Sepsis genomics: Stepping forward toward sepsis prevention?

Benet Bosco Dhas, Hiasindh Ashmi¹, Ballambattu Vishnu Bhat

Departments of Pediatrics and ¹Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India

ABSTRACT

The era of personalized medicine has already begun and now it is time to initiate personalized prevention strategies against diseases. Infectious diseases have a higher mortality than any other illness, especially in developing countries. Among newborns and young children the situation is even worse. The microorganisms are becoming resistant to almost all known antibiotics. Hence, it is imperative to improve the preventive strategies against infections. ‘Pathogens are everywhere, but not every individual is getting diseased,’ — this basic logical thinking needs to look into the genetic predisposition/host susceptibility to sepsis. Interestingly, genetic studies have shown that the type of infecting organism, outcome of infections, and mortality can be predetermined by analyzing an individual's genome. Exploration of inter-individual genetic variations and their association with sepsis will help in the development of new prognostic markers to provide novel personalized therapeutics and predict the outcome. In this review article, we discuss the genetic variations and their association with sepsis, studied by various researchers in different regions.

Key words: Diagnostic, genetic association, genomics, prognostic marker, sepsis

INTRODUCTION

Genetic risk factors are the recent prognostic/diagnostic markers that save numerous lives from various diseases like cancer. Sepsis susceptibility and outcome are predictable by decoding the genomics of an individual. Although several confounding factors are involved in sepsis progression and mortality, the host immune response to infections is based on the genetic nature of each individual. Genetic association studies have shown that sepsis susceptibility, mortality, and even the type of infecting pathogen are associated with genetic variations. This article provides insights into the genomics associated with sepsis and its applicability in clinical practice.

Candidate gene polymorphisms

For more than a decade, the candidate genes involved in the pathophysiology of sepsis have been analyzed for the association of their single-nucleotide polymorphisms (SNPs) with sepsis and its outcome, like multiple organ dysfunction (MOD), shock, and mortality.

Tumor necrosis factor

Among the most studied cytokine polymorphisms, the tumor necrosis factor alpha (TNF-α) polymorphism has drawn more attention from genomic researchers, especially the 308 G/A polymorphism. Although the polymorphism has been studied very descriptively, yet its association with sepsis remains uncertain. Several studies have claimed that TNF-α-308A is associated with sepsis susceptibility and mortality. However, some studies have shown no association with either susceptibility or outcome or both.¹⁻³ Other than 308G/A, SNPs like 238G/A, 376G/A, +489G/A, and -863C/A
were also studied. Table 1 highlights some TNF-α polymorphisms associated with sepsis.

Phumeetham et al., have found no association of the TNF-α (−308) polymorphism with sepsis/septic shock in Thai pediatric patients. [17] Contrastingly, a significant association was found between these in Brazilian pediatric patients by Azevedo et al. [7]

The NcO1 TNFB1/B2 polymorphism in the tumor necrosis factor beta (TNF-β) gene was analyzed in post-traumatic patients, and it was found that the homozygous TNFB2 is associated with severe sepsis. [18] Further studies are required to identify the significance of TNF polymorphisms in clinical situations.

Interleukins

Interleukins include both pro- and anti-inflammatory cytokines. IL-1β may lead to septic shock and organ failure and serves as a primary mediator of systemic inflammatory response syndrome (SIRS). [19] IL-6 acts as a potential diagnostic marker for infections. IL-10, an anti-inflammatory cytokine, also plays a significant role in the inflammatory pathway of sepsis. Variations in the structure of these genes may lead to altered gene expression, which may result in the modification of the host immune system. Some of the interleukin polymorphisms are tabulated below [Table 2].

An in vitro study by Kang et al., has shown that −1082G > A of IL-10 interacts with the nuclear protein, PARP-1 (Poly ADP-ribose polymerase 1), which is a transcription repressor and regulates the production of IL-10. [36]

Toll-like receptors

Toll-like receptors act as sensors against pathogen invasion, triggering the host’s immune response. They also play the role of receptors for endogenous ligands that may lead to tissue damage. [37] Changes in toll-like receptor (TLR) expression may cause favorable/adverse

Table 1: TNF-α polymorphisms associated with sepsis and its outcome

Mutation	Genotype	Number of cases/controls	Association
−308 G/A	GA+AA 278/115	Risk of sepsis and septic shock[4]	
	GA+AA 432/624	Susceptibility to severe sepsis, but not mortality[8]	
	AA 1057/-	Increased mortality and ventilator duration[9]	
	GA 490/610	Protection against ARDS* and sepsis mortality[7]	
	GA 123/-	Predictor of ICU mortality[10]	
	AA 106/-	High survival rate[6]	
	GA+AA -/-	Associated with sepsis, but not mortality[11]	
	GA+AA 306/-	Associated with sepsis[11]	
	GA+AA 69/-	Increased mortality risk[12]	
	GA+AA 173/-	Increased sepsis mortality, but did not affect sepsis development[13]	
	GA+AA 159/-	Increased risk for severe sepsis[14]	
	GA 197/214	Risk of sepsis and poor outcome[15]	
−238 G/A	GA+AA 278/115	Risk of sepsis and septic shock[4]	
	GA+AA 233/-	Increased mortality[16]	
	−376 G/A GA+AA 278/115	Risk of sepsis and septic shock[4]	
	+489 G/A GA+AA 278/115	Risk of sepsis and septic shock[4]	
−863 C/A	CA 490/610	Risk for ARDS in sepsis patients[11]	

*ARDS = Acute respiratory distress syndrome, ICU = Intensive care unit

Table 2: Interleukin polymorphisms associated with sepsis

Gene	Mutation	Number of cases/controls	Association
IL-1β	−511 C/T	21/60	C allele associated with sepsis susceptibility[20]
IL-4	−589 T/C	308/-	Affect Th1/Th2 balance and sepsis susceptibility[21]
IL-6	−572 C/G	348/105	Risk for sepsis[22]
		421/644	Sepsis susceptibility and severity predictor[23]
	−174G/C	112/-	Associated with shock in sepsis[24]
		326/-	GG genotype is significantly associated with improved survival[25]
		293/-	Risk for sepsis in ventilated VLBW infants[26]
		421/644	Sepsis susceptibility and severity predictor in children[27]
IL-8	−251 A/T	467/-	Increased risk of PaO2/FiO2 and IL-8 mRNA expression[28][23]
IL-10	−1082 G/A	293/-	Risk for sepsis in ventilated VLBW infants[29]
		333/202	Risk for sepsis[28]
		106/-	Associated with type of organism[30]
		71/109	Association in the sepsis outcome[29]
		33/53	GG genotype influences the sepsis outcome[29]
		116/140	An A allele has high risk for sepsis, while G allele has increased mortality[31]
	−819 C/T	116/140	Susceptibility to severe sepsis[21]
	−592 C/A	97/207	Potential predictor for sepsis[32]
		67/132	An A allele is associated with increased mortality[33]
IL-17A rs1974226	517/679	GG genotype is associated with gram-positive infection and G allele has increased mortality[34]	
IL-18	−607 C/A	90/123	CA genotype has a high risk for sepsis[35]

*VLBW = Very low birth weight
effects in the host immune response. Polymorphism in TLRs has been studied in various populations, yet its functional significance in sepsis remains unexplored. TLR4 polymorphisms and their association with sepsis have given more conflicting results, in particular the SNPs, Asp299Gly (+896 A/G) and Thr399Ile (+1196 C/T). In Table 3, we have listed some of the polymorphisms analyzed in TLRs associated with sepsis.

In contrast to the above discussed studies [Table 3], Shan et al., did not find any association of TLR4 (Asp299Gly and Thr399Ile) polymorphisms with sepsis, but suggested a large study on the TLR2 Arg753Gln polymorphism among Chinese Han children. A meta-analysis that included 17 studies in the Caucasian population, with a total of 2,212 cases and 3,880 controls showed that TLR4 polymorphisms, Asp299Gly and Thr399Ile, were not associated with sepsis susceptibility. In vitro studies by Figueroa et al., showed that D299G TLR4 polymorphism interfered with TLR4 dimerization and assembly of intracellular docking platforms for recruitment of adapters like MyD88 and TRIF.

Apart from TLRs, other receptors like CD14 also play a major role in innate immunity during sepsis. CD14 along with TLR4 and MD2 forms the lipopolysaccharide (LPS) receptor complex. Polymeric variants in CD14 and other cell surface receptors are given in Table 4.

Fcgamma RIIA polymorphisms are widely studied in association with the antibody response in pneumonia, malaria, autoimmune diseases like systemic lupus erythematosus (SLE), and inflammatory diseases like rheumatoid arthritis. As the cell surface receptors play a vital role in the triggering of infection and molecular mechanism of the inflammatory pathway, polymorphism in its genetic structure may lead to significant alterations in disease conditions.

Recently studied single-nucleotide polymorphisms and their association with sepsis

Genetic studies related to sepsis have been found in abundance during recent years. The research is now extended to the genes, other than the innate immunity genes. Apart from the generally studied genes like TNF-α, and interleukins, tremendous knowledge has been created about associated genes by recent studies. This shows the rapid and vigorous growth of genomics and its applicability in clinical settings. In Table 5, we have listed the polymorphisms analyzed in the last three years, in the different protein molecules involved in sepsis pathophysiology.

Haplotype tagging single-nucleotide polymorphisms

Tag SNPs are single nucleotide polymorphisms that are non-randomly associated with alleles at other loci in the chromosome. Analysis of Tag SNP reduces the burden of studying each individual SNP separately, and is highly beneficial in genetic association studies that use whole-genome sequencing. Tag SNPs are usually identified using the HapMap database by Linkage Disequilibrium analysis or PHASE (software used to reconstruct haplotype and estimation of the recombination rate).

Tag SNPs or hSNPs (haplotype tagging SNPs) in the MD-2 gene was studied by Zeng et al., in two different populations in China (Chongqing in southwestern China and Zhejiang in eastern China), using the pyrosequencing method. They found three SNPs, rs7843858, rs11465996, and rs2114169, to be hSNPs, but...
Table 5: Association of various SNPs with sepsis and its outcome

Gene	Mutation	Association
VEGF	+936 C/T	CC genotype has increased risk of AKI in severe sepsis[^7]
IRAK-M	+22148 G/A	High risk of sepsis with GG genotype[^56]
IRAK1	rs1059702	Septic susceptibility and severity[^59]
HSP90β	−144 C/A	AA genotype is associated with inflammatory response and severity of organ failure[^62]
ACE	ins/del	D allele is associated with ARDS in severe sepsis[^51]
NFXB1	−94 ins/del	Increased 30-day mortality and innate immune system response[^62]
NOS2	Exon 16 G/A	An A allele is associated with increased susceptibility to septic shock[^63]
SOD2	47 C/T	A C allele is associated with high frequency of septic shock[^64]
HMOX1	−413 A/T	AA genotype shows higher 28-day mortality[^55]
PBEF	−1543 C/T	A T allele acts as a protective factor for ALI[^1] and sepsis[^65]
TRAF6	Intron C/G	A C allele frequency is higher in the sepsis-alone group than in the sepsis-induced ALI group[^62]
TREM-1	Ser25Thr	Associated with sepsis prognosis[^66]
BCL2	rs8094315, rs12457893	Both SNPs are associated with decreased risk for AKI[^69]
DDAH2	−449 G/C	A G allele is associated with low plasma ADMA[^2] and high risk of cold septic shock[^70]
NOD2/ CARD15	R702W, G908R, Leu1007fsinsC	All three polymorphisms are associated with sepsis susceptibility in children. Leu1007fsinsC carriers showed high mortality[^71]
LBP	rs2232618	Sepsis susceptibility and MODS[^72]
HMGB1	rs2249825	Risk for sepsis and MODS[^73]
MBL	B allele	Risk for neonatal sepsis and pneumonia[^74]
NLRP3	rs2027432, rs12048215	Increased sepsis susceptibility and MODS[^75]
AQP5	−1364 A/C	C allele is associated with an increased 30-day survival[^76]
AGTR1	rs11121816	GG genotype is associated with an increased 28-day mortality in septic shock[^77]
LTA	+252 A/G	AA genotype is associated with sepsis morbidity and MODS[^78]
eNOS	894 G/T	GT genotype is associated with shock and impaired organ function[^79]
LNPEP	rs4869317	TT genotype is associated with a 28-day mortality[^80]

[^7] AKI = Acute kidney injury, ^[1] ALI = Acute lung injury, ^[2] ADMA = Asymmetrical dimethylarginine

Yang et al. found that the mtDNA haplogroup R can be used to predict the outcome of septic encephalopathy in the Chinese Han population. The R haplogroup delivers high probability of neurological recovery, when compared to the non-R haplogroup.[^57] Previously in the same population, they had found that the R haplogroup was a predictor of sepsis outcome and was associated with long-term survival in sepsis patients.[^85] The MHC haplotype, AH8.1, was found to confer a protective effect toward septic shock in chronic obstructive pulmonary disease (COPD) patients, in the Caucasian population.[^86] Baudouin et al., showed that the mtDNA haplogroup H is a predictor of the outcome and is associated with 180 days of survival in European patients with severe sepsis.[^90]

Haplogroups

Haplogroups are used to define genetic populations, with similar haplotypes having the same SNPs. Y-chromosome (Y-DNA) haplogroups and mitochondrial DNA (mtDNA) haplogroups are the widely known haplogroups. Haplogroups have a common ancestor and are restricted to geographical locations. Identification of a single SNP and its association with a disease in a haplogroup serves as a prognostic marker for the entire population.

Tandem repeats or microsatellites

Tandem repeats are the repetition of two or more nucleotides and are adjacent to each other. When two to six nucleotides are repeated, it is called microsatellites or short tandem repeats. Microsatellite instability, which is caused by a defect in the DNA mismatch repair may act as a significant risk factor for diseases like cancer[^91] and schizophrenia.[^92] In sepsis, microsatellites in genes like HMox1[^65] TNFα and β[^93] eNOS[^64] and IL-10[^95] were studied. Flores et al., showed association of the CXCL2 −665(AC)n microsatellite with sepsis susceptibility in the Spanish population.[^96]

Copy number variations

Copy Number Variations (CNVs) are found throughout the human genome. CNVs may alter gene expression only if they lead to changes in gene dosage or structure. Microdeletions and microduplications are other common types of CNVs. Large CNVs, particularly those involving multiple genes, can lead to severe health outcomes, such as intellectual disability and autism. Studies have shown that CNVs are associated with a wide range of conditions including autism, schizophrenia, and intellectual disability. Furthermore, CNVs are not only associated with diseases, but they also contribute to individual differences in susceptibility to various diseases. Therefore, understanding the role of CNVs in disease susceptibility is crucial for personalized medicine and genetic counseling.
Epigenomics: The next?

Before experiencing the entire sweetness of epigenomics, researchers cracked out a new concept, ‘Epigenomics,’ which may explain the host’s non-genetic risk factors that alter disease conditions, via modifying the underlying gene expression. DNA methylation and Histone modification are the two major processes involved in epigenomics. MicroRNAs (miRNAs) also play a vital role in epigenetic processes.

Immunosuppression that follows severe sepsis is regulated by immune-related genes. The expression of these genes can be modified by histone acetylation/methylation. Repressive histone methylation has been found in the promoter region of IFN-γ and GATA-3 transcription factors in naïve CD4+ T-cells, in sepsis mice models.[100] Histone acetylation is controlled by histone acetylases and histone deacetylases (HDACs). Studies performed by Li et al., revealed that septic shock caused hypoacetylation of nuclear proteins, can be reversed by administering HDAC inhibitors (HDACI). The HDACIs prevented cell death, reduced inflammation, and eventually improved survival of the animal models in septic shock.[101] An in vitro study by Gazzar et al., showed that silencing of TNF-α expression during endotoxin tolerance occurs by the combined action of H3K9 methylation and CpG (TNF-α promoter) methylation. H3 histone is methylated on lysine 9 by histone methyltransferase, G9a. TNF-α promoter CpG methylation is catalyzed by Dnmt3a/b (DNA methyltransferases) and HPI (Heterochromatin protein 1).[102]

The role of miRNAs in the diagnosis of sepsis was very clearly stated in the recent studies. In particular, miR-146a and miR-223 are significant prognostic/diagnostic markers of sepsis.[103,104] Some other significant miRNAs are miR-150,[103,104] miR-499-5p,[106] miR-15a, and miR-16.[107] These potential biomarkers are also capable of distinguishing sepsis from the systemic inflammatory response syndrome.

Future direction for sepsis genomics studies

Lack of potential diagnostic or prognostic markers for sepsis makes it a dreadful disease, which holds the highest mortality. Genetic association studies build up hope for newer diagnostic/prognostic methods in the treatment of sepsis. In this modern era, a large number of small scale researches have been done on the genetic association of sepsis. The sensitivity and specificity to use genetic variations as prognostic markers is yet to be determined. Large-scale studies like Genome Wide Association Studies have already begun and started cracking this hurdle. Multicentric studies are required to understand the significance of genetic variations in different populations. The bridge between bench to bedside has to be built to put genetic associations into clinical practice. For overcoming such obstacles, hopefully, sepsis genomics will help us in directing treatment against infectious pathogens and possibly the eradication of sepsis.

REFERENCES

1. Gordon AC, Lagan AL, Aganna E, Cheung L, Peters CJ, McDermott MF, et al. TNF and TNFR polymorphisms in severe sepsis and septic shock: A prospective multicentre study. Genes Immun 2004;5:631-40.
2. Garnacho-Montero J, Aldabo-Pallas T, Garnacho-Montero C, Cayuela A, Jiménez R, Barroso S, et al. Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis. Crit Care 2006;10:R111.
3. Schueller AC, Heep A, Kattner E, Kroll M, Wisbauer M, Sander J, et al. Prevalence of two tumor necrosis factor gene polymorphisms in premature infants with early onset sepsis. Biol Neonate 2006;90:229-32.
4. Kothari N, Bogra J, Abbas H, Kohli M, Malik A, Kothari D, et al. Tumor necrosis factor gene polymorphisms results in high TNF level in sepsis and septic shock. Cytokine 2013;61:676-81.
5. Song Z, Song Y, Yin J, Shen Y, Yao C, Sun Z, et al. Genetic variation in the TNF gene is associated with susceptibility to severe sepsis, but not with mortality. PLoS One 2012;7:e46113.
6. Watanabe E, Zehnbauer BA, Oda S, Sato Y, Hirasawa H, Buchman TG. Tumor necrosis factor –308 polymorphism (rs1800629) is associated with mortality and ventilator duration in 1057 Caucasian patients. Cytokine 2012;60:249-56.
7. Azevedo ZM, Moore DB, Lima FC, Cardoso CC, Bougleux R, Matos GI, et al. Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) single nucleotide polymorphisms: Importance in ARDS in septic pediatric critically ill patients. Hum Immunol 2012;73:661-7.
8. Shimada T, Oda S, Sadahiro T, Nakamura M, Hirayama Y, Watanabe E, et al. Outcome prediction in sepsis combined use of genetic polymorphisms - a study in Japanese population. Cytokine 2011;54:79-84.
9. Surbatovic M, Grujic K, Cikota B,jevtic M, Filipovic N, Romic P, et al. Polymorphisms of genes encoding tumor necrosis factor-alpha, interleukin-10, cluster of differentiation-14 and interleukin-1ra in critically ill patients. J Crit Care 2010;25:542.e1-8.
10. Teufel O, Ethier MC, Beyene J, Sung L. Association between tumor necrosis factor-alpha promoter –308 A/G polymorphism and susceptibility to sepsis and sepsis mortality: A systematic review and meta-analysis. Crit Care Med 2010;38:276-82.
11. Duan ZX, Gu W, Zhang LY, Jiang DP, Zhou J, Du DY, et al. Tumor necrosis factor alpha gene polymorphism is associated with the outcome of trauma patients in Chinese Han population. J Trauma 2011;70:954-8.
12. Shahhub S, Pham TN, Gibran NS, O’keefe GE. Tumor necrosis factor gene variation and the risk of mortality after burn injury: A cohort study. J Burn Care Res 2009;30:105-11.
13. Hedberg CL, Aderock K, Martin J, Loggins J, Kruger TE, Baijer RJ. Tumor necrosis factor alpha −308 polymorphism associated with increased sepsis mortality in ventilated very low birth weight infants. Pediatr Infect Dis J 2004;23:424-8.

14. Barber RC, Aragaki CC, Rivera-Chavez FA, Purdue GF, Hunt JL, Horton JW. TLR4 and TNF-alpha polymorphisms are associated with an increased risk for severe sepsis following burn injury. J Med Genet 2005;42:322-8.

15. Nakada TA, Hirasawa H, Oda S, Shiga H, Matsuda K, Nakamura M, et al. Influence of toll-like receptor 4, CD14, tumor necrosis factor, and interleukine-10 gene polymorphisms on clinical outcome in Japanese critically ill patients. J Surg Res 2005;129:322-8.

16. Pappachan JV, Coulson TG, Child NJ, Markham DJ, Nour SM, Pulletz MC, et al. Mortality in adult intensive care patients with severe systemic inflammatory response syndrome is strongly associated with the hypo-immune TNF−238A polymorphism. Immunogenetics 2009;61:657-62.

17. Phumeethorn S, Chat-Uthai N, Manavathongchai M, Viprakasit V. Genetic association study of tumor necrosis factor-alpha with sepsis and septic shock in Thai pediatric patients. J Pediatr (Rio J) 2012;88:417-22.

18. Majetschak M, Fohls S, Obertacke U, Schröder J, Staubach K, Nast-Kolb D, et al. Relation of a TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg 1999;230:207-14.

19. Stuber F, Klaschik S, Lehmann LE, Schewe JC, Weber S, Book M. Cyto kinase promoter polymorphisms in severe sepsis. Clin Infect Dis 2000;31(Suppl 7):S416-20.

20. Wan QQ, Ye QF, Ma Y, Zhou JD. Genetic association of interleukin-1β (−511C/T) and its receptor antagonist (86-bpVNTR) gene polymorphism with susceptibility to bacteremia in kidney transplant recipients. Transplant Proc 2012;44:3026-8.

21. Gu W, Zeng L, Zhang LY, Jiang DP, Du DY, Hu P, et al. Association of interleukin 4−589T/C polymorphism with T(H)1 and T(H)2 bias and sepsis in Chinese major trauma patients. J Trauma 2011;71:1583-7.

22. Gu W, Du DY, Huang J, Zhang LY, Liu Q, Zhu PF, et al. Identification of interleukin-6 promoter polymorphisms in the Chinese Han population and their functional significance. Crit Care Med 2008;36:1437-43.

23. Michalek J, Svetlikova P, Fedora M, Klapacova L, D'Amelio L, et al. Analysis of IL-6, IL-10 and IL-17 genetic modulators of infection in neonatal sepsis. Pediatr Res 2010;68:1252-9.

24. Lorenz E, Mira JP, Frees KL, Schwartz DA. Relevance of mutations in CD14, a receptor for complexes of lipopolysaccharide (LPS) and mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 2005;33:638-44.

25. Woehrle T, Du W, Goetz A, Hsu HY, Joos TO, Weiss M, et al. Pathogen specific cytokine release reveals an effect of TLR2 Arg753Gln during Candida sepsis in humans. Cytokine 2008;41:322-9.

26. Duan ZX, Gu W, Zhang LY, Du DY, Hu P, Huang J, et al. Clinical relevance of the TLR4 11367 polymorphism in patients with major trauma. Arch Surg 2009;144:114-8.

27. Yuan FF, Marks K, Wong M, Watson S, de Leon E, McIntyre PB, et al. Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 2008;86:268-70.

28. Agnesi DM, Calvano JE, Hahn SJ, Coyle SM, Corbett SA, Calvano SE, et al. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 2002;186:1522-5.

29. Van der Graaf CA, Netea MG, Morré SA, Den Heijer M, Verweij PE, et al. Toll-like receptor 1 and interleukine-10 gene polymorphisms associated with altered susceptibility to Gram-positive infection. Eur Cytokine Netw 2006;17:29-34.

30. Chen KH, Zeng L, Gu W, Zhou J, Du DY, Jiang JX. Polymorphisms in the toll-like receptor 9 gene associated with sepsis and multiple organ dysfunction after major blunt trauma. Br J Surg 2011;98:1252-9.

31. Wang K, Wu Y, Ye J, Ding ZY, Qian C, Zhou AH. Gene polymorphisms of Toll-like receptors in Chinese Han children with sepsis in Wenzhou. Zhonghua Er Ke Za Zhi 2010;48:15-8.

32. Carregaro F, Carta A, Cordeiro JA, Lobo SM, Silva EH, Leopoldino AM. Polymorphisms IL10−819 and TLR-2 are potentially associated with sepsis in Brazilian patients. Mem Inst Oswaldo Cruz 2010;105:649-56.

33. Lowe PR, Galley HF, Abdel-Fattah A, Webster NR. Influence of interleukin-10 polymorphisms on interleukin-10 expression and survival in critically ill patients. Crit Care Med 2003;31:34-8.

34. Nakada TA, Russell JA, Boyd JH, Walley KR. IL17A genetic variation is associated with altered susceptibility to Gram-positive infection and mortality of severe sepsis. Crit Care 2011;15:R254.

35. Cai LL, Xiang W, Xie YQ, Liao F, Feng XW, Zhang DF, et al. Correlations between interleukin-18 (IL-18) level, IL-18 gene promoter polymorphism and the development of sepsis in children. Zhonghua Er Ke Za Zhi 2010;48:49-91.

36. Pantha TS, Johnson MD, Scott WK, van de Vosse E, Velez Edwards DR, Smith PB, et al. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J Infect Dis 2012;205:934-43.

37. Sutherland AM, Walley KR, Russell JA. Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 2005;33:638-44.

38. Woehrle T, Du W, Goetz A, Hsu HY, Joos TO, Weiss M, et al. Pathogen specific cytokine release reveals an effect of TLR2 Arg753Gln during Candida sepsis in humans. Cytokine 2008;41:322-9.

39. Duan ZX, Gu W, Zhang LY, Du DY, Hu P, Huang J, et al. Clinical relevance of the TLR4 11367 polymorphism in patients with major trauma. Arch Surg 2009;144:114-8.

40. Yang F, Marks K, Wong M, Watson S, de Leon E, McIntyre PB, et al. Clinical relevance of TLR2, TLR4, CD14 and FcgammaRIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 2008;86:268-70.

41. Agnesi DM, Calvano JE, Hahn SJ, Coyle SM, Corbett SA, Calvano SE, et al. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated with an increased risk of gram-negative infections. J Infect Dis 2002;186:1522-5.

42. Van der Graaf CA, Netea MG, Morré SA, Den Heijer M, Verweij PE, et al. Toll-like receptor 1 and interleukine-10 gene polymorphisms associated with altered susceptibility to Gram-positive infection. Eur Cytokine Netw 2006;17:29-34.

43. Chen KH, Zeng L, Gu W, Zhou J, Du DY, Jiang JX. Polymorphisms in the toll-like receptor 9 gene associated with sepsis and multiple organ dysfunction after major blunt trauma. Br J Surg 2011;98:1252-9.

44. Shan XO, Wu Y, Ye J, Ding ZY, Qian C, Zhou AH. Gene polymorphisms of Toll-like receptors in Chinese Han children with sepsis in Wenzhou. Zhonghua Er Ke Za Zhi 2010;48:15-8.

45. Zhu L, Li X, Miao C. Lack of association between TLR4 Asp299Gly and Thr399Ile polymorphisms and sepsis susceptibility: A meta-analysis. Gene 2012;501:213-8.

46. Figuerola L, Xiong Y, Song C, Piao W, Vogel SN, Medvedev AE. The Asp299Gly polymorphism alters TLR4 signaling by interfering with recruitment of MyD88 and TRIF. J Immunol 2012;188:4506-15.

47. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. The Asp299Gly polymorphism alters TLR4 signaling by interfering with recruitment of MyD88 and TRIF. J Immunol 2012;188:4506-15.
52. Yuan H, Pan HF, Li LH, Feng JB, Li WX, Li XP, et al. Meta-analysis on the association between FcgammaRIa-R/H131 polymorphisms and systemic lupus erythematosus. Mol Biol Rep 2009;36:1053-8.

53. Barber RC, Chang LY, Arnoldo BD, Purdue GF, Hunt JL, Horton JW, et al. Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin Med Res 2006;4:250-5.

54. Endeman H, Cornips MC, Grutters JC, van den Bosch JM, Ruven HJ, van Velzen-Blad H, et al. The Fcgamma receptor IIa-R/H131 genotype is associated with severe sepsis in community-acquired pneumonia. Clin Vaccine Immunol 2009;16:1087-90.

55. Nasr A, Iriemenam NC, Troye-Blomberg M, Giha HA, Balogun HA, Osman OF, et al. Fc gamma receptor IIa (CD32) polymorphism and antibody responses to asexual blood-stage antigens of Plasmodium falciparum malaria in Sudanese patients. Scand J Immunol 2007;66:87-96.

56. Meziani R, Yamada R, Takahashi M, Ohigashi K, Balogun HA, Morinobu A, et al. A trans-ethnic genetic study of rheumatoid arthritis identified FCGR2A as a candidate common risk factor in Japanese and European populations. Mod Rheumatol 2012;22:52-8.

57. Cardinal-Fernández P, Ferruelo A, El-Assar M, Santiago C, Ruven HJ, van Velzen-Blad H, et al. The NFKB1 promoter polymorphism (-94ins/delATTG) differs in non-sepsis and sepsis patients. Scand J Immunol 2012;10:166.

58. Yuan H, Pan HF, Li LH, Feng JB, Li WX, Li XP, et al. The presence of angiotensin II type 1 receptor polymorphisms in patients with severe sepsis: A case-control study. J Crit Care 2013;28:365-70.

59. Szilágyi A, Ed FCGR2A as a candidate common risk factor in Japanese and European populations. Mod Rheumatol 2012;22:52-8.

60. Nakada TA, Russell JA, Boyd JD, McLaughlin L, Nakada E, Thair SA, et al. Association of angiotensin II type 1 receptor-associated gene polymorphisms with increased mortality in septic shock. Crit Care Med 2011;39:1641-8.

61. Cardinal-Fernández P, Ferruelo A, El-Assar M, Santiago C, Ruven HJ, van Velzen-Blad H, et al. The NFKB1 promoter polymorphism (-94ins/delATTG) differs in non-sepsis and sepsis patients. Scand J Immunol 2012;10:166.

62. Yuan H, Pan HF, Li LH, Feng JB, Li WX, Li XP, et al. The presence of angiotensin II type 1 receptor polymorphisms in patients with severe sepsis: A case-control study. J Crit Care 2013;28:365-70.

63. Wang Z, Feng K, Yue M, Lu X, Zheng Q, Zhang H, et al. The NFKB1 promoter polymorphism (-94ins/delATTG) alters nuclear translocation of NF-kB1 in monocytes after lipopolysaccharide stimulation and is associated with increased mortality in sepsis. Anesthesiology 2013;118:123-33.

64. Gómez-Gallego F, Martín-Pellicer A, Gallego F, Martín-Pellicer A, et al. The NFKB1 promoter polymorphism (-94ins/delATTG) alters nuclear translocation of NF-kB1 in monocytes after lipopolysaccharide stimulation and is associated with increased mortality in sepsis. Anesthesiology 2013;118:123-33.

65. Wang Z, Feng K, Yue M, Lu X, Zheng Q, Zhang H, et al. A non-synonymous SNP in the NOE2 associated with septic shock in patients with sepsis in Chinese populations. Hum Genet 2013;132:327-46.

66. Ma P, Zhu Y, Qiu H, Liu J, Wang Y, Zeng L. Endothelial nitric oxide synthase 894G→T but not -786T→C gene polymorphism is associated with organ dysfunction and increased mortality in septic shock. Shock 2011;35:35-41.

67. Nakada TA, Russell JA, Wellman H, Boyd JD, Nakada E, Thain RR, et al. Leucylcystinyl aminopeptidase gene variants in septic shock. Chest 2011;139:106-11.

68. Zeng L, Zhang AQ, Gu W, Chen KH, Jiang DP, Zhang LY, et al. Endothelial nitric oxide synthase 894G→T but not -786T→C gene polymorphism is associated with organ dysfunction and increased mortality in septic shock. Shock 2011;35:35-41.

69. Tiancha H, Huiqin W, Jiyoung J, Jingfen J, Wei C. Association between lymphoxygen-α intron +252 polymorphism and sepsis: A meta-analysis. Scand J Infect Dis 2011;43:436-47.

70. Wang Z, Feng K, Yue M, Lu X, Zheng Q, Zhang H, et al. A non-synonymous SNP in the NOE2 associated with septic shock in patients with sepsis in Chinese populations. Hum Genet 2013;132:327-46.

71. Tekin D, Dalgic N, Kayaalti Z, Soylemezoglu T, Diler B, Kutluayi BI. Importance of NOD2/CARD15 gene variants for susceptibility to and outcome of sepsis in Turkish children. Pediatr Crit Care Med 2012;13:e73-7.

72. Zeng L, Gu W, Zhang AQ, Zhang M, Zhang LY, Du DY, et al. A functional variant of lipopolysaccharide binding protein predisposes to sepsis and organ dysfunction in patients with major trauma. Ann Surg 2012;255:147-57.

73. Zeng L, Zhang AQ, Gu W, Chen KH, Jiang DP, Zhang LY, et al. Clinical relevance of single nucleotide polymorphisms of the high mobility group box 1 protein gene in patients with major trauma in southwest China. Surgery 2012;151:427-36.

74. Özkan H, Köksal N, Çeşitkaya M, Kiliç Ş, Celişbi S, Oral B, et al. Serum mannose-binding lectin (MBL) gene polymorphism and low MBL levels are associated with neonatal sepsis and pneumonia. J Perinatol 2012;32:210-7.

75. Zeng AQ, Zeng L, Gu W, Zhang LY, Zhou J, Jiang DP, et al. Clinical relevance of single nucleotide polymorphisms within the entire NLRP1 gene in patients with major blunt trauma. Crit Care 2011;15:R280.

76. Adamzik M, Frey UH, Mühlenkamp S, Scherag A, Waydhas C, Marergraf G, et al. Aquaporin 5 gene polymorphism associated with 30-day survival in severe sepsis. Anesthesiology 2011;114:912-7.

77. Nakada TA, Russell JA, Boyd JD, McLaughlin L, Nakada E, Thair SA, et al. Association of angiotensin II type 1 receptor-associated gene polymorphisms with increased mortality in septic shock. Crit Care Med 2011;39:1641-8.

78. Tiancha H, Huiqin W, Jiyoung J, Jingfen J, Wei C. Association between lymphoxygen-α intron +252 polymorphism and sepsis: A meta-analysis. Scand J Infect Dis 2011;43:436-47.

79. Liu Y, Shao Y, Yu B, Sun L, Lv F. Association of PBEF gene polymorphisms with acute lung injury, sepsis, and pneumonia in a northeastern Chinese population. Clin Chem Lab Med 2012;50:1917-22.

80. Zeng L, Zhang AQ, Gu W, Zhou J, Zhang LY, Du DY, et al. Identification of haplotype tag SNPs within the entire TLR2 gene and their clinical relevance in patients with major trauma. Shock 2013;39:255-60.

81. Adamzik M, Schäfer S, Frey UH, Becker A, Krouzer M, Winning S, et al. The NFKB1 promoter polymorphism (+94ins/deATTG) alters nuclear translocation of NF-kB1 in monocytes after lipopolysaccharide stimulation and is associated with increased mortality in sepsis. Anesthesiology 2013;118:123-33.

82. Nasr A, Iriemenam NC, Troye-Blomberg M, Giha HA, Balogun HA, Osman OF, et al. Fc gamma receptor IIa (CD32) polymorphism and antibody responses to asexual blood-stage antigens of Plasmodium falciparum malaria in Sudanese patients. Scand J Immunol 2007;66:87-96.

83. Zeng L, Zhang AQ, Gu W, Zhang LY, Zhou J, Zhang LY, et al. Endothelial nitric oxide synthase 894G→T but not -786T→C gene polymorphism is associated with organ dysfunction and increased mortality in septic shock. Shock 2011;35:35-41.

84. Chen QX, Wu SJ, Wang HL, Cheng BL, Xie GH, et al. Protein C −1641A/−1645C haplotype is associated with organ dysfunction and the fatal outcome of severe sepsis in Chinese Han population. Genes Immun 2007;8:439-43.

85. Manoche S, Russell JA, Sutherland AM, Wattanatham A, Walley KR. Fibrinogen-beta gene haplotype is associated with mortality in sepsis. J Infect 2007;54:572-7.

86. Wattanatham A, Manoche S, Grashaus H, Russell JA, Walley KR. Interleukin-10 haplotype associated with increased mortality in critically ill patients with sepsis from pneumonia but not in patients with extrapulmonary sepsis. Chest 2005;128:1690-8.

87. Yang Y, Zhang P, Lv R, He Q, Zhu Y, Yang X, et al. Mitochondrial DNA haplogroup R in the Han population and recovery from septic encephalopathy. Intensive Care Med 2011;37:1613-9.

88. Yang Y, Shou Z, Zhang P, He Q, Xiao H, Xu Y, et al. Mitochondrial DNA haplogroup R predicts survival advantage in severe sepsis in the Han population. Genet Med 2008;10:187-92.

89. Aladzisy I, Madách K, Szilágyi A, Gál J, Pénzes I, Prohászka Z, et al. Analysis of the 8.1 ancestral MHC haplotype in severe, pneumonia-related sepsis. Clin Immunol 2011;139:282-9.
90. Baudouin SV, Saunders D, Tiangyou W, Elson JL, Poynter J, Pyle A, et al. Mitochondrial DNA and survival after sepsis: A prospective study. Lancet 2005;366:2118-21.

91. Benatti P, Gafà R, Barana D, Marino M, Scarselli A, Pedroni M, et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 2005;11:8332-40.

92. Shu Q, Fang X, Frank S. Association of tumor necrosis factor microsatellites TNF with the susceptibility to and outcome of postoperative severe sepsis. Zhonghua Yi Xue Za Zhi 2002;82:903-6.

93. Celik U, Yildizdag D, Alhan E, Celik T, Attila G, Sertdemir Y, et al. Genetic dilemma: eNOS gene intron 4a/b VNTR polymorphism in sepsis and its clinical features in Turkish children. Turk J Pediatr 2008;50:114-9.

94. Flores C, Maca-Meyer N, Pérez-Méndez L, Sangüesa R, Espinosa E, Muriel A, et al. A CXCL2 tandem repeat promoter polymorphism is associated with susceptibility to severe sepsis in the Spanish population. Genes Immun 2006;7:141-9.

95. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, et al. Differential expression of plasma miR-146a in sepsis patients compared with non-sepsis-SIRS patients. Exp Ther Med 2013;5:1101-4.

96. Wang L, Wang HC, Chen C, Zeng J, Wang Q, Zheng L, et al. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin Chem Lab Med 2012;50:1423-8.

How to cite this article: Dhas BB, Ashmi H. Sepsis genomics: Stepping forward toward sepsis prevention. Int J Adv Med Res 2014;1:8-15. Source of Support: Nil. Conflict of Interest: None declared.