ON EXTENSIONS OF REPRESENTATIONS FOR COMPACT LIE GROUPS

JIN-HWAN CHO, MIN KYU KIM, AND DONG YOUP SUH

ABSTRACT. Let H be a closed normal subgroup of a compact Lie group G such that G/H is connected. This paper provides a necessary and sufficient condition for every complex representation of H to be extendible to G, and also for every complex G-vector bundle over the homogeneous space G/H to be trivial. In particular, we show that the condition holds when the fundamental group of G/H is torsion free.

1. INTRODUCTION

One of the classical problems in finite group theory is to characterize extensions of representations. We mean an extension of a representation in the following way: Given a normal subgroup H of a group G, a (complex) representation $\rho: H \to \text{GL}(n, \mathbb{C})$ is called extendible to G if there exists a representation $\tilde{\rho}: G \to \text{GL}(n, \mathbb{C})$ (called a G-extension) such that $\rho = \tilde{\rho}$ on H. It is to be noted that the dimension n is not changed, since ρ as a sub-representation is always contained in the restriction of the induced representation of ρ to H.

In the case of finite G, it is well known that every complex irreducible representation of H, which is G-invariant under conjugation (see Section 2 for the definition), is extendible to G if the second group cohomology $H^2(G/H, \mathbb{C}^*)$ vanishes \cite{Isa76, Theorem 11.7}. On the other hand the extension problem for infinite groups has not been extensively studied. In this article we study the problem for compact Lie groups when G/H is connected. Our main result is a necessary and sufficient condition for every complex representation of H to be extendible to G. It is also shown that the condition is related to a topological invariant, the fundamental group of G/H.

For any group G, let G' denote the commutator subgroup of G.

Theorem 1.1. Let G be a compact Lie group and H a closed normal subgroup such that G/H is connected. Then every complex representation of H is extendible to G if and only if H is a direct summand of G'/H.

Corollary 1.2. Let G be a compact Lie group and H a closed normal subgroup such that G/H is connected. Then every complex representation of H is extendible to G.
if the fundamental group $\pi_1(G/H)$ is torsion free, or equivalently if $(G/H)'$ is simply connected.

Our theorem provides a complete characterization of the triviality of complex G-vector bundles over the homogeneous space G/H. Let E be a complex G-vector bundle over G/H. We recall that E is trivial if it is isomorphic to the product bundle $G/H \times V$ for some complex G-module V. Since E is uniquely determined by the fiber at the identity element of G/H (say E_0), the bundle E is trivial if and only if E_0 as a complex representation of H is extendible to G. Theorem \cite{Seg68} leads us to the following corollary.

Corollary 1.3. Let G be a compact Lie group and H a closed normal subgroup such that G/H is connected. Then every complex G-vector bundle over the homogeneous space G/H is trivial if and only if H is a direct summand of $G'H$. □

The existence of G-extensions plays an important role even in equivariant K-theory. Let X be a connected topological space with a compact Lie group G action. Let H be the normal subgroup of G which consists of all elements of G acting trivially on X. Then the projection $G \to G/H$ induces the canonical homomorphism $\phi: K_{G/H}(X) \to K_G(X)$ which sends a G/H-vector bundle over X to the same bundle viewed as a G-vector bundle with the trivial H-action.

On the other hand, suppose that every complex irreducible representation of H is extendible to G. Then there is an injective group homomorphism $e: R(H) \to R(G)$ between two representation rings defined as follows. For each irreducible complex H-module U choose a G-extension U_G, and define $e([U]) = [U_G]$ where $[\]$ denote the classes in the representation rings. Then extend the definition of e to $R(H)$ so that it defines a homomorphism $R(H) \to R(G)$. For each complex G-module V we can associate the trivial complex G-vector bundle $V' = X \times V$, which defines the natural homomorphism $t: R(G) \to K_G(X)$. We now define a group homomorphism

$$\mu: R(H) \otimes K_{G/H}(X) \to K_G(X), \quad (V, \xi) \mapsto t \circ e(V) \otimes \phi(\xi). \tag{1}$$

This homomorphism is an isomorphism. Indeed, the inverse is given as follows. Let $\text{Irr}(H)$ denote the set of all isomorphism classes of complex irreducible representations of H. For each $[\chi] \in \text{Irr}(H)$ choose a G-extension of χ, and let V_χ be the corresponding G-module to the chosen G-extension. For a complex G-vector bundle E over X, the canonical isomorphism

$$E \overset{\cong}{\rightarrow} \bigoplus_{[\chi] \in \text{Irr}(H)} V_\chi \otimes \text{Hom}_H(V_\chi, E)$$

induces a group homomorphism $K_G(X) \to R(H) \otimes K_{G/H}(X)$ which is the desired inverse (see \cite{CKMS93} Section 2 for more general arguments). Therefore we have a generalization of Proposition 2.2 in \cite{Seg68} which deals with the extreme case when G acts trivially on X.

Corollary 1.4. Let G be a compact Lie group and H a closed normal subgroup such that G/H is connected. Let X be a connected G-space such that H acts trivially on X. If H is a direct summand of $G'H$, then the map $\mu: R(H) \otimes K_{G/H}(X) \to K_G(X)$ in \cite{Seg68} can be defined, and it is a group isomorphism. □

This article is organized as follows. In Section 2 we shall give some basic notions and then show that a complex irreducible representation of H, which is G-invariant under
conjugation, induces an associated projective representation of G which may be viewed as a G-extension in the projective representation level. Section 3 is devoted to prove that every complex representation of H has a G-extension when G/H is connected and abelian. In Section 4 we shall proceed the study in the case that G/H is semisimple and connected. After showing that the extension problem can be reduced to this case, we shall prove Theorem 1.1.

The authors wish to thank Professor Mikiya Masuda of Osaka City University for helpful discussions on finite and Lie group representations. The authors also wish to thank Professor I. Martin Isaacs of University of Wisconsin and Professor Hi-joon Chae of Hong-Ik University for helpful discussions on finite and Lie group representations.

2. Associated projective representations

Let G be a topological group and H a closed normal subgroup of G. By a (complex) representation of G we shall mean a continuous homomorphism of G into the general linear group $GL(n, \mathbb{C})$ of nonsingular $n \times n$ matrices over the field \mathbb{C} of complex numbers. A representation $\rho: H \rightarrow GL(n, \mathbb{C})$ is called extendible to G if there exists a representation $\tilde{\rho}: G \rightarrow GL(n, \mathbb{C})$ (called a G-extension of ρ) such that $\rho(h) = \tilde{\rho}(h)$ for all $h \in H$.

Moreover, it is enough to get a G-extension of ρ that there is a representation $\tilde{\rho}: G \rightarrow GL(n, \mathbb{C})$ such that its restriction to H is isomorphic (or similar) to ρ, i.e., there exists a matrix $M \in GL(n, \mathbb{C})$ such that $M^{-1}\tilde{\rho}(h)M = \rho(h)$ for all $h \in H$.

Given a representation $\rho: H \rightarrow GL(n, \mathbb{C})$ the map $^g\chi: H \rightarrow \mathbb{C}$ defined by the conjugation $^g\chi(h) = \chi(g^{-1}hg)$ becomes a representation of H for each $g \in G$. We say that ρ is G-invariant if it is isomorphic to the conjugate representation $^g\rho$ for all $g \in G$, which is a necessary condition of ρ to be extendible to G.

In the following we assume that a representation $\rho: H \rightarrow GL(n, \mathbb{C})$ is irreducible and G-invariant. Then there exists a matrix $M_g \in GL(n, \mathbb{C})$ for each $g \in G$ such that $M_g^{-1}\rho(h)M_g = ^g\rho(h) = \rho(g^{-1}hg)$ for all $h \in H$. Since ρ is irreducible, the Schur’s lemma implies that M_g is unique up to multiplication by nonzero constant in $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$. So we are able to define a function $\rho^*: G \rightarrow GL(n, \mathbb{C})/\mathbb{C}^*$ by $\rho^*(g) = [M_g]$ for each $g \in G$, where $[M_g]$ denotes the image of M_g by the canonical projection $\pi: GL(n, \mathbb{C}) \rightarrow PGL(n, \mathbb{C})$.

Let G be a topological group and H a compact normal subgroup of G. Given a complex irreducible representation $\rho: H \rightarrow GL(n, \mathbb{C})$ which is G-invariant, the function $\rho^*: G \rightarrow PGL(n, \mathbb{C})$ defined above is a continuous homomorphism, called the projective representation of G associated with ρ. Moreover, the image of ρ^* is contained in $U(n)/S^1 \subset PGL(n, \mathbb{C})$ if ρ is a unitary representation of H.

Lemma 2.1.
Proof. It is immediate that ρ^* is a homomorphism. Since H is compact we may assume that ρ is a unitary representation of H, i.e., the image of ρ is contained in the unitary group $U(n)$. Then M_g is a constant multiple of a matrix in $U(n)$ so that $\rho^*(g)$ is contained in $U(n)/S^1$ for all $g \in G$. For the continuity of ρ^* it suffices to show that the graph of ρ^* in $G \times \text{PGL}(n, \mathbb{C})$ is closed, since $U(n)/S^1$ is a compact Hausdorff space.

Consider the family of continuous maps $\Phi_h: G \times \text{GL}(n, \mathbb{C}) \to \text{GL}(n, \mathbb{C})$ for each $h \in H$ given by $(g, M) \mapsto \rho(h)M\rho(g^{-1}hg)^{-1}M^{-1}$. Then the set

$$\bigcap_{h \in H} \Phi_h^{-1}(I) = \bigcup_{g \in G} \{(g, M) \in G \times \text{GL}(n, \mathbb{C}) \mid M \in \pi^{-1}(\rho^*(g))\},$$

is the inverse image of the graph of ρ^* in $G \times \text{PGL}(n, \mathbb{C})$ by the canonical projection $1 \times \pi: G \times \text{GL}(n, \mathbb{C}) \to G \times \text{PGL}(n, \mathbb{C})$, which is obviously closed in $G \times \text{GL}(n, \mathbb{C})$. Therefore the graph of ρ^* is also closed in $G \times \text{PGL}(n, \mathbb{C})$.

We may say that ρ is extendible to G in the projective representation level, since $\rho^*(h) = [\rho(h)]$ for all $h \in H$, i.e., $\rho^* = \pi \circ \rho$ on H.

$$\begin{array}{ccc}
H & \xrightarrow{\rho} & \text{GL}(n, \mathbb{C}) \\
\downarrow & & \downarrow \pi \\
G & \xrightarrow{\rho^*} & \text{PGL}(n, \mathbb{C})
\end{array}$$

Note that any G-extension (if exists) $\tilde{\rho}$ of ρ is a lifting homomorphism of ρ^*, i.e., $\rho^* = \pi \circ \tilde{\rho}$, since $\rho^*(g) = [\tilde{\rho}(g)]$ for all $g \in G$.

Remark. In case that G is finite, choose a transversal T containing e for H in G and set $M_e = I$, the identity matrix in $\text{GL}(n, \mathbb{C})$. For each $t \in T$ and $h \in H$, the map $\rho': G \to \text{GL}(n, \mathbb{C})$ sending $th \mapsto M_t\rho(h)$ is a lifting (not necessarily homomorphism) of ρ^*, i.e., $\pi \circ \rho' = \rho^*$, and it determines a cocycle β in the second group cohomology $H^2(G/H, \mathbb{C}^*)$, which depends only on ρ. Moreover, ρ is extendible to G if and only if β is trivial, see [Isa76] Theorem 11.7 for more details.

3. Extensions when G/H is connected abelian

In this section we shall prove that every complex representation of H is extendible to G when G/H is compact, connected, and abelian, that is a torus. We begin with a general result on extensions of representations in the special case when $G = SH$ for some closed subgroup S of G.

Lemma 3.1. Let G be a compact topological group such that $G = SH$ for a closed subgroup S and a closed normal subgroup H of G. Then a complex representation $\rho: H \to \text{GL}(n, \mathbb{C})$ is extendible to G if and only if there exists a representation $\varphi: S \to \text{GL}(n, \mathbb{C})$ such that

1. $\varphi = \rho$ on $S \cap H$, and
2. $\varphi(s^{-1}\rho(h))\varphi(s) = \rho(s^{-1}hs)$ for all $s \in S$ and $h \in H$.

Proof. The necessity is obvious so we prove the sufficiency. Define a function $\tilde{\rho}: G \to \text{GL}(n, \mathbb{C})$ by $\tilde{\rho}(sh) = \varphi(s)\rho(h)$ for $s \in S$ and $h \in H$. It is immediate that $\tilde{\rho} = \rho$ on H. In this proof we shall use the symbols s, s' and h, h' for elements in S and H, respectively.
for each $g \in S$ every connected component of G contains an element of S. Then the path g_t induces a continuous family of conjugate representations $g^\ast \rho$ so that all representations $g^\ast \rho$ are isomorphic (see [CR63] Lemma 38.1 for more general result). In particular, $g^\ast \rho = g_0^\ast \rho$ and $\rho = h^\ast \rho = g_0^\ast \rho$ are isomorphic.

Let ρ be a complex irreducible representation of H. Since ρ is always G-invariant, the associated projective representation ρ^\ast exists by Lemma 2.1. To get a G-extension of ρ we shall first find a closed subgroup S of G such that $G = SH$, and then construct a lifting homomorphism φ of ρ^\ast over S (so that the condition (2) is satisfied). Finally modifying φ a little to satisfy the condition (1) we may get a G-extension of ρ.

Lemma 3.2. Let G be a compact Lie group and H a closed normal subgroup such that $G/H \cong S^1$. Then there exists a circle subgroup S of G such that $G = SH$ and $S \cap H$ is finite cyclic.

Proof. Let G_0 denote the identity component of G. Since the canonical projection $p: G \to G/H$ is open and closed, $p(G_0)$ is a connected component of G/H so that $p(G_0) = G/H$. It is well known in Lie group theory [HM98, Theorem 6.15] that $G_0 = Z_0 G'_0$, where Z_0 is the identity component of the center of G_0, which is a torus and G'_0 is the commutator subgroup of G_0. Then $G'_0 \subset G_0 \cap H \subset H$ since $G/H = G_0/(G_0 \cap H)$
is abelian, and thus $p(Z_0) = G/H$. Using the isomorphism $G/H \cong U(1)$ we may view $p|_{Z_0}$ as a one-dimensional unitary representation of the torus Z_0. It is elementary in representation theory that there exists a circle subgroup $S \subset Z_0$ such that $p(S) = G/H$. Therefore $G = SH$ and, furthermore, the proper subgroup $S \cap H$ of the circle group S is finite cyclic.

Lemma 3.3. Let T be a maximal torus in $U(n)$. Then the exact sequence $0 \to S^1 \to T \to T/S^1 \to 0$ splits. Here S^1 is identified with the subgroup of $U(n)$ consisting of constant multiples zI for $z \in S^1 \subset \mathbb{C}$ where I denotes the identity matrix.

Proof. Since any maximal torus T in $U(n)$ is conjugate to the subgroup $\Delta(n) \subset U(n)$ of diagonal matrices $D(z_1, \ldots, z_n) = \begin{pmatrix} z_1 & & \\ & \ddots & \\ & & z_n \end{pmatrix}, \quad z_i \in S^1,$ it suffices to show that the exact sequence $0 \to S^1 \to \Delta(n) \to \Delta(n)/S^1 \to 0$ splits. But the splitting is immediate because of the homomorphism $\Delta(n) \to S^1$ mapping a diagonal matrix $D(z_1, \ldots, z_n)$ to the constant multiple $z_1 I \in S^1$. □

Proposition 3.4. Let G be a compact Lie group and H a closed normal subgroup such that $G/H \cong S^1$. Then every complex representation of H is extendible to G.

Proof. Let $\rho: H \to \text{GL}(n, \mathbb{C})$ be a given representation. Since H is compact, we may assume that all the images of ρ are contained in $U(n) \subset \text{GL}(n, \mathbb{C})$. Moreover, it is enough to prove the case that ρ is irreducible. Since $G/H \cong S^1$ is connected, ρ is G-invariant so that the associated projective representation $\rho^*: G \to U(n)/S^1 \subset \text{PGL}(n, \mathbb{C}) = \text{GL}(n, \mathbb{C})/\mathbb{C}^*$ exists by Lemma 2.1. From Lemma 3.2 we can choose a circle subgroup S of G such that $G = SH$ and $S \cap H$ is finite cyclic.

We shall find a lifting homomorphism $\varphi_0: S \to U(n)$ of ρ^* over S. Since $\rho^*(S)$ is compact, connected, and abelian, it is a torus in $U(n)/S^1$. Note that every maximal torus in $U(n)/S^1$ has the form T/S^1 for some maximal torus T of $U(n)$ [BtDS5, Theorem 2.9, Chapter IV]. Choose a maximal torus T of $U(n)$ such that $\rho^*(S) \subset T/S^1$. By Lemma 3.3 the exact sequence $0 \to S^1 \to T \to T/S^1 \to 0$ splits, i.e., the canonical projection $\pi: T \to T/S^1$ has a continuous section (homomorphism) $s: T/S^1 \to T$ such that the composition $\pi \circ s$ is the identity map of T/S^1. Then $\varphi_0 = s \circ \rho^*|_{S}$ is a desired lifting homomorphism of ρ^* over S.

Let t_0 denote a generator of the finite cyclic group $S \cap H$. Since $\pi \circ \varphi_0 = \rho^* = \pi \circ \rho$ on $S \cap H$, $\varphi_0(t_0) = \xi \rho(t_0)$ for some constant $\xi \in S^1 \subset \mathbb{C}^*$. Note that ξ is an n-th root of unity, where n is the order of $S \cap H$. So it is possible to choose a one-dimensional unitary representation τ of the circle group S such that $\tau(t_0) = \xi^{-1}$. Then the unitary representation $\varphi = \tau \otimes \varphi_0$ satisfies the conditions (1) and (2) in Lemma 3.1. □
Corollary 3.5. Let G be a compact Lie group and H a closed normal subgroup such that G/H is connected and abelian. Then every complex representation of H is extendible to G.

Proof. Since G/H is compact, connected, and abelian, it is isomorphic to a torus. So we have a finite chain of subgroups

$$H = H_0 \lhd H_1 \lhd \cdots \lhd H_{n-1} \lhd H_n = G$$

such that H_i is normal in H_{i+1} and $H_{i+1}/H_i \cong S^1$. Applying Proposition 3.4 inductively, any representation of H is extendible to G. □

4. Extensions when G/H is connected

In this section we consider the general case, so G/H will be assumed to be connected (not necessarily abelian). In this case the commutator subgroup $(G/H)' = G'H/H$ of G/H is semisimple connected [HM98, Theorem 6.18]. The following proposition reduces the extension problem to the case that G/H is semisimple and connected.

Proposition 4.1. Let G be a compact Lie group and H a closed normal subgroup of G such that G/H is connected. A complex representation of H is extendible to G if and only if it is extendible to $G'H$.

Proof. The necessity is obvious, and the sufficiency follows from Corollary 3.5 since the factor group $G/G'H \cong (G/H)/(G'H/H) = (G/H)/(G/H)'$ is compact, connected, and abelian, that is a torus. □

In the case that G/H is semisimple connected, the following result is well known in Lie group theory (see for instance, [HM98, Proposition 6.14]).

Lemma 4.2. Let G be a compact Lie group and H a closed normal subgroup such that G/H is semisimple and connected. Then there is a semisimple connected closed normal subgroup S in G such that $G = SH$ and the map $S \times H \to G$ sending $(s,h) \mapsto sh$ is a homomorphism with a discrete kernel isomorphic to $S \cap H$. □

Remark. Proposition 6.14 in [HM98] deals with the case when G is connected. However, the same proof holds even if G is not connected, since G/H is connected. Moreover, we can find the fact in the proof that S is semisimple and connected.

The following result implies that the existence of a G-extension when G/H is semisimple and connected is completely determined by the restriction of a given representation to $S \cap H$.

Proposition 4.3. Under the hypotheses of Lemma 4.2, a complex irreducible representation ρ of H is extendible to G if and only if ρ is trivial on $S \cap H$, i.e., $\rho(g) = I$, the identity matrix, for all $g \in S \cap H$.

Proof. It is immediate that S commutes with H, since the map $S \times H \to G$ sending $(s,h) \mapsto sh$ is a homomorphism. To prove the sufficiency, it is enough to choose the trivial representation φ of S, i.e., $\varphi(s) = I$ for all $s \in S$. Since S commutes with H, the two conditions (1) and (2) in Lemma 3.1 are satisfied immediately.

On the other hand, suppose $\tilde{\rho}$ is a G-extension of ρ. Since S commutes with H, we have $\tilde{\rho}(s)^{-1}\rho(h)\tilde{\rho}(s) = \rho(h)$ for all $s \in S$ and $h \in H$. Then the Schur’s lemma implies that $\tilde{\rho}(s)$ is constant for all $s \in S$, so we may view the restriction $\tilde{\rho}|_S$ as a
one-dimensional complex representation of \(S \). Since semisimple Lie groups have no nontrivial abelian factor group, the trivial representation is the unique one-dimensional complex representation of \(S \). Therefore, \(\tilde{\rho} \) is trivial on \(S \), in particular, on \(S \cap H \). \(\square \)

Remark. Note that the number of \(G \)-extensions (if exist) is exactly one, since every \(G \)-extension should be trivial on \(S \).

Corollary 4.4. Let \(G \) be a compact Lie group and \(H \) a closed normal subgroup such that \(G/H \) is semisimple and connected. Every complex representation of \(H \) is extendible to \(G \) if and only if \(H \) is a direct summand of \(G \), i.e., \(G \cong S \times H \) for some subgroup \(S \) of \(G \).

Proof. The sufficiency is obvious so we prove the necessity. If \(H \) is not a direct summand of \(G \), then \(S \cap H \) in Lemma 4.2 contains a nontrivial element, say \(s_0 \). Since a faithful representation of \(H \) always exists [BtD85, Theorem 4.1, Chapter III], we can choose an irreducible sub-representation \(\rho \) of \(H \) such that \(\rho(s_0) \) is not trivial. Then \(\rho \) does not extend to a representation of \(G \) by Proposition 4.3. \(\square \)

We shall now prove the main result in this paper. For the second statement of Theorem 1.1, we need the following lemma giving a relation between the normal subgroup \(S \cap H \) in Lemma 4.2 and the fundamental group of \(G/H \).

Lemma 4.5. Under the hypotheses of Lemma 4.2, there exists a surjective homomorphism \(\pi_1(G/H) \to S \cap H \).

Proof. Since \(S/(S \cap H) = G/H \), the restriction of the canonical projection \(p: G \to G/H \) on \(S \) is surjective and its kernel \(S \cap H \) is discrete. It follows that \(p|_S \) is a covering homomorphism of \(G/H \). From the uniqueness of the universal covering homomorphism \(\tilde{q}: \tilde{G}/H \to G/H \), there exists a covering homomorphism \(q: \tilde{G}/H \to S \) such that the diagram

\[
\begin{array}{ccc}
\tilde{G}/H & \xrightarrow{q} & S \\
\downarrow{\tilde{q}} & & \downarrow{p|_S} \\
G/H & & \end{array}
\]

commutes (compare with [HM98, Proposition 9.12]). Since \(S \cap H = \ker p|_S = q(\ker \tilde{q}) \) and \(\ker \tilde{q} \) is isomorphic to \(\pi_1(G/H) \), we have a surjective homomorphism of \(\pi_1(G/H) \) onto \(S \cap H \). \(\square \)

Theorem 1.1 (rephrased). Let \(G \) be a compact Lie group and \(H \) a closed normal subgroup such that \(G/H \) is connected. Then every complex representation of \(H \) is extendible to \(G \) if and only if \(H \) is a direct summand of \(G'H \).

Proof. Since the factor group \(G'H/H = (G/H)' \) is semisimple and connected, the theorem follows immediately from Proposition 4.1 and Corollary 4.3. \(\square \)

Proof of Corollary 1.2. We claim that \(\text{Tor}(\pi_1(G/H)) \), the torsion subgroup of \(\pi_1(G/H) \), is isomorphic to \(\pi_1((G/H)') \). Denote by \(T \) the torus \((G/H)/(G/H)' \). Then the homotopy exact sequence of the fibration \((G/H)' \to G/H \to T \) implies that \(\pi_1(G/H) \cong \pi_1((G/H)') \oplus \pi_1(T) \), since the second homotopy group of a compact Lie group vanishes, see [BtD85, Proposition 7.5, Chapter V]. Since \((G/H)' \) is semisimple, \(\pi_1((G/H)') \) is finite [BtD85, Remark 7.13, Chapter V] so that it is isomorphic to \(\text{Tor}(\pi_1(G/H)) \) as...
we claimed. Therefore, the condition of $\pi_1(G/H)$ being torsion free is equivalent to $(G/H)'$ being simply connected.

By Lemma 4.2 and 4.5, $G'H = SH$ for some semisimple connected closed normal subgroup S in $G'H$ and there is a surjective homomorphism $\pi_1(G'H/H) = \pi_1((G/H)') \to S \cap H$. Therefore, if $(G/H)'$ is simply connected, then $\pi_1((G/H)') = S \cap H = \{e\}$ so that H is a direct summand of $G'H$. □

REFERENCES

[BtD85] T. Bröcker and T. tom Dieck, *Representations of Compact Lie Groups*, Grad. Texts in Math., vol. 98, Springer, New York, 1985.

[CF64] P. E. Conner and E. E. Floyd, *Defferentiable Periodic Maps*, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Springer, New York, 1964.

[CKMS99] J.-H. Cho, S. S. Kim, M. Masuda, and D. Y. Suh, *Classification of equivariant complex vector bundles over a circle*, preprint, 1999, [arXiv:math.AT/9910001](https://arxiv.org/abs/math.AT/9910001).

[HM98] K. H. Hofmann and S. A. Morris, *The Structure of Compact Groups*, de Gruyter Stud. Math., vol. 25, de Gruyter, Berlin, 1998.

[Isa76] I. M. Isaacs, *Character Theory of Finite Groups*, Pure Appl. Math., vol. 69, Academic Press, New York, 1976.

[Seg68] G. Segal, *Equivariant K-theory*, Inst. Hautes Études Sci. Publ. Math. **34** (1968), 129–151.

School of Mathematics, Korea Institute for Advanced Study

E-mail address: chofchof@kias.re.kr

Department of Mathematics, Korea Advanced Institute of Science and Technology

E-mail address: minkyu@math.kaist.ac.kr

Department of Mathematics, Korea Advanced Institute of Science and Technology

E-mail address: dysuh@math.kaist.ac.kr