Chemical control of unwanted vegetation on the forest fund lands using Gorgon herbicide

A Golubev¹* and A Egorov²

¹ All-Russian Institute of Plant Protection, 3 Podbelskogo Highway, Saint-Petersburg, Pushkin 196608, Russian Federation
² Saint-Petersburg Forestry Research Institute, 21 Institutsky Avenue, Saint-Petersburg 194021, Russian Federation

*Corresponding email: golubev100@mail.ru

Abstract. We present the results of two field experiments performed on forest lands in the Leningrad region in 2019–2020. As means to control unwanted vegetation the herbicide Gorgon (water-soluble concentrate, active ingredients: MCPA - 350 g/l and picloram - 150 g/l) was used. We found that at rates of 1.5–4.5 l/ha the herbicide was highly efficient in suppression of a wide range of undesirable dicotyledonous species, but had almost no effect on monocotyledonous species such as grasses, sedges and rushes; as a result, the latter grew rapidly and abundantly. Gorgon is effective towards unwanted deciduous trees (willow, birch, aspen and mountain ash), and at a rate of 4.5 l/ha, also towards conifers (Scots pine and European spruce). At rates of 1.5–4.5 l/ha, the herbicide is promising for use on forest road sides, clearings, forest hayfields, on forest plantations before planting trees, as well as under power transmission lines and along pipelines passing through forest lands.

1. Introduction
In some cases, forest management requires quick and effective removal of unwanted vegetation, both woody and herbaceous. For example, during reconstruction of low-value young stands, vegetative regeneration of aspen, willow, gray alder and some other deciduous species should be removed. When establishing forest plantations, it is advisable to carry out preliminary suppression of not only woody, but also herbaceous vegetation [1]. Forest road sides should be kept free from tree vegetation, as well as other linear objects on the lands of the forest fund including pipelines and power lines.

In addition to the laborious mechanical method of vegetation clearing, which has a number of disadvantages, a chemical method is known and widely used, that is, the use of herbicides (arboricides). In past years, herbicides containing such active substances as ammonium sulfamate, 2,4-D, 2,4,5-T, triclopyr and others were used for these purposes [2, 3]. Over the past 30 years, herbicides based on glyphosate have come out on top in terms of practical use in a number of countries including Russia. Some of them, e.g. Roundup, Glyphos and some other herbicides have been registered for use in forestry and on non-agricultural lands [4]. The properties of herbicides of this chemical group have been studied in detail [5, 6]. At the same time, it is necessary to constantly expand and diversify the range of herbicides in the direction of increased efficiency and environmental safety [7]. One of the promising new herbicides for Russia, which can be used to eliminate unwanted vegetation on forest lands, is Gorgon (water-soluble concentrate, active ingredients: MCPA - 350 g/l and picloram - 150 g/l), developed by JSC Firm "August".
Picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) belongs to the group of auxin herbicides that disrupt cell growth and division. Herbicides belonging to this group were introduced to agriculture in the 1940s and were the first selective organic herbicides used in weed control. They are still widely used in rice, corn, wheat, and sugarcane cultivation and in pastures [8; 9].

In Brazil, two herbicides of this group, 2,4-D (2,4-dichlorophenoxyacetic acid) and picloram are the most common components of commercial herbicides used in agriculture. Most herbicides used on pastures contain these two substances [10; 11].

Picloram-based herbicides have a wide spectrum of applications, including both herbaceous and tree-shrub vegetation. It is important to note that such chemicals are effective against species that are resistant to many herbicides in adulthood. Studies in Australia have shown that herbicides containing picloram can significantly inhibit mature plants of Senecio madagascariensis Poir. Other herbicides effectively suppressed only young plants of this species [12].

An important factor determining a prolonged action of picloram on unwanted vegetation is its ability to persist in soil for a long period of time [13]. The herbicide is so stable in the soil that even after the simulation of precipitation in amount of 240 mm, residues of the herbicide containing 2,4-D mixed with picloram were found in a 30-centimeter-deep soil layer [14]. Residual amounts of picloram can remain in the soil for up to three years, and can even have an adverse effect on successive crops [15-17].

All these qualities of picloram contributed to its wide use not only in agriculture, but also in forestry. Since the second half of the 20th century, it has been used as such in the United States to control hard-to-eradicate weeds, usually in combination with 2,4-D [18; 19]. The use of such a combination is less expensive than pure picloram. Despite lower efficiency of the mixture against individual objects, it is still of interest due to reduced damage to the environment [20].

From the end of the last century to the present, in the United States picloram has been used to control hardwoods and cedar by injection into tree trunks. The herbicide is applied at a rate of 1 ml per cut (notch); there should be no more than 2-3 inches between cuts, and the entire cut surface should be wet [21, 22].

Picloram is currently in demand in many countries of the world. In New Zealand, studies were conducted to investigate the possibility of using picloram in combination with triclopyr, clopyralid and terbuthylazine for protection of Pinus radiata D. Don. The tank mixture of picloram with triclopyr and terbuthylazine was the only one of all combinations that ensured elimination of Buddleja davidii Franchet. [23].

At the same time, the use of high doses of picloram and triclopyr can be toxic for Pinus radiata, therefore, their combinations are used at low rates in mixture with clopyralid [24].

In China, picloram is used to control Eupatorium adenophorum Spreng, an invasive weed that, due to its rapid spread, causes significant damage to the environment, economy and human health [25].

In the UK, picloram is used to control Gaultheria shouldon L., a vigorous evergreen woody plant that is becoming an increasingly serious problem in many forests, where it completely shades young trees and prevents natural regeneration [26]. In this country, picloram (along with triclopyr) is considered as a potential replacement for glyphosate [27].

The purpose of our work was to study the effectiveness of spraying with a new herbicide Gorgon forest areas overgrown with unwanted herbaceous plants, trees, and shrubs.

2. Methods and Materials

Field experiments were carried out in the Gatchinsky district of the Leningrad region, which belongs to the Baltic-Belozersky taiga region of the taiga zone, in 2019–2020. Two field experiments were performed. The variants of application of Gorgon, dates of treatments and inventory results are provided in tables 1 and 2.

Experiment 1 was carried out under a power transmission line passing through a forest area; and experiment 2, on the side of a forest road. Both experiments were performed in the blueberry type of forest growing conditions; the soil was sod-podzolic, light loamy. The area of the experimental plot
was 150 m² (12.25 m × 12.25 m), with three replications. Spraying was carried out with a motor knapsack sprayer "Shtil" with a working fluid flow rate of 100 l/ha. During the treatment, the meteorological conditions were favorable: the air temperature was + 21–22°C, and there was no precipitation for at least 24 hours.

The biological effect of herbicides on herbaceous vegetation was determined by measuring the reduction (in percent) of the projective soil cover of herbaceous species in relation to the control (without treatment), for which 30 temporary 1x1 m reference plots for each type of experiment were established. In the first year after treatment, the effectiveness of the action on unwanted tree species was assessed by the number of dead leaves (needles), and in the second year, by the number of dead stems (as a percentage of the total).

In experiment 1, the following herbaceous plants dominated: *Cirsium heterophyllum* (L.) Hill, *Angelica sylvestris* L., *Aegopodium podagrigaria* L., *Anthriscus sylvestris* (L.) Hoffm., *Chamaenerion angustifolium* (L.) Scop., *Potentilla erecta* (L.) Rauesch., *Rubus idaeus* L., *Rubus saxatilis* L., *Vaccinium myrtillus* L., *Rhodococcum vitis-idaea* (L.) Avror., *Filipendula ulmaria* (L.) Maxim., *Carduus crispus* L., *Lathyrus pratensis* L., *Geranium sylvaticum* L., *Maianthemum bifolium* (F.W. Schmidt, *Veronica officinalis* L., *Melilotus albus* (L.) Medik., *Gallium aparine* L., *Calamagrostis arundinacea* (L.) Roth, *Avenella flexuosa* (L.) Drejer, *Deschampsia cespitosa* (L.) Beauv., *Carex spp.*, and *Juncus spp.*

In experiment 2, the following species dominated: *Cirsium heterophyllum* (L.) Hill, *Aegopodium podagrigaria* L., *Angelica sylvestris* L., *Lysimachia vulgaris* L., *Achillea millefolium* L., *Alchemilla vulgaris* L., *Chamaenerion angustifolium* (L.) Scop., *Rubus saxatilis* L., *Rhodococcum vitis-idaea* (L.) Avror., *Convallaria majalis* L., *Maianthemum bifolium* (F.W. Schmidt, *Potentilla erecta* (L.) Rauesch., *Tussilago farfara* L., *Rubus idaeus* L., *Filipendula ulmaria* (L.) Maxim., *Comarum palustris* L., *Geum rivale* L., *Melilotus albus* (L.) Medik., *Gallium aparine* L., *Calamagrostis purpurea* (Trin.) Trin. s.l., *Calamagrostis arundinacea* (L.) Roth, *Deschampsia caespitosa* (L.) Beauv., *Avenella flexuosa* (L.) Drejer, *Agrostis capillaries* L., *Alopecurus pratensis* L., *Carex spp.*

The following deciduous trees and shrubs were present: willow (*Salix spp.*), birch (*Betula spp.*), aspen (*Populus tremula* L.), mountain ash (*Sorbus aucuparia* L.) and in experiment 1, also conifers: Scots pine (*Pinus sylvestris* L.) and European spruce (*Picea abies* (L.) H. Karst.). Deciduous trees were 0.9–1.6 m tall, and conifers, 0.8–1.2 m tall.

3. Results and Discussion

A month after treatment, in both experiments Gorgon effectively suppressed dicotyledonous species, reducing their projective cover by 77% and 67% when applied at a rate of 1.5 l/ha, and by 91% when applied at a rate of 4.5 l/ha (table 1). In variants with the rate of 1.5 l/ha, most of the species of this group received only moderate or severe damage, and only *Carduus crispus* L. and *Chamaenerion angustifolium* (L.) Scop. were completely dead. In variants with the rate of 4.5 l/ha, 90–100% of the following species were completely dead: *Carduus crispus* L., *Chamaenerion angustifolium* (L.) Scop., *Filipendula ulmaria* (L.) Maxim., *Cirsium heterophyllum* (L.) Hill, *Angelica sylvestris* L., *Anthriscus sylvestris* (L.) Hoffm., *Rubus idaeus* L., *Vaccinium myrtillus* L., *Geranium sylvaticum* L., *Melilotus albus* Medik., *Gallium aparine* L. The following surviving species were severely damaged: *Rubus saxatilis* L., *Convallaria majalis* L., *Geum rivale* L. The following species had no signs of damage: *Rhodococcum vitis-idaea* (L.) Avror., *Comarum palustris* L. and *Maianthemum bifolium* (L.) F.W. Schmidt. In experiment 1, with Gorgon applied at the rate of 1.5 l/ha, the growth and increase in the abundance of monocotyledonous species were observed. In experiment 2, at the same rate of application, the that abundance of those species remained at the control level. In both experiments in variants with the rate of 4.5 l/ha we observed some growth inhibition without substantial external damage. As a result, the effectiveness of the herbicide action on all herbaceous species turned out to be low, 20–63% (table 1).

At the end of the first growing season, the influence of the herbicide applied at the rate of 1.5 l/ha on dicotyledonous species increased significantly, to 80–88%, and at the rate of 4.5 l/ha, it remained at
the same high level, 90–95%. In both experiments, at the rate of 4.5 l/ha we observed no inhibition of growth of monocotyledonous species.

The following year after the treatment, the effect of the herbicide on dicotyledonous species persisted: at the rate of 1.5 l/ha, the effectiveness was 83–89%, and at the rate of 4.5 l/ha, 88–98% (table 1). No recovery was observed. The most resistant species, *Rubus saxatilis* L., *Rhodococcum vitis-idaea* (L.) Avr., *Comarum palustris* L. and *Maianthemum bifolium* (L.) FW Schmidt, partly survived. In all variants, active growth of monocotyledonous species was observed; their abundance exceeded that in the control by 1.4–1.9 times.

Table 1. The effect of Gorgon herbicide on undesirable herbaceous vegetation on forest lands (experiment 1: treatment performed on 24.06.2019; experiment 2: treatment performed on 25.06.2019).

Experiment	Treatment	Date of inventory	Projective cover of herbaceous plants, %	Effectiveness of suppression of undesirable vegetation, %				
			total	dicotyledons	monocotyledons	all species	dicotyledons	monocotyledons
1	1. Gorgon, 1.5 l/ha	26.07.19	68	10	58	20	77	-38
		28.08.19	60	8	52	26	80	-27
		14.06.20	65	7	58	22	83	-41
2	2. Gorgon, 4.5 l/ha	26.07.19	39	4	35	54	91	17
		28.08.19	44	4	40	46	90	2
		14.06.20	66	5	61	20	88	-49
3	Nontreated check	26.07.19	85	43	42	-	-	-
		28.08.19	81	40	41	-	-	-
		14.06.20	83	42	41	-	-	-
2	1. Gorgon, 1.5 l/ha	26.07.19	40	15	25	43	67	0
		28.08.19	38	5	33	42	88	-50
		14.06.20	50	5	45	26	89	-88
2	2. Gorgon, 4.5 l/ha	26.07.19	26	4	22	63	91	12
		28.08.19	29	2	27	55	95	-23
		14.06.20	41	1	40	40	98	-67
3	Nontreated check	26.07.19	70	45	25	-	-	-
		28.08.19	65	43	22	-	-	-
		14.06.20	68	44	24	-	-	-

A high efficiency of the herbicide action on dicotyledonous herbaceous weeds demonstrated by our experiments is in good agreement with the results of experiments performed in Australia and China where Thordon, Grazon Extra and other herbicides containing picloram were used [9, 12]. The absence of an apparent herbicidal effect of picloram on monocotyledonous species has been confirmed by research results from New Zealand [23, 24].

A month after the treatment, Gorgon applied at both rates effectively suppressed all deciduous trees and shrubs present (table 2). At the rate of 1.5 l/ha, the herbicide caused fatal damage to 83–98% of leaves, and at the rate of 4.5 l/ha, to 92–100% of leaves, depending on the tree species. The highest
sensitivity was shown by aspen, and a relatively high resistance, by mountain ash. In the variant with the rate of 1.5 l/ha Scots pine received no damage, and with the rate of 4.5 l/ha, slight damage. At the rate of 1.5 l/ha, all European spruce plants were weakly damaged (deformation of shoots, desiccation of 5–10% of needles), and at the rate of 4.5 l/ha were severely damaged (desiccation of 50–60% of all needles).

At the end of the first growing season, Gorgon herbicide applied at the rate of 1.5 l/ha caused fatal damage to 87–98% of leaves, and at the rate of 4.5 l/ha, to all (100%) leaves in all four deciduous species. Mountain ash was the most resilient. Vegetative regeneration of deciduous species was not observed. In the variant with the application rate of 1.5 l/ha Scots pine was slightly damaged, and with the rate of 4.5 l/ha, desiccation of needles was 30–40%. European spruce received severe damage: at the rate of 1.5 l/ha desiccation was observed in 40–50% of needles, and at the rate of 4.5 l/ha, in 95% of needles. Scots pine showed higher herbicide resistance compared to European spruce.

The following year, after Gorgon application at the rate of 1.5 l/ha, 93–96% of willow trees, 93–95% of birch trees, and 98–100% of aspen and 93–96% of mountain ash trees died. At the rate of 4.5 l/ha, the death of all (100%) tree species was observed. However, at the rate of 1.5 l/ha, all deciduous species began to recover due to resprouting, and in variants with the rate of 4.5 l/ha, no resprouting was observed. In the variant with the rate of 1.5 l/ha, only 25% of Scots pine trees and 85% of European spruce trees died; and in the variant with the rate of 4.5 l/ha, 65% and 100%, respectively.

Table 2. The effect of Gorgon herbicide on undesirable trees and shrubs growing on forest lands (experiment 1: treatment performed on 24.06.2019; experiment 2: treatment performed on 25.06.2019).

Experiment	Treatment	Date of inventory	Share of dead leaves (trees), %
1	1. Gorgon, 1.5 l/ha	26.07.19	Willow: 88, Birch: 90, Aspen: 98, Mountain ash: 85
		28.08.19	
		14.06.20	
2	2. Gorgon, 4.5 l/ha	26.07.19	Willow: 98, Birch: 97, Aspen: 100, Mountain ash: 95
		28.08.19	
		14.06.20	
1	1. Gorgon, 1.5 l/ha	26.07.19	Willow: 91, Birch: 83, Aspen: 91, Mountain ash: 78
		28.08.19	
		14.06.20	
2	2. Gorgon, 4.5 l/ha	26.07.19	Willow: 96, Birch: 95, Aspen: 96, Mountain ash: 92
		28.08.19	
		14.06.20	

The arboricidal properties of picloram in respect to deciduous species have been studied by Neary et al. [18, 19]. However, the data on its effect on conifers are limited. In the available literature, we could not find experimental data on the effectiveness of Gorgon towards Scots pine and European spruce.

4. Conclusion

Based on the results of our experiments we came to the following conclusions:

- Gorgon herbicide (water-soluble concentrate, active ingredients: MCPA, 350 g/l and picloram, 150 g/l) at the rates of 1.5–4.5 l/ha showed high (83–98%) suppression efficiency towards herbaceous dicotyledonous species typical for taiga forest zone.
- The herbicide does not have a significant effect on monocotyledonous grasses, including cereals, sedges and rushes. As a result, there was a significant and rapid increase in their
abundance (1.4–1.9 times compared to the control), as a result of reduced competition with dicotyledonous species.

- Gorgon is effective towards unwanted deciduous trees: willow, birch, aspen and mountain ash. When Gorgon was applied at the rate of 1.5 l/ha, 93–100% of all trees died, depending on the species, and at the rate of 4.5 l/ha, 100% of all trees died. Aspen was the species most sensitive to the herbicide, while mountain ash, the most resistant. At the rate of 1.5 l/ha, the regrowth of deciduous species from root systems was observed.

- At the rate of 4.5 l/ha, Gorgon was quite effective towards conifers: 65% of Scots pine trees and all European spruce trees died. The rate of 1.5 l/ha was not high enough to effectively suppress conifers.

At the rates of 1.5–4.5 l/ha, the herbicide is promising for use on forest road sides, clearings, forest hayfields, on forest plantations before planting trees, as well as under power transmission lines and pipelines passing through forest lands.

References
[1] Egorov A, Postnikov A, Bubnov A, Pavlyuchenkova L and Partolina A 2019 The use of herbicides in cultivation of spruce and pine in the northwest Russia. *IOP Conf. Ser.: Earth Environ. Sci.* **316** 012078
[2] Egorov A B 2014 Chemical forest care: history, current state and prospects of development. *Proc. of the St Petersburg Forestry Res. Institute* [Trudy Sankt-Peterburgskogo nauchno-issledovatel'skogo instituta lesnogo hozyaystva – in Russian] 2 pp 43–55
[3] Bubnov A A 2017 The assortment of pesticides in forestry of Russia: evolution and present state *Proc. of the St Petersburg Forestry Res. Institute* [Trudy Sankt-Peterburgskogo nauchno-issledovatel'skogo instituta lesnogo hozyaystva – in Russian] 1 pp 35–48
[4] State catalog of pesticides and agrochemicals approved for use on the territory of the Russian Federation 2021 [Gosudarstvennyj katalog pesticidov i agrohimikatov, razrehshennyh k primeneniyu na territorii Rossijskoj Federacii – in Russian] Available at: https://mcx.gov.ru/upload/iblock/250/250e5f3f0c399e26fa16130c606636ce.zip
[5] Golubev A S, Makhankova T A and Svirina N V 2017 New herbicide Kileo based on glyphosate and 2,4-D. *Proc. St Petersburg State Agrarian University* [Izvestiya Sankt-Peterburgskogo gosudarstvennogo agrarnogo universiteta – in Russian] 46 pp 80–84
[6] Golubev A S, Borushko P I and Dolzhenko V I 2019 Efficiency of glyphosate and ammonium glufosinate against common ragweed (*Ambrosia artemisiifolia* L.) in vineyards *Horticulture and viticulture* [Sadovodstvo i vinogradarstvo – in Russian] 4 pp 45–50
[7] Dolzhenko V I, Petunova A A and Makhankova T A 2001 Biological and toxicological requirements for the range of herbicides *Plant protection and quarantine* [Zashchita i karantin rastenij – in Russian] 5 pp 14
[8] Thill D 2003 Growth regulator herbicides *Herbicide action course* ed Weller S C et al (West Lafayette: Purdue University) pp 267–291
[9] Xiaowen L, Chengmei Q, Zongcheng W, Yuan L, Qixia W, Meixia G and Aocheng C 2014 Effect of picloram herbicide on physiological responses of *Eupatorium adenophorum* Spreng *Chilean J. Agric. Res.* **74** pp 438–444.
[10] Franco M H R, Lemos V T, França A C, Schiavon N C, Albuquerque M T G, Alencim A de O, and D’Antonino L 2016 Physiological and morphological characteristics of Phaseolus vulgaris L. grown in soil with picloram residues *Pesqui. Agropecu. Trop.* **46** pp 276–283
[11] Braga R, Santos J B, Zanuncio J C, Bibiano C S, Ferreira E, Oliveira M C, Silva D and Serrão J 2016 Effect of growing *Brachia brizantha* on phytoremediation of picloram under different pH environments *Ecol. Eng.* **94** pp 102–106
[12] Wijayabandara K, Campbell S, Vitelli J and Adkins S 2019 Plant and Seed Mortality of Fireweed Senecio madagascariensis Following Herbicide Application *Proc. of TROPAG* 2019 **36** 160
[13] Passos A B R J, Souza M F, Silva D V, Saraiva D T, da Silva A A, Zanuncio J C and Gonçalves B F S 2018 Persistence of picloram in soil with different vegetation managements Environ. Sci. Pollut. Res. 25 23986–91
[14] Leal J F L, Silva V F V, Souza A D S, Langaro A C, Sampaio M P, Pereira C V L and Ferreira de Pinho C 2020 Leaching potential of the herbicide mixture 2,4-D + picloram Científica Jaboticabal 48 pp 133–138
[15] D’Antonino L, Silva A A, Ferreira L R, Cecon P R, Quirino A L S and Freitas L H L 2009 Efeitos de culturas na persistência de herbicidas auxínicos no solo Planta Daninha 27 pp 371–378
[16] Kolupaev M V, Lvov A G, Nesterova L M, Sukacheva M S and Tyumakov A Y 2019 Evaluation of residual activity of Gorgon, Lancelot and magnum herbicides by bioindication method Agrochemistry [Agrohimiya – in Russian] 5 pp 48–55
[17] Barbosa K A, Teixeira W F, Soares L H and Fagan E B 2020 Residual doses of herbicide affect the initial development of Hymenaea stigonocarpa Floresta e Ambiente 27 c20171096
[18] Neary D G, Douglass J E and Fox W 1979 Low picloram concentrations in streamflow resulting from forest application of Tordon 10K Proc. South. Weed Sci. Sot. 32 pp 182–197
[19] Neary D G, Michael J L, Wells M J M 1985 Fate of Hexazinone and Picloram After Herbicide Site Preparation in a Cutover Northern Hardwood Forest Forest soils: A resource for intensive forest management ed Mroz and C C Trettin 85 pp 55–72
[20] Tu M, Hurd C and Randall J M 2001 Weed Control Methods Handbook: Tools & Techniques for Use in Natural Areas All U.S. Government Documents (Utah Regional Depository), Paper 533 (The Nature Conservancy) available at: https://digitalcommons.usu.edu/govdocs/533
[21] Bollig J J and Zedaker S M 1994 Encapsulated herbicides for utility rights-of-way and forest tree injection J. of Arboriculture 20 pp 273–277
[22] Pears S 2020 Potential herbicide applications for hardwood stands (Clemson (SC): Clemson Cooperative Extension, Land-Grant Press by Clemson Extension) 1026 available at: http://lpress.clemson.edu/publication/potential-herbicide-applications-for-hardwood-stands
[23] Rolando C, Gous S and Watt M 2011 Preliminary screening of herbicide mixes for the control of five major weed species on certified Pinus radiata plantations in New Zealand N.Z. J. of For. Sci. 41 pp 165–175
[24] Tran H, Harrington K C, Robertson A W and Watt M S 2015 Relative persistence of commonly used forestry herbicides for preventing the establishment of broom (Cytisus scoparius) seedlings in New Zealand plantations. N.Z. J. of For. Sci. 45 6
[25] Zhang W, Liao Z, Zhu J, Qiu H and Yao G 2009 The physiological changes of Eupatorium adenophorum Spreng under simulated acid rain stress For. Sci. & Tech. 4 pp 18–21
[26] Willoughby I H, Forster J and Stokes V J 2018 Gaultheria shallon can be controlled by the herbicides picloram, triclopyr or glyphosate if they are applied at the correct time of year New Forests 49 pp 757–774
[27] Willoughby I H, Seier M K, Stokes V J, Thomas S E and Varia S 2015 Synthetic herbicides were more effective than a bioherbicide based on Chondrostereum purpureum in reducing resprouting of Rhododendron ponticum, a host of Phytophthora ramorum in the UK Forestry: An Inter. J. of For. Res. 88 pp 336–344