MiR-26a Promotes Ovarian Cancer Proliferation and Tumorigenesis

Wenjing Shen1*, Min Song2*, Jie Liu3, Guangrong Qiu4, Tianren Li1, Yanjie Hu1, Hongbo Liu5

1 Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China, 2 Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Institute of Pathology and Pathophysiology, Shenyang, China, 3 Experimental Technology Center, China Medical University, Shenyang, China, 4 Department of Medical Genetics, China Medical University, Shenyang, China, 5 Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China

Abstract

MicroRNAs (miRNAs) important for posttranscriptional gene expression are involved in the initiation and progression of human cancer. In this study, we reported that miR-26a was over-expressed in human EOC specimens and the expression level of extracellular miR-26a in plasma can distinguish patients from healthy controls in EOC. Ectopic expression of miR-26a in ovarian cancer (OC) cells increased cell proliferation and clonal formation. This growth promoting effect of OC cell growth was mediated by miR-26a inhibition of the posttranscription of ERα. Furthermore, inhibition of miR-26a suppressed the tumor formation generated by injecting OC cells in nude mice. Our results suggest that aberrantly expressed miR-26a may contribute to OC development.

Citation: Shen W, Song M, Liu J, Qiu G, Li T, et al. (2014) MiR-26a Promotes Ovarian Cancer Proliferation and Tumorigenesis. PLoS ONE 9(1): e86871. doi:10.1371/journal.pone.0086871

Editor: Jin Q. Cheng, H. Lee Moffitt Cancer Center & Research Institute, United States of America

Received June 17, 2013; Accepted December 16, 2013; Published January 22, 2014

Copyright: © 2014 Shen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was sponsored by grants from the Project No. 30571836 from the NNSF (National Natural Science Foundation) of China. In addition, the work was financially supported by Science Foundation of the Education Department of Liaoning Province of China, and Project No.201202259 financially supported by Science Foundation of Science and Technology Bureau of Liaoning Province of China. Author Min Song contributed to experimental conceiving and design, guidance and discussion of the project, so she is the co-correspondence author of this paper. All the other funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wenjing0326@163.com (WS); songmin@sohu.com (MS)

Introduction

OC is the fifth most common cancer in women and the leading cause of cancer deaths from gynecological malignancy in western countries [1]. In 2012, there are 22,280 new cases and 15,500 deaths from OC in the United States according to the national cancer statistics. EOC accounts for 85%–90% of ovarian cancer. Unfortunately, the overall prognosis is poor and the molecular events that lead to the development of this disease are still little-known.

miRNAs represent a large family of endogenous noncoding RNAs and posttranscriptionally regulate gene expression [2]. Recent studies have revealed critical functions of miRNAs in essential processes, including proliferation, differentiation and cell death [3]. Altered expression or mutation of miRNAs has been reported in cancer, such as lung cancer, breast cancer, leukemia and other carcinomas [4]. In lung cancer cells, over-expression of let-7 inhibited their growth by targeting Ras [5,6]. Furthermore, miR-21 directly targets the tumor suppressor PTEN in hepatocellular cancer [7]. Moreover, several studies showed that miRNAs can function either as tumor suppressors (as is the case for the miR-15a–miR-16-1 cluster [9]) or oncogenes (as is the case for miR-21 [9]).

Genome-wide miRNA expression profiling showed miR-26a dysregulation in diverse cancers[10]. In this study, we found that miR-26a is over-expressed in human EOC. We demonstrate that inhibition of miR-26a decreased proliferation of human EOC cells, and suppressed growth of EOC cells in nude mice. In addition, ERα was down-regulated by miR-26a in EOC cells. Furthermore, we found that extracellular miR-26a levels in plasma can distinguish patients from healthy controls in EOC. Our study suggests that aberrant expression of miR-26a is critical for the development of human EOC and measurement of circulating miR-26a may be a good approach to EOC diagnosis.

Materials and Methods

Patients

Clinical specimens (including tissue and plasma samples) were collected from patients registered at The First Affiliated Hospital of China Medical University (Shenyang, China). The patients’ information is summarized in Table 1, Table S1 and Table S2.

Materials

Antibody against ERα was from Santa Cruz (Santa Cruz, CA, USA), antibody against α-tubulin from Sigma (St Louis, MO, USA). All other reagents were from Sigma. Anti-miR-26a and nonsense anti-miR were from GenePharma (Shanghai, PR China). Cel-miR-39 mimics were from IBS (Shanghai, PR China).

Quantitative RT-PCR (qRT-PCR, Quantitative Reverse Transcriptase-polymerase Chain Reaction)

Total RNA isolated from clinical specimens or cells using Trizol Reagent (Invitrogen, Carlsbad, CA, USA) were reverse-transcribed into cDNA according to the previous report [11]. Isolation of RNA from plasma and quantification of miRNA were carried out.
out as described in [12]. In brief, 25 fmol of Cel-miR-39 mimics was added to 400 ul plasma. Real-time PCR was carried out using SYBR green PCR master mix (TaKaRa, Otus, Shiga, Japan). Amplification and detection were performed using ABI Prism 7700 system (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s instructions. Cel-miR-39 was taken as reference gene for plasma samples. Primers used were listed in Table S3.

Cell Culture

The human OC cell lines, SKOV-3, ES2 (Cellbank, Shanghai, PR China) were maintained in McCoy’s 5a supplemented with 10% (v/v) fetal calf serum (Invitrogen, Carlsbad, CA, USA). These cells were incubated at 37°C with 5% CO2.

Vector Construction

Full-length human miR-26a was amplified from human genomic DNA and cloned into the pcDNA3.1 at KpnI and XhoI sites according to the previous report [13] and [14]. The human wild-type ERα was generated by PCR from cDNA and the PCR products were inserted into pcDNA3.1 as described in [15].

Cell Growth Assay

Cell growth was estimated by determination of the cell number and the colony formation. The cells were transfected with miR-26a or anti-miR-26a using FuGene HD (Roche, Indianapolis, IN) according to the manufacturer’s protocol. After culture for 24 hours the cells were seeded at an initial density of 1x10⁵ per 35 mm-dish. The cells were then harvested at the indicated times and the numbers were counted using the COULTERTM (Beckman, Fullerton, CA, USA).

Cells transfected with miR-26a were seeded into 96 well plates at a concentration of 2.5x10³ cells, and measured after 48 h using a WST-1 assay (Boster, Wuhan, PR China), performed according to the manufacturer’s protocol.

A total of 500 cells transfected with miR-26a or empty vector (Ctrl) were seeded in 35 mm dishes separately in triplicate. Three weeks later, the colonies were fixed with 4% paraformaldehyde, permeated with 20% methanol and stained with crystal violet. The stained cells were eluted by 10% glacial acetic acid and the

Luciferase Reporter Assay

1.5x10⁵ SKOV3 stable cells in 35 mm dishes were co-transfected with pGL3-ERα-WT (1 µg) or pGL3-ERα-Mut (1 µg) and pRL-TK (1 µg) using FuGENE® HD Transfection Reagent(Roche, Diagnostics Corp., Indianapolis, IN) following the manufacturer’s protocol. Forty-eight hours after transfection, luciferase activity was measured using a dual luciferase reporter assay system (Promega) and normalized to Renilla luciferase activity.

Western Blotting

Proteins were separated on SDS-8%PAGE, transferred to PVDF membranes (Amersham, Buckinghamshire, UK) and probed with primary antibodies and secondary antibodies conjugated with horseradish peroxidase. The protein bands were visualized by the Amersham ECL system and scanned. Their densities were determined by ImageQuant 5.2 software (Amersham).

In vivo Tumorigenesis

SKOV3 cells transfected with miR-26a or anti-miR-26a separately. Each nude mouse was subcutaneously injected with

Table 1. clinicopathologic data of ovarian cancer patients.

Total number	26
Pathological tumor stage	
I	3
II	4
III	17
IV	2
Grade	
G1	10
G2	9
G3	7
Histological type	
Serous cystadenocarcinoma	15
Mucinous cystadenocarcinoma	5
Endometrioid carcinoma	3
Clear cell carcinoma	3

doi:10.1371/journal.pone.0086871.t001

Figure 1. The expression of miR-26a was increased in EOC patients. (A)Quantitative analysis of the expression levels of miR-26a in EOC samples normalized to those of 18s rRNA by qRT-PCR. Data for each dot were mean value of one sample repeated in three independent experiments (normal, n = 19; tumor, n = 26). **P<0.01 vs Normal. (B)Quantitative analysis of the expression levels of plasma miR-26a by qRT-PCR. Data for each dot were mean value of one sample repeated in three independent experiments (normal, n = 13; tumor, n = 17). doi:10.1371/journal.pone.0086871.g001

OD595 values were measured by spectrophotometer as the indicator of cell number.
2 x 10^6 transfected SKOV3 cells. Thirty or thirty-five days after injection the mice were killed and the tumors were taken. The longest and shortest diameter of the tumor was noted as d1 and d2. The tumor volume was calculated using the equation: V = d1 x d2 x d2 / 2. Tumor weight was then measured.

Statistics
Multiple comparisons were assessed by SPSS statistical software for statistical analysis. Wilcoxon Test and Kruskal Wallis H Test were used in statistical analysis of patient samples. Other comparisons between groups for statistical significance were performed with Student’s t test and analysis of variance (ANOVA). Results were considered significant difference at *P < 0.05; **P < 0.01.

Ethics Statement
The research meets all requirements for the ethics of experiment. Clinical specimens were collected with consent of patients and healthy volunteers and approval of Medical Research Ethics Committee of the First Affiliated Hospital of China Medical
University. All participants have provided their written informed consent to participate in this study. All procedures involving animals were approved by the Institutional Animal Care and Use Committee of China Medical University.

Results

Increased Expression of miR-26a in Specimens and Plasma in Human EOC

It has been observed that the expression level of miR-26a was decreased or increased in human malignancies, such as breast carcinoma [16], nasopharyngeal carcinoma [17,18], and glioblastoma [19], indicating a complicated role of miR-26a in progression of the malignancies. To investigate the possible role of miR-26a in EOC development, we first examined the expression of miR-26a in specimens and plasma in EOC by SYBR-Green stem-loop qRT-PCR [20]. We examined the expression of miR-26a in 26 tumor samples and 19 normal ovaries. As shown in Figure 1A, the expression levels of miR-26a in tumor samples were much higher than those in normal ovary samples. Similarly, the concentrations of miR-26a were higher in plasma from EOC patients (n = 17) than in that from healthy controls (n = 13) (Figure 1B). Together, these results provide us initial evidence that miR-26a may play a role in the development of human EOC.

Over-expressing miR-26a Promoted EOC Cell Growth and Inhibiting miR-26a Suppressed EOC Cell Proliferation

We next examined whether miR-26a affects EOC cell growth using SKOV3 and ES2 cells as models. As shown in Figure 2A, the growth ability of SKOV3 and ES2 cells was increased by over-expression of miR-26a. On the contrary, the proliferation of the cells transfected with anti-miR-26a was markedly decreased compared with that of the cells transfected with nonsense (Figure 2B). WST-1 assay showed similar results in cell proliferation (Figure 2C). These results suggest that miR-26a indeed affected EOC cell growth.

The notion was further tested in the clonal formation assay. The number and size of the colonies formed were markedly increased in miR-26a transfected cells (Figure 2D). Together, these results suggest that miR-26a was indeed involved in the regulation of EOC cell growth.

ERα was a Target Gene of miR-26a in EOC Cells

We then investigated the mechanisms by which miR-26a promote EOC cell proliferation. In patients with hepatocellular carcinoma, the expression of miR-26a was higher in women than in men [21]. Moreover, miR-26a regulated liver tumor cell growth by targeting ERα [22]. As shown in Figure 3A, the luciferase activity of pGL3-ERα-WT in SKOV3-stable cells (S1) was much lower than in control cells. The luciferase activity of pGL3-ERα-Mut was rescued in Stable1 cells. We next examined whether miR-
miR-26a could regulate endogenous ERα expression in EOC cells. Compared with control, endogenous ERα mRNA levels (Figure 3B) and protein levels (Figure 3C) were down-regulated when cells were transfected with miR-26a.

MiR-26a Controlled the Proliferation of EOC Cells through ERα

Given the fact that miR-26a was involved in proliferation of EOC cells and ERα was a target of miR-26a, we next tested whether over-expression of ERα could rescue promotion of proliferation by miR-26a in EOC cells. Moreover, stable expression of miR-26a in two SKOV3 cell clones (S1 or S2) increased the growth of the cells about 1.58 or 1.37 fold, respectively (Figure 3D). QRT-PCR analysis showed that miR-26a expression level was greatly increased in S1 and S2 cells (Figure S1). As shown in Figure 3E, whereas growth of S1 cells transfected with ERα, were not different from that of control cells. These results indicate that miR-26a controlled proliferation of EOC cells through regulation of ERα expression.

MiR-26a Promoted the Development of Tumor in Nude Mice

To provide direct evidence that miR-26a was responsible for EOC development, SKOV3 cells transfected with either miR-26a or anti-miR-26a were injected into the flank of nude mice as described. A week after implantation, xenografted tumors could be seen. After thirty or thirty-five days, all nude mice were killed and the tumors were taken out and weighed. At the macroscopic observation, the differences in tumor size and volume among the two groups were indicated. The tumor volume generated from empty vector was 0.435±0.042 (cm³, P<0.01), that in miR-26a group was 0.829±0.172 (cm³, P<0.01) (Figure 4A), that in negative control group was 0.941±0.163 (cm³, P<0.01), and that in anti-miR-26a was 0.248±0.05 (cm³, P<0.01) (Figure 4B). The average weight of the tumor generated from empty vector was 0.433±0.07, whereas the average weight of the tumor generated from miR-26a was 0.821±0.02 (gram, P<0.01). The average weight of the tumor generated from nonsense was 1.062±0.169, whereas the average weight of the tumor generated from anti-miR-26a was 0.473±0.05 (gram, P<0.01), respectively.
results mentioned above suggest that miR-26a was critical for the development of EOC in vivo.

Discussion

In this study, we have shown that expression level of miR-26a was greatly increased in human EOC samples, and blood-based miR-26a level can distinguish patients from healthy controls in EOC. Our results also displayed that expression level of miR-26a affected EOC cell growth in culture. Moreover, ERα was a target for miR-26a in EOC cells. Furthermore, expression level of miR-26a affected tumor formation in nude mice. Therefore, our results are consistent with an idea that miR-26a is critical for the development of human EOC.

MicroRNAs are known to regulate the expression of genes involved in several biological processes such as development, proliferation, apoptosis and stress response [23]. Recent studies showed a direct link between miRNAs and human cancers [4,24,25,26]. MiRNAs can be oncogetic miRNA (oncomirs) or tumor suppressor relevant to cancer. As previously shown, loss of oncogenic miR-21, acting to repress RHOB, is associated with an elevation of RHOB in hepatocellular carcinoma and breast cancer cells [13]. The importance of other miRNAs, such as let-7, miR-16, miR-126 and miR-125b has also been demonstrated [27]. Recent microarray profile data shows miR-26a dysregulation in diverse cancer [4]. In liver cancer, miR-26a protects normal liver tissue from hepatocellular carcinoma-promoting inflammation[21], and appears to antagonize human breast cancer [16] and rhabdomyosarcoma [28]. On the contrary, miR-26a facilitates glioblastoma formation as an oncogene [19]. Our results obtained from gain-of-function and loss-of-function approaches indicated that miR-26a promoted proliferation and inhibition of miR-26a suppressed EOC cell proliferation.

In ovarian cancer, ERα expression has been studied to correlate to chlino-pathological parameters and prognosis [29,30]. Previous study showed that it did not reveal any correlations with histologic type of tumors and ovarian cancer grading [30]. Univariate survival analysis revealed that patients with positive-ERα status had a significant better progression-free survival compared with the patients with no expression[31]. In our results, the expression of miR-26a in specimens and plasma in EOC were much higher than those in normal ovary samples, and miR-26a promote EOC cell proliferation by targeting ERα. It means that miR-26a might be an important factor in the survival of ovarian cancer.

Circulating biomarkers are used to diagnostic disease, monitor therapeutic effect and predict recurrence in clinical applications. The discovery of circulating miRNAs in cancer patients indicates their potential application as powerful biomarkers in cancer diagnostics[32]. Recent studies revealed that cancer-related miRNAs could stably detectable in plasma and serum which originate from cancer tissues [4,33]. Our results investigate the possibility of miR-26a applied as a biomarker in clinical setting through examining the expression of miR-26a in plasma of EOC patients.

In conclusion, inhibition of miR-26a decreased EOC cell growth in culture and in nude mice. MiR-26a affected proliferation of EOC cells by targeting ERα. An important implication of current study is that miR-26a might be a potential target for therapeutic intervention to human EOC.

Supporting Information

Figure S1 MiR-26a expression level was greatly increased in S1 and S2 cells. QRT-PCR determined the expression levels of miR-26a in S1 and S2 cells. Data were mean±s.e. of three independent experiments in triplicate.*P<0.01 vs Ctrl. (DOC)

Table S1 clinicopathologic data and miR-26a expression level of control. (DOC)

Table S2 clinicopathologic data and miR-26a expression level of ovarian cancer patients. (DOC)

Table S3 Primers used in Quantitative RT-PCR. (DOC)

Author Contributions

Conceived and designed the experiments: WS MS. Performed the experiments: WS MS JL GQ TL YH HL. Analyzed the data: WS MS HL. Contributed reagents/materials/analysis tools: WS MS JL GQ TL YH HL. Wrote the paper: WS.

References

1. Hoskins VJ (1995) Prospective on ovarian cancer: why prevent? J Cell Biochem Suppl 23: 189–199.
2. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of posttranscriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102–114.
3. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94: 776–780.
4. Calin GA, Croce CM (2006) MicroRNA signatures in cancers. Nat Rev Cancer 6: 857–866.
5. Takamizawa J, Kimishi H, Yanagisawa K, Tomida S, Osada H, et al. (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3735–3736.
6. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, et al. (2005) RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.
7. Meng F, Hemson R, Wehbe-Janek H, Ghoshal K, Jacob ST, et al. (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133: 647–658.
8. Bonci D, Coppola Y, Masucci M, Addario A, Giaffreda R, et al. (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14: 1271–1277.
9. Medina PP, Solde M, Slack FJ (2010) OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467: 85–90.
10. Zhang L, Volinia S, Bologna T, Calin GA, Greshock J, et al. (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A 105: 7004–7009.
11. Chen C, Ridzon DA, Brouwer AJ, Zhou Z, Lee DH, et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR: Nucleic Acids Res 33: e179.
12. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105: 10513–10518.
13. Zhang TC, Yu D, Lee YN, Wentzel EA, Arking DE, et al. (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40: 43–50.
14. Mohamed JS, Lopez MA, Boriek AM (2010) Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-beta. J Biol Chem 285: 29336–29347.
15. Bake S, Ma L, Sohrabi F (2008) Estrogen receptor-alpha overexpression suppresses 17beta-estradiol-mediated vascular endothelial growth factor expression and activation of survival kinases. Endocrinology 149: 3081–3089.
16. Zhang B, Liu XX, He JR, Zhou CX, Guo M, et al. (2011) Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis 32: 2–9.
17. Baffa R, Fossan M, Volinia S, O’Hara B, Liu CG, et al. (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219: 214–221.
18. Lu J, He ML, Wang L, Chen Y, Liu X, et al. (2011) MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res 71: 225–233.
19. Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, et al. (2009) The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23: 1327–1337.
20. Feng J, Wang K, Liu X, Chen S, Chen J (2009) The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR. Gene 437: 14–21.
21. Ji J, Shi J, Budhu A, Yu Z, Forgues M, et al. (2009) MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 361: 1437–1447.
22. Chen L, Zheng J, Zhang Y, Yang L, Wang J, et al. (2011) Tumor-specific expression of microRNA-26a suppresses human hepatocellular carcinoma growth via cyclin-dependent and -independent pathways. Mol Ther 19: 1521–1528.
23. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5: 522–531.
24. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, et al. (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99: 15524–15529.
25. Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1: 882–891.
26. Garofalo M, Croce CM (2011) microRNAs: Master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol 51: 25–43.
27. Fujii YR (2009) Oncoviruses and Pathogenic MicroRNAs in Humans. Open Virol J 3: 37–51.
28. Ciarapica R, Russo G, Verginelli F, Raimondi L, Donfrancesco A, et al. (2009) Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma. Cell Cycle 8: 172–175.
29. Cunat S, Hoffmann P, Pupol P (2004) Estrogens and epithelial ovarian cancer. Gynecol Oncol 94: 25–32.
30. Hecht JL, Kotsopoulos J, Hankinson SE, Tworoger SS (2009) Relationship between epidemiologic risk factors and hormone receptor expression in ovarian cancer: results from the Nurses’ Health Study. Cancer Epidemiol Biomarkers Prev 18: 1624–1630.
31. Halou A, Materna V, Drag-Zalesinska M, Nowak-Markwitz E, Ganauli T, et al. (2011) Estrogen receptor alpha expression in ovarian cancer predicts longer overall survival. Pathol Oncol Res 17: 511–518.
32. Ma R, Jiang T, Kang X (2012) Circulating microRNAs in cancer: origin, function and application. J Exp Clin Cancer Res 31: 30.
33. Chen X, Ba Y, Ma L, Cai X, Yin Y, et al. (2006) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18: 997–1006.