ON THE LIE-SOLVABILITY OF NOVIKOV ALGEBRAS

Kaisar Tulenbaev†, Ualbai Umirbaev‡, and Viktor Zhelyabin¶

Abstract. We prove that any Novikov algebra over a field of characteristic $\neq 2$ is Lie-solvable if and only if its commutator ideal $[N, N]$ is right nilpotent. We also construct examples of infinite-dimensional Lie-solvable Novikov algebras N with non nilpotent commutator ideal $[N, N]$.

Mathematics Subject Classification (2020): 17D25, 17B30, 17B70
Key words: Novikov algebra, Lie-solvability, nilpotency

1. Introduction

An algebra N over a field K is called a Novikov algebra if it satisfies the following identities:

1. $(x, y, z) = (y, x, z)$,
2. $(xy)z = (xz)y$,

where $(x, y, z) = (xy)z - x(yz)$ is the associator of elements x, y, z.

Recall that any algebra satisfying the identity (1) is called left-symmetric. Left-symmetric algebras are Lie-admissible, i.e., every left-symmetric algebra L becomes a Lie algebra with respect to the commutator $[x, y] = xy - yx$. This Lie algebra is denoted by $L^(-)$ and is called the commutator algebra of L.

Left-symmetric algebras arise in many areas of mathematics and physics [3]. The defining identities of Novikov algebras first appeared in the study of Hamiltonian operators in the formal calculus of variations by I.M. Gelfand and I.Ya. Dorfman [8]. These identities played a crucial role in the classification of linear Poisson brackets of hydrodynamical type by A.A. Balinskii and S.P. Novikov [1].

In 1987 E.I. Zelmanov [27] proved that any finite dimensional simple Novikov algebra over a field K of characteristic zero is one-dimensional. V.T. Filippov [6] constructed a wide class of simple Novikov algebras of characteristic $p \geq 0$. J.M. Osborn [14, 15, 16] and X. Xu [25, 26] continued the study of simple finite dimensional algebras over fields

†Department of Mathematics, Suleyman Demirel University, Almaty, 050040, Kazakhstan, e-mail: kaisar.tulenbayev@sdu.edu.kz
‡Department of Mathematics, Wayne State University, Detroit, MI 48202, USA; Department of Mathematics, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan; Institute of Mathematics of the SB of RAS, Novosibirsk, 630090, Russia; and Institute of Mathematics and Mathematical Modeling, Almaty, 050010, Kazakhstan, e-mail: umirbaev@wayne.edu
¶Institute of Mathematics of the SB of RAS, Novosibirsk, 630090, Russia, e-mail: vicnic@math.nsc.ru
of positive characteristic and simple infinite dimensional algebras over fields of characteristic zero. A complete classification of finite dimensional simple Novikov algebras over algebraically closed fields of characteristic \(p > 2 \) is given in [25].

E.I. Zelmanov also proved that if \(N \) is a finite dimensional right nilpotent Novikov algebra then \(N^2 \) is nilpotent [27]. In 2001 V.T. Filippov [7] proved that any left-nil Novikov algebra of bounded index over a field of characteristic zero is nilpotent. A.S. Dzhumadildaev and K.M. Tulenbaev [5] proved that any right-nil Novikov algebra of bounded index \(n \) is right nilpotent if the characteristic \(p \) of the field \(K \) is 0 or \(p > n \). In 2001 V.T. Filippov [7] proved that any left-nil Novikov algebra of bounded index over a field of characteristic zero is nilpotent. A.S. Dzhumadildaev and K.M. Tulenbaev [5] proved that any right-nil Novikov algebra of bounded index \(n \) is right nilpotent if the characteristic \(p \) of the field \(K \) is 0 or \(p > n \). In 2020 I. Shestakov and Z. Zhang proved [22] that for any Novikov algebra \(N \) over a field the following conditions are equivalent:

(i) \(N \) is solvable;
(ii) \(N^2 \) is nilpotent;
(iii) \(N \) is right nilpotent.

U.U. Umirbaev and V.N. Zhelyabin proved [24, 29] that any \(\mathbb{Z}_n \)-graded Novikov algebra with solvable 0-component is solvable.

It is well known [9] that if \(L \) is a finite dimensional solvable Lie algebra over a field \(K \) of characteristic zero then \([L, L]\) is nilpotent. In 1973 Yu.P. Razmyslov proved [19] that over a field \(K \) of characteristic zero \([L, L]\) is nilpotent for any algebra \(L \) from any proper subvariety of the variety of algebras generated by the simple three dimensional Lie algebra \(\text{sl}_2(K) \). There was a long standing conjecture about solvable algebras of the variety of algebras generated by the Witt algebra \(W_1 \).

Conjecture 1. If \(L \) is a solvable algebra of the variety of algebras generated by the Witt algebra \(W_1 \), then is it true that \([L, L]\) is nilpotent?

This conjecture was proven to be not true by A. Mishchenko [13] in 1988.

The variety of Lie algebras generated by the Witt algebra \(W_1 \) is closely related to the variety of Novikov algebras. Let \(K[x] \) be the algebra of all polynomials in one variable \(x \) over a field \(K \). Consider \(K[x] \) as a differential algebra with derivation \(\partial = \frac{\partial}{\partial x} \). Then \(K[x] \) is a simple differential algebra over a field of characteristic zero. With respect to the product

\[f \circ g = fg' \]

the vector space \(K[x] \) becomes a Novikov algebra. We denote this algebra by \(L_1 \). The construction described above is called the Gelfand-Dorfman construction for Novikov algebras. Recently, L.A. Bokut, Y. Chen, and Z. Zhang [2] proved that any Novikov algebra over a field of characteristic zero is a subalgebra of a Novikov algebra obtained from some differential algebra by the Gelfand-Dorfman construction.

Notice that \(K[x] \) becomes a Lie algebra with respect to the product

\[[f, g] = fg' - gf'. \]

This algebra is a well known Witt algebra \(W_1 \). This construction of Lie algebras is also studied by many specialists [17, 18, 20]. In this case the differential enveloping algebra of a Lie algebra is called the Wronskian enveloping algebra [18]. Although there are many interesting results, the class of Lie algebras embeddable into their Wronskian enveloping algebras is not described yet.
Conjecture 2. A Lie algebra over a field of characteristic zero is embeddable into its Wronskian enveloping algebra if and only if it belongs to the variety of algebras generated by the Witt algebra W_1.

Notice that the commutator algebra of L_1 is the Witt algebra W_1. For this reason we call L_1 the Novikov-Witt algebra [10]. This is the first algebra in the list of left-symmetric Witt algebras L_n [23]. The variety of Novikov algebras is generated by the Novikov-Witt algebra L_1 in characteristic zero [12]. The identities of the Witt algebras W_n are studied mainly by Yu.P. Razmyslov [21] and the identities of the left-symmetric Witt algebras L_n are studied in [11].

We say that a Novikov algebra N is Lie-solvable if the Lie algebra $N^{(-)}$ is solvable. It is known that every finite dimensional Novikov algebra over a field is Lie-solvable [4]. Recently Z. Zhang and T.G. Nam [31] proved that if a Novikov algebra is Lie-nilpotent then its ideal generated by all commutators $[a, b]$ is nilpotent.

This paper is devoted to the study of Lie-solvable Novikov algebras. We noticed that the space of commutators $[N, N]$ of a Novikov algebra N is an ideal of N over a field of characteristic $\neq 2$. We prove that a Novikov algebra N over a field of characteristic $\neq 2$ is Lie-solvable if and only if $[N, N]$ is right nilpotent. Using Mishchenko’s example [13], we constructed examples of Lie-solvable Novikov algebras with non nilpotent $[N, N]$.

The right nilpotency of $[N, N]$ for Lie-solvable Novikov algebras means that Conjecture 1 was not baseless. This property just cannot be expressed in the language of Lie algebras. Notice that if $[N, N]$ is right nilpotent then $[N, N][N, N]$ is nilpotent by the above mentioned result of I. Shestakov and Z. Zhang [22]. This fact suggests us to formulate the following weaker version of Conjecture 1.

Conjecture 3. If L is a solvable algebra of the variety of algebras generated by the Witt algebra W_1, then is it true that $[[L, L], [L, L]]$ is nilpotent?

The paper is organized as follows. In Section 2 we give some identities, construction of ideals, and recall some definitions. Sections 3 is devoted to the proof of the main result on the right nilpotency of $[N, N]$. Examples of Novikov algebras N with non nilpotent $[N, N]$ are given in Section 4.

2. Identities, ideals, and some definitions

As we mentioned above, any left-symmetric algebra is Lie-admissible, i.e., satisfies the Jacobi identity

$$[[x, y], z] + [[y, z], x] + [[z, x], y] = 0.$$ (3)

Moreover, in the class of Novikov algebras this identity splits into the identities

$$[x, y]z + [y, z]x + [z, x]y = 0$$ (4)

and

$$x[y, z] + y[z, x] + z[x, y] = 0.$$ (5)

Indeed,

$$[x, y]z + [y, z]x + [z, x]y = (xy)z - (yx)z + (yz)x - (zy)x + (zx)y - (xz)y = 0.$$
by (2). This proves (4). Using (3) and (4) we also get (5).

It is useful to write the identity (2) in the form
\[x[y, z] = (x, z, y) - (x, y, z). \]

Any nonassociative algebra satisfies (see [30]) the identity
\[[xy, z] - x[y, z] - [x, z]y = (x, y, z) - (x, z, y) + (z, x, y). \]
Using this and (6) we get
\[(z, x, y) = [xy, z] - [x, z]y. \]

The identities (11) and (2) easily imply that
\[(xy, z, t) = (x, z, t)y \]
and, consequently,
\[(x, yz, t) = (x, y, t)z. \]

Recall that any nonassociative algebra also satisfies (see [30]) the identity
\[(x, y, zt) = (x, yz, t) - (x, z, t)y + x(y, z, t) + (x, y, z)t, \]
Then (8), (9), and (10) give that
\[(x, yz, t) = (x, y, t)z - (x, z, t)y + x(y, z, t) + (x, y, z)t. \]

It is well known that if \(I \) and \(J \) are ideals of a Novikov algebra \(N \), then \(IJ \) is an ideal of \(N \).

Lemma 1. [28] In any Novikov algebra \(N \) the space of associators \((N, N, N) \) is an ideal of \(N \).

Proof. The space \((N, N, N) \) is a right ideal by (8) or (9). Applying (10) or (11), we get that \((N, N, N) \) is also a left ideal. \(\square \)

Lemma 2. Any Novikov algebra over a field of characteristic \(\neq 2 \) satisfies the identities
\[(a, b, x) = \frac{1}{2}([ax, b] - [a, bx]), \]
\[[a, b]x = \frac{1}{2}([ax, b] + [a, bx]), \]
and
\[x[a, b] = [[x, a], b] + [a, [x, b]] + \frac{1}{2}([ax, b] + [a, bx]). \]

Proof. Applying once the identity (2), we get
\[(a, b, x) = (ab)x - a(bx) = (ab)x - [a, bx] - (bx)a \]
\[= (ab)x - [a, bx] - (ba)x = [a, b]x - [a, bx]. \]

Consequently,
\[(b, a, x) = [b, a]x - [b, ax]. \]
By (1), we get
\[2(a, b, x) = [a, b]x - [a, bx] + [b, a]x - [b, ax] \]
and
\[[a, b]x - [a, bx] = [b, a]x - [b, ax]. \]
Consequently,
\[2(a, b, x) = [ax, b] - [a, bx] \]
and
\[2[a, b]x = [ax, b] + [a, bx], \]
which imply (12) and (13), respectively.

Using (3) and (13), we get
\[x[a, b] = \frac{1}{2}([ax, b] + [a, bx]) + [a, b]x = [[a, x], b] + [a, [x, b]] + \frac{1}{2}([ax, b] + [a, bx]), \]
i.e., (14) holds. \(\square\)

Corollary 1. Let \(N \) be a Novikov algebra over a field of characteristic \(\neq 2 \). Then the following statements are true:

(i) If \(I \) and \(J \) are right ideals of \(N \) then \([I, J]\) is a right ideal of \(N\);

(ii) If \(I \) and \(J \) are ideals of \(N \) then \([I, J]\) is an ideal of \(N\).

At the end of this section we recall the definitions of solvable, nilpotent, and right nilpotent algebras.

Let \(A \) be an arbitrary algebra. The powers of \(A \) are defined inductively by \(A^1 = A \) and
\[A^m = \sum_{i=1}^{m-1} A^i A^{m-i} \]
for all positive integers \(m \geq 2 \). The algebra \(A \) is called *nilpotent* if \(A^m = 0 \) for some positive integer \(m \).

The right powers of \(A \) are defined inductively by \(A^{[1]} = A \) and \(A^{[m+1]} = A^{[m]} A \) for all integers \(m \geq 1 \). The algebra \(A \) is called *right nilpotent* if there exists a positive integer \(m \) such that \(A^{[m]} = 0 \). In general, the right nilpotency of an algebra does not imply its nilpotency. This is also true in the case of Novikov algebras.

Example 1. [27] Let \(N = Fa + Fb \) be a vector space of dimension 2. The product on \(N \) is defined as
\[ab = b, a^2 = b^2 = ba = 0. \]
It is easy to check that \(N \) is a right nilpotent Novikov algebra, but not nilpotent.

The derived powers of \(A \) are defined by \(A^{(0)} = A, A^{(1)} = A^2 \), and \(A^{(m)} = A^{(m-1)} A^{(m-1)} \) for all positive integers \(m \geq 2 \). The algebra \(A \) is called *solvable* if \(A^{(m)} = 0 \) for some positive integer \(m \). Every right nilpotent algebra is solvable, and, in general, the converse is not true. But every solvable Novikov algebra is right nilpotent [22].

A Novikov algebra \(N \) is called *Lie-solvable* if the Lie algebra \(N^{(-)} \) is solvable.
3. Lie-solvable Novikov algebras

A Novikov algebra N is called \textit{Lie-metabelian} if it satisfies the identity

\[(x, y), [z, t] = 0.\]

In any algebra we denote by $x_1x_2\ldots x_k$ the right normed product $(\ldots(x_1x_2)\ldots)x_k$ of elements x_1, x_2, \ldots, x_k.

Lemma 3. Any Lie-metabelian Novikov algebra N over a field K of characteristic $\neq 2$ satisfies the identity

\[(x, y), [z, t], s = 0.\]

Proof. Using (15) and (13), we immediately get

\[(a, b)x, [y, z] = 0.\]

Then the identities (15) and (2) imply that

\[(x, y), [z, t], a, b = 0.\]

Corollary 2. The ideals (N, N, N) and $[N, N]$ of a Novikov algebra N over a field K of characteristic $\neq 2$ are associative and commutative and $(N, N, N) \subseteq [N, N]$.

Proof. Notice that (N, N, N) is an ideal of N by Lemma 1 and $[N, N]$ is an ideal of N by Corollary 1. The identity (12) implies that $(N, N, N) \subseteq [N, N]$. The identities (15) and (16) imply that $[N, N]$ is an associative and commutative algebra.

Lemma 4. Any Lie-metabelian Novikov algebra N over a field K of characteristic $\neq 2$ satisfies the identities

\[(x, [y, z], t)[a, b] = 0,\]

\[(x, y), [z, t], a, b = 0,\]

and

\[[x, y][z, t](a, b, c) = 0.\]

Proof. The identities (14) and (16) imply that

\[(x[a, b], [y, z], t) = 0,\]

Then, by (8),

\[(x, [y, z], t)[a, b] = (x[a, b], [y, z], t) = 0,\]

i.e., (17) holds. Using (8), (11), and (17), we get

\[(x, y)[z, t], a, b = (x, y), a, b)[z, t] = (a, [x, y], b)[z, t] = 0,\]

i.e., (18) also holds. By (10),

\[x, y][z, t](a, b, c) = ([x, y][z, t], a, bc)\]

\[- ([x, y][z, t], ab, c) + ([x, y][z, t], a, b) - ([x, y][z, t], a, b)c.\]

Using (18), from this we get (19). □
Lemma 5. Let N be a Lie-metabelian Novikov algebra over a field K of characteristic $\neq 2$. Then $(N, N, N)^3 = [N, N]^4 = 0$.

Proof. The identity (19) implies that $(N, N, N)^2(N, N, N) = 0$ since $(N, N, N) \subseteq [N, N]$ by Corollary 2. Consequently, $(N, N, N)^3 = 0$ since (N, N, N) is associative.

Notice that $N[N, N] \subseteq (N, N, N)$ by (6). Consequently, $[N, N]^2 \subseteq (N, N, N)$. Then (19) implies that $[N, N]^2 [N, N]^2 = 0$. This gives $[N, N]^4 = 0$ since $[N, N]$ is an associative algebra. \hfill \Box

Theorem 1. Let N be a Lie-solvable Novikov algebra over a field of characteristic $\neq 2$. Then the ideal $[N, N]$ is right nilpotent.

Proof. Let N be a Lie-solvable Novikov algebra with Lie-solvable index n. We prove the statement of the theorem by induction on n. By Lemma 5, this is true for $n = 2$. Suppose that $n \geq 3$. Then $[N, N]$ is a Lie-solvable Novikov algebra with Lie-solvable index $n - 1$.

By the induction hypothesis $[[N, N], [N, N]]$ is a right nilpotent ideal of N. Notice that $[N, N]^4 \subseteq [[N, N], [N, N]]$. Consequently, $[N, N]$ is a solvable ideal of N. Recall that every solvable Novikov algebra is right nilpotent [22]. Therefore $[N, N]$ is a right nilpotent ideal of N. \hfill \Box

4. Lie-solvable Novikov algebras with non-nilpotent commutator ideal

Let $K[x]$ be the polynomial algebra over a field K of characteristic zero in one variable x. Recall that the Witt algebra W_1 is the Lie algebra of all derivations of $K[x]$. Any element of W_1 can be written in the form

$$ f \partial, $$

where $f \in K[x]$ and $\partial = \frac{\partial}{\partial x}$. The vector space of W_1 with respect to the product

$$ f \partial \circ g \partial = fg' \partial $$

becomes a Novikov algebra [8]. This algebra is denoted by L_1 and is called the Novikov-Witt algebra [10]. The elements

$$ e_n = x^{n+1} \partial, n \geq -1, $$

form a linear basis of L_1 and

$$ e_i \circ e_j = (j + 1)e_{i+j} $$

for all $i, j \geq -1$. Consequently,

$$ L_1 = \bigoplus_{i \geq -1} Ke_i $$

is a graded algebra.

Set

$$ R = Ke_{-1} \oplus Ke_0. $$

Notice that R is a subalgebra of L_1. The left and right actions of elements of R on L_1 are naturally defined since R is a subalgebra of L_1. We denote an isomorphic copy of this R-bimodule L_1 by M and assume e_i corresponds to $f_i \in M$ for all i. This means that

$$ M = \bigoplus_{i \geq -1} Kf_i $$
and
\[e_i \circ f_j = (j + 1)f_{i+j}, \quad f_j \circ e_i = (i + 1)f_{j+i} \]
for all \(i = -1, 0 \) and \(j \geq -1 \).

Since \(R \) is a subalgebra of \(L_1 \) it follows that \(L_1 \) is a Novikov bimodule over \(R \), i.e., \(M \) is a Novikov \(R \)-bimodule. By definition this means that the space
\[N = R \oplus M \]
with the product
\[(r_1 + m_1)(r_2 + m_2) = r_1 \circ r_2 + r_1 \circ m_2 + m_1 \circ r_2, \]
for all \(r_1, r_2 \in R \) and \(m_1, m_2 \in M \), is a Novikov algebra. Recall that \(N \) is called the zero split extension of \(R \) by \(M \).

Proposition 1. The Novikov algebra \(N \) is Lie-solvable of index 3 over a field of characteristic zero and \([N, N]\) is not nilpotent.

Proof. Obviously,
\[[N, N] = [R, R] \oplus [R, M] \]
and \([R, R] = Ke_{-1}\). Moreover,
\[[R, M] = M \]
since
\[[e_{-1}, f_j] = (j + 1)f_{j-1} \]
for all \(j \). Consequently,
\[[N, N] = Ke_{-1} \oplus M. \]
Obviously, \([N, N]\) is not left nilpotent since \(e_{-1}M = M \). Furthermore,
\[[[N, N], [N, N]] = M \]
and, consequently, \(N \) is Lie-solvable of index 3. \(\square \)

The Lie algebra \(N^{-} \) coincides with Mishchenko’s example from [13].

Notice that \([N, N]\) is not nilpotent over fields of positive characteristic. In order to adopt this example to the case of positive characteristic, we consider another basis
\[E_i = \frac{1}{(i+1)!}x^{i+1}\partial \]
of the space of \(L_1 \). Recall that binomial coefficients are defined by
\[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]
for all integers \(n \geq k \geq 0 \). For convenience of notation we set \(\binom{n}{k} = 0 \) if \(n < k \). Then
\[E_i \circ E_j = \binom{i+j+1}{i+1} E_{i+j} \]
(20)
for all \(i, j \geq -1 \).
Denote by L the abstract algebra over a field K of arbitrary characteristic with a linear basis
\begin{equation}
E_{-1}, E_0, E_1, \ldots, E_k, \ldots
\end{equation}
and with multiplication defined by (20).

Lemma 6. The algebra L is a Novikov algebra.

Proof. Let S be the free \mathbb{Z}-module with a free basis (21). We turn S into a \mathbb{Z}-algebra by (20). If the characteristic of K is zero, then $S_K = S \otimes_{\mathbb{Z}} K$ is a free K-module with a linear basis (21) since S and K are both free \mathbb{Z}-modules. Consequently, S embeds into $S \otimes_{\mathbb{Z}} K$. Then K-algebras L, S_K, and L_1 are isomorphic by construction. Consequently, L is a Novikov algebra over K and S is a Novikov algebra over \mathbb{Z}.

Assume that the characteristic of the field K is $p > 0$. Obviously, $S_1 = S \otimes_{\mathbb{Z}} (\mathbb{Z}/p\mathbb{Z}) = S/(p\mathbb{Z})S$ is a free $\mathbb{Z}/p\mathbb{Z}$-module with a basis (21). Since S is a Novikov algebra over \mathbb{Z} it follows that S_1 is a Novikov algebra over $\mathbb{Z}/p\mathbb{Z}$. This implies that $S_K = S \otimes_{\mathbb{Z}} K = S_1 \otimes_{\mathbb{Z}/p\mathbb{Z}} K$ is a Novikov algebra over K with a linear basis (21). Obviously, $L \simeq S_K$. □

Let $R = KE_{-1} \oplus KE_0$ be the two dimensional subalgebra of L. Consider L as an R-bimodule. Denote by M an isomorphic copy of R-bimodule L and denote by F_i the images of E_i in M for all i. Then

\begin{equation}
M = \oplus_{i \geq -1} KF_i
\end{equation}

and

\begin{align*}
E_i \circ F_j &= \binom{i + j + 1}{i + 1} F_{i+j}, \\
F_j \circ E_i &= \binom{i + j + 1}{j + 1} F_{j+i}
\end{align*}

for all $i = -1, 0$ and $j \geq -1$.

Then the zero split extension

\begin{equation}
N = R \oplus M
\end{equation}

of R by M is a Novikov algebra.

Proposition 2. The Novikov algebra N is Lie-solvable of index 3 over an arbitrary field K and $[N, N]$ is not nilpotent.

Proof. Obviously, $[R, R] = KE_{-1}$ and $[R, M] = M$ since $E_{-1} \circ F_j = F_{j-1}$ for all $j \geq -1$. Consequently,

\begin{equation}
[N, N] = KE_{-1} \oplus M.
\end{equation}
Obviously, $[N, N]$ is not left nilpotent since $E_{-1}M = M$. Furthermore,

$$[[N, N], [N, N]] = M$$

and, consequently, N is Lie-solvable of index 3. □

Acknowledgments

This research is supported by the Russian Science Foundation (project 21-11-00286) and by the grants of the Ministry of Education and Science of the Republic of Kazakhstan (projects AP08855944 and AP09261086).

References

[1] I.M. Balinskii, S.P. Novikov, Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. (Russian) Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1036–1039.
[2] L.A. Bokut, Y. Chen, Z. Zhang, On free Gelfand-Dorfman-Novikov-Poisson algebras and a PBW theorem. J. Algebra 500 (2018), 153–170.
[3] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics, Cent. Eur. J. Math. 4 (2006), no. 3, 323–357.
[4] D. Burde, K. Dekimpe, Novikov structures on solvable Lie algebras. J. Geom. Phys. 56 (2006), no. 9, 1837–1855.
[5] A.S. Dzhumadil'daev, K.M. Tulenbaev, Engel theorem for Novikov algebras. Comm. Algebra 34 (2006), no. 3, 883–888.
[6] V.T. Filippov, A class of simple nonassociative algebras. (Russian) Mat. Zametki 45 (1989), no. 1, 101–105; translation in Math. Notes 45 (1989), no. 1–2, 68–.
[7] V.T. Filippov, On right-symmetric and Novikov nil algebras of bounded index. (Russian) Mat. Zametki 70 (2001), no. 2, 289–295; translation in Math. Notes 70 (2001), no. 1–2, 258–263.
[8] I.M. Gel’fand, I.Ya. Dorfman, Hamiltonian operators and algebraic structures related to them. (Russian) Funktsional. Anal. i Prilozhen 13 (1979), no. 4, 3–30.
[9] N. Jacobson, Lie algebras. Republication of the 1962 original. Dover Publications, Inc., New York, 1979. ix+331 pp.
[10] D. Kozybaev, U. Umirbaev, V. Zhelyabin, Some examples of nonassociative coalgebras and supercoalgebras. Linear Algebra Appl. (submitted)
[11] D. Kozybaev, U. Umirbaev, Identities of the left-symmetric Witt algebras. Internat. J. Algebra Comput. 26 (2016), no. 2, 435–450.
[12] L. Makar-Limanov, U. Umirbaev, The Freiheitssatz for Novikov algebras. TWMS J. Pure Appl. Math. 2 (2011), no. 2, 228–235.
[13] S.P. Mishchenko, Solvable subvarieties of a variety generated by a Witt algebra. (Russian) Mat. Sb. (N.S.) 136(178) (1988), no. 3, 413–425, 431–432; translation in Math. USSR-Sb. 64 (1989), no. 2, 415–426.
[14] J.M. Osborn, Novikov algebras. Nova J. Algebra Geom. 1 (1992), no. 1, 1–13.
[15] J.M. Osborn, Simple Novikov algebras with an idempotent. Comm. Algebra 20 (1992), no. 9, 2729–2753.
[16] J.M. Osborn, Infinite-dimensional Novikov algebras of characteristic 0. J. Algebra 167 (1994), no. 1, 146–167.
[17] G. Pogudin, Yu.P. Razmyslov, Prime Lie algebras satisfying the standard Lie identity of degree 5. J. Algebra 468 (2016), 182–192.
[18] L. Poinsot, The solution to the embedding problem of a (differential) Lie algebra into its Wronskian envelope. Comm. Algebra 46 (2018), no. 4, 1641–1667.
[19] Yu. P. Razmyslov, The existence of a finite basis for the identities of the matrix algebra of order two over a field of characteristic zero. (Russian) Algebra i Logika 12 (1973), 83–113.
[20] Yu.P. Razmyslov, Simple Lie algebras satisfying the standard Lie identity of degree 5. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 3, 592–634.

[21] Yu.P. Razmyslov, Identities of algebras and their representations. Translated from the 1989 Russian original by A. M. Shtern. Translations of Mathematical Monographs, 138. American Mathematical Society, Providence, RI, 1994. xiv+318 pp.

[22] I. Shestakov and Z. Zhang, Solvability and nilpotency of Novikov algebras. Comm. Algebra 48 (2020), no. 12, 5412–5420.

[23] U.U. Umirbaev, Associative, Lie, and left-symmetric algebras of derivations. Transform. Groups 21 (2016), no. 3, 851–869.

[24] U. Umirbaev, V. Zhelyabin, On the solvability of graded Novikov algebras. Internat. J. Algebra Comput. 31 (2021), no. 7, 1405–1418.

[25] X. Xu, On simple Novikov algebras and their irreducible modules. J. Algebra 185 (1996), no. 3, 905–934.

[26] X. Xu, Classification of simple Novikov algebras and their irreducible modules of characteristic 0. J. Algebra 246 (2001), no. 2, 673–707.

[27] E.I. Zel’manov, A class of local translation-invariant Lie algebras. Dokl. Akad. Nauk SSSR 292 (1987), no. 6, 1294–1297.

[28] V.N. Zhelyabin, Tikhov, A. S., Novikov-Poisson algebras and associative commutative derivation algebras. (Russian. Russian summary) Algebra Logika 47 (2008), no. 2, 186–202; translation in Algebra Logic 47 (2008), no. 2, 107–117.

[29] V. Zhelyabin, U. Umirbaev, On the Solvability of \mathbb{Z}_3-Graded Novikov Algebras. Symmetry 312(2) (2021), 13.

[30] K.A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Rings that are Nearly Associative. Academic Press, New York, 1982.

[31] Z. Zhang, T.G. Nam. Lie nilpotent Novikov algebras and Lie solvable Leavitt path algebras.