SURVEILLANCE OF CARBAPENEM-RESISTANT GRAM-NEGATIVE BACTERIA FROM ANIMAL SOURCES IN MATHURA REGION, UTTAR PRADESH, INDIA

A. Arun¹, U. Jaiswal¹, S. Tripathi¹, A. P. Singh¹*, S. Choudhury², S. N. Prabhu³

ABSTRACT: A cross-sectional study was conducted to determine the prevalence of Carbapenem-resistant Gram-negative bacteria (CR-GNB) in animals. The study involves one hundred eighty-four GNB isolates from 214 samples (faeces, milk, pus, and uterine discharge) from Buffalo (N=112), Cattle (N=50) and, Dog (N=52). Healthy and diseased animals reported to Veterinary Clinical Complex were sampled. Carbapenemase production was evaluated by phenotypic methods and presence of metallo β-lactamase genes was assayed by PCR. We observed a 9.78% overall prevalence of CR-GNB in animal sources. CR-GNB was more frequently recovered from companion animals (19.23%) when compared to livestock (4.93%). IMP (44.4%), VIM (38.8%), and OXA-48 (16.66 %) were the main MBLs observed in the study.

Key words: Gram-negative bacteria, Carbapenem, Antibiotic resistance, Animals.

INTRODUCTION

Carbapenems are a beta-lactam class of antibiotics. Carbapenems are stable to most beta-lactamase enzymes mediated inactivation unlike other beta-lactam antibiotics (Perrott et al. 2010). Carbapenems are clinicians’ preferred choice for the therapeutic management of serious infections caused by MDR pathogens (Falagas and Karageorgopoulos 2009). The ever-growing dependence has led to the recent emergence of carbapenem-resistant bacterial strains. Genes encoding carbapenem-resistance are often associated with mobile genetic elements leading to their spread across a variety of carbapenem-resistant Gram-negative bacteria (CR-GNB) (Schwaber et al. 2011).

Most clinically relevant carbapenem resistance appears to have arisen and propagated because of its therapeutic uses in humans (Poirel et al. 2014). CR-GNB has been isolated predominantly from humans and environmental samples. Presently, carbapenems are not authorized for use in veterinary medicine in most parts of the world; hence carbapenem resistance is not common in GNB isolated from animals. Notwithstanding, CR-GNB has been detected in livestock, companion animals, and their environment by several workers across the globe in the recent past (Wang et al. 2012, Woodford et al. 2014). The overall carriage rate of CR-GNB has been on the rise in food-producing animals and their environment in India (Ghatak et al. 2013, Pruthvishree et al. 2017, Nirupama et al. 2018). The colonization of CR-GNB in livestock and companion animals has a potential multiplier effect on rapid dissemination to humans through close contact, environmental and, food-borne transmission. The prevalence of CR-GNB has risen significantly in animal healthcare settings over the past few years, but the data on the population prevalence among livestock and pet animals are scanty in India. Therefore, it is necessary to include CR-GNB for routine epidemiological investigations in animal population. The present study aimed to predict the population prevalence of CR-GNB from various animal sources and their characterization.

MATERIALS AND METHODS

Bacterial Isolates

The carbapenem resistance surveillance includes 214 GNB samples (faeces, milk, pus, and uterine discharge)
collected between during May 2018 and April 2021 from separate animals in and around the Mathura region, India, without any inclusion or exclusion criteria. Sample details given in Table 1. A total of 184 GNB were isolated, and further identified by the standard microbiological procedure (Barrow and Feltham 2004). Control strain includes *Klebsiella pneumoniae* ATCC BAA 1705^{KPC} and *Klebsiella pneumoniae* ATCC BAA 1706.

Antibiotic susceptibility test

Antimicrobial susceptibility analysis was carried out by standard Kirby-Bauer disk diffusion method using Mueller-Hinton agar (Sigma-Aldrich) following the CLSI (2017) guidelines and interpretative criteria (Table S2).

Table 1. Details of samples collected.

Species	Sample type	Pus	Uterine discharge	Mastitis Milk	Fecal sample
Buffalo (N=112)		1	52	33	26
Cattle (N=50)		1	41	-	8
Dog (N=52)		-	-	-	52
Total (N=214)		2	93	33	86

The panel of antimicrobial agents consisted of 10 different antimicrobial-impregnated disks: namely, ertapenem (10 µG), cefotaxime (30 µG), ceftazidime (30 µG), gentamicin (10 µG), ampicillin (10 µG), amoxicillin-clavulanate (10µg), ciprofloxacin (5 µg), cefoxitin (30 µg), ceftriaxone (30 µg) and cefpodoxime (10 µg). The zone of inhibition was measured in mm and interpreted as sensitive, intermediate, or resistant.

Minimum inhibitory concentration (MIC)

The minimum inhibitory concentrations (MICs) of carbapenems (imipenem, ertapenem and meropenem) were tested by the broth microdilution method (Wiegand et al. 2008). Standardized bacterial inoculums were prepared for each isolate to give a turbidity equivalent to that of a 0.5 McFarland standard corresponding to 1 X10⁸ cfu/ml. The final test concentration of the bacteria was achieved by further diluting the adjusted suspension by a factor of 1:100 to achieve approximately 5 × 10⁷ cfu/ml. The working antibiotic stock solution was prepared by 1:10 dilution of antibiotic stock solution (potency adjusted 1.28 mg/ml) in Muller Hinton Broth (MHB). The plates were covered by sterile covers and incubated at 37°C for 18-24 h. The lowest concentration of the antibiotics that did not have visible bacterial growth was defined as the MIC.

Phenotypic and genotypic carbapenemase identification

Carbapenemase activity was assessed by modified Carba NP test (Rudresh et al. 2017), Carbapenemase Inactivation Assay (Zwaluw et al. 2015) and Modified Hodge test (Amjad et al. 2011). For genotypic detection, DNA isolated by the snap chill method was subjected to a target amplification of β-Lactamase genes using a panel.
of primers for detection of OXA-48, KPC, VIM, IMP, and NDM genes by multiplex PCR (Dallenne et al. 2010). A 25 µl reaction mixture containing 12.5 µl Dream Taq Master Mix, variable number of primers and 2 µl of isolated DNA template was used. Amplification was carried involving initial denaturation at 94°C for 10 min and 30 cycles of denaturation at 94°C for the 40s, annealing at 55°C for 40s, and extension at 72°C for 1 min followed by final elongation step at 72°C for 7 min. A. The primer concentration and amplification conditioned for the PCR reactions were used as per the Table 1.

RESULTS AND DISCUSSION

Between May 2018 and April 2021, we processed 214 non-repeated samples comprised of faces, milk, uterine swab, and pus. A total of 184 GNB isolates were obtained on a MacConkey agar plate. A total of 18 CR-GNB isolates including *Escherichia coli* (n=12), *Klebsiella pneumoniae* (n=2), *Citrobacter freundii* (n=2), *Enterobacter cloacae* (n=1), and *Pseudomonas aeruginosa* (n=1) showed reduced susceptibility to ertapenem, based on zone interpretative criteria. The carbapenem resistance has been reported in *E. coli* (Zhang et al. 2013), *Klebsiella pneumonia* (Diab et al. 2017), *Enterobacter, Citrobacter* (Mollenkopf et al. 2017). MIC of 18 CR-GNB isolates for imipenem, meropenem, and ertapenem was shown in Table 2. MIC of 18 CR-GNB isolates for imipenem, meropenem, and ertapenem were detected in the range of 0.625 µg/ml to 64 µg/ml, 0.0625 µg/ml to 1 µg/ml, and 0.312 to 16 µg/ml, respectively (Table 2). None of the CR-GNB isolates were resistant to meropenem. All the isolates exhibited resistance to amoxicillin-clavulanate, while various resistance rates were observed for ceftazidime (83.3 %), cefotaxime (75 %), ceftiraxone (88.8 %), cefpodoxime (94.44 %), and ciprofloxacin (91.6 %). The least frequent resistances were against gentamicin (33.3%).

Out of eighteen carbapenem non-susceptible isolates, thirteen (72.22 %) showed a positive reaction in the carbapenemase biochemical test (Fig. 1) while PCR-based identification revealed the presence of one or more carbapenemase (IMP, VIM, and Oxa-48) in 12 isolates (66.66%). Molecular testing showed the presence of IMP, VIM, and OXA-48 MBLs in eight (44.44 %), seven (38.88 %), and three isolates (16.66 %), respectively (Fig. 2, Table 2). All three OXA-48 bearing isolates were
Table 2. Details on the tests performed using different carbapenam suspected isolates.

Isolate No	Source	Sample Origin	Isolate	Antibiotic resistant profile	MIC	MBL gene	
				Ertapenem	Imipenem	Meropenem	gene
VS-01	Cow	Uterine discharge	*Pseudomonas aeruginosa*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	8 µg	32 µg	0.5 µg
VS-02	Cow	Uterine discharge	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	1 µg	32 µg	0.5 µg
VS-39	Cow	Uterine discharge	*Enterobacter cloacae*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	16 µg	4 µg	0.0625 µg
VS-51	Cow	Uterine discharge	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	4 µg	64 µg	0.5 µg
VA-19	Dog	Faecal	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, GM, FOX, ETP	6 µg	1 µg	1 µg
VA-52	Dog	Faecal	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, GM, FOX, ETP	2 µg	0.125 µg	0.0625 µg
VA-53	Buffalo Milk	Citrobacter freundii	*Citrobacter freundii*	AMC, CPD, CRO,CTX, AM, CIP, GM, ETP	4 µg	0.0625 µg	0.125 µg
VA-55	Dog	Faecal	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	8 µg	0.125 µg	0.0625 µg
VA-66	Dog	Faecal	*Klebsiella pneumoniae*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, GM, FOX, ETP	6 µg	1 µg	0.25 µg
VA-77	Buffalo Faecal	Klebsiella pneumonia	*Klebsiella pneumonia*	AMC, AM, FOX, ETP	0.25 µg	2 µg	0.125 µg
VA-99	Buffalo Faecal	E. coli	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	4 µg	1µg	0.25 µg
VA-100	Buffalo Faecal	E. coli	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	16 µg	8 µg	0.125 µg
VU-02	Dog	Faecal	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	2 µg	32 µg	0.0625 µg
VU-03	Dog	Faecal	*Citrobacter freundii*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	4 µg	32 µg	0.0625 µg
VU-08	Dog	Faecal	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, FOX, ETP	2 µg	64 µg	0.0625 µg
VU-14	Dog	Faecal	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, FOX, ETP	6 µg	1 µg	0.125 µg
VU-16	Dog	Faecal	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	1 µg	4 µg	0.125 µg
VU-17	Dog	Faecal	*E. coli*	AMC, CPD, CRO,CTX, CAZ, AM, CIP, FOX, ETP	1 µg	16 µg	0.125 µg

(AMC: Amoxicillin–Clavulanic acid, CPD: Cefpodoxime; AMP: Ampicillin, CAZ: Ceftazidime, CRO: Ceftriaxone, CIP: Ciprofloxacin, CTX: Cefotaxime, FOX: Cefoxitin, GM: Gentamicin, ETP: Ertapenem).
recovered from dogs. Three out of 18 isolates carried both VIM and IMP, while the co-existence of IMP and OXA-48 was found in one isolate. Previous reports suggest rare prevalence of VIM and Oxa-48 carbapenemase genes from bacterial strains of animal sources in India, however, recent report indicate more frequent occurrence of OXA-48, VIM and IMP genotype from fecal sample of the piglets, calves and dogs (Nirupama et al. 2018, Murugan et al. 2019, Sankar et al. 2021). The carbapenemase genes variants (KPC and

Table 3. Number (%) of Carbapenem resistant isolates from animal source.

Total GNB isolates	Livestock	Companion Animal	
	Buffalo (n =112)	Cattle (n=50)	Dog (n =52)
Carbapenem resistant GNB	4 (3.57%)	4 (8.00%)	10 (19.23%)

Table S1. Primers used in PCR analysis.

β-lactamase (s) targeted	Primer name	Sequence (5’-3’) target	Primer concentration (20 picomol)	Reference
OXA-48-like	OXA-48_for	GCTTGATCGCCCTCGAT	20	
	OXA-48_rev	GATTTGCTCCGTCGGCCGAA	20	
New Delhi metallo-beta lactamase (NDM)	NDM_F	GGTGGTGCCGATCCTGAATTC	20	
	NDM_R	CGGAATGGCTCATAGGCAGATT	20	
IMP	Multi IMP-F	TTGACACTCCATTTACGTA	25	Dallenne et al. 2010
	Multi IMP-R	GATYGAGAATTAAGCCAYCTA	25	
VIM	Multi VIM-F	GATGGTGTTTGGTGCATA	25	
	Multi VIM-R	GATGGTGTTTGGTGCATA	25	
KPC	Multi KPC-F	CATTCAAGGGCTTTCTGCTGC	10	
	Multi KPC-R	ACGACGCGCATAGTCATTGC	10	

Table S2. AST Zone diameters for control strain Escherichia coli (ATCC®25922™) and the test isolates used in this assay (PSAST 2017).

Antibiotic	Disc code	Antibiotic concentration (µg)	Control strain zone diameter (mm)	Control diameter observed (mm)	Test zone diameters (mm)
Amoxicillin & Clavulanic acid	AMC-30	20/10	18-24	22	<=13 14-17 >=18
Ampicillin	AM	10	16-22	20	<=13 14-16 >=17
Cefotaxime	CTX-30	30	29-35	34	<=14 15-22 >=23
Ceftazidime	CAZ-30	30	25-32	29	<=14 15-17 >=18
Cefpodoxime	CPD-10	10	23-28	25	<=17 18-20 >=21
Ceftriazone	CRO-30	30	29-35	29	<=13 14-20 >=21
Cefoxitin	FOX-30	30	23-29	24	<=14 15-17 >=18
Ciprofloxacin	CIP-5	5	30-40	30	<=15 16-20 >=21
Gentamicin	GM-10	10	19-26	17	<=12 13-14 >=15
Ertapenem	ETP-10	10	29-36	32	<=15 16-18 >=19
NDM) widely known for their rapid acquisition and dissemination, were not found. The prevalence of CRE in different species of animals was recorded. Based on the results described herein, CR-GNB appears to be having a significant prevalence (9.78 %) in cattle and dogs. The earlier studies showed the varied incidence of CR-GNB ranging from 0.5 % to 25 % in different parts of the world. In the current study, we found slightly higher prevalence rates of CR-GNB in animals, than the rates reported by other researchers (Stolle et al. 2013, Saheen et al. 2013, Reynolds et al. 2019). In absence of strict regulatory framework governing the use of antimicrobials in animal production system and irrational therapeutic usage of antibiotics in veterinary practices in India, may have contributed for higher prevalence of CR-GNB in animals. The recovery of CR-GNB from cattle and dogs indicates a potential future public health crisis (Abraham et al. 2014). We recorded a higher prevalence of CR-GNB in dogs (19.23%) in comparison to bovine (4.93%) (Table 3). A significantly higher prevalence of CRE among companion animals observed in our study is in agreement with previous findings of Kock et al (2018) who inferred higher prevalence rate (1-15%) among livestock and companion animals in Asia. We observed faecal samples 7.70% (14/184) were the major source of CRE isolates followed by uterine samples 2.17% (4/184) (Fig. 3). Traditionally, bovine excrements are used for mud-flooring, as manure in agricultural farmland, and dung cake preparation in villages in India. Human exposure to antibiotic-resistant bacteria present in bovine excrements poses a health risk. The colonization of CR-GNB in the animal gut microbiome is a concern since it could be readily transmitted to pet owners, veterinarians, farmers through close physical contact and may result in community spread. The frequent use of beta-lactams selects and maintains CR-GNB within the animal population. The prevalence of CR-GNB in faecal samples of dogs has been widely reported (González-Torralba et al. 2016, Gentilini et al. 2018). The faecal carriage of CR-GNB in dogs indicates the possible occurrence of interspecies transmission between humans and companion animals within the same household. Industrialization and urban expansion of Indian cities have resulted in an exponential rise in the stray dog population in urban and peri-urban areas. Humans can be exposed to CR-GNB through soil contaminated with stray-dog faeces in densely populated urban neighbourhoods inhabited by the low socio-income group.

CONCLUSION

The recovery of CR-GNB from livestock and companion animals has significant public health ramifications and this may be related to illegal carbapenem use in veterinary practice. The dissemination of carbapenem-resistant bacteria in livestock and the environment potentially has a far-reaching effect. Evidence of such transmission is the cause of concern for public health experts and warrants strict vigil to limit the species spillover cross-species transmission. Hence continuous surveillance for antimicrobial-resistant must include screening for CR-GNB in livestock and companion animals.

ACKNOWLEDGMENT

The authors are also thankful to Vice-chancellor, U.P. Pandit Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidhyalaya Ewam Gau Anusandhan Sansthan Mathura, 281001 (U.P.), for providing infrastructural facility to review this study.

REFERENCES

Abraham S, Wong HS, Turnidge J, Johnson JR, Trott DJ (2014) Carbapenemase-producing bacteria in companion animals: a public health concern on the horizon. J Antimicrob Chemother 69(5): 1155-1157.
Amjad A, Mirza IA, Abbasi SA, Farwa U, Malik N, Zia F (2011) Modified Hodge test: A simple and effective test for detection of carbapenemase production. Iran J Microbiol 3(4): 189-193.
Barrow G, Feltham RKA (2004) Cowan and Steel’s manual for identification of medical bacteria. 3rd edn. Cambridge University Press, Cambridge 331.
CLSI (2017) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard, 9th edn. CLSI document M07-A9. Clinical and Laboratory Standards Institute, 950, West Valley Road, Pennsylvania 19087, USA.
Dallenne C, Da Costa A, Decré D, Favier C, Arlet G (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65(3): 490-495.
Diab M, Hamze M, Bonnet R, Saras E, Madec JY, Haenni M (2017) OXA-48 and CTX-M-15 extended-spectrum beta-lactamases in raw milk in Lebanon: epidemic spread of
dominant *Klebsiella pneumoniae* clones. J Med Microbiol 66(11): 1688-1691.

Falagas ME, Karageorgopoulos DE (2009) Extended-spectrum β-lactamase-producing organisms. J Hosp Infect 73(4): 345-354.

Gentilini F, Turba ME, Pasquali F, Mion D, Romagnoli N et al. (2018) Hospitalized pets as a source of carbapenem-resistance. Front Microbiol 6: 2872.

Ghatak S, Singha A, Sen A, Guha C, Ahuja A et al. (2013) Detection of New Delhi-metallo -β-lactamase and extended-spectrum beta-lactamase genes in *Escherichia coli* isolated from mastitic milk samples. Transbound Emerg Dis 60: 385-389.

González-Torralba A, Oteo J, Asenjo A, Bautista V, Fuentes E, Alos JI (2016) Survey of carbapenemase-producing Enterobacteriaceae in companion dogs in Madrid, Spain. Antimicrob Agents Chemother 60(4): 2499-2501.

Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW et al. (2018) Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clinical Microbiol Infect 24: 1241-1250.

Mollenkopf DF, Stull JW, Mathys DA, Bowman AS, Feicht SM et al. (2017) Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrob Agents Chemother 61: 1298-1216.

Murugan MS, Sinha DK, Kumar OV, Yadav AK, Pruthvishree BS et al. (2019) Epidemiology of carbapenem-resistant *Escherichia coli* and first report of blaVIM carbapenemase genes in calves from India. Epidemiol Infect 147: 1-5.

Nirupama KR, Vinodh Kumar OR, Pruthvishree BS, Sinha DK, Murugan MS et al. (2018) Molecular characterization of blaOXA-48 carbapenemase, extended-spectrum β-lactamase and Shiga toxin-producing *Escherichia coli* isolated from farm piglets in India. J Glob Antimicrob Resist 13: 201-205.

Poirel L, Berço B, Millemann Y, Bonnin RA, Pannaux G, Nordmann P (2012) Carbapenemase-producing *Acinetobacter* spp. in cattle, France. Emerg Infect Dis 18(3): 523-525.

Pruthvishree BS, Vinodh Kumar OR, Sinha DK, Malik YP, Dubal ZB et al. (2017) Spatial molecular epidemiology of carbapenem-resistant and New Delhi metallo beta-lactamase (bla NDM)-producing *Escherichia coli* in the piglets of organized farms in India. J Appl Microbiol 122: 1537-1546.

Perrott J, Mabasa VH, Ensom MH (2010) Comparing outcomes of meropenem administration strategies based on pharmacokinetic and pharmacodynamic principles: a qualitative systematic review. Ann Pharmacother 44(3): 557-564.

PSAST (2017) Performance Standards for Antimicrobial Susceptibility Testing (M100), 27th edn., Published by Clinical and Laboratory Standards Institute, (CLSI 2017), Pennsylvania, USA.

Reynolds ME, Phan HT, George S, Hubbard AT, Stoesser N et al. (2019) Occurrence and characterization of *Escherichia coli* ST410 co-harbouring bla NDM-5, bla CMY-42 and blaTEM-190 in a dog from the UK. J Antimicrob Chemother 74(5): 1207-1211.

Rudresh SM, Ravi GS, Sunitha L, Hajira SN, Kalaiarasan E, Harish BN (2017) Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram-negative bacteria. J Lab Physicians 9(04): 303-307.

Sankar S, Thresia AB, Mini M (2021) Molecular detection of Carbapenem resistant Gram-negative bacterial isolates from Dogs. Indian J Ani Res. DOI: 10.18805/IJAR.B-4297.

Shaheen BW, Nayak R, Boothe DM (2013) Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical *Escherichia coli* isolates recovered from companion animals in the United States. Antimicrob Agents Chemother 57(6): 2902-2903.

Stolle I, Prenger-Berninghoff E, Stamm I, Scheufen S, Hassdenteufel E et al. (2013) Emergence of OXA-48 carbapenemase-producing *Escherichia coli* and *Klebsiella pneumoniae* in dogs. J Antimicrob Chemother 68(12): 2802-2808.

Schwaber MJ, Lev B, Israeli A, Solter E, Smollan G et al. (2011) Containment of a country-wide outbreak of carbapenem-resistant *Klebsiella pneumoniae* in Israeli hospitals via a nationally implemented intervention. Arch Clin Infect Dis 52(7): 848-855.

Wang Y, Wu C, Zhang Q, Qi J, Liu H, Wang Y et al. (2012) Identification of New Delhi metallo-β-lactamase 1 in *Acinetobacter lwofii* of food animal origin. PLoS One 7(5): 1-6.

Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2): 163-175.
Woodford N, Wareham DW, Guerra B, Teale C (2014) Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J Antimicrob Chemother 69(2): 287-291.

Zhang WJ, Lu Z, Schwarz S, Zhang RM, Wang XM et al. (2013) Complete sequence of the blaNDM-1-carrying plasmid pNDM-AB from Acinetobacter baumannii of food animal origin. J Antimicrob Chemother 68: 1681-1682.

Zwaluw K, Haan A de, Pluister G, Bootsma H et al. (2015) The carbapenem inactivation method (CIM), a simple and low-cost alternative for the carba NP test to assess phenotypic carbapenemase activity in Gram-negative rods. PLoS One 10(3): 1-13.

Cite this article as: Arun A, Jaiswal U, Tripathi S, Singh AP, Choudhury S, Prabhu SN (2022) Surveillance of carbapenem-resistant Gram-negative bacteria from animal sources in Mathura region, Uttar Pradesh, India. Explor Anim Med Res 12(1): 91-98. DOI: 10.52635/eamr/12.1.91-98.