Glaciomarine sequence stratigraphy in the Mississippian Río Blanco Basin, Argentina, southwestern Gondwana. Basin analysis and palaeoclimatic implications for the Late Paleozoic Ice Age during the Tournaisian.

Miguel Ezpeleta1,2*, Juan José Rustán1,2, Diego Balseiro1, Federico Miguel Dávila1, Juan Andrés Dahlquist1, Norberto Emilio Vaccari1,2, Andrea Fabiana Sterren1, Cyrille Prestianni3, Gabriela Adriana Cisterna1,2 and Miguel Basei4

1 CICTERRA-CONICET, Universidad Nacional de Córdoba, Av. Haya de la Torre s/n, X5015GCA, Córdoba, Argentina
2 Universidad Nacional de La Rioja, Av. Luis M. de la Fuente s/n, F5300, La Rioja, Argentina
3 Palaeontology Department, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Brussels, Belgium
4 Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil
© ME, 0000-0002-7188-7169; DB, 0000-0003-3015-9066; MB, 0000-0002-3857-7089
*Correspondence: miguelezpeleta@gmail.com

Abstract: The Late Paleozoic Ice Age (LPIA) has been well recorded in the uppermost Mississippian–Pennsylvanian of Gondwana. Nevertheless, little is known about the temporal and geographic dynamics, particularly during the early Mississippian. We report on exceptional Tournaisian glaciomarine stratigraphic sections from central Argentina (Río Blanco Basin). Encompassing c. 1400 m, these successions contain conspicuous glacigenic strata with age constraints provided by palaeontological data and U/Pb detrital zircon age spectra. A variety of marine, glaciomarine and fan-deltaic environments indicate relative sea-level variations mainly associated with tectonism and repetitive cycles of glacial activity. Provenance analysis indicates a source from the Sierras Pampeanas basement located to the east. Fifteen sequences were grouped into three depositional models: (1) Transgressive Systems Tracts (TST) to Highstand Systems Tracts (HST) sequences unaffected by glacial ice; (2) Lowstand Systems Tracts (LST) to TST and then to HST with glacial influence; and (3) non-glacial Falling-Stage Systems Tracts (FSST) to TST and HST. The glacial evidence indicates that the oldest Mississippian glaciation stage of the LPIA in southwestern Gondwana is constrained to the middle Tournaisian. In contrast with previous descriptions of Gondwanan coeval glacial records, our sequence analysis confirms complex hierarchical climate variability, rather than a single episode of ice advance and retreat.

Supplementary material: Detailed stratigraphic sections, palaeocurrents and compositional analysis and U/Pb detrital Zr methodology and data are available at: https://doi.org/10.6084/m9.figshare.c.5011424

Received 23 December 2019; revised 5 June 2020; accepted 5 June 2020

The Late Paleozoic stratigraphic records of South America offer clues in the attempt to unravel the puzzle of palaeoclimatic and tectono-sedimentary processes that have been classically acknowledged as a hallmark of Gondwana. The onset of glacial influence in Gondwana has been recognized since the Late Devonian (Caputo et al. 2008; Montañez and Poulsen 2013), with noticeable records even at low palaeolatitudes of the Appalachian region, outside Gondwana (Brezinski et al. 2010, 2008). In contrast to earlier models suggesting a single and protracted glaciation stage (Veevers and Powell 1987), current evidence supports a complex pattern of alternating intervals with and without evidence of glaciation (Fielding et al. 2008a), superimposed onto a long-term pattern of climate change from ice-house conditions during the Carboniferous, up to warm-temperature, arid environments in the Permian (Montañez and Poulsen 2013). This palaeoclimatic trend is partially recorded in the foreland areas to intracratonic basins in South America and has been nourished by sedimentology, stratigraphy, palaeontology and isotopic geology (Gulbranson et al. 2010, 2014; Limarino et al. 2014; Pazos et al. 2017).

From a stratigraphic point of view, great effort has been spent on correlating and temporally organizing the different Gondwanan glacial/eustatic horizons occasionally obscured by tectonic deformations (Limarino et al. 2014). In the Andean context of South America, a revised Carboniferous chronostratigraphic scheme based on western Argentinean basins shows diachronous alpine and continental glaciations (Gulbranson et al. 2010; Limarino et al. 2014). However, some critical intervals, such as the lowermost Carboniferous, are still poorly understood and strongly debated. This is partially due to the lack of complete and well-developed stratigraphic records and specific studies. The regional apex of the Gondwanan glaciation during the Pennsylvanian eroded most of the underlying Mississippian rocks in South America to different degrees, leaving a scarce and patchy stratigraphic record. Based on this limited evidence, a middle Tournaisian and a middle Visean glaciation have been suggested as the oldest Mississippian glaciation events in Gondwana (Caputo et al. 2008; Lakin et al. 2016). In the last decade, the middle Visean glaciation has been widely recognized in outcrops and subsurface foreland areas and intracratonic basins, especially in South America (Caputo et al. 2008; Gulbranson et al. 2010; Rosa et al. 2019). However, the Tournaisian glaciation is still highly controversial. Evidence is scarce and is mainly derived from the subsurface (Caputo et al. 2008; Lakin et al. 2016), while revisions based on described outcrops lack virtually any record of glacial activity (López Gamundí et al. 1992; Niemeyer et al. 1997; Limarino et al. 2014), despite some pre-Visean glacial
geochemistry analysis of basic dykes: Martina

geochemistry: Báez

attracting attention since the mid-twentieth century, but the main

driven stratigraphic patterns hinder the interpretation and correlation

latitudinal position (see Carrizo and Azcuy 2015), but the tectonically

2014). These depocentres developed at a very high, southern

episodic changes of the subduction angle.

(tectonic switching model, cf. Collins 2002) as a consequence of

2013), have suggested alternations of compression and extension

López Gamundí

Iglesia Basin (González 1985; Carrizo and Azcuy 2015). To the east,

1964) is the most northern, while the Calingasta-Uspallata basin is

located further south. However, both basins have also been

tectonic and geodynamic scenarios (e.g. Limarino and Césari 1993;

oral and Cortaderas formations in the type section, Limarino and Césari

1993), exposed further south in San Juan province (Río Blanco and

Calingasta-Uspallata basins). Figure 2 summarizes the different local
to regional lithostratigraphic nomenclatures previously used (e.g. Limarino et al. 2006, 2017). The bulk of the Mississippian record from Sierra de Las Minas was originally referred to the poorly defined Jagüel Formation (González and Bossi 1986), attributed to the Mississippian sensu lato (Fauqué and Limarino 1991). Although the use of this formal name has persisted in the literature (e.g. Gulbranson et al. 2010), Carrizo and Azcuy (1998, 2015) argued that it is devoid of any stratigraphic meaning and is therefore invalid and should be abandoned. An updated stratigraphic scheme for this region was provided by Azcuy et al. (1999) and Carrizo and Azcuy (2015). Three main Mississippian units can be identified in the study area, from the base to the top: (1) the Tournaisian Agua de Lucho Formation, mainly composed of shales and sandstones interbedded with glacial diamictites; (2) the Visean Cerro Tres Cóndores Formation, essentially formed of sandstones and thick polymictic conglomerates, some indicating the presence of ice; and (3) the Visean Punta del Agua Formation, consisting of coarse volcanic-sedimentary deposits interbedded with glacial diamictites. The Pennsylvanian Río del Peñón Formation unconformably covers these Mississippian successions and also the lower to middle Devonian successions that are attributed to the Mississippian sensu lato Tournaisian (Fauqué and Limarino 1991).

In the southwestern area of Sierra de Las Minas, the stratigraphic units are exposed along a slightly NE-plunging and east-vergent asymmetrical syncline, known as the Agua Quebrada syncline (Fig. 1). The Agua de Lucho and Cerro Tres Cóndores formations exhibit a continuous exposure c. 1400 m thick in this area. We studied two detailed stratigraphic sections separated by 2.5 km (Supplementary Material 1). The base of the Agua de Lucho Formation is not exposed since it is in tectonic contact with younger, folded Mississippian successions, while the upper limit is represented by a progressive, concordant passage to conglomeratic successions in the Cerro Tres Cóndores Formation. In these outcrops, the top of the Cerro Tres Cóndores Formation is eroded, and only 200 m are preserved.

It is worth mentioning that the glacial diamictites reported by Fauqué and Limarino (1991) and Limarino et al. (2017) in this area are not the same as those that we describe here for the Agua de Lucho Formation. Diamictites previously recognized by these authors crop out in a different tectonic block towards the NW and, based on our field observations, probably belong to a different, undescribed, younger stratigraphic unit.

Geological setting

For decades, the Mississippian geological history of southwestern Gondwana, particularly in western Argentina, has been intensely debated from palaeogeographic, palaeoclimatic, basin evolution and tectonic and geodynamic scenarios (e.g. Limarino and Césari 1993; Lópezmundí et al. 1994; Fernández-Seveso and Tankard 1995). However, there has recently been some consensus on associating it with regional extension to transtension along the margin (based on basin analysis: Fernández-Seveso and Tankard 1995; Astini et al. 2009, 2011; Ezpeleta 2009; Milana and Di Pasquu 2019; volcanic geochemistry: Báez et al. 2014; Cionu et al. 2016; and structural and geochemistry analysis of basic dykes: Martina et al. 2018). Other contributions, mainly based on studies of Upper Devonian–Mississippian calc-alkaline and A-type granites (Dahliquist et al. 2013), have suggested alternations of compression and extension (tectonic switching model, cf. Collins 2002) as a consequence of episodic changes of the subduction angle.

The Mississippian record exposed at Sierra de Las Minas (Fig. 1) corresponds to the proto-Andean Rio Blanco Basin (Limarino and Spalletti 2006), west-central Argentina. Of the western Argentinian Mississippian proto-Andean basins, the Rio Blanco Basin (Amos 1964) is the most northern, while the Calingasta-Uspallata basin is located further south. However, both basins have also been considered as depocentres of a single larger basin, the Uspallata-Iglesia Basin (González 1985; Carrizo and Azcuy 2015). To the east, the Rio Blanco Basin exhibits complex magmatism and a noticeable variability in subsidence and sedimentation rates (e.g. Báez et al. 2014). These depocentres developed at a very high, southern latitudinal position (see Carrizo and Azcuy 2015), but the tectonically driven stratigraphic patterns hinder the interpretation and correlation of the climatic stratigraphic signal, usually including ice influence. The Mississippian deposits in the Rio Blanco Basin have been attracting attention since the mid-twentieth century, but the main focus has been on the southern part of the basin, while northern regions have been poorly addressed (e.g. Borrell 1955; Scalabrini Ortiz and Arrondo 1973; González and Bossi 1986; Faúqué and Limarino 1991; Coughlin 2000; Gutiérrez and Limarino 2006; Ezpeleta and Astini 2008; Astini et al. 2011; Carrizo and Azcuy 2015; Prestianni et al. 2015, among others).

The structural style of the Sierra de Las Minas is characterized by basement thrusts that displace metamorphic and igneous lower Paleozoic rocks (western Sierras Pampeanas) onto Upper Paleozoic, Mesozoic and Cenozoic units. The mid-upper Paleozoic units developed localized low-grade metamorphism and intense folding, and are intruded by uppermost Devonian to Mississippian igneous dikes (Ar–Ar ages, c. 346–364 Ma, Coughlin 2000). Evidence of these Paleozoic deformations can also be seen in the different stratigraphic truncations and angular unconformities which separate the transgressive-regressive marine successions described below (Coughlin 2000; Astini et al. 2005; Ezpeleta 2009).

On a regional scale, Mississippian stratigraphic units outcropping at Sierra de Las Minas have traditionally been correlated with units from the Angualasto Group (which originally included the Malimán and Cortaderas formations in the type section, Limarino and Césari 1993), exposed further south in San Juan province (Río Blanco and Calingasta-Uspallata basins). Figure 2 summarizes the different local to regional lithostratigraphic nomenclatures previously used (e.g. Limarino et al. 2006, 2017). The bulk of the Mississippian record from Sierra de Las Minas was originally referred to the poorly defined Jagüel Formation (González and Bossi 1986), attributed to the Mississippian sensu lato (Fauqué and Limarino 1991). Although the use of this formal name has persisted in the literature (e.g. Gulbranson et al. 2010), Carrizo and Azcuy (1998, 2015) argued that it is devoid of any stratigraphic meaning and is therefore invalid and should be abandoned. An updated stratigraphic scheme for this region was provided by Azcuy et al. (1999) and Carrizo and Azcuy (2015). Three main Mississippian units can be identified in the study area, from the base to the top: (1) the Tournaisian Agua de Lucho Formation, mainly composed of shales and sandstones interbedded with glacial diamictites; (2) the Visean Cerro Tres Cóndores Formation, essentially formed of sandstones and thick polymictic conglomerates, some indicating the presence of ice; and (3) the Visean Punta del Agua Formation, consisting of coarse volcanic-sedimentary deposits interbedded with glacial diamictites. The Pennsylvanian Río del Peñón Formation unconformably covers these Mississippian successions and also the lower to middle Devonian successions that are attributed to the Talacasto and Chigua formations (Rustán et al. 2011; Carrizo and Azcuy 2015).

In the southwestern area of Sierra de Las Minas, the stratigraphic units are exposed along a slightly NE-plunging and east-vergent asymmetrical syncline, known as the Agua Quebrada syncline (Fig. 1). The Agua de Lucho and Cerro Tres Cóndores formations show a continuous exposure c. 1400 m thick in this area. We studied two detailed stratigraphic sections separated by 2.5 km (Supplementary Material 1). The base of the Agua de Lucho Formation is not exposed since it is in tectonic contact with younger, folded Mississippian successions, while the upper limit is represented by a progressive, concordant passage to conglomeratic successions in the Cerro Tres Cóndores Formation. In these outcrops, the top of the Cerro Tres Cóndores Formation is eroded, and only 200 m are preserved.

It is worth mentioning that the glacial diamictites reported by Fauqué and Limarino (1991) and Limarino et al. (2017) in this area are not the same as those that we describe here for the Agua de Lucho Formation. Diamictites previously recognized by these authors crop out in a different tectonic block towards the NW and, based on our field observations, probably belong to a different, undescribed, younger stratigraphic unit.
Palaeontological content and age constraints

The sedimentary successions studied contain a rich fossiliferous record, mainly represented by marine invertebrates and plants. Fossil assemblages are usually dominated by brachiopods and bivalves (González 1994; Sterren et al. 2013), with subordinate crinoids, cephalopods, gastropods, hyoliths, conulariids and corals. Scarce records of bryozoans, fishes, sponges (Carrera et al. 2018) and trilobites (Vaccari et al. 2013) are restricted to a few specific intervals (Fig. 3 and Supplementary Materials 1). Plant remains have been studied by Azcuy and Carrizo (1995); Carrizo and Azcuy (1998, 2015) and Prestianni et al. (2015).

Deposits herein assigned to the Agua de Lucho Formation are considered Tournaisian in age due to the occurrence of the index miospore *Waltziaporina lanzonii* (Daemon 1974), studied by Prestianni et al. (2015). This index spore was reported about 50 m above the base of the uppermost diamictite bed in the Agua Quemada syncline (S6 in Fig. 3 and Supplementary Materials 1) and probably supports a middle to late Tournaisian age for the bearing layers (but see Playford and Melo 2010; Lakin et al. 2016). There is no evidence for Devonian sediments in the Agua de Lucho Formation in this locality, and preliminary palynological reports suggesting such an age are currently considered reworked material (see Prestianni et al. 2015).

Fig. 1. Location map and regional geological information of the studied area: Sierra de Las Minitas northern Precordillera, north-west of La Rioja Province, Argentina. A and B are the two sections studied in this work (Supplementary Material 1).
Records of the brachiopod *Azurduya chavelensis* (Amos) below and above the level yielding *W. lanzonii* (Sterren et al. 2013) support a Tournaisian age for the whole section of the Agua de Lucho Formation. *Azurduya* is a key element of the probably late Tournaisian *Michiganites scalabrinii-Azurduya chavelensis* zone (Sabattini et al. 2001), defined in the Malimán Formation (further south of the studied region) and recorded in other coeval southwestern Gondwanan basins (Niemeyer et al. 1997; Isaacson and Dutro 1999; Cisterna and Isaacson 2003; Sterren and Cisterna 2010; Cisterna 2011; Rubinstein et al. 2017).

The Cerro Tres Cóndores Formation has been considered as Viséan by Carrizo and Azcuy (2015) based on plant assemblages attributed to the *Frenguellia-Paulophyton* zone. This unit underlies the volcanioclastic Punta del Agua Formation, which is dated at 336–337 myr (Gulbranson et al. 2010; Báez et al. 2014).

Methodology

Facies analysis and palaeoenvironmental interpretation

Fieldwork observations consisted of the recognition of lithology, texture, colour, fabric and sedimentary structures, and a description of the fossil content. The smaller-scale architectural elements and fabric (metrics) were defined according to the terms outlined by Dalrymple et al. (2012) and Fielding (2018), while larger-scale geometries (10–100 m) were analysed according to the characteristics defined by DeCelles et al. (1991) and McCarthy and Plint (1998).

Sequence stratigraphy

We interpreted the vertical and lateral variation of facies associations following Catuneanu (2017) and Catuneanu et al. (2011, 2009). This allowed us to interpret not only the different types of sequence boundaries and sequences, but also their relative depositional systems tracts. It is important to note that the sequence stratigraphy terminology has been proposed for low-latitude sequences and, therefore, might not be suitable to describe high-latitude glacial-influenced deposits. Considering that the studied area shows recurrent glacial records, particularly in the lower section, we also followed the Fielding (2018) sequence stratigraphic model, proposed mainly for glacial environments. This sequence stratigraphy model is essentially an adaption of the classical sequence stratigraphic approaches to glacial systems (e.g. Catuneanu et al. 2009).
Fig. 3. Synthetic stratigraphic section and palaeontological content of southern Sierra de Las Minitas (for more details of facies and palaeoenvironmental interpretation see Tables 1 and 2, and Supplementary Material 1). S1 to S15, number of sequences (see below). LST, lowstand systems tract; TST, transgressive systems tract; HST, highstand systems tract; FSST, falling-stage systems tract; BSFR, basal surface of forced regression; MFS, maximum flooding surface; TSE, transgressive surface of erosion. (a) and (b) the Tournaisian-Visean South American brachiopod Azurduya chavelensis (Amos, 1958). PULR-I 7; PULR-I 8; Scale bar = 5 mm. (c) the common bivalve Palaeoneilo subquadratum (González, 1994), PULR-I 6 Scale bar = 5 mm. (d) the sponge Minitaspongia parvis (Carrera et al. 2018) PULR-I 4 Scale bar = 10 mm. (e) the Tournaisian index miospore Waltzispora lanzonii (Prestianni et al. 2015, Daemon 1974) PULR-166, Scale bar = 5 µm and (f) the oldest seed records from western Gondwana, Warsteinia sancheziae (Prestianni et al. 2015) and Pseudosporogonites cf. hallei (Stockmans), as reported by Prestianni et al. (2015). (g) Panoramic photo of sequences 4, 5 and 6.
Provenance
The provenance analysis was based on a compositional analysis of gravel in conglomerates, sandy matrix in gravely beds and sandstones (Howard 1993). We also used palaeocurrent data to interpret the location of potential source areas (cf. Potter and Pettijohn 1977; DeCelles et al. 1983). The palaeocurrent directions were computed using rose diagrams in Stereonet software (Cardozo and Allmendinger 2013). Conglomerate composition and palaeocurrent measurements and their statistical analyses are available in Supplementary Material 2. This stratigraphic methodology of provenance analysis was carried out on different outcrops of the Sierra de Las Minitas and nearby hills. At the top of the Cerro Tres Cóndores Formation in southern Sierra Las Minitas, we complemented sedimentological techniques with U–Pb detrital zircon dating (see geochronological methodology in Supplementary Material 3 for further details).

Facies analysis, sequence stratigraphy and provenance
Facies analysis and palaeoenvironmental interpretation
For the study region (see Fig. 1 for location), we described and interpreted 16 lithofacies and seven facies associations (see details in Tables 1 and 2, Fig. 4 and 5). Figure 3 and Supplementary Material 1 show the vertical distribution of facies and facies associations; together with the facies analysis, this information helped us to analyse the sequence stratigraphy.

The Agua de Lucho Formation and the basal successions of the Cerro Tres Cóndores Formation contain a high-resolution record which can be used to reconstruct the depositional processes and palaeoenvironment of a highly complex glaciomarine setting, driven by autocyclic and allocyclic controls. The vertical succession and geometry of the depositional units allow the reconstruction of a complex facies mosaic for the basal interval, where glacial influence is observed (800 m in section A and 230 m in section B, see Supplementary Materials 1). The proximal glaciomarine environment is characterized by mass flow deposits and subaqueous channels in a fan delta, deposited by low-temperature, highly sediment-laden underflows (see FA A in Table 2) with subsequent wave reworking in a shoreface (FA B). Closely associated with the proximal glaciomarine environment are proglacial deltaic deposits and rhythms (FA C). Siltstones and mudstones with sandy beds indicate suspension which is cyclically interrupted by tractive currents (cf. Dalrymple et al. 2012). Locally, intervals with dropstones suggest a floating ice sheet (Fig. 6). The influence of icebergs is more pronounced in the distal glaciomarine environment (outer to inner shelf). Distal glaciomarine deposits include subtidal channels with glacial features (FA D). Shallowing-upward successions develop from the outer-shelf to shoreface profile (FA E, F and G) after glacial retreat. These coastal deposits are then overprinted by the next glacial advance. The evidence of variations in meltwater streams and short-term advances and retreats of the ice front suggest temperate glaciers (cf. Powell and Cooper 2002; Fielding 2010).

The facies associations present in the upper successions of the Agua de Lucho Formation (from 800 to 1260 m in section A, and 230 to 730 m in section B) suggest that this interval was deposited in a shallow coastal environment without glacial influence. It is a repetitive coastal-deltaic or shelf-margin progradation, from outer to shallow coastal environment without glacial influence. It is a monotonous interval >100 m thick indicates relative sea-level stability as aggradation dominates over progradation.

The erosive base of Sequence 2 (S2, c. 170 m thick) is defined at a point, where there is an abrupt upwards transition from fine- to coarse-grained lithologies. This surface is interpreted as a glacial surface of erosion. Facies directly overlying the sequence boundary are the coarsest in the sequence and represent the LST. Diamictites are interbedded with conglomerates and sandstones (FA A) fining upwards to sandstones with dropstones (FA B, and are interpreted as a glacial advance stage followed by a period of ice retraction. Overlying these facies develop thin, fine-grained bioturbated siltstones (FA C) that represent the MFZ. Mudrocks coarsen upwards into a sandstone-dominated interval showing extensive preservation of current and wave-generated sedimentary structures containing several levels with marine invertebrate and plant fossils (Fig. 3 and Supplementary Materials 1). The lower to middle shoreface deposits (FA E and F) suggest a shallowing-upward progradation during an HST stage, and dropstones at the base of this interval would indicate a contemporary glacial advance.

The deposition of the Cerro Tres Cóndores Formation is represented by an abrupt coarsening-upward succession that is interpreted as a shallow water to shelf-type fan delta (Lonne 1995, see FA G and H in Table 2). Internally, this unit shows moderate fluctuation in relative sea-level as suggested by the intermittence of fluvialite to shoreface conditions.

Sequence stratigraphy
Vertical and lateral variation of facies associations (FA) allow us to define, describe and interpret different types of sequence boundaries and depositional systems tracts. Figure 3 illustrates the 15 stratigraphic sequences defined in this work, internally divided into different systems tracts (see details in Supplementary Materials 1).

Even though successive sequences may preserve slightly different combinations of facies and facies associations, there is rather good consistency in the facies composition of sequences, and an idealized sequence or motif can be deduced (cf. Fielding 2018). The subaqueous channels (FA A) and shoreface proximal to ice front deposits (FA B) were interpreted as Lowstand Systems Tracts (LST) during glacial maximum. Fining-upward succession dominated by sandy levels with occasional subtidal channels (FA D) represents Transgressive Systems Tract (TST) deposits or glacial retreat, and fine-grained facies (FA C) indicate a glacial minimum or maximum flooding zone (MFZ). The shoreface facies associations E, F and G indicate marine to coastal shallowing-upward successions, which are typical elements of Highstand Systems Tracts (HST). Locally, these HST present glacial features suggesting episodic glacial advances. It is important to note that Falling Stage Systems Tract (FSST) deposits, represented by subaerial to shallow water fan deltas (FA G and H), develop above basal forced regression surfaces (BSFR), particularly when Lowstand Systems Tracts (LST) are poorly represented.

Each stratigraphic sequence, from bottom to top, is described below (see details in Supplementary Materials 1). The basal boundary is not recorded and lower section of Sequence 1 (S1, c. 200 m thick) is partially recorded. S1 is tectonically deformed and covered by younger deposits, so its thickness is approximated. The preserved fine-grained basal deposits (FA C) represent a TST, where numerous dropstones suggest a glacial minimum. This succession is followed by shoreface deposits (FA E, F and G) without glacial records, representing an HST. This monotonous interval >100 m thick indicates relative sea-level stability as aggradation dominates over progradation.

Supplementary Material 1 show the vertical distribution of facies and facies associations, together with the facies analysis, this information helped us to analyse the sequence stratigraphy. The vertical succession and geometry of the depositional units allow the reconstruction of a complex facies mosaic for the basal interval, where glacial influence is observed (800 m in section A and 230 m in section B, see Supplementary Materials 1). The proximal glaciomarine environment is characterized by mass flow deposits and subaqueous channels in a fan delta, deposited by low-temperature, highly sediment-laden underflows (see FA A in Table 2) with subsequent wave reworking in a shoreface (FA B). Closely associated with the proximal glaciomarine environment are proglacial deltaic deposits and rhythms (FA C). Siltstones and mudstones with sandy beds indicate suspension which is cyclically interrupted by tractive currents (cf. Dalrymple et al. 2012). Locally, intervals with dropstones suggest a floating ice sheet (Fig. 6). The influence of icebergs is more pronounced in the distal glaciomarine environment (outer to inner shelf). Distal glaciomarine deposits include subtidal channels with glacial features (FA D). Shallowing-upward successions develop from the outer-shelf to shoreface profile (FA E, F and G) after glacial retreat. These coastal deposits are then overprinted by the next glacial advance. The evidence of variations in meltwater streams and short-term advances and retreats of the ice front suggest temperate glaciers (cf. Powell and Cooper 2002; Fielding 2010).

The facies associations present in the upper successions of the Agua de Lucho Formation (from 800 to 1260 m in section A, and 230 to 730 m in section B) suggest that this interval was deposited in a shallow coastal environment without glacial influence. It is a repetitive coastal-deltaic or shelf-margin progradation, from outer–inner shelf (FA C) to shoreface facies association (FA E, F and G).

The deposition of the Cerro Tres Cóndores Formation is represented by an abrupt coarsening-upward succession that is interpreted as a shallow water to shelf-type fan delta (Lonne 1995, see FA G and H in Table 2). Internally, this unit shows moderate fluctuation in relative sea-level as suggested by the intermittence of fluvialite to shoreface conditions.
Table 1. Summary of lithofacies recognized in southern Sierra de Las Minas, with process interpretations. Lithofacies classification scheme (after Miall 1996).

In the second column the photographs corresponding to each facies (Figs 4 and 5).

Facies	Description	Interpretation of processes
1 Fl (Fig. 4a)	Laminated to massive green to black mudstones (1–10 cm thick). Strata of coarser-grained sands are common. Slightly wavy lamination is sometimes present. Extraformational dropstones (granitic, metamorphic and limestones) of 1–15 cm in diameter and intensity bioturbation are common.	Deposition from suspension or low energy currents (Bann and Fielding 2004; MacEachern and Bann 2008). Dropstones represent supply of clasts from ice rafting.
2 Fl + Sr (Figs 4b and 6a and b)	Intervals of 1–10 m of interstratified mudstones, siltstones and very fine yellowish tabular sandstones (2–5 cm thick). Bioturbation and ripple structures are common. Intense soft-sediment deformation interbedded between non-deformed horizons are frequent. Dropstones under 5 cm are common.	Alternation of siltstones and mudstones with sandy beds indicate suspension interrupted by tractive currents (cf. Dalrymple et al. 2012). Soft-sediment deformation, indicating high-gradient slopes, and dropstones suggest ice rafting.
3 Sg Flg (Fig. 4c)	Sandy siltstones with outsized clasts, fining-upward graded bedding and sharp-bounded. Dropstones are common. Soft-sediment deformation between poorly or non-laminated/traited intervals occur. Locally these beds are fossiliferous and bioturbated. Layers 10–30 cm thick.	Density flows, hemipelagic fallout and deformation due to slumping of beds during deposition. This facies could represent hyperpycnal flows, where the finer-grained outwash sediment carried in a buoyant meltwater plume rises suddenly to the free water surface and transports abundant fine sand, silt and mud (Mulder et al. 2003). Dropstones suggest ice rafting influence.
4 Tab Sm (Fig. 4d)	Well-sorted, fine, tabular, massive, greenish-yellow sandstones showing diffuse borders. Horizons are 2–10 cm thick. Abundant tool marks (groove, bounce and prod casts). Bioturbation is present, as well as occasional small-scale load structures.	Rapid deceleration of a hyperconcentrated flow. Overloading and high sedimentation rates indicated by load structures. These facies implies high rates of sand supply in varying water depths from offshore to shoreface (cf. Clifton 2007; Johnson et al. 2002).
5 Dmm + Gm (Fig. 4e)	Lenticular beds of extraformational coarse diamictites and thin conglomerates (<0.20 m), usually amalgamated. Beds are 4 m thick. Lateral extension is no greater than tens of metres. Symsedimentary intraformational folds are common. Faceted, bullet and striated clasts are present. Symsedimentary intraformational folds are common. Faceted, bullet and striated clasts are observed. Clast composition: granitics, metamorphic and limestones clasts. Beds are 0.50–3 m thick. Their lateral extension ranges from tens to hundreds of metres. Muddy to sandy matrix. Mx/Cl ratio is 10:1 to 1:1. Sub-rounded to rounded, striated, faceted and bullet-shape clasts are common (Dmax 20 cm).	Cohesive and fluid flows (hyperconcentrated and residual deposits, cf. Powell 1990; Mutti 1992), indicating reworking of glacial deposits. Symsedimentary-deformed glacial deposits characteristic of submarine gravitational resedimentation of subglacial till (cf. Eyles et al. 1985; Lonne 1995). Geometry and internal bed organization indicate density flows. Striated, faceted and bullet-shape clasts suggest reworking of glacial deposits.
6 Dmn (Fig. 4f)	Tabular, massive and extraformational diamictites (granitic, metamorphic and limestones clasts). Beds are 0.50–3 m thick. Their lateral extension ranges from tens to hundreds of metres. Muddy to sandy matrix. Mx/Cl ratio is 10:1 to 1:1. Sub-rounded to rounded, striated, faceted and bullet-shape clasts are common (Dmax 20 cm).	Stratification of diamictites indicate dilute subaqueous density flows. This process allows the differentiation of discrete layers of finely laminated tabular diamictites with thin mudstone partitions, suggesting settling product after episodes of drop mass and fluctuations in deposition from a meltwater plume (cf. Kelleher and Matter 2003). Striated, faceted and bullet-shape clasts suggest reworking of glacial deposits. Outsized clasts are interpreted as ice rafted debris.
7 Dms (Fig. 4g)	Tabular, stratified diamictites with yellowish coarse sandy matrix. Beds are 10–50 cm thick separated by thin mudstone partitions. Bed lateral extension of tens of metres. Mx/Cl 1:1. Sub-rounded to rounded, striated, faceted and bullet-shape clasts (Dmax 8 cm) as well as outsized clasts rupturing strata (>40 cm) are frequent. More than 20% of the diamictites show stratification (similar to Dmm), represented by stringers and channels of gravels or intercalations of sandy/silty layers.	Geometry and internal bed organization indicate turbulent high-energy diluted and turbulent flows. The colour variation of these channels suggests changes in oxidation conditions (subaqueous to subaerial). Striated, faceted and bullet-shape clasts are interpreted as reworking of glacial deposits.
8 GGM (Fig. 4h)	Coarse, lenticular, poorly sorted, normally graded, cross-bedded conglomerates with very erosive base and boulders >50 cm in size. Greenish, brown or purple colour. Mx/Cl ratio 1:1. Faceted, bullet and striated clasts are observed. Clast composition: granitics, metamorphic rocks, limestones, dark sandstones, felsic volcanic clasts.	Aggradation of sand originated by a combination of oscillatory and combined flow.
9 Shp (Fig. 5a)	Yellow-green and tabular sandstones with hummocky structures. Flat bases and ripples are common (climbing, wave and asymmetric).	Bioclastic bars, deposited in subtidal conditions (cf. Longhtano 2011).
10 Smb + St (Fig. 5b)	Coquina, detrital limestone consisting of shells or shell fragments, matrix to occasionally shell supported. Almost 95% brachiopods, rare rauitidoids and bivalves. Fine sandstones with cross-stratification and occasional ripple lamination are interbedded.	Channels and bars of intertidal to subtidal sands.
11 Smq (Fig. 5c)	Poorly sorted, massive and coarse quartzitic sandstones (95% Qz, Dmax 1 cm). Tabular beds, normally amalgamated in sets >3 m, that show high angle cross-stratification and rare asymmetrical ripples.	The normal grading and the parallel lamination suggest deposition from suspension and/or deposition as bedload transport by traction currents for the coarse-grained sandstones. The wavy structures may be an alternative sign of tractive currents and mud suspension under wave action.
12 Fine Sl + Sr (Fig. 5d)	Tabular, medium to fine, normally graded sandstones with low-angle to parallel stratification. Wave structures are common. Normally 5–30 cm thick and 20–50 m lateral extension.	Waning flows from tractional, high energy, fluid flows that reduces upward to low-flow regimes to decantation. Coarse gravelly sand on a high-energy coast.
13 Coarse Sp + St (Fig. 5e)	Coarse to medium sandstones, with large planar and/or trough cross-bedding structures. Beds >2 m thick. Normal gradation and usually amalgamated banks. Gravel layers and pelitic intraclasts are frequent.	(continued)
Table 1. (Continued)

Facies	Description	Interpretation of processes
14 Sm (Fig. 5e)	Fine to very fine massive sandstones. Tabular (1 m thick), usually amalgamated without fine partitions. Occasionally, parallel diffuse lamination (1–5 cm), with asymmetrical ripples at the top. Many wisps of scattered lycophytes.	Clean sand, tabular geometry and massive arrangement suggests high-energy gravity flows. Ripples indicate wave action. Lycophytes could indicate foreshore to upper shoreface environments.
15 Gm (Fig. 5f and g)	Clast-supported and tabular conglomerates. Orange to yellowish sandy matrix. Poorly sorted. Slightly irregular base. Dmax 15 cm. Qz 70%, granites 15%, sandstone 10%, bioclasts 5%. Occasionally, 95% Qtz and very well rounded.	Turbulent high-energy traction currents. Unidirectional flows in shallow-water to subaerial settings. Locally, the compositional sorting and very well-rounded clasts suggest wave action.
16 Fine Dm (Fig. 5h)	Tabular, amalgamated diamictites (10–80 cm thick). Inverse gradation, from Mx support in the base (Mx/Cl ratio 10:1) to clast-supported (plug) at the top. Angular clasts Dmax 10 cm. Fangolitic Mx. Brown or purple colour.	Debris flows, shallow water to subaerial (cf. Postma 1990).

An abrupt upward transition from coarse-grained to finer lithologies represents the basal boundary of Sequence 4 (S4, from 95 to 110 m thick). Glaciomarine features, such as mudstones and fine sandstone with dropstones, are present at the base of S4. Profuse synsedimentary deformation is also common (FA C). The basal surface is interpreted as an erosional ravinement surface (cf. Clifton 2007) or a transgressive surface of erosion (TSE, cf. Catuneanu et al. 2009). Diamictites and conglomerate lenses, with numerous striated and faceted clasts, carve the muddy succession (FA D), suggesting the formation of subtidal channels where glaciogenic sediments were transported over long distances. A shallow-upward progradation is indicated by a progressive passage from inner shelf (FA C) to subaerial deposits (FA E, F and G). This succession is a stacked progradational sequence, where lower hierarchy sequences are separated by minor erosional surfaces formed during episodic flooding events (stacked parasequences from 570 to 610 m, see Supplementary Materials 1).

Sequence 5 (S5, from 40 to 115 m thick) starts with an upward transition from coarse-grained to finer lithologies interpreted as the beginning of the TST. The base of S5 is dominated by shaly facies with dropstones and synsedimentary deformation that suggest ice rafting and iceberg grounding. However, we cannot rule out that this deformation is the result of mass transport (slumping and sliding) in lower shoreface to inner shelf environments (FA E and C). A thin pelitic interval without dropstones indicates an MFZ without glacial influence before the development of the next systems tract. This MFZ contains a diverse fossiliferous association (Fig. 3 and Supplementary Materials 1). The increase of typical lower shoreface, thick sandstone beds with dropstones and synsedimentary deformation towards the top (FA E) indicates an HST under glacial conditions that would represent an episodic glacial advance. The difference in thickness of this sequence between the studied localities (sections A and B, see Supplementary Materials 1) may be due to differential erosion of the regional erosive surface of the subsequent sequence (S6).

Sequence 6 (S6, c. 70 m thick) starts with a regional (km-scale) erosive surface developed between the top of S5 (deep-subtidal storm-bedded facies, FA E) and the bottom of S6. It is represented by amalgamated conglomerates and diamictites with numerous striated and faceted clasts that suggest density flows in ice-proximal glaciomarine to ice-contact glacialic environments. This surface is interpreted as a forced regression surface covered by proglacial subaqueous fan-deltaic facies that pass laterally into subtidal channels in deeper environments (FA A and B). This LST is followed by a fining-upward trend dominated by shaly facies with progressively thinner-bedded and finer-grained sandstones (FA E and C), evidence of the development of the TST. The presence of sporadic channels, filled with amalgamated conglomerates and diamictites, is interpreted as delta-front slides and slumps, reworking glacial deposits derived from an onshore or tidewater ice front in deep waters (FA D). The HST at the top of S6 is represented by lower to upper shoreface deposits (FA E, F and G). This is the uppermost sequence with unequivocal glacial evidence. Spores of middle to late Tournaisian age were described by Prestianni et al. (2015) in the HST of this sequence (Fig. 3 and Supplementary Materials 1).

Sequences 7 to 13 (S7 to S13, from 25 to c. 120 m thick, see details in Supplementary Materials 1) are formed of progradational systems with no glacial records and successive TST–HST. Facies are mainly characterized by offshore (FA C) to shoreface/deltaic facies (FA E, F, G and H), indicating a shallowing-upward trend (also coarsening-upward). Stacked sets of shoreline successions consist of progradational sequences separated by erosional surfaces formed during intervening transgressions (TSE). The subsequent highstand normal regressive shorelines typically show a progressive reduction in accommodation rates following the maximum flooding at the end of transgression. The topsets show a progressive increase in conglomerate and diamictite facies interpreted as shallow subaerial fan deltas to shoreface environments. The thickening and coarsening-upward trend with cross-bedding structures along the shoreface successions suggest an upward increase in depositional energy. Normal regressions are typically accompanied by increasing aggradation, with progradation rates being inversely proportional to the rates of topset aggradation (e.g. Catuneanu et al. 2009). The topset aggradation rates would be related to the rates of relative increase in coastal elevation. Progradation rates therefore tend to increase with time during highstand normal regressions (cf. Catuneanu and Zecchin 2013). This trend is reflected in the thickness of the beds composing the topset units.

Sequence 14 (S14, c. 140 m thick) represents a coarsening-upward succession and the beginning of the deposition of the Cerro Tres Cóndores Formation. S14 developed over a subaerial unconformity interpreted as a BSFR. Basal deposits are dominated by lenticular and coarse conglomerates interbedded with coarse diamictites and occasional greenish lithic sandstones (FA H). The gravelly beds show rounded clasts but sorting is very poor. The maximum clast size is 0.25 m, suggesting a substantial increase with respect to the granulometry of previous successions. The presence of coarse sandstones with cross-stratification interbedded with imbricated coarse, poorly sorted conglomerates is a common association of shelf-margin fan deltas (Lomme 1995). The presence of occasionally striated and faceted clasts suggests that these conglomeratic systems could have developed as lateral proglacial environments, probably associated with glacial retractions or the result of reworked glacial deposits. The existence of subaerial and subaqueous deposits indicates a regressive trend after the generation of the BSFR, associated with a major base-level fall (falling-stage systems tract, FSST, cf. Catuneanu 2017). The progressive decrease in the coarse fan-deltaic channel facies in relation to the psamitic shoreface facies (FA G) is interpreted as a
Glaciomarine sequences. Tournaisian palaeoclimate.

Table 2. Description and interpretations of facies associations (FA) of the Agua de Lucho and Cerro Tres Cóndores formations in southern Sierra de Las Minitas. Bold letters indicate the most abundant and diagnostic facies

FA	Facies Description	Interpretation	Depositional environment	
A	Dmm Ds Dms Sm Fl(d)	This association is dominated by greenish-grey or maroon diamictites and coarse conglomerates that interbedded with conglomeratic and sandy wedges (Sm). Locally, Fl interbeds and are occasionally deformed (Fig. 4e). Striations are common on the fine-grained clasts. Faceted clasts are common.	Subaqueous deposition from: (a) rainout from a high concentration of debris-rich icebergs; or (b) from sediment-laden efflux jets close to the grounding line of a glacier or ice sheet. Conglomerate facies represent erosional lags or mass flow deposits. The Fl (d) facies are interpreted as occasional suspension settling subsequently deformed after episodes of drop mass.	Subaqueous channels in a fan delta. Ice contact glacial settings with rework of glacial deposits.
B	Sm Smq Ds Gm Gs	This association is dominated by greenish-grey, moderately to well-sorted sandstones (Sm, Smq) are commonly interbedded with the diamictites (Dm, Ds) and conglomerates (Gm, Gs) and form laterally continuous sheets or discontinuous lenses. Bed thickness varies widely, from 0.2 cm to 3 m. This association shows a thinning- and fining-upward trend is common, as is an erosive base. Outsized clast (dropstones) are common in sandstones and diamictites. Multi-storey bodies interfinger with the surrounding turbidite facies associations (FA C, see below).	The interfingering of multi-storey channel deposits with rain-out diamictites and turbidites with dropstones indicate a subaqueatic glaciomarine depositional environment. Tabular sandstones are interpreted as deposition and subaqueous outwash fan deposits.	Shoreface proximal to ice front. Local ice rafting.
C	Fl F1 + Sr Sg-Flg Dmm + Gm	Mudstone beds (Fl), rhytmites (F1 + Sr) and density-flow deposits (Sg-Flg) with outsized clasts (dropstones) and occasional interbedding deformation (recumbent folds) under massive diamictites and conglomerates (Dmm + Gm) with intraclasts and lenses of the underlying rhytmites. Intense bioturbation.	Turbidites deposited in flat shallow channels by numerous pulses of turbiditic events. During the pauses between consecutive turbidites, deposition of sediment from rain-out of icebergs is suggested by intercalations of Dmm and dropstones. Deformation would be associated to overlying mass transport.	Inner-outer shelf. Local ice rafting. Quiescent subaqueous sedimentation during an ice retreat phase.
D	Dmm + Gm F1 + Sr Smq	Amalgamated tabular to lenticular conglomerates and diamictites (Dm + Gm) directly overlie through large-scale erosive contact on top of fine deposits (F1 + Sr). Concave-upward medium-scale erosive bases and planar tops. Lateral continuity >500 m. Individual bodies show fining-upward arrangement with sandstones at the top (Smq). Mud drapes.	Migration of 2–3D dunes during high-energy conditions related to unidirectional tractive currents. The erosive bases, the lenticular geometry and the fining-upward arrangement suggest that these conglomerates were deposited as the infill of channels. The mud drapes, attributed to recrushing energy variations that allow suspension settling of fine-grained material, together with the outcrop geometry, indicate tidal currents.	Subtidal channels.
E	Sm/Sg-Flg Fi + Sr	Sandstone-dominated packages with a lower mud proportion in comparison with FA C. Sm and Sg-Flg alternating with Fi + Sr (3:1 to 10:1). Dropstones are present. Intense bioturbation.	They represent ripple migration processes and settling from suspension during fair-weather conditions, alternating with sand accumulated by oscillatory and combined flows during storm events. Dropstones suggest ice rafting influence.	Lower shoreface.
F	Shp Smq Fine S1 + Sr Smb	Sandstones with hummocky and ripple structures (Shp), alternating with coarse, massive and normally amalgamated sandstones (Smq). Tabular sandstones with low angle parallel stratification and wavy structures (S1 + St). Interbedded layers of silt and mud (<10%). Occasional coquinites. Moderate bioturbation.	Sandstones with high angle parallel stratification and wavy structures. Occasional coquinites.	Middle shoreface.
G	Coarse Sp + St Fine St Gm	Tabular and coarse Sp + St delimited by irregular bases and undulated tops, and displaying a coarsening and thickening-upward arrangement. Alteration of Sm and fine S1 + St (<20%). Gm are common.	The sedimentary structures, texture and the general arrangement of the sandstones suggest deposition in high-energy settings, well above fair-weather wave base.	Upper shoreface
H	Gm Dm Sm SI + St	The coarse conglomerates are lenticular beds showing broad stratification and cross-stratification. Gradual decrease in grain size from poorly sorted coarse-grained conglomerates and fine diamictites through wave imbricated fine-grained conglomerates and tabular cross-bedded and planar laminated sand.	The transport mechanism was a traction current derived from a unidirectional and constant source. Conglomerates have a possible fluvial origin, with subsequent wave rework.	Shallow water/shelf type fan-delta.

transition to an LST. Thin intervals of wave-rippled sandstones intercalated with mudstones (FA F) suggest moderate to low energy conditions in a middle shoreface, and are interpreted as the MFZ. This TST developed in response to periods of decreasing low-clastic input to the shoreline or increasing accommodation. The overlying regressive HST records a renewed, increasingly

![Image of facies associations](image-url)
Fig. 4. Photographs representative of lithofacies listed in Table 1. See Supplementary Materials 1 for location of the photographs in the stratigraphic sections. (a) Facies 1, laminated mudstones with dispersed gravel and an impact depression beneath the outsized clast, indicating that the mud has been deformed beneath ice-rafted dropstones. (b) Facies 2, interbedded mudstones and fine-grained sandstones, with dispersed extraformational gravel of granite composition (arrow). (c) Facies 3, sandy siltstone with dispersed gravel. (d) Facies 4 and 7, massive, well-sorted sandy beds interbedded with stratified diamictites with outsized clasts. (e) Facies 5, cohesive debris-flow lenses (diamictitic, with outsized clasts) intercalated with synsedimentary-folded sandy wedge. (f) Facies 6, faceted and striated clast observed in tabular diamictite. White arrows indicate some of these striations. (g) Facies 7, stratified thin diamictites with outsized clasts. (h) Facies 8, lenticular, massive, polymictic and poorly sorted bed in the clast-supported conglomerate.
Fig. 5. Photographs representative of lithofacies listed in Table 1. See Supplementary Materials 1 for location of the photographs in the stratigraphic sections. (a) Facies 9, tabular sandstones with hummocky cross-stratification. (b) Facies 10 is a coquinite, a limestone formed almost entirely of sorted and cemented fossil debris, most commonly coarse brachiopod shells and shell fragments. (c) Facies 11, a coarse-grained quartz sandstone with high-angle cross-stratification. (d) Facies 12, medium to fine sandstones with low-angle to parallel stratification and often wavy-bedded structures. (e) Facies 13 (F13), lenses of coarse and yellowish sandstone, with trough cross-bedding structures; and facies 14 (F14), tabular and amalgamated, fine to very fine massive sandstones. Both facies are interpreted as high-energy flows in foreshore to upper shoreface environments. (f) Facies 15, >30 m of a continuous succession of irregular lenses of coarse to fine quartz conglomerates. (g) Facies 15, details of clast-supported, poorly sorted, well-rounded and quartzitic conglomerates. Normally these are massive lenticular beds with markedly erosive bases. (h) Facies 16, tabular diamictites, with inverse gradation, from Mx-supported in the base to clast-supported (plug) at the top. Note the angular clasts. Mx of fangolites.
high-clastic input (FA H) or decreasing accommodation, resulting in fan delta progradation.

S15 is poorly preserved and could only be reconstructed in the eastern section B of Agua Quemada syncline (Fig. 1 and Supplementary Materials 1). It is partially covered and its base is not exposed. The studied sections contain a TST followed by a regressive HST, similar to the S14 arrangement. The detrital zircon sample (MIN-190, see below) was taken in the HST interval.

Provenance analysis of the Cerro Tres Cóndores Formation

Conglomerate composition and palaeocurrents

On the Cerro Tres Cóndores hill (Fig. 1), this formation is dominated by lenticular, coarse lithic sandstone (>50% lithic fragments) and conglomerates, with clast composition dominated by coarse subarkosic sandstones and dark grey wackestones to meta-greywackes (c. 72%), granites (c. 15%), green shales (c. 8%) and volcanics (c. 5%). In these outcrops, scarce palaeocurrent data (n = 8) show a SW flow direction (mean vector = 233°) with little dispersion. On the Punta Negra hill (c. 5 km E of the stratotype, Fig. 1), clast composition is dark sandstones (c. 57%), felsic volcanics and granites (c. 25%), gabbros and pillow basalts (c. 12%) and marble and phyllites (c. 6%). The predominant SSE palaeocurrents (mean vector 171°, n = 34) show high dispersion of data (see Supplementary Materials 2) consistent with braided channels in fan systems.

On Mudadero hill (c. 10 km S of the stratotype, Fig. 1), the Agua de Luchu Formation (upsection) shows a progressive and concordant passage to the coarser successions of the Cerro Tres Cóndores Formation, which consists mainly of a sandy succession with scarce, interspersed conglomeratic facies. These conglomeratic lenses record abundant pelitic clasts (c. 87%) recycled from the lower unit. Palaeocurrents show an average SW direction (226° mean vector, n = 18).

In the southern part of Sierras de Las Minitas (c. 25 km SW of the stratotype), the conglomerate clasts are represented by quartz-rich fragments (c. 53%), granites (c. 25%) and metamorphic rocks (c. 9%). It is important to highlight that in numerous conglomeratic beds, the compositional distribution corresponds to quartz clasts (c. 80%), granites (c. 10%), volcanics (c. 5%) and metamorphic rocks (c. 5%). The matrix content is quartzose sandstone/quartzite. Palaeocurrent data indicate multiple flow directions towards the SW and W (248° mean vector, n = 22).

U–Pb detrital zircon data from the Cerro Tres Cóndores Formation

The sample (MIN-190) is a quartzite-clast and quartzose matrix conglomerate collected at the uppermost outcrop of the Cerro Tres Cóndores Formation at section B (S15, c. 200 m above the bottom of this unit, see Supplementary Materials 1). A total of 76 zircon grains were dated, and further information on values and methodology, together with photographs, can be found in Supplementary Material 3. The analysed zircons have the following variable morphologies, recognized in decreasing abundance (Fig. 7a): (i) euhedral and subhedral prismatic; (ii) fragmented prismatic; and (iii) rounded grains. The zircons display oscillatory zoning.

The Concordia diagrams indicate that most of the analysed zircons plot on the Concordia line, bracketing the interval 358–1865 Ma (Fig. 7a–c). The detrital zircon distribution pattern (Fig. 7d) shows a small group of Neoproterozoic ages, with Ediacaran (n = 2) and Cryogenian (n = 2) ages, respectively. The large Mesoproterozoic spectrum shows a peak at 1030 Ma (n = 7) and two subordinate peaks at 1232 (n = 5) and 1375 Ma (n = 5). The largest group is made up of early Ordovician (Tremadocian) ages with a peak at 480 Ma (n = 22). Three grains define an early Silurian subordinate peak (427 Ma), while two grains at 1847 and 1893 Ma (Palaeproterozoic) define the complete population (Fig. 7a–d). The youngest zircon age is 358 Ma (Fig. 7a–d), which represents the Devonian–Carboniferous boundary (358.9 ± 0.4 Ma, Ogg et al. 2016). Although this age was obtained from a single zircon grain, it is strongly consistent with palaeontological data.

Discussion

Provenance analysis and basin implications of the detrital zircon age data

Provenance analysis suggests that the main source of the Cerro Tres Cóndores Formation was mainly the Sierras Pampeanas and locally northern Precordillera basements, located to the east and north of the study area. The composition of the clasts in different conglomeratic facies shows a high proportion of Lower–Middle Paleozoic rocks exposed near the study region (e.g. Collo et al. 2008).

The detrital zircon age spectra of the bottom section of the Cerro Tres Cóndores Formation (Fig. 7d) suggests a clear input from the Proterozoic to Lower Paleozoic basement of the Sierras Pampeanas, mostly exposed to the east. Mesoproterozoic and Neoproterozoic ages are recognized in the ‘Pampean’ basement exposed in the Sierras de Córdoba, Sierra Brava and Sierra de Ancasti (Rapela...
et al. 2016, 2007). Nevertheless, Mesoproterozoic ages ranging from c. 1.0 to 1.4 Ga similar to those reported in Figure 7d were recognized in the western Sierras Pampeanas (Sierra de Maz, see Rapela et al. 2016 and references therein), to the SE of the study region. Similar Mesoproterozoic age ranges, together with Neoproterozoic ages (peak in 620 Ma), as shown in Figure 7d, were reported in the southeastern basement of the Sierra de Pie de Palo (SE of the Sierra de Las Minitas), known as Difunta Correa Metasedimentary Sequence (Rapela et al. 2016). The age peak at 480 Ma is typical of the Ordovician igneous rocks exposed at Sierras Pampeanas and the Famatina area, supporting an eastward provenance (e.g. Dahlquist et al. 2013 and references therein). Ages around 430 Ma have also been recognized in the Sierras Pampeanas (e.g. Casquet et al. 2005).

It is important to note the lack of zircon ages in the ranges of 2.02–2.26 Ga (Río de La Plata Craton, Rapela et al. 2007), 540–515 Ma (Pampean magmatism, Iannizzotto et al. 2013; Von Gosen et al. 2014 and references therein) and 379–366 Ma (middle–late Devonian batholiths of the eastern Sierras Pampeanas such as the Achala batholith, Dahlquist et al. 2013). It is also important to highlight the absence of late Tournaisian–Visean zircon ages representative of local igneous rocks. This includes the range from 348–342 Ma (ryholitic successions of the Cazadero Grande Formation exposed c.100 km to the NE, Martina et al. 2011; Coira et al. 2016), the nearby Potrerillo pluton (353 Ma, see location in Fig. 1) and the Veladero and Río Bonete stocks, with ages of 347 and 342 Ma, respectively (Dahlquist et al. 2018a,b).

Most of these ages are probable sources exposed in pericratonic areas in the easternmost Sierras Pampeanas, suggesting distance control or, in the case of the potential lower Carboniferous source, no exhumation or detrital damming.

Detrital zircon ages of the Cerro Tres Cóndores Formation are roughly similar to those reported for the over lain Punta del Agua Formation (Báez et al. 2014) and the Huasco metamorphic complex (Álvarez et al. 2011). The most significant difference is that these units show ages of 337 Ma and 342 Ma respectively, indicating a Visean maximum depositional age for these formations. Recently, Dahlquist et al. (2018a) described ages from metasedimentary and igneous rocks from the Cerro Veladero area (40 km to the south of Sierra de Las Minitas), reporting detrital zircon age patterns ranging from 342 ± 2 to 347 ± 4 Ma. This age range is similar to the volcanioclastic Cazadero Grande Formation (342–348 Ma, Coira et al. 2016), located 100 km to the north. In turn, Gallastegui Suárez et al. (2014) reported an age of 348 ± 2 Ma for a granitic clast (retro-arc A-type granitic rocks, cf. Dahlquist et al. 2013) included in the lower Carboniferous Del Ratón Formation in the Precordillera of Argentina, 150 km to the SW of the study region. This igneous clast might have originated from the Sierras Pampeanas, or from small Carboniferous bodies exposed in the Cordillera to the SW of the study area.

The early Carboniferous ages absent from the Cerro Tres Cóndores Formation therefore suggest that this unit is older than the Visean volcanism of the Punta del Agua and Cazadero Grande formations, and also precedes the Del Ratón and the Huasco formations. Notably, detrital zircon age patterns from the Punta del
What driving mechanisms controlled the evolution of the Mississippian sequence?

The palaeontological and geochronological data analysed herein indicate that the c. 1400 m-thick studied section was deposited between the middle to late Tournaisian (c. 5 My). The 15 stratigraphic sequences described above can be grouped into three sequential models (Fig. 8):

(1) Non-glacial TST–HST sequences. This model is represented by S7 to S13 (Fig. 8a and Supplementary Material 1). The vertical arrangement starts with fine deposits at the base, overlying a flooding surface, which are the product of rapid subsidence and consequent transgression (TST). These relatively deep-water deposits characterize the underfilled phase in the evolution of the basin. Then the succession begins to prograde basinward, developing upwards to shallow-water and coastal systems (filled phase), which could grade to fluvial facies atop (overfilled phase) (HST). The general change from underfilled to overfilled conditions is attributed to a shift in the balance between the processes that generate basin accommodation and the ability of sedimentary systems to fill the available space. The TST includes retrogradational facies that accumulated during a tectonically driven pulse of subsidence and flooding. The HST forms the bulk of the sequence, and includes the progradational coarsening-upward succession that overlies the maximum flooding surface. Due to the asymmetrical shape of the base-level (accommodation) curve, with fast rise (pulse of tectonic subsidence) followed by prolonged stillstand (tectonic quiescence), the LST tends to be poorly developed or absent. This marks a significant difference between extensional settings and tectonically stable basins such as those represented by continental shelves in passive margin settings (Martins-Neto and Catuneau 2010). However, the absence of indicators of local ice does not necessarily mean that a relative sea-level change, unconnected of glacial processes; could be related to initiation and growth of ice sheets remotely. Thus, it cannot be ruled out that glacio-eustasy could have played a complementary role in the generation of accommodation space (cf. Zecchin et al. 2010).

The tectonically controlled stratigraphic framework of depositional sequences in extensional settings, bounded by flooding surfaces and arranged internally in several dominantly coarsening-upward successions, characterizes the architecture of sequences that develop at different hierarchical levels (Catuneau et al. 2009; Dalrymple et al. 2012). Higher-frequency sequences (less than 10 m) can be recognized, where smaller-scale sequences display the same coarsening-upward character. Such higher-frequency sequences could be attributed to smaller-scale tectonic pulses of fault reactivation that occur between the major tectonic events, during a time of long-term tectonic quiescence. A renewed subsidence pulse leads to drowning the previous deposits and starts a new depositional sequence (Catuneau et al. 2009; Martins-Neto and Catuneau 2010). It cannot be ruled out that these higher-frequency sequences could be related to increases in sediment supplies associated with climatic variations. The lack of chronostatigraphic precision in these intervals goes against better definition.

(2) Glacial-influenced sequences. Variations from the typical TST–HST sequence can occur due to local and global factors. The overprint of climate-driven sea-level fluctuations is critical. In temperate glacial environments, the maximum glacial advance is reflected as forced regressions followed by an LST stage (Fielding 2018). This sequential model represents S2, S3 and S6 (Fig. 8b and Supplementary Material 1). These sequences start with a basal erosive boundary defined by an increase in coarse-grained and gravelly lithologies. These deposits could be interpreted as an LST associated with a glacial maximum. They are proximal to distal glacial diamictites, sometimes interbedded with conglomerates and sandstones. A fining-upward sequence, formed of sandy levels to muddy beds with dropstones, laps onto the previous tract. This could be interpreted as a TST associated with a glacial retreat during a progressive relative sea-level rise. Overlying this, bioturbated siltstones with marine invertebrate fossils are common. Generally, no oversized clasts are observed in this level, which is interpreted as a MFZ with no glacial indicators (ice minimum). A coarsening-upward trend is indicated by a transition to a sandstone-dominated interval with current and wave-generated sedimentary structures. During glacial retreat, the systems prograde due to high sediment flux with deltaic sedimentation, exceeding the creation rates of accommodation spaces. This results in the formation of a HST. This section is truncated by the following sequence boundary.

In this model, each sequence represents relative sea-level changes associated with the advance-retract events of glaciers, with the influence of ice activity. These sequences coincide with the idealized glacial sequence model proposed by Fielding (2018). It is important to note that this model explains the intermittent glacial records in an extensional basins context, in which sea-level fluctuations result from the combination of autogenic, palaeo-climatic and tectonic activity. However, unlike Fielding (2018), our model includes lower fining-upward and upper coarsening-upward sets quite similar to that described for sequences that represent a progressive removal of ice and a consequent glacio-isostatic effect (Dietrich et al. 2018). This suggests that the sequences described here might be at least partially a consequence of a relative sea-level fall, related to the glacial-driven isostasy rather than a glacial-driven palaeo-eustatic fall associated with an ice sheet growth, or a highstand progradation during an interglacial episode. After an event of glacial unloading, the Earth deforms viscously on timescales of 10^3–10^5 yr as the mantle flows back into the depressed region (Conrad 2013). This triggers uplift in the region near the former ice sheet, causing (at least locally) a relative drop in sea-level (Farrell and Clark 1976; Clark and Pramud 1987; Davis and Mitrovica, 1996). On timescales of 10^6 yr, and longer, sea-level changes are mainly controlled by plate tectonics and mantle dynamics (Harrison 1990; Miller et al. 2005).

In S1, S4 and S5 there are no records of a basal LST (see Supplementary Material 1). These TST–HST sequences contained dropstones and occasional thin conglomerates with striated clasts in a delta-front landslide, suggesting ice rafting and reworking of glacial deposits. This indicates an interaction of stages in which the accommodation space progressively diminished, with the sporadic
glacial record suggesting an ice-distal position. These shallow-marine transgressive–regressive cycles with the presence of glacial features could be linked to glacio-eustatic changes (cf. Zecchin et al. 2010).

(3) Non-glacial forced regression sequence. Another model of sequence stratigraphic architecture is defined by S14, which represents a relative sea-level fall associated with a forced
regression (falling stage systems tract, FSST, cf. Catuneanu 2017, Fig. 8c and Supplementary Material 1). It refers to a stratal stacking pattern defined as a downstepping of the shoreline. The absence of glacial evidence suggests that this fall in relative sea-level is not associated with a local glacial stage. In S14, forced regression accompanied by the formation of a basal subaerial unconformity imply that previous marine deposits were subject to erosion or sediment bypass. The normal regression that follows this forced regression is designated as a lowstand normal regression (LST) in response to the increase in accommodation rates followed by a relative sea-level rise (TST). The normal regression that follows the TST is designated as a highstand normal regression (HST), where the rates of accommodation decrease following the MFZ at the end of transgression.

The development of very proximal conglomerates with large boulders, as well as the provenance of the Cerro Tres Cóndores Formation (clast conglomerate composition, palaeocurrents and detrital zircon ages), suggest exhumation and relief formation to the east since c. 350 Ma. We disregard a local glacio-isostatic adjustment to explain this regional uplift, since this unit is deposited 500 m (and six sequences) above the last glacial record (see Supplementary Materials 1) and is not consistent with the response time of this post-glacial rebound, which has a duration on timescales of hundreds to thousands of years (cf. Milne and Mitrovica 2008; Dietrich et al. 2018). Glacial isostatic adjustment would have been over long before Sequence 14 was deposited (10^5 to 10^6 Ma later). It is important to remember that the next glacial event in this region occurred c. 12 myr later (Limarino et al. 2014; Milana and Di Pasquo 2019, Figure 9), thereby ruling out a glacio-isostatic origin. However, an important drop in sea-level in northern Gondwana at the Tournaisian–Visean boundary is considered to record the development of an ice cap and to herald a change to the Carboniferous climate with glaciations (Lees 1997; Bábe et al. 2013; Poty 2016). Nevertheless, the lack of temporal accuracy of the FSST at the base of the Cerro Tres Cóndores Formation (late Tournaisian to early Visean) does not allow us to establish with exactitude this global sea-level fall as the main cause of the generation of this surface. On the other hand, according to the regional setting, an alternative is related to an isostatic rebound by crustal/lithospheric thinning, as suggested by palaeotopographic analysis and mafic rock geochemistry (cf. Martina et al. 2011; Dávila et al. 2017).

Glacial extent during the middle Tournaisian

It is widely acknowledged that the LPIA began at the end of the Famennian and lasted until the middle Permian (Isaacson et al. 2008; Caputo et al. 2008; McGhee 2018; Montañez and Poulsen 2013). However, little is known about the temporal and geographic extent of ice centres during most of the Mississippian (Caputo et al. 2008; Lakin et al. 2016). Although the Tournaisian has usually been regarded as an interval where cold climates prevailed (Rygel et al. 2008), there is ambiguous evidence for the presence of ice centres (Saltzman 2002; Frank et al. 2008; Lakin et al. 2016).

Ice-distal isotopic and stratigraphic data suggest the presence of ice centres in Gondwana. Tropical brachiopod calcite δ18O values indicate a short but important cooling event in the middle Tournaisian, with tropical sea temperature lower than the last glacial maximum (Giles 2012). Conodont apatite δ18O values also

Fig. 9. Summarized overview of confirmed and putative Tournaisian diamictes in Gondwana and their stratigraphic context. Modified from Lakin et al. (2016) based on Evans (2005); Pazos (2007); Perez Loinaze et al. (2010); Báez et al. (2014) and Milana and Di Pasquo (2019).
point to a climatic cooling comparable to the transition to the last glacial maximum (Buggisch et al. 2008). Moreover, a short, global mid-Touraisian 813C excursion occurring at the same time also underscores glaciation across Gondwana (Saltzman 2003, 2002; Buggisch et al. 2008; Yao et al. 2015). The bulk of these data agree with stratigraphic information that suggests glacial eustasy close to the Kinderhookian–Osagean boundary (Matchen and Kammer 2006; Kammer and Matchen 2008; Wallace and Elrick 2014).

Although the Touraisian regularly experienced eustatic changes (20–25 m), such fluctuations cannot be unquestionably regarded as evidence for glacial eustasy (Rygel et al. 2008). However, high-frequency stratigraphic cycles coupled to shifts in conodont apatite δ18O in the latest Kinderhookian do attest to sea-level changes of c. 40 m, which were most probably caused by the waxing and waning of glaciers (Wallace and Elrick 2014). In addition, an extensive unconformity at the Kinderhookian–Osagean boundary across North America, recording a c. 60 m sea-level drop, further supports the growth of ice centres in the Southern Hemisphere (Matchen and Kammer 2006; Kammer and Matchen 2008). These eustatic fluctuations suggest ice volumes ranging from 15×10⁶ km³ to 28×10⁶ km³ and a minimum glaciated area of 6.5×10⁶ km² (following Crowley and Baum 1991; Isbell et al. 2003).

Such expected ice volume and glaciated areas based on records from North America contrast with the scarce record of mid-Touraisian glacial sedimentary deposits in Gondwana (Caputo et al. 2008; Playford et al. 2012; Lakin et al. 2016). Positively identified mid-Touraisian diamictic sequences in South America are currently limited to the subsurface of northern Brazil (Caputo et al. 2008; Playford et al. 2012). Although both Caputo et al. (2008) and Playford et al. (2012) indicated that these diamictic intervals extend throughout the Solimões, Amazon, and Parnaiba basins (Fig. 9), Lakin et al. (2016) pointed out that only Parnaiba diamictites have been described and biostratigraphically constrained. Glacial records in the Valle Chico Formation from Tepuel Genoa Basin in Patagonia recently assigned to the Touraisian (Taboada et al. 2019), and dropstones and glacially influenced soft-sediment deformation in the mid-Touraisian Waaipoort Formation of South Africa (Streel and Theron 1999; Evans 2005, 1999; Lakin et al. 2016) indicate further glaciogenic deposits elsewhere in Gondwana.

The record of glacial diamictites in the Agua de Luchò Formation increases the number of positively identified glacial records and extents the glaciated area in Gondwana. However, it is difficult to consider that these three regions were related to a single ice sheet, since the Argentinian glacial records were c. 3500 km away from the Brazilian, and c. 2500 km from those in South Africa (Fig. 10), and a single ice sheet would imply a much larger glaciated area than expected based on glacial eustasy (Rygel et al. 2008). It is more probable that at least a few glacial caps were present during this glacial interval. Despite being a distance apart, all three glaciated regions occurred at a minimum of 60° S palaeolatitude (Van Hinsbergen et al. 2015). This could suggest that ice caps were restricted to high latitude regions, in contrast to later Pennsylvanian–Permian ice caps which were usually located away from the South Pole (Montañez and Poulsen 2013).

The hierarchical structure of Mississippian climatic variability in western Argentina

In the last ten years, the LPIA has been interpreted as numerous ice centres of variable size that waxed and waned diachronically across Gondwana (e.g. Montañez and Poulsen 2013), causing a complex temporal dynamic characterized by the development of asynchronous glacial intervals (1–8 myr long) separated by non-glacial intervals (Fielding et al. 2008a, 2008b). Further shorter climatic fluctuations are present within glacial intervals, indicating short-term advances and retreats of local glaciers and generating a stratigraphic pattern termed nested cyclicity by Birgenheier et al. (2009).

For the Mississippian of South America, Caputo et al. (2008) put forward a framework with two distinct glacial intervals, one in the middle Touraisian and the other in the middle Visean. A mid-Visean glaciation has already been confirmed in western Argentina after diamictic layers from the top of the Corteaderas Formation were biostratigraphically constrained (Perez Loinaze 2007; Perez Loinaze et al. 2010), and glacial deposits from the Punta del Agua Formation (Báez et al. 2014) have been radiometrically dated at 335.9 ± 0.6 Ma (Gulbranson et al. 2010). However, this glaciation has been related to the classical late Serpukhovian–early Bashkirian glacial event recorded across the basin (López Gamundi and Martínez 2000; Henry et al. 2008; Dykstra et al. 2006) as a single protracted glacial episode lasting >10 myr and punctuated by an interglacial event (Limarino et al. 2014).

The glacial record in S1 to S6 in the Agua de Luchò Formation underscores the development of at least one other glacial event in western Argentina. This glacial event can probably be recognized in other localities, since putative Touraisian diamictites have previously been described by Pazos (2007) in the Malimán Formation. The lack of evidence of ice activity in sequences 7–15 suggests the demise of glacial conditions. The presence of occasionally striated and faceted clasts in the conglomerate sequences of Cerro Tres Cóndores Formation (S14 and S15) suggests that they could be the result of reworked glacial deposits. Similarly, at the base of the Del Ratón Formation (late Touraisian–early Visean), Milana and di Pasquo (2019) observed striated clasts which they interpreted as being inherited from a previous glacial cycle which is not preserved in this Formation.

It could be argued that a single, protracted glacial stage developed in western Argentina, starting at the Touraisian and lasting until the Bashkirian, with records of several internal interglacial episodes. However, given the temporal scale involved in such climatic

Fig. 10. Palaeogeographic map for the studied interval (c. 350 Ma) showing the location of glaciated regions during the middle Touraisian across Gondwana. (A) Agua de Luchò Formation (Rio Blanco Basin, Argentina), (B) Poti Formation (Parnaiba Basin, Brazil) and (C) Waaipoort Formation, Witteberg Group (Karoo Basin, South Africa). Modified from the plate motion model of Torsvik et al. (2012).
cyclivity (>20 myr), it is more reasonable to interpret an alternation of glacial-non-glacial intervals, similar to those developed during the Pennsylvanian–Permian of eastern Australia (Fielding et al. 2008a, 2008b).

Following this model, our data suggest the development of two glacial intervals in the Mississippian (middle Tourmaisian and middle Visean, Fig. 9), in addition to the well-known late Serpukhovian–early Bashkirian. Each of these are separated by stratigraphic intervals that lack proximal ice evidence, interpreted as non-glacial intervals. This result implies the recognition, in western Argentina, of the Mississippian glacial events described by Caputo et al. (2008) in northern Brazil.

Previous descriptions of the mid-Tourmaisian glacial records did not focus on internal variability, related to the waxing and waning of glaciers (Caputo et al. 2008; Playford et al. 2012). Sequence stratigraphic analyses have also failed to recognize internal cyclicity within these deposits (Lobato and Borghi 2014). Consequently, the idea of a single advance and retreat of glaciers was implicit for this interval. However, the sequence stratigraphic analysis of the Agua de Luchi Formation showed the presence of several glaciomarine cycles responding to the local advance and retreat of glaciers. Such stratigraphic cyclicity indicates several episodes of glacial maxima and minima within a single myr-scale glacial interval. This suggests that a complex hierarchy of climatic variability occurred during the Tourmaisian of western Argentina, from myr glacial to non-glacial cycles to sub-my cycles. This indicates that the nested cyclicity pattern suggested for glacial records from other regions of Gondwana (Fielding et al. 2008a, 2008b; Birgenheier et al. 2009) could be extended temporally and geographically to the early stages of the LPIA and to the western margin of Gondwana.

Conclusions

The c. 1400 m-thick succession of the Angualasto Group in the Río Blanco Basin, Argentina, is one of the best stratigraphic records of the Tourmaisian in southwestern Gondwana, and reflects the regional palaeoclimatic evolution during this period of the LPIA.

In southern Sierra de Las Minitas, studied here for the first time, two detailed stratigraphic sections were carried out, including the basal glaciomarine Agua de Luchu Formation and the basal deposits of the overlying fan-deltaic Cerro Tres Cóndores Formation.

Sixteen siliciclastic lithofacies are recognized, ranging from diamictites, conglomerates, texturally mature sandstones, mixed sandstones and mudstones with dispersed gravel, through to bioturbated and fossiliferous mudstones and associated lithologies. Seven facies associations are interpreted, recording a variety of marine, glaciomarine and at times fan-deltaic environments. Lithofacies are arranged in depositional sequences that record relative sea-level variations associated to tectonism and glacial advance–retreat cycles. Three types of depositional sequences are recognized, and although the trend is not monotonics, these are interpreted as recording extensional settings with varying degrees of glacial influence at the base of the section, to no glacial influence at the top. Clast conglomerate composition, palaeocurrent measurements and detrital zircon age spectra suggest a source area in the Sierras Pampeanas basement, indicating relief formation and sediment supply from the east. Palaeontological and geochronological data indicate that the c. 1400 m-thick studied section was deposited from the middle to late Tourmaisian.

Glacial sequences in the basal half of the Agua de Luchu Formation highlight the development of at least one other Mississippian (Tourmaisian) glacial event located in western Argentina. It could be argued that it was part of a single protracted glacial stage (Tourmaisian to Bashkirian), with records of internal interglacial episodes. However, given the temporal climatic cyclicity involved (>10 myr), we suggest that it is an alternation of glacial to non-glacial intervals, similar to those developed during the Pennsylvanian–Permian of eastern Australia (Fielding et al. 2008a, 2008b). Current data for this region of Gondwana support the development of three glacial intervals, namely a middle Tourmaisian, a middle Visean and a late Serpukhovian–Bashkirian. Each of these glacial episodes is limited by stratigraphic intervals that lack any evidence of proximal ice. This result implies the recognition, in western Argentina, of the Mississippian glacial events described by Caputo et al. (2008) for northern Brazil.

Previous descriptions of mid-Tourmaisian glacial records in other regions of Gondwana did not recognize internal cyclicity within these deposits (Caputo et al. 2008; Playford et al. 2012; Lobato and Borghi 2014), suggesting a single episode of ice advance and retreat for this glacial period. However, our sequence stratigraphic analysis shows a complex hierarchical climatic variability with local advance and retreat of ice within a single myr scale, to sub-my cycles. This indicates that the nested cyclicity pattern suggested for glacial records from other regions of Gondwana (Fielding et al. 2008a, 2008b; Birgenheier et al. 2009) could be extended temporally and geographically to the early stages of the LPIA and to the western margin of this supercontinent.

The shallowing-upward succession at the top of this section suggests the exhumation of local relief and development of local relief to the east from 350 Ma, and two alternatives could be considered as the trigger: the first is related to a global sea-level fall associated with the development of an ice cap in northern Gondwana at the Tourmaisian–Visean boundary (Lees 1997; Bábek et al. 2013; Poty 2016); and the second is an isostatic rebound by lithospheric/crustal thinning in line with geological evidence and models reported or proposed for this region of Gondwana (Dávila et al. 2016; Martina et al. 2018).

The provenance analysis of the Cerro Tres Cóndores Formation suggests that Protoprecordillera would not have been a relevant source at this time, at least in this region. On the contrary, it would have constituted a bypass zone for sediments coming from the east. This is contrary to the hypothesis that the Agua de Luchu and Cerro Tres Cóndores formations represent synorogenic deposits as a result of the uplifting of the Protoprecordillera (Limarino et al. 2017).

Acknowledgements D. Murua, D. Muñoz, E. Sferco, M. Salas, F. Degrange, H. Canelo and F. Merio kindly collaborated with the authors during field work. Lodging during field days was provided by the building company Benito Roggio S.A. This study was possible thanks to financial support from CONICET and ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) through FONCyT PICT-2015-3146, Secyt-UNLaR 2015-10732 and 2015-0422 granted to Miguel Ezpeleta; Secyt-UNLAR 2017-6993 granted to Juan José Rústán and Emiliano Vaccari; FONCyT PICT 2016 0843, PIPO178 CONICET and P-UE N° 22920160100016 granted to CICTERRA; and an internship for J.A. Dahlquist in the Geosciences Institute of the Sao Paulo University supported by grant FAPESP 2018/06837-3.

Author contributions ME: conceptualization (lead), formal analysis (lead), investigation (lead), writing – original draft (lead), writing – review & editing (lead); JJR: funding acquisition (lead), investigation (equal), resources (lead), writing – original draft (equal); DB: conceptualization (equal), formal analysis (equal), investigation (equal), supervision (equal), writing – original draft (equal); FMD: conceptualization (lead), writing – review & editing (lead); NEV: conceptualization (equal), formal analysis (lead), funding acquisition (equal); JAD: data curation (lead), investigation (equal); AS: data curation (equal), investigation (equal); GC: data curation (equal), investigation (equal); CP: data curation (equal), investigation (equal); MB: data curation (equal)

Funding This work was funded by the Fondo para la Investigación Científica y Tecnológica (2015/3146), Secretaría de Ciencia y Tecnica, Universidad Nacional de La Rioja (2015-10732), Secretaría de Ciencia y Tecnica, Universidad Nacional de La Rioja (2015-0422), Secretaría de Ciencia y Tecnica, Universidad Nacional de La Rioja (2017-6993), Fondo para la Investigación Científica y
Glaciomarine sequences. Tournaisian palaeoclimate.
Patagonia, Argentina: paleontology, biostratigraphy and correlations. *Andean Geology*, 46, 629–669. https://doi.org/10.5027/andgeoV46n3-3143

Torsvik, T.H., Van der Voo, R. et al. 2012. Phanerozoic polar wander, palaeogeography and dynamics. *Earth-Science Reviews*, 114, 325–368. https://doi.org/10.1016/j.earscirev.2012.06.007

Vaccari, N.E., Rustán, J.J., Sterren, A.F., Cisterna, G.A., Ezpeleta, M. and Balseiro, D. 2013. Primer registro de Pudoproetus (Trilobita) en el Tournasiano de la Formación Agua de Lucho, La Rioja, Argentina: significado bioestratigráfico. *Ameghiniana*, 50 (S), R74.

Van Hinsbergen, D.J.J., De Groot, L.V. et al. 2015. A paleolatitude calculator for palaeoclimate studies. *PLoS ONE*, 10, 1–21. https://doi.org/10.1371/journal.pone.0126946

Veevers, J.J. and Powell, C.M. 1987. Late Paleozoic glacial in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. *Geological Society of America Bulletin*, 98, 475–487, https://doi.org/10.1130/0016-7606(1987)98<475:GPRLPT>2.0.CO;2

Von Gosen, W., McClelland, W.C., Loske, W., Martinez, J.C. and Prozzi, C. 2014. Geochronology of igneous rocks in the Sierra Norte de Córdoba (Argentina): Implications for the Pampean evolution at the western Gondwana margin. *Lithosphere*, 6, 277–300, https://doi.org/10.1130/L344.1

Wallace, Z. and Elrick, M. 2014. Early Mississippian orbital-scale glacio-eustasy detected from high-resolution oxygen isotopes of marine apatite (Conodonts). *Journal of Sedimentary Research*, 84, 816–824, https://doi.org/10.2110/jsr.2014.69

Wicander, R., Clayton, G., Marshall, J.E.A., Troth, I. and Racey, A. 2011. Was the latest Devonian glaciation a multiple event? New palynological evidence from Bolivia. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 305, 75–83. https://doi.org/10.1016/j.palaeo.2011.02.016

Yao, L., Qie, W. et al. 2015. The TICE event: Perturbation of carbon-nitrogen cycles during the mid-Tournaisian (Early Carboniferous) greenhouse-icehouse transition. *Chemical Geology*, 401, 1–14. https://doi.org/10.1016/j.chemgeo.2015.02.021

Zecchin, M., Caffau, M., Tosi, L., Civile, D., Brancolini, G., Rizzetto, F. and Roda, C. 2010. The impact of Late Quaternary glacio-eustasy and tectonics on sequence development: evidence from both uplifting and subsiding settings in Italy. *Terra Nova*, 22, 324–329. https://doi.org/10.1111/j.1365-3121.2010.00953.x