Case Report

Causes and treatment of hypoxia during total hip arthroplasty in elderly patients: case report

Jae Young Ji*, Jin Hun Chung†, Nan Seol Kim†, Yong Han Seo†, Ho Soon Jung*, Hea Rim Chun†, Hyung Yoon Gong†, Woo Jong Kim†, Jae Min Ahn†, Yu Jun Park†

Abstract

There are several causes of hypoxia during and after surgery, and atelectasis is a common symptom that occurs during surgery. In particular, elderly patients are more vulnerable to hypoxia due to their existing lung diseases or respiratory muscle weakness. This study presents the cases of two elderly patients who developed hypoxia during total hip arthroplasty under general anesthesia. Positive end expiratory pressure, recruitment maneuver, and increased fraction of inspired oxygen improved hypoxia only temporarily, and patients’ oxygen saturation level again dropped to 79%–80%. We suspected that hypoxia was caused by atelectasis and, therefore, resumed spontaneous respiration. Thereafter, both the patients showed an improvement in hypoxia. Intraoperative hypoxia that is suspected to be caused by atelectasis can be improved by securing sufficient lung volume for respiration through increased muscle tone with spontaneous respiration.

Keywords: Atelectasis, Hypoxia, Old age, Spontaneous respiration

1. Introduction

Respiratory functions deteriorate with aging,(1) and general anesthesia, particularly in mechanical ventilation, increases the possibility of respiratory malfunction during surgery, thereby elevating the risk for hypoxia in elderly patients. (2, 3) Atelectasis is one of the many causes of hypoxia that commonly occurs in patients receiving general anesthesia; (4) it is an important condition that must not be overlooked because hypoxia caused by impaired gas exchange due to atelectasis can prolong postoperative pulmonary complications. Here, we report two cases of elderly patients with a sudden
onset of hypoxia during total hip arthroplasty under general anesthesia and describe how their condition improved upon inducing spontaneous respiration and how the surgery could proceed under inhalation anesthesia with spontaneous respiration.

2. Case Presentation

Case 1: The first patient was a 79-year-old female individual with a history of hypertension, heart failure, and middle cerebral artery infarction. Blood pressure control and cardiac function were in good condition before surgery, and no brain neurological complications were currently found. The patient’s pulmonary function test result was normal, although her chest X-ray revealed pneumonia in the right middle lobe, for which she had been treated. The patient underwent total hip arthroplasty under general anesthesia. Before the general anesthesia, the patient was attached to various monitoring devices, including electrocardiography, a noninvasive blood pressure monitor, pulse oximeter, and bispectral index (BIS) monitor. The BIS was maintained at 40–60. Anesthesia was induced with propofol (2 mg/kg) and rocuronium (0.8 mg/kg), and intra-arterial cannulation was performed for continuous blood pressure monitoring. Approximately 20 min into the surgery, the patient’s oxygen (O$_2$) saturation level dropped from 93.1% to 83.1%. While being ventilated at a fraction of inspired oxygen (FiO$_2$) of 0.4, her arterial blood gas showed that the partial pressure of oxygen (PaO$_2$) dropped from 161.6 to 51.2. We increased the positive end expiratory pressure (PEEP) to 10 cm H$_2$O and FiO$_2$ to 1.0 and performed a recruitment maneuver; however, her O$_2$ saturation level increased only temporarily and dropped again to 81%. Upon suspecting atelectasis due to a collapsed lung, we reversed muscle relaxation and induced spontaneous respiration during surgery. Although it was an audacious decision, the O$_2$ saturation level recovered to 90%, and we continued the surgery with spontaneous respiration. After surgery, the patient’s O$_2$ saturation level recovered to the preoperative state of 98%.

Case 2: The second patient was an 89-year-old male individual with a history of hypertension and delirium. Before surgery, his blood pressure was well controlled, and although he was taking dementia medicine, the patient was able to follow commands well. His pulmonary function test results indicated an obstructive pattern. Total hip arthroplasty was performed using the same anesthetic regimen used for the first patient. While ventilating at an FiO$_2$ of 0.4, the patient showed an onset of hypoxia, with O$_2$ saturation level dropping from 100% to 80% and PaO$_2$ dropping from 129 to 53.0. This patient also showed an improvement of O$_2$ saturation level from 81% to 88% after recovering spontaneous respiration by administering a muscle relaxant reverse agent. His O$_2$ saturation level improved to 90% with continuous positive airway pressure. Similar to the first patient, this second patient’s O$_2$ saturation level improved to 98% after surgery.

Neither patient developed any respiratory complications after surgery. The first patient had no notable findings on postoperative chest X-ray, whereas the second patient showed subsegmental atelectasis on the right middle lobe upon postoperative chest X-ray compared with the preoperative findings (Figure 1).

Figure 1. A finding that atelectasis was formed in the right lower lobe(arrow) of the lung after Surgery, which was not in the lung(left) before surgery in the second patient.
3. Discussion

Intraoperative and postoperative causes of hypoxia include old age, obesity, American Society of Anesthesiologists status, and operation duration, and anesthesiologists commonly encounter hypoxia in general anesthesia of elderly patients. (5)

The elastic recoil force and vital capacity of the lungs decrease with age, and chest wall expansion diminishes. Furthermore, weakening of the respiratory muscles increases the risk of hypoxia and other respiratory complications. (2) While mechanical ventilators assist respiration in patients under general anesthesia and those with diminished respiratory functions, mechanical ventilation can trigger volutrauma, atelectrauma, and lung inflammation. (3) Moreover, various factors, such as loss of intercostal muscle function and surgical manipulation during general anesthesia, provoke and exacerbate atelectasis. (6) Lung computed tomography (CT) in the supine position can show normal findings during spontaneous respiration, although atelectasis can be observed under general anesthesia (Figure 2).

Figure 2. (A) A patient’s lungs before anesthesia induction. (B) Atelectasis on the dependen portion of both the lungs after anesthesia induction. Cone-beam CT (CBCT) showing exacerbated atelectasis during the surgery. (7)

It is argued that recovery from atelectasis occurs within 24 h of surgery and that no special preventive measures are required. (8) However, leaving atelectasis untreated may allow hypoxia to persist or to induce pneumonia after surgery; therefore, atelectasis must not be neglected. (9) Atelectasis can induce systemic hypoxia or lung inflammation by causing a collapse of the alveoli (Figure 3). (3, 4) Hypoxia can be resolved by increasing the FiO₂ or tidal volume, monitoring the tube position, and applying PEEP. In addition, shifting from inhalational anesthetics to intravenous anesthetics (propofol) can help improve hypoxia. (10) In our cases, these reported methods for alleviating hypoxia were attempted except for the method of shifting from inhalational anesthetics to propofol, although it was only temporarily improved, and hypoxia recurred. In our study, it was thought that hypoxia occurred due to the occurrence of atelectasis, such as the collapse of pulmonary alveolus due to the decrease in the muscle tone of the patient. Therefore, hypoxia improved when we—rather boldly—reversed muscle relaxation during surgery and maintained spontaneous respiration under inhalation anesthesia.

Figure 3. Diagram of ineffective gas exchange in a left lung due to atelectasis compared with findings in a normal right lung

We suspected that hypoxia improved as the cephalad displacement of the diaphragm caused by muscle relaxation was reversed. This process occurred as the patients’ muscle tone improved through administration of a muscle relaxant reverse agent. (4) which led to inflation of the lungs and a reduction in atelectasis. Thus, conversion to spontaneous breathing may be effective for treating perioperative hypoxia that does not respond to other treatment modalities. The second patient...
showed a further improvement in hypoxia with continuous positive airway pressure (CPAP) along with conversion to spontaneous respiration. CPAP appeared to have facilitated ventilation and gas exchange, presumably by re-expanding the collapsed alveoli.(11) One limitation of this case report is that we cannot definitely confirm that hypoxia was caused by atelectasis, as imaging studies, such as chest X-ray or lung CT, cannot be performed during surgery after a sudden onset of hypoxia. Furthermore, the second patient did not show any abnormal findings after surgery, other than mild atelectasis in the right lower lobe, compared with the patient’s preoperative condition.

However, although we had suspected perioperative pulmonary aspiration due to old age and decubitus position,(5) we were able to rule out hypoxia caused by aspiration based on the lack of secretions in trachea suctioning, crackle sound on auscultation, and aspiration pneumonia findings on postoperative chest X-ray. We also considered the possibility of a bronchospasm, although bronchospasm was ruled out based on the lack of wheezing sound on auscultation (12) and improvement of hypoxia solely through spontaneous breathing, without a bronchodilator.

After conversion to spontaneous respiration, there were no notable movements at the surgical site until conclusion of the surgery. This is presumably attributable to the fact that elderly patients are more sensitive to anesthetics with a 1 Monitored Anesthesia Care(MAC) of 1.48% compared with the 2.49% in children and 1.71%–2.056% in adults.(13) Furthermore, inhalational anesthetics inhibit motor responses to harmful stimuli.(14) However, additional studies on muscle relaxation caused by inhalational anesthetics are needed due to the lack of study data on surgeries that only use inhalational anesthetics without the use of any muscle relaxants.

4. Conclusions

Since atelectasis due to general anesthesia can cause hypoxia during surgery and pulmonary complications after surgery, various measures should be considered to improve hypoxia. If hypoxia is not resolved using the treatment modalities reported previously, resuming spontaneous respiration can be a viable alternative to treat hypoxia.

Author Contributions: Conceptualization, J.Y.J and J.H.C.; methodology, N.S.k.; software, J.Y.J.; validation, Y.H.S.;; investigation, J.Y.J, H.S.;; resources, H.R.C; writing—original draft preparation, J.Y.J.; writing—review and editing, W.J.K, J.M.A.; visualization, H.Y.G.; supervision, J.H.C.; project administration, J.Y.J.; funding acquisition, J.Y.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Soonchunhyang University Research Fund

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board and Human Research Ethics Committee of Soonchunhyang University Cheonan Hospital (IRB No. 2021-09-021).

Informed Consent Statement: Any Written informed consent has been obtained from the patient(s) to publish this paper Data Availability Statement: Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Acknowledgments: This work was supported by the Soonchunhyang University Research Fund

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations: PEEP;Positive end expiratory pressure, CT;Computed Tomography,CPAP;Continuous positive airway pressure, MAC(Monitored Anesthesia Care)
References

1. Roman MA, Rossiter HB, Casaburi R. Exercise, ageing and the lung. Eur Respir J. 2016;48(5):1471-86.
2. Sprung J, Gajic O, Warner DO. Review article: age related alterations in respiratory function - anesthetic considerations. Canadian journal of anaesthesia = Journal canadien d’anesthesie. 2006;53(12):1244-57.
3. Kilpatrick B, Slinger P. Lung protective strategies in anaesthesia. British journal of anaesthesia. 2010;105 Suppl 1:i108-16.
4. Duggan M, Kavanagh BP. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102(4):838-54.
5. Dunham CM, Hileman BM, Hutchinson AE, Chance EA, Huang GS. Perioperative hypoxemia is common with horizontal positioning during general anesthesia and is associated with major adverse outcomes: a retrospective study of consecutive patients. BMC anesthesiology. 2014;14:43.
6. Ray K, Bodenham A, Paramasivam E. Pulmonary atelectasis in anaesthesia and critical care. Continuing Education in Anaesthesia Critical Care & Pain. 2013;14(5):236-45.
7. Pritchett MA, Lau K, Skibo S, Phillips KA, Bhadra K. Anesthesia considerations to reduce motion and a telectasis during advanced guided bronchoscopy. BMC Pulmonary Medicine. 2021;21(1):240.
8. Eichenberger A, Proietti S, Wicky S, Frascarolo P, Suter M, Spahn DR, et al. Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesthesia and analgesia. 2002;95(6):1788-92, table of contents.
9. Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. British journal of anaesthesia. 2003;91(1):61-72.
10. Nandhakumar A, Jayabalan S, Subramaniyan N. Reversible cause of intra operative hypoxia in an aspired patient. Indian J Anaesth. 2015;59(6):382-4.
11. Ahn J-H, Bae E-K, Suh Y-J, Jeon Y, Lee Y, Heo Y-S. Continuous Positive Airway Pressure Therapy Can Prevent Pulmonary Atelectasis after Laparoscopic Roux-en-Y Gastric Bypass Surgery in Obese Patients. Journal of Metabolic and Bariatric Surgery. 2019;8:17.
12. Dewachter P, Mouton-Faiivre C, Emala CW, Beloucif S, Riou B. Case Scenario: Bronchospasm during Anesthetic Induction. Anesthesiology. 2011;114(5):1200-10.
13. Brioni JD, Varughese S, Ahmed R, Bein B. A clinical review of inhalation anesthesia with sevoflurane: from early research to emerging topics. Journal of anesthesia. 2017;31(5):764-78.
14. Honing GHM, Martini CH, Olofsen E, Bevers RFM, Huurman VAL, Alwayn IPJ, et al. Deep neuromuscular block does not improve surgical conditions in patients receiving sevoflurane anaesthesia for laparoscopic renal surgery. British journal of anaesthesia. 2021;126(2):377-85.