Chromosome characterization and physical mapping of 18S rDNA in *Lilium longiflorum* originated interspecific hybrids using combined genomic and fluorescent in situ hybridization

Md. Mazharul Islam · Hyemin Lee · Deen Mohammad Deepo · Reshma Yesmin · Fahad Ramzan · Hong-Yul Kim · Ki-Byung Lim

Received: 25 September 2021 / Accepted: 30 June 2022 / Published online: 29 August 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract This study was aimed to differentiate parental genomes, examining intergenicomic composition, and mapping mitotic metaphase chromosomes by localizing parental and 18S rDNA probes in seven interspecific hybrid progenies that originated from *Lilium longiflorum*. Since single method of in situ hybridization has been widely used in interspecific lily breeding, while in this study, flow cytometry was used in conjunction with genomic and fluorescent in situ hybridization to determine the genomic contribution of each parent to the interspecific progenies. A significant variation was observed in the DNA content, chromosome length, and 18S loci in F1 as compared to the female and male parents. *L. longiflorum* showed nearly two times higher DNA content than the male parents and *L. longiflorum* × Asiatic progenies, but eight times higher than *L. longiflorum* × *L. hansonii*. Genomic in situ hybridization results revealed that both female and male parents contributed an equal number of chromosomes to their interspecific F1 offspring. Fluorescent in situ hybridization mapping revealed that 18S rDNA had 8, 6 and 7 loci in *L. longiflorum* parents, i.e., White heaven, Bright tower, and White tower, respectively, whereas each Asiatic cultivar and *L. hansonii* used as male showed 8 and 12 loci respectively. Interspecific progenies showed 8 and 7 loci in LA, and 10–11 in LM hybrids. These cytogenetic results implied equal genetic and chromosomal contribution from both parents to their intergenicomic progenies. Therefore, this combined cytogenetic method has the potential to be genome specific and time-saving approach in lily breeding that could determine the status of hybrids and their genomic origin while achieving physical mapping and detecting genes in different genomes.

Keywords Metaphase · Chromosome · *Lilium hansonii* · Genetic loci · rDNA probes · Flow cytometry

Introduction

As a highly demanding cut flower, lily belongs to the genus *Lilium*, comprising over 100 species with more than 8000 registered cultivars (Zhou et al. 2008a, b; van Tuyl and Arens 2010; Naing et al. 2014). *Lilium longiflorum* (L-genome), Asiatic (A-genome), and Oriental (O-genome) hybrids are considered to be the three primary hybrid groups, belonging to the sections Leucolirion, Simomartagon, and Archelirion, respectively (Barba-Gonzalez et al. 2005; Mazharul...
et al. 2019). *Lilium longiflorum* Thunb. (2n = 2x = 24) is an important species involved in modern breeding programs, which has white, funnel-shaped flowers with a distinctive fragrance, low temperature tolerance, and a non-tunicate bulb but susceptible to the virus (Karlov et al. 1999; Lim et al. 2008). Asiatic lilies are widely used in breeding owing to their upright-facing, early to late blooming, and vigorous and long-living flowers with a wide range of colors and their resistance against *Fusarium oxysporum* and viruses (Merhaut and Newman 2005; Lim et al. 2008). *L. hansonii*, belonging to the Martagon section, is a dwarf native species of the Korean Peninsula, growing under shady deciduous trees. It has 3–4 layers of whorled leaves and 8–10 pendulous flowers with yellow petals and numerous spots that have a long vase life (Lim 2014; Ahn et al. 2017; Kumari et al. 2018). However, weak growth and virus susceptibility of *L. hansonii* is causing a decline in the number of cultivated plants every year. At present, there is no reported an interspecific lily hybrid originating from *L. hansonii*. LA (*L. longiflorum* × Asiatic) hybrids play an important role in commercial breeding as they introduce various flower colors, sizes, shapes, and distinct fragrances (Lim et al. 2008; Lucidos et al. 2013; Tang et al. 2020), and in some cases, resistance to *Fusarium* and other viruses (Liu et al. 2008). Therefore, interspecific hybridization among *L. longiflorum*, Asiatic, and *L. hansonii* may contribute to the creation of modern cultivars with desirable horticultural traits such as dwarfness and 6–8 medium-sized flowers with colorful petals, which could meet market demand.

In a majority of the crops, interspecific hybridization is one of the most essential methods for creating novel hybrids and improving desired features. In a taxonomic section, it is quite simple method to induce novel hybrids through normal pollination. Due to pre- and post-fertilization barriers, it is difficult to achieve interspecific hybrids. Moreover, poor pollen tube growth caused by stigmatic incompatibility is the first barriers, where incompatible pollen grains are unable to digest specific compounds in the stigma, depleting the stigma’s own stores and resulting in poor growth. The second obstacle is seeds lacking endosperm cause the embryos to abort in the early stages of the development. Various techniques have been developed to overcome pre-fertilization barriers, such as cut-style pollination, grafted style method, intra-styellar pollination, mentor pollen, and in vitro pollination (Van Tuyl et al. 1997). Interspecific crossing between *L. longiflorum* and Asiatic hybrids most often result in sterile *F*₁ progenies due to failure of chromosome pairing during meiosis (Van Tuyl et al. 1997; Karlov et al. 1999). For efficient breeding, *2n* gametes can be used, which play an important role in transferring desired parental genes to the *F*₁ and chromosome recombination during meiosis (Schwarzacher et al. 1992; Karlov et al. 1999).

Fluorescent in situ hybridization (FISH) is an advanced technique used to detect DNA sequences and allele copy numbers in different positions on chromosomes (Ramzan et al. 2017; Jo et al. 2019; Islam et al. 2020). Analysis of nuclear organizing regions can be achievable using FISH technique (Fujiwara et al. 2007; Hwang et al. 2011). However, genomic in situ hybridization (GISH) is the most useful technique to differentiate whole parental genomes (Schwarzacher et al. 1992; Karlov et al. 1999; Chester et al. 2010; Van Laere et al. 2010; Silva and Souza 2013; Ramzan et al. 2017), alien chromosome segments, genome association in allopolyploids, and intergenomic recombination (Karlov et al. 1999; Nakazawa et al. 2011; Silva and Souza 2013; Ramzan et al. 2016). Both FISH and GISH are usually employed separately in *Lilium* breeding, which represents an expensive and time-consuming approach. Moreover, whole parental genomes and particular nucleic acid sequences cannot be both identified by using either FISH or GISH alone, and no combined GISH–FISH protocol has been published yet on lilies. Therefore, the purpose of this study was to introduce novel interspecific lily hybrids having parental attributes and to investigate status of hybrids, origin of genomes, chromosomal abnormalities, and chromosomal recombination in interspecific *L. longiflorum* × Asiatic, and *L. longiflorum* × *L. hansonii* hybrid progenies through combined GISH and FISH.

Materials and methods

Plant material

Three *L. longiflorum* cultivars (L-genome), three Asiatic (A), and two *L. hansonii* (M) were used for interspecific hybridization experiments to produce *F*₁ progenies. *L. longiflorum* cultivars “White heaven”,
“Bright tower”, and “White tower” and Asiatic cultivars “Conception”, “Gironde”, and “Sky shim 2” were collected from a local commercial company. Whereas, highly genetically diversified L. hansonii was collected from various locations of Ulleungdo Island, Republic of Korea and cultivated in the greenhouse condition. All the bulbs were diploid \((2n = 2x = 24)\) and were grown in a greenhouse at Kyungpook National University, Republic of Korea. The greenhouse temperature was maintained at 14–18 °C during the night and 20–25 °C during the daytime. The most healthy, ready to open L. longiflorum as female flower and newly opened mature male pollen were selected for the interspecific breeding. A detailed breeding scheme is shown in Table 1. As L. longiflorum, Asiatic, and Martagon lilies belong to different taxonomical sections, interspecific hybridization was performed through the CSM (Lim et al. 2005) to avoid any fertilization barrier as well as to protect the hybridized ovary from any undesired pollen entry. A brief diagram of CSM breeding in lily has been shown in Fig. 1.

Flow cytometry analysis

Genome sizes and ploidy levels were determined by flow cytometry. For the analysis, 0.5 cm\(^2\) fresh leaf tissue was placed in a petri dish (SPL 10060) and chopped with 500 μL Nuclei Extraction Buffer (CyStain UV Precise P, Sysmex) using a sharp blade. The extraction buffer, containing exposed nuclei, was filtered through a 30 μm-nylon mesh filter into a 3 ml-tube and stained in a staining buffer (CyStain UV Precise P, Sysmex). After a short incubation of 30 s, nuclear suspensions were analyzed using a flow cytometer (Partec PA, Ploidy Analyzer, Germany). Mean DAPI fluorescence of the target samples was compared with an internal standard, Oriental-Trumpet “Yelloween” (Ramzan et al. 2016; Kwon et al. 2017). Genome size (2C) was calculated based on the ratio of relative DAPI fluorescence of a sample to that of the internal standard. The calculation procedure was as follows: DNA content of the standard \(×\) (mean of relative DAPI fluorescence of a sample/mean of relative DAPI fluorescence of the standard) (Hembree et al. 2020).

Chromosome observation

Young, actively growing root tips were collected from interspecific F\(_1\) hybrids. To ensure the presence of metaphase chromosomes, root tips were pretreated with α-bromonapthalene for 4 h at 20 °C, followed by fixation in 3:1 (v/v) solution of 100% ethanol: glacial acetic acid for 24 h at room temperature (25 °C). The fixed root tips were stored in 70% ethanol at −20 °C until use (Takahashi et al. 1997; Kwon et al. 2017). For slide preparation, root tips were rinsed 2–3 times in distilled water, incubated in a pectolytic enzyme mixture containing 0.2% (w/v) cellulase RS, 0.2% (w/v) pectolyase Y23, and 0.2% (w/v) cytohelicase in 10 mM citrate buffer (pH 4.3) at 37 °C for 70 min. Dissection and squashing of macerated root tips were made in a drop of 70% acetic acid that was subsequently air-dried. Finally, well-spread chromosomes were identified using a fluorescent microscope (BX61, Japan).

Crossed code	Cross combined	Female	Male	Crossing method	No. of crossed flower		
		Cultivar name	Genome	Cultivar name	Genome		
113521	LL×AA	White heaven	LL	Conception	AA	CSM	32
132025	LL×AA	Bright tower	LL	Gironde	AA	CSM	41
143024	LL×AA	White tower	LL	Sky Shim 2	AA	CSM	23
128115-7	LL×MM	White tower	LL	L. hansonii	MM	CSM	31
128130-5	LL×MM	White tower	LL	L. hansonii	MM	CSM	52
128133-8	LL×MM	White tower	LL	L. hansonii	MM	CSM	18

Table 1 The interspecific cross combinations between L. longiflorum×Asiatic hybrid and L. longiflorum×L. hansonii used in this study
GISH–FISH analysis

DNA isolation and preparation

For GISH, non-shared parental genomic DNA was isolated from *L. longiflorum* “Woori tower” using the CTAB method with some modifications. DNA concentration was measured by NanoDrop 2000 (Thermo Fisher Scientific) using 1 µL per sample, and three measurements were performed for each sample. The isolated parental genomic DNA was used as a probe and was labeled with digoxigenin-11-dUTP using a standard nick translation kit according to the manufacturer’s instructions (Roche Diagnostics GmbH, Germany). Labeled genomic DNA was used in a volume of 20 µL, including 1300 ng genomic DNA, 4 µL DIG-Nick translate, and extra distilled water. For FISH, a 18S rDNA probe was directly labeled with biotin-16-dUTP by nick translation in accordance with the manufacturer’s protocol (Roche, Germany). The blocking DNA was obtained from herring sperm (Invitrogen, USA) that was fragmented into 100–300 bp fragments and subsequently autoclaved.

Combined genomic-fluorescence in situ hybridization

The combined GISH–FISH hybridization procedure can be divided into three parts: chromosome pretreatment, combined hybridization, and probe detection (Fig. 1). The selected slides were treated with 100 µg/ml RNase for one hour at 37 °C, washed three times with 2 × SSC for 5 min each, and fixed for 10 min with 4% paraformaldehyde. Again, the slides were washed thrice with 2 × SSC for 5 min each time, dehydrated with a 70%, 90%, and 99.9% ethanol series for 3 min each, and air-dried. Hybridization was performed in a mixture containing 50% (v/v) deionized formamide, 20 × SSC buffer, 10% (w/v) sodium dextran sulfate (SDS), 50% dextran sulfate (DS), 5 ng/µl *L. longiflorum* “Woori tower” genomic DNA, 20 µg/ml each of the 18S rDNA probes, and 30–45 ng/µl blocking DNA. DNA was denatured by heating of

Fig. 1 Interspecific hybridization using Cut Style Method in lily breeding. **A** Pre-bloomed mature virgin flower bud, **B** Removal of petals and the filaments below ovary-style junction, **C** Style cutting with 45° angle above 0.5 cm from the ovary, **D** Pollination with desired pollen, **E** Covered with aluminum foil to prevent contamination of other pollen, and **F** Embryos rescue from mature pods are placed on the medium at 45–50 DAP, respectively.
the hybridization mixture at 74 °C for 10 min, followed by incubation in an ice jar for 15 min. For each slide, 40 µl of hybridization solution was used, and the slides were denatured at 82 °C for 5 min, followed by an overnight incubation in a humidified chamber at 37 °C. After hybridization, the slides were washed with 2× SSC buffer for 5 min at room temperature and subsequently washed with 0.1× SSC buffer in a shaking jar at 42 °C for 30 min. Digoxigenin-labeled probes were detected with antidigoxigenin fluorescein (Roche Diagnostics GmbH, Germany) and amplified with fluorescein anti-sheep and fluorescein antirabbit (Vector Laboratories). Similarly, biotin-labeled probes were detected using streptavidin-labeled Cy3 and amplified with biotinylated goat anti-streptavidin (Amersham Biosciences, UK). Finally, the treated slides, containing chromosomes, were counterstained with 3 mg/ml 4, 6-diamidino-2-phenylindole (DAPI) in Vectashield mounting medium (Vector Laboratory Inc., USA). Different methods, such as nick translation, random-primed labeling, and polymerase chain reaction, were used to label the probe during marker labeling. Various methods, such as autoclav- ing, shearing the DNA with a tiny needle in a syringe, or sonication, are used to prepare blocking DNA. Chromosome slide preparation included selection of well-spread chromosomes prepared from a young root tip using an enzyme mixture at 37 °C. Slide pretreatment was comprised of enzymatic digestion of chromosomes in order to unmask DNA prior to hybridization. Hybridization involved attachment of both blocking and probe/genomic markers with chromosomes to identify the specific loci/origin of the genome of the respective chromosome. During detection, attachment of the designed antibody against the target marker along with blocking buffer was performed to detect the specific fluorochrome.

Results

Ploidy and DNA content analysis

Ploidy levels and genome size of female L. longiflorum cultivars, male Asiatic cultivars, L. hansonii and their F1 progenies were assessed by flow cytometry and estimated by the comparison to the control “Yelloween” (Table 2). Genome size of F1 progenies varied from 51.6 to 59.9 pg, which was similar to the male parents, i.e., 48.9–55.4 pg, but lower than that of the female plants, i.e., 68.9–70.1 pg (Fig. 2).

Table 2 Ploidy and putative 2C genome size in female plants and F1 progenies

Plant type	Plant material/code	Genome	Mean 2C genome size (pg)	Estimated ploidy (x)	
Female	Control (Yelloween)	OT	50.4 ± 0.3	60.2 ± 0.2	2n = 2x = 24
	White heaven	LL	55.9 ± 0.6	69.4 ± 0.6	2n = 2x = 24
	Bright tower	LL	53.9 ± 1.0	70.1 ± 0.4	2n = 2x = 24
	White tower	LL	51.4 ± 1.1	68.9 ± 1.0	2n = 2x = 24
	Conception	AA	51.1 ± 0.4	53.7 ± 0.9	2n = 2x = 24
	Gironde	AA	49.6 ± 0.2	55.4 ± 1.0	2n = 2x = 24
Male	Sky Shim 2	AA	50.1 ± 0.0	52.6 ± 0.9	2n = 2x = 24
L. hansonii (111114)	MM	50.3 ± 0.8	49.2 ± 1.6	2n = 2x = 24	
L. hansonii (121038-1)	MM	50.0 ± 0.5	48.9 ± 0.8	2n = 2x = 24	
F1	113521	LA	51.0 ± 0.3	57.1 ± 0.4	2n = 2x = 24
	132025	LA	52.1 ± 0.2	59.9 ± 0.7	2n = 2x = 24
	143024	LA	55.8 ± 0.1	56.1 ± 1.0	2n = 2x = 24
	128115-7	LM	54.6 ± 0.0	52.2 ± 0.1	2n = 2x = 24
	128130-5	LM	51.3 ± 0.1	51.9 ± 0.0	2n = 2x = 24
	128133-8	LM	48.4 ± 0.2	51.6 ± 0.3	2n = 2x = 24

 means ± standard error.

1 L. longiflorum ‘White heaven’ × Asiatic lily ‘Conception’, 132025: L. longiflorum ‘Bright tower’ × Asiatic lily ‘Gironde’, 143024: L. longiflorum ‘White tower’ × Asiatic lily ‘Sky Shim 2’, 128115-7: L. longiflorum ‘White tower’ × L. hansonii (111114), 128130-5: L. longiflorum ‘White tower’ × L. hansonii (111114), 128133-8: L. longiflorum ‘White tower’ × L. hansonii (121038-1)
FISH analysis of interspecific progenies with 18S rDNA probes

FISH results of three female lilies, i.e., ‘White heaven’, and ‘Bright tower’, ‘White tower’, five male lilies, i.e., ‘Conception’, ‘Gironde’, ‘Sky Shim 2’, G. L. hansonii (111114), H. L. hansonii (121,038-1), and their interspecific progenies I: 113521, J 132025, K 143024, L 128115-7, M 128130-5, N 128133-8. Red arrows indicate the ‘50’ peak position meaning diploid lily. (Color figure online)

Genomic composition of interspecific progenies

A minimum of 18 individual progenies of each cross combination were examined using GISH, as shown in Table 4, and representative images are illustrated in Fig. 7. According to the GISH results, all the seven interspecific progenies showed true hybridity and possessed three different genomes, namely, Longiflorum (L), Asiatic (A), and Hansonii (M), which have been clearly distinguished on the respective chromosomes. An equal number of 24 chromosomes in each individual, representing seven interspecific hybrids, was observed without any break points and recombination (Table 4). Since L. longiflorum was used as a female genomic DNA probe, 12 chromosomes of Longiflorum (113521, 132025, 143024, 128115-7, 128130-5, and 128133-8) and 12 chromosomes of Asiatic (113521, 132025, and 143024), and Hansonii (128115-7, 128130-5, and 128133-8) were characterized (Fig. 7 and Table 4).

However, due to the higher genetic diversity of L. hansonii, the number of 18S rDNA loci increased in F1 hybrid progenies. In LL × AA-crossed progenies (113521, 132025), among the detected 18 rDNA loci, four were detected on the long arm (one locus from a female and three loci from a male) and four loci on the short arm (two loci from a female and two from a male). The remaining LL × AA hybrid (143024) showed seven 18S loci, including four on the long arm (one locus from a female and three loci from a male) and three loci on the short arm (two loci from a male and one locus from a male).

The number of 18S rDNA loci was higher in LL × MM progenies (128115-7, 128130-5, and 128133-8). Out of the 11 detected loci (128115-7), 7 were located on the long arm (1 locus from a female and 6 loci from a male) and 4 on the short arm (2 loci equally from a female and male). 128130-5 and 128133-8 progenies showed 10 and 11 18S rDNA loci, including 6 and 7 found on the long arm and 4 loci each on the short arm (2 loci each from female and male), respectively. Among the six interspecific progenies, all 18S rDNA loci were detected on the chromosome pairs 3, 4, and 7, except for 132025 (LL × AA) hybrids (Fig. 8).

Karyotype analysis of the female, male parents and interspecific progenies

Diploid L. longiflorum, ‘White heaven’, ‘Bright tower’, and ‘White tower’ as female parents, ‘Conception’, ‘Gironde’, ‘Sky Shim 2’, L. hansonii (111114, 121038-1) used as male parents showed 24 chromosomes each. The longest and shortest chromosome of female parental lilies ranged from
17.19 to 18.83 µm and 9.07–11.18 µm (Table 5), while it was 10.71–17.23 µm and 8.71–10.53 µm in male parents, respectively. Total length of all chromosomes in female and male parents were 259.90–281.94 µm and 211.54–245.89 µm, respectively. However, among the six interspecific hybrid progenies, number of chromosomes and their karyotype varied. Moreover, number of metacentric, sub-metacentric, and telocentric chromosomes also varied among them. The highest number of sub-metacentric chromosomes was scored among the female, male parents and their F$_1$ progenies. Among F$_1$ progenies, the longest and the shortest arm ranged from 15.27 to 19.33 µm and 7.59–11.10 µm, respectively, and total length of all chromosomes was 229.20–271.58 µm.

Fig. 3 Fluorescence in situ hybridization analysis using 18S rDNA probes at metaphase stage of female, male parents. A ‘White heaven’, B ‘Bright tower’, C ‘White tower’, D ‘Conception’, E ‘Gironde’, F ‘Sky Shim 2’, G L. hansonii (111114), H L. hansonii (121038-1). Yellow arrows indicate the 18S loci. Bar = 5 µm. (Color figure online)
Discussion

Interspecific *L. longiflorum* × *L. hansonii* and *L. longiflorum* × Asiatic lilies have higher economic potentiality due wide phenotypic colour, fragrance and genetic diversities as compared to the existing hybrids. It has been reported to have a 2C value approximately 72 pg in *L. longiflorum* (Karlov et al. 1999), that found to vary genetically between the lily cultivars used in this study such as 70.1 pg (Bright tower; L), 55.4 pg (Conception; A), 49.2 pg (*L. hansonii*; M), 56.1 pg (LA), 51.6 pg (LM). As the male and female parents used in this study were: is diploid (2n=2x=24), it should be the interspecific progeny obtained diploid, and this was confirmed by both flow cytometry and observations. Similarly, triploid lily was obtained by

Fig. 4 Karyotype analysis in female and male plants. Female parents, A ‘White heaven’, B ‘Bright tower’, C ‘White tower’, and male parents D ‘Conception’, E ‘Gironde’, F ‘Sky Shim 2’, G *L. hansonii* (111114), H *L. hansonii* (121038-1). (Color figure online)
crossing tetraploid and diploid lilies (Gao et al. 2014). In this study, cut style breeding method was used although interspecific hybridization is a challenging task in the genus Lilium breeding due to both pre and post-fertilization barriers, which can be overcome by using CSM and GSM crossing (Van Tuyl et al. 1997; Barba-Gonzalez et al. 2005). However, using the CSM method, a relatively low success rate of interspecific hybridization was achieved in both LA and LM, yet it was higher in comparison to the OT hybrids (Cao et al. 2019).

Cytogenetic variations are common phenomena in interspecific LO, LA and LM hybrids. According to Zhou et al. (2008a, b), only a few individuals out of a large number of interspecific hybrid progenies, including LA, can produce functional n gametes. Therefore, either high pressure N$_2$O treatment or polyploidization agent such as colchicine, oryzalin treatment is needed to induce fertile gametes (Ramanna 1992; Lim et al. 2001; Barba-Gonzalez et al. 2005; Zhou et al. 2015). Genetic recombination and homologous crossing-over are important features

Table 3 Distribution of 18S rDNA signals on the chromosome of *L. longiflorum* used as female parents

Cultivar	No. of 18S rDNAs	Location of 18S rDNA	Chromosome pair containing 18S rDNA	
		Long arm	Short arm	
White heaven	8	4	4	Ch# 3, 4, 7, 9, 11
Bright tower	6	2	4	Ch# 3, 4, 6, 7
White tower	7	3	4	Ch# 3, 4, 7, 11
Conception	8	4	4	Ch# 1, 3, 4, 7, 11
Gironde	8	5	3	Ch# 3, 4, 6, 9, 11
Sky Shim 2	8	4	4	Ch# 1, 3, 7, 11
L. hansonii (111114)	12	8	4	Ch# 1, 2, 3, 4, 7, 8, 11, 12
L. hansonii (121038-1)	12	9	3	Ch# 1, 2, 3, 4, 5, 6, 7, 10, 11

Fig. 5 Ideograms of chromosomes of female and male parents. Female parents, **A** ‘White heaven’, **B** ‘Bright tower’, **C** ‘White tower’, and Male parents **D** ‘Conception’, **E** ‘Gironde’, **F** ‘Sky Shim 2’, **G** *L. hansonii* (111114), **H**: *L. hansonii* (121038-1). 18S rDNA loci were represented as red. (Color figure online)
of interspecific breeding, especially for LA and OA progenies (Lim et al. 2001; Van Tuyl et al. 2002; Sun et al. 2014). In this study, both female and male parents provided equal portions of genetic material to their interspecific progenies without any notable homologous recombination. *L. longiflorum*×Asiatic hybrid progenies usually show quantitative differences between genotypes that result in chromosome pairing failure; however, in this study, almost normal pairing was observed. Using advanced cytogenetic

Fig. 6 Karyotype analysis in F₁ hybrid lilies. I: 113521, J: 132025, K: 143024, L: 128115-7, M: 128130-5, N: 128133-8. *L. longiflorum* chromosomes were represented as green and *Asiatic, L. hansonii* chromosomes were represented as blue. 18S rDNA loci were represented as red. (Color figure online)

Table 4 Genomic compositions in *L. longiflorum* originated interspecific F₁ hybrids

Crossed code	Expected genome	No. individual examined	Ploidy level	Chromosome constitution	No. of recombinant sites	Hybridity status	
113521	LA	22	2x	12	12	0	True
132025	LA	23	2x	12	12	0	True
143024	LA	19	2x	12	12	0	True
128115-7	LM	32	2x	12	12	0	True
128130-5	LM	18	2x	12	12	0	True
128133-8	LM	19	2x	12	12	0	True
tools like genomic in situ hybridization, chromosome recombination can be easily detected and commonly found in BC₁ progenies, whereas in a very recent study, nearly 3% intergenomic recombination has been identified in F₁ L. longiflorum × L. hansonii progenies which is under further investigation to find...

Fig. 7 Genomic-fluorescence in situ hybridization analysis using L. longiflorum genome and 18S rDNA probes at metaphase stage of F₁ hybrids lilies. Here, I: 113521, J: 132025, K: 143024, L: 128115-7, M: 128130-5, N: 128133-8. L. longiflorum chromosomes represented as green and Asiatic, and L. hansonii chromosomes represented as blue (DAPI). Yellow arrows indicate the 18S loci. Bar = 5 μm. (Color figure online)

Fig. 8 Ideograms of chromosomes of interspecific F₁ hybrids progenies. I: 113521, J: 132025, K: 143024, L: 128115-7, M: 128130-5, N: 128133-8. L. longiflorum chromosomes were represented with green and Asiatic, L. hansonii chromosomes were represented with blue. 18S rDNA loci represented as red. (Color figure online)
out the recombination origin through meiotic stages analysis following Lim et al. (2003) and the result will be reported in the next article (Table 6).

FISH mapping of 18S rDNA in *L. longiflorum* had 6–8 loci, usually on the third, fourth and eleventh pairs Chromosomes (Table 4), similar to (Lim et al. 2001) but different FISH mapping of 45S has been observed in *L. lancifolium* (Zhou et al. 2008b). Also, in Asiatic lilies, the 45S rDNA loci are stable on the first, fourth and seventh pair of chromosomes (Cao and Al. 2019). However, *L. hansonii* was found to be a very genetically diverse species on Ulleung-do Island, Korea (Robledo et al. 2009), and not of *L. hansonii* origin interspecific hybrids have not yet been reported. As a result, LM offspring inherited more 18S rDNA locus of the male parent *L. hansonii*, causing their numbers to increase. GISH and FISH are the most advanced cytogenetic techniques used for the evaluation of hybridity status, chromosomal abnormalities, homologous crossing and FDR mechanisms and identification of the origin of F1 offspring (Robledo et al. 2009; Younis et al. 2015; Kwon et al. 2017; Ramzan et al. 2017). Hence the development of combined GISH-FISH analysis would be a new addition to cytogenetic studies on lily breeding using parental DNA and 18S rDNA to detect specific loci on respective chromosome, that will help to analyze chromosomal attributes and determine the karyomorphology of the F1 interspecific offspring and their female parents.

Table 5 Distribution of 18S rDNA signals on the chromosomes *L. longiflorum* originated F1 interspecific hybrids

Crossed code	18S rDNA	Locations of 18S rDNA	Chromosome containing 18S rDNA			
	Number	From female	From male	Long arm	Short arm	
113521	8	Ch# 3,4,7	Ch# 1,3,4,7,11	1/3	2/2	Ch# 1,3,4,7,11
132025	8	Ch# 3,4,6	Ch# 3,4,6,9,11	1/3	2/2	Ch# 3,4,6,9,11
143024	7	Ch# 3,4,7	Ch# 1,3,7,11	1/3	2/1	Ch# 1,3,4,7,11
128115-7	11	Ch# 3,4,7	Ch# 1,2,3,4,7,8,11, 12	1/6	2/2	Ch# 1,2,3,4,7,8, 11, 12
128130-5	10	Ch# 3,4,7,	Ch# 1,2,3,4,5,8,11	1/5	2/2	Ch# 1,2,3,4,5,6,7,8,11
128133-8	11	Ch# 3,4,7	Ch# 1,2,3,4,5,6,10,11	1/6	2/2	Ch# 1,2,3,4,5,6,7,10,11

Table 6 Chromosome characteristics in female, male parents and their F1 interspecific hybrids

Crossed code	No. of chromosome	Longest chromosome (µm)	Shortest chromosome (µm)	Total length (µm)	Karyotype formula
White heaven	24	18.28 ± 0.8	11.18 ± 0.2	278.26 ± 0.5	2n = 2x = 2 m + 20sm + 2t
Bright tower	24	18.83 ± 0.3	11.10 ± 0.6	281.94 ± 0.1	2n = 2x = 2 m + 16sm + 6t
White tower	24	17.19 ± 0.4	9.07 ± 0.8	259.90 ± 0.7	2n = 2x = 4 m + 20sm
Conception	24	15.44 ± 0.1	10.21 ± 0.2	245.89 ± 0.7	2n = 2x = 4 m + 18sm + 2t
Gironde	24	16.61 ± 0.7	10.53 ± 0.5	211.54 ± 0.3	2n = 2x = 4 m + 16sm + 4t
Sky Shim 2	24	17.23 ± 0.2	8.71 ± 0.1	235.32 ± 0.8	2n = 2x = 4 m + 18sm + 2t
L. hansinii (1111114)	24	12.67 ± 0.3	9.54 ± 0.6	229.94 ± 0.7	2n = 2x = 4 m + 6sm + 14t
L. hansinii (121038-1)	24	10.71 ± 0.4	9.19 ± 0.3	223.76 ± 0.1	2n = 2x = 4 m + 6sm + 14t
113521	24	17.51 ± 0.2	10.10 ± 0.2	252.74 ± 0.7	2n = 2x = 4 m + 18sm + 2t
132025	24	18.84 ± 0.3	9.78 ± 0.7	271.58 ± 0.5	2n = 2x = 2 m + 18sm + 4t
143024	24	19.33 ± 0.5	11.10 ± 0.1	242.94 ± 0.3	2n = 2x = 2 m + 16sm + 6t
128115-7	24	15.83 ± 0.4	9.65 ± 0.3	235.89 ± 0.9	2n = 2x = 14sm + 10t
128130-5	24	15.74 ± 0.8	9.38 ± 0.5	229.20 ± 0.8	2n = 2x = 2 m + 14sm + 8t
128133-8	24	15.27 ± 0.3	7.59 ± 0.3	231.92 ± 0.1	2n = 2x = 4 m + 12sm + 8t
Conclusions

The obtained interspecific hybrid progenies had equal genetic characters inherited from the female and male parents, according to the results of chromosome characterization and FISH mapping. In addition, this study illustrates the potential of combined GISH–FISH analysis for providing information about hybridity status, chromosomal abnormalities, and genomic origin of *L. longiflorum*-derived interspecific hybrid progenies and can be useful as a time-saving and low-cost cytogenetic method in breeding programs.

Acknowledgements We thank to Prof Hong-Yul Kim and especially Professor Lim Ki-Byung for their intensive efforts and for adding valuable information, technical and language editing to make the manuscript meaningful.

Author contributions MI, LH, DMD designed the manuscript and RY, FR and HYK worked on the acquisition of data, analysis, and interpretation. KBL gave his valuable time for critical revisions of the manuscript.

Funding This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (iPET) through Agri-Bio industry Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (grant number iPET318021-4). This work was also supported by a grant from Regional Subgenebank Support Program of Rural Development Administration, Republic of Korea (Project No. PJ0143802019).

Declarations

Conflicts of interest The authors have declared no conflict of interest, and all the authors have read, revised, and finally approved this manuscript.

References

Ahn YJ, Hwang YJ, Younis A, Sung M-S, Ramzan F, Kwon MJ, Kang YL, Kim CK, Lim KB (2017) Investigation of karyotypic composition and evolution in Lilium species belonging to the section martagon. Plant Biotechnol Rep 11:407–416. https://doi.org/10.1007/s11816-017-0462-7

Barba-Gonzalez R, Ramanna M, Visser RG, Van Tuyl J (2005) Intergeneric recombination in F1 lily hybrids (Lilium) and its significance for genetic variation in the BC1 progenies as revealed by GISH and FISH. Genome 48:884–894. https://doi.org/10.1139/g05-057

Cao Q, Lian Y, Wang L, Zhang Q, Zhao Y, Jia G, He H (2019) Physical mapping of 45S rDNA loci in Lilium OT hybrids and interspecific hybrids with *Lilium regale*. Sci Hortic 252:48–54

Chester M, Leitch AR, Soltis PS, Soltis D (2010) Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation). Gene 1:166–192. https://doi.org/10.3390/genes1020166

Fujiwara A, Fujiwara M, Nishida-Umehara C, Abe S, Masaoka T (2007) Characterization of Japanese flounder karyotype by chromosome bandings and fluorescence in situ hybridization with DNA markers. Genetica 131:267–274. https://doi.org/10.1007/s10709-006-9136-z

Gao T, Sun H, Fang L, Qian H, Xin H, Shi J, Wu Z, Xi M (2014) Cytogenetic analysis of *Asiatic lily* cultivars and their hybrids using fluorescence in situ hybridization. Acta Hortic. https://doi.org/10.17660/actahortic.2014.1027.19

Hembree WG, Ranney TG, Lynch JP, Jackson B (2020) Identification, genome sizes, and ploidy of deutzia. J Am Soc Hortic Sci 145:88–94. https://doi.org/10.21273/jashs.04779-19

Hwang Y-J, Kim IH, Kim J-B, Lim K-B (2011) Karyotype analysis of Lilium tigrinum by FISH. Hortic Environ Biotechnol 52:292–297. https://doi.org/10.1007/s13580-011-0225-2

Islam MM, Yesmin R, Jung M-J, Kim H-Y, Kim C-K, Lim K-B (2020) Investigation of the morphological and cytogenetic variations of an intraspecific *Asiatic lily* hybrid using 5S and 18S rDNA probes. Hortic Environ Biotechnol. https://doi.org/10.1007/s13580-019-00216-7

Jo YK, Mazharu IM, Kim C-K, Kim H-Y, Lim K-B (2019) Morphological characteristics and FISH analysis of hisbic cus f1 hybrids and parental lines. Hortic Sci Technol 37:630–639. https://doi.org/10.7235/HORT.20190063

Karlov G, Khristaleva L, Lim K, Van Tuyl J (1999) Homoeologous recombination in 2 n-gametes producing interspecific hybrids of Lilium (*Liliaceae*) studied by genomic in situ hybridization (GISH). Genome 42:681–686. https://doi.org/10.10113/g98-167

Kumari S, Kanth BK, Jeon Y, Jang J-Y, Kim H-S, Lee G-J (2018) Internal transcribed spacer-based CAPS marker development for Lilium hansonii identification from wild Lilium native to Korea. Sci Hortic 236:52–59. https://doi.org/10.1016/j. scihort.2018.03.013

Kwon M-J, Ramzan F, Ahn Y-J, Hwang Y-J, Kang Y-I, Kim C-K, Younis A, Lim K-B (2017) Chromosomal analysis of Lilium *tigrinum* by FISH. Hortic Environ Biotechnol 58:591–600

Lim K-B (2014) Ecological, morphological and cytogenetic analysis of Korean Martagon Lilium species. Acta Hortic. https://doi.org/10.17660/actahortic.2014.1027.3

Lim K-B, Wennekes J, Jong JHd, Jacobsen E, Van Tuyl J (2001) Evaluation of intergeneric recombination in F1 lily hybrids (Lilium) and its significance for genetic variation in the BC1 progeny. Hortic Environ Biotechnol 52:292–297. https://doi.org/10.1007/s13580-011-0225-2

Lim M-H, Kim JA, Jin M et al (2005) Characterization of specific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome 42:681–686. https://doi.org/10.10113/g98-167

Lim K-B, Ramanna M, Jacobsen E, Van Tuyl J (2003) Evaluation of BC 2 progenies derived from 3x–2x and 3x–4x crosses of Lilium hybrids: a GISH analysis. Theor Appl Genet 106:568–574. https://doi.org/10.1007/s00122-002-1070-6

Lim K-B, De Jong H, Yang T-J, Park J-Y, Kwon S-J, Kim JS, Lim M-H, Kim JA, Jin M et al (2005) Characterization of...
rDNAs and tandem repeats in the heterochromatin of *Brassica rapa*. Mol Cells 19:436
Lim K-B, Barba-Gonzalez R, Zhou S, Ramanna M, Van Tuyl J (2008) Interspecific hybridization in lily (*Lilium*): taxonomic and commercial aspects of using species hybrids in breeding. Floric Ornam Plant Biotechnol 5:146–151
Liu Y-H, Huang C-J, Chen C-Y (2008) Evidence of induced systemic resistance against Botrytis ellipica in lily. Phytopathology 98:830–836. https://doi.org/10.1094/phyto-98-7-0830
Lucidios JG, Ryu KB, Younis A, Kim C-K, Hwang Y-J, Son B-G, Lim K-B (2013) Different day and night temperature responses in Lilium hansonii in relation to growth and flower development. Hortic Environ Biotechnol 54:405–411. https://doi.org/10.1007/s13580-013-1241-1
Mazharul I, Reshma Y, Jung J, Mohammad D, Lim K (2019) Cyto genetic assessment of *Lilium longiflorum* × *L. hansonii* revealed by genomic in situ hybridization (GISH). Acta Hortic. https://doi.org/10.17660/actahortic.2019.1237.10
Merhaut D, Newman J (2005) Effects of substrate type on plant growth and nitrate leaching in cut flower production of oriental lily. Hort Sci 40:2135–2137. https://doi.org/10.21273/hortsci.40.7.2135
Naing AH, Yun H, Lucidios JG, Ryu KB, Younis A, Kim C-K, Ahn BJ, Lim K-B (2014) Plant regeneration through various explants of *Lilium longiflorum* hybrid “Bright Tower” and determination of ploidy level of regenerated plants. Plant Biosyst 148:191–199. https://doi.org/10.1080/11263504.2012.754384
Nakazawa D, Kishimoto T, Sato T, Sato T, Amano J, Kuwayama T, Kishimoto T, Sato T, Amano J, Kuwayama T. (2013. August. 12. 11) Genet Mol Res 12:2953–2965. https://doi.org/10.4238/2014.march.17.21
Takahashi C, Leitch I, Ryan A, Bennett M, Brandham P (1997) The use of genomic in situ hybridization (GISH) to show transmission of recombinant chromosomes by a partially fertile bigeneric hybrid, *Gasteria lutzii* × *Aloe aristata* (Aloaceae), to its progeny. Chromosoma 105:342–348. https://doi.org/10.1007/bf02529749
Tang X, Yu C, Zhang K, Zeng Y, Zhao L, Zhang H, Liu X (2020) Detection the ploidy levels in asiatic lily cross-breeding through karyotype analysis and fish. Pak J Bot 52:975–985
Van Laere K, Khrustaleva L, Van Huylenbroeck J, Van Bocks- tale E (2010) Application of GISH to characterize woody ornamental hybrids with small genomes and chromosomes. Plant Breed 129:442–447. https://doi.org/10.1111/j.1439-0523.2009.01692.x
Van Tuyl J, De Jeu M, Univ C, Press N (1997) Methods for overcoming interspecific crossing barriers. Pollen Biotechnol Crop Prod Improv. https://doi.org/10.17660/ebc9780511525469.015
Van Tuyl JM, Lim KB, Ramanna MS (2002) Interspecific hybridization and introgression. In: Vainstein A (ed) Breeding for ornamentals: classical and molecular approaches. Springer, Dordrecht, pp 85–103. https://doi.org/10.1007/978-94-017-0956-9_5
van Tuyl JM, Arens P (2010) Lilium: breeding history of the modern cultivar assortment. In II International Symposium on the Genus Lilium. Acta Hort 900:223–230. https://doi.org/10.17660/actahortic.2011.900.27
Younis A, Ramzan F, Hwang Y-J, Lim K-B (2015) FISH and GISH: molecular cytogenetic tools and their applications in ornamental plants. Plant Cell Rep 34:1477–1488. https://doi.org/10.1007/s00299-015-1828-3
Zhou S, Ramanna M, Visser RG, van Tuyl J (2008a) Genome composition of triploid lily cultivars derived from sexual polyploidization of *Longiflorum* × * Asiatic hybrids (Lilium)*. Euphytica 160:207–215. https://doi.org/10.1007/s10681-007-9538-8
Zhou S, Ramanna M, Visser RG, van Tuyl J (2008b) Analysis of meiosis in the F1 hybrids of *Longiflorum* × *Asiatic* (LA) of lilies (*Lilium*) using genomic in situ hybridization. Genomics 35:687–695. https://doi.org/10.1016/s1673-8527(08)00609-1
Zhou S, Zhong L, Zhang L, Xu Z, Liu X, Li K, Zhou G (2015) Study on the homology of the genomes of tetraploid *Asiatic lilies* (*Lilium*) using FISH. Genome 58:453–461. https://doi.org/10.1139/gen-2015-0057

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.