Anderson localization in Bose–Einstein condensates

Giovanni Modugno

LENS and Dipartimento di Fisica, Università di Firenze, and INO-CNR Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
E-mail: modugno@lens.unifi.it

Received 1 February 2010, in final form 10 May 2010
Published 23 September 2010
Online at stacks.iop.org/RoPP/73/102401

Abstract
The understanding of disordered quantum systems is still far from being complete, despite many decades of research on a variety of physical systems. In this review we discuss how Bose–Einstein condensates of ultracold atoms in disordered potentials have opened a new window for studying fundamental phenomena related to disorder. In particular, we direct our attention to recent experimental studies on Anderson localization and on the interplay of disorder and weak interactions. These realize a very promising starting point for a deeper understanding of the complex behaviour of interacting, disordered systems.

(Some figures in this article are in colour only in the electronic version)
This article was invited by John Weiner.

Contents

1. Introduction
2. Disorder models and Anderson localization
 2.1. Random disorder in free space
 2.2. Quasiperiodic lattices
 2.3. Random disorder in a lattice
 2.4. Anderson localization and weak nonlinearity
3. Experiments on Anderson localization with Bose–Einstein condensates
4. Experiments on the interplay of disorder and nonlinearities
5. Outlook
Acknowledgments
References

1. Introduction

Disorder is ubiquitous in nature and often, even if it is only a weak perturbation, it tends to strongly affect the properties of many physical systems. The most celebrated effect of disorder is probably Anderson localization, i.e. the localization of individual particles or waves in a disordered energetic landscape. This fundamental effect of disorder has already been explored in depth more than 50 years ago [1], motivated by the obvious interest in the transport of electrons in crystals. These imperfections are indeed almost unavoidable, and can lead to a dramatic change in the conduction properties of real materials [2].

Anderson localization can be understood as the effect of multiple reflections of a plane wave by random scatterers or random potential barriers. Since the amplitudes or the phases are not all identical, as they would be in a periodic potential, they tend to produce a suppression of the propagation amplitude of the wave at sufficiently large distances, even if the reflected amplitude is exceedingly small. In this case, it can be shown that at large distances the wavefunction must then decay as \(|\phi(x)| \propto \exp |x|/\xi\), where the parameter \(\xi\) is the localization length [3]. Such phenomenon appears already when the potential barriers are much smaller than the kinetic energy associated with the plane wave, a region of parameters where classically one would expect the disorder to produce just a weak perturbation of the propagation. Localization can occur not only for plane waves in free space, but also for Bloch waves, i.e. for particles or waves moving in a lattice potential. It is well known that in this case reflections at the potential barriers are already very strong even in the absence of disorder, but extended Bloch states can however exist, provided that the
energies of the individual lattice sites are equal or shuffled in a periodic way. In 1958, Anderson demonstrated that if the on-site energies are instead shuffled in a random way, the reflections interfere destructively and the eigenfunctions of the system become exponentially localized [1].

Much theoretical work has been done about Anderson localization in the past 50 years with important results, for example, in assessing how localization behaves in finite-size systems (the so-called scaling theory of localization [4]). Several decades of experimental work on condensed-matter systems have on the one hand established the relevance of disorder to many phenomena, with recent highlights such as the quantum Hall effect [5] or the exceptional conduction properties of graphene [6]. On the other hand, they have not provided conclusive results about Anderson localization itself. This is mainly because in real materials there are ingredients that go beyond the approximation of a single particle in a stationary disordered potential [2,7], which make the observation of Anderson localization difficult. There one has indeed to consider also excitations of the potential (phonons) and interactions between particles, which are typically strong in electronic systems. These effects might weaken or enhance localization of particles, depending on the details of the system. For example, it is well known that a repulsive elastic interaction between electrons can enhance localization [7], while the same repulsion between bosons tends to screen disorder and to weaken Anderson localization [8]. On the other hand, it is believed that inelastic processes, such as electron–phonon [2] or electron–electron [9] scattering, can provide a hopping energy that is sufficient to overcome localization.

To describe disordered condensed-matter systems one then needs to fully understand the interplay of disorder and interactions. This has, however, turned out to be an extremely difficult task not only in experiments, but also in theory [7]. There are currently several open questions related to this interplay, not just for electrons but even in the conceptually simpler case of bosonic systems. For example, there is still discussion in theory on how a weak interaction can affect Anderson localization [10–17], or on the quantum phases that arise due to disorder and interactions in the regime of strong correlations [11,18–22].

From the experimental point of view, various engineered systems have recently appeared where transport of particles or waves can be strongly affected by controllable disorder as in the case of electrons in solids. Since most of the parameters of these systems are highly controllable, they can be employed to study in depth the basic aspects of the physics of disorder and interactions.

The first systems in which Anderson localization has been unambiguously observed (for a detailed review, see for example [23]) were random photonic media, where electromagnetic waves get localized by randomly distributed scatterers [24–27]. Electromagnetic waves, as well as sound waves [28–30], do not suffer from the large nonlinearities of electronic systems, and the single-particle character of Anderson localization can be clearly seen. The main obstacle to the observation of localization in these systems has instead been the presence of absorption. More recently, various groups have been able to realize also photonic lattices with disorder, where various models of disorder can be tested [31–33]. These systems also allow us to study the effects of interactions, thanks to the presence of tunable Kerr nonlinearities. However, these nonlinearities are rather weak, and so far only the effect of attractive interactions has been clearly identified in experiments.

Localization phenomena have also been studied in the context of the quantum kicked rotor, a system that features Anderson localization in momentum space. After that seminal theoretical studies have recognized that Anderson localization has its clear signature in quantum transport processes in periodically driven systems [34–37] various experiments have been performed, mainly by studying the microwave ionization of atoms [38,39], or ultracold atoms in free expansion interacting with pulsed periodic potentials [40,41]. The analogue of Anderson localization in 1D has been studied in depth in those systems, and recent studies have also unambiguously identified an Anderson transition in 3D [41]. The ongoing experiments provide a new insight into the properties of localization at criticality [42].

The latest systems that have appeared on the scene of disorder studies are ultracold quantum gases of atoms in traps, which are interesting in view of the unprecedented possibility of playing with both quantum statistics and of controlling the most relevant physical parameters, such as temperature, density, dimensionality and, very importantly, interactions [43,44]. In addition, using laser beams one can create potentials of almost arbitrary shape, ranging from perfectly sinusoidal lattices to random speckle potentials [45]. The atomic systems can therefore be exposed in a controlled way to various kinds of disordered potentials, thus realizing several of the most interesting disordered models studied in theory. This combination of full control over disorder and interaction in a quantum system offers new possibilities for finding a solution to some of the open questions related to the physics of disorder.

After few years of research on disorder with quantum gases, promising results have already been obtained in the context of Anderson localization (for a review, see also [46–48]). Two experimental groups have reported the observation of localization of a noninteracting Bose–Einstein condensate in two different kinds of disordered potentials [49,50], and other studies on the interplay of disorder and interactions are underway [51,52]. While these studies have not solved all the open questions about Anderson localization, they have clearly shown that a number of them can be addressed by employing atomic quantum gases. The exploration in both experiments and theory is, however, not limited to the weak interaction regime that is relevant for Anderson localization. For example, from the experimental point of view, notable progress has been reported also in the understanding of the physics of strongly correlated, disordered systems [53,54].

In this review we discuss how ultracold atomic quantum gases are being employed to investigate the physics of Anderson localization. The focus will be on the recently performed experiments on the dynamics in real space and in momentum space of Bose–Einstein condensates in correlated...
random potentials and in quasiperiodic lattices. We discuss both regimes of Anderson localization, i.e. negligible atom–atom interactions and that in which there is an interplay of disorder and a weak interaction. We conclude by pointing out the similarities and complementarities of atomic and photonic systems in the study of Anderson localization, and by outlining the interesting research directions for the near future.

2. Disorder models and Anderson localization

As already outlined, at the single-particle level the term ‘Anderson localization’ is broadly employed to name the exponential decay of the eigenfunctions of a quantum system that arises in the presence of disorder. This phenomenon has of course a strong effect on the transport properties of macroscopic systems, e.g. electrons in a crystal or light in a material slab, where the Anderson localization is seen as a dramatic change in the conductance or in the diffusion constant. Details of how such localization occurs in a disordered system are of course strongly dependent on the type of disorder and on the energy spectrum that the system would have without disorder. Many models of disorder that are relevant to real systems have been studied in the past; their list is too long to be even summarized here, but there are extensive works on the subject, such as the theoretical review presented in [55].

A disordered system that is often considered in theory consists of a free particle experiencing a series of uncorrelated random potential barriers. The barrier widths are supposed to have a continuous distribution, with no lower bounds. This corresponds to having a δ-like correlation function for the potential, \(g(z) = \langle V(x) V(x + z) \rangle = \Delta^2 \delta(z) \). Throughout this work the quantity \(\Delta \) will represent the mean potential energy shift associated with the disorder, or disorder strength. For this special case one finds that in an infinite 1D system all the eigenstates are always localized, even for exceedingly small values of the average barrier height. This is a consequence of the fact that in 1D each barrier causes a complete reversal of the motion of a part of the incident wave. The localization length \(\xi(E) \) is, however, approximately linear in kinetic energy, as one would intuitively expect since the effect of the potential barriers. In 1D it is possible to establish a series of fundamental relations that help in understanding the properties of the disordered systems. For example, a relation between the localization length and the density of states \(\rho(E) \) that can be useful in many instances has been demonstrated by Thouless [56]:

\[
\xi(E)^{-1} = \int_{-\infty}^{\infty} \ln |E - \epsilon| \, d\rho(\epsilon). \tag{1}
\]

Also, in the limit of large energy compared with the disorder, \(E > \Delta \), another relation between \(\xi \) and the correlation function can be derived [55]:

\[
\xi(E)^{-1} = \frac{1}{8E} \int_{-\infty}^{\infty} g(z) \, dz = \frac{\Delta^2}{4E}. \tag{2}
\]

The disordered potential above, equation (2), gives \(\xi(E) \propto E/\Delta^2 \). Note that in a random potential the case \(E < \Delta \) must be treated separately, since there is also the possibility of having ‘classical’ bound states in the few deepest wells, in the so-called Lifshits tail of the energy distribution [55].

An analogous disordered potential in 2D gives rise to a similar picture, i.e. the states are always localized in an infinite system, but the localization length now increases exponentially with the energy, \(\xi(E) \propto \exp(E^{1/2}) \). This different behaviour can be understood in a random-scattering picture as a consequence of the larger number of possible paths in 2D, or simply of the fact that a reflection process does not necessarily imply a change in sign of the velocity. For the 3D case, theory indicates that the states are not necessarily always all localized. For a finite disorder strength there exists indeed a phase transition between extended and localized states at a specific energy \(E_m \), the so-called mobility edge. The eigenstates of the system are localized only for \(E < E_m \), while they are all extended for \(E > E_m \). For a given system, the position of the mobility edge depends on the disorder strength. Note that the determination of \(\xi \) is instead more complex in higher dimensionality than in 1D, and often one can only rely on numerical calculations [7, 57].

As we will outline in the following, the results found for this ideal case change when one considers particles with different dispersion relations, e.g. particles in a lattice, or more realistic correlated disordered potentials. In the rest of this review we will concentrate our attention to the 1D case that is more relevant to the experiments performed so far with Bose–Einstein condensates.

2.1. Random disorder in free space

A type of disorder that is close to the random potential disorder above can be created for Bose–Einstein condensates by employing laser speckles [58, 59]. The quantum gas is initially prepared by evaporative cooling in a smooth harmonic potential. Random disorder is then added separately by employing the static dipole potential of a laser beam that has passed through a diffusive plate and has been then focused onto the atomic sample. The plate creates a random phase shift along the beam profile, which is converted into an intensity distribution in the far field that has randomly distributed peaks. If the laser wavelength is, for example, larger than the wavelength of the relevant atomic transition, the corresponding dipole potential is repulsive, and such intensity peaks act as potential barriers for the particles, as shown in figure 1(a).

Supposing that the disorder is present only along one of the axes of the harmonic potential, one has to deal with a 1D problem described by the Hamiltonian

\[
H = -\hbar^2 \nabla^2 / 2m + \frac{1}{2} m \omega^2 x^2 + V(x). \tag{3}
\]

The relevant information about the disordered potential is gained by looking at the energy distribution, which is exponential, \(P(E) \propto \exp(-E/\Delta) \) and at its correlation function \(g(z) = \langle V(x) V(x + z) \rangle \). Supposing that the lens that creates the speckle has a focal length \(f \) and a diameter \(D \), a good approximation for the correlation function is

\[
g(z) = \Delta^2 \sin^2 \left(z/\sigma_f \right) / (z/\sigma_f)^2, \tag{4}
\]
employing the Wiener–Kintchine theorem, which establishes a relation between the correlation function and the momentum components of the disordered potential [58]. Theoretical studies [62,63] have indeed found that for a realistic speckle potential there is an effective mobility edge at an energy \(E_m = \hbar^2/2m\sigma^2 \), and the appropriate form of the localization length within the Born approximation is

\[
\xi(E) = \frac{8\sigma r E_{E_m}}{\pi \Delta^2 (1 - k\sigma r)} \frac{1}{\Theta(1 - k\sigma r)},
\]

where \(\Theta(x) \) is the Heaviside function. In comparison with the uncorrelated disorder there is then a faster increase in the localization length with energy and, at least at first order, a strict divergence at \(k\sigma r = 1 \). Careful studies that go beyond the Born approximation actually show that the localization is not completely destroyed above the effective mobility edge, but \(\xi \) might increase by as much as a few orders of magnitude, depending on the disorder strength.

2.2. Quasiperiodic lattices

From the discussion above one could imagine that having an indefinite increase in the correlation length would lead to a vanishing of Anderson localization. However, there are special cases of potentials with nondecaying correlation functions that can support localized states, the price to pay being the need of a finite disorder strength for localization to occur. A paradigmatic example is the quasiperiodic lattice, which consists of a main lattice perturbed by a weaker lattice with a lattice constant that is incommensurate to the first one. In the absence of the perturbing lattice, the solutions of the single-particle problem are the well known extended Bloch states, that are formed by coherent superposition of the Wannier states of individual lattice sites. It is easy to imagine that if a nonperiodic shuffling of the on-site energies is added, one might get into a situation where it is no longer possible to form extended Bloch states. As we outline in the following, theory shows indeed that above a critical strength of the secondary lattice the eigenstates of the system get exponentially localized as in random disorder. It is interesting to note that an analogous behaviour appears in quasiperiodically driven systems, where localization occurs in the presence of incommensurate driving frequencies, see for example [64] and references therein.

Crystals with such quasiperiodic lattices, the so-called quasicrystals, are well known in solid-state physics [65]. The realization of quasiperiodic lattices for ultracold atoms is particularly simple. An individual sinusoidal lattice, the so-called optical lattice [53], can be created with the dipole potential of a laser beam arranged in standing wave configuration. A laser radiation with wavevector \(k \) gives rise to a lattice with spacing \(d = \pi/k_1 \), and with a depth \(U \) that is proportional to the laser intensity [45]. The combination of a deep primary lattice of wavevector \(k_1 \) with a secondary one of incommensurate wavevector \(k_2 \) realizes the quasiperiodic lattice. A single particle in the first energy band of a potential of this kind is actually a realization of the well-studied Harper [66] or Aubry–André model [67], which is presented in terms of the
discrete Hamiltonian
\[H = -J \sum_j (|w_j\rangle\langle w_{j+1}| + |w_{j+1}\rangle\langle w_j|) \]
\[+ \Delta \sum_j \cos(2\pi \beta j)|w_j\rangle\langle w_j|, \]
(6)
The first term describes the hopping of the particle to neighbouring sites of the primary lattice, with energy \(J \), while the second contains the quasiperiodic shift of the on-site energies due to the secondary lattice. The kinetic term of the Hamiltonian has the very well-known energy spectrum comprising a whole set of extended Bloch states arranged in a band of energy width \(4J \). The disordering term is parametrized by the wavevector ratio \(\beta = k_2/k_1 \) and the disorder amplitude \(\Delta \), which is related to the potential strengths of the two lattices by \(\Delta \approx \frac{U_2}{2} \exp(-\beta^2/\sqrt{U_1/E_0}) \), where \(E_0 = \hbar^2 k_1^2/2m \) is the recoil energy [68]. The incommensurability of the two lattices can be maximized by choosing \(\beta \) as the ratio of two large consecutive elements of the Fibonacci series. This leads to the inverse golden ratio, \(\beta = (\sqrt{5} - 1)/2 \). Note that in practice, in a finite-size system containing \(N \) lattice sites it is unnecessary to have \(\beta \) irrational. The weaker requirement for \(\beta \) is instead that it can be expressed as a ratio of relatively prime natural numbers \(\beta = P/Q \) such that \(P, Q > N \).

It can be analytically demonstrated that the Aubry–André model admits only extended states below a threshold disorder strength \(\Delta = 2J \), and only exponentially localized states above [55, 67]. As already discussed, the disordering potential in equation (6) has a nondecaying correlation function
\[g(z) = \Delta^2/2\pi \cos(2\pi \beta z). \]
(7)
A localization length can, however, be defined also in this case, since the correlation is finite [55]. A way to identify the value of the threshold \(\Delta_\lambda \) is to note that the Aubry–André Hamiltonian is dual, i.e. one can find a transformation to the momentum space that gives rise to a Hamiltonian with an analogous form. The appropriate pseudo-momentum basis for the transformation is
\[|k_i\rangle = \sum_j \exp(i2\pi \beta k_{i,j})|w_j\rangle, \]
(8)
and one readily gets the dual Hamiltonian
\[H = -\frac{\Delta}{2J} \sum_j (|k_i\rangle\langle k_{i+1}| + |k_{i+1}\rangle\langle k_i|) \]
\[+ \frac{J}{\Delta} \sum_j \cos(2\pi \beta I)|k_i\rangle\langle k_i|. \]
(9)
This second Hamiltonian has obviously localized states where the first one has extended states, and vice versa. Since the transition point from extended to localized states must be the same for the two, the only possibility is that this happens at \(\Delta = 2J \). The numerical solution of equation (6) for \(\beta = (\sqrt{5} - 1)/2 \) shows indeed the presence of a very sharp transition between extended and localized states in an infinite system. Such transitions turn into a smoother crossover not only if the system has a finite extension, but also if \(\beta \) is less irrational, as outlined above [68].

The localization length of the Aubry–André model can be derived analytically from equation (1) as \(\xi = d/\ln(\Delta/2J) \), and is thus energy independent [67]. Except for a small region of disorder strengths \(\Delta \approx 2J \), the localization length is then smaller than \(d \), hence quite short. The localization scenario for the first energy band of a quasiperiodic lattice above threshold, shown in figure 1 consists of \(N \) equally localized states that span an energy \(2\Delta + 4J \). Their energies keep memory of the quasiperiodicity and are therefore arranged in a sort of minibands structure [68]. Note that a Lifshits tail is not present in quasiperiodic lattices, since all the localized states have a comparable overlap with the two neighbouring states. It is important to stress again that the Aubry–André model does not have a mobility edge, but just a critical disorder strength above which all states (in the first lattice band) are localized. It can be shown that a mobility edge appears instead if long-range tunnelling, e.g. tunnelling to the next-neighbouring sites, is allowed [69, 70]. This is a regime that can be reached with ultracold atoms by employing relatively shallow optical lattices.

2.3. Random disorder in a lattice
It is now instructive to compare the two types of disordered systems above with the paradigmatic condensed-matter disorder model, i.e. the Anderson model [1]. In the latter one considers a particle moving in a discrete lattice with a random shift of the on-site energies. Simple physical systems that realize the Anderson model that have been investigated so far are microwaves in guides [60, 61] and photonic lattices [31, 32], but this is a configuration that can be explored also with Bose–Einstein condensates, for example employing a deep optical lattice that is perturbed by a weak speckle potential. Experiments with condensates are actually underway [54], although not yet in the regime of negligible interactions that we are discussing in this review. The 1D Anderson model is represented by the discrete Hamiltonian
\[H = -J \sum_j (|w_j\rangle\langle w_{j+1}| + |w_{j+1}\rangle\langle w_j|) + \sum_j \epsilon_j|w_j\rangle\langle w_j|, \]
(10)
where the first term describes again the hopping and the second one contains the on-site energies \(\epsilon_j \), which are supposed to be randomly distributed in the interval \([-\Delta, +\Delta]\). Assuming an uncorrelated random disorder, a perturbation theory approach gives in this case a localization length of the form [7]
\[\xi(E) \approx 24d(4J^2 - E^2)/\Delta^2, \]
(11)
in the limit of \(\Delta/J \ll 1 \). The localization length is again inversely proportional to \(\Delta^2 \) as in free space, but the energy dependence is remarkably different, since the maximum of localization is obtained at the two band edges \(E \approx \pm 2J \), where the energy dependence is quadratic, \(\xi(E) \propto E^2 \). A comparison of this result with equation (5) indicates that for low energies and the same speckle disorder, the localization length in a lattice is smaller than that in free space by a factor of the order of \(E_m/4J \), because of the lower kinetic energy. It is interesting to note that considering the finite correlation...
length of the speckle potential might lead to the appearance of an effective mobility edge in 1D, in analogy with the free-space case [60]. However, in the first band of the lattice the extended states appear only if the correlation length is larger than \(d \), and they are located close to the band centre, in analogy to what happens for the extended states above the true mobility edge of the 3D Anderson model.

2.4. Anderson localization and weak nonlinearities

Before discussing the experiments performed with disordered Bose–Einstein condensates, we need to briefly outline also the effect of a weak nonlinearity on Anderson localization. The fact that nonlinearities such as those arising from interactions between the particles can change the localization properties of a many-body system has been recognized since long, for example in condensed-matter systems [7]. The basic effect of a nonlinear interaction term in a disordered system is to provide a mean of mixing the localized single-particle states to give rise to new many-body states. In some cases this results only in a small modification of the localization properties of the system. There are notable cases where however a weak nonlinearity is sufficient to turn the eigenstates of the system from localized to fully extended, hence destroying Anderson localization. Details of how nonlinearities affect a disordered system depend of course on many details such as the quantum statistics of the particles (Bose or Fermi), the single-particle energy spectrum, the temperature of the system and the nature of the nonlinearity (attractive or repulsive, short- or long-ranged).

For atoms, the dominant interaction at ultralow temperatures is the \(s \)-wave contact interaction, which is parametrized by the scattering length \(a \). The interaction energy per particle in a system of \(N_{at} \) atoms in a state \(\phi(r) \) is [71]

\[
E_{\text{int}} \approx \frac{4\pi\hbar^2}{m} a N_{at} \int |\phi(r)|^4 \, d^3r. \tag{12}
\]

Here a repulsion between atoms corresponds to a positive scattering length, i.e. \(E_{\text{int}} > 0 \), while the opposite applies for attraction. In a standard Bose–Einstein condensate such interaction energy can easily be comparable to or even much larger than the potential energy of the disorder. However, for some atomic species it is possible to precisely tune the scattering length from positive to negative values across a zero by employing Feshbach resonances [72]. For example, in a magnetic Feshbach resonance the scattering length can be continuously modified simply by applying a homogeneous magnetic field that brings different internal states in resonance with the atomic state under consideration.

The case of most relevance for ultracold Bose–Einstein condensates is that of a repulsive interaction (i.e. \(a > 0 \)), since for attractive interactions they are typically not stable. Let us then discuss intuitively the effect of an interaction energy that is weak, i.e. comparable to the potential energy of the disorder, but not much larger than the kinetic energy of the system. Let us assume that all the single-particle states of the disordered potential are localized, as it happens, for example, in quasiperiodic lattice above threshold. For zero interaction all the atoms will tend to condense in the localized ground state. A weak repulsion will instead force the bosons to occupy more than one of these states to minimize the system energy. These states can further mix between themselves to give rise to an extended collection of less-localized states if \(E_{\text{int}} \) is comparable to their energy separation, or even to a fully extended system if \(E_{\text{int}} \) is comparable to the full disorder amplitude \(\Delta \). This intuitive picture will be further discussed in section 4, in relation to experiments. It is interesting to note that the effect of a weak interaction on a bosonic system is qualitatively different from that on a fermionic system. In the latter, a repulsion tends to keep the particles in their single-particle states, which are localized. An attraction on the contrary can favour the build-up of extended many-body states that span the whole sample, because this allows one to establish an \(E_{\text{int}} < 0 \) that lowers the system energy.

3. Experiments on Anderson localization with Bose–Einstein condensates

The idea of using Bose–Einstein condensates to explore Anderson localization appeared already several years ago [73, 74], but it took a while before all the required conditions for its observation in experiments could be met. Initially, the focus has been on random disorder in free space, created with laser speckles [58–77]. These pioneering experiments served to identify two different issues.

The first one was to realize disordered potentials that could give the proper range of localization lengths, i.e. smaller than the maximum system size, that is typically in the range of 1 mm, while keeping the disorder strength to a minimum to avoid populating just strongly localized states in the Lifshits tail of the spectrum. For a speckle potential this condition requires a gain size \(\sigma_l \) that is of the order of 1 \(\mu \text{m} \). Since this is essentially the wavelength of the laser light used to create speckles, a proper design of the optical system is required. While some groups have worked in this direction [51, 78], others have chosen to work with quasiperiodic lattices, which naturally provide a very small \(\xi \) [79].

The second issue was related to the unavoidable presence of interaction: all the pioneering studies have actually been performed with \(^{87}\text{Rb} \) atoms, which have a naturally large repulsion, parametrized by \(a \approx 100 a_0 \), and for which the magnetic control of the interaction is extremely difficult. The obvious way to solve this problem is to reduce the particles density, either by reducing the atom number [79] or by letting the system expand to a large volume [78]. However, the very weak interactions achievable in this way can have a nonnegligible effect on the localization, and a real cancellation of the interaction can be achieved only via a Feshbach resonance, as we demonstrated, for example, with \(^{39}\text{K} \) atoms. Actually, while some initial experiments indicated the onset of a localization regime, it has not been possible to achieve an unambiguous observation of Anderson localization of atoms in a Bose–Einstein condensate until two recent experiments in Orsay [49] and Florence [50].
3.1. Localization in a speckle potential

To observe Anderson localization the Orsay team has combined a diffraction-limited lens system for the production of speckle potentials with small σ_r [78] with a reduction of the atomic density in a one-dimensional expansion of the sample in a waveguide. This has allowed a careful investigation of the diffusion of matter waves in a random potential, with a detailed study of the localization length in 1D [49].

The Orsay experiment employs a Bose–Einstein condensate of ^{87}Rb atoms, therefore naturally interacting. The condensate is initially prepared in a harmonic trap, and subjected to speckle disorder with amplitude $\Delta/h = 10 - 100 \text{ Hz}$ and $\sigma_r = 0.26 \mu\text{m}$ (this corresponds to a mobility edge at $E_{\text{int}}/h = h/2m\sigma_r^2 \approx 850 \text{ Hz}$). The radii of the sample in the trapping potential are about $35 \mu\text{m}$ in the axial direction and $3 \mu\text{m}$ in the two transverse directions. The corresponding E_{int} is as large as $h \times 220 \text{ Hz}$, hence definitely nonnegligible. The idea was then to let the condensate suddenly expand out of the trap into a one-dimensional optical waveguide aligned along the weak axis of the trap and transversely to the direction of propagation of the speckles beam. During the initial stage of the expansion E_{int} is converted into kinetic energy, the condensate rapidly diffuses out of the initial tight spatial distribution and gradually becomes almost noninteracting as its density drops with the expansion. At a later stage its wavefunction gets to be a superposition of the single-particle localized eigenstates of the disordered potential, and the motion therefore is confined in space. In particular, the decay of the tails of the atomic distribution is determined by the localization properties of the largest momentum components, which have an energy $E \approx E_{\text{int}}$. To get into the regime where trivial localization in deeply bound states cannot be possible, care has been taken to have $E_{\text{int}} > \Delta$, while the maximum energy has been kept below the effective mobility edge of equation (5) by having $E_{\text{int}} < E_m$.

Figure 2 reports the typical experimental observation. The axial density distribution of the atomic sample after some expansion in the guide is measured by absorption imaging. For vanishing disorder strengths Δ the localization length of equation (5) is much larger than the size of the observation region L and the expansion appears to be ballistic, i.e. the rms size of the sample increases linearly with time. As Δ is increased above a critical strength such that $\xi(E_{\text{int}}) < L$ the size of the sample stops to increase after some initial non-ballistic, slower expansion, and the atomic density distribution acquires a clear exponential decay character in its tails. Note that a fraction of the atoms remains trapped in the central region with the typical inverted-parabola shape of the original condensate. This is presumably a consequence of a trivial localization of a fraction of the sample in more deeply bound states in the Lifshits tail of the spectrum, $E < \Delta$, something that was observed already in previous experiments [58–77].
properties. If the measured localization length in figure 3 is sufficient to neglect completely its effect on the localization interaction energy that is achieved through the expansion is predicted by theory [62].

While such a small interaction energy will probably almost two orders of magnitude lower than the mean disorder the initial interaction energy to about 1 Hz or below, hence the largest disorder, or 3000 for the smallest one. This brings in the interaction energy by approximately a factor of 100 for used to estimate the particle density, then one finds a reduction of a faster decay of the remaining atomic distribution, which has an algebraic dependence \(n(x) = n_0 \exp(-|x|/\xi) \). The experimental observations shown in figure 3 feature the expected decrease in \(\xi \) for increasing \(\Delta \) and very positively compare with the prediction of equation (5), integrated over the density of states [62].

The regime of energies that are partially above the mobility edge \(E_0 \) has also been studied in the experiment, by increasing the initial interaction energy to have \(k_0 > 1 \). In this case the largest momentum components are not localized and expand indefinitely, producing a depletion of the extreme tails of the density distribution. The experimental observation is indeed of a faster decay of the remaining atomic distribution, which has an algebraic dependence \(n(x) = n_0/|x|^{\alpha} \), with \(\alpha \approx 2 \), as predicted by theory [62].

A natural question is now whether the reduction in the interaction energy that is achieved through the expansion is sufficient to neglect completely its effect on the localization properties. If the measured localization length in figure 3 is used to estimate the particle density, then one finds a reduction in the interaction energy by approximately a factor of 100 for the largest disorder, or 3000 for the smallest one. This brings the initial interaction energy to about 1 Hz or below, hence almost two orders of magnitude lower than the mean disorder energy. While such a small interaction energy will probably not affect the localization properties on the relatively short time scale of the present experiment, as we will discuss later, its effects might be still visible in the long-time dynamics of the system.

3.2. Localization in a quasiperiodic lattice

In Florence we have instead employed a Bose–Einstein condensate of \(^{39}\)K atoms, where the interaction can be almost nulled via a broad zero-crossing close to a Feshbach resonance [81–83], in combination with a 1D quasiperiodic lattice. With this approach the observation of the localization phenomena does not rely on a dynamical expansion of the sample, allowing the investigation of both dynamical and static properties of the localized condensate. The study of the spatial and momentum distributions has allowed us to verify the expected localization properties of a quasiperiodic system described by the Aubry–André model.

In the experiment an interacting Bose–Einstein condensate is initially prepared in a harmonic potential [50]. A tight 1D lattice of wavevector \(k_1 \) is then raised using a slow double-exponential ramp, optimized to keep the system in its ground state; the lattice beams provide also a radial confinement, thus realizing a guide for the atoms. A second weaker lattice with incommensurate wavevector \(k_2 \) is then raised with a similar ramp lasting about 100 ms, i.e. a time longer than \(h/J \). The scattering length is eventually reduced to a very small value \(a \approx 0.1a_0 \), which corresponds to a residual interaction energy that is negligible in comparison with the kinetic energy (\(E_\text{int} < 0.01J \)). The ratio of the two wavevectors is \(\beta = 1032 \text{ nm}/862 \text{ nm} \approx 1.1972 \). In a first stage, this set-up has allowed us to study the spatial diffusion of the condensate along the guide, similarly to the Orsay experiment. A main difference is, however, that in this case the diffusion is driven only by the kinetic energy associated with the trapping potential. The typical diffusion dynamics is shown in...
are phase incoherent. In the latter case the interference vanishes, since the states of the cosine term in equation (6). As Δ increases, other smaller components arise, until the whole first Brillouin zone is occupied for $\Delta > 2J$, implying the presence of states localized over a distance $\xi < d$, as expected (figure 5).

The momentum distribution gives also information about the quasiperiodic spatial arrangement of the localized eigenstates of the system. When reducing the size of the system in the localized regime of $\Delta > 2J$ by increasing the harmonic confinement, an interference with period $\delta k = 2(\beta - 1)k_1$ clearly appears. This is due to the interference of localized states belonging to the lowest lying energy miniband [68], which are indeed separated on average by $d/(\beta - 1) \approx 5.1d$. The phase of such interference varies randomly during multiple repetitions of the experiment, indicating that the localized states have indeed not a fixed phase relation, i.e. they are independent. Actually, if the number of states is increased above 3–4 the interference contrast rapidly vanishes, as expected if the relative phases are random (figure 6). The occupation of several localized states testifies that the system is not in its ground state, despite the preparation procedure has been designed to minimize the excitations. This is probably due to the diverging tunnelling time between states at the onset of the localization, a common issue in the preparation of quantum systems that feature insulating phases [80, 84].

It is interesting to note that, while the Aubry–André model has been confined to theory for several decades, soon after the experimental realization with Bose–Einstein condensates an analogous experiment has been performed at the Weizmann Institute with photons propagating in a quasiperiodic photonic lattice [33]. Here a narrow light wavepacket is injected into one side of the quasiperiodic lattice, and the evolution of its transverse profile is monitored along the propagation direction (figure 7). The localization transition has been detected by studying a quantity that is often employed to quantify the

![Figure 6](image1.png)

Figure 6. Counting the localized states of a Bose–Einstein condensate in a quasiperiodic lattice. Momentum distribution for varying sizes of the harmonic trap ($r_{\text{trap}} = \sqrt{\hbar/m\omega}$), corresponding to about: (a) one state; (b) two states; (c) three states; (d) seven states. In the latter case the interference vanishes, since the states are phase incoherent.

![Figure 7](image2.png)

Figure 7. Transverse localization on light in a quasiperiodic photonic lattice. (a) Geometry of the experiment. (b) Evolution of the participation ratio with the strength of the lattice modulation. Here the parameter λ/\mathcal{C} is equivalent to the parameter Δ/J of the atomic case. Adapted with permission from [33]. Copyright 2009 by the American Physical Society.
spread of a disordered system, the so-called participation ratio (PR): $PR = \frac{\sum_n |\phi_n|^2}{\sum_n |\phi_n|^4}$. A sharp variation of the participation ratio has indeed been observed on varying the strength of the disordering modulation of the photonic lattice, centred at experimental parameters corresponding to $\Delta/J = 2$ in equation (6).

4. Experiments on the interplay of disorder and nonlinearities

As already mentioned, ultracold quantum gases with magnetically tunable interaction offer also the possibility of studying the effect of nonlinearities on Anderson localization. In the following we briefly review a recent experiment with a Bose–Einstein condensate in quasiperiodic lattices in this direction, and we relate the findings to those of experiments with photonic systems.

Let us start by repeating in detail the reasoning of section 2.4. We can therefore imagine to have an ideal Bose–Einstein condensate that is prepared at $T = 0$ in the ground state of a quasiperiodic lattice with Δ above the localization threshold. The system is therefore in the regime of Anderson localization. The addition of a weak repulsion can instead drive the system into at least two different regimes. If the repulsion is so weak that the average interaction energy per particle E_{int} is smaller than the characteristic disorder energy Δ, its main effect is just to prevent the occupation of the ground state alone. The system energy is indeed minimized by distributing the particles in more than one single-particle state, so that the interaction energy arising from equation (12) is reduced. In this case, one can imagine that the various states populated by the condensate keep their single-particle character and are therefore still localized. This regime is often indicated in condensed-matter theory as that of an Anderson glass [18], since it features the main properties expected for a glass. First of all, this is an insulating regime, since the system is composed of spatially localized states. Second, the energy cost for creating excitations, i.e. for moving particles from one localized state to another, vanishes as the system size tends to infinity, since the energy to be compensated is just the one due to disorder.

For increasing repulsion one can expect that the number of localized states that are populated increases. When $E_{\text{int}} \sim \Delta$ there will be a high chance that states that are neighbouring in space become also neighbouring in energy on the scale of E_{int}. In this case groups of neighbouring localized states start to mix and give rise to less-localized states, or eventually to fully extended states. One might also describe this delocalization as the results of a screening of disorder by the interaction [8]. One can indeed imagine that most of the particles are arranged in the single-particles states to provide a spatially varying interaction energy that almost completely compensates the disordered potential, while the few remaining particles can freely move on top of such combined potential. For identical bosons this picture corresponds to a fully delocalized system. A not too weak repulsive interaction therefore is expected to keep bosons delocalized, while the opposite, i.e. a stronger localization, would happen for an attractive interaction.

Figure 8. Delocalizing effect of a repulsive interaction on a Bose–Einstein condensate in a quasiperiodic lattice.

(a) Root-mean-squared width of the momentum distribution for varying Δ and E_{int}: the interaction tends to make the system more extended (narrower momentum width) or, alternatively, to increase the threshold Δ/J for localization. The white line is the value of E_{int} that is necessary for delocalization as derived from a screening argument. The correlation between neighbouring localized states (b) increases for increasing interaction, while their phase fluctuation (c) decreases, and finally reaches the one measured below the localization threshold (blue area). Reprinted with permission from [52]. Copyright 2010 by Macmillan Publishers Ltd.

To verify this conjecture, we have studied how $\rho(k)$ changes when adding a repulsive interaction, by means of the same Feshbach resonance that used to cancel the natural interaction. The experimental techniques are the same as in section 3.2, except for the fact that during the loading in the lattice the scattering length is no longer reduced to zero, but kept to some positive value in the range $a = 1 - 400a_0$. Figure 8, shows the evolution of the width $\rho(k)$ in the $\Delta - E_{\text{int}}$ plane.

The trend of the data in figure 8(a) is clear: a system that is localized for vanishing E_{int} ($\rho(k)$ is broad) tends to become more extended as the interaction energy is increased at fixed Δ. Eventually, for not too large Δ, the momentum distribution goes back to that of a condensate below the localization threshold. Alternatively, the diagram can be interpreted as a shift to larger Δ of the localization threshold for increasing repulsion. Other information can be extracted from the profiles of $\rho(k)$. For example, all the states that are initially localized belong to the first miniband of the spectrum, which has a width...
As soon as E_{int} becomes equal to Δ' (white line in figure 8(a)), a restoring of the interference modulation that signals the re-establishing of the phase coherence between neighbouring states is observed.

To quantify the correlation between the states, one can evaluate the spatially averaged correlation function of the condensate $g(z) = \int dx \psi^*(x)\psi(x + z)$, which is directly related to the Fourier transform of $\rho(k)$ by the Wiener–Kintchine theorem: $g(z) = F^{-1}\rho(k)$. The natural distance for monitoring the evolution of the correlations in a quasiperiodic lattice is of course the mean separation between the lowest lying states, $z = d/(\beta - 1)$. Alternatively, one can measure the fluctuations of the phase of the interference pattern in the momentum distribution, by repeating the experiment many times under the same conditions [52]. Both these quantities are shown in figures 8(b) and (c) for one particular value of $\Delta/J \approx 12$ above the localization threshold. In the Anderson localization regime $g(z)$ is almost zero, while the phase fluctuations are consistent with having totally random phases in the system. As E_{int} increases there is a first regime of $E_{\text{int}} < \Delta'$ in which the two observables do not change appreciably, confirming that the only effect of the repulsion is to promote the occupation of a larger number of localized states. Only when $E_{\text{int}} > \Delta'$ the correlations increase and the phase fluctuations decrease, eventually reaching the background value measured for a Bose–Einstein condensate below the localization threshold.

These observations are in nice quantitative agreement with a theoretical study of the ground state of the quasiperiodic lattice [52], and also in qualitative agreement with the general phase diagrams derived for random disorder [10, 12, 85] and quasiperiodic lattices [86].

One important question at this point is about the dynamical properties of the extended system that is recovered for large repulsions and $\Delta > 2J$: would the system expand indefinitely if the confinement is removed, as it would do in the superfluid regime $\Delta < 2J$? This question has been long debated in theory [13, 14, 87, 88], where a variety of disorder models have been explored mainly by numerical methods. Recent studies [13, 14, 88] agree in indicating that an interacting, disordered bosonic system in 1D should exhibit an indefinite expansion if the interaction energy is initially large enough to mix neighbouring localized states. The expansion, however, happens in a subdiffusive manner, with the size of the system increasing with time approximately as $L(t) = A(t_0 + t)^\alpha$, where the exponent α is not only smaller than unity, as one would expect for a ballistic expansion, but is even smaller than the value of 0.5 expected for the normal diffusion. This is a consequence of the fact that the states that are instantaneously mixed are limited in number and their number decreases with time as the interaction energy decreases with the progressive expansion, see for example [14]. The expectation is of a rather small exponent, $\alpha \approx 0.2$ that should be rather independent of the interaction energy and the disorder strength. The subdiffusive character of the dynamics implies a very long time scale for observing a strong variation of the size of the system, that for our quasiperiodic lattice amounts to several seconds [88]. However, experiments are underway to test the predicted subdiffusive expansion behaviour. One important aspect predicted by theory is that the subdiffusion should continue indefinitely if the initial interaction energy is large enough to provide delocalization; this clearly raises once more a question about the very long-time dynamics that could be observed also in the Orsay experiment.

The possibility of studying, in a controlled way, the interplay of disorder and a widely tunable interaction is for sure the most interesting novelty introduced by ultracold quantum gases on the scenario of disordered systems. A similar capability was previously offered only by photonic systems. One example is the propagation of light through nonlinear atomic media [17, 89, 90]. Another very interesting example is the transverse localization of light in photonic lattices, where nonlinearities can be introduced thanks to the Kerr effect and controlled independently from the other system’s parameter by choosing both an appropriate value of the nonlinear index of refraction of the material and the light intensity [31–33]. The kind of nonlinearity that has been explored so far in experiments is self-focusing, which corresponds to an attractive interaction in the atomic case. Also defocusing nonlinearities can be in principle explored [31], although the strength of the nonlinear term in photonic systems is much smaller than the one for atoms, and the study of focusing nonlinearities is highly favoured. In this sense photonic lattices allow investigations that are complementary to those with Bose–Einstein condensates. Another complementarity of the two kinds of systems stays in the initialization of the system: while in quantum gases the initial state is typically a broad wavepacket that has overlap with many localized eigenstates, the macroscopic size of photonic lattices also allows one to take as initial state almost exactly a single localized mode, or even a single lattice site.

The effect of nonlinearities on the transverse localization of light has been tested so far in both randomly disordered 1D and 2D lattices that realize the Anderson model [31, 32].
and quasiperiodic lattices [33]. All the observations can be interpreted in the framework of the heuristic argument of section 2.4: in the regime where the linear waves would be localized, the self-focusing nonlinearity mixes localized modes that are close in energy and space, providing in general a delocalization of the otherwise localized modes [32, 33]. If the linear waves are instead not yet localized, either because the Δ / J parameter of the quasiperiodic lattice is below threshold or the localization length in a random lattice is larger than the system size, then the effect of nonlinearity is to promote localization. This is in qualitative agreement with the observed increase in the threshold for a Bose–Einstein condensate with repulsive interaction [52]. A very interesting study in a random 1D lattice has shown that the effect of the ‘attractive’ nonlinearity is opposite on the lowest localized modes of the band with respect to the highest modes. In the former case, it leads to an increase in the localization [32], something that can be understood in terms of a negative E_{int} that promotes the occupation of the absolute lowest localized modes and shifts them out of the band. The partial delocalization that is instead observed in the latter case can be justified not only as a shift of the initially localized states towards the centre of the band, where the states are less localized, but also as the result of an effective ‘repulsive’ interaction that results from the particular phase structure of the lattice modes at the top of the band (figure 9).

5. Outlook

We have so far discussed how Bose–Einstein condensates can be employed to provide a direct measurement of the localization of weakly interacting systems in one-dimensional random and quasiperiodic potentials. The two kinds of systems provide complementary information on the mechanism of Anderson localization and on its interplay with interactions. The possibility of tuning the atom–atom interaction in a controlled way through Feshbach resonances is an invaluable tool to evidence Anderson localization and to explore in a quantitative way the effect of nonlinearities. Obviously, also ultracold Fermi gases can be employed for these kinds of studies; also there the interaction can be magnetically controlled, or can be even be switched off by using a sample of identical fermions. Let us now outline some of the disorder-related phenomena that have been debated over the last few decades, and whose details could be finally disclosed in upcoming experiments with quantum gases, in both regimes of weak and strong interactions.

On the weak interaction side, both Bose and Fermi gases might allow one to extend the study of Anderson localization in random potentials to a higher dimensionality, by means of a rather straightforward extension of the techniques employed so far. For example, there is particular interest in studying the characteristics of the mobility edges at the crossover between 2D and 3D in the presence of a controlled interaction [91, 92]. These kinds of studies would be interesting also in relation to the observed metal–insulator transition in disordered 2D electron gases [2]. First experiments in 2D disordered systems have actually been started [93], and others will soon follow also in 3D. A question of general interest is also how much superfluidity or superconductivity persists in the presence of disorder. Theoretical studies in this direction with Bose–Einstein condensates [94] and with Fermi gases in the BEC–BCS crossover [95–97] are underway, and future experiments might provide insight into the physics of ‘dirty’ Bose and Fermi liquids that is relevant to various condensed-matter systems.

A particularly important question that is directly related to the ongoing experiments is about the nature of the many-body excitations of an interacting disordered system. A theoretical finding is that a system with an extended ground state might have excitations which are localized by disorder, although with a ξ different from the single-particle ones [98]. Recent studies show also that such ‘many-body localizations’ may be destroyed if the density of excitations is increased above a threshold by increasing the temperature of the system. This should lead to a temperature-driven metal–insulator transition in both Bose [99] and Fermi [9] systems.

The other interesting limit is the one of interactions that are strong enough to drive a lattice system into the regime of strong correlations, a regime that we did not discuss at all in this review. Here already in the absence of disorder the interaction alone is capable of bringing the system into the Mott insulating phase, as observed in both Bose [100] and Fermi gases [101, 102]. Despite extensive theoretical studies, there are still open questions about the interplay of disorder and interaction in this regime, even for the bosonic case. For example, at the Mott transition the disorder can in principle have two opposite effects, either a destabilization of the Mott insulator towards the superfluid, or a destabilization of the superfluid towards a new insulating phase, the so-called Bose glass. In theory there is still debate about the exact shape of the phase diagram [11, 18–20, 103]. The experimental investigation of the phase diagram of these systems has just started [53, 54, 104] (see [46] for a review). Another interesting correlated regime is that of a 1D Tonks–Girardeau disordered gas, which can be achieved with Bose-Einstein condensates in optical lattices [105]. Analogous, more complex phenomena are of course expected in the fermionic case. With the refinement of experimental and theoretical techniques, the study of even more fragile disorder-related phenomena appears to be within reach with ultracold quantum gases, such as quantum spin glasses and disordered magnetic phases [48].

Acknowledgments

The author acknowledges enlightening discussions with Yoav Lahini and with colleagues in the Quantum Gases Group at LENS, in particular with Benjamin Deissler, Massimo Inguscio, Michele Modugno, Giacomo Roati and Matteo Zaccanti.

References

[1] Anderson P W 1958 Phys. Rev. 109 1492–505
[2] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287–337
[3] Mott N F 1968 J. Non-Cryst. Solids 1 1
[77] Schulte T, Drenkelforth S, Kruse J, Ertmer W, Arlt J, Sacha K, Zakrzewski J and Lewenstein M 2005 Phys. Rev. Lett. 95 170411
[78] Clément D, Varon A F, Retter J, Sanchez-Palencia L, Aspect A and Bouyer P 2006 New J. Phys. 8 165
[79] Lye J E, Fallani L, Fort C, Guarrera V, Modugno M, Wiersma D S and Inguscio M 2007 Phys. Rev. A 75 061603
[80] Edwards E E, Beeler M, Tao Hong and Rolston S L 2008 Phys. Rev. Lett. 101 260402
[81] Roati G, Zaccanti M, D’Errico C, Catani J, Modugno M, Simoni A, Inguscio M and Modugno G 2007 Phys. Rev. A 75 061603
[82] D’Errico C, Zaccanti M, Fattori M, Roati G, Inguscio M, Modugno G and Simoni A 2007 New J. Phys. 9 223
[83] Fattori M, Roati G, Deissler B, D’Errico C, Zaccanti M, Jona-Lasinio M, Santos L, Inguscio M and Modugno G 2008 Phys. Rev. Lett. 101 190405
[84] Zakrzewski J and Delande D 2009 Phys. Rev. A 80 013602
[85] Fontanesi L, Wouters M and Savona V 2009 Phys. Rev. Lett. 103 030403
[86] Deng X, Citro R, Minguzzi A and Orignac E 2009 Eur. Phys. J. B 68 435
[87] Shepeliansky D L 1994 Phys. Rev. Lett. 70 1787
[88] Larcher M, Dalfovo F and Modugno M 2009 Phys. Rev. A 80 053606
[89] Chancielère T, Wilkowski D, Bidel Y, Kaiser R and Miniatura C 2004 Phys. Rev. E 70 036602
[90] Shiatokhin V, Müller C A and Buchleitner A 2005 Phys. Rev. Lett. 94 043603
[91] Kuhn R C, Miniatura C, Delande D, Sigwarth O and Müller C A 2005 Phys. Rev. Lett. 95 250403
[92] Skipetrov S E, Minguzzi A, van Tiggeelen B A and Shapiro B 2008 Phys. Rev. Lett. 100 165301
[93] Robert-de-Saint-Vincent M et al 2010 arXiv:1004.0312
[94] Paul T, Schlagheck P, Leboeuf P and Pavloff N 2007 Phys. Rev. Lett. 98 210602
[95] Orso G 2007 Phys. Rev. Lett. 99 250402
[96] Peszé L, Hambrecht B and Sanchez-Palencia L 2009 EPL 88 30009
[97] Han L and Sa de Melo C A R 2009 Disorder effects during the evolution from BCS to BEC superfluidity, arXiv:0904.4197
[98] Lugan P, Clément D, Bouyer P, Aspect A and Sanchez-Palencia L 2007 Phys. Rev. Lett. 99 180402
[99] Aleiner I L, Altshuler B L and Shlyapnikov G V 2009 arXiv:0910.4534
[100] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39–44
[101] Jördens R, Strohmaier N, Günter K, Moritz H and Esslinger T 2008 Nature 455 204207
[102] Schneider U, Hackermüller L, Will S, Best T, Bloch I, Costi T A, Helmes R W, Rasch D and Rosch A 2008 Science 322 1520–5
[103] Roscilde T 2008 Phys. Rev. A 77 063605
[104] Pasienski M, McKay D, White M and DeMarco B 2009 Disordered insulator in an optical lattice, arXiv:0908.1182
[105] Radić J, Bacić V, Jukić D, Segev M and Buljan H 2010 Phys. Rev. A 81 063639