A NOTE ON THE REGULARITY OF HIBI RINGS

VIVIANA ENE, JÜRGEN HERZOG AND SARA SAEEDI MADANI

ABSTRACT. We compute the regularity of the Hibi ring of any finite distributive lattice in terms of its poset of join irreducible elements.

INTRODUCTION

Let P be a finite poset. The set of poset ideals $L = \mathcal{I}(P)$, partially ordered by inclusion, is a distributive lattice. According to a classical result of Birkhoff any finite distributive lattice arises in this way. Now given a field K, there is naturally attached to L the K-algebra $K[L]$ generated over K by the elements of L with defining relations $\alpha \beta - (\alpha \wedge \beta)(\alpha \vee \beta)$ with $\alpha, \beta \in L$ incomparable. This algebra was introduced by Hibi in 1987 where he showed that $K[L]$ is a Cohen–Macaulay domain with an ASL structure. He also characterized those distributive lattices for which $K[L]$ is Gorenstein. Nowadays $K[L]$ is called the Hibi ring of L.

By choosing for each $\alpha \in L$ an indeterminate x_α one obtains the presentation $K[L] \cong S/I_L$ where S is the polynomial ring over K in the indeterminates x_α and where I_L is generated by the quadratic binomials $x_\alpha x_\beta - x_{\alpha \wedge \beta} x_{\alpha \vee \beta}$ with $\alpha, \beta \in L$ incomparable. Not so much is known about the graded minimal free S-resolution of the toric ideal I_L. Of course we know its projective dimension. Indeed, since $K[L]$ is Cohen-Macaulay and since $\dim K[L]$ is known to be equal to $|P| + 1$, the Auslander-Buchsbaum formula implies that $\text{proj dim } I_L = |L| - |P| - 2$. An equally important invariant of a graded module M over a polynomial ring is its Castelnuovo–Mumford regularity which may be computed in terms of the shifts of the graded minimal free resolution of M and which is denoted by $\text{reg } M$. As a main result of this paper we show that $\text{reg } I_L = |P| - \text{rank } P$. As a consequence we obtain the formula as given in [3] for the regularity of I_L for any planar distributive lattice L. Our result also provides a simple proof for the classification of the distributive lattices for which I_L has a linear resolution, see [3 Theorem 3.2] and [4 Corollary 10], and of those lattices for which I_L is extremal Gorenstein, see [4 Theorem 3.5].

1. The regularity of $K[L]$

Let P be a finite poset. A subset $\alpha \subset P$ is called a poset ideal of P if whenever $p \in \alpha$ and $q \leq p$, then $q \in \alpha$. We denote by $\mathcal{I}(P)$ the set of poset ideals of P. Note

2010 Mathematics Subject Classification. Primary 05E40, 16E05; Secondary 06D99, 06A11.
Key words and phrases. Distributive lattices, Hibi rings, regularity.
The first author was supported by the grant UEFISCDI, PN-III-P1-ID-PCE- 2011-3-1023.
The paper was written while the third author was visiting the Department of Mathematics of University Duisburg-Essen. She wants to express her thanks for its hospitality.
Theorem 1.1. Let v with L elements of L. Then v is a finite distributive lattice. Birkhoff’s fundamental theorem asserts that any finite distributive lattice (L, \wedge, \vee) arises in this way. To be precise, $L \cong \mathcal{I}(P)$ where P is the subposet of L consisting of all join irreducible elements of L. Recall that $\alpha \in L$ is called join irreducible if $\alpha \neq \min L$ and whenever $\alpha = \beta \vee \gamma$, then $\alpha = \beta$ or $\alpha = \gamma$.

Due to this theorem, we may from now on assume $L = \mathcal{I}(P)$ for some poset P. This point of view allows us to interpret $K[L]$ as a toric ring. Indeed, let S be the polynomial ring over K in the variables x_α with $\alpha \in L$, and let T be the polynomial ring over K in the variables s and t_p with $p \in P$. We consider the K-algebra homomorphism $\varphi: S \to T$ with $\varphi(x_\alpha) = s \prod_{p \in \alpha} t_p$. It is shown in [8] that $I_L = \ker \varphi$. Thus we see that

$$K[L] \cong K[\{s \prod_{p \in \alpha} t_p : \alpha \in L\}] \subset T.$$

We henceforth identify $K[L]$ with $K[\{s \prod_{p \in \alpha} t_p : \alpha \in L\}]$. In [6, (3.3)] Hibi describes the monomial K-basis of $K[L]$; let \hat{P} be the poset obtained from P by adding the elements $-\infty$ and ∞ with $\infty > p$ and $-\infty < p$ for all $p \in P$, and let $\mathcal{S}(\hat{P})$ be the set of integer valued functions $v: \hat{P} \to \mathbb{N}$ with $v(\infty) = 0$ and $v(p) \leq v(q)$ for all $p \geq q$. Then the monomials

$$s^{v(\infty)} \prod_{p \in P} t_p^{v(p)}, \quad v \in \mathcal{S}(\hat{P})$$

form a K-basis of $K[L]$. Note that $K[L]$ is standard graded with

$$\deg(s^{v(\infty)} \prod_{p \in P} t_p^{v(p)}) = v(\infty).$$

Let ω_L be the canonical ideal of $K[L]$. By using a result of Stanley [8, pg. 82], Hibi shows in [6, (3.3)] that the monomials

$$s^{v(\infty)} \prod_{p \in P} t_p^{v(p)}, \quad v \in \mathcal{T}(\hat{P})$$

form a K-basis of ω_L, where $\mathcal{T}(\hat{P})$ is the set of integer valued functions $v: \hat{P} \to \mathbb{N}$ with $v(\infty) = 0$ and $v(p) < v(q)$ for all $p > q$.

Based on these facts, we are now ready to prove the following

Theorem 1.1. Let L be a finite distributive lattice and P the poset of join irreducible elements of L. Then $\reg I_L = |P| - \rank P$.

Proof. Let $H_{K[L]}(t)$ be the Hilbert series of $K[L]$. Then

$$H_{K[L]}(t) = \frac{Q(t)}{(1-t)^d},$$

where $Q(t) = \sum_i h_i t^i$ is a polynomial and where $d = |P| + 1$ is the Krull dimension of $K[L]$. Since $K[L]$ is Cohen-Macaulay, it follows that $\reg K[L] = \deg Q(t)$.

The a-invariant $a(K[L])$ of $K[L]$ is defined to be the degree of the Hilbert series of $K[L]$ (see \[2, \text{Def. 4.4.4}\]) which by definition is equal to $\deg Q(t) - d$. Thus we see that

\[(4) \quad \reg I_L = \reg K[L] + 1 = a(K[L]) + |P| + 2.\]

On the other hand, following Goto and Watanabe \[5\], who introduced the a-invariant, we have

\[a(K[L]) = -\min\{i: (\omega_L)_i \neq 0\},\]

see \[2, \text{Def. 3.6.13}\]. Thus, since $\hat{\reg} P = \hat{\reg} K[L] + 2$, the desired formula for the regularity of $K[L]$ follows from \[4\] once we have shown that $\min\{i: (\omega_L)_i \neq 0\} = \hat{\reg} \hat{P}$.

Let $v \in \mathcal{T}(\hat{P})$ and let $-\infty < p_1 < \cdots < p_r < \infty$ be a maximal chain in \hat{P} with $r = \hat{\reg} P + 1$. Then

\[0 < v(p_r) < v(p_{r-1}) < \cdots < v(p_1) < v(-\infty).\]

It follows that $v(-\infty) \geq \hat{\reg} \hat{P}$, and hence \[3\] implies that $\min\{i: (\omega_L)_i \neq 0\} \geq \hat{\reg} \hat{P}$. In order to prove equality, we consider the depth function $\delta: \hat{P} \to \mathbb{N}$ which for $p \in \hat{P}$ is defined to be the supremum of the lengths of chains ascending from p. Obviously, $\delta \in \mathcal{T}(\hat{P})$ and $\delta(-\infty) = \hat{\reg} \hat{P}$. This concludes the proof of the theorem. \square

Recall that $L = \mathcal{I}(P)$ is called simple if there is no $p \in P$ with the property that for every $q \in P$ either $q \leq p$ or $q \geq p$. In the further discussions we may assume without any restrictions that L is simple, because if we consider the subposet P' of P which is obtained by removing a vertex $p \in P$ which is comparable with any other vertex of P and let $L' = \mathcal{I}(P')$, then I_L and $I_{L'}$ have the same regularity. Indeed, $|P'| = |P| - 1$, and since any maximal chain of P passes through p, it also follows that $\hat{\reg} P' = \hat{\reg} P - 1$. Thus the assertion follows from Theorem \[\square\].

As an immediate consequence of Theorem \[\square\] we get the following characterization of simple distributive lattices whose Hibi rings have linear resolutions, previously obtained in \[3\] and \[4\].

Corollary 1.2. Let L be a finite simple distributive lattice and P the poset of join irreducible elements of L. Then I_L has a linear resolution if and only if P is the sum of a chain and an isolated element.

Proof. The ideal I_L has a linear resolution if and only if $\reg I_L = 2$. By Theorem \[\square\] this is the case if and only if $|P| - \hat{\reg} P = 2$. Say, $\hat{\reg} P = r$, and let $C = p_0 < p_1 < \cdots < p_r$ be a maximal chain in P. Thus $|P| - \hat{\reg} P = 2$, if and only if there exists a unique $q \in P$ not belonging to C. Suppose q is comparable with some p_i. Then p_i is comparable with any other element of P, contradiction the assumption that L is simple. Thus if L is simple, then $|P| - \hat{\reg} P = 2$ if and only if P is the sum of the chain C and the isolated element q. \square

The preceding corollary implies that a finite simple distributive lattice is planar if I_L has a linear resolution. Now let L be any simple planar lattice and P the poset
of join irreducible elements of L. Then there exist two chains C_1 and C_2 such that P as a set is the disjoint union of them. We may assume that $|C_1| \geq |C_2|$. It follows from Theorem 1.1 that $\text{reg} I_L = |C_2| + 1$. This result may also be obtained with the characterization given in [4, Theorem 4].

We would like to remark that, given a number k, Theorem 1.1 allows us to determine in a finite number of steps all finite simple distributive lattices L with $\text{reg} I_L = k$. As an example, we consider the case $k = 3$. Let P be the poset of join irreducible poset of L. By Theorem 1.1 it is enough to find all finite posets P with $|P| - \text{rank } P = 3$. Let C be a maximal chain in P. Since $|P| = \text{rank } P + 3$, it follows that there exist precisely two elements $q, q' \in P$ which do not belong to C. The only posets satisfying $|P| = \text{rank } P + 3$ for which $L = \mathcal{I}(P)$ is simple are displayed in Figure 1.

![Figure 1](image1.png)

The Gorenstein ideals I_L with $\text{reg} I_L = 3$ are called extremal Gorenstein. Hibi showed in [6, pg. 105, d) Corollary] that for any distributive lattice L, the ideal I_L is Gorenstein if and only if the poset of join irreducible elements of L is pure. Combining this fact with the above consideration, we recover the result of [3, Theorem 3.5] which says that for a simple distributive lattice L, the ideal I_L is extremal Gorenstein if and only if L is one of the lattices shown in Figure 2.

![Figure 2](image2.png)

References

[1] G. Birkhoff, *Lattice Theory* (3rd ed.), Amer. Math. Soc. Colloq. Publ. No. 25. Providence, R. I.: Amer. Math. Soc.
[2] W. Bruns, J. Herzog, *Cohen-Macaulay rings*, Revised Ed., Cambridge University Press, 1998.
[3] V. Ene, J. Herzog, T. Hibi, *Linearly related polyominoes*, preprint, arXiv: 1403.4349v1.
[4] V. Ene, A. A. Qureshi, A. Rauf, Regularity of join-meet ideals of distributive lattices, Electron. J. Combin. 20 (3) (2013), #P20.
[5] S. Goto, K.-i. Watanabe, On graded rings, I, J. Math. Soc. Japan 30(2) (1978), 179–213.
[6] T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, In: “Commutative Algebra and Combinatorics” (M. Nagata and H. Matsumura, Eds.), Adv. Stud. Pure Math. 11, North–Holland, Amsterdam, (1987), 93–109.
[7] P. Schenzel, Über die freien Auflösungen extremaler Cohen-Macaulay Ringe, J. Algebra 64 (1980), 93–101.
[8] R. P. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978), 57–83.

Viviana Ene, Faculty of Mathematics and Computer Science, Ovidius University, Bd. Mamaia 124, 900527 Constanta, Romania, and Simion Stoilow Institute of Mathematics of the Romanian Academy, Research group of the project ID-PCE-2011-1023, P.O.Box 1-764, Bucharest 014700, Romania
E-mail address: vivian@univ-ovidius.ro

Jürgen Herzog, Fachbereich Mathematik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany
E-mail address: juergen.herzog@uni-essen.de

Sara Saeedi Madani, Department of Pure Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424, Hafez Ave., Tehran 15914, Iran, and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
E-mail address: sarasaedi@aut.ac.ir