BIRATIONAL ISOMORPHISMS BETWEEN TWISTED GROUP ACTIONS

ZINOVY REICHSTEIN AND ANGELO VISTOLI

Abstract. Let X be an algebraic variety with a generically free action of a connected algebraic group G. Given an automorphism $\phi: G \to G$, we will denote by X^ϕ the same variety X with the G-action given by $g \cdot x \mapsto \phi(g) \cdot x$.

V. L. Popov asked if X and X^ϕ are always G-equivariantly birationally isomorphic. We construct examples to show that this is not the case in general. The problem of whether or not such examples can exist in the case where X is a vector space with a generically free linear action, remains open. On the other hand, we prove that X and X^ϕ are always stably birationally isomorphic, i.e., $X \times \mathbb{A}^m$ and $X^\phi \times \mathbb{A}^m$ are G-equivariantly birationally isomorphic for a suitable $m \geq 0$.

Contents

1. Introduction 1
2. The no-name lemma 3
3. Proof of Theorem 1 5
4. Examples where X and X^ϕ are birationally isomorphic 6
5. Proof of Theorem 2 9
6. Further examples 11
References 12

1. Introduction

Throughout this note all algebraic varieties, algebraic groups, group actions and maps between them will be defined over a fixed base field k. By a G-variety X we shall mean an algebraic variety with a (regular) action of a linear algebraic group G. A morphism (respectively, rational map, birational isomorphism, etc.) of G-varieties is a G-equivariant morphism (respectively, rational map, birational isomorphism).

1991 Mathematics Subject Classification. 14L30, 14E07, 16K20.

Key words and phrases. Group action, algebraic group, no-name lemma, birational isomorphism, central simple algebra, Galois cohomology.

Z. Reichstein was supported in part by an NSERC research grant.

A. Vistoli was partially supported by the University of Bologna, funds for selected research topics.
Given an automorphism ϕ of G, we can “twist” a group action $\alpha: G \times X \to X$ by ϕ to obtain a new G-action α^ϕ on X as follows:

$$\alpha^\phi: G \times X \xrightarrow{\phi \cdot \text{id}} G \times X \xrightarrow{\alpha} X.$$

Note that the new action has the same orbits as the old one. If X is a G-variety (via α) then we will denote the “twisted” G-variety (i.e., X with the action given by α^ϕ) by X^ϕ.

Now suppose that the action α of G on X is generically free, i.e., that there exists a G-invariant open dense subset U of X such that the stabilizer of every geometric point of U is trivial. V. L. Popov asked if X and X^ϕ are always birationally isomorphic as G-varieties. Of particular interest to him was the case where X is a linear representation of G.

Katsylo’s conjecture is closely related to a conjecture of Katsylo [Ka], which says that generically free linear G-representations V and W are (G-equivariantly) birationally isomorphic if and only if $\dim(V) = \dim(W)$. Katsylo’s conjecture is known to be false for some finite groups G; in particular, there are counterexamples, where $W = V^\phi$ for an automorphism ϕ of G; see [RY, Section 7]. On the other hand, Katsylo’s conjecture remains open for many finite groups (e.g., for the symmetric groups $G = S_n$, $n \geq 5$) and for all connected semisimple groups.

Two simple observations are now in order. First note that only the class of ϕ in the group of outer automorphisms of G matters here. Indeed, suppose $\phi' = \phi \circ \text{inn}_h$, where $\text{inn}_h: G \to G$ is conjugation by $h \in G$, i.e., $\phi(g) = hgh^{-1}$. Then X^ϕ and $X^{\phi'}$ are isomorphic via $x \mapsto hx$. In particular, X and X^ϕ are always isomorphic if G has no outer automorphisms, e.g., if G is the full symmetric group S_n ($n \neq 6$) or if G is semisimple algebraic group whose Dynkin diagram has no non-trivial automorphisms; cf. [KMRT, Theorem 25.16]. The latter class of groups includes every (almost) simple algebraic group, other than those of type A_n, D_n and E_6; cf. [KMRT, pp. 354 – 355].

Secondly, the G-invariant rational functions for X and X^ϕ are exactly the same, i.e.,

$$k(X)^G = k(X^\phi)^G \subset k(X).$$

Recall that the inclusion $k(X) \subset k(X)^G$ induces a dominant rational map $\pi: X \dashrightarrow X/G$, which is called the rational quotient map. The k-variety X/G is defined (up to birational isomorphism) by $k(X/G) = k(X)^G$. Thus [1] can be rephrased by saying that a rational quotient map π for X is also a rational quotient map for X^ϕ. Note that by a theorem of Rosenlicht [Ro1, Ro2], $\pi^{-1}(x)$ is a single G-orbit for $x \in X/G$ in general position; cf. also [PV, Section 2.4].

The main results of this note are Theorems 1 and 2 below.

Theorem 1. Let X be a generically free G-variety and $\phi: G \to G$ be an automorphism of G. Then the G-varieties X and X^ϕ are stably birationally isomorphic. More precisely there exists an integer $m \geq 0$ and a birational...
isomorphism of
\[f : X \times \mathbb{A}^m \rightarrow X^\phi \times \mathbb{A}^m \]
such that the diagram
\[
\begin{array}{ccc}
X \times \mathbb{A}^m & \xrightarrow{f} & X^\phi \times \mathbb{A}^m \\
\downarrow & & \downarrow \\
X/G & \xrightarrow{\phi} & X^\phi/G,
\end{array}
\]
commutes.

Here \(\mathbb{A}^m \) is the \(m \)-dimensional affine space with trivial \(G \)-action, and the vertical map on the left is the composition of the projection \(X \times \mathbb{A}^m \rightarrow X \) with the rational quotient map \(X \rightarrow X/G \) (similarly for the vertical map on the right).

Theorem 2. Let \(n \geq 3 \) and let \(\phi \) be the (outer) automorphism of \(G = \text{PGL}_n \) given by \(g \mapsto (g^{-1})^{\text{transpose}} \). Assume the base field \(k \) is infinite and contains a primitive \(n \)-th root of unity. Then there exists a generically free \(\text{PGL}_n \)-variety \(X \) such that \(X \) and \(X^\phi \) are not birationally isomorphic over \(k \).

The problem of whether or not such examples can exist in the case where \(X \) is a vector space with a generically free linear action of a connected linear algebraic group \(G \), remains open.

2. The no-name lemma

Recall that \(G \)-bundle \(\pi : E \rightarrow X \) is an algebraic vector bundle with a \(G \)-action on \(E \) and \(X \) such that \(\pi \) is \(G \)-equivariant and the action of every \(g \in G \) restricts to a linear map \(\pi^{-1}(x) \rightarrow \pi^{-1}(gx) \) for every \(x \in X \).

Our proof of Theorem 1 in the next section will heavily rely on the following result.

Lemma 3 (No-name Lemma). Let \(\pi : E \rightarrow X \) be a \(G \)-bundle of rank \(r \). Assume that the \(G \)-action on \(X \) is generically free. Then there exists a birational isomorphism \(\pi : E \rightarrow X \times \mathbb{A}^r \) of \(G \)-varieties such that the following diagram commutes
\[
\begin{array}{ccc}
E & \xrightarrow{\phi} & X \times \mathbb{A}^r \\
\downarrow & \pi & \downarrow \\
X \end{array}
\]
Here \(G \) is assumed to act trivially on \(\mathbb{A}^r \), and \(\text{pr}_1 \) denotes the projection to the first factor.

The term “no-name lemma” is due to Dolgachev \[Do\]. In the case where \(G \) is a finite group, a proof can be found, e.g., in \[EM\] Proposition 1.1], \[L\] Proposition 1.3] or \[Sh\] Appendix 3]. For a proof in the case where the
base field k is algebraically closed, $\text{char}(k) = 0$, and G is an arbitrary linear algebraic group, see [BK], [Ka], [CGR, Section 4].

In the sequel we would like to use Lemma 3 in the case where k is not necessarily algebraically closed. With this in mind, we will prove a more general variant of this result (Proposition 5 below). For the rest of this section we will work over an arbitrary base field k.

Remark 4. Suppose G is a group scheme of finite type over k, X is an arbitrary quasi-separated scheme (or algebraic space) over k, on which G acts (quasi-separated means that the diagonal embedding $X \hookrightarrow X \times \text{Spec} \ k X$ is quasi-compact; this is automatically satisfied when X is of finite type over k). We say that the action is *free* when the stabilizers of all geometric point of X are trivial (as group schemes). This is equivalent to saying that the morphism $G \times \text{Spec} \ k X \rightarrow X \times \text{Spec} \ k X$ defined in functorial terms by $(g, x) \mapsto (gx, x)$ is categorically injective (equivalently, it is injective on geometric points and unramified). Then, by a result of Artin ([LMR, Corollaire 10.4]), the quotient sheaf X/G in the fppf topology is an algebraic space, and $G \times \text{Spec} \ k X = X \times_{X/G} X$. There is a Zariski open dense subspace $V \subseteq X/G$ that is a scheme ([Kn, Proposition 6.7]); if U is the inverse image of V in X, then the restriction $U \rightarrow U/G = V$ is a G-torsor (i.e. a principal G-bundle in the fppf topology, cf. [DG]). In the case where X is a k-variety, this is precisely the rational quotient map we discussed in the introduction, i.e., $k(U/G) = k(X)^G$.

Proposition 5. Assume that G is a group scheme of finite type over k, acting on a quasi-separated k-scheme X, with a non-empty invariant open subscheme on which the action is free. Let \mathcal{E} be a G-equivariant locally free sheaf of rank r on X. Then there exists a non-empty open G-invariant subscheme U of X, such that the restriction $\mathcal{E}|_U$ is isomorphic to the trivial G-equivariant sheaf \mathcal{O}_U^r.

To see that Lemma 3 (over an arbitrary base field k) follows from Proposition 5, recall the the well-known equivalence between the category of G-equivariant vector bundles on X and the category of G-equivariant locally free sheaves on X. One passes from a G-bundle $V \rightarrow X$ to the G-equivariant locally free sheaf of sections of V; conversely, to each G-equivariant locally free sheaf \mathcal{E} on X one associates the spectrum of the sheaf of symmetric algebras of the dual \mathcal{E}^\vee over X.

Note also that in the course of proving Lemma 3 we may assume without loss of generality that X is *primitive*, i.e., G transitively permutes the irreducible components of X (equivalently, $k(X)^G$ is a field). Indeed, an arbitrary G-variety X is easily seen to be birationally isomorphic to a disjoint union of primitive G-varieties X_1, \ldots, X_r, and it suffices to prove Lemma 3 for each X_i. On the other hand, if X is primitive, then every non-empty G-invariant open subset is dense in X. This shows that Lemma 3 follows from Proposition 5 as claimed.
Proof of Proposition 5. After replacing X by a non-empty open subscheme we may assume that the action of G on X is free. By passing to a dense invariant subscheme of X, we may assume that the action of G on X is free. By passing to a dense invariant subscheme of X, we may assume that X/G is a scheme, and $X \to X/G$ is a G-torsor; see Remark 4. By descent theory, the G-equivariant sheaf \mathcal{E} comes from a locally free sheaf \mathcal{F} on X/G; see, for example, [V, Theorem 4.46]. By restricting to a non-empty open subscheme of X/G once again, we may assume that \mathcal{F} is isomorphic to $\mathcal{O}_{X/G}$. Then \mathcal{E} is G-equivariantly isomorphic to $\mathcal{O}_{X/G}$, as claimed. □

Remark 6. The same argument goes through if the base field k (or, equivalently, the base scheme $\text{Spec}(k)$) is replaced by an algebraic space B, so that X is defined over B, and the group scheme G is assumed to be flat and finitely presented over B.

3. Proof of Theorem 1

We will prove Theorem 1 in two steps: first in the case where $X = V$ is a generically free linear representation of G, then for arbitrary X.

Step 1: Suppose $X = V$ is a generically free linear representation of G.

Let $m = \dim(V)$. By the no-name lemma, there exist G-equivariant birational isomorphisms α and β such that the diagram

\[
\begin{array}{ccc}
W \times \mathbb{A}^m & \overset{\alpha}{\longrightarrow} & W \times W^\phi \\
\downarrow \text{pr}_1 & & \downarrow \text{pr}_1 \\
W & \longrightarrow & W \\
\end{array}
\quad
\begin{array}{ccc}
W \times W^\phi & \overset{\beta}{\longrightarrow} & W^\phi \times \mathbb{A}^m \\
\downarrow \text{pr}_2 & & \downarrow \text{pr}_1 \\
W^\phi & \longrightarrow & W^\phi \\
\end{array}
\]

commutes. Now we can take $f = \beta \circ \alpha: V \times \mathbb{A}^m \dashrightarrow V^\phi \times \mathbb{A}^m$.

Step 2: Suppose X is an arbitrary generically free G-variety.

Let V be a generically free linear representation of G and $p: X \times V \dashrightarrow V$ be the projection onto the second factor. By the no-name lemma, $X \times V$ is birationally isomorphic to $X \times \mathbb{A}^m$; this yields a dominant rational map of G-varieties $X \times \mathbb{A}^m \dashrightarrow V$, which we will continue to denote by p. After replacing X by $X \times \mathbb{A}^m$, we may assume that there exists a dominant rational map $p: X \dashrightarrow V$. We now consider the commutative diagram

\[
\begin{array}{ccc}
X & \overset{p}{\longrightarrow} & V \\
\downarrow & & \downarrow \\
X/G & \overset{p/G}{\dashrightarrow} & V/G, \\
\end{array}
\]

where the vertical arrows are rational quotient maps. We claim that X is birationally isomorphic to the fiber product $X/G \times_{V/G} V$, where the G-action
on this fiber product is induced from the G-action on V (in other words, G acts trivially on X/G and on V/G). In the case where k is an algebraically closed field of characteristic zero, this is proved in [Re, Lemma 2.16]. For general k, choose an open invariant subscheme U of V such that G acts freely over U, the quotient U/G is a scheme, and the projection $U \to U/G$ is a G-torsor; see Remark 4. By restricting X, we may assume that the morphism $X \to X/G$ is also a G-torsor, and that X maps into U. Then we get a commutative diagram

\[
\begin{array}{ccc}
X & \xrightarrow{p} & U \\
\downarrow & & \downarrow \\
X/G & \xrightarrow{p/G} & U/G \\
\end{array}
\]

where the columns are G-torsors and the top row is G-equivariant. Any such diagram is well known to be cartesian; this proves our claim.

Similarly, $X^\phi \simeq X^\phi/G \times_{V^\phi/G} V^\phi$. By Step 1 there is a G-equivariant birational isomorphism $f: V \times \mathbb{A}^m \dashrightarrow V^\phi \times \mathbb{A}^m$ which makes the diagram

\[
\begin{array}{ccc}
V \times \mathbb{A}^m & \xrightarrow{f} & V^\phi \times \mathbb{A}^m \\
\downarrow \pi_V & & \downarrow \pi_{V^\phi} \\
X/G & \xrightarrow{p/G} & V^\phi/G \\
\end{array}
\]

commute. Consequently, f induces a G-equivariant birational isomorphism between the fiber products $X/G \times_{V/G} (V \times \mathbb{A}^m)$ and $X^\phi/G \times_{V^\phi/G} (V^\phi \times \mathbb{A}^m)$ i.e., between $X \times \mathbb{A}^m$ and $X^\phi \times \mathbb{A}^m$. This completes the proof of Theorem 1.

Remark 7. Our proof shows that the integer m in the statement of Theorem 1 can be taken to be the minimal value of $2 \dim(W)$, as W ranges over the generically free linear representations of G. If X is itself a generically free linear representation of G then we can take m to be the minimal value of $\dim(W)$, where again W ranges over the generically free linear representations of G; see the proof of Step 1.

4. Examples where X and X^ϕ are birationally isomorphic

The question of whether or not X and X^ϕ are birationally isomorphic over k is delicate in general. Birational isomorphism over $K = k(X)^G$ is more accessible because it can be restated in terms of Galois cohomology. In this section we will to show that in many cases X and X^ϕ are, indeed, birationally isomorphic over K (and thus over k).

Let X be a primitive G-variety. Recall that X is called primitive if G transitively permutes the irreducible components of X; see Section 2. That
is, X is primitive if $K = k(X)^G$ is a field or equivalently, if the rational quotient variety X/G is irreducible. As we saw in Remark 4, the rational quotient map $\pi : X \dashrightarrow X/G$ is a G-torsor over a non-empty open subscheme of X/G; hence, the G-action on X gives rise to a Galois cohomology class in $H^1(K, G)$, which we shall denote by $[X]$; cf., [Se1], [Po].

An automorphism ϕ of G induces an automorphism ϕ^* of the (pointed) cohomology set $H^1(K, G)$, where $[X^\phi] = \phi^*([X])$. In particular, the G-varieties X and X^ϕ are birationally isomorphic over K if and only if $\phi^*([X]) = [X]$ in $H^1(K, G)$.

Example 8. If $[X] = 1$ then $\phi^*([X]) = 1$; hence, X and X^ϕ are birationally isomorphic. Explicitly, in this case X is birationally isomorphic to the “split” G-variety $Y \times G$, with G acting on the second component by left translations, and a birational isomorphism between $Y \times G$ and $(Y \times G)^\phi$ is given by $(y, g) \mapsto (y, \phi(g))$.

In particular, if G is a special group, i.e., $H^1(K, G) = \{1\}$ for every K/k, then X and X^ϕ are birationally isomorphic for every generically free G-variety X. Examples of special groups are $G = \text{GL}_n, \text{SL}_n, \text{Sp}_{2n}$; see [Se2], Chapter X.

The following lemma extends this simple argument a bit further.

Lemma 9. Let X be a primitive generically free G-variety and $K = k(X)^G$. Suppose $[X]$ lies in the image of the natural map $H^1(K, G_0) \rightarrow H^1(K, G)$, where G_0 is a closed subgroup of G such that $\phi|_{G_0} = \text{id}: G_0 \rightarrow G_0$. Then X and X^ϕ are birationally isomorphic as K-varieties.

Proof. Let $i : G_0 \hookrightarrow G$ be the inclusion map. The commutative diagram

$$
\begin{array}{ccc}
G_0 & \rightarrow & G \\
\downarrow{id} & & \downarrow{\phi} \\
G_0 & \rightarrow & G
\end{array}
$$

of groups induces a commutative diagram of cohomology sets

$$
\begin{array}{ccc}
H^1(K, G_0) & \rightarrow & H^1(K, G) \\
\downarrow{id} & & \downarrow{\phi^*} \\
H^1(K, G_0) & \rightarrow & H^1(K, G)
\end{array}
$$

Since $[X]$ is in the image of i^*, this diagram shows that $\phi^*([X]) = [X]$. □

Note that if $[X] = 1$ then $[X]$ is the image of the trivial element of $H^1(K, G_0)$, where $G_0 = \{1\}$. Example 8 is thus a special case of Lemma 9.

We now turn to a more sophisticated application of Lemma 9 (with non-trivial G_0).
Proposition 10. Let G be the special orthogonal group $SO(q)$, where q is a non-degenerate isotropic n-dimensional quadratic form defined over k, and let X be an irreducible generically free G-variety. Assume $n \neq 4$ and $\text{char}(k) \neq 2$. Then X and X^ϕ are birationally isomorphic over $K = k(X)^{SO(q)}$ (and hence, over k) for any automorphism ϕ of $SO(q)$.

Proof. As we remarked in the introduction, we are allowed to replace ϕ by $\phi' = \phi \circ \text{inn}_h$, where inn_h denotes conjugation by $h \in SO(q)$; indeed, X^ϕ and $X^{\phi'}$ are isomorphic (over K) via $x \mapsto h \cdot x$. In particular, the proposition is true if ϕ is an inner automorphism of $SO(q)$.

It is well known that every automorphism $\phi: SO(q) \to SO(q)$ has the form $g \mapsto hgh^{-1}$, where $h \in O(q)$; cf., e.g., [Die] [Section XI]. If n is odd then, after replacing h by $\det(h)h$, we may assume that $h \in SO(q)$, i.e., ϕ is inner. This proves the proposition for odd n.

From now on we will assume that $n \geq 6$ is even and $\det(h) = -1$. We may also assume that $q(x_1, \ldots, x_n) = a_1x_1^2 + \cdots + a_nx_n^2$ for some $a_1, \ldots, a_n \in k^*$ and, after composing ϕ with an inner automorphism of $SO(q)$, that $h = \text{diag}(-1, 1, \ldots, q)$. Let $D_0 \simeq (\mathbb{Z}/2\mathbb{Z})^{n-1}$, $D \simeq (\mathbb{Z}/2\mathbb{Z})^n$ be the subgroups of diagonal matrices in $SO(q)$, $O(q)$ respectively, and $i: D_0 \hookrightarrow SO(q)$, $j: D \hookrightarrow SO(q)$ be the natural inclusion maps. Note that ϕ restricts to a trivial automorphism of D_0. Thus, in view of Lemma 9, it suffices to show that $i_*: H^1(K, D_0) \to H^1(K, SO(q))$ is surjective.

Consider the commutative diagram

$$
\begin{array}{ccc}
1 & \to & D_0 \\
\downarrow i & & \downarrow j \\
SO(q) & \to & O(q)
\end{array}
$$

of algebraic groups and the induced commutative diagram

$$
\begin{array}{ccc}
1 & \to & H^1(K, D_0) \\
\downarrow i_* & & \downarrow j_* \\
H^1(K, SO(q)) & \to & H^1(K, O(q))
\end{array}
$$

in cohomology. The top row is an exact sequence of abelian groups; $H^1(K, D_0)$ can thus be identified with the kernel of the product map $p: (K^*/(K^*)^2)^n \to K^*/(K^*)^2$, where $p(b_1, \ldots, b_n) = b_1 \cdots b_n \pmod{(K^*)^2}$.

Now recall that $H^1(K, O(q))$ is in a natural 1-1 correspondence with isometry classes of n-dimensional quadratic forms q' and that j_* takes $(b_1, \ldots, b_n) \in (K^*/K^*)^n$ to the quadratic form $q' = a_1b_1x_1^2 + \cdots + a_nb_nx_n^2$. Similarly, $H^1(K, SO(q))$ is in a natural 1-1 correspondence with isometry classes of n-dimensional quadratic forms q' such that q' has the same discriminant as q, and i_* takes $(b_1, \ldots, b_n) \in (K^*/K^*)^n$, with $b_1 \cdots b_n = 1$ in K^*/K^*, to
\[q' = a_1 b_1 x_1^2 + \cdots + a_n b_n x_n^2; \text{ cf., e.g., } \text{Se} \text{I, Appendix 2, §2}. \] It is clear from this description that both \(i_\ast \) and \(j_\ast \) are surjective. \(\square \)

5. Proof of Theorem 2

Recall that elements of \(H^1(K, \text{PGL}_n) \) are in a natural 1-1 correspondence with

(i) generically free \(\text{PGL}_n \)-varieties \(X \), with \(k(X)^{\text{PGL}_n} = K \), up to birational isomorphism over \(K \), or alternatively, with

(ii) central simple algebras \(A/K \) of degree \(n \), up to \(K \)-isomorphism; see \[\text{Se} \text{I}, \text{Po}, \text{RV} \]. We will denote the central simple algebra corresponding to an irreducible generically free \(\text{PGL}_n \)-variety \(X \) (respectively, to an element \(\alpha \in H^1(K, \text{PGL}_n) \)) by \(A_X \) (respectively, by \(A_\alpha \)). If \(\phi: \text{PGL}_n \rightarrow \text{PGL}_n \) is the automorphism given by \(g \rightarrow (g^{-1})^{\text{transpose}} \) then \(A_{\phi_\ast(\alpha)} \) is the opposite algebra \(A_\alpha^{\text{op}} \); cf. e.g., \[\text{Se} \text{II}, \text{pp. 152-153} \]. In other words, \(A_X^\phi = A_X^{\text{op}} \). The following lemma gives a necessary and sufficient conditions for \(X \) and \(X^\phi \) to be birationally isomorphic over \(K \).

Lemma 11. Let \(X \) be an irreducible generically free \(\text{PGL}_n \)-variety. Then the following conditions are equivalent.

(a) \(X \) and \(X^\phi \) are birationally isomorphic over \(K = k(X)^{\text{PGL}_n} \),

(b) \(A_X \) is \(K \)-isomorphic to \(A_X^{\text{op}} \),

(c) \(A_X \) has exponent 1 or 2 in the Brauer group \(\text{Br}(K) \).

Proof. (a) \(\Leftrightarrow \) (b): Let \(\alpha = [X] \in H^1(K, \text{PGL}_n) \). Then as we observed in Section 4 \[[X^\phi] = \phi_\ast(\alpha) \]. Thus \(A_{X^\phi} = A_{\phi_\ast(\alpha)} = A_\alpha^{\text{op}} = A_X^{\text{op}} \), so that \(X \) and \(X^\phi \) are birationally isomorphic over \(K \) if and only if \(A_X \) is \(K \)-isomorphic to \(A_X^{\text{op}} \).

The equivalence of (b) and (c) is obvious, since \(A^{\text{op}} \) is the inverse of \(A \) in \(\text{Br}(K) \). \(\square \)

Lemma 11 does not directly address the question we are interested in, namely, the question of whether \(X \) and \(X^\phi \) are birationally isomorphic over the base field \(k \). Note however, that a birational isomorphism \(\alpha: X \rightarrow X^\phi \) defined over \(k \), restricts to a \(k \)-automorphism of the field of invariants \(K = k(X)^{\text{PGL}_n} = k(X^\phi)^{\text{PGL}_n} \). Our proof of Theorem 2 is based on the observation that if \(\text{Aut}_k(K) = \{1\} \), then

\(X \) and \(X^\phi \) are isomorphic over \(k \) \(\iff \)

\(X \) and \(X^\phi \) are isomorphic over \(K \) \(\iff \)

\(A_X \) has exponent 1 or 2 in the Brauer group of \(K \).

Thus in order to prove Theorem 2 it suffices to construct (i) a finitely generated field extension \(K/k \) such that \(\text{Aut}_k(K) = \{1\} \) and (ii) a central simple algebra \(A/K \) of degree \(n \) and exponent \(n \). These constructions are carried out in Lemmas 12 and 13 below. To simplify the exposition, we will state Lemmas 12 and 13 for an algebraically closed ground field \(k \). We
will then explain how to modify our construction to make it work over any infinite field k containing a primitive nth root of unity.

Lemma 12. Suppose k is an algebraically closed field. Then there exists an algebraic surface S/k which admits no non-trivial birational automorphisms. In other words, $\text{Aut}_k k(S) = \{1\}$.

Proof. Choose two smooth non-isomorphic curves C_1 and C_2, of genus g_1 and g_2 respectively (say, $g_1 \geq g_2$), with no non-trivial automorphisms, and set $S = C_1 \times C_2$.

We claim that every birational automorphism $f: S \to S$ is trivial. To prove this, note that f restricts to a regular map $C \to C$ for every smooth curve C in S. Taking $C = C_1 \times \{y\}$ for some $y \in C_2$, we see that $pr_2 \circ f$ is a regular map $C \to C_2$. (Here $pr_2: S \to C_2$ is the projection to the second factor.) Since $g_1 \geq g_2$, the Hurwitz formula tells us that this map cannot be dominant, i.e., it sends C to a single point. In other words, $f(C_1 \times \{y\}) \subset C_1 \times \{y'\}$ for some $y' \in C_2$. Since f is a birational automorphism, $f(C_1 \times \{y\})$ can be a single point for only finitely many $y \in C_2$. For every other $y \in C_2$ there exists a $y' \in C_2$ such that

$$f(C_1 \times \{y\}) = C_1 \times \{y'\}.$$

Applying the Hurwitz formula once again, we see that f induces an isomorphism between $C_1 \times \{y\}$ and $C_1 \times \{y'\}$. Since C_1 has no non-trivial automorphisms, this isomorphism is given by $f(x, y) = (x, y')$. Equivalently, for $x \in C_1$, f restricts to a morphism $\{x\} \times C_2 \to \{x\} \times C_2$. The Hurwitz formula now tells us that this map is an automorphism. Since C_2 has no non-trivial automorphisms, we conclude that $f(x, y) = (x, y)$, for every $x, y \in S$. \hfill \square

Lemma 13. Assume k is an algebraically closed field, $\text{char}(k)$ does not divide n and K/k be a finitely generated field extension of transcendence degree ≥ 2. Then for every $n \geq 3$ there exists a division algebra D/K of degree n and exponent n.

Proof. Consider a model X for K, i.e., an algebraic variety X with function field $k(X) = K$. Choose a smooth point $x \in X$ and a system of local parameters t_1, \ldots, t_d in the local ring $O_x(X)$; here $d = \dim(X) = \text{trdeg}_K(K) \geq 2$.

We claim that the symbol algebra $D = (t_1, t_2)_n$, i.e., the K-algebra given by generators x_1, x_2 and relations $x_1^n = t_1$, $x_2^n = t_2$, $x_1 x_2 = \zeta x_2 x_1$ has exponent n in $\text{Br}(K)$. (Here ζ_n is a primitive nth root of unity in k.)

To prove this, consider the completion $\hat{O}_x(X) = k[[t_1, \ldots, t_d]]$ of the local ring $O_x(X)$, where $k[[t_1, \ldots, t_d]]$ denotes the ring of formal power series in the variables t_1, \ldots, t_d. Note that $O_x(X) \subset \hat{O}_x(X)$ and thus, after passing to the fields of fractions, $K \subset k((t_1, \ldots, t_d))$. The image of D under the restriction map $\text{Br}(K) \to \text{Br}(k((t_1, \ldots, t_d)))$ is the symbol algebra $D' = (t_1, t_2)_n$ over $k((t_1, \ldots, t_d))$. A simple valuation-theoretic argument shows that D' has exponent n; cf. [Ro, Proposition 3.3.26]. Hence, so does D. \hfill \square
Lemmas 12 and 13 complete the proof of Theorem 2 in the case where the base field k is algebraically closed and $\text{char}(k)$ does not divide n. Then the same argument will work over a non-closed field k with a primitive nth root of unity, if we can choose the curves C_i ($i = 1, 2$) in Lemma 12 so that C_i each is defined over k and has a k-point p_i. (The primitive nth root of unity is needed to define the symbol algebra D in the proof of Lemma 13.) Taking the k-variety X in Lemma 13 to be $C_1 \times C_2$, we see that $x = (p_1, p_2)$ is a smooth k-point of X, and the rest of the proof of Lemma 13 goes through unchanged.

To construct the curve C_i as above (for $i = 1, 2$), fix a k-point p_i in \mathbb{P}^2 and C_i to be the general element of the k-linear system of degree d_i curves passing through p_i. If k is an infinite field then C_i is a smooth curve of genus $G_i = \frac{1}{2}(d_i - 1)(d_i - 2)$. By construction, C has a k-point p_i. Moreover, if $d_i \geq 4$, then C_i has no non-trivial automorphisms.

This completes the proof of Theorem 2.

Remark 14. Theorem 2 remains valid if the condition that k contains a primitive nth root of unity is replaced by the (weaker) condition that k contains a primitive mth root of unity for some divisor m of n such that $m \geq 3$. The proof is the same, except that instead of the symbol algebra $D = (t_1, t_2)$ of degree n and exponent n, we use the algebra $M_{n/m}(E)$ of degree n and exponent m, where $E = (t_1, t_2)$.

Remark 15. Theorem 2 fails for $n = 2$; indeed, A and A^{op} are isomorphic over K for any central simple algebra A/K of degree 2. Alternatively, $\text{PGL}_2 \simeq \text{SO}_3$, so if Theorem 2 were true for $n = 2$, it would contradict Proposition 10.

6. Further examples

In this section we will assume that G is a finite group and k is an algebraically closed field of characteristic zero.

Proposition 16. (a) For every finitely generated field extension K/k and every finite group G there exists a G-Galois extension L/K. Equivalently, there exists an irreducible G-variety X such that $k(X)^G = K$.

(b) Suppose $\text{Aut}_k(K) = \{1\}$ and $\phi: G \to G$ is an outer automorphism of a finite group G. Then for every X, as in (a), the G-varieties X and X^ϕ are not birationally isomorphic.

Proof. (a) By the Riemann existence theorem there exists a G-Galois extension $L_0/k(t)$, where t is an independent variable. Hence, there exists a G-Galois extension $L_1/K(t)$, where $L_1 = L \otimes_{k(t)} K(t)$. The Hilbert irreducibility theorem now allows to construct a G-Galois extension L/K by suitably specializing t in K.

(b) Irreducible G-varieties X (up to birational isomorphism) such that $k(X)^G = K$, are in 1-1 correspondence with G-Galois field extensions L/K.
A birational isomorphism $\alpha: X \dasharrow X^\phi$ of G-varieties induces an isomorphism

$$
L = k(X) \xrightarrow{\alpha} k(X^\phi) = L
$$

Then $\alpha \in \text{Gal}(L/K) = G$, and since the above diagram commutes, we have $\alpha g(l) = \phi(g)\alpha(l)$ for every $g \in G$ and $l \in L$. In other words, $\phi(g) = \alpha g \alpha^{-1}$, contradicting our assumption that ϕ is an outer automorphism. \qed

Acknowledgement. The first-named author would like to thank V. L. Popov for helpful discussions.

References

[BK] F. Bogomolov, P. Katsylo, Rationality of certain quotient varieties, Mat. Sbornik, 126(168) (1985), no. 4, 584-589.
[CGR] V. Chernousov, Ph. Gille, Z. Reichstein, Resolving G-torsors by abelian base extensions. J. Algebra, to appear.
[DG] M. Demazure, P. Gabriel Introduction to algebraic geometry and algebraic groups. North-Holland Mathematics Studies, 39. North-Holland Publishing Co., Amsterdam-New York, 1980.
[Die] J. Dieudonné, On the automorphisms of the classical groups, with a supplement by Loo-Keng Hua. Mem. Amer. Math. Soc., no. 2, 1951.
[Do] I. V. Dolgachev, Rationality of fields of invariants, in: Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Amer. Math. Soc., Providence, RI, 1987, pp. 3–16.
[EM] S. Endo, T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan 25 (1973), 7–26.
[Ka] P. Katsylo, On the birational classification of linear representations, Max Planck Institute für Mathematik preprint MPI-92-1 (1992).
[Kn] D. Knudson, Algebraic spaces, Springer–Verlag (2000).
[LMB] G. Laumon, L. Moret-Bailly, Champs Algébriques, Springer–Verlag (2000).
[L] H. W. Lenstra, Jr. Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974), 299–325.
[KMRT] M.-A. Knus, A. Merkurjev, M. Rost, J.-P. Tignol, The book of involutions, Colloquium Publications, 44. American Mathematical Society, Providence, RI, 1998.
[Po] V. L. Popov, Sections in invariant theory, The Sophus Lie Memorial Conference (Oslo, 1992), Scand. Univ. Press, Oslo, 1994, 315–361.
[PV] V. L. Popov and E. B. Vinberg, Invariant Theory. Algebraic Geometry IV, Encyclopedia of Mathematical Sciences 55, Springer, 1994, 123–284.
[Re] Z. Reichstein, On the notion of essential dimension for algebraic groups, Transform. Groups 5 (2000), no. 3, 265–304.
[RV] Z. Reichstein and N. Vonessen, Polynomial identity rings as rings of functions, arXiv: math.RA/0407152.
[RY] Z. Reichstein, B. Youssin, A birational invariant for algebraic group actions, Pacific J. Math. 204 (2002), no. 1, 223–246.
[Ro1] M. Rosenlicht, Some basic theorems on algebraic groups, American Journal of Math., 78 (1956), 401–443.
[Ro2] M. Rosenlicht, A remark on quotient spaces, Anais da Academia Brasileira de Ciências 35 (1963), 487–489.
[Ro] L. H. Rowen, *Polynomial identities in ring theory*, Pure and Applied Mathematics, 84. Academic Press, New York-London, 1980.

[Se1] J.-P. Serre, *Galois Cohomology*, Springer, 1997.

[Se2] J.-P. Serre, *Local Fields*, Springer-Verlag, 1979.

[Sh] I. R. Shafarevich, *Basic Algebraic Geometry*, vol. 1, second edition, Springer-Verlag, 1994.

[V] A. Vistoli, *Notes on Grothendieck topologies, fibered categories and descent theory*, available at www.dm.unibo.it/~vistoli/descent.pdf

Department of Mathematics, University of British Columbia, Vancouver, BC, Canada, V6T 1Z2

E-mail address: reichst@math.ubc.ca
URL: www.math.ubc.ca/ reichst

Department of Mathematics, Dipartimento di Matematica, Universita’ di Bologna, Piazza di Porta S. Donato 5, 40137 Bologna, Italy

E-mail address: vistoli@dm.unibo.it
URL: www.dm.unibo.it/ vistoli