Surgical wound classification in otolaryngology: A state-of-the-art review

Jeffrey D. Bernstein1 | David J. Bracken1 | Shira R. Abeles2 | Ryan K. Orosco1,3 | Philip A. Weissbrod1

1Department of Otolaryngology, University of California San Diego, La Jolla, California, USA
2Department of Medicine, Division of Infectious Disease and Global Public Health, University of California San Diego, San Diego, California, USA
3Moores Cancer Center, University of California San Diego, La Jolla, California, USA

Correspondence
Philip A. Weissbrod, Department of Otolaryngology, University of California San Diego, San Diego Medical Center, 200W Arbor Dr, Mail Code 8895, San Diego, CA 92103, USA.
Email: pweissbrod@health.ucsd.edu

Funding information
None

Abstract
Objective: To describe the issues related to the assignment of surgical wound classification as it pertains to Otolaryngology—Head & Neck surgery, and to present a simple framework by which providers can assign wound classification.

Data Sources: Literature review.

Conclusion: Surgical wound classification in its current state is limited in its utility. It has recently been disregarded by major risk assessment models, likely due to inaccurate and inconsistent reporting by providers and operative staff. However, if data accuracy is improved, this metric may be useful to inform the risk of surgical site infection. In an era of quality-driven care and reimbursement, surgical wound classification may become an equally important indicator of quality.

KEYWORDS
ENT, health care spending, OHNS, otolaryngology, quality improvement, reimbursement, surgical site infection, wound classification

Key points
• In its current state, surgical wound classification has been disregarded as a key metric, likely due to habitual inaccuracies in procedure categorization.
• A new paradigm for surgical wound classification specific to Otolaryngology—Head & Neck Surgery is presented.
• The possibility of surgical wound classification serving as an important indicator of quality of care is discussed and contextualized in current health care trends.

INTRODUCTION
First introduced in 1964, surgical wound classification (SWC) has become a routine component of procedure documentation.1 Refined over decades, this practice characterizes the cleanliness of the surgical field and is pertinent because of the correlation between wound contamination and the risk of postoperative surgical site infection (SSI).2–9 In the General Surgery literature, rates of superficial SSI in clean cases have been found to be low, around 1.8%, ranging up to 5.1%–8.5% for dirty cases.10,11 Within Otolaryngology—Head & Neck Surgery (OHNS), SWC has also been identified as a significant risk factor for SSI, particularly within Head and Neck ablative surgery and endocrine surgery.12–22 It has also been linked to an increase in the incidence of postoperative

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. World Journal of Otorhinolaryngology—Head and Neck Surgery published by John Wiley & Sons Ltd on behalf of Chinese Medical Association.
complications,23-25 increased length of hospital stay,26 and greater rates of hospital readmission.26,27

The incidence of SSI within a hospital system is an important indicator of quality of care.28,29 Studies have shown that a high rate of SSI adds to the hospital cost-burden and places additional stress on healthcare utilization. In 2005 alone, SSI was associated with over 400,000 additional days of hospital stays, with additional hospital costs totaling nearly $1 billion before accounting for costs of readmission.30 A 2014 Department of Veterans Affairs study found hospital costs were increased by a factor of 1.43 in cases involving SSI.31 Measures to reduce the incidence of these infections may be beneficial from a cost and care-utilization standpoint. Investment in quality improvement has been shown to reduce overall Medicare expenditures by up to 38%.32 In short, the cost of care is lower when patients do well.

Classification of wounds is typically the responsibility of the surgical team or operative nursing staff. Critically, studies have shown that SWC is frequently documented inaccurately.33 Though a baseline incidence of SSI is anticipated, inaccurate documentation of SWC may lead to a significant deviation from expected rates of infection. Systematic under- or over-reporting could negatively influence hospital performance measures, reduce reimbursement, and may obscure the true risk profile of a procedure. Efforts to improve classification accuracy through nursing- and provider-driven interventions have been shown to be effective.34-36 Though multiple interventions have been made within the scope of General Surgery procedures, we were unable to identify any specific efforts within OHNS. To date, there are no well-established guidelines for SWC in OHNS. As such, we aim to promote a number of basic tenets to allow for more consistent SWC assignments between providers. We propose a concise framework of SWC specific to Otolaryngology and based upon guidelines established by the Centers for Disease Control (CDC; Table 1).3,4,37

TABLE 1 Centers for disease control guidelines for surgical wound classification

Wound class	Definition
Class I: Clean	• Uninfected operative wounds made under ideal conditions
• No inflammation	
• No entry into respiratory, alimentary, genital, or uninfected urinary tracts	
• No lapse in sterile technique	
• Primary wound closure	
• Closed drainage	
Class II: Clean-contaminated	• Entrance into mucosalized tissue under controlled conditions (respiratory, alimentary, genital, or urinary tract)
• No unusual contamination by foreign body	
• No evidence of infection or major break in sterile technique	
Class III: Contaminated	• Open or fresh accidental wounds
• Operations with major breaks in sterile technique	
• Gross spillage from the gastrointestinal tract	
• Any acute, nonpurulent inflammation	
Class IV: Dirty/infected	• Old traumatic wounds with retained devitalized tissue
• Existing clinical infection or purulence
• Environmental debris
• Perforated viscera |

Note: Adapted from Garner.3
(SIR) to track central line infections, mucosal barrier injury, catheter-related infections, ventilator-associated events, and SSIs. Additionally, NHSN tracks a limited number of Otolaryngology-related operative procedure categories including “neck” and “thyroid and/or parathyroid” surgery. Also, like NSQIP, the NHSN SIR does not include SWC as a variable for most procedure categories. In the NHSN current model for neck cases, “procedure duration” is the only relevant predictor, while for thyroid cases the only predictors are “institution size” and “teaching affiliation.”

It is probably not a coincidence that SWC is no longer used in both NHSN and NSQIP’s multivariate risk-adjustment models. While it is feasible that the influence of SWC on SSI is overshadowed by patient-mediated factors such as diabetes, smoking, and immuno-deficiency, or other surgical factors like anatomic location, depth or size of field, operative time, and hematoma incidence, another likely explanation is data inconsistency. It is reasonable to speculate that user error and systematic misclassification between different providers and institutions create unreliable wound classification data for common procedures, rendering this metric inert and hindering accurate quality improvement. The value to be gained by accurate and transparent reporting of SWC has been demonstrated in a General Surgery study. Improved accuracy and consistency in SWC documentation led to a substantial change in perceived outcomes and interpretations of performance measures. Though not currently utilized, SWC may be reintroduced into risk adjustment models if found to meet significance after future review.

We identified several areas in OHNS as sources of discrepancy in SWC. For example, in otologic surgery, the middle ear is in communication with the nasopharynx and respiratory tract via the eustachian tube. Surgery involving a healthy middle ear, when characterized properly, should be clean-contaminated (Class II). However, when the remainder of the surgical field is sterile, such as during a translabyrinthine approach to the cerebellopontine angle, these cases may be easily misclassified as Class I (clean). Another illustrative example is encountered with parotidectomy or similar salivary surgery, where ductal ligation or violation of gland parenchyma places the surgical field in communication with the oral cavity, meeting Class II criteria. Again, many providers may improperly categorize these procedures as clean cases given their lack of a direct intraoral component. Last, in sterile ablative head and neck cancer surgery, providers may vary in their classification of surgical fields with necrosis or postirradiative noninfected inflammation. As a result of poor wound healing and fibrosis, the risk of SSI may be increased in these cases, though other studies have not found this to be true. If the risk of SSI is truly greater in these instances, a revision to their SWC may be warranted. These examples highlight the shortcomings of the current state of wound classification assignment in OHNS and underscore the need for an accepted, reliable, and reproducible wound classification algorithm.

Despite the fact that there are known discrepancies in SWC assignment, improvements can be made to this system. Efforts have been successful in other surgical disciplines to educate practitioners and improve consistency in wound classification. Devaney and Rowell introduced an education series within their hospital to improve SWC accuracy, which led to a 26% decrease in mis-classification.

![Figure 1: Surgical Wound Classification Guideline for Otolaryngology—Head & Neck Surgery](image)
classification algorithm in the operating room, improved concordance between operative and nursing staff by approximately 50%–70% for select procedures. While efforts have been made in General Surgery and other specialties to build consistency and alignment with SWC as defined by CDC, little has been done in the Otolaryngology space to improve inter-rater reliability of assigned SWC. To meet this need, the authors created a generic algorithm to classify commonly encountered surgical wounds in OHNS in an effort to start the conversation around wound classification in our field (Figure 1).

As a matter of quality improvement, greater accuracy in wound classification may have a long-lasting positive impact on patient care both in terms of quality and cost. It is already the case that SWC holds influence over medical decision-making, for example, in determining perioperative antibiotic dosing. While Class I wounds, such as sterile neck dissection or thyroidectomy, usually do not require antibiotics beyond the intraoperative period.\(^{60}\) Similarly, studies have shown no benefit to antibiotics beyond 24–48 h postoperatively for clean-contaminated wounds, such as in oral cancer resection.\(^{61–63}\) More accurate SWC will better inform the risk of SSI for specific procedures, helping to better establish expectations, guide prophylactic treatment, and improve antibiotic stewardship.

As medical systems become increasingly quality-driven, care payments and reimbursement may soon also be influenced by the risk or incidence of SSI based on the SWC for a given procedure. Though to our knowledge at the time of writing this manuscript NHSN data does not currently affect care payment for OHNS-specific cases and is not collected by insurance companies, we can foresee an incentive-based system reliant upon both SWC and SSI. Providers who outperform expectations with lower than expected rates of SSI could be reimbursed at a greater rate, thereby reducing costly hospital length of stay while encouraging improved quality of care. Alternatively, procedures with higher expected risk of SSI based on their SWC could be reimbursed at a greater rate to account for the increased expected cost and complexity of treatment. To properly inform these quality-based models, it is paramount that we develop a common language and reliable framework for defining and categorizing the types of surgical wounds encountered in our specialty.

While the authors envision numerous benefits of consistent and accurate SWC assignment, these claims may be overstated. With greater accuracy of documentation, we may find that the use of wound classification is simply irrelevant, or, perhaps more likely, plays only a minor part in a multifactorial system of risk assessment. Until we develop a universally applicable, consistent, and accurate system for SWC in OHNS, it is unlikely that its potential value as a quality metric will be understood.

CONCLUSION

We present an issue at hand in Otolaryngology—Head & Neck surgery stemming from the inconsistency in provider-assigned surgical wound class. The ambiguity of SWC as applied to common OHNS cases, we believe, has created an unreliable system, which cannot be used to derive meaningful conclusions about patient care, risk assessment, or system-wide performance. We present an easily adopted guideline for improved accuracy of SWC in OHNS and offer discussion points for an evolving dialog aimed toward improving consistency in SWC assignment amongst providers and institutions.

AUTHOR CONTRIBUTIONS

Jeffrey D. Bernstein, MD assisted with project design, drafted the manuscript, and revised the manuscript. David J. Bracken, MD assisted with revising of the manuscript. Shira A. Abeles, MD assisted with revising of the manuscript. Ryan K. Orosco, MD assisted with project design and revising of the manuscript. Philip A. Weissbrod, MD conceived the project design and assisted with revising of the manuscript.

ACKNOWLEDGMENTS

Nick Hilbert, MSN, RN, of the Office of Quality and Patient Safety at UC San Diego Health for his insight into the American College of Surgeons NSQIP; Frank Edward Myers III, MA, CIC, FAPIC, Director of Infection Prevention and Clinical Epidemiology at UC San Diego Health for his insight into the CDC NHSN. This study received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

There was no data collected for this study.

ETHICS STATEMENT

This body of work did not involve live subjects and did not require approval from the Institutional Review Board.

REFERENCES

1. Berard F, Gandon J. Postoperative wound infections: the influence of ultraviolet irradiation of the operating room and of various other factors. Ann Surg. 1964;160(suppl 2):1-192.
2. Simmons BP. Guideline for prevention of surgical wound infections. Am J Infect Control. 1983;11(4):133-143. doi:10.1016/0196-6553(83)90030-5
3. Garner JS. CDC guideline for prevention of surgical wound infections, 1985. Infect Control. 1986;7(3):193-200. doi:10.1017/s0195941700064080
4. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control. 1999;27(2):97-132.
5. World Health Organization. Global guidelines for the prevention of surgical site infection. Geneva, Switzerland: World Health Organization; 2016.
6. Garner BH, Anderson DJ. Surgical site infections: an update. Infect Dis Clin North Am. 2016;30(4):909-929. doi:10.1016/j.idc.2016.07.010
7. Mioton LM, Jordan SW, Hanwright PJ, Bilmoria KY, Kim JY. The relationship between preoperative wound classification and postoperative infection: a multi-institutional analysis of 15,289 patients. Arch Plast Surg. 2013;40(5):522-529. doi:10.5999/aps.2013.40.5.522
18. Lee DH, Kim SY, Nam SY, Choi SH, Choi JW, Roh JL. Risk factors of surgical site infection in patients undergoing major oncological surgery for head and neck cancer. Oral Oncol. 2011;47(6):528-531. doi:10.1016/j.oraloncology.2011.04.002

19. Chaukar DA, Deshmukh AD, Majeed T, Chaturvedi P, Pai P, D’ Cruz AK. Factors affecting wound complications in head and neck surgery: a prospective study. Indian J Med Paediatr Oncol. 2013;34(4):247-251. doi:10.1016/j.ijpvo.2013.02.003

20. Mysiordek D, Ahmed Y, Parsikia A, Castaldi M, McNelis J. Factors predictive of the development of surgical site infection in thyroidectomy—an analysis of NSQIP database. Int J Surg. 2018;60:273-278. doi:10.1016/j.ijsu.2018.11.013

21. Ellenbein DM, Schneider DF, Chen H, Sippel RS. Surgical site infection after thyroidectomy: a rare but significant complication. J Surg Res. 2014;190(1):170-176. doi:10.1016/j.jss.2014.03.033

22. Li X, Nylander W, Smith T, Han S, Gunnar W. Risk factors and predictive model development of thirty-day post-operative surgical site infection in the veterans administration surgical population. Surg Infect. 2018;19(3):278-285. doi:10.1089/sur.2017.283

23. Mascarella MA, Richardson K, Miyarek A, et al. Evaluation of a preoperative adverse event risk index for patients undergoing head and neck cancer surgery. JAMA Otolaryngol Head Neck Surg. 2019;145(4):345-351. doi:10.1001/jamaoto.2018.4513

24. Helman SN, Brant JA, Kadakia SK, Newman JG, Cannady SB, Chai RL. Factors associated with complications in total laryngectomy without microvascular reconstruction. Head Neck. 2018;40(11):2409-2415. doi:10.1002/hed.25363

25. Cannady SB, Hatten KM, Bur AM, et al. Use of free tissue transfer in head and neck cancer surgery and risk of overall and serious complication(s): an American College of Surgeons-national surgical quality improvement project analysis of free tissue transfer to the head and neck. Head Neck. 2017;39(4):702-707. doi:10.1002/hed.24669

26. Helman SN, Brant JA, Moubayed SP, Newman JG, Cannady SB, Chai RL. Predictors of length of stay, reoperation, and readmission following total laryngectomy. Laryngoscope. 2017;127(6):1339-1344. doi:10.1002/lar.26454

27. Garg RK, Wieland AM, Hartig GK, Poore SO. Risk factors for unplanned readmission following head and neck microvascular reconstruction: results from the national surgical quality improvement program, 2011-2014. Microsurgery. 2017;37(6):502-508. doi:10.1002/micr.30116

28. Kao LS, Ghaferi AA, Ko CY, Dimick JB. Reliability of superficial surgical site infections as a hospital quality measure. J Am Coll Surg. 2011;213(2):231-235. doi:10.1016/j.jamcollsurg.2011.04.004

29. Weber RS, Lewis CM, Eastman SD, et al. Quality and performance indicators in an academic department of head and neck surgery. Arch Otolaryngol Head Neck Surg. 2010;136(12):1212-1218. doi:10.1001/archoto.2010.215

30. de Lissvoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control. 2009;37(5):387-397. doi:10.1016/j.ajic.2008.12.010

31. Schweizer ML, Cullen JJ, Perencevich EN, Vaughan Sarrazin MS. Costs associated with surgical site infections in veterans affairs hospitals. JAMA Surg. 2014;149(6):575-581. doi:10.1001/jamasurg.2013.4663

32. Scally CP, Thumma JR, Birkmeyer JD, Dimick JB. Impact of surgical quality improvement on payments in medicare patients. Ann Surg. 2015;262(2):249-252. doi:10.1097/SLA.0000000000001069

33. Levy SM, Holzmann-Pazgal G, Lally KP, Davis K, Kao LS, Tsao K. Quality check of a quality measure: surgical wound classification discrepancies impact risk-stratified surgical site infection rates in pediatric appendicitis. J Am Coll Surg. 2013;217(6):969-973. doi:10.1016/j.jamcollsurg.2013.07.398

34. Devaney L, Rowell KS. Improving surgical wound classification—why it matters. AORN J. 2004;80(2):208-209. doi:10.1016/s0001-2092(06)60559-9

35. Zens TJ, Rusy DA, Gosain A. Pediatric surgeon-directed wound classification improves accuracy. J Surg Res. 2016;201(2):432-439. doi:10.1016/j.jss.2015.11.051

36. Chupp RE, Edhayan E. An effort to improve the accuracy of pediatric appendicitis. Am J Surg. 2018;217(3):515-517. doi:10.1016/j.amjsurg.2017.11.029

37. Simo R, French G. The use of prophylactic antibiotics in head and neck oncological surgery. Clin Otolaryngol. 2017;42(3):349-351. doi:10.1111/coo.12585

38. Roof SA, Ferrandino RM, Villavisanis DF, et al. Infection rates after microlaryngeal and open phonomicrosurgery: the role of postoperative...
antibiotics. Laryngoscope. 2020;130(5):1128-1131. doi:10.1002/lary.28225
43. Khuri SF. The NSQIP: a new frontier in surgery. Surgery. 2005;138(5):837-843. doi:10.1016/j.surg.2005.08.016
44. American College of Surgeons. ACS National Surgical Quality Improvement Program. Accessed May 31, 2021. https://www.facs.org/quality-programs/acnsqip
45. Centers for Disease Control and Prevention. National healthcare safety network (NHSN). Accessed April 23, 2021. https://www.cdc.gov/nhsn/pdfs/ps-analysis-resources/nhsn-sir-guide.pdf
46. Hunter SE, Scher RL. Clinical implications of radionecrosis to the head and neck surgeon. Curr Opin Otolaryngol Head Neck Surg. 2003;11(2):103-106. doi:10.1097/00020840-200304000-00007
47. Penel N, Fournier C, Lefebvre D, Lefebvre JL. Multivariate analysis of risk factors for wound infection in head and neck squamous cell carcinoma surgery with opening of mucosa. Study of 260 surgical procedures. Oral Oncol. 2005;41(3):294-303. doi:10.1016/j.oraloncology.2004.08.011
48. Right M, Manfredi R, Farneti G, Pasquini E, Cencavich V. Short-term versus long-term antimicrobial prophylaxis in oncologic head and neck surgery: risk factors and prognosis. Eur Arch Otorhinolaryngol. 2013;270(3):1115-1123. doi:10.1007/s00405-012-1218-y
49. How to cite this article: Bernstein JD, Bracken DJ, Abeles SR, Orosco RK, Weissbrod PA. Surgical wound classification in otolaryngology: a state-of-the-art review. World J Otorhinolaryngol Head Neck Surg. 2022;8:139-144. doi:10.1002/wjho.263