UV/Fenton photo-oxidation of Drimarene Dark Red (DDR) containing textile-dye wastewater

To cite this article: T Hudaya et al 2016 IOP Conf. Ser.: Mater. Sci. Eng. 162 012022

View the article online for updates and enhancements.

You may also like

- Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes
 Bryan Howell, Brian Huynh and Warren M Grill

- Catalytic Ozonation Based Advanced Oxidation Process for Effective Treating Wastewater from Hospital and Community Health Centre Facility by FLASH WWT Catalyst System in Indonesia
 R Rame, H Pranoto, RKK Winahyu et al.

- Color Removal of Azor A Dye in Aqueous Solution by ZnO and Hydrogen Peroxide Under Solar Irradiation
 Batool S Hussein, Azal Shaker Waheeb, Asstlabraq Mohsin Yasir et al.

Recent citations

- Magnetically assisted coagulation using iron oxide nanoparticles-Leucaena leucocephala seeds' extract to treat synthetic Congo red wastewater
 Hans Kristianto et al

- Hans Kristianto et al
UV/Fenton photo-oxidation of Drimarene Dark Red (DDR) containing textile-dye wastewater

T Hudaya*, J Anthonios and E Septianto
Chemical Engineering Department, Parahyangan Catholic University,
Ciumberluit 94 Bandung, Indonesia
E-mail: t.hudaya@unpar.ac.id / t_hudaya@yahoo.com.au

Abstract. Textile dye wastewater contains organic pollutants which are non-biodegradable, characterized by low BOD/COD ratio of typically < 0.01. Therefore to treat such wastewater, the destructive wastewater treatment methods which can be utilized are the Advanced Oxidation Processes (AOPs). One of the AOPs method which is the UV/H₂O₂/Fe²⁺ (or UV/Fenton) offers not only relatively low cost but also quite effective (in terms of color removal and reaction time) treatment. This particular research aimed to optimize the conditions of UV/Fenton photo-oxidation process for Drimarene Dark Red containing textile-dye wastewater. The two main operating conditions to be optimized were the initial concentration of H₂O₂ ranged between 0.022–0.078 %-w and the mol ratio of Fe²⁺: H₂O₂ was varied from 1 : 13 up to 1 : 45, using the Central Composite Design experimental matrix. The photo-oxidation was carried out at the optimum pH of 3 from some previous experiments. The best processing conditions of the photo-oxidation of Drimarene Dark Red (DDR) were found at the initial concentration of H₂O₂ at 0.050 %-w and the mole ratio Fe²⁺: H₂O₂ of 1 : 22. Under these conditions, the measured 2nd order pseudo-rate constant was 0.021 M⁻¹.min⁻¹. The DDR color removal of 90% was surprisingly achievable within only 10 minutes reaction time.

1. Introduction

Several type of wastewaters come from industrial activity often cause negative as well as serious impact not only to the natural environment, but also to community due to its non-biodegradable and sometimes toxic in nature. Such wastewater can easily be found in Indonesia, especially in heavily populated West Java region. Common problems related to rivers pollution in this area are mostly originated from textile-dye water discharge, if improperly treated to meet the regulation.

Due to its toxic and non-biodegradable characteristics [1], dye containing wastewater can not be easily dealt with commonly used biological treatment. Therefore, as one of the tertiary treatments, Advanced Oxidation Processes (AOPs) offer an alternative yet excellent method of treating such wastewater by effectively oxidizing the dye pollutants. This method can easily and rapidly destroy the non-biodegradable content (with BOD/COD ratio of typically < 0.01) in the wastewater into simpler compounds or intermediates which later on become biodegradable (BOD/COD ratio > 0.1), and thus can be further treated by cheaper conventional biological methods [2], such as using aeration or activated sludge pond.

Various AOPs have something in common, which is the generation of •OH (hydroxyl) radicals whose standard reduction potential is only less positive than Fluorine [3]. Therefore, these radicals will act as very potent oxidizing agents capable of degrading almost any organic pollutants. Hydroxyl radicals may be produced via several ways, but normally by combining UV radiation with common oxidizing agents (such as H₂O₂ or O₃). However, without UV present those radicals may also be generated if certain oxidizing agents meet a catalyst. For example, O₃ (ozone) in alkaline condition or the combination of H₂O₂ with Fe²⁺, well known as Fenton reagent, may also yield •OH radicals [4].

This research explored the use of UV with Fenton reagent altogether for treating textile-dye (Drimarene Dark Red / DDR) containing wastewater. The combination of UV with Fenton reagent might offers rapid and effective degradation of the dye pollutant due to the synergetic effect of both
elements which produced more •OH radicals than separate UV/ H₂O₂ or Fenton reagent as normally used. In addition, the use of Fe²⁺ catalyst to significantly promote the degradation capability of UV/ H₂O₂ system brought attractive economical advantage in comparison to similar process using ozone as additional oxidizing agent, which required expensive capital related cost for the ozone generator.

2. Materials and Methods
2.1. Materials
The DDR containing wastewater was prepared by dissolving 2.5 g dye in 50 L of water resulting in 50 ppm concentration, as normally found in similar (real) textile-dye wastewater. The wastewater was initially mixed with a certain amount of H₂O₂ (50%-w) solution and the pH of the mixture was adjusted to 3 (with 2N HNO₃) as the optimum pH for treating similar textile-dye using UV/ H₂O₂ method [5].

2.2. Photo-oxidation
The mixture was then fed into a 50 L column photo-reactor equipped with 5 low pressure UV lamp (75 Watt each) and Fe²⁺ (FeSO₄) solution was subsequently added to the reactor before the UV irradiation began. The mixture was processed batch wisely for 90 minutes, and samples (10 mL each) were withdrawn during the photo-oxidation process within the reactor. Those samples were treated with excess thiosulfate solution to deactivate the remaining H₂O₂ and then centrifuged prior to spectrophotometer analyses (at λ = 525 nm).

2.3. Experimental design
The effect of the two main variables, namely H₂O₂ initial concentration and the Fe²⁺ : H₂O₂ mole ratio, were investigated using Central Composite Design [6] to determine the optimum conditions, under which the highest reaction rate constant was achievable. Within the experimental design matrix, the center point was at 0.05 %-w H₂O₂ and ratio of 1 : 20, with 4 replications.

3. Results and Discussions
3.1. Response variable and the optimum conditions
The response variable selected as the measure of DDR removal effectiveness was the reaction rate constant, which appeared to follow the pseudo 2nd order kinetic rather than the pseudo 1st order commonly applicable for UV/ H₂O₂ system [5]. The DDR concentration profiles against reaction time showed a ‘long tail’ or a typical 2nd order reaction curve. The results of the calculated 2nd order reaction constants at various experimental conditions were summarized in Table 1.

Those results were then fitted to the 1st order as well as 2nd order response surface model. The multi linear regression for both models revealed that the response surface followed 2nd order model with R² of 0.986 compared to that of 1st order of 0.899. Furthermore, using the 2nd order model the partial derivatization with respect to both x₁ and x₂ resulted in the optimum conditions of 0.0504 %-w H₂O₂ and Fe²⁺ :H₂O₂ ratio of 0.0446 (or 1 : 22.4) under which the reaction rate constant was predicted as 0.021 M⁻¹.min⁻¹. The 3-D plot of the results presented in Table 1 was shown in Figure 1, and a validation run was also carried out to confirm the model prediction on the optimum conditions above. The validation result showed an excellent agreement with the 2nd order response surface model prediction.
Table 1. The 2nd order reaction constant at various conditions

RUN	x_1 (% H$_2$O$_2$)	x_2 (Fe$^{3+}$: H$_2$O$_2$)	k [M$^{-1}$·min$^{-1}$]
1	-1	-1	0.0179
2	-1	1	0.0073
3	1	-1	0.0164
4	1	1	0.0195
5	0	0	0.0207
6	0	0	0.0205
7	0	1.414	0.0115
8	0	-1.414	0.0154
9	1.414	0	0.0178
10	-1.414	0	0.0189
11	0	1.414	
12	0	-1.414	

Figure 1. The 3-D plot of the experimental results

Under those optimum conditions, the DDR removal in the wastewater was found to be very rapid as shown in Figure 2. Within only 10 minutes reaction time, the DDR content removal reached 90% and after 20 minutes (97% removal) the DDR concentration showed a plateau which was typical for reactions with 2nd order kinetics.
3.2. The effect of H$_2$O$_2$ concentration
The 3-D plot revealed that the initial H$_2$O$_2$ concentration had a significant role, especially at relatively high Fe$^{3+}$: H$_2$O$_2$ ratio, to the DDR removal effectiveness. At lower H$_2$O$_2$ concentration, the increasing H$_2$O$_2$ concentration brought dramatic advantage due to the high concentration of •OH radicals formed due to the interaction of H$_2$O$_2$ with both UV and especially more abundant Fe$^{2+}$. This fact would finally led to much more quicker DDR degradation which translated to significantly higher k was observed, for example run 4 had k value 2.7 times larger than run 2 due to the increasing %H$_2$O$_2$ at relatively high Fe$^{2+}$: H$_2$O$_2$ ratio. However, at higher H$_2$O$_2$ concentration, the increasing H$_2$O$_2$ concentration led to a detrimental DDR removal performance, i.e. run 9 showed much lower k value (around ½) than that of run 8. Excessive H$_2$O$_2$ concentration resulted in a drawback to the DDR degradation / removal because the H$_2$O$_2$ itself was reactive to the •OH radicals producing a much less potent HO$_2$• radicals (reduction potential of 1.7 V compared to 2.8 V of •OH radicals) to destroy the pollutant [7]. The reaction between H$_2$O$_2$ with the •OH radicals was as follow:

\[\text{H}_2\text{O}_2 + \bullet \text{OH} \rightarrow \text{H}_2\text{O} + \text{HO}_2\bullet \]

3.3. The effect of Fe$^{2+}$: H$_2$O$_2$ ratio
In general, the effect of the Fe$^{2+}$: H$_2$O$_2$ ratio had similar trend with that of H$_2$O$_2$ concentration to the DDR degradation effectiveness. An optimum value of around 1 : 22 was ideal ratio for the treatment. Increasing Fe$^{2+}$ concentration was initially beneficial since it was needed for •OH radical generation essential for the DDR degradation. The reaction between Fe$^{2+}$ and H$_2$O$_2$ was outlined by Tang [4] as follow:

\[\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^- + \bullet \text{OH} \]

However, at excessive level of Fe$^{2+}$ concentration the UV light available for •OH radical production was partially consumed / absorbed by the Fe3+ (as the product of above reaction) and eventually lower the degradation rate constant. Therefore, it was imperative to operate the degradation under those optimum conditions, so that the treatment could be carried out as effective as possible, in terms of both time and cost.

3.4. DDR photodegradation mechanism
The DDR structure had many aryl (benzene) rings as well as several – N = N – bonds (azobridges) which were known as chromophores [8] responsible for the color of the dye since they contain delocalized electrons able to absorbed some spectrum of the visible light. During the photodegradation, the •OH radicals would initiate the attack to such groups by electrophilic addition
to the II bonding [4] yielded intermediate radicals which would experience further degradation into simpler species.

The mechanism of the degradation of the aryl ring by OH radical had been published in several literatures. For example, Christina [9] explained a series of reaction led to the ring opening and oxalic acid as the final product, as shown in Figure 3 below.

![Figure 3. The mechanisms of aryl ring degradation by OH radical](image)

The aromatic ring would initially turned into hydroxycyclohexadienyl as the result of electrophilic addition. This radical could further react with dissolved O₂ producing unstable hydroxyhydroperoxide which later yield an aliphatic dialdehyde after water molecule elimination step. Subsequently, the dialdehyde species would be further oxidized into glyoxal and finally oxalic acid.

4. Conclusions
The UV/Fenton photo-oxidation process was proven to be effective for treating Drimarene Dark Red (DDR) containing textile-dye wastewater. An optimization using Central Composite Design experimental matrix revealed that the photo-oxidation at pH 3 was best carried out at the initial concentration of H₂O₂ at 0.050%-w and the mole ratio Fe²⁺: H₂O₂ of 1 : 22. Under these conditions, the measured 2nd order pseudo-rate constant was 0.021 M⁻¹.min⁻¹ and the DDR color removal of 90% was surprisingly achievable within only 10 minutes reaction time. The experimental results also showed that it was imperative to operate the degradation under those optimum conditions, so that the treatment could be carried out as effective as possible, in terms of both time and cost.

References
[1] Darsono V 2007 Pengolahan limbah cair tahu secara anaerob dan aerob Jurnal Teknologi Industri XI 9-20
[2] Green D W and Perry R H 2008 Perry’s Chemical Engineer’s Handbook, 8th Ed.(New York : McGraw-Hill International)
[3] Al-Kdasi A, Idris A, Saed K and Guan C T 2004 Treatment of textile wastewater by advanced oxidation processes - A review Global Nest : the Int. J. 6 222-230
[4] Tang W Z 2004 Physicochemical treatment of hazardous wastes (Florida : Lewis Publishers Boca Raton)
[5] Hudaya T, Stefanus M and Agustina M 2011 H$_2$O$_2$/UV Photo-oxidation of non-biodegradable DYA textile-dye wastewater in a multi-lamp bubble column photoreactor *Seminar Nasional Teknik Kimia “Kejuangan” 22 Februari 2011, UPN Veteran Yogyakarta*

[6] Montgomery D C 2001 *Design and Analysis of Experiment* 5th Ed. (New York : John Wiley & Sons Inc.)

[7] Legrini O, Oliveros E and Braun A M 1993 Photochemical processes for water treatment *Chem. Rev.* 93 671-698

[8] Information on http://www.depts.washington.edu

[9] Christina M, Mu’nisatun P, Saptaaji S R and Marjanto D 2007 Warna azo (metil orange) dalam pelarut air menggunakan mesin berkas elektron 350 keV/10 mA *JFN* 1 31 – 44