CLINICAL ARTICLE

Medial Metaphyseal Slope as a Predictor of Recurrence in Blount Disease

Tinh Laoharojanaphand, MD, Thanase Ariyawatkul, MD, Kamolporn Kaewpornsawan, MD, Chatupon Chotigavanichaya, MD, Jidapa Wongcharoenwatana, MD, Perajit Eamsobhana, MD

Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand

Objective: This study was aimed to find the radiographic parameter predicting recurrence of stage 2 Blount’s disease.

Method: We retrospectively reviewed radiographs of 82 legs from 49 patients diagnosed with stage 2 Blount’s disease by Langenskiöld classification who had failed brace treatment and underwent valgus osteotomy between 1998 to 2016. Age ranged from 26 to 47 months. The metaphyseal–diaphyseal angle was measured preoperatively. The medial metaphyseal slope of the proximal tibia and femorotibial angle were measured preoperatively and 3, 6, 12, and 24 months postoperatively in both non-recurrence (group 1) and recurrence (group 2) group. The receiver operating characteristic curve calculated using MedCalc software was used to determine the medial metaphyseal slope predicting risk for recurrence. Statistical analysis was performed using SPSS software.

Results: The mean follow-up time was 4.83 ± 0.38 years. The mean age was 34.57 ± 5.76 in group 1 and 33.2 ± 1.48 in group 2 (P = 0.258). The mean preoperative metaphyseal slope was 62.39 ± 9.75 in group 1 and 73.22 ± 6.59 in group 2 (P = 0.02). The mean preoperative femorotibial angle (FTA) was −14.31 ± 8.25° in group 1 and −18.89 ± 7.74° in group 2 (P = 0.1). The mean preoperative metaphyseal diaphyseal slope (MDS) was 14.75 ± 4.21° in group 1 and 20.11 ± 5.16° in group 2 (P = 0.001). Demographic data including age, gender, weight, height, and body mass index showed no statistically significant difference between both groups. Out of 82 legs, 9 (10.97%) had recurrence. Preoperatively, the metaphyseal–diaphyseal angle showed statistical significance between both groups. The medial metaphyseal slope showed statistically significant difference between group 1 and group 2 at 3, 6, 12, and 24 months postoperatively. The receiver operating characteristic curve showed that a medial metaphyseal slope more than 70° at 12 months (sensitivity 88.89% and specificity 69.86%) and more than 62° at 24 months postoperatively (sensitivity 100%, specificity 52.3%) was a predictor for recurrence of stage 2 Blount’s disease.

Conclusion: Medial metaphyseal slope more than 62° over the 24-month follow-up was associated with recurrence of varus deformity.

Key words: Blount’s disease; Corrective valgus osteotomy; Langenskiöld; Medial metaphyseal slope; Recurrence

Introduction

Generally, early treatment of infantile Blount’s disease is bracing, although the effectiveness of bracing is still a controversial issue. Surgical management is recommended if correction is not achieved by bracing. Currently, the recommendation for progressive infantile Blount’s disease is a proximal tibial osteotomy. Recurrence of Blount’s disease is diagnosed when the FTA is more than 10° varus at follow-up. Preoperative femorotibial angle (FTA) of greater than 10° of varus creates force on the medial side of the knee joint and probably predisposes the patient to medial proximal tibial physeal growth retardation. Tibial realignment is usually recommended for these patients. Early surgical intervention during initial stages of the disease will decrease the incidence of recurrence of deformity and knee pathology at skeletal maturity. Blount and Langenskiöld both stated that if...
correction of the varus deformity is performed to a physio-
logic valgus position before the age of 8 years in stages 1–4
Langenskiöld, this would result in a permanent cure for the
patient. More recent reports by Smith9, Hofmann et al.10,
Schoenecker et al.,11 and Ferriter and Shapiro12 note a vary-
ing frequency of recurrence of varus deformity after initial
surgery and suggest that surgical correction should be per-
formed at an early age. Following corrective osteotomy in
children at more than 3 years of age with stage 3 Lan-
genskiöld, there is a high rate of recurrence6. However, per-
forming corrective osteotomy in patients younger than
3 years of age with stage 2 Langenskiöld is associated with
10% recurrence6. Recurrent deformity in patients younger
than 3 years of age with stage 2 Langenskiöld may result
from multiple factors, such as increasing obesity, age, and
staging13–18. There is no definite conclusion regarding which
factors cause recurrence in this group of patients. Lauren
E. LaMont et al. evaluated a new modified classification in
the recurrence of Blount’s disease after surgical intervention
for infantile tibia vara and reported that patients with
metaphyseal defect slopes that run downward vertically with-
no upward curvature projecting medially are prone to having
a higher recurrence rate19. Currently, there are no reports on
the preoperative and postoperative medial metaphyseal slope
in patients with Blount’s disease. The present study examines
the correlation of recurrence and the medial metaphyseal
slope. This measurement could help orthopaedic surgeons to
detect early recurrence of Blount’s disease.

The purposes of this study are: (i) to determine the dif-
fences in demographic data between recurrence and non-
recurrence groups; (ii) to establish radiographic parameters
that predict recurrence of stage 2 Blount’s disease; and
(iii) to determine the cut-off angle of the medial metaphyseal
slope predicting recurrence of Blount’s disease at different
time intervals after surgery.

Materials and Methods
Following approval by the research ethical committee of
the hospital, the charts and radiographs of 82 legs diag-
nosed with stage 2 Blount’s disease by Langenskiöld between
1998 and 2016 were chosen for the study, all of which had
failed brace treatment. Children included in the data collec-
tion did not have any other orthopaedic or medical problems
that were related to their lower extremities, had received no
previous treatment, and had at least 2 years of follow-up
visits with full length lower extremity radiographs.

Inclusion criteria were: (i) age between 2 and 4 years
with stage 2 Blount’s disease; (ii) the patients underwent
the dome osteotomy operation at proximal tibia and fibular; and
(iii) postoperative follow-up for at least 2 years.

Exclusion criteria were: (i) patients with other dis-
ease that may affect bone growth and lead to misinter-
pretation; (ii) patients with lower limb deformity; and
(iii) incomplete medical records and radiographic data.

The good quality of the AP view can be determined by
the position of the tibial spine, which must be at the same
position of the intercondylar notch of femur. The fibular
head is 0.5 cm to 1.5 cm below the tibial plateau and 1/4 of
the fibula head overlaps the tibia.

There were 49 patients; 35 were bilateral and 14 unilat-
eral (2 cases were bilateral with stage 2 on one side and stage
3 on other side). The surgical procedures were dome osteo-
tomy of the proximal tibia and fibula in all patients.

Surgical Technique
The surgery was carried out using general anesthesia in the
supine position. Osteotomy of the fibular was carried out
using a 3-cm longitudinal incision along the posterior edge
of the fibular approximately 5 cm distal to the fibular head.
The tibia was approached using a straight longitudinal inci-
sion just lateral to the tibial crest. A dome osteotomy was
completed parallel to the joint line; the apex of the dome
osteotomy was perpendicular to the axis of the tibia and at
the level of the distal aspect of the tubercle. The tibial osteo-
tomy was slightly overcorrected and stabilized using two
crossed Kirschner wires. At the stage of data collection, the
patients were divided in two groups: Group 1 was the non-
recurrence group (the knees become normal without defor-
mity after single osteotomy); Group 2 was the recurrent
group with recurrence of varus deformity defined by femo-
rotibial angle (FTA) greater than 10° varus. They
required further corrective osteotomy so that the axis of the
knee was in a normal position. The recorded data included
patients’ age, sex, BMI, affected side, Langenskiöld stage, pre-
operative FTA, postoperative FTA of 3, 6, 12, and 24-month
interval after the surgery. The measurements included, pre-
operative metaphyseal-diaphyseal angle (MDA), preoperative
medial metaphyseal slope (MPS), and postoperative MPS 3,
6, 12 and 24 months after surgery.

Medial Metaphyseal Slope Measurement
The medial metaphyseal slope (MPS), measured by AP
radiograph, was an angle that formed between two lines. The
first line was drawn between the most medial point of medial
distal metaphysis and the most medial point of the proximal
metaphysis. The second line was drawn between the most
medial point of the proximal metaphysis and the most lateral
point of the metaphysis. The medial metaphyseal slope was
used to identify the severity of Blount disease. (Fig. 1).

Preoperative radiographs of the lower extremity were
classified by Langenskiöld. Standing AP and lateral radi-
ographs of bilateral knees were obtained. The FTA and MPS
in group 1 and group 2 at the preoperative period and at 3,
6, 12 and 24-months postoperatively were measured and
calculated.

Statistical analysis was performed using the receiver
operating characteristic (ROC) curve and Medcalc software,
version 17.6 (MedCalc Software bvba, Ostend, Belgium) to
evaluate the cut-off angle from each postoperative period
that was predisposed to recurrence cut-off angle was selected
from values that had the highest sensitivity and specificity.
4.83 ± 0.38 years. Demographic data included age, gender, weight, height, and body mass index (BMI). Radiographic data included the femorotibial angle, the metaphyseal-diaphyseal angle, and the medial metaphyseal slope before surgery (Table 1). The mean preoperative MPS was 62.39° ± 9.75° in group 1 and 73.22° ± 6.59° in group 2 (P = 0.02). The mean age was 34.57 ± 5.76 years in group 1 and 33.2 ± 1.48 years in group 2 (P = 0.258). The mean preoperative FTA was −14.31° ± 8.25° in group 1 and −18.89° ± 7.74° in group 2 (P = 0.1). The mean preoperative MDA was 14.75° ± 4.21° in group 1 and 20.11° ± 5.16° in group 2 (P = 0.001).

Femero-Tibial Angle
After postoperative correction at 3-months follow-up, the FTA in group 1 ranged from −5° to −32° with a mean of 14.85° ± 6.56° and in group 2 ranged from 10° to 23° with a mean of 14.00° ± 4.82° (P-value 0.532).

At 6-months follow-up, the FTA in group 1 ranged from 0° to 30° with a mean of 13.78° ± 6.25° and in group 2 ranged from 1° to 19° with a mean of 10.89° ± 5.51° (P-value, 0.207).

At 12-months follow-up, the FTA in group 1 ranged from 2° to 27° with a mean of 12.62° ± 5.53° and in group 2 ranged from −2° to 14° with a mean of 7.22° ± 5.09° (P-value, 0.007).

At 24-months follow-up, the FTA in group 1 ranged from −1° to 24° with a mean of 9.50° ± 5.69° and in group 2 ranged from −5° to 13° with a mean of 4.44° ± 5.48° (P-value, 0.028) (Table 2).

Medial Metaphyseal Slope
After postoperative correction at 3-months follow-up, the medial metaphyseal slope in group 1 ranged from 28° to 88°

Results

Demographic Study
Patients were divided into two groups: a non-recurrence group (group 1) and a recurrence group (group 2). Seventy-three legs were in group 1 and 9 legs were in group 2. In this study, the follow-up time of the patients ranged from 2 to 13 years with the mean follow-up time of

TABLE 1 Demographic data of the patients in both groups

Patient characteristics	No recurrence (N = 73)	Recurrence (N = 9)	P-value
	(Mean ± SD [Minimum-Maximum])	(Mean ± SD [Minimum-Maximum])	
Gender			
Female	29 (90.6%)	3 (9.4%)	0.659
Male	16 (84.2%)	3 (15.8%)	0.258
Age (month)	34.57 ± 5.76	33.2 ± 1.48	
	(26–47)	(31–35)	
Body mass index (kg/m²)	25.07 ± 4.16	25.84 ± 5.93	0.717
	(17.25–33.93)	(21.34–35.61)	
Weight (kg)	22.71 ± 4.82	22.56 ± 6.45	0.734
	(13–36)	(14–30.8)	
Height (cm)	94.97 ± 6.23	93 ± 8.51	0.528
	(81–109)	(81–105)	
Femoro-tibial angle (FTA, °)	−14.31 ± 8.25	−18.89 ± 7.74	0.119
	(−39)−0	(−31)–(−9)	
Metaphyseal-diaphyseal angle (MDA, °)	14.75 ± 4.21	20.11 ± 5.16	0.001
	(1–24)	(13–30)	
Medial metaphyseal slope (MPS, °)	62.39 ± 9.75	73.22 ± 6.59	0.02
	(36–81)	(62–81)	
with a mean of 59.95° ± 13.83° and in group 2 ranged from 55° to 85° with a mean of 70.44° ± 11.52° (P-value, 0.037).

At 6-months follow-up, the medial metaphyseal slope in group 1 ranged from 31° to 88° with mean of 61.18° ± 14.67° and in group 2 ranged from 61° to 86° with a mean of 72.67° ± 8.35° (P-value, 0.030).

At 12-months follow-up, the medial metaphyseal slope in group 1 ranged from 18° to 90° with mean of 59.27° ± 17.66° and in group 2 ranged from 63° to 88° with a mean of 76.33° ± 7.26° (P-value, 0.025).

At 24-months follow-up, the medial metaphyseal slope in group 1 ranged from 0° to 91° with mean of 52.88° ± 26.82° and in group 2 ranged from 63° to 86° with a mean of 72.56° ± 7.74° (P-value, 0.025) (Table 2).

Table 3 reveals the ROC curve analysis by MedCalc software of the patients in groups 1 and 2 at 3, 6, 12, and 24-month intervals after surgery. The medial metaphyseal slope at 3 months are more than 71 (sensitivity, 55.56; specificity, 79.17), at 6-months are more than 59 (sensitivity, 100; specificity, 41.54), at 12-months are more than 70 (sensitivity, 88.89; specificity, 69.86), and at 24-months are more than 62 (sensitivity, 100; specificity, 52.31). Figures 2 and 3 show ROC curves from different time intervals. The MPS values at 12 and 24 months clearly show the association with recurrence in stage 2 Blount’s disease (Table 3) (Fig. 2).

Intraobserver agreement was done with the intraclass correlation coefficient (ICC) of FTA of 0.94 and intraclass correlation coefficient (ICC) of MPS of 0.86.
The time course of progression versus resolution of infantile Blount’s disease had not been well documented. Several authors have stated that if untreated, the disease is uniformly progressive. In our study, we found significantly higher MPS preoperatively in recurrence patients, although both groups were Blount’s stage 2. A higher medial metaphyseal slope is significantly related to recurrence of the deformity. Our study also found that the MPS were different between the recurrence and non-recurrence groups. In the recurrence group, MPS was not decreased over the 24-month follow-up period, while the MPS of the non-recurrent patients decreased significantly. Our results agreed with the previous study of Kaewpornsawan that MPS < 59° was related to lower recurrence of deformity. Kling et al. reported that MPS greater than 60° was always associated with recurrent varus deformity after tibial osteotomy. Our result was also compatible with the finding of LaMont that patients with metaphyseal defect sloping downward vertically with no upward curvature projecting medially were prone to having higher recurrence rate (Figs 4 and 5). From our study, the ROC curve showed that an MPS more than 70° at 12 months (sensitivity
88.9% and specificity 69.9%) and 62° at 24 months postoperatively was a good predictor for recurrence in stage 2 Blount’s disease.

We also found that preoperative MDA may be another significant predictor of recurrence. However, postoperative MDA varied depending on the degree of proximal tibial correction. Thus, postoperative measurement was not included.

A limitation of this study was the selection bias due to the nature of retrospective study.
Conclusion
A medial metaphyseal slope of more than 62° at 24 months follow-up was associated with recurrence of the deformity.

Acknowledgments
The authors would like to thank Miss Suchitphon Chanchoo for her assistance in statistical analysis. The staff of the Orthopaedic Research Unit are also gratefully acknowledged.

References
1. Richards BS, Katz DE, Sims JB. Effectiveness of brace treatment in early infantile Blount’s disease. J Pediatr Orthop, 1998, 18: 374–380.
2. Zionts LE, Shean CJ. Brace treatment of early infantile tibia vara. J Pediatr Orthop, 1998, 18: 102–109.
3. Green WB. Infantile tibia vara. J Bone Joint Surg Am, 1993, 75: 130–143.
4. Levine AM, Drennan JC. Physiological bowing and tibia vara. The metaphyseal-diaphyseal angle in the measurement of bowleg deformities. J Bone Joint Surg Am, 1982, 64: 1158–1163.
5. Blount WP. Tibia vara, osteochondrosis deformans tibiae. Curr Pract Orthop Surg, 1966, 3: 141–156.
6. Eamsobhana P, Kaewpornsawan K, Yusuwan K. Do we need to do overcorrection in Blount’s disease? Int Orthop, 2014, 38: 1161–1164.
7. Kaewpornsawan K, Tangsatatomp S, Jatanarakprut R. Early proximal tibial valgus osteotomy as a very important prognostic factor in Thai children with infantile tibia vara. J Med Assoc Thai, 2005, 88: 72–79.
8. Langenskiöld A. Tibia vara: steochondrosis deformans tibiae Blount’s disease. Clin Orthop, 1981, 158: 77–82.
9. Smith CF. Current concepts review tibia vara (Blount’s disease). J Bone Joint Surg Am, 1982, 64: 630–632.
10. Hofmann A, Jones RE, Herring JA. Blount’s disease after skeletal maturity. J Bone Joint Surg Am, 1982, 64: 1004–1009.
11. Schoenecker PL, Meade WC, Pierron RL, Sheridan JJ, Capelli AM. Blount’s disease: a retrospective review and recommendations for treatment. J Pediatr Orthop, 1985, 5: 181–186.
12. Ferriter P, Shapiro F. Infantile tibia vara: factors affecting outcome following proximal tibial osteotomy. J Pediatr Orthop, 1987, 7: 1–7.
13. Jones JK, Gill L, John M, Goddard M, Hambleton IR. Outcome analysis of surgery for Blount disease. J Pediatr Orthop, 2009, 29: 730–735.
14. Gonzalez-Herranz P. Recurrence of varus deformity after proximal tibial osteotomy in Blount disease: long-term follow-up. J Pediatr Orthop, 2005, 25: 130.
15. Hayek S, Seger E, Ezra E, Lokiec F, Wientroub S. Serrated W/M osteotomy: results using a new technique for the correction of infantile tibia vara. J Bone Joint Surg Br, 2000, 82: 1026–1029.
16. Balthfield CA, Brighten PH. Blount disease. A review of etiological factors in 110 patients. Clin Orthop, 1987, 135: 29–33.
17. Chotigavanichaya C, Salinas G, Green T, Moseley CF, Otsuka N. Recurrence of varus deformity after proximal tibial osteotomy in blount disease: long-term follow-up. J Pediatr Orthop, 2002, 29: 730–735.
18. Sabharwal S. Blount disease. J Bone Joint Surg Am, 2009, 91: 1758–1776.
19. LaMont LE, Amy LM, Chan HJ, Birch JG, Johnston CE. Recurrence after surgical intervention for infantile tibia vara: assessment of a new modified classification. J Pediatr Orthop, 2017, 39: 65–70.
20. Bs D, Volk AG, Smith CF. Infantile Blount disease: long-time follow-up surgically treated patients at skeletal maturity. J Pediatr Orthop, 1996, 16: 469–475.
21. Scott AC, Kelly CH, Sullivan E. Body mass index as a prognostic factor in development of infantile Blount disease. J Pediatr Orthop, 2007, 27: 921–925.
22. Sabharwal S, Zhao C, McClemons E. Correlation of body mass index and radiographic deformities in children with Blount disease. J Bone Joint Surg Am, 2007, 89: 1275–1283.
23. Kling TF. Angular deformities of the lower limb in children. Orthop Clin North Am, 1987, 18: 513–527.
24. Harcke HT, Bowen JR. Magnetic resonance imaging of the growth plate in late-onset tibia vara. Int Orthop, 2003, 27: 217–222.