Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties

Jin-Ching Lee¹, Ming-Feng Hou²,³,⁴, Hurng-Wern Huang⁵, Fang-Rong Chang⁶, Chi-Chen Yeh⁶, Jen-Yang Tang⁴,⁷,⁸* and Hsueh-Wei Chang⁴,⁶,⁹*

Abstract

For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs.

Keywords: Algae, ROS, Antioxidant, Inflammation, Antinociceptive, Anti-cancer

Introduction

Various bioactive compounds from marine organisms have been experimentally tested to comprehensively study the biological effects of recently developed drugs [1]. Marine algae are rich in dietary fiber, minerals, lipids, proteins, omega-3 fatty acids, essential amino acids, polysaccharides, and vitamins A, B, C, and E [2-6]. Studies on the bioactivities of marine algae have revealed numerous health-promoting effects, including anti-oxidative, anti-inflammatory, antimicrobial, and anti-cancer effects. This mini-review will evaluate the specific effects found with red (Rhodophyta) [7-11], green (Chlorophyta) [12,13], brown (Phaeophyta) [14], and blue-green [15-18] species of marine algae. Figure 1 provides a brief overview of this mini-review.

Bioactive components of marine algae

The versatility of the functions of algae may derive from their abundant bioactive metabolites [19,20]. Well-documented bioactive metabolites of marine algae [21] include brominated phenols [20], brominated oxygen heterocyclics, nitrogen heterocyclics, kainic acids, guanidine derivatives, phenazine derivatives, amino acids and amines, sterols [22], sulfated polysaccharides [4,23,24], and prostaglandins [25]. Fucoxanthin, a type of xanthophyll and an accessory pigment in the chloroplasts of algae, has also shown various beneficial effects [26]. However, not all species of algae have health-promoting properties, as some are known to produce toxic metabolites that cause neurodegenerative disorders [27].

Cultivation environment of marine algae

The cultivation environment may affect the bioactive metabolite content of an alga. For example, changes in cultivation conditions, such as spatial variations, can cause changes in the polyphenolic content in the Ascophyllum nodosum species of brown algae [28]. Additionally, in three green algae species, Capsosiphon fulvescens, Enteromorpha prolifera, and Codium fragile, bioactive metabolite content varies with the time of harvest [29]. Sulfated polysaccharides of the red alga Delesseria sanguinea (Hudson) Lamouroux can be collected throughout the year, although collection during the spring is optimal [30].

* Correspondence: reyata@kmu.edu.tw; changhw@kmu.edu.tw
²Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
³Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
Full list of author information is available at the end of the article

© 2013 Lee et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Antioxidant activities and bioactive components of marine algae extracts

Antioxidant activities have been identified in various marine algae, including red, green, and brown algae species [31], and in their enzymatic extracts [32-34]. The antioxidant properties of extracts and bioactive components of four common marine algae are discussed here.

Red algae
Ethanol extracts of the Callophyllis japonica [35] and Gracilaria tenuistipitata [36] species of red algae reportedly have antioxidant effects. For example, ethanol extracts of C. japonica suppressed H$_2$O$_2$-induced cellular apoptosis and activated cellular antioxidant enzymes [35]. Experiments performed with the H1299 cell line showed that treatment with an aqueous extract of G. tenuistipitata enhanced the recovery of these cells from H$_2$O$_2$-induced DNA damage, counteracts cellular proliferation, and induced G2/M arrest [36].

Green algae
Free-radical-scavenging assays using green algae revealed antioxidant properties for the sesquiterpenoids from Ulva fasciata Delile [37]. Ulva lactuca is rich in flavonoids and has potent antioxidant properties [38]. Data obtained from animal model studies has started to shed light on the fact that the free radical scavenging effects of a hot water extract of Ulva reticulate [39] reduced hepatic oxidative stress.

Brown algae
Assays of 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging have revealed antioxidant activities for the phlorotannins from the Eissenia bicyclis, Ecklonia cava, and Ecklonia kurome species of brown algae [40]. Methanol extracts of Fucus vesiculosus and F. serratus are known to protect Caco-2 cells from DNA damage induced by H$_2$O$_2$ [41], but not from DNA damage induced by tert-butyl hydroperoxide [42]. Methanol extracts of Pelvetia canaliculata inhibited H$_2$O$_2$-induced superoxide dismutase depletion in Caco-2 cells [41].

Blue-green algae
Analyses of DPPH radical scavenging activity have revealed antioxidant effects of a methanol extract of the Anabaena species of blue-green algae [43]. Ascorbate/iron/H$_2$O$_2$ assays have also revealed antioxidant effects of phycobiliprotein phycocyanin in a Spirulina platensis extract [44]. To date, the antiinociceptive properties of blue-green algae have been less thoroughly investigated.

Anti-inflammatory and antinociceptive properties of marine algae extracts and components
Oxidative stress plays important roles in endothelial dysfunction [45], lung disease [46], gastrointestinal dysfunction [47], and atherosclerosis [48], all of which involve inflammatory reactions. Many marine natural products that contain antioxidants are known to have anti-inflammatory effects [49-51]. Examples of the anti-inflammatory and antinociceptive properties identified in extracts and bioactive components of different marine algae are discussed here.

Red algae
The bioactivities of the Gracilaria spp. of red algae have been thoroughly reviewed [52]. However, anti-inflammatory properties have been reported for only two species, G. verrucosa and G. textorii. Evidence of anti-inflammatory properties in other species of red algae is also increasing. For example, an aqueous extract of G. tenuistipitata suppressed virus-induced inflammation [53], a polysaccharide from Porphyridium sp. inhibited the replication of retroviruses [54], and an ethanol extract of Polyopes affinis suppressed asthmatic reactions [55]. The anti-inflammatory effects of a methanol extract of Neorhodomela aculeata in neurological diseases included inhibiting cellular reactive oxygen species (ROS) generation, H$_2$O$_2$-induced lipid peroxidation, and inducible nitric oxide synthase [56]. The anti-inflammatory effects of Laurencia glandulifera-derived neorogioltriol, a tricyclic brominated diterpenoid, have been demonstrated for cells that were stimulated by lipopolysaccharide (LPS) [57]. Two Laurencia obtuse-derived C15 acetogenins, (12Z)-cis-maneonene-D and (12E)-cis-maneonene-E, mediated the apoptosis of neutrophils during the progression of inflammatory responses [58]. A
Porphyra yezoensis glycoprotein exhibited anti-inflammatory effects in LPS-stimulated macrophages [59]. Two enone fatty acids of Gracilaria verrucosa, (E)-10-Oxooctadec-8-enoic acid and (E)-9-Oxooctadec-10-enoic acid, inhibited the production of the inflammatory markers nitric oxide, TNF-α, and IL-6 [60]. Multi-mineral aquamin derived from Lithothamnion corallioides had anti-inflammatory effects on glial-enriched primary cultures of rat cortex [61]. Sulfated polysaccharides from Delesseria sanguinea (Hudson) Lamouroux also exhibited anti-inflammatory effects [30].

Some red algae species exhibit both antinociceptive and anti-inflammatory effects. For example, a methanol extract of Bryothamnion triquetrum [62] had both antinociceptive and anti-inflammatory properties in experiments that used Swiss mice. Antinociceptive activity was examined using an acetic acid-induced writhing test, a hot-plate test, and glutamate-/formalin-induced nociception. Anti-inflammatory effects were assessed by zymosan A-induced peritonitis analysis. Antinociceptive and anti-inflammatory activities have also been reported for a sulfated polysaccharide fraction from Gracilaria caudate [63], a galactan from Gelidium crinale [64], a mucin-binding agglutinin from Hypnea cervicornis [65], and a lectin from Pterocladiella capillacea [66].

Green algae
Crude extracts and purified components of some green algae species are also known to have anti-inflammatory properties. For example, Dunaliella bardawil is rich in antioxidant beta-carotene. Studies with rats have confirmed its protective effects against acetic acid-induced small bowel inflammation [67]. Methanol extracts of Ulva conglobata and Ul. lactuca have shown anti-inflammatory effects in experiments that used a murine hippocampal HT22 cell line [68] and rats [69]. Studies of purified components include one on lycopene from Chlorella marina, which confirmed the anti-inflammatory effects of lycopene in a rat model of arthritis [70]. A sheep model of inflammation-induced cytokine production demonstrated the inhibiting effects of a mixture of phytosterols from Dunaliella tertiaecia [71].

Crude extracts or purified components of some green algae species reportedly had both antinociceptive and anti-inflammatory effects. For example, several nociception models have shown both antinociceptive and anti-inflammatory activities of aqueous and methanol extracts of Caulerpa mexicana [13,72]. Both of these activities have also been demonstrated for a lectin [73] and a sulfated polysaccharide [74] from Caulerpa cupressoides.

Brown algae
A murine asthma model [75] showed that an ethanol extract of Ecklonia cava reduced allergic airway reactions and inflammation and inhibited LPS-induced inflammation in human endothelial cells [76]. An ethanol extract of Ishige okamurae also showed anti-inflammatory effects [77].

Studies of sulfated polysaccharides include animal models [78,79], which confirmed the anti-inflammatory effects of a sulfated galactofucan from Lobophora variegata. Alginic acid, an anionic polysaccharide in Sargassum wightii, exhibited anti-inflammatory effects in a rat study of adjuvant-induced arthritis [80]. Fucoidan is known to enhance the probiotic effects of Lactic acid bacteria (LAB) by immunomodulation of an anti-allergic response [81]. Fucans from Lobophora variegata [82], Sargassum vulgare [83], and Spatoglossum Schroederi [84] also have both anti-inflammatory and antinociceptive effects.

Additionally, anti-inflammatory effects have been demonstrated for the Myagropsis myagroides-derived carotenoid fucoxanthin [85], for Eisenia bicyclus, Ecklonia cava- and Ecklonia kurome-derived polyphenol phlorotannins [86], and for Sargassum siliquastrum-derived sargachromanol G [87]. Phloroglucinol, a monomer of phlorotannins that is abundant in brown algae, reportedly had an anti-oxidative stress effect and inhibited the production of inflammatory mediators in LPS-stimulated cells [88].

Blue-green algae
Blue-green algae have well-documented protective effects against viral and bacterial infections, cancer, allergies, diabetes, inflammation, and hyperlipidemia [16]. For example, the spirulina alga had anti-oxidative and anti-inflammatory effects when assessed using a non-alcoholic steatohepatitis model [15]. C-phycocyanin [17], a biliprotein isolated from Spirulina platensis, suppressed inflammation by inhibiting the production of pro-inflammatory cytokines and by inhibiting the expressions of inducible nitric oxide synthase and cyclooxygenase-2 [89]. To date, the antinociceptive properties of blue-green algae have been less thoroughly investigated.

Anti-cancer effects of marine algae extracts and components
Because they modulate ROS generation, antioxidants have vital roles in carcinogenesis [90-93]. For example, occupational and environmental exposures to metals reportedly induce ROS generation and are associated with carcinogenesis [90]. ROS are also essential for inducing autophagy, which may be mediated by ataxia-telangiectasia mutated (ATM) and AMP activated protein kinase (AMPK) [91]. Sirtuin 3 (SIRT3), a deacetylase, is considered to be a mitochondrial fidelity protein that modulates ROS metabolism during responses to stress, such as those due to aging and carcinogenesis [92]. ROS overproduction may result in genomic instability and cellular damage, as well as carcinogenesis [94]. ROS signaling can also be induced by estrogen to
increase genomic instability and promote breast cancer carcinogenesis [93]. Additionally, several drugs that may generate oxidative stress and trigger the expressions of several miRNAs and DNA damage responses have been reviewed [95,96]. For example, cells that were treated with ferric nitrilotriacetate could generate ROS and induce the overexpression of miRNA-34a. In contrast, miRNA-34a downregulation by a small interfering RNA may have inhibited the proliferation of HeLa and MCF7 cancer cells [97]. These results suggest that ROS and miRNAs are also involved in carcinogenesis.

Inflammation also has molecular links to carcinogenesis [98,99]. Therefore, pro-oxidant natural products are commonly chosen when developing anti-cancer drugs [100-102]. Examples of the anti-cancer properties of extracts and bioactive components of four marine algae are discussed here.

Red algae
Aqueous extracts of *Gracilaria corticata* [103] and *Sargassum oligocystum* [104] inhibited the proliferation of human leukemic cell lines. Both ethanol [11] and methanol [105] extracts of *Gracilaria tenuistipitata* reportedly had anti-proliferative effects on Ca9-22 oral cancer cells and were involved in cellular apoptosis, DNA damage, and oxidative stress. Similarly, caspase-dependent apoptosis induced by a methanol extract of *Plocamium telfairiae* has been demonstrated using HT-29 colon cancer cells [106].

Green algae
Among green algae, a hot water extract of *Capnosiphon fulvescens* that contained polysaccharides induced the apoptosis of gastric cancer cells [107] via the PISK/Akt pathway [108,109]. Dimethylsulfoxonipropionate, a tertiary sulfonium metabolite found in green algae and other algae species, exhibited anti-cancer effects in mice with Ehrlich ascites carcinoma [110].

Brown algae
Studies of brown algae have shown that glycoproteins from *Laminaria japonica* [111] and fucoids from *Sargassum hornery, Eclonia cava,* and *Costaria costata* [112] had anti-cancer effects on human colon cancer cells. Heterofucans from *Sargassum filipendula* exhibited anti-proliferative effects on cervical, prostate, and liver cancer cells [113]. A carotenoid fucosaxanthin cold inhibit the growth of LNCap prostate cancer cells by arresting these cells in the G1 phase via the GDD45A and SAPK/JNK pathways [114].

Blue-green algae
Studies of blue-green algae have confirmed the anti-cancer effects of Spirulina preparations [115], recombinant glycoproteins, specifically microcystis viridis lectin (MVL) [118], and cryptophycin [116,117].

Conclusion
Marine algal natural products are rich sources of antioxidants. In fact, some marine algae are edible. The details for the fractionation of crude extracts described in this study showed that these extracts and their bioactive components had strong modulating effects on oxidative stress and on oxidative stress-related diseases and cancers. The antioxidant properties of several kinds of algae have been investigated for their anti-inflammatory, antinociceptive, and anti-cancer effects. In the future, these marine algae-derived materials/compounds will be used more often in pre-clinical studies for drug discovery.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
J-CL did the literature search, integrated different points, and drafted the manuscript. M-FH, H-WH, F-RC, and C-CY conceived the idea and did discussion and editing the manuscript. All authors read and approved the final manuscript.

Acknowledgement
This study was supported by a grant from the National Science Council (NSC101-2320-B-037-049), the Department of Health, Executive Yuan, Republic of China (DOH102-TD-C-111-002), the National Sun Yat-Sen University-KMU Joint Research Project (#NSYSU-KMU 102-034).

Author details
1 Department of Biotechnology, College of Life Science Kaohsiung Medical University, Kaohsiung, Taiwan.
2 Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
3 Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.
4 Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
5 Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.
6 Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
7 Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
8 Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
9 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.

Received: 7 April 2013 **Accepted:** 27 May 2013 **Published:** 3 June 2013

References
1. Arif JM, Al-Hazzani AA, Kunhi M, AlKhodairy F: Novel marine compounds: Anticancer or genotoxic? *J Biomed Biotechnol* 2004, 2004(2):59–98.
2. MacAntain P, Gill-CL, Brooks M, Campbell R, Rowland R: Nutritional value of edible seaweeds. *Nutr Rev* 2007, 65(12 Pt 1):535–543.
3. Cerna M: Seaweed proteins and amino acids as nutraceuticals. *Adv Food Nutr Res* 2011, 64:297–312.
4. Misurowa L, Skrovankova S, Samek D, Ambrozova J, Machu L: Health benefits of algal polysaccharides in human nutrition. *Adv Food Nutr Res* 2012, 66:35–145.
5. Tabarsa M, Rezaei M, Ramezanpour Z, Waaland JR: Chemical compositions of the marine algae *Gracilaria salicornia* (Rhodophyta) and *Ulva lactuca* (Chlorophyta) as a potential food source. *J Sci Food Agric* 2012, 92(12):2500–2506.
6. Rajapakse N, Kim SK: Nutritional and digestive health benefits of seaweed. *Adv Food Nutr Res* 2011, 64:17–28.
Potential beneficial effects of marine algal sterols on...

13. da Matta CB, de Souza ET, de Queiroz AC, de Lira DP, de Araujo MV, de Oliveira Santos BV, Cavalcante-Silva LH, de Miranda GE, de Araujo-Junior JX, Barbosa-Filho JM, Batista LM et al. Antinociceptive and anti-inflammatory activity from the edible marine macroalga Cymopolia barbata. J Clin Biochem Nutr 2012, 51(2):227–234.

14. Romay C, Armesto J, Gonzalez R, Ledon N, Garcia I. Cytotoxic and potent properties from marine macroalga Ulva fasciata Delile. Food Chem 2010, 1291–211.

15. Meenakshi S, Gnanambigai DM, Mozhi ST, Arumugam M, Balasubramanian T. Total flavonoid and in vitro antioxidant activity of five brown seaweeds harvested in the west coast of India. Food Sci Biotechnol 2012, 21(1):127–138.

16. Rajal Rajagandha Rao R, Sathivel A, Devaki R, Antimicrobial and antioxidant activities of sulphated polysaccharides from the red seaweed Gracilaria tenuistipitata. J Agric Food Chem 2013, 61(5):1060–1066.

17. Shibata T, Ishimaru K, Kawaguchi S, Yoshikawa H, Hama Y. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae. J Appl Phycol 2008, 20(3):705–711.

18. O'Sullivan AM, O'Callaghan YC, O'Grady MN, Queguineur B, Hannify D, Troy DJ, Keny JP, O'Brien NM. In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem 2011, 126:1064–1070.

19. O'Sullivan AM, O'Callaghan YC, O'Grady MN, Queguineur B, Hannify D, Troy DJ, Keny JP, O'Brien NM. Assessment of the ability of seaweed extracts to protect against hydrogen peroxide and tert-butyl hydroperoxide induced cellular damage in Caco-2 cells. Food Chem 2012, 134(2):1137–1140.

20. Pant G, Kumar G, Karthik L, Prasuna RG, Rao KV. Antioxidant activity of methanolic extract of blue green algae Anabaena sp. (Nostocaceae). Eur J Lipid Sci Technol 2011, 113(1):156–162.

21. Pinero Estrada JE, Bermejo Becios P, Villar del Fresno AM. Antioxidant activity of different fractions of Spirulina platensis protein extract. Food Chem 2001, 76:497–500.

22. Schramm A, Matsuki P, Osmenda G, Guzik TJ. Targeting NADPH oxidases in vascular pharmacology. Vasc Pharmacol 2012, 56:216–231.

23. Rosana DP, Salvarce C. Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des 2012, 18(36):3889–3900.

24. Kim YI, Kim EH, Hahn KB. Oxidative stress in inflammation-based gastrointestinal tract diseases: challenges and opportunities. J Gastroenterol Hepatol 2013, 27(6):1004–1010.

25. Hulsman M, Van Dooren E, Holvoet P. Mitochondrial reactive oxygen species and risk of atherosclerosis. Curr Atheroscler Rep 2012, 14(3):264–276.

26. Abad MJ, Bedoya LM, Bermejo P. Natural marine anti-inflammatory products. Mini Rev Med Chem 2008, 8(8):740–754.

27. Wang WF, Wang YX, Guan HS. The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs 2012, 10(12):2795–2816.

28. De la Oraza N, Gamonma MA, Gemello E, De Girolamo M, Cusenza S, Riccioni C. Marine bioactive: pharmacological properties and potential applications against inflammatory diseases. Mar Drugs 2012, 10(4):812–833.

29. Chen KJ, Tseng CK, Chang FR, Yang JI, Yeh CC, Chen WC, Wu SF, Chang HW, Lee JC. Aqueous extract of the edible Gracilaria tenuistipitata inhibits...
hepatitis C viral replication via cytochrome P450-2 and suppresses hepatic virus-induced inflammation. PLoS One 2013, 8(2):e57704.

54. Talyshinsky MM, Souprun YY, Huleihel MM: Anti-viral activity of red microalgal polysaccharides against retroviruses. Cancer Cell Int 2002, 2(1):8.

55. Lee DS, Park WS, Heo SI, Choi SH, Kim D, Jeon YJ, Park SG, See SK, Choi JS, Park SJ, et al.: Polyphosphate affinis alleviates airway inflammation in a murine model of allergic asthma. J Biosci 2011, 36(5):869–877.

56. Lim CS, Jin DQ, Sung JY, Lee KH, Choi HG, Ha I, Han JS: Antioxidant and anti-inflammatory activities of the methanolic extract of Neohorodendron aceuleum in hippocampal and microglial cells. Biol Pharm Bull 2006, 29(8):1212–1216.

57. Chatter R, Ben Othman R, Rabhi S, Kladi M, Tarhouni S, Vagias C, Roussis V, Gius D, Kim HS: Antioxidant and anti-inflammatory activities of NF-kappaB transcription via the TLR4 signaling pathway. Int J Mol Med 2011, 28(5):809–815.

58. Lee HY, Jang HT, Kang GJ, Yang EJ, Park SS, Yoon WJ, Jung JH, Kang HK, Yoo ES: Two enone fatty acids isolated from Gracilaria verrucosa suppress the production of inflammatory mediators by down-regulating NF-kappaB and STAT1 activity in lipopolysaccharide-stimulated RAW 264.7 cells. Arch Pharm Res 2009, 32(3):453–462.

59. Ryan S, O’Gorman DM, Nolan YM: Evidence that the marine-derived multi-mineral Aquamin has anti-inflammatory effects on cortical gliar-enriched cultures. Phytother Res 2011, 25(5):765–767.

60. Cavalcante-Silva LH, da Manta CB, de Kraju MV, Barbosa-Filho JM, de Lira DP, de Oliveira Santos BV, de Miranda GE, Alexandre-Moreira MS: Antinociceptive and anti-inflammatory activities of crudes methanolic cultures. Phytother Res 2013, 27(2):173–180.

61. Bitencourt Fda S, Figueiredo JG, Mota MR, Bezerra CC, Silvestre PP, Vale MR, Benevides NM: In vivo anti-inflammatory effect of sargachromanol G isolated from Sargassum siliquastum on zymosan-induced arthritis in rats. Int Immunopharmacol 2011, 11(9):1241–1250.

62. Shih CM, Cheng SN, Wong CS, Kuo YL, Chou TC: Antinociceptive and anti-inflammatory effect of C-phycocyanin. Int J Mol Med 2013, 27(6):1977–1983.

63. Guedes DP, de Oliveira Santos BV, de Miranda GE, Alexandre-Moreira MS: Antinociceptive and anti-inflammatory effects of crude methanolic extracts of Caulerpa mexicana on adjuvant-induced arthritic rats. In: Immunopharmacology 2012. http://www.ncbi.nlm.nih.gov/pubmed/23179138.

64. Meudeños VP, Queiroz KC, Cardoso ML, Monteiro GR, Oliveira FW, Chavante SG, Guimaraes LA, Rocha HA, Leite EL: Sulphated galactofucan from Lobophora variegata: anticoagulant and anti-inflammatory properties. Biochemistry (Moscow) 2007, 72(10):1018–1024.

65. Paiva AA, Castro AJ, Naismith MS, Will LS, Santos ND, Araujo RM, Xavier CA, Rocha FA, Leite EL: Antioxidant and anti-inflammatory properties of polysaccharides from Lobophora variegata on zymosan-induced arthritis in rats. Int Immunopharmacol 2011, 11(9):1241–1250.

66. Patalkhamal CH, Renju GL, Kurup GM: Anti-inflammatory and antioxidant potential of the methanol extract of the marine alga, Sargassum wightii on adjuvant-induced arthritic rats. Int Immunopharmacol 2012, 12(6):863–866.

67. Kim SK, Lee HY, Jang HY, Kim JH, Cho I, Park SG, See SK, Lee SW, Lee CM, Yea SS, et al: Effects of Ecklonia cava ethanol extracts on airway hyperresponsiveness and inflammation in a murine asthma model: role of suppressor of cytokine signaling. BioMed Pharmacother 2008, 62(5):289–296.

68. Kim TH, Bae JS: Ecklonia cava extracts inhibit lipopolysaccharide induced inflammatory responses in human endothelial cells. Food Chem Toxicol 2010, 48(6):1662–1667.

69. Kim MM, Rajappakse N, Kim SK: Anti-inflammatory effect of Isihoe okumareae ethanol extract via inhibition of NF-kappaB transcription factor in RAW 264.7 cells. Phytother Res 2009, 23(5):628–634.

70. Medeiros VP, Queiroz KC, Cardoso ML, Monteiro GR, Oliveira FW, Chavante SG, Guimaraes LA, Rocha HA, Leite EL: Sulphated galactofucan from Lobophora variegata: anticoagulant and anti-inflammatory properties. Biochemistry (Moscow) 2007, 72(10):1018–1024.
