KOPS-guided DNA translocation by FtsK safeguards
Escherichia coli chromosome segregation

Viknesh Sivanathan,1† Jenny E. Emerson,1 Carine Pages,2 François Cornet,2 David J. Sherratt1 and Lidia K. Arciszewska1* 1Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. 2Laboratoire de Microbiologie et de Génétique Moléculaire, CNRS UMR5100, Toulouse, France.

Summary

The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK γ regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region (ter) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final chromosome unlinking by decatenation and chromosome dimer resolution occurs. Chromosome dimer resolution requires FtsK translocation along DNA and its interaction with the XerCD recombinase bound to the recombination site, dif, located within ter. The frequency of chromosome dimer formation is ~15% per generation in wild-type cells. Here we characterize FtsK alleles that no longer recognize KOPS, yet are proficient for translocation and chromosome dimer resolution. Non-directed FtsK translocation leads to a small reduction in fitness in otherwise normal cell populations, as a consequence of ~70% of chromosome dimers being resolved to monomers. More serious consequences arise when chromosome dimer formation is increased, or their resolution efficiency is impaired because of defects in chromosome organization and processing. For example, when Cre–loxP recombination replaces XerCD–dif recombination in dimer resolution, when functional MukBEF is absent, or when replication terminates away from ter.

Introduction

Our understanding of bacterial chromosome segregation mechanisms remains enigmatic. In contrast to uncertainties about the processes that lead to bulk chromosome segregation in vegetative cells, double-strand DNA translocases of the FtsK/SpoIIIE family have been demonstrated to actively participate in the late stages of chromosome segregation and in transferring DNA into the Bacillus subtilis forespore (Wu and Errington, 1994; Sherratt et al., 2001; Bigot et al., 2007).

In Escherichia coli, FtsK, which localizes to the forming septum, acts as part of a recruitment pathway for complete divisome assembly (Goehring and Beckwith, 2005). The E. coli chromosome is segregated sequentially soon after replication, with the bulk of the chromosome segregated away from the septal region before active FtsK translocase at the closing septum is established (Kennedy et al., 2008). Only when chromosomal DNA is trapped at the septum does FtsK translocase facilitate completion of chromosome unlinking and segregation.

Escherichia coli FtsK contains three domains within its 1329 aa residues (reviewed in Bigot et al., 2007). The N-terminal integral membrane domain anchors FtsK to the septum and functions in cytokinesis (Draper et al., 1998). The C-terminal domain is a DNA translocase that can be divided into three subdomains; α and β form the motor, while γ is a regulatory domain that binds DNA and interacts with the XerCD recombinase (Barre et al., 2000; Massey et al., 2006; Sivanathan et al., 2006; Yates et al., 2006). The N- and C-terminal domains are joined by a large internal linker domain whose precise function remains unclear. DNA translocation by FtsK is directional and is guided by octameric sequences (KOPS in E. coli and SRS in B. subtilis) that show biased orientation on the leading strand of each replication arm (replicichore), with their orientation switching at the dif locus (Bigot et al., 2005; Levy et al., 2005; Hendrickson and Lawrence, 2006; Becker and Pogliano, 2007; Ptacin et al., 2008). A consequence of this guided translocation is that the chromosome terminus region (ter) is translocated towards the closing septum. The winged helix γ subdomain recognizes...
KOPS (Sivanathan et al., 2006; Löwe et al., 2008). This interaction leads to the assembly of a FtsK hexamer on one side of KOPS, thereby imposing directional loading and translocation of FtsK along DNA, thus resulting in unidirectional translocation of each replicon arm.

Trapped DNA at the septum occurs predominantly when chromosome dimers, which arise through crossing over by homologous recombination, fail to be completely segregated to sister cells. Resolution of *E. coli* chromosome dimers results from a crossover introduced by the XerCD site-specific recombinase at *dif*, located in *ter* (Blakely et al., 1991; 1993; Kuempel et al., 1991). This reaction requires FtsK to directly interact with XerCD to activate dimer resolution (and to facilitate decatenation). Furthermore, FtsK translocation is necessary to bring sister *dif* sites together in a way that entraps no intervening DNA; thereby ensuring that the products of recombination do not contain catenane or knot links (Recchia et al., 1999; Steiner et al., 1999; Ip et al., 2003; Yates et al., 2006; Grainge et al., 2007). Therefore, the engagement of FtsK with the *E. coli* chromosome plays a crucial role in chromosome dimer resolution and the subsequent timely chromosome segregation to sister cells. Here we investigate the importance in *E. coli* chromosome processing of KOPS-guided directionality during translocation along DNA by FtsK. We show that failure to recognize KOPS during FtsK translocation has only modest consequences for fitness of wild-type cells, with ~70% of chromosome dimers that arise as a consequence of homologous recombination being resolved to monomers. In contrast, directionality in FtsK translocation becomes important for maintaining fitness when timely chromosome processing is impaired in MukBEF and Tus cell populations, and when Cre–loxP recombination replaces XerCD recombination at *dif*.

**Results and discussion**

**FtsK mutants defective in KOPS recognition**

The 69 aa C-terminal FtsK γ subdomain is a winged helix that recognizes KOPS DNA (Sivanathan et al., 2006). Single aa substitutions in the DNA recognition helix of a biochemically active translocase, FtsK<sub>SOCC</sub>, have been characterized (Aussel et al., 2002; Sivanathan et al., 2006). FtsK<sub>SOCC[R1300A]</sub> and FtsK<sub>SOCC[E1303A]</sub> are defective in KOPS recognition while fully supporting XerCD–*dif* recombination in plasmid resolution assays *in vivo* or *in vitro*; reactions that require DNA translocation and activation of Xer recombination by FtsK. However, these variants retained residual KOPS recognition when assayed in triplex displacement assays (Sivanathan et al., 2006). In an attempt to construct a variant fully defective in KOPS recognition, we now substituted three residues that were previously shown to contribute to KOPS recognition, generating FtsK<sub>SOCC[R1300A, E1303A, E1306A]</sub>, hereafter named FtsK<sub>SOCC[blind]</sub>.

FtsK<sub>SOCC[blind]</sub> was first tested *in vivo* for its ability to support XerCD recombination between directly repeated *dif* sites on a plasmid that either lacked KOPS (KOPS-0) or had pairs of KOPS in the non-permissive orientation bounding both *dif* sites (KOPS-2) (Fig. 1A). Preferential loading of FtsK at a given KOPS on the KOPS-2 substrate leads to translocation away from the proximal *dif* site and can result in collisions with converging FtsK hexamers loaded randomly or at other KOPS, thereby leading to a reduction in substrate resolution, when compared with the KOPS-0 plasmid (Sivanathan et al., 2006; Löwe et al., 2008). FtsK<sub>SOCC[blind]</sub> supported resolution of both plasmids with similar efficiencies, at levels of recombination similar to those observed with wild-type FtsK<sub>SOCC</sub> on the KOPS-0 substrate, a result consistent with FtsK<sub>SOCC[blind]</sub> failing to recognize KOPS. The same results were obtained in *in vitro* resolution assays, thereby confirming that FtsK<sub>SOCC[blind]</sub> fails to recognize KOPS, yet is proficient for DNA translocation and activation of Xer recombination.

The relative abilities of FtsK<sub>SOCC[blind]</sub> and FtsK<sub>SOCC</sub> to displace a radiolabelled oligonucleotide in triplex displacement assays were then compared (Fig. 1B). In these assays, preferential loading of an FtsK derivative at KOPS leads to translocation towards the triplex [permissive orientation (p)], or away from the triplex [non-permissive orientation (np)] upon addition of ATP; the latter event results in lowered amounts of triplex displaced. The ability of FtsK<sub>SOCC[blind]</sub> to displace the triplex oligonucleotide with equal efficiencies on both substrates, as assessed by the initial amount of displacement in the first minute, confirms that FtsK<sub>SOCC[blind]</sub> is unable to recognize KOPS; triplex displacement on these substrates must arise from random loading onto DNA.

**Effects of KOPS blindness on cell growth**

To test the biological consequences of the inability of FtsK to recognize KOPS, the *ftsK[blind]* allele was introduced into the *ftsK* gene, expressed from its endogenous chromosomal position. A chromosomal derivative containing the *ftsK[E1303A] allele, which is partly functional in KOPS recognition, was also constructed. The properties of cells containing these derivatives were compared with cells with wild-type *ftsK* and with *ftsK[yx]*, which is translocation competent but is unable to recognize KOPS or activate chromosome dimer resolution (Sivanathan et al., 2006), and with *ftsK[llc]*, which is lacking the linker and the C-terminal translocase domain (deleted for aa residues 211–1329; Bigot et al., 2004) and therefore is totally deficient in DNA translocation and XerCD–*dif* recombina-
tion activation. FtsK[blind] expressed from the chromosome supported XerCD–dif recombination in vivo on the KOPS-0 and KOPS-2 plasmids (not shown), and excision of a dif-lacI-dif cassette inserted at dif in the chromosome (later).

We first determined doubling times in cultures of strains carrying the wild-type and variant ftSK alleles in Luria–Bertani (LB) medium. Variants that were only defective in KOPS recognition, ftSK[E1303A] and ftSK[blind], showed no significant difference in growth rates relative to the ftSK+ strain (doubling times of 25–26 min; Fig. 2A). Growth rates of ftSK[blind] and wild-type strains were also not significantly different in minimal medium (not shown).

The ftSK[Δl] and ftSK[ΔLC] strains had longer doubling times in LB (31 and 35 min respectively), consistent with a minority of cell divisions producing inviable cells as a result of unresolved chromosome dimers (Steiner and Kuempel, 1998; Perals et al., 2000; Fig. 2A).

A failure to segregate DNA from midcell during septation, which occurs predominantly when chromosome dimers are left unresolved, leads to SOS-induced filamentation of cells (Hendricks et al., 2000; Prikryl et al., 2001). The level of filamentation in a population of cells therefore reflects the proportion of cells defective for chromosome dimer resolution. Filamentation in each FtSK variant was monitored by flow cytometry of exponentially growing cells (LB), using filamentation of a FtsZts strain grown at 42°C as a positive control (Fig. 2B and C). The proportion of filaments in a ftSK[Δl] culture was ~16%, a value consistent with chromosomal dimers being produced once every six generations (Steiner and Kuempel, 1998; Perals et al., 2000). The proportion of filaments in a ftSK[ΔLC] was ~34%, a result that agrees with the report that loss of the linker domain results in additional dimer-independent filamentation (Bigot et al., 2004). By comparison, in the ftSK[blind] strain, the fre-
frequency of filaments was only \(~3\%\), consistent with \(~70\%\) of chromosomal dimers eventually being resolved. Comparable results for the extent of filamentation were obtained when equivalent cultures were examined microscopically (not shown).

A stringent test of strain fitness is provided by coculture competition assays (Bigot et al., 2004). Therefore, the fitness of \(ftsK\) variants when competing with the wild-type \(ftsK\) strain was tested over 40 generations. A reduction of fitness in this assay can result, in principle, from the production of inviable cells at division (for example, when unresolved chromosome dimers occur) and/or by an increased generation time of cells in a population. The data indicate that most reduction in fitness arises from the production of inviable cells.

All variants demonstrated a growth disadvantage against the wild-type strain. Despite \(ftsK^{[\Delta\gamma]}\) being the fittest variant strain, it had a reproducible growth disadvantage as compared with its wild-type competitor (Fig. 3A). If the growth disadvantage of \(ftsK^{[\Delta\gamma]}\) were solely the result of production of inviable cells, then it would equate to a 5% probability of producing a nonviable cell/generation (\(k\)-value), whereas if it were due solely to a slower growth rate of viable individual cells it would equate to a mean cellular generation time difference of 10%. \(ftsK^{[\Delta LC]}\) was the least fit strain (\(k = 0.24\)), with \(ftsK^{[\Delta\gamma]}\) having an intermediate fitness (\(k = 0.17\)), results consistent with the observed levels of filamentation (\(~15\%) and suggestive that the competitive disadvantage of both \(ftsK^{[\Delta\gamma]}\) and \(ftsK^{[\Delta\gamma]}\) arises from defects in chromosome dimer resolution. We infer that \(ftsK^{[\Delta\gamma]}\) is \(~70\%\) efficient in dimer resolution, whereas \(ftsK^{[\Delta\gamma]}\) is completely defective. In support of this conclusion, the reduced fitness of \(ftsK^{[\Delta\gamma]}\) strain was found to be as efficient as an \(ftsK^+\) strain in promoting \(XerCD–\)dif recombination in this assay, whereas, as expected, the \(ftsK^{[\Delta\gamma]}\) strain did not support plasmid integration (Fig. 4A).

We then monitored \(XerCD–\)dif recombination in a more discriminating assay that measures recombination at \(dif\) sites contained within a \(dif-lacI-dif\) cassette located at different positions in \(ter\) (Perals et al., 2000; C. Pages and F. Cornet, unpubl. data). In the \(ftsK^+\) strain, \(XerCD–\)mediated excision was \(20\%\) per generation when the cassette was inserted at the normal \(dif\) position, with the wild-type KOPS-loading sites directing FtsK towards \(dif\) on both sides (Fig. 4B). KOPS sequences are absent in the cassette. The excision frequency decreased 23-fold.
**Fig. 3.** Growth competitions. The ratio of colony-forming units (cfu) obtained for a strain carrying the ftsK allele of interest to the cfu obtained for a strain with the wild-type ftsK allele in (A) an AB1157 background, (B) a Tus- background, and (C) a dif::loxP background with cells expressing Cre recombinase.

D. The growth competition coefficients obtained from assays shown in A–C (mean and SD of two experiments).

**Fig. 4.** Efficiency of dif recombination.

A. Plasmid integration assay.

B. dif-lacI-dif cassette excision assay. A dif-lacI-dif cassette was inserted at five chromosomal loci in ftsK+ and ftsK variant strains. The frequency of cassette excision is plotted against the distance between the cassette position and the chromosomal dif locus. SD are indicated for FtsK wt and FtsK[blind]. The distribution of KOPS (GGGCAGGG) within the region −400 kb to +600 kb is shown above the plot. The orientation of dif is indicated by the marked XerD and XerC binding sites.
and 32-fold respectively, when the cassette was moved 85–150 kb away from the normal dif position. We assume this is because dif is now bounded by non-permissive KOPS binding sites on one side, and therefore outside of the ‘dif activity zone’, DAZ. These results are in agreement with earlier observations that characterized DAZ genetically (Perals et al., 2000). When the dif cassette was moved >500 kb away from the normal position, XerCD recombination had fallen to the background levels exhibited by translocase-deficient variants of FtsK, presumably because FtsK can no longer access this region of the chromosome from the septum.

In the ftsK[blind] strain, the efficiency of cassette excision was similar at dif and the immediate bounding positions 85 and 150 kb away, as expected for a translocase that is not directed by KOPS. The 2.5-fold higher excision frequency at dif may be because FtsK more efficiently accesses this region even in the absence of KOPS recognition. The sixfold difference between FtsK+ and ftsK[blind] strains in recombination at dif presumably reflects the contribution of KOPS loading to the efficiency of FtsK translocation towards dif, and is in general agreement with the reduced efficiency of chromosome dimer resolution by FtsK[blind], measured in the previous assays.

**KOPS-guided translocation is more important for fitness in the absence of Tus**

The ability of FtsK to translocate chromosomal DNA appears to be restricted to the period of septum closure (Kennedy et al., 2008). We reasoned that increasing the need for this interaction by interfering with timely chromosome segregation would therefore reveal a more pronounced phenotype in ftsK[blind] cells. In order to explore this possibility, we used, here and in the following sections, mutant strains expected to be compromised for chromosome segregation and/or organization.

In *E. coli*, Tus binding to ter sites helps ensure that replication termination occurs within the terminus region (reviewed in Neylon et al., 2005). The absence of Tus does not lead to an obvious strong phenotype (Morris et al., 1985). Nevertheless, a fraction of cells may over-replicate chromosomal DNA as a consequence of inappropriate terminations, and this may lead to increased recombination and chromosome dimer formation (Markovitz, 2005). Similarly, in *B. subtilis*, deletion of the replication termination protein, Rtp, has been implicated in an increase in chromosome dimer formation (Lemon et al., 2001). We therefore explored the possibility that the fitness of FtsK variants might be additionally compromised in the absence of Tus.

**ftsK[blind], ftsK[Δγ] and ftsK[ΔLC] variants lacking Tus were individually grown in competition against a FtsK+ Tus· strain. The general trend of relative fitness between all strains was maintained (Fig. 3B). The k-value for all ftsK variant strains increased slightly, demonstrating that the requirement for the γ subdomain to direct DNA translocation by FtsK increases modestly in the absence of Tus. We conclude that Tus cells generate a slightly higher frequency of dimers in a population, and the probability of FtsK[blind] resolving such dimers is reduced to ~55%; nevertheless a differential fitness between ftsK alleles remains (Fig. 3D). We believe this reduced efficiency arises when FtsK at the septum has to translocate much further to engage dif in cells in which replication termination occurs at a position distant from ter, thereby leading to its mispositioning.**

**KOPS-guided DNA translocation is required to ensure formation of simple synapses during chromosome dimer resolution**

Cre–loxP recombination can substitute for XerCD–dif recombination within ter to resolve chromosome dimers (Leslie and Sherratt, 1995; Capiaux et al., 2002), and is reflected by no growth disadvantage of dif::loxP cells in a coculture assay with dif cells (data not shown). Although Cre–loxP recombination does not require activation by FtsK, FtsK translocation simplifies the products of Cre–loxP recombination in *vitro* by facilitating simple synapsis between the recombining sites, thereby preventing the formation of complex recombinant products (Ip et al., 2003). Consistent with this, chromosome dimer resolution mediated *in vivo* by Cre–loxP depends on FtsK, presumably because its translocation prevents the formation of unsegregatable knotted and catenated chromosomes (Capiaux et al., 2002; Grainge et al., 2007). We therefore anticipated that KOPS-guided DNA translocation by FtsK might be crucial for chromosome unlinking in a Cre–dif::loxP strain. Because Cre–loxP recombination is not dependent on activation by FtsK, we also predicted that ftsK[Δγ] and ftsK[blind] might be equally impaired in Cre–loxP-mediated chromosome dimer resolution, although it is possible that the lack of a γ subdomain in FtsK[Δγ] leads to it loading less well onto DNA than FtsK[blind].

Coculture experiments were set up between each ftsK variant and wild-type ftsK in the dif::loxP background, in which dif was substituted by loxP and Cre was expressed constitutively from a plasmid. Strikingly, ftsK[Δγ] and ftsK[blind] showed a similar growth disadvantage relative to the wild-type allele (Fig. 3C). This supports the view that the difference in fitness between these two alleles in cells competent for XerCD–dif recombination (Fig. 3A) is accounted for by the inability of FtsK[Δγ] to activate XerCD–dif recombination. Furthermore, the data suggest that the ability of Cre–loxP to substitute for XerCD–dif in dimer resolution is totally dependent on KOPS-guided...
DNA translocation by FtsK, because dimers are expected to form by homologous recombination at the same frequency in dif and dif::loxP strains. These data support the view that the efficiency of FtsK translocation needs to be optimal during chromosome dimer resolution by Cre–loxP in order to avoid FtsK-independent recombination events on complex synapses, which would generate topologically complex products. The observation that the k-values for all three ftsK variants in a dif::loxP strain were higher than for the ftsK[Dg] AB1157 strain (Fig. 3D) suggests that chromosome unlinking in these strains has additional problems caused by Cre–loxP recombination itself. We believe this is likely to be the consequence of the production of topologically complex products, which are avoided in a FtsK dif::loxP strain because KOPS-guided translocation effectively ensures that all recombination takes place within simple synapses. The smaller decrease in fitness between ftsK[Dg] cells in the XerCD–dif and the Cre–loxP background (Δk of 0.07) compared with ftsK[DgC] cells in these backgrounds (Δk of 0.18) suggests that non-directed FtsK translocase activity remains advantageous in the Cre–loxP background, presumably because it is still able to limit chromosomal entanglement during Cre–loxP recombination.

Finally, as compared with the Tus situation, FtsK[blind] has a much reduced ability to unlink chromosome dimers and entangled chromosomes when Cre–loxP recombination is substituting for XerCD–dif recombination.

**DNA translocation by FtsK is crucial for survival of muk cells**

*Escherichia coli* MukBEF acts in chromosome organization, and impairment of MukBEF leads to temperature sensitivity, disorganized chromosomes and the production of anucleate cells, apparently because of a failure to segregate newly replicated chromosomes efficiently (Niki et al., 1991; Britton et al., 1998; Danilova et al., 2007). *mukBEF ftsK[DgC]* strains are synthetically lethal (Yu et al., 1998), as are *smp SpolIIIE* strains of *B. subtilis* (Britton and Grossman, 1999). Possible explanations of this synthetic lethality are: accumulative decreases in negative supercoiling, an increased requirement for chromosome translocation by FtsK/SpolIIIE to complete chromosome segregation in strains containing disorganized sister chromosomes, or an increased requirement for site-specific recombination to unlink replicated chromosomes; for example, because of increased chromosome dimer formation. We therefore investigated whether KOPS-guided DNA translocation by FtsK is central to the survival of a *mukBEF* strain.

A strain mutated for its endogenous *mukF* gene, and carrying an inducible ectopic chromosomal copy of *mukF* under the control of the arabinose promoter (**mukF** *ara*) was characterized. The strain grew in rich medium at non-permissive temperature (37°C) only in the presence of arabinose, confirming an inducible Muk* phenotype. In the absence of arabinose, **mukF** *ara* **mukF** grew at the permissive temperature (22°C), but its viability was reduced. There was a 23% drop in colony-forming units (cfu) after 10 generations of growth at 22°C in LB lacking arabinose as compared with growth with arabinose (Fig. 5B). This is consistent with a proportion of divisions giving rise to anucleate cells at permissive temperatures in *muk* strains (Niki et al., 1991; Britton et al., 1998). We subsequently introduced *ftsK[blind], ftsK[Dg]* and *ftsK[DgC]* alleles, along with an ATPase mutant allele (D1121N), referred hereafter as *ftsK[WalkerB]*, into the **mukF** *ara* **mukF** strain. In the presence of arabinose, the **mukF** *ara* **mukF** strains carrying the four different ftsK alleles had a Muk* phenotype at 37°C.

In the absence of arabinose, **mukF** *ara* **mukF** *ftsK[blind]* and **mukF** *ara* **mukF** *ftsK[Dg]* strains were viable at 22°C, although they produced small colonies. Assessment of cfu in cultures grown at permissive temperature for 10 generations without arabinose showed a 79–85% drop in viability as compared with cultures grown in arabinose, while microscopic analysis revealed extensive filamentation and unsegregated chromosomes (Fig. 5A and B). This phenotype is consistent with an increased demand for directed DNA translocation by FtsK when chromosome organization and segregation are disrupted. A similar drop in viability was observed in a **mukF** *ara* **mukF** xerC strain, in which DNA translocation by FtsK is normal. Microscopy of this strain also revealed extensive filamentation and unsegregated chromosomes when grown at 22°C without arabinose (Fig. 5A and B). The similarities in phenotype of xerC, *ftsK[blind]* and *ftsK[Dg]* strains in the absence of MukF indicate that loss of KOPS-guided DNA translocation by FtsK severely reduces the ability of FtsK to support chromosome dimer resolution, exacerbating the problems of chromosome segregation in Muk* cells.

Consistent with a previous report (Yu et al., 1998), the **mukF** *ara* **mukF** *ftsK[DgC]* strain was inviable at 22°C in the absence of arabinose. Similarly, the **mukF** *ara* **mukF** *ftsK[WalkerB]* was inviable in these conditions, demonstrating that it is the loss of DNA translocation activity rather than the loss of the C-terminal domain that results in the lethality of the double mutants. We conclude that ‘blind’ DNA translocation contributes to chromosome segregation in *muk* cells and that the absence of FtsK translocation leads to synthetic lethality in such cells.

**Absence of MukF leads to increased chromosome dimers**

The extensive filamentation at 22°C of the **mukF** *ara* **mukF** xerC strain in the absence of arabinose was sup-
pressed when MukF was expressed (Fig. 5A). This suggests strongly that MukF− cells form dimers more frequently. In order to test this directly, the frequency of excision of a dif-Cm-dif cassette positioned at the dif locus was assayed; excision frequency rises in concert with rising dimer formation. When grown in the absence of arabinose, the mukF P ara mukF strain excised the cassette at a frequency of 41% per generation, about twofold higher than the 20% excision rate in the control strain (Fig. 4B), consistent with chromosome dimers occurring more frequently in the absence of MukF. In the presence of arabinose, the excision rate in the mukF P ara mukF strain was 31%, suggesting that suppression of the MukF− phenotype by ectopic MukF expression is not complete.

**Fig. 5.** Phenotype of ftsK variants in mukF P ara mukF cells.

A. Microscopy of mukF P ara mukF ftsK variants and mukF P ara mukF xerC grown at 22°C in LB supplemented with arabinose or glucose was performed after staining the cells with 4,6-diamidino-2-phenylindole (green) to visualize DNA.

B. The relative plating efficiency of mukF P ara mukF ftsK[Δγ] variants and mukF P ara mukF xerC after ~10 generations of exponential growth at 22°C in LB in the presence of either glucose or arabinose.

C. Microscopy of mukF P ara mukF recA cells grown at 22°C in LB in the presence and absence of arabinose.
Chromosome dimers form as a consequence of RecA-mediated homologous recombination. We anticipated that any increase in dimeric chromosome formation in Muk cells could reflect increases in DNA damage and recombinational repair in such cells (as inferred by Kouzminova et al., 2004), or simply an increase in interaction between homologous regions in sisters as a consequence of changes in chromosome organization. In the former case, introduction of a recA allele into Muk cells would further decrease viability because of an inability to repair potentially lethal DNA damage, while in the latter case the presence of a recA allele would suppress the defects arising from dimer formation in Muk cells.

In order to distinguish these alternatives, a mukF Parα mukF strain was made recA in the presence of arabinose. Upon removal of arabinose, the strain formed very small colonies at 22°C. 4,6-diamidino-2-phenylindole-stained cells showed extensive filamentation, with most filaments containing very little DNA stain, indicative of extensive DNA degradation (Fig. 5C). This finding supports the hypothesis that in the absence of functional MukBEF, cells accumulate DNA damage, whose repair demands RecA processing, with consequent increased chromosome dimer formation.

In conclusion, a lack of KOPS-guided FtsK translocation in muk cells compromises viability in a cell population for two reasons. First, these populations have an increased frequency of chromosome dimer formation; nevertheless, preventing dimer formation by making the muk cells recA does not suppress this phenotype because of increased need for recombinational repair in muk cells. Second, the probability of resolving dimers is much reduced, as evidenced by the similarity of the phenotype when either ftsK[blind] or xerC alleles are present in the absence of functional MukBEF. We believe it likely that this reduced efficiency of unlinking in individual cells arises because of the aberrant chromosome organization in muk cells (Danilova et al., 2007), thereby requiring more extensive FtsK translocation at the septum in order to access dif.

Conclusions and perspective

We have shown that defects in KOPS recognition in otherwise healthy cells have little effect other than a decrease in the efficiency of chromosome dimer resolution and unlinking; we estimate that ~70% of chromosome dimers are resolved to monomers in cells that are wild-type other than carrying the ftsK[blind] allele (Fig. 3D). KOPS guides FtsK translocation by acting as a directional loading site for FtsK. ‘Non-permissive’ KOPS do not stop or stall FtsK translocation; rather non-permissivity arises probably when an FtsK hexamer loaded onto a non-permissive site collides with the reporter FtsK molecule that is translocating towards it (Bigot et al., 2006; Löwe et al., 2008). A consequence of this is that interaction of FtsK with KOPS does not need to lead to downregulation or dissociation of the translocase. In the absence of KOPS, or KOPS recognition, FtsK can still load at random sites, from where it can translocate processively. In the absence of KOPS recognition, loading should be less efficient and 50% of FtsK loading events in ter should still be in a direction that favours resolution of chromosome dimers. If FtsK is present in excess and random loading onto DNA is sufficiently efficient, it may lead to frequent clashes between FtsK motors translocating in opposite directions. Nevertheless, loading by FtsK[blind] is clearly efficient enough, and clashes infrequent enough, to ensure efficient XerCD–dif recombination.

The data show that FtsK can be loaded, irrespectively of KOPS recognition, at least 85 kb from the XerC side of dif and 150 kb from the XerD side. In contrast, sites 500 kb from the XerC side of dif and 1800 kb to the XerD side appear unable to load FtsK. Consistent with this, other experiments show that the FtsK ‘capture zone’ is ~400 kb (Corre and Louarn, 2005; C. Pages and F. Cornet, unpubl. data). The much smaller genetically defined ‘dif activity zone’, DAZ, which corresponds to ~10 kb either side of dif locus (Perals et al., 2000), has been inferred to be the region within which directed FtsK translocation from either side can efficiently access chromosomal dif. Nevertheless, DAZ appears not to be precisely defined by KOPS, because within 10 kb of chromosomal dif there are two GGGCAGGG KOPS on the XerD side (124 bp, 7893 bp, away from dif) and none on the XerC side. If the KOPS consensus GGGNAGGG is used, this increases to three and two KOPS, respectively, within DAZ. We therefore infer that a single KOPS directing FtsK away from dif may be insufficient to ablate recombination at dif, and up to three KOPS directing FtsK away from dif are needed to efficiently prevent FtsK access to dif in vivo.

The failure of FtsK[blind] to recognize KOPS has more serious consequences for a cell population when chromosome dimers occur more frequently. Furthermore, the efficiency with which dimers are unlinked to monomers in individual cells is also less efficient in the presence of FtsK[blind] when perturbations to chromosome organization and processing were introduced by removing functional MukBEF; by deleting the replication terminator, Tus, which acts to direct replication termination to ter, or by substituting Cre–loxP recombination for XerCD–dif in dimer resolution. Loss of functional MukBEF and dimer resolution by Cre–loxP recombination had particularly strong consequences when FtsK[blind] replaced wild-type FtsK. These observations complement and add to our previous demonstration that KOPS-guided translocation by FtsK is essential if XerCD–dif recombination is to
successfully decatenate newly replicated chromosomes in the absence of topoisomerase IV (Grainge et al., 2007).

We propose that the requirement for directed translocation by FtsK for efficient dimer resolution in Tus− and MukBEF− individual cells arises as a consequence of chromosome disorganization in these strains leading to sister dif sites being distant from septal FtsK during the late steps of the cell cycle; thereby requiring extensive directed translocation if chromosome unlinking is to occur; the data indicate that disorganization is greater in mukBEF cells. In contrast, when Cre−loxB recombination replaces that by XerCD−dif, chromosome organization appears normal, but local DNA translocation by FtsK ensures that sister loxP sites are brought together in a simple synapse, which does not entrap any intervening DNA, thereby ensuring that the site-specific recombination reaction gives unlinked products (Ip et al., 2003; Grainge et al., 2007). The mechanism by which entrapped DNA is removed between recombination sites during translocation remains unclear, although the process is evident in vitro in both Cre−loxB recombination and XerCD−dif recombination; in the latter case recombination is restricted to simple synapses.

Future challenges are to understand the molecular organization of FtsK at the septum, and to develop ‘almost real-time’ methods that allow visualization of individual FtsK molecule loading, translocation and activation of chromosome unlinking in live cells.

Experimental procedures

Bacterial strains

ftsK[ΔLC] lacks the linker and the C-terminal translocase domain (deleted for aa residues 211–1329; Bigot et al., 2004); The ftsK[Aγ] lacks residues 1248–1329. ftsK::cat, which carries a Tn10–cat insertion in the linker domain and expresses the essential N-terminal domain of ftsK (Dzie et al., 1997), was used in in vivo assays to test function of FtsK0 variant (in DS9041) and for purification of FtsK0 and FtsK00 variants and in strains constructed for studying muk phenotype; it provides the ftsK0(ΔC) allele. Strains for the dif-lacI-dif excision assay were derived from LN2666 (W1485 F: leu thyA thi deo supE tpsL: Cornet et al., 1994). Strains for studying the muk phenotype were derived from AB1157 mukF::kan (Yamanaka et al., 1996), and contained Pva mukF-frt::ΔargE. AB1157 was used as the parental strain in all other experiments. Alleles were transferred by P1 transduction.

Proteins

N-terminal Flag-epitope tagged EcftsK00, FtsK00Cδ and FtsK00Cγ variants were expressed from the arabinose promoter of plasmid pBAD24 and purified on M2 anti-flag agarose affinity gel (Sigma). XerC and XerD proteins were purified as in Ferreira et al. (2001).

In vivo and in vitro dif plasmid recombination and triplex displacement

The reactions were performed as in Sivanathan et al. (2006). The KOPS-2 plasmid had two directly repeated dif sites, each bounded by three overlapping KOPS in the non-permissive orientation (Sivanathan et al., 2006).

Flow cytometry

Approximately 4 ¥ 107 exponentially growing cells were fixed in 70% EtOH and resuspended in PBS supplemented with Cyto16 stain. Samples were analysed on a FACS Calibur flow cytometer. Cyto16 fluorescence was detected by FL-1 and a lower cut-off value was set to exclude debris not containing DNA.

Growth competition

A 1:1 mixture of two strains was grown in serial culture in LB at 37°C over 40 generations, and the relative frequencies of the two strains were determined by plating every 10 generations. The fitness coefficient or percentage of abortive divisions were calculated as described in Peral et al. (2000). In the dif::loxP background, Cre was expressed constitutively from pFX71 (pBAD18-Cre; Capiaux et al., 2002).

Plasmid integration

Plasmid integration assays were performed by transforming the strain to be tested with pOLO9, a thermosensitive vector carrying a dif site, and selected for at 30°C. Five colonies from this transformation were then inoculated into a single tube of LB medium and grown for 16 h at 30°C. Dilutions were then plated at 30°C and 42°C. pOLO9 can persist at the elevated temperature only if it is integrated into the chromosome by XerCD-mediated recombination at chromosomal dif. The rate of integration was calculated from the ratio of cfu at 42°C to that at 30°C.

dif-lacI-dif and dif-Cm-dif cassette excision

Strains carried a xerC::Gm mutation and the dif-lacI-dif or dif-Cm-dif cassette were made XerC+ by transformation with the appropriate SpR plasmid, pFC241. Transformants were plated on LB containing 20 μg ml−1 spectinomycin and grown overnight at 37°C. Five independent transformants were resuspended in LB plus spectinomycin, grown 5 h, diluted and plated on LB plus Xgal. The whole procedure corresponds to 20 generations before plating on LB–Xgal plates. The ratio of dark blue colonies on total was used to calculate the frequency of lacI loss per cell per generation. The average of five independent measures is shown. The dif-Cm-dif cassette excision in mukF Pva mukF strain assay was performed in a similar way apart from cultures being grown in LB supplemented with Cm and then diluted into LB supplemented with either arabinose or glucose and grown for 20 generations at 22°C, plated on LB plus arabinose, and monitored for the loss of CmR.
Acknowledgements

We thank Rodrigo Reyes for invaluable discussion and help in strain construction, and Bing Li for assistance in strain construction. We thank Heather Hendickson for valuable discussion. The research was supported by the Wellcome Trust (Oxford), the CNRS, the Agence Nationale pour la Recherche and University Paul Sabatier of Toulouse (Toulouse). V.S. was supported by an Oxford University Clarendon Postgraduate Award.

References

Aussel, L., Barre, F.-X., Aroyo, M., Stasiak, A., Stasiak, A.Z., and Sherrat, D. (2002) FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108: 195–205.

Barre, F.-X., Aroyo, M., Colloms, S.D., Helfrich, A., Cornet, F., and Sherrat, D.J. (2000) FtsK functions in the processing of a Holliday Junction intermediate during bacterial chromosome segregation. Genes Dev 14: 2976–2988.

Becker, E., and Pogliano, K. (2007) Cell-specific SpoIIE assembly and DNA translocation polarity are dictated by chromosome orientation. Mol Microbiol 66: 1066–1079.

Bigot, S., Corre, J., Louarn, J.M., Cornet, F., and Barre, F.-X. (2004) FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein. Mol Microbiol 54: 876–886.

Bigot, S., Saleh, O.A., Lesterlin, C., Pages, C., El Karoui, M., Dennis, C., et al. (2005) KOPs: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase. EMBO J 24: 3770–3780.

Bigot, S., Saleh, O.A., Cornet, F., Allemand, J.F., and Barre, F.-X. (2006) Oriented loading of FtsK on KOPs. Nat Struct Mol Biol 13: 1026–1028.

Blakely, G., Colloms, S., May, G., Burke, M., and Sherrat, D. (1991) Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3: 789–798.

Blakely, G., May, G., McCulloch, R., Arciszewska, L.A., Burke, M., Lovett, S.T., and Sherrat, D.J. (1993) Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75: 351–361.

Britton, R., and Grossman, A. (1999) Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis. J Bacteriol 181: 5860–5864.

Britton, R., Lin, D., and Grossman, A. (1998) Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev 12: 1254–1259.

Capiaux, H., Lesterlin, C., Perais, K., Louarn, J.M., and Cornet, F. (2002) A dual role for the FtsK protein in Escherichia coli chromosome segregation. EMBO Rep 6: 532–536.

Cornet, F., Mortier, I., Patte, J., and Louarn, J. (1994) Plasmid pSC101 harbors a recombination site, psi, which is able to resolve plasmid multimers and to substitute for the analogous chromosomal Escherichia coli site dif. J Bacteriol 176: 3188–3195.

Corre, J., and Louarn, J.M. (2005) Extent of the activity domain and possible roles of FtsK in the Escherichia coli chromosome terminus. Mol Microbiol 6: 1539–1548.

Danilova, O., Reyes-Lamothe, R., Pinskaya, M., Sherrat, D., and Possoz, C. (2007) MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol Microbiol 65: 1485–1492.

Diez, A.A., Farewell, A., Nannmark, U., and Nystrom, T. (1997) A mutation in theftsK gene of Escherichia coli affects cell-cell separation, stationary phase survival, stress adaptation, and expression of the gene encoding the stress protein UspA. J Bacteriol 179: 5878–5883.

Draper, G.G., McClennan, N., Begg, K., Masters, M., and Donachie, W.D. (1998) Only the N-terminal domain of FtsK functions in cell division. J Bacteriol 180: 4621–4627.

Ferreira, H., Sherrat, D.J., and Arciszewska, L.K. (2001) Switching catalytic activity in the XerCD site-specific recombination machine. J Mol Biol 312: 45–57.

Goehring, N., and Beckwith, J. (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol 15: 514–526.

Grainge, I., Bregu, M., Vazquez, M., Sivanathan, V., Ip, S.C.Y., and Sherrat, D. (2007) Unlinking chromosome catenanes in vivo by site-specific recombination. EMBO J 26: 4228–4238.

Hendricks, E., Szerlong, H., Hill, T., and Kuempel, P. (2000) Cell division, guilottining of dimer chromosomes and SOS induction in resolution mutants (dif, xerC and xerD) of Escherichia coli. Mol Microbiol 36: 973–981.

Hendrickson, H., and Lawrence, J.G. (2006) Selection of chromosome architecture in bacteria. J Mol Evol 62: 615–629.

Ip, S.C.Y., Bregu, M., Barre, F.-X., and Sherrat, D.J. (2003) Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J 22: 6399–6407.

Kennedy, S., Chevalier, F., and Barre, F.-X. (2008) Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli. Mol Microbiol 68: 1018–1028.

Kouzmanova, E.A., Rotman, E., Macomber, L., Zhang, J., and Kuzminov, A. (2004) RecA-dependent mutants in Escherichia coli reveal strategies to avoid chromosome fragmentation. Proc Natl Acad Sci USA 101: 16262–16267.

Kuempel, P.L., Henson, J.M., Dircks, L., Tecklenburg, M., and Lim, D.F. (1991) dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol 3: 799–811.

Lemon, K.P., Kurtser, I., Wu, J., and Grossman, A.D. (2001) Effects of replication termination mutants on chromosome partitioning in Bacillus subtilis. Proc Natl Acad Sci USA 98: 212–217.

Leslie, N., and Sherrat, D. (1995) Site-specific recombination in the replication terminus region of Escherichia coli: functional replacement of dif. EMBO J 4: 1561–1570.

Leyt, O., Ptcain, J.L., Pease, P.J., Gore, J., Elisen, M.B., Bustamante, C., and Cozzarelli, N.R. (2005) Identification of oligonucleotide sequences that direct the movement of the analogous chromosomal Escherichia coli site dif. J Bacteriol 176: 3188–3195.
the Escherichia coli FtsK translocase. *Proc Natl Acad Sci USA* **102**: 17618–17623.

Löwe, J., Ellonen, A., Allen, D., Atkinson, C., Sherratt, D., and Grainge, I. (2008) Molecular mechanism of sequence-directed DNA loading and translocation by FtsK. *Mol Cell* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.

Markovitz, A. (2005) A new in vivo termination function for DNA polymerase I of *Escherichia coli* K12. *Mol Microbiol* **31**: 498–509.