Higgs Physics

Antonio Pich
IFIC, Univ. Valencia - CSIC
Outline

1) The Higgs Boson
 • Higgs Mechanism
 • Standard Model Higgs
 • LHC data
 • Higgs-singlet extension

2) Aspects of EWSB
 • Naturalness
 • Vacuum stability
 • Custodial Symmetry
 • Unitarity

3) Two Higgs Doublets
 • FCNCs
 • Flavour alignment
 • Flavour bounds
 • LHC constraints
 • EDMs
 • Rare decays
A New Higgs-Like Boson

\[\begin{align*}
H & \rightarrow \gamma\gamma \\
H & \rightarrow ZZ^* \rightarrow 4\ell \\
H & \rightarrow \gamma\gamma \\
H & \rightarrow ZZ^* \rightarrow 4\ell
\end{align*} \]

\[M_H = (125.09 \pm 0.21 \pm 0.11) \text{ GeV} \]

A. Pich
Great success of the Standard Model

BEGHHK (≡ Higgs) Mechanism

Kibble, Guralnik, Hagen, Englert, Brout

Higgs, 1964

\[v = 246 \text{ GeV} \]

\[M_Z \cos \theta_W = M_W = \frac{1}{2} v g \]

\[\text{SU}(2)_L \otimes \text{U}(1)_Y \]
Beautiful Discovery

Boson, $J = 0$

Fermions = Matter ; Bosons = Forces

- **Fundamental Boson:** New interaction which is not gauge
- **Composite Boson:** New underlying dynamics
Beautiful Discovery

Boson, \(J = 0 \)

Fermions = Matter ; Bosons = Forces

- **Fundamental Boson:** New interaction which is not gauge
- **Composite Boson:** New underlying dynamics

If New Physics exists at \(\Lambda_{NP} \)

\[
\delta M_H^2 \sim \frac{g^2}{(4\pi)^2} \Lambda_{NP}^2 \log \left(\frac{\Lambda_{NP}^2}{M_H^2} \right)
\]

Which symmetry keeps \(M_H \) away from \(\Lambda_{NP} \)?

- Fermions: Chiral Symmetry
- Gauge Bosons: Gauge Symmetry
- Scalar Bosons: Supersymmetry, Scale/Conformal Symmetry . . . ?
Possible Scenarios of EWSB

1. **SM Higgs:** Favoured by EW precision tests

2. **Alternative perturbative EWSB:**

 Scalar Doublets and singlets

 \[
 \rho_{\text{tree}} = \frac{M_W^2}{M_Z^2 c_W^2} = \frac{\sum_i \nu_i^2 [T_i (T_i + 1) - Y_i^2]}{2 \sum_i \nu_i^2 Y_i^2}
 \]

3. **Dynamical (non-perturbative) EWSB:**

 Pseudo-Goldstone Higgs

 Scalar Resonance
Possible Scenarios of EWSB

1. SM Higgs: Favoured by EW precision tests

2. Alternative perturbative EWSB:
 - Scalar Doublets and singlets

 $\rho_{\text{tree}} = \frac{M_W^2}{M_Z^2 c_W^2} = \frac{\sum_i \psi_i^2 [T_i(T_i+1) - \gamma_i^2]}{2 \sum_i \psi_i^2 \gamma_i^2}$

3. Dynamical (non-perturbative) EWSB:
 - Pseudo-Goldstone Higgs
 - Scalar Resonance
Higgs Mechanism:

Gauge invariance

Massless W^\pm, Z (spin 1)

3×2 polarizations $= 6$
Higgs Mechanism: 3 additional degrees of freedom $\varphi_i(x)$

Gauge invariance

Massless W^\pm, Z (spin 1)

3×2 polarizations $= 6$

+ 3 Goldstones $\varphi_i(x)$

SSB

Massive W^\pm, Z

3×3 polarizations $= 9$
Higgs Mechanism: 3 additional degrees of freedom $\varphi_i(x)$

Gauge invariance

Massless W^\pm, Z (spin 1)

3×2 polarizations = 6

+ 3 Goldstones $\varphi_i(x)$

SSB

Massive W^\pm, Z

3×3 polarizations = 9

Spontaneous Symmetry Breaking

$L_\Phi = (D_\mu \Phi)^\dagger D^\mu \Phi - \mu^2 \Phi^\dagger \Phi - \lambda (\Phi^\dagger \Phi)^2$

$\mu^2 < 0$

$$\Phi(x) = \exp \left\{ i \vec{\sigma} \cdot \vec{\varphi}(x) \right\} \frac{1}{\sqrt{2}} \begin{bmatrix} v & 0 \\ v + H(x) \end{bmatrix}$$
Higgs Mechanism: 3 additional degrees of freedom $\varphi_i(x)$

Gauge invariance

Massless W^\pm, Z (spin 1)

3×2 polarizations $= 6$

$+$

3 Goldstones $\varphi_i(x)$

SSB

Massive W^\pm, Z

3×3 polarizations $= 9$

Spontaneous Symmetry Breaking

$\mathcal{L}_\Phi = (D_\mu \Phi)^\dagger D^\mu \Phi - \mu^2 \Phi^\dagger \Phi - \lambda (\Phi^\dagger \Phi)^2$

$\mu^2 < 0$

$\Phi(x) = \exp \left\{ i \vec{\sigma} \cdot \vec{\varphi}(x) \right\} \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ v + H(x) \end{bmatrix}$

$D_\mu \Phi = (\partial_\mu + \frac{i}{2} g \vec{\sigma} \cdot \vec{W}_\mu + \frac{i}{2} g' B_\mu) \Phi$; \quad $v^2 = -\mu^2 / \lambda$

$(D_\mu \Phi)^\dagger D^\mu \Phi \rightarrow M_W^2 W_\mu^\dagger W^\mu + \frac{M_Z^2}{2} Z_\mu Z^\mu$

$M_W = M_Z \cos \theta_W = \frac{1}{2} g v$

A. Pich
Higgs Mechanism: 3 additional degrees of freedom $\varphi_i(x)$

Gauge invariance

Massless W^{\pm}, Z (spin 1)

3×2 polarizations $= 6$

+ 3 Goldstones $\varphi_i(x)$

SSB

Massive W^{\pm}, Z

3×3 polarizations $= 9$

Spontaneous Symmetry Breaking

$L_\Phi = (D_\mu \Phi)^\dagger D^\mu \Phi - \mu^2 \Phi^\dagger \Phi - \lambda (\Phi^\dagger \Phi)^2$

$\mu^2 < 0$

$\Phi(x) = \exp \left\{ i \vec{\sigma} \cdot \vec{\varphi}(x) \right\} \frac{1}{\sqrt{2}} \left[\begin{array}{c} 0 \\ v + H(x) \end{array} \right]$

$D_\mu \Phi = (\partial_\mu + \frac{i}{2} g \vec{\sigma} \cdot \vec{W}_\mu + \frac{i}{2} g' B_\mu) \Phi$; $v^2 = -\frac{\mu^2}{\lambda}$

$(D_\mu \Phi)^\dagger D^\mu \Phi \rightarrow M_{W}^2 W_\mu^\dagger W^\mu + \frac{M_Z^2}{2} Z_\mu Z^\mu \times (1 + \frac{H}{v})^2$

$M_{W} = M_{Z} \cos \theta_{W} = \frac{1}{2} g v$

A. Pich

Higgs Physics 7
\[
\Phi(x) = \exp \left\{ \frac{i}{v} \vec{\sigma} \vec{\phi}(x) \right\} \frac{1}{\sqrt{2}} \left[v + H(x) \right]
\]

\[
V(\Phi) + \frac{\lambda}{4} v^4 = \lambda \left(|\Phi|^2 - \frac{v^2}{2} \right)^2 = \frac{1}{2} M_H^2 H^2 + \frac{M_H^2}{2v} H^3 + \frac{M_H^2}{8v^2} H^4
\]

\[
v = \frac{2M_W}{g} = \left(\sqrt{2} G_F \right)^{-1/2} = 246 \text{ GeV}
\]

\[
M_H = (125.09 \pm 0.24) \text{ GeV}
\]

\[
\lambda = \frac{M_H^2}{2v^2} = 0.13
\]
Standard Model Yukawas

\(\Phi = \begin{pmatrix} \phi^+(1) \\ \phi^0(0) \end{pmatrix} \), \(\langle 0 | \Phi | 0 \rangle = \begin{pmatrix} 0 \\ \frac{\nu}{\sqrt{2}} \end{pmatrix} \), \(\bar{\Phi} \equiv i \tau_2 \Phi^* \)

\[\mathcal{L}_Y = -c_1 (\bar{u}_L, \bar{d}_L) \Phi d_R - c_2 (\bar{u}_L, \bar{d}_L) \bar{\Phi} u_R - c_3 (\bar{\nu}_L, \bar{e}_L) \Phi e_R + \text{h.c.} \]

SSB

\[\mathcal{L}_Y = - (1 + \frac{H}{\nu}) \left\{ m_d \bar{d}d + m_u \bar{u}u + m_e \bar{e}e \right\} \]

\[m_d = c_1 \frac{\nu}{\sqrt{2}}, \quad m_u = c_2 \frac{\nu}{\sqrt{2}}, \quad m_e = c_3 \frac{\nu}{\sqrt{2}} \]

Couplings proportional to masses
Signal Strengths

\[\mu \equiv \sigma \cdot \text{Br}/(\sigma \cdot \text{Br})_{\text{SM}} \]

ATLAS Preliminary

- \(m_H = 125.36 \text{ GeV} \)

Decay Mode	ATLAS \((M_H = 125.36 \text{ GeV})\)	CMS \((M_H = 125.0 \text{ GeV})\)
\(H \to bb \)	\(0.63 \pm 0.39 \)	\(0.84 \pm 0.44 \)
\(H \to \tau\tau \)	\(1.44 \pm 0.42 \)	\(0.91 \pm 0.28 \)
\(H \to \gamma\gamma \)	\(1.17 \pm 0.28 \)	\(1.12 \pm 0.24 \)
\(H \to WW^* \)	\(1.18 \pm 0.24 \)	\(0.83 \pm 0.21 \)
\(H \to ZZ^* \)	\(1.46 \pm 0.40 \)	\(1.00 \pm 0.29 \)
Combined	\(1.18 \pm 0.15 \)	\(1.00 \pm 0.14 \)

\[\langle \mu \rangle = 1.09 \pm 0.10 \]

A. Pich
Production Channels

Gluon Fusion

Vector Boson Fusion

$V = W^{\pm}, Z$

Ass. VH Production

Ass. $t\bar{t}H$ Production

ATLAS Preliminary

$\sqrt{s} = 7$ TeV, 4.5-4.7 fb$^{-1}$

$\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$

H_{m}^{*}

$WW \rightarrow H_{m}^{*}$

$ZZ \rightarrow H_{m}^{*}$

$bb \rightarrow H_{m}^{*}$

$\tau \tau \rightarrow H_{m}^{*}$

CMS

19.7 fb$^{-1} (8$ TeV$) + 5.1$ fb$^{-1} (7$ TeV$)$

$H \rightarrow \gamma \gamma$ tagged

$H \rightarrow ZZ$ tagged

$H \rightarrow WW$ tagged

$H \rightarrow \tau \tau$ tagged

$H \rightarrow bb$ tagged

SM Higgs

A. Pich Higgs Physics
Strong (indirect) evidence for Higgs coupling to \(t \)

Dominant Production Mechanism

\[\Gamma \sim |1 - 0.21|^2 \]

\(\kappa_i \equiv \frac{g_i}{g_i^{\text{SM}}} \)

\(H \to \gamma \gamma \)	Signal Strength
ATLAS \(7 \text{ TeV} \)	\(1.17 \pm 0.28 \)
CMS \(8 \text{ TeV} \)	\(1.12 \pm 0.24 \)

Direct (tree-level) sensitivity through \(t\bar{t}H \)
Strong evidence for Higgs coupling to τ and b

Signal Strength

Signal	ATLAS ($M_H = 125.36 \text{ GeV}$)	CMS ($M_H = 125.0 \text{ GeV}$)
$H \rightarrow bb$	$0.63^{+0.39}_{-0.37}$	0.84 ± 0.44
$H \rightarrow \tau\tau$	$1.44^{+0.42}_{-0.37}$	0.91 ± 0.28
Effective Couplings

\[\kappa_i \equiv \frac{g_i}{g_i}^{\text{SM}} \]

\[\sigma(i \rightarrow H) \cdot \text{Br}(H \rightarrow f) = \sigma(i \rightarrow H) \cdot \frac{\Gamma(H \rightarrow f)}{\Gamma_H} \sim \left(\frac{\kappa_i \kappa_f}{\kappa_H}\right)^2 \]
It is a Higgs Boson

\[\lambda_f = \left(\frac{m_f}{M} \right)^{1+\epsilon} , \quad (\frac{g_V}{2v})^{1/2} = (\frac{M_V}{M})^{1+\epsilon} \]

Ellis-You, 1303.3879

SM: \(\epsilon = 0 \), \(M = v = 246 \) GeV

CMS: (95% CL) \(\epsilon \in [-0.054, 0.100] \), \(M \in [217, 279] \) GeV
QCD Exotics

\[X \in SU(3)_C \quad \text{representation} \quad R \]

\[g \xrightarrow{X} H \sim \sum_a^{d_A} \text{Tr} \left[t^a_R t^a_R \right] = C_R d_R \]

Non decoupling: \[\mathcal{L} = -\frac{M_X}{v} (\bar{X} X) H \]

Exotic fermions in higher-colour representations could only exist provided their masses are not generated by the SM Higgs

(or fine-tuned cancelations with scalar loops)
Higgs-Singlet Extension of the SM

\[V(\Phi, S) = \lambda \left(|\Phi|^2 - \frac{v^2}{2} \right)^2 + (a_\Phi S + b_\Phi S^2) \left(|\Phi|^2 - \frac{v^2}{2} \right) + \frac{1}{2} M_S^2 S^2 + a_S S^3 + \lambda_S S^4 \]

- Real singlet and neutral field: \(S = S^\dagger \)
Higgs-Singlet Extension of the SM

\[V(\Phi, S) = \lambda \left(|\Phi|^2 - \frac{v^2}{2} \right)^2 + (a\Phi S + b\Phi S^2) \left(|\Phi|^2 - \frac{v^2}{2} \right) + \frac{1}{2} M_S^2 S^2 + a_S S^3 + \lambda_S S^4 \]

- Real singlet and neutral field: \(S = S^\dagger \)
- Minima: \(\langle S \rangle = 0 \), \(\langle \phi^{(0)} \rangle = \frac{v}{\sqrt{2}} \)
 \[\phi^{(0)} = \frac{1}{\sqrt{2}} (v + \varphi) \]

\(M_S^2 > \frac{a_\Phi}{4\lambda} > 0 \)

A. Pich

Higgs Physics
Higgs-Singlet Extension of the SM

\[V(\Phi, S) = \lambda \left(|\Phi|^2 - \frac{v^2}{2} \right)^2 + (a_\Phi S + b_\Phi S^2) \left(|\Phi|^2 - \frac{v^2}{2} \right) + \frac{1}{2} M_S^2 S^2 + a_S S^3 + \lambda_S S^4 \]

- Real singlet and neutral field: \(S = S^\dagger \)
- Minima: \(\langle S \rangle = 0 \), \(\langle \phi(0) \rangle = \frac{v}{\sqrt{2}} \), \(\phi(0) = \frac{1}{\sqrt{2}} (v + \varphi) \)
 \[M_S^2 > a_\Phi^2 / (4\lambda) > 0 \]
- Positive growing at large field values: \(\lambda, \lambda_S, b_\Phi > 0 \)
Higgs-Singlet Extension of the SM

\[V(\Phi, S) = \lambda \left(|\Phi|^2 - \frac{v^2}{2} \right)^2 + \left(a_\Phi S + b_\Phi S^2 \right) \left(|\Phi|^2 - \frac{v^2}{2} \right) + \frac{1}{2} M_S^2 S^2 + a_S S^3 + \lambda_S S^4 \]

- Real singlet and neutral field: \(S = S^\dagger \)
- Minima: \(\langle S \rangle = 0 \), \[\langle \phi^{(0)} \rangle = \frac{v}{\sqrt{2}} \]
 \[\phi^{(0)} = \frac{1}{\sqrt{2}} (v + \varphi) \]
 \[M_S^2 > a_\Phi^2 / (4\lambda) > 0 \]
- Positive growing at large field values: \(\lambda, \lambda_S, b_\Phi > 0 \)
- Mass eigenstates (**mixing**):
\[V(\Phi, S) = \lambda \left(|\Phi|^2 - \frac{v^2}{2} \right)^2 + (a_\Phi S + b_\Phi S^2) \left(|\Phi|^2 - \frac{v^2}{2} \right) + \frac{1}{2} M_S^2 S^2 + a_S S^3 + \lambda_S S^4 \]

- Real singlet and neutral field: \[S = S^\dagger \]
- Minima:\[\langle S \rangle = 0 , \quad \langle \phi^{(0)} \rangle = \frac{v}{\sqrt{2}} \quad \phi^{(0)} = \frac{1}{\sqrt{2}} (v + \varphi) \]

\[M_S^2 > a_\Phi^2 / (4\lambda) > 0 \]

- Positive growing at large field values: \(\lambda, \lambda_S, b_\Phi > 0 \)
- Mass eigenstates (mixing): \[(-\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2}) \]

\[
\begin{pmatrix} h \\ H \end{pmatrix} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} \varphi \\ S \end{pmatrix}, \quad \tan 2\alpha = \frac{2a_\Phi v}{2v^2\lambda - M_S^2} \]

\[M_h^2 = \frac{1}{2} (\Sigma - \Delta) < M_H^2 = \frac{1}{2} (\Sigma + \Delta) \]

\[\Sigma = 2v^2\lambda + M_S^2 , \quad \Delta = \sqrt{(2v^2\lambda - M_S^2)^2 + 4a_\Phi^2 v^2} \]
The singlet scalar does not couple to fermions and gauge bosons

\[\kappa_V \equiv \frac{g_{hVV}}{g_{hVV}^{\text{SM}}} = \cos \alpha \quad , \quad \kappa_f \equiv \frac{y_{hff}}{y_{hff}^{\text{SM}}} = \cos \alpha \]
The singlet scalar does not couple to fermions and gauge bosons

\[\kappa_V \equiv \frac{g_{hVV}}{g_{hVV}^{SM}} = \cos \alpha, \quad \kappa_f \equiv \frac{y_{hff}}{y_{hff}^{SM}} = \cos \alpha \]

\[\text{Br}(h \rightarrow f) = \text{Br}(h \rightarrow f)^{SM} \]
The singlet scalar does not couple to fermions and gauge bosons

\[\kappa_V \equiv \frac{g_{hVV}}{g_{hVV}^{\text{SM}}} = \cos \alpha \quad , \quad \kappa_f \equiv \frac{y_{hff}}{y_{hff}^{\text{SM}}} = \cos \alpha \]

Signal Strengths:

\[\mu_h = \cos^2 \alpha \]

\[\text{Br}(h \rightarrow f) = \text{Br}(h \rightarrow f)_\text{SM} \]
The singlet scalar does not couple to fermions and gauge bosons

\[\kappa_V \equiv \frac{g_{hVV}}{g_{hVV}^{SM}} = \cos \alpha , \quad \kappa_f \equiv \frac{y_{hff}}{y_{hff}^{SM}} = \cos \alpha \]

Signal Strengths:

\[\text{Br}(h \rightarrow f) = \text{Br}(h \rightarrow f)^{SM} \]

\[\mu_h = \cos^2 \alpha , \quad \mu_{H \rightarrow VV, f\bar{f}} = \sin^2 \alpha [1 - \text{Br}(H \rightarrow hh)] \]
The singlet scalar does not couple to fermions and gauge bosons

\[\kappa_V \equiv \frac{g_{hVV}}{g_{hVV}^{SM}} = \cos \alpha \quad , \quad \kappa_f \equiv \frac{y_{hff}}{y_{hff}^{SM}} = \cos \alpha \]

Signal Strengths:

\[\text{Br}(h \rightarrow f) = \text{Br}(h \rightarrow f)_{SM} \]

\[\mu_h = \cos^2 \alpha \quad , \quad \mu_{H \rightarrow VV, f\bar{f}} = \sin^2 \alpha [1 - \text{Br}(H \rightarrow hh)] \]

\[m = M_H \quad , \quad \lambda_1 = \lambda \]

\[\tan \beta = 4v\lambda_S / a_S \]

Robens-Stefaniak, 1501.02234
\[M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{\pi \alpha}{\sqrt{2}} (1 + \Delta r) \]

\[\delta(\Delta r) = \Delta r_H^H + \Delta r_h - \Delta r_{SM} \propto \sin^2 \alpha \]

\[\sin^2 \alpha \]

\[\cos^2 \alpha - 1 \]
Backup Slides
Higgs Width

Sensitivity to Γ_H off-shell:

$$\frac{d\sigma_{gg\to H\to ZZ}}{dm_{ZZ}^2} \sim \frac{g_{ggH}^2 g_{hZZ}^2}{(m_{ZZ}^2 - M_H^2)^2 + M_H^2 \Gamma_H^2}$$

$\sigma_{gg\to H\to ZZ} \sim \left\{ \begin{array}{ll}
\frac{g_{ggH}^2 g_{hZZ}^2}{M_H \Gamma_H} & \text{(on-shell)} \\
\frac{g_{ggH}^2 g_{hZZ}^2}{4M_Z^2} & \text{($m_{ZZ} > 2M_Z$)}
\end{array} \right.$

CMS, 1405.3455

$$\Gamma_H < 5.4 \frac{\Gamma_H^{SM}}{\Gamma_H^{SM}} = 22 \text{ MeV} \quad (95\% \text{ CL})$$

ATLAS-CONF-2014-042:

$$\Gamma_H < 5.7 \frac{\Gamma_H^{SM}}{\Gamma_H^{SM}}$$

Assumes constant couplings unrelated to $\Delta \Gamma_H$

Englert-Spannowsky, 1405.0285
Alternative analysis:

\[\mathcal{L} = -c_t \frac{m_t}{v} \bar{t} t H + \frac{g_s^2}{48\pi^2 v^2} c_g G_{\mu\nu} G^{\mu\nu} H \]

\[\sigma \sim |c_t + c_g|^2 \quad \text{(on-shell)} \]

\[\mathcal{M}_{c_g} \sim c_g \hat{s} \quad (\hat{s} \gg m_t^2) \]
Invisible Higgs Width

$\ln L$ vs $\Delta - 2$

-2 $\Delta \ln L$ vs Br_{BSM}
-2 $\Delta \ln L$ vs Br_{inv}

Observed vs Exp. for SM H

κ_{γ}, κ_{g}, Br_{BSM}
κ_{γ}, κ_{g}, Br_{inv}
$\kappa_{\gamma} = 1$, $\kappa_{g} = 1$, Br_{inv}

A. Pich

Higgs Physics

23