A CROSSED PRODUCT OF THE CAR ALGEBRA IN
THE CUNTZ ALGEBRA

M.A. AUKhADIEV, A.S. NIKITIN, A.S. SITDIKOV

ABSTRACT. In this paper we show that the Cuntz algebra can
be represented as a C*-crossed product by endomorphism of the
canonical anticommutation relations (CAR) algebra, generated by
the standard recursive fermion system.

1. INTRODUCTION

The canonical anticommutation relations algebra (CAR), generated
by fermion creation and annihilation operators, with its representa-
tions, has been well established in both physical and mathematical
aspects by the moment [5]. The mathematical research of the CAR
algebra is based primarily on the operator algebras theory [4].

The recursive construction of the CAR algebra based on the Cuntz
algebra O_2 generators was described in [5]. Since the Cuntz algebra is
finitely generated, this method is an effective instrument for research on
fermion systems properties in the framework and terms of the algebra
O_2. Moreover, such construction is extremely useful for investigation
of the quantum systems superselection structure [6] in the algebraic
quantum field theory framework [7]. The superselection sectors are the
unitary equivalence classes of irreducible representations of the observ-
able algebra, which satisfy the so-called Doplicher-Haag-Roberts and
Bucholz-Fredenhagen selection criterions [8, 9]. Such representations
can be described by means of localized endomorphisms of this alge-
bra. Hence, each sector is identified with a set of unitary equivalent
localized endomorphisms. These endomorphisms form a symmetric
C^*-tensor category with intertwining operators between localized en-
domorphisms as category morphisms between sectors. Hence, one can
extend the observable algebra by the crossed product with the endo-
morphisms category [10]. By the Doplicher-Roberts duality theorem
[11], the automorphisms group of the resulting C^*-algebra (the field

Date: April 2, 2014.
1991 Mathematics Subject Classification. Primary 46L05, 47L65.
Research supported in part by Russian Foundation for Basic Research, Grants
14-01-31358, 13-02-97054, 12-01-97016.
algebra) is a compact group and the observable algebra is a subalgebra of the field algebra, consisting of fixed points with respect to the action of this group.

In this work we consider the mathematical part of the problem. Using an injection of the CAR algebra into the Cuntz algebra, we construct a crossed product of this subalgebra by the group of integers with respect to one endomorphism of this algebra. We show that the resulting C*-algebra coincides with the Cuntz algebra. In other words, the Cuntz algebra can be described as a C*-crossed product of the CAR algebra, generated by the recursive fermion system [5].

The first part of this work contains preliminaries. The second part is a description of C*-crossed product construction of the CAR algebra in the Cuntz algebra in the framework shown in [12]. Further we show that the constructed crossed product is isomorphic to the Cuntz algebra. We compare this construction to the well-known crossed product of the Cuntz-Krieger algebra.

The research is partially supported by RFBR grants 14-01-31358, 13-02-97054, 12-01-97016.

2. Preliminaries

The Cuntz algebra \(\mathcal{O}_d \) \((d \geq 2)\) is a C*-algebra, generated by isometries \(\psi_1, \psi_2, \ldots, \psi_d \), which satisfy the following conditions:

\[
\psi_i^* \psi_j = \delta_{i,j} I, \\
\sum_{i=1}^{d} \psi_i \psi_i^* = I,
\]

where \(I \) is a unit in the algebra. The following standard notation is introduced for convenience: \(\psi_{i_1 \ldots i_m} \equiv \psi_{i_1} \psi_{i_2} \ldots \psi_{i_m} \), \(\psi_{i_1 i_2 \ldots i_m}^* \equiv \psi_{i_1}^* \psi_{i_2}^* \ldots \psi_{i_m}^* \) and \(\psi_{i_1 \ldots i_m; j_1 \ldots j_n} \equiv \psi_{i_1} \psi_{i_2} \ldots \psi_{i_m} \psi_{j_n}^* \ldots \psi_{j_1}^* \). Conditions (2.1) and (2.2) imply that the algebra \(\mathcal{O}_d \) is generated by so-called monomials – operators of type \(\psi_{i_1 \ldots i_m; j_1 \ldots j_n} \) as a linear space.

Now we define the canonical unital *-endomorphism \(\rho \) on the algebra \(\mathcal{O}_d \).

\[
\rho(X) = \sum_{i=1}^{d} \psi_i^* X \psi_i, \quad X \in \mathcal{O}_d.
\]

It is well-known that the generators \(a_m \) and \(a_n^* \) \((m, n = 1, 2, \ldots)\) of the C*-algebra CAR of fermions satisfy the following relations

\[
\{a_m, a_n\} = \{a_m^*, a_n^*\} = 0, \\
\{a_m, a_n^*\} = \delta_{m,n} I.
\]
In paper [5] K. Kawamura showed that the CAR algebra is isomorphic to $O_2^{U(1)} \subset O_2$, which consists of such elements in O_2, which are invariant under the standard action of the group $U(1)$. In other words, this subalgebra is generated by monomials

$$\psi_{i_1} \cdots \psi_{i_k} \psi^*_{j_k} \cdots \psi^*_{j_1},$$

where $i_1, \ldots, i_k, j_1, \ldots, j_k = 1, 2$. The action τ of group $U(1)$ on O_2 is given by

$$\tau(z)(\psi_i) = z\psi_i, \quad z \in U(1) \quad i = 1, 2.$$

Following the work [5] we embed the CAR algebra into O_2 by means of recursive construction, which is called the recursive fermion system (RFS). We give its definition below. In the above-mentioned work it is shown that there exists a map ζ on O_2 such that

$$a_n = \zeta^{n-1}(a), \quad n = 1, 2, \ldots$$

satisfying (2.4) and (2.5) for a fixed element $a \in O_{2d}$.

Let $a \in O_d$, $\zeta : O_d \to O_d$ be a linear map and φ be a unital $*$-endomorphism on O_d. A triple $R = (a, \zeta, \varphi)$ is called a recursive fermion system in O_d, if it satisfies the following conditions:

$$a^2 = 0, \quad \{a, a^*\} = I,$$

$$\{a, \zeta(X)\} = 0, \quad \zeta(X)^* = \zeta(X^*), \quad X \in O_2,$$

$$\zeta(X)\zeta(Y) = \varphi(XY), \quad X, Y \in O_2.$$

The embedding Φ_R of the CAR algebra into O_d, corresponding to $R = (a, \zeta, \varphi)$ is defined by the image of generators a_n ($n = 1, 2, \ldots$) of the CAR algebra in the following way.

$$\Phi_R(a_n) \equiv \zeta^{n-1}(a) \equiv (\underbrace{\zeta \circ \zeta \circ \cdots \circ \zeta}_{n-1})(a), \quad n = 1, 2, \ldots$$

By virtue of conditions (2.9)–(2.11), the following equations are verified.

$$\{\Phi_R(a_m), \Phi_R(a_n)\} = \varphi^{m-1}(\{a, \zeta^{n-m}(a)\}) = \varphi^{m-1}(0) = 0, \quad m \leq n,$$

$$\{\Phi_R(a_m), \Phi_R(a_n)^*\} = \varphi^{m-1}(\{a, \varphi^{n-m}(a^*)\}) = \varphi^{m-1}(0) = 0, \quad m < n,$$

$$\{\Phi_R(a_n), \Phi_R(a_n)^*\} = \varphi^{n-1}(\{a, a^*\}) = \varphi^{n-1}(I) = I.$$

Denote by $A_R \subset O_d$ the image of embedding. A_R is called a CAR-subalgebra, corresponding to R.
Consider the case \(d = 2 \), and define the standard recursive fermion system \(C = (a, \zeta, \varphi) \).

\[
\begin{align*}
 a &\equiv \psi_1\psi_2^*; \\
 \zeta(X) &\equiv \psi_1X\psi_1^* - \psi_2X\psi_2^*, \quad X \in \mathcal{O}_2, \\
 \varphi(X) &\equiv \rho(X) = \psi_1X\psi_1^* + \psi_2X\psi_2^*, \quad X \in \mathcal{O}_2.
\end{align*}
\]

Here \(\rho \) is the canonical endomorphism of the algebra \(\mathcal{O}_2 \) (2.3). The CAR-subalgebra, corresponding to the standard recursive fermion system \(C \) is denoted by \(\mathcal{A}_C \). We have \(\mathcal{A}_C = \mathcal{O}_2^{U(1)} \) (see [5] for details).

3. Crossed product

In this part we construct the \(C^* \)-crossed product of the algebra \(\mathcal{A}_C \) by an endomorphism \(\delta \) of this algebra in the framework of \(C^* \)-crossed product, described in [12, 15]. Consider a map \(\delta: \mathcal{A}_C \to \mathcal{O}_2 \), for any \(a \in \mathcal{A}_C \) given by

\[
\delta(a) = \psi_1av_1^*.
\]

Lemma 3.1. The map \(\delta \) is a \(* \)-endomorphism \(\delta: \mathcal{A}_C \to \mathcal{A}_C \).

Proof. The algebra \(\mathcal{A}_C \) is a \(C^* \)-subalgebra in \(\mathcal{O}_2 \), generated by monomials of type (2.6). The formula (3.1) implies that \(\delta \) is linear and involution-preserving. Since \(\psi_1 \) is an isometry, \(\delta \) is a homomorphism.

Let \(a \in \mathcal{O}_2 \) be a monomial of type (2.6) for \(k = j \). Then \(\delta(a) \) is a monomial of type (2.6) for \(k = j + 1 \). Therefore, \(\delta(a) \in \mathcal{A}_C \). It is easy to show that \(\delta \) is continuous. Thus, the image of \(\mathcal{A}_C \) under \(\delta \) is contained in \(\mathcal{A}_C \) and \(\delta \) is a \(* \)-endomorphism on \(\mathcal{A}_C \).

Let \(\gamma \) be a \(* \)-endomorphism on a \(C^* \)-algebra \(\mathcal{A} \). A linear positive continuous map \(\gamma_*: \mathcal{A} \to \mathcal{A} \), preserving involution is called a transfer operator (with respect to \(\gamma \)), if for any \(a, b \in \mathcal{A} \) the following condition is verified [15].

\[
\gamma_*(\gamma(a)b) = a\gamma_*(b)
\]

If moreover one has

\[
\gamma\gamma_*(a) = \gamma(1)a\gamma(1),
\]

for any \(a \in \mathcal{A} \), then the transfer operator \(\gamma_* \) is called full.

Define the following map on the algebra \(\mathcal{A}_C \)

\[
\delta_*(a) = \psi_1^*a\psi_1 \text{ for any } a \in \mathcal{A}_C
\]

Lemma 3.2. The map \(\delta_*, \) given by (3.4) is a full transfer operator \(\delta_*: \mathcal{A}_C \to \mathcal{A}_C \) with respect to \(\delta \).
Proof. Similarly to the proof of Lemma 3.1 one can show that δ_* is linear continuous involution-preserving, and $\delta_*(a) \in \mathcal{A}_C$ for any $a \in \mathcal{A}_C$. Positiveness of this map is obvious.

For any $a, b \in \mathcal{A}_C$ we have

$$
\delta_*(\delta(a)b) = \psi_1^* \psi_1 a \psi_2^* b \psi_1 = a \delta_*(b).
$$

This fact implies equation (3.2).

It remains to show that this transfer operator is full. Indeed, for any $a \in \mathcal{A}_C$ we have

$$
\delta \delta_*(a) = \psi_1^* \psi_1 \psi_2^* \psi_1 = \delta(1) a \delta(1),
$$

since $\delta(1) = \psi_1 I \psi_1^* = \psi_1 \psi_1^*$. This implies (3.3).

\[\square\]

Proposition 3.3. The following conditions are satisfied in the C^*-subalgebra of the Cuntz algebra, corresponding to the Recursive Fermion System, and the transfer operator δ_*.

(3.5) \hspace{1cm} \delta_* \zeta(X) = X, \quad X \in \mathcal{A}_C

(3.6) \hspace{1cm} \delta_*(a) = 0, \quad n = 0.

Proof. Equation (3.6) holds, since $a = \psi_1 \psi_2^*$:

$$
\delta_*(a) = \psi_1^* \psi_1 \psi_2^* \psi_1 = 0.
$$

By definition of ζ (2.14), we have

$$
\delta_* \zeta(X) = \psi_1^* \zeta(X) \psi_1 =
= \psi_1^* (\psi_1 X \psi_1^* - \psi_2 X \psi_2^*) \psi_1 =
= \psi_1^* \psi_1 X \psi_1^* \psi_1 - \psi_1^* \psi_2 X \psi_2^* \psi_1 = X.
$$

\[\square\]

Consider a C^*-algebra $\mathcal{B} := \mathcal{B}(\mathcal{A}_C, \psi_1)$, generated by the algebra \mathcal{A}_C and the isometry ψ_1. By definition, given in [15], \mathcal{A}_C is a coefficient algebra for \mathcal{B} if additionally the following is satisfied.

(3.7) \hspace{1cm} \psi_1 a = \delta(a) \psi_1, \quad a \in \mathcal{A}_C.

In our case this condition is satisfied, and we have the following.

Lemma 3.4. Algebra \mathcal{A}_C is a coefficient algebra for \mathcal{B}.
Denote by B_0 a vector space, consisting of finite sums:

$$
(3.8) \quad x = \psi_1^N a_{\psi_1} + \ldots + \psi_1^1 a_{\psi_1} + a_0 + a_1 \psi_1 + \ldots + a_N \psi_1^N,
$$

where $a_k, a_\tau \in \mathcal{A}_C$, $N \in \mathbb{N} \cup \{0\}$. Due to results of [12, 15], B_0 is a dense \ast-subalgebra in the \mathcal{C}^\ast-algebra B. Denote $\mathcal{A}_k = a_k \psi_1^k$ and $\mathcal{A}_{-k} = \psi_1^k a_k$.

The following condition, denoted by (\ast), provides uniqueness of decomposition (3.8) and coefficients a_k, a_τ [15]:

$$
(3.9) \quad ||a_0|| \leq ||x||
$$

for any $x \in B_0$ of type (3.8).

Let $C(S^1, \mathcal{O}_2)$ denote the \mathcal{C}^\ast-algebra of all continuous functions on the unit circle S^1 taking values in the algebra \mathcal{O}_2, with uniform norm:

$$
||a|| = \sup_{z \in S^1} ||a(z)||, \text{ where } a \in C(S^1, \mathcal{O}_2).
$$

Every \mathcal{O}_2-valued function $a \in C(S^1, \mathcal{O}_2)$ can be represented in a form of Fourier series

$$
(3.10) \quad a(z) \approx \sum_{n=-\infty}^{+\infty} z^n a_n, \quad a_n = \frac{1}{2\pi} \int_{S^1} a(e^{i\theta})e^{-in\theta} d\theta \in \mathcal{O}_2.
$$

And each element $a \in C(S^1, \mathcal{O}_2)$ can be approximated in norm of the algebra $C(S^1, \mathcal{O}_2)$ by finite linear combinations of the form (3.10).

Using the action τ of the circle S^1 on \mathcal{O}_2 for any monomial $V \in \mathcal{O}_2$ define a function $\widetilde{V} \in C(S^1, \mathcal{O}_2)$ by the formula:

$$
\widetilde{V}(z) = \tau(z)(V).
$$

Denote by $\widetilde{\mathcal{O}}_2$ a closed subalgebra in the algebra $C(S^1, \mathcal{O}_2)$, generated by functions of type \widetilde{V}.

One can show that Fourier coefficients in (3.10) a_k lie in corresponding spaces \mathcal{A}_k, using the same proof as presented in [11]. Algebras $\widetilde{\mathcal{O}}_2$ and \mathcal{O}_2 are isomorphic. Therefore, for any $a \in \mathcal{O}_2$ we have

$$
||a_0|| = \frac{1}{2\pi} \int_{S^1} |\tilde{a}(e^{i\theta})e^{-in\theta}| d\theta \leq ||a||.
$$

Thus, condition (\ast) holds.

According to [12], the algebra B is considered as the crossed product

$$
B = \mathcal{A}_C \rtimes \mathbb{Z} = B(\mathcal{A}_C, \psi_1).
$$

The elements of this crossed product are finite sums of the form (3.8).

Proposition 3.5. The \mathcal{C}^\ast-algebra $\mathcal{A}_C \rtimes \mathbb{Z}$ is the Cuntz algebra.
Proof. The generators of the Cuntz algebra ψ_1 and ψ_2 have a form (3.8). Indeed, taking $a_1 = \psi_1^* \psi_1^*$ and $a_i = 0$ for $i = 0, 2, 3, ...$ we get

\[x = a_1 \psi_1 = \psi_1^* \psi_1 = \psi_1. \]

And if $a_1 = \psi_2^* \psi_1^*$ and $a_i = 0$, $i = 0, 2, 3, ...$, then

\[x = a_1 \psi_1 = \psi_2^* \psi_1^* = \psi_2. \]

□

An example of crossed product, considered in [12], is the Cuntz-Krieger algebra O_A – a C^*-algebra, generated by partial isometries

\[Q_i = S_i^* P_i, \]

satisfying conditions

\[P_i P_j = 0, i \neq j; \quad Q_i = \sum_{r=1}^r A(i, r) P_r, \]

where A is an $n \times n$-matrix with $A(i, j) \in \{0, 1\}$, where each row and column is non-zero.

Denote $S_0 = 1$, $S_\mu = S_1 S_2 \cdots S_n$ and consider the C^*-algebra \mathcal{F}_A, generated by elements of type $S_\mu P_i S_\nu^*$, where $|\mu| = |\nu| = k$, $k = 0, 1, \ldots, n$, $i \in 1, \ldots, n$. One can show that the Cuntz-Krieger algebra is in fact a crossed product $O_A = C^*(\mathcal{F}_A, S) \cong \mathcal{F}_A \times_\delta \mathbb{Z}$, where S is an isometry introduced in [12]. Taking $S_1 = \psi_1$, $S_2 = \psi_2$ and a 2×2-matrix A with all entries equal to one, we get the Cuntz algebra O_2 as a special case of the Cuntz-Krieger algebra. That means, $O_2 = C^*(\mathcal{F}_A, S) \cong \mathcal{F}_A \times_\delta \mathbb{Z}$, where \mathcal{F}_A is generated by monomials $\psi_{i_1} \cdots \psi_{i_k} \psi_{i_1}^* \psi_{i_2}^* \cdots \psi_{i_k}^*$, $i = 1, 2$ and $S = \frac{1}{\sqrt{2}} (\psi_1 + \psi_2)$. One can see that $\mathcal{F}_A \subset O_2^{U(1)}$, but $\mathcal{F}_A \neq O_2^{U(1)}$ and \mathcal{F}_A is not the image of embedding of the CAR algebra in O_2, since it does not contain generators such as $\psi_1^* \psi_2^*$.

Thus, the example described in this work shows that the Cuntz algebra can be represented as a crossed product of the CAR algebra by endomorphism induced by ψ_1, i.e. $O_2 \cong \mathcal{A}_C \times_\delta \mathbb{Z}$, where \mathcal{A}_C is a $U(1)$-invariant subalgebra in O_2.

References

[1] Aukhadiev, M.A. Infinite-dimensional compact quantum semigroup / M.A. Aukhadiev, S.A. Grigoryan, E.V. Lipacheva // Lobachevskii Journal of Mathematics. – 2011. – Vol. 32. – No 4. – P. 304–316.
[2] Gerard G. Emch, Algebraic methods in statistical mechanics and quantum field theory, Wiley-Interscience, 1972;
[3] Bogolubov, N.N., Logunov, A.A., Oksak, A.I., Todorov, I. General principles of quantum field theory, Springer, 1990;
[4] Ola Bratteli, Derek W. Robinson, Operator Algebras and Quantum Statistical Mechanics, v.1, Springer 2003
[5] M. Abe and K. Kawamura Recursive fermion system in Cuntz algebra. I - Embeddings of fermion algebra into Cuntz algebra, Comm. Math. Phys. 228 (2002) 85-101;
[6] S. Doplicher, J.E. Roberts Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Comm. Math. Phys. 131, 51-107 (1990)
[7] Horuzhy, S. S. Introduction to Algebraic Quantum Field Theory, Springer Verlag, 1990
[8] S. Doplicher, R. Haag, J. E. Roberts. Local observables and particle statistics I. Commun. Math Phys. 23, (1971), 199230. Local observables and particle statistics II. Commun. Math Phys. 35, (1974), 4985.
[9] D. Buchholz, K. Fredenhagen. Locality and the structure of particle states. Commun. Math. Phys. 84, (1982), 154.
[10] S. Doplicher, J.E. Roberts Endomorphisms of C*-algebras, Cross Products and Duality for Compact Groups, Ann. Math. 130, 75-119 (1989)
[11] Doplicher S., Roberts J. E. A New Duality Theory for Compact Groups. Invent. Math. 98, 157-218 (1989);
[12] A.B. Antonevich, V.I. Bakhtin, A.V. Lebedev Crossed product of a C*-algebra by an endomorphism, coefficient algebras and transfer operators. Math. Sb., 202, (2011), 1253-1283.
[13] Cuntz J. Simple C*-algebras generated by isometries, Commun. Math. Phys., 1977, V.57, 173-185.
[14] Doplicher, S. and Roberts, J.E. Duals of compact Lie groups realized in the Cuntz algebras and their actions on C*-algebras. J. Funct. Anal. 74, 96120 (1987).
[15] A.V. Lebedev, A. Odzijewicz Extensions of C*-algebras by partial isometries. Math. Sb., 195, (2004), 951-982.

(M.A. Aukhadiev, A.S. Nikitin, A.S. Sitdikov) Kazan State Power Engineering University, Kazan, Russia, 420066

E-mail address, M.A. Aukhadiev: m.aukhadiev@gmail.com
E-mail address, A.S. Nikitin: drnikitin@rambler.ru
E-mail address, A.S. Sitdikov: airat_vm@rambler.ru