DISCOVERY OF A SECOND HIGH-FREQUENCY QUASI-PERIODIC OSCILLATION FROM THE MICROQUASAR GRS 1915+105

TOD E. STROHMAYER

NASA Goddard Space Flight Center, Laboratory for High Energy Astrophysics, Code 662, Greenbelt, MD 20771; stroh@clarence.gsfc.nasa.gov

Received 2001 March 16; accepted 2001 May 18; published 2001 June 19

ABSTRACT

We report the discovery in archival Rossi X-Ray Timing Explorer data of a ~40 Hz quasi-periodic oscillation (QPO) in the hard X-ray band above ~13 keV and was discovered in observations in which the previously known 67 Hz QPO is present. The 40 Hz QPO has a typical rms amplitude of ~2% in the 13–27 keV band and a width of ~5.5 Hz (FWHM). We show that the 67 and 40 Hz QPOs are detected in the same observations in 1997 July and November. However, the QPO is not detected in observations from 1996 April, May, and June in which the 67 Hz QPO was first discovered. The frequency of the 67 Hz QPO is significantly higher in the 1997 observations by about 5% compared with the 1996 data. The identification of the 40 Hz QPO makes GRS 1915+105 the second black hole binary to show a pair of simultaneous high-frequency QPOs (the other being GRO J1655–40). The similarities between the properties of the 67 Hz QPO in GRS 1915+105 and the recently discovered 450 Hz QPO in GRO J1655–40 suggest that the pairs of frequencies in these systems may be produced by the same physical mechanism, with the frequency differences between the two being likely due to different black hole masses in the two systems. We discuss the implications of our result for the mass and spin of GRS 1915+105 as well as for models of X-ray variability in black holes and neutron stars.

Subject headings: black hole physics — stars: individual (GRS 1915+105) — stars: oscillations — X-rays: stars

1. INTRODUCTION

In the last several years quasi-periodic X-ray brightness oscillations have been discovered with the Rossi X-Ray Timing Explorer (RXTE) in more than 20 neutron star low-mass X-ray binaries (LMXBs; see van der Klis 2000 for a recent review). The phenomenology of these quasi-periodic oscillations (QPOs) is complex, but a key feature is that pairs of QPOs are observed. X-ray QPOs in black hole binaries have also been observed with RXTE. For example, Remillard et al. (1999) reported the presence of a weak, broad ~300 Hz QPO at times when the X-ray spectrum was hardest (dominated by a power-law component) and the luminosity above ~0.2L_{Edd}. Recently, Strohmayer (2001) reported the discovery of a second QPO, at 450 Hz, in the hard X-ray flux from GRO J1655–40. This demonstrated for the first time that black hole systems can also show a pair of high-frequency QPOs simultaneously and suggests that the black hole in GRO J1655–40 has appreciable angular momentum. High-frequency QPOs have also been observed in three black hole transients: 4U 1630–47 at 184 Hz, XTE J1858+226 at 170 Hz, and XTE J1550–564 at 100 and 283 Hz (see Remillard & Morgan 1998; Markwardt, Swank, & Taam 1999; Remillard et al. 1998; Homan et al. 2001).

The high frequencies of these X-ray QPOs suggest that they are produced in the innermost region of the accretion flow near the black hole event horizon. When a detailed understanding of the processes involved in their formation emerges, they should provide a wealth of information on black hole mass and spin as well as the structure of strongly curved spacetime. A number of different models have been proposed to explain these oscillations, but all require that strong-field general relativity effects be taken into account (see Milsom & Taam 1997; Nowak et al. 1997; Wagoner 1999; Stella, Vietri, & Morsink 1999; Merloni et al. 1999).

A stable ~67 Hz QPO has also been observed from the Galactic microquasar GRS 1915+105 (Morgan, Remillard, & Greiner 1997). GRS 1915+105 exhibits a broad range of correlated multiwavelength variability, including very complex X-ray behavior (see, e.g., Muno, Morgan, & Remillard 1999; Markwardt et al. 1999; Lin et al. 2000), superluminal radio outflows (Mirabel & Rodriguez 1994; Fender & Pooley 2000), and correlated infrared, X-ray, and radio variability (Fender et al. 1997; Eikenberry et al. 1998; Bandyopadhyay et al. 1998). Motivated by the discovery of a second high-frequency QPO in GRO J1655–40, we analyzed the archival RXTE data from GRS 1915+105 to search for a second QPO in this object as well. In this Letter we report the discovery of a ~40 Hz QPO in the hard X-ray flux from GRS 1915+105. We show that this new QPO is sometimes present at the same time as the previously discovered 67 Hz QPO (Morgan et al. 1997); however, it is not always seen when the 67 Hz QPO is detected. This is now the second example of a black hole binary with evidence for a pair of high-frequency QPOs and suggests that this phenomenology may be common in black hole systems as well as the neutron star binaries. We discuss briefly the implications of our findings for models of X-ray variability in neutron star and black hole systems as well as the implications for the mass and spin of the black hole in GRS 1915+105.

2. DATA ANALYSIS

GRS 1915+105 has been the subject of extensive sets of observations with RXTE, both public and proprietary. We began a reanalysis of some of the archival RXTE GRS 1915+105 data motivated by the discovery in GRO J1655–40 of a 450 Hz QPO in the X-ray band above 13 keV (Strohmayer 2001). Since a second QPO was found in GRO J1655–40 during observations in which a previously known 300 Hz QPO was seen, we essentially asked the same question with regard to GRS 1915+105: Might a second QPO also be seen in the hard X-ray flux in observations in which the known 67 Hz QPO is detected? To address this question we began by analyzing the RXTE/PCA AO2 public observations of GRS 1915+105 under...
A total of 97 observations were carried out under this program, and the data modes included a high time resolution event mode (sampling rate of 16,384 Hz) covering the greater than 13 keV energy band. We first computed an average power spectrum for each observation separately using just the greater than 13 keV data. We computed power spectra using 64 s intervals and 0.0625 Hz frequency resolution in the range from 0.0625 to 1024.0 Hz. We detected the 67 Hz QPO in the five observations listed in Table 1. A QPO feature near ~40 Hz is apparent by visual inspection in some of the average power spectra of these five observations. To search most sensitively for this second feature, we computed an average power spectrum of all five observations. This power spectrum is shown in Figure 1. The QPO feature at 40 Hz can be clearly seen in this average power spectrum. To estimate the significance of this feature, we first rescaled the power spectrum so that the local mean near 40 Hz was 2 (the value expected for a purely Poisson process) and then computed the probability of obtaining a power \(P = P_{\text{max}} \times 510 \times 128 \) from a \(\chi^2 \) distribution with \(2 \times 510 \times 128 \) degrees of freedom. Here \(P_{\text{max}} \) is the highest power in the QPO feature. We used this \(\chi^2 \) distribution because we averaged in frequency by a factor of 128 and averaged 510 individual power spectra. This gives a chance probability of \(4.8 \times 10^{-8} \) for the highest bin within the QPO profile, better than a 5 \(\sigma \) deviation. If one averages the two highest bins in the QPO profile, then the chance probability per trial drops to \(3.5 \times 10^{-11} \). Since we first searched the average power spectra of each observation, we can be conservative and use as the number of trials the total number of powers searched in these power spectra. This gives \(5 \times 512 = 2560 \) trials, and then we have a chance probability of \(9 \times 10^{-10} \), better than a 6 \(\sigma \) detection.

We next modeled the power spectrum using Gaussian profiles for the QPO features and a broadband power-law component in the 10–512 Hz range. With this model we found an acceptable fit with \(\chi^2 = 485.2 \) for 495 degrees of freedom. Removing the 40 Hz Gaussian feature from the best-fit model increases \(\chi^2 \) by \(\sim 55 \), which further confirms the high significance of the 40 Hz QPO. The QPOs at 40 and 67 Hz are well fitted by Gaussians centered at \(\nu_0 = 41.5 \pm 0.4 \) and 69.2 \(\pm 0.15 \) Hz, with widths of 2.3 \(\pm 0.47 \) and 1.5 \(\pm 0.14 \) Hz, respectively. This gives coherence values \(Q = \nu_0 / \delta \nu_{\text{WJW}} = 7.7 \) and 19.6, respectively. The average rms amplitudes in the 13–27 keV band for the 40 and 67 Hz QPOs are 2.4% and 1.9%. With this model an excess of power remains between the two QPOs. The excess can be modeled with a third Gaussian with a centroid of 56 \(\pm 2 \) Hz, a width of 13.9 \(\pm 6 \) Hz, and an rms amplitude of about 2%. This third Gaussian improves \(\chi^2 \) by 23.3. An F-test gives a probability of \(4.8 \times 10^{-2} \), suggesting that the three additional parameters are formally required by the data. It is not obvious whether this feature is associated with either the 40 or 67 Hz QPO (i.e., a sideband). It is not detected in 2–12 keV power spectra. We suggest that it may represent a third QPO, perhaps a sideband analogous to those identified in neutron star LMXBs (see Jonker, Mendez, & van der Klis 2000). However, its weakness relative to the other QPOs makes such a conclusion tentative until confirmed by subsequent observations. Our best-fitting model, including all three Gaussian components, is shown in Figure 1 (solid curve).

To investigate the robustness of our result, we also computed average power spectra for several subsets of the data shown in Figure 1. Figure 2 shows a pair of power spectra, one computed from the data taken on 1997 July 20 and 25 and the other from the observations on 1997 November 17 and 22. Both the 40 and 67 Hz QPOs are detected in each of these power spectra. The fact that the 40 Hz QPO can be detected at different epochs provides additional confidence that it is real.

We analyzed the AO2 data from GRS 1915+105 first because previous publications had focused on the 67 Hz QPO from AO1 data (proposal 10408; see Morgan et al. 1997). Having found the 40 Hz QPO in the AO2 data, we went back and carried out a similar analysis on the AO1 data to see whether the 40 Hz QPO could be detected. We analyzed data from the observations listed in Table 2 of Morgan et al. (1997). Since not all of these observations were conducted with the same data modes as used for the AO2 observations, we could directly compare only data from the 1996 April 29, May 5, May 14, and June 11 observations. We computed an average power spectrum from these observations in the same way as for the AO2 data, again using just the greater than 13 keV event mode data. We detected the 67 Hz QPO in these data, but we did not detect the 40 Hz QPO with an upper limit to the rms amplitude of \(0.8\% \). We found that the centroid frequency of the 67 Hz QPO was significantly lower in the average AO1 spectrum than for our average AO2 spectrum. To investigate this further we plotted our best-fit centroids from the five AO2 observations in which we detected the 67 Hz QPO together with the measured centroids and uncertainties from Mor-

Observation ID	Epoch (UTC 1997)	\(\nu_0 \) (Hz)
20402-01-38-00	Jul 20	69.32 \(\pm 1.04 \)
20402-01-39-00	Jul 25	69.09 \(\pm 0.16 \)
20402-01-39-02	Jul 29	68.53 \(\pm 0.39 \)
20402-01-55-00	Nov 17	69.01 \(\pm 0.21 \)
20402-01-56-00	Nov 22	68.76 \(\pm 0.15 \)

TABLE 1

RXTE AO2 OBSERVATIONS OF GRS 1915+105 WITH 67 Hz QPO

Fig. 1.—Average power spectrum in the 13–27 keV energy band for the five observations of GRS 1915+105 listed in Table 1. The frequency resolution is 2 Hz, and the spectrum has been normalized following Leahy et al. (1983). The best-fitting model is also plotted (solid curve). The QPO at 40 Hz is clearly visible.
The results are shown in Figure 3. The AO2 centroids are clearly systematically higher than the AO1 values by about \(\sim 5\% \). We fitted a constant-frequency model to each set of measurements and found that the AO2 values are consistent with a constant frequency whereas the AO1 measurements are inconsistent with such a model. We also show with horizontal dashed lines the weighted mean for each set of measurements. This clearly demonstrates that the 67 Hz QPO can drift in frequency by as much as 5%.

3. DISCUSSION AND SUMMARY

There has been a lot of effort expended in recent years in comparing the X-ray variability properties of neutron stars and black hole binaries. For example, Psaltis, Belloni, & van der Klis (1999) investigated correlations between QPO frequencies and/or characteristic frequencies of broadband noise components and suggested that these modulations are caused by similar accretion disk processes in black hole and neutron star systems. A potential difficulty with such studies is the possible ambiguity in associating a particular frequency in one class of source with a frequency seen in another. This becomes more of a concern as more QPO frequencies are identified. GRS 1915+105 is now the second black hole binary to show a pair of high-frequency QPOs, and it would seem a reasonable assumption to conclude that other black holes will reveal a similar phenomenology. A crucial question in the context of models that attempt to unify X-ray variability of black hole and neutron star systems is whether or not these QPOs are the analogs of the twin kilohertz QPOs observed in neutron star systems. If this is the case, then it would appear to rule out models for the kilohertz variability in neutron stars that require the star’s solid surface, for example, the sonic point beat-frequency model of Miller, Lamb, & Psaltis (1998). If true, then it would suggest that a unified picture of accretion disk modulations may be applicable (see, e.g., van der Klis 1994; Psaltis et al. 1999; Psaltis & Norman 2001; Psaltis 2001). The phenomenology of QPO pairs in the black holes is not yet well developed enough to make a definitive comparison with the better studied neutron star QPOs; however, their similarities, such as hard energy spectra, high coherence, and relative frequency spacing, suggest that they may indeed be produced by similar processes. At present we suggest this as a useful working hypothesis to be tested by further studies.

A number of different mechanisms have been proposed to explain the high-frequency QPOs observed in black hole candidates. If the modulation is caused by orbital motion of material at the inner edge of the disk, then the required mass for GRS 1915+105 is \(33 M_\odot \) if the hole is not spinning. For a rapidly spinning black hole, the mass could be as high as \(\sim 200 M_\odot \) (Bardeen, Press, & Teukolsky 1972). Nowak et al. (1997) suggested that the 67 Hz QPO might be explained by a low-order “diskoseismic” \(g \)-mode. If so, this would require a \(\sim 10 M_\odot \) nonrotating black hole or a \(\sim 34 M_\odot \) maximally rotating hole. It seems unlikely that a pair of \(g \)-modes are responsible because the harmonic spacing would be about 4 Hz, and one would therefore require the 40 Hz feature to be a higher radial overtone, which would not easily produce an observable amplitude. It is conceivable, however, that the 40 Hz QPO is produced by a different oscillation mode. For example, R. V. Wagoner (2001, private communication) has pointed out that the 40 Hz QPO could in principle be identified with a corrugation or \(c \)-mode and the 67 Hz QPO with the \(g \)-mode. If these identifications are correct, one can obtain constraints on both the mass and spin of the black hole (see Wagoner 1999; Silbergleit, Wagoner, & Ortega-Rodrıéguez 2001).

Recent theoretical work has attempted to ascribe the observed QPO frequencies in neutron star and black hole binaries to general relativistic frequencies in the inner accretion disk. In the so-called relativistic precession models the QPOs have been identified with the Keplerian, the periastron, and nodal precession
frequencies at a characteristic radius in the accretion disk (see Stella et al. 1999; Psaltis & Norman 2001). With the detection of a second high-frequency QPO in GRS 1915+105 we can investigate whether the observed QPO frequencies can be explained self-consistently with this model. We show in Figure 4 a plot of the radial epicyclic (upper curves) and nodal precession (diagonal lines) frequencies as a function of the Keplerian frequency for a range of black hole masses with dimensionless angular momentum $j = 0.12$. We also plot the frequencies of QPOs observed from GRS 1915+105 (diamonds). The 67 and 40 Hz QPOs can be identified with the Keplerian and radial epicyclic frequency, respectively. A ~ 0.9 Hz QPO has been reported by Morgan et al. (1997) that sometimes appears together with the 67 Hz QPO (see Morgan et al. 1997). We did not detect such a QPO during the observations in which we saw the 40 and 67 Hz QPOs. For $j \sim 0.12$ such a frequency would be consistent with the nodal precession frequency; however, we stress that such an association is tentative because the QPOs have not all been seen at the same time. If this model is correct, it also provides constraints on both the black hole mass and angular momentum. However, we caution that, with the plethora of QPO frequencies observed from GRS 1915+105, such identifications may not be unique.

We have found a 40 Hz QPO in the hard X-ray flux from the Galactic microquasar GRS 1915+105. The source is now the second black hole binary with a pair of high-frequency QPOs, and it would seem reasonable to assume that this phenomenon is a property of black holes in general. In particular, the similar frequency stability, rms amplitude, and coherence of the 450 and 67 Hz QPOs in GRO J1655−40 and GRS 1915+105 suggest the possibility that the same physical mechanism is responsible. The pairs of lower frequency peaks at 300 and 40 Hz, respectively, also appear to have similar overall properties. A plausible scenario is that the same mechanism in the disk produces these modulations and that differences in the black hole mass accounts for the observed frequencies. The Kepler frequency at the innermost stable circular orbit radius scales as $M^{−1}$, which would suggest that the black hole in GRS 1915+105 is between 6 and 7 times more massive than GRO J1655−40. Although a unique theoretical interpretation is still not agreed upon, further study and, in particular, independent mass measurements of black holes could test this assertion and perhaps provide a way to infer black hole masses and spins using X-ray variability measurements alone.

We thank Craig Markwardt and Jean Swank for many helpful discussions and comments on the manuscript.

REFERENCES

Bandyopadhyay, R., et al. 1998, MNRAS, 295, 623
Bardeen, J. M., Press, W. H., & Teukolsky, S. A. 1972, ApJ, 178, 347
Eikenberry, S. S., Matthews, K., Morgan, E. H., Remillard, R. A., & Nelson, R. W. 1998, ApJ, 494, L61
Fender, R. P., & Pooley, G. G. 2000, MNRAS, 318, L1
Fender, R. P., Pooley, G. G., Brocksopp, C., & Newell, S. J. 1997, MNRAS, 290, L65
Homan, J., Wijnands, R., van der Klis, M., Belloni, T., van Paradijs, J., Klein-Wolt, M., Fender, R., & Mendez, M. 2001, ApJS, 132, 377
Jonker, P. G., Mendez, M., & van der Klis, M. 2000, ApJ, 540, L29
Leahy, D. A., Darbrow, W., Ehssner, R. F., Weisskopf, M. C., Kuhn, S., Sutherland, P. G., & Grindlay, J. E. 1983, ApJ, 266, 160
Lin, D., Smith, I. A., Liang, E. P., & Böttcher, M. 2000, ApJ, 543, L141
Markwardt, C. B., Swank, J. H., & Taam, R. E. 1999, ApJ, 513, L37
Merroni, A., Vietri, M., Stella, L., & Bini, D. 1999, MNRAS, 304, 155
Miller, M. C., Lamb, F. K., & Psaltis, D. 1998, ApJ, 508, 791
Milsom, J. A., & Taam, R. E. 1997, MNRAS, 286, 358
Mirabel, I. F., & Rodríguez, L. F. 1994, Nature, 371, 46
Morgan, E. H., Remillard, R. A., & Greiner, J. 1997, ApJ, 482, 993
Muno, M. P., Morgan, E. H., & Remillard, R. A. 1999, ApJ, 527, 321
Nowak, M. A., Wagoner, R. V., Begelman, M. C., & Lehr, D. E. 1997, ApJ, 477, L91
Psaltis, D. 2001, ApJ, submitted (astro-ph/0010316)
Psaltis, D., Belloni, T., & van der Klis, M. 1999, ApJ, 520, 262
Psaltis, D., & Norman, C. 2001, ApJ, in press (astro-ph/0001391)
Remillard, R. A., & Morgan, E. H. 1998, in The Active X-Ray Sky, ed. L. Scarsi, H. Bradt, P. Giommi, & F. Fiore (Amsterdam: Elsevier), 316
Remillard, R. A., Morgan, E. H., McClintock, J. E., Bailyn, C. D., & Orosz, J. A. 1998, in Proc. 18th Texas Symp. on Relativistic Astrophysics, ed. A. Olinto, J. Frieman, & D. Schramm (Singapore: World Scientific), 750
———. 2000, ApJ, 522, 397
Silbergleit, A. S., Wagoner, R. V., & Ortega-Rodriguez, M. 2001, ApJ, 548, 335
Stella, L., Vietri, M., & Morsink, S. M. 1999, ApJ, 524, L63
Strohmayer, T. E. 2001, ApJ, 552, L49
van der Klis, M. 1994, ApJS, 92, 511
———. 2000, ARA&A, 38, 717
Wagoner, R. V. 1999, Phys. Rep., 311, 259

Fig. 4.—Radial epicyclic frequency (upper curves) and nodal precession frequency (lower diagonal lines) as a function of the Kepler frequency for a Kerr black hole with mass 24 and 32 M_\odot, and a dimensionless angular momentum, $j = 0.12$. QPO data (diamonds) are plotted. Note that the error bars are smaller than the symbols. The position of the upper diamond is set by the 40 and 67 Hz QPOs. The radial epicyclic frequency is associated with the frequency difference between the QPOs. The lower diamond represents the ~ 0.9 Hz QPO reported by Morgan et al. (1997) that was sometimes present at the same time as the 67 Hz QPO. Since such a QPO was not detected at the same time as the 40 and 67 Hz QPOs in the data discussed here, its association with the nodal precession frequency is only meant to be suggestive.