Anthropometric Changes in a Prospective Study of 100 Patients Requesting Breast Reduction

Donald A. Hudson, MMed, FRCS (Ed), FCS (SA), FACS
Ngoato B. Lelala, BSC, MBCHB, DA

Background: The anthropometry of the “ideal” breast is well described, but changes that occur with enlarged breasts are not. The aim of this study was to assess the prevalence of nipple asymmetry in the horizontal plane and changes in the inframammary fold (IMF) in patients presenting with macromastia (defined as excessive development of the mammary glands by Merriam-Webster dictionary).

Methods: One hundred patients (200 breasts) presenting to the Plastic Surgery Clinic for bilateral breast reduction were enrolled in this study. Patients’ characteristics captured for this study included age, body mass index (BMI), and breast anthropometric measurements, such as suprasternal notch to nipple, nipple to IMF, IMF projected to cubital fossa, midhumeral point, and nipple measurement from meridian. Basic univariate statistical analyses were performed to evaluate the impact of nipple asymmetry.

Results: The average age was 37 years (SD 12 years), and the median BMI was 33 (IQR 28–37). More patients presented with nipple asymmetry, of whom 45% were classified as lateral to the meridian, 19% were classified as medial to the meridian, and 36% were classified as central to the meridian. Patients with lateral asymmetry and medial asymmetry had a significantly higher BMI (median BMI 35) compared with patients with central positioning (median BMI 30). Increasing breast size was positively associated with nipple asymmetry, whereas BMI ($R = -0.30, P = 0.003$) and macromastia correlated negatively with IMF position ($R = -0.38, P = 0.0001$).

Conclusion: In macromastia, nipple displacement from the breast meridian, especially lateral displacement, is common and is aggravated by an increase in BMI. The IMF also descends, and this is also more common in patients with a raised BMI. These changes have clinical implications. (Plast Reconstr Surg Glob Open 2019;7:e2150; doi: 10.1097/GOX.0000000000002150; Published online 24 May 2019.)

INTRODUCTION

The breast has been described as the most changeable organ in the body, altering with puberty, pregnancy, weight gain, hormonal changes, and aging. Breast asymmetry is well documented in patients presenting for breast augmentation. However, the implications are different for patients with macromastia requesting a breast reduction.

Although anthropometric studies have been performed to investigate the ideal breast, the changes that occur with enlarged breasts have not been defined: how does the footplate change with enlargement and does the breast retain its proportions? The changes that occur to the inframammary fold (IMF) are also not well documented. Furthermore, few studies have focused on the position of the nipple relative to the breast meridian (ie, medial–lateral plane/x plane). The surgeon, by understanding the changes that occurs, can reverse them and, in so doing, optimize the aesthetic result of breast reduction.

This study reports on the anthropometric data of 100 consecutive patients presenting to a tertiary hospital for bilateral breast reduction. The clinical implications are discussed.

METHODS

A prospective cohort of 100 patients who presented to the Plastic Surgery Outpatient Department at Groote
Schuur Hospital between July 1, 2017, and November 31, 2017, with clinical macromastia (defined as excessive development of the mammary glands by Merriam-Webster dictionary) and requesting bilateral breast reduction were assessed for nipple displacement relative to the breast meridian and IMF position relative to the midhumeral point.

Inclusion criteria included participants above the age of 18 years and presenting to our OPD requesting bilateral breast reduction. Exclusion criteria included participants requesting other forms of breast surgery, or those who had previous breast surgery.

Patient's height and weight were measured, and their body mass index (BMI) was calculated. All patients were marked in an upright position.

The distance from suprasternal notch to nipple (SN-N) and the distance from nipple to IMF (N-IMF) were measured in centimeters and recorded. These are standard measurements.

Three vertical lines were drawn on the patient’s chest wall (Figs. 1, 2) to mark the vertical breast meridian for each breast: the first line passes down the chest midline through the center of the sternum (long green line) and the second line is drawn along the anterior axillary line (short green line).

To ensure that the breast meridian was situated in the middle of the breast, additional markings and calculations were performed; ie 2 cm was subtracted from the sternal midline on the horizontal plane at the fourth intercostal space, to mark the medial aspect of the breast. Then, the breast meridian (red dotted line) was marked at the midpoint between this point and the anterior axillary line (Figs. 1, 2).

The nipple position was measured relative to the breast meridian and categorized into 3 groups, namely: (1) nipple situated on the breast meridian, (2) nipple situated 2 cm or more medial to the meridian, and (3) nipple situated 2 cm or more lateral to meridian.

The length of humerus was measured from the inferior aspect of the acromioclavicular joint to the cubital fossa. The midhumeral point (ie, half way between the acromioclavicular joint and cubital fossa) was marked on the upper arm.

A ruler was placed along the center of the IMF, and the point where this projected onto the upper arm (humerus) was marked as the IMF point (Fig. 1B).

Finally, the distance between the IMF point (when projected on the upper arm) and the cubital fossa of the elbow was measured.

All the measurements were performed by the second author (NBL). All patients signed written consent. Ethical approval was obtained from the Human Research Ethics Committee (077/2017).

Anthropometric Breast Measurement: Statistical Analysis

Shapiro–Wilk test for normality was performed to determine the distribution of variables within the dataset. The Spearman’s rank test was applied to test for correlation between nonparametric data. Statistical inferences on binary sets of data were performed using the Fisher’s exact test, and odds ratios were calculated. Nonparametric assessments of variation between groups were carried out through the Kruskal–Wallis analysis of variance, with Dunn’s post-test being applied to test for the effect of multiple comparisons. Statistical analyses were performed using Fig. 1. Anthropometric markings in 38-year-old patient with a BMI of 31, presenting with macromastia. (A) Anterior view (B) Oblique view. The ruler rests on the IMF, the level of the IMF is projected on the upper arm, and this point is marked. The length of the humerus is measured and midpoint is calculated (15 cm in this patient). Also, the distance from the cubital fossa to the projected IMF is recorded. In this patient, the IMF is 7 cm above the antecubital fossa.
RESULTS

A total of 100 participants were enrolled for the study (Figs. 1, 2). They had an average age of 37 years (range 18–69 years). Regarding BMI, 22% were classified as overweight, 54% were classified as obese, and 14% were classified as extremely obese (BMI >40). Only 10% of participants classified as normal weight per BMI (Table 1).

The mean measurement from SN-N was 33 cm (range 18–50 cm). The mean distance from N-IMF was 17 cm (range 6–29 cm).

Nipple position was classified as central to the breast meridian in 36% of breasts examined, 45% were recorded as laterally positioned relative to the meridian, and 19% were classified as medial to the breast meridian. In 45 patients (36 lateral and 9 medial), the NAC was displaced 2 cm or more from the meridian of the breast (Table 1).

The mean length of the humerus was 30 cm (range 18–34 cm). The mean midpoint of the humerus was 15 cm. The average distance of the IMF (when projected onto the arm) below the middle of the humerus was 8.5 cm. The median distance between the IMF point (when extended and projected onto the upper arm) and the cubital fossa was 5 cm (range 2–14 cm) (Table 1).

Statistical Analysis

1. Patients with increasing BMI were more likely to have nipple positions medial or lateral to the breast meridian ($P = 0.0005$, Fisher’s exact test; Fig. 3).
2. As the nipple-to-notch distance increases, the IMF descends closer to the cubital fossa ($R = −0.38$, $P = 0.0001$, Spearman’s rank test; Fig. 4) Note: y-axis marks IMF position relative to cubital fossa.
3. As the BMI increases, the position of the IMF descends ($R = −0.30$, $P = 0.003$, Spearman’s rank test; Fig. 5).
4. As age increases, the IMF descends ($R = −0.06$, $P = 0.54$, Spearman’s rank test; Fig. 6), but this was a trend did not reach statistical significance.

DISCUSSION

The breast is a subcutaneous structure situated between the second and sixth ribs.4,6,7 The ideal breast is not ptotic, and its shape is maintained by taut Cooper’s ligaments. The ideal nipple position needs to be defined in 2 planes. In the y-axis or vertical plane, it should be in the middle of the breast or just lateral to the midline.4 In the x-axis or horizontal plane, it should be level with the midpoint of the humerus, or marginally (1.5 mm) below.4,5 The curve of the IMF should form a semicircle,4 and its inferior most point should be situated at the level of the sixth rib.4,8 Westreich4 in his study of the “perfect” breast did not find a correlation between body length (patient height) and nipple position, which was always situated at the level of the midhumerus.

As the breast enlarges, the nipple position deviates from the breast meridian (Figs. 1–3). This is more pronounced in patients with a raised BMI (Fig. 3). This nipple displacement may be explained by changes in the ligamentous anatomy.9,10 Matousek et al9 reported that the breast is globally surrounded by taut ligaments. The medial breast ligaments are short and taut compared with the lateral ligaments, and hence, in some patients, as the breast enlarges, the nipple is displaced medially from the breast meridian. This occurred in 19% (19 patients; 38 breasts) of patients (Table 1) in this study. In contrast, the ligaments forming the inferior-lateral breast base are more tenuous and appear to stretch more easily, resulting in inferolateral displacement of the nipple. In this study, the nipple position was found to be displaced laterally to the breast meridian in 45% of cases (45 patients; 90 breasts; Fig. 3). Clinically, extrapolating the data from this study suggests that if the preoperative nipple position is used to mark the breast midline (thus, nipple position after breast reduction), the new nipple position would be situated either too far...
medially and/or laterally in 64% of cases, marred the aesthetic results.

This study also shows that, as the breast enlarges, the position of the IMF also descends (Fig. 4). Again, this is aggravated in patients as the BMI increases (Fig. 5). This implies that as the breast enlarges globally, the base/footplate also increases in surface area. This descent of the IMF is also probably due to attenuation of the superficial ligaments constituting the IMF. There was a tendency for patients with increasing age to also have a lower situated IMF, but this did not reach statistical significance ($P = 0.54$; Fig. 6).

The position of the IMF was never at the midpoint of the humerus—the ideal aesthetic point in any patients in this study. In fact, more commonly, the projected IMF position was, on average, only 5 cm above the cubital fossa, indicating the extend of its descent. Hence, it is suggested that the position of the IMF in breast reduction be fixed to prevent further descent.11,12 This is achieved by anchoring the IMF to both rib periosteum and pectoralis fascia. Additionally, this maneuver splints the IMF, which reduces tension at the angle of sorrow.11 Interestingly, IMF fixation is well described in breast augmentation3,13,14 to prevent inferior migration of the prosthesis.

The lower position of the IMF has other clinical implications: in most techniques of breast reduction, the new nipple position is marked relative to the position of the IMF (Pitanguy’s point). If Pitanguy’s point is used to mark the new nipple position at breast reduction, the new nipple position would be situated much lower than middle of the length of the humerus. In fact, patients in this study would have the new nipple position (on average)
positioned approximately three quarters down the length of the humerus. In contrast, if the midhumeral point was used, the new nipple position would be situated too high after breast reduction.

It is also our policy to mark the new nipple position at the level of the IMF. (Pitanguy’s point). The descent of the IMF implies that the new nipple position is marked a longer distance from the suprasternal notch than if the midhumeral point is used. To maintain the aesthetic ratio of SN-N: IMF, the distance from N-IMF (vertical limbs in the keyhole/inverted T pattern) also needs to be made longer. In patients having a vertical mammoplasty, the new nipple is marked even lower than the position of the IMF projected onto the breast, with the obvious implications. Extrapolating these data suggests that patients may need to be advised of a longer, flatter upper pole, which is likely to occur after reduction.

The superomedial pedicle is becoming more popular in breast reduction due to its robust and reliable vascularity. When the NAC is displaced laterally relative to the breast meridian, rotation and inset of the pedicle are enhanced. However, when the NAC is displaced medially, a conventionally designed keyhole pattern would impede pedicle rotation, even if a back cut is performed. Iorio et al reported lengthening the vertical limb of the keyhole to address the medially deviated nipple areola complex.

There are some shortcomings to this study. Macromastia is a clinical diagnosis of enlarged breasts, and all the patients who presented had clinical symptoms of backache and shoulder pain, rather than aesthetic concerns. No patients with ideal breasts were seen, so the comparison of macromastia with the ideal breast was derived from the literature. All the patients were measured in the standing position. Furthermore, there were no cases of gross chest wall asymmetry, but minor chest wall asymmetry may have been missed. Additionally, this study is not addressing the outcome of these patients after breast reduction but rather investigated anthropometric changes that occur in patients presenting with enlarged breasts.

This is the first study to report on changes occurring in 100 consecutive patients presenting for breast reduction. As the breast enlarges, there is displacement of the nipple areolar complex, either laterally (45%) or medially (19%) from the breast meridian. This nipple displacement is more common in patients as the BMI increases. Hence, using the (preoperative, but displaced) nipple position to mark the breast midline may result in a new nipple position that is not on the breast meridian. This study also shows that the IMF descends in patients with breast hypertrophy, again these changes are aggravated as the BMI increases. Hence, if Pitanguy’s point is used to mark the new nipple position after breast reduction, this will result in the new nipple been situated in a lower position than in the middle of the humerus.

Donald A. Hudson, MMed, FRCS (Ed), FCS (SA), FACS
Department of Plastic and Reconstructive Surgery
University of Cape Town
Groote Schuur Hospital
H53 OMB
Observatory
7925 Cape Town, South Africa
E-mail: donald.hudson@uct.ac.za

ACKNOWLEDGMENT
We wish to acknowledge Shameem Jaumdally for assistance with the statistical analysis.

REFERENCES
1. Brody G. The perfect breast: is it attainable? Does it exist? Plast Reconstr Surg 2009;113:1500–1503
2. Rohrich RJ, Hartley W, Brown S. Incidence of breast and chest wall asymmetry: a retrospective analysis of 100 patients. Plast Reconstr Surg 2003;118:75–13S.
3. Yeslev M, Braun SA, Maxwell GP. Asymmetry of inframammary folds in patients undergoing augmentation mammoplasty. Aesthet Surg J 2016;36:156–166.
4. Westreich M. Anthropomorphic breast measurement: protocol and results in 50 women with aesthetically perfect breasts and clinical application. Plast Reconstr Surg 1997;100:468–479.
5. Lewin R, Amoroso M, Plate N, et al. The aesthetically ideal position of the nipple-areola complex on the breast. Aesthetic Plast Surg 2016;40:724–732.
6. Liu YJ, Thomson JG. Ideal anthropomorphic values of the female breast: correlation of pluralistic aesthetic evaluations with objective measurements. Ann Plast Surg. 2011;67:7–11.
7. Mallucci P, Branford OA. Concepts in aesthetic breast dimensions: analysis of the ideal breast. J Plast Reconstr Aesthet Surg. 2012;65:8–16.
8. Penn J. Breast reduction. Br J Plast Surg. 1955;7:357–371.
9. Matousek SA, Corlett RJ, Ashton MW. Understanding the fascial supporting network of the breast: key ligamentous structures in breast augmentation and a proposed system of nomenclature. Plast Reconstr Surg 2014;133:273S–281S
10. Steele TN, Prihaz J, Lau FH. The sternum nipple distance is double the nipple-inframammary fold distance in macromastia. Ann Plast Surg. 2017;78:S347–350
11. Hudson DA, Moodley S. Breast reduction: decreasing complications and improving long-term aesthetic results with parenchymal sutures. Plast Reconstr Surg Glob Open. 2017;5:e1470.
12. Hammond DC. Techniques in breast reduction. Paper presented at: Association of Plastic and Reconstructive Surgeons of Southern Africa Annual Congress; September 14–17, 2018; Arabella, Western Cape.

13. Montemurro P, Avedimento S, Hedén P, et al. A four-layer wound closure technique with barbed sutures for stable reset of the inframammary fold in breast augmentation. *Aesthet Surg J.* 2016;36:966–971.

14. Davison SP, Mesbahi AN, Ducic I, et al. The versatility of the superomedial pedicle with various skin reduction patterns. *Plast Reconstr Surg.* 2007;120:1466–1476.

15. Iorio ML, Endara M, Ducic I. Reduction mammoplasty in patients with a medialized nipple-areola complex: modification of the superomedial dermoglandular pedicle and skin pattern. *Plast Reconstr Surg.* 2013;131:302c–303c.