Elastic properties of 2D colloidal crystals from video microscopy

K. Zahn, A. Wille and G. Maret

1 Universität Konstanz, Fachbereich für Physik, POB 5560, D-78457 Konstanz, Germany

S. Sengupta2 and P. Nielaba1

2 Satyendra Nath Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India

(November 15, 2018)

Elastic constants of two-dimensional (2D) colloidal crystals are determined by measuring strain fluctuations induced by Brownian motion of particles. Paramagnetic colloids confined to an air-water interface of a pending drop are crystallized under the action of a magnetic field, which is applied perpendicular to the 2D layer. Using video-microscopy and digital image-processing we measure fluctuations of the microscopic strain obtained from random displacements of the colloidal particles from their mean (reference) positions. From these we calculate system-size dependent elastic constants, which are extrapolated using finite-size scaling to obtain their values in the thermodynamic limit. The data are found to agree rather well with zero-temperature calculations.

62.20.Dc, 82.70.Dd

During the last two decades interest in colloidal systems has grown substantially, on one hand because of their widespread technological applications and on the other due to the availability of precisely calibrated particles for use as model systems for studying phenomena in classical condensed matter physics [1]. The crystallization of colloids, both in two and three dimensions has been a continuous matter of interest. The research mostly focused on the analysis of structure and dynamics of colloidal systems on different length and time scales through static or dynamic light scattering techniques. Measurements of elastic constants of colloidal crystals, however, have been limited to the determination of the shear modulus μ. This was based on the observation of shear induced resonance of a crystal using light scattering techniques (see [2] for a recent work). The value of μ is found to depend strongly upon the crystalline morphology and changes significantly between randomly oriented crystallites and shear-ordered samples [3]. In addition, using this method only a very reduced number of modes can be investigated. Very recently, the elastic moduli of colloidal solids have also been estimated [4] by observing relaxation behaviour after deformations using laser tweezers.

FIG. 1. A snapshot of the triangular lattice of paramagnetic colloidal particles. A few thousand snapshots such as this, taken at regular time intervals of about one second were used to calculate elastic constants.

In this Letter, we report an experimental determination of the equilibrium elastic properties of two-dimensional (2D) colloidal crystals from “snapshots” of particle positions obtained using video microscopy. The present method is completely non-invasive, accurate and free from any adjustable parameters.

![FIG. 2. The comparison of the measured elastic constants (in units of kT/a^2, a is the lattice parameter) to the zero-temperature calculation (solid lines) reveals an very good agreement. Note that the shear modulus μ is multiplied by 5 for reasons of clarity.](image)

The mechanical properties of a macroscopic solid, according to classical elasticity, are well described by a small set of elastic constants. These can be measured by the strain-response of the solid under the application of an appropriate (macroscopic) stress. On a mesoscopic scale, which is still sufficiently coarse-grained to apply elasticity theory but small enough such that the Brownian motion of the particles is observable, thermally induced strain fluctuations can be used to determine elastic constants. We have carried out a detailed study of these strain fluctuations in a two-dimensional (2D) colloidal crystal by recording the microscopic positions of the par-
particles within a square cell (of size L) containing a defect-free single crystal (see Fig. 1). Recordings were made at regular time intervals — large compared to typical correlation times of the colloid. Uncorrelated snapshots obtained are analyzed to calculate the average particle positions — the "reference" lattice. The gradients (obtained by finite differences) of the displacement vectors then yield the microscopic strains. These microscopic strains are used to obtain strain fluctuations over a hierarchy of length scales corresponding to smaller sub-cells of size $L_b < L$ contained within our cell. The width of the probability distributions of the strains are related to the elastic constants $C_{ijkl}(L_b)$ obtained as a function of L_b which may subsequently be extrapolated, using a systematic finite size scaling analysis [5]. The macroscopic ($L \to \infty$) values of these quantities, thus obtained, are compared to theoretical predictions without any fitting parameters. The central result, the bulk (K) and shear (μ) elastic moduli are shown as a function of the interaction strength Γ for our colloidal system (see below) in Fig. 2.

Our experimental setup [6,7] is composed of super-paramagnetic spherical colloids [8] of diameter $d = 4.5 \mu m$ and mass density 1.7 kg/dm^3. They are confined by gravity to a water/air interface, which is formed by a cylindrical drop suspended by surface tension in a top-sealed ring. The flatness of the water-air interface ($O = 8 \text{ mm}$) is controlled within $\pm 1 \mu m$ [6]. For weak magnetic fields B applied perpendicular to the interface the induced magnetic moment M depends linearly on B, i.e. $M = \chi B$ with an effective magnetic susceptibility χ [6]. The repulsive magnetic dipole-dipole potential, between particles i and j separated by a distance r_{ij}, $V(r_{ij}) = \Gamma r_{ij}^{-3}$ dominates the interaction and is absolutely calibrated by the interaction strength $\Gamma = (\mu_0/4\pi)(\chi B)^2(\pi n)^{3/2}/kT$ where n denotes the 2D volume-fraction of the particles, k is the Boltzmann constant, T is the ambient temperature and distances, r_{ij}, are in units of the mean interparticle spacing.

The experiments were carried out as follows: At high Γ, in the crystalline phase, the system was equilibrated by the application of small AC magnetic fields in the plane Γ, in the crystalline phase, the system was equilibrated by the application of small AC magnetic fields in the plane Γ. The experiments were carried out as follows: At high Γ, in the crystalline phase, the system was equilibrated by the application of small AC magnetic fields in the plane Γ for our colloidal system (see below) in Fig. 2. Our experimental setup [6,7] is composed of super-paramagnetic spherical colloids [8] of diameter $d = 4.5 \mu m$ and mass density 1.7 kg/dm^3. They are confined by gravity to a water/air interface, which is formed by a cylindrical drop suspended by surface tension in a top-sealed ring. The flatness of the water-air interface ($O = 8 \text{ mm}$) is controlled within $\pm 1 \mu m$ [6]. For weak magnetic fields B applied perpendicular to the interface the induced magnetic moment M depends linearly on B, i.e. $M = \chi B$ with an effective magnetic susceptibility χ [6]. The repulsive magnetic dipole-dipole potential, between particles i and j separated by a distance r_{ij}, $V(r_{ij}) = \Gamma r_{ij}^{-3}$ dominates the interaction and is absolutely calibrated by the interaction strength $\Gamma = (\mu_0/4\pi)(\chi B)^2(\pi n)^{3/2}/kT$ where n denotes the 2D volume-fraction of the particles, k is the Boltzmann constant, T is the ambient temperature and distances, r_{ij}, are in units of the mean interparticle spacing.

The experiments were carried out as follows: At high Γ, in the crystalline phase, the system was equilibrated by the application of small AC magnetic fields in the plane Γ for our colloidal system (see below) in Fig. 2.

After the determination of the mean position of each particle R^0 (taken over the entire set) [9] the instantaneous displacement $u(R^0) = R - R^0$ from the mean position was calculated for each frame and for all particles.
focus on a small sub-cell within our cell. Consider for the moment that we have a disk of radius \(R_b \) for simplicity, the final results will be cast in a form independent of the shape of the sub-system. Within this disk, the strains are given by their values which are the averages over the area of the disk. This disk is embedded in an infinite elastic medium with elastic moduli \(K \) and \(\mu \).

We consider first a homogeneous expansion (or compression) of the disk by \(R_b \rightarrow R_b + \Delta r \). The corresponding radial-displacement \(u_r \) is given as,

\[
\begin{align*}
 u_r &= \Delta r \cdot r / R_b, \quad r < R_b \\
 &= \Delta r \cdot R_b / r, \quad r > R_b
\end{align*}
\]

(3)

The angular part \(u_\varphi = 0 \) by symmetry. The displacements \((u_r, u_\varphi) \) are related to the strain tensor by the following equations [15]:

\[
\begin{align*}
 \varepsilon_{rr} &= \frac{\partial u_r}{\partial r} ; \quad \varepsilon_{\varphi \varphi} = \frac{u_r}{r} + \frac{1}{r} \frac{\partial u_\varphi}{\partial \varphi} \\
 2 \varepsilon_{r\varphi} &= \frac{1}{r} \frac{\partial u_r}{\partial \varphi} + \frac{\partial u_\varphi}{\partial r} - \frac{u_\varphi}{r}
\end{align*}
\]

(4)

Making use of the (quadratic) free energy density \(f \) of the elastic continuum,

\[
f = \frac{1}{2} \left[K (\varepsilon_{rr} + \varepsilon_{\varphi \varphi})^2 + \mu \left\{ (\varepsilon_{rr} - \varepsilon_{\varphi \varphi})^2 + 4 \varepsilon_{r\varphi}^2 \right\} \right]
\]

(5)

and integrating \(f \) over the entire space, both within and outside the disk (to account for the deformation of the surrounding medium) and using the strains calculated from Eqs. 3 and 4, we get the energy \(E = 2\pi (K + \mu) \Delta r^2 \) necessary to expand the disk by \(\Delta r \). We may, now, eliminate the shape dependent prefactors by using the volume \(V = \pi R_b^2 \) and the volume-change \(\Delta V = 2\pi R_b \Delta r \) of the disk, to obtain finally, the energy \(E = (K + \mu) \Delta V^2 / 2V \). Using the equipartition theorem we have therefore,

\[
\langle (\Delta V_b)^2 \rangle / V_b = kT / [K(L_b) + \mu(L_b)],
\]

(6)

relating the fluctuation of the volume \(V_b = L_b^3 \) of the sub-cell to the sum of the bulk and shear moduli. The above relation together with \(\Delta V_b / V_b = \varepsilon_b^{xx}(L_b) + \varepsilon_b^{yy}(L_b) \) may now be used to obtain \(K(L_b) + \mu(L_b) \) for our sub-cells.

A similar treatment leads to a relation between \(\mu \) and the local rotation of the system \(\theta \) (Eq.1). The rotation of a disk of radius \(R_b \) by an angle \(\theta \) leads to an angular-displacement \(u_\varphi(r) = \theta \cdot R_b^2 / r \) for \(r > R_b \) (\(u_\varphi(r) = 0 \) for \(r < R_b \)). Applying Eq. 4 and integrating the energy density (Eq. 5) leads to the total energy for the rotation \(E = 2\pi \mu \theta^2 R_b^4 \). Equipartition then yields,

\[
\mu = \frac{kT}{V_b} \frac{1}{\langle (2\theta_\theta)^2 \rangle}.
\]

(7)

This equation has precisely the same structure as Eq. 6 and, therefore, similar finite size scaling schemes can be applied. Thus Eq. 7 together with Eq. 6 enable the determination of the elastic constants of the system.
particles interacting with an inverse cubic potential [16]. For all inverse power potentials the $T = 0$ limit is exact to lowest order [17]. Considering the deformation of a perfect static triangular solid of particles interacting with a r^{-3} potential one obtains the relation $\mu = K/10$ and the numerical result $K = 3.46 l \cdot \Gamma$, where the numerical coefficient is evaluated by performing a rapidly convergent lattice sum. The agreement is excellent (considering the fact that no fitting parameter is available) over a wide range of interaction strengths Γ down to values of 70 – the melting transition occurs at $\Gamma = 60$ [7].

For all inverse power potentials the $T = 0$ limit is exact to lowest order [17]. Considering the deformation of a perfect static triangular solid of particles interacting with a r^{-3} potential one obtains the relation $\mu = K/10$ and the numerical result $K = 3.46 l \cdot \Gamma$, where the numerical coefficient is evaluated by performing a rapidly convergent lattice sum. The agreement is excellent (considering the fact that no fitting parameter is available) over a wide range of interaction strengths Γ down to values of 70 – the melting transition occurs at $\Gamma = 60$ [7].

![Finite size scaling behavior of $K(L_b) + \mu(L_b)^{-1}$, L_b/L (top) and $\mu(L_b)^{-1}$ as a function of L_b/L dependent on the interaction strength Γ. A straight line fit to the curves gives the infinite system value s of the (inverse) moduli.](image)

Finally, a few words on the possible uncertainties involved in our determination of the elastic moduli seem to be in order. Firstly, we have neglected all fluctuations of the magnetic moment, both in amplitude and angle. Since a super-paramagnetic colloid particle is of macroscopic dimensions compared to typical magnetic length scales this assumption seems to be justified. Secondly, we have assumed that the particles fluctuate on a flat, two-dimensional air-water interface. An estimate [6] of the out-of-plane fluctuations is given by the ratio of the gravitational length $l_g = kT/mg$ (where m is the mass of the particles and g is the acceleration due to gravity) and the interparticle spacing; this is typically 1 in 10^4. Lastly, a possible limitation of this scheme, at least in its present form, is the requirement that the displacement field $u(t)$ be analytic in order to obtain strains by taking derivatives. Therefore one needs to restrict analysis to dislocation free regions of the sample — which is possible only if the system is sufficiently far away from a melting transition [7]. Suggestions [5,12] to circumvent this problem are, however, computationally difficult to implement. The study of elastic properties of paramagnetic colloids in the presence of obstacles and inclusions, as well as dynamical elastic response is an interesting direction for further research. This is particularly suited for our technique since it provides a local (and therefore precise) probe [4] for elastic properties.

Acknowledgements: The authors thank M. Rao for a critical reading of the manuscript. One of us (S.S.) thanks the Alexander von Humboldt Foundation. Support by the Deutsche Forschungsgemeinschaft in the frame of the Sonderforschungsbereich 513 is kindly acknowledged.

[1] P. N. Pusey, in *Liquids, Freezing and the Glass Transition*, edited by J. P. Hansen, D. Levesque and J. Zinn-Justin (North-Holland, Amsterdam, 1991).
[2] Schöpe H.J. et al., J. Chem. Phys. **109** 22, 10068 (1998)
[3] Falberg T. et al., J. Phys. III **4**, 457 (1994)
[4] A. Wille, F. Valmont, K. Zahn and G. Maret, Euro. Phys. Lett. **57**, 210 (2002).
[5] S. Sengupta, P. Nielaba and K. Binder, Phys. Rev. E **61**, 1072 (2000).
[6] K. Zahn, J.M. Méndez-Alcaraz, G. Maret, Phys. Rev. Lett. **79**, 175 (1997).
[7] K. Zahn, R. Lenke and G. Maret, Phys. Rev. Lett. **82**, 2721 (1999)
[8] Dynabeads M-450, uncoated; Deutsche Dynal GmbH Postfach 111965 D-20419 Hamburg.
[9] This is not in conflict with the divergence of the mean square displacement in 2D crystals, which is only valid in the thermodynamic limit. For finite systems, however, the equilibrium position of the particles are well defined also in 2D systems.
[10] M. Parrinello and A. Rahman, J. Chem. Phys. **76**(5), 2662 (1982).
[11] K.W. Wojciechowski and A.C. Branka, Phys. Lett. A **134**, 314 (1988).
[12] S. Sengupta, P. Nielaba and K. Binder, Phys. Rev. Lett. **81**, 6294, (2000).
[13] D.H. Wallace, in *Solid State Physics*, edited by H. Ehrenreich, F. Seitz and D. Turnbull (Academic Press, New York, 1958).
[14] L.D. Landau and E.M. Lifshitz, *Theory of Elasticity*, 3rd ed. (Pergamon, Oxford, 1986).
[15] H.G. Hahn, Elastizitätstheorie (B.G. Teubner, Stuttgart, 1985).
[16] A. Wille, PhD thesis, University of Constance, Germany, (2001).
[17] B. J. Alder, W. G. Hoover and D. A. Young, J. Chem. Phys. **49**, 3688 (1968).