Meta-analysis of Failure and Survival Rate of Implant-supported Single Crowns, Fixed Partial Denture, and Implant Tooth-supported Prostheses

B C Muddugangadhar¹, G S Amarnath², Radhika Sonika³, Pratik S Chheda⁴, Ashu Garg⁵

Contributors:
¹Reader, Department of Prosthodontics including Crown and Bridge and Implantology, M R Ambedkar Dental College and Hospital, Bengaluru, Karnataka, India; ²Professor and Head, Department of Prosthodontics including Crown and Bridge and Implantology, M R Ambedkar Dental College and Hospital, Bengaluru, Karnataka, India; ³Post Graduate Student, Department of Prosthodontics including Crown and Bridge and Implantology, M R Ambedkar Dental College and Hospital, Bengaluru, Karnataka, India; ⁴Senior Lecturer, Department of Prosthodontics including Crown and Bridge and Implantology, Guardian College of Dental Sciences, Ambernath, Thane, Mumbai, India.

Correspondence:
Dr. Sonika R. Department of Prosthodontics including Crown and Bridge and Implantology, M R Ambedkar Dental College and Hospital, Bengaluru, Karnataka, India. Phone: (0)9900409216, Email: sonika.radhika@gmail.com

How to cite the article:
Muddugangadhar BC, Amarnath GS, Sonika R, Chheda PS, Garg A. Meta-analysis of failure and survival rate of implant-supported single crowns, fixed partial denture and implant tooth-supported prostheses. J Int Oral Health 2015;7(9):11-17.

Abstract:
Background: Dental implants have become the most viable option for rehabilitation. Although, many studies report the success of these reconstructions using implants, a cumulative data about the various studies and the failure rate still remain unaddressed. Therefore, the purpose of this systematic review was to analyze these data and to derive the cumulative survival rate of different implant-supported prostheses.

Materials and Methods: Manual searches followed by a MEDLINE search were conducted to select prospective and retrospective cohort studies on single crowns (SCs), fixed partial denture (FPD), and tooth implant connected prostheses with a mean follow-up time of minimum of 5 years. Random-effects Poisson’s regression models have been used to obtain summary estimates for implant failure and survival rates.

Results: Data were extracted from the final selected 63 studies. In a meta-analysis of these studies, the survival rate of SCs supported by implants (95% CI) was 96.363%, for FPDs was 94.525% and implant tooth-supported prostheses was 91.27% after 5 years of function. The cumulative failure rate per 100 FPD years of the SCs, FPDs, and implant tooth-supported prostheses were 0.684, 0.881, and 1.514, respectively.

Conclusion: The study concludes high survival rates for implant-supported SCs followed by implant-supported FPDs can be expected over an observation period of 5 years. However, tooth implant-supported prostheses can be provided if there are certain limitations prohibiting the completely implant-supported prostheses.

Key Words: Case-control, cohort, failure, implants, survival

Introduction
The use of dental implants in the rehabilitation of partially edentulous patients has become a well-established and accepted contemporary clinical method with predictable long-term success.¹ The majority of studies examining implant success have emphasized the integrity of implant-bone support and the quality of osseointegration typically evaluated using parameters such as implant mobility, inflammation, infection around the implant site, and peri-implant bone loss. Predictable results are believed to depend on good initial implant stability, controlled loading conditions, and an osseo-conductive implant surface.² As implant therapy evolves and becomes the standard of care, and the population seeks out alternatives to traditional fixed partial dentures (FPDs), success will be dependent on more than simply osseointegration.

Restorative therapy using dental implants is considered a safe and predictable treatment procedure in edentulous and partially dentate patients. These therapies range from cantilevers, resin-bonded bridges, FPDs to implant-supported SCs, and bridges.²⁶ Changes in the restorative treatment patterns and the introduction of new and improved restorative materials and techniques have greatly influenced the longevity and esthetic outcomes.⁶ The focus of implant research is shifting from descriptions of clinical success to the identification of factors associated with failure.⁷

To date, most studies evaluating risk factors for failure are flawed in terms of their statistical analysis. Many researchers assessed survival in a binary manner (yes or no) (Jemt et al., 1996; Lazzara et al., 1996; Rosenquist and Grenthe, 1996; Cooper et al., 1999; Chaffee et al., 2002) or applied statistical methods assuming that the implant observations were independent of each other (Wheeler, 1996; Buser et al., 1997; Brocard et al., 2000; Testori et al., 2001). Prospective and longitudinal studies related to partial edentulous indicate cumulative survival rates ranging from 89% to 95% and cumulative survival rates ranging from 93.6% to 96.7%, 3–7 years after loading.³ In addition, for a meaningful interpretation of the survival rate, a minimum of 5-year follow-up would be required.⁹

Recent systematic reviews have evaluated the survival of tooth- and implant-supported reconstructions of different...
designs and described the incidence of biological and technical complications after a 5-year period.9,11 The survival of FPD with two different designs ranged from 92.5% for cantilever FPDs to 93.8% for conventional FPDs in this study.6,9

However, data toward the failures occurring in various implant-supported fixed prosthesis like single crowns (SCs), bridges, as well as implant and tooth connected prostheses still have not been evaluated.

Although, many studies report the success of these reconstructions using implants, a cumulative data about the various studies and the failure rate still remain unaddressed. Therefore, the purpose of this systematic review was to analyze these data and to derive the cumulative survival rate of different implant-supported prosthesis.

Materials and Methods

Search strategy and study selection

A MEDLINE search from 1986 up to and including 2015 was conducted for publications in Journals using the following search terms and limited to human trials: “implants” and “survival,” “implants” and “survival rate,” “implants” and “survival analysis,” “implants” and “cohort studies,” “implants” and “case-control studies,” “implants” and “controlled clinical trials,” “implants” and “randomized-controlled clinical trials,” “implants” and “complications,” “implants” and “clinical,” “implants” and “longitudinal,” “implants” and “prospective” and “implants” and “retrospective.” Additional search strategies included the terms “single tooth,” “failure,” “peri-implantitis,” “fracture,” “complication,” “technical complication,” “biological complication,” “screw loosening” and “maintenance.”

Full-text articles were analyzed, and the related articles were also searched from the bibliography. Furthermore, following journals from 1986 to 2015: Australian Dental Journal, British Journal of Oral and Maxillofacial Surgery, Clinical Implant Dentistry and Related Research, Clinical Oral Implants Research, European Journal of Oral Sciences, International Dental Journal, International Journal of Oral and Maxillofacial Implants, International Journal of Periodontics and Restorative Dentistry, International Journal of Prosthodontics, Journal of Prosthetic Dentistry, Journal of Oral and Maxillofacial Implants, Journal de Parodontologie, Journal of Clinical Periodontology, Journal of Dental Research, Journal of Oral Implantology, Journal of Oral Rehabilitation, Journal of Periodontology, Quintessence International, Swedish Dental Journal, Schweizerische Monatsschrift Zahnmedizin.

Inclusion criteria

This systematic review was based on prospective or retrospective cohort studies. The inclusion criteria for study selection were:

- The studies had a minimum of 5-year follow-up
- The patients included had been examined clinically and/or radiographically at the follow-up visit
- Publications that reported findings for both implant-supported FPDs and implant and tooth-supported FPDs were also included.

Selection of studies

The articles obtained were first scrutinized by two reviewers, and any disagreement was resolved by discussion. Data were extracted individually by the reviewers. Any discrepancy in the records by the two reviewers was resolved by discussion and re-evaluation.

Excluded studies

The main reasons for exclusion were:

- Mean observation period of less than 5 years
- No mention of type of reconstructions or totally/partially edentulous patients
- Surveys, case reports and reviews.

Data extraction

Of the 63 studies included, information on the survival and failure rate of the reconstructions was retrieved.

From the included studies, the number of failures for all of the three types of reconstructions was obtained and the total exposure time was calculated.

Statistical analysis

Failure rates were calculated by dividing the number of failures in the numerator by the total exposure time obtained in the denominator, which was calculated by taking the sum of:

(1) Exposure time of implants that survived the total follow-up time
(2) Exposure time up to the failure of implants lost during the observation time
(3) Exposure time up to the end of follow-up time for implants that did not complete the observation period due to any reason.

The total number of failures was considered to be Poisson distributed and Poisson’s regression with a logarithmic link function was used (Kirkwood and Sterne, 2003a). Standard errors were calculated to obtain 95% confidence intervals (CIs) of the summary estimates of the failure rates.

To assess heterogeneity of the study-specific event rates, Cochran’s Q and I\(^2\) statistics was done and also the P-value was calculated. If the P<0.05, indicating heterogeneity, random-effects Poisson’s regression was used to obtain a summary estimate of the failure rates. Survival proportions were calculated by the relationship between failure rate and survival function.
All analysis were done using MedCalc Statistical Software version 15.4.

Result

Study characteristics

Nearly 63 studies included in this systematic review ranged from 1988 up to 2015. The articles on implant-supported SCs had 2004 as a median year of publication (Table 1).

The majority of studies on implant-supported reconstructions (58 out of 73) were prospective in nature. The highest proportion of studies was found for the implant-supported SCs (Table 2).

Survival

Survival was defined as the prostheses remaining *in situ* over the observation period.

Table 1: Review of the studies included in the meta-analysis.

Type of reconstruction	Year of publication	No. of publication	Study design	No.	Median	Follow-up time	Median
SCs	1996-2014	33	Prospective	28	5	5-10	5
FPDs	1994-2015	26	Prospective	21	5	5-15	5
Implant tooth	1988-2007	14	Prospective	09	5	5-10	6.75

SCs: Single crowns, FPDs: Fixed partial dentures

Table 2: Failure and survival rate of implant supported SCs.

Study	Year	Total FPDs	Mean follow-up	Number of failures	Total exposure time	Estimated failure rate (per 100 years)	Estimated survival rate
Boicelli	2014	54	5	1	Na	0.37	98.15
Zembic	2012	28	3	5	Na	2.14	89.29
Felice	2014	116	5	17	572	2.97	85.59
Visser	2009	92	5	1	458	0.22	98.91
Calandriello	2011	40	5	1	199.2	0.50	97.50
Romeo	2014	12	5	0	60	0	100
Wagenberg	2006	401	5.9	18	2266	0.79	95.51
Bernstein	2005	39	5	0	190	0	100
Elkhoury	2005	39	5	0	195	0	100
De Boever	2005	10	5	1	50	2.00	90
Wennstrom	2005	45	5	1	208	0.48	97.78
Levin	2005	30	5.1	2	153	1.31	93.33
Taylor	2004	39	5	1	190	0.53	97.44
Bernard	2004	32	5	0	158	0	100
Romeo	2004	123	5.8	7	711	0.99	94.31
Bianchi	2004	116	5.2	0	594	0	100
Godfredsen	2004	20	5	0	100	0	100
Anderson	2002	8	5	0	40	0	100
Haas	2002	76	5.5	5	407	1.23	93.42
Gibbard	2002	49	5.9	1	287	0.35	97.96
Mericse Stern	2001	26	6.5	2	169	1.18	92.31
Palmer	2000	15	5	0	70	0	100
Vigolo	2000	52	5	3	245	1.22	94.23
Thilander	1999	15	8	0	120	0	100
Poluzzi	1999	30	5.3	1	158	0.63	96.67
Andersson	1998	38	5	0	182	0	100
Andersson	1998	65	5	1	305	0.33	98.46
Scheller	1998	99	5	3	411	0.73	96.97
Henry	1996	107	5	3	477	0.63	97.20
Buser	1996	5	5	0	25	0	100
Jent	2005	10	5	0	48	0	100
Boever	2005	42	10	0	420	0	100
Braeger	2005	69	10	5	672	0.74	92.75

Total: Fixed effects = 10550; Random effects = 10550

Cohran’s Q (df) = 13.52-62.26; df = 5; p = 0.0054; 95% CI for I² = 13.52-62.26; df = 5; I² = 32; 95% CI for I² = 57.38

CI: Confidence interval
Implant-supported SC
Of 1833 SCs, 72 were lost, and the study specific survival varied between 89.29% and 100%. In meta-analysis, the annual failure rate was estimated at 0.684 (0.472-0.936) per 100 FPD years (Graph 1) translating into the survival of implant-supported FPDs of 96.363 (Table 3 and Graph 2).

Implant-supported FPDs
About 26 studies provided data on the survival of solely implant-supported FPDs (Table 1). In meta-analysis, the annual failure rate was estimated at 0.881 (0.480-1.402) per 100 FPD years (Graph 3) translating into the survival of implant-supported FPDs of 94.525 (Table 3 and Graph 4).

Combined tooth-implant-supported FPDs
Fourteen studies provided results on the survival of combined tooth-implant-supported FPDs (Table 4). In this meta-analysis, the annual failure rate (Graph 5) was estimated at 1.514 (0.79-2.45) per 100 FPD years, translating into the survival of tooth-implant-supported FPDs (Graph 6) of 91.27 (85.93-95.433).

Comparison of survival rates
After the total follow-up, the annual failure rates of different types of reconstructions ranged from 0 to 8.3, and the estimated survival rate ranged from 61.017% to 100%.
Table 3: Failure and survival rate of implant-supported FPD.

Study	Year	Total FPDs	Mean follow-up	Number of failures	Total exposure time	Estimated failure rate (per 100 years)	Estimated survival rate
Dedigi	2005	9	7	1	63	1.59	88.889
Becker	2004	51	5.1	0	260	0	100
Wennstrom	2004	56	5	3	280	1.07	94.643
Preiskel	2004	78	6.6	2	514	0.39	97.436
Andersson	2003	36	5	1	180	0.56	97.222
Jent	2002	63	5	3	315	0.95	95.238
Naert	2002	409	5.5	15	2249	0.67	96.333
Gottfredsen	2001	52	5	2	260	0.77	96.154
Bragger	2001	40	5	1	200	0.50	97.5
Mengel	2001	7	5	0	35	0	100
Behneke	2000	68	5.4	1	367	0.27	98.529
Hosny	2000	18	6.5	0	117	0	100
Otrop	1999	68	5	3	340	0.88	95.588
Wennerberg	1999	133	5	2	665	0.30	98.496
Wyatt	1998	97	5.4	16	523	3.06	83.505
Olsson	1995	23	5	4	115	3.48	82.609
Leikhom	1994	197	5	13	985	1.32	93.401
Cecchinato	2008	115	5	3	575	0.52	97.391
Larson	2010	25	5	0	125	0	100
Galluchi	2009	45	5	2	225	0.89	95.556
Blanes	2007	192	6	0	1152	0	100
Derks	2015	118	9	46	1062	4.33	61.017
Bragger	2005	33	10	2	330	0.61	93.939
Leikhom	1999	163	10	21	1630	1.29	87.317
Gunne	1999	23	10	4	230	1.74	82.609
Nielsen	2011	221	15	0	3315	0	100

Fixed effects: 16112, 0.643 (0.525-0.778), 95.265

Random effects: 16112, 0.881 (0.480-1.402), 94.525

Cohran's Q: 213.5421

df: 25

P: <0.0001

I²: 0.8829

95% CI for I²: 84.08-91.39

SCs: Single crowns, FPDs: Fixed partial dentures, CI: Confidence interval

Table 4: Failure and survival rate of implant- and tooth-supported prostheses.

Study	Year	Total FPDs	Mean follow-up	Number of failures	Total exposure time	Estimated failure rate (per 100 years)	Estimated survival rate
Nickenig	2006	84	5	2	420	0.48	97.62
Bragger	2001	18	5	1	90	1.11	94.44
Kindberg	2001	41	5	3	205	1.46	92.68
Hosny	2000	18	6.5	0	117	0	100
Olsson	1995	23	5	2	115	1.74	91.30
Koth	1988	15	5	1	75	1.33	93.33
Romeo	2004	13	7	0	91	0	100
Blanes	2007	10	10	0	100	0	100
Bragger	2005	22	10	7	220	3.18	68.18
Gunne	1999	23	10	3	230	1.30	86.96
Stefanik	1995	15	10	3	150	2	80
Jent	1989	12	5	1	60	8.33	91.67

Fixed effects: 1873, 1.412 (0.93-2.05), 92.255 (88.67-94.99)

Random effects: 1873, 1.514 (0.79-2.45), 91.27 (85.93-95.433)

Cohran’s Q: 22.67

df: 11

P: 0.02

I²: 0.50

95% CI for I²: 6.21-74.89

SCs: Single crowns, FPDs: Fixed partial dentures, CI: Confidence interval
The relative failure rates of different types of prostheses, using implant-supported SCs as a reference, implant supported FPDs and the implant tooth connected prostheses showed more failure rates.

The highest survival was for implant-supported SCs 96.363% and implant-supported FPDs 94.525%. Lower survivals were reported for combined tooth-implant-supported FPDs 91.270% (Tables 2-4 and Graphs 1-6).

Discussion

A comparative analysis of three different designs of implant-supported prostheses including SCs, FPD and tooth-implant-supported prostheses was done. Prospective and retrospective cohort studies abiding by the inclusion criteria were included in this meta-analysis to summarize the data about survival and failure rates of implant-supported reconstructions after minimum 5 years. Although 5 years have been considered in this study, some researchers may contradict that this time period is too short to gather the necessary information. However, dental implants have been in use for the reconstruction since not many years. Therefore, the time period considered was minimum of 5 years.

After the investigated period, higher failure rates were seen for implant-supported FPDs (0.881 per 100 FPD years) and combined tooth-implant supported FPDs (1.514 per 100 FPD years). Combined tooth-implant supported FPDs had the highest annual failure rate (1.514). Statistically significant difference was observed in the failure rates. This result was contrary to the earlier studies reported by Pjeturson et al. The reason can be attributed to the better designs and treatment protocol being introduced over the recent years. The highest failure rates were seen with respect to combined tooth-implant-supported FPDs. This result had been reported earlier too in the literature.

This meta-analysis showing the failure and survival rates of implant-supported reconstructions of different types was based on the systematic reviews reported earlier. However, inclusion criteria were redefined, and the studies were selected till the most recent ones. Therefore, the newer concepts of fabricating the reconstructions have also been evaluated.

For instance, only studies with a clinical or radiological examination were included to avoid the potential subjective bias in failure description in studies based on patient questionnaire.

The limitations of this meta-analysis are that it was based on studies conducted in an institutional environment. Hence, the services provided in the private practice could not be evaluated. Furthermore, the data did not permit estimating annual failure rates separately for different time periods after insertion of the prostheses. Thus, it was not possible to assess if there was a substantial increase in the annual failure rate. Moreover, the prosthetic complications were not taken into consideration in this meta-analysis, therefore limiting our results to implant survival.

Moreover, the meta-analysis only included English-language publications. This could be problematic for two reasons: (a) Estimates is not complete if a significant number of studies published in other languages exist; (b) selection bias may occur if the results differ systematically from those of other languages.

Research implications

It was deduced from this meta-analysis that still more longitudinal studies are required with more years of observation.

Clinical implications

According to the results of the present meta-analysis, planning of prosthetic rehabilitations should preferentially include implant-supported SCs or solely implant-supported FPDs. Only for reasons of anatomical constraints, failure of implants or patient preferences, and as a second option should FPDs supported by a combination of implants and teeth be chosen.

Conclusion

Under the limitations of this meta-analysis, implant supported prostheses should be selected in the order of a single crown, followed by prostheses supported at the terminal ends by implants and lastly implant-tooth supported prostheses.

References

1. Lekholm U, Gunne J, Henry P, Higuchi K, Lindén U, Bergström C, et al. Survival of the Brånemark implant in partially edentulous jaws: A 10-year prospective multicenter study. Int J Oral Maxillofac Implants 1999;14(5):639-45.
2. Weber HP, Sukotjo C. Does the type of implant prosthesis affect outcomes in the partially edentulous patient? Int J Oral Maxillofac Implants 2007;22 Suppl:140-72.
3. Calandriello R, Tomatis M. Immediate occlusal loading of single lower molars using brâneorman system® wide platform tiunite™ implants: A 5-year follow-up report of a
prospective clinical multicenter study. Clin Implant Dent Relat Res 2011;13(4):311-8.

4. Palmqvist S, Swartz B. Artificial crowns and fixed partial dentures 18 to 23 years after placement. Int J Prosthodont 1993;6(3):279-85.

5. Romeo E, Storelli S, Casano G, Scanferla M, Botticelli D. Six-mm versus 10-mm long implants in the rehabilitation of posterior edentulous jaws: A 5-year follow-up of a randomised controlled trial. Eur J Oral Implantol 2014;7(4):371-81.

6. Romeo E, Lops D, Margutti E, Ghisolfi M, Chiapasco M, Vogel G. Long-term survival and success of oral implants in the treatment of full and partial arches: A 7-year prospective study with the ITI dental implant system. Int J Oral Maxillofac Implants 2004;19(2):247-59.

7. Sailer I, Pjetursson BE, Zwahlen M, Hämerle CH. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: Fixed dental prostheses. Clin Oral Implants Res 2007;18(s3):86-96.

8. Esposito M, Hirsch J, Lekholm U, Thomsen P. Differential diagnosis and treatment strategies for biologic complications and failing oral implants: A review of the literature. Int J Oral Maxillofac Implants 1999;14(4):473-90.

9. Pjetursson BE, Tan K, Lang NP, Brägger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years – I. Implant supported FPDs. Clin Oral Implants Res 2004a;15:625-42.

10. Lang NP, Pjetursson BE, Tan K, Brägger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. II. Combined tooth – Implant-supported FPDs. Clin Oral Implants Res 2004;15(6):643-53.

11. Pjetursson BE, Tan K, Lang NP, Brägger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res 2004;15(6):625-42.