4d/5d correspondence for the black hole potential and its critical points

Anna Ceresole1, Sergio Ferrara2,3,4 and Alessio Marrani3,5

1 INFN, Sezione di Torino and Dipartimento di Fisica Teorica, Università di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
2 Physics Department, Theory Unit, CERN, CH 1211, Geneva 23, Switzerland
3 INFN-Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
4 Department of Physics and Astronomy, University of California, Los Angeles, CA USA
5 Museo Storico della Fisica e, Centro Studi e Ricerche ‘Enrico Fermi’, Via Panisperna 89A, 00184 Roma, Italy

E-mail: ceresole@to.infn.it, sergio.ferrara@cern.ch and marrani@lnf.infn.it

Received 16 July 2007, in final form 20 September 2007
Published 6 November 2007
Online at stacks.iop.org/CQG/24/5651

Abstract
We express the $d = 4$, $N = 2$ black hole effective potential for cubic holomorphic F functions and generic dyonic charges in terms of $d = 5$ real special geometry data. The 4d critical points are computed from the 5d ones, and their relation is elucidated. For symmetric spaces, we identify the BPS and non-BPS classes of attractors and the respective entropies. These always derive from simple interpolating formulae between four and five dimensions, depending on the volume modulus and on the 4d magnetic (or electric) charges.

PACS numbers: 04.70.Bw, 04.65.+e, 04.50.Gh

1. Introduction

Recently there has been an increasing amount of work on extremal charged black holes in an environment of scalar background fields, as they naturally arise in modern theories of gravity: superstrings, M-theory and their low-energy description through supergravity. In particular, the attractor mechanism for extremal black holes [1–5] in four and five dimensions has been widely investigated for both $N = 2$ and extended supergravities [6–44] (see also [45–47] for recent reviews).

The latest studies on BPS and non-BPS attractor points have developed along two main lines. In a top-down approach [26, 40, 43, 48, 49] one uses some powerful group theoretical techniques, descending from the geometric properties of moduli spaces and U-duality invariants [50–54], to classify the solutions to the attractor equations and their properties. For theories with a symmetric scalar manifold, these methods have led to a general classification of BPS and non-BPS attractors, as well as studies of their classical stability and...
entropy [26, 40, 43, 48, 49]. For $\mathcal{N} = 2, d = 4$ theories, some of these results have also been extended to more general scalar manifolds based on cubic holomorphic prepotentials. These so-called special Kähler ‘d-geometries’ [55] are particularly relevant, as they naturally arise in the large volume limit of Calabi–Yau compactifications of type IIA superstrings. They include all special Kähler coset manifolds G/H, that contain symmetric spaces as a further subclass. Moreover, in $\mathcal{N} = 2, d = 4$ supergravity, cubic geometries are precisely those that can be uplifted to five dimensions. Indeed, all (rank-3) symmetric special Kähler spaces fall into this class, and they admit a $d = 5$ uplift to (rank-2) symmetric real special spaces [55–61]. We recall that a generic d-geometry of complex dimension n is not necessarily a coset space, but nevertheless it has $n + 1$ isometries, corresponding to the shifts of the n axions and to an overall rescaling of the prepotential (see, e.g., [55] and references therein).

Conversely, in a bottom-up approach, one attempts to construct solutions (BH, magnetic strings, black rings, etc) for a given background spacetime geometry, by solving explicitly the equations of motion [5–7, 15, 28, 62, 63]. These are originally the second-order differential field equations for the scalars and the warp factors, but they have been shown to be equivalent to first-order flow equations for both supersymmetric and broad classes of non-supersymmetric, static and rotating BH solutions [36, 42, 44]. In this context, the relation between five and four dimensions is implemented through dimensional reduction and by a Taub–NUT geometry for the black hole (see for instance [8, 9, 11, 44, 64]).

This paper brings these two lines of analysis closer and aims to further exploit, in the top-down approach based on the 4d black hole effective potential, the five-dimensional origin of $\mathcal{N} = 2, d = 4$ supergravity. To this end, we first write the effective black hole potential in terms of the 5d real special geometry data, for generic dyonic charges and scalar field values. Then we proceed to extremization of this potential with respect to the moduli, and we characterize the attractor points in a 5d language. This will be achieved by connecting the critical points of the BH effective potential through the interpolating formulae between four and five dimensions. Furthermore, we derive the corresponding entropies which, for symmetric scalar manifolds, are known to be given by the cubic and quartic invariants of the U-duality groups, built solely in terms of the bare electric and/or magnetic charges of the given BH configuration [50–54]. Note that, compared to previous literature such as [11, 44, 64], most of our formulae hold for generic points in moduli space and/or they cover both BPS and non-BPS solutions.

The paper is organized as follows. In section 2, we recall some formulae and results holding for special d-geometries of $\mathcal{N} = 2, d = 4$ and $d = 5$ supergravity. To this end, we work in the basis of special coordinates, as they are those that naturally provide the link to five dimensions. Thence, we compute the effective potential V for generic dyonic charges and d-geometry, and we give its properties for specific BH charge configuration where it undergoes some simplifications. In section 3, we give 4d attractors in terms of 5d ones, and we compute the corresponding BH entropy. For symmetric spaces, the interpolation yields a clear relation between the $\mathcal{N} = 2, d = 4$ and $d = 5\frac{1}{2}$-BPS and non-BPS BH charge orbits studied in the literature [26, 40, 43, 48, 49], which is developed in section 4. Finally, some further comments and outlooks are given in section 5.

2. Special geometry for cubic holomorphic prepotentials

We consider $\mathcal{N} = 2, d = 4$ special Kähler geometry based, in special coordinates $X^\Lambda = (X^0, X^0 z^J)$, on the holomorphic prepotential
\[
F(X) = \frac{1}{3!} d_{ijk} \frac{X^i X^j X^k}{X^0} = (X^0)^2 f(z); \quad f(z) = \frac{1}{3!} d_{ijk} z^i z^j z^k. \quad (2.1)
\]

In the Kähler gauge \(X^0 \equiv 1\) and in the special coordinate basis, the Kähler potential reads
\(f_i \equiv \frac{\partial f}{\partial z^i} = \frac{1}{2} d_{ijk} z^j z^k\)
\(K = -\ln(Y);\)
\(Y = i[2(f - \mathcal{F}) + (\mathcal{E} - \mathcal{E}')(f_i + \mathcal{F}_i)] = -\frac{i}{3!} d_{ijk} (z^i - \mathcal{E})(z^j - \mathcal{E}')(z^k - \mathcal{E}). \quad (2.2)\)

By defining the real components of the \(d = 4\) moduli as \(z^i = x^i - i\lambda^i\), one gets for the Kähler potential
\[K = -\ln(8\nu), \quad \nu \equiv \frac{1}{3!} d_{ijk} \lambda^i \lambda^j \lambda^k, \quad (2.3)\]

and therefore also the Kähler metric \(g_{ij} \equiv \partial_i \partial_j K\) becomes a real function of the \(\lambda^i\) variables only [66].

\[
g_{ij} = \frac{3}{2} \left(\frac{\kappa_i}{\kappa} - \frac{3 \kappa_i}{2 \kappa^2} \right) = -\frac{3}{4} \frac{\partial^2 \ln(\nu)}{\partial \lambda^i \partial \lambda^j} \Rightarrow g^{ij} = 2 \left(\lambda^i \lambda^j - \frac{\kappa}{3} \delta^{ij} \right) \equiv g^{ij}; \quad (2.4)
\]

\[
\kappa_{ij} \equiv d_{ijk} \lambda^k, \quad \kappa_i \equiv d_{ijk} \lambda^j \lambda^k, \quad \kappa = d_{ijk} \lambda^i \lambda^j \lambda^k = 6\nu, \quad \kappa^{ij} \kappa_{ij} = \delta^i_j; \quad (2.5)
\]

where one introduces the \(d = 5\) real moduli as \(\lambda^i \equiv \nu^{1/3} \lambda^i\). They satisfy
\[
\frac{1}{3!} d_{ijk} \frac{\partial^3 \nu}{\partial \lambda^i \partial \lambda^j \partial \lambda^k} = 1, \quad (2.6)
\]

which is the defining equation of the \(d = 5\) real special manifold. In these variables, one gets
\[
g_{ij} = \frac{1}{(2\nu^{1/3})} \left(\frac{\nu^{1/3}}{\kappa} \kappa_i - \kappa_{ij} \right) \nu^{-2/3} = \frac{1}{2} \nu^{-2/3} d_{ij} \Rightarrow g^{ij} = 2 \left(\frac{\nu^{1/3}}{\kappa} \kappa_i - \frac{\nu^{1/3}}{\kappa} \kappa_{ij} \right) \nu^{1/3} d^{ij}; \quad (2.7)
\]

One can then proceed to computing also the vector kinetic matrix \(N_{\Lambda \Sigma}\) in terms of these quantities, obtaining
\[
\text{Im} N_{\Lambda \Sigma} = -\nu \begin{pmatrix}
1 + 4g & g_j \\
g_i & 4g_{ij}
\end{pmatrix} \equiv (\text{Im} N_{\Lambda \Sigma})^{-1} = \begin{pmatrix}
1 & x^i \\
x^j & x^j x^i + 4g^{ij}
\end{pmatrix}; \quad (2.8)
\]

\[
\text{Re} N_{\Lambda \Sigma} = \begin{pmatrix}
\frac{1}{4} h & -\frac{1}{2} h \nu \\
-\frac{1}{2} h \nu & h_{ij}
\end{pmatrix}, \quad (2.9)
\]

Note that in the above special coordinate basis, the index 0, associated with the graviphoton vector, is naturally split from the \(d = 5\) index \(i = 1, \ldots, n_V\). In this language, the \(d = 5\) real special manifold is simply the \((n_V - 1)\) real hypersurface with unit volume. Accordingly, the \(n_V d = 4\) complex moduli \(z^i\) separate into \((x^i, \nu, \lambda^i)\), where \(\lambda^i\) are the \(n_V\) real positive \(d = 5\) moduli, parameterizing the hypersurface \(\frac{1}{3!} d_{ijk} \lambda^i \lambda^j \lambda^k = 1\).

Let us now consider the \(d = 4\) BH effective potential,
\[
V = -\frac{1}{2} Q^T M Q. \quad (2.10)
\]
where Q denotes the $(2n_V + 2)$ charge vector

$$Q = (p^0, p^i, q_0, q_i).$$ \hfill (2.11)

and \mathcal{M} is the real symplectic $(2n_V + 2) \times (2n_V + 2)$ matrix

$$\mathcal{M} = \begin{pmatrix}
\text{Im} \mathcal{N} + \text{Re} \mathcal{N} (\text{Im} \mathcal{N})^{-1} & -\text{Re} \mathcal{N} (\text{Im} \mathcal{N})^{-1} \\
-(\text{Im} \mathcal{N})^{-1} & \text{Re} \mathcal{N}
\end{pmatrix}. \hfill (2.12)
$$

By using equations (2.10)–(2.12) and the expressions computed in equation (2.8), one obtains the following formula of the $d = 4$ effective BH potential for a generic special Kähler d-geometry and dyonic charges:

$$2V = \left[\frac{\kappa}{6} (1 + 4g) + \frac{h^2}{6\kappa} + \frac{3}{8\kappa} g^{ij} h_i h_j \right] (p^0)^2 + \left[\frac{2}{3} \kappa g_{ij} + \frac{3}{2\kappa} (h_i h_j + h_{ij} g^{mn} h_{mn}) \right] p^ip^j \\
+ \frac{6}{\kappa} \left[(q_0)^2 + 2x^i q_0 q_i + \left(x^i x^j + \frac{1}{4} g^{ij} \right) q_i q_j \right] \\
+ 2 \left[\frac{\kappa}{6} g_{ij} - \frac{h}{2\kappa} h_i - \frac{3}{4\kappa} g^{im} h_m h_{ij} \right] p^ip^j \\
- \frac{2}{\kappa} \left[-hp^0 q_0 + 3q_0 p^i h_i - \left(hx^i + \frac{3}{4} g^{ij} h_j \right) p^0 q_i + 3 \left(h_j x^i + \frac{1}{2} g^{im} h_{mj} \right) q_i q_j \right]. \hfill (2.13)
$$

A quick look reveals that the axions x^i appear in V through a polynomial of degree 6, whose coefficients depend on λ^i and d_{ijk}. Moreover, terms linear in x^i vanish if $q_0 q_i, p^0 p^i$ and $p^i q_j$ separately vanish. This means that for BH charge configurations of the type

(a) $Q_0 = (p^0, 0, q_0, 0)$,
(b) $Q_e = (p^0, 0, 0, q_i)$,
(c) $Q_m = (0, p^i, q_0, 0)$,

the attractor equations $\frac{\partial V}{\partial x^i} = 0$ admit the n solutions given by $x^i = 0$, i.e. by purely imaginary critical moduli $z^i = -i\lambda^i$.

2.1. Symmetric d-geometries

Something more can be said if one considers symmetric space theories associated with scalar manifolds G/H, such that G is a symmetry of the action. The discussion below will rely on the results of [26, 48, 49]. All symmetric special Kähler d-geometries are known to originate from five-dimensional theories through dimensional reduction. In this case, the tensor d_{ijk} is an invariant tensor of the U-duality $d = 5$ group G_5, and λ^i (x^i) transform linearly under G_5 (we recall that G_4 decomposes into $G_5 \otimes SO(1, 1)$, where $SO(1, 1)$ corresponds to the radius of compactifications along S^1 [57]). Furthermore, the symmetric tensor d_{ijk} satisfies the nonlinear relation [57, 60]

$$d_{ijpq} d_{ijk} d^{kl} = \frac{4}{3} \delta^j_{(p} d_{q)kl}, \hfill (2.15)$$

which is equivalent to the condition for the corresponding manifold (in $d = 4$ and $d = 5$) to be symmetric.

For a symmetric real special manifold G_5/\mathbb{H}, one can always perform a suitable H_5-transformation that brings the cubic polynomial to normal form,

$$I_3(q) = \frac{1}{3!} d_{ijk} q_i q_j q_k = q_1 q_2 q_3. \hfill (2.16)$$
where \(q_1, q_2 \) and \(q_3 \) are the three eigenvalues of the corresponding \(3 \times 3 \) Jordan system. For non-symmetric \(d \)-geometries equation (2.16) does not hold any more, but nevertheless we will confine our discussion of \(d = 5 \) to the 3-charge case. The simplest example of this kind is provided by the five-dimensional uplift of the \(stu \) model \([28, 62, 69]\), consisting of a two-dimensional free \(\sigma \)-model \(SO(1, 1) \otimes SO(1, 1) \), whose real special geometry is determined by the constraint

\[
\frac{1}{3!} \delta_{ijk} \hat{\lambda}^j \hat{\lambda}^k = \hat{\lambda}^3 = 1.\tag{2.17}
\]

This is the model we will use to perform most of the computations, even though our results will hold in general for rank-2 symmetric real special manifolds.

We now consider in more depth the BH charge configurations in (2.14) for symmetric \(d \)-geometries. In this case, the quartic invariant is given by (see \([54]\) for notation and further elucidation)

\[
I_4(p^0, p^i, q_0, q_i) = -(p^0 q_0 + p^i q_i)^2 + 4 \left[q_0 I_3(p) - p^0 I_3(q) + \frac{\partial I_3(p)}{\partial p} \frac{\partial I_3(q)}{\partial q} \right],
\]

in terms of the cubic invariants of the five-dimensional \(U \)-duality group \(G_5 \), with

\[
I_3(p) = \frac{1}{3!} \delta_{ijk} p^i p^j p^k, \quad \{ I_3(q), I_3(p) \} = \frac{\partial I_3(q)}{\partial q_i} \frac{\partial I_3(p)}{\partial p^i}.	ag{2.19}
\]

Note that all terms of equation (2.18) are invariant under \(G_5 \), because \(p^i \)'s and \(q_i \)'s transform as the linear gradient and contragradient representations of \(G_5 \), respectively.

According to the classification of charge orbits for symmetric \(d \)-geometries, it is known that for \(d = 5 \) there are two distinct orbits (one BPS and the other non-BPS) \([48, 49]\), whereas for \(d = 4 \) there exist three orbits, one BPS and two non-BPS \([26]\). For a given BH charge configuration, the \(d = 5 \) and \(d = 4 \) charge orbits, respectively with 3 and 4 distinct eigenvalues, can actually cover all cases as follows \([26, 48, 49]\):

\[
\begin{align*}
\text{For } d = 5: & \quad \begin{cases}
\text{BPS : } (+ + +) \text{ or } (- - -); \\
\text{non-BPS : } (+ + -) \text{ or } (- + +);
\end{cases} \\
\text{For } d = 4: & \quad \\
& \quad \begin{cases}
\text{non-BPS, } Z \neq 0 : (+ + +) \text{ or } (- - -); \\
\text{non-BPS, } Z = 0 : (+ + -).
\end{cases}
\end{align*}
\]

(2.20)
with the four positive eigenvalues of the corresponding Freudenthal triple system.

On the other hand, if one starts with a $d = 5$ non-BPS configuration, say with $q_1, q_2 < 0$ and $q_3 > 0$, then, for either sign of p^0, one always obtains a $d = 4$ non-BPS configuration. The sign of p^0 is however crucial, because it gives rise to two inequivalent non-BPS charge configurations, distinguished by the vanishing of the central charge:

\[p^0 < 0 \Rightarrow \text{non-BPS}, \quad Z = 0, \quad I_4 > 0; \]

\[p^0 > 0 \Rightarrow \text{non-BPS}, \quad Z \neq 0, \quad I_4 < 0. \] \hspace{1cm} (2.22)

In the next section, we will study this phenomenon by directly solving the attractor equations.

3. 5d and 4d black hole potentials, entropies and their interpolation

In this section we study the relation between the critical points of $V_5^\mathcal{N}$ and their $d = 4$ counterparts, for the BH charge configurations in (2.14). More specifically, we will discuss the interpolation between $d = 5$ and $d = 4$ extremal BHs in $\mathcal{N} = 2$ supergravity for some particular cases, namely for the aforementioned BH charge configurations in (2.14). For CY3-compactifications these charge configurations respectively correspond to switching on the charges of (a) D_0–D_6 branes, (b) D_0–D_4 branes and (c) D_2–D_6 branes. As previously mentioned, configuration (b) is called electric, and its uplift to $d = 5$ describes the so-called extremal Tangherlini BH [67, 68] with horizon geometry $\text{AdS}_2 \times S^3$. On the other hand, configuration (c) is called magnetic, and its uplift to $d = 5$ describes a black string with horizon geometry $\text{AdS}_3 \times S^2$. For symmetric d-geometries configurations (b) and (c) are reciprocally dual, but this does not hold any more for a generic d-geometry. We will consider only configuration (b) in our treatment, briefly commenting at the end of the section on the extension of our results to non-symmetric d-geometries.

3.1. $d = 4$ black hole potential for vanishing axions

As previously noticed, the $\mathcal{N} = 2, d = 4$ extremal BH potential V, given for a generic special Kähler d-geometry by equation (2.13), undergoes a dramatic simplification when no linear terms in the axions x^i appear, such that the criticality conditions $\frac{\partial V}{\partial x^i} = 0$ can be solved by putting $x^i = 0$. For this situation, we will introduce the notation $V^* = V|_{x^i = 0}$. By further considering $Q_0 = (p^0, 0, q_0, 0)$ (BH charge configuration (a)), equation (2.13) yields

\[V^* = \frac{1}{2}[(p^0)^2 V + (q_0)^2 V^{-1}] = V^*(V, p^0, q_0), \] \hspace{1cm} (3.1)

where we have used the relation $\kappa = 6V$. By recalling the redefinition $\lambda' \equiv \sqrt[3]{\lambda}$, it is immediate to realize that for the BH charge configuration (a) the effective BH potential V^* at vanishing axions does not depend on any of the λ', and thus it has $n_V - 1$ ‘flat’ directions at all orders.

This result agrees with the findings of [41] and also with the analysis performed in [40, 43]. Indeed, for symmetric spaces, the moduli space of the $d = 4$ non-BPS $Z \neq 0$ orbit ($I_4 < 0$) given in (2.21) coincides with the special real scalar manifold of the $d = 5$ parent theory [43].

It is easy to realize that this result actually holds for a generic d-geometry rather than for only symmetric ones. From a $d = 5$ perspective, no 5d charges are turned on, because p^0
and q_0 are the charges of the Kaluza–Klein vector, and thus one would not expect that the 5d moduli $\tilde{\lambda}^i$ are stabilized, as it actually happens.

Since

$$\frac{\partial V^*}{\partial V} = 0 \iff V = \left| \frac{q_0}{p^0} \right|,$$

by defining

$$V^*_{(p^0, q_0), \text{crit.}} \equiv V^*|_{\frac{\partial V}{\partial V} = 0},$$

one gets

$$\frac{S_{\text{BH}}}{\pi} = V^*_{(p^0, q_0), \text{crit.}} = |p^0 q_0|.$$

It is interesting to observe that equations (3.2) and (3.4) are the same ones of the so-called dilatonic BH (see [3] and references therein). However, whereas the dilatonic BH is BPS, the present case has $I_4 < 0$, and thus it corresponds to a non-BPS $Z \neq 0$ attractor.

Let us now move to consider $Q_e = (p^0, 0, 0, q_i)$ (BH charge configuration (b)), that is in $d = 5$ a generic charge configuration for the extremal Tangherlini BH. Then equation (2.13) yields

$$V^* = \frac{1}{2} \left(\left(\frac{p^0}{V} \right)^2 + V^{-1/3} d[i q_i q_j] \right) = V^* (V, \tilde{\lambda}^i, p^0, q_i).$$

By defining the 5d black hole potential

$$V_q^5 \equiv \frac{1}{2} \left(\left(\frac{p^0}{V} \right)^2 + V^{-1/3} d[i q_i q_j] \right),$$

one obtains that

$$\frac{\partial V^*}{\partial \lambda^i} = 0 \iff \frac{\partial V_q^5}{\partial \lambda^i} = 0, \forall i.$$ (3.7)

Since

$$\frac{\partial V^*}{\partial V} = 0 \iff V^{4/3} = \frac{1}{3(p^0)^2} V_q^5,$$

by defining

$$V^*_{(p^0, q_i), \text{crit.}} \equiv V^* \text{at } \begin{cases} \frac{\partial V^*}{\partial V} = 0; \\ \frac{\partial V^*}{\partial \lambda^i} = 0 \forall i, \end{cases}$$

one gets

$$\frac{S_{\text{BH}}}{\pi} = V^*_{(p^0, q_i), \text{crit.}} = 2|p^0|^{1/2} \left(\frac{V_q^5}{3} \right)^{3/4} \bigg|_{\frac{\partial V_q^5}{\partial \lambda^i} = 0 \forall i},$$

a formula valid for any d-geometry (for vanishing axions, and in the BH charge configuration $Q = (p^0, 0, 0, q_i)$).

For a symmetric d-geometry, it holds that

$$\frac{V_q^5}{3} \bigg|_{\frac{\partial V_q^5}{\partial \lambda^i} = 0} = \left(\frac{1}{3!} |d[i k q_i q_j] q_k| \right)^{2/3} = |q_1 q_2 q_3|^{2/3},$$

so one finally gets

$$V^{4/3}_{\text{crit.}} = \frac{1}{(p^0)^2} \left(\frac{1}{3!} |d[i k q_i q_j] q_k| \right)^{2/3} = \frac{|q_1 q_2 q_3|^{2/3}}{(p^0)^2}.$$

(3.12)
and
\[
S_{\text{BH}} = V^*_{(p^0, q_0)_{\text{crit}}} = 2|p^0 q_1 q_2 q_3|^{1/2}, \tag{3.13}
\]
which is the known $d = 4$ result [28, 41, 62]. Since the $d = 5$ BH entropy has the general form (for the electric charge configuration) ([3, 48]; see also equation (4.22))
\[
\frac{S_{\text{BH},d=5}}{\pi} = \left(3 \left| \frac{V^q}{\alpha^q_{\tau^q}} \right|_{\alpha^q_{\tau^q}=0} \right)^{3/4}, \tag{3.14}
\]
one also obtains that (see also equation (4.23))
\[
\frac{S_{\text{BH},d=5}}{\pi} = 3^{1/2} |q_1 q_2 q_3|^{1/2}. \tag{3.15}
\]
The above formulae may be compared to those obtained in [64] with a different approach, that is in the context of the entropy function formalism (which is known to hold only on shell for the scalar fields), and where vanishing axions are those associated with non-rotating black holes (see also [44]).

We also remark that the use of a five-dimensional BH metric ansatz implies that, in order for the 4d BH entropy to have the correct form, the 5d charges must be redefined quadratically in terms of the 4d ones (for our case $Q_i = -p^0 q_i$, where Q_i denotes the five-dimensional charges; see, e.g., [65]). In our derivation such redefinition does not occur, because our approach directly takes into account the symmetries of the problem.\(^6\)

Finally, the above computations and results are insensitive to the sign of the BH charges. This fact can be understood by noticing that the charges appear quadratically in V^* specified for the background charge vector $Q_e = (p^0, 0, 0, q_i)$. On the other hand, the supersymmetric nature of the solutions (3.10) and (3.13) crucially depend on the sign of the four eigenvalues ($-p^0, q_1, q_2, q_3$) of the corresponding Freudenthal triple system (see, e.g., [26] and references therein). In the next section, in the framework of the ($d = 5$ uplift of the) stu model, we will see that, depending on the signs of the charges, the attractor configuration determining the entropy (3.13) has the following supersymmetry-preserving features:
\[
I_4 < 0: \text{ non-BPS, } Z \neq 0;
\]
\[
I_4 > 0: \text{ either } \frac{1}{2} \text{-BPS or non-BPS, } Z = 0. \tag{3.16}
\]

4. BPS and non-BPS $d = 5$ and $d = 4$ relations

We now turn to exploring the BPS/non-BPS nature of the 5d/4d attractors by considering the simplest rank-3 special Kähler geometry, that is the stu model. However, our results clearly hold for all rank-3 symmetric d-geometries, indeed all containing the stu model. Thus, we need to consider the homogeneous symmetric manifold $\left(\frac{SU(1,1)}{U(1)} \right)^3$, product of three rank-1 cosets. The $d = 5$ corresponding real special homogeneous symmetric manifold is $SO(1,1) \otimes SO(1,1) = \mathbb{R}^*_+ \times \mathbb{R}^*_+$, i.e. the rank-2 product of two rank-1 free trivial spaces. Such a manifold can also be characterized as the geometrical locus ($i = 1, 2, 3$)
\[
\frac{1}{2!} \delta_{ijk} \hat{\lambda}^i \hat{\lambda}^j \hat{\lambda}^k = \hat{\lambda}^1 \hat{\lambda}^2 \hat{\lambda}^3 = 1. \tag{4.1}
\]
The $d = 4$ theory has no non-BPS $Z = 0$ ‘flat’ directions and two non-BPS $Z \neq 0$ ‘flat’ directions [15, 26, 40, 41, 43] (in the BH charge configuration $Q_0 = (p^0, 0, q_0, 0)$ they are
\(^6\) Let us also note that in our notation p^0 and q_0 are opposite to those used in [65].
4d/5d correspondence for the black hole potential and its critical points

Thus, one obtains that the one obtains

\[
\varepsilon_{4d} = \frac{1}{(\lambda_1^2)(\lambda_2^2)}, \quad (4.2)
\]

and thus the \textit{stu electric} \(d = 5 \) effective BH potential reads

\[
V^q_{5,stu} = (\lambda_1^2)q_1 + (\lambda_2^2)q_2 + \frac{q_3}{(\lambda_1^2)(\lambda_2^2)}. \quad (4.3)
\]

Since

\[
\left. \frac{\partial V^q_{5,stu}}{\partial \lambda_i} \right|_{\lambda_i = 0} = 0, \quad i = 1, 2 \quad \Rightarrow \quad \lambda_1^3 \lambda_2^2 = \left(\frac{q_3}{q_1q_2} \right)^{1/3}, \quad \lambda_1^3 \lambda_2^2 = \frac{q_3}{q_2}, \quad (4.4)
\]

one obtains

\[
\frac{V^q_{5,stu}}{3}\left|_{\lambda_i = 0, i=1,2} \right. = |q_1q_2q_3|^{2/3}, \quad (4.5)
\]

as anticipated in equation (3.11).

The (real) \(d = 5, \mathcal{N} = 2 \) central charge (in the \textit{electric} BH charge configuration \(Q_e \)) is defined as

\[
Z_3^q \equiv \lambda_1^2 q_1. \quad (4.6)
\]

Thus, one obtains that the \(d = 5 \) BPS conditions

\[
\left. \frac{\partial Z_3^q}{\partial \lambda_i} \right|_{\lambda_i = 0} = 0, \quad i = 1, 2 \quad \Rightarrow \quad \lambda_1^3 \lambda_2^2 = \frac{q_3}{q_1}, \quad \lambda_1^3 \lambda_2^2 = \frac{q_3}{q_2}. \quad (4.7)
\]

are solved only by requiring \(\frac{q_2}{q_1} > 0 \) and \(\frac{q_2}{q_1} > 0 \), i.e. for \(q_1, q_2, q_3 \) \textit{all} with the same sign. Consequently, with no loss of generality we can conclude that the \(d = 5 \) critical point determining the result (4.5) is BPS if \(q_1, q_2, q_3 > 0 \), and it is non-BPS if \(q_1, q_2 < 0 \) and \(q_3 > 0 \).

Now, in order to find the relation with the \(d = 4 \) attractors, one must compute the (complex) \(d = 4, \mathcal{N} = 2 \) central charge \(Z(z, \bar{z}, Q) \) and its covariant derivatives. By recalling the standard definition in obvious notation, \(Z = \exp(K/2)(X^A q_A - F_A p^A) \), going to special coordinates, in the Kähler gauge \((X^0 = 1) \), and exploiting the cubic nature of the holomorphic prepotential \(f(z) \) given in (2.1), one gets

\[
Z(z, \bar{z}, Q) = e^{K(c,\tau)/2}q_0 + q_1 z^i + p^0 f(z) - p^i f_i(z) = e^{K(c,\tau)/2}W(z, Q). \quad (4.8)
\]

where \(W(z) = \) the \(d = 4, \mathcal{N} = 2 \) holomorphic superpotential. In terms of the real components of the \(d = 4 \) moduli as \(z^i = x^i - i y^{1/3} \bar{\lambda}^i \) one gets the following expressions \(e^{K(c,\tau)/2} = \frac{1}{2\sqrt{2}} y^{-1/2} \):

\[
Z(x^i, \bar{\lambda}^i, \nu, Q) = \frac{1}{2\sqrt{2}} y^{-1/2} W(x^i, \bar{\lambda}^i, \nu, Q)
\]

\[
= \frac{1}{2\sqrt{2}} y^{-1/2} \begin{bmatrix}
q_0 + q_1 x^i - i y^{1/3} q_i \bar{\lambda}^i + \frac{p^0}{6} h - i \frac{p^0}{2} y^{1/3} \bar{\kappa}_{ij} x^i x^j \\
- \frac{p^0}{2} y^{2/3} \bar{\kappa}_{ij} x^i + ip^0 \nu \\
- \frac{p^0}{2} h_i + ip^i y^{1/3} \bar{\kappa}_{ij} x^j + \frac{p^0}{2} y^{2/3} \bar{\kappa}_i
\end{bmatrix}; \quad (4.9)
\]
\[D_i Z(x^i, \hat{\lambda}^j, \mathcal{V}, Q) = \frac{1}{2\sqrt{2}} \mathcal{V}^{-1/2} D_i W(x^i, \hat{\lambda}^j, \mathcal{V}, Q) \]

\[= \frac{1}{2\sqrt{2}} \mathcal{V}^{-1/2} \begin{pmatrix} q_i + \frac{p^0}{2} h_i - ip^0 \mathcal{V}^{1/3} \hat{\kappa}_{ij} x^j - \frac{p^0}{4} \mathcal{V}^{2/3} \hat{\kappa}_{ij} x^j \\
-p^0 h_j + ip^0 \mathcal{V}^{1/3} \hat{\kappa}_{ij} x^j \\
-\frac{i}{4} \mathcal{V}^{-1/3} \hat{\kappa}_{ij} x^j + \frac{p^0}{6} h_j + \frac{p^0}{2} \mathcal{V}^{2/3} \hat{\kappa}_{ij} x^j \\
-\frac{1}{2} h_j + ip^0 \mathcal{V}^{1/3} \hat{\kappa}_{ij} x^j x^k + \frac{p^0}{2} \mathcal{V}^{2/3} \hat{\kappa}_{ij} x^j \\
\end{pmatrix} \]

Equations (4.9) and (4.10) are general, but for our purposes we actually need them just for the particular BH charge configuration \(Q_0 = (p^0, 0, 0, q_i) \). For this charge vector, equation (4.10) yields that

\[x^i = 0, \quad \forall i \implies \text{Im}(D_i Z) = 0, \]

and moreover, considering the \(\text{stu} \) model,

\[\frac{q_1}{q_2} > 0, \quad p^0 < 0 \implies \text{Re}(D_i Z) = 0, \]

with \(\hat{\lambda}^1 \) and \(\hat{\lambda}^2 \) given by equation (4.7). Thus, since the \(d = 5 \) BPS configuration has \(q_1, q_2 \) and \(q_3 > 0 \), it is clear that it will determine a \(d = 4 \) BPS configuration if the magnetic charge of the Kaluza–Klein vector is negative (i.e. \(p^0 < 0 \)), and a \(d = 4 \) non-BPS configuration if \(p^0 > 0 \). In order to determine whether this latter \(d = 4 \) configuration is non-BPS \(Z \neq 0 \) or non-BPS \(Z = 0 \), one has to check the \(d = 4 \) central charge. For vanishing axions, it turns out to be purely imaginary (the asterisk denotes the evaluation at vanishing axions treatment):

\[Z^* = \frac{i}{2\sqrt{2}} [p^0 \mathcal{V}^{1/2} - \mathcal{V}^{-1/6} q_i \hat{\lambda}^i]. \]

Since at the \(d = 5 \) BPS attractors it holds that \((q_i \hat{\lambda}^i)_{d=5,\text{BPS}} = 3(q_1 q_2 q_3)^{1/3} \), by using the critical value of \(\mathcal{V} \) given by equation (3.12) and considering \(p^0 < 0 \), one gets that

\[(p^0 < 0, q_1 > 0, q_2 > 0, q_3 > 0) \]

\[Z_{\text{BPS}}^* = -i\sqrt{2}(p^0 q_1 q_2 q_3)^{1/4} \neq 0. \]

Thus, the \(d = 4 \) \(\frac{1}{2} \)-BPS attractor determined by the \(d = 5 \frac{1}{2} \)-BPS attractor configuration \(q_1, q_2, q_3 > 0 \) by considering \(p^0 < 0 \) has the following non-vanishing BH entropy:

\[S_{\text{BH}}^{\star} \pi = V_{(p^0, q_i)^{\text{BPS}}}^* \{ Z_{\text{BPS}}^* \} = 2(p^0 q_1 q_2 q_3)^{1/2}. \]

On the other hand, by using the critical value of \(\mathcal{V} \) given by equation (3.8) and considering \(p^0 > 0 \), one gets that the \(d = 5 \frac{1}{2} \)-BPS attractor configuration \(q_1, q_2, q_3 > 0 \) also determines a \(d = 4 \) non-BPS attractor with \((p^0 > 0, q_1 > 0, q_2 > 0, q_3 > 0) \)

\[Z_{\text{non-BPS}}^* = -\frac{i}{\sqrt{2}} (p^0 q_1 q_2 q_3)^{1/4} \neq 0, \]

yielding a non-vanishing BH entropy

\[S_{\text{BH}}^{\star} \pi = V_{(p^0, q_i)^{\text{non-BPS}, Z^* \neq 0}}^* \{ Z_{\text{non-BPS}, Z^* \neq 0}^* \} = 2(p^0 q_1 q_2 q_3)^{1/2}. \]
as found in [26]. In order to derive equation (4.17), we have used the standard definition of \(V \) in terms of central charge and matter charges, \(V = |Z|^2 + |D_i Z|^2 \), and we have computed the purely real value \(D_i Z \), also by using the critical value of \(V \) given by equation (3.8).

Let us now move to considering the \(d = 5 \) non-BPS attractors for the BH charge configuration \(Q_e = (p^0, 0, 0, q_i) \). As pointed out above, in this case one can assume without loss of generality that \(q_1, q_2 < 0 \) and \(q_3 > 0 \) (indeed violating the \(d = 5 \) BPS conditions). This yields \((q_i \lambda^3)_{d=5, \text{non-BPS}} = -|q_1 q_2 q_3|^{1/3} \).

If \(p^0 < 0 \), one finds that, using the critical value of \(V \) given by equation (3.8), the two terms in equation (4.13) reciprocally cancel (\(p^0 < 0, q_1 < 0, q_2 < 0, q_3 > 0 \)):

\[
Z^* = 0. \tag{4.18}
\]

Thus, the BH charge configuration \(p^0 < 0, q_1, q_2 < 0 \) and \(q_3 > 0 \) supports a \(d = 4 \) non-BPS \(Z^* = 0 \) attractor.

If \(p^0 > 0 \) the two terms in equation (4.13) sum up into the following expression (\(p^0 > 0, q_1 < 0, q_2 < 0, q^3 > 0 \)):

\[
Z^* = \frac{i}{\sqrt{2}} (p^0 q_1 q_2 q_3)^{1/4} \neq 0. \tag{4.19}
\]

Thus, the BH charge configuration \(p^0 > 0, q_1, q_2 < 0 \) and \(q_3 > 0 \) supports a \(d = 4 \) non-BPS \(Z^* \neq 0 \) attractor, whose entropy is given by equation (4.17). Thus, concerning the \(d = 4 \) supersymmetry-preserving features, the two BH charge configurations \((p^0, q_1 > 0, q_2 > 0, q_3 > 0) \) (upliftable to \(d = 5 \) BPS) and \((p^0 > 0, q_1, q_2 < 0, q_3 > 0) \) (upliftable to \(d = 5 \) non-BPS) are equivalent.

Summarizing, we have found that the BH charge configuration specified by the charge vector \(Q_e = (p^0, 0, 0, q_i) \) splits into three inequivalent configurations, depending on the signs of the charges. The critical value of the \(d = 4 \) effective BH potential has the general form

\[
V^*_{(p^0, q_i), \text{crit}} = 2|p^0 q_1 q_2 q_3|^{1/2}, \tag{4.20}
\]

but the \(N = 2, d = 4 \) central charge correspondingly takes three different values:

\[
\begin{align*}
p^0 < 0, & \quad q_1 > 0, \quad q_2 > 0, \quad q_3 > 0 \Leftrightarrow \frac{1}{2}\text{-BPS} : |Z|^{1/2}_\text{BPS} = \sqrt{2}(-p^0 q_1 q_2 q_3)^{1/4}; \\
p^0 < 0, & \quad q_1 < 0, \quad q_2 < 0, \quad q_3 > 0 \Leftrightarrow \text{non-BPS, } Z = 0 : Z_{\text{non-BPS}, Z=0} = 0; \\
p^0 > 0, & \quad q_1 > 0, \quad q_2 > 0, \quad q_3 > 0 \Leftrightarrow \text{non-BPS, } Z \neq 0 : \left\{ \frac{|Z|^{1/2}_{\text{non-BPS}, Z \neq 0}}{\sqrt{2}} = \frac{1}{\sqrt{2}}(p^0 q_1 q_2 q_3)^{1/4}. \right. \tag{4.21}
\end{align*}
\]

It is useful to point out that in [48] a different normalization for the \(d = 5 \) (electric) effective BH potential was used:

\[
V^\text{BH}_{5, \text{crit}} = 3 V^d_5, \tag{4.22}
\]

due to a different normalization of the \(d = 5 \) vector kinetic matrix: \(a_{ij}^V = \frac{1}{3} a_{ij} \). As a consequence

\[
V^\text{BH}_{5, \text{crit}} = 9 |q_1 q_2 q_3|^{2/3}, \tag{4.23}
\]

and the corresponding \(d = 5 \) entropy is given by equation (3.15). Since \(Z^2_{5, \text{BPS}} = 3 |q_1 q_2 q_3|^{1/3} \) and \(Z^2_{5, \text{non-BPS}} = |q_1 q_2 q_3|^{1/3} \), one then retrieves the \(d = 5 \) sum rules derived in [48], i.e.

\[
V^\text{BH}_{5, \text{BPS}} = Z^2_{5, \text{BPS}}, \quad V^\text{BH}_{5, \text{non-BPS}} = 9 Z^2_{5, \text{non-BPS}}, \tag{4.24}
\]

which also shows that

\[
\frac{1}{2} [g^{ij}(\partial_i Z_3) \partial_j Z_3]_{\text{non-BPS}} = 8 Z^2_{5, \text{non-BPS}}. \tag{4.25}
\]
due to the identity [48]

\[V_{5}^{BH} = Z_{2}^{5} + \frac{3}{5} g^{xy}(\partial_{x}Z_{5})\partial_{y}Z_{5}, \]

(4.26)

where the \(d = 5 \) scalar metric in our convention reads

\[g_{xy} = \frac{1}{2} (\partial_{x} \hat{\lambda}_{i})(\partial_{y} \hat{\lambda}_{j}) a^{ij}, \]

(4.27)

with \(\hat{\lambda}_{i} \equiv a_{ij} \hat{\lambda}_{j} \).

5. Conclusion

In this study we have related the \(d = 4 \) and \(d = 5 \) entropy formulae for special geometry described by a cubic holomorphic prepotential function (\(d \)-geometry), based solely on the properties of the general black hole effective potential (2.13), rather than considering solutions for the scalar fields. These \(d \)-geometries are particularly relevant, as they describe the large volume limit of the \(CY_{3} \)-compactifications of type IIA superstrings or, in the \(d = 5 \) uplift, the \(CY_{3} \)-compactifications of \(M \)-theory [70]. \(d \)-geometries also include homogeneous and symmetric special geometries, where we have shown that they have even more interesting properties.

It is now worth commenting about the charge configurations used in our treatment. For symmetric \(d \)-geometries the configurations \((p_{0}, 0, 0, q_{i})\) (electric, upliftable to \(d = 5 \) extremal Tangherlini BH with horizon geometry \(AdS_{2} \times S^{3} \)) and \((0, p^{i}, q_{0}, 0)\) (magnetic, upliftable to \(d = 5 \) black string with horizon geometry \(AdS_{3} \times S^{2} \)) are reciprocally dual. For the electric configuration \((p_{0}, 0, 0, q_{i})\) (and for vanishing axions) the \(d = 5 \) and \(d = 4 \) effective BH potentials are respectively denoted by \(V_{p}^{5} \) and \(V^{*} \), and respectively given by equations (3.6) and (3.5). For the magnetic configuration \((0, p^{i}, q_{0}, 0)\) (and for vanishing axions) the \(d = 5 \) and \(d = 4 \) effective BH potentials are respectively denoted by \(V_{p}^{5} \) and \(V^{*} \), and respectively given by

\[V_{p}^{5} = a_{ij} p^{i} p^{j} = V_{p}^{5}(\hat{\lambda}_{i}, p^{i}); \]

(5.1)

\[V^{*}(\hat{\lambda}_{i}, V, p^{i}, q_{0}) = \frac{1}{2} \left[V^{-1}(q_{0})^{2} + V^{1/3} V_{p}^{5}(\hat{\lambda}_{i}, p^{i}) \right]. \]

(5.2)

By comparing equations (5.1) and (5.2) with equations (3.6) and (3.5), it is easy to realize that such pairs of equations are related (in the \(stu \) model, thus \(i = 1, 2, 3 \)) by the transformations

\[V \leftrightarrow V^{-1}; \quad q_{i} \leftrightarrow p^{i}; \]

\[|q_{0}| \leftrightarrow |p^{0}|; \quad \hat{\lambda}_{i} \leftrightarrow (\hat{\lambda}_{i})^{-1}. \]

(5.3)

The critical values of the potentials given by equations (5.1) and (5.2) respectively are

\[V_{5}^{p, \text{crit.}} = \frac{1}{3!} d_{ijk} p^{i} p^{j} p^{k} \left| d_{ijk} p^{i} p^{j} p^{k} \right|^{2/3} \]

\[= |p^{1} p^{2} p^{3}|^{2/3}; \]

(5.4)

\[V_{\text{crit.}}^{*}(p^{j}, q_{0}) = 2 |q_{0} p^{4} p^{3}|^{1/2}. \]

(5.5)

Moreover, the \(d = 5 \) volume is related to \(V_{5}^{p} \) as follows:

\[V_{5}^{\text{vol.}} = \frac{1}{3(q_{0})^{2}} V_{5}^{p}, \]

yielding the critical value

\[V_{5}^{\text{crit.}} = \left(\frac{1}{3(q_{0})^{2}} \right) \left(\frac{1}{3!} d_{ijk} p^{i} p^{j} p^{k} \right)^{1/3}. \]

(5.6)
Note that equations (5.6) and (5.7) can respectively be obtained from equations (3.8) and (3.12) by applying the mapping (5.3). The $d = 5$ and $d = 4$ supersymmetry-preserving features for the magnetic configuration goes the same way as for the electric configuration, with the interchanges $p^0 \rightarrow -q_0$ and $q_i \rightarrow p^i$ ($i = 1, 2, 3$).

We remark that equations (5.4) and (5.7) (as well as equations (5.1) and (5.2)) are also valid for non-symmetric d-geometries, because they make use of the completely covariant tensor d_{ijk} (the same appearing in the holomorphic prepotential). However, let us stress that for non-symmetric d-geometries the (relevant expressions for the) electric configuration is much more complicated, due to the lack of a globally constant tensor d^{ijk} (which in the non-symmetric case does not satisfy relation (2.15)).

It would be intriguing to study the ‘flat’ directions of the effective BH potentials for (symmetric and non-symmetric) $d = 5$ (special real) and $d = 4$ (special Kähler) d-geometries, and relate the corresponding moduli spaces [43] through the results obtained in the present work.

Here, we limit ourselves to observe that the moduli space of $d = 5$ non-BPS attractors is both a submanifold of the moduli space of the $d = 4$ non-BPS $Z \neq 0$ attractors (coinciding with the corresponding $d = 5$ special real manifold) and of the moduli space of the $d = 4$ non-BPS $Z = 0$ attractors. This non-trivial result, obtained in [43], can also be understood as an outcome of our analysis of this paper where, for the so-called electric- and magnetic-charge configurations, we have shown that the $d = 5$ non-BPS attractors can give rise to both classes ($Z \neq 0$ and $Z = 0$) of $d = 4$ non-BPS attractors. Consequently, the $d = 5$ non-BPS ‘flat’ directions must be common to both types of $d = 4$ non-BPS ‘flat’ directions.

It would be interesting to analyze these issues in more detail, and understand better the ‘flat’ directions (and their fate once the quantum corrections are switched on), as they depend on the background charge configuration vector Q.

Acknowledgments

AC is grateful to the organizers of the ‘School on Attractor Mechanism 2007’ (Frascati) for providing the lively atmosphere where this paper was conceived. AC also thanks Gianguido Dall’Agata for many fruitful discussions and interest in this work. AM would like to thank the Department of Physics, Theory Unit Group at CERN for its kind hospitality during the completion of the present paper. The work of AC and SF has been supported in part by the European Community Human Potential Program under contract MRTN-CT-2004-005104 ‘Constituents, fundamental forces and symmetries of the universe’ and for SF also the contract MRTN-CT-2004-503369 ‘The quest for unification: Theory Confronts Experiments’, and by DOE grant DE-FG03-91ER40662, Task C. The work of AM has been supported by a Junior Grant of the ‘Enrico Fermi’ Center, Rome, in association with INFN Frascati National Laboratories.

References

[1] Ferrara S, Kallosh R and Strominger A 1995 $\mathcal{N} = 2$ extremal black holes Phys. Rev. D 52 5412 (Preprint hep-th/9508072)
[2] Strominger A 1996 Macroscopic entropy of $\mathcal{N} = 2$ extremal black holes Phys. Lett. B 383 39 (Preprint hep-th/9602211)
[3] Ferrara S and Kallosh R 1996 Supersymmetry and attractors Phys. Rev. D 54 1514 (Preprint hep-th/9602136)
[4] Ferrara S and Kallosh R 1996 Universality of supersymmetric attractors Phys. Rev. D 54 1525 (Preprint hep-th/9603090)
Attractor Horizon Geometries of Extremal Black Holes

[35] Bellucci S, Ferrara S and Marrani A 2007
[32] Cardoso G L, de Wit B and Mahapatra S 2006 Black hole entropy functions and attractor equations
Preprint hep-th/0504126
[31] Bellucci S, Ferrara S, Marrani A and Yeranyan A 2006 Mirror fermat Calabi–Yau threefolds and Landau–Ginzburg black hole attractors
Preprint hep-th/0506177
[11] Behnkt M, Cardoso G L and Mahapatra S 2006 Exploring the relation between 4-D and 5-D BPS solutions
Nucl. Phys. B 732 200 (Preprint hep-th/0506251)
[12] Goldstein K, Iizuka N, Jena R P and Trivedi S P 2005 Non-supersymmetric attractors Phys. Rev. D 72 124021
(Preprint hep-th/0507096)
[13] Sen A 2006 Entropy function for heterotic black holes J. High Energy Phys. JHEP03(2006)008 (Preprint hep-th/0508042)
[19] Kallosh R, Sivanandam N and Soroush M 2006 The Non-BPS black hole attractor equation J. High Energy Phys. JHEP02(2006)022 (Preprint hep-th/0510024)
[10] Sen A 2005 Black hole entropy function and the attractor mechanism in higher derivative gravity J. High Energy Phys. JHEP09(2005)038 (Preprint hep-th/0506177)
[33] D’Auria R, Ferrara S and Trigiante M 2007 Critical points of the black-hole potential for homogeneous special geometries Preprint hep-th/0701090
[34] Goldstein K and Jena R P 2007 One entropy function to rule them all... Preprint hep-th/0701221
[35] Bellucci S, Ferrara S and Marrani A 2007 Attractor Horizon Geometries of Extremal Black Holes Contribution to the Proc. 17th SIGRAV Conference (Turin, Italy, 4–7 September 2006) (Preprint hep-th/0702019)
[36] Ceresole A and Dall’Agata G 2007 Flow equations for non-BPS extremal black holes J. High Energy Phys. JHEP03(2007)110 (Preprint hep-th/0702088)

[37] Andrianopoli L, D’Auria R, Ferrara S and Trigiante M 2007 Black hole attractors in $\mathcal{N} = 1$ supergravity Preprint hep-th/0703178

[38] Sarakik K and Vafa C 2007 Non-supersymmetric black holes and topological strings Preprint hep-th/0703214

[39] Misra A and Shukla P 2007 ‘Area codes’, large volume (non-)perturbative alpha-prime and instanton: corrected non-supersymmetric (AdS minimum, the ‘inverse problem’ and ‘fake superpotentials’ for multiple-singular-loci-two-parameter Calabi–Yau’s Preprint 0707.0105

[40] Ferrara S and Marrani A 2007 $\mathcal{N} = 8$ non-BPS attractors, fixed scalars and magic supergravities Preprint 0705.3866

[41] Nampuni S, Troppathy P K and Trivedi S P 2007 On the stability of non-supersymmetric attractors in string theory Preprint 0705.4554

[42] Andrianopoli L, D’Auria R, Orazi E and Trigiante M 2007 First order description of black holes in moduli space Preprint 0706.0712

[43] Ferrara S and Marrani A 2007 On the moduli space of non-BPS attractors for $\mathcal{N} = 2$ symmetric manifolds Phys. Lett. B 652 111 (Preprint 0706.1667)

[44] Cardoso G L, Ceresole A, Dall’Agata G, Oberreuter J M and Perz J 2007 First-order flow equations for extremal black holes in very special geometry Preprint 0706.3373

[45] Andrianopoli L, D’Auria R, Ferrara S and Trigiante M 2007 Five-dimensional $\mathcal{N} = 1$ supergravity String Theory and Fundamental Interactions (Lect. Notes Phys.) ed M Gasperini and J Maharana (Berlin: Springer) Preprint hep-th/0611345

[46] Larsen F 2006 The attractor mechanism in five dimensions Proc. Winter School on Attractor Mechanism 2006 (INFN-LNF, Frascati, Italy, 20–24 March 2006) (Preprint hep-th/0608191)

[47] Mohaupt T 2007 Special geometry, black holes and Euclidean supersymmetry Preprint hep-th/0703037

[48] Ferrara S and Gúñaydin M 2006 Orbits and attractors for $\mathcal{N} = 2$ Maxwell–Einstein supergravity theories in five dimensions Nucl. Phys. B 759 1 (Preprint hep-th/0606108)

[49] Ferrara S and Gúnyadín M 1998 Orbits of exceptional groups, duality and BPS states in string theory Int. J. Mod. Phys. A 13 2075 (Preprint hep-th/9708025)

[50] Andrianopoli L, D’Auria R, Ferrara S, Fré P and Trigiante M 1998 $E_{7(7)}$ duality, BPS black hole evolution and fixed scalars Nucl. Phys. B 509 463 (Preprint hep-th/9707087)

[51] Andrianopoli L, D’Auria R and Ferrara S 1997 U-invariants, black-hole entropy and fixed scalars Phys. Lett. B 403 12 (Preprint hep-th/9703156)

[52] Andrianopoli L, D’Auria R and Ferrara S 2002 Supersymmetry reduction of \mathcal{N}-extended supergravities in four dimensions J. High Energy Phys. JHEP03(2002)025 (Preprint hep-th/0110277)

[53] Andrianopoli L, D’Auria R and Ferrara S 1997 Five-dimensional U duality, black hole entropy and topological invariants Phys. Lett. B 411 39 (Preprint hep-th/9705024)

[54] Ferrara S, Gimon E G and Kallosh R 2006 Magic supergravities, $\mathcal{N} = 8$ and black hole composites Phys. Rev. D 74 125018 (Preprint hep-th/0606211)

[55] de Wit B, Vanderseypen F and Van Proeyen A 1993 Symmetry structures of special geometries Nucl. Phys. B 400 463 (Preprint hep-th/9210068)

[56] Gúnyadín M, Sierra G and Townsend P K 1983 Exceptional supergravity theories and the magic square Phys. Lett. B 133 72

[57] Gúnyadín M, Sierra G and Townsend P K 1984 The geometry of $\mathcal{N} = 2$ Maxwell–Einstein supergravity and Jordan algebras Nucl. Phys. B 242 244

[58] Gúnyadín M, Sierra G and Townsend P K 1986 More on Jordan algebras Nucl. Phys. B 253 573

[59] Gúnyadín M, Sierra G and Townsend P K 1986 Supergravity in five dimensions: more on Jordan algebras Nucl. Phys. B 540 567

[60] Behrndt K, Kallosh R, Rahmfeld J, Shmakova M and Wong W K 1996 STU black holes and string triality Phys. Rev. D 54 6293 (Preprint hep-th/9608059)

[61] Shmakova M 1997 Calabi–Yau black holes Phys. Rev. D 56 540 (Preprint hep-th/9612076)

[62] Lopes Cardoso G, Oberrreuter J M and Perz J 2007 Entropy function for rotating extremal black holes in very special geometry Preprint hep-th/0701176
[65] Pioline B 2006 Lectures on black holes, topological strings and quantum attractors Class. Quantum Grav. 23 S981 (Preprint hep-th/0607227)

[66] D’Auria R, Ferrara S, Trigiante M and Vaulá S 2005 $N = 1$ reductions of $N = 2$ supergravity in the presence of tensor multiplets J. High Energy Phys. JHEP03(2005)052 (Preprint hep-th/0502219)

[67] Tangherlini F R 1963 Nuovo Cimento 27 636

[68] Myers R C and Perry M J 1986 Black holes in higher dimensional space-times Ann. Phys. 172 304

[69] Duff M J, Liu J T and Rahmfeld J 1996 Four-dimensional string/string/string triality Nucl. Phys. B 459 125 (Preprint hep-th/9508094)

[70] Cadavid A C, Ceresole A, D’Auria R and Ferrara S 1995 Eleven-dimensional supergravity compactified on Calabi–Yau threefolds Phys. Lett. B 357 76 (Preprint hep-th/9506144)