Identification of a BET Family Bromodomain/Casein Kinase II/TAF-Containing Complex as a Regulator of Mitotic Condensin Function

Hyun-Soo Kim,1 Rituparna Mukhopadhyay,1,12 Scott B. Rothbart,2,12 Andrea C. Silva,1 Vincent Vanoosthuyse,3,13 Ernest Radovani,4 Thomas Kislinger,5 Assen Roguev,6,7 Colm J. Ryan,6,7,8 Jiewei Xu,6,7,9 Kevin G. Hardwick,1 Jack F. Greenblatt,10 Nevan J. Krogan,6,7,11 Jeffrey S. Fillingham,4 Brian D. Strahl,2 Eric E. Bouhassira,1 Winfried Edelmann,1 and Michael-Christopher Keogh1,*

1Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10454, USA
2Department of Biochemistry and Biophysics, UNC School of Medicine, Chapel Hill, NC 27599, USA
3Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3QR, Scotland
4Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
5Princess Margaret Cancer Center, Toronto, ON M5G 1L7, Canada
6Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94158, USA
7California Institute for Quantitative Biosciences, San Francisco, CA 94158, USA
8School of Medicine & Medical Science, University College, Dublin 4, Ireland
9Malaysian Institute of Pharmaceuticals and Nutraceuticals, 11800 USM Penang, Malaysia
10Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
11J. David Gladstone Institutes, San Francisco, CA 94158, USA
12These authors contributed equally to this work
13Present address: Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
*Correspondence: michael.keogh@einstein.yu.edu
http://dx.doi.org/10.1016/j.celrep.2014.01.029

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

SUMMARY

Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.

INTRODUCTION

The genome has to be faithfully transmitted to each daughter at cell division. To this end, the interphase chromatin is condensed to individual chromosomes at early mitosis, providing the structure needed to survive sister-chromatid separation. A major regulator of this extensive remodeling is the pentameric condensin complex, comprising two SMCs (structural maintenance of chromosomes) ATPases, a kleisin, and two HEAT-repeat proteins (Cuylen and Haering, 2011; Hirano, 2012; Onn et al., 2007; Wood et al., 2010). Cells containing mutants in each condensin subunit show poorly structured mitotic chromosomes and profound segregation defects, including the fission yeast (Schizosaccharomyces pombe; Sp) cut+ phenotype where the division septum cuts through unsegregated chromosomes at the metaphase plate (Saka et al., 1994).

Many metazoa contain two condensin complexes (I and II) that pair the same SMCs with alternative accessory subunits. This allows each complex to function independently, such that vertebrate condensin II regulates early chromosome condensation in prophase, and condensin I then loads in prometaphase to complete the reaction (Hirota et al., 2004; Ono et al., 2003, 2004). Fission yeast, in contrast, relies on a single condensin I that is presumed to regulate chromosome condensation through mitosis. The precise means by which any condensin regulates chromosome structure is unclear. In vitro analyses show that the immunopurified complex can introduce positive supercoils to relaxed circular DNA (in concert with
topoisomerase II) and induce chiral knotting in nicked DNA (Kimura et al., 1999). During in vivo condensation, condensin is also thought to generate higher order structures by directly linking distant regions of a chromosome fiber (Cuylen and Haering, 2011; Hirano, 2012; Wood et al., 2010).

Chromosome condensation is unlikely a simple direct consequence of condensin-DNA binding: the complex also has to be activated. Covalent modification is presumed central to this regulation, with many of the condensin subunits extensively phosphorylated, acetylated, and sumoylated (Bazile et al., 2000; Takemoto et al., 2009; Tanaka et al., 2012).

RESULTS

Deletions of the Hat1 Acetyltransferase and Nrc1 Bromodomain Rescue the Anaphase Segregation Defects of Mutant Condensin

To begin this study, we used a genetics approach to identify second-site deletions that specifically rescue the lethality of conditional condensin mutants (the temperature-sensitive ts alleles of condensin (cut3-477, cut14-208) or cdc25 phosphatase (cdc25-22) in the context of deletions of ~75% of the nonessential Sp genome. Deletions of the Hat1 acetyltransferase and the Nrc1 bromodomain Double-mutant arrays were pinned in quadruplicate and incubated as indicated (mutants of interest are boxed; panel are size standardized to facilitate cross-comparison).

Figure 1. Deletions of the Hat1 Acetyltransferase and Nrc1 Bromodomain Rescue Mutant Condensin

(A) The PEM-2 approach was used to place conditional temperature-sensitive (ts) alleles of condensin (cut3-477, cut14-208) or cdc25 phosphatase (cdc25-22) in the context of deletions of ~75% of the nonessential Sp genome.

(B) condensin–specific suppressors include individual deletions of Hat1 acetyltransferase and the Nrc1 bromodomain. Double-mutant arrays were pinned in quadruplicate and incubated as indicated (mutants of interest are boxed; panel are size standardized to facilitate cross-comparison). (C) hat1Δ and nrc1Δ rescue condensin ts alleles (cut3-477, cut14-208, and cn2-1) in direct testing. Strains were isolated by crossing and tetrad dissection, spotted as 10-fold serial dilutions onto nonselective YES media, and incubated as indicated. WT, wild-type. (D) hat1Δ and nrc1Δ repair the anaphase chromosome segregation defects of cut3-477. Replicate cultures were shifted from 25°C to 34°C (nonpermissive for cut3-477) for 3 hr and fixed, and the percentage (mean ± SD) of late anaphase cells with chromosome segregation defects was determined.
fission yeast deletions (~75% of the nonessential genome; Kim et al., 2010) identified suppressive deletions of two factors with likely roles in the regulation or recognition of acetyl-lysine (Kac): Hat1 acetyltransferase and SPAC631.02 (hereafter called Nrc1; negative regulator of condensin 1), a poorly characterized protein containing a BET-family tandem bromodomain (Figures 1B and S1A). Direct testing confirmed that hat1Δ and nrc1Δ also suppressed a ts allele of the condensin kleisin subunit (cnad2-1) (Figure 1C). Furthermore each deletion significantly improved the anaphase chromosome structure achievable by cut3-477 alone (Figure 1D), indicating that their suppression of mutant condensin is mediated at mitosis.

Hat1-Mis16 Regulates the Core Centromeric Histone Acetylation that Anticorrelates with Condensin Occupancy through Mitosis

The identification of hat1Δ and nrc1Δ as condensin suppressors suggested that specific acetyl-lysines might play a role in condensin function. To investigate this, we first examined the core centromere, the region of maximal condensin enrichment at mitosis (Nakazawa et al., 2008) (Figures S1B–S1D). Of note, H4ac at this location is dramatically reduced in a meta-centric core centromere in prometaphase and returns at telophase/G1 (Hayashi et al., 2004; Pidoux et al., 2009; Williams et al., 2012). Together, this collection of genetic interactions identified negative interactions with mutants related to chromosome segregation, centromere identity, histone deacetylation, and condensin function (Rogev et al., 2008; Ryan et al., 2012) (Figure S2D). Importantly, the latter group included the deletion (pht1Δ) or unacylatable mutation (pht1-1Δ, 4KR, or 4KQ) of histone variant H2A.Z, all of which show the premature dissociation of condensin from anaphase chromosomes (Kim et al., 2009). Together, this collection of genetic interactions strongly supported a role for Nrc1 in mitotic chromosome function.

Various models of BDs in complex with specific Kac peptides identify a conserved region comprising a left-handed bundle of four α helices (αZ, A, B, C) linked by the ZA and BC loops that contribute to substrate specificity (Dhalluin et al., 1999; Jacobson et al., 2000; Owen et al., 2000). We used these structures to mutagenize the region containing an invariant tyrosine in the ZA loop of each Nrc1 BD (BD1*, nrc1-PDYF266-269AAAA; BD2*, nrc1-PDYF428-431AAAA; BD1*/BD2*: Figure 3A), which should significantly reduce their affinity for Kac (Dhalluin et al., 1999). Immunoblotting confirmed that each allele was expressed at a comparable level to wild-type (WT, Figure 3B), but nrc1-BD1*’/BD2* showed reduced centromeric recruitment after mitosis (Figure 3C) indicating that its bromodomains contribute to the association of Nrc1 with chromatin. This appears essential to Nrc1 function because each BD mutant also rescued mutant condensin (Figure 3D), recapitulating this phenotype of nrc1Δ (e.g., Figure 1C).
Figure 2. Centromeric H3ac and H4ac Levels Anticorrelate with Condensin through Mitosis in a Hat1-Dependent Manner
(A) H4ac is reduced at the core centromere in metaphase-arrested cells. WT or nda3-KM311 cells were placed at a restrictive temperature for the cold-sensitive tubulin allele (20°C, 6 hr) to induce spindle-dependent metaphase arrest (Hiraoka et al., 1984), and ChIP was used to monitor condensin (represented by the Cut3 subunit) and H4ac in each population (WT is asynchronous). In each duplex PCR, the upper band is the test region (C3.5, core centromere: see Figure 2C); lower band (GFR, Gene Free Region) is a condensin-free location as a background control (Kim et al., 2009). Input tests primer efficiency in each sample.
(B) Hat1 contributes to the acetylation of histones H3 and H4. Whole-cell extracts (WCEs) were isolated from the indicated strains and the relative level of each acetylated species determined by immunoblotting. Total H3 is a loading control.
(C) Centromeric H3-K9ac levels anticorrelate with condensin. Cells (additionally containing cdc25-22) were arrested at G2/M before synchronous release (as in Figure S1B) and ChIP used to monitor the indicated factors or histone modifications at the chromosome I centromere core or outermost repeats (C3.5 or C2; see upper schematic). The septation index (SI: peak shaded) and control ChIPs confirmed synchronous progression and equivalent antibody access at each time point (see also Figures S1E–S1J). The specific ChIP signal at each location/time point is expressed relative to the respective T0 (set to 1).
(D) Nrc1 binding at the centromere core parallels Hat1-dependent H3-K9ac and H4ac and anticorrelates with condensin (see also Figure S1I). Each ChIP signal is expressed relative to the respective WT T0 (set to 1).
(E) Hat1 coprecipitates Mis16 (see also Table S1). Immunoblots of epitope tagged factors in WCEs or immunoprecipitates (IPs) are as indicated.
(F) Mis16.HA3 binding at the centromere core parallels mitotically regulated H3-K9ac (see also Figure S1J). The timing of peak septation and condensin binding in Mis16.HA3 indicates delayed mitotic progression (as in hat1D: D).
(G) Mis16.HA3 rescues condensin mutants (see also Figure S1K). Strains were spotted as 10-fold serial dilutions onto YES plates.
Individual BDs display selectivity for specific acetyl-lysines, most frequently (though unlikely exclusively) those on the histone N termini (Dhalluin et al., 1999; Filippakopoulos et al., 2012; Owen et al., 2000). To examine such specificity for the Nrc1 BDs, we purified recombinant WT and mutant forms of the domains (Figure 3A) and used each to probe a comprehensive array of histone peptides containing various combinations of posttranslational modifications (Fuchs et al., 2011; Rothbart et al., 2012). In this approach, the WT and BD2* recombinants (but not BD1* or BD1*/BD2*) showed strong specificity for peptides representing a hyperacetylated form of the histone H4 N terminus (Figures 3E and S2E–S2G). This was further investigated by isothermal titration calorimetry (ITC), where the WT and BD2* recombinants bound with ~10 μM affinity to an H4tetra-ac peptide, an ability not exhibited by BD1* (Figure 3F). Together, these analyses indicate that Nrc1 binds H4ac via BD1, a specificity that reflects the correlation between centromeric H4ac and Nrc1 levels through mitosis (Figure 2D). Our inability to distinguish Nrc1-BD2 binding in these in vitro studies does not indicate a lack of function, with the importance of this domain demonstrated by phenotypic testing (Figure 3C). It is possible that BD2 binds arrayed histone peptides weaker than the
identification and Characterization of the NCT Complex

The above results suggest that Nrc1 could be an effector, recruited by specific mitotically regulated histone acetylation to regulate condensin function. However, other than its tandem bromodomains to mediate chromatin binding, Nrc1 contains no obvious functional domains (Figure 3A). To address this, we generated an Nrc1.TAP strain to isolate any associated proteins by sequential purification/LC-MS. This identified all three subunits of the CKII holoenzyme (Cka1, Ckb1, and Ckb2) and five TAFs (TBP-associated factors) as binding partners (Figure 4A; Table S1). The association with CKII was of particular interest because the human form of this kinase hyperphosphorylates four subunits of condensin I in interphase, inhibiting its supercoiling activity (Takemoto et al., 2006). This kinase-substrate relationship appears conserved across evolution, with proteomic analyses identifying phosphopeptides corresponding to consens CKII subunits on the non-SMC subunits of budding yeast condensin (Bazile et al., 2010; Beltrao et al., 2009; Smolka et al., 2007). Fission yeast condensin contains >100 consensus CKII sites (SXXE/D; high-threshold predictions by GPS 2.1 online; Xue et al., 2008), so we used a genetic approach to investigate any potential relationship between these factors. The CKII α-kinase subunit (Cka1) is essential for viability, but both β-regulatory subunits (Ckb1 and Ckb2) are individually redundant (Rousou and Draetta, 1994), and ckb1Δ or ckb2Δ each rescued condensin mutants (Figure 4B), with ckb1Δ also improving the mitotic chromosome architecture achieved by cut3-477 alone (Figure S1K). This penetrant rescue of mutant condensin suggests a core role for the kinase, despite its multiple substrates (Filhol and Cochet, 2009). The relative strength of rescue (ckb1Δ > ckb2Δ) may reflect the differential contribution of each β-regulatory subunit to activity of the α-kinase in vivo (as suggested by cell growth, with cka1Δ lethal > ckb1Δ sick > ckb2Δ WT-like; Figure 4B).

CKII is a promiscuous enzyme, so in vivo specificity is achieved by associated proteins targeting the kinase to distinct subcellular locations (Filhol and Cochet, 2009). In this manner, Cka1 binding at the core centromere through mitosis resembled and was partially dependent on Nrc1 (Figures 3C and 4C). Therefore, we asked whether the NCT (Nrc1-CKII-TAFs) complex might mediate CKII-delivery, and thus whether the kinase is found in this context at specific genomic regions. To this end, we used ChIP sequencing (ChIP-seq) to analyze three representative complex subunits (Nrc1, Cka1, and Taf7) and identified >2,000 peaks for each factor (Figures 4D, 4E, and S3–SS; Table S2), with quantitative PCR (qPCR) confirming the expected enrichment at ten test locations (Figures 4F and S4). Initial comparisons suggested a limited correlation between specific regions of Nrc1, Cka1, and Taf7 enrichment across the epigenetically complex centromere (Figures 4D and S3; see Discussion), but a striking correspondence between all three factors along the chromosome arms (e.g., Figures 4E and S3). On considering the major peaks of Nrc1, Cka1, and Taf7 (approximately top 15%; see Table S2), we noted that essentially all were located at transcription start sites (TSSs ± 250 bp). Furthermore, all three proteins were consistently coenriched at these locations, with ~52%, 54%, and 47% of their respective major peaks in the context of NCT (Figure 5A). This strong overlap was maintained when all peaks associated with a TSS were considered, with the percentage of each within NCT > 42% in the case of Nrc1 and Cka1 (Figure 5B). Permutation testing (randomly sampling 106 TSS sets of equal size to those bound by Nrc1, Cka1, and Taf7) estimated the chance overlap rate for their major peaks at 1.43 ± 1.19 (208 observed; p < 10−5) and all peaks at 54.24 ± 6.96 (573 observed; p < 10−6). This highly significant disparity between chance and observation supported a direct relationship between all three factors.

We considered that NCT could represent TFIID, a component of the RNA polymerase II (RNAPII) preinitiation complex: Bdf1 (a potential homolog of Nrc1), CKII, and the TAF proteins all copurify in this context from budding yeast (Auty et al., 2004; Matangkasombut et al., 2000). However, multiple lines of evidence identify NCT as a distinct complex. For example, NCT is associated with 194 of the 215 genes encoding structural RNAs (i.e., 5S rRNA, snRNA, snRNA, and tRNA: Figures 5C–5F), many of which are transcribed by RNAPII (Roberts et al., 2003). Furthermore Nrc1, Cka1, and Taf7 in comparison to TBP (and by extension, TFIID) are not restricted to promoters, and their major peaks cover a much greater area (~1.2 kb NCT versus ~450 bp TBP; Figure S5). Indeed, the peak structure of specific subunits may indicate how NCT could associate with specific regions. Of Nrc1, Cka1, and Taf7, the last most closely resembled TBP (e.g., Figure 4E). This was particularly obvious at the divergently transcribed histone loci, where TBP and Taf7 were most highly enriched over the central promoter region, with Nrc1 and Cka1 also abundant across both gene bodies (Figures 5G and S6). In contrast, Nrc1 and Cka1 spreading was unidirectional along the unpaired hta2+ (Figure 5G). Thus, the TAF subunits (represented by Taf7) may mediate NCT recruitment to promoter-bound TBP, and the complex could then “spread” over a wider area via the Nrc1 bromodomains binding H4ac (and/or other acetyl marks), perhaps also promoted by active transcription. In this manner, Nrc1 would stabilize, rather than target, the association of NCT with chromatin, making best use of the low-affinity BD-Kac interaction (e.g., Figure 3F).

Condensin and the NCT Complex Bind Similar Genomic Locations but Not at the Same Time

As above, mutants in NCT rescue those in condensin (e.g., Figures 2D, 3D, and 4B). To further investigate if this indicated a direct regulatory relationship, we tested if the two complexes shared a preference for locations additional to the core centromere (e.g., Figures 2D, 3C, and 4C). Condensin is extrachromosomal for much of the cell cycle (Nakazawa et al., 2008), so we used cell-cycle synchronized ChIP-seq of identify sites of complex binding (represented by the Cut3 subunit) at various stages through mitosis. As expected, Cut3 was highly enriched at the core centromere in metaphase/anaphase and then rapidly dissociated (Figures 6A, 6B, and S3D). Cut3 associated with comparable kinetics at ~1,759 sites across the chromosome arms, including its previously reported preference for the structural RNAs (D’Ambrosio et al., 2008; Haesler et al., 2008; Tanaka et al., 2012) (144 of the 215 genes; p value < 2.2 x 10−16;
Figures 6C, S3H, and S7; Table S2). Of note the specific areas of Cut3 enrichment across the chromosome arms were strongly reminiscent of those bound by NCT (e.g., Figures S3 and S6). As an example, Cut3, Nrc1, Cka1, and Taf7 share a preference for 425 TSS-containing regions (Figure 6D); >60-fold more than expected by chance (permutation testing 10^6 events: 6.49 ± 2.52). Furthermore, the overlap between [Cut3: NCT] at these locations encompassed > 80% of [Cut3: Cka1 alone] (Figure 6E), suggesting the central importance of NCT to any relationship between CKII and condensin.

Figure 4. Identification and Initial Characterization of the NCT Complex

(A) Nrc1 (independent of its BDs) coprecipitates Cka1 (see also Table S1). Epitope tagged factors from WCEs or IPs were immunoblotted as indicated.

(B) Deletion of the CKII regulatory β subunits rescues cut3-477 (ckb1Δ > ckb2Δ; see also Figure S1K). Strains were spotted as 10-fold serial dilutions onto YES plates.

(C) Cka1 occupancy at the core centromere through mitosis is partially dependent on (and parallels: see Figure 3D) Nrc1. All ChIP signals are expressed relative to WT T0 (set to 1).

(D) Nrc1, Cka1, and Taf7 enrichment across the chromosome 1 centromere (see also Figure S3). ChIP-seq data from asynchronous cells were loaded into GenPlay as individual tracks relative to the annotated S. pombe genome (for dynamic visualizations of each track of the GenPlay project, see Data S1). TBP identifies the tRNAs that demark the inner/outer centromere and pericentromeric boundary; H3-K9me2 identifies the heterochromatic outer repeats. Upper schematic depicts CEN1 structure; lower track genomic elements (e.g., genes or tRNAs) in the ∼70 kb window region.

(E) Nrc1, Cka1, and Taf7 colocalization at representative locations on the chromosome arms (see also Figure S3). Each 10 kb window is named for the centered genomic feature. GFR encompasses the condensin-free region used as a background control for ChIP (e.g., Figure 2C).

(F) ChIP confirms ChIP-seq predictions of Nrc1, Cka1 and Taf7 enrichment at the chromosome arms (GFR, G1, and H1) and core centromere (c3.5). Samples were prepared from asynchronous cells and analyzed by qPCR (rather than duplex PCR as done previously) with primers flanking the regions indicated in (D) and (E). The enrichment of each factor at each location is normalized to GFR (set to 1 for each IP).
Finally, we asked if condensin and NCT co-occupy their preferred locations along the chromosome arms through mitosis. To this end, we subjected Nrc1 to synchronous ChIP-seq and compared its enrichment to that of Cut3 at each cell-cycle stage. As expected from direct ChIP analyses (e.g., Figures 2D and 6A), Nrc1 levels across the centromere were lowest at metaphase (T 75) when Cut3 binding was at its peak (Figures 6B, 6B', and S3). However, a similar pattern was observed across the chromosome arms, with Nrc1 delocalizing from its preferred sites through mitosis and returning in G1/S (Figures 6C and S3). This profile extended through the NCT complex, with Nrc1, Cka1, and Taf7 occupancy at representative sites increasing as cells pass through mitosis (Figures 6F and S4). We note that such a pattern would colocalize CKII with its potential condensin substrate as cells complete mitosis and chromosome decondensation occurs (Figure 7).

DISCUSSION

In this study, we uncover and characterize a potential mechanism for the regulation of genome condensation at mitosis. To this end, we subjected Nrc1 to synchronous ChIP-seq and compared its enrichment to that of Cut3 at each cell-cycle stage. As expected from direct ChIP analyses (e.g., Figures 2D and 6A), Nrc1 levels across the centromere were lowest at metaphase (T 75) when Cut3 binding was at its peak (Figures 6B, 6B', and S3). However, a similar pattern was observed across the chromosome arms, with Nrc1 delocalizing from its preferred sites through mitosis and returning in G1/S (Figures 6C and S3). This profile extended through the NCT complex, with Nrc1, Cka1, and Taf7 occupancy at representative sites increasing as cells pass through mitosis (Figures 6F and S4). We note that such a pattern would colocalize CKII with its potential condensin substrate as cells complete mitosis and chromosome decondensation occurs (Figure 7).

The Regulation and Role(s) of NCT Complex

Our identification of the NCT complex is supported by three independent approaches: copurification, shared mutant phenotypes, and extensive subunit colocalization (e.g., Figures 4 and 5). Given its tandem bromodomains, it is likely that the Nrc1 subunit contributes to NCT targeting and/or binding at specific genomic locations (Filippakopoulos et al., 2012; Wang et al., 2013). In this regard, we show that both Nrc1 BDs are functional (Figure 3D) and required for efficient Nrc1 recruitment to the centromere (Figure 3C). Furthermore, BD1 shows selective binding to the hyperacetylated H4 N terminus (Figures 3E, 3F, and S2E–S2G), and Nrc1 levels track centromeric H4ac levels through mitosis (Figure 2D). However, the low affinity of this interaction (Figure 3F) suggests that additional, as yet unidentified, entities (e.g., linked to active transcription; Figure 5G) contribute to the efficient in vivo association of NCT with chromatin. These could be recognized by other members of the NCT complex at specific genomic locations and/or cell-cycle stages.
This study does not specifically address any role(s) for NCT in interphase cells, although its specific sites of enrichment are highly suggestive of function. For example, the almost total coverage of structural RNAs (194 of the 215 genes; Figures 5C–5F) indicates the importance of NCT to these locations, where the concomitant recruitment of CKII may contribute to the positive regulation of RNApIII transcription (Ghavidel and Schultz, 2001). It also remains to be determined if NCT functions exclusively as a CKII-delivery platform, although it is almost certainly not the only means to recruit this promiscuous kinase to chromatin. CKII is targeted to distinct subcellular locations by a range of associated proteins (Filhol and Cochet, 2009), and NCT likely differentially contributes to the total kinase pool at various chromosomal locations: this would help to explain the peak patterns of Cka1 versus Nrc1 and Taf7 at distinct regions, including the core centromere (Figures 4D and S3), and the only partial dependence of Cka1 on Nrc1 at this location (Figure 4G).

NCT as a Regulator of Condensin Function

We have largely focused on the potential role of NCT in mitotic genome function and considered a range of possible mechanisms by which the transient overlap between NCT and condensin in early and late mitosis could directly regulate chromosome condensation/decondensation. Recent studies show that human Brd4-isoform B mediates the recruitment of condensin II during DNA damage (Floyd et al., 2013). This is of particular note because Brd4 is the closest human homolog of Nrc1: both contain tandem bromodomains share a specificity for H4ac and are selectively inhibited by JQ1 (Filippakopoulos et al., 2012; Filippakopoulos et al., 2010; data not shown). However, Nrc1 does not contain the responsible C-terminal condensin II-interaction domain in Brd4-isoform B, Sp only contains the condensin I complex, and the suppressive genetic interactions of nrc1 and condensin mutants do not support a positive role for Nrc1 in condensin recruitment. In an alternate interpretation, their genetic interactions and mitotically regulated binding profiles could indicate that NCT and condensin compete for occupancy at specific locations, such that NCT must be removed at prometaphase to allow condensin to load, and its return after anaphase displaces condensin. However, evidence argues against such a relationship: NCT and condensin bind related rather than identical sites (e.g., compare the peaks in Figures 6A–6C).
S3 and S6), and Cut3 recruitment is comparable in WT and nrc1Δ cells (e.g., Figure 3C).

We rather favor a mechanism that accommodates all our findings and builds on the observation that human condensin I is phosphorylated, and thus catalytically inhibited, by CKII (Takemoto et al., 2006). In this manner, any colocalization of kinase and substrate would be directly regulatory, such that the dissociation of NCT at early mitosis would relieve any CKII-mediated inhibition of condensin to control chromosome condensation, whereas its return in G1 would contribute to decondensation (Figure 7). This model would also accommodate the extensive literature relating mitotic kinase activity to condensin function (reviewed in Bazzle et al., 2010).

Human condensin I is constitutively hyperphosphorylated, though the specific sites and responsible enzymes differ at interphase and mitosis. Phosphorylation at interphase (when condensin is primarily cytoplasmic) is mediated by CKII, whereas that at mitosis (after transport into the nucleus) is mediated by the mitotic kinases Cdk1 (Cdc2), Aurora B (Ipl1), and Polo (Cdc5) (Bazzle et al., 2010; St-Pierre et al., 2009; Takemoto et al., 2006, 2007). The primary role of phosphorylation may be to control the catalytic activity of condensin, whose intrinsic ability to supercoil DNA is inhibited by CKII but activated by the mitotic kinases (Bazzle et al., 2010). Of particular importance, the CKII-dependent inhibition of condensin is dominant over its Cdk1-dependent activation (Takemoto et al., 2006). This could explain how budding yeast condensin can remain constitutively associated with chromosomes (D’Ambrosio et al., 2008; Wang et al., 2005); their condensation at mitosis is not the direct consequence of condensin binding but rather occurs after appropriate activation.

Chromosome condensation initiates in early mitosis, suggesting that condensin is fully activated in response to low Cdk1 levels (Bazzle et al., 2010). Spurious activation is a possible consequence of such ultrasensitivity, so condensin arrives from the cytoplasm painted with CKII-mediated inhibitory phosphorylations (Bazzle et al., 2010; Takemoto et al., 2006). However, we now show that CKII (both within and independent of the NCT) also occupies many condensin binding sites at the core chromosome arms (e.g., Figures 6C–6E and S3). Any colocalization of inhibitory CKII with condensin at early mitosis would allow NCT to regulate the initiation of condensation and could explain the increased rate of defective anaphases in nrc1Δ and ckb1Δ cells (Figures 1D and S1K).

As mitosis proceeds, full condensin activation/chromosome condensation would require NCT to dissociate from chromatin, and any inhibitory CKII-mediated phosphorylations to be removed (possibly by PP2A or PP1 phosphatases; Vagnarelli et al., 2006; Xing et al., 2008). The precise means by which NCT is displaced prior to metaphase is unknown, although it may be a combination of mitotic phosphorylation (which drives the global displacement/relocalization of chromatin associated factors [Zaidi et al., 2010] and reduced acetylation [Kruhlak et al., 2001; Sasaki et al., 2009]) (Figures 2D and S1). Of note, NCT does not entirely dissociate from chromatin, and indeed Cka1 levels on the chromosome arms gradually climb through mitosis from a nadir at G2/M (Figure 6F). However, CKII is also phosphorylated, and inhibited, by Cdk1 (Litchfield et al., 1992; St-Denis et al., 2009), so any colocalization of CKII with condensin through metaphase may have limited impact.

The means by which chromosome decondensation occurs at mitotic exit is poorly understood, although the kinetics of NCT return to condensin enrichment sites (Figure 6F) could suggest its role in this process. The return of NCT likely results from a combination of reduced mitotic kinase levels (Zaidi et al., 2010), increased histone acetylation (Kruhlak et al., 2001; Sasaki et al., 2009) (Figures 2D and S1), and the increased availability of Nrc1 (whose transcription peaks in G1; Peng et al., 2005). This would localize CKII with condensin after chromosome separation, allowing the kinase to inactivate the ATPase complex and directly promote decondensation. Studies to address each of these predictions are currently under way but will require the development of approaches to monitor the condensation of specific locations at various mitotic stages.

EXPERIMENTAL PROCEDURES

Materials

Antibodies, yeast strain genotypes, and ChIP oligonucleotides are in Table S3.

Bromodomain Binding to Histone Peptide Arrays

To produce recombinant forms of Nrc1, a domain encompassing both bromodomains (residues S199–G526) was C-terminally fused to GST in pGEX-4T, heterologously expressed in E. coli, and purified by glutathione-Sepharose affinity chromatography (Fuchs et al., 2011). Recombinant proteins (WT; BD1* [PDYP286-289AAAA]; BD2* [PDYF428-431AAAA]; or BD1*/BD2*) were used to probe a histone-tail peptide array with combinations of posttranslational modifications and areas of enrichment identified from heatmaps of the Condensin ++ H3ac/H4ac lo NCT lo

Condensin − H3ac/H4ac hi NCT hi

Figure 7. NCT as a Condensin Regulator

H3ac/H4ac at the core centromere are catalyzed by the Hat1-Mis16 acetyltransferase. H4ac is recognized by Nrc1-BD1 to stabilize the association H3ac/H4ac at the core centromere are catalyzed by the Hat1-Mis16 acetyltransferase. H4ac is recognized by Nrc1-BD1 to stabilize the association transcribed by the CUB (Cut3) recruitment is comparable in WT and nrc1Δ cells (e.g., Figure 3C).
normalized mean intensity. All data were generated from a minimum of two arrays with 12–24 individual spots per peptide (Figures 3E and S2E–S2G).

Array preparation, binding conditions, and data analysis were as previously described (Fuchs et al., 2011; Rothbard et al., 2012).

Cell-Cycle Synchronization

Cell-cycle synchronization, ChIP, and seption analyses were performed after arrest bycdc25-22 (Kim et al., 2009) (Figure S1B).

ChIP-Seq

Input or ChIP samples were converted to bar-coded libraries by adaptor addition (Quail et al., 2008). In brief, each sample was quantified, end-repaired (End-It kit, Epicenter Biotechnologies), an A-overhang added, and ligated to one of a set of 12 barcode-specific adaptor primers. The resulting libraries were size selected (600 ± 50 bp), amplified by 18 cycles of PCR, purified with SPRI beads (Agencourt AMPure XP; Fisher Scientific), quantified on a high-sensitivity DNA chip by 2100 bio-analyzer (Agilent Technologies), mixed at equivalent concentrations, and multiplexed at 12 samples per Illumina HiSeq 2000 lane.

Data images from 100 bp runs (single or paired-end) were processed by the Illumina Sequence Control and Pipeline packages. ChIP-seq data were loaded into GenPlay (v533) as individual tracks (50 bp windows; normalized and INPUT subtracted; for a dynamic visualization of the discussed tracks, see GenPlay (v533) as individual tracks (50 bp windows; normalized and INPUT subtracted; for a dynamic visualization of the discussed tracks, see http://dx.doi.org/10.1016/j.celrep.2014.01.029. Online resources). All data were generated from a minimum of two biological replicates, and the data were described by summary statistics and standard modeling approaches (Edgar et al., 2002) and are accessible under accession number GSE53955.

Supplemental Information includes Supplemental Experimental Procedures, seven figures, three tables, and one data set and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2014.01.029.

AUTHOR CONTRIBUTIONS

R.M. and S.B.R. contributed equally to this work. H.-S.K., R.M., S.B.R., V.V., T.K., N.J.K., J.S.F., B.D.S., W.E., and M.-C.K. conceived the experiments. H.-S.K., R.M., S.B.R., A.C.S., V.V., T.K., C.J.R., K.G.H., J.F.G., N.J.K., B.D.S., E.E.B., W.E., and M.-C.K. performed the experiments. H.-S.K., R.M., S.B.R., A.C.S., V.V., T.K., C.J.R., K.G.H., J.F.G., N.J.K., B.D.S., E.E.B., W.E., and M.-C.K. analyzed the data. H.-S.K., R.M., S.B.R., and M.-C.K. wrote the manuscript.

ACKNOWLEDGMENTS

We thank Steve Buratowski, Julien Lajugie, Andrew McLellan, Jamie Moseley, Charles Query, Mike Shales, Arthur Skoulitch, Jon Warner, and Ian Willis for help and advice and Robin Allshire, Mark Bedford, James Bradner, Dan Finley, Keith Gull, Tetsuro Kokubo, and Richard Marais for the generous supply of materials. C.J.R. was supported by ICON plc and the UCD Newman Fellowship.

qPCR

ChIP samples were prepared as above and qPCR data obtained with an iCycler (Bio-Rad), SYBR green (Molecular Probes), Platinum Taq (Invitrogen), and the primer sets in Table S3. Quantitations were as previously described (Silva et al., 2013), with all enrichments expressed as a percentage of input or relative to a gene-free region (GFR: Chromosome II 1,149,380–1,149,504), which shows no specific enrichment of TBP, Nrc1, Cka1, Tat7, or Cut3 in ChIP-seq (Figure S3).

Whole-Cell Extracts for Immunoblotting

WCEs were isolated with trichloroacetic acid (Mehta et al., 2010), and super-natants were analyzed by immunoblotting.

ACCESS NUMBERS

All sample data have been deposited in the NCBI Gene Expression Omnibus (Edgar et al., 2002) and are accessible under accession number GSE53955.
REFERENCES

Auty, R., Steen, H., Myers, L.C., Persinger, J., Bartholomew, B., Gygi, S.P., and Buratowski, S. (2004). Purification of active TFID from Saccharomyces cerevisiae. Extensive promoter contacts and co-activator function. J. Biol. Chem. 279, 49973–49981.

Bazile, F., St-Pierre, J., and D’Amours, D. (2010). Three-step model for condensin activation during mitotic chromosome condensation. Cell Cycle 9, 3243–3255.

Beltrao, P., Trinidad, J.C., Fiedler, D., Roguev, A., Lim, W.A., Shokat, K.M., Burlinge, A.L., and Krogan, N.J. (2009). Evolution of phosphoregulation: comparison of phosphorylation patterns across yeast species. PLoS Biol. 7, e1000134.

Benson, L.J., Phillips, J.A., Gu, Y., Parthun, M.R., Hoffman, C.S., and Annunziato, A.T. (2007). Properties of the type B histone acetyltransferase Hat1: H4 tail interaction, site preference, and involvement in DNA repair. J. Biol. Chem. 282, 836–842.

Chen, E.S., Nutani, T., and Yanagida, M. (2004). Ct11/C1d interacts with condensin SMC hinge and supports the DNA repair function of condensin. Proc. Natl. Acad. Sci. USA 101, 8078–8083.

Choudhary, C., Kumar, C., Gnad, F., Nielsen, M.L., Rehman, M., Walter, T.C., Olsen, J.V., and Mann, M. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 843–846.

Cuylen, S., and Haering, C.H. (2011). Deciphering condensin action during chromosome segregation. Trends Cell Biol. 21, 552–559.

D’Ambrosio, C., Schmidt, C.K., Katou, Y., Kelly, G., Itoh, T., Shirahige, K., and Uihmann, F. (2008). Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev. 22, 2215–2227.

Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., and Zhou, M.M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496.

Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210.

Filhol, O., and Cochet, C. (2009). Protein kinase CK2 in health and disease: Cellular functions of protein kinase CK2: a dynamic affair. Cell. Mol. Life Sci. 66, 1830–1839.

Filippakopoulos, P., Qi, J., Picaud, S., Shen, Y., Smith, W.B., Fedorov, O., Morse, E.M., Keates, T., Hickman, T.T., Felletar, I., et al. (2010). Selective inhibition of BET bromodomains. Nature 468, 1067–1073.

Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J.P., Barsyte-Lovejoy, D., Felletar, I., Volkmers, R., Muller, S., Pavson, T., et al. (2012). Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231.

Floyd, S.R., Pacold, M.E., Huang, Q., Clarke, S.M., Lam, F.C., Cannell, I.G., Bryson, B.D., Rameseder, J., Lee, M.I., Blake, E.J., et al. (2013). The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature 498, 246–250.

Fuchs, S.M., Krajewski, K., Baker, R.W., Miller, V.L., and Strahl, B.D. (2011). Influence of combinatorial histone modifications on antibody and effector protein recognition. Curr. Biol. 21, 53–58.

Ghavidel, A., and Schultz, M.C. (2001). TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase II transcriptional machinery. Cell 106, 575–584.

Haeseler, R.A., Pratt-Hyatt, M., Good, P.D., Gipson, T.A., and Engelke, D.R. (2008). Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev. 22, 2204–2214.

Hayashi, T., Fujita, Y., Iwasaki, O., Adachi, Y., Takahashi, K., and Yanagida, M. (2004). Mis16 and Mis18 are required for CENP-A loading and histone deacetylase localization at centromeres. Cell 118, 715–729.

Heale, J.T., Ball, A.R., Jr., Schmiesing, J.A., Kim, J.-S., Kong, X., Zhou, S., Hudson, D.F., Earmshaw, W.C., and Yokomori, K. (2008). Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Mol. Cell 21, 837–848.

Hirano, T. (2012). Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 26, 1659–1678.

Hirooka, Y., Toda, T., and Yanagida, M. (1984). The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39, 349–358.

Hirooka, Y., Kawamata, K., Haraguchi, T., and Chikaishi, Y. (2009). Codon usage bias is correlated with gene expression levels in the fission yeast Schizosaccharomyces pombe. Genes Cells 14, 499–509.

Hirota, T., Gerlich, D., Koch, B., Ellenberg, J., and Peters, J.M. (2004). Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. 117, 6435–6445.

Jacobson, R.H., Ladurner, A.G., King, D.S., and Tjian, R. (2000). Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425.

Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., and Knop, M. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962.

Johzuka, K., and Horluchi, T. (2009). The cis element and factors required for condensin recruitment to chromosomes. Mol. Cell 34, 26–35.

Keogh, M.-C., Cho, E.-J., Podolny, V., and Buratowski, S. (2002). Kin28 is found within TFIIH and a Kin28-Ctcl-Tfb3 trimer complex with differential sensitivities to T-loop phosphorylation. Mol. Cell. Biol. 22, 1288–1297.

Kim, H.-S., Vanoosthuyse, V., Fillingham, J., Roguev, A., Watt, S., Kislinger, T., Treyer, A., Carpenter, L.R., Bennett, C.S., Emili, A., et al. (2009). An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nat. Struct. Mol. Biol. 16, 1286–1293.

Kim, D.U., Hayles, J., Kim, D., Wood, V., Park, H.O., Won, M., Yoo, H.S., Duhig, T., Nam, M., Palmer, G., et al. (2010). Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 28, 617–623.

Kimura, K., Rubyenkov, V.V., Crisona, N.J., Hirano, T., and Cozzarelli, N.R. (1999). 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98, 239–248.

Kruhlak, M.J., Hendzel, M.J., Fischle, W., Bertos, N.R., Hameed, S., Yang, X.J., Verdin, E., and Bazett-Jones, D.P. (2001). Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J. Biol. Chem. 276, 38307–38319.

Laugie, J., and Bouhassira, E.E. (2011). GenPlay, a multipurpose genome analyzer and browser. Bioinformatics 27, 1889–1893.

Litchfield, D.W., Lüscher, B., Lozeman, F.J., Eisenman, R.N., and Krebs, E.G. (1992). Phosphorylation of casein kinase II by p34cdc2 in vitro and at mitosis. J. Biol. Chem. 267, 13943–13951.

Liu, W., Tanasa, B., Tyurina, O.V., Zhou, T.Y., Gassmann, R., Liu, W.T., Ohgi, K.A., Benner, C., Garcia-Bassets, I., Aggarwal, A.K., et al. (2010). PHF8
mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466, 508–512.

Matangkasombut, O., Buratowski, R.M., Swilling, N.W., and Buratowski, S. (2000). Bromodomain factor 1 contributes to a missing piece of yeast TFIID. Genes Dev. 14, 951–962.

Mehta, M., Braberg, H., Wang, S., Lozsa, A., Shales, M., Solache, A., Krogan, N.J., and Keogh, M.C.-C. (2010). Individual lysine acetylations on the N terminus of Saccharomyces cerevisiae H2A.Z are highly but not differentially regulated. J. Biol. Chem. 285, 39855–39865.

Nakazawa, N., Nakamura, T.M., Kokubu, A., Ebe, M., Nagao, K., and Yana-gida, M. (2008). Dissection of the essential steps for condensin accumulation at kinetochores and rDNAs during fission yeast mitosis. J. Cell Biol. 180, 1115–1131.

Onn, I., Aono, N., Hirano, M., and Hirano, T. (2007). Reconstitution and subunit geometry of human condensin complexes. EMBO J. 26, 1024–1034.

Ono, T., Losada, A., Hirano, M., Myers, M.P., Neuwald, A.F., and Hirano, T. (2003). Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109–121.

Ono, T., Fang, Y., Spector, D.L., and Hirano, T. (2004). Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. Mol. Biol. Cell 15, 3296–3308.

Owen, D.J., Ornaghi, P., Yang, J.C., Lowe, N., Evans, P.R., Ballario, P., Neuhaus, D., Filetici, P., and Travers, A.A. (2000). The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcnp5. EMBO J. 19, 6141–6149.

Peng, X., Karuturi, R.K., Miller, L.D., Lin, K., Jia, Y., Kondu, P., Wang, L., Yong, L.S., Liu, E.T., Balasubramanian, M.K., and Liu, J. (2005). Identification of cell cycle-regulated genes in fission yeast. Mol. Biol. Cell 16, 1026–1042.

Piboux, A.L., Choi, E.S., Abbott, J.K., Liu, X., Kagansky, A., Castillo, A.G., Hamilton, G.L., Richardson, W., Rappolilber, J., He, X., and Alleil, R.C. (2009). Fission yeast Scm3: A CENP-A receptor required for integrity of subkinetochore chromatin. Mol. Cell 33, 299–311.

Quail, M.A., Kozarewa, I., Smith, F., Scally, A., Stephens, P.J., Durbin, R., Swedlow, H., and Turner, D.J. (2008). A large genome center's improvements to the Illumina sequencing system. Nat. Methods 5, 678–680.

Ryan, C.J., Roguev, A., Patrick, K., Xu, J., Jahari, H., Tong, Z., Beltrao, P., Shales, M., Qu, H., Collins, S.R., et al. (2012). Hierarchical modularity and upon DNA damage through histone H3 lysine 56 acetylation. Mol. Cell 48, 532–546.

Sasaki, K., Ito, T., Nishino, N., Khochbin, S., and Yoshida, M. (2009). Real-time imaging of histone H4 hyperacetylation in living cells. Proc. Natl. Acad. Sci. USA 106, 16257–16262.

Silva, A.C., Xu, X., Kim, H.-S., Fillingham, J., Kislinger, T., Mennella, T.A., and Keogh, M.C.-C. (2012). The replication-independent histone H3-H4 chaperones HIR, ASF1, and Rtt106 co-operate to maintain promoter fidelity. J. Biol. Chem. 287, 1709–1718.

Smolka, M.B., Albuquerque, C.P., Chen, S.H., and Zhou, H. (2007). Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl. Acad. Sci. USA 104, 10364–10369.

St-Denis, N.A., Derksen, D.R., and Litchfield, D.W. (2009). Evidence for regulation of mitotic progression through temporal phosphorylation and dephosphorylation of CK2alpha. Mol. Cell. Biol. 29, 2068–2081.

St-Pierre, J., Douziech, M., Bazlie, F., Pascaru, M., Bonelli, E., Sauvé, V., Ratsima, H., and D'Amours, D. (2009). Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity. Mol. Cell 34, 416–426.

Steen, R.L., Cubizolles, F., Le Guellec, K., and Collas, P. (2000). A kinase-anchoring protein (AKAP/95 recruits human chromosome-associated protein hCAP-a) to chromosome condensation in mitotic extract. J. Cell Biol. 149, 531–536.

Sutani, T., and Yanagida, M. (1997). DNA reattachment activity of the SMC complex implicated in chromosome condensation. Nature 388, 798–801.

Sutani, T., Yuasa, T., Tomonaga, T., Domhna, N., Takio, K., and Yanagida, M. (1999). Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes Dev. 13, 2271–2283.

Tada, K., Susumu, H., Sakuno, T., and Watanabe, Y. (2011). Condensin association with histone H2A shapes mitotic chromosomes. Nature 474, 477–483.

Takemoto, A., Kimura, K., Yanagisawa, J., Yokoyama, S., and Hanaoka, F. (2006). Negative regulation of condensin I by CK2-mediated phosphorylation. EMBO J. 25, 5339–5348.

Takemoto, A., Murayama, A., Katano, M., Urano, T., Furukawa, K., Yokoyama, S., Yanagisawa, J., Hanaoka, F., and Kimura, K. (2007). Analysis of the role of Aurora B on the chromosomal targeting of condensin I. Nucleic Acids Res. 35, 2403–2412.

Williams, J.S., Hayashi, T., Ikehara, T., Yamaguchi, M., Murayama, A., Imamura, S., Imamoto, N., Yokoyama, S., Hanaoka, T., Watanabe, Y., et al. (2009). The chromosomal association of condensin II is regulated by a noncatalytic function of PP2A. Nat. Struct. Mol. Biol. 16, 1302–1306.

Trievel, R.C., and Shilatifard, A. (2009). WDR5, a complexed protein. Nat. Struct. Mol. Biol. 16, 678–680.

Vagnarelli, P., Hudson, D.F., Ribeiro, S.A., Trinkle-Mulcahy, L., Spence, J.M., Lai, F., Farr, C.J., Lamond, A.J., and Earnshaw, W.C. (2006). Condensin and Repo-Man-Pp1 co-operate in the regulation of chromosome architecture during mitosis. Nat. Cell Biol. 8, 1133–1142.

Wang, B.D., Eyre, D., Basrai, M., Lichten, M., and Strunnikov, A. (2005). Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol. Cell. Biol. 25, 7216–7225.

Williams, J.S., Hayashi, T., Yanagida, M., and Russell, P. (2009). Fission yeast Scm3 mediates stable assembly of Crp1/CENP-A into centromeric chromatin. Mol. Cell 33, 287–298.

Wood, A.J., Severson, A.F., and Meyer, B.J. (2010). Condensin and cohesin complexity: the expanding repertoire of functions. Nat. Rev. Genet. 11, 391–404.

Sarge, K.D., and Park-Sarge, O.-K. (2009). Mitotic bookmarking of formerly active genes: keeping epigenetic memories from fading. Cell Cycle 8, 815–823.
Xing, H., Vanderford, N.L., and Sarge, K.D. (2008). The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action. Nat. Cell Biol. 10, 1318–1323.

Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L., and Yao, X. (2008). GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol. Cell. Proteomics 7, 1598–1608.

Zaidi, S.K., Young, D.W., Montecino, M.A., Lian, J.B., van Wijnen, A.J., Stein, J.L., and Stein, G.S. (2010). Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat. Rev. Genet. 11, 583–589.

Zang, C., Schones, D.E., Zeng, C., Cui, K., Zhao, K., and Peng, W. (2009). A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25, 1952–1958.