Effect of Niobium Oxide Incorporation on Optical Properties of Sodium Bismuth Borate Glasses

Hossam M. Gomaa, Saeid M. Elkatlawy and Ahmed H. El-Dokey

Abstract: Glasses with the chemical compositions 60% B₂O₃–20% Na₂O–(20–x) % Bi₂O₃–x% Nb₂O₅ (where, x = 0, 5, 10 and 15 mol. %), were prepared by fast quenching of their melts. Characteristics of the obtained solids were checked by XRD, FTIR and optical absorption spectroscopy. XRD data confirmed the amorphous nature of the glass samples. FTIR results revealed no changes in the ratio of the structural units BO₃:BO₄ when replacing Bi₂O₃ by Nb₂O₅. Moreover, both Bi⁵⁺ and Nb⁵⁺ cations occupied octahedral coordination states and both acted as glass network modifiers. Optical studies affirmed that the lowest value of both direct and indirect optical band gaps was obtained in samples with equal concentration of Nb₂O₅ and Bi₂O₃. All optical absorption bands were elucidated in terms of the terminal oxygen atoms around Nb⁵⁺ and/or Bi⁵⁺ cations. The optical nonlinearity of the glass samples was assessed in terms of absorption coefficient and the value of the optical band gap.

Keywords: Sodium Bismuth Niobium Borate Glass, Absorption Coefficient, Direct and Indirect Optical Band Gaps, Optical Nonlinearity

Introduction

Nonlinear optical behavior of amorphous materials has been extensively studied by several researchers because of its promising usage in photonic devices applications (Boyd, 2003; Sutherland, 2003). In this regard, bismuth borate glasses have caught great attention due to their facile and low cost synthesis, enhanced mechanical and chemical stability, in addition to the large range of nonlinear refractive index and nonlinear absorption coefficient. Bismuth oxide doesn’t play the role of a glass former; it is rather a good modifier that enhances optical, thermal and structural characteristics of the glass (Oo et al., 2013; Shanmugavelu et al., 2013). Furthermore, borate glasses doped with heavy metal oxides show interesting nonlinear optical properties and have different application in microscopic lens designing (Ehrt, 2000). Bismuth oxide doesn’t play the role of a glass former; it is rather a good modifier that enhances optical, thermal and structural characteristics of the glass (Oo et al., 2012). It also increases the ratio of the non-bridging oxygen (NBO) and therefore enhances the glass absorbability (Chen et al., 2008; Pal Singh et al., 2012). The decrease of the number of NBO is associated to an increase in the optical band gap (Novatski et al., 2008). Bismuth is likely occupying octahedral coordination in the Bi₂O₃ oxide inside the glass network, which contributes in the existence of NBO (Rajendran et al., 2003). The presence of transition metal niobium oxide Nb₂O₅ in glasses elevates chemical stability and improves the mechanical properties (Sene et al., 2004). It was reported that introducing niobium oxide into the glass matrix increases the activation energy and the glass transition temperature T_g (Sene et al., 2004). Optical properties such as optical band gap and optical bacity were strongly improved when Nb₂O₅ was introduced into the glass system containing Bi₂O₃ (Sanghi et al., 2010; Swapna et al., 2017). The largest value of the non-linear refractive index was reported to glasses containing empty d shell transition metal ions such as Nb⁵⁺ (Cardinal et al., 1997). Furthermore, by incorporating Nb₂O₅ in the glass network, the Nb⁵⁺ cation acts as a network former and improves the third order nonlinear optical susceptibility (Suhara et al., 2012). The usual coordination of Nb⁵⁺ cation in oxide glasses is octahedral. Therefore, niobium atoms are located in octahedral sites. The non-linear refractive index was reported to increase proportionally to the concentration of Nb⁵⁺ cation in the glass system (Couzi et al., 1996). It was assumed that the polarization of the niobium oxygen bond is the main contribution to the optical non-linearity (Cardinal et al., 1997).
The aim of the present work is to study the optical characteristics of sodium bismuth niobium borate glasses in relation to the replacement of bismuth oxide by niobium oxide.

Experimental Work

High purity starting materials, not less than 99%, were used to prepare the suggested compositions, as indicated in Table (1). To find out the role of each oxide in the mixture, the field strength was calculated for each oxide using relation (1):

\[F_{\text{ox}} = \frac{2Z}{r_c + r_o} \]

where, \(F \) is the field strength of oxide \(C_{a}O_{b} \), \(Z \) and \(r \) are the oxidation state and covalent radius of the cation \(C \) and \(r_o \) is the covalent radius of oxygen ion (Pye, 2005; Rao, 2002; Shelby and Lopes, 2007).

Oxide precursors were weighted by 4-digits balance, mixed well together in porcelain crucibles and then melted for 2 h at 900±50°C, in an electric furnace. Melts were then solidified by rapid quenching in air onto pre-cooled porcelain plates. X-ray powder diffractometer (Rigaku Miniflex, Japan), with Cu Kα radiation (1.54 Å), was used for XRD analysis in order to check the formation of glasses. In order to obtain information about structural units for the studied samples, infrared spectra were recorded using Fourier Transform Infrared (FTIR) Jasco 5300 spectrometer. Parts of the solidified glass samples were powdered and diluted in dry KBr, pressed in pellets form and measured at room temperature over the range from 4000 to 400 cm\(^{-1}\). Optical absorption spectra were recorded in the range from 200 to 2500 nm using Genway 6405 UV-VIS spectrophotometer.

Results and Discussion

XRD Data

Figure 1 shows the x-ray diffractograms of all samples, with no observed sharp peaks. Only one broad hump was observed around \(2\theta = 47^o \). Such observation refers to the amorphous nature of the prepared solids, with short ordered structure. Each sample, in the studied glasses, contains 60 mol. % of \(B_2O_3 \) which is considered as the glass former oxide with two remarkable structural units \(BO_3 \) and \(BO_4 \). In addition to 20 mol. % of both \((B_2O_3 + Nb_2O_5) \), that are considered as intermediate oxides with the ability to act as glass network formers and/or glass network modifiers. From x-ray diffraction tables, the hump observed at \(2\theta = 20^o \) is a characteristic of the non-crystalline \(Bi_2O_3 \) (Junjiang et al., 2002). This result affirms that some/all \(Bi_2O_3 \) did not participate in the glass matrix as a glass former, but rather as a network modifier.

FTIR Spectra

Figure 2 shows the FTIR spectra for all glass samples and it is clear that the spectrum of each sample can be divided into two spectral zones. The first zone shows the vibrational bands of \(OH^- \) groups, in the wavenumber from 4000 to 1800 cm\(^{-1}\) (El-Maaref et al., 2017; Yiannopoulos et al., 2001). While the second zone, limited in the range from 1800 to 400 cm\(^{-1}\), contains four broad vibrational bands centered at 1370, 980, 703 and 456 cm\(^{-1}\). Referring to the related previous publications, all observed bands in the second zone were attributed to their structural units or bonds. Whereas, the bands centered at 1370 and 980 cm\(^{-1}\) are due to asymmetric stretching vibrations of \(B-O \) in \(BO_3 \) units (El-Maaref et al., 2017; Yiannopoulos et al., 2001) and stretching vibrations of \(B-O \) in \(BO_4 \) units, respectively (Rao et al., 2016). Band located around 703 cm\(^{-1}\) may be attributed to the bending vibrations of oxygen atoms in \(B-O-B \) in \(BO_3 \) units and/or symmetric stretching of the edge-sharing oxygen atoms in \(Nb-O \) bond of in \(NbO_5 \) groups (Balachander et al., 2013; Fragoso et al., 2005). Such band may indicate that \(Nb^{5+} \) have octahedral coordination numbers, which indicates that these cations did not share in the glass network but occupy the interstitial vacancies. While 456 cm\(^{-1}\) band is due to the \(Bi-O \) valence band vibrations of \(BiO_6 \) structural units and/or the angle modification of the boron oxygen bond linkage (El-Maaref et al., 2017; Sutherland, 2003).

Moreover, it is clear that bands of \(BO_4 \) became higher and broader than those of \(BO_3 \) when \(B_2O_3 \) is replaced by \(Nb_2O_5 \). In other words, the relative number of compositional group \(BO_3 \) decreased while that of \(BO_4 \) increased when \(B_2O_3 \) replaced by \(Nb_2O_5 \), as seen in Fig. 3.
Fig. 1: X-ray diffraction pattern for all samples

Fig. 2: FTIR spectra for all samples, with functional groups assigned
This behavior is due to the richness of Nb$_2$O$_5$ in oxygen than B$_2$O$_3$. Therefore, it can be concluded that the increase in Nb$_2$O$_5$ concentration induces the glass matrix to be more homogenous and open structure, in agreement with the published work (Yiannopoulos et al., 2001).

Optical Absorption Spectra

Figure 4 shows the relative optical absorption spectra of the studied glasses. All samples have the same cutoff wavelength ($\lambda_{cutoff} = 443$ nm), with no observed absorption peaks in UV region (200–400 nm). By careful inspection of Fig. 4, two well defined absorption bands can be observed; the first one is a broad band extended from 700 nm to 1000 nm, its center shifted from 810 to 825 nm (red shift) when Bi$_2$O$_3$ was exchanged by Nb$_2$O$_5$. The second band appeared in region from 1000 to 2500 nm and is peaked at 1745 nm. The red shift noticed from 810 nm to 825 nm may be attributed to the change in the glass optical basicity because of the variations of OH– groups, in addition to presence of niobium oxide and the consequence change in the energy levels (Duffy and Ingram, 1971; Stehle et al., 1998). Also, it is clear that the increase of Nb$_2$O$_5$ content increased the intensity and broadness of the absorption peaks. Such behavior may indicate that, the content of OH– in the glass network increased by increasing Nb$_2$O$_5$, the thing which mean low density, high molar volume and good amorphous nature for the studied glass system.

On the other hand, it is well known that the analysis of absorption edges gives precise information about the value of optical band gap (Hodgson, 2012; Meyer et al., 1998). It is also known that the value of absorption coefficient α increase as a consequence of light absorption. This change in α is known as the fundamental absorption edge and is related to the absorbed energy by the relations given (Davis and Mott, 1970; Tauc and Menth, 1972) for direct allowed transitions by $\alpha h\nu \propto (h\nu - E_{opt})^{1/2}$ and for indirect allowed transitions by $\alpha h\nu \propto (h\nu - E_{opt})$, where $h\nu$ is the incident photon energy and E_{opt} is the optical energy gap.
Table 2: Values of cutoff frequency, direct band gap, and indirect band gap for the four samples

x % Nb₂O₅	λ_{cutoff} (nm)	(E_{cutoff}) (eV)	(E_{opt}) (eV)
0	2.43	1.63	
5	443	2.06	1.24
10	1.95	0.58	
15	2.20	1.04	

Fig. 4: Relative absorption spectra for all samples in between 200 and 2500 nm

Fig. 5: (αhv)^2 vs. hv for direct allowed transition in the niobium free (x=0) and bismuth free (x=15) samples
From this, one can obtain the value of the band gap for direct allowed transitions by plotting the relationship between $(\alpha h v)^2$ on the ordinate axis vs. the photon energy $h v$ on the abscissa and by extrapolating the linear part of the curve we obtain the value from the interception on the $h v$ axis. By a similar way, the indirect allowed transitions can be obtained by plotting the relation between $(\alpha h v)^2$ and the photon energy $h v$. The values of the direct and indirect allowed transitions of sample with concentration $x = 0$ and $x = 15$ mol. % are shown in Fig. 5 and 6, respectively, as representative figures. The values of optical band gaps are tabulated in Table (2) for both direct allowed (E_{opt}^d) and indirect (E_{opt}^i) allowed transitions. By inspecting Table (2), it can be concluded that both band gaps showed slight decrease as Bi_2O_3 replaced by Nb_2O_5.

Table (2), shows the variation of both direct and indirect optical absorption energy with increasing the niobium contents in glasses. It is clear that, values of both Sn^2 (E_{opt}^d) are decreased until reach their lowest values at concentration $x=10$ mol. % and then increased slightly again until reaching constant values. This result agrees with the literature (Sanghi et al., 2010). This behavior may be attributed to the contributions of two factors, the first one is the increasing of the terminal oxygen atoms number which increased by increasing the concentration of Nb_2O_5 in glass samples. This factor causes the values of both direct and indirect optical absorption energy increased by increasing Nb_2O_5 in glass samples. The second one is the decreasing fraction of Bi_2O_3 which in turn decreases the polarizability and decreases refractive index and finally decreases the values of both direct and indirect optical absorption energy gaps. It is obviously, clear that the second factor is more predominant one in these samples. Lowest values of both (E_{opt}^d and E_{opt}^i) are obtained when $x=10$ mol. %. This is the case when the concentrations of both bismuth oxide and niobium oxide are the same, i.e. it is the case, of the highest value of the number of non-bridging oxygen. This result indicates that, the sample with the best nonlinear properties is the one that has concentration $x = 10$ mol. %, in which the optical band gap has its lowest value. This is because the nonlinearity of the glass system is enhanced by lowering the value of the optical band gap (Meyer et al., 1998).

Conclusion

The present work aimed at studying the effect of replacing bismuth oxide Bi_2O_3 by transition metal oxide Nb_2O_5 in the sodium bismuth borate glass, until the total replacement of Bi_2O_3 by Nb_2O_5. Structural analysis results manifested the amorphous nature of the materials and the correlation between the non-bridging oxygen and the optical absorbance of the glass system. Optical spectroscopic studies showed that the presence of niobium oxides increases the absorption coefficients of the material due to the increased amount of non-bridging oxygen in the negative ligand around the positively charged transition metal cation. It also showed that one of absorption bands is completely affected by the existence of niobium oxide due to the electronic d–d transitions and the coupling between the d–electrons of Nb^{5+} and the vibrations of the negatively charged O^2- in the ligands. Results of optical band gap estimation manifested that the sample with lowest value of both optical band gap and subsequently the value of refractive index is the one in which $x=10$ mol. %. Which is the one in which the concentrations of both bismuth oxide and niobium oxide are the same, which has the highest number of non-bridging oxygen. This indicates that this sample is expected to have best nonlinear behavior, due to the aforementioned results.
Acknowledgement

Authors would like to thank Prof. A.G. Mostafa, Prof. M.Y. Hassaan and Prof. M. El-Mansy for all their support and encouragement.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished material. The corresponding author confirms that all of the other authors have read and approved the manuscript and there are no ethical issues involved.

References

Almeida, J.M.P., L. De Boni, A.C. Hernandes and C.R. Mendonça, 2011. Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses. Optics Express, 19: 17220.
DOI: 10.1364/OE.19.017220

Balachander, L., G. Ramadevudu, M. Shareefuddin, R. Sayanna and Y.C. Venudharc, 2013. IR analysis of borate glasses containing three alkali oxides. ScienceAsia, 39: 278-283.
DOI: 10.2306/SCIENCEASIA1513-1874.2013.39.278

Boyd, R.W., 2003. Nonlinear optics. Elsevier.

Cardinal, T., E. Fargin, G. Le Flem and S. Leboiteux, 1997. Correlations between structural properties of Nb2O5-NaPO3-Na2B4O7 glasses and non-linear optical activities. J. Non-Crystalline Solids, 222: 228-234. DOI: 10.1016/S0022-3093(97)90118-6

Chen, Y., Q. Nie, T. Xu, S. Dai, X. Wang and X. Shen, 2008. A study of nonlinear optical properties in Bi2O3–WO3–TeO2 glasses. Journal of Non-Crystalline Solids, 354:3468-3472.
DOI: 10.1016/J.JNONCRYSL.2008.03.005

Couzi, M., T. Cardinal, G. Le Flem and F. Evelyne, 1996. Non linear optical properties of some niobium (V) oxide glasses. Eur. J. Solid State Inorg. Chem., 33: 597-605.

Davis, E.A. and N.F. Mott, 1970. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, 22: 0903-0922. DOI: 10.1080/1478643708221061

Duffy, J.A. and M.D. Ingram, 1971. Establishment of an optical scale for Lewis basicity in inorganic oxyacids, molten salts and glasses. J. Am. Chem. Soc., 93: 6448-6454. DOI: 10.1021/JA00753A019

Ehrt, D., 2000. Structure, properties and applications of borate glasses. Glass Technol., 41: 182-185.

El-Maeref, A.A., K.H.S. Shaaban, M. Abdelawwad and Y.B. Saddeek, 2017. Optical characterizations and Judd-Ofelt analysis of Dy3+ doped borosilicate glasses. Optical Materials, 72: 169-176.
DOI: 10.1016/J.OPTMAT.2017.05.062

Farouk, M., A. Samir, F. Metawe and M. Elok, 2013. Optical absorption and structural studies of bismuth borate glasses containing Er3+ ions. J. Non-Crystalline Solids,
DOI: 10.1016/J.JNONCRYSL.2013.04.001

Figgis, B.N., 1987. Ligand field theory. Comprehensive Coordination Chemistry, 1: 213-279.

Fragoso, W.D., C. De Mello Donegá and R.L. Longo, 2005. A structural model of La2O3-Nb2O5-B2O3 glasses based upon infrared and luminescence spectroscopy and quantum chemical calculations. J. Non-Crystalline Solids, 351: 3121-3126.

Hodgson, J.N., 2012. Optical absorption and dispersion in solids. Springer US.

Hosseini, S.M. and M.D. Wan-Yusoff, 2012. Optical properties of bismuth tellurite based glass. Int. J. Molec. Sci., 13: 4623-4631.
DOI: 10.3390/IJMS13044623

Novatski, A., A. Steimacher, A.N. Medina, A.C. Bento and M. L. Baesso et al., 2008. Relations among nonbridging oxygen, optical properties, optical basicity, and color center formation in CaO–MgO aluminosilicate glasses. J. Applied Physics, 104: 094910. DOI: 10.1063/1.3010306

Oo, H.M., H. Mohamed-Kamari and M.D. Wan-Yusoff, 2012. Optical properties of bismuth tellurite based glass. Int. J. Molecular Sci., 13: 4623-4631.
DOI: 10.3390/IJMS13044623

Pal Singh, G., P. Kaur, S. Kaur and D.P. Singh, 2012. Investigation of structural, physical and optical properties of CeO2–Bi2O3–B2O3 glasses. Physica B: Condensed Matter, 407: 4168-4172.
DOI: 10.1016/J.PHYSB.2012.06.043

Pye, D., 2005. Properties of Glass-Forming Melts. 1st Edition. CRC Press. DOI: 10.1201/9781420027310

Rajendran, V., N. Palanivelu, B.K. Chaudhuri and K. Goswami, 2003. Characterisation of semiconducting V2O5–Bi2O3–TeO2 glasses through ultrasonic measurements. J. Non-Crystalline Solids, 320: 195-209. DOI: 10.1016/S0022-3093(03)00018-8

Rao, K.J., 2002. Structural Chemistry of Glasses. 1st Ed. Elsevier. DOI: 10.1016/B978-0-08-043958-7.X5017-1
Rao, P.V., G.N. Raju, P.S. Prasad, C. Laxmikanth and N. Veeraiah, 2016. Transport and spectroscopic properties of nickel ions in ZnOB$_2$O$_3$P$_2$O$_5$ glass system. Optik-Int. J. Light Electron Optics, 127: 2920-2923.

Sanghi, S., S. Rani, A. Agarwal and V. Bhatnagar, 2010. Influence of Nb$_2$O$_5$ on the structure, optical and electrical properties of alkaline borate glasses. Materi. Chemi. Phys., 120: 381-386. DOI: 10.1016/J.MATCHEMPHYS.2009.11.016

Sene, F.F., J.R. Martinelli and L. Gomes, 2004. Optical and structural characterization of rare earth doped niobium phosphate glasses. J. Non-Crystalline Solids, 348: 63-71. DOI: 10.1016/J.JNONCRYSOL.2004.08.127

Sene, F.F., J.R. Martinelli and L. Gomes. 2004. Synthesis and characterization of niobium phosphate glasses containing barium and potassium. J. Non-Crystalline Solids, 348: 30-37. DOI: 10.1016/J.JNONCRYSOL.2004.08.122

Shanmugavelu, B., V.V. Ravi Kanth Kumar, R. Kuladeep and D. Narayana Rao, 2013. Third order nonlinear optical properties of bismuth zinc borate glasses. J. Applied Phys., 114: 243-103. DOI: 10.1063/1.4858422

Shelby, J.E. and M. Lopes, 2007. Introduction to glass science and technology. Cambridge: Royal Society Chemi. DOI: 10.1039/9781847551160

Stehle, C., C. Vira, D. Hogan, S. Feller and M. Affatigato, 1998. Optical and physical properties of bismuth borate glasses related to structure. Phys. Chem. Glasses, 39: 83-86.

Suhara, T., T. Hayakawa, M. Nogami and P. Thomas, 2012. Third-order nonlinear optical properties and low-frequency Raman scattering of MO-Nb$_2$O$_5$-TeO$_2$ glasses. J. University Chemi. Technol. Metallurgy, 47: 369-373.

Sutherland, R.L., 2003. Handbook of nonlinear optics. CRC Press.

Swapna, U.G. and M. Prasad, 2017. Raman, FTIR, thermal and optical properties of TeO$_2$-Nb$_2$O$_5$-B$_2$O$_3$-V$_2$O$_5$ quaternary glass system. J. Taibah University Sci., 11: 583-592. DOI: 10.1016/J.JTUSCI.2016.02.008

Tauc, J. and A. Menth, 1972. states in the gap. J. Non-Crystalline Solids, 8: 569-585. DOI: 10.1016/0022-3093(72)90194-9

Yiannopoulos, Y.D., G.D. Chryssikos and E.I. Kamitsos, 2001. Structure and properties of alkaline earth borate glasses. Phys. Chemi. Glasses, 42: 164-172.