Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture

E. Ringø1, H. Van Doan2, S.H. Lee3, M. Soltani4,5, S.H. Hoseinifar6, R. Harikrishnan7 and S.K. Song3

1 Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
2 Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
3 School of Life Science, Handong University, Pohang, Republic of Korea
4 Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, WA, Australia
5 Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
6 Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
7 Department of Zoology, Pachaiyappa’s College for Men, Tamil Nadu, Kanchipuram, India

Keywords
bacilli, finfish, health, lactic acid bacteria, probiotics, shellfish.

Correspondence
Einar Ringø, Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics, 13 UiT The Arctic University of Norway, Tromsø, Norway.
E-mail: einar.ringo@uit.no

2020/0123: received 22 January 2020, revised 23 February 2020 and accepted 26 February 2020
doi:10.1111/jam.14628

Abstract
Probiotics administration in aquafeed is known to increase feed consumption and absorption due to their capacity to release a wide range of digestive enzymes and nutrients which can participate in digestion process and feed utilization, along with the absorption of diet components led to an increase in host’s health and well-being. Furthermore, probiotics improve gut maturation, prevention of intestinal disorders, predigestion of antinutrient factors found in the feed ingredients, gut microbiota, disease resistance against pathogens and metabolism. The beneficial immune effects of probiotics are well established in finfish. However, in comparison, similar studies are less abundant in the shellfish. In this review, the discussions will mainly focus on studies reported the last 2 years. In recent studies, native probiotic bacteria were isolated and fed back to their hosts. Although beneficial effects were demonstrated, some studies showed adverse effects when treated with a high concentration. This adverse effect may be due to the imbalance of the gut microbiota caused by the replenished commensal probiotics. Probiotics revealed greatest effect on the shrimp digestive system particularly in the larval and early post-larval stages, and stimulate the production of endogenous enzymes in shrimp and contribute with improved the enzyme activities in the gut, as well as disease resistance.

Introduction
For many years, antibiotics and chemotherapeutics were supplemented in animals’ diets at subtherapeutic levels, to promote benefits by enhancing growth rate, reducing mortality and improving reproductive performance. In 2003, the European Union stated in Regulation (EC) No. 1831/2003; ‘Antibiotics, other than coccidiostats or histomonostats, shall not be authorized as feed additives’. Consequently, this banning urgently made the scientific community to seek for alternatives to reduce the abuse of antibiotics, and one of the promising feed additive was probiotic. Probiotics/fermented milk has a very long history as Genesis 18:8 stated, New Living Translation; ‘When the food was ready, Abraham took some yogurt and milk and the roasted meat, and he served it to the men. As they ate, Abraham waited on them in the shade of the trees’. According to Bottazzi (1983), the Roman historian Plinius in 76 BC recommended administration of fermented milk products for treating gastroenteritis. However, the modern history of probiotics started more than a century ago, as the Russian Nobel prizewinner, Elie Metchnikoff, performed the observation that the regular consumption of some
fermented milk products containing viable bacterial species may have a beneficial role in the maintenance and reestablishment of microbiota and consequently intestinal homoeostasis. The term probiotics, ’to be used for substances that favours the growth of micro-organisms’ was first proposed by Lilly and Stillwell (1965), but more recently, Hill et al. (2014) suggested a more correct definition of probiotics ‘live micro-organisms that, when administered in adequate amounts, confer a health benefit on the host’.

Since the first application of probiotics in aquaculture was published by Kozasa (1986) and the first review discussing probiotics by Ringø and Gatesoupe (1998), have several comprehensive reviews been published (e.g. Gatesoupe 1999; Merrifield et al. 2010; Hai 2015; Hoseinifar et al. 2018; Ringø et al. 2018; Ringø 2020). Of bacteria mostly used as probiotics in aquaculture are, lactic acid bacteria and Bacillus, but several other genera such as Aeromonas, Alteromonas, Arthrobacter, Bifidobacterium, Clostridium, Pseudomonas, Phaeobacter, Pseudoalteromonas, Pseudomonas, Rhodospiridium, Roseobacter, Streptomyces and Vibrio, and microalgae (Tetraselmis) and yeast (Debaryomyces, Phaffia and Saccharomyces) are also used.

Probiotic administrations mainly depends on several factors, that is the probiotics, supplementation form, vector of administration, dosage level and duration of application and several different administration modes have been used: oral administration via diet or water/bath, administration of several probiotics in combination, inactivated bacteria, spores, administration—continuously or regularly spaced, and co-administration of probiotics with prebiotics (synbiotics) or plant products. Important questions to be clarified when discussing probiotics are: species isolated from the host, host specificity vs strains from other species or commercial probiotics, as well as single or combined administration.

The mechanisms of actions of probiotics in aquaculture are divided into; antagonistic compound secretion, substances produced by probiotics; act as antagonist for quorum sensing mechanism, adhesion and colonization to the intestinal mucosa, competitive exclusion when probiotic bacteria colonize the intestine and thereby inhibiting adherence and colonization of pathogenic bacteria, improved functionality of the gastrointestinal (GI) tract, modulation of the GI tract microbiota, competition for iron, sources of nutrients and enzymes for digestion, enhancement of immune responses, antiviral effect and improve water quality through modulation of the water microbiota.

In order to avoid overlaps with previous review papers, the current review aimed to present an updated overview of recently published data, mainly from 2018 and 2019, on health benefits of LAB and Bacillus probiotics, on their effect on growth performance, modulation of the gut microbiota, the immune system and disease resistance in finfish and shellfish.

Methods of probiotic administration

To our knowledge, the first application of probiotics in aquaculture was carried out by Kozasa (1986), but since then the environment-friendly treatment has increased rapidly, and several comprehensive aquaculture reviews have been published (e.g. Gatesoupe 1999; Merrifield et al. 2010; Hai 2015; Hoseinifar et al. 2018; Ringø et al. 2018, 2020; Ringø 2020). However, it is essential to investigate the best way of administration, optimal dose, and the technical solutions required, especially to keep the probiotics alive in dry pellets (Gatesoupe 1999).

Probiotic administrations depends on several factors i.e. the probiotics used, supplementation form, vector of administration, dosage level and duration of application, and several different administration modes are proposed:

i Oral administration via diet or water/bath. Inclusion to the diet is the most widely used administration method. Probiotics and cell wall components (para-biotics) are applied in the feed, added to the entire tank or pond water to confer protection against infection. In fish- and shellfish larvae, live food (e.g. Artemia) has revealed to be an efficient carrier of probiotics.

ii Administration of several probiotics in combination. In the review, “Probiotics in man and animals,” Fuller (1989) wrote, “Probiotic preparations may consist of single strains or may contain any number up to eight strains.” However, since the early 1990s most aquaculture studies used single administration, but during the last years, supplementation of multiple probiotics in the diets has gained interest. The advantage of multiple-strain preparations is; they are active against wider range of conditions and species.

iii Inactivated bacteria. For example, oral administration of heat- inactivated Lactobacillus delbrueckii and Bacillus subtilis, individually or combined.

v Spores help the bacteria to survive by being resistant to extreme changes in the bacteria’s habitat including extreme temperatures, lack of moisture/drought, or being exposed to chemicals and radiation. Bacterial spores can also survive at low nutrient levels, and spore-forming probiotic bacteria have received increased scientific and commercial interest.
v Culturing, storing and administration. Probiotics are usually added to feed as freeze-dried cultures, and sometimes mixed with lipids to be added as top.

vi Lyophilization or freeze drying, is a low temperature dehydration process, involving freezing of the product at low pressure, and removing the ice by sublimation. This method is used in probiotic studies of finfish and shellfish.

vii Administration – continuously or regular intervals? Most studies carried out have continuously fed the host fish for a wide range of time, varying from 15 to 94 days (Hai 2015). The continual application of LAB, bacilli, and certain Gram-negative bacteria increase colonization of the supplemented bacteria, and modulated the microbial population in the GI tract. However, an important question arises; are the probiotics permanently colonisers in the GI tract?

viii Co-administration of probiotics with prebiotics or plant products.

Important questions when discussing probiotics are; species isolated from the host, vs. strains isolated from other species or commercial probiotics?

LAB as probiotics in finfish and shellfish

Improve feed utilization

Numerous investigations have recently conducted the alternation of enzyme patterns as a consequence of the consumption of LAB in shellfish and finfish (Tables 1 and 2). Recently, dietary inclusion of Lactobacillus sp. and Lb. pentosus at concentrations of 10^7 and 5×10^8 CFU per g improved several digestive enzymes of Pacific white shrimp (Litopenaeus vannamei) (Du et al. 2019; Zuo et al. 2019). Similarly, an elevation in protease, amylase and alkaline phosphatase was observed in narrow clawed crayfish (Astacus leptodactylus) fed Lb. plantarum at concentrations of 10^7, 10^8 and 10^9 CFU per g (Valipour et al. 2019). Dawood et al. (2019) reported that incorporation of heat-killed Lb. plantarum at 50, 100 or 1000 mg kg$^{-1}$ significantly enhanced amylase, lipase and protease activity of Nile tilapia (Oreochromis niloticus). Significant increase in lipase, amylase, trypsin, alkaline phosphatase and protease activity also recorded in common carp (Cyprinus carpio), olive flounder (Paralichthys olivaceus) and rainbow trout (Oncorhynchus mykiss) fed LAB in combination with β-glucan, manna oligosaccharide, Bacillus sp. and Citrobacter (Jang et al. 2019; Mohammadian et al. 2019a, 2019b).

Promote growth performance

Probiotic is one of the most promising means to sustain the normal growth, health and well-being of farmed fish and shellfish because they serve as nutrients source, vitamins and digestive enzymes, and they will significantly contribute to feed consumption, nutrients uptake and host’s growth rate (Nath et al. 2019). Probiotics consumption have been speculated to improve the host’s appetite or boost organisms’ digestibility by stimulating the excretion of digestive enzymes and maintaining the balance of intestinal microbes, which led to the improvement of nutrients absorption and utilization, as well as survival and growth of the host.

Most studies using LAB in shellfish focus on growth performance and survival rate. Lb. pentosus and Lb. plantarum inclusion in Pacific white shrimp diets significantly improved growth performance and feed utilization (e.g. Correa et al. 2018; Gao et al. 2018; Zheng et al. 2018). Recently, Zuo et al. (2019) revealed that supplementation of Lactobacillus at 10^7 CFU per g for 27 days significantly increased body weight of Pacific white shrimp. In contrast, no significant difference in growth parameters was recorded in narrow clawed crayfish fed Lb. plantarum for 97 days (Valipour et al. 2019). Incorporation of LAB with other probiotics or functional feed additives resulted in higher growth performance in shellfish. Dietary supplementation of Enterococcus faecalis and Pediococcus acidilactici significantly improved weight gain and specific growth rate of narrow clawed crayfish and mud crab (Scylla paramamosain) (Safari et al. 2017; Yang et al. 2019). Wang et al. (2019) revealed that dietary in combination of Lb. pentosus, Lactobacillus fermentum, B. subtilis and Saccharomyces cerevisiae significantly improved growth performance and survival rate of Pacific white shrimp, but no significant difference was revealed in carcass composition.

Most finfish studies focused on the effects of different LAB and combination with other probiotics and natural immunostimulants on growth performance. Dietary administration of Lactobacillus spp. at different concentrations significantly enhanced growth parameters of several finfish species (e.g. Abdelfatah and Mahboub 2018; Alishahi et al. 2018; Dawood et al. 2019; Feng et al. 2019; Jami et al. 2019; Van Nguyen et al. 2019). The administration of P. acidilactici revealed significant improved growth performance of several finfish species (e.g. Tari-dashi et al. 2017; Rahimnejad et al. 2018; Ashouri et al. 2018; Hoseinifar et al. 2019). Dietary inclusion of Lb. plantarum in combination with orange peel derived pectin, corncob-derived xylooligosaccharide, Cordyceps militaris or Bacillus velezensis significantly enhanced growth performance of Nile tilapia (Van Doan et al. 2017, 2018, 2019, 2020a). Similarly, dietary administration of Lactobacillus in combination with β-glucan or mananoligosaccharide significantly stimulated the growth performance and feed utilization of common carp (Mohammadian
Table 1 Effect of lactic acid bacteria on growth performance and disease resistance in shellfish

Species	Isolated from	Doses and duration	Shellfish species	Parameters investigated	References
Lactobacillus plantarum	Commercial probiotic	10^9 CFU per ml	Litopenaeus vannamei	↑ FW, WG, SGR, resistance against the stress of acute low salinity ↓ FCR	Zheng et al. (2017)
Lb. plantarum	Shrimp intestine	10^7 CFU per ml	L. vannamei	→ Growth performance, water quality	Correa et al. (2018)
Lb. plantarum	20 × 10^4 cells per ml and 10^8 (CFU) per ml	L. vannamei	L. vannamei	↑ Water quality in biofloc system ↓ Reduce shrimp diseases and environmental impact	Pacheco-Vega et al. (2018)
Lb. plantarum	Commercial probiotic	10^9 CFU per ml	L. vannamei	↑ Growth performance, digestive enzyme activities, enterocytes height	Zheng et al. (2018)
Lb. plantarum	Isolated from rainbow trout intestine	10^7, 10^8 and 10^9 CFU per g	L. vannamei	↑ Protease, amylase, alkaline phosphatase → FW, WG, SGR, SR	Valipour et al. (2019)
Lactobacillus pentosus	Intestinal tract of abalone	10^3, 10^5 and 10^7 CFU per g	Halotis discus hannai	↑ SR, food intake, shell length-specific growth rate, antioxidant capacity, resistance against Vibrio parahaemolyticus ↓ FCR	Gao et al. (2018)
Lb. pentosus	Gut of Chaetopterus stigmatias	5 × 10^8 CFU g feed^{-1}	L. vannamei	↑ Digestion related enzymes, resistance against V. parahaemolyticus, induced stress response genes expression	Du et al. (2019)
Lactococcus lactis subsp. lactis	Intestine of L. vannamei	10^7 CFU per g	L. vannamei	↑ Body weight, digestive enzymes, resistance against WSSV	Zuo et al. (2019)
Pediococcus pentosaceus	Intestine of L. vannamei	0, 10^5, 10^7 and 10^8 CFU per g diet	L. vannamei	↑ Growth performance, digestive enzymes, Lactobacillus and Bacillus counts, resistance against Vibrio anguillarum, Vibrio counts	Adel et al. (2017a)
Lb. plantarum and Lac. lactis	Isolated from bee gut	2–4 × 10^8 CFU per g	L. vannamei	↑ Growth performance, protease and amylase activities, Lactobacillus sp. and Bacillus sp. intestinal counts	Adel et al. (2017b)
Enterococcus faecalis and Ent. faecium	Intestine of Prawn and mullet	N/A	L. vannamei	↑ Resistance against V. parahaemolyticus	Chomwong et al. (2018)
Ent. faecalis and Pediococcus acidilactic	Commercial probiotics	7-86 log CFU per g	A. leptodactylus	↑ Growth performance, resistance against A. hydrophila	Safari et al. (2017)
Lb. pentosus, Lb.	10^2, 10^3 and 10^4 CFU (kg diet)^{-1}	56 days	L. vannamei	↑ Growth performance, survival rate, resistance against V. parahaemolyticus	Wang et al. (2019)

(Continued)
et al. 2019b). A significant increase in growth rate was also observed in Asian seabeast (*Lates calcarifer*) which fed a mixture LAB with *B. subtilis* and yeast (Lin et al. 2017; Niu et al. 2019); sea cucumber (*Apostichopus japonicus*) fed *Lb. plantarum*, *Weissella*, *Lac. lactis* and *Ent. faecalis* (Li et al. 2018); Nile tilapia fed *Lactobacillus rhamnosus* and *Lac. lactis* subsp. *lactis* or Jerusalem artichoke (Xia et al. 2018; Sewaka et al. 2019), and in rainbow trout fed *Lactobacillus bulgaricus*, *Lactobacillus acidophilus* and *Citrobacter* or *Lactobacillus buchneri*, *Lb. pentosus* and yeast (Vazirzadeh et al. 2019; Mohammadian et al. 2019a).

Increase disease resistance

Probiotics have been proven as an effective tool for disease prevention in aquaculture (Hoseinifar et al. 2018; Ringo et al. 2018). Probiotics can interact with or antagonize other enteric bacteria by resisting colonization or by directly inhibiting and reducing the incidence of opportunistic pathogens (Chiu et al. 2017). They can also improve host’s health and well-being via physiological or immune modulation (Butt and Volkoff 2019). Probiotics can produce effective molecules that have bactericidal activity on intestinal pathogenic bacteria of the host, providing a barrier against the proliferation of opportunistic pathogens (Martínez Cruz et al. 2012; Seghouani et al. 2017). The functional molecules produced during the bactericidal activity are antibiotics, bacteriocins, enzymes and/or hydrogen peroxide as well as the alteration of the intestinal pH due to the generation of organic acids. The inhibition of intestinal related diseases has been reported in several cultured species by probiotic incorporation in aquafeeds (e.g. Ringo et al. 2018; Wanka et al. 2018; Serra et al. 2019). Thus, it can be confirmed that the ability of aquatic animals to avoid the infectious diseases mainly depends on the immunomodulatory effect that happened due to the administration of beneficial bacterial cells. *Lb. plantarum* was the most studied probiotic in finfish and shellfish. Dietary supplementation of *Lb. plantarum* significantly increased disease resistance of Pacific white shrimp against *Vibrio* spp. (Pacheco-Vega et al. 2018) and common carp against *Aeromonas hydrophila* (Soltani et al. 2017). In case of *Lb. pentosus*, dietary inclusion significantly increased disease resistance of Pacific white shrimp and common name (*Halotis discus hannai*) against *Vibrio vulnificus*, *Vibrio rotiferianus*, *Vibrio campbellii* and *Vibrio parahaemolyticus* respectively (Zheng and Wang 2017; Gao et al. 2018; Du et al. 2019). An increase in disease resistance was also detected in Pacific white shrimp fed *Lactobacillus* (Zuo et al. 2019). Likewise, supplementation of *Lactococcus* spp. led to the improvement disease resistance of common carp against *A. hydrophila* (Feng et al. 2019); Nile tilapia against *Staphylococcus aureus* (Abdelhaf chains and Mbhoub 2018); olive flounder against streptococcus (Nguyen et al. 2017) and hump grouper (*Cromileptes altivelis*) against *Vibrio harveyi* (Sun et al. 2018). Similar result was also revealed in rockfish (*Sebastes schlegeli*) fed *P. acidilactici* against *Edwardsiella tarda* (Rahimnejad et al. 2018) and rainbow trout fed *Ent. faecalis* against *Lactococcus garvieae* (Baños et al. 2019). Interestingly, the mixture of LAB together or with other probiotics and immunostimulants resulted in higher disease resistance against bacteria and virus. Combination of *Lb. plantarum* and *Lac. lactis* led to increase disease resistance of Pacific white shrimp against *V. parahaemolyticus* (Chomwong et al. 2018). Likewise, significantly improve disease resistance was recorded in Pacific white shrimp, narrow clawed crayfish and mud crab fed *Enterococcus* spp. and *Pediococcus* spp., or LAB with *B. subtilis*, and yeast against *A. hydrophila* and *V. parahaemolyticus* respectively (Cui et al. 2017; Safari et al. 2017; Wang et al. 2019; Yang et al. 2019). Multiple application of LAB or LAB with other probiotics and immunostimulants also improve disease resistance of many finfish species. Dietary administration of *Lb. plantarum* with *B. velezensis*, orange peel derived pectin and corncob-derived xylooligosaccharide or *C. militaris* significantly enhance disease resistance of Nile tilapia against *Streptococcus agalactiae* (Van Doan et al. 2017, 2019, 2020a). Similarly, an elevation of disease resistance was observed in common carp fed β-glucan, mannanoligosaccharide and *Lactobacillus casei* against *A. hydrophila* (Mohammadian et al. 2019b); Asian seabeast fed LAB combined with *B. subtilis*; Asian seabeast fed LAB and yeast (Lin et al. 2017); sea

Table 1 (Continued)

Species Isolated from	Doses and duration	Shellfish species	Parameters investigated	References	
Ent. faecalis and P. pentosaceus	N/A	→ Carcass composition 10⁹ CFU per g 6 weeks	Scylla paramamosain	↑ WG, SGR, resistance against *V. parahaemolyticus*	Yang et al. (2019)

Final weight (FW), Weight gain (WG), Specific growth rate (SGR), Food conversion efficiency (FCE), Food conversion ratio (FCR), Protein efficiency ratio (PER), Survival rate (SR), digestive enzyme and disease resistance of shellfish. N/A—no information available; ↑—positive effect; ↓—negative effect; →—no effect.
Table 2: Weight gain (WG), Specific growth rate (SGR), Food conversion efficiency (FCE), Food conversion ratio (FCR), Protein efficiency ratio (PER), Survival rate (SR), digestive enzyme and disease resistance of finfish

Species	Isolated from	Doses and duration	Finfish species	Parameters investigated	References
Lactobacillus plantarum	Commercial probiotic	10^6 CFU per g	Oreochromis niloticus	↑ Growth performance	Zhai et al. (2017)
Lb. plantarum	Commercial probiotic	10^6 CFU per g	O. niloticus	↑ Growth and feed utilization	Yu et al. (2017)
Lb. plantarum	Isolated from Acipenser persicus	1.2 × 10^6, 0.9 × 10^6 and 0.56 × 10^6 CFU per g	Cyprinus carpio	↑ WG, SGR, FCR, PER, resistance against A. hydrophila	Soltani et al. (2017)
Lb. plantarum	Commercial probiotic	50, 100 or 1000 mg kg⁻¹	O. niloticus	↑ Growth performance, villus length, amylase, lipase and protease activity	Dawood et al. (2019)
Lb. plantarum	Commercial probiotic	10^6 CFU per g	Salmo trutta caspius	↑ Growth performance	Jami et al. (2019)
Lb. plantarum	Commercial probiotic	0, 10, 20 and 50 pp	O. niloticus	↑ Growth performance, resistance against Streptococcus agalactiae	Van Nguyen et al. (2019)
Lactobacillus delbrueckii	Commercial probiotic	0, 1 × 10^6, 10^6, 10^7 and 1 × 10^8 CFU per g	C. carpio	↑ FW, WG, FCR, resistance against A. hydrophila	Zhang et al. (2017)
Lb. plantarum	Intestine of Pangasius catfish	10^6 CFU per g diet	O. niloticus	↑ Growth performance, resistance against S. agalactiae	Van Doan et al. (2019a)
Lb. plantarum	Intestine of Pangasius catfish	10^6 CFU per g diet	O. niloticus	↑ Growth performance, resistance against S. agalactiae	Van Doan et al. (2020a)
Lb. plantarum and Lb. bulgaricus	Isolated from Tor gruspyus intestine	5 × 10^7 CFU per g	C. carpio	↑ WG, SGR, FCR	Alishahi et al. (2018)
Lactococcus lactis	Isolated from Cyprinus carpio	5 × 10^7 CFU	C. carpio	↑ Growth performance, resistance to A. hydrophila	Feng et al. (2019)
Lactococcus garvieae	From raw cow mill	10^7 cells per g	O. niloticus	↑ Resistance against Staphylococcus aureus	Abdelfatah and Mahboub (2018)
Lac. lactis	Isolated from wild marine fish	10^6 CFU per ml	Paralichthys olivaceus	↑ SGR, FCR, resistance against streptococcosis	Nguyen et al. (2017)
Lac. lactis	Isolated from olive flounder gut	10^6 CFU per g	P. olivaceus	↑ FW, final length, SGR, FE	Nguyen et al. (2018)
Pediococcus acidilactici	Commercial probiotic	0.9 × 10^7 CFU per g	Lates calcarifer	↑ FW, SGR, SR, FCR	Ashouri et al. (2018)
P. acidilactici	Commercial probiotic	6 × 10^7 CFU per g	C. carpio	↓ PER, SGR, SR, FCR	Hoseinifar et al. (2019)
P. acidilactici	Commercial probiotic	6 log CFU per g	Sebastes schlegeli	↑ Growth performance, resistance against Edwardsiella tarda	Rahimnejad et al. (2018)
P. acidilactici	Commercial probiotic	10^{10} CFU per ml	Acipenser persicus	↑ Resistance against stress	Taridashi et al. (2017)
Lactococcus lactis	Isolated from Cromileptes altivelis	10^6, 10^8 and 10^{10} CFU per g	Cromileptes altivelis	↑ Growth performance, resistance against Vibrio harveyi	Sun et al. (2018)
Enterococcus faecalis	Commercial probiotic	10^6 CFU per g	Oncorhynchus mykiss	↑ Growth performance, resistance against L. garvieae	Bairós et al. (2019)
β-glucan, mannan oligosaccharide and Lactobacillus casei	Commercial probiotic	5 × 10^7 CFU per kg	C. carpio	↑ Growth rate, feed utilization, lipase, amylase, trypsin and protease activities, resistance against A. hydrophila	Mohammadian et al. (2019b)
Ent. faecalis	Commercial probiotic	10^6 CFU per g	O. mykiss		

(Continued)
Species	Isolated from	Doses and duration	Finfish species	Parameters investigated	References
Ent. faecium	Commercial probiotic Caspian roach	30 days	↑ Growth performance, resistance against L. garvieae	Baños et al. (2019)	
Lb.-glucan, mannan oligosaccharide and Lb. casei	Commercial probiotic	5 × 10^7 CFU per kg 60 days	↑ Growth rate, feed utilization, lipase, amylase, trypsin and protease activities, resistance against A. hydrophila	Mohammadian et al. (2019b)	
Lactobacillus spp., Ent. faecium, Bacillus subtilis and Saccharomyces cerevisiae	Commercial probiotics	10^6, 10^7, 10^8 and 10^9 CFU per kg 56 days	↑ Growth, feed utilization, resistance against A. hydrophila	Lin et al. (2017)	
Lb. plantarum and Cordyceps militaris	Intestine of Pangasius catfish	10^8 CFU per g 8 weeks	O. niloticus	↑ FW, WG, SGR, resistance against S. agalactiae ↓ FCR	Van Doan et al. (2017)
Lb. plantarum and Bacillus velezensis	Isolated from tilapia gut	10^7 and 10^8 CFU per g 30 days	O. niloticus	↑ Growth performance, resistance against S. agalactiae ↓ FCR	Van Doan et al. (2018)
Lb. plantarum, Weissella, Lact. lactis and Ent. faecalis	Isolated from marine fish	10^6 CFU per g 30 days	Apostichopus japonicus	↑ FW, SGR, SR, resistance against V. splendidus	Li et al. (2018)
Lactobacillus rhamnosus and Lact. lactis subsp. lactis	Commercial probiotics	0.5 × 10^8 and 1 × 10^8 CFU per g 6 weeks	O. niloticus	↑ Growth, feed utilization, resistance against S. agalactiae	Xia et al. (2018)
Bacillus sp. SJ-10 and Lb. plantarum	Commercial probiotics	1 × 10^8 CFU per g 8 weeks	P. olivaceus	↑ Amylase, trypsin and lipase activity, resistance against S. agalactiae → Length of villi and microvilli	Jang et al. (2019)
Lactobacillus bulgaricus, Lb. acidophilus and Citrobacter	Isolated from Tor grypus and Cyprinus carpio	5 × 10^7 CFU per g 60 days	O. mykiss	↑ WG, SGR, PER, PER, amyrase, trypsin, lipase, alkaline phosphatase, resistance against Lac. garvieae → Protease ↓ FCR	Mohammadian et al. (2018)
Lactobacillus buchneri, Lb. fermentum and S. cerevisiae	Commercial probiotics	10^7 CFU per g 130 days	O. mykiss	↑ Growth performance → Lipid retention	Niu et al. (2019)
Bacillus spp. + Lactobacillus spp. + S. cerevisiae	Commercial probiotics	10^6–10^9 CFU per kg 12 weeks	P. olivaceus	↓ FCR	Niu et al. (2019)
Lactobacillus rhamnosus and Jerusalem artichoke	Commercial probiotics	10^8 CFU per g 30 days	O. niloticus	↑ SGR, WG, resistance against A. veronii ↓ FCR	Sewaka et al. (2019)

Weight gain (WG), Specific growth rate (SGR), Food conversion efficiency (FCE), Food conversion ratio (FCR), protein efficiency ratio (PER), survival rate (SR), digestive enzyme, and disease resistance of shellfish. N/A—no information available; ↑—positive effect; ↓—negative effect; →—no effect.
cucumber fed *Lb. plantarum*, *Weissella*, *Lac. lactis* and *Ent. faecalis* (Li et al. 2018); Nile tilapia fed LAB or LAB with Jerusalem artichoke (Xia et al. 2018; Sewaka et al. 2019); olive flounder fed *Bacillus* sp. and *Lb. plantarum* or *Bacillus* spp. with *Lactobacillus* spp., and yeast (Jang et al. 2019; Niu et al. 2019) and rainbow trout fed LAB with *Citrobacter* or yeast (Vazirzadeh et al. 2019; Mohammadian et al. 2019a).

Immune effects of LAB on finfish and shellfish

The immune effects of LAB on finfish have been the most extensively studied. Therefore, only the recent studies, published in 2018 and 2019, regarding the immune functions of LAB on finfish and shellfish are highlighted in this review (Table 3).

Finfish

Juvenile common carp were fed for 56 days with a diet mixed with *Lb. acidophilus*, an isolate from chicken manure, in a three differential dosages, 0·2, 0·4 and 0·6% (Adeshina 2018), and all groups significantly increased numbers of immune cells. When challenged with *Pseudomonas aeruginosa* (1 × 10^7 CFU per ml) or *A. hydrophila* (1 × 10^7 CFU per ml), the carp survived in a dose-dependent manner: RPS in *P. aeruginosa* challenge survival rates were 42, 68 and 79% respectively; *A. hydrophila* challenge survival rates were 43, 83 and 78% respectively. Common carp were soaked in the water containing *Ent. faecalis* CgM36 (10^6 CFU per ml), a bacteria isolated from carp for 30 min (Mulyani et al. 2018). Following 12 days of maintenance, the carp were challenged with *A. hydrophila* (10^6 CFU per ml). The LAB-treated carp showed an increase in their survival rate 4 days postinfection (50%) compared to the control group (35%). Three strains of other carp commensal LAB (CcB7, CcB8, CcB15) were also tested for their immune effects (Shabirah et al. 2019). Carp fingerlings were immersed in the LAB-containing water (10^6 CFU per ml) for 24 h, and this process was repeated three times in a 7-day period. The fish were then challenged with *A. hydrophila* (10^6 CFU per ml). The LAB-treated groups demonstrated significantly increased survival rates (CcB7 72%, CcB8 56%, CcB15 83%) compared to that of the control (33%). Common carp were fed carp-isolated *Lac. lactis* strains (Q-8, Q-9 or Z-2) for 8 weeks at a concentration of 5 × 10^8 CFU each per 1 g of feed (5 × 10^8 CFU LAB per g) (Feng et al. 2019). The *Lac. lactis*-fed fish increased gene expression of both proinflammatory (TNF-α, IL-1β, IL-6, IL-12), and anti-inflammatory cytokines (IL-10, TGF-β). However, the *Lac. lactis* Z-2-treated group had a decrease in TGF-β levels. Smaller juvenile common carp fed *P. acidilactici* MA18/5M-containing supplementary diet (6 × 10^8 CFU per g) for 60 days (Hoseinifar et al. 2019), revealed increased total immunoglobulin (Ig) concentration, mucous protease activity and skin lysozyme gene expression. The same LAB fed to beluga (*Huso huso*) for 8 weeks at three concentrations (10^7, 10^8, 10^9 CFU per g) (Ghiasi et al. 2018), revealed significantly increased total serum Ig level, lysozyme activity and respiratory burst activity in a dose-dependent manner. The immune effect of a soil-origin Lactobacillaceae, *Pediococcus pentosaceus* SL001, was studied on grass carp (*Ctenopharyngodon idella*) (Gong et al. 2019). When grass carp were fed *P. pentosaceus* SL001 (1 × 10^9 CFU per g) for 30 days, the gene expression levels of IgM and C3 complement protein were increased in both the liver and spleen. However, the expression levels of lysozyme, IL-1β and IL-8 were varied, whereas challenged with *A. hydrophila*, the *P. pentosaceus*-treated group displayed a significantly decreased mortality rate during the 7 days postinfection (Con: 90%, *Lb. pentosaceus* SL001: 52%).

Nile tilapia fed host-originated probiotics (*Lb. plantarum* N11 (10^6 CFU per g), *B. velezensis* H3.1 (10^6 CFU per g)) for 15 or 30 days (Doan et al. 2018), revealed that fish fed the mixture of the two probiotics significantly increased innate immune parameters in both the 15 and 30 days-feeding groups (lysozyme and peroxidase activities, complement phagocytosis and growth performance), compared to the singular formation-treated groups. When challenged with *S. agalactiae* (1 × 10^6 CFU) at the 30-day feeding time point, the combined form-treated group showed the highest survival rate (relative percent survival, RPS 58-33%). The singular or combined form of *Lb. rhamnosus* JCM1136 and *Lac. lactis* JCM5805 were fed (5 × 10^7 CFU per g) to the juvenile Nile tilapia for 6 weeks (Xia et al. 2018). Fish fed LAB, significantly increased the transcript levels of IFN-γ, lysozyme, hsp70 and IL-1β in the intestine and liver. However, there were no significant differences between the single and combined form-fed groups. When challenged with *S. agalactiae* WC1535 (2 × 10^5 CFU), the fish fed *Lac. lactis* survived at the highest level (con. 19%, *Lac. lactis* 59%). Red tilapia (*Oreochromis spp.*) were fed a synbiotic supplementary diet that included Jerusalem artichoke (10 g kg⁻¹) and dried *Lb. rhamnosus* GG (1 × 10^8 CFU per g) for 30 days (Sewaka et al. 2019). The red tilapia significantly increased mucin-secreting goblet cell numbers, lysosomal activity, alternative complement (ACH50) activity and total Ig concentration. The RPS of the synbiotic-treated fish was 76-43 ± 23-24 when challenged with *A. veronii* (10^5 CFU per fish).

Olive flounder fingerlings fed *Lac. lactis* I2 (10^8 CFU per g) isolated from olive flounder, for 8 weeks (Hasan et al. 2018), displayed significantly enhanced innate
Table 3 Immunological changes resulted from LAB treatment in fish and shellfish

Host	LAB species	Administration routes and doses	Duration	Immune parameters	References
Juvenile common carp (Cyprinus carpio)	Lb. acidophilus (strain is not mentioned)	0-2, 0-4, 0-6% supplemented to diet	56 days	↑ Survival rate against Pseudomonas aeruginosa (10^7 CFU per ml) and Aeromonas hydrophila (10^7 CFU per ml), immune cell number in blood	Adeshina (2018)
Common carp (Weight not mentioned)	Enterococcus faecalis CgM36	Immersion/ 10^6 CFU per ml	30 min	↑ Survival rate against A. hydrophila (10^6 CFU per ml)	Mulyani et al. (2018)
Common carp (average 10 cm)	CcB7, CcB8, CcB15 (species not mentioned)	Immersion/ 10^6 CFU per ml	24 h x 3 times within 7 days	↑ Survival rate against A. hydrophila (10^6 CFU per ml)	Shabirah et al. (2019)
Common carp (33.07 ± 0.55 g)	Lac. lactis Q-8, Q-9, Z-2	5 × 10^8 CFU per g diet	8 weeks	↑ Survival rate during the feedings ↑ Pro-inflammatory cytokine expression in serum (TNF-α, IL-1β, IL-6, IL-12), anti-inflammatory cytokine expression in serum (IL-10, TGF-β), except Lac. lactis Z-2 (TGF-β ↓)	Feng et al. (2019)
Juvenile common carp (10.0 ± 2.5 g) Beluga (Huso huso)	Pediococcus acidilactici MA18/SM	6 × 10^6 CFU per g diet	60 days	Skin mucus: ↑ Total immunoglobulin (Ig), protease activity, lysozyme gene expression (248.3 ± 10.21 g)	Hoseinifar et al. (2019)
Grass carp		10^9 CFU per g diet	30 days	↑ Survival rate against A. hydrophila (10^6 CFU per fish), Liver and spleen: ↑ Immunoglobulin M (IgM), C3 complement protein activity, respiratory burst	
Nile tilapia (Oreochromis niloticus) (~50 g)	Lb. plantarum N11, B. velezensis H3.1	Lb. plantarum N11: 10^9 CFU per g feeds + B. velezensis H3.1: 10^7 CFU per g diet	15, 30 days	↑ Survival rate against Streptococcus agalactiae (10^9 CFU per fish), growth performance Skin mucus: ↑Lysozyme activity, peroxidase activity, Serum: ↑Lysozyme activity, peroxidase activity, complement phagocytosis	Doan et al. (2018)
Juvenile Nile tilapia (0.20 ± 0.05 g)	Lb. rhamnosus JCM1136, Lac. lactis subsp. lactis JCM1136	5 × 10^7 CFU per g diet	6 weeks	↑ Survival rate against S. agalactiae WC1535 (2 × 10^8 CFU per fish) Intestine and liver: ↑ Immune-related gene expression (IFN-γ, lysozyme, hsp70, IL-1β)	Xia et al. (2018)
Red tilapia (Oreochromis)	Lb. rhamnosus GG	10^8 CFU per g diet	30 days	↑ Survival rate against Aeromonas veronii (10^7 CFU per fish)	Sewaka et al. (2018)

(Continued)
Table 3 (Continued)

Host	LAB species	Administration routes and doses	Duration	Immune parameters	References
Olive flounder (Paralichthys olivaceus) (14 ± 0.5 g)	Lac. lactis I2	10⁶ CFU per g diet	8 weeks	↑ Mucin-secreting goblet cell number in the intestine Serum: ↑ lysozyme activity ↑, alternative complement (ACH50) activity, total immunoglobulin concentration	Hasan et al. (2018)
Olive flounder (14 ± 0.5 g)	Lb. sakei PO11, Lb. plantarum PO23	10¹⁰ CFU per g diet	42 days	↑ Survival rate against S. iniae (10⁸ CFU per ml) Serum: Respiratory burst, superoxide dismutase activity, lysozyme activity, myeloperoxidase activity, antiprotease activity, pro-inflammatory cytokine mRNA expression (TNF-α, IL-1β, IL-6)	Feng et al. (2018)
Humpback grouper (Cromileptes altivelis) (3.97 ± 0.54 g)	Lb. casei PTCC1608	5 × 10⁷ CFU per g diet	60 days	↑ Survival rate against Vibrio harveyi QT520 (10⁷ CFU per fish) ↑ Respiratory burst of head kidney macrophage (HKMs) Serum at 2 weeks: ↑ acid phosphatase activity, lysozyme activity Serum at 4 weeks: diminished immune parameters	Sun et al. (2018)
Juvenile Asian seabass (Late calcarifer) (12.0 ± 0.2 g)	P. acidilactici MA18/5M	0.9 × 10⁷ CFU per g diet	42 days	↑ Respiratory burst, lysozyme activity, haemolysis activities Mucus: ↑ lysozyme activity Serum: Respiratory burst, lysozyme activity, haemolysis activities Mucus: ↑ lysozyme activity	Ashouri et al. (2018)
Juvenile shabout (Tor grumpy) (45 ± 10 g)	Lb. casei PTCC1608	5 × 10⁷ CFU per g diet	45 days	↑ Survival rate against V. parahaemolyticus (10⁴ CFU per ml) Haemolymph: ↑ phenoloxidase activity, LyproPO1, LyproPO2 gene expression	Mohammadian et al. (2018)
Juvenile Caspian white fish (Rutilus frisii kutum) (0.56 ± 0.02 g)	PrimLac (Lb. acidophilus, Lb. casei, E. faecium, B. bifidium) (strains not mentioned)	1 g LAB mixture per kg diet	42 days	↑ Survival rate against V. parahaemolyticus (10⁴ CFU per ml) Haemolymph: ↑ phenoloxidase activity, LyproPO1, LyproPO2 gene expression	Mohammadian et al. (2018)
Pacific white shrimp (Litopenaeus vannamei) (10 ± 2 g)	Lb. plantarum SGLAB01, Lac. lactis SGLAB02	1.5 × 10⁶ CFU per g diet	30 days	↑ Survival rate against V. parahaemolyticus PS-017 (10⁷ CFU per ml) Haemolymph: ↑ total haemocyte number, respiratory burst, prophenoloxidase activity	Roomiani et al. (2018)
Juvenile Pacific white shrimp (1.3 ± 0.07 g)	Lb. bulgaricus (strain is not mentioned)	10⁷, 10⁹ CFU per g diet	56 days	↑ Survival rate against Vibrio alginolyticus (10⁵ CFU per g shrimp) Haemolymph: ↑ phenoloxidase activity, respiratory burst, lysozyme activity (except single S. cerevisiae P13 group)	Wang et al. (2019)
Juvenile Pacific white shrimp (0.21 ± 0.01 g)	Lb. pentatux BD6, Lb. fermentum LW2, S. cerevisiae P13	Single (10⁶ CFU per g diet) or mixture (10⁶, 10⁵, 10⁴ CFU per g diet)	56 days	↑ Survival rate against Vibrio alginolyticus (10⁵ CFU per g shrimp) Haemolymph: ↑ phenoloxidase activity, respiratory burst, lysozyme activity (except single S. cerevisiae P13 group)	Wang et al. (2019)
Japanese abalone
(Haliotis discus hannai Ino)
(3.52 ± 0.26 g)

Juvenile sea cucumber
(Apostichopus japonicas)
(2.72 ± 0.08 g)

Crayfish (Astacus leptodactylus, Eschscoltz)
(27.88 ± 0.27 g)

Host	LAB species	Administration routes and doses	Duration	Immune parameters	References
		10^5, 10^6, 10^7 CFU per g diet	8 weeks	↓ Natural death rates	Xiaolong et al. (2018)
				↑ Survival rate against V. parahaemolyticus (10^8 CFU per ml)	
				↑ Hepatopancreatic superoxide dismutase activity, hepatopancreatic catalase activity, lysozyme activity in haemolymph, acid phosphatase activity in haemolymph	
	Lb. plantarum, Weissella confusa, Lac. lactis, E. faecalis	10^9 CFU per g diet	30 days	↑ Survival rate against Vibrio splendidus (10^6 CFU per ml)	Li et al. (2018)
	Lb. plantarum KC426951	10^7, 10^8, 10^9 CFU per g diet	97 days	Air-exposure challenge: ↑ total haemocyte number in haemolymph, phenoloxidase activity (except 10^9 CFU per g group), superoxide dismutase activity, catalase activity, lysozyme activity, total plasma protein	Valipour et al. (2019)

Genera abbreviations: E.—Enterococcus; Lac.—Lactococcus; Lb.—Lactobacillus; P.—Pediococcus; S.—Saccharomyces; W.—Weissella; B.—Bifidobacterium; P.—Pediococcus. N/A—no information available. ↑—positive effect; ↓—negative effect; →—no effect.

immune parameters: respiratory burst and the activities of superoxide dismutase, serum lysozyme, myeloperoxidase and antiprotease. Furthermore, the LAB-treated fish increased the gene expression of pro-inflammatory cytokines: TNF-α, IL-1β and IL-6. When challenged with Streptococcus iniae (10^9 CFU per ml), higher survival (20%) was revealed compared to control fish (0%). Another olive flounder-originated bacteria (Lactobacillus sakei PO11, Lb. plantarum PO23) were fed (10^11 CFU per g) in a single form to olive flounder for 42 days (Feng et al., 2018), and fish fed LAB increased gene expression of innate immune genes in the gill and head kidney: IL-1β, TNF-α, MHC-II, IgM and TCR-β.

Lactobacillus lactis HNL12 isolated from humpback grouper (C. altivelis) were fed to humpback grouper juveniles at different concentrations (10^6, 10^7, 10^10 CFU per g) for 4 weeks (Sun et al., 2018), and all Lac. lactis-fed groups increased the activities of respiratory burst, serum acid phosphatase and serum lysozyme up to 2 weeks of feeding. However, those innate immune parameters were diminished thereafter for the remainder of the 4-week experimental time period. When challenged with V. harveyi QTS20 (1 × 10^5 CFU per fish), the RPSs of the 10^6, 10^7 and 10^10 CFU per g-fed groups were 31, 53 and 50% respectively. Juveniles of Asian sea bass (Late calcarifer) were fed P. acidilactici MA18/5M (0.9 × 10^7 CFU per g) for 42 days (Ashouri et al., 2018). The P. acidilactici-treated group significantly increased innate immune parameters in serum: respiratory burst, lysozyme and haemolysis activities. However, only the lysozyme activity was enhanced in mucosal immune parameters. When shabouy juveniles (T. gruypus) were fed autochthonous Lb. casei PTCC1608 (5 × 10^7 CFU per g) for 60 days, the fish significantly increased haemoglobin concentration and white blood cell numbers (Mohammadian et al., 2018). In addition, gene expressions of IL-1β, TNF-α and IL-8 were also increased in the head kidney. Juvenile Caspian white fish (Rutilus frisii kutum) were fed a mixture of Lb. acidophilus, Lb. casei, Enterococcus faecium and Bifidobacterium bifidum (Primalac®; 1 g kg^-1) for 45 days (Mirghaed et al., 2018). The fish fed Primalac® increased the enzyme activities of lysozyme, alkaline phosphatase and protease in the skin mucus.

Shellfish
A mixture of two autochthonous isolates, Lb. plantarum SGLAB01 and Lac. lactis SGLAB02, (1:1 ratio, 3 × 10^8 CFU per g each) was fed to Pacific white shrimp for 16 days (Chomwong et al., 2018), and LAB feeding significantly increased the enzyme activity of phenoloxidase and the gene expression of LvproPO1 and LvproPO2. When immersion-challenged with V. parahaemolyticus (1 × 10^4 CFU per ml), cumulative mortalities in the 10 days postinfection were significantly
reduced: *Lb. plantarum* SGLAB01, 50%; *Lac. lactis* SGLAB02, 40%; the mixture, 36-7%; the control 90%. Juvenile white shrimp fed a commensal *Lb. bulgaricus* in two different concentrations (10⁷ and 10⁸ CFU per g) for 30 days (Roomini et al. 2018). The LAB-fed shrimp significantly enhanced total haemocyte numbers, respiratory burst activity and prophenoloxidase activity. In addition, survival rates were increased significantly in a dose-dependent manner; control 33, 53 and 60.00%, respectively, when challenged with *V. parahaemolyticus* PS-017 (10⁷ CFU per ml). Three probiotics (*Lb. pentosus* BD6, *Lb. fermentum* LW2 and *S. cerevisiae* P13) were fed to juvenile white shrimp for 56 days in a single (10⁸ CFU per g) or mixed formulation at three different concentrations (10⁵, 10⁶ and 10⁷ CFU per g; Wang et al. 2019). The shrimp fed with the probiotics in all cohorts increased phenoloxidase and respiratory burst activities. However, enhanced lysozyme activity was only observed in the groups fed LAB in the individual formulation, but not in the P13D group. When challenged with *Vibrio alginolyticus* (10⁹ CFU per g shrimp), the shrimp showed an increase in survival rates: *Lb. pentosus* BD6, 59-3%; *Lb. fermentum* LW2, 60%; *S. cerevisiae* P13, 47%; the control, 27%. However, the mixture-fed groups showed no improvement in survival rate.

Japanese abalone (*Haliotis discus hannai* Ino) were fed *Lb. pentosus*, an isolate from abalone, for 8 weeks at various concentrations (10⁵, 10⁶ and 10⁷ CFU per g) (Xiaolong et al. 2018). Surprisingly, the natural death rates of the *Lb. pentosus*-fed groups increased in a dose-dependent manner, 2, 4 and 9%, respectively, although the rates were still lower than that of the control (11%). The LAB-fed groups significantly increased innate immune parameters: lysozyme, acid phosphatase, hepato pancreatic superoxide dismutase and catalase activities. When challenged with *V. parahaemolyticus* (5 x 10⁸ CFU per abalone), mortality rates were decreased dose-dependently in 7 days postinfection: the control 100, 70, 55 and 50% respectively.

Four strains of LAB isolated from marine isolates (*Lb. plantarum* (LP), *Weissella confuse* (WC), *Lac. lactis* (LC) and *Ent. faecalis* (EF)) were fed individually (10⁸ CFU per g) to juvenile sea cucumber for 30 days (Li et al. 2018). All sea cucumber fed LAB (LP, WC, LL or EF) increased innate immune parameters: alkaline phosphatase, acid phosphatase, lysozyme, superoxide dismutase activities. When challenged with *Vibrio splendidus* immersion (10⁷ CFU per ml), survival rates in the 10 days postinfection were significantly increased: the control, 48; LP, 67; WC, 63; LL, 65 and EF: 61%. The expression of immune-related genes varied depending on the types of LAB.

Narrow clawed crayfish were fed *Lb. plantarum* KC426951, an isolate from rainbow trout, in various concentrations (10⁷, 10⁸ and 10⁹ CFU per g) for 97 days (Valipour et al. 2019), and probiotic administration significantly increased total haemocyte numbers in a dose-dependent manner in response to an air-exposure challenge. Furthermore, the crayfish enhanced innate immune parameters following a post air-exposure challenge for 24 h: phenoloxidase, superoxide dismutase, catalase, lysozyme and total plasma proteins. However, phenoloxidase activity slightly decreased in all *Lb. plantarum* KC426951-fed groups.

Testing the immune effects of the native commensal microbiomes on their hosts appear to be a current trend in studies. Isolation of probiotics from the commensal microbiota may be a useful approach to enrich the pool of probiotics. Many studies demonstrated beneficial immunological effects when these autochthonous probiotics were administered to the hosts. However, when the native hosts were fed at high concentrations, some studies showed adverse effects. This may be due to the imbalance of the gut microbiota induced by the excessive feeding of autochthonous bacteria. This possibility needs further investigation.

Bacillus as probiotics for finfish and shellfish

Genus *Bacillus* is one of the most frequently used probiotic genera in aquaculture, and in the recent review of Soltani et al. (2019b) information was presented on the potential of *Bacillus* as promising probiotics by producing bacteriocins, effect on growth performance, the immune system and disease resistance against pathogens in finfish and shellfish aquaculture. In order to avoid duplication, studies reviewed in the aforementioned review are not addressed in this paper.

An updated overview on the use of *Bacillus* as probiotics for finfish and shellfish are presented in Table 4. Under *in vivo* condition, *B. subtilis*, *B. velezensis*, *Bacillus amyloboliquefaciens*, *Bacillus circulans*, *Bacillus thuringiensis* and *Bacillus aerius* increased resistance of finfish and shrimp to pathogenic bacteria including *Streptococcus, Aeromonas, Vibrio, Enterococcus* and *Lactococcus* (Meiddong et al. 2018; Yi et al. 2018; Anyanwu & Ariole, 2019; Di et al. 2019; Jiang et al. 2019; Li et al. 2019; Lin et al. 2019; Mukherjee et al. 2019a; Peng et al. 2019; Soltani et al. 2019b; Vogeley et al. 2019). *Bacillus* species are also a natural resource for screening new quorum quenching bacteria and are commonly regarded as safe bacteria for the use in aquaculture as agents for improving water quality and disease control (Chen et al. 2020).
Bacillus species	Isolated from	Doses and duration	Species	Parameters investigated	References
Bacillus spp.	Litopenaeus vannamei	10^5–10^6 CFU per ml	L. vannamei	↑ Survival, ↓ FCR	Kewcharoen et al. (2019)
Bacillus spp.	L. vannamei	10^2 and 10^9 CFU per kg/35 days	L. vannamei	↑ PHA, expression of proPO, lysozyme, antilipopolysaccharide factor genes, ↓ FW, disease resistance against V. parahaemolyticus	Kewcharoen et al. (2019)
Bacillus spp.	Shrimp pond	1.5×10^7–1.5×10^9 CFU per ml/4 days	Zebrafish (Danio rerio)	↑ Disease resistance against V. parahaemolyticus	Peng et al. (2019)
B. aerius B81e	Hybrid catfish	10^7 CFU per g/60 days	Pla-mong (Pangasius bocourti)	↑ Growth performance, lysozyme, SBA, complement, PHA, RSB, disease resistance against A. hydrophila	Meidong et al. (2018)
B. cereus	Commercial strain	10^7, 10^8, 10^{11} CFU kg$^{-1}$/70 days	Pengze curcian carp (C. auratus)	↑ FW, SGR, ACP, AKP, glutathione peroxidase, ↓ Glutathione, CAT, MDA	Yang et al. (2019)
B. licheniformis T-1	Fresh water pond sediment	2.6×10^8 CFU per fish	D. rerio	↑ Disease resistance against A. hydrophila	Chen et al. (2020)
B. licheniformis MTCC 429	Commercial strain	9.35×10^8 CFU per g/90 days	M. rosenbergii	↑ WG, SGR, PER	Sudha et al. (2019)
B. pumilus A97	Golden pompano (Trachinotus ovatus)	10^8 CFU per g/56 days	T. ovatus	↑ WG, SGR, FCR, nonspecific immune responses, disease resistance against V. ponticus	Liu et al. (2020)
B. subtilis	Dabry sturgeon (Acipenser dabryanus)	2×10^6 CFU per g/56 days	A. dabryanus	↑ TAC, SOD, IgM, lysozyme, disease resistance against A. hydrophila → Growth performance, MDA	Di et al. (2019)
B. subtilis	Grass carp (C. idellus) intestine	2.4×10^7 CFU per g/42 days	C. idellus	↑ WG, SGR, MDA, TAC, SOD, CAT, glutathione, expression of SOD, CAT and Gpx genes, IL-10 gene, ↓ Expression of TNF-α, IL-1β, IL-8 genes	Tang et al. (2019)
B. subtilis	Commercial strain	10^9 CFU per kg/56 days	L. vannamei	↑ FER, FW, SGR, WG	Tsai et al. (2019)
B. subtilis 7K	Hybrid Hulong grouper (E. fuscoguttatus × E. lanceolatus) intestine	10^6 and 10^{10} CFU per g/28–56 days	E. fuscoguttatus × E. lanceolatus	↑ Growth performance, lysozyme, complement, SBA, RSB, SOD, PHA, Mx gene, IFN gene I, IL-1β, IL-8, TNF-α, Singapore	(Continued)
It has been demonstrated that use of *Bacillus* probiotics as the bioremediatory tools in the rearing water of aquaculture species and soil of aquaculture ponds have been exhibited as a feasible way of improving water quality through removing of toxic gases, for example ammonia, nitrite, nitrate and carbon dioxide that are harmful for aquatic organisms (Kewcharoen and Srisapome 2019; Soltani et al. 2019b). *Bacillus subtilis*, *B. licheniformis*, *B. cereus* and *B. coagulans* are suggested as suitable bioremediatory tools for removing of organic detritus, but may not be naturally present in high enough concentrations in the aquatic ecosystems, that is water column and sediment (Soltani et al. 2019b). *Bacillus subtilis* and *B. licheniformis* are suggested as more suitable candidates for bioremediation of aquaculture rearing water (Soltani et al. 2019b). It has been shown that use of *Bacillus* to the rearing water can make a balance between the micro-organisms in the water column or in the pond soil through a bacterial competition with a consequence in the decreasing in load of secondary bacterial pathogens (Kumar et al. 2016).

Table 4 (Continued)

Bacillus species	Isolated from	Doses and duration	Species	Parameters investigated	References
Zhou *et al.* (2019)	Commercial strain	2.3 x 10¹¹ spores/fish/day/56 days	*C. iedellus*	↑ Expression of IL-4/13A, 46 IL-4/13B and CSF1R genes, BAF, CD4L, MHC-II, CD8, IL-1β, TNF-α, TGF-β, IFN-γ	Jiang *et al.* (2019)
B. subtilis, *B. circulans*	Wild shrimp (Farfantepenaeus subtilis) intestine	10⁹ CFU per g/60 days	*L. vannamei*	↑ FG, FW, expression of proPO, LGBP, HEM genes, disease resistance against V. parahaemolyticus	Vogeley *et al.* (2019)
B. thuringiensis G5-8-3T02	Giant tiger prawn (*P. monodon*) intestine	3 x 10⁵ CFU per ml/2 days	*P. monodon*	↑ FW, disease resistance against V. mimicus	Anyanwu *et al.* (2019)
B. velezensis K2	Grouper intestine	10⁷ CFU per g/28 days	*E. lanceolatus* x *E. fuscoguttatus*	↑ Expression of lysozyme, piscidin, IgM and MyD88 genes, ACP, disease resistance against V. harveyi	Li *et al.* (2019)
B. velezensis JW	Grass carp (*Carassius auratus*) intestine	10⁷, and 10⁹ CFU per g/28 days	*C. auratus*	↑ ACP, AKP, GP, IFN-γ gene, TNF-α, IL-1, IL-4, IL-10, disease resistance against A. hydrophila	Yi *et al.* (2018)
B. methylotrophicus, *B. amyloliquefaciens*, *B. licheniformis*, *B. methylotrophicus* + *B. amyloliquefaciens*, *B. methylotrophicus* + *B. licheniformis*, *B. amyloliquefaciens* + *B. licheniformis*	Rohu (*Labeo rohita*) intestine	1 x 10⁷ cells per g/60 days	*L. rohita*	↑ WG, SGR, FCR, CF, lysozyme, complement, antiprotease, oxidase, Ig M, PHA, RSB, disease resistance against A. hydrophila	Mukherjee *et al.* (2019b)

N/A—no information available. ↑—positive effect; ↓—negative effect; ——no effect. FW = final weight, WG = weight gain, FCR = Food conversion ratio, SGR = Specific growth rate, FER = Feed efficiency rate, proPO = Prophenoloxidase, LGBP = lipopolysaccharide- and β-1,3-glucan binding protein, HEM = haemocyanin, N = nitrogen.
Bacillus also provide a suitable condition in the GI tracts of fish and shellfish, by improving digestion and absorption of the nutrients, which in turn improve the animal growth performance (Ghosh et al. 2019; Mei-dong et al. 2018; Li et al. 2019; Soltani et al. 2019b; Mukherjee et al. 2019b; Zhou et al. 2019; Vogeley et al. 2019; Tsai et al. 2019). However, further studies on mode of actions are needed. Probiotic bacilli can modulate the gut microbiota by bacterial competition, resulting in inhibition of pathogen adherence and colonization to intestinal mucosa (Meidong et al. 2018; Vogeley et al. 2019; Kuebutornyea et al. 2019; Soltani et al. 2019a, 2019b). The modulation of finfish and shellfish innate immune responses, for example phagocytic and lysozyme activity, respiratory burst, antiperoxidase and peroxidase, superoxide dismutase and myeloperoxidase by Bacillus have been demonstrated (e.g. Yi et al. 2018; Zhou et al. 2019). For further information see Soltani et al. (2019b) Additionally, Bacillus probiotics can cause changes in animal physiology, for example neutrophil migration, plasma bactericidal activity and increasing of neutrophil adherence ability, that can eventually result in the improving of immune responses, for example increase in complement activity, immunoglobulin production and cell cytotoxicity (Di et al. 2019; Soltani et al. 2019b; Li et al. 2019). These immune-stimulatory effects by Bacillus occur in the gut-associated lymphoid tissue of finfish, although the detail mechanisms required further research works.

Other probiotics

Information on the use of other probiotics in finfish and shellfish aquaculture are less available. However, in a recent review, Ringø (2020) discussed the effects of Alteromonas, Arthrobacter, Bifidobacterium, Clostridium, Microbacterium, Paenibacillus, Phaeobacter, Pseudomonas, Pseudoalteromonas, Rhodospiridium, Roseobacter, Streptomycyes and Vibrio on growth performance, immune response and disease resistance in shellfish. In order to avoid overlaps with above mention review, we recommend that readers with interest on this topic to have a closer look at the review of Ringø (2020), and the original papers discussed.

Commercial probiotics in shellfish aquaculture

Information on the use of commercial probiotics in shellfish aquaculture is available (Ringo, 2020), and in order to avoid duplication readers with interest on the topic is recommend to have a closer look at the above mention review.

Conclusions

The importance of probiotic administration, their beneficial health effects has been discussed in several reviews. Falcinelli et al. (2018) discussed the effect of probiotic appetite control, glucose and lipid metabolisms. Even though there is numerous information available on the use of probiotics in aquaculture, there is no concrete evidence to conclude that probiotics are better than immunostimulants or vaccines, the beneficial effects upon the host and their environment ensure that probiotics will remain one of the most promising approaches used to control diseases and the subsequent environmental modifiers. In finfish and shellfish, manipulation of GI tract microbiota by probiotics have been revealed vs. control or inhibit adhesion and colonization of pathogenic bacteria in the GI tract, improve digestive enzyme activity and growth performance and enhance immune responses of the host against pathogenic infection or physical stress.

The functionality of gut microbiota, depends on the ability of micro-organisms to interact within the GI tract, which benefit the host through influence on inflammation, metabolism, immunity and even behaviour (e.g. Neuman et al. 2015; Boulangé et al. 2016; Ramirez and Romero 2017). When discussing disease resistance, a stable microbiota and its ability to adhere and colonize the intestine is of importance.

In the review of van Doan et al. (2020b) devoted to ‘host-associated probiotics’ in aquaculture, the authors presented the definition; ‘bacteria originally isolated from the rearing water or the GI tract of the host to improve growth and health of the host’, and revealed benefits of host-associated probiotics to include improved growth performance, feed value, enzymatic contribution to digestion, inhibit adherence and colonization of pathogenic micro-organisms in the GI tract, increase haematological parameters and immune response, and has gained attention within aquaculture. However, per se it is not clear, whether host-associated probiotics are more effective than probiotics from other origins, and this merits further research.

In addition to probiotics may also paraprobiotics (cell wall components; Taverniti and Guglielmetti 2011) serve as an alternative to the use of antibiotics in prevention and treatment of infections caused by pathogens. In this regard, it is of interest to notice that both probiotics and paraprobiotics can bind directly pathogenic bacteria, which limits adherence and colonization of the pathogen to gut cells.

The administration of autochthonous probiotics demonstrated to be beneficial on the immune response of both the finfish and shellfish. However, the high administration levels may be unfavourable to the host due to the
ecological imbalance of the gut microbiota. In addition it is known that the microbiota and microbiota derived products influence the mucosal and systemic immune system in finfish and shellfish, however, the topic merits further investigations.

The sporulation capacity of Bacillus gives them advantage due to their heat-tolerance and longer shelf-life in various environmental conditions compared to other probiotics, for example Lactobacillus spp. Production of digestive and antioxidant enzymes, and immune gene expression have revealed that probiotic Bacillus increase growth and resistance of fish and shellfish to pathogenic microbes.

Most probiotics studies per se have focus on different strains of LAB and Bacillus, however, the results of comparably limited studies on other probiotics revealed their potential to improve growth performance, physiological responses and disease resistance of different finfish and shellfish species. It seems that these probiotics merits future research. In addition, the importance of water quality management and available reports regarding probiotics bacteria with the ability to improve water quality highlight the importance of these probiotics in aquaculture. Interestingly, some probiotics bacteria which has not received much attention compared to LAB (e.g. Streptomyces sp.) are capable of producing chitinase which can resolve the issue of high levels of chitin in insect meal-based diet.

Compared to information available on the use of probiotics in endothermic animals, less information is available in aquatic animals, and several questions needs to be addressed. (i) Bidirectional signalling between the gut, its microbiome and the brain, and how can probiotics beneficially affect this interplay. (ii) How probiotics can improve behavioural—and GI disorder. (iii) Degradation of toxic organic compounds and production of bioactive compounds. Can probiotics degrade antinutritional factors like soybean β-conglycinin and soyasaponins? (iv) Use of bacteriocinogenic LAB strains. (v) Use of probiotics displaying antiviral effect, and evaluate the interactions between probiotics and viral infection. (vi) It is established that the gut microbiota plays a pivotal role in regulating host metabolism, but the effect of probiotic on metabolism of aquatic organisms’ merits investigations. (vii) Adherence and colonization, is true colonization possible? VIII) Continuous vs pulse administration. (ix) Use of parabiotics vs probiotics. If we can clarify these questions, this will hopefully bring us a great step forward to clarify the role of probiotics in aquaculture.

Conflict of Interest

All authors declare that they have no conflict of interest.

References

Abdelfatah, E.N. and Mahboub, H.H.H. (2018) Studies on the effect of Lactococcus garvieae of dairy origin on both cheese and Nile tilapia (O. niloticus). Int J Vet Sci Med 6, 201–207.

Adel, M., El-Sayed, A.-F.M., Yeganeh, S., Dadar, M. and Giri, S.S. (2017a) Effect of potential probiotic Lactococcus lactis subsp. lactis on growth performance, intestinal microbiota, digestive enzyme activities, and disease resistance of Litopenaeus vannamei. Prob Antl Prot 9, 150–156.

Adel, M., Yeganeh, S., Dawood, M.a.O., Safari, R. and Radhakrishnan, S. (2017b) Effects of Pediococcus pentosaceus supplementation on growth performance, intestinal microflora and disease resistance of white shrimp, Litopenaeus vannamei. Aquacult Nutr 23, 1401–1409.

Adeshina, I. (2018) The effect of Lactobacillus acidophilus as a dietary supplement on nonspecific immune response and disease resistance in juvenile common carp, Cyprinus carpio. Int Food Res J 25, 2345–2351.

Alishahi, M., Tulaby Dezfuly, Z., Mohammadian, T. and Mesbah, M. (2018) Effects of two probiotics, Lactobacillus plantarum and Lactobacillus bulgaricus on growth performance and intestinal lactic acid bacteria of Cyprinus Carpio. Iran J Vet Med 12, 207–218.

Anyanwu, N.G. and Ariole, C.N. (2019) Probiotic potential of an indigenous marine Bacillus thuringiensis on shrimp (Penaeus monodon) culture infected with Vibrio mimicus. J Appl Sci 19, 173–179.

Ashouri, G., Sosfiani, N.M., Hoseinifar, S.H., Jalali, S.A.H., Morshedi, V., Doan, H.V. and Mozanzadeh, M.T. (2018) Combined effects of dietary low molecular weight sodium alginate and Pediococcus acidilactici MA18/5M on growth performance, haematological and innate immune responses of Asian sea bass (Lates calcarifer) juveniles. Fish Shellfish Immunol 79, 34–41.

Baños, A., Ariza, J.J., Nuñez, C., Gil-Martínez, L., García-López, J.D., Martínez-Bueno, M. and Valdivia, E. (2019) Effects of Enterococcus faecalis UGRA10 and the enterocin AS-48 against the fish pathogen Lactococcus garvieae. Studies in vitro and in vivo. Food Microbiol 77, 69–77.

Boulangé, C.L., Neves, A.L., Chillouz, J., Nicholson, J.K. and Dumas, M.-E. (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine 8, 42.

Bottazzi, V. (1983) Food and feed production with microorganisms. Biotechnol 5, 315–363.

Butt, R.L. and Volkov, H. (2019) Gut microbiota and energy homeostasis in fish. Front Endocrinol 10, 9.

Chen, B., Peng, M., Tong, W., Zhang, Q. and Song, Z. (2020) The quorum quenching bacterium Bacillus licheniformis T-1 protects zebrafish against Aeromonas hydrophila infection. Prob Antimicrob Prot 12, 160–171. https://doi.org/10.1007/s12602-018-9495-7
Chiu, L., Bazin, T., Truchetet, M.-E., Schaeverbeke, T., Delhaes, L. and Pradeau, T. (2017) Protective microbiota: from localized to long-reaching co-immunity. Front Immunol 8, 1678.

Chomwong, S., Charoensapsri, W., Amparyup, P. and Tassanakajon, A. (2018) Two host gut-derived lactic acid bacteria activate the proPO system and increase resistance to an AHPND-causing strain of Vibrio paraheamolyticus in the shrimp Litopenaeus vannamei. Dev Comp Immunol 89, 54–65.

Correa, N.M., Bolivar Ramirez, N.C., Legarda, E.C., Rocha, J.S., Seiffert, W.Q. and Vieira, F.D.N. (2018) Dietary supplementation with probiotic and butyrate in the shrimp nursery in biofloc. Boletim Do Instituto De Pesca 44, e348.

Cui, J., Xiao, M., Liu, M., Wang, Z., Liu, F., Guo, L., Meng, H., Zhang, H. et al. (2017) Coupling metagenomics with cultivation to select host-specific probiotic microorganisms for subtropical aquaculture. J Appl Microbiol 123, 1274–1285.

Dawood, M.A.O., Magouz, F.I., Salem, M.F.I. and Abdel-Daim, H.A. (2019) Modulation of digestive enzyme activity, blood health, oxidative responses and growth-related gene expression in GIFT by heat-killed Lactobacillus plantarum (L-137). Aquaculture 505, 127–136.

Di, J., Chu, Z., Zhang, S., Huang, J., Du, H. and Wei, Q. (2019) Evaluation of the potential probiotic Bacillus subtilis isolated from two ancient sturgeons on growth performance, serum immunity and disease resistance of Acipenser dabryanus. Fish Shellfish Immunol 93, 711–719.

Du, Y., Wang, B., Jiang, K., Wang, M., Zhou, S., Liu, M. and Wang, L. (2019) Exploring the influence of the surface proteins on probiotic effects performed by Lactobacillus pentosus HC-2 using transcriptome analysis in Litopenaeus vannamei midgut. Fish Shellfish Immunol 87, 853–870.

Falcinelli, S., Rodiles, A., Hatf, A., Picchietti, S., Cosignani, L., Merrifield, D.L., Unniappan, S. and Carnevali, O. (2018) Influence of probiotics administration on gut microbiota core. A review on the effects on appetite control, glucose, and lipid metabolism. J Clin Gastroenterol 52, S50–S56.

Feng, J., Li, D., Liu, L., Tang, Y. and Du, R. (2018) Characterization and comparison of the adherence and immune modulation of two gut Lactobacillus strains isolated from Paralichthys olivaceus. Aquaculture 499, 381–388.

Feng, J., Chang, X., Zhang, Y., Zhang, X.Y. and Nie, G. (2019) Effects of Lactococcus lactis from Cyprinus carpio L. as probiotics on growth performance, innate immune response and disease resistance against Aeromonas hydrophila. Fish Shellfish Immunol 93, 73–81.

Fuller, R. (1989) Probiotics in man and animals. J Appl Bacteriol 66, 365–378.

Gao, X., Zhang, M., Li, X., Han, Y., Wu, F. and Liu, Y. (2018) The effects of feeding Lactobacillus pentosus on growth, immunity, and disease resistance in Halitosis discus hannai Ino. Fish Shellfish Immunol 78, 42–51.

Gatesoupe, F.J. (1999) The use of probiotics in aquaculture. Aquaculture 180, 147–165.

Ghiasi, M., Binaii, M., Naghavi, A., Rostami, H.K., Nori, H. and Amerizadeh, A. (2018) Inclusion of Pediococcus acidilactici as probiotic candidate in diets for beluga (Huso huso) modifies biochemical parameters and improves immune functions. Fish Physiol Biochem 44, 1099–1107.

Ghosh, K., Ray, A.K. and Ringo, E. (2019) Applications of plant ingredients for tropical and sub-tropical finfish: possibilities and challenges. Rev Aquacult 11, 793–815.

Gong, L., He, H., Li, D., Cao, L., Khan, T.A., Li, Y., Pan, L., Yan, L. et al. (2019) A new isolate of Pediococcus pentosaceus (SL001) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carps. Front Microbiol 10, 1384.

Hai, N.V. (2015) The use of probiotics in aquaculture. J Appl Microbiol 119, 917–935.

Hasan, M.T., Jang, W.J., Tak, J.Y., Lee, B.J., Kim, K.W., Hur, S.W., Han, H.S., Kim, B.S. et al. (2018) Effects of Lactococcus lactis subsp. lactis I2 with β-glucooligosaccharides on growth, innate immunity and streptococcosis resistance in olive flounder (Paralichthys olivaceus). J Microbiol Biotechnol 28, 1433–1442.

Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B. et al. (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11, 506–514.

Hoseinifar, S.H., Sun, Y.-Z., Wang, A. and Zhou, Z. (2018) Probiotic as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front Microbiol 9, 2429.

Hoseinifar, S.H., Hossein, M., Paknejad, H., Safari, R., Jafar, A., Yousefi, M., Doan, H.V. and Mozanzadeh, M.T. (2019) Enhanced mucosal immune responses, immune related genes and growth performance in common carp (Cyprinus carpio) juveniles fed dietary Pediococcus acidilactici MA18/5M and raffinose. Dev Comp Immunol 94, 59–65.

Jami, M.J., Abedian Kenari, A., Paknejad, H. and Mohseni, M. (2019) Effects of dietary β-glucan, mannan oligosaccharide, Lactobacillus plantarum and their combinations on growth performance, immunity and immune related gene expression of Caspian trout, Salmo trutta caspius (Kessler, 1877). Fish Shellfish Immunol 91, 202–208.

Jang, W.J., Lee, J.M., Hasan, M.T., Lee, B.-J., Lim, S.G. and Kong, I.-S. (2019) Effects of probiotic supplementation of a plant-based protein diet on intestinal microbial diversity,
Probiotics, lactic acid bacteria and bacilli

E. Ringe et al.

digestive enzyme activity, intestinal structure, and immunity in olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 92, 719–727.

Jiang, H., Bian, Q., Zeng, W., Ren, P., Sun, Z., Lin, Z., Tang, Z., Zhou, X.Y. et al. (2019) Oral delivery of Bacillus subtilis spores expressing grass carp reovirus VP4 protein produces protection against grass carp reovirus infection. Fish Shellfish Immunol 84, 768–780.

Kewcharoen, W. and Srisapoome, P. (2019) Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamrei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish Shellfish Immunol 94, 175–189. https://doi.org/10.1016/j.fsi.2019.09.013

Kozasa, M. (1986) Toyocerin Bacillus toyoi as growth promoter for animal feeding. Microbial Aliment Nutr 4, 121–135.

Kuebutornyea, F.K.A., Abarikea, E.D. and Lua, Y. (2019) A review on the application of Bacillus as probiotics in Aquaculture. Fish Shellfish Immunol 87, 820–828.

Kumar, V., Roy, S., Meena, D.K. and Sarkar, U.K. (2016) Application of probiotics in shrimp aquaculture: Importance, mechanisms of action, and methods of administration. Rev Fish Sci Aquacult 24, 342–368.

Li, C., Ren, Y., Jiang, S., Zhou, S., Zhao, J., Wang, R. and Li, T. (2018) Effects of dietary supplementation of four strains of lactic acid bacteria on growth, immune-related response and genes expression of the juvenile sea cucumber Apostichopus japonicus Selenka. Fish Shellfish Immunol 74, 69–75.

Li, J., Wu, Z.B., Zhang, Z., Zha, J.W., Qu, S.Y., Qi, X.Z., Wang, G.X. and Ling, F. (2019) Effects of potential probiotic Bacillus velezensis K2 on growth and immunity and resistance to Vibrio harveyi infection of hybrid grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀). Fish Shellfish Immunol 93, 1047–1055. https://doi.org/10.1016/j.fsi.2019.08.047

Lilly, D.M. and Stillwell, R.H. (1965) Probiotics: growth promoting factors produced by microorganisms. Science 147, 747–748.

Lin, H.-L., Shiu, Y.-L., Chiu, C.-S., Huang, S.-L. and Liu, C.-H. (2017) Screening probiotic candidates for a mixture of probiotics to enhance the growth performance, immunity, and disease resistance of Asian seabass, Lates calcarifer (Bloch), against Aeromonas hydrophila. Fish Shellfish Immunol 60, 474–482.

Lin, Y.-S., Saputra, F., Chen, Y.-C. and Hu, S.-Y. (2019) Dietary administration of Bacillus amyloliquefaciens R8 reduces hepatic oxidative stress and enhances nutrient metabolism and immunity against Aeromonas hydrophila and Streptococcus agalactiae in zebrafish (Danio rerio). Fish Shellfish Immunol 6, 410–419. https://doi.org/10.1016/j.fsi.2018.11.047

Liu, S., Wang, S., Cai, Y., Li, E., Ren, Z., Wu, Y., Guo, W., Sun, Y. and et al. (2020) Beneficial effects of a host gut-derived probiotic, Bacillus pumilus, on the growth, non-specific immune response and disease resistance of juvenile golden pompano. Trachinotus ovatus. Aquaculture 514. https://doi.org/10.101016/j.aquaculture.2019.734446

Martinez Cruz, P., Ibáñez, A.L., Monroy Hermosillo, O.A. and Ramírez Saad, H.C. (2012) Use of probiotics in aquaculture. ISRN Microbial 2012, 916845.

Meidong, R., Khotchanalekha, K., Doogindachibaporn, S., Nagasawa, T., Nakao, M., Sakai, K. and Tongpim, S. (2018) Evaluation of probiotic Bacillus aerius B81 isolated from healthy hybrid catfish on growth, disease resistance and innate immunity of Pla-mong Pangasius bocourti. Fish Shellfish Immunol 73, 1–10.

Merrifield, D.L., Dimitroglou, A., Foey, A., Davies, S.J., Baker, R.R., Bagwald, J., Castex, M. and Ringø, E. (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302, 1–18.

Mirghaedar, A.T., Yarahmadi, P., Hosseinifar, S.H., Tahmasebi, D., Ghesivandi, N. and Ghaedi, A. (2018) The effects singular or combined administration of fermentable fiber and probiotic on mucosal immune parameters, digestive enzyme activity, gut microbiota and growth performance of Caspian white fish (Rutilus frisi kutum) fingerlings. Fish Shellfish Immunol 77, 194–199.

Mohammadian, T., Alishahi, M., Tabandeh, M.R., Nejad, A.I., Karami, E. and Zarea, M. (2018) Effects of autochthonous probiotics, isolated from Tor grypus (Karaman, 1971) intestine and Lactobacillus casei (PTCC 1608) on expression of immune-related genes. Aquacult Int 27, 239.

Mohammadian, T., Nasirpour, M., Tabandeh, M.R., Heidary, A.A., Ghaneti-Motlagh, R. and Hosseini, S.S. (2019a) Administrations of autochthonous probiotics altered juvenile rainbow trout Oncorhynhus mykiss health status, growth performance and resistance to Lactococcus garvieae, an experimental infection. Fish Shellfish Immunol 86, 269–279.

Mohammadian, T., Nasirpour, M., Tabandeh, M.R. and Mesbah, M. (2019b) Symbiotic effects of β-glucan, mannan oligosaccharide and Lactobacillus casei on growth performance, intestine enzymes activities, immune-hematological parameters and immune-related gene expression in common carp, Cyprinus carpio: An experimental infection with Aeromonas hydrophila. Aquaculture 511, 634917.

Mukherjee, A., Banerjee, G., Mukherjee, P., Ray, A.K., Chandra, G. and Ghosh, K. (2019a) Antibacterial substances produced by pathogen inhibitory gut bacteria in Labeo rohita: physico-chemical characterization, purification and identification through MALDI-TOF Mass Spectrometry. Microb Pathol 130, 146–155.

Mukherjee, A., Chandra, G. and Ghosh, K. (2019b) Single or conjoint application of autochthonous Bacillus strains as potential probiotics: effects on growth, feed utilization, immunity and disease resistance in rohu, Labeo rohita (Hamilton). Aquaculture 512. 10.1016/j.aquaculture.2019.734302.
Mulyani, Y., Aryantha, I.N.P., Suhandono, S. and Pancoro, A. (2018) Intestinal bacteria of common carp (Cyprinus carpio L.) as a biological control agent for Aeromonas. J Pure Appl Microbiol 12, 601–610.

Nath, S., Matozzo, V., Bhandari, D. and Faggio, C. (2019) Growth and liver histology of Channa punctatus exposed to a common biofertilizer. Nat Prod Res 33, 1591–1598.

Neuman, H., Debeltis, J.W., Knight, R. and Koren, O. (2015) Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiology Reviews 39, 509–521.

Nguyen, T.L., Park, C.-I. and Kim, D.-H. (2017) Improved growth rate and disease resistance in olive flounder, Paralichthys olivaceus, by probiotic Lactococcus lactis WFLU12 isolated from wild marine fish. Aquaculture 471, 113–120.

Nguyen, T.L., Chun, W.-K., Kim, A., Kim, N., Roh, H.J., Lee, Y., Yi, M., Kim, S. et al. (2018) Dietary probiotic effect of Lactococcus lactis WFLU12 on low-molecular-weight metabolites and growth of olive flounder (Paralichthys olivaceus). Front Microbiol 9, 2059.

Niu, K.-M., Khoorsavi, S., Kothari, D., Lee, W.-D., Lim, J.-M., Lee, B.-J., Kim, K.-W., Lim, S.-G. et al. (2019) Effects of dietary multi-strain probiotics supplementation in a low fishmeal diet on growth performance, nutrient utilization, proximate composition, immune parameters, and gut microbiota of juvenile olive flounder (Paralichthys olivaceus). Fish Shellfish Immunol 93, 258–268.

Pacheco-Vega, J.M., Cadena-Roa, M.A., Leyva-Flores, J.A., Zavala-Leal, O.I., Pérez-Bravo, E. and Ruiz-Velazco, J.M.J. (2018) Effect of isolated bacteria and microalgae on the biofloc characteristics in the Pacific white shrimp culture. Aquacult Rep 11, 24–30.

Peng, M., Zhang, Y. and Song, Z. (2019) Isolation and characterization of a Bacillus spp. against Vibrio Parahaemolyticus from shrimp culture ponds. Int J Microbiol Biotechnol 4, 29–37.

Rahimnejad, S., Guardiola, F.A., Leclercq, E., Ángeles Esteban, M., Castex, M., Sotoudeh, E. and Lee, S.-M. (2018) Effects of dietary supplementation with Pediococcus acidilactici MA18/SM, galactooligosaccharide and their symbiotic on growth, innate immunity and disease resistance of rockfish (Sebastes schlegeli). Aquaculture 482, 36–44.

Ramírez, C. and Romero, J. (2017) The microbiome of Seriola lalandi of wild and aquaculture origin reveals differences in composition and potential function. Front Microbiol 8, 1844.

Ringø, E. (2020) Probiotics in shellfish aquaculture. Aquaculture and Fisheries 5, 1–27.

Ringø, E. and Gatesoupe, F.J. (1998) Lactic acid bacteria in fish: a review. Aquaculture 160, 177–203.

Ringø, E., Hoseinifar, S.H., Ghosh, K., Van Doan, H., Beck, B.R. and Song, S.K. (2018) Lactic acid bacteria in finfish – an update. Front Microbiol 9, 1818.

Ringø, E., Van Doan, H., Lee, S. and Song, S.K. (2020) Lactic acid bacteria in shellfish: possibilities and challenges. Rev Fish Aquacult 28, 139–169. https://doi.org/10.1080/2308249.2019.1683151.

Roomiani, L., Ahmadi, S. and Ghaemi, M. (2018) Immune response and disease resistance in the white shrimp, Litopenaeus vannamei induced by potential probiotic Lactobacillus bulgaricus. Vet J Ankara Univ 65, 323–329.

Safari, O., Paolucci, M. and Motlagh, H.A. (2017) Effects of synbiotics on immunity and disease resistance of narrow-clawed crayfish, Astacus leptodactylus leptodactylus (Eschscholtz, 1823). Fish Shellfish Immunol 64, 392–400.

Seghouani, H., Garcia-Rangel, C.-E., Füller, J., Gauthier, J. and Derome, N. (2017) Walleye autochthonous bacteria as promising probiotic candidates against Flavobacterium columnare. Front Microbiol 8, 1349.

Serra, C.R., Almeida, E.M., Guerreiro, I., Santos, R., Merrifield, D.L., Tavares, F., Oliva-Teles, A. and Enes, P. (2019) Selection of carbohydrate-active probiotics from the gut of carnivorous fish fed plant-based diets. Sci Rep 9, 6384.

Sewaka, M., Trullas, C., Chotiko, S., Rodkhum, C., Chansue, N., Boonanuntanasam, S. and Pirarat, N. (2019) Efficacy of symbiotic Jerusalem artichoke and Lactobacillus rhamnosus GG-supplemented diets on growth performance, serum biochemical parameters, intestinal morphology, immune parameters and protection against Aeromonas veronii in juvenile red tilapia (Oreochromis spp.). Fish Shellfish Immunol 86, 260–268.

Shabirah, A., Mulyani, R.Y. and Lili, W. (2019) Effect of types isolated lactic acid bacteria on hematocrit and differential leukocytes fingerling common carp (Cyprinus carpio L.) infected with Aeromonas hydrophila bacteria. WNOFNS 24, 25–35.

Soltani, M., Abdy, E., Alishahi, M., Mirghaed, A.T. and Hosseini-Shekarabi, P. (2017) Growth performance, immune-physiological variables and disease resistance of common carp (Cyprinus carpio) orally subjected to different concentrations of Lactobacillus plantarum. Aquacult Int 25, 1913–1933.

Soltani, M., Lymb ery, A., Song, S.K. and Hossein-Shkarab a, P. (2019a) Adj uvant effects of medicinal herbs and probiotics for fish vaccines. Rev Aquacult 11, 1325–1341.

Soltani, M., Ghosh, K., Hoseinifar, S., Kumar, V., Lymb ery, A.J., Roy, S. and Ringø, E. (2019b) Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev Fish Sci Aquacult 27, 331–379.

Sudha, A., Saravana Bhavan, P., Manjula, T., Kalpana, R. and Karthik, M. (2019) Bacillus licheniformis as a probiotic bacteria for culture of the prawn Macrobrachium rosenbergii. Res J Life Sci Bioinf Pharmaceut Chem Sci. https://doi.org/doi.org/10.26479/2019.0504.05

Sun, Y., He, M., Cao, Z., Xie, Z., Liu, C., Wang, S., Guo, W., Zhang, X. et al. (2018) Effects of dietary administration of Probiotics, lactic acid bacteria and bacilli.
Probiotics, lactic acid bacteria and bacilli

E. Ringe et al.

Lactococcus lactis HNL12 on growth, innate immune response, and disease resistance of humpback grouper (*Cromileptes altivelis*). *Fish Shellfish Immunol* **82**, 296–303.

Tang, Y., Han, L., Chen, X., Xie, M., Kong, M. and Wu, Z. (2019) Dietary supplementation of probiotic *Bacillus subtilis* affects antioxidative defenses and immune response in grass carp under *Aeromonas hydrophila* challenge. *Prob Anti Prot*. https://doi.org/10.1007/s12602-018-9409-8

Taridashti, F., Delafkar, K., Zare, A. and Azari-Takami, G. (2017) Effects of probiotic *Pediciococcus acidilactici* on growth performance, survival rate, and stress resistance of Persian sturgeon (*Acipenser persicus*). *J Appl Aquacult* **29**, 220–232.

Tarkhani, R., Imani, A., Hoseinifar, S.H., Moghanlou, K.S. and Manafarr, R. (2020) The effects of host-associated *Enterococcus faecium* CGMCC1.2136 on immune parameters, digestive enzymes activity and growth performance of the Caspian roach (*Rutilus caspicus*) fingerprints. *Aquaculture 519*. https://doi.org/10.1016/j.aquaculture.2019.734741

Taverniti, V. and Guglielmetti, S. (2011) The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). *Genes Nutr* **6**, 261–274.

Tsai, C.-Y., Chi, C.-C. and Liu, C.-H. (2019) The growth and apparent digestibility of white shrimp, *Litopenaeus vannamei*, are increased with the probiotic, *Bacillus subtilis*. *Aquacult Res** **50**, 1475–1481. https://doi.org/10.1111/are.14022

Valipour, A., Nedaci, S., Noori, A., Khanipour, A.A. and Hoseinifar, S.H. (2019) Dietary *Lactobacillus plantarum* affected on some immune parameters, air exposure stress response, intestinal microbiota, digestive enzyme activity and performance of narrow clawed crayfish (*Astacus leptodactylus*, Eschscholtz). *Aquaculture 504*, 121–130.

Van Doan, H., Hoseinifar, S.H., Dawood, M.A.O., Chitmanat, C. and Tayyamath, K. (2017) Effects of *Corynebacterium militaris* spent mushroom substrate and *Lactobacillus plantarum* on mucusal, serum immunology and growth performance of Nile tilapia (*Oreochromis niloticus*). *Fish Shellfish Immunol* **70**, 87–94.

Van Doan, H., Hoseinifar, S.H., Khanongnuch, C., Kanpiengjai, A., Unban, K., Van Kim, V. and Srichaiyo, S. (2018) Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (*Oreochromis niloticus*). *Aquaculture 491*, 94–100.

Van Doan, H., Hoseinifar, S.H., Naraballobb, W., Jaturasitha, S., Tongsiri, S., Chitmanat, C. and Ringo, E. (2019) Dietary inclusion of Orange peels derived pectin and *Lactobacillus plantarum* for Nile tilapia (*Oreochromis niloticus*) cultured under indoor biofloc systems. *Aquaculture 508*, 98–105.

van Doan, H., Kurian, A., Hoseinifar, S.H., Sel-Audom, M., Jaturasitha, S., Tongsiri, S. and Ringo, E. (2019a) Dietary inclusion of orange peels derived pectin and *Lactobacillus plantarum* for Nile tilapia (*Oreochromis niloticus*) cultured under indoor biofloc systems. *Aquaculture 508*, 98–105.

Van Doan, H., Hoseinifar, S.H., Tapingkae, W., Seel-Audom, M., Jaturasitha, S., Dawood, M.A., Wongmaneprateep, S., Thu, T.T.N. et al. (2020a) Boosted growth performance, mucusal and serum immunity, and disease resistance Nile tilapia (*Oreochromis niloticus*) fingerprints using corncobs-derived xylooligosaccharide and *Lactobacillus plantarum* CR1T5. *Prob Anti Prot* 1–12. https://doi.org/10.1007/s12602-019-09554-5

Van Doan, H., Hoseinifar, S.H., Ringo, E., Esteban, M.A., Dadar, M., Dawood, M.A.O. and Faggio, C. (2020b) Host-associated probiotics: a key factor in sustainable aquaculture. *Rev Fish Sci Aquacult* **28**, 16–42.

Van Nguyen, N., Onoda, S., Van Khanh, T., Hai, P.D., Trung, N.T., Hoang, L. and Koshio, S. (2019) Evaluation of dietary heat-killed *Lactobacillus plantarum* strain L-137 supplementation on growth performance, immunity and stress resistance of Nile tilapia (*Oreochromis niloticus*). *Aquaculture 498*, 371–379.

Vazirzadeh, A., Roosta, H., Masoumi, H., Farhadi, A. and Jeffs, A. (2019) Long-term effects of three probiotics, singular or combined, on serum innate immune parameters and expressions of cytokine genes in rainbow trout during grow-out. *Fish & Shellfish Immunol* **98**, 748–757. https://doi.org/10.1016/j.fsi.2019.11.023.

Vogeley, J.L., Interaminense, J.A., Buarque, D.S., da Silva, S.M.B.C., Coimbra, M.R.M., Peixoto, S.M. and Soares, R.B. (2019) Growth and immune gene expression of *Litopenaeus vannamei* fed *Bacillus subtilis* and *Bacillus circulans* supplemented diets and challenged with *Vibrio parahaemolyticus*. *Aquacult Int 27*, 1451–1464.

Wang, Y.C., Hu, S.Y., Chiu, C.S. and Liu, C.H. (2019) Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, *Litopenaeus vannamei*, than single probiotic strains. *Fish Shellfish Immunol* **84**, 1050–1058.

Wanka, K.M., Damerau, T., Costas, B., Krueger, A., Schulz, C. and Wurzert, S. (2018) Isolation and characterization of native probiotics for fish farming. *BMC Microbiol* **18**, 119.

Xia, Y., Lu, M., Chen, G., Cao, J., Gao, F., Wang, M., Liu, Z., Zhang, D. et al. (2018a) Effects of dietary *Lactobacillus rhamnosus* JCM1136 and *Lactococcus lactis* subsp. *lactis* JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, *Oreochromis niloticus*. *Fish Shellfish Immunol* **76**, 368–379.

Xiaolong, G., Mo, Z., Xian, L., Yin, H., Fucun, W. and Ying, L. (2018) The effects of feeding *Lactobacillus pentosus* on growth, immunity, and disease resistance in *Haliotis discus hannai* Ino. *Fish Shellfish Immunol* **78**, 42–51.

20 Journal of Applied Microbiology © 2020 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology
Yang, Q., Lü, Y., Zhang, M., Gong, Y., Li, Z., Tran, N.T., He, Y., Zhu, C. et al. (2019) Lactic acid bacteria, Enterococcus faecalis Y17 and Pediococcus pentosaceus G11, improved growth performance, and immunity of mud crab (Scylla paramamosain). *Fish Shellfish Immunol* **93**, 135–143.

Yi, Y., Zhang, Z., Zhao, F., Liu, H., Yu, L., Zha, J. and Wang, G. (2018) Probiotic potential of *Bacillus velezensis* JW: Antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on *Carassius auratus*. *Fish Shellfish Immunol* **78**, 322–330.

Yu, L., Zhai, Q., Zhu, J., Zhang, C., Li, T., Liu, X., Zhao, J., Zhang, H. et al. (2017) Dietary *Lactobacillus plantarum* supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. *Ecotoxicol Environ Saf* **143**, 307–314.

Zhai, Q., Wang, H., Tian, F., Zhao, J., Zhang, H. and Chen, W. (2017) Dietary *Lactobacillus plantarum* supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (*Oreochromis niloticus*). *Aquacult Res* **48**, 5094–5103.

Zhang, C.-N., Zhang, J.-L., Guan, W.-C., Zhang, X.-F., Guan, S.-H., Zeng, Q.-H., Cheng, G.-F. and Cui, W. (2017) Effects of *Lactobacillus delbrueckii* on immune response, disease resistance against *Aeromonas hydrophila*, antioxidant capability and growth performance of *Cyprinus carpio* Huanghe var. *Fish Shellfish Immunol* **68**, 84–91.

Zheng, C.N. and Wang, W. (2017) Effects of *Lactobacillus pentosus* on the growth performance, digestive enzyme and disease resistance of white shrimp, *Litopenaeus vannamei* (Boone, 1931). *Aquacult Res* **48**, 2767–2777.

Zheng, X., Duan, Y., Dong, H. and Zhang, J. (2017) Effects of dietary *Lactobacillus plantarum* in different treatments on growth performance and immune gene expression of white shrimp *Litopenaeus vannamei* under normal condition and stress of acute low salinity. *Fish Shellfish Immunol* **62**, 195–201.

Zheng, X., Duan, Y., Dong, H. and Zhang, J. (2018) Effects of dietary *Lactobacillus plantarum* on growth performance, digestive enzymes and gut morphology of *Litopenaeus vannamei*. *Prob Anti Prot* **10**, 504–510.

Zhou, S., Song, D., Zhou, X., Mao, X., Zhou, X., Wang, S., Wei, J., Huang, Y. et al. (2019) Characterization of *Bacillus subtilis* from gastrointestinal tract of hybrid Hulong grouper (*Epinephelus fuscoguttatus* × *E. lanceolatus*) and its effects as probiotic additives. *Fish Shellfish Immunol* **84**, 1115–1124.

Zuo, Z.-H., Shang, B.-J., Shao, Y.-C., Li, W.-Y. and Sun, J.-S. (2019) Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of *Litopenaeus vannamei*. *Fish Shellfish Immunol* **86**, 160–168.