Donegan, S., Welton, N., Tudur Smith, C., D'Alessandro, U., & Dias, S. (2017). Network meta-analysis including treatment by covariate interactions: Consistency can vary across covariate values. Research Synthesis Methods, 8(4), 485-495. https://doi.org/10.1002/jrsm.1257
Supporting materials

Supplementary models

Details of the individual patient data network meta-analysis models including treatment by covariate interactions that were applied are given below.

Notation

Let i denote the trial where $i = 1, \ldots, NS$ and NS is the number of independent trials; let j be the patient where $j = 1, \ldots, NPi$ such that NP_i is the number of patients in trial i; and let k be the trial arm where $k = 1, \ldots, NAi$ and NA_i is the number of arms in trial i.

Suppose $y_{ijk} = 1$ if patient j in trial i in arm k experiences the event and $y_{ijk} = 0$ if patient j in trial i in arm k does not experience the event. Assume that the outcomes of patients, y_{ijk}, are independent and distributed as $y_{ijk} \sim \text{bernoulli} (p_{ijk})$ where p_{ijk} is the probability of an event for patient j in trial i in arm k. Let x_{ijk} be a patient-level covariate for patient j in trial i in arm k (such as, a continuous covariate value or an indicator variable for a dichotomous covariate).

Let t_{ik} denote the treatment given in trial i in arm k where $t_{ik} \in \{1, \ldots, NT\}$ and NT is the number of treatments in the network. Also specify that the node being split is (\hat{t}, t^*) where $\hat{t} \neq t^*$ and $\hat{t} < t^*$. For example, if one wants to split the node $(3, 4)$ then $\hat{t} = 3$ and $t^* = 4$.

Model S1. NMA model including treatment by covariate interaction

Assuming no multi-arm trials exist, the random-effects model is given as follows:
\[
\text{logit}(p_{ijk}) = \begin{cases}
\mu_i + \beta_{0i} x_{ijk} & \text{if } k = 1 \\
\mu_i + \beta_{0i} x_{ijk} + \delta_{i,1k} + \beta_{t_{11},t_{ik}} x_{ijk} & \text{if } k \neq 1
\end{cases}
\]

where \(\mu_i \) is the log odds of an event in arm 1 of trial \(i \); \(\beta_{0i} \) is a study-specific regression parameter that represents the difference in the log odds of an event in arm 1 of trial \(i \) per unit increase in the covariate \(x_{ijk} \); \(\beta_{t_{11},t_{ik}} \) represents the difference in the log odds ratio of \(t_{ik} \) vs. \(t_{i1} \) per unit increase in the covariate and \(\beta_{t_{11},t_{ik}} = \beta_{1,1} \cdot \beta_{1,t_{ik}} \); and \(\delta_{i,1k} \) represents the trial-specific log odds ratio of \(t_{ik} \) vs. \(t_{i1} \). The trial-specific log odds ratios, \(\delta_{i,1k} \), are assumed to be realisations from a normal distribution where

\[
\delta_{i,1k} \sim N(d_{t_{11},t_{ik}}, \sigma^2)
\]

and

\[
d_{t_{11},t_{ik}} = d_{1,t_{ik}} - d_{1,t_{i1}}
\]

In this model, \(d_{t_{11},t_{ik}} \) represents the log odds ratio of \(t_{ik} \) vs. \(t_{i1} \). The fixed-effect model is given by setting \(\sigma^2 = 0 \).

Under a Bayesian framework, prior distributions are specified for \(\mu_i, \beta_{0i}, d_{1,t_{ik}}, \beta_{1,t_{ik}} \) and \(\sigma^2 \).

The model can also be applied to datasets with multi-arm trials but the correlation between trial-specific treatment effects must be taken into account. For each multi-arm trial \(i \) with \(m \)
arms, the trial-specific treatment effects are taken to be a realisation from a multivariate normal distribution

\[
\begin{pmatrix}
\delta_{i,12} \\
\vdots \\
\delta_{i,1m}
\end{pmatrix} \sim \mathcal{N}
\begin{pmatrix}
\begin{pmatrix}
d_{1,t_{i2}} - d_{1,t_{i1}} \\
\vdots \\
d_{1,t_{im}} - d_{1,t_{i1}}
\end{pmatrix},
\begin{pmatrix}
\tau^2 & \cdots & \tau^2/2 \\
\vdots & \ddots & \vdots \\
\tau^2/2 & \cdots & \tau^2
\end{pmatrix}
\end{pmatrix}
\]

that can be decomposed into a series of conditional univariate normal distributions.

Model S2. NMA node-splitting model including treatment by covariate interaction

When there are no multi-arm trials, the random-effects model is specified as follows:

\[
\logit(p_{ijk}) = \begin{cases}
\mu_{t} + \beta_{0i}x_{ijk} & \text{if } k = 1 \\
\mu_{t} + \beta_{0i}x_{ijk} + \delta_{i,1k} + \beta_{t_{i1},t_{ik}}x_{ijk} & \text{if } k \neq 1 \text{ and } t_{i1} \neq \hat{t} \text{ and/or } t_{ik} \neq t^* \\
\mu_{t} + \beta_{0i}x_{ijk} + \delta_{i,1k} + \beta_{dir}x_{ijk} & \text{if } k \neq 1 \text{ and } t_{i1} = \hat{t} \text{ and } t_{ik} = t^*
\end{cases}
\]

and where \(\beta_{dir}\) represents the difference in the log odds ratio of \(t^*\) vs. \(\hat{t}\) per unit increase in the covariate estimated using direct evidence; \(\beta_{t_{i1},t_{ik}}\) represents the difference in the log odds ratio of \(t_{ik}\) vs. \(t_{i1}\) per unit increase in the covariate estimated using all trials that did not allocate \(t^*\) and \(\hat{t}\) (i.e. using indirect evidence); and \(\delta_{i,1k}\) represents the trial-specific log odds ratio of \(t_{ik}\) vs. \(t_{i1}\). The trial-specific log odds ratios, \(\delta_{i,1k}\) are assumed to be realisations from a normal distribution where

\[
\delta_{i,1k} \sim \mathcal{N}(\beta_{dir}, \sigma^2)
\]

if trial \(i\) allocated \(t^*\) and \(\hat{t}\), that is, \(t_{i1} = \hat{t}\) and \(t_{ik} = t^*\); whereas
\[\delta_{t_1t_k} \sim N(d_{t_{11}t_{1k}}, \sigma^2) \]

and the treatment effects satisfy the consistency equation \(d_{t_{11}t_{1k}} = d_{1,t_{1k}} - d_{1,t_{11}} \)

if trial \(i \) did not allocate \(t^* \) and \(\hat{t} \), that is, \(t_{i1} \neq \hat{t} \) and/or \(t_{ik} \neq t^* \).

In this model \(d_{t_{11}t_{1k}} \) represents the mean log odds ratio of \(t_{1k} \) vs. \(t_{11} \) when the covariate value is zero estimated using all studies that did not allocate \(t^* \) and \(\hat{t} \) (i.e. using indirect evidence); and \(d^{dir} \) represents the mean log odds ratio of \(t^* \) vs. \(\hat{t} \) when the covariate value is zero estimated using direct evidence.

Under a Bayesian framework, prior distributions are specified for \(\mu_t, \beta_{0t}, d_{1,t_{1k}}, \beta_{1,t_{1k}}, d^{dir}, \beta^{dir} \) and \(\sigma^2 \).

Multiple node-splitting models are usually applied. One model can be applied for each comparison providing both direct and indirect evidence are available for that comparison.

Node-splitting models can accommodate multi-arm trials as described elsewhere (Dias et al., 2010a, van Valkenhoef et al., 2016). If one wants to split node \((t_{i1}, t_{ik})\) then a multi-arm trial \(i \) will contribute direct evidence to the treatment effect \((d^{dir})\) because \(\hat{t} = t_{i1} \). However, if one splits another node (e.g. \((t_{i2}, t_{i3})\)) then \(\hat{t} \neq t_{i1} \) therefore, the multi-arm trial would not contribute direct evidence to the estimation of the treatment effect \((d^{dir})\), therefore, to overcome this problem and to utilise all the direct evidence, if the multi-arm trial compared the two treatments \(t^* \) and \(\hat{t} \), in addition to other treatments, treatment \(\hat{t} \) is taken to be the
baseline treatment t_{i1} for that study. For example, if a trial i compared treatments 1, 3 and 4, and one wants to split node $(1, 3)$ then $\hat{t} = t_{i1} = 1$ and the model would be as follows:

$$\logit(p_{ij1}) = \mu_i + \beta_{0i}x_{ij1} \text{ for treatment } 1,$$

$$\logit(p_{ij2}) = \mu_i + \beta_{0i}x_{ij2} + \delta_{i,12} + \beta^{\text{dir}}_{i,j2} \text{ for treatment } 3 \text{ where } \delta_{i,12} \sim N\left(d^{\text{dir}}, \tau^2\right),$$

and

$$\logit(p_{ij3}) = \mu_i + \beta_{0i}x_{ij3} + \delta_{i,13} + \beta_{1,i}x_{ij3} \text{ for treatment } 4 \text{ where } \delta_{i,13} \sim N\left(d_{1,4}, \tau^2\right).$$

Whereas, for the same trial, if one wants to split node $(3, 4)$ instead, then we fix $\hat{t} = t_{i1} = 3$ and the model is

$$\logit(p_{ij2}) = \mu_i + \beta_{0i}x_{ij2} + \delta_{i,12} + \beta_{3,i}x_{ij2} \text{ for treatment } 1 \text{ where } \delta_{i,12} \sim N\left(d_{3,1}, \tau^2\right).$$

$$\logit(p_{ij1}) = \mu_i + \beta_{0i}x_{ij1} \text{ for treatment } 3,$$

and

$$\logit(p_{ij3}) = \mu_i + \beta_{0i}x_{ij3} + \delta_{i,13} + \beta^{\text{dir}}_{i,j3} \text{ for treatment } 4 \text{ where } \delta_{i,13} \sim N\left(d^{\text{dir}}, \tau^2\right).$$
Code for Model S1

Winbugs code (saved as winbugs file "NMA RE IPD COVM1.odc")

model{
 for(i in 1:ns){
 w[i,1] <- 0 # W IS ZERO FOR ARM 1 OF EACH TRIAL
 delta[i,1] <- 0 # TREATMENT EFFECT IS ZERO FOR ARM 1 OF EACH TRIAL
 mu[i] ~ dnorm(0,0.00001) # PRIOR DISTRIBUTION FOR MU
 beta0[i] ~ dnorm(0,0.00001) # PRIOR DISTRIBUTION FOR BETAO
 for (k in 2:narm[i]) { # LOOP FOR EACH ARM
 md[i,k] ~ dnorm(md[i,k], tau[i,k]) # DISTRIBUTION OF TRIAL-SPECIFIC TREATMENT EFFECTS
 md[i,k] <- d[t[i,k]] - d[t[i,1]] + sw[i,k] # MEAN OF DISTRIBUTION (CORRECTED FOR MULTI-ARM TRIALS)
 tau[i,k] <- tau*2*(k-1)/k # PRECISION OF DISTRIBUTION (CORRECTED FOR MULTI-ARM TRIALS)
 w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) # ADJUSTMENTS FOR MULTI-ARM TRIALS
 sw[i,k] <- sum(w[i,1:k-1])/(k-1) # ADJUSTMENTS FOR MULTI-ARM TRIALS
 }
 }
 for(l in 1:np) { # LOOP FOR EACH PATIENT
 y[l]~dbern(p[l]) # BERNULLI LIKELIHOOD
 logit(p[l])<- mu[s[l]] + (beta0[s[l]]*(x[l] - mx)) + delta[s[l],arm[l]] + (beta[tipd[l]]-beta[b[l]]) * (x[l] - mx) # LINEAR PREDICTOR
 rhat[l] <- p[l] # MODEL PREDICTION
 dev[l] <- 2*(y[l] * (log(y[l]/rhat[l])) + (1-y[l]) * (log((1-y[l])/(1-rhat[l])))) # DEVIANCE
 }
}

totresdev <- sum(dev[()]) # TOTAL RESIDUAL DEVIANCE

d[1]<0 # LOG ODDS RATIO IS ZERO FOR REFERENT TREATMENT
beta[1] <- 0 # COEFFICIENT IS ZERO FOR REFERENT TREATMENT

d ~ dunif(0,10) # PRIOR DISTRIBUTION FOR BETWEEN TRIAL STANDARD DEVIATION
tau <- pow(sd,-2) # BETWEEN TRIAL PRECISION
tausq <- sd*sd # BETWEEN TRIAL VARIANCE

for (k in 2:nt){ # PRIOR DISTRIBUTIONS
 d[k] ~ dnorm(0,0.00001)
 beta[k]~dnorm(0,0.00001)
}

for (k in 1:nt){
 for (j in 1:nz) {
 dz[j,k] <- d[k] - (beta[k])*(mx-z[j])
 }
}

for (c in 1:(nt-1)){ # CALCULATE THE LOG ODDS RATIO FOR BASIC PARAMETERS AT EACH COVARIATE VALUE
 betas[c,k] <- beta[k] - beta[c]
 or[c,k] <- exp(d[k] - d[c])
 lor[c,k] <- (d[k]-d[c])
 for (j in 1:nz) {
 orz[j,c,k] <- exp(dz[j,k] - dz[j,c])
 lorz[j,c,k] <- (dz[j,k]-dz[j,c])
 }
}

for (k in (c+1):nt) { # CALCULATE, FOR EACH COMPARISON, THE COEFFICIENT, ODDS RATIO AND LOG ODDS RATIO AT MEAN COVARIATE VALUE.
 betas[c,k] <- beta[k] - beta[c]
 or[c,k] <- exp(d[k] - d[c])
 lor[c,k] <- (d[k]-d[c])
 for (j in 1:nz) {
 orz[j,c,k] <- exp(dz[j,k] - dz[j,c])
 lorz[j,c,k] <- (dz[j,k]-dz[j,c])
 }
}
}
Dataset 1 (saved a csv file "utf_ipdacc.csv")
#t1= treatment in arm 1, t2=treatment in arm 2, t3=treatment in arm 3.
#na=number of arms
#Note that each row represents one study and the studies are in the same order as in dataset 2.

t1	t2	t3	na
1	2	NA	2
1	2	NA	2
1	2	3	3
1	2	3	3
1	2	3	3
1	2	3	3
1	2	4	3
1	2	4	3
1	3	NA	2
1	3	NA	2
1	3	NA	2
1	3	NA	2
1	3	4	3
1	3	4	3
1	3	3	3
1	3	3	3
1	3	4	3
1	3	4	3

Dataset 2 (saved as csv file "utf_ipdacc2.csv")
(one row per patient)
#age=covariate
#y=binary IPD outcome
#tipd=treatment
#s=study
#b=baseline treatment in that study
#arms=study arm (i.e. 1, 2, 3)
#note that arm 1 of each study is the baseline treatment for that study.

age	y	tipd	s	b	arm
21	1	1	1	1	1
29	1	1	1	1	1

R code
#INSTALL R PACKAGES
library(R2WinBUGS)
library(coda)

#CHOOSE WORKING DIRECTORY
working.directory="c:\dir"
setwd(working.directory)

#IMPORT DATA
dat1 = read.csv("utf_ipdacc.csv")
dat2 = read.csv("utf_ipdacc2.csv")

#DEFINE VARIABLES THAT NEED TO BE ENTERED INTO THE WINBUGS MODEL
na=dat1$na
#NUMBER OF ARMS IN EACH STUDY
t=bind(dat1$t1,dat1$t2,dat1$t3, deparse.level = 0)
#TREATMENT NUMBER
s=dat2$s
#STUDY NUMBER
y=dat2$y
#OUTCOME
arm=dat2$arm
#STUDYARM
x=dat2$age/12
#COVARIATE VALUES
b=dat2$b
#BASELINE TREATMENT
tipd=dat2$tipd
#TREATMENT (IPD VERSION)
xm=mean(x)
#AVERAGE COVARIATE VALUE
z=c(1,2,3,4,5, mx,0)
#CHOSEN COVARIATE VALUES AT WHICH TREATMENT EFFECTS ARE REQUIRED TO BE ESTIMATED
nz=length(z)
#NUMBER OF CHOSEN COVARIATE VALUES
ns=max(s) #NUMBER OF TRIALS
nt=max(tipd) #NUMBER OF TREATMENTS
np=length(y) #NUMBER OF PATIENTS

#LIST DATA FOR ENTRY INTO WINBUGS
data= list("y", "s", "arm", "tipd", "b", "x", "z", "mx", "t", "na", "ns", "nt", "np", "nz")

#DEFINE INITIAL VALUES FOR ENTRY INTO WINBUGS
inits1 = list(d=c(NA,0,0,0), sd=1,
mu=c(0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0),
beta0=c(0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0),
 beta=c(NA,0,0,0))

#WINBUGS MODEL
Models1 = bugs (data, inits1, model.file= "NMA RE IPD COVM1.odc",
parameters.to.save= c("mu", "d", "totresdev", "or", "lor", "sd", "tausq", "dz", "betas", "beta", "orz", "lorz", "beta0"),
n.chains=1, n.iter=300000, n.burnin=100000, n.thin=5,codaPkg=FALSE, bugs.directory=’c:/Program Files/WinBUGS14/’,
working.directory=working.directory)
Code for model S2

Winbugs code (saved as winbugs file "NMA RE IPD DSPLIT BETASPLIT.odc")

model{
 for(i in 1:ns) { # LOOP FOR EACH TRIAL
 w[i,1] <- 0 # W IS ZERO FOR ARM 1 OF EACH TRIAL
 j[i,1] <- 0 # J IS ZERO FOR ARM 1 OF EACH TRIAL
 delta[i,bi[i]] <- 0 # TREATMENT EFFECT IS ZERO FOR ARM 1 OF EACH TRIAL
 mu[i] ~ dnorm(0,0.00001) # PRIOR DISTRIBUTION FOR MU
 beta[i] ~ dnorm(0,0.00001) # PRIOR DISTRIBUTION FOR BETA0
 for (k in 1:na[i]) { # LOOP FOR EACH ARM
 index[i,k] <- split[i] * (equals(t[i,k], pair[1]) + equals(t[i,k], pair[2])) # INDICATES IF ARM IS TO BE SPLIT
 }
 for (k in 2:na[i]) {
 delta[i,si[i,k]] ~ dnorm(md[i,si[i,k]],taud[i,si[i,k]]) # DISTRIBUTION OF TRIAL-SPECIFIC TREATMENT EFFECTS
 md[i,si[i,k]] <- (d[si[i,k]] - d[bi[i]] + sw[i,k])*(1-index[i,m[i,k]]) + direct*index[i,m[i,k]] # MEAN OF DISTRIBUTION
 (CORRECTED FOR MULTI-ARM TRIALS) SPLIT INTO DIRECT AND INDIRECT
 j[i,k] <- k - (equals(1, split[i]) * step(k-3)) # PRECISION OF DISTRIBUTION
 taud[i,si[i,k]] <- tau *2*(j[i,k]-1)/j[i,k] # (CORRECTED FOR MULTI-ARM TRIALS)
 w[i,k] <- (delta[i,si[i,k]] - d[si[i,k]] + d[bi[i]]) * (1-index[i,k]) # ADJUSTMENTS FOR MULTI-ARM TRIALS
 sw[i,k] <- sum(w[i,1:k-1])/(j[i,k]-1) # ADJUSTMENTS FOR MULTI-ARM TRIALS
 }
 for(l in 1:np) { # LOOP FOR EACH PATIENT
 y[l]~dbern(p[l]) # BERNOULLI LIKELIHOOD
 logit(p[l])<-mu[s[l]] + beta0[s[l]]*(x[l]-mx) + delta[s[l], tipd[l]] + (deltab[l]*(1-equals(tipd[l],bi[s[l]]))) # LINEAR PREDICTOR
 rhat[l] <- p[l] # MODEL PREDICTION
 dev[l] <- 2*(y[l] * (log(y[l]/rhat[l])) + (1-y[l]) * (log((1-y[l])/(1-rhat[l])))) # DEVIANCE
 index2[l] <- split[s[l]] * (equals(tipd[l], pair[1]) + equals(tipd[l], pair[2])) # INDICATES IF ARM IS TO BE SPLIT
 deltab[l] <- (beta[tipd[l]] - beta[bi[s[l]]])*(x[l]-mx)*(1-index2[l]) + directbeta*(x[l]-mx)*(index2[l]) # TREATMENT BY COVARIATE INTERACTION TERM SPLIT INTO DIRECT AND INDIRECT
 }
 totresdev <- sum(dev[]) # TOTAL RESIDUAL DEVIANCE
 direct ~ dnorm(0,0.00001) # PRIOR DISTRIBUTION OF LOG ODDS RATIO FROM DIRECT EVIDENCE
 directbeta ~ dnorm(0,0.00001) # PRIOR DISTRIBUTION OF COEFFICIENT FROM DIRECT EVIDENCE
 d[1]<0 # LOG ODDS RATIO IS ZERO FOR REFERENT TREATMENT
 beta[1] <- 0 # COEFFICIENT IS ZERO FOR REFERENT TREATMENT
 sd ~ dunif(0,10) # PRIOR DISTRIBUTION FOR BETWEEN TRIAL STANDARD DEVIATION
 tau <- pow(sd,-2) # BETWEEN TRIAL PRECISION
 tausq <- sd*sd # BETWEEN TRIAL VARIANCE
 for (k in 2:nt){ # PRIOR DISTRIBUTIONS FOR LOG ODDS RATIO AND COEFFICIENT FROM INDIRECT EVIDENCE
 d[k] ~ dnorm(0,0.00001)
 beta[k]~dnorm(0,0.00001)
 }
 for (k in 1:nt){ # CALCULATE THE LOG ODDS RATIO FOR BASIC
 ...
 }
}
PARAMETERS AT EACH COVARIATE VALUE FOR INDIRECT EVIDENCE

for (v in 1:nz) { dz[v,k] <- d[k] - (beta[k])*((mx-z[v])) }
}

for (c in 1:(nt-1)){

for (k in (c+1):nt) {
betas[c,k] <- beta[k] - beta[c]
lor[c,k] <- (d[k]-d[c])
for (v in 1:nz) {

lorz[v,c,k] <- (dz[v,k]-dz[v,c])
}
}

for (v in 1:nz) {

directz[v] <- direct - (directbeta)*(mx-z[v])
directorz[v] <- exp(directz[v])
}

for (v in 1:nz) {
diff[v] <- directz[v] - lorz[v, pair[1], pair[2]]
prob[v] <- step(diff[v])
}

R code

#INSTALL R PACKAGES
library(R2WinBUGS)
library(coda)

#CHOOSE WORKING DIRECTORY
working.directory="c:\dir"
setwd(working.directory)

#LOAD FUNCTIONS TO SHAPE DATA

#CHECK IF PAIR(X,Y) IN ROW I OF DATA AND GIVE BASELINE FOR DATA ROW I
PairXY <- function(treat, pair)
{
 N <- nrow(treat)
 out <- cbind(split=rep(0,N), b=rep(0,N))
 for (i in 1:N) {
 pos <- match(pair, treat[i,], nomatch=0) # lenght = length(pair) = 2
 out[i,1] <- ifelse(prod(pos)>0, 1, 0) # 1 if pair in line i, 0 o.w.
 out[i,2] <- ifelse(prod(pos)==0, 1, pos[1])
 }
 out
}

GIVES NA-1 INDEXES TO SWEEP NON-BASELINE ARMS ONLY
NonbaseSweep <- function(index, na)
{
 N <- NROW(na)
 C <- max(na)
 out <- matrix(nrow=N, ncol=C)
 for (i in 1:N) {
 for (k in 2:na[i]) {
 out[i,k] <- k - (index[i,"b"] >= k)
 }
 }
BUILDS MATRIX WITH NON-BASELINE TREATMENTS
Sweeptreat <- function(treat, m)
{
 N <- nROW(treat)
 C <- NCOL(m)
 out <- matrix(nrow=N, ncol=C)
 for (i in 1:N) {
 for (k in 2:C) {
 out[i,k] <- treat[i,m[i,k]]
 }
 }
 out
}

BUILDS VECTOR WITH BASELINE TREATMENTS
Basetreat <- function(treat, b)
{
 N <- nrow(treat)
 out <- rep(0,N)
 for (i in 1:N) {
 out[i] <- treat[i,b[i]]
 }
 out
}

#IMPORT DATA
dat1 = read.csv("utf_ipdacc.csv")
dat2 = read.csv("utf_ipdacc2.csv")

#DEFINE VARIABLES THAT NEED TO BE ENTERED INTO THE WINBUGS MODEL
na=dat1$na #NUMBER OF ARMS IN EACH STUDY
s=cbind(dat1$t1,dat1$t2,dat1$t3, deparse.level = 0) #TREATMENT NUMBER
s=dat2$s #STUDY NUMBER
y=dat2$y #OUTCOME
tipd=dat2$tipd #TREATMENT NUMBER
x=dat2$age/12 #COVARIATE VALUES
mx=mean(x) #AVERAGE COVARIATE VALUE
z=c(1,2,3,4,5, mx,0) #CHOSEN COVARIATE VALUES AT WHICH TREATMENT EFFECTS ARE REQUIRED TO BE ESTIMATED.

#DEFINE INITIAL VALUES FOR ENTRY INTO WINBUGS
inits1 = list(direct=0, d=c(NA,0,0,0), mu=rep(0,ns), directbeta=0, beta0=c(0,0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0),
 beta=c(NA,0,0,0), beta=c(NA,0,0,0), sd=1)

#CHOOSE NODE TO SPLITT
pair <- c(2,3)
checkPair <- PairXY(t, pair)

BUILD VECTOR B[I] WITH BASELINE TREATMENT: T[I, B[I]]
bi <- Basetreat(t, checkPair[,"b"])

INDEXES TO SWEEP NON-BASELINE ARMS ONLY
m <- NonbaseSweep(checkPair, na)

BUILD MATRIX SI[I,K] WITH NON-BASELINE TREATMENTS: T[I, M[I,K]]
si <- Sweeptreat(t,m)
#LIST DATA FOR ENTRY INTO WINBUGS

bugs.data(list("y"=y,"s"=s,"tipd"=tipd,
 "na" = na, "nt" = nt, "ns" = ns,"np" = np, "t"=t,
 "split" = checkPair[,"split"], "m" =m,
 "bi" = bi, "si" = si, "pair" = pair, "x"=x, "z"=z, "nz"=nz,"mx"=mx))

#WINBUGS MODEL

modelS2=bugs(data = "data.txt",
 inits = inits1, parameters.to.save = c("direct", "d", "lor", "mu", "prob","totresdev","diff", "directbeta", "directz", "lorz","betas", "dz","beta", "sd", "tausq"), model.file = "NMA RE IPD DSPLIT BETASPLIT.odc",
 n.chains = 1, n.iter = 300000, n.burnin = 100000, bugs.directory = "C:/Program Files/WinBUGS14/",
 working.directory=working.directory)

#####REPEAT FOR OTHER NODES
Site	DHAPQ	AQ+AS	AL	CD+A	Age in years, mean (standard deviation)
Manhica (after CD+A)	94/100	78/97	-	-	2.88 (1.30)
Mbarara (after CD+A)	63/65	59/70	-	-	2.43 (1.07)
Nanoro	187/219	199/290	115/292	-	2.24 (1.18)
Gabon	62/63	67/76	65/70	-	2.83 (1.28)
Afokang	67/72	78/83	84/87	-	2.94 (1.28)
Pamol	60/65	73/79	73/80	-	2.66 (1.36)
Ndola	67/67	63/69	63/75	-	2.45 (1.20)
Manhica (before CD+A)	78/82	70/86	-	42/84	2.82 (1.00)
Mbarara (before CD+A)	72/80	64/79	-	53/80	2.60 (1.10)
Rukara (after CD+A)	46/47	-	46/50	-	3.08 (0.92)
Jinja (after CD+A)	160/167	-	157/168	-	2.33 (1.17)
Tororo (after CD+A)	54/75	-	33/77	-	1.99 (0.99)
Mashesha (after CD+A)	49/52	-	51/52	-	2.90 (1.05)
Rukara (before CD+A)	22/23	-	18/21	4/23	2.71 (1.00)
Jinja (before CD+A)	37/39	-	35/38	34/40	2.62 (1.19)
Tororo (before CD+A)	109/141	-	88/138	71/142	2.11 (0.85)
Mashesha (before CD+A)	23/24	-	23/23	18/24	2.92 (1.09)

Table S1. Summary of the individual patient data (i.e. event rate of each treatment group of each site for treatment success at day 28) and covariate information.
AQ+AS: amodiaquine-artesunate; AL: artemether-lumefantrine; CD+A: chlorproguanil-dapsone plus artesunate; DHAPQ: dihydroartemisinin-piperaquine.
Comparison	Evidence type	Odds ratio						
		Posterior median (posterior 95% credibility interval)	Age 1	Age 2	Mean age i.e. 2.5	Age 3	Age 4	Age 5
AL vs. AQ+AS	Direct	0.65 (0.26, 1.76)	0.71 (0.29, 1.81)	0.74 (0.31, 1.87)	0.77 (0.31, 1.96)	0.83 (0.32, 2.26)	0.90 (0.31, 2.72)	
	Indirect	2.65 (0.86, 9.44)	1.89 (0.72, 5.88)	1.60 (0.61, 4.90)	1.36 (0.50, 4.26)	0.98 (0.29, 3.58)	0.71 (0.15, 3.37)	
CD+A vs. AQ+AS	Direct	0.66 (0.13, 3.47)	0.43 (0.10, 1.92)	0.34 (0.08, 1.50)	0.28 (0.06, 1.21)	0.18 (0.04, 0.87)	0.11 (0.02, 0.70)	
	Indirect	0.26 (0.06, 1.02)	0.23 (0.06, 0.80)	0.22 (0.06, 0.75)	0.21 (0.06, 0.75)	0.19 (0.04, 0.83)	0.17 (0.03, 1.01)	
CD+A vs. AL	Direct	0.24 (0.06, 0.82)	0.21 (0.06, 0.62)	0.20 (0.06, 0.58)	0.18 (0.05, 0.56)	0.16 (0.04, 0.59)	0.14 (0.03, 0.70)	
	Indirect	0.69 (0.13, 3.25)	0.43 (0.10, 1.68)	0.34 (0.08, 1.30)	0.26 (0.06, 1.04)	0.16 (0.03, 0.75)	0.10 (0.02, 0.62)	

Table S2. Odds ratios for treatment success from the NMA node-splitting models including interactions (model S2).
AQ+AS: amodiaquine-artesunate; AL: artemether-lumefantrine; CD+A: chlorproguanil-dapsone plus artesunate; DHAPQ: dihydroartemisinin-piperaquine.
Table S3. Selected results for treatment success from the NMA model including interactions (model SI).

AQ+AS: amodiaquine-artesunate; AL: artemether-lumefantrine; CD+A: chlorproguanil-dapsone plus artesunate; DHAPQ: dihydroartemisinin-piperaquine. The between trial variance was 0.77 (0.27, 2.07).

Comparison	Age 1	Age 2	Mean age i.e. 2.5	Age 3	Age 4	Age 5
AL vs. AQ+AS	0.05	0.05	0.06	0.06	0.07	0.08
	(-0.74, 0.92)	(-0.67, 0.87)	(-0.67, 0.87)	(-0.68, 0.88)	(-0.75, 0.94)	(-0.86, 1.05)
CD+A vs. AQ+AS	-0.93	-1.20	-1.34	-1.47	-1.74	-2.02
	(-2.02, 0.11)	(-2.18, -0.27)	(-2.30, -0.42)	(-2.45, -0.54)	(-2.83, -0.70)	(-3.30, -0.77)
CD+A vs. AL	-0.98	-1.25	-1.39	-1.53	-1.82	-2.10
	(-2.07, -0.01)	(-2.24, -0.41)	(-2.36, -0.56)	(-2.51, -0.68)	(-2.89, -0.82)	(-3.37, -0.88)
Figure S1. Posterior distributions of log odds ratios at various ages for treatment success for CD+A versus AQ+AS.

The mean age was 2.5 years.

AQ+AS: amodiaquine-artesunate; CD+A: chlorproguanil-dapsone plus artesunate.

Posterior median (95% credibility interval) presented.
Figure S2. Posterior distributions of log odds ratios at various ages for treatment success for CD+A versus AL.

The mean age was 2.5 years.

AL: artemether-lumefantrine; CD+A: chlorproguanil-dapsone plus artesunate.

Posterior median (95% credibility interval) presented.