HIF-2: The Missing Link Between Obesity and Cardiomyopathy
Amato J. Giaccia, PhD

Introduction to HIF Pathway

The evolutionarily conserved hypoxia-inducible factor (HIF) pathway is present ubiquitously in mammalian cells and plays a critical role in the regulation of energy metabolism, especially glucose utilization. HIF is a transcription factor consisting of an O2-sensitive HIF-α (HIF-1α or HIF-2α) and the O2-insensitive HIF-1β subunit. Under most physiologically normoxic conditions (>3% O2), HIF-α is hydroxylated by prolyl hydroxylases (PHD) at 2 proline residues located in the oxygen-dependent degradation domain (ODD), which leads to interaction with the von Hippel Lindau protein pVHL and subsequent degradation by proteasomes. When tissue oxygenation decreases to, for example, <2% O2, HIF-α hydroxylation diminishes and becomes stabilized. While the PHDs themselves can act as oxygen sensors, the mitochondria has also been proposed as a critical organelle responsible for cellular oxygen sensing, presumably through complex III. Mitochondrial oxygen sensing may be more critical for acute, rapid physiological changes that are needed to respond to hypoxic conditions. In contrast to hypoxia, under aerobic conditions additional mechanisms have been proposed for increased HIF-α. In particular, growth factor receptor tyrosine kinase and protooncogene-mediated pathways can also augment HIF-α expression through translational regulation. Thus, depending on the tissue microenvironment, different mechanisms can be used to increase HIF-α levels and transcriptional activity.

Obesity and the Tissue Microenvironment

Obese individuals often suffer a myriad of health issues, including type 2 diabetes, cardiomyopathy, and nephropathy. However, the molecular mechanisms linking obesity with cardiomyopathy are probably multifactorial and depend as much on the genetics of the individual as on environmental factors such as circulating cytokines and chemokines. Cardiomyopathy, in particular, has been proposed to result from faulty endothelial function, reactive oxygen species, and inflammation. However, what the causative stimulus is for inflammation and oxidative stress in obese individuals has yet to be clearly determined. In fact, one new hypothesis that explains this link is that microenvironmental changes in the adipose tissue of obese individuals could lead to an inflammatory response, an increase in circulating cytokines, and ultimately to cardiomyopathy and heart failure (Figure). The critical point of this hypothesis is that changes in the adipose tissue lead to cardiomyopathy through secreted factors. Previous studies have demonstrated that the adipose tissue in both obese humans and mice can become hypoxic. This is a rather surprising finding that has been largely ignored as adipose tissue is often thought to be well vascularized. Could changes in tissue oxygenation result in increased levels of the HIF-α family in adipose tissue and lead to inflammation and cardiomyopathy?

In this issue of *J AHA*, Lin et al report a highly novel and important observation regarding HIF function in adipocytes. They generated a series of transgenic mouse models through the conditional deletion of *Vhl* alone or in combination with *Hif1a* or *Hif2a* using the adipocyte-specific aP2 promoter-driven cre. Mice with adipocyte-specific *Vhl* deletion exhibited cardiomegaly with marked ventricular hypertrophy and cardiac dysfunction within a week after birth, suggesting chronic activation of the HIF pathway in adipocytes has deleterious effects remotely in the neonatal heart. Interestingly, the phenotypes of *Vhl* deletion could be fully rescued by conditionally deleting both *Vhl* and *Hif2a* in adipocytes. In contrast, conditional deletion of *Hif1a* in adipocytes did not only fail to rescue the *Vhl-null* phenotypes, and if anything exacerbated the cardiac hypertrophy and dysfunction, which resulted in a shorter lifespan of these mice. The genetic
HIF-2, Obesity, and Cardiomyopathy

Giaccia

also demonstrated that HIF-2 is a critical effector of this phenotype. These results are strong evidence that leads us to conclude that adipose inflammation is a major cause of pathological heart hypertrophy and heart failure with HIF-2 activation in adipocytes as a critical underlying mechanism.

HIF-2, Obesity and Cardiomyopathy

This work by Lin et al has a potentially significant impact on understanding the etiology of obesity-associated cardiomyopathy. For decades, it has been known that obesity is closely associated with cardiomyopathy and hypertrophy. In recent years, chronic inflammation emerged as a potential leading cause of obesity-associated heart diseases, but the mechanisms remain to be elucidated.

While the studies performed here have used mouse genetics to demonstrate the importance of HIF-2α in adipocytes leading to cardiomyopathy, both human and mouse adipose tissue develops hypoxia, which could be the physiological signal for HIF-2α induction. Furthermore, hypoxia has also been implicated as a regulator of adipokines and inflammatory cytokines in adipose tissue, supporting the link between it, inflammation, and cardiomyopathy.

The genetic evidence presented by Lin et al has clearly demonstrated that sustained activation of HIF-2 in adipocytes is both necessary and sufficient to induce chronic inflammation in adipose tissues, and elevated levels of secreted inflammatory cytokines. Vhl deletion in adipocytes led to significantly increased expression of Hmox1, Lep, Vegfd/Fgf, and Serpine1/Pai1 in adipose tissue. Interestingly, elevated expression of these genes is often found in adipose tissue of obese subjects. Among secreted cytokines associated with adipocyte HIF activation, MCP-1 (CCL2) and IL-12 levels were elevated in young and/or adult obese patients. It is also well documented that IL-1β can induce hypertrophic response in cardiomyocytes. It is highly likely that obesity-associated cardiomyopathy results from concerted actions of multiple secreted cytokines and chemokines either directly by adipose tissue or indirectly by other tissues due to secondary effects of HIF-induced adipose inflammation. Nonetheless, the work by Lin et al proposes a new paradigm that establishes HIF-2α as a major driver of the obesity-induced adipose inflammation and the eventual development of obesity-associated cardiomyopathy (Figure). Most importantly, since genetic deletion rescued this phenotype, pharmacological

Figure. The HIF-2 pathway in cardiomyopathy.
inhibitors of HIF-2α, which are starting to be developed, could have therapeutic benefit to obese patients, if they could be targeted to adipose tissue specifically.

Disclosures

None.

References

1. Aragones J, Fraitl P, Baes M, Carmeliet P. Oxygen sensors at the crossroad of metabolism. Cell Metab. 2009;9:11–22.
2. Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999;15:551–578.
3. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399:271–275.
4. Ohn M, Park CW, Ivan M, Hoffman MA, Kim TY, Pavletich N, Chau V, Kaelin WG. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000;2:423–427.
5. Chandel NS. Mitochondrial regulation of oxygen sensing. Adv Exp Med Biol. 2010;661:339–354.
6. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29:625–634.
7. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–867.
8. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradoxe, and impact of weight loss. J Am Coll Cardiol. 2009;53:1925–1932.
9. Lazar MA. How obesity causes diabetes: not a tall tale. Science. 2005;307:373–375.
10. Litwin SE. The growing problem of obesity and the heart: the plot “thickens.” J Am Coll Cardiol. 2006;47:617–619.
11. Walsh K. Adipokines, myokines and cardiovascular disease. Circ J. 2009;73:13–18.
12. Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, Rood JC, Burk DH, Smith SR. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58:718–725.
13. Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293:E1118–E1128.
14. Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, Wang ZV, Landskroner-Eiger S, Dineen S, Magalang UJ, Brekken RA, Scherer PE. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009;29:4467–4483.
15. Lin Q, Huang Y, Booth C, Haase V, Johnsson R, Simon C, Giordano F, Yun Z. Activation of hypoxia-inducible factor-2 in adipocytes results in pathological cardiac hypertrophy. J Am Heart Assoc. 2013;2:e000548 doi: 10.1161/JAHA.113.000548.
16. Lin Q, Lee YJ, Yun Z. Differentiation arrest by hypoxia. J Biol Chem. 2006;281:30678–30683.
17. Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Physiol Rev. 2008;88:389–419.
18. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321:225–236.
19. Amad KY, Brennan JC, Alexander JK. The cardiac pathology of chronic exogenous obesity. Circulation. 1965;32:740–745.
20. Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr. 2008;100:227–235.
21. Yin J, Gao Z, He Q, Zhou D, Guo Z, Ye J. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am J Physiol Endocrinol Metab. 2009;296:E333–E342.
22. Kim Y, Park T. DNA microarrays to define and search for genes associated with obesity. Biotechnol J. 2010;5:99–112.
23. Breslin WL, Johnston CA, Strohacker K, Carpenter KC, Davidson TR, Moreno JP, Foreyt JP, McFarlin BK. Obese Mexican American children have elevated MCP-1, TNF-alpha, monocyte concentration, and dyslipidemia. Pediatrics. 2012;129:e1180–e1186.
24. Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, Kwon BS, Erickson KL, Yu R. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond). 2006;30:1347–1355.
25. Suarez-Alvarez K, Solis-Lozano L, Leon-Cabrera S, Leon-Cabrera S, Gonzalez-Chavez A, Gomez-Hernandez G, Quinones-Alvarez MS, Serralde-Zuniga AE, Hernandez-Ruiz J, Ramirez-Velasquez J, Galindo-Gonzalez FJ, Zavala-Castillo JC, De Leon-Nava MA, Robles-Diaz G, Escobedo G. Serum IL-12 is increased in Mexican obese subjects and associated with low-grade inflammation and obesity-related parameters. Mediators Inflamm. 2013;2013:967067.
26. Hu Y, Li T, Wang Y, Li J, Guo L, Wu M, Shan X, Que L, Ha T, Chen Q, Kelley J, Li Y. Tollip attenuated the hypertrophic response of cardiomyocytes induced by IL-1beta. Front Biosci. 2009;14:2747–2756.