Three Planctomycetes isolated from biotic surfaces in the Mediterranean Sea and the Pacific Ocean constitute the novel species *Symmachiella dynata* gen. nov., sp. nov. and *Symmachiella macrocystis* sp. nov.

Markus Salbreiter · Muhammad Waqqas · Mareike Jogler · Nicolai Kallscheuer · Sandra Wiegand · Stijn H. Peeters · Anja Heuer · Mike S. M. Jetten · Christian Boedeker · Patrick Rast · Manfred Rohde · Christian Jogler

Received: 2 April 2020 / Accepted: 7 August 2020 / Published online: 24 August 2020
© The Author(s) 2020

Abstract *Planctomycetes* is a phylum of environmentally important bacteria, which also receive significant attention due to their fascinating cell biology. Access to axenic Planctomycete cultures is crucial to study cell biological features within this phylum in further detail. In this study, we characterise three novel strains, Mal52T, Pan258 and CA54T, which were isolated close to the coasts of the islands Mallorca (Spain) and Panarea (Italy), and from Monterey Bay, CA, USA. The three isolates show optimal growth at temperatures between 22 and 24 °C and at pH 7.5, divide by polar budding, lack pigmentation and form strong aggregates in liquid culture. Analysis of five phylogenetic markers suggests that the strains constitute two novel species within a novel genus in the family *Planctomycetaceae*. The strains Mal52T (DSM 101177T = VKM B-3432T) and Pan258 were assigned to the species *Symmachiella dynata* gen. nov., sp. nov., while strain CA54T (DSM 104301T = VKM B-3450T) forms a separate species of the same genus, for which we propose the name *Symmachiella macrocystis* sp. nov.

Keywords Planctomycetes · Marine bacteria · Mallorca · California · Panarea · Aggregation · Crateriform structures · Budding · *Planctomycetaceae*

Introduction

Planctomycetes were first discovered in 1924 and mistakenly acknowledged as eukaryotes (Gimesi 1924), but later reclassified as bacteria (Hirsch 1972). Planctomycetes are ubiquitous bacteria dwelling in marine, limnic and soil environments, in which they play an important role in the global carbon and nitrogen cycle (Wiegand et al. 2018). The eponymous phylum *Planctomycetes* is part of the PVC superphylum, which additionally includes the phyla *Verrucomicrobia*, *Chlamydiae* and other sister phyla. The PVC superphylum has medical and biotechnological relevance (Rivas-Marín and Devos 2018; Wagner and
According to the current taxonomy, the phylum Planctomycetes is divided into the classes Phycisphaerae and Planctomycetia. Candidatus Brocadiae might very well form a third class within the phylum, but no axenic cultures have been obtained from this class so far (Kartal et al. 2013). Known members of the class Planctomycetia divide by budding, while binary fission was observed as cell division mode in the class Phycisphaerae. The class Planctomycetia was recently re-organised and is now further subdivided into the orders Isosphaerales, Gemmatales, Planctomycetales and Pirellulales (Dedysh et al. 2020b).

Planctomycetes can be found in various habitats on earth and can even be amongst the most abundant phyla in bacterial communities on biotic surfaces, e.g. on marine macroscopic phototrophs (Bengtsson and Øvrevås 2010; Bondoso et al. 2014, 2015, 2017; Lage and Bondoso 2014). Given the oligotrophic nature of seawater, Planctomycetes are suggested to use complex substrates secreted by phototrophs as sources of carbon and energy (Jeske et al. 2013; Lachnit et al. 2013). Indeed, in silico genome analyses point towards higher numbers of carbohydrate-active enzymes encoded by Planctomycetes (Ivanova et al. 2017; Wallner et al. 2005; Wegner et al. 2013). In this context, pili originating from crateriform structures and an enlarged periplasmic space are discussed to be part of a specific uptake system, which may allow intracellular digestion of entire high-molecular weight sugar molecules (Boedeker et al. 2017). If true, this strategy is a decisive advantage over the use of extracellular enzymes for degradation since the latter strategy would provide easily degradable carbon sources to competitors.

Despite the assumed presence of such catabolic systems, the high abundance of Planctomycetes is still unexpected given their slow growth compared to many other heterotrophic bacteria competing with Planctomycetes for ‘nutrient-rich’ ecological niches (Frank et al. 2014; Wiegand et al. 2018). The potential for production of small molecules with antimicrobial properties may also play a decisive role in such environments (Graça et al. 2016; Jeske et al. 2013).

Morphologically, Planctomycetes have been suggested to possess uncommon traits compared to canonical bacteria. Different traits, including the lack of peptidoglycan (König et al. 1984), a compartmentalised cell plan (Lindsay et al. 1997), a nucleus-like structure (Fuerst and Webb 1991) and endocytosis-like uptake (Lonhienne et al. 2010) have been proposed. Some of these traits were found not to be entirely accurate. The compartmentalised cell plan turned out to be invaginations of the cytoplasmic membrane (Acehan et al. 2013; Boedeker et al. 2017), while presence of peptidoglycan was demonstrated (Jeske et al. 2015; Van Teeseling et al. 2015). The cell plan of Planctomycetes was revised based on the use of novel microscopy techniques and genetic tools, and the cell envelope architecture is now considered similar to that of Gram-negative bacteria (Devos 2014; Jogler et al. 2011; Jogler and Jogler 2013; Rivas-Marin et al. 2016). However, Planctomycetes are still unusual. They e.g. lack canonical divisome proteins including the otherwise essential FtsZ (Jogler et al. 2012; Pilhofer et al. 2008) and 40–55% of the proteins encoded in planctomycetal genomes are of unknown function.

For extending the current collection of Planctomycetes available as axenic cultures, here we describe three novel closely related strains, which we isolated from algae close to the island Mallorca, from seagrass leaves close to the island Panarea and from the kelp forest at Monterey Bay in California, USA.

Materials and methods

Isolation of the novel strains

The three novel strains Mal52T, Pan258 and CA54T were isolated as previously described (Wiegand et al. 2020). Strain CA54T was isolated from a Macrocystis pyrifera kelp forest at Monterey Bay, CA, USA on November 28th, 2014 (exact location: 36.619 N 121.901 W). Strain Mal52T was obtained from algae in the Mediterranean Sea close to S’Arenal, Mallorca, Spain (exact location: 39.5126 N 2.7470 E) on September 23rd, 2014. Strain Pan258 was isolated from seagrass leaves growing next to a natural gas escape of the hydrothermal vent system close to Panarea Island (exact location: 38.6457 N 15.0772 E) on September 23rd, 2014. In order to prevent fungal growth, pieces of kelp, alga and seagrass were initially rinsed with 100 mg/L cycloheximide dissolved in sterile-filtered natural seawater and subsequently swabbed over plates with solidified MIH NAG ASW medium (Kallscheuer et al. 2019a).
containing 8 g/L gellan gum, 1000 mg/L streptomycin, 200 mg/L ampicillin and 20 mg/L cycloheximide. The plates were incubated at 20 °C for at least six weeks. Colonies obtained were restreaked on fresh plates, which were used to inoculate liquid M1H NAG ASW medium. Sequencing of the 16S rRNA gene of the colonies was performed according to a previously published protocol to ensure that novel strains are members of the phylum Planctomycetes (Rast et al. 2017).

Light and electron microscopy

Phase contrast and scanning electron microscopic analyses were performed as described in a previous study (Boersma et al. 2019).

Genome information and genome-based analysis of the carbon metabolism

The genome sequences of the three novel isolates are available from GenBank under accession numbers CP036270 (Pan258), CP036276 (Mal52T) and SJPP00000000 (CA54T). The 16S rRNA gene sequences can be found under accession numbers MK554517 (Pan258), MK554513 (Mal52T) and MK554522 (CA54T). DNA isolation and genome sequencing are part of a previous study (Wiegand et al. 2020). The genome-based analysis of the carbon metabolism of the novel isolates was performed as previously described (Rivas-Marín et al. 2020).

Physiological analyses

The pH optimum for growth was determined in M1H NAG ASW medium with 100 mM of the following buffers: 2-(N-morpholino)ethanesulfonic acid (MES) for pH 5.0 and 6.0, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) for pH 7.0, 7.5 and 8.0 and N-cyclohexyl-2-aminoethanesulfonic acid (CHES) for pH 9.0 and 10.0. The cultures were incubated at 28 °C. The temperature optimum for growth was determined by cultivation at temperatures ranging from 10 to 40 °C at pH 8.0. All cultivations were performed in triplicates and growth was assessed by measuring the optical density at 600 nm (OD600). Growth rates for each tested condition were calculated by plotting ln(OD600), the natural logarithm of average OD600 values from biological triplicates, against the cultivation time. The slope of the linear range of this plot (at least five data points) was used as maximal growth rate μmax (in h⁻¹). Generation times td (in h) were calculated using the formula \(t_d = \ln(2)/\mu_{\text{max}} \).

Phylogenetic analyses

Maximum likelihood 16S rRNA gene sequence-based phylogeny was computed for the novel strains, the described type strains of all planctomycetal species (as of June 2020), including recently published strains (Boersma et al. 2019; Dedys et al. 2020a, b; Kallscheuer et al. 2019a, b, 2020a, b; Kohn et al. 2020; Peeters et al. 2020; Wiegand et al. 2020). The alignment of 16S rRNA gene sequences was performed with SINA (Pruesse et al. 2012). A maximum likelihood approach with 1000 bootstraps, nucleotide substitution model GTR, gamma distribution and estimation of proportion of invariable sites (Stamatakis 2014) was used. The outgroup consisted of three 16S rRNA gene from strains outside of the phylum Planctomycetes, but still part of the PVC superphylum. For the multi-locus sequence analysis (MLSA), the unique single-copy core genome of the analysed genomes was determined with proteinortho5 (Lechner et al. 2011) with the ‘selfblast’ option enabled. The protein sequences of the resulting orthologous groups were aligned using MUSCLE v.3.8.31 (Edgar 2004). After clipping, partially aligned C- and N-terminal regions and poorly aligned internal regions were filtered using Gblocks (Castresana 2000). The final alignment was concatenated and clustered using the maximum likelihood method implemented by RAxML (Stamatakis 2014) with the ‘rapid bootstrap’ method and 500 bootstrap replicates. Five planctomycetal genomes from the order Pirellulales served as outgroup. The rpoB gene sequences were taken from publicly available online databases and sequence identities were determined as previously described (Bondoso et al. 2013). The average nucleotide identity (ANI) was calculated with OrthoANI (Lee et al. 2016). The average amino acid identity (AAI) was calculated using the aai.rb script of the enveomics collection (Rodriguez-R and Konstantinidis 2016) and percentage of conserved proteins (POCP) was calculated as described (Qin et al. 2014).
Results and discussion

Phylogenetic inference

In the phylogenetic trees obtained after analysis of 16S rRNA genes and MLSA, the strains Mal52T, Pan258 and CA54T form a monophyletic cluster within the family Planctomycetaceae (Fig. 1). Both trees as well as five analysed phylogenetic markers suggest Maioricanimonas rarisocia Mal4T (Rivas-Marin et al. 2020) and Gimesia maris (Scheuner et al. 2014) as current closest relatives of the three novel isolates. Based on this finding, we analysed 16S rRNA gene sequence similarity, rpoB gene similarity, AAI and POCP to check whether the novel isolates belong to one of the two genera. The three strains share a minimal 16S rRNA gene sequence identity of 89.1% with M. rarisocia Mal4T and 88.4% with Gimesia sp. Both values are significantly below the proposed genus threshold of 94.5% (Yarza et al. 2014), indicating that these strains belong to a separate, yet undescribed genus in the family Planctomycetaceae (Fig. 2). This finding is also supported by analyses of rpoB similarity, AAI and POCP, since comparison of the three novel isolates with members of the above-mentioned genera yielded values below the respective genus thresholds of 75.5–78% for rpoB (Kallscheuer et al. 2019c), 60% for AAI (Konstantinidis and Tiedje 2005) and approximately 50% for POCP (Qin et al. 2014) (Fig. 2). ANI values in a range of 65–67% and thus far below the species threshold of 95% (Kim et al. 2014) thereby also ensure that the novel strains do not belong to any described species.

Next, we compared the strains Mal52T, Pan258 and CA54T against each other to check if they belong to separate species. It turned out that strains Mal52T and Pan258 have a 100% identical 16S rRNA gene sequence, indicating that they belong to the same species. This assumption is supported by an ANI of 96.5% above the species threshold of 95% and an AAI of 97.7% (proposed species threshold of 95–96%) (Konstantinidis and Tiedje 2005). Only the rpoB similarity of 95.6% is below, but still close to the species threshold of 96.3% (Bondoso et al. 2013) (Fig. 2). In particular due to an identical 16S rRNA gene sequence, we conclude that the strains Mal52T and Pan258 belong to the same species. In constrast, comparison of either of these two strains with strain CA54T yielded identity values for AAI and ANI significantly below the species threshold values (Fig. 2). Although strain CA54T shares an identity of 99.5% on 16S rRNA gene sequence level (species threshold 98.7%), we decided to assign it to a separate species. This decision is based on previous observations that this threshold is not always applicable for members of the class Planctomyctia and that strains can belong to separate species despite 16S rRNA gene sequence similarities above the threshold (Kohn et al. 2020). Taken together, the phylogenetic analysis suggests that the three strains represent two novel species of a novel genus within the family Planctomycetaceae.

Morphological and physiological analyses

For microscopic analyses of the three isolated strains, cells were harvested during the exponential growth phase. Detailed information on morphology, cell division and motility is summarised in Table 1. The current closest relatives M. rarisocia and G. maris were chosen for comparison. Strain Mal52T (Figs. 3a–c, 4a,b) and strain Pan258 (Figs. 3d–f, 4c,d) form white colonies on plates and cells have an ovoid to pear-shaped morphology. Strain CA54T displayed white- to cream-coloured colonies. Cells of this strain were ovoid to pear-shaped, but also rod-shaped cells were observed (Figs. 3g–i, 4e,f); a phenotype that was not found for the other two isolates. The cell shape of the novel isolates differs from spherical G. maris cells. While the average cell size of strains Mal52T, Pan258 and CA54T turned out to be similar (1.6–1.8 μm) (Fig. 3c,f,i), all three are slightly smaller than cells of M. rarisocia Mal4T.

The lack of pigmentation indicates the incapability of the strains to form carotenoids. In that regard, they are similar to G. maris, but differ from the orange pigmentation of M. rarisocia. A strong tendency to aggregate and biofilm formation was observed. This is a considerable difference to M. rarisocia Mal4T, which mostly occurs in the form of single cells and only in rare cases forms aggregates. Crateriform structures could only be observed on the surface of Mal52T cells, however we cannot exclude the presence in case of the other two strains. Cells of all three strains are motile and divide by polar budding.

During cultivation experiments, strains Mal52T and Pan258 grew over a temperature range of 15–30 °C.
and a pH range of 5.5–9.5 (Table 1). Strain CA54 showed a similar pH range and all three strains showed optimal growth at pH 7.5. The optimum temperature for growth falls between 22 and 24 °C and is thus considerably lower than observed for M. rarisocia and G. maris (30-33 °C). The novel isolates are slow-growing strains with maximal growth rates between 0.005 and 0.01 h⁻¹ (generation times of 70–140 h) in MIH NAG ASW medium.
Genomic characteristics

Genomic characteristics are listed in Table 1. The three novel isolates and the two species chosen for comparison have very similar genome sizes of 7.6–7.8 Mb. Not surprisingly, numbers of protein-coding genes (5,829-6,143), protein-coding genes per Mb (753–803) and coding densities (85.4–86.9%) are similar. In contrast, the novel strains can be clearly differentiated from *M. rarisocia* and *G. maris* by differences in the DNA G + C content of their genomes (Table 1). Strain Mal52\(^T\) has two copies of the 16S rRNA gene, while only a single 16S rRNA gene was found in the genomes of the other two novel isolates. None of the compared strains harbors plasmids. In all five genomes 39–41% of the automatically annotated genes code for proteins with unknown function. These values are in the lower range of 40–55% observed in genomes of Planctomycetes sequenced so far.
Genome-based analysis of enzymes participating in the central carbon metabolism

Based on the genomes of strains Pan258, Mal52T and CA54T, the presence of key metabolic enzymes of the central carbon metabolism was analysed. The analysis included glycolytic pathways (Embden–Meyerhof–Parnas pathway or Entner–Doudoroff pathway), the tricarboxylic acid (TCA) cycle, gluconeogenesis and anaplerotic reactions (Table 2). All three strains contain genes coding for enzymes involved in glycolysis, both for the Embden–Meyerhof–Parnas pathway and the Entner–Doudoroff pathway. In addition, key enzymes for sugar degradation via the pentose phosphate pathway were found in all three strains. This was not surprising since important precursors for amino acid and nucleotide biosynthesis branch off from the pentose phosphate pathway and auxotrophies occur in case that this pathway is non-functional. Further analysis showed that genes coding for all enzymes of the TCA cycle could be found in each strain. Genes coding for enzymes required for conversion of oxaloacetate to phosphoenolpyruvate and for C1-dephosphorylation of fructose-1,6-bisphosphate as key steps of a functional gluconeogenesis were identified. Thus, all three strains should be capable of de novo sugar biosynthesis. In contrast, the glyoxylate shunt, an important anaplerotic pathway during growth on acetate or fatty acids, is absent in all three strains, which appears to be a common feature of Planctomycetes.

Taken together, phylogenetic inference as well as morphological, physiological and genomic analyses suggest that the three novel isolates represent two novel species of a novel genus in the family Planctomycetaceae. We thus propose to introduce the genus Symmachiella gen. nov. Strains Mal52T and Pan258 are assigned to the species Symmachiella dynata sp. nov. and CA54T to Symmachiella macrocystis sp. nov. Strains Mal52T and CA54T represent the respective type strains of the novel species.
Symmachiella gen. nov.

Symmachiella (Sym.ma.chi.el’la N.L. fem. n. Sym-machiella dim. of Gr. symmachia a union, an alliance; bacteria that aggregate). Members of the genus have a cell envelope architecture resembling that of Gram-negative bacteria, are aerobic, neutrophilic, mesophilic and heterotrophic. Cells divide by polar budding and form strong aggregates. Species of the genus lack pigmentation. The DNA G+C content is around 55%. The genus is part of the family Planctomycetaceae, order Planctomycetales, class Planctomycetia, phylum Planctomycetes. The type species of the genus is *Symmachiella dynata*.

Symmachiella dynata sp. nov.

Symmachiella dynata (dy.na’ta. N.L. fem. adj. dynata of Gr. dynate strong, intense; corresponding to the strong cohesion between the cells). In addition to the genus characteristics, cells of the species are ovoid or pear-shaped. Cells of the type strain grow between 10 and 30 °C (optimum 24 °C) and at pH 5.0 to 9.5 (optimum pH 7.5). The DNA G+C content of the type strain is 55.3%. The type strain is Mal52^T (DSM 101177^T = VKM B-3432^T), which was isolated from an alga close to the coast of S’Arenal on the island Mallorca, Spain. Strain Pan258 (DSM 103143 = VKM B-3436) is an additional member of the novel species.

Fig. 4 Scanning electron micrographs of the novel isolates. The scale bar indicates 1 μm
Table 2 Genome-based analysis of the central carbon metabolism of Pan258, Mal52T and CA54T

Enzyme	EC number	Gene	Pan258	Mal52T	CA54T
Glycolysis					
Glucose-6-phosphate isomerase	5.3.1.9	pgi	Pan258_13410	Mal52_12810	CA54_06070
ATP-dependent 6-phosphofructokinase isoenzyme 1	2.7.1.11	pfkA	Pan258_34720	Mal52_35820	CA54_51790
Fructose-bisphosphate aldolase class 2	4.1.2.13	fbaA	Pan258_52530	Mal52_53960	CA54_27120
Triosephosphate isomerase	5.3.1.1	tpiA	Pan258_47170	Mal52_48110	CA54_32530
Glyceraldehyde-3-phosphate dehydrogenase	1.2.1.12	gapA	Pan258_58190	Mal52_59510	CA54_21220
Phosphoglycerate kinase	2.7.2.3	pgk	Pan258_26210	Mal52_26450	CA54_43030
2,3-Bisphosphoglycerate-independent phosphoglycerate mutase	5.4.2.12	gpmI	Pan258_57260	Mal52_58640	CA54_22530
2,3-Bisphosphoglycerate-dependent phosphoglycerate mutase	5.4.2.11	gpmA	Pan258_43930	Mal52_45580	CA54_34890
Enolase	4.2.1.11	eno	Pan258_16870	Mal52_17050	CA54_02580
			Pan258_24910	Mal52_25160	CA54_44300
Pyruvate kinase I	2.7.1.40	pykF	Pan258_33900	Mal52_34970	CA54_50970
Pyruvate dehydrogenase E1 component	1.2.4.1	aceE	Pan258_32650	Mal52_33710	CA54_49670
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex	2.3.1.12	aceF	Pan258_32660	Mal52_33720	CA54_49680
Gluconeogenesis					
Phosphoenolpyruvate synthase	2.7.9.2	ppsA	N	N	N
Pyruvate, phosphate dikinase	2.7.9.1	ppdK	Pan258_40190	Mal52_41760	CA54_57640
Pyruvate carboxylase	6.4.1.1	pyc	Pan258_31100	Mal52_32150	CA54_58530
Phosphoenolpyruvate carboxykinase (ATP)	4.1.1.49	pckA	Pan258_48000	Mal52_48950	CA54_31700
Phosphoenolpyruvate carboxykinase (GTP)	4.1.1.32	pckG	N	N	N
Phosphoenolpyruvate carboxykinase (diphosphate)	4.1.1.38	PECK	Pan258_57260	Mal52_58640	CA54_22530
Fructose-1,6-bisphosphatase class 2	3.1.3.11	glpX	N	N	N
Fructose-1,6-bisphosphatase class 1	3.1.3.11	fbp	Pan258_26740	Mal52_26990	CA54_42510
Pyrophosphate:fructose 6-phosphate 1-phosphotransferase	2.7.1.90	pfp	Pan258_19750	Mal52_20120	CA54_49300
Pentose phosphate pathway					
Glucose-6-phosphate 1-dehydrogenase	1.1.1.49	zwf	Pan258_13960	Mal52_14020	CA54_05160
6-Phosphogluconolactonase	3.1.1.31	pgl	Pan258_20660	Mal52_21030	CA54_48440
6-Phosphogluconate dehydrogenase, decarboxylating	1.1.1.44	gndA	Pan258_19770	Mal52_20140	CA54_49280
Transketolase 2	2.2.1.1	tktB	Pan258_36350,	Mal52_37970,	CA54_53330,
			Pan258_36360	Mal52_37800	CA54_53340
Transaldolase B	2.2.1.2	talB	Pan258_08210	Mal52_07650	CA54_11050
Entner-Doudoroff pathway					
KHG/KDPG aldolase	4.1.2.14	eda	Pan258_14040	Mal52_14100	CA54_05100
Phosphogluconate dehydratase	4.2.1.12	edd	Pan258_40810	Mal52_42460	CA54_38120
TCA cycle					
Citrate synthase	2.3.3.16	gltA	Pan258_00560	Mal52_00570	CA54_18160
Aconitate hydratase A	4.2.1.3	acnA	Pan258_21500	Mal52_21950	CA54_47570
Isocitrate dehydrogenase [NADP]	1.1.1.42	icd	Pan258_54730	Mal52_56040	CA54_25060
2-oxoglutarate dehydrogenase E1 component	1.2.4.2	sucA	Pan258_54450	Mal52_55760	CA54_25310
Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex	2.3.1.61	sucB	Pan258_17100	Mal52_17290	CA54_02340
Symmachiella macrocystis sp. nov.

Symmachiella macrocystis (ma.cro.cys’tis. N.L. gen. n. macrocystis of *Macrocystis*; corresponding to the isolation of the strain from the giant kelp *Macrocystis pyrifera*). In addition to the genus characteristics, the cell shape is not uniform and can range from ovoid to rod-shape. The type strain is CA54T (DSM 104301T = VKM B-3450T), isolated from the giant bladder kelp *Macrocystis pyrifera* in Monterey Bay, California, USA. Growth of the type strain was observed at a temperature range of 15–24 °C (optimum at 22 °C) and at pH 6.5–9.5 (optimum at pH 7.5). The DNA G+C content of the type strain is 55.2%.

Acknowledgements Part of this research was funded by the Deutsche Forschungsgemeinschaft Grants KA 4967/1–1 and JO 893/4–1, Grant ALWOP.308 of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), SIAM (Soehngen Institute for Anaerobic Microbiology) Grant No. 024002002 and the Radboud Excellence fellowship. We thank Ina Schleicher for skillful technical assistance. We thank Brian Tindall and Regine Fa¨hnrich from the DSMZ as well as the staff from the All-Russian Collection of Microorganisms for support during strain deposition. We thank Anne-Kristin Kaster (KIT Karlsruhe, Germany) and Alfred M. Spormann (Stanford, USA) as well as the Aquarius Dive Shop Monterey and the Hopkins Marine Station for sampling support. We also thank our collaborators Sonja Oberbeckmann and Matthias Labrenz (IOW Warnemünde, Germany) for sampling support.

Author contributions MS and MW wrote the manuscript, NK prepared the figures and contributed to text preparation, SW and MJ performed the genomic and phylogenetic analyses, AH and PR isolated the strains and performed the initial cultivation and strain deposition, SHP and CB performed the light microscopic analysis, MS performed the electron microscopic analysis, CJ took the samples, supervised PR and AH and the study. All authors read and approved the final version of the manuscript.

Funding Open Access funding provided by Projekt DEAL.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References

Acehan D, Santarella-Mellwig R, Devos DP (2013) A bacterial tubulovesicular network. J Cell Sci 127:277–280

Bengtsson MM, Øvreas L (2010) Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol 10:261

Boedeker C, Schuler M, Reintjes G, Jeske O, van Teeseling MC, Jogler M, Rast P, Borchert D, Devos DP, Kucklick M, Schaffer M, Kolter R, van Niftlik L, Engelmann S, Amann R, Rohde M, Engelhardt H, Jogler C (2017) Determining the bacterial cell biology of Planctomycetes. Nat Commun 8:14853

Boersma AS, Kallscheuer N, Wiegand S, Rast P, Peeters SH, Fuerst O, Michael V, Pauker O, Boedeker C, Jogler C, Rohde M, Engelhardt H, Jogler M, Kallscheuer N, Wiegand S, Peeters SH, Heuer A, Rast P, Heuer A, Jetten MS, Rohde M, Mayer C, Engelhardt H, Spring S, Jogler C (2015) Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 6:7116

Bondoso J, Harder J, Lage OM (2013) rpoB gene as a novel molecular marker to infer phylogeny in Planctomycetales. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-013-01367-4

Bondoso J, Balague V, Gasol JM, Lage OM (2014) Community composition of the Planctomycetes associated with different macroalgae. FEMS Microbiol Ecol 88:445–456

Bondoso J, Albuquerque L, Nobre MF, Lobo-da-Cunha A, da Costa MS, Lage OM (2015) Rosemarinitina ulvae gen. nov., sp. nov. and Rubriirellula obstinata gen. nov., sp. nov. two novel planctomycetes isolated from the ephytic community of macroalgae. Syst Appl Microbiol 38:8–15

Bondoso J, Godoy-Vitorino F, Balague V, Gasol JM, Harder J, Lage OM (2017) Epiphytic Planctomycetes communities associated with three main groups of macroalgae. FEMS Microbiol Ecol 93:fiw255

Castresana J (2000) Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol Biol Evol 17::540–552

Dedysh SN, Henke P, Ivanova AA, Kulichevskaya IS, Philippov DA, Meier-Kolthoff JP, Göker M, Huang S, Overmann J (2020a) 100-year-old enigma solved: identification, genomic characterization and biogeography of the yet uncultured Planctomyces bekefii. Environ Microbiol 22:198–211

Dedysh SN, Kulichevskaya IS, Beletsky AV, Ivanova AA, Rijpstra WIC, Damste JSS, Mardanov AV, Ravin NV (2020b) Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov. Syst Appl Microbiol 43:126050

Devos DP (2014) Re-interpretation of the evidence for the PVC cell plan supports a Gram-negative origin. Antonie Van Leeuwenhoek 105:271–274

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797

Frank O, Michael V, Pauker O, Boedeker C, Jogler C, Rohde M, Petersen J (2014) Plasmid curing and the loss of grip—the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Syst Appl Microbiol 38:120–127

Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 88:8184–8188

Gimesi N (1924) Hydrobiologische Studien. I. Planktomyces bekefii. Gimesi 1924 and 1925. Int J Syst Evol Microbiol 77:5826–5829

Gomes M, Wiesler C, Hauschild K, van Niftrik L, Engelmann S, Amann R, Rohde M, Engelhardt H, Jogler C (2017) Determining the bacterial cell biology of Planctomycetes. Nat Commun 8:14853

Jeske O, Schuler M, Schumann P, Schneider A, Boedeker C, Jogler M, Bolsschweiler D, Rohde M, Mayer C, Engelhardt H, Spring S, Jogler C (2015) Planctomycetes do possess a peptidoglycan cell wall. Nat Commun 6:7116

Jogler M, Jogler C (2013) Towards the development of genetic tools for Planctomycetes. In: Fuerst JA (ed) Planctomycetes: cell structure, origins and biology. Springer, Berlin, pp 141–164

Jogler C, Glöckner FO, Kolter R (2011) Characterization of Planctomyces limnophilus and development of genetic tools for its manipulation establish it as a model species for the phylum Planctomycetes. Appl Environ Microbiol 77:5826–5829

Jogler C, Waldmann J, Huang X, Jogler M, Glöckner FO, Mascher T, Kolter R (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. J Bacteriol 194:6419–6430

Kallscheuer N, Jogler M, Wiegand S, Peeters SH, Heuer A, Boedeker C, Jetten MS, Rohde M, Jogler C (2019a) Rhodopirellula italica sp. nov. isolated from a hydrothermal area in the Tyrrhenian Sea close to the volcanic island Panarea. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-019-01329-w

Kallscheuer N, Wiegand S, Jogler M, Boedeker C, Peeters SH, Rast P, Heuer A, Jetten MS, Rohde M, Jogler C (2019b) Rhodopirellula heiligendammensis sp. nov., Rhodopirellula pilleata sp. nov., and Rhodopirellula solitaria sp. nov. isolated from natural or artificial marine surfaces in Northern Germany and California, USA, and emended description of the genus Rhodopirellula. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-019-01366-5

Kallscheuer N, Wiegand S, Peeters SH, Jogler M, Boedeker C, Heuer A, Rast P, Jetten MS, Rohde M, Jogler C (2019c) Description of three bacterial strains belonging to the new
genus *Novipirellula* gen. nov., recategorization of *Rhodopirellula rosea* and *Rhodopirellula caenicola* and readjustment of the genus threshold of the phylogenetic marker rpoB for *Planctomycetaceae*. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-019-01374-5

Kallscheuer N, Wiegand S, Boedeker C, Peeters SH, Jogler M, Rast P, Heuer A, Jetten MS, Rohde M, Jogler C (2020a) *Aureiella helgolandensis* gen. nov., sp. nov., a novel Planctomycete isolated from a jellyfish at the shore of the island Helgoland. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-020-01403-8

Kallscheuer N, Wiegand S, Heuer A, Renssink S, Boersma AS, Jogler M, Boedeker C, Peeters SH, Rast P, Jetten MS, Rohde M, Jogler C (2020b) *Blastopirellula retiformator* sp. nov. isolated from the shallow-sea hydrothermal vent system close to Panarea Island. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-019-01377-2

Kartal B, de Almeida NM, Maalcke WJ, Op den Camp HJ, Lindsay MR, Webb RI, Fuerst JA (1997) Pirellulosomes: A new type of membrane-bounded cell compartment in planctomycete bacteria of the genus *Pirellula*. Microbiology 143:739–748

Leechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ (2011) Proteinortho: detection of (co-)orthologs in genomes and metagenomes. PeerJ Preprints 4: e1900v1

Konstantinidis KT, Rodriguez-R LM (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 4: e1900v1

Ko¨ nig E, Schlesner H, Hirsch P (1984) Cell wall studies on *Aureliella helgolandensis*. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-019-01375-4

Lage OM, Bondoso J (2014) Planctomycetes and macroalgae, a system close to Panarea Island. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-020-01436-z

Lachnit T, Fischer M, Kunzel S, Baines JF, Harder T (2013) Three novel species with peptidoglycan cell walls form the new genus *Lacinisphaera* gen. nov. in the family *Opitutaceae* of the verrucomicrobial subdivision 4. Front Microbiol 8:202

Lage OM, Bondoso J (2014) Planctomycetes and macroalgae, a striking association. Front Microbiol 5:267

Lechner M, Findeiss S, Steiner L, Marz M, Studler PF, Prohaska SJ (2011) Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinform 12:124

Lee I, Ouk Kim Y, Park S-C, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

Lindsay MR, Webb RI, Fuerst JA (1997) Pirellulosomes: A new type of membrane-bounded cell compartment in planctomycete bacteria of the genus *Pirellula*. Microbiology 143:739–748

Lonhienne TG, Sagulenko E, Webb RI, Lee KC, Franke J, Devos DP, Nouwens A, Carroll BJ, Fuerst JA (2010) Endocytosis-like protein uptake in the bacterium *Gemmata obscuriglobus*. Proc Natl Acad Sci USA 107:12883–12888

Peeters SH, Wiegand S, Kallscheuer N, Jogler M, Heuer A, Jetten MS, Rast P, Boedeker C, Rohde M, Jogler C (2020) Three marine strains constitute the novel genus and species *Crateriforma conspicua* in the phylum Planctomycetes. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-019-01374-5

Pilhofer M, Rappl K, Eckl C, Bauer AP, Ludwig W, Schleifer KH, Petroni G (2008) Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla *Verrucomicrobia, Lentisphaerae, Chlamydiae*, and *Planctomycetes* and phylogenetic comparison with rRNA genes. J Bacteriol 190:3192–3202

Pruesse E, Peplies J, Glo¨ckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal. RNA genes Bioinformatics 28:1823–1829

Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C, Zhou J, Oren A, Zhang Y-Z (2014) A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196:2210–2215

Rast P, Glo¨ckner I, Boedeker C, Jeske O, Wiegand S, Reinhardt R, Schumann P, Rohde M, Spring S, Glo¨ckner FO (2017) Three novel species with peptidoglycan cell walls form the new genus *Lacinisphaera* gen. nov., sp. nov., isolated from marine sediments close to Mallorca Island. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-020-01436-z

Rivas-Marín E, Devos DP (2018) The Paradigms They Are a-Changin’: past, present and future of PVC bacteria research. Antonie Van Leeuwenhoek 111:785–799

Rivas-Marín E, Canosa I, Santero E, Devos DP (2016) Development of Genetic Tools for the Manipulation of the Planctomycetes. Front Microbiol 7:914

Rivas-Marín E, Wiegand S, Kallscheuer N, Jogler M, Peeters S, Heuer A, Jetten MS, Boedeker C, Rohde M, Devos DP, Jogler C (2020) *Maicoricmonas rarisiosa* gen. nov., sp. nov., isolated from marine sediments close to Mallorca Island. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-020-01436-z

Scheuner C, Tindall BJ, Lu M, Nolan M, Lapidus A, Cheng J-F, Goodwin L, Pitluck S, Huntemann M, Liotios K (2014) Complete genome sequence of *Planctomycetes brasilensis* type strain (DSM 5305®), phylogenomic analysis and reclassification of Planctomycetes including the descriptions of *Gimesia* gen. nov., *Planctopirina* gen. nov. and *Rubinisphaera* gen. nov. and emended descriptions of the order *Planctomycetales* and the family *Planctomycetaceae*. Stand Gen Sci 9:10

Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

Van Teeseling MC, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, VanNieuwenhze MS, Kartal B, Van Niftrik L (2015) Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun 6:6878

Wagner M, Horn M (2006) The *Planctomycetes, Verrucomicrobia, Chlamydiae* and sister phyla comprise a super-phylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249

Wallner SR, Bauer M, Würdemann C, Wecker P, Glöckner FO, Faber K (2005) Highly enantioslective sec-alkyl sulfatase activity of the marine planctomycete *Rhodopirellula baltica* shows retention of configuration. Angew Chem Int Ed 44:6381–6384
Wegner CE, Richter-Heitmann T, Klindworth A, Klockow C, Richter M, Achstetter T, Glockner FO, Harder J (2013) Expression of sulfatases in *Rhodopirellula baltica* and the diversity of sulfatases in the genus *Rhodopirellula*. Mar Genom 9:51–61

Wiegand S, Jogler M, Jogler C (2018) On the maverick Planctomycetes. FEMS Microbiol Rev 42:739–760

Wiegand S, Jogler M, Boedeker C, Pinto D, Vollmers J, Rivas-Marín E, Kohn T, Peeters SH, Heuer A, Rast P, Oberbeckmann S, Bunk B, Jeske O, Meyerdieks A, Storesund JE, Kallscheuer N, Lücker S, Lage OM, Pohl T, Merkel BJ, Hornburger P, Müller R-W, Brümmer F, Labrenz M, Spormann AM, Op den Camp HJM, Overmann J, Amann R, Jetten MSM, Mascher T, Medema MH, Devos DP, Kaster A-K, Øvreås L, Rohde M, Galperin MY, Jogler C (2020) Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology. Nat Microbiol 5:126–140

Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, Whitman WB, Euzèby J, Amann R, Rosselló-Mora R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.