LAGRANGIAN F-STABILITY OF CLOSED LAGRANGIAN SELF-SHRINKERS

JIAYU LI AND YONGBING ZHANG

Abstract. In this paper, we study the Lagrangian F-stability of closed Lagrangian self-shrinkers immersed in complex Euclidean space. We show that any closed Lagrangian self-shrinker with first Betti number greater than one is Lagrangian F-unstable. In particular, any two-dimensional embedded closed Lagrangian self-shrinker is Lagrangian F-unstable. For a closed Lagrangian self-shrinker with first Betti number equal to one, we show that Lagrangian F-stability is equivalent to Hamiltonian F-stability. We also characterize Hamiltonian F-stability of a closed Lagrangian self-shrinker by its spectral property of the twisted Laplacian.

1. Introduction

By a self-shrinker, we mean an immersed surface in Euclidean space whose mean curvature vector is related to the normal part of the position vector by

\[H = -c(x - x_0)_{\perp}, \quad c > 0. \]

A self-shrinker gives rise to a homothetically shrinking solution to the mean curvature flow. The geometric object becomes important since Huisken’s monotonicity formula [18] tells that any time-slice of a tangent flow (cf. Section 2) at a Type-I singularity is a self-shrinker. The tangent flow at a general singularity is a homothetically shrinking weak solution of the mean curvature flow (Brakke flow [5]), see [20, 41].

Abresch and Langer classified all immersed closed self-shrinkers in the plane. However even for the case of two dimensional self-shrinkers in \(\mathbb{R}^3 \), various examples are expected and a complete classification seems impossible, see for instance [3]. Besides using point-wise conditions, for example mean convexity [18, 19], recently Colding and Minicozzi [14] employing a new kind stability to classify self-shrinkers. That is the entropy-stability for self-shrinkers.

For an \(n \)-dimensional immersed surface \(\Sigma \hookrightarrow \mathbb{R}^N \), Colding and Minicozzi [14] introduced the entropy of \(\Sigma \) by

\[\lambda (\Sigma) = \sup_{x_0 \in \mathbb{R}^N, t_0 > 0} \int_{\Sigma} (4\pi t_0)^{-\frac{n}{2}} e^{-\frac{|x - x_0|^2}{4t_0}} d\mu. \]

The entropy \(\lambda \) has very nice properties. For example, it is invariant under dilations and rigid motions.

A self-shrinker is called entropy-stable if it is a local minimum of the entropy functional. The entropy-stability is closely related to the singular behavior of the mean curvature flow, based on the fact that \(\lambda \) is non-increasing along the mean curvature flow in Euclidean space.
space. In fact entropy-stable self-shrinkers are considered as generic singularities of mean curvature flow in [14], i.e. those cannot be perturbed away.

In order to classify entropy-stable self-shrinkers, Colding and Minicozzi [14] introduced the notion of F-stability for self-shrinkers. The F-functional with respect to $x_0 \in \mathbb{R}^N, t_0 > 0$ of an immersed surface Σ is defined by

\begin{equation}
F_{x_0, t_0}(\Sigma) = \int_{\Sigma} (4\pi t_0)^{-\frac{n}{2}} e^{-\frac{|x-x_0|^2}{4t_0}} d\mu.
\end{equation}

Note that the entropy $\lambda(\Sigma)$ is the supremum of the F-functional taken over all $x_0 \in \mathbb{R}^N, t_0 > 0$. A critical point of F_{x_0, t_0} is self-shrinkers that becomes extinct at (x_0, t_0) (cf. Section 2), and such a self-shrinker Σ is called F-stable if for any 1-parameter family of deformations Σ_s of $\Sigma = \Sigma_0$, there exist deformations x_s of x_0 and t_s of t_0 such that $(F_{x_s, t_s}(\Sigma_s))'' \geq 0$ at $s = 0$. Roughly speaking, a self-shrinker is critical point of the entropy functional, and an F-stable self-shrinker is a self-shrinker at which the second variation of entropy λ is non-negative.

The F-stability are closely related to entropy-stability, and the classification of entropy-stable self-shrinkers relies on the classification of F-stable self-shrinkers. Colding and Minicozzi [14] showed that shrinking spheres, cylinders and planes are the only codimension one F-stable (equivalently, entropy-stable) self-shrinkers.

In this paper we carry over some of Colding and Minicozzi’s ideas to the Lagrangian mean curvature flow case. In particular we shall explore the Lagrangian F-stability of closed Lagrangian self-shrinkers. We assume our Lagrangian self-shrinkers are closed, orientable and have dimensions greater or equal to two.

An immersed surface Σ^n in \mathbb{C}^n is called Lagrangian if the standard Kähler form ω of \mathbb{C}^n restricted to Σ is zero, or equivalently the standard complex structure of \mathbb{C}^n maps any tangent vector of Σ to a normal vector. When the ambient space is released to Kähler-Einstein manifolds, Smoczyk [31] showed that along the mean curvature flow the Lagrangian condition is preserved, i.e. a Lagrangian mean curvature flow. The Lagrangian mean curvature flow was devised mainly for searching minimal Lagrangian submanifolds in a Calabi-Yau manifold, and becomes one of main tools in understanding Strominger-Yau-Zaslow’s conjecture in Mirror symmetry [36] and Thomas-Yau’s conjecture [37]; See for instance [11, 12, 27, 28, 33, 39]. For recent developments of the Lagrangian mean curvature flow in Kähler-Einstein manifolds, see for instance survey papers [26, 32, 40] and the references therein.

A Lagrangian self-shrinker by definition is a self-shrinker satisfying the Lagrangian condition. Type-I singularities along the Lagrangian mean curvature flow are modeled by self-shrinkers. The study of Lagrangian self-shrinkers has draw some attentions recently. In particular, many compact or noncompact examples are found, see for instance [1, 9, 10, 21, 23, 24].

The F-functional and the entropy of a Lagrangian surface Σ are given by (1.3) and (1.2) respectively. However if we stick to the Lagrangian mean curvature flow, admissible deformations are Lagrangian deformations, i.e. those preserve the Lagrangian condition. A normal vector field is called a Lagrangian variation if it is an infinitesimal Lagrangian deformation. There is a correspondence between Lagrangian variations and closed 1-forms via $X \leftrightarrow \theta := -i_X \omega$. If X is a normal vector field such that $-i_X \omega$ is exact, we call X a Hamiltonian variation.
When restricted to Lagrangian deformations, a critical point of F_{x_0,t_0} is a Lagrangian self-shrinker that becomes extinct at (x_0,t_0) and a Lagrangian self-shrinker is a critical point of the entropy functional. We call a Lagrangian self-shrinker Σ Lagrangian entropy-stable if it is a local minimum of the entropy under Lagrangian deformations, and a Lagrangian self-shrinker Σ is called Lagrangian (resp. Hamiltonian) F-stable if for any 1-parameter family of Lagrangian (resp. Hamiltonian) deformations Σ_s of $\Sigma = \Sigma_0$, there exist deformations x_s of x_0 and t_s of t_0 such that $(F_{x_s,t_s}(\Sigma_s))'' \geq 0$ at $s = 0$.

Using the correspondence between Lagrangian variations and closed 1-forms, we can rewrite the second variation of the F-functional in terms of closed 1-form. This correspondence was used by Oh [29] in studying the Lagrangian stability of minimal Lagrangian submanifold in Kähler manifold. It was first observed by Smoczyk that any closed Lagrangian self-shrinker has nontrivial Maslov class, i.e. $[-iHd\omega] \neq 0$, hence its first Betti number $b_1 \geq 1$, see [10]. In fact, the mean curvature form $-iHd\omega$ is a twisted harmonic form (cf. Section 3). We find that the Lagrangian variation associated to a twisted harmonic 1-form $\theta \notin [-iHd\omega]$ decreases the entropy. This allows us to prove the following

Theorem 1.1. Any closed Lagrangian self-shrinker with $b_1 \geq 2$ is Lagrangian F-unstable.

In \mathbb{C}^2, the embedded closed Lagrangian surface has very strict topological constraint. It has to be torus. As a corollary, in \mathbb{C}^2 there are no embedded closed Lagrangian F-stable Lagrangian self-shrinkers. In case that the closed Lagrangian self-shrinker has $b_1 = 1$, we are led to study the Hamiltonian F-stability.

Theorem 1.2. For a Lagrangian self-shrinker Σ with $b_1 = 1$, the Lagrangian F-stability of Σ is equivalent to the Hamiltonian F-stability of Σ.

However for $b_1 \geq 2$, there is indeed a difference between Lagrangian F-stability and Hamiltonian F-stability. For example the Clifford torus

$$T^n = \{(z^1, \ldots, z^n) : |z^1|^2 = \cdots = |z^n|^2 = 2\}$$

is Hamiltonian F-stable but not Lagrangian F-stable. It is an interesting question whether there exists a closed Lagrangian F-stable self-shrinker of dimension greater than one, i.e. a closed Hamiltonian F-stable Lagrangian self-shrinker with $b_1 = 1$. We also ask if there exists a complete noncompact Lagrangian F-stable Lagrangian self-shrinker which has polynomial volume growth, besides Lagrangian planes and Lagrangian $S^1 \times \mathbb{R}^{n-1}$? It’s also interesting to have more examples of Hamiltonian F-stable Lagrangian self-shrinkers.

We can give two characterizations of Hamiltonian F-stability for a closed Lagrangian self-shrinker with arbitrary $b_1(\geq 1)$ by its spectral property of the twisted Laplacian. Without loss of generality, we assume that the closed Lagrangian self-shrinker becomes extinct at $(0,1)$, i.e. $H = -\frac{1}{2} x^\perp$. The twisted Laplacian is then $\Delta_f = \Delta - \frac{1}{2} < x^\perp, \nabla >$.

Theorem 1.3. A closed Lagrangian self-shrinker that becomes extinct at $(0,1)$ is Hamiltonian F-stable if and only if the twisted Laplacian Δ_f has

$$\lambda_1 = \frac{1}{2}, \quad \Lambda_2 = \{< x, w > : w \in \mathbb{R}^{2n}\}; \quad \lambda_2 \geq 1.$$

Theorem 1.4. A closed Lagrangian self-shrinker Σ that becomes extinct at $(0,1)$ is Hamiltonian F-stable if and only if

$$\int\int_{\Sigma} |du|^2 e^{-\frac{|z|^2}{4}} d\mu \geq \int\int_{\Sigma} u^2 e^{-\frac{|z|^2}{4}} d\mu, \quad \text{for all u s.t.} \quad \int\int_{\Sigma} u e^{-\frac{|z|^2}{4}} d\mu = \int\int_{\Sigma} u x e^{-\frac{|z|^2}{4}} d\mu = 0.$$
The classification problem of self-shrinkers with higher codimensions is much more complicated due to the complexity of the normal bundle, see for instance [2, 35]. Very recently, F-stability of self-shrinkers with higher codimensions was considered in [2, 4, 22]. The Lagrangian F-stability has also been considered by Lee and Lue [22]. In particular, they proved some of closed Lagrangian self-shrinkers in [1] are Lagrangian F-unstable.

Colding and Minicozzi’s idea of classifying self-similar solutions by employing entropy-stability and F-stability also applies to other geometric flows, for the harmonic map heat flow case see [42] and for the Yang-Mills flow case see [13]. For Ricci shrinkers and Ricci-flat manifolds, an analogous stability to the F-stability is the linear stability. A Ricci shrinker (resp. a Ricci-flat manifold) is called linearly stable if the second variation of Perelman’s \(\nu\)-entropy (resp. \(\lambda\)-entropy) [30] is non-positive at the Ricci shrinker (resp. the Ricci-flat manifold), see [7, 8]. It was proved in [15] that any compact Ricci-flat manifold admitting nontrivial parallel spinors is linearly stable. For the special class of Kähler-Ricci solitons with Hodge number \(h^{1,1} \geq 2\), Hall and Murphy [17] proved that they are linearly unstable (allowing non-Kählerian deformations), which extended the result of Cao-Hamilton-Ilmanen [7] in the Kähler-Einstein case. In the contrast, if one considers deformations of Kähler metrics in the fixed class \(c_1(M)\), Tian and Zhu [38] proved that the \(\nu\)-energy is maximized at a Kähler-Ricci soliton.

The paper is organized as follows: in the next section, we compute the first and second variation formula of the F-functional. The variation formulas of the F-functional will be applied to Lagrangian self-shrinkers and Lagrangian variations in Section 3, where we study Lagrangian F-stability of closed Lagrangian self-shrinkers and prove Theorem 1.1. In the last section we consider the Hamiltonian F-stability of closed Lagrangian self-shrinkers and prove Theorem 1.2, 1.3 and 1.4.

2. F-functional, entropy, and second variational formula

In this section we first recall Huisken’s monotonicity formula, which plays a crucial role in the formation of singularities along the mean curvature flow. At a given singularity \((x, T)\), one can extract a tangent flow at \((x, T)\) from a sequence of rescaled flows. Each time-slice of the tangent flow is a self-shrinker. We also recall the F-functional and Colding-Minicozzi’s entropy for immersed surfaces in Euclidean space. The first and second variation formula of the F-functional will be calculated, which is a slight modification of the hypersurface case [14]. The calculations were also carried out in [2, 4, 22]. A critical point of the F-functional \(F_{x_0, t_0}\) is a self-shrinkers that becomes extinct at \((x_0, t_0)\), and the second variation formula gives rise to F-stability of self-shrinkers. In the end of this section we give a characterization of the F-stability, see also [2, 4, 22]. The variation formulas of the F-functional will be applied to Lagrangian self-shrinkers in the next section.

Let \(\Sigma\) be an \(n\)-dimensional complete immersed surface in \(\mathbb{R}^N\), \(g\) the induced metric on \(\Sigma\), and \(\{e_i\}_{i=1}^n\) a local orthonormal frame of \(T\Sigma\). The second fundamental form and the mean curvature of \(\Sigma\) are respectively given by

\[
h_{ij} = (e_i e_j)^\perp, \quad H = (e_i e_i)^\perp.
\]

here the superscript \(\perp\) denotes the normal projection. The projection to the tangential space will be denoted by the superscript \(\top\). If there exist positive constants \(C_1, C_2\) and \(d\) such that \(Vol(B_r(0) \cap \Sigma) \leq C_1 r^d + C_2\), here \(r\) is the Euclidean distance, we say that \(\Sigma\) has polynomial volume growth.
Let Σ_t be a family of immersed surfaces in \mathbb{R}^N, evolved by the mean curvature flow

$$\frac{\partial x}{\partial t} \perp = H.$$

Assume T is the first singular time of the mean curvature flow. For any $x_0 \in \mathbb{R}^N, t_0 > 0$ and $t < \min\{t_0, T\}$, let

$$\rho_{x_0,t_0}(x, t) = \left[4\pi(t_0 - t)^{\frac{N}{2}} e^{-\frac{|x-x_0|^2}{4(t_0-t)}} \right]^{-\frac{N}{2}}$$

and

$$\Phi_{x_0,t_0}(t) = \int_{\Sigma_t} \rho_{x_0,t_0}(x, t) d\mu_t.$$

Then Huisken’s monotonicity formula [18] reads

$$\frac{d}{dt} \int_{\Sigma_t} \rho_{x_0,t_0}(x, t) d\mu_t = - \int_{\Sigma_t} |H + \frac{(x-x_0)^\top}{2(t_0-t)}|^2 \rho_{x_0,t_0}(x, t) d\mu_t.$$

The monotonicity formula is crucial in understanding the formation of singularities along the mean curvature flow. At a given singularity (x, T) and for a given $\lambda_j > 0$, one can consider the following rescaled flow

$$(2.1) \quad \tilde{\Sigma}^\lambda_j := \lambda_j (\Sigma_{T+\lambda_j^{-2}s} - x), \quad s < 0.$$

Huisken [18] showed that if the mean curvature flow develops a Type-I singularity at time T, i.e. $(T - t) \sup_{\Sigma_t} |h_{ij}|^2$ is uniformly bounded in t, there exists a sequence $\lambda_j \to \infty$ such that the sequence $\tilde{\Sigma}^\lambda_j$ converges smoothly to a limiting flow $\tilde{\Sigma}_s$. In general using the monotonicity formula and Brakke’s compactness theorem [5], Ilmanen [20] and White [41] proved that at any given singularity (x, T), there exists a sequence $\lambda_j \to \infty$ such that the sequence $\tilde{\Sigma}^\lambda_j$ converges weakly to a limiting flow $\tilde{\Sigma}_s$. $\tilde{\Sigma}_s$ is called a tangent flow at (x, T). Moreover for each $s < 0$, $\tilde{\Sigma}_s$ is a self-shrinker.

If the mean curvature flow is initiating from a compact immersed surface, Colding and Minicozzi [14] showed that each time-slice of $\tilde{\Sigma}_s$ has polynomial volume growth. From now on we restrict ourselves to self-shrinkers which are smooth and have polynomial volume growth. More specifically than (1.1), we call an immersed surface in \mathbb{R}^N a self-shrinker that becomes extinct at (x_0, t_0) if it satisfies

$$(2.2) \quad H + \frac{(x-x_0)^\top}{2t_0} = 0.$$

For a self-shrinker that becomes extinct at (x_0, t_0), $\sqrt{t_0 - t}(\Sigma-x_0)$ defines a homothetically shrinking mean curvature flow. Note that a self-shrinker that becomes extinct at (x_0, t_0) is also a steady point of Huisken’s monotonicity quantity Φ_{x_0,t_0}.

Let Σ be a complete self-shrinker which becomes extinct at (x_0, t_0) and has polynomial volume growth. Colding and Minicozzi [14] introduced an operator acting on functions on Σ by

$$(2.3) \quad \Delta u - \frac{1}{2t_0} < (x-x_0)^\top, \nabla u > = e^{-\frac{|x-x_0|^2}{4t_0}} \text{div}(e^{-\frac{|x-x_0|^2}{4t_0}} \nabla u).$$
Analogous operators also appear in other backgrounds, see for instance [16, 25]. Given a function f, the so-called twisted Laplacian is defined by

$$\Delta_f u = \Delta u - g(\nabla f, \nabla u).$$

The twisted Laplacian on functions is actually $-d^* f$, here d^* is the adjoint operator of d with respect to the measure $e^{-f} d\mu$, see for instance [16]. On the self-shrinker Σ which becomes extinct at (x_0, t_0), we choose $f = \frac{|x - x_0|^2}{4t_0}$. Then

$$\Delta_f = \Delta - \frac{1}{2t_0} < (x - x_0)^\top, \nabla \cdot >.$$

The following "weighted $W^{2,2}$ space" $W^{2,2}_w$ was also introduced in [14]

$$W^{2,2}_w = \{ u | \int_{\Sigma} (|u|^2 + |\nabla u|^2 + |\Delta f u|^2) e^{-\frac{|x - x_0|^2}{4t_0}} d\mu < \infty \}.$$

For any $u, v \in W^{2,2}_w$, it holds that

$$\int_{\Sigma} u \Delta_f v e^{-\frac{|x - x_0|^2}{4t_0}} d\mu = -\int_{\Sigma} g(\nabla u, \nabla v) e^{-\frac{|x - x_0|^2}{4t_0}} d\mu = \int_{\Sigma} v \Delta_f u e^{-\frac{|x - x_0|^2}{4t_0}} d\mu.$$

Lemma 2.1. Let Σ be an n-dimensional complete self-shrinker which becomes extinct at (x_0, t_0) and has polynomial volume growth, w a vector in \mathbb{R}^N. Then

1. $\int_{\Sigma} < x - x_0, w > e^{-\frac{|x - x_0|^2}{4t_0}} d\mu = 0$;
2. $\int_{\Sigma} |x - x_0|^2 e^{-\frac{|x - x_0|^2}{4t_0}} d\mu = 0$;
3. $\int_{\Sigma} |x - x_0|^4 - 4n(n+2)\ell_0^2 + 16t_0^3|H|^2 e^{-\frac{|x - x_0|^2}{4t_0}} d\mu = 0$;
4. $\int_{\Sigma} |x - x_0|^2 < x - x_0, w >^2 e^{-\frac{|x - x_0|^2}{4t_0}} d\mu = 0$;
5. $\int_{\Sigma} |x - x_0|^2 < x - x_0, w > e^{-\frac{|x - x_0|^2}{4t_0}} d\mu = 0$;
6. $\int_{\Sigma} < (x - x_0)^\top, w > e^{-\frac{|x - x_0|^2}{4t_0}} d\mu = 0$.

Proof. The proof is similar to the hypersurface case in [14].

1. Let $u = < x - x_0, w >$, $v = 1$.

By (2.4),

$$\Delta_f u = < H, w > - \frac{1}{2t_0} < (x - x_0)^\top, w > = -\frac{1}{2t_0} < x - x_0, w >.$$

Therefore, (1) follows from (2.5).

2. Let $u = |x - x_0|^2$, $v = 1$.
The identity then follows from (2.5) and
\[
\Delta f u = 2n + 2 < x - x_0, H > - \frac{1}{t_0} |(x - x_0)^\top|^2 \\
= 2n - \frac{1}{t_0} |x - x_0|^2.
\]

(3) Let
\[u = v = |x - x_0|^2.
\]
Then
\[
\Delta f u = 2n - \frac{1}{t_0} |x - x_0|^2,
\]
\[|\nabla u|^2 = 4 |(x - x_0)^\top|^2.
\]
Hence it follows from (2.5) that
\[
\int_{\Sigma} (2n - \frac{1}{t_0} |x - x_0|^2) |x - x_0|^2 e^{-\frac{|x - x_0|^2}{4t_0}} d\mu \\
= - \int_{\Sigma} 4 |(x - x_0)^\top|^2 e^{-\frac{|x - x_0|^2}{4t_0}} d\mu \\
= - \int_{\Sigma} 4 |x - x_0|^2 - 4t_0^2 |H|^2 e^{-\frac{|x - x_0|^2}{4t_0}} d\mu.
\]
By using (2), we get
\[
\int_{\Sigma} |x - x_0|^4 e^{-\frac{|x - x_0|^2}{4t_0}} d\mu \\
= \int_{\Sigma} ((2n + 4)t_0 |x - x_0|^2 - 16t_0^2 |H|^2) e^{-\frac{|x - x_0|^2}{4t_0}} d\mu \\
= \int_{\Sigma} (4n(n + 2)t_0^2 - 16t_0^5 |H|^2) e^{-\frac{|x - x_0|^2}{4t_0}} d\mu.
\]

(4) Let
\[u = v = < x - x_0, w >.
\]
We have
\[
\Delta f u = - \frac{1}{2t_0} < x - x_0, w >, \quad \nabla u = w^\top.
\]
Hence
\[
\int_{\Sigma} - \frac{1}{2t_0} < x - x_0, w >^2 e^{-\frac{|x - x_0|^2}{4t_0}} d\mu = - \int_{\Sigma} |w|^2 e^{-\frac{|x - x_0|^2}{4t_0}} d\mu.
\]

(5, 6) Let
\[u = < x - x_0, w >, \quad v = |x - x_0|^2.
\]
We have
\[
\Delta f u = - \frac{1}{2t_0} < x - x_0, w >, \quad \nabla u = w^\top
\]
and
\[
\Delta f v = 2n - \frac{1}{t_0} |x - x_0|^2, \quad \nabla v = 2(x - x_0)^\top.
\]
Hence by (2.5), we get

\[\int_{\Sigma} \langle x - x_0, w \rangle > (2n - \frac{1}{t_0}) |x - x_0|^2 e^{-\frac{|x-x_0|^2}{4t_0}} d\mu \]

\[= \int_{\Sigma} - \langle w^\top, 2(x - x_0)^\top \rangle e^{-\frac{|x-x_0|^2}{4t_0}} d\mu \]

\[= \int_{\Sigma} - \frac{1}{2t_0} < x - x_0, w > |x - x_0|^2 e^{-\frac{|x-x_0|^2}{4t_0}} d\mu. \]

Then it follows from (1) that

\[\int_{\Sigma} - \frac{1}{t_0} < x - x_0, w > |x - x_0|^2 e^{-\frac{|x-x_0|^2}{4t_0}} d\mu \]

\[= \int_{\Sigma} - \frac{1}{2t_0} < x - x_0, w > |x - x_0|^2 e^{-\frac{|x-x_0|^2}{4t_0}} d\mu. \]

Hence,

\[\int_{\Sigma} |x - x_0|^2 < x - x_0, w > e^{-\frac{|x-x_0|^2}{4t_0}} d\mu = \int_{\Sigma} < (x - x_0)^\top, w > e^{-\frac{|x-x_0|^2}{4t_0}} d\mu = 0. \]

□

For an immersed \(n \)-dimensional surface \(\Sigma \) in \(\mathbb{R}^N \), the F-functional (with respect to \(x_0 \in \mathbb{R}^N, t_0 > 0 \)) and the entropy [14] are respectively defined by

\[F_{x_0,t_0} (\Sigma) = \int_{\Sigma} (4\pi t_0)^{-\frac{n}{2}} e^{-\frac{|x-x_0|^2}{4t_0}} d\mu \]

and

\[\lambda (\Sigma) = \sup_{x_0,t_0} F_{x_0,t_0} (\Sigma). \]

The relation between the F-functional and Huisken’s monotonicity quantity is given by

(2.6)

\[F_{x_0,t_0} (\Sigma_{t_1}) = \Phi_{x_0,t_0+t_1} (\Sigma_{t_1}), \]

here \(\Sigma_t \) is a 1-parameter family of immersions. The entropy functional has very nice properties, for example (i) \(\lambda \) is invariant under dilations and rigid motions; (ii) \(\lambda \) is non-increasing along the mean curvature flow. The property (ii) follows from (2.6) and Huisken’s monotonicity formula. One easily sees that the surface \(\Sigma^{s^\lambda}_{\lambda} \) in (2.1) satisfies \(\lambda (\Sigma^{s^\lambda}_{\lambda}) \leq \lambda (\Sigma_0) \). We now compute the first variation formula of the F-functional.

Proposition 2.2. Let \(\Sigma \) be a complete immersed surface in \(\mathbb{R}^N \) and \(\Sigma_s \) a family of deformations of \(\Sigma \) generated by normal variation \(X_s, s \in (-\epsilon, \epsilon) \). Let \(x_s, t_s \) be deformations of \(x_0 \) and \(t_0 \) respectively with velocities \(\dot{x}_s \) and \(\dot{t}_s \), then \(\frac{d}{ds} F_{x_s,t_s} (\Sigma_s) \) is given by

\[\int_{\Sigma_s} \left[- < X_s, H + \frac{x - x_s}{2t_s} > + \frac{1}{2t_s} < x - x_s, \dot{x}_s > + \dot{t}_s \frac{- n (|x - x_s|^2 - \frac{n}{2t_s})}{4t_s^2} \right] (4\pi t_s)^{-\frac{n}{2}} e^{-\frac{|x-x_0|^2}{4t_0}} d\mu_s. \]

In particular if \(X_s |_{s=0} = X, \dot{x}_0 = y, \dot{t}_0 = h \), then \(\frac{d}{ds} |_{s=0} F_{x_s,t_s} (\Sigma_s) \) is given by

\[\int_{\Sigma} \left[- < X, H + \frac{x - x_0}{2t_0} > + \frac{1}{2t_0} < x - x_0, y > + h \frac{- n (|x - x_0|^2 - \frac{n}{2t_0})}{4t_0^2} \right] (4\pi t_0)^{-\frac{n}{2}} e^{-\frac{|x-x_0|^2}{4t_0}} d\mu. \]
Proof. By definition, \(F(x_s, t_s)(Σ_s) = \int_Σ (4πt_s)^{-\frac{n}{2}} e^{-\frac{|x-x_s|^2}{4t_s}} dμ_s \). The first variation formula of the F-functional then follows from

\[
\frac{d}{ds} dμ_s = - < X_s, H > dμ_s
\]

\[
\frac{d}{ds} \left[(4πt_s)^{-\frac{n}{2}} e^{-\frac{|x-x_s|^2}{4t_s}}\right] = \left(- \frac{n}{2t_s} i_s + \frac{|x-x_s|^2}{4t_s^2} i_s - \frac{1}{2} \frac{1}{2t_s} < x-x_s, X_s-\dot{x}_s > \right)(4πt_s)^{-\frac{n}{2}} e^{-\frac{|x-x_s|^2}{4t_s}}.
\]

From the first variation formula, we see a critical point of \(F_{x_0, t_0} \) is a self-shrinker that becomes extinct at \((x_0, t_0)\). Moreover if \(Σ \) is a self-shrinker that becomes extinct at \((x_0, t_0)\), then by Lemma 2.1 one sees that \((Σ_0, x_0, t_0)\) is a critical point of the F-functional, which also means that \(Σ \) is a critical point of the entropy. We now compute the second variation of the F-functional at a self-shrinker. For a normal vector field \(X \), denote

\[
(2.7) \quad LX = ΔX + < X, h_{ij} > h_{ij} - \frac{x-x_0}{2t_0}, e_i > \nabla e_i X + \frac{1}{2t_0} X.
\]

Theorem 2.3. Let \(Σ \) be a self-shrinker which becomes extinct at \((x_0, t_0)\) and has polynomial volume growth. Assume \(Σ_s, x_s \) and \(t_s \) are deformations of \(Σ, x_0 \) and \(t_0 \) respectively with

\[
\frac{∂Σ_s}{∂s}|_{s=0} = X, \quad \frac{∂x_s}{∂s}|_{s=0} = y, \quad \frac{∂t_s}{∂s}|_{s=0} = h.
\]

Then

\[
\frac{d^2}{ds^2} |_{s=0} F_{x_s, t_s}(Σ_s) = \int Σ - < X, LX - \frac{1}{t_0} y + \frac{1}{t_0} hH > (4πt_0)^{-\frac{n}{2}} e^{-\frac{|x-x_0|^2}{4t_0}} dμ
\]

\[
- \int Σ \left[\frac{1}{2t_0} |y|^2 + \frac{1}{t_0} h^2 |H|^2 \right] (4πt_0)^{-\frac{n}{2}} e^{-\frac{|x-x_0|^2}{4t_0}} dμ.
\]

Proof. For convenience, we write

\[
F'' = \frac{d^2}{ds^2}|_{s=0} F_{x_s, t_s}(Σ_s), \quad G_s(x) = (4πt_s)^{-\frac{n}{2}} e^{-\frac{|x-x_s|^2}{4t_s}}, \quad G(x) = (4πt_0)^{-\frac{n}{2}} e^{-\frac{|x-x_0|^2}{4t_0}}.
\]

It follows from the first variation formula of the F-functional that \(F'' \) is

\[
\frac{d}{ds}|_{s=0} \int Σ_s [- < X_s, H + \frac{x-x_s}{2t_s} > + \frac{1}{2t_s} < x-x_s, \dot{x}_s > + i_s(\frac{|x-x_s|^2}{4t_s^2} - \frac{n}{2t_s})] G_s dμ_s.
\]

Under the normal deformation with \(\frac{∂x_s}{∂s} = X \), we have

\[
\frac{∂}{∂s} g_{ij} = -2 < X, h_{ij} >
\]

and

\[
(\frac{∂}{∂s} H) = ΔX + < X, h_{ij} > h_{ij}.
\]
Then it follows from Lemma 2.1 that
\[
F'' = \int_{\Sigma} -\left< \frac{\partial X_s}{\partial s} \right|_{s=0}, \frac{(x-x_0)\top}{2t_0} > + \left< X, \Delta X > + \left< X, h_{ij} > \right>^2 Gd\mu
\]
\[
+ \int_{\Sigma} \left(- \left< X, \frac{X-y}{2t_0} > + \left< X, \frac{h(x-x_0)}{2t_0^2} > + \frac{1}{2t_0} \left< X-y, y \right> Gd\mu
\]
\[
+ \int_{\Sigma} h\left(- \frac{|x-x_0|^2 h}{2t_0^3} + \frac{2}{2t_0^2} \left< x-x_0, X-y \right> + \frac{n h}{2t_0^2} \right) Gd\mu
\]
\[
+ \int_{\Sigma} \left[\frac{1}{2t_0} < x-x_0, y > + h\left(\frac{|x-x_0|^2}{4t_0^2} - \frac{n}{2t_0^2} \right) \right]^2 Gd\mu.
\]
Note that
\[
\left< \frac{\partial X}{\partial s} \right|_{s=0}, \frac{(x-x_0)\top}{2t_0} > = - \left< \frac{x-x_0}{2t_0}, \epsilon_i > X, \nabla_{\epsilon_i} X > .
\]
We denote
\[
- \left< \frac{x-x_0}{2t_0}, \epsilon_i > X = \frac{x-x_0}{2t_0} \cdot \nabla X.
\]
By the assumption on \(\Sigma \) and Lemma 2.1,
\[
F'' = \int_{\Sigma} -\left< X, \frac{x-x_0}{2t_0} \cdot \nabla X > + \left< X, \Delta X > + \left< X, h_{ij} > \right>^2 Gd\mu
\]
\[
+ \int_{\Sigma} \left[- \frac{1}{2t_0} |X|^2 + \frac{1}{t_0} < X, y > - \frac{1}{2t_0} |y|^2 - \frac{2h}{t_0} < X, H > - \frac{nh^2}{2t_0^2} \right] Gd\mu
\]
\[
+ \int_{\Sigma} \left[\frac{1}{2t_0} < x-x_0, y > + h\left(\frac{|x-x_0|^2}{4t_0^2} - \frac{n}{2t_0^2} \right) \right]^2 Gd\mu.
\]
By Lemma 2.1 again,
\[
\int_{\Sigma} \left[\frac{1}{2t_0} < x-x_0, y > + h\left(\frac{|x-x_0|^2}{4t_0^2} - \frac{n}{2t_0^2} \right) \right]^2 Gd\mu
\]
\[
= \int_{\Sigma} \left[\frac{1}{4t_0^2} < x-x_0, y >^2 + h^2\left(\frac{|x-x_0|^2}{4t_0^2} - \frac{n}{2t_0^2} \right) \right] Gd\mu
\]
\[
= \int_{\Sigma} \left[\frac{1}{2t_0} |y|^2 + h^2\left(\frac{n}{2t_0} - \frac{1}{t_0} |H|^2 \right) \right] Gd\mu.
\]
Hence we get
\[
F'' = \int_{\Sigma} -\left< X, \Delta X > + X, h_{ij} > h_{ij} - \frac{x-x_0}{2t_0} \cdot X > Gd\mu
\]
\[
+ \int_{\Sigma} \left< X, \frac{1}{t_0} y - \frac{2}{t_0} h H > Gd\mu - \int_{\Sigma} \left[\frac{1}{2t_0} |y|^2 + \frac{1}{t_0} h^2 |H|^2 \right] Gd\mu.
\]
Without loss of generality, from now on we assume \(x_0 = 0, t_0 = 1 \). In particular a self-shrinker that becomes extinct at \((0, 1) \) satisfies \(H = -\frac{1}{2} x^i \) and the Jacobi operator \(L \) becomes
\[
LX = \Delta X + \left< X, h_{ij} > h_{ij} - \frac{x}{2}, \epsilon_i > \nabla_{\epsilon_i} X + \frac{1}{2} X.
\]
Let L^2_f be the Hilbert space consisting of all functions square integrable with respect to the measure $e^{-\frac{|x|^2}{4}}d\mu$. When referring to a normal variation field X, we assume $|X|, |\nabla X|$ and $|LX|$ are in L^2_f. By the second variation formula of the F-functional, we arrive at the following definition of F-stability [14].

Definition 2.1. A self-shrinker Σ which becomes extinct at $(0,1)$ and has polynomial volume growth is called F-stable if for any normal variation X, there exist a vector y and a constant h such that

$$F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left[-<X, LX> + <X, y> - 2h <X, H> - \frac{1}{2}|y|^2 - h^2 |H|^2 \right] e^{-\frac{|x|^2}{4}}d\mu \geq 0.$$

A normal vector field X is called an eigenvector field of L and of eigenvalue μ if there exists a constant μ such that $LX = -\mu X$. Note that L is self-adjoint with respect to the measure $e^{-\frac{|x|^2}{4}}d\mu$. We now show that H and w^\perp are eigenvector fields of L, here w is any vector in \mathbb{R}^N. We also show that a self-shrinker is F-stable if and only if H and w^\perp are the only eigenvector fields which have negative eigenvalues. Note that for a self-shrinker the variations H and w^\perp correspond to dilation and translation respectively.

Lemma 2.4. Let Σ be a self-shrinker that becomes extinct at $(0,1)$ and w a vector in \mathbb{R}^N. Then

$$LH = H, \quad Lw^\perp = \frac{1}{2} w^\perp.$$

Proof. Let ν_α be a local orthonormal frame on the normal bundle of Σ and normal at the point under consideration.

Write $H = h_{k\alpha} \nu_\alpha = -\frac{1}{2} < x, \nu_\alpha > \nu_\alpha$. Then

$$\nabla_i H = \frac{1}{2} h_{il\alpha} < x, e_l > \nu_\alpha = \frac{1}{2} < x, e_l > h_{il}$$

and

$$\Delta H = \frac{1}{2} (H + < x, h_{il} > h_{il} + < x, e_l > \nabla_l H)$$

$$= \frac{1}{2} H - < H, h_{il} > h_{il} + \frac{1}{2} < x, e_l > \nabla_l H.$$

Hence we get

$$LH = \Delta H + < H, h_{ij} > h_{ij} - < \frac{x}{2}, e_i > \nabla_i H + \frac{1}{2} H = H.$$

Write $w^\perp = < w, \nu_\alpha > \nu_\alpha$. Then

$$\nabla_i w^\perp = -h_{il\alpha} < w, e_l > \nu_\alpha = - < w, e_l > h_{il},$$

and

$$\Delta w^\perp = - < w, h_{il} > h_{il} - < w, e_l > \nabla_i H$$

$$= - < w, h_{il} > h_{il} - \frac{1}{2} < w, e_l > < x, e_k > h_{lk}$$

$$= - < w, h_{il} > h_{il} + \frac{1}{2} < x, e_k > \nabla_k w^\perp.$$

Hence we get $Lw^\perp = \frac{1}{2} w^\perp$. □
Theorem 2.5. A self-shrinker Σ is F-stable if and only if H and w^\perp are the only eigenvector fields of L which have negative eigenvalues.

Proof. Assume Σ is Lagrangian F-stable and X is an eigenvector field with $LX = -\mu X$ such that
\[\int_{\Sigma} <X, H> e^{-\frac{|x|^2}{4}} d\mu = \int_{\Sigma} <X, w^\perp> e^{-\frac{|x|^2}{4}} d\mu = 0, \quad \forall w \in \mathbb{R}^N. \]
Then
\[F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} [\mu |X|^2 - \frac{1}{2} |y^\perp|^2 - h^2 |H|^2] e^{-\frac{|x|^2}{4}} d\mu. \]
Therefore the F-stability of Σ implies that $\mu \geq 0$.

On the other hand, any normal variation X admit a unique decomposition $X = a_0 H + w^\perp + X_1$ such that X_1 is orthogonal to H and all translations y^\perp. Then by Lemma 2.4,
\[F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} [\mu |X|^2 - \frac{1}{2} |y^\perp|^2 - h^2 |H|^2] e^{-\frac{|x|^2}{4}} d\mu. \]
Taking $h = -a_0$ and $y = w$, we are done. \qed

The characterization of F-stability was proved by Lee and Lu [22]. We get the characterization independently. The necessary part of the characterization was also proved in [2]. An interesting application of the characterization was found in [22], which states that the product of two self-shrinkers which become extinct at the same (x_0, t_0) is F-unstable.

A similar characterization for the linear stability of Ricci shrinkers was proved by Cao and Zhu [8], and a similar characterization of the F-stability for self-similar solutions to the harmonic map heat flow was obtained in [42].

3. Lagrangian F-stability of closed Lagrangian self-shrinkers

In this section we study Lagrangian F-stability of closed Lagrangian self-shrinkers. Our starting point is a correspondence between Lagrangian variations and closed 1-forms for Lagrangian surfaces, which was also used by Oh [29] in the studying of Lagrangian stability of minimal Lagrangian submanifolds in Kähler manifolds. Via this correspondence, we replace a Lagrangian variation by closed a 1-form in the second variation formula of the F-functional. Twisted harmonic 1-form will play a crucial role in the proof of Theorem 1.1. In particular, we will prove that any nontrivial twisted harmonic 1-form in a different class from the Maslov class is an obstruction to the F-stability.

Let $(\mathbb{C}^n, \bar{g}, J, \bar{\omega})$ be the complex Euclidean space with the standard metric, complex structure and Kähler form such that $\bar{g} = \bar{\omega}(-, J\cdot)$. An n-dimensional immersed surface Σ is called a Lagrangian submanifold if $\bar{\omega}|_{\Sigma} = 0$. Let Σ be a Lagrangian surface in \mathbb{C}^n,
\{e_i\}_{i=1}^n$ a local orthonormal frame of $T\Sigma$ and $\nu_i = J e_i$. Note $\{\nu_i\}_{i=1}^n$ also form a local orthonormal frame of the normal bundle. The second fundamental form is defined by

$$h_{ijk} = \langle \nabla e_i, e_j, \nu_k \rangle,$$

which is symmetric in i, j and k. The mean curvature vector field H is defined by

$$H = H_k \nu_k = \langle \nabla e_i, e_i \rangle^\perp = h_{iik} \nu_k.$$

Let $\{e^i\}_{i=1}^n$ be the dual basis of $\{e_i\}_{i=1}^n$. For any normal vector field $X = X_k \nu_k$, one can associated to it a 1-form on Σ by

$$\theta = -i_X < - = X_k e^k.$$

A normal vector field X is called a Lagrangian variation if $i_X <$ is closed. It is easy to check that Lagrangian variations are infinitesimal Lagrangian deformations. A normal variation field X is called a Hamiltonian variation if $i_X <$ is exact. For example, the mean curvature vector field H of a Lagrangian submanifold in \mathbb{C}^n is a Lagrangian variation. The corresponding closed 1-form $-i_H <$ is called the mean curvature form, still denoted by H, and the cohomology class $[-i_H <]$ is called the Maslov class.

For Lagrangian surfaces, the F-functional and the entropy are the same as the definitions in the last section. The first variation formula of the F-functional in last section still holds but Σ_s is now replaced by a Lagrangian deformation and X_s is replaced by a Lagrangian variation. Note that H and $(x - x_0)^\perp$ are both Lagrangian variations. Therefore a critical point of F_{x_0, t_0} is a Lagrangian self-shrinker even when we are restricted to Lagrangian deformations. Similarly by the second variation formula of the F-functional, we have the following definition of Lagrangian (resp. Hamiltonian) F-stability for Lagrangian self-shrinkers.

Definition 3.1. Let Σ be a complete Lagrangian self-shrinker that becomes extinct at $(0, 1)$. Σ is called Lagrangian (resp. Hamiltonian) F-stable if for any Lagrangian (resp. Hamiltonian) variation X, there exist a vector y and a constant h such that

$$F'' = (4\pi)^{-\frac{n}{2}} \int_\Sigma - < X, LX > + < X, y > - 2h < X, H > - \frac{1}{2} |y|^2 - \frac{1}{4} h^2 |H|^2 e^{-\frac{|x|^2}{4}} d\mu \geq 0.$$

We now rewrite the second variation in terms of the closed 1-form $\theta = -i_X <$. We first decompose the closed 1-form into its harmonic part and exact part by

$$\theta = \theta_0 + du.$$

Let d^* be the adjoint operator of d and $\Delta_H = d^* d + d d^*$ be the Hodge Laplacian.

Proposition 3.1. Let Σ be a closed Lagrangian self-shrinker that becomes extinct at $(0, 1)$ and X a Lagrangian variation. Let $\theta = -i_X <$ and $\theta = \theta_0 + du$ be the decomposition. Then the second variation is given by

$$F'' = (4\pi)^{-\frac{n}{2}} \int_\Sigma [d^* du + \frac{1}{2} du(x^\top) + \frac{1}{2} \theta_0 (x^\top)]^2 - |\theta|^2 e^{-\frac{|x|^2}{4}} d\mu$$

$$+ (4\pi)^{-\frac{n}{2}} \int_\Sigma [-\theta (Jy^\top) - h \theta (Jx^\top) - \frac{1}{2} |y^\top|^2 - \frac{1}{4} h^2 |x^\top|^2] e^{-\frac{|x|^2}{4}} d\mu.$$
Proof. For $X = X_k \nu_k$, we have

$$LX = \Delta X_k \nu_k + X_p h_{ijp} h_{ijk} \nu_k - \frac{x}{2}, e_i > \nabla_i X_k \nu_k + \frac{1}{2} X_k \nu_k$$

and

$$F'' = (4 \pi)^{-\frac{n}{2}} \int_\Sigma \left[-X_k \Delta X_k - X_k X_p h_{ijp} h_{ijk} + X_k \left< \frac{x}{2} \right., e_i > \nabla_i X_k - \frac{1}{2} |X|^2 \right] e^{-\frac{|x|^2}{4}} d\mu$$

$$+ (4 \pi)^{-\frac{n}{2}} \int_\Sigma \left< X, y > -2h < X, H > - \frac{1}{2} |y^+|^2 - h^2 |H|^2 \right] e^{-\frac{|x|^2}{4}} d\mu.$$

Note that

$$(dd^* \theta)(e_k) = -\nabla_{e_k} \nabla_{e_j} \theta_j,$$

$$(d^* d \theta)(e_k) = -\nabla_{e_j} \nabla_{e_j} \theta_k + \nabla_{e_j} \nabla_{e_k} \theta_j,$$

then the Hodge Laplacian of θ is given by

$$(\Delta_H \theta)(e_k) = -\nabla_{e_k} \nabla_{e_j} \theta_j - \nabla_{e_j} \nabla_{e_j} \theta_k + \nabla_{e_j} \nabla_{e_k} \theta_j$$

$$= -\nabla_{e_j} \nabla_{e_k} \theta_k + R_{kl} \theta_l.$$

In \mathbb{C}^n, the Ricci curvature of Σ is given by

$$R_{kl} = \left< h_{kl}, H > - \left< h_{kp}, h_{tp} > \right. \right.$$

Hence

$$(\Delta_H \theta)(e_k) = -\nabla_{e_j} \nabla_{e_j} \theta_k + \left< h_{kl}, H > - \left< h_{kp}, h_{tp} > \right. \right. \theta_l$$

and

$$< \theta, \Delta_H \theta > = X_k \Delta X_k - \frac{1}{2} < x, h_{kl} > X_k X_l - X_k X_l h_{kpq} h_{ltpq}.$$

Then

$$F'' = (4 \pi)^{-\frac{n}{2}} \int_\Sigma \left[< \theta, \Delta_H \theta > + \frac{1}{2} < x, h_{kl} > X_k X_l + X_k \left< \frac{x}{2} \right., e_i > \nabla_i X_k \right] e^{-\frac{|x|^2}{4}} d\mu$$

$$+ (4 \pi)^{-\frac{n}{2}} \int_\Sigma \left[-\frac{1}{2} |\theta|^2 + < X, y > -2h < X, H > - \frac{1}{2} |y^+|^2 - h^2 |H|^2 \right] e^{-\frac{|x|^2}{4}} d\mu.$$

We calculate the second term by

$$\int_\Sigma \left< \frac{1}{2} < x, h_{kl} > X_k X_l \right> e^{-\frac{|x|^2}{4}} d\mu$$

$$= \int_\Sigma \left[\frac{1}{2} e_k (\left< x, e_l > X_l \right) - X_k - < x, e_l > \nabla_k X_l \right] \frac{x}{2} e_k e^{-\frac{|x|^2}{4}} d\mu$$

$$= \int_\Sigma \left[\frac{1}{2} \theta(x^+) d^* \theta + \frac{1}{4} |\theta(x^+)|^2 - \frac{1}{2} |\theta|^2 - \frac{1}{2} X_k < x, e_i > \nabla_k X_i \right] e^{-\frac{|x|^2}{4}} d\mu.$$

Note that X is Lagrangian, i.e. $\nabla_i X_k = \nabla_k X_i$. Therefore

$$F'' = (4 \pi)^{-\frac{n}{2}} \int_\Sigma \left[< \theta, \Delta_H \theta > + \frac{1}{2} \theta(x^+) d^* \theta + \frac{1}{4} |\theta(x^+)|^2 - |\theta|^2 \right] e^{-\frac{|x|^2}{4}} d\mu$$

$$+ (4 \pi)^{-\frac{n}{2}} \int_\Sigma \left[-\theta(J y^+) - h \theta(J x^+) - \frac{1}{2} |y^+|^2 - \frac{1}{4} h^2 |x^+|^2 \right] e^{-\frac{|x|^2}{4}} d\mu.$$
By the decomposition (3.1):

\[
F'' = (4\pi)^{-\frac{d}{2}} \int \Sigma [\langle \theta, \Delta_H (du) \rangle + \frac{1}{2} \theta (x^\top) d^* du + \frac{1}{4} \theta (x^\top)^2 - |\theta|^2 e^{-\frac{|x|^2}{4}} d\mu
\]

\[
+ (4\pi)^{-\frac{d}{2}} \int \Sigma [-\theta (Jy^\top) - h \theta (Jx^\top) - \frac{1}{2} |y^\top|^2 - \frac{1}{4} h^2 |x^\top|^2] e^{-\frac{|x|^2}{4}} d\mu.
\]

By integration by parts, we get

\[
\int \Sigma [\langle \theta, \Delta_H (du) \rangle + \frac{1}{2} \theta (x^\top) d^* du + \frac{1}{4} \theta (x^\top)^2 - |\theta|^2 e^{-\frac{|x|^2}{4}} d\mu
\]

\[
= \int \Sigma [\|d^* du\|^2 + \theta (x^\top) d^* du + \frac{1}{4} \theta (x^\top)^2 - |\theta|^2 e^{-\frac{|x|^2}{4}} d\mu
\]

\[
= \int \Sigma [\|d^* du\|^2 + \frac{1}{2} \theta (x^\top)^2 - |\theta|^2 e^{-\frac{|x|^2}{4}} d\mu.
\]

Hence

\[
F'' = (4\pi)^{-\frac{d}{2}} \int \Sigma [\|d^* du\|^2 + \frac{1}{2} du (x^\top) + \frac{1}{2} \theta_0 (x^\top)^2 - |\theta|^2 e^{-\frac{|x|^2}{4}} d\mu
\]

\[
+ (4\pi)^{-\frac{d}{2}} \int \Sigma [-\theta (Jy^\top) - h \theta (Jx^\top) - \frac{1}{2} |y^\top|^2 - \frac{1}{4} h^2 |x^\top|^2] e^{-\frac{|x|^2}{4}} d\mu.
\]

\[\Box\]

It is necessary to introduce the twisted Hodge Laplacian and the twisted Hodge decomposition theorem on compact Riemannian manifolds. For a given smooth function f on a compact manifold (M, g), let L^2_θ be the space of those differential forms which are square integrable with respect to the measure $e^{-\theta} d\mu$. Let d^*_f be the adjoint operator of d in the Hilbert space L^2_θ. Then one has the twisted Hodge Laplacian

\[\Delta_{H,f} = d^*_f d + dd^*_f.\]

For the twisted Hodge Laplacian, Bue\ller [6] proved a Hodge decomposition theorem which states that the space of p-forms has an orthogonal decomposition in L^2_θ by

\[\Omega^p = \mathcal{H}^p_f \oplus imd \oplus imd^*_f,\]

here \mathcal{H}^p_f is the space of twisted harmonic p-forms, i.e. p-forms in the kernel of $\Delta_{H,f}$. Hence $\mathcal{H}^p_f \cong H_{dR}(M)$ and for any closed p-form ω there exists a $(p-1)$-form α such that $\omega + d\alpha$ is a twisted harmonic p-form. In particular for a 1-form ω, there exists a function v such that $d^*_f (\omega + dv) = 0$.

We now come back to our situation. Let Σ be a closed Lagrangian self-shrinker that becomes extinct at $(0, 1)$ and $f = \frac{|x|^2}{4}$. Note that on one forms, $d^*_f = d^* + i\gamma_f$. Hence for the $\theta = \theta_0 + du$ in (3.1),

\[d^*_f \theta = (d^* + i\gamma_f) (\theta_0 + du) = d^* du + \frac{1}{2} du (x^\top) + \frac{1}{2} \theta_0 (x^\top).\]

Therefore we can rewrite the second variation formula (3.2) as follows.
Corollary 3.1. Let Σ be a closed Lagrangian self-shrinker that becomes extinct at $(0, 1)$ and X a Lagrangian variation. Let $\theta = -i_X \omega$. Then the second variation is given by
\begin{equation}
F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left| d\theta \right|^2 - \left| \theta \right|^2 - \theta(Jy^\perp) - h\theta(Jx^\perp) - \frac{1}{2} |y^\perp|^2 - \frac{1}{4} h^2 |x^\perp|^2 e^{-\frac{|x^\perp|^2}{4}} d\mu.
\end{equation}

Lemma 3.2. For any harmonic 1-form θ, there exists a function u_0 such that
\begin{equation}
d^*du_0 + \frac{1}{2} du_0(x^\top) + \frac{1}{2} \theta_0(x^\top) = 0.
\end{equation}

Proof. Applying Bueßer’s twisted Hodge decomposition theorem to the harmonic 1-form θ, we see that there exists a function u_0 such that
\begin{equation}
0 = d^*_f(\theta_0 + du_0) = (d^* + i_{\frac{x^\top}{2}})(\theta_0 + du_0) = d^*du_0 + \frac{1}{2} du_0(x^\top) + \frac{1}{2} \theta_0(x^\top).
\end{equation}

Proposition 3.3. Let Σ be a closed Lagrangian self-shrinker that becomes extinct at $(0, 1)$. Let θ_0 be any harmonic 1-form and u_0 a solution of (3.4). Then for the twisted harmonic 1-form $\theta = \theta_0 + du_0$, we have
\begin{equation}
F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left| \theta + hH \right|^2 - \frac{1}{2} |y^\perp|^2 e^{-\frac{|x^\perp|^2}{4}} d\mu,
\end{equation}

here H is the mean curvature form $-i_H \omega = -\frac{1}{2} < x, \nu_k > e^k$.

Proof. By (3.4), for $\theta = \theta_0 + du_0$ we have
\begin{equation}
F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left| \theta + hH \right|^2 - \theta(Jy^\perp) - h\theta(Jx^\perp) - \frac{1}{2} |y^\perp|^2 - \frac{1}{4} h^2 |x^\perp|^2 e^{-\frac{|x^\perp|^2}{4}} d\mu.
\end{equation}

We now prove that the term $\int_{\Sigma} \theta(Jy^\perp)e^{-\frac{|x^\perp|^2}{4}} d\mu$ vanishes. In fact
\begin{align*}
\int_{\Sigma} \theta(Jy^\perp)e^{-\frac{|x^\perp|^2}{4}} d\mu &= \int_{\Sigma} \theta(e_k) < Jy, e_k > e^{-\frac{|x^\perp|^2}{4}} d\mu \\
&= \int_{\Sigma} \theta(e_k) < Jy, x > e^{-\frac{|x^\perp|^2}{4}} d\mu \\
&= \int_{\Sigma} (d^*_f \theta) < Jy, x > e^{-\frac{|x^\perp|^2}{4}} d\mu \\
&= 0.
\end{align*}

Then for the twisted harmonic 1-form $\theta = \theta_0 + du_0$, we have
\begin{align*}
F''(y, h, \theta) &= (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left| \theta + hH \right|^2 - h\theta(Jx^\perp) - \frac{1}{2} |y^\perp|^2 - \frac{1}{2} h^2 |x^\perp|^2 e^{-\frac{|x^\perp|^2}{4}} d\mu \\
&= (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left(- \sum_k (\theta_k - \frac{1}{2} h < x, \nu_k >) - \frac{1}{2} |y^\perp|^2 \right) \\
&= (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left(- \left| \theta + hH \right|^2 - \frac{1}{2} |y^\perp|^2 \right).
\end{align*}

□
Remark 3.4. The mean curvature form \(H = H_k e^k \) is twisted harmonic. In fact
\[
d^*_f H = (d^* + i_{\frac{1}{2} x^\top})(-\frac{1}{2} < x, \nu_k > e^k) = 0.
\]
By the fact that a closed self-shrinker has non-vanishing mean curvature and \(H \) is twisted harmonic, one sees that the Maslov class \([H] \neq 0\). Hence any closed Lagrangian self-shrinker must have \(b_1 \geq 1 \). This was first observed by Smoczyk, see [10].

Theorem 3.5. Any closed Lagrangian self-shrinker with \(b_1 \geq 2 \) is Lagrangian F-unstable.

Proof. If \(b_1 \geq 2 \), we can take a nontrivial class \([\theta_0]\) which is different from the class \([H]\). Let \(\theta = \theta_0 + du_0 \) be the twisted harmonic 1-form in \([\theta_0]\). Then it follows from (3.5) that \(F''(y, h, \theta) < 0 \) for all \(y, h \).

By a theorem of Whitney any closed Lagrangian embedding \(\Sigma \) in \(\mathbb{C}^n \) must have vanishing Euler characteristic \(\chi(\Sigma) \) (cf. [34]). If \(n = 2 \), the only closed Lagrangian embedding in \(\mathbb{C}^2 \) is torus.

Corollary 3.2. In \(\mathbb{C}^2 \), there are no embedded closed Lagrangian F-stable Lagrangian self-shrinkers.

4. Hamiltonian F-stability of closed Lagrangian self-shrinkers

In this section we first give the second variation formula of the F-functional under Hamiltonian deformations. We then show that for a closed Lagrangian self-shrinker \(\Sigma \) with \(b_1 = 1 \), the Lagrangian F-stability of \(\Sigma \) is equivalent to the Hamiltonian F-stability of \(\Sigma \). Finally, we characterize the Hamiltonian F-stability of a closed Lagrangian self-shrinker by its spectral property of the twisted Laplacian \(\Delta f \).

Proposition 4.1. Let \(\Sigma \) be a closed Lagrangian self-shrinker that becomes extinct at \((0, 1)\) and \(X \) a Hamiltonian variation with \(-i_X \mathbb{F} = du\). Then the second variation is given by
\[
(4.1) \quad F'' = (4\pi)^{-\frac{n}{2}} \int_\Sigma \left[|d^*_f du|^2 - |du|^2 - du(Jy^\perp) - \frac{1}{2}|y^\perp|^2 - \frac{1}{4}h^2|x^\perp|^2\right] e^{-\frac{|x|^2}{4}} d\mu.
\]
In particular \(\Sigma \) is Hamiltonian F-stable if and only if for any Hamiltonian variation \(J \nabla u \), there exists a vector \(y \) such that
\[
\int_\Sigma \left[|d^*_f du|^2 - |du|^2 - du(Jy^\perp) - \frac{1}{2}|y^\perp|^2\right] e^{-\frac{|x|^2}{4}} d\mu \geq 0.
\]

Proof. It follows from (3.3) and
\[
\int_\Sigma du(Jx^\perp)e^{-\frac{|x|^2}{4}} d\mu = \int_\Sigma u_k < Jx, e_k > e^{-\frac{|x|^2}{4}} d\mu
\]
\[
= \int_\Sigma -u_k < x, \nu_k > e^{-\frac{|x|^2}{4}} d\mu
\]
\[
= \int_\Sigma u[-< x, -H_pe_p > - \frac{1}{2} < x, \nu_k > < x, e_k >]e^{-\frac{|x|^2}{4}} d\mu
\]
\[
= 0.
\]
\(\blacksquare \)
We now consider the case that $b_1(\Sigma) = 1$. Note that the mean curvature form H represents the nontrivial Maslov class. Hence any closed 1-form θ can be written as

\[\theta = -2aH + du. \]

Theorem 4.2. For a closed Lagrangian self-shrinker Σ with $b_1 = 1$, the Lagrangian F-stability of Σ is equivalent to the Hamiltonian F-stability of Σ.

Proof. Let X be any Lagrangian variation and

\[\theta = -i_X\omega = -(a < x, \nu_k > + u_k)e^k. \]

By the formula (3.3) and the fact that the mean curvature form H is twisted harmonic,

\[
F'' = (4\pi)^{-\frac{n}{2}} \int_\Sigma [||d^*f||^2 - ||\theta||^2 - \theta(Jy^\perp) - h\theta(Jx^\perp) - \frac{1}{2}||y^\perp||^2 - \frac{1}{4}h^2||x^\perp||^2] e^{-\frac{|x|^2}{4}} d\mu \\
= (4\pi)^{-\frac{n}{2}} \int_\Sigma [||d^*f||^2 - (||du||^2 + a^2||x^\perp||^2 - 2adu(Jx^\perp))] e^{-\frac{|x|^2}{4}} d\mu \\
+ (4\pi)^{-\frac{n}{2}} \int_\Sigma [-a < x, \nu_k > < Jy^\perp, e_k > + du(Jy^\perp)] e^{-\frac{|x|^2}{4}} d\mu \\
+ (4\pi)^{-\frac{n}{2}} \int_\Sigma [-h[a < x, \nu_k > < Jx^\perp, e_k > + du(Jx^\perp)] e^{-\frac{|x|^2}{4}} d\mu \\
+ (4\pi)^{-\frac{n}{2}} \int_\Sigma [-a < x, \nu_k > < Jy^\perp, e_k > + du(Jy^\perp)] e^{-\frac{|x|^2}{4}} d\mu \\
+ (4\pi)^{-\frac{n}{2}} \int_\Sigma [-\frac{1}{2}||y^\perp||^2 - \frac{1}{4}h^2||x^\perp||^2] e^{-\frac{|x|^2}{4}} d\mu. \\
\]

In the proof of Proposition 4.1, we have seen that

\[
\int_\Sigma du(Jx^\perp) e^{-\frac{|x|^2}{4}} d\mu = 0.
\]

Then

\[
F'' = (4\pi)^{-\frac{n}{2}} \int_\Sigma [||d^*f||^2 - (||du||^2 + a^2||x^\perp||^2)] e^{-\frac{|x|^2}{4}} d\mu \\
+ (4\pi)^{-\frac{n}{2}} \int_\Sigma [-a < x, \nu_k > < Jy^\perp, e_k > + du(Jy^\perp)] e^{-\frac{|x|^2}{4}} d\mu \\
+ (4\pi)^{-\frac{n}{2}} \int_\Sigma ah||x^\perp||^2 e^{-\frac{|x|^2}{4}} d\mu \\
+ (4\pi)^{-\frac{n}{2}} \int_\Sigma [-\frac{1}{2}||y^\perp||^2 - \frac{1}{4}h^2||x^\perp||^2] e^{-\frac{|x|^2}{4}} d\mu.
\]

By Lemma 2.1, we have

\[
\int_\Sigma < x, \nu_k > < Jy^\perp, e_k > e^{-\frac{|x|^2}{4}} d\mu = \int_\Sigma < Jx^\perp, Jy^\perp > e^{-\frac{|x|^2}{4}} d\mu \\
= \int_\Sigma < x^\perp, y > e^{-\frac{|x|^2}{4}} d\mu \\
= 0.
\]
Hence

\[F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left[|d_f^\perp du|^2 - |du|^2 - du(Jy^\perp) - \frac{1}{2} |y^\perp|^2 e^{-\frac{|x|^2}{4}} d\mu \right] + (4\pi)^{-\frac{n}{2}} \int_{\Sigma} - \frac{1}{2} h^2 |x^\perp|^2 e^{-\frac{|x|^2}{4}} d\mu. \]

Comparing this second variation formula with (4.1), we get the equivalence. □

Let

\[\lambda_1 = \inf \frac{\int_{\Sigma} |d\varphi|^2 e^{-\frac{|x|^2}{4}} d\mu}{\int_{\Sigma} |\varphi|^2 e^{-\frac{|x|^2}{4}} d\mu}, \]

where the infimum is taken over all non-zero \(\varphi \) with \(\int_{\Sigma} \varphi e^{-\frac{|x|^2}{4}} d\mu = 0 \). Then the first eigenfunction \(\varphi_1 \) satisfies

\[d^*d\varphi_1 + \frac{1}{2} d\varphi_1(x^\top) := -\Delta_f \varphi_1 = \lambda_1 \varphi_1. \]

Let \(\lambda_1 < \lambda_2 < \lambda_3 < \cdots \) be the nonzero eigenvalues of \(\Delta_f \).

Theorem 4.3. A closed Lagrangian self-shrinker \(\Sigma \) that becomes extinct at \((0,1)\) is Hamiltonian F-stable if and only if the twisted Laplacian \(\Delta_f \) has

\[\lambda_1 = \frac{1}{2}, \quad \Lambda_2 = \{ < x, w >, w \in \mathbb{R}^{2n} \}; \quad \lambda_2 \geq 1. \]

Proof. Note that for any vector \(w \in \mathbb{R}^{2n} \),

\[\Delta_f < x, w > = -\frac{1}{2} < x, w >, \]

hence

\[0 < \lambda_1 \leq \frac{1}{2}. \]

The formula (4.1) can be rewritten as

\[F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left[|d_f^\perp du|^2 - \frac{1}{2} |du|^2 - \frac{1}{2} |\nabla u + Jy^\perp|^2 - \frac{1}{4} h^2 |x^\perp|^2 e^{-\frac{|x|^2}{4}} d\mu. \]

If \(\lambda_1 < \frac{1}{2} \), by taking \(u = \varphi_1 \) we get

\[F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \lambda_1 (\lambda_1 - \frac{1}{2}) \varphi_1 e^{-\frac{|x|^2}{4}} d\mu \]

\[+ (4\pi)^{-\frac{n}{2}} \int_{\Sigma} [\frac{1}{2} |\nabla \varphi_1 + Jy^\perp|^2 - \frac{1}{4} h^2 |x^\perp|^2] e^{-\frac{|x|^2}{4}} d\mu < 0. \]

Hence \(\lambda_1 = \frac{1}{2} \) is necessary for the Hamiltonian F-stability.

For any first eigenfunction \(\varphi_1 \) with \(-\Delta_f \varphi_1 = \frac{1}{2} \varphi_1 \), we get

\[F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} [\frac{1}{2} |\nabla \varphi_1 + Jy^\perp|^2 - \frac{1}{4} h^2 |x^\perp|^2] e^{-\frac{|x|^2}{4}} d\mu. \]

Note that

\[Jy^\perp = (Jy)^\top = \nabla < x, Jy >, \]
hence the following is necessary for the Hamiltonian F-stability

\[\varphi_1 + \langle x, Jy \rangle = 0. \]

Therefore Hamiltonian F-stability implies that the first eigenfunction space is

\[\Lambda_{\uparrow} = \{ \langle x, w \rangle, w \in \mathbb{R}^{2n} \}. \]

Here \(\langle x, w \rangle = 0 \) may happen for some \(w \neq 0 \). Note also that the corresponding Hamiltonian variations generated by the first eigenfunction space are the translations \(w^\perp \).

Assuming that \(\lambda_1 = \frac{1}{2} \) and the first eigenfunction space is \(\{ \langle x, w \rangle, w \in \mathbb{R}^{2n} \} \), we now show that the Hamiltonian F-stability is equivalent to \(\lambda_2 \geq 1 \). Given a function \(u \), it admits a decomposition

\[u = a + \langle x, w \rangle + u_2, \]

such that

\[\int_{\Sigma} u_2 e^{-\frac{|x|^2}{4}} d\mu = \int_{\Sigma} u_2 < x, z > e^{-\frac{|x|^2}{4}} d\mu = 0, \ \forall z \in \mathbb{R}^{2n}. \]

Then by (4.1) and the above orthogonal condition,

\[F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left[\frac{1}{4} < x, w >^2 + |d_f^* d u_2|^2 - \frac{1}{2} < x, w >^2 - |d u_2|^2 \right] e^{-\frac{|x|^2}{4}} d\mu \]

\[+ (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left[- \langle J y^\perp, w \rangle - d u_2 (J y^\perp) - \frac{1}{2} |y^\perp|^2 - \frac{1}{4} h^2 |x^\perp|^2 \right] e^{-\frac{|x|^2}{4}} d\mu. \]

By Lemma 2.1

\[\int_{\Sigma} < x, w >^2 e^{-\frac{|x|^2}{4}} d\mu = \int_{\Sigma} 2 |w^\top|^2 e^{-\frac{|x|^2}{4}} d\mu, \]

and by the above mentioned orthogonal condition,

\[\int_{\Sigma} d u_2 (J y^\perp) e^{-\frac{|x|^2}{4}} d\mu = \int_{\Sigma} < d u_2, d < J y, x >> e^{-\frac{|x|^2}{4}} d\mu \]

\[= \int_{\Sigma} u_2 d_f^* d < J y, x > e^{-\frac{|x|^2}{4}} d\mu \]

\[= \int_{\Sigma} u_2 \frac{1}{2} < J y, x > e^{-\frac{|x|^2}{4}} d\mu \]

\[= 0. \]

Hence

\[F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left[|d_f^* d u_2|^2 - |d u_2|^2 - \frac{1}{2} |w^\top|^2 + J y^\perp|^2 - \frac{1}{4} h^2 |x^\perp|^2 \right] e^{-\frac{|x|^2}{4}} d\mu. \]

Taking \(y = J w \) and \(h = 0 \), we get

\[F'' = (4\pi)^{-\frac{n}{2}} \int_{\Sigma} \left[|d_f^* d u_2|^2 - |d u_2|^2 \right] e^{-\frac{|x|^2}{4}} d\mu, \]

which is nonnegative for all such \(u_2 \) if and only if \(\lambda_2 \geq 1 \). \square

From the proof of Theorem 4.3 we see the following
Theorem 4.4. A closed Lagrangian self-shrinker \(\Sigma \) that becomes extinct at \((0,1)\) is Hamiltonian F-stable if and only if

\[
\int_{\Sigma} |u|^2 e^{-\frac{|x|^2}{4}} d\mu \geq \int_{\Sigma} u^2 e^{-\frac{|x|^2}{4}} d\mu, \quad \text{for all } u \text{ s.t. } \int_{\Sigma} u e^{-\frac{|x|^2}{4}} d\mu = \int_{\Sigma} u^2 e^{-\frac{|x|^2}{4}} d\mu = 0.
\]

We have seen that the Lagrangian F-stability of a closed self-shrinker with \(b_1 = 1 \) is equivalent to the Hamiltonian F-stability. However for \(b_1 \geq 2 \), there is a difference between two stabilities. A simple example is the (Lagrangian) Clifford torus

\[
T^n = \{(z^1, \ldots, z^n) : |z^1|^2 = \cdots = |z^n|^2 = 2\},
\]

whose mean curvature is \(H = -\frac{1}{2} x = -\frac{1}{2} x^\perp \). Hence the Clifford torus is a Lagrangian self-shrinker that becomes extinct at \((0,1)\). By Theorem 3.5 the Clifford torus is Lagrangian F-unstable. On the other hand it is well-known that the first non-zero eigenvalue of \(T^n \) is \(\lambda_1(\Delta) = \frac{1}{2} \), and the first eigenfunction space is spanned by \(\{x^k, y^k\}_{k=1}^m \); the second eigenvalue is \(\lambda_2(\Delta) = 1 \). Hence the Clifford torus is Hamiltonian F-stable.

References

[1] H. Anciaux, Construction of Lagrangian self-similar solutions to the mean curvature flow in \(\mathbb{C}^n \), Geom. Dedicata 120 (2006), 37–48.
[2] B. Andrews; H.-Z. Li; Y. Wei, F-stability for self-shrinking solutions to mean curvature flow, arXiv:1204.5010.
[3] S. Angenent; T. Ilmanen; D. L. Chopp, A computed example of nonuniqueness of mean curvature flow in \(\mathbb{R}^3 \), Comm. Partial Differential Equations 20 (1995), no. 11–12, 1937–1958.
[4] C. Arezzo; J. Sun, Self-shrinkers for the mean curvature flow in arbitrary codimension. Math. Z. 274 (2013), no. 3–4, 993–1027.
[5] K. A. Brakke, The motion of a surface by its mean curvature, Mathematical Notes, 20. Princeton University Press, Princeton, N.J., 1978.
[6] E. L. Bueler, The heat kernel weighted Hodge Laplacian on noncompact manifolds, Trans. Amer. Math. Soc. 351 (1999), no. 2, 683–713.
[7] H.-D. Cao; R. S. Hamilton; T. Ilmanen, Gaussian density and stability for some Ricci solitons, arXiv:math/0404165.
[8] H.-D. Cao; M. Zhu, On second variation of Perelman’s Ricci shrinker entropy, Mathematische Annalen, DOI: 10.1007/s00208-011-0701-0.
[9] I. Castro; A. M. Lerma, Hamiltonian stationary self-similar solutions for Lagrangian mean curvature flow in the complex Euclidean plane, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1821–1832.
[10] I. Castro; A. M. Lerma, The Clifford torus as a self-shrinker for the Lagrangian mean curvature flow, arXiv:1202.2555.
[11] J.-Y. Chen; J.-Y. Li, Mean curvature flow of surface in 4-manifolds, Adv. Math. 163 (2001), no. 2, 287–309.
[12] J.-Y. Chen; J.-Y. Li, Singularity of mean curvature flow of Lagrangian submanifolds, Invent. Math. 156 (2004), no. 1, 25–51.
[13] Z.-X. Chen; G.-F. Wang; Y.-B. Zhang, Stabilities of homothetically shrinking Yang-Mills soliton.
[14] T. H. Colding; W. P. Minicozzi II, Generic mean curvature flow I: generic singularities, Ann. of Math., 175(2) (2012), 755–833.
[15] X.-Z. Dai; X.-D. Wang; G.-F. Wei, On the stability of Riemannian manifold with parallel spinors, Invent. Math. 161 (2005), no. 1, 151–176.
[16] A. Futaki, Some topics on Ricci solitons and self-similar solutions to mean curvature flow, arXiv:1205.0942.
[17] S. J. Hall; T. Murphy, On the linear stability of Kahler-Ricci solitons, Proc. Amer. Math. Soc. 139 (2011), no. 9, 3327–3337.
[18] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990), no. 1, 285–299.
[19] G. Huisken, Local and global behaviour of hypersurfaces moving by mean curvature, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), 175–191, Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, 1993.

[20] T. Ilmanen, Singularities of mean curvature flow of surfaces, preprint, 1995.

[21] D. Joyce; Y.-I. Lee; M.-P. Tsui, Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differential Geom. 84 (2010), no. 1, 127–161.

[22] Y.-I. Lee; Y.-K. Lue, The Stability of Self-Shrinkers of Mean Curvature Flow in Higher Codimension, arXiv:1204.6116

[23] Y.-I. Lee; M.-T. Wang, Hamiltonian stationary shrinkers and expanders for Lagrangian mean curvature flows, J. Differential Geom. 83 (2009), no. 1, 27–42.

[24] Y.-I. Lee; M.-T. Wang, Hamiltonian stationary cones and self-similar solutions in higher dimension, Trans. Amer. Math. Soc. 362 (2010), no. 3, 1491–1503.

[25] J. Lott, Some geometric properties of the Bakry-mery-Ricci tensor, Comment. Math. Helv. 78 (2003), no. 4, 865–883.

[26] A. Neves, Recent Progress on Singularities of Lagrangian Mean Curvature Flow, arXiv:1012.2055

[27] A. Neves, Singularities of Lagrangian mean curvature flow: zero-Maslov class case, Invent. Math. 168 (2007), no. 3, 449–484.

[28] A. Neves, Finite Time Singularities for Lagrangian Mean Curvature Flow, To appear in Annals of Mathematics, arXiv:1009.1083

[29] Y.-G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101 (1990), no. 2, 501–519.

[30] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159

[31] K. Smoczyk, A canonical way to deform a Lagrangian submanifold, arXiv:dg-ga/9605005

[32] K. Smoczyk, Mean curvature flow in higher codimension - Introduction and survey, arXiv:1104.3222

[33] K. Smoczyk, Angle theorems for the Lagrangian mean curvature flow, Math. Z. 240 (2002), no. 4, 849–883.

[34] K. Smoczyk, Der Lagrangesche mittlere Krümmungsfluss (The Lagrangian mean curvature flow), German. Leipzig: Univ. Leipzig (Habil.-Schr.) 102S. (2000)

[35] K. Smoczyk, Self-shrinkers of the mean curvature flow in arbitrary codimension, Int. Math. Res. Not. 2005, no. 48, 2983–3004.

[36] A. Strominger; S.-T. Yau; E. Zaslow, Mirror symmetry is T-duality, Nuclear Phys. B 479 (1996), no. 1–2, 243–259.

[37] R. P. Thomas; S.-T. Yau, Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom. 10 (2002), no. 5, 1075–1113.

[38] G. Tian; X.-H. Zhu, Perelman’s W-functional and stability of Kähler-Ricci flow, arXiv:0801.3504

[39] M.-T. Wang, Mean curvature flow of surfaces in Einstein four-manifolds, J. Differential Geom. 57 (2001), no. 2, 301–338.

[40] M.-T. Wang, Some recent developments in Lagrangian mean curvature flows. Surveys in differential geometry, Vol. XII. Geometric flows, 333–347, Surv. Differ. Geom., 12, Int. Press, Somerville, MA, 2008.

[41] B. White, Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math. 488 (1997), 1–35.

[42] Y.-B. Zhang, F-stability of self-similar solutions to harmonic map heat flow, Calculus of Variations and PDEs. DOI: 10.1007/s00526-011-0461-4

School of Mathematical Sciences, USTC, Hefei, 230026, Anhui Province, China.
E-mail address: jiayuli@ustc.edu.cn, ybzhang@amss.ac.cn