Thermodynamics of Rotating Kaluza-Klein Black Holes in
Gravity’s Rainbow

Salwa Alsaleh

Department of Physics and Astronomy,
King Saud University, Riyadh 11451, Saudi Arabia
April 26, 2017

Abstract

In this paper, a four dimensional rotating Kaluza Klein (K-K) black hole was deformed
using rainbow functions derived from loop quantum gravity and non-commutative geometry.
We studied the thermodynamic properties and critical phenomena of this deformed black
hole. The deformed temperature and entropy showed the existence of a Planckian remnant.
The calculation of Gibbs free energy G for the ordinary and deformed black holes showed
that both share a similar critical behaviour.

1 Introduction

The quest for a consistent theory of gravity is on going since the early 20’s in the past century.
Nevertheless, such a theory is still unavailable. Many programmes for quantum gravity however
exists, like string theory, loop quantum gravity (LQG), causal dynamical triangulation (CDT),
and many others. Most of these programmes pridect that the spacetime admits a minimal length
scale. Therefore , there is a maximal energy E_P that can be put into a system. This basic, yet
important and universal prediction of quantum gravity programmes leads to phenomenological
investigation of quantum gravity. The Hoˇ rava-Lifshitz gravity is based on such investigation, by
imposing a deformation to the energy-momentum dispersion relations for energies close to E_P
[28, 29]. Another deformation is made by gravity’s rainbow [34], where different wavelengths of
light (having different energies) experience gravity differently. More generally, gravity is energy-
dependent phenomena.

The deformation of energy-momentum dispersion relations can be derived from different quan-
tum gravity programmes, in the UV limit . For instance in spacetime foam [8], spin-network in
loop quantum gravity (LQG) [17], discrete spacetime [40], models based on string field theory
[32] and non-commutative geometry [15]. This formalism has been heavily studied within string
theory as well, the different Lifshitz scaling of space and time has been used to deform type IIA
string theory [22], type IIB string theory [13], AdS/CFT correspondence [23, 37, 6, 10], dilaton
black branes [21, 12], and dilaton black holes [42, 41].

It has been shown that Hoˇ rava-Lifshitz gravity and gravity’s rainbow produce similar physical
results[19], as they are based on the same physical assumption. The Lifshitz deformation of ge-
ometries has produced interesting results, and rainbow deformation has the same motivation, in
this paper we will study the rainbow deformation of rotating Kaluza-Klein black holes. In gravity’s
rainbow, the geometry depends on the energy of the probe, and thus probes of of different
energy see the geometry differently. Thus, a single metric is replaced by a family of energy dependent metrics forming a rainbow of metrics. Now the UV modification of the energy-momentum dispersion relation can be expressed as

$$E^2 f^2(E/E_P) - p^2 g^2(E/E_P) = m^2$$ \hspace{1cm} (1)

where E_P is the Planck energy, E is the energy at which the geometry is probed, and $f(E/E_P)$ and $g(E/E_P)$ are the rainbow functions. As the general relativity should be recovered in the IR limit, we have

$$\lim_{E/E_P \to 0} f(E/E_P) = 1, \quad \lim_{E/E_P \to 0} g(E/E_P) = 1.$$ \hspace{1cm} (2)

Now the metric in gravity’s rainbow \[35\]

$$h(E) = \eta^{ab} e_a(E) \otimes e_b(E).$$ \hspace{1cm} (3)

So, the energy dependent frame fields are

$$e_0(E) = \frac{1}{f(E/E_P)} \tilde{e}_0, \quad e_i(E) = \frac{1}{g(E/E_P)} \tilde{e}_i.$$ \hspace{1cm} (4)

Here \tilde{e}_0 and \tilde{e}_i are the original energy independent frame fields. The deformation of geometry by the rainbow functions has been studied extensively, such as the study of black rings \[2\], black branes \[10\], higher dimensional microscopic black holes and the consequences of gravity’s rainbow on their detection at the TeV scale at the LHC \[3\]. Gravity’s rainbow has also been used to address the black hole information paradox \[?\, 5\], and in alternative theories of gravity \[24, 27, 26, 27, 39, 25, 18\].

In this paper, we shall study deformed rotating Kaluza-Klein black hole by the rainbow functions, and investigate its thermodynamic properties. We start by a review of rotating Kaluza-Klein black holes, and their thermodynamics, then we deform the metric via the rainbow functions and discuss the implications of this deformation on the thermodynamics of these black holes.

2 Thermodynamics of rotating Kaluza-Klein black holes

Kaluza-Klein black holes are a 5d uplifted solution of rotating black holes with electric Q and magnetic P charges \[20, 38, 33\]. This is a general solution to the dyonic solution (where $Q = P$). This solution is considered from the 4d Einstein-Maxwell-dilaton theory \[36\], or as a rotating D0-D6 bound state in string theory \[30\]. The rotating KK black hole contain a 4D dyonic Reissner-Nordstrøm black hole and Myers-Perry black hole \[11\]. The KK solution in 5d pure Einstein gravity has the following metric:

$$ds^2(5) = \frac{H_2}{H_1} (Rd\tilde{y} + A)^2 - \frac{H_3}{H_2} (d\tilde{t} + B)^2 + H_1 \left(\frac{d\tilde{r}^2}{\Xi} + d\tilde{\theta}^2 + \frac{\Xi}{H_3} \sin^2 \tilde{\theta} d\tilde{\phi} \right)$$ \hspace{1cm} (5)
Where:

\[H_1 = \dot{r}^2 + \mu^2 j^2 \cos^2 \theta + \dot{r}(p - 2\mu) + \frac{1}{2} \frac{p}{p + q} (p - 2\mu) (q - 2\mu) + \frac{1}{2} \frac{p}{p + q} \sqrt{(p^2 - 4\mu^2)(q^2 - 4\mu^2)} j \cos \theta. \]
\[H_2 = \dot{r}^2 + \mu^2 j^2 \cos^2 \theta + \dot{r}(q - 2\mu) + \frac{1}{2} \frac{q}{p + q} (p - 2\mu)(q - 2\mu) - \frac{1}{2} \frac{p}{p + q} \sqrt{(p^2 - 4\mu^2)(q^2 - 4\mu^2)} j \cos \theta. \]
\[H_3 = \dot{r}^2 + \mu^2 j^2 \cos^2 \theta - 2\mu \dot{r}. \]
\[\Xi = \dot{r}^2 + \mu^2 j^2 - 2\mu \dot{r}. \]

And:

\[A = \left[\frac{\sqrt{q(q^2 - 4\mu^2)}}{p + q} \left(\dot{r} + \frac{p - 2\mu}{2} \right) - \frac{1}{2} \frac{\sqrt{q^3(p^2 - 4\mu^2)}}{p + q} j \cos \theta \right] H_2^{-1} d\hat{t} \]
\[+ \left[- \frac{\sqrt{q(q^2 - 4\mu^2)}}{p + q} (H_2 + \mu^2 j^2 \sin^2 \theta) \cos \theta \right. \]
\[+ \left. \frac{1}{2} \frac{\sqrt{q(q^2 - 4\mu^2)}}{p + q} \left(p \dot{r} - \mu (p - 2\mu) + \frac{q(q^2 - 4\mu^2)}{p + q} \right) \right] H_2^{-1} d\phi \]
\[B = \frac{1}{2} \sqrt{pq} \frac{pq}{H_2} - \frac{\mu (p - 2\mu)(q - 2\mu)}{p + q} H_3^{-1} j \sin^2 \theta d\phi \]

With \(R \) being the radius of the compactified fifth K-K dimension \(\hat{y} \) with the condition \(\hat{y} = \hat{y} + 2\pi \). We can obtain the 4-D metric after the K-K reduction of \(\hat{y} \).

\[ds^2(4) = -\frac{H_3}{\sqrt{H_1 H_2}} (d\hat{t} + B)^2 + \sqrt{H_1 H_2} \left(\frac{d\hat{r}^2}{\Xi} + d\theta^2 + \frac{\Xi}{H_3} \sin^2 \theta d\phi \right). \]

There are four physical parameters that characterise the rotating K-K black hole, the mass \(M \), electric and magnetic charges \(Q, P \) and the angular momentum \(J \). They are given in terms of the parameters \(\mu, q, p \) and \(j \):

\[M = \frac{p + q}{4} \]
\[Q = \frac{1}{2} \left(\frac{q(q^2 - 4\mu^2)}{p + q} \right)^{1/2} \]
\[P = \frac{1}{2} \left(\frac{p(p^2 - 4\mu^2)}{p + q} \right)^{1/2} \]
\[J = \frac{\sqrt{pq(pq + 4\mu^2)} j}{4(p + q)} \]

The K-K black hole has an event horizon at \(\Xi = 0 \),

\[r_+ = \mu (1 + \sqrt{1 - j^2}) \]
The Hawking temperature is then:

\[
T_0 = \frac{\mu \hbar}{\pi \sqrt{|pq|} \left(\frac{2\mu}{\sqrt{1 - j^2}} + \frac{4\mu^2 + pq}{p + q} \right)}
\]

Using the relation \(dS = dM/T\) we can obtain the entropy:

\[
S_0 = \frac{2\pi (p + q)}{3\hbar} \left(\frac{3(p + q)}{4\sqrt{1 - j^2}} + 12\mu + \frac{pq}{\mu} \right)
\]

We observe, from the figures 1 and 2, that the K-K black holes have a very similar thermodynamic behaviour as a Kerr-Neumann black holes with an effective \(U(1)\) charge \(Q = Q + P\). The first
law of thermodynamics is then written as

\[dM = TdS - \Omega dJ + \Phi_E dQ + \Phi_M dP \]

(14)

In which:

\[\Omega = \frac{p + q}{\sqrt{pq}} \frac{2\mu j}{2\mu(p + q) + (pq + 4\mu^2)\sqrt{1 - j^2}} \]

(15)

\[\Phi_E = \frac{\left(\frac{2\mu}{\sqrt{1 - j^2}} + p \right) \sqrt{\frac{\mu(q^2 - \mu^2)}{p + q}}}{2\sqrt{pq \left(\frac{2\mu}{\sqrt{1 - j^2}} + \frac{4\mu^2 + pq}{p + q} \right)}} \]

(16)

\[\Phi_M = \frac{\left(\frac{2\mu}{\sqrt{1 - j^2}} + q \right) \sqrt{\frac{\mu(q^2 - \mu^2)}{p + q}}}{2\sqrt{pq \left(\frac{2\mu}{\sqrt{1 - j^2}} + \frac{4\mu^2 + pq}{p + q} \right)}} \]

(17)

The heat capacities can be calculated from the general relation \(C_X := T(\partial S/\partial T)_X \) [14]

\[C_J = \frac{\pi}{2\mu h} \left(-\frac{\mu h}{\pi} \left(\frac{1}{\sqrt{1 - j^2 M + \mu}} \right) \left(\frac{\sqrt{1 - j^2 M + \mu}}{1 - j^2 M + 2\mu M} \right) - \left(\frac{2\mu}{\sqrt{1 - j^2}} + p \right) \left(\frac{\sqrt{q(q^2 - \mu^2)}}{p + q} \right) \right) \]

(18)

\[C_Q = \frac{\pi}{2\mu^2 h^2} \left(-\frac{4\mu^2 h^2}{\left(\frac{1}{\sqrt{1 - j^2 M + \mu}} \right) \left(1 - j^2 M + 2\mu M \right)} \left(\frac{2\mu}{\sqrt{1 - j^2}} + q \right) \left(\frac{\sqrt{q(q^2 - \mu^2)}}{p + q} \right) \right) \]

(19)

\[C_P = \frac{\pi}{2\mu^2 h^2} \left(-\frac{4\mu^2 h^2}{\left(\frac{1}{\sqrt{1 - j^2 M + \mu}} \right) \left(1 - j^2 M + 2\mu M \right)} \left(\frac{2\mu}{\sqrt{1 - j^2}} + p \right) \left(\frac{\sqrt{q(q^2 - \mu^2)}}{p + q} \right) \right) \]

(20)

Hereby, we finish the review on rotating K-K black holes. In the next section, they shall be deformed by gravity’s rainbow and their thermodynamic properties will be discussed.
3 K-K black holes in gravity’s rainbow

The rotating K-K black hole is deformed by the rainbow functions discussed earlier in [2], where E is the energy of a ’quantum’ particle near the outer horizon $\hat{r} \sim r_+$. Since the K-K black hole is 4-dimensional, since the fifth dimension is compactified and the motion on it resembles the $U(1)$ charge, the particle could - for instance- be emitted from the Hawking radiation, and this has been studied for other black holes. [1]. In order to estimate E, we may use the uncertainty relation for position and momentum, and write $\Delta p \geq 1/\Delta x$. Thus, we can obtain a bound on energy of a black hole, $E \geq 1/\Delta x$. [4]. It should be noted that this uncertainty relation holds for the rotating K-K black hole like any other 4-D black hole, in gravity’s rainbow [1]. Thus we write,

$$E \geq 1/\Delta x \approx 1/r_+.$$ (21)

The general relation for temperature of a black hole in gravity rainbow was found to be [4]:

$$T = T_0 \frac{g(E)}{f(E)}$$ (22)

Where $f(E)$ and $g(E)$ are the rainbow function defined in (2). Observe that these deformations depend on the radial coordinates \hat{r}.

The deformation relation (22) is explained thoroughly in the following references [5, 4, 9, 1] and many others. It is natural therefore to conjecture that this deformation holds for the rotating K-K black holes, as well. One may define the rainbow functions $f(E)$ and $g(E)$ in many ways, however, in this study these functions are chosen such that they are compatible with loop quantum gravity and non-commutative geometry [7, 31].

$$f(E) := 1 \quad g(E) := \sqrt{1 - \eta (E/E_p)^\nu},$$ (23)

Here, η and ν are free parameters. Now, we use (22), (12), and (23) to obtain the formula for the modified temperature:

$$T = \frac{\mu \hbar \sqrt{1 - \eta (1/r_+ E_p)^\nu}}{\pi \sqrt{p q} \left(\frac{2 \nu}{\sqrt{1 - j^2} + \frac{4 \mu^2 + pq}{p + q}} \right)}$$ (24)

Since the area of the 4-D black hole is spherically symmetric [14], we have $A = 4\pi r_+^2$, we may re-write (22) in terms of A instead of r_+:

$$T(M) = \frac{\mu \hbar \sqrt{1 - \eta (1/\sqrt{A} E_p)^\nu}}{2\pi M \left(\frac{2 \nu}{\sqrt{1 - j^2} + \frac{4 \mu^2 + 4M^2}{M}} \right)}$$ (25)

Similarly, the deformed entropy is calculated from the integral $S = \int \frac{dM}{T}$, it is found to be given by the Hypergeometric functions $_2F_1(a, b; c; d)$,

$$S(M) = \frac{2\pi}{\mu \hbar} \left(\mu M \left(\frac{M_2F_1 \left(\frac{1}{2}; -\frac{1}{\nu}; \frac{1}{M E_p} \right)}{\sqrt{1 - j^2}} \right) + \mu_2F_1 \left(\frac{1}{2}; -\frac{1}{\nu}; \frac{1}{M E_p} \right) \right) + \frac{1}{3} M^3 \frac{2}{\mu} \left(\frac{1}{3 M^2} \frac{2}{\nu} \right)$$ (26)
Figure 3: Deformed Hawking temperature of different rotating K-K black holes (fixed Q, P and J) as a function of their mass M. We set $E_p = 5$, $\eta = 1$ and $\nu = 2$. The remnant can be observed at the same point for all black holes.

Figure 4: The deformed entropy of different rotating K-K black holes (fixed Q, P and J) as a function of their mass M. We set $E_p = 5$, $\eta = 1$ and $\nu = 2$. The remnant can be observed at the same point for all black holes.

We observe from the figures 3 and 4 the existence of a remnant, like the other studied types of deformed black holes in gravity’s rainbow [1]. The heat capacity at constant J is deformed in the following way:

$$C'_J = \frac{1}{\sqrt{1 - \eta (E/E_p)^{\nu}}} C_J,$$

(27)

same goes for other heat capacities. It is interesting to look at the criticality of rotating K-K black holes and their rainbow deformation, this can be done by studying the Gibbs free energy of this black hole. The Gibbs free energy is generally given by:

$$G(M, J, Q, P) = M - TS$$

(28)
For the ordinary rotating K-K black hole it is found to be

\[
G_0(M) = \frac{M^2 \left(2\sqrt{1-j^2M} + 3\mu \right)}{3 \left(\sqrt{1-j^2\mu^2} + \sqrt{1-j^2M^2 + 2\mu M} \right)}.
\]

(29)

We can Plot (29), keeping \(Q, P\) fixed and vary \(M\) and \(J\) to obtain the plot \(5\), that shows a critical phenomena for the rotating K-K black holes. The deformed Gibbs free energy is

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.png}
\caption{A plot of \(G_0(T, J, Q, P)\) of a critical rotating K-K black hole fixed \(Q, P\). Showing the critical phenomena.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure6.png}
\caption{A plot of the deformed Gibbs free energy \(G(T, J, Q, P)\) of a deformed rotating K-K black hole fixed \(Q, P\). Showing the same critical phenomena, as the ordinary K-K black hole. We have set \(\eta = 1, E_p = 5\) and \(\nu = 2\).}
\end{figure}
calculated from (4) and (3),

\[
G = M - \frac{\sqrt{1-\eta\left(\frac{M}{E_p}\right)^\nu}}{2\mu M^{\frac{2}{\nu}} + \mu^2 + M^2} \left(\frac{\mu M^2 F_1\left(\frac{1}{2}, \frac{2}{\nu}; \frac{3}{2} \cdot \frac{M}{E_p} \eta \right)}{\sqrt{1-j^2}} \right)
+ \frac{1}{3} M^3 F_1\left(\frac{1}{2}, \frac{3}{\nu}; \frac{1}{\nu} \cdot \left(\frac{M}{E_p} \right)^\nu \right) \eta + \mu^2 M^2 F_1\left(\frac{1}{2}, \frac{1}{\nu}; 1 + \frac{1}{\nu} \cdot \left(\frac{M}{E_p} \right)^\nu \right) \eta)
\]

Both ordinary and deformed rotating K-K black holes show critical behaviour as the study of Gibbs free energy, if \(G > 0 \) the black hole is said to be 'critical' and when \(G < 0 \) it is said that the black hole is uncritical.

4 Conclusion

In this paper, the geometry of 5-D rotating Kaluza Klein black holes with electric and magnetic charges was deformed by the rainbow functions \(F, G \) motivated by loop quantum gravity and non-commutative geometry. Resulting a deformation on the thermodynamics of the 4D rotating K-K black hole. The deformed temperature and entropy indicate the existence of a remnant after the decay of the black hole to a 'Plankckian' scale. This is independent from the compactification, or the K-K reduction of the 5-D geometry. Moreover, the critical behaviour of this black hole was studied via calculating its Gibbs free energy, the ordinary and the deformed black holes appear to show the same critical behaviour.

Acknowledgements

Warm regards to Dr Mir Faizal for his generous help improving this work.

This research project was supported by a grant from the "Research Center of the Female Scientific and Medical Colleges", Deanship of Scientific Research, King Saud University.

References

[1] Ahmed Farag Ali. Black hole remnant from gravity’s rainbow. Physical Review D, 89(10):104040, 2014.

[2] Ahmed Farag Ali, Mir Faizal, and Mohammed M. Khalil. Remnants of black rings from gravity’s rainbow. JHEP, 12:159, 2014.

[3] Ahmed Farag Ali, Mir Faizal, and Mohammed M. Khalil. Absence of Black Holes at LHC due to Gravity’s Rainbow. Phys. Lett., B743:295–300, 2015.

[4] Ahmed Farag Ali, Mir Faizal, and Mohammed M Khalil. Remnant for all black objects due to gravity’s rainbow. Nuclear Physics B, 894:341–360, 2015.

[5] Ahmed Farag Ali, Mir Faizal, Barun Majumder, and Ravi Mistry. Gravitational collapse in gravity’s rainbow. International Journal of Geometric Methods in Modern Physics, 12(09):1550085, 2015.
[6] Mohsen Alishahiha and Hossein Yavartanoo. Conformally Lifshitz solutions from Horava-Lifshitz Gravity. Class. Quant. Grav., 31:095008, 2014.

[7] Giovanni Amelino-Camelia. Quantum-spacetime phenomenology. Living Reviews in Relativity, 16(1):5, 2013.

[8] Giovanni Amelino-Camelia, John Ellis, NE Mavromatos, Dimitri V Nanopoulos, and Subir Sarkar. Tests of quantum gravity from observations of γ-ray bursts. Nature, 393(6687):763–765, 1998.

[9] Marco Angheben, Mario Nadalini, Luciano Vanzo, and Sergio Zerbini. Hawking radiation as tunneling for extremal and rotating black holes. Journal of High Energy Physics, 2005(05):014, 2005.

[10] Amani Ashour, Mir Faizal, Ahmed Farag Ali, and Fayçal Hammad. Branes in gravity’s rainbow. The European Physical Journal C, 76(5):1–9, 2016.

[11] Tatsuo Azeyanagi, Noriaki Ogawa, and Seiji Terashima. Holographic duals of kaluza-klein black holes. Journal of High Energy Physics, 2009(04):061, 2009.

[12] Gaetano Bertoldi, Benjamin A Burrington, and Amanda W Peet. Thermodynamics of black branes in asymptotically lifshitz spacetimes. Physical Review D, 80(12):126004, 2009.

[13] Philipp Burda, Ruth Gregory, and Simon Ross. Lifshitz flows in IIB and dual field theories. JHEP, 11:073, 2014.

[14] Rong-Gen Cai, Li-Ming Cao, and Nobuyoshi Ohta. Mass and thermodynamics of kaluza–klein black holes with squashed horizons. Physics Letters B, 639(3):354–361, 2006.

[15] Sean M Carroll, Jeffrey A Harvey, V Alan Kostelecký, Charles D Lane, and Takemi Okamoto. Noncommutative field theory and lorentz violation. Physical Review Letters, 87(14):141601, 2001.

[16] Parijat Dey and Shibaji Roy. Interpolating solution from adS 5 to hyperscaling violating Lifshitz spacetime. Physical Review D, 91(2):026005, 2015.

[17] Rodolfo Gambini and Jorge Pullin. Nonstandard optics from quantum space-time. Phys. Rev., D59:124021, 1999.

[18] Remo Garattini. Distorting General Relativity: Gravity’s Rainbow and f(R) theories at work. JCAP, 1306:017, 2013.

[19] Remo Garattini and Emmanuel N. Saridakis. Gravity’s Rainbow: a bridge towards Hoava-Lifshitz gravity. Eur. Phys. J., C75(7):343, 2015.

[20] GW Gibbons and DL Wiltshire. Black holes in kaluza-klein theory. Annals of Physics, 167(1):201–223, 1986.

[21] Kevin Goldstein, Norihiro Izuka, Shamit Kachru, Shiroman Prakash, Sandip P. Trivedi, and Alexander Westphal. Holography of Dyonic Dilaton Black Branes. JHEP, 10:027, 2010.

[22] Ruth Gregory, Susha I Parameswaran, Gianmassimo Tasinato, and Ivonne Zavala. Lifshitz solutions in supergravity and string theory. Journal of High Energy Physics, 2010(12):1–18, 2010.
[23] Steven S. Gubser and Abhinav Nellore. Ground states of holographic superconductors. Phys. Rev., D80:105007, 2009.

[24] S. H. Hendi, S. Panahiyan, B. Eslam Panah, and M. Momennia. Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow. Eur. Phys. J., C76(3):150, 2016.

[25] Seyed Hossein Hendi, Ali Dehghani, and Mir Faizal. Black hole thermodynamics in Lovelock gravity's rainbow with (A)dS asymptote. Nucl. Phys., B914:117–137, 2017.

[26] Seyed Hossein Hendi and Mir Faizal. Black holes in Gauss-Bonnet gravity's rainbow. Phys. Rev., D92(4):044027, 2015.

[27] SH Hendi, S Panahiyan, S Upadhyay, and B Eslam Panah. Charged btz black holes in the context of massive gravity's rainbow. arXiv preprint arXiv:1611.02937, 2016.

[28] Petr Hořava. Quantum gravity at a Lifshitz point. Physical Review D, 79(8):084008, 2009.

[29] Petr Hořava. Spectral dimension of the universe in quantum gravity at a Lifshitz point. Physical review letters, 102(16):161301, 2009.

[30] Nissan Itzhaki. D6+ d0 and five dimensional spinning black hole. Journal of High Energy Physics, 1998(09):018, 1998.

[31] Uri Jacob, Flavio Mercati, Giovanni Amelino-Camelia, and Tsvi Piran. Modifications to lorentz invariant dispersion in relatively boosted frames. Physical Review D, 82(8):084021, 2010.

[32] V. Alan Kostelecky and Stuart Samuel. Spontaneous Breaking of Lorentz Symmetry in String Theory. Phys. Rev., D39:683, 1989.

[33] Finn Larsen. Rotating Kaluza–Klein black holes. Nuclear Physics B, 575(1-2):211–230, 2000.

[34] Joao Magueijo and Lee Smolin. Lorentz invariance with an invariant energy scale. Physical Review Letters, 88(19):190403, 2002.

[35] Joao Magueijo and Lee Smolin. Gravity’s rainbow. Classical and Quantum Gravity, 21(7):1725, 2004.

[36] Tonatiuh Matos and César Mora. Stationary dilatons with arbitrary electromagnetic field. Classical and Quantum Gravity, 14(8):2331, 1997.

[37] Yen Chin Ong and Pisin Chen. Stability of Horava-Lifshitz Black Holes in the Context of AdS/CFT. Phys. Rev., D84:104044, 2011.

[38] Dean Rasheed. The rotating dyonic black holes of Kaluza-Klein theory. Nuclear Physics B, 454(1-2):379–401, 1995.

[39] Prabir Rudra, Mir Faizal, and Ahmed Farag Ali. Vaidya Spacetime for Galileon Gravity's Rainbow. Nucl. Phys., B909:725–736, 2016.

[40] Gerard ’t Hooft. Quantization of point particles in (2+1)-dimensional gravity and space-time discreteness. Class. Quant. Grav., 13:1023–1040, 1996.

[41] Javier Tarrio and Stefan Vandoren. Black holes and black branes in Lifshitz spacetimes. JHEP, 09:017, 2011.

[42] M. Kord Zangeneh, A. Sheykhi, and M. H. Dehghani. Thermodynamics of topological nonlinear charged Lifshitz black holes. Phys. Rev., D92(2):024050, 2015.