Holomorphic Equivariant Cohomology via a Transversal Holomorphic Vector Field *

Huitao Feng

Abstract In this paper an analytic proof of a generalization of a theorem of Bismut ([Bis1, Theorem 5.1]) is given, which says that, when \(v \) is a transversal holomorphic vector field on a compact complex manifold \(X \) with a zero point set \(Y \), the embedding \(j : Y \rightarrow X \) induces a natural isomorphism between the holomorphic equivariant cohomology of \(X \) via \(v \) with coefficients in \(\xi \) and the Dolbeault cohomology of \(Y \) with coefficients in \(\xi|_Y \), where \(\xi \rightarrow X \) is a holomorphic vector bundle over \(X \).

2000MR Subject Classification 53C, 58J

1 Introduction

For a compact complex manifold \(X \), let \(T_CX \) denote the complexification of the real tangent bundle \(T_RX \) of \(X \). Then \(T_CX \) splits canonically as \(T_CX = TX \oplus \overline{TX} \), where \(TX \) and \(\overline{TX} \) are the holomorphic and the anti-holomorphic tangent bundle of \(X \), respectively. Let \(\xi \rightarrow X \) be a holomorphic vector bundle over \(X \). There exists a natural \(\mathbb{Z} \)-grading in \(\Lambda(T^*_C X) \otimes \xi \) defined by the following decomposition:

\[
\Lambda(T^*_C X) \otimes \xi = \bigoplus_{-\dim X \leq r \leq \dim X} \Lambda^{(r)} (T^*_C X) \otimes \xi,
\]

where

\[
\Lambda^{(r)} (T^*_C X) \otimes \xi = \bigoplus_{q-p=r} \Lambda^q(T^*X) \otimes (\Lambda^p(T^*X) \otimes \xi).
\]

We will use \(\Lambda^{(r)} (T^*_C X) \otimes \xi \) to denote \(\Lambda(T^*_C X) \otimes \xi \) with this \(\mathbb{Z} \)-grading. Let \(\Omega^{(r)}(X, \xi) \) (resp. \(\Omega^{(r)}(X, \xi) \)) be the complex vector space of smooth sections of \(\Lambda^{(r)}(T_C X) \otimes \xi \) (resp.

*Partially supported by the NNSF of China (10271059) and the K. C. Wong Education Foundation
Then \((\Omega^{(\cdot)}(X, \xi) = \bigoplus_r \Omega^{(r)}(X, \xi), \partial^{X}) \) is a complex and the cohomology groups \(H^{(r)}(X, \xi) \) associated to this complex are direct sums:

\[
H^{(r)}(X, \xi) = \bigoplus_{p+q=r} H^{p,q}(X, \xi),
\]

where \(H^{p,q}(X, \xi) \) are the usual Dolbeault cohomology groups of \(X \) with coefficients in the holomorphic vector bundle \(\xi \).

For any holomorphic vector field \(v \) on \(X \), set

\[
\bar{\partial}^{X}_v = \bar{\partial}^{X} + i(v) : \Omega^{(\cdot)}(X, \xi) \to \Omega^{(\cdot+1)}(X, \xi),
\]

where \(i(v) \) is the standard contraction operator defined by \(v \). The consideration of operators \(\bar{\partial}^{X} \) and \(i(v) \) together goes back to [Bot]. Clearly, \((\Omega^{(\cdot)}(X, \xi), \bar{\partial}^{X}_v) \) is also a \(\mathbb{Z} \)-graded complex. Denote the cohomology groups associated to this complex by \(H^{(\cdot)}_{v}(X, \xi) \), which are called the **holomorphic equivariant cohomology** groups of \(X \) via \(v \) with coefficients in \(\xi \) (cf. [L]).

In [CL], Carrell and Lieberman discussed the relation between Dolbeault cohomology of a connected compact Kähler manifold \(X \) and the zero point set \(Y \) of a holomorphic vector field \(v \) on \(X \) by using Deligne degeneracy criterion and proved that \(H^{(r)}(X, \mathbb{C}) \) vanished for all \(|r| > \dim Y \) if \(Y \neq \emptyset \). Since \(\dim H^{(1)}_{v}(X, \mathbb{C}) = \dim H^{(1)}(X, \mathbb{C}) \) in this case (see [L, Theorem 1.3] and [CL]), the corresponding vanishing results for \(H^{(1)}_{v}(X, \mathbb{C}) \) are also valid. For a general compact complex manifold \(X \) and a transversal holomorphic vector field \(v \) on \(X \) (see a definition in [Bis1, Sect.5.1]), Liu in [L] proved that \(\dim H^{(1)}_{v}(Y, \mathbb{C}) \leq \dim H^{(1)}(X, \mathbb{C}) \) by constructing an injective homomorphism \(\alpha_{v} : H^{(1)}_{v}(Y, \mathbb{C}) \to H^{(1)}_{v}(X, \mathbb{C}) \). Moreover, Liu got a counting formula for \(\dim H^{(1)}_{v}(X, \mathbb{C}) \) in terms of the multiplicities of the zero points of \(v \) if the zero points of \(v \) are discrete. Under the assumption that the zero point of \(v \) is nodegenerate, motivated by Witten’s deformation idea ([W]), he also sketched an analytic proof of his formula in [L, Sect.7] by examining the behavior of a natural deformation \(D^{X}_T \) of the Riemann-Roch operator on \(X \) as \(T \to \infty \).

A more general result in this direction is due to Bismut. By using the technique of spectral sequences in [Bis1, Theorem 5.1], Bismut proves that, when \(v \) is a transversal holomorphic vector field on \(X \) with a zero point set \(Y \), the embedding \(j : Y \to X \) induces naturally a quasi-isomorphism \(j^{*} : (\Omega^{(\cdot)}(X, \mathbb{C}), \bar{\partial}^{X}) \to (\Omega^{(\cdot)}(Y, \mathbb{C}), \bar{\partial}^{Y}) \).

In this paper, we will give an analytic proof of the following fairly straightforward generalization of the Bismut’s theorem [Bis1, Theorem 5.1]:

\[
\Lambda^{(\cdot)}(T_{\xi}X) \otimes \xi).
\]
Theorem 1.1 Let \(v \) be a transversal holomorphic vector field on a compact complex manifold \(X \) with a zero point set \(Y \). Then

\[
j^*: (\Omega^1(X, \xi), \bar{\partial}_v^X) \rightarrow (\Omega^1(Y, \xi|_Y), \bar{\partial}^Y)
\]

is a quasi-isomorphism.

Following Witten’s deformation idea ([W]) as in [L, Sect.7], we will also work with a deformation \(D^X_T \) of the twisted Riemann-Roch operator on \(X \) by \(\xi \) but the whole proof now is heavily based on the analytic localization techniques developed by Bismut and Lebeau (cf. [BL]), since the analysis involved here is much complicated than the situation in [L, Sect.7]. A key point in our proof is to express \(D^X_T \) and to trivialize the bundle on which \(D^X_T \) acts by using the Bismut connection \(\nabla^{-B} \) (see [Bis2, II. b]). We should point out that if the trivialization is made by a lifting of the holomorphic Hermitian connection \(\nabla^{TX} \) on \(TX \), then an extra term coming from the torsion of \(\nabla^{TX} \) will enter to the final operator on \(Y \) in the Bismut-Lebeau localization process of \(D^X_T \) as \(T \rightarrow \infty \). But it is not clear to us that the extra term is zero for a general complex manifold \(X \). Consequently, we could only obtain an equality related to the involved operators at the index level.

2 A deformed twisted Riemann-Roch operator \(D^X_T \) and its local behavior near \(Y \)

This section is divided into three parts. In a) we introduce a deformation \(D^X_T \) of the twisted Riemann-Roch operator by \(\xi \) via \(v \), which has been used in [L, Sect.7] in the case of \(\xi = C \). In b) we recall the definition of the Bismut connection \(\nabla^{-B} \) (cf. [Bis2, II. b]) and express \(D^X_T \) in this connection by a direct application of [Bis2, Theorem 2.2]. In c) we study the local behavior of the deformed operator \(D^X_T \) near the submanifold \(Y \) following [BL, Sect.8], in which the Bismut connection will play an essential role.

a) A deformed twisted Riemann-Roch operator \(D^X_T \)

Let \(X \) be a compact complex manifold of \(C \)-dimension \(n \). For any \(T \in R \), we consider the following deformed operator

\[
\bar{\partial}^X_T = \bar{\partial} + Ti(v): \Omega^1(X, \xi) \rightarrow \Omega^{1}(X, \xi)
\]
and the deformed complex \((\Omega^{(\cdot)}(X, \xi), \overline{\partial}^X_\xi)\). One verifies easily as the proof of [L, Lemma 1.1] that the cohomologies associated to this deformed complex do not depend on \(T \neq 0\).

Let \(g^TX\) (resp. \(g^\xi\)) be a Hermitian metric on \(X\) (resp. \(\xi\)). By the standard procedure there is an induced Hermitian metric \(\langle \cdot, \cdot \rangle_{\Lambda^{(\cdot)}(T^*_C X) \otimes \xi}\) on \(\Lambda^{(\cdot)}(T^*_C X) \otimes \xi\). Let \(dv_X\) denote the Riemannian volume element of \((X, g^TX)\). Then for \(s_1, s_2 \in \Omega^{(\cdot)}(X, \xi)\),

\[
\langle \langle s_1, s_2 \rangle \rangle = \frac{1}{(2\pi)^{\dim C_X}} \int_X \langle s_1, s_2 \rangle_{\Lambda^{(\cdot)}(T^*_C X) \otimes \xi} dv_X
\]

defines an \(L^2\)-Hermitian inner product on \(\Omega^{(\cdot)}(X, \xi)\). Let \(\bar{\partial}^X\) and \(\bar{\partial}^X_\xi\) denote the formal adjoint operators of \(\partial^X\) and \(\partial^X_\xi\), respectively. For any \(U \in T^*_C X\), let \(U^*\) be an element in \(T^*_C X\) defined by \(g^TX(U, \cdot)\). Clearly, \(\bar{\partial}^*\) is a (1,0)-form on \(X\) and \(\bar{\partial}^*\wedge\) is the dual operator of \(i(v)\). Moreover, we have

\[
\bar{\partial}^X_\xi = \bar{\partial}^X + T \bar{\partial}^* \wedge : \Omega^{(\cdot)}(X, \xi) \to \Omega^{(-1)}(X, \xi).
\]

Set

\[
D^X = \sqrt{2}(\bar{\partial}^X + \bar{\partial}^X_\xi), \quad D^X_T = \sqrt{2}(\bar{\partial}^X + \bar{\partial}^X_\xi).
\]

Clearly, \(D^X\) is the usual twisted Riemann-Roch operator by the holomorphic bundle \(\xi\) and \(D^X_T\) is a deformation of \(D^X\) and interchanges \(\Omega^{(\text{even})}(X, \xi)\) and \(\Omega^{(\text{odd})}(X, \xi)\). From Hodge theory we have the following isomorphisms

\[
\ker (D^X_T)^2|_{\Omega^{(\cdot)}(X, \xi)} \cong H^{(r)}_\nu(X, \xi).
\]

Lemma 2.1 For any open neighborhood \(U\) of \(Y\), there exist constants \(a > 0, b > 0\) and \(T_0 > 0\) such that for any \(s \in \Omega^{(\cdot)}(X, \xi)\) with \(\text{Supp} \ s \subset X \setminus U\) and any \(T \geq T_0\), one has the following estimate for Sobolev norms,

\[
\|D^X_T s\|^2_0 \geq a(\|s\|^2_1 + (T - b)\|s\|^2_0).
\]

Proof. An easy computation shows that

\[
D^X_T = D^X + 2T|v|^2 + 2T \left((\bar{\partial}^X \bar{\partial}^* + i(\bar{\partial}^X \bar{\partial}^*)) \right),
\]

where \(i(\bar{\partial}^X \bar{\partial}^*)\) denotes the adjoint operator of \((\bar{\partial}^X \bar{\partial}^*)\). Note that \((\bar{\partial}^X \bar{\partial}^*)\) is a zero order operator and \(v \neq 0\) on \(X \setminus U\), the lemma follows from the well-known Garding’s inequality directly.

\[
\square
\]
By Lemma 2.1 and Hodge theory, we can study $H^1_{v}(X, \xi)$ through the behavior of the operator D_X^X near Y for large T. Also by Lemma 2.1, it is an easy observation that, when $Y = \emptyset$, the cohomology group $H^1_{v}(X, \xi)$ vanishes. In the following we will always assume that v is transversal and $Y \neq \emptyset$. Note that generally Y consists of some connected components Y_k with different C-dimensions l_k. When no confusion arises, we always drop the subscripts and simply denote them by Y and l, respectively.

b) An expression of D_X^X in the Bismut connection

We first recall the definition of the Bismut connection in [Bis2, II. b)]. For a complex manifold X with a Hermitian metric g^{TX}, let ∇^{TX} be the holomorphic Hermitian connection on TX. Note that ∇^{TX} induces naturally an Euclidean connection on $T^R X$ which preserves the complex structure of $T^R X$. Let T_X denote the torsion tensor of the connection ∇^{TX}. Let B_X be the antisymmetrization of the tensor $(U, V, W) \rightarrow \frac{1}{2}\langle T_X(U, V), W \rangle$ and let S^{-B_X} denote the one form with values in antisymmetric elements of $\text{End}(T_R X)$ which is such that

$$\langle S^{-B_X}(U)V, W \rangle = -2B_X(U, V, W), \quad (2.8)$$

where $U, V, W \in T_R X$. Let ∇^{L_X} be the Levi-Civita connection on $T_R X$. Set

$$S_X = \nabla^{TX} - \nabla^{L_X}. \quad (2.9)$$

Then S_X is also a one form with values in antisymmetric elements of $\text{End}(T_R X)$. The important thing here is that $S^{-B_X} - S_X$ preserves the complex structure of $T^R X$ (cf. [Bis2, (2.38)])). Now the Bismut connection ∇^{-B_X} on $T_R X$ is defined by (cf. [Bis2, (2.37)])

$$\nabla^{-B_X} = \nabla^{TX} + (S^{-B_X} - S_X) = \nabla^{L_X} + S^{-B_X}. \quad (2.10)$$

The Bismut connection ∇^{-B_X} also preserves the complex structure of $T_R X$ and so induces naturally a unitary connection on TX and a unitary connection on T^X, which are still denoted by ∇^{-B_X}. Note that when X is Kähler, the Bismut connection ∇^{-B_X} coincides with the holomorphic Hermitian connection ∇^{TX}. There is a unitary connection on $\Lambda'(TX)$ lifted canonically from ∇^{-B_X}, which we still call the Bismut connection and denote by the same notation ∇^{-B_X}.

Let Y be a complex submanifold of X. Let $\pi : N \rightarrow Y$ be the normal bundle of Y in X. We identify N with the sub-bundle of $TX|_Y$ orthogonal to TY with respect to the restriction metric $g^{TX|_Y}$ on $TX|_Y$ by g^{TX}. So we have the identification of C^∞ bundles $TX|_Y = TY \oplus N$. Let g^{TY} (resp. g^N) be the induced metric on TY (resp. N) from $g^{TX|_Y}$. Let P^{TrX}, P^{N_R} be the orthogonal projection operators from $T_R X|_Y$ onto $T_R Y$ and N_R.
respectively. Let j denote the embedding of Y into X. Then $j^*\nabla^{-B_x}$ is a connection on $T_{\mathbb{R}X}|_Y$ preserving the metric $g^{TX|_Y}$ and the complex structure of $T_{\mathbb{R}X}|_Y$. Moreover, $p^T_{\mathbb{R}Y}(j^*\nabla^{-B_x}) p^T_{\mathbb{R}Y}$ is exactly the Bismut connection on $T_{\mathbb{R}Y}$ associated to the induce metric g^{TY}, and $p^N_{\mathbb{R}}(j^*\nabla^{-B_x}) p^N_{\mathbb{R}}$ is a connection on $N_{\mathbb{R}}$ preserving the metric g^N and the complex structure of $N_{\mathbb{R}}$. Set

$$\nabla^{-B_x,\oplus} = \nabla^{-B_Y} \oplus \left(p^N_{\mathbb{R}}(j^*\nabla^{-B_x}) p^N_{\mathbb{R}} \right),$$

(2.11)

$$A = j^*\nabla^{-B_x} - \nabla^{-B_x,\oplus}.$$

(2.12)

Clearly, $\nabla^{-B_x,\oplus}$ is also a connection on $T_{\mathbb{R}X}|_Y$ preserving the metric $g^{TX|_Y}$ and the complex structure of $T_{\mathbb{R}X}|_Y$, and A is the second fundamental form of the Bismut connection ∇^{-B_x}. We still use the same notation $\nabla^{-B_x,\oplus}$ to denote its restriction on $T^X|_Y$ as well as its lifting on $\Lambda(T^*X|_Y)$.

Now we return to our situation and express the deformed twisted Riemann-Roch operator D^X_T in the Bismut connection by applying [Bis2, Theorem 2.2]. To do this we still need a holomorphic Hermitian connection on the bundle $\Lambda(T^*X) \otimes \xi$. Since our problem does not depend on the metrics, we can and will choose a special metric on the holomorphic bundle $\Lambda(T^*X)$ to simplify the analysis.

Let $L_\nu : TX|_Y \rightarrow TX|_Y$ be the holomorphic Lie homomorphism defined by $L_\nu(u) = [v, u]$ for any $u \in TX|_Y$. Denote $L_\nu(TX|_Y)$ by N. Since v is transversal, $TX|_Y$ splits holomorphically into $TY \oplus N$ and L_ν induces an isomorphism from N to \tilde{N}, which we still denote by L_ν. We introduce a new Hermitian metric \tilde{g}^N on \tilde{N} by requiring that $L_\nu : N \rightarrow \tilde{N}$ is unitary fiberwisely. Consequently, we get a new Hermitian metric $\tilde{g}^{TX|_Y} = \tilde{g}^{TY} \oplus \tilde{g}^N$ on $TX|_Y$. We can and we will extend $\tilde{g}^{TX|_Y}$ to a Hermitian metric \tilde{g}^{TX} on TX. We will denote TX (resp. $TX|_Y$) with the metric \tilde{g}^{TX} (resp. $\tilde{g}^{TX|_Y}$) by $T\tilde{X}$ (resp. $T\tilde{X}|_Y$) to distinguish the same bundle with different metrics. Let $\nabla^{T\tilde{X}}$, $\nabla^{T\tilde{X}|_Y}$, resp. \tilde{N} be the holomorphic Hermitian connection on $T\tilde{X}$ (resp. $T\tilde{X}|_Y$, resp. \tilde{N}). We have the following standard fact:

$$j^*\nabla^{T\tilde{X}} = \nabla^{T\tilde{X}|_Y} = \nabla^{TY} \oplus \nabla^{\tilde{N}}.$$

(2.13)

We lift the holomorphic Hermitian connection $\nabla^{T\tilde{X}}$ (resp. ∇^{TY}) to the holomorphic Hermitian connection $\nabla^A(T^*\tilde{X})$ (resp. $\nabla^A(T^*Y)$) on $\Lambda(T^*\tilde{X})$ (resp. $\Lambda(T^*Y)$).

Let g^ξ be a Hermitian metric on ξ and let ∇^ξ be the holomorphic Hermitian connection on ξ. Set $\nabla^{\xi|_Y} = j^*\nabla^\xi$, which is the holomorphic Hermitian connection on $\xi|_Y$. So $\nabla^A(T^*\tilde{X}) \otimes \xi^\oplus = \nabla^A(T^*\tilde{X}) \otimes 1 + 1 \otimes \nabla^\xi$ (resp. $\nabla^A(T^*Y) \otimes \xi|_Y$) is a
holomorphic Hermitian connection on \(\Lambda^\vee(T^*X) \otimes \xi \) (resp. \(\Lambda^\vee(T^*Y) \otimes \xi|_Y \)). Therefore,

\[
\nabla^{B,X} = \nabla^{-B_X} \otimes 1 + 1 \otimes \nabla^{\Lambda^\vee(T^*X) \otimes \xi},
\]

\[
\nabla^{B,Y} = \nabla^{-B_Y} \otimes 1 + 1 \otimes \nabla^{\Lambda^\vee(T^*Y) \otimes \xi|_Y}
\]

are unitary connections on the Hermitian vector bundle \(\Lambda^\vee(T^*C_X) \otimes \xi \), \(\Lambda^\vee(T^*C_Y) \otimes \xi|_Y \), respectively.

For \(U \in (TX, g^{TX}) \), set

\[
c(U) = \sqrt{2} U^* \wedge, \quad c(\bar{U}) = -\sqrt{2} \bar{U}(U);
\]

and for \(U \in (T\bar{X}, g^{TX}) \), set

\[
c(\bar{U}) = -\sqrt{-2} \bar{U}^* \wedge.
\]

We extend the map \(c \) (resp. \(\bar{c} \)) by \(\mathbb{C} \) linearity into the Clifford action of \(T_CX \) (resp. \(T_{\bar{C}}X \)) on \(\Lambda^\vee(T^*X) \) (resp. \(\Lambda^\vee(T^*X) \)).

Let \(\{e_1, \ldots, e_{2n}\} \) be an orthonormal basis \(T_{\mathbb{R}}X \). Set

\[
c(B_X) = \frac{1}{6} \sum_{i,j,k=1}^{2n} B_X(e_i, e_j, e_k) c(e_i) c(e_j) c(e_k).
\]

Note that

\[
\frac{1}{4} \sum_{i,j,k=1}^{2n} \langle S^{-B_X}(e_i) e_j, e_k \rangle c(e_i) c(e_j) c(e_k) = -3c(B_X).
\]

Now recall the definition (2.10) and apply [Bis2, Theorem 2.2] directly, we obtain the following expressions of \(D^Y \) and \(D^X_T \) with respect to the orthonormal basis \(\{e'_1, \ldots, e'_l\} \) for \(T_{\mathbb{R}}Y \) and \(\{e_1, \ldots, e_{2n}\} \) for \(T_{\mathbb{R}}X \), respectively:

\[
D^Y = \sum_{i=1}^{2l} c(e'_i) \nabla^{B,Y}_{e'_i} + 2c(B_Y),
\]

\[
D^X_T = \sum_{i=1}^{2n} c(e_i) \nabla^{B,X}_{e_i} + 2c(B_X) + \sqrt{-1} T(\bar{c}(v) + \bar{c}(\bar{v})).
\]

c) The local behavior of the deformed operator \(D^X_T \) near \(Y \)
For $y \in Y$ and $Z \in N_{R,y}$, let $t \in \mathbb{R} \to x_t = \exp_{\frac{t}{y}}(tZ) \in X$ be the geodesic in X with respect to the Levi-Civita connection ∇^{L_X}, such that $x_0 = y$, $dx/dt|_{t=0} = Z$. For $\epsilon > 0$, let $B_\epsilon = \{ Z \in N_{\mathbb{R}} \mid |Z| < \epsilon \}$. Since X and Y are compact, there exists an $\epsilon_0 > 0$ such that for $0 < \epsilon < \epsilon_0$, the map $(y, Z) \in N_{\mathbb{R}} \to \exp_{\frac{t}{y}}(Z) \in X$ is a diffeomorphism from B_ϵ to a tubular neighborhood U_ϵ of Y in X. From now on, we will identify B_ϵ with U_ϵ and use the notation $x = (y, Z)$ instead of $x = \exp_{\frac{t}{y}}(Z)$.

We will make use of the trivialization of $(\Lambda^1(T^*_C Y) \otimes \xi)|_{U_{\epsilon_0}}$ by the parallel transport of $(\Lambda^1(T^*_C Y) \otimes \xi)|_{Y}$ with respect to the connection $\nabla^{B,Y}$ along the geodesic $t \mapsto (y, tZ)$. The key point here is that this trivialization preserves the metric and the \mathbb{Z}-grading since the Bismut connection is a unitary connection and preserves the complex structure of T_RX. By using the trivialization of $\Lambda^1(T^*_C Y) \otimes \xi$ over U_{ϵ_0}, we can and will make the identification of $(\Lambda^1(T^*_C Y) \otimes \xi)|_{U_{\epsilon_0}}$ with $\pi^*((\Lambda^1(T^*_C Y) \otimes \xi)|_{Y})|_{B_{\epsilon_0}}$, and so we can consider $\nabla^{B,Y}$ as a unitary connection on the Hermitian vector bundle $\pi^*((\Lambda^1(T^*_C Y) \otimes \xi)|_{Y})|_{B_{\epsilon_0}}$ with the obviously induced metric. Note that there exists another unitary connection $\nabla^{B,Y,\oplus}$ on $\pi^*((\Lambda^1(T^*_C Y) \otimes \xi)|_{Y})$ defined by

$$\nabla^{B,Y,\oplus} = \pi^* \left(\nabla^{B,Y} \otimes 1 + 1 \otimes j^* \nabla^{\Lambda^1(T^*_C Y) \otimes \xi} \right).$$

Let dv_Y (resp. dv_N) denote the Riemannian volume element of (Y, g^Y) (resp. the fibres of (N, g^N)). We define a smooth positive function $k(y, Z)$ on B_{ϵ_0} by the equation $dv_X(y, Z) = k(y, Z)dv_Y(y)dv_{N,y}(Z)$ and an L^2-Hermitian inner product on E by

$$\langle f, g \rangle = \int_Y \int_{N_{R,y}} \langle f, g \rangle(y, Z)dv_{N,y}(Z)dv_Y(y),$$

for any $f, g \in E$ with compact support, where E denotes the set of smooth sections of $\pi^*((\Lambda^1(T^*_C Y) \otimes \xi)|_{Y})$ on N_{R}. Clearly, $k(y) = k(y, 0) = 1$ on Y and $k(y, Z)$ has a positive lower bound on $U_{\epsilon_0/2}$. If $f \in E$ has compact support in B_{ϵ_0}, we can identify f with an element in $\Omega^1(X, \xi)$ which has compact support in U_{ϵ_0}.

Let $TN_{R} = T^H N_{R} \oplus N_{R}$ be the splitting of TN_{R} induced by the Euclidean connection $\nabla^{L_N} = P^{N_R}(j^* \nabla^{L_X}) P^{N_R}$ on N_{R}, where T^HN_{R} denotes the horizontal part of TN_{R}. If $U \in T_RY$, let $U^H \in T^HN_{R}$ denote the horizontal lift of U in T^HN_{R}, so that $\pi_* U^H = U$. Let

$$\{ e_1, \ldots, e_{2l}, e_{2l+1}, \ldots, e_{2n} \}$$

be an orthonormal basis of $T_RX|_Y$ with $\{ e_1, \ldots, e_{2l} \}$ an orthonormal basis of T_RY and $\{ e_{2l+1}, \ldots, e_{2n} \}$ an orthonormal basis of N_{R}.

8
Definition 2.2 Let D^H, D^N be the operators acting on E

\[
D^H = \sum_{i=1}^{2l} c(e_i)\nabla_{e_i}^{B,X,\oplus} + 2c(B_Y), \quad D^N = \sum_{\alpha=2l+1}^{2n} c(e_\alpha)\nabla_{e_\alpha}^{B,X,\oplus}. \tag{2.25}
\]

Clearly, D^N acts along the fibres $N_{R,y}$ as the operator $\sqrt{2}(\bar{\partial}N_y + \bar{\partial}N_y^*)$. Note that D^H, D^N are self-adjoint with respect to the Hermitian inner product (2.23).

Now we turn to Taylor expansions of v near Y along the geodesic (y, tZ) for $y \in Y$ and $Z \in N_{R,y}$. Let \{w_1, \ldots, w_l, w_{l+1}, \ldots, w_n\} be a unitary basis for $TX|_Y$ and let (z^{l+1}, \ldots, z^n) denote the associated holomorphic coordinate system on N_y with $w_\alpha = \sqrt{2}\partial/\partial z^\alpha$ for $l + 1 \leq \alpha \leq n$. Note that $L_v : N \to \tilde{N}$ is unitary fiberwisely. Set

\[
\tilde{w}_\alpha = L_v(w_\alpha), \quad \tilde{\bar{w}}_\alpha = L_v(\bar{w}_\alpha), \quad l + 1 \leq \alpha \leq n. \tag{2.26}
\]

Hence, \{w_1, \ldots, w_l, \tilde{w}_{l+1}, \ldots, \tilde{w}_n\} is a unitary basis for $\tilde{T}X|_Y$. We use \tilde{w} to denote the parallel transport of \bar{w} with respect to the holomorphic Hermitian connection $\nabla^{\tilde{T}X}$ along the geodesic (y, tZ). We write v on U_ϵ as

\[
v(y, Z) = \frac{1}{\sqrt{2}} \left(\sum_{i=1}^{l} v^i(y, Z)w_i^\tau + \sum_{\alpha=l+1}^{n} v^\alpha(y, Z)\tilde{w}_\alpha^\tau \right) \tag{2.27}
\]

for some smooth functions v^i and v^α. Set

\[
v_{Y,1} = \frac{1}{\sqrt{2}} \sum_{i=1}^{l} \sum_{\alpha=l+1}^{n} \frac{\partial v^i}{\partial z^\alpha}(y)z^\alpha w_i, \quad v_{N,1} = \frac{1}{\sqrt{2}} \sum_{\alpha,\beta=l+1}^{n} \frac{\partial v^\alpha}{\partial z^\beta}(y)z^\beta \tilde{w}_\alpha, \tag{2.28}
\]

\[
v_{Y,2} = \frac{1}{2\sqrt{2}} \sum_{i=1}^{l} \sum_{\alpha,\beta=l+1}^{n} \frac{\partial^2 v^i}{\partial z^\alpha \partial z^\beta}(y)z^\alpha z^\beta w_i, \quad v_{N,2} = \frac{1}{2\sqrt{2}} \sum_{\alpha,\beta,\gamma=l+1}^{n} \frac{\partial^2 v^\alpha}{\partial z^\beta \partial z^\gamma}(y)z^\beta z^\gamma \tilde{w}_\alpha. \tag{2.29}
\]

Since v is transversal, we get by the definition (2.26),

\[
v_{Y,1} = 0, \quad v_{N,1} = -\frac{1}{\sqrt{2}} \sum_{\alpha=l+1}^{n} z^\alpha \tilde{w}_\alpha, \tag{2.30}
\]

and so

\[
v(y, Z) = v_{N,1}(y, Z) + v_{Y,2}(y, Z) + v_{N,2}(y, Z) + O(|Z|^3). \tag{2.31}
\]
Define
\[D_T^N = D^N + \sqrt{-1}T(\hat{c}(v_{N,1}) + \hat{c}(\bar{v}_{N,1})). \]
(2.32)

A direct and easy computation shows that
\[(D_T^N)^2 = -4 \sum_{\alpha = l+1}^{n} \frac{\partial^2}{\partial z^\alpha \partial \bar{z}^\alpha} + T^2|Z|^2 - \sqrt{-1}T \sum_{\alpha = l+1}^{n} (c(\bar{w}_\alpha)\hat{c}(\bar{w}_\alpha) + c(w_\alpha)\hat{c}(\bar{w}_\alpha)). \]
(2.33)

Set
\[\theta = \sum_{\alpha = l+1}^{n} w_\alpha^* \wedge \bar{w}_\alpha^*. \]
(2.34)

Clearly, \(\theta \) is a well-defined smooth section of \(\Lambda^{(\cdot)}(\bar{N}_y \otimes \bar{N}_y) \) over \(Y \) of the degree 0. Now we have the following analogue of [BL, Proposition 7.3]:

Lemma 2.3 Take \(T > 0 \). Then for any \(y \in Y \), the operator \((D_T^N)^2 \) acting on \(\Gamma(\pi^*\Lambda^{(\cdot)}(\bar{N}_y \oplus \bar{N}_y)) \) over \(N_y \) is nonnegative with the kernel \(C\{\beta_y\} \), where
\[\beta_y = \exp (\theta_y - \frac{T}{2}|Z|^2), \quad |\exp \theta_y|_{\Lambda^{(\cdot)}(\bar{N}_y \oplus \bar{N}_y)} = 2^{(n-l)/2}. \]
(2.35)

Moreover, the nonzero eigenvalues of \((D_T^N)^2 \) are all \(\geq TA \) for some positive constant \(A \) which can be chosen to be independent of \(y \).

Proof. The proof of the lemma is standard (cf. [BL, Sect.7, (7.10)–(7.13)]; also cf. [Z1, Chapter 4, Sect. 4.5]). \(\square \)

For any \(y \in Y \), \(Z \in N_{R,y} \), let \(\tau U \) denote the parallel transport of \(U \in T_{R,y}X \) with respect to the Levi-Civita connection \(\nabla^{L_x} \) along the geodesic \((y, tZ) \). Note that we have identified the bundle \(\pi^*(\Lambda^{(\cdot)}(T^*_C X) \otimes \xi)|_{B_{\alpha_0}} \) with the bundle \(\Lambda^{(\cdot)}(T^*_C X) \otimes \xi|_{U_{\alpha_0}} \) by trivializing the later bundle along the geodesic \((y, tZ) \) by using the connection \(\nabla^{B_x} \). The Clifford action of \(c((\tau U)(y, tZ)) \) on \(\Lambda^{(\cdot)}(T^*_C X) \otimes \xi \) is generally not constant along the geodesic \((y, tZ) \). This is different from the situation in [BL, Sect.8], where the connection on the related bundle is the lifting of the Levi-Civita connection on \(TX \) since the manifold \(X \) is Kähler. Hence, to obtain an analogue of [BL, Theorem 8.18], we need to work out the difference between \(c((\tau U)(y, Z)) \) and the constant Clifford action \(c(U) \) on \(\pi^*(\Lambda^{(\cdot)}(T^*_C X) \otimes \xi)|_{B_{\alpha_0}} \). Since \(\nabla^{-B_x} = \nabla^{L_x} + S^{-B_x} \) is unitary, we know that
\[([\nabla^{B_x}_Z, c((\tau U)(y, tZ))]|_{t=0} = c(\nabla^{B_x}_Z (\tau U)(y, tZ))|_{t=0} = c(S^{-B_x}(Z)U), \]
(2.36)
thus
\[c((\tau U)(y, Z)) = c(U) + c(S^{-B_X}(Z)U) + O(|Z|^2). \] (2.37)

Set with respect to the basis (2.24):
\[M = \frac{1}{2} \sum_{i,j}^{2l} \sum_{\alpha=2l+1}^{2n} (A(e_i)e_j, e_\alpha) c(e_i)c(e_j)c(e_\alpha) - \frac{1}{2} \sum_{\alpha=2l+1}^{2n} (e_\alpha k)c(e_\alpha), \] (2.38)
\[c(B'(y)) = \frac{1}{2} \sum_{i,j=1}^{2l} \sum_{\alpha=2l+1}^{2n} B_X(e_i, e_j, e_\alpha)c(e_i)c(e_j)c(e_\alpha) + \frac{1}{6} \sum_{\alpha,\beta,\gamma=2l+1}^{2n} B_X(e_\alpha, e_\beta, e_\gamma)c(e_\alpha)c(e_\beta)c(e_\gamma), \] (2.39)
\[c(B''(y)) = \frac{1}{2} \sum_{i=1}^{2l} \sum_{\alpha,\beta=2l+1}^{2n} B_X(e_i, e_\alpha, e_\beta)c(e_i)c(e_\alpha)c(e_\beta). \] (2.40)

One verifies easily that
\[c(B_X(y)) = c(B_Y(y)) + c(B'(y)) + c(B''(y)). \] (2.41)

Now we have the following analogue of [BL, Theorem 8.18], which describes the local behavior of \(D_X^T \) near \(Y \). Comparing to [BL, Theorem 8.18, (8.58)], some new terms enter into the following theorem.

Theorem 2.4 As \(T \to +\infty \), then
\[k^{1/2} D_T^X k^{-1/2} = D^H + D_T^N + M_T + c(B'') + T\sqrt{-1}c(v_{Y,2} + \bar{v}_{Y,2}) + S + R_T, \] (2.42)
where
\[M_T = M + c(B') + T\sqrt{-1}c(v_{N,2} + \bar{v}_{N,2}), \] (2.43)
\[S = -\sum_{i=1}^{2n} c(e_i) \nabla^{B_X e_i}_{p^n_{N,S}-B_X(Z)e_i}, \] (2.44)
\[R_T = O(|Z|\partial^H + |Z|^2\partial^N + |Z| + T|Z|^3), \] (2.45)
and \(\partial^H, \partial^N \) represent horizontal and vertical differential operators, respectively.
Proof. Let \(\{ \tau e_1, \ldots, \tau e_{2n} \} \) be the parallel transport of the basis (2.24) with respect to the Levi-Civita connection \(\nabla^{L^X} \) along the geodesic \((y, tZ)\) for \(y \in Y \) and \(Z \in \mathcal{N}_{R,y} \). From (2.21), we have

\[
D_T^X = \sum_{i=1}^{2n} c(\tau e_i) \nabla^{B,X}_{\tau e_i} + 2c(B_X) + \sqrt{-1}T(\hat{c}(v) + \hat{c}(\bar{v})).
\]

(2.46)

We identify \(T_T^X \) with \(\pi^*(T^X|_Y) \) over \(U_\alpha \) by trivializing \(T_T^X \) with respect to the Bismut connection \(\nabla^{-B_X} \) along the geodesic \((y, tZ)\) and set

\[
\Gamma = \nabla^{-B_X} - \nabla^{-B_X: \oplus}.
\]

(2.47)

Let \(\Gamma^\wedge \) denote the lifting action of \(\Gamma \) on \(\pi^*(\Lambda^*(T^*X)|_Y) \). For any \(y \in Y \), we find by (2.12)

\[
\sum_{i=1}^{2n} c(e_i) \Gamma^\wedge_y(e_i) = \frac{1}{2} \sum_{i,j}^{2l} \sum_{\alpha=2l+1}^{2n} \langle A_y(e_i)e_j, c(e_i)c(e_j)c(e_\alpha) \rangle.
\]

(2.48)

Furthermore, recall (2.13) and then we get

\[
k^{1/2}D_T^X k^{-1/2} = \sum_{i=1}^{2n} c(\tau e_i) \nabla^{B,X: \oplus}_{\tau e_i} + 2c(B_X) + \sqrt{-1}T(\hat{c}(v) + \hat{c}(\bar{v}))
\]

\[
+ \sum_{i=1}^{2n} c(e_i) \Gamma^\wedge_y(e_i) - \frac{1}{2} \sum_{\alpha=2l+1}^{2n} (e_\alpha k)(y)c(e_\alpha) + O(|Z|).
\]

Note that (2.31), (2.38), (2.41), (2.43) and (2.48), we have

\[
k^{1/2}D_T^X k^{-1/2} = \sum_{i=1}^{2n} c(\tau e_i) \nabla^{B,X: \oplus}_{\tau e_i} + 2c(B_Y) + T\sqrt{-1}T(\hat{c}(v_{N,1} + \hat{v}_{N,1})
\]

\[
+ M_T + c(B''') + T\sqrt{-1}T(\hat{c}(v_{Y,2} + \hat{v}_{Y,2}) + O(|Z| + T|Z|^3).
\]

By (2.37) and the expansion of \(\tau e_i \) along \((y, tZ)\) in the proof of [BL, Theorem 8.18], especially [BL, (8.80), (8.84)], we have

\[
\sum_{i=1}^{2n} c(\tau e_i) \nabla^{B,X: \oplus}_{\tau e_i} = \sum_{i=1}^{2l} c(e_i) \nabla^{B,X: \oplus}_{e_i} + \sum_{\alpha=2l+1}^{2n} c(e_\alpha) \nabla^{B,X: \oplus}_{e_\alpha}
\]

\[
+ \sum_{i=1}^{2n} c(S^{-B_X}(Z)e_i) \nabla^{B,X: \oplus}_{e_i} + O(|Z|\partial^H + |Z|^2\partial^N),
\]

12
and then by the definition of D^H and D^N,

$$k^{1/2}D^X_T k^{-1/2} = D^H + D^N_T + M_T + c(B'' + T\sqrt{-1}\bar{c}(\nu_Y - 2 + \bar{\nu}_Y)$$

$$+ \sum_{i=1}^{2n} c(S^{-B_X}(Z)e_i)\nabla_{e_i}^{B,X,\oplus} + O(|Z|\partial^H + |Z|^2\partial^N + |Z| + T|Z|^3).$$

But

$$\sum_{i=1}^{2n} c(S^{-B_X}(Z)e_i)\nabla_{e_i}^{B,X,\oplus} = -\sum_{i=1}^{2n} c(e_i)\nabla_{S^{-B_X}(Z)e_i}^{B,X,\oplus}$$

$$= -\sum_{i=1}^{2n} c(e_i)\nabla_{P^N_R S^{-B_X}(Z)e_i}^{B,X,\oplus} - \sum_{i=1}^{2n} c(e_i)\nabla_{P^R Y S^{-B_X}(Z)e_i}^{B,X,\oplus}$$

$$= S + O(|Z|\partial^H),$$

from which we complete the proof of the theorem. \hfill \Box

3 The proof of Theorem 1.1

In this section, we prove Theorem 1.1 by using Bismut-Lebeau’s techniques in [BL, Sect.9, Sect.10, a)].

For any $\mu \geq 0$, let E^μ (resp. E^μ, resp. F^μ) be the set of sections of $\Lambda^{(1)}(T^*_C X) \otimes \xi$ on X (resp. of $\sigma^{*}((\Lambda^{(1)}(T^*_C X) \otimes \xi)|_Y)$ on the total space of N, resp. of $\Lambda^{(1)}(T^*_C Y) \otimes \xi|_Y$ on Y) which lie in the μ-th Sobolev spaces. Let $\| \cdot \|_{E^\mu}$ (resp. $\| \cdot \|_{E^\mu}$, resp. $\| \cdot \|_{F^\mu}$) be the Sobolev norm on E^μ (resp. E^μ, resp. F^μ). We always assume that the norms $\| \cdot \|_{E^0}$ (resp. $\| \cdot \|_{E^0}$, resp. $\| \cdot \|_{F^0}$ is the norm associated with the scalar products on the corresponding bundles).

Let $\gamma : \mathbb{R} \to [0,1]$ be a smooth even function with $\gamma(a) = 1$ if $|a| \leq \frac{1}{2}$ and $\gamma(a) = 0$ if $|a| \geq 1$. For any $y \in Y, Z \in N_y$ and $\epsilon \in (0, \epsilon_0)$, where ϵ_0 is chosen as in Section 2, c), set

$$\gamma_\epsilon(Z) = \gamma\left(\frac{|Z|}{\epsilon}\right), \quad \alpha_T = \int_{N_{R,y}} \gamma_\epsilon^2(Z)\exp \left(-T|Z|^2\right)\frac{d\nu_{N_y}(Z)}{(2\pi)^{\dim C_N}}.$$ \hfill (3.1)

Clearly, α_T does not depend on $y \in Y$ and $\alpha_T = O\left(\frac{1}{T^{n-1}}\right)$.

For $\mu \geq 0, T > 0$, define linear maps $I_T : F^\mu \to E^\mu$ and $J_T : F^\mu \to E^\mu$ by

$$I_T u = \left(\frac{1}{2^{n-1}\alpha_T}\right)^{1/2} \gamma_\epsilon(Z)(\pi^* u)\beta_y, \quad J_T u = k^{-1/2}I_T u, \quad \forall u \in F^\mu.$$ \hfill (3.2)
It is easy to see that \(I_T, J_T \) are isometries from \(F^0 \) onto their images. For \(\mu \geq 0, T > 0 \), let \(E^\mu_T \) (resp. \(E^\mu_T \)) be the image of \(F^\mu \) in \(E^\mu \) (resp. \(E^\mu \)) under \(I_T \) (resp. \(J_T \)) and let \(E^{0,\perp}_T \) (resp. \(E^{0,\perp}_T \)) be the orthogonal complement of \(E^0_T \) (resp. \(E^0_T \)) in \(E^0 \) (resp. \(E^0 \)) and let \(p_T, p_T^\perp \) (resp. \(\bar{p}_T, \bar{p}_T^\perp \)) be the orthogonal projection operators from \(E^0 \) (resp. \(E^0 \)) onto \(E^0_T, E^{0,\perp}_T \) (resp. \(E^0_T, E^{0,\perp}_T \)), respectively. Set

\[
E^{\mu,\perp} = E^\mu \cap E^{0,\perp}_T. \tag{3.3}
\]

Then \(E^0 \) splits orthogonally into

\[
E^0 = E^0_T \oplus E^{0,\perp}_T. \tag{3.4}
\]

Since the map \(s \in E^0 \to k^{-1/2}s \in E^0 \) is an isometry, we see that the map \(s \to k^{-1/2}s \) identifies the Hilbert space \(E^0_T \) and \(E^0_T \). Corresponding to the decomposition (3.4) we set:

\[
D_{T,1} = \bar{p}_T D_T^X \bar{p}_T, \quad D_{T,2} = \bar{p}_T D_T^X \bar{p}_T^\perp, \quad D_{T,3} = \bar{p}_T D_T^X \bar{p}_T, \quad D_{T,4} = \bar{p}_T D_T^X \bar{p}_T^\perp. \tag{3.5}
\]

Then

\[
D_T^X = D_{T,1} + D_{T,2} + D_{T,3} + D_{T,4}. \tag{3.6}
\]

We have the following analogue of [BL, Theorem 9.8].

Lemma 3.1 The following formula holds on \(\Gamma(\Lambda^{(T)}(T^*_C Y) \otimes \xi|_Y) \) as \(T \to +\infty \)

\[
J_T^{-1} D_{T,1} J_T = D^Y + O(\frac{1}{\sqrt{T}}), \tag{3.7}
\]

where \(O(\frac{1}{\sqrt{T}}) \) is a first order differential operator with smooth coefficients dominated by \(C/\sqrt{T} \).

Proof. Note that the action of the operator \(M_T \) on \(\pi^*((\Lambda^{(T)}(T^*_C X) \otimes \xi)|_Y) \) interchanges \(\pi^*(\Lambda^{(even)}(\tilde{N}^* \oplus \tilde{N}^*)) \) and \(\pi^*(\Lambda^{(odd)}(\tilde{N}^* \oplus \tilde{N}^*)) \), we get

\[
\pi_T M_T p_T = 0. \tag{3.8}
\]

Note that \(B_X \) is antisymmetric and \(\langle c(e_\alpha)c(e_\beta)\beta_y, \beta_y \rangle = 0 \) for any \(\alpha, \beta \) with \(2l + 1 \leq \alpha < \beta \leq 2n \), we obtain

\[
p_T c(B''_T)p_T = 0. \tag{3.9}
\]
Since B_X is antisymmetric, by (2.8) we get $\langle S^{-B_X}(Z)e_i, Z \rangle = 0$ and so
\[
\nabla_{p_{NR}^S - B_X(Z)e_i}^B X (\gamma_\epsilon(Z) \exp (\theta_y - \frac{T|Z|^2}{2})) = \exp (\theta_y - \frac{T|Z|^2}{2}) (p_{NR}^S - B_X(Z)e_i) \gamma_\epsilon(Z).
\]
(3.10)

From the equality above we can prove easily the following estimate for some uniformly positive constant C and any $s \in E^1$:
\[
\|p_T s\|_{E^0} \leq C \frac{\|s\|_{E^1}}{\sqrt{T}}.
\]
(3.11)

Since $\int_C e^{-T|z|^2} z^2 dz d\bar{z} = 0$ and $(\gamma_\epsilon^2 - 1)$ vanishes on a symmetric domain containing 0, we have for any $u \in F$ that
\[
I_T^{-1} p_T (\hat{c}(v_{Y,2}) + \hat{c}(\bar{v}_{Y,2})) \left(\frac{1}{2^{n-1} \alpha_T} \right)^{1/2} \gamma_\epsilon(Z) (\pi^* u) \beta_y = O(\frac{1}{T^{3/2}}).
\]
(3.12)

On the other hand, note that β_y is of constant length on Y, we get for $1 \leq i \leq 2l$ that
\[
\langle \nabla_{e_i}^B X, \beta, \beta \rangle = 0
\]
and so
\[
I_T^{-1} p_T D^H p_T I_T = D^Y.
\]
(3.13)

One can then proceed as in [BL, Proof of Theorem 9.8] and use (3.8)–(3.12) to complete the proof of Lemma 3.1 easily.

Note that the estimate (3.12) and proceed as the proof of Theorem 9.10, Theorem 9.11 and Theorem 9.14 in [BL, Sect.9], one can prove the following lemma without any new difficulty.

Lemma 3.2 There exist $C_1 > 0$, $C_2 > 0$ and $T_0 > 0$ such that for any $T \geq T_0$, $s \in E_T^{1,1}$ and $s' \in E_T^1$, then
\[
\|D_{T,2} s\|_{E^0} \leq C_1 \left(\frac{\|s\|_{E^1}}{\sqrt{T}} + \|s\|_{E^0} \right),
\]
(3.14)
\[
\|D_{T,3} s'\|_{E^0} \leq C_1 \left(\frac{\|s'\|_{E^1}}{\sqrt{T}} + \|s'\|_{E^0} \right),
\]
(3.15)
\[
\|D_{T,4} s\|_{E^0} \geq C_2 (\|s\|_{E^1} + \sqrt{T} \|s\|_{E^0}).
\]
(3.16)
Let \(\text{Spec} (D^Y) \) denote the spectrum of \(D^Y \). Choose \(c > 0 \) such that \(\text{Spec} (D^Y) \cap [-2c, 2c] \subset \{0\} \). Let \(\delta = \{ \lambda \in \mathbb{C} : |\lambda| = c \} \). Let \(E_c(T) \) denote the direct sum of the eigenspaces of \(D^X_T \) with eigenvalues lying in \([-c, c]\). Then \(E_c(T) \) is a finite dimensional subspace of \(E^0 \). Let \(P_{T,c} \) denote the orthogonal projection from \(J_T(\ker (D^Y)) \) to \(E_c(T) \). By Lemma 3.1 and Lemma 3.2, we have the following analogue of [BL, (9.15 6)] (also see [TZ, Proposition 4.4] for a proof without using the norm in [BL, Sect.9, Definition 9.17] and the distance in [BL, Sect.9, Definition 9.22]):

Theorem 3.3 There exist \(c > 0 \) and \(T_0 > 0 \) such that for any \(T \geq T_0 \), the projection

\[
P_{T,c} : J_T(\ker (D^Y)) \to E_c(T)
\]

is an isomorphism.

Now to prove Theorem 1.1 we only need to prove that when \(T \) large enough, \(D^X_T \) has no nonzero small eigenvalues or equivalently, to prove the following equality:

\[
E_c(T) = \ker (D^X_T).
\]

Let \(Q \) denote the orthogonal projection from \(\Omega^1(Y, \xi) \) to \(\ker (D^Y) \). Then we have the following analogue of [Z2, Theorem 1.10] (also see [BL, Theorem 10.1, (10.4)]):

Theorem 3.4 There exist \(c > 0 \), \(C > 0 \), \(T_1 > 0 \) such that for any \(T \geq T_1 \), any \(\sigma \in \ker (D^Y) \),

\[
\| (2^{n-1} \alpha_T)^{1/2} Q j^* P_{T,c} J_T \sigma - \sigma \|_0 \leq \frac{C}{\sqrt{T}} \| \sigma \|_0.
\]

Proof. The proof of [Z2, Theorem 1.10], which is a modified version of the proof of [BL, Theorem 10.1, (10.4)], is carried out here with the identity [Z2,(1.34)] in the proof of the [Z2, Theorem 1.10] replaced by the following equality

\[
j^* \frac{1}{2\pi \sqrt{-1}} \int_{\delta} k^{-1/2} \gamma e^{(\pi^* \sigma) \beta_y / \lambda} d\lambda = \sigma.
\]

The proof of (3.20) is similar to that of the identity [BL, (10.29)]. \(\square \)

Note that \(j^* \beta_y = 1 \) is crucial in the proof of (3.19). It is no longer true for the case of the analytic proof of Morse inequalities of Witten ([W]) since in that case the contribution
of the bundle \(\Lambda(N^*) \) to the kernel of \(D^X_T \) is a pure \(p \)-form around each critical point of index \(p \) (cf. [Z1, Chapter 5, 6]) and its pull-back by \(j^* \) vanishes on \(Y \). Consequently, \(j^* \) can not be a quasi-isomorphism at all in that case.

Proof of Theorem 1.1. The proof of Theorem 1.1 now is similar to that in [Z2, Sect.1, e)]. Note that the trick used in Zhang’s proof and so ours is inspired by Braverman ([Br, Sect.3]). First of all, we know from Theorem 3.3 that

\[
P_{T,c}J_T : \ker (D^Y) \to E_c(T) \tag{3.21}
\]

is an isomorphism when \(T \) is very large. Take \(\alpha \in E_c(T) \). Then \(\bar{\partial}^X_T \alpha \in E_c(T) \). By the above discussion, there exists \(\sigma \in \ker (D^Y) \) such that

\[
\bar{\partial}^X_T \alpha = (2^{n-l} \alpha_T)^{1/2} P_{T,c}J_T \sigma. \tag{3.22}
\]

From (3.22) and that \(j^* \) is a quasi-homomorphism, i.e. \(j^* \bar{\partial}^X_T = \bar{\partial}^Y j^* \), we have

\[
(2^{n-l} \alpha_T)^{1/2} Q j^* P_{T,c}J_T \sigma = Q j^* \bar{\partial}^X_T \alpha = Q \bar{\partial}^Y j^* \alpha = 0. \tag{3.23}
\]

From (3.23) and (3.19), we get

\[
\| \sigma \|_0 \leq C \sqrt{T} \| \sigma \|_0, \tag{3.24}
\]

and so \(\sigma = 0 \) as \(T \) large enough. Thus, when \(T \) is large enough, we have that

\[
\bar{\partial}^X_T |_{E_c(T)} = 0. \tag{3.25}
\]

From (3.25) and Theorem 3.3, we have that when \(T \) is large enough,

\[
\dim \ker (D^X_T) = \dim E_c(T) = \dim \ker (D^Y). \tag{3.26}
\]

Now by Theorem 3.4,

\[
j^* : \ker (D^X_T) \to \ker (D^Y) \tag{3.27}
\]

is clearly an injective and so an isomorphism from (3.26).

Acknowledgements The author would like to thank Professors Jean-Michel Bismut and Xiaonan Ma for many helpful discussions from which the author benefits a lot. This work was done while the author was visiting the Institut des Hautes Études Scientifiques in
Bures-Sur-Yvette. He would like to thank Professor Jean-Pierre Bourguignon and the IHES for their hospitality and support.

References

[Bis1] J. -M. Bismut, Holomorphic and de Rham torsions, preprint.
[Bis2] J. -M. Bismut, A local index theorem for non Kähler manifolds, Math. Ann. 284(1989), 681-699.
[BL] J. -M. Bismut and G. Lebeau, Complex immersions and Quillen metrics, Publ. Math. IHES. V.74 (1991).
[Bot] R. Bott, A residue formula for holomorphic vector fields, J. Diff. Geom. 1(1967), 311-330.
[Br] M. Braverman, Cohomology of the Mumford quotient, Progress in Math. 198(2001), 47-59.
[CL] J. B. Carrell and D. I. Lieberman, Holomorphic vector fields and Kaehler manifolds, Invent. Math. 21 (1973), 303-309.
[L] K. Liu, Holomorphic equivariant cohomolgy, Math. Ann. 303(1995), 125-148.
[TZ] Y. Tian and W. Zhang, Quantization formula for symplectic manifo lds with boundary, Geom. Funct. Anal. 9(1999), 596-640.
[W] E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17(1982), 661-692.
[Z1] W. Zhang, Lectures on Chern-Weil Theory and Witten Deformations, Nankai Tracts in Mathematics, V.4, World Scientific, Singapore, 2001.
[Z2] W. Zhang, A holomorphic quantization formula in singular reduction, Commun. Contemp. Math. 1(1999), No.3, 281-293.

Feng: College of Mathematical Sciences, Nankai University, Tianjin, 300071, China; fht@nankai.edu.cn
Current address:
Feng: Institut Des Hautes Études Scientifiques, Bures-Sur-Yvette, 91440, France; feng@ihes.fr