Whole exome sequencing of Rett syndrome-like patients reveals the mutational diversity of the clinical phenotype

Mario Lucariello¹ · Enrique Vidal¹ · Silvia Vidal² · Mauricio Saez¹ · Laura Roa¹ · Dori Huertas¹ · Mercè Pineda³ · Esther Dalfó³ · Joaquin Dopazo⁵,⁶,⁷ · Paola Jurado¹ · Judith Armstrong²,⁸,¹¹ · Manel Esteller¹,⁹,¹⁰

Abstract Classical Rett syndrome (RTT) is a neurodevelopmental disorder where most of cases carry MECP2 mutations. Atypical RTT variants involve mutations in CDKL5 and FOXG1. However, a subset of RTT patients remains that do not carry any mutation in the described genes. Whole exome sequencing was carried out in a cohort of 21 female probands with clinical features overlapping with those of RTT, but without mutations in the customarily studied genes. Candidates were functionally validated by assessing the appearance of a neurological phenotype in Caenorhabditis elegans upon disruption of the corresponding ortholog gene. We detected pathogenic variants that accounted for the RTT-like phenotype in 14 (66.6 %) patients. Five patients were carriers of mutations in genes already known to be associated with other syndromic neurodevelopmental disorders. We determined that the other patients harbored mutations in genes that have not previously been linked to RTT or other neurodevelopmental syndromes, such as the ankyrin repeat containing protein ANKRD31 or the neuronal acetylcholine receptor subunit alpha-5 (CHRNA5). Furthermore, worm assays demonstrated that mutations in the studied candidate genes caused locomotion defects. Our findings indicate that mutations in a variety of genes contribute to the development of RTT-like phenotypes.

Introduction

Rett syndrome (RTT, MIM 312750) is a postnatal progressive neurodevelopmental disorder (NDD), originally
described in the 1960s by Andreas Rett (Rett 1966), that most frequently manifests itself in girls during early childhood, with an incidence of approximately 1 in 10,000 live births (Chahrour and Zoghbi 2007). RTT patients are asymptomatic during the first 6–18 months of life, but gradually develop severe motor, cognitive, and behavioral abnormalities that persist for life. It is the second most common cause of intellectual disability in females after Down’s syndrome (Chahrour and Zoghbi 2007). Around 90 % of the cases are explained by more than 800 reported mutations in the methyl CpG-binding protein 2 gene (MECP2) (RettBASE: MECP2 Variation Database) (Christodoulou et al. 2003), which is located in the X chromosome and which causes most of the classical or typical forms of RTT (Chahrour and Zoghbi 2007), and it was originally identified as encoding a protein that binds to methylated DNA (Lewis et al. 1992). Individuals affected by atypical or variant RTT present with many of the clinical features of RTT, but do not necessarily have all of the classic characteristics of the disorder (Neul et al. 2010). Approximately 8 % of classic RTT and 42 % of variant RTT patients are MECP2 mutation-negative (Monros et al. 2001; Percy 2008). Some of the latter group have mutations in other genes, such as that of the cyclin-dependent kinase-like 5 (CDKL5), which is described in individuals with an early seizure onset variant of RTT (Kalscheuer et al. 2003) or the forkhead box G1 (FOXG1), which is responsible for the congenital variant of RTT (Ariani et al. 2008). However, there remains a subset of patients with a clinical diagnosis of RTT who are mutation-negative for all the aforementioned genes. Next generation sequencing (NGS) has emerged as a potentially powerful tool for the study of such genetic diseases (Zhu et al. 2015).

Herein, we report the use of a family based exome sequencing approach in a cohort of 20 families with clinical features of RTT, but without mutations in the usually studied genes. We establish the neurological relevance of the newly identified candidate genes by assessing them in Caenorhabditis elegans model.

Materials and methods

Patient samples

A cohort of 19 Spanish parent–child trios and one family with two affected daughters who exhibited clinical features associated with RTT were recruited at Sant Joan de Deu Hospital in Barcelona, Catalonia, Spain. These patients had been diagnosed on the basis of the usual clinical parameters (Monros et al. 2001), and according to the recently revised RettSearch International Consortium criteria and nomenclature (Neul et al. 2010), but were found to be mutation-negative for MECP2, CDKL5 and FOXG1 in the original single-gene screening. The parents were clinically evaluated and it was not observed any evidence of intellectual disability. Genomic DNA from these patients was extracted from peripheral blood leukocytes using standard techniques, and analyzed by exome sequencing at the Cancer Epigenetics and Biology Program (PEBC) in Barcelona, Catalonia, Spain. Ethical approval for the molecular genetic studies was obtained from each institutional review board.

Whole exome sequencing and Sanger validation

Coding regions were captured using the TruSeq DNA Sample Preparation and Exome Enrichment Kit (Illumina, San Diego, California). Paired-end 100 × 2 sequences were sequenced with the Illumina HiScan SQ system at the National Center for Genomic Analysis in Barcelona. We also included the exome sequencing data of an MECP2, a CDKL5 and a JMJD1C (Sáez et al. 2016) RTT-associated family for data processing to improve the de novo single nucleotide variant calling. The complete exome sequencing data of all the studied samples are available from the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra) with the ID: SRP073424 (private link for the reviewer until publication: http://www.ncbi.nlm.nih.gov/sra/SRP073424).

The overall coverage statistics for each individual of the families, considering the regions captures using Exome Enrichment Kit, and number of reads in the position of the variation is shown in Supplementary Table 1. The identified variants were validated by Sanger sequencing using a BigDye® Terminator v3.1 Cycle Sequencing Kit in an Applied Biosystems 3730/DNA Analyzer. The raw data were analyzed with Codon Code Aligner Software. The primers used for Sanger sequencing are shown in Supplementary Table 2.

Caenorhabditis elegans handling

The techniques used for the culture of Caenorhabditis elegans were essentially as described (Brenner 1974). The worms were backcrossed at least three times to avoid background mutations. The behavior of three sets of ten animals was independently assessed in locomotion assays without food that were performed at 20 °C, as previously described (Sawin et al. 2000).
Results

Clinical criteria for selecting RTT trios

The 21 patients (derived from the 20 families studied) included in this study fulfilled the recently revised clinical criteria for the diagnosis of RTT following the usual clinical parameters (Monros et al. 2001), and the RettSearch International Consortium criteria and nomenclature (Neul et al. 2010). Specifically, all patients presented stereotypic hand movements, 90.5 % of them (19/21) showed microcephaly and also presented onset of the first signs of the disease before the age of 12 months. 66.7 % of patients (14/21) acquired motor skills, while a further seven (33.3 %), who had a more severe phenotype, never walked. Language skills were progressively lost in 28.6 % of the patients and 71.4 % of them (15/21) never acquired them. Additionally, important episodes of epilepsy were experienced by 81.0 % of the patients (17/21), and 57.1 % of them (12/21) manifested apneas and/or hyperventilation.

Bioinformatic process for filtering and selecting pathogenic variants

Before their inclusion in this study, patients underwent an extensive clinical and genetic work-up to detect genetic alterations in MECP2, CDKL5, and FOXG1. However, no molecular diagnosis could be established. We performed whole exome sequencing (WES) on the 61 individuals (20 pairs of healthy parents and 21 affected daughters) separately by subjecting whole blood derived genomic DNA to exome enrichment and sequencing. We focused on de novo single nucleotide variants (SNVs) due to their known relevance in autism and mental retardation-related diseases (Vissers et al. 2010). On average, WES gave rise to 419,045 variants, including SNVs and indels, of which 19,951 non-synonymous variants per family (4.7 %) were predicted to have a functional impact on the genomic sequence. To select variants that had not previously been described in the healthy population, we filtered out the variants with an allele frequency of 1 % or higher (the classic definition of a polymorphism) formerly observed in the Single Nucleotide Polymorphism database (dbSNP) and the 1000 Genomes Pilot Project data. Afterwards, to focus on de novo inheritance, patients’ variants were filtered first against variants found in their own parents and then against a pool of controls comprising all the healthy parents included in the study. Following this process, we achieved an average of 106 SNVs per family, which corresponded to 81 mutated genes per family. De novo candidate variants were selected on the basis of the quality of the alignments, damage score predictors and the conservation level of each of the genes during evolution. The complete exome sequencing data of all the studied samples are available from the Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra).

The global yield of genomic analysis following the bioinformatic process described herein enabled 22 coding de novo mutations to be identified in 66.7 % (14 of 21) of Rett-like patients: 20 SNVs and 2 indels. The identified variants and their de novo status were confirmed by conventional Sanger sequencing. Illustrative samples are shown in Fig. 1. Interestingly, in seven (33.3 %) of the studied RTT probands, exome sequencing did not detect any genetic change relative to their respective parents. The clinical characteristics of these seven patients without obvious pathogenic variants are summarized in Table 1. In one of the families, there were two affected children, and an analysis of potentially relevant recessive variants was performed. For the recessive analysis, and following the same criteria to define a variant as deleterious, we selected the variants with homozygous recessive genotype, and then at the gene level, we also selected the genes presenting more than one homozygotic variant in the same gene (compound heterozygosity). We did not find any candidate gene consistent with the phenotype of the family with the two affected sisters.

Variants in genes previously associated with neurodevelopmental disorders

Of the 22 identified coding de novo mutations in the assessed RTT-like patients, five (22.7 %) occurred in genes previously associated with neurodevelopmental disorders that presented a clinicopathological phenotype with features coinciding with those of Rett syndrome (Table 2). In particular, we identified four mutations in genes such as HCN1 (Nava et al. 2014) and GRIN2B (Endele et al. 2010; Lemke et al. 2014), which are associated with early infantile epileptic encephalopathy; SLC6A1, which is associated with epilepsy and myoclonic-atactic seizures (Carvill et al. 2015); TCF4, which is associated with Pitt–Hopkins syndrome (Sweatt 2013); and SCN1A, which is associated with Dravet syndrome (Brunklaus and Zuberi 2014) (Table 2). The clinical characteristics of these five patients with variants in genes previously associated with neurodevelopmental phenotypes are summarized in Table 3. A comparison of the clinical features of our RTT-like patients, where we have identified mutations in candidate genes previously associated with other neurodevelopmental disorders, with those observed for these diseases is summarized in Table 4.
Variants in genes previously not associated with neurodevelopmental disorders

Of the 22 identified coding de novo variants in the RTT-like patients assessed here, 17 (77.3 %) occurred in genes that had not previously been associated with neurodevelopmental disorders (Table 5). However, two of these variants were associated with non-neurodevelopmental disorders: a BTBD9 variant linked to restless leg syndrome (Kemlink et al. 2009), and an ATP8B1 SNV associated with familial cholestasis (Klomp et al. 2004), respectively. Interestingly, the BTBD9 variant was detected in the same patient that carried the SCN1A variant associated with Dravet syndrome (Table 2). The other 15 potentially pathogenic variants identified occurred in genes that had not been linked to any genetic disorder of any type. However, there was an enrichment of genes with a potential role in neuronal biology and functionality, such as the gamma-aminobutyric type
B receptor subunit 2 (GABBR2), the neuronal acetylcholine receptor subunit alpha-5 (CHRNA5), the Huntington-associated protein 1 (HAPI), the axon guider semaphorin 6B, the ankyrin repeat containing proteins ANKRD31 and AGAP6, and the neuronal voltage-gated calcium channel CACNA1 (Table 5). Proband 14 was a particularly interesting case in which four potential pathogenic variants were present, affecting zinc finger (ZNF620), a nucleolar complex (NOC3L), G patch domain (PATCH2) and GRAM domain (GRAMD1A)-related proteins (Table 5). The clinical characteristics of these patients with variants in genes previously not associated with neurodevelopmental disorders are summarized in Table 6.

Neurological phenotype of candidate genes in C. elegans

To demonstrate a neurological effect for a loss of function of the detected genes that had not previously been associated with neurodevelopmental disorders (Table 5), we used the model organism *C. elegans* to confirm the genotype-phenotype correlation. We obtained all the available *C. elegans* mutants that carry deleterious mutations in the orthologous genes to those human genes with potentially pathogenic mutations in the patients. In this model, backcrossing is a commonly used procedure to obtain a specific mutant strain without any secondary mutations from its genetic composition. Under these conditions, we were able to test six available mutant strains that were backcrossed at least three times to prove that any observed phenotype was really associated to specific mutations in the orthologous genes. To this end, we studied the *C. elegans* mutants carrying deleterious mutations in the gene orthologs of the human genes PDLIM7, ANKRD31, ZNF620, CHRNA5, MGRN1 and GABBR2 described in Table 7. Considering that the loss of normal movement and coordination is one of the clearest signs shown by Rett patients, we performed a locomotion assay of the nematodes as previously described (Sawin et al. 2000), using the wild-type N2 strain as a control (Supplementary Video 1). We observed that in 83.3% (5 of 6) of the cases the mutation of the orthologs of the human exome sequencing identified genes in *C. elegans* exhibited a locomotion defective phenotype (Fig. 2). The most severe phenotypes were represented by alp-1, unc-44 and pag-3, with mutations in the orthologs of PDZ and LIM domain protein 7 (PDLIM7), ankyrin repeat containing protein ANKRD31 and the zinc protein ZNF620, respectively (Fig. 2 and Supplementary Videos 2, 3 and 4). The case of alp-1 was particularly interesting, because mutant worms were not only thinner than usual and completely locomotion defective, but they exhibited transitory spasms. Significant defects, such as slower locomotion and uncoordinated movement, were also observed in the mutants of unc-63 and C11H1.3, the *C. elegans* orthologs...
but no known mutations in the usual genes, has recently
on exome sequencing patients who have RTT features,
of patients with intellectual disability. The strategy based
screening of this particular target in larger populations
design specific sequencing strategies for the molecular
izing these enigmatic cases. In this regard, once a new
sequencing is a powerful tool for genetically character-
of the disease after the age of 12 months. Thus, exome
typic hand movements, relative microcephaly, and onset
logical features of classic RTT syndrome, such as stereo-
FOXG1
MECP2
sequences for standard Rett genes such as
RTT-like clinical phenotypes in the context of wild-type
NA1I
) and others, contribute to the development of
variants in the genes studied in C.

C. elegans
is shown in Table 6.

Table 3 Clinical summary of the patients with variants in genes previously associated with neurodevelopmental phenotypes

Proband	Gene variant	Age (years)	Onset of the signs	Microcephaly	Sitting alone	Ambulation	Respiratory function	Epilepsy	Hand use	Stereotypies	Language	Total score
4	HCN1	24	3	1	1	3	1	2	3	1	2	16
8	SCN1A, MGRN1, BTBD9	7	3	1	1	4	1	2	1	3	2	18
10	TCF4	16	3	1	1	2	1	2	1	1	2	14
11	GRIN2B, SEMA6B	3	2	0	1	3	0	1	1	1	2	10
17	SLC6A1	36	3	0	1	1	0	1	1	0	1	7

Clinical scores of our series of patients according to Pineda scale. Severity classification ranges from 0 to 4 as follows: age of onset of first signs (1: > 24 months; 2: 12–24 months; 3: 0–12 months), microcephaly (0: absent; 1: present), sitting alone (1: acquired < 8 months; 2: seat and maintains; 3: seat and lost), ambulation (0: acquired < 18 months; 1: acquired < 30 months; 2: acquired > 30 months; 3: lost acquisition; 4: never acquired), respiratory function (0: no dysfunction; 1: hyperventilation and/or apnea), epilepsy (0: absent; 1: present and controlled; 2: uncontrolled or early epilepsy), hands use (0: acquired and conserved; 1: acquired and partially conserved; 2: acquired and lost; 3: never acquired), onset of stereotypies (1: > 10 years; 2: > 36 months; 3: 18–36 months) and languages (0: preserved and propositive; 1: lost; 2: never acquired).
The total score is the sum of the scores of each clinical feature.

Discussion

Our results indicate that the existence of de novo vari-
ants in genes with potential neurological functionalities,
such as neuronal receptors (GABBR2 and CHRNA5),
axon guiders (SEMA6B), synaptic ionic channels (CACA-
GABBR2
gbb
double
1
2
1
1
3
1
2
3
1
2
16
18
14
10
7

of the genes coding for the neuronal acetylcholine receptor
subunit alpha-5 (CHRNA5) and mahogunin RING finger protein 1 (MGRN1), respectively. Although we did not find
clear locomotion defect in the gbb-2 mutant (the ortholog
of
GABBR2
)(Fig. 2), it occurs in the gbb-1:gbb-2 double
mutant (Dittman and Kaplan 2008), gbb-1 being the C.
elegans
ortholog of
GABBR1
(gamma-aminobutyric acid
type B receptor subunit 1). The clinical picture of the particular RTT cases with mutations in the genes studied in C.
elegans
is shown in Table 6.

The total score is the sum of the scores of each clinical feature.

been used in other smaller series of patients (Grillo et al.
2013; Okamoto et al. 2015; Hara et al. 2015; Olson et al.
2015; Lopes et al. 2016). Most importantly, our study
and the aforementioned previous reports strengthen the
concept that a mutational heterogeneous profile hitting
shared neurological signaling pathways contributes
to RTT-like syndromes. Examples of confluence in
the same molecular crossroads include the gamma-amin-
obutyric type B receptor subunit 2 (GABBR2) de novo
variant, described here, and the formerly identified vari-
ant in the gamma-aminobutyric acid receptor delta gene
(GABRD)
(Hara et al. 2015). Interestingly, a second RTT-
like patient has been identified as being a carrier of a de
novo GABBR2 variant (Lopes et al. 2016), highlighting
the likelihood that this gene and pathway contribute to
the clinical entity. Another example of similarly targeted
genes in RTT-like patients is that of the proteins contain-
ing ankyrin-repeats that are involved in postsynaptic
density (Durand et al. 2007). This study has revealed de
novi variants in the ankyrin repeat containing proteins
AGAP6 and ANKRD31 in RTT-like patients, and the pres-
ence of de novo variant of the SH3 and multiple ankyrin
repeat domain3 protein (SHANK3) (Hara et al. 2015)
and ankyrin-3 (ANK3) (Grillo et al. 2013) has been reported
in two RTT-like patients. A final example of the convergence
of cellular pathways to provide a common RTT-like phe-
notype is represented by the disruption of the ionic chan-
nels. We found the existence of a voltage-gated calcium
channel subunit alpha 11 (CANAII) de novo variant in an
RTT-like patient. Additionally, the presence of de novo
variants in the calcium release channel RYR1 (Grillo et al.
2013) and the sodium voltage-gated channel alpha subu-
nit 2 (SCN2A) (Baasch et al. 2014) in two other RTT-like
probands have been reported. It is also intriguing that in our study a variant in HAP was found, whereas in similar series heterozygous variants in huntingtin (HTT) have been described (Lopes et al. 2016; Rodan et al. 2016), further reinforcing the links between Huntington’s disease and Rett syndrome (Roux et al. 2012). Another interesting case is provided by TCF4, which is associated with Pitt–Hopkins syndrome (Sweatt 2013), where in addition to our study, others have found mutations in RTT-like patients (Lopes et al. 2016). This observation could be of interest for clinicians due to phenotypic similitudes such as intellectual disability, stereotypic movement, apneas and seizures (Marangi et al. 2012).

Our findings also suggest that a substantial degree of clinical overlap can exist between the features associated with RTT and those of other neurodevelopmental disorders. Our exome sequencing effort indicated that probands originally diagnosed as RTT-like patients were, in fact, carriers of well-known pathogenic de novo mutations linked to Dravet Syndrome (SCN1A), myoclonic-atactic epilepsy (SCLC6A1), or early infantile epileptic encephalopathies 24 (HCN1) and 27 (GRIN2B). The purely clinical classification of these patients, without a thorough genetic study, can be difficult because some of these patients are composites that carry at least two pathogenic variants. For example, in our cases, the Dravet syndrome patient also had a de novo variant in BTBD9 associated with the development of restless leg syndrome. In addition, among the newly identified candidate genes associated with RTT-like features, a few of these patients simultaneously carried two de novo variants (e.g., probands 8, 19 and 21), further complicating the tasks of correctly diagnosing and managing these individuals.

Finally, the studies performed in C. elegans validate the functional relevance for nervous system function of the newly proposed candidate genes. Future studies would be necessary to assess the role of the specific variants identified, such as rescuing the defects with the expression of normal cDNAs versus cDNAs containing the mutation, ideally using cDNAs of human origin to prove similar function of the gene in the two species. It is also relevant to mention that for some of the newly reported mutated genes in our RTT-like patients, there are mice models targeting the described loci that show neurological phenotypes such as BTBD9 (motor restlessness and sleep disturbances) (DeAndrade et al. 2012), MGRN1 (spongiform neurodegeneration) (He et al. 2003), SEMA6B (aberrant mossy fibers) (Tawarayama et al. 2010), CHRNA5 (alterations in the habenulo-interpeduncular pathway) (Fowler et al. 2011), GABBR2 (anxiety and depression-related behavior) (Mombereau et al. 2005) and HAP1 (depressive-like behavior and reduced hippocampal neurogenesis) (Chan et al. 2002; Xiang et al. 2015).
Proband	Gene	Protein Function	NM number	Variant: genomic coordinates	cDNA change	Protein change	ExAC	SIFT	Polyphen2	PROVEAN	Mutation Taster2	Conservation
3	AGAP6	ArfGAP with GTPase domain, ankyrin repeat and PH domain 6	NM_001077665.2	10:51748528 c.53insC	p.Asp18Ala fs10X	Not present	NA	NA	B	4	P	405
8	MGRN1	Mahogunin RING Finger Protein 1	NM_001142290.2	16:4723583 c.880C >> T	p.Arg294Cys	0.000077	P	P	P	P	573	
8	BTBD9	BTB (POZ) Domain-Containing 9	NM_001099272.1	6:38256093 c.1409C >> T	p.Ala470Val	Not present	B	P	P	P	512	
11	SEMA6B	Semaphorin-6B	NM_032108.3	19:4555540 c.508G >> A	p.Gly170Ser	Not present	P	P	P	P	510	
12	VASH2	Vasohibin 2	NM_001301056.1	1:213161902 c.1044A >> C	p.Glu348Asp	Not present	B	B	B	B	473	
13	CHRNA5	Neuronal acetylcholine receptor subunit alpha-5	NM_000745.3	15:78882481 c.748C >> A	p.Pro250Thr	Not present	B	P	P	P	519	
14	ZNF620	Zinc Finger Protein 620	NM_175888.3	3:40557941 c.856G >> A	p.Gly286Ser	Not present	P	P	P	P	317	
14	GRAMD1A	GRAM Domain-Containing 1A	NM_020895.3	19:35506764 c.1106G >> A	p.Arg369His	Not present	P	P	P	P	358	
14	NOC3L	Nucleolar complex protein 3 homolog	NM_022451.10	10:96097586 c.2137G >> A	p.Ala713Thr	Not present	B	B	B	B	0	
14	GPATCH2	G patch domain-containing protein 2	NM_018040.3	1:217784371 c.878G >> A	p.Gly293Asp	Not present	B	P	P	P	304	
Table 5 continued

Proband	Gene	Protein Function	NM number	Variant: genomic coordinates	cDNA change	Protein change	ExAC	SIFT	Polyphen2	PROVEAN	Mutation Taster2	Conservation	
19	GABBR2	Gamma-aminobutyric acid type B receptor subunit 2	NM_005458.7	9:101133817	c.1699G > A	p.Ala567Thr	Not present	P	P	P	P		412
19	ATP8B1	Phospholipid-transporting ATPase IC Aminophospholipid translocator	NM_005603.4	18:55328507	c.2606C > T	p.Thr869Ile	Not present	P	P	P	P		361
20	HAP1	Huntingtin-Associated Protein 1 Vesicular transporter	NM_177977.2	17:39890655	c.232G > A	p.Ala78Thr	Not present	P	B	B	B	0	
21	PDLIM7	PDZ and LIM domain protein 7 Scaffold protein	NM_005451.4	5:176910933	c.122G > A	p.Asp408Asn	Not present	P	P	B	B		515
21	SRRM3	Serine/Arginine Repetitive Matrix 3 Splicing activator	NM_001291831.1	7:75890878	c.655C > G	p.Ser218Cys	Not present	P	P	P	P		491
22	ANKRD31	Ankyrin Repeat Domain 31 Not described	NM_001164443.1	5:74518166	c.196A > T	p.Ile66Phe	Not present	P	P	B	B		401
23	CACNA1I	Voltage-Gated Calcium Channel Subunit Alpha II Calcium signaling in neurons	NM_021096.3	22:40066855	c.4435C > T	p.Leu1479Phe	Not present	B	P	B	P		695

ExAC, frequency of the identified variants in the exome aggregation consortium. Four in silico prediction tools of functional mutation impact were used: ‘Sorting Tolerant From Intolerant’ (SIFT), ‘Polymorphism Phenotyping v2’ (Polyphen2), ‘Protein Variation Effect Analyzer’ (PROVEAN) and Mutation Taster2. The output results were classified as: likely pathogenic (P), likely benign (B) and not available (NA). Conservation scores refer to the conservation level of the nucleotide at the position of the identified variant between 46 species of vertebrates based on PhastCons. It ranges from 0 to 1000: the highest, the more conserved during evolution.
Table 6 Clinical summary of patients with variants in new candidate disease genes

Proband	Gene variant	Age (years)	Onset of the signs	Microcephaly	Sitting alone	Ambulation	Respiratory function	Epilepsy	Hand use	Stereotypes	Language	Total score	
3	AGAP6	14	3	1	2	4	1	1	1	3	2	2	19
8	SCN1A, MGRN1, BTBD9	7	3	1	1	4	1	1	2	1	3	2	18
11	GRIN2B, SEMA6B	3	2	0	1	3	0	1	1	1	1	2	10
12	VASH2	11	3	1	1	4	1	0	2	2	1	1	15
13	CHRNA5	10	3	1	2	4	1	1	2	3	2	2	19
14	ZNF620, GRAMD1A, NOC3L, GAPCH2	2	3	1	1	2	0	1	3	2	2	15	
19	GABBR2, ATP8B1	2	3	1	1	4	0	0	3	2	2	2	16
20	HAP1	24	3	1	1	1	1	0	2	2	1	1	12
21	PDLIM7, SRRM3	5	3	1	3	4	0	1	2	1	1	2	17
22	ANKRD31	17	3	0	1	2	0	1	2	3	2	2	14
23	CACNA11	1/8	3	1	1	1	2	1	0	3	3	2	16

Clinical scores of our series of patients according to Pineda scale. Severity classification ranges from 0 to 4 as follows: age of onset of first signs (1: >24 months; 2: 12–24 months; 3: 0–12 months), microcephaly (0: absent; 1: present), sitting alone (1: acquired < 8 months; 2: seat and maintains; 3: seat and lost), ambulation (0: acquired < 18 months, 1: acquired < 30 months; 2: acquired > 30 months; 3: lost acquisition; 4: never acquired), respiratory function (0: no dysfunction; 1: hyperventilation and/or apnea), epilepsy (0: absent; 1: present and controlled; 2: uncontrolled or early epilepsy), hands use (0: acquired and conserved; 1: acquired and partially conserved; 2: acquired and lost; 3: never acquired), onset of stereotypies (1: > 10 years, 2: > 36 months; 3: 18–36 months) and languages (0: preserved and propositive; 1: lost; 2: never acquired). The total score is the sum of the scores of each clinical feature.

Table 7 Phenotype in Caenorhabditis elegans

Human gene	Ortholog in C.elegans	Similarity (%)	Identity (%)	Mutation in C.elegans	Locomotion phenotype	Neurological phenotypes	Other phenotypes	
GABBR2	gbb-2	53	34	Deletion	normal	Hypersensitivity to aldicarb	–	
MGRN1	CI1H1.3	58	41	Deletion	locomotion defective	–	–	
CHRNA5	unc-63	58	40	Deletion	locomotion defective	Uncoordinated locomotion with strong levamisole resistance	–	
ZNF620	pag-3	65	47	Deletion	locomotion defective	Altered neuro-secretion and up-regulation of DCV (Dense Core Vesicles) components	–	
ANKRD31	unc-44	59	39	Deletion	locomotion defective	Asymmetric dynamics of axonal and dendritic microtubules defects	–	
PDLIM7	alp-1	65	47	Deletion	locomotion defective	–	Defects in actin filament organization in muscle cells	–
synergistically. Standard error of the mean (SEM) values is shown.

are significantly lower compared to that of the N2 control

\(\text{PDLIM7} \)

\(\text{CHRNA5} \)

uncipation; the Finestrelles Foundation; the Catalan Association for Rett

Foundation Lejeune (France); the Cellex Foundation; the Botín Foun-
dard (Carlos III Health Institute project PI071327); the E-RARE

drugs in the occurrence of neurodevelopmental

tfunctional networks associated with correct neuronal function-

and SHANK3 are associated with autism spec-

protein-1 (Hap1) results in postnatal death due to depressed

feeding behavior. Hum Mol Genet 11:945–959

Christodoulou J, Grimm A, Maher T, Bennetts B (2003) RettBASE: the IRSA MECP2 Variation Database—a new mutation database in evolution. Hum Mutat 21:466–472

DeAndrade MP et al (2012) Motor restlessness, sleep disturbances, thermal sensory alterations and elevated serum iron levels in Btbd9 mutant mice. Hum Mol Genet 21:3984–3992

Dittman JS, Kaplan JM (2008) Behavioral impact of neurotrans-
m智商, associated with autism spectrum disorders. Nat Genet 39:25–27

Endele S et al (2010) Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevel-

mental phenotypes. Nat Genet 42:1021–1026

Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenu-
lar α5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601

Grillo E et al (2013) Revealing the complexity of a monogenic dis-

 syndrome: Rett syndrome exome sequencing. PLoS One 8:e56599

Hara M, Ohba C, Yamashita Y, Saito H, Matsumoto N, Matsui-
shi T (2015) De novo SHANK3 mutation causes Rett syn-
drome-like phenotype in a female patient. Am J Med Genet A 167:1593–1596

Conclusions

Overall, this study demonstrates the genetic mutational diversity that underlies the clinical diagnosis of patients with clinical features that resemble RTT cases. Once the recognized MECP2, CDKL5 and FOXG1 mutations have been discarded, exome sequencing emerges as a very useful strategy for the more accurate classification of these patients. The de novo variants identified by this approach can modify the first diagnostic orientation towards another neurodevelopmental disorder, or pinpoint new genes involved in the onset of RTT-like features. Interestingly, most of these new targets are involved in the same functional networks associated with correct neuronal functionality. Further research is required to understand the role of these proteins in the occurrence of neurodevelopmental diseases. Additional functional experiments, such as the C. elegans assays used in this study, would be extremely helpful for this purpose.

Acknowledgments

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2012 under REA Grant agreement PITN-GA-2012-316758 of the EPITRAIN project and PITN-GA-2009–238242 of DISCHROM; the E-RARE EuroRETT network (Carlos III Health Institute project PI071327); the Foundation Lejeune (France); the Cellex Foundation; the Botín Foundation; the Finestrelles Foundation; the Catalan Association for Rett Syndrome; and the Health and Science Departments of the Catalan government (Generalitat de Catalunya). M.E. is an ICREA Research Professor.

Compliance with ethical statement

Conflict of interest

The authors declare that there is no conflict of interest associated with this manuscript.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Fig. 2 Locomotion assay in Caenorhabditis elegans. Functional validation of mutations was performed by measuring the locomotion rate, expressed in average of measuring, in C. elegans. Each mutant strain was compared to a wild-type N2 control strain by measuring worm body bends during 20 s in three independent sets of experiments. Locomotion rates of mutants, represented by C11H1.3 (MGRN1), unc-63 (CHRNA5), pag-3 (ZNF620), unc-44 (ANKRD31) and alp-1 (PDLIM7) are significantly lower compared to that of the N2 control strain \((p < 0.0001) \), on the contrary gbb-2 (GABBR2) mutant move similarly. Standard error of the mean (SEM) values is shown. \(p \) values obtained according to Student’s t test. \(**p < 0.0001 \)
He L et al (2003) Spongiform degeneration in mahoganoid mutant mice. Science 299:710–712
Kalscheuer VM et al (2003) Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am J Hum Genet 72:1401–1411
Kemlink D et al (2009) Replication of restless legs syndrome loci in three European populations. J Med Genet 46:315–318
Klomp LW et al (2004) Characterization of mutations in ATP8B1 associated with hereditary cholestasis. Hepatology 40:27–38
Lemke JR et al (2014) GRIN2B mutations in West syndrome and intellectual disability with focal epilepsy. Ann Neurol 75:147–154
Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914
Lopes F et al (2016) Identification of novel genetic causes of Rett syndrome-like phenotypes. J Med Genet 53:190–199
Marangi G et al (2012) Proposal of a clinical score for the molecular test for Pitt-Hopkins syndrome. Am J Med Genet A 158A:1604–1611
Mombereau C, Kaupmann K, Gassmann M, Bettler B, van der Putten H, Cryan JF (2005) Altered anxiety and depression-related behaviour in mice lacking GABAB(2) receptor subunits. NeuroReport 16:307–310
Monró E, Armstrong J, Aibar E, Poo P, Canós I, Pineda M (2001) Rett syndrome in Spain: mutation analysis and clinical correlations. Brain Dev 23:S251–S253
Nava C et al (2014) De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet 46:640–645
Neul JL et al (2010) Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol 68:944–950
Okamoto N et al (2015) Targeted next-generation sequencing in the diagnosis of neurodevelopmental disorders. Clin Genet 88:288–292
Olson HE et al (2015) Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome. Am J Med Genet A 167A:2017–2025
Percy AK (2008) Rett syndrome: recent research progress. J Child Neurol 23:543–549
Rett A (1966) On an unusual brain atrophy syndrome in hyperammonemia in childhood. Wien Med Wochenschr 116:723–772
Rodan LH et al (2016) A novel neurodevelopmental disorder associated with compound heterozygous variants in the huntingtin gene. Eur J Hum Genet. doi:10.1038/ejhg.2016.74
Roux JC, Zala D, Panayotis N, Borges-Correia A, Saudou F, Villard L (2012) Modification of MeCP2 dosage alters axonal transport through the Huntingtin/Hap1 pathway. Neurobiol Dis 45:786–795
Sáez MA et al (2016) Mutations in JMID1C are involved in Rett syndrome and intellectual disability. Genet Med 18:378–385
Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–631
Sweatt JD (2013) Pitt-Hopkins syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp Mol Med 45:e21
Tawarayama H, Yoshida Y, Suto F, Mitchell KJ, Fujisawa H (2010) Roles of semaphorin-6B and plexin-A2 in lamina-restricted projection of hippocampal mossy fibers. J Neurosci 30:7049–7060
Vissers LE et al (2010) A de novo paradigm for mental retardation. Nat Genet 42:1109–1112
Xiang J, Yan S, Li SH, Li XJ (2015) Postnatal loss of hap1 reduces hippocampal neurogenesis and causes adult depressive-like behavior in mice. PLoS Genet 11:e1005175
Zhu X et al (2015) Whole-exome sequencing in undiagnosed genetic disorders: interpreting 119 trios. Genet Med 17:774–781