Case Report and Literature Review: Ectopic Thyrotropin-Secreting Pituitary Adenoma in the Suprasellar Region

Xiaoxu Li¹, Binghao Zhao¹, Bo Hou², Jing Wang³, Jianyu Zhu¹, Yong Yao¹* and Xiaolan Lian⁴*

¹ Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China, ² Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China, ³ Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China, ⁴ Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China

Ectopic thyrotropin-secreting pituitary adenoma (ectopic TSH-oma) is a rare disorder that is easily misdiagnosed in clinical work. We report one patient who presented with hyperthyroidism and a suprasellar mass. In this case, preoperative diagnosis of suprasellar ectopic thyrotropin-secreting pituitary adenoma was challenging. A literature review revealed that a total of 11 patients with ectopic TSH-oma were previously reported, and only our one case was diagnosed in the microadenoma stage. Most of the patients with TSH-oma or ectopic TSH-oma were middle-aged. We described ectopic TSH-oma in a child at length. We recommend that ectopic TSH-oma should be considered in the differential diagnosis of thyrotoxicosis syndrome to achieve an accurate, early diagnosis. The somatostatin suppression test and imaging examinations, such as magnetic resonance imaging and positron emission tomography/magnetic resonance imaging, could contribute to the diagnosis. Once the diagnosis was highly suspected, tumor resection could achieve a satisfying long-term outcome in ectopic TSH-oma.

Keywords: hyperthyroidism, TSH, MRI, ectopic pituitary adenoma, somatostatin suppression test

INTRODUCTION

Thyrotropin-secreting pituitary adenoma (TSH-oma) is a rare tumor derived from thyrotrophs in the adenohypophysis. Inappropriate secretion of TSH (ISTSH) syndrome consists of TSH-oma and resistance to thyroid hormone (RTH) syndrome. Since most TSH-oma patients have thyrotoxicosis as the main clinical symptom, it is common for patients to be misdiagnosed and receive anti-thyroid treatment, as shown in previous reports. However, this inappropriate treatment is likely to promote further TSH-oma development, increasing the difficulty of surgery and the possibility of recurrence. TSH-oma is a rare disease, accounting for merely 0.5–2% of all pituitary adenomas (PAs) (1).
A literature review revealed that a total of eleven patients with ectopic TSH-oma were previously reported, and only our case here were diagnosed in the microadenoma stage.

CASE PRESENTATION

A 10-year-old girl referred to Peking Union Medical College Hospital (PUMCH) presenting with a two-year history of easy hunger, hyperphagia, sweating, heat intolerance, and short temper. Her patients denied a family history of hyperthyroidism and previous interventions for the disease. Physical examination revealed goiter. Cardiac examination revealed sinus arrhythmia. Her blood workup showed a normal level of TSH and elevated FT3, FT4, T3, and T4 levels. The exact values of FT3, FT4, and TSH on admission are 6.00 pg/ml (normal range: 1.80–4.10), 20.29 pg/ml (normal range: 6.1–11.2) and 2.945 uIU/ml (normal range: 0.38–4.34). Anti-thyroglobulin antibody is 20.31 IU/ml (normal range: <115) thyroid peroxidase is 12.61 IU/ml (normal range: <34). Thyroglobulin is 24.90 ng/ml (normal range: 1.40–78.00). Thyrotropin receptor antibody is absence. This case is not associated with excess secretion of other anterior pituitary hormones. Growth hormone (GH) is 0.2 ng/ml (normal range: < 2.0). Adrenocorticotropic hormone (ACTH) is 15.7 pg/ml (normal range: 0–46). Prolactin (PRL) is 9.24 ng/ml (normal range: <30). Sex hormone-binding globulin (SHBG) is 155 nmol/L (normal range: 32.4–128). Thyroid ultrasound revealed multiple cystic thyroid nodules with crystallization, which was consistent with adolescent thyroid manifestations. The right lobe of thyroid gland was 5.0 × 1.8 × 1.5 cm. The left lobe was 5.1 × 1.5 × 1.7 cm. The isthmus was 0.2 cm. There were many echoless areas with regular shape and clear boundary. Inside the areas were high-echo dots with comet tail behind. The larger one was 0.4 × 0.3 cm on the right side and 0.3 × 0.2 cm on the left side. Color Doppler Flow Imaging: no blood flow signal was found. The echo of the rest of glands was uniform. To differentiate the diagnosis of RTH, we performed TR-β gene testing but revealed no mutation. The patient also underwent a somatostatin suppression test, with 0.1 mg octreotide (Sandostatin, Novartis Pharma Stein AG) injected subcutaneously every 8 h. The process of the subcutaneous injection of somatostatin 0.1 mg at 8 am was smooth, but 5 min after injection after next injection at 4 pm, the patient presented with red flush (10 cm×9 cm) and palminess (2 cm×1.5 cm) at the injection site (left upper arm) accompanied by obvious pain and itching. Considering the possibility of allergies, we did not perform the injection of somatostatin at midnight. This patient recovered after the administration of allergy medication.

Limited test results showed that the TSH suppression rate was 72.49%. Pituitary dynamic enhanced magnetic resonance imaging (MRI) showed a lesion 4.4×3.1×3.0 (mm) located on the left front of the pituitary stalk, which was suspected as an adenoma in the suprasellar region (Figure 1). The challenge of diagnosis was that we could not specify the relationship between mass and hyperthyroidism. And latter positron emission tomography/magnetic resonance imaging (PET/MRI) was carried out, with 65Ga-labeled octreotide and 18F-labeled FDG as markers. PET-MRI revealed a 4.4 mm nodule-like lesion above the superior border of the pituitary left wing, which could be homogeneously enhanced outside the diaphragma sellae with both markers and had no obvious connection to the anterior pituitary (Figure 1). To control the high level of thyroid hormone preoperatively, a therapy of 0.1 mg octreotide (Sandostatin, Novartis Pharma Stein AG) subcutaneous injection combined with cetirizine hydrochloride tablets (Cetirizine, UCB Farchim SA) for skin allergy treatment was conducted for 4 days. Subsequently, she received extended endoscopic transsphenoidal surgery, and the diagnosis of ectopic TSH-oma was confirmed by postoperative pathological examination (Figure 1). Immunohistochemistry staining results are as follows. TSH: positive. GH: positive. ACTH: partially positive. Follicle-stimulating hormone (FSH): partially positive. Luteinizing hormone (LH): positive. PRL: negative. Chromogranin A: positive. S-100: negative. Synaptophysin: positive. Ki-67: index<1%. P53: negative. Somatostatin receptor 2: positive. Somatostatin receptor 5: positive. It should be noted that a positive immunohistochemistry finding for one or more pituitary hormones does not necessarily lead to hypersecretion of hormones, which is known as silent PA (1).

Within a week after surgery, a thyroid function test revealed the normalization of FT3, FT4, T3, and T4 levels and a low level of TSH (Figure 2). In the follow-up at three months postoperatively, the thyroid function test revealed the normalization of FT3, FT4, T3, T4, and TSH levels, and MRI revealed no tumor remnants. During the follow-up period of 4 years, her clinical presentations improved and achieved long-term remission.

DISCUSSION

Ectopic TSH-oma

Pituitary adenomas account for approximately 15% of intracranial tumors (2, 3). However, EPA is a rare disorder, accounting for approximately 0.48% of pituitary adenomas (4). While the exact pathogenic mechanism of EPA has not yet been determined, it is broadly accepted that the tumor originates from the embryonic residues of pituitary cells along the path of migration of Rathke’s pouch (5, 6). Although the origin of EPA is the same as that of the adenohypophysis, EPA refers to pituitary adenomas located completely outside of the sellar turcica without a direct connection to the intrasellar normal pituitary gland or pituitary stalk (7, 8). In a literature review of 85 EPA cases, 72 (85%) EPAs secreted 1 or more hormones, and the most commonly secreted hormone was ACTH (36%), followed by PRL (28%), GH (22%), and TSH (16%) (9). TSH-oma is the rarest form of pituitary adenoma. We performed a literature

Abbreviations: TSH-oma, Thyrotropin-secreting pituitary adenoma; PUMCH, Peking Union Medical College Hospital; ISTSH, Inappropriate secretion of TSH; RTH, Resistance to thyroid hormone; PA, Pituitary adenoma; EPA, Ectopic pituitary adenoma; TSH, Thyrotropin; FT4, Free triiodothyroxine; FT3, Free triiodothyroxine; ACTH, Adrenocorticotropic hormone; PRL, Prolactin; FSH, follicle stimulating hormone; GH, Growth hormone; T3, Triiodothyronine; T4, Thyroxine; LH, Luteinizing hormone; IGF-1, Insulin-like growth factor-1; SHBG, Sex hormone-binding globulin; MRI, Magnetic resonance image; TSS, Transsphenoidal surgery; CT, computed tomography; PET, Positon emission tomography; FDG, 18F-fluorodeoxyglucose.
review to find all reported cases of ectopic TSH-oma with no limitation on the publication date. We searched PubMed using the words “(TSH or thyrotropin) AND (pituitary neoplasm [Mesh]) AND ectopic” and “(TSH or thyrotropin) AND ("pituitary adenoma") AND ectopic”. Full-text case reports, case series, reviews and original articles written in English were included. Articles were excluded if the cases were not ectopic TSH-oma or the diagnosis was not histologically confirmed. The results of searching PubMed yielded only 11 cases of ectopic TSH-oma (Table 1) (6, 10–19). Of all 12 patients, seven (58.33%) were females, and five (41.67%) were males, indicating a female predominance at a ratio of 1.4:1. Except for one patient whose age was unknown, the age of the other patients ranged from eight to 52 years, and most of the patients were middle-aged. The most common location of the ectopic TSH-oma lesion was the nasopharynx (eight cases, 66.67%), followed by the suprasellar...
region (three cases, 25%) and the sphenoid sinus (only one case so far). Tjörnstrand A proposed that macroadenomas (>10 mm in any dimension) still account for 80–85% of all newly discovered TSH-omas (20). The tumor size data yielded by our ectopic TSH-oma literature review show a similar tendency. Of all the patients with available tumor size data, only our patient had microadenoma (diameter < 1 cm).

Diagnosis of Ectopic TSH-oma in the Sellar Region

Most patients with TSH-oma present with thyroid dysfunction, which was initially misdiagnosed as Graves’ disease, and some patients even received inappropriate treatment with thyroidectomy or radiodine thyroid ablation (1, 21). A similar phenomenon was found in another reported case of ectopic TSH-oma, and misdiagnosis led to delayed or inappropriate treatment that worsened the disease. Therefore, it is of clinical value for us to summarize existing experience and clinical evidence to facilitate accurate, early diagnosis. Except for the reported cases of ectopic TSH-oma in the nasopharynx (8/15), in which the patients presented with nasal obstruction symptoms, there were no reported cases of special symptoms in cases of ectopic TSH-oma in the sellar region. Similarly, the coexistence of elevated serum FT4/FT3 and a lack of TSH suppression in a patient with the sellar region. Similarly, the coexistence of elevated serum FT4/FT3 and a lack of TSH suppression in a patient with the sellar region. Similarly, the coexistence of elevated serum FT4/FT3 and a lack of TSH suppression in a patient with the sellar region. Similarly, the coexistence of elevated serum FT4/FT3 and a lack of TSH suppression in a patient with the sellar region. Similarly, the coexistence of elevated serum FT4/FT3 and a lack of TSH suppression in a patient with the sellar region.

Another key link in the diagnosis and differential diagnosis of ectopic TSH-oma is imaging examinations. Computed tomography (CT) and MRI could contribute to detecting a pituitary lesion in TSH-oma patients (23). Due to the high resolution of soft tissue, we routinely performed pituitary dynamic MRI for the diagnosis of ectopic TSH-oma at PUMCH. Pituitary MRI has a high sensitivity for the identification of a sellar or parasellar lesion (24). Pituitary dynamic MRI can clearly present the location, size, edge and extent of the tumor, and it could also show the condition of the pituitary gland and the relationship between the tumor and the normal pituitary gland and pituitary stalk, thus providing significant guidance for preoperative localization and the surgical strategy. It has been proposed that the presentation of EPA on MRI is a mass with equal T1 and T2 signals with no connections to the pituitary gland or pituitary stalk, with enhanced scanning revealing no obvious enhancement or nonuniform enhancement (25). It has also been reported that a pituitary lesion is identified by MRI in 20% of RTH syndrome cases, which may suggest the coexistence of pituitary incidentaloma and RTH syndrome (26). Additional imaging examinations, such as positron emission tomography/computed tomography (PET/CT) and PET/MRI, could contribute to the evaluation of the tumor location. 18F-fluorodeoxyglucose (FDG) PET/CT is proposed to be positive in

TABLE 1 | Literature review of reported cases of ectopic TSH-oma.

Reference	Age at onset/ Sex	Location of tumor	Tumor size (mm)	Image examination	Somatostatin suppression test	Surgery
P1 Cooper et al. (10)	45/M	Nasopharynx	NA	MRI, CT	No	Transfacial transmaxillary resection
P2 Pasquini et al. (11)	34/M	Nasopharynx	NA	MRI, Thyroid scintigraphy	No	Endoscopic endonasal surgery
P3 Collie et al. (12)	ND/F	Nasopharynx	20×15	MRI, CT	No	Endoscopic endonasal surgery
P4 Tong et al. (13)	34/F	Nasopharynx and nasal cavity	20×20	MRI, CT, Octreotide scanning, Thyroid ultrasound	Yes	Endoscopic endonasal surgery
P5 Song et al. (14)	40/M	Nasopharynx	19×17	MRI, CT, ECT	Yes	Endoscopic endonasal surgery
P6 Nishikke et al. (15)	36/M	Nasopharynx	14	MRI, CT, PET/CT, Thyroid scintigraphy	No	Endoscopic endonasal surgery
P7 Wang et al. (6)	45/M	Suprasellar	15×12×10	MRI, Thyroid scintigraphy, Thyroid ultrasound	Yes	Endoscopic endonasal surgery
P8 Yang et al. (16)	27/F	Nasopharynx	15×12	MRI, Thyroid ultrasound	No	Endoscopic endonasal surgery
P9 Hanacka et al. (17)	41/M	Suprasellar	NA	MRI, CT, PET	No	Transcranial approach
P10 Kim et al. (18)	48/F	Nasopharynx	11×8×6	MRI, Radioactive iodine uptake scan, PET/CT, Thyroid ultrasound	No	Endoscopic endonasal approach
P11 Ortiz et al. (19)	52/F	Sphenoid sinus	24×23×13	MRI, CT, Thyroid ultrasound	Yes	Endoscopic transsphenoidal surgery twice
P12 Present case	8/F	Suprasellar	4.4×3.1×3.0	MRI, PET/MRI, Somatostatin receptor imaging, Thyroid and cervical lymph node ultrasound	Yes	Endoscopic transsphenoidal surgery

NA, not available; PET/CT, positron emission tomography/computed tomography; PET, positron emission tomography; CT, computed tomography; MRI, magnetic resonance imaging; ECT, emission computed tomography; PET/MRI, positron emission tomography/magnetic resonance imaging.
60–67% of cases in studies involving pituitary adenomas (27, 28), which can be meaningful for detecting adenomas, especially when the MRI findings are unclear. Ishizaki et al. proposed that PET/CT revealed increased FDG uptake in EPA patients (4). 68Ga-DOTA-labeled somatostatin analogs, such as 68Ga-DOTATATE, have been reported as somatostatin receptor imaging agents in PET/CT and PET/MRI to detect the presence of neuroendocrine tumors (18). Especially for well-differentiated neuroendocrine tumors, 68Ga-DOTATATE PET has been proposed to have improved lesion detection compared with Octreoscan. 18F-FDG PET/CT and PET/MRI (29). Zhao et al. confirmed different degrees of uptake of 68Ga-DOTATATE and 18F-FDG PET/CT in pituitary tissue and adenoma tissue, and the utilization of both would contribute to the differentiation of recurrent or residual pituitary adenoma and the remaining normal pituitary tissue after transsphenoidal tumor resection (30). Two markers revealed overlapping enhancement in the suprasellar region where the tumor was, which further supported the diagnosis of EPA (Figure 1).

Treatment of Ectopic TSH-oma

Transsphenoidal pituitary surgery has been regarded as the first choice for treatment for TSH-oma (31). All 12 patients underwent surgery for ectopic TSH-oma removal. The key component of preoperative preparation is reducing the level of thyroid hormone to control preoperative thyrotoxicosis and prevent a thyroid storm, which is an acute and lethal condition that can be caused by surgical trauma. Fujio et al. reported 1 case of postoperative thyroid storm secondary to hyperthyroidism induced by TSH-oma (32). Noriaki Fukuhara et al. proposed that short-term preoperative octreotide administration could shrink TSH-oma and normalize hormone levels (33). Tong et al. proved that octreotide could inhibit TSH secretion by TSH-oma tissue in vitro (13). Similarly, in our case, the patient achieved obvious improvements in hormone levels after the administration of somatostatin analogs before the operation. At PUMCH, anti-thyroid drugs are not commonly the first drug choice. However, in some situations where patient is not sensitive to somatostatin, we use them to decrease preoperative hormone levels. It has been proposed that the possibility of the presence of invasive macroadenomas is exceedingly high in patients with a history of thyroid ablation (21), which places a greater demand on surgeons and increases the risk of surgery. Therefore, diminishing the misdiagnosis of ectopic TSH-oma is significant. Because of the special locations of SPAs, our case subsequently underwent extended endoscopic TSS. Endoscopic endonasal transtuberculum sellar surgery has been reported for the treatment of suprasellar tumors with increasing indications (6).

CONCLUSIONS

Currently, experience in the diagnosis of ectopic TSH-oma, especially those in the sellar region, is limited, as it is rare and has no special symptoms. We were the first to report ectopic TSH microadenoma worldwide. Ectopic TSH-oma should be considered in the differential diagnosis of thyrotoxicosis syndrome to achieve an accurate early diagnosis. To specify the tumor characteristics and the relationship with thyrotoxicosis, the inhibitory effect of somatostatin analogs in the somatostatin suppression test contributes to the differential diagnosis. Imaging examinations such as MRI could clearly reveal the mass without connections to the pituitary gland or pituitary stalk. PET could help to identify the character of mass. Once the diagnosis was highly suspected, tumor resection could achieve a satisfying outcome in ectopic TSH-oma.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

Prior written permission was obtained from the patient for treatment as well as for the preparation of this manuscript and for publication.

AUTHOR CONTRIBUTIONS

XLi and BZ wrote the manuscript. BH collected the data. JZ, YY, and XLian provided suggestion during the diagnosis and treatment in this case. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the Chinese Academy of Medical Sciences Innovation Fund for Medical Science (CAMS-2016-12M-1-002).

REFERENCES

1. Beck-Peccoz P, Giavoli C, Lania A. A 2019 update on TSH-secreting pituitary adenomas. J Endocrinological Invest (2019) 42(12):1401–6. doi: 10.1007/s11102-019-01066-x
2. Melmed S. Pituitary-Tumor Endocrinopathies. N Engl J Med (2020) 382(10):937–50. doi: 10.1056/NEJMra1810772
3. Gittelman H, Ostrom QT, Farah PD, Ondracek A, Chen Y, Wolinsky Y, et al. Descriptive epidemiology of pituitary tumors in the United States, 2004-2009. J Neurosurg (2014) 121(3):527–35. doi: 10.3171/2014.5.Jns131819
4. Ishizaki U, Abe K, Takako K, Masui K, Sakai S. FDG PET/CT Findings of Ectopic Pituitary Adenoma. Clin Nucl Med (2020) 45(2):151–3. doi: 10.1097/ RLI.0000000000002887
5. Agely A, Okromelidze L, Vilanilam GK, Chaichana KL, Middlebrooks EH, Gupta V. Ectopic pituitary adenomas: common presentations of a rare entity. Pituitary (2019) 22(4):339–43. doi: 10.1007/s11120-019-00954-y
6. Wang Q, Lu XJ, Sun J, Wang J, Huang CY, Wu ZF. Ectopic Suprasellar Thyrotropin-Secreting Pituitary Adenoma: Case Report and Literature Review. World Neurosurg (2016) 95:617.e13–e18. doi: 10.1016/j.wneu.2016.08.062
7. Zhu J, Lu L, Yao Y, Chen S, Li W, You H, et al. Long-term follow-up for ectopic ACTH-secreting pituitary adenoma in a single tertiary medical center and a literature review. *Pituitary* (2019) 23(2):149–59. doi: 10.1007/s11202-019-01017-y

8. Seltzer J, Lucas J, Commings D, Lerner O, Lerner A, Carmichael JD, et al. Ectopic ACTH-secreting pituitary adenoma of the sphenoid sinus: case report of endoscopic endonasal resection and systematic review of the literature. *Neurosurg Focus* (2015) 38(2):E10. doi: 10.3171/2014.10.FOCUS14685

9. Shuman W, Loewenstern J, Pai A, Bederson J, Shrivastava R. Variability in Clinical Presentation and Pathologic Implications of Ectopic Pituitary Tumors: Critical Review of Literature. *World Neurosurg* (2019) 122:397–403. doi: 10.1016/j.wneu.2018.10.200

10. Cooper DS, Wenig BM. Hyperthyroidism caused by an ectopic TSH-secreting pituitary tumor. *Thyroid: Off J Am Thyroid Assoc* (1996) 6(4):337–43. doi: 10.1089/thy.1996.6.337

11. Pasquini E, Faustini-Fustini M, Scarretta V, Saggese D, Roncadori F, Serra D, et al. Ectopic TSH-secreting pituitary adenoma of the vomeropneumon junction. *Eur J Endocrinol* (2003) 148(2):253–7. doi: 10.1530/eje.0.1480253

12. Collie RB, Collie MJ. Extranarial thyroid-stimulating hormone-secreting ectopic pituitary adenoma of the nasopharynx. *Otolaryngol–Head Neck Surg: Off J Am Acad Otolaryngol–Head Neck Surg* (2005) 133(3):453–4. doi: 10.1016/j.otohns.2004.10.015

13. Tong A, Xia W, Qi F, Jin Z, Yang D, Zhang Z, et al. Hyperthyroidism caused by an ectopic thyrotropin-secreting tumor of the nasopharynx: a case report and review of the literature. *Thyroid: Off J Am Thyroid Assoc* (2013) 23(9):1172–7. doi: 10.1089/thy.2012.0574

14. Song M, Wang H, Song L, Tian H, Ge Q, Li J, et al. Ectopic TSH-secreting pituitary tumor: a case report and review of prior cases. *BMC Cancer* (2014) 14:544. doi: 10.1186/1471-2407-14-544

15. Nishikawa N, Tatewaki KI, Shikina T, Masumura C, Inohara H. Thyroid-stimulating hormone-secreting ectopic pituitary adenoma of the nasopharynx. *Auris Nasus Larynx* (2014) 41(6):586–8. doi: 10.1016/j.anl.2014.07.004

16. Yang J, Liu S, Yang Z, Shi YB. Ectopic thyrotropin-secreting pituitary adenoma concomitant with papillary thyroid carcinoma: Case report. *Medicine* (2017) 96(50):e9812. doi: 10.1097/md.0000000000009812

17. Hanaoka Y, Ogivara T, Kakeiwa Y, Nagm A, Seguchi T, Aoyama T, et al. Calcified ectopic TSH-secreting pituitary adenoma mimicking craniopharyngioma: a rare case report and literature review. *Acta Neurochirurgica* (2018) 160(10):2001–5. doi: 10.1007/s00701-018-3638-1

18. Kim S, Dillon WP, Hope TA, El-Sayed IH, van Zante A, Wu K, et al. Ectopic Thyroid-Stimulating Hormone-Secreting Pituitary Adenoma of the Nasopharynx Diagnosed by Gallium 68 DOTATATE Positron Emission Tomography/Computed Tomography. *World Neurosurg* (2019) 125:400–4. doi: 10.1016/j.wneu.2019.02.022

19. Ortiz E, Poloza M, Monnier E, Gejman R, Henriquez M, Barra MI, et al. Ectopic pituitary adenoma of the TSH-secreting sphenoid sinus with excellent response to somatostatin analogs. Theory of the embryogenesis and literature review from a clinical case. *Steroids* (2019) 154:108535. doi: 10.1016/j.steroids.2019.108535

20. Tjornstorp A, Nystrom HF. Diagnosis of Endocrine Disease: Diagnostic approach to TSH-producing pituitary adenoma. *Eur J Endocrinol* (2017) 177(4):R183–97. doi: 10.1530/eje-16-1029

21. Beck-Peccoz P, Lania A, Persani L. TSH-Producing Adenomas and Resistance to Thyroid Hormones. *Encyclopedia Endocrine Dis* (Second Ed) (2015) 4:473–6. doi: 10.1016/B978-0-12-475570-4.01331-7

22. Yu B, Zhang Z, Song H, Chi Y, Shi C, Xu M. Clinical Importance of Somatostatin Receptor 2 (SSTR2) and Somatostatin Receptor 5 (SSTR5) Expression in Thyrotropin-Producing Pituitary Adenoma (TSHoma). *Med Sci Monitor: Int J Exp Clin Res* (2017) 23:1947–55. doi: 10.12659/msm.903377

23. Amlashi FG, Tritos NA. Thyrotropin-secreting pituitary adenomas: epidemiology, diagnosis, and management. *Endocrine* (2016) 52(3):427–40. doi: 10.1007/s12020-016-0863-3

24. Famini P, Maya M, Melmed S. Pituitary Magnetic Resonance Imaging for Sellar and Parasellar Masses: Ten-Year Experience in 2598 Patients. *J Clin Endocrinol Metab* (2011) 96(6):1633–41. doi: 10.1210/jc.2011-0168

25. Yang BT, Chong VF, Wang ZC, Xian JF, Chen QH. Sphenoid sinus ectopic pituitary adenomas: CT and MRI findings. *Br J Radiol* (2010) 83(987):218–24. doi: 10.1259/bjr/76663411

26. Sripripradang C, Srichomkwun P, Refetoff S, Mamanasiri S. A Novel Thyroid Hormone Receptor Beta Gene Mutation (G251V) in a Thai Patient with Resistance to Thyroid Hormone Coexisting with Pituitary Incidentaloma. *Thyroid: Off J Am Thyroid Assoc* (2016) 26(12):1804–6. doi: 10.1089/thy.2016.0450

27. Feng Z, He D, Mao Z, Wang Z, Zhu Y, Zhang X, et al. Utility of [11C]-methionine and 18F-FDG PET/CT in patients with functioning pituitary adenomas. *Clin Nucl Med* (2016) 41(3):e130–e4. doi: 10.1097/RLU.0000000000001085

28. Yao A, Balchandani P, Shrivastava RK. Metabolic in vivo visualization of pituitary adenomas: a systematic review of imaging modalities. *World Neurosurg* (2017) 104:489–98. doi: 10.1016/j.wneu.2017.04.128

29. Mojtahedi A, Thamake S, Tworowska I, Ranganathan D, Delpassand ES. The value of 68Ga-DOTATATE PET/CT in diagnosis and management of neuroendocrine tumors compared to current FDA approved imaging modalities: a review of literature. *Am J Nucl Med Mol Imaging* (2014) 4(5):426.

30. Zhao X, Xiao J, Xing B, Wang R, Zhu Z, Li F. Comparison of 68Ga DOTATATE to 18F-FDG uptake is useful in the differentiation of residual or recurrent pituitary adenoma from the remaining pituitary tissue after transsphenoidal adenomectomy. *Clin Nucl Med* (2014) 39(7):605–8. doi: 10.1097/RLU.0000000000000457

31. Beck-Peccoz P, Lania A, Beekers A, Chatterjee K, Wemeau JL. European thyroid association guidelines for the diagnosis and treatment of thyrotropin-secreting pituitary tumors. *Eur Thyroid J* (2013) 2(2):76–82. doi: 10.1159/000351007

32. Fujiw S, Ashari, Habu M, Yamahata H, Moinuddin FM, Bohara M, et al. Thyroid storm induced by TSH-secreting pituitary adenoma: a case report. *Endocr J* (2014) 61(11):1131–6. doi: 10.1507/endocrj.e14-0278

33. Fukuhara N, Horiguchi K, Nishioka H, Suzuki H, Takeshita A, Takeuchi Y, et al. Short-term preoperative octreotide treatment for TSH-secreting pituitary adenoma. *Endocrine* (2015) 62(1):21–7. doi: 10.1507/endocrj.E14-0118

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Li, Zhao, Hou, Wang, Zhu, Yao and Lian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.