The global burden of tuberculosis: results from the Global Burden of Disease Study 2015

GBD Tuberculosis Collaborators

Summary

Background An understanding of the trends in tuberculosis incidence, prevalence, and mortality is crucial to tracking of the success of tuberculosis control programmes and identification of remaining challenges. We assessed trends in the fatal and non-fatal burden of tuberculosis over the past 25 years for 195 countries and territories.

Methods We analysed 10,691 site-years of vital registration data, 768 site-years of verbal autopsy data, and 361 site-years of mortality surveillance data using the Cause of Death Ensemble model to estimate tuberculosis mortality rates. We analysed all available age-specific and sex-specific data sources, including annual case notifications, prevalence surveys, and estimated cause-specific mortality, to generate internally consistent estimates of incidence, prevalence, and mortality using DisMod-MR 2.1, a Bayesian meta-regression tool. We assessed how observed tuberculosis incidence, prevalence, and mortality differed from expected trends as predicted by the Socio-demographic Index (SDI), a composite indicator based on income per capita, average years of schooling, and total fertility rate. We also estimated tuberculosis mortality and disability-adjusted life-years attributable to the independent effects of risk factors including smoking, alcohol use, and diabetes.

Findings Globally, in 2015, the number of tuberculosis incident cases (including new and relapse cases) was 10.2 million (95% uncertainty interval 9.2 million to 11.5 million), the number of prevalent cases was 10.1 million (9.2 million to 11.1 million), and the number of deaths was 1.3 million (1.1 million to 1.6 million). Among individuals who were HIV negative, the number of incident cases was 8.8 million (8.0 million to 9.9 million), the number of prevalent cases was 8.9 million (8.1 million to 9.7 million), and the number of deaths was 1.1 million (0.9 million to 1.4 million). Annualised rates of change from 2005 to 2015 showed a faster decline in mortality (–4.1% [–5.0 to –3.4]) than in incidence (–1.6% [–1.9 to –1.2]) and prevalence (–0.7% [–1.0 to –0.5]) among HIV-negative individuals. The SDI was inversely associated with HIV-negative mortality rates but did not show a clear gradient for incidence and prevalence. Most of Asia, eastern Europe, and sub-Saharan Africa had higher rates of HIV-negative tuberculosis burden than expected given their SDI. Alcohol use accounted for 11.4% (9.3–13.0) of global tuberculosis deaths among HIV-negative individuals in 2015, diabetes accounted for 10.6% (6.8–14.8), and smoking accounted for 7.8% (3.8–12.0).

Interpretation Despite a concerted global effort to reduce the burden of tuberculosis, it still causes a large disease burden globally. Strengthening of health systems for early detection of tuberculosis and improvement of the quality of tuberculosis care, including prompt and accurate diagnosis, early initiation of treatment, and regular follow-up, are priorities. Countries with higher than expected tuberculosis rates for their level of sociodemographic development should investigate the reasons for lagging behind and take remedial action. Efforts to prevent smoking, alcohol use, and diabetes could also substantially reduce the burden of tuberculosis.

Funding Bill & Melinda Gates Foundation.

Introduction Tuberculosis kills more than 1 million people every year, most of them in low-income and middle-income countries. An understanding of the trends in tuberculosis incidence, prevalence, and mortality is crucial to track the success of tuberculosis control programmes and to identify remaining intervention challenges for tuberculosis care and prevention. Rigorous evaluation of these trends is, however, challenging. The primary data sources used to estimate the epidemiological burden of tuberculosis, including annual case notifications, prevalence surveys, and cause of death data, have various shortcomings. Also, their availability differs across regions and time periods.

In countries where tuberculosis is endemic, health and surveillance systems are usually weak, with underdiagnosis and under-reporting common. Prevalence surveys are designed to provide unbiased measures of tuberculosis prevalence, but low response rates and contamination of tuberculosis specimens affect the quality of these surveys. The validity of imputation methods to correct for low response rates in
Evidence before this study
Tuberculosis is a leading cause of morbidity and mortality, especially in low-income and middle-income countries. The global burden of tuberculosis has been estimated by several groups, including the WHO Global TB Programme and the Global Burden of Diseases, Injuries, and Risk Factors Study 2013. However, the contribution of potentially modifiable risk factors to tuberculosis burden and how the burden changes as countries progress through the epidemiological transition have not been well characterised. We searched PubMed with the search terms “tuberculosis” AND (“burden” OR “estimates”) AND “trend”, with no language restrictions, for articles published up to Nov 21, 2017, which produced 17 studies that provided population-wide tuberculosis burden time trends (incidence, prevalence, or deaths), of which ten were at the country level, six were at the subnational level, and one was at the regional and country level. Of all studies, the most recent period assessed was 1999–2013 in Lebanon. None of these studies assessed the tuberculosis burden attributable to risk factors over time or the epidemiological transition.

Added value of this study
This study provides a comprehensive assessment of the trends in tuberculosis burden and the burden attributable to risk factors (smoking, alcohol use, and diabetes). Moreover, it includes analysis of the relationship between tuberculosis burden and Socio-demographic Index (a composite indicator based on income, education, and fertility) developed for the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) to enhance the understanding of a country’s tuberculosis status in the context of its sociodemographic position. It identifies key areas for prioritisation of resources and areas for further research and interventions.

Implications of all the available evidence
Whereas progress is being made in reduction of tuberculosis mortality, tuberculosis is still responsible for an enormous disease burden worldwide. Moreover, incidence is declining more slowly than mortality in many countries. Strengthening of health systems for early detection of tuberculosis and improvements in diagnostics, treatment, and follow-up should therefore be priorities. Countries where the burden of tuberculosis is higher than predicted by their sociodemographic development should work to investigate the reasons for the discrepancy and address them as appropriate. Efforts to prevent smoking, alcohol use, diabetes, and HIV are also likely to substantially reduce the global burden of tuberculosis.
Case definition

Tuberculosis is an infectious disease caused by *Mycobacterium tuberculosis* complex. The case definition includes all forms of tuberculosis, including pulmonary and extrapoluminary tuberculosis, which are bacteriologically confirmed or clinically diagnosed. The International Classification of Diseases (ICD)-10 codes are A10–19.9, B90–90.9, K673, K93.0, M49.0, and P370, and the ICD-9 codes are 010–19.9, 137–379, 138.0–38.9, and 730.4–30.6. For HIV–tuberculosis, the ICD 10 code is B20.0.

Tuberculosis mortality among HIV-negative individuals

The appendix shows the input data, analytical process, and output from the analysis of tuberculosis mortality among HIV-negative individuals. Input data for this analysis included 10691 site-years of vital registration data, 768 site-years of verbal autopsy data, and 361 site-years of mortality surveillance data. Country-specific data sources and citations are available online. The assessment and adjustment of vital registration data for completeness have been reported in detail previously.1 Vital registration data were adjusted for garbage coding (including ill-defined codes and use of intermediate causes) following GBD algorithms and misclassified HIV deaths (ie, HIV deaths being assigned to other underlying causes of death, such as tuberculosis or diarrhoea because of stigma or misdiagnosis). Country-specific data before and after garbage code redistribution are available in the online data visualisation tool. Verbal autopsy data in countries with high HIV prevalence (using an arbitrary cutoff of 5% age-standardised HIV prevalence) were removed because of a high probability of misclassification, as verbal autopsy studies have a poor ability to distinguish HIV deaths from tuberculosis deaths (ie, tuberculosis deaths among HIV-positive people).

We used our Cause of Death Ensemble modelling (CODEm) strategy,12 which has been widely used to generate global estimates of cause-specific mortality. The CODEm strategy evaluates potential models that apply different functional forms (mixed-effects models and spatiotemporal Gaussian process regression models) to mortality rates or cause fractions with varying combinations of predictive covariates.2 These covariates consist of alcohol consumption (litres of pure alcohol per person per year), diabetes (fasting plasma glucose concentration in mmol/L), education (years per person), health system access, lag-distributed income (LDI; gross domestic product per capita that has been smoothed over the preceding 10 years), the proportion of malnutrition (children younger than 5 years of age who are underweight), indoor air pollution prevalence, population density (people per km²), smoking prevalence, sociodemographic status, and a summary exposure variable (SEV) scalar. The SEV scalar reflects the exposure to risk factors related to tuberculosis weighted by their relative risk value. The methods used to develop the SEV scalar covariate for GBD 2015 have been described in detail elsewhere.3 The ensemble of CODEm models that performed best on out-of-sample predictive validity tests was then selected.

HIV–tuberculosis mortality

To establish tuberculosis deaths in HIV-positive individuals, we first computed the fraction of HIV–tuberculosis deaths among all tuberculosis deaths using 144 country-years of high-quality vital registration data (appendix). Second, we calculated the proportion of HIV–tuberculosis cases among all tuberculosis cases with an HIV test result as reported in the WHO tuberculosis register. We used a mixed-effects regression on the logit of the proportion of HIV–tuberculosis cases among all tuberculosis cases to predict the proportions of HIV-positive tuberculosis cases for all locations and years, using an adult HIV death rate covariate and country random effects. Third, we assumed that the fraction of HIV–tuberculosis deaths among all tuberculosis deaths in each location and year (Dc,y) is a function of the prevalence of HIV–tuberculosis among tuberculosis cases (Pc,y) and that the relative risk (RR) of tuberculosis death among patients with HIV infection and tuberculosis can be generalised over time and between locations:

$$D_{c,y} = \frac{P_{c,y} \times RR}{P_{c,y} \times RR + 1 - P_{c,y}}$$

Solving the equation for RR gives:

$$RR = \frac{D_{c,y} \times P_{c,y} - D_{c,y}}{D_{c,y} \times P_{c,y} - P_{c,y}}$$

We took the RR from each location and year for which we had data for the fraction of HIV–tuberculosis deaths among all tuberculosis deaths to estimate a median RR. We then applied that median RR to the predicted proportions of HIV–tuberculosis cases among all tuberculosis cases to estimate the fraction of HIV–tuberculosis deaths among all tuberculosis deaths and ages for all locations and years. Next, we calculated location-year-specific HIV–tuberculosis deaths (DeathsHIV–TBc,y) using the following equation:

$$Deaths_{HIV–TBc,y} = \frac{D_{c,y} - Deaths_{TBc,y}}{1 - D_{c,y}}$$

where Deaths_{TBc,y} is location-year-specific deaths from the CODEm tuberculosis HIV-negative model. Finally, we applied the age-sex pattern of the HIV mortality estimates to these HIV–tuberculosis deaths to generate HIV–tuberculosis deaths for all locations and years by age and sex. Since the HIV–tuberculosis deaths were estimated on the basis of the fraction of HIV–tuberculosis deaths among all tuberculosis deaths, the total number of
HIV–tuberculosis deaths could exceed the total number of HIV deaths in some locations. To avoid this occurrence, we applied a cap of 45% to the fraction of HIV–tuberculosis deaths among HIV deaths on the basis of the largest fraction reported in a review by Cox and colleagues and a systematic review and meta-analysis by Ford and colleagues.

Non-fatal tuberculosis and HIV–tuberculosis
We used all available cause of death data, case notifications, and data from prevalence surveys to produce consistent estimates of tuberculosis epidemiology (appendix). From these inputs, we calculated priors (expected values) on excess mortality and remission to guide the model. We used DisMod-MR 2.1, the GBD Bayesian meta-regression tool that adjusts for differences in methods between data sources and imposes consistency between data for different parameters. We explain in detail below the preparation of each of these data sources and the modelling in DisMod-MR 2.1.

We used the age-specific and sex-specific notifications (from WHO and our network of collaborators) in our modelling of tuberculosis incidence. Our definition of incident cases include new and relapse cases diagnosed within a given calendar year. If the notification data represented new and relapse cases combined, we used the data as they were. If cases were broken down by case type (new pulmonary smear-positive, new pulmonary smear-negative, new extrapulmonary, and relapse), we summed them to represent all forms of tuberculosis. Smear-positive notification data were missing for at least one age group for at least 1 year in 41 countries. These countries were from sub-Saharan Africa, Asia, Latin America and the Caribbean, north Africa and the Middle East, eastern, central, and western Europe, and high-income north America. Smear-negative and extrapulmonary tuberculosis data were missing for at least one age group for at least 1 year in almost all countries. We imputed missing age groups for three forms of tuberculosis notifications (pulmonary smear-positive, pulmonary smear-negative, and extrapulmonary). We increased smear-positive age-specific notifications by the proportions of smear-unknown and relapsed cases that were only reported at the country-year level. Some countries reported pulmonary smear-positive cases only for selected years (eg, 67 countries in 2006 and 33 in 2012). Most of these countries were from sub-Saharan Africa and southeast Asia). We predicted missing smear-negative and extrapulmonary cases from adjusted smear-positive cases using a seemingly unrelated regression approach. We then added all three types of notifications. We categorised countries on the basis of WHO’s estimates of country-year-specific case detection rates (CDRs) into ten bins using a 5 year moving average. We assumed all high-income countries to be in the highest decile of CDR. For all other countries, we used covariates for their CDR decile as an initial guide for how much notifications need to be increased in DisMod-MR 2.1 to reflect the incidence of all tuberculosis. We then generated a final incidence estimate that is consistent with prevalence data and cause-specific mortality estimates using Bayesian meta-regression. We included SEV as a location-level covariate to help inform variation over year and geography, with priors that at higher SEV values, incidence increases.

We estimate point prevalence for tuberculosis. Point prevalent cases represent people in the population who at any point during a given calendar year have active tuberculosis. We included data from prevalence surveys reporting on pulmonary smear-positive tuberculosis and bacteriologically positive tuberculosis. Because all forms of tuberculosis are included in notification data, we adjusted prevalence surveys to account for extrapulmonary cases. We predicted proportions of extrapulmonary tuberculosis among all tuberculosis cases for all locations and years by age and sex using data for the three forms of tuberculosis from the notification data and LDI as a covariate and applied them to data from prevalence surveys. We included a covariate to adjust smear-positive tuberculosis estimates to the value of bacteriologically positive tuberculosis. We found no systematic bias comparing data from studies that used both symptoms and chest x-rays as screening methods and studies that used only one of these methods. We therefore did not adjust these data but allowed DisMod-MR 2.1 to estimate the additional uncertainty associated with data points from studies that had used only one of the screening methods. Similarly, we added uncertainty to data points from subnational surveys. The method used to increase the uncertainty around data points in the dataset has been described in detail elsewhere. We also included the SEV scalar as a covariate for prevalence.

We matched each prevalence survey datapoint and tuberculosis cause-specific mortality rate (CSMR) among HIV-positive and HIV-negative individuals by location, year, age, and sex to calculate the excess mortality rate (EMR) as the ratio of CSMR to prevalence. We also matched each notification datapoint and tuberculosis CSMR by location, year, age, and sex to calculate EMR for data-rich countries (defined as countries with vital registration more than 95% complete for more than 25 years’ [appendix]), assuming a remission of 2—ie, an average duration of 6 months (1/0·5 years). We estimated priors on remission for countries where both incidence and prevalence data were available. We matched incidence and prevalence data by location, year, age, and sex and calculated remission as the ratio of incidence to prevalence minus the EMR. We ran two DisMod-MR 2.1 models, one for data-rich countries using the assumed remission, and another for remaining countries for which we used the estimated priors on remission. To reflect a gradient in EMR and remission, we added the log-transformed LDI as a covariate, with priors that as LDI values increase, EMR decreases and remission increases. For final results, we combined results from the two DisMod-MR 2.1 models. β coefficients and exponentiated values for covariates from the two models are shown in the appendix.
For each location, we included the following inputs in the DisMod model: case notifications representing all forms of tuberculosis, prevalence survey data (adjusted for extrapulmonary tuberculosis) if available, excess mortality priors, remission priors, and cause-specific mortality estimates (tuberculosis and HIV–tuberculosis combined) by age and sex. DisMod-MR 2.1 generated internally consistent estimates for each 5 year interval between 1990 and 2015 for 195 countries and territories.

As an example, the internally consistent modelling of tuberculosis (all forms) for male individuals in rural Gujarat, India, in 2015 is shown in the appendix. Statistical triangulation of death, prevalence, and adjusted notifications shows inconsistencies between data sources, as evident in the incidence model, showing a pattern in under-reporting increasing with age. The internally consistent modelling for each country and territory is available online.

The output from the DisMod-MR 2.1 model described above is for all forms of tuberculosis in HIV-negative and HIV-positive individuals. We applied the predicted location-specific and year-specific proportions of HIV–tuberculosis cases among all tuberculosis cases (as described in the HIV–tuberculosis mortality section above) to tuberculosis incident and prevalent cases from DisMod-MR 2.1 to generate HIV–tuberculosis incident and prevalent cases by location and year. Subsequently, we split the estimates on the basis of the age-sex pattern of estimated HIV prevalence by country-year to generate HIV–tuberculosis incident and prevalent cases for all locations and years by age and sex.

SDI
The methods used to develop the SDI for GBD 2015 have been described in detail elsewhere.10–12 Briefly, the SDI was computed on the basis of the geometric mean of three indicators: income per capita, average years of schooling, and total fertility rates. SDI scores were scaled from 0 (lowest income, lowest average years of schooling, and lowest fertility) to 1 (highest income, highest average years of schooling, and lowest fertility), and each location was assigned an SDI score for each year. Average relationships between SDI and rates of tuberculosis incidence, prevalence, and mortality were estimated using spline regressions, which were then used to estimate expected values at each level of SDI. Five SDI quintiles were also created for country-year combinations. The results presented for SDI quintiles in this study reflect each country’s position based on its SDI values in 2015.

Comparative risk assessment
The basic approach for the GBD 2015 comparative risk assessment was to calculate the proportion of deaths and DALYs attributable to risk factors (eg, tuberculosis attributable to smoking) as a counterfactual to the hypothetical situation that populations had been exposed to a theoretical minimum level of exposure in the past. As in previous GBD studies, a set of behavioural, environmental and occupational, and metabolic risks were evaluated in GBD 2015. Inclusion of a risk–outcome pair was based on the evidence of convincing or probable causal relationship between the risk and the outcome. We had evidence for such a relationship between diabetes, alcohol use, and smoking and risk of tuberculosis.21–23 Some risk factors (eg, indoor air pollution and malnutrition) have been hypothesised to have a strong link with tuberculosis, but we did not quantify the burden attributable to these risk factors because of insufficient evidence of a causal relationship.21–23 For example, evidence for indoor air pollution was based on cross-sectional studies (which are limited by their inability to establish a temporal relationship) and case-control studies (which are prone to recall bias as none of the studies measured indoor air pollution objectively).23 To date, we have not quantified the contribution of other classes of risk factors (eg, social, cultural, economic, and genetic factors).

DALYs were computed as the sum of years of life lost and years lived with disability for each location, age, sex, and year. Estimates of attributable DALYs (or number of deaths) were computed by multiplying DALYs (or number of deaths) for the outcome by the population-attributable fraction (PAF) for the risk-outcome pair for a given age, sex, location, and year. Full details of methods used in the comparative risk assessment have been reported elsewhere11 and are also provided in the appendix. To generate estimates of alcohol consumption in g per day, data from population surveys were used in combination with estimates of per-person consumption from the Food and Agriculture Organization24 and Global Information System on Alcohol and Health.25 For smoking, we included 2818 sources of primary data from the Global Health Data Exchange database.25 In addition to these primary data sources, we supplemented these data with secondary database estimates from the WHO InfoBase and International Smoking Statistics databases for sources for which primary data were unavailable. We included 281 sources from WHO InfoBase and 313 sources from International Smoking Statistics. For diabetes, we included 717 sources of population-based survey data identified through our systematic search of PubMed and the Global Health Data Exchange. A full list of data sources and citations for the three risk factors and RRs for the associations between risk factors and tuberculosis are provided in the appendix.

Role of the funding source
The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.
Results

Levels and trends of tuberculosis incidence, prevalence, and mortality

Globally, in 2015, 10·2 million (95% uncertainty interval [95% UI] 9·2 million to 11·5 million) tuberculosis incident cases occurred, 10·1 million (9·2 million to 11·1 million) prevalent cases occurred, and 1·3 million (1·1 million to 1·6 million) deaths from tuberculosis (HIV negative and HIV positive combined) occurred. Among individuals who were HIV negative, the number of incident cases was 8·8 million (8·0 million to 9·9 million), the number of prevalent cases was 8·9 million (8·1 million to 9·7 million), and the number of deaths was 1·1 million (0·9 million to 1·4 million). Globally, among HIV-negative individuals, more incident cases and deaths occurred in men than in women in most age groups (figure 1). The age-standardised tuberculosis incidence rate (per 100 000 people) among men (154·4 [140·0–172·2]) was 1·8 times higher than that among women (86·3 [78·0–97·4]), and the age-standardised tuberculosis mortality rate (per 100 000 people) among men (21·9 [16·5–29·5]) was about twice as high as that among women (10·8 [8·5–13·1]). We estimated that 690 262 (551 275–859 100) incident cases of tuberculosis, 612 183 (498 242–744 815) prevalent cases, and 69 681 (57 982–88 962) deaths from tuberculosis occurred among children younger than 15 years in 2015.

Age-standardised tuberculosis mortality rates (HIV negative and HIV positive combined) changed at –1·8% (95% UI –2·4 to –1·4) per year from 1990 to 2005, with accelerated improvements from 2005 to 2015 (–4·6% [–5·4 to –3·9] per year; appendix). The corresponding change among individuals who were HIV negative was –3·1% (–3·6 to –2·6) per year from 1990 to 2005 and –4·1% (–5·0 to –3·4) per year from 2005 to 2015 (table 1). A much slower decrease has occurred in global age-standardised tuberculosis incidence and prevalence annualised rates of change (ARCs) than in mortality rates among HIV-negative individuals. We observed a similar pattern when including HIV-positive individuals (appendix).

When examining ARCs by SDI quintile, we observed a gradient in ARCs for tuberculosis age-standardised mortality rates among HIV-negative individuals during the period 2005–15: ARCs ranged from –2·8% (95% UI –4·8 to –0·9) in the lowest SDI quintile to –7·2% (–7·9 to –6·5) in the highest quintile. We did not see a clear gradient, however, in ARCs for tuberculosis incidence and prevalence among HIV-negative individuals across the SDI quintiles (table 1). Across regions, in the period 2005–15, incidence ARCs among people who were HIV negative ranged from 0·3% (–0·4 to 1·1) in Australasia to –3·5% (–4·1 to –2·7) in eastern Europe (table 2). South Asia accounted for 35·8% of incident cases and 49·2% of deaths in 2015. Southeast Asia accounted for 14·6% of incident cases and 15·5% of deaths in 2015. In eastern Europe, during the period 1990–2005, mortality, incidence, and prevalence all increased. In the period 2005–15, however, the trends for all three indicators reversed to show decreasing trends.

Figure 2 shows maps of age-standardised incidence and death rates for tuberculosis in HIV-negative individuals in 2015. The age-standardised incidence rate of tuberculosis in HIV-negative people was more than 210 per 100 000 population in 17 countries in sub-Saharan Africa as well as India, Indonesia, and the Philippines. Death rates in HIV-negative individuals were more than 50 per 100 000 population in 25 countries in sub-Saharan Africa as well as Indonesia, Kiribati, Myanmar, and Nepal. Death rates varied greatly in north Africa and the Middle East, ranging from 0·1 (95% UI 0·1–0·2) per 100 000 in Palestine in 2015 to 30·1 (18·2–44·5) per 100 000 in Afghanistan. Detailed results, broken down by age and sex, are available online.

Observed versus expected tuberculosis incidence, prevalence, and mortality

Globally and in most regions, age-standardised tuberculosis incidence, prevalence, and mortality rates showed a steady decline with rising SDI (figure 3). Many regions (eg, southeast Asia, south Asia, central Asia, eastern Europe, Andean Latin America, and sub-Saharan Africa) had higher than expected incidence, prevalence,
Region	Incidence	Prevalence	Mortality	1990-2005	Prevalence	Mortality	2005-15	Prevalence	Mortality
Global	119.6	120.3	16.0	-1.5%	-1.2%	-3.1%	-1.6%	-0.7%	-4.1%
High SDI	28.2	16.3	1.3	-1.1%	-0.6%	-1.1%	-3.1%	-3.1%	-1.4%
High-middle SDI	89.1	84.7	5.7	-0.8%	-0.7%	-3.9%	-1.3%	-0.2%	-3.3%
Middle SDI	157.8	178.6	17.3	-2.0%	-1.8%	-4.3%	-2.0%	-1.2%	-2.4%
Low-middle SDI	189.2	187.8	44.6	-2.4%	-2.0%	-3.2%	-2.6%	-1.5%	-2.8%
Low SDI	191.0	163.0	71.6	-1.0%	-1.3%	-1.5%	-1.5%	-1.1%	-4.8%
High-income Asia Pacific	31.2	35.1	1.8	-0.7%	-3.7%	-6.3%	-1.4%	-3.0%	-1.9%
East Asia	97.5	123.6	35	-1.0%	-1.2%	-6.8%	-1.9%	-0.5%	-1.2%
South Asia	204.4	210.9	44.2	-1.7%	-0.7%	-3.6%	-1.6%	-1.4%	-1.2%
Southeast Asia	208.7	228.7	35.1	-2.9%	-2.8%	-4.0%	-1.8%	-1.4%	-1.2%
Australasia	75.0	32.0	0.2	-2.0%	-2.3%	-3.6%	-0.8%	-0.7%	-2.5%
The Caribbean	34.6	21.8	3.9	-2.8%	-2.7%	-3.6%	-0.9%	-0.8%	-1.4%
Central Europe	116.9	63.5	5.3	-1.9%	-1.8%	-3.6%	-2.1%	-1.6%	-1.4%
Eastern Europe	106.6	44.0	0.4	-5.0%	-5.0%	-6.1%	-1.5%	-1.5%	-1.4%
Western Europe	30.8	48.0	30.0	-7.0%	-7.2%	-8.3%	-7.0%	-6.9%	-6.9%
Andean Latin America	27.7	48.0	30.0	-7.0%	-7.2%	-8.3%	-7.0%	-6.9%	-6.9%
Latin America	267.0	127.0	27.0	-4.6%	-4.5%	-7.2%	-2.3%	-2.2%	-2.3%
Southern Latin America	23.5	12.6	1.6	-3.8%	-2.8%	-5.6%	-1.5%	-1.8%	-4.5%
Tropical Latin America	35.0	25.1	3.0	-1.3%	-1.4%	-3.9%	-1.6%	-1.4%	-4.3%
North Africa and the Middle East	36.7	26.3	5.0	-2.9%	-2.7%	-3.4%	-1.2%	-1.2%	-3.2%
High-income North America	3.8	2.0	0.2	-5.6%	-5.5%	-7.1%	-2.0%	-1.9%	-3.2%
Oceania	67.4	66.0	11.1	-1.4%	-1.5%	-2.7%	0.1%	0.4%	-3.2%
Central sub-Saharan Africa	272.0	219.0	110.0	-0.7%	-1.3%	-0.3%	-1.1%	-0.9%	-2.6%
Eastern sub-Saharan Africa	186.5	156.4	631.0	-1.0%	-1.2%	-2.0%	-1.5%	-1.0%	-3.1%
Southern sub-Saharan Africa	724.6	630.6	68.4	2.6%	2.5%	0.3%	-0.7%	-0.5%	-3.7%
Western sub-Saharan Africa	146.7	134.3	40.3	-1.2%	-1.2%	-2.2%	-0.8%	-0.6%	-2.9%

Data in parentheses are 95% uncertainty intervals. SDI = Socio-demographic Index.

Table 1: Age-standardised rates of tuberculosis incidence, prevalence, and mortality per 100 000 population and annualised rates of change in HIV-negative individuals.
Incidence, prevalence, and deaths in 2015

Region	Incidence	Prevalence	Deaths
Global	8832342	8861169	1120670
	(7968649 to 9702493)	(8076335 to 3970220)	(907659 to 1392789)

Region	Incidence	Prevalence	Deaths
High-income Asia Pacific	75150	35162	7270
	(71440 to 81143)	(7289 to 37782)	(7806 to 7785)
Brunei	277	191	13
	(244 to 218)	(168 to 218)	(7 to 15)
Japan	31729	14820	3971
	(29609 to 33196)	(13424 to 16361)	(3672 to 4294)
Singapore	1983	948	63
	(1765 to 2200)	(838 to 1058)	(54 to 74)
South Korea	42161	39203	3224
	(39344 to 45224)	(17867 to 20650)	(2871 to 3638)

Region	Central Asia	Armenia	Azerbaijan	Georgia	Kazakhstan	Kyrgyzstan	Mongolia	Tajikistan	Turkmenistan	Uzbekistan	East Asia	China	North Korea	Taiwan	South Asia	Afghanistan	Bangladesh	Bhutan	India	Nepal	
Incidence	88915	1158	11126	2251	33265	4422	4363	5083	5026	2222	154074	1512259	17438	100228	3166338	24513	150804	3510	2667141	50082	
Prevalence	(81070 to 97149)	(992 to 1343)	(9557 to 13006)	(1984 to 2583)	(300780 to 36389)	(3884 to 5038)	(3602 to 4412)	(3971 to 5272)	(4345 to 5994)	(18152 to 25563)	(139577 to 1749147)	(13696 to 177735)	(1522 to 20010)	(8701 to 11625)	(2784304 to 3618869)	(21596 to 27834)	(132802 to 618781)	(19629 to 16776)	(200330 to 3081200)	(451111 to 55995)	
Deaths	6690	1041	5932	202	18379	3915	322	4598	333	1946	1940482	1908212	19392	12878	52670	17666	4562	16505	1214	2803422	44109
(63414 to 75835)	(469 to 1199)	(502 to 086)	(520 to 086)	(515 to 282)	(1724 to 2188)	(3487 to 4110)	(3710 to 4222)	(3971 to 5272)	(4410 to 5253)	(18908 to 23911)	(173932 to 2109808)	(17004 to 22306)	(11628 to 14838)	(293379 to 3666211)	(231956 to 27834)	(259018 to 19984)	(22358 to 7069)	(102330 to 30728)	(39465 to 49337)		

Annualised rate of change (%)

Region	1990-2005	2005-15
Global	-1.5%	-1.6%
	(-1.7 to -1.3)	(-1.9 to -1.2)
High-income Asia Pacific	-5.1%	-1.4%
	(-5.5 to -4.8)	(-2.0 to -0.9)
Brunei	-2.2%	-0.7%
	(-3.5 to -2.8)	(-3.13 to -0.2)
Japan	-3.9%	-1.8%
	(-4.3 to -3.5)	(-3.2 to -0.5)
Singapore	-4.3%	-1.1%
	(-4.8 to -3.9)	(0.3 to 2.0)
South Korea	-6.2%	-2.1%
	(-6.7 to -6.9)	(-3.2 to -1.6)

Region	1990-2005	2005-15
Central Asia	0.5%	-3.4%
	(0.4 to 0.7)	(-4.0 to -2.9)
Armenia	1.4%	-0.0%
	(1.0 to 1.9)	(-0.8 to 0.6)
Azerbaijan	-1.2%	-1.2%
	(-1.7 to -0.7)	(-2.2 to -0.2)
Georgia	-2.9%	-0.9%
	(-3.5 to -2.3)	(0.2 to 1.6)
Kazakhstan	1.3%	-5.6%
	(0.7 to 1.8)	(-5.6 to 4.7)
Kyrgyzstan	0.1%	-2.2%
	(-0.3 to 0.7)	(-2.9 to 1.5)
Mongolia	-1.1%	-0.8%
	(-1.6 to -0.7)	(-1.6 to 0.1)
Tajikistan	-0.6%	-1.5%
	(-1.1 to -0.1)	(-2.3 to -0.7)
Turkmenistan	-0.6%	-2.1%
	(-1.2 to -0.1)	(-3.0 to -1.4)
Uzbekistan	0.6%	-1.9%
	(0.2 to 0.1)	(-2.6 to -0.3)

Region	1990-2005	2005-15
East Asia	-1.0%	-1.9%
	(-1.5 to -0.5)	(-2.4 to -1.5)
China	-1.0%	-2.0%
	(-1.5 to -0.5)	(-2.4 to -1.5)
North Korea	-2.2%	-1.0%
	(-2.6 to -1.9)	(-4.0 to 3.3)
Taiwan	-1.2%	-1.0%
	(-1.6 to -0.9)	(-1.6 to 0.5)
South Asia	-2.7%	-2.5%
	(-2.9 to -2.4)	(-3.0 to -2.0)
Afghanistan	-2.0%	-1.3%
	(-2.3 to -1.7)	(-3.8 to -0.8)
Bangladesh	-2.3%	-0.5%
	(-2.7 to -2.3)	(-4.1 to -1.7)
Bhutan	-2.2%	-0.5%
	(-2.4 to -1.8)	(-4.2 to -1.8)
India	-1.2%	-3.6%
	(-1.7 to -1.8)	(-4.4 to -2.8)
Nepal	-2.8%	-2.1%
	(-3.1 to -2.6)	(-2.9 to -2.4)

(Table 2 continues on next page)
Incidence, prevalence, and deaths in 2015

Country	Incidence	Prevalence	Deaths
Cambodia	18,017	33,251	1,973
Indonesia	814,823	3,850,075	14,000
Laos	491,640	3,023,913	14,000
Malaysia	24,219	172,264	7,500
Maldives	148	1,150	4,500
Myanmar	622,750	1,096,833	7,000
Philippines	199,719	1,280,303	10,000
Sri Lanka	12,919	91,795	1,000
Thailand	64,696	398,247	1,000
Timor-Leste	157,131	1,038,037	10,000
Vietnam	81,711	594,856	10,000
Australia	213,215	1,575,000	10,000
New Zealand	367	2,208	100
The Caribbean	15,798	100,003	100
Antigua and Barbuda	27	13	1
The Bahamas	110	78	9
Barbados	65	3	3
Belize	158	111	15
Bermuda	21	10	0
Cuba	1,327	625	42
Dominica	27	18	3
Dominican Republic	627	427	28
Grenada	23	16	1
Guyana	635	432	66

(Continued from previous page)

Annualised rate of change (%)

Country	1990–2005	2005–15	
Vietnam	–0·1%	0·2%	
Australia	–2·4%	–3·7%	
New Zealand	–3·0%	–4·5%	
The Caribbean	–3·5%	–4·5%	
Dominica	–4·2%	–4·5%	
Dominican Republic	–4·5%	–4·5%	–4·5%
Grenada	–5·3%	–5·3%	
Guyana	–7·4%	–7·4%	

(Table 2 continues on next page)
Incidence, prevalence, and deaths in 2015

Country	Incidence	Prevalence	Deaths
Haiti	5235	3317	891
Jamaica	229	163	18
Puerto Rico	421	210	23
Saint Lucia	38	34	7
Saint Vincent and the Grenadines	47	22	3
Suriname	132	91	8
Trinidad and Tobago	36	183	18
Virgin Islands	259	20	1
Central Europe	41,646	20,989	222
Albania	447	318	12
Bosnia and Herzegovina	1,280	838	135
Bulgaria	2,737	1,115	115
Croatia	1,041	485	68
Czech Republic	1,280	638	50
Hungary	1,720	819	81
Macedonia	523	360	51
Montenegro	102	72	4
Poland	10,627	5,141	586
Romania	19,211	9,227	1020
Serbia	1,862	1,264	162
Slovakia	826	581	32
Slovenia	339	163	17

Annualised rate of change (%)

Country	1990-2005	2005-15	
Haiti	-3.2%	-3.3%	
Jamaica	-3.2%	-4.5%	
Puerto Rico	-3.2%	-5.2%	
Saint Lucia	-1.0%	-1.7%	
Saint Vincent and the Grenadines	0.5%	0.6%	-1.0%
Suriname	-1.1%	-1.7%	
Trinidad and Tobago	-2.1%	-2.0%	
Virgin Islands	-0.3%	-3.5%	
Central Europe	-3.9%	-2.8%	
Albania	-1.1%	2.4%	
Bosnia and Herzegovina	-1.6%	-0.9%	-6.9%
Bulgaria	0.7%	-1.5%	
Croatia	-5.7%	-4.1%	
Czech Republic	-3.8%	-2.7%	
Hungary	-5.4%	-2.9%	
Macedonia	-3.3%	-2.7%	
Montenegro	-0.9%	1.3%	
Poland	-5.1%	-2.0%	
Romania	1.1%	-3.2%	
Serbia	-1.6%	-0.4%	
Slovakia	-2.3%	-0.3%	
Slovenia	-4.9%	-1.5%	
Eastern Europe	2.5%	-3.5%	
Belarus	1.3%	-1.1%	
Estonia	0.2%	-0.6%	
Latvia	-0.6%	-0.4%	
Lithuania	0.3%	-3.1%	

(Continued from previous page)
Incidence, prevalence, and deaths in 2015

Region	Incidence	Prevalence	Deaths
Moldova	3590	1635	215
Andorra	14	10	0
Austria	897	430	54
Belgium	1168	557	81
Denmark	472	229	31
Finland	552	252	58
France	7832	3651	1061
Germany	6525	3112	421
Greece	1162	579	63
Iceland	57	33	1
Ireland	514	251	28
Israel	769	374	29
Italy	4832	2272	469
Luxembourg	74	37	1
Malta	61	30	1
Netherlands	1260	609	75
Norway	544	263	34
Portugal	2893	1380	222
Spain	6202	2943	408
Sweden	965	501	70
Switzerland	727	355	34
UK	9283	4869	359
Andean Latin America	40363	27295	708
America	35743	24704	708
Bolivia	650	4353	885

Annualised rate of change (%)

Region	Incidence 1990-2005	Prevalence 1990-2005	Deaths 1990-2005
Moldova	6.0%	-0.4%	-2.7%
Andorra	1.1%	-1.5%	-0.0%
Austria	8.4%	-5.9%	-2.6%
Belgium	3.0%	-4.4%	-3.1%
Denmark	4.3%	-3.0%	-1.5%
Finland	-1.5%	-3.0%	-3.8%
France	-2.5%	-5.8%	-6.5%
Germany	-5.4%	-6.5%	-6.5%
Greece	-2.7%	-7.6%	-6.5%
Iceland	-3.0%	-6.0%	-1.5%
Ireland	-5.5%	-5.2%	-3.8%
Israel	-3.5%	-3.0%	-3.0%
Italy	-3.0%	-3.0%	-1.5%
Luxembourg	-2.4%	-3.1%	-1.8%
Malta	-2.8%	-3.0%	-3.0%
Netherlands	-3.0%	-3.0%	-1.5%
Norway	-1.5%	-2.8%	-3.0%
Portugal	-2.7%	-3.0%	-3.0%
Spain	-5.6%	-6.0%	-6.0%
Sweden	-2.8%	-4.0%	-4.0%
Switzerland	-3.9%	-3.7%	-3.0%
UK	-3.0%	-5.6%	-3.7%
Andean Latin America	-7.0%	-7.2%	-8.3%
America	-7.1%	-7.9%	-8.8%
Bolivia	-1.4%	-0.0%	-1.5%

(Continued from previous page)
Incidence, prevalence, and deaths in 2015

Country	Incidence	Prevalence	Deaths
Ecuador	8272	5764	883
Peru	25331	17178	1941
Central Latin America	62388	30872	5399
America	58,480	32,040	3,419
South America	13,086	5,968	860
Africa	23,074	11,903	2,991
Europe	764	309	49
South America	13,990	6,293	925
North Africa	28,125	13,212	2,597
Africa	1424	708	144
South America	2,101	1,021	199
South America	8540	4,047	627
South America	43,552	8,533	1,168
South America	10,091	5,603	604
South America	4,763	2,598	519
South America	607	324	46
South America	7,073	5,533	6016
South America	47,339	54,719	583
South America	2,487	1,744	254
South America	351	166	10
South America	13,944	10,760	558
South America	18,344	14,354	884
South America	39,347	14,455	1603
South America	21,703	15,344	1,480
South America	8,678	6,532	19
South America	10,591	8,957	19
South America	1,002	754	56

Annualised rate of change (%)

Country	1990–2005	Prevalence	Deaths			
Ecuador	-5%	-7%	-6%			
Peru	-6% to -5.1	-6% to -5.4	-7.5% to -2.2			
Central Latin America	-4%	-4.5%	-7.2%			
America	-4.8 to -4.4	-4.7 to -4.3	-7.6 to -6.8			
Colombia	-3%	-3.6%	-4.3%			
Costa Rica	-3.9 to -3.3	-3.9 to -3.4	-4.8 to -3.8			
El Salvador	-4.4%	-4.1%	-6.8%			
Guatemala	-3.9%	-9.1%	-10.8%			
Honduras	-4.7 to -4.1	-4.5 to -3.8	-7.5 to -6.0			
Mexico	-3.5 to -1.6	-2.2 to -1.7	-4.5 to -0.3			
Nicaragua	-4.6%	-4.9%	-5.2%			
Panama	-5.0 to -4.3	-5.2 to -4.5	-6.7 to -1.6			
Venezuela	-4.5%	-4.5%	-5.3%			
Southern Latin America	-3.8%	-2.8%	-5.6%			
Argentina	-4.2 to -3.3	-3.2 to -2.3	-4.4 to -2.3			
Chile	-4.7 to -4.0	-4.6 to -3.9	-9.0 to -8.2			
Uruguay	-4.3%	-3.3%	-5.6%			
Tropical Latin America	-3.9%	-1.4%	-3.9%			
North Africa and the Middle East	-3.1%	-3.1%	-3.4%	-1.0%	-0.9%	-1.5%
Algeria	-1.6%	-2.6%	-4.7%			
Bahrain	-3.8 to -3.0	-3.9 to -3.3	-5.4 to -2.1			
Egypt	-3.7%	-3.9%	-4.1%			
Iran	-3.2%	-2.3%	-4.5%			
Iraq	-3.1%	-3.1%	-2.3%			
Jordan	-3.2%	-3.4%	-2.6%			
Kuwait	-3.7%	-3.6%	-4.4%			
Lebanon	-4.2%	-4.2%	-5.9%			

(Continued from previous page)
Incidence, prevalence, and deaths in 2015

Location	Incidence	Prevalence	Deaths
Libya	1538	1137	88
Morocco	2524	1817	3186
Oman	964	725	29
Palestine	1077	832	3
Qatar	859	635	6
Saudi Arabia	8646	7128	575
Sudan	17189	12320	1875
Syria	2972	2245	60
Tunisia	3390	2552	306
Turkey	17389	12812	877
United Arab Emirates	2197	1656	62
Yemen	12690	9382	1720
High-income	14544	7422	978
North America	12271	6067	5762
Canada	1994	954	123
Greenland	29	16	2
USA	12516	6419	852
Oceania	6512	6372	683
American	46	38	1
Samoa	36066	29048	36
Fiji	339	363	36
Guam	83	87	4
Kiribati	178	178	45
Marshall	36	35	3
Federated States of Micronesia	52	51	4
Northern	79	68	1
Mariana Islands	61	51	1
Papua New Guinea	4751	4601	431
Samoa	52	56	5
Solomon Islands	302	301	57

Annualised rate of change (%)

Incidence, Prevalence, and Deaths	1990-2005	2005-15
Libya	-2.6%	-3.4%
Morocco	-3.1%	-3.8%
Oman	-2.9%	-5.2%
Palestine	0.8%	-3.6%
Qatar	0.0%	-3.0%
Saudi Arabia	4.1%	-5.0%
Sudan	1.2%	-2.8%
Syria	0.3%	-4.6%
Tunisia	-3.2%	-5.9%
Turkey	-4.8%	-8.2%
United Arab Emirates	-4.3%	-4.9%
Yemen	-2.5%	-3.1%
High-income	-5.6%	-7.1%
North America	-6.0%	-6.8%
Canada	-2.3%	-2.9%
Greenland	-2.8%	-5.0%
USA	-5.9%	-7.3%
Oceania	-4.4%	-2.7%
American	-0.9%	-5.3%
Samoa	-2.5%	-4.2%
Fiji	-2.3%	-3.3%
Guam	-2.3%	-4.8%
Kiribati	-2.9%	-4.3%
Marshall	-2.8%	-4.3%
Federated States of Micronesia	-2.5%	-2.6%
Northern	-5.1%	-5.3%
Mariana Islands	-1.4%	-5.5%
Papua New Guinea	-0.8%	-2.0%
Samoa	-3.2%	-5.5%
Solomon Islands	-3.7%	-4.3%

(Table 2 continues on next page)
Incidence, prevalence, and deaths in 2015

Country	Incidence	Prevalence	Deaths
Tonga	33 (26 to 42)	34 (27 to 44)	2 (1 to 2)
Vanuatu	116 (104 to 131)	120 (109 to 133)	21 (11 to 34)
Central sub-Saharan Africa	220 (195,418 to 248,336)	192 (170,331 to 214,480)	46 (23,872 to 94,213)
Angola	53,064	50,216	662 (23,616 to 23,623)
Democratic Republic of the Congo	139,906	119,059	3,498
Equatorial Guinea	1970	1876	125
Gabon	2796 (3356 to 4289)	3212 (3003 to 3663)	220 (99 to 438)
Eastern sub-Saharan Africa	599,195	533,816	113,498
Kenya	47,952 (38,886 to 58,101)	42,304 (35,125 to 50,814)	7,534 (5,180 to 9,497)
Madagascar	25,977	21,976 (19,273 to 25,014)	7,949 (7,196 to 7,717)
Malawi	25,886	21,411 (21,385 to 27,349)	11,108 (21,82 to 7,279)
Mauritius	516	267	13
Mozambique	57,075	51,803	9,785
Rwanda	30,763	30,329	2621
Seychelles	41 (33 to 50)	39 (32 to 47)	1 (1 to 2)
Somalia	21,060	18,017	7,178
South Sudan	30,653	30,060	5,955
Tanzania	90,627	61,366	10,413
Uganda	64,587	51,407	7903
Zambia	33,457 (29,071 to 38,709)	30,607 (27,611 to 34,076)	3573 (18,8 to 2,9)

Annualised rate of change (%)

Country	Incidence 1990-2005	Prevalence 1990-2005	Deaths 1990-2005	Incidence 2005-15	Prevalence 2005-15	Deaths 2005-15
Tonga	-1.2% (1.16 to 0.9)	-1.1% (1.14 to 0.8)	-2.8% (1.47 to 0.9)	2.6% (2.0 to 3.3)	2.9% (2.3 to 3.5)	-3.0% (5.5 to 0.3)
Vanuatu	-3.4% (3.8 to 3.1)	-3.4% (3.8 to 3.1)	-3.9% (6.6 to 0.7)	-1.9% (2.4 to 1.3)	-1.7% (2.2 to 1.2)	-4.2% (7.1 to 1.4)
Central sub-Saharan Africa	-0.7% (0.9 to 0.4)	-1.3% (1.6 to 1.0)	-0.2% (3.6 to 3.1)	-1.1% (1.5 to 0.7)	-0.9% (1.3 to 0.5)	-2.6% (6.6 to 0.7)
Angola	-2.0% (2.4 to 1.6)	-2.2% (2.4 to 1.9)	-3.4% (10.7 to 3.4)	-1.6% (2.2 to 1.0)	-1.9% (2.4 to 1.3)	-0.8% (6.5 to 4.4)
Democratic Republic of the Congo	0.0% (0.0 to 0.9)	-0.9% (0.5 to 0.2)	-0.6% (5.0 to 3.2)	0.0% (0.1 to 2.8)	0.9% (0.1 to 2.8)	0.0% (3.2 to 3.2)
Equatorial Guinea	0.8% (1.3 to 0.3)	2.1% (1.8 to 2.5)	-9.0% (27.7 to 0.9)	-1.6% (2.3 to 0.6)	-2.1% (3.6 to 0.6)	-4.4% (13.2 to 4.0)
Gabon	-2.2% (1.6 to 0.8)	-1.3% (1.6 to 1.0)	-2.9% (6.8 to 1.5)	-3.2% (2.8 to 1.6)	-3.4% (2.9 to 1.9)	-3.6% (8.5 to 1.5)
Kenya	-1.0% (1.2 to 0.7)	-1.2% (1.4 to 1.0)	-2.0% (3.7 to 0.6)	-1.5% (1.9 to 1.0)	-1.0% (1.4 to 0.7)	-3.1% (5.9 to 0.6)
Madagascar	-0.8% (0.0 to 0.9)	0.2% (0.2 to 0.6)	1.9% (4.8 to 3.2)	-0.4% (0.2 to 0.6)	-3.0% (8.0 to 0.9)	-1.8% (7.6 to 0.9)
Malawi	-0.9% (0.1 to 1.5)	1.0% (0.4 to 1.6)	0.1% (3.7 to 3.2)	-1.6% (3.7 to 0.7)	-1.3% (4.0 to 0.7)	-3.1% (4.0 to 0.7)
Mauritius	-3.1% (3.2 to 3.2)	-3.2% (3.7 to 2.8)	-6.8% (7.5 to 6.1)	1.3% (0.7 to 1.8)	1.3% (0.8 to 1.9)	-3.0% (4.4 to 1.8)
Mozambique	-0.4% (0.7 to 1.4)	-0.7% (1.0 to 1.4)	-1.2% (5.9 to 3.2)	0.4% (0.4 to 1.7)	1.1% (0.4 to 1.7)	-2.0% (8.4 to 1.3)
Rwanda	-2.2% (2.9 to 1.9)	-2.7% (3.0 to 2.4)	-3.5% (5.5 to 1.1)	-2.7% (3.4 to 2.1)	-1.9% (4.4 to 1.3)	-4.9% (10.3 to 0.2)
Seychelles	-2.4% (2.8 to 2.1)	-2.8% (3.4 to 2.1)	-6.6% (8.4 to 2.8)	1.6% (3.7 to 3.2)	1.5% (4.3 to 1.7)	-3.9% (8.5 to 1.9)
Somalia	-0.7% (0.3 to 0.1)	-0.7% (0.4 to 0.2)	-2.2% (4.7 to 0.8)	-0.6% (0.1 to 0.3)	-0.6% (0.2 to 0.1)	-0.3% (2.7 to 0.6)
South Sudan	0.0% (0.1 to 0.9)	0.5% (0.5 to 0.5)	-0.8% (7.1 to 8.8)	-1.4% (2.1 to 0.7)	-1.3% (4.7 to 0.8)	-1.8% (8.7 to 0.9)
Tanzania	-0.6% (0.0 to 0.6)	-0.8% (0.1 to 0.3)	-1.0% (0.6 to 0.6)	-0.0% (0.3 to 0.1)	-0.3% (0.4 to 0.1)	-0.4% (1.1 to 0.1)
Uganda	-0.2% (0.1 to 0.2)	0.9% (0.1 to 0.3)	-0.7% (3.1 to 4.8)	-1.0% (1.0 to 0.2)	-0.7% (0.3 to 0.1)	-3.2% (7.0 to 0.9)
Zambia	2.3% (1.8 to 2.9)	2.1% (1.6 to 2.5)	3.3% (1.4 to 7.2)	2.0% (2.2 to 1.0)	1.7% (2.2 to 1.2)	-3.3% (8.7 to 0.9)

(Continued from previous page)
Country	Incidence	Prevalence	Deaths	Annualised rate of change (%)
(Continued from previous page)				
Southern sub-Saharan Africa	617593	540901	37421	2·6% (1·8 to 3·3)
Benin	30793	10811	1526	0·07% (–4·6 to –4·1)
Burkina Faso	1972	3727	0·07% (–0·2 to 0·2)	
Cameroon	19363	2665	3·5% (2·6 to 4·3)	
Cape Verde	260	238	2·6% (2·9 to 2·2)	
Chad	19955	19395	0·00% (–2·0 to –1·3)	
Côte d’Ivoire	28598	27058	1·1% (–1·1 to 0·0)	
The Gambia	1597	1470	3·2% (1·5 to 4·9)	
Ghana	26769	2606	2·1% (–2·5 to –2·1)	
Guinea	14101	13494	0·2% (–0·6 to 0·0)	
Guinea-Bissau	2666	2597	0·0% (–0·6 to 0·0)	
Liberia	2757	2047	1·3% (–1·0 to –0·6)	
Mali	2041	3629	1·3% (–2·0 to –1·3)	
Mauritania	2393	3255	3·2% (3·4 to 3·9)	
Niger	2435	2767	0·8% (–1·1 to –0·9)	
Nigeria	20944	18485	1·2% (–1·5 to –0·9)	
São Tomé and Príncipe	130	110	1·5% (–1·9 to –1·1)	
Senegal	24555	24072	1·6% (2·0 to 1·3)	
Sierra Leone	2798	7320	0·4% (0·0 to 0·8)	
Togo	4582	5387	0·8% (–1·1 to –0·9)	

Data in parentheses are 95% uncertainty intervals.

Table 2: Tuberculosis incidence, prevalence, and deaths and annualised rates of change of age-standardised rates in HIV-negative individuals.
Incidence per 100 000 population

- <10.6
- 10.6 to <19.1
- 19.1 to <26.1
- 26.1 to <35.0
- 35.0 to <53.7
- 53.7 to <75.1
- 75.1 to <105.8
- 105.8 to <157.3
- 157.3 to <210.7
- 210.7 to 951.8

Mortality per 100 000 population

- <0.34
- 0.34 to <0.75
- 0.75 to <1.45
- 1.45 to <2.90
- 2.90 to <4.80
- 4.80 to <7.46
- 7.46 to <19.0
- 19.0 to <41.6
- 41.6 to <64.4
- 64.4 to 182.7
and mortality rates, whereas a few others (eg, Oceania and north Africa and the Middle East) showed lower than expected levels over time (appendix). Of all regions in 2015, southern sub-Saharan Africa had the largest difference between observed and expected levels, although the observed mortality has begun to fall closer to expected levels since around 2007. The gaps between observed and expected incidence and mortality also gradually decreased over time in several other regions (eg, southeast Asia, south Asia, and Andean Latin America), but we observed little change in the gaps for central, eastern, and western sub-Saharan Africa. In east Asia, we observed little change in the gap between observed and expected levels of incidence and prevalence over time, although the observed mortality converged with expected levels during 2015. In eastern Europe, the observed incidence, prevalence, and mortality increased between 1990 and 2005 but has begun to fall closer to expected levels in the last decade.

Tuberculosis mortality and DALYs attributable to individual risk factors

Table 3 shows the global and regional tuberculosis deaths attributable to smoking, alcohol use, and diabetes in 2015 and the corresponding ARCs for age-standardised rates of death in individuals who are HIV negative (the appendix contains DALYs attributable to the three risk factors and ARCs). Globally, in 2015, among HIV-negative individuals, alcohol use accounted for 126 949 (95% UI 94 124–168 699) tuberculosis deaths, followed by diabetes (118 298 [73 111–169 308] deaths) and smoking (86 849 [41 265–140 152] deaths). The corresponding PAF due to alcohol was 11·4% (9·3–13·0), due to diabetes was 10·6% (6·8–14·8), and due to smoking was 7·8% (3·8–12·0), and we observed no significant difference between the PAFs due to these three risk factors (appendix). Age-standardised tuberculosis deaths attributable to smoking changed at a faster rate per year than did those attributable to alcohol use and diabetes from 2005 to 2015 (table 3). Across regions, ARCs for age-standardised tuberculosis deaths attributable to smoking varied from −2·4% (−7·3 to 2·3) in central sub-Saharan Africa to −8·7% (−9·7 to −7·6) in eastern Europe and to alcohol use from −1·9% (−6·3 to 2·4) to −8·3% (−9·3 to −7·1). ARCs for age-standardised tuberculosis deaths attributable to diabetes varied from −1·3% (−5·3 to 2·3) in central sub-Saharan Africa to −8·6% (−10·0 to −6·8) in east Asia.

Figure 4 shows the age-standardised PAFs for global tuberculosis deaths due to the three risk factors among HIV-negative male and female individuals in 1990, 2005, and 2015 (the appendix contains PAFs for DALYs). The age-standardised PAFs for tuberculosis deaths due to smoking and alcohol use were between four times and six times higher among men than among women across all three timepoints, whereas they were similar between sexes for diabetes. In both men and women, PAFs for smoking, alcohol use, and diabetes did not change substantially from 1990 to 2005 and 2005 to 2015.

Discussion

Globally, substantial progress has been made in reducing mortality from tuberculosis. However, age-standardised tuberculosis incidence and prevalence are declining much more slowly than mortality in many countries. Despite a powerful interaction between tuberculosis and HIV, most tuberculosis cases and deaths occur among HIV-negative people in south and southeast Asia, where HIV prevalence is relatively low. Most of Asia, eastern Europe, and all of sub-Saharan Africa had higher tuberculosis burden than expected given their level of sociodemographic development.

Despite a decline in mortality from tuberculosis, an estimated 1·1 million deaths still occurred among HIV-negative individuals worldwide in 2015, along with 0·2 million deaths among HIV-positive individuals. Age-standardised mortality rates due to tuberculosis are declining at a slower pace than are those due to HIV and malaria.3 Whereas improved access to treatment probably reduced tuberculosis deaths, large funding gaps remain, with the largest gap being for multidrug-resistant (MDR) tuberculosis.27 WHO and the Global Fund to Fight AIDS, Tuberculosis and Malaria estimated that at least US$1·6 billion of international support was required annually to fill the funding gap for tuberculosis control between 2014 and 2016 in 118 low-income and middle-income countries.27 However, the growth rate of development assistance for tuberculosis has decelerated substantially since 2010,39 making it more challenging for health systems to reduce the burden of tuberculosis in low-income countries than in middle-income and high-income countries.

Tuberculosis incidence is either stagnant or declining more slowly than mortality in many tuberculosis-endemic countries, suggesting delays in diagnosis and treatment.28–36 One untreated patient with tuberculosis can infect many healthy contacts.19–20 Although only a small proportion of infected people progress to active tuberculosis, it is difficult to predict who will progress from latent infection to active disease.26 Early diagnosis of active tuberculosis is challenging; substantial delays in diagnosis and treatment have been linked to multiple factors, including absence of awareness of symptoms, absence of access to health services, shortages of trained clinicians and laboratory personnel to make the diagnosis, and poor diagnostic tools.27,31,32,33 High proportions of initial default (ie, never starting tuberculosis treatment) have been reported in...
settings relying on passive case finding. Studies evaluating the cost-effectiveness of screening for active tuberculosis using new diagnostic tools, such as Xpert-MTB/RIF, would therefore be very useful. Tuberculosis incidence is also declining more slowly than mortality in various low-tuberculosis-burden countries, with some showing either stagnant or increasing trends in incidence. Several low-tuberculosis-burden countries do not have a national tuberculosis programme or elimination plan to guide control efforts.

Our results showed a notable difference in the global age distribution of tuberculosis cases and deaths: cases were highest among young adults, but deaths were highest among old adults. This finding might be explained by a greater risk of reactivation of latent tuberculosis in younger adults as reported by longitudinal birth cohort studies and a higher risk of adverse reactions from anti-tuberculosis drugs and mortality in older people. Our results also showed that age-standardised incidence and mortality from tuberculosis were about twice as high in men than in women. Various explanations have been suggested for the sex difference in tuberculosis risk, including differential access to health care, differential exposure to risk factors (e.g., smoking), and genetic variation. An understanding of the age-sex distribution of tuberculosis cases and deaths has implications for tuberculosis control programmes in terms of targeting of interventions to high-risk groups.

Risk factors also play an important part in the control of tuberculosis. For example, alcohol abuse has been linked to poor tuberculosis treatment compliance and outcomes. Moreover, tuberculosis risk factors, including diabetes, alcohol use, and smoking, could increase the risk of tuberculosis through suppression of the immune system, especially cell-mediated immunity. With an increase in diabetes prevalence as countries go through demographic and epidemiological transition, many low-income and middle-income countries will increasingly bear the double burden of tuberculosis and diabetes. Globally, in 2015, diabetes, alcohol use, and smoking together accounted for about a quarter of tuberculosis deaths and DALYs. Efforts to prevent these risk factors can therefore have a substantial collateral impact on the burden of tuberculosis.

Our method for computation of tuberculosis burden differs from that used by WHO and results in different estimates in some locations. At the global level, our tuberculosis (all forms) incidence estimate (10·2 million cases) is slightly lower than that of WHO (10·4 million cases) in 2015, but we estimate a higher proportion of HIV–tuberculosis (13%) than does WHO (11%). Our estimated number of all tuberculosis deaths (1·3 million) is lower than WHO’s estimate (1·8 million) for 2015. The WHO global prevalence estimates for 2015 were unavailable for comparison. At the country level, our list of countries with a high burden of tuberculosis is...
Tuberculosis deaths	Annualised rate of change from 2005 to 2015 (%)
Smoking	
Alcohol	
Diabetes	
Smoking	
Alcohol use	
Diabetes	
Global	
High SDI	
High-middle SDI	
Low SDI	
Low-middle SDI	
High-income Asia	
Pacific	
Central Asia	
East Asia	
South Asia	
Southeast Asia	
Australasia	
The Caribbean	
Central Europe	
Eastern Europe	
Western Europe	
Andean America	
Central America	
Southern America	
Tropical America	
North Africa and the Middle East	
High-income North America	
Oceania	
Central sub-Saharan Africa	
Eastern sub-Saharan Africa	
Southern sub-Saharan Africa	
Western sub-Saharan Africa	

Data in parentheses are 95% uncertainty intervals. SDI=Socio-demographic Index.
Paediatric tuberculosis incidence has been estimated by different groups. We estimated that 690,262 (95% UI 551,275–859,100) incident cases of tuberculosis occurred among children aged younger than 15 years in 2015. Our estimate is lower than that from WHO (1,000,000 [900,000–1,100,000]) for both 2014 and 2015 and from Dodd and colleagues used WHO tuberculosis prevalence data and demographic information to estimate childhood tuberculosis using a mathematical model. WHO combines the CDR adjustment approach (ie, incidence=notifications/estimated CDR) and the method of Dodd and colleagues to produce their childhood tuberculosis incidence estimates.

This study has several limitations. First, our assessment of tuberculosis mortality in countries without vital registration data is driven by verbal autopsy studies, which have modest sensitivity in identifying tuberculosis deaths. Verbal autopsy studies have poor ability to distinguish HIV deaths from tuberculosis deaths; for this reason, we excluded verbal autopsy data in countries with high HIV prevalence. We applied various modelling methods by assuming that countries in the same region have a similar age–sex distribution of the tuberculosis burden as do other countries in that region and using many different combinations of covariates to help predict for locations and years with sparse or no data. Estimates for a location with sparse data are reflected by wide uncertainty intervals. Tuberculosis mortality estimates could be improved in the future by inclusion of additional covariates that have proximal relationships with tuberculosis mortality (eg, prevalence of latent tuberculosis infection).

Second, a major challenge in our statistical triangulation exercise has been the difficulty of finding consistent estimates between tuberculosis death rates and prevalence data from surveys, particularly in sub-Saharan Africa, where we have few prevalence surveys and often no usable cause of death data because of high HIV prevalence.

Third, although we used Bayesian meta-regression to generate a final incidence estimate that is consistent with prevalence data and cause-specific mortality estimates, use of CDRs as covariates is controversial since they are based on expert opinion. We plan to avoid using CDRs in the next iteration of GBD.

Fourth, our analysis of the relationship between SDI and tuberculosis incidence, prevalence, and mortality cannot be interpreted as being causal as it only reflects the average historical correlation between SDI and each of the measures. SDI use might also be low in countries with high income inequality. The applicability of SDI cannot be interpreted as being causal as it only reflects the average historical correlation between SDI and each of the measures. SDI use might also be low in countries with high income inequality. The applicability of SDI could be enhanced in the future by taking into account social heterogeneity within countries.

Fifth, despite the biological plausibility of a strong link between malnutrition and tuberculosis, we have
not quantified the burden of tuberculosis attributable to malnutrition because of insufficient evidence of a causal relationship and a scarcity of information about the relative levels of malnutrition.27,28 We plan to assess the evidence for a causal relationship between low body-mass index in adults and risk of tuberculosis in a future iteration of GBD. We also have not quantified the burden of tuberculosis attributable to indoor air pollution since the evidence is based on cross-sectional (from which a causal relationship cannot be established) and case-control (none of which measured biofuel exposure objectively and were thus prone to recall bias) studies.23

Finally, in our modelling of tuberculosis, we did not separately examine the burden of MDR tuberculosis. Given the epidemiological and clinical importance of MDR tuberculosis, we plan to include MDR and extensively drug-resistant tuberculosis estimates in the next round of GBD estimation. Despite these limitations, we believe the methodological innovation with use of statistical triangulation of data sources has yielded more robust estimates than would be yielded from reliance on a single source of data. This approach could probably be further strengthened by incorporation of population-based surveys of latent tuberculosis infection and then modelling of the progression from latent tuberculosis infection to active tuberculosis disease. Estimation and mapping of tuberculosis incidence, prevalence, and deaths at a finer spatial resolution than current national and subnational estimates could also better inform surveillance and targeting of resources for interventions than at present.27

Strengthening of national surveillance systems to capture all tuberculosis cases is an important public health goal for all countries. Until this goal is achieved, statistical data triangulation methods will be needed to make use of the available data for tracking of the tuberculosis burden. Despite general progress in reduction of tuberculosis mortality, the disease is still an enormous burden globally. Strengthening of health systems for early case detection and improvement of the quality of tuberculosis care, including prompt and accurate diagnostics, early initiation and improvement of the quality of tuberculosis care, and routine follow-up, are priorities.32,73

Countries where the tuberculosis burden is higher than expected based on sociodemographic development should investigate the reasons for lagging behind and address them as appropriate. Efforts to prevent smoking, alcohol use, diabetes, and HIV will also probably have a substantial collateral impact on reduction of the burden of tuberculosis.

GBD Tuberculosis Collaborators

Htun H Kyo, Emilie R Maddison, Nathaniel J Henry, John Everett Mumford, Ryan Barber, Chloe Shields, Jonathan C Brown, Grant Nguyen, Austin Carter, Timothy M Wolock, Haizong Wang, Patrick Y Liu, Marissa Reitsma, Jennifer M Ross, Amanuel Alemu Ababjoh, Kalkidan Hassen Abate, Kaja Abbas, Mubarak Abera, Sernaw Ferede Abera, Habtamu Ahera Hareri, Muktar Ahmed, Kefayele Addis Alene, Nelson Alvis-Guzman, Joshua Amo-Adjei, Jason Andrews, Hossein Ansari, Carl Abelardo Antonio, Falawasha Anwari, Hamid Asayesh, Tesfay Mehari Atey, Zachin Atte, Aleksandar Barac, Justin Beaddeley, Neeraj Bedi, Isabela Benserson, Addisu Shunu Beyene, Zahid Ahmad Butt, Pere-Joan Cardona, Desavasahyam Christopher, Lalit Dandona, Rakhi Dandona, Kebede Deribe, Amare Deribew, Rebecca Ehrenkranz, Mayssa El Sayed Zaki, Arman Endries, Tesfaye R Feyissa, Florian Fischer, Rusyan Gaik, Alberto I Garcia-Bastero, Tsegaye Teweldal Gebrehiwot, Halay Gesesew, Belete Getahun, Philimon Gona, Amador Goodridge, Harish Gugnani, Hassan Haqparast-Bidgoli, Geseseew Bugusa Haifu, Hamid Yamin Hassan, Eysafes Hilawe, Nobhuoki Horita, Kathryn H Jacobsen, Jost B Jonas, Amir Kasaran, Muktar Sario Kedi, Laura Kemmer, Yousuf Khader, Ejaz Khan, Young-Ho Kang, Abdullah T Khoja, Yun Jin Kim, Parvaiz Koul, Ai Koyanagi, Christopher J Krohn, G Anil Kumar, Michael Kutz, Rakesh Lodha, Hassan Magdy Abd El Razek, Reza Majdzaadeh, Tesghalun Manyazewal, Ziad Menish, Walter Mendoza, Halayf Berhan Mergebe, Shafiu Mohammad, Felix Akojomogn Ogbo, In-Hwan Oh, Eyal Oren, Aaron Osgood-Zimmerman, David Pereira, Dietrich Plass, Farshad Pourmalek, Mostafa Qorbani, Anwar Rafay, Muhituzar Rahman, Rajesh Kumar Rai, Puja C Rao, Sarah E Ray, Robert Reiner, Nickolas Reing, Saeed Safiri, Joshua A Salomon, Logan SANDAR, Benn Sartorius, Mortera Shamsizadeh, Muki Shemy, Desalmeke Mansif Shifi, Hirbo Shore, Jasvin Singh, Chandrashekar T Sreeramareddy, Soumya Swaminathan, Scott J Swartz, Fentaw Tadese, Bennet Amare Tedla, Balewegnie Silesii Teggegne, Belay Tesssema, Roman Topor-Madry, Kingsley Nnanna Ulwaja, Olalekan A Uthman, Vasiliy Vlassov, Stein Emil Vollset, Tolassa Wakayo, Solomon Weldegebreah, Ronny Westerman, Abdulhalik Worlick, Naohiro Yonemoto, Seok-Jun Yoon, Marcel Yotebieng, Mohnes Nahgavi, Simon I Hay, Theo Vo, Christopher J L Murray, A Authors listed alphabetically. |Contributed equally. ‡Corresponding author.

Affiliations

Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA (J H Kyo PhD, R Barber BS, J C Brown MAIS, A Carter BS, Prof I. Dandona MD, Prof R Dandona PhD, R Ehrenkranz MPH, Prof S I Hay FMedSci, N J Henry BS, I Kemmer PhD, J K Krohn BA, M Kutz BS, F P Liu MPH, E R Maddison BS, J E Mumford BA, Prof C J L Murray MD, Prof M Naghavi MD, G Nguyen MPH, A Osgood-Zimmerman MS, P C Rao MPH, S R Reiner PhD, N Reing BS, M Reitsma BS, M J Ross MD, L Sandar BS, C Shields BA, S J Swartz MS, Prof S E Vollset DrPH, Prof T Vo PhD, H Wang PhD, T M Wolock MHPJ; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK (Prof S I Hay); School of Public Health, University of Queensland, Brisbane, QLD, Australia (A A Ababjoh MPH); Jimma University, Jimma, Ethiopia (K H Abate PhD, M Abera MSc, T T Gebrehiwot MPH, H Gesesew MPH, T Wakayo MSc, A Werkoche MPH); Virginia Tech, Blacksburg, VA, USA (Prof K Abbas PhD); School of Public Health, College of Health Sciences, Mekelle University, Mekelie, Ethiopia (S F Abera MSc); Department of Nursing and Midwifery, School of Allied Sciences, Addis Ababa University, Addis Ababa, Ethiopia (H A Hareri MSc); Epidemiology Department, Jimma University Institute of Health, Jimma, Ethiopia (M Ahmed MPH); University of Gondar, Gondar, Ethiopia (K A Alene MPH); Universidad de Cartagena, Cartagena, Colombia (Prof N Alvis-Guzman PhD); University of Cape Coast, Cape Coast, Ghana (J Amo-Adjei PhD); Stanford University, Stanford, CA, USA (J Andrews MD, J A Salomon PhD); Department of Epidemiology and Biostatistics, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran (H Ansari PhD); Department of Health Policy and Administration, College of Public Health, University of the Philippines Manila, Manila, Philippines (C A Antonios MHPH); Independent Consultant, Kabul, Afghanistan (H Ansary MSc); University of Medical Sciences, Qom, Iran (H Asayesh MSc); School of Pharmacy, Mekelle University, Mekelle, Ethiopia (T M Atey MSc); Centre for Clinical Global Health Education, Johns Hopkins University, Baltimore, MD, USA (S Atre PhD); Faculty of Medicine, University of Belgrade, Belgrade, Serbia (A Barac PhD); Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam (J Beaddeley MBChB); Gandhi Medical College, Jazan University, Jizan, Saudi Arabia (N Bedi MD); Hospital Universitario da Universidade de São Paulo, São Paulo, Brazil
Acknowledgments

Erfan Amini, Danny V. Colomboara, Max Griswold, Chantal Huynh, Heidi J. Larson, Melkamu Merid Mengesha, Paria Naghavi, and Kelsey Pierce contributed to production of the manuscript; they received no compensation. We thank all contributors to the Global Burden of Disease 2015 Study.

References

1. Murray CJ, Orthlaf KD, Guinovart C, et al. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 1923–37.

2. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1459–64.

3. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1459–64.

4. US Agency for International Development. Independent assessment of national TB prevalence surveys conducted between 2009–2015. February, 2016. https://www.usaid.gov/sites/default/files/documents/1864/TB-prevalence-surveys-assessment-2016-508-final.pdf (accessed Sept 30, 2016).

5. WHO. Global tuberculosis report 2016. Geneva: World Health Organization, 2016.

6. Floyd S, Sismanidis C, Yamada N, et al. Analysis of tuberculosis prevalence surveys: new guidance on best-practice methods. Emerg Themes Epidemiol 2013; 10: 10.

7. Anker M, Black RE, Coldham C, et al. A standard verbal autopsy method for investigating causes of death in infants and children. http://www.who.int/csr/resources/publications/prevention/who-vacsrt1994.pdf?ua=1 (accessed Oct 18, 2016).

8. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1545–602.
9 GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 335 diseases and injuries and healthy life expectancy (HALE). 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1603–58.

10 Lönnroth K, Raviglione M. The WHO’s new End TB Strategy in the post-2015 era of the Sustainable Development Goals. Trans R Soc Trop Med Hyg 2016; 110: 148–50.

11 GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1659–724.

12 Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380: 2095–128.

13 Foreman KJ, Lozano R, Lopez AD, Murray CJ. Modeling causes of death: an integrated approach using CODEm. Popul Health Metr 2010; 12: 1.

14 Ortblad KF, Lozano R, Murray CJ. The burden of HIV: insights from the Global Burden of Disease Study 2010. AIDS 2013; 27: 2003–17.

15 Cox JA, Lukande RL, Lucas S, Nelson AM, Van Marck E, Colbunders R. Autopsy causes of death in HIV-positive individuals in sub-Saharan Africa and correlation with clinical diagnoses. AIDS Rev 2010; 12: 183–94.

16 Ford N, Matteelli A, Shiuiber Z, et al. TB as a cause of hospitalization and in-hospital mortality among people living with HIV worldwide: a systematic review and meta-analysis. J Int AIDS Soc 2016; 19: 20714.

17 Flaxman AD, Vos T, Murray CJ. An integrative metagression framework for descriptive epidemiology. first edn. Seattle: University of Washington Press, 2015.

18 Greene WH. Econometric analysis. Harlow: Pearson Education, 2012: 332–44.

19 Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and YLDs for 301 acute and chronic diseases and injuries for 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386: 741–800.

20 GBD 2013 Risk Factors Collaborators, Forouzanfar MH, Alexander L, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386: 2287–323.

21 Narasimhan P, Wood J, MacIntyre CR, Mathai D. Risk factors for tuberculosis. Pulum Med 2013; 828:939.

22 Cegielski J, McMurray D. The relationship between malnutrition and tuberculosis: evidence from studies in humans and experimental animals. Int J Tuberc Lung Dis 2004; 8: 286–98.

23 Sumpter C, Chandramohan D. Systematic review and meta-analysis of the associations between indoor air pollution and tuberculosis. Trop Med Int Health 2013; 18: 101–08.

24 Food and Agriculture Organization of the UN. FAOSTAT statistics database. http://www.fao.org/faostat/en/#data/FBS (accessed Sept 27, 2017).

25 WHO. WHO Global Health Observatory data repository. Global Information System on Alcohol and Health (GISAH). http://apps.who.int/gho/data/node.main.GISAHadgend (accessed March 1, 2016).

26 Global Health Data Exchange. http://ghdx.healthdata.org/search/site/tobacco%20use (accessed Feb 16, 2016).

27 WHO. Tuberculosis financing and funding gaps. http://www.who.int/tb/WHO_GF_TB_financing_factsheet.pdf (accessed Oct 14, 2016).

28 Dieleman J, Campbell M, Chapin A, et al. Evolution and patterns of global health financing 1995–2014. Lancet 2017; 389: 1081–2004.

29 Dye C. Tuberculosis 2000–2010: control, but not elimination. Int J Tuberc Lung Dis 2000; 4 (12 suppl 2): S146–52.

30 Sreevamandey CT, Pandurru KV, Menten J, Van den Ende J. Time delays in diagnosis of pulmonary tuberculosis: a systematic review of literature. BMC Infect Dis 2009; 9: 91.

31 Stoela DG, Yimer S, Bjune GA. A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC Public Health 2008; 8: 1.

32 Sreevamandey CT, Qiu ZZ, Sathyarayana S, Subburaman R, Pai M. Delays in diagnosis and treatment of pulmonary tuberculosis in India: a systematic review. Int J Tuberc Lung Dis 2014; 18: 255–66.

33 Dye C, Williams BG. The population dynamics and control of tuberculosis. Science 2010; 328: 856–61.

34 Jochem K, Walley J. Determinants of the tuberculosis burden in populations. In: Porter JD, Grange JM, eds. Tuberculosis—an interdisciplinary perspective. London: Imperial College Press, 1999: 31–48.

35 Golub J, Bur S, Cronin W, et al. Delayed tuberculosis diagnosis and tuberculosis transmission. Int J Tuberc Lung Dis 2006; 10: 24–30.

36 Blumberg HM, Ernst JD. The challenge of latent TB infection. JAMA 2016; 316: 931–33.

37 Hossain S, Quaiyum MA, Zaman K, et al. Socio economic position in TB prevalence and access to services: results from a population prevalence survey and a facility-based survey in Bangladesh. PLoS One 2012; 7: e49980.

38 Long Q, Li Y, Wang Y, et al. Barriers to accessing TB diagnosis for rural-to-urban migrants with chronic cough in Chongqing, China: a mixed methods study. BMC Health Serv Res 2008; 8: 1.

39 Bui T, Lönnroth K, Quy H. Initial defaulting in the National Tuberculosis Programme in Ho Chi Minh City, Vietnam: a survey of extent, reasons and alternative actions taken following default. Int J Tuberc Lung Dis 2003; 7: 735–41.

40 Botha E, Den Boon S, Verwer S, et al. Initial default from tuberculosis treatment: how often does it happen and what are the reasons? Int J Tuberc Lung Dis 2004; 8: 1280–21.

41 Afitu F, Zachariah R, Hinderaker S, et al. High initial default in patients with smear-positive pulmonary tuberculosis at a regional hospital in Accra, Ghana. Trans R Soc Trop Med Hyg 2012; 106: 511–13.

42 De Lima YV, Evans D, Page-Shipps L, et al. Linkage to care and treatment for TB and HIV among people newly diagnosed with TB or HIV-associated TB at a large, inner city South African hospital. PLoS One 2013; 8: e91940.

43 Dobler CC. Screening strategies for active tuberculosis: focus on cost-effectiveness. Clinicoecon Outcomes Res 2016; 8: 135–47.

44 Calligaro GL, Zijenah LS, Peter JG, et al. Effect of new tuberculosis diagnostic technologies on community-based intensified case finding: a multicentre randomised controlled trial. Lancet Infect Dis 2017; 17: 441–50.

45 Lönnroth K, Migliori GB, Abubakar I, et al. Towards tuberculosis elimination: an action framework for low-incidence countries. Eur Respir J 2015; 45: 928–52.

46 Wikler HG, Mustafa T, Bjune GA, Harboe M. Evidence for waning of latency in a cohort study of tuberculosis. BMC Infect Dis 2010; 10: 37.

47 Comstock GW, Livesay VT, Woolpert SF. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol 1974; 99: 131–38.

48 Yee D, Valiquette C, Pelletier M, Paraisen I, Rocher I, Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am J Respir Crit Care Med 2003; 167: 1472–77.

49 Davies P. TB in the elderly in industrialised countries. Int J Tuberc Lung Dis 2007; 11: 1557–59.

50 Pratt RH, Winston CA, Kammerer JS, Armstrong LR. Tuberculosis in older adults in the United States, 1993–2008. J Am Geriatr Soc 2011; 59: 831–57.

51 Watkins R, Plant A. Does smoking explain sex differences in the global tuberculosis epidemic? Epidemiol Infect 2006; 134: 333–39.

52 Nilanayarbode S, Leslie A. Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis 2014; 209 (suppl 3): S100–06.

53 Neyrolles O, Quintana-Murci L. Sexual inequality in tuberculosis. PLoS Med 2009; 6: e1000399.

54 Rehm J, Samkova AV, Neuman MG, et al. The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review. BMC Public Health 2009; 9: 450.

55 Oelmann JE, Kammerer JS, Pevzner ES, Moonan PK. Tuberculosis and substance abuse in the United States. 1997–2006. Arch Intern Med 2009; 169: 189–97.
56 Rehm J, Baliunas D, Borges GL, et al. The relation between different dimensions of alcohol consumption and burden of disease: an overview. *Addiction* 2010; 105: 817–43.

57 Dooley KE, Chaisson RE. Tuberculosis and diabetes mellitus: convergence of two epidemics. *Lancet Infect Dis* 2009; 9: 737–46.

58 Nelson S, Zhang P, Bagby GJ, Happel KI, Raasch CE. Alcohol abuse, immunosuppression, and pulmonary infection. *Curr Drug Abuse Rev* 2008; 1: 56–67.

59 O’Leary SM, Coleman MM, Chew WM, et al. Cigarette smoking impairs human pulmonary immunity to *Mycobacterium tuberculosis*. *Am J Respir Crit Care Med* 2014; 190: 1430–36.

60 Szabo G. Alcohol’s contribution to compromised immunity. *Alcohol Health Res World* 1997; 21: 30–41.

61 Upilekar M, Atre S, Wells WA, et al. Mandatory tuberculosis case notification in high tuberculosis-incidence countries: policy and practice. *Eur Respir J* 2016; 48: 1571–81.

62 Anderson L, Broekmans J, Floyd K, Glaziou P, Sismanidis B, Zignol M. Strengthening tuberculosis surveillance: rationale and proposed areas of work 2016–2020. http://www.who.int/tb/advisory_bodies/impact_measurement_taskforce/meetings/r6_background_2a_strengthening_surveillance.pdf?ua=1 (accessed Sept 8, 2017).

63 Lopez A, Mikkelsen L, Rampatige R, et al. Strengthening civil registration and vital statistics for births, deaths and causes of death. Resource kit. Geneva: World Health Organization, 2013.

64 Abubakar I, Bassili A, Bierenbach A, et al. Assessing tuberculosis under-reporting through inventory studies. Geneva: World Health Organization, 2012.

65 Begg S, Rao C, Lopez AD. Design options for sample-based mortality surveillance. *Int J Epidemiol* 2005; 34: 1080–87.

66 WHO. Global tuberculosis report 2015. Geneva: World Health Organization, 2015.

67 Dodd PJ, Sismanidis C, Seddon JA. Global burden of drug-resistant tuberculosis in children: a mathematical modelling study. *Lancet Infect Dis* 2016; 16: 1193–201.

68 Jenkins HE, Tolman AW, Yuen CM, et al. Incidence of multidrug-resistant tuberculosis disease in children: systematic review and global estimates. *Lancet* 2014; 383: 1572–79.

69 James SL, Flaxman AD, Murray CJ. Performance of the Tariff Method: validation of a simple additive algorithm for analysis of verbal autopsies. *Popul Health Metr* 2011; 9: 31.

70 Lozano R, Lopez AD, Atkinson C, Naghavi M, Flaxman AD, Murray CJ. Performance of physician-certified verbal autopsies: multisite validation study using clinical diagnostic gold standards. *Popul Health Metr* 2011; 9: 32.

71 Murray CJ, Lozano R, Flaxman AD, et al. Using verbal autopsy to measure causes of death: the comparative performance of existing methods. *BMC Med* 2014; 12: 5.

72 Dowell SF, Blazes D, Desmond-Heilmann S. Four steps to precision public health. *Nature* 2016; 540: 189–91.

73 Cazabon D, Alsdurf H, Satyanarayana S, et al. Quality of tuberculosis care in high burden countries: the urgent need to address gaps in the care cascade. *Int J Infect Dis* 2017; 56: 111–16.