Nonparametric estimation of a maximum of quantiles

Georg C. Enss, Benedict Götz
Fachgebiet Systemzuverlässigkeit und Maschinenakustik SzM
Technische Universität Darmstadt
Magdalenenstr. 4, 64289 Darmstadt, Germany
e-mail: enss@szm.tu-darmstadt.de; goetz@szm.tu-darmstadt.de

Michael Kohler
Fachbereich Mathematik
Technische Universität Darmstadt
Schlossgartenstr. 7, 64289 Darmstadt, Germany
e-mail: kohler@mathematik.tu-darmstadt.de

Adam Krzyżak*
Department of Computer Science and Software Engineering
Concordia University
1455 De Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8
e-mail: krzyzak@cs.concordia.ca

and

Roland Platz
Fraunhofer Institute for Structural Durability and System Reliability LBF
Bartningstr. 47, 64289 Darmstadt, Germany
e-mail: roland.platz@lbf.fraunhofer.de

Abstract: A simulation model of a complex system is considered, for which the outcome is described by \(m(p, X) \), where \(p \) is a parameter of the system, \(X \) is a random input of the system and \(m \) is a real-valued function. The maximum (with respect to \(p \)) of the quantiles of \(m(p, X) \) is estimated. The quantiles of \(m(p, X) \) of a given level are estimated for various values of \(p \) from an order statistic of values \(m(p_i, X_i) \) where \(X, X_1, X_2, \ldots \) are independent and identically distributed and where \(p_i \) is close to \(p \), and the maximal quantile is estimated by the maximum of these quantile estimates. Under assumptions on the smoothness of the function describing the dependency of the values of the quantiles on the parameter \(p \) the rate of convergence of this estimate is analyzed. The finite sample size behavior of the estimate is illustrated by simulated data and by applying it in a simulation model of a real mechanical system.

MSC 2010 subject classifications: Primary 62G05, 60K35; secondary 62G30.

*Corresponding author. Tel: +1-514-848-2424 ext. 3007, Fax: +1-514-848-2830.
Estimation of the maximal quantile

Keywords and phrases: Conditional quantile estimation, maximal quantile, rate of convergence, supremum norm error.

Received May 2014.

Contents

1. Introduction .. 3177
2. Definition of the estimate 3180
3. Main results .. 3181
4. Application to simulated data 3183
5. Proofs .. 3186
 5.1 Auxiliary results ... 3186
 5.2 Proof of Theorem 3.1 3189
Acknowledgements ... 3191
References ... 3191

1. Introduction

We consider a simulation model of a complex system described by

\[Y = m(p, X), \]

where \(p \) is a parameter of the system from some compact subset \(\mathcal{P} \) of \(\mathbb{R}^l \), \(X \) is a \(\mathbb{R}^d \)-valued random variable with known distribution and \(m : \mathcal{P} \times \mathbb{R}^d \to \mathbb{R} \) is a given (measurable) function. Let \(G_p(y) = \mathbb{P}\{m(p, X) \leq y\} \) be the cumulative distribution function (cdf) of \(Y \) for a given value of \(p \). For \(\alpha \in (0, 1) \) let

\[q_{p,\alpha} = \min\{y \in \mathbb{R} : G_p(y) \geq \alpha\} \]

be the \(\alpha \)-quantile of \(m(p, X) \). Using at most \(n \) function evaluations \(m(p_i, x_i) \) of \(m \) for arbitrarily chosen values

\[(p_1, x_1), \ldots, (p_n, x_n) \in \mathcal{P} \times \mathbb{R}^d \]

we are interested in estimating the maximal \(\alpha \)-quantile

\[\sup_{p \in \mathcal{P}} q_{p,\alpha}. \]

This problem is motivated by research carried out at the Collaborative Research Centre SFB 805 at the Technische Universität Darmstadt, which focuses on uncertainty in load-carrying systems such as truss structures. The truss structure under consideration is a typical system for load distribution in mechanical engineering (cf. Figure 1). It is made of ten nodes and 24 equal beams with
circular cross sections and fixed boundary conditions. Four equal tetrahedron structures may be assembled into modules. The truss support is statically determined at nodes 2, 3 and 4. A single force F_z in z-direction acts at node 1 and two symmetric moments M act at nodes 6 and 7 as shown in Figure 1. Due to the non-symmetric loading, the maximum equivalent stress σ_v (cf. e.g., [9]) is not equal in every beam. It is influenced not only by the non-symmetric loading via F_z and M, but also by the beam's material parameter Young's modulus E as well as geometric parameters: radius r and length l. We assume that from the manufacturing process of the truss structure we know the corresponding ranges $[a, b]$ for each beam parameter E, r and l. The parameter vector $p = (E, r, l)$ describes the parameters for all 24 equal beams within the truss structure. The occurring random force F_z is normally distributed and the moments M have truncated normal distribution restricted to positive half-axis. A numerical finite element model is built that calculates the maximum equivalent stress $Y = \sigma_{v,1}$, $Y = \sigma_{v,2}$ and $Y = \sigma_{v,3}$ in the beams 1, 2 and 3, resp., that are the members with the highest equivalent stresses in this specific truss structure. So our parameter set is $P = [a_E, b_E] \times [a_r, b_r] \times [a_l, b_l]$. The function $m : \mathcal{P} \times \mathbb{R}^d \to \mathbb{R}$ describes the physical model of the truss structure and $Y = m(p, X)$ is the occurring maximum equivalent stress in beam 1, 2 and 3, resp., of the truss structure with load vector $X = (F_z, M)$.

We are interested in quantifying the uncertainty in the random quantity $Y = m(p, X)$, which we characterize by determining an interval which contains the value of Y with high probability. Such an interval can be determined by computing quantiles of Y for α close to one (leading to the right end point of the interval) and α close to zero (leading to the left end point of the interval). However, we do not know the exact value of $p \in \mathcal{P}$. Hence, instead of computing the right end point of the interval by a quantile of Y, we compute for each $p \in \mathcal{P}$ the α-quantile $q_{p,\alpha}$ of $m(p, X)$ and use $\sup_{p \in \mathcal{P}} q_{p,\alpha}$ for α close to one as the right
end point of the interval. Similarly, we can construct the left end point of the interval by computing \(\inf_{p \in P} q_{p, \alpha} \) for \(\alpha \) close to zero.

In the sequel we introduce the estimates of these quantities and investigate their properties. In order to simplify the notation we consider only \(\sup_{p \in P} q_{p, \alpha} \). The other value can be estimated similarly.

For \(p \in P \) we estimate the \(\alpha \)-quantile of \(G_p \) by the \(\alpha \)-quantile of an empirical cumulative distribution function corresponding to data points \(m(p_i, X_i) \), where \(p_i \) is close to \(p \) and \(X_1, X_2, \ldots \) are independent and identically distributed random variables. Then we estimate the maximum quantile by the maximum of these quantile estimates. Under suitable assumptions on the smoothness of the function describing the dependency of the quantiles on the parameter we analyze the asymptotic rate of convergence of this estimate. The finite sample size behavior of the estimate is illustrated using simulated data.

In our proofs the main trick is to relate the error of our quantile estimates to the behavior of the order statistics of a fixed sequence of independent random variables uniformly distributed on \((0, 1)\).

The estimation problem in this paper is estimation of a quantile function in a fixed design regression problem. Usually this kind of problem is studied in literature in the context of random design regression, see, e.g., [22, 12] and the literature cited therein. In the context of random design regression the rate of convergence results for local averaging estimates of conditional quantiles have been derived in [19] and [1]. Results concerning estimates based on support vector machines can be found in [16]. The problem of estimating the maximal quantile was not considered in the papers mentioned above.

The concept of local averaging considered in this paper is also very popular in the context of nonparametric regression, cf. e.g., [14, 15, 21, 17, 8, 10, 4, 7, 5] or [2].

Throughout the paper we use the following notation: \(\mathbb{N}, \mathbb{R} \) and \(\mathbb{R}_+ \) are the set of positive integers, real numbers, and nonnegative real numbers, resp. For \(z \in \mathbb{R} \) we denote the smallest integer greater than or equal to \(z \) by \(\lceil z \rceil \) and the largest integer less than or equal to \(z \) by \(\lfloor z \rfloor \). For a set \(A \) its indicator function (which takes on value one on \(A \) and zero outside of \(A \)) is denoted by \(I_A \). \(\|x\|_\infty = \max\{x^{(1)}, \ldots, x^{(d)}\} \) is the supremum norm of a vector \(x = (x^{(1)}, \ldots, x^{(d)})^T \in \mathbb{R}^d \). For \(z_1, \ldots, z_n \in \mathbb{R} \) the corresponding order statistics are denoted by \(z_{1:n}, \ldots, z_{n:n} \), i.e., \(z_{1:n}, \ldots, z_{n:n} \) is a permutation of \(z_1, \ldots, z_n \) satisfying \(z_{1:n} \leq \cdots \leq z_{n:n} \). Similarly, the order statistics of real valued random variables are defined. If \(Z_n \) are real valued random variables and \(\delta_n > 0 \) are positive real numbers, we write \(Z_n = O_p(\delta_n) \) if

\[
\lim_{c \to \infty} \limsup_{n \to \infty} P \{ |Z_n| > c \cdot \delta_n \} = 0.
\]

The definition of our estimate of the maximum quantile is given in Section 2, the main result is formulated in Section 3 and proven in Section 5. The finite sample size behavior of the estimate is illustrated in Section 4 using simulated data.
2. Definition of the estimate

In order to simplify the notation, we assume in the sequel for all of our theoretical considerations that the set of parameters is given by \(\mathcal{P} = [0, 1]^d \).

Let \(X, X_1, X_2, \ldots \) be independent and identically distributed. Set \(m = \lfloor n^{1/d} \rfloor \) and partition \(\mathcal{P} = [0, 1]^d \) into \(\hat{n} \) equivolume cubes of side length \(1/m \). Denote the centers of these cubes by \(p_1, \ldots, p_{\hat{n}} \). In order to simplify the notation we will write in the sequel \(\hat{n} = n \). We will estimate the maximum quantile \(\sup_{p \in \mathcal{P}} q_{p, \alpha} \) from the data

\[D_n = \{((p_1, X_1), m(p_1, X_1)), \ldots, ((p_n, X_n), m(p_n, X_n))\}. \]

For \(p \in \mathcal{P} \) we estimate the cumulative distribution function

\[G_p(y) = \mathbb{P}\{m(p, X) \leq y\} \]

by the empirical cumulative distribution function based on all those \(m(p_i, X_i) \) where the distance between \(p_i \) and \(p \) in supremum norm is at most \(h_n \). Here \(h_n > 0 \) is a parameter of the estimate. In order to define this estimate, let

\[K = I_{[-1,1]^d} \]

be the naive kernel.

Then

\[\hat{G}_p(y) = \frac{\sum_{i=1}^{n} I\{m(p_i, X_i) \leq y\} \cdot K\left(\frac{p - p_i}{h_n}\right)}{\sum_{j=1}^{n} K\left(\frac{p - p_j}{h_n}\right)} \]

is our estimate of \(G_p(y) \).

Next, the quantile

\[q_{p, \alpha} = \min\{y \in \mathbb{R} : G_p(y) \geq \alpha\} \]

is estimated by the plug-in estimate

\[\hat{q}_{p, \alpha} = \min\{y \in \mathbb{R} : \hat{G}_p(y) \geq \alpha\}. \]

Among other conditional quantile estimates we mention optimal quantization approach of Charlier, Paindaveine and Saracco [3] and machine learning approaches of Takeuchi et al. [20] and Meinshausen [13].

Finally, we estimate the maximal quantile

\[\sup_{p \in \mathcal{P}, \alpha} q_{p, \alpha} \]

by the maximum of the estimated quantile \(\hat{q}_{p, \alpha} \) for \(p \in \{p_1, \ldots, p_n\} \), i.e., by

\[\hat{M}_n = \max_{i=1,\ldots,n} \hat{q}_{p_i, \alpha}. \quad (2.1) \]
3. Main results

Our main result is the following bound on the error of our maximal quantile estimate.

Theorem 3.1. Let $\alpha \in (0,1)$, let $\mathcal{P} = [0,1]^d$ and let $m : \mathcal{P} \times \mathbb{R}^d \to \mathbb{R}$ be a measurable function. Let X be a \mathbb{R}^d-valued random variable and, for $p \in \mathcal{P}$, let G_p be the cumulative distribution function of $m(p,X)$. Let

$$q_{p,\alpha} = \min \{y \in \mathbb{R} : G_p(y) \geq \alpha\}$$

be the α-quantile of $m(p,X)$.

Assume that G_p is continuous for all $p \in \mathcal{P}$ and that there exists $\delta > 0$, such that for some $c_1 > 0$ for all $p \in \mathcal{P}$, the derivative of G_p exists on and is continuous on the interval $[q_{p,\alpha} - \delta, q_{p,\alpha} + \delta]$ and is greater than c_1. Let the estimate \hat{M}_n be defined as in (2.1) for some $h_n > 0$ satisfying

$$h_n \to 0 \ (n \to \infty) \text{ and } n \cdot h_n^l \to \infty \ (n \to \infty).$$

Then

$$\left| \hat{M}_n - \sup_{p \in \mathcal{P}} q_{p,\alpha} \right| = O_P \left(\sqrt{\frac{\log(n)}{n \cdot h_n^l}} + \sup_{p_1,p_2 \in \mathcal{P} : \|p_1 - p_2\|_\infty \leq h_n} |q_{p_1,\alpha} - q_{p_2,\alpha}| \right).$$

If we impose some smoothness condition on the function describing the dependency of the values of the quantiles on parameter p, we can derive from the above theorem the following rate of convergence result.

Corollary 1. Assume that the assumptions of Theorem 3.1 hold and that, in addition, $q_{p,\alpha}$ is (r,C)-smooth as a function of $p \in \mathcal{P}$ for some $r \in (0,1]$ and $C > 0$, i.e.,

$$|q_{p_1,\alpha} - q_{p_2,\alpha}| \leq C \cdot \|p_1 - p_2\|_\infty^r \ (p_1,p_2 \in \mathcal{P}).$$

Set

$$h_n = c \cdot \left(\frac{\log(n)}{n} \right)^{1/(2r+l)}$$

and define the estimate \hat{M}_n as in Section 2. Then

$$\left| \hat{M}_n - \sup_{p \in \mathcal{P}} q_{p,\alpha} \right| = O_P \left(\left(\frac{\log(n)}{n} \right)^{r/(2r+l)} \right).$$

Proof. Since $q_{p,\alpha}$ is (r,C)-smooth as a function of $p \in \mathcal{P}$ we can conclude from Theorem 3.1

$$\left| \hat{M}_n - \sup_{p \in \mathcal{P}} q_{p,\alpha} \right| = O_P \left(\sqrt{\frac{\log(n)}{n \cdot h_n^l} + C \cdot h_n^r} \right).$$

The definition of h_n implies the result. \(\square\)
Remark 1. We would like to put our results in perspective considering the results obtained in [1] and [19]. Our result is slightly different from the result which could have been obtained using the union bound combined with the previously established conditional quantile estimator error bound. The $\sqrt{\log(n)/nh_n}$ term is the same estimation error term between the quantile estimate and a kernel surrogate of the true quantile as in [19], up to a $\log(n)$ factor coming from the use of the union bound. The other sup term may be thought of as an approximation term, but is slightly different from the classical distance between the true quantile and its kernel surrogate. Both choices of approximation terms would have lead to the result of Corollary 1, however, the proof exposed in Section 5 is more self-contained, and easily deals with multidimensional covariates.

Remark 2. Let the assumption of Theorem 3.1 hold. Define a partitioning estimate of the quantile function $p \mapsto q_{p, \alpha}$ by

$$\bar{q}_{p, \alpha} = \hat{p}_{p_{i}}$$

where for $p \in \mathcal{P}$, p_{i} is the center of the cube in the partition of \mathcal{P} which contains p. Then, as in the proof of Theorem 3.1 (cf. second inequality in (5.5) and Lemma 2), one can show

$$\sup_{p \in \mathcal{P}} |\bar{q}_{p, \alpha} - q_{p, \alpha}| = O_{p} \left(\sqrt{\frac{\log(n)}{n \cdot h_n^r}} + \sup_{p_1, p_2 \in \mathcal{P} : \|p_1 - p_2\|_{\infty} \leq h_n} |q_{p_1, \alpha} - q_{p_2, \alpha}| \right).$$

In particular, under the assumptions of Corollary 1 we have the following bound on the supremum norm error of the above quantile function estimate:

$$\sup_{p \in \mathcal{P}} |\bar{q}_{p, \alpha} - q_{p, \alpha}| = O_{p} \left(\frac{(\log(n))}{n} r/(2r+1) \right).$$

Remark 3. a) Up to multiplicative constants, Theorem 3.1 and Corollary 1 also hold for the naive kernel taken as the indicator function of the unit ball of any norm in \mathbb{R}^l, because of norm equivalence.

b) As pointed out by a referee, the above results can be easily generalized to a more general setting, where instead of a function m which defines the random variables via $Y = m(p, X)$, one does not observe values of X but instead there exists a Markov kernel Π from \mathcal{P} to \mathbb{R}.

Remark 4. The rate of convergence in Corollary 1 is (up to some logarithmic factor) the same as the optimal minimax rate of convergence for estimation of a (r, C)-smooth function on a compact subset of \mathbb{R}^l in supremum norm derived in [18].

Remark 5. In any application of the above estimate we have to select the bandwidth h_n of the estimate in a data-driven way. We suggest to choose the bandwidth in an optimal way in view of estimation of $G_p(y)$ by $\hat{G}_p(y)$ ($p \in \mathcal{P}$) for suitable chosen $y \in \mathbb{R}$. To do this, we propose to use a version of the well-known
Estimation of the maximal quantile technique of sample splitting in nonparametric regression (cf. e.g., Chapter 7 in Gyorfi et al. [11]). More precisely, let us assume that we have available \(n \) additional random variables \(\bar{X}_1, \ldots, \bar{X}_n \) such that \(X, X_1, \ldots, X_n, \bar{X}_1, \ldots, \bar{X}_n \) are independent and identically distributed, and that we observe \(m(p_i, \bar{X}_i) \) for these random variables. We choose \(y \) as the \(\alpha \)-quantile of the empirical cumulative distribution function corresponding to \(m(p_1, X_1), \ldots, m(p_n, X_n) \), and choose \(h_n \) by minimizing
\[
\frac{1}{n} \sum_{i=1}^{n} \left| I_{\{m(p_i, \bar{X}_i) \leq y\}} - \hat{G}_{p_i}(y) \right|^2.
\]
In the next section we will investigate the performance of this data-driven way of choosing the bandwidth using simulated data.

Remark 6. Corollary 1 provides an answer to Question 4 in Stone [18], by stating that the rate \(n^{-1/(2r+l)} \) is achievable for estimation of the median.

4. Application to simulated data

In this section we illustrate finite sample size behavior of our estimate (particularly with regards to the data-driven choice of the bandwidth in Remark 5) with the aid of simulated data.

In all simulations we choose the sample size for the estimate of the maximal quantile as \(n = 20,000 \), where we use half of the data to choose the bandwidth of the estimate from a finite set of bandwidths as described in Remark 2. In each simulation we compute the absolute difference between the true value of the maximal quantile and (first) the estimate with the data-driven choice of the bandwidth, and (second) with the estimate with sample size \(n/2 \) applied with the bandwidth value that leads to the minimal error for the given set of data. The level of the quantile is chosen as \(\alpha = 0.95 \). We repeat each simulation 100 times and report the mean values and the standard deviations of the resulting 100 error values for the two estimates.

In our first example we choose \(X \) as a standard normally distributed random variable, \(\mathcal{P} = [0, 1] \) and define
\[
m(p, X) = 0.5 \cdot \sin(2 \cdot \pi \cdot p) + X.
\]
Hence \(m(p, X) \) is normally distributed with mean \(0.5 \cdot \sin(2 \cdot \pi \cdot p) \) and variance 1. In this case the \(\alpha = 0.95 \) quantile of \(m(p, X) \) is given by \(q_{p, \alpha} \approx 0.5 \cdot \sin(2 \cdot \pi \cdot p) + 1.64 \). In this example we choose the bandwidth from set \(\{0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4\} \). In Figure 2, we show a typical simulation for the two quantile estimates using the data-driven bandwidth and the optimal bandwidth, respectively. For our data-driven choice of the bandwidth the mean values (standard deviations) of our errors are approximately 0.044 (0.034) as compared to 0.017 (0.015) for the optimal bandwidth choice, which is not applicable in practice, since it depends on the unknown maximal value. Hence, the mean absolute error of our estimate using the data-driven bandwidth is only
2.5-times larger than the mean absolute error of the estimate using the optimal bandwidth, which is not known in practice.

In our second example we again choose random variable X with a standard normal distribution and $\mathcal{P} = [0, 1]$, but this time we define m by

$$m(p, x) = \exp(p + x),$$

which implies that $m(p, X)$ is lognormally distributed and its logarithm has mean p and variance 1. Again, the α-quantiles are known and can be computed with a statistics package. The bandwidth is chosen from the same set as in the first example. In Figure 3 we show typical simulation for the two quantile estimates using the data-driven bandwidth and the optimal bandwidth, respectively. In this example the mean values (standard deviations) of our errors are in case of our data-driven bandwidth approximately given by 0.827 (0.517) as compared to 0.344 (0.285) for the optimal bandwidth, hence the mean error of the data-driven bandwidth choice is within a factor of 2.5 of the mean value of the optimal (and in practice not available) bandwidth choice.

In our third example we choose $X = (X^{(1)}, X^{(2)}, X^{(3)})^T$, where $X^{(1)}$, $X^{(2)}$ and $X^{(3)}$ are independent standard normally distributed random variables, $\mathcal{P} = [-0.5, 0.5]^3$ and

$$m(p, x) = (p^{(1)} + x^{(1)})^2 + (p^{(2)} + x^{(2)})^2 + (p^{(3)} + x^{(1)})^2.$$

In this case $m(p, X)$ is a non-central chi-square random variable with 3 degrees of freedom and a non-centrality factor $(p^{(1)})^2 + (p^{(2)})^2 + (p^{(3)})^2$. Again, the α-quantiles are known and can be computed with a statistics package. The bandwidth is chosen from the same set as above. In this example the mean
values (standard deviations) of our errors are in the case of our data-driven bandwidth approximately given by 0.399 (0.376) as compared to 0.207 (0.144) in case of the optimal bandwidth, hence the mean error of the data-driven bandwidth choice is within a factor of approximately 2 of the mean value of the optimal (not available in practice) bandwidth choice.

Finally we apply our newly proposed estimation method in the application described in Section 1. The numerical simulation model of the truss structure in Figure 1 is obtained by finite elements with the commercial software ANSYS. Each of the 24 beams is modeled with the same E, r and l parameters. Timoshenko beam theory is applied to all beams by using BEAM189 elements in ANSYS. The 10 connecting nodes are modeled as rigid links using MPC184 elements. Deflection is constrained at node 2 in x-, y- and z-directions, at node 3 in y- and z-directions and at node 4 in z-direction such that the truss support is statically determined.

The beam parameters E, r and l are assumed to be in the intervals given in Table 1. Random loading is applied to node 1 as a single force F_z in the z-direction and two symmetric moments with magnitude M that act around axes in the x-y-plane with angle of $+60^\circ$ and -60° from the x-direction at nodes 6 and 7, respectively. The load F_z is normally distributed with mean value μ_{F_z} and standard deviation σ_{F_z}. The moments M have a truncated normal

Table 1

Parameter p	Value	Unit
Young’s modulus E	$[69.7, 73.7] \cdot 10^9$	N/m2
Radius r	$[0.0049, 0.0051]$	m
Length l	$[0.3995, 0.4005]$	m

Fig 3. Typical simulation in the second model.
distribution restricted to the positive half axis, where the underlying normal distribution has mean value $\mu_M = 0$ and standard deviation σ_M, see Table 2. To obtain the maximum equivalent stresses $\sigma_{v,1}$, $\sigma_{v,2}$ and $\sigma_{v,3}$, a static analysis is carried out for each parameter set and load set. Two independent random load sets were generated for each combination of 21 values of each parameter set distributed equidistantly in the parameter intervals. In total, $2 \cdot 21^3$ deterministic calculations were carried out.

Application of the newly proposed estimate of the maximum 0.95-quantile to this data results in predicted maximum stresses of $7.15 \cdot 10^6 \text{N/m}^2$, $17.83 \cdot 10^6 \text{N/m}^2$ and $17.83 \cdot 10^6 \text{N/m}^2$ in the three considered beams, respectively. In contrast, if we ignore the uncertainty in the parameters and simply compute 0.95-quantiles using the mean values of these parameters and a data set of 21^3 corresponding values, we instead obtain $6.77 \cdot 10^6 \text{N/m}^2$, $16.71 \cdot 10^6 \text{N/m}^2$ and $16.71 \cdot 10^6 \text{N/m}^2$. As a result we get values that are 5.6%, 6.7% and 6.7% lower, respectively.

5. Proofs

5.1. Auxiliary results

In this subsection we formulate and prove two lemmas which we will need in the proof of Theorem 3.1. Our first lemma shows that if we mix coupled samples from several different distributions, the empirical quantile of the mixed samples lies with probability one between the minimal and the maximal quantiles of the individual samples. Here we use the fact that we do not change the joint distribution of our samples if we assume that the random variables are defined by applying the inverse of the cumulative distribution function to uniformly distributed random variables.

More precisely, our setting is the following: Let $M \in \mathbb{N}$ be the number of mixed samples, and for $k \in \{1, \ldots, M\}$ let $H^{(k)} : (0, 1) \to \mathbb{R}$ be a monotonically increasing function (which we will choose later as the inverse function of a cumulative distribution function). Let $N \in \mathbb{N}$, let $u_1, \ldots, u_N \in (0, 1)$ and denote by $u_{1:N}, \ldots, u_{N:N}$ the corresponding order statistics. We define M different coupled samples by

$$z_i^{(k)} = H^{(k)}(u_i) \quad (i = 1, \ldots, N)$$

for $k \in \{1, \ldots, M\}$, and we mix them by choosing

$$z_i \in \{z_1^{(1)}, \ldots, z_i^{(M)}\}$$

for $i = 1, \ldots, N$.

Table 2: Uncertain loads
load X
load F_z
moments M
Estimation of the maximal quantile

Let
\[\hat{G}^{(k)}(y) = \frac{1}{N} \sum_{i=1}^{N} I\{z_i^{(k)} \leq y\} \quad \text{and} \quad \hat{G}(y) = \frac{1}{N} \sum_{i=1}^{N} I\{z_i \leq y\} \]
be the empirical cumulative distribution functions corresponding to \(z_1^{(k)}, \ldots, z_{N}^{(k)}\) and \(z_1, \ldots, z_{N}\), resp., and let
\[\hat{q}^{(k)}_{\alpha} = \min \{y \in \mathbb{R} : \hat{G}^{(k)}(y) \geq \alpha\} \quad \text{and} \quad \hat{q}_{\alpha} = \min \{y \in \mathbb{R} : \hat{G}(y) \geq \alpha\} \]
be the corresponding quantile estimates. Then the following result holds.

Lemma 1. Define \(\hat{q}^{(k)}_{\alpha}\) and \(\hat{q}_{\alpha}\) as above. Then
\[\min_{k=1, \ldots, M} \hat{q}^{(k)}_{\alpha} \leq \hat{q}_{\alpha} \leq \max_{k=1, \ldots, M} \hat{q}^{(k)}_{\alpha}. \]

Proof. By construction we have
\[\hat{q}^{(k)}_{\alpha} = H^{(k)}(u_{[N \cdot \alpha]}; N) \] (5.1)
for \(k \in \{1, \ldots, M\}\). Furthermore, for \(k_1, \ldots, k_N \in \{1, \ldots, M\}\) suitably chosen we have that
\[H^{(k_1)}(u_1; N), \ldots, H^{(k_N)}(u_N; N) \]
is a permutation of \(z_1, \ldots, z_{N}\).

Choose \(k_{\min}, k_{\max} \in \{1, \ldots, M\}\) such that
\[\min_{k=1, \ldots, M} \hat{q}^{(k)}_{\alpha} = \hat{q}^{(k_{\min})}_{\alpha} \quad \text{and} \quad \max_{k=1, \ldots, M} \hat{q}^{(k)}_{\alpha} = \hat{q}^{(k_{\max})}_{\alpha}. \]

Then by (5.1) we have for any \(k \in \{1, \ldots, M\}\)
\[H^{(k_{\min})}(u_{[N \cdot \alpha]}; N) \leq H^{(k)}(u_{[N \cdot \alpha]}; N) \leq H^{(k_{\max})}(u_{[N \cdot \alpha]}; N). \]

Using this relation and the monotonicity of \(H^{(k)}\) we get for any \(i \in \{1, \ldots, [N \cdot \alpha]\}\)
\[H^{(k_i)}(u_i; N) \leq H^{(k_{\min})}(u_{[N \cdot \alpha]}; N) \leq H^{(k_{\max})}(u_{[N \cdot \alpha]}; N) \]
\[= \max_{k=1, \ldots, M} \hat{q}^{(k)}_{\alpha} \]
and for any \(i \in \{[N \cdot \alpha], \ldots, N\}\)
\[H^{(k_i)}(u_i; N) \geq H^{(k_{\max})}(u_{[N \cdot \alpha]}; N) \]
\[\geq H^{(k_{\min})}(u_{[N \cdot \alpha]}; N) \]
\[= \min_{k=1, \ldots, M} \hat{q}^{(k)}_{\alpha}. \]
Now, let \(z_{1:N}, \ldots, z_{N:N} \) be the order statistics of \(z_1, \ldots, z_N \). Then the above inequalities imply

\[
\min_{k=1,\ldots,M} \hat{q}^{(k)}_{\alpha} \leq z_{[N-\alpha]:N} \leq \max_{k=1,\ldots,M} \hat{q}^{(k)}_{\alpha}.
\]

Since \(z_{[N-\alpha]:N} = \hat{q}_{\alpha} \) this completes the proof.

Our second lemma relates the error of the quantile estimate to the behavior of order statistics corresponding to some fixed sequence of independent random variables distributed uniformly on \((0,1)\).

Lemma 2. Let \(p \in \mathcal{P} \) be fixed and let the estimate \(\hat{q}_{p,\alpha} \) be defined as in Section 2. Assume that there exists a constant \(c_1 > 0 \) such that for some \(\delta > 0 \) we have that \(G_{\bar{p}} \) is continuous on \(\mathbb{R} \) and continuously differentiable on \([q_{\bar{p},\alpha} - \delta, q_{\bar{p},\alpha} + \delta]\) with derivative bounded from below by \(c_1 \), for all \(\bar{p} \in \mathcal{P} \) satisfying \(\|\bar{p} - p\|_\infty \leq \delta \).

Let \(N = |\{1 \leq i \leq n : \|p - p_i\|_\infty \leq h_n\}| \) be the number of parameters \(p_i \) which have at most supnorm distance \(h_n \) to \(p \). Let \(U_1, \ldots, U_N \) be independent random variables distributed uniformly on \((0,1)\) and denote their order statistics by \(U_{1,1}, \ldots, U_{N,1} \). Then we have for any \(0 < \epsilon < \delta \) satisfying \(\delta \geq h_n \):

\[
\mathbb{P} \left(|\hat{q}_{p,\alpha} - q_{p,\alpha}| > \epsilon + \sup_{\bar{p} \in \mathcal{P}, \|\bar{p} - p\|_\infty \leq h_n} |\bar{q}_{\bar{p},\alpha} - q_{\bar{p},\alpha}| \right) \\
\leq \mathbb{P} \left(|U_{[N-\alpha]:N} - \alpha| > c_1 \epsilon \right).
\]

Proof. For \(\bar{p} \in \mathcal{P} \) let

\[
G_{\bar{p}}^{-1}(u) = \min \{ y \in \mathbb{R} : G_{\bar{p}}(y) \geq u \} \quad (u \in (0,1))
\]

be the generalized inverse of \(G_{\bar{p}} \). Then it is well-known that \(G_{\bar{p}}^{-1}(U_1) \) has the same distribution as \(m(\bar{p}, X_1) \). Since \(G_{\bar{p}} \) is by definition (observe that \(K \) is the naive kernel) the empirical cumulative distribution function of \(m(p_{i_1}, X_{i_1}), \ldots, m(p_{i_N}, X_{i_N}) \) for suitable chosen pairwise distinct \(i_1, \ldots, i_N \in \{1, \ldots, n\} \), we see that it has the same distribution as the empirical cumulative distribution function \(G_N \) of \(G_{p_{i_1}}(U_1), \ldots, G_{p_{i_N}}(U_N) \). Consequently, \(\hat{q}_{p,\alpha} \) has the same distribution as the quantile estimate \(\hat{q}_{\alpha}^U \) corresponding to \(G_N \), which implies for any \(\eta > 0 \)

\[
\mathbb{P} \left(|\hat{q}_{p,\alpha} - q_{p,\alpha}| > \eta \right) = \mathbb{P} \left(|\hat{q}_{\alpha}^U - q_{p,\alpha}| > \eta \right).
\]

Let

\[
\hat{G}^{(k)}(y) = \frac{1}{N} \sum_{i=1}^{N} I(G_{\hat{p}_{ik}}^{-1}(U_i) \leq y)
\]

be the cumulative empirical distribution function of \(G_{\hat{p}_{ik}}^{-1}(U_1), \ldots, G_{\hat{p}_{ik}}^{-1}(U_N) \) and denote by \(\hat{q}^{(k)}_{\alpha} \) the corresponding quantile estimate \((k = 1, \ldots, N) \). Application of Lemma 1 yields for any \(\eta > 0 \)
\[P \left\{ |q^U_{\alpha} - q_{p,\alpha}| > \eta \right\} \leq P \left\{ \max_{k=1,\ldots,N} |q^{(k)}_{\alpha} - q_{p,\alpha}| > \eta \right\} \]
\[\leq P \left\{ \max_{k=1,\ldots,N} |q^{(k)}_{\alpha} - q_{p_k,\alpha}| + \max_{k=1,\ldots,N} |q_{p_k,\alpha} - q_{p,\alpha}| > \eta \right\}. \]

Summarizing the above results we see that we have shown
\[P \left\{ |\hat{q}_{p,\alpha} - q_{p,\alpha}| > \epsilon + \sup_{\{\hat{p} \in P : \|\hat{p} - p\|_{\infty} \leq h_n\}} |\hat{q}_{p,\alpha} - q_{p,\alpha}| \right\} \]
\[\leq P \left\{ \max_{k=1,\ldots,N} |\hat{q}^{(k)}_{\alpha} - q_{p_k,\alpha}| > \epsilon \right\} \]
\[= P \left\{ \max_{k=1,\ldots,N} \left| G^{-1}_{p_k}(U_{[N,\alpha]};N) - G^{-1}_{p_k}(\alpha) \right| > \epsilon \right\}. \]

By the assumptions of Lemma 2, on \([q_{p_k,\alpha} - \delta, q_{p_k,\alpha} + \delta]\) the derivative of \(G_{p_k}\) exists and is bounded from below by \(c_1 > 0\). Consequently, on \([\alpha - c_1 \cdot \delta, \alpha + c_1 \cdot \delta]\), the inverse function of \(G_{p_k}\) is continuously differentiable with derivative bounded from above by \(1/c_1\). So in case that \(|U_{[N,\alpha]};N - \alpha| < c_1 \cdot \delta\) we can conclude from the mean value theorem that we have
\[\left| G^{-1}_{p_k}(U_{[N,\alpha]};N) - G^{-1}_{p_k}(\alpha) \right| \leq \frac{1}{c_1} \left| U_{[N,\alpha]};N - \alpha \right|. \]

This implies
\[P \left\{ \max_{k=1,\ldots,N} \left| G^{-1}_{p_k}(U_{[N,\alpha]};N) - G^{-1}_{p_k}(\alpha) \right| > \epsilon \right\} \leq P \left\{ \left| U_{[N,\alpha]};N - \alpha \right| > c_1 \cdot \epsilon \right\}, \]
which completes the proof. \(\square\)

5.2. Proof of Theorem 3.1

Since
\[|\hat{M}_n - \sup_{p \in P} q_{p,\alpha}| \leq |\hat{M}_n - \max_{i=1,\ldots,n} q_{p_i,\alpha}| + \max_{i=1,\ldots,n} q_{p_i,\alpha} - \sup_{p \in P} q_{p,\alpha}| \]
it suffices to show
\[|\hat{M}_n - \max_{i=1,\ldots,n} q_{p_i,\alpha}| = O_P \left(\sqrt{\frac{\log(n)}{n \cdot h_n^4}} + \sup_{p_1, p_2 \in P : \|p_1 - p_2\|_{\infty} \leq h_n} |q_{p_1,\alpha} - q_{p_2,\alpha}| \right) \]
and
\[\max_{i=1,\ldots,n} q_{p_i,\alpha} - \sup_{p \in P} q_{p,\alpha}| = O \left(\sqrt{\frac{\log(n)}{n \cdot h_n^4}} + \sup_{p_1, p_2 \in P : \|p_1 - p_2\|_{\infty} \leq h_n} |q_{p_1,\alpha} - q_{p_2,\alpha}| \right). \]
Because of

$$\left| \max_{i=1,\ldots,n} q_{p_i,\alpha} - \sup_{p \in \mathcal{P}} q_{p,\alpha} \right| = \sup_{p \in \mathcal{P}} q_{p,\alpha} - \max_{i=1,\ldots,n} q_{p_i,\alpha}$$

$$= \sup_{p \in \mathcal{P}} \min_{i=1,\ldots,n} (q_{p,\alpha} - q_{p_i,\alpha})$$

$$\leq \sup_{p_1, p_2 \in \mathcal{P} : \|p_1 - p_2\|_\infty \leq 1/n^{1/4}} \left| q_{p_1,\alpha} - q_{p_2,\alpha} \right|,$$

(5.3) follows from $n^{-1/4} \leq h_n$ for n sufficiently large, which is implied by $n \cdot h_n^l \to \infty$ ($n \to \infty$).

In order to prove (5.2) we observe that for $a_i, b_i \in \mathbb{R}$ ($i = 1, \ldots, n$) we have

$$\left| \max_{i=1,\ldots,n} a_i - \max_{i=1,\ldots,n} b_i \right| \leq \max_{i=1,\ldots,n} |a_i - b_i|,$$ \hspace{1cm} (5.4)

which together with the union bound implies for arbitrary $\epsilon > 0$

$$\mathcal{P} \left\{ \left| \hat{M}_n - \max_{i=1,\ldots,n} q_{p_i,\alpha} \right| > \epsilon + \sup_{p_1, p_2 \in \mathcal{P} : \|p_1 - p_2\|_\infty \leq h_n} \left| q_{p_1,\alpha} - q_{p_2,\alpha} \right| \right\}$$

$$\leq \mathcal{P} \left\{ \max_{i=1,\ldots,n} \left| q_{p_i,\alpha} - q_{p_i,\alpha} \right| > \epsilon + \sup_{p_1, p_2 \in \mathcal{P} : \|p_1 - p_2\|_\infty \leq h_n} \left| q_{p_1,\alpha} - q_{p_2,\alpha} \right| \right\}$$

$$\leq n \cdot \max_{i=1,\ldots,n} \mathcal{P} \left\{ \left| q_{p_i,\alpha} - q_{p_i,\alpha} \right| > \epsilon + \sup_{p_1, p_2 \in \mathcal{P} : \|p_1 - p_2\|_\infty \leq h_n} \left| q_{p_1,\alpha} - q_{p_2,\alpha} \right| \right\}. \hspace{1cm} (5.5)$$

Let U_i be defined as in Lemma 2 and let F_N be the empirical cumulative distribution function corresponding to U_1, \ldots, U_N, and let F be the cumulative distribution function of U_1. Then

$$\mathcal{P} \left\{ |U_{[N,\alpha]} - \alpha| > c_1 \cdot \epsilon \right\}$$

$$= \mathcal{P} \left\{ |F(U_{[N,\alpha]}; N) - F_U(U_{[N,\alpha]}; N)| + \left[\frac{N \cdot \alpha}{N} - \alpha \right] > c_1 \cdot \epsilon \right\}$$

$$\leq \mathcal{P} \left\{ \sup_{t \in \mathbb{R}} |F_N(t) - F(t)| > c_1 \cdot \epsilon - \frac{1}{N} \right\}.$$ \hspace{1cm}

In case that $c_1 \cdot \epsilon > \frac{1}{N}$ we can bound the last probability using well-known results from Vapnik-Chervonenkis theory (cf. e.g., Theorem 12.4 in Devroye, Györfi and Lugosi [6]) and get

$$\mathcal{P} \left\{ |U_{[N,\alpha]} - \alpha| > c_1 \cdot \epsilon \right\} \leq 8 \cdot (N + 1) \cdot \exp \left(-N \cdot \left(c_1 \cdot \epsilon - \frac{1}{N} \right)^2 / 32 \right).$$

Furthermore, $N = \{1 \leq i \leq n : \|p_i\| \leq h_n\}$ satisfies

$$c_3 \cdot n \cdot h_n^l \leq \frac{(2h_n - 2/\lfloor 1/n^{1/4} \rfloor)^l}{(1/\lfloor 1/n^{1/4} \rfloor)^l} \leq N \leq \frac{(2h_n + 2/\lfloor 1/n^{1/4} \rfloor)^l}{(1/\lfloor 1/n^{1/4} \rfloor)^l} \leq c_4 \cdot n \cdot h_n^l.$$
since the cube of side length $2h_n - 2/\lfloor n^{1/3} \rfloor$ is contained in the union of all cubes of side length h_n with centers p_i satisfying $\|p - p_i\| \leq h_n$ and since the cube of side length $2h_n + 2/\lfloor n^{1/3} \rfloor$ contains the union of all cubes of side length h_n with centers p_i satisfying $\|p - p_i\| \leq h_n$.

Using this, Lemma 2 and (5.5) we conclude

$$P\left\{ \left| \hat{M}_n - \max_{i=1, \ldots, n} q_{p_i, \alpha} \right| > \epsilon + \sup_{p_1, p_2 \in \mathcal{P} : \|p_1 - p_2\| \leq h_n} \left| q_{p_1, \alpha} - q_{p_2, \alpha} \right| \right\} \leq c_4 \cdot n \cdot (n \cdot h_n^l + 1) \cdot \exp \left(-c_3 \cdot n \cdot h_n^l \cdot \left(c_1 \cdot \epsilon - \frac{1}{c_3 \cdot n \cdot h_n^l} \right)^2 \right),$$

which implies

$$\left| \hat{M}_n - \max_{i=1, \ldots, n} q_{p_i, \alpha} \right| = O_p \left(\sqrt{\log(n) \cdot n \cdot h_n^l} + \sup_{p_1, p_2 \in \mathcal{P} : \|p_1 - p_2\| \leq h_n} \left| q_{p_1, \alpha} - q_{p_2, \alpha} \right| \right).$$

This completes the proof.

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for funding this project within the Collaborative Research Centre SFB 805 and the Natural Sciences and Engineering Research Council of Canada (NSERC) for providing additional funding. We would also like to thank the Associate Editor and an anonymous referee for many comments, which helped to improve the first version of the manuscript.

References

[1] Bhattacharya, P. K. and Gangopadhyay, A. K. (1990). Kernel and nearest-neighbor estimation of conditional quantile. *Annals of Statistics* 18, pp. 1400–1415. MR1062716

[2] Beirlant, J. and Györfi, L. (1998). On the asymptotic L_2-error in partitioning regression estimation. *Journal of Statistical Planning and Inference*, 71, pp. 93–107. MR1651863

[3] Charlier, I., Paindaveine, D., and Saracco, J. (2014). Conditional quantile estimation through optimal quantization. To appear in *Journal of Statistical Planning and Inference*. MR3267510

[4] Devroye, L. (1982). Necessary and sufficient conditions for the almost everywhere convergence of nearest neighbor regression function estimates. *Zeitschrift f"ur Wahrscheinlichkeitstheorie und verwandte Gebiete*, 61, pp. 467–481. MR0682574

[5] Devroye, L., Györfi, L., Krzyżak, A., and Lugosi, G. (1994). On the strong universal consistency of nearest neighbor regression function estimates. *Annals of Statistics*, 22, pp. 1371–1385. MR1311980
[6] Devroye, L., Györfi, L., and Lugosi, G. (1996). *A Probabilistic Theory of Pattern Recognition*. Springer-Verlag, New York. MR1383093

[7] Devroye, L. and Krzyżak, A. (1989). An equivalence theorem for L_1 convergence of the kernel regression estimate. *Journal of Statistical Planning and Inference*, 23, pp. 71–82. MR1029241

[8] Devroye, L. and Wagner, T. J. (1980). Distribution-free consistency results in nonparametric discrimination and regression function estimation. *Annals of Statistics*, 8, pp. 231–239. MR0560725

[9] Gross, D., Hauger, W., Schröder, J., and Wall, W. A. (2007). *Technische Mechanik Band 2: Elastostatik*. Springer-Verlag, New York.

[10] Györfi, L. (1981). Recent results on nonparametric regression estimate and multiple classification. *Problems of Control and Information Theory*, 10, pp. 43–52. MR0611105

[11] Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. (2002). *A Distribution-Free Theory of Nonparametric Regression*. Springer Series in Statistics, Springer-Verlag, New York. MR1920390

[12] Koenker, R. (2005). *Quantile Regression*. Cambridge University Press. MR2268657

[13] Meinshausen, N. (2006). Quantile regression forests. *The Journal of Machine Learning Research*, 7, pp. 983–999. MR2274394

[14] Nadaraya, E. A. (1964). On estimating regression. *Theory of Probability and Its Applications*, 9, pp. 141–142.

[15] Nadaraya, E. A. (1970). Remarks on nonparametric estimates for density functions and regression curves. *Theory of Probability and Its Applications*, 15, pp. 134–137.

[16] Steinwart, I. and Christmann, A. (2011). Estimation conditional quantiles with the help of the pinball loss. *Bernoulli*, 17, pp. 211–225. MR2797989

[17] Stone, C. J. (1977). Consistent nonparametric regression. *Annals of Statistics*, 5, pp. 595–645. MR0443204

[18] Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. *Annals of Statistics*, 10, pp. 1040–1053. MR0673642

[19] Stute, W. (1986). Conditional empirical processes. *Annals of Statistics*, 14, pp. 638–647. MR0840519

[20] Takeuchi, I., Le, Q. V., Sears, T. D., and Smola, A. J. (2006). Nonparametric quantile estimation. *The Journal of Machine Learning Research*, 7, pp. 1231–1264. MR2274404

[21] Watson, G. S. (1964). Smooth regression analysis. *Sankhya Series A*, 26, pp. 359–372. MR0185765

[22] Yu, K., Lu, Z., and Stander, J. (2003). Quantile regression: application and current research areas. *Journal of the Royal Statistical Society, Series D*, 52, pp. 331–350. MR2011179