Effect of cattle breed on finishing performance, carcass characteristics and economic benefits under typical beef production system in China

Xiangxue Xie, Qingxiang Meng, Liping Ren, Fenghua Shi, Bo Zhou
College of Animal Science and Technology, China Agricultural University, Beijing, China

Abstract

This study compared the finishing performance, carcass characteristics and economic benefits of two imported (Limousin and Simmental) and three local (Luxi, Jinnan and Qinchuan) cattle breeds slaughtered at 18.5 months of age under the typical Chinese beef production system. All cattle (n=71) were reared under the same production system and fed the same finishing diet for 105 days. Eight bulls from each breed were randomly selected for slaughtering. Compared with the three local breeds, the two imported breeds had higher average daily gain, dry matter intake and gain efficiency. Regarding carcass characteristics, the two imported breeds had higher carcass weight, bone weight, net meat weight, and ribeye area (P<0.001). However, the local breeds had higher (P<0.01) marbling scores than the imported breeds. The imported breeds showed higher economic benefits (P<0.001) than the local breeds. In conclusion, the imported cattle breeds had better growth performance, carcass traits and economic benefits compared with the local cattle breeds at 18.5 months old under the typical Chinese feeding conditions whereas, in this study, the local breeds may have some advantage in terms of meat quality.

Materials and methods

Introduction

In China, there are approximately sixty-nine local cattle breeds, the four most dominant being Luxi, Qinchuan, Jinnan, and Fuzhou (Zheng et al., 1986). Before 1980, although there was a large population of cattle, they were mainly used for draft purposes and only older animals were slaughtered for their meat (Zhou et al., 2001). With the economic development of the last 30 years, beef consumption has risen rapidly (Shi, 2008) in China. However, the local cattle cannot meet the demand for meat from farmers and retailers because of their low growth performance and dressing percentage (Huang et al., 2000; Liu et al., 2006, 2009).

Since the 1970s, China has imported some high producing cattle breeds, such as two European breeds (Limousin and Simmental). In China, the two imported cattle breeds have become nearly pure breeds as a result of more than five generations of grading and crossing. It is well known that the two European cattle breeds usually have excellent growth performance and meat production under intensive feeding conditions (Chambaz et al., 2003; Cuvelier et al., 2006; Vieira et al., 2007). However, because of the high price of concentrates, farmers, especially those with small family farms, typically raise cattle under a beef production system that has a moderate level of nutrition and slaughter them at a similar age regardless of their breed. Nevertheless, little information is available about the comparison of growth performance and carcass characteristics of the two European and the local breeds under the typical Chinese moderate feeding system in cattle of the same age. It is known that breed influences growth performance and carcass characteristics (Cozzi et al., 2009; Nancy and Nelson, 2009). Thus, rearing different breeds of cattle may obtain different economic benefits. However, few reports are available comparing the economic effects of local and imported cattle breeds based on the same typical feed resources. The objective of the present study was to compare the finishing performance, carcass traits and economic benefits of two European and three local breeds slaughtered at the same age under typical Chinese feeding conditions.

Acknowledgments: this study was financially supported by the China National Supporting Project (n. 2006BAD12B02) and the Earmarked Fund for Modern Agro-Industry Technology Research System (Beef Cattle and Yaks, CARS-38). The authors also thank Xiaodong Li, Wanxiang Liu for their skilful care of the animals, the beef cattle unit crew for their help in meat quality assessment, and Mr. Geoff Kirton for revising English language usage.

Received for publication: 15 December 2011. Last revision received: 18 June 2012. Accepted for publication: 26 June 2012.

This work is licensed under a Creative Commons Attribution NonCommercial 3.0 License (CC BY-NC 3.0).

©Copyright X. Xie et al., 2012
Licensee PAGEPress, Italy
Italian Journal of Animal Science 2012; 11:e58
doi:10.4081/ijas.2012.e58

Corresponding author: Prof. Liping Ren, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan Xilu 2, Beijing 100193, China. Tel. +86.10.62733799 – Fax: +86.10.62829699. E-mail:renlp@cau.edu.cn

Key words: Reproduction, Beef cattle, Carcass characteristic, Economic benefits, Growth performance.
housed individually in tie stalls and had free access to the same total mixed ration during the study period. Animals also had free access to fresh water. All procedures were conducted under the approval of the China Agricultural University Animal Science and Technology College Animal Care and Use Committee.

Body measurement and growth performance

Body length, straight length, height, hip height, chest circumference and cannon circumference were measured according to Zhou et al. (2006). Dietary dry matter intake (DMI) was individually measured based on the difference between the amount of diet offered and refused daily. Body weight was measured before morning feeding on two consecutive days at the beginning and on the final day of the study. Average daily gain (ADG) was calculated as the difference between initial and final live weight. Gain efficiency (gain:feed) was calculated by the ratio of individual ADG to dietary DMI.

Slaughter characteristics

Eight bulls from each breed were randomly selected for slaughtering at 18.5 months old. On the day prior to slaughtering, the animals were weighed and kept overnight at the holding pens of the abattoir without feeding. The animals had free access to water at all times. Slaughter and dressing procedures were carried out in one day following usual commercial procedures at the China Agricultural University Experimental Abattoir in Daxing, Beijing. Hot carcass weight was individually recorded to calculate cold dressing percentage. The cold carcass weight was calculated based on feed price, output / input = (ADG×MPBW)/(DMI×MPF)

where ADG is the average daily gain (kg/head), MPBW is the average market price of body weight (Euro/kg), DMI is the daily DM intake (kg/head/day), and MPF is the market price of feeds (Dong et al., 2006).

Statistical analysis

The effects of breed on body measurement, growth performance, carcass characteristics and economic return values were subjected to one-way analysis of variance using SAS Generalized Linear Models procedures (SAS, 2000). The significant differences between least square group means were compared using the SAS PDIFF test (SAS, 2000). All the results from imported and local breeds were also analysed using Student’s t-test (SAS, 2000).

Results

Body measurements and growth traits

Differences in body structural traits among cattle breeds are presented in Table 2. Imported

Breed	Imported	Local	Contrast, P value					
No. of bulls	15	15	-	-	<0.001	<0.001		
Body length, cm	152*	142*	1340	137*	134*	1.727	<0.001	<0.001
Body straight length, cm	137*	136*	112*	120*	117*	1.65	<0.001	<0.001
Withers height, cm	131*	124*	117*	119*	118*	1.136	<0.001	<0.001
Hip height, cm	139*	129*	119*	121*	119*	1.257	<0.001	<0.001
Cannon circumference, cm	195*	179*	168*	172*	171*	2.007	<0.001	<0.001
Cannon circumference, cm	21*	19*	17*	17*	17*	0.29	<0.001	<0.001

*Means in the same row with different superscripts are significantly different (P<0.05). LIM, Limousin; SIM, Simmental; LX, Luxi; JN, Jinan; QC, Qinchuan.

| Table 1. Feed ingredient and composition used during growing and finishing periods. |
Item	Growing period	Finishing period
Ingredients, % DM		
Maize	9.00	44.00
Cotton seed meal	-	3.00
Soybean pomace	13.10	8.80
Brewers dried grain	5.90	11.00
Maize stalk silage	70.00	30.00
Limestone	-	0.56
Dicalcium phosphate	0.10	0.14
Sodium bicarbonate	0.10	0.70
Salt	0.30	0.30
Vitamin/trace mineral premix	1.50	1.50
Composition		
Dry matter, %	28.8	54.6
Metabolizable energy, MJ/kg DM	8.70	11.10
Crude protein, % DM	9.40	11.70
NDF, % DM	56.50	40.00
ADF, % DM	35.40	19.60
Calcium, % DM	0.43	0.51
Phosphorus, % DM	0.21	0.30

*Contained per kg of vitamin/trace mineral premix: Mg, 476 g; Zn, 65.7 g; Mn, 29 g; Fe, 3866 mg; Cu, 3866 mg; I, 1160 mg; Co, 386 mg; Se, 150 mg; vitamin A, 1.2×107 U; vitamin D, 2,500,000 U; vitamin E, 1900 mg; vitamin K, 390 mg; choline, 90,000 mg; vitamin B1, 1900 mg; vitamin B2, 900 mg; vitamin B12, 7 mg. DM, dry matter; NDF, neutral detergent fibre; ADF, acid detergent fibre. Calculated values.

| Table 2. Effect of breed on body measurements of young bulls. |
Breed	LIM	SIM	LX	JN	QC	SEM	P import vs local
No. of bulls	15	15	13	13	15	-	<0.001
Body length, cm	152*	142*	130*	137*	134*	1.727	<0.001
Body straight length, cm	137*	136*	112*	120*	117*	1.65	<0.001
Withers height, cm	131*	124*	117*	119*	118*	1.136	<0.001
Hip height, cm	139*	129*	119*	121*	119*	1.257	<0.001
Cannon circumference, cm	195*	179*	168*	172*	171*	2.007	<0.001
Cannon circumference, cm	21*	19*	17*	17*	17*	0.287	<0.001

*Means in the same row with different superscripts are significantly different (P<0.05). LIM, Limousin; SIM, Simmental; LX, Luxi; JN, Jinan; QC, Qinchuan.
breeds had greater body structural traits than local breeds (P<0.001). Between imported breeds, LIM had higher values than SIM in all body structural traits (P<0.05), whereas the three local breeds were mostly similar for withers height, hip height, chest circumference and cannon circumference traits. Only body length and body straight length differed: LX cattle were shorter than JN cattle (P<0.05). Highly significant differences were observed between the imported and the local breeds for final body weight (FBW), ADG, DMI and gain efficiency (GE) (P<0.001) (Table 3). Between imported breeds, LIM had higher FBW, ADG, DMI and GE than SIM. For all growth performance traits, there were no significant differences among local breeds. It was interesting that LM cattle had much lower (P<0.001) DMI expressed as percentage of body weight than the other four breeds of cattle.

Carcass characteristics

Data concerning carcass characteristics are presented in Table 4. The two imported breeds had much heavier (P<0.001) carcass weight than the three local breeds. Also, the LIM breed had higher (P<0.001) hot and cold dressing percentages than both the SIM breed and the other three local breeds. Although the two imported breeds had heavier (P<0.001) bone weight and net meat weight than the local breeds, there was no difference in bone percentage and ratio of meat to bone (P>0.05) between the imported and the local breeds. LX had the thinnest backfat in all breeds, whereas the other four breeds showed no significant differences (P>0.05) in backfat thickness. Compared with the imported breeds, the local breeds had lower ribeye areas (P<0.001) and yield index (P<0.05) but higher (P<0.001) marbling scores.

Economic benefits

The daily feed cost of the different breeds, live weight gain and economic data are shown in Table 5. The imported breeds had significantly (P<0.001) higher profits than the local breeds and LM cattle had the highest profits among the five breeds. The imported breeds had significantly higher (P<0.001) economic benefits than the local breeds. As a result, the cost of BW gain per kilogram was 1.16 Euro for LIM, followed by 1.30 Euro for SIM, and 1.50, 1.61 and 1.60 Euro for the breeds of LX, JN and QC, respectively (Table 5).

Table 3. Effect of breed on growth and feed efficiency traits of young bulls.

Breed	Imported	Local	SEM	P	Imported vs local			
No. of bulls	15	15	13	13	15			
Initial body weight, kg	398b	298a	245	251	256	11.87	<0.001	<0.001
Final body weight, kg	555b	422a	330	339	334	12.56	<0.001	<0.001
Average daily gain, kg	1.50	1.20a	0.82	0.82	0.78	0.050	<0.001	<0.001
Dry matter intake, kg/d	8.47	7.51a	6.12	6.30	6.02	0.137	<0.001	<0.001
Dry matter intake, % BW	1.82b	2.11a	2.08	2.14	2.07	0.065	0.005	0.056
Gain efficiency#	0.177a	0.159a	0.136	0.131	0.130	0.007	0.001	0.007
#Means in the same row with different superscripts are significantly different (P<0.05). LIM, Limousin; SIM, Simmental; LX, Luxi; JN, Jinnan; QC, Qinchuan.								

Table 4. Effect of breed on carcass traits of young bulls.

Item	Imported	Local	SEM	P	Imported vs local			
No. of bulls	8	8	8	8	8			
Slaughter weight, kg	559b	461a	330	339	342	13.754	<0.001	<0.001
Hot carcass weight, kg	330b	262a	185	197	190	8.624	<0.001	<0.001
Hot dressing percentage, %	59.0a	56.7b	55.5	56.1	55.5	0.572	<0.001	<0.001
Cold carcass weight, kg	327a	257a	181	194	187	8.501	<0.001	<0.001
Cold dressing percentage, %	58.5a	55.7b	54.2	54.4	54.6	0.598	<0.001	<0.001
Bone weight, kg	41a	32a	22	22	23	1.206	<0.001	<0.001
Bone percentage, %	12.7	12.5	11.9	11.6	12.3	0.437	0.455	0.122
Net meat weight#, kg	285a	225a	159	171	164	7.883	<0.001	<0.001
Net meat weight/bone weight	6.98	7.04	7.54	7.70	7.14	0.315	0.406	0.123
Backfat thickness, mm	2.88a	2.63a	1.60	1.64	1.71	0.433	0.203	0.925
Marbling score#	1.50a	1.63a	2.19	2.25	2.13	0.242	0.078	0.004
Ribeye area, cm²	101.86a	72.88b	57.32	60.64	56.72	3.953	<0.001	<0.001
Yield index	71.03a	69.07b	69.50c	68.30c	68.47c	0.624	0.029	0.037
Yield grade	3.00a	2.81a	2.88	2.25	2.75	0.118	<0.001	<0.001

*Means in the same row with different superscripts are significantly different (P<0.05). LIM, Limousin; SIM, Simmental; LX, Luxi; JN, Jinnan; QC, Qinchuan. *Estimated as the sum of high, medium, low-value and fat cuts, expressed as the percentage of carcass weight. #Marbling score from 1 to 5 (1, devoid; 5, abundant).

Table 5. Effect of breed on economic traits of young bulls.

Item	Imported	Local	SEM	P	Imported vs local			
Feed price, Euro/kg DM	0.20	0.20	0.20	0.20	0.20			
Feed intake, kg/head 105d	907b	788a	634	662	632	14.78	<0.001	<0.001
Daily feed cost, Euro/d	1.74a	1.51a	1.22	1.27	1.22	0.028	<0.001	<0.001
Cost per kg gain, Euro/kg	1.16a	1.30b	1.50	1.61	1.69	0.067	<0.001	<0.001
Market price of body weight, Euro/kg	2.13	2.13	2.25	2.25	2.25			
Live-weight gain, kg/head 105d	162a	124a	85	79	86	5.250	<0.001	<0.001
Profit, Euro/head/d#	1.45a	1.02a	0.63	0.58	0.58	0.092	<0.001	<0.001
Economic benefits, output/input¹	1.88	1.68	1.52	1.46	1.48	0.075	0.004	0.004

¹²Means in the same row with different superscripts are significantly different (P<0.05). LIM, Limousin; SIM, Simmental; LX, Luxi; JN, Jinnan; QC, Qinchuan. *Profit, MPBW×ADG-DFC where MPBW is the average market price of body weight, ADG is daily average gain, and DFC is daily feed cost. #Economic benefit, (ADG×MPBW)/(DMI×MPF) where ADG is daily average gain, MPBW is the average market price of body weight, DMI is the daily DM intake (kg/head/day), and MPF is the market price of feeds.

Note: Table 3 and Table 5 have been abbreviated for the sake of space.
Discussion

Effect of breed on body measurement and growth traits

Before this study, all bulls had been reared in similar feeding conditions and fed similar traditional diets over 15 months. Because these breeds have different genetic potential for growth, the initial body weight for the two imported breeds was heavier than the three local breeds in this study. Visual muscularity and skeletal scores are useful as early predictors in breed characterisation, especially in animals selected for breeding programmes (Drennan et al., 2008). As in a previous study (Alberti et al., 2008), significant differences were found among the morphological measurements at 18.5 months between the imported and the local breeds in this study; these confirmed the large phenotypic variability among cattle breeds. However, no differences were observed within the local breeds. According to the cattle breed grouping method reported by Alberti et al. (2008), using body size and carcass traits, LIM, SIM and the three local breeds in the present study could be classified as specialised, intermediate and local cattle breeds, respectively. The imported breeds had greater body size than the local breeds, which was in agreement with the results of Hua et al. (2008).

In cattle breeds, live weight is largely the result of body size at maturity, biological type, and growth rate (Chambaz et al., 2003; Alberti et al., 2005). In this study, the same diet with a moderate level of nutrition was used for all cattle breeds. The final body weight of LIM and SIM was heavier than that of the local breeds, which might be due to a breed-specific difference in mature size. In addition, in the current study, the ADG of Limousin bulls was similar to the data reported by Alberti et al. (2008) and higher than those found by Hoving-Bolink et al. (1999) at a similar age. These data indicate that excellent growth performance of LIM cattle can be maintained under typical Chinese feeding conditions. However, the ADG and slaughter weight of SIM cattle from this study was lower than that of LIM cattle, which is in contrast to previous reports (Chambaz et al., 2003; Clarke et al., 2009). Furthermore, compared to the ADG data from Hoving-Bolink et al. (1999), using an intensive feeding system, the ADG of SIM in the present study was lower. Therefore, it may be suggested that the typical Chinese beef production system with a moderate level of nutrition and slaughter at the same age does not represent the best management choice for achieving optimal results from the SIM breed. The typical husbandry conditions are probably better suited to the LIM breed than for the SIM breed.

Effect of breed on carcass characteristics

Breed-specific differences in growth rate can affect carcass weight (Vieira et al., 2007). The relative lower carcass weights of the three local breeds in this study might be due to breed-specific differences in growth rate. LIM had a relatively higher dressing percentage, which resulted from its lower percentage of visceral fat and lower weights taken from the fifth quarter (articular tract, visceral organs, hide, feet and head) (Vieira et al., 2007). The higher dressing percentage of the LIM breed was also observed by Chambaz et al. (2003) and Sañudo et al. (2004). However, there was no difference in dressing percentage of SIM compared with the local cattle breeds, which may be due to its higher fifth quarter values (Simões et al., 2005).

In the present study, there was no statistical difference in bone percentage between these five breeds, in spite of the higher bone weights observed in the imported breeds. The bone percentage of the two imported breeds was slightly lower than the value reported by Nancy and Nelson (2009), which may be due to the different feeding systems adopted in the two studies. A high degree of marbling is usually associated with meat quality and is a decisive factor in the market price of beef products in China. In the present study, local breeds had a slightly higher marbling score which means that, in China, the price of beef products from local cattle breeds is higher. Backfat thickness and marbling score of carcass of LIM and SIM bulls were similar to those found by Sami et al. (2004), Clarke et al. (2009) and Nancy and Nelson (2009) at a similar slaughter age, but significantly lower than that reported by Chambaz et al. (2003). Panjono et al. (2009) found that backfat thickness and marbling score of steers were significantly higher than those of bulls. So the lower values of the two traits in these breeds in the present study was lower than that of LIM cattle, which is in contrast to previous reports (Chambaz et al., 2003; Panjono et al., 2009). Furthermore, compared to the ADG data from Hoving-Bolink et al. (1999), using an intensive feeding system, the ADG of SIM in the present study was lower. Therefore, it may be suggested that the typical Chinese beef production system with a moderate level of nutrition and slaughter at the same age does not represent the best management system for efficient and cost-effective beef production under typical Chinese conditions.

Effect of breed on economic benefit

In the present study, because of the relatively low level of nutrition offered to all the cattle, the feed price was only 0.2 Euro per kg DM. The typical feeding conditions, with a low feed price, to some extent reduced the cost of feed. In addition, Cruz et al. (2010) observed that gain:feed (G:F) ratio alone or DMI and ADG together could explain 98.5% of the difference in cost of body weight gain. Therefore, under the feeding conditions of this study, obtaining better gain efficiency in feeding the imported breeds would reduce feed consumption and consequently reduce feed costs.

The market price of local breeds was higher than the imported breeds because of their better marbling and flavour. The price is approximately 2.25 Euro per kg live weight for the local breeds and 2.13 Euro per kg live weight for the imported breeds. Even if the imported breeds had a lower market price, the two breeds had higher profit and economic benefits than the three local cattle breeds because of their better feed conversion ratio. Li (2009) also reported a higher economic benefit in Simmental cattle compared to Jinguan cattle under the same management conditions. Given this, rearing imported breeds for cattle production should be extended and accepted more widely by individual family and large-scale producers in China.

Conclusions

The two European cattle breeds, Limousin and Simmental, had better growth performance, gain efficiency, carcass weight, net meat weight, ribeye area and yield index than the local breeds at the same age under the typical Chinese beef production system. In addition, the moderate feeding conditions were suitable for the LIM breed but were not the best choice for achieving optimal growth performance by the SIM breed in China. Furthermore, the local breeds had a slightly higher marbling score, which is the most important index for good production and exportation.
meat quality in China. The imported breeds showed larger body size, better carcass traits and higher economic benefits, which should encourage farmers to rear the imported cattle breeds.

References

Alberti, P., Panea, B., Sañudo, C., Olleta, J.L., Ripoll, G., Erbørg, P., Christensen, M., Gigli, S., Failla, S., Concetti, S., Hocquette, J.F., Jailler, R., Rudel, S., Renand, G., Nute, G.R., Richardson, R.I., Williams, J.L., 2008. Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livest. Sci. 114:19-30.

Alberti, P., Ripoll, G., Goyache, F., Lahoz, F., Olleta, J.L., Panea, B., Sañudo, C., 2005. Carcass characterization of seven Spanish beef breeds slaughtered at two commercial weights. Meat Sci. 71:514-521.

Chambaz, A., Scheeder, M.R.L., Kreuzer, M., Dufeya, P.A., 2003. Meat quality of Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content. Meat Sci. 63:491-500.

Clarke, A.M., Drennan, M.J., McGee, M., Kenny, D.A., Evans, R.D., Berry, D.P., 2009. Intake, live animal scores/measurements and carcass composition and value of late-maturing beef and dairy breeds. Livest. Sci. 126:57-68.

Cozzi, G., Brsic, M., Contiero, B., Gottardo, F., 2009. Growth, slaughter performance and feeding behaviour of young bulls belonging to three local cattle breeds raised in the Alps. Livest. Sci. 125:308-313.

Cruz, G.D., Rodríguez-Sánchez, J.A., Oltjen, J.W., Sainz, R.D., 2010. Performance, residual feed intake, digestibility, carcass traits, and profitability of Angus-Hereford steers housed in individual or group pens. J. Anim. Sci. 88:324-329.

Cuvelier, C., Cabaraux, J.F., Dufrasne, I., Clinquart, A., Hocquette, J.F., Istasse, L., Hornick, J.L., 2006. Performance, slaughter characteristics and meat quality of young bulls from Belgian Blue, Limousin and Aberdeen Angus breeds fattened with a sugar-beet pulp or a cereal-based diet. Anim. Sci. 82:125-132.

Dong, Q.M., Zhao, X.Q., Ma, Y.S., Xu, S.X., Li, Q.Y., 2006. Live-weight gain, apparent digestibility, and economic benefits of yaks fed different diets during winter on the Tibetan plateau. Livest. Sci. 101:199-207.

Drennan, M.J., McGee, M., Keane, M.G., 2008. The value of muscularity and skeletal scores in the live animal and carcass grades as indicators of carcass composition in cattle. Animal 5:752-760.

Hoving-Bolink, A.H., Hanekamp, W.J.A., Walstra, P., 1999. Effects of sire breed and husbandry system on carcass, meat and eating quality of Piemontese and Limousin crossbred bulls and heifers. Livest. Prod. Sci. 57:273-278.

Hua, L.S., Chen, H., Yang, Q., Yang, X.B., Zhang, G.P., Song, B.T., Yuan, H.J., Wen, J.B., Zhang, Y.J., Ma, F.P., 2008. Study on fattening performance of Qinchnuan cattle and Crossbreed of Limousin×Qinchnuan cattle in Guayna. China Cattle Sci. 34:45-47.

Huang, Y.X., Tan, N.N., Zhang, Y.C., Li, F.X., 2000. Jinnan cattle. J. Yell. Cattle Sci. 26:55-57.

Kim, C.J., Lee, E.S., 2003. Effects of quality grade on the chemical, physical and sensorial characteristics of Hanwoo (Korean local cattle) beef. Meat Sci. 63:397-405.

Li, X.Q., Wang, H.M., Chen, Y.Y., 2009. Several considerations on how to promote beef industry being healthy development in China. Chin. J. Anim. Sci. 45:43-46.

Li, Z.Q., 2009. The short-term fattening contrast experimental research of the short-cataloes, Si-cataloes and Jingyuan cattle. China Cattle Sci. 35:33-34.

Liu, B., Chen, H., Lan, X.Y., Zhang, Z.Q., Zhang, R.F., 2006. Research on heterosis and carcass composition and value of late-maturing beef and dairy breeds. Livest. Sci. 114:19-30.

Liu, B., Chen, H., Yang, Q., Yang, X.B., Zhang, G.P., Song, B.T., Yuan, H.J., Wen, J.B., Zhang, Y.J., Ma, F.P., 2008. Study on fattening performance of Qinchnuan cattle and Crossbreed of Limousin×Qinchnuan cattle in Guayna. China Cattle Sci. 34:45-47.

Huang, Y.X., Tan, N.N., Zhang, Y.C., Li, F.X., 2000. Jinnan cattle. J. Yell. Cattle Sci. 26:55-57.

Kim, C.J., Lee, E.S., 2003. Effects of quality grade on the chemical, physical and sensorial characteristics of Hanwoo (Korean local cattle) beef. Meat Sci. 63:397-405.

Li, X.Q., Wang, H.M., Chen, Y.Y., 2009. Several considerations on how to promote beef industry being healthy development in China. Chin. J. Anim. Sci. 45:43-46.

Li, Z.Q., 2009. The short-term fattening contrast experimental research of the short-cataloes, Si-cataloes and Jingyuan cattle. China Cattle Sci. 35:33-34.

Liu, B., Chen, H., Lan, X.Y., Zhang, Z.Q., Zhang, R.F., 2006. Research on heterosis and growth performance in Qinchnuan and its hybrids. Chin. J. Anim. Sci. 42:1-4.

Nancy, J.T., Nelson, H.L., 2009. Effects of breed type and supplementation during grazing on carcass traits and meat quality of bulls fattened on improved savannah. Livest. Sci. 121:219-226.

Panjono, Kang, S.M., Lee, I.S., Lee, S.K., 2009. Carcass characteristics of Hanwoo (Korean cattle) from different sex conditions, raising altitudes and slaughter seasons. Livest. Sci. 123:283-287.

Sami, A.S., Augustini, C., Schwarz, F.J., 2004. Effects of feeding intensity and time on feed on performance carcass characteristics and meat quality of Simmental bulls. Meat Sci. 67:195-201.

Sañudo, C., Panea, B., Olleta, J.L., Monson, J.L., Sierra, I., Alberti, P., Erbørg, P., Christiansen, M., Gigli, S., Failla, S., Gaddini, A., Hocquette, J.F., Jailer, R., Nute, G.R., Williams, J.L., 2004. Carcass quality of several European cattle breeds preliminary results. pp 516-518 in Proc. 50th Int. Congr. Meat Science and Technology, Helsinki, Finland.

SAS, 2000. SAS/STAT user’s guide, Version 8. SAS Inst., Cary, NC, USA.

Shi, X.Y., 2008. Beef consumption current situation and analysis of its influencing factor in China. Farm Econ. Manage. 4:53-55.

Simões, J.A., Mira, I.J.F., Lemos, J.P.C., Mendes, I.A., 2005. Dressing percentage and its relationship with some components of the fifth quarter in Portuguese cattle breeds. Livest. Prod. Sci. 96:157-163.

Vieira, C., Cerdeño, A., Serrano, E., Lavin, P., Mantecón, A.R., 2007. Breed and ageing extent on carcass and meat quality of beef from adult steers (oxen). Livest. Sci. 107:62-69.

Zheng, P.L., Zhang, Z.G., Chen, X.H., Tu, Y.R., 1986. Bovine breeds in China. In: PL Zheng (ed.) Local breeds. China Agricultural Publ., Beijing, China, pp 31-66.

Zhou, G.H., Liu, L., Xiu, X.L., Jian, H.M., Wang, L.Z., Sun, B.Z., Tong, B.S., 2001. Productivity and carcass characteristics of pure and crossbred Chinese Yellow Cattle. Meat Sci. 58:359-362.

Zhou, Z.K., Li, J., Ji, A.G., Huang, M., Xu, S.Z., Chen, J.B., Gao, X., Ren, H.Y., 2008. Correlation and regression analysis of adult cows body measurements and body indices in Luxi cattle. Journal of Anhui Agricultural Sciences 36:214-224.