Local and landscape drivers of aquatic-to-terrestrial subsidies in riparian ecosystems: a worldwide meta-analysis

Lafage D.¹, Bergman E.¹, Eckstein R. L.¹, Österling M.¹, Sadler J.P.² and Piccolo JJ.¹

¹: Karlstad University. Department of Environmental and Life Sciences / Biology
²: School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, United Kingdom

Abstract

Cross-boundary fluxes of organisms and matter, termed “subsidies”, are now recognized to be reciprocal and of roughly equal importance for both aquatic and terrestrial systems, even if terrestrial input to aquatic ecosystems has received most attention. The magnitude of aquatic to terrestrial subsidies is well documented, but the drivers behind these subsidies and their utilization by terrestrial consumers are characteristically local scale studies, limiting the inferences that can be drawn for broader geographic scales. We therefore built and analyzed a database of stable isotope data extracted from 21 studies worldwide, to identify both landscape and local scale variables that may affect the diet of terrestrial predators in riparian ecosystems. Our meta-analysis revealed a greater magnitude of aquatic-to-terrestrial subsidies (> 50%) than previously reported, albeit with large geographic and inter-annual variations. We demonstrated a large effect of landscape-scale factors on aquatic-to-terrestrial subsidies, particularly anthropogenic land use and tree cover. Local human population was the only relevant factor at the local scale. We also found that studies on landscape-scale and anthropogenic land use effects on aquatic-to-terrestrial subsidies are currently strongly under-represented in the ecological literature. Such studies are needed to improve our understanding of how land
use and environmental change might influence future patterns of biodiversity and ecosystem function.

Key words: anthropogenic land use, aquatic subsidies, diet, human population, stable isotopes, terrestrial predators

Introduction

Decades of research have demonstrated and quantified the tight linkages between aquatic and terrestrial ecosystems (Fisher and Likens 1973, Bartels et al. 2012). Cross-boundary fluxes connecting ecosystems, usually termed “subsidies” (Polis et al. 1997b), can be organisms, energy, or nutrients. Terrestrial-to-aquatic subsidies in the form of litter and organic matter are essential for aquatic ecosystem function (reviewed by Tank et al. 2010) and terrestrial prey subsidies also have important effects on riverine food-webs (Polis and Hurd 1996, Nakano and Murakami 2001, Erős et al. 2012, Gustafsson et al. 2014). More recently, research has focused on reciprocal subsidies between aquatic and terrestrial ecosystems (Baxter et al. 2005, Schindler and Smits 2017). Although the amount of terrestrial-to-aquatic prey subsidies often is greater than the reverse, their overall contribution to the carbon budget of predators is similar (Bartels et al. 2012). Thus, the most recent picture to emerge is that of tightly-coupled, roughly reciprocal aquatic-terrestrial ecosystems, at least at the local scale at which most studies have taken place.

One of the remaining key challenges for understanding the ecology of cross-boundary fluxes is to determine at which scales and to what extent the structure of the surrounding terrestrial landscape affects the magnitude and the importance of aquatic-to-terrestrial subsidies (Marcarelli et al. 2011). At the local scale (100 m buffer), landscape structure
has an impact on predator diet by facilitating or preventing subsidies from entering recipient ecosystems (Greenwood 2014, Muehlbauer et al. 2014). At the landscape (catchment) scale, ecosystem size (McHugh et al. 2010, Jackson and Sullivan 2017) and land use (Stenroth et al. 2015, Carlson et al. 2016) have recently more attention. Studies focusing on the effect of ecosystem size and land use on riparian ecosystem food webs, however, remain scarce (e.g. Marczak et al., 2007; Schindler and Smits, 2017). Land use, at local and landscape scales, influences the composition and biomass of both aquatic insect communities (via water quality, terrestrial subsidies and canopy cover: Dolédec et al., 2006; Schindler and Smits, 2017; and predator communities: Hendrickx et al., 2007; Lafage et al., 2015). On the other hand, ecosystem size, by integrating the effects of spatial heterogeneity, disturbance and productivity, is a strong predictor of food chain length (Sabo et al. 2010). To gain a better understanding of broader-scale ecological processes, comparative studies of aquatic-terrestrial ecosystems at the catchment scale are needed.

In this study, we conducted a worldwide meta-analysis of studies that have assessed aquatic-to-terrestrial subsidies using stable isotopes. We quantified the effects of ecosystem size, stream morphology and land use on aquatic subsidies to terrestrial predators. First, we estimated the overall proportion of aquatic subsidies in the diet of several groups of terrestrial predators, and tested whether the proportion of these prey was significantly higher than that of terrestrial prey. We hypothesised that the proportion of aquatic subsidies varied between taxonomic groups of predators, hydrological system type (hydro-ecoregion) and year. Next, we assessed the relative importance of biotic and abiotic variables at local- and landscape- scales (100 m buffers and catchments,
respectively) for the proportion of aquatic subsidies in the diet of spider and carabid beetle predators. We hypothesised that landscape-scale variables related to anthropogenic land use would be of at least equal importance in explaining predators’ diets as commonly-assessed local-scale variables.
Methods

Our meta-analysis focused on the use of aquatic subsidies by terrestrial predators. We restricted the subsidies to aquatic organisms actively crossing the boundary between aquatic and terrestrial ecosystems (i.e. macro-invertebrates). All predators consuming aquatic macro-invertebrates were included. In order to get a more accurate estimation of the proportion of aquatic subsidies in the diet of predators, we restricted our meta-analysis to studies using stable isotopes, which integrate the use of prey types over a longer period of time than do stomach content analyses (Tieszen et al. 1983).

Data retrieval

We searched the Web of Science and Google Scholar for studies focusing on riparian habitats and using stable isotopes as a tool to infer the contribution of aquatic prey to the diet of terrestrial predators. The keywords used were “aquatic subsidies” AND “stable isotope” AND “diet”, which gave 69 results. From these 69 articles we refined the selection in several steps. First, a selection was made based on words in the title and a second one on words in the abstract. We then screened the bibliography of the selected studies to find new references and iterated this search procedure until we did not find any new documents. This procedure reduced the 69 papers to 47. At last, a selection of studies was based on the number of sampling sites and replicates in the different studies, i.e. we kept studies with at least two sampling sites or studies with repeated measurements in time and studies including sampling of two predator species.

As studies using experimental manipulation of subsidies (and using stable isotopes) were very rare, descriptive studies were also included. Studies on predators’ diet based on
stable isotopes include a great variety of techniques used to partition the diet between aquatic and terrestrial prey (mainly linear mixing models vs Bayesian mixing models), and great differences in the assumed isotope fractionation between trophic levels. To overcome this issue we (re)-calculated the percentage of aquatic prey in the diet of predators using the same Bayesian mixing model and fractionation values. Using the same fractionation values for all studies was essential as Bayesian mixing models may be highly sensitive to the value used (Bond and Diamond 2011). Consequently, we rejected studies in which the mean and standard deviation of δ13C and δ15N for consumers and prey per sampling site could not be extracted. The final data set consisted of 21 studies (Table 1). Data were retrieved from tables, supplementary material, figures (using WebPlotDigitizer) or by contacting the authors.

Response variable

The proportion of aquatic subsidies in predators’ diet was inferred using two-source Bayesian mixing models. Inputs to the models were means and standard deviations for δ13C and δ15N of aquatic and terrestrial preys with fractionation values recommended by McCutchan et al. (2003). In some studies, δ13C and δ15N values were only available for basal sources (algae and terrestrial litter). In these cases, trophic fractionation was estimated using the per trophic step fractionation multiplied by the estimated number of trophic transfers between the consumer and basal resources. This number was estimated as the difference between the consumer δ15N and mean basal resource δ15N divided by 3.4‰ (McHugh et al. 2010, Jackson and Sullivan 2017). When raw data for stable isotope were available for consumers, we used the simmr package (Parnell et al. 2013, Parnell 2016) to infer the proportion of aquatic vs terrestrial subsidies in diet. When only
means and standard errors were available we used a modified version of the JAGS
models used by Parnell et al. (2013) to include standard error of the consumer isotope
values as a prior of the model. Source aggregation (terrestrial vs aquatic) was made \textit{a priori} as the number of sources included in models was variable between studies, which
is problematic for \textit{a posteriori} aggregations if one wants to compare diets (Stock et al.
2018). We chose not to give any prior to the proportion of aquatic preys in diet
(generalist diets) which means that all possible combinations of proportions of aquatic
and terrestrial preys were likely \textit{a priori} (Stock et al. 2018).

\textbf{Predictors}

The catchment draining to each sampling location was delineated using QGIS 2.18.18
(Quantum GIS Development Team 2017) and GRASS (GRASS Development Team
2017) plugin \texttt{r.watershed} from a 30 m resolution digital elevation model (Shuttle Radar
Topography Mission (SRTM) 1 Arc-Second Global, LP DAAC). Predictors were
extracted at local (100 m buffer) and landscape (catchment) scales. At the landscape
scale, the predictors were catchment perimeter-to-area (a function of size, shape, and
fractal irregularity or folding of the edge: Polis et al., 1997a); percentage cover of
agriculture, forests, non-forested natural habitats (bare ground, herbaceous, shrubs), open
waters (lakes and meadows) and urban areas; mean percent tree cover (a measure of
canopy cover); and mean human population. At the local scale, the predictors were river
width; meandering ratio over 1 km upstream; land use class; mean percent tree cover; and
mean human population.
Land use data were extracted from GLCNMO v3 (Tateishi et al. 2014). Percent tree cover was extracted from PTC V2 (Geospatial Information Authority of Japan, Chiba University and collaborating organizations). Mean human population was extracted from Gridded Population of the World, Version 4 (Center for International Earth Science Information Network, 2016). River width and meandering ratio were extracted under GIS using google maps satellite imagery. To take into account the possible influence of climate, location and local biodiversity, each sampling site was assigned to a freshwater ecoregion according (Abell et al. 2008).

Statistical analysis

We used the proportion of aquatic subsidies in the diet minus 0.5 as an effect-size to test for differences between proportion of aquatic and terrestrial subsidies in the diet of the terrestrial predators. Freshwater ecoregion, sampling year and taxonomic group of the predators were included in the model as fixed factors. We used the metafor package (Viechtbauer 2010) with restricted maximum-likelihood estimator to test the effect-size.

The selection of landscape and local variables best explaining the proportion of aquatic subsidies in predators’ diet was done using partial least square regression (PLS) on mean % of aquatic subsidies in the diet per sampling site. Given the low number of studies available for some groups (Table 1), the PLS were only performed for spiders and carabid beetles. Freshwater ecoregion and sampling year were also included in the model as moderators. PLS regression extracts orthogonal components (latent variables maximizing the explained variance in the dependent variables) from a set of variables (Eriksson et al. 2006) and are particularly useful when dealing with correlated predictors (Carrascal et al. 2009), which is often the case for land use variables. The number of
components to be kept was determined based on \(Q^2\) value with a M-fold cross-validation approach. Eriksson et al. (2006) recommend a ‘variable importance on the projection’ (VIP) greater than 1 for identifying the most important predictors. Predictors with \(0.8<\text{VIP}<1\) explain only some variation in the model and predictors with \(0.8<\text{VIP}\) are considered non-explicative. Weights of the variables (loading values) describe the direction and strength of the relationship between predictor and dependent variables. The PLS were performed using mixOmics package for R (Le Cao et al. 2017). As we expected different scale effects according to taxonomic group, the PLS were performed separately for each group.

Dataset and code are available on the Open Science Framework repository (DOI 10.17605/OSF.IO/T6EYP).

Results

Dataset description

The final dataset resulted in 21 studies representing 159 sampling sites and 400 diets (Table 1). This corresponds to almost half of the studies initially selected. Twenty-six studies could not be used, mainly because they did not report data in a suitable format and quality for analysis of diet partitioning. Among these 21 studies, two were not used in the PLS because we could not locate the sampling sites with enough accuracy. Spiders and carabid beetles were the two most studied groups whose diets were estimated in 51.3% and 41.6% of the studies, respectively. The studies were mainly located in the northern hemisphere with cold or temperate climates (Fig. 1 and Table 1).
Study site locations were strongly biased toward small forested catchments with very low human population density and urbanization extent and located mainly in the northern hemisphere (Fig. 2 and 3). Conversely, a few studies were also located in rivers with very large catchments or/and high human population.

Predator’s reliance on aquatic subsidies

The contribution of aquatic subsidies was significantly higher than 50% (effect size = 0.07, CI 95%: 0.013 – 0.13: fig. 4). Our model accounted for 95.3% of the heterogeneity in diet ($R^2 = 95.3$, $Q= 207.5$, df = 19, $p < 0.001$) with a significant overall effect of moderators ($Q_M = 272.7$, df = 23, $p < 0.001$). Sampling year and freshwater ecoregion both had a significant effect ($Q_M = 76.4$, df = 4, $p < 0.001$ for year and $Q_M = 168.8$, df = 15, $p < 0.001$ for ecoregion). The predator taxonomic group effect was not significant ($Q_M = 7.88$, df = 4, $p = 0.096$), whereas the test for residual heterogeneity was significant ($Q_E = 63.5$, df = 3, $p < 0.0001$), and most of the unaccounted variance is due to residual heterogeneity ($I^2 = 95.3$%).

Predictors of aquatic subsidies contribution

In the PLS regression model for spiders (two components: $R^2 = 0.394$ and $R^2 = 0.460$), the mean human population at both local scale and landscape scale as well as the percentage of agriculture at the landscape scale were the most important variables related to a high proportion of aquatic prey. In contrast, the percentage of non-forested natural habitats and open waters were related to low percentage of aquatic prey (fig 5). Despite high loading value, the percentage of open waters was weakly correlated to the percent of aquatic prey in the diet.
In the PLS regression model for carabid beetles (two components: $R^2 = 0.112$ and $R^2 = 0.041$), percent tree cover, forests, and water bodies at the landscape scale were the most important variables for low proportion of aquatic prey. The percentage of non-forested natural habitats, urban areas and agriculture at the landscape scale and the river width of the local scale were most important variables for high proportion of aquatic prey (fig. 6).

Discussion

Our study extends recent findings that demonstrate high levels of aquatic-to-terrestrial subsidies in riparian ecosystems (Bartels et al. 2012), improving both the resolution of subsidy quantification, and allowing inferences at broader ecological scales. Our meta-analysis also provides some of the strongest evidence to date of widespread effects of anthropogenic land use on the riparian food webs. These effects seem to be prevalent at the landscape scale, probably the most relevant scale for understanding the role of aquatic-terrestrial linkages for land management practices, such as proposed land use conversion or biodiversity conservation (Carpenter and Biggs 2009). Despite the general pattern of high aquatic subsidies use by terrestrial predators, we also documented significant inter-annual and geographic variations in these subsidies, largely driven by hydrologic cycles and ecoregion, respectively.

We found the diet of riparian predators to be highly dependent on aquatic subsidies ($> 50\%$, overall effect size = 0.07). Since we re-computed diet partitioning from raw data to reduce mixing-model and discrimination-factor biases (Bond and Diamond 2011), our estimate is likely the most robust to date. This suggests that, in general, the proportion of aquatic subsidies in predator diets may be even higher than the 40% reported in Bartels et
al.’s (2012) meta-analysis. We could not find any significant effect of predator taxonomic group, which might be due to the small number of studies dealing with groups other than carabid beetles and spiders. Given the wide geographic spread of our analysis and the pattern of high proportion of aquatic-derived carbon across the study sites, it seems likely that most predator taxa in riparian systems rely on these subsidies for more than 50% of their diet.

Perhaps unsurprisingly, we also found significant temporal (inter-annual) and spatial (ecoregion) variation in aquatic-to-terrestrial subsidies across the broad geographic scale of our study. Inter-annual climate-driven effects on stream hydrology (droughts vs floods) may have important impacts on aquatic and riparian communities (Power et al. 2008, Lafage et al. 2015b, Lafage and Pétillon 2016), and on aquatic and terrestrial food webs (Marks et al. 2000, O’Callaghan et al. 2013). Thus, inter-annual variation in hydrologic conditions act as a filter on functional traits of species and determines e.g. functional length of the riparian food chains. The significant effect of ecoregion on aquatic-to-terrestrial subsidies is probably due to region-specific differences in species communities, driven by both physical and ecological processes (Abell et al. 2008). It has been suggested that aquatic subsidy composition (especially through changes in species traits) is a key factor for resource use in the recipient system (Stenroth et al., 2015). Also, changes in predator communities might result in changes in species richness and functional diversity affecting the ability of predators to capture aquatic preys (e.g. for birds: Philpott et al. 2009).

Numerous studies have demonstrated the importance of landscape-scale processes on ecological status (e.g. Allan, 2004) and macro-invertebrate communities (aquatic:
The relative importance of landscape- versus local-scale factors, however, is still under debate (Sandin and K. Johnson 2004, Stoll et al. 2016). In our study, the proportion of aquatic subsidies in terrestrial predator diets was almost exclusively related to landscape scale variables; the only significant local variable being human population. This was surprising, as many studies have highlighted the role of local vegetation (Tagwireyi and Sullivan, 2016), land use (Stenroth et al., 2015) and stream morphology (Iwata 2007, Muehlbauer et al. 2014). Our results could be related to the low resolution of our vegetation-related local variables, which were extracted from satellite data within a 100 m buffer. Nevertheless, variables related to stream morphology were not selected, although habitat geometry has been found to be the best predictor of trophic flow rate across habitat boundaries (Polis et al. 1997a).

At the landscape scale, ecosystem size did not explain the proportion of aquatic-terrestrial subsidies in predator diets. This may be due to the fact that the importance of ecosystem size and the direction of its relationship to predator diets can be system-specific, as conflicting relationships have been reported (Iwata, 2007, Stenroth et al. 2015, Jackson and Sullivan 2017). In our study, agricultural land use and urbanization, however, did have strong and consistent effects on terrestrial consumer diet which might be driven by either direct or indirect effects. First, by decreasing water quality, agriculture and urbanization usually directly affect the composition and quantity of aquatic subsidies (Carlson et al. 2016), shifting towards more and smaller species and resulting in better prey availability for smaller terrestrial predators (Stenroth et al. 2015). Second, land use changes may affect the amount and quality of terrestrial-to aquatic subsidies thereby
indirectly influencing reciprocal aquatic-to-terrestrial subsidies (Nakano et al. 1999, Krell
et al. 2015).

Habitat openness had opposite effects on spider and carabid diets so that spiders relied
more on aquatic subsidies in forested catchments whereas carabids did the opposite.
Riparian carabid beetles are usually small flattened winged species (O’Callaghan et al.
2013) more likely to capture small preys favored by open habitat (Carlson et al. 2016).
Conversely, typical riparian spiders in forested catchment are large web-building spiders
(e.g. *Tetragnatha* sp.) that are able to catch and consume large flying preys favored by
forested habitats. Several studies have highlighted body size–trophic level linkages (e.g.
(Cohen et al. 2003). A positive relationship between prey body-size and *Tetragnatha* use
of aquatic subsidies has been previously demonstrated (Tagwireyi and Sullivan 2015).

Finally, both groups’ uses of aquatic subsidies were negatively related to the percentage
of lakes at the landscape scale. Jonsson et al. (2018) recently found black fly larvae
autochthony to be positively related to the lake proportion in river. In our case, it is most
likely a geographical artefact. Sites located in Sweden presented the largest proportion of
lakes and the smallest proportion of aquatic subsidies in predator’s diet.

The literature on insect emergence is heavily biased towards small streams (Muehlbauer
et al. 2014, Schindler and Smits 2017). We found the same pattern, plus a geographical
bias, for studies on predators’ diet using stable isotopes. Most of the studies we used were
located in the northern hemisphere, in small-forested catchments with low proportions of
agriculture or urbanization (except for studies specifically dealing with the impact of
these land use related variables). As agriculture represents the main land use type in
many developed catchments (Allan 2004) and urban land use exerts a disproportionately
large influence on aquatic systems (Paul and Meyer 2001) we call for the development of
studies on large rivers, and on catchment impacted by agriculture and urbanization.
Studies are also needed on southern hemisphere streams.

Our study is the first worldwide meta-analyses to use exclusively stable isotope studies in
order to better integrate the temporal component of terrestrial predator diets. We
demonstrated a high reliance (more than 50%) of terrestrial predators on aquatic subsidies
across broad geographic regions, despite large geographic and inter-annual variations.
We further demonstrated a large effect of anthropogenic land use at the catchment scale
across geographic regions. Linking these two key findings suggests that more attention to
broad-scale landscape patterns is warranted to improve our understanding of how these
cross-boundary energy flows affects biodiversity and ecosystem function of tightly
coupled aquatic-terrestrial systems.

Acknowledgments

We would like to thank Karlstad University for funding this study within the framework
of its strong research groups program. We particularly want to thank authors that sent us
raw data: B.K. Jackson and K. Stenroth and Andrew C. Parnell for his help with Bayesian
statistics.
References

Abell, R., M. L. Thieme, R. Ng, N. Sindorf, and E. Wikramanayake. 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58.

Allan, J. D. 2004. Influence of land use and landscape setting on the ecological status of rivers. Limnnetica 23:187–198.

Bartels, P., J. Cucherousset, K. Steger, P. Eklov, L. J. Tranvik, and H. Hillebrand. 2012. Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics. Ecology 93:1173–1182.

Baxter, C. V., K. D. Fausch, and W. Carl Saunders. 2005. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology 50:201–220.

Bond, A. L., and A. W. Diamond. 2011. Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecological applications : a publication of the Ecological Society of America 21:1017–23.

Le Cao, K.-A., F. Rohart, and I. Gonzalez. 2017. mixOmics: Omics Data Integration Project.

Carlson, P. E., B. G. Mckie, L. Sandin, and R. K. Johnson. 2016. Strong land-use effects on the dispersal patterns of adult stream insects: Implications for transfers of aquatic subsidies to terrestrial consumers. Freshwater Biology 61:848–861.

Carpenter, S. R., and R. Biggs. 2009. Freshwaters: managing across scales in space and time. Pages 197–220 Principles of Ecosystem Stewardship. Springer.

Carrascal, L. M., I. Galván, and O. Gordo. 2009. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118:681–690.

Cohen, J. E., T. Jonsson, and S. R. Carpenter. 2003. Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences of the United States of America 100:1781–1786.

Dolédec, S., N. Phillips, and M. Scarsbrook. 2006. Comparison of structural and functional approaches to determining landuse effects on grassland stream invertebrate communities. Journal of the North … 25:44–60.

Eriksson, L., N. Kettaneh-Wold, J. Trygg, C. Wikström, and S. Wold. 2006. Multi-and megavariable data analysis: Part I: basic principles and applications. Umetrics Inc.

Erős, T., P. Gustafsson, L. A. Greenberg, E. Bergman, and J. Rodgers. 2012. Forest-Stream Linkages: Effects of Terrestrial Invertebrate Input and Light on Diet and Growth of Brown Trout (Salmo trutta) in a Boreal Forest Stream. PLoS ONE 7:e36462.

Fisher, S. G., and G. E. Likens. 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs 43:421–439.

GRASS Development Team. 2017. Geographic Resources Analysis Support System (GRASS) Software. Open Source Geospatial Foundation.

Greenwood, M. J. 2014. More than a barrier: The complex effects of ecotone vegetation type on terrestrial consumer consumption of an aquatic prey resource. Austral Ecology 39:941–951.

Gustafsson, P., L. A. Greenberg, and E. Bergman. 2014. Effects of woody debris and the
supply of terrestrial invertebrates on the diet and growth of brown trout (Salmo trutta) in a boreal stream. Freshwater Biology 59:2488–2501.

Hendrickx, F., J.-P. Maelfait, W. Van Wingerden, O. Schweiger, M. Speelmans, S. Aviron, I. Augenstein, R. Billeter, D. Bailey, R. Bukacek, F. Burel, T. Diekötter, J. Dirkse, F. Herzog, J. Liira, M. Roublava, V. Vandomme, and R. Bugter. 2007. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. Journal of Applied Ecology 44:340–351.

Iwata, T. 2007. Linking stream habitats and spider distribution: spatial variations in trophic transfer across a forest–stream boundary. Ecological Research 22:619–628.

Jackson, B. K., and S. M. P. Sullivan. 2017. Ecosystem size and flooding drive trophic dynamics of riparian spiders in a fire-prone Sierra Nevada river system. Canadian Journal of Fisheries and Aquatic Sciences.

Jonsson, M., L. E. Polvi, R. A. Sponseller, and K. Stenroth. 2018. Catchment properties predict autochthony in stream filter feeders. Hydrobiologia.

Krell, B., N. Röder, M. Link, R. Gergs, M. H. Entling, and R. B. Schäfer. 2015. Aquatic prey subsidies to riparian spiders in a stream with different land use types. Limnologica 51:1–7.

Lafage, D., S. Maugenest, J.-B. Bouzillé, and J. Pétillon. 2015a. Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecological Research 30:1025–1035.

Lafage, D., C. Papin, J. Secondi, A. Canard, and J. Pétillon. 2015b. Short term recolonisation by arthropod after a spring flood, with a focus on spiders and carabids. Ecohyrdology 8:1584–1599.

Lafage, D., and J. Pétillon. 2016. Relative importance of management and natural flooding on spider, carabid and plant assemblages in extensively used grasslands along the Loire. Basic and Applied Ecology 17:535–545.

Lammert, M., and J. D. Allan. 1999. Assessing biotic integrity of streams: Effects of scale in measuring the influence of land use/cover and habitat structure on fish and macroinvertebrates. Environmental Management 23:257–270.

Marcarelli, A. M., C. V. Baxter, M. M. Mineau, and R. O. J. Hall. 2011. Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 96:1215–1225.

Marczak, L. B., R. M. Thompson, and J. S. Richardson. 2007. Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies. Ecology 88:140–148.

Marks, J. C., M. E. Power, and M. S. Parker. 2000. Flood disturbance, algal productivity, and interannual variation in food chain length. Oikos 90:20–27.

McCutchan, J. H., W. M. Lewis, C. Kendall, and C. C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390.

McHugh, P. A., A. R. McIntosh, and P. Jellyman. 2010. Dual influences of ecosystem size and disturbance on food chain length in streams. Ecology Letters 13:881–890.

Muehlbauer, J. D., S. F. Collins, M. W. Doyle, K. Tockner, J. D. Muehlbauer, S. F. Collins, M. W. Doyle, and K. Tockner. 2014. How wide is a stream? Spatial extent
of the potential "stream signature" in terrestrial food webs using meta-analysis.

Ecology 95:44–55.

Nakano, S., H. Miyasaka, and N. Kuhara. 1999. Terrestrial-aquatic linkages: riparian
arthropod inputs alter trophic cascades in a Stream food web. Ecology 80:2435.

Nakano, S., and M. Murakami. 2001. Reciprocal subsidies: dynamic interdependence
between terrestrial and aquatic food webs. Proceedings of the National Academy of
Sciences 98:166–70.

O’Callaghan, M. J., D. M. Hannah, I. Boomer, M. Williams, and J. P. Sadler. 2013.
Responses to river inundation pressures control prey selection of riparian beetles.
PloS one 8:e61866.

Parnell, A. 2016. Simmr: a Stable Isotope Mixing Model.

Parnell, A. C., D. L. Phillips, S. Bearhop, B. X. Semmens, E. J. Ward, J. W. Moore, A. L.
Jackson, J. Grey, D. J. Kelly, and R. Inger. 2013. Bayesian Stable Isotope Mixing
Models. Environmetrics:387–399.

Paul, M. J., and J. L. Meyer. 2001. Streams in the urban landscape. Annual Review of
Ecology and Systematics 32:333–365.

Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. Updated world map of the
Köppen-Geiger climate classification. Hydrology and Earth System Sciences:1633–
1644.

Philpott, S. M., O. Soong, J. H. Lowenstein, A. L. Pulido, D. T. Lopez, D. F. B. Flynn,
and F. DeClerck. 2009. Functional richness and ecosystem services: bird predation
on arthropods in tropical agroecosystems. Ecological Applications 19:1858–1867.

Polis, G. A., W. B. Anderson, and R. D. Holt. 1997a. Toward an integration of landscape
and food web ecology: the dynamics of spatially subsidized food webs. Annual
Review of Ecology and Systematics 28:289–316.

Polis, G. A., and S. D. Hurd. 1996. Linking Marine and Terrestrial Food Webs:
Allochthonous Input from the Ocean Supports High Secondary Productivity on
Small Islands and Coastal Land Communities. The American Naturalist 147:396–
423.

Polis, G. A., S. D. Hurd, C. T. Jackson, and F. S. Piñero. 1997b. EL NIÑO EFFECTS ON
THE DYNAMICS AND CONTROL OF AN ISLAND ECOSYSTEM IN THE
GULF OF CALIFORNIA. Ecology 78:1884–1897.

Power, M. E., M. S. Parker, and W. E. Dietrich. 2008. Seasonal reassembly of a river food
web: floods, droughts and Impact of fish. Ecological Monographs 78:263–282.

Quantum GIS Development Team. 2017. Quantum GIS Geographic Information System.
Open Source Geospatial Foundation Project.

Richards, C., L. B. Johnson, and G. E. Host. 1996. Landscape-scale influences on stream
habitats and biota. Canadian Journal of Fisheries and Aquatic Sciences 53:295–311.

Sabo, J. L., J. C. Finlay, T. Kennedy, and D. M. Post. 2010. The role of discharge
variation in scaling of drainage area and food chain length in rivers. Science
330:965–967.

Sandin, L., and R. K. Johnson. 2004. Local, landscape and regional factors structuring
benthic macroinvertebrate assemblages in Swedish streams. Landscape Ecology
19:501–515.

Schindler, D. E., and A. P. Smits. 2017. Subsidies of aquatic resources in terrestrial
ecosystems. Ecosystems 20:78–93.
Stenroth, K., L. E. Polvi, E. Fältström, and M. Jonsson. 2015. Land-use effects on terrestrial consumers through changed size structure of aquatic insects. Freshwater Biology 60:136–149.

Stock, B. C., A. Jackson, E. J. Ward, A. C. Parnell, D. L. Phillips, and B. X. Semmens. 2018. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ:1–43.

Stoll, S., P. Breyer, J. D. Tonkin, D. Früh, and P. Haase. 2016. Scale-dependent effects of river habitat quality on benthic invertebrate communities — Implications for stream restoration practice. Science of The Total Environment 553:495–503.

Tagwireyi, P., and S. M. P. Sullivan. 2015. Distribution and trophic dynamics of riparian tetragnathid spiders in a large river system. Marine and Freshwater Research 67:309–318.

Tagwireyi, P., and S. M. P. Sullivan. 2016. Riverine landscape patches influence trophic dynamics of riparian ants. River research and applications 32:1721–1729.

Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin, and M. L. Stephen. 2010. A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society 29:118–146.

Tateishi, R., N. Thanh Hoan, T. Kobayashi, B. Alsaaideh, G. Tana, and D. Xuan Phong. 2014. Production of Global Land Cover Data - GLCNMO2008. Journal of Geography and Geology 6:99–122.

Tieszen, L. L., T. W. Boutton, K. G. Tesdahl, and N. A. Slade. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57:1–2.

Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36:1–48.
Table 1. Characteristics of the studies used for the meta-analysis. Climate is extracted from Peel et al. (2007) and ecoregion from Abell et al. (2008)

Reference	Code	Group	Nb diets	Country	Sampling year	Nb sites	Climate	Ecoregion
Akamatsu et al. 2004 – Ecol. Res.	AKA04	Spiders	22	JPN	2001	3	Cold, Without dry season, Hot summer	Honshu - Shikoku - Kyushu
Akamatsu & Toda 2011 – Environ. Pollut.	AKA11	Spiders	28	JPN	2002	5	Cold, Dry winter, Hot summer	Honshu - Shikoku - Kyushu
Alberts et al. 2013 – Sci. Total Environ.	ALB13	Birds	8	USA	2011	11	Cold, Without dry season, Hot summer	Teays - Old Ohio
Mccaffery & Eby 2016 - Freshw. Biol.	CAF16	Spiders	4	USA	2005	4	Cold, Without dry season, Warm summer	Upper Missouri
Mccaffery & Eby 2016 - Freshw. Biol.	CAF16	Mouse	4	USA	2005	4	Cold, Without dry season, Warm summer	Upper Missouri
Collier et al. 2002 – Freshw. Biol.	COL02	Spiders	4	ZAF	1997	2	Temperate, Dry winter, Warm summer	Southern Temperate Highveld
Gergs et al. 2014 – Freshw. Biol.	GER14	Spiders	18	GER	2011	9	Temperate, Without dry season, Warm summer	Central & Western Europe
Jackson et al. 2015 – Freshwater. Sci.	JAC15	Spiders	11	USA	2011	11	Temperate, Dry summer, Hot summer	Sacramento - San Joaquin
Jackson et al. 2016 – Ecol. Evol.	JAC16	Spiders	12	ZAF	2014	6	Temperate, Dry winter, Warm summer	Southern Temperate Highveld
Jackson et al. 2017 - Can. J. Fish. Aquat. Sci.	JAC17	Spiders	36	USA	2011	30	Temperate, Dry summer, Hot summer	Sacramento - San Joaquin
Authors	Publication Year	Publication	Location Description					
----------------------	------------------	-------------	-----------------------					
Kato et al. 2004 – Ecol. Res.	2001	KAT04 Spiders	JPN 13	Cold, Without dry season, 2 Warm summer				
Kelly et al. 2015 – PeerJ	2012	KEL15 Spiders	PRI 17	1 Tropical rainforest				
Krell et al. 2015 – Limnologica	2012	KRE15 Spiders	DEU 6	Temperate, Without dry season, Warm summer				
Leigh et al. 2013 – Inl. Waters	2010	LEI13 Spiders	AUS 4	4 Arid steppe, Hot				
O’Callaghan et al. 2013 – PloS One	2012	OCA13 Beetles	GBR 174	Temperate, Without dry season, Warm summer				
Paetzold et al. 2005 – Ecosystems	2002	PAE05 Spiders	ITA 4	Temperate, Without dry season, Warm summer				
Paetzold et al. 2005 – Ecosystems	2002	PAE05 Beetles	ITA 4	Temperate, Without dry season, Warm summer				
Paetzold et al. 2005 – Ecosystems	2002	PAE05 Ants	ITA 1	Temperate, Without dry season, Warm summer				
Recalade et al. 2016 – J. Anim. Ecol.	2012	REC16 Spiders	BRA 4	Temperate, Dry winter, Hot summer				
Sanzone et al. 2003 – Oecologia	2003	SAN03 Spiders	USA 5	1 Arid steppe, Hot				
Stenroth et al. 2015 – Freshw. Biol.	2011	STE15 Spiders	SWE 19	Cold, Without dry season, 10 Cold summer				
Stenroth et al. 2015 – Freshw. Biol.	2011	STE15 Beetles	SWE 10	Cold, Without dry season, 10 Cold summer				
Terui et al. 2017 – Ecol. Res.	2014	TER17 Spiders	JPN 1	Cold, Without dry season, 4 Warm summer				
Study Reference	Journal	Study Type	Country/Region	Year	Climate	Location		
-----------------	---------	------------	----------------	------	---------	----------		
Terui et al. 2017 – Ecol. Res.	TER17	Beetles	JPN	2014	Cold, Without dry season, Warm summer	Sakhalin, Hokkaido, & Sikhote - Alin Coast		
Walters et al. 2008 – Ecol. Appl.	WAL08	Spiders	USA	2008	Temperate, Without dry season, Hot summer	Appalachian Piedmont		
Walters et al. 2008 – Ecol. Appl.	WAL08	Herptile	USA	2008	Temperate, Without dry season, Hot summer	Appalachian Piedmont		
Yuen et al. 2016 Biotropica	YUE16	Spiders	HKG	2013	Temperate, Dry winter, Hot summer	Xi Yiang		
Yuen et al. 2016 Biotropica	YUE16	Odonata	HKG	2013	Temperate, Dry winter, Hot summer	Xi Yiang		
Yuen et al. 2016 Biotropica	YUE16	Hemiptera	HKG	2013	Temperate, Dry winter, Hot summer	Xi Yiang		
Figure captions

Figure 1: Map of the selected studies. White symbols are studies that were rejected on data quality grounds (see text for details).

Figure 2: Plot of the percentage cover of each land use class in catchments per study.

Figure 3: Histogram of catchment area and mean human population size in the catchment.

Figure 4: Forest plot showing the overall effect-size (observed proportion of aquatic prey in diet minus 0.5). Squares and bars denote means and 95% confidence intervals of the effect sizes, while the size of the squares reflects the weight of each study. Single studies are coded according to Table 1.

Figure 5: The variable weights of the first component in the PLS models for proportion of aquatic prey in spider diet. Positive weights indicate a positive relationship between the predictor and response variables and vice versa. Variables white bars are non-significant (VIP < 0.7). Variables with grey bars are significant with low explicative power (0.8 < VIP < 1). Variables in black are significant and are the most contributing variables (VIP > 1).

Figure 6: The variable weights of the first component in the PLS models for proportion of aquatic prey in the carabid beetle diet. Positive weights indicate a positive relationship between the predictor and response variables and vice versa. Variables white bars are non-significant (VIP < 0.7). Variables with grey bars are significant with low explicative power (0.8 < VIP < 1). Variables in black are significant and are the most contributing variables (VIP > 1).
Figure 3
Figure 5
Figure 6