Bioactive effects of citrus flavonoids and role in the prevention of atherosclerosis and cancer

Marco Giammanco¹, Fulvio Plescia², Manfredi M. Giammanco,³ Gaetano Leto,⁴ Carla Gentile⁵

¹Department of Surgical, Oncological and Oral Sciences, University of Palermo; ²Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties “Giuseppe D’Alessandro”, University of Palermo; ³Medical School, University of Palermo; ⁴Laboratory of Experimental Pharmacology, Department of Health Sciences, University of Palermo, Palermo; ⁵University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy

Correspondence: Marco Giammanco, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via Liborio Giuffré 5, 90127 Palermo, Italy.
E-mail: marco.giammanco@unipa.it

Key words: Citrus flavonoids; antioxidant; atherosclerosis; cancer; human health; cardiovascular diseases; antioxidant activities; anti-inflammatory activities.

Acknowledgments: The authors are supported by the University of Palermo, Italy.

Funding: Financed with funds from the University of Palermo.

Contributions: Conceptualization, MG; writing and editing, all the authors. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
Abstract

Citrus fruits are the main fruits of the Mediterranean diet and have been long recognized for their beneficial effects on human health. Observational studies have shown a significant association between dietary flavonoid intake and reduced risk of cardiovascular and malignant diseases. The beneficial effects of citrus fruits on human health appear to be due to their high content in vitamins, minerals and fibers. In particular, the antioxidant and anti-inflammatory activities have been indicated as some of the mechanisms through which citrus fruits may thwart the development of chronic degenerative diseases such as atherosclerosis and cancer. This review would critically examine the results from numerous studies carried out in order to assess the contribute of citrus flavonoids to the prevention of chronic pathological conditions including atherosclerosis and cancer.

1. Introduction

Growing experimental and observational studies provide evidence that the beneficial effects foods exerted by foods on human health appears to due to their content in vitamins, minerals, fiber and antioxidant nutraceutical components that provide functional characteristics to foods which account for their preventive effects on chronic-degenerative diseases. Several antioxidant phytochemicals that are present in fruits and vegetables, can modulate the metabolic functions and redox balance of cells and tissues the human body in order to maintain internal homeostasis and structural integrity and to prevent the onset of chronic-degenerative diseases. Biological diversity of plants is related to the presence of a wide range of different chemical compounds, including phytochemicals, many of which are endowed with important pharmacological properties whose beneficial effects on human health are currently under extensive investigations. In this setting, numerous observational studies have highlighted the fact that an increased consumption of fruits and vegetables may protect humans against chronic degenerative diseases, such as cancer and atherosclerosis.

For instance, Flavonoids are an heterogeneous group of substances largely present in plants which show to possess several pharmacological functions. These molecules protect plants from UV radiation and pathogens. Dietary flavonoids are important components of the human diet. These compounds are present in significant amount in a wide variety of foods including fruit, vegetables, nuts, cocoa, soy, coffee, tea and wine. Epidemiological studies have shown a significant correlation between dietary flavonoid intake and decreased incidence of cardiovascular diseases and cancer, type 2 diabetes, neurodegenerative disorders and osteoporosis. Although some observational studies have not highlighted a significant correlation between total flavonoids intake and reduced risk of stroke, they reported a significant association between increased intake of citrus flavonone subclass from orange and grapefruit and re-
duced risk of ischemic stroke in women. This review would provide insight into the most recent findings and advances in understanding the cellular mechanisms underlying the preventive effects of citrus flavonoids on the onset of some chronic pathological conditions such as atherosclerosis and human tumors.

2. Classification and Distribution of flavonoids
Flavonoids are an heterogeneous group of substances widely present in many foods. Flavonoids are a subclass of calorie-free polyphenols. These molecules belong to a class of secondary plant metabolites showing a polyphenolic structure, which are widely present, in particular, in fruit, vegetables, and which are endowed of various biological activities. The common chemical structure of flavonoids consists of two aromatic rings linked by three carbon atoms that form an oxygenated heterocycle [figure 1]. The differences in the chemical structure of each group of flavonoids are given by the different number and arrangement of the hydroxyl groups and by their degree of alkylation and glycosylation. These molecules can be detected as free aglycone form. However, they are often linked to glycosides. In this form these compounds are soluble in water. Flavonoids are endowed with antioxidant activity that determine preventive effects on the onset of chronic diseases such as cancer, atherosclerosis and neurodegenerative diseases. Flavonoids are the major water-soluble pigments in plants which are involved in the production of the colors needed to attract pollinating insects. In particular, citrus peel and seeds are rich in phenolic compounds, while the peels are richer in flavonoids than seeds. In the juices of bergamot, grapefruit and bitter orange we find good quantities of hesperidin, narirutin, and didimin. Eriocitrin and hesperidin are contained in good quantities in lemon while neoesperidin and naringin are found in bitter orange. Bergamot seeds are rich in glycosylated flavanones, naringin, and neohesperidin. Naringin has been found in lemon peel and mandarin seeds. However, it is not present in the juices of these fruits. According to their molecular structures, flavonoids are divided into six major subtypes, which include, flavanols, flavanones, flavonols, isoflavones, flavones, and anthocyanins, depending on the differences in their structures. More than 4000 varieties of flavonoids have been identified to date. Among the aglycone forms Naringenin and Hesperetin are considered the most important flavanones while, the glycoside forms includes neohesperidosides and rutinosides. The neohesperidosides, flavanones, naringin, neohesperidin and neoeicitrin are constituted by a flavanone with neohesperidoside. Rutinosides (flavanones, hesperidin, narirutin and didymin) have a disaccharidic residue such as rutinose.

2.1. Bioavailability
Flavonoid glycosides are hydrolized into their aglycone form by the intestinal microflora and then, in this form, can be absorbed. Flavonoids undergo extensive hepatic metabolism by hydroxilation or demethylation

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
and then conjugated with glicuroinic acid or sulphates. The metabolism of flavonoids depends on hydroxylation which modifies their sensitivity to hydrolysis and to the cleavage of the heterocyclic ring by the bacterial flora. Therefore, due to the intestinal flora, the metabolism of the different flavonoids can vary according to the specific chemical structure. The flavanone, hesperin and naringin glycosides are both rutinosides linked to disaccharides rammose and rutinose in position 7-rutinoside at position. Consequently they are not subject to hydrolysis by intestinal bacterial \(\beta \)-glucosidases but the flavonoids are metabolized in the distal part of the small intestine and colon by the microflora. The 7-glucoside forms of naringenin and hesperin are rapidly absorbed because they are hydrolyzed in the small intestine. Naringenin and esperperin are absorbed within minutes when administered orally, with a peak plasma concentration at approximately three hours. Flavonoids can accumulate in the body, in one study, naringin was administered to rats resulting in increased concentrations in liver tissue in particular, followed by spleen, heart, brain and kidneys.

2.2. Antioxidant activity

Flavonoids show anti-oxidant effects against free radicals. The scavanger ability of these molecules has been suggested to be due to their hydrogen-donating capability so that a subsequent production of radicals can be delocalized on the flavonoid structure. The antioxidant potential of flavonoids is determined by the presence of glycosides and free hydroxyl groups or by the number and position of esterified hydroxyl groups. The concentration of flavonoids and several environmental factors influences the antioxidant activity. The common structural element is the configuration can of the C-ring with the 3-hydroxyl group which activates the double bond in position 2,3. Only when the concentration is lower than 100 \(\mu \)M the presence of the hydroxyl groups in the ring B is important for the radical scavenger activity. Furthermore pH has been also shown to affect the antioxidant activity of some polyphenols. The rate of Flavonoids activity appears also to depend on their structure and are excellent scavengers of the hydroxyl radical. In this context Rapisarda et al. determined the antioxidant capacity of polyphenols, flavonoids, anthocyanins, hydroxycinnamic acids and ascorbic acid present in of the juice pigmented oranges of Moro, Sanguinella, Tarocco and Washington varieties. The juice from all these varieties showed an antioxidant capacity which appears correlated with the total amount of phenol and influenced by the pigmented component of anthocyanins. An in vitro study showed that quercetin and kaempferol are able to cross the erythrocyte membrane and increase antioxidant activity of erythrocyte by 15% and 13% respectively. These findings indicate that flavonoids are able to form stable complexes with erythrocytes and may influence intracellular redox homeostasis. Therefore, these observations support the hypothesis that polyphenols are able to protect erythrocytes from reactive oxygen species (ROS)-induced cell damage. Other observational studies carried out to compare the activity of catalase in erythrocytes of smokers and non-smokers, showed that the enzymatic activity of catalase was significantly lower in smokers than in non-smokers. Furthermore, these
studies also reported that exposures of erythrocytes from smokers to quercetin at a concentration of 100 µM resulted in an return of catalase levels to normal values.40

2.3. Anti-inflammatory activity

Many experimental studies have shown that flavonoids can inhibit the expression of regulatory enzymes or transcription factors that regulate the biological functions of signalling molecules involved in inflammation.40 The effects on the immune and inflammatory responses induced by flavonoids appear to be, in part, the result of the inhibition of the expression levels of enzymes such as protein-kinase C, phosphodiesterase, phospholipase, lipooxygenase and cyclooxygenase which regulate the synthesis of biological effectors responsible for the activation of endothelial cells and cells of the immune system involved in inflammation.40 Flavonoids has been also shown to inhibit enzymes such as aldose-reductase, xanthine-oxidase, phosphodiesterase, Ca(2+)-ATPase, lipooxygenase, and cyclooxygenase, which play a role in promoting the transduction and activation of cellular signals and modulating the activation of cells involved in the immune response.41,42 In this setting, experimental in vivo studies have shown that, hesperidin inhibited carrageenan-induced pleurisy and reduced yeast-induced hyperthermia in rats43 Hesperidin, in particular, has been shown to exert inhibitory effects on lipopolysaccharide (LPS) induced by the expression of cyclooxygenase-2, inducible nitric oxide synthase (iNOS), hyperproduction of prostaglandin E2 and nitric oxide (NO).44 On the other hand, Nobiletin has been reported to selectively downregulate cyclooxygenase-2, and the gene expression of pro-inflammatory cytokines, by mechanisms resembling those of dexamethasone.45

3. Prevention of atherosclerosis and cardiovascular diseases

Citrus flavonoids have attracted particular attention due to their unique and effective therapeutic activity against various chronic diseases, in particular atherosclerosis46 [tab. 1]. Inflammation of the vessel wall and increased adhesion of mononuclear cells to the altered endothelium are the first moments in the onset of atherosclerosis. In response to inflammation, low-density lipoproteins (LDL) can penetrate the intima of the arterial wall and, following LDL-laden foam cells, can form atherosclerotic plaques.47,48 Citrus flavonoids, including naringin, have shown to exert inhibitory effects on the oxidation of LDL cholesterol.49 Citrus consumption has been associated with an assessment of cardiovascular events, suggesting that citrus flavonoid intake may be cardioprotective.50

3.1. Animal Studies

Numerous preclinical in vivo studies have reported positive effects of the intake of citrus fruits, derived from peels and seeds or molecules administered individually or in combination in experimental animals. Kurowska et al. investigated the hypocholesterolemic effects of citrus juices in mildly hypercholesterolemic rats in which high levels of LDL were obtained following the intake of high-fat diet. These studies showed that orange juice and grapefruit juice affected cholesterol metabolism. In particular, the administration to
rats of a diet in which water was replaced with orange juice and 32% with grapefruit juice, induced an evident decrease of serum LDL cholesterol in 43% of the animals.51 Esperetin was also noted to exert a hypolipidemic effect. In fact, in male rats fed a high cholesterol diet, the administration of this compound reduced the circulating level of triglycerides and cholesterol.52 Furthermore, Chtourou \textit{et al.} reported that in Wistar rats fed with a high cholesterol diet, the administration of naringenin, resulted in a reduction of plasma lipids, liver lipids and liver fibrosis. These effects were associated with the decreased expression levels of matrix metalloproteinase and that of macrophage infiltration markers.53 Furthermore, studies carried out on hamsters fed with diet-induced hypercholesterolemia, showed that formulations containing citrus polymethoxylated flavones, mainly tangeretin or citrus flavanone glucosides, hesperidin and naringin, significantly reduced the circulating levels of the very low density lipoproteins (VLDL) and serum cholesterol.54 In addition, the administration to db/db mice of cross-linked Citrus peel extract caused a decrease in fat liver and in plasma lipids.55 Other studies have shown that a dietary supplementation with naringenin reduced cholesterol plasma levels and those of triacylglycerol, in the liver of rats fed a high cholesterol diet. These effects resulted also associated with a decrease in 3-hydroxy-3-activity methylglutaryl-coenzyme A reductase (HMG-CoA) and acyl-CoA: cholesterol acyltransferase (ACAT).56,57 Experimental studies on wild type mice fed a integrated diet high fat/cholesterol/high-naringin, reported significant anti-atherogenic effects, in particular, in the case of diet-induced atherosclerosis.58 On the other hand, rabbits fed high cholesterol diet showed that the integration of naringin and naringenin reduced the area of fat strips in the thoracic aorta. Interestingly, this effect was associated with reduced expression levels of adhesion of vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) as compared to the control group.59,60 Low-density lipoprotein receptor-null mice (Ldlr-/-mice) fed the western diet and supplemented with 3% naringenin diet (p/p) showed a reduction in the inflation of monocyte/macrophage antibody-2 (MOMA-2) positive lesions and collagen deposition. These findings are suggestive of an antiatherogenic activity.61 Other experimental investigations were carried out in order to assess, the effect of the administration of grapefruit juice and shaddock on the activity of the angiotensin-1 converting enzyme (ACE) in vitro and on the hypocholesterolemic properties of juices in rats fed a high cholesterol diet. The results from these studies showed that, grapefruit juice had a higher total flavonoid content than shaddock juice, and that both juices inhibited ACE activity in a dose-dependent manner. In addition, the administration of juices to rats fed a high cholesterol diet, resulted a significant reduction of total cholesterol, triglycerides and LDL-cholesterol levels, and in increase of HDL (high-density lipoprotein-cholesterol) plasma levels.62 Studies aimed at assessing the effects of quercetin and myricetin on isolated and perfused Wistar rat hearts showed that low concentration of quercetin induced inotropic and lusitropic effects while, myricetin low doses pure induced coronary dilation. On the other hand, the simultaneous administration of these two flavonoids produced only vasodilation. Cardiomodulation induced by the basic mechanical performance of quercetin and the selective vasodilatation induced by myricetin indicate
These flavonoids are known to exhibit powerful cardio-active properties that protect the heart from cardiovascular diseases.63

3.2. Human Studies

Observational studies carried out to evaluate the effects of daily intake of citrus fruits in humans have shown a beneficial impact of these compounds on human health. For example, Mink, et al. have highlighted the fact that a daily glass of orange reduces the risk of stroke in men by 25% while a dietary intake of grapefruit was associated with a significant reduction in mortality due to coronary heart disease in women.64 A study performed on employees of an orange juice factory with mild hypercholesterolemia showed that the daily intake of 480 ml of juice was associated with a significant reduction of serum concentration of total cholesterol, LDL cholesterol and apoB.65 Furthermore, a study undertaken on 10,623 subjects who took citrus fruit 6 times in a week showed a significant reduction in cardiovascular events and in particular ischemic stroke.66 Studies of Gorinstein et al. have demonstrated that the consumption of citrus fruits reduced the plasma levels of triglycerides in patients with cardiovascular diseases.67 Other reports have shown a significant reduction of triglycerides in subjects with hyperlipidemia and hypertriglyceridemia following the daily intake of glucosyl-hesperidin.68,69 Moreover, studies in patients with hypercholesterolemia revealed that a daily intake of naringin (400 mg/day for 8 weeks) resulted in a 17% reduction of LDL-C and apoB plasma levels.70 Clinical observations by Roza et al. highlighted the fact that subjects with hypercholesterolemia, receiving 270 mg of citrus flavonoids and 30 mg of palm tocochromanol per day for four-weeks, had a mean reduction of total cholesterol (20-30%), low density lipoprotein (19-27%), triglycerides (24-34%) and apolipoprotein B (21%) plasma levels. Furthermore, subjects underwent to a longest period of diet (i.e., up to 12 weeks) had an increase in HDL levels (4%) and a significant increase in apolipoprotein A1 (5%).71 Daily consumption of Sweetie Fruit, a flavanone-rich fruit, administered up to 4-5 weeks has been shown to reduce diastolic blood pressure.72 In healthy men, daily consumption of orange juice or hesperidin for 4 weeks significantly improved endothelium-dependent vasodilation starting from six hours after ingestion.73 Other clinical investigations conducted in subjects treated with 500 mg/day of pure hesperidin described a significant increase in brachial artery-mediated flow dilation compared to control subjects.74 Citrus flavonoids have been shown to possess anti-platelet and anti-adhesive activity. For instance, methoxylated flavonoids nobiletine and tangeretin, which are much more active than hydroxylated flavonoids, showed to have an antiaggregant activity similar to acetylsalicylic acid.75 Some authors have pointed out that the inhibition of platelet aggregation depends on the aggregation state of the various chemical structures of several flavonoids.76 In this context, in vitro studies have shown that flavonoids, by interacting with platelet membranes, can therefore induce cumulative effects over the time.77 On the other hand, platelet aggregation induced by arachidonic acid is more inhibited by fisetin, kaempferol and quercetin than by myricetin. Furthermore, quercetin, fisetin and myricetin showed a more intense inhibitory effect on collagen-induced aggregation.78 Alcaraz et al. have shown that flavonoids are antithrombotic factors that...
act by inhibiting the activity of cyclooxygenase and lipoxygenase, and a consequent reduction of thromboxane A2 and the production of 4-series leukotrienes. The anti-thrombotic effects exerted by Flavonols are the consequence of their binding to platelet mural thrombus. In addition, their ability to eliminate free radicals result in an activation of the biosynthesis and activity of endothelial prostacycline. Therefore, flavonols release thrombolytic and vasoprotective endothelial mediators.

4. Citrus flavonoids and cancer

Cancer is the second leading cause of death globally. A growing number of investigations undertaken in the aim to identify natural products endowed with chemo-preventive activity against malignant diseases has, ultimately, led to the development of the conceptual definition of "functional foods" in the prevention of carcinogenesis. Growing evidence has identified dietary flavonoids as potential chemopreventive and/or anticancer agents. In vitro studies carried out to clarify the mechanisms by which these molecules induce growth inhibitory effects on tumor cells, have shown that their antioxidant properties are likely to account for these effects. For instance, Naringin has been reported to exert its antioxidant effects by up-regulating the gene expressions of some antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase (GPx). Moreover, flavonoids have been shown to prevent DNA damage and carcinogenesis by directly interacting with carcinogens and by inactivating them. Furthermore, esperetin and naringenin have been shown to inhibit the tumor promoting effects of 7,12-dimethylbenz [a] anthracene on breast cancer. Interestingly, Citrus flavonoids have been shown to enhance the effects of antitumor drugs through the modulation of some of the molecular mechanisms which foster the onset of tumor cell resistance to antitumor drugs. In addition, quercetin has been reported to increase the cytotoxic effects of adriamycin on the multi-drug resistant human breast cancer MCF-7 cell line in vitro. Moreover, Apigenin, kaempferol and quercetin has been shown to inhibit the proliferation of human breast, prostate and lung cancer cell lines. Flavonoids inhibit the proliferation of neoplastic cell lines of leukemias, gastric carcinoma, ovarian carcinoma.

4.1. Colon cancer

Colon Cancer is one of the most common cancers in western countries being its incidence increasing even in subjects <50 years of age. Experimental investigations carried out in a mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate showed that mice fed with nobiletin diet had a reduced risk of developing colon carcinoma. Furthermore, other in vivo studies highlighted the fact that the administration of flavonoids such chryrsium, quercetin and nobiletin, to db/db mice with azoxymetan-induced pre-neoplastic lesions, reduced the incidence of aberrant cryptic that are closely associated with the development colon adenocarcinoma. Experimental studies undertaken to assess, the therapeutic effectiveness of a product formulated from the extraction of citrus peels, in a model of colon tumorigenesis induced by oxymethanes, showed that the oral feeding of the extract of mixed citrus peel reduced
the number of large, aberrant cryptic foci in the colon tissues of these mice. Citrus peel extract was also observed to decrease iNOS, COX-2, ODC, VEGF and matrix metalloproteinase-9 (MMP-9) protein levels in the colon tissues of mice. Furthermore, other in vivo studies have shown that, Apinella and quercetagetin inhibited cell proliferation of human SW480, colon cancer cells and modulate the expression of apoptosis-related genes/proteins. On the other hand, other experimental studies showed that apigenin reduced the number of aberrant cryptic foci and azoxymethane-induced tumor formation in CF-1 mice. Moreover, diets containing hesperitin has been shown to decrease the number of aberrant cryptic foci in Wistar rats treated with 1,2dimethylhydrazine. Leonardi et al. investigated the effects of four citrus flavonoids namely, naringenin, apigenin, hesperidine, nobiletine, and a mixture of limonoid (limonin glucoside/obacunone glucoside) on the azoxymethane-induced colon cancer promotion in rats. These studies showed that apigenin lowered the number of aberrant crypt compared to rats fed a controlled diet, while naringenin lowered the number of foci and the proliferation index. Both apigenin and naringenin increased apoptosis of the luminal surface colonocytes. On the other hand a glucose mixture of Hesperidin, nobiletin and the glucoside/obacunone limonin did not show to exert these effects. Some clinical investigations have reported that a mixture of apigenin and epigallocatechin gallate suppressed the recurrence of colon cancer in humans underwent surgery. These findings have provided evidence regarding a possible clinical role of Naringenin and apigenin as natural chemo-preventive agents against colon carcinogenesis.

4.2. Lung Cancer

Lung cancer is the leading cause of cancer death among men and the second leading cause of cancer death among women worldwide. The correlation between flavonoid intake and rate of lung cancer risk has been investigated by a food-frequency questionnaire study carried out in a population-based control case study of 1061 cases and 1425 controls. The results from this study showed a significant correlation between intake of food containing low levels of flavonoids and increased the risk of lung cancer. In line with these findings, other case-control study have reported a significant inverse associations between lung cancer risk and the main food sources of flavonoids including quercetin, deriving from the intake of onions and apples and naringin deriving from white grapefruit. One of the main citrus flavonoids, i.e. nobiletin, has shown to inhibit A549 human lung cancer cell growth in vitro by inducing apoptosis by inhibiting the expression of Bcl-2 protein, and increasing Bax (higher Bax/Bcl-2 protein ratio) and that of p53, while this compound showed to cause cell cycle arrest at the G2/M phase. Consistent with these results, Park et al. have recently shown that Korean Citrus aurantium L. has antitemtastasis activity. C. aurantium L., known as bitter orange, is used as a flavoring and acidifying agent for foods, the major flavonoids present in these fruits are nobiletin, naringin, and hesperidin while, the most commonly detected free flavones are apigenin, luteolin, and diosmetin. This study highlighted the fact that flavonoids isolated from C. aurantium were able to prevent the homing and dissemination of A549 human lung adenocarcinoma cells in lung tissues of syngenic mice. These effects have been attributed to

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
the pro-apoptotic and anti-migratory effects induced by flavonoids.108 These findings further suggest a potential clinical use of flavonoids isolated from C. aurantium in the prevention and treatment of human lung cancer. In this setting Bruno et al. carried out some in vitro experiments to investigate the antitumor effects of apigenin on human A549 lung adenocarcinoma cell line. These studies demonstrated that this molecule significantly reduced the rate of cell proliferation and increased the spontaneous release of ROS thus inducing tumor cell death. These data are suggestive for a future complementary therapeutic approach with apigenin in patients with lung adenocarcinoma.109

4.3. Breast Cancer
Epidemiological studies show an inverse association between increased intake of food flavonoids and the reduced risk of breast cancer.110 Flavonoids are endowed with antioxidant activity. Furthermore, their estrogen-like chemical structure allows them to interact with estrogen receptors, thus exerting a phytoestrogen-like activity.111,112 These effects, which account also for their modulating activity on endogenous estrogens and their metabolism, has been suggested as possible mechanisms which mediate the anti-proliferative properties of these molecules.111,112 This hypothesis has been corroborated by the results from in vitro studies showing that hesperperin, naringenin, baicalein, galangin, genistein and quercitin inhibited the proliferation of MDA-MB-435 human breast cancer cells.113 Furthermore, hesperine, naringenin, baicalein, galangine, genistein and quercetin and grapefruit concentrate and orange juice, have been shown to inhibit the proliferation of 7,12-dimethylbenz [a] anthracene (DMBA)-induced breast tumors in female rats.113 In line with these observations, recent findings have reported that the exposure of various breast cancer cell lines to Oncamex, a small-molecule, second generation, synthetic flavonoid derivative, reduced cell viability, caspase-dependent apoptosis and, ultimately, cytotoxic effects.114 Furthermore, it has been reported that the polymethoxyflavones of sweet orange peel induced apoptosis in human breast cancer cells (MCF-7)115 while, Esperetin inhibited the proliferation of MCF-7 breast cancer by causing cell cycle arrest in G1 phase.115

4.4. Prostate cancer
Prostate cancer is one of the most common cancers and is the third most common cause of cancer death in men of all ages.116,117 Flavonoid-rich diets have been associated with a reduced incidence and mortality of prostate cancer.118 The lowest incidence of prostate cancer worldwide has been observed in populations consuming the largest amount of flavonoids.119 As many experimental studies highlighted the protective effects of these molecule on prostate cancer, a greater intake of flavonoids through an increased consumption of fruit and vegetables, may be an useful approach in preventing prostate cancer.119 In this context, naringenin, has been shown to stimulate DNA repair following oxidative damage in human prostate cancer cells.120 On the other hand, hesperidin, has been shown to inhibit the growth of prostate cancer cells by multiple mechanisms in addition, this compound may inhibit testosterone-induced proliferation of prostate
cancer cells probably, by interacting with androgen receptors. Furthermore, Nobiletin extracted from a flavonoid mixture decreased the viability of PC-3 and DU-145 prostate cancer cell lines. Therefore, these studies suggest a possible clinical role of that nobiletin, eventually given in association with other therapeutic options, to improve the survival rates of prostate cancer patients. Further, Myricetin has been shown to exert inhibitory effects on PC-3 human prostate cancer cell lines. The combination of myricetin and myricitrin resulted in synergic antiproliferative effects on cancer cells the rate of apoptosis increases in a dose-dependent manner after treatment with flavonoids. An extract of multiple varieties of citrus peels containing high concentrations of flavonoids, has been shown to suppress the growth of cancer cells in vivo by using a human prostate tumor xenograft mouse model.

4.5. Thyroid Cancer

Thyroid cancer is the most common malignant tumor of the endocrine system. Its incidence has increased worldwide. However, the causes of this phenomenon are still highly debated today. Differentiated thyroid carcinomas in many cases maintain unaltered the normal mechanisms responsible for iodine uptake by thyrocytes. In this context, the aim of the radioiodometabolic therapy performed after total thyroidectomy, consists in killing metastatic cancer cells by radioactive iodine picked up by any thyroid residues or malignant tissue. This therapeutic approach, results, in general, in an excellent prognosis for these tumors. In some cases, due to the down-regulation of the iodine transport protein in the thyrocytes (sodium-iodide symporter-NIS), cancer cells partially lose the ability to concentrate iodine inside the cells, thus making radioiodine therapy less effective. In this setting, some experimental observations have shown that some flavonoids reduced the rate of cell proliferation and increased cell death, as well as increase NIS mRNA levels and iodine absorption. In this context, Allegri, et al. have carried out some studies to assess the antitumor activity of resveratrol, genistein, and epigallocatechin-3-gallate on two cell lines derived from anaplastic thyroid carcinoma namely, SW1736 and 8050C. These authors demonstrated a decrease in cell viability and an increase of apoptosis in cells of this very aggressive tumor which usually does not respond to radiodometabolic therapy. Experimental studies on the effects of flavonoids extracted from mandarin juice on the proliferation and migration of CAL-62, C-643 and 8050C human anaplastic thyroid carcinoma cell lines, showed that flavonoid components of the tangerine juice extract significantly reduced the proliferation of all these cancer cell lines by blocking them in the G2/M phase of the cell cycle. Furthermore, the extract also caused a reduction in cell migration, which was associated with a reduced expression of matrix-metalloproteinase-2 (MMP-2). Moreover, a study on an anaplastic thyroid carcinoma cell line (HTh7) showed that hesperidin was effective in reducing cell proliferation and survival mainly by inducing apoptosis. On the other hand, hesperetin also induced cellular re-differentiation of anaplastic thyroid cancer which is an aggressive form of thyroid tumor with a high degree of differentiation.

5. Discussion

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
The studies reported in the present review indicate that flavonoids appear to be useful functional food compounds, in the prevention of some chronic pathological conditions. In particular, experimental in vitro and in vivo investigations indicate that citrus flavonoids may play an important role in the prevention and treatment of atherosclerosis and human tumors. Besides vitamin C, folate, dietary fiber and carotenoids, the beneficial effects of diet citrus fruits can be attributed, in particular, to the antioxidant activity of flavonoids present in citrus fruit. The studies on the therapeutic effects of flavonoids is complex due to the heterogeneity of various molecules. Cardiovascular diseases and cancers are pathological conditions associated with the highest incidence and mortality in the world. On the other hand, multiple environmental and/or genetic factors have been shown to contribute to these phenomena. In these recent years, balanced diets has gained a significant attention for the treatment of atherosclerosis, cardiovascular diseases and tumors. The use of citrus fruits in the daily diet not only contain important nutrients such as vitamins, mineral salts, trace elements but also numerous functional molecules which are useful to maintain normal body's homeostasis. The flavonoids present in citrus fruits possess antioxidant, anti-inflammatory, hypolipidemic, antidiabetic and anticancer. These observations suggest that, citrus flavonoids may be of clinical relevance in the prevention and treatment of atherosclerosis and human tumors. Current dietary recommendations are based on the advice to consume fruits, vegetables and drinks, such as red wine, containing flavonoids on daily bases. However, current efforts are directed to find out most suitable molecules and/or novel, effective associations between multiple flavonoid molecules that can result in a improved therapeutic activity. On the other hand, further investigations may better assess the pharmacokinetics pathways of these molecules following their long-term daily intake. The role of citrus flavonoids on human health is still an area of research that needs to be investigated. The advancement of flavonoid separation and purification technologies will allow us to in a near future to understand biological activities of these compounds. Further investigations may better assess the pharmacokinetics pathways of these molecules following their long-term daily intake.

References

1. Adefegha, S.A. Functional foods and nutraceuticals as dietary intervention in chronic diseases; novel perspectives for health promotion and disease prevention. J. Diet Suppl. 2018, 15, 977-1009. https://doi.org/10.1080/19390211.2017.1401573

2. Gentile, D.; Fornai, M.; Pellegrini, C.; Colucci, R.; Blandizzi, C.; Antonioli, L. Dietary flavonoids as a potential intervention to improve redox balance in obesity and related co-morbidities: a review. Nutr. Res. Rev. 2018, 31, 239-247. https://doi.org/10.1017/S0954422418000082

3. Dillard, C.J.; German, J.B. Phytochemicals: nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744-1756. https://doi.org/10.1002/1097-0010(20000915)80:12<1744::AID-JSFA725>3.0.CO;2-W

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
4. Keys, A. Mediterranean diet and public health: Personal reflections. Am. J. Clin. Nutr. 1995, 61, 1321-1323. https://doi.org/10.1093/ajcn/61.6.1321S

5. Casas, R.; Sacanella, E.; Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets. 2016, 14, 245-254. https://www.ingentaconnect.com/content/ben/emiddt/2014/00000014/00000004/art00003#Supp

6. Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466-479. https://doi.org/10.1016/j.foodchem.2006.11.054

7. Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572-84. https://doi.org/10.1016/S0955-2863(02)00208-5

8. Mulvihill, E.E.; Burke, A.C.; Huff, M.W. Citrus flavonoids as regulators of lipoprotein metabolism and atherosclerosis. Annu. Rev. Nutr. 2016, 36, 275-299. https://doi.org/10.1146/annurev-nutr-071715-050718

9. Rodriguez-Garcia, C.; Sanchez-Quesada, C.; Gaforio, J.J. Dietary flavonoids as cancer chemopreventive agents: an updated review of human studies. Antioxidants 2019, 8, 137. https://doi.org/10.3390/antiox8050137

10. Xu, H.; Luo, J., Huang, J., Wen Q. Flavonoids intake and risk of type 2 diabetes mellitus. A meta-analysis of prospective cohort studies. Medicine 2018, 97, e0686. 10.1097/MD.0000000000010686

11. Hwang, S.L.; Shih, P.H.; Yen, G.C. Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem. 2012, 60, 877-885. https://pubs.acs.org/doi/pdf/10.1021/jf204452y

12. Hardcastle, A.C.; Aucott, L.; Reid, D.M.; Macdonald, H.M. Associations between dietary flavonoid intakes and bone health in a Scottish population. J. Bone Miner. Res. 2011, 26, 941-947. https://doi.org/10.1002/jbmr.285

13. Cassidy, A.; Rimm, E.B.; O'Reilly, E.J.; Logroscino, G.; Kay, C.; Chiuve, SE.; Rexrose, KM. Dietary flavonoids and risk of stroke in women. Stroke 2012, 43, 946-951. https://doi.org/10.1161/STROKEAHA.111.637835

14. Di Majo, D.; La Guardia, M.; Leto, G.; Crescimanno, M.; Flandina, C.; Giammanco, M. Flavonols and flavan-3-ols as modulators of xanthine oxidase and manganese superoxide dismutase activity. Int. J. Food Sci. Nutr. 2014, 65, 886-89. https://doi.org/10.3109/09637486.2014.931362

15. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci. 2016, 5, 1-15. https://doi.org/10.1017/jns.2016.41

16. Croft, K.D. The chemistry and biological effects of flavonoids and phenolic acids. Ann. N. Y. Acad. Sci. 1998, 854, 435-42. https://doi.org/10.1111/j.1749-6632.1998.tb09922.x

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313.
17. Yusof, S.; Ghazali, H.M.; King, GS. Naringin content in local citrus fruits. Food Chem. 1990, 37, 113-12. https://doi.org/10.1016/0308-8146(90)90085-I
18. Horowitz, R.M. Taste effects of flavonoids. Prog. Clin. Biol. Res. 1986, 213, 163-175. https://europepmc.org/article/med/3520586
19. Caristi, C.; Bellocco, E.; Gargiulli, C.; Toscano, G.; Leuzzi, U. Flavone-di-C-glycosides in citrus juices from Southern Italy. Food Chem. 2006, 95, 431-437. https://doi.org/10.1016/j.foodchem.2005.01.031
20. Tsiokanos, E.; Tsaftantakis, N.; Termanzi, A.; Aligiannis, N.; Skaltsounis, L.A.; Fokialakis, N. Phytochemical characteristics of bergamot oranges from the Ionian islands of Greece: A multi-analytical approach with emphasis in the distribution of neohesperidose flavanones. Food Chem. 2021, 343, 128400. https://doi.org/10.1016/j.foodchem.2020.128400
21. Ooghe, W.C.; Detavernier, C.M. Detection of the addition of Citrus reticulata and hybrids to Citrus sinensis by flavonoids. J. Agric. Food Chem. 1997, 45, 1633-1637. https://doi.org/10.1021/jf9606262
22. Narayana, K.R.; Reddy, M.S.; Chaluvadi, M.R.; Krishna, D.R. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential. Indian J. Pharmacol. 2001, 33, 2-16. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.562.6601&rep=rep1&type=pdf
23. Verma, M.L.; Sharma, S.; Saini, R.; Rani, V.; Kushwaha, R. Chapter 3-Bioflavonoids: Synthesis, functions and biotechnological applications. Biotechnological Production of Bioactive Compounds 2020, 2020, 69-105. https://doi.org/10.1016/B978-0-444-64323-0.00003-5
24. Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal 2013, 2013, 162750. https://doi.org/10.1155/2013/162750
25. Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo D.; Giammanco M. Citrus flavonoids: molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466-479. https://doi.org/10.1016/j.foodchem.2006.11.054
26. Feng, X.; Li, Y.; Brobbey, M.; Oppong, F.; Qiu, F. Insights into the intestinal bacterial metabolism of flavonoids and the bioactivities of their microbe-derived ring cleavage metabolites. Drug Metab. Rev. 2018, 50, 343-356. https://doi.org/10.1080/03602532.2018.1485691
27. Nielsen, I.L.; Chee, W.S.; Poulsen, L.; Offord-Cavin, E.; Rasmussen, S.E.; Frederiksen, H.; Enslen, M.; Barron, D.; Horcajada, M.N.; Williamson, G. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: a randomized, double-blind, crossover trial. J. Nutr. 2006, 136, 404-8. https://doi.org/10.1093/jn/136.2.404
28. Kanaze, F.I.; Bounartz, M.I.; Georgarakis, M.; Niapas, I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur. J. Clin. Nutr. 2007, 61, 472-77. 10.1038/sj.ejcn.1602543
29. Lin, S.P.; Hou, Y.C.; Tsai, S.Y.; Wang, M.J.; Chao P.D.L. Tissue distribution of naringenin conjugated metabolites following repeated dosing of naringin to rats. Biomedicine 2014, 4, 16. 10.7603/s40681-014-0016-z

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
30. Ekalu, A.; Habila, J.H. Flavonoids: isolation, characterization, and health benefits. Beni-Suef. Univ. J. Basic Appl. Sci. 2020, 9, 45. https://doi.org/10.1186/s43088-020-00065-9

31. Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774-2779. https://doi.org/10.1021/jf001413m

32. Di Majo, D.; Giammanco, M.; La Guardia, M.; Tripoli, E.; Giammanco S.; Finotti E. Flavanones in citrus fruit: structure antioxidant activity relationships. Food Res. Int. 2005, 38, 1161-1166. https://doi.org/10.1016/j.foodres.2005.05.001

33. Benavente-Garcia, O.; Castillo, J. Update on uses and properties of Citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 2008, 56, 6185-6205. https://doi.org/10.1021/jf8006568

34. Sichel, G.; Corsaro, C.; Scalia, M.; Di Bilio, A.J.; Bonomo, R.P. In vitro scavenger activity of some flavonoids and melanins against O2•-. Free Radic. Biol. Med. 1991, 11, 1-8. https://doi.org/10.1016/0891-5849(91)90181-2

35. Di Majo, D.; La Neve, L.; La Guardia, M.; Casuccio, A.; Giammanco, M. The influence of two different pH levels on the antioxidant properties of flavonols, flavan-3-ols, phenolic acids and aldehyde compounds analysed in synthetic wine and in a phosphate buffer. J. Food Compost. Anal. 2011, 24, 265-269. https://doi.org/10.1016/j.jfca.2010.09.013

36. Cillard, J.; Cillard, P. Composes phenoliques et radicaux libres. S.T.P. Pharma 1988, 4, 592-596.

37. Rapisarda, P.; Tomaino, A.; Lo Cascio, R.; Bonina, F.; De Pasquale, A.; Saija, A. Effectiveness as influenced by phenolic content of fresh orange juices. J. Agric. Food Chem. 1999, 47, 4718-4723. https://doi.org/10.1021/jf9901111

38. Di Majo, D.; La Guardia, M.; Crescimanno, M.; Flandina, C.; Leto G.; Giammanco, M. Influence of flavonoids on the transmembrane electron transport: study ex-vivo. J. Biol. Res. 2015, 88, 59-60. https://doi.org/10.4081/jbr.2015.5161

39. Di Majo, D.; La Guardia, M.; Di Selafani, E.; Flandina, C.; Crescimanno, M.; Leto, G.; Giammanco, M. Influence of quercetin and luteolin on the activity of the catalase: Study ex vivo about erythrocytes in smokers and non-smokers. J. Biol. Res. 2015, 88, 61-62. https://doi.org/10.4081/jbr.2015.5161

40. Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 124-125. 10.1016/j.foodchem.2019.125124

41. Rathee, P.; Chaudhary, H.; Rathee, S.; Rathee, D.; Kumar, V.; Kohli, K. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm. Allergy Drug Targets. 2009, 8, 229-235. 10.2174/187152809788681029

42. Manthey, J.A.; Guthrie, N.; Grohmann, K. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 2001, 8: 135-153. 10.2174/0929867013373723

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
43. Da Silva, E.J.A.; Oliveira, A.S.; Lapa, A.J. Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. J. Pharm. Pharmacol. 1994, 46, 118-122. 10.1111/j.2042-7158.1994.tb03753.x

44. Sakata, K.; Hirose, Y.; Qiao, Z.; Tanaka, T.; Mori, H. Inhibition of inducible isoforms of cyclooxygenase and nitric oxide synthase by flavonoid hesperidin in mouse macrophage cell line. Cancer Lett. 2003, 199, 139-145. 10.1016/s0304-3835(03)00386-0

45. Lin, N., Sato, T., Takayama, Y., Mimaki, Y.; Sashida, Y.; Yano, M.; Ito, A. Novel anti-inflammatory actions of nobiletin, a citrus polymethoxy flavonoid, on human synovial fibroblasts and mouse macrophages. Biochem. Pharmacol. 2003, 65, 2065-2071. 10.1016/s0006-3835(03)00203-x

46. Huxley, R.R.; Neil, H.A.W. The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2003, 57, 904-908. 10.1038/sj.ejcn.1601624

47. Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, HM.; Sarker, S.D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Adv. Nutr. 2014, 5, 404-417. 10.3945/an.113.005603

48. Fuhrman, B.; Aviram, M. Flavonoids protect LDL from oxidation and attenuate atherosclerosis. Curr. Opin. Lipidol. 2001, 12, 41-48. 10.1097/00041433-200102000-00008

49. Naderi, G.A.; Asgary, S.; Sarraf-Zadegan, G.N.; Shirvany, H. Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol. Cell Biochem. 2003, 246, 193-196. PMID: 12841362

50. Mahmoud, A.M., Hernández Bautista, R.J., Mansur, A.; Sandhu, M.A.; Omnia, E.; Hussein, O.E. Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health. Oxid. Med. Cell. Longev. 2019, 19, 5484138. 10.1155/2019/5484138

51. Kurowska, E.M.; Borradaile, N.M.; Spence, J.D., Carroll, K.K. Hypocholesterolemic effects of dietary citrus juices in rabbits. Nutr. Res. 2000, 20, 121-129. https://doi.org/10.1016/S0271-5317(99)00144-X

52. Kim, H.K.; Jeong, T.S.; Lee, M.K.; Park, Y.B.; Choi, M.S. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin. Chim. Acta 2003, 327, 129-137. 10.1016/s0009-8981(02)00344-3

53. Chtourou, Y.; Fetouhi, H.; Jemai, R.; Slima, A.B.; Mohamed Makni, M.; Gdoura, R. Naringenin reduces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor κB pathway. Eur. J. Pharmacol. 2015, 746, 96-105. 10.1016/j.ejphar.2014.10.027

54. Kurowska, E.M.; Manthey, J.A. Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet induced hypercholesterolemia. J. Agric. Food Chem. 2004, 52, 2879-2886. 10.1021/jf035354z

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
55. Park, H.J.; Jung, U.J.; Cho, S.J.; Jung, H.K.; Shim, S.; Choi, M.S. Citrus unshiu peel extract ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic glucose- and lipid-regulating enzymes in db/db mice. J. Nutr. Biochem. 2013, 24, 419-427. 10.1016/j.jnutbio.2011.12.009

56. Lee, S.; Park, Y.B.; Bae, K.H.; Bok, S.H.; Kwon, Y.H.; Lee, E.S.; Choi, M.S. Cholesterol-lowering activity of naringenin via inhibition of 3- hydroxy-3-methylglutaryl coenzyme A reductase and acyl co-enzyme A: cholesterol acyltransferase in rats. Ann. Nutr. Metab. 1999, 43, 173-180. 10.1159/000012783

57. Lee, M.K.; Moon, S.S.; Lee, S.E.; Bok, S.H.; Jeong, T.S.; Park, Y.B.; Choi, M.S. Naringenin 7-O-cetyl ether as inhibitor of HMG-CoA reductase and modulator of plasma and hepatic lipids in high cholesterol-fed rats. Bioorg. Med. Chem. 2003, 11, 393-398. 10.1016/s0968-0896(02)00441-8

58. Chanet, A.; Milenkovic, D.; Deval, C.; Potier, M.; Constans, J.; Mazur, A.; Bennetau-Pelissero, C.; Morand, C.; Bérard A.M. Naringin, the major grapefruit flavonoid, specifically affects atherosclerosis development in diet-induced hypercholesterolemia in mice. J. Nutr. Biochem. 2012, 23, 469-477. 10.1016/j.jnutbio.2011.02.001

59. Lee, C.H.; Jeong, T.S.; Choi, Y.K.; Hyun, B.H.; Oh, G.T.; Kim, E.H.; Kim, J.R.; Han, J.I.; Bok, S.H. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem. Biophys. Res. Commun. 2001, 284, 681-88. 10.1006/bbrc.2001.5001

60. Lee, S.; Lee, C.H.; Moon, S.S.; Kim, E.; Kim, C.T.; Kim, B.H.; Bok, S.H.; Jeong, TS. Naringenin derivatives as anti-atherogenic agents. Bioorg. Med. Chem. Lett. 2003, 13, 3901-3. 10.1016/j.bmcl.2003.09.009

61. Mulvihill, E.E.; Assini, J.M.; Sutherland, B.G.; Di Mattia, A.S.; Khami, M.; Koppes, J.B.; Sawyez, C.G.; Whitman, S.; Huff, M.W. Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 742-748. 10.1161/ATVBAHA.109.201095

62. Oboh, G.; Bello, F.O.; Ademosun, A.O. Hypocholesterolemic properties of grapefruit (Citrus paradisi) and shaddock (Citrus maxima) juices and inhibition of angiotensin-1-convertingenzyme activity. J. Food Drug Anal. 2014, 22, 477-484. 10.1016/j.jfda.2014.06.005

63. Angelone, T.; Pasqua, T.; Di Majo, D.; Quintieri, A.M.; Filice, E.; Amadio, N.; Tota, B.; Giammannco, M.; Cerra, M.C. Distinct signalling mechanisms are involved in the dissimilar myocardial and coronary effects elicited by quercetin and myricetin, two red wine flavonols. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 362-371. 10.1016/j.numecd.2009.10.011

64. Mink, P.J.; Scrafford, C.G.; Barraj, L.M.; Harnack, L.; Hong, C.P.; Nettleton, J.A.; Jacobs, D.R. Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am. J. Clin. Nutr. 2007, 85, 895-909. 10.1093/ajcn/85.3.895

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
65. Aptekmann, N.P.; Cesar, T.B. Long-term orange juice consumption is associated with low LDL-cholesterol and apolipoprotein B in normal and moderately hypercholesterolemic subjects. Lipids Health Dis. 2013, 12, 119. https://doi.org/10.1186/1476-511X-12-119

66. Yamada, T.; Hayasaka, S.; Shibata, Y.; Ojima, T.; Saegusa, T.; Gotoh, T.; Ishikawa, S.; Nakamura, Y.; Kayaba, K. Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi Medical School cohort study. J. Epidemiol. 2011, 21, 169-75. 10.2188/jea.js20100084

67. Gorinstein, S.; Caspi, A.; Libman, I.; Lerner, H.T.; Huang, D.; Leontowicz, H.; Leontowicz, M.; Tashma, Z.; Katrich, E.; Feng, S.; Trakhtenberg, S. Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans. J. Agr. Food Chem. 2006, 54, 1887-1892. 10.1021/jf058171g

68. Miwa, Y.; Yamada, M.; Sunayama, T.; Mitsuzumi, H.; Tsuzaki, Y.; Chaen, H.; Mishima, Y.; Kibata, M. Effects of glucosyl hesperidin on serum lipids in hyperlipidemic subjects: preferential reduction in elevated serum triglyceride level. J. Nutr. Sci. Vitaminol. 2004, 50, 211-218. 10.3177/jnsv.50.211

69. Miwa, Y.; Mitsuzumi, H.; Sunayama, T.; Yamada, M.; Okada, K.; Kubota, M.; Chaen, H.; Mishima, Y.; Kibata, M. Glucosyl hesperidin lowers serum triglyceride level in hypertriglyceridemic subjects through the improvement of very low-density lipoprotein metabolic abnormality. J. Nutr. Sci. Vitaminol. 2005, 51, 460-470. 10.3177/jnsv.51.460

70. Jung, U.J.; Kim, H.J.; Lee, J.S.; Lee, M.K.; Kim, H.O.; Park, E.J.; Kim, H.K.; Jeong, T.S.; Choi, M.S. Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin. Nutr. 2003, 22, 561-568. 10.1016/s0261-5614(03)00059-1

71. Roza, J.M.; Xian-Liu, Z.; Guthrie, N. Effect of citrus flavonoids and tocotrienols on serum cholesterol levels in hypercholesterolemic subjects. Altern. Ther. Health Med. 2007, 13, 44-48. https://pubmed.ncbi.nlm.nih.gov/17985810/

72. Reshef, N.; Hayari, Y.; Goren, C.; Boaz, M.; Madar, Z.; Knobler, H. Antihypertensive effect of sweetie fruit in patients with stage I hypertension. Am. J. Hypertens. 2005, 8, 1360-63. 10.1016/j.amjhyper.2005.05.021

73. Morand, C.; Dubray, C.; Milenkovic, D.; Lioger, D.; Martin, J.F., Scalbert, A.; Mazur, A. Hesperidin contributes to the vascular protective effects of orange juice: a randomized crossover study in healthy volunteers. Am. J. Clin. Nutr. 2011, 93, 73-80. 10.3945/ajcn.110.004945

74. Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J.; Chen, H.; Pullikotil, P.; Senese, N.; Tesaur, M.; Lauro, D.; Cardillo, C.; Quon, M.J. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 2011, 96, 782-792. 10.1210/jc.2010-2879

75. Benavente-Garcìa, O.; Castillo, J.; Marin, F.R.; Ortuño, A.; Del Rio. J.A. Uses and properties of citrus flavonoids. J. Agric. Food Chem. 1997, 45, 4505-4515. https://doi.org/10.1021/jf970373s

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
76. Manach, C.; Regerat, F.; Texier, O.; Agullo, G.; Demigne, C.; Remesy, C. Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids. Nutr. Res. 1996, 16, 517-544. https://doi.org/10.1016/0271-5317(96)00032-2

77. Van Wauwe, J.; Goossens, J. Effects of antioxidants on cyclooxygenase and lipoxygenase activities in intact human platelets: Comparison with indomethacin and ETYA. Prostaglandins 1983, 26, 725-730. https://doi.org/10.1016/0090-6980(83)90057-6

78. Tseng, S.H.; Ko, W.C.; Ko, F.N.; Teng, C.M. Inhibition of platelet aggregation by some flavonoids. Thromb. Res. 1991, 64, 91-100. https://doi.org/10.1016/0090-6980(91)90028-E

79. Alcaraz, M.J; Ferrandiz, M.L. Modification of arachidonic metabolism by flavonoids. J. Ethnopharmacol. 1987, 21, 209-229. https://doi.org/10.1016/0378-8741(87)90101-2

80. Reyes-Farias, M.; Carrasco-Pozo, C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int. J. Mol. Sci. 2019, 20, 3177. https://doi.org/10.3390/ijms20133177

81. Shimoi, K.; Masuda, S.; Furogori, M.; Esaki, S. Kinae N. Radioprotective affect of antioxidative flavonoids in c-ray irradiated mice. Carcinogenesis. 1994, 15, 2669-2672. https://doi.org/10.1093/carcin/15.11.2669

82. Jeon, S.M.; Bok, S.H.; Jang, M.K.; Nam K.T.; Park Y.B.; Rhee S.J.; Choi M.S. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci. 2001, 69, 2855-2866. https://doi.org/10.1016/S0024-3205(01)01363-7

83. So, F.V.; Guthrie, N.; Chambers, A.F.; Moussa, M.; Carroll, K.K. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr. Cancer 1996, 26, 167-181. https://doi.org/10.1080/01635589609514473

84. Wesolowska, O.; Wisniewski, J.; roda-Pomianek, K.S.; Bielawska-Pohl, A.; Paprocka, M.; Dus, D.; Duarte, N.; Ferreira, M.J.U.; Michalak K. Multidrug Resistance Reversal and Apoptosis Induction in Human Colon Cancer Cells by Some Flavonoids Present in Citrus Plants. J. Nat. Prod. 2012, 75, 1896-1902. https://doi.org/10.1021/np3003468

85. Scambia, G.; Ranelletti, F.O.; Benedetti-Panici, P.; De Vincenzo, R.; Bonanno, G.; Ferrandina, G.; Piantelli, M.; Bussa, S.; Rumi, C.; Cianfriglia, M.; Mancuso, S. Quercetin potentiates the effect of adri-
amycin in a multidrug-resistant MCF-7 human breast cancer cell line: P-glycoprotein as a possible target. Cancer Chemother. Pharmacol. 1994, 34, 459-464. https://doi.org/10.1007/BF00685655

89. Manthey, J.A.; Guthrie, N. Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem. 2002, 50, 5837-5843. https://doi.org/10.1021/jf020121d

90. Larocca, L.M.; Piantelli, M.; Leone, G.; Sica, S.; Teofili, L.; Benedetti Panici, P.; Scambia, G.; Mancuso, S.; Capelli, A.; Ranelletti, F.O. Type II oestrogen binding sites in acute lymphoid and myeloid leukaemias: Growth inhibitory effect of oestrogen and flavonoids. Br. J. Haematol. 1990, 75, 489-495. https://doi.org/10.1111/j.1365-2141.1990.tb07787.x

91. Yoshida, M.; Sakai, T.; Hosokawa, N.; Marui, N.; Matsumoto, K.; Fujioka, A.; Nishino, H.; Aoike A. The effect of quercetin on cell-cycle progression and growth of human gastric cancer cells. FEBS Lett. 1990, 260, 10-13. 10.1016/0014-5793(90)80053-1

92. Scambia, G.; Ranelletti, F.O.; Benedetti-Panici, P.; Piantelli, M.; Bonanno, G.; De Vincenzo, R.; Ferrandina, G.; Rumi, C.; Larocca, L.M.; Mancuso, S. Inhibitory effect of quercetin on OVCA 433 cells and presence of type II oestrogen binding sites in primary ovariun tumors and cultured cells. Br. J. Cancer 1990, 62, 942-946. 10.1038/bjc.1990.414

93. Feletto, E.; Yu, X.Q.; Lew, J.B.; St John, JB.; Jenkins, M.A.; Macrae, F.A.; Mahady, S.E.; Canfell, K. Trends in Colon and Rectal Cancer Incidence in Australia from 1982 to 2014: Analysis of Data on Over 375,000 Cases. Cancer Epidemiol. Biomarkers Prev. 2019, 28, 83-90. 10.1158/1055-9965.EPI-18-0523

94. Miyamoto, S.; Yasui, Y.; Tanaka, T.; Ohigashi, H.; Murakami, A. Suppressive effects of nobiletin on hyperleptinemia and colitis related colon carcinogenesis in male iCRmice. Carcinogenesis 2008, 29, 1057-1063. https://doi.org/10.1093/carcin/bgn080

95. Miyamoto, S.; Yasui, Y.; Ohigashi, H.; Tanaka T.; Murakami A. Dietary flavonoids suppress azoxymethane-induced colonic preneoplastic lesions in male C57BL/KsJ-db/db mice. Chem. Biol. Interact. 2010, 183, 276-283. https://doi.org/10.1016/j.cbi.2009.11.002

96. Lai, C.S.; Li S.; Liu C.B.; Miyauchi, Y.; Suzawa, M.; Ho, C.T.; Pan, M.H. Effective suppression of azoxymethane-induced aberrant crypt foci formation in mice with citrus peel flavonoids. Mol. Nutr. Food Res. 2013, 57, 551-555. https://doi.org/10.1002/mnfr.201200606

97. Murthy, K.N.C.; Kim, J.; Vikram, A.; Patil, B.S. Differential inhibition of human colon cancer cells by structurally similar flavonoids of citrus. Food Chem. 2012, 132, 27-34. https://doi.org/10.1016/j.foodchem.2011.06.014

98. Au, A.; Li, B.; Wang, W.; Roy, H.; Koehler K.; Birt D. Effect of dietary apigenin on colonic ornithine decarboxylase activity, aberrant crypt foci formation, and tumorigenesis in different experimental models. Nutr. Cancer 2006, 54, 243-251. https://doi.org/10.1207/s15327914nc5402_11

99. Aranganathan, S.; Selvam, J.P.; Nalini, N. Effect of hesperetin, a citrus flavonoid, on bacterial enzymes and carcinogen-induced aberrant crypt foci in colon cancer rats: a dose-dependent study. J. Pharm. Pharmacol. 2008, 60, 1385-1392. 10.1211/jpp/60.10.0015

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
100. Leonardi, T.; Vanamala, J.; Taddeo S.S.; Davidson, L.A.; Murphy, M.E.; Patil, B.S.; Wang, N.; Carroll, R.J.; Chapkin, R.S.; Lupton, J.R.; Turner, N.D. Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp. Biol. Med. 2010, 235, 710-717. https://doi.org/10.1258/ebm.2010.009359

101. Hoensch, H.; Groh, B.; Edler, L.; Kirch W. Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J. Gastroenterol. 2008, 14, 2187-2193. 10.3748/wjg.14.2187

102. Jaganathan, S.K.; Vellayappan, M.V.; Narasimhan, G.; Supriyanto, E. Role of pomegranate and citrus fruit juices in colon cancer prevention. World J. Gastroenterol. 2014; 20:4618-4625. 10.3748/wjg.v20.i16.4618

103. Torre, L.A.; Siegel, R.L.; Jemal, A. Lung Cancer Statistics. In: Lung Cancer and Personalized Medicine. Adv. Exp. Med. Biol. 2016, 893, 1-19-. https://doi.org/10.1007/978-3-319-24223-1_1

104. Christensen, K.Y.; Naidu, A.; Parent, M.E.; Pintos, J.; Abrahamowicz, M.; Siemiatycki, J.; Koushik, A. The risk of lung cancer related to dietary intake of flavonoids. Nutr. Cancer 2012, 64, 964-74. https://doi.org/10.1080/01635581.2012.717677

105. Le Marchand, L.; Murphy, S.P.; Hankin, J.H.; Wilkens, L.R.; Kolonel, L.N. Intake of Flavonoids and Lung Cancer. J. Natl. Cancer Inst. 2000, 92, 154-160. https://doi.org/10.1093/jnci/92.2.154

106. Luo, G.; Guan, X.; Zhou, L. Apoptotic effect of citrus fruit extract nobiletin on lung cancer cell line A549 in vitro and in vivo. Cancer Biol. Ther. 2008, 7, 966-973. https://doi.org/10.4161/cbt.7.6.5967

107. Park, K.I.; Park, H.S.; Kim, M.K.; Hong, G.E.; Nagappan, A.; Lee, H.J.; Yumnam, S.; Lee, W.S.; Won, C.K.; Shin, S.C.; Kim, G.S. Flavonoids identified from Korean Citrus aurantium L. inhibit Non-Small Cell Lung Cancer growth in vivo and in vitro. J. Funct. Foods 2014, 7, 287-29. https://doi.org/10.1016/j.jff.2014.01.032

108. Suntar, I.; Khan, H.; Patel, S.; Celano, R.; Rastrelli, L. An Overview on Citrus aurantium L.: Its Functions as Food Ingredient and Therapeutic Agent. Oxid. Med. Cell. Longev. 2018, 2018, 7864269. https://doi.org/10.1155/2018/7864269

109. Bruno, A.; Siena, L.; Gerbino, S.; Ferraro, M.; Chanez, P.; Giammanco, M.; Gjomarkaj, M.; Pace, E. Apigenin affects leptin/leptin receptor pathway and induces cell apoptosis in lung adenocarcinoma cell line. Eur. J. Cancer 2011, 47, 2042-2051. https://doi.org/10.1016/j.ejca.2011.03.034

110. Sak, K. Epidemiological Evidences on Dietary Flavonoids and Breast Cancer Risk: A Narrative Review. Asian Pac. J. Cancer Prev. 2017, 18, 2309-2328. 10.22034/APJCP.2017.18.9.2309

111. Hitomi, T.; Hiroyuki, S.; Shunsuke, Y.; Kayoko, S. Breast Cancer and Flavonoids - A Role in Prevention. Curr. Pharm. Des. 2013, 19, 6125-6132. 10.2174/1381612811319340006

112. La Guardia, M.; Giammanco, M. Breast cancer and obesity. Panminerva Med. 2001, 43, 123-133. PMID: 11449184

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
113. So, F.V.; Guthrie, N.; Chambers, A.F.; Chambers, A.F.; Madeleine Mouss M.; Carroll K.K. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr. Cancer 1996, 26, 167-181. https://doi.org/10.1080/01635589609514473

114. Martinez-Perez, C.; Ward, C.; Turnbull, A.K.; Mullen, P.; Cook, G.; Meehan, J.; Jarman, E.J.; Thomson, P.I.T.; Campbell, C.J.; McPhail, D.; Harrison, D.J.; Simon P Langdon, S.P. Anti-tumour activity of the novel flavonoid Oncamex in preclinical breast cancer models. Br. J. Cancer 2016, 114, 905-916. https://doi.org/10.1038/bjc.2016.6

115. Sergeev, I.N.; Ho, C.T.; Li, S.; Colby, J.; Dushenkov, S. Apoptosis-inducing activity of hydroxylated polymethoxyflavones and polymethoxyflavones from orange peel in human breast cancer cells. Mol. Nutr. Food Res. 2007, 51, 1478-1484. https://doi.org/10.1002/mnfr.200700136

116. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394-424. https://doi.org/10.3322/caac.21492

117. Sepporta, M.V.; Tumminello, F.M.; Flandina, C.; Crescimanno, M.; Giammanco, M.; La Guardia, M.; Di Majo, D.; Leto, G. Follistatin as potential therapeutic target in prostate cancer. Targ. Oncol. 2013, 8, 215-222. Inizio modulo 10.1007/s11523-013-0268-7

118. Wang, Y.; Stevens, V.L.; Shah, R.; Peterson, J.J.; Dwyer, J.T.; Gapstur, S.M.; McCullough, M.L. Dietary Flavonoid and Proanthocyanidin Intakes and Prostate Cancer Risk in a Prospective Cohort of US Men. Am. J. Epidemiol. 2014, 179, 974-986. https://doi.org/10.1093/aje/kwu006

119. Haddad, A.Q.; Venkateswaran, V.; Viswanathan, L.; Teahan, S.J.; Fleschner, N.E.; L Klotz, H. Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. Prostate Cancer P. D. 2006, 9, 68-76. 10.1038/sj.pcan.4500845

120. Gao, K.; Henning, S.M.; Niu, Y.; Yousefian, A.A.; Seeram, N.P.; Xu, A. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J. Nutr. Biochem. 2006, 17, 89-95. 10.1016/j.jnutbio.2005.05.009

121. Lee, C.J.; Wilson, L.; Jordan, M.A.; Nguyen, V.Y.; Tang, J.; Smiyun G. Hesperidin suppressed proliferations of both Human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res. 2010, 24, 15-19. 10.1002/pr.2856

122. Chen, J.A.; Creed, A.; Chen, A.Y.; Huang, H.; Li, Z.; Rankin, G.O.; Ye, X.; Xu, G.; Chen, Y.C. Nobiletin suppresses cell viability through AKT Pathways in PC-3 and DU-145 prostate cancer cells. BMC Pharmacol. Toxicol. 2014, 15, 59. https://doi.org/10.1186/2050-6511-15-59

123. Xu, R.; Zhang, Y.; Ye, X.; Xue, S.; Shi, J.; Pan, J.; Chen, Q. Inhibition effects and induction of apoptosis of flavonoids on the prostate cancer cell line PC-3 in vitro. Food Chem. 2013, 138, 48-53. 10.1016/j.foodchem.2012.09.102

124. Lai, C.S.; Li, S.; Miyachi, Y.; Suzawa, M.; Ho, C.T.; Pan, M.H. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors. Food Funct. 2013, 4, 944-9. 10.1039/c3fo60037h

This article has been accepted for publication but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the final one. Please cite this article as doi: 10.4081/jbr.2022.10313
125. Pellegriti, G.; Frasca, F.; Regalbuto, C.; Squatrito, S.; Vigneri, R. Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors. J. Cancer Epidemiol. 2013, 10, 965212. 10.1155/2013/965212

126. Giammanco, M.; Di Gesuè, G.; Massenti, M.F.; Di Trapani, B., Vetri, G. Role of color flow Doppler sonography in pre-operative diagnostics of the thyroid pathology. Minerva Endocrinol. 2002, 27, 1-10. PMID: 11845109

127. Gonçalves, C.F.L.; de Freitas, M.L.; Ferreira, A.C.F. Flavonoids, thyroid iodide uptake and thyroid cancer-a review. Int. J. Mol. Sci. 2017, 18, 1247.

128. Allegri, L.; Rosignolo, F.; Mio, C.; Filetti, S.; Baldan, F.; Damante, G. Effects of nutraceuticals on anaplastic thyroid cancer cells. J. Cancer Res. Clin. Oncol. 2018, 144, 285-294. 10.1007/s00432-017-2555-7

129. Celano, M.; Maggisano, V.; De Rose, F.; Bulotta, S.; Maiuolo, J.; Navarra, M. Flavonoid fraction of Citrus Reticulata juice reduces proliferation and migration of anaplastic thyroid carcinoma cells. Nutr. Cancer 2015, 67, 1183-1190. https://doi.org/10.1080/01635581.2015.1073760

130. Patel, P.N.; Yu, X.M.; Jaskula-Sztul, R.; Chen, H. Hesperetin activates the Notch1 signaling cascade, causes apoptosis, and induces cellular differentiation in anaplastic thyroid cancer. Ann. Surg. Oncol. 2014, 21, 497-504. 10.1245/s10434-013-3459-7

131. Ciumârnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, S.C.; Râchis, A.L.; Negrean, V.; Perné, M.G.; Donca, V.I.; Alexescu, T.G.; Para, I.; Dogaru, G. The Effects of Flavonoids in Cardiovascular Diseases. Molecules 2020, 25, 4320.

132. Lafuente, A.G.; Guillamón, E.; Villares, A.; Rostagno, M.A.; José Alfredo Martinez, J.A. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537-552. 10.1007/s00011-009-0037-3

133. Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y. Antiatherosclerotic Effects of Plant Flavonoids. Bio. Med. Res. Int. 2014, 11, 480258. https://doi.org/10.1155/2014/480258

134. Park, E.J.; Pezzuto, J.M. Flavonoids in Cancer Prevention. Anti-Cancer Agent. 2012, 12, 836-851. 10.2174/187152012802650075

135. Scarpa, E.S., Giammanco, M., Magnani, M. Gastrointestinal Tumors: Phytochemical and Drug Combinations Targeting the Hallmarks of Cancer. Appl. Sci. 2021, 11, 10077. https://doi.org/10.3390/app112110077

136. Cantarella, C.D.; Ragusa, D.; Giammanco, M.; Tosi, S. Folate deficiency as predisposing factor for childhood leukaemia: a review of the literature. Genes Nutr. 2017, 12, 14. https://doi.org/10.1186/s12263-017-0560-8
137. Araujo, F.; Gouvinhas, C.; Fontes, F., La Vecchia, C.; Azevedo, A. Trends in cardiovascular diseases and cancer mortality in 45 countries from five continents (1980-2010). Eur. J. Prev. Cardiol. 2014, 21, 1004-1017. 10.1177/2047487313497864