' is flat at large ω. The real part of $\Sigma'(\omega)$ is obtained from Kramers-Krönig relations. For the superconducting state, they obtained Σ'' by cutting off the NS expression on the lower end at some frequency ω_1 (the analog of $\omega_0 + \Delta$ that we had for EB model):

\begin{equation}
\Sigma''(\omega) = (\Gamma + \alpha|\omega|)\Theta(|\omega| - \omega_1)
\end{equation}

where $\Theta(x)$ is the step function. In reality, Σ'' which fits ARPES in the NS has some angular dependence along the Fermi surface22, but this was ignored for simplicity. This model had gained a lot of attention as it predicted the optical sum in the SCS to be larger than in the NS, i.e., $\Delta W > 0$ at large frequencies. This would be consistent with the experimental findings in Refs. 38 if, indeed, one identifies ΔW measured up to 1 eV with ΔW_K.

We will show below that the sign of ΔW in the MFLI model actually depends on how the normal state results are extended to the superconducting state and, moreover, will argue that ΔW_K is actually negative if the extension is done such that at $\alpha = 0$ the results are consistent with BCSI model. However, before that, we show in Figs 10, 12 the conductivities and the optical integrals for the original MFLI model.

In Fig 10 we plot the conductivities in the NS and the SCS and Kubo sums W_K vs Γ at $\alpha = 0.75$ showing that the spectral weight in the SCS is indeed larger than in the NS. In Fig 11 we show the behavior of the optical sums $W(\omega_e)$ in NS and SCS. The observation here is that only $\sim 75-80\%$ of the Kubo sum is recovered up to the scale of the bandwidth implying that there is indeed a significant spectral weight well beyond the bandwidth. And in Fig 12 we show the behavior of $\Delta W(\omega_e)$. We see that it does not change sign and remain positive at all ω_e, very much unlike the BCS case. Comparing the behavior of $W(\omega_e)$ with and without a lattice (solid and dashed lines in Fig. 12) we see that the ‘finite bandwidth effect’ just shifts the curve in the positive direction. We also see that the solid line flattens above roughly half of the bandwidth, i.e., at these frequencies $\Delta W(\omega_e) \approx \Delta W_K$. Still, we found that ΔW continues going down even above the bandwidth and truly saturates only at about $2 eV$ (not shown in the figure) supporting the idea that there is ‘more’ left to recover from higher frequencies.

The rationale for $\Delta W_K > 0$ in the original MFLI model has been provided in Ref. 30. They argued that this is closely linked to the absence of quasiparticle peaks in the NS and their restoration in the SCS state because the phase space for quasiparticle scattering at low energies is smaller in a superconductor than in a normal state.
FIG. 11: The evolution of the optical integral in the NS (top) and the SCS (bottom) in the original MFLI model. Parameters are the same as above. Note that only $\sim 75-80\%$ of the spectral weight is recovered up to 1 eV.

FIG. 12: Evolution of the difference of the optical integrals in the SCS and the NS with the upper cut-off ω_c. Parameters are the same as before. Observe that the optical sum in the SCS is larger than in the NS and that ΔW has not yet reached ΔW_K up to the bandwidth. The dashed line is the FGT result.

This clearly affects n_k because it is expressed via the full Green’s function and competes with the conventional effect of the gap opening. The distribution function from this model, which we show in Fig 2b, brings this point out by showing that in a MFLI model, at $\epsilon < 0$, n_k in a superconductor is larger than n_k in the normal state, in clear difference with the BCSI case.

We analyzed the original MFLI model for various parameters and found that the behavior presented in Fig. 12 where $\Delta W(\omega_c) > 0$ for all frequencies, is typical but not a generic one. There exists a range of parameters α and Γ where ΔW_K is still positive, but $\Delta W(\omega_c)$ changes the sign twice and is negative at intermediate frequencies. We show an example of such behavior in Fig. 14. Still, for most of the parameters, the behavior of $\Delta W(\omega_c)$ is the same as in Fig. 12.

On more careful looking we found the problem with the original MFLI model. We recall that in this model the self-energy in the SCS state was obtained by just cutting the NS self energy at ω_1 (see Eq. 18). We argue that this phenomenological formalism is not fully consistent, at least for small α. Indeed, for $\alpha = 0$, the MFLI model reduces to BCSI model for which the behavior of the self-energy is given by Eq. 12. This self-energy evolves with ω and Σ'' has a square-root singularity at $\omega = \Delta + \omega_o$ (with $\omega_o = 0$). Meanwhile Σ'' in the original MFLI model in Eq. 18 simply jumps to zero at $\omega = \omega_1 = \Delta$, and this happens for all values of α including $\alpha = 0$ where the MFLI and BCSI model should merge. This inconsistency is reflected in Fig. 13, where we plot the near-BCS limit of MFLI model by taking a very small $\alpha = 0.05$. We see that the optical integral W_K in the SCS still remains larger than in the NS over a wide range of Γ, in clear difference with the exactly known behavior in the BCSI model.
that the behavior of Kubo sum with Γ. Observe now begins at Ω = 2∆. The parameters are same as in Fig. 15. Bottom – the behavior of Kubo sum with Γ. Observe that W(ωc) in the NS is larger than in the SCS.

FIG. 15: Top – σ(ω) in the NS and the SCS in the ‘corrected’ MFLI model with the feedback from SC on the quasiparticle damping: iΓ term transforms into \(\frac{\Gamma}{\sqrt{-\omega^2 + \Delta^2}} \). In the SCS σ now begins at Ω = 2∆. The parameters are same as in Fig. 10. Bottom – the behavior of Kubo sum with Γ. Observe that W(ωc) in the NS is larger than in the SCS.

FIG. 16: Evolution of the difference of the optical integrals between the SCS and the NS with the upper cut-off ωc for the “corrected” MFLI model. Now ΔW(ωc) is negative above some frequency. Parameters are same as in the Fig 15.

model, where W_K is larger in the NS for all Γ (see Fig. 1). In other words, the original MFLI model does not have the BCSI theory as its limiting case.

We modified the MFLI model is a minimal way by changing the damping term in a SCS to \(\frac{\Gamma}{\sqrt{-\omega^2 + \Delta^2}} \) to be consistent with BCSI model. We still use Eq. (18) for the MFL term simply because this term was introduced in the NS on phenomenological grounds and there is no way to guess how it gets modified in the SCS state with-

out first deriving the normal state self-energy microscopically (this is what we will do in the next section). The results of the calculations for the modified MFLI model are presented in Figs. 15 and 10. We clearly see that the behavior is now different and \(\Delta W_K < 0 \) for all Γ. This is the same behavior as we previously found in BCSI and EB models. So we argue that the ‘unconventional’ behavior exhibited by the original MFLI model is most likely the manifestation of a particular modeling inconsistency. Still, Ref. 30 made a valid point that the fact that quasiparticles behave more close to free fermions in a SCS than in a NS, and this effect tends to reverse the signs of \(\Delta W_K \) and of the kinetic energy. It just happens that in a modified MFLI model the optical integral is still larger in the NS.

D. The collective boson model

We now turn to a more microscopic model- the CB model. The model describes fermions interacting by exchanging soft, overdamped collective bosons in a particular, near-critical, spin or charge channel. This interaction is responsible for the normal state self-energy and also gives rise to a superconductivity. A peculiar feature of the CB model is that the propagator of a collective boson changes below \(T_c \) because this boson is not an independent degree of freedom (as in EB model) but is made out of low-energy fermions which are affected by superconductivity.

The most relevant point for our discussion is that this model contains the physics which we identified above as a source of a potential sign change of \(\Delta W_K \). Namely, at strong coupling the fermionic self-energy in the NS is large because there exists strong scattering between low-energy fermions mediated by low-energy collective bosons. In the SCS, the density of low-energy fermions drops and a continuum collective excitations becomes gaped. Both effects reduce fermionic damping and lead to the increase of \(W_K \) in a SCS. If this increase exceeds a conventional loss of \(W_K \) due to a gap opening, the total \(\Delta W_K \) may become positive.

The CB model has been applied numerous times to the cuprates, most often under the assumption that near-critical collective excitations are spin fluctuations with momenta near \(Q = (\pi, \pi) \). This version of a CB boson is commonly known as a spin-fermion model. This model yields d_{x^2−y^2} superconductivity and explains in a quantitative way a number of measured electronic features of the cuprates, in particular the near-absence of the quasiparticle peak in the NS of optimally doped and underdoped cuprates and the peak-dip-hump structure in the ARPES profile in the SCS. In our analysis we assume that a CB is a spin fluctuation.

The results for the conductivity within a spin-fermion model depend in quantitative (but not qualitative) way on the assumption for the momentum dispersion of a collective boson. This momentum dependence comes from
high-energy fermions and is an input for the low-energy theory. Below we follow Refs. \[31\,33\] and assume that the momentum dependence of a collective boson is flat near \((\pi, \pi)\). The self energy within such model has been worked out consistently in Ref. \[31\,33\]. In the normal state

\[
\Sigma''(\omega) = -\frac{1}{2} \lambda_n \omega_{sf} \log \left(1 + \frac{\omega^2}{\omega_{sf}^2} \right)
\]

\[
\Sigma'_{\omega}(\omega) = -\lambda_n \omega_{sf} \arctan \frac{\omega}{\omega_{sf}}
\]

where \(\lambda_n\) is the spin-fermion coupling constant, and \(\omega_{sf}\) is a typical spin relaxation frequency of overdamped spin collective excitations with a propagator

\[
\chi(q \sim Q) = \frac{\chi Q}{1 - i 2 \omega_{sf}}
\]

where \(\chi Q\) is the uniform static susceptibility. If we use Ornstein-Zernike form of \(\chi(q)\) and use either Eliashberg \[45\] or FLEX computational schemes \[45\], we get rather similar behavior of \(\Sigma\) as a function of frequency and rather similar behavior of optical integrals.

The collective nature of spin fluctuations is reflected in the fact that the coupling \(\lambda\) and the bosonic frequency \(\omega_{sf}\) are related: \(\lambda\) scales as \(\xi^2\), where \(\xi\) is the bosonic mass (the distance to a bosonic instability), and \(\omega_{sf} \propto \xi^{-2}\) (see Ref. \[49\]). For a flat \(\chi(q \sim Q)\) the product \(\lambda \omega_{sf}\) does not depend on \(\xi\) and is the overall dimensional scale for boson-mediated interactions.

In the SCS fermionic excitations acquire a gap. This gap affects fermionic self-energy in two ways: directly, via the change of the propagator of a CB. We remind ourselves that the dynamics of a CB comes from a particle-hole bubble which is indeed affected by \(\Delta\).

The effect of a \(d\)-wave pairing gap on a CB has been discussed in a number of papers, most recently in \[31\]. In a SCS a gapless continuum described by Eq. \[20\] transforms into a gaped continuum, with a gap about \(2\Delta\) and a resonance at \(\omega = \omega_0 < 2\Delta\), where for a \(d\)-wave gap we define \(\Delta\) as a maximum of a \(d\)-wave gap.

The spin susceptibility near \((\pi, \pi)\) in a superconductor can generally be written up as

\[
\chi(q \sim Q, \Omega) = \frac{\chi Q}{1 - i \frac{\Pi(\Omega)}{\omega_{sf}}}
\]

where \(\Pi\) is evaluated by adding up the bubbles made out of two normal and two anomalous Green’s functions. Below \(2\Delta\), \(\Pi(\Omega)\) is real (\(\sim \Omega^2/\Delta\) for small \(\Omega\)), and the resonance emerges at \(\Omega = \omega_0\) at which \(\Pi(\omega_0) = \omega_{sf}\). At frequencies larger than \(2\Delta\), \(\Pi(\Omega)\) has an imaginary part, and this gives rise to a gaped continuum in \(\chi(\Omega)\).

The imaginary part of the spin susceptibility around the resonance frequency \(\omega_0\) is

\[
\chi''(q, \Omega) = \frac{\pi Z_o \omega_0}{2} \Im [\delta(\Omega - \omega_0)]
\]

where \(Z_o \sim 2 \omega_{sf} \chi_0/\omega_{sf}(\Omega = \omega_0)\). The imaginary part of the spin susceptibility describing a gaped continuum exists for \(\Omega > 2\Delta\) and is

\[
\chi''(q, \Omega) \approx \Im \left[\frac{\chi_0}{1 - i \frac{\Omega}{\omega_{sf}}} \right] \text{ for } \Omega >> 2\Delta
\]

In Eq. \[23\] \(D(x) = K_1(x) - K_2(x)\), and \(K_1(x)\) and \(K_2(x)\) are Elliptic integrals of first and second kind. The real part of \(\chi\) is obtained by Kramers-Krönig transform of the imaginary part.

Substituting Eq. \[8\] for \(\chi(q, \Omega)\) into the formula for the self-energy one obtains \(\Sigma''(\omega)\) in a SCS state as a sum of two terms \[31\].

\[
\Sigma''(\omega) = \Sigma''(\omega) + \Sigma''(\omega)
\]

where

\[
\Sigma''(\omega) = \pi Z_o \lambda_n \omega_0 \Re \left(\frac{\omega + \omega_0}{(\omega + \omega_0)^2 - \Delta^2} \right)
\]

comes from the interaction with the resonance and

\[
\Sigma''(\omega) = -\lambda_n \int_{2\Delta}^{1} dx \Re \left(\frac{\omega + x}{(\omega + x)^2 - \Delta^2} \right) K_2 \left(\frac{x}{\omega_{sf}} D \left(\frac{4\Delta^2}{4\Delta^2} \right) \right) \left[1 - \frac{4\Delta^2}{4\Delta^2} D \left(\frac{4\Delta^2}{4\Delta^2} \right) \right]^2
\]

comes from the interaction with the gaped continuum. The real part of \(\Sigma\) is obtained by Kramers-Krönig trans-
form of the imaginary part.

FIG. 17: Conductivities and ΔW for a fixed ω_{sf}. Top $- \omega_{sf} = 26 \text{ meV}, \lambda = 1, \omega_o = 40 \text{ meV}, Z_o = 0.77$ Bottom $- \omega_{sf} = 2.6 \text{ meV}, \lambda = 10, \omega_o = 13.5 \text{ meV}, Z_o = 1.22$. The zero crossing for ΔW is not affected by a change in λ because it is determined only by $\lambda \omega_{sf}$. We set $\Delta = 30 \text{ meV}$.

FIG. 18: The behavior of Kubo sums in the CB model. Note that the spectral weight in the NS is always larger than in the SCS. We set $\omega_{sf} = 26 \text{ meV}, \lambda = 1$, and $\Delta = 30 \text{ meV}$.

We performed the same calculations of conductivities and optical integrals as in the previous three cases. The results are summarized in Figs. 17 - 22. Fig 17 shows conductivities in the NS and the SCS for two couplings $\lambda = 1$ and $\lambda = 10$ (keeping $\lambda \omega_{sf}$ constant). Other parameters Z_o and ω_o are calculated according to the discussion after Eq. 21 for $\omega_{sf} = 26 \text{ meV}$, $\lambda = 1$, we find $\omega_o = 40 \text{ meV}$, $Z_o = 0.77$. And for $\omega_{sf} = 2.6 \text{ meV}$, $\lambda = 10$, we find $\omega_o = 13.5 \text{ meV}$, $Z_o = 1.22$. Note that the conductivity in the SCS starts at $2\Delta + \omega_o$ (i.e. the resonance energy

FIG. 19: The evolution of the optical integrals in the NS and the SCS in the CB model. Note that about $\sim 75\%$ of the spectral weight is recovered up to 1 eV. We set $\omega_{sf} = 26 \text{ meV}, \lambda = 1$, and $\Delta = 30 \text{ meV}$.

FIG. 20: ΔW (in meV) for $\lambda = 1$(top) and $\lambda = 10$(bottom). We used $\omega_{sf} = 26 \text{ meV} / \lambda$ and $\Delta = 30 \text{ meV}$. The zero crossing is not affected because we keep $\lambda \omega_{sf}$ constant. The notable difference is the widening of the dip at a larger λ.
shows up in the optical gap), where as in the BCSI case it would have always begun from 2Δ. In Fig 18 we plot the Kubo sums W_K vs coupling λ. We see that for all λ, W_K in the NS stays larger than in the SCS. Fig 19 shows the cutoff dependence of the optical integrals $W(\omega_c)$ for $\lambda = 1$ separately in the NS and the SCS. We again see that only about 73% of the Kubo sum is recovered up to the bandwidth of 1 eV indicating that there is a significant amount left to recover beyond this energy scale.

The negative sign of $\Delta W(\omega_c)$ above a relatively small $\omega_c \sim 0.1 - 0.2 eV$ implies that the 'compensating' effect from the fermionic self-energy on ΔW is not strong enough to overshadow the decrease of the optical integral in the SCS due to gap opening. In other words, the CB model displays the same behavior as BCSI, EB, and

FIG. 21: Distribution functions $n(\epsilon)$ for CB model for $\lambda = 1$ and $\lambda = 7$ and a constant $\omega_{sf} = 26 \text{meV}$. We set $\Delta = 30 \text{meV}$. For smaller λ (top), quasiparticles near the FS are well defined as indicated by the well pronounced jump in $n(\epsilon)$. For $\lambda = 7$, $n(\epsilon)$ is rather smooth implying that a coherence is almost lost. Some irregularities in the SCS distribution function are due to finite sampling in the frequency domain. The irregularities disappear when finer mesh for frequencies is chosen.

FIG. 22: Top – conductivity at a larger value of $\omega_{sf} (\lambda = 7, \omega_{sf} = 26 \text{meV}, \lambda = 7)$ consistent with the one used in Ref 33). Bottom – ΔW with and without lattice. Observe that the frequency of zero crossing of ΔW enhances compared to the case of a smaller $\lambda \omega_{sf}$ and becomes comparable to the bandwidth. At energies smaller than the bandwidth, $\Delta W > 0$, as in the Norman- Pépin model.

FIG. 23: Kinetic energy difference between the SCS and the NS, δ_{KE} We set λ to be either $\lambda = 1$ or $\lambda = 10$ and varied ω_{sf} thus changing the overall prefactor in the self-energy. At weak coupling ($\lambda = 1$) the behavior is BCS-like – δ_{KE} is positive and increases with the overall factor in the self-energy. At strong coupling ($\lambda = 7$), δ_{KE} shows a reverse trend at larger ω_{sf}.
modified MFLI models. It is interesting that this holds despite the fact that for large λ CB model displays the physics one apparently needs to reverse the sign of ΔW—the absence of the quasiparticle peak in the NS and its emergence in the SCS accompanied by the dip and the hump at larger energies. The absence of coherent quasiparticle in the NS at large λ is also apparent form Fig. 21 where we show the normal state distribution functions for two different λ. For large λ the jump (which indicates the presence of quasiparticles) virtually disappears.

On a more careful look, we found that indifference of $\delta W(\omega_c)$ to the increase of λ is merely the consequence of the fact that above we kept ω_{sf} constant. Indeed, at small frequencies, fermionic self-energy in the NS is $\Sigma' = \lambda \omega$, $\Sigma'' = \lambda^2 \omega^2 / (\lambda \omega_{sf})$, and both Σ' and Σ'' increase with λ if we keep ω_{sf} constant. But at frequencies larger than ω_{sf}, which we actually probe by $\Delta W(\omega_c)$, the self-energy essentially depends only on ω_{sf}, and increasing λ but keeping ω_{sf} constant does not bring us closer to the physics associated with the recovery of electron coherence in the SCS. To detect this physics, we need to see how things evolve when we increase ω_{sf} above the scale of Δ, i.e., consider a truly strong coupling when not only $\lambda \gg 1$ but also the normal state $\Sigma_{NS}(\omega \geq \Delta) \gg \Delta$.

To address this issue, we took a larger λ for the same ω_{sf} and re-did the calculation of the conductivities and optical integrals. The results for $\sigma(\omega)$ and $\Delta W(\omega_c)$ are presented in Fig. 22. We found the same behavior as before, i.e., ΔW_K is negative. But we also found that the larger is the overall scale for the self-energy, the larger is a frequency of zero-crossing of $\Delta W(\omega_c)$. In particular, for the same λ and ω_{sf} that were used in Ref. 33 to fit the NS conductivity data, the zero crossing is at ~ 0.8 eV which is quite close to the bandwidth. This implies that at a truly strong coupling the frequency at which $\Delta W(\omega_c)$ changes sign can well be larger than the bandwidth of 1 eV in which case ΔW integrated up to the bandwidth does indeed remain positive. Such behavior would be consistent with Refs. 3, 9, we also see from Fig. 22 that ΔW_K becomes small at a truly strong coupling, and over a wide range of frequencies the behavior of $\Delta W(\omega_c)$ is predominantly governed by $\Delta f(\omega_c)$, i.e., by the cut-off term. The implication is that, to first approximation, ΔW_K can be neglected and positive $\Delta W(\omega_c)$ integrated to a frequency where it is still positive is almost compensated by the integral over larger frequencies. This again would be consistent with the experimental data in Refs. 3, 9.

It is also instructive to understand the interplay between the behavior of $\Delta W(\omega_c)$ and the behavior of the difference of the kinetic energy between the SCS and the NS, δ_{KE}. We computed the kinetic energy as a function of ω_{sf} and present the results in Fig. 23 for $\lambda = 1$ and 10. For a relatively weak $\lambda = 1$ the behavior is clearly BCS like—$\delta_{KE} > 0$ and increases with increasing ω_{sf}. However, at large $\lambda = 10$, we see that the kinetic energy begin decreasing at large ω_{sf} and eventually changes sign. The behavior of δ_{KE} at a truly strong coupling is consistent with earlier calculation of the kinetic energy for Ornstein-Zernike form of the spin susceptibility.

We clearly see that the increase of the zero crossing frequency of $\Delta W(\omega_c)$ at a truly strongly coupling is correlated with the non-BCS behavior of δ_{KE}. At the same time, the behavior of $\delta W(\omega_c)$ is obviously not driven by the kinetic energy as eventually $\delta W(\omega_c)$ changes sign and become negative. Rather, the increase in the frequency range where $\Delta W(\omega_c)$ remains positive and non-BCS behavior of δ_{KE} are two indications of the same effect that fermions are incoherent in the NS but acquire coherence in the SCS.

III. CONCLUSION

In this work we analyzed the behavior of optical integrals $W(\omega_c) \propto \int_0^{\omega_c} \sigma(\omega) d\omega$ and Kubo sum rules in the normal and superconducting states of interacting fermionic systems on a lattice. Our key goal was to understand what sets the sign of $\Delta W_K = \Delta W(\infty)$ between the normal and superconducting states and what is the behavior of $W(\omega_c)$ and $\Delta W(\omega_c)$ at finite ω_c. In a weak coupling BCS superconductor, $\Delta W(\omega_c)$ is positive at $\omega_c < 2\Delta$ due to a contribution from superfluid density, but becomes negative at larger ω_c, and approach a negative value of ΔW_K. Our study was motivated by fascinating optical experiments on the cuprates. In overdoped cuprates, there is clear indication that $\Delta W(\omega_c)$ becomes negative above a few Δ, consistent with BCS behavior. In underdoped cuprates, two groups argued that ΔW integrated up to the bandwidth remains positive, while the other group argued that it is negative.

The reasoning why ΔW_K may potentially change sign at strong coupling involves the correlation between $-W_K$ and the kinetic energy. In the BCS limit, kinetic energy obviously increases in a SCS because of gap opening, hence $-W_K$ increases, and ΔW_K is negative. At strong coupling, there is a counter effect—fermions become more mobile in a SCS due to a smaller self-energy.

We considered four models: a BCS model with impurities, a model of fermions interacting with an Einstein boson, a phenomenological MFL model with impurities, and a model of fermions interacting with collective spin fluctuations. In all cases, we found that ΔW_K is negative, but how it evolves with ω_c and how much of the sum rule is recovered by integrating up to the bandwidth depends on the model.

The result most relevant to the experiments on the cuprates is obtained for the spin fluctuation model. We found that at strong coupling, the zero-crossing of $\delta W(\omega_c)$ occurs at a frequency which increases with the coupling strength and may become larger than the bandwidth at a truly strong coupling. Still, at even larger frequencies, $\Delta W(\omega_c)$ is negative.
Acknowledgements

We would like to thank M. Norman, Tom Timusk, Dmitri Basov, Chris Homes, Nicole Bontemps, Andres Santander-Syro, Ricardo Lobo, Dirk van der Marel, A. Boris, E. van Heumen, A. B. Kuzmenko, L. Benfato, and F. Marsiglio for many discussions concerning the infrared conductivity and optical integrals and thank A. Boris, E. van Heumen, J. Hirsch, and F. Marsiglio for the comments on the manuscript. The work was supported by nsf-dmr 0906953.
of $\Delta W(\omega_c)$ in a system without a lattice (Ref.51). The authors of that work also found that the frequency of zero-crossing of $\Delta W(\omega_c)$ increases with the coupling strength.

51 A. Abanov and A.V. Chubukov, Phys. Rev. B \textbf{70}, 100504 (2004).