MOTIVIC SERRE INVARIANTS MODULO THE SQUARE OF $L - 1$

TAKEHIKO YASUDA

Abstract. Motivic Serre invariants defined by Loeser and Sebag are elements of the Grothendieck ring of varieties modulo $L - 1$. In this paper, we show that we can lift these invariants to modulo the square of $L - 1$ after tensoring the Grothendieck ring with Q, under certain assumptions.

1. Introduction

Let K be a complete discrete valuation field with a perfect residue field k. For a smooth projective irreducible K-variety X, Loeser and Sebag [9] defined the motivic Serre invariant $S(X)$. This invariant belongs to the ring $K_0(\text{Var}_k)/(L - 1)$, where $K_0(\text{Var}_k)$ is the Grothendieck ring of k-varieties and $L := [A^1_k]$, the class of an affine line in this ring. Let $K_0(\text{Var}_k)_Q := K_0(\text{Var}_k) \otimes Z Q$. In this paper, we construct, under a certain assumption, an invariant

$$\tilde{S}(X) \in K_0(\text{Var}_k)_Q/(L - 1)^2$$

which coincides with $S(X)$ in $K_0(\text{Var}_k)_Q/(L - 1)$.

Remark 1.1. Loeser and Sebag defined the motivic Serre invariant more generally for smooth quasi-compact separated rigid K-spaces. For the sake of simplicity, we consider only the case where X is a projective variety.

Let \mathcal{O} be the valuation ring of K. The assumption we will make is that the desingularization theorem and the weak factorization theorem hold, their precise statements are as follows:

Assumption 1.2. (1) (Desingularization) There exists a regular projective flat \mathcal{O}-scheme \mathcal{X} with the generic fiber $\mathcal{X}_K := \mathcal{X} \otimes_\mathcal{O} K = X$ such that the special fiber $\mathcal{X}_k := \mathcal{X} \otimes_\mathcal{O} k$ is a simple normal crossing divisor in \mathcal{X}. (We call such an \mathcal{X} a regular snc model of X.)

(2) (Weak factorization) Let \mathcal{X} and \mathcal{X}' be regular snc models of X. Then there exist finitely many regular snc models of X,

$$\mathcal{X}_0 = \mathcal{X}, \mathcal{X}_1, \ldots, \mathcal{X}_n = \mathcal{X}',$$
such that for every i, either the birational map $X_i \dasharrow X_{i+1}$ is the blowup along a regular center $Z \subset X_{i+1,k}$ which has normal crossing\footnote{That Z has normal crossings with $X_{i+1,k}$ means that for every closed point $x \in X_{i+1,k}$, there exist a regular system of parameters $x_1, \ldots, x_d \in O_{X_{i+1,k}}$ such that in an open neighborhood of x, the support of the special fiber $X_{i+1,k}$ is the zero locus of $\prod_{v \in V} x_v$ for some subset $V \subset \{1, \ldots, d\}$ and Z is the common zero locus of x_w, $w \in W$ for some $W \subset \{1, \ldots, d\}$.} with $X_{i+1,k}$ or its inverse $X_{i+1} \dasharrow X_i$ has the same description with $X_{i+1,k}$ replaced with $X_{i,k}$.

When X has dimension one, this assumption holds as is well-known. Indeed the above desingularization theorem in this case follows from the desingularization theorem for excellent surfaces by Abhyankar, Hironaka and Lipman (see [8]), while the weak factorization follows from the fact that every proper birational morphism of regular integral noetherian schemes of dimension two factors into a sequence of finitely many blowups at closed points. The last fact is well-known in the case of varieties over an algebraically closed field (for instance, [5, V, Cor. 5.4]) and is valid even in our situation as proved in [7, Th. 4.1] in a more general context. Assumption 1.2 holds also when k has characteristic zero. This follows from the recent generalizations to excellent schemes respectively by Temkin [12, 13] and by Abramovich and Temkin [2] of the Hironaka desingularization theorem and the weak factorization theorem of Abramovich, Karu, Matsuki and Włodarczyk [1].

Let X be a regular snc model of X, let X_{sm} be its \mathcal{O}-smooth locus and let $X_{\text{sm},k} := X_{\text{sm}} \otimes_{k} k$. Then X_{sm} is a weak Neron model of X in the sense of [3] and by definition,

$$S(X) = [X_{\text{sm},k}] \in K_0(\text{Var}_k)/(\mathbb{L} - 1).$$

To define our invariant $\tilde{S}(X)$, we also need information on the non-smooth locus of X. Let X_k be a divisor and write it as $X_k = \sum_{i \in I} a_i D_i$, where D_i are the irreducible components of X_k and a_i are the multiplicities of D_i in X respectively. For a subset $H \subset I$, we define

$$D_H^0 := \bigcap_{h \in H} D_h \setminus \bigcup_{i \in I \setminus H} D_i.$$

When $H = \{i\}$, we abbreviate it to D_i^0, and when $H = \{i, j\}$, to D_{ij}^0. These locally closed subsets give the stratification

$$X_k = \bigcup_{\emptyset \neq H \subset I} D_H^0$$

and the stratification

$$X_{\text{sm},k} = \bigcup_{i \in I : a_i = 1} D_i^0.$$

From the second stratification, we see

$$S(X) = \sum_{i \in I : a_i = 1} [D_i^0] \in K_0(\text{Var}_k)/(\mathbb{L} - 1).$$

Loeser and Sebag proved in the paper cited above that this is independent of the model X and depends only on X.
Definition 1.3. For a regular snc model \mathcal{X} of X, we define
$$
\tilde{S}(\mathcal{X}) := \sum_{i \in I: a_i = 1} [D_i^\circ] + \sum_{\{i,j\} \subset I: (a_i, a_j) = 1} \frac{1}{a_i a_j} [D_{ij}^\circ](1 - L)
$$
as an element of $K_0(\text{Var}_k)_\mathbb{Q}/(L - 1)^2$. Here (a, b) denotes the greatest common divisor of a and b.

Obviously, the two invariants $S(X)$ and $\tilde{S}(\mathcal{X})$ coincide when they are sent to $K_0(\text{Var}_k)_\mathbb{Q}/(L - 1)$ by the natural maps.

The following is our main theorem:

Theorem 1.4. Let X be a smooth projective K-variety. Under Assumption 1.2, the invariant $\tilde{S}(\mathcal{X})$ is independent of the chosen regular snc model \mathcal{X} and depends only on X.

The theorem allows us to think of $\tilde{S}(\mathcal{X})$ as an invariant of X and denote it by $\tilde{S}(X)$, which is what was mentioned at the beginning of this Introduction.

2. Preparatory reductions

We generalize the invariant $\tilde{S}(\mathcal{X})$ as follows. Let \mathcal{X} be a regular flat \mathcal{O}-scheme of finite type such that \mathcal{X}_K is smooth and $\mathcal{X}_k = \bigcup_{i \in I} D_i$ is a simple normal crossing divisor in \mathcal{X}. (We no longer suppose that \mathcal{X} or \mathcal{X}_K is projective.) For a constructible subset $C \subset \mathcal{X}_k$, we define
$$
\tilde{S}(\mathcal{X}, C) := \sum_{i \in I: a_i = 1} [D_i^\circ \cap C] + \sum_{\{i,j\} \subset I: (a_i, a_j) = 1} \frac{1}{a_i a_j} [D_{ij}^\circ \cap C](1 - L)
$$
as an element of $K_0(\text{Var}_k)_\mathbb{Q}/(L - 1)^2$.

Let $f: Y \to \mathcal{X}$ be the blowup along a smooth irreducible center $Z \subset \mathcal{X}_k$ which has normal crossings with \mathcal{X}_k. Then, Y is an \mathcal{O}-scheme satisfying the same conditions as \mathcal{X} does and we can similarly define $\tilde{S}(Y, C')$ for a constructible subset $C' \subset Y_k$.

Theorem 1.4 follows from:

Proposition 2.1. Let \mathcal{X} be as above. For any constructible subset $C \subset \mathcal{X}_k$, we have
$$
\tilde{S}(\mathcal{X}, C) = \tilde{S}(Y, f^{-1}(C)).
$$

Indeed, Theorem 1.4 is a direct consequence of this proposition with $C = \mathcal{X}_k$ and Assumption 1.2.

In what follows, we will prove this proposition. First we will reduce it to the local situation by using:

Lemma 2.2. (1) If C is the disjoint union $\bigcup_{s=1}^l C_s$ of constructible subsets C_s, then
$$
\tilde{S}(\mathcal{X}, C) = \sum_{s=1}^l \tilde{S}(\mathcal{X}, C_s).
$$
Proof. The first assertion is obvious. To show the second one, we first claim that there exists a stratification \(C \) in some \(U \), then construct \(C \). Indeed we can take \(C_1 \) applying the same procedure to \(C \). From the first assertion of the above lemma, since we obviously have \(X \) and that the special fiber \(\{ \} \) we may also assume that \(k \). We denote \(\tilde{S}(\mathcal{X}, C) = \tilde{S}(\mathcal{Y}, f^{-1}(C)) \).

(2) Let \(\mathcal{X} = \bigcup_{\lambda \in \Lambda} U_{\lambda} \) be an open covering. Suppose that for every constructible subset \(C \subset \mathcal{X} \) and for every \(\lambda \in \Lambda \),

\[
\tilde{S}(\mathcal{X}, C \cap U_{\lambda}) = \tilde{S}(\mathcal{Y}, f^{-1}(C \cap U_{\lambda})).
\]

Then, for every constructible subset \(C \subset \mathcal{X} \), we have

\[
\tilde{S}(\mathcal{X}, C) = \tilde{S}(\mathcal{Y}, f^{-1}(C)).
\]

\[\square\]

Let \(x \in \mathcal{X}_k \) be a closed point and take a local coordinate system \(x_1, \ldots, x_d \in \mathcal{O}_{\mathcal{X}_k} \). By shrinking \(\mathcal{X} \) if necessary, we may suppose that \(x_1, \ldots, x_d \) are global sections of \(\mathcal{O}_X \) and that the special fiber \(\mathcal{X}_k \) is the zero locus of \(\prod_{i=1}^{d'} x_i, d' \leq d \) (thus we identify \(I \) with \(\{1, \ldots, d'\} \)) and \(Z \) is the common zero locus of \(x_j, j \in J \) for some subset \(J \subset \{1, \ldots, d\} \). From the first assertion of the above lemma, since we obviously have

\[
\tilde{S}(\mathcal{X}, C \setminus Z) = \tilde{S}(\mathcal{Y}, f^{-1}(C \setminus Z)),
\]

we may also assume that

\[C \subset Z.\]

(2.1)

In a few following sections, we will prove Proposition \(\ref{2.1} \) in this situation, discussing separately in the cases \((\sharp I =) d' = 1, d' = 2 \) and \(d' \geq 3 \). Before that, we prepare some notation and a lemma.

Notation 2.3. For \(i \in I \), let \(D_i \) be the prime divisor of \(\mathcal{X} \) given by \(x_i = 0 \) and let \(E_i \subset \mathcal{Y}_k \) be its strict transform. Let \(E_0 \subset \mathcal{Y}_k \) be the exceptional divisor of the blowup \(f: \mathcal{Y} \to \mathcal{X} \). We denote \(f^{-1}(C) \) by \(\tilde{C} \).

The multiplicity of \(E_i \) in \(\mathcal{Y}_k \) is \(a_i \) for \(i \in I \) and

\[a_0 := \sum_{Z \subset D_i} a_i \]

for \(i = 0 \). We will use the following lemma several times.

Lemma 2.4. For \(i \in I \setminus J \), if \(C \subset Z \cap D_i \), then we have \(\tilde{C} \subset E_i \).

Proof. The morphism \(\tilde{C} \to C \) is a \(\mathbb{P}^{d-1} \)-bundle. The divisor \(E_i \) is the blowup of \(D_i \) along \(Z \cap D_i \), which has codimension \(\sharp J \) in \(D_i \). It follows that \(E_i \cap \tilde{C} \to C \) is also a \(\mathbb{P}^{d-1} \)-bundle. Hence \(\tilde{C} \) and \(E_i \cap \tilde{C} \) coincide and the lemma follows. \[\square\]
3. The case \(d' = 1 \).

We now begin the proof of Proposition 2.1 in the situation described just before Notation 2.3. In this section, we consider the case \(d' = 1 \).

Since \(Z \subset X \), recalling \(I = \{1, \ldots, d'\} \), we see that \(1 \in J \). Then

\[
\tilde{S}(\mathcal{X}, C) = \begin{cases}
[C] & (a_1 = 1) \\
0 & \text{(otherwise)}
\end{cases}.
\]

From (2.2), \(a_0 = a_1 \), and \((a_0, a_1) = a_1 \). Hence, if \(a_1 \neq 1 \), then

\[
\tilde{S}(\mathcal{Y}, \tilde{C}) = 0 = \tilde{S}(\mathcal{X}, C).
\]

If \(a_1 = 1 \), then recalling that \(C \subset Z \), we see that \(\tilde{C} \subset E_0 = f^{-1}(Z) \) and that

\[
\tilde{S}(\mathcal{Y}, \tilde{C}) = [\tilde{C} \setminus E_1] + [E_1 \cap \tilde{C}](1 - L).
\]

To compute the right hand side of this equality, we first observe that \(\tilde{C} \) is a \(\mathbb{P}^{d-1} \)-bundle over \(C \). The divisor \(E_1 \) is the blowup of \(D_1 \) along \(Z \). Therefore \(E_1 \cap \tilde{C} \) is a \(\mathbb{P}^{d-2} \)-bundle over \(C \). Hence

\[
\tilde{S}(\mathcal{Y}, \tilde{C}) = [\tilde{C} \setminus E_1] + [E_1 \cap \tilde{C}](1 - L).
\]

We conclude that if \(d' = 1 \), then \(\tilde{S}(\mathcal{X}, C) = \tilde{S}(\mathcal{Y}, \tilde{C}) \).

4. The case \(d' = 2 \).

Next we consider the case \(d' = 2 \). We have

\[
C = (C \cap D_1^2) \sqcup (C \cap D_2^2) \sqcup (C \cap D_{12}^2).
\]

From the case \(I = 1 \) treated in the last section, we have

\[
\tilde{S}(\mathcal{X}, C \cap D_i^\circ) = \tilde{S}(\mathcal{Y}, f^{-1}(C \cap D_i^\circ)) \quad (i = 1, 2).
\]

Therefore, from Lemma 2.2 replacing \(C \) with \(C \cap D_{12}^\circ \), we may suppose that

\[
(4.1) \quad C \subset D_{12}^\circ = D_1 \cap D_2.
\]

Then we have

\[
\tilde{S}(\mathcal{X}, C) = \begin{cases}
\frac{1}{a_1 a_2}[C](1 - L) & ((a_1, a_2) = 1) \\
0 & \text{(otherwise)}
\end{cases}.
\]

We next compute \(\tilde{S}(\mathcal{Y}, \tilde{C}) \) separately in the case \(Z \subset D_1 \cap D_2 \) and in the case \(Z \not\subset D_1 \cap D_2 \).
In the former case, we have \(a_0 = a_1 + a_2 \neq 1 \) and
\[
\tilde{S}(\mathcal{Y}, \tilde{C}) = \sum_{i \in \{1,2\}, (a_0, a_i) = 1} \frac{1}{a_0 a_i} [\tilde{C} \cap E_{0i}] (1 - \mathbb{L}).
\]

If \((a_1, a_2) \neq 1\), then \((a_0, a_1) \neq 1\) and \((a_0, a_2) \neq 1\), which show \(\tilde{S}(\mathcal{Y}, \tilde{C}) = 0 = \tilde{S}(\mathcal{X}, C) \).

If \((a_1, a_2) = 1\), then we have \((a_0, a_1) = (a_0, a_2) = 1\), and
\[
\tilde{S}(\mathcal{Y}, \tilde{C}) = \sum_{i = 1}^{2} \frac{1}{a_0 a_i} [\tilde{C} \cap E_{0i}] (1 - \mathbb{L}).
\]

Since \(E_1 \cap \tilde{C} = E_0 \cap E_1 \cap \tilde{C} \rightarrow C \) is a trivial \(\mathbb{P}^{d-2}_J \)-bundle and \(E_1 \cap E_2 \cap \tilde{C} \rightarrow C \) is a hyperplane in it, \(E_0 \cap \tilde{C} \rightarrow C \) is a trivial \(\mathbb{A}^{d-2}_J \)-bundle. (Note that if \(J = 2 \), then \(E_1 \cap E_2 = \emptyset \) and \(E_1 \cap \tilde{C} = E_0 \cap \tilde{C} \rightarrow C \) is an isomorphism and still a trivial \(\mathbb{A}^{d-2}_J \)-bundle.) Similarly for \(E_0 \cap \tilde{C} \rightarrow C \). Hence
\[
\tilde{S}(\mathcal{Y}, \tilde{C}) = \left(\frac{1}{(a_1 + a_2)a_1} + \frac{1}{(a_1 + a_2)a_2} \right) [C] \mathbb{L}^{d-2}_J (1 - \mathbb{L})
\]
\[
= \frac{1}{a_1 a_2} [C] \mathbb{L}^{d-2}_J (1 - \mathbb{L})
\]
\[
= \frac{\star}{a_1 a_2} [C] (1 - \mathbb{L})
\]
\[
= \tilde{S}(\mathcal{X}, C).
\]

Here the equality marked with \(\star \) follows from
\[
\mathbb{L}(1 - \mathbb{L}) = (\mathbb{L} - 1)(1 - \mathbb{L}) + 1 - \mathbb{L} = 1 - \mathbb{L} \mod (\mathbb{L} - 1)^2.
\]

In the case \(Z \not\subset D_1 \cap D_2 \), we have either \(Z \subset D_1 \) or \(Z \subset D_2 \). Since the two cases are similar, we only discuss the former case. Since \(2 \in I \setminus J \), from assumptions \((2.1)\) and \((4.1)\) and Lemma \((2.4)\) we have \(\tilde{C} \subset E_0 \cap E_2 \). Since \(a_0 = a_1 \), \(\tilde{C} \rightarrow C \) is a \(\mathbb{P}^{d-1}_J \)-bundle and \(\tilde{C} \cap E_1 \rightarrow C \) is a \(\mathbb{P}^{d-2}_J \)-bundle, we have
\[
\tilde{S}(\mathcal{Y}, \tilde{C}) = \frac{1}{a_0 a_2} [\tilde{C} \cap E_{02}] (1 - \mathbb{L})
\]
\[
= \frac{1}{a_1 a_2} [\tilde{C} \setminus E_1] (1 - \mathbb{L})
\]
\[
= \frac{1}{a_1 a_2} [C] [\mathbb{P}^{d-1}_J \setminus \mathbb{P}^{d-2}_J] (1 - \mathbb{L})
\]
\[
= \frac{1}{a_1 a_2} [C] \mathbb{L}^{d-1}_J (1 - \mathbb{L})
\]
\[
= \frac{1}{a_1 a_2} [C] (1 - \mathbb{L})
\]
\[
= \tilde{S}(\mathcal{X}, C).
\]

We have completed the proof that \(\tilde{S}(\mathcal{Y}, \tilde{C}) = \tilde{S}(\mathcal{X}, C) \), when \(d' = 2 \).
5. The case $d' \geq 3$.

As in the last section, by induction on $\sharp I$, we may suppose that

\[(5.1)\quad C \subset \bigcap_{i \in I} D_i.\]

Then $\tilde{S}(\mathcal{X}, C) = 0$. On the other hand, $\tilde{S}(\mathcal{Y}, \tilde{C})$ is a \mathbb{Q}-linear combination of

\[A_i := \left[\tilde{C} \cap E_{0i}^0\right](1 - L), \quad i \in I,\]

and

\[B := \delta_{1,a_0} \left[\tilde{C} \cap E_0^0\right],\]

with δ_{1,a_0} being the Kronecker delta. Thus it suffices to show that $A_i = 0$, $i \in I$ and that $B = 0$.

We first show that $B = 0$. If $\sharp(I \cap J) \geq 2$, then $a_0 = \sum_{i \in I \cap J} a_i > 1$.

Hence $B = 0$. If $\sharp(I \cap J) < 2$, then $I \setminus J$ is non-empty. Assumptions (2.1) and (5.1) and Lemma 2.4 show that $\tilde{C} \cap E_0^0$ is empty, hence $B = 0$.

Next we show that $A_i = 0$. If $\sharp(I \setminus J) \geq 2$, then from Lemma 2.4 for every $i \in I$, there exists $i' \in I \setminus \{i\}$ such that $\tilde{C} \subseteq E_{i'}$. Hence $\tilde{C} \cap E_{0i}^0 = \emptyset$ and $A_i = 0$.

If $\sharp(I \setminus J) = 1$, then by the same reasoning as above, $A_i = 0$ for $i \in I \cap J$. For $i \in I \setminus J$,

\[\tilde{C} \cap E_{0i}^0 = \mathbb{P}^{d-1}_C \setminus \bigcup_{j \in I \cap J} H_j,\]

where \mathbb{P}^{d-1}_C denotes the trivial \mathbb{P}^{d-1}-bundle $\mathbb{P}^{d-1}_C \times C$ over C and H_j are coordinate hyperplanes of \mathbb{P}^{d-1}_C. Since $\sharp(I \cap J) \geq 2$,

\[A_i = [C][G^m_{(I \cap J)} - 1] \times A^{d-1}_{(I \cap J)} \cap (1 - L) = -[C][L]^{I_{(I \cap J)}}(L - 1)^{(I \cap J)} = 0 \mod (L - 1)^2.\]

If $\sharp(I \setminus J) = 0$, equivalently if $Z \subset D_i$ for every $i \in I$, then for every $i \in I$,

\[\tilde{C} \cap E_{0i}^0 = \mathbb{P}^{d-2}_C \setminus \bigcup_{j \in I \setminus \{i\}} H_j,\]

where H_j are coordinate hyperplanes of \mathbb{P}^{d-2}_C. We have

\[A_i = [C][G^m_{(I - 1)} - 1] \times A^{d-1}_{(I - 1)} \cap (1 - L) = -[C][L]^{I_{(I - 1)}}(L - 1)^{(I - 1)} = 0 \mod (L - 1)^2.\]

We thus have proved that $\tilde{S}(\mathcal{X}, C) = \tilde{S}(\mathcal{Y}, \tilde{C}) = 0$ also when $d' \geq 3$, which completes the proofs of Proposition 2.1 and Theorem 1.4.
6. Closing Comments

It is natural to try to refine \(\tilde{S}(X) \) further by lifting it to \(K_0(\text{Var}_k)_{Q}/(L - 1)^n \) for \(n > 2 \) and by adding extra terms of the form

\[
c[D'_H](1 - L)^{2H - 1}
\]

with \(c \in Q, \ H \subset I, \ H \geq 3 \). However the author did not manage to find such a refinement.

The original invariant considered by Serre \cite{11} and denoted by \(i(X) \) was defined for a \(K \)-analytic manifold when the residue field \(k \) is finite, and lives in \(Z/(\sharp k - 1) \). There seems to be no counterpart of \(\tilde{S}(X) \) in this context, at least in a naïve way, because \(Z \otimes Z Q = Q \) is a field and the ideal generated by \((\sharp k - 1)^2 \) in it is the entire field.

The author has no convincing explanation of the meaning of fractional coefficients appearing in the definition of \(S(X) \). However, as a possibly related work, we note that also Denef and Loeser \cite{4} previously considered motivic invariants with coefficients in \(Q \).

Nicaise and Sebag \cite[Th. 5.4]{10} gave a nice interpretation of the Euler characteristic representation of \(S(X) \) in terms of cohomology of the generic fiber (see also \cite{6} for another proof). It would be interesting to look for a similar interpretation of representations of \(\tilde{S}(X) \) or \(S(X) \) itself.

References

[1] Dan Abramovich, Kalle Karu, Kenji Matsuki, and Jarosław Włodarczyk. Torification and factorization of birational maps. \textit{J. Amer. Math. Soc.}, 15(3):531–572 (electronic), 2002.

[2] Dan Abramovich and Michael Temkin. Functorial factorization of birational maps for qe schemes in characteristic 0. \textit{arXiv:1606.08414}.

[3] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. \textit{Néron models}, volume 21 of \textit{Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]}. Springer-Verlag, Berlin, 1990.

[4] Jan Denef and François Loeser. Definable sets, motives and \(p \)-adic integrals. \textit{J. Amer. Math. Soc.}, 14(2):429–469 (electronic), 2001.

[5] Robin Hartshorne. \textit{Algebraic geometry}. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.

[6] Ehud Hrushovski and François Loeser. Monodromy and the Lefschetz fixed point formula. \textit{Ann. Sci. Éc. Norm. Supér. (4)}, 48(2):313–349, 2015.

[7] Joseph Lipman. Rational singularities, with applications to algebraic surfaces and unique factorization. \textit{Inst. Hautes Études Sci. Publ. Math.}, (36):195–279, 1969.

[8] Joseph Lipman. Desingularization of two-dimensional schemes. \textit{Ann. Math. (2)}, 107(1):151–207, 1978.

[9] François Loeser and Julien Sebag. Motivic integration on smooth rigid varieties and invariants of degenerations. \textit{Duke Math. J.}, 119(2):315–344, 2003.

[10] Johannes Nicaise and Julien Sebag. Motivic Serre invariants, ramification, and the analytic Milnor fiber. \textit{Invent. Math.}, 168(1):133–173, 2007.

[11] Jean-Pierre Serre. Classification des variétés analytiques \(p \)-adiques compactes. \textit{Topology}, 3:409–412, 1965.

[12] Michael Temkin. Desingularization of quasi-excellent schemes in characteristic zero. \textit{Adv. Math.}, 219(2):488–522, 2008.

[13] Michael Temkin. Functorial desingularization of quasi-excellent schemes in characteristic zero: the nonembedded case. \textit{Duke Math. J.}, 161(11):2207–2254, 2012.
Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: takehikoyasuda@math.sci.osaka-u.ac.jp