Attention-deficit/hyperactivity disorder associated with KChIP1 rs1541665 in Kv channels accessory proteins

Fang-Fen Yuan¹, Xue Gu¹, Xin Huang¹, Yu-Wei Hou¹, Yan Zhong², Jun Lin³, Jing Wu¹*

¹ Department of Epidemiology and Biostatistics and the Ministry of Education (MOE) Key Lab of Environmental and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, ² Department of Child Health Care, Hunan Children’s Hospital, Changsha, People’s Republic of China, ³ Department of rehabilitation medicine, Wuhan Medical and Health Center for Women and Children, Wuhan, People’s Republic of China

* wujingrh@163.com

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is an early onset childhood neurodevelopmental disorder with high heritability. A number of genetic risk factors and environmental factors have been implicated in the pathogenesis of ADHD. Genes encoding for subtypes of voltage-dependent K channels (Kv) and accessory proteins to these channels have been identified in genome-wide association studies (GWAS) of ADHD. We conducted a two-stage case–control study to investigate the associations between five key genes (KChIP4, KChIP1, DPP10, FHIT, and KCNC1) and the risk of developing ADHD. In the discovery stage comprising 256 cases and 372 controls, KChIP1 rs1541665 and FHIT rs3772475 were identified; they were further genotyped in the validation stage containing 328 cases and 431 controls. KChIP1 rs1541665 showed significant association with a risk of ADHD at both stages, with CC vs TT odds ratio (OR) = 1.961, 95% confidence interval (CI) = 1.366–2.497, in combined analyses (P-FDR = 0.007). Moreover, we also found rs1541665 involvement in ADHD-I subtype (OR (95% CI) = 2.341(1.713, 3.282), and Hyperactive index score (P = 0.005) in combined samples. Intriguingly, gene-environmental interactions analysis consistently revealed the potential interactions of rs1541665 collaborating with maternal stress pregnancy (Pmul = 0.021) and blood lead (Padd = 0.017) to modify ADHD risk. In conclusion, the current study provides evidence that genetic variants of Kv accessory proteins may contribute to the susceptibility of ADHD. Further studies with different ethnicities are warranted to produce definitive conclusions.

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is an early onset childhood neurodevelopmental disorder with a prevalence estimated at 5.9%-7.1% worldwide [1, 2]. ADHD is diagnosed approximately three times more frequently in boys than in girls [3]. Core characteristics
of the disorder are pervasive and developmentally inappropriate inattention, excessive motor activity, impulsivity, and distractibility [4]. Sufferers usually have marked social, academic, occupational and family difficulties, and approximately 30%-50% of them have persisting symptoms as adults [5, 6]. Furthermore, a diagnosis of ADHD conveys a significant risk for other comorbid diseases, such as conduct disorder, learning disorders, mood disorders, and anxiety disorders [6, 7].

The etiology of ADHD remains unclear. Family studies reported that ADHD heredity is as high as 80%-90%, indicating a strong genetic component [6]. In addition to genetic factors, environmental factors involving in exposure to adverse circumstances in maternal or children life have been implicated in the etiology of ADHD [8]. Studies addressing gene-environment interactions may play a pivotal role in ADHD [9]. Great effort has been put into seeking potential genes conferring susceptibility to ADHD. In the first genome-wide association studies (GWAS) of ADHD performed by Neale et al., the top 25 single-nucleotide polymorphisms (SNPs) (based on P-value) implicated as interesting candidate genes included two genes encoding for voltage-gated potassium (Kv) channel-interacting protein 1 (KChIP1) and Kv channel-interacting protein 4 (KChIP4) [10]. At the same time, Lesch et al. observed that a potassium channel (KCNC1) gene was among the top 30 hit genes for association analyses of the ADHD diagnostic phenotype [11]. GWAS analysis conducted by Lasky-Su et al. found genes (KChIP1 [alias name KCNIP1], KChIP4 [alias name KCNIP4], dipeptidyl-peptidase 10 [DPP10], and fragile histidine triad protein [FHIT]) related to potassium-channel function associated with total ADHD symptom count [12]. In addition, in an ADHD pathway analysis, pathways containing Kv channels genes have been the most significant [13]. Furthermore, candidate gene based association studies in adult ADHD patients have suggested a role of KChIP4 gene in ADHD susceptibility [14].

Kv channel genes have been classified as subfamilies Shaker (Kv1.1 to 1.8), Shab (Kv2.1 and Kv2.2), Shaw (Kv3.1 to 3.4), and Shal (Kv4.1 to Kv4.3) according to Drosophila genes and regulated by many accessory proteins including Kv channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPLPs). KChIP4, KChIP1 and DPP10 have been found binding to subunits of the Kv4.2 family to modulate their cell-surface expression and subcellular localization [15, 16]. KChIPs causes a dramatic redistribution of Kv4.2, allowing for trafficking to the cell surface and decrease in the degradation of enhanced stability Kv4.2 through KChIPs binding [17, 18]. KChIP co-expression also causes phosphorylation to reconstitute the molecular properties of Kv4.2 [19]. In addition, DPP10 facilitated Kv4.2 protein trafficking to the cell membrane, increased A-type current magnitude [20].

Kv channels and accessory proteins play important roles in cellular signaling processes and are critical to neurotransmission [21]. Pharmacological activation of Kv channels in excitable cells reduces excitability, whereas channel inhibition has the opposite effect of increasing excitability [22]. It is believed that neurotransmission and neuronal excitability play an important role in the pathogenesis of ADHD [23, 24]. Genetic studies also supported the role of Kv channels in the regulation of dopaminergic transmission [25, 26]. Given that impairments in axonal dopamine release are associated with ADHD [27], we speculated about the possibility that Kv channels may have a role in ADHD etiology.

To date, no combined analysis for the genes of Kv channels and ancillary proteins to these channels in ADHD has been performed. Therefore, we carried out a two-stage case-control study to comprehensively evaluate the associations between five key genes (KChIP4, KChIP1, DPP10, FHIT, and KCNC1) and the risk of ADHD. Also, given the etiological complexity of ADHD, it was deemed important to investigate the interactions between these genes and environmental risk factors implicated in ADHD.
Materials and methods

Study subjects

We applied a two-stage case-control study to investigate the association of genetic variants in Kv channels and accessory proteins with ADHD risk. The discovery sample (stage one) included 256 ADHD children and adolescents with ADHD consecutively recruited from Wuhan Medical and Health Center for Women and Children between October 2013 and December 2014, and 372 control children from the same hospital who underwent physical examination during the same time period. The validation sample (stage two) included 328 ADHD cases enrolled from the Children’s Hospital of Hunan province (Changsha) from January 2014 to December 2015, and 431 controls selected among children who visited the same hospital for physical examination during the same time period. All cases were diagnosed ADHD for the first time according to the diagnostic criteria of the DSM-IV [1]; Clinical interviews of at least one parent were conducted by a trained child psychiatrist. According to DSM-IV, we determined subtypes of ADHD cases as follows: combined (ADHD/C), predominantly inattentive (ADHD/I) and predominantly hyperactive/impulsive (ADHD/HI) [28, 29].

All subjects were required to meet the following criteria: (1) be between 6 and 18 years old; (2) have a full scale Intelligence Quotient (IQ \geq 70) according to the Chinese-Wechsler Intelligence Scale for Children [30]; (3) children with neurological disorders, seizure disorders, pervasive developmental disorders, bipolar mood disorders, or psychotic disorders were excluded.

This study was approved by the Ethics Committees of Tongji Medical College of Huazhong University of Science and Technology, Wuhan Medical and Health Center for Women and Children and Children’s Hospital of Hunan province. At recruitment, written informed consent was obtained from the parents of each subject, and blood samples and demographic information were collected.

Measurement of environment factors

Information about basic demographic variables (age, gender, IQ) and other potential risk factors for ADHD was obtained from the questionnaire, including maternal stress pregnancy (The total score > 0 was coded yes, otherwise, no), maternal smoking or alcohol pregnancy (If the mother smoked or drank at any time during the pregnancy, the mother was coded yes, otherwise, no), parental marital status (couple or divorced), preterm birth (< 37 weeks or \geq 37 weeks), low birth weight (< 2.5kg or \geq 2.5kg) and blood lead.

To measure maternal stress pregnancy, the 30-item Chinese version of Pregnancy Stress Rating Scale (PSRS) was used [31, 32]. The total score is the mean of all items summed, with higher scores indicating higher maternal stress. 0 means the mother experiences no stress; 0.001–1 means the mother experiences a mild level of stress; 1.001–2 means the mother experiences a moderate level of stress; and 2.001–3 means the mother experiences a severe level of stress.

To measure lead level in blood, 3–5mL of whole blood was drawn from each child and was collected in heparin-containing tubes. Blood lead level (BLL) was determined by atomic absorption spectrophotometry (AA-670/GV-5, Shimadzu, Japan) at a commercial laboratory. The coefficient of variation for the BLLs was 4.9%. The limit of detection for blood lead was 0.2\mu g/dL. None of the blood samples below the limit of detection are shown. In our study, a median was used for cutoff point for differentiating blood lead level; thus, median or more was defined as indicative of a high lead level and less than median of a low lead level.
Conners Parent Symptom Questionnaire (PSQ)
ADHD symptoms were measured with a Chinese version of the Conners Parent Symptom Questionnaire (PSQ) [33, 34]. The PSQ contains 48 items and 6 subscales (Conduct problem, Difficulties in learning, Psychosomatic disorders, Hyperactivity/Impulsivity, Anxiety and Hyperactivity index). Parents answered questions concerning their child’s behavior over the past month using a four-point scale (0 = not true at all to 3 = very much true). Scores were converted to T scores based on the gender and age of the child, with scores >65 indicating clinically elevated symptoms [35]. The three subscale scores that focused on ADHD symptoms (Hyperactivity/Impulsivity score, Hyperactivity index score, and Total score) were used as primary outcome measures. The hyperactivity index score was mostly used to reflect the hyperactivity behavior of ADHD children, while the Hyperactivity/Impulsivity score implicated both hyperactivity and impulsivity behaviors.

Candidate SNPs selection and genotyping
Tag SNPs were selected based on SNPs genotype information downloaded from Hapmap (http://hapmap.ncbi.nlm.nih.gov/, HapMap Data Rel24/phaseII Nov08, on NCBI B36 assembly, dbSNP b126) for the CHB (Han Chinese from Beijing) population, using the criteria of \(r^2 > 0.8 \) and minor allele frequency (MAF) >0.15 across the region of the candidate genes. We placed the selected tag SNPs into an integrated bioinformatics tool “F-SNP” (http://compbio.cs.queensu.ca/F-SNP/) [36] and retrieved a set of functionally predicted SNPs with F-score >0.101, including the possible functions of splicing, transcription, translation, and post-translation processes. Additionally, those variants referred in GWAS analyses (KChIP4 rs876477, KChIP1 rs1541665, DPP10 rs272000, and FHIT rs6791644) were also included in our study. Finally, 17 SNPs were identified as the candidate SNPs (S1 Table).

Genomic DNA was extracted from 2 ml of peripheral blood sample using the Relax Gene Blood DNA System DP319-02 (Tiangen, Beijing, China) according to the manufacturer’s instructions. Candidate SNPs were genotyped using MassARRAY technology (Sequenom Inc., Dan Diego, CA, USA) in both stage one and stage two according to the manufacturer’s iPLEX Application Guide. The primers were designed using the Assay Design 3.0 software supplied by Sequenom. The iPLEX™ reaction products were dispensed onto a 384-well SpectroChip, and they were processed and analyzed in a Compact Mass Spectrometer using the Mass ARRAY Workstation 4.0 software (Sequenom Inc., San Diego, CA, USA).

Quality control was performed by exclusion of SNPs with a genotype call rate of <90% and those that deviated from the Hardy-Weinberg Equilibrium (HWE) in controls. Notably, genotyping was performed by experimenters blinded to the status of the participants.

Statistical analysis
The HWE for genotypes in the control groups was assessed by a \(\chi^2 \) goodness-of-fit test. Pearson’s \(\chi^2 \) test or two independent sample \(t \)-test was used to examine differences between cases and controls in the distribution of demographic characteristics. The risks of ADHD, ADHD subtypes and CPT results associated with SNPs were estimated by using odds ratios (ORs) and the 95% confidence intervals (95% CIs) were calculated by multivariate logistic regression model (LR) after adjustment for age and gender. The Bonferroni [37] and false discovery rate (FDR) [38] methods were performed for multiple comparison corrections for association analyses. The association of Conners Parents Symptom scores with SNPs was explored by ANOVA analysis with post hoc comparisons using the Student-Newman-Keuls (SNK) method. The statistical power before the study performed in both stages was calculated using PowerV3.0 [39]. For SNPs with MAF = 0.18 in CHB, we calculated that with our sample size the power to detect
an OR of 1.50 is as follows: stage one power = 0.702; stage two power = 0.782. The FDR for each SNP was estimated using the R (version 3.1.3; http://www.r-project.org/). All other statistical analyses were conducted using IBM SPSS software (version 22.0; SPSS Inc., Chicago, IL, USA).

Furthermore, to assess the high-order gene-environment interactions, multifactor dimensionality reduction (MDR) analyses were carried out using MDR 2.0 beta 8.1 program (UPenn, Philadelphia, PA, USA)[40] in combined samples. In brief, this program first constructed all possible combinations of included variables. Then, by using 10-time cross-validation and 1000-time permutation tests, the best factor models for predicting ADHD risk were found with the maximal cross-validation consistency (CVC) and the optimal testing accuracy. Finally, for these best n-factor models, the interactions were measured by logistic regression under multiplicative and additive interaction models [41, 42]. Amultiplicative interaction term was evaluated by likelihoodratiotestintheLRmodel usingSPSSsoftwarev20.0. Departurefromadditiveinteractionwasassessed by a bootstrapping test of goodness-of-fit using STATA(version 10.0).

Results
Subjects characteristics

The distributions of selected characteristics in the two stages are listed in Table 1. No statistically significant difference was found between cases and controls in the distribution of age, gender and IQ score in the two stages (stage one: \(P_{age} = 0.148, P_{gender} = 0.570, P_{IQ} = 0.159\); stage two: \(P_{age} = 0.266, P_{gender} = 0.076, P_{IQ} = 0.083\)). In stage one, we also found significant differences in the distribution of maternal stress pregnancy, parental marital status, low birth weight and blood lead level (\(P = 0.006, P = 0.033, P = 0.018\) and \(P = 0.009\) respectively). In stage two, significant difference was found in the distribution of maternal stress pregnancy (\(P = 0.030\)). For ADHD subtypes, ADHD-I was the most in both stage one (40%) and stage two (42%). For PSQ scores, significant differences have been found in the two stages for the Hyperactivity index score (stage one: \(P = 0.009\); stage two: \(P = 0.001\)).

Association between SNPs in candidate gene and ADHD Risk

Distribution of genotypes of the SNPs in stage one was presented in S2 Table. We selected 15 SNPs for analysis for two deviating HWE (significant level \(\alpha = 0.05; \alpha' = 0.003\) after Bonferronicorrection). As shown in S3 Table, codominant, dominant, recessive and additive models were all performed for every SNP. Unfortunately, all the \(P\) values did not surpass the Bonferroni threshold in the association tests (significant level \(\alpha = 0.05; \alpha' = 0.00067\)). However, as shown in Table 2, in stage one, KCNIP1 rs1541665 was significantly associated with ADHD under the codominant model (\(OR = 1.972, 95\% CI = 1.197–3.223, P\text{-FDR} = 0.028\)), dominant model (\(OR = 1.611, 95\% CI = 1.169–2.319, P\text{-FDR} = 0.028\)), and additive model (\(OR = 1.633, 95\% CI = 1.199–2.427, P\text{-FDR} = 0.028\)) after FDR correction. FHIT rs3772475 has also been observed to have significant association with ADHD under dominant model (\(OR = 1.572, 95\% CI = 1.128–2.306, P\text{-FDR} = 0.028\)).

The promising KChIP1 rs1541665 and FHIT rs3772475 were further genotyped in the validation stage. We successfully validated the significant association between KChIP1 rs1541665 with ADHD risk (CC vs.TT, \(OR = 1.925, 95\% CI = 1.229–2.873, P\text{-FDR} = 0.028\); dominant model: \(OR = 1.434, 95\% CI = 1.078–1.969, P\text{-FDR} = 0.037\); additive model: \(OR = 1.588, 95\% CI = 1.125–2.257, P\text{-FDR} = 0.033\) (Table 2) after FDR correction. However, we didn’t find FHIT rs3772475 significant association with ADHD in validated samples.
Table 1. Characteristic data of the subjects.

	Stage one		Stage two					
	ADHD	Control	Statistics	P value	ADHD	Control	Statistics	P value
Age (mean±SD)a								
(256)	8.20±1.53	8.34±1.72	1.048	0.148	8.51±1.78	8.60±2.10	0.624	0.266
Gender (boys: girls)								
	0.324	0.570			3.157	0.076		
Boys	201	299			263	322		
girls	55	73			65	109		
IQ score (mean±SD)a								
	96.57±12.35	97.52±11.25	1.000	0.159	89.33±11.21	90.49±11.60	1.385	0.083
Maternal stress pregnancy								
No	149	256	7.460	0.006	251	349	4.700	0.030
Yes	107	116			77	72		
Maternal smoking								
No	241	356	0.785	0.376	314	422	3.013	0.083
Yes	15	16			14	9		
Maternal alcohol								
No	239	359	3.299	0.069	311	415	0.969	0.325
Yes	17	13			17	16		
Parental marital status								
Couple	229	350	4.525	0.033	314	416	3.013	0.083
Divorced	27	22			14	12		
Preterm birth								
≥37 weeks	214	330	3.425	0.064	298	380	2.870	0.090
<37 weeks	42	42			30	51		
Low birth weight								
<2.5 kg	34	28	5.643	0.018	35	29	3.749	0.053
≥2.5 kg	222	344			293	402		
Blood lead levelb								
Low	117	202	6.783	0.009	152	228	3.205	0.073
High	149	169			176	203		
Subtype								
Inattentive (ADHD-I)	102(40%)	138(42%)						
Hyperactive/impulsive (ADHD-HI)	64(25%)	79(24%)						
Combined (ADHD-C)	90(35%)	111(34%)						
PSQ score (mean±SD)a								
Impulsive-hyperactive score	1.36±1.20	1.27±1.05	-0.995	0.160	1.52±0.84	1.45±0.82	-1.153	0.125
Hyperactive score	1.32±0.41	1.24±0.42	-2.368	0.009	1.58±0.92	1.36±0.96	-3.184	0.001
Total score	38.98±17.56	37.86±11.15	-0.977	0.164	40.21±18.02	38.97±16.59	-0.983	0.163

a mean ± SD, by independent t-test;
b Stage one: low <Median 54.50µg/l, High ≥54.50 µg/l; Stage two: low <Median 55.05µg/l, High ≥55.05µg/l; Bold values indicated P< 0.05.

https://doi.org/10.1371/journal.pone.0188678.t001

Association between candidate SNPs and ADHD subtypes

In stage one (Table 3), significant association was found between ADHD-I and controls for rs1541665. Compared with TT genotype, TC+CC genotype increased ADHD-I risk (OR = 2.089, 95% CI = 1.401–3.137, P-FDR = 0.027) after FDR correction. In stage two, rs1541665 has been consistently associated with ADHD-I (OR = 2.178, 95% CI = 1.398–3.773, P-FDR = 0.027) after FDR correction. In combined samples, we replicated these results (Table 4). However, we didn’t find other snps significant association with ADHD subtypes after Bonferroni correction (S4 Table, α′ = 0.0011).
Association between SNPs and PSQ Scores

In stage one, three SNPs (rs1541665, rs3772475, and rs757511) have been nominally found associated with PSQ scores (S5 Table). For rs1541665 and rs3772475, when comparing the
Table 3. Correlations between promising SNPs and ADHD subtypes in both stages and combined stage.

SNP	Genotype	Control	ADHD-HI	ADHD-I	ADHD-C									
			Case	OR(95%CI)	P	P-FDR	Case	OR(95%CI)	P	P-FDR	Case	OR(95%CI)	P	P-FDR
rs1541665			34	Ref	34	Ref	40	Ref	40	Ref				
Stage one	TT	195	30	Ref	1.018(0.375,1.778)	0.612	0.648	2.089(1.401,3.137)	0.003	0.027	1.629(0.828,2.645)	0.168	0.444	
	CT+CC	177	34	1.287(0.799,2.057)	0.312	0.468	2.178(1.398,3.773)	0.001	0.027	1.377(0.876,2.141)	0.189	0.437		
	TT	191	37	Ref	0.379(0.130,1.097)	0.718	0.498	1.298(0.741,2.236)	0.375	0.688	1.223(0.661,2.247)	0.604	0.566	
	CT+CC	240	42	1.581(0.895,2.102)	0.194	0.437	1.504(0.878,2.501)	0.128	0.384	1.891(1.008,2.881)	0.044	0.158		
	TT	386	67	Ref	1.231(0.834,1.815)	0.791	0.868	2.341(1.713,3.282)	8.951 * 10^{-8}	1.611 * 10^{-8}	1.464(0.952,2.259)	0.085	0.250	
Combined	TT	417	76	Ref	1.581(0.895,2.102)	0.194	0.437	1.504(0.878,2.501)	0.128	0.384	1.891(1.008,2.881)	0.044	0.158	
rs3772475			45	Ref	57	Ref	68	Ref	68	Ref				
Stage one	TT	205	32	Ref	1.231(0.834,1.815)	0.791	0.868	2.341(1.713,3.282)	8.951 * 10^{-8}	1.611 * 10^{-8}	1.464(0.952,2.259)	0.085	0.250	
	TC+CC	167	32	1.581(0.895,2.102)	0.194	0.437	1.504(0.878,2.501)	0.128	0.384	1.891(1.008,2.881)	0.044	0.158		
	TT	181	30	Ref	1.231(0.834,1.815)	0.791	0.868	2.341(1.713,3.282)	8.951 * 10^{-8}	1.611 * 10^{-8}	1.464(0.952,2.259)	0.085	0.250	
	TC+CC	240	34	1.581(0.895,2.102)	0.194	0.437	1.504(0.878,2.501)	0.128	0.384	1.891(1.008,2.881)	0.044	0.158		
	TT	368	62	Ref	1.231(0.834,1.815)	0.791	0.868	2.341(1.713,3.282)	8.951 * 10^{-8}	1.611 * 10^{-8}	1.464(0.952,2.259)	0.085	0.250	
	TC+CC	407	66	1.220(0.789,1.999)	0.434	0.644	1.111(0.763,1.419)	0.445	0.616	1.212(0.879,1.689)	0.249	0.468		

Notes:

- All the P values were adjusted for age and gender.
- P values of false discovery rate (FDR). The significant results were in bold.

https://doi.org/10.1371/journal.pone.0188678.t003
hyperactive symptom score in the TT genotype group, the CC genotype showed only slightly higher value of the same score ($P = 0.038$ and $P = 0.027$, respectively). For rs757511, lower hyperactive symptom score has been found in AA genotype compared to that of the GG genotype. In validation stage, hyperactive symptom scores in CC genotype of rs1541665 and rs3772475 were found to be higher than the scores in the TT genotype ($P = 0.029$ and $P = 0.046$, respectively) (Table 4). Results have also been validated in combined samples. However, we didn’t find other snps significant association with PSQ scores (S5 Table).

Gene-environment interactions

In the MDR analyses in combined samples, the three-factor model including rs1541665, maternal stress pregnancy and BLL was selected as the best predictor for ADHD risk, because it had the optimal testing accuracy and the maximal CVC values (Table 5). A significant interaction both in additive terms ($P_{\text{add}} = 0.034$) and multiplicative terms ($P_{\text{mul}} = 0.021$) was detected with an OR of 3.052 (95% CI 2.219–4.271) among the subjects with maternal stress carrying an CT+CC genotype compared with those without maternalstress carrying TT

Genotype	Impulsive-hyperactive score	Hyperactive index score	Total score						
	Mean±SD	F	P^a	Mean±SD	F	P^a	Mean±SD	F	P^a
KCNIP1 rs1541665									
Stage one									
TT	1.28±0.88	0.097	3.266	0.035	2.698	0.052			
CT	1.30±0.86	0.974	1.39±0.91	0.260	39.42±16.19	0.512			
CC	1.58±1.02	0.136	1.69±0.97	0.038	48.60±24.87	0.041			
Stage two									
TT	1.14±0.86	0.046	4.638	0.016	0.547	0.233			
CT	1.25±0.93	0.872	1.25±0.77	0.725	39.44±15.81	0.827			
CC	1.40±0.85	0.230	1.44±0.83	0.029	42.50±21.38	0.864			
Combined									
TT	1.60±0.68	0.312	4.780	0.014	0.122	0.367			
CT	1.26±0.64	0.926	1.55±0.51	0.865	38.00±17.79	0.981			
CC	1.17±0.63	1.000	1.75±0.60	0.005	37.36±14.57	0.943			
FHIT rs3772475									
Stage one									
TT	1.24±0.76	0.041	4.639	0.016	0.547	0.232			
TC	1.26±0.87	0.923	1.25±0.88	0.727	39.41±15.82	0.817			
CC	1.61±0.85	0.042	1.52±0.83	0.027	42.51±21.37	0.875			
Stage two									
TT	1.17±0.61	0.330	2.322	0.064	0.478	0.242			
TC	1.26±0.69	0.894	1.28±0.86	0.481	36.92±16.75	0.737			
CC	1.20±0.69	1.000	1.39±0.75	0.046	36.87±12.81	0.880			
Combined									
TT	1.02±0.84	0.129	2.264	0.067	1.562	0.108			
TC	1.13±0.86	0.498	1.32±0.98	0.481	35.74±15.99	0.264			
CC	1.38±0.99	0.185	1.41±1.26	0.042	39.43±16.33	0.986			

*compared with ANOVA analysis, posthoc comparisons with SNK;
The significant results were in bold.

https://doi.org/10.1371/journal.pone.0188678.t004

Table 4. Association of promising SNPs genotypes with PSQ scores in all stages.
Subjects with high lead exposure and CC+TC genotype exhibited significantly increased risk of ADHD compared to carriers with low lead exposure and the wild-type genotypes, with ORs of 1.674 (95%CI = 1.299–2.478) on a multiplicative scale ($P_{\text{add}} = 0.017$).

Discussion

We conducted a two-stage case-control study to explore the effects of variants in Kv channels and their accessory proteins on the risk of ADHD, and identified $KChIP1$ rs1541665 genetic variant as a new susceptibility locus for ADHD. The following analysis suggested that $KChIP1$ rs1541665 also associated with hyperactive index score of PSQ scores and the ADHD-I risk. Gene-environment interaction analysis consistently revealed the potential interactions of rs1541665 collaborating with maternal stress and blood lead to modify ADHD risk. To the best of our knowledge, this is the first study that comprehensively investigates the association between the genetic variants of Kv channels and their accessory proteins and ADHD risk.

rs1541665, located in the intron of the $KChIP1$ gene, was consistently shown to be associated with ADHD risk in the discovery and validation stages. $KCNIP1$ gene (also known with its alias name $KChIP1$) encodes the potassium channel-interacting protein 1 (KChIP1), which

Genotypes factors	Case/control OR(95%CI)	P_{mul}	P_{add}
rs1541665 Maternal stress pregnancy	TT No 189/312 1.000	0.021	0.034
TT Yes 29/74 0.658(0.458,1.041)	0.154	0.017	
CT+CC No 211/293 1.189(0.954,1.587)	1.326(0.798,1.639)		
CT+CC Yes 155/84 3.052(2.219,4.271)	1.731(1.263,2.471)		
rs1541665 Blood lead level*	TT Low(<54.70ug/l) 148/272 1.000	0.154	0.017
TT High(>54.70 ug/l) 70/114 1.326(0.798,1.639)	1.326(0.798,1.639)		
CT+CC Low(<54.70ug/l) 132/141 1.731(1.263,2.471)	1.731(1.263,2.471)		
CT+CC High(>54.70 ug/l) 234/276 1.674(1.299,2.478)	1.674(1.299,2.478)		

*Blood lead level was divided into low and high by median (54.70 ug/l).

a All the P values were adjusted for age and gender.

The significant results were in bold.
is expressed predominantly in the brain, with relative abundance in cerebellum, hippocampus, striatum, and the reticular thalamic and medial habenular nuclei [43]. Abnormal function in cerebellum, hippocampus, and striatum has been known to be involved in ADHD risk [44]. KChIP1 was traditionally thought an auxiliary subunit of the protein complex Kv4.2 and Kv4.3 channels in neurons, and it has been reported to be able to dramatically increase the surface expression and slow the turnover of the Kv4 protein, as well as increase the rate of recovery from the inactive state of Kv4.2/4.3 channels, thereby reducing neuronal excitability [45, 46]. Indeed, evidence has shown that by reducing neuronal excitability through potassium channels regulation, KChIP1 plays a neuroprotective role against epilepsy [47]. Since high neuronal excitability has been associated with the pathogenesis of ADHD [48, 49], KChIP1 may also be implicated in ADHD.

In addition, it may also be possible that KChIP1 involvement in ADHD is by regulating GABA levels, although the mechanism remains ambiguous. Studies have shown that KChIP1 potentially modulated GABAergic system by regulating inhibitory synaptic transmission [50, 51]. GABA is an inhibitory neurotransmitter and could play a role in ADHD. Courvoisie et al. measured decreased levels of GABA in ADHD patients [52]. An optimal level of GABA in the synaptic cleft maintains optimal excitability of the neuronal networks involved in alerting and attention [53, 54]. KChIP1 KO mice exhibited enhanced anxiety-like behavior related to GABA-mediated neurotransmission [51], and this anxiety-like behavior is a common trait in ADHD [55].

As a neuronal calcium sensor (NCS) protein, KChIP1 is also potentially involved in ADHD by regulating neuronal calcium. Calcium, which acts intracellularly like a second messenger, has an immediate impact on synaptic activity [56]. Gene disruption of neuronal calcium sensor -1 (NCS-1) causes defects in associative learning and memory, and methylphenidate alters its expression in the rat brain, suggesting a possible involvement of NCS-1 in ADHD [57]. In addition, other studies have reported that the activation of dopamine D2 receptors (D2R) suppressed backpropagating action potentials (bAP) controlled by KChIP1 [58] to evoke calcium transients most likely through the involvement of the dendritic Kv4 channels [59]. Given the vital role of D2R in ADHD [60, 61], KChIP1 has also been implicated in ADHD pathophysiology.

Gene-environment interaction analysis also showed KChIP1 rs1541665 collaborating with maternal stress pregnancy and blood lead to modify ADHD risk. Grizenko N et al. observed that maternal stress pregnancy may interact with the child’s DRD4 7/7 genotype to produce more severe ADHD symptoms [62]. The interaction of LPHN3 gene with maternal stress pregnancy showed to be associated with ADHD [63]. Plasticity or risk genotypes are likely susceptible to some riskfactors or stressors, supporting interaction of stress with genes [64]. Evidence has shown that adverse maternal environment resulted in either hyper- or hypo-methylation for gene body and reduced expression of cell adhesion and neurotransmitter receptor genes, implicating a gene-environment interaction [65]. Lead has been as a risk factor for ADHD in previous reports [66, 67] and interacted with gene variants [68, 69]. Luo M et al. discovered the epigenetic mechanism bridging lead and ADHD in the histone modification level [70], and early life-lead exposure altered gene expression patterns and global methylation profiles, suggesting that lead caused neurotoxicity by gene interactions [71, 72]. Besides, lead can coordinate with the oxygen/sulfur atoms in the K channel protein, leading to the decrease in the function of the K channel [73]. Thus, we speculated that the lead and Kv channels may work together in ADHD. However, though we used the statistics methods to explore and find the potential interactions, the mechanism of how lead and maternal stress interact with KChIP1 remains unclear, which may be the limitations of our study. Further biological mechanism of the gene x environment interactions will be needed to identify the true interactions.
Neale et al found rs1541665 to be one of top 25 results associated with ADHD in corrected transmission disequilibrium test (TDT) \((P = 5.60 \times 10^{-5})\) [10]. Although rs1541665 was found to have little biological function in F-SNP (http://compbio.cs.queensu.ca/F-SNP/) with an FS score of 0.101 for regulating transcription [36], the SNP was high LD with another 3'UTR SNP rs1363713 \((D' = 1 \text{ and } r^2 = 0.905 \text{ in the 1000 Genomes Project, Phase 3 CHB})\), which was identified as a binding site for micro RNAs (miRNAs) by miRNA SNP2.0 (http://www.bioguo.org/miRNASNP/) [74]. The e-QTL analysis from the Brain eQTL Almanac (www.braineac.org) [75] indicated that rs1363713 genotype was associated with KChIP1 gene expression \((P = 0.0053 \text{ in substantia nigra})\). Accordingly, we could speculate that rs1541665 might not be the “real” causal variant for ADHD but only a “proxy” for other true biologically functional SNPs like rs1363713, which might provide a clue for further studies in the future.

In addition, in our study, we found evidence of FHIT rs3772475 and KCNC1 rs757511 nominal association with ADHD and ADHD symptoms respectively, in the discovery stage. FHIT gene, encoding the fragile histidine triad protein, is preferentially and stably expressed in brain microglia. McCarthy et al. noted that FHIT gene was associated with ADHD by genomic study, in addition to having altered expression in the mouse brain in response to lithium [76]. KCNC1 encodes Kv3.1, a subtype of Kv channels, highly enriched in neurons firing at high-frequency [77]. KCNC1 also modulated gamma activity in neurons, which is disrupted in diseases associated with sensory processing and attention impairments [78, 79]. A reduction of gamma activity is observed in patients with Alzheimer’s disease, whereas an increase is found in patients with ADHD [80], implicating a role of the KCNC1 gene in ADHD.

In addition, in published GWAS studies, 5 loci (KChIP1 rs1541665, KChIP4 rs876477, DPP10 rs27200, FHIT rs3772475 and KCNC1 rs757511) were found to be associated with ADHD [10–12]. However, of these 5 loci, our study only found that KChIP1 rs1541665 was associated with ADHD, which is consistent with Neal’s GWAS findings. The inconsistent results of the other 4 loci may be attributed to the considerable differences in the allele frequencies of these SNPs between Asian and European descents. For example, the minor allele (the corresponding minor allele frequency, MAF) of KCNC1 rs757511 in Asian population and European population was A (0.31) and G (0.47) respectively.

In conclusion, this study comprehensively explored for the first time the role of Kv channels and their accessory proteins genes and their interaction with environment in ADHD and provided a clue for KChIP1 involvement in ADHD. Although we did not replicate the association in stage two for FHIT and KCNC1 and did not observe any association between other gene variants and ADHD, Neale et al and Stergiakouli et al. also did not show a clear effect for potassium channel genes [81, 82], which may be interpreted by the inadequate power to detect effects, the differences of studied samples in geography, ethnicity and clinical phenotypes (persistence, comorbidity, etc.) and multiple genetic factors for complex disorders such as ADHD. Further studies with different ethnicities and further functional studies to reveal the biological mechanisms are warranted to produce definitive conclusions.

Supporting information

S1 Table. Characteristic data of the candidate polymorphisms. *MAF from 1000 Genomes Phase 3 CHB database.*

(DoCX)

S2 Table. Distribution of different genetic polymorphisms in ADHD and control group. Abbreviations: HW, wild type homozygote; HT, heterozygote; HV, variant homozygote;
HWE: Hardy-Weinberg; MAF: minor allele frequency.

S3 Table. Association between individual SNP and ADHD risk in discovery stage. Abbreviations: Ref, Reference allele; HW, wild type homozygote; HT, heterozygote; HV, variant homozygote; OR, odds ratio; CI, confidence interval. a All the P values were adjusted for age and gender. The significant level was corrected with the formula of $\alpha' = \alpha/15^5 = 0.00067$ according to the Bonferroni method. The nominal significant results were in bold.

S4 Table. Correlations between candidate SNPs and ADHD subtype in stage one. a All the P values were adjusted for age and gender. The significant level was corrected with the formula of $\alpha' = \alpha/15^3 = 0.0011$ according to the Bonferroni method. The nominal significant results were in bold.

S5 Table. Association of candidate SNPs genotypes with PSQ score in stage one. a compared with ANOVA analysis, posthoc comparisons with SNK. The significant results were in bold.

Acknowledgments

We are grateful to the subjects for their participation and to Editage (http://online.editage.cn/) for English language editing.

Author Contributions

Conceptualization: Jing Wu.

Data curation: Fang-Fen Yuan, Xue Gu.

Formal analysis: Xin Huang.

Investigation: Yu-Wei Hou, Yan Zhong.

Methodology: Jing Wu.

Resources: Yan Zhong, Jun Lin.

Writing – original draft: Fang-Fen Yuan.

Writing – review & editing: Fang-Fen Yuan.

References

1. Association AP. Diagnostic statistical manual of mental disorders: DSM-5 (5th ed.). VA: American Psychiatric Publishing, 2013.

2. Willcutt EG. The prevalence of DSM-IV attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics. 2012; 9(3):490–9. https://doi.org/10.1007/s13311-012-0135-8 PMID: 22976615

3. Biederman J, Kwon A, Aleardi M, Chouinard VA, Marino T, Cole H, et al. Absence of gender effects on attention deficit hyperactivity disorder: findings in nonreferred subjects. The American journal of psychiatry. 2005; 162(6):1083–9. https://doi.org/10.1176/appi.ajp.162.6.1083 PMID: 15930056

4. Faraone SV, Biederman J. Neurobiology of attention-deficit hyperactivity disorder. Biol Psychiatry. 1998; 44(10):951–8. PMID: 9821559

5. Swanson JM, Sergeant JA, Taylor E, Sonuga-Barke EJ, Jensen PS, Cantwell DP. Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet. 1998; 351(9100):429–33. PMID: 9482319
6. Kessler RC, Adler L, Ames M, Barkley RA, Birnbaum H, Greenberg P, et al. The prevalence and effects of adult attention deficit/hyperactivity disorder on work performance in a nationally representative sample of workers. J Occup Environ Med. 2005; 47(6):565–72. PMID: 15951716

7. Spencer T, Biederman J, Wilens T. Attention-deficit/hyperactivity disorder and comorbidity. Pediatr Clin North Am. 1999; 46(5):915–27. PMID: 10570696

8. Plomp E, Van Engeland H, Durston S. Understanding genes, environment and their interaction in attention-deficit hyperactivity disorder: is there a role for neuroimaging? Neuroscience. 2009; 164(1):230–40. https://doi.org/10.1016/j.neuroscience.2009.07.024 PMID: 1961618

9. Thapar A, Cooper M, Jefferies R, Stergiakouli E. What causes attention deficit hyperactivity disorder? Archives of disease in childhood. 2012; 97(3):260–5. https://doi.org/10.1136/archdischild-2011-300482 PMID: 21903599

10. Neale BM, Lasky-Su J, Anney R, Franke B, Zhou K, Maller JB, et al. Genome-wide association scan of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2008; 147B(8):1337–44. https://doi.org/10.1002/ajmg.b.30866 PMID: 18980221

11. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT, et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm. 2008; 115(11):1573–85. https://doi.org/10.1007/s00702-008-0119-3 PMID: 18839057

12. Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Maller JB, et al. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet. 2008; 147B(8):1345–54. https://doi.org/10.1002/ajmg.b.30867 PMID: 18215655

13. Mooney MA, McWeeny SK, Faraone SV, Hinney A, Hebebrand J, Nigg JT, et al. Pathway analysis in attention deficit hyperactivity disorder: An ensemble approach. Am J Med Genet B Neuropsychiatr Genet. 2016.

14. Weissflug L, Scholz CJ, Jacob CP, Nguyen TT, Zamzow K, Gross-Lesch S, et al. KCNIP4 as a candidate gene for personality disorders and adult ADHD. Eur Neuropsychopharmacol. 2013; 23(6):436–47. https://doi.org/10.1016/j.euroneuro.2012.07.017 PMID: 22981920

15. Bezerra GA, Dobrovetsky E, Sel'tova A, Fedosyuk S, Dhe-Paganon S, Gruber K. Structure of human dipeptidyl peptidase 10 (DPPY): a modulator of neuronal Kv4 channels. Sci Rep. 2015; 5:8769. https://doi.org/10.1038/srep08769 PMID: 25740212

16. Rhodes KJ, Carroll KI, Sung MA, Doliveira LC, Monaghan MM, Burke SL, et al. KChIPs and Kv4 alpha subunits as integral components of A-type potassium channels in mammalian brain. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2004; 24(36):7903–15.

17. Shibata R, Misonou H, Campomanes CR, Anderson AE, Schrader LA, Doliveira LC, et al. A fundamental role for KChIPs in determining the molecular properties and trafficking of Kv4.2 potassium channels. J Biol Chem. 2003; 278(38):36445–54. https://doi.org/10.1074/jbc.M306142200 PMID: 12829703

18. Lin L, Sun W, Wilkenheiser AM, Kung F, Hoffman DA. KChIP4a regulates Kv4.2 channel trafficking through PKA phosphorylation. Mol Cell Neurosci. 2010; 43(3):315–25. https://doi.org/10.1016/j.mcn.2009.12.005 PMID: 20045463

19. Vacher H, Trimmer JS. Diverse roles for auxiliary subunits in phosphorylation-dependent regulation of mammalian brain voltage-gated potassium channels. Pflugers Arch. 2011; 462(5):631–43. https://doi.org/10.1007/s00424-011-1004-8 PMID: 21822597

20. Zagha E, Ozaita A, Chang SY, Nadal MS, Lin U, Saganich MJ, et al. DPP10 modulates Kv4-mediated A-type potassium channels. J Biol Chem. 2005; 280(19):18853–61. https://doi.org/10.1074/jbc.M410613200 PMID: 15671030

21. Gomez L, Wigg K, Zhang K, Lopez L, Sandor P, Malone M, et al. Association of the KCNJ5 gene with Tourette Syndrome and Attention-Deficit/Hyperactivity Disorder. Genes Brain Behav. 2014; 13(6):535–42. https://doi.org/10.1111/gbb.12141 PMID: 24840790

22. Speca DJ, Ogata G, Mandikian D, Bishop H, Wiler SW, Eum K, et al. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. Genes Brain Behav. 2014; 13(4):394–408. https://doi.org/10.1111/gbb.12120 PMID: 24494598

23. Branch SY, Beckstead MJ. Methamphetamine produces bidirectional, concentration-dependent effects on dopamine neuron excitability and dopamine-mediated synaptic currents. J Neurophysiol. 2012; 108(3):802–9. https://doi.org/10.1152/jn.00994.2012 PMID: 22592307

24. Kidani Y, Ishimatsu M, Kuwahata T, Yamashita Y, Akasu T, Matsuishi T. [Effects of milnacipran on neuronal excitability and synaptic transmission in neurons of the rat locus coeruleus]. No To Hattatsu. 2005; 37(1):31–8. PMID: 15675357
25. Martel P, Leo D, Fulton S, Berard M, Trudeau LE. Role of Kv1 potassium channels in regulating dopamine release and presynaptic D2 receptor function. PLoS One. 2011; 6(5):e20402. https://doi.org/10.1371/journal.pone.0020402 PMID: 21647367

26. Fulton S, Thibault D, Mendez JA, Lahaie N, Tirotta E, Borrelli E, et al. Contribution of Kv1.2 voltage-gated potassium channel to D2 autoreceptor regulation of axonal dopamine overflow. J Biol Chem. 2011; 286(11):9360–72. https://doi.org/10.1074/jbc.M110.153262 PMID: 21233214

27. Viggiano D, Vallone D, Sadile A. Dysfunctions in dopamine systems and ADHD: evidence from animals and modeling. Neural Plast. 2004; 11(1–2):97–114. https://doi.org/10.1155/NP.2004.97 PMID: 15303308

28. Morgan AE, Hynd GW, Riccio CA, Hall J. Validity of DSM-IV ADHD predominantly inattentive and combined types: relationship to previous DSM diagnoses/subtype differences. Journal of the American Academy of Child and Adolescent Psychiatry. 1996; 35(3):325–33. https://doi.org/10.1097/00004583-199603000-00014 PMID: 8714321

29. Gaub M, Carlson CL. Behavioral characteristics of DSM-IV ADHD subtypes in a school-based population. J Abnorm Child Psychol. 1997; 25(2):103–11. PMID: 9109027

30. Gong Y, C T. Chinese-Wechsler intelligence scale for children Hunan. China: Map Press. 1993.

31. Li Y, Zeng Y, Zhu W, Cui Y, Li J. Path model of antenatal stress and depressive symptoms among Chinese primipara in late pregnancy. BMC pregnancy and childbirth. 2016; 16(1):180. https://doi.org/10.1186/s12884-016-0972-2 PMID: 27439302

32. Pan Y-L W H-J, Hu M. Study on the stress of pregnant women. Journal of Nursing Science. 2003; 18 (12):891–3.

33. Goldstein S, Conners’ Parent Rating Scale—Revised: Springer US; 2011. 404 p.

34. Fan J, D Y, Wang LW. The norm and reliability of the Conners Parent Symptom Questionnaire in Chinese urban children. Shanghai Archives of psychiatry. 17(6). 2005.

35. Gordon HA, Rucklidge JJ, Blampied NM, Johnstone JM. Clinically Significant Symptom Reduction in Children with Attention-Deficit/Hyperactivity Disorder Treated with Micronutrients: An Open-Label Reversal Design Study. J Child Adolesc Psychopharmacol. 2015; 25(10):783–98. https://doi.org/10.1089/cap.2015.0105 PMID: 26682999

36. Lee PH, Shatkay H, F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res. 2008; 36(Database issue):D820–4. https://doi.org/10.1093/nar/gkm904 PMID: 17986460

37. Morgan JF. p Value fetishism and use of the Bonferroni adjustment. Evid Based Ment Health. 2007; 10(2):34–5. PMID: 17459968

38. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behavioural brain research. 2001; 125(1–2):279–84. PMID: 11682119

39. Lubin JH, Gail MH. On power and sample size for studying features of the relative odds of disease. Am J Epidemiol. 1990; 131(3):552–66. PMID: 2301364

40. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics (Oxford, England). 2003; 19(3):376–82.

41. Andersson T, Alfredsson L, Kallberg H, Zdravkovic S, Ahlborn A. Calculating measures of biological interaction. European journal of epidemiology. 2007; 20(7):575–9. PMID: 16119429

42. Knol MJ, van der Tweel I, Grobbee DE, Numans ME, Geerlings MI. Estimating interaction on an additive scale between continuous determinants in a logistic regression model. International journal of epidemiology. 2007; 36(5):1111–8. https://doi.org/10.1093/ije/dym157 PMID: 17726040

43. Xiong H, Kovacs I, Zhang Z. Differential distribution of KChIPs mRNAs in adult mouse brain. Brain Res Mol Brain Res. 2004; 128(2):103–11. https://doi.org/10.1016/j.molbrainres.2004.06.024 PMID: 15363885

44. Wankerl B, Hauser J, Makulskia-Gertruda E, Reissmann A, Sontag TA, Tucha O, et al. [Neurobiology of attention deficit hyperactivity disorder]. Fortschr Neurol Psychiatr. 2014; 82(1):9–29. https://doi.org/10.1055/s-0033-1355710 PMID: 24446115

45. Bourdeau ML, Laplante I, Laurent CE, Lacaille JC. KChIP1 modulation of Kv4.3-mediated A-type K(+) currents and repetitive firing in hippocampal interneurons. Neuroscience. 2011; 176:173–87. https://doi.org/10.1016/j.neuroscience.2010.11.051 PMID: 21129448

46. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, et al. Modulation of A-type potassium channels by a family of calcium sensors. Nature. 2000; 403(6769):553–6. https://doi.org/10.1038/35000592 PMID: 10676964

47. Del Pino J, Frejo MT, Baselga MJ, Capo MA, Moyano P, Garcia JM, et al. Neuroprotective or neurotoxic effects of 4-aminopyridine mediated by KChIP1 regulation through adjustment of Kv4.3 potassium
channels expression and GABA-mediated transmission in primary hippocampal cells. Toxicology, 2015; 333:107–17. https://doi.org/10.1016/j.tox.2015.04.013 PMID: 25917026

48. Grammatikopoulos G, Pignatelli M, D’Amico F, Fiorillo C, Fresiello A, Sadile AG. Selective inhibition of neuronal nitric oxide synthesis reduces hyperactivity and increases non-selective attention in the Naples High-Excitability rat. Behavioural brain research. 2002; 130(1–2):127–32. PMID: 11864728

49. Ruocco LA, de Souza Silva MA, Topic B, Mattem C, Huston JP, Sadile AG. Intranasal application of dopamine reduces activity and improves attention in Naples High Excitability rats that feature the mesocortical variant of ADHD. Eur Neuropsychopharmacol. 2009; 19(10):693–701. https://doi.org/10.1016/j.euroneuro.2009.02.005 PMID: 19328660

50. Xiong H, Xia K, Li B, Zhao G, Zhang Z. KChIP1: a potential modulator to GABAergic system. Acta Biochim Biophys Sin (Shanghai). 2009; 41(4):295–300.

51. Xia K, Xiong H, Shin Y, Wang D, Deerinck T, Takahashi H, et al. Roles of KChIP1 in the regulation of GABA-mediated transmission and behavioral anxiety. Mol Brain. 2010; 3:23. https://doi.org/10.1186/1756-6606-3-23 PMID: 20678225

52. Couvoisie H, Hooper SR, Fine C, Kwock L, Castillo M. Neuretmetabolic functioning and neuropsychological correlates in children with ADHD-H: preliminary findings. J Neuropsychiatry Clin Neurosci. 2004; 16(1):63–9. https://doi.org/10.1176/jnp.16.1.63 PMID: 14990761

53. Antonucci F, Alpar A, Kaczka J, Caleo M, Verderio C, Giani A, et al. Cracking down on inhibition: selective removal of GABAergic interneurons from hippocampal networks. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2012; 32(6):1989–2001.

54. Thoeringer CK, Ripke S, Unschuld PG, Lucae S, Ising M, Bettecken T, et al. The GABA transporter 1 gene and attention deficit hyperactivity disorder (spontaneously hypertensive rat) and depression/activity-like behaviours (Wistar-Kyoto rat). Brain Res. 2008; 1200:107–15. https://doi.org/10.1016/j.brainres.2008.01.033 PMID: 18295191

55. Howells FM, Russell VA. Glutamate-stimulated release of norepinephrine in hippocampal slices of animal models of attention-deficit/hyperactivity disorder (spontaneously hypertensive rat) and depression/activity-like behaviours (Wistar-Kyoto rat). Brain Res. 2008; 1200:107–15. https://doi.org/10.1016/j.brainres.2008.01.033 PMID: 18295191

56. Zamponi GW. Regulation of presynaptic calcium channels by synaptic proteins. J Pharmacol Sci. 2003; 92(2):79–83. PMID: 12832834

57. Souza RP, Soares EC, Rosa DV, Souza BR, Reus GZ, Barichello T, et al. Methylphenidate alters NCS-1 expression in rat brain. Neurochem Int. 2008; 53(1–2):12–6. https://doi.org/10.1016/j.neuint.2008.04.007 PMID: 18514368

58. Johnston D, Hoffman DA, Colbert CM, Magee JC. Regulation of back-propagating action potentials in hippocampal neurons. Curr Opin Neurobiol. 1999; 9(3):288–92. PMID: 10395568

59. Day M, Wokosin D, Plotkin JL, Tian X, Surmeier DJ. Differential excitability and modulation of striatal medium spiny neuron dendrites. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2008; 28(45):11603–14.

60. Pan YQ, Qiao L, Xue XD, Fu JH. Association between ANKK1 (rs1800497) polymorphism of DRD2 gene and attention deficit hyperactivity disorder: a meta-analysis. Neurosci Lett. 2015; 590:101–5. https://doi.org/10.1016/j.neulet.2015.01.076 PMID: 25641135

61. Nyman ES, Loukola A, Varilo T, Taanila A, Hurtig T, Moilanen I, et al. Sex-specific influence of DRD2 on the cortical variant of ADHD. Eur Neuropsychopharmacol. 2009; 19(10):693–701. https://doi.org/10.1016/j.euroneuro.2009.02.005 PMID: 19328660

62. Morgan JE, Hammen C, Lee SS. Parental Serotonin Transporter Polymorphism (5-HTTLPR) Moderates Associations of Stress and Child Behavior With Parenting Behavior. Journal of clinical child and adolescent psychology: the official journal for the Society of Clinical Child and Adolescent Psychology, American Psychological Association, Division 53. 2016:1–12.

63. Oh JE, Chambwe N, Klein S, Gal J, Andrews S, Gleason G, et al. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment. Translational psychiatry. 2013; 3:e218. https://doi.org/10.1038/tp.2012.130 PMID: 23340501
66. Eubig PA, Aguiar A, Schantz SL. Lead and PCBs as risk factors for attention deficit/hyperactivity disorder. Environmental health perspectives. 2010; 118(12):1654–67. https://doi.org/10.1289/ehp.0901852 PMID: 20829149

67. Joo H, Lim MH, Ha M, Kwon HJ, Yoo SJ, Choi KH, et al. Secondhand Smoke Exposure and Low Blood Lead Levels in Association With Attention-Deficit Hyperactivity Disorder and Its Symptom Domain in Children: A Community-Based Case-Control Study. Nicotine & tobacco research: official journal of the Society for Research on Nicotine and Tobacco. 2016.

68. Karwowski MP, Just AC, Bellinger DC, Jim R, Hatley EL, Ettinger AS, et al. Maternal iron metabolism gene variants modify umbilical cord blood lead levels by environment interaction: a birth cohort study. Environmental health: a global access science source. 2014; 13:77.

69. Nigg JT, Elmore AL, Natarajan N, Friderici KH, Nikolaus MA. Variation in an Iron Metabolism Gene Moderates the Association Between Blood Lead Levels and Attention-Deficit/Hyperactivity Disorder in Children. Psychological science. 2016; 27(2):257–69. https://doi.org/10.1177/0956797615618365 PMID: 26710823

70. Luo M, Xu Y, Cai R, Tang Y, Ge MM, Liu ZH, et al. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicology letters. 2014; 225(1):78–85. https://doi.org/10.1016/j.toxlet.2013.11.025 PMID: 24291742

71. Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, et al. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2005; 25(4):823–9.

72. Dosunmu R, Wu J, Adwan L, Maloney B, Basha MR, McPherson CA, et al. Lifespan profiles of Alzheimer’s disease-associated genes and products in monkeys and mice. Journal of Alzheimer’s disease: JAD. 2009; 18(1):211–30. https://doi.org/10.3233/JAD-2009-1138 PMID: 19644442

73. Zhou J, Hu G. Effect of lead ion on the function of the human ether-a-go-go-related K+ channel. Biological trace element research. 2011; 143(1):131–42. https://doi.org/10.1007/s12011-010-8856-1 PMID: 2090732

74. Gong J, Liu C, Liu W, Wu Y, Ma Z, Chen H, et al. An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database (Oxford). 2015.

75. Ramasamy A, Trabzuni D, Guelli S, Varghese V, Smith C, Walker R, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014; 17(10):1418–28. https://doi.org/10.1038/nn.3801 PMID: 25174004

76. McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One. 2012; 7(2):e32091. https://doi.org/10.1371/journal.pone.0032091 PMID: 22384149

77. Muona M, Berkovic SF, Dibbens LM, Oliver KL, Majevic S, Bayly MA, et al. A recurrent de novo mutation in KCNCl1 causes progressive myoclonus epilepsy. Nat Genet. 2015; 47(1):39–46. https://doi.org/10.1038/ng.3144 PMID: 25401298

78. Womelsdorf T, Fries P. Neuronal coherence during selective attentional processing and sensory-motor integration. J Physiol Paris. 2006; 100(4):182–93. https://doi.org/10.1016/j.physparis.2007.01.005 PMID: 17351118

79. Neale BM, Medland SE, Ripke S, Turchet A, Malison RT, Partanen K, et al. Genetic architecture of human IQ. Nature. 2012; 488(7411):163–9. https://doi.org/10.1038/nature11336 PMID: 22771815

80. Herrmann CS, Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol. 2005; 116(12):2719–33. https://doi.org/10.1016/j.clinph.2005.07.007 PMID: 16253555

81. Neale BM, Diefenbaker JA, Hare R, Heath AC, Kendler KS, et al. Analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry. 2010; 49(9):848–61. https://doi.org/10.1097/01.jaac.0000384744.08882.1e PMID: 20732625

82. Stargiakouli E, Hamshere M, Holmans P, Langley K, Zahir Khedri I, Hawi Z, et al. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. The American journal of psychiatry. 2012; 169(2):186–94. https://doi.org/10.1176/appi.ajp.2011.11040551 PMID: 22420048