Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial

Kouichi Takemura

Department of Mathematics, Faculty of Science and Technology, Chuo University,
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

E-mail: takemura@math.chuo-u.ac.jp

Received 13 June 2011, in final form 15 December 2011
Published 14 February 2012
Online at stacks.iop.org/JPhysA/45/085211

Abstract
We study Heun’s differential equation in the case that one of the singularities is apparent. In particular, we propose a conjecture that solutions of Heun’s equation in this case also satisfy a generalized hypergeometric equation, which can be described in a more general form, and establish it in some cases. We demonstrate the application of our results to exceptional Jacobi polynomials.

PACS numbers: 02.30.Gp, 02.30.Hq
Mathematics Subject Classification: 34M35, 33E10, 34M55

1. Introduction

The hypergeometric differential equation

\[z(1 - z) \frac{d^2 y}{dz^2} + (\gamma - (\alpha + \beta + 1)z) \frac{dy}{dz} - \alpha \beta y = 0, \tag{1.1} \]

is one of the most important differential equations in mathematics and physics. Several properties of the hypergeometric differential equation, i.e. integral representation of solutions, explicit description of monodromy, algebraic solutions, orthogonal polynomials, etc are very well studied, and they are applied to various problems in mathematics and physics. The hypergeometric differential equation has three singularities \{0, 1, \infty\} and is a canonical form of Fuchsian differential equations of second order with three singularities. Several generalizations of the hypergeometric differential equation have been studied so far.

A generalization is given by adding regular singularities. Heun’s differential equation is a canonical form of a second-order Fuchsian equation with four singularities, which is given by

\[\frac{d^2 y}{dz^2} + \left(\frac{\gamma + \delta}{z} + \frac{\epsilon}{z - t} \right) \frac{dy}{dz} + \alpha \beta z - q \frac{z(z - 1)(z - t)}{z(z - 1)(z - t)} y = 0, \tag{1.2} \]

with the condition

\[\gamma + \delta + \epsilon = \alpha + \beta + 1, \quad t \neq 0, 1. \tag{1.3} \]
Heun’s differential equation appears in several systems of physics including analysis of black holes [18], quantum mechanics (e.g. Inozemtsev model of type BC) [6], AdS/CFT correspondence [9], crystal transition [18] and fluid dynamics [2]. The parameter q is independent from the local exponents and is called an accessory parameter. Although it is much more difficult to study the global structure of Heun’s differential equation than that of the hypergeometric differential equation, several special solutions of Heun’s differential equation have been investigated. In the case that one of the regular singularities $\{0, 1, t, \infty\}$ is apparent, the solutions of Heun’s differential equation have integral representations [20], and the integral representation is based on the integral transformation of Heun’s differential equation established by Kazakov and Slavyanov [8] (see also [18]). Note that Shanin and Craster had studied the case of apparent singularity and obtained some other results [16]. On the other hand, if $a \in \mathbb{Z}_{\leq 0}$ and q is special, then Heun’s differential equation has polynomial solutions. We will investigate the case that Heun’s differential equation has polynomial solutions, and the regular singularity $z = t$ is apparent. Propositions on the structure between two conditions will be given in section 5.

Another generalization of the hypergeometric equation is given by increasing the degree of the differential. Let

$$pF_q\left(\begin{array}{c} a_1, a_2, \ldots, a_p \\ b_1, b_2, \ldots, b_q \end{array}; z \right) = \sum_{n=0}^{\infty} \frac{(a_1)_n(a_2)_n \cdots (a_p)_n}{(b_1)_n(b_2)_n \cdots (b_q)_n n!} z^n$$

be the generalized hypergeometric function, where $(a)_n = a(a+1) \cdots (a+n-1)$. Then, it satisfies the generalized hypergeometric differential equation

$$\left\{ \frac{d}{dz} \left(\frac{d}{dz} + b_1 - 1 \right) \cdots \left(\frac{d}{dz} + b_q - 1 \right) - \left(\frac{d}{dz} + a_1 \right) \cdots \left(\frac{d}{dz} + a_p \right) \right\} y = 0.$$ \hspace{1cm} (1.5)

In the case $p = 2$ and $q = 1$, the function $2F_1(\alpha, \beta; \gamma; z)$ is called the Gauss hypergeometric function, and equation (1.5) is just the hypergeometric differential equation. If $p = q + 1$, then the differential equation (1.5) is Fuchsian with singularities $z = 0, 1, \infty$, and it is known to be rigid [7], i.e. there is no accessory parameter in equation (1.5). Consequently, we have integral representations of the solutions of the generalized hypergeometric differential equation.

In this paper, we study some cases that the generalized hypergeometric differential equation is factorized and Heun’s differential equation appears as a factorized component. Let $L_{a_1, \ldots, a_{q+1}, b_1, \ldots, b_q}$ be the monic differential operator of order $q+1$ such that $L_{a_1, \ldots, a_{q+1}, b_1, \ldots, b_q} y = 0$ is equivalent to equation (1.5). For example,

$$L_{a_1, a_2, a_3, b_1, b_2} = \frac{d^3}{dz^3} + \frac{(a_1 + a_2 + a_3 + 3)z - (b_1 + b_2 + 1)}{z(z-1)} \frac{d^2}{dz^2} + \frac{(a_1 a_2 + a_1 a_3 + a_2 a_3 + a_1 + a_2 + a_3 + 1)z - b_1 b_2}{z^2(z-1)} \frac{d}{dz} + \frac{a_1 a_2 a_3}{z^3(z-1)}.$$ \hspace{1cm} (1.6)

Letessier, Valent and Wimp [11] studied generalized hypergeometric differential equations in reducible cases. They proved that the function

$$p+rF_{q+r}\left(\begin{array}{c} a_1, \ldots, a_p, e_1 + 1, \ldots, e_r + 1 \\ b_1, b_2, \ldots, b_q, e_1, \ldots, e_r \end{array}; z \right)$$

satisfies a linear differential equation of order $\max(p, q + 1)$ whose coefficients are polynomials. We now explain it in the case $p = 2, q = 1$ and $r = 1$. Let $f_0(z) = 2F_1(\alpha, \beta; \gamma; z)$. Then the function $f_1(z) = z f_0'(z)/e_1 + f_0(z)$ is equal to the function $3F_2(a, \beta; e_1 + 1; \gamma, e_1; z)$, and it satisfies $L_{a, \beta, e_1 + 1, \gamma, e_1} f_1(z) = 0$. On the other hand, it also satisfies

$$L_{a, \beta, \gamma, e_1} f_1(z) = 0.$$ \hspace{1cm} (1.8)
where
\[\frac{d^2}{dz^2} + \left(\frac{\gamma}{z} + \frac{\alpha + \beta - \gamma + 2}{z-1} - \frac{1}{z-t} \right) \frac{d}{dz} + \frac{\alpha \beta z - q}{z(z-1)(z-t)} \]
and we have the factorization
\[L_{\alpha,\beta,\gamma,\epsilon} = \left(\frac{d}{dz} + \frac{e_1 + 1}{z} + \frac{1}{z-1} + \frac{1}{z-t} \right) \tilde{L}_{\alpha,\beta,\gamma,\epsilon}. \]

Since the point \(z = t \) is not singular with respect to the differential equation \(L_{\alpha,\beta,\gamma,\epsilon} = 0 \), it is an apparent singularity with respect to \(\tilde{L}_{\alpha,\beta,\gamma,\epsilon} = 0 \). Maier [12] observed the fact conversely and established that Heun’s differential equation with the apparent singularity \(z = t \), whose exponents are 0, 2, appears as a right factor of the generalized hypergeometric equation \(L_{\alpha,\beta,\gamma,\epsilon} = 0 \) with a suitable value \(e_1 \) (see proposition 4.2). On the other hand, Heun’s differential equation, whose singularity \(z = t \) is apparent (and \(\epsilon \in \mathbb{Z}_{\leq -1} \)), is solvable in the sense that it admits integral representations of solutions, which we explain in section 3. Then it would be natural to ask that a solvable differential equation is related to the rigid differential equation (i.e. the generalized hypergeometric equation). In this paper, we generalize Maier’s result and propose a conjecture in section 4. Proposition 4.1 is an evidence to support this conjecture.

Gomez-Ullate, Kamran and Milson [4] introduced \(X_1 \)-Jacobi polynomials as an orthogonal system within the Sturm–Liouville theory. They are remarkable and are stuck out the classical framework because the sequence of polynomials starts from a polynomial of degree 1. Sasaki et al [14, 17] extended it to two types of \(X_\ell \)-Jacobi polynomials (\(\ell = 1, 2, \ldots \)) and studied their properties. It is known that \(X_1 \)-Jacobi polynomials satisfy Heun’s differential equation. We apply the results of this paper to \(X_1 \)-Jacobi polynomials. Then, we may understand a position of \(X_1 \)-Jacobi polynomials in the theory of Heun’s differential equation. Moreover, we establish that \(X_1 \)-Jacobi polynomials are also expressed by generalized hypergeometric functions.

This paper is organized as follows. In section 2, we review definitions and properties of Heun’s differential equation, apparent singularity and Heun polynomial, which will be well known for specialists. In section 3, we recall an integral transformation of Heun’s differential equation and its application to the case that singularity \(z = t \) is apparent. In section 4, we give a conjecture on Heun’s differential equation with an apparent singularity and reducible generalized hypergeometric equation, and verify it for some cases. In section 5, we explain propositions in the case that Heun’s differential equation has polynomial solutions and the regular singularity \(z = t \) is apparent. In section 6, we give applications to \(X_1 \)-Jacobi polynomials. In the appendix, we give an outline of the proof of the conjecture in some cases.

2. Heun’s differential equation, apparent singularity and Heun polynomial

We review some facts on a regular singularity and Heun’s differential equation, which will be applied in this paper.

2.1. Local solution

Let us consider local solutions of Heun’s differential equation
\[\frac{d^2 y}{dz^2} + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} + \frac{\epsilon}{z-t} \right) \frac{dy}{dz} + \frac{\alpha \beta z - q}{z(z-1)(z-t)} y = 0, \]
If \(\gamma + \delta + \epsilon = \alpha + \beta + 1 \) about \(z = t \). The exponents about \(z = t \) are 0 and \(1 - \epsilon \). If \(\epsilon \notin \mathbb{Z} \), then we have a basis of local solutions about \(z = t \) as follows:

\[
f(z) = \sum_{j=0}^{\infty} c_j(z-t)^j, \quad (c_0 \neq 0), \quad g(z) = (z-t)^{1-\epsilon} \sum_{j=0}^{\infty} \tilde{c}_j(z-t)^j, \quad (\tilde{c}_0 \neq 0).
\]

(2.2)

The coefficients \(c_i \) are recursively determined by \(\epsilon t(t-1)c_1 + (\alpha \beta t - q)c_0 = 0 \) and

\[
i(i + \epsilon - 1) \gamma(t - 1) c_i + (i + \alpha - 2(i + \beta - 2) c_{i-2} + [(i - 1) (i - 2)(2t - 1) + (i - 1)(\gamma + \delta + 2\epsilon)t - \gamma - \epsilon + \alpha \beta t - q c_{i-1} = 0,
\]

for \(i \geq 2 \) (see [15]). Hence, \(c_i \) is a polynomial of the variable \(q \) of order \(i \).

2.2. Apparent singularity

If \(\epsilon \in \mathbb{Z}_{\leq 0} \), then we have a basis of local solutions of Heun’s differential equation as follows:

\[
f(z) = \sum_{j=0}^{\infty} c_j(z-t)^j + A g(z) \log(z-t), \quad g(z) = (z-t)^{1-\epsilon} \sum_{j=0}^{\infty} \tilde{c}_j(z-a)^j.
\]

(2.4)

If the logarithmic term in equation (2.4) disappears, i.e. \(A = 0 \), then the singularity \(z = t \) is called apparent (see [5]). The terminology ‘false singularity’ was used in [16]. Note that the apparentness of a regular singularity is equivalent to that the monodromy about \(z = t \) is trivial i.e. the monodromy matrix is the unit.

Now, we describe an explicit condition that the regular singularity \(z = t \) of Heun’s differential equation is apparent in the case \(\epsilon \in \mathbb{Z}_{\leq 1} \), which was also studied in [16]. The condition is written as

\[
(\alpha - \epsilon - 1)(\beta - \epsilon - 1)c_{-\epsilon} + [\epsilon (\epsilon + 1)(2t - 1) - \epsilon (\gamma + \delta + 2\epsilon)t - \gamma - \epsilon + \alpha \beta t - q c_{-\epsilon} = 0,
\]

(2.5)

where \(c_1, \ldots, c_{-\epsilon}, c_{-\epsilon} \) are determined recursively by equation (2.3), and the condition is nothing but the case \(\epsilon = 1 - \epsilon \) of equation (2.3) (see [5] for a general theory). By setting \(n = 1 - \epsilon \), we have \(\delta = \alpha + \beta - \gamma + n \) and the condition that the singularity \(z = t \) is apparent is written as

\[
P_{\text{app}}(q) = q^2 - (2\alpha \beta + \alpha + \beta + 1) q + \alpha \beta t(\alpha + 1)(\beta + 1)t - \gamma = 0.
\]

(2.6)

Example 1.

(i) If \(\epsilon = 0 \ (n = 1) \), then the condition that the regular singularity \(z = t \) is apparent is written as \(P_{\text{app}}(q) = q - \alpha \beta t = 0 \) and it follows that the singularity \(z = t \) disappears.

(ii) If \(\epsilon = -1 \ (n = 2) \), then the condition that the regular singularity \(z = t \) is apparent is written as

\[
P_{\text{app}}(q) = q^3 + 10\alpha \beta + 2(\alpha^2 + \beta^2) + 2\alpha + 2\beta) t^2 + \{(6\alpha \beta - 4\alpha - 4\beta)q + 4\alpha \beta + 4\alpha + 4\beta \} t^2 - \gamma (3\alpha \beta + 4\alpha + 4\beta + 4) t + 2\gamma (\gamma - 1) = 0.
\]

(2.7)
2.3. Heun polynomial

A Heun polynomial is a polynomial (or polynomial-type) solution of Heun’s differential equation (see [15] and references therein). Polynomial solutions of a Fuchsian differential equation have also been studied for a long time (see [13] and related papers for reviews). Here, we review a condition that Heun’s differential equation has a non-zero polynomial solutions of degree \(N - 1 \). Then, the solution has an asymptotic \((1/z)^{1-N}\) as \(z \to \infty \) and we have \(1 - N = \alpha \) or \(1 - N = \beta \), because the exponents about \(z = \infty \) are \(\alpha \) and \(\beta \). We now assume that \(1 - \alpha = N \in \mathbb{Z}_{>0}\). If the accessory parameter \(q \) satisfies \(c_N = 0 \) where \(c_N \) is determined by equation (2.3), then it follows from equation (2.3) in the case \(i = N + 1 \) that \(c_{N+1} = 0 \). Thus, we have \(c_i = 0 \) for \(i \geq N + 2 \), and we obtain a polynomial solution of degree \(N - 1 \). The polynomial solution is called a Heun polynomial. Note that the condition \(c_N = 0 \) is written as \(P^{\text{pol}}(q) = 0 \) by multiplying a suitable constant, where \(P^{\text{pol}}(q) \) is a monic polynomial of the variable \(q \) of order \(N \), which is also a polynomial of \(t, \beta, \gamma \) and \(\epsilon \) (\(\delta = \beta - N - \gamma - \epsilon + 2 \)).

Example 2.

(i) If \(\alpha = 0 \) (\(N = 1 \)) and \(\beta \not\in \mathbb{Z} \), then the condition for existence of non-zero polynomial solution of Heun’s equation is written as \(P^{\text{pol}}(q) = q = 0 \) and a polynomial solution is \(y = 1 \).

(ii) If \(\alpha = -1 \) (\(N = 2 \)) and \(\beta \not\in \mathbb{Z} \), then the condition for the existence of a non-zero polynomial solution of Heun’s equation is written as
\[
P^{\text{pol}}(q) = q^2 + ((\beta - \epsilon)t + \gamma + \epsilon)q + \beta \gamma t = 0, \tag{2.8}
\]
and a polynomial solution is
\[
y = t(t - 1) + (q + \beta t)(z - t). \tag{2.9}
\]

(iii) If \(\alpha = -2 \) (\(N = 3 \)) and \(\beta \not\in \mathbb{Z} \), then the condition for the existence of a non-zero polynomial solution of Heun’s equation is written as
\[
P^{\text{pol}}(q) = q^3 + [(3\beta - 3\epsilon - 1)t + 3\gamma + 3\epsilon + 2]q^2 + [2(\beta - \epsilon)(\beta - \epsilon - 1)t^2
- 4(\epsilon^2 + (\gamma - \beta + 1)\epsilon - (2\gamma + 1)\beta)t + 2(\gamma + \epsilon)(\gamma + \epsilon + 1)]q
+ 4\beta \gamma t((\beta - \epsilon)t + \gamma + \epsilon + 1) = 0, \tag{2.10}
\]
and a polynomial solution is
\[
y = 2t^2(t - 1)^2(\epsilon + 1) + 2t(t - 1)(\epsilon + 1)(q + \beta t)(z - t) + [q^2 + ((3\beta - \epsilon + 1)t + \gamma + \epsilon + 2\beta t((\beta + \gamma + \epsilon))(z - t)^2. \tag{2.11}
\]

Polynomial-type solutions of Heun’s differential equation are written as
\[
y = z^{\alpha_0}(z - 1)^{\alpha_1}(z - t)^{\alpha_2}p(z), \tag{2.12}
\]
where \(p(z) \) is a polynomial, \(\alpha_0 \in [0, 1 - \gamma], \alpha_1 \in [0, 1 - \delta] \) and \(\alpha_2 \in [0, 1 - \epsilon] \). The condition for existing a non-zero polynomial-type solution in the case \(\sigma_0 = \sigma_1 = \sigma_2 = 0 \) is described as \(\alpha \in \mathbb{Z}_{<0} \) (or \(\beta \in \mathbb{Z}_{<0} \)) and \(P^{\text{pol}}(q) = 0 \). The condition for existing of a polynomial-type solution in the case \(\sigma_0 = 1 - \gamma, \sigma_1 = 1 - \delta \) and \(\sigma_2 = 0 \) is described as \(\epsilon - \alpha \in \mathbb{Z}_{<1} \) (or \(\epsilon - \beta \in \mathbb{Z}_{<1} \)) and \(P(q) = 0 \), where \(P(q) \) is a polynomial of the variable \(q \) of order \(-\epsilon + \alpha \) (or \(-\epsilon + \beta \)). Then the order of \(p(z) \) is \(-\epsilon + \alpha - 1 \) (or \(-\epsilon + \beta - 1 \)).
3. Integral transformation and its application

Let \(p \) be an element of the Riemann sphere \(\mathbb{C} \cup \{ \infty \} \) and \(\gamma_p \) be a cycle on the Riemann sphere with variable \(w \) which starts from a base point \(w = o \), goes around \(w = p \) in a counterclockwise direction and ends at \(w = o \). Let \([\gamma_z, \gamma_p] = \gamma_z \gamma_p^{-1} \gamma_p^{-1} \) be the Pochhammer contour. Kazakov and Slavyanov [8] established that Heun’s differential equation admits integral transformations.

Proposition 3.1 ([8, 19]). Set

\[
(\eta - \alpha)(\eta - \beta) = 0, \quad \gamma' = \gamma - \eta + 1, \quad \delta' = \delta - \eta + 1, \quad \epsilon' = \epsilon - \eta + 1,
\]

\[
[\alpha', \beta'] = [2 - \eta, \alpha + \beta - 2\eta + 1],
\]

\[
q' = q + (1 - \eta)(\epsilon + \delta t + (\gamma - \eta)(t + 1)).
\]

Let \(v(w) \) be a solution of

\[
\frac{d^2v}{dw^2} + \left(\frac{\gamma'}{w} + \frac{\delta'}{w - 1} + \frac{\epsilon'}{w - t} \right) \frac{dv}{dw} + \frac{\alpha' \beta' w - q'}{w(w - 1)(w - t)} v = 0.
\]

Then, the function

\[
y(z) = \int_{[\gamma_z, \gamma_p]} v(w)(z - w)^{-\eta} dw,
\]

is a solution of

\[
\frac{d^2y}{dz^2} + \left(\frac{\gamma}{z} + \frac{\delta}{z - 1} + \frac{\epsilon}{z - t} \right) \frac{dy}{dz} + \frac{\alpha \beta z - q}{z(z - 1)(z - t)} y = 0,
\]

for \(p \in \{ 0, 1, t, \infty \} \).

It was obtained in [20] that polynomial-type solutions of Heun’s equation correspond to solutions which have an apparent singularity by the integral transformation. In particular, we have the following proposition by setting \(\eta = \beta \) in proposition 3.1.

Proposition 3.2 ([20]). If \(\epsilon \in \mathbb{Z}_{\leq 0}, \alpha, \beta - \gamma, \beta - \delta \not\in \mathbb{Z} \) and the singularity \(z = t \) of equation (3.4) is apparent, then there exists a non-zero solution of equation (3.2) which can be written as \(v(w) = w^{\beta-\gamma}(w - 1)^{\beta-1}h(w) \), where \(h(w) \) is a polynomial of degree \(-\epsilon\) and the functions

\[
y_p(z) = \int_{[\gamma_z, \gamma_p]} w^{\beta-\gamma}(w - 1)^{\beta-1}h(w)(z - w)^{-\beta} dw,
\]

\((p = 0, 1)\) are non-zero solutions of equation (3.4).

We may drop the condition \(\alpha, \beta - \gamma, \beta - \delta \not\in \mathbb{Z} \) in proposition 3.2 by replacing to that \(h(w) \) is a polynomial of degree no more than \(-\epsilon\) and the solutions in equation (3.5) for \(p = 0, 1 \) may be zero.

Corollary 3.3. If \(\epsilon \in \mathbb{Z}_{\leq 0}, \alpha, \beta - \gamma, \beta - \delta \not\in \mathbb{Z} \) and the singularity \(z = t \) of equation (3.4) is apparent, then any solutions of equation (3.4) can be expressed by a finite sum of hypergeometric functions.

Proof. It follow from proposition 3.2 in the case \(\epsilon = 0 \) and \(q = \alpha \beta t \) that the functions

\[
F_p(z) = \int_{[\gamma_z, \gamma_p]} w^{\beta-\gamma}(w - 1)^{\beta-1}(z - w)^{-\beta} dw,
\]

(3.6)
(p = 0, 1) are non-zero solutions of hypergeometric differential equation, if \(\alpha, \beta, \beta - \gamma, \beta - \delta \notin \mathbb{Z} \). Since \(F_0(z) \sim z^{1-\gamma} (z \to 0) \) and \(F_1(z) \sim (z-1)^{\gamma-\alpha-\beta} (z \to 1) \), we have
\[
F_0(z) = d_{\alpha, \beta, \gamma} z^{1-\gamma} F(\alpha - \gamma + 1, \beta - \gamma + 1; 2 - \gamma; z),
\]
(3.7)
\[
F_1(z) = \tilde{d}_{\alpha, \beta, \gamma} (1-z)^{\gamma-\alpha-\beta} F(\gamma - \alpha, \beta; \gamma - \alpha - \beta + 1; 1 - z),
\]
where \(d_{\alpha, \beta, \gamma}, \tilde{d}_{\alpha, \beta, \gamma} \) are constants. By expanding \(h(w) = \sum_{i=0}^{\infty} c_i w^i \) (resp. \(h(w) = \sum_{i=0}^{\infty} \tilde{c}_i (1-w)^i \)) and applying the formula, the functions \(y_0(z) \) and \(y_1(z) \) are written as a finite sum of hypergeometric functions. If the functions \(y_0(z) \) and \(y_1(z) \) are linearly dependent, then \(y_0(z) = C y_1(z) \) for some \(C \in \mathbb{C} \setminus \{ 0 \} \), \(y_0^{(0)}(z) = e^{2\pi \sqrt{-1} \alpha} y_0(z) \), \(y_0^{(2)}(z) = e^{2\pi \sqrt{-1} \gamma} y_0(z) \), and \(\gamma_0^{(0)}(z) = e^{2\pi \sqrt{-1}(\alpha+\beta)} y_0(z) \), where \(\gamma_0^{(0)}(z) \) denotes the analytic continuation along the cycle \(\gamma \). Since the exponents about \(z \to \infty \) are \(\alpha \) and \(\beta \), we have \(e^{2\pi \sqrt{-1}(\alpha+\beta)} = e^{2\pi \sqrt{-1} \alpha} \) or \(e^{2\pi \sqrt{-1} \beta} \), and it contradicts to \(\alpha, \beta \notin \mathbb{Z} \). Therefore, the functions \(y_0(z) \) and \(y_1(z) \) are linearly dependent; every solution is written as a sum of them, and we have the corollary.

We describe proposition 3.2 and corollary 3.3 in the case \(\epsilon = -2 \) explicitly.

Proposition 3.4. Set \(\epsilon = -2 \). The condition that the singularity \(z = t \) of equation (3.4) is apparent is written as equation (2.7). Then, there exists a non-zero solution of equation (3.2) written as \(v(w) = w^{\beta-\gamma} (w-1)^{\beta-k} h(w) \), where
\[
h(w) = 2\alpha(\alpha+1)w^2 + 2(\alpha+1)q - \alpha(\beta+2)w + q^2 - [(2\alpha\beta + 3\alpha + \beta + 1)t - \gamma + 2]q + \alpha t (\alpha+1)(\beta+1)(\beta+2) - \beta \gamma,
\]
and the functions
\[
\int_{|y_0, y_1|} w^{\beta-\gamma} (w-1)^{\beta-k} h(w)(z-w)^{-\beta} dw,
\]
(3.9)
\((p = 0, 1) \) are the solutions of equation (3.4). If \(\alpha, \beta, \beta - \gamma, \beta - \delta \notin \mathbb{Z} \), then the functions in equation (3.9) are non-zero, and each solution of Heun’s equation with the condition that \(\epsilon = -2 \) and the singularity \(z = t \) is apparent and is written as an appropriate sum of the functions \(z^{\gamma-1+k} F(\alpha - \gamma + 1, \beta - \gamma + k + 1; 2 - \gamma + k; z) \) \(k = 0, 1, 2 \) and \((1-z)^{\gamma-\alpha-\beta-1+k} F(\gamma - \alpha + k, \gamma - \beta; \gamma - \alpha - \beta + k + 1; 1 - z) \) \(k = 0, 1, 2 \).

4. Generalized hypergeometric and Heun’s differential equation with an apparent singularity

We propose a conjecture on Fuchsian differential equations which have apparent singularities and generalized hypergeometric equations.

Conjecture 1. Set
\[
\tilde{L} = \frac{d^2}{dz^2} + \left(\frac{\gamma}{z} + \frac{\delta}{z-1} - \sum_{k=1}^{M} m_k \right) \frac{d}{dz} + \frac{s_M z^M + \cdots + s_0}{(z-1)(z-t_1) \cdots (z-t_M)},
\]
and assume that \(0, 1, t_1, \ldots, t_M \) are distinct mutually, \(m_1, \ldots, m_M \in \mathbb{Z}_{>0} \) and the singularities \(z = t_k \) of \(\tilde{L} y = 0 \) are apparent for \(k = 1, \ldots, M \). Then, there exists a generalized hypergeometric differential operator \(L_{\alpha, \beta, c_1+1, \ldots, c_N+1} (N = m_1 + m_2 + \cdots + m_M) \) which admits the factorization
\[
L_{\alpha, \beta, c_1+1, \ldots, c_N+1} = \tilde{D} \tilde{L},
\]
where \(\tilde{D} \) is a differential operator of order \(N \) whose coefficients are rational functions. The values \(\alpha \) and \(\beta \) are determined by \(s_M = \alpha \beta \) and \(\delta = \alpha + \beta - \gamma + N + 1 \).
Note that Heun’s differential equation whose singularity \(z = t \) is apparent and \(\epsilon \in \mathbb{Z}_{\leq 1} \) is included in the situation of the conjecture of the case \(M = 1 \).

Proposition 4.1. The above conjecture is true for the cases \(M = 1, m_1 \leq 5, M = 2, m_1 + m_2 \leq 4 \) and \(M = 3, m_1 = m_2 = m_3 = 1 \).

We show an outline of the proof of the proposition in appendix. Note that the calculation is dependent on Maple (a computer algebra system). Here, we express the generalized hypergeometric differential operators of the conjecture in the cases \(M = 1, m_1 = 1, 2. \)

Set

\[
H_{[\epsilon = -m]} = \frac{d^2}{dz^2} + \left(\frac{\gamma + \alpha + \beta - \gamma + m + 1}{z-1} - \frac{m}{z-t} \right) \frac{d}{dz} + \frac{\alpha \beta z - q}{z(z-1)(z-t)}. \tag{4.2}
\]

The case \(M = 1 \) and \(m_1 = 1 \) is essentially due to Maier [12].

Proposition 4.2 ([12]). If the singularity \(z = t \) of Heun’s differential equation \(H_{[\epsilon = -1]} \psi = 0 \) is apparent (see equation (2.6)), then the generalized hypergeometric differential operator \(L_{\alpha, \beta, \epsilon_1 + 1, \gamma, \epsilon_1} \) admits the factorization

\[
L_{\alpha, \beta, \epsilon_1 + 1, \gamma, \epsilon_1} = \left(\frac{d}{dz} + \frac{e_1 + 1}{z} + \frac{1}{z-1} + \frac{1}{z-t} \right) H_{[\epsilon = -1]},
\]

\[
e_1 = \frac{q - (\alpha + 1)(\beta + 1)t + \gamma}{1 - t} - 1.
\]

The correctness of the conjecture in the cases \(M = 1, m_1 = 2 \) follows from the following theorem, which is verified by straightforward calculations.

Theorem 4.3. If the singularity \(z = t \) of Heun’s differential equation written as \(H_{[\epsilon = -2]} \psi = 0 \) is apparent (see equation (2.7)), then there exists a generalized hypergeometric differential operator \(L_{\alpha, \beta, \epsilon_1 + 1, \epsilon_2 + 1, \gamma, \epsilon_1, \epsilon_2} \) which admits the factorization

\[
L_{\alpha, \beta, \epsilon_1 + 1, \epsilon_2 + 1, \gamma, \epsilon_1, \epsilon_2} = \left(\frac{d^2}{dz^2} + \frac{e_1 + e_2 + 3}{z} + \frac{2}{z-1} + \frac{2}{z-t} \right) \frac{d}{dz} + v(z) \right) H_{[\epsilon = -2]},
\]

such that

\[
v(z) = [(e_1 + 3)(e_2 + 3)z^2 + q - ((e_1 + 1)(e_2 + 1) + (\alpha + 2)(\beta + 2)t
\]

\[-(e_1 + 3)(e_2 + 3) + (\gamma + 1)z + t(e_1 + 1)(e_2 + 1)]/[z^2(z-1)(z-t)],
\]

\[
e_1 + e_2 = -3 + \frac{q - (\alpha + 2)(\beta + 2)t + 2\gamma}{1 - t},
\]

\[
e_1 e_2 = \frac{1}{2(1 - t)}[\gamma^2 - (2\alpha \beta + 3\alpha + 3\beta + 1)t - (3\gamma - 4)]q
\]

\[+(\alpha^2 \beta^2 + 3\alpha^2 \beta + 3\alpha \beta^2 + 7\alpha \beta + 2\alpha^2 + 2\beta^2 + 2\alpha + 2\beta)t^2
\]

\[+2(2\alpha \beta + 4\alpha + 4\beta - 2\gamma(3\alpha \beta + 4\alpha + 4\beta))t + 2(\gamma - 1)(\gamma - 2)].
\]

5. Polynomial-type solutions with an apparent singularity

If \(\epsilon \in \mathbb{Z}_{\leq 0} \), then the condition that \(z = t \) is apparent is written as \(P_{\text{app}}(q) = 0 \), where \(P_{\text{app}}(q) \) is monic polynomial of \(q \) with degree \(1 - \epsilon \). On the other hand, if \(\alpha \in \mathbb{Z}_{\leq 0} \) and \(\beta \notin \mathbb{Z}_{\leq 0} \), then the condition that equation (3.4) has a polynomial solution is written as \(P_{\text{pol}}(q) = 0 \),
where $P(q)$ is a monic polynomial of degree $1 - \alpha$, and the degree of the polynomial solution of equation (3.4) is $-\alpha$. In this section, we investigate a relationship of equations $p_{app}(q) = 0$ and $q_{pol}(q) = 0$ in the case $\epsilon \in \mathbb{Z}_{\leq 0}$ and $\alpha \in \mathbb{Z}_{\leq 0}$.

Lemma 5.1. Assume that $\alpha \in \mathbb{Z}$, $\epsilon \in \mathbb{Z}$ and the singularity $z = t$ is apparent. Then, the monodromy representation of solutions of equation (3.4) is reducible.

Proof. Let $y_1(z)$, $y_2(z)$ be a basis of solutions of equation (3.4). Since the singularity $z = t$ is apparent, the monodromy matrix around $z = t$ is a unit matrix. Let $M^{(p)} (p = 0, 1, \infty)$ be the monodromy matrix on the cycle around the singularity $w = p$ anti-clockwise with respect to the basis $y_1(z)$, $y_2(z)$. For the moment, we assume that γ, $\delta \notin \mathbb{Z}$. Then $M^{(0)}$ (resp. $M^{(1)}$) is conjugate to the diagonal matrix with eigenvalues 1 and $e^{2\pi \sqrt{-1} \gamma}$ (resp. 1 and $e^{2\pi \sqrt{-1} \delta}$). Since the exponents $z = \infty$ are α, β and we have the relation $M^{(0)} M^{(1)} = (M^{(\infty)})^{-1}$, the matrix $M^{(0)} M^{(1)}$ has an eigenvalue 1. Then, the matrices $M^{(0)}$ and $M^{(1)}$ have a common invariant one-dimensional subspace, because if we set

$$M^{(0)} = \begin{pmatrix} 1 & 0 \\ 0 & \gamma \end{pmatrix}, \quad M^{(1)} = P \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix} P^{-1}, \quad P = \begin{pmatrix} p & q \\ r & s \end{pmatrix},$$

the condition that $M^{(0)} M^{(1)}$ has an eigenvalue 1 is written as $0 = 1 - \text{tr}(M^{(0)} M^{(1)}) + \det(M^{(0)} M^{(1)}) = q r (d - 1) (g - 1)/(q r - p s)$, and we have a common one-dimensional eigenspace for the case $q = 0$, $r = 0$, $d = 1$ or $g = 1$, respectively. In the case $\gamma \in \mathbb{Z}$ (resp. $\delta \in \mathbb{Z}$), the matrix $M^{(0)}$ (resp. $M^{(1)}$) has the multiple eigenvalue 1, and we can also show that the matrices $M^{(0)}$ and $M^{(1)}$ have a common invariant one-dimensional subspace by expressing the matrices in the form of Jordan normal forms. Hence the monodromy representation of solutions of equation (3.4) is reducible.

We remark that lemma 5.1 is also a consequence of the multiplicative Deligne–Simpson problem for a special case [7].

Proposition 5.2. Assume that $\alpha \in \mathbb{Z}$, $\epsilon \in \mathbb{Z}_{\leq 0}$ and the singularity $z = t$ is apparent. Set $n = -\epsilon (\in \mathbb{Z}_{\geq 0})$.

(i) If $\alpha > 0$, then there exists a non-zero solution $y(z)$ such that $y(z) = z^{1-\gamma} (z-1)^{1-\delta} h(z)$ and $h(z)$ is a polynomial of degree no more than $\alpha + n - 1$.

(ii) If $\alpha < 1 - n$, then there exists a non-zero solution $y(z)$ such that $y(z)$ is a polynomial of degree no more than $-\alpha$.

(iii) If $1 - n \leq \alpha \leq 0$, then there exists a non-zero solution $y(z)$ such that $y(z)$ is a polynomial of degree $-\alpha$ or there exists a non-zero solution $y(z)$ such that $y(z) = z^{1-\gamma} (z-1)^{1-\delta} h(z)$ and $h(z)$ is a polynomial of degree no more than $\alpha + n - 1$.

Proof. Assume that $\beta \notin \mathbb{Z}$, $\gamma \notin \mathbb{Z}$ and $\beta - \gamma \notin \mathbb{Z}$ for the moment. It follows from reducibility of monodromy that there exists a non-zero solution $y(z)$ of equation (3.4) such that $y(z) = z^n (z-1)^{\beta} (z-t)^{\alpha} h(z)$ such that $h(z)$ is a polynomial, $h(0) h(1) h(t) \neq 0$, $\theta_0 \in \{0, 1 - \gamma\}$, $\theta_1 \in \{0, 1 - \delta\}$, $\theta_2 \in \{0, 1 + n\}$, and $\alpha = -\deg h(z) - \theta_0 - \theta_1 - \theta_2$ or $\beta = -\deg h(z) - \theta_0 - \theta_1 - \theta_2$ (see [20, proposition 3.1]). Since $n \in \mathbb{Z}_{\geq 0}$ and $(z-t)^n$ is a polynomial in z, we have a non-zero solution $y(z)$ of equation (3.4) such that $y(z) = z^n (z-1)^{\beta} h(z)$ such that $h(z)$ is a polynomial, $h(0) h(1) \neq 0$, $\theta_0 \in \{0, 1 - \gamma\}$, $\theta_1 \in \{0, 1 - \delta\}$, and $\alpha = -\deg h(z) - \theta_0 - \theta_1$ or $\beta = -\deg h(z) - \theta_0 - \theta_1$. Because $\deg h(z)$ is a non-negative integer, the possible cases under the condition $\alpha \in \mathbb{Z}$, $\beta \notin \mathbb{Z}$, $\gamma \notin \mathbb{Z}$ and $\beta - \gamma = \delta - n - 1 - \alpha \notin \mathbb{Z}$ are the cases

$\deg h(z) = -\alpha \in \mathbb{Z}_{\geq 0}$ ($\alpha \leq 0$, $(\theta_0, \theta_1) = (0, 0)$)
and $\deg h(z) = \alpha + n - 1 \in \mathbb{Z}_{\geq 0}$ ($\alpha \geq 1 - n$, $(\theta_0, \theta_1) = (1 - \gamma, 1 - \delta)$). Hence, we have the proposition under the condition $\alpha \in \mathbb{Z}, \beta \not\in \mathbb{Z}, \gamma \not\in \mathbb{Z}$ and $\beta - \gamma = \delta - n - 1 - \alpha \not\in \mathbb{Z}$.

Since the monic characteristic polynomial in q for the existence of polynomial-type solutions $y(z) = z^{\alpha}(z-1)^{\beta}h(z)$ ($h(z)$, a polynomial, $(\theta_0, \theta_1) = (0, 0), (1 - \gamma, 1 - \delta)$) is continuous with respect to the parameters β and γ, we obtain the proposition for all β and γ by continuity argument. □

Theorem 5.3. Assume that $\epsilon \in \mathbb{Z}_{\leq 0}, \alpha \in \mathbb{Z}_{\leq 0}$ and $\beta \not\in \mathbb{Z}_{\leq 0}$.

(i) If $-\alpha \leq -\epsilon$ and Heun’s differential equation (equation (3.4)) has a polynomial solution (i.e. the accessory parameter q satisfies $P^{pol}(q) = 0$), then the singularity $z = t$ is apparent (i.e. $P^{app}(q) = 0$).

(ii) If $-\epsilon \leq -\alpha$ and the singularity $z = t$ is apparent (i.e. $P^{pol}(q) = 0$), then equation (3.4) has a polynomial solution (i.e. $P^{app}(q) = 0$).

Proof. Theorem 5.3 (ii) follows from proposition 5.2 (ii).

We show (i). If $\epsilon \in \mathbb{Z}_{\leq 0}$, then a basis of local solutions about $z = t$ is written as

$$f(z) = (z - t)^{1-\epsilon} \sum_{j=0}^{\infty} c_j (z - t)^j, \quad g(z) = \sum_{j=0}^{\infty} \tilde{c}_j (z - t)^j + A f(z) \log(z - t). \quad (5.2)$$

The apparency of the singularity $z = t$ is described as the condition $A = 0$. If there exists a polynomial solution $y = p(z)$ of equation (3.4), then $\deg p(z) = -\alpha \leq -\epsilon$. Since the expansion of $f(z)$ starts from $1 - \epsilon$, the solution $p(z)$ is proportional to $g(z)$. Hence, $A = 0$ and we obtain (i). □

Proposition 5.2 and theorem 5.3 are also valid for the case the singularity $z = 0$ or $z = 1$ is apparent.

6. X_1-Jacobi polynomial

We now review a definition of X_1-Jacobi polynomials and their properties [4, 14, 17]. Let $P_k(\eta)$ be the Jacobi polynomial parametrized as

$$P_k(\eta) = \left(\frac{g + \frac{1}{2}}{k!} \right) \sum_{j=0}^{k} \left(-k \right)_j \frac{(k + g + h + 2)_j}{j!(g + \frac{1}{2})^j} \left(\frac{1 - \eta}{2} \right)^j. \quad (6.1)$$

The X_1-Jacobi polynomials $\hat{P}_k(\eta)$ ($k = 0, 1, 2, \ldots$) are defined in the case $g, h \not\in \{-1/2, -3/2, -5/2, \ldots\}$ by

$$\hat{P}_k(\eta) = \left(\frac{1}{k + h + \frac{1}{2}} \right) \left(h + \frac{1}{2} \right) \xi(\eta) P_k(\eta) + (1 + \eta) \xi(\eta) \frac{d}{d\eta} P_k(\eta), \quad (6.2)$$

$$\xi(\eta) = \frac{g - h}{2} - \eta + \frac{g + h + 1}{2}, \quad \hat{\xi}(\eta) = \frac{g - h}{2} + \frac{g + h + 3}{2}. \quad (6.2)$$

Hence, $\deg_{\eta} \hat{P}_k(\eta) = k + 1$. The X_1-Jacobi polynomials in the case $g, h > -1/2$ are orthogonal with respect to the following inner product:

$$\int_{-1}^{1} \hat{P}_k(\eta) \hat{P}_l(\eta) \mathcal{W}(\eta) d\eta = C_k \delta_{k,l}, \quad \mathcal{W}(\eta) = \frac{1 - \eta)^{g + \frac{1}{2}} (1 + \eta)^{h + \frac{1}{2}}}{2^{g + h + 2} \hat{\xi}(\eta)^2}, \quad (6.3)$$
where \(C_k \) is a non-zero constant. The \(X_l \)-Jacobi polynomial \(\hat{P}_k(\eta) \) satisfies the following differential equation:

\[
(1 - \eta^2) \frac{d^2}{d\eta^2} \hat{P}_k(\eta) + \left(\frac{h - g - (g + h + 3)\eta}{\xi(\eta)} - 2 \left(1 - \eta^2 \right) \hat{\xi}'(\eta) \right) \frac{d}{d\eta} \hat{P}_k(\eta) + \left(-\frac{2(h + \frac{1}{2})}{\xi(\eta)} + k(k + g + h + 2) + g - h \right) \hat{P}_k(\eta) = 0. \tag{6.4}
\]

By setting \(\eta = 1 - 2z \) and \(y = \hat{P}_k(\eta) \), we obtain a specific case of Heun’s differential equation whose parameters are given by

\[
\alpha = -k - 1, \quad \beta = k + g + h + 1, \quad \gamma = g + 3/2, \quad \delta = \alpha + \beta - \gamma + 3 = h + 3/2, \quad \\
\epsilon = -2, \quad t = \frac{1 - \gamma}{\alpha + \beta - 2\gamma + 3} = \frac{g + 1/2}{g - h}, \quad \\
q = \frac{(1 - \gamma)(\alpha \beta + 2\alpha + 2\beta - 2\gamma + 4)}{\alpha + \beta - 2\gamma + 3} = \frac{(g + 1/2)(k^2 + (g + h + 2)k + g - h)}{h - g}. \tag{6.5}
\]

The condition that the singularity \(z = t \) of the differential equation

\[
\frac{dy}{dz^2} + \left(\frac{y}{z} + \frac{\alpha + \beta - \gamma + 3}{z - 1} - \frac{2}{z - t} \right) \frac{dy}{dz} + \frac{\alpha \beta z - q}{z(z - 1)(z - t)} y = 0 \tag{6.6}
\]

is apparent as equation (2.7). By substituting \(t = (1 - \gamma)/(\alpha + \beta - 2\gamma + 3) \) into equation (2.7), we have the factorization

\[
\left(q + \frac{(\gamma - 1)(\alpha \beta + 2\alpha + 2\beta - 2\gamma + 4)}{\alpha + \beta - 2\gamma + 3} \right) \left(q^2 - \frac{4\gamma^2 - (2\alpha \beta + 4\alpha + 4\beta + 12)\gamma + (2\alpha \beta + 5\alpha + 5\beta + 9)}{\alpha + \beta - 2\gamma + 3} q - \frac{\alpha \beta (\gamma - 1)(4\gamma^2 - (\alpha \beta + 4\alpha + 4\beta + 8)\gamma + (\alpha + 1)(\beta + 1))}{(\alpha + \beta - 2\gamma + 3)^2} \right) = 0. \tag{6.7}
\]

Hence, the singularity \(z = t = (1 - \gamma)/(\alpha + \beta - 2\gamma + 3) \) is apparent with respect to the second-order differential equation which \(X_l \)-Jacobi polynomial \(\hat{P}_k(1 - 2z) \) satisfies. It follows from proposition 3.4 that the differential equation (6.2) admits integral representation of solutions written as

\[
\int_{[\gamma_1, \gamma_2]} \{ (k + 1)(g - h)(1 - \xi)^{k + h - 1/2} + (2g + 1)(2k + 2h + 3) \xi \} \cdot (1 - \xi)^{k + h - 1/2}(1 + \xi)^{k + g - 1/2}(\eta - \xi)^{-k + g + h + 1} d\xi,
\]

where \(p = -1, 1. \)

Next, we investigate the condition that equation (6.6) has a non-zero polynomial solution under the assumption that the singularity \(z = t \) is apparent (see equation (2.7)). If \(\alpha = -k - 1, \beta \neq 0 \) and \(k \in \mathbb{Z}_{\geq 1} \), then it follows from theorem 5.3 that the differential equation has a non-zero polynomial solution. If \(\alpha = -1 \) \((k = 0)\), then the condition that the differential equation has a non-zero polynomial solution is written as equation (2.8) and we have

\[
(q - 1 + \gamma) \left(q - \frac{\beta \gamma}{\beta - 2\gamma + 2} \right) = 0. \tag{6.9}
\]

by substituting \(t = (1 - \gamma)/(-1 + \beta - 2\gamma + 3) \) and \(\epsilon = -2 \). On the other hand, we have \(q = 1 - \gamma \) by equation (6.5) in the case \(k = 0 \) \((\alpha = -1)\). Hence, we confirm that there exists a non-zero polynomial which corresponds to the \(X_l \)-Jacobi polynomial in the case \(k = 0 \). If \(\alpha = 0 \), then the condition that the differential equation has a non-zero
polynomial solution is written as \(q = 0 \) and a solution is constant, and it does not agree with equation (6.5), i.e. \(q = 2(1 - \gamma)(\beta - \gamma + 2)/(\beta - 2\gamma + 3) \). Hence, the constant does not belong to parameters of Heun’s differential equation concerning to \(X_1 \)-Jacobi polynomials. It follows from the apparency of the singularity \(z = t = (1 - \gamma)/(\beta - 2\gamma + 3) \) and proposition 5.2 that there exists a non-zero solution \(y(z) \) of Heun’s differential equation with the parameters in equation (6.5) such that \(y(z) = z^{1 - \gamma} (z - 1)^{1 - \delta} h(z) \), \(\deg h(z) = 1 \) and the polynomial \(h(z) \) is calculated as \(h(z) = (\beta - 2\gamma + 3)z + \gamma - 2 \).

It follows from theorem 4.3 and apparency of the singularity \(z = t \) that the polynomial \(\hat{P}_k(1 - 2z) \) also satisfies the generalized hypergeometric differential equation

\[
L_{-k-1,k+g+h+1,e_1+1,e_2+1,g+3/2,e_1,e_2}y = 0,
\]

where \(D_k \) is a non-zero constant.

Thus, we have the following theorem.

Theorem 6.1. The \(X_1 \)-Jacobi polynomials are expressed in terms of generalized hypergeometric functions,

\[
\hat{P}_k(\eta) = D_k \cdot _2F_1\left(\begin{array}{c} -k - 1, k + g + h + 1, e_1 + 1, e_2 + 1 \\ g + 3/2, e_1, e_2 \end{array}; \frac{1 - \eta}{2}\right),
\]

where \(e_1 + e_2 = 2g, e_1 e_2 = \frac{-(k + 1)(k + g + h + 1)(2g + 1)}{2h + 1} \),

\[
e_1 e_2 = \frac{-(k + 1)(k + g + h + 1)(2g + 1)}{2h + 1}.
\]

Proof. Let \(\hat{Q}_k(\eta) \) be the generalized hypergeometric function defined by the right-hand side of equation (6.11). Then the functions \(\hat{Q}_k(1 - 2z) \) and \(\hat{P}_k(1 - 2z) \) are the holomorphic solutions of the generalized hypergeometric differential equation

\[
L_{-k-1,k+g+h+1,e_1+1,e_2+1,g+3/2,e_1,e_2}y = 0
\]

about \(z = 0 \), where \(e_1 \) and \(e_2 \) are given by equation (6.12). The exponents of the differential equation about \(z = 0 \) are \(0, -g - 1/2, 1 - e_1 \) and \(1 - e_2 \). If \(g + 1/2, e_1, e_2 \notin \mathbb{Z} \), then the dimension of holomorphic solutions of the differential equation is \(1 \) and the function \(\hat{P}_k(1 - 2z) \) is proportional to \(\hat{Q}_k(1 - 2z) \). By continuity argument, the function \(\hat{P}_k(1 - 2z) \) is proportional to \(\hat{Q}_k(1 - 2z) \) in the case \(g, h \notin \{-1/2, -3/2, -5/2, \ldots\} \), the case that the functions are well defined.

7. Concluding remarks

It is known that two types of \(X_\ell \)-Jacobi polynomials \((\ell = 1, 2, \ldots) \) satisfy a second-order Fuchsian differential equation which satisfies the assumption of the conjecture by setting \(\eta = 1 - 2z \) (see [14, 17] etc). Thus relationships between \(X_\ell \)-Jacobi polynomials and generalized hypergeometric polynomials should be studied further. On the other hand, several researchers including the authors in [1, 3, 10] studied generalized Jacobi polynomials. It would be interesting to consider relationship among those polynomials.
Acknowledgments

The author would like to thank Professor Ryu Sasaki for fruitful discussions and valuable comments. Thanks are due to Professor Satoshi Tsujimoto. He also thanks Professor Alain Moussiaux for pointing out an error in an equation of an older version and referees for valuable comments. He is supported by the grant-in-aid for Young Scientists (B) (no 22740107) from the Japan Society for the Promotion of Science.

Appendix. Sketch of the proof of proposition 4.1

We give a sketch of the proof of proposition 4.1.

Let \hat{D} be the differential operator in the conjecture given in section 4. Write

$$\hat{D} = \frac{d^N}{dz^N} + \sum_{j=0}^{N-1} v_j(z) \frac{d^j}{dz^j}, \quad L_{a,\beta,\epsilon_1+1,\ldots,\epsilon_N+1,\gamma,\epsilon_1,\ldots,\epsilon_N} - \hat{D}\hat{L} = \sum_{j=0}^{N+1} w_j(z) \frac{d^j}{dz^j} \quad (A.1)$$

and impose the condition $w_j(z) = 0$ ($j = 0, \ldots, N+1$) by choosing the coefficients $v_j(z)$ of \hat{D} appropriately. The coefficients $v_{j-e}(z)$ ($j = 1, \ldots, N$) are determined recursively by the condition $w_{N+2-j}(z) = 0$. If we can show $w_1(z) = w_0(z) = 0$ by using the condition (apparency of singularities) of the conjecture and by choosing the values of $\epsilon_1, \ldots, \epsilon_N$ appropriately, then the conjecture for the operator \hat{L} is true. We show it in the case $M = 1$, $m_1 \leq 5$, the case $M = 2$, $m_1 + m_2 \leq 4$ and the case $M = 3$, $m_1 = m_2 = m_3 = 1$ with the aid of Maple. Let ϵ_i be the i-th elementary symmetric function of $\epsilon_1, \ldots, \epsilon_N$, i.e. $\epsilon_i = \sum_{1 \leq j_1 < \ldots < j_i \leq N} \epsilon_{j_1} \cdots \epsilon_{j_i}$. The functions $w_0(z)$ and $w_1(z)$ are rational, and every coefficient of the numerators of $w_0(z)$ and $w_1(z)$ in the variable z is a polynomial in $\epsilon_1, \ldots, \epsilon_N, \gamma, \delta, s_0, \ldots, s_M$, which is also dependent on t_1, \ldots, t_M.

We investigate the case $M = 1$ and $m_1 \in \{1, 2, 3, 4, 5\}$. The differential operator \hat{L} is written as $H_{(\epsilon_\infty - m_1)}$. Each coefficient of the numerators of $w_0(z)$ and $w_1(z)$ is linear in $\epsilon_1, \ldots, \epsilon_N$. We can solve the simultaneous equations determined by any coefficients of the numerators of $w_1(z)$ in the variable $\epsilon_1, \ldots, \epsilon_N$. The solution $\epsilon_1 = \epsilon_1(q_1 \ldots t_1), \ldots, \epsilon_N = \epsilon_N(q_1 \ldots t_1)$ exists uniquely and $\epsilon_j(q_1 \ldots t_1)$ ($j = 1, \ldots, N$) are expressed as polynomials in q, α, β, γ and are homolorphic in $t \in \mathbb{C} \setminus [0, 1]$ (see equation (4.5) in the case $m_1 = 2$), and we have $w_1(z) = 0$ by substituting $\epsilon_1 = \epsilon_1(q_1 \ldots t_1), \ldots, \epsilon_N = \epsilon_N(q_1 \ldots t_1)$. By the way, the condition of apparency of the singularity $z = t$ is written as $P^\text{app}(q) = 0$, where $P^\text{app}(q)$ is a polynomial of q of degree $m_1 + 1$. We substitute the solution $\epsilon_1 = \epsilon_1(q_1 \ldots t_1), \ldots, \epsilon_N = \epsilon_N(q_1 \ldots t_1)$ into $w_0(z)$. Then, we can confirm that all coefficients are vanished by using the relation $P^\text{app}(q) = 0$, and we obtain correctness of the conjecture in the case $M = 1$ and $m_1 \leq 5$.

We investigate the case $M \geq 2$. Set $N = m_1 + \cdots + m_M$ and write

$$\tilde{L} = \frac{d^2}{dz^2} + \left(\frac{\gamma}{z} + \frac{\alpha + \beta - \gamma + N + 1}{z - 1} - \sum_{k=1}^{M} \frac{m_k}{z - t_k} \right) \frac{d}{dz} + \frac{\alpha \beta}{z(z - 1)} + \sum_{k=1}^{M} \frac{p_k}{z(z - 1)(z - t_k)}. \quad (A.2)$$

The condition that the singularity $z = t_j$ ($j = 1, \ldots, M$) is apparent is written as $P^\text{app}_{j^*}(p_1, \ldots, p_M) = 0$, where $P^\text{app}_{j^*}(p_1, \ldots, p_M)$ is a polynomial of p_1, \ldots, p_M such that $\deg_{p_j} P^\text{app}_{j^*}(p_1, \ldots, p_M) = m_j + 1$ and $\deg_{p_j} P^\text{app}_{j^*}(p_1, \ldots, p_M) \leq m_j$ ($j \neq j^*$). We assume that $M = 2$, $(m_1, m_2) = (1, 1), (2, 1), (2, 2), (3, 1)$ or $M = 3$, $m_1 = m_2 = m_3 = 1$. We expand the numerator of $w_1(z)$ as $c_0 + c_1(z - 1) + \cdots + c_N(z - 1)^N$ for some N and solve the simultaneous equations $c_0 = \cdots = c_{N-1} = 0$ for the variables $\epsilon_1, \ldots, \epsilon_N$. The
solution $t_1 = t_1(p_1, \ldots, t_M), \ldots, t_N = t_N(p_1, \ldots, t_M)$ exists uniquely and $t_j(p_1, \ldots, t_M)$ ($j = 1, \ldots, N$) are expressed as polynomials in $p_1, \ldots, p_M, \alpha, \beta, \gamma$ and may have poles along $t_j = t_j - 1 = 0$ ($j = 1, \ldots, M$) and $t_j - t_j' = 0$ ($1 \leq j < j' \leq M$). We substitute the solution $t_1 = t_1(p_1, \ldots, t_M), \ldots, t_N = t_N(p_1, \ldots, t_M)$ into $w_1(z)$ and $w_0(z)$. Then, we can confirm that all coefficients of the numerators of $w_1(z)$ and $w_0(z)$ are vanished by using the relation $P_{app}^{p_1}(p_1, \ldots, p_M) = \cdots = P_{app}^{M}(p_1, \ldots, p_M) = 0$, and we obtain correctness of the conjecture in the case $M = 2, m_1 + m_2 \leq 4$ and $M = 3, m_1 = m_2 = m_3 = 1$.

References

[1] Arvesu J, Alvarez-Nodarse R, Marcellan F and Pan K 1998 Jacobi–Sobolev-type orthogonal polynomials: second-order differential equation and zeros J. Comput. Appl. Math. 90 135–56
[2] Craster R V and Hoang V H 1998 Applications of Fuchsian differential equations to free boundary problems Proc. R. Soc. Lond. A 454 1241–52
[3] Everitt W N, Kwon K H, Littlejohn L L and Wellman R 2001 Orthogonal polynomial solutions of linear ordinary differential equations J. Comput. Appl. Math. 133 85–109
[4] Gomez-Ullate D, Kamran N and Milson R 2009 An extended class of orthogonal polynomials defined by a Sturm–Liouville problem J. Math. Anal. Appl. 359 352–67
[5] Ince E L 1944 Ordinary Differential Equations (New York: Dover)
[6] Inozemtsev V I 1989 Lax representation with spectral parameter on a torus for integrable particle systems J. Phys. A: Math. Theor. 22 621–28
[7] Katz N M 1996
[8] Kazakov A Ya and Slavyanov S Yu 1996 Integral relations for special functions of the Heun class Proc. R. Soc. Lond. A 452 205–14
[9] Koornwinder T H 1984 Orthogonal polynomials with weight function $(1-x)^\alpha(1+x)^\beta+M\delta(x+1)+N\delta(x-1)$ Can. Math. Bull. 27 205–14
[10] Letessier J, Valent G and Wimp J 1994 Some differential equations satisfied by hypergeometric functions Approximation and Computation (International Series of Numerical Mathematics vol 119) (Cambridge, MA: Birkhäuser) pp 371–81
[11] Maier R S 2008 P-symbols, Heun identities, and γ_2 identities (Special Functions and Orthogonal Polynomials Contemp. Math. vol 471) (Providence, RI: American Mathematical Society) pp 139–59
[12] Martinez-Finkelshtein A and Saff E B 2002 Asymptotic properties of Heine–Stieltjes and Van Vleck polynomials J. Approx. Theory 118 131–51
[13] Odake S and Sasaki R 2009 Infinitely many shape invariant potentials and new orthogonal polynomials Phys. Lett. B 679 414–17
[14] Ronveaux A (ed) 1995 Heun’s Differential Equations (Oxford: Oxford University Press)
[15] Shanin A V and Craster R V 2002 Removing false singular points as a method of solving ordinary differential equations Eur. J. Appl. Math. 13 617–39
[16] Sasaki R, Tsujimoto S and Zhedanov A 2010 Exceptional Laguerre and Jacobi polynomials and the corresponding potentials through Darboux–Crum transformations J. Phys. A: Math. Theor. 43 315204
[17] Slavyanov S and Lay W 2000 Special Functions (Oxford: Oxford University Press)
[18] Takemura K 2009 Middle convolution and Heun’s equation SIGMA 5 040
[19] Takemura K 2010 Integral transformation of Heun’s equation and some applications arXiv:1008.4007 [math.CA]