Gap opening in graphene by shear strain

Giulio Cocco,¹ Emiliano Cadelano,¹ Luciano Colombo¹,*
¹Department of Physics, University of Cagliari
Cittadella Universitaria, I-09042 Monserrato (Cagliari), Italy
(Dated: June 11, 2010)

We exploit the concept of strain-induced band structure engineering in graphene through the calculation of its electronic properties under uniaxial, shear, and combined uniaxial-shear deformations. We show that by combining shear deformations to uniaxial strains it is possible to modulate the graphene energy gap value from zero up to 0.9 eV. Interestingly enough, the use of a shear component allows for a gap opening at moderate absolute deformation, safely smaller than the graphene failure strain. PACS numbers: 73.22.Pr, 81.05.ue, 62.25.-g

Graphene exhibits a number of exotic electronic properties, such as unconventional integer quantum Hall effect, ultrahigh electron mobility, electron-hole symmetry and ballistic transport even at room temperature.¹–³ Full account of these features is provided by the relativistic Dirac theory⁴ suitably developed within the standard condensed matter formalism. A key feature of graphene is that its electronic density of states vanishes at the so-called Dirac points, where the valence and the conduction bands cross with a linear energy-momentum dispersion. Due to the hexagonal symmetry of graphene, the Dirac points are located at two high-symmetry points of its Brillouin zone.

While many other properties of graphene are very promising for nanoelectronics, its zero-gap semiconductor nature is detrimental, since it prevents the pinch off of charge current as requested in conventional electronic devices. Different attempts have been therefore tried in order to induce a gap, for instance by quantum confinement of electrons and holes in graphene nanoribbons⁵ or quantum dots.⁶ These patterning techniques are unfortunately affected by the edge roughness problem,⁷ namely: the edges are extensively damaged and the resulting lattice disorder can even suppress the efficient charge transport. The sensitivity to the edge structure has been demonstrated through explicit calculations of the electronic states in ribbons.⁸ More recently, it has been shown experimentally that a band gap as large as 0.45 eV can be opened if a graphene sheet is placed on an Ir(111) substrate and exposed to patterned hydrogen adsorption.⁹

Alternatively, an electronic band gap can be obtained by growing graphene sheets on an appropriately chosen substrate, inducing a strain field controllable by temperature.⁹,¹¹–¹³ Recently, it has been experimentally shown that by using flexible substrates a reversible and controlled strain up to ~18%¹² can be generated with measurable variations in the optical, phonon and electronic properties of graphene.¹³ This interesting result suggests that gap opening could be engineered by strain, rather than by patterning. The idea has been theoretically validated by Peirera and Castro Neto¹⁴ showing that a gap is indeed generated by applying an uniaxial strain as large as ~23%, approaching the graphene failure strain εf = 25%.¹⁵,¹⁶ This large value stands for the high robustness of the gapless feature of graphene under deformation. The same Authors propose an alternative origami technique¹⁷ aimed at generating local strain profiles by means of appropriate geometrical patterns in the substrate, rather than by applying strain directly to the graphene sheet.

In this work, we further develop the above concept of strain engineering by showing how a combination of shear and uniaxial strain can be used to open a gap in a range of reversible and more easily accessible deformations, ranging in between 12% and 17%. We also discuss the merging of Dirac points,¹⁸ which is involved into the gap opening process.

The electronic structure of graphene has been computed for each deformed configuration by means of a semi-empirical sp^3 tight-binding (TB) model, making use of the two-center parameterization by Xu et al.¹⁹ Despite its semi-empirical character, the present TB model correctly provides the occurrence of Dirac points in the band structure of graphene in its equilibrium geometry. Furthermore, the Xu et al. parametrization provides accurate scaling functions for the variation of the TB hopping integrals upon lattice distortions. This feature is instrumental for investigating gap opening in graphene by strain. The reliability of the present TB model in describing the strain-related features of graphene has been recently established.¹⁶,²⁰

Graphene is an hexagonal lattice with two carbon atoms per unit cell and a lattice basis defined by the vectors (\vec{a}_1, \vec{a}_2), as shown in Fig.1, with a nearest-neighbor carbon-carbon distance as small as $a_0 = 1.42$ Å. The in-plane elastic behavior of the honeycomb lattice is isotropic in the linear regime, but two inequivalent crystallographic directions can be neverthe-
For graphene under in-plane hydrostatic deformation with \(\varepsilon \) (for particular, the pseudogap at \(\varepsilon = -15\% \) to 1.8 eV (for \(\varepsilon = +15\% \)). We remind that its value for the unstrained configuration is 2.2 eV. These results are in quantitative good agreement with Ref. 21. Any other non-hydrostatic deformation lowers the symmetry of the graphene lattice. When an uniaxial strain is applied, all the 6- and 3-fold rotational symmetries are lost: a transition from the hexagonal \(D_{6h} \) to the rhombic \(D_{2d} \) symmetry is observed (Fig. 2b). The irreducible part of the first Brillouin zone (BZ) is also affected by such deformations, since its original triangular shape (Fig. 2a) is varied to the polygonal form represented in Fig. 2b. The top of the valence band and the bottom of the conduction band are shown in Fig. 3 for the undeformed configuration (panel a), as well as under uniaxial deformation (panels b and c, corresponding to a strain \(\varepsilon = 15\% \) along the armchair direction and in the zig-zag direction respectively). The main effect of strain is the opening of a pseudo-gap at \(K \) and \(K' \). Accordingly, the Dirac points are no more located at such high-symmetry points; rather, they drift away within the BZ, either for deformations along armchair direction or along zig-zag one. Once again this important qualitative feature is in good agreement with Ref. 14.

Let us now consider the case of an in-plane shear deformation, described by the following shear strain

\[
\hat{\varepsilon} = \begin{pmatrix}
0 & \zeta \\
\zeta & 0
\end{pmatrix}
\]

where \(\zeta \) is the strain parameter. Such a deformation modifies...
The gap increases up to a maximum of two accordingly as shown in Fig. 4.

By applying the shear strain given in Eq.1 to the graphene lattice, its symmetry class is further lowered to monoclinic. The corresponding symmetry group is 2/\(m \). Because of this change in symmetry, the irreducible part of the BZ is affected accordingly as shown in Fig. 2c, which has K, K', K'', K' as corners. In the undeformed lattice, a Dirac point is located at each of these corners. The scenario under shear strain is quite different from the case of uniaxial deformations: at the comparatively small strain \(\zeta \approx 16\% \), a gap is indeed opened. The energy gap grows up to a maximum value of 0.95 eV (when the strain parameter achieves a value of \(\zeta \approx 17\% \)), reducing again to zero at \(\zeta \approx 20\% \) due to the steady decrease of the direct gap at \(\Gamma \).

In order to quantitatively describe the evolution of the gap opening as function of the applied strain, the density of states (DOS) has been calculated by a two-dimensional regular \(k \)-point mesh of the (deformed) BZ. As shown in Fig. 5, for a strain value less then 15\% (panel a) or 11\% (panel b), the DOS depends linearly on energy close to the Fermi level, showing a slope increasing with the strain. The two characteristic Van Hove singularities into the DOS move closer the Fermi energy and disappear into abrupt gap-edges as soon as the gap is open.

Is important to remark that the two strain contributions (i.e. uniaxial and shear) could be combined in different ways so as to modulate the energy gap value. In Fig. 6, the electronic band structures of graphene under different combinations of shear and uniaxial strain are compared, keeping the

Nevertheless, uniaxial deformations along the armchair or zig-zag direction are found to dissimilarly affect the band structure of graphene. Only in the last case we have observed the merging of the Dirac points already at \(\zeta \approx 12\% \). The main features of the transition is the same as described before. The energy gap grows up to a maximum value of 0.95 eV (when the strain parameter achieves a value of \(\zeta \approx 17\% \)), reducing again to zero at \(\zeta \approx 20\% \) due to the steady decrease of the direct gap at \(\Gamma \).

Is important to remark that the two strain contributions (i.e. uniaxial and shear) could be combined in different ways so as to modulate the energy gap value. In Fig. 6, the electronic band structures of graphene under different combinations of shear and uniaxial strain are compared, keeping the

![Graphene Band Structure](image-url)
same value of the strain parameter $\zeta = 15\%$. While the combination of shear with uniaxial armchair shows a sizable energy gap of about 0.6 eV, the combination of shear with uniaxial zig-zag is associated to a gapless band structure.

In conclusion, we have shown how the opening gap in the electronic spectrum of graphene could be achieved by applying deformations with a nonzero shear component, rather than a simple uniaxial deformation. Energy gaps have been found to vary in between 0.6 eV and 0.9 eV for a strain value far enough from failure. In particular, we have shown that the most effective way to control the gap opening is to combine a shear and an armchair uniaxial deformation.

We acknowledge computational support by COSMOLAB (Cagliari, Italy) and CASPUR (Rome, Italy). Discussions with G. Fadda are gratefully acknowledged. One of us (L.C.) acknowledges partial financial support by the MATHMAT project (Università di Padova, Italy).

* E-mail me at: luciano.colombo@dsf.unica.it

1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, I. Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004).
2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
3. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science 315, 1379 (2007).
4. V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005).
5. M. Y. Han, B. Özylılmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
6. F. Sols, F. Guinea and A. H. Castro Neto, Phys. Rev. Lett. 99, 166803 (2007).
7. E. R. Mucciolo, A. H. Castro Neto and C. H. Lewenkopf, Phys. Rev. B 79, 075407 (2009).
8. K. Nakada, Fujita, G. Dresselhaus and M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
9. Z. H. Ni, H. M. Wang, Y. Ma, J. Kasim, Y. H. Wu and Z. X. Shen, ACS Nano 2, 1033 (2008).
10. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Leggsgaard, A. Baraldi, S. Lizzit, Z. Sljivančanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann and L. Hornekær, Nature 469, 315 (2010).
11. P. Shemella and S.K. Nayak, Appl. Phys. Lett. 94, 032101 (2009).
12. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, Nature 457, 706 (2009).
13. Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng and Z. X. Shen, ACS Nano 2, 2301 (2008).
14. V. M. Pereira and A. H. Castro Neto, Phys. Rev. B 80, 045401 (2009).
15. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science 321, 385 (2008).
16. E. Cadelano, P. L. Palla, S. Giordano and L. Colombo, Phys. Rev. Lett. 102, 235502 (2009).
17. V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103, 046801 (2009).
18. G. Montambaux, F. Piéchon, J.-N. Fuchs and O. Goerbig, Phys. Rev. B 80, 153412 (2009).
19. C. H. Xu, C. Z. Wang, C. T. Chan and K. M. Ho, J. Phys.: Condens. Matter 4, 6047 (1992).
20. E. Cadelano, S. Giordano and L. Colombo, Phys. Rev. B 81, 144105 (2010).
21. G. Gui, J. Li and J. Zhong, Phys. Rev. B 78, 075435 (2008).
22. By merging we mean the following: at a critical strain $\zeta \simeq 15.95\%$ the Dirac points are so close that they annihilate in a single hybrid Dirac cone, which shows a peculiar energy-momentum dispersion: it is linear (quadratic) along (perpendicular) to the direction joining the two Dirac points. At $\zeta = 16\%$, a gap as small as 0.05 eV is eventually opened. More details about the motion of Dirac points in two-dimensional crystals under uniaxial stress are reported in Ref. 18,23,24.
23. P. Dietl, F. Piéchon and G. Montambaux, Phys. Rev. Lett. 100, 236405 (2008).
24. Y. Hasegawa, R. Konno, H. Nakano and M. Kohmoto, Phys. Rev. B 74, 033413 (2006).

Figure 6: (Color online) Top of the valence band (red, marked as VB) and bottom of the conduction band (green, marked as CB) of graphene under combined shear and uniaxial strain with $\zeta = 15\%$. The uniaxial component of the strain is applied along the zig-zag (panel a) and armchair (panel b) direction. Symbols connect the high-symmetry points of the BZ (bottom shaded area) to the energy of the corresponding electronic states.