THE CONCISE GUIDE TO PHARMACOLOGY 2013/14: ENZYMES

Stephen P.H. Alexander*1, Helen E. Benson2, Elena Facenda2, Adam J. Pawson2, Joanna L. Sharman2, Michael Spedding3, John A. Peters4, Anthony J. Harmar2 and CGTP Collaborators

*Author for correspondence; steve.alexander@guidetopharmacology.org
1School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK
2The University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
3Spedding Research Solutions SARL, Le Vésinet 78110, France
4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK

Abstract

The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full.

Enzymes are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets.

It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.

An Introduction to Enzymes

Enzymes are protein catalysts facilitating the conversion of substrates into products. The Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) classifies enzymes into families, using a four number code, on the basis of the reactions they catalyse. There are six main families:

- EC 1.-- Oxidoreductases;
- EC 2.-- Transf erase s;
- EC 3.-- Hydrolases;
- EC 4.-- Lyases;
- EC 5.-- Isomerases;
- EC 6.-- Ligases.

Although there are many more enzymes than receptors in biology, and many drugs that target prokaryotic enzymes are effective medicines, overall the number of enzyme drug targets is relatively small [1,2], which is not to say that they are of modest importance. In the Concise Guide to PHARMACOLOGY 2013/14, enzymes are presented as a group involved in metabolic pathways (for example, of the neurotransmitters acetylcholine, GABA and dopamine). An alternative grouping for presentation is epitomized by the cytochrome P450 enzymes, which essentially conduct the same enzymatic function, albeit on a very diverse range of substrates.

The majority of drugs which act on enzymes act as inhibitors; one exception is metformin, which appears to stimulate activity of AMP-activated protein kinase, albeit through an imprecisely-defined mechanism. Kinetic assays allow discrimination of competitive, non-competitive and un-competitive inhibitors. The majority of inhibitors are competitive (acting at the enzyme’s ligand recognition site), non-competitive (acting at a distinct site; potentially interfering with co-factor or co-enzyme binding) or of mixed type. One rare example of an uncompetitive inhibitor is lithium ions, which are effective inhibitors at inositol monophosphate only in the presence of high substrate concentrations. Some inhibitors are irreversible, including a group known as suicide substrates, which bind to the ligand recognition site and then couple covalently to the enzyme. It is beyond the scope of the Concise Guide To PHARMACOLOGY 2013/14 to give mechanistic
information about the inhibitors described, although generally this information is available from the indicated literature.

Many enzymes require additional entities for functional activity. Some of these are used in the catalytic steps, while others promote a particular conformational change. Co-factors are tightly bound to the enzyme and include metal ions and heme groups. Co-enzymes are typically small molecules which accept or donate functional groups to assist in the enzymatic reaction. Examples include ATP, NAD, NADP and S-adenosylmethionine, as well as a number of vitamins, such as riboflavin (vitamin B1) and thiamine (vitamin B2). Where co-factors/co-enzymes have been identified, the Guide indicates their involvement.

Acknowledgements

We wish to acknowledge the tremendous help provided by the Consultants to the Guides past and present (see list in the Overview, p. 1452). We are also extremely grateful for the financial contributions from the British Pharmacological Society, the International Union of Basic and Clinical Pharmacology, the Wellcome Trust (099156/Z/12/Z), which support the website and the University of Edinburgh, who host the guidetopharmacology.org website.

Conflict of interest

The authors state that there is no conflict of interest to disclose.

Further reading

http://www.chem.qmul.ac.uk/iubmb/

List of records presented

1799 Acetylcholine turnover
1800 Adenosine turnover
1801 Amino acid hydroxylases
1802 L-Arginine turnover
1803 Carboxylases and decarboxylases
1804 Catecholamine turnover
1810 Ceramide turnover
1815 Cyclic nucleotide turnover
1820 Cytochrome P450
1824 Eicosanoid turnover
1828 Endocannabinoid turnover
1830 GABA turnover
1832 Glycerophospholipid turnover
1838 Haem oxygenase
1839 Hydrogen sulfide synthesis
1840 Inositol phosphate turnover
1842 Lanosterol biosynthesis pathway
1845 Peptidases and proteinases
1853 Protein serine/threonine kinases
1860 Sphingosine 1-phosphate turnover
1862 Thyroid hormone turnover

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Acetylcholine turnover

Overview: Acetylcholine is familiar as a neurotransmitter in the central nervous system and in the periphery. In the somatic nervous system, it activates nicotinic acetylcholine receptors at the skeletal neuromuscular junction, activating muscarinic acetylcholine receptors. In the latter, acetylcholine is involved as a neurotransmitter at the ganglion, activating nicotinic acetylcholine receptors. Acetylcholine is synthesised in neurons through the action of choline O-acetyltransferase and metabolised after release through the extracellular action of acetylcholinesterase and cholinesterase. Choline is accumulated from the extracellular medium by selective transporters (see SLC5A7 and the SLC44 family). Acetylcholine is accumulated in synaptic vesicles through the action of the vesicular acetylcholine transporter SLC18A3.

Nomenclature	Common abbreviation	HGNC, UniProt	EC number: reaction	Comment
choline O-acetyltransferase	ChAT	CHAT, P28329	2.3.1.6: acetyl CoA + choline = acetylcholine + coenzyme A	Splice variants of choline O-acetyltransferase are suggested to be differentially distributed in the periphery and CNS (see [3])
acetylcholinesterase	AChE	ACHE, P22303	3.1.1.7: acetylcholine + H₂O = acetic acid + choline + H⁺	
butyrylcholinesterase	BChE	BCHE, P06276	3.1.1.7: acetylcholine + H₂O = acetic acid + choline + H⁺	
(Sub)family-selective inhibitors (pIC₅₀)			physostigmine (7.6 – 7.8) [6]	
Selective inhibitors (pIC₅₀)	donepezil (7.7 – 8.1) [4,6], BW284C51 (7.7) [5]		physostigmine (7.6 – 7.8) [6]	
	bambutrol (8.5) [5], rivastigmine (7.4) [6]			

Comments: A number of organophosphorus compounds inhibit acetylcholinesterase and cholinesterase irreversibly, including pesticides such as chlorpyrifos-oxon, and nerve agents such as tabun, soman and sarin. AChE is unusual in its exceptionally high turnover rate which has been calculated at 740 000/min/molecule [7].

Further reading

Abreu-Villaça Y, Filgueiras CC, Manhães AC. (2011) Developmental aspects of the cholinergic system. Behav Brain Res 221: 367–378. [PMID:20060019]
Bellier JP, Kimura H. (2011) Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuroanat 42: 225–235. [PMID:21382474]
Deiana S, Platt B, Riedel G. (2011) The cholinergic system and spatial learning. Behav Brain Res 221: 389–411. [PMID:21108971]
Giacobini E. (2003) Cholinesterases: new roles in brain function and in Alzheimer’s disease. Neurochem Res 28: 515–522. [PMID:12675140]
Kawashima K, Fujii T, Moriwaki Y, Misawa H. (2012) Critical roles of acetylcholine and the muscarinic and nicotinic acetylcholine receptors in the regulation of immune function. Life Sci 91: 1027–1032. [PMID:22659391]
Schliebs R, Arendt T. (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221: 555–563. [PMID:21145918]
Adenosine turnover

Overview: A multifunctional, ubiquitous molecule, adenosine acts at cell-surface G protein-coupled receptors, as well as numerous enzymes, including protein kinases and adenylyl cyclase. Extracellular adenosine is thought to be produced either by export or by metabolism, predominantly through ecto-5′-nucleotidase activity (also producing inorganic PO₄³⁻). It is inactivated either by extracellular metabolism via adenosine deaminase (also producing NH₃) or, following uptake by nucleoside transporters, via adenosine deaminase or adenosine kinase (requiring ATP as co-substrate). Intracellular adenosine may be produced by cytosolic 5′-nucleotidases or through S-adenosylhomocysteine hydrolase (also producing L-homocysteine).

Nomenclature	Adenosine deaminase	Adenosine kinase	Ecto-5′-Nucleotidase	S-Adenosylhomocysteine hydrolase
Common abbreviation	ADA	ADK	NTSE	SAHH
HGNC, UniProt	ADA, P00813	ADK, PS5263	NTSE, P21589	AHCY, P23526
EC number	3.5.4.4	2.7.1.20	3.1.3.5	3.3.1.1
Rank order of affinity	2′-deoxyadenosine > adenosine	adenosine	AMP, 5′-GMP, 5′-IMP, 5′-UMP > 5′-dAMP, 5′-dGMP	5′-adenosine, guanine, inosine, uridine
Products	2′-deoxyinosine, inosine	AMP	αβ-methyleneADP (8.7)	3-deazaadenosine (8.5)
Selective inhibitors (pIC₅₀)	EHNA (pK 8.8) [8], pentostatin (10.8) [8]	A134974 (10.2) [14], ABT702 (8.8) [11]		

Comments: With the exception of mitochondrial 5′-nucleotidase, each of the 5′-nucleotidases are localised to the cytoplasm.

An extracellular adenosine deaminase activity, termed ADA2 or adenosine deaminase growth factor (ADGF; CECR1, Q9NZK5) has been identified [13], which is insensitive to EHNA [15]. Other forms of adenosine deaminase act on ribonucleic acids and may be divided into two families: ADAT1 (Q9UB4) deaminates transfer RNA; ADAR (EC 3.5.4.4, also known as 136 kDa double-stranded RNA-binding protein, P136, K88DSRB, Interferon-inducible protein 4); ADARB1 (EC 3.5.3.9, also known as dsRNA adenosine deaminase) and ADARB2 (EC 3.5.3.9, also known as dsRNA adenosine deaminase B2, RNA-dependent adenosine deaminase 3) act on double-stranded RNA. Particular polymorphisms of the ADA gene result in loss-of-function and severe combined immunodeficiency syndrome. Adenosine deaminase is able to complex with dipeptidyl peptidase IV (EC 3.4.14.5, DPP4, also known as T-cell activation antigen CD26, TP103, adenosine deaminase complexing protein 2) to form a cell-surface activity [12].

Further reading

Blackburn MR, Kellems RE. (2005) Adenosine deaminase deficiency: metabolic basis of immune deficiency and pulmonary inflammation. *Adv Immunol* 86: 1–41. [PMID:15705418]

Boison D. (2013) Adenosine kinase: exploitation for therapeutic gain. *Pharmacol Rev* 65: 906–943. [PMID:23592612]

Orlandi C, Barbon A, Barlati S. (2012) Activity regulation of adenosine deaminases acting on RNA (ADARs). *Mol Neurobiol* 45: 61–75. [PMID:22113393]

Zimmermann H, Zebisch M, Sträter N. (2012) Cellular function and molecular structure of ecto-nucleotidases. *Purinergic Signal* 8: 437–502. [PMID:2255564]
Amino acid hydroxylases

Overview: The amino acid hydroxylases (monooxygenases), E.C.1.14.16.-, are iron-containing enzymes which utilise molecular oxygen and tetrahydrobiopterin as co-substrate and co-factor, respectively. In humans, as well as in other mammals, there are two distinct L-tryptophan hydroxylase 2 genes. In humans, these genes are located on chromosomes 11 and 12 and encode two different homologous enzymes, TPH1 and TPH2.

Nomenclature	L-Phenylalanine hydroxylase	L-Tyrosine hydroxylase	L-Tryptophan hydroxylase 1	L-Tryptophan hydroxylase 2
Common abbreviation				
HGNC, UniProt	PH, PAH, P00439	TH, P07101	TPH1, P17752	TPH2, Q8IWWJ
EC number	1.14.16.1: L-phenylalanine + O2 -> L-tyrosine	1.14.16.2: L-tyrosine + O2 -> L-DOPA	1.14.16.4	1.14.16.4
Endogenous activator (Rat)				
Protein kinase A-mediated phosphorylation [16]	Protein kinase A-mediated phosphorylation [19]			
Endogenous substrates	L-phenylalanine	L-tyrosine	L-tryptophan	5-hydroxy-L-tryptophan
Products	L-tyrosine	L-DOPA	L-tryptophan	5-hydroxy-L-tryptophan
Cofactors	tetrahydrobiopterin	–	Fe^{2+}, tetrahydrobiopterin	–
Selective inhibitors (pIC_{50})	α-methylphenylalanine [18], PCPA	–	3-chlorotyrosine, 3-iodotyrosine, α-methylyrosine, α-propyldopacetamide	–
Inhibitors (pIC_{50})	–	–	–	–
Comment	PAH is an iron bound homodimer or -tetramer from the same structural family as tyrosine 3-monoxygenase and the tryptophan hydroxylases. Deficiency or loss-of-function of PAH is associated with phenylketonuria	TH is a homotetramer, which is inhibited by dopamine and other catecholamines in a physiological negative feedback pathway [17]		

Further reading

Amireault P, Sibon D, Côté F. (2013) Life without peripheral serotonin: insights from tryptophan hydroxylase 1 knockout mice reveal the existence of paracrine/autocrine serotonergic networks. *ACS Chem Neurosci* 4: 64–71. [PMID:23336045]
Daubner SC, Le T, Wang S. (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. *Arch Biochem Biophys* 508: 1–12. [PMID:21176768]
Fitzpatrick FF. (2012) AllostERIC regulation of phenylalanine hydroxylase. *Arch Biochem Biophys* 519: 194–201. [PMID:22008392]

Lehmann IT, Bobrovskaya L, Gordon SL, Dunkley PR, Dickson PW. (2006) Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. *J Biol Chem* 281: 17644–17651. [PMID:16644734]
Matthes S, Mosienko V, Bashammakh S, Alenina N, Bader M. (2010) Tryptophan hydroxylase as novel target for the treatment of depressive disorders. *Pharmacology* 85: 95–109. [PMID:20130443]
Waider J, Araragi N, Gutknecht L, Lesch KP. (2011) Tryptophan hydroxylase-2 (TPH2) in disorders of cognitive control and emotion regulation: a perspective. *Psychoneuroendocrinology* 36: 393–405. [PMID:21257271]
L-Arginine turnover

Overview: L-arginine is a basic amino acid with a guanidino sidechain. As an amino acid, metabolism of L-arginine to form L-ornithine, catalysed by arginase, forms the last step of the urea production cycle. L-Ornithine may be utilised as a precursor of polyamines (see Carboxylases and Decarboxylases) or recycled via L-argininosuccinic acid to L-arginine. L-Arginine may itself be decarboxylated to form agmatine, although the prominence of this pathway in human tissues is uncertain. L-Arginine may be used as a precursor for guanidoacetic acid formation in the creatine synthesis pathway under the influence of arginine:glycine amidinotransferase with L-ornithine as a byproduct. Nitric oxide synthase uses L-arginine to generate NO, with L-citrulline also as a byproduct.

Arginase

Overview: Arginase (EC 3.5.3.1) are manganese-containing isoforms, which appear to show differential distribution, where the ARG1 isoform predominates in the liver and erythrocytes, while ARG2 is associated more with the kidney.

Nomenclature	Arginase I	Arginase II
Common abbreviation	ARG1	ARG2
HGNC, UniProt	ARGI, P05089	ARG2, P78540

Comments: Nω-hydroxyarginine, an intermediate in NOS metabolism of L-arginine acts as a weak inhibitor and may function as a physiological regulator of arginase activity. Although isoform-selective inhibitors of arginase are not available, examples of inhibitors selective for arginase compared to NOS are Nω-hydroxy-nor-L-arginine [34], S-(2-boronoethyl)-L-cysteine [25,30] and 2(S)-amino-6-boronohecanoic acid [23,25].

Arginine: glycine amidinotransferase

Nomenclature	Arginine:glycine amidinotransferase
Common abbreviation	AGAT
HGNC, UniProt	GATM, P50440
EC number	2.1.4.1

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Dimethylarginine dimethylaminohydrolases

Overview: Dimethylarginine dimethylaminohydrolases (DDAH, EC 3.5.3.18) are cytoplasmic enzymes which hydrolyse N^γ,N^γ-dimethyl-L-arginine to form dimethylamine and L-citrulline.

Nomenclature	N^γ,N^γ-Dimethylarginine dimethylaminohydrolase 1	N^γ,N^γ-Dimethylarginine dimethylaminohydrolase 2
Common abbreviation	DDAH1	DDAH2
HGNC, UniProt	DDAH1, O94760	DDAH2, O95865
Cofactors	Zn^{2+}	–

Nitric oxide synthases

Overview: Nitric oxide synthases (NOS, E.C. 1.14.13.39) utilise L-arginine (not D-arginine) and molecular oxygen to generate NO and L-citrulline. The nomenclature suggested by NC-IUPHAR of NOS I, II and III [32] has not gained wide acceptance. eNOS and nNOS isoforms are activated at concentrations of calcium greater than 100 nM, while iNOS shows higher affinity for Ca^{2+}/calmodulin ($CALM2$, $CALM3$, $CALM1$, P62158) and thus appears to be constitutively active. All the three isoforms are homodimers and require tetrahydrobiopterin, flavin adenine dinucleotide, flavin mononucleotide and NADPH for catalytic activity. L-NAME is an inhibitor of all three isoforms, with an IC$_{50}$ value in the micromolar range.

Nomenclature	Endothelial NOS	Inducible NOS	Neuronal NOS
Common abbreviation	eNOS	iNOS	nNOS
HGNC, UniProt	NOS3, P29474	NOS2, P35228	NOS1, P29475
Selective inhibitors (pIC$_{50}$)	–	aminoguanidine [26], 1400W (8.2) [28], 2-amino-4-methylpyridine (7.4) [27], PIBTU (7.3) [29], NIL (5.5) [33]	N$^\omega$propyl-L-arginine (pK 7.2 - Rat) [35], 3-bromo-7NI (6.1 – 6.5) [24], 7NI (5.3) [22]

Comments: The reductase domain of NOS catalyses the reduction of cytochrome c and other redox-active dyes [31]. NADPH:O$_2$ oxidoreductase catalyses the formation of superoxide anion/H$_2$O$_2$ in the absence of L-arginine and tetrahydrobiopterin.
Protein arginine N-methyltransferases

Overview: Protein arginine N-methyltransferases (PRMT, EC 2.1.1.-) encompass histone arginine N-methyltransferases (PRMT4, PRMT7, EC 2.1.1.125) and myelin basic protein N-methyltransferases (PRMT7, EC 2.1.1.126). They are dimeric or tetrameric enzymes which use S-adenosyl methionine as a methyl donor, generating S-adenosyl-L-homocysteine as a by-product. They generate both mono-methylated and di-methylated products; these may be symmetric (SDMA) or asymmetric (N2,N4-dimethyl-L-arginine) versions, where both guanidine nitrogens are monomethylated or one of the two is dimethylated, respectively.

Nomenclature	PRMT1	PRMT2	PRMT3	PRMT4	PRMT5	PRMT6	PRMT7	PRMT8	PRMT9	PRMT10
HGNC, UniProt	PRMT1, Q99873	PRMT2, P55345	PRMT3, O60678	PRMT4, Q86X55	PRMT5, O14744	PRMT6, Q96LA8	PRMT7, Q9NVM4	PRMT8, FBXO11, Q9NR22	PRMT9, Q86XK2	PRMT10, Q6P2P2
EC number	–	–	2.1.1.125	–	–	2.1.1.125	–	2.1.1.125, 2.1.1.126	–	–

Further reading

Ataya B, Tzeng E, Zuckerbraun BS. (2011) Nitrite-generated nitric oxide to protect against intimal hyperplasia formation. *Trends Cardiovasc Med* 21: 157–162. [PMID:22814422]

Di Lorenzo A, Bedford MT. (2011) Histone arginine methylation. *FEBS Lett* 585: 2024–2031. [PMID:21074527]

Fürstern L, Li H. (2011) Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. *Br J Pharmacol* 164: 213–223. [PMID:21198553]

Fürstern L, Sessa WC. (2012) Nitric oxide synthases: regulation and function. *Eur Heart J* 33: 829–837, 837a–837d. [PMID:21890489]

Heinrich TA, da Silva RS, Miranda KM, Switzer CH, Wink DA, Fukuto JM. (2013) Biological nitric oxide signalling: chemistry and terminology. *Br J Pharmacol* 169: 1417–1429. [PMID:23617570]

Karkhanis V, Hu YJ, Baiocchi RA, Imbalzano AN, Sif S. (2011) Versatility of PRMT5-induced methylation in growth control and development. *Trends Biochem Sci* 36: 633–641. [PMID:21975038]

Leiper J, Nandi M. (2011) The therapeutic potential of targeting endogenous inhibitors of nitric oxide synthesis. *Nat Rev Drug Discov* 10: 277–291. [PMID:21455237]

Moncada S, Higgs A, Furchgott R. (1997) International Union of Pharmacology Nomenclature in Nitric Oxide Research. *Pharmacol Rev* 49: 137–142. [PMID:9228663]

Yang Y, Bedford MT. (2013) Protein arginine methyltransferases and cancer. *Nat Rev Cancer* 13: 37–50. [PMID:23235912]
Carboxylases and decarboxylases

Carboxylases

Overview: The carboxylases allow the production of new carbon-carbon bonds by introducing HCO₃⁻ or CO₂ into target molecules. Two groups of carboxylase activities, some of which are bidirectional, can be defined on the basis of the cofactor requirement, making use of biotin (EC 6.4.1.-) or vitamin K hydroquinone (EC 4.1.1.-).

Nomenclature	Pyruvate carboxylase	Acetyl-CoA carboxylase 1	Acetyl-CoA carboxylase 2	Propionyl-CoA carboxylase	γ-Glutamyl carboxylase
Common abbreviation	PC	ACC1	ACC2	–	–
HGNC, UniProt	PC, P11498	ACACA, Q13085	ACACB, O00763	–	GGCX
Subunits	–	–	–	Propionyl-CoA carboxylase α subunit, Propionyl-CoA carboxylase β subunit	–
EC number	6.4.1.1	6.4.1.2	6.4.1.2	6.4.1.3	4.1.1.90
Endogenous substrates	ATP, pyruvic acid	ATP, acetyl CoA	ATP, acetyl CoA	ATP, propionyl-CoA	glutamyl peptides
Products	ADP, oxalacetic acid, PO₄⁻	malonyl-CoA, ADP, PO₄⁻	malonyl-CoA, ADP, PO₄⁻	ADP, methylmalonyl-CoA, PO₄⁻	carboxylglutamyl peptides
Cofactors	biotin	biotin	biotin	biotin	NADPH, vitamin K hydroquinone
Selective inhibitors (pIC₅₀)	–	TOFA [38]	TOFA [38]	–	–
Comment	Citrate and other dicarboxylic acids are allosteric activators of acetyl-CoA carboxylase	Citrate and other dicarboxylic acids are allosteric activators of acetyl-CoA carboxylase	–	Propionyl-CoA carboxylase is able to function in both forward and reverse activity modes, as a ligase (carboxylase) or lyase (decarboxylase), respectively	Loss-of-function mutations in γ-glutamyl carboxylase are associated with clotting disorders

Decarboxylases

Overview: The decarboxylases generate CO₂ and the indicated products from acidic substrates, requiring pyridoxal phosphate or pyruvic acid as a co-factor.

Nomenclature	S-Adenosylmethionine decarboxylase	L-Arginine decarboxylase	L-Aromatic amino-acid decarboxylase	Glutamic acid decarboxylase 1	Glutamic acid decarboxylase 2
Common abbreviation	SAMDC	ADC	AADC	GAD1	GAD2
HGNC, UniProt	AMD1, P17707	ADC, Q96A70	DDC, P20711	GAD1, Q99259	GAD2, Q05329
EC number	4.1.1.50	4.1.1.19	4.1.1.28: L-DOPA -> dopamine + CO₂	4.1.1.15: L-glutamic acid + H⁺ -> GABA + CO₂	4.1.1.15: L-glutamic acid + H⁺ -> GABA + CO₂
Endogenous substrates	S-adenosyl methionine	L-arginine	L-tryptophan, L-DOPA, S-hydroxy-L-tryptophan	S-HT, dopamine	L-glutamic acid, L-aspartic acid
Products	S⁵-deoxyadenosyl-(3-aminopropyl) methylsulfonium	agmatine [43]	S-HT, dopamine	–	L-glutamic acid, L-aspartic acid
Cofactors	pyruvic acid	pyridoxal phosphate	pyridoxal phosphate	pyridoxal phosphate	pyridoxal phosphate
Nomenclature

Selective inhibitors (plC50)	SAM486A (8.0) [41]	L-Arginine decarboxylase	L-Aromatic amino-acid decarboxylase	Glutamic acid decarboxylase 1	Glutamic acid decarboxylase 2
Common abbreviation	HDC, P191113	MALYCD, O95822	3-hydroxybenzylhydrazine, benserazide, carbidopa, L-o-methyl dopa	s-allylglycine	s-allylglycine
EC number	4.1.1.22	4.1.1.9			
Endogenous substrates	L-histidine	malonyl-CoA	L-ornithine	Ornithine decarboxylase	Phosphatidylserine decarboxylase
Products	histamine	acetyl CoA	putrescine	ODC	PSDC
Cofactors	pyridoxal phosphate	pyridoxal phosphate	pyridoxal phosphate	ODC, P11926	PISD, Q9UG56
Selective inhibitors (plC50)	AMA, FMH [37]	–	–	4.1.1.17	4.1.1.65
Comment	s-allylglycine is also an inhibitor of SAMDC [39]	The presence of a functional ADC activity in human tissues has been questioned [36]	AADC is a homodimer. Reaction 1: L-DOPA → dopamine + CO2, Reaction 2: 5-hydroxy-L-tryptophan → 5-HT + CO2, Reaction 3: L-tryptophan → tryptamine + CO2	L-aspartic acid is a less rapidly metabolised substrate of mouse brain glutamic acid decarboxylase generating β-alanine [42]. Autoantibodies against GAD1 and GAD2 are elevated in type 1 diabetes mellitus and neurological disorders (see Further reading)	

Further reading

Adina-Zada A, Zeczycki TN, Attwood PV. (2012) Regulation of the structure and activity of pyruvate carboxylase by acetyl CoA. *Arch Biochem Biophys* 519: 118–130. [PMID:22120519]

Bale S, Ealick SE. (2010) Structural biology of S-adenosymthionine decarboxylase. *Amino Acids* 38: 451–460. [PMID:19997761]

Brownsey RW, Boone AN, Elliot JE, Kula JE, Lee WM. (2006) Regulation of acetyl-CoA carboxylase. *Biochem Soc Trans* 34 (Pt 2): 223–227. [PMID:16545081]

Jitrapolkdeed S, St Maurice M, Raymont I, Celand WW, Wallace JC, Attwood PV. (2008) Structure, mechanism and regulation of pyruvate carboxylase. *Biochem J* 413: 369–387. [PMID:18613815]

Molderings GJ, Haensch B. (2012) Agmatine (decarboxylated L-arginine): physiological role and therapeutic potential. *Pharmacol Ther* 133: 351–365. [PMID:22212617]

Moya-García AA, Pino-Angeles A, Gil-Rendon R, Morreale A, Sánchez-Jiménez F. (2009) Structural features of mammalian histidine decarboxylase reveal the basis for specific inhibition. *Br J Pharmacol* 157: 4–13. [PMID:19413567]

Perez-Leal O, Merali S. (2012) Regulation of polyamine metabolism by translational control. *Amino Acids* 42: 611–617. [PMID:21811825]

Sánchez-Jiménez F, Ruiz-Pérez MV, Urdiales JL, Medina MA. (2013) Pharmacological potential of biogenic amine-polyamine interactions beyond neurotransmission. *Br J Pharmacol* 170: 4–16. [PMID:23347064]

Tong L. (2013) Structure and function of biotin-dependent carboxylases. *Cell Mol Life Sci* 70: 863–891. [PMID:22869039]

Wu F, Christen P, Gehring H. (2011) A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase. *FASEB J* 25: 2109–2122. [PMID:21454364]
Catecholamine turnover

Overview: Catecholamines are defined by the presence of two adjacent hydroxyls on a benzene ring with a sidechain containing an amine. The predominant catecholamines in mammalian biology are the neurotransmitter/hormones dopamine, (-)-noradrenaline (norepinephrine) and (+)-adrenaline (epinephrine). These hormone/transmitters are synthesized by sequential metabolism from L-phenylalanine via L-tyrosine. Hydroxylation of L-tyrosine generates L-DOPA, which is decarboxylated to form dopamine. Hydroxylation of the ethylamine sidechain generates (-)-noradrenaline (norepinephrine), which can be methylated to form (+)-adrenaline (epinephrine). In particular neuronal and adrenal chromaffin cells, the catecholamines dopamine, (-)-noradrenaline and (+)-adrenaline are accumulated into vesicles under the influence of the vesicular monoamine transporters (VMAT1/SLC18A1 and VMAT2/SLC18A2). After release into the synapse or the bloodstream, catecholamines are accumulated through the action cell-surface transporters, primarily the dopamine (DAT/SLC6A3) and norepinephrine transporter (NET/SLC6A2). The primary routes of metabolism of these catecholamines are oxidation via monoamine oxidase activities of methylation via catechol O-methyltransferase.

Nomenclature	Common abbreviation	HGNC, UniProt	EC number	Endogenous activator (Rat)	Endogenous substrates	Products	Cofactors	Selective inhibitors (pIC50)	Comment
L-Phenylalanine hydroxylase	PH	PAH, P00439	1.14.16.1:	Protein kinase A-mediated phosphorylation [44]	L-phenylalanine	L-tyrosine	tetrahydrobiopterin	α-methylphenylalanine [49], PCPA	PAH is an iron bound homodimer or -tetramer from the same structural family as tyrosine 3-monoxygenase and the tryptophan hydroxylases. Deficiency or loss-of-function of PAH is associated with phenylketonuria
Tyrosine aminotransferase	TAT	TAT, P17735	2.6.1.5:	pyridoxal phosphate		Tyrosine may also be metabolized in the liver by tyrosine transaminase to generate 4-hydroxyphenylpyruvic acid, which can be further metabolized to homogentisic acid., TAT is a homodimer, where loss-of-function mutations are associated with type II tyrosinemia			
L-Aromatic amino-acid decarboxylase	AADC	DDC, P20711	4.1.1.28:	L-tryptophan, L-DOPA, 5-hydroxy-L-tryptophan	S-HT, dopamine	pyridoxal phosphate	3-hydroxybenzylhydrazine, benzerazine, carbidopa, L-α-methyldopa	AADC is a homodimer, Reaction 1: L-DOPA -> dopamine + CO₂, Reaction 2: 5-hydroxy-L-tryptophan -> 5-HT + CO₂, Reaction 3: L-tryptophan -> tryptamine + CO₂	
Nomenclature	Common abbreviation	HGNC, UniProt	EC number	Endogenous activators	Endogenous substrates	Products	Cofactors	Inhibitors (pIC₅₀)	Comment
------------------------------	---------------------	----------------	----------------------------------	--	--	-------------------	----------------------------------	--------------------------------	---
L-Tyrosine hydroxylase	TH	TH, P07101	1.14.16.2: L-tyrosine + O₂ -> L-DOPA	Protein kinase A-mediated phosphorylation [51]	L-tyrosine	L-DOPA	Fe²⁺, tetrahydrobiopterin	3-chloro tyrosine, 3-iodo tyrosine, α-methyl tyrosine, α-propyldopacetamide	TH is a homotetramer, which is inhibited by dopamine and other catecholamines in a physiological negative feedback pathway [47]
Dopamine beta-hydroxylase	DBH	DBH, P09172	1.14.17.1: dopamine + O₂ -> (-)-noradrenaline + H₂O	Cu²⁺, L-ascorbic acid	nepicapstat			[55]	DBH is a homotetramer. A protein structurally-related to DBH (MOXD1, Q6UVY6) has been described and for which a function has yet to be identified [45]
Phenylethanolamine N-methyltransferase	PNMT	PNMT, P11086	2.1.1.28: (-)-noradrenaline -> (-)-adrenaline	S-adenosyl methionine	LY134046 (pK 7.6) [48]				
Monoamine oxidase A	MAO-A	MAOA, P21397	1.4.3.4: dopamine -> 3,4-dihydroxyphenylacetaldehyde + NH₃	flavin adenine dinucleotide	befloxatone [46], clorgyline, pirlindole [53]		Monoamine oxidase B	MAO-B	
			1.4.3.4: dopamine -> 3,4-dihydroxyphenylacetaldehyde + NH₃	flavin adenine dinucleotide	lazabemide [50], L-Deprenyl, rasagiline [56]		MAO8, P27338	1.4.3.4: dopamine -> 3,4-dihydroxyphenylacetaldehyde + NH₃	
Catechol-O-methyltransferase (COMT) is an enzyme that catalyzes the transfer of a methanol group from S-adenosyl methionine to various substrates, including dopamine, noradrenaline, and adrenaline. This reaction is crucial in the metabolism of catecholamines.

Cofactors and inhibitors
- **Cofactors**: S-adenosyl methionine
- **Selective inhibitors** (pIC₅₀): entacapone [52,54], tolcapone [52,54]

Comment
- COMT exists in both membrane-bound and soluble forms.
- It methylates steroids, particularly hydroxyestradiols.
- Reaction 1: dopamine => 3-methoxytyramine,
- Reaction 2: (-)-noradrenaline => normetanephrine,
- Reaction 3: (-)-adrenaline => metanephrine,
- Reaction 4: 3,4-dihydroxymandelic acid => vanillylmandelic acid

Further reading
- Al-Nuaimi SK, Mackenzie EM, Baker GB. (2012) Monoamine oxidase inhibitors and neuroprotection: a review. *Am J Ther* 19: 436–448. [PMID:22960850]
- Daubner SC, Le T, Wang S. (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. *Arch Biochem Biophys* 508: 1–12. [PMID:21176768]
- Dixon Clarke SE, Ramsay RR. (2011) Dietary inhibitors of monoamine oxidase A. *J Neural Transm* 118: 1031–1041. [PMID:21190052]
- Fitzpatrick PF. (2010) Oxidation of amines by flavoproteins. *Arch Biochem Biophys* 493: 13–25. [PMID:19651103]
- Fitzpatrick PF. (2012) Allosteric regulation of phenylalanine hydroxylase. *Arch Biochem Biophys* 519: 194–201. [PMID:22005392]
- Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. *Biochim Biophys Acta* 1813: 1323–1332. [PMID:20869994]
- Ma Z, Liu H, Wu B. (2013) Structure-based drug design of catechol-O-methyltransferase inhibitors for CNS disorders. *Br J Clin Pharmacol* [Epub ahead of print]. [PMID:23713800]
- Shih JC, Wu JB, Chen K. (2011) Transcriptional regulation and multiple functions of MAO genes. *J Neural Transm* 118: 979–986. [PMID:21359973]
- Wang CC, Billett E, Borchert A, Kuhn H, Ufer C. (2013) Monoamine oxidases in development. *Cell Mol Life Sci* 70: 599–630. [PMID:22782111]
- Witte AV, Flöel A. (2012) Effects of COMT polymorphisms on brain function and behavior in health and disease. *Brain Res Bull* 88: 418–428. [PMID:22138198]
Ceramide turnover

Overview: Ceramides are a family of sphingophospholipids synthesized in the endoplasmic reticulum, which mediate cell stress responses, including apoptosis, autophagy and senescence. Serine palmitoyltransferase generates 3-Ketosphinganine, which is reduced to sphinganine (dihydrosphingosine). N-Acylation allows the formation of dihydroceramides, which are subsequently reduced to form ceramides. Once synthesized, ceramides are trafficked from the ER to the Golgi bound to the ceramide transfer protein, CERT (COL4A3BP, Q9Y5P4). Ceramide can be metabolized via multiple routes, ensuring tight regulation of its cellular levels. Addition of phosphocholine generates sphingomyelin while carbohydrate is added to form glucosyl- or galactosylceramides. Ceramidase re-forms sphingosine or sphinganine from ceramide or dihydroceramide. Phosphorylation of ceramide generates ceramide phosphate. The determination of accurate kinetic parameters for many of the enzymes in the sphingolipid metabolic pathway is complicated by the lipophilic nature of the substrates.

Serine palmitoyltransferase

Overview: The functional enzyme is a heterodimer of SPT1 (LCB1) with either SPT2 (LCB2) or SPT3 (LCB2B); the small subunits of SPT (ssSPTa or ssSPTb) bind to the heterodimer to enhance enzymatic activity. The complexes of SPT1/SPT2/ssSPTa and SPT1/SPT2/ssSPTb were most active with palmitoylCoA as substrate, with the latter complex also showing some activity with stearoylCoA [62]. Complexes involving SPT3 appeared more broad in substrate selectivity, with incorporation of myristoyl-CoA prominent for SPT1/SPT3/ssSPTa complexes, while SP1/SPT3/ssSPTb complexes had similar activity with C16, C18 and C20 acylCoAs [62].

Nomenclature	serine palmitoyltransferase, long chain base subunit 1	serine palmitoyltransferase, long chain base subunit 2	serine palmitoyltransferase, long chain base subunit 3	serine palmitoyltransferase, small subunit A	serine palmitoyltransferase, small subunit B
Common abbreviation	SPT1	SPT2	SPT3	SPTSSA	SPTSSB
HGNC, UniProt	SPTLC1, O15269	SPTLC2, O15270	SPTLC3, Q9NUV7	SPTSSA, Q969W0	SPTSSB, Q8NFR3
EC number	2.3.1.50: palmitoylCoA + L-serine → 3-Ketosphinganine + coenzyme A + CO₂	pyridoxal phosphate + 3-Ketosphinganine + NADPH	pyridoxal phosphate + 3-Ketosphinganine + NADPH	serine palmitoyltransferase, small subunit A	serine palmitoyltransferase, small subunit B
Selective inhibitors (pIC₅₀)	myriocin [67]	myriocin [67]	myriocin [67]	–	–

3-ketodihydrosphingosine reductase

Nomenclature	HGNC, UniProt	EC number	Cofactors
3-ketodihydrosphingosine reductase	KDSR, Q06136	1.1.1.102: 3-Ketosphinganine + NADPH → sphinganine + NADP⁺	NADPH
Ceramide synthase

Overview: This family of enzymes, also known as sphingosine N-acyltransferase, is located in the ER facing the cytosol with an as-yet undefined topology and stoichiometry. Ceramide synthase in vitro is sensitive to inhibition by the fungal derived toxin, fumonisin B1.

Nomenclature	ceramide synthase 1	ceramide synthase 2	ceramide synthase 3
Common abbreviation	CERS1	CERS2	CERS3
HGNC, UniProt	CERS1, P27544	CERS2, Q96G23	CERS3, Q8IU89
EC number	2.3.1.24: sphinganine + acylCoA -> dihydroceramide + coenzyme A, sphingosine + acylCoA -> ceramide + coenzyme A		
Substrates	C18-CoA [76]	C24- and C26-CoA [65]	C26-CoA and longer [69,71]

Nomenclature	ceramide synthase 4	ceramide synthase 5	ceramide synthase 6
Common abbreviation	CERS4	CERS5	CERS6
HGNC, UniProt	CERS4, Q9HA82	CERS5, Q8NSB7	CERS6, Q6ZMG9
EC number	2.3.1.24: sphinganine + acylCoA -> dihydroceramide + coenzyme A, sphingosine + acylCoA -> ceramide + coenzyme A		
Substrates	C18-, C20- and C22-CoA [72]	C16-CoA [64,72]	C14- and C16-CoA [68]

Sphingolipid Δ⁴-desaturase

Overview: DEGS1 and DEGS2 are 4TM membrane proteins.

Nomenclature	delta(4)-desaturase, sphingolipid 1	delta(4)-desaturase, sphingolipid 2
HGNC, UniProt	DEGS1, O15121	DEGS2, Q6QHC5
EC number	1.14.-.-: dihydroceramide + NADH + O₂ -> ceramide + H₂O + NAD, sphinganine + NADH + O₂ -> sphingosine + H₂O + NAD	
Cofactors	NAD	NAD
Comment	Myristoylation of DEGS1 enhances its activity and targets it to the mitochondria [59]	–

Comments: DEGS1 activity is inhibited by a number of natural products, including curcumin and Δ⁴-tetrahydrocannabinol [60].
Sphingomyelin synthase

Overview: Following translocation from the ER to the Golgi under the influence of the ceramide transfer protein, sphingomyelin synthases allow the formation of sphingomyelin by the transfer of phosphocholine from the phospholipid phosphatidylcholine.

Sphingomyelin synthase-related protein 1 is structurally related but lacks sphingomyelin synthase activity.

Nomenclature	sphingomyelin synthase 1	sphingomyelin synthase 2
HGNC, UniProt	SGMS1, Q86VZ5	SGMS2, Q8NHU3
EC number	2.7.8.27: ceramide + phosphatidylcholine -> sphingomyelin + diacylglycerol	
Comment		Palmitoylation of sphingomyelin synthase 2 may allow targeting to the plasma membrane [75]

Nomenclature	sterile alpha motif domain containing 8
HGNC, UniProt	SAMD8, Q96LT4
EC number	2.7.8.-: ceramide + phosphatidylethanolamine -> ceramide phosphoethanolamine

Sphingomyelin phosphodiesterase

Overview: Also known as sphingomyelinase.

Nomenclature	sphingomyelin phosphodiesterase 1, acid lysosomal
HGNC, UniProt	SMPD1, P17405
EC number	3.1.4.12: sphingomyelin -> ceramide + phosphocholine

Nomenclature	sphingomyelin phosphodiesterase 2, neutral membrane (neutral sphingomyelinase)
HGNC, UniProt	SMPD2, O60906
EC number	3.1.4.12: sphingomyelin -> ceramide + phosphocholine

Nomenclature	sphingomyelin phosphodiesterase 3, neutral membrane (neutral sphingomyelinase II)
HGNC, UniProt	SMPD3, Q9NY59

Nomenclature	sphingomyelin phosphodiesterase 4, neutral membrane (neutral sphingomyelinase-3)
HGNC, UniProt	SMPD4, Q9NXE4

Nomenclature	sphingomyelin phosphodiesterase, acid-like 3A
HGNC, UniProt	SMPDL3A, Q92484
EC number	3.1.4.-: sphingomyelin -> ceramide + phosphocholine

Nomenclature	sphingomyelin phosphodiesterase, acid-like 3B
HGNC, UniProt	SMPDL3B, Q92485
EC number	3.1.4.-: sphingomyelin -> ceramide + phosphocholine

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Neutral sphingomyelinase coupling factors

Overview: Protein FAN [58] and polycomb protein EED [70] allow coupling between TNF receptors and neutral sphingomyelinase phosphodiesterases.

Nomenclature	HGNC, UniProt	embryonic ectoderm development	neutral sphingomyelinase (N-SMase) activation associated factor
EED	O75530		NSMAF, Q92636

Ceramide glucosyltransferase

Nomenclature	HGNC, UniProt	EC number	Selective inhibitors	Comment
UDP-glucose ceramide glucosyltransferase	UGCG, Q16739	2.4.1.80: UDP-glucose + ceramide = UDP + glucosylceramide	miglustat [57]	Glycosceramides are an extended family of sphingolipids, differing in the content and organization of the sugar moieties, as well as the acyl sidechains

Acid ceramidase

Overview: The five human ceramidases may be divided on the basis of pH optimae into acid, neutral and alkaline ceramidases, which also differ in their subcellular location.

Nomenclature	HGNC, UniProt	EC number	Comment
N-acylsphingosine amidohydrolase (acid ceramidase) 1	ASAH1, Q13510	3.5.1.23: ceramide -> sphingosine + a fatty acid	This lysosomal enzyme is proteolysed to form the mature protein made up of two chains from the same gene product [63]

Neutral ceramidases

Overview: The five human ceramidases may be divided on the basis of pH optimae into acid, neutral and alkaline ceramidases, which also differ in their subcellular location.

Nomenclature	HGNC, UniProt	EC number	Comment
N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2	ASAH2, Q9NR71	3.5.1.23: ceramide -> sphingosine + a fatty acid	The enzyme is associated with the plasma membrane [74]
N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2B	ASAH2B, P0C7U1	–	–
N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2C	ASAH2C, P0C7U2	–	–

Comments: Two further structurally-related proteins have been identified (ASA2H2B, P0C7U1 and ASA2H2C, P0C7U2). ASA2H2B appears to be an enzymatically inactive protein, which may result from gene duplication and truncation.
Alkaline ceramidases

Overview: The five human ceramidases may be divided on the basis of pH optima into acid, neutral and alkaline ceramidases, which also differ in their subcellular location.

Nomenclature	alkaline ceramidase 1	alkaline ceramidase 2	alkaline ceramidase 3
HGNC, UniProt	ACER1, Q8TDN7	ACER2, Q5QJU3	ACER3, Q9NUN7
EC number	3.5.1.23: ceramide -> sphingosine + a fatty acid	3.5.1.23: ceramide -> sphingosine + a fatty acid	3.5.1.-
Comment	ACER1 is associated with the ER [73]	ACER2 is associated with the Golgi apparatus [77]	ACER3 is associated with the ER and Golgi apparatus [66]

Ceramide kinase

Nomenclature	EN, UniProt	EC number	Selective inhibitors (pIC50)
ceramide kinase	CERK, Q8TCT0	2.7.1.138: ceramide + ATP -> ceramide 1-phosphate + ADP	NVP 231 (7.9) [61]

Comments: A ceramide kinase-like protein has been identified in the human genome (CERKL, Q49MI3).

Further reading

Bornancin F. (2011) Ceramide kinase: the first decade. *Cell Signal* 23: 999–1008. [PMID:21111813]

Fabrias G, Muñoz-Olaya J, Cingolani F, Signorelli P, Casas J, Gagliostro V, Ghidoni R. (2012) Dihydroceramide desaturase and dihydrophingolipids: debutant players in the sphingolipid arena. *Prog Lipid Res* 51: 82–94. [PMID:22200621]

Hirabayashi Y, Furuya S. (2008) Roles of 1-serine and sphingolipid synthesis in brain development and neuronal survival. *Prog Lipid Res* 47: 188–203. [PMID:18319065]

Ikushiro H, Hayashi H. (2011) Mechanistic enzymology of serine palmitoyltransferase. *Biochim Biophys Acta* 1814: 1474–1480. [PMID:21315853]

Levy M, Futerman AH. (2010) Mammalian ceramide synthases. *IUBMB Life* 62: 347–356. [PMID:20222015]

Lowther J, Naismith JH, Dunn TM, Campopiano DJ. (2012) Structural, mechanistic and regulatory studies of serine palmitoyltransferase. *Biochem Soc Trans* 40: 547–554. [PMID:22616865]

Mao C, Obeid LM. (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. *Biochim Biophys Acta* 1781: 424–434. [PMID:18619555]

Mullen TD, Hannun YA, Obeid LM. (2012) Ceramide synthases at the centre of sphingolipid metabolism and biology. *Biochem J* 441: 789–802. [PMID:22248339]

Orr Gandy KA, Obeid LM. (2013) Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: review of sphingosine kinase inhibitors. *Biochim Biophys Acta* 1831: 157–166. [PMID:22801037]

Park JW, Park WJ, Futerman AH. (2013) Ceramide synthases as potential targets for therapeutic intervention in human diseases. *Biochim Biophys Acta* [Epub ahead of print]. [PMID:24021978]

Tidhar R, Futerman AH. (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. *Biochim Biophys Acta* 1833: 2511–2518. [PMID:23611790]
Cyclic nucleotide turnover

Overview: Cyclic nucleotides are second messengers generated by cyclase enzymes from precursor triphosphates and hydrolysed by phosphodiesterases. The cellular actions of these cyclic nucleotides are mediated through activation of protein kinases (cAMP- and cGMP-dependent protein kinases), ion channels (cyclic nucleotide-gated, CNG, and hyperpolarization and cyclic nucleotide-gated, HCN) and guanine nucleotide exchange factors (GEFs, Epac).

Adenylyl cyclases

Overview: Adenylyl cyclase (ENSF00000000188), E.C. 4.6.1.1, converts ATP to cAMP and diphosphate ion. Mammalian membrane-bound adenylyl cyclases are typically made up of two clusters of six TM domains separating two intracellular, overlapping catalytic domains that are the target for the nonselective activators forskolin, NKH477 (except AC9, [121]) and Gαi (the stimulatory G protein α subunit). adenosine and its derivatives (e.g. 2’,5’-dideoxyadenosine), acting through the P-site, appear to be physiological inhibitors of adenylyl cyclase activity [135]. Three families of adenylyl cyclase are distinguishable:

Nomenclature	AC1	AC3	AC8
HGNC, UniProt	ADCY1, Q08828	ADCY3, O60266	ADCY8, P40145
Endogenous activators	calmodulin (CALM2, CALM3, CALM1, P62158), PKC-evoked phosphorylation [110,132]	calmodulin (CALM2, CALM3, CALM1, P62158), PKC-evoked phosphorylation [88,110]	-
Endogenous inhibitors	Gαi, Gq, Gβγ [133–134]	Gαi, RGS2 (RGS2, P41220), CaM kinase II-evoked phosphorylation [127,134,140]	Ca2+ [82]

Calmodulin-stimulated adenylyl cyclases

Nomenclature	AC5	AC6	AC9
HGNC, UniProt	ADCY5, Q95622	ADCY6, O43306	ADCY9, O60503
Endogenous activators	PKC-evoked phosphorylation [111]	-	-
Endogenous inhibitors	Gαi, Ca2+, PKA-evoked phosphorylation [108–109,134]	Gαi, Ca2+, PKA-evoked phosphorylation, PKC-evoked phosphorylation [87,112,134,141]	Ca2+ /calcineurin [120]
Selective inhibitors (pIC50)	NKY80 [119]	-	-

Calcium-inhibitable adenylyl cyclases

Nomenclature	AC2	AC4	AC7
HGNC, UniProt	ADCY2, Q08462	ADCY4, Q8NF4	ADCY7, P51828
Endogenous activators	Gβγ, PKC-evoked phosphorylation [85,114,133]	Gβγ [99]	PKC-evoked phosphorylation [139]
Endogenous inhibitors	-	-	-
Selective inhibitors (pIC50)	-	-	-
NO has been proposed to inhibit AC5 and AC6 selectively [104], although it is unclear whether this phenomenon is of physiological significance. A soluble adenyl cyclase has been described (ADCY10, Q96PN6 [81]), unaffected by either Gα or Gβγ subunits, which has been suggested to be a cytoplasmic bicarbonate (pH-insensitive) sensor [86]. It can be inhibited selectively by KH7 (pIC50 5.0–5.5) [103].

Soluble guanylyl cyclase

Overview: Soluble guanylyl cyclase (GTP diphosphate-lyase (cyclising)), E.C. 4.6.1.2, is a heterodimer comprising α and β chains, both of which have two subtypes in man (predominantly α1β1; [142]). A haem group is associated with the β chain and is the target for the endogenous ligand NO, and, potentially, carbon monoxide [96]. The enzyme converts guanosine-5′-triphosphate (GTP) to the intracellular second messenger 3′,5′-guanosine monophosphate (cGMP).

Nomenclature	Soluble guanylyl cyclase
Common abbreviation	sGC
Subunits	Soluble guanylyl cyclase α 1 subunit, Soluble guanylyl cyclase β 1 subunit
EC number	4.6.1.2
Selective activators	ataciguat [125], BAY412272 [129], cinaciguat [130], NO, riociguat [130], YC1 [96]
Selective inhibitors (pIC50)	NS 2028 (8.1 - Bovine) [118], ODQ (7.5) [101]

Comments: ODQ also shows activity at other haem-containing proteins [92], while YC1 may also inhibit cGMP-hydrolysing phosphodiesterases [95,98].

Exchange protein activated by cyclic AMP (Epac)

Overview: Epacs are members of a family of guanine nucleotide exchange factors (ENSFM002500000008999), which also includes RapGEF5 (GFR, KIAA0277, MR-GEF, Q92565) and RapGEL1 (Link-GEFII, Q9UHV5). They are activated endogenously by cAMP and with some pharmacological selectivity by 8-pCPT-2′-O-Me-cAMP [90]. Once activated, Epacs induce an enhanced activity of the monomeric G proteins, Rap1 and Rap2 by facilitating binding of GTP in place of GDP, leading to activation of phospholipase C [126].

Nomenclature	Epac1	Epac2
HGNC, UniProt	RAPGEF3, O95398	RAPGEF4, Q8WZA2
Selective inhibitors (pIC50)	–	HJC 0350 (6.5) [84]

Phosphodiesterases, 3′,5′-cyclic nucleotide

Overview: 3′,5′-Cyclic nucleotide phosphodiesterases (PDEs, 3′,5′-cyclic-nucleotide 5′-nucleotidohydrolase), E.C. 3.1.4.17, catalyse the hydrolysis of a 3′,5′-cyclic nucleotide (usually cAMP or cGMP). IBMX is a nonselective inhibitor with an IC50 value in the millimolar range for all isoforms except PDE 8A, 8B and 9A. A 2′,3′-cyclic nucleotide 3′-phosphodiesterase (E.C. 3.1.4.37 CNPase) activity is associated with myelin formation in the development of the CNS.
Nomenclature	PDE1A	PDE1B	PDE1C
HGNC, UniProt	PDE1A, P54750	PDE1B, Q01064	PDE1C, Q14123
Rank order of affinity	cGMP > cAMP	cGMP > cAMP	cGMP = cAMP
Endogenous activators	calmodulin (CALM2, CALM3, CALM1, P62158)	calmodulin (CALM2, CALM3, CALM1, P62158)	calmodulin (CALM2, CALM3, CALM1, P62158)
Selective inhibitors (pIC\(_{50}\))	SCH51866 (7.2) [137], vinpocetine (5.1) [113]	SCH51866 (7.2) [137]	SCH51866 (7.2) [137], vinpocetine (4.3) [113]

Comments: PDE1A, 1B and 1C appear to act as soluble homodimers.

Nomenclature	PDE2A	PDE3A	PDE3B
HGNC, UniProt	PDE2A, O00408	PDE3A, Q14432	PDE3B, Q13370
Rank order of affinity	cAMP >> cGMP	–	–
Endogenous activators	cGMP	cGMP (Selective)	cGMP (Selective)
Selective inhibitors (pIC\(_{50}\))	–	cilostamide (7.5) [131], milrinone (6.3) [131]	cilostamide (7.3) [131], milrinone (6.0) [131]
Comment	EHNA is also an inhibitor of adenosine deaminase (E.C. 3.5.4.4)	–	–

Comments: PDE2A is a membrane-bound homodimer. PDE3A and PDE3B are membrane-bound.

Nomenclature	PDE4A	PDE4B	PDE4C	PDE4D
HGNC, UniProt	PDE4A, P27815	PDE4B, Q07343	PDE4C, Q08493	PDE4D, Q08499
Activator	–	cAMP >> cGMP	cAMP >> cGMP	cAMP >> cGMP
Rank order of affinity	cAMP >> cGMP	cAMP >> cGMP	cAMP >> cGMP	PKA-mediated phosphorylation [107]
Selective inhibitors (pIC\(_{50}\))	rolipram (9.0) [138], YM976 (8.3) [79], RS-25344 (7.2) [123], Ro201724 (6.5) [138]	rolipram (9.0) [138], RS-25344 (8.1) [123], rolipram (6.5) [138], Ro201724 (6.4) [138]	rolipram (7.2) [138], Ro201724 (6.2) [138]	RS-25344 (8.4) [123], rolipram (7.2) [138], Ro201724 (6.2) [138]

Comments: PDE4 isoforms are essentially cAMP specific. The potency of YM976 at other members of the PDE4 family has not been reported. PDE4B–D long forms are inhibited by extracellular signal-regulated kinase (ERK)-mediated phosphorylation [105–106]. PDE4A–D splice variants can be membrane-bound or cytosolic [107]. PDE4 isoforms may be labelled with \(^3H\)rolipram.
Nomenclature
HGNC, UniProt
EC number
Activators
Rank order of affinity
Selective inhibitors (pIC_{50})

PDE5A

HGNC, UniProt: PDE5A, Q76074
EC number: 3.1.4.17
Activators: Protein kinase A, protein kinase G [89]
Rank order of affinity: cGMP > cAMP
Selective inhibitors (pIC_{50}): T0156 (9.5) [117], sildenafil (9.0) [136], gisadenafil (8.9) [122], SCH51866 (7.2) [137], zaprinast (6.8) [136]

PDE6A

HGNC, UniProt: PDE6A, P16499
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cGMP > cAMP
Selective inhibitors (pIC_{50}): BRL50481 (6.7 – 6.8) [78,128], dipyridamole (5.7 – 6.0) [100,124], SCH51866 (5.8) [124], BRL50481 (4.9) [78]

PDE6B

HGNC, UniProt: PDE6B, P35913
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cGMP > cAMP
Selective inhibitors (pIC_{50}): BRL50481 (6.7 – 6.8) [78,128], dipyridamole (5.7 – 6.0) [100,124], SCH51866 (5.8) [124], BRL50481 (4.9) [78]

PDE6C

HGNC, UniProt: PDE6C, P51160
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cGMP > cAMP
Selective inhibitors (pIC_{50}): BRL50481 (6.7 – 6.8) [78,128], dipyridamole (5.7 – 6.0) [100,124], SCH51866 (5.8) [124], BRL50481 (4.9) [78]

PDE6D

HGNC, UniProt: PDE6D, O43924
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cGMP > cAMP
Selective inhibitors (pIC_{50}): BRL50481 (6.7 – 6.8) [78,128], dipyridamole (5.7 – 6.0) [100,124], SCH51866 (5.8) [124], BRL50481 (4.9) [78]

PDE6G

HGNC, UniProt: PDE6G, P18545
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cGMP > cAMP
Selective inhibitors (pIC_{50}): BRL50481 (6.7 – 6.8) [78,128], dipyridamole (5.7 – 6.0) [100,124], SCH51866 (5.8) [124], BRL50481 (4.9) [78]

PDE6H

HGNC, UniProt: PDE6H, Q13956
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cGMP > cAMP
Selective inhibitors (pIC_{50}): BRL50481 (6.7 – 6.8) [78,128], dipyridamole (5.7 – 6.0) [100,124], SCH51866 (5.8) [124], BRL50481 (4.9) [78]

Comments: PDE6 is a membrane-bound tetramer composed of two catalytic chains (PDE6A or PDE6C and PDE6B), an inhibitory chain (PDE6G or PDE6H) and the PDE6D chain. The enzyme is essentially cGMP specific and is activated by the α-subunit of transducin (Gαt) and inhibited by sildenafil, zaprinast and dipyridamole with potencies lower than those observed for PDE5A. Defects in PDE6B are a cause of retinitis pigmentosa and congenital stationary night blindness.

Nomenclature
HGNC, UniProt
EC number
Rank order of affinity
Selective inhibitors (pIC_{50})

PDE7A

HGNC, UniProt: PDE7A, Q13946
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cAMP >> cGMP [115]
Selective inhibitors (pIC_{50}): BRL50481 (6.7 – 6.8) [78,128]
Comment: PDE7A appears to be membrane-bound or soluble for PDE7A1 and 7A2 splice variants, respectively

PDE7B

HGNC, UniProt: PDE7B, Q9NP56
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cAMP >> cGMP [100]
Selective inhibitors (pIC_{50}): dipyridamole (5.7 – 6.0) [100,124], SCH51866 (5.8) [124], BRL50481 (4.9) [78]

PDE8A

HGNC, UniProt: PDE8A, O60658
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cAMP >> cGMP [93]
Selective inhibitors (pIC_{50}): dipyridamole (5.1) [93]

PDE8B

HGNC, UniProt: PDE8B, Q95263
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cAMP >> cGMP [102]
Selective inhibitors (pIC_{50}): dipyridamole (4.3) [102]

PDE9A

HGNC, UniProt: PDE9A, Q76083
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cGMP >> cAMP [94]
Selective inhibitors (pIC_{50}): SCH51866 (5.8) [94], zaprinast (4.5) [94]

PDE10A

HGNC, UniProt: PDE10A, Q9Y233
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cAMP, cGMP [97]
Selective inhibitors (pIC_{50}): cAMP, cGMP [91]

PDE11A

HGNC, UniProt: PDE11A, Q9HCR9
EC number: 3.1.4.17
Activators: α-subunit of transducin (Gαt)
Rank order of affinity: cAMP, cGMP [91]
Selective inhibitors (pIC_{50}): BC11-38 (6.5) [83]
Further reading

Antoni FA. (2012) New paradigms in cAMP signalling. Mol Cell Endocrinol 353: 3–9. [PMID:22085559]

Armani A, Marzolla V, Rosano GM, Fabbri A, Caprio M. (2011) Phosphodiesterase type 5 (PDE5) in the adipocyte: a novel player in fat metabolism?. Trends Endocrinol Metab 22: 404–411. [PMID:21741267]

Billington CK, Hall IP. (2012) Novel cAMP signalling paradigms: therapeutic implications for airway disease. Br J Pharmacol 166: 401–410. [PMID:22013890]

Cheepala S, Hulot JS, Morgan JA, Sassi Y, Zhang W, Naren AP, Schuetz JD. (2013) Cyclic nucleotide compartmentalization: contributions of phosphodiesterases and ATP-binding cassette transporters. Annu Rev Pharmacol Toxicol 53: 231–253. [PMID:23072381]

Chen J, Levin LR, Buck J. (2012) Role of soluble adenylyl cyclase in the heart. Am J Physiol Heart Circ Physiol 302: H538–H543. [PMID:22058150]

Dekkers BG, Racké K, Schmidt M. (2013) Distinct PKA and Epac compartmentalization in airway function and plasticity. Pharmacol Ther 137: 248–265. [PMID:23089371]

Derbyshire ER, Marletta MA. (2012) Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem 81: 533–559. [PMID:22040633]

Efendiev R, Dessauer CW. (2011) A kinase-anchoring proteins and adenylyl cyclase in cardiovascular physiology and pathology. J Cardiovasc Pharmacol 58: 339–344. [PMID:21978991]

Francis SH, Blount MA, Corbin JD. (2011) Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev 91: 651–690. [PMID:21527734]

Garcia-Osta A, Cuadrado-Tejedor M, Garcia-Barroso C, Oyarzábal J, Franco R. (2012) Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem Neurosci 3: 832–844. [PMID:23173065]

Insel PA, Murray F, Yokoyama U, Romano S, Yun H, Brown L, Sneed A, Lu D, Aroonsakool N. (2012) cAMP and Epac in the regulation of tissue fibrosis. Br J Pharmacol 166: 447–456. [PMID:22233238]

Keravis T, Lugnier C. (2012) Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 165: 1288–1305. [PMID:22014080]

Potter LR. (2011) Guanylyl cyclase structure, function and regulation. Cell Signal 23: 1921–1926. [PMID:21914472]

Schmidt M, Dekker FJ, Maarsingh H. (2013) Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 65: 670–709. [PMID:23447132]

Seifert R, Lushington GH, Mou TC, Gille A, Sprang SR. (2012) Inhibitors of membranous adenylyl cyclases. Trends Pharmacol Sci 33: 64–78. [PMID:22100304]

Sharma S, Kumar K, Deshmukh R, Sharma PL. (2013) Phosphodiesterases: Regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur J Pharmacol [Epub ahead of print]. [PMID:23850946]

Zhang M, Kass DA. (2011) Phosphodiesterases and cardiac cGMP: evolving roles and controversies. Trends Pharmacol Sci 32: 360–365. [PMID:21477871]
Cytochrome P450

Overview: The cytochrome P450 enzyme family (CYP450), E.C. 1.14.-.-, were originally defined by their strong absorbance at 450 nm due to the reduced carbon monoxide-complexed haem component of the cytochromes. They are an extensive family of haem-containing monoxygenases with a huge range of both endogenous and exogenous substrates. Listed below are the human enzymes; their relationship with rodent CYP450 enzyme activities is obscure in that the species orthologue may not mediate metabolism of the same substrates. Although the majority of CYP450 enzyme activities are concentrated in the liver, the extrahepatic enzyme activities also contribute to patho/physiological processes. Genetic variation of CYP450 isoforms is widespread and likely underlies a significant proportion of the individual variation to drug administration.

CYP1 family

Nomenclature	HGNC, UniProt	EC number	Comment
CYP1A1	CYP1A1, P04798	1.14.1.1	
CYP1A2	CYP1A2, P05177	1.14.1.1	
CYP1B1	CYP1B1, Q16678	1.14.1.1	Mutations have been associated with primary congenital glaucoma [165]

CYP2 family

Nomenclature	HGNC, UniProt	EC number	Comment
CYP2A6	CYP2A6, P11509	1.14.14.1	Metabolises nicotine
CYP2A7	CYP2A7, P20853	1.14.14.1	CYP2A7 does not incorporate haem and is functionally inactive [148]
CYP2A13	CYP2A13, Q16696	1.14.14.1	
CYP2B6	CYP2B6, P20813	1.14.14.1	
CYP2C8	CYP2C8, P10632	1.14.14.1	Converts arachidonic acid to 11(R)-12(S)-epoxyeicosatrienoic acid or 14(R)-15(S)-epoxyeicosatrienoic acid [168]
CYP2C9	CYP2C9, P11712	1.14.13.80, 1.14.13.48, 1.14.13.49	
CYP2C18	CYP2C18, P33260	1.14.14.1	
CYP2C19	CYP2C19, P33261	1.14.13.80, 1.14.13.48, 1.14.13.49	
CYP2D6	CYP2D6, P10635	1.14.14.1	
CYP2E1	CYP2E1, P05181	1.14.14.1	
CYP2F1	CYP2F1, P24903	1.14.14.1	
CYP2J2	CYP2J2, P51589	1.14.14.1	Converts arachidonic acid to 14(R)-15(S)-epoxyeicosatrienoic acid [167]
CYP2R1	CYP2R1, Q6VX0	1.14.13.15	Converts vitamin D₃ to 25-hydroxyvitamin D₃ [146]
CYP2S1	CYP2S1, Q96SQ9	1.14.14.1	

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Nomenclature HGNC, UniProt EC number Comment

Nomenclature	HGNC, UniProt	EC number	Comment
CYP2U1	CYP2U1, Q7Z449	1.14.14.1	–
CYP2W1	CYP2W1, Q8TAV3	1.14.14.-	–

Comments: CYP2A7P1, CYP2D7P1, CYP2G1P and AC008537.5-2 (fragment) are uncharacterized potential pseudogenes from the same families.

CYP3 family

Nomenclature	HGNC, UniProt	EC number	Comment
CYP3A4	CYP3A4, P08684	1.14.13.67, 1.14.13.97, 1.14.13.32 Metabolises a vast range of xenobiotics, including antidepressants, benzodiazepines, calcium channel blockers, and chemotherapeutic agents	Metabolises a vast range of xenobiotics, including antidepressants, benzodiazepines, calcium channel blockers, and chemotherapeutic agents
CYP3A5	CYP3A5, P20815	1.14.14.1	–
CYP3A7	CYP3A7, P24462	1.14.14.1	–
CYP3A43	CYP3A43, Q9HB55	1.14.14.1	–

CYP4 family

Nomenclature	HGNC, UniProt	EC number	Comment	
CYP4A11	CYP4A11, Q02928	1.14.15.3	Converts lauric acid to 12-hydroxylauric acid	
CYP4A22	CYP4A22, QSTCH4	1.14.15.3	–	
CYP4B1	CYP4B1, P13584	1.14.14.1	–	
CYP4F2	CYP4F2, P78329	1.14.13.30	Responsible for ω-hydroxylation of LTβs, LXβs [155], and tocopherols, including vitamin E [163]	Responsible for ω-hydroxylation of LTβs, LXβs [155], and polyunsaturated fatty acids [147,151]
CYP4F3	CYP4F3, Q08477	1.14.13.30	Converts PGH₂ to 19-hydroxyPGH₂ [145] and 8,9-EET or 11,12-EET to 18-hydroxy-8,9-EET or 18-hydroxy-11,12-EET [157]	Converts PGH₂ to 19-hydroxyPGH₂ [145] and 8,9-EET or 11,12-EET to 18-hydroxy-8,9-EET or 18-hydroxy-11,12-EET [157]
CYP4F8	CYP4F8, P98187	1.14.14.1	–	
CYP4F11	CYP4F11, Q9HB16	1.14.14.1	–	
CYP4F12	CYP4F12, Q9HC52	1.14.14.1	AC004597.1 (ENSG00000225607) is described as being highly similar to CYP4F12	Converts arachidonic acid to 16-HETE and 18-HETE [157]
CYP4F22	CYP4F22, Q6NT55	1.14.14.-	Converts anandamide to 14,15-epoxyeicosatrienoic ethanolamide [164]	Converts anandamide to 14,15-epoxyeicosatrienoic ethanolamide [164]
CYP4V2	CYP4V2, Q6ZW1L	1.14.-	Converts myristic acid to 14-hydroxymyristic acid [156]	Converts myristic acid to 14-hydroxymyristic acid [156]
CYP4X1	CYP4X1, Q8N118	1.14.14.1	Converts lauric acid to 12-hydroxylauric acid	Converts lauric acid to 12-hydroxylauric acid
CYP4Z1	CYP4Z1, Q8W610	1.14.14.1	–	
CYP5, CYP7 and CYP8 families

Nomenclature	Common name	HGNC, UniProt	EC number	Comment
CYP5A1	–	TBXAS1, P24557 5.3.99.5	Converts PGH2 to thromboxane A2. Inhibited by dazoxiben [161] and camonagrel [150]	
CYP8A1	Prostacyclin synthase	PTGIS, Q16647 5.3.99.4	Converts prostaglandin H2 to prostaglandin I2 [152]. Inhibited by tranylcyromine [149]	
CYP7A1	–	CYP7A1, P22680 1.14.13.17	Converts cholesterol to 7α-hydroxycholesterol [158]	
CYP7B1	–	CYP7B1, Q75881 1.14.13.100	Converts DHEA to 7α-DHEA [162]	
CYP8B1	–	CYP8B1, Q9UNU6 1.14.13.95	Converts 7α-hydroxycholester-4-en-3-one to 7-alpha,12α-dihydroxycholester-4-en-3-one (in rabbit) [153] in the biosynthesis of bile acids	

CYP11, CYP17, CYP19, CYP20 and CYP21 families

Nomenclature	Common name	HGNC, UniProt	EC number	Comment
CYP11A1	–	CYP11A1, P05108 1.14.15.6	Converts cholesterol to pregnenolone plus 4-methylpentanal	
CYP11B1	–	CYP11B1, P15538 1.14.15.4	Converts deoxycorticosterone and 11-deoxycortisol to cortisone and cortisol, respectively. Loss-of-function mutations are associated with familial adrenal hyperplasia and hypertension. Inhibited by metyrapone [166]	
CYP11B2	Aldosterone synthase	CYP11B2, P19099 1.14.15.4, 1.14.15.5	Converts corticosterone to aldosterone	
CYP17A1	–	CYP17A1, P05093 1.14.99.9	Converts pregnenolone and progesterone to 17α-hydroxyprogrenolone and 17α-hydroxyprogesterone, respectively. Converts 17α-hydroxyprogrenolone and 17α-hydroxyprogesterone to dehydroepiandrosterone and androstenedione, respectively. Converts corticosterone to cortisol. Inhibited by abiraterone (pIC50 8.4) [160]	
CYP19A1	Aromatase	CYP19A1, P11511 1.14.14.1	Converts androstenedione and testosterone to estrone and 17β-estradiol, respectively. Inhibited by anastrazole [159], and letrozole [144]	
CYP20A1	–	CYP20A1, Q6UW02 1.14.-.-	–	
CYP21A2	–	CYP21A2, P08686 1.14.99.10	Converts progesterone and 17α-hydroxyprogesterone to deoxycorticosterone and 11-deoxycortisol, respectively	

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
CYP24, CYP26 and CYP27 families

Nomenclature	Common name	HGNC, UniProt	EC number	Comment
CYP24A1	–	CYP24A1, Q07973	1.14.13.126	Converts 1α,25-dihydroxyvitamin D₃ (calcitriol) to 1α,24R,25-trihydroxyvitamin D₃
CYP26A1	–	CYP26A1, O43174	1.14.13.13	Converts retinoic acid to 4-hydroxyretinoic acid. Inhibited by liarozole
CYP26B1	–	CYP26B1, Q9NR63	1.14.13.13	Converts retinoic acid to 4-hydroxyretinoic acid
CYP26C1	–	CYP26C1, Q6VOL0	1.14.13.13	–
CYP27A1	Sterol 27-hydroxylase	CYP27A1, Q02318	1.14.13.15	Converts cholesterol to 27-hydroxysterol
CYP27B1	–	CYP27B1, O15528	1.14.13.13	Converts 25-hydroxyvitamin D₃ to 1α,25-dihydroxyvitamin D₃ (calcitriol)
CYP27C1	–	CYP27C1, Q4G054	1.14.13.13	–

CYP39, CYP46 and CYP51 families

Nomenclature	Common name	HGNC, UniProt	EC number	Comment
CYP39A1	–	CYP39A1, Q9NYL5	1.14.13.99	Converts 24-hydroxycholesterol to 7α,24-dihydroxycholesterol [154]
CYP46A1	Cholesterol 24-hydroxylase	CYP46A1, Q9Y6A2	1.14.13.98	Converts cholesterol to 24(S)-hydroxycholesterol
CYP51A1	Lanosterol 14-α-demethylase	CYP51A1, Q16850	1.14.13.98	Converts lanosterol to 4,4-dimethylcholesta-8,14-trienol

Further reading

Ferguson CS, Tyndale RF. (2011) Cytochrome P450 enzymes in the brain: emerging evidence of biological significance. *Trends Pharmacol Sci* 32: 708–714. [PMID:21975165]

Guengerich FP, Cheng Q. (2011) Orphans in the human cytochrome P450 superfamily: approaches to discovering functions and relevance in pharmacology. *Pharmacol Rev* 63: 684–699. [PMID:21737533]

Jones G, Prosser DE, Kaufmann M. (2013) Cytochrome P450-mediated metabolism of vitamin D. *J Lipid Res* [Epub ahead of print]. [PMID:23564710]

Lorbeck G, Lewinska M, Rozman D. (2012) Cytochrome P450s in the synthesis of cholesterol and bile acids–from mouse models to human diseases. *FEBS J* 279: 1516–1533. [PMID:22116244]

Miller WL, Auchus RJ. (2011) The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. *Endocr Rev* 32: 81–151. [PMID:21051590]

Oamura T. (2010) Structural diversity of cytochrome P450 enzyme system. *J Biochem* 147: 297–306. [PMID:20068028]

Orr ST, Ripp SL, Ballard TE, Henderson JL, Scott DO, Obach RS, Sun H, Kalugutkar AS. (2012) Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. *J Med Chem* 55: 4896–4933. [PMID:22409598]

Ross AC, Zolfaghari R. (2011) Cytochrome P450s in the regulation of cellular retinoic acid metabolism. *Annu Rev Nutr* 31: 65–87. [PMID:21529158]

Russell DW, Halford RW, Ramirez DM, Shah R, Kotti T. (2009) Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. *Annu Rev Biochem* 78: 1017–1040. [PMID:19489738]

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Eicosanoid turnover

Overview: Eicosanoids are 20-carbon fatty acids, where the usual focus is the polyunsaturated analogue arachidonic acid and its metabolites. Arachidonic acid is thought primarily to derive from phospholipase A2 action on membrane phosphatidylcholine, and may be re-cycled to form phospholipid through conjugation with coenzyme A and subsequently glycerol derivatives. Oxidative metabolism of arachidonic acid is conducted through three major enzymatic routes: cyclooxygenases; lipoxygenases and cytochrome P450-like epoxygenases, particularly CYP2J2. Isoprostanes are structural analogues of the prostanoids (hence the nomenclature D-, E-, F-isoprostanes and isothromboxanes), which are produced in the presence of elevated free radicals in a non-enzymatic manner, leading to suggestions for their use as biomarkers of oxidative stress. Molecular targets for their action have yet to be defined.

Cyclooxygenase

Overview: Prostaglandin (PG) G/H synthase, most commonly referred to as cyclooxygenase (COX, (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate, hydrogen-donor: oxygen oxidoreductase) activity, catalyses the formation of PGG2 from arachidonic acid. Hydroperoxidase activity inherent in the enzyme catalyses the formation of PGH2 from PGG2. COX-1 and -2 can be nonselectively inhibited by ibuprofen, ketoprofen, naproxen, indomethacin and paracetamol (acetaminophen). PGH2 may then be metabolised to prostaglandins and thromboxanes by various prostaglandin synthases in an apparently tissue-dependent manner.

Prostaglandin synthases

Overview: Subsequent to the formation of PGH2, the cytochrome P450 activities thromboxane synthase (CYP5A1, TRXAS1, P24557, EC 5.3.99.5) and prostacyclin synthase (CYP8A1, PTGIS, Q16647, EC 5.3.99.4) generate thromboxane A2 and prostacyclin (PGI2), respectively. Additionally, multiple enzyme activities are able to generate prostaglandin E2 (PGE2), prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α). PGD2 can be metabolised to 9α,11β-prostacyclin F2α through the multifunctional enzyme activity of AKR1C3. PGE2 can be metabolised to 9α,11β-prostacyclin F2α through the 9-ketoreductase activity of CBR1. Conversion of the 15-hydroxyeicosanoids, including prostaglandins, lipoxins and leukotrienes to their keto derivatives by the NAD-dependent enzyme HPGD leads to a reduction in their biological activity.

Nomenclature	HGNC, UniProt	EC number	Reaction	Cofactors	Selective inhibitors (pIC50)	Comment
mPGES1	PTGES, O14684	5.3.99.3	PGH2 => PGE2	glutathione [175]	–	–
mPGES2	PTGES2, Q9H7Z7	5.3.99.3	PGH2 => PGE2	Thiols, including dihydrolipoic acid [191]	–	–
cPGES	PTGES3, Q15185	5.3.99.3	PGH2 => PGE2	–	–	Phosphorylated and activated by casein kinase 2 (CK2) [177]. Appears to regulate steroid hormone function by interaction with dimeric hsp90 [170,176].
L-PGDS	PTGDS, P41222	5.3.99.2	PGH2 => PGD2	–	–	–
H-PGDS	HPGDS, O60760	5.3.99.2	PGH2 => PGD2	HQL-79 (5.3 – 5.5) [169]	–	

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Lipoxygenases

Overview: The lipoxygenases (LOXs) are a structurally related family of non-heme iron dioxygenases that function in the production, and in some cases metabolism, of fatty acid hydroperoxides. For arachidonic acid as substrate, these products are hydroperoxyeicosatetraenoic acids (HPETEs). In humans there are five lipoxygenases, the 5S-(arachidonate : oxygen 5-oxidoreductase), 12R-(arachidonate 12-lipoxygenase, 12R-type), 12S-(arachidonate : oxygen 12-oxidoreductase), and two distinct 15S-(arachidonate : oxygen 15-oxidoreductase) LOXs that oxygenate arachidonic acid in different positions along the carbon chain and form the corresponding 5S-, 12S-, 12R-, or 15S-hydroperoxides, respectively.
Nomenclature
- **15-LOX-1**: ALOX15, P16050
- **15-LOX-2**: ALOX15B, O15296
- **E-LOX**: ALOX3, Q9BY1

EC number: 1.13.13.33 1.13.11.33 1.13.11.11

- **Endogenous substrates**: arachidonic acid + O2 \(\Rightarrow\) 15S-HPETE
- **Reaction 1**: arachidonic acid + O2 \(\Rightarrow\) 15S-HPETE
- **Reaction 2**: linoleic acid + O2 \(\Rightarrow\) 13S-HPODE

Comment: E-LOX metabolises the product from the 12R-lipoxygenase (12R-HPETE) to a specific epoxyalcohol compound [192].

Comments
- An 8-LOX (EC 1.13.11.40, arachidonate:oxygen 8-oxidoreductase) may be the mouse orthologue of 15-LOX-2 [173]. Some general LOX inhibitors are NDGA and esculetin.

Leukotriene and lipoxin metabolism

Overview
Leukotriene A₄ (LTA₄), produced by 5-LOX activity, and lipoxins may be subject to further oxidative metabolism; ω-hydroxylation is mediated by CYP4F2 and CYP4F3, while β-oxidation in mitochondria and peroxisomes proceeds in a manner dependent on coenzyme A conjugation. Conjugation of LTA₄ at the 6 position with reduced glutathione to generate LTC₄ occurs under the influence of leukotriene C₄ synthase, with the subsequent formation of LTD₄ and LTE₄, all of which are agonists at CysLT receptors. LTD₄ formation is catalysed by γ-glutamyltransferase, and subsequently dipeptidase 2 removes the terminal glycine from LTD₄ to generate LTE₄. Leukotriene A₄ hydrolyase converts the 5,6-epoxide LTA₄ to the 5-hydroxylated LTB₄, an agonist for BLT receptors. LTA₄ is also acted upon by 12S-LOX to produce the trihydroxyeicosatetraenoic acids lipoxins LXA₄ and LXB₄. Treatment with a LTA₄ hydrolase inhibitor in a murine model of allergic airway inflammation increased LXA₄ levels, in addition to reducing LTB₄, in lung lavage fluid [186].

LTA₄ hydrolase is also involved in biosynthesis of resolvin Es. aspirin has been reported to increase endogenous formation of 18S-hydroxyeicosapentaenoate (18S-HEPE) compared with 18R-HEPE, a resolvin precursor. Both enantiomers may be metabolised by human recombinant 5-LOX; recombinant LTA₄ hydrolase converted chiral S(6)-epoxide-containing intermediates to resolvin E1 and 18S-resolvin E1 [184].

Nomenclature
- **Leukotriene C₄ synthase**: LTC₄S, Q16873
- **γ-Glutamyltransferase**: GCCT, O75223
- **Dipeptidase 1**: DPEP1, P16444
- **Dipeptidase 2**: DPEP2, Q9H4A9
- **LTA₄ hydrolase**: LTA4H, P09960

EC number: 4.4.1.20 2.3.2.2 3.4.13.19 3.3.2.6

- **Reaction**: LTA₄ + glutathione \(\Rightarrow\) LTC₄
- **Inhibitors**: LTA₄, bestatin [185]

Comment: LTA₄ hydrolase is a member of a family of arginyl aminopeptidases (ENSFM0025000001675), which also includes aminopeptidase B (RNPEP, Q9HAU8). Dipeptidase 1 and 2 are members of a family of membrane dipeptidases (ENSFM0025000000170), which also includes (DPEP3, Q9H4B8) for which LTD₄ appears not to be a substrate.
Further reading

Aïd S, Rosetti F. (2011) Targeting cyclooxygenases-1 and -2 in neuroinflammation: Therapeutic implications. *Biochimie* 93: 46–51. [PMID:20868723]

Cathcart MC, O’Byrne KJ, Reynolds JV, O’Sullivan J, Pidgeon GP. (2012) COX-derived prostanoid pathways in gastrointestinal cancer development and progression: novel targets for prevention and intervention. *Biochim Biophys Acta* 1825: 49–63. [PMID:22015819]

Davidson J, Rotondo D, Rizzo MT, Leaver HA. (2012) Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism. *Br J Pharmacol* 166: 1193–1210. [PMID:22364602]

Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. (2011) Functional and pathological roles of the 12- and 15-lipoxygenases. *Prog Lipid Res* 50: 115–131. [PMID:20970452]

Durand T, Bultel-Poncé V, Guy A, El Fangour S, Rossi JC, Galano JM. (2011) Isoprostanes and phytoprostanes: Bioactive lipids. *Biochimie* 93: 52–60. [PMID:20594988]

Félétou M, Huang Y, Vanhoutte PM. (2011) Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. *Br J Pharmacol* 164: 894–912. [PMID:21323907]

Haeggström JZ, Funk CD. (2011) Lipoygenase and leukotriene pathways: biochemistry, biology, and roles in disease. *Chem Rev* 111: 5866–5898. [PMID:21936577]

Majed BH, Khalil RA. (2012) Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn. *Pharmacol Rev* 64: 540–582. [PMID:22679221]

Muñoz-Garcia A, Thomas CP, Keeney DS, Zheng Y, Brash AR. (2013) The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. *Biochim Biophys Acta* [Epub ahead of print]. [PMID:24021977]

O’Banion MK. (2010) Prostaglandin E2 synthases in neurologic homeostasis and disease. *Prostaglandins Other Lipid Mediat* 91: 113–117. [PMID:1939332]

Rouzer CA, Marnett LJ. (2011) Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. *Chem Rev* 111: 5899–5921. [PMID:21923193]

Salvado MD, Alfranca A, Haeggström JZ, Redondo JM. (2012) Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2. *Trends Mol Med* 18: 233–243. [PMID:22425675]

Saper CB, Romanovsky AA, Scammell TE. (2012) Neural circuitry engaged by prostaglandins during the sickness syndrome. *Nat Neurosci* 15: 1088–1095. [PMID:22837039]

Smith WL, Urade Y, Jakobsson PJ. (2011) Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. *Chem Rev* 111: 5821–5865. [PMID:21942677]

Sostres C, Lanaas A. (2011) Gastrointestinal effects of aspirin. *Nat Rev Gastroenterol Hepatol* 8: 385–394. [PMID:21647198]

Tai HH, Chi X, Tong M. (2011) Regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) by non-steroidal anti-inflammatory drugs (NSAIDs). *Prostaglandins Other Lipid Mediat* 96: 37–40. [PMID:21763448]
Endocannabinoid turnover

Overview: The principle endocannabinoids are 2-arachidonoylglycerol (2AG) and anandamide (N-arachidonoyl ethanolamine, AEA), thought to be generated on demand rather than stored. Mechanisms for release and re-uptake of endocannabinoids (and related entities) are unclear, although candidates for intracellular transport have been suggested. For the generation of 2-arachidonoylglycerol, the key enzyme involved is diacylglycerol lipase (DGL), whilst several routes for anandamide synthesis have been described, the best characterized of which involves N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD, [206]). Inactivation of these endocannabinoids appears to occur predominantly through monooacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH) for 2-arachidonoylglycerol and anandamide, respectively. Note that these enzymes also contribute to the turnover of many endogenous ligands inactive at CB1 and CB2 cannabinoid receptors, such as N-oleoylethanolamide, N-palmitoylethanolamine and 2-oleoyl glycerol. In vitro experiments indicate that the endocannabinoids are also substrates for oxidative metabolism via cyclooxygenase, lipoxygenase and cytochrome P450 enzyme activities [195,198,207].

Nomenclature	Monoacylglycerol lipase	DGLα	3.1.1.23	[201]
HGNC, UniProt	DAGLA	DAGLB, Q8NCQ7	3.1.1.23	–
EC number	RHC80267, orlistat (7.2) [196]	RHC80267, orlistat (7.0) [196]	–	–

Nomenclature	N-Acylphosphatidylethanolamine-phospholipase D	NAPE-PLD	NAPEPLD, Q6IQA0
HGNC, UniProt	DAGLA	DAGLB, Q8NCQ7	Q6IQA0
EC number	–	–	–

| Selective inhibitors (pIC50) | RHC80267, orlistat (7.2) [196] | RHC80267, orlistat (7.0) [196] | – | – |

Comments: Many of the compounds described as inhibitors are irreversible and so potency estimates will vary with incubation time. FAAH2 is not found in rodents [211] and only a few of the inhibitors described have been assessed at this enzyme activity.

Further reading
Blankman JL, Cravatt BF. (2013) Chemical probes of endocannabinoid metabolism. Pharmacol Rev 65: 849–871. [PMID:23512546]
Fowler CJ. (2012) Monoacylglycerol lipase - a target for drug development?. Br J Pharmacol 166: 1568–1585. [PMID:22428756]

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Mulvihill MM, Nomura DK. (2013) Therapeutic potential of monoacylglycerol lipase inhibitors. *Life Sci* 92: 492–497. [PMID:23142242]

Roques BP, Fournié-Zaluski MC, Wurm M. (2012) Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. *Nat Rev Drug Discov* 11: 292–310. [PMID:22460123]

Savinainen JR, Saario SM, Laitinen JT. (2012) The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. *Acta Physiol (Oxf)* 204: 267–276. [PMID:21418147]

Ueda N, Tsuboi K, Uyama T. (2013) Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. *FEBS J* 280: 1874–1894. [PMID:23425575]

Wellner N, Diep TA, Janfelt C, Hansen HS. (2013) N-acylation of phosphatidylethanolamine and its biological functions in mammals. *Biochim Biophys Acta* 1831: 652–662. [PMID:23000428]
GABA turnover

Overview: The inhibitory neurotransmitter γ-aminobutyrate (GABA, 4-aminobutyrate) is generated in neurons by glutamic acid decarboxylase. GAD1 and GAD2 are differentially expressed during development, where GAD2 is thought to subserve a trophic role in early life and is distributed throughout the cytoplasm. GAD1 is expressed in later life and is more associated with nerve terminals [213] where GABA is principally accumulated in vesicles through the action of the vesicular inhibitory amino acid transporter SLC32A1. The role of γ-aminobutyraldehyde dehydrogenase (ALDH9A1) in neurotransmitter GABA synthesis is less clear. Following release from neurons, GABA may interact with either GABAA or GABAB receptors and may be accumulated in neurones and glia through the action of members of the SLC6 family of transporters. Successive metabolism through GABA transaminase and succinate semialdehyde dehydrogenase generates succinic acid, which may be further metabolized in the mitochondria in the tricarboxylic acid cycle.

Nomenclature	Glutamic acid decarboxylase 1	Glutamic acid decarboxylase 2
Common abbreviation	GAD1	GAD2
HGNC, UniProt	GAD1, Q99259	GAD2, Q05329
EC number	4.1.1.15: L-glutamic acid + H⁺ -> GABA + CO₂	
Endogenous substrates	L-glutamic acid, L-aspartic acid	
Products	GABA	
Cofactors	pyridoxal phosphate	
Selective inhibitors (pIC₅₀)	s-allylglycine	
Comment	L-aspartic acid is a less rapidly metabolised substrate of mouse brain glutamic acid decarboxylase generating β-alanine [215]. Autoantibodies against GAD1 and GAD2 are elevated in type 1 diabetes mellitus and neurological disorders (see Further reading)	

Nomenclature	aldehyde dehydrogenase 9 family, member A1 (γ-aminobutyraldehyde dehydrogenase)
HGNC, UniProt	ALDH9A1, P49189
EC number	1.2.1.47: 4-trimethylammoniobutanal + NAD + H₂O = 4-trimethylammoniobutanoate + NADPH + 2 H⁺, 1.2.1.3: an aldehyde + H₂O + NAD = a carboxylate + 2 H⁺ + NADH, 1.2.1.19: 4-aminobutanal + NAD + H₂O = GABA + NADH + H⁺
Cofactors	NAD

Nomenclature	4-aminobutyrate aminotransferase (GABA transaminase)
Common abbreviation	GABA-T
HGNC, UniProt	ABAT, P80404
EC number	2.6.1.19: GABA + α-ketoglutaric acid = L-glutamic acid + 4-oxobutanoate, 2.6.1.22: (S)-3-amino-2-methylpropanoate + α-ketoglutaric acid = 2-methyl-3-oxopropanoate + L-glutamic acid
Cofactors	pyridoxal phosphate
Selective inhibitors (pIC₅₀)	vigabatrin [214]
Comment	vigabatrin is an irreversible inhibitor of GABA-T [214]
Nomenclature	aldehyde dehydrogenase 5 family, member A1 (succinic semialdehyde dehydrogenase)
--------------------	---
Common abbreviation	SSADH
HGNC, UniProt	ALDH5A1, P51649
EC number	1.2.1.24: 4-oxobutanoate + NAD + H₂O = succinic acid + NADH + 2 H⁺, 4-hydroxy-trans-2-nonenal + NAD + H₂O = 4-hydroxy-trans-2-nonoate + NADH + 2 H⁺
Cofactors	NAD

Further reading

Bien CG, Scheffer IE. (2011) Autoantibodies and epilepsy. *Epilepsia* 52: 18–22. [PMID:21542841]

Errichiello L, Striano S, Zara F, Striano P. (2011) Temporal lobe epilepsy and anti glutamic acid decarboxylase autoimmunity. *Neuro Sci* 32: 547–550. [PMID:21468678]

Kim KJ, Pearl PL, Jensen K, Sneed OC, Malaspina P, Jakobs C, Gibson KM. (2011) Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. *Antioxid Redox Signal* 15: 691–718. [PMID:20973619]

Pan ZZ. (2012) Transcriptional control of Gad2. *Transcription* 3: 68–72. [PMID:22414751]

Verrotti A, Scarpadonna A, Olivieri C, Chiarelli F. (2012) Seizures and type 1 diabetes mellitus: current state of knowledge. *Eur J Endocrinol* 167: 749–758. [PMID:22956556]
Glycerophospholipid turnover

Overview: Phospholipids are the basic barrier components of membranes in eukaryotic cells divided into glycerophospholipids (phosphatidic acid, phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol and its phosphorylated derivatives) and sphingolipids (ceramide phosphorylcholine and ceramide phosphorylethanolamine).

Phosphoinositide-specific phospholipase C

Overview: Phosphoinositide-specific phospholipase C (PLC, EC 3.1.4.11) catalyses the hydrolysis of PIP$_2$ to IP$_3$ and 1,2-diacylglycerol, each of which have major second messenger functions. Two domains, X and Y, essential for catalytic activity, are conserved in the different forms of PLC. Isoforms of PLC-β are activated primarily by G protein-coupled receptors through members of the $G_{q/11}$ family of G proteins. The receptor-mediated activation of PLC-γ involves their phosphorylation by receptor tyrosine kinases (RTK) in response to activation of a variety of growth factor receptors and immune system receptors. PLC-ϵ may represent a point of convergence of signalling via both G protein-coupled and catalytic receptors. Ca$^{2+}$ ions are required for catalytic activity of PLC isoforms and have been suggested to be the major physiological form of regulation of PLC-δ activity. PLC has been suggested to be activated non-selectively by the small molecule m3M3FBS [218], although this mechanism of action has been questioned [235]. The aminosteroid U73122 has been described as an inhibitor of phosphoinositide-specific PLC [257], although its selectivity among the isoforms is untested and it has been reported to occupy the H1 histamine receptor [230].

Nomenclature	PLC-β1	PLC-β2	PLC-β3	PLC-β4
HGNC, UniProt	PLCB1, Q9NQ66	PLCB2, Q00722	PLCB3, Q01970	PLCB4, Q15147
Endogenous activators	Gαq, Gα11, G$\beta$$\gamma$	Gα16, G$\beta$$\gamma$, Rac2 (RAC2, P15153)	Gαq, G$\beta$$\gamma$	Gαq
Endogenous inhibitors	–	–	–	–

Nomenclature	PLC-γ1	PLC-γ2	PLC-δ1	PLC-δ3	PLC-δ4
HGNC, UniProt	PLCG1, P19174	PLCG2, P16885	PLCD1, P51178	PLCD3, Q8N3E9	PLCD4, Q98RC7
Endogenous activators	PIP$_2$, Rac1 (RAC1, P63000), Rac2 (RAC2, P15153), Rac3 (RAC3, P60763)	[217,251,243,246,228-231,247,249]	Transglutaminase II, p122-RhoGAP, spermine, G$\beta$$\gamma$	[225,229,244,248]	–
Endogenous inhibitors	–	–	–	–	–

Nomenclature	PLC-ϵ1	PLC-ζ1	PLC-η1	PLC-η2
HGNC, UniProt	PLCCL1, Q15111	PLCZ1, Q86YW0	PLCH1, Q4KWH8	PLCH2, Q75038
Endogenous activators	Ras, rho [259,264]	–	–	G$\beta$$\gamma$ [266]

Comments: A series of PLC-like proteins ($PLCL1$, Q15111; $PLCL2$, Q9UPR0 and $PLCH1$, Q4KWH8) form a family with PLC-δ and PLC-ζ isoforms, but appear to lack catalytic activity. PLC-δ2 has been cloned from bovine sources [242].

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Phospholipase A₂

Overview: Phospholipase A₂ (PLA₂, EC 3.1.1.4) cleaves the sn-2 fatty acid of phospholipids, primarily phosphatidylcholine, to generate lysophosphatidylcholine and arachidonic acid. Most commonly-used inhibitors (e.g. BEL, ATFMK or MAFP) are either non-selective within the family of phospholipase A₂ enzymes or have activity against other eicosanoid-metabolising enzymes.

Secreted or extracellular forms:

Nomenclature	sPLA₂-1B	sPLA₂-2A	sPLA₂-2D	sPLA₂-2E	sPLA₂-2F	sPLA₂-3	sPLA₂-10	sPLA₂-12A
HGNC, UniProt	PLA2G1B, P04054	PLA2G2A, P14555	PLA2G2D, Q9UNK4	PLA2G2E, Q9N9K7	PLA2G2F, Q9BZM2	PLA2G3, Q9NZ20	PLA2G10, O15496	PLA2G12A, Q9BZM1

Cytosolic, calcium-dependent forms

Nomenclature	cPLA₂-4A	cPLA₂-4B	cPLA₂-4C	cPLA₂-4D	cPLA₂-4E	cPLA₂-4F
HGNC, UniProt	PLA2G4A, P47712	PLA2G4B, P0C869	PLA2G4C, Q9UP65	PLA2G4D, Q86XP0	PLA2G4E, Q3MJ16	PLA2G4F, Q68DD2

Comment: cPLA₂-4A also expresses lysophospholipase (EC 3.1.1.5) activity [256].

Other forms

Nomenclature	PLA₂-G5	iPLA₂-G6	PLA₂-G7	platelet-activating factor acetylhydrolase 2, 40kDa
HGNC, UniProt	PLA2G5, P39877	PLA2G6, O60733	PLA2G7, Q13093	PFAH2, Q99487
Comment	–	–	–	PFAH2 also expresses PAF hydrolase activity (EC 3.1.1.47)

Comments: The sequence of PLA₂-2C suggests a lack of catalytic activity, while PLA₂-12B (GXIIB, GXIII sPLA₂-like) appears to be catalytically inactive [254]. A further fragment has been identified with sequence similarities to Group II PLA₂ members. Otoconin 90 (OC90) shows sequence homology to PLA₂-G10. A binding protein for secretory phospholipase A₂ has been identified which shows modest selectivity for sPLA₂-1B over sPLA₂-2A, and also binds snake toxin phospholipase A₂ [216]. The binding protein appears to have clearance function for circulating secretory phospholipase A₂, as well as signalling functions, and is a candidate antigen for idiopathic membraneous nephropathy [219]. PLA₂-G7 and PFAH2 also express platelet-activating factor acetylhydrolase activity (EC 3.1.1.47).

Phosphatidylcholine-specific phospholipase D

Overview: Phosphatidylcholine-specific phospholipase D (PLD, EC 3.1.3.4) catalyses the formation of phosphatidic acid from phosphatidylcholine. In addition, the enzyme can make use of alcohols, such as butanol in a transphophatidylation reaction [253].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Nomenclature PLD1 PLD2
HGNC, UniProt PLD1, Q13393 PLD2, Q14939
Endogenous activators Arf1 (ARF1, P84077), PIP2, RhoA, PKC evoked phosphorylation, RalA [226,241]
Endogenous inhibitor Gβγ [252]
Selective inhibitors (pIC50) – VU0364739 (7.7) [236]

Comments: A lysophospholipase D activity (ENPP2, Q13822, also known as ectonucleotide pyrophosphatase/phosphodiesterase 2, phosphodiesterase I, nucleotide pyrophosphatase, autotaxin) has been described, which not only catalyses the production of lysophosphaticidic acid (LPA) from lysophosphatidylcholine, but also cleaves ATP (see Goding et al., 2003 [224]). Additionally, an N-acylethanolamine-specific phospholipase D (NAPEPLD, Q6IQ20) has been characterized, which appears to have a role in the generation of endocannabinoids/endovanilloids, including anandamide [246]. This enzyme activity appears to be enhanced by polyamines in the physiological range [238] and fails to transphosphatidylylate with alcohols [250]. Three further, less well-characterised isoforms are PLD3 (PLD3, Q8IV08, other names Choline phosphatase 3, HindIII K4L homolog, Hu-K4), PLD4 (PLD4, Q96BZ4, other names Choline phosphatase 4, Phosphatidylcholine-hydrolyzing phospholipase, D4C14orf175 UNQ2488/PRO5775) and PLD5 (PLD5, Q8N7P1). PLD3 has been reported to be involved in myogenesis [247]. PLD4 is described not to have phospholipase D catalytic activity [265], but has been associated with inflammatory disorders [245, 260, 262]. Sequence analysis suggests that PLD5 is catalytically inactive.

Lipid phosphate phosphatases

Overview: Lipid phosphate phosphatases, divided into phosphatic acid phosphatases or lipins catalyse the dephosphorylation of phosphatic acid (and other phosphorylated lipid derivatives) to generate inorganic PO4 and diacylglycerol. PTEN, a phosphatase and tensin homolog (BZS, MHAM, MMAC1, PTEN1, TEP1) is a phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase which acts as a tumour suppressor by reducing cellular levels of PI 3,4,5-P3 thereby toning down activity of PDK1 and PKB. Loss-of-function mutations are frequently identified as somatic mutations in cancers.

Nomenclature Lipin1 Lipin2 Lipin3 PPA2A PPA2B PPA3A Lipin2
HGNC, UniProt LPIN1, Q14693 LPIN2, Q92539 LPIN3, Q9BQK8 PPA2A, P14494 PPA2B, O14495 PPA3A, Q43688
EC number 3.1.3.4 3.1.3.4 3.1.3.4 3.1.3.4 3.1.3.4 3.1.3.4
Substrates phosphatic acid phosphatic acid – phosphatic acid phosphatic acid – phosphatic acid
Phosphatidylinositol 3-kinases

Overview: Phosphatidylinositol may be phosphorylated at either 3- or 4- positions on the inositol ring by PI 3-kinases or PI 4-kinases, respectively.

Phosphatidylinositol 3-kinases Phosphatidylinositol 3-kinases (PI3K, provisional nomenclature) catalyse the introduction of a phosphate into the 3-position of phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) or phosphatidylinositol 4,5-bisphosphate (PIP2). There is evidence that PI3K can also phosphorylate serine/threonine residues on proteins. In addition to the classes described below, further serine/threonine protein kinases, including ATM (Q13315) and mTOR (P42345), have been described to phosphorylate phosphatidylinositol and have been termed PI3K-related kinases. Structurally, PI3K have common motifs of at least one C2, calcium-binding domain and helical domains, alongside structurally-conserved catalytic domains. wortmannin and LY294002 are widely-used inhibitors of PI3K activities. wortmannin is irreversible and shows modest selectivity between Class I and Class II PI3K, while LY294002 is reversible and selective for Class I compared to Class II PI3K.

Class I PI3Ks (EC 2.7.1.153) phosphorylate phosphatidylinositol 4,5-bisphosphate to generate phosphatidylinositol 3,4,5-trisphosphate and are heterodimeric, matching catalytic and regulatory subunits. Class IA PI3Ks include p110α, p110β and p110δ catalytic subunits, with predominantly p85 and p55 regulatory subunits. The single catalytic subunit that forms Class IB PI3K is p110γ. Class IA PI3Ks are more associated with receptor tyrosine kinase pathways, while the Class IB PI3K is linked more with GPCR signalling.
Subunits

Nomenclature	Common abbreviation	HGNC, UniProt	EC number	Selective inhibitors (pIC₅₀)	Selective inhibitors (pIC₅₀)
Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha	p110α/PIK3CA	PIK3CA, P42336	2.7.1.153, 2.7.11.1	–	–
Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta	p110β/PIK3CB	PIK3CB, P42338	2.7.1.153	–	–
Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit delta	p110δ/PIK3CD	PIK3CD, O00329	2.7.1.153	–	–
Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma	p110γ/PIK3CG	PIK3CG, P48736	2.7.1.153	–	–

Class II PI3Ks (EC 2.7.1.154) phosphorylate phosphatidylinositol to generate phosphatidylinositol 3-phosphate (and possibly phosphatidylinositol 4-phosphate to generate phosphatidylinositol 3,4-bisphosphate). Three monomeric members exist, PI3K-C2α, β and γ, and include Ras-binding, Phox homology and two C2domains.

Nomenclature	Common abbreviation	HGNC, UniProt	EC number	Selective inhibitors (pIC₅₀)	Selective inhibitors (pIC₅₀)
Phosphoinositide-3-kinase, regulatory subunit 1 (alpha)	p85α/PIK3R1	PIK3R1, P27986	2.7.1.154	–	–
Phosphoinositide-3-kinase, regulatory subunit 2 (beta)	p85β/PIK3R2	PIK3R2, Q92569	2.7.1.154	–	–
Phosphoinositide-3-kinase, regulatory subunit 3 (gamma)	p85γ/PIK3R3	PIK3R3, Q99570	2.7.11.1	–	–

The only class III PI3K isoform (EC 2.7.1.137) is a heterodimer formed of a catalytic subunit (VPS34) and regulatory subunit (VPS15).

Nomenclature	Common abbreviation	HGNC, UniProt	EC number	Selective inhibitors (pIC₅₀)	Selective inhibitors (pIC₅₀)
Phosphatidylinositol 4-phosphate 3-kinase, catalytic subunit type 2 alpha	C2α/PIK3C2A	PIK3C2A, O00443	2.7.1.154	–	–
Phosphatidylinositol 4-phosphate 3-kinase, catalytic subunit type 2 beta	C2β/PIK3C2B	PIK3C2B, O00750	2.7.1.154	–	–
Phosphatidylinositol 4-phosphate 3-kinase, catalytic subunit type 2 gamma	C2γ/PIK3C2G	PIK3C2G, O75747	2.7.1.154	–	–

Phosphatidylinositol 4-kinases Phosphatidylinositol 4-kinases (EC 2.7.1.67) generate phosphatidylinositol 4-phosphate and may be divided into higher molecular weight type III and lower molecular weight type II forms.

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Nomenclature	phosphatidylinositol 4-kinase, catalytic, alpha	phosphatidylinositol 4-kinase, catalytic, beta	phosphatidylinositol 4-kinase type 2 alpha	phosphatidylinositol 4-kinase type 2 beta
Common abbreviation	PI4KIIA/PI4K4CA	PI4KIIA/PI4K4CB	PI4KIIA/PI4K2A	PI4KIIA/PI4K2B
HGNC, UniProt	PI4KA, P42356	PI4KB, Q9UF8	PI4K2A, Q9BTU6	PI4K2B, Q8TCG2
Endogenous activation				
(Sub)family-selective inhibitors (pIC50)	wortmannin (6.7 – 6.8) [223,243]	wortmannin (6.7 – 6.8) [223,243]	adenosine (4.5 – 5.0) [261]	adenosine (4.5 – 5.0) [261]
Selective inhibitors (pIC50)				

Comments: wortmannin also inhibits type III phosphatidylinositol 4-kinases and polo-like kinase [239]. PIK93 also inhibits PI 3-kinases [234]. Adenosine activates adenosine receptors.

Phosphatidylinositol phosphate kinases

Overview: PIP_2_ is generated by phosphorylation of PI 4-phosphate or PI 5-phosphate by type I PI 4-phosphate 5-kinases or type II PI 5-phosphate 4-kinases.

Nomenclature	phosphatidylinositol-4-phosphate 5-kinase, type I, alpha	phosphatidylinositol-4-phosphate 5-kinase, type I, beta	phosphatidylinositol-4-phosphate 5-kinase, type I, gamma
Common abbreviation	PIP5K1A	PIP5K18, Q99755	PIP5K1C, O60331
HGNC, UniProt		O14986	
EC number	2.7.1.68	2.7.1.68	2.7.1.68

Nomenclature	phosphatidylinositol-5-phosphate 4-kinase, type II, alpha	phosphatidylinositol-5-phosphate 4-kinase, type II, beta	phosphatidylinositol-5-phosphate 4-kinase, type II, gamma
Common abbreviation	PIP4K2A	PIP4K2B, P78356	PIP4K2G, Q8TBX8
HGNC, UniProt			
EC number	2.7.1.149	2.7.1.149	2.7.1.149

Further reading

Altan-Bonnet N, Balla T. (2012) Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms. *Trends Biochem Sci* 37: 293–302. [PMID:22633842]

Astudillo AM, Balgoma D, Balboa MA, Balsinde J. (2012) Dynamics of arachidonic acid mobilization by inflammatory cells. *Biochim Biophys Acta* 1821: 249–256. [PMID: 22155285]

Balla T. (2009) Regulation of Ca2+ entry by inositol lipids in mammalian cells by multiple mechanisms. *Cell Calcium* 45: 527–534. [PMID:19395084]

Becchler ME, de Figueiredo P, Brown WJ. (2012) A PLA1-2 punch regulates the Golgi complex. *Trends Cell Biol* 22: 116–124. [PMID:22130221]

Berridge MJ. (2009) Inositol trisphosphate and calcium signalling mechanisms. *Biochim Biophys Acta* 1793: 933–940. [PMID:19010359]

Brown HA, Marnett LJ. (2011) Introduction to lipid biochemistry, metabolism, and signaling. *Chem Rev* 111: 5817–5820. [PMID:21951202]

Bunney TD, Katan M. (2010) Phosphoinositide signalling in cancer: beyond PI3K and PTEN. *Nat Rev Cancer* 10: 342–352. [PMID:20414202]

Bunney TD, Katan M. (2011) PLC regulation: emerging pictures for molecular mechanisms. *Trends Biochem Sci* 36: 88–96. [PMID:20870410]

Cao J, Burke JE, Dennis EA. (2013) Using hydrogen/deuterium exchange mass spectrometry to define the specific interactions of the phospholipase A2 superfamily with lipid substrates, inhibitors, and membranes. *J Biol Chem* 288: 1806–1813. [PMID:23209293]

Chen Y, Wang BC, Xiao Y. (2012) PI3K: a potential therapeutic target for cancer. *J Cell Physiol* 227: 2818–2821. [PMID:21938729]
Cocco L, Follo MY, Faenza I, Fiume R, Ramazzotti G, Weber G, Martelli AM, Manzoli FA. (2011) Physiology and pathology of nuclear phospholipase C β1. Adv Enzyme Regul 51: 2–12. [PMID:21035488]

Cushing TD, Metz DP, Whittington DA, McGee LR. (2012) PI3Kδ and PI3Kγ as targets for autoimmune and inflammatory diseases. J Med Chem 55: 8559–8581. [PMID:22924688]

Dan P, Rosenblat G, Yedgar S. (2012) Phospholipase A2 activities in skin physiology and pathology. Eur J Pharmacol 691: 1–8. [PMID:22819703]

Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B. (2010) Phosphoinositides: lipid regulators of membrane proteins. J Physiol (Lond), 588 (Pt 17): 3197–3185. [PMID:20519312]

Frisardi V, Panza F, Seripa D, Faroquoi T, Faroquoi AA. (2011) Glycerophospholipids and glycerophospholipid-derived lipid mediators: a complex meshwork in Alzheimer’s disease pathology. Prog Lipid Res 50: 313–330. [PMID:21703303]

Funakoshi Y, Hasegawa K, Kanako Y. (2011) Regulation of PI3K δ activity by Arf6 and its physiological significance. J Cell Physiol 226: 888–895. [PMID:20945365]

Fung-Leung WP. (2011) Phosphoinositide 3-kinase delta (PI3K δ) in leukocyte signaling and function. Cell Signal 23: 603–608. [PMID:20940048]

Gomez-Cambreron J. (2011) The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Gβ6, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 23: 1885–1889. [PMID:21740967]

Gomez-Cambreron J. (2012) Biochemical and cellular implications of a dual lipase-GEF function of phospholipase D2 (PLD2). J Leukoc Biol 92: 461–467. [PMID:22750546]

Graham TR, Burd CG. (2011) Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends Cell Biol 21: 113–121. [PMID:21282087]

Harden TK, Waldo GL, Hicks SN, Sondek J. (2011) Mechanism of activation and inactivation of Gg/phospholipase C-β signaling nodes. Chem Rev 111: 6120–6129. [PMID:21988240]

Harris’ TE, Finck BN. (2011) Dual function lipin proteins and glycerolipid metabolism. Trends Endocrinol Metab 22: 226–233. [PMID:21470873]

Hermansson M, Høykyn K, Somerharju P. (2011) Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res 50: 240–257. [PMID:21382416]

Hollander MC, Blumenthal GM, Dennis PA. (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11: 289–301. [PMID:21430697]

Hui DY. (2012) Phospholipase A2 enzymes in metabolic and cardiovascular diseases. Annu Rev Lipidol 23: 235–240. [PMID:22327613]

Ito J, Harrington J, Fissore RA. (2011) PLCδ and its role as a trigger of development in vertebrates. Mol Reprod Dev 78: 846–853. [PMID:21823187]

Jang JH, Lee CS, Hwang D, Ryu SH. (2012) Understanding of the roles of phospholipase D and phosphatic acid through their binding partners. Prog Lipid Res 51: 71–81. [PMID:22212660]

Kim JK, Lim S, Kim J, Kim S, Kim JH, Ryu SH, Suh PG. (2011) Subtype-specific roles of phospholipase C-β via differential interactions with PDZ domain proteins. Adv Enzyme Regul 51: 138–151. [PMID:21035486]

Kok BP, Venkataraman G, Capatos D, Brindley DN. (2012) Unlike two peas in a pod: lipid phosphate phosphatases and phosphatidate phosphatases. Chem Rev 112: 5121–5146. [PMID:22745222]

Kolesnikov YS, Nokhrina KP, Kretynin SV, Volotovski ID, Martinec J, Romanov GA, Kravets VS. (2012) Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. Biochemistry Mosc 77: 1–14. [PMID:22339628]

Kwiatkowska K. (2010) One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane. Cell Mol Life Sci 67: 3927–3946. [PMID:20559679]
Haem oxygenase

Overview: Haem oxygenase (heme-hydrogen-donor:oxygen oxidoreductase (α-methene-oxidizing, hydroxylating)), E.C. 1.14.99.3, converts heme into biliverdin and carbon monoxide, utilizing NADPH as cofactor.

Nomenclature	Haem oxygenase 1	Haem oxygenase 2
Common abbreviation	HO1	HO2
HGNC, UniProt	HMOX1, P09601	HMOX2, P30519
EC number	1.14.99.3	1.14.99.3

Comments: The existence of a third non-catalytic version of haem oxygenase, HO3, has been proposed, although this has been suggested to be a pseudogene [268]. The chemical tin protoporphyrin IX acts as a haem oxygenase inhibitor in rat liver with an IC₅₀ value of 11 nM [267].

Further reading

Abraham NG, Kappas A. (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60: 79–127. [PMID:18323402]

Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE. (2008) Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med 86: 267–279. [PMID:18034222]

Bucolo C, Drago F. (2011) Carbon monoxide and the eye: Implications for glaucoma therapy. Pharmacol Ther 130: 191–201. [PMID:21295073]

Chan KH, Ng MK, Stocker R. (2011) Haem oxygenase-1 and cardiovascular disease: mechanisms and therapeutic potential. Clin Sci 120: 493–504. [PMID:21355854]

Gozzelino R, Jeney V, Soares MP. (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50: 323–354. [PMID:20055707]

Khan AA, Quigley JG. (2011) Control of intracellular heme levels: heme transporters and heme oxygenases. Biochim Biophys Acta 1813: 668–682. [PMID:21238504]
Hydrogen sulfide synthesis

Overview: Hydrogen sulfide is a putative gasotransmitter, with similarities to NO and carbon monoxide. Although the enzymes indicated have multiple enzymatic activities, the focus here is the generation of hydrogen sulfide and the enzymatic characteristics are described accordingly. Cystathionine β-synthase and cystathionine γ-lyase are pyridoxal phosphate-dependent enzymes, while L-cysteine:2-oxoglutarate aminotransferase and 3-mercaptopyruvate sulfurtransferase function in combination as a pyridoxal phosphate-independent pathway.

Nomenclature	Cystathionine β-synthase	Cystathionine γ-lyase	L-Cysteine:2-oxoglutarate aminotransferase	3-Mercaptopyruvate sulfurtransferase
Common abbreviation	CBS	CSE	CAT	MPST
HGNC, UniProt	CBS, P35520	CTH, P32929	CCB1, Q16773	MPST, P25325
EC number	4.2.1.22	4.4.1.1	4.4.1.13	2.8.1.2
Endogenous substrates	L-homocysteine, L-cysteine (Km 6x10⁻³ M) [269]	L-cysteine, NH₃, pyruvic acid	L-cysteine, NH₃, pyruvic acid	3-mercaptopyruvic acid (Km 1.2x10⁻³ M) [270]
Products	cystathionine	NH₃, pyruvic acid	pyridoxal phosphate	pyruvic acid
Cofactors	pyridoxal phosphate	propargylglycine		Zn²⁺
Inhibitors (pIC₅₀)	aminooxyacetic acid			

Further reading

Kashfi K, Olson KR. (2013) Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 85: 689–703. [PMID:23103569]
Kimura H. (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41: 113–121. [PMID:20191298]
Li L, Rose P, Moore PK. (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51: 169–187. [PMID:21210746]
Olson KR. (2011) The therapeutic potential of hydrogen sulfide: separating hype from hope. Am J Physiol Regul Integr Comp Physiol 301: R297–R312. [PMID:21543637]
Singh S, Banerjee R. (2011) PLP-dependent H₂S biogenesis. Biochim Biophys Acta 1814: 1518–1527. [PMID:21315854]
Wang R. (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92: 791–896. [PMID:22535897]
Inositol phosphate turnover

Overview: The sugar alcohol D-myo-inositol is a component of the phosphatidylinositol signalling cycle, where the principal second messenger is inositol 1,4,5-trisphosphate, IP$_3$, which acts at intracellular ligand-gated ion channels, IP$_3$ receptors to elevate intracellular calcium. IP$_3$ is recycled to inositol by phosphatases or phosphorylated to form other active inositol polyphosphates. Inositol produced from dephosphorylation of IP$_3$ is recycled into membrane phospholipid under the influence of phosphatidylinositol synthase activity (CDP-diacylglycerol-inositol 3-phosphatidytransferase [EC 2.7.8.11]).

Inositol 1,4,5-trisphosphate 3-kinases

Overview: Inositol 1,4,5-trisphosphate 3-kinases (E.C. 2.7.1.127, ENSFM0025000001260) catalyse the generation of inositol 1,3,4,5-tetrakisphosphate (IP$_4$) from IP$_3$. IP$_3$ kinase activity is enhanced in the presence of calcium/calmodulin (CALM2, CALM3, CALM1, P62158) [271].

Nomenclature	IP$_3$ kinase A	IP$_3$ kinase B	IP$_3$ kinase C
HGNC, UniProt	ITPKA, P23677	ITPKB, P27987	ITPKC, Q96DU7

Inositol polyphosphate phosphatases

Overview: Members of this family exhibit phosphatase activity towards IP$_3$, as well as towards other inositol derivatives, including the phospholipids PIP$_2$ and PIP$_3$. With IP$_3$ as substrate, 1-phosphatase (EC 3.1.3.57) generates 4,5,-IP$_2$, 4-phosphatases (EC 3.1.3.66, ENSFM0025000001432) generate 1,5,-IP$_2$ and 5-phosphatases (E.C. 3.1.3.36 or 3.1.3.56) generate 1,4,-IP$_2$.

Nomenclature	INPP1	INPP4A, INPP4B	INPP5A, INPP5B, INPP5D, INPP5E, INPP5J, INPP5K, INPPL1, OCRL, SYNJ1, SYNJ2
HGNC, UniProt	INPP1, P49441	INPP4A, Q96PE3; INPP4B, O15327	INPP5A, Q14642; INPP5B, P32019; INPP5D, Q92835; INPP5E, Q9NRR6; INPP5J, Q15735; INPP5K, Q9BT40; INPPL1, O15357; OCRL, Q81968; SYNJ1, O43426; SYNJ2, O15056
EC number	3.1.3.57	3.1.3.36, 3.1.3.36	3.1.3.56, 3.1.3.56, 3.1.3.36, 3.1.3.36, 3.1.3.36, 3.1.3.36, 3.1.3.36, 3.1.3.36, 3.1.3.36, 3.1.3.36

Comments: In vitro analysis suggested IP$_3$ and IP$_4$ were poor substrates for SKIP, synaptojanin 1 and synaptojanin 2, but suggested that PIP$_2$ and PIP$_3$ were more efficiently hydrolysed [276].

Inositol monophosphatase

Overview: Inositol monophosphatase (E.C. 3.1.3.25, IMPase, myo-inositol-1-(or 4)-phosphate phosphohydrolase) is a magnesium-dependent homodimer which hydrolysates myo-inositol monophosphate to generate myo-inositol and PO$_4$$^-$. glycerol may be a physiological phosphate acceptor. lithium is a nonselective un-competitive inhibitor more potent at IMPase 1 (pK$_{ca}$ 3.5, [274]; pIC$_{50}$ 3.2, [275]) than IMPase 2 (pIC$_{50}$ 1.8–2.1, [275]). IMPase activity may be inhibited competitively by L690330 (pK, 5.5, [274]), although the enzyme selectivity is not yet established.

Nomenclature	IMPase 1	IMPase 2
HGNC, UniProt	IMPA1, P29218	IMPA2, O14732
EC number	3.1.3.25	3.1.3.25
Rank order of affinity	myo-inositol 4-phosphate > myo-inositol 3-phosphate > myo-inositol 1-phosphate [274]	–

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
Polymorphisms in either of the genes encoding these enzymes have been linked with bipolar disorder [277–279]. Disruption of the gene encoding IMPase 1, but not IMPase 2, appears to mimic the effects of lithium in mice [272–273].

Further reading

Barker CJ, Berggren PO. (2013) New horizons in cellular regulation by inositol polyphosphates: insights from the pancreatic β-cell. Pharmacol Rev 65: 641–669. [PMID:23429059]

Chiu CT, Chuang DM. (2010) Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 128: 281–304. [PMID:20705090]

Ooms LM, Horan KA, Rahman P, Seaton G, Gurung R, Kethesparan DS, Mitchell CA. (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 419: 29–49. [PMID:19272022]

Pasquali L, Busceti CL, Fuleri F, Paparelli A, Fornai F. (2010) Intracellular pathways underlying the effects of lithium. Behav Pharmacol 21: 473–492. [PMID:20700048]

Pirruccello M, De Camilli P. (2012) Inositol 5-phosphatases: insights from the Lowe syndrome protein OCRL. Trends Biochem Sci 37: 134–143. [PMID:22381590]

Schell MJ. (2010) Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell Mol Life Sci 67: 1755–1778. [PMID:20066467]
Overview
Lanosterol is a precursor for cholesterol, which is synthesized primarily in the liver in a pathway often described as the mevalonate or HMG-CoA reductase pathway. The first two steps (formation of acetoacetyl CoA and the mitochondrial generation of HMG-CoA) are also associated with oxidation of fatty acids.

Nomenclature

Nomenclature	HGNC, UniProt	EC number	Comment
acetyl-CoA acetyltransferase 1	ACAT1, P24752	2.3.1.9: acetyl-CoA + acetyl-CoA = acetoacetyl-CoA + coenzyme A	
acetyl-CoA acetyltransferase 2	ACAT2, Q9BWD1	2.3.1.9: acetyl-CoA + acetyl-CoA = acetoacetyl-CoA + coenzyme A	
hydroxymethylglutaryl-CoA synthase 1	HMGCS1, Q01581	2.3.3.10: acetyl-CoA + H₂O + acetoacetyl-CoA -> (S)-3-hydroxy-3-methylglutaryl-CoA + coenzyme A	HMGCoA synthase is found in cytosolic and mitochondrial versions; the former associated with (R)-mevalonate synthesis and the latter with ketogenesis.
hydroxymethylglutaryl-CoA synthase 2	HMGCS2, P54868	2.3.3.10: acetyl-CoA + H₂O + acetoacetyl-CoA -> (S)-3-hydroxy-3-methylglutaryl-CoA + coenzyme A	
hydroxymethylglutaryl-CoA reductase	HMGCR, P04035	1.1.1.34: (S)-3-hydroxy-3-methylglutaryl-CoA + NADPH -> (R)-mevalonate + coenzyme A + NADP⁺	HMGCoA reductase is associated with intracellular membranes; enzymatic activity is inhibited by phosphorylation by AMP-activated kinase. The enzymatic reaction is a three-step reaction involving the intermediate generation of mevaldehyde-CoA and mevaldehyde.
mevalonate kinase	MVK, Q03426	2.7.1.36: ATP + (R)-mevalonate -> ADP + (R)-5-phosphomevalonate	Mevalonate kinase activity is regulated by the downstream products farnesyl diphosphate and geranyl diphosphate as an example of feedback inhibition.

Selective inhibitors (pIC₅₀)
- lovastatin (Competitive) (pKᵢ 9.22) [280]
- rosuvastatin (Competitive) (8.3) [283]
- atorvastatin (Competitive) (8.1) [283]
- simvastatin (Competitive) (7.96) [283]
- fluvastatin (Competitive) (7.55) [283]
| Nomenclature | Enzyme Name |
|------------------------------|--|
| phosphomevalonate kinase | PMVK, Q15126 |
| diphosphomevalonate decarboxylase | MVD, P53602 |
| isopentenyl-diphosphate Δ-isomerase 1 | IDI1, Q13907 |
| isopentenyl-diphosphate Δ-isomerase 2 | IDI2, Q98X51 |
| geranylgeranyl diphosphate synthase | GGPS1, O95749 |
| farnesyl diphosphate synthase | FDPS, P14324 |
| squalene synthase | FDT71, P37268 |

EC number	Equation
2.7.4.2	$\text{ATP} + (R)-5\text{-phosphomevalonate} \rightarrow \text{ADP} + (R)-5\text{-diphosphomevalonate}$
4.1.1.33	$\text{ATP} + (R)-5\text{-diphosphomevalonate} \rightarrow \text{ADP} + \text{isopentenyl diphosphate} + \text{PO}_4^+ + \text{CO}_2$
5.3.3.2	$\text{isopentenyl diphasphate} = \text{dimethylallyl diphasphate}$
2.5.1.10	$\text{2.5.1.10: geranyl diphasphate} + \text{isopentenyl diphasphate} \rightarrow$
2.5.1.29	$\text{trans,trans-farnesyl diphasphate} + \text{isopentenyl diphasphate} \rightarrow$
2.5.1.1	$\text{2.5.1.1: dimethylallyl diphasphate} + \text{isopentenyl diphasphate} = \text{geranyl diphasphate} + \text{diphosphate ion}$
2.5.1.10	$\text{2.5.1.10: geranyl diphasphate} + \text{isopentenyl diphasphate} \rightarrow$
2.5.1.29	$\text{trans,trans-farnesyl diphasphate} + \text{isopentenyl diphasphate} \rightarrow$

Selective inhibitors (pIC₅₀):
- Risedronate (8.4) [281], Alendronate (6.34) [281]
- Zaragozic acid A (pKᵢ 10.1 - Rat) [282], FTI 276 (9.3) [284], Zaragozic acid A (9.15) [286]
Further reading

Miziorko HM. (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. *Arch Biochem Biophys* 505: 131–143. [PMID:20932952]

Rozman D, Monostory K. (2010) Perspectives of the non-statin hypolipidemic agents. *Pharmacol Ther* 127: 19–40. [PMID:20420853]

Seiki S, Frishman WH. (2009) Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia. *Cardiol Rev* 17: 70–76. [PMID:19367148]
Overview: Peptidases and Proteinases

Peptidases and proteinases hydrolyse peptide bonds, and can be simply divided on the basis of whether terminal peptide bonds are cleaved (exopeptidases and exoproteinases) at the amino terminus (aminopeptidases) or carboxy terminus (carboxypeptidases). Non-terminal peptide bonds are cleaved by endopeptidases and endoproteinases, which are divided into serine endopeptidases (EC 3.4.21.-), cysteine endopeptidases (EC 3.4.22.-), aspartate endopeptidases (EC 3.4.23.-), metalloendopeptidases (EC 3.4.24.-) and threonine endopeptidases (EC 3.4.25.-).

It is beyond the scope of the Guide to list all peptidase and proteinase activities; this summary focuses on selected enzymes of significant pharmacological interest.

Cysteine (C) Peptidases: Caspases

Overview: Caspases, (EC. 3.4.22.-) which derive their name from Cysteine ASPartate-specific proteASES, include at least two families; initiator caspases (caspases 2, 8, 9 and 10), which are able to hydrolyse and activate a second family of effector caspases (caspases 3, 6 and 7), which themselves are able to hydrolyse further cellular proteins to bring about programmed cell death. Caspases are heterotetrameric, being made up of two pairs of subunits, generated by a single gene product, which is proteolyzed to form the mature protein. Members of the mammalian inhibitors of apoptosis proteins (IAP) are able to bind the pro-caspases, thereby preventing maturation to active proteinases.

Nomenclature	Caspase 1	Caspase 2	Caspase 3	Caspase 4
HGNC, UniProt	CASP1, P29466	CASP2, P42575	CASP3, P42574	CASP4, P49662
EC number	3.4.22.36	3.4.22.55	3.4.22.56	3.4.22.57
Endogenous activators	–	–	Caspase 8, caspase 9, caspase 10, GrB	–
Endogenous substrates	Rho GDP dissociation inhibitor beta, parkin, pro-caspase 4, pro-interleukin-1β	–	huntingtin, retinoblastoma-associated protein, caspase 3, ICAD, PARP, PKCδ, pro-caspase 7	–
Activators	–	–	PAC1 [301], PETCM [295]	–
Selective inhibitors (pIC50)	Z-YVAD-FMK [287]	Z-VDVAD-FMK [291]	AZ10417808 [303], Z-DEVD-FMK [288], Z-DQMD-FMK [294]	Consists of caspase-4 subunit 1 and caspase-4 subunit 2 (see Uniprot entry)
Comment	Consists of caspase-1 subunit p20 and caspase-1 subunit p10 (see Uniprot entry)	Consists of caspase-2 subunit p18, caspase-2 subunit p13, and caspase-2 subunit p12 (see Uniprot entry)	Consists of caspase-3 subunit p17 and caspase-3 subunit p12 (see Uniprot entry)	Consists of caspase-4 subunit 1 and caspase-4 subunit 2 (see Uniprot entry)

Nomenclature	Caspase 5	Caspase 6	Caspase 7	Caspase 8
HGNC, UniProt	CASP5, P51878	CASP6, P55212	CASP7, P55210	CASP8, Q14790
EC number	3.4.22.58	3.4.22.59	3.4.22.60	3.4.22.61
Endogenous activators	–	Caspase 8, caspase 9, caspase 10, GrB	Caspase 8, caspase 9, caspase 10, GrB	DISC
Endogenous substrates	–	–	huntingtin, retinoblastoma-associated protein, caspase 3, ICAD, PARP, PKCδ, pro-caspase 7	BH3 interacting-domain death agonist, FLICE-like inhibitory protein, caspase 8, pro-caspase 3, pro-caspase 6, pro-caspase 7
Selective inhibitors (pIC50)	Z-WEHD-FMK [299]	Z-VEID-FMK [302]	Consists of caspase-7 subunit p20 and caspase-7 subunit p11 (see Uniprot entry)	Consists of caspase-8 subunit p18 and caspase-8 subunit p10 (see Uniprot entry)
Comment	Consists of caspase-5 subunit p20 and caspase-5 subunit p10 (see Uniprot entry)	Consists of caspase-6 subunit p18 and caspase-6 subunit p11 (see Uniprot entry)	Consists of caspase-7 subunit p20 and caspase-7 subunit p11 (see Uniprot entry)	–
Nomenclature
- Caspase 9
 - HGNC, UniProt: CASP9, P55211
 - EC number: 3.4.22.62
 - Endogenous activators: –
 - Endogenous substrates: caspase 9, PARP, pro-caspase 3, pro-caspase 6, pro-caspase 7
 - Selective inhibitors (pIC\textsubscript{50}): Z-LEHD-FMK [298]
 - Comment: Consists of caspase-9 subunit p35 and caspase-9 subunit p10 (see Uniprot entry)

- Caspase 10
 - HGNC, UniProt: CASP10, Q92851
 - EC number: 3.4.22.63
 - DISC
 - Endogenous substrates: caspase 10, pro-caspase 3, pro-caspase 6, pro-caspase 7
 - Selective inhibitors (pIC\textsubscript{50}): –
 - Comment: Consists of caspase-10 subunit p23/17 and caspase-10 subunit p12 (see Uniprot entry)

- Caspase 14
 - HGNC, UniProt: CASP14, P31944
 - EC number: 3.4.22.-
 - Endogenous activators: –
 - Endogenous substrates: –
 - Selective inhibitors (pIC\textsubscript{50}): –
 - Comment: Consists of caspase-14 subunit p19 and caspase-14 subunit p10 (see Uniprot entry)

Comments: CARD16 (Caspase recruitment domain-containing protein 16, caspase-1 inhibitor COP, CARD only domain-containing protein 1, pseudo interleukin-1β converting enzyme, pseudo-ICE, ENSG00000204397) shares sequence similarity with some of the caspases.

Metallo (M) Peptidases

Nomenclature
- Aminopeptidase A
 - HGNC, UniProt: DNPEP, Q9ULA0
 - EC number: 3.4.11.21
 - Endogenous substrates: –
 - Selective inhibitors (pIC\textsubscript{50}): –
 - Inhibitors (pIC\textsubscript{50}): –
 - Comment: Hydrolyses CCK-8 (CCK, P06307) [297], angiotensin II (AGT, P01019) [307], neurokinin B (TAC3, Q9UHF0), chromogranin A (CHGA, P10645), kallidin (KNG1, P01042) [292]

- Leucyl-cysteinyl aminopeptidase
 - HGNC, UniProt: LNPEP, Q9UIQ6
 - EC number: 3.4.11.3
 - Selective inhibitors (pIC\textsubscript{50}): –
 - Inhibitors (pIC\textsubscript{50}): –
 - Comment: Hydrolyses AVP (AVP, P01178), oxytocin (OXT, P01178), kallidin (KNG1, P01042), [Met]enkephalin (PENK, P01210), dynorphin A (PDYN, P01213)

- Leukotriene A\textsubscript{4} hydrolase
 - HGNC, UniProt: LTA4H, P09960
 - EC number: 3.3.2.6
 - Selective inhibitors (pIC\textsubscript{50}): thiorphan
 - Inhibitors (pIC\textsubscript{50}): bestatin [300]
 - Comment: Hydrolyses CCK-8 (CCK, P06307) [297], angiotensin II (AGT, P01019) [290]

- Metalloproteinase (M) endopeptidase
 - HGNC, UniProt: MME, P08473
 - EC number: 3.4.24.11
 - Selective inhibitors (pIC\textsubscript{50}): captopril
 - Inhibitors (pIC\textsubscript{50}): SM19712 [305]
 - Comment: Hip-His Leu has been used experimentally as a probe for ACE1. ACE1 appears to express a distinct GPI hydrolase activity [296].

- Angiotensin-converting enzyme
 - HGNC, UniProt: ACE, P12821
 - EC number: 3.4.15.1
 - Endogenous substrates: angiotensin I (AGT, P01019) > angiotensin II (AGT, P01019)
 - Selective inhibitors (pIC\textsubscript{50}): captopril
 - Comment: Hip-His Leu has been used experimentally as a probe for ACE1. ACE1 appears to express a distinct GPI hydrolase activity [296].

- Angiotensin-converting enzyme 2
 - HGNC, UniProt: ACE2, Q9BYF1
 - EC number: 3.4.15.1
 - Endogenous substrates: angiotensin I (AGT, P01019) > angiotensin-(1-9) (AGT, P01019) [290]
 - Selective inhibitors (pIC\textsubscript{50}): captopril
 - Comment: Abz-Ser-Pro-Tyr(NO\textsubscript{2})-OH has been used experimentally as a probe for ACE2

- Endothelin-converting enzyme 1
 - HGNC, UniProt: ECE1, P42892
 - EC number: 3.4.24.71
 - Endogenous substrates: ET-1 (EDN1, P05305), ET-2 (EDN2, P20800), ET-3 (EDN3, P14138)
 - Selective inhibitors (pIC\textsubscript{50}): SM19712 [305]
 - Comment: –

- Endothelin-converting enzyme 2
 - HGNC, UniProt: ECE2, O60344
 - EC number: 3.4.24.71
 - Endogenous substrates: ET-1 (EDN1, P05305), ET-2 (EDN2, P20800), ET-3 (EDN3, P14138)
 - Selective inhibitors (pIC\textsubscript{50}): –
 - Comment: –
| Nomenclature | Aminopeptidase N | Aminopeptidase O | Aminopeptidase Q | Arginyl aminopeptidase | Arginyl aminopeptidase-like 1 | Aminopeptidase-like 1 |
|------------------------------|------------------|------------------|------------------|-------------------------|-------------------------------|------------------------|
| HGNC, UniProt | ANPEP, P15144 | C9orf3, Q8N6M6 | –, Q6Q4G3 | RNPEP, Q9H4A4 | RNPEPL1, Q9HAU8 | NPEPL1, Q8NDH3 |
| EC number | 3.4.11.2 | 3.4.11.- | 3.4.11.- | 3.4.11.6 | 3.4.11.- | 3.4.11.- |

Nomenclature	Endoplasmic reticulum aminopeptidase 1	Endoplasmic reticulum aminopeptidase 2	Glutamyl aminopeptidase	Leucine aminopeptidase 3	Methionyl aminopeptidase 1	Methionyl aminopeptidase 2
HGNC, UniProt	ERAP1, Q9NZ08	ERAP2, Q6P179	ENPEP, Q07075	LAP3, P28838	METAP1, P53582	METAP2, P50579
EC number	3.4.11.-	3.4.11.-	3.4.11.7	3.4.11.1	3.4.11.3, 3.4.11.18	3.4.11.18

Nomenclature	Methionyl aminopeptidase type 1D (mitochondrial)	Puromycin-sensitive aminopeptidase	Puromycin-sensitive aminopeptidase-like protein	TRH-specific aminopeptidase	X-prolyl aminopeptidase 1	X-prolyl aminopeptidase 2
HGNC, UniProt	METAP1D, Q6UB28	NPEPS5, P55786	–	TRHDE, Q9UKU6	XPNPEP1, Q9NQW7	XPNPEP2, Q43895
EC number	3.4.11.18	3.4.11.14	3.4.19.6	3.4.11.9	3.4.11.18	3.4.11.19

Nomenclature	X-prolyl aminopeptidase 3	Carboxypeptidase D	AE binding protein 1	Carboxypeptidase A1 (pancreatic)	Carboxypeptidase A2 (pancreatic)	Carboxypeptidase A3 (mast cell)
HGNC, UniProt	XPNPEP3, Q9NQH7	CPD, O75976	AEBP1, Q8IU7	CPA1, P15085	CPA2, P48052	CP43, P15088
EC number	3.4.11.9	3.4.17.22	–	3.4.17.1	3.4.17.15	3.4.17.1

Nomenclature	Carboxypeptidase A4	Carboxypeptidase A5	Carboxypeptidase A6	Carboxypeptidase B1 (tissue)	Carboxypeptidase B2 (plasma)	Carboxypeptidase E
HGNC, UniProt	CPA4, Q9H42	CPA5, Q8WXQ8	CPA6, Q8N4T0	CPB1, P15086	CPB2, Q96LY4	CPE, P16870
EC number	3.4.17.-	3.4.17.1	3.4.17.1	3.4.17.2	3.4.17.20	3.4.17.10

Nomenclature	Carboxypeptidase M	Carboxypeptidase N, polypeptide 1	Carboxypeptidase N, polypeptide 2	Carboxypeptidase O	Carboxypeptidase Q	Carboxypeptidase X (M14 family), member 1
HGNC, UniProt	CPM, P14384	CPN1, P15169	CPN2, P22792	CPO, Q8IVL8	CPQ, –	CPXM1, Q96SM3
EC number	3.4.17.12	3.4.17.3	3.4.17.3	3.4.17.-	–	3.4.17.-
Nomenclature

Enzyme Name	HGNC, UniProt	EC number
Carboxypeptidase X (M14 family), member 2	CPXM2, Q8N436	3.4.13.20
Carboxypeptidase Z (M14 family)	CPZ, Q66K79	3.4.13.18
Carnosine dipeptidase 1 (M20 family)	CNDP1, Q96KN2	3.4.17.21
Carnosine dipeptidase 2 (M20 family)	CNDP2, Q96KP4	3.4.17.21
Folate hydrolase (prostate-specific membrane antigen) 1	FOLH1, Q04609	–
Folate hydrolase 1B	FOLH1B, Q9HBA9	–

Enzyme Name	HGNC, UniProt	EC number
N-Acetylated α-linked acidic dipeptidase-like 1	NAALADL1, Q9UQQ1	3.4.17.21
N-Acetylated α-linked acidic dipeptidase 2	NAALAD2, Q9Y3Q0	3.4.17.21

Matrix metallopeptidases

Overview: Matrix metalloproteinases (MMP) are calcium- and zinc-dependent proteinases regulating the extracellular matrix and are often divided (e.g. [306]) on functional and structural bases into gelatinases, collagenases, stromelysins and matrilysins, as well as membrane type-MMP (MT-MMP).

Enzyme Name	HGNC, UniProt	EC number 1	EC number 2
MMP1	MMP1, P03956	3.4.24.7	–
MMP2	MMP2, P08253	3.4.24.24	–
MMP3	MMP3, P08254	3.4.24.17	–
MMP7	MMP7, P09237	3.4.24.23	–
MMP8	MMP8, P22894	3.4.24.34	–
MMP9	MMP9, P14780	3.4.24.35	–

Enzyme Name	HGNC, UniProt	EC number 1	EC number 2
MMP10	MMP10, P09238	3.4.24.22	–
MMP11	MMP11, P24347	3.4.24.65	–
MMP12	MMP12, P39900	3.4.24.23	–
MMP13	MMP13, P45452	3.4.24.80	–
MMP14	MMP14, P50281	3.4.24.80	–
MMP15	MMP15, P51511	3.4.24.80	–

Enzyme Name	HGNC, UniProt	EC number 1	EC number 2
MMP16	MMP16, P51512	3.4.24.-	–
MMP17	MMP17, Q9ULZ9	3.4.24.-	–
MMP18	MMP19, Q9542	3.4.24.-	–
MMP19	MMP19, Q9542	3.4.24.-	–
MMP20	MMP20, Q60882	3.4.24.-	–
MMP21	MMP21, Q8N119	3.4.24.-	–
MMP22	MMP22, Q75900	3.4.24.-	–
MMP23	MMP23, Q9Y5R2	3.4.24.-	–

Footnotes

- S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2013/14: Enzymes. British Journal of Pharmacology (2013) 170, 1797–1867
- Searchable database: http://www.guidetopharmacology.org/index.jsp
Comments: A number of small molecule ‘broad spectrum’ inhibitors of MMP have been described, including marimastat and batimastat.

Tissue inhibitors of metalloproteinase (TIMP) proteins are endogenous inhibitors acting to chelate MMP proteins: TIMP1 (TIMP1, P01033), TIMP2 (TIMP2, P16035), TIMP3 (TIMP3, P35625), TIMP4 (TIMP4, Q99727)

ADAM metallopeptidases

Overview: ADAM (A Disintegrin And Metalloproteinase domain containing proteins) metalloproteinases cleave cell-surface or transmembrane proteins to generate soluble and membrane-limited products.

ADAMTS metallopeptidases

Overview: ADAMTS (with thrombospondin motifs) metalloproteinases cleave cell-surface or transmembrane proteins to generate soluble and membrane-limited products.
Peptidases and Proteinases

Nomenclature	ADAMTS12	ADAMTS13
HGNC, UniProt	ADAMTS12, P58397	ADAMTS13, Q76LX8
Comment	Loss-of-function mutations of autoimmune antibodies are associated with thrombotic thrombocytopenic purpura	

Serine (S) Peptidases

Nomenclature	Cathepsin A	Vitellogenic carboxypeptidase-like protein	Prolylcarboxypeptidase	Serine carboxypeptidase 1	Dipeptidyl peptidase 4	Dipeptidyl-peptidase 7
HGNC, UniProt	CTSA, P10619	CPVL, Q9H3G5	PRCP, P42785	SCPEP1, Q9H4B0	DPP4, P27487	DPP7, Q9HUL4
EC number	3.4.16.5	3.4.16.2	3.4.16-	3.4.16-	3.4.14.5	3.4.14.2
Endogenous substrates	Peptide	Peptide	glucagon-like peptide 1			

Further reading

Aiken A, Khokha R. (2010) Unraveling metalloproteinase function in skeletal biology and disease using genetically altered mice. *Biochim Biophys Acta* 1803: 121–132. [PMID: 19616584]

Bindom SM, Lazartigues E. (2009) The sweeter side of ACE2: physiological evidence for a role in diabetes. *Mol Cell Endocrinol* 302: 193–202. [PMID: 18948167]

Catania JM, Chen G, Parrish AR. (2007) Role of matrix metalloproteinases in renal pathophysiology. *Am J Physiol Renal Physiol* 292: F905–F911. [PMID: 17190907]

Charrier-Hisamuddin L, Laboisse CL, Merlin D. (2008) ADAM-15: a metalloprotease that mediates inflammation. *FASEB J* 22: 641–653. [PMID: 17905725]

Clark IM, Swingler TE, Sampieri CL, Edwards DR. (2008) The regulation of matrix metalloproteinases and their inhibitors. *Int J Biochem Cell Biol* 40: 1362–1378. [PMID: 18258475]

Danser AH, Batenburg WW, van den Meiracker AH, Danilov SM. (2007) ACE phenotyping as a first step toward personalized medicine for ACE inhibitors. Why does ACE genotyping not predict the therapeutic efficacy of ACE inhibition?. *Pharmacol Ther* 113: 607–618. [PMID: 17257685]

Devel L, Czarny B, Beau F, Georgiadis D, Stura E, Dive V. (2010) Third generation of matrix metalloproteinase inhibitors: Gain in selectivity by targeting the depth of the S1’ cavity. *Biochimie* 92: 1501–1508. [PMID: 20696203]

Drucker DJ. (2007) The role of gut hormones in glucose homeostasis. *Diabetes* 56: 24–32. [PMID: 16906762]

Ferrario CM. (2011) ACE2: more of Ang-(1–7) or less Ang II?. *Curr Opin Nephrol Hypertens* 20: 1–6. [PMID: 21045683]

Ferrario CM, Varagic J. (2010) The ANG-(1–7)/ACE2/mas axis in the regulation of nephron function. *Am J Physiol Renal Physiol* 298: F1297–F1305. [PMID: 20375118]

Ferrario CM, Varagic J. (2010) The ANG-(1–7)/ACE2/mas axis in the regulation of nephron function. *Am J Physiol Renal Physiol* 298: F1297–F1305. [PMID: 20375118]

Ferrario CM, Varagic J. (2010) The ANG-(1–7)/ACE2/mas axis in the regulation of nephron function. *Am J Physiol Renal Physiol* 298: F1297–F1305. [PMID: 20375118]

Ferrario CM, Varagic J. (2010) The ANG-(1–7)/ACE2/mas axis in the regulation of nephron function. *Am J Physiol Renal Physiol* 298: F1297–F1305. [PMID: 20375118]

Gingras D, Béliveau R. (2010) Emerging concepts in the regulation of membrane-type 1 matrix metalloproteinase activity. *Biochim Biophys Acta* 1803: 142–150. [PMID: 19409422]

Greenlee KJ, Werb Z, Kheradmand F. (2007) Matrix metalloproteinases in lung: multiple, multifaceted, and multifaceted. *Physiol Rev* 87: 69–98. [PMID: 17237343]

Gupta SP. (2007) Quantitative structure-activity relationship studies on zinc-containing metalloproteinase inhibitors. *Chem Rev* 107: 3042–3087. [PMID: 17622180]

Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO. (2011) Regulation of matrix metalloproteinase activity in health and disease. *FEBS J* 278: 28–45. [PMID: 21087458]

Haroon N, Inman RD. (2010) Endoplasmic reticulum aminopeptidases: Biology and pathogenic potential. *Nat Rev Rheumatol* 6: 461–467. [PMID: 20531381]
Peptidases and proteinases

Pejler G, Knight SD, Henningsson F, Wernersson S. (2009) Novel insights into the biological function of mast cell carboxypeptidase A. Trends Immunol 30: 401–408. [PMID:19643669]

Pradelli LA, Bénéteau M, Ricci JE. (2010) Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci 67: 1589–1597. [PMID:20151314]

Ramos-Fernandez M, Bellollo MF, Stead LG. (2011) Matrix metalloproteinase-9 as a marker for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis 20: 47–54. [PMID:21044610]

Rosenberg GA. (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8: 205–216. [PMID:19161911]

Rudnicki M, Mayer G. (2009) Significance of genetic polymorphisms of the renin-angiotensin-aldosterone system in cardiovascular and renal disease. Pharmacogenomics 10: 463–476. [PMID:19290794]

Schulz R. (2007) Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Ann Rev Pharmacol Toxicol 47: 211–242. [PMID:17129183]

Shi L, Mao C, Xu Z, Zhang L. (2010) Angiotensin-converting enzymes and drug discovery in cardiovascular diseases. Drug Discov Today 15: 332–341. [PMID:20170743]

Taylor RC, Cullen SP, Martin SJ. (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Cancer 8: 800–808. [PMID:19005493]

Verma RP, Hansch C. (2007) Matrix metalloproteinases (MMPs): chemical-biological functions and implications for therapeutic strategies. Cell Mol Life Sci 64: 47–54. [PMID:18092933]

Page-McCaw A, Ewald AJ, Werb Z. (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8: 221–233. [PMID:17318226]

Pejler G, Knight SD, Henningsson F, Wernersson S. (2009) Novel insights into the biological function of mast cell carboxypeptidase A. Trends Immunol 30: 401–408. [PMID:19643669]

Pirard B. (2007) Insight into the structural determinants for selective inhibition of matrix metalloproteinases. Drug Discov Today 12: 640–646. [PMID:17706545]

Pradelli LA, Bénéteau M, Ricci JE. (2010) Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci 67: 1589–1597. [PMID:20151314]

Ramos-Fernandez M, Bellollo MF, Stead LG. (2011) Matrix metalloproteinase-9 as a marker for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis 20: 47–54. [PMID:21044610]

Rosenberg GA. (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8: 205–216. [PMID:19161911]

Rudnicki M, Mayer G. (2009) Significance of genetic polymorphisms of the renin-angiotensin-aldosterone system in cardiovascular and renal disease. Pharmacogenomics 10: 463–476. [PMID:19290794]

Schulz R. (2007) Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Ann Rev Pharmacol Toxicol 47: 211–242. [PMID:17129183]

Shi L, Mao C, Xu Z, Zhang L. (2010) Angiotensin-converting enzymes and drug discovery in cardiovascular diseases. Drug Discov Today 15: 332–341. [PMID:20170743]

Taylor RC, Cullen SP, Martin SJ. (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Cancer 8: 800–808. [PMID:19005493]

Verma RP, Hansch C. (2007) Matrix metalloproteinases (MMPs): chemical-biological functions and implications for therapeutic strategies. Cell Mol Life Sci 64: 47–54. [PMID:18092933]

Page-McCaw A, Ewald AJ, Werb Z. (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8: 221–233. [PMID:17318226]
Wolfe MS. (2009) Intramembrane proteolysis. Chem Rev 109: 1599–1612. [PMID:19226105]
Xu P, Sriramula S, Lazarigues E. (2011) ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. Am J Physiol Regul Integr Comp Physiol 300: R804–R817. [PMID:21178125]
Yan C, Boyd DD. (2007) Regulation of matrix metalloproteinase gene expression. J Cell Physiol 211: 19–26. [PMID:17167774]

Yazbeck R, Howarth GS, Abbott CA. (2009) Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease?. Trends Pharmacol Sci 30: 600–607. [PMID:19837468]
Zolkiewska A. (2008) ADAM proteases: ligand processing and modulation of the Notch pathway. Cell Mol Life Sci 65: 2056–2068. [PMID:18344021]
Protein serine/threonine kinases

Overview: Protein serine/threonine kinases (E.C. 2.7.11.-) use the co-substrate ATP to phosphorylate serine and/or threonine residues on target proteins. Analysis of the human genome suggests the presence of 518 protein kinases in man, with over 100 protein kinase-like pseudogenes [342]. It is beyond the scope of the Guide to list all these protein kinase activities; this summary focuses on AGC protein kinases associated with GPCR signalling, which may be divided into 15 subfamilies in man.

Most inhibitors of these enzymes have been assessed in cell-free investigations and so may appear to ‘lose’ potency and selectivity in intact cell assays. In particular, ambient ATP concentrations may be influential in responses to inhibitors, since the majority are directed at the ATP binding site [319].

G protein-coupled receptor kinases

Overview: G protein-coupled receptor kinases, epitomized by βARK, are involved in the rapid phosphorylation and desensitization of GPCR. Classically, high concentrations of β2-adrenoceptor agonists binding to the receptor lead to the consequent activation and dissociation of the heterotrimeric G protein Gs. Ga activates adenylyl cyclase activity, while Gβγ subunits perform other functions, one of which is to recruit βARK to phosphorylate serine/threonine residues in the cytoplasmic tail of the β2-adrenoceptor. The phosphorylated receptor binds, with high affinity, a member of the arrestin family (ENSFM00250000000572), which prevents further signalling through the G protein (uncoupling) and may allow interaction with scaffolding proteins, such as clathrin, with the possible consequence of internalization and/or degradation.

Nomenclature	Common abbreviation	HGNC, UniProt	EC number	Comment
G protein-coupled receptor kinase 1	GRK1	GRK1, Q15835	2.7.11.14	–
beta adrenergic receptor kinase 1	GRK2	ADRBK1, P25098	2.7.11.15	Protein kinase C-mediated phosphorylation increases membrane association [316,353]
beta adrenergic receptor kinase 2	GRK3	ADRBK2, P35626	2.7.11.15	–
G protein-coupled receptor kinase 4	GRK4	GRK4, P32298	2.7.11.16	Inhibited by Ca2+/calmodulin (CALM2, CALM3, CALM1, P62158) [345]
G protein-coupled receptor kinase 5	GRK5	GRK5, P34947	2.7.11.16	Phosphorylated and inhibited by protein kinase C [344]
G protein-coupled receptor kinase 6	GRK6	GRK6, P43250	2.7.11.16	–
G protein-coupled receptor kinase 7	GRK7	GRK7, Q8WTQ7	2.7.11.14, 2.7.11.16	–

Comments: Loss-of-function mutations in GRK1 or retinal and pineal gland arrestin (SAG, P10523) are associated with Oguchi disease (OMIM: 181301), a form of congenital stationary night blindness.

Protein kinase A

Overview: Cyclic AMP-mediated signalling involves regulation of cyclic nucleotide-gated ion channels, members of the Rap guanine nucleotide exchange family (Epac, ENSFM00250000000899) and activation of protein kinase A (PKA, also known as cyclic AMP-dependent protein kinase). PKA is a heterotetrameric enzyme composed of two regulatory and two catalytic subunits, which can be distinguished from Epac (exchange protein directly activated by cAMP, [320]) by differential activation by N6-benzyl-cAMP (see Table) and 8-pCPT-2′-O-Me-cAMP, respectively [337].
Protein kinase A (PKA)

Activators
- N6 benzyl-cAMP

Inhibitors (pIC50)
- Rp-cAMPS

Radioligands (Kd)
- [3H]cAMP (Activator)

Comments: Other members of the PKA family are PRKX (X-linked protein kinase, PRKX, P51817) and PRKY (Y-linked protein kinase, PRKY, O43930). PRKX and PRKY are expressed on X and Y chromosomes, respectively, and appear to interchange in some XX males and XY females [347].

Akt (Protein kinase B)

Overview: The action of phosphatidylinositol 3-kinase (PI3K), a downstream kinase activated by receptor tyrosine kinases, produces a series of phosphorylated phosphoinositides, which recruit 3-phosphoinositide-dependent kinase (PDPK1, O15530) activity to the plasma membrane, leading to activation of Akt (EC 2.7.11.11). Akt may be activated by PIP3, PDK1-mediated phosphorylation [309] and mTORC2-mediated phosphorylation [331,346].

Nomenclature
- v-akt murine thymoma viral oncogene homolog 1
- v-akt murine thymoma viral oncogene homolog 2
- v-akt murine thymoma viral oncogene homolog 3

Common abbreviation
- Akt1
- Akt2
- Akt3

HGNC, UniProt
- AKT1, P31749
- AKT2, P31751
- AKT3, Q9Y243

Selective inhibitors (pIC50)
- GSK690693 [330]

Protein kinase C (PKC)

Overview: Protein kinase C (EC 2.7.11.13) is the target for the tumour-promoting phorbol esters, such as tetradecanoyl-β-phorbol acetate (TPA, also known as phorbol 12-myristate 13-acetate).

Classical protein kinase C isoforms: PKCα, PKCβ, PKCγ. Members of the classical protein kinase C family are activated by Ca²⁺ and diacylglycerol, and may be inhibited by GF109203X, calphostin C, Gö6983, chelerythrine and Ro318220.

Nomenclature
- protein kinase C, alpha
- protein kinase C, beta
- protein kinase C, gamma

Common abbreviation
- PKCa
- PKCb
- PKCc

HGNC, UniProt
- PRKCA, P17252
- PRKCB, P05771
- PRKCG, P05129

Selective inhibitors (pIC50)
- ruboxistaurin (8.3) [334], CGP53353 (6.4) [313]

Novel protein kinase C isoforms: PKCδ, PKCε, PKCη, PKCθ and PKCζ. Members of the novel protein kinase C family are activated by diacylglycerol and may be inhibited by calphostin C, Gö6983 and chelerythrine.

Searchable database: http://www.guidetopharmacology.org/index.jsp

Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full

Protein serine/threonine kinases

S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2013/14: Enzymes. British Journal of Pharmacology (2013) 170, 1797-1867
Nomenclature	protein kinase C, delta	protein kinase C, epsilon	protein kinase C, eta	protein kinase C, theta	protein kinase D1
Common abbreviation | PKCδ | PKCε | PKCη | PKCθ | PKD1
HGNC, UniProt | PRKCD, Q05655 | PRKCE, Q02156 | PRKCH, P24723 | PRKCQ, Q04759 | PRKD1, Q15139

Atypical protein kinase C isoforms

Nomenclature | protein kinase C, iota | protein kinase C, zeta
--- | ---
Common abbreviation | PKCι | PKCζ
HGNC, UniProt | PRKCI, P41743 | PRKCZ, Q05513
Endogenous activators | – | arachidonic acid [343]
Comment | Known as PKCλ in rodents | –

Protein kinase G (PKG)

Overview: Cyclic GMP-dependent protein kinase (EC 2.7.11.12) is a dimeric enzyme activated by cGMP generated by particulate guanylyl cyclases or soluble guanylyl cyclases.

Protein kinase G (PKG) 1	Protein kinase G (PKG) 2
Nomenclature | PKG1 | PKG2
HGNC, UniProt | PRKG1, Q13976 | PRKG2, Q13237
EC number | 2.7.11.12 | 2.7.11.12
Selective inhibitors (pI50) | Rp-8-CPT-cGMPS [312] | –

Mitogen-activated protein kinases (MAP kinases)

Overview: MAP kinases (CMGC kinases, ENSF0000000137, EC 2.7.11.24) may be divided into three major families: ERK, JNK and p38 MAP kinases.

ERK may be activated by phosphorylation by the dual specificity mitogen-activated kinase kinases, MAP2K1 (Q02750, also known as MEK1) and MAP2K2 (P36507, also known as MEK2). The inhibitors PD98059 [308,322] and U0126 [323,325] act to inhibit these enzymes [319], and are used to inhibit ERK1 and ERK2.

mitogen-activated protein kinase 1	mitogen-activated protein kinase 3
Nomenclature | MAPK1, P28482 | MAPK3, P27361
Common abbreviation | ERK2 | ERK1
JNK may be activated by phosphorylation by the dual specificity mitogen-activated kinase kinases, MAP2K4 (P45985, also known as JNKK1) and MAP2K7 (O14733, also known as JNKK2).

Nomenclature	Common abbreviation	HGNC, UniProt	Selective inhibitors (pIC_{50})
mitogen-activated protein kinase 8	JNK1	MAPK8, P45983	SP600125 (7.4) [311]
mitogen-activated protein kinase 9	JNK2	MAPK9, P45984	SP600125 (7.4) [311]
mitogen-activated protein kinase 10	JNK3	MAPK10, P53779	SP600125 (7.05) [311]

p38 may be activated by phosphorylation by the dual specificity mitogen-activated kinase kinases, MAP2K3 (P46734, also known as MEK3) and MAP2K6 (P52564, also known as SAPKK3).

Nomenclature	Common abbreviation	HGNC, UniProt	Selective inhibitors (pIC_{50})
mitogen-activated protein kinase 11	p38β	MAPK11, Q15759	SB202190 [341], SB203580 (pK 7.0) [324]
mitogen-activated protein kinase 12	p38γ	MAPK12, P53778	–
mitogen-activated protein kinase 13	p38δ	MAPK13, O15264	–
mitogen-activated protein kinase 14	p38α	MAPK14, Q16539	SB203580 (pK 8.0) [324]

Rho kinase

Overview: Rho kinase (also known as P160ROCK, Rho-activated kinase) is activated by members of the Rho small G protein family (ENSFM00500000269651), which are activated by GTP exchange factors, such as ARHGEF1 (Q92888, p115-RhoGEF), which in turn may be activated by G_{12/13} subunits [339].
Other AGC kinases

Overview: For many of these remaining protein kinases, there is less information about the regulation and substrate specificity, as well as a paucity of pharmacological data.

Nomenclature	Common abbreviation	HGNC, UniProt	EC number	Comment	
dystrophia myotonica-protein kinase	DMPK1	DMPK, Q90913	2.7.11.1	Reduced expression of DMPK is associated with myotonic dystrophy 1 [336]	
CDC42 binding protein kinase gamma (DMPK-like)	DMPK2	CDC42BPG, Q6DT37	2.7.11.1	–	
CDC42 binding protein kinase alpha (DMPK-like)	MRCKα	CDC42BPA, Q5VT25	2.7.11.1	Reported to have a role in cellular iron regulation [317]	
CDC42 binding protein kinase beta (DMPK-like)	MRCKβ	CDC42BPB, Q9Y5S2	2.7.11.1	Reported to be involved in cell migration [332]	
citron (rho-interacting, serine/threonine kinase 21)	CRIT	CRIT, Q14578	2.7.11.1	Shares structural homology with the Rho kinases	
Microtubule associated serine/threonine kinase 1	MAST1	MAST1, Q9Y2H9	2.7.11.1	Members of the microtubule-associated serine/threonine kinase family appear to have a role in platelet production [335] and inflammatory bowel disease [340]	
Microtubule associated serine/threonine kinase 2	MAST2	MAST2, Q6P0Q8	2.7.11.1	See comment for MAST1	
Microtubule associated serine/threonine kinase 3	MAST3	MAST3, Q60307	2.7.11.1	See comment for MAST1	
Microtubule associated serine/threonine kinase 4	MAST4	MAST4, Q15021	2.7.11.1	See comment for MAST1	
Microtubule associated serine/threonine kinase-like	MASTL	MASTL, Q96GXS	2.7.11.1	See comment for MAST1	
large tumor suppressor kinase 1	LATS1	LATS1, Q958SI	2.7.11.1	The large tumour suppressor protein kinases are phosphorylated and activated by MST2 kinase (serine/threonine kinase 3, STK3, Q13188, [314])	
large tumor suppressor kinase 2	LATS2	LATS2, Q9NRMM	2.7.11.1	See comment for LATS1	
Serine/threonine kinase 38	NDR1	STK38, Q15208	2.7.11.1	–	
Serine/threonine kinase 38 like	NDR2	STK38L, Q9Y2H1	2.7.11.1	–	
3-phosphoinositide dependent protein-kinase-1	PDK1	PDK1, Q15208	2.7.11.1	–	
protein kinase N1	PKN1	PKN1, Q15208	2.7.11.13	PKN family members are activated by Rho, PIP3 and PDK1 [321]	
protein kinase N2	PKN2	PKN2, Q15208	2.7.11.13	See comment for PKN1	
protein kinase N3	PKN3	PKN3, Q6P5Z2	2.7.11.13	See comment for PKN1	
ribosomal protein S6 kinase, 90kDa, polypeptide 5	MSK1	RPS6KA5, Q7558S	2.7.11.1	The mitogen- and stress-acted protein kinases are activated by phosphorylation evoked by MAP kinases and appear to be central to that pathway of cAMP response element-binding protein phosphorylation [352]	
ribosomal protein S6 kinase, 90kDa, polypeptide 4	MSK2	RPS6K4, Q75567	2.7.11.1	See comment for MSK1	
ribosomal protein S6 kinase, 70kDa, polypeptide 1	p70S6K	RPS6KB1, P23443	2.7.11.1	Ribosomal S6 kinases 70 kDa, also known as p70k, are activated by MAP kinase-mediated phosphorylation.	RSK protein kinases are also activated by phosphorylation by TORC1 and PDK1 [333]. Substrates include ribosomal S6 protein (RPS6, P62753), GS3β (P49841) [349] and the SHT2A receptor [348]
ribosomal protein S6 kinase, 70kDa, polypeptide 2	p70S6Kβ	RPS6KB2, Q9UB50	2.7.11.1	See comment for p70S6K	
ribosomal protein S6 kinase, 90kDa, polypeptide 1	p90RSK	RPS6KA1, Q15418	2.7.11.1	Ribosomal S6 kinase 90 kDa serine/threonine kinases, also known as p90k or MAPK-activated protein kinase-1 (MAPKAP-K1), are activated by MAP kinase-mediated phosphorylation. RSK protein kinases are also activated by phosphorylation by TORC1 [327,338] and PDK1 [333]. Substrates include ribosomal S6 protein (RPS6, P62753), GS3β (P49841) [349] and the SHT2A receptor [348]	
Selected non-AGC protein kinase activities

Nomenclature	AMP kinase	Casein kinase 2	myosin light chain kinase	myosin light chain kinase 2	Calmodulin-dependent kinase II
Common abbreviation	AMPK	CK2	smMLCK	MYLK, Q15746	CalMII
HGNC, UniProt	–	–		MYLK2, Q9H13	
EC number	2.7.11.1	2.7.11.1		2.7.11.18	2.7.11.17
Endogenous activators	AMP	–	calmodulin (CALM2, CALM3,	calmodulin (CALM2, CALM3, CALM1, P62158)	calmodulin (CALM2, CALM3, CALM1, P62158)
Selective activators	AICA-riboside [318]	–	–	–	–
Selective inhibitors (pIC50)	dorsomorphin [355]	DRB [354]	–	–	K-252a [328]

Comments: AMP-activated protein kinase is a heterotrimERIC protein kinase, made up of α, β and γ subunits, while casein kinase 2 is a heterotetrameric protein kinase, made up of 2 β subunits with two other subunits of α and/or α’ composition. STO609 is an inhibitor of calmodulin kinase kinase (ENSM00000001201, [350]), an upstream activator of calmodulin-dependent kinase.
Further reading

Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM. (2013) AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. *Biochim Biophys Acta* 1834: 1302–1321. [PMID:23524293]

Breckler M, Berthouze M, Laurent AC, Crozatier B, Morel E, Lezoualc'h F. (2011) Rap-linked cAMP signaling Epac proteins: compartmentation, functioning and disease implications. *Cell Signal* 23: 1257–1266. [PMID:21402149]

Carllo D, Thornton C, Woods A, Sanders MJ. (2012) AMP-activated protein kinase: new regulation, new roles?. *Biochem J* 445: 11–27. [PMID:22702974]

Caunt CJ, Keyse SM. (2011) Drug discovery and the human kinome: recent trends. *Pharmacol Ther* 130: 144–156. [PMID:21256157]

Graves LM, Duncan JS, Whittle MC, Johnson GL. (2013) The dynamic nature of the kinome. *Biochem J* 450: 1–8. [PMID:23343193]

Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV. (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. *Pharmacol Ther* 133: 40–69. [PMID:21903131]

Hardie DG, Ross FA, Hawley SA. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. *Nat Rev Mol Cell Biol* 13: 251–262. [PMID:22436748]

Hardie DG, Ross FA, Hawley SA. (2012) AMP-activated protein kinase: a target for drugs both ancient and modern. *Chem Biol* 19: 1222–1236. [PMID:23102217]

LaFave LM, Levine RL. (2012) JAK2: the future? therapeutic strategies for JAK-dependent malignancies. *Trends Pharmacol Sci* 33: 574–582. [PMID:22995223]

Lawan A, Shi H, Gatzke F, Bennett AM. (2013) Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions. *Cell Mol Life Sci* 70: 223–237. [PMID:22695679]

Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS. (2013) Developing irreversible inhibitors of the protein kinase cysterine. *Chem Biol* 20: 146–159. [PMID:23438744]

Ljubicic V, Jasmin BJ. (2013) AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy. *Trends Mol Med* [Epub ahead of print]. [PMID:23891277]

Martin KJ, Arthur JS. (2012) Selective kinase inhibitors as tools for neuroscience research. *Neuropharmacology* 63: 1227–1237. [PMID:22846224]

Menet CJ, Rompay EV, Geney R. (2013) Advances in the discovery of selective JAK inhibitors. *Prog Med Chem* 52: 153–223. [PMID:23384668]

Mochly-Rosen D, Das K, Grimes KV. (2012) Protein kinase C, an elusive therapeutic target?. *Nat Rev Drug Discov* 11: 937–957. [PMID:23197040]

Nithianandarajah-Jones GN, Wilm B, Goldring CE, Müller J, Cross MJ. (2012) ERK5: structure, regulation and function. *Cell Signal* 24: 2187–2196. [PMID:22800864]

Pearce LR, Komander D, Alessi DR. (2010) The nuts and bolts of AGC protein kinases. *Nat Rev Mol Cell Biol* 11: 9–22. [PMID:20027184]

Russo GL, Russo M, Ungaro P. (2013) AMP-activated protein kinase: a target for old drugs against diabetes and cancer. *Biochem Pharmacol* 86: 339–350. [PMID:2347347]

Scott JD, Dessauer CW, Taskén K. (2013) Creating order from chaos: cellular regulation by kinase anchoring. *Annu Rev Pharmacol Toxicol* 53: 187–210. [PMID:23043438]

Steinberg SF. (2012) Regulation of protein kinase D1 activity. *Mol Pharmacol* 81: 284–291. [PMID:22188925]

Tarrant MK, Cole PA. (2009) The chemical biology of protein phosphorylation. *Annu Rev Biochem* 78: 797–825. [PMID:19489734]

Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP. (2013) PKA: lessons learned after twenty years. *Biochim Biophys Acta* 1834: 1271–1278. [PMID:23535202]

Vandamme J, Castermans D, Thevelein JM. (2012) Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation. *Cell Signal* 24: 1610–1618. [PMID:22522182]

Wu-Zhang AX, Newton AC. (2013) Protein kinase C pharmacology: refining the toolbox. *Biochem J* 452: 195–209. [PMID:23662807]
Sphingosine 1-phosphate turnover

Overview: S1P (sphingosine 1-phosphate) is a pro-survival signal, in contrast to ceramide. It is formed by the sphingosine kinase-catalysed phosphorylation of sphingosine. S1P can be released from cells to act as an agonist at a family of five G protein-coupled receptors (S1P₁₋₅) but also has intracellular targets. S1P can be dephosphorylated back to sphingosine or hydrolysed to form hexadecanal and phosphoethanolamine. Sphingosine choline phosphotransferase (EC 2.7.8.10) generates sphingosylphosphocholine from sphingosine and CDP-choline. Sphingosine β-galactosyltransferase (EC 2.4.1.23) generates psychosine from sphingosine in the presence of UDP-α-D-galactose. The molecular identities of these enzymes have not been confirmed.

Nomenclature	Common abbreviation	HGNC, UniProt	EC number	Comment
sphingosine kinase 1	SPHK1	SPHK1, Q9NYA1	2.7.1.91: sphingosine + ATP = sphingosine 1-phosphate + ADP, sphinganine + ATP = sphinganine 1-phosphate + ADP	Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy [359]
sphingosine kinase inhibitor [356]				
ABC294640 [357], ROMe [358]				

Sphingosine 1-phosphate phosphatase

Nomenclature	Common abbreviation	HGNC, UniProt	EC number	Comment
sphingosine-1-phosphate phosphatase 1	SGPP1	SGPP1, Q8WX5	3.1.3.-: sphingosine 1-phosphate -> sphingosine + inorganic phosphate	Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy [359]
sphingosine-1-phosphate phosphatase 2	SGPP2			

Sphingosine 1-phosphate lyase

Nomenclature	HGNC, UniProt	EC number	Cofactors	Comment
sphingosine-1-phosphate lyase 1	SGPL1, Q9S470	4.1.2.27: sphinganine 1-phosphate -> phosphoethanolamine + hexadecanal	pyridoxal phosphate	THI (2-Acetyl-5-tetrahydroxybutyl imidazole) inhibits the enzyme activity in intact cell preparations [362]
Further reading

Baker DL, Pham TC, Sparks MA. (2013) Structure and catalytic function of sphingosine kinases: analysis by site-directed mutagenesis and enzyme kinetics. *Biochim Biophys Acta* **1831**: 139–146. [PMID:23000541]

Chan H, Pitson SM. (2013) Post-translational regulation of sphingosine kinases. *Biochim Biophys Acta* **1831**: 147–156. [PMID:22801036]

Kunkel GT, Maceyka M, Milstien S, Spiegel S. (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. *Nat Rev Drug Discov* **12**: 688–702. [PMID:23954895]

Le Stunff H, Peterson C, Thornton R, Milstien S, Mandala SM, Spiegel S. (2002) Characterization of murine sphingosine-1-phosphate phosphohydrolase. *J Biol Chem* **277**: 8920–8927. [PMID:11756451]

Ogawa C, Kihara A, Gokoh M, Igarashi Y. (2003) Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. *J Biol Chem* **278**: 1268–1272. [PMID:12411432]

Pyne NJ, Pyne S. (2010) Sphingosine 1-phosphate and cancer. *Nat Rev Cancer* **10**: 489–503. [PMID:20555359]

Pyne S, Pyne NJ. (2011) Translational aspects of sphingosine 1-phosphate biology. *Trends Mol Med* **17**: 463–472. [PMID:21514226]

Saba JD, de la Garza-Rodea AS. (2013) S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase. *Biochim Biophys Acta* **1831**: 167–175. [PMID:22750505]

Schwalm S, Pfeilschifter J, Huwiler A. (2013) Sphingosine-1-phosphate: a Janus-faced mediator of fibrotic diseases. *Biochim Biophys Acta* **1831**: 239–250. [PMID:22889995]
Thyroid hormone turnover

Overview: The thyroid hormones triiodothyronine and thyroxine, usually abbreviated as T3 and T4, respectively, are synthesized in the thyroid gland by sequential metabolism of tyrosine residues in the glycosylated homodimeric protein thyroglobulin (TG, P01266) under the influence of the haem-containing protein iodide peroxidase. Iodide peroxidase/TPO is a haem-containing enzyme, from the same structural family as eosinophil peroxidase (EPX, P11678), lactoperoxidase (LPO, P22079) and myeloperoxidase (MPO, P05164). Circulating thyroid hormone is bound to thyroxine-binding globulin (SERPINA7, P05543).

Tissue deiodinases. These are 1 TM selenoproteins that remove an iodine from T4 (3,3',5,5'-tetraiodothyronine) to generate T3 (3,3',5-triiodothyronine, a more potent agonist at thyroid hormone receptors) or rT3 (rT3, 3,3',5'-triiodothyronine, a relatively inactive analogue). DIO1 is also able to deiodinate RT3 to form 3,3'-diiodothyronine (T2). Iodotyrosine deiodinase is a 1TM homodimeric enzyme.

Further reading

Bianco AC. (2011) Minireview: cracking the metabolic code for thyroid hormone signaling. Endocrinology 152: 3306–3311. [PMID:21712363]

Boelen A, Kwakkel J, Fliers E. (2011) Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev 32: 670–693. [PMID:21791567]

Darras VM, Van Herck SL. (2012) Iodothyronine deiodinase structure and function: from ascidians to humans. J Endocrinol 215: 189–206. [PMID:22825922]

Dentice M, Salvatore D. (2011) Deiodinases: the balance of thyroid hormone: local impact of thyroid hormone inactivation. J Endocrinol 209: 273–282. [PMID:21398344]
Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeöld A, Bianco AC. (2008) Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. *Endocr Rev* **29**: 898–938. [PMID:18815314]

Gereben B, Zeöld A, Dentice M, Salvatore D, Bianco AC. (2008) Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. *Cell Mol Life Sci* **65**: 570–590. [PMID:17989921]

Maia AL, Goemann IM, Meyer EL, Wajner SM. (2011) Deiodinases: the balance of thyroid hormone: type 1 iodothyronine deiodinase in human physiology and disease. *J Endocrinol* **209**: 283–297. [PMID:21415143]

Orozco A, Valverde-R C, Olvera A, García-G C. (2012) Iodothyronine deiodinases: a functional and evolutionary perspective. *J Endocrinol* **215**: 207–219. [PMID:22872760]

Rokita SE, Adler JM, McTamney PM, Watson Jr JA. (2010) Efficient use and recycling of the micronutrient iodide in mammals. *Biochimie* **92**: 1227–1235. [PMID:20167242]

Waung JA, Bassett JH, Williams GR. (2012) Thyroid hormone metabolism in skeletal development and adult bone maintenance. *Trends Endocrinol Metab* **23**: 155–162. [PMID:22169753]

Williams GR, Bassett JH. (2011) Deiodinases: the balance of thyroid hormone: local control of thyroid hormone action: role of type 2 deiodinase. *J Endocrinol* **209**: 261–272. [PMID:21292729]

Searchable database: http://www.guidetopharmacology.org/index.jsp
Full Contents of Concise Guide: http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full
References

1. Overington JP et al. (2006) Nat Rev Drug Discovery 5: 993–996.
2. Rask-Andersen M et al. (2013) Annu Rev Pharmacol Toxicol in press. PM:24016212
3. Bellier JP, Kimura H. (2011) J Chem Neuroanat 42: 225–235. [PMID:21382474]
4. Galli A et al. (1994) Eur J Pharmacol 270: 189–193. [PMID:8039548]
5. Giacobini E. (2003) Neurochem Res 28: 515–522. [PMID:12675140]
6. Luo W et al. (2006) J Med Chem 49: 2174–2185. [PMID:16570913]
7. Wilson IB, Harrison MA. (1961) J Biol Chem 236: 2292–2295. [PMID:13785664]
8. Agarwal RP et al. (1977) Biochem Pharmacol 26: 359–367. [PMID:849330]
9. Burger RM, Lowenstein JM. (1961) J Chem Neuroanat 42: 225–235. [PMID:21382474]
10. Guranowski A et al. (1981) Biochemistry 20: 110–115. [PMID:7470463]
11. Jarvis MF et al. (2000) Pharmacol Exp Ther 295: 1156–1164. [PMID:11082453]
12. Rask-Andersen M et al. (2011) Arch Biochem Biophys 508: 1–12. [PMID:21176768]
13. Giacobini E. (2003) Neurochem Res 28: 515–522. [PMID:12675140]
14. Luo W et al. (2006) J Med Chem 49: 2174–2185. [PMID:16570913]
15. Wilson IB, Harrison MA. (1961) J Biol Chem 236: 2292–2295. [PMID:13785664]
16. Agarwal RP et al. (1977) Biochem Pharmacol 26: 359–367. [PMID:849330]
17. Burger RM, Lowenstein JM. (1961) J Chem Neuroanat 42: 225–235. [PMID:21382474]
18. Guranowski A et al. (1981) Biochemistry 20: 110–115. [PMID:7470463]
19. Jarvis MF et al. (2000) Pharmacol Exp Ther 295: 1156–1164. [PMID:11082453]
20. Rask-Andersen M et al. (2011) Arch Biochem Biophys 508: 1–12. [PMID:21176768]
21. Giacobini E. (2003) Neurochem Res 28: 515–522. [PMID:12675140]
22. Luo W et al. (2006) J Med Chem 49: 2174–2185. [PMID:16570913]
23. Wilson IB, Harrison MA. (1961) J Biol Chem 236: 2292–2295. [PMID:13785664]
24. Agarwal RP et al. (1977) Biochem Pharmacol 26: 359–367. [PMID:849330]
25. Burger RM, Lowenstein JM. (1961) J Chem Neuroanat 42: 225–235. [PMID:21382474]
