Rate Model for Compressed Video Considering Impacts Of Spatial, Temporal and Amplitude Resolutions and Its Applications for Video Coding and Adaptation

Zhan Ma, Hao Hu, Meng Xu, and Yao Wang

Abstract—In this paper, we investigate the impacts of spatial, temporal and amplitude resolution (STAR) on the bit rate of a compressed video. We propose an analytical rate model in terms of the quantization stepsize, frame size and frame rate. Experimental results reveal that the increase of the video rate as the individual resolution increases follows a power function. Hence, the proposed model expresses the rate as the product of power functions of the quantization stepsize, frame size and frame rate, respectively. The proposed rate model is analytically tractable, requiring only four content dependent parameters. We also propose methods for predicting the model parameters from content features that can be computed from original video. Simulation results show that model predicted rates fit the measured data very well with high Pearson correlation (PC) and small relative root mean square error (RRMSE). The same model function works for different coding scenarios (including scalable and non-scalable video, temporal prediction using either hierarchical B or IPPP structure, etc.) with very high accuracy (average PC > 0.99), but the values of model parameters differ.

Using the proposed rate model and the quality model introduced in a separate work, we show how to optimize the STAR for a given rate constraint, which is important for both encoder rate control and scalable video adaptation. Furthermore, we demonstrate how to order the spatial, temporal and amplitude layers of a scalable video in a rate-quality optimized way.

Index Terms—Rate model, spatial resolution, temporal resolution, quantization, scalable video adaptation, H.264/AVC, SVC

I. INTRODUCTION

A fundamental and challenging problem in video encoding is, given a target bit rate, how to determine at which spatial resolution (i.e., frame size or FS), temporal resolution (i.e., frame rate or FR), and amplitude resolution (usually controlled by the quantization stepsize or QS), to code the video. One may code the video at a high FR, large FS, but high QS, yielding noticeable coding artifacts in each coded frame. Or one may use a low FR, small FS, but small QS, producing high quality frames. These and other combinations can lead to very different perceptual quality. Ideally, the encoder should choose the spatial, temporal, and amplitude resolution (STAR) that leads to the best perceptual quality, while meeting the target bit rate. Optimal solution requires accurate rate and perceptual quality prediction at any STAR combination.

In this paper, we investigate how does the rate change as a function of the quantization stepsize q, frame rate t and frame size s. This work is extended from our previous work [1], where we consider the impact of temporal and amplitude resolutions on the video rate. Rate modeling for video coding has been researched over decades. To the best of our knowledge, no prior work has considered the joint impact of frame size, frame rate and quantization on the bit rate. However, several prior works [2]–[5] have considered rate modeling under a fixed frame rate and fixed frame size, and have proposed models that relate the average bit rate versus quantization stepsize q. Please see [1] for a review of prior work on this subject.

The proposed model is derived based on our analysis of the actual rates of video when coded at different (q, s, t) combinations. Our analysis shows that the rate at any (q, s, t) can be approximated well by the product of three separable functions, representing the influence of q, s, t on the rate, respectively. Each function can be approximated well by a power function, and has a single content-dependent model parameter. The overall model has four parameters (including the maximum bit rate R_{max}) and fits the measured rates for different STAR very accurately (with an average PC larger than 0.99 over all sequences). We also investigate how to predict the parameters using content features. According to our experiments, the model parameters can be estimated very well from three content features only, with average PC larger than 0.99.

The main contributions of this paper include:

- This is the first work modeling the compressed video bit rate with respect to the video FS s, FR t and QS q. The proposed model is analytically simple and requires only four content dependent model parameters.
- We also develop efficient method for predicting model parameters using a few content features extracted from the raw video. Our proposed model does not require any off-line training process.
- The proposed rate model, together with the quality model presented elsewhere [6], make rate-quality optimized scalable video adaptation and encoder rate control problems analytical tractable. We also develop a quality opti-
mized layer ordering algorithm, which facilitates simple scalable video rate adaptation at a network proxy or gateway to maximize the streamed video quality given the bit rate constraint.

The remainder of this paper is organized as follows: Section II presents the rate model considering the joint impact of spatial, temporal and amplitude resolutions. We then validate the same rate model is applicable for different encoding settings in Section III. Model parameter prediction using content features is analyzed in Section IV, while Section V introduces the rate-constrained quality and STAR optimization for both encoder rate control and scalable video adaptation, and considers layer ordering for scalable video in a rate-quality optimized way. Section VI concludes the current work and discusses the future research directions.

II. RATE MODEL CONSIDERING IMPACTS OF SPATIAL, TEMPORAL AND AMPLITUDE RESOLUTIONS

In this section, we develop the rate model based on the rates of video bitstreams generated using the spatial and temporal scalability tool of the SVC reference software [7]. The bit rates of all layers are collected and normalized by the bit rate constraint.

Among all these feasible decompositions, we should choose the one that leads to simplest mathematical model. For example, if we choose the first decomposition in (1a), the dependency of $R_q(t; q, s)$ on s and q makes the overall model complicated. On the other hand, if we choose the one in (1c), the fact that $R_s(s; q, t)$ does not depend on q and t, and $R_q(q; s, q)$ does not depend on t, enables us to write (1c) as the product of three separable functions of q, t, s, respectively, i.e.,

$$R(q, s, t) = R_{\text{max}}R_q(q; s_{\text{max}}, t_{\text{max}})R_s(s; q, t_{\text{max}})R_t(t; q, s).$$

A. Normalized Rate Data Collection and Analysis

To see how QS, FS, and FR individually affect the bit rate, we define the following normalized rate functions: $R_s(s; q, t) = R(q, s, t)/R(q, s_{\text{max}}, t)$ is normalized rate versus spatial resolution (NRS) under a certain q and t; $R_q(q; s, t) = R(q, s, t)/R(q_{\text{min}}, s, t)$ is the normalized rate versus quantization stepsize (NRQ) under a certain s and t; and $R_t(t; q, s) = R(q, s, t)/R(q, s, t_{\text{max}})$ is the normalized rate versus temporal resolution (NRT) under q and s.

Note that the NRT function $R_t(t; q, s)$ describes how does the rate decrease when the frame rate t reduces from t_{max} while the FS and QS are fixed; NRQ function $R_q(q; s, t)$ illustrates how does the rate change when the quantization stepsize increases beyond q_{min} under constant s and t; while the NRS function $R_s(s; q, t)$ characterizes how does the rate reduce when the frame size decreases from s_{max} when q and t are fixed.

To see how NRS, NRQ, and NRT vary with s, q, and t, respectively, we encoded several test videos using the joint scalable video coding tool of the SVC reference software [7] and measured the actual bit rates corresponding to different STARs. Specifically, five video sequences, “city”, “crew”, “harbour”, “ice” and “soccer”, at original 4CIF (704x576) resolution, are encoded into 5 temporal layers using dyadic hierarchical prediction structure, with frame rates at 1.875, 3.75, 7.5, 15 and 30 Hz, respectively, and each temporal layer contains 3 dyadic spatial layers (i.e., QCIF, CIF and 4CIF). For simplicity, we apply the same QP for all temporal and spatial layers (i.e., without using QP cascading [8]). To investigate the impact of QP, we have coded the video using QP ranging from 16 to 44. Here, we only present the results with QP = 40, 36, 32 and 28. Corresponding quantization stepsize $q_{\text{max}} = 64$, 40, 26 and 16, respectively [9]. Other QPs have the similar performance according to our simulation results.

The bit rates of all layers are collected and normalized by the rate at the highest frame size, i.e., 4CIF, $R_s(s; q, t)$ for all q and t, which are plotted in the first row of Fig. 1. As shown, the NRS curves obtained with different q and t overlap with each other, and can be captured by a single curve quite well. Similarly, the NRQ curves (middle row) are also almost invariant with the frame rate t, and vary slightly for different frame size s as shown in Fig. 1. On the other hand, NRT curves (last row) are quite dependent on frame size and quantization as shown in Fig. 1.

To derive the overall rate model, we recognize that the rate function $R(q, s, t)$ can be decomposed in multiple ways as follows:

$$R(q, s, t) = R_{\text{max}}R_q(q; s_{\text{max}}, t_{\text{max}})R_s(s; q, t_{\text{max}})R_t(t; q, s).$$

Among all these feasible decompositions, we should choose the one that leads to simplest mathematical model. For example, if we choose the first decomposition in (1a), the dependency of $R_t(t; q, s)$ on s and q makes the overall model complicated. On the other hand, if we choose the one in (1c), the fact that $R_s(s; q, t)$ does not depend on q and t, and $R_q(q; s_{\text{max}}, t)$ does not depend on t, enables us to write (1c) as the product of three separable functions of q, t, s, respectively, i.e.,

$$R(q, s, t) = R_{\text{max}}R_q(q; s_{\text{max}}, t_{\text{max}})R_s(s; q_{\text{min}}, t_{\text{max}})R_t(t; q, s).$$

B. Model for Normalized Rate v.s. Quantization $\tilde{R}_q(q)$

$\tilde{R}_q(q)$ is used to describe the reduction of the normalized bit rate as the QS increases at a fixed frame size s_{max} for any given frame rate t. As shown in Fig. 1 (middle row), $\tilde{R}_q(q)$ is independent of the t, thus we can model the $\tilde{R}_q(q)$ at any frame rate (e.g., $t = 30$ Hz) for simplicity. This reduces the
problem to model the influence of QS on the bit rate under fixed FS and FR, which has been studied extensively. For example, Altunbasak et al. [10] demonstrate that the rate can be approximated by a power function of q if the transform coefficients to be quantized follow the Cauchy distribution. On the other hand, Ding and Liu [2] show the power function is also a good rate estimation model for Gaussian distributed source.

Following these prior work, we also assume that \(R(q) \) follows a power function with the general form of

\[
R(q) = \frac{\theta}{q^\alpha},
\]

where \(\theta \) and \(\alpha \) are content related parameters. Usually, \(\theta \) is related to the picture content complexity. Assuming the same \(\alpha \) for different quantization, normalized rate versus quantization can be approximated by

\[
\tilde{R}_q(q) = \frac{R(q)}{R(q_{\text{min}})} = \left(\frac{q}{q_{\text{min}}} \right)^{-\alpha}.
\]

Fig. 1 (middle row) shows that the model 4 fits the measured data points accurately. The parameter \(\alpha \) is determined by minimizing the squared error, and it characterizes how fast the bit rate reduces when \(q \) increases. We note that the model in 4 is consistent with the model proposed by Ding and Liu [2] for non-scalable video at fixed frame size and frame rate, where they have found that the parameter \(\alpha \) is in the range of 0-2.

C. Model for Normalized Rate v.s. Temporal Resolution \(\tilde{R}_t(t) \)

As explained earlier, \(\tilde{R}_t(t) \) is used to describe the reduction of the normalized bit rate as the frame rate reduces at \(q_{\text{min}} \) and \(s_{\text{max}} \). Therefore, the desired property for the \(\tilde{R}_t(t) \) function is that it should be 1 at \(t = t_{\text{max}} \) and monotonically reduces to 0 at \(t = 0 \). Based on the data trend shown in Fig. 1 (third row), we choose a power function to describe the \(\tilde{R}_t(t) \), i.e.,

\[
\tilde{R}_t(t) = \left(\frac{t}{t_{\text{max}}} \right)^b.
\]

Fig. 1 shows the model curve using this function along with the measured data. The parameter \(b \) is obtained by minimizing the squared error between the modeled rates and measured rates. It can be seen that the model fits the measured data (e.g., at \(q_{\text{min}} \) and \(s_{\text{max}} \)) very well.

D. Model for Normalized Rate v.s. Spatial Resolution \(\tilde{R}_s(s) \)

\(\tilde{R}_s(s) \) is used to describe the reduction of the normalized bit rate as the frame size reduces. As we can see, the desired property for the \(\tilde{R}_s(s) \) function is that it should be 1 at \(s = s_{\text{max}} \) and monotonically reduces to 0 at \(s = 0 \). The data shown in Fig. 1 (first row) suggest that \(\tilde{R}_s(s) \) can be approximated well by a power function as well, i.e.,

\[
\tilde{R}_s(s) = \left(\frac{s}{s_{\text{max}}} \right)^c.
\]

Fig. 1 shows the model curve using 6 along with the measured data (for all possible \(q \) and \(t \)). The parameter \(c \) is obtained by minimizing the squared error between model predicted rates and actual measured rates, and characterizes the speed of bit rate reduction when the frame size decreases. It can be seen that the model prediction fits the actual measurements very well.
E. The Overall Rate Model

Substituting Eqs. (6), (5) and (4) into (2) leads to the proposed rate model

\[
R(q, s, t) = R_{\text{max}} \left(\frac{q}{q_{\text{min}}} \right)^{-a} \left(\frac{t}{t_{\text{max}}} \right)^{b} \left(\frac{s}{s_{\text{max}}} \right)^{c},
\]

(7)

where \(q_{\text{min}} \), \(s_{\text{max}} \) and \(t_{\text{max}} \) should be chosen based on the underlying application, \(R_{\text{max}} \) is the rate when coding a video at \(q_{\text{min}} \), \(s_{\text{max}} \) and \(t_{\text{max}} \), and \(a \), \(b \) and \(c \) are the model parameters, characterizing how fast the rate decreases when \(s \), \(t \) reduce and \(q \) increases. Note that \(R_{\text{max}} \) is also a model parameter that is content dependent. Generally a more complex video (with high motion and complex texture) requires a higher \(R_{\text{max}} \).

Table I lists the parameter values and model accuracy in terms of relative RMSE (i.e., \(\text{RRMSE} = \text{RMSE}/R_{\text{max}} \)), and the Pearson correlation (PC) between measured and predicted rates, defined as

\[
r_{xy} = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{\sqrt{n \sum x_i^2 - (\sum x_i)^2} \sqrt{n \sum y_i^2 - (\sum y_i)^2}},
\]

(8)

where \(x_i \) and \(y_i \) are the measured and predicted rates, and \(n \) is the total number of available samples. We see that the model is very accurate for all different sequences, with small RRMSE and high PC. Fig. 2 shows the actual rate data and corresponding estimated rates for all videos, via the proposed model (7). Results show that our proposed model can predict the bit rate very well.

Table I

city	crew	harbour	ice	soccer	ave.	
a	1.394	1.139	1.373	0.936	1.152	1.199
b	0.547	0.702	0.640	0.628	0.635	0.630
c	1.114	0.830	0.952	0.736	0.899	0.906
R_{\text{max}}	2379	3516	6145	1594	3242	3376
RRMSE	1.12%	0.75%	0.94%	0.72%	0.41%	0.80%
PC	0.9985	0.9991	0.9985	0.9993	0.9997	0.9990

III. Model Validation

The model described in the last section was derived based on rate data obtained for scalable video with joint spatial and temporal scalability without using QCascading. In this section, we verify that our proposed rate model works for other coding scenarios, including scalable and single layer video, temporal prediction using hierarchical B or IPPP, with or without QCascading, etc. Results show that our model can accurately predict the bit rates for all practical coding applications.

A. Model Validation for Video with Joint Spatial and Temporal Scalability

There are many ways to encode scalable video in practice. QCascading is one popular solution. Typically, we can vary QC in two ways: one is applied on temporal resolution, where we use smaller QC for pictures at lower temporal layer and larger QC at higher temporal layer; the other is using relative smaller QC for lower spatial layer (e.g., base layer) and increasing the QC along with the spatial resolution increment \(\log_{2} \text{GOP} + 1 \). Currently, QC reference software – JSVM uses explicit temporal QC cascading as its default setting, i.e., \(\text{QP}_{T} = \text{QP}_{0} + 3 + T > 0 \), where \(T \) is the temporal layer identifier. In our simulations, we apply this default temporal QC cascading without modification. On the other hand, spatial QC cascading algorithm is not specified in [7]. For simplicity, we select two constant delta QPs between successive spatial layers (noted as dQPs), i.e., dQPs = 4 and dQPs = 6.

The first three entries in Table II summarizes several cases we examined for joint spatial and temporal scalability, where HierB stands for dyadic hierarchical B prediction structure with the number indicating the GOP length. #SR is the number of spatial resolutions (SRs). #TR is the number of the temporal layers which can be derived by the GOP length, i.e., #TR = \log_{2} \text{GOP} + 1. #AR is the number of amplitude resolutions (ARs), which is controlled by the QC. The cited QPs are those used at the base layer, noted as bQP. To provide multiple amplitude resolutions, SVC codes a video using different base layer QPs. Please note that Fig. 2 and Table I are the experimental results for simulation SVC#1.

Table II

QP Cascading	temporal	spatial	#SR	#AR: bQP		
SVC#1	NO	NO	HierB: 16	3	4: 28, 32, 36, 40	
SVC#2	Yes	Yes	#QPs = 4	HierB: 16	3	3: 16, 20, 24
SVC#3	Yes	Yes	#QPs = 6	HierB: 8	3	4: 24, 28, 32, 36
SVC#4	Yes	Yes	#QPs = 6	HierB: 8	2	3: 16, 20, 24

Table III

QP Cascading	temporal	spatial	#SR	#AR: bQP
SVC#1-3	Joint	spatial-temporal scalability with amplitude scalability	SVC codes a video using different base layer QPs	

Table III and IV present the prediction accuracy and model parameters for SVC#2 and SVC#3 respectively. According to the simulations, we can see that our proposed rate model is generally applicable regardless the coding structures. We can also notice that model parameters are highly content dependent, and their values depend on coding scenarios as well.

Table IV

QP Cascading	temporal	spatial	#SR	#AR: bQP
SVC#1-3	Joint	spatial-temporal scalability with amplitude scalability	SVC codes a video using different base layer QPs	

1SVC#1-3: Joint spatial-temporal scalability with amplitude scalability coded using multiple QPs; SVC#4: combined scalability.
B. Model Validation for Combined Spatial, Temporal and Amplitude Scalability

SVC#4 in Table II refers to combined scalability of SVC, which can provide different STAR combinations within a single scalable stream. SVC#4 uses two spatial layers, three amplitude layers and four temporal layers as shown in Fig. 3. QP cascading is used and actual QP used in different layers are illustrated in Fig. 3.

Table V present the results for model parameters and prediction accuracy. It shows the same model also works well for the combined scalability.

C. Model Validation for Single Layer Video

In this section, we validate our proposed rate model for single layer video encoding. Video sequences are encoded with different combinations of FS, FR and QS, using JSVM [7].

Table VIII presents the prediction accuracy for different single layer coding scenarios.

IV. Model Parameter Prediction Using Content Features

As shown in previous sections, model parameters are highly content dependent. In this section, we investigate how to predict the parameters accurately using content features which can be easily obtained from original video signals. We have
four parameters in total for our rate model, i.e., a, b, c and R_{max}.

To predict these parameters, we adopt the same approach presented in [1], which predicts five parameters for both rate and quality models (three for the rate model, and two for the quality model) considering only the impact of FR and QS. In a nut shell, we predict each parameter as a weighted combination of some chosen features plus a constant, and determine the best set of features and corresponding weights using a cross-validation criterion. We have found that the same set of three features, μ_{DFD}, σ_{DFD}, and σ_{HFD}, can predict the model parameters under different coding scenarios. These features stand for the mean of the displaced frame difference, standard deviation of the motion vector magnitude and standard deviation of the motion direction activity, respectively. The predictor can be written as

$$P = HF,$$

where $F = [1, \mu_{\text{DFD}}, \sigma_{\text{DFD}}, \sigma_{\text{HFD}}]^T$. $P = [a, b, c, R_{\text{max}}]^T$. The predictor matrix H depends on the coding structure. For example, for SVC#1 and SL#2, they are

$$H_{\text{SVC#1}} = \begin{bmatrix} 1.374 & 0.059 & -0.049 & -0.253 \\ 0.226 & 0.022 & -0.007 & 0.356 \\ 1.507 & 0.005 & 0.0013 & -0.594 \\ -7262 & 1240 & -995.0 & 8033 \end{bmatrix},$$

and

$$H_{\text{SL#2}} = \begin{bmatrix} 1.538 & 0.040 & -0.025 & -0.474 \\ -0.241 & 0.025 & -0.014 & 0.530 \\ 1.420 & 0.011 & 0.0099 & -0.619 \\ -4598 & 795.9 & -549.2 & 4810 \end{bmatrix}.$$

Please refer to [1], [11] for more details. Fig. 4 shows the model accuracy using (7) for SVC#1 and SL#2 with parameters predicted using content features.

In video streaming, the same video is often requested by receivers with diverse sustainable receiving rates. To address this diversity, a video may be coded into a scalable stream that can be decoded at different STARs. Given a particular user’s sustainable rate, either the sender or a transcoder at a proxy needs to extract from the original bitstream at certain layers that together corresponds to a certain STAR to meet the rate constraint. This problem is generally known as scalable video adaptation. Here again the challenging problem is to determine which layers (which corresponds to a particular STAR) to extract, to maximize the perceptual quality.

Another related problem is how to order the temporal, spatial and amplitude layers of a SVC bitstream into a rate-quality optimized layered stream, so that each additional layer leads to the maximum ratio of the quality gain over the rate increment, and yet the decoding of each new layer only depends on this layer and previous layers.

Obviously, the solution of the above problems requires accurate rate and quality models that can predict the rate and quality associated with a given STAR. In this section, we discuss solutions to the above problems using both the rate model presented here and the QSTAR model described in [6], which relates the perceived quality with the STAR.

Our prior work in [1], [13], have studied similar problems but considering only the optimization of FR and QS, assuming the FS is fixed. Here, we extend these studies to consider the adaptation of FS, FR and QS jointly. We first review the QSTAR quality model. We then describe how to optimize the STAR in rate-constrained video coding and adaptation. Finally we present two algorithms for ordering the SVC layers.

A. Analytical Quality Model

The QSTAR model proposed in [6] relates the quality with (q, s, t) by

$$Q(q, s, t) = \frac{1 - e^{-\alpha_q(\frac{\nu_{\text{min}}}{\nu_{\text{max}}})^2}}{1 - e^{-\alpha_q}}, \frac{1 - e^{-\alpha_s(q)(\frac{\nu_{\text{max}}}{\nu_{\text{max}}})^2}}{1 - e^{-\alpha_s}}, \frac{1 - e^{-\alpha_t(\frac{\nu_{\text{max}}}{\nu_{\text{max}}})^2}}{1 - e^{-\alpha_t}},$$

where $\beta_q = 1$, $\beta_s = 0.74$, $\beta_t = 0.63$, $\alpha_s(q) = \tilde{\alpha}_s(q)\nu_1Q_P(g + \nu_2)$ when $\nu_1 \geq 28$ and $\alpha_s = \tilde{\alpha}_s(28\nu_1 + \nu_2)$ when $\nu_1 < 28$, with $\nu_1 = -0.037$, $\nu_2 = 2.25$. The rate-model parameters, a, b, c, R_{max} and quality model parameters α_q, $\tilde{\alpha}_s$ and $\tilde{\alpha}_t$ control how fast the rate and quality, respectively, drop as the spatial, temporal, or amplitude resolution decreases. These parameters depend on the the motion and texture characteristics of the underlying video, and can be estimated from certain features computable from original video (as described in Section V).

Table X shows the quality model parameters and its accuracy, for the same set of test sequences used for the rate model development. Although the study in [6] used scalable video coded with H.264/SVC codec [7], a separate study [14]
has confirmed that there is no statistically significant quality difference between scalable (coded using H.264/SVC) and non-scalable video (coded using H.264/AVC) when coded at the same STAR. This means that the QSTAR is applicable to both scalable and non-scalable video, and the model parameter is generally independent of the encoder setting.

TABLE X
Quality Model Parameter and Its Accuracy

Parameter	City	Crew	Harbour	Ice	Soccer	Average
α_q	7.25	4.51	9.65	5.61	6.31	6.66
α_s	3.52	4.07	4.58	3.68	4.55	4.08
α_t	4.10	3.09	2.83	3.00	2.23	3.05
RRMSE	1.80%	2.50%	3.80%	3.30%	3.20%	2.92%
PC	0.998	0.996	0.992	0.993	0.992	0.995

B. Rate Constrained Quality and STAR Optimization

Although video encoding and adaptation are quite different applications, the essence of these problem is to maximize the video quality under the bit rate constraint, i.e.,

\[
Q = q, s, t \quad \text{to maximize} \quad Q(q, s, t) \\
\text{subject to} \quad R(q, s, t) \leq R_0, \tag{13}
\]

where R_0 is the bit rate constraint. We employ the rate and quality models in (7) and (12) to solve this optimization problem, first assuming s, t, and q can take on any value in a continuous range, $s \in (0, s_{\max})$, $t \in (0, t_{\max})$, and $q \in [q_{\min}, \infty)$. We then describe the solution when s and t are chosen from discrete sets feasible with dyadic temporal and spatial prediction structures typically adopted by practical encoders.

1) **Optimal solution assuming continuous s, t, and q and Quality-Rate Model:** Letting $R(q, s, t) = R_0$ in (7), we obtain

\[
q = q_{\min} \sqrt{\frac{R_{\max}}{R_0}} \left(\frac{s}{s_{\max}} \right)^{e} \left(\frac{t}{t_{\max}} \right)^{b}, \tag{14}
\]

which describes the feasible q for a given pair of s and t, to satisfy the rate constraint R_0. Substituting (14) into (12) yields the quality model with respect to FS and FR, i.e., $Q(s, t)$. By solving $\partial Q(s, t)/\partial s = 0$, and $\partial Q(s, t)/\partial t = 0$, we can have the optimal pair of s_{\opt} and t_{\opt}, and correspondingly q_{\opt} via (14), to produce the best quality Q_{\opt}. However, it is difficult to derive the close form of $Q_{\opt}(R, s_{\opt}(R), t_{\opt}(R)$ and $q_{\opt}(R)$. Thus, we solve the optimization problem (13) numerically, by searching over a discrete space of (s, t), i.e., for any given rate, we search through feasible s and t, derive the q via (14) and select the (s, t) and consequently $q(s, t)$ that yields the best quality. Fig. 5 shows Q_{\opt}, q_{\opt}, s_{\opt} and t_{\opt} as functions of the rate constraint R_0. As expected, as the rate increases, s_{\opt} and t_{\opt} increase while q_{\opt} reduces, and the achievable best quality continuously improve. In this example, we use the rate model parameters derived for scalable video coded using SVC#1 setting, with model parameters given in Table X. The same methodology can be used both for choosing optimal STAR in a single layer encoder, or choosing the STAR to extract a scalable stream using different encoder settings, for given target rate, but we would need to use corresponding rate model parameters.

Although it is difficult to derive the closed form for the $Q_{\opt}(R)$ function, we found that the Q-R relation in Fig. 5 can be well approximated by an inverted exponential function of the form

\[
Q(R) = \frac{1 - e^{-\kappa \left(\frac{R}{R_{\max}} \right)^{0.55}}}{1 - e^{-\kappa}}, \tag{15}
\]

with κ as the model parameter. Table XI shows the parameter κ and approximation accuracy in terms of the root mean squared error (RMSE).

2) **Optimal solution assuming dyadic s and t:** In practical video encoder, s and t only take on limited discrete values. Here, we consider the popular dyadic temporal and spatial prediction structure in which t doubles in increasing temporal layers, whereas s quadruples in increasing spatial layers. We further assume $t_{\max} = 30$ and $s_{\max} = 4$CIF, so that $t \in \{3.75, 7.5, 15, 30\}$, and $s \in \{\text{QCIF, CIF, 4CIF}\}$. We further assume $q \in [16, 104]$. These are the ranges in which the original rate and quality models are derived.

To obtain the optimal solution under this scenario, for each given rate, we search through all possible (s_k, t_k) pairs from the feasible sets and and their corresponding $q_k = q(s_k, t_k)$ values using (14), and select the one that leads to the highest quality. The results are shown in Fig. 6. Because the frame rate and frame size can only increase in discrete steps, the optimal q does not decrease monotonically with the rate. Rather, whenever either s_{\opt} or t_{\opt} jumps to the next higher
value, \(q_{\text{opt}} \) first increases to meet the rate constraint, and then decreases while \(s \) and/or \(t \) is held constant, as the rate increases. Also, when \(s \) jumps to the next high level, \(t \) may first decrease to a lower level, for example, ICE around 750 kbps. Note that the rates at which \(s \) jumps or \(t \) jumps are sequence dependent. For sequences with high texture details (e.g., city), we see that \(s \) jumps to the highest level earlier. For sequences with high motion (e.g., soccer), \(t \) jumps to the highest level earlier and stay at that level even after \(s \) jumps.

C. Quality Optimized Layer Ordering for SVC Bit streams

In the scalable video adaptation problem considered in the previous section, we assume that all SVC layers are stored in a server (or sender), and for a given rate, the layers corresponding to the optimal STAR for that rate are extracted and sent. In this scenario, the optimal STAR corresponding to increasing rates does not need to be monotonically increasing. As shown in Fig. 6, in fact, with limited choice of feasible \(s \) and \(t \), the optimal STAR indeed are not monotonically increasing.

Here, we consider a different scenario, where we would like to preorder the SVC layers (coded using discrete sets for \(s \), \(t \), and \(q \)) into a single layered stream, so that each additional layer yields the maximum possible quality improvement. With such a pre-ordered SVC stream, the server or proxy in the network can simply keep sending additional layers, until the rate target is reached. The order of feasible STAR points must satisfy the monotonicity constraint that, as rate increases, \(s \) and \(t \) are non-decreasing and \(q \) be non-increasing.

We have shown previously how to employ \(^7\) and \(^{12}\) to determine the optimal STAR which gives the best quality under a rate constraint. There we have assumed either \(s \), \(t \), and \(q \) are all continuous, or \(s \) and \(t \) are discrete but \(q \) is continuous. In practice, \(q \) as well as \(s \) and \(t \) can only be chosen from a finite set, so that the achievable rate is not continuous. Although we could extend the scheme in Sec. VI-B2 to allow only discrete \(q \), the algorithm will not be very efficient, as we don’t know what are the achievable rates in advance. Also, the resulting \((s, t, q)\) points may not satisfy the monotonicity constraint. In the following, we discuss how to take into account such practical limitations.

Suppose there are \(L \) spatial layers, \(M \) temporal layers and \(N \) amplitude layers, the corresponding feasible choices of FS, FR and QS are \(S = \{s_1, s_2, ..., s_L\} \), \(T = \{t_1, t_2, ..., t_M\} \) and \(Q = \{q_1, q_2, ..., q_N\} \), respectively, where FS and FR are increasingly ordered and QS is decreasing ordered. We denote each combination of STAR and the associate rate and quality as \((R_{lmn}, Q_{lmn}, s_l, t_m, q_n)\), \(1 \leq l \leq L, 1 \leq m \leq M, 1 \leq n \leq N \). A greedy algorithm (forward ordering algorithm) works as follows: starting from the base layer, i.e., \((R_{111}, Q_{111}, s_1, t_1, q_1)\), check the three possible moves to next rate point, i.e., \((R_{211}, Q_{211}, s_1, t_1, q_1)\) or \((R_{121}, Q_{121}, s_1, t_2, q_1)\) or \((R_{112}, Q_{112}, s_1, t_1, q_2)\). Move to the one with maximum quality gain over the rate increase, i.e., \(\arg \max_{l,m,n} \Delta Q / \Delta R\). The process continues until \((s, t, q) = (s_L, t_M, q_N)\). Fig. 7(a) shows the achievable rate-quality points for “city” obtained using this forward pre-order algorithm. We can see that those points follow the continuous rate-quality model \(^{15}\) very closely, indicating that ordering SVC layers subjecting to the monotonicity constraint yields near-optimal rate-quality tradeoff. However, due to the coarse granularity of feasible \(s \), \(t \), and \(q \) in each move, it results in a “clustered” rate points. Fig. 7(b) shows the corresponding optimal \((q, s, t)\) as functions of rates. It is easy to confirm that the monotonicity of \((q, s, t)\) is satisfied.

A problem with the forward ordering method is that the achievable rate points tend to cluster in separate regions, leaving relatively large “gaps” in the rate region \((0, R_{\text{max}})\). To generate a more uniformly distributed set of rates, we also design a backward ordering algorithm. The algorithm works...
similar as the forward order algorithm, except that it starts with the last points, i.e., \((R_{LMN}, Q_{LMN}, s_L, t_M, q_N)\), and proceeds “backward” to the first points \((R_{111}, Q_{111}, s_1, t_1, q_1)\). We also consider the three possible moves along spatial, temporal or amplitude dimensions, and keep the one with minimum quality drop over the rate drop.

![Achievable rate-quality points by forward and backward algorithms.](image)

Fig. 8. Achievable rate-quality points by forward and backward algorithms.

Fig. 7(c) and Fig. 7(d) show the achievable rate-quality points using the backward algorithm and the corresponding STAR for “city”. Clearly, the points follow the continuous rate-quality model (15) very closely. Furthermore, they are more uniformly distributed over the entire rate region, compared to the points obtained by the forward-ordering algorithm show in Fig. 7(a). The performance comparison for other sequences between the backward algorithm and the forward algorithm is shown in Fig. 8. Clearly, both algorithms return near-optimal pre-order points. However, the backward algorithm provides more uniformly distributed rate points.

VI. DISCUSSION AND CONCLUSION

In this paper, we propose an analytical rate model considering the impact of the spatial, temporal and amplitude resolutions (STAR). We have found the impact of spatial, temporal and amplitude resolution on video bit rate is actually separable. Hence the rate model consider STAR combinations is the product of the separate functions of frame rate, frame size and quantization stepsize. Our proposed analytical rate model is generally applicable to all coding scenarios, including both scalable and single layer video coding, using hierarchical B or IPPP for temporal prediction, with or without QP cascading, etc. But the model parameters differ depending on the encoding scenarios. We have also verified that our model is accurate for other video contents (e.g., test videos from JCT-VC) and resolutions (e.g., 720p, WVGA, etc), which are not included here because of the space limitation.

Experimental results show that model parameters are highly content dependent. We also propose a method for predicting the model parameters using weighted sum of some content features that can be computed from original video sequences. We have found that it is sufficient to provide accurate bit rate estimation with model parameters predicted by three content features. We also notice that the best feature set is the same for all test cases, but the predictor matrix \(H\) depends on the encoder setting.

Finally, we show how to use the proposed rate model and a corresponding quality model, both as functions of \(q, s, t\), to determine the STAR that maximizes the perceptual quality for a given rate constraint. The solution is applicable to both encoder rate control, and scalable video adaptation. We further show that the rate and quality models can be combined to order the layers in a scalable stream in a rate-quality optimized way.

REFERENCES

[1] Z. Ma, M. Xu, Y.-F. Ou, and Y. Wang, “Modeling Rate and Perceptual Quality of Video as Functions of Quantization and Frame Rate and Its Applications,” IEEE Trans. Circuit and System for Video Technology, vol. 22, no. 5, pp. 671–682, May 2012.
[2] W. Ding and B. Liu, “Rate control of MPEG video coding and recoding by rate-quantization modeling,” IEEE Trans. Circuit and System for Video Technology, vol. 6, pp. 12–20, Feb. 1996.
[3] T. Chiang and Y.-Q. Zhang, “A new rate control scheme using quadratic rate distortion model,” IEEE Trans. Circuit and Systems for Video Technology, vol. 7, no. 2, pp. 246–250, Feb. 1997.
[4] J. Ribas-Corbera and S. Lei, “Rate control in DCT video coding for low-delay communications,” IEEE Trans. Circuit and Systems for Video Technology, vol. 9, no. 2, pp. 172–185, Feb. 1999.
[5] Z. He and S. K. Mitra, “A novel linear source model and a unified rate control algorithm for H.264/MPEG-2/MPEG-4,” in Proc. of Intl. Conf. Acoustics, Speech, and Signal Processing, May 2001.
[6] Y.-F. Ou, Y. Xue, and Y. Wang, “QSTAR: A perceptual video quality model for mobile platform considering impact of spatial, temporal, and amplitude resolutions,” Polytechnic Institute of NYU, Tech. Rep., June 2012. [Online]. Available: http://arxiv.org/abs/1206.2320
[7] Joint Scalable Video Model (JSVM), JSVM Software, Joint Video Team, Doc. JVT-X203, Geneva, Switzerland, June 2007.
[8] Joint Scalable Video Model, JSVM Encoder Description, Joint Video Team, Doc. JVT-X202, Geneva, Switzerland, June 2007.
[9] H.264/AVC, Draft ITU-T Rec. and Final Draft Intl. Std. of Joint Video Spec. (ITU-T Rec. H.264/ISO/IEC 14496-10 AVC) Joint Video Team (JVT), Joint Video Team, Doc. JVT-G050, Mar. 2003.
[10] Y. Altunbasak and N. Kamaci, “An analysis of the DCT coefficient distribution with the H.264 video coder,” in Proc. of IEEE ICASSP, vol. 22, no. 5, pp. 17–21 May 2004, pp. iii – 177–80.
[11] Z. Ma, “Modeling of Power, Rate and Perceptual Quality of Scalable Video and Its Applications,” Ph.D. dissertation, Polytechnic Institute of New York University, January 2011. [Online]. Available: http://vision.poly.edu/~zma03/zhanna_phd_final.pdf
[12] S. Liu and C.-C. J. Kuo, “Joint temporal-spatial bit allocation for video coding with dependency,” IEEE Trans. Circuit and System for Video Technology, vol. 15, no. 1, pp. 15–27, Jan. 2005.
[13] H. Hu, X. Zhu, Y. Wang, R. Pan, J. Zhu, and F. Bonomi, “Proxy-Based Multi-Stream Scalable Video Adaptation over Wireless Networks Using Subjective Quality and Rate Models,” Polytechnic Institute of NYU, Tech. Rep., 2011. [Online]. Available: http://vision.poly.edu/hao/papers/WirelessVideo_TMM_2011.pdf
[14] Y. Xue and Y. Wang, “Perceptual video quality comparison : single-layer vs. scalable bitstream,” Polytechnic Institute of NYU, Tech. Rep., Feb. 2012. [Online]. Available: http://arxiv.org/abs/1206.1866