Quillen equivalence of singular model categories

Wei Ren
School of Mathematical Sciences, Chongqing Normal University,
Chongqing 401331, China

Abstract

Let R be a left-Gorenstein ring. We construct a Quillen equivalence between singular contraderived model category and singular coderived model category introduced by Becker [Adv. Math., (2014) 187-232]. As an application, we explicitly give an equivalence $K_{\text{ex}}(\mathcal{P}) \simeq K_{\text{ex}}(\mathcal{I})$ for the homotopy categories of exact complexes of projective and injective modules.

Key Words: Model category, Quillen equivalence, left-Gorenstein ring.

2010 MSC: 18E30, 18A40, 55P10, 18G35.

1. Introduction

The notion of recollement of triangulated categories was introduced by Beilinson, Bernstein and Deligne [2] with an idea that one category can be viewed as being “glued together” from two others. In [18], Krause established a recollement $K_{\text{ex}}(\mathcal{I}) \rightleftarrows K(\mathcal{I}) \rightleftarrows D(R),$ where $K(\mathcal{I})$ (resp. $K_{\text{ex}}(\mathcal{I})$) is the homotopy category of complexes (resp. exact complexes) of injective modules, and $D(R)$ is the derived category. Recently, Becker [1] found a Bousfield localization of model categories, and then he recovered Krause’s recollement and got a dual one $K_{\text{ex}}(\mathcal{P}) \rightleftarrows K(\mathcal{P}) \rightleftarrows D(R).$

Iyengar and Krause [17] proved that for a commutative noetherian ring R with a dualizing complex D, there is a triangle-equivalence $D \otimes_R - : K(\mathcal{P}) \to K(\mathcal{I}).$ Note that there are equivalences $K^c(\mathcal{P}) \simeq D^f(R)$ and $K^c(\mathcal{I}) \simeq D^f(R)$ between the subcategories of compact objects $K^c(\mathcal{P})$ and $K^c(\mathcal{I})$, and the derived category $D^f(R)$ of complex whose homology is bounded and finitely generated; see Jørgensen [10] and Krause [18]. Iyengar-Krause equivalence can also be considered as a generalization of Grothendieck duality. If R is left-Gorenstein [3] (i.e. a ring such that any left R-module has finite projective dimension if and only if it has finite injective dimension), Chen [6] established an equivalence $K(\mathcal{P}) \simeq K(\mathcal{I})$ via relative derived categories with respect to the so-called balanced pairs.

E-mail address: wren@cqnu.edu.cn.
An interesting question is raised naturally: is there an equivalence $K_{ex}(\mathcal{P}) \simeq K_{ex}(\mathcal{I})$ for the homotopy categories of exact complexes, which appear on the left end of the above recollements? However, the methods of both Iyengar-Krause and Chen seem not effective in this case.

By Beligiannis [3], when R is left-Gorenstein, the homotopy category $K_{ex}(\mathcal{P})$ is triangle-equivalent to the singularity category $D_{sg}(R)$, which is defined as a Verdier quotient $D^b(R)/K^b(\mathcal{P})$ of bounded derived category modulo the bounded homotopy category of complexes of projective modules. It is well known that over a left-Gorenstein ring R, the exact complex of projective (injective) modules is precisely the totally acyclic complex of projectives (injectives). We note that Bergh, Jorgensen and Oppermann [5] also studied the equivalence between the homotopy category of totally acyclic complexes $K_{tac}(\mathcal{P})$ and singularity category $D_{sg}(R)$ for an artin ring or a commutative noetherian local ring.

Recall that a model structure \mathcal{M} on an abelian category is three distinguished classes of maps, called weak equivalences, cofibrations and fibrations respectively, satisfying a few axioms. For a model category, the associated homotopy category $Ho(\mathcal{M})$ is constructed by formally inverting the weak equivalences, i.e. localization with respect to weak equivalences. Recently, Becker [1] realized $K_{ex}(\mathcal{P})$ (resp. $K_{ex}(\mathcal{I})$) as the homotopy category of singular contraderived (resp. singular coderived) model category. For details on model categories, we refer to the original source of Quillen [19], as well as [8, 14, 15].

In this paper, we are inspired to construct a Quillen equivalence between singular contraderived model category and singular coderived model category, and then we give an equivalence $K_{ex}(\mathcal{P}) \simeq K_{ex}(\mathcal{I})$. To illustrate the main result of the paper, we need some notations. Let $Ch(R)$ be the category of R-complexes. Following [12], let exP (resp. exI) be the subcategory of all exact complexes of projective (resp. injective) modules, and $(exP)^\perp$ (resp. $(exI)^\perp$) be the right (resp. left) orthogonal. In the language of Hovey’s correspondence [16], the singular contraderived model structure on $Ch(R)$ is denoted by a triple $\mathcal{M}_{sing}^{ctr} = (exP, (exP)^\perp, Ch(R))$, and the singular coderived model structure is denoted by $\mathcal{M}_{sing}^{co} = (Ch(R),^\perp(exI), exI)$.

Let X be any complex. We denote by $\Omega : Ch(R) \to Mod(R)$ the functor given by $\Omega(X) = X_0/Imd_X^1$, and $\Theta : Ch(R) \to Mod(R)$ the functor given by $\Theta(X) = Ker d_0^X$. We define $\Lambda : Mod(R) \to Ch(R)$ to be a functor which sends every module to a stalk complex concentrated on degree zero.

Theorem 1.1. Let R be a left-Gorenstein ring, $F = \Lambda \Omega$ and $G = \Lambda \Theta$ be functors on $Ch(R)$. Then $(F, G) : (Ch(R), \mathcal{M}_{sing}^{ctr}) \to (Ch(R), \mathcal{M}_{sing}^{co})$ is a Quillen equivalence between the singular contraderived model category and singular coderived model category.

By the fundamental results on homotopy categories of model categories (see e.g. [15, Theorem 1.2.10]), one has triangle-equivalences $Ho(\mathcal{M}_{sing}^{ctr}) \simeq K(\mathcal{P})$ and $Ho(\mathcal{M}_{sing}^{co}) \simeq K(\mathcal{I})$; see [1] or Corollary [22] below. Moreover, a Quillen equivalence of model categories yields an adjoint
equivalence of corresponding homotopy categories. Hence we have the following, which gives an affirmative answer to the above question.

Corollary 1.2. Let R be a left-Gorenstein ring. Then there is an equivalence $F' : K_{ex}(\mathcal{P}) \to K_{ex}(\mathcal{I})$ which is defined on objects by first taking F, and then taking fibrant replacement (= a special $\text{ex}\tilde{\mathcal{I}}$-preenvelope); the inverse $G' : K_{ex}(\mathcal{I}) \to K_{ex}(\mathcal{P})$ is defined on objects by first taking G, and then taking cofibrant replacement (= a special $\text{ex}\tilde{\mathcal{P}}$-precover).

Question. More recently, Gillespie [13] established “Gorenstein version” of the aforementioned recollements, i.e. $K_{ex}(\mathcal{G}\mathcal{I}) \equiv K(\mathcal{G}\mathcal{I}) \equiv D(R)$ and $K_{ex}(\mathcal{G}\mathcal{P}) \equiv K(\mathcal{G}\mathcal{P}) \equiv D(R)$, where $\mathcal{G}\mathcal{I}$ and $\mathcal{G}\mathcal{P}$ denote the class of Gorenstein injective and Gorenstein projective modules, respectively. If the underlying ring is left-Gorenstein, it follows from [9] that $\mathbf{K}(\mathcal{G}\mathcal{P}) \simeq \mathbf{K}(\mathcal{G}\mathcal{I})$. Recently, we realize this equivalence in the framework of cotorsion triples [21].

However, we do not know if it is true that $K_{ex}(\mathcal{G}\mathcal{P}) \simeq K_{ex}(\mathcal{G}\mathcal{I})$. We remark that one can not get an answer by simply restricting the equivalent functor $K(\mathcal{G}\mathcal{P}) \simeq K(\mathcal{G}\mathcal{I})$ in [9], or by the methods in [21].

2. The proof of the theorem

First, we recall some basic notations and facts, which are needed in the following. Throughout the paper, let R be a left-Gorenstein ring. All modules are left R-modules. A complex X means a sequence of modules $\cdots \to X_{n+1} \xrightarrow{d_{n+1}^X} X_n \xrightarrow{d_n^X} X_{n-1} \to \cdots$ with $d_n^X \cdot d_{n+1}^X = 0$.

Let \mathcal{A} be an abelian category with enough projectives and injectives. A pair of classes $(\mathcal{X}, \mathcal{Y})$ in \mathcal{A} is a cotorsion pair provided that $\mathcal{X} = \perp \mathcal{Y}$ and $\mathcal{Y} = \mathcal{X}^\perp$, where $\perp \mathcal{Y} = \{ X \mid \text{Ext}_A^1(X, Y) = 0, \ \forall \ Y \in \mathcal{Y} \}$ and $\mathcal{X}^\perp = \{ Y \mid \text{Ext}_A^1(X, Y) = 0, \ \forall \ X \in \mathcal{X} \}$.

The cotorsion pair $(\mathcal{X}, \mathcal{Y})$ is complete provided that for any $M \in \mathcal{A}$, there exist short exact sequences $0 \to Y \to X \xrightarrow{f} M \to 0$ and $0 \to M \xrightarrow{g} Y' \to X' \to 0$ with $X, X' \in \mathcal{X}$ and $Y, Y' \in \mathcal{Y}$. In this case, for any $N \in \mathcal{X}$, $\text{Hom}_A(N, f) : \text{Hom}_A(N, X) \to \text{Hom}_A(N, M)$ is surjective since $\text{Ext}_A^1(N, Y) = 0$, and then $f : X \to M$ is said to be a special \mathcal{X}-precover of M. Dually, $g : M \to Y'$ is called a special \mathcal{Y}-preenvelope of M.

The cotorsion pair $(\mathcal{X}, \mathcal{Y})$ is resolving if \mathcal{X} is closed under taking kernels of epimorphisms between objects of \mathcal{X}, i.e. for any short exact sequence $0 \to X' \to X \xrightarrow{\xi} X'' \to 0$ with $X, X'' \in \mathcal{X}$, we have $X' \in \mathcal{X}$. We say $(\mathcal{X}, \mathcal{Y})$ is coresolving if \mathcal{Y} satisfies the dual. We say $(\mathcal{X}, \mathcal{Y})$ is hereditary if it is both resolving and coresolving. By [1, Corollary 1.1.12], a complete cotorsion pair is resolving if and only if it is coresolving.

By the correspondence of Beligiannis-Reiten [4] or Hovey [16, Theorem 2.2], an abelian model structure on \mathcal{A} is equivalent to a triple $(\mathcal{A}_c, \mathcal{A}_{tri}, \mathcal{A}_f)$ of subcategories, for which \mathcal{A}_{tri} is thick and both $(\mathcal{A}_c, \mathcal{A}_f \cap \mathcal{A}_{tri})$ and $(\mathcal{A}_c \cap \mathcal{A}_{tri}, \mathcal{A}_f)$ are complete cotorsion pairs. In this case, \mathcal{A}_c is the class of cofibrant objects, \mathcal{A}_{tri} is the class of trivial objects and \mathcal{A}_f is the class of fibrant objects. The model structure is called “abelian” since it is compatible with the abelian structure
of the category in the following way: (trivial) cofibrations are monomorphisms with (trivially) cofibrant cokernel, (trivial) fibrations are epimorphisms with (trivially) fibrant kernel, and weak equivalences are morphisms which factor as a trivial cofibration followed by a trivial fibration.

For convenience, we will use the triple $(\mathcal{A}_c, \mathcal{A}_{tri}, \mathcal{A}_f)$ to denote the corresponding model structure. The following is immediate from [1] or [12, Theorem 4.7].

Lemma 2.1. On the category $\text{Ch}(R)$ of complexes, there is a singular contraderived model structure $\mathcal{M}^{\text{ctr}}_{\text{sing}} = (\text{ex}\mathcal{P}, (\text{ex}\mathcal{P})^\perp, \text{Ch}(R))$, and a singular coderived model structure $\mathcal{M}^{\text{co}}_{\text{sing}} = (\text{Ch}(R), 1^\perp(\text{ex}\mathcal{I}), \text{ex}\mathcal{I})$.

For a bicomplete abelian category \mathcal{A} with the model structure $\mathcal{M} = (\mathcal{A}_c, \mathcal{A}_{tri}, \mathcal{A}_f)$, the associated homotopy category $\text{Ho}(\mathcal{M})$ is constructed by formally inverting the weak equivalences, i.e. the localization with respect to weak equivalences. The homotopy category of an abelian model category is always a triangulated category. There is an equivalence of categories $\text{Ho}(i) : \mathcal{A}_f/\omega = \mathcal{A}_c/\sim \to \text{Ho}(\mathcal{M})$ induced by the inclusion functor $i : \mathcal{A}_f \to \mathcal{A}$, where $\mathcal{A}_{f} = \mathcal{A}_{c} \cap \mathcal{A}_{f}$; see e.g. [15, Section 1.2].

We use \mathcal{P} (resp. \mathcal{I}) to denote the subcategory of contractible complexes of projective (resp. injective) modules. It is well known that a complex $P \in \mathcal{P}$ if and only if P is exact and each $\text{Ker}d^n_P$ is a projective module; similarly, complexes in \mathcal{I} are characterized. Note that for any chain maps f and g, if $g - f$ factors through an object in $\omega = \mathcal{A}_{c} \cap \mathcal{A}_{tri} \cap \mathcal{A}_{f}$; see e.g. [15, Section 1.2].

We use \mathcal{P} (resp. \mathcal{I}) to denote the subcategory of contractible complexes of projective (resp. injective) modules. It is well known that a complex $P \in \mathcal{P}$ if and only if P is exact and each $\text{Ker}d^n_P$ is a projective module; similarly, complexes in \mathcal{I} are characterized. Note that for any chain maps f and g, if $g - f$ factors through an object in $\omega = \mathcal{A}_{c} \cap \mathcal{A}_{tri} \cap \mathcal{A}_{f}$; see e.g. [15, Section 1.2].

Corollary 2.2. There are equivalences $\text{Ho}(\mathcal{M}^{\text{ctr}}_{\text{sing}}) \simeq K_{\text{ex}}(\mathcal{P})$ and $\text{Ho}(\mathcal{M}^{\text{co}}_{\text{sing}}) \simeq K_{\text{ex}}(\mathcal{I})$.

Let $F = \Lambda \Omega$ and $G = \Lambda \Theta$ be functors on $\text{Ch}(R)$, where Ω and Θ are functors from $\text{Ch}(R)$ to $\text{Mod}(R)$ such that for any $X \in \text{Ch}(R)$, $\Omega(X) = X_0/\text{Im}d^X_1$ and $\Theta(X) = \text{Ker}d^X_0$. Let $\Lambda : \text{Mod}(R) \to \text{Ch}(R)$ be a functor which sends every module to a stalk complex concentrated on degree zero.

In the rest of the paper, we are devoted to prove the theorem stated in Introduction. The proof is divided into the following.

Lemma 2.3. Let X, Y be any R-complexes, and $f : X \to Y$ a monomorphism of complexes. If f is a quasi-isomorphism, then $\Omega(f)$ is also a monomorphism of R-modules.

Proof. We consider the following commutative diagram

\[
\begin{array}{cccccc}
0 & \to & \text{Ker}d^X_0/\text{Im}d^X_1 & \to & X_0/\text{Im}d^X_1 & \to & X_0/\text{Ker}d^X_0 & \to & 0 \\
\downarrow{\Omega(f)} & & \downarrow{\Omega(f)} & & \downarrow{\Omega(f)} & & \downarrow{\Omega(f)} & & \\
0 & \to & \text{Ker}d^Y_0/\text{Im}d^Y_1 & \to & Y_0/\text{Im}d^Y_1 & \to & Y_0/\text{Ker}d^Y_0 & \to & 0
\end{array}
\]
Since f is a quasi-isomorphism, we have an isomorphism induced by f:

$$H_0(f) : H_0(X) = \text{Ker}d_0^X/\text{Im}d_1^X \rightarrow \text{Ker}d_0^Y/\text{Im}d_1^Y = H_0(Y).$$

Since the chain map f is monic, then the induced map of modules $X_0/\text{Ker}d_0^X \cong \text{Im}d_0^X \rightarrow \text{Im}d_0^Y \cong Y_0/\text{Ker}d_0^Y$ is also monic. Hence, by the “Five Lemma” for the above diagram, we get that $\Omega(f) : X_0/\text{Im}d_1^X \rightarrow Y_0/\text{Im}d_1^Y$ is a monomorphism. We mention that it is also direct to check injectivity of $\Omega(f)$ by diagram chasing. □

For model categories \mathcal{C} and \mathcal{D}, recall that an adjunction $(F, G) : \mathcal{C} \rightarrow \mathcal{D}$ is a Quillen adjunction if F is a left Quillen functor, or equivalently G is a right Quillen functor. That is, F preserves cofibrations and trivial cofibrations, or G preserves fibrations and trivial fibrations.

Let X be a complex. By [12, Proposition 3.3], $X \in (ex\tilde{P})^\perp$ if each map $f : P \rightarrow X$ is null homotopic whenever $P \in ex\tilde{P}$; dually, $X \in (ex\tilde{L})^\perp$ if each map $f : X \rightarrow I$ is null homotopic whenever $I \in ex\tilde{L}$.

Proposition 2.4. $(F, G) : (\text{Ch}(R), \mathcal{M}^{\text{co}}_{\text{sing}}) \rightarrow (\text{Ch}(R), \mathcal{M}^{\text{co}}_{\text{sing}})$ is a Quillen adjunction.

Proof. Let X, Y be any R-complexes. It follows from [11, Lemma 3.1] that $(\Omega, \Lambda) : \text{Ch}(R) \rightarrow \text{Mod}(R)$ and $(\Lambda, \Theta) : \text{Mod}(R) \rightarrow \text{Ch}(R)$ are adjunctions. Then we have the following natural isomorphisms: $\text{Hom}_{\text{Ch}(R)}(F(X), Y) \cong \text{Hom}_{\text{R}}(\Omega(X), \Theta(Y)) \cong \text{Hom}_{\text{Ch}(R)}(X, G(Y))$. This implies that $(F, G) : \text{Ch}(R) \rightarrow \text{Ch}(R)$ is an adjunction.

Then, it suffices to show that F preserves cofibration and trivial cofibration. Let $f : X \rightarrow Y$ be a cofibration in $\mathcal{M}^{\text{co}}_{\text{sing}}$, i.e. f is a monomorphism with $\text{Coker}f \in ex\tilde{P}$. Then f is a quasi-isomorphism, and by Lemma 2.3, $\Omega(f)$ is monic. Then, we have an exact sequence

$$0 \rightarrow F(X) \xrightarrow{F(f)} F(Y) \rightarrow F(\text{Coker}f) \rightarrow 0.$$

Since every complex is a cofibrant object in $\mathcal{M}^{\text{co}}_{\text{sing}}$, this implies that $F(f)$ is a cofibration.

Now suppose $f : X \rightarrow Y$ is a trivial cofibration in $\mathcal{M}^{\text{co}}_{\text{sing}}$, i.e. f is a monomorphism with $\text{Coker}f \in ex\tilde{P} \cap (ex\tilde{P})^\perp = \tilde{P}$. Then we have an exact sequence

$$0 \rightarrow F(X) \xrightarrow{F(f)} F(Y) \rightarrow F(\text{Coker}f) \rightarrow 0.$$

Note that $\Omega(\text{Coker}f)$ is a projective module. For any complex $I \in ex\tilde{L}$, it is easy to show that any chain map $F(\text{Coker}f) = \Lambda\Omega(\text{Coker}f) \rightarrow I$ is null homotopic, and then $F(\text{Coker}f) \in (ex\tilde{L})^\perp$. Thus $F(f)$ is a trivial cofibration in $\mathcal{M}^{\text{co}}_{\text{sing}}$. This completes the proof. □

Suppose \mathcal{C} and \mathcal{D} are model categories, and $(F, G) : \mathcal{C} \rightarrow \mathcal{D}$ is a Quillen adjunction. Then $(F, G) : \mathcal{C} \rightarrow \mathcal{D}$ is called a Quillen equivalence if and only if it satisfies the Quillen condition: for all cofibrant object X in \mathcal{C} and fibrant object Y in \mathcal{D}, a map $f : FX \rightarrow Y$ is a weak equivalence in \mathcal{D} if and only if the associated map $\varphi(f) : X \rightarrow GY$ is a weak equivalence in \mathcal{C}, see for example [13, Definition 1.3.12]. A Quillen adjunction $(F, G) : \mathcal{C} \rightarrow \mathcal{D}$ is a Quillen equivalence if and only if $(LF, RG) : \text{Ho}(\mathcal{C}) \rightarrow \text{Ho}(\mathcal{D})$ is an adjoint equivalence of homotopy categories (see e.g.
where LF is the left derived functor defined on objects by first taking cofibrant replacement and then applying the functor F, and RG is the right derived functor defined on objects by first taking fibrant replacement and then applying the functor G; see \cite{model_categories} Definition 1.3.6. We refer to \cite{quillen_homotopy} Section 5] or \cite{model_categories} Section 1.1] for the notions of the cofibrant and fibrant replacement functors.

By \cite{left-derived-adjunctions}, there is a useful criterion for checking the given Quillen adjunction is a Quillen equivalence. Specifically, we need to show that F reflects weak equivalences between cofibrant objects in $\mathcal{M}_{\text{sing}}^\text{ctr}$ (i.e. complexes in $\text{ex}\tilde{\mathcal{P}}$) and, for every fibrant object Y in $\mathcal{M}_{\text{sing}}^\text{co}$ (i.e. $Y \in \text{ex}\tilde{\mathcal{I}}$) the composition $FQG(Y) \xrightarrow{F(q)} FG(Y) \xrightarrow{\varepsilon} Y$ is a weak equivalence, where ε is the counit of the adjunction (F,G), and $q : QG(Y) \rightarrow G(Y)$ is a cofibrant replacement of $G(Y)$.

\textbf{Lemma 2.5.} Let X, Y be complexes in $\text{ex}\tilde{\mathcal{P}}$, and $f : X \rightarrow Y$ a chain map. If f is a weak equivalence in $\mathcal{M}_{\text{sing}}^{\text{ctr}}$, then $F(f)$ is a weak equivalence in $\mathcal{M}_{\text{sing}}^{\text{co}}$.

\textit{Proof.} In the model category $(\text{Ch}(R),\mathcal{M}_{\text{sing}}^{\text{ctr}})$, we can factor $f : X \rightarrow Y$ as a trivial cofibration $i : X \rightarrow Z$ followed by a trivial fibration $p : Z \rightarrow Y$. By Proposition 2.4, $F(i)$ is a trivial cofibration in $\mathcal{M}_{\text{sing}}^{\text{co}}$, and then $F(i)$ is a weak equivalence.

In the exact sequence $0 \rightarrow X \xrightarrow{i} Z \rightarrow \text{Coker} i \rightarrow 0$, $X \in \text{ex}\tilde{\mathcal{P}}$ and $\text{Coker} i \in \text{ex}\tilde{\mathcal{P}} \cap (\text{ex}\tilde{\mathcal{P}}) \perp$. Then $Z \in \text{ex}\tilde{\mathcal{P}}$. Moreover, it follows from the exact sequence $0 \rightarrow \text{Ker} p \rightarrow Z \xrightarrow{p} Y \rightarrow 0$ that $\text{Ker} p \in \text{ex}\tilde{\mathcal{P}}$. Note that p is a trivial fibration, then $\text{Ker} p \in (\text{ex}\tilde{\mathcal{P}}) \perp$. Hence, $\text{Ker} p \in \tilde{\mathcal{P}} = \text{ex}\tilde{\mathcal{P}} \cap (\text{ex}\tilde{\mathcal{P}}) \perp$, and $\Omega(\text{Ker} p)$ is a projective module.

We consider the push-out diagram of $\Omega(\text{Ker} p) \rightarrow \Omega(Z)$ along $\Omega(\text{Ker} p) \rightarrow I$, where I is an injective envelope of $\Omega(\text{Ker} p)$:

\begin{center}
\begin{tikzpicture}
 \node (A1) at (0,0) {0};
 \node (A2) at (1,0) {$\Omega(\text{Ker} p)$};
 \node (A3) at (2,0) {$\Omega(Z)$};
 \node (A4) at (3,0) {$\Omega(Y)$};
 \node (A5) at (4,0) {0};
 \node (B1) at (0,-1) {0};
 \node (B2) at (1,-1) {I};
 \node (B3) at (2,-1) {J};
 \node (B4) at (3,-1) {$\Omega(Y)$};
 \node (B5) at (4,-1) {0};
 \node (C1) at (0,-2) {0};
 \node (C2) at (1,-2) {L};
 \node (C3) at (2,-2) {L};
 \node (C4) at (3,-2) {0};
 \draw[->] (A1) -- (A2);
 \draw[->] (A2) -- (A3);
 \draw[->] (A3) -- (A4);
 \draw[->] (A4) -- (A5);
 \draw[->] (B1) -- (B2);
 \draw[->] (B2) -- (B3);
 \draw[->] (B3) -- (B4);
 \draw[->] (B4) -- (B5);
 \draw[->] (C1) -- (C2);
 \draw[->] (C2) -- (C3);
 \draw[->] (C3) -- (C4);
 \draw[->] (C2) -- (C3);
\end{tikzpicture}
\end{center}

Note that R is left-Gorenstein, then the injective module I is of finite projective dimension. It follows from the exact sequence $0 \rightarrow \Omega(\text{Ker} p) \rightarrow I \rightarrow L \rightarrow 0$ that L is of finite projective dimension. Then for any complex $E \in \text{ex}\tilde{\mathcal{I}}$, $\text{Hom}_R(L,E)$ is also exact. Hence, by \cite{dualizing complexes} Lemma 2.4, we get that every map $\Lambda(L) \rightarrow E$ is null homotopic, and then $\Lambda(L) \in \perp(\text{ex}\tilde{\mathcal{I}})$. From the middle column of the above diagram, we have an exact sequence of complexes: $0 \rightarrow F(Z) \xrightarrow{\Lambda(j)}$.
\(\Lambda(J) \rightarrow \Lambda(L) \rightarrow 0 \), which implies that \(\Lambda(j) \) is a trivial cofibration in \(\mathcal{M}^\text{co}_{\text{sing}} \). Moreover, we have \(F(p) = \Lambda(q) \cdot \Lambda(j) \).

Recall that a complex \(I \in \text{ex}\tilde{I} \) is called totally acyclic (of injectives) if for any injective module \(M \), the complex \(\text{Hom}_R(M, I) \) remains exact. Dually, totally acyclic complex of projectives is defined. We note that over a left-Gorenstein ring, every injective module is of finite projective dimension, hence the category of all totally acyclic complexes of injectives and \(\text{ex}\tilde{I} \) coincide; the dual for totally acyclic complexes of projectives also holds.

By the completeness of the cotorsion pair \(\langle \text{ex}\tilde{I}, \text{co}\tilde{I} \rangle \), for \(\Lambda(I) \) there is an exact sequence 0 \(\rightarrow \Lambda(I) \rightarrow E \rightarrow D \rightarrow 0 \) with \(E \in \text{ex}\tilde{I} \) and \(D \in \text{co}\tilde{I} \). Since every complex in \(\text{ex}\tilde{I} \) is totally acyclic, we have \(\Lambda(I) \in \langle \text{ex}\tilde{I} \rangle \), and then \(E \in \text{ex}\tilde{I} \cap \langle \text{co}\tilde{I} \rangle \). Now we consider the following push-out diagram:

\[
\begin{array}{ccccccccc}
0 & & 0 & & 0 & & 0 & & 0 \\
0 & \downarrow & \Lambda(I) & \downarrow \Lambda(q) & \downarrow F(Y) & \downarrow 0 \\
& \downarrow r & \Lambda(J) & \downarrow F(Y) & \downarrow 0 \\
0 & \downarrow & E & \downarrow & C & \downarrow & F(Y) & \downarrow 0 \\
& & D & & D & & D & & D \\
0 & & 0 & & 0 & & 0 & & 0 \\
\end{array}
\]

where \(r \) and \(s \) are respectively trivial cofibration and trivial fibration in \(\mathcal{M}^\text{co}_{\text{sing}} \). Hence \(\Lambda(q) = sr \) is a weak equivalence in \(\mathcal{M}^\text{co}_{\text{sing}} \). Then \(F(f) = F(p) \cdot F(i) = \Lambda(q) \cdot \Lambda(j) \cdot F(i) \) is a weak equivalence, as desired. \(\square \)

Lemma 2.6. Let \(Y \) be an exact complex of injective \(R \)-modules. Then \(\varepsilon : FG(Y) \rightarrow Y \) is a weak equivalence in \(\mathcal{M}^\text{co}_{\text{sing}} \), where \(\varepsilon \) is the counit of the adjoint pair \((F, G) \).

Proof. For \(Y, \ G(Y) = \Lambda\Theta(Y) = \cdots \rightarrow 0 \rightarrow \text{Ker}d_Y^0 \rightarrow 0 \rightarrow \cdots \) is a stalk complex with \(\text{Ker}d_Y^0 \) concentrated in degree zero. It is easy to see that \(FG(Y) = G(Y) \). Then the map \(\varepsilon : FG(Y) \rightarrow Y \) is given by \(\varepsilon_0 : \text{Ker}d_Y^0 \rightarrow Y_0 \) being a natural embedding and \(\varepsilon_i = 0 \) for any \(i \neq 0 \). Let \(C = \text{Coker}\varepsilon \).

Then \(C = \cdots \rightarrow Y_2 \overset{d_Y^2}{\rightarrow} Y_1 \overset{d_Y^1}{\rightarrow} \text{Im}d_Y^0 \overset{i}{\rightarrow} Y_0 \overset{d_Y^{-1}}{\rightarrow} Y_{-1} \rightarrow \cdots \), where \(i \) is an embedding. Let \(Y_- = \cdots \rightarrow Y_2 \overset{d_Y^2}{\rightarrow} Y_1 \rightarrow 0 \) be a hard truncation, \(D = 0 \rightarrow \text{Im}d_Y^0 \overset{i}{\rightarrow} Y_0 \overset{d_Y^{-1}}{\rightarrow} Y_{-1} \overset{i}{\rightarrow} Y_{-2} \rightarrow \cdots \). Then there is an exact sequence of complexes 0 \(\rightarrow Y_- \rightarrow C \rightarrow D \rightarrow 0 \).

Let \(E \) be any \(R \)-complex in \(\text{ex}\tilde{I} \). Since \(R \) is left-Gorenstein, \(E \) is totally acyclic, and then for any \(Y_i, \text{Hom}_R(Y_i, E) \) is an exact complex. By [7 Lemma 2.4], the complex \(\text{Hom}_R(Y_-, E) \) is exact. Note that \(D \) is an exact sequence, and then \(\text{Hom}_R(D, E_i) \) is an exact complex for any \(i \in \mathbb{Z} \). By [7 Lemma 2.5], the complex \(\text{Hom}_R(D, E) \) is exact. Then it follows from the short
exact sequence

$$0 \to \text{Hom}_R(D, E) \to \text{Hom}_R(C, E) \to \text{Hom}_R(Y \otimes D, E) \to 0$$

that the complex $\text{Hom}_R(C, E)$ is exact. This implies that every map from C to any complex in $ex\tilde{I}$ is null homotopic. Then $C \in \perp \text{ex}\tilde{I}$. Hence, $\varepsilon : FG(Y) \to Y$ is a trivial cofibration in $\mathcal{M}_{\text{sing}}^c$, and moreover, ε is a weak equivalence.

Recall that a module M is Gorenstein projective if M is a syzygy of a totally acyclic complex of projective modules; and dually, Gorenstein injective modules are defined; see [2]. We use \mathcal{GP} to denote the class of Gorenstein projective modules. By [3], over a left-Gorenstein ring $(\mathcal{GP}, \mathcal{W})$ is a complete cotorsion pair, where \mathcal{W} is the class of modules with finite projective (injective) dimension. We proved more in [20, Theorem 2.7] by showing that the cotorsion pair $(\mathcal{GP}, \mathcal{W})$ is cogenerated by a set, i.e. there exists a set S such that $\mathcal{W} = \{S\}^\perp$. This also implies the completeness of $(\mathcal{GP}, \mathcal{W})$, and generalizes Hovey’s Gorenstein projective model structure of $\text{Mod}(R)$ (see [16, Theorem 8.3, 8.6]) from Iwanaga-Gorenstein rings to left-Gorenstein rings.

Lemma 2.7. Let Y be an exact complex of injective R-modules. Then $F(q) : FQG(Y) \to FG(Y)$ is a weak equivalence in $\mathcal{M}_{\text{sing}}^c$, where $q : QG(Y) \to G(Y)$ is a cofibrant replacement in the model category $(\text{Ch}(R), \mathcal{M}_{\text{sing}}^c)$.

Proof. For Y, $G(Y) = FG(Y) = \cdots \to 0 \to \text{Ker}d_0^Y \to 0 \to \cdots$. By the completeness of the cotorsion pair $(\mathcal{GP}, \mathcal{W})$, there is an exact sequence of R-modules $0 \to W \to M \to \text{Ker}d_0^Y \to 0$ with $M \in \mathcal{GP}$ and $W \in \mathcal{W}$. Consider the totally acyclic complex of M, we have a short exact sequence $0 \to K \to P \xrightarrow{q} G(Y) \to 0$, see the following diagram

\[
\begin{array}{cccccccc}
K = \cdots & \to & P_1 & \to & K_0 & \xrightarrow{\pi} & P_1 & \to & P_2 & \to & \cdots \\
\downarrow & & \downarrow & & \downarrow W & & \downarrow & & \downarrow & & \\
P = \cdots & \to & P_1 & \to & P_0 & & P_1 & \to & P_2 & \to & \cdots \\
\downarrow M & & \downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
G(Y) = \cdots & \to & 0 & \to & \text{Ker}d_0^Y & \to & 0 & \to & 0 & \to & \cdots
\end{array}
\]

Let $K_{\otimes} = \cdots \to P_2 \to P_1 \to \text{Ker}\pi \to 0$ and $K_{\otimes 0} = 0 \to W \to P_1 \to P_2 \to \cdots$. Then there is a short exact sequence of complexes $0 \to K_{\otimes 0} \to K \to K_{\otimes 0} \to 0$. Let T be any complex in $ex\tilde{P}$. Note that T is totally acyclic. Then it follows from [7, Lemma 2.5] that the complex $\text{Hom}_R(T, K_{\otimes 0})$ is exact, and this implies that $K_{\otimes 0} \in (ex\tilde{P})^\perp$. Note that $H_i(K) = 0$ for any $i \neq -1$, then $K_{\otimes 0}$ is an exact complex. For any morphism $f : T \to K_{\otimes 0}$, we consider the
Let $s_i = 0$ for any $i < 0$. Since $d^K_1 : P_1 \to \text{Ker} \pi$ is an epic and T_0 is a projective module, there is a map $s_0 : T_0 \to P_1$ such that $f_0 = d^K_1 s_0$. Since
\[d^K_1(f_1 - s_0 d^T_1) = d^K_1 f_1 - d^K_1 s_0 d^T_1 = d^K_1 f_1 - f_0 d^T_1 = 0, \]
then $f_1 - s_0 d^T_1 : T_1 \to \text{Ker} d^K_1$, and there exists a map $s_1 : T_1 \to P_2$ such that $f_1 - s_0 d^T_1 = d^K_2 s_1$.

Analogous to comparison theorem, we inductively get homotopy maps $\{s_i\}$ such that f is null homotopic. Then $K_{c0} \in (\text{ex} \tilde{\mathcal{P}})^\perp$. Thus, we have $K \in (\text{ex} \tilde{\mathcal{P}})^\perp$. Note that for any object in the model category $(\text{Ch}(R), \mathcal{M}^\text{ctr}_{\text{sing}})$, its cofibrant replacement is precisely a special $\text{ex} \tilde{\mathcal{P}}$-precovers. Then it follows from the short exact sequence $0 \to K \to P \xrightarrow{q} G(Y) \to 0$ that P is a cofibrant replacement of $G(Y)$, and we can set $QG(Y) = P$.

Note that $F(K) = \cdots \to 0 \to W \to 0 \to \cdots$. Since W is a module of finite projective dimension, for any complex $E \in \text{ex} \tilde{\mathcal{L}}$, $\text{Hom}_R(W, E)$ is exact. This implies that $F(K) \in (\text{ex} \tilde{\mathcal{L}})$. For $F(K)$, there is an exact sequence $0 \to F(K) \to I \to L \to 0$ with $I \in \text{ex} \tilde{\mathcal{L}}$ and $L \in (\text{ex} \tilde{\mathcal{L}})$. Similar to the above argument, we consider the following push-out diagram:

\[
\begin{array}{ccccccc}
0 & & 0 \\
\downarrow & & \downarrow \\
0 & \longrightarrow & F(K) & \longrightarrow & F(P) & \longrightarrow & F(q) \\
\downarrow & \uparrow & \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\
0 & \longrightarrow & I & \longrightarrow & J & \longrightarrow & GF(Y) & \longrightarrow & 0 \\
\downarrow & & \downarrow \\
L & \longrightarrow & L & \longrightarrow & 0 & \longrightarrow & 0 & \longrightarrow & 0
\end{array}
\]

It follows that $F(q) = pi$ is a weak equivalence in $\mathcal{M}^\text{co}_{\text{sing}}$, where i and p are trivial cofibration and trivial fibration in $\mathcal{M}^\text{co}_{\text{sing}}$, respectively. This completes the proof. \hfill \Box

ACKNOWLEDGEMENTS. The author is supported by National Natural Science Foundation of China (11871125), Natural Science Foundation of Chongqing (cstc2018jcyjAX0541) and the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN201800509).
References

[1] H. Becker, Models for singularity categories, Adv. Math., 254 (2014) 187-232.
[2] A.A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque, vol. 100, 1982.
[3] A. Beligiannis, The homological theory of contravariantly finite subcategories: Auslander-Buchweitz contexts, Gorenstein categories and (co)stabilization. Comm. Algebra, 28 (2000) 4547-4596.
[4] A. Beligiannis, I. Reiten, Homological and homotopical aspects of torsion theories. Mem. Amer. Math. Soc. 188(883), 2007.
[5] P.A. Bergh, D.A. Jorgensen, S. Oppermann, The Gorenstein defect category, Quart. J. Math. 66 (2015) 459-471.
[6] X.W. Chen, Homotopy equivalences induced by balanced pairs, J. Algebra 324 (2010) 2718-2731.
[7] L.W. Christensen, A. Frankild, H. Holm, On Gorenstein projective, injective and flat dimensions-A functorial description with applications, J. Algebra 302 (2006), 231-279.
[8] W.G. Dwyer, J. Spalinski, Homotopy Theories and Model Categories, Handbook of algebraic topology (Amsterdam), North-Holland, Amsterdam, 1995, pp. 73-126.
[9] E.E. Enochs, O.M.G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics no. 30, New York: Walter De Gruyter, 2000.
[10] P. Jørgensen, The homotopy category of complexes of projective modules, Adv. Math. 193 (2005), 223-232.
[11] J. Gillespie, The flat model structure on Ch(R), Trans. Amer. Math. Soc. 356 (2004) 3369-3390.
[12] J. Gillespie, Cotorsion pairs and degreewise homological model structures, Homol. Homotopy Appl. 10 (2008) 283-304.
[13] J. Gillespie, Gorenstein complexes and recollements from cotorsion pairs, Adv. Math. 291 (2016) 859-911.
[14] P.S. Hirschhorn, Model Categories and Their Localizations, Mathematical Surveys and Monographs vol. 99, Amer. Math. Soc., 2003.
[15] M. Hovey, Model Categories, Mathematical Surveys and Monographs vol. 63, Amer. Math. Soc., 1999.
[16] M. Hovey, Cotorsion pairs, model category structures, and representation theory, Math. Z. 241 (2002) 553-592.
[17] S. Iyengar, H. Krause, Acyclicity versus total acyclicity for complexes over Noetherian rings, Doc. Math. 11 (2006) 207-240.
[18] H. Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (5) (2005) 1128-1162.
[19] D.G. Quillen, Homotopical Algebra, Lecture Notes in Mathematics no. 43, Springer-Verlag, 1967.
[20] W. Ren, Gorenstein projective modules and Frobenius extensions, Sci. China Math., 61(7) (2018) 1175-1186.
[21] W. Ren, Applications of cotorsion triples, Comm. Algebra, in press. arXiv:1404.7598v5