Competition Between Antiferromagnetism and Ferromagnetism in Sr$_2$RuO$_4$ Probed by Mn and Co Doping

J. E. Ortmann1, J. Y. Liu1, J. Hu1, M. Zhu2, J. Peng1, M. Matsuda3, X. Ke2 & Z. Q. Mao1

1Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA, 2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA, 3Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

Spin-triplet superconductivity in Sr$_2$RuO$_4$ has attracted enormous interest. Like other unconventional superconductors, superconductivity in Sr$_2$RuO$_4$ is in close proximity to magnetic instability. Undoped Sr$_2$RuO$_4$ exhibits incommensurate antiferromagnetic (AFM) fluctuations, which can evolve into static, short-range AFM order via Ti doping. Moreover, weak ferromagnetic (FM) coupling in Sr$_2$RuO$_4$ has also been suggested by NMR/neutron scattering experiments and studies on Ca$_{2-x}$Sr$_x$RuO$_4$ and Sr$_{2-y}$La$_y$RuO$_4$, implying orbital dependent magnetism. We report bulk static, short-range FM order in Sr$_2$RuO$_4$ triggered by 0.5% Co doping, showing superconductivity in Sr$_2$RuO$_4$ is much closer to FM instability than previously reported in Ca$_{2-x}$Sr$_x$RuO$_4$. We also find Mn doping can effectively establish incommensurate AFM order, with $T_N \approx 50$ K for 3% Mn doping. These new results place Sr$_2$RuO$_4$ in a unique situation where superconductivity lies directly on the borderline of two distinct magnetic states, highlighting the important role of competing magnetic fluctuations in determining superconducting properties of Sr$_2$RuO$_4$.

Spin-triplet superconductivity in Sr$_2$RuO$_4$ has attracted enormous interest. Like other unconventional superconductors, superconductivity in Sr$_2$RuO$_4$ is in close proximity to magnetic instability. Undoped Sr$_2$RuO$_4$ exhibits incommensurate antiferromagnetic (AFM) fluctuations, which can evolve into static, short-range AFM order via Ti doping. Moreover, weak ferromagnetic (FM) coupling in Sr$_2$RuO$_4$ has also been suggested by NMR/neutron scattering experiments and studies on Ca$_{2-x}$Sr$_x$RuO$_4$ and Sr$_{2-y}$La$_y$RuO$_4$, implying orbital dependent magnetism. We report bulk static, short-range FM order in Sr$_2$RuO$_4$ triggered by $<2\%$ Co doping, showing superconductivity in Sr$_2$RuO$_4$ is much closer to FM instability than previously reported in Ca$_{2-x}$Sr$_x$RuO$_4$. We also find Mn doping can effectively establish incommensurate AFM order, with $T_N \approx 50$ K for 3% Mn doping. These new results place Sr$_2$RuO$_4$ in a unique situation where superconductivity lies directly on the borderline of two distinct magnetic states, highlighting the important role of competing magnetic fluctuations in determining superconducting properties of Sr$_2$RuO$_4$.
bands is close to a van Hove singularity (vHS)22. The evidence for FM coupling in undoped Sr\textsubscript{2}RuO\textsubscript{4} was first observed in 17O and 195Ru NMR measurements by Imai et al.,26 which showed that the spin correlations from Ru 4d\textsubscript{xy} orbitals are predominantly FM in nature. Nevertheless, later inelastic neutron scattering measurements on Sr\textsubscript{2}RuO\textsubscript{4}, while showing some evidence of magnetic excitation at zone center, suggest that FM fluctuations in Sr\textsubscript{2}RuO\textsubscript{4} are very weak27.

Given that weak FM fluctuations coexist with incommensurate fluctuations in Sr\textsubscript{2}RuO\textsubscript{4}, one may expect a scenario where chemical doping can band selectively enhance FM fluctuations or even trigger static FM order as Ti doping selectively stabilizes the incommensurate order. Such a possibility has been examined by Kikugawa et al.28,29. They found that La3+ substitution of Sr2+ in Sr\textsubscript{2}RuO\textsubscript{4} enhances FM fluctuations; this result has been interpreted in terms of the electron doping from La3+ bringing the Fermi level of Ru 4d\textsubscript{xy} bands close to the vHS. Also, a new phase diagram of Ca\textsubscript{2-x}Sr\textsubscript{x}RuO\textsubscript{4} recently established by \textmu SR measurements30 reveals that a FM cluster glass discovered previously31 near x = 0.5 indeed extends to x = 1.5. Coexistence of phases with and without spin freezing is observed even in the x = 1.8 sample. These results imply that Sr\textsubscript{2}RuO\textsubscript{4} is not far from an FM instability. Given the important role FM fluctuations are expected to play in the pairing mechanism and the observation that AFM order can be induced by a small amount of doping, it is natural to ask if FM order can also be induced in Sr\textsubscript{2}RuO\textsubscript{4} with relatively little doping. In this Report, we show that Sr\textsubscript{2}RuO\textsubscript{4} is indeed right on the borderline of short-range static FM order. As little as 0.8–1.5% Co doping in Sr\textsubscript{2}RuO\textsubscript{4} can trigger static, short-range FM order. Furthermore, we find that Mn doping can enhance the incommensurate order much more significantly than Ti doping; 3% Mn doping can establish static incommensurate order with TN \sim 50 K, as opposed to TN \sim 25 K in the 9% Ti-doped sample21. These new results underline the strong competition between ferromagnetism and antiferromagnetism in Sr\textsubscript{2}RuO\textsubscript{4} and point toward the important role of magnetic fluctuations in mediating the superconducting pairing.

Results

We present magnetic susceptibility data of Mn-doped samples in Fig. 1a where the data of undoped Sr\textsubscript{2}RuO\textsubscript{4} is also given for comparison. All Mn-doped samples show irreversibility between zero-field cooled (ZFC) and field-cooled (FC) histories in susceptibility at low temperatures for field parallel c, but not for field parallel ab, indicating that Mn doping induces striking Ising anisotropy in Sr\textsubscript{2}RuO\textsubscript{4}. This observation is reminiscent of Ti-doped Sr\textsubscript{2}RuO\textsubscript{4}, which exhibits similar history dependence in magnetic susceptibility20. The susceptibility irreversibility in Ti-doped Sr\textsubscript{2}RuO\textsubscript{4} has been shown to originate from a spin glass state at low temperatures20. To verify if the history dependence of susceptibility observed in Mn-doped Sr\textsubscript{2}RuO\textsubscript{4} is also associated with a spin glass state, we examined the relaxation of magnetization of Mn-doped samples. In general, significant magnetic relaxation is a signature of a spin glass state. Like Ti-doped Sr\textsubscript{2}RuO\textsubscript{4}, the Mn-doped samples indeed exhibit remarkable magnetic relaxation below the temperature TN, where the irreversible behavior of susceptibility begins. Fig. 1b shows magnetic relaxation data collected on the sample with 10% Mn at various temperatures; TN of this sample is \sim 40 K.

Furthermore, we also measured the initial remnant magnetization M\textsubscript{0} as a function of temperature for all Mn-doped samples. M\textsubscript{0} data was collected by first zero-field-cooling the sample to a given temperature from 300 K, then applying a magnetic field of 5 T for 300 seconds and decreasing the field to zero. As seen in Fig. 1c, we observed a pronounced peak in M\textsubscript{0}(T) for the 10% Mn-doped sample at a temperature slightly below TN, a feature similar to what was observed in Ti-doped Sr\textsubscript{2}RuO\textsubscript{4}20. As mentioned in the introduction, the spin-glass state in Ti-doped Sr\textsubscript{2}RuO\textsubscript{4} is characterized by short-range incommensurate AFM order. Given that Mn-doped samples

![Figure 1](https://www.nature.com/scientificreports/)

Figure 1 | Magnetic properties of Sr\textsubscript{2}Ru\textsubscript{1-x}Mn\textsubscript{x}O\textsubscript{4}. (a) Magnetic susceptibility vs. temperature measured with ZFC and FC histories; (b) time dependence of remnant magnetization, measured after first zero-field-cooling the sample to a given temperature from 300 K, then applying a magnetic field of 5 T for 300 seconds and decreasing the field to zero; (c) initial remnant magnetization M\textsubscript{0}, i.e. M(t = 0), vs. temperature for 10% Mn-doped sample; (d) temperature dependence of the neutron scattering intensity of the magnetic Bragg peak at (0.3,0.68,0)2π/a for 3% Mn-doped sample, inset: the magnetic Bragg peak at (0.3,0.68,0)2π/a for 3% Mn-doped sample.
and Ti-doped samples show strikingly similar magnetic behavior in the measurements discussed so far, it is reasonable to expect a similar spin glass state with short-range incommensurate order in Mn-doped samples. Indeed, this has been confirmed by our elastic neutron scattering measurements shown in Fig. 1d, where a magnetic Bragg peak at (0.3, 0.68, 0)*2π/a (inset) as well as the peak intensity temperature dependence are presented. These data clearly show 3% Mn-doped Sr$_2$RuO$_4$ forms incommensurate AFM order below $T_N \sim 50$ K with an almost identical ordering wavevector to that found in Ti-doped Sr$_2$RuO$_4$. It is worth noting that Mn doping is much more effective than Ti doping at inducing incommensurate AFM order. The Néel temperature of 3% Mn-doped sample is approximately twice that of 9% Ti-doped sample ($T_N \sim 25$ K), indicating the AFM coupling is stronger in the Mn-doped system than in the Ti-doped system.

In Fig. 2a, we present magnetic susceptibility for Co-doped Sr$_2$RuO$_4$. Like Mn- and Ti-doped samples, Co-doped samples also show Ising anisotropy in susceptibility, with irreversibility between ZFC and FC histories apparent for field parallel c. T_N is \sim 4 K and 10 K, respectively, for 0.8% and 1.5% Co doping. Moreover, Co-doped Sr$_2$RuO$_4$ also shows relaxation of remnant magnetization below T_{ir} as shown in Fig. 2b. These features indicate that Co doping also leads to a low-temperature glassy state in Sr$_2$RuO$_4$. However, the nature of the glassy state in the Co-doped sample is distinct from that in the Mn-doped sample, as implied by comparing the initial remnant magnetization $M_0(T)$ for these two materials shown in Fig. 2c and 1c, respectively. Rather than a pronounced peak in $M_0(T)$ as seen in the Mn- and Ti-doped samples, the Co-doped sample shows a monotonic, steep increase in M_0 with decreasing temperature for $T < T_N$ (Fig. 2c). The difference in magnitude of M_0 at the lowest temperatures is also remarkable: $M_0(T = 2$ K) for the 1.5% Co-doped sample is \sim35 times greater than $M_0(T = 2$ K) for the 10% Mn-doped sample. These observations suggest that Co-doped Sr$_2$RuO$_4$ may form an FM cluster glass rather than a spin glass with incommensurate AFM order, as seen in the Mn-doped samples. This is indeed verified by the magnetic hysteresis as well as the exponential magnetic relaxation, as discussed below. As shown in Fig. 2d, with as little as 1.5% Co doping, the isothermal magnetization data shows significant hysteresis with a coercive force >0.50 T and remnant magnetization of \sim6.5 mµ$_B$/Ru. Such hysteretic behavior of magnetization develops only when the temperature is lowered below T_{ir} (\sim10 K). The 0.8% Co-doped sample also shows hysteresis, although it is not as dramatic as that observed in the 1.5% Co-doped sample. In contrast, none of the Mn-doped samples studied show hysteresis in isothermal magnetization data and instead show linear field dependence, as seen in the 10% Mn-doped sample in Fig. 2d. The presence of magnetic hysteresis in the Co-doped samples clearly indicates the formation of static FM order. Such FM order should represent a short-range order, since the Arrott plot of magnetization for 1.5% Co-doped sample does not show any spontaneous magnetization for $T < T_{ir}$, which is the hallmark of a long-range FM order (see Supplementary Information S1). The notion of short-range order is also consistent with the observed susceptibility data, which does not show the sharp increase usually associated with the onset of long-range FM order, but rather shows a crossover to irreversibility below T_{ir}.

The FM cluster glass state in the Co-doped sample is also manifested in the exponential magnetic relaxation. As shown in the inset of Fig. 2b, the time dependence of magnetization for the 1.5% Co-doped sample can be best described by $M(t) \propto \exp[-(t/\tau)^{0.06}]$, where $\tau \sim 7.8 \times 10^4$ s, which resembles the exponential magnetic relaxation of the FM cluster phase observed in Ca$_{1.5}$Sr$_{0.5}$RuO$_4$, where $M(t) \propto \exp[-(t/\tau)^{0.26}]$ ($\tau \sim 2800$ s)15. The large difference in τ and the exponent between these two systems should be attributed to the...
difference in FM coupling strength and the different temperature at which measurements were performed. In contrast, \(M(t) \) for the Mn-doped sample neither follows the exponential time dependence that the Co-doped sample follows (as shown in the inset of Fig. 2b), nor shows \(\ln(t) \) dependence as the Ti-doped sample does (see Fig. 1b)\(^{20} \); this is in line with our expectation that the glassy states of Co- and Mn-doped samples are distinct.

It is important to stress that the weak ferromagnetism seen in magnetization measurements of Co-doped samples is not due to intergrowth of FM relative compound \(\text{SrRuO}_3 \), as made clear by a few key observations. First, the Curie temperature \(T_c \) of \(\text{SrRuO}_3 \) is 160 K for the bulk material\(^{22} \) and in the 110–160 K range for the phase at nanometer length scale\(^3 \). Our susceptibility measurements show no features between 110 K and 160 K. Because the SQUID magnetometer is extremely sensitive to FM phases, the absence of any FM response in the 110–160 K range indicates that \(\text{SrRuO}_3 \) intergrowth is negligible in our samples. Secondly, as noted above, the Arrott plot for 1.5% Co-doped \(\text{SrRuO}_4 \) does not show spontaneous magnetization, which is inconsistent with the long-range FM order seen in \(\text{SrRuO}_3 \). Finally, we have purposely measured undoped crystals with significant \(\text{SrRuO}_3 \) intergrowth and found these mixed phase samples do not show magnetic relaxation behavior (see Supplementary Information S2), in contrast with the observation of magnetic relaxation in Co-doped samples. From all these observations, we conclude the FM response in our Co-doped crystals is purely an effect of doping and is not due to FM \(\text{SrRuO}_3 \) intergrowth.

Co and Mn doping in \(\text{Sr}_2\text{RuO}_4 \) not only lead to two different spin glass states as discussed above, but also cause distinct electronic states, as evidenced by resistivity data presented in Fig. 3. For Mn-doped samples, we observe a low-temperature upturn for both in-plane (\(\rho_{ab} \)) and out-of-plane (\(\rho_c \)) resistivity at the same temperature. Although the resistivity values of the Mn-doped samples are relatively small (e.g. \(\rho_{ab} \sim 7.5 \times 10^{-3} \) \(\Omega \) cm at 2 K for 3% Mn-doping), this upturn indicates that Mn doping leads to a weakly localized state, as seen in Ti-doped samples\(^{20} \). To examine if such a low-temperature upturn of resistivity is associated with the Kondo effect, we have plotted the resistivity on the logarithmic scale of temperature (see Supplementary Information S3). We do not observe the expected \(\log(T) \) dependence, which excludes the possibility that Mn doping results in a Kondo effect. The onset of the weakly localized state is much higher than the irreversibility temperature \(T_{ir} \) determined from magnetization measurements, but coincides with the onset temperature of incommensurate order probed in neutron scattering, both occurring at \(\sim 50 \) K in the 3% Mn-doped sample. We note that the weakly localized state in Ti-doped \(\text{SrRuO}_4 \) also begins at approximately the same temperature as incommensurate order begins to form in the system\(^{20,21} \). This suggests that local moments may play a role in the formation of static AFM order in both the Ti-doped system and the Mn-doped system. This will be discussed further below.

In contrast to Mn and Ti impurities, we see from the resistivity data in Fig. 3 that Co impurities are apparently not strong scattering centers in \(\text{Sr}_2\text{RuO}_4 \). Both \(\rho_{ab} \) and \(\rho_c \) exhibit quadratic temperature dependences at low temperatures as shown in the inset of Fig. 3a, indicating that a Fermi liquid ground state, which is seen in undoped \(\text{SrRuO}_3 \), survives in Co-doped samples. This is in sharp contrast to the weakly localized state seen at low temperatures for both Ti- and Mn-doped \(\text{SrRuO}_4 \). Given that the presence of static incommensurate order is always accompanied with a weakly localized electronic state in Mn- and Ti-doped samples, the observation of Fermi liquid behavior of resistivity in Co-doped samples implies that Co doping does not induce static incommensurate order except for the short-range FM order. From our preliminary neutron scattering measurements on the 3% Co-doped sample, we indeed did not observe any signature of static incommensurate order.

In Figure 4a we present a magnetic phase diagram for Mn- and Co-doped \(\text{Sr}_2\text{RuO}_4 \), which is established by the magnetization, resistivity and neutron scattering measurements described above. Symbols “◆” and “■” represent characteristic temperatures defined from susceptibility irreversibility (\(T_{ir} \)) and resistivity upturn (\(T_{WL} \)), respectively. The incommensurate ordering temperature \(T_N \) probed by neutron scattering in the 3% Mn-doped sample is also added to the diagram. It can be clearly seen that \(T_N \) is approximately equal to \(T_{WL} \), but much higher than \(T_{ir} \) for this sample. Such a large discrepancy between \(T_N \) and \(T_{ir} \) is also observed in the spin glass state of Ti-doped \(\text{SrRuO}_4 \) and is explained in terms of a crossover transition from damped inelastic magnetic fluctuations to elastic magnetic order\(^{22} \).

This interpretation should also be applicable to Mn-doped samples. That is, \(T_N \) probed in neutron scattering should represent the onset of damped incommensurate fluctuations, while \(T_{ir} \) corresponds to the onset of static order. Given that \(T_{WL} \approx T_N \) for the 3% Mn-doped sample and Ti-doped samples\(^{20,21} \), we can reasonably use \(T_{WL} \) to track the incommensurate order in other Mn-doped samples. Following this definition, \(T_N \) for the 10% Mn-doped sample is estimated to be \(\sim 75 \) K. For Co doped samples, \(T_{ir} \) should correspond to the onset of FM cluster glass as indicated above.

Discussion

The phase diagram in Fig. 4a shows the surprising result that superconductivity in \(\text{Sr}_2\text{RuO}_4 \) is directly adjacent to both static incommensurate AFM order and static FM order. Notably, this phase diagram shows that superconductivity in \(\text{Sr}_2\text{RuO}_4 \) is much closer to the FM instability, as compared to the \(\text{Ca}_2\text{Ru}_2\text{O}_4 \) phase diagram where bulk FM cluster glass phase does not appear until \(x = 1.5 \).\(^{24} \) The fact that bulk static, short-range FM and AFM orders can be induced by <2% Co doping and 3% Mn doping, respectively, in \(\text{SrRuO}_4 \) unambiguously demonstrates that \(\text{SrRuO}_4 \) is in close proximity to distinct magnetically ordered states. This is in stark contrast with
other unconventional superconductors, which are normally adjacent to only one ordered state, as mentioned above. The close proximity to two competing magnetic states places Sr₂RuO₄ in a very unique situation where superconductivity may depend on competing AFM and FM fluctuations as discussed by Singh and Mazin previously. Since such competing magnetic fluctuations most likely come from a multiple band effect, they may account for unusual superconducting properties in Sr₂RuO₄, such as orbital-dependent superconductivity. The fact that such a small amount of doping can trigger static magnetic order at such a low temperature range.

Why do Co and Mn doping induce two distinct magnetic states in Sr₂RuO₄? Why can static magnetic order be established at such a low doping concentration in both scenarios? The answers to these questions are apparently instrumental to understanding of spin-triplet superconductivity in Sr₂RuO₄. Before we address these questions, let’s first briefly summarize the current understanding of the spin-glass state in Sr₂RuO₄. As indicated above, the spin glass state in Sr₂RuO₄ leads to RuO₆ octahedral rotation for 0.5 < x < 1.5, and simultaneous rotation and tilting for 0 < x < 0.5. First principle calculations revealed that the RuO₆ octahedral rotation leads to band narrowing and an increase in the density of states (DOS) at the Fermi level, N(E_F) increasing with Co doping, up to ~45 mJ/(mol K²) for the 1.5% Co-doped sample, but decreases with Mn-doping, down to ~29 mJ/(mol K²) for 10% Mn-doped sample. The enhancement of γₚ observed in Co-doped Sr₂RuO₄ is likely due to an increase of N(E_F), suggesting that the short-range FM order in Co-doped Sr₂RuO₄ is the result of a Stoner instability induced by electron doping, similar to what happens in the La-doped system. That is, electron doping from Co pushes the Fermi level of the Ru 4d₅/₂ band closer to the vHS.

However, if the mechanism responsible for enhanced FM correlation in both the La-doped system and the Co-doped system is the same, one obvious question remains: why is Co doping of Sr₂RuO₄ so much more effective than La doping at inducing static FM order?
One possibility is that the Co 3d orbitals contribute to the Fermi level. Thus Co impurities, whether in the 2+ or 3+ valence state, dope more electrons than La impurities, leading to a faster increase of $N(E_F)$ with Co doping than with La doping. The faster increase of $N(E_F)$ with Co doping can be verified by comparing how γ_e evolves with La doping to how it evolves with Co doping. From data presented in Eq. 3, we estimate γ_e of 5% La-doped Sr$_2$RuO$_4$ is approximately equal to γ_e of our 1.5% Co-doped sample, indicating that 1.5% Co doping leads to approximately the same increase of $N(E_F)$ as 5% La doping. Noting that the susceptibility of the 1.5% Co-doped sample is $\sim 4-5$ times larger than that seen in 5% La-doped Sr$_2$RuO$_4$, we find that the Wilson ratio in the Co-doped system is $\sim 4-5$ times larger than that in the La-doped system. The stronger FM interactions in Co-doped Sr$_2$RuO$_4$, as evidenced by the larger Wilson ratio, could lead to a longer magnetic correlation length in the Co-doped system than in the La-doped system, thus leading to static FM order that is observable by bulk magnetization measurements rather than to enhanced FM fluctuations, which are observed in the La-doped samples.

The observation that Mn doping of Sr$_2$RuO$_4$ is more effective than Ti doping at inducing static incommensurate AFM order could help us determine the mechanism responsible for incommensurate AFM order in these two doped systems. If the incommensurate order in Ti-doped samples is the result of an SDW instability as has been suggested, then apparently Mn is more effective than Ti at enhancing Fermi surface nesting between the α and β sheets. One possible explanation for this is that Mn increases the size of the α sheet through hole doping, thus improving the nesting between the α and β sheets. Another intriguing possibility is that Ti- and Mn-doped samples involve local moment magnetism. As has been pointed out in Ref. 37, the Curie-Weiss-like behavior of susceptibility and the low-temperature weakly localized state of Ti-doped Sr$_2$RuO$_4$ may suggest local moment magnetism in the system. Mn-doped samples also show Curie-Weiss-like behavior above $\sim 200 K$ and form a low-temperature weakly localized state, the onset of which is coincident with the onset of incommensurate order. Furthermore, the systematic reduction in γ_e with Mn doping (Fig. 4b) suggests that Mn pushes the system towards an insulating ground state. Such a reduction of γ_e has been observed in Sr$_2$Ru$_{1-x}$Ti$_x$O$_4$ at $x = 0.025$ and in SrRu$_{1-x}$Mn$_x$O$_3$ above $x \approx 0.2$. In both materials, the reduction of γ_e corresponds to a low-temperature weakly localized or insulating state as well as antiferromagnetism. From our results, this is obviously also true for Mn-doped Sr$_2$RuO$_4$: the low-temperature weakly localized state and incommensurate AFM order are coupled, which could further suggest local moment magnetism in the system. Further study of this issue is necessary to help us better understand the mechanism responsible for the incommensurate order in Ti- and Mn-doped Sr$_2$RuO$_4$.

Finally, let us comment on the unusual behavior observed in the specific heat of 0.8% Co-doped Sr$_2$RuO$_4$. As shown in Fig. 4d, C/T in this sample exhibits a remarkable upturn at low temperature. This feature was reproduced in two other measured samples with 0.8% Co. Such an upturn is not due to impurities since it disappears for 1.5% doping, but indicative of non-Fermi liquid behavior. This appears to be consistent with the behavior of the low-temperature resistivity of the 0.8% Co-doped sample, as seen from the inset in Fig. 3a. In both the 1.5% Co-doped sample and the undoped sample, the T^\ast temperature dependence of resistivity associated with Fermi liquid behavior holds for $T < 25 K$. However, the resistivity of the 0.8% Co-doped sample $\propto T$ only for $T < 16 K$, indicating that the Fermi liquid temperature in the 0.8% Co-doped sample is lower than that in the 1.5% Co-doped and undoped samples. The lower Fermi liquid temperature in 0.8% Co-doped Sr$_2$RuO$_4$ can reasonably be attributed to the combined effects of chemical inhomogeneity and enhanced FM fluctuations from Co doping. Because the doping level is very low, there is undoubtedly inhomogeneity in the distribution of Co in the lattice. Hence, some areas of the crystal will have excess Co, leading to the formation of magnetic droplets with static FM order in these areas. The observation of slight hysteresis in the 0.8% Co-doped isothermal magnetization data shown in Fig. 2d is consistent with the formation of such FM clusters. Other areas of the crystal will have a deficit of Co and will not form these magnetic droplets. Rather, these areas will exhibit enhanced FM fluctuations associated with quantum criticality. The net effect is the observation of a lower Fermi liquid temperature as measured from resistivity and a low-temperature upturn in the specific heat of the 0.8% Co-doped sample. The low-temperature upturn in C/T does not show up in the 1.5% Co-doped sample. This can be attributed to the fact that the 0.8% Co-doped sample is closer to the quantum critical point than the 1.5% Co-doped sample. The higher Fermi liquid temperature observed in 1.5% Co sample is also consistent with this interpretation. We note that a similar behavior is also observed in the La-doped Sr$_2$RuO$_4$ system where the non-Fermi liquid behavior in specific heat is observed in the 10% La-doped sample, but not in 13% La-doped sample.

In summary, through our studies of Mn- and Co-doped Sr$_2$RuO$_4$, we have demonstrated that the superconducting state in Sr$_2$RuO$_4$ is much closer than previously believed to static FM order and static incommensurate AFM order. FM cluster glass phase can be triggered in the system with as little as 0.8–1.5% Co doping; this is to be contrasted with the Ca$_{2-x}$Sr$_x$RuO$_4$ system, which shows an FM cluster glass phase as x is decreased to 1.5. On the other hand, we find that Mn doping induces short-range, static incommensurate AFM order, similar to the Ti doping effect previously reported. The ordering temperature T_N in Mn-doped samples is much higher than that in Ti-doped samples, indicating that Mn impurities can induce stronger AFM coupling than Ti impurities. Our findings in these two doped systems not only highlight an important role of competing FM and AFM fluctuations in determining superconducting properties of Sr$_2$RuO$_4$, but also provide a unique playground for studying the novel physics of orbital-dependent magnetism in strongly correlated materials.

Methods

Single crystal growth and characterization. We have grown single crystals of Mn- and Co-doped Sr$_2$RuO$_4$ by the floating-zone method. All single crystals selected for measurement were first screened by x-ray diffraction to ensure phase purity. The successful doping of Mn/Co into the crystals was confirmed by energy-dispersive x-ray spectroscopy (EDXS). For the Mn-doped samples, the nominal concentration of Mn and the measured concentration were comparable, similar to what was found in Ti-doped samples. However, for the Co-doped samples, EDXS analysis showed a significant discrepancy between the nominal Co concentration and the measured Co concentration in the crystals. On average, the nominally 3% Co-doped crystals were found to have a Co concentration of 1.5% and the nominally 1% Co-doped crystals were found to have a Co concentration of 0.8%. Although we grew a nominally 10% Co-doped crystal successfully, EDXS analysis showed the Co concentration in the nominally 10% Co-doped samples was comparable to that in the nominally 3% Co-doped samples, indicating Co has a much lower soluble limit than Mn or Ti in Sr$_2$RuO$_4$. We used measured doping concentrations in the discussions given above. All magnetization data was collected by a SQUID magnetometer (Quantum Design, model VSM), all resistivity data was taken using the standard four-probe method in a Physical property measurement system (PPMS, Quantum Design), and all specific heat data was measured using an adiabatic relaxation method in the PPMS.

Neutron scattering. Neutron diffraction experiments on the 3% Mn doped sample were carried out on HBI triple-axis spectroscopy stationed in High Flux Isotope Reactor at Oak Ridge National Laboratory.

1. Maeno, Y. et al. Superconductivity in a layered perovskite without copper. *Nature* **372**, 532–534 (1994).
2. Ishida, K. et al. Anisotropic pairing in superconducting Sr$_2$RuO$_4$. *Rus NMR and NQR studies*. *Phys. Rev. B* **56**, R505–R508 (1997).
3. Nishizaki, I., Maeno, Y., Farmer, S., Ieda, S. & Fujita, T. Evidence for unconventional superconductivity of Sr$_2$RuO$_4$ from specific-heat measurements. *J. Phys. Soc. Jpn.* **67**, 560–563 (1998).
4. Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr$_2$RuO$_4$. *Phys. Rev. Lett.* **80**, 161–164 (1998).
5. Jin, R. et al. Observation of anomalous temperature dependence of the critical current in Pb/Sr$_2$RuO$_4$/Pb junctions. Phys. Rev. B 59, 4433–4438 (1999).
6. Rice, T. M. & Sigrist, M. Sr$_2$RuO$_4$: an electronic analogue of 'He? J. Phys.: Condens. Matter 7, L643–L648 (1995).
7. Luke, G. M. et al. Time-reversal symmetry-breaking superconductivity in Sr$_2$RuO$_4$. Nature 394, 558–561 (1998).
8. K. Ishida, K. et al. Spin-triplet superconductivity in Sr$_2$RuO$_4$ identified by 185O Knight shift. Nature 396, 658–660 (1998).
9. Nelson, K. D., Mao, Z. Q., Maeno, Y. & Liu, Y. Odd-parity superconductivity in Sr$_2$RuO$_4$. Science 306, 1151–1154 (2004).
10. Xia, J., Maeno, Y., Beyersdorf, P. T., Fejer, M. M. & Kapitulnik, A. High resolution polar Kerr effect measurements of Sr$_2$RuO$_4$: evidence for broken time-reversal symmetry in the superconducting state. Phys. Rev. Lett. 97, 167002 (2006).
11. Kidwingira, F., Strand, J. D., Van Harlingen, D. J. & Maeno, Y. Dynamical superconducting order parameter domains in Sr$_2$RuO$_4$. Science 314, 1267–1271 (2006).
12. Jang, J. et al. Observation of half-height magnetization steps in Sr$_2$RuO$_4$. Science 331, 186–188 (2011).
13. Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr$_2$RuO$_4$ and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).
14. Maeno, Y., Kittaka, S., Nomura, T., Yonezawa, S. & Ishida, K. Evaluation of spin-triplet superconductivity in Sr$_2$RuO$_4$. J. Phys. Soc. Jpn. 81, 011009 (2012).
15. Vaknin, D. et al. Antiferromagnetism in La$_{2}$CuO$_{4}$: γ. Phys. Rev. Lett. 58, 2802–2805 (1987).
16. de la Cruz, C. et al. Magnetic order close to superconductivity in the iron-based layered LaO$_{1-x}$F$_{x}$FeAs systems. Nature 453, 899–902 (2008).
17. Bauer, E. et al. Heavy fermion superconductivity and magnetic order in noncentrosymmetric CePt$_{3}$Si. Phys. Rev. Lett. 92, 027003 (2004).
18. Sidis, Y. et al. Evidence for incommensurate spin fluctuations in Sr$_2$RuO$_4$. Phys. Rev. Lett. 83, 3320–3323 (1999).
19. Mazzin, I. I. & Singh, D. J. Competition in layered ruthenates: ferromagnetism versus antiferromagnetism and triplet versus singlet pairing. Phys. Rev. Lett. 82, 4324–4327 (1999).
20. Minakata, M. & Maeno, Y. Magnetic ordering in Sr$_2$RuO$_4$ induced by nonmagnetic impurities. Phys. Rev. B 63, 180504(R) (2001).
21. Braden, M. et al. Incommensurate magnetic ordering in Sr$_2$Ru$_{1-x}$Ti$_x$O$_4$. Phys. Rev. Lett. 88, 197002 (2002).
22. Mazzin, I. I. & Singh, D. J. Ferromagnetic spin fluctuation induced superconductivity in Sr$_2$RuO$_4$. Phys. Rev. Lett. 79, 733–736 (1997).
23. Miyake, K. & Nariyuki, O. Model for unconventional superconductivity of Sr$_2$RuO$_4$: effect of impurity scattering on time-reversal breaking triplet pairing with a tiny gap. Phys. Rev. Lett. 83, 1423–1426 (1999).
24. Fang, Z. & Terakura, K. Magnetic phase diagram of Ca$_{2}$-Sr$_2$RuO$_4$ governed by structural distortions. Phys. Rev. B 64, 020509(R) (2001).
25. Nomura, T. & Yamada, K. Roles of electron correlations in the spin-triplet superconductivity of Sr$_2$RuO$_4$. J. Phys. Soc. Jpn. 71, 1993–2004 (2002).
26. Imai, T., Hunt, A. W., Turber, K. R. & Chou, F. C. 185O NMR evidence for orbital dependent ferromagnetic correlations in Sr$_2$RuO$_4$. Phys. Rev. Lett. 81, 3006–3009 (1998).
27. Braden, M. et al. Inelastic neutron scattering study of magnetic excitations in Sr$_2$RuO$_4$. Phys. Rev. B 66, 064522 (2002).
28. Kikugawa, N. et al. Rigid-band shift of the Fermi level in the strongly correlated metal: Sr$_2$-La$_2$RuO$_4$. Phys. Rev. B 70, 060508(R) (2004).
29. Kikugawa, N., Bergemann, C., Mackenzie, A. P. & Maeno, Y. Band-selective modification of the magnetic fluctuations in Sr$_2$RuO$_4$ by a study of substitution effects. Phys. Rev. B 70, 134520 (2004).
30. Carlo, J. P. et al. New magnetic phase diagram of (Sr,Ca)$_2$Ru$_2$O$_{4+y}$. Nature Mater. 11, 323–328 (2012).

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports/

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Ortmann, J.E. et al. Competition Between Antiferromagnetism and Ferromagnetism in Sr$_2$RuO$_4$ Probed by Mn and Co Doping. Sci. Rep. 3, 2856; DOI:10.1038/srep02856 (2013).