Transient receptor potential vanilloid 1 (TRPV1) ion channel is the detector for noxious temperature above 42 °C, pungent chemicals like capsaicin, and acidic extracellular pH. This channel also serves as a nociceptor, highly expressed in sensory neurons (1). As a nonselective cation channel and polymodal receptor, TRPV1 is activated by a plethora of stimuli such as noxious temperature elevation and impairment of noxious heat sensation (2), membrane depolarization, and eventually the sensation of pain (2). Therefore, the TRPV1 channel has been pursued as a target for antinociception. However, compounds targeting TRPV1 channel inhibition have failed in clinical trials, as they elicit adverse side effects such as body temperature elevation and impairment of noxious heat sensation (3, 4). Thus, the ligand-gated mechanisms of TRPV1 activation remain to be further elucidated.

Besides being activated by external ligand such as capsaicin, TRPV1 channel is also activated by endogenous agonists such as anandamide (AEA), N-arachidonoyl dopamine (NADA), N-oleylethanolamine (OEA), and N-oleoyldopamine (OLDA). Interestingly, all these ligands are endocannabinoids. The endocannabinoid system is a lipid signaling network widely distributed in the body of all vertebrates, regulating important physiological processes such as energy homeostasis, memory extinction, inflammation, and pain sensation. In particular, previous studies have demonstrated that cannabinoids, such as AEA and Δ9-tetrahydrocannabinol, exert antinociceptive effects in rhesus monkeys (5, 6). Although two G protein–coupled receptors CB1 and CB2 have been identified as the major cannabinoid receptors (7), many TRP channels, including TRPV1, have been recognized as ionotropic cannabinoid receptors (8, 9). Therefore, elucidating mechanisms underlying endocannabinoid binding and activation of TRPV1 will not only help reveal the ligand gating mechanisms of this channel in vivo but also advance the development of antinociceptive drugs targeting TRPV1 and the endocannabinoid system.

Endocannabinoids like AEA and NADA and capsaicin share similarities in their chemical structures, as they all have a polar “Head” with hydroxyl group(s), an amide “Neck,” and a “Tail” made of aliphatic chain (Fig. 1, A and B). Based on the three-dimensional structures of the TRPV1 channel (10–12), our previous studies have shown that capsaicin binds to the vanilloid-binding pocket (VBP) formed by S3, S4 transmembrane helices and S4–S5 linker with a “tail-up, head-down” configuration (13), which further imitates a conformational wave to open this channel (14). However, how endocannabinoids bind to and activate the TRPV1 channel remains largely unknown. Molecular dynamic simulation suggests that AEA may bind to either the cavity formed between S1 and S4 helices or the capsaicin-binding pocket in the TRPV1 channel (15), whereas cryo-electron microscopy (EM) shows cannabidiol binds to the pocket located between S5 and S6 helices of adjacent subunits of the closed related TRPV2 channel (16). In this study, we used a combination of patch-clamp recording, site-directed mutagenesis, and molecular docking to reveal that the endogenous TRPV1 agonists AEA, NADA, OEA, and OLDA can bind to the capsaicin-binding pocket near S4 in distinct binding configurations as compared with that of capsaicin.
Results

Endocannabinoids activate TRPV1 by binding to the channel vanilloid-binding pocket

We transiently transfected and expressed mouse TRPV1 in HEK293 cells for patch-clamp recordings, as such an expression system of TRPV1 has been extensively used in our previous studies of TRPV1 channel gating mechanisms (13, 14, 17). Moreover, the sequence identity between mouse and human TRPV1 in the VBP is over 90% (Fig. S1). We first measured TRPV1 current activation in response to the endocannabinoids (AEA, NADA, OEA, and OLDA, Fig. 1B) using patch-clamp recording. We observed that all these ligands activated the TRPV1 channel in a concentration-dependent manner (Fig. 1C). All ligand-activated current amplitudes were normalized to that of 3 mM 2-aminoethyl diphenylborinate (2-APB). We employed 2-APB as an independent way to activate TRPV1 because most likely 2-APB does not bind to the VBP to open the channel. Our previous study has shown that mutations in key residues interacting with capsaicin, such as T551V and E571A, did not affect 2-APB activation (13). Moreover, in the closely related TRPV3 channel, cryo-EM structures clearly demonstrate that 2-APB binds to cavities outside the VBP (18). Therefore, 2-APB serves as an independent agonist so that the maximum open probability of endogenous agonists can be measured from the same membrane patch by normalization to 2-APB current. We observed that, although activation of TRPV1 by saturating concentration of capsaicin and 2-APB reaches similar maximum open probability as we reported before (13) (Fig. 1C, dotted curve in red), maximum current activated by endocannabinoids was smaller than that of 2-APB activation (Fig. 1C). Because the maximum open probability
(Po_max) of TRPV1 activated by 2-APB is close to 100% and the endocannabinoids induced a smaller current than 2-APB, these observations showed that the endocannabinoids cannot fully open TRPV1 so that they are partial agonists for TRPV1.

To investigate the ligand gating mechanisms of these endocannabinoids, we then tested whether these ligands bind to the same pocket in TRPV1 as capsaicin. It is well known that the point mutation Y512A (mouse TRPV1 numbering) abolishes capsaicin activation of TRPV1 (13, 19). The cryo-EM structures of TRPV1 reveal that the bulky side chain of Y512 serves as a bolt for the VBP: it points downward in the apo state (11) (Protein Data Bank [PDB] ID: 3J5P) so that the VBP is open to the incoming capsaicin; upon capsaicin binding this side chain switched upward (12) (PDB ID: 3J5R), which locks the capsaicin molecule inside the VBP (13) (Fig. 1E). Therefore, when the bulky side chain is removed in Y512A mutant, VBP is always open so that the ligand cannot stably bind there. We observed that, similar to capsaicin, none of these endocannabinoids activated the Y512A mutant even at their own saturating concentration for the wildtype channel (Fig. 1F), whereas 2-APB largely activated the Y512A mutant. In contrast, although residue S513 locates next to Y512, the S513A mutant does not abolish capsaicin activation (13). We also found that S513A mutant can be robustly activated by the endocannabinoids (Fig. 1G). All these mutants showed similar voltage dependence as the wildtype channel (Figs. S2–S5). To further assess the impact of point mutation on channel expression, we measured the maximum current activation of mutant channels by 3 mM 2-APB and observed a similar current level (Fig. S6), indicating the expression levels of mutants were not significantly altered. Therefore, our results strongly suggest that AEA, NADA, OEA, and OLDA also bind to the VBP like capsaicin to activate the TRPV1 channel.

Distinct binding modes of endocannabinoids

As the endocannabinoids bind to the VBP, we next investigated how they bind inside the VBP. Our previous studies established that the binding of capsaicin is secured by its hydrogen bonding with residues T551 on the S4 and E571 on the S4-S5 linker (13, 14) (Fig. 1H, dotted lines in black), so we first tested whether these two hydrogen bonds still exist between the endocannabinoids and TRPV1 given that these ligands preserve the hydrogen bonding capability in their chemical structures (Fig. 2A).

Figure 2. Differential interaction between endocannabinoids and TRPV1. A, chemical structures of four endocannabinoids and capsaicin. B, representative whole-cell patch-clamp recording showed that endocannabinoids activate the T551V mutant in a concentration-dependent manner, which is similar to that of the wildtype channel. C, representative whole-cell patch-clamp recording showed that these endocannabinoids cannot activate the E571A mutant but NADA and capsaicin can. D, concentration–response curves of capsaicin and four endocannabinoids in wildtype and mutant TRPV1 channels (n = 4–5). The data are represented as the mean ± SD. AEA, anandamide; CAP, capsaicin; NADA, N-arachidonoyl dopamine; OEA, N-oleylethanolamine; OLDA, N-oleoyldopamine; WT, wildtype.
To our surprise, by disabling the potential hydrogen bond with the T551V mutant, while capsaicin activation of the mutant was largely shifted to the higher concentration by about 10-fold (Fig. 2D), AEA and OEA still activated the mutant with similar EC50 values (4.88 ± 0.78 μM, n = 5; 0.28 ± 0.08 μM, n = 5; for AEA and OEA, respectively) (Fig. S7) to those of the wildtype channel (Fig. 2, B and D), suggesting that no hydrogen bond was formed between AEA, OEA, and residue T551. For NADA and OLDA, their EC50 values for T551V were increased (0.09 ± 0.04 μM, n = 5; 0.54 ± 0.14 μM, n = 5; for NADA and OLDA, respectively), but the extent of EC50 increase is smaller than that of capsaicin (1.56 ± 0.40 μM, n = 5).

By disabling another potential hydrogen bond with the E571A mutant, while capsaicin can still activate this mutant with a much larger EC50 value (Fig. 2D), AEA, OEA, and OLDA barely opened the E571A channel (Fig. 2, C and D). Therefore, based on such observations we believe that the hydrogen bonding network between the endocannabinoids and TRPV1 channel is distinct to that of capsaicin, although these ligands bind to the same VBP with similarities in their chemical structures.

Residue Y512 critical for binding to the head of AEA and NADA

To investigate binding modes of the endocannabinoids, we performed the thermodynamic mutant cycle analysis with patch-clamp recordings. Previously we have successfully employed this approach to reveal the binding modes of capsaicin to TRPV1 channel (13) and menthol to TRPM8 (13, 20), where the ligand binding (represented by Kd) and the subsequent conformational changes leading to channel opening (represented by L) are separately quantified. As the endocannabinoids are partial agonists for TRPV1 with a Po_max smaller than unity (Fig. 1C), we can directly and accurately calculate Kd and L from experimentally measured EC50 and Po_max, because EC50 = Kd/(1 + L) and Po_max = L/(1 + L) as specifically interacts with a residue on TRPV1, either changing this group or mutating the residue on channel should show nonadditive effects on binding affinity. Previous studies including our own have shown that, if the measured coupling energy is larger than 1.5 kT (or 0.89 kcal/mol at 24 °C) (13, 21, 22), a specific interaction of the two parts within 4 Å can be reliably assumed.

By comparing the chemical structures of AEA and NADA, we realized that these two molecules have identical Neck and Tail but their Heads differ by one benzene ring (Fig. 3A). Therefore, we took advantage of such similarities in chemical structure and performed thermodynamic mutant cycle analysis with AEA and NADA to investigate how the Head of endocannabinoids interacts with TRPV1 channel. As we measured in previous experiments (Figs. 1C and 3B), AEA without a bulky Head as compared with NADA showed much increased EC50 values for the wildtype channels (6.02 ± 1.23 μM, n = 5; 0.08 ± 0.05 μM, n = 5 for AEA and NADA, respectively), indicating that the benzene ring contributes to ligand binding.

To further quantify the energetic effects of shifting in concentration response curves, we employed a general ligand-gating scheme (Fig. 3C) that successfully described the binding of capsaicin to TRPV1 and menthol to TRPM8 (13, 20), where the ligand binding (represented by Kd) and the subsequent conformational changes leading to channel opening (represented by L) are separately quantified. As the endocannabinoids are partial agonists for TRPV1 with a Po_max smaller than unity (Fig. 1C), we can directly and accurately calculate Kd and L from experimentally measured EC50 and Po_max, because EC50 = Kd/(1 + L) and Po_max = L/(1 + L) as specifically interacts with a residue on TRPV1, either changing this group or mutating the residue on channel should show nonadditive effects on binding affinity. Previous studies including our own have shown that, if the measured coupling energy is larger than 1.5 kT (or 0.89 kcal/mol at 24 °C) (13, 21, 22), a specific interaction of the two parts within 4 Å can be reliably assumed.

By comparing the chemical structures of AEA and NADA, we realized that these two molecules have identical Neck and Tail but their Heads differ by one benzene ring (Fig. 3A). Therefore, we took advantage of such similarities in chemical structure and performed thermodynamic mutant cycle analysis with AEA and NADA to investigate how the Head of endocannabinoids interacts with TRPV1 channel. As we measured in previous experiments (Figs. 1C and 3B), AEA without a bulky Head as compared with NADA showed much increased EC50 values for the wildtype channels (6.02 ± 1.23 μM, n = 5; 0.08 ± 0.05 μM, n = 5 for AEA and NADA, respectively), indicating that the benzene ring contributes to ligand binding.

To further quantify the energetic effects of shifting in concentration response curves, we employed a general ligand-gating scheme (Fig. 3C) that successfully described the binding of capsaicin to TRPV1 and menthol to TRPM8 (13, 20), where the ligand binding (represented by Kd) and the subsequent conformational changes leading to channel opening (represented by L) are separately quantified. As the endocannabinoids are partial agonists for TRPV1 with a Po_max smaller than unity (Fig. 1C), we can directly and accurately calculate Kd and L from experimentally measured EC50 and Po_max, because EC50 = Kd/(1 + L) and Po_max = L/(1 + L) as specifically interacts with a residue on TRPV1, either changing this group or mutating the residue on channel should show nonadditive effects on binding affinity. Previous studies including our own have shown that, if the measured coupling energy is larger than 1.5 kT (or 0.89 kcal/mol at 24 °C) (13, 21, 22), a specific interaction of the two parts within 4 Å can be reliably assumed.

By comparing the chemical structures of AEA and NADA, we realized that these two molecules have identical Neck and Tail but their Heads differ by one benzene ring (Fig. 3A). Therefore, we took advantage of such similarities in chemical structure and performed thermodynamic mutant cycle analysis with AEA and NADA to investigate how the Head of endocannabinoids interacts with TRPV1 channel. As we measured in previous experiments (Figs. 1C and 3B), AEA without a bulky Head as compared with NADA showed much increased EC50 values for the wildtype channels (6.02 ± 1.23 μM, n = 5; 0.08 ± 0.05 μM, n = 5 for AEA and NADA, respectively), indicating that the benzene ring contributes to ligand binding.

To further quantify the energetic effects of shifting in concentration response curves, we employed a general ligand-gating scheme (Fig. 3C) that successfully described the binding of capsaicin to TRPV1 and menthol to TRPM8 (13, 20), where the ligand binding (represented by Kd) and the subsequent conformational changes leading to channel opening (represented by L) are separately quantified. As the endocannabinoids are partial agonists for TRPV1 with a Po_max smaller than unity (Fig. 1C), we can directly and accurately calculate Kd and L from experimentally measured EC50 and Po_max, because EC50 = Kd/(1 + L) and Po_max = L/(1 + L) as specifically interacts with a residue on TRPV1, either changing this group or mutating the residue on channel should show nonadditive effects on binding affinity. Previous studies including our own have shown that, if the measured coupling energy is larger than 1.5 kT (or 0.89 kcal/mol at 24 °C) (13, 21, 22), a specific interaction of the two parts within 4 Å can be reliably assumed.
previously described (13, 20). Indeed, the K_d values of NADA were significantly smaller than those of AEA (Fig. 3, C and D). We measured K_d and L values for a series of TRPV1 mutants and calculated the coupling energy values (Fig. 3E). We observed that only at residue Y512 the coupling energy was much larger than the 1.5 kT threshold (Fig. 3E, bar in red), suggesting that the Head of AEA and NADA points toward Y512.

Putative binding configurations revealed by molecular docking

As we have performed thermodynamic mutant cycle analysis with many point mutations (Fig. 3), with such experimental information as constraints and guidance we set out to probe potential binding configurations of the endocannabinoids using molecular docking in the Rosetta suite (23). Previously we have successfully employed such experiment-guided molecular docking to reveal the binding configuration of chemicals (13, 24–26) and peptides (27–29) to the TRPV1 channel.

We docked AEA, NADA, OEA, and OLDA to the VBP (Fig. 4A, dotted box in red). We compared the top scored docking models that are consistent with our patch-clamp recordings (Fig. 3 and Tables S1–S4) with our previous capsaicin binding model (13) (Fig. 4B, molecule in orange and Fig. 4C). We observed that these endocannabinoids and capsaicin bind to the same VBP; moreover, they generally assume the “tail-up, head-down” binding configuration as capsaicin (Fig. 4B).

However, the details in their binding modes are different. For AEA, the hydroxyl group in its Head likely formed a hydrogen bond with residue E571, which is consistent with our observation that mutation E571A largely abolished AEA activation (Figs. 2C and 4D). In contrast, unlike the hydrogen bond between the Neck of capsaicin and residue T551, docking suggested that there was no hydrogen bond between AEA and residue T551, which was supported by the results that mutation T551V did not largely alter the AEA activation (Fig. 2, B and D). For OEA, it likely adopted a similar binding configuration as AEA (Fig. 4E). For NADA, its bulky benzene ring in the Head was about 3.48 Å apart from the side chain of residue Y512 (Fig. 4F), which is consistent with the 4-Å distant limit predicted by our thermodynamic mutant cycle analysis (Fig. 3E). For OLDA, it likely adopted a slightly different binding configuration, where its Head bound deeper inside the VBP (Fig. 4G). Therefore, our molecular docking in combination with patch-clamp recording experiments clearly show that the endocannabinoids we tested bind to the VBP with the tail-up, head-down configuration like capsaicin, but how the endocannabinoids interact with TRPV1 residues within the VBP to activate TRPV1 is distinct from that of capsaicin.

Discussion

In this study we performed patch-clamp recording and molecular docking to investigate the activation mechanisms of the endocannabinoids binding to TRPV1.
the endocannabinoids. We found that the endocannabinoids also bind to the VBP of TRPV1, but the details in ligand-TRPV1 interactions are different from those of capsaicin. For instance, the hydrogen bond between capsaicin and T551 is important for its binding (13), whereas we observed that, for endocannabinoids like AEA, T551V showed similar concentration dependence of ligand activation, suggesting that there is no hydrogen bond formed. As the hydrophobic Tail of the endocannabinoids is much longer than that of capsaicin (Fig. 1, A and B) and the Tail largely contributes to ligand binding (13), we think the van der Waals interactions between the Tail and channel protein is likely to be altered as compared with that of capsaicin, which further affected the binding configuration of endocannabinoids. Moreover, we observed that the \(P_{o,\text{max}} \) of capsaicin or 2-APB activation was close to unity (Fig. 1C) (13), whereas \(P_{o,\text{max}} \) of TRPV1 activated by endocannabinoids was smaller than that of 2-APB (Fig. 1, C and D). These observations suggest that, as the binding configuration of endocannabinoids is different as likely caused by their long hydrophobic Tail, the ability of endocannabinoids to stabilize the open state of TRPV1 is lower than that of capsaicin or 2-APB.

Interactions between the endocannabinoids and TRPV1 channel have strong implications in analgesic drug development. On the one hand, although the TRPV1 channel has long been pursued as a drug target for analgesics, owing to its critical role in temperature sensation in human, direct blocking of this channel often leads to hyperthermia and changes in acute heat sensation, which causes failures in clinical trials (4). Alternative strategies to modulate TRPV1 activities, such as using the positive allosteric modulators, have been explored for analgesic effects (30). On the other hand, although cannabinoids have been widely used as analgesics for millennia, their effects on the ionotropic cannabinoid receptors such as TRPV1 have just started to be recognized (8, 9). Therefore, as the binding configuration of endocannabinoids is much longer than that of capsaicin, which further affected the binding configuration of endocannabinoids. Moreover, we observed that the \(P_{o,\text{max}} \) of capsaicin or 2-APB activation was close to unity (Fig. 1C) (13), whereas \(P_{o,\text{max}} \) of TRPV1 activated by endocannabinoids was smaller than that of 2-APB (Fig. 1, C and D). These observations suggest that, as the binding configuration of endocannabinoids is different as likely caused by their long hydrophobic Tail, the ability of endocannabinoids to stabilize the open state of TRPV1 is lower than that of capsaicin or 2-APB.

Experimental procedures

Complementary DNAs

Murine TRPV1 (mTRPV1, a gift from Dr Michael X. Zhu, University of Texas Health Science Center at Houston) was used in this study, and all of the numbering of residues were based on this channel. In order to identify mTRPV1-expressing cells, enhanced yellow fluorescent protein was fused to the C terminus of the channel, which did not alter the function of TRPV1. Point mutations were made by Fast Mutagenesis Kit V2 (Vazyme Biotech) and confirmed by sequencing. Primers used to generate point mutations are summarized in Table S5.

Materials

2-APB was obtained from Sigma. Anandamide was obtained from MedChemExpress. N-Arachidonoyl Dopamine was obtained from Absin. Oleylethanolamide and Oleoyldopamine were obtained from Tocris. The purity of these compounds was above 98%. Lipofectamine 2000 was purchased from Thermo Fisher Scientific.

Cell culture and transfection

HEK293T cells were cultured in Dulbecco’s modified eagle medium supplemented with 10% FBS and 100 mg/ml primocin for 24 to 48 h at 37 °C. When the cell density reached 60% to 70%, cells were transiently transfected with cDNA constructs by Lipofectamine 2000 following the manufacturer’s protocol. Patch-clamp recordings were performed 1 to 2 days after transfection.

Molecular docking

Docking of the four endocannabinoids compounds was performed using the RosettaLigand application within the Rosetta molecular modeling software suite, version 3.7 (23), in an XML style script in RosettaScripts (38). The rTRPV1 capsaicin-bound cryo-EM structure (PDB ID: 3515R) was first relaxed in a membrane environment using RosettaMembrane (39–42). Vanilloid compounds were initially placed at the center of the binding pocket within the S3, S4, S4–S5 linker, and S6 segments and were constrained within a 10-Å-diameter sphere where it was allowed to move freely. A total of 200 conformers for each compound were generated using Open Eye OMEGA software (43, 44). A total of 10,000 ligand-channel complex models were generated for each ligand. To determine the best model, they were first screened for total energy. The 1000 lowest energy models were then further screened for binding energy between the compound and the channel. The top ten models were identified as candidates. All molecular graphics were rendered by UCSF Chimera software version 1.13 (45).

Electrophysiology

All patch-clamp recordings were done with a HEKA EPC10 amplifier with PatchMaster software (HEKA) in whole-cell configuration. Patch pipettes were prepared from borosilicate...
glass; their resistances were from 4 to 6 MΩ. For whole-cell recording, serial resistance was compensated by 60%. A solution containing 130 mM NaCl, 0.2 mM EDTA, and 3 mM HEPES (pH 7.20) was used in both bath and pipette for whole-cell recordings. No ATP was added in the solution. The membrane potential was held at 0 mV, and currents were recorded and presented at +80 mV. To determine an I-V curve, the membrane potential was first clamped at 0 mV for 100 ms and then switched to another clamping voltage stepping from −100 to +100 mV with a 10-mV interval for 500 ms, which was then switched to 0 mV for 100 ms. Current amplitude at the steady state during the last 100 ms of voltage steps was averaged to construct the I-V curve. Current was sampled at 10 kHz and filtered at 2.9 kHz. All recordings were performed at room temperature (~24 °C) with the maximum variation of 1 °C.

Ligands such as AEA were perfused to membrane patch by a gravity-driven system (RSC-200, Bio-Logic). The bath and the ligand solution were transported through separating tubes to the front of the perfusion tube outlet to ensure adequate perfusion.

Data analysis

All data from whole-cell recordings were analyzed in Igor Pro (WaveMetrics). 2-APB at 3 mM concentration was used to maximally activate wildtype mTRPV1 and all mutant channels. Data are shown as mean ± SD; comparison of experimental data between multiple groups was conducted statistically with unpaired Student’s t test, and the comparison of experimental data of point mutation versus WT channel was conducted statistically with one-way ANOVA. Differences were regarded as statistically significant with *p < 0.05, **p < 0.01, and ***p < 0.001; n.s., not significant. EC₅₀ values were determined by fitting Hill equation to concentration-response relationships. To distinguish the effect of perturbation of ligand binding or channel gating on the change of point mutation EC₅₀, assumed the following gating scheme to estimate the dissociation constant (Kd) of ligand binding:

\[
\frac{Kd}{C} \leftrightarrow L \leftrightarrow O
\]

where L is the equilibrium constant for the final closed-to-open transition.

According to the structure of AEA and NADA (Fig. 1A), double-mutant cycle analysis could be formed in pairs. Kd values of four channel–ligand combinations (WT channel, AEA: Kd₁; Mutant channel, AEA: Kd₂; WT channel, NADA: Kd₃; Mutant channel, NADA: Kd₄) were determined separately. The strength of coupling was determined by the coupling energy (kT multiplied by LnΩ, where k is the Boltzmann constant and T is temperature in Kelvin).

\[
\ln \Omega = \ln \left(\frac{Kd_{-1} \times Kd_{-2}}{Kd_{-3} \times Kd_{-4}} \right)
\]
Structural mechanism of TRPV1–endocannabinoids interactions

11. Liao, M., Cao, E., Julius, D., and Cheng, Y. (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107–112

12. Cao, E., Liao, M., Cheng, Y., and Julius, D. (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113–118

13. Yang, F., Xiao, X., Cheng, W., Yang, W., Yu, P., Song, Z., Yarov-Yarovoy, V., and Zheng, J. (2015) Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nat. Chem. Biol. 11, 518–524

14. Yang, F., Xiao, X., Lee, B. H., Vu, S., Yang, W., Yarov-Yarovoy, V., and Zheng, J. (2018) The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel. Nat. Commun. 9, 2879

15. Muller, C., Lynch, D. L., Hurst, D. P., and Reggio, P. H. (2020) A closer look at anandamide interaction with TRPV1. Front. Mol. Biol. 7, 144

16. Pumroy, R. A., Samanta, A., Liu, Y., Hughes, T. E., Zhao, S., Yudin, Y., Rohacs, T., Han, S., and Moiseenkova-Bell, V. V. (2019) Molecular mechanism of TRPV2 channel modulation by cannabidiol. Elife 8, e48792

17. Yang, F., Xu, L., Lee, B. H., Xiao, X., Yarov-Yarovoy, V., and Zheng, J. (2020) An unorthodox mechanism underlying voltage sensitivity of TRPV1 ion channel. Adv. Sci. (Weinheim) 7, 2000575

18. Singh, A. K., McGoldrick, L. L., and Sobolevsky, A. I. (2018) Structure and gating mechanism of the transient receptor potential channel TRPV3. Nat. Struct. Mol. Biol. 25, 805–813

19. Jordt, S. E., and Julius, D. (2002) Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 108, 421–430

20. Xu, L., Han, Y., Chen, X., Aierken, A., Wen, H., Zheng, W., Wang, H., Lu, X., Zhao, Z., Ma, C., Liang, P., Yang, W., Yang, S., and Yang, F. (2020) Molecular mechanisms underlying menthol binding and activation of TRPM8 ion channel. Nat. Commun. 11, 3790

21. Ranganathan, R., Lewis, J. H., and MacKinnon, R. (1996) Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis. Neuron 16, 131–139

22. Carter, P. J., Winter, G., Wilkinson, A. J., and Fersht, A. R. (1984) The use of double mutants to detect structural changes in the active site of the tyrosyl-tRNA synthetase (Bacillus stearothermophilus). Cell 38, 835–840

23. Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J., Jacak, R., Kaufman, K., Renfrew, P. D., Smith, C. A., Sheffler, W., Davis, I. W., Cooper, S., Treuille, A., Mandell, D. J., Richter, F., et al. (2011) ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574

24. Dong, Y., Yin, Y., Vu, S., Yang, F., Yarov-Yarovoy, V., Tian, Y., and Zheng, J. (2019) A distinct structural mechanism underlies TRPV1 activation by piperine. Biochem. Biophys. Res. Commun. 516, 365–372

25. Yang, F., Vu, S., Yarov-Yarovoy, V., and Zheng, J. (2016) Rational design and validation of a vanilloid-sensitive TRPV2 ion channel. Proc. Natl. Acad. Sci. U. S. A. 113, E3657–E3666

26. Yin, Y., Dong, Y., Vu, S., Yang, F., Yarov-Yarovoy, V., Tian, Y., and Zheng, J. (2019) Structural mechanisms underlying activation of TRPV1 channels by pungent compounds in ginger. Br. J. Pharmacol. 176, 3364–3377

27. Yang, S., Yang, F., Zhang, B., Lee, B. H., Li, B., Luo, L., Zheng, J., and Lai, R. (2017) A bimodal activation mechanism underlies scorpion toxin-induced pain. Sci. Adv. 3, e1700810

28. Yang, S., Yang, F., Wei, N., Hong, J., Li, B., Luo, L., Rong, M., Yarov-Yarovoy, V., Zheng, J., Wang, K., and Lai, R. (2015) A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nat. Commun. 6, 8297

29. Zhu, A., Aierken, A., Yao, Z., Vu, S., Tian, Y., Zheng, J., Yang, S., and Yang, F. (2020) A centipede toxin causes rapid desensitization of nociceptor TRPV1 ion channel. Toxicon 178, 41–49

30. Lebovitz, E. E., Keller, J. M., Kominsky, H., Kaszas, K., Maric, D., and Iadarola, M. J. (2012) Positive allosteric modulation of TRPV1 as a novel analgesic mechanism. Mol. Pain 8, 70

31. Kaszas, K., Keller, J. M., Coddou, C., Mishra, S. K., Hoon, M. A., Sto-jilkovic, S., Jacobson, K. A., and Iadarola, M. J. (2012) Small molecule positive allosteric modulation of TRPV1 activation by vanilloloids and acidic pH. J. Pharmacol. Exp. Ther. 340, 152–160

32. Lishko, P. V., Procko, E., Jin, X., Phelps, C. B., and Gaudet, R. (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54, 905–918

33. Zabecvic, L., Herzik, M. A., Jr., Chung, B. C., Liu, Z., Lander, G. C., and Lee, S. Y. (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23, 180–186

34. Huynh, K. W., Cohen, M. R., Jiang, J., Samanta, A., Lodowski, D. T., Zhou, Z. H., and Moiseenkova-Bell, V. Y. (2016) Structure of the full-length TRPV2 channel by cryo-EM. Nat. Commun. 7, 11130

35. Zhang, F., Hanson, S. M., Jara-Oseguera, A., Krepkiy, D., Bae, C., Pearce, L. V., Blumberg, P. M., Newstead, S., and Swartz, K. J. (2016) Engineering vanilloid-sensitivity into the rat TRPV2 channel. Elife 5, e16409

36. Zhang, F., Swartz, K. J., and Jara-Oseguera, A. (2019) Conserved allosteric pathways for activation of TRPV3 revealed through engineering vanilloid-sensitivity. Elife 8, e42756

37. Hughes, T. E. T., Lodowski, D. T., Huynh, K. W., Yazici, A., Del Rosario, J., Kapoor, A., Basak, S., Samanta, A., Han, X., Chakrapani, S., Zhou, Z. H., Filizola, M., Rohacs, T., Han, S., and Moiseenkova-Bell, V. Y. (2018) Structural basis of TRPV3 channel inhibition by econazole revealed by cryo-EM. Nat. Struct. Mol. Biol. 25, 53–60

38. Lemmon, G., and Meiler, J. (2012) Rosetta ligand docking with flexible XML protocols. Methods Mol. Biol. 819, 143–155

39. Barth, P., Schonbrun, I., and Baker, D. (2007) Toward high-resolution prediction and design of transmembrane helical protein structures. Proc. Natl. Acad. Sci. U. S. A. 104, 15682–15687

40. Yarov-Yarovoy, V., DeCaen, P. G., Westenbrook, R. E., Pan, C. Y., Scheuer, T., Baker, D., and Catterall, W. A. (2012) Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proc. Natl. Acad. Sci. U. S. A. 109, E93–E102

41. Yarov-Yarovoy, V., Baker, D., and Catterall, W. A. (2006) Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels. Proc. Natl. Acad. Sci. U. S. A. 103, 7292–7297

42. Yarov-Yarovoy, V., Schonbrun, I., and Baker, D. (2006) Multipass membrane protein structure prediction using Rosetta. Proteins 62, 1010–1025

43. Hawkins, P. C., and Nicholls, A. (2012) Conformer generation with OMEGA: Learning from the data set and the analysis of failures. J. Chem. Inf. Model. 52, 2919–2936

44. Hawkins, P. C., Skillman, A. G., Warren, G. L., Ellingson, B. A., and Stahl, M. T. (2010) Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 50, 572–584

45. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612