INTRINSIC L_p METRICS FOR CONVEX BODIES
RICHARD A. VITALE

Abstract. Intrinsic L_p metrics are defined and shown to satisfy a dimension–free bound with respect to the Hausdorff metric.
MSC 2000: 52A20, 52A27, 52A40, 60G15.

1 Introduction

L_p metrics for convex bodies were originally introduced in the context of approximation questions ([23]; also [1], [4], [5], [22]) and later shown to be comparable to the Hausdorff metric:

$$\delta_p(K, L) \geq c_{p,d,K,L} \cdot \delta^{(p+d-1)/p}(K, L)$$ \hspace{1cm} (1)

([30, Corollary 1]; also, [19, Lemma 1]). Bounds like (1) have been useful for establishing stability results and others ([2], [3], [6]–[21], [25]–[27], [29]).

The dimension d of the underlying space appears not only in the form of (1) but also in the definition of δ_p itself. A natural question to ask is whether these dependencies can be avoided. Analogous to the renormalization of quermassintegrals to intrinsic volumes ([24, 28]), this amounts to asking whether there are dimension–free, or intrinsic, versions of the L_p metrics and of (1). A positive answer was given in [31]. In this note, we give an improved version of that result and some related comments.

Let K, L be convex bodies in \mathbb{R}^d, and let $Z^{(d)} = (Z_1, Z_2, \ldots, Z_d)$ be a vector of independent, standard Gaussian variables. For $1 \leq p < \infty$, the intrinsic L_p metric is given by

$$\delta_p^*(K, L) = \left[c_p E|h_K(Z^{(d)}) - h_L(Z^{(d)})|^p\right]^{1/p},$$ \hspace{1cm} (2)

where $c_p = 1/E|Z|^p = \pi^{1/2} \left[2^{2p/2} \Gamma((p+1)/2)\right]^{-1}$ is chosen so that $\delta_p^*(\{x\}, \{\tilde{x}\}) = \|x - \tilde{x}\|$ for any $x, \tilde{x} \in \mathbb{R}^d$ (cf. [31, Eqn. 22]). This coincides with the usual L_p metric up to a multiplicative constant (which depends on both p and d). We begin with an explicit proof of the following:

Theorem 1 \(\delta_p^* \) is intrinsic, \(1 \leq p < \infty \).
Proof Suppose that K, L lie in a proper subspace of \mathbb{R}^d: without loss of generality, $K, L \subset \text{span}\{(x_1, x_2, \ldots, x_{d-\tilde{d}}, 0, 0, \ldots, 0)\}$. Let $\sigma: \mathbb{R}^d \to \mathbb{R}^{d-\tilde{d}}$ be the associated projection operator. For any $x \in \mathbb{R}^d$, one has $h_K(x) = h_{\sigma K}(x) = h_K(\sigma x)$, and the explicit form of $E|h_K(Z^{(d)}) - h_L(Z^{(d)})|^p$ gives

$$
\int_{z_1=-\infty}^{\infty} \cdots \int_{z_{d-\tilde{d}}=-\infty}^{\infty} |h_K(z) - h_L(z)|^p (2\pi)^{-d/2} \prod_{i=1}^{d-\tilde{d}} e^{-z_i^2/2} dz_1 \cdots dz_{d-\tilde{d}}
$$

$$
= \int_{z_1=-\infty}^{\infty} \cdots \int_{z_{d-\tilde{d}}=-\infty}^{\infty} |h_K(\sigma z) - h_L(\sigma z)|^p (2\pi)^{-\tilde{d}/2} \prod_{i=1}^{\tilde{d}} e^{-z_i^2/2} dz_1 \cdots dz_{\tilde{d}}
$$

$$
= E|h_{\sigma K}(Z^{(\tilde{d})}) - h_{\sigma L}(Z^{(\tilde{d})})|^p,
$$

so that $\delta_p^*(K, L) = \delta_p^*(\sigma K, \sigma L)$.

2 An Intrinsic Bound

We now give an intrinsic form of (1).

Theorem 2 For $p \geq 1$ and finite dimensional convex bodies K, L:

$$
\delta_p^*(K, L) \geq (1/4)\delta(K, L)e^{-\frac{1}{2\pi} \left(\frac{V_1(\text{conv}(K \cup L))}{\delta(K, L)}\right)^2}
$$

(3)

Proof For notational convenience, let $\delta = \delta(K, L)$ and $V_1 = V_1(\text{conv}(K \cup L))$. Referring to [31, Theorem 1], let M be the unique, positive solution to

$$
E(M - \delta Z)_+ = \frac{1}{\sqrt{2\pi}} V_1,
$$

(4)

which also satisfies $E|h_K(Z^{(d)}) - h_L(Z^{(d)})|^p \geq E[(\delta Z - M)_+]^p$. From (2), it follows that

$$
\delta_p^*(K, L) \geq (c_p E[(\delta Z - M)_+]^p)^{1/p}.
$$
Now
\[
E \left[(\delta Z - M)_+ \right]^p = \delta^p E \left[(Z - M/\delta)_+ \right]^p \\
= \delta^p \int_0^\infty \left(z - M/\delta \right)^p \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \\
= \delta^p \int_0^\infty \left(y - y^2 - (M/\delta)^2 \right) dy \\
\geq \delta^p e^{-2(M/\delta)^2} \int_0^\infty \left(y - y^2 \right) dy \\
\geq \delta^p e^{-2(M/\delta)^2} \frac{2}{2c_p}.
\]

Therefore,
\[
\delta^*_p(K, L) \geq \left[c_p \delta^p e^{-2(M/\delta)^2} \frac{2}{2c_p} \right]^{1/p} \geq (1/4)\delta e^{-2(M/\delta)^2}.
\]

From (4), one has \(M = E(M - \delta Z) \leq E(M - \delta Z)_+ = \frac{1}{\sqrt{2\pi}} V_1 \), which can then be substituted into (5). \(\square \)

Remarks

1. The interested reader may want to compare (3) with [31, eqn. 24].
2. Theorem 3 has an equivalent formulation for Gaussian processes. Suppose that \(K, L \) are convex bodies in Hilbert space and that \(\{X_t\}_{t \in K}, \{X_t\}_{t \in L} \) are corresponding isonormally indexed, mean–zero, bounded Gaussian processes. Then
\[
E\left| \sup_{t \in K} X_t - \sup_{t \in L} X_t \right| \geq (1/4)\delta e^{-B^2/\delta^2},
\]
where \(\delta \) is the Hausdorff distance between \(K \) and \(L \), and \(B = E\max\{\sup_{t \in K} X_t, \sup_{t \in L} X_t\} \).
3. It is possible to extend Theorem 2 to all so-called GB convex bodies in Hilbert space. In this case, \(Z^{(d)} \) is replaced in (3) by \(Z^{(\infty)} = (Z_1, Z_2, \ldots) \), an infinite sequence of independent standard Gaussian variables. One can
ask then for the metric space completion of the class of convex bodies in Hilbert space under δ_p^*. Unfortunately this turns out to have limited geometric significance. This can be seen using some facts from Gaussian processes: let $\{e_n\}_n$ be an orthonormal basis and $a_n = (\log(n+1))^{-1/2}$. Define $K_N = \text{conv}\{a_n e_n\}_1^N$. For any p, this is a Cauchy sequence, and the limit (in the completion) can be identified with $\text{conv}\{a_n e_n\}_1^\infty$. Now let $\tilde{K}_N = \text{conv}\{a_n e_n\}_1^\infty$. Each of these is also in the completion. Moreover, for any p, they form a Cauchy sequence whose limit is almost surely a (strictly) positive constant. But this cannot be a supremum $h_K(Z^{(\infty)})$ of Gaussian random variables for any K. Thus the completion goes beyond the natural geometric setting. An alternate approach is given in [32].

References

[1] Arnold, R. (1989). On the L_2-best approximation of a convex body by a moved convex body. *Monatsh. Math.* **108**, 277–293.

[2] Arnold, R. (1993). On the Aleksandrov–Fenchel inequality and the stability of the sphere. *Monatsh. Math.* **115**, 1–11.

[3] Artstein, Z. (1989). Piecewise linear approximation of set–valued maps. *J. Approx. Theory* **56**, 41–47.

[4] Böröczky, K. (2000). The error of polytopal approximation with respect to the symmetric difference metric and the L_p metric. *Israel J. Math.* **11**, 1–28.

[5] Böröczky, K. (2000). Polytopal approximation bounding the number of k-faces. *J. Approx. Theory* **102**, 263–285.

[6] Burger, T., and Schneider, R. (1993). On convex bodies close to ellipsoids. *J. Geom.* **47**, 16–22.

[7] Campi, S. (1998). Stability estimates for star bodies in terms of their intersection bodies. *Mathematika* **90**, 287–303.

[8] Diamond, P. (1990). A note on fuzzy star–shaped fuzzy sets. *Fuzzy Sets and Systems* **37**, 193–199.

[9] Diamond, P. (1991). Congruence classes of fuzzy sets form a Banach space. *J. Math. Anal. Appl.* **162**, 144–151.
[10] Diamond, P., and Kloeden, P. (1999). Metric spaces of fuzzy sets. *Fuzzy Sets and Systems* **100**, 63–71.

[11] Gardner, R.J., and Vassallo, S. (1998). Inequalities for dual isoperimetric deficits. *Mathematika* **45**, 269–285.

[12] Gardner, R.J., and Vassallo, S. (1999). Stability of inequalities in the dual Brunn-Minkowski theory. *J. Math. Anal. Appl.* **231**, 568–587.

[13] Goodey, P. (1998). Minkowski sums of projections of convex bodies. *Mathematika* **45**, 253–268.

[14] Goodey, P., and Groemer, H. (1990). Stability results for 1st order projection bodies. *Proc. Amer. Math. Soc.* **109**, 1103–1114.

[15] Groemer, H. (1988). Stability theorems for convex domains of constant width. *Canad. math. Bull.* **31**, 328–337.

[16] Groemer, H. (1990). Stability properties of geometric inequalities. *Amer. math. Monthly* **97**, 382–394.

[17] Groemer, H. (1993). On circumscribed cylinders of convex sets. *Geom. Dedicata* **46**, 331–338.

[18] Groemer, H. (1994). Stability results for convex–bodies and related spherical integral transformations. *Adv. Math.* **109**, 45–74.

[19] Groemer, H., and Schneider, R. (1991). Stability estimates for some geometric inequalities. *Bull. London Math. Soc.* **23**, 67–74.

[20] Kaleva, O. (1990). The Cauchy problem for fuzzy differential equations. *Fuzzy Sets and Systems* **35**, 389–396.

[21] Klain, D.A. (1996). Star valuations and dual mixed volumes. *Adv. Math.* **121**, 80–101.

[22] Ludwig, M. (1999). Asymptotic approximation of smooth convex bodies by general polytopes. *Mathematika* **46**, 103–125.

[23] McClure, D.E., and Vitale, R.A. (1975). Polygonal approximation of plane convex sets. *J. Math. Anal. Appl.* **51**, 326–358.

[24] McMullen, P. (1975). Non–linear angle–sum relations for polyhedral cones and polytopes. *Math. Proc. Cambridge Philos. Soc.* **78**, 247–261.
[25] Przesławski, K. (1996). Centres of convex sets in L_p metrics. *J. Approx. Theory* **85**, 288–296.

[26] Schneider, R. (1989). Stability in the Aleksandrov–Fenchel–Jessen inequality. *Mathematika* **36**, 50–59.

[27] Schneider, R. (1990). A stability estimate for the Aleksandrov–Fenchel inequality, with an application to mean–curvature. *Manuscripta Math.* **69**, 291–300.

[28] Schneider, R. (1993). *Convex Bodies: the Brunn-Minkowski Theory*. Camb. Univ. Press, New York.

[29] Spriesterbach, K.K. (1998). Determination of a convex body from the average of projections and stability results. *Math. Proc. Cambridge Philos. Soc.* **123**, 561–569.

[30] Vitale, R.A. (1985). L_p metrics for compact, convex sets. *J. Approx. Theory* **45**, 280–287.

[31] Vitale, R.A. (1993). A class of bounds for convex bodies in Hilbert space. *Set-Valued Anal.* **1**, 89–96.

[32] Vitale, R.A. (2001). Intrinsic volumes and Gaussian processes. *Adv. Appl. Prob.* **33**, 354-364.

Department of Statistics, U-4120
University of Connecticut
Storrs, CT 06269-4120 USA
r.vitale@uconn.edu