Prognostic models for intracerebral hemorrhage: systematic review and meta-analysis

Tiago Gregório 1,2*, Sara Pipa 1, Pedro Cavaleiro 3, Gabriel Atanásio 1, Inês Albuquerque 4, Paulo Castro Chaves 4,5,6 and Luís Azevedo 7

Abstract

Background: Prognostic tools for intracerebral hemorrhage (ICH) patients are potentially useful for ascertaining prognosis and recommended in guidelines to facilitate streamline assessment and communication between providers. In this systematic review with meta-analysis we identified and characterized all existing prognostic tools for this population, performed a methodological evaluation of the conducting and reporting of such studies and compared different methods of prognostic tool derivation in terms of discrimination for mortality and functional outcome prediction.

Methods: PubMed, ISI, Scopus and CENTRAL were searched up to 15th September 2016, with additional studies identified using reference check. Two reviewers independently extracted data regarding the population studied, process of tool derivation, included predictors and discrimination (c statistic) using a predesignated spreadsheet based in the CHARMS checklist. Disagreements were solved by consensus. C statistics were pooled using robust variance estimation and meta-regression was applied for group comparisons using random effect models.

Results: Fifty nine studies were retrieved, including 48,133 patients and reporting on the derivation of 72 prognostic tools. Data on discrimination (c statistic) was available for 53 tools, 38 focusing on mortality and 15 focusing on functional outcome. Discrimination was high for both outcomes, with a pooled c statistic of 0.88 for mortality and 0.87 for functional outcome. Forty three tools were regression based and nine tools were derived using machine learning algorithms, with no differences found between the two methods in terms of discrimination (p = 0.490). Several methodological issues however were identified, relating to handling of missing data, low number of events per variable, insufficient length of follow-up, absence of blinding, infrequent use of internal validation, and underreporting of important model performance measures.

Conclusions: Prognostic tools for ICH discriminated well for mortality and functional outcome in derivation studies but methodological issues require confirmation of these findings in validation studies. Logistic regression based risk scores are particularly promising given their good performance and ease of application.

Keywords: Intracerebral hemorrhage, Prognosis, Clinical prediction rules, Mortality, Morbidity
Background

Intracerebral hemorrhage (ICH) is a major cause of death and disability, with an incidence rate of 24.6 per 100,000 person-years and a fatality rate of 40%. After such event, only 12–39% of patients regain independence [1]. Contrary to ischemic stroke, medical care for ICH remains mostly supportive, and few interventions clearly demonstrated benefit in this population [2, 3].

Several prognostic tools have been proposed for mortality and functional outcome prediction in ICH. These tools are potentially useful for ascertaining prognosis, facilitating communication between clinicians, characterizing and selecting patients for interventions, and for benchmarking purposes in healthcare delivery [2, 4].

The aim of this study was to systematically identify, assess and review the methodological conduct and reporting of studies deriving prognostic tools for the risk of death and/or functional recovery after ICH and to evaluate their overall discrimination according to the method of derivation and type of outcome.

Methods

We have designed, developed and reported our systematic review and meta-analysis in accordance with recommendations from the Cochrane Prognosis Methods Group [5] and the PRISMA [6] and MOOSE [7] guidelines. For this purpose, we searched PubMed, ISI Web of Knowledge, Scopus, and CENTRAL for all studies reporting the derivation of prognostic tools for predicting death and/or functional recovery after non-traumatic ICH, using the broad and sensitive search query reported Additional file 1. The search included articles from database inception to 15th September 2016, with additional articles identified from reference checking. No language restrictions were applied. There is no protocol available.

Study selection and inclusion criteria

Articles were included if they met the following criteria: 1) were human studies; 2) were original articles; 3) were adult studies (≥ 18 years); 4) did not consist of case reports/ case series; 5) enrolled non-traumatic ICH patients; 6) were prognostic studies; 7) described the application of a prognostic tool; and 8) were derivation studies. Studies involving traumatic and/or extra-axial bleedings were excluded. Study selection was performed using a two-step process. In the first step (screening), all abstracts were reviewed by two authors independently applying the inclusion criteria. This process was repeated in the second step again by two authors working independently, applying the same criteria to the full text of remaining studies. Disagreements were resolved by consensus.

Quality assessment, data extraction, analysis and reporting

To inform quality assessment and data extraction from individual studies, two reviewers independently applied a spreadsheet based in the CHARMS checklist [5] to the included studies, gathering information on the following aspects of prognostic tool derivation: 1) population, sampling and source of data; 2) outcome timing and definition; 3) number and type of predictors; 4) number of patients and events 5) handling of missing data; 6) method for tool derivation and 7) prognostic tool performance.

Prognostic tool performance was evaluated by determining its discriminatory capacity, i.e., its ability to determine which patients will suffer the outcome of interest. As a measure of this, we retrieved the c-statistic along with its 95% confidence interval (CI). For studies not reporting any of these parameters, we obtained them by recreating the receiver operating characteristic (ROC) curve from reported probability distributions; for studies reporting the c-statistic but not its confidence interval, we calculated the later using the method reported by Hanley and McNeil [8], where the number of outcomes was available. Standard errors were derived from the respective CIs.

Given the fact that some authors derived more than one tool from the same sample population, we pooled c-statistics using robust variance estimation (RVE) to account for dependent effects, according to Tanner-Smith et al. [9]. Specifically, we assumed correlated effect sizes and used a random effects model with inverse variance weights to estimate the overall mean c-statistic and mean c-statistics for mortality prediction tools, functional outcome prediction tools, logistic regression based tools, and machine learning algorithms. Univariate meta-regression was used to compare these groups and p values < 0.05 were considered significant. Due to the nature of the meta-analytical technique used, heterogeneity statistics such as Q-statistic and I-square are not recommended, according to Tanner-Smith et al. [9]. However, the I2 statistic is reported for illustrative purposes. Statistical analysis was performed using specific macros [9] designed for R and SPSS® statistics v 24.0.

Results

Figure 1 depicts the study selection procedure. The search query retrieved 15,613 references: after the screening step, there were 263 references left for full text review. The second step removed an additional 207 references, leaving us with 56 studies reporting the derivation of at least one prognostic tool. Three additional studies were identified through reference check, which led to the final number of 59 studies involving 48,133 patients. Nine studies reported the derivation of more
than one prognostic tool, so the total number of prognostic tools analyzed was 72. The summary description of these tools is depicted in Table 1.

Population, sampling and source of data

The source population from which the patients were recruited for prognostic tool derivation consisted on primary/spontaneous ICH patients for all tools except two [10, 11], which focused on arteriovenous malformation related hemorrhages (Table 1). However, several studies included further specifications for patient inclusion namely age [12], cerebral amyloid related angiopathy [13], deep location [14–17], lobar location [18], supratentorial bleeds [16, 19–33], presence of intraventricular hemorrhage [16, 34, 35], African ethnicity [36], non-comatose patients [22, 37], comatose patients [38], medically treated patients [22–25, 27, 33, 38–40], surgically treated patients [21], oral anticoagulant related bleeds [41], hypertensive patients [19, 36], and dialysis patients [40]. The majority of studies (n = 40) recruited patients from hospitals or emergency rooms [10–14, 16–22, 26, 29–31, 36, 40–61] but nine studies recruited patients from intensive care units [24, 28, 32, 33, 35, 38, 62–64], three studies recruited patients from stroke units [34, 37, 65], six studies recruited patients from neurology/neurosurgery departments [15, 25, 27, 39, 66, 67], and one study recruited patients from both an intensive care unit and a stroke unit [23]. Most prognostic tools were derived from cohort studies, with the exceptions being registries [29, 30, 43, 51, 64], randomized clinical trial data [14, 42], case-control studies [26], and administrative databases [59]. Thirteen studies were multicentric [13, 24, 29, 30, 35–37, 42, 43, 51, 55, 59, 62], with two studies involving more than two countries [42, 55]. The sampling method was not reported or unclear for 18 studies [12, 15, 17, 21, 23, 24, 26, 29, 30, 32, 36, 42, 54, 61, 63, 66–68], being consecutive for all others.

Outcome timing, definition and assessment

Of the 72 prognostic tools included in this review 46 focused on mortality [12, 21, 23, 24, 26–36, 38–41, 44, 45, 48–50, 53, 54, 56, 58–61, 63–68], 19 focused on morbidity [10, 11, 15, 17–20, 22, 25, 37, 42, 43, 47, 51, 52, 55, 57], and seven were derived for a combined outcome (mortality plus morbidity) [13, 14, 16, 46, 62].

Mortality prediction was mostly attempted at hospital discharge or 1 month (Table 1); exceptions to this rule were the studies by Grellier [66], Celik [68], Lei [13], Cho [14], and Galbois [38], which analyzed death at 2 days, 10 days, 3 months, 6 months, and ICU discharge respectively. Interestingly, Galbois focused on brain death rather than the general concept of mortality used in other studies. Functional status prediction was more
Author	Year	Population	Tool	Timing	Variables	AUC (SE)
Alsina [24]	2014	Supratentorial ICH not submitted to surgery	Equation	30 days	IVH, hematoma size, and midline shift	0.933 (0.029)
Berwaerts [41]	2000	Oral anticoagulant related ICH	Equation	Discharge	Hematoma diameter and CT signs of ischemia	–
Bhatia [65]	2013	Primary ICH	Equation	Discharge	GCS, hematoma size, IVH, and ventilatory requirement	0.822 (0.033)
Broderick [44]	1993	Spontaneous ICH	Equation	30 days	GCS, hematoma size	0.805 (0.036)
Broderick’ [44]	1993	Spontaneous ICH	Equation	30 days	Hematoma size, IVH volume, GCS, and surgery	–
Celik [68]	2014	Spontaneous ICH	ANN	10 days	Age, gender, hypertension, diabetes, smoking, mean blood pressure, Scandinavian Stroke Scale score, pulse pressure, localization of hemorrhage (including infratentorial), volume of hemorrhage, ventricular drainage, and midline shift	–
Cerillo [21]	1981	Operated supratentorial ICH	Equation	Discharge	Age, mode of onset, site of hemorrhage, level of consciousness, time from onset to surgery, congestive heart failure/coronary artery disease, and diabetes/uremia	0.893 (0.033)
Chen [45]	2011	Nontraumatic ICH	Score	Discharge	GCS, hematoma volume, IVH, and diabetes	0.867 (0.027)
Chiu [61]	2016	Spontaneous ICH	CART+SVM	30 days	GCS, hematoma size	–
Chuang [63]	2009	Spontaneous ICH	Score	30 days	Age, GCS, hypertension, glucose and dialysis dependency	0.890 (0.026)
Edwards [28]	1999	Supratentorial ICH	ANN	Discharge	Gender, race, hydrocephalus, mean arterial pressure, pulse pressure, GCS, IVH, hematoma size, location (thalamic, basal, lobal), cisternal effacement, pineal shift, hypertension, diabetes, and age	0.984 (0.020)
Edwards’ [28]	1999	Supratentorial ICH	Equation	Discharge	Hydrocephalus, GCS, gender, pineal shift	0.919 (0.043)
Fogelholm [31]	1997	Supratentorial ICH	Equation	28 days	Consciousness, mean arterial pressure, subarachnoid spread, midline shift, glucose, and vomiting	–
Frithz [12]	1976	ICH patients < 70-years	Decision tree	Discharge	Consciousness, diastolic blood pressure	0.943 (0.024)
Galbois [38]	2013	Spontaneous comatose ICH not submitted to surgery	Score	ICU stay	Brainstem reflexes, swirl sign.	0.850 (0.050)
Galbois’ [38]	2013	Spontaneous comatose ICH not submitted to surgery	Score	ICU stay	Corneal reflexes, swirl sign.	0.840 (0.051)
Grellier [66]	1983	Spontaneous ICH	Score	2 days	Age, gender, consciousness (normal, changed, coma), CV risk factors (alcohol, tobacco, hypertension, dyslipidemia, CV disease), and ICH location (infratentorial, thalamic, internal capsule, oval center, lobar)	–
Hallevi [34]	2009	Primary ICH with IVH	Score	Discharge	GCS, total volume (ICH + IVH).	0.840*
Hemphill [48]	2001	Nontraumatic ICH	Score	30 days	Age, ICH volume, infratentorial ICH, GCS, and IVH	0.920 (0.020)
Ho [64]	2016	Primary ICH	Score	Discharge	Age, creatinine, NIHSS, heart disease, gender	0.870 (0.018)
Table 1 Summary description of prognostic tools (Continued)

Author	Year	Population Description	Tool	Timing	Variables	AUC (SE)
Huang [40]	2008	Spontaneous medically treated ICH in hemodialysis patients	Score	30 days	GCS, age, and systolic blood pressure.	0.745 (0.048)
Li [50]	2012	Spontaneous ICH	Equation	Discharge	Age, GCS, glucose, and white blood cell count.	0.923 (0.020)
Li' [49]	2011	Primary ICH	Score	Discharge	Age, Glucose, LDH, and white blood cell count.	0.745 (0.025)
Lukic [33]	2012	Primary supratentorial medically treated ICH	Equation	Discharge	Level of consciousness, GCS verbal response, age, gender, and pulse pressure.	0.856 (0.018)
Lukic' [26]	2012	Spontaneous supratentorial ICH	ANN	Discharge	Age, gender, pulse pressure, mean arterial pressure, GCS (E/V/M), and consciousness.	0.883 (0.048)
Masé [27]	1995	Primary supratentorial medically treated ICH	Equation	30 days	GCS, IVH spread, and hematoma size.	–
Parry-Jones [53]	2013	Spontaneous ICH	Equation	30 days	Age, GCS, MH extension, and hematoma volume.	0.897 (0.010)
Peng [54]	2010	Spontaneous ICH	Random Forrest	30 days	Age, gender, hypertension, diabetes, ischemic heart disease, previous stroke, anemia, dialysis dependency, GCS, systolic/diastolic/mean blood pressure, infratentorial bleed, size of ICH, ICH volume, IVH, pineal shift, hydrocephalus, hemoglobin, and glucose.	0.870 (0.015)
Peng' [54]	2010	Spontaneous ICH	ANN	30 days	Age, gender, GCS, site of ICH, ICH volume, IVH, hypertension, diabetes, anemia, and previous stroke.	0.810 (0.020)
Peng'' [54]	2010	Spontaneous ICH	SVM	30 days	Age, gender, GCS, site, ICH volume, IVH, hypertension, diabetes, anemia, and previous stroke.	0.790 (0.020)
Peng''' [54]	2010	Spontaneous ICH	Equation	30 days	Anemia, age, GCS, hypertension, and dialysis dependency.	0.780 (0.020)
Romano [56]	2009	Primary ICH	Score	30 days	GCS, hematoma volume, and intraventricular spread.	0.915 (0.026)
Ruiz-Sandoval [58]	2007	Primary ICH	Score	Discharge	Age, infratentorial bleed, ICH size, GCS, and IVH spread.	0.880 (0.017)
Safatli [60]	2016	Primary ICH	Score	30 days	GCS, infratentorial bleed, and hematoma volume.	–
Szepesi [32]	2015	Supratentorial ICH	Equation	30 days	Age, hematoma volume, IVH, systolic blood pressure, glucose, and potassium.	–
Tabak [59]	2007	Spontaneous ICH	Equation	Discharge	Age, creatinine, glucose, pH, CO2, O2, partial thromboplastin time, prothrombin time, platelets, white blood cells, cancer, temperature, pulse, systolic blood pressure, respiratory rate, and altered mental status.	0.890 (0.003)
Takahashi [67]	2006	Spontaneous ICH	CART	Discharge	Japan Coma Scale, ICH volume, and age.	0.853 (0.024)
Takahashi' [67]	2006	Spontaneous ICH	Equation	Discharge	Japan Coma Scale, temperature, infratentorial bleed, and ICH volume.	0.810 (0.033)
Tshikwela [36]	2012	Black hypertensive primary ICH	Score	Discharge	GCS, ICH volume, left hemisphere involved.	–
Table 1 Summary description of prognostic tools (Continued)

Author	Year	Population	Tool	Timing	Variables	AUC (SE)
Tshikwela’	2012	Black hypertensive primary ICH	Score	Discharge	Gender, GCS, midline shift.	–
Tuhrim	1999	Primary supratentorial ICH managed medically	Equation	30 days	GCS, ICH volume, pulse pressure, hydrocephalus, and IVH volume.	–
Tuhrim’	1991	Supratentorial ICH	Equation	30 days	Hematoma size, ICH volume, GCS, pulse pressure, and IVH-GCS interaction.	0.900 (0.027)
Tuhrim’	1988	Supratentorial hemorrhage	Equation	30 days	GCS score, hematoma size, and pulse pressure.	0.892 (0.042)
Ziai	2015	Primary ICH with IVH	Score	Discharge	Temperature, glucose, intracranial pressure, and Do-Not-Resuscitate orders	0.850 (0.030)
Zis	2014	Non-operated primary ICH	Score	30 days	GCS, ICH size, INR, IVH spread, and infratentorial location.	0.920 (0.023)

Functional outcome prediction tools

Author	Year	Population	Tool	Timing	Variables	AUC (SE)
Appelboom	2012	AVM-related ICH	Score	3 months	Age, ICH, infratentorial bleed, GCS, and hematoma size.	0.914 (0.039)
Creutzfeld	2011	Primary ICH	Equation	Discharge	Age, GCS, heart rate, mass effect, IVH, premorbid level of function, and systolic blood pressure.	0.930 (0.014)
Flemming	2001	Lobar primary supratentorial ICH	Tree based model	Discharge	GCS, septum pellucidum shift.	0.890 (0.045)
Flemming’	2001	Lobar primary supratentorial ICH	Tree based model	Discharge	ICH size, GCS, and time to presentation.	0.921 (0.032)
Hallevy	2002	Primary supratentorial medically treated ICH	Score	Discharge	Age, limb paresis, level of consciousness, mass effect, hematoma size, and intraventricular extension.	0.897 (0.023)
Ji	2013	Spontaneous ICH	Score	1 year	Age, NIHSS, GCS, glucose, infratentorial bleed, ICH volume, and IVH.	0.836 (0.009)
Lisk	1994	Primary supratentorial < 24 h	Equation	Discharge or 30 days	Age, GCS, hemorrhage volume, and gender.	–
Lisk’	1994	Primary supratentorial < 24 h, GCS > 9, no surgery	Equation	Discharge or 30 days	Age, hemorrhage diameter, and ventricular extension.	–
Neidert	2016	AVM-related ICH	Score	Unclear	Age, GCS, hematoma size, ICH, AVM size, diffuse nidus, eloquence, and deep venous drainage.	0.842 (0.046)
Misra	1999	Primary putaminal ICH	Equation	3 months	GCS, pupillary change, incontinence, and location of hematoma (cortical, subcortical, medial or lateral).	–
Mittal	2011	Primary ICH	Score	Discharge	Age, infratentorial, ICH size, GCS, cognitive impairment, and FOUR score.	–
Portenoy	1987	Nontraumatic supratentorial spontaneous ICH	Equation	Unclear	GCS, ICH size (index), and IVH spread.	–
Poungvarin	2006	Primary ICH	Equation	Discharge	Fever, ICH size > 30, GCS, and IVH spread.	–
Rost	2008	Primary ICH	Score	3 months	Age, GCS, hematoma size, location (infratentorial/deep/lobar), and cognitive impairment.	0.879 (0.017)
Shah	2005	Thalamic hemorrhage	Equation	3 months	Posterolateral ICH extension, Canadian Neurological Scale.	–
Shaya	2005	Hypertensive supratentorial ICH	Score	6 months	Focal neurological deficit, hydrocephalus, ICH volume	–
heterogeneous on the timing and method of assessment: ten tools attempted to predict functional status at discharge/1 month \([18, 22, 25, 46, 47, 52, 55]\), eight tools attempted to predict at 3 months \([10, 13, 15, 17, 37, 42, 43, 57]\), five tools attempted to predict at 6 months \([14, 16, 19, 62]\), and one tool attempted to predict at 1 year \([51]\). The studies by Portenoy \([20]\) and Neidert \([11]\) were unclear about the time of outcome assessment. The instrument for functional outcome evaluation also differed between studies: ten studies used the modified Rankin scale \([10, 11, 13, 16, 22, 25, 46, 47, 51, 55]\), six studies used the Glasgow Outcome scale \([14, 18, 19, 52, 57, 62]\), six studies used the Barthel index \([14, 15, 17, 37, 42, 43]\), and one study used a subjective assessment \([20]\). Only six studies reported blinded outcome assessment \([10, 13, 37, 43, 51, 52]\). All outcomes were binary except in the study by Shaya \([19]\), where the outcome was ordinal.

Number and type of predictors
The number of predictors for each prognostic tool ranged from two to 20, with the mode being three (Table 2). The five most frequently included predictors were consciousness \((n = 57)\), hematoma size \((n = 43)\), age \((n = 38)\), intraventricular blood \((n = 32)\), and the presence of comorbidities \((n = 16)\). Figure 2 stratifies the ten most frequently used variables for mortality and functional outcome prediction.

Number of patients and events
The number of included patients varied between 38 \([15]\) and 29,775 \([59]\) and the number of outcomes ranged from 9 \([22]\) to 6765 \([59]\) (Table 2), with four studies not reporting this item \([14, 15, 34, 66]\). The event per variable (EPV) rate ranged from 1.4 \([28]\) to 398 \([59]\), with 21 derivations showing a rate < 10 \([10–12, 16, 21–23, 28, 29, 32, 41, 46, 52, 54, 61, 63, 68]\).

Handling of missing data and loss to follow-up
Handling of missing data was not reported or unclear in 22 studies \([11, 13, 17, 19–21, 23, 25, 27, 28, 36, 39, 45, 47, 52, 60, 63–68]\) (Table 2). Among studies reporting this item, all of them except two used a complete case analysis, with the exceptions using a missing category \([37, 59]\). Two studies failed to report the number of patients lost to follow-up \([10, 15]\): as for the others, the
Author	Source of data	Sampling	Nr patients	Nr events	Nr variable	EPV	Loss to follow-up	Missing data	Blinding reported?	Modeling method	Internal validation	Calibration
Alsina [24]	Cohort	Not reported	100	38	3	12.7	0%	Yes	No	Logistic	No	Hosmer-Lemeshow
Berwaerts [41]	Cohort	Consecutive	42	18	2	9.9	Yes	No	No	Logistic	No	Not reported
Bhatia [65]	Cohort	Consecutive	214	83	4	19.8	Yes	Yes	No	Logistic	No	Not reported
Broderick [44]	Cohort	Consecutive	162	83	2	19.8	Yes	Yes	No	Logistic	No	Not reported
Cell [66]	Cohort	Consecutive	257	119	12	9.9	No	No	No	Logistic	No	Not reported
Cello [21]	Cohort	Consecutive	88	34	7	4.9	No	No	No	Logistic	No	Not reported
Chen [45]	Cohort	Consecutive	285	61	4	15.3	Yes	No	No	Logistic	No	Not reported
Chiu [61]	Cohort	Not reported	106	16	2	8	Yes	No	No	CART + SVM	Split sample	Hosmer-Lemeshow
Chuang [63]	Cohort	Not reported	293	40	5	15.3	Yes	Yes	No	Logistic	No	Cross-validation
Edwards [28]	Cohort	Consecutive	81	21	4	6.3	Yes	Yes	No	Logistic	No	Cross-validation
Edwards' [54]	Cohort	Consecutive	285	91	2	17.5	Yes	Yes	No	Logistic	No	Cross-validation
Fogelholm [31]	Cohort	Consecutive	282	79	2	15	Yes	Yes	No	Logistic	No	Cross-validation
Frithz [12]	Cohort	Not reported	106	16	2	8	Yes	No	No	Logistic	No	Not reported
Galbois [38]	Cohort	Consecutive	72	35	2	17.5	Yes	Yes	No	Logistic	No	Cross-validation
Galbois' [38]	Cohort	Consecutive	285	91	2	17.5	Yes	Yes	No	Logistic	No	Cross-validation
Grelle [68]	Cohort	Not reported	257	119	12	9.9	No	No	No	Logistic	No	Not reported
Hallevi [34]	Cohort	Consecutive	100	45	4	4.9	Yes	No	No	Logistic	No	Not reported
Hemphill [48]	Cohort	Consecutive	106	21	4	6.3	Yes	Yes	No	Logistic	No	Cross-validation
Ho [64]	Cohort	Registry	106	72	3	11.7	Yes	Yes	No	Logistic	No	Cross-validation
Huang [40]	Cohort	Consecutive	285	91	2	17.5	Yes	Yes	No	Logistic	No	Cross-validation
Li [50]	Cohort	Consecutive	106	16	2	8	Yes	No	No	Logistic	No	Not reported
Li' [54]	Cohort	Consecutive	285	91	2	17.5	Yes	Yes	No	Logistic	No	Cross-validation
Lukic [33]	Cohort	Consecutive	106	45	4	6.3	Yes	Yes	No	Logistic	No	Cross-validation
Lukic' [26]	Case-Control	Not reported	200	100	8	12.5	Yes	Yes	No	Logistic	No	Hosmer-Lemeshow
Lui [54]	Cohort	Consecutive	106	16	2	8	Yes	No	No	Logistic	No	Not reported
Peng [54]	Cohort	Consecutive	106	16	2	8	Yes	No	No	Logistic	No	Not reported
Peng' [54]	Cohort	Consecutive	106	16	2	8	Yes	No	No	Logistic	No	Not reported

Table 2: Summary description of the tool development process and risk of bias.
Table 2 summary description of the tool development process and risk of bias (Continued)

Author	Source of data	Sampling reported	Nr patients	Nr events	Nr variable	EPV	Loss to follow-up	Missing data reported?	Blinding reported?	Modelling method	Internal validation	Calibration		
Romano [56]	Cohort	Consecutive	154	63	3	21	0.6%	Yes	No	Logistic	Split sample	Not reported		
Ruiz-Sandoval [58]	Cohort	Consecutive	378	174	5	34.8	0%	Yes	No	Logistic	Bootstrap	Hosmer-Lemeshow		
Safati [60]	Cohort	Consecutive	342	86	3	28.7	0%	No	No	Logistic	No	Hosmer-Lemeshow		
Szepesi [32]	Cohort	Not reported	125	59	6	9.8	0%	Yes	No	Logistic	No	Hosmer-Lemeshow		
Tabak [59]	Administrative data	Consecutive	23975	6765	17	397.9	0%	Yes	No	Logistic	Bootstrap	Calibration plot		
Takahashi [67]	Cohort	Not reported	347	70	3	23.3	0%	No	No	CART	Cross-validation	Not reported		
Takahashi’ [67]	Cohort	Not reported	347	70	4	17.5	0%	No	No	Logistic	No	Not reported		
Tshikwela [36]	Cohort	Not reported	185	68	3	22.7	0%	No	No	Logistic	No	Not reported		
Tshikwela’ [36]	Cohort	Not reported	185	68	3	22.7	0%	No	No	Logistic	No	Not reported		
Tuhirim [23]	Cohort	Not reported	129	27	5	5.4	0%	No	No	Logistic	No	Not reported		
Tuhirim’ [30]	Registry	Not reported	187	54	5	10.8	2.1%	Yes	No	Logistic	No	Not reported		
Tuhirim’’ [29]	Registry	Not reported	73	25	3	8.3	0%	Yes	No	Logistic	No	Not reported		
Zai [35]	Cohort	Consecutive	170	87	4	20.8	0%	Yes	No	Logistic	Cross-validation	Not reported		
Zis [39]	Cohort	Consecutive	191	61	5	12.2	0%	No	No	Logistic	No	Hosmer-Lemeshow		
Appelboom [10]	Cohort	Consecutive	84	18	5	3.6	Unclear	Yes	Yes	Logistic	(Update)	No	Not reported	
Creutzfeld [47]	Cohort	Consecutive	424	187	7	26.7	0%	No	No	Logistic	No	Hosmer-Lemeshow		
Flemming [18]	Cohort	Consecutive	81	24	2	12	0%	Yes	No	Decision Tree	No	Not reported		
Flemming’ [18]	Cohort	Consecutive	81	51	3	10	0%	Yes	No	Decision Tree	No	Not reported		
Halley [25]	Cohort	Consecutive	184	70	6	11.7	0%	No	No	Logistic	No	Not reported		
Ji [51]	Registry	Consecutive	1953	912	7	130.3	12.6%	Yes	Yes	Logistic	Split sample	Hosmer-Lemeshow		
Lisk [22]	Cohort	Consecutive	75	35	4	8.8	0%	Yes	No	Logistic	No	Hosmer-Lemeshow		
Lisk’ [22]	Cohort	Consecutive	42	9	3	3	0%	Yes	No	Logistic	No	Hosmer-Lemeshow		
Neidert [11]	Cohort	Consecutive	67	28	8	3.5	0%	No	No	Univariate analysis	No	Not reported		
Misia [15]	Cohort	Not reported	38	Not reported	4	n/a	Unclear	Yes	No	Logistic	No	Not reported		
Mittal [52]	Cohort	Consecutive	92	62	5	6	0%	No	Yes	Logistic	(Update)	No	Not reported	
Portenoy [20]	Cohort	Consecutive	112	41	3	13.7	0%	No	No	Logistic	No	Hosmer-Lemeshow		
Poungvarin [55]	Cohort	Consecutive	995	402	4	100.5	0%	Yes	No	Logistic	No	Not reported		
Rost [57]	Cohort	Consecutive	418	121	5	24.2	13.4%	Yes	No	Logistic	Split sample	Not reported		
Shah [17]	Cohort	Not reported	53	29	2	12	0%	No	No	Logistic	No	Not reported		
Shaya [19]	Cohort	Consecutive	50	n/a	3	n/a	0%	No	No	Ordered logistic	No	Not reported		
Weimar [42]	RCTs	Not reported	564	171	3	57	0%	Yes	No	Logistic	(Update)	No	Calibration plot	
Weimar’ [37]	Cohort	Consecutive	207	78	2	39	20.4%	Yes	Yes	Logistic	No	Not reported		
Author	Source of data	Sampling reported	Nr patients	Nr events	Nr variable	EPV	Loss to follow-up	Missing data reported?	Blinding reported?	Modelling method	Modelling method	Internal validation	Calibration	
--------------	----------------	-------------------	------------	-----------	-------------	-----	------------------	------------------------	----------------------	------------------	------------------	------------------	-------------------	--------------
Weimar	Registry	Consecutive	340	89	3	20.7	2.7%	Yes	Yes	Logistic (update)	No	Not reported		
Cheung [46]	Cohort	Consecutive	141	31^	5	6.2^	0.7%	Yes	No	Logistic	No	Not reported		
Cheung	Cohort	Consecutive	141	31^	5	6.2^	0.7%	Yes	No	Logistic (update)	No	Not reported		
Cho [14]	RCT	Consecutive	226	42^	3	14^	0%	Yes	No	Logistic	No	Not reported		
Godoy [62]	Cohort	Consecutive	153	53^	5	10.6^	0%	Yes	No	Logistic (update)	No	Not reported		
Godoy [62]	Cohort	Consecutive	153	53^	5	10.6^	0%	Yes	No	Logistic (update)	No	Not reported		
Lei [13]	Cohort	Consecutive	170	43^	4	10.8^	0%	No	Yes	Logistic	Split sample	Not reported		
Stein [16]	Cohort	Consecutive	110	31^	4	7.8^	0%	Yes	No	Logistic	Split sample	Not reported		

ANN: artificial neural networks, CART: classification and regression tree, SVM: support vector machine

^Values relating to mortality

^Values relating to functional outcome

Table 2: summary description of the tool development process and risk of bias (Continued)
The majority of them showed a 100% complete follow-up but five studies showed a loss <5% [30, 44, 46, 53, 56], two studies showed a loss of 5–20% [51, 57] and two studies showed a loss >20% [37, 43].

Methods used for tool derivation

Amongst the 72 prognostic tools encountered, 58 were regression based [10, 13–17, 19, 20, 22–60, 62–65, 67], 11 were machine learning algorithms [12, 18, 26, 28, 54, 61, 67, 68], two were based on univariate analysis [11, 21], and one was unclear on the method of derivation [66] (Table 2). Within the regression based tools, 51 were newly derived [13–17, 19, 20, 22–41, 44–51, 53–60, 63–65, 67] and seven were model updates [10, 42, 43, 46, 52, 62]. Newly derived models preferentially used automated methods (forward/backward stepwise) for predictor selection during multivariate modelling [43, 46, 52, 62]. Newly derived models preferentially used automated methods (forward/backward stepwise) for predictor selection during multivariate modelling (reported in 30 derivation procedures [14–17, 19, 20, 22, 23, 25, 26, 28–31, 33, 35–37, 40, 41, 44, 46, 48, 49, 51, 54, 56, 63–65]), whereas the method was unclear for ten [13, 24, 32, 38, 45, 55, 57, 58, 60]. Model updates consisted in intercept recalibrations [42], modifications of cut-off levels for specific variables [10], and removal or introduction of new variables [43, 46, 52, 62]. Of the 58 regression based tools found, more than half (32) were presented as scores [10, 11, 13, 14, 16, 19, 25, 34–36, 38–40, 43, 45, 46, 48, 49, 51, 52, 56–58, 60, 62–64, 66]. Machine learning methods employed were artificial neural networks used in four tools [26, 28, 54, 68], decision trees used in four tools [12, 18, 67], support vector machine used in one tool [54], random forests used in one tool [54], and a hybrid approach (decision tree + support vector machine) also used in one tool [61] (Table 1). Internal validation methods were used in 19 derivations: bootstrapping was used in two [58, 59], cross-validation was used in ten [35, 38, 54, 63, 67, 68] and split sample was used in seven [13, 16, 26, 51, 56, 57, 61].

Prognostic tool performance

C-statistics and respective 95% confidence intervals were retrieved from 38 mortality prediction tools and 15 functional outcome prediction tools (Table 1). Forest plots are depicted in Figs. 3 and 4. The lowest reported value was 0.745 [49] and the highest reported value was 0.984 [28]. Table 3 depicts robust variance estimates of pooled c-statistics for all tools combined and subgroup analysis for mortality prediction tools, functional outcome prediction tools, logistic regression based tools, and machine learning algorithms, along with comparisons using metaregression. All subgroups showed values for pooled c statistics >0.80. Mortality prediction tools and machine learning algorithms showed higher pooled AUCs but the differences were not statistically significant.

Other measures of discrimination reported include accuracy, reported for 22 tools [20, 24, 26–30, 33, 37, 40–42, 54–56, 63, 68], sensitivity and/or specificity, reported for 31 tools [10, 14, 16, 22, 24, 31, 34, 38, 39, 41, 43, 44, 46, 49–51, 54–56, 58, 62, 63, 68], and predictive values, reported for 22 tools [10, 14, 31, 38, 41, 43, 44, 46, 51, 52, 54, 56, 58, 62, 63]. Calibration assessment was reported using a calibration plot for three derivations [42, 59, 64], the Hosmer-Lemeshow test for 14 derivations [20, 22, 24, 28, 32, 33, 39, 47, 51, 58, 60, 63] and the Le Cessie and Howelingen test reported for one derivation [64].

Discussion

Prognostic models for ICH patients have demonstrated good discrimination in derivation studies, regardless of the outcome in question (mortality or functional outcome). These tools have been derived in different ICH populations, ranging from “general” ICH (i.e. primary or spontaneous) to more specific populations (e.g. arteriovenous malformation related bleeds, dialysis patients, comatose patients). Cohort studies are the predominant study design: this design is well suited for prognostic tool derivations due to an optimal measurement of predictors and outcome [69]. Other sources of data used included registries, case-control studies, randomized clinical trial data and administrative databases. Of these, the last two raise concerns about representativeness and quality of data: on one side, clinical trials usually have the highest quality of data, but restrictive inclusion and exclusion criteria might hamper generalizability [70]; on the other side, administrative databases might allow for easy access to a large quantity of patient data, but they are prone to errors in codification, data discrepancy, and missing data [71]. A considerable number of studies (n = 11) were multicentric, conceding a theoretical advantage in terms of generalizability. The sampling method was frequently not reported (n = 15) but was consecutive for most studies, again assuring the representativeness of the population and minimizing in a convenient manner the risk of bias due to selective sampling.

Most mortality prediction tools focused on death at discharge or 1 month: this timing seems appropriate, since most deaths due to ICH occur early in the disease [1]. However, the same cannot be said for functional outcome prediction: significant changes in functional status have been described in ICH patients up to 1 year [72], rendering outcome predictions at 1 month or discharge less useful. Noticeably, 12 derivation procedures focused on functional outcome at discharge or 1 month. A reasonable compromise would be prediction at three to 6 months, allowing enough time for patient recovery without excessive loss to follow up or occurrence of competing events. Another important issue is that studies
with longer follow-ups did not report on outpatient care interventions (e.g., rehabilitation), making generalizability of their results less straightforward. Functional outcome prediction was mostly binary and used different scales and cut-off values: whereas the optimal method of functional outcome measurement in ICH patients is debatable [73], the usage of different scales and cut-off values between tool derivation studies makes comparisons between these instruments more difficult. Only five studies reported blinded outcome assessment: whereas mortality is a rather “hard outcome”, functional outcome
evaluation is inherently more subjective and thus more prone to evaluation bias.

Derivation studies were rather heterogeneous in the number of patients and events analyzed. Interestingly, the four most frequently included variables for mortality prediction were also the four most frequently included variables for functional outcome prediction (Fig. 2). This overlap suggests that mortality prediction tools should, at least to some extent, predict functional outcome and vice-versa. The number of events per variable is a simple rule of thumb to assess the adequacy of sample size: it is suggested that a minimum of ten events per variable are required to prevent overfitting during statistical modelling [73], but a lower rate was found for 21 tools, although admittedly not all of them were regression based.

Missing data, whether pertaining to missing predictors or loss to follow-up, is also a potential source of bias for derivation studies, with the risk of bias relating to the amount of missing data and the extent to which it is missing at random. Handling of missing predictors was frequently not reported (22 studies). Where it was reported, complete case-analysis was the method most frequently used, which potentially creates non-random, non-representative samples of the source population. For this purpose, guidelines for prediction modelling studies have suggested preferential use of other methods such as multiple imputation, noticing however that if the number of missing predictors is extensive this technique will not be sufficient to handle this problem [69]. The same argument regarding risk of bias may be made for loss to follow-up: 4 studies reported a loss to follow-up > 10%.

Discrimination and calibration are important properties for predictive models that should be reported. Discrimination relates to the extent to which a model distinguishes those who will suffer the outcome of interest from those who will not, whereas calibration refers to the agreement between observed and predicted outcome rates [74]. C statistic is the most commonly used performance measure for discrimination [75] but it was retrieved for only 38 derivations focusing on mortality and 15 derivations focusing on functional outcome. Taken together, these studies demonstrated good discriminating ability for both predictions. The pooled C statistic for mortality prediction was 0.880 and the pooled C statistic for functional outcome prediction was 0.872 but these results must be interpreted with caution, due to the heterogeneity in the included studies in terms of population studied, selected predictors, method of model development and choice of outcome. Other forms of discriminatory ability reported include accuracy, sensitivity/specificity, and positive/negative predictive values, but the interpretation of these measurements is less straightforward: the first two require the use of cut-off points for predicted probabilities, therefore not allowing the full use of model information, whereas the last depend on the overall probability of the event in the studied sample, hampering extrapolations for other populations with different event rates. Calibration was only reported for 14 tools, either using the Hosmer-Lemeshow test, the Le Cessie and Howelgen test, or a calibration plot.

The most frequently used method for model derivation was logistic regression. There seems to be no consensus about the best method for variable selection during multivariate logistic regression modelling, but most studies used automatic methods. These methods allow for a more efficient use of data but come with an added risk of model overfit and possible exclusion of important predictor variables due to chance, especially
when sample sizes are small [76]. Nearly half of the regression based tools were simplified in the form of risk scores, allowing for an easier application. Machine learning algorithms found in our systematic review included decision trees (four), artificial neural networks (four), support vector machines (one), random forests (one) and a hybrid approach (one). These methods are an alternative to logistic regression that requires less formal statistical training and offer more efficient use of data and a higher ability to detect non-linear relations. However, they are prone to overfitting, extremely sensible to small perturbations in data and empirical in the nature of model development [77, 78]. Despite being pointed as more statistically efficient, these methods were not superior to logistic regression for discrimination in our review.

When models are tested in the same sample on which they were derived, their results tend to be biased due to overfitting: to minimize this problem, internal validation (resampling) techniques can be used. Only 19 derivations used resampling techniques for overfit adjustment. Bootstrapping is recommended as the preferred method of internal validation [74], but was performed for only two. Other methods encountered included cross-validation and split sample. The latter, used in three tools, is regarded as the least effective method since it reduces statistical power for the derivation procedure and does not validate the results in a new population.

In summary, the results from our review suggest that the most promising prognostic tools are i) logistic regression based risk scores, which combine the high discrimination showed by logistic regression with the ease of application typical of prognostic scores; ii) derived from general cohorts (i.e, spontaneous or primary ICH) to maximize generalizability; iii) without significant loss to follow up, to minimize risk of bias; iv) with early outcome measurement for mortality (i.e, discharge or 1 month) and later outcome measurement for functional outcome (i.e, 3 months or more) and v) showing high discrimination with an appropriate EPV rate. Examples of such scores include the scores by Chen [45], Hemphill [48], Ho [64], Romano [56] and Ruiz-Sandoval [58] for mortality, Ji [51] and Rost [57] for functional outcome prediction and Godoy [62] for a combined outcome. Not surprisingly, several validation studies have been published for these tools. Other factors to take into account are internal validation and blinded outcome assessment, the latter being particularly important for functional status.

Our review has limitations. Firstly, there were no clear guidelines on conducting and reporting studies for prognostic tool derivation at the time most of these studies were performed. This lead to frequent underreporting and higher difficulty in retrieving information about important methodological aspects and performance measures, which reflected on the results of our review. As an example, we were only able to retrieve c-statistics for 53 derivations, which means that several tools could not be evaluated for this important discrimination measure. Guidelines have recently been published to give guidance on this issue [69]. Second, studies have demonstrated that healthcare professionals are frequently pessimistic in the face of neurological emergencies [79]. This negative perception can result in a “self-fulfilling prophecy”, whereby the physician’s perception will lead to early withdrawal of care which, by itself, will facilitate a negative outcome [79]. Most studies assessing the effect of early care limitation in the performance of prognostic models have focused on validation studies [47, 80, 81]. According to these studies, models underestimate adverse outcomes in patients with early care limitation and overestimate in patients without. However, care limitation has also been demonstrated to be an independent predictor of poor outcome [34, 82]. Hence, one should expect that withdrawal of care would affect model performance also in derivation studies, but this factor was not taken in to account in the majority of studies included in this review. A possible solution for this problem is to derive prognostic models from patient populations with maximum level of care. Such approach was more recently used by Sembill and collaborators to derive the max-ICH score [83]. Third, the previously discussed aspects of prognostic tool derivation are useful to assess the risk of bias and external validity of these

Table 3 RVE pooled c statistics and subgroup comparisons using metaregression

Prognostic tools	Nr studies	Nr tools	Pooled c-stat	95%CI Lower	95%CI Upper	I²	β	95%CI Lower	95%CI Upper	p	
Overall	40	53	0.878	0.864	0.891		79%	-	-	-	
Mortality prediction tools	30	38	0.880	0.865	0.894		80%	-0.007	-0.039	0.026	0.679
Functional outcome prediction tools	13	15	0.872	0.842	0.901		77%	0.018	-0.034	0.070	0.490
Logistic regression based tools	37	43	0.874	0.858	0.889		76%	0.018^a	-0.034^a	0.070^a	0.490
Machine learning algorithms	6	9	0.898	0.821	0.976		88%	-	-	-	

^aMortality prediction tools as reference group
^bLogistic regression based tools as reference group
instruments, but they do not necessarily determine the way these tools will behave in clinical practice. Risk of bias does not necessarily imply existing bias, and the ultimate issue is how they behave in an independent external dataset [84]. At the time of our search we identified external validation studies for only 27 prognostic tools [14, 16, 20, 22, 26, 27, 29–31, 37, 40, 41, 43–46, 48, 54, 56–59, 62, 63]. Nevertheless, derivation studies less prone to bias are more likely to perform well in validation studies. The issues discussed in this systematic review should then be taken as a guidance for future studies seeking to validate existing prognostic tools or to derive new ones in ICH patients as well as in other populations.

Conclusions

Prognostic models showed high discrimination in derivation studies for mortality and functional outcome prediction in ICH patients but numerous methodological and reporting deficiencies were present, namely insufficient length of follow-up for functional outcome, absence of blinding, reporting and handling of missing data, low EPV rate, infrequent use of appropriate internal validation procedures and underreporting of important model performance measures. Machine learning methods have not proven to be superior to regression based models and a significant number of these tools weren’t submitted to external validation. Guidelines have been reported to support authors in developing and reporting studies both for prognostic model derivation and validation [69].

Additional file

Additional file 1: Search syntax used for identification of candidate studies. (DOCX 1028 kb)

Abbreviations

AUC: Area under the ROC curve; CI: Confidence interval; EPV: Event per variable; ICH: Intracerebral hemorrhage; ROC: Receiver operating characteristic; RVE: Robust variance estimation

Acknowledgements

Not applicable.

Funding

This work was partially supported by the project “NanoSTIMA” (NORTE-01-0145-FEDER-000016), which is financed by the North Portugal Regional Operational Program (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF). The funding source had no role in the design of the study, data collection, analysis, interpretation or writing of the manuscript.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

TG and LA designed the study; TG, SP, GA, PC and IA reviewed all references (scan read) and studies (full-text read) and gathered information and data; TG performed statistical analysis and all authors participated in the interpretation; LA and PCC oversaw the execution of the study; all authors reviewed and approved the final version of the manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1 Department of Internal Medicine, Vila Nova de Gaia Hospital Center, Rua Conceição Fernandes, 4434-502 Vila Nova de Gaia, Portugal. 2 Stroke Unit, Vila Nova de Gaia Hospital Center, Rua Conceição Fernandes, 4434-502 Vila Nova de Gaia, Portugal. 3 Intensive Care Department, Algarve University Hospital Center, Rua Leão Penedo, 8000-386 Faro, Portugal. 4 Department of Internal Medicine, São João Hospital Center, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal. 5 Stroke Unit, São João Hospital Center, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal. 6 Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal. 7 Center for Health Technology and Services Research & Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal.

Received: 28 June 2018 Accepted: 7 November 2018

Published online: 20 November 2018

References

1. Van Asch CJ, Luitse MJ, Rinkel GJ, Van Der Tweel I, Algra A, Klijn CJM. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2017;9(2):167–76.
2. Hemphill JC, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.
3. Steiner T, Salmon RA, Beer R, Christensen H, Condonnier C, Cuaba L, et al. Guidelines European stroke organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. Int J Stroke. 2014; 9(7):840–55.
4. Hwang BY, Appelboom G, Kellner CP, Carpenter AM, Kellner MA, Gigante PR, et al. Clinical grading scales in intracerebral hemorrhage. Neurocrit Care. 2010;13(1):141–51.
5. Moonis KG, de Groot JAH, Bouwmeester W, Verouwde Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10): e1001744.
6. Mohr D, Liberatori A, Tetzlaff J, Altman DG, Altman D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
7. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology a proposal for reporting. JAMA. 2000;283(15):2008–12.
8. Hanley AJ, McNeil JB. The meaning and the use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.
9. Tanner-Smith EE, Tipton E. Robust variance estimation with dependent effect sizes: practical considerations including a software tutorial in Stata and spss. Res Synth Methods. 2014;5(1):13–30.
10. Appelboom G, Hwang BY, Bruce SS, Piazza MA, Kellner CP, Meyers PM, et al. Predicting outcome after arteriovenous malformation-associated.
intracerebral hemorrhage with the original ICH score. World Neurosurg. 2012;78(6):646–50.

11. Neidert MC, Lawton MT, Mader M, Seifert B, Valavanis A, Regli L, et al. The aVICH score: a novel grading system to predict clinical outcome in arteriovenous malformation-related intracerebral hemorrhage. World Neurosurg. 2016;92:292–7.

12. Fritz G, Werner I. Studies on cerebrovascular strokes. II. Clinical findings and short-term prognosis in a stroke mater. Acta Med Scand. 1976;199:133–40.

13. Lei C, Wu B, Liu M, Zhang S, Yuan R. Cerebral amyloid Angiopathy-related intracerebral hemorrhage score for predicting outcome. Curr Neurol Neurosci Res. 2016;13(1):156–62.

14. Cho D-Y, Chen C-C, Lee W-Y, Lee H-C, Ho L-H. A new modified intracerebral hemorrhage score for treatment decisions in basal ganglia hemorrhage—a randomized trial. Crit Care Med. 2008;36(7):2151–6.

15. Misra UK. A multivariate analysis of prognostic predictors of putaminal hemorrhage. Indian J Med Res. 1999;109:67–70.

16. Stein M, Luecke M, Preuss M, Boeker DK, Jobecke A, Oertel MF. Spontaneous intracerebral hemorrhage with ventricular extension and the grading of obstructive hydrocephalus: the prediction of outcome of a special life-threatening entity. Neurosurgery. 2010;67(5):1243–51.

17. Shah SD, Kalita J, Misra UK, Mandal SK, Srivastava M. Prognostic predictors of thalamic hemorrhage. J Clin Neurosci. 2005;12(5):559–61.

18. Flemming KD, Wijdicks EFM, Li H. Can we predict poor outcome at presentation in patients with ibar hemorrhage? Cerebrovasc Dis. 2001;11(3):183–9.

19. Shaya M, Dubeay A, Berck C, Gonzalez-Toledo E, Zhang J, Caldito G, et al. Factors influencing outcome in intracerebral hemorrhage: a simple, reliable, and accurate method to grade intracerebral hemorrhage. Surg Neurol. 2003;63(4):343–8.

20. Portenoy RK, Lipton RB, Berger AR, Lesser ML, Lantos G. Intracerebral hemorrhage: An attempt of statistical assessment for 30-day survival. Ann Neurol. 1991;29(6):658.

21. Cerillo A, Vizioli L, Falivene R, Mottolese C, Bernini FP, Tedeschi G, et al. Early therapy intensity level (TIL) predicts mortality in spontaneous intracerebral hemorrhage. Neurol. 2013;72(12):115–20.

22. Tuhrim S, Dambrosia JM, Price TR, Mohr JP, Wolf PA, Heyman A, et al. Intracerebral hemorrhage: criteria for short-term functional outcome prediction. Acta Neurol Scand. 1995;91:306.

23. Tuhrim S, Dambrosia JM, Price TR, Mohr JP, Wolf PA, Heyman A, et al. Intracerebral hemorrhage: external validation and extension of a model for prediction of survival. Ann Neurol. 1988;24(2):258.

24. Alsina AE. Hemorragia supratentorial espontánea: un modelo matemático predictivo de mortalidad. Salud(i)Ciencia. 2014;20(i):368.

25. Kao Y-H, Chen M-L, Tsai Y-H, Tzeng S, Wu C-S, Chien Y-T, et al. Predicting 30-day case fatality of primary inoperable intracerebral hemorrhage based on findings at the emergency department. J Stroke Cerebrovasc Dis. 2014;23(7):1528–33.

26. Huang BR, Liao CC, Huang WH, Hsu YH, Hsu JC, Yen HC, et al. Prognostic factors of spontaneous intracerebral haemorrhage in haemodialysis patients and predictors of 30-day mortality. Intern Med J. 2008;38(7):1568–74.

27. Benaerts J, Dijkhuizen RS, Robbins OJ, Webster J. Prediction of functional outcome and in-hospital mortality after admission with oral anticoagulant-related intracerebral hemorrhage. Stroke. 2003;34(11):2558–62.

28. Wei G, Ziegler A, Sacco RL, Diener HC, König IR. Prediction after intracerebral hemorrhage—an external validation in patients from controlled clinical trials. J Neurol. 2009;256(3):446–9.

29. Weimar C, Benemann J, Diener H-C, German stroke study collaboration. Development and validation of the Essen intracerebral Haemorrhage score. J Neurol Neurosurg Psychiatry. 2006;77(5):601–5.

30. Broderick J, Scott T, Duldner J, Tomsick T, Huster G. Volume of intracerebral hemorrhage: a powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24(7):987–93.

31. Chen HS, Hischi CF, Chau TT, Yang CD, Chen YW. Risk factors of in-hospital mortality of intracerebral hemorrhage and comparison of ICH scores in a Taiwanese population. Eur Neurol. 2011;66(1):59–63.

32. Cheung RTF, Zou LY. Use of the original, modified, or new intracerebral hemorrhage score to predict mortality and morbidity after intracerebral hemorrhage. Stroke. 2003;34(7):1717–22.

33. Creutzfeldt CJ, Becker JK, Weinstein JR, Khot SP, McPhailin TD, Tong TG, et al. Do-not-attempt-resuscitation orders and prognostic models for Intraparenchymal hemorrhage. Crit Care Med. 2011;39(1):158–62.

34. Hemphill JC, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score. Stroke. 2001;32:891–7.

35. Li F, Chen H, Wang Y, Yang J, Liu C, Dong Z. A new prognostic model and score to predict short term outcome after intracerebral hemorrhage. Sci Res Essays. 2011;6(10):2063–8.

36. Li H-F, Luo J, Li Q, Jing Y-J, Wang R-Y, Li R-S. A new simple model for predicting in-hospital mortality in Central Africans. J Neurosci Rural Pract. 2012;2(2):115–22.

37. Weimar C, Roth M, Willig V, Kostopoulos P, Benemann J, Diener HC. Prediction of evolution toward brain death upon admission to ICU in comatose patients with spontaneous intracerebral hemorrhage using simple signs. Transpl Int. 2013;26(5):517–26.

38. Zis P, Liviadiseas P, Michas D, Karavitatis D, Angelidakis P, Tavnerakis A. Prediction of 30-day case fatality of primary inoperable intracerebral hemorrhage based on findings at the emergency department. J Stroke Cerebrovasc Dis. 2014;23(7):1528–33.
58. Ruiz-Sandoval JL, Chiquete E, Romero-Vargas S, Padilla-Martínez JJ, González-Conojo S. Grading scale for prediction of outcome in primary intracerebral hemorrhages. Stroke. 2007;38(5):1641–4.

59. Tabak YP, Johannes RS, Silber JH. Using automated clinical data for risk adjustment. Med Care. 2007;45(8):789–805.

60. Safavi DA, Gunther A, Schlattmann P, Schwarz F, Kaff R, Ewalt C. Predictors of 30-day mortality in patients with spontaneous primary intracerebral hemorrhage. Surg Neurol Int. 2016;7(8):S50–7.

61. Chiu H, Chiu D, Lee Y, Wang C, Wang C. To explore intracerebral hematoma with a hybrid approach and combination of discriminative factors. Methods Inf Med. 2016;55(5):450–4.

62. Godoy DA, Piñero G, Di Napoli M. Predicting mortality in spontaneous intracerebral hemorrhage: can modification to original score improve the prediction? Stroke. 2006;37(4):1038–44.

63. Chuang YC, Chen YM, Peng SK, Peng SY. Risk stratification for predicting 30-day mortality of intracerebral hemorrhage. Int J Qual Heal Care. 2009;21(6):441–7.

64. Ho WM, Lin JR, Wang HH, Liou CW, Chang KC, Der Lee J, et al. Prediction of in-hospital stroke mortality in critical care units. Springerplus. 2016;5(1051):1–9.

65. Bhatia R, Singh H, Singh S, Padma MV, Prasad K, Tripathi M, et al. A prospective study of in-hospital mortality and discharge outcome in spontaneous intracerebral hemorrhage. Neurol India. 2013;61(3):244–8.

66. Gellerl P, Duplay J, Roche J, Legot A, Miramond A. Proposition pour une évaluation pronostique chiffrée dans l’hématome intra-cérébral. Neurochirurgie. 1983;29(4):261–2.

67. Takahashi O, Cook EF, Nakamura T, Saito J, Ikawa F, Fukui T. Risk stratification for identifying high-risk patients with acute ischemic stroke. Neurology. 2001;56(6):766–72.

68. Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiology. 2010;21(1):128–34.

69. Booth CM, Tannock IF. Randomised controlled trials and population-based observational research: partners in the evolution of medical evidence. Br J Cancer. 2014;110(3):551–5.

70. Schlussel AT, Delaney CP, Maykel JA, Lustik MB, Nishtala M, Steele SR. A National Database Analysis Comparing the Nationwide inpatient sample and American College of Surgeons National Surgical Quality Improvement Program in laparoscopic vs open colectomies: inherent variance may impact outcomes. Dis Colon Rectum. 2016;59(9):843–54.

71. Hemphill JC, Farrant M, Neill TA. Prospective validation of the ICH score for 12-month functional outcome. Neurology. 2009;73(14):1088–94.

72. Quinn T, Hartigan KS, McAnthrur TJ. Assessment scales in stroke: clinimetric and clinical considerations. Clin Interv Aging. 2013;8:201–11.

73. Strother BM, Blackshear RC, O’Dull WG, Hernandez F, Renshaw DF, Segal GM, et al. Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Expert Rev Med Devices 2006;3(4):409–46.

74. Ziai WC, Siddiqui SS, Ullman N, Herrick DB, Yenokyan G, Mcbree N, et al. Early therapy intensity level (TIL) predicts mortality in spontaneous intracerebral hemorrhage. Neurocrit Care. 2015;23(2):188–97.

75. Sembill JA, Gerner ST, Volbers B, Bobinger T, Lucking H, Kloska SP, et al. Severity assessment in maximally treated ICH patients: the max-ICH score. Neurology. 2017;89(5):423–31.

76. Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med. 2000;19(4):453–73.