Computing Least and Greatest Fixed Points in Absorptive Semirings

Matthias Naaf

November 5, RAMiCS 2021
Q: Minimal cost of an infinite path?

\[X_a = 1 + X_b \]
\[X_b = \min(1 + X_a, 20 + X_c) \]
\[X_c = 0 + X_c \]

\[X_a = \infty \]
\[X_b = 20 \]
\[X_c = 0 \]
Q: Minimal cost of an infinite path?

$$X_a = 1 + X_a$$
$$X_b = \min(1 + X_a, 20 + X_c)$$
$$X_c = 0 + X_c$$

polynomial equation system

$$= (\mathbb{R}_{\geq 0}^\infty, \min, +, \infty, 0)$$

$$X_a = \infty$$
$$X_b = 20$$
$$X_c = 0$$
greatest sol.
Motivation: Semiring Provenance for Logics

Semiring Provenance

▶ Unify provenance analyses for databases
▶ Generalize to logics: Semiring semantics for FO, LFP, ...

Semiring Semantics

▶ Idea: Replace Boolean model by semiring annotation:

\[
G \models E_{aa} \land E_{ab} \quad \leadsto \quad \pi \left[E_{aa} \land E_{ab} \right] = 1 + 20
\]
Motivation: Semiring Provenance for Logics

Fixed-Point Logic

- $\varphi(v) = \lfloor \text{gfp } R \; x. \; (\exists y \; Exy \land Ry) \rfloor(v)$
 - minimal cost of an infinite path from v (in \mathcal{F})

- $\varphi_{\text{win}}(v)$: winning region in Büchi games
 - modify the game so that Player 0 wins (polynomial semiring)

How to evaluate LFP-formulae?

- least/greatest solutions of PES (in absorptive semirings)

\[
\pi[\varphi_{\text{win}}(v)] = a + \overline{c}
\]
Motivation: Semiring Provenance for Logics

Fixed-Point Logic

- $\varphi(v) = \left[\text{gfp } R \ x. \ (\exists y \ E x y \land R y) \right](v)$
 - minimal cost of an infinite path from v (in)

- $\varphi_{\text{win}}(v)$: winning region in Büchi games
 - modify the game so that Player 0 wins (polynomial semiring)

![Diagram]

- $\pi(\varphi_{\text{win}}(v)) = a + \overline{c}$

How to evaluate LFP-formulae?

- least/greatest solutions of PES (in absorptive semirings)
Fixed-Point Iteration?

\[F: \begin{pmatrix} X_a \\ X_b \\ X_c \end{pmatrix} \mapsto \begin{pmatrix} 1 + X_a \\ \min(1 + X_a, 20 + X_c) \\ 0 + X_c \end{pmatrix} \]

\[
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \mapsto \cdots \mapsto \begin{pmatrix} 20 \\ 0 \end{pmatrix}
\]

M. Naaf (RWTH Aachen)

Computing Least and Greatest Fixed Points in Absorptive Semirings
Fixed-Point Iteration?

\[
F: \begin{pmatrix} X_a \\ X_b \\ X_c \end{pmatrix} \mapsto \begin{pmatrix} 1 + X_a \\ \min(1 + X_a, 20 + X_c) \\ 0 + X_c \end{pmatrix}
\]

\[
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \mapsto \cdots \mapsto \begin{pmatrix} 20 \\ 20 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 21 \\ 20 \\ 0 \end{pmatrix} \mapsto \begin{pmatrix} 22 \\ 20 \\ 0 \end{pmatrix} \mapsto \cdots \mapsto \begin{pmatrix} \infty \\ 20 \\ 0 \end{pmatrix}
\]
Faster Computation

Main Result

Let \((K, +, \cdot, 0, 1)\) be an absorptive, fully-continuous semiring. Given a PES with \(n\) variables over \(K\), we can compute:

\[
\begin{align*}
\text{lfp}(F) &= F^n(0). \\
\text{gfp}(F) &= F^n \left((F^n(1))^\infty \right).
\end{align*}
\]

We only need a polynomial number of semiring operations.
Chapter I

Absorptive Semirings
Semirings with Orders

Commutative Semiring

\((K, +, \cdot, 0, 1)\) such that \((K, +, 0)\) and \((K, \cdot, 1)\) are commutative monoids, \(\cdot\) distributes over \(+\), \(0 \neq 1\) and \(0 \cdot a = 0\).

A semiring is naturally ordered if

\[a \leq b \iff \exists c. a + c = b \]

defines a partial order.

Examples: Boolean semiring, \(\mathbb{R}_{\geq 0}\), \(\mathbb{N}[X]\)
Absorptive Semirings

Absorption

A semiring is absorptive if \(a + ab = a \) for all \(a, b \).

Some facts

- Absorptive semirings are idempotent and naturally ordered
- Equivalent definitions:

\[
 a + ab = a \quad \iff \quad \top = 1 \quad \iff \quad ab \leq a
\]
Absorptive Semirings

Absorption

A semiring is absorptive if $a + ab = a$ for all a, b.

Some facts

▶ Absorptive semirings are idempotent and naturally ordered

▶ Equivalent definitions:

\[a + ab = a \iff \top = 1 \iff ab \leq a \]

Remember: Absorption = decreasing multiplication
An absorptive semiring is K is **fully continuous** if \leq is a complete lattice satisfying the continuity property:

$$\bigsqcup (a \circ C) = a \circ \bigsqcup C \quad \text{and} \quad \bigcap (a \circ C) = a \circ \bigcap C$$

for all non-empty chains $C \subseteq K$ and all $a \in K$, $\circ \in \{+, \cdot\}$.

For $a \in K$ we define $a^\infty := \bigcap_{n \in \mathbb{N}} a^n$.
Absorptive Semirings with Fixed Points

Examples

- **Boolean semiring** \((\{0, 1\}, \lor, \land, 0, 1)\)

- **Łukasiewicz semiring** \(([0, 1], \max, \star, 0, 1)\)
 with \(a \star b = \max(0, a + b - 1)\)

- **Any distributive lattice or min-max semiring**

\[
a^\infty = a
\]

\[
a^\infty = \begin{cases} 0, & a = 0 \\ \infty, & \text{else} \end{cases}
\]

\[
a^\infty = \begin{cases} 1, & a = 1 \\ 0, & \text{else} \end{cases}
\]

Problem: \(\mathbb{N}\) and \(\mathbb{N}[X]\) not absorptive!
Modify $\mathbb{N}[X]$ by

- dropping coefficients,

$$2x^2y + xy^2 + 5x^2 + 3z^{10}$$
Absorptive Polynomials

Modify \(\mathbb{N}[X] \) by

- dropping coefficients,
- absorption among monomials (by comparing exponents),

\[2x^2y + xy^2 + 5x^2 + 3z^{10} \]
Absorptive Polynomials

Modify $\mathbb{N}[X]$ by

- dropping coefficients,
- absorption among monomials (by comparing exponents),
- allowing ∞ as exponent.

\[
2x^2y + xy^2 + 5x^2 + 3z^\infty
\]

Absorptive polynomials $S^\infty[X]$ are

- always finite (Dickson’s lemma),
- the most general absorptive, fully-continuous semiring.
Chapter II

Proof Sketch
Proof Overview: Least Solution

Main Result

Let \((K, +, \cdot, 0, 1)\) be an absorptive, fully-continuous semiring. Given a PES with \(n\) variables over \(K\), we can compute:

- \(\text{lfp}(F) = F^n(0)\).
- \(\text{gfp}(F) = F^n((F^n(1))^\infty)\).

Remark: lfp follows from [Esparza, Kiefer, Luttenberger, ICALP’08]
Proof Overview: Least Solution

Main Result

Let \((K, +, \cdot, 0, 1)\) be an absorptive, fully-continuous semiring. Given a PES with \(n\) variables over \(K\), we can compute:

- \(\text{lfp}(F) = F^n(0)\).
- \(\text{gfp}(F) = F^n\left((F^n(1))^{\infty}\right)\).

Remark: \(\text{lfp}\) follows from [Esparza, Kiefer, Luttenberger, ICALP’08]

Newton’s method for \(\text{lfp}(F)\) converges in \(n\) steps in idempotent semirings

Newton’s method = fixed-point iteration
Proof Overview: Greatest Solution

Main Result

Let \((K, +, \cdot, 0, 1)\) be an absorptive, fully-continuous semiring. Given a PES with \(n\) variables over \(K\), we can compute:

- \(\text{lfp}(F) = F^n(0)\).
- \(\text{gfp}(F) = F^n\left((F^n(1))^\infty\right)\).

Proof:

1. Express \(\text{gfp}(F)\) using derivation trees
2. Apply absorption to derivation trees
Derivation Trees

\[X = aXY + b \]
\[Y = cZ^2 \]
\[Z = dZ + e \]

Yield: \(b \)

Yield: \(abce^2 \)

Yield: \(a \cdot b \cdot c \cdot d^\infty \)
Derivation Trees

\[X = aXY + b \]
\[Y = cZ^2 \]
\[Z = dZ + e \]

\[
\begin{align*}
X_a & \rightarrow X_b \quad \text{yield: } b \\
& \quad \quad \quad \downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow
Y_c & \rightarrow Z_e \\
& \quad \quad \quad \downarrow \\
Z_e & \quad \quad \quad \Downarrow
\end{align*}
\]

\[X_a \rightarrow X_b \quad \text{yield: } abce^2 \]

\[
\begin{align*}
\text{lfp} &= \sum \{(\text{yield})(\text{finite}) \}
\text{gfp} &= \sum \{(\text{yield})(\text{finite, infinite}) \}
\end{align*}
\]

Yield: \(a \cdot b \cdot c \cdot d^\infty\)
Observation: Prefixes of \(\downarrow \) correspond to iteration steps.

\[
\sum \{ \text{yield}(\cdot) \mid \text{finite/infinite} \} = \mathbf{F}(1)
\]
Observation: Prefixes of \mathcal{T} correspond to iteration steps.

\[F(1) + F(1) = F^2(1) \]
Observation: Prefixes of \(\uparrow \) correspond to iteration steps.

\[
F(1) + F^2(1) + F^3(1) + \cdots
\]
Observation: Prefixes of \(\text{★} \) correspond to iteration steps.

\[
\prod_{n \in \mathbb{N}} \sum \left\{ \text{yield(★)} \mid \text{finite/infinite} \right\} = \text{gfp}(F)
\]
Main Result

Let \((K, +, \cdot, 0, 1)\) be an absorptive, fully-continuous semiring. Given a PES with \(n\) variables over \(K\), we can compute:

- \(\text{lfp}(F) = F^n(0)\).
- \(\text{gfp}(F) = F^n \left((F^n(1))^{\infty} \right)\).

Proof:

1. Express \(\text{gfp}(F)\) using derivation trees
2. Apply absorption to derivation trees
Absorption on Derivation Trees

If each coefficient occurs more often in \bullet than in \circ, then $\text{yield}(\bullet)$ is absorbed by $\text{yield}(\circ)$.
Absorption on Derivation Trees

If each coefficient occurs more often in \(\mathbb{E} \) than in \(\mathbb{F} \), then \(\text{yield}(\mathbb{E}) \) is absorbed by \(\text{yield}(\mathbb{F}) \).

complicated tree \(\mathbb{E} \) \quad \leq \quad \text{ultimately periodic} \quad \leq \quad \text{nice tree} \(\mathbb{F} \)
If each coefficient occurs more often in \bullet than in \bigcirc, then yield(\bullet) is absorbed by yield(\bigcirc).
Absorption on Derivation Trees

If each coefficient occurs more often in \(\bullet \) than in \(\mathcal{F} \), then \(\text{yield}(\bullet) \) is absorbed by \(\text{yield}(\mathcal{F}) \).

complicated tree \(\bullet \)

ultimately periodic

nice tree \(\mathcal{F} \)
Computing Nice Trees

\[\text{gfp}(F') = \sum \left\{ \text{yield}(\text{nice tree}) \mid \text{nice tree} \right\} = \ldots \]
Computing Nice Trees

\[\text{gfp}(F') = \sum \{ \text{yield}(\bullet) \mid \text{nice } \bullet \} = \ldots \]
Computing Nice Trees

\[\text{gfp}(F') = \sum \left\{ \text{yield}(\text{nice tree}) \mid \text{nice tree} \right\} = \ldots \]
Computing Nice Trees

$$\text{gfp}(F') = \sum \left\{ \text{yield}(\text{nice tree}) \mid \text{nice tree} \right\} = F^n(F^n(1)^\infty)$$
Result

- Greatest solutions of PES in absorptive, fully-continuous semirings ...
- ... are computable in a polynomial number of semiring operations

Alternative: Symbolic approach for $S_\infty [X]$

- Solve first equation for X, substitute and solve recursively

Future Work: Compute nested fixed points in absorptive semirings