EXAMPLE OF A 6-BY-6 MATRIX WITH DIFFERENT TROPICAL AND KAPRANOV RANKS

YAROSLAV SHITOV

ABSTRACT. We provide an example of a 6-by-6 matrix A such that $rk_t(A) = 4$, $rk_K(A) = 5$. This answers a question asked by M. Chan, A. Jensen, and E. Rubei.

KEYWORDS: matrix theory, tropical semiring, tropical rank, Kapranov rank.

Mathematics Subject Classification: 15A03, 15A15.

1 Introduction

We work over the tropical semiring $(\mathbb{R}, \oplus, \otimes)$ whose operations are

$$a \oplus b = \min\{a, b\}, \quad a \otimes b = a + b.$$

We consider tropical matrices, i.e. matrices over the tropical semiring. There exist many different ways to define the rank of a tropical matrix, see [1, 4]. We deal with the notions of tropical rank and Kapranov rank, see also [3, 5].

Definition 1.1. We define the permanent of a tropical matrix $S \in \mathbb{R}^{n \times n}$ as

$$\text{perm}(S) = \min_{\sigma \in S_n} \{s_{1, \sigma(1)} + \ldots + s_{n, \sigma(n)}\}. \quad (1.1)$$

Definition 1.2. The matrix S is called tropically singular if the minimum in (1.1) is attained at least twice. Otherwise, S is called tropically non-singular.

Definition 1.3. The tropical rank of a matrix $M \in \mathbb{R}^{p \times q}$ is the largest integer r such that M has a tropically non-singular r-by-r submatrix. We denote the tropical rank of M by $rk_t(M)$.

Let K denote the field whose elements are formal sums

$$a(t) = \sum_{i=1}^{\infty} a_i t^{\alpha_i} \quad \text{such that } a_n \in \mathbb{C}, \alpha_n \in \mathbb{R}, \lim_{n \to \infty} \alpha_n = +\infty.$$
Let \(\deg : \mathbf{K}^* \to \mathbb{R} \) be a natural valuation sending \(a(t) \) to the least of the exponents \(\alpha_i \), i.e. \(\deg(a) = \min_{n:a_n \neq 0} \{\alpha_n\} \). By definition, assume \(\deg(0) = \infty \). We say that \(B \in \mathbf{K}^{m \times n} \) is a lift of \(T \in \mathbb{R}^{m \times n} \) if \(\deg(b_{ij}) = t_{ij} \) for any \(i, j \).

The notion of the Kapranov rank of a matrix can be defined in the following way, see [4, Corollary 3.4].

Definition 1.4. Let \(M \in \mathbb{R}^{m \times n} \). We define the Kapranov rank of \(M \) as

\[
\text{rk}_K(M) = \min_{\mathbf{K}_M} \{\text{rank}(\mathbf{K}_M)\},
\]

where the minimum is taken over all lifts of \(M \). The expression \(\text{rank}(\mathbf{K}_M) \) means the usual rank of a matrix \(\mathbf{K}_M \) over the field \(\mathbf{K} \).

The notion of Kapranov rank was deeply investigated in [3, 4, 5]. Develin, Santos, and Sturmfels in [4] show that \(\text{rk}_K(M) \geq \text{rk}_t(M) \) for every matrix \(M \). The following theorem points out the connection with matroids.

Theorem 1.5. [4, Corollary 7.4] Let \(\mathcal{M} \) be a matroid which is not representable over \(\mathbb{C} \). Then the Kapranov and tropical ranks of the cocircuit matrix \(\mathcal{C}(\mathcal{M}) \) are different.

Theorem 1.5 makes it possible to construct examples of matrices with different tropical and Kapranov ranks. The example of a 7-by-7 matrix with different ranks is provided in [4].

Kim and Roush in [5] mostly deal with algorithmical aspects of the Kapranov rank. They prove that determining Kapranov rank of tropical matrices is NP-hard. Also, in [5] it was shown that there exist matrices of tropical rank 3 and arbitrarily high Kapranov rank.

The following theorem was proven in [3].

Theorem 1.6. [3, Corollary 1.5] Let \(M \in \mathbb{R}^{m \times n}, \min\{m, n\} \leq 5 \). Then \(\text{rk}_K(M) = \text{rk}_t(M) \).

Chan, Jensen, and Rubei in [3] point out the connection with the notion of tropical basis. They ask the following question.

Question 1.7. [3, Question 1.1] For which numbers \(d, n, r \) do the \((r+1) \times (r+1)\)-minors of a \(d \)-by-\(n \) matrix form a tropical basis? Equivalently, for which \(d, n, r \) does every \(d \)-by-\(n \) matrix of tropical rank at most \(r \) have Kapranov rank at most \(r \)?
In [3] the following conjecture was also made.

Conjecture 1.8. [3, Conjecture 1.6] The \((r+1) \times (r+1)\) minors of a \(d\)-by-\(n\) matrix are a tropical basis if and only if either \(r \leq 2\) or \(r \geq \min\{d, n\} - 2\).

Also, in [3] it was asked whether there exists a 6-by-6 matrix with different tropical and Kapranov ranks. We answer this question by providing an example of a 6-by-6 matrix with tropical rank 4 and Kapranov rank 5.

Now let us take into account the equivalence given in Question 1.7. Our example shows that the 5-by-5 minors of a 6-by-6 matrix are not a tropical basis. Thus we disprove Conjecture 1.8.

Additionally, we note that the difference between the tropical and Kapranov ranks of our matrix does not have a matroidal nature. Indeed, matroids with at most 6 elements are all representable over \(\mathbb{C}\), see [2].

2 The Example

Example 2.1. Let

\[
A = \begin{pmatrix}
0 & 0 & 4 & 4 & 4 & 4 \\
0 & 0 & 2 & 4 & 1 & 4 \\
4 & 4 & 0 & 0 & 4 & 4 \\
2 & 4 & 0 & 0 & 2 & 4 \\
4 & 4 & 4 & 0 & 0 & 0 \\
2 & 4 & 1 & 4 & 0 & 0
\end{pmatrix}.
\]

Then \(\text{rk}_t(A) = 4\), \(\text{rk}_K(A) = 5\).

Proof. 1. Note that every 5-by-5 submatrix of \(A\) can be written in some of the following forms (up to permutations of rows and columns):

\[
S' = \begin{pmatrix}
0 & s_{12}' & s_{13}' & s_{14}' & s_{15}' \\
s_{21}' & 0 & 0 & s_{24}' & s_{25}' \\
s_{31}' & 0 & 0 & s_{34}' & s_{35}' \\
s_{41}' & s_{12}' & s_{43}' & 0 & 0 \\
s_{51}' & s_{52}' & s_{53}' & 0 & 0
\end{pmatrix}, \quad
S'' = \begin{pmatrix}
0 & 4 & 4 & 4 & 4 \\
0 & x & 4 & y & 4 \\
0 & 0 & 4 & 4 \\
0 & 0 & 0 & z & 4 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

where \(x, y, z \in \{1, 2\}, s_{ij}', s_{ij}'' \in \{1, 2, 4\}\). By Definition 1.1, \(\text{perm}(S') = 0\). The minimum in (1.1) for \(S'\) is given by \(\text{id}, (23) \in S_5\). Analogously, \(\text{perm}(S'') = y\), the minimum is given by \((24), (243) \in S_5\). Thus by Definition 1.2, every
5 × 5-submatrix of A is tropically singular. From Definition 1.3 it follows that $rk_t(A) \leq 4$.

Now consider the 4-by-4 submatrix which is formed by the 1st, 2nd, 4th, and 6th rows and the 1st, 4th, 5th, and 6th columns of A:

\[
\begin{pmatrix}
0 & 4 & 4 & 4 \\
0 & 4 & 1 & 4 \\
2 & 0 & 2 & 4 \\
2 & 4 & 0 & 0
\end{pmatrix}.
\]

The minimum in the expression for its permanent is given by the only permutation $(23) \in S_4$. Thus by Definition 1.3, $rk_t(A) = 4$.

2. Let us consider the matrix

\[
M_0 = \begin{pmatrix}
1 & 1 & t^4 & t^4 & t^4 & t^4 \\
-1 & -1 & t^2 & t^4 & t & t^4 \\
t^4 & t^4 & 1 - t^2 & 1 & -t^4 & -t^4 \\
t^2 & t^4 & -1 - t & -1 & t^2 & -t^4 \\
-t^4 & -t^4 & -t^4 & -1 - t^2 & 1 \\
-t^2 & -t^4 & t & -t^4 & 1 - t & -1
\end{pmatrix} \in K^{6 \times 6},
\]

which is a lift of A. The sum of the rows of M_0 is the zero row, so that the rank of M_0 is at most 5. Thus by Definition 1.4, $rk_K(A) \leq 5$.

Now let $H \in K^{6 \times 6}$ be an arbitrary lift of A. It follows directly from definitions that $deg(ab) = deg(a) + deg(b)$, $deg(a + b) \geq \min\{deg(a), deg(b)\}$ for any $a, b \in K$. Since $deg(h_{pq}) = a_{pq}$ for any p, q, we obtain the following expression for the minor H_{25}:

\[
H_{25} = h_{12}h_{34}h_{41}h_{56}h_{63} + h_{12}h_{33}h_{44}h_{56}h_{61} - h_{12}h_{34}h_{43}h_{56}h_{61} + g_1,
\]

where $deg(g_1) \geq 4$. Analogously, the minor H_{61} can be expressed as

\[
H_{61} = h_{12}h_{25}h_{33}h_{44}h_{56} - h_{12}h_{25}h_{34}h_{43}h_{56} + g_2, \ deg(g_2) \geq 4.
\]

We denote $\Delta = h_{33}h_{44} - h_{34}h_{43}$, $\delta = deg(\Delta)$. We obtain

\[
H_{25} = h_{12}h_{34}h_{41}h_{56}h_{63} + h_{12}\Delta h_{56}h_{61} + g_1, \ deg(h_{12}h_{34}h_{41}h_{56}h_{63}) = 3, \quad
\]

\[
\begin{aligned}
°(h_{12}\Delta h_{56}h_{61}) = 2 + \delta; \\
&\text{(2.1)}
\end{aligned}
\]
\[H_{61} = h_{12} h_{25} \Delta h_{56} + g_2, \quad \text{deg}(h_{12} h_{25} \Delta h_{56}) = 1 + \delta. \]

(2.2)

It follows from definitions that \(\text{deg}(v_1 + v_2) = \min\{\text{deg}(v_1), \text{deg}(v_2)\} \) for any \(v_1, v_2 \in \mathbb{K} \) such that \(\text{deg}(v_1) \neq \text{deg}(v_2) \). Thus if \(\delta > 1 \), then from (2.1) it follows that \(\text{deg}(H_{25}) = 3 \), i.e. \(H_{25} \neq 0 \). Analogously, if \(\delta < 1 \), then \(\text{deg}(H_{25}) = 2 + \delta \), i.e. \(H_{25} \neq 0 \). Finally, if \(\delta = 1 \), then from (2.2) it follows that \(\text{deg}(H_{61}) = 2 \), i.e. \(H_{61} \neq 0 \). We see that some of the minors \(H_{25} \) and \(H_{61} \) differs from 0. This shows that the rank of \(H \) is at least 5. By Definition 1.4, \(\text{rk}_K(A) \geq 5 \). The proof is complete. \(\square \)

Theorem 2.2. The matrix \(A \) from Example 2.1 contains the least number of rows and the least number of columns among tropical matrices \(M \) such that \(\text{rk}_K(M) \neq \text{rk}_t(M) \).

Proof. Follows from Theorem 1.6 and Example 2.1. \(\square \)

3 Acknowledgements

I would like to thank my scientific advisor Professor Alexander E. Guterman for constant attention to my work and fruitful discussions.

Bibliography

[1] M. Akian, S. Gaubert, A. Guterman. Linear independence over tropical semirings and beyond // Contemporary Mathematics, AMS, 495(2009), 1–38.

[2] J. E. Blackburn, H. H. Crapo, and D. A. Higgs. A catalogue of combinatorial geometries // Mathematics of Computation, 27(121)(1973), 155–166.

[3] M. Chan, A. N. Jensen, E. Rubei. The 4x4 minors of a 5xn matrix are a tropical basis // arXiv:0912.5264v1 [math.CO].

[4] M. Develin, F. Santos, B. Sturmfels. On the rank of a tropical matrix, in Discrete and Computational Geometry (E. Goodman, J. Pach and E. Welzl, eds.), MSRI Publications, Cambridge Univ., Press, 2005.

[5] K. H. Kim, N. F. Roush. Kapranov rank vs. tropical rank // Proc. Amer. Math. Soc., 134(9)(2006), 2487–2494.
Faculty of Algebra, Department of Mathematics and Mechanics, Moscow State University, GSP-1, 119991 Moscow, Russia.

E-mail: yaroslav-shitov@yandex.ru