Perfusion parameters and target values during extracorporeal cardiopulmonary resuscitation: a scoping review protocol

Lars Saemann, Christine Schmucker, Lisa Rösner, Friedhelm Beyersdorf, Christoph Benk

ABSTRACT

Introduction Extracorporeal cardiopulmonary resuscitation (eCPR) is increasingly applied in out-of-hospital cardiac arrest (OHCA) and in-hospital cardiac arrest (IHCA) patients. Treatment results are promising, but the efficacy and safety of the procedure are still unclear. Currently, there are no recommended target perfusion parameters during eCPR, the lack of which could result in inadequate (re)perfusion. We aim to perform a scoping review to explore the current literature addressing target perfusion parameters, target values, corresponding survival rates and neurologic outcomes in OHCA and IHCA patients treated with eCPR.

Methods and analysis To identify relevant research, we will conduct searches in the electronic databases MEDLINE, EMBASE, Social Science Citation Index, Social Science Citation Index Expanded and the Cochrane Library. We will also check references of relevant articles and perform a cited reference research (forward citation tracking).

We will summarise the data using tables and figures (ie, bubble plot) to present the research landscape and to describe potential clusters and/or gaps. The language of articles, which will be included, is restricted to English and German.

INTRODUCTION

Background Out-of-hospital cardiac arrest (OHCA) and in-hospital cardiac arrest (IHCA) are associated with poor results. In both locations of cardiac arrest (CA), survival rate with a favourable neurological outcome, expressed by a cerebral performance category score of 1–2, is low. The initial strategy is to bridge CA by any kind of cardiopulmonary resuscitation (CPR), so called conventional CPR, mechanically performed chest compression CPR (mCPR) or, recently, extracorporeal CPR (eCPR). eCPR requires an extracorporeal mechanical circulatory support. In this setup, perfusion of the body is restored and maintained by an extracorporeal life support (ECLS) device, also called venoarterial extracorporeal membrane oxygenation (VA-ECMO). An outflow cannula is usually placed in the femoral and/or jugular vein and the femoral artery usually serves as an access for inflow of the artificially oxygenated blood. In order to improve outcomes of both OHCA and IHCA, some groups started to extend their CPR programme by eCPR. Different guidelines and consensus papers on this topic have recently been published.
Table 1 Search items

No	Search items (controlled terms)
1	eCPR
2	VA ECMO
3	ECMO cardiac arrest resuscitation
4	ECLS

ECLS, extracorporeal life support; ECMO, extracorporeal membrane oxygenation; eCPR, extracorporeal cardiopulmonary resuscitation; VA, veno arterial.

However, whether they are based on the best available evidence is currently questionable.

Rationale

Results of eCPR in OHCA and IHCA are promising but still not satisfactory. The ‘right’ choice and adjustment of perfusion parameters as target parameters during eCPR seem to be heterogenic. Brooks et al, as well as Grunau et al, pointed out the differing framework of eCPR in OHCA of various hospitals and also mentioned a variable description of practice and patient inclusion in eCPR in OHCA. Heterogenic implementation of perfusion practice during eCPR may lead to suboptimal reanimation results and may inhibit both efficacy and safety of eCPR as a treatment option for IHCA and OHCA.

Objectives

It is necessary to systematically review eCPR literature addressing associations between perfusion parameters and target values as well as survival rates and neurologic outcomes. Therefore, the planned scoping review will address the following questions:

1. Which perfusion parameters are used as target parameters during eCPR in IHCA and OHCA, respectively?
2. What are the target values of these targeted perfusion parameters in IHCA and OHCA, respectively?
3. What are the respective survival rates and neurological outcome scores to hospital discharge?

Methods and Analysis

This protocol is written with reference to the preferred reporting items for systematic review and meta-analysis protocols statement and ‘a priori’ defines the following methodology on which the scoping review will be based on the following:

Eligibility criteria

We will include any controlled clinical study design (randomised controlled trials and non-randomised controlled trials) providing information on perfusion target parameters and on survival rates and neurological outcomes in adults (>18 years old) treated with eCPR, with the need of resuscitation of presumed cardiac origin. We will exclude patients who received any kind of mechanical circulatory support immediately after cardiac surgery due to failed weaning from cardiopulmonary bypass. Case studies and articles which do not clearly distinguish between OHCA and IHCA will also be excluded. CA of pulmorespiratory origin is an exclusion criterium, as well.

Information sources

Our search terms will combine controlled terms and free-text searches (Table 1). The search strategies will be adapted to each database. We will develop the final search strategy in collaboration with an expert medical sciences librarian. To identify relevant research, we will conduct searches from the beginning of eCPR in the electronic databases MEDLINE via PubMed, EMBASE, Social Science Citation Index via Web of Science, Social Science Citation Index Expanded and the Cochrane library. We will also check references of relevant articles and perform a cited reference research (forward citation tracking). The language of articles, which will be included, is restricted to English and German. Owing to the research question, we decided to conduct a broad search, that is, including more specific search terms would, in our case, be associated with a higher risk of missing wrongly indexed studies in the literature.

Table 2 Study key characteristics

Type of information	No	Attribute
Study characteristics	1	(a) Country of the study, (b) sample size
Patient characteristics	2	Place of CA: OH/IH
Intervention characteristics	3	(a) Start of eCPR: OH/IH
		(b) All perfusion parameters which are used as target parameters during eCPR (Question 1)
		(c) Target values of targeted perfusion parameters, if given (Question 2)
Information on subsequent exclusion of the study based on intervention characteristics	4	(a) Contemption of eligibility criteria
		(b) Target parameters given but target values missing or target values erroneously given as calculated means of the entire population
		(c) No information on perfusion parameters in terms of target parameters

CA, cardiac arrest; eCPR, extracorporeal cardiopulmonary resuscitation; IH, in-hospital; OH, out-of-hospital.
For database, MEDLINE literature search strategy will be as follows: (eCPR) OR (‘VA ECMO’) OR (‘ECMO cardiac arrest resuscitation’) OR (ECLS).

Review process
Two independent reviewers will screen titles and abstracts, check full texts for eligibility and perform data extraction. We will resolve dissent by consensus moderated by a third reviewer. As known for scoping reviews, the methodology may be adapted minimally during the review process itself in terms of eligibility criteria, study characteristics and outcome variables.\(^\text{20,21}\) As mentioned in popular literature, which describes the methodology of scoping reviews, risk of bias assessment will not be part of the scoping review process.\(^\text{22,23}\)

Data items
Data extraction tables will be set up in MS Excel including study (eg, first author, DOI) and patients’ characteristics (eg, age, CPR technique, comorbidities, OHCA and IHCA), aim of study, details on eCPR including target perfusion parameters and reported outcomes (table 2). Variables in section No 3 may be extended during the review process, for example, number of organ donation after unsuccessful eCPR, as Ortega-Deballon et al stated this as an important side topic of resuscitation.\(^\text{24}\)

Outcomes
Outcome variables are listed in table 3.

Data synthesis
We expect dramatically heterogeneous study characteristics within the field of eCPR. This may express itself both in patient population and eCPR procedure as well as eCPR experience. Therefore, as a first step of our eCPR literature research project, we will summarise the data using tables and figures (ie, bubble plot) to present the research landscape and to describe potential clusters and/or gaps.

Results will be presented in two tables (see above). One table serves for IHCA and one serves for OHCA. In case of an OHCA, eCPR can either be started OH, or IH, if the patient is transported to the hospital under mCPR. Some groups might also change the eCPR regimen after arrival in the hospital. In consequence, the table which presents data for OHCA will be separated into two major columns, which refer to the location of eCPR start. In both tables, studies will be listed chronologically, beginning with the latest publication first. In addition to the tabulated presentation of data, each target parameter will be addressed and discussed in a separate text.

Patient and public involvement
Patients or public will not be involved.

Perspective
If the scoping review provides us with enough study data, we plan a meta-analysis in a second research project to compare efficacy and safety of eCPR in patients with IHCA and OHCA.

DISSEMINATION
We intend to publish the review in a peer-reviewed journal. Besides, we may also present the results on a scientific conference.

Contributors
LS is the guarantor and drafted most of the protocol. CS also drafted parts of the protocol and gave substantial information and support for good practice in systematic reviewing. LR supported drafting process. FB and CB contributed as experts for extracorporeal cardiopulmonary resuscitation and provided scientific input for good practice in systematic reviewing. LR supported drafting process. FB and CB contributed as experts for extracorporeal cardiopulmonary resuscitation and provided scientific input for good practice in systematic reviewing. This study uses only data that have already been published and does not need any ethical approval.

Provenance and peer review
Not commissioned; externally peer reviewed.

Open access
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1. Cheskes S, Schmicker RH, Rea T, et al. The association between AHA CPR quality guideline compliance and clinical outcomes from out-of-hospital cardiac arrest. Resuscitation 2017;116:39–45.
2. Hawkes C, Booth S, Ji C, et al. Epidemiology and outcomes from out-of-hospital cardiac arrests in England. Resuscitation 2017;110:133–40.

Table 3 Outcome variables

Type of information	No	Attribute
Outcome variable	1	(a) Survival rate to hospital discharge (Question 3)
		(b) Neurological outcome to hospital discharge (Question 3)
Information on subsequent exclusion of the study based on	2	(a) No information given on survival rate or neurologic outcome
outcome variables		(b) No information given on time frame of survival rate or neurologic
		outcome, or time frame incomparable to majority of other studies

1. Saemann L, et al. BMJ Open 2019;9:e030562. doi:10.1136/bmjopen-2019-030562

provenance and peer review
Not commissioned; externally peer reviewed.

open access
This is an open access article distributed in accordance with the creative commons attribution non-commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1. Cheskes S, Schmicker RH, Rea T, et al. The association between AHA CPR quality guideline compliance and clinical outcomes from out-of-hospital cardiac arrest. Resuscitation 2017;116:39–45.
2. Hawkes C, Booth S, Ji C, et al. Epidemiology and outcomes from out-of-hospital cardiac arrests in England. Resuscitation 2017;110:133–40.
3. Kragholm K, Wissenberg M, Mortensen RN, et al. Bystander efforts and 1-year outcomes in out-of-hospital cardiac arrest. *N Engl J Med Overseas Ed* 2017;376:1737–47.

4. Murakami Y, Iwami T, Kitamura T, et al. Outcomes of Out-of-Hospital cardiac arrest by public location in the Public-Access defibrillation era. *J Am Heart Assoc* 2014;3.

5. Nolan JP, Soar J, Smith GB, et al. Incidence and outcome of in-hospital cardiac arrest in the United Kingdom national cardiac arrest audit. *Resuscitation* 2014;85:987–92.

6. Schwartz BC, Jayaraman D, Warshawsky PJ. Survival from in-hospital cardiac arrest on the internal medicine clinical teaching unit. *Can J Cardiol* 2013;29:117–21.

7. Link MS, Berkow LC, Kudenchuk PJ, et al. Part 7: adult advanced cardiovascular life support: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. *Circulation* 2015;132(18 Suppl 2):444–64.

8. Karam N, Marijon E, Dumas F, et al. Characteristics and outcomes of out-of-hospital sudden cardiac arrest according to the time of occurrence. *Resuscitation* 2017;116:16–21.

9. Abrams D, Brodie D. Extracorporeal Membrane Oxygenation for Adult Respiratory Failure. *Chest* 2017;152:639–49.

10. Napp LC, Kühn C, Bauersachs J. Ecmo bei Herz-Kreislauf-Stillstand und kardiogenem Schock. *Herz* 2017;42:27–44.

11. Raffa GM, Kowalewski M, Brodie D, et al. Meta-Analysis of peripheral or central extracorporeal membrane oxygenation in Postcardiotomy and Non-Postcardiotomy shock. *Ann Thorac Surg* 2019;107:311–21.

12. Ellouze O, Vulliet M, Perrot J, et al. Comparable outcome of out-of-hospital cardiac arrest treated with extracorporeal life support. *Artif Organs* 2018;42:15–21.

13. Maekawa K, Tanno K, Hase M, et al. Extracorporeal cardiopulmonary resuscitation for patients with out-of-hospital cardiac arrest of cardiac origin: a propensity-matched study and predictor analysis. *Crit Care Med* 2013;41:1186–96.

14. Michels G, Wengenmayer T, Hagl C, et al. Recommendations for extracorporeal cardiopulmonary resuscitation (eCPR): consensus statement of DGIIN, DGK, DGTHG, DGK, DIGNI, DGAI, DIVI and grcc. *Cln Res Cardiol* 2018.

15. Schopka S, Philipp A, Lunz D, et al. Single-Center experience with extracorporeal life support in 103 nonpostcardiotomy patients. *Artif Organs* 2013;37:150–6.

16. Rousse N, Robin E, Juthier F, et al. Extracorporeal life support in out-of-hospital refractory cardiac arrest. *Artif Organs* 2016;40:904–9.

17. Brooks SC, Shemie SD, Torrance S, et al. Barriers and opportunities related to extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest in Canada: a report from the first meeting of the Canadian ECPR research Working group. *CJEM* 2018;20:507–17.

18. Grunau B, Hornby L, Singal RK, et al. Extracorporeal cardiopulmonary resuscitation for refractory out-of-hospital cardiac arrest: the state of the evidence and framework for application. *Can J Cardiol* 2018;34:146–55.

19. Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Syst Rev* 2015;4:1.

20. Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. *Implementation Sci* 2010;5.

21. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. *Int J Soc Res Methodol* 2005;8:19–32.

22. Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. *Health Info Libr J* 2009;26:91–108.

23. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions: Version 5.1.0, 2011. Available: https://training.cochrane.org/handbook

24. Ortega-Deballon I, Hornby L, Shemie SD, et al. Extracorporeal resuscitation for refractory out-of-hospital cardiac arrest in adults: a systematic review of international practices and outcomes. *Resuscitation* 2016;101:12–20.