No-go guide for the Hubble tension: matter perturbations

Rong-Gen Cai¹,²,³, Zong-Kuan Guo¹,²,³, Shao-Jiang Wang⁴, Wang-Wei Yu¹,³,⁴ and Yong Zhou¹
¹CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
²School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study (HIAS), University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, China and
³School of Physical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China

The Hubble tension seems to be a crisis with ~5σ discrepancy between the most recent local distance ladder measurement from Type Ia supernovae calibrated by Cepheids and the global fitting constraint from the cosmic microwave background data. To narrow down the possible late-time solutions to the Hubble tension, we have used in a recent study [Phys. Rev. D 105 (2022) L021301] an improved inverse distance ladder method calibrated by the absolute measurements of the Hubble expansion rate at high redshifts from the cosmic chronometer data, and found no appealing evidence for new physics at the late time beyond the ΛCDM model characterized by a parametrization based on the cosmic age. In this paper, we further investigate the perspective of this improved inverse distance ladder method by including the late-time matter perturbation growth data. Independent of the dataset choices, model parametrizations, and diagnostic quantities (S₁ and S₂), the new physics at the late time beyond the ΛCDM model is strongly disfavoured so that the previous late-time no-go guide for the Hubble tension is further strengthened.

I. INTRODUCTION

The mismatch between the local and global values of the Hubble constant has been growing over the recent years from the Hubble discrepancy [1, 2] to the Hubble tension [3–5] and probably knocking the most recent years from the Hubble discrepancy [1, 2] to the Hubble tension [3–8] and probably knocking the Hubble constant has been growing over the recent years from the most recent measurement $H_0 = 73.04 \pm 1.04$ km/s/Mpc [9] with unprecedented ~1 km/s/Mpc uncertainty. Compared to the model-dependent constraint $H_0 = 67.27 \pm 0.60$ km/s/Mpc from Planck+Λ-cold-dark-matter (ΛCDM) [10], the local distance ladder measurements from Hubble-flow Type Ia supernovae (SNe Ia) calibrated by, for example, Cepheids [9,11,15] are quasi-model-independent [16] provided that the absolute magnitude M_B of SN Ia is measured a priori. Changing the calibrators from Cepheids to the tip of the red giant branch (TRGB) [17,21] might reduce the significance of the Hubble tension, however, combining Cepheid and TRGB consistently only slightly lowers the Hubble constant to $H_0 = 72.53 \pm 0.99$ km/s/Mpc [9], therefore, the Hubble tension is still observationally pronounced to date.

The above local distance ladder (LDL) measurements from SNe+M_B put strong constraints on the late-time models [10] with the inferred H_0 barely deviated from that of ΛCDM model, however, a noticeable exception comes from the late-time phantom transition model [22] with a rapid change in $H(z)$ at a lower redshift than the Hubble-flow SNe Ia. Although such a late-time phantom transition model could escape from the LDL constraint by raising the H_0 value without jeopardizing the Hubble-flow SNe Ia [22], an inconsistency shows up when applying the inverse distance ladder (IDL) method [23–31] with a geometric calibration from baryon acoustic oscillations (BAO) [31,33]. Note that the traditional IDL method from r_d^{Planck}+BAO+SNe+M_B requires additional M_B prior and r_d prior [3,23,26,28,34–37] from Planck+ΛCDM. Here, the r_d prior is unharmed for constraining the late-time models since the sound horizon $r_d^{Planck} \approx 147$ Mpc only depends on the early-Universe evolution (hence insensitive to the late-time physics), however, the M_B prior is crucial for the IDL method to discriminate the late-time models. The aforementioned inconsistency is two-folds as we elaborate below:

First, if the M_B prior is fixed at the same value $M_B \approx −19.2$ mag for both LDL (SNe+M_B) and IDL (r_d^{Planck}+BAO+SNe+M_B), the inferred $H_0^{LDL} \approx 74$ km/s/Mpc and $H_0^{IDL} \approx 68$ km/s/Mpc are in tension unless some early-Universe modification lowers the sound horizon down to $r_d^{early} \approx 137$ Mpc. This is usually the alternative view on the H_0 tension as the r_d tension, and this is also the usual no-go argument [35] for the general late-time solutions to the Hubble tension. Second, for the special late-time solution like the phantom transition model, if leaving M_B as a free parameter in both LDL (SNe) and IDL (r_d^{Planck}+BAO+SNe), then not only the inferred distributions on H_0^{LDL} and H_0^{IDL} are in mild tension, but also the inferred distributions on M_B^{LDL} and M_B^{IDL} are in tension as well. This is the recent intriguing view on the H_0 tension as the M_B tension [39,42]. In particular, if one reuses the inferred M_B^{IDL} distribution as a prior into the LDL by SNe+M_B^{IDL}, then the inferred $H_0^{LDL+IDL}$ distribution is also in larger tension [41] with the H_0^{LDL} distribution than the pure H_0^{IDL} distribution. Therefore, the IDL method largely rules out the late-time solutions to the Hubble tension, at least for those homogeneous modifications (except for the inhomogeneous solutions from the interacting dark energy model [43] and
chameleon dark energy model [44]. However, there are two major drawbacks in the traditional IDL method:

First, the input r_d prior encodes the early-Universe evolution, although it is innocent for late-time model-selection, it would be more appealing to eliminate the use of a r_d prior. For example, Ref. [55] proposed to use the strong lensing time delay (SLTD) from H0LICOW measurement [60] on the time-delay distance $D_{\Delta t}$ to calibrate the IDL (namely SLTD+BAO+SNe). However, the SLTD measurements (for example, the TDCOSMO+SLACS sample [17]) are highly sensitive to the assumption on the mass density profile of the lensing galaxies, and various $H(z)$ models could be degenerate during the integration in the $D_{\Delta t}$ calibrator. Fortunately, there is another high-redshift calibrator for IDL from the cosmic chronometer (CC) data [48], which directly measures the Hubble expansion rate at high redshifts by $H(z) = -dz/dt/(1+z)$ without inputting any presumption on the cosmological model.

Second, the traditional IDL method usually fits to a cosmological model with Taylor expansion of $H(z)$ in redshifts z or $y = 1 - a = z/(1+z)$ [49]. As shown in Fig. 1 the Taylor expansions in z or y even up to the fifth order still largely distort the model that they are trying to approximate in the first place even for the ΛCDM model, hence fitting to the traditional Taylor expansion in z or y would be misleading for the BAO data considered to date. Fortunately, there is a global parametrization based on the cosmic age (PAge) [50, 51] that are faithful in reproducing a large class of late-time models in a wide redshift range with a high accuracy. See also [52] for a more accurate parametrization based on cosmic age (MAPAge). Therefore, we improve the traditional IDL method by fitting the PAge model to CC+BAO+SNe data with a free M_B prior [42] (see also [53, 54] for similar proposals and applications of this improved IDL with CC+BAO+SNe), and found no appealing evidence to go beyond the ΛCDM model at late time parametrized by the PAge model. This further strengthens the usual no-go argument from IDL on the late-time physics.

On the other hand, the matter perturbation data is known to result in another tension called S_8 tension (see, e.g. [55, 56] and references therein), where $S_8 = \sigma_8(\Omega_m/0.3)^{0.5}$ is defined as a reflection of the degeneracy between the present-day matter density fraction Ω_m and the root mean square (rms) of the matter density fluctuation σ_8 within a spherical top-hat window of comoving radius $8h^{-1}$ Mpc at the present day. The S_8 tension emerges for the ΛCDM model predicting a stronger growth of matter perturbations from CMB data than those constrained by weak lensing (WL), cluster abundance (CA), and redshift space distortion (RSD). For example, Planck 2018 (TT,TE,EE+lowE) gives rise to $S_8 = 0.834 \pm 0.016$ [57], which is consistent with ACT+WMAP constraint on $S_8 = 0.840 \pm 0.030$ [58], but in a mild tension with the most recent WL constraint $S_8 = 0.759^{+0.024}_{-0.021}$ from the Kilo Degree Survey-1000 (KiDS-1000) [59] or even a severe tension with the most recent CA constraint (joining with WL) $S_8 = 0.65 \pm 0.04$ from the Dark Energy Survey Year 1 (DES-Y1) [60]. The RSD growth data measures a different quantity called $f\sigma_8(z)$ (defined later below), which could lead to a constraint on $S_8 = 0.700^{+0.038}_{-0.037}$ from the most recent RSD selected data set [61]. The large variance in the inferred values of S_8 parameter makes us wander if there is really a S_8 tension at all [62, 63].

Recently, an alternative view on the normalization of matter power spectrum [64] might shed light on the S_8 tension. The amplitude of the power spectrum $P(k)$ is usually normalized by σ_8 characterizing the rms linear perturbation variance in a sphere of radius $R = 8h^{-1}$ Mpc, which is controlled by both the dimensionless Hubble constant h and the amplitude A_s of the primordial scalar perturbations. However, σ_8 varies with h not only from the change in the amplitude of $P(k)$ itself, but also from the change in the reference scale $R = 8h^{-1}$ Mpc. Thus, the use of the unit h^{-1} Mpc in R obscures the response of $P(k)$ to the changes in h. Therefore, Ref. [64] proposes to use σ_{12} defined as the rms linear perturbation variance in a sphere of radius $R = 12$ Mpc to eliminate the degeneracy of the reference scale $R = 8h^{-1}$ Mpc on the constraints on h. This new normalization not only brings the disagreement in WL constraints on $S_8 = \sigma_8(\Omega_m/0.3)^{0.5}$ between Planck and DES into an excellent agreement in $S_{12} = \sigma_{12}(\omega_m/0.14)^{0.4}$, but also suggests $f\sigma_{12}(z)$ as the most relevant quantity to describe RSD data. Therefore, in addition to the conventionally used S_8, we also adopt S_{12} for data analysis.

In this paper, we continue our previous investigation on narrowing down the late-time solutions to the Hubble tension by including the matter perturbation growth data in addition to the background data made of the improved IDL from fitting the CC+BAO+SNe data to both PAge and MAPAge models. The outline is as follows: In Sec. II we depict our fitting models from two parametrizations based on the cosmic age. In Sec. III we describe the data we use for analysis. In Sec. IV we summarize the results of data analysis. The last section V is devoted for conclusions and discussions.

II. MODEL

It is well-known for the ΛCDM model that the matter dominated era (9 Gyr), compared to the radiation dominated era (60 kyr), contributes to most of the cosmic age (13.7 Gyr) of our Universe, while the rest of period (4.7 Gyr) spans over the dark energy dominated era. This fact inspires Refs. [50, 51] to propose a global parametrization based on the cosmic age (PAge) by expanding the product Ht of the Hubble parameter $H(t)$ and the cosmic time t to the quadratic order in t, namely,

$$\frac{H}{H_0} = 1 + 2 \left(1 - \frac{H_0t}{P_{age}}\right) \left(\frac{1}{H_0t} - \frac{1}{P_{age}}\right),$$ \hspace{1cm} (1)
where the two free parameters p_{Page} and η characterize the deviation from the matter dominance combination $Ht = 2/3$ when the dark energy takes over the background expansion. Here the short period spent by the radiation dominated era is neglected. Note that although H_0 explicitly appears at the right hand side of Eq. (1) in the combination $H_0 t$, directly solving Eq. (1) for the combination $H_0 t$ after replacing H with $H(z) = -dz/dt/(1+z)$ gives rise to

$$1+z = \left(\frac{p_{\text{Page}}}{H_0} \right)^2 \frac{2}{3} \left(1 - \frac{H_0 t}{p_{\text{Page}}} \right) \left(3 p_{\text{Page}} + \eta \right),$$ \hspace{1cm} (2)

where the combination $H_0 t$ can now be solved as a function of z, p_{Page} and η. Therefore, the dimensionless Hubble parameter $E(z) \equiv H(z)/H_0$ does not rely on H_0 but only the PAge parameters p_{Page} and η.

To see how a specific model is represented in the PAge parameter space (p_{Page}, η), one first defines the PAge parameter $p_{\text{Page}} = H_0 t_0$ as the product of current Hubble constant H_0 and cosmic age t_0, and then the matching of the time derivative of Eq. (1) to the present-day value q_0 of the deceleration parameter $q(t) \equiv -\ddot{a}/\dot{a}^2$ gives rise to a relation

$$\eta = 1 - \frac{3}{2} p_{\text{Page}} (1 + q_0).$$ \hspace{1cm} (3)

For ΛCDM model, the PAge parameters $\eta = 0.3726$, $p_{\text{Page}} = 0.9641$ for a fiducial cosmology with $\Omega_m = 0.3$ and $H_0 = 70$ km/s/Mpc. Note that the PAge representation of, for example, the ΛCDM model, serves as a much better approximation than the usual Taylor expansions in redshifts z and y even up to the fifth order at redshift $z \gtrsim 1$ as shown in Fig. 1. Note also that different late-time models could be degenerated at the same point in the PAge parameter space (p_{Page}, η). Therefore, the PAge approximation serves as a faithful and compact representation of the late-time models valid up to high redshift. With the PAge approximation in hand, one can directly put cosmological constraints on the PAge parameters p_{Page} and η, and then map various specific late-time models onto the PAge parameter space (p_{Page}, η) without needing data analysis for these models one by one anymore. See [52] for more details on applying this PAge model for Hubble-tension model-selections.

Similar to the quadratic expansion of Ht in t where the PAge parameters p_{Page} and η capture the distortion to the cosmic age of the dust Universe from the late-time deceleration parameter, Ref. [52] further proposed a more accurate parametrization based on the cosmic age (MAPAge) at the cubic order in t,

$$\frac{H}{H_0} = 1 + \frac{2}{3} \left[1 - (\eta + \eta_2) \frac{H_0 t}{p_{\text{Page}}} + \eta_2 \left(\frac{H_0 t}{p_{\text{Page}}} \right)^2 \right] \times \left(\frac{1}{H_0 t} - \frac{1}{p_{\text{Page}}} \right),$$ \hspace{1cm} (4)

where the new PAge parameter η_2 further captures the original jerk parameter $j(t) = (\dddot{a}/a)/(\dot{a}/a)^3$ at, for ex-
ample, the present day by

$$\eta_2 = 1 - \frac{3}{4} \eta_{\text{age}}(2 + j_0 + 3 q_0).$$

(5)

The advantage of the MAPAge approximation over the PAge approximation is to gain more flexibility to characterize and distinguish the late-time models in a more accurate manner. See Fig. 2 for a comparison of the relative errors of various BAO length scales (defined later)

$$D_i(\text{PAge/MAPAge of } \Lambda\text{CDM}) - D_i(\Lambda\text{CDM})$$

(6)

between the PAge and MAPAge representations of the ΛCDM model with respect to the exact ΛCDM expression. For the redshift range probed by the most recent BAO and CC data (introduced later), the relative error of the PAge (MAPAge) representation of the ΛCDM model is below 0.5% (0.1%). Note that even up to the redshift as high as in the cosmic dawn, the relative error of the PAge (MAPAge) representation is still below 2.5% (0.5%), rendering the PAge/MAPAge approximation the only appealing model-independent parametrization when including the future BAO data from the cosmic dawn [65].

III. DATA AND METHODOLOGY

The data sets we use include SNe Ia, BAO, CC and RSD, the first three of which are combined into the improved IDL, and the last one is the representative data for matter perturbations.

A. SNe Ia data

For the SNe Ia data, we use the Pantheon sample [66] with 1048 SNe Ia in the redshift range $0.01 < z < 2.3$, which records the apparent B-band magnitude $m_B(z)$ defined theoretically by

$$m_B(z) = M_B + 5 \log \frac{D_L(z)}{10 \text{pc}} \equiv a_B + 5 \log d_L(z)$$

(7)

with $a_B \equiv 5 \log 10^3 c/(\text{km} \cdot \text{s}^{-1}) - 5 \log h$, where $H_0 \equiv 100h$ km/s/Mpc and the luminosity distance $D_L(z)$, after factorized out the H_0-dependent part into the absolute B-band magnitude M_B of SNe Ia, is computed by

$$d_L(z) \equiv \frac{D_L(z)}{H_0} = (1 + z_{\text{hel}}) \int_0^{z_{\text{cmb}}} \frac{dz'}{E(z')},$$

(8)

for a cosmological model with the dimensionless Hubble parameter $E(z) \equiv H(z)/H_0$. Here z_{hel} is the heliocentric redshift, and z_{cmb} is the redshift in the cosmological rest frame, which corrects for the fact that the factor $1 + z$ in the definition of D_L should be calculated using the apparent redshift due entirely to the loss of photon energy caused by redshift. Note that M_B will be left as a free parameter during the data analysis due to the M_B tension we mentioned in the introduction.

B. CC data

For the CC data, we adopt the wildly-used compilation (see, e.g., [67]) including 31 measurements [68–75] within $0.07 < z < 1.965$ as well as the most recent measurements at $z = 0.75$ [76] as also listed in Tab. I for your convenience. With the differential age method [18], the Hubble expansion rate is directly estimated as

$$H(z) = \frac{1}{1 + z} \frac{dz}{dt}$$

(9)

by measuring the age difference Δt between two passively-evolving galaxies of the same formation time but separated by a small redshift interval Δz, which is independent of any cosmological model assumption. This could bought us an advantage for cosmological model selections since the main systematic dependence from the age estimation on the evolutionary stellar population synthesis model is of astrophysical origin and should affect identically on the cosmological models, hence the difference of cosmological late-time models should be insensitive to the astrophysical systematics of CC data. Therefore, any detection of deviations of the PAge/MAPAge models from the ΛCDM model could be regarded as the smoking gun for the new physics at the late time.
C. BAO data

For BAO data, we adopt the state-of-the-art compilation from the final release of Sloan Digital Sky Survey (SDSS)-IV for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) data release 16 (DR16) BAO+RSD measurements [31] as well as the Six-degree Field Galaxy Survey (6dFGS) measurement [77] and the most recent measurement from the Dark Energy Survey Year 3 (DES Y3) [33] as also listed in Tab. I and Fig. 1 for your convenience. The characteristic BAO length scales are measured in a dimensionless manner with respect to some fiducial cosmology as

\[D_H(z)/r_d = \frac{c}{H(z)r_d}, \]
\[D_M(z)/r_d = \frac{D_L(z)}{(1+z)r_d} = (1+z)D_A(z)/r_d, \]
\[D_V(z)/r_d = \left[zD_M(z)^2D_H(z) \right]^{1/3}/r_d, \]

where the sound horizon at the drag epoch \(r_d \) will be left as a free parameter during the data analysis due to the \(r_d \) tension we mentioned in the introduction. Note that the 6dFGS measurement is included since it is the lowest redshift BAO measurement ever made as a competitive and independent alternative to the other low-redshift BAO measurement from SDSS DR7 Main Galaxy Sample (MGS) [78]. Note also that the state-of-the-art compilation from the eBOSS DR16 [31] re-analyses all four generations of SDSS data, for example, SDSS DR7 MGS [78], SDSS-III BOSS DR12 [27], SDSS-IV eBOSS DR16 Luminous Red Galaxies (LRG) [79, 80], SDSS-IV eBOSS DR16

TABLE I. CC data	TABLE II. BAO data				
\(z \)	\(H(z) \) km/s/Mpc	\(z_{\text{eff}} \) Measurement	Constraint	References	
0.1	69 ± 12	0.106	\(r_d/D_V \)	0.336 ± 0.015	[77]
0.17	83 ± 8	0.15	\(D_V/r_d \)	4.51 ± 0.14	[31]
0.27	77 ± 14				
0.4	95 ± 17				
0.48	97 ± 62				
0.88	90 ± 40				
0.9	117 ± 23				
1.3	168 ± 17				
1.43	177 ± 18				
1.53	140 ± 14				
1.75	202 ± 40				
0.1791	75 ± 4	0.698	\(D_M/r_d \)	17.65 ± 0.30	[31]
0.1993	75 ± 5	0.698	\(D_H/r_d \)	19.78 ± 0.46	[31]
0.3519	83 ± 14				
0.5929	104 ± 13				
0.6797	92 ± 8				
0.7812	105 ± 12				
0.8754	125 ± 17				
1.037	154 ± 20				
0.07	69.0 ± 19.6	0.85	\(D_H/r_d \)	19.5 ± 1.0	[31]
0.12	68.6 ± 26.2	0.85	\(D_M/r_d \)	19.6 ± 2.1	[31]
0.20	72.9 ± 29.6				
0.28	88.8 ± 36.6				
1.363	160 ± 33.6	2.33	\(D_M/r_d \)	37.6 ± 1.9	[31]
1.965	186.5 ± 50.4	2.33	\(D_H/r_d \)	8.93 ± 0.28	[31]
0.3802	83.0 ± 13.5	2.33	\(D_M/r_d \)	37.3 ± 1.7	[31]
0.4004	77.0 ± 10.2	2.33	\(D_H/r_d \)	9.08 ± 0.34	[31]
0.4247	87.1 ± 11.2				
0.4497	92.8 ± 12.9				
0.4783	80.9 ± 9				
0.47	89 ± 23				
0.75	98.8 ± 33.6	0.835	\(D_M/r_d \)	18.92 ± 0.51	[33]
0.8					
0.82					
0.83					
0.84					
0.85					
0.86					
0.87					
0.88					
0.89					
0.9					
0.91					
0.92					
0.93					
0.94					
0.95					
0.96					
0.97					
0.98					
0.99					
1					

For BAO data, we adopt the state-of-the-art compilation from the final release of Sloan Digital Sky Survey (SDSS)-IV for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) data release 16 (DR16) BAO+RSD measurements [31] as well as the Six-degree Field Galaxy Survey (6dFGS) measurement [77] and the most recent measurement from the Dark Energy Survey Year 3 (DES Y3) [33] as also listed in Tab. I and Fig. 1 for your convenience. The characteristic BAO length scales are measured in a dimensionless manner with respect to some fiducial cosmology as

\[D_H(z)/r_d = \frac{c}{H(z)r_d}, \]
\[D_M(z)/r_d = \frac{D_L(z)}{(1+z)r_d} = (1+z)D_A(z)/r_d, \]
\[D_V(z)/r_d = \left[zD_M(z)^2D_H(z) \right]^{1/3}/r_d, \]
TABLE III. RSD data

Index	Dataset	Redshift	$f\sigma_8(z)$	Fiducial cosmology	References
1	6dFGS+SnIa	0.02	0.428 ± 0.0465	$(\Omega_m, h, \sigma_8) = (0.3, 0.083, 0.8)$	[87]
2	SnIa+IRAS	0.02	0.398 ± 0.065	$(\Omega_m, \Omega_k) = (0.3, 0)$	[SS 89]
3	2MASS	0.02	0.314 ± 0.048	$(\Omega_m, h, \sigma_8) = (0.3, 0.0)$	[90]
4	SDSS-veloc	0.10	0.370 ± 0.130	$(\Omega_m, \Omega_k) = (0.3, 0)$	[91]
5	SDSS-MGS	0.15	0.490 ± 0.145	$(\Omega_m, h, \sigma_8) = (0.31, 0.67, 0.83)$	[92]
6	2dFGRS	0.17	0.510 ± 0.060	$(\Omega_m, \Omega_k) = (0.3, 0)$	[93]
7	GAMA	0.18	0.360 ± 0.000	$(\Omega_m, \Omega_k) = (0.27, 0)$	[94]
8	GAMA	0.38	0.440 ± 0.000	$(\Omega_m, \Omega_k) = (0.27, 0)$	[94]
9	SDSS-LRG-200	0.25	0.3512 ± 0.0583	$(\Omega_m, \Omega_k) = (0.25, 0)$	[95]
10	SDSS-LRG-200	0.37	0.4602 ± 0.0378	$(\Omega_m, \Omega_k) = (0.25, 0)$	[94]
11	BOSS-LOWZ	0.32	0.384 ± 0.005	$(\Omega_m, \Omega_k) = (0.274, 0)$	[96]
12	SDSS-CMASS	0.59	0.488 ± 0.060	$(\Omega_m, h, \sigma_8) = (0.307, 0.678, 0.829)$	[97]
13	WiggleZ	0.44	0.413 ± 0.080	$(\Omega_m, h) = (0.27, 0.71)$	[98]
14	WiggleZ	0.60	0.390 ± 0.063	$(\Omega_m, h) = (0.27, 0.71)$	[98]
15	WiggleZ	0.73	0.437 ± 0.072	$(\Omega_m, h) = (0.27, 0.71)$	[98]
16	Vipers PDR-2	0.60	0.550 ± 0.120	$(\Omega_m, \Omega_b) = (0.3, 0.045)$	[99]
17	Vipers PDR-2	0.86	0.400 ± 0.110	$(\Omega_m, \Omega_b) = (0.3, 0.045)$	[99]
18	FastSound	1.40	0.482 ± 0.116	$(\Omega_m, \Omega_k) = (0.27, 0)$	[100]

D. RSD data

For RSD data, we test for three $f\sigma_8$ compilations [63 86 101] (dubbed as RSD 2017, 2018 and 2021 data sets) as also listed in Tab. III for your convenience. The matter density perturbations \(\delta(x,t) = \rho_m(x,t)/\bar{\rho}_m(t) - 1 \) defined by the excess of the matter density $\rho_m(x,t)$ at the comoving coordinate x with respect to the mean matter density at the same cosmic time t grows scale-independently from some initial-time density contrast by $\delta(x,t) = D(t)\delta(x,t)$ in the first-order perturbation the-
ory, where the growth factor $D(a(t))$ obeys

$$D''(a) + \left(\frac{3}{a} + \frac{E'(a)}{E(a)} \right) D'(a) - \frac{3\Omega_m D(a)}{2a^2 E(a)^2} = 0$$ \hspace{1cm} (13)$$

with initial conditions $D(a_i) = 1$ and $D'(a_i) = 1/a_i$. In practice, the the initial scale factor can be chosen as $a_i = 0.001$ deep into the matter dominated era. The linear growth rate is therefore defined as the logarithmic derivative of the growth factor with respect to the scale factor,

$$f(a) = \frac{d \ln D}{d \ln a},$$

and the RSD measurements provide constraints on the bias-free combination $f \sigma_8 \equiv f(a) \sigma_8(a)$ estimated by

$$f(a) \sigma_8(a) = a \sigma_8(a_i) D'(a) = \sigma_8 \frac{a D'(a)}{D(a = 1)},$$

where $\sigma_8(a)$, the amplitude of linear matter perturbations on a comoving scale of $8h^{-1}$ Mpc at a redshift $z = 1/a - 1$, is related to its present-day value σ_8 by $\sigma_8(a) = D(a) \sigma_8(a_i) = D(a) \sigma_8 / D(a = 1)$. For ΛCDM model, the Eq. (13) can be solved approximately by

$$f(z) \approx (z / a)^{0.55} \Omega_m^{0.5}.$$ \hspace{1cm} (14)$$

The S_8 parameter is therefore defined as $S_8 = \sigma_8(\Omega_m / 0.3)^{0.5}$. It is worth noting that, to compare with the RSD measurements, the model estimation on $f \sigma_8$ should be corrected as $[108, 109]$ for the AP effect that biases the $f \sigma_8$ measurements.

As for the RSD $f\sigma_{12}$-data, there is yet no direct measurement (see, however, [110] for the σ_{12} measurement from the full shape BOSS+eBOSS QSO samples). We therefore adopt an indirect approach to reuse the existing RSD $f \sigma_8$-data by fixing $h = 0.67$ during data analysis so that the constrained rms linear perturbation variance σ_8 within $8h^{-1}$ Mpc is in fact equal to the same matter perturbation σ_{12} within 12 Mpc. The reduced S_{12} parameter is therefore estimated by $S_{12} = \sigma_{12}(\Omega_m h^2 / 0.14)^{0.4}$ as defined in [93].

E. Data analysis

For data analysis, we fit the perturbative IDL data with inclusion of RSD 2018 and 2021 data sets (RSD 2018/2021+CC+BAO+SNe) to the ΛCDM, PAge, and MAPAge models, respectively, with the Markov Chain Monte Carlo code **EMCEE** [111] to constrain the cosmological parameters with flat priors from the joint likelihood function $-2 \ln L = \chi^2_{SN} + \chi^2_{BAO} + \chi^2_{CC} + \chi^2_{RSD}$. For comparison, we also fit the same model to the background IDL data (CC+BAO+SNe) without $f \sigma_8$ data and also chop off the RSD part of the likelihood [112] for the BAO+RSD distance measurements [31]. For model comparison, we adopt the Akaike information criterion (AIC) $AIC = 2k - 2 \ln(\mathcal{L})$ and Bayesian information criterion (BIC) $BIC = k \ln(n) - 2 \ln(\mathcal{L})$, where $n = 1097, 1119, 1117$ are the numbers of data points in the CC+BAO+SNe, RSD 2018+CC+BAO+SNe, and RSD 2021+CC+BAO+SNe data sets, respectively, and $k = 4; 5; 6$ are the numbers of free parameters of the ΛCDM, PAge and MAPAge models in fitting to the CC+BAO+SNe dataset, and $k = 5; 7; 8$ to both RSD 2018/2021+CC+BAO+SNe data sets, respectively. For data analysis concerned with the reduced S_{12} parameter, k is also reduced by 1 due to the fixed $h = 0.67$.

IV. RESULTS

Cosmological constraints from fitting the perturbative IDL data (RSD 2018/2021+CC+BAO+SNe) to the ΛCDM, PAge, and MAPAge models, respectively, are summarized in Tab. VI (including S_8 constraint) and Tab. VII (with reducing constraint on S_{12}). For comparison, we also summarize the background cosmological constraints from fitting the background IDL data (CC+BAO+SNe) to the ΛCDM, PAge, and MAPAge models, respectively, in Tab. IV, where the constraints with fixed $h = 0.67$ will be used for comparison to the constraints in Tab. VI with RSD data and reduced S_{12} parameter. All the AIC/BIC values are estimated with respect to the ΛCDM model in the corresponding data fitting combinations.

It is easy to see that, with background IDL data, there is a positive evidence (∆AIC ≃ 5) against the late-time new physics parametrized by PAge model over the ΛCDM model, which is further strengthened when fitting to the perturbative IDL data involving with S_8 parameter that admits strong evidence (∆BIC > 10 for RSD 2018 and ∆BIC > 8 for RSD 2021) against the PAge model over the ΛCDM model. Similar but slightly weaker conclusion could also be achieved for fitting the same model to the perturbative IDL data involving with S_{12} parameter. In all cases, the MAPAge model is even more disfavored compared to the PAge model with ∆BIC ≃ 6. Therefore, the final conclusion draw from the Tabs. VI and VII is that, not only there is no need to complexify the late-time new-physics parametrization from PAge to MAPAge models, but also these late-time new physics parametrized by either PAge or MAPAge models are strongly disfavored compared to the ΛCDM model.

A. Model comparison

In Fig. 3 models are compared via fitting the ΛCDM (blue), PAge (orange), and MAPAge (green) models to the background IDL data (CC+BAO+SNe) (top panel) and the perturbative IDL data (RSD+CC+BAO+SNe) with inclusions of the RSD 2018 (medium panel) and
TABLE IV. Cosmological constraints from fitting CC+BAO+SNe to the ΛCDM, PAge and MAPAge models, respectively. The AIC and BIC values are estimated with respect to the ΛCDM model.

Parameter	Uniform prior	CC+BAO+SNe	CC+BAO+SNe with fixed H_0 for S_{12}	
		ΛCDM	PAge	MAPAge
		ΛCDM	PAge	MAPAge
Ω_m	(0.01, 1)	$0.298^{+0.014}_{-0.013}$	$0.304^{+0.013}_{-0.013}$	
ρ_{age}	(0.4, 2.0)	$0.970^{+0.013}_{-0.012}$	$0.988^{+0.020}_{-0.018}$	$0.966^{+0.012}_{-0.018}$
η	(−2, 2)	$0.337^{+0.065}_{-0.068}$	$0.538^{+0.168}_{-0.161}$	
η_2	(−3, 2)		$-0.653^{+0.528}_{-0.526}$	
H_0	(40, 110)	$69.1^{+1.7}_{-1.1}$	$69.0^{+1.7}_{-1.7}$	
M_B	(−20, −19)	$-19.380^{+0.051}_{-0.052}$	$-19.390^{+0.051}_{-0.052}$	$-19.433^{+0.007}_{-0.011}$
τ_d	(100, 200)	$146.0^{+3.5}_{-3.4}$	$146.1^{+3.5}_{-3.4}$	$149.9^{+1.4}_{-1.6}$
χ^2/d.o.f	—	0.9670	0.9665	0.9661
ΔAIC	—	0.4602	1.0784	0
ΔBIC	—	5.4605	11.0791	0

TABLE V. Cosmological constraints (in particular S_8) from fitting RSD 2018/2021+CC+BAO+SNe to the ΛCDM, PAge and MAPAge models, respectively. The AIC and BIC values are estimated with respect to the ΛCDM model.

Parameter	Uniform prior	RSD 2018+CC+BAO+SNe	RSD 2021+CC+BAO+SNe	
		ΛCDM	PAge	MAPAge
		ΛCDM	PAge	MAPAge
Ω_m	(0.01, 1)	$0.295^{+0.013}_{-0.012}$	$0.212^{+0.010}_{-0.008}$	$0.288^{+0.012}_{-0.012}$
ρ_{age}	(0.4, 2.0)	$0.970^{+0.013}_{-0.012}$	$0.988^{+0.020}_{-0.018}$	$0.971^{+0.012}_{-0.018}$
η	(−2, 2)	$0.338^{+0.066}_{-0.069}$	$0.538^{+0.167}_{-0.160}$	$0.327^{+0.065}_{-0.068}$
η_2	(−3, 2)		$-0.645^{+0.479}_{-0.522}$	
H_0	(40, 110)	$69.2^{+1.7}_{-1.1}$	$69.1^{+1.7}_{-1.7}$	$68.7^{+1.7}_{-1.7}$
M_B	(−20, −19)	$-19.376^{+0.051}_{-0.052}$	$-19.392^{+0.051}_{-0.052}$	$-19.370^{+0.051}_{-0.052}$
τ_d	(100, 200)	$145.9^{+3.5}_{-3.4}$	$146.1^{+3.5}_{-3.4}$	$146.1^{+3.5}_{-3.4}$
σ_8	(0.1, 3.0)	$0.766^{+0.031}_{-0.030}$	$0.899^{+0.251}_{-0.163}$	$0.828^{+0.026}_{-0.014}$
S_8	—	$0.759^{+0.029}_{-0.030}$	$0.769^{+0.033}_{-0.030}$	$0.812^{+0.027}_{-0.026}$
χ^2/d.o.f	—	0.9606	0.9605	0.9601
ΔAIC	—	1.8823	2.4723	0
ΔBIC	—	11.9227	17.5329	0

TABLE VI. Cosmological constraints (reducing to S_{12}) from fitting RSD 2018/2021+CC+BAO+SNe to the ΛCDM, PAge and MAPAge models, respectively. The AIC and BIC values are estimated with respect to the ΛCDM model.

Parameter	Uniform prior	RSD 2018+CC+BAO+SNe	RSD 2021+CC+BAO+SNe	
		ΛCDM	PAge	MAPAge
		ΛCDM	PAge	MAPAge
Ω_m	(0.01, 1)	$0.301^{+0.013}_{-0.012}$	$0.212^{+0.008}_{-0.007}$	$0.251^{+0.010}_{-0.008}$
ρ_{age}	(0.4, 2.0)	$0.966^{+0.012}_{-0.012}$	$0.981^{+0.019}_{-0.017}$	$0.967^{+0.012}_{-0.018}$
η	(−2, 2)	$0.317^{+0.064}_{-0.065}$	$0.496^{+0.161}_{-0.156}$	$0.308^{+0.063}_{-0.065}$
η_2	(−2, 2)		$-0.583^{+0.464}_{-0.529}$	
M_B	(−20, −19)	$-19.444^{+0.007}_{-0.011}$	$-19.444^{+0.014}_{-0.015}$	$-19.447^{+0.007}_{-0.011}$
τ_d	(100, 200)	$150.2^{+1.7}_{-1.6}$	$149.7^{+1.6}_{-1.5}$	$151.0^{+1.4}_{-1.4}$
σ_12	(0.1, 2.0)	$0.761^{+0.030}_{-0.029}$	$0.911^{+0.266}_{-0.165}$	$0.898^{+0.252}_{-0.164}$
S_{12}	—	$0.751^{+0.027}_{-0.026}$	$0.783^{+0.062}_{-0.046}$	$0.776^{+0.044}_{-0.034}$
χ^2/d.o.f	—	0.9614	0.9605	0.9603
ΔAIC	—	0.1094	1.9905	0
ΔBIC	—	11.1353	16.9700	0
FIG. 3. Model comparison from fitting the ΛCDM (blue), PAge (orange), and MAPAge (green) models to the background IDL (CC+BAO+SNe) data (top) and perturbative IDL data (RSD+CC+BAO+SNe) with inclusions of RSD 2018 (medium) and RSD 2021 (bottom) data.

FIG. 4. Data comparison from fitting the background IDL without RSD data (blue) and the perturbative IDL data (RSD+CC+BAO+SNe) with inclusions of RSD 2018 (green) and RSD 2021 (orange) data to the ΛCDM (top), PAge (medium) and MAPAge (bottom) models.
RSD 2021 (bottom panel) data. In the top panel, the late-time new-physics models parametrized by either PAge and MAPAge models are indistinguishable from the ΛCDM model, recovering our previous no-go guide for the Hubble tension in 10. In the medium and bottom panels, the late-time new physics from both PAge and MAPAge models is indistinguishable from the ΛCDM model in the $H_0 - S_8$ plane, however, they are separable when Ω_m is involved as seen from the $H_0 - \Omega_m$ and $S_8 - \Omega_m$ planes. This could be traced back to the fact that Ω_m is absent in background evolution for both PAge and MAPAge models, which is only sensitive to Ω_m via matter perturbation growth when the RSD data is included. However, this systematic shift of late-time new-physics models from the ΛCDM model is strongly disfavored as indicated from their BIC values in Tab. V.

B. Data comparison

In Fig. 4 datasets are compared via fitting the background IDL without RSD data (blue) and the perturbative IDL data (RSD+CC+BAO+SNe) with inclusions of RSD 2018 (green) and RSD 2021 (orange) data to the ΛCDM (top panel), PAge (medium panel) and MAPAge (bottom panel) models. In the top panel, S_8 value is uplifted from $S_8 = 0.759 \pm 0.029$ to $S_8 = 0.812 \pm 0.027$ so that the usual S_8 tension disappears for the ΛCDM model when updating the RSD data from RSD 2018 dataset to RSD 2021 dataset as also shown in 43. In the medium and bottom panels, the cosmological constraints on the PAge/MAPAge parameter space are stable regardless of datasets adopted for data fitting, therefore, both the background and perturbative IDL data are equally applicable in locating the PAge/MAPAge parameter space for the late-time new-physics models.

V. CONCLUSIONS AND DISCUSSIONS

The Hubble tension is becoming a crisis for the recent 5σ claim from the recent local direct measurement, which carefully weights a comprehensive uncertainty budget for various systematics. If not caused by any other uncounted systematics, a full resolution for the Hubble tension would require for new physics beyond the ΛCDM model. Due to the large volume of proposed late-time solutions, it would be appealing to narrow down the possibilities in a model-independent manner. The traditional inverse distance ladder method is usually adopted to rule out the late-time homogeneous solutions, which could be further improved in a recent study 12 by invoking a more accurate model-independent parametrization from the cosmic age and a cosmological-model-independent calibration to the traditional inverse distance ladder (BAO+SNe) from the cosmic chronometer. No appealing evidence beyond the ΛCDM model is found using this improved inverse distance ladder method, which is further strengthened in this paper when including the matter perturbation growth data. This suggests that if late-time solutions are invoked to address the new physics required for resolving the Hubble tension, then the modifications must go beyond the background level 43 44. Our conclusion is consistent with recent studies 114 115 116, together with the recent analytic criterion 117 118, rendering a no-go guide for the late-time solutions on the Hubble tension.

For future perspective, recall that the PAge/MAPAge models neglect the short cosmic age spent during the radiation dominated era, therefore, it cannot parametrize the early-time solutions to the Hubble tension. However, it is feasible to use the exact solution describing the radiation-to-matter transition era,

$$a(\tau) = a_{eq} \left[\left(\frac{\tau}{\tau_*} \right)^2 + 2 \left(\frac{\tau}{\tau_*} \right) \right]$$

$$\tau_* = \frac{\tau_{eq}}{\sqrt{2 - 1}},$$

where τ_{eq} and a_{eq} are the conformal time and scale factor at matter-radiation equality, respectively. Then, a smooth transition from the radiation era with $H_t = 1/2$ to the matter era with $H_t = 2/3$ reads

$$H_t = \frac{2}{3} \left(\frac{\tau}{\tau_*} + 1 \right) \left(\frac{\tau}{\tau_*} + 3 \right)$$

$$\left(\frac{\tau}{\tau_*} + 2 \right)^2,$$

where the conformal time τ is solved from the integration $\int a(\tau) d\tau$. Finally, the solution (18) can be used to replace the factor of 2/3 in the PAge model 1 to simultaneously characterize the early-time solutions from modifying the expansion history (changing a_{eq}) and recombination history (changing τ_{eq}). We will investigate this new PAge model in future work to arrive at a full no-go guide for both early-time and late-time solutions to the Hubble tension.

ACKNOWLEDGMENTS

This work is supported by the National Key Research and Development Program of China Grant No.2021YFC2203004, No.2021YFA0718304, the National Natural Science Foundation of China Grants No. 12105344, No. 11647601, No. 11821505, No. 11851302, No. 12047503, No. 11991052, No. 12075297, No. 12047558, the Key Research Program of the Chinese Academy of Sciences (CAS) Grant No. XDB17000000, the Key Research Program of the Chinese Academy of Sciences (CAS) Grant No. XDB15000000, the Key Research Program of Frontier Sciences of CAS, the China Postdoctoral Science Foundation Grant No. 2021M693238, the Special Research Assistant Funding Project of CAS, and the Science Research Grants from the China Manned Space Project with No. CMS-CSST-2021-B01. We also acknowledge the use of the HPC Cluster of ITP-CAS.
[1] W. L. Freedman and B. F. Madore, “The Hubble Constant,” Ann. Rev. Astron. Astrophys. 48 (2010) 673–710 [arXiv:1004.1856 [astro-ph.CO]]

[2] W. L. Freedman, “Cosmology at a Crossroads,” Nat. Astron. 1 (2017) 0121 [arXiv:1706.02739 [astro-ph.CO]]

[3] J. L. Bernal, L. Verde, and A. G. Riess, “The trouble with H0,” JCAP 1610 no. 10, (2016) 019 [arXiv:1607.05617 [astro-ph.CO]]

[4] L. Verde, T. Treu, and A. G. Riess, “Tensions between the Early and the Late Universe,” in Nature Astronomy 2019, vol. 3, p. 891. 2019. [arXiv:1907.10625 [astro-ph.CO]]

[5] L. Knox and M. Millea, “Hubble constant hunter’s guide,” Phys. Rev. D101 no. 4, (2020) 043533 [arXiv:2001.03624 [astro-ph.CO]]

[6] A. G. Riess, “The Expansion of the Universe is Faster than Expected,” [arXiv:2008.11284 [astro-ph.CO]]

[7] E. Di Valentino et al., “Snowmass2021 - Letter of interest cosmology interwined II: The hubble constant tension,” Astropart. Phys. 131 (2021) 102605 [arXiv:2008.11284 [astro-ph.CO]]

[8] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, “In the realm of the Hubble tension—a review of solutions,” Class. Quant. Grav. 38 no. 15, (2021) 153001 [arXiv:2103.01183 [astro-ph.CO]]

[9] A. G. Riess et al., “A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team,” [arXiv:2112.04510 [astro-ph.CO]]

[10] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209 [astro-ph.CO]]

[11] A. G. Riess et al., “A 2.4% Determination of the Local Value of the Hubble Constant,” Astrophys. J. 826 no. 1, (2016) 56 [arXiv:1604.01424 [astro-ph.CO]]

[12] A. G. Riess et al., “Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant,” Astrophys. J. 861 no. 2, (2018) 126 [arXiv:1804.10655 [astro-ph.CO]]

[13] A. G. Riess et al., “New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant,” Astrophys. J. 855 no. 2, (2018) 136 [arXiv:1801.01120 [astro-ph.SR]]

[14] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, “Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond LambdaCDM,” Astrophys. J. 876 no. 1, (2019) 85 [arXiv:1903.07603 [astro-ph.CO]]

[15] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, “Cosmic Distances-Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM,” Astrophys. J. Lett. 908 no. 1, (2021) L6 [arXiv:2012.08534 [astro-ph.CO]]

[16] S. Dhawan, D. Brout, D. Scolnic, A. Goobar, A. G. Riess, and V. Miranda, “Cosmological Model Insensitivity of Local H0 from the Cepheid Distance Ladder,” Astrophys. J. 894 no. 1, (2020) 54 [arXiv:2001.09260 [astro-ph.CO]]

[17] W. L. Freedman et al., “The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch,” Astrophys. J. 882 no. 1, (2019) 34 [arXiv:1907.05922 [astro-ph.CO]]

[18] W. Yuan, A. G. Riess, L. M. Macri, S. Casertano, and D. Scolnic, “Consistent Calibration of the Tip of the Red Giant Branch in the Large Magellanic Cloud on the Hubble Space Telescope Photometric System and a Re-determination of the Hubble Constant,” Astrophys. J. 886 (2019) 61 [arXiv:1908.00993 [astro-ph.GA]]

[19] W. L. Freedman, K. F. Madore, T. Hoyt, J. S. Jang, R. Beaton, M. G. Lee, A. Monson, J. Neeley, and J. Rich, “Calibration of the Tip of the Red Giant Branch (TRGB),” Astrophys. J. 891 no. 1, (2020) 57 [arXiv:2002.01550 [astro-ph.GA]]

[20] J. Soltis, S. Casertano, and A. G. Riess, “The Parallax of ω Centauri Measured from Gaia EDR3 and a Direct, Geometric Calibration of the Tip of the Red Giant Branch and the Hubble Constant,” Astrophys. J. Lett. 908 no. 1, (2021) L5 [arXiv:2012.09196 [astro-ph.GA]]

[21] W. L. Freedman, “Measurements of the Hubble Constant: Tensions in Perspective,” Astrophys. J. 919 no. 1, (2021) 16 [arXiv:2106.15656 [astro-ph.CO]]

[22] M. J. Mortonson, W. Hu, and D. Huterer, “Hiding dark energy transitions at low redshift,” Phys. Rev. D 80 (2009) 067301 [arXiv:0908.1408 [astro-ph.CO]]

[23] A. J. Cuesta, L. Verde, A. Riess, and R. Jimenez, “Calibrating the cosmic distance scale ladder: the role of the sound horizon scale and the local expansion rate as distance anchors,” Mon. Not. Roy. Astron. Soc. 448 no. 4, (2015) 3463–3471 [arXiv:1411.1094 [astro-ph.CO]]

[24] A. Heavens, R. Jimenez, and L. Verde, “Standard rulers, candles, and clocks from the low-redshift Universe,” Phys. Rev. Lett. 113 no. 24, (2014) 241302 [arXiv:1409.6217 [astro-ph.CO]]

[25] E. Aubourg et al., “Cosmological implications of baryon acoustic oscillation measurements,” Phys. Rev. D92 no. 12, (2015) 123516 [arXiv:1411.1074 [astro-ph.CO]]

[26] L. Verde, J. L. Bernal, A. F. Heavens, and R. Jimenez, “The length of the low-redshift standard ruler,” Mon. Not. Roy. Astron. Soc. 467 no. 1, (2017) 731–736 [arXiv:1607.05297 [astro-ph.CO]]

[27] BOSS Collaboration, S. Alam et al., “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,” Mon. Not. Roy. Astron. Soc. 470 no. 3, (2017) 2617–2652 [arXiv:1607.03155 [astro-ph.CO]]

[28] L. Verde, E. Bellini, C. Piggozzo, A. F. Heavens, and
R. Jiménez, “Early Cosmology Constrained,” JCAP 1704 (2017) 023 [arXiv:1611.00376 [astro-ph.CO]].

[29] DES Collaboration, E. Macaulay et al., “First Cosmological Results using Type Ia Supernovae from the Dark Energy Survey: Measurement of the Hubble Constant,” Mon. Not. Roy. Astron. Soc. 486 no. 2, (2019) 2184–2196 [arXiv:1811.02376 [astro-ph.CO]].

[30] S. M. Feeney, H. V. Peiris, A. R. Williamson, S. M. Nissanka, D. J. Mortlock, J. Alsing, and D. Scolnic, “Prospects for resolving the Hubble constant tension with standard sirens,” Phys. Rev. Lett. 122 no. 6, (2019) 061105 [arXiv:1802.03404 [astro-ph.CO]].

[31] eBOSS Collaboration, S. Alam et al., “Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory,” Phys. Rev. D 103 no. 8, (2021) 083533 [arXiv:2007.08991 [astro-ph.CO]].

[32] BOSS Collaboration, S. Alam et al., “The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample,” Mon. Not. Roy. Astron. Soc. 470 no. 3, (2017) 2617–2652 [arXiv:1607.03155 [astro-ph.CO]].

[33] DES Collaboration, T. M. C. Abbott et al., “Dark Energy Survey Year 3 Results: A 2.7% measurement of Baryon Acoustic Oscillation distance scale at redshift 0.835,” arXiv:2107.04646 [astro-ph.CO].

[34] M. Voulanthten, S. Rässänen, and R. Durrer, “Model-independent cosmological constraints from the CMB,” JCAP 1008 (2010) 023 [arXiv:1003.0810 [astro-ph.CO]].

[35] B. Audren, J. Lesgourgues, K. Benabed, and S. Prunet, “Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code,” JCAP 1302 (2013) 001 [arXiv:1210.7183 [astro-ph.CO]].

[36] B. Andeen, “Separate Constraints on Early and Late Cosmology,” Mon. Not. Roy. Astron. Soc. 444 no. 1, (2014) 827–832 [arXiv:1312.6696 [astro-ph.CO]].

[37] K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan, K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan, C. Cattoen and M. Visser, “The Hubble series: Approximation,” Astrophys. J. 874 no. 1, (2019) 4 [arXiv:1811.00537 [astro-ph.CO]].

[38] L. Huang, Z. Li, and H. Zhou, “A More Accurate Parameterization based on cosmic Age and cosmic shear tensions,” Astrophys. J. 100666, (2020) A165 [arXiv:2007.02941 [astro-ph.CO]].

[39] R. Jiménez and A. Loeb, “Constraining cosmological parameters based on relative galaxy ages,” Astrophys. J. 573 (2002) 37–42 [arXiv:astro-ph/0106145].

[40] C. Cattoen and M. Visser, “The Hubble series Convergence properties and redshift shifts variables,” Class. Quant. Grav. 24 (2007) 5985–5998 [arXiv:0710.1887 [gr-qc]].

[41] Z. Huang, “Supernova Magnitude Evolution and PAge Approximation,” Astrophys. J. Lett. 892 no. 2, (2020) L28 [arXiv:2001.06926 [astro-ph.CO]].

[42] X. Luo, Z. Huang, Q. Qian, and L. Huang, “Reaffirming the Cosmic Acceleration without Supernovae and the Cosmic Microwave Background,” Astrophys. J. 905 no. 1, (2020) 53 [arXiv:2008.00487 [astro-ph.CO]].

[43] L. Huang, Z. Huang, Z. Li, and H. Zhou, “A More Accurate Parameterization based on cosmic Age (MAPAge),” arXiv:2108.03959 [astro-ph.CO].

[44] X. Zhang and Q.-G. Huang, “Hubble constant and sound horizon from the late-time Universe,” Phys. Rev. D 103 no. 4, (2021) 043513 [arXiv:2006.16692 [astro-ph.CO]].

[45] A. Gómez-Valent, “Measuring the sound horizon and absolute magnitude of SNIa by maximizing the consistency between low-redshift data sets,” arXiv:2111.15450 [astro-ph.CO].

[46] E. Di Valentino et al., “Cosmology intertwined III: $f\sigma_8$ and S_8,” Astropart. Phys. 131 (2021) 102604 [arXiv:2008.11285 [astro-ph.CO]].

[47] L. Perivolaropoulos and F. Skara, “Challenges for ACDiscount: An update,” arXiv:2105.05208 [astro-ph.CO].

[48] ACT Collaboration, S. Aiola et al., “The Atacama Cosmology Telescope: DR4 Maps and Cosmological Constraints,” Phys. Rev. D 105 no. 2, (2022) 0221301 [arXiv:2107.13286 [astro-ph.CO]].

[49] E. Di Valentino, A. Melchiorri, O. Menai, and S. Vagnozzi, “Interacting dark energy in the early 2020s: A promising solution to the H0 and cosmic shear tensions,” Phys. Dark Univ. 30 (2020) 100666 [arXiv:1908.04281 [astro-ph.CO]].

[50] R.-G. Cai, Z.-K. Guo, L. Li, S.-J. Wang, and W.-W. Yu, “Chameleon dark energy can resolve the Hubble tension,” Phys. Rev. D 103 no. 12, (2021) L121302 [arXiv:2102.02020 [astro-ph.CO]].

[51] K. C. Wong et al., “H0LiCOW - XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3r tension between early- and late-Universe probes,” Mon. Not. Roy. Astron. Soc. 498 no. 1, (2021) 1420–1439 [arXiv:1907.04869 [astro-ph.CO]].

[52] S. Birrer et al., “TDCOSMO - IV. Hierarchical time-delay cosmography - joint inference of the Hubble constant and galaxy density profiles,” Astron. Astrophys. 643 (2020) A165 [arXiv:2007.02941 [astro-ph.CO]].

[53] R. Jiménez and A. Loeb, “Constraining cosmological parameters based on relative galaxy ages,” Astrophys. J. 573 (2002) 37–42 [arXiv:astro-ph/0106145].

[54] C. Cattoen and M. Visser, “The Hubble series Convergence properties and redshift shifts variables,” Class. Quant. Grav. 24 (2007) 5985–5998 [arXiv:0710.1887 [gr-qc]].

[55] Z. Huang, “Supernova Magnitude Evolution and PAge Approximation,” Astrophys. J. Lett. 892 no. 2, (2020) L28 [arXiv:2001.06926 [astro-ph.CO]].

[56] X. Luo, Z. Huang, Q. Qian, and L. Huang, “Reaffirming the Cosmic Acceleration without Supernovae and the Cosmic Microwave Background,” Astrophys. J. 905 no. 1, (2020) 53 [arXiv:2008.00487 [astro-ph.CO]].

[57] L. Huang, Z. Huang, Z. Li, and H. Zhou, “A More Accurate Parameterization based on cosmic Age (MAPAge),” arXiv:2108.03959 [astro-ph.CO].

[58] X. Zhang and Q.-G. Huang, “Hubble constant and sound horizon from the late-time Universe,” Phys. Rev. D 103 no. 4, (2021) 043513 [arXiv:2006.16692 [astro-ph.CO]].
[59] KIDS Collaboration, M. Asgari et al., “KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics,” Astron. Astrophys. 645 (2021) A104. arXiv:2007.15633 [astro-ph.CO]

[60] DES Collaboration, T. M. C. Abbott et al., “Dark Energy Survey Year 1 Results: Cosmological constraints from cluster abundances and weak lensing,” Phys. Rev. D 102 no. 2, (2020) 023509. arXiv:2002.11124 [astro-ph.CO]

[61] D. Benisty, “Quantifying the S_8 tension with the Redshift Space Distortion data set,” Phys. Dark Univ. 31 (2021) 100766. arXiv:2005.03751 [astro-ph.CO]

[62] R. C. Nunes and S. Vagnozzi, “Arbitrating the S_8 discrepancy with growth rate measurements from redshift-space distortions,” Mon. Not. Roy. Astron. Soc. 505 no. 4, (2021) 5427. arXiv:2106.01208 [astro-ph.CO]

[63] L. Huang, Z. Huang, H. Zhou, and Z. Li, “The S_8 tension in light of updated redshift-space distortion data and $PAge$ approximation,” Sci. China Phys. Mech. Astron. 65 no. 3, (2022) 294012. arXiv:2110.08498 [astro-ph.CO]

[64] A. G. Sanchez, “Arguments against using h^{-1}Mpc units in observational cosmology,” Phys. Rev. D 102 no. 12, (2020) 123511. arXiv:2002.07829 [astro-ph.CO]

[65] J. B. Múñoz, “Standard Ruler at Cosmic Dawn,” Phys. Rev. Lett. 123 no. 13, (2019) 131301. arXiv:1906.07888 [astro-ph.CO]

[66] D. M. Scolnic et al., “The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample,” Astrophys. J. 859 no. 2, (2018) 101. arXiv:1710.00845 [astro-ph.CO]

[67] S. Vagnozzi, A. Loeb, and M. Moresco, “Eppur è piatto? The Cosmic Chronometers Take on Spatial Curvature and Cosmic Concordance,” Astrophys. J. 908 no. 1, (2021) 84. arXiv:2011.11645 [astro-ph.CO]

[68] R. Jimenez, L. Verde, T. Treu, and D. Stern, “Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB,” Astrophys. J. 593 (2003) 622–629. arXiv:astro-ph/0302560

[69] J. Simon, L. Verde, and R. Jimenez, “Constraints on the redshift dependence of the dark energy potential,” Phys. Rev. D 71 (2005) 123001. arXiv:astro-ph/0412269

[70] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, and S. A. Stanford, “Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: $H(z)$ Measurements,” JCAP 02 (2010) 008. arXiv:0907.3149 [astro-ph.CO]

[71] M. Moresco et al., “Improved constraints on the expansion rate of the Universe up to $z \sim 1.1$ from the spectroscopic evolution of cosmic chronometers,” JCAP 08 (2012) 006. arXiv:1201.3609 [astro-ph.CO]

[72] C. Zhang, H. Zhang, S. Yuan, T.-J. Zhang, and Y.-C. Sun, “Four new observational $H(z)$ data from luminous red galaxies in the Sloan Digital Sky Survey data release seven,” Res. Astron. Astrophys. 14 no. 10, (2014) 1221–1233. arXiv:1207.4541 [astro-ph.CO]

[73] M. Moresco, “Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at $z \sim 2$,” Mon. Not. Roy. Astron. Soc. 450 no. 1, (2015) L16–L20. arXiv:1503.01116 [astro-ph.CO]

[74] M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro, and D. Wilkinson, “A 6% measurement of the Hubble parameter at $z \sim 0.45$: direct evidence of the epoch of cosmic re-acceleration,” JCAP 05 (2016) 014. arXiv:1601.01701 [astro-ph.CO]

[75] A. L. Ratsimbazafy, S. T. Loubser, S. M. Crawford, C. M. Cress, B. A. Bassett, R. C. Nichol, and P. Väisänen, “Age-dating Luminous Red Galaxies observed with the Southern African Large Telescope,” Mon. Not. Roy. Astron. Soc. 467 no. 3, (2017) 3239–3254. arXiv:1702.00418 [astro-ph.CO]

[76] N. Borghi, M. Moresco, and A. Cimatti, “Towards a Better Understanding of Cosmic Chronometers: A new measurement of $H(z)$ at $z \sim 0.7$,” arXiv:2110.04304 [astro-ph.CO]

[77] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, “The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant,” Mon. Not. Roy. Astron. Soc. 416 (2011) 3017–3032. arXiv:1106.3566 [astro-ph.CO]

[78] A. J. Ross, L. Sanushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, “The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at $z = 0.15$,” Mon. Not. Roy. Astron. Soc. 449 no. 1, (2015) 835–847. arXiv:1409.3242 [astro-ph.CO]

[79] J. E. Bautista et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic correlation function between redshifts 0.6 and 1.0,” Mon. Not. Roy. Astron. Soc. 498 no. 2, (2020) 2492–2531. arXiv:2007.08993 [astro-ph.CO]

[80] H. Gil-Marín et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0,” Mon. Not. Roy. Astron. Soc. 501 no. 4, (2021) 5616–5645. arXiv:2007.09008 [astro-ph.CO]

[81] A. de Mattia et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the emission line galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.1,” Mon. Not. Roy. Astron. Soc. 501 no. 4, (2021) 5616–5645. arXiv:2007.09008 [astro-ph.CO]

[82] A. Tamone et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Growth rate of structure measurement from anisotropic clustering analysis in configuration space between redshift 0.6 and 1.1 for the Emission Line Galaxy sample,” Mon. Not. Roy. Astron. Soc. 499 no. 4, (2020) 5527–5540. arXiv:2007.09009 [astro-ph.CO]

[83] R. Neveux et al., “The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from the anisotropic power
spectrum of the quasar sample between redshift 0.8 and 2.2,” Mon. Not. Roy. Astron. Soc. 499 no. 1, (2020) 210–229 arXiv:2007.08999 [astro-ph.CO]

[84] J. Hou et al., “The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from anisotropic clustering analysis of the Quasar Sample in configuration space between redshift 0.8 and 2.2,” Mon. Not. Roy. Astron. Soc. 500 no. 1, (2020) 1201–1221 arXiv:2007.08998 [astro-ph.CO]

[85] H. du Mas des Bourboux et al., “The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations with Lya Forests,” Astrophys. J. 901 no. 2, (2020) 153 arXiv:2007.08995 [astro-ph.CO]

[86] S. Nesseris, G. Pantazis, and L. Perivolaropoulos, “Tension and constraints on modified gravity parametrizations of $G_{eff}(z)$ from growth rate and Planck data,” Phys. Rev. D 96 no. 2, (2017) 023542 arXiv:1703.10538 [astro-ph.CO]

[87] D. Huterer, D. Shafer, D. Scolnic, and F. Schmidt, “Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities,” JCAP 05 (2017) 015 arXiv:1611.09862 [astro-ph.CO]

[88] M. J. Hudson and S. J. Turnbull, “The Growth Rate of Cosmic Structure from Peculiar Velocities at Low and High Redshifts,” Astrophys. J. Lett. 751 no. 2, (June, 2012) L30 arXiv:1203.4814 [astro-ph.CO]

[89] S. J. Turnbull, M. J. Hudson, H. A. Feldman, M. Hicken, R. P. Kirshner, and R. Watkins, “Cosmic flows in the nearby universe from Type Ia supernovae,” Mon. Not. Roy. Astron. Soc. 420 no. 1, (Feb., 2012) 447–454 arXiv:1111.0631 [astro-ph.CO]

[90] M. Davis, A. Nusser, K. Masters, C. Springob, J. P. Huchra, and G. Lemson, “Local Gravity versus Local Velocity: Solutions for $β$ and nonlinear bias,” Mon. Not. Roy. Astron. Soc. 413 (2011) 2906 arXiv:1011.3114 [astro-ph.CO]

[91] M. Feix, A. Nusser, and E. Branchini, “Growth Rate of Cosmological Perturbations at z<0.1 from a New Observational Test,” Phys. Rev. Lett. 115 no. 1, (2015) 011301 arXiv:1503.05945 [astro-ph.CO]

[92] C. Howlett, A. Ross, L. Samushia, W. Percival, and M. Manera, “The clustering of the SDSS main galaxy sample – II. Mock galaxy catalogues and a measurement of the growth of structure from redshift space distortions at z = 0.15,” Mon. Not. Roy. Astron. Soc. 449 no. 1, (2015) 848–866 arXiv:1409.3238 [astro-ph.CO]

[93] Y.-S. Song and W. J. Percival, “Reconstructing the history of structure formation using Redshift Distortions,” JCAP 10 (2009) 004 arXiv:0807.0810 [astro-ph]

[94] C. Blake et al., “Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure,” Mon. Not. Roy. Astron. Soc. 436 (2013) 3089 arXiv:1305.5556 [astro-ph.CO]

[95] L. Samushia, W. J. Percival, and A. Raccanelli, “Interpreting large-scale redshift-space distortion measurements,” Mon. Not. Roy. Astron. Soc. 420 no. 3, (Mar., 2012) 2102–2119 arXiv:1102.1014 [astro-ph.CO]

[96] A. G. Sanchez et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples,” Mon. Not. Roy. Astron. Soc. 440 no. 3, (2014) 2692–2713 arXiv:1312.4854 [astro-ph.CO]

[97] C.-H. Chuang et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering,” Mon. Not. Roy. Astron. Soc. 461 no. 4, (2016) 3781–3793 arXiv:1312.4889 [astro-ph.CO]

[98] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton, T. M. Davis, M. J. Drinkwater, K. Forster, D. Gilbank, M. Gladders, K. Glazebrook, B. Jeliffe, R. J. Jurek, I. h. Li, B. Madore, D. C. Martin, K. Pineblad, G. B. Poole, M. Pracy, R. Sharp, E. Wisnioski, D. Woods, T. K. Wyder, and H. K. C. Yee, “The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z < 1,” Mon. Not. Roy. Astron. Soc. 425 no. 1, (Sept., 2012) 405–414 arXiv:1204.3674 [astro-ph.CO]

[99] A. Pezzotta et al., “The VIMOS Public Extragalactic Redshift Survey (VIPERS): The growth of structure at 0.5 < z < 1.2 from redshift-space distortions in the clustering of the PDR-2 final sample,” Astron. Astrophys. 604 (2017) A33 arXiv:1612.05645 [astro-ph.CO]

[100] T. Okumura et al., “The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ~ 1.4,” Publ. Astron. Soc. Jap. 68 no. 3, (2016) 38 arXiv:1511.08083 [astro-ph.CO]

[101] B. Sagredo, S. Nesseris, and D. Sapone, “Internal Robustness of Growth Rate data,” Phys. Rev. D 98 no. 8, (2018) 083543 arXiv:1806.10822 [astro-ph.CO]

[102] G.-B. Zhao et al., “The growth rate of cosmic structures in the local Universe with the ALFALFA survey,” Mon. Not. Roy. Astron. Soc. 482 no. 3, (2019) 3497–3513 arXiv:1801.03043 [astro-ph.CO]

[103] C. Howlett, L. Staveley-Smith, P. J. Elahi, T. Hong, T. H. Jarrett, D. H. Jones, B. S. Koribalski, L. M. Macri, K. L. Masters, and C. M. Springob, “2MTF – VI. Measuring the velocity power spectrum,” Mon. Not. Roy. Astron. Soc. 471 no. 3, (2017) 3135–3151 arXiv:1706.05130 [astro-ph.CO]

[104] F. Avila, A. Bernui, E. de Carvalho, and C. P. Novaes, “The growth rate of cosmic structures in the local Universe with the ALFALFA survey,” Mon. Not. Roy. Astron. Soc. 505 no. 3, (2021) 3404–3413 arXiv:2105.10583 [astro-ph.CO]

[105] C. Alcock and B. Paczynski, “An evolution free test of cosmic structure growth and expansion rate based on optimal redshift weights,” Mon. Not. Roy. Astron. Soc. 342 no. 3, (2013) 1058–1067 arXiv:1212.0564 [astro-ph.CO]

[106] D. J. Eisenstein, H.-j. Seo, E. Sirko, and D. Spergel, “Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities,” Astrophys. J. Lett. 596 no. 2, (2003) 99–101 arXiv:astro-ph/0301293 [astro-ph.CO]

[107] E. V. Linder and R. N. Cahn, “Parameterized
Beyond-Einstein Growth,” [Astropart. Phys. 28 (2007) 481–488] arXiv:astro-ph/0701317.

[108] E. Macaulay, I. K. Wehus, and H. K. Eriksen, “Lower Growth Rate from Recent Redshift Space Distortion Measurements than Expected from Planck,” [Phys. Rev. Lett. 111 no. 16, (2013) 161301] arXiv:1303.6583 [astro-ph.CO].

[109] S. Alam, S. Ho, and A. Silvestri, “Testing deviations from ΛCDM with growth rate measurements from six large-scale structure surveys at z =0.06–1,” [Mon. Not. Roy. Astron. Soc. 456 no. 4, (2016) 3743–3756] arXiv:1509.05034 [astro-ph.CO].

[110] A. Semenaite et al., “Cosmological implications of the full shape of anisotropic clustering measurements in BOSS and eBOSS,” [arXiv:2111.03156 [astro-ph.CO]].

[111] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,” [Publ. Astron. Soc. Pac. 125 (2013) 306–312] arXiv:1202.3665 [astro-ph.IM].

[112] See https://svn.sdss.org/public/data/eboss/BAI6cosmo/tags/v1_0_0/likelihoods/BAO-plus/.

[113] G. Schwarz, “Estimating the Dimension of a Model,” Annals Statist. 6 (1978) 461–464.

[114] G. Alestas and L. Perivolaropoulos, “Late-time approaches to the Hubble tension deforming H(z), worsen the growth tension,” [Mon. Not. Roy. Astron. Soc. 504 no. 3, (2021) 3956] arXiv:2103.04045 [astro-ph.CO].

[115] C. Escamilla-Rivera, J. Levi Said, and J. Mifsud, “Performance of non-parametric reconstruction techniques in the late-time universe,” [JCAP 10 (2021) 016] arXiv:2105.14332 [astro-ph.CO].

[116] J. Ruiz-Zapatero, C. García-García, D. Alonso, P. G. Ferreira, and R. D. P. Grumitt, “Model-independent constraints on Ω_m and H(z) from the link between geometry and growth,” [arXiv:2201.07025 [astro-ph.CO]].

[117] L. Heisenberg, H. Villarrubia-Rojo, and J. Zosso, “Simultaneously solving the H_0 and σ_8 tensions with late dark energy,” [arXiv:2201.11623 [astro-ph.CO]].

[118] L. Heisenberg, H. Villarrubia-Rojo, and J. Zosso, “Can late-time extensions solve the H_0 and σ_8 tensions?,” [arXiv:2202.01202 [astro-ph.CO]].