Efficacy of Needle Thoracostomy following Iatrogenic Pneumothorax in Critically Ill Patients

Collin Sprenker*, Francis Dillon1, Prachiti H Dalvi1, Devanand Mangar2, and Enrico Camporesi2

1Team Health Anesthesia, USA
2University of South Florida & TEAM Health Anesthesia, USA

Introduction

Due to increased invasive monitoring and treatment modalities in critically ill patients, iatrogenic pneumothorax occurs with an incidence rate of 4-15% [1], greater amongst teaching facilities [2]. Not accounting for asymptomatic or occult occurrences [3] raises the expected overall incidence of pneumothorax. Traditional treatment for spontaneous or iatrogenic pneumothorax is surgical thoracostomy (chest) tube insertion. Despite being widely accepted, this practice is not without complications and results in significant pain as well as increased morbidity and mortality [4]. Herein we report 3 cases in which an iatrogenic pneumothorax in a critically ill patient was resolved via a single bedside needle thoracostomy. Each patient provided written consent to participate in this research study and for the publication of their information as a clinical case report.

Case Report

This was a retrospective review of patient’s medical charts. The patients gave written informed consent for the procedure and for release of information for educational purposes. The following criteria were used to determine whether needle thoracostomy was the appropriate intervention: unilateral and greater than or equal to 30% apical in location; patients did not have effusion, hemothorax, purulence, or other drainage; coagulation and platelet parameters in range; no history of surgeries on the hemithorax; and patient consent was obtained prior to the procedure. A needle thoracostomy can be an appropriate, less invasive alternative to chest tube insertion to resolve post-operative pneumothoraces.

Keywords: Resolution of iatrogenic pneumothorax; Needle thoracostomy; Critical care medicine

Abstract

We report a series of 3 patients who experienced iatrogenic pneumothoraces in the ICU: these were resolved with a single needle thoracostomy and no patients experienced recurrence. The following criteria were used to determine whether needle thoracostomy was appropriate: all pneumothoraces were unilateral and greater than 30% apical in location; patients did not have effusion, hemothorax, purulence, or other drainage; coagulation and platelet parameters in range; no history of surgeries on the hemithorax; and patient consent was obtained prior to the procedure. A needle thoracostomy can be an appropriate, less invasive alternative to chest tube insertion to resolve post-operative pneumothoraces.
how to cite this article: Collin S, Francis D, Prachiti H D, Devanand M, Enrico C. Efficacy of Needle Thoracostomy following Iatrogenic Pneumothorax in Critically Ill Patients. J Anest & Inten Care Med. 2017; 2(2) : 555583. DOI: 10.19080/JAICM.2017.01.555583

Table 1: Patient Demographics and Pneumothorax Descriptions.

Patient Number	Age/Gender	Iatrogenic or Spontaneous	Location/Size	Hemodynamic or Respiratory Compromise?	MediaStinal Shift?	Mode of Ventilation	Air Removed (L)	Days to Resolution (Confirmed by Chest X-Ray)
1	39/M	Iatrogenic post-op retropleural thoracic spine surgery	Large left	No	No	Low flow nasal cannula	1.32L	2
2	58/F	Iatrogenic s/p right internal jugular central venous access	Large right	No	Yes	Low flow nasal cannula	1.4L	0
3	43/F	Iatrogenic s/p parathyroidectomy	Large right apical ~ 50%	No	No	Low flow Nasal cannula	.6L	1

Immediately as the catheter was withdrawn an occlusive dressing (Tegaderm) was applied and reinforced until this was seen to be airtight by the provider. Daily follow up chest x-ray were obtained to confirm resolution of pneumothorax (Figure 1).

All pneumothoraces were iatrogenic in nature, identified by plain chest x-ray and radio graphically resolved following a single needle thoracostomy. No patients experienced recurrence, complications, or required subsequent chest tube insertion. An average of 1.11L of air was removed (range 0.6-1.4L). Average day to resolution was 1.25 days with a range of 0-2 days. All three patients were on low flow nasal cannula.

Discussion

Chest tube insertion is currently the standard of care for mechanically ventilated patients [8]. In this case series we have demonstrated 3 patients that had iatrogenic pneumothoraces resolved following a single needle thoracostomy. In this small case series we have demonstrated complete resolution of pneumothorax without chest tube insertion. The decision not to place a chest tube in mechanically ventilated patients is up to clinician discretion and may have a high failure rate. Further investigations with a larger sample size are required before conclusions can be made.

Idris and Hefny described needle thoracostomy in a 63 year old male with a >30% pneumothorax to his left hemithorax following a fall to his chest [9]. In this case report the patient deferred placement of a chest tube and conservative treatment was provided. He was monitored with serial imaging studies which revealed slight reduction in size of the pneumothorax. He was discharged on hospital day 6 and a CT chest on 3 month follow up revealed complete resolution of the pneumothorax.

Kulvatunyoo et al. described their experience with 14 French pigtail catheters for traumatic pneumothorax compared to chest tube insertion [10]. A retrospective analysis revealed a comparable efficacy in comparison to chest tubes. There was a greater occurrence of tube failure rate in the pigtail catheter group compared to the chest tube group, however statistical significance was not established.

A 2006 randomized controlled trial compared simple aspiration vs. chest tube insertion for spontaneous pneumothorax in 137 patients [5]. Re-occurrences of pneumothorax in the aspiration group were greater, however
not statistically significant. Complications and analgesia requirements were greater in the chest tube group, but also not statistically significant. Overall, efficacy was comparable between the methods. The authors concluded that needle aspiration is an alternative method to chest tube insertion as the initial treatment for the first episode of primary spontaneous pneumothorax.

Our experience suggests that needle thoracostomies are an appropriate alternative to tube thoracostomy to resolve apical uncomplicated iatrogenic pneumothoraces. We believe current guideline for routine tube thoracostomies may need to be revised however clinical judgment, experience and patient stability will guide treatment modality in all cases. We continue to recommend chest tube insertion for patients with tension pneumothorax resulting in hemodynamic instability. This case series attempts to expand indications of needle thoracostomy to iatrogenic etiology and patients on mechanical ventilation. A randomized controlled study with outcomes focused on ICU stay, days to resolution, cost and complications are required to confirm the widespread use of this technique.

Author Roles

CS contributed to data collection, data analysis, and manuscript writing. PD contributed to data collection, data analysis, and manuscript revisions. PD contributed to maintaining regulatory documentation, data analysis, and manuscript writing. DM was involved with data analysis and manuscript revisions. EC was involved in data collection, data analysis, regulatory documentation, and manuscript writing.

References

1. Strange C (1999) Pleural complications in the intensive care unit. Clin Chest Med 20(2): 317 - 327.
2. John J, Seifi A (2016) Incidence of iatrogenic pneumothorax in the United States in teaching vs. non-teaching hospitals from 2000 to 2012. J Crit Care 34: 66-68.
3. Omar HR, Abdelmalak H, Mangar D, Rashad R, Helal E, et al. (2010) Occult pneumothorax, revisited. J Trauma Manaq Outcomes 4: 12.
4. Kwiat M, Tarbox A, Seamon MJ, Swaroop M, Cipolla J, et al. Thoracostomy tubes: A comprehensive review of complications and related topics. Int J Crit Illn Inj Sci 4(2): 143-155.
5. Ayyed AK, Chandrasekaran C, Sukumar M (2006) Aspiration versus tube drainage in primary spontaneous pneumothorax: a randomised study. Eur Respir J 27(3): 477-482.
6. Aguinald A, Zabaleta J, Fuentes M, Bazterguri N, Hernández C, et al. (2010) Percutaneous aspiration versus tube drainage for spontaneous pneumothorax: systematic review and meta-analysis. Eur J Cardiothorac Surg 37(5): 1129-1135.
7. Parlak M, Ul SM, van den Berg JW (2012) A prospective, randomised trial of pneumothorax therapy: manual aspiration versus conventional chest tube drainage. Respir Med 6(11): 1600-1605.
8. Gilbert TB, McGrath BJ, Soberman M (1993) Chest tubes: indications, placement, management, and complications. J Intensive Care Med 8(2): 73-86.
9. Idris BM, Hefny AF (2016) Large pneumothorax in blunt chest trauma: Is a chest drain always necessary in stable patients? A case report. J Surg Case Rep 24: 88-90.
10. Kulvatunyou N, Vijayasakaran A, Hansen A, Wynne JL, O’Keeffe T, et al. (2011) Two-year experience of using pigtail catheters to treat traumatic pneumothorax: a changing trend. J Trauma 71(5): 1104-1107.