Supporting Information

for Macromol. Mater. Eng., DOI: 10.1002/mame.201900749

Robust PEDOT:PSS Wet-Spun Fibers for Thermoelectric Textiles

Youngseok Kim, Anja Lund, Hyebin Noh, Anna I. Hofmann, Mariavittoria Craighero, Sozan Darabi, Sepideh Zokaei, Jae Il Park, Myung-Han Yoon,* and Christian Müller*
Robust PEDOT:PSS Wet-spun Fibers for Thermoelectric Textiles

Youngseok Kim, Anja Lund, Hyebin Noh, Anna I. Hofmann, Mariavittoria Craighero, Sozan Darabi, Sepideh Zokaei, Jae Il Park, Myung Han Yoon, * and Christian Müller *

Youngseok, Hyebin Noh, Jae Il Park, Prof. Myung Han Yoon
School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
E-mail: mhyoon@gist.ac.kr

Dr. Anja Lund, Dr. Anna I. Hofmann, Mariavittoria Craighero, Sozan Darabi, Sepideh Zokaei, Christian Müller *
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
E-mail: christian.muller@chalmers.se;

KEYWORDS: thermoelectrics, PEDOT:PSS, wet spinning, conducting polymer fibers, electronic textiles
Figure S1. Mechanical properties of PEDOT:PSS fibers. Stress-strain curves and relative electrical resistance, R/R_0, where $R_0 = R(\varepsilon = 0)$, recorded during tensile deformation of fibers wet-spun into (a) 35 and (b) 65% sulfuric acid.

![Figure S1](image1.png)

Figure S2. Degree of asymmetry in fibers (45 and 95% sulfuric acid) dedoped with PEI.

![Figure S2](image2.png)
Figure S3. EDX spectra taken at 5 points across the cross-section of a cryo-fractured PEDOT:PSS fiber spun into 95% sulfuric acid, and dedoped with PEI (concentration of 10 g/L); the measured location is denoted on the (inset) SEM image.

Figure S4. Mechanical properties of PEDOT:PSS fibers. Strain at break and Young’s modulus of fibers spun into (left) 45% and (right) 95% sulfuric acid, and dedoped with PEI.