Degree of entanglement for two qubits

Jing-Ling Chen,1,2 * Libin Fu,1 Abraham A. Ungar,3 † and Xian-Geng Zhao1

1 Laboratory of Computational Physics,
Institute of Applied Physics and Computational Mathematics,
P.O. Box 8009(26), Beijing 100088, People’s Republic of China.
2 Department of Physics, Faculty of Science, National University of Singapore,
Lower Kent Ridge, Singapore 119260, Republic of Singapore.
3 Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105, USA.

In this paper, we present a measure to quantify the degree of entanglement for two qubits in a pure state.

03.67.-a, 03.65.Ud

I. INTRODUCTION

Quantum entanglement is the most surprising nonclassical property of composite quantum systems [1]. As it is well-known, a qubit (or a spin-1/2 particle) is described by the 2 × 2 density matrix \(\rho(n) = (1 + \vec{\sigma} \cdot \vec{n})/2 \), where \(\vec{1} \) is the unit matrix, \(\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3) \) the Pauli matrices vector, and \(\vec{n} \) the Bloch vector. \(|\vec{n}| = 1 \) corresponds to a pure state, otherwise a mixed state. Whereas, an entangled pairs of two qubits is completely described by the following 4 × 4 density matrix:

\[
\rho_{AB} = \frac{1}{4}(\vec{1} \otimes \vec{1} + \vec{\sigma}^A \cdot \vec{u} \otimes \vec{1} + \vec{1} \otimes \vec{\sigma}^B \cdot \vec{v} + \sum_{i,j=1}^3 \beta_{ij} \sigma_i^A \otimes \sigma_j^B),
\]

from which one could obtain two reduced density matrices

\[
\rho_A = \text{tr}_B(\rho_{AB}) = \frac{1}{2}(1 + \vec{\sigma}^A \cdot \vec{u}),
\]

\[
\rho_B = \text{tr}_A(\rho_{AB}) = \frac{1}{2}(1 + \vec{\sigma}^B \cdot \vec{v}),
\]

for the two qubits A and B, where \(\vec{u} \) and \(\vec{v} \) are Bloch vectors for particles A and B, respectively; \(\beta_{ij} \) are some real numbers.

It has been shown that entangled pairs are a more powerful resource than separable, i.e., disentangled, pairs in a number of applications, such as quantum cryptography [2], dense coding [3], teleportation [4] and investigations of quantum channels [5], communication protocols and computation [6] [7]. The superior potentiality of entangled states has raised a natural question: “How much are two particles entangled?”, since pairs with a high degree of entanglement should be a better resource than less entangled ones. Many measures of entanglement proposed in the past have relied on either the Schmidt decomposition [8] or decomposition in a magic basis [9]. In an interesting paper, Abouraddy et al. devised a new measure of entanglement for pure bipartite states of two qubits, based on a decomposition of the state vector as a superposition of a maximally entangled state vector and an orthogonal factorizable one [10]. Although there are many such decompositions, the weights of the two superposed states are remarkably unique. The square of the weight of the maximally entangled state vector (i.e., \(P_E = p^2 \)) is then defined as the degree of

*Email address: jinglingchen@eyou.com
†Email address: ungar@gyro.math.ndsu.nodak.edu
entanglement for two qubits, such a measure is consistent with three measures of entanglement previously set forth: maximal violation of Bell’s inequality [11], concurrence [9] and two-particle visibility [12].

The purpose of this paper is to propose a new approach to the problem of defining the degree of entanglement for two qubits in a pure state. In Sec. II, a new measure is formulated to quantify the degree of entanglement. Some examples are given in Sec. III. Conclusion and discussion are made in the last section.

II. FORMALISM

Theorem: If ρ_{AB} is a pure state, then its degree of entanglement P_E is equal to

$$P_E = (-\det(\hat{\alpha}))^{1/4} \quad (3)$$

where the matrix $\hat{\alpha}$ is

$$\hat{\alpha} = \begin{pmatrix}
1 & v_1 & v_2 & v_3 \\
u_1 & \beta_{11} & \beta_{12} & \beta_{13} \\
u_2 & \beta_{21} & \beta_{22} & \beta_{23} \\
u_3 & \beta_{31} & \beta_{32} & \beta_{33}
\end{pmatrix}. \quad (4)$$

Proof: ρ_{AB} is a pure state implies that $\rho_{AB}^2 = \rho_{AB}$, from which one obtains the following constraints among u_i, v_i and β_{ij} ($i, j = 1, 2, 3$):

$$u_i = \beta_{i1}v_1 + \beta_{i2}v_2 + \beta_{i3}v_3, \quad (5)$$

$$v_i = \beta_{i1}u_1 + \beta_{i2}u_2 + \beta_{i3}u_3, \quad (6)$$

$$\sum_{ij} \beta_{ij}^2 = 3 - |u|^2 - |v|^2, \quad (7)$$

$$\beta_{ij} = u_iv_j - (-1)^{i+j}M_{ij}, \quad (8)$$

where M_{ij} is the algebraic complement of the matrix element β_{ij} for the following $\hat{\beta}$ matrix:

$$\hat{\beta} = \begin{pmatrix}
\beta_{11} & \beta_{12} & \beta_{13} \\
\beta_{21} & \beta_{22} & \beta_{23} \\
\beta_{31} & \beta_{32} & \beta_{33}
\end{pmatrix}. \quad (9)$$

Eqs. (5) and (6) can be recast as $\hat{\beta}v = u$, $\hat{\beta}^Tu = v$, where T represents transpose and $u = (u_1, u_2, u_3)^T$. An interesting result, i.e., $|u| = |v|$, will be obtained immediately from Eqs. (5) and (6) for the pure state ρ_{AB} [13]. From Eq. (8) we have

$$\beta_{11}^2 + \beta_{12}^2 + \beta_{13}^2 = \beta_{11}u_1v_1 + \beta_{12}u_1v_2 + \beta_{13}u_1v_3$$

$$- [(-1)^{i-1}\beta_{11}M_{11} + (-1)^{i+2}\beta_{12}M_{12} + (-1)^{i+3}\beta_{13}M_{13}]. \quad (10)$$

Due to $\det(\hat{\beta}) = \beta_{11}M_{11} - \beta_{12}M_{12} + \beta_{13}M_{13}$ and Eq. (10), one obtains

$$\beta_{11}^2 + \beta_{12}^2 + \beta_{13}^2 - u_1^2 = -\det(\hat{\beta}). \quad (11)$$

Similarly,
\[
\beta_{21}^2 + \beta_{22}^2 + \beta_{23}^2 - u_2^2 = -\det \hat{\beta},
\]
\[
\beta_{31}^2 + \beta_{32}^2 + \beta_{33}^2 - u_3^2 = -\det \hat{\beta}.
\tag{12}
\]

After combining Eqs. (7), (11), (12), and taking \(|u| = |v|\) into account, one easily obtains \(-\det \hat{\beta} = 1 - |u|^2\). Consequently, we have
\[
(-\det \hat{\alpha})^{1/4} = \left(\frac{1}{2}\right)^{1/4} = \sqrt{1 - |u|^2}. \tag{13}
\]

One can know from Ref. [10] that \(P_E = 2\kappa_1\kappa_2\), where \(\kappa_1\) and \(\kappa_2\) are the two coefficients in the Schmidt decomposition \(|\Psi\rangle = \kappa_1|x_1, y_1\rangle + \kappa_2|x_2, y_2\rangle\), \(\rho_{AB} = |\Psi\rangle\langle\Psi|\), where \(|x_1\rangle, |x_2\rangle\) and \(|y_1\rangle, |y_2\rangle\) are orthogonal bases for the Hilbert spaces of particles \(A\) and \(B\), respectively. It is easy to prove that \(\kappa_1 = \sqrt{(1 + |u|)/2}, \kappa_2 = \sqrt{(1 - |u|)/2}\), which are square-roots of the two eigenvalues of the reduced matrix \(\rho_A\) or \(\rho_B\). Therefore we have \(P_E = (-\det \hat{\alpha})^{1/4}\). This ends the proof.

III. EXAMPLES

Example 1. For the state \(|\Psi\rangle = (|00\rangle + |01\rangle + |11\rangle)/\sqrt{3}\), one obtains the density matrix
\[
\rho_{AB} = |\Psi\rangle\langle\Psi| = \frac{1}{3} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix},
\]
with the Bloch vectors \(u = (2/3, 0, 1/3)^T\), \(v = (2/3, 0, -1/3)^T\), and the alpha matrix
\[
\hat{\alpha} = \frac{1}{3} \begin{pmatrix} 3 & 2 & 0 & -1 \\ 2 & 2 & 0 & -2 \\ 0 & 0 & -2 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix}. \tag{14}
\]
One can have \(P_E = 2/3\), which is consistent with the result in Ref. [11].

Example 2. For the state \(|\Psi\rangle = (|00\rangle + 2(|01\rangle + |11\rangle))/3\), the density matrix is
\[
\rho_{AB} = |\Psi\rangle\langle\Psi| = \frac{1}{9} \begin{pmatrix} 1 & 2 & 0 & 2 \\ 2 & 4 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 2 & 4 & 0 & 4 \end{pmatrix},
\]
with \(u = (8/9, 0, 1/9)^T\), \(v = (4/9, 0, -7/9)^T\), and the alpha matrix
\[
\hat{\alpha} = \frac{1}{9} \begin{pmatrix} 9 & 4 & 0 & -7 \\ 8 & 4 & 0 & -8 \\ 0 & 0 & -4 & 0 \\ 1 & 4 & 0 & 1 \end{pmatrix}. \tag{15}
\]
Hence the degree of entanglement is \(P_E = 4/9\).

Example 3. For the maximally entangled state \(|\Psi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}\), one obtains the density matrix
\[
\rho_{AB} = |\Psi\rangle\langle\Psi| = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}.
\]
with the Bloch vectors \(\mathbf{u} = \mathbf{v} = (0, 0, 0)^T \), and the alpha matrix

\[
\hat{\alpha} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

(16)

Thus \(P_E = 1 \) reaches the highest value.

Example 4. For the disentangled pure state

\[
\rho_{AB} = \frac{1}{2}(1 + \sigma^A \cdot \mathbf{u}) \otimes \frac{1}{2}(1 + \sigma^B \cdot \mathbf{v}),
\]

where \(|\mathbf{u}| = |\mathbf{v}| = 1 \), we have the alpha matrix as

\[
\hat{\alpha} = \begin{pmatrix}
1 & v_1 & v_2 & v_3 \\
u_1 & u_1 v_1 & u_1 v_2 & u_1 v_3 \\
u_2 & u_2 v_1 & u_2 v_2 & u_2 v_3 \\
u_3 & u_3 v_1 & u_3 v_2 & u_3 v_3
\end{pmatrix}.
\]

(17)

Obviously \(P_E = 0 \) indicates that \(\rho_{AB} \) is disentangled.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have presented a measure to quantify the degree of entanglement for two qubits in a pure state. We would like to make some discussion in the following:

(i) The similar idea developed in this paper could be generalized to quantify the degree of entanglement for two quNits (i.e., \(N \)-state quantum systems, \(N = 2 \) and \(N = 3 \) correspond to a qubit and a qutrit, respectively) \[14\] \[15\] in a pure state. For instance, the density matrix for two entangled qutrits could be written as

\[
\rho_{AB} = \frac{1}{9}(1 \otimes 1 + \sqrt{3} \lambda^A \cdot \mathbf{u} \otimes 1 + \sqrt{3} \lambda^B \cdot \mathbf{v} + \frac{3}{2} \sum_{i,j=1}^{8} \beta_{ij} \lambda^A_i \otimes \lambda^B_j),
\]

(18)

where \(\lambda_i \) \((i = 1, 2, ..., 8) \) are the eight hermitian generators of \(SU(3) \) (namely the usual Gellmann matrices). For the state of two entangled qutrits

\[
|\Psi\rangle = \frac{1}{3}(|00\rangle + |11\rangle + |22\rangle),
\]

(19)

its corresponding density matrix is \[13\]

\[
\rho_{AB} = \frac{1}{9}(1 \otimes 1 + \frac{3}{2} \sum_{i,j=1}^{8} \beta_{ij} \lambda^A_i \otimes \lambda^B_j),
\]

(20)

with the non-zero coefficients \(\beta_{11} = \beta_{22} = \beta_{33} = \beta_{44} = \beta_{55} = \beta_{66} = 1, \beta_{22} = \beta_{55} = \beta_{77} = -1 \). The elements \(\beta_{ij}, 1, \mathbf{u} \) and \(\mathbf{v} \) form a \(9 \times 9 \) matrix \(\hat{\alpha} \), it is easy to show that \(P_E = (-\det \hat{\alpha})^{1/4} = 1 \), which indicates that the state \(|\Psi\rangle\) in Eq. (19) is just a maximally entangled state.

(ii) After making the parametrization \(\mathbf{u} = \hat{\mathbf{u}} \tanh \phi_u \), where \(\hat{\mathbf{u}} = \mathbf{u}/|\mathbf{u}| \), the density matrix of a qubit \(\rho(\mathbf{u}) = (1 + \hat{\sigma} \cdot \mathbf{u})/2 \) can be connected to the Lorentz boost matrix \(L(\mathbf{u}) = \exp(\phi_u \hat{\sigma} \cdot \hat{\mathbf{u}}/2) = 1 \cosh(\phi_u/2) + \hat{\sigma} \cdot \mathbf{u} \sinh(\phi_u/2) \) as \[16\]

\[
\rho(\mathbf{u}) = \frac{L(\mathbf{u})}{2 \cosh \phi_u}, \quad \phi_u = \phi_u/2.
\]

(21)

Obviously, \(\rho(\mathbf{u}) \) and \(L(\mathbf{u}) \) are in one-to-one correspondence. For the former, the physical meaning of the vector \(\mathbf{u} \) is the Bloch vector in quantum mechanics, while for the latter the relativistic velocity. Due
to the rapidity φ, i.e., the hyperbolic angle, special relativity can be formulated in terms of hyperbolic geometry. As a result, some physical quantities have been found to have geometric significance, such as the Thomas rotation angle corresponds to the defect of a hyperbolic triangle [17] [18]. After viewing the Bloch vector u as an analogous relativistic velocity, the Bures fidelity $F(\rho_1, \rho_2) = \left| \text{tr} \left(\sqrt{\sqrt{\rho_1} \rho_2 \sqrt{\rho_1}} \right) \right|^2$ was found to have a geometric interpretation in the framework of hyperbolic geometry [10]. Similarly, with the aid of the parametrization $u = \hat{u} \tanh \varphi u$, it is not difficult to find that the entanglement degree $P_E = \sqrt{1 - |u|^2} = 1 / \cosh \varphi u$ for two qubits in a pure state is the reciprocal of the Lorentz factor in the hyperbolic geometry. The extension of our approach to the mixed states of two entangled qubits will be discussed elsewhere.

[1] E. Schrödinger, Naturwissenschafen 23, 807 (1935); 23, 823 (1935); 23, 844 (1935); A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935); J.S. Bell, Physics (Long Island, NY), 1, 195 (1964); reprinted in J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, (Cambridge University Press, Cambridge, 1987).
[2] A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[3] C.H. Bennett and S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).
[4] The theoretical proposals are in C.H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993); L. Davidovich et al., Phys. Rev. A 50, R895 (1994). For the experiments see D. Boschi et al., Phys. Rev. Lett. 80, 1121 (1998); A. Furusawa et al., Science 282, 706 (1998); M.A. Nielsen, E. Knill and R. Laflamme, Nature 396, 52 (1998).
[5] D.G. Fischer, H. Mack, M.A. Cirone and M. Freyberger, Phys. Rev. A 64, 022309 (2001); C. Machiavello and G.M. Palma, e-print quant-ph/0107053.
[6] H.-K. Lo, T. Spiller and S. Popescu (eds.), Introduction to Quantum Computation and Information (World Scientific Publishing, Singapore, 1998); J. Gruska, Quantum Computing (McGraw-Hill, London, 1999); G. Alber et al., Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Springer, Berlin, 2001).
[7] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000); D. Bouwmeester, A. Ekert and A. Zeilinger (eds.), The Physics of Quantum Information (Springer, Berlin, 2000).
[8] A. Peres, Quantum Theory: Concepts and Methods (Kluwer, The Netherlands, 1993); M.A. Cirone, e-print quant-ph/0110139.
[9] S. Hill and W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997); W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998); K.M. O’Connor and W.K. Wootters, Phys. Rev. A 63, 052302 (2001).
[10] A.F. Abouraddy, B.E.A. Saleh, A.V. Sergienko and M.C. Teich, Phys. Rev. A 64, 050101(R) (2001); e-print quant-ph/0109081.
[11] J.F. Clauser, M.A. Horne, A. Shimony and R.A. Holt, Phys. Rev. Lett. 23, 880 (1969); N. Gisin, Phys. Lett. A 154, 201 (1991); S. Popescu and D. Rohrlich, Phys. Lett. A 166, 293 (1992).
[12] G. Jaeger, A. Shimony and L. Vaidman, Phys. Rev. A 51, 54 (1993).
[13] H.J Kummer, Inter. J. Theore. Phys. 40, 1071 (2001).
[14] D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski and A. Zeilinger, Phys. Rev. Lett. 85, 4418 (2000); J.-L. Chen, D. Kaszlikowski, L.C. Kwek, M. Żukowski, and C. H. Oh, Phys. Rev. A 64, 052109 (2001).
[15] C.M. Caves and G.J. Milburn, e-print quant-ph/0110001; P. Rungta, W.J. Munro, K. Nemoto, P. Denar, G.J. Milburn and C.M. Caves, e-print quant-ph/0001073.
[16] J.-L. Chen, L. Fu, A.A. Ungar and X.-G. Zhao, Geometric observation for the Bures fidelity between two states of a qubit, Phys. Rev. A, 65, 024303 (2001).
[17] J.-L. Chen and M.-L. Ge, J. Geom. Phys. 25, 341 (1998); P.K. Aravind, Am. J. Phys. 65, 634 (1997); A.A. Ungar, Found. Phys. 27, 881 (1997); J.-L. Chen and A.A. Ungar, Found. Phys. 31, 1611 (2001).
[18] Abraham A. Ungar, Beyond the Einstein addition law and its gyroscopic Thomas precession: the theory of gyrogroups and gyrovector spaces (Kluwer Academic Publishers, Dordrecht, 2001).

5