Prevalence of *Helicobacter pylori* virulence genotypes among children in Eastern Turkey

Gokben Ozbey, Yasar Dogan, Kaan Demiroren

Gokben Ozbey, Vocational School of Health Services, Firat University, 23119, Elazig, Turkey
Yasar Dogan, Kaan Demiroren, Department of Pediatric Gastroenterology, Faculty of Medicine, Firat University, 23119, Elazig, Turkey

Author contributions: Ozbey G performed the majority of experiments including DNA extraction and PCR, designed the study and wrote the manuscript; Dogan Y and Demiroren K collected antrum samples from patients during endoscopy, analyzed the clinical and statistical data and edited the manuscript; all authors read and approved the manuscript.

Correspondence to: Gokben Ozbey, DVM, PhD, Vocational School of Health Services, Firat University, 23119, Elazig, Turkey. gokben.ozbey@yahoo.com

Telephone: +90-424-2370079 **Fax:** +90-424-2415544

Received: June 26, 2013 **Revised:** August 14, 2013 **Accepted:** August 20, 2013 **Published online:** October 21, 2013

Abstract

AIM: To identify the virulence genotypes of *Helicobacter pylori* (*H. pylori*) if present in children in Eastern Turkey and if those genotypes are mostly associated with severe clinical presentations.

METHODS: A total of 49 *H. pylori* positive Turkish children (42 with antral nodularity and 7 with peptic ulcer) who underwent upper gastrointestinal endoscopy with abdominal symptoms during the period from March 2011 to September 2012 were enrolled in this study. Antral nodularity was diagnosed endoscopically by two of the authors. We determined for the presence of *cagA*, *vacA*, *cagE*, *iceA* and *babA2* genotypes of *H. pylori* isolates in DNA obtained directly from frozen gastric biopsy samples by polymerase chain reaction test using specific primers.

RESULTS: Of the 49 *H. pylori* isolates studied, 61.2%, 91.8%, 22.4%, 28.6%, 57.1% and 40.8% were positive for the *cagA*, *vacA* s1, *cagE*, *iceA1*, *iceA2* and *babA2* genes, respectively. We showed that the most common *vacA* subtype was s1a (79.6%). However, the s2 gene was found less frequently with an isolation rate of 8.2% of the *H. pylori* isolates. The genotypes *iceA2* and *vacA s1m2* were the most frequently found types in children with antral nodularity. In addition, the genotypes *iceA1*, *babA2* and *vacA s1m1* were found in similar ratios in all the *H. pylori* isolates obtained from children with peptic ulcer. The genotypes *vacA s2m1* and s1c were not observed in any of isolates studied.

CONCLUSION: This study showed that *vacA s1m2*, *cagA* and *iceA2* were the most common genotypes, and no association between antral nodularity and genotypes was observed.

© 2013 Baishideng. All rights reserved.

Key words: *Helicobacter pylori*; Children; Genotype; Polymerase chain reaction

Core tip: In this research we have attempted to determine the prevalence of some genotypes of *Helicobacter pylori* (*H. pylori*) among children in Eastern Turkey and to investigate the relationship between these genotypes with antral nodularity. Identifying the virulence genes among *H. pylori* isolates in children would allow for the development of new treatments and eradication policies in adults. The study results suggest that there was no significant association between antral nodularity and the presence of genotypes (*P* > 0.05).

Ozbey G, Dogan Y, Demiroren K. Prevalence of *Helicobacter pylori* virulence genotypes among children in Eastern Turkey. *World J Gastroenterol* 2013; 19(39): 6585-6589 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i39/6585.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i39.6585

INTRODUCTION

Helicobacter pylori (*H. pylori*) infection is generally acquired...
during childhood, persists throughout life unless treated with antibiotics, and the infection is usually associated with the development of several gastroduodenal diseases such as gastritis, peptic ulcer, gastric carcinoma and mucosa-associated lymphoid tissue lymphoma[1-3].

The cytotoxin associated gene A (cagA) being a marker for the presence of the cag pathogenicity island (cag PAI) was the first recognized virulence gene in the H. pylori genome in both adults and children[5,6]. Cytotoxin associated gene E (cagE) is also a member of the cag PAI, and has been described as a potential virulence factor associated with duodenal ulcer in children[5]. The vacuolating cytotoxin (vacA) gene exists in different subtypes, varying in the signal (s1 or s2) and middle (m1 or m2) regions[6-8]. H. pylori vacA alleles differ in their ability to express an active toxin[5]. Inducement occurs via contact with the epithelium gene (iceA), has two allelic variants (iceA1 and iceA2), and has been determined through its upregulation after adherence of H. pylori to the gastric epithelium[9,10].

The blood adhesion binding antigen A (babA) adhesion of H. pylori, encoded by the babA2 gene is an outer membrane protein that binds to the fucosylated histoblood group antigens on the surface of gastric epithelial cells[10,11].

Despite a high prevalence of H. pylori infection among children and adults in Turkey, the published data on geographical distribution of the virulence genes in H. pylori strains among Turkish children are very limited, and relatively few studies have been reported on the prevalence of the cagA gene of H. pylori in Turkish children[11-13]. This study was performed to determine the prevalence of some virulence genes of H. pylori which were not previously reported among children in Eastern Turkey, and to investigate the association between these genotypes with clinical disease.

MATERIALS AND METHODS

A total of 49 H. pylori isolates were investigated for the presence of virulence genotypes. These isolates by polymerase chain reaction (PCR) were recovered from 101 Turkish children (53 girls and 48 boys, ranging between 4 and 18 years old, average 12 years) who underwent upper gastrointestinal endoscopy with abdominal symptoms at the clinic of the Pediatric Gastroenterology Department at the Firat University Hospital between March 2011 and September 2012. Antral nodularity was defined as being endoscopically characterized by the irregular appearance of the mucosa as like that of a “cobblestone pavement”[14]. Also, the presence of ulcers was determined by endoscopic examination.

Our study was approved by the Medical Ethics Committee of Firat University. All patients received informed consent that was signed by their parents before endoscopic procedures.

Isolation of H. pylori DNA and PCR detection of its genotypes

H. pylori DNA was prepared using the QIAamp DNA mini kit (Qiagen, Germany) following the manufacturer’s instructions. The extracted DNA was kept at -20 ℃ until tested.

PCR was carried out using oligonucleotide primers targeting the 298 bp fragment of the cagA gene; the fragment 259 bp or 286 bp in size for type s1 or s2; the 190, 187 and 213 bp fragments for s1a, s1b, and s1c; the 567 bp and 642 bp fragments for m1 and m2; the 508 bp fragment of the cagE gene; the 247-bp fragment of iceA1; the 229 or 334-bp fragments of iceA2; and the 271 bp fragment of the babA2 gene, in order to amplify the cagA, vacA, cagE, iceA and babA2 genes of the H. pylori isolates[15-20]. Ten μL of each PCR product was subjected to electrophoresis in a 1.5% (w/v) agarose gel.

All reactions were performed with positive controls containing the DNA of the HP 26695, HP J99, and some clinical isolates supplied by Dr. Yoshio Yamaoka, along with negative controls containing all PCR components with distilled water to substitute the DNA sample.

Statistical analysis

Statistical analysis was performed by statistical software program SPSS for Windows version 12.00 (SPSS, Chicago, IL, United States). The correlation between H. pylori genotypes and antral nodularity was assessed by Fischer’s exact and χ² tests. A P-value of less than 0.05 was considered statistically significant.

RESULTS

Table 1 summarizes the prevalence of cagA, vacA, cagE, iceA and babA2 genes with antral nodularity and peptic ulcers. The number of children with peptic ulcers in the present study was low; therefore further analysis was not carried out.

The cagA gene was found in 30 of the 49 isolates (61.2%). In our study, the vacA genes were observed in all isolates. The most predominant subtype was s1a (79.6%), followed by s1b (12.2%), then s2 (8.2%). The genotype s1m2, which was predominant in this study, was observed in 28 (57.1%) isolates. However, the genotypes s1m1 and s2m2 were detected in 17 (34.7%) and 4 (8.2%) isolates, respectively. Furthermore, the genotype vacA s2m1 and subtype s1c were not found in any of the isolates. The prevalence of cagE gene in children with antral nodularity and peptic ulcer was 8 out of 42 (19%) and 3 out of 7 (42.9%) isolates, respectively. The iceA gene was not observed in 4 of the 49 isolates. The iceA2 gene was positive in 28 (57.1%) isolates, while iceA1 was detected in 14 (28.6%) isolates. Three isolates (6.1%) were positive for both iceA1 and iceA2. The prevalence of iceA1 was higher in patients with peptic ulcers (57.1%), with no significance difference observed compared to patients with antral nodularity (23.8%). The babA2 gene was detected in 20 (40.8%) samples. The babA2 showed a higher proportion (57.1%) in patients with peptic ulcer compared to patients with antral nodularity (38.1%).

We emphasized no significant association between antral nodularity and the presence of the genotypes (P > 0.05).
Table 1 Prevalence of the virulence genotypes of Helicobacter pylori from children with antral nodularity and peptic ulcer n (%)

Virulence factor genes	Antral nodularity	Peptic ulcer	Total
	(n = 42)	(n = 7)	(n = 49)
cagA	25 (59.5)	0 (0)	25 (59.5)
vacA s1	38 (90.5)	0 (0)	38 (90.5)
vacA s1a	32 (76.2)	7 (100)	39 (79.6)
vacA s1b	6 (14.3)	0 (0)	6 (14.3)
vacA s2	4 (9.5)	0 (0)	4 (9.5)
vacA m1	13 (31)	4 (57.1)	17 (57.1)
vacA m2	29 (69)	3 (42.9)	32 (65.3)
vacA s1/s1 m1	13 (31)	4 (57.1)	17 (57.1)
vacA s1/s2 m2	25 (59.5)	3 (42.9)	28 (57.1)
vacA s2/m2	4 (9.5)	0 (0)	4 (9.5)
cagE	8 (19)	3 (42.9)	11 (22.4)
iceA1	10 (23.8)	4 (57.1)	14 (28.6)
iceA2	25 (59.5)	3 (42.9)	28 (57.1)
Both iceA1 and iceA2	3 (7.1)	0 (0)	3 (7.1)
Non iceA1 and iceA2	4 (9.5)	0 (0)	4 (9.5)
babA2	16 (38.1)	4 (57.1)	20 (40.8)

DISCUSSION

Although only one study on virulence genes of H. pylori has been performed in adults in the Elazig Province in Eastern Turkey,[23] there is no data related to the prevalence of H. pylori genotypes among children in this region. However, there are a few studies on determining the prevalence of the cagA gene of H. pylori in Turkish children.[11-13]

The prevalence of the cagA gene in children among European countries varies from 22.4% to 76%.[2,25] Earlier studies performed in Turkish children showed the prevalence of the cagA gene was 55%-74.4%.[11-13]. In this study, we detected the prevalence of 61.2% of the cagA gene among Turkish children. The inconsistent findings may be due to adaptation of H. pylori to the environment in different geographic regions.[23]. Some studies had confirmed a significant correlation between the severity of histological changes and the presence of the cagA gene in the H. pylori genome,[2,25-26], whereas others have not emphasized this association.

It has been demonstrated that the geographic distribution for vacA alleles differs in many countries around the world[22]; s1 is the common strain in East Asia, while s1a is the prevalent strain in Northern Europe, and s1b in Portugal and Spain.[23]. The majority of H. pylori isolates identified as s1a; however, no subtypes s1c and s2 were found in this study. The vacA s1m1, s1m2, and s2m2 genotypes were found in 34.7%, 57.1%, and 8.2%, respectively. No s2m1 genotype was detected in the present study. Our data is consistent with the results reported in Poland[23] and Shanghai[23] where the s1m2 was the most prevalent genotype. In contrast, other predominant vacA genotypes were reported in Brazil, Slovenia, the Midwestern United States (s1m1), and Spain (s2m2)[2,23,25,26].

The prevalence of the iceA1 genotype was found to be 14% in Brazil[24], 37% in Israel[25], 44% in North America[27], and 62% in Slovenia[28]. The prevalence (28.6%) of the iceA1 gene in this study was similar to the Brazilian population (14%)[24], but lower than in Korea (76%)[29]. Although it has been shown that the iceA1 gene is associated with ulcer disease in adults,[19] no significant association between the iceA1 subtype and disease severity was found which is concordant with other studies.[23,27,28]. We found that the iceA2 gene (57.1%) was the predominant genotype, supporting the findings of pediatric studies in Brazil (68.9%), Israel (52%), and the Midwestern United States (84%)[2,23,29].

The prevalence of cagE was found in 24.5% of H. pylori isolates in Israel[28], 59% in Canada[19], and 41.7% in Bulgaria[30]. The cagE gene was detected in 11 (22.4%) out of 49 isolates, and no significant association was found between the cagE and peptic ulcers in children in this study, consistent with a study by Benenson et al.[21]. However, another study showed just such an association[9]. Furthermore, we observed that the cagE gene was predominantly detected in H. pylori isolates from children with peptic ulcers. Because of the relatively low number of children with peptic ulcers, statistical analysis was not carried out.

The prevalence of H. pylori babA2 was 17.2% in Portugal, 36% in the Midwestern United States, 84.4% in Brazil, and 66.7% in Bulgaria[2,23,26,29]. In the present study, the babA2 gene was detected in 40.8% of the H. pylori isolates. The low prevalence of babA2 in children can also be explained by the fact that H. pylori strains exhibit different patterns of adherence to gastric mucosa cells in adults and children, pointing out the importance of host characteristics in the selection of determinants of the infecting strain[26,27].

In conclusion, we feel that the clinical presentations observed are not correlated with the prevalence of the virulence genotypes because of small numbers of H. pylori isolates. However, the identification of virulence genotypes in this study will be important for future policies for the eradication of H. pylori in order to prevent severe diseases in adults.

ACKNOWLEDGMENTS

The authors thank to Dr. Yoshio Yamaoka (Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX 77030, United States) for providing the DNA of the HP 26695, HP J99, and some clinical isolates, and the management of the Elazig Veterinary Control and Research Institute for providing laboratory opportunities in this study. We also thank Dr. Alfizar Hanafiah (Department of Medical Microbiology and Immunology, Faculty of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia), Dr. Guillermo I. Perez Perez (NYU School of Medicine, Department of Medicine and Microbiology, New York, United States), and Matjaz Homan (University Children's Hospital, Bohoričeva 20, 1000 Ljubljana, Slovenia) for their critical reading of the manuscript.
Background

There are a few studies on the virulence genotypes of Helicobacter pylori (H. pylori) in Turkish children and the correlation of these genotypes with clinical outcome. The present study aimed to describe the prevalence of cagA, vacA, cagE, iceA and babA2 genotypes of H. pylori in children in Eastern Turkey and to assess the association between these virulence genotypes and antral nodularity.

Research frontiers

In this study, the authors investigated the prevalence of cagA, vacA, cagE, iceA and babA2 genotypes of H. pylori among children in Eastern Turkey and evaluated the association between these genotypes with antral nodularity. There was no significant association between virulence factor genes with antral nodularity.

Innovations and breakthroughs

This is the first study on the prevalence of the vacA, cagA, cagE, iceA and babA2 genes among children in Eastern Turkey and the correlation of these virulence factor genes with antral nodularity. This research is useful not only in developing future strategies to control and eradicate H. pylori infection but also to contribute a better understanding of the epidemiology of H. pylori infection. In this study, they examined small numbers of H. pylori isolates. More large population and genotyping studies are needed for the development of the future policies to eradicate H. pylori infection.

Applications

The data obtained from this study will be useful in developing the future policies for the eradication of H. pylori in order to prevent severe diseases in adults.

Peer review

The authors studied the prevalence of H. pylori virulence genotypes among children in Eastern Turkey. This is a useful paper on a topic for which there is, as yet little information. It will certainly contribute to knowledge on the issue.

REFERENCES

1. Granström M, Tindberg Y, Blennon M. Seroepidemiology of Helicobacter pylori infection in a cohort of children monitored from 6 months to 11 years of age. J Clin Microbiol 1997; 35: 468-470 [PMID: 9003617]
2. Oleen M, Gerhard M, Lopes AL, Ramalho P, Cabral J, Sousa Guerreiro A, Monteiro L. Helicobacter pylori virulence genotypes in Portuguese children and adults with gastroduodenal pathology. Eur J Clin Microbiol Infect Dis 2003; 22: 85-91 [PMID: 12622781 DOI: 10.1007/s10010-002-0865-3]
3. Atherton JC. H. pylori virulence factors. Br Med Bull 1998; 54: 105-120 [PMID: 9604436]
4. Queiroz DM, Mendes EN, Carvalho AS, Rocha GA, Oliveira AM, Soares TF, Santos A, Cabral MM, Nogueira AM. Factors associated with Helicobacter pylori infection by a cagA-positive strain in children. J Infect Dis 2000; 181: 626-630 [PMID: 10669347 DOI: 10.1086/315262]
5. Day AS, Jones NL, Lynett JT, Jennings HA, Fallone CA, Beech R, Sherman PM. cagE is a virulence factor associated with Helicobacter pylori-induced duodenal ulceration in children. J Infect Dis 2000; 181: 1370-1375 [PMID: 10762584 DOI: 10.1086/315394]
6. Cover TL, Tummuru MK, Cao P, Thompson SA, Blaser MJ. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem 1994; 269: 10566-10573 [PMID: 8146464]
7. Atherton JC, Cao P, Peek RM, Tummuru MK, Blaser MJ, Cover TL. Mosaicins in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem 1995; 270: 17771-17777 [PMID: 7629077 DOI: 10.1074/jbc.270.30.17771]
8. Figueiredo C, Quint WG, Sanna R, Salzon E, Donahue JP, Xu Q, Miller G, Peek RM, Blaser MJ, van Doorn LJ. Genetic organization and heterogeneity of the iceA locus of Helicobacter pylori. Gene 2000; 246: 59-68 [PMID: 10767527 DOI: 10.1016/S0378-1119(00)00548-1]
9. Peek RM, Thompson SA, Donahue JP, Tham KT, Atherton JC, Blaser MJ, Miller GG. Adherence to gastric epithelial cells induces expression of a Helicobacter pylori gene, iceA, that is associated with clinical outcome. Proc Assoc Am Physicians 1999; 110: 531-544 [PMID: 9924536]
10. Ilver D, Arnaout A, Ogwarn J, Frick IM, Kersulyte D, Incocik ET, Berg DE, Covacci A, Engstrand L, Borén T. Helicobacter pylori adhesin binding fusocysolated histo-blood group anti-gens revealed by retagging. Science 1998; 279: 373-377 [PMID: 9430586]
11. Saltik IN, Demir H, Ergin D, Ertunc OD, Akýyn Y, Kocak N. The cagA status of Helicobacter pylori isolates from dyspeptic children in Turkey. FEMS Immunol Med Microbiol 2003; 36: 147-149 [PMID: 12738384 DOI: 10.1111/ S0928-8240(03)00024-5]
12. Sokucu S, Ozden AT, Stoglu OD, Elkebes B, Demir F, Civkivbas U, Gökçe S, Saner G. CagA positivity and its association with gastroduodenal disease in Turkish children undergoing endoscopic investigation. J Gastroenterol 2006; 41: 533-539 [PMID: 16868800 DOI: 10.1007/s00535-006-1788-2]
13. Sarras Z, Demir H, Saltik Temizel IN, Samsel Ö, Ozden A. Detection of cagA prevalence in clinical isolates of Helicobacter pylori. Microbiol Bull 2010; 44: 461-465 [PMID: 21063996]
14. Al-Enezi SA, Alsarayei SA, Aly NY, Ismail AE, Ismail WA, Al-Brahim N, El-Dousari A. Endoscopic nodular gastritis in dyspeptic adults: prevalence and association with Helicobacter pylori infection. Med Princ Pract 2010; 19: 40-45 [PMID: 19996618 DOI: 10.1159/000252833]
15. Hamlet A, Thoreson AC, Nilsson O, Snevenholm AM, Olbe L. Duodenal Helicobacter pylori infection differs in cagA genotype between asymptomatic subjects and patients with duodenal ulcers. Gastroenterology 1999; 116: 259-268 [PMID: 9922305]
16. Qiao W, Hu JL, Xiao B, Wu KC, Peng DR, Atherton JC, Xue H. cagA and vacA genotype of Helicobacter pylori associated with gastric diseases in Xi’an area. World J Gastroenterol 2003; 9: 1762-1766 [PMID: 12918116]
17. Sheu BS, Sheu SM, Yang HB, Huang AH, Wu JJ. Host gastric Lewis expression determines the bacterial density of Helicobacter pylori in babA2 genopositive infection. Gut 2003; 52: 927-932 [PMID: 12801945]
18. Tomasini ML, Zanussi S, Sozzi M, Tedeschi R, Basaglia D, G Paoli P. Heterogeneity of cag genotypes in Helicobacter pylori isolates from human biopsy specimens. J Clin Microbiol 2003; 41: 976-980 [PMID: 12624018 DOI: 10.1128/JCM.41.3.976-980.2003]
19. van Doorn LJ, Figueiredo C, Canna R, Plaisier A, Schneeberger P, de Boer W, Quint W. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology 1998; 115: 58-66 [PMID: 9649459]
20. Yamazaki S, Yamakawa A, Okuda T, Ohtani M, Suto H, Ito Y, Yamazaki Y, Keida Y, Higashi H, Hatakeyama M, Azuma T. Distinct diversity of cagA, cagE, and cagE genotypes of Helicobacter pylori isolates from pediatric patients with peptic ulcer. J Clin Microbiol 2005; 43: 3906-3916 [PMID: 16081930 DOI: 10.1128/JCM.43.8.3906-3916.2005]
21. Ozbay G, Aygun C. Prevalence of genotypes in Helicobacter pylori isolates from patients in eastern Turkey and the association of these genotypes with clinical outcome. Braz J Microbiol 2012; 43: 1332-1339 [PMID: 24031961 DOI: 10.1590/S1517-83822012000400014]
22. Karhukorpi J, Yan Y, Kolho KL, Rautelin H, Lahti M, Sirvio A, Rüppin R, Lindahl H, Verkasalo M, Fagerholm R, Karttunen R, cagA, vacA and iceA virulence genes of Helicobacter pylori isolates of children in Finland. Eur J Clin Microbiol Infect Dis 2000; 19: 790-793 [PMID: 11117646]
23. Homan M, Lazar B, Kocjan BJ, Orel R, Mocilnik T, Shrestha M, Kveder M, Poljak M. Prevalence and clinical relevance of cagA, vacA, and iceA genotypes of Helicobacter pylori isolated from Slovenian children. J Pediatr Gastroenterol
Ashour AA, Collares GB, Mendes EN, de Gusmão VR, Queiroz DM, Magalhães PP, de Carvalho AS, de Oliveira CA, Nogueira AM, Rocha GA, Rocha AM. iceA genotypes of Helicobacter pylori strains isolated from Brazilian children and adults. J Clin Microbiol 2001; 39: 1746-1750 [PMID: 11325984 DOI: 10.1128/JCM.39.5.1746-1750.2001]

Garcia GT, Aranda KR, Gonçalves ME, Cardoso SR, Iriya K, Silva NP, Scaletsky IC. High prevalence of clarithromycin resistance and cagA, vacA, iceA2, and babA2 genotypes of Helicobacter pylori in Brazilian children. J Clin Microbiol 2010; 48: 4266-4268 [PMID: 20826649 DOI: 10.1128/JCM.01034-10]

Boyanova L, Yordanov D, Gergova G, Markovska R, Mitov I. Benefits of Helicobacter pylori cagE genotyping in addition to cagA genotyping: a Bulgarian study. Antonie Van Leeuwenhoek 2011; 100: 529-535 [PMID: 21701821 DOI: 10.1007/s10482-011-9608-8]

Gold BD, van Doorn LJ, Guarner J, Owens M, Pierce-Smith D, Song Q, Hutmager L, Sherman PM, de Mola OL, Czinn SJ. Genotypic, clinical, and demographic characteristics of children infected with Helicobacter pylori. J Clin Microbiol 2001; 39: 1348-1352 [PMID: 11283055 DOI: 10.1128/JCM.39.4.1348-1352.2001]

Benenson S, Halle D, Rudensky B, Faber J, Schlesinger Y, Branski D, Rabinowitz N, Wilschanski M. Helicobacter pylori genotypes in Israeli children: the significance of geography. J Pediatr Gastroenterol Nutr 2002; 35: 680-684 [PMID: 12454586]

Lopes AI, Palha A, Monteiro L, Oclastro M, Pelerito A, Fernandes A. Helicobacter pylori genotypes in children from a population at high gastric cancer risk: no association with gastroduodenal histopathology. Am J Gastroenterol 2006; 101: 2113-2122 [PMID: 16848886 DOI: 10.1111/j.1572-0241.2006.00732.x]

van Doorn LJ, Figueiredo C, Mégroard F, Pena S, Midolo P, Queiroz DM, Carneiro F, Vanderborght B, Pagado MD, Sanna R, De Boer W, Schneeburger PM, Correa P, Ng EK, Atherton J, Blaser MJ, Quint WG. Geographic distribution of vacA allelic types of Helicobacter pylori. Gastroenterology 1999; 116: 823-830 [PMID: 1002304]

Maciorkowska E, Roszko I, Kowalczyk O, Kaczmarski M, Chyczewski L, Kemona A. The evaluation of vacA gene alleles frequency in Helicobacter pylori strains in children and adults in Podlaskie region. Folia Histochem Cytobiol 2007; 45: 215-219 [PMID: 17951170]

Zhou Y, Huang Y, Shao CH, Wang XH, Zhang BF. cagA, vacA and iceA genotypes of Helicobacter pylori isolated from children in Shanghai. Zhongguo Dangdai Erke Zazhi 2010; 12: 267-271 [PMID: 20416217]

Podzorski RP, Podzorski DS, Wuerth A, Tolia V. Analysis of the vacA, cagA, cagE, iceA, and babA2 genes in Helicobacter pylori from sixty-one pediatric patients from the Midwestern United States. Diagn Microbiol Infect Dis 2003; 46: 83-88 [PMID: 12812722 DOI: 10.1016/S0732-8893(03)00034-8]

Agudo S, Pérez-Pérez G, Alarcón T, López-Brea M. High prevalence of clarithromycin-resistant Helicobacter pylori strains and risk factors associated with resistance in Madrid, Spain. J Clin Microbiol 2010; 48: 3703-3707 [PMID: 20668128 DOI: 10.1128/JCM.00144-10]

Ko JS, Kim KM, Oh YL, Seo JK. cagA, vacA, and iceA genotypes of Helicobacter pylori in Korean children. Pediatr Int 2008; 50: 628-631 [PMID: 19261108 DOI: 10.1111/j.1442-200X.2008.02641.x]

Blom J, Gernow A, Holck S, Weyer V, Nørgaard A, Graft LB, Krasiñkoff PA, Andersen LP, Larsen SO. Different patterns of Helicobacter pylori adherence to gastric mucosa cells in children and adults. An ultrastructural study. Scand J Gastroenterol 2000; 35: 1033-1040 [PMID: 11099055 DOI: 10.1080/00365520050451144]

Celik J, Su B, Tirèn U, Finkel Y, Thoresson AC, Engstrand L, Sandstedt B, Bernander S, Normark S. Virulence and colonization-associated properties of Helicobacter pylori isolated from children and adolescents. J Infect Dis 1998; 177: 247-252 [PMID: 9419200]
