Role of Fine Needle Aspiration in Diagnosing Lung Neoplasms

Asian Pacific Journal of Cancer Prevention, Vol 15, 2014

Abstract

Background: Transthoracic fine needle aspiration (FNA) is one of several methods for establishing tissue diagnosis of lung lesions. Other tissue or cell sources for diagnosis include sputum, endobronchial biopsy, washing and brushing, endobronchial FNA, transthoracic core needle biopsy, biopsy from thoracoscopy or thoracotomy. The purpose of this study was to compare the sensitivity and specificity of FNA and other diagnostic tests in diagnosing lung lesions. **Materials and Methods:** The population included all patients undergoing FNA for lung lesions at Meir Medical Center from 2006 through 2010. Information regarding additional tissue tests was derived from the electronic archives of the Department of Pathology, patient records and files from the Department of Oncology. Sensitivity, specificity, diagnostic accuracy, and positive and negative predictive values were calculated for each test. **Results:** FNA was carried out in 245 patients. Malignant tumors were diagnosed in 190 cases (78%). They included adenocarcinoma (43%), squamous cell carcinoma (15%), non-small cell carcinoma, not otherwise specified (19%), neuroendocrine tumors (7%), metastases (9%) and lymphoma (3%). The specificity of FNA for lung neoplasms was 100%; sensitivity and diagnostic accuracy were 87%. **Conclusions:** FNA is the most sensitive procedure for establishing tissue diagnoses of lung cancer. Combination with core needle biopsy increases the sensitivity. Factors related to the lesion (nature, degenerative changes, location) and to performance of all stages of test affect the ability to establish a diagnosis.

Keywords: FNA - lung neoplasm - diagnosis - immunohistochemistry - accuracy - specificity - sensitivity

Diagnostic Aspects of Fine Needle Aspiration for Lung Lesions: Series of 245 Cases

Vladimir Kravtsov1,2, Inna Sukmanov3, Dani Yaffe2,4, David Shitrit2,5, Maya Gottfried2,6, Andreea Cioca7, Debora Kidron1,2*

Introduction

Tissue diagnosis of lung lesions is carried out by examining tissue taken from the lesions. The procedures include needle biopsy through skin (transthoracic), chest wall (thoracoscopy or thoracotomy), airways (bronchoscopy), or esophagus (trans- endoscopy). They are invasive and associated with complications.

Diagnostic of lung lesions is often carried out on cytological preparations. Diagnostic material can be derived from sputum, bronchoscopy brushings and washings, through the airways (endobronchial ultrasound (EBUS), pleural effusion. Fine needle aspiration (FNA) is used for getting cells through the skin (percutaneous transthoracic). The aspirated cells are used for preparation of smears and cell blocks. Immunohistochemical staining is carried out preferably on sections from cell blocks.

FNA of lung lesion is an old method, first described in 1886 by Menetrier. FNA of lung lesions under CT was first described in 1976 (Haaga and Alfidi, 1976). Today, the procedure is performed under CT or ultrasound (US) guidance. In many instances, core needle biopsy is performed simultaneously with the FNA.

The purpose of this study was to compare the sensitivity and specificity of FNA for diagnosis of lung lesions with transcutaneous core needle biopsy, sputum, endobronchial brushing and washing, and open biopsy or resection.

Materials and Methods

Cytological reports of FNA for lung lesions performed between 2006 and 2010 in Meir Medical Center, Kefar Sava, Israel were retrieved from the digital archives of the Department of Pathology.

The following data were extracted from the reports: age, gender, location of lesion, cytological diagnosis, diagnosis on cell block, immunohistochemical stains. Data regarding additional relevant cytological and histopathological tests were recorded: results of sputum analyses, bronchoscopy brushings and washings, needle biopsies and excisional procedures, including lesions in other organs (primary and metastatic). The gold standard was the histological diagnosis of the lesion (biopsy or

1Department of Pathology, 2Department of Radiology, 3Department of Pulmonology, 4Department of Oncology, Meir Medical Center, Kfar Sava, 5Sackler School of Medicine, Tel Aviv University, 6Clalit Health Services, Tel Aviv, Israel, 7Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania. *For correspondence: dkidron@clalit.org.il
The diagnostic categorization of lesions undergoing FNA was based on cytological features and immunohistochemical expression. Immunohistochemical stains included pancytokeratin (AE1/AE3), cytokeratin 7, cytokeratin 20, p63, TTF1, chromogranin, synaptophysin and lymphoid markers, if indicated. Diagnostic categories were adenocarcinoma, squamous cell carcinoma, non-small cell lung cancer not otherwise specified (NSCLC, NOS), neuroendocrine tumors, including small cell lung cancer (SCLC) and carcinoid, metastasis, lymphoma, benign tumor, negative for tumor. The data were recorded on Excel spreadsheets.

Sensitivity, specificity, diagnostic accuracy, positive and negative predictive values of FNA and other tissue tests for diagnosis of lung lesions were calculated.

Results

In the five year period from 2006 through 2010, 245 CT guided percutaneous FNA for diagnosis of lung lesions were performed at Meir Medical Center.

Average age of the patients was 67.6 ± 11.3 years (range 28-89). There were 154 males and 91 females (M/F ratio = 1.7). The cytological diagnoses are detailed in Table 1. Neoplastic lesions were diagnosed in 191 FNA (78%). They included 190 malignant lesions and 1 benign lesion. The type and relative frequency of malignant tumors is seen in Figure 1.

Additional tissue tests performed for diagnosis of lesions and their diagnostic sensitivity in establishing the diagnosis are detailed in Table 2.

Adenocarcinoma

Adenocarcinoma was diagnosed by FNA in 82 cases. Morphological features alone were sufficient to establish the diagnosis in 29 cases. Immunohistochemical stains were carried out in 42 cases. They included cytokeratin intermediate filaments (pancytokeratin (AE1/AE3), cytokeratin 20, cytokeratin 7, cytokeratin 8/18.) p63 and TTF1. The immunohistochemical stains helped confirm the diagnoses and differentiate from squamous cell carcinoma. Only one case had to be differentiated from SCLC by neuroendocrine markers (synaptophysin and chromogranin).

Additional tissue tests were performed in 53 cases. Bronchial washings and brushings were diagnostic in 6/27 cases (22%). Needle biopsies were diagnostic for adenocarcinoma in 9/17 cases (53%). Resection specimens were available in 15 cases (confirming the FNA diagnosis).

Squamous cell carcinoma

Squamous cell carcinoma was diagnosed by FNA in 31 cases. Morphological features alone were sufficient to determine the diagnosis in 18 cases. Immunohistochemical stains (including cytokeratin 7, p63 and TTF1) were carried out in 11 cases. As in the case of adenocarcinoma, the immunohistochemical stains helped confirm the diagnosis.

Additional tissue tests were performed in 11 cases. Bronchial washings and brushings were done in 7 cases. None was diagnostic. Needle biopsies were diagnostic for squamous cell carcinoma in 5 out 8 cases (62%). Resection specimens were available in 4 cases (confirming the FNA diagnosis).

False negative diagnosis of squamous cell carcinoma by FNA occurred in 2 cases. The cytological smears had blood only whereas the needle biopsy contained diagnostic material.

Non-small cell lung cancer, not otherwise specified

The diagnosis NSCLC by FNA was set in 39 cases,

Table 1. The Cytological Diagnoses in Males and Females in 245 FNA of Lung Lesions

Diagnosis	Males	Females	Total
Adenocarcinoma	52	30	82
Squamous cell carcinoma	22	9	31
NSCLC, NOS	28	11	39
SCLC	12	2	14
Metastasis	4	14	18
Lymphoma	3	3	6
Benign tumors	1	0	1
Tumors (total)	122	69	191
Negative for tumor	32	22	54

Table 2. Diagnostic Sensitivity of Tests in Establishing the Diagnosis of Malignant Lung Tumors

Diagnosis	No. of cases	FNA	Sputum, bronchial washings and brushing	Endobronchial biopsies	True-cut biopsies	Open biopsy/resection
Adenocarcinoma	82	82/82	15/15	9/17	6/27	6/27
Squamous cell carcinoma	31	29/31	4/4	5/8	0/7	0/7
NSCLC, NOS	39	38/39	1/4	2/8	1/12	1/12
SCLC	14	14/14	1/2	6/6	2/5	2/5
Metastasis	18	16/18	7/7	6/7	0/0	0/1
Lymphoma	6	2/6	2/2	4/4	0/1	0/0
where no obvious, glandular, squamous or neuroendocrine differentiation was demonstrated, either morphologically or by immunohistochemical techniques. Negative immunohistochemical stains for cytokeratin 7, p63 and TTF1 were shown in 10 cases. The aspirated material was insufficient for immunohistochemical stains in 22 cases.

Additional tissue tests were performed in 15 cases. Bronchial washings and brushings were diagnostic in 1/12 cases (8%). Needle biopsies were diagnostic 2/8 cases (25%). Resection procedures were performed in 4 cases.

Neuroendocrine tumors

SCLC by FNA was diagnosed in 13 cases. The remaining case was typical carcinoid. No false negative diagnosis was made in this group. Cytological smears alone (without sufficient material for immunohistochemical studies) were diagnostic in 5 cases. Immunohistochemical stains were performed in 9 cases. They included the neuroendocrine markers (synaptophysin and chromogranin), as well as cytokeratins (AE1/AE3, 7, 20 and CAM 5.2), Ki67, p63 and TTF1.

Additional tissue tests for the diagnosis were available in 7 cases. Needle biopsies (with the same diagnosis) were performed in 5 cases. Resection procedures were performed in 4 cases (including typical carcinoid).

Metastasis

FNA from lung metastases was positive in 16 out of 18 cases (89%). They included breast cancer (5 cases), colorectal cancer (5 cases), renal cell carcinoma (2 cases), malignant melanoma (2 cases), prostate cancer (2 cases), gastric carcinoma (1 case) and leiomyosarcoma (1 case). The FNA failed to show tumor cells in 2 cases due to scanty cellular material. The diagnosis in these cases was performed on needle biopsies.

The diagnosis was based on typical cytomorphologic features with similarity to primary tumor) in 6 cases. Immunohistochemical studies were performed in order to rule out primary lung tumor. They included cytokeratin 7, p63, and TTF1.

Lymphoma

Malignant lymphoma by FNA was diagnosed in 2/6 cases (33%) in this series. They were previously diagnosed cases of Hodgkin’s lymphoma and mantle cell lymphoma of the stomach.

The remaining 4 cases were not diagnostic for lymphoma by FNA. The diagnosis was done with needle biopsy (2 cases) and open biopsy (2 cases). The diagnoses were pulmonary involvement by advanced stage large B cell lymphoma (2 cases), large B cell lymphoma of lung (1 case), and MALT lymphoma of lung (1 case).

Benign tumors

Bronchial hamartoma was diagnosed in 1 case.

FNA negative for tumor

The FNA was negative for tumor cells in 66/245 (27%) cases. Tissue diagnosis of tumor was determined by other tests in 12 (18%) cases. Negative FNA with negative other tissue tests were present in 54 cases. A neoplastic process was discovered in later stages in 19 cases. They included 11 (58%) cases of NSCLC, 6 (31.5%) cases of metastasis and 2 (10.5%) cases of lymphoma. These lesions involved the left lung in 67.7% of the cases, predominantly the left upper lobe.

Discussion

Lung cancer is a major cause of morbidity and mortality throughout the world with variation among nations and ethnicities (Demirci et al., 2013). The pathological classification of lung cancer was recently updated (Travis et al., 2013). Accurate pathologic diagnosis is crucial for selecting appropriate treatment.

The ability to reach a conclusive diagnosis with FNA depends on optimal performance of all stages of the procedure. Sampling: The FNA is performed by a radiologist under imaging, usually CT. The sampling equipment and technique, location of the lesion, its size, texture, necrosis and amount of aspirated material are important factors, as discussed elsewhere (Hiraki et al., 2009).

Cytological evaluation provides an provisional...
lesions in this series was 87%. The positive predictive value of FNA in lung lesions was 100%, owing to 0% false positive cases. The negative predictive value was 53.8%.

FNA of lung masses is an invasive procedure, associated with complications. Nevertheless, it is an effective procedure for establishing tissue diagnosis of lung neoplasms. In this series, the diagnostic accuracy of this test was 87%. Its specificity was 100%. The sensitivity was higher than that of needle biopsy (71%). The combination of needle biopsy and FNA raised the sensitivity to 90%.

Factors related to sampling, preparation and interpretation of the test are crucial for establishing the diagnosis. The nature of the lesion, degenerative changes involved, location within the lung, amount of aspirated material, ability to perform ancillary studies, experience and proficiency of personnel, all affect the final result. A continuous learning process is essential for improving these skills. It can be achieved by regular meetings, interdepartmental consultations and participation in specialty conferences.

On one hand, the emergence of molecular tests for diagnosis and prediction of response to specific treatment (Unal et al., 2013) emphasize the importance of the FNA, as a means of getting representative material from lung neoplasms. The new treatment modalities, including targeted biological therapies and specific chemotherapeutic agents dictate the need for unquestionably accurate diagnoses, with optimal use of immunohistochemical stains and maximal preservation of representative tissue (Montezuma et al., 2013). FNA, side by side with other diagnostic and prognostic assays (Kaya et al., 2013) help in achieving these goals.

References

Afify A and Davila RM (1999). Pulmonary fine needle aspiration biopsy. Assessing the negative diagnosis. Acta Cytol, 43, 601-4.

Arslan S, Yilmaz A, Bayramgürler B et al (2002). CT-guided transthoracic fine needle aspiration of pulmonary lesions: accuracy and complications in 294 patients. Med Sci Monit, 8, 493-7.

Demirci E, Dogalgu F, Gundogdu C, et al (2013). Incidence and clinicopathologic features of primary lung cancer: a North-Eastern Anatolia region study in Turkey (2006-2012). Asian Pac J Cancer Prev, 14, 1989-93.

Gill RK, Vazquez MF, Kramer A, et al (2008). The use of genetic markers to identify lung cancer in fine needle aspiration samples. Clin Cancer Res, 14, 7481-7.

Gong Y, Sneige N, Guo M, Hicks ME, Moran CA (2006). Transthoracic fine-needle aspiration vs concurrent core needle biopsy in diagnosis of intrathoracic lesions: a retrospective comparison of diagnostic accuracy. Am J Clin Pathol, 125, 438-44.

Guber A, Greif J, Rona R, et al (2010). Computerized analysis of cytology and fluorescence in situ hybridization (FISH) in induced sputum for lung cancer detection. Cancer Cytopathol, 118, 269-77.

Haaga JR, Allidi RJ (1976). Precise biopsy localization by computer tomography. Radiology, 118, 603-7.

Herth FJ, Ernst A, Becker HD (2002). Endobronchial ultrasound-guided transbronchial lung biopsy in solitary pulmonary
nodules and peripheral lesions. Eur Respir J, 20, 972-4.
Hiraki T, Mimura H, Gobara H, et al (2009). CT fluoroscopy-guided biopsy of 1,000 pulmonary lesions performed with 20-gauge coaxial cutting needles: diagnostic yield and risk factors for diagnostic failure. Chest, 136, 1612-17.
Kaya V, Yildirim M, Demiropence O, Yildiz M, Yalcin AY (2013). Prognostic significance of basic laboratory methods in non-small-cell-lung cancer. Asian Pac J Cancer Prev, 14, 5473-6.
Kim HK, Shin BK, Cho SJ, et al (2002). Transthoracic fine needle aspiration and core biopsy of pulmonary lesions. A study of 296 patients. Acta Cytol, 46, 1061-8.
Layfield LJ, Coogan A, Johnston WW, Patz EF (1996). Transthoracic fine needle aspiration biopsy. Sensitivity in relation to guidance technique and lesion size and location. Acta Cytol, 40, 687-90.
Montezuma D, Azevedo R, Lopes P, et al (2013). A panel of four immunohistochemical markers (CK7, CK20, TTF-1, and p63) allows accurate diagnosis of primary and metastatic lung carcinoma on biopsy specimens. Virchows Arch, 463, 749-54.
Mullan CP, Kelly BE, Ellis PK, et al (2004). CT-guided fine-needle aspiration of lung nodules: effect on outcome of using coaxial technique and immediate cytological evaluation. Ulster Med J, 73, 32-6.
Nga ME, Lim GL, Barbro N, Chan NH (2005). Successful retrieval of fine-needle aspiration biopsy material from previously stained smears for immunocytochemistry: a novel technique applied to three soft tissue tumors. Mod Pathol, 18, 728-32.
Savic S and Bubendorf L (2012). Role of fluorescence in situ hybridization in lung cancer cytology. Acta Cytol, 56, 611-21.
Senturk A, Babaoglu E, Kilic H, et al (2014). Endobronchial ultrasound-guided transbronchial needle aspiration in the diagnosis of lymphoma. Asian Pac J Cancer Prev, 15, 4169-73.
Skov BG, Kiss K, Ramsted J, Linnemann D (2009). A technique to improve diagnostic information from fine-needle aspirations: immunohistochemistry on cytoscrape. Cancer, 117, 120-7.
Travis WD, Brambilla E, Riely GJ (2013). New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol, 31, 992-1001.
Unal OU, Oztop I, Calibasi G, et al (2013). Relationship between epidermal growth factor receptor gene mutations and clinicopathological features in patients with non-small cell lung cancer in western Turkey. Asian Pac J Cancer Prev, 14, 3705-9.
Yasufuku K, Nakajima T, Fujiwara T, et al (2008). Role of endobronchial ultrasound-guided transbronchial needle aspiration in the management of lung cancer. Gen Thorac Cardiovasc Surg, 56, 268-76.