Piper crocatum Ruiz & Pav. ameliorates wound healing through p53, E-cadherin and SOD1 pathways on wounded hyperglycemia fibroblasts

Andina Setyawati a,b, Mae Sri Hartati Wahyuningsih c*, Dwi Aris Agung Nugrahaningsih c, Christantie Effendy d, Firas Fneish e, Gerhard Fortwengel f

a Lecturer of Department of Surgical and Medical Nursing, Faculty of Nursing, Universitas Hasanuddin, Jl. Perintis Kemerdekaan km 10, Kampus Tamalanaarea, Makassar 90245, Indonesia
b Lecturer of Department of Medicine and Health Science Doctorate Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Senolowo, Sekip Utara, Depok, Sleman, Yogyakarta 55281, Indonesia
c Lecturer of Department of Pharmacology and Therapy, Centre for Herbal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Senolowo, Sekip Utara, Depok, Sleman, Yogyakarta 55281, Indonesia
d Lecturer of Department of Surgical and Medical Nursing, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Senolowo, Sekip Utara, Depok, Sleman, Yogyakarta 55281, Indonesia
e Lecturer of Department of Biostatistics, Gottfried Wilhelm Leibniz Universität, Postfach 6009, 30060 Hannover, Germany
f Lecturer of Department of Clinical Research and Epidemiology, Hochschule Hannover University of Applied Sciences & Arts, Expo Plaza 12, 30539 Hannover, Germany

A R T I C L E I N F O

Article history:
Received 29 March 2021
Revised 10 August 2021
Accepted 12 August 2021
Available online 19 August 2021

Keyword:
Piper crocatum Ruiz & Pav
Diabetic wound healing
Mechanism
p53
E-cadherin
SOD1

A B S T R A C T

Introduction: Piper crocatum Ruiz & Pav (P. crocatum) has been reported to accelerate the diabetic wound healing process empirically. Some studies showed the benefits of P. crocatum in treating various diseases but its mechanisms in diabetic wound healing have never been reported. In the present study we investigated the diabetic wound healing activity of the active fraction of P. crocatum on wounded hyperglycemia fibroblasts (wHFs).

Methods: Bioassay-guided fractionation was performed to get the most active fraction. The selected active fraction was applied to wHFs within 72 h incubation. Mimicking a diabetic condition was done using basal glucose media containing an additional 17 mMol/L D-glucose. A wound was simulated via the scratch assay. The collagen deposition was measured using Picro-Sirius Red and wound closure was measured using scratch wound assay. Underlying mechanisms through p53, αSMA, SOD1 and E-cadherin were measured using western blotting.

Results: We reported that FIV is the most active fraction of P. crocatum. We confirmed that FIV (7.81 µg/ml, 15.62 µg/ml, 31.25 µg/ml, 62.5 µg/ml, and 125 µg/ml) induced the collagen deposition and wound closure of wHFs. Furthermore, FIV treatment (7.81 µg/ml, 15.62 µg/ml, 31.25 µg/ml, 62.5 µg/ml, and 125 µg/ml) down-regulated the protein expression level of p53 and up-regulated the protein expression levels of αSMA, E-cadherin, and SOD1. Discussion/conclusions: Our findings suggest that ameliorating collagen deposition and wound closure through protein regulation of p53, αSMA, E-cadherin, and SOD1 are some of the mechanisms by which FIV of P. crocatum is involved in diabetic wound healing therapy.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: wHFs, wounded hyperglycemia fibroblasts; HFs, Hyperglycemia fibroblasts; NFs, Normal fibroblasts; MTT, 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide; p53, tumor suppressor protein; αSMA, alpha smooth muscle actin; SOD1, superoxide dismutase 1; MeOH, Methanol; CHCl3, Chloroform; DMEM, Dulbecco's Modified Eagle's Medium; TLC, Thin layer chromatography; WB, Washed benzene; ETOAc, Ethyl acetate; ROS, Reactive oxygen species.

* Corresponding author at: Pharmacology and Therapy Department, Centre for Herbal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Farmako Sekip Utara, Senolowo, Yogyakarta 55281, Indonesia.

E-mail addresses: andina.setyawati@mail.ugm.ac.id (A. Setyawati), maeshw@ugm.ac.id (M.S.H. Wahyuningsih), dwi.aris.a@ugm.ac.id (D.A.A. Nugrahaningsih), christantie@ugm.ac.id (C. Effendy), fneish@cell.uni-hannover.de (F. Fneish), gerhard.fortwengel@hs-hannover.de (G. Fortwengel).

Peer review under responsibility of King Saud University.
1. Introduction

Diabetic wounds remain a challenging health care problem. They frequently recur and cause considerable suffering, and health care costs (Jeffcoate et al., 2018). Several limitations of current diabetic wound therapies were observed in some studies. For example, hyperbaric oxygen therapy has side effects such as oxygen toxicity (Han and Ceilley, 2017), while growth factor therapy and skin substitutes have excellent potential to improve wound healing but are limited due to their cost (Enriquez-Ochoa et al., 2020). Because of the economic burden in some developing countries that impacts in wound healing modalities, there is a need for discovering an alternative diabetic wound therapy that can alleviate any safety and be cost-effective (Cavanagh et al., 2012). To overcome these issues, diabetic wound healing can be facilitated by natural products of medicinal plants. The medicinal plants might be contributed in wound healing because of their bioactive compounds such as alkaloids, essential oils, flavonoids, tannins, sapoines, and phenolic compounds (Ibrahim et al., 2018). These bioactive compounds can modulate one or more phases of the wound healing process. Furthermore, they are easily absorbed by the superficial layers of the skin. In comparison with chemical drugs and other synthetic drugs, herbal therapies were reported to be harmless, cheaper, and have more permanent curative potential (Verma et al., 2013). Many studies have conducted the characterization of its compounds. Piper crocatum Ruiz & Pav (P. crocatum) is one of the popular traditional herbal medicines from Indonesia. This species is easily obtained, and has been used as herbal medicine empirically for generations in Asian countries to treat diabetic wounds (Sharma et al., 2013). Many studies have conducted the characterization of its compounds. Piper crocatum leaves have been confirmed to have a total polyphenol content of 142.56 mg GAE/g in methanol (MeOH) extract (Prayitno et al., 2018) and 41.29 ± 0.52 GAE/g in the fresh leaves (Saputra et al., 2018). Megastigmene glucoside isomer, monoterpenes, sesquiterpenes, a phenolic amide glycoside, a neolignane, and a flavonoid C-glycoside were also found in recent chemical studies of P. crocatum MeOH extract (Li et al., 2019).

Extracts of P. crocatum with many of these ingredients have benefits in various therapeutic activities, including anti-microbial (Puspita et al., 2019; Rinanda et al., 2012), anti-diabetic (Nasi et al., 2015; Safithri and Fahma, 2008; Shinta and Sudjianto, 2016), anti-inflammatory (Fitiyani et al., 2011; Laksmiwati et al., 2017), and anti-oxidant (Hendryani et al., 2015; Tonahi et al., 2014). P. crocatum extracts have also been found to have proliferative activity in Baby Hamster Kidney Cell Line 21 (BHK-21) fibroblasts (Permadi et al., 2016). In contrast, other studies confirmed that P. crocatum extracts suppressed proliferation in both cancer cells and cancer wounds (Mulia et al., 2016; Wulandari et al., 2018; Zulharini et al., 2017). Thus, the compound of the extract needs to be simplified and standardized in the future with the intention of gaining compounds with consistent effects in treating diseases. In that case, the bioassay-guided fractionation is necessary to obtain the bio-selective compounds that are responsible for wound healing of the diabetic wounds (Weller, 2012).

Delayed wound healing in diabetic patients occurs due to vascular, immunity and bio-mechanic disorders. Hyperglycemia is an intrinsic factor that prolongs the proliferation and inflammation phase in diabetic wounds by interfering with fibroblasts’ functions (Goulding, 2015). Diabetic fibroblasts are suspected of having mitochondrial damage which disrupts tissue cellularity through expressions of apoptosis (Fontanga-acosta et al., 2013). Fibroblasts are the main architect cell of wound healing are contractile and have a significant function in the synthesis and deposition of the extra cellular matrix (ECM) (Putte et al., 2016). Fibroblasts delay diabetic wound through several ways. Some of these delays are decreased production of collagen, transforming growth factor-β (TGF-β) (Gasca-lozano et al., 2017), E-cadherin (Keshri et al., 2016), over expression of senescence-associated secretory phenotype (SASP) (Cheng et al., 2018). Declines in the production of TGF-β decreases the expressions of alpha smooth muscle actin (αSMA) and further slows the differentiation of fibroblasts into myofibroblasts, resulting in wound contraction frailty and collagen deposition disruption (Martelli-Klai et al., 2014). The formation of αSMA and collagen is also influenced by E-cadherin level, a trans-membrane protein that mediates inter-cellular adhesion (Gasca-lozano et al., 2017). E-cadherin deficiency in chronic wounds causes weakening of cells’ bonding, thus inhibiting cell migration to the wound surface. The barrier of migration is exacerbated by SASP secretion which plays a role in increasing tissue destruction and stopping the cell cycle at G0 (Deursen & Van Deursen, 2014; Frykberg & Banks, 2015). This condition happens due to p53 activation as a effect of the decline of superoxide dismutase (SOD) 1. The decrease of SOD1 affects the secretion of collagen, αSMA and TGF-β because nuclear related factor 2 (Nrf2) needs to binds to SOD1 in stimulating the ECM production of targeted genes (Li et al., 2019). Accordingly, wounded hyperglycemia fibroblasts (wHFs) as an in vitro model for diabetic ulcers are important targets in the diabetic wound therapy. Our study aimed to identify the most active fraction of P. crocatum and to gain further knowledge concerning its effects in collagen deposition and wound closure via regulation of αSMA, p53, SOD1 and E-cadherin of wHFs.

2. Materials and methods

2.1. Plant materials

The P. crocatum leaves were collected from Magelang, Central Java, a district of Indonesia, on February 2017, identified at the plant systematic laboratory (voucher specimen no: 5284/UN/FFA/ BF/PT/2018), and deposited in the Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.

2.2. Bioassay-guided fractionation

2.2.1. Extraction

We performed extraction according to the procedures of Shamley and Wright (2017). Dried leaves were cut into pieces, dried, and ground into powder. 537 g of powder were extracted by maceration using methanol (MeOH) and the residue was extracted with chloroform (CHCl3). Filtering was done using a Buchner funnel. The filtrate of each extract was then combined and evaporated. The success of extraction was monitored by thin layer chromatography (TLC) and further tested for its pro-healing activity.

2.2.2. Partition

Partition was done by the centrifuge method as performed in previous study (Rabiu and Haque, 2020). Seventy grams (70 g) of active extract were partitioned using wash-benzene (WB) to get wash benzene-soluble and wash benzene-insoluble compounds. The extract was dissolved in WB, stirred vigorously, put into the tube, and then centrifuged at 10,000 rpm for 10 min. WB-soluble and WB-insoluble sub-extracts then were stored in different porcelain- lains and evaporated. The success of partition was monitored by TLC and further tested for its pro-healing activity.
2.2.3. Fractionation

The active sub-extract (41 g) was then fractionated by liquid chromatography that was modified using vacuum with a stationary phase of silica gel GF254 (Merck, 0.25 mm). The mobile phase used were wash benzene (100%), wash benzene: ethyl acetate (9:1; 8:2; 7:3; 6:4; 5:5; 4:6; 3:7; 2:8; 1:9 v/v), ethyl acetate (100%), and CHCl3: MeOH (1:1 v/v). TLC identification of liquid chromatography yielded 12 fractions that were combined into four fractions, i.e., fraction I (F1), fraction II (F2), fraction III (F3), and fraction IV (F4) based on spot similarity, then used for the pro-healing tests. The active fraction that had the highest percentage of proliferation from the MTT assay was then used for further testing (Yulianti et al., 2021).

2.2.4. Pro-healing activity assay

The pro-healing activity was observed with 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT, Bio basic, Ontario, Canada) assay, triplicate (Kumar et al., 2018). Briefly, wHFs (1 × 10⁴) were seeded into 96-well plates and allowed to grow for 24 h. Cells were then treated with samples and incubated in 5% CO2 at 37°C for 24 h. Cells were washed and MTT solubilized with media was added to each well and incubated for four hours in incubator (5% CO2, 37°C). The MTT was then removed and 200 μl dimethyl sulfoxide (DMSO) were added as a stop solution. Absorbance was recorded at 570 nm using microplate absorbance reader (Imark™, Bio-Rad). The proliferation rates were counted using the formula below:

\[
\% \text{ Proliferation} = \frac{\text{treated cell absorbance} - \text{media absorbance}}{\text{controlled cell absorbance} - \text{media absorbance}} \times 100
\]

2.3. Preparation of wHFs

Fibroblasts were grown from the circumcised human prepuce tissue purchased from dermatology laboratory and isolated by separating the dermal tissue from epidermal tissue. Normal prepuce tissues were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, New York, NY, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, New York, NY, USA), 1% penicillin–streptomycin (Gibco, New York, NY, USA), and 1% fungizone (Gibco, New York, NY, USA) until the 3rd passage. Subcultures were made by the warm trypsinization method (Uck et al., 2017). A diabetic wound model was achieved by continuously growing cells under hyperglycemic conditions; cells were cultured in complete media (basal glucose concentration of 5.6 mMol/L) containing an additional 17 mMol/L D-glucose (Sigma-Aldrich, Cat. no. 110187-42-2). The wHFs were ready for treatment when they showed a significant decrease in numbers. Cell counting was performed using automatic cell counter Millipore Scepter 2.0 (Scepter™ Sensors, 60 um, Mexico City, Mexico). A wound was simulated in vitro via the scratch assays, whereby a sterile 1 mL disposable pipette was used to scrape the confluent monolayer in a diagonal line, creating a cell-free zone in the center with cells on either side of the wound (Houreld et al., 2018).

2.4. Collagen assay

Collagen assay was performed in triplicate by Picro-Sirius Red method (Chen et al., 2013; Wirohadidjojo et al., 2011). Briefly, 96-well plates were seeded with 1 × 10⁴ of hyperglycemia fibroblasts (HFs) in 100 μl complete high glucose DMEM (Gibco, New York, NY, USA). The HFs were grown for 24 h. Then, HFs were scratched (wHFs) and treated with samples and incubated in 5% CO2 at 37°C for 72 h. wHFs were washed and fixed with 100 μl Bouin’s fixation solution (Sigma-Aldrich, Cat no. MFCD00146169) in the darkroom at room temperature for an hour. wHFs were washed carefully with distilled water and then dried overnight. wHFs were then washed with 0.1 hydrogen chloride (HCl), treated with 0.5 sodium hydroxide (NaOH) and incubated for 30 min at room temperature. Image acquisition was conducted using inverted microscope (Nikon’s Eclipse TE2000-U, USA). Absorbance levels were recorded at 570 nm using microplate absorbance reader (Imark™, Bio-Rad). The collagen deposition was counted using the formula below:

\[
\% \text{ Collagen} = \frac{\text{treated cell absorbance-media absorbance}}{\text{controlled cell absorbance-media absorbance}} \times 100
\]

2.5. Wound closure assessment

Wound closure assessment was performed in triplicate by scratch wound assay (Venter and Niesler, 2019). HFs (5 × 10⁴) were seeded into 24-well plates and allowed to grow in 500 μl complete high glucose DMEM for 24 h. HFs were scrapped in a diagonal line (wHFs) and then treated with FIV and incubated in 5% CO2 at 37°C for 72 h. wHFs were washed carefully, stained with hematoxylin solution and incubated at room temperature for an hour, then washed again. The images were taken with an inverted microscope (Nikon’s Eclipse TE2000-U, USA) and imaged with Optialab™ software for Windows. The percentage of wound closure was analyzed using Image J software for Windows with the guidance of Venter and Niesler (2019). Wound closure was calculated as the percentage of newly formed cells by fibroblasts covered area (5 images per sample) (Baranyi et al., 2019).

2.6. Protein extraction and western blotting of α-SMA, P53, SOD-1 and E-cadherin

The measurement of α-SMA, p53, SOD1 and E-cadherin was done using western blotting in triplicate. HFs (30 × 10⁴) were seeded into 6-well plates and allowed to grow in 2 mL complete high glucose DMEM for 24 h and then scratched (wHFs). wHFs were then treated with FIV (7.81; 15.62; 31.25 μg/ml and incubated in 5% CO2 at 37°C for 72 h. Protein cells were extracted using M-PER® (Thermo; Cat. No. 87785) according to the manufacturer instructions. Cells were rinsed using PBS 2 × 10 min, scraped using scrapper, homogenized using 200 μl M-PER®, and centrifuged at 12,000 rpm for 20 min at 4°C. Supernatant were stored at ~80°C. Protein quantification was conducted using Pierce™ 660 nm protein assay reagent (Thermo; Cat. No. 22660). 15 μg/μl protein was separated onto 10% SDS-PAGE and transferred to a polyvinylidene fluoride membrane (PVDF) (Immun-Blot®, Bio-Rad) and incubated with anti-p53 (Cat. No. A5761, anti-rabbit, 1:500 dilution), anti-α-SMA (Cat. No. ab5694, anti-rabbit, 1:1000 dilution), anti SOD1 (Cat. No. ab51254, anti-rabbit, 1:1000 dilution), anti E-cadherin (Cat. No. ab1416, anti-rabbit, 1:1000 dilution), and anti-β-Actin (Cat. No. ab8227, anti-rabbit, 1:1000 dilution). A total of 5% skim milk in TBST was used for blocking followed by incubation with the appropriate secondary antibody. Proteins were visualized using ECL Prime Western Blotting Detection Reagents (GE Healthcare, RPN2232). Blots were photographed with a Gel doc machine (Gel-doc Syngene Gbox Seri Chemi xrq) (Arfian et al., 2019; Jara et al., 2019).

This study received approval from Medical and Health Research Ethics Committee of the Medicine, Public Health and Nursing Faculty, Universitas Gadjah Mada (KE/FK/1238/EC/2018).
2.7. Statistical analysis

We used the ANOVA, Kruskal-Wallis, Tukey’s test, Dunnett’s test, Mann-Whitney U, and independent T-test for analysis of independent variable groups. Pearson correlation was used to analyze the underlying mechanism. Values are presented as mean ± standard deviation (SD) of the mean of the number of determinations. The degree of significance was set at $p < 0.05$, and all analyses were performed using SPSS (IBM, Corp, Armonk, NY) (Pallant, 2011).

3. Results

We performed bioassay-guided fractionation to select the active fraction. Prior to this process, we identified the passage of wHFs that showed a significant decrease in cell numbers. We found that wHFs at the 10th passage showed a significant decrease in cells numbers compared to wHFs at the first passage ($p = 0.016$; Independent T-test) (Fig. 1). Therefore, the wHFs of 10th passage were ready for treatment and were used in further testing.

3.1. The finding of the most active fraction

The bioassay-guided fractionation workflow is presented in Fig. 2. We first examined the proliferation activity of eight serial concentrations (3.91, 7.81, 15.62, 31.25, 62.5, 125, 250, and 500 mg/ml) in the wHFs. Methanol (MeOH) extract of *P. crocatum* had a higher proliferation activity compared to chloroform (CHCl$_3$) extract ($p = 0.003$; Kruskal-Wallis). As shown in Fig. 3, the proliferation of wHFs was induced by MeOH extract in a concentration-dependent manner. At concentrations of 3.91; 7.81; 15.62; 31.25; 62.5; 125; and 250 mg/ml, the MeOH extract of *P. crocatum* was able to increase proliferation rate of wHFs in the presence of seven different concentrations followed by MTT assay for cell survival after 24 h. Therefore, the MeOH extract was used for further separation (partition).

Applying in the wHFs, WB-soluble sub-extract of *P. crocatum* had a higher proliferation activity compared to WB-insoluble sub-extract ($p < 0.0001$; ANOVA). As shown in Fig. 4, the proliferation of wHFs was induced by WB-soluble sub-extract in a dose-dependent manner. At concentrations of 3.91; 7.81; 15.62; 31.25; 62.5; 125; and 250 μg/ml, the WB-soluble sub-extract of *P. crocatum* was able to increase proliferation rate of wHFs in the presence of seven different concentrations followed by MTT assay for cell survival after 24 h. Therefore, the WB-soluble sub-extract was used for further separation (fractionation).

Twelve fractions were obtained and were yielded for TLC identification. The fractions were then combined into four fractions: fraction I (F$_1$), fraction II (F$_2$), fraction III (F$_3$), and fraction IV (F$_4$) based on spot similarity (Fig. 5). Furthermore, F$_4$ of *P. crocatum* had the highest proliferation activity as shown in Fig. 6. The proliferation of wHFs was induced by F$_4$ in a dose-dependent manner. At concentrations of 3.91; 7.81; 15.62; 31.25; and 62.5 μg/ml, F$_4$ of *P. crocatum* was able to increase proliferation rate of wHFs in the presence of five different concentrations followed by MTT assay for cell survival after 24 h. Therefore, F$_4$ was defined as the most active fraction.

Moreover, F$_4$ was yielded to TLC on silica gel using mobile phase of MeOH/CHCl$_3$ (1:2, v/v) and two drops of glacial acetic acid and observed at UV$_k$ 366 nm. Glycoside polyphenol profile characterized by purple fluorescence (Lata and Mittal, 2017) was detected after being sprayed with citroboric acid (Fig. 5). F$_4$ was then applied to further testing with 72 h incubation period as the best incubation time (Fig. 7).

3.2. Effect of *P. crocatum* F$_4$ on collagen deposition of wHFs

To determine if F$_4$ has wound healing activity in producing the ECM, we assessed the collagen deposition induction of F$_4$ by using the Picro-Sirius Red method. The red staining represents collagen deposition. As a result, F$_4$ of *P. crocatum* was found to possess wound healing activity in vitro through ameliorating collagen deposition at the concentrations of (7.81, 15.62, 31.25, 62.5, and 125) μg/ml ($p < 0.0001$; ANOVA). As illustrated in Fig. 8, the lowest concentration of F$_4$ (7.81 μg/ml) exhibited the highest collagen deposition rate and showed significantly higher collagen deposition than control group ($p < 0.0001$; Dunnett’s test). Moreover, collagen deposition arrangements were more compact and regular in the intervention groups (Suppl. Fig. 1).

Fig. 1. The number of hyperglycemia fibroblasts (HFs) were significantly decreased at the 10th passage compared to normal fibroblasts (NFs) ($p = 0.016$; independent t-test).
3.3 Effect of *P. crocatum* F IV on wound closure of wHFs

Scratch assay was performed to examine the wound closure of wHFs. Scratch assay is widely applied *in vitro* technique for understanding the wound healing properties of medicinally compound (Bolla et al., 2019). In the current study, wHFs were treated with five serial concentrations (7.81, 15.62, 31.25, 62.5, and 125 μg/ml) of F IV *P. crocatum* for 72 h. The newly formed cell covering wound area was captured and calculated by Image J Software. The results indicated that F IV, at all concentrations, closed the gap created by the scratch and the highest wound closure rate (98%) was achieved by F IV at 7.81 μg/ml. Percentage of wound closure in intervention and control group at different concentrations have been represented in Fig. 9.

Suppl. Fig. 2 shows the microscopic images of the intervention and control groups. The photographs show increased wound closure in the intervention groups.

Fig. 2. The fractionation procedure.

Fig. 3. F IV of *P. crocatum* was identified as the most active fraction in promoting wHFs proliferation rates. Results shown in the graphs are mean ± SD from three independent experiments: The MeOH extracts were confirmed to promote significantly higher proliferation rates than CHCl3 extracts (*p < 0.05, **p < 0.01; Mann-Whitney U).

Fig. 4. WB-soluble sub-extracts were corroborated to induce significantly higher proliferation rate than WB-insoluble sub-extracts (*p < 0.05, **p < 0.001; Tukey’s test).

Fig. 5. The chromatogram of *P. crocatum* fractions: (A) The uncombined fractions (F1-12) (silica gel 60 F254; WB/ETOAc (3:1, v/v); λ 254 nm); (B) The combined fractions (F1-IV) (silica gel 60 F254; WB/ETOAc (3:1, v/v); λ 254 nm); (C) F IV (silica gel 60 F254; MeOH/CHCl3 (1:2, v/v) + two drops of glacial acetic acid; λ 366 nm).
3.4. Down regulation of p53 and up regulation of αSMA, SOD1, and E-cadherin by F IV P. crocatum leads to increased collagen deposition and wound closure of wHFs

We performed western blotting to observe the involvement of αSMA, p53, SOD1 and E-cadherin in collagen deposition and wound closure. wHFs were treated with three serial concentrations of F IV (7.81, 15.62, and 31.25 µg/ml). After 72 h, proteins were extracted (refer to methods) and analyzed by western blot for levels of αSMA, p53, SOD1 and E-cadherin. Control cells, the untreated wHFs, and normal cells were analyzed in a similar manner.

The decreased expressions of p53 and the increased expressions of αSMA were generally considered as strong indicators of diabetic.

Fig. 6. The highest proliferation was stimulated by F IV at the concentrations of 3.91, 7.81, 15.62, 31.25, 62.5, and 125 (* p < 0.05, *p < 0.01, ***p < 0.001; ANOVA).

Fig. 7. F IV applications within 72 hours incubation were reported to stimulate the highest proliferation rate (* p < 0.05, **p < 0.001; ANOVA).
wound healing progression with FIV application at the concentrations of 7.81 and 15.62 μg/ml (Fig. 10). The increase in collagen deposition with FIV treatment decisively correlated with a decrease in the expressions of p53 (p = 0.026, r = -0.864; Pearson correlation) and an increase in the expression of αSMA (p = 0.003, r = 0.957; Pearson correlation). In a similar way, the increase in wound closure with FIV treatment was also firmly correlated with a decrease in the expressions of p53 (p = 0.032, r = -0.849; Pearson correlation) and correlated with an increase in the expression of αSMA (p = 0.018, r = 0.888; Pearson correlation).

According to our findings, the increased expressions of SOD1 and E-cadherin were also considered as a progress indicator of FIV treatment (Fig. 11). The increase in SOD1 with FIV treatment was also positively correlated with an increase of collagen deposition (p = 0.045; r = 0.685; Pearson correlation) at the concentrations of 7.81 and 15.62 μg/ml but did not correlate with an increase of wound closure (p = 0.257; Pearson correlation) as compared to the control cell. At the same time, the increased E-cadherin expressions were correlated with an increase of collagen deposition (p = 0.010, r = 0.919; Pearson correlation) and wound closure (p = 0.045, r = 0.803; Pearson correlation) as compared to the control cells.

For the purposes of the study, we concluded that the down regulation of p53 and the upregulation of αSMA, SOD1 and E-cadherin resulted in a significant increase of collagen deposition. Similarly, the increased wound closure rates were also triggered by the down regulation of p53 and upregulation of αSMA and E-cadherin but were not triggered by SOD1.

Fig. 8. F IV of P. crocatum ameliorated collagen deposition of wHFs after 72 h exposure. Data are shown as mean ± SD: The intervention groups had a significantly higher collagen deposition than the control groups (*p < 0.001; Dunnett’s test).

Fig. 9. F IV of P. crocatum ameliorated wound closure of wHFs after 72 h exposure. Data are shown as mean ± SD: The intervention groups had significantly higher wound closure rate than the control groups (*p < 0.001; Dunnett’s test).

Fig. 10. The western blot analysis of p53 and αSMA protein bands were analyzed using Image J. Data are shown as mean ± SD (n = 3). The F IV P. crocatum F IV was confirmed to up regulate of αSMA and down regulate of p53 expressions (*p < 0.05, **p < 0.01, ***p < 0.001; Dunnett’s test).
4. Discussion

Bioassay-guided fractionation was performed in our study to identify the active fractions through three steps (extraction, partition, and fractionation). This method was successful in separating the active compound groups in *Tithonia Diversifolia* and *Kappaphycus alvarezii* (Doty) Doty ex P.C.Silva algae (Syarif et al., 2018; Yulianti et al., 2021). One additional step from this method can be used to isolate the active compounds contained in natural materials, for example the Tagitin C compound from *Tithonia diversifolia* (Wahyuningsih et al., 2015) and zerumbone from *Zingiber zerumbet* (Murini et al., 2018).

Fig. 11. The western blot analysis of SOD1 and E-cadherin protein bands were analyzed using Image J. Data are shown as mean ± SD (n = 3). The FIV P. crocatum FIV was confirmed to up regulate the SOD1 and E-cadherin (**p < 0.01, ***p < 0.001; Dunnett’s test).**

	Control	NFs 31.25 µg/ml	NFs 15.62 µg/ml	NFs 7.81 µg/ml
E-cadherin (130 kDa)				
βActin (42 kDa)				
SOD1 (23 kDa)				

Relative Expressions of E-Cadherin

Relative Expressions of SOD-1
Our study confirmed that wHFs treated with MeOH extract had higher proliferation rate than wHFs treated with CHCl₃ extract. This finding agrees with a previous study which found that MeOH extract was not toxic (Chan et al., 2015). However, several studies have found a different result and reported that MeOH extract was toxic (Dhawan & Gupta, 2016; Truong et al., 2019). These differences in findings show that the MeOH extract contains many classes of compounds with opposing potential, so further separation needs to be done. Therefore, the MeOH extract was separated using wash-benzene to give simpler compounds.

wHFs treated with WB-soluble extracts had a higher proliferation rate than wHFs treated with WB-insoluble-soluble-wash benzene. It has been published that the simpler the compound, the higher the level of activity (Jiang et al., 2017). Dissimilar with this report, we found that the WB-soluble extracts had lower proliferation rate compared to the MeOH extract. This circumstance could be due to the presence of various molecular weights. Centrifugation method used in this study ideally could be able to separate the secondary metabolites, but may still result in different molecular weights. The varying molecular weights will affect the level of activities (Ungureanu et al., 2013). However, our study revealed that four fractions (F₁, F₂, F₃, F₄) obtained from WB-soluble extracts had a higher proliferation rate compared to the MeOH extract. This study confirmed that the most active fraction is F₄, since it has the highest proliferation rate among all fractions treatments. Glycoside polyphenol contained in F₄ is a type of flavonoid that has a benzo-γ-pyrone structure and is responsible for the variety of pharmacological activities (Kumar and Pandey, 2013).

Our study revealed that treated wHFs had higher collagen deposition compared to untreated wHFs at all concentrations. In line with our study, flavonoids (morine, rutin and chrysirin) from green tea also have an ability to increase collagen production by fibroblasts (Stipcic et al., 2006). As observed in the previous study, the increase in collagen occurs in response to the free radical scavenging activity of hydroxyl chain in the flavonoid chemical structure (Buransin et al., 2018; Prayitno et al., 2018). As one of the flavonoid types, polyphenol of F₄ P. crocatum was thought to play a role in the higher collagen deposition of treated group. One study that stated MeOH maceration has been known to attract more polyphenols is in accordance with the methods and findings of our study (Prayitno et al., 2018). We performed maceration three times to get extracts in large quantities by increasing diffusion and reducing density (Prayitno et al., 2018).

The study by Goulding (2015) affirmed that therapies that improve collagen production will have good impact for the next wound healing phase. We found that P. crocatum F₄ induces wound closure at all concentrations. The ability of cells to produce collagen affects the ability of cells to migrate in creating wound closure (Foster et al., 2018). Similar to the effect of P. crocatum on collagen deposition, we confirmed that P. crocatum accelerated wound closure at all concentrations (7.81, 15.62, 31.25, 62.5, and 125 μg/ml).

Additionally, we did not find the concentration-dependent of F₄ effects on collagen deposition and wound closure. However, the concentrations of F₄ used in this study were five concentrations that have been shown to have proliferative activity according to prior application of MeOH extracts and WB-soluble sub-extracts in wHFs. Showing anti-proliferative effect of methanol extracts and WB-soluble sub-extract at the concentration of 500 μg/ml, we suppose that F₄, ameliorated collagen deposition and wound healing in concentration-dependent way. In accordance with our view, a small dose of polyphenols from Parapipteridina rigid is reported to increase fibroblast proliferation activity and suppressed proliferation at large doses (Muhammad et al., 2013). Another study reported that the high dose of polyphenols was shown to have anti-proliferative activity due to the inhibition of the STAT-3 signaling pathway (Huang et al., 2013). Accordingly, dosage must be carefully considered in investigating the effect of P. crocatum in the future studies.

Our study showed that the treated wHFs had a significantly higher expression of αSMA, SOD1 and E-cadherin and had significantly lower expression of p53 compared to untreated wHFs. Since our study revealed significant relationship between expressions of p53 and wound closure rate, it is in agreement with the findings of Tombulturk et al (2019) which explained that p53 expression during the proliferation phase of diabetic wound healing needs to be decreased to accelerate wound closure. The increased activity of activated-protein 1 (AP-1) that is ubiquitously present in diabetic wounds causes over-expression of c-fos and c-jun. This condition leads to matrix metalloproteinase (MMPs) excess. The hydroxyl group in P. crocatum is supposed to have a high affinity of zinc contained in MMPs. This condition leads to MMPs declining and results in MMPs-p53 binding impairment. Consequently, the structure of p53 is impaired (Pang et al., 2016).

The decrease in p53 expression has an impact on deletion of apoptotic cells, resulting in enhancement of collagen production, myofibroblast differentiation and angiogenesis (Bhan et al., 2013). In line with this explanation, our study also confirmed that collagen deposition was significantly associated with p53 expression. As one of the limitations, our in vitro study was not able to identify the myofibroblast differentiation and angiogenesis. However, as a marker of fibroblast readiness to differentiate into myofibroblasts, αSMA expression in treated wHFs was observed to be higher than untreated wHFs. Moreover, the increase of αSMA during wound healing is useful for maintaining collagen structure (Strojadinovic et al., 2012). In accordance with that study, we also observed the significant association between collagen deposition and αSMA expressions.

Collagen structure is also dependent on the quantity of E-cadherin as a cell adhesive molecule (CAM). E-cadherin which is expressed on the fibroblasts' surface has a vital function to strengthen the binding between collagen (Keshri et al., 2016; Wang and Shi, 2020). Hence, this description supports our finding of significant correlation between collagen deposition and E-cadherin expressions. The significant correlation between wound closure and E-cadherin expressions was also observed in our study (p = 0.023). In line with our findings, it has long been known that E-cadherin expression was observed in the cells, where migration was active (Kuwahara et al., 2001). However, E-cadherin production and distribution within cells require calcium intake (Hunter et al., 2015). Calcium-binding sites of glycoside polyphenol that have sensitive calcium signaling, result in the ability of F₄ P. crocatum to uptake more calcium from FBS containing media than their aglycons (Singh et al., 2021).

The tissues must remain stable during cell migration to get the complete wound closure. Therefore, the continuity of ECM production amid wound closure process needs to be maintained. One of the factors that play a role in ECM production is SOD1. SOD1 needs to be bound by Nrf2 to stimulate ECM production (Kelly, 2020; Li et al., 2020; Wade, 2012). In relevant, SOD-targeted therapy normalizes diabetic wound healing (Churgin et al., 2005). This finding supports the result of our study that observed significant correlation between SOD1 and collagen deposition. Differently, wound closure was not found to have a significant correlation with SOD1. However, our study corroborated that SOD expressions were inclined to be higher in treated wHFs than untreated wHFs. The mechanism was elucidated in several in vivo studies that found SOD1 maintains redox homeostasis in cells and tissues when injury occurs through interaction with bio-membranes to protect the cell from increased ROS activity and oxidizing them to become stable.
molecules during the wound healing process (Kurahashi and Fujii, 2015; Shavandi et al., 2018; Wade, 2012).

Our results demonstrated that treated WHFs had significantly higher expressions of αSMA and lower expressions of p53 at 15.62 and 7.81 μg/ml, whereas SOD1 expressions were found to be significantly higher only on 7.81 μg/ml treated WHFs. E-cadherin expressions were significantly higher at all concentrations of treated WHFs than untreated WHFs. We confirmed that *F. v. P. crocatum* is a bio-selective compound that has a consistent effect in ameliorating the wound healing process in diabetic wounds mimicked in an *in vitro* model at concentration 7.81–31.25 μg/ml. Some polyphenols, in a dose dependent way, may regulate the wound healing process in accordance with its needs (Dzialo et al., 2016). By considering the results of our study and the advantages of developing these polyphenol-rich natural materials, such as low production costs, abundant supplies and few side effects (Bahramsoltani et al., 2014), *P. crocatum* has the potential to be developed into a novel wound healing technology. However, further *in vivo* research needs to be done to identify the effects of *F. v. P. crocatum* and future clinical study can identify its contribution in accelerating diabetic wound healing.

5. Conclusions

We concluded that *F. v. P. crocatum* increases collagen deposition and wound closure in WHFs through increasing αSMA, SOD1 and E-cadherin expressions as well as decreasing p53 expression at the best concentration of 7.18 μg/ml. However, *P. crocatum* in WHFs has benefits on WHFs at concentrations of 7.18–31.25 μg/ml and is safe to use to treat WHFs until 125 μg/ml concentration.

Our study results provide biologically based evidence transferable to health practice and health education regarding the *F. v. P. crocatum* mechanisms in diabetic wound healing and safety concerns of concentration and manufacture of plant-based wound medicines. Moreover, further studies are required to identify the effects of *F. v. P. crocatum in vivo* and clinical manner in future study in contribution of accelerating diabetic wound healing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This study acknowledges support from the Indonesian Endowment Fund for Education (grant numbers 2017/0210411521), PKPI-Sandwich scholarship program of Indonesian Ministry Education and Culture and Cultural in Hochschule Hannover, Germany (decision letter number B-00022408/Kemensetneg/Set/KTLN/LN.01.05/09/2019), and Universitas Gadjah Mada. We also would like to acknowledge the support from the Laboratory of Dermatology, Pharmacology and Therapy, Anatomy and Integrated Research Laboratory of Universitas Gadjah Mada, as well as key contributors who helped to facilitate this work (in order of contribution) Prof. Dr.Y.Widodo, Sp.KK (K), Dr. Nur Arfian, MD., PhD, Wiwit Ananda Wahyu Setyaningsih, MS., and Dr. Haryurl Hamzah. M.Si., Apt. We also gratefully acknowledge the staff of Klinik Bahasa, FKMK-UGM and Dr. Sam Ibeneme in providing language help and writing assistance.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.sjbs.2021.08.039.

References

Afrian, N., Ananda, W., Setyaningsih, W., Romi, M.M., Cahyani, D., Sari, R., 2019. Heparanase upregulation from adipocyte associates with inflammation and endothelial injury in diabetic condition. BMC Proc. 13, 1–8. https://doi.org/10.1186/s12919-019-0202-9

Bahramsoltani, R., Farzaei, M.H., Rahimi, R., 2014. Medicinal plants and their natural components as future drugs for the treatment of burn wounds: an integrative review. Arch. Dermatol. Res. 306 (7), 601–617. https://doi.org/10.1007/s00423-014-1474-6.

Baranyi, U., Winter, B., Gugerell, A., Hegeus, B., Brostjan, C., Laufer, G., Messner, B., 2019. Primary human fibroblasts in culture switch to a myofibroblast-like phenotype independently of TGF Beta. Cells 8, 721. https://doi.org/10.3390/cells8070721.

Bhan, S., Mitra, A., Arya, A.K., Pandey, H.P., Tripathi, K., 2013. A study on evaluation of apoptosis and expression of bcl-2-related marker in wound healing of streptozotocin-induced diabetic rats. ISRN Dermatol. 2013, 1–6. https://doi.org/10.5402/2013/256043.

Bolla, S.R., Mohammed Al-Saubaie, A., Yousuf Al-Jindan, R., Papayya Balakrishna, J., Kanchi Ravi, P., Veerarahavan, V.P., Arfian, N., Ananda, W., Setyaningsih, W., Romi, M.M., Cahyani, D., Sari, R., 2019. Functional Polypodium leucotomos leaf extract of Aristolochia australis is possibly mediated by its stimulatory effect on collagen-1 expression. Heliyon 5 (10), e01648. https://doi.org/10.1016/j.heliyon.2019.e01648.

Buransri, N., Muzitani, K., Iwaski, K., Pawapatunon Na Masarakham, C., Kido, D., Takeda, K., Izumi, Y., danoad, A., 2018. High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts. PLoS One 13 (8), e0201855. https://doi.org/10.1371/journal.pone.0201855.

Cavanagh, P., Attinger, C., Abbas, Z., Bai, A., Rojas, N., Xu, Z.-R., 2012. Cost of treating diabetic foot ulcers in five different countries. Diabetes. Metab. Res. Rev. 28, 107–111. https://doi.org/10.1002/dmr.

Chan, S.M., Khoo, K.S., Sit, N.W., 2015. Interactions between plant extracts and cell viability indicators during cytotoxicity testing : implications for ethnopharmacological studies. Trop. J. Pharm. Res. 14, 1991–1998. https://doi.org/10.4314/tjpr.v14i11.6.

Chen, C., Yang, S., Zhang, M., Zhang, Z., Zhang, B., Han, D., Ma, J., Wang, X., Hong, J., Guo, Y., Zhang, L., 2013. In vitro Sirius Red collagen assay measures the pattern shift from soluble to deposited collagen. In: XXXIVOxgen Transport to Tissue. Springer, New York, pp. 47–53.

Cheng, K., Lin, Z., Cheng, Y., Chiu, H., Yeh, N.-L., Wu, T.-K., Wu, J.-S., 2018. Wound healing in streptozotocin-induced diabetic rats using atmospheric-pressure argon plasma jet. Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-30597-1.

Churign, S.S., Callaghan, M., Galiano, R., Blechman, K., Ceradini, D., Gurtner, G., 2005. Therapeutic administration of superoxide healing in diabetic mice. J. Am. Coll. Surg., 201

Deursen, J.M.V., van Deursen, J.M., 2014. The role of senescent cells in aging. Nat. Rev. Mol. Cell Biol., 509, 439–446. https://doi.org/10.1038/nature13193.

Dhawan, D., Gupta, J., 2016. Comparison of different solvents for phytochemical extraction potential from Datura metel plant leaves. Int. J. Biol. Chem. 11 (1), 17–22. https://doi.org/10.3923/ijbc.2017.17.22.

Dzialo, M., Mierzak, J., Korzun, U., Pressner, M., Szopa, Z., Kulina, A., 2016. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 17, 1–41. https://doi.org/10.3390/ijms17020160.

Enriquez-Ochoa, D., Robles-Oralve, P., Mayolo-Delosa, K., Brunck, M.E.G., 2020. Immobilization of growth factors for cell therapy manufacturing. Front. Bioeng. Biotechnol. 8, 1–20. https://doi.org/10.3389/fbioe.2020.00620.

Fitiryan, A., Winarti, L., Muslichah, S., Nuri, N., 2011. Anti-inflammatory activity of *Piper crocatum* Ruiz & Pav. leaves metanolic extract in rats. Tradit. Med. J. 16, 34–42. https://doi.org/10.22146/tradmedj.8020.

Foster, D.S., Jones, R.E., Ransom, R.C., Longaker, M.T., Norton, J.A., 2018. The evolving relationship of wound healing and tumor stroma. JCI Insight 3, 1–17. https://doi.org/10.1172/jci.insight.99991.

Fryberg, R.G., Banks, J., 2015. Challenges in the treatment of chronic wounds. Adv. Wound Care (4) (9), 566–587. https://doi.org/10.1089/awcc.2015.0625.

Gasca-Lozano, L.E., Lucano-Landeros, S., Ruiz-Mercado, H., Salazar-Montes, A., Sandoval-Rodriguez, A., Garcia-Beauches, J., Santos-Garcia, A., Davila-Rodriguez, J.R., Navarro-Partida, J., Bojórquez-Sepulveda, H., Castañeda-Gonzalez, J., Domínguez-Rosales, J., Ruiz-Arcos, M.A., Sánchez-Farada, M.C., Armendariz-Borunda, J., 2017. Pigfendine accelerates wound healing in chronic diabetic foot ulcers: a randomized, double-blind controlled trial. J. Diabet. Res. 2017, 1–12. https://doi.org/10.1155/2017/3159798.
A. Setyawati, Mae Sri Hartati Wahyuningsih, Dwi Aris Agung Nugrahaningsih et al. Saudi Journal of Biological Sciences 28 (2021) 7257–7268

Goulding, V., 2015. The effects of diabetes on collagen within wound healing. Diabet. Foot. J. 18, 75–80.

Han, C., Ceiley, R., 2017. Chronic wound healing: a review of current management and treatments. Adv. Ther. 34 (3), 599–610. https://doi.org/10.1007/s12325-017-0477-y.

Hendryani, R., Lutfi, M., Hawa, L.C., 2015. Antioxidant extraction from dried red betel leaf (Piper crotatum) using ultrasonic assisted extraction as pre-treatment (study comparative of solvent and extraction time). J. Bioprosom. Trop. 3, 33–38.

Houreld, N.N., Ayuk, S.M., Abrahamse, H., 2018. Cell culture molecules are modulated by photopharmacokinetics at nm in diabetic wounded fibroblasts. Cells 7, 1–17. https://doi.org/10.3390/cells7040030.

Hwang, X., Meng, B., Iqbal, J., Ding, B.B., Perry, A.M., Cao, W., Smith, L.M., Bi, C., Jiang, G., Greiner, T.C., Weissunger, D.D., Rimsa, L., Rosenwald, A., Ott, G., Delabie, J., Callebaut, I., Casuscello, J., Gascoyne, R.D., Kik supplied to (Piper crotatum) leaf extract. T. Long, T. Jaffe, A. Armitage, J.O., Vose, J.M., Staudt, L.M., McKie, T.W., Chan, W.E., Bi, Y., Fu, K., 2013. Activation of the STAT3 signaling pathway is associated with poor survival in diffuse large B-cell lymphoma treated with R-CHOP. J. Clin. Oncol. 31 (46), 4520–4528. https://doi.org/10.1002/jco.25604.

Hunter, M.V., Lee, D.M., Harris, T.J.C., Fernandez-Gonzalez, R., 2015. Polarized E-cadherin endocytosis directs actomyosin remodeling during embrionic wound repair. J. Cell. Biol. 210, 801–816. https://doi.org/10.1083/jcb.201501076.

Ibrahim, N., Wong, S., Mohamed, I., Mohamed, N., Chia, K.-Y., Irma-Niwarna, S., Shuid, A., 2018. Wound healing properties of selected natural products. Int. J. Environ. Res. Public Health 15 (11), 2360. https://doi.org/10.3390/ijerph15112360.

Jara, C.P., do Prado, T.P., Boobbo, V.C.D., Ramalho, A.F.S., Lima, M.H.M, Licio, L.A., Ibrahim, N., Wong, S., Mohamed, I., Mohamed, N., Chin, K.-Y., Ima-Nirwana, S., Hendryani, R., Lutfi, M., Hawa, L.C., 2015. Antioxidant extraction from dried red betel leaf from Zingiber zerumbet (L). J. E. smith. Asian J. Pharm. Res. 11 (2), 189–193.

Keshri, G.K., Gupta, A., Yadav, A., Sharma, S.K., Singh, S.B., Hamblin, M., 2016. Analysis of cell viability by the MTT assay. J. Immunol. Methods 437, 194–199. https://doi.org/10.1016/j.jim.2016.06.022.

Kumar, P., Nagarajan, A., Uchil, P.D., 2018. Bioactivity-guided fractionation procedures for experimental purposes article. J. Pharm. Bioallied Sci. 10, 139–147. https://doi.org/10.4103/jpbs.JPBS_175_19.

Laksmitawati, D.R., Widyastuti, A., Karami, N., Afifah, E., Rihibiha, D.D., Nufus, H.H., Prayitno, S.A., Kusnadi, J., Murtini, E.S., 2018. Wound healing properties of selected natural products. Int. J. Pharmacogn. Medi. Chem. 19, 1–8. https://doi.org/10.18231/ijpmc.2018.013.

Martinelli, C., 2014. Modulation of MCP-1, TGF-α and nrf-2 pathway. Artif. Cells, Nanomed. Biotechnol. 48 (1), 96–106. https://doi.org/10.3109/10916404.2014.885758.

Nasi, L.S., Karipuran, C.F., Lintong, P.M., 2015. Efek daun sirih merah (Piper Crotatum) terhadap kadar gula darah dan gambaran morfologi endotelik pankreas tisu wistar (Rattus norvegicus). J. E-Biomed. 3, 821–828. https://doi.org/10.14740/jebiomed.2015.3.1.821.

Pallant, J., 2011. SPSS Survival Manual. Allen Unwin, Australia.

Pang, L., Wang, Y., Zheng, M., Wang, Q., Lin, H., Zhang, L., Wu, L., 2016. Transcriptionistic study of high-glucose effects on human skin fibroblast cells. Mol. Med. Rep. 2016, 2627–2634. https://doi.org/10.3892/mmr.2016.5862.

Pernada, T., Widjajastuti, I., 2016. Biocompatibility of red betel leaf extract (Piper crotatum) and 0.2 chloride hexagononlant toward BHK-21 fibroblast. Conserv. Dent. J. 4, 6–11.

Prayitno, S.A., Kusnadi, J., Murtini, E.S., 2018. Karakteristik total flavonoid, total fenol, aktivitas antioksidan ekstrak sereh daun sirih merah (Piper Crotatum Ruiz & Pav.). Food Sci. Technol. J. 1, 26–34.

Puspita, P.J., Saffiith, M., Sugiharti, N.P., 2019. Antibacterial activities of sirih merah (Piper crotatum) leaf extract. J. M. Pusa. 7, 33–38. https://doi.org/10.1016/j.jmpusa.2019.03.003.

Putte, L., Van, Schrijver, S., De, Moortgat, P., 2016. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: a systematic review. Scars, Burn Heal. 2, 1–14. https://doi.org/10.5567/pharmacologia.2013.349.358.

Rahayu, A., Haque, M., 2020. Preparation of medicinal plants: basic extraction and fractionation procedures for experimental purposes article. J. Pharm. Biomed. Sci. 12, 1–10. https://doi.org/10.4103/jpbs.JPBS_175_19.

Rahayu, A., Hafi, S., Yuli, A., 2017. Wound healing of mouse skin. J. Cutan. Pathol. 28, 191–199. https://doi.org/10.1111/cup.12594.

Sharma, Y., Jeyabalan, G., Singh, R., 2013. Potential wound healing agents from medicinal plants: a review. Pharmacologia 4 (5), 349–358. https://doi.org/10.5567/pharmacologia.2013.349.358.

Shrivastava, A., Bhasin, N.D., Bhardwaj, A., Pal, N., 2017. Modulation of MCP-1, TGF-α and nrf-2 pathway. Artif. Cells, Nanomed. Biotechnol. 48 (1), 96–106. https://doi.org/10.3109/10916404.2017.1308151.4

Stojadinovic, O., Pastar, I., Gordon, K.A., Tomic-Canik, M., 2012. The Diabetic Foot: Medical and Surgical Management. Humana Press, New York.

Verma, Sonia, Gupta, Madhu, Popli, Harvinder, Aggarwal, Geeta, 2018. Diabetes mellitus treatment using herbal drugs. Int. J. Pharmacogn. Med. 10 (1), 01. https://doi.org/10.1155/2018/975038.

Wade, L., 2012. Organic Chemistry. Prentice Hall, USA.
