Ferromagnetism and superstructure in $\text{Ca}_{1-x}\text{La}_x\text{B}_6$

Victor Barzykin1 and Lev P. Gor’kov1,*

1National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310

and

*L.D. Landau Institute for Theoretical Physics, Chernogolovka, 142432, Russia

We critically investigate the model of a doped excitonic insulator, which recently has been invoked to explain some experimental properties of the ferromagnetic state in $\text{Ca}_{1-x}\text{La}_x\text{B}_6$. We demonstrate that the ground state of this model is intrinsically unstable towards the appearance of a superstructure. In addition, the model would lead to a phase separation regime and the domain structure which may be prevented by the Coulomb forces only. Recent experiments indicate that a superstructure may indeed show up in this material.

PACS numbers: 71.10.Ca, 71.35.-y, 75.10.Lp

The discovery of weak ferromagnetism in lightly-doped hexaborides $\text{Ca}_{1-x}\text{La}_x\text{B}_6$ [1] has renewed theoretical interest in the so-called “excitonic” transition vigorously discussed in the 60-s and 70-s [2–6](see [7] for a review). Band structure calculations [8] indicate that hexaborides, DB$_6$, may, in fact, be semimetals owing to an accidental small band overlap at the three X-points of the Brillouin Zone, two bands at each X-point having symmetry X_3, X_3'. It was suggested [3] that the use of the model [3] together with the energy mechanism for ferromagnetism first suggested in Ref. [10,11] provide at least a qualitative explanation for the surprising findings [1]. Bearing much of the resemblance with the mathematics of the BCS weak-coupling theory of superconductivity, the Keldysh-Kopaev model [3] is a convenient tool which makes possible to treat an excitonic transition in the controllable manner.

Assuming that the basic physics of hexaborides is properly accounted for by this oversimplified weak coupling scheme, in what follows we study in some more details the zero temperature phase diagram as a function of the doping level, and its stability to anisotropy features. The main result is that the system almost inevitably develops a superstructure on the background of the initially cubic lattice. Our explanation for the magnetic moment per doped lanthanum ion to vary and even become very small differs from the one suggested in Ref. [1].

Zhitomirsky et al. [9] have used the model of Ref. [3] of an excitonic phase transition in a semimetal to explain weak ferromagnetism observed in hexaborides. Ferromagnetism is known to appear in this model, and was investigated in detail by Volkov et al. [10,11]. We first briefly recall the mechanism of magnetic moment formation in this model. It is well known [9] that if the screened Coulomb interaction between an electron and a hole in two bands,

$$H_{\text{int}} = \sum_{\mathbf{k}, \mathbf{k}' \alpha} \sum_{\alpha \beta} V(\mathbf{q}) a_{1 \alpha}^\dagger (\mathbf{k} + \mathbf{q}) a_{2 \beta}^\dagger (\mathbf{k}' - \mathbf{q}) a_{2 \beta} (\mathbf{k}') a_{1 \alpha} (\mathbf{k}),$$

is dominant, and the electron and hole Fermi surfaces do coinside (“nesting”), the excitonic transition has a degeneracy for the onset of CDW (“singlet”) and SDW (“triplet”) excitonic condensate. This degeneracy is lifted only by additional weak short-range Coulomb terms, which favor triplet excitonic condensate [10], or electron-phonon interactions, which favor singlet (CDW) state. This splitting, however, being usually considered to be weak at $\delta g \sim g^2$, where $g = V(0)N_0 / \pi \ll 1$ is the screened Coulomb coupling constant, $N_0 = m k_F / (2 \pi^2)$ is the density of states per spin for a single band, the temperatures of the triplet or singlet excitonic transitions are close (on the exponential scale, $T_c \sim \exp[-g^{-1}]$), $T_{s0} \sim T_{t0}$. Then, as it was first shown in Ref. [10,11] and applied to the physics of hexaborides in Ref. [9], ferromagnetism can appear as a result of doping due to the development of a triplet excitonic instability in the presence of a singlet order, or vice versa. Ferromagnetism is the direct result of the fact that in the presence of these two condensates both crystalline and time-reversal symmetries get broken. Summation of the leading logarithmically divergent terms in the presence of one condensate explicitly confirms the divergent Curie-Weiss behavior of the spin susceptibility with some Curie temperature found in Ref. [11].

For the analysis of ferromagnetism in the doped state at low temperatures one may neglect the small differences in the energy spectrum of the SDW or CDW ground state [9]. The energetic analysis is straightforward in case when triplet and singlet coupling constants are equal [9], since then equations for different spin polarizations are decoupled. Indeed, for a simple model with two isotropic
bands, \(m_e = m_h = m \), and \(\varepsilon_e(k) = \frac{k^2}{2m} - \mu + \frac{E_g}{2} \), \(\varepsilon_h(k) = \frac{k^2}{2m} + \mu + \frac{E_g}{2} \), the zero temperature excitonic gap in the unpolarized state is given by

\[
\Delta^2 = \Delta_0(\Delta_0 - 2n),
\]

where \(\Delta_0 = 2\varepsilon_c \exp(-g^{-1}) \) is the excitonic gap at zero doping, \(\varepsilon_c \) is a cutoff energy around the Fermi surface, \(n = N/4N_0 \) is the concentration of doped carriers in energy units (the level of the chemical potential in the bare metallic phase is \(\mu = n \)). The ground state energy per spin direction relative to the stoichiometric normal state is given by:

\[
E(n) = N_0 n^2 - \frac{1}{2} N_0 (\Delta_0 - 2n^2).
\]

Thus, the excitonic pairing disappears at \(n = 0.5\Delta_0 \). A quick analysis shows that the energy of a polarized excitonic state, \(E(n(1+p)) + E(n(1-p)) \), has a minimum value for \(p = 1 \), i.e. for the complete polarization of added carriers. Therefore, below \(T_c \), there are two order parameters, \(\Delta_0 \) and \(\Delta_0 \), and, correspondingly, two different gaps in the spectrum for different spin polarizations:

\[
\Delta_0 = \sqrt{\Delta_0(\Delta_0 - 4n)} \quad 0 < n < \Delta_0/4
\]

\[
\Delta_\uparrow = \Delta_0 \quad 0 < n < \Delta_0/2.
\]

Hence at \(T = 0 \) electrons and holes are paired for only one spin direction when \(\Delta_0/4 < n < \Delta_0/2 \). (The system undergoes a 1-st order phase transition into the unpolarized normal metal at \(n_{cr} = \Delta_0/2 \).) Thus, this mechanism gives a large effective moment equal to \(1\mu_B \) per doped La atom, and some efforts have been applied in Ref. [9] to argue that this moment may be forced to become small if the interaction between the orientation of the magnetic moment and the direction of the triplet order parameter (SDW), \(\Delta_\uparrow(p) = (d(p)\sigma) \), was taken into account. The mechanism of Ref. [9] seems to us too artificial, first of all, because the energy difference between CDW and SDW states was ignored. Meanwhile, it is easy to see that an anisotropy of electron and hole pockets would reduce the net magnetization. Indeed, the two opposite spin polarizations preferred by the system are governed by the position of the chemical potential. First, an anisotropic solution for the order parameter, \(\Delta(p) \), would result in variation of the gap itself along the Fermi surface. Secondly, even a small anisotropy ("antinesting") of the electron and hole spectra hinders the excitonic gap, even leading to the gapless pockets along the initial Fermi surface \[12,13\]. Therefore, while starting from the spin-up and spin-down spectra for the isotropic gap shown in Fig.1a (1 \(\mu_B \) per La), one would end up with doped electrons to spill over between the two energy branches thus obviously reducing the total magnetization, as it is shown in Fig. 1b.

![Fig. 1](image1.png)

FIG. 1. a) Energy bands and spin directions in the isotropic excitonic insulator; b) the value of the total magnetic moment depends on the shape of the energy spectrum in momentum space along the Fermi surface when the gap anisotropy and/or "antinesting" are taken into account.

We will not pursue the detailed calculations for these mechanisms, since the weak coupling model \[3\] of an excitonic transition suffers from several obvious deficiencies, each of which results in an instability towards a formation of an inhomogeneous structure. First of all, for the homogeneous excitonic state to exist, the electron and hole Fermi surfaces should be sufficiently close to nesting. Indeed, a quick calculation shows that in a model with mass anisotropy,

\[
\varepsilon_{\downarrow}(p) = \frac{p_x^2}{2m + \delta m} + \frac{p_y^2}{2m - \delta m} + \frac{p_z^2}{2m} + (1/2)E_g
\]

\[
\varepsilon_{\uparrow}(p) = \frac{p_x^2}{2m - \delta m} + \frac{p_y^2}{2m + \delta m} + \frac{p_z^2}{2m} + (1/2)E_g,
\]

a homogeneous excitonic phase disappears at

\[
\frac{\delta m}{m} > \frac{2\varepsilon_c\Delta_0}{E_g},
\]

where \(\Delta_0 \) is the excitonic gap for the isotropic situation (\(\delta m = 0 \)); \(\varepsilon_c = 2.71828 \). Since \(\Delta_0 \) is exponentially small in terms of \(\varepsilon_c \sim E_g \), \(\Delta_0 = 2\varepsilon_c \exp(-1/g) \), the weak coupling model allows only a modest mass anisotropy.

The range of anisotropy for exciton formation may be extended beyond Eq.\[1\], however, since at larger anisotropies it leads to an inhomogeneous state with long-wavelength oscillations of spin and (or) electron densities \[14\]. Similar drawback of the Keldysh-Kopaev model becomes obvious when one considers doping even in a model with the perfect nesting. Mathematically the problem in the last case becomes equivalent to the problem of the coexistence of the superconductivity and ferromagnetism \[15\]. The exchange field, \(I \), in that model is equivalent to the chemical potential \(\mu \) in the excitonic state. Thus, the gap equation has two solutions: 1) \(\Delta = \Delta_0 \); 2) \(\Delta^2 = 2I\Delta_0 - \Delta_0^2 \), where \(\Delta_0 \) is the gap at \(I = 0 \). The energies of the ground state are easily found: 1)
of a homogeneous solution for the gap on doping then is given by (2), with \(\mu \) being expressed in terms of added dopants, \(n = \sqrt{\mu^2 - \Delta^2} \) (where \(n \) is in energy units), reproduces Eq.\((8) \) and the effects considered by Volkov et al.\[10,11\] and Zhitomirsky et al.\[11\].

The instability of the homogeneous solution at larger \(n \) is seen from the form of \(T_c(n) \), explicitly calculated (see Fig. 2) in Ref.\[3\].

At high enough densities, \(n > \Delta_0/2 \), \(T_c(n) \) displays a reentrant behavior from the excitonic state into the metallic state at low temperatures. The behavior indicates some sort of an instability or a 1-st order phase transition. However, similar to the case of non-perfect nesting above, one can again check for an instability towards a transition into an excitonic state with an incommensurate wave vector \(q \), searching for a maximum \(T_c(\{q\}) \).

The result of our numerical calculation is shown in Fig. 2. At low dopings \(T_c \) corresponds to the homogeneous state with \(q = 0 \). The dashed line in Fig. 2 shows the temperature for the onset of an inhomogeneous phase, \(T_c(\{q\}) \), where the value of \(|q|\) itself depends on \(n \). (At low \(T_c \) \(|q| = 2.4n/n_\text{F} \)) The excitonic regime at \(T = 0 \) for such inhomogeneous state appears by a first order transition at \(n^* = 0.71\Delta_0 \) (see below) and extends to \(n_{c1} \approx 0.755\Delta_0 \). (Inhomogeneous state was first discussed by Rice in connection with itinerant antiferromagnetism in chromium.\[13\].)

Assuming again that CDW- and SDW- states have equal energies (\(\delta g = 0 \)), it is easy to show that \(T_c \) in the presence of magnetic field, \(B \), initially increases with \(B \), as follows from \(T_c(n, B) \) obtainable by a mere substitution:

\[
T_c(n, B) = T_c(n - \mu_B B),
\]

from Eq.\((8) \). The \(|q|\)-value in the presence of the magnetic field \(B \) also follows from the same substitution. This result may also be considered as another manifestation of the system’s tendency towards a ferromagnetic state. According to Eq.\((8) \), at a higher doping the magnetic field may cause reentrance into the excitonic insulator phase.

The vicinity of the upper concentration, \(n_{c1} \), where the non-homogeneous solution first appears if the concentration is decreased from the side of the normal metal, may be studied in the same manner as for the corresponding superconductivity problem, producing the well-known Larkin-Ovchinnikov-Fulde-Ferrel state \[14,19\]. The solution in our case (we need to find \(\mu(n) \)) again secures the stripe phase as the most energetically favorable one. The density of carriers then oscillates according to:

\[
n(x) = n - n|\Delta_0^2/n_{c1}^2|(1 + 1.3\cos(2qx)),
\]

where \(qv = 2.4(n_{c1} + \delta n/15.7) \), \(\Delta(x) = 2\Delta_c\cos(qx) \), and

\[
|\Delta_b|^2 = 0.936n_{c1}(n_{c1} - n).
\]

Here \(v \) is the Fermi velocity.

An inhomogeneous distribution Eq.\((8) \) of a weak enough charge on the scale of a coherence length \(\xi_0 > \xi_{TF} \), where \(\xi_{TF} \) is the Thomas-Fermi screening radius should not present a major trouble, since the lattice can adjust itself to produce a periodic modulation. Yet it remains unclear how at low \(T \) the system evolves when one proceeds from the metallic end by further decrease of the concentration of dopants.

In any event, if the Coulomb forces are completely neglected, with further concentration decrease the homogeneous phase is restored through the phase separation regime. This starts to take place at the point \(n^* = \Delta_0/\sqrt{2} \[16\]. To find the two phases and how they coexist, in our case turns out to be completely equivalent to minimizing the energy of the intermediate state
of the 1st-type superconductor in a fixed magnetic field. The same energy considerations show that the system separates into the mixture of two phases: the one with \(n_e = n_h \) and the other with \(n_e - n_h = n^* = \Delta_0/\sqrt{2} \). The relative volume fraction of each phase is given by:

\[
V_1/V = 1 - n/n^* \quad V_2/V = n/n^*.
\]

The domain sizes would be determined by the surface energy. Without the bulk Coulomb forces such phase separation is energetically even more favorable than ferromagnetism. On the other hand, the Coulomb energy would work against the spatial charge separation, which, hence, may stabilize a homogeneous regime in a range of small enough \(n \). In view of these uncertainties we made no attempt to address the other issue, namely, that for a complete description of the true ground state of DBs in the frameworks of the model \([1,3]\), one has to account for the three X-points in the cubic system related to each other by the symmetry transformations. This has been done recently in Ref. \([20]\) for the problem of multiband superconductors, and the results of Ref. \([20]\) are immediately mapped onto the problem of excitonic insulator with the spectrum of Ref. \([3]\).

In conclusion, we have shown that the excitonic model \([3]\), even though may capture a qualitatively correct physics, necessarily leads to appearance of a superstructure \([21]\) which, at least, does not contradict our expectations above. We emphasize again that our explanation for possible small magnetic moment differs from the one given in Ref. \([1]\). The magnetic moment can be as big as \(\sim 1 \mu_B \) per doped \(La \) in the model \([10]\). Effects of anisotropy and changes in the energy spectrum through doping would change this significantly, as mentioned above. Recent experiments \([22]\) on \(BaB_6 \) doped with \(La \) have produced moments about \(0.4 \mu_B \) at \(x = 0.05 \).

After this work was performed, the authors have discovered the preprint Ref. \([23]\) by Balents and Varma. We shall not discuss their results regarding the three different X-points. We note that our results on the doping dependence agree for the most part. We do not agree, however, with the claim that the results of \([14,10]\) contain significant errors, since the macroscopic phase separation is to be made difficult by the Coulomb terms.

The authors thank Z. Fisk for everyday discussions on both the experimental results and related physics. We are grateful to R. Caciuffo for communicating the results of Ref. \([21]\) prior to publication. L.P.G. also acknowledges with gratitude stimulating discussions with M. Chernikov, A. Bianchi, S. Oseroff, H.-R. Ott, and C. M. Varma. This work was supported by the National High Magnetic Field Laboratory through NSF cooperative agreement No. DMR-9527035 and the State of Florida.

[1] D. P. Young et al, Nature 397, 412 (1999).
[2] R. G. Arkhipov, Sov. Phys. JETP 16, 251 (1963).
[3] L. V. Keldysh, Yu. V. Kopaev, Sov. Phys. Solid State 6, 2210 (1965).
[4] A. N. Kozlov and L. A. Maksimov, Sov. Phys. JETP 21, 790 (1965).
[5] J. des Cloizeaux, J. Phys. Chem. Solids 26, 250 (1965).
[6] W. Kohn, Phys. Rev. Lett. 19, 439 (1967).
[7] B. I. Halperin and T. M. Rice, Solid State Physics 21, 115 (1968).
[8] S. Massida, A. Continenza, T. M. de Pascale, and R. Monnier, Z. Phys. B 102, 83 (1997).
[9] M. E. Zhitomirsky, T. M. Rice, and V. I. Anisimov, preprint, cond-mat/9904330 (1999).
[10] B. A. Volkov, Yu. V. Kopaev, and A. I. Rusinov, Sov. Phys. JETP 41, 952 (1975).
[11] B. A. Volkov, A. I. Rusinov, R. Kh. Timerov, Zh. Eksp. Teor. Fiz 70, 1130 (1976).
[12] Yu. V. Kopaev, Sov. Phys. - Solid State 8, 175 (1966).
[13] J. Zittartz, Phys. Rev. 162, 752 (1967).
[14] L. P. Gor’kov and T. T. Nnatsakanov, Sov. Phys. JETP 36, 361 (1973).
[15] W. Baletensperger, Helv. Phys. Acta 32, 197 (1959).
[16] L. P. Gor’kov, A. I. Rusinov, Sov. Phys. JETP 19, 922 (1964).
[17] T. M. Rice, Phys. Rev. B2, 3619 (1970).
[18] A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1962).
[19] P. Fulde, R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[20] D. F. Agterberg, V. Barzykin, L. P. Gor’kov, preprint, cond-mat/9906394 (1999).
[21] R. Caciuffo and G. Barucca (private communication). Their observation, however, was not reproduced on other samples.
[22] Z. Fisk (private communication).
[23] L. Balents, C. M. Varma, preprint, cond-mat/9906259 (1999).