Opposite effects of GSTM1 – and GSTT1 – gene deletion variants on bone mineral density

Simona Jurkovic Mlakara, Josko Osredkarc, Janez Prezeljb and Janja Marca,∗

aDepartment of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
bDepartment of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
cInstitute of Clinical Chemistry and Biochemistry, University Medical Centre Ljubljana, Ljubljana, Slovenia

Abstract. Oxidative stress is associated with osteoporosis. The glutathione S-transferases form the major detoxifying group of enzymes responsible for eliminating products of oxidative stress. We have therefore proposed GSTM1 and GSTT1 genes as candidates for studying the genetics of osteoporosis. The aim of the present study was to examine possible association of GSTM1 and GSTT1 gene deletion polymorphisms, alone or in combination, with bone mineral density at femoral neck (BMD\textsubscript{fn}), lumbar spine (BMD\textsubscript{ls}) and total hip (BMD\textsubscript{th}) in Slovenian elderly women and men. GSTM1 and GSTT1 gene deletion polymorphisms in 712 elderly people were analyzed using the triplex PCR method for the presence of GSTM1 and GSTT1 gene segments. BMD\textsubscript{fn}, BMD\textsubscript{ls} and BMD\textsubscript{th} were measured by the dual-energy X-ray absorptiometry (DEXA) method. Results were analyzed using univariate statistic model adjusted for sex, body mass index (BMI) and age. Our results showed the significant differences in BMD\textsubscript{th}, BMD\textsubscript{ls} and BMD\textsubscript{fn} values (\(p = 0.031\), 0.017 and 0.023, respectively) in subgroups of GSTT1 gene deletion polymorphism. For GSTM1 gene deletion polymorphism borderline significant association was found with BMD\textsubscript{ls} (\(p = 0.100\)). Furthermore, subjects with homozygous deletion of GSTT1 gene showed higher BMD values on all measured skeletal sites and, in contrast, subjects with homozygous deletion of GSTM1 gene showed lower BMD values. Moreover, a gene-gene interaction study showed significant association of GSTM1-null and GSTT1-null polymorphisms with BMD\textsubscript{ls} values (\(p = 0.044\)). Carriers with a combination of the presence of GSTT1 gene and the homozygous absence of GSTM1 gene fragment were associated with the lower BMD values at all skeletal sites. The significant association of combination of GSTT1 gene presence and homozygous absence of GSTM1 gene with BMD was demonstrated, suggesting that it could be used, if validated in other studies, as genetic marker for low BMD.

Keywords: Osteoporosis, oxidative stress, antioxidant defence system, bone mineral density, triplex method, glutathione s-transferase

1. Introduction

Osteoporosis is a systemic skeletal age-related disease characterized by low bone mass and microarchitectural deterioration of bone tissue resulting in increased bone fragility and increased fracture risk (NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy 2001*). The incidence of osteoporosis in Slovenia reflects the aging of the population. The percentage of Slovenians being diagnosed with osteoporosis increases from 12% at age 50 to 50% at 90 [1].

Oxidative stress, increased in elderly people, is associated with the development of osteoporosis [2–4] by modulating osteoblast differentiation and survival [5] and by stimulating bone resorption [6,7]. Significantly increased levels of lipid peroxidation and hydrogen peroxide and decreased levels of antioxidant enzymes
null polymorphisms, alone or in combination with BMD, measured at lumbar spine, femoral neck and total hip.

2. Materials and methods

2.1. Subjects

The study included 712 elderly Slovenian people (593 women and 119 men); 292 (266 women and 26 men) had diagnosis of osteoporosis according to ISCD criteria (NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis and Therapy 2001*). Subjects were referred to the outpatient departments of the University Medical Centre, Ljubljana, the General and Teaching Hospital, Celje, and the University Clinical Centre Maribor, Slovenia for BMD measurement. Each subject was examined clinically and routine biochemical tests were performed to exclude systemic and metabolic bone diseases other than primary osteoporosis. None had previously taken any drug known to influence bone metabolism. All of the participants gave their written informed consent before enrolment in the study. The study was approved by the National Medical Ethics Committee of the Republic of Slovenia. Characteristics of the study group are listed in Table 1.

2.2. Blood sampling and genotyping

Genomic DNA was isolated from peripheral blood leukocytes using the QIAmp DNA Blood Midi isolation kit (Qiagen, Germany). Three pairs of oligonucleotide primers (Table 2) were designed based on the sequences of GSTT1, GSTM1 and GPX1 genes available in GenBank (accession no. NM_000637.2). Fragments for the all three genes were amplified simultane-
Table 2

Gene/variant	Amplicon size	Sense (F) and antisense (R) primer	Cycling conditions
GSTT1/null	69bp	F: 5-ATGTGACCCTGCAGTTGC-3	95°C, 10 min
		R: 5-AGATGTGAGGACCAGTAAGG-3	95°C, 60 s
GSTM1/null	154bp	F: 5-GCTTCACGTGTTATGAGGTT-3	57°C, 60 s (35 cycles)
		R: 5-CGGGAGATGAAGTCCTTTCA-3	72°C, 60 s
GPX1/positive control	400bp	F: 5-AGCCCAACTTCATGCTCTTC-3	72°C, 8 min
		R: 5-AGATGTGAGGACCAGTAAGG-3	[8°C, ∞]

Fig. 1. Multiplex PCR products on 2% agarose gel (90 V, 25 min).

M, marker with lengths of 50, 150, 300, 500, 700bp ; No. 952-962, 1D of samples; SL1, negative control

2.4. Statistical analysis

Genotype frequencies in patients and control subgroups were compared using a likelihood ratio-\(\chi^2 \) test. Kolmogorov-Smirnov normality test was conducted before association analysis and data transformation was performed where appropriate. Univariate general linear model (ANCOVA), with adjustment for sex, BMI and age (in a logarithmic scale for some tests), and followed by post hoc test (LSD), was used to assess the statistical differences between BMD measurements on subjects with different deletion genotypes of GSTM1 and GSTT1 polymorphisms. Kruskal-Wallis non-parametric test was used to evaluate the association of not normally distributed parameters with different genotypes. P values less than 0.05 were considered statistically significant. All statistical analyses were performed using the statistical software package SPSS 17.0 for Windows (SPSS Inc., Chicago, IL, USA).

The power calculations were done by using G*Power version 3.0.3. The whole study group had a 97.9% statistical power to detect low effect sizes (0.15) with an alpha level of 0.05.

3. Results

3.1. Subject characteristics and genotype distribution

Characteristics of the whole elderly study group are presented in Table 1. No statistically significant differences in age, weight, height, BMI and years...
since menopause among women between genotype subgroups were observed.

As the PCR method was not suitable for distinguishing between homozygotes (+/+, wild type) and heterozygotes (+/−), these two groups were considered together (non-null genotypes, GSTT1/GSTT1; GSTT1/GSTM1/GSTM1/GSTM1*0, respectively) and compared with the homozygous variant group (null genotypes, GSTT1*0/GSTM1*0, GSTM1*0/GSTM1*0, respectively). Hardy Weinberg Equilibrium testing was thus not performed.

The frequencies of GSTT1 and GSTM1 deletion polymorphisms in the whole study group are presented in Table 3. Comparison of genotype frequencies between osteoporotic and non-osteoporotic elderly people did not reveal any significant difference for either deletion polymorphism.

3.2. Association of individual deletion polymorphisms with BMD values

In the whole study group of elderly people, significant differences of BMD_fn (p = 0.023), BMD_th (p = 0.031) and BMD_ls (p = 0.017) between different genotype subgroups of GSTT1 deletion polymorphism were observed (Figs 2 and 3). Borderline significant differences of BMD_ls values between GSTM1 deletion genotype subgroups have been shown (p = 0.100). Statistical analysis was performed using ANCOVA adjusted for sex, BMI and age.

3.3. Association of combined GSTM1 and GSTT1 gene deletion variants with BMD values

Significant differences of BMD_ls and borderline significant differences of BMD_fn between subgroups of combined presence of GSTT1 and absence of GSTM1 genes adjusted for sex, BMI and age were found (p = 0.044 and 0.119, respectively). Post hoc analysis revealed significant differences of BMD_fn between GSTT1+GSTM1*0 and GSTT1*0+GSTM1*0 (p value of 0.007) and between GSTT1+GSTM1 and GSTT1*0+GSTM1*0 combination subgroups (p value of 0.030). Moreover, borderline significant differences of BMD_ls between GSTT1+GSTM1*0 and GSTT1*0+GSTM1 combination subgroups were observed (p = 0.074). All results of the combined influences of the two deletion gene variants are summarized in Fig. 4.

4. Discussion

Homozygous deletion of the GSTT1 gene is shown to be significantly associated with higher BMDs measured at femoral neck, lumbar spine and total hip. In contrast, association of homozygous deletion of GSTM1 gene with BMD values at lumbar spine in elderly Slovenians is of borderline significance. Moreover, the combination of the presence/absence of the GSTM1 and GSTT1 genes showed significant effects on BMD_ls values. So variations in genes coding for GST antioxidative enzymes are associated with BMD.

The GST family is involved in the conjugation and thus excretion of toxic oxidant products, which are increased in osteoporotic people [15–18]. Polymorphisms or deletions within these genes alter the catalytic activity of the GSTs to varying extents. The study by Miranda-Vilela et al. [28] showed that, under oxidative stress induced by H2O2, the highest and lowest extents of DNA damage depended on the interaction between GSTM1-T1 polymorphisms.

In our study, the significant associations of GSTT1-gene deletion variant, alone or in combination with GSTM1-gene deletion variant, add to the list of antioxidative enzyme gene polymorphisms associated with BMD values. Contrary to the results presented here, it has been reported that GSTM1 and GSTT1 gene deletion genotypes do not significantly affect susceptibility to osteoporosis in Japanese osteoporotic patients assessed using ultrasound bone tissue measurement [24]. According to published data, the genetic diversity in the Japanese population shows slightly higher GSTM1*0 genotype (55.8%) and significantly higher GSTT1*0 genotype (40.0%) frequencies than in the Slovenian population (49.0% and 21.3%, respectively). The Slovenian population is more homogenous having smaller range of years of tested individuals.

The GSTM1*0 and GSTT1*0 genotype frequencies of the control population in our study were in accord with other reported frequencies of the control 12.525 Caucasians from the meta-analysis [29]. These alleles are common, with the GSTT1- and GSTM1- null genotypes occurring in 10-20% and 40-65% of the Caucasian population, respectively [30]. Moreover, a much lower frequency of GSTM1*0 and a much higher frequency of GSTT1*0 carriers was detected in the osteoporotic subgroup than in the control group in our study, although the differences were not significant.

It is interesting that two polymorphisms studied here have opposite effects on BMD values. The absence of GSTT1 gene is significantly associated with the higher
Table 3 | Genotype and combination frequencies of the GSTT1 (presence: GSTT1/GSTT1+ GSTT1/GSTT1*0 and absence: GSTT1*0/GSTT1*0) and the GSTM1 (presence: GSTM1/GSTM1+ GSTM1/GSTM1*0 and absence: GSTM1*0/GSTM1*0) polymorphisms in whole study group

Genotype frequencies	P value	
(N_{total} = 712) % (N) (whole group/ osteoporotic- / non-osteoporotic-subgroups)	Hi-square (osteoporotic vs. nonosteoporotic)	
GSTT1 and GSTM1 genotypes		
GSTM1/GSTM1+ GSTM1/GSTM1*0	48.9 (348) / 47.3 (131) / 50.6 (204)	0.641
GSTM1*0/GSTM1*0	51.1 (364) / 52.7 (146) / 49.4 (199)	
GSTT1/GSTT1+ GSTT1/GSTT1*0	81.1 (578) / 84.5 (254) / 78.7 (317)	0.289
GSTT1*0/GSTT1*0	18.8 (134) / 15.5 (43) / 21.3 (86)	
GSTT1 and GSTM1 polymorphism combinations		
Combination 1: GSTT1/GSTT1+GSTM1/GSTM1	39.3 (280) / 38.6 (107) / 40.2 (163)	0.624
Combination 2: GSTT1/GSTT1+GSTM1*0/GSTM1*0	41.8 (298) / 45.8 (127) / 38.5 (156)	
Combination 3: GSTT1*0/GSTT1*0+GSTM1/GSTM1	9.4 (66) / 8.7 (24) / 10.1 (41)	
Combination 4: GSTT1*0/GSTT1*0+GSTM1*0/GSTM1*0	9.5 (68) / 6.9 (19) / 11.1 (45)	

N, number of samples.

BMD values at all skeletal sites, with the greatest significance on BMD_{ls}, whereas the absence of GSTM1 gene is borderline associated with lower BMD values, again with the greatest significance on BMD_{ls}

The significant role of GSTM1 gene region in BMD_{ls} has been reported earlier in the linkage study of Ioannidis et al. [25], where the QTLs with the greatest effect were shown on chromosome 1p13.3-q23.3, also the GSTM1 gene specific region for lumbar spine BMD. However, to date, no linkage study has shown any significant, for GSTT1 gene specific, chromosome region associated with BMD values.

Although GSTM1 expression is concentrated in liver, it is involved in the conjugation (and thus transport and excretion) of a broad range of endobiotics and xenobiotics from different tissues [31] possibly also influence gene expression in different tissues. In human osteoblasts, GSTM1 is 2-times more expressed than a GSTT1 gene, consequently resulting in 2-times more effective detoxification in bone cells [[21], ’un-
When the \textit{GSTM1} gene is deleted, it can lead to a greater adverse effect on bone osteoblast cells, resulting in lower BMD, which is in accordance with our results. Moreover, the deletion of \textit{GSTT1} gene is associated with the higher BMD values in our study and, due to lower expression of \textit{GSTT1} gene than that of \textit{GSTM1} gene in osteoblasts, the influence of the \textit{GSTT1} gene on bone is less pronounced than that of the \textit{GSTM1} gene. However the loss of GSTT1 enzyme activity by deletion polymorphism can affect other metabolic pathways that could be strongly activated, for example other genes in the GST family, thus causing the pre-

Fig. 3. BMD values in GSTM1 deletion genotype subgroups.

Fig. 4. BMD values in combined GSTT1/GSTM1-gene deletion genotype subgroups.

*ANCOVA, adjusted for sex, age and body mass index
ventive effect on osteoblast cells. This fact could be supported, however indirectly, by the study of Fuciarrelli et al. [32] who hypothesized that there is probably a regulative compensatory mechanism that involves the increased activity of GSTT1 enzyme when the GSTM1 enzyme is lacking. Further studies are needed on the activities of GSTT1 and GSTM1 and their relation to deletion genotypes.

In our study, the subjects with a combination of present GSTM1 and absent GSTT1 genes showed the higher BMD values, while the lowest BMDs at all skeletal sites were shown in subjects with the inverse – presence of GSTT1 and absence of GSTM1 genes. Moreover, it appears that carriers with homozygous deletion of GSTT1 gene show the preventive effect on BMD values via the upregulation of other enzymes in the GST family due to lack of GSTT1 enzyme activity. Another explanation of this effect could be that GSTT1, but not GSTM1, is also known to have Phase I activity and the ability to activate oxidative stress related molecules rather than their inactivation by Phase II detoxification step [33,34]. Moreover, the presence of GSTT1 gene and homozygous absence of GSTM1 gene combination is much more frequent in osteoporotic people than in controls and exhibits the lowest BMD values on all skeletal sites. This combination could be used as a marker for susceptibility to low BMD values.

The present study has some limitations. First, the specific mechanisms of the studied GSTT1 and GSTM1 enzymes in the pathogenesis of osteoporosis are far from clear. Both genes have been considered to encode carcinogen-metabolising enzymes implying they mediate the detoxification of potential mutagens such as polycyclic aromatic hydrocarbons, which are found in many common exposures such as cigarette smoke, diesel fuel and grilled meats [35]. GST substrates also include ROS, products of endogenous lipid peroxidation and inactivating organic hydroperoxides including thymine hydroperoxide and arachidonic acid hydroperoxide, which may arise from inflammation. Oxidative stress causes alterations in redox balance by affecting changes in the GSH:GSSG ratio which in turn influences expression of immunologically and bone relevant transcription factors including NF-κB. This factor induces expression of TNF-α, which activates the expression of RANKL in osteoblasts [36,37], and further increases osteoclastogenesis. This possibility appears attractive as GSTM1 deleted gene is associated with lower values of BMD.

Secondly, no data on fragility fractures and bone quality were available for the analysis. Furthermore, no other SNPs in both genes were investigated. However, only the gene deletion polymorphisms were studied where the complete loss of GSTT1 and GSTM1 enzyme activities occurs.

Moreover in our study, no data on external factors that influence BMD, such as dietary calcium and vitamin D intake, smoking habits, alcohol consumption and physical activity, were collected and analysed. However, our group was ethnically homogenous and the participants originate from the same environment and have similar lifestyles, lowering the possibility of false positive associations.

Our findings need to be confirmed in new patient cohorts. Clearly, associations between both GST-null polymorphisms and clinical phenotypes will be mediated by interactions with other polymorphic loci of other genes. The Xu et al. [38] reported that GSTM1 is tightly clustered with 3 other GST-null genes which are spaced approximately 20 kb apart and arranged in the following order: 5-prime–GSTM4–GSTM2–GSTM1–GSTM5–3-prime. Thus all the GSTM1 neighbouring genes, clustered in the same GST family, could show synergistic effects on BMD. It is necessary to examine large number of candidate genes GSTs family in order to identify the genotype combinations that determine risk for osteoporosis. It is also possible that GSTT1 is in linkage disequilibrium with the true candidate gene nearby on chromosome 22 and it is worth to study further on these regions.

In conclusion, in our study, we have demonstrated that homozygous deletion of the GSTT1 gene is significantly associated with higher BMDs measured at femoral neck, lumbar spine and total hip. In contrast, homozygous deletion of GSTM1 gene is borderline significantly associated with lower BMD values only at lumbar spine in elderly Slovenians. Deletion of GSTT1 gene showed a “protective” effect, probably by compensatory increase of other GST enzymes. Moreover, the combination of lacking GSTM1 and present GSTT1 genes was significantly associated with lower BMD values.

The results of our study provide evidence for the hypothesis that oxidative stress in osteoporosis can be accelerated, not only by increased production of ROS but also by reduced ability to conjugate oxidant products and thus eliminate them. This is caused at least partly by deletion of gene segments of GSTM1. Through an understanding of the molecular pathways responsible for bone remodeling in osteoporosis patients we will be able to produce novel agents targeting these pathways and thus improve the management of osteoporosis.
Acknowledgements

We are grateful to Petrovic M. for technical assistance. We thank Prof. Roger Pain for advice on the English language. The study was supported by a PhD scholarship, research program P3-0298 and project L3-2330 at the Research Agency of Slovenia.

References

[1] G. Zorz, Prevalence osteoporosis in Slovenij, ISIS XV(3) (2006), 34–37.
[2] S. Basu, K. Michaelsson, H. Olofsson, S. Johansson and H. Melhus, Association between oxidative stress and bone mineral density, Biochem Biophys Res Commun 288(1) (2001), 275–279.
[3] S. Yalin, S. Bagis, G. Polat, N. Dogruer, S. Cenk Aksit et al., Is there a role of free oxygen radicals in primary male osteoporosis? Clin Exp Rheumatol 23(5) (2005), 689–692.
[4] D. Maggio, M. Barabani, M. Pierandrei et al., Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study, J Clin Endocrinol Metab 88(4) (2003), 1523–1527.
[5] X.C. Bai, D. Lu, J. Bai, H. Zheng, Z.Y . Ke, X.M. Li and S.Q. Luo, Oxidative stress inhibits osteoblast differentiation of bone cells by ERK and NF-κB, Biochem Biophys Res Commun 314(1) (2004), 197–207.
[6] J.M. Lean, C.J. Jagger, B. Kirstein, K. Fuller and T.J. Chambers, Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation, Endocrinology 146(2) (2005), 728–735.
[7] N. Suda, I. Morita, T. Kuroda and S. Muneta, Participation of oxidative stress in the process of osteoclast differentiation, Biochim Biophys Acta 1157(3) (1993), 318–323.
[8] A.A. Fatokun, T.W. Stone and R.A. Smith, Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species, Eur J Pharmacol 587(1–3) (2008), 35–41.
[9] I.R. Garett, B.F. Boyce, R.O. Orefio, L. Bownwald, J. Poser and G.R. Mundy, Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo, J Clin Invest 89(3) (1992), 632–639.
[10] S. Muthusami, I. Ramachandran, B. Muthusamy et al., Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats, Clin Chim Acta 360(1–2) (2005), 81–86.
[11] S. Ozgocmen, H. Kaya, E. Fadilioglu, R. Aydogan and Z. Yilmaz, Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis, Mol Cell Biochem 295(1–2) (2007), 45–52.
[12] S. Ozgocmen, H. Kaya, E. Fadilioglu and Z. Yilmaz, Effects of calcitonin, risedronate, and raloxifene on ethynylcysteine antioxidant enzyme activity, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis, Arch Med Res 38(2) (2007), 196–205.
[13] Z. Trosi, J. Trebse, J. Prezelj, R. Komadina, D. Bitenc Logar and J. Marc, A microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts, Bone 46(1) (2010), 72–80.
[14] Y.Z. Liu, V. Dvornyk, Y. Lu, H. Shen et al., A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes, J Biol Chem 12(32) (2005), 29011–29016.
[15] T. Nakajima and T. Aoyama, Polymorphism of Drug-Metabolizing Enzymes in Relation to Individual Susceptibility to Industrial Chemicals, Industrial Health 38 (2000), 143–152.
[16] C. Frona, Glutathione transferases in the genomics era: New insights and perspectives, Biomol Eng 23 (2006), 149–169.
[17] L.A. Magno, J. Talbot, J. Talbot, A.M. Borges Santos, R.P. Souza et al., Glutathione S-transferase variants in a Brazilian population, Pharmacology 83(2009), 231–236.
[18] C.C. McIlwain, D.M. Townsend and K.D. Tew, Glutathione S-transferase polymorphisms: cancer incidence and therapy, Oncogene 25(2006), 1639–1648.
[19] S.H. Ralston, Genetic control of susceptibility to osteoporosis, J Clin Endocrinol Metab 87 (2002), 2460–2466.
[20] B. Oh, S.Y . Kim, D.J. Kim et al., Associations of catalase gene polymorphisms with bone mineral density and bone turnover markers in premenopausal women, J Mol Genet 4(1) (2007), e62.
[21] S.J. Mlakar, J. Osredkar, J. Prezelj and J. Marc, The antioxidant enzyme GPx1 gene polymorphisms are associated with low BMD and increased bone turnover markers, DisMarkers 29(2) (2010), 71–80.
[22] P.F. Paré, Glutathione S-transferase genotypes and cancer risk, Cancer Lett 221 (2005), 123–129.
[23] K. Matsuno, T. Kubota, Y. Matsukura, H. Ishikawa and T. Iga, Genetic analysis of glutathione S-transferase A1 and T1 polymorphisms in a Japanese population, Clin Chim Lab Med 42 (2004), 560–562.
[24] J. Yamaguchi, Y. Hasagawa, M. Kawasaki, T. Masu, T. Kanoh, N. Ishiguro and N. Hamasjima, ALDH2 polymorphisms and bone mineral density in an elderly Japanese population, Osteoporosis Int 17(6) (2006), 908–913.
[25] J.P. Ioannidis, M.Y . Ng, P.C. Sham, E. Zintzaras, C.M. Lewis et al., Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass, J Bone Miner Res 22(2) (2007), 173–183.
[26] H. Zhang, K. Sol-Church, H. Rydbeck, D. Stabell, L.D. Spotila et al., High resolution linkage and linkage disequilibrium analyses of chromosome 1p36 SNPs identify new positional candidate genes for low bone mineral density, Osteoporos Int 20(2) (2009), 341–346.
[27] E.A. Streeten, D.J. McBride, T.I. Pollin, K. Ryan, J. Shapiro et al., Quantitative trait loci for BMD identified by autosomal-wide linkage scan to chromosomes 7q and 21q in men from the Amish Family Osteoporosis Study, J Bone Miner Res 21(9) (2006), 1433–1442.
[28] A.L. Miranda-Vilela, P.C.Z. Alves, A.K. Akimoto et al., Gene polymorphisms against DNA damage induced by hydrogen peroxide in leukocytes of healthy humans through comet assay: a quasi-experimental study, Environ Health 9 (2010), 21.
[29] S. Garte, L. Gaspari, A.K. Alexandre, C. Ambrosone, H. Aumut et al., Metabolic gene polymorphism frequencies in control populations, Cancer Epidemiol Biomarkers Prev 10 (2001), 1239–1248.
[30] T.R. Rebbeck, Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility, Cancer Epidemiol Biomarkers Prev 6 (1997), 733–743.
[31] D. French, M.R. Wilkinson, W. Yang, L. de Chaisemartin, E.H. Cook et al., Global gene expression as a function of germline genetic variation, Hum Mol Genet 14(12) (2005), 1621–1629.
[32] M. Fusiarelli, A. Caccuri, M. De Francesca, F. Ferazzoli, S. Piacentini et al., Modulation of the GSTT1 activity by the
GSTM1 phenotype in a sample of Italian farm-workers, Arch Toxicol 83(2) (2009), 115–120.

[33] T. Bruning et al., Influence of polymorphisms of GSTM1 and GSTT1 for risk of renal cell cancer in workers with long-term high occupational exposure to trichloroethylene, Arch Toxicol 71 (1997), 596–599.

[34] M. Casanova, D.A. Bell and H.A. Heck, Dichloromethane metabolism to formaldehyde and reaction of formaldehyde with nucleic acids in hepatocytes of rodents and humans with and without glutathione S-transferase T1 and M1 genes, Fundam Appl Toxicol 37(2) (1997), 168–180.

[35] K.M. McCarty, R.M. Santella, S.E. Steck, R.J. Cleveland, J. Ahn et al., PAH-DNA adducts, cigarette smoking, GST polymorphisms, and breast cancer risk, Environ Health Perspect 117(4) (2008), 552–558.

[36] D.H. Jones, Y.Y. Kong and J.M. Penninger, Role of RANKL and RANK in bone loss and arthritis, Ann Rheum Dis 61(2) (2002), ii32–ii39.

[37] M.C. Walsh and Y. Choi, Biology of the TRANCE axis, Cytokine Growth Factor Rev 14(3–4) (2003), 251–263.

[38] S. Xu, Y. Wang, B. Roe and W.R. Pearson, Characterization of the human class Mu glutathione S-transferase gene cluster and the GSTM1 deletion, J Biol Chem 273(6) (1998), 3517–3527.

[39] NIH consensus development panel on osteoporosis prevention, diagnosis and therapy, Osteoporosis prevention, diagnosis and therapy, JAMA 285(6) (2001), 785–795.