Failure of Intravenous Silibinin Monotherapy to Prevent Hepatitis C Genotype 2A Liver Graft Reinfection

Alessio Aghemo 1*, Sherrie Bhoori 2, Stella De Nicola 1, Vincenzo Mazaferro 2, Massimo Colombo 1

1 Angela Maria e Antonio Migliavacca Center for Liver Disease, First Division of Gastroenterology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
2 Hepato-Oncology Group, Department of Gastroenterology and Surgery, IRCCS National Cancer Institute, Milan, Italy

ARTICLE INFO
Article type:
Case Report

Article history:
Received: 07 May 2012
Revised: 28 May 2012
Accepted: 31 May 2012

Keywords:
Hepacivirus
Silibin
Liver Transplantation

ABSTRACT
Background: Hepatitis C virus (HCV) recurrence after orthotopic liver transplantation (OLT) remains a serious problem in the clinical management of post-OLT patients. Recently, two case reports have described successful prevention of HCV liver graft reinfection with intravenous silibinin (SIL) monotherapy in two carriers of genotype 3a and 1a/4 HCV. Based on these findings, we decided to offer such a therapy to a 65 year old woman on the OLT list.

Case Presentations: A 65 year old patient with HCV 2a cirrhosis, a previous relapse to PegIFN and Rbv therapy, was listed for OLT due to hepatocellular carcinoma. She started SIL monotherapy 24 hours before OLT. After an initial HCV-RNA decline following surgery, a progressive HCV RNA increase was observed. For this reason, SIL was stopped after 15 days of monotherapy.

Conclusions: SIL has multiple anti-HCV mechanisms of action, most of them have been characterized in vitro only. Our case report shows that the antiviral effect of SIL might be HCV genotype dependent, as recently suggested by a study, showing no effect of SIL on the HCV-2a subgenomic replicon model. Our case reinforces the need for controlled studies to assess the efficacy of silibinin therapy in HCV infected patients before it can be broadly used in all clinical settings.

Implication for health policy/practice/research/medical education: Silibinin monotherapy is a promising therapeutic option for HCV patients. Our article demonstrates that Silibinin has no effect on genotype 2 HCV, reinforcing the need for controlled studies on this drug before it can be routinely used in clinical practice.

Please cite this paper as: Aghemo A, Bhoori S, De Nicola S, Mazaferro V, Colombo M. Failure of Intravenous Silibinin Monotherapy to Prevent Hepatitis C Genotype 2A Liver Graft Reinfection. Hepat Mon. 2012;12(6):411-4. DOI: 10.5812/hepatmon.6135

1. Background
Hepatitis C virus (HCV) recurrence after orthotopic liver transplantation (OLT) remains a serious problem in the clinical management of post-OLT patients as it associ-
treatment is poorly tolerated, requires frequent Peg-IFN and/or ribavirin dose reductions to manage its related cytopenias. For these reasons, there is much clinical interest in developing alternatives therapies. The first generation of Directly Acting Antivirals (DAA) unfortunately will not change this scenario that much, as they require association with PegIFN and RBV to be effective and may actually be harmful in post-OLT patients due to the drug-drug interaction with the concurrent immunosuppressive regimen (4-6). Concerning this as a background, much enthusiasm was induced following the reports by Neumann et al. and Beinhardt et al. of successful prevention of HCV liver graft reinfection with an intravenous silibinin monotherapy in two carriers of genotype 3a and 1a/4 HCV (7, 8). The rationale to use silibinin monotherapy in OLT patients was first demonstrated by Ferenci et al. in a pilot study in previous non-responders to a course of Peg-IFN/RBV, based on the anti-HCV effect of a 15-20 day course of intravenous silibinin administration (9). Based on these findings, we decided to offer such a therapy to a 65 year old woman on the OLT list at the Liver Center of National Cancer Institute.

2. Case Presentation

The patient was diagnosed as having HCV-related cirrhosis, genotype 2a, in January 2003 and from that point, was followed up regularly in another hospital with liver function tests and abdominal ultra sounds every six months without being offered antiviral treatment. In April 2009, following the detection of a 25 mm hepatocellular carcinoma (HCC) in segment 4, the patient was referred to our center and was successfully treated with radio frequency ablation (RFA). She was then offered Pegylated Interferon-alpha 2a 180 mcg/week plus ribavirin 800 mg/day. Serum HCV RNA became undetectable with a RT-PCR assay (lower limit of detection of 12 IU/ml) for the first time at week eight, and remained undetectable until the end of therapy (week 24). During the post-treatment follow-up, the patient had a virological and biochemical relapse, while the CT scan showed a single HCC early recurrence (Ø 12 mm) that was ablated by RFA. At this point the patient was listed for OLT. Silibinin (Legalon SIL® , Rottapharm-Madaus) at the dose of 20mg/Kg body weight was started intravenously 24 hours before OLT with serum HCV RNA levels being 1,932,431 IU/mL. At the time of OLT, the HCV RNA viral load was 1,673,380 IU/mL which eight hours following OLT declined to 4,458 IU/mL. Since serum HCV RNA values progressively increased during the daily infusions to reach 904,464 IU/mL at the 15th day of silibinin monotherapy (Figure 1), we decided to stop anti-HCV treatment. In the following six months post-OLT, no recurrence of HCC was observed, while the HCV-RNA load progressively increased to reach 6 log IU/ml values. In order to investigate ALT and AST increase, we performed a liver biopsy at four months post-OLT demonstrating HCV recurrence, no cirrhosis and no signs of rejection.

3. Discussion

Silymarin is an extract from the seeds of the milk thistle plant Silybum marianum, and is one of the most popular herbal drugs used in chronic liver disease due to a supposed anti-oxidant effect. Data derived from the HALT-C trial showed that at the baseline, 34% (348/1049) of patients reported silymarin oral assumption in their medical history, with 16% (170/1049) of them currently taking the drug (10). In the same trial, the final analysis reported no clinical impact of oral silymarin on HCV infection in terms of fibrosis liver progression, liver disease-related death, hepatic encephalopathy, hepatocellular carcinoma, spontaneous bacterial peritonitis or variceal haemorrhage (11). One of the potential reasons behind this apparent lack of effect of silymarin is that the oral formulation has low bioavailability due to its insolubility in aqueous solution.

Silibinin is the largest component extract from silymarin, consisting of the flavolignans silybin A and B. A soluble version of silibinin, SIL that has been developed by chemical modification in vitro is currently used intravenously for the treatment of hepatic intoxication by Amanita phalloides mushrooms. Some studies demonstrated a potent effect of SIL in reducing HCV RNA serum load in vitro (12). Hypothesizing an antioxidant effect of SIL, Ferenci et al. tested this product in patients with chronic hepatitis C and a previous non response to Peg-IFN and ribavirin. In the first study, SIL was used at the fixed dose of 10 mg/kg/day in 16 patients for seven days. In a subsequent dose-finding study, 20 patients received either 5, 10, 15, or 20 mg/kg/day of SIL. In both studies Peg-IFN/RBV therapy was started on the eighth day of SIL therapy. Daily HCV RNA measurement showed a SIL dose dependent viral load decrease with HCV-RNA undetectability being reached in 7/20 patients with SIL monotherapy. Following this breakthrough, Neumann and Beinhardt employed SIL as a preventive therapy in HCV patients undergoing...
In the wait for better characterization of the precise anti-HCV mechanisms of SIL, our conclusion somewhat mitigate the initial clinical enthusiasm for this drug in the OLT setting whilst reinforcing the need for controlled studies on intravenous silibinin therapy in HCV infected patients especially in patients on the OLT waiting-list.

Acknowledgements
None declared.

Author's Contribution
AA, SB and SDN retrieved data and wrote the manuscript.
VM and MC wrote the manuscript.

Financial Disclosure
None declared.

Funding/Support
None declared.

References
1. Berenguer M, Prieto M, Rayon JM, Mora J, Pastor M, Ortiz V, et al. Natural history of clinically compensated hepatitis C virus-related graft cirrhosis after liver transplantation. Hepatology. 2000;32(4 Pt 1):852-8.
2. Prieto M, Berenguer M, Rayon JM, Cordoba J, Arguello L, Carrasco D, et al. High incidence of allograft cirrhosis in hepatitis C virus genotype 1b infection following transplantation: relationship with rejection episodes. Hepatology. 1999;29(1):250-6.
3. Berenguer M, Palau A, Aguilera V, Rayon JM, Juan FS, Prieto M. Clinical benefits of antiviral therapy in patients with recurrent hepatitis C following liver transplantation. Am J Transplant. 2008;8(3):679-87.
4. Charlton M. Telaprevir, boceprevir, cytochrome P450 and immunosuppressive agents—a potentially lethal cocktail. Hepatology. 2011;54(5):1345-6.
5. Garg V, van Heeswijk R, Lee JE, Alves K, Nadkarni P, Luo X. Effect of telaprevir on the pharmacokinetics of cyclosporine and tacrolimus. Hepatology. 2011;54(1):207.
6. Ghany MG, Nelson DR, Strader DB, Thomas DL, Seeff LB. An update on treatment of genotype 1 chronic hepatitis C virus infection: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology. 2011;54(4):1433-44.
7. Beinhardt S, Rasoul-Rockenschaub S, Scherzer TM, Ferenci P, Silibinin monotherapy prevents graft infection after orthotopic liver transplantation in a patient with chronic hepatitis C. J Hepatol. 2011;54(3):590-2; author reply 2-3.
8. Neumann UP, Biermer M, Eurich D, Neuhaus P, Berg T. Successful prevention of hepatitis C virus (HCV) liver graft reinfection by silibinin monotherapy. J Hepatol. 2010;52(6):931-2.
9. Ferenci P, Scherzer TM, Kerschner H, Rutter K, Beinhardt S, Hofer H, et al. Silibinin is a potent antiviral agent in patients with chronic hepatitis C not responding to pegylated interferon/ribavirin therapy. Gastroenterology. 2008;135(5):1561-7.
10. Seef EB, Curto TM, Szabo G, Everson GT, Bonkovsky HL, Dienstag JL, et al. Herbal product use by persons enrolled in the hepatitis C Antiviral Long-Term Treatment Against Cirrhosis (HALT-C) Trial. Hepatology. 2008;47(2):605-12.
11. Freedman N, Curto T, Morishima C, Seef L, Goodman Z, Wright E, et al. Silymarin use and liver disease progression in the Hepatitis C Antiviral Long-Term Treatment against Cirrhosis trial. Aliment Pharmacol Therapeut. 2011;33(3):277-38.
cytokine production in hepatitis C virus infection. Gastroenterology. 2010;138(2):671-81, 81 e1-2.
13. Guedj J, Dahari H, Pohl RT, Ferenci P, Perelson AS. Understanding silibinin’s modes of action against HCV using viral kinetic modeling. J Hepatol. 2012;56(5):1019-24.
14. Ahmed-Belkacem A, Ahnou N, Barbotte I, Wychowski C, Pallier C, Brillet R, et al. Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Gastroenterology. 2010;138(3):1112-22.
15. Wagoner J, Morishima C, Graf TN, Oberlies NH, Teissier E, Pecheur EI, et al. Differential in vitro effects of intravenous versus oral formulations of silibinin on the HCV life cycle and inflammation. PLoS One. 2011;6(1):e16464.
16. Sarrazin C, Hezode C, Zeuzem S, Pawlotsky JM. Antiviral strategies in hepatitis C virus infection. J Hepatol. 2012;56(Suppl 1):S88-100.
17. May MM, Lorengel H, Kreuter J, Zimmermann H, Ruebsamen-Schaeff H, Urban A. RNA-dependent RNA polymerases from different hepatitis C virus genotypes reveal distinct biochemical properties and drug susceptibilities. Biochim Biophys Acta. 2011;1814(10):1325-32.