Towards an $O(\sqrt{\log n})$-Approximation Algorithm for Balanced Separator

Manjish Pal

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur, INDIA.
manjish@cse.iitk.ac.in

Abstract

The c-Balanced Separator problem is a graph-partitioning problem in which given a graph G, one aims to find a cut of minimum size such that both the sides of the cut have at least cn vertices. In this paper, we present new directions of progress in the c-Balanced Separator problem. More specifically, we propose a new family of mathematical programs, which depends upon a parameter $\epsilon > 0$, and extend the seminal work of Arora-Rao-Vazirani (ARV) \cite{4} to show that the polynomial time solvability of the proposed family of programs implies an improvement in the approximation factor to $O\left(\log^{1+\epsilon} n\right)$ from the best-known factor of $O(\sqrt{\log n})$ due to ARV. In fact, for $\epsilon = 1/3$, the program we get is the SDP proposed by ARV. For $\epsilon < 1/3$, this family of programs is not convex but one can transform them into so called concave programs in which one optimizes a concave function over a convex feasible set. The properties of concave programs allows one to apply techniques due to Hoffman \cite{10} or Tuy et al \cite{17} to solve such problems with arbitrary accuracy. But the problem of finding of a method to solve these programs that converges in polynomial time still remains open. Our result, although conditional, introduces a new family of programs which is more powerful than semi-definite programming in the context of approximation algorithms and hence it will of interest to investigate this family both in the direction of designing efficient algorithms and proving hardness results.
Graph partitioning is a problem of fundamental importance both in practice and theory. Many problems belonging to the several areas of computer science namely clustering, PRAM emulation, VLSI layout, packet routing in networks can be modeled as partitioning a graph into two or more parts ensuring that the number of edges in the cut is “small”. The word “small” doesn’t refer to finding the min-cut in the graph as it doesn’t ensure that the number of vertices in both sides of the cut is large. To enforce this balance condition one needs to normalize the cut-size in some sense. For the known notions of normalization like conductance, expansion and sparsity, finding optimal separators is NP-hard for general graphs. Hence, the objective is to look for efficient approximation algorithms.

Because of the huge amount of work done to design good approximation algorithm for these problems, graph partitioning has become one of the central objects of study in the theory of geometric embeddings and random walks. The first approximation algorithm for Graph Conductance came out of the study of the Riemannian Manifolds in form of the well known Cheegar’s Inequality [6] which says that if $\Phi(G)$ is the conductance of the graph and λ is the second largest eigenvalue of graph Laplacian then $2\Phi(G) \geq \lambda \geq \Phi(G)^2/2$. Because of the quadratic factor in the lower bound, the true approximation is $\frac{1}{\Phi(G)}$ which in worst case can be $\Omega(n)$ in worst case. The first true approximation algorithm for Sparsest Cut and Graph Conductance was designed by Leighton and Rao [14] whose approximation factor was $O(\log n)$. This also gave an $O(\log n)$ pseudo-approximation algorithm for c-Balanced Separator. This algorithm is referred to as a pseudo-approximation algorithm because instead of returning a c-balanced cut, it returns a c'-balanced cut for some fixed $c' < c$ whose expansion is at most $O(\log n)$ times the optimum expansion of best c-balanced cut. Their algorithm was based on an LP framework motivated from the idea of Multi-commodity flows. Their main contribution was to derive an approximate max-flow min-cut theorem corresponding to multi-commodity flow problem and the sparsest cut. Subsequently, a number of results were discovered which showed that good approximation algorithms exist when one is considering extreme cases such as the number of edges in the graphs is either very small or very large. In fact, it is known for planar graphs one can find balanced cuts which are twice as optimal [8] and for graph with an average degree of $\Omega(n)$, one can design $(1 + \epsilon)$-factor approximation algorithms where $\epsilon > 0$ with running time polynomial in input size [2] (such an algorithm is called a Polynomial Time Approximation Scheme or PTAS). After 16 years the approximation factor of $O(\log n)$ was improved to $O(\sqrt{\log n})$ in a breakthrough paper by Arora, Rao and Vazirani. Their algorithm is based on semi-definite relaxations of these problems. The techniques and geometric structure theorems proved in their paper has subsequently led to breakthroughs in the field of metric embeddings. The basic philosophy behind these approximation algorithms is to embed the vertices of the input graph in an abstract space and derive a nice cut in this space. In the linear programming approach one uses this abstract space as the l_1 metric [14, 15, 21]. In the semi-definite programming framework used in [4] one embeds the vertices on the surface of an n-dimensional unit sphere such that they form an l_2^2 metric. The l_2^2 metric on the unit sphere translates into saying that for any three vectors the angle subtended by any two among these at the third one is acute. One of the major tools used in this paper is the phenomenon of measure concentration on unit spheres.

Hardness Results: Graph partitioning problems like Sparsest Cut and Balanced Sepe-
RATOR are considered to among the few NP-hard problems which have resisted various attempts to prove inapproximability results. After the result of ARV, there has been a lot of impetus towards proving lower bounds on approximation factors. It has been shown by Ambuhl et al \[1\] that \textsc{Sparsest Cut} can’t have a \textsc{PTAS} unless \NP-complete problems can be solved in random-ized sub-exponential time. Because of the strong connections between semi-definite programming and the \textsc{Unique Games Conjecture (UGC)} of Khot \[12\], certain inapproximability results are also known which assume UGC. More specifically, Khot and Vishnoi \[13\] show that UGC implies super-constant lower bounds on the approximation factor. In the following year, Devanur et al \[7\] showed that the integrality gap of the SDP relaxation of Arora-Rao-Vazirani is \(\Omega(\log \log n)\) thereby disproving the original conjecture of ARV that the integrality gap of their SDP relaxation is atmost a constant. This result did not rely upon the UGC. The recent progress towards designing efficient and good solutions to \textsc{Unique Games} has also been motivated from designing a reduction from \textsc{Unique Games} to \textsc{Sparsest Cut} \[3\].

1.1 Concave Programming

In order to define \textbf{Concave Programming} one first needs to define a concave function. A concave function is the reverse of a convex function. Formally, a function \(f : \mathbb{R}^d \rightarrow \mathbb{R}\) with domain \(\text{dom} f\) is said to be concave if \(\text{dom} f\) is convex and for all \(x, y \in \text{dom} f\), \(f(\lambda x + (1-\lambda)y) \geq \lambda f(x) + (1-\lambda)f(y)\) for all \(\lambda \in [0 - 1]\). Therefore, \(f\) is concave iff \(-f\) is a convex function. Based on this definition one defines concave programming as a form of mathematical programming in which one optimizes a concave function over a convex feasible set. More formally, a concave programming problem can be written as \[
\min_{x \in C} f(x)
\] where \(C\) is a convex set in \(\mathbb{R}^d\) and \(f\) is a concave function.

Concave programming covers a broad range of non-linear global optimization problems which includes the well-known \textsc{DC(Difference of Convex Functions)} programming. Due to its well-structured nature and wide applicability in economic problems as well as various other practical problems like allocation-location, water storage, standardization etc. \[17\], there has been a lot of work in the field of optimization towards designing algorithms for various concave programming problems. One of the key properties of concave programming being exploited in these algorithms is a result that says that for every concave programming problem there is an extreme point of the convex feasible set \(C\) which globally minimizes the optimization problem. The first algorithm for concave programming was designed by Tuy \[18\] in a restricted scenario when the feasible set is a polytope.

A more general case, when the feasible set is convex but not necessarily polyhedral, was solved by Horst \[11\] and subsequently by Hoffman \[10\], Tuy and Thai \[19\]. General concave programming is \NP-hard as \{0,1\}-integer programming can be cast as a concave program. There has been work towards designing efficient algorithms for some special class of concave programming. It has also been shown that some concave programs problems pertaining to Production-Transportation Problems can infact be solved in strongly polynomial time \[20\]. A comprehensive list of works done in concave programming can be found in Vaserstein’s homepage \[22\].

In this work, we introduce the use of a new family of concave programs towards designing an improved approximation algorithm for the \(c\)-Balanced Separator problem.
1.2 Contributions and Outline

In section 2, we formally introduce the notions of sparsity and balanced cuts and sketch the Semi-Definite relaxation for \(c\)-BALANCED SEPARATOR of ARV. We then start section 3 by introducing a family of relaxations for \(c\)-BALANCED SEPARATOR which is generated by a parameter \(p > 0\). In section 4, using the techniques from [4], we show that one can improve the approximation factor to \(O \left(\log^{(1+\frac{p}{2})/3} n \right)\) if the proposed family of programs can be solved (by solving we mean getting a \((1+\epsilon)\)-approximate answer) in polynomial time. Our result, although conditional, proposes new directions of progress on this problem and also a family of optimization problems which are more powerful than semi-definite programs in the context of approximation algorithms. Then in Section 5 show that one can transform this family of programs into a concave program, a form of mathematical programming in which one seeks to minimize a concave function over a convex feasible set. There are a number of algorithms which can solve such programs with arbitrary accuracy [10, 17], although one is not guaranteed to achieve a polynomial time convergence using these algorithms. Since this family is a new form of mathematical programming that is being used in an approximation algorithm, progress both in the direction of hardness and algorithms will provide more insights into the nature of these concave programs and can potentially lead us to optimal inapproximability results for various graph-partitioning problems. We end the paper with Section 6 in which we present conclusions and open problems.

2 Preliminaries

We now define the two versions of balanced graph partitioning problem namely the SPARSEST CUT and \(c\)-BALANCED SEPARATOR. It is well known that up to constant factors approximating other versions of graph partitioning like GRAPH CONDUCTANCE and UNIFORM SPARSEST CUT are equivalent to approximating the SPARSEST CUT. Although in this paper, we will mainly be concerned with the \(c\)-BALANCED SEPARATOR problem.

SPARSEST CUT
Given a graph \(G = (V, E)\) with \(|V| = n, |E| = m\), for each cut \((S, \bar{S})\) define sparsity of the cut to be the quantity \(A(S) = \frac{|E(S, \bar{S})|}{|S|}\). The sparsest cut problem is to find \(\alpha(G)\) where

\[
\alpha(G) = \min_{S \subset V, |S| < n/2} A(S).
\]

\(c\)-BALANCED SEPARATOR

Given a graph \(G = (V, E)\) with \(|V| = n, |E| = m\), the \(c\)-BALANCED SEPARATOR problem is to find \(\alpha_c(G)\) where

\[
\alpha_c(G) = \min_{S \subset V, c|n| < |S| < (1-c)n} E(S, \bar{S}).
\]

2.1 SDP Relaxation for \(c\)-BALANCED SEPARATOR

Unifying the spectral and the metric based (linear programming) approaches, ARV used the following SDP relaxation to get an improved (pseudo)-approximation algorithm for the \(c\)-BALANCED SEPARATOR. Let us call this program \(SDP_{BS}\),

\footnote{In [4] \(c\)-BALANCED SEPARATOR is defined as the minimum sparsity of \(c\)-balanced cuts, we will be working with a definition which up to constant factors is equivalent to their definition}
\[
\min \frac{1}{4} \sum_{i,j \in E} \|v_i - v_j\|^2
\]
\[
\|v_i\|^2 = 1 \quad \forall i
\]
\[
\|v_i - v_j\|^2 + \|v_j - v_k\|^2 \geq \|v_i - v_k\|^2 \quad \forall i, j, k
\]
\[
\sum_{i < j} \|v_i - v_j\|^2 \geq 4c(1 - c)n^2 \quad \forall i, j, k
\]

It is easy to see that this indeed is a vector program (and hence an SDP) and is a relaxation for the \(c\)-Balanced Separator problem. To show that this is a relaxation we have to show that for every cut we can get an assignment of vectors such that all the constraints are satisfied and the value of the objective function is the size of the cut. Given a cut \((S, \bar{S})\) if one maps all the vertices in \(S\) to a unit vector \(n\) and the vertices in \(\bar{S}\) to \(-n\) then the value of the function is indeed the cardinality of \(E(S, \bar{S})\). The main idea behind their algorithm is to show that for any set of vectors which satisfy the constraints of the SDP there always exist two disjoint subsets of “large” size such that for any two points belonging to different subsets the squared Euclidean distance between them is at least \(\Omega \left(\frac{1}{\sqrt{\log n}} \right)\). The same idea is also used to get an improved approximation algorithm for \text{Sparsest Cut} in [4]. Subsequently, this key idea has crucially been used in various other SDP based approximation algorithms and in solving problems related to metric embeddings.

3 A New Relaxation for \(c\)-Balanced Separator

Consider the following family of optimization problems which depend on a parameter \(p \geq 0\). This family is essentially an extension of the semi-definite program proposed by ARV. Throughout the paper we will use \(\|\cdot\|\) to represent the \(l_2\) norm. Let us call this family of programs \(\mathcal{F}_\text{BS}^p\).

\[
\min \frac{1}{2p} \sum_{i,j \in E} \|v_i - v_j\|^p
\]
\[
\|v_i\|^2 = 1 \quad \forall i
\]
\[
\|v_i - v_j\|^p + \|v_j - v_k\|^p \geq \|v_i - v_k\|^p \quad \forall i, j, k
\]
\[
\sum_{i,j \in E} \|v_i - v_j\|^2 \geq 4c(1 - c)n^2
\]

Note that for \(p = 2\) this is the SDP relaxation proposed by ARV. For \(p = 1\), we are mapping the points onto a unit sphere, therefore we do not have to force the additional triangle inequality constraint of \(l_2\) metric. The same mapping described for \(\mathcal{SDP}_\text{BS}\) of the vertices of the graph onto the unit sphere allows us to conclude that each program in this family is also a relaxation for \(c\)-Balanced Separator. We will show that the techniques used in [4] for lower bounding the optimum value of their semi-definite program can be extended in this case as well by appropriately modifying the ingredients of Theorem 1 of their paper. Under the assumption that we can solve \(\mathcal{F}_\text{BS}^p\) in polynomial time for any \(p, 0 < p < 2\), we are able achieve an approximation factor of \(O \left(\log \frac{1}{3 + \frac{2}{n}} \right)\). We first show how to modify the results of [4], thereby reducing the problem of obtaining an improved approximation algorithm to that of finding a polynomial time algorithm for solving the family of programs mentioned above.
4 ARV Proof Modifications

We first modify the definition of Δ-separated sets

Definition 1 (\(\Delta\)-Separated Sets). Two sets of vectors in \(\mathbb{R}^d\), \(S\) and \(T\) are said to be Δ-separated if for all \(v \in S\) and \(u \in T\) \(\|v - u\|^p \geq \Delta\).

Definition 2. For \(p > 0\), a set of vectors in \(\mathbb{R}^d\) is said to be a unit c-spread l_2^p representation if they satisfy the last three constraints in the program F_{BS}^p.

Under the new definition of Δ-separated sets the main theorem of ARV can be modified in the following way:

Theorem 1. For every $c' > 0$, there are constants $c,b > 0$ such that every c-spread unit-l_2^p representation with \(n\) points contains Δ-separated subsets \(S,T\) of size $c'n$, where $\Delta = b \log^{-(1+\frac{d}{4})/3} n$. Also, there is a randomized polynomial-time algorithm for finding these subsets \(S,T\).

This theorem immediately allows us to conclude the following result.

Theorem 2. Given a graph \(G = (V,E)\), if the program F_{BS}^p can be solved in polynomial time for a fixed \(p\), then there exists a randomized $O\left(\log^{(1+\frac{d}{4})/3} n\right)$-pseudo approximation algorithm for c-Balanced Separator.

Proof. (Sketch) For a fixed \(p\), let \(U = \{u_1,u_2,\ldots,u_n\}\) is the optimum solution to the program F_{BS}^p with the optimum value value as \(O\). We construct the weighted graph \(G'\) on the vertex set of the original graph, s.t. for every edge \((v_i,v_j)\) we impose a weight of \(\frac{1}{2p}\|v_i - v_j\|^p\). Now apply the algorithm of Theorem 3 to obtain two subsets \(S',T'\) of \(U\) of size at least $c'n$ which are $\Delta = b \log^{-(1+\frac{d}{4})/3} n$-separated. Let \(S,T\) be the corresponding sets of vertices in \(V\). Pick a number \(r\) randomly uniformly from the range \([0-\Delta]\) and report the cut \((V_r, \bar{V}_r)\) as the answer where \(V_r\) is the set of all vertices within distance \(r\) from \(S\). Performing a similar analysis as in Corollary 2 of [4], it is easy to show that with high probability \((V_r, \bar{V}_r)\) is a $O(\log^{(1+\frac{d}{4})/3} n)$-approximate c'-balanced cut. \(\square\)

4.1 Proof of Theorem 1

Given a unit c-spread l_2^p representation of vectors, the algorithm to find two $\Delta = b \log^{-(1+\frac{d}{4})/3} n$-separated sets needs a small modification over the Set-Find algorithm of ARV which is presented as **MODIFIED-Set-Find**. Notice that the modification is made at the last step when the algorithm is discarding pairs.

In order to prove our claim for **MODIFIED-Set-Find** we will borrow the definitions of \((\sigma,\delta,c')\)-matching cover, \((\sigma,\delta)\)-uniform matching cover and \((\epsilon,\delta)\)-cover directly from [4]. Among these we will only reproduce the definitions of \((\sigma,\delta,c')\)-matching cover and \((\epsilon,\delta)\)-cover. The basic idea is that all these notions of covers do not depend on the triangle inequality of l_2^2 metric and hence they also make sense for l_2^p representations.

Definition 3. For a set \(V\) of vectors, a \((\sigma,\delta,c')\)-matching cover is a set of (partial) matchings \(M\) such that for at least δ fraction of directions \(u\) there exists a matching $M_u \in M$ with size at least $c'n$ such that for each pair (v_i,v_j) in the matching $(v_i - v_j,u) \geq 2\sigma/\sqrt{d}$.
Input: A set of vectors $V = \{v_1, v_2, \ldots, v_n\}$ in \mathbb{R}^d which form a unit c-spread l_2^p representation and parameters Δ and σ.

Output: Two sets S and T which are Δ-separated with the desired balance c'.

1. Pick a random unit vector u.
2. Let v_k be the vector that realizes the median of the values taken by $\langle v_i, u \rangle$ for $i = 1, 2, \ldots, n$ and let m be the median value.
3. Let S' be the set of vectors in V satisfying $\langle v_i, u \rangle \geq m + \frac{\sigma}{2\sqrt{d}}$ and T' be the vectors in V which satisfy $\langle v_i, u \rangle \leq m - \frac{\sigma}{2\sqrt{d}}$.
4. If $|S'| \leq 2c'n$ or $|T'| \leq 2c'n$, HALT. Otherwise remove all the vectors $v_i \in S'$ and $v_i \in T'$ which satisfy $\|v_i - v_j\|_p \leq \Delta$.

Return: Remaining sets as S and T.

Algorithm 1: Modified-Set-Find

Let M be the multi-graph obtained by the union of all the matchings in \mathcal{M}.

Definition 4. A set of vectors w_1, w_2, \ldots, w_n is said to be an (ϵ, δ)-cover if $\|w_i\| \leq 1$ for all i and for at least δ fraction of the directions there exist $i \in [n]$ $\langle w_i, u \rangle \geq \epsilon$. A set of vectors if said to (ϵ, δ)-cover a point x, if the set of vectors $\{x - w_i | i \in [n]\}$ is a (ϵ, δ)-cover.

The most important thing to note is that the well-separated constraint ($\sum_{i,j \in E} \|v_i - v_j\|^2 \geq 4c(1 - c)n^2$) is the same for both SDP_{BS} and F_{BS}^p. This allows us to conclude that Lemmas 3-7 of [4] all hold for any set of unit c-spread l_2^p representations as well. Only Theorem 8 of [4] needs considerable changes which we present as Theorem 3. For the sake of completeness we will reproduce the necessary ingredients used in the proof of Theorem 8 of [4] namely the definition of k-core and Lemma 7. But before going into the proof of our version of Theorem 8, let us recall the behavior of projection of a random unit vector onto a fixed vector.

Lemma 1. If v is a vector of length l in \mathbb{R}^d and u is a randomly chosen unit vector

- for $x < 1$, $\Pr\{|\langle v, u \rangle| \leq \frac{x}{\sqrt{d}}\} \leq 3x$.
- for $x \leq \sqrt{\frac{2}{d}}$, $\Pr\{|\langle v, u \rangle| \geq \frac{x}{\sqrt{d}}\} \leq e^{-x^2/4}$.

Definition 5. Given a set of n points about that is (σ, δ, c') matching covered by \mathcal{M} with associated matching graph M, define v to be in the k-core, S_k if v is $(\frac{k\sigma}{2\sqrt{d}}, \frac{1}{2})$-covered by points which are within k hops of v in the matching graph.

The following lemma (Lemma 7 of ARV) captures an important property of matching covers. A crucial result used in its proof is Levy’s iso-perimetric inequality and measure concentration on spheres [5, 16].
Lemma 2. For every set of n points that is (σ, δ, c')-matching covered by M with associated matching graph M, there are positive constants $a = a(\delta, c')$ and $b = b(\delta, c')$ such that for every $k \geq 1$ one of the following holds:

1. $|S_k| \geq a^k n$.

2. There is a pair with distance at most k in the matching graph M such that $\|v_i - v_j\| \geq \frac{b\sigma}{\sqrt{k}}$.

The following lemma can be used to prove the main theorem which shows that the algorithm Modified-Set-Find succeeds with constant probability.

Theorem 3. The Modified-Set-Find algorithm finds a Δ-separated set for a c-spread l_2^p representation with constant probability for $\Delta = \Theta(\log^\beta n)$ where $\beta = \frac{1 + p}{2}$.

Proof. If Modified-Set-Find fails with probability $1 - \delta$, then according to the definition of matching covers it can be shown that the set of deleted points will be $(\sigma, \delta/2, c')$-matching covered. Let M be the associated matching graph. This implies that we can use Lemma 2 for the set of points. We will show that in such a situation both the cases of Lemma 2 do not hold which in turn implies that Modified-Set-Find does not fail with high probability. We first start with dispensing the case 2 of Lemma 2. Since the points lie in a l_2^p metric and v_i and v_j are within k-hops in the corresponding matching graph M we will have $\|v_i - v_j\|^p \leq k\Delta$ which implies $\|v_i - v_j\| \leq \sqrt[k]{k\Delta}$. Now let us choose $k = \frac{(b\sigma)^2}{\Delta}$ where $r = \frac{1}{1 + p}$ and $\alpha = \frac{1}{(1 + \frac{1}{r})}$. Under this choice of k, one can verify that $\frac{b\sigma}{\sqrt{k}} > \sqrt[k]{k\Delta}$ which will lead us to a contradiction.

Now we consider the case 1 of Lemma 2. This says that the number of vectors which are $(\frac{b\sigma}{\sqrt{\bar{d}}} \frac{1}{2})$-covers by points within k-hops of the matching graph M, is at least some constant fraction of the total number of points. Consider a point v_i which is in the k-core as defined above. Let v_j be a point that belongs to the set that $(\frac{b\sigma}{\sqrt{\bar{d}}} \frac{1}{2})$-covers v_i. Now by definition of k-core with at least probability $\frac{1}{2}$, $\langle v_j - v_i, u \rangle \geq \frac{b\sigma}{\sqrt{\bar{d}}}$. But because of the fact that the points come from a l_2^p metric with in k hops $\|v_i - v_j\| \leq \sqrt[k]{k\Delta}$. Now using the Gaussian behavior of projections for a vector $v_i - v_j$ a randomly chosen unit vector u satisfies, $\Pr \left\{ \langle v_j - v_i, u \rangle \geq \frac{b\sigma \|v_i - v_j\|}{\sqrt{\bar{d}}} \right\} \leq e^{-\frac{x^2}{2}}$.

Therefore taking $x = \frac{b\sigma}{2\|v_i - v_j\|}$ we get, $\Pr \left\{ \langle v_j - v_i, u \rangle \geq \frac{b\sigma \|v_i - v_j\|}{2\|v_i - v_j\|} \right\} \leq e^{-\frac{b^2\sigma^2}{16\|v_i - v_j\|^2}} \leq e^{-\frac{1}{16}\Delta^{2r}(k\Delta)^{\beta}}$.

If we denote the exponent of e by A, then we have $A = -\frac{b^2\sigma^2}{2^{2r\Delta} \Delta^{2(1-r)}}$. Since $\alpha = \frac{1}{(1 + \frac{1}{r})}$, we have the exponent of σ as $\left(\frac{2 + 2\alpha - \frac{2\alpha}{p}}{2} \right) = 2 - \frac{2}{\left(\frac{2}{r} + 1 \right)} + 2\alpha = 2\alpha + \frac{2p}{p + 2} > 0$. Let $\gamma = \frac{b^{2\alpha-\frac{2\alpha}{p}} \sigma^{2\alpha+\frac{2p}{p+2}} \frac{1}{2^{1+p/2}}}{16}$. Now one can choose a small constant g such that $\Delta = \frac{g}{\log^3 n}$ for $\beta < 1$ and $\frac{\gamma}{g^{2r+2(1-r)}} > 4$, which can be done because for a fixed $p \gamma$ is a constant and we are going to set $2\beta(r + \frac{1}{p}) = 1$. We therefore get the desired probability to be at most $e^{-\gamma(\log n)^{2\beta(r + \frac{1}{p})}}$. Putting
\[r = \frac{1}{1+p} \] we get the exponent of \((\log n)\) as \[2\beta \left(\frac{1}{1+\frac{p}{2}} + \frac{1-\frac{1}{1+p/2}}{p} \right) = \beta \left(\frac{3}{1+\frac{p}{2}} \right). \] Therefore, if we choose \(\beta = \frac{1+\frac{p}{2}}{3} \), we can get this probability as at most \(\frac{1}{n^4} \). Now, clearly the probability that a vector \(v_i \) is covered by points within \(k \)-hops of matching graph is at most the probability that there exists two points \(v_i \) and \(v_j \) such that for a random unit vector \(u \), the above event occurs. From the above calculation, the probability that such an event occurs for any pair \(v_i, v_j \) is less that \(O(\frac{1}{n^2}) \) via the union bound contradicting the condition of Lemma 2 that this probability is at least \(1/2 \).

Some Discussion on the Result:

It is not clear whether this method will receive benefits from the stronger version of Lemma 2 of [4] in which they prove that for the second case \(\|v_i - v_j\| \geq \sigma \) and use it along with other ideas so that their algorithm works even for \(\Delta = \left(\frac{1}{\sqrt{\log n}} \right) \). The main reason is that if we try to take a \(k \) that is of the form chosen in Theorem 3 then we don’t get a dependence of \(r \) in terms of \(p \) and therefore we don’t get a parametrization of the approximation factor in terms of \(p \). Although one might come up with a method such that the above mentioned result can also be used to get an improvement over this bound of \(\Delta \). One can also ask the question, why did we choose to set \(\beta \left(\frac{3}{1+\frac{p}{2}} \right) \) as 1 because we could have improved the bound on probability if we had chosen a value greater than 1 but in that case one can easily notice that we would have to sacrifice with the approximation factor and we would have got value a value of \(\beta \) which is worse than this value.

5 A Concave Programming Formulation

In this section, we consider the family of optimization problems \(F_{BS}^p \) proposed above and transform it into a concave program. This formulation allows us to use the algorithms which have been developed to solve a concave program with arbitrary accuracy. We now write \(F_{BS}^p \) as a program with variables as matrix entries and not as \(d \)-dimensional vectors. The variables in the new program are of the form \(x_{ij} = \langle v_i, v_j \rangle \). Since all \(v_i \)'s are unit vectors we can write \(\|v_i - v_j\| \) as \(\sqrt{2 - 2 \langle v_i, v_j \rangle} \). If we consider the matrix \(X \) with \(ij^{th} \) entry as \(x_{ij} \) we can write the above problem as

\[
\min \frac{1}{2^p/2} \sum_{i,j \in E} (1 - x_{ij})^{p/2} \quad x_{ii} = 1 \quad \forall i
\]

\[
(1 - x_{ij})^{p/2} + (1 - x_{jk})^{p/2} \geq (1 - x_{ik})^{p/2} \quad \forall i, j, k
\]

\[
\sum_{i < j} (1 - x_{ij}) \geq c(1 - c)n^2
\]

\[X \succeq 0 \]

where \(X \succeq 0 \) means \(X \) is positive semi-definite.

As we have seen earlier that in order to get an improved approximation factor we must have \(p < 1 \). Under such a restriction the problem becomes a non-convex feasibility problem as the function \((1 - x_{ij})^{p/2}\) is not convex. This is a crucial deviation from all the relaxations which have been studied till now in the context of approximation algorithms. Because of the non-convex
nature of the problem we can’t use any of the well known techniques like the ellipsoid method and the interior point methods and hence can’t directly guarantee the polynomial time solvability of the program. We therefore transform it into a form which allows us to prove some interesting properties. In the above program if we do a change of variable, \(z_{ij} = (1 - x_{ij}) \) for all \(i, j = 1, 2 \ldots n \), the minimization problem looks as the following:

\[
\min \frac{1}{2p^2} \sum_{i,j \in E} z_{ij}^{p/2} \\
z_{ij}^{p/2} + z_{jk}^{p/2} \geq z_{ik}^{p/2} \quad \forall i, j, k \\
\sum_{i \neq j} z_{ij} \geq c(1 - c)n^2 \\
z_{ii} = 0 \quad \forall i \\
1 - Z \geq 0
\]

where \(Z \) is the matrix with all entries as 1.

Let us call the above program \(\tilde{F}^p_{BS} \). This formulation allows us to prove the following lemma:

Lemma 3. \(\tilde{F}^p_{BS} \) is a concave program for \(0 < p < 2 \).

Proof. Since \(z^{p/2} \) is concave for \(p < 2 \) for \(z > 0 \), and the sum of concave functions is also concave, the objective function is clearly concave. For the constraints defining the feasible set, \(\sum_{i \neq j} z_{ij} \geq c(1 - c)n^2 \) and \(z_{ii} = 0 \) are convex. The constraint \(1 - Z \geq 0 \) can be shown to be convex as follows: Let \(Z_1 \) and \(Z_2 \) be two matrices corresponding to the variables \(z_{ij} \)’s which lie in the feasible set. Therefore, they satisfy \(1 - Z_1 \geq 0 \) and \(1 - Z_2 \geq 0 \). Now, consider the line segment for \(\lambda \in [0, 1] \)

\(\lambda Z_1 + (1 - \lambda)Z_2 \) and the matrix \(1 - (\lambda Z_1 + (1 - \lambda)Z_2) \). This is positive semidefinite as it can be rewritten as \(\lambda(1 - Z_1) + (1 - \lambda)(1 - Z_2) \) which is a sum of two PSD matrices.

The only type of constraint left are the triangle inequality constraints. Consider an inequality of this type say \(z_{ij}^{p/2} + z_{jk}^{p/2} \geq z_{ik}^{p/2} \). In general, let us look at the region \(x^r + y^r \geq z^r \) for \(0 < r < 1 \). If \(r = 1/q \) for \(q > 1 \) then this region is same as \((x^{1/q} + y^{1/q})^q \geq z \). Let \(p_1 = (x_1, y_1, z_1) \) and \(p_2 = (x_2, y_2, z_2) \) be two points which lie in this region, i.e. \((x_1^{1/q} + y_1^{1/q})^q \geq z_1 \) and \((x_2^{1/q} + y_2^{1/q})^q \geq z_2 \). To prove the convexity of the region we need to show that for any \(\lambda \in [0, 1] \), \((\lambda x_1 + (1 - \lambda)x_2, \lambda y_1 + (1 - \lambda)y_2, \lambda z_1 + (1 - \lambda)z_2) \) also lies inside the region for all such points \(p_1 \) and \(p_2 \). Therefore, we have to show \(\lambda z_1 + (1 - \lambda)z_2 \leq \left((\lambda x_1 + (1 - \lambda)x_2)^{1/q} + (\lambda y_1 + (1 - \lambda)y_2)^{1/q} \right)^q \). Thus we will be done if we show \(\lambda(x_1^{1/q} + y_1^{1/q})^q + (1 - \lambda)(x_2^{1/q} + y_2^{1/q})^q \leq \left((\lambda x_1 + (1 - \lambda)x_2)^{1/q} + (\lambda y_1 + (1 - \lambda)y_2)^{1/q} \right)^q \), which is equivalent to proving that the function \(f(x, y) = \left(x^{1/q} + y^{1/q} \right)^q \) is concave. We will prove this by showing that the Hessian of this function is negative definite for all \(x, y \). We now compute the entries of the Hessian matrix. The following calculations are easy to verify,

\[
\frac{\partial f}{\partial x} = \left(1 + \frac{y^q}{x^q} \right)^{q-1} \frac{\partial f}{\partial y} = \left(1 + \frac{x^q}{y^q} \right)^{q-1}; \quad \frac{\partial^2 f}{\partial x^2} = -\left(\frac{q - 1}{q} \right) \left(1 + \frac{x^q}{y^q} \right) \frac{y^q}{x^{2q}}; \quad \frac{\partial^2 f}{\partial y^2} = -\left(\frac{q - 1}{q} \right) \left(1 + \frac{y^q}{x^q} \right) \frac{x^q}{y^{2q}}; \quad \frac{\partial^2 f}{\partial x \partial y} = \left(\frac{1}{x^q} + \frac{1}{y^q} \right) \frac{q - 2}{q} \frac{y^{q-1}}{x^{2q}} \frac{1}{y^{q-1}} = \frac{\partial^2 f}{\partial y \partial x}\]

In order to show that the Hessian is negative-definite we have to show that for any \(\alpha, \beta \in \mathbb{R} \), the following expression is always non-positive for all \(x, y > 0 \) (for \(x, y \) as 0 the derivatives do not exist):

\[
\alpha^2 \frac{\partial^2 f}{\partial x^2} + \beta^2 \frac{\partial^2 f}{\partial y^2} + 2\alpha\beta \frac{\partial^2 f}{\partial x \partial y} = -\left(\frac{q - 1}{q} \right) \left[\alpha^2 \left(1 + \frac{\frac{1}{q} x^\frac{1}{q}}{y^\frac{1}{q}} \right)^{q-2} \frac{\frac{1}{q} y^\frac{1}{q}}{x^\frac{1}{q}} + \beta^2 \left(1 + \frac{\frac{1}{q} y^\frac{1}{q}}{x^\frac{1}{q}} \right)^{q-2} \frac{\frac{1}{q} x^\frac{1}{q}}{y^\frac{1}{q}} - \left(\frac{1}{x^\frac{1}{q}} + \frac{1}{y^\frac{1}{q}} \right)^{q-2} . \frac{2\alpha\beta}{y^\frac{1}{q} x^\frac{1}{q}} \right]
\]

which is non-positive for all \(\alpha, \beta \) This proves that the region \(x^{p/2} + y^{p/2} \geq z^{p/2} \) is a convex set for all \(0 < p < 2 \). Hence the intersection of all the triangle inequality constraints is also convex.

6 Conclusion

In this paper, we introduced a new family of mathematical programs inspired from the well-known semi-definite program of ARV that promises a \(O\left(\log^2 \frac{1}{\epsilon} n \right) \) pseudo-approximation algorithm for \(c \)-BALANCED SEPARATOR under the condition that the family of programs can be solved in polynomial time. Since this family provably gives better approximation guarantees than the celebrated linear and semi-definite relaxations of Leighton-Rao [14] and Arora-Rao-Vazirani [4] respectively, investigation both in the direction of polynomial time solvability or hardness will be highly interesting. The formulation of the proposed family of programs into a well-structured form of mathematical programming called concave programming also gives us hope that for many of the problems for which optimal approximation factors are not known one can possibly rely upon some “nice” programs which are although not convex but can be potential candidates for polynomial time solvability. Given that some algorithms for solving concave programs are easy simple to comprehend, it would be also interesting to know whether one can analyze their runs on \(F_p^{BS} \) and prove polynomial time convergence. Another area of investigation could be investigating the links of this family of programs with the UGC which has been able to show optimality (close to optimality) of various approximation algorithms based on SDP.

7 Acknowledgments

I would like to thank Prof. Sumit Ganguly and Prof. Shashank K. Mehta for having some stimulating discussions on the problem. Thanks to Purushottam Kar for having discussions at various points during the work.
References

[1] C. Ambuhl, M. Mastrolilli and O. Svensson, *Inapproximability Results for Sparsest Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling* FOCS 2007, pp. 329-337.

[2] S. Arora, D. Karger and M. Karpinski, *Polynomial Time Approximation Schemes for Dense Instances of NP-hard Problems*, Proceedings of the 27th ACM Symposium on Theory Of Computing, pp. 87-92, 1995.

[3] S. Arora, S. Khot, A. Kolla, D. Steurer, M. Tulsiani and N. Vishnoi, *Unique Games on Expanding Constraint Graphs are Easy*, STOC 2008, pp. 21-28

[4] S. Arora, S. Rao and U. Vazirani, *Expander Flows, Geometric Embeddings and Graph Partitioning*, JACM 56, 2009, pp. 1-37 (Preliminary version appeared in ACM STOC, 2004, pp. 222-231.)

[5] K. Ball, *An elementary introduction to modern convex geometry*, in *Flavors of Geometry*, S. Levy (ed.), Cambridge University Press, 1997.

[6] J. Cheeger, *A lower bound for the smallest eigenvalue of the Laplacian*, Problem in Analysis, 195-199, Princeton Univ. Press, 1970.

[7] N. R. Devanur, S. Khot, R. Saket and N. K. Vishnoi, *Integrality gaps for sparsest cut and minimum linear arrangement problems*, STOC 2006, pp. 537-546

[8] N. Garg, H. Saran, V. V. Vazirani, *Finding separator cuts in planar graphs within twice the optimal*, FOCS 1994, pp. 14-23

[9] M.X. Goemans and D. Williamson, *Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming*, JACM, 42(6) 1995, pp. 1115-1145.

[10] K. L. Hoffman, *A Method for globally minimizing concave functions over convex sets*, Mathematical Programming (20), 1981, pp. 22-32.

[11] R. Horst, *An Algorithm for Non-Convex Programming Problem*, Mathematical Programming(10)-3, 1985, pp. 498-514.

[12] S. Khot, *On the power of Unique 2-prover 1-round Games* STOC 2002, pp. 767-775.

[13] S. Khot and N. K. Vishnoi, *The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1*, FOCS 2005, pp. 53-62.

[14] T. Leighton and S. Rao *Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms*, JACM 46 1999, pp. 787-832. Prelim. version in ACM STOC 1988.

[15] N. Linial, E. London and U. Rabinovich, *The Geometry of graphs and some of its algorithmic applications*, Combinatorica (15) 2 1995, pp 215-245.

[16] J. Matousek. *Lectures on Discrete Geometry*, Springer Verlag, 2002.
[17] H. Tuy, T. V. Theiu, and Ng. Q. Thai, *A Conical Algorithm for Globally Minimizing a Concave Function over a Closed Convex Set*, Mathematics of Operation Research(10)-3, 1985, pp. 498-514.

[18] H. Tuy, *Concave Programming under Linear Constraints*, Dokl. Akad. Nauk (159), 1964, pp. 32-35. Translated Soviet Math. (5), pp. 1437-1440.

[19] H. Tuy and Ng. Q. Thai, *Minimizing a Concave Function over a Compact Convex Set*, Proc. Conf. on Optimization Vitte/Hiddensee, May, 1981.

[20] H. Tuy, S. Ghannadan, A. Migdalas and P. Vabrand, *A strongly polynomial algorithm for a concave production-transportation problem with a fixed number of nonlinear variables*, Mathematical Programming (72), 1996, pp. 229-258.

[21] V. Vazirani, *Approximation algorithms*, Springer Verlag, 2002.

[22] *Concave Programming*, http://www.math.psu.edu/vstein/concave.html