Association of Ferredoxin:NADP$^+$ oxidoreductase with the photosynthetic apparatus modulates electron transfer in *Chlamydomonas reinhardtii*

Laura Mosebach 1 · Claudia Heilmann 1 · Risa Mutoh 2 · Philipp Gäbelein 1 · Janina Steinbeck 1 · Thomas Happe 3 · Takahisa Ikegami 4 · Guy Hanke 5 · Genji Kurisu 2 · Michael Hippler 1

Received: 6 March 2017 / Accepted: 26 May 2017 / Published online: 7 June 2017
© The Author(s) 2017. This article is an open access publication

Abstract Ferredoxins (FDX) and the FDX:NADP$^+$ oxidoreductase (FNR) represent a key junction of electron transport downstream of photosystem I (PSI). Dynamic recruitment of FNR to the thylakoid membrane has been considered as a potential mechanism to define the fate of photosynthetically derived electrons. In this study, we investigated the functional importance of the association of FNR with the photosynthetic apparatus in *Chlamydomonas reinhardtii*. In vitro assays based on NADP$^+$ photoreduction measurements as well as NMR chemical shift perturbation analyses showed that FNR preferentially interacts with FDX1 compared to FDX2. Notably, binding of FNR to a PSI supercomplex further enhanced this preference for FDX1 over FDX2, suggesting that FNR is potentially capable of channelling electrons towards distinct routes. NADP$^+$ photoreduction assays and immunoblotting revealed that the association of FNR with the thylakoid membrane including the PSI supercomplex is impaired in the absence of Proton Gradient Regulation 5 (PGR5) and/or Proton Gradient Regulation 5-Like photosynthetic phenotype 1 (PGRL1), implying that both proteins, directly or indirectly, contribute to the recruitment of FNR to the thylakoid membrane. As assessed via in vivo absorption spectroscopy and immunoblotting, PSI was the primary target of photodamage in response to high-light stress in the absence of PGR5 and/or PGRL1. Anoxia preserved the activity of PSI, pointing to enhanced electron donation to O$_2$ as the source of the observed PSI inactivation and degradation. These findings establish another perspective on PGR5/PGRL1 knockout-related phenotypes and potentially interconnect FNR with the regulation of photosynthetic electron transport and PSI photoprotection in *C. reinhardtii*.

Keywords *Chlamydomonas reinhardtii* · Electron transport regulation · Ferredoxin:NADP$^+$ oxidoreductase · Ferredoxin · Proton Gradient Regulation 5 · PGR5-like photosynthetic phenotype 1

Abbreviations

- ANR1 Anaerobic response 1
- BiFC Bimolecular fluorescence complementation
- CAS Calcium sensor
- CEF Cyclic electron flow
- Cyt b$_{6}$f Cytochrome b$_{6}$f complex
- DCMU 3-(3,4-Dichlorophenyl)-1,1-dimethyurea
- DCPIP Dichlorophenolindophenol
- DDM Dodecyl-d-maltoside
- FDX Ferredoxin
- FNR FDX:NADP$^+$ oxidoreductase
- FQR FDX:quinone oxidoreductase
- HA Hydroxylamine
- HSQC Heteronuclear single-quantum coherence
- HydA Hydrogenase

Laura Mosebach and Claudia Heilmann have contributed equally to the work.

Michael Hippler
mhippler@uni-muenster.de

1 Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
2 Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
3 Department of Plant Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
4 Structural Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
5 School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
LEF Linear electron flow
LHC Light harvesting complex
LIR1 Light-induced rice 1
NPQ Non-photochemical Quenching
PC Plastocyanin
PFR Pyruvate:FDX oxidoreductase
PGRL1 PGR5-like photosynthetic phenotype 1
PQ Plastoquinone
PSI Photosystem I
TROL Thylakoid rhodanese-like protein
TRX Thioredoxin

Introduction

The FDX network represents a major hub of chloroplast metabolism. Reduced FDX is considered as a site of fine-tuned electron distribution towards multiple diverging pathways (Hanke and Mulo 2013; Goss and Hanke 2014; Hase et al. 2006). As a [2Fe2S] electron carrier, FDX transfers electrons from PSI to the FDX:NADP⁺ oxidoreductase (FNR). In addition to its primary function in photosynthetic electron transport, FDX contributes to sulphur and nitrogen assimilation via electron donation to the sulphite and the nitrite reductase. Furthermore, FDX donates electrons to the glutamate synthase and the fatty acid desaturase, thereby promoting amino acid and lipid biosynthesis. Moreover, FDX relates photosynthetic electron transport to the thioredoxin (TRX) system of the chloroplast via the FDX–TRX reductase. FDX metabolism in *Chlamydomonas reinhardtii* features two additional special aspects: FDX presumably accepts electrons from the Pyruvate:FDX oxidoreductase (PFR1), providing a link to starch metabolism (Noth et al. 2013); and it donates electrons to the [FeFe] hydrogenase (HydA), mediating H₂ photoproduction (Hemschemeier and Happe 2011). In cyanobacteria, algae and vascular plants, specific FDX isoforms channel electrons towards distinct metabolic pathways (Razquin et al. 1995; Kimata-Ariga et al. 2000; Hanke and Hase 2008; Terauchi et al. 2009). *C. reinhardtii* features at least six plant-type FDX isoforms (Winkler et al. 2010). The major isoform, leaf-type FDX1, constitutes 99% of the FDX transcript pool in regular growth conditions and is likely engaged in most of these processes. FDX5, being induced in anoxia, has been reported to be critical for the chloroplast redox homeostasis in the dark (Jacobs et al. 2009; Yang et al. 2015). Root-type FDX2, being induced in anoxia and during growth on nitrate, is the only other FDX capable of efficiently donating electrons to FNR besides FDX1 (Terauchi et al. 2009; Peden et al. 2013).

Another candidate defining the fate of electrons derived from photosynthetic electron transport is FNR. The flavoenzyme is present in the chloroplast stroma both in a soluble and a thylakoid membrane-bound state. Dynamic association with and dissociation from distinct membrane complexes is considered to contribute to the partitioning of photosynthetic electron transport between linear electron flow (LEF) and cyclic electron flow (CEF) (Joliot and Johnson 2011). According to this FNR model, the association of FNR with PSI (or soluble FNR in the stroma) may promote LEF, while CEF might operate preferentially following the association of FNR with Cyt b₆f (Clark et al. 1984; Zhang et al. 2001). The precise molecular mechanism of the major CEF pathway in *C. reinhardtii* is still elusive. Although in vitro experiments on vascular plants indicate that PGRL1 may be the catalyst (Hertle et al. 2013), there is no definite evidence in *C. reinhardtii* as to which component supplies the required FDX:quinone oxidoreductase (FQR) activity in vivo. In this context, it has been proposed that plastoquinone (PQ) might be reduced at the Qi site according to a modified Q-cycle process involving concerted electron transfer from FDX or FNR, potentially via heme c₁ and from heme b₅ to PQ (Joliot and Joliot 2006; Johnson 2011; Hasan et al. 2013).

In contrast to vascular plants, *C. reinhardtii* possesses only a single FNR, which is evolutionarily closer to vascular plant root-type than leaf-type FNR isoforms (Appendix Fig. 6; Goss and Hanke 2014). This may be since the enzyme has to mediate both FDX-dependent NADP⁺ photoreduction and NADPH-dependent FDX reduction in heterotrophic conditions. In *A. thaliana*, FNR is anchored to the thylakoid membrane via Tic26, TROL and LIR1 (Benz et al. 2009; Juric et al. 2009; Yang et al. 2016). However, in the unicellular alga no orthologues of these tethering proteins have been identified yet. In *C. reinhardtii*, FNR has been reported previously to associate with the PSI–LHCI–LHII supercomplex (Takahashi et al. 2014; Bergner et al. 2015) as well as with the potential CEF supercomplex comprising Cyt b₆f, PSI, LHCI, LHII, PGRL1, PETO, ANR1 and CAS (Iwai et al. 2010; Terashima et al. 2012; Takahashi et al. 2013). In vascular plants, a PSI–Cyt b₆f multiprotein complex, which however lacks FNR and PGRL1, has been identified in a recent electron microscopy-based study (Yadav et al. 2017). In *C. reinhardtii*, the formation of these multiprotein complexes is induced in response to alterations in the chloroplast redox poise such as shifts to anoxia or high light (Takahashi et al. 2013; Bergner et al. 2015), i.e. conditions where CEF is induced to alleviate stromal redox pressure (Aldr 2014). Knockdown of PETO, ANR1 or CAS results in impaired CEF induction upon a shift to anoxia (Terashima et al. 2012; Takahashi et al. 2016). Likewise, the absence of PGRL1 has been attributed with a defect in FQR-dependent CEF efficiency, as has the lack of PGR5 (Munekage et al. 2002; DalCorso et al. 2008). In general,
PGR5 and PGRL1 knockout mutants in *C. reinhardtii* and *A. thaliana* feature multifaceted phenotypes, most importantly including deficient qE-dependent NPQ induction (Munekage et al. 2002; DalCorso et al. 2008; Tolletter et al. 2011; Johnson et al. 2014) and severe PSI photodamage in response to high-light stress (Munekage et al. 2002; Suorsa et al. 2012; Johnson et al. 2014; Kukuczka et al. 2014). Despite these distinct phenotypes pointing to perturbation of the transmembrane proton gradient and deregulation of photosynthetic electron transport, the precise molecular roles of PGR5 and PGRL1 in *C. reinhardtii* remain elusive. Besides regulating the activity of PSII via induction of qE-dependent NPQ, ΔpH controls the rate-limiting step of LEF, i.e. the oxidation of PQH2 at the Qo site of Cyt b6f (Eberhard et al. 2008; Rott et al. 2011). As the induction of qE-dependent NPQ is delayed in *C. reinhardtii*, shifting the rate-limiting step of photosynthetic electron transfer from the PSI acceptor side to Cyt b6f is critical, in particular for short-term acclimation to high-light stress (Chaux et al. 2015).

In this work, we further explored how FNR might differentially modulate electron flow downstream of PSI in combination with PGR5 and PGRL1. For this purpose, we studied the interaction of FNR with its substrates FDX1 and FDX2, as well as how this interaction is altered upon binding of FNR to PSI. In addition, we investigated the activity and localization of FNR as well as the high-light response of mutants impaired in photosynthesis regulation (*pgr5*, *pgrl1* and *pgr5pgrl1*), attempting to bridge the gap between potential molecular mechanisms and physiological impacts.

Materials and methods

Strains and growth conditions

The experiments presented here were performed with the *C. reinhardtii* wild-type strain cc124 (137c, nit2-, mt-), a PGR5 knockout strain (*pgr5*) (Johnson et al. 2014), a PGRL1 knockout strain (Tolletter et al. 2011) back-crossed to the cc124 background (Kukuczka et al. 2014) and a PGRL1/PGR5 double mutant (*pgrl1pgr5*) derived from a cross of the respective single mutants (Steinbeck et al. 2015). All strains were maintained on TAP medium (Harris 1989), solidified with 1.5% w/v agar at 25 °C in the presence of ~50 μE m⁻² s⁻¹ photosynthetically active, continuous illumination. For experiments, strains were cultured in TAP medium on a rotary shaker (120 rpm) at 25 °C in the presence of ~20 μE m⁻² s⁻¹ photosynthetically active, continuous illumination. To assess the physiological response to high-light stress (~200 μE m⁻² s⁻¹), cells were set to a chlorophyll concentration of 4 μg mL⁻¹ and shifted to photoautotrophic conditions (Fig. 4a) or bubbled with argon to eliminate O₂ in heterotrophic conditions (Fig. 4b).

Thylakoid isolation, solubilisation and SDG ultracentrifugation

Thylakoids were isolated as previously described in (Terashima et al. 2012). Prior to the isolation procedure, cultures were bubbled with argon for 4 h producing anaerobic conditions to induce the formation of the putative CEF supercomplex which recruits FNR to the membrane. Cell disruption was performed by means of a BioNebulizer at ~1.5 bar N₂ pressure. Isolated thylakoids (0.8 mg chl mL⁻¹) were solubilized in the presence of 0.9% β-DDM (700 μL total volume) for 20 min. Separation of solubilised thylakoids to isolate photosystem particles by 1.3–0.4 M sucrose density gradient (SDG) ultracentrifugation was performed as described previously (Takahashi et al. 2006; Terashima et al. 2012).

SDS PAGE, immunoblot and ECL detection

Samples were adjusted to equal chlorophyll (whole cells and thylakoids) or equal volume (SDG fractions), supplemented with SDS PAGE loading buffer and incubated at 65 °C for 10 min. Proteins were separated by 13% (w/v) SDS PAGE, blotted onto nitrocellulose membranes and detected by specific primary antibodies: AtpB (Agrisera), PsaD (Naumann et al. 2005) and FNR (kind gift of Y. Takahashi, Okayama University). Secondary antibodies were anti-rabbit (Invitrogen).

Isolation of FDX1, FDX2, PC and FNR for light-dependent NADPH production assays

Recombinant *C. reinhardtii* FDX1, FDX2 and plastocyanin (PC) were expressed in *Escherichia coli*. FDX1 and FDX2 were purified by Strep-tag affinity chromatography, PC was purified via anion exchange chromatography and gel filtration as described previously (Kuhlger et al. 2012). *C. reinhardtii* FNR was purified as described previously for *Zea mays* FNR (Onda et al. 2000).

Light-dependent NADPH production assays

Light-dependent NADPH production mediated by isolated PSI and PSI–FNR complexes as well as isolated thylakoid membranes was assessed as described previously (Finazzi et al. 2005). Samples with isolated PSI particles (5 μg chl mL⁻¹) contained 20 mM Tricine–KOH (pH 7.4), 3 mM MgCl₂, 2 mM ascorbate, 60 μM DCPIP, 40 μM PC, 4 μM FDX1/2, 0.5 mM NADP⁺ and 0.5 μM FNR as specified. Samples with isolated thylakoids (66 μg chl mL⁻¹)
Isolation of non-labelled and 15N-labelled FDX1, FDX2 and FNR for NMR measurements

Recombinant *C. reinhardtii* FDX1, FDX2 and FNR were expressed in *E. coli* as described previously (Mutoh et al. 2015).

NMR measurements

Two-dimensional (2D) 1H-15N heteronuclear single-quantum coherence (HSQC) spectra of 15N-FDXs were recorded on a Bruker Avance III NMR spectrometer with a 1H resonance frequency of 950 MHz with a TCI cryo-probe™, as described previously (Mutoh et al. 2015). Mixtures of FDXs and FNR in 25 mM MES–NaOH (pH 6.5) containing 50 mM NaCl, 0.04% β-DDM and 10% D$_2$O for the NMR lock were analysed at 298 K. Weighted averages ($\Delta \delta_{\text{ave}}$) of 1H ($\Delta \delta_{1\text{HN}}$) and 15N ($\Delta \delta_{1\text{SN}}$) chemical shift changes were calculated according to the following formula: $\Delta \delta_{\text{ave}} = [(\Delta \delta_{1\text{HN}})^2 + (0.04 \Delta \delta_{1\text{SN}})^2]^{1/2}$, where the parameter 0.04 was derived from the ratio between the 1H and 15N chemical shift distributions.

Competition experiments

15N-FDX1 and FNR were mixed at a molar ratio of 1:3 (50:150 μM) in the absence or presence of non-labelled 150 μM FDX2. The same procedure was followed with 15N-FDX2. The weighted average of chemical shift changes ($\Delta \delta_{\text{ave}}$) was calculated for each peak. To compare $\Delta \delta_{\text{ave}}$ of 15N-FDX1 + FNR in the absence of FDX2 ($\Delta \delta_{\text{without FDX2}}$) with that of 15N-FDX1 + FDX2 + FNR in the presence of FDX2 ($\Delta \delta_{\text{with FDX2}}$), the ratio of $\Delta \delta_{\text{with FDX2}}$ to $\Delta \delta_{\text{without FDX2}}$ was calculated. Under a fast exchange regime on the NMR time scale, $\Delta \delta_{\text{with FDX2}}$/$\Delta \delta_{\text{without FDX2}}$ would become smaller if the population of 15N-FDX1-FNR complexes became smaller upon addition of FDX2. If the affinities of FNR to FDX1 and FDX2 were the same, addition of equal amounts of 15N-FDX1 and non-labelled FDX2 to FNR would halve the chemical shift changes of 15N-FDX1 caused by complex formation with FNR compared to those without non-labelled FDX2. In our experiment, we mixed 15N-FDX1, FDX2 and FNR at a molar ratio of 1:3:3; i.e. the amount of FDX2 was three times the amount of 15N-FDX1. In such a condition, observing a $\Delta \delta_{\text{with FDX2}}$/$\Delta \delta_{\text{without FDX2}}$ ratio larger than 0.5 would already be enough to assume that FDX1 prevents FDX2 from interacting with FNR. However, to be safe we set the threshold to 0.66 (=2/3) and assumed that a $\Delta \delta_{\text{with FDX2}}$/$\Delta \delta_{\text{without FDX2}}$ ratio larger than 0.66 shows that 15N-FDX1 competitively inhibits FDX2 from interacting with FNR.

Absorption spectroscopy

Samples were adjusted to a chlorophyll concentration of 20 μg mL$^{-1}$ in 20 mM HEPES–KOH pH 7.2 containing 10% (w/v) Ficoll and dark incubated for at least 10 min prior to the measurements. Absorption spectra were recorded by means of a pump and probe LED-based Joliot-type dual beam spectrophotometer. For carotenoid electrochromic bandshift (ECS) measurements, the setup included a white detection LED, a 520 and a 546 nm interference filter (10 nm bandwidth) and BG39 band-pass filters in front of the photodiodes as well as a dye laser pumped by a frequency-doubled Nd:Yag laser. To correct for unspecific contributions, absorption changes measured at 546 nm were subtracted to those measured at 520 nm. To assess photochemical charge separation events at the two photosystems, the amplitude of the initial rise in response to a saturating single turnover flash was evaluated. The ECS signal produced by PSI alone was discriminated via addition of PSII inhibitors (1 mM HA, 20 μM DCMU), while contributions of PSII were calculated as the fraction being sensitive to these inhibitors. This procedure allows a precise quantification of the stoichiometry of functional reaction centres (PSI/PSII). For P700/P700+ redox change measurements the setup included a detection LED peaking at 700 nm, a 705 and a 740 nm interference filter (10 nm bandwidth) and two RG695 long-pass cut-off filters in front of the photodiodes. To correct for unspecific contributions, absorption changes measured at 740 nm were subtracted to those measured at 705 nm. The amount of photooxidizable P700 (i.e. active PSI reaction centres) was estimated as the maximum amplitude induced by a saturating pulse (30 ms) following 10 s of continuous illumination (160 μE m$^{-2}$ s$^{-1}$; 630 nm) in the presence of 20 μM DCMU.
Results

In vitro interaction of soluble and PSI-bound FNR with FDX1 and FDX2

To elucidate whether FNR is potentially capable of differentially modulating electron flow downstream of PSI, we investigated its substrate specificity using the example of PSI-dependent NADP⁺ reduction via FDX1 versus FDX2. For this purpose, PSI particles were isolated by SDG ultracentrifugation of β-DDM solubilized thylakoid membranes extracted from anaerobic C. reinhardtii wild-type cells (Fig. 1a). Two SDG fractions including two distinct types of PSI complexes were utilized for NADP⁺ photoreduction assays: PSI–LHCI (referred to as PSI) and the high molecular weight complex (i.e. the putative CEF supercomplex) comprising not only PSI–LHCI–LHCII and FNR, but also Cyt b₆f, PGRL1, PETO, ANR1 and CAS (referred to as PSI–FNR). Virtually no NADPH production was observed in PSI fractions, while complex-associated FNR in PSI–FNR fractions mediated NADP⁺ photoreduction via both FDX1 and FDX2. Notably, NADPH production rates obtained with FDX1 were significantly higher than with FDX2 (p < 0.001; Fig. 1b). Addition of soluble FNR generally enhanced NADP⁺ photoreduction and resulted in equal NADPH production rates in PSI and PSI–FNR fractions in assays performed with FDX1, whereas assays utilizing FDX2 yielded slightly higher NADPH production rates in PSI compared to PSI–FNR fractions. Again, NADPH production rates obtained with FDX1 were significantly higher than with FDX2, indicating a higher electron transfer efficiency from FDX1 to FNR compared to FDX2 (p < 0.001; Fig. 1c). However, while in PSI fractions FDX1 was a 2.6-fold more efficient electron donor to soluble FNR than FDX2, the superior activity of FNR with FDX1 compared to FDX2 was enhanced significantly to a factor of 23 in PSI–FNR fractions (p = 0.008; Fig. 1d). This observation suggests that relative to FDX1, electron transfer from FDX2 to soluble FNR is more efficient than to complex-associated FNR.

To further investigate whether the decreased electron transfer efficiency from FDX2 to FNR is partially due to FNR discriminating between FDX1 and FDX2, we set up a competition experiment based on NMR 2D ¹H–¹⁵N HSQC
spectra of 15N-labelled FDXs. Under a fast exchange regime on the NMR time scale, the magnitude of chemical shift perturbations due to complex formation is proportional to the molar ratio of the complex to free molecules. If FNR was not able to distinguish between the two FDXs and had an equal affinity for both, changes in the chemical shifts of 15N-FDX1 would decrease upon addition of a large amount of non-labelled FDX2. In contrast, if FNR was able to distinguish between the two FDXs with a higher affinity for FDX1, the chemical shift values of 15N-FDX1 would show minimal change upon addition of non-labelled FDX2 (or vice versa). Initially, chemical shift perturbations of 15N-FDX1 were assessed in the presence of FNR, but without FDX2 (Fig. 2a, black bars). In comparison, even in the presence of three times more FDX2 than 15N-FDX1, chemical shift changes of 15N-FDX1 were similar to those observed in the absence of FDX2 (Fig. 2a, grey bars). Since some residues could not be detected because of broadening by the nearby paramagnetic ions of FDX, 75 perturbed residues of 15N-FDX1 were observed in total.

Fig. 2 Comparison of chemical shift perturbations of 15N-FDX1 and 15N-FDX2. a Chemical shift changes of 15N-FDX1 upon complex formation with FNR in the presence of FNR (black) and in the presence of both FNR and FDX2 (grey). b Chemical shift changes of 15N-FDX2 upon complex formation with FNR in the presence of FNR (black) and in the presence of both FNR and FDX1 (grey). The scales of the vertical axes in the two graphs are different. The 1H and 15N chemical shifts are merged for each amide group according to the equation described in “Materials and Methods”.
Among those, 56 residues (75% of the total) exhibited a Δδ_{with FDX2}/Δδ_{without FDX2} larger than 0.66, indicating that FNR preferentially interacts with FDX1 rather than FDX2. Next, the reciprocal experiment was conducted by replacing [15N]-FDX1 with [15N]-FDX2. Chemical shift perturbations in 76 residues of [15N]-FDX2 were detected in the presence of FNR (Fig. 2b, black bars), but their magnitudes were much smaller than those observed for [15N]-FDX1. (Note that the scale of the vertical axis in Fig. 2b is magnified compared to Fig. 2a). In the presence of FDX1, only 36 residues of [15N]-FDX2 (corresponding to 47% of the total) featured a Δδ_{with FDX1}/Δδ_{without FDX1} ratio larger than 0.66, while the remaining 30 residues did not show significant Δδ_{with FDX1}/Δδ_{without FDX1} ratios (Fig. 2b, grey bars). These results confirm that even in solution, FNR distinguishes between FDX1 and FDX2, with preferential binding to FDX1.

FNR activity/localization and high-light response of PGR5/PGRL1 knockout mutants

To explore the potential role of FNR in the regulation of photosynthetic electron transport, we expanded the in vitro NADP⁺ photoreduction assays to a C. reinhardtii PGR5, a PGRL1 and a double knockout mutant. Notably, thylakoids isolated from anaerobic cultures of these mutants featured significantly lower NADPH production rates than the wild-type (p = 0.002; Fig. 3a). However, addition of soluble FNR generally enhanced NADP⁺ photoreduction and restored wild-type NADPH production rates (Fig. 3b). This finding suggests a diminished amount of membrane-associated FNR in the absence of PGRL1 and/or PGR5. Immunoblots confirmed a decreased FNR abundance in pgr5, pgrl1 and pgr5pgrl1 on thylakoid level, while FNR expression on whole cell level was comparable. Similarly, the amounts of PsaD and Cyt f were unaltered (Fig. 3c). SDG ultracentrifugation of β-DDM solubilized thylakoid membranes isolated from anaerobic pgr5pgrl1 cells did still yield two types of PSI complexes as in the wild-type cc124. However, the amount of FNR and PSI retained in the high molecular weight fractions was diminished and the distribution of Cyt b₅f was shifted relative to FNR and PSI (Fig. 3d), implicating that the stability of the whole complex may be impaired in the absence of PGR5 and PGRL1. In line with this observation, FNR–PSI samples derived from pgr5pgrl1 mediated lower NADPH production rates compared to cc124 (Fig. 3e), while overall PSI activity in the absence of soluble FNR was comparable between mutant and wild-type (Fig. 3f).

To further investigate potential functions of PGR5 and PGRL1, we examined the response of the same mutants to high-light stress. Both high light and anoxia cause the accumulation of reducing equivalents in the chloroplast stroma and induce the formation of the putative CEF supercomplex, which recruits FNR to the membrane (Takahashi et al. 2013; Bergner et al. 2015). In pgr5, pgrl1 and pgr5pgrl1, PSI was the primary target of photodamage, as evidenced by a decline of the functional reaction centre stoichiometry over time in high light. In contrast, PSI/PSII gradually augmented in the wild-type during the first 4 h in high light, implying predominant photoinhibition of PSII (Fig. 4a). The observed inactivation of PSI in the mutants in response to short-term high-light stress entailed PSI degradation on a longer time scale, which was detected via immunoblots monitoring PsaD levels (Fig. 4c). This indicates the absence of a regulatory feedback in pgr5, pgrl1 and pgr5pgrl1, which protects PSI at the expense of PSII in the wild-type. Notably, elimination of O₂ during the high-light exposure partially preserved PSI both on a functional and structural level (Fig. 4b, c). This observation points towards enhanced electron donation to O₂ and ROS-mediated PSI photodamage in pgr5, pgrl1 and pgr5pgrl1, presumably arising from deregulated photosynthetic electron transport and subsequent PSI acceptor side limitation, but potentially also related to low P700 oxidation efficiency due to diminished FNR binding to PSI.

Discussion

Herein, we investigated the functional importance of the association of FNR with the photosynthetic apparatus in C. reinhardtii. Our data indicate that binding of FNR to a PSI supercomplex potentially modulates the interaction with FDX1 and FDX2, reinforcing the preference for FDX1 over FDX2. The association of FNR with the thylakoid membrane including PSI, reinforcing the preference for FDX1 over FDX2. The association of FNR with the thylakoid membrane including PSI is impaired in the absence of PGR5 and/or PGRL1. This finding implies that both proteins, directly or indirectly, contribute to the recruitment of FNR to the thylakoid membrane, which may form part of a photoprotective mechanism to oxidize PSI.

Soluble FNR interacts differentially with FDX1 and FDX2

Although the primary sequence similarity between FDX1 and FDX2 is high (82%), structural modelling predicted differences in the surface charge distribution. Likewise, the midpoint potential of FDX2 (∼321 mV/−331 mV) is more positive than the midpoint potential of FDX1 (∼398 mV), reflecting the respective clustering with root-type and leaf-type FDXs (Terauchi et al. 2009; Boehm et al. 2015). These distinct properties impact the interaction and electron transfer between FNR and FDX1 or FDX2. In this study, we observed significantly higher NADPH production rates mediated by FNR via FDX1 compared to FDX2 (Fig. 1b,
c). In line with previous reports (Peden et al. 2013), this finding indicates that FDX1 is a more efficient electron donor to FNR than FDX2. The observed difference in maximum electron transfer capacity may be attributed to differences in both electron transfer efficiency and affinity. In line with this, analysis of chemical shift perturbations
Light-dependent NADPH production mediated by thylakoid membranes isolated from anaerobic wild-type (cc124), pgr5, pgrl1 and pgr5pgrl1 cells and protein abundances in anaerobic whole cells and isolated thylakoids. a, b Light-dependent NADPH production rates in the absence (a) and presence (b) of additional soluble FNR (0.5 μM). Values represent means (SEM) of 3 ≤ n ≤ 7 biological replicates. One asterisk indicates a statistically significant difference (p = 0.002). Samples contained isolated thylakoids (66 μg chl mL⁻¹), 50 mM HEPES–KOH (pH 7.5), 10 mM MgCl₂, 0.1 μM nigericin, 0.05% β-DDM, 2 mM ascorbate, 60 μM DCPIP, 5 μM PC, 10 μM FDX1 and 0.5 mM NADP⁺. To assess light-dependent NADPH production, absorption was measured prior to and after 20 and 40 s of illumination (600 μE m⁻² s⁻¹). c Cyt f, FNR and PsAD abundance. Samples for immunoblots were adjusted to equal chlorophyll content (2 μg). AtpB was used as a loading control. d-f Light-dependent NADPH production mediated by PSI complexes and PSl–FNR complexes isolated from C. reinhardtii wild-type strain cc124 in comparison to pgr5pgrl1. d Complexes were isolated from anaerobic thylakoids of cc124 and pgr5pgrl1 by SDG centrifugation upon solubilization with β-DDM. Samples for immunoblots were adjusted to equal volume (100 μL). e, f Light-dependent NADPH production rates mediated by PSI–FNR complexes in the absence (e) and PSI complexes in the presence (f) of additional soluble FNR (0.5 μM). Values represent means (SEM) of 2 ≤ n ≤ 15 biological replicates. Samples contained isolated PSI particles (5 μg mL⁻¹ chl), 20 mM Tricine–KOH (pH 7.4), 3 mM MgCl₂, 2 mM ascorbate, 60 μM DCPIP, 40 μM PC, 4 μM FDX1 and 0.5 mM NADP⁺. To assess light-dependent NADPH production, absorption at 340 nm was measured prior to and after 15 and 30 s of illumination. Rates of PSI–FNR fractions were normalized to the PSI level of PSI fractions.

Comparing NADPH reduction rates mediated by soluble FNR versus complex-associated FNR (Fig. 1d) revealed that the binding of FNR to PSI impacts interaction with FDX1 and FDX2, presumably through structural rearrangement further enhancing the preference for FDX1 over FDX2. This finding is in line with a role of complex-associated FNR in NADP⁺ photoreduction (Korn et al. 2009), as well as with previous studies reporting that spinach FNR becomes more efficient at NADP⁺ photoreduction upon binding to thylakoid membrane complexes (Forti et al. 1983; Forti and Bracale 1984). As FDX2 preferentially interacts with soluble FNR, it might be involved in channelling electrons derived from PSI towards other processes than NADPH production in conditions when FNR is membrane-bound (Fig. 5). At this point, the physiological role of C. reinhardtii FDX2 is elusive. However, the in vitro assays presented here demonstrate the high substrate specificity of C. reinhardtii FNR and support the idea of photosynthetic electron transport partitioning via differential association of FNR with thylakoid membrane complexes, thereby channelling electrons towards distinct routes.

PGR5 and PGRL1 impact the recruitment of FNR to the thylakoid membrane

Notably, the membrane association of FNR is impaired in the absence of PGR5 and/or PGRL1 (Fig. 3). At this point, it is impossible to differentiate whether this phenomenon merely represents another symptom of the multifaceted phenotype of these mutants—or if it is directly related to the absence of PGR5 and/or PGRL1. The question remains how might PGR5 and/or PGRL1 mechanistically impact the association of FNR with the thylakoid membrane? PGR5 (135 amino acids) is associated with the stromal side of the membrane (Munekage et al. 2002). PGRL1 (324 amino acids) possesses two transmembrane domains (DalCorso et al. 2008), performs iron-dependent redox-induced conformational changes and features six redox-active cysteine residues, four of which form a rubredoxin fold presumably facilitating the binding of an iron-containing cofactor (Petroutsos et al. 2009; Hertle et al. 2013). PGR5 accumulation requires the presence of PGRL1, whereas PGR5 promotes PGRL1 stability (Petroutsos et al. 2009; Johnson et al. 2014). This mutual dependence also complicates the specific attribution of phenotypes to the absence of either of the two proteins. PGRL1 forms homodimers being destabilized by TRX. The negatively charged N-terminal loop of PGRL1 likely interacts with the...
positively charged regions of PGR5, resulting in the formation of a heterodimer (DalCorso et al. 2008). Copurification indicated the PGR5–PGRL1 complex associates with PSI. Moreover, split-ubiquitin and yeast two-hybrid assays revealed that PGRL1 interacts with FDX and FNR. In addition, both PGRL1 and PGR5 interact with Cyt b₆f, as confirmed by co-immuno-precipitation assays (DalCorso et al. 2008; Hertle et al. 2013). Therefore, altered binding of FNR to PSI or Cyt b₆f as a direct effect of the absence of PGRL1 and/or PGR5 is plausible. Notably, in *A. thaliana fnr1 fnr2* plants containing 53% of wild-type FNR levels, PGRL1 expression was induced by 174% (Lintala et al. 2012), possibly to reinforce binding of residual FNR to the thylakoid membrane. Based on their observation that FNR, PGRL1, PETO and ANR1 comigrated in SDGs of solubilized *C. reinhardtii* thylakoids isolated from oxic conditions, Takahashi and coworkers proposed that these proteins might coreside in membrane microdomains prior to the association with Cyt b₆f and PSI upon a shift to reducing conditions (Takahashi et al. 2013, 2016). The TRX-dependent destabilization of PGRL1 homodimers and the subsequent PGRL1–PGR5 heterodimerization (Hertle et al. 2013) are a potential mechanism to induce the formation of the putative CEF supercomplex in such a redox-dependent way. ANR1 potentially senses the PQ pool redox poise or the electrochemical proton gradient and may thereby initiate a remodelling of this membrane.
NADP+ photoreduction rates observed in thylakoids isolated and in pgr5pgrl1 (Fig. 3d). Likewise, the diminished in vitro both ANR1 knockdown mutants (Terashima et al. 2012). Notably, CEF supercomplex formation was observed in been confirmed by BIFC analyses (Terashima et al. 2012). PGRL1. Indeed, interaction between ANR1 and PGRL1 has contribute to the recruitment of FNR to PSI and/or Cyt b6f. In the membrane bound, FDX2 potentially channels electrons derived from PSI towards other processes than NADPH production. PGR5 and PGRL1 associated with PSI, both PGRL1 and PGR5 interact with Cyt b6f and PGR5 interacts with FNR (Dal- Corso et al. 2008; Hertle et al. 2013). Only further analyses addressing the molecular role of PGR5 and PGRL1 as well as the physiological role of FNR membrane binding in both green algae and land plants may elucidate whether parts of the underlying mechanisms are evolutionary conserved.

Potential roles of PGR5, PGRL1 and FNR in photosynthetic electron transport regulation and PSI photoprotection

The absence of PGR5 and/or PGRL1 results in a severe deregulation of electron transfer in response to high light, with PSI being the primary target of photodamage in pgr5, pgrl1 and pgrl1pgr5, while PSII is predominantly affected in the wild-type (Fig. 4). A similar phenomenon was observed in C. reinhardtii pgrl1 after a shift from high to low CO2 conditions (Dang et al. 2014) as well as in A. thaliana pgr5 following a shift from growth to high light (Tikkanen et al. 2014). In line with this, overexpression of PGR5 in A. thaliana resulted in enhanced PSI stability but reduced PSII stability in response to high light (Long et al. 2008). Hence, PGR5 and PGRL1 appear crucial in establishing PSII as the “predetermined breaking point” of the photosynthetic electron transport chain. In situations where excitation flux exceeds metabolic capacity, pgr5, pgrl1 and pgr5pgrl1 fail to shift the rate-limiting step of LEF from the PSI acceptor side to Cyt b6f due to impaired luminal acidification, in line with conclusions related to A. thaliana pgr5 in response to fluctuating light (Suorsa et al. 2012). Notably, Joliot and Johnson observed in A. thaliana that the addition of low concentrations of the uncoupler nigericin mimicked the pgr5 phenotype: The induction of qE-dependent NPQ and more importantly the extent of photosynthetic

![Diagram](image-url)

Fig. 5 Schematic model illustrating the potential relationships established in this work between different components of the photosynthetic apparatus in C. reinhardtii. In conditions where FNR is membrane bound, FDX2 potentially channels electrons derived from PSI towards other processes than NADPH production. PGR5 and PGRL1 contribute to the recruitment of FNR to PSI and/or Cyt b6f. In the absence of PGR5 and/or PGRL1, impaired membrane association of FNR results in PSI acceptor side limitation and enhanced electron donation to O2.
control was lowered, resulting in predominant reduction of P700$^+$ in the light and subsequent PSI photoinhibition (Joliot and Johnson 2011). In the PGR5 and/or PGRL1 knockout mutants, the impaired luminal acidification is a consequence of decreased proton influx due to less efficient FQR-dependent CEF and/or increased proton efflux due to alterations of the ATPase conductivity (Avenson et al. 2005; Wang et al. 2014).

On a short time scale, perturbation of the regulatory feedback loop linking metabolic capacity and excitation flux results in over-reduction of stromal electron acceptors in the mutants. On a long time scale, PSI acceptor side limitation entails the inactivation and degradation of PSI reaction centres due to photooxidative damage (Fig. 4 a, c). A similar effect has been described previously in A. thaliana pgr5 as well as in C. reinhardtii pgr5 and pgrl1 (Suorsa et al. 2012; Johnson et al. 2014; Kukuczka et al. 2014). The observed preservation of PSI in the absence of O$_2$ (Fig. 4 b, c) supports the idea that enhanced electron donation to O$_2$ results in ROS-mediated PSI photodamage in pgr5, pgrl1 and pgr-5pgrl1 (Fig. 5). In agreement with this hypothesis, increased H$_2$O$_2$ production has been reported in C. reinhardtii pgrl1 exposed to high light (Dang et al. 2014). Likewise, ROS scavenging enzymes are upregulated in A. thaliana pgr5 seedlings exposed to fluctuating light to potentially protect PSI from enhanced ROS production (Suorsa et al. 2012), and FLVA and B levels are elevated in C. reinhardtii pgrl1 to mediate “controlled” O$_2$ photoreduction in response to high light and also following a shift from high to low CO$_2$ (Dang et al. 2014). In line with this finding, overexpression of Physcomitrella patens FLVA and FLVB abolishes PSI acceptor side limitation in A. thaliana pgr5 plants (Yamamoto et al. 2016).

The data presented here indicate that a contributory factor to PSI photodamage in the absence of PGR5 and/or PGRL1 (Fig. 4) might be diminished binding of FNR to PSI complexes (Fig. 3). As thylakoid membrane association of the enzyme potentially influences its activity and affinity (Fig. 1d), loss of FNR from these supercomplexes probably compounds PSI acceptor side limitation. A sustained oxidation of P700 in the light is essential to prevent PSI photoinhibition (Shimakawa et al. 2016; Takagi et al. 2017) and the recruitment of FNR to PSI may provide a high P700 oxidation efficiency. Binding of FNR to PSI might also affect the efficiency of electron transfer between FDX1 and FNR, since significantly more H$_2$ is produced in the absence of PGR5 and/or PGRL1 under anoxic conditions (Tolleter et al. 2011; Godaux et al. 2015; Steinbeck et al. 2015; Chen et al. 2016). Assuming that electron transfer between FNR and FDX1 is compromised due to altered FNR membrane recruitment, more reduced FDX1 would be available for HydA reduction, resulting in enhanced H$_2$ production in the mutants. Notably, FNR was indeed shown to compete with HydA for reduced FDX in vitro (Yacoby et al. 2011). Furthermore, the binding of FNR to PSI has been proposed to play a direct photoprotective role: The reduction of NADP$^+$ requires two electrons, while FDX transfers first one electron to the oxidized FAD cofactor and upon rebinding a second electron to the semiquinone radical, finally resulting in the hydroquinone. Recruitment of FNR to the membrane might therefore enhance the efficiency of electron transfer from PSI to NADP$^+$ during LEF, decreasing the lifetime of the hazardous semiquinone radical and preventing deleterious electron donation to O$_2$ (Takahashi et al. 2014; Bergner et al. 2015). Likewise, FNR abundance and location in general have been shown to impact ROS production (Kozuleva et al. 2016). Last but not least, the association of FNR with Cyt b$_6$f has been proposed to promote CEF, establishing FNR relocation in response to the stromal redox poise as central hub of photosynthetic electron transfer partitioning (Joliot and Johnson 2011; Goss and Hanke 2014). Therefore, disturbed association of FNR with the thylakoid membrane may partly explain PGR5/PGRL1 knockout-related phenotypes. Intriguingly, a tobacco FNR knockdown mutant exhibited a similar phenotype, i.e. deficient qE-dependent NPQ induction, reduced CEF efficiency and higher susceptibility to PSI photoinhibition (Hald et al. 2008; Joliot and Johnson 2011). In conclusion, PGR5 and PGRL1 play a major, but mechanistically elusive role in the regulation of photosynthetic electron transport and PSI photoprotection in C. reinhardtii. Our data suggest that diminished amounts of membrane-associated FNR in the absence of PGR5 and/or PGRL1 potentially alter electron flow in vivo and thereby contribute to the multifaceted phenotype of the corresponding knockout mutants.

Acknowledgements R.M. acknowledges support from the MEXT (Ministry of Education, Culture, Sports, Science and Technology, 15K21122). T.H. gratefully acknowledges support from the DFG (DFG project cooperation “Nanoengineered optoelectronics with biomaterials and bioinspired assemblies”) and the Volkswagen Foundation (LigH2t). G.K. acknowledges support from CREST, Japan Science and Technology Agency. M.H. acknowledges support from the DFG (Deutsche Forschungsgemeinschaft, HI 739/13-1).

Author contributions LM, CH, RM, PG, JS performed the experiments. GH and TH provided material. LM, CH, RM, TI, GK and MH analysed the data. LM, RM, GH and MH wrote the paper.

Compliance with ethical standards None.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

See Fig. 6.
Fig. 6 Phylogenetic tree showing the diversity of FNR sequences in photosynthetic organisms. Mature protein sequences were aligned with Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo) and the phylogenetic tree was estimated based on neighbour joining implemented by splitstree (D.H. Huson and D. Bryant, Application of Phylogenetic Networks in Evolutionary Studies, Molecular Biology and Evolution, 23(2):254–267, 2006; software available from http://www.splitstree.org). Vascular plant leaf and root FNR sequences are referred to as L and R, FNR sequence assignments are as follows (in alphabetical order): Aa (Aureococcus anophagef-ferens): XP_009035092.1; Ap (Auxenochlorella protothecoides): XP_011400423.1; At (Arabidopsis thaliana) L1: NP_201420.1, L2: NP_001077566.1, R1: NP_001190682.1, R2: NP_849734.1; Bn (Bigelowiella natans): AAP79145.1; Bp (Bathycoccus prasinos): XP_007510909.1; C (Chrysochromulina sp.): KOO53489.1; Cr (C. reinhardtii): XP_001697352.1; Cs (Coccomyxa subellipsoidea): XP_005644145.1; Cv (Chlorella variabilis): XP_005848997.1; Fc (Fragilariopsis cylindrus): OEU17081.1; Gp (Gonium pectorale): KXZ46591.1; Mc (Micromonas commoda): XP_002500720.1; Mn (Monoraphidium neglectum): XP_013905631.1; Mp (Micromonas pusilla): XP_003064407.1; Mpo (Marchantia polymorpha): OAE27096.1; N (Nostoc sp.): WP_010998260.1; Ng (Nannochloropsis gaditana): XP_005853875.1; Ol (Ostrococcus lucimarinus): XP_001422240.1; Os (Oryza sativa) L1: BAS95764.1, L2: BAS76543.1, R1: BAF13390.1, R2: BAF20804.1; Ot (Ostreococcus tauri): XP_003084170.1; P (Pseudanabaena sp.): WP_015165197.1; Pc (Paulinella chromatophora): YP_002049405.1; Pt (Phaeodactylum tricornutum): XP_002180511.1; S (Synechocystis sp.): WP_001873079.1; Sm (Selaginella moellendorffii): XP_002982108.1; Te (Thermosynechococcus elongatus): WP_011057053.1; To (Thalassiosira oceanica): EJK72001.1; Vc (Volvox carteri): XP_002954986.1; Zm (Zea mays) L1: BAA88236.1, L2: BAA88237.1, L3: AC85815.1, R1: ACG39703.1, R2: ACG35047.1
References

Alric J (2014) Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii: (II) involvement of the PGR5–PGRL1 pathway under anaerobic conditions. Biochim Biophys Acta 1837:825–834

Andersen B, Scheller HV, Möller BL (1992) The PSI-E subunit of photosystem I binds ferredoxin:NADP+ oxidoreductase. FEBS Lett 311:169–173

Avenson TJ, Cruz JA, Kanazawa A, Kramer DM (2005) Regulating the proton budget of higher plant photosynthesis. Proc Natl Acad Sci USA 102:9709–9713

Benz JP, Stengel A, Lintala M, Lee YH, Weber AP, Philippar K, Gugel IL, Kaieda S, Ikegami T, Mulo P et al (2009) Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise. Plant Cell 21:3965–3983

Béthour D, Bailleul B, Berne N, Cardol P (2015) Induction of photosynthetic electrons? Curr Protein Pept Sci 15:385–393

Bald S, Nandha B, Gallois P, Johnson GN (2008) Feedback regulation of photosynthetic electron transport by NADP(H) redox poise. Biochim Biophys Acta 1777:433–440

Hanke GT, Hase T (2008) Variable photosynthetic roles of two leaf-type ferredoxins in arabidopsis, as revealed by RNA interference. Photochem Photobiol 84:1302–1309

Hanke GT, Mulo P (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ 36:1071–1084

Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego

Hasan SS, Yamashita E, Baniulis D, Cramer WA (2013) Quinone-dependent proton transfer pathways in the photosynthetic cytochrome b6f complex. Proc Natl Acad Sci USA 110:4297–4302

Hase TO, Schürmann P, Knaff DB (2006) The interaction of ferredoxin with ferredoxin-dependent enzymes. In: Photosystem I. Springer, Netherlands, pp 477–498

Hemschemeier A, Happe T (2011) Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta 1807:919–926

Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Arbruster U, Leister D (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49:511–523

Iway M, Takizawa K, Tokutsu R, Okamura U, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

Jacobs J, Pudollek S, Hemschemeier A, Happe T (2009) A novel, anaerobically induced ferredoxin in Chlamydomonas reinhardtii. FEBS Lett 583:325–329

Johnson GN (2011) Reprint of: physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:906–911

Johnson X, Steinbeck J, Dent RM, Takahashi H, Richaud P, Ozawa S-I, Houille-Vernes L, Petroutos D, Rappaport F, Grossman AR et al (2014) Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ∆ATPase pgr5 and ∆rbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol 165:438–452

Joliot P, Johnson GN (2011) Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA 108:13317–13322

Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

Juric S, Hazler-Pilepic K, Tomšič A, Lepeduš H, Jelić B, Puthiyaveetil S, Bionda T, Voja L, Allen JF, Schleiff E et al (2009) Tethering of ferredoxin:NADP+ oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL. Plant J 60:783–794

Kimata-Ariga Y, Matsumura K, Kada S, Fujimoto H, Fujita Y, Endo T, Mano J, Satoh F, Hase T (2000) Differential electron flow around photosystem I by two C(4)-photosynthetic-cell-specific ferredoxins. EMBO J 19:5041–5050

Korn A, Ajlan G, Lagouette B, Gall A, Sérit P (2009) Ferredoxin:NADP+ oxidoreductase interaction with phycocyanin modulates its properties. J Biol Chem 284:31789–31797

Kozuleva M, Goss T, Twachtmann M, Rudi K, Trapka J, Selinski J, Ivanov B, Garapathi P, Steinhoff H-J, Hase T et al (2016) Ferredoxin:NADP(H) oxidoreductase abundance and location influences redox poise and stress tolerance. Plant Physiol 172:1480–1493

Kuhlert S, Drexper F, Fufezan C, Sommer F, Hippler M (2012) Residues PsaB Asp612 and PsaB Glu613 of photosystem I confer...
pH-dependent binding of plastocyanin and cytochrome c(6). Biochemistry 51:7297–7303
KuKuczka B, Magneschi L, Petroutsos D, Steinbeck J, Bald T, Powikrowska M, Fuzefan C, Finazzi G, Hippler M (2014) PGR1-mediated cyclic electron flow is crucial for acclimation to anoxia and complementary to non-photochemical quenching in stress adaptation. Plant Physiol 165:1604–1617
Lintala M, Lehtimäki N, Benz JP, Jungfer A, Soll J, Aro EM, Bölt B, Mulo P (2012) Depletion of leaf-type ferredoxin-NADP+-oxidoreductase results in the permanent induction of phototoxic mechanisms in Arabidopsis chloroplasts. Plant J 70:809–817
Long TA, Okegawa Y, Shikanai T, Schmidt GW, Covert SF (2008) Conserved role of proton gradient regulation 5 in the regulation of PSI cyclic electron transport. Planta 228:907–918
Munecke YN, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371
Mutoh R, Muraki N, Shinmura K, Kubota-Kawai H, Lee YH, Nowaczyk MM, Rögner M, Hase T, Ikegami T, Kurisu G (2015) X-ray structure and nuclear magnetic resonance analysis of the interaction sites of the Ga-substituted cyanobacterial ferredoxin. Biochemistry 54:6052–6061
Naumann B, Stauber EJ, Busch A, Sommer F, Hippler M (2005) N-terminal processing of Lhca3 is a key step in remodeling of the photosystem I-light-harvesting complex under iron deficiency in *Chlamydomonas reinhardtii*. J Biol Chem 280:20431–20441
Noth J, Krawietz D, Hemschemeier A, Happe T (2013) Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in *Chlamydomonas reinhardtii*. J Biol Chem 288:4368–4377
Onda Y, Matsumura T, Kimata-Ariga Y, Sakakibara H, Sugiyama T, Hase T (2000) Differential interaction of maize root ferredoxin:NADP(+) oxidoreductase with photosynthetic and non-photosynthetic ferredoxin isoproteins. Plant Physiol 123:1037–1045
Peden EA, Boehm M, Mulder DW, Davis R, Old WM, King PW, Ghirardi ML, Dubini A (2013) Identification of global ferredoxin interaction networks in *Chlamydomonas reinhardtii*. J Biol Chem 288:35192–35209
Petroutsos D, Terauchi AM, Busch A, Hirschmann I, Merchant SS, Finazzi G, Hippler M (2009) PGR1 participates in iron-induced remodeling of the photosynthetic apparatus and in energy metabolism in *Chlamydomonas reinhardtii*. J Biol Chem 284:32770–32781
Razquin P, Schmitz S, Pelcato ML, Fillat MF, Gómez-Moreno C, Böhme H (1995) Differential activities of heterocyst ferredoxin-NADP+ oxidoreductase results in the permanent induction of photoprotective mechanisms in *Chlamydomonas reinhardtii*. J Biol Chem 278:4368–4377
Onoda K, Nishiguchi S, Yamada M, Kangasjärvi S, Paakkarinen V, Tikkanen M, Jansson S (2013) Diversity of strategies for escaping reactive oxygen species production within photosystem I among land plants: P700 oxidation system is prerequisite for alleviating photoinhibition in photosystem I. Physiol Plant. doi:10.1111/ppl.12562
Takahashi H, Iwai M, Takaehasi Y, Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in *Chlamydomonas reinhardtii*. Proc Natl Acad Sci USA 103:477–482
Takahashi H, Clowes S, Wollman FA, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1954
Takahashi H, Okamura A, Minagawa J, Takahashi Y (2014) Biochemical characterization of photosystem I-associated light-harvesting complexes I and II isolated from state 2 cells of *Chlamydomonas reinhardtii*. Plant Physiol 55:1437–1449
Takahashi H, Schmolinger S, Lee J-H, Schoda M, Rappaport F, Wollman FA, Vallon O (2016) The PETO protein interacts with other effectors of cyclic electron flow in *Chlamydomonas*. Mol Plant. doi:10.1016/j.molp.2015.12.017
Terauchi AM, Lu SF, Zaffagnini M, Tappa S, Hirasa M, Tripathy JN, Knaff DB, Farner PJ, Lemaire SD, Hase T et al (2009) Pattern of expression and substrate specificity of chloroplast ferredoxins from *Chlamydomonas reinhardtii*. J Biol Chem 284:25867–25878
Tikkanen M, Mekala NR, Aro EM (2014) Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochim Biophys Acta 1837:210–215
Tollieter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T, Auropy P, Adriano J-M, Belyy A et al (2011) Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in *Chlamydomonas reinhardtii*. Plant Cell 23:2619–2630
Wang C, Yamamoto H, Shikanai T (2014) Role of cyclic electron transport around photosystem I in regulating proton motive force. Biochim Biophys Acta 1847:931–938
Winkler M, Hemschemeier A, Jacobs J, Stripp S, Happe T (2010) Multiple ferredoxin isoforms in *Chlamydomonas reinhardtii*—their role under stress conditions and biotechnological implications. Eur J Cell Biol 89:998–1004
Yacoby I, Pochechailov S, Toporik S, Higurashi ML, King PW, Zhang S (2011) Photosynthetic electron partitioning between [FeFe]-hydrogenase and ferredoxin:NADP+ -oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci 108:9396–9401
Yadav KNS, Semchonok DA, Nosek L, Kousl R, Fucile G, Boekema EJ, Eichacker LA (2017) Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH. Biochim Biophys Acta 1858:12–20
Yamamoto H, Takahashi S, Badger MR, Shikanai T (2016) Artificial remodeling of alternative electron flow by flavodoxin proteins in Arabidopsis. Nat Plants 2:16012
Yang W, Wittkopp TM, Li X, Warakanont J, Dubini A, Catalanotti C, Kim RG, Nowack ECM, Mackinder LCM, Aks oy MM et al (2015) Critical role of *Chlamydomonas reinhardtii* ferredoxin-5 in maintaining membrane structure and dark metabolism. Proc Natl Acad Sci USA 112:14978–14983
Yang C, Hu H, Ren H, Kong Y, Lin H, Guo J, Wang L, He Y, Ding X, Grabstunowicz M et al (2016) LIGHT-INDUCED RICE1 regulates light-dependent attachment of LEAF-TYPE FERREDOXIN-NADP+ OXIDOREDUCTASE to the thylakoid membrane in rice and Arabidopsis. Plant Cell 28:712–728

Zhang H, Whitelegge JP, Cramer WA (2001) Ferredoxin:NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex. J Biol Chem 276:38159–38165