Heart failure (HF) is a global pandemic heart disease characterized by an inadequate systemic perfusion to meet the body's metabolic demands. It is estimated to affect approximately 26 million people worldwide and results in a heavy burden on the economy and healthcare system.1 Moreover, the prevalence of HF is expected to increase with population growth and ageing.2 HF is a complex disease influenced by environmental and genetic factors. A wide range of conditions can lead to HF, such as hereditary defects, cardiovascular diseases and systemic diseases, which indicates molecular commonalities between HF resulting from different aetiologies.
Thus, exploring the commonalities will help achieve better understanding of the aetiology of HF.

The rapid development of high-throughput ‘omics’ technologies (such as DNA microarrays and next-generation sequencing) has resulted in the increasing availability of transcriptional data. The availability of these data for HF provides a good opportunity to employ computational systems biology approaches to advance our understanding of the mechanisms underlying the development of HF. Studies based on transcriptional and interactome data have identified 60 common functional modules related to HF and analysed the differences in the pathogenesis of HF arising from different aetiologies. By examining the expression profiling of miRNAs in failing human hearts, Zhu et al identified miR-340 as a key miRNA contributing to the progression of HF. By integrating miRNA-target interactions and differentially expressed genes/IncRNAs, a recent study investigated the function of IncRNAs in HF and identified some IncRNAs that were verified to show a strong diagnostic power for HF. Although some studies have been carried out to decipher the molecular mechanisms of HF based on transcriptional data, a systematic research study that comparatively analyses HF from different aetiologies through integration of vastly available omics data and curated pathways has not been performed.

To address this issue, we perform a three-tiered data analysis (Figure 1). At the gene level, we globally analysed the gene expression of HF from 11 different aetiologies. At the pathway level, we comparatively analysed the expression of 610 curated pathways and identified 19 frequently dysregulated pathways in HF from 11 different aetiologies. Finally, by integrating the regulatory network, we identified several transcriptional factors (TFs) regulating the expression of the frequently dysregulated pathways. Taken together, our work may provide new insights to better understand HF from different aetiologies.

2 | MATERIALS AND METHODS

2.1 | Overview of the data analysis procedure

To understand the molecular commonalities of HF from different aetiologies, we performed a three-tiered data analysis (Figure 1). First, we started the analysis at the gene level, in which differentially expressed genes (DEGs) were inferred for each disease. Then, we extended our analysis to the pathway level, where we identified frequently dysregulated pathways across HF from different aetiologies. Finally, by integrating the regulatory network, we identified TFs regulating the expression of the frequently dysregulated pathways.

2.2 | Data collection and pre-processing

Transcriptional data related to HF resulting from 11 different aetiologies were collected from the GEO (Gene Expression Omnibus) database. Normalized data were directly downloaded from the GEO database. Probe sets were mapped to their corresponding gene symbol according to the annotation files from GEO, and replicated probes of the same gene were averaged. Curated pathways were gathered from the KEGG pathway, Reactome pathways, BioCarta pathways, Pathway Interaction Database, Sigma-Aldrich gene sets, Signal Transduction KE gene sets, Signaling Gateway gene sets and SuperArray gene sets from the molecular signatures database (MSigDB, v6.1). The curated pathways were downloaded in GMT format. Of the available pathways, we used those from C2:CP (canonical pathways). After excluding pathways that were too large or too small (>300 genes or <5 genes, respectively) and removing overlapping pathways (overlap ratio > 0.8), 610 pathways were kept for further analyses.

2.3 | Differential expression analysis

DEGs between disease samples and the corresponding control samples were inferred using the function RankProducts in the BioConductor package RankProd. For each disease, the fold changes (FCs) of genes between the disease and control samples were first translated to the ranks of genes. Then, the combined rank of each gene from multiple comparisons was defined as the rank product. Independent permuted expression data were used to calculate the null density of the rank product and to determine the p-value and the percentage of false-positive predictions (pfp).
associated with each gene. Finally, genes with pfp values less than 0.05 were defined as differentially expressed.

2.4 | Machine learning analysis

Random forest (RF) classification models were built using the ‘randomForest’ package (https://cran.r-project.org/web/packages/randomForest/) in R with genes (features) in columns and samples in rows. We utilized a 10-fold cross-validation procedure to assess the performance of the classification models. Samples were randomly partitioned into 10 parts with approximately equal number of samples. Nine parts were used to train the RF classifier, and the remaining one part was used to test the performance. The value of the area under the curve (AUC) from the receiver operating characteristic (ROC) curve was used to assess the prediction accuracy of the RF model. The higher AUC value, which ranges from 0 to 1, indicates better prediction performance. After all samples have been used as the testing set, the predicted values were imported into the R package PRROC to visualize the ROC curves.16

2.5 | Gene ontology enrichment analysis

Gene ontology (GO) enrichment analysis for DEGs was performed with BioNGO (version 3.03), a plugin in Cytoscape. Using the whole annotation of human genes as the reference set, GO terms with Benjamini-Hochberg (BH)-adjusted P-values less than 0.05 were extracted as significantly enriched.

2.6 | Gene set enrichment analysis

The pre-ranked gene set enrichment analysis (GSEA) tool17 [GSEA PreRanked (1000 permutations, minimum term size of 5, maximum term size of 300)] was used to determine whether the curated pathways exhibited statistically significant, concordant difference between HF and normal tissue samples. Briefly, genes were first ranked based on their FCs between disease samples and the corresponding normal samples. Then, ranked genes were used as the input for GSEA PreRanked. Finally, curated pathways with P-values less than 0.05 were identified as significant.

2.7 | TF-pathway regulation analysis

To identify TFs regulating the dysregulated pathway, we first obtained TF-target regulatory relationships from two databases, RegNetwork18 and HTRIdb.19 HTRIdb is an open access database that stores experimentally verified human transcriptional regulation interactions. RegNetwork integrates curated regulatory interactions among transcription factors, microRNAs (miRNAs) and target genes from various databases and potential regulatory relationships based

TABLE 1 Transcriptional data used in this work
GEO ID

GSE76701
GSE21610
GSE26887
GSE3585
GSE42955
GSE49819
GSE2601
GSE449

Abbreviations: DCM: Dilated cardiomyopathy; IC: Ischemic cardiomyopathy; IDCM: Idiopathic dilated cardiomyopathy; DHF: Diabetic heart failure; ND-HF: Non-diabetic heart failure; VCM: viral cardiomyopathy; ARVC: Arrhythmogenic right ventricular cardiomyopathy; NICM: Non-ischaemic cardiomyopathy; HCM: Hypertrophic cardiomyopathy; FDCM: Familial dilated cardiomyopathy; PPCM: Post-partum cardiomyopathy.
on transcription factor binding sites. Then, for each TF and dysregulated pathway, Fisher’s exact test was used to test the enrichment of TF targets in the dysregulated pathway, and a P-value was obtained. We also calculated the proportion of TF targets in the pathway and obtained a ratio. Finally, the TF was predicted to regulate the dysregulated pathways when the BH-corrected P-value was less than 0.05 and the ratio was larger than 0.2.

3 | RESULTS

3.1 | Overview of gene expression in HF from different aetiologies

To understand how genes are expressed during HF, we collected 505 samples from 11 microarray studies measuring gene expression during HF from 11 different aetiologies from the GEO database\(^{10}\) (Table 1, Table S1). Among the 505 collected samples, 414 samples detected gene expression in patients with HF, and the remaining 91 samples were from controls. The DEGs between the disease samples and their corresponding control samples were inferred using the RankProd package, which was developed from the rank product method.\(^{15}\) Rank product is a nonparametric statistical method for identifying DEGs (up-regulated or down-regulated) based on the estimated pfp. By keeping genes with a pfp of less than 0.05, we obtained 6685 DEGs that were differentially expressed in at least one of the 25 comparisons (Table S2; see Materials and Methods section for details). As shown in Figure 2, only approximately 3.6% (242/6685) of the DEGs were differentially expressed in more than 12 comparisons. This indicated that only a small fraction of DEGs were frequently differentially expressed during the progression of HF from different aetiologies.

3.2 | Identification of a common gene expression signature of HF from different aetiologies

To identify the genes that were frequently differentially expressed (named frequently differentially expressed genes, FDEGs) during HF from different aetiologies, we selected genes that were differentially expressed in more than 60% (15/25) of comparisons and obtained 111 such genes (Table S2). Approximately 60% (67/111) of FDEGs were classified as up-regulated since these genes were generally more up-regulated in all comparisons, whereas the remaining 44 genes were classified as down-regulated. Next, we investigated whether the two conditions (HF and normal control) could be successfully discriminated using the FDEGs by employing a RF classifier. By removing 16 FDEGs which were not detected in all 505 samples, the expression of 95 FDEGs was used as the feature. The AUC value from the ROC curve was used to evaluate the prediction accuracy of the RF classifier, and we found that FDEGs could classify HF and normal control samples with AUC 0.968 (Figure S1; see the Materials and Methods section for detail). However, when we randomly selected the equal number of genes (95) from the gene sets detected on the microarray to construct the RF classifier and repeated this process 1000 times, the average AUC was only 0.912, which was significantly lower than the AUC value of RF classifier constructed from the 95 FDEGs (Student’s t test, P-value < 2.2 × 10\(^{-16}\)). This result further confirmed the presence of multiple FDEGs among HF from different aetiologies due to the shared molecular mechanisms.

GO enrichment analysis showed that up-regulated and down-regulated FDEGs were enriched in different biological processes (BP) (Table S3, Figure 3A). The top 3 enriched GO BP terms for up-regulated FDEGs were ‘enzyme-linked receptor protein signalling pathway’ [hypergeometric test, BH-corrected P = 3.77 × 10\(^{-4}\)], ‘skeletal system development’ [hypergeometric test, BH-corrected P = 3.77 × 10\(^{-4}\)], and ‘blood circulation’ [hypergeometric test, BH-corrected P = 3.77 × 10\(^{-4}\)].

FIGURE 2 A total of 6,685 DEGs were shared between different numbers of disease conditions. The x-axis shows the number of comparisons, and the y-axis represents the number of DEGs. The number above each histogram refers to the number of DEGs that were shared under the given number of comparisons.
BH-corrected P = 1.54 \times 10^{-3}). For down-regulated FDEGs, ‘response to wounding’ (hypergeometric test, BH-corrected P = 8.72 \times 10^{-15}), ‘inflammatory response’ (hypergeometric test, BH-corrected P = 2.10 \times 10^{-12}) and ‘defence response’ (hypergeometric test, BH-corrected P = 1.15 \times 10^{-10}) were the top 3 enriched GO terms. Table 2 lists the top 20 FDEGs, which were most frequently differentially expressed in HF from 11 different aetiologies, including 12 up-regulated genes and 8 down-regulated genes.

For the top 20 FDEGs, six genes, namely natriuretic peptide A (NPPA), natriuretic peptide B (NPPB), Ficolin 3 (FCN3), phospholipase A2 group IIA (PLA2G2A), S100 calcium binding protein A8 (S100A8) and frizzled-related protein (FRZB), were already shown to play important roles in HF or cardiovascular disease. NPPA, NPPB and FRZB are recognized as biomarkers for HF, \(^{20,21}\) and PLA2G2A is a biomarker for cardiovascular disease. \(^{22}\) FCN3 is a recognition molecule in the lectin pathway, and the decreased concentration of FCN3 in serum has already been associated with the pathophysiology of HF. \(^{23}\) The other FDEGs (such as STAT4 and SERPINA3) with undefined roles in HF were good candidates for further experimental verification as these genes were frequently differentially expressed in HF from different aetiologies.

3.3 Suppressed immune responses in HF

GO annotation analysis showed that the GO term ‘defence response’ was significantly enriched in down-regulated FDEGs. We wondered whether FDEGs were significantly enriched in defence genes. Thus, we first obtained 2209 genes that were involved in the immune response from two databases, namely InnateDB\(^{24}\) and the Immunogenetic Related Information Source (IRIS). \(^{25}\) After removing genes without expression values from 2209 immune response genes, 2056 genes were kept for further analysis. Statistical analysis showed that FDEGs were significantly enriched in these immune-related genes (Fisher’s exact test, P = 1.01 \times 10^{-06}; Figure 3B). Further investigation showed that immune-related FDEGs were significantly enriched in down-regulated FDEGs (Table S2, Fisher’s exact test, P = 1.04 \times 10^{-05}) rather than in up-regulated FDEGs (Fisher’s exact test, P = 0.13; Figure 3C). Moreover, the top 5 FDEGs (ie SERPINA3, FCN3, NPPA, CCL2 and PLA2G2A) were all involved in the immune system. All of these 5 genes except NPPA were down-regulated in the majority of conditions (Table 2). Briefly, these results indicated that immune systems were suppressed in the progression of HF.

3.4 Gene set enrichment analysis reveals dysregulated biological pathways in HF

To identify the biological pathways that were frequently influenced by HF from different aetiologies, we obtained 1329 curated pathways from the MSigDB database. \(^{14}\) After excluding pathways that were too large or too small, overlapping pathways and disease-related pathways, \(^{26}\) 610 pathways were kept for further analysis (see Materials and Methods section). Pathway enrichment analysis of these curated pathways performed with GSEA helped us to obtain a P-value per pathway per condition. GSEA is a computational method that identifies gene sets (eg biological pathways) that show a statistically significant, concordant difference between two biological states. \(^{17}\) Based on GSEA, we found that 610 pathways were all dysregulated in at least one of the 414 disease samples (Table S4). A pathway was defined as a dysregulated pathway in HF from a given aetiology if it was identified as significant by GSEA in more than half of the disease samples from the given aetiology.

![Figure 3](image_url)

Figure 3 Annotation results for FDEGs. A, Top 10 annotation results for 67 up-regulated FDEGs (red bar) and 44 down-regulated FDEGs (blue bar). Annotation analysis was performed with BiNGO (Version 3.03). B, Three-way Venn diagram representing the overlap among 2209 immune response genes, 6685 DEGs and 111 FDEGs. C, Three-way Venn diagram representing the overlap among 2209 immune response genes, 44 up-regulated FDEGs and 67 down-regulated FDEGs.
TABLE 2 The top 20 FDEGs

Gene symbol	Full name	#Up	#Down
SERPINA3	Serpin family A member 3	0	25
FCN3	Ficolin 3	0	25
NPPA	Natriuretic peptide A	24	0
CCL2	C-C motif chemokine ligand 2	2	22
PLA2G2A	Phospholipase A2 group II A	1	23
NPPB	Natriuretic peptide B	17	6
MYH6	Myosin heavy chain 6	0	23
OGN	Osteoglycin	22	0
USP9Y	Ubiquitin-specific peptidase 9	18	4
EIF1AY	Eukaryotic translation initiation factor 1A, Y-linked	17	5
RPS4Y1	Ribosomal protein S4, Y-linked 1	16	6
S100A8	S100 calcium binding protein A8	0	22
SFRP4	Secreted frizzled-related protein 4	21	0
ASPN	Asporin	21	0
FRZB	Frizzled-related protein	21	0
STAT4	Signal transducer and activator of transcription 4	20	1
ANKRD2	Ankyrin repeat domain 2	2	19
RARRES1	Retinoic acid receptor responder 1	0	21
THBS4	Thrombospondin 4	20	0
NAP1L3	Nucleosome assembly protein 1 like 3	20	0

Note: ‘#Up’ and ‘#Down’ represent the number of disease conditions in which the corresponding genes are up-regulated and down-regulated, respectively. Genes with confirmed roles in HF are marked in bold.

To identify the pathways that were frequently dysregulated in HF from different aetiologies, we used a high-throughput 'omics' technology approach. The top three significant pathways were the 'ensemble of genes encoding core extracellular matrix including ECM glycoproteins, collagens and proteoglycans', 'IL6-mediated signalling events' and the MAPK signalling pathway (Table 3). The pathway of the 'ensemble of genes encoding core extracellular matrix including ECM glycoproteins, collagens and proteoglycans' was up-regulated in more than 80% (336/414) of the disease samples. The pathways 'MAPK signalling pathway' and 'IL6-mediated signalling events' were down-regulated in 69% (286/414) and 66% (273/414) of disease samples, respectively. All three pathways played significant roles in cardiac remodelling during various cardiac diseases, such as HF. When we look deeply into the 19 frequently dysregulated pathways, we found eight pathways involved in the immune system, namely 'IL6-mediated signalling events', 'MAPK signalling pathway', 'AP-1 transcription factor network', 'endogenous TLK signalling', 'NOD-like receptor signalling pathway', 'PDGFR-beta signalling pathway', 'cytokine signalling in immune system' and 'IL 6 signalling pathway'. Meanwhile, two of the 19 frequently dysregulated pathways were related to the extracellular matrix, namely the 'ensemble of genes encoding core extracellular matrix including ECM glycoproteins, collagens and proteoglycans' and 'extracellular matrix organization'. Moreover, five pathways, that is 'genes involved in translation', 'genes involved in the citric acid (TCA) cycle and respiratory electron transport', 'oxidative phosphorylation', 'valine, leucine and isoleucine degradation' and 'genes involved in metabolism of mRNA', were involved in metabolism. These results suggested that pathways related to immune system signalling, the extracellular matrix and metabolism might be critical in the development of HF.

3.5 Potential TFs regulating frequently dysregulated pathways

To gain an in-depth understanding of how TFs regulated the expression of the 19 frequently dysregulated pathways, we collected 179 785 regulatory interactions from RegNetwork and HTRIdb, which comprised 1438 TFs and 18 396 target genes. Then, the regulatory relationships between the TFs and pathways were tested using Fisher’s exact test based on 179 785 regulatory interactions (see Materials and Methods section for details). Given a BH-corrected P-value threshold of 0.05 and a ratio cut-off of 0.2, we obtained 241 regulatory relationships between 64 TFs and 17 frequently dysregulated pathways (Table S5, Figure 6). On average, each pathway was predicted to be regulated by approximately 14 TFs, and each TF regulated four pathways. The top 10 TFs with the largest number of degree were ETS Proto-Oncogene 1 (ETS1), MYC, Specific Protein 1 (SPI), Early Growth Response 1 (EGR1), Nuclear Factor Kappa B Subunit 1 (NFKB1), Yin And Yang 1 (YY1), Androgen Receptor (AR), Tumor Protein p53 (TP53), (Transcription Factor AP-2 Alpha) TAFAP2A and Jun Proto-Oncogene (JUN), and their detail information is listed in Table S6. These genes may serve as a vital role in regulating these dysregulated pathways and potentially affect the initiation and progression of HF.

4 Discussion

With the development of high-throughput 'omics' technologies, large-scale transcriptional data of HF are available in public
databases, providing a good opportunity to analyse HF by integrating these data. Although a few studies were carried out to decipher the molecular mechanisms of HF from different aetiologies, these mechanisms have not previously been analysed by integrating large-scale transcriptional profiles and pathway information. More importantly, the molecular commonality of HF from different aetiologies...
was unclear. In this study, we integrated transcriptional profiles and pathway information to investigate the molecular commonalities of HF from 11 different aetiologies.

Some previous analyses explored HF by using transcriptional data and interaction networks. However, using small-scale transcriptional data and interaction networks with high positive rates may lead to constrained results. In this work, we performed a three-tiered transcriptional data analysis by integrating large-scale transcriptional data and curated pathways, which can produce more solid results. The advantages of integrating curated pathways include reducing the complexity by grouping thousands of DEGs into just several hundred pathways and increasing the explanatory power by identifying impacted curated pathways with specific functions.

Our approach not only successfully uncovered several key genes (such as NPPA, NPPB, and FRZB) already involved in HF but also provided new candidate genes involved in HF for further experimental verification. The signal transducer and activator of transcription (STAT) family contains seven members (STAT1, STAT2, STAT3, STAT4, STAT5, STAT5B, and STAT6), and all genes have been reported to be expressed in the heart. Five of the seven STAT genes (STAT1, STAT2, STAT3, STAT5, and STAT6) were reported to play roles in regulating the progression of HF. The role of STAT4 in HF has not been reported, but it was up-regulated in 20 HF conditions in this analysis. Moreover, STAT4 was predicted to regulate two dysregulated pathways (Figure 6). Considering the importance of STAT genes in HF and the consistent up-regulation of STAT4 in HF from different aetiologies, it was reasonable to suggest that STAT4 may play an important role in HF.

SERPINA3, a protease inhibitor, was found to be down-regulated in the failing myocardium from patients with DCM, and the up-regulation of SERPINA3 is associated with poor survival in patients with HF. In this work, a meta-analysis found that SERPINA3 was down-regulated in all HF conditions, which further confirmed the importance of SERPINA3 in HF. It is possible that SERPINA3 might become a novel diagnostic and therapeutic target for HF. Lucas et al found that gene osteoglycin (OGN) is overexpressed in patients with HF and proposed that OGN can act as a
potential biomarker for ischaemic HF. In this work, OGN is not only overexpressed in ischaemic HF but also overexpressed in non-ischaemic HF. Thus, the role of OGN in non-ischaemic HF needs further investigation.

Several frequently dysregulated pathways identified from GSEA, for example the ‘MAPK signalling pathway’, ‘valine, leucine and isoleucine degradation’ and ‘ensemble of genes encoding core extracellular matrix including ECM glycoproteins, collagens and proteoglycans’, have already been implicated in HF. The MAPK signalling pathway consists of a well-studied family of serine/threonine proteins that include the extracellular signal-regulated protein kinases (ERKs), the c-Jun N-terminal kinases (JNKs) and the p38 family of kinases. ERKs, JNKs and p38 MAP kinase are all involved in HF. Leucine, isoleucine and valine belonging to the branched-chain amino acids (BCAA) represent the most abundant group of essential amino acids that cannot be synthesized de novo. BCAA catabolic deficiency was proposed as a novel metabolic feature in HF with a broad impact on the progression of pathological remodelling and dysfunction. Multiple studies have already shown HF-related changes in cardiac ECM, including the accumulation in glycoproteins, collagens and proteoglycans. We noticed that a disease pathway ‘genes involved in diabetes pathways’ was also identified as a frequently down-regulated
pathway (Table 3). HF is closely related to diabetes: patients with HF are at higher risk of developing diabetes. The enrichment of canonical pathway 'genes involved in diabetes pathways' in HF further confirmed the close connection between HF and diabetes. In addition, our analysis also discovered several biological pathways with potential roles in HF from different aetiologies, for example the 'PDGFR-beta signalling pathway'. Chintalgattu et al found that PDGFR-beta knock-out mice exposed to load-induced stress resulted in HF and showed that cardiomyocyte PDGFR-β signalling plays a vital role in stress-induced cardiac angiogenesis. It is reasonable to speculate that the PDGFR-beta signalling pathway may regulate angiogenesis in the heart, which substantially contributes to HF through several different mechanisms.

It has been long recognized that immune system activation or dysregulation plays a significant role in the development and progression of HF. In this work, both gene-centric differential expression analysis and pathway-centric enrichment analysis revealed that immune system-related genes and pathways were significantly changed in HF from 11 different aetiologies. Annotation analysis showed that down-regulated FDEGs were significantly enriched in the GO terms 'inflammatory response' and 'defence response'. Moreover, the top 5 FDEGs, namely SERPINA3, FCN3, NPPA, CCL2 and PLA2G2A, were all involved in the immune system (Table 2). GSEA identified several pathways frequently dysregulated in HF from 11 aetiologies, and approximately 42% (8/19) of the frequently dysregulated pathways were involved in the immune system (Table 3). These results further confirmed the importance of the immune system in HFs and that their role in HF was independent of the aetiologies of HF.

Generally, TFs play key roles in regulating the expression of encoding genes and tend to regulate genes within the same pathways. In this study, we also predicted 64 potential TFs regulating 17 dysregulating pathways. Some predicted TFs, such as TPS3 and NFKB1, have already been reported involving in the progression of HF TPS3 was proven to be a master regulator of the cardiac transcriptome and a key molecule, which triggered the development of HF. NFKB is a pleiotropic TF involved in different signalling pathways and strongly implicated in the development of cardiac remodelling, hypertrophy and HF. NFKB1 belongs to the NFKB TF family, and it has been reported that NFKB1 polymorphism is associated with the heart function in patients with HF from different aetiologies. The other predicted TFs with unknown roles in HF are good candidates for further experimental verification, such as ETS1 and EGR1. It is known that ETS1 is important in heart development. Moreover, a previous study found that patients with congenital heart disease had a de novo frameshift mutation in ETS1. In the present study, we found that ETS1 is predicted to regulate the expression of fourteen dysregulating pathways. We speculated that ETS1 participated in the progression of HF by regulating the expression of these dysregulated pathways. EGR1 is an early-response TF that can be rapidly induced by various environmental stimuli. It was predicted to regulate 8 dysregulated pathways and identified as a FDEG (Table S2). In the previous studies, EGR1 was found to involve in multiple cardiovascular pathobiology including cardiac hypertrophy, atherosclerosis, ischaemic pathology and angiogenesis. Furthermore, the expression level of EGR1 can discriminate between chronic HF patients and control patients. Therefore, we speculated that ETS1 might be a potential biomarker of HF.

Finally, we recognized some limitations in this work. Our results are based on currently available data and should be interpreted with caution. First, our analyses are limited by the availability of pathway and gene expression information. Therefore, some genes with potential roles in HF are ignored in this work, as these genes are not detected on the microarray or included in the curated pathways. Second, the analysis of transcriptomes is often not enough to reflect the level of pathway activity, this weaken the conclusions that can be drawn from our results. Third, further molecular biological experiments are needed to confirm the function of these key genes and TFs, and how they involve in the progression of HF.

In summary, we performed a three-tiered transcriptional data analysis to explore the molecular commonalities of HF from different aetiologies. Our analyses indicate that HF from different aetiologies is associated with 111 FDEGs and 19 frequently dysregulated pathways. It is hoped that our current analyses can provide new insight to understand the molecular mechanisms of HF from different aetiologies.

ACKNOWLEDGEMENTS

We would like to thank Zhenyuan Xu and Yang Shen at the Second Affiliated Hospital of Nanchang University for their helpful comments. This work was supported by a grant from National Foundation of Scientific Grant (31971041) and Jiangxi Provincial Department of Education Scientific and Technological Research Project (GJJ180156).

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

AUTHOR CONTRIBUTION

Zhenhong Jiang: Data curation (lead); Formal analysis (lead); Methodology (lead); Visualization (lead); Writing-original draft (lead); Writing-review & editing (lead). Ninghong Guo: Data curation (supporting); Formal analysis (supporting); Methodology (supporting); Writing-original draft (supporting); Writing-review & editing (supporting). Kui Hong: Conceptualization (lead); Funding acquisition (lead); Project administration (lead); Supervision (lead); Writing-original draft (supporting); Writing-review & editing (supporting).

ORCID

Zhenhong Jiang https://orcid.org/0000-0002-8807-0681

REFERENCES

1. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3:7-11.
2. The Lancet. Heart failure in an ageing population. Lancet (London, England). 2017. https://doi.org/10.1016/S0140-6736(17)33039-8
1. Matkovich SJ. Transcriptome analysis in heart failure. Curr Opin Cardiol. 2016;31:224-248.
2. Sweet ME, Coccioletto A, Slavov D, et al. Transcriptome analysis of human heart failure reveals dysregulated cell adhesion in dilated cardiomyopathy and activated immune pathways in ischemic heart failure. BMC Genom. 2018;19:812.
3. Xiao Y, Xu C, Xu L, et al. Systematic identification of common functional modules related to heart failure with different etiologies. Gene. 2012;499:332-338.
4. Yang G, Chen S, Ma A, et al. Identification of the difference in the human immune system genes. Genomics. 2013;8:e60976.
5. McKie PM, Burnett JC Jr. B-type natriuretic peptide as a biomarker with severity and outcome of chronic heart failure. Circulation. 2005;80:1029-1036.
6. Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353-D361.
7. Schaefer CF, Anthony K, Krupa S, et al. PID: the pathway interaction database. Nucleic Acids Res. 2005;33:D454-D457.
8. Liberezon A, Birger C, Thorvaldsdottir H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425.
9. Schaefer CF, Anthony K, Krupa S, et al. PID: the pathway interaction database. Nucleic Acids Res. 2009;37:D674-D679.
10. Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93-110.
11. Fabregat A, Jupe S, Matthews L, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2018;46:D649-D655.
12. Liberezon A, Birger C, Thorvaldsdottir H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417-425.
13. Hong F, Breitling R, McEntee CW, et al. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 2006;22:2825-2827.
14. Grau J, Grosse I, Keilwagen J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics. 2015;31:2595-2597.
15. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545-15550.
16. Liu Z-P, Wu C, Miao H, et al. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford). 2015;2015:bav095.
17. Bovolenta LA, Acenicio ML, Lemke N. HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genom. 2012;13:405.
18. Charon S, Roubertie F, Benoist D, et al. Identification of region-specific myocardial gene expression patterns in a chronic swine model of repaired tetralogy of fallot. PloS One. 2015;10:e0134146.
19. Kugiyama K, Ota Y, Takazoe K, et al. Circulating levels of secretory type II phospholipase A2(2) predict coronary events in patients with coronary artery disease. Circulation. 1999;100:1280-1284.
20. Prohászka Z, Munthe-Fog L, Ueland T, et al. Association of ficolin-3 with severity and outcome of chronic heart failure. PloS One. 2013;8:e60976.
21. Kelley J, de Bono B, Trowsdale J. IRIS: a database surveying known human immune system genes. Genomics. 2005;85:503-511.
22. Arabacilar P, Marber M. The case for inhibiting p38 mitogen-activated protein kinase in heart failure. Front Pharmacol. 2015;6:102.
23. Plateil C, Kong S-E, McCauley R, et al. Branched-chain amino acids. J Gastroenterol Hepatol. 2000;15:706-717.
24. Breuer K, Foroushani AK, Laird MR, et al. InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res. 2013;41:D1228-D1233.
25. Sun H, Wang Y. Branched chain amino acid metabolic reprogramming in heart failure. Biochim Biophys Acta. 2016;1862:2270-2275.
26. Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation. 1997;96:4065-4082.
50. Chintalgattu V, Ai D, Langley RR, et al. Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. *J Clin Invest*. 2010;120:472-484.
51. Zhang Y, Bauersachs J, Langer HF. Immune mechanisms in heart failure. *Eur J Heart Fail*. 2017;19:1379-1389.
52. Mak TW, Hauck L, Grothe D, et al. p53 regulates the cardiac transcriptome. *Proc Natl Acad Sci U S A*. 2017;114:2331-2336.
53. Sano M, Komuro I. P53 and its role in the development of heart failure. *Nihon Rinsho*. 2008;66:1013-1021.
54. Gupta S, Sen S. Role of the NF-kappaB signaling cascade and NF-kappaB-targeted genes in failing human hearts. *J Mol Med (Berl)*. 2005;83:993-1004.
55. Li Y, Ha T, Gao X, et al. NF-kappaB activation is required for the development of cardiac hypertrophy in vivo. *Am J Physiol Heart Circ Physiol*. 2004;287:H1712-H1720.
56. Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-kappaB in the heart: to be or not to NF-kappaB. *Circ Res*. 2011;108:1122-1132.
57. Santos DG, Resende MF, Mill JG, et al. Nuclear Factor (NF) kappaB polymorphism is associated with heart function in patients with heart failure. *BMC Med Genet*. 2010;11:89.
58. Tootleman E, Malamut B, Akshoomoff N, et al. Jacobsen syndrome phenotype in a patient with a de novo frameshift mutation in the ETS1 transcription factor. *Cold Spring Harb Mol Case Stud*. 2019;5:a004010.
59. Adeniran I, Whittaker DG, El Harchi A, et al. In silico investigation of a KCNQ1 mutation associated with short QT syndrome. *Sci Rep*. 2017;7:8469.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Jiang Z, Guo N, Hong K. A three-tiered integrative analysis of transcriptional data reveals the shared pathways related to heart failure from different aetiologies. *J Cell Mol Med*. 2020;24:9085-9096. https://doi.org/10.1111/jcmm.15544