Asymmetric synthesis of \(N \)-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

Kun Xu\(^\text{1,*} \), Thomas Gilles\(^\text{1,*} \) & Bernhard Breit\(^\text{1} \)

The asymmetric synthesis of \(N \)-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective \(N \)-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of \(N \)-allylic indoles via rhodium-catalysed \(N \)-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive \(N \)-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral \(N \)-allylated indoles, and avoids the \(N \)- or \(C \)-selectivity issue.
The asymmetric synthesis of indoles is of great interest because of their prevalence in bioactive molecules. In particular, indoles bearing a \(\alpha \)-chiral carbon centre on the \(N \) are important structural motifs in natural products and pharmaceutical drugs. However, selective \(N \)-allylation of indoles is a true challenge due to the high nucleophilicity of C3 of the indole nucleus and the weak acidity of the N–H bond. As a consequence, two-step protocols by allylation/oxidation of indolines could avoid C3 selectivity issue.

Potentially, chiral \(N \)-allylic aryl hydrazine could give access to various chiral \(N \)-allylic indoles by employing a well-established Fischer indole synthesis. This method would allow flexible construction of complex chiral \(N \)-allylic indoles starting from commercially accessible materials (ketones and aldehydes). Challenge towards the synthesis of chiral \(N \)-allylic aryl hydrazines arises from the selectivity control: (1) \(N \)- and \(N \)-selectivity of aryl hydrazines; (2) branched and linear selectivity of the allylic moiety; (3) enantioselectivity of the branched regioisomer. To address these issues, we envisioned that a transition metal-catalysed asymmetric \(N \)-selective coupling of aryl hydrazines with terminal allenes could lead to the synthesis of chiral \(N \)-allylic aryl hydrazines. The \(N \)- and \(N \)-selectivities at the aryl hydrazine may differentiate in the oxidative addition step, in which the more acidic N–H bond at \(N \) proceeds faster than the less acidic N–H bond at \(N \). Furthermore, combination of a suitable transition metal catalyst and a chiral ligand may allow to control branched selectivity and enantioselectivity.

Herein we report a rhodium-catalysed regio- and enantio-selective coupling of aryl hydrazines with terminal allenes, which lead to the asymmetric synthesis of \(N \)-allylic indoles by following a Fischer indolization.
Results

Reaction optimization of aryl hydrazine allylation. To evaluate our assumption, our studies began with the coupling reaction of phenyl hydrazine and cyclohexylallene in the presence of [Rh(COD)Cl]₂ (1.25 mmol%) and DPEphos (5.0 mmol%) in 1,2-dichloroethane at 80 °C. Surprisingly, the desired N₁-selective branched product was isolated with a promising 77% yield as a single regioisomer (Table 1, entry 1). Encouraged by the high N₁ and branched regioselectivities, we then tested a range of chiral bidentate phosphine ligands (Table 1, entries 2–10). The ligands Josiphos L and (R,R)-Diop led to low yield or poor enantioselectivity (Table 1, entries 2 and 3). After extensive screening (see Supplementary Table 1), we were pleased to observe that biaryl-type bisphosphine ligands led to high yield and promising enantiomeric excess (ee) (Table 1, entries 4–6). Increasing the steric effect of the Segphos-type ligand could significantly increase the enantioselectivity. The best ee was obtained with a bulky (S)-DTBM-Segphos ligand (Table 1, entries 6–8). Similarly, (R)-DTBM-Binap gave a comparable result (Table 1, entry 9). The enantiomeric purity could be enriched by a single recrystallization of the toluene sulfonic acid salt. Control experiments indicated that both rhodium catalyst and ligand are necessary for the coupling reaction of aryl hydrazine with allene to proceed (Table 1, entries 10 and 11).

Table 1 | Optimization of Rh-catalyzed coupling of phenyl hydrazine with cyclohexyllallene.

Entries	Ligand	Yield/%*	Isomers1	ee/% (1a)1
1	DPEphos	77	ND	—
2	Josiphos L	43	ND	56
3	(R,R)-DIOP	90	ND	7
4	(S)-MeO-Biphep	89	ND	40
5	(R)-Binap	96	ND	48
6	(S)-Segphos	89	ND	65
7	(S)-DM-Segphos	90	ND	78
8†	(S)-DTBM-Segphos (L1)	93	ND	85 (95)†
9†	(R)-DTBM-Binap (L2)	90	ND	83†
10†	L1	NR	—	—
11#	—	NR	—	—

ND, not determined; NR, no result.

*Isolated yield.

1Isomers of 1a were determined by 1H NMR of the crude reaction mixture.

1Determined by chiral HPLC.

†[Rh(cod)Cl]₂ (0.0 mol%).

‡[Rh(cod)Cl]₂ (4.0 mol%).

§After recrystallization from tosylic acid salt.

*Without [Rh(cod)Cl]₂.

†Without ligand.
Substrates scope of aryldrazine allylation. With the optimized conditions in hand, we then examined the scope of the addition of different aryldrazines with terminal allenes (Fig. 2). Various aryldrazines were coupled with cyclohexylallene in up to 93% isolated yield (1a) and up to 91% ee (1d–e). Practically, the N-allylated aryldrazines can be recrystallized from the corresponding tosyl acid salts to enrich the enantiomeric excess (1a–c). Several mono-substituted aryls were also tested (1h–l). Allenes bearing a phthaloyl-protected amine, an ester function and a silyl ether were suitable (1g–l).

One-pot asymmetric synthesis of N-allylic indoles. To investigate the compatibility of our strategy in the synthesis of N-allylic indoles via a one-pot process, the crude reaction mixture of the coupling step (1a) was subjected directly for the Fischer indolization in acetic acid at 70°C. The desired N-allylic indole 2a was obtained in 87% isolated yield over two steps with retention of the enantiomeric purity. Variation with other aryldrazines and allenes using this one-pot process led to the synthesis of the corresponding N-allylic indoles in up to 90% yield and up to 91% ee (2b–f). Furthermore, aldehydes, phenyl-substituted ketones as well as a dihydro-2H-thiopyran-4(3H)-one were well tolerated under standard conditions (Fig. 3).

To test the scalability and application of the synthesis of bioactive molecules, we applied the one-pot process for the late-stage indolization of (+)-testosterone acetate. To our delight, the desired indole product 3 was obtained in 59% yield and 17:1 diastereoselectivity in 1.06 gram scale, which indicates the practicality and usefulness of the method (Fig. 4).

Mechanistic investigations. To probe the possible reaction mechanism, a control experiment of 1-methyl-1-phenylhydrazine with cyclohexyllallene was conducted under optimized conditions (Fig. 5a). The reaction was sluggish and gave only traces of the N²-allylated product 4, which is in accord with the lower reactivity of N² of the aryldrazine. Deuterium-labelling experiments with [D₂]phenylhydrazine under optimized conditions displayed that deuterium was only incorporated in the internal position of the double bond (Fig. 5b). Stoichiometric reaction of phenylhydrazine with [Rh(COD)Cl]₂ and DPPEphos in CDCl₃ was monitored by NMR spectroscopy. After 5 min at room temperature, the ¹H NMR spectrum (263 K) showed a major rhodium hydride species at δ = −15.4 p.p.m. (1JRh-H = 14 Hz), which is indicative of the oxidative addition of the N–H bond to rhodium (Fig. 5c).

On the basis of these observations, the following mechanism can be proposed (Fig. 5d). Oxidative addition of the phenyl hydrazine to Rh(I) generates Rh(III) complex (A or A')⁴⁴. The oxidative addition step favours the formation of intermediate A because of the higher acidity of N–H bond of N¹ than N². Hydrometalation of the less-substituted double bond could generate π-allyl-Rh (or δ-allyl-Rh) complex B (or B')⁴²–⁴⁵, which could generate the desired branched N-allylic aryldiazine.
hydrazine 1a via reductive elimination. The N-selectivity was determined within the oxidative addition step46.

Discussion

We have developed the enantioselective N-selective coupling of aryl hydrazines with allenes via a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst system, which allowed the asymmetric synthesis of various valuable N-allylic indoles by following a one-pot Fischer indolization. N-selective allylation of aryl hydrazines using alkynes, target-oriented synthesis, and mechanistic investigations are currently underway in our laboratory and will be reported in due course.

Methods

Allylation of aryl hydrazines. To a screw-cap Schlenk tube was added [Rh(cod)Cl]\textsubscript{2} (0.005 mmol, 1 mol%), L\textsubscript{1} or L\textsubscript{2} (0.02 mmol, 4 mol%), aryl hydrazine (0.5 mmol, 1.0 equiv.), 1,2-dichloroethane (0.4 M) and allene (0.75 mmol, 1.5 equiv.). The Schlenk tube was sealed and the mixture was stirred for 19 h at 80 °C (or 100 °C). After cooling to room temperature, the solvent was removed by rotary evaporation. The crude product was purified by flash column chromatography to obtain the corresponding allylic hydrazine.

One-pot asymmetric synthesis of N-allylic indoles. To the reaction mixture of allylation of hydrazine was added ketone or aldehyde (0.55 mmol, 1.1 equiv.), and the mixture was stirred for half hour to form the corresponding hydrazine, then solvent was removed under reduced pressure. To the residue was added acetic acid (2.0 ml, 0.25 M), and the reaction mixture was stirred for 3–18 h at 70 °C (or 100 °C). The volatiles were removed by rotary evaporation and the crude reaction mixture was purified by flash column chromatography. The ee of each product was determined by HPLC analysis using chiral stationary phases. All new compounds were fully characterized. For NMR, high resolution mass spectrometry (HRMS) analysis and HPLC traces of the compounds in this article, see Supplementary Figs 1–5. General information, materials, synthesis and characterization of compounds in this article (1a–l, 2a–i, 3, 4 and 5), and experimental part for mechanistic investigations see Supplementary Methods.
References

1. Gul, W. & Hamann, M. T. Indole alkaloid marine natural products: an established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. *Life Sci.* 78, 442–453 (2005).

2. Pasquali, G., Porto, D. D. & Fett-Neto, A. G. Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. *Chem. Rev.* 105, 1053–1057 (2005).

3. Lewis, S. E. Recent advances in the chemistry of macrolide, sarpagine and ajmaline-related indole alkaloids. *Tetrahedron* 62, 8655–8681 (2006).

4. O’Connor, S. E. & Maresh, J. J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. *Nat. Prod. Rep.* 23, 532–547 (2006).

5. Higuichi, K. & Kawasaki, T. Simple indole alkaloids and those with a protonized indole moiety. *Adv. Synth. Catal.* 348, 157–160 (2006).

6. Vepsäläinen, J. J., Auriola, S., Tukiainen, M., Ropponen, N. & Callaway, J. C. Isolation and characterization of yuremamine, a new phytoindole. *Planta Med.* 75, 7025–7029 (2009).

7. Trost, B. M. & Hong, J. F. Iridium-catalyzed dynamic kinetic resolution of allylic alcohols. *Chem. Rev.* 105, 15800–15807 (2010).

8. Zaitsev, A. B. et al. Fast and highly regioselective alkylation of indole and pyrrole compounds by allyl alcohols using Ru-sulfonate catalysts. *J. Am. Chem. Soc.* 130, 11604–11605 (2008).

9. Liu, W., He, H., Dai, L. & You, S. Ir-catalyzed regio- and enantioselective Friedel-Crafts-type allylic alkylation of indoles. *Org. Lett.* 10, 1815–1818 (2008).

10. Sundararaju, B. et al. Ruthenium (IV) complexes featuring P.O-chelating ligands: regioselective substitution directly from allylic alcohols. *Angew. Chem. Int. Ed.* 49, 2782–2785 (2010).

11. Jiao, L., Herdtweck, E. & Bach, T. Pd(II)-catalyzed regioselective 2- alkylation of indoles via a norbornene-mediated C-H activation: mechanism and applications. *J. Am. Chem. Soc.* 134, 14563–14572 (2012).

12. Sevov, C. S. & Hartwig, J. F. Iridium-catalyzed intermolecular asymmetric hydroxylation of bicyclic alkenes. *J. Am. Chem. Soc.* 135, 2116–2119 (2013).

13. Kimura, M., Futamata, M., Mukai, R. & Tamaru, Y. Pd-catalyzed C3-selective allylic alkylation of indoles with allyl alcohols promoted by triethylborane. *J. Am. Chem. Soc.* 127, 4592–4593 (2005).

14. Sevov, C. S. & Hartwig, J. F. Iridium-catalyzed intermolecular asymmetric hydroxylation of bicyclic alkenes. *J. Am. Chem. Soc.* 135, 2116–2119 (2013).

15. Trost, B. M., Krische, M. J., Berl, V. & Grenzer, E. M. Chemo-, regio-, and enantioselective Pd-catalyzed allylic alkylation of indolocarbazole pro-aglycons. *Org. Lett.* 4, 2005–2008 (2002).

16. Cui, H. et al. Chemospecific asymmetric N-allylic alkylation of indoles with Morita-Baylis-Hillman carbones. *Angew. Chem. Int. Ed.* 48, 5737–5740 (2009).

17. Luzung, M. R., Lewis, C. A. & Baran, P. S. Direct, chemoselective N-tert-prenylation of indoles by C-H functionalization. *Angew. Chem. Int. Ed.* 48, 7025–7029 (2009).

18. Stanely, L. M. & Hartwig, J. F. Iridium-catalyzed regio- and enantioselective N-allylation of indoles. *Angew. Chem. Int. Ed.* 48, 7841–7844 (2009).

19. Toste, B. M., Osipov, M. & Dong, G. Palladium-catalyzed dynamic kinetic asymmetric transformation of vinyl aziridines with nitrogen heterocycles: rapid access to biologically active pyrroles and indoles. *J. Am. Chem. Soc.* 132, 15800–15807 (2010).

20. Liu, W., Zhang, X., Dai, L. & You, S. Asymmetric N-allylation of indoles through the iridium-catalyzed allylic alkylation/oxidation of indolines. *Angew. Chem. Int. Ed.* 51, 5183–5187 (2012).

21. Lakhdar, S. et al. Nucleophilic reactivities of indoles. *J. Org. Chem.* 71, 9088–9095 (2006).
26. Otero, N., Mandado, M. & Mosquera, R. A. Nucleophilicity of indole derivatives: activating and deactivating effects based on proton affinities and electron density properties. *J. Phys. Chem. A* **111**, 5557–5562 (2007).

27. Wagaw, S., Yang, B. H. & Buchwald, S. L. A palladium-catalyzed strategy for the preparation of indoles: a novel entry into the fisher indole synthesis. *J. Am. Chem. Soc.* **1998**, 120, 6621–6622 (2006).

28. Boal, B. W., Schammel, A. W. & Garg, N. K. An interrupted fischer indolization approach toward fused indoline-containing natural products. *Org. Lett.* **11**, 3458–3461 (2009).

29. Müller, S., Webber, M. J. & List, B. The catalytic asymmetric fischer indolization. *J. Am. Chem. Soc.* **133**, 18534–18537 (2011).

30. Gore, S., Baskaran, S. & König, B. Fischer indole synthesis in low melting mixtures. *Org. Lett.* **14**, 4568–4571 (2012).

31. Ragnarsson, U. *et al.* Acidity of di- and triprotected hydrazine derivatives in dimethyl sulfoxide and aspects of their alkylation. *J. Org. Chem.* **70**, 5916–5921 (2005).

32. Bredihhin, A., Groth, U. M. & Mäeorg, U. Efficient methodology for selective alkylation of hydrazine derivatives. *Org. Lett.* **9**, 1097–1099 (2007).

33. Johns, A. M., Liu, Z. & Hartwig, J. F. Primary tert- and sec- allylamines via palladium-catalyzed hydroamination and allylic substitution with hydrazine and hydroxylamine derivatives. *Angew. Chem. Int. Ed.* **46**, 7259–7261 (2007).

34. Zimmer, R., Dinesh, C., Nandanan, E. & Khan, F. A. Palladium-catalyzed reactions of allenes. *Chem. Rev.* **100**, 3067–3125 (2000).

35. Trost, B. M., Jakel, C. & Plettker, B. Palladium-catalyzed asymmetric addition of pronucleophiles to allenes. *J. Am. Chem. Soc.* **125**, 4438–4439 (2003).

36. Nishina, N. & Yamamoto, Y. Gold-catalyzed intermolecular hydroamination of allenes with aryllamins and resulting high chirality transfer. *Angew. Chem. Int. Ed.* **45**, 3314–3317 (2006).

37. Kim, I. S. & Krische, M. J. Iridium-catalyzed hydrocarboxylation of 1,1-dimethylallene: byproduct-free reverse prenylation of carboxylic acids. *Org. Lett.* **10**, 513–515 (2006).

38. Moran, J., Preetz, A., Mesch, R. A. & Krische, M. J. Iridium-catalyzed direct C-C coupling of methanol and allenes. *Nat. Chem.* **3**, 287–290 (2011).

39. Koschker, P., Lumbroso, A. & Breit, B. Enantioselective synthesis of branched allylic esters via rhodium-catalyzed coupling of allenes with carboxylic acids. *J. Am. Chem. Soc.* **133**, 20746–20749 (2011).

40. Xu, K., Thieme, N. & Breit, B. Unlocking the N2 selectivity of benzotriazoles: regiodivergent and highly selective coupling of benzotriazoles with allene. *Angew. Chem. Int. Ed.* **53**, 7268–7271 (2014).

41. Ardzaioza, G. A. *et al.* Oxidative addition of N-H bonds to a metal center: synthesis, characterization, and crystal structure of new rhodium (III) hydrido-pyrazolate complexes. *Inorg. Chem.* **41**, 610–614 (2002).

42. Choi, I., Osakada, K. & Yamamoto, T. Single and multiple insertion of aryllallene into the Rh-H bond to give (π-allyl)rhodium complexes. *Organometallics* **17**, 3044–3050 (1998).

43. Tran, N. & Cramer, N. Rhodium-catalyzed dynamic kinetic asymmetric transformations of racemic allens by the [3 + 2] annulation of aryl ketimines. *Angew. Chem. Int. Ed.* **52**, 10630–10634 (2013).

44. Evans, P. A. & Nelson, J. D. Conservation of absolute configuration in the acyclic rhodium-catalyzed allylic alkylation reaction: evidence for an enyl (β + α) organorhodium intermediate. *J. Am. Chem. Soc.* **120**, 5581–5582 (1998).

45. Wucher, B., Moser, M., Schumacher, S. A., Rominger, F. & Kunz, D. First X-ray structure analyses of rhodium(III) γ1-allyl complexes and a mechanism for allylic isomerization reactions. *Angew. Chem. Int. Ed.* **48**, 4417–4421 (2009).

46. Gellrich, U. *et al.* Mechanistic investigations of the rhodium catalyzed propargylic CH activation. *J. Am. Chem. Soc.* **136**, 1097–1104 (2014).

Acknowledgements

This work was supported by the DFG, the International Research Training Group ‘Catalysts and Catalytic Reactions for Organic Synthesis’ (IRTG 1038), the Fonds der Chemischen Industrie and the Krupp Foundation. We thank Umicore, BASF and Wacker for generous gifts of chemicals. K.X. thanks Dr Y.Z. Xia and Dr C.K. Li for helpful discussions.

Author contributions

K.X. initiated the project, planned and carried out the initial optimization; K.X. and T.G. completed the experimental work and final characterizations; B.B. directed and coordinated the project; K.X. wrote the manuscript with the assistance of the other authors.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/ncoms and Nature Communications (2016), 6:7616.

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Xu, K. *et al.* Asymmetric synthesis of N-allylic indoles via regio- and enantioselective alkylation of aryl hydrazines. *Nat. Commun.* 6:7616 doi: 10.1038/ncomms8616 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/