Impact of Restricted Maternal Weight Gain on Fetal Growth and Perinatal Morbidity in Obese Women With Type 2 Diabetes

BJÖRG ÁSBJORNSDÓTTIR1,2
SIGNORE S. RASMUSSEN, PHD1,2
LOUISE KELSTRUP, MD1,3
PETER DAMM, DMSc1,3,4
ELISABETH R. MATHIESEN, DMSc1,2,4

OBJECTIVE—Since January 2008, obese women with type 2 diabetes were advised to gain 0–5 kg during pregnancy. The aim with this study was to evaluate fetal growth and perinatal morbidity in relation to gestational weight gain in these women.

RESEARCH DESIGN AND METHODS—A retrospective cohort comprised the records of 58 singleton pregnancies in obese women (BMI ≥30 kg/m²) with type 2 diabetes giving birth between 2008 and 2011. Birth weight was evaluated by SD z score to adjust for gestational age and sex.

RESULTS—Seventeen women (29%) gained ≤5 kg, and the remaining 41 gained >5 kg. The median (range) gestational weight gains were 3.7 kg (–4.7 to 5 kg) and 12.1 kg (5.5–25.5 kg), respectively. Prepregnancy BMI was 33.5 kg/m² (30.6–6.0%), morbidity (35 vs. 71%, P = 0.041), delivery closer to term (268 vs. 262 days, P = 0.037, and median HbA1c was 6.7% at delivery were compared between the two groups. The results revealed that women who gained ≤5 kg had a lower incidence of large-for-gestational-age (LGA) infants and perinatal morbidity (6,11), whereas low maternal gestational weight gain was associated with higher rates of adverse pregnancy outcomes.

CONCLUSIONS—In this pilot study in obese women with type 2 diabetes, maternal gestational weight gain ≤5 kg was associated with a more proportionate birth weight and less perinatal morbidity.

Diabetes Care 36:1102–1106, 2013

REGESTATIONAL DIABETES is associated with various pregnancy complications. The prevalence of large-for-gestational-age (LGA) infants born to women with type 2 diabetes has been reported as ~50% (1,2). Elevated maternal glucose crosses the placental barrier, leading to fetal hyperinsulinemia, which stimulates growth both directly and indirectly (3,4). Maternal hyperglycemia and hypertriglyceridemia are characteristic features of pregnancies complicated by diabetes and are established risk factors for fetal LGA or macrosomia (4,5). Moreover, women with pregestational diabetes are at increased risk of pregnancy-induced hypertension, pre-eclampsia, preterm delivery, and caesarean section, and pregestational diabetes can also lead to neonatal morbidity (6,7). The treatment of pregnant women with type 2 diabetes tends to focus on achieving euglycemia, before, during, and after pregnancy (8).

In pregnant women without diabetes, obesity is associated with complications such as perinatal mortality and LGA/macrosomia, the risk rising with rising prepregnancy BMI (9,10). High maternal weight gain during pregnancy in women without diabetes increases the risk of excessive fetal growth (11), whereas low maternal gestational weight gain is associated with birth of small-for-gestational-age (SGA) infants and preterm birth (9). Obesity management during pregnancy includes recommendations of appropriate weight gain. The U.S. Institute of Medicine (IOM) recommends a total weight gain of 5–9 kg for healthy obese women (12), and Cedergren (13) suggests that obese women should gain <6 kg to reduce the risk of adverse pregnancy outcomes.

Obesity is a common characteristic of pregnant women with type 2 diabetes. To our knowledge, there are no specific recommendations regarding weight gain during pregnancy for this group, and there is little literature on the subject. One study concluded that gestational weight gain in women with type 2 diabetes greater than that recommended by IOM guidelines was associated with higher odds both of infants being LGA and macrosomic and caesarean delivery (14). Based on results from a study in obese women without diabetes (15), since 2008, the procedure in our clinic for pregnant women with diabetes has been to advise obese (BMI ≥30 kg/m²) women with type 2 diabetes to gain 0–5 kg in total during pregnancy in an attempt to minimize the frequency of LGA infants.

Here, we aimed to evaluate fetal growth and perinatal morbidity in relation to gestational weight gain in obese women with type 2 diabetes. Additionally, we investigated whether it seems safe to advise this group of women to gain ≤5 kg regarding maternal health, including diabetes management, and pregnancy outcomes.

RESEARCH DESIGN AND METHODS

Study design and population
Since January 2008, all obese pregnant women with type 2 diabetes attending our
At the woman's prenatal medical problems (TTN) was defined as a need for continuous positive airway pressure for >60 min. Neonatal hypoglycemia was defined as plasma glucose <2.5 mmol/L, measured 2 h after birth. We designed a combined end point, perinatal morbidity, defined as the occurrence of at least one of the following complications: perinatal mortality, major congenital malformation, jaundice, TTN, neonatal hypoglycemia, or admission to neonatal special care unit (NSCU).

Statistical analysis
Continuous variables were reported as median (range) and categorical data with number (%). Differences between the two exposure groups were analyzed with χ^2 test, Fischer exact test, or Mann-Whitney U test when appropriate.

To control for effects of confounding, multiple linear regression analysis was applied using maternal weight gain in pregnancy ≤5 or >5 kg as exposure variable and birth weight z score as outcome variable. Based on theoretical considerations, we included six possible confounders: prepregnancy BMI (kg/m²), smoking (yes vs. no), HbA1c (%) at last visit, Nordic Caucasian (yes vs. no), pre-eclampsia (yes vs. no), and nulliparity (yes vs. no). All tests were two tailed, and a P value of <0.05 was considered statistically significant. Data were analyzed in SPSS Statistics version 19 (SPSS Inc., Chicago, IL).

Ethics
The Danish Data Protection Agency approved the protocol. According to Danish law, the protocol did not need approval from the regional ethics committees as the study was a register study without biological material and medical intervention.

RESULTS—Table 1 shows the basic characteristics of the study population. The median weight gain in the total cohort was 9.2 kg (range −4.7 to 25.5 kg); 17 women (29%) gained ≤5 kg with a median weight gain of 3.7 kg, and 41 (71%) gained >5 kg with a median weight gain of 12.1 kg (Table 2). Women gaining ≤5 kg had a lower median prepregnancy BMI and higher median diastolic blood pressure at first visit compared with...
Maternal weight gain and fetal growth

Table 1—Maternal characteristics at first visit

Weight gain ≤5 kg	Weight gain >5 kg	P valuea	
n (%)			
Maternal age (years)	17 (29)	41 (71)	0.199
Nordic Caucasians	35 (23–44)	34 (20–45)	0.433
Duration of type 2 diabetes (years)	6 (35)	14 (34)	0.934
Prepregnancy BMI (kg/m²)	3 (0.25–10)	3 (0.5–10)	0.648
Smokers	3 (18)	5 (12)	0.587
Prepregnancy weight (kg)	95 (72–156)	106 (76–140)	0.055
Prepregnancy BMI (kg/m²)	33.5 (30–52.7)	36.8 (30–48.2)	0.037
Diabetic retinopathy	4 (24)	8 (20)	0.733
Diabetic nephropathy	0	1 (2)	0.527
Gestational age at booking (days)	86 (53–144)	69 (36–144)	0.074
Systolic blood pressure (mmHg)	129 (112–165)	124 (88–178)	0.235
Diastolic blood pressure (mmHg)	83 (70–95)	75 (55–98)	0.036

Data shown as n (%) or median (range).aMann-Whitney U test, χ², or Fisher exact test as appropriate.

Table 2—Maternal HbA₁c, urine ketone bodies, weight gain, and insulin treatment during pregnancy

Weight gain ≤5 kg	Weight gain >5 kg	P valuea	
n (%)			
HbA₁c			
At first visit (%)	6.7 (5.1–8.1)	6.7 (5.3–13.2)	0.365
At 22 weeks (%)	5.7 (5.1–6.6)	5.6 (4.6–7.7)	0.537
At last visit (%)	5.7 (5.4–6.6)	6 (4.6–8.2)	0.620
Ketone bodies detected			
At first visit	0	2 (5)	1.000
At 22 weeks	0	0	
At last visit	0	0	
Weight changes			
Total weight gain (kg)b	3.7 (−4.7 to 5)	12.1 (5.5–25.5)	<0.001
Total weight gain/week (g)b	97 (−123 to 132)	320 (150–687)	<0.001
Weight gain/week in first half of pregnancy (g)	20 (−317 to 210)	175 (−147 to 605)	0.001
Weight gain/week in second half of pregnancy (g)	147 (−57 to 587)	506 (96–1,316)	<0.001
Insulin			
Treatment before first visit	5 (29)	11 (27)	0.841
Treatment after first visit	12 (71)	35 (85)	0.191
Treatment at last visit	17 (100)	38 (93)	0.256
Dose at last visit (IU/kg)	0.72 (0.12–1.80)	1.29 (0.50–2.75)	0.003

Data shown as n (%) or median (range).aMann-Whitney U test, χ², or Fisher exact test as appropriate. bFrom self-reported prepregnancy weight to last weight measured.

A gestational weight gain of ≤5 kg was significantly associated with a more proportionate birth weight, with lower median birth weight z score (−0.44 [range −3.31 to 1.98] vs. 0.84 [−2.32 to 4.02], P = 0.008) as well as a lower rate of LGA infants (P = 0.041) compared with those gaining >5 kg during pregnancy (Table 3). The prevalence of SGA infants was comparable. Women gaining <5 kg delivered closer to term (P = 0.039) and had infants with less perinatal morbidity compared with the remaining women (P = 0.024) (Table 3).

In the multiple linear regression analysis, a gestational weight gain of ≤5 kg was significantly associated with a lower birth weight z score when adjusted for prepregnancy BMI, smoking, HbA₁c at last visit, ethnicity, preeclampsia, and nulliparity, (β = −0.978 [95% CI −1.831 to −0.126], P = 0.025), corresponding to a one SD lower birth weight.

Two infants had a major congenital malformation: one with a curved femur, requiring surgery (>5–kg group), and one with cardiac and renal malformations leading to stillbirth (≤5–kg group). In addition, one LGA infant (>5–kg group) died shortly after birth due to severe shoulder dystocia (Table 3).

CONCLUSIONS—In this retrospective cohort study evaluating how the medical advice regarding restricting maternal weight gain to 0–5 kg during pregnancy in obese women with type 2 diabetes affects fetal growth and perinatal morbidity in an unselected cohort of patients, we found that those who gained 5 kg or less had infants with a more proportionate birth weight, represented by a smaller z score, a lower proportion of LGA infants, and a marginally lower ponderal index. Further, we found that perinatal morbidity was lower and the prevalence of SGA unchanged in offspring of women who gained 5 kg or less during pregnancy.

We believe this is a novel study. Its strengths stem from the exclusion of women with concurrent diseases and all relevant pregnancy data having been recorded and therefore being easy to collect retrospectively. The cases of malformation and perinatal mortality were reviewed. Potentially positive effects of weight restriction as well as potentially negative effects were considered. At their first pregnancy visit, all women received education about the increased risk of complications in pregnancies with diabetes and were motivated toward a healthy lifestyle. At their subsequent routine visits, they received tailored advice on diet adjustments. This approach was pragmatic and feasible for an everyday clinical setting. We are not aware of publications on more intensive intervention strategies in obese pregnant women with type 2 diabetes or of randomized controlled studies.
Table 3—Pregnancy-related outcomes

Weight gain ≤ 5 kg	Weight gain > 5 kg	P valuea
n (%)	17 (29)	41 (71)
Pre-eclampsia	0	4 (10)
Gestational age at delivery (days)	268 (221–284)	262 (206–280)
Preterm delivery	2 (12)	11 (27)
Emergency caesarean section	1 (6)	11 (27)
Elective caesarean section	6 (35)	14 (34)
Female offspring	9 (53)	17 (41)
Birth weight (g)	3,134 (1,278–3,870)	3,364 (1,070–4,432)
Birth weight z score (SD)	−0.44 (−3.31 to 1.98)	0.84 (−2.32 to 4.02)
LGA (> 90th percentile)	2 (12)	16 (39)
SGA (< 10th percentile)	3 (18)	4 (10)
Ponderal index (kg/m²)	23.9 (20.4–29.2)	25.8 (20.1–30.1)
Macrosomia (birth weight > 4,000 g)	0	8 (20)
Perinatal morbidityb	6 (35)	29 (71)
Perinatal mortality	1 (6)	1 (2)
Major congenital malformations	1 (6)	1 (2)
Jaundicec	0	8 (20)
TTNc	2 (13)	6 (15)
Neonatal hypoglycemiac	3 (19)	20 (51)
Admission to NSCUc	3 (19)	14 (34)

Data shown as n (%) or median (range). aMann-Whitney U test, χ² test, or Fisher exact test as appropriate.
bMorbidity was defined as the occurrence of at least one of the following complications: perinatal mortality, malformation, jaundice, TTN, neonatal hypoglycemia, or admission to NSCU. cOnly living infants included (n = 16 and n = 40).

Weight loss, fasting, or poorly controlled diabetes can cause ketonemia and/or ketonuria (12,17). The presence of ketonemia in pregnant women has been associated with lower cerebral function in the offspring (12). Therefore, it is encouraging that the prevalence of women with morning ketonuria was very low and comparable in the two groups. This is in accordance with the finding that a 33% reduction in caloric intake was not associated with an increase in ketonuria in women with gestational diabetes mellitus (18). It would have added to our study if the women had tested for ketonuria at home or if we had checked for ketonemia at clinical visits; nevertheless, few of the routine clinical urine tests were positive.

Our findings are in accordance with a large register study (14) including 2,310 overweight and obese women with type 2 diabetes, which found that overweight and obese women with type 2 diabetes who gained >9 kg in total during pregnancy were at increased risk of having macromom or LGA infants. In the same study (14), 4.2% of the women who gained <5 kg during pregnancy had intrauterine fetal demises, but the specific causes were not given, and women with concurrent diseases were not excluded. In our study, only one stillbirth occurred, arising from multiple fetal anomalies. Although this is reassuring, due to the relatively low number of women included, our findings on rare outcomes have limited statistical power.

Since weight gain in early pregnancy is related to fat deposition (19), it is relevant to note that the weight gain in our patients was seen mainly in the second half of pregnancy. From our study, we cannot conclude which level of weight gain should be recommended for obese women with type 2 diabetes, but our data point toward a negligible gain in the first half of pregnancy and a gain of about 150 g per week in the second.

The prevalence of LGA infants is comparable to that in other studies (20). Lower gestational weight gain in women with the highest pregestational BMI, as previously found in obese women without diabetes (15), was not present in our material, where women who gained ≤5 kg were less obese before their current pregnancy than those who gained more. However, it is important to note that the significant association between maternal weight gain and fetal z score was independent of prepregnancy BMI in our study.

At our clinic, we discontinue all oral antidiabetic drugs at first visit because of their potentially harmful fetal effects. Women who gained 5 kg or less obtained excellent glycemic control by receiving almost half the insulin doses per kilogram needed in the remaining women. It is well known that insulin sensitivity increases during weight loss and that additional weight gain of adipose tissue often induces more severe insulin resistance. However, the women in our study who gained >5 kg during pregnancy were already more obese at pregnancy onset than the group gaining ≤5 kg, which might explain part of the difference in exogenous insulin requirement. Moreover, the group gaining ≤5 kg might have been more compliant, with a higher level of exercise, a more restricted diet, and more frequent self-monitoring of blood glucose, thereby better adapting their insulin doses. One study showed that women with gestational diabetes mellitus and low gestational weight gain were more likely to remain on diet control; however, they were also more likely to have a higher prevalence of SGA neonates (21). We did not find an increased rate of SGA infants among women gaining ≤5 kg, and all these women received insulin treatment.

We used self-reported weight before pregnancy to calculate the total gestational weight gain, and therefore there is a risk of recall bias. We did not use body weight measured at the first clinic visit because the women attended the clinic at different times in their pregnancy, i.e., between 6 and 22 gestational weeks. Another possible bias arises from the women who delivered preterm being included in the study (n = 13); obviously, these women had a shorter pregnancy in which to gain weight than those who delivered at term. However, because there were only two women who delivered preterm in the group who gained ≤5 kg, we do not consider the bias crucial for the outcome of this study.

This study is limited by its retrospective nature and small sample size, giving it a character of a pilot study. We included all eligible patients in our clinic and did not perform sample size calculations before commencing the study. Moreover, the descriptive nature of our study cannot give firm conclusions, but it can provide a basis for hypotheses and new studies. As far as we are aware, no dietary intervention studies targeting weight-gain restriction have been performed in obese pregnant women with type 2 diabetes; accordingly, randomized clinical trials are needed to evaluate the effect of weight-gain restriction in this population.
Maternal weight gain and fetal growth

In conclusion, we found that in obese women with type 2 diabetes, maternal gestational weight gain ≤5 kg was associated with a more proportionate birth weight and less perinatal morbidity without increased risk of SGA infants. Our data suggest that it is seemingly safe to advise obese women with type 2 diabetes to gain ≤5 kg during pregnancy.

Acknowledgments—No potential conflicts of interest relevant to this article were reported.

B.A. researched data, wrote the manuscript, and contributed to discussions. S.S.R. and P.D. contributed to discussions and reviewed and edited the manuscript. E.R.M. contributed to the idea, researched data, contributed to discussions, and reviewed and edited the manuscript. E.R.M. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

This study was presented as a poster at the 72nd Scientific Sessions of the American Diabetes Association, Philadelphia, Pennsylvania, 8–12 June 2012.

References
1. Clausen TD, Mathiesen E, Ekborn P, Hellmuth E, Mandrup-Poulsen T, Damm P. Poor pregnancy outcome in women with type 2 diabetes. Diabetes Care 2005;28:323–328
2. Roland JM, Murphy HR, Ball V, Northcote-Wright J, Temple RC. The pregnancies of women with type 2 diabetes: poor outcomes but opportunities for improvement. Diabet Med 2005;22:1774–1777
3. Fowden AL. Endocrine regulation of fetal growth. Reprod Fertil Dev 1995;7:351–363
4. Pedersen J. Weight and length at birth of infants of diabetic mothers. Acta Endocrinol (Copenh) 1954;14:330–342
5. Schafer-Graf UM, Graf K, Kulbacka I, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care 2008;31:1858–1863
6. Practice Bulletin ACOG; ACOG Committee on Practice Bulletins. ACOG Practice Bulletin. Clinical Management Guidelines for Obstetrician-Gynecologists. Number 60, March 2003: Gestational diabetes mellitus. Obstet Gynecol 2003;103:675–685
7. Ray JG, Vermeulen MJ, Shapiro JL, Kershole AB; Diabetes Endocrine Pregnancy Outcome Study in Toronto. Maternal and neonatal outcomes in pregestational and gestational diabetes mellitus, and the influence of maternal obesity and weight gain: the DEPOSIT study. QJM 2001;94:347–356
8. Hone J, Jovanovic L. Approach to the patient with diabetes during pregnancy. J Clin Endocrinol Metab 2010;95:3578–3585
9. Nohr EA, Vaeth M, Baker JL, Sørensen Tl, Olsen J, Rasmussen KM. Combined associations of prepregnancy body mass index and gestational weight gain with the outcome of pregnancy. Am J Clin Nutr 2008;87:1750–1759
10. Yu CK, Teoh TG, Robinson S. Obesity in pregnancy. BJOG 2006;113:1117–1125
11. Dietz PM, Callaghan WM, Sharma AJ. High pregnancy weight gain and risk of excessive fetal growth. Am J Obstet Gynecol 2009;201:51–56, e1–e6
12. Rasmussen KM, Yaktine AL. Weight gain during pregnancy: reexamining the guidelines. [article online], 2009. Available from http://www.nap.edu/catalog.php?record_id=12384. Accessed 29 April 2012
13. Cedergren MI. Optimal gestational weight gain for body mass index categories. Obstet Gynecol 2007;110:759–764
14. Yee LM, Cheng YW, Inturrissi M, Caughey AB. Effect of gestational weight gain on perinatal outcomes in women with type 2 diabetes mellitus using the 2009 Institute of Medicine guidelines. Am J Obstet Gynecol 2011;205:257.e1–e6
15. Jensen DM, Ovesen P, Beck-Nielsen H, et al. Gestational weight gain and pregnancy outcomes in 481 obese glucose-tolerant women. Diabetes Care 2005;28:2118–2122
16. Marsal K, Persson PH, Larsen T, Lilja H, Selinga A, Sultan B. Intrauterine growth curves based on ultrasonically estimated foetal weights. Acta Paediatr 1996;85:843–848
17. Coetzee EJ, Jackson WP, Berman PA. Ketonuria in pregnancy—with special reference to calorie-restricted food intake in obese diabetics. Diabetes 1980;29:177–181
18. Knopp RH, Magee MS, Raisys V, Benedetti T, Bonet B. Hypocaloric diets and ketogenesis in the management of obese gestational diabetic women. J Am Coll Nutr 1991;10:649–667
19. Ehrenberg HM, Huston-Presley L, Catalano PM. The influence of obesity and gestational diabetes mellitus on accretion and the distribution of adipose tissue in pregnancy. Am J Obstet Gynecol 2003;189:944–948
20. Murphy HR, Steel SA, Roland JM, et al.; East Anglia Study Group for Improving Pregnancy Outcomes in Women with Diabetes (EASIPOD). Obstetric and perinatal outcomes in pregnancies complicated by type 1 and type 2 diabetes: influences of glycaemic control, obesity and social disadvantage. Diabet Med 2011;28:1060–1067
21. Cheng YW, Chung JH, Kurbrisch-Block I, Inturrissi M, Shafer S, Caughey AB. Gestational weight gain and gestational diabetes mellitus: perinatal outcomes. Obstet Gynecol 2008;112:1013–1022