Clinical Research Article

Corticotroph Aggressive Pituitary Tumors and Carcinomas Frequently Harbor ATRX Mutations

Olivera Casar-Borota,1,2 Henning Bünsow Boldt,3,4 Britt Edén Engström,5,6 Marianne Skovsager Andersen,7,8 Bertrand Baussart,9 Daniel Bengtsson,10,11 Katarina Berinder,12,13 Bertil Ekman,14,15 Ulla Feldt-Rasmussen,16,17 Charlotte Höybye,12,13 Jens Otto L. Jørgensen,18 Anders Jensen Kolnes,19,20 Måta Korbonits,21,22 Åse Krogh Rasmussen,23 John R. Lindsay,24,25 Paul Benjamin Loughrey,25,26 Dominique Maitre,27 Emilija Manojlovic-Gacic,28 Jens Pahnke,29,30,31 Pietro Luigi Poliani,32 Vera Popovic,33 Oskar Ragnarsson,34,35 Camilla Schalin-Jäntti,36 David Scheie,37 Miklós Tóth,38 Chiara Villa,39,40,41 Martin Wrenfeldt,3,4 Jacek Kunicki,42 and Pia Burman43

1Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; 2Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden; 3Department of Pathology, Odense University Hospital, Odense, Denmark; 4Department of Clinical Research, University of Southern Denmark, Odense, Denmark; 5Department of Medical Sciences, Endocrinology and Mineral Metabolism, Uppsala University, Uppsala, Sweden; 6Department of Endocrinology and Diabetology, Uppsala University Hospital, Uppsala, Sweden; 7Department of Endocrinology, Odense University Hospital, Odense, Denmark; 8Clinical Institute, University of Southern Denmark, Odense, Denmark; 9Department of Neurosurgery, Foch Hospital, Suresnes, France; 10Department of Internal Medicine, Kalmar, Region of Kalmar County, Sweden; 11Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; 12Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; 13Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden; 14Department of Endocrinology, University Hospital, Linköping, Sweden; 15Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; 16Department of Medical Endocrinology and Metabolism, Rigshospitalet, Copenhagen, Denmark; 17Institute of Medical Medicine, Faculty of Health Research Sciences, Copenhagen University, Copenhagen, Denmark; 18Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark; 19Section of Specialized Endocrinology, Department of Endocrinology, Oslo University Hospital, Oslo, Norway; 20Faculty of Medicine, University of Oslo, Oslo, Norway; 21Centre for Endocrinology, William Harvey Research Institute, Barts, UK; 22The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; 23Department of Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark; 24Mater Infirmorum Hospital, Belfast Health & Social Care Trust (BHSCT), UK; 25Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast Health & Social Care Trust, UK; 26Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK; 27Department of Endocrinology and Nutrition, UCL Cliniques universitaires Saint-Luc, 1200 Brussels, Belgium; 28Institute of Pathology, School of Medicine, University of Belgrade, Belgrade, Serbia; 29University of Oslo (UiO) and Oslo University Hospital (OUS), Department of Pathology, Translational Neurodegeneration Research and Neuropathology Lab, Oslo, Norway; 30LIED, University of Lübeck, Lübeck, Germany; 31Department of Pharmacology, Medical Faculty,
University of Latvia, Riga, Latvia; 32Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy; 33Medical Faculty, University of Belgrade, Serbia; 34Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 35Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden; 36Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; 37Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; 38Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; 39Department of Pathological Cytology and Anatomy, Foch Hospital, Suresnes, France; 40INSERM U1016, Institut Cochin, Paris, France; Université Paris Descartes-Université de Paris, Paris, France; 41Department of Endocrinology, Sart Tilman B35, 4000 Liège, Belgium; 42Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; and 43Department of Endocrinology, Skåne University Hospital, Malmö, Lund University, Sweden

ORCiD numbers: 0000-0001-7376-7331 (O. Casar-Borota); 0000-0002-4603-9504 (M. S. Andersen); 0000-0002-4101-9432 (M. Korbonits); 0000-0003-0204-9492 (O. Ragnarsson); 0000-0002-9772-8828 (D. Scheie); 0000-0002-4844-8336 (P. Burman).

Abbreviations: ACTH, adrenocorticotroph hormone; ALT, alternative lengthening of telomere; APT, aggressive pituitary tumor; ATRX, alpha thalassemia/mental retardation syndrome X-linked; DAXX, death domain-associated protein; FSH, follicle-stimulating hormone GH, growth hormone; IHC, immunohistochemistry; LH, luteinizing hormone; MRI, magnetic resonance imaging; NET, neuroendocrine tumor; NGS, next-generation sequencing; PC, pituitary carcinoma; PitNET, pituitary neuroendocrine tumors; PRL, prolactin; PTEN, phosphatase and tensin homolog; TSH, thyrotroph hormone.

Received: 20 July 2020; Editorial Decision: 9 October 2020; First Published Online: 27 October 2020; Corrected and Typeset: 3 December 2020.

Abstract

Context: Aggressive pituitary tumors (APTs) are characterized by unusually rapid growth and lack of response to standard treatment. About 1% to 2% develop metastases being classified as pituitary carcinomas (PCs). For unknown reasons, the corticotroph tumors are overrepresented among APTs and PCs. Mutations in the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene, regulating chromatin remodeling and telomere maintenance, have been implicated in the development of several cancer types, including neuroendocrine tumors.

Objective: To study ATRX protein expression and mutational status of the ATRX gene in APTs and PCs.

Design: We investigated ATRX protein expression by using immunohistochemistry in 30 APTs and 18 PCs, mostly of Pit-1 and T-Pit cell lineage. In tumors lacking ATRX immunolabelling, mutational status of the ATRX gene was explored.

Results: Nine of the 48 tumors (19%) demonstrated lack of ATRX immunolabelling with a higher proportion in patients with PCs (5/18; 28%) than in those with APTs (4/30; 13%). Lack of ATRX was most common in the corticotroph tumors, 7/22 (32%), versus tumors of the Pit-1 lineage, 2/24 (8%). Loss-of-function ATRX mutations were found in all 9 ATRX immunonegative cases: nonsense mutations (n = 4), frameshift deletions (n = 4), and large deletions affecting 22-28 of the 36 exons (n = 3). More than 1 ATRX gene defect was identified in 2 PCs.

Conclusion: ATRX mutations occur in a subset of APTs and are more common in corticotroph tumors. The findings provide a rationale for performing ATRX immunohistochemistry to identify patients at risk of developing aggressive and potentially metastatic pituitary tumors.

Freeform/Key Words: ATRX (alpha thalassemia/mental retardation syndrome X-linked), aggressive PitNETs, pituitary carcinoma, pituitary adenoma, Cushing’s disease
Pituitary neuroendocrine tumors (PitNETs) (1), traditionally designated as pituitary adenomas, are usually benign tumors with indolent, nonaggressive course. Recently, the European Society of Endocrinology published criteria that define aggressive PitNETs as tumors demonstrating an unusually fast growth and/or lack of response to all standard treatment modalities including surgery, and radio- and pharmacological therapies (2). Pituitary carcinomas (PCs) are defined by the presence of noncontiguous craniospinal or distant metastases (3). While PCs are rare and constitute only 0.1% to 0.2% of all pituitary neoplasms (4), the prevalence of aggressive pituitary tumors (APTs) without metastases is less well known. An estimate of 3% has been suggested based on indices of increased proliferation and extensive p53 staining in tumor specimens from 451 patients reported to the German Pituitary Tumor Registry (5). Little is known about genetic abnormalities driving invasive and metastatic pituitary tumors. Whether they develop through malignant progression of benign pituitary tumors or occur as de novo malignant tumors caused by early, single, or multiple genetic changes predisposing for distant dissemination is unknown.

The functioning corticotroph tumors causing Cushing’s disease represent less than 5% of the benign, slow-growing PitNETs (6, 7). However, they are overrepresented among APTs and PCs, where they constitute approximately 30% to 40% (8, 9). One suggested explanation for this was a lower expression of the cell cycle inhibitor p27 in normal corticotroph cells and corticotroph tumors (10); however, the mechanisms are still unclear. Silent corticotroph tumors are also considered potentially more aggressive according to the current World Health Organization classification of the pituitary tumors (3), although a recent meta-analysis could not identify an increased recurrence rate in this subtype (11).

In patients with APTs, genetic abnormalities have previously only been reported in single sporadic cases, none has consistently been found in larger groups of patients (12). In a case of clinically nonfunctioning gonadotroph carcinoma, a low level of HER2/neu gene amplification was demonstrated by using fluorescence in situ hybridization and chromogenic in situ hybridization analysis (13). The presence of mi-RNAs probably targeting PTEN (phosphatase and tensin homolog) and TIMP2 (tissue inhibitor of metalloproteinases 2) was reported as potential drivers of metastatic growth in a case with a nonfunctioning PC (14). A single case of PC was reported in a patient with succinate dehydrogenase subunit B gene mutation and history of paraganglioma (15). Finally, tumor protein p53 mutations in 2 PCs have been described (16).

Alpha thalassemia/mental retardation syndrome X-linked (ATRX) interacts with death domain-associated protein (DAXX) and the histone H3.3 variant in heterochromatin remodeling and maintenance of telomere structure and function (17, 18). Inactivation of ATRX or, less frequently, DAXX in ATRX/DAXX mutated tumors, leads to telomere destabilization and facilitates the process of alternative lengthening of telomeres (ALTs), which results in cancer cell immortality (19, 20). Somatic ATRX gene mutations are associated with several different tumor types, including astrocytomas in adults (21) and neuroendocrine tumors (NETs) such as pancreatic NETs (22, 23), neuroblastomas (24), and paragangliomas/pheochromocytomas (25, 26). Interestingly, in neuroendocrine tumors, ATRX abnormalities seem to predict malignant tumor phenotype, being present in high-grade malignant tumors such as neuroblastoma (24), or associated with poor prognosis and/or metastatic potential, such as in pancreatic NET (27), and pheochromocytomas/paraganglioma (26).

We have previously demonstrated normal immunohistochemical expression of ATRX protein in a large cohort of 246 well-characterized PitNETs localized to the sellar region, including 37 corticotroph tumors. However, 1 of 2 studied pituitary carcinomas (a corticotroph carcinoma in a patient with Cushing’s disease) did not express the protein due to a large deletion of the ATRX gene (28).

In the present study, we aimed to further explore ATRX protein expression and mutational status of the ATRX gene in a large cohort of aggressive PitNETs and pituitary carcinomas.

Material and Methods

Patient cohort

Pituitary tumor specimens were obtained from a multicenter cohort of 48 patients (15 female, 33 male), with a median age 45 (range 16-73 years) at diagnosis. Inclusion criteria were at least 1 pituitary surgery and tumor progression despite radiotherapy, and/or while on treatment with dopamine agonists or somatostatin analogues, or metastatic disease. Thirty patients had APTs and 18 had PCs with cerebrospinal and/or systemic metastases. The median time from diagnosis of the pituitary tumor to metastases was 8.5 (range 1.2-36) years (Table 1). The patients were treated at specialized centers in 11 European countries (Belgium, Denmark, Finland, France, Hungary, Italy, Norway, Poland, Serbia, Sweden, and UK). Patients’ data and tumor characteristics at the first presentation, treatments given, and outcome were collected in anonymized standardized questionnaires filled in by all participating centers.

Information on pituitary tumor size and local extension at the first magnetic resonance imaging (MRI) was available.
Six clinically silent (2 PCs, 4 APTs).

in 45 and 43 patients, respectively. All but 1 lactotroph tumor were macroadenomas at the time of diagnosis. By the time of pituitary surgery, invasion of the cavernous sinuses, bone and/or brain was evident on MRI in the 39 cases, which 16 were functioning tumors causing Cushing’s disease. Lactotroph tumors were the second most common, n = 15 (Table 1).

The index patient with ATRX mutation has been previously reported (28) and is also included in the present study. Of the 48 patients, 3 had syndromes predisposing for pituitary tumors, 1 had MEN1 (29), 1 had Lynch syndrome (30), and 1 patient belonged to a kindred with familial predisposition for pituitary tumors, but without MEN1 or AIP mutation. In addition, pituitary tumor tissue from a corticotroph nonaggressive macroadenoma in a patient with Lynch syndrome was investigated. This case was not included in the statistical analyses as it did not fulfill the criteria for aggressive tumors.

In 45 patients, at least 1 specimen from pituitary surgery was available for analyses. In the remaining 3 patients, there was only specimen from the metastasis. For 7 patients with carcinoma, material from both pituitary surgery and from metastatic tumor was available. The presence of representative tumor tissue was confirmed in hematoxylin and eosin stained slides from all specimens.

Immunohistochemical analyses

Immunohistochemistry (IHC), with antibodies towards growth hormone (GH), prolactin (PRL), thyrotroph hormone (TSH), adrenocorticotropic hormone (ACTH), gonadotroph hormones, follicle-stimulating hormone (FSH), and luteinizing hormone (LH), was performed at the local IHC laboratories according to the routine protocols. Immunohistochemical analysis with antibodies towards pituitary-specific transcription factors was performed at Uppsala University Hospital by using anti-SF1 antibody (Abcam, ab217317), anti-Pit-1 antibody (Novus Biologicals, NB1-92273), and anti-T-Pit antibody (Atlas Antibodies, AMAb91409), according to the standard protocols. ATRX protein expression was studied on whole sections from formalin-fixed paraffin-embedded tissue blocks. For the patients operated on more than once, available tissue specimens from multiple surgeries were examined. In the majority of cases, IHC was performed at Uppsala University Hospital in a DAKO-Autostainer Link 48 with heat-induced epitope retrieval at high pH. Purified polyclonal anti-ATRX antibody (HPA001906, Atlas Antibodies; dilution 1:100; incubation time 20 minutes) was used. Specimens from 2 adult astrocytomas, 1 with ATRX mutation and 1 without ATRX mutation, both
confirmed by using molecular genetic analysis, were used as negative and positive controls. In addition, immunolabelled endothelial cells served as an internal positive control. Four cases from Foch Hospital (Suresnes, France) and a case from University Hospital in Copenhagen, Denmark, were stained in Ventana Benchmark by using the same antibody and according to the locally optimized protocols.

Molecular genetic analysis

Molecular genetic analysis was performed on tumor tissue from the pituitary specimen in all nine cases demonstrating lack of ATRX immunolabelling. In 2 patients, specimens from metastases were also analyzed. If there was more than 1 specimen from the pituitary surgery, the specimen with the most representative tumor tissue was used. In 1 patient, a partial lack of ATRX protein labelling was observed in the pituitary specimen and a total lack in metastatic tumor tissue. In this patient, an attempt was made to microdissect tissue and extract DNA separately from ATRX negative and positive area of the pituitary tumor. In addition, the specimen from metastasis with negative ATRX staining was analyzed. All but 1 specimen were examined by a next-generation sequencing (NGS) panel targeting 20 genes (31) related to cancers of the central nervous system as in the initial study (28). The proportion of tumor cells exceeded 70% in all the specimens. One specimen was analyzed using an exome-wide sequencing approach.

Next-generation sequencing

DNA was purified from 10-µm paraffin slides using GeneRead DNA FFPE Kit (Qiagen, Germany) according to the manufacturer's instructions. NGS was performed with a custom designed central nervous system panel covering the entire coding sequence or hotspot regions of 20 genes frequently mutated in brain tumors (32). DNA was quantified using an RNase P TaqMan Copy Number Reference Assay performed on a QuantStudio 12K Flex Real-Time PCR System (Applied Biosystems, Foster City, CA). Libraries were prepared in 2 primer pools using the Ion AmpliSeq Library Kit Plus and Ion Xpress Barcode Adapters 1–96 Kit in 10 µL of reaction volume with 5 ng of template DNA. Library quantitation was performed using the Ion Library Quantitation Kit. Sample preparation, chip loading, and sequencing were performed using Ion Chef and Ion Torrent S5 System with Ion S5 Chef solutions, Ion S5 sequencing reagents and Ion S30/S40 Chip Kits. All Ion products were supplied by Ion Torrent/ThermoFisher Scientific, Carlsbad, CA, USA. Data analysis, including base calling, quality scoring, trimming, demultiplexing, and alignment, was performed using standard Ion Torrent Suite v5.10 workflows.

NGS was performed with a GeneRead DNA FFPE Kit (Qiagen, Germany) according to the locally optimized protocols.

Ethics approval

The study has been approved by Regional Ethics Committee in Uppsala (Dnr 2018/327).

Results

Lack of ATRX protein expression is frequent in corticotroph tumors

Nine of the 48 tumors (19%) demonstrated lack of ATRX immunolabelling in the tumor cells. Five were carcinomas and 7 were corticotroph tumors, representing 32% of all corticotroph tumors (7 out of 22). Lack of protein expression was more common in patients with functioning corticotroph tumors (6/16, 38%) than in those with silent corticotroph tumors (1/6, 17%). Of the remaining 2 ATRX-immunonegative tumors, 1 was a lactotroph APT with a fatal outcome, and 1 was a somato-lactotroph carcinoma that initially presented as a prolactinoma and subsequently evolved into acromegaly (Table 2). More than 1 pituitary specimen was available for analysis in 6 of 7 patients who underwent multiple surgeries. In 5 of the 6 patients, all specimens demonstrated lack of ATRX in all tumor cells. In 1 patient, the specimen from the first surgery could not be assessed, and there was partial lack of ATRX expression in pituitary tumor from the second surgery and a total lack in the metastasis. In 5 patients with PC, specimens from metastases were available in 4 and demonstrated negative ATRX staining in the tumor cells. The remaining 39 pituitary tumors demonstrated intact nuclear ATRX expression.

Examples of PitNETs with normal ATRX staining, total lack of immunolabelling and partial negative ATRX staining in primary and metastatic tumors are illustrated in Fig. 1.

All ATRX-immunonegative tumors harbor loss-of-function ATRX gene abnormalities

ATRX loss-of-function gene abnormalities were found in all 9 ATRX-immunonegative tumors (Table 3) (31). Two different damaging ATRX mutations with large differences in mutation frequencies were identified in the same primary tumor
in 2 carcinomas from male patients. One of these 2 tumors demonstrated a partial lack of ATRX at IHC. An attempt to extract separately DNA from ATRX-immunopositive and negative fraction was, however, unsuccessful, as the same mutational status was confirmed in both fractions. Interestingly, only the predominant mutation from this pituitary tumor was present in the metastasis (6 years later) with a frequency of 98%, suggesting clonal heterogeneity and evolution of the primary tumor (Table 3) (31). Three tumors did not show any ATRX single nucleotide variants or small indels, but had large, intragenic deletions corresponding to most of the coding sequences (22-28 of 36 exons) (Fig. 2A and 2B). One of these tumors was the corticotroph tumor previously reported, whereas the other 2 were lactotroph and somato-lactotroph, respectively. All identified ATRX single nucleotide variants and small indels were positioned throughout the coding sequence of the ATRX gene (Fig. 2C). In addition to the ATRX mutations, 8 out of 9 ATRX-immunonegative tumors had other genetic abnormalities: inactivating somatic mutations in 3 lactotrophs (4); silent Pit 1 positive (3); double TSH/FSH (1); null cell PitNET (1).

Table 2. Patient and tumor characteristics in ATRX mutated vs intact cases

	ATRX mutated	ATRX intact
Total n	9	39
Age at diagnosis, year (median, range)	45 (23-72)	45 (16-73)
Male, n (%)	6 (67)	27 (69)
Aggressive pituitary tumors, n (%)	4 (44)	26 (67)
Pituitary carcinomas, n (%)	5 (56)	13 (33)

Tumor subtypes (IHC)	ATRX mutated	ATRX intact
Corticotroph (n = 22)	7	15
PC (n = 12)	4	8
APT (n = 10)	3	7
Lactotroph (n = 15)	1	14
PC (n = 3)	0	3
APT (n = 12)	1	11
Somato/lactotroph (n = 2)	1	1
PC (n = 1)	1	0
APT (n = 1)	0	1
Other subtypes* (n = 9)	0	9
PC (n = 2)	0	2
APT (n = 7)	0	7

Abbreviations: APT, aggressive pituitary tumor; IHC, immunohistochemistry; PC, pituitary carcinoma.

*Somatotrophs (4); silent Pit 1 positive (3); double TSH/FSH (1); null cell PitNET (1).

Discussion

Little is known about genetic abnormalities driving invasive and metastatic growth of PitNETs. Here, we demonstrate a loss of ATRX protein expression caused by severe loss-of-function ATRX gene alterations in almost a fifth of highly APTs, with a higher prevalence in PC than in APT, and in corticotroph tumors than in other lineage subtypes. This indicates that corticotroph tumors are prone to develop ATRX gene abnormalities.

We reported previously normal ATRX expression in 246 PitNETs localized to the sellar region. However, in 1 female patient diagnosed with Cushing’s disease and a pituitary macroadenoma at an age of 36 years, we found negative ATRX immunolabelling caused by a large deletion of the ATRX gene (28). This tumor had progressed over time and had become metastatic despite multiple transsphenoidal surgeries, pharmacological therapy, and 3 different modalities of radiation therapy. ATRX staining was absent in all the tumor specimens including the 1 from the first surgery.

In the present extended study, we demonstrate ATRX gene defects in 8 additional patients. Thus, 9 out of 48 patients (19%) with APTs or carcinomas harbored loss-of-function ATRX gene alterations, more frequently in patients with PC than with APT (28% vs 13%). Five out of the total 9 patients with ATRX gene defects had carcinomas. Of the 4 APT patients, 2 died due to progressive tumor growth, in another there was a short time from the tumor diagnosis to the study end, and in the last patient search of metastases was not performed due to advanced dementia. Further studies with longer follow-up are needed to assess to what extent an initial ATRX defect leads to a metastatic disease.

In addition to our previously reported case of ATRX mutated corticotroph carcinoma (28), a corticotroph carcinoma with an ATRX mutation in combination with PTEN and TP53 mutations has been described; however, without detailed presentation of genetic data (34).

In a recent study (35), whole exome sequencing of 18 corticotroph tumors lacking mutations in the USP8 (ubiquitine specific peptidase 8) gene, mutations that drive corticotroph tumors in approximately 50% of patients with Cushing’s disease, demonstrated ATRX mutations concomitantly with TP53 mutations in 2. Although detailed clinical data regarding aggressiveness of the 2 ATRX mutated tumors were not presented, both were recurrent and required surgery on 2 and >3 occasions, respectively, and Ki67 proliferative index was increased in 1 of the cases (35). Lack of ATRX immunolabelling was recently found in 3 lactotroph macroadenomas from a cohort of 42 pediatric PitNETs, but molecular genetic confirmation of the ATRX mutations was not provided (36). Recently, ALT
phenotype has been reported in 3 of 106 PitNETs, 2 were recurrent nonfunctioning PitNETs without specification of cell lineage differentiation, and 1 was a somatotroph tumor (37). Two of the 3 ALT-positive PitNETs demonstrated loss of ATRX or DAXX at protein level, indicating a homozygous loss of the gene or alternative mechanism of gene silencing. However, no ATRX or DAXX mutations were identified by sequencing (37).

In patients who had repeated pituitary surgeries in the present cohort, an ATRX defect was already present in the first removed tumor, though in 1 patient tumor tissue from the first surgery was not evaluable. This indicates that ATRX abnormalities represent an early genetic event contributing to aggressive behavior and, at least in a subset of patients, to metastatic spread. Where material from both the pituitary tumor and metastasis was available (n = 4), identical patterns of a complete loss of ATRX were seen in 3, whereas 1 one case, partial loss of ATRX was identified in the pituitary tumor and a complete loss in the metastasis. A similar case of a PitNET with ALT-negative phenotype in the original tumor, and ALT-positive phenotype and a partial loss of ATRX in a recurrent tumor, was recently reported (37). These findings suggest that an ATRX mutation may occur, though rarely, in pituitary tumors with primarily intact ATRX, contributing to malignant tumor progression.

In the ATRX-mutated cases in our cohort, we demonstrated different loss-of-function ATRX defects including nonsense mutations, frameshift indels, and, in 3 cases, large, intragenic deletions of almost the whole gene (22-28 of the 36 exons). Interestingly, large deletions of almost the whole ATRX gene have only rarely been reported in other tumor
Table 3. Genetic alterations in ATRX-negative APT and PC by panel NGS

Pt.	Specimen	Local.	ATRX expression	Genes	Coding	Amino Acid	Freq. (%)	#
1	Cushing/PC	Pituitary	loss	ATRX	c.134_6217del	p.D45-K2027del	Nu	
2	Cushing/PC	Pituitary	loss	ATRX	c.748C>T	p.Arg250Ter	89	
	Lynch sy			TP53	c.524G>A	p.Arg175His	84	
				PTEN	c.697C>T	p.Arg233Ter	10	
3	Lactotroph/APT	Pituitary	loss	ATRX	c.21_6699del	p.E8-K2233del	Nu	
				TP53	c.584T>A	p.Ile195Asn	92	
				RB1	c.1725_1726 insAACAA	p.Ser576fs	13	
				RB1	c.1218_1697del	p.N406-565del	He	
4	Cushing/PC	Pituitary	loss	ATRX	c.6679delG	p.Arg2227fs	81	
				ATRX	c.3583delA	p.Arg1195fs	12	
5	Silent ACTH/PC	Pituitary	retained (major)/loss (minor)	ATRX	c.4048_4049delGG	p.Gly1350fs	28	
				TP53	c.6661G>T	p.Glu221Ter	31	
				TP53	c.644G>A	p.Arg175Asn	30	
5a	Silent ACTH/PC	Pituitary	loss (major)/retained (minor)	ATRX	c.4048_4049delGG	p.Gly1350fs	67	
				TP53	c.6661G>T	p.Glu221Ter	10	
				TP53	c.644G>A	p.Arg175Asn	8	
5b	Silent ACTH/PC	Metastasis	loss	ATRX	c.4048_4049delGG	p.Gly1350fs	98	
				ATRX	c.2422C>T	p.Arg808Ter	72	
				TP53	c.1024C>T	p.Arg342Ter	51	
				PTEN	c.697C>T	p.Arg233Ter	55	
6	Cushing/APT	Pituitary	loss	ATRX	c.839_840insCATG	p.Asn281Ter	44	
				TP53	c.818G>A	p.Arg273His	85	
				NF2	c.1052G>A	p.Arg351His	20	
7	Cushing/APT	Pituitary	loss	ATRX	c.5938T>A, c.5939delC	p.Ser1980fs	88	
				TP53	c.375G>A	p.(=)	81	
8	Cushing/APT	Pituitary	loss	ATRX	c.59_6699del	p.N199-K2233del	He	
9	Mixed GH-PRL/PC	Pituitary	loss	CDKN2A	c.1_301del	p.M1-A167del	Ho	
				CDKN2B	c.1_414del	p.M1-D138del	Ho	
9	Mixed GH-PRL/PC	Metastasis	loss	ATRX	c.59_6699del	p.N199-K2233del	He	
				CDKN2A	c.1_301del	p.M1-A167del	Ho	
				CDKN2B	c.1_414del	p.M1-D138del	Ho	

Abbreviations: APT, aggressive pituitary tumors; PC, pituitary carcinoma; NGS, next-generation sequencing; ACTH, adrenocorticotropic hormone; GH, growth hormone; PRL, prolactin; #, estimated ploidy level of larger gene deletions: Nu: nullizygous, He: hemizygous deletion, Ho: homozygous deletion.

The same mutations were detected in ATRX immunopositive and immunonegative tissue fractions indicating that they could not be successfully separated.
types, such as astrocytomas (21, 32), pancreatic NETs (22), and pheochromocytomas and paragangliomas (25). Yet, a recent study on ATRX alterations in neuroblastoma demonstrated a strong tendency for large, intragenic deletions of exons 1-9, encoding the first half portion of the ATRX protein (38). In our cohort, there was no predominance of a particular type of mutation in carcinomas compared with APTs, or in corticotroph compared with Pit-1-lineage tumors. However, the number of mutated cases may be too low to make conclusions on a potential genotype–phenotype association.

Blood samples or normal tissues from patients were not included in the sequencing experiments to test for germline mutations. The variant allele frequencies of mutations in ATRX reported in this study are in favor of somatic rather than germline origin. Furthermore, IHC revealed normal ATRX expression in non-neoplastic cells in all the mutated specimens, arguing for the somatic origin of the ATRX gene defects.

In the present study, we had the opportunity to investigate ATRX in 2 patients with corticotroph tumors, 1 nonaggressive macroadenoma and 1 carcinoma, and Lynch syndrome, a cancer predisposing syndrome with mutations in genes involved in DNA mismatch repair (MLH1, MSH2, MSH6, PMS2, EPCAM). Both tumors harbored an MSH2 mutation, but only the severe case, a carcinoma, in addition exhibited an ATRX mutation.

Additional cancer-related mutations were identified and associated with ATRX alterations in 8 of 9 cases, TP53 mutations in 6 (3 aggressive corticotroph tumor, 2 corticotroph carcinomas, and 1 aggressive lactotroph tumor), PTEN mutations in 2, and RB1, NF2, and CDKN2A/B in single
cases. TP53 mutations have rarely been previously reported in pituitary tumors (16). However, recently, TP53 mutations were demonstrated in 6 out of 18 of corticotroph USP8 wild-type tumors and correlated with larger tumors and higher Ki67 index (35). Our findings, together with previous report, may suggest an association of the TP53 mutations with corticotroph tumors with more aggressive phenotype. Findings of multiple mutations in the ATRX mutated tumors may indicate genetic instability leading to multiple cancer-related genetic events. However, more extensive molecular genetic analyses are needed to get full insight into genetic landscape of aggressive PitNETs.

The strength of the present study is the well characterized cohort of APT and PC and a relatively large number of patients, having in mind the rarity of the condition. A limitation is a short follow-up of some of the patients with ATRX defects, which limits conclusions on the metastatic potential of this mutation.

Although many APT/carcinomas exhibit histological features consistent with increased proliferation (Ki-67 index > 3%, increased mitotic count, and p53 expression) (4), and coexistence of 2 of the 3 markers is associated with increased risk of tumor progression and recurrence (39), the presence of these features does not fully predict future aggressive behavior (40, 41). To our knowledge, the present findings is the first time that a gene mutation with well-known oncogenic potential has been consistently reported in a proportion of aggressive PitNETs.

Currently, temozolomide is the first-line chemotherapy for APT and PC (29). The drug induces an initial response rate of 40%, but subsequently most tumors relapse and long-term effective alternative therapies are still lacking (42). Mutated ATRX is an attractive therapeutic target for the subgroup of ATRX negative pituitary tumors. There is ongoing intensive research aiming to develop pharmacological therapies targeting ATRX and ALT (43, 44).

In summary, the results of this study provide a rationale for performing ATRX immunohistochemistry as a simple, inexpensive, and widely available laboratory test to identify patients at increased risk for development of highly aggressive and potentially metastatic PitNETs, especially in macroadenomas causing Cushing’s disease or in clinically silent corticotroph tumors. Patients with pituitary tumors harboring an ATRX mutation should be offered closer follow-up, including work-up for metastatic dissemination, and invasive treatment at the early stages of the disease.

Acknowledgments

We thank Svetlana Popova, Uppsala University Hospital, for her help in performing immunohistochemical analyses; Ansgar Heck, Kristin Astrid B. Øystese and Jens Bollerslev (University of Oslo, Norway), Bjarne Winther Kristensen and Janne Christensen (Department of Pathology, University of Southern Denmark, Odense), Olli Tynniinen (Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland), Angeliki Papagiannopoulou (Department of Pathology, Linköping University Hospital, Sweden), Eva C. Lindberg (Department of Pathology, Lund University Hospital, Sweden), Alia Shamikh (Karolinska University Hospital, Sweden), Lilla Reiniger and Hajnalka Rajnai (Department of Pathology and Experimental Cancer Research, Medical Faculty, Semmelweis University, Budapest, Hungary), Gavin Baker, Brian Herron (Royal Victoria Hospital, Belfast) and Anastasia M. Lapshina (Department of Pathology, University Hospital Moscow, Russia) for their contribution in the selection of the patients and collection of the surgical specimens; Christine Gaasdal Kassentoft and Britt Elmedal Laursen, Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark, for molecular analysis performed at one of the ATRX mutated cases, and Evelina Sjöstedt, Uppsala University, for formatting Fig. 1.

Financial Support: Olivera Casar-Borota was supported by the Swedish Cancer Society (grant number 190157 Fk) and by a grant from the Swedish state under the agreement between the Swedish government and the county councils (ALF-agreement). Henning B. Boldt was supported by the Region of Southern Denmark. Camilla Schalin-Jantti received funding from the Helsinki University Hospital Research Funds (TYH2018223, TYH20191254). Pia Burman received a research grant from Skåne University Hospital, Region of Skåne, Sweden.

Additional Information

Correspondence and Reprint Requests: Olivera Casar-Borota, MD, PhD, Department of Immunology, Genetics and Pathology, Uppsala University and Department of Clinical Pathology, Uppsala University Hospital, Dag Hammerskjölds väg 20, 75851 Uppsala, Sweden. E-mail: olivera.casar-borota@igp.uu.se.

Disclosure Summary: The authors have nothing to disclose.

Data Availability: Some or all data generated or analyzed during this study are included in this published article or in the data repositories listed in References.

References

1. Asa SL, Casar-Borota O, Chanson P, et al.; attendees of 14th Meeting of the International Pituitary Pathology Club, Annecy, France, November 2016. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an International Pituitary Pathology Club proposal. Endocr Relat Cancer. 2017;24(4):C5-C8.
2. Raverot G, Burman P, McCormack A, et al.; European Society of Endocrinology. European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. Eur J Endocrinol. 2018;178(1):G1-G24.
3. Lloyd RV, Osamura RY, Kloppel G, Rosai J. World Health Organization Classification of Tumours of Endocrine Organs. 4th ed. Lyon: IARC Press; 2017.
4. Miermeister CP, Petersen S, Buchfelder M, et al. Histological criteria for atypical pituitary adenomas – data from the German pituitary adenoma registry suggests modifications
1193

The Journal of Clinical Endocrinology & Metabolism, 2021, Vol. 106, No. 4

[published correction appears in Acta Neuropathol Commun. 2016;4(1):21. Acta Neuropathol Commun. 2015;3:30.

5. Saeger W, Liudeke DK, Buchfelder M, Fahlbursch R, Quabbe HJ, Petersen S. Pathohistological classification of pituitary tumors: 10 years of experience with the German Pituitary Tumor Registry. Eur J Endocrinol. 2007;156(2):203-216.

6. Raapanna A, Koivukangas J, Ebeling T, Pirila T. Incidence of pituitary adenomas in Northern Finland in 1992-2007. J Clin Endocrinol Metab. 2010;95(9):4268-4275.

7. Tjornstrand A, Gunnarsson K, Evert M, et al. The ATRX syndrome protein. Xue Y, Gibbons R, Yan Z, et al. The ATRX syndrome protein. Nat Endocrinol. 2014;17(1):519–526.

8. Pernicone PJ, Scheithauer BW, Sebo TJ, et al. Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer. 1997;79(4):804-812.

9. Dudziak K, Honegger J, Bornemann M, Horger M, Müssig K. Pituitary carcinoma with malignant growth from first presentation and fulminating clinical course–case report and review of the literature. J Clin Endocrinol Metab. 2011;96(9):2665-2669.

10. Liddar K, Korbonits M, Jordan S, et al. Low expression of the cell cycle inhibitor p27Kip1 in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J Clin Endocrinol Metab. 1999;84(10):3823-3830.

11. Fountas A, Lavrentaki A, Subramanian A, Toless KA, Naranthanarukumar K, Karavitskni N. Recurrence in silent corticotroph adenomas after primary treatment: a systematic review and meta-analysis. [Published online ahead of print, December 21, 2018]. J Clin Endocrinol Metab. Doi: 10.1210/jc.2018-01956.

12. Srirangam Nadhamuni V, Korbonits M. Novel insights into pituitary tumorigenesis: genetic and epigenetic mechanisms. [Published online ahead of print March 23, 2020]. Endocr Res. 2020;hnaa006.

13. Roncaroli F, Nosé V, Scheithauer BW, et al. Gonadotropin pituitary carcinoma: HER-2/neu expression and gene amplification. Report of two cases. J Neurosurg. 2003;99(2):402-408.

14. Wei Z, Zhou C, Liu M, et al. MicroRNA involvement in a metastatic non-functioning pituitary carcinoma. Pituitary. 2015;18(5):710-721.

15. Tufron N, Roncaroli F, Hadjidermetiou I, et al. Pituitary carcinoma in a patient with an SDHB mutation. Endocr Pathol. 2017;28(4):320-325.

16. Taniaki Y, Jin L, Scheithauer BW, Kovacs K, Roncaroli F, Lloyd RV. P53 gene mutations in pituitary carcinomas. Endocr Pathol. 2007;18(4):217-222.

17. Xue Y, Gibbons R, Yan Z, et al. The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc Natl Acad Sci U S A. 2003;100(19):10635-10640.

18. Wong LH, McGhie JD, Sim M, et al. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 2010;20(3):351-360.

19. Heaphy CM, de Wilde RF, Jiao Y, et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333(6041):425.

20. Clynes D, Jelinska C, Xella B, et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodeling factor ATRX. Nat Commun. 2015;6:7538.

21. Jiao Y, Killela PJ, Reitman ZJ, et al. Frequent ATRX, CIC, FUBP1 and ID11 mutations refine the classification of malignant gliomas. Oncotarget. 2012;3(7):709-722.

22. Jiao Y, Shi C, Edil BH, et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science. 2011;331(6021):1199-1203.

23. Haase S, Garcia-Fabiani MB, Carney S, et al. Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets. 2018;22(7):599-613.

24. Molenaar JJ, Koster J, Zwijnenburg DA, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neurtinogenes genes. Nature. 2012;483(7391):589-593.

25. Fishbein L, Khare S, Wubbenhorst B, et al. Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat Commun. 2015;6:6140.

26. Job S, Draskovic I, Burnichon N, et al. Telomerase activation and ATRX mutations are independent risk factors for metastatic pheochromocytoma and paraganglioma. Clin Cancer Res. 2019;25(2):760-770.

27. Singhi AD, Liu TC, Roncaioli JL, et al. Alternative lengthening of telomeres and loss of DAXX/ATRX expression predicts metastatic disease and poor survival in patients with pancreatic neuroendocrine tumors. Clin Cancer Res. 2017;23(2):600-609.

28. Casar-Borota O, Borling J, Granberg D, et al. Serotonin, ATRX, and DAXX expression in pituitary adenomas: markers in the differential diagnosis of neuroendocrine tumors of the sellar region. Am J Surg Pathol. 2017;41(9):1238-1246.

29. Bengtsson D, Schroder HD, Andersen M, et al. Long-term outcome and MGMT as a predictive marker in 24 patients with atypical pituitary adenomas and pituitary carcinomas given treatment with temozolomide. J Clin Endocrinol Metab. 2015;100(4):1689-1698.

30. Bengtsson D, Joost P, Aravidis C, et al. Corticotroph pituitary carcinoma in a patient with Lynch syndrome (LS) and pituitary tumors in a nationwide LS cohort. J Clin Endocrinol Metab. 2017;102(11):3928-3932.

31. Casar-Borota O, Boldt HB, Engstrom BE, et al. Data from: corticotroph aggressive pituitary tumors and carcinomas frequently harbor ATRX mutations. Figshare. Deposited 20 July 2020. https://figshare.com/s/3f04f8753859badbd154a.

32. Zacher A, Kaulich K, Stepanow S, et al. Molecular diagnostics of gliomas using next generation sequencing of a glioma-tailored gene panel. Brain Pathol. 2017;27(2):146-159.

33. Cheng DT, Mitchell TN, Zehir A, et al. Memorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17(3):251-264.

34. Guo F, Wang G, Wang F, Xu D, Liu X. Identification of novel genes involved in the pathogenesis of an ACTH-secreting pituitary carcinoma: a case report and literature review. Front Oncol. 2018;8:510.

35. Sbiera S, Perez-Rivas LG, Taranets L, et al. Driver mutations in USP8 wild-type Cushing's disease. Neuro Oncol. 2019;21(10):1273-1283.
36. Chen J, Schmidt RE, Dahiya S. Pituitary adenoma in pediatric and adolescent populations. J Neuropathol Exp Neurol. 2019;78(7):626-632.
37. Heaphy CM, Bi WL, Coy S, et al. Telomere length alterations and ATRX/DAXX loss in pituitary adenomas. Mod Pathol. 2020;33(8):1475-1481.
38. Zeineldin M, Federico S, Chen X, et al. MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nat Commun. 2020;11(1):913.
39. Trouillas J, Roy P, Sturm N, et al.; members of HYPOPROMOS. A new prognostic clinicopathological classification of pituitary adenomas: a multicentric case-control study of 410 patients with 8 years post-operative follow-up. Acta Neuropathol. 2013;126(1):123-135.
40. McCormack A, Dekkers OM, Petersen S, et al.; ESE survey collaborators. Treatment of aggressive pituitary tumours and carcinomas: results of a European Society of Endocrinology (ESE) survey 2016. Eur J Endocrinol. 2018;178(3):265-276.
41. Trouillas J, Burman P, McCormack A, et al. Aggressive pituitary tumours and carcinomas: two sides of the same coin? Eur J Endocrinol. 2018;178(6):C7-C9.
42. Burman P, Lamb L, McCormack A. Temozolomide therapy for aggressive pituitary tumours – current understanding and future perspectives. Rev Endocr Metab Disord. 2020;21(2):263-276.
43. Kent T, Gracias D, Shepherd S, Clynes D. Alternative lengthening of telomeres in pediatric cancer: mechanisms to therapies. Front Oncol. 2019;9:1518.
44. Liang J, Zhao H, Diplas BH, et al. Genome-wide CRISPR-Cas9 screen reveals selective vulnerability of ATRX-mutant cancers to WEE1 inhibition. Cancer Res. 2020;80(3):510-523.