Measurement of electric-dipole forbidden 3p and 3d level decay rates in Fe XII

E Träbert, J Hoffmann, S Reinhardt, A Wolf and G Del Zanna
1 Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
2 Physics and Advanced Technologies, Lawrence Livermore National Laboratory, Livermore, CA 94550-9234, USA
3 Max Planck Institut für Kernphysik, D-69117 Heidelberg, Germany
4 University College London, Mullard Space Science Laboratory, Holmbury St Mary, Dorking, Surrey, UK

E-mail: traebert@ep3.rub.de

Abstract. Based on measurements at the Heidelberg heavy-ion storage ring TSR, we present lifetimes of all six 3p and 3d levels of Fe XII that are long lived, due to the absence of E1 decay channels. We discuss the corresponding term analysis and the Fe XII spectral lines that should be useful for the diagnostics of low density plasmas.

1. Introduction
Edlén’s identification of prominent visible light coronal lines with electric-dipole forbidden transitions in the ground configurations of highly-charged ions [1] forced a revolution in the hypotheses about the solar environment. Such lines have since been observed in a wide variety of astrophysical objects. Knowing the transition probabilities of the E1-forbidden transitions, either magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2), or even higher order multipole transitions, helps to interpret emission and absorption features and to quantify the environmental parameters of the emitter or absorber plasma. However, not all of these lines are prominent; in a spectrum like that of the solar corona, ions of many elements are present, and line blends are frequent, so that line identification remains a major problem. In spite of many attempts at providing full wavelength coverage by sounding rockets and satellites and ever improving calculational efforts towards a complete analysis, the phrase “... about half of the observed lines remain unidentified” has been a recurring theme.

One of the reasons for this problem is that when the first observations were made, the laboratory data base was much poorer than what is available now. In a number of cases it may well have happened that line identification proceeded by wavelength coincidence, possibly assigning some of the coronal lines to the wrong elements and charge states and not always recognizing blends. Also, many coronal lines are not excited in the laboratory (requiring much lower density in order to escape quenching collisions), or have never been thought to be worth pursuing on Earth. To remedy this situation, several data bases (CHIANTI [2, 3], MEKAL [4], and others) have been developed that provide reasonably complete spectra based on calculations and observations. Any such database ultimately relies on original measurements. For the iron spectra in the soft x-ray and extreme ultraviolet (EUV) ranges, where the Chandra and
XMM – *Newton* spacecrafts detected hundreds of lines, such observations have been provided largely by the electron-beam ion trap work by Beiersdorfer, Brown, Lepson et al [5, 6].

A great challenge now is a critical re-evaluation of the data in such data bases, checking the entries for completeness as well as correctness and validity (element, charge state, abundance, excitation condition). This is tedious work, combining detailed and large-scale calculations with data base analysis. One of us (GDZ), in collaboration with H. Mason (Univ. of Cambridge, UK) and P. Storey (UCL, UK) has taken a particular interest in the iron ions in the corona, and several critical reevaluations have recently been published [7, 8]. In order to support the correct modeling effort of the full spectrum so that the latter can be properly compared to solar and terrestrial data, we have addressed the E1-forbidden decay rates of 3p and 3d levels in Fe XII.

2. Literature data on Fe XII

The P-like ion Fe^{11+} (spectrum Fe XII) has a 3s^23p^3 ground configuration that harbours five levels, the true ground level 4S_{3/2} as well as the levels 2D_{5/2}, 2P_{1/2}. There are also eight displaced levels (3s3p^4) and 31 3s^23p^23d levels (see Figure 1). Until rather recently, many of the 3d levels were not known from experiment (see [9, 10] and the National Institute of Standards and Technology (NIST) on-line data base that heavily relies on these tabulations), although some identifications have been added [11, 12]. The relatively few transitions - all of them E1-forbidden - in the ground configuration have wavelengths in the range from the ultraviolet (UV) (about 357 nm) to the vacuum UV (124 nm). An atomic system with such a ground configuration should be useful for plasma temperature diagnostics [13, 14, 15]. A fair number of calculations have dealt with the transitions in the ground configuration [16, 17, 18, 19, 20, 21, 22, 23, 24]. Very few attempts have been made to describe more than the ground configuration, and among those few, not all have included E1-forbidden transitions (see, for example, [25]). The 3d levels of highest total angular momentum (in this case, \(J=9/2\)) can decay only by M1 and E2 transitions (Figure 1); the transitions lie in the infrared (IR), in the UV and in the EUV; the level lifetimes reach several milliseconds. The many other 3d levels decay mostly to the ground configuration by transitions in the EUV and have level lifetimes in the picosecond and nanosecond ranges.

Facing such a multitude of mostly weak lines, spectral analysis is struggling. It might seem advantageous if a level decay is not spread out over many competing branches. For example, the 3s^23p^23d levels of total angular momentum \(J=7/2\) have single decay channels to the ground configuration, but single lines are notoriously difficult to assign. This problem has been addressed in beam-foil spectroscopy, exploiting the prediction that these \(J=7/2\) levels are relatively long lived, which in beam-foil work means nanosecond lifetimes. Indeed, delayed spectra of foil-excited ion beams have served to identify three levels (3s^23p^23d \(2^2\)F_{7/2}, \(2^2\)G_{7/2}) and their decays in Fe XII [12], and some similar cases in other ions.

Del Zanna et al have recently revisited and reanalyzed the solar spectra of Fe XI and Fe XII [7, 8] on the basis of extensive calculations, including scattering calculations (for line intensities) and semi-empirically adjusted atomic structure calculations, as well as reviewed all line identifications using laboratory and astrophysical spectra, and they now have identified most of the 3d levels. In the process, practically all preceding scattering calculations [26] were found to be lacking. In a complementary approach, experiments were undertaken at the Heidelberg heavy-ion storage ring TSR in order to test specific aspects of the same atomic structure calculations as are used for the spectral analysis. The experiments targeted the transition probabilities in terms of level lifetimes, namely those long-lived levels that by virtue of their longevity depend in their population possibly strongly on the density in the emitting plasma. Such data should help determine the validity of certain key entries to collisional-radiative models.
Figure 1. Fe XII levels up to the 3s\(^2\)3p\(^2\)3d levels. The E1-forbidden decays of the 3d levels lead to other levels in the same configuration (M1 transitions), or to specific high-J levels in the displaced (3s3p\(^4\)) and ground configurations.

3. TSR experiment and results

The technique of passive optical measurements of atomic lifetimes at an ion storage ring is an extension of the beam-foil technique. A fast ion beam (typical velocity of 2 cm/ns, or 6% of the speed of light) is produced in an accelerator and sent through a gas or a foil where in collisions with the target medium the fast ion beam reaches a new charge state distribution and many of the ions are excited. The ions are sorted by their charge state, and only one ion species (one mass number, one velocity, one charge state) is selected and guided to the ion storage ring, which takes about 5 µs. The ion beam is fed into the storage ring, a loop of a well evacuated beam tube (ultrahigh vacuum of p≈10\(^{-11}\) mbar) in which the ion beam is guided by magnetic dipole and quadrupole fields. The ion beam is accumulated over about 30 turns in the 55 m circumference storage ring; then the feeding stops and the ions are left coasting, in our case for 200 ms to 2 s. The ion-beam current is monitored by a beam profile monitor, which consists of sets of microchannel plates that detect the slow ions produced by collisions of the circulating fast ions with the atoms and molecules of the residual gas. For the optical observation of atomic decays, either a photomultiplier outside the vacuum vessel [27, 28] or open photomultipliers (channeltrons) inside the ring vacuum [29] detect the emitted light (Figure 2). In the UV and visible spectral ranges, filters can narrow the band pass, and the actual signal is almost exclusively from the decay of interest. In the EUV, no filtering is available, and the channeltron then sees light also from the excitation of the residual gas or from its later recombination on the walls of the vacuum vessel. The slope of the exponential decay curve yields the decay rate and its inverse, the level lifetime. However, the apparent decay rate contains a contribution from ion loss (the ion storage time constant), which has to be corrected for as well as for relativistic time dilation. Both effects partly cancel each other; the sum is a
correction that usually is well below 1%.

For the studies of Fe xii, three different detectors were needed. For the decay of the 3s23p3 2Po level at 310 nm, a bialkali photomultiplier (EMR 541N) was combined with an interference filter [30]. For the 3s23p5 2Do level decays (217 nm / 241 nm) a solar-blind photomultiplier of exceptionally low dark rate (EMR 541Q) was employed without a filter. The decay curves (see [30]) showed a third, faster component which may originate from decay branches (at about 270 nm and 180 nm, respectively [23]) of the 3s23p3 2Po levels as well as from the 3s23p23d 2G9/2 level decay [30].

The same level and its companion level 4F9/2 have EUV decay branches, and these decays reach short-lived levels which in turn decay to the ground configuration levels. The decay curves of the latter contain cascades and therefore with the original time constants also the 3d 4F9/2 and 3d 2G9/2 level decays. Acting against the disadvantage that there is no narrowband filter of high transmission in the EUV, there is the advantage that the same detector sees practically all EUV decays at the same time, and thus also all decays that have the same slow decay components (that supposedly relate to only two levels). Also, it was not necessary to determine accurate wavelengths before doing these lifetime measurements. The earlier measurements in the far UV had already indicated the 4 ms lifetime of one of the 3d levels. This older finding helped to disentangle the superposition of the EUV decays in our most recent experiments (Figure 3), the analysis of which yielded level lifetimes of 4 ± 1 ms and 11 ± 1 ms, respectively. The uncertainties of the results are relatively large (25% and about 10% percent, respectively), because the decays are observed on top of the ion beam related EUV signal, which dominates the statistical reliability with which the shorter-lived decays can be evaluated. Moreover, the two lifetimes are too close to each other to be obtained from a multi-exponential fit with a high reliability. Adding to the fitting difficulties is the observation that the amplitude of the faster component is much smaller than expected if the initial population of the J=9/2 levels was equal and all decays were detected. Yet another problem is the appearance of a superimposed small amplitude oscillation on the signal. Such oscillations have been seen in various experiments at the heavy-ion storage ring, but beyond a hypothesis that they relate to ion-beam dynamics, no
Figure 3. Decay curve of EUV light obtained at TSR with a windowless photomultiplier when Fe11+ ions were stored. The high base of the signal relates to residual gas excitation by the stored ions, which is practically constant in this time interval. The decay curve on top relates to the decays of the 3s23p33d \ 2G\textsubscript{9/2} and 3s23p33d \ 4F\textsubscript{9/2} levels.

explanation or quantification has been possible yet. The oscillation was included in the fit and improved the \textit{chi-squared} value. The results for the 3d level lifetimes are listed in Table 1. This table also lists the wavelengths of the dominant decay channels of the two long-lived \(J = \frac{9}{2} \) levels as given by Del Zanna \textit{et al} [8] on the basis of experimental data. These differ quantitatively from the values predicted by Biémont \textit{et al} [23] on the basis of more general calculations.

4. Discussion
Biémont \textit{et al} [23] and Del Zanna \textit{et al} [8] make predictions of the principal decay channels of the two 3d \(J = \frac{9}{2} \) levels (see Figure 1). We adopt the latter, because they involve adjustments to observation. In the EUV range, the strongest of the decay branches of the 3d \(4F_{9/2} \) level are expected near 59 nm (E2 decay to 3s3p1 4F\textsubscript{5/2}) and 25.2 nm (M2 transition to 3s23p3 2D\textsubscript{5/2}). The strongest decay channels of the 3s23p2(1D)3d \(2G_{9/2} \) level according to Del Zanna \textit{et al} are an M1 transition (at 185 nm) to 3s23p2(3P)3d \(4F_{9/2} \), another M1 decay (at 163 nm) to 3s23p2(1D)3d \(2F_{7/2} \), an M2 transition (at 22.17 nm) to 3s23p2 2D\textsubscript{5/2}, and an E2 decay (at 64.3 nm) to 3s3p4 \(2D_{5/2} \). The \(J = 5/2 \) excited levels in turn preferentially feed the two \(J = \frac{5}{2} \) levels of the ground configuration, giving rise to the 33.8 nm and 36.4 nm lines. The 3s23p2 \(2D_{5/2} \) level with its about 300 ms lifetime is boosted in population by these rapid cascades, but the actual measurement of the long level lifetime is hardly affected. If the 3d level cascades would reach the \(2D_{5/2} \) level with its 18 ms lifetime that is much closer to that of the two 3d levels, the evaluation of the \(2D_{5/2} \) level would be seriously hampered if the upper level population was comparable in magnitude. Similarly, the measurement of the shorter lifetimes of the 3s23p3 \(2P_{1/2,3/2} \) levels would suffer
from the presence of cascades that are rather close in lifetime and thus would seriously impede the decay curve analysis but the branchings channel very little of the slow 3d cascades, if any, to these two levels. The ease of fitting the UV decay curves and the rather weaker (though not calibrated) appearance of the EUV decay curves suggest that the long-lived 3d levels are less populated than the heavily cascade-fed long-lived levels in the ground configuration, so that the perturbation of the ground configuration level decay curves by the slow cascades is minor.

The measurement accuracy of the ground configuration level lifetimes is much better than the scatter of the predictions (see Table I and [30]), which is particularly bad for the $2D_{3/2}^0$ level. Only very few of the predictions (for example, [23, 8]) match all measured lifetimes, which should be a strong indicator of quality. In order to provide a ‘second opinion’, although by employing the same measurement technique, the $3s^23p^3$ level lifetimes have also been measured in Co XIII, the neighbouring element. Fewer calculations have treated cobalt than have been applied to iron, but the intercomparison is very instructive (for a graphical presentation, see [31, 32]). At a distance from these two elements, and measured by a very different technique [33], provides another experimental reference. The various predicted level lifetimes scatter by up to 70% around the experimental results. For most of the calculations of P-like ions and our three sample ions along the isoelectronic sequence, at best one or two individual values happen to be close to experiment, and the predicted isoelectronic trend is not borne out by experiment. Overall, the calculations by Bémont et al [23] appear to represent the state of the art along the isoelectronic sequence. It would be good to extend the measurements to more elements, for example to manganese and nickel, as a check of the experimental findings for iron, the coronal element of foremost interest.

The above lifetime measurements at TSR have been performed with very little wavelength discrimination, relying on an experimental arrangement that provided ions of a single isotope and charge state, so that only a few long-lived levels were expected to contribute to any decay curve that should reflect millisecond lifetimes. Del Zanna & Mason [8], aided by electron excitation calculations done by Storey et al [26], identified one of the 3d $J=9/2$ level decays with a bright

Table 1. Fe XII level lifetimes in the millisecond range and known or predicted principal decay channels (M1, E2, or M2). Wavelengths are approximate and based on observation, indirect evidence (calculated multiplet structure), or calculation (see text).

Upper level	λ(nm)k	Lifetime τ (ms)	
	Experiment	Theory	
$3s^23p^3 2D_{3/2}^0$	240.641	20.35 $\pm 1.24^h$	18.9e, 18.9b, 5.0e, 16.8d, 16.0c,
		18.0 $\pm 0.1^i$	20.8f, 18.44, 22.57h 18.0i/18.0j, 17.7k
$3s^23p^3 2D_{5/2}^0$	216.976	306 $\pm 10^i$	324e, 1155, 326c, 294d, 313e, 544i, 3145 3233/3234, 311k
$3s^23p^3 2P_{1/2}^0$	307.206, 356.6	4.38 $\pm 0.42^h$	3.84e, 3.84h, 3.84i, 3.64d, 3.58c,
		4.10 $\pm 0.12^i$	4.05f, 3.815 3.59/3.79i, 3.8k
$3s^23p^3 2P_{3/2}^0$	256.677, 290.470	1.85 $\pm 0.24^h$	1.61e, 1.61b, 2.39c, 1.55d, 1.53e, 1.70 $\pm 0.08^i$ 1.67f, 1.595 1.59/1.59i, 1.6k
$3s^23p^2(3P)3d 4F_{9/2}$	25.187, 59.2600,1421.868	11 ± 1*	11.6/9.21, 9.7c, 9.56d
$3s^23p^2(1D)3d 2G_{9/2}$	184.723, 163.484, 64.292	4 ± 1*	4.00/4.271, 4.03b, 4.43d 22.167

a [16], b [17], c [18], d [19], e [20], f [22], g [21], h [34], i [30], j [23] (two approximations), k [8], l [24], * This work
coronal line observed at 59.26 nm [8]. This line is the brighter one of the two, since it represents the majority decay branch (more than 50%) of its upper level, 3d 4F9/2. The other line, predicted near 64.3 nm, is expected to represent only about 15% of the total decay of the 3d 2G9/2 level. There is no clear candidate line for this decay, with its wavelength at the edge of the range covered by the SUMER instrument on the SOHO spacecraft. Given the many-millisecond lifetime, it cannot be seen in beam-foil spectra (where there are many unassigned lines), but it may some day be seen in an electron-beam ion trap, which can produce spectra that are dominated by a single element. Once the wavelength can be specified to a higher accuracy, the line will likely be recognized in solar spectra, too.

5. Acknowledgments

Part of this work has been performed at LLNL under the auspices of the US DoE under contract No. W-7405-ENG-48. ET acknowledges travel support from the German Research Association (DFG).

References

[1] Edlén, B 1942 Z Astrophysik 22 30
[2] CHIANTI data base at http://www.chianti.rl.ac.uk,
[3] Landi E, Del Zanna G, Young P R, et al 2006 Astrophys J Suppl 162 261
[4] Mewe R, Kaastra J S and Liedahl D A 1995 http://heasarc.gsfc.nasa.gov/docs/journal/meke6.html
[5] Lepson J K, Beiersdorfer P, Brown G V, et al 2000 Rev Mex A A (Conf) 9 137
[6] Lepson J K, Beiersdorfer P, Brown G V, et al 2002 Astrophys J 578 648
[7] Del Zanna G, Berrington K A and Mason H 2004 Astron Astrophys 422 731
[8] Del Zanna G and Mason H 2005 Astron Astrophys 433 731
[9] Sugar J and Corliss C 1988 J Phys Chem Ref Data 14 Suppl 2
[10] Shirai T, Sugar J and Wiese W L Japan Atomic Energy Research Institute, JAERI-Data/Code 97-022 (Ti) to 97-031 (Mo)
[11] Jupén C, Isler R C and Träbert E 1993 Mon Not R Astron Soc 264 727
[12] Träbert E 1998 Mon Not R Astron Soc 297 399
[13] Kaftatos M and Lynch J P 1980 Astroph J Suppl 42 611
[14] Lynch J P and Kaftatos M 1991 Astroph J Suppl 76 1169
[15] Eidelsberg M, Crifo-Magnant F and Zeippen C J 1981 Astron Astrophys Suppl 43 455
[16] Garstang R H 1972 Opt Pura Apl 5 192
[17] Smith M W and Wiese W L 1973 J Phys Che Chem Ref Data 2 85
[18] Smitt R, Svensson L A and Outred M 1976 Phys Scr 13 293
[19] Mendoza C and Zeippen C J 1982 Mon Not R Astron Soc 198 127
[20] Huang K-N 1984 At Data Nucl Data Tables 30 313
[21] Biémont E and Hansen J E 1985 Phys Scr 31 509
[22] Kaufman V and Sugar J 1986 J Phys Chem Ref Data 15 321
[23] Biémont E, Palmeri P, Quinet P, Zeippen C J and Träbert E 2002 Eur Phys J D 20 37
[24] Froese Fischer C, Tachiev G and Irimia A 2006 At Data Nucl Data Tables 92 607; extended in 2007 to include forbidden transitions in Fe XII
[25] Frätzche S, Froese Fischer C and Frickle B 1998 At Data Nucl Data Tables 68 149
[26] Storey P J, Del Zanna G, Mason H E and Zeippen C J 2005 Astron Astrophys 433 717
[27] Doerfert J, Träbert E, Wolf A, Schwalm D and Uwira O 1997 Phys Rev Lett 78 4355
[28] Träbert E, Wolf A, Linkemann J and Tardor X 1999 J Phys B: At Mol Opt Phys 32 537
[29] Träbert E, Knystautas E J, Saathoff G and Wolf A 2005 J Phys B: At Mol Opt Phys 38 2395
[30] Träbert E, Gwinner G, Wolf A, Knystautas E J, Garnir H-P and Tardor X 2002 J Phys B 35 671
[31] Träbert E, Reinhardt S, Hoffmann J and Wolf A 2006 J Physics B 39 945
[32] Träbert E 2007 Hyperfine Interactions 173 13
[33] Träbert E, Beiersdorfer P, Brown G V, Chen H, Thorn D B and Biémont E 2001 Phys Rev A 64 042511
[34] Moehs D P, Bhatti M I and Church D A 2001 Phys Rev A 63 032515