Performance-Enhancing Substance Use and Intimate Partner Violence: A Prospective Cohort Study

Kyle T. Ganson, PhD, MSW¹, Dylan B. Jackson, PhD², Alexander Testa, PhD³, and Jason M. Nagata, MD, MSc⁴

Abstract
Research has shown that performance-enhancing substance (PES) use, including anabolic-androgenic steroids (AAS), is associated with interpersonal violence (e.g., fighting). This study aimed to determine whether legal PES use and AAS use are associated with intimate partner violence (IPV) involvement cross-sectionally and over seven-year follow-up in a nationally representative prospective cohort study. Data from the National Longitudinal Study of Adolescent to Adult Health (N = 12,288) were analyzed (2021). Logistic regression analyses were conducted to determine the associations between legal PES use and AAS use at Wave III (2001–2002; ages 18–26) and IPV victimization (five variables) and IPV perpetration (five variables) at Wave III and Wave IV (2008–2009; ages 24–32), adjusting for relevant demographic and confounding variables. Results from cross-sectional analyses showed that legal PES use and AAS use were associated with higher odds of both any IPV

¹Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, ON, Canada
²Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
³Department of Criminology & Criminal Justice, University of Texas at San Antonio, San Antonio, TX, USA
⁴Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA

Corresponding Author:
Kyle T. Ganson, Factor-Inwentash Faculty of Social Work, University of Toronto, 246 Bloor Street W, Toronto, ON M5S 1V4, Canada.
Email: kyle.ganson@utoronto.ca
victimization and sexual IPV victimization, and both any IPV perpetration and physical IPV perpetration by pushing or shoving a partner. Results from prospective analyses showed that AAS use, but not legal PES use, was associated with higher odds of all five IPV victimization variables (any IPV victimization: adjusted odds ratio [AOR] 1.72, 95% confidence interval [CI] 1.04–2.84; two forms of physical abuse: 1: AOR 2.01, 95% CI 1.15–3.50; 2: AOR 2.11, 95% CI 1.06–4.21; incurring an injury from IPV victimization: AOR 4.90, 95% CI 1.71–14.01; and sexual IPV victimization AOR 2.44, 95% CI 1.05–5.65), as well as three IPV perpetration variables (any IPV perpetration: AOR 2.11, 95% CI 105–4.23; one form of physical abuse perpetration: AOR 2.58, 95% CI 1.06–6.27; and sexual IPV perpetration: AOR 3.80, 95% CI 1.44–10.02). These results emphasize the adverse social and interpersonal risks associated with PES use. Continued research, health care, and public health prevention and intervention efforts to reduce the use of PES and occurrence of IPV are warranted.

Keywords
performance-enhancing substance use, anabolic steroids, steroids, creatine, intimate partner violence, adults

Introduction
Performance-enhancing substances (PES), including both legal substances (e.g., protein powders and creatine monohydrate) and illegal (e.g., anabolic-androgenic steroids [AAS]) substances are commonly used among adolescent boys and young adult men. This includes 16–35% reporting use of legal PES and 3–6% reporting AAS use, compared to 3–21% and 0.4–5% of adolescent girls and young adult women who report legal PES and AAS use, respectively (Eisenberg et al., 2012; Nagata et al., 2020b). PES use is associated with a plethora of adverse health outcomes. For example, use of legal PES is associated with severe medical events (e.g., hospital visits and disability) and death (Or et al., 2019), while AAS use is associated with neuropsychiatric effects (e.g., mood disorders, irritability, and paranoia; Kanayama et al., 2008; Pope et al., 2014) and physiological health problems (Ahlgrim & Guglin, 2009; Bispo et al., 2009; Daly et al., 2003; Nikolopoulos et al., 2011). Furthermore, both legal PES and AAS use are associated with substance use problems (Ganson et al., 2020) and dependence (Ip et al., 2010, 2011) and criminal offending (Ganson et al., 2021b). What remains less well understood is how PES use, including both legal PES and AAS, impacts social functioning, such as intimate partner relationships.
Intimate partner violence (IPV) is defined by the Centers for Disease Control and Prevention as physical or sexual violence, stalking, or psychological aggression by a current or former intimate partner (including both spouses and non-spouses; Breiding et al., 2015). IPV is common among the U.S. population, where 25% of cisgender women and 11% of cisgender men reported any contact sexual victimization, physical victimization, and/or stalking with an IPV-related effect (e.g., psychological distress, social impairment, and sexually transmitted infection; Smith et al., 2015). Additionally, sexual and gender minorities (i.e., those who do not identify as heterosexual or cisgender) often experience IPV at higher prevalence than their heterosexual and cisgender peers (Swiatlo et al., 2020; Whitfield et al., 2021). Furthermore, there are disparities of IPV involvement across racial/ethnic identities, whereby Black or African Americans, compared to White or European Americans, are at greater risk of IPV (Capaldi et al., 2012). This risk may be further exacerbated by sexual and gender minority identity status (Whitton et al., 2021). This is concerning given that IPV is associated with numerous physical, psychological, and social health outcomes, including injury, chronic pain, depression, anxiety, posttraumatic stress disorder, urologic and gynecologic conditions, among others (Bacchus et al., 2018; Miller & McCaw, 2019).

The preceding data emphasize the common occurrence of both PES use and IPV and their significant health effects. To date, it remains unknown whether PES use and IPV involvement are associated. However, current evidence suggests that PES use, particularly AAS use, is associated with aggressive tendencies and the perpetration of general interpersonal violence (e.g., physical fighting; Beaver et al., 2008; Hauger et al., 2021). One study has shown that AAS is associated with teen dating violence, including physical and sexual violence, among adolescents in Massachusetts (Ganson & Cadet, 2019). Combined, these studies indicate that IPV perpetration may also occur in relation to AAS use; however, there remain gaps in the knowledge base on PES use and IPV, specifically for legal PES and identifying longitudinal associations among a national sample of participants.

Research on AAS use, not including legal PES use, has identified multiple mechanisms that may explain the link between AAS use and IPV. That is, AAS use may result in changes in brain structure in areas key to impulse control and emotion regulation (Hauger et al., 2019b; Westlye et al., 2017), an overall decrease in executive functioning abilities (Hauger et al., 2020), impaired emotion recognition (Hauger et al., 2019a), and increased anger (Hauger et al., 2021), all of which may increase one’s propensity for violence (Gottfredson & Hirschi, 1990; Raine, 2002, 2013). Thus, it is clear that AAS use can have detrimental effects on important skills needed for social functioning. Additionally, individuals who endorse a greater drive for musculature, which is a predictor of PES use (Murray et al., 2017; Tylka, 2011),
also more commonly adhere to hegemonic norms of masculinity (Griffiths et al., 2015; Luciano, 2007; McCready et al., 2005). Such adherence to traditional hegemonic masculinity is also associated with violence (Copenhaver et al., 2000; Vandello & Bosson, 2013) and IPV (Tarzia, 2020; Willie et al., 2018). Thus, the overlapping connections between drive for muscularity, PES use, and adherence to hegemonic masculine norms may precipitate acts of IPV. Furthermore, sexual minority individuals, as with IPV, may be more likely to use AAS given unique minority stressors on these groups (Blashill et al., 2017; Calzo et al., 2016). Such minority stressors have also been shown to be contributing factors to IPV involvement among sexual minorities (Swiatlo et al., 2020; Whitfield et al., 2021; Whitton et al., 2021). Taken together, there appears to be evidence of sociocultural influences that underpin a potential relationship between PES use and IPV that may inform future research findings and contextualize prevention and intervention efforts.

It is also possible that individuals who use AAS are more susceptible to IPV victimization. This may be due to risk behaviors that AAS users engage in, such as unsafe sexual behaviors (Ip et al., 2016) and alcohol and illicit drug use (Ip et al., 2011). These behaviors may occur in high-risk social situations where the likelihood of IPV victimization is elevated. However, to date, no known research has investigated whether AAS use is associated with IPV victimization, as well as whether legal PES use is associated with IPV involvement. To fill these gaps in the knowledge base, this study aimed to determine whether legal PES use and AAS use are cross-sectionally and prospectively associated with IPV involvement among a nationally representative cohort sample of U.S. young adults. Findings may provide valuable information for health care and public health professionals to implement effective PES use and IPV prevention and intervention strategies. We hypothesized that PES, particularly AAS, would be associated with IPV involvement among young adults.

Methods

Prospective cohort data from the National Longitudinal Study of Adolescent to Adult Health (Add Health) were analyzed. Add Health participants were enrolled in grades 7–12 (ages 12–19) in public, private, and parochial schools in the U.S. during 1994–1995 academic year. Four follow-up interviews have been conducted since then. This study included participants who completed interviews at Wave I (1994–1995; ages 11–18), Wave III (2001–2002; ages 18–26), and Wave IV (2008–2009; ages 24–32; Harris, 2013; Harris et al., 2019).

Measures

Independent Variable. Legal PES use was assessed using self-reported responses to the question, “In the past year, have you used a legal performance-enhancing substance for athletes (such as creatine monohydrate or andro)?”
AAS use in the past 7 years (since Wave I) was assessed using self-reported responses to the question, “Since June 1995, have you taken any of the following drugs without a doctor’s permission: steroids or anabolic steroids”. Both items were assessed at Wave III (2001–2002; ages 18–26) and response options were “yes” or “no.” These items have been used in prior research (see for examples Ganson et al., 2020, 2021a, 2021b; Nagata et al., 2020a, 2020b).

Dependent Variable

Intimate partner violence involvement was assessed at Wave III (2001–2002; ages 18–26) and Wave IV (2008–2009; ages 24–32) using four items of both IPV victimization and perpetration. IPV victimization was measured based on experiencing the following within the past year: “partner pushed or shoved you, or threw something at you that could hurt”; “partner slapped, hit, or kicked you”; “you had an injury, such as a sprain, bruise, or cut because of a fight with your partner”; and “partner insisted on or made you have sexual relations with him/her when you did not want to.” Response options included categories assessing frequency of occurrence ranging from no occurrence to 20 or more occurrences. Responses were dichotomized to no occurrence and any occurrence in accordance with prior literature (Dunn et al., 2021; Reingle et al., 2012; Spivey & Nodeland, 2021; Swiatlo et al., 2020). Any *IPV victimization* was assessed using a combined dichotomous variable that measured whether a participant reported experiencing any IPV victimization involvement.

IPV perpetration was measured based on experiencing the following within the past year: “you pushed or shoved, or threw something at your partner that could hurt”; “you slapped, hit, or kicked your partner”; “your partner had an injury, such as a sprain, bruise, or cut because of a fight with you”; and “you insisted on or made your partner have sexual relations with you when they did not want to.” Response options included categories assessing frequency of occurrence ranging from no occurrence to 20 or more occurrences. Responses were dichotomized to no occurrence and any occurrence in accordance with prior literature (Dunn et al., 2021; Reingle et al., 2012; Spivey & Nodeland, 2021; Swiatlo et al., 2020). Any *IPV perpetration* was assessed using a combined dichotomous variable that measured whether a participant reported engaging in any IPV perpetration.

Demographic and Confounding Variables

Demographic variables included self-reported biological sex (1994–1995; ages 11–18; Wave I), age (2001–2002; ages 18–26; Wave III), race/ethnicity (1994–1995; ages 11–18; Wave I), sexual orientation (2001–2002; ages 18–26; Wave III), and household income (1994–1995; ages 11–18; Wave I).
Confounding variables included body mass index (BMI; kg/m²; 2001–2002; ages 18–26; Wave III), alcohol use (≥2 days in the past month, yes/no; 2001–2002; ages 18–26; Wave III), ever lived with someone in a marriage-like relationship (yes/no; 2001–2002; ages 18–26; Wave III), ever married or lived with partner (yes/no; 2008–2009; ages 24–32; Wave IV), low self-control based on Gottfredson and Hirschi’s (1990) six dimensions of self-control (see Perrone et al., 2004 for further variable description; 1994–1995; ages 11–18; Wave I), depression score (9-item version of the Center for Epidemiologic Studies-Depression [CES-D] scale; 2001–2002; ages 18–26; Wave III; Radloff, 1977), and childhood physical abuse and sexual abuse (never/any; 2001–2002; ages 18–26; Wave III). These variables were included based on prior research showing relationships with PES use and IPV involvement (Beaver et al., 2008; Capaldi et al., 2012; Eisenberg et al., 2012; Ganson et al., 2020; Hauger et al., 2020, 2021, Ip et al., 2010, 2011; Kanayama et al., 2008; Nagata et al., 2020b; Pope et al., 2014; Singh et al., 2014).

Statistical Analysis

Descriptive statistics were estimated to characterize the sample overall and by legal PES use and AAS use. Logistic regression analyses were conducted cross-sectionally to determine the associations between legal PES use and AAS use at Wave III as the independent variables and IPV victimization (five variables) and IPV perpetration (five variables) at Wave III as the dependent variables. Additionally, logistic regression analyses were conducted prospectively to determine the associations between legal PES use and AAS use at Wave III as the independent variables and IPV victimization (five variables) and IPV perpetration (five variables) at Wave IV as the dependent variables. All regression analyses controlled for the demographic and confounding variables, and prospective analyses additionally controlled for any IPV involvement, including both victimization and perpetration, at Wave III. We tested for effect modification/interaction for sex and PES use and found no statistically significant effects (p for interaction >0.05). Therefore, we did not stratify our analyses by sex. All analyses utilized Add Health’s nationally representative sample weights and were conducted in 2021 using Stata 15.1.

Results

The sample of 12,288 participants was demographically diverse and was comprised of 50.6% men, 31.5% racial/ethnic minorities, and a mean age of 21.8 years (standard deviation 1.8). In young adulthood (18–26 years), 2.0% of participants reported AAS use in the past 7 years, while 8.8% reported legal PES use in the past year. At seven-year follow-up (24–32 years), 11.1% reported any IPV victimization and 5.9% reported any IPV perpetration.
Overall, prevalence of all IPV victimization and IPV perpetration items were descriptively higher in Wave III (18–26 years) compared to Wave IV (24–32 years). Full sample characteristics are presented in Table 1.

Results from cross-sectional logistic regression analyses showed significant associations between legal PES use and AAS use and IPV victimization and perpetration. Regarding IPV victimization (Table 2, Panel A), participants who reported AAS use had higher odds of any IPV victimization (adjusted odds ratio [AOR] 1.84, 95% confidence interval [CI] 1.11–3.07), physical IPV victimization (1: AOR 1.85, 95% CI 1.08–3.15), and sexual IPV victimization (AOR 2.65, 95% CI 1.44–4.87), while adjusting for demographic and behavioral variables. Participants who reported legal PES use had higher odds of any IPV victimization (AOR 1.34, 95% CI 1.04–1.72) and sexual IPV victimization (AOR 1.55, 95% CI 1.12–2.15), while adjusting for demographic and behavioral variables.

Regarding IPV perpetration (Table 2, Panel B), participants who reported AAS use had higher odds of any IPV perpetration (AOR 1.70, 95% CI 1.00–2.90) and physical IPV perpetration (1: AOR 2.26, 95% CI 1.27–4.04), while adjusting for demographic and behavioral variables. Participants who reported legal PES use had higher odds of any IPV perpetration (AOR 1.36, 95% CI 1.02–1.81) and both forms of physical violence perpetration (1: AOR 1.54, 95% CI 1.16–2.06; 2: AOR 1.53, 95% CI 1.01–2.33), while adjusting for demographic and behavioral variables.

Results from prospective logistic regression analyses showed significant associations between AAS use in young adulthood and both IPV victimization and IPV perpetration at seven-year follow-up. Regarding IPV victimization (Table 3, Panel A), participants who reported AAS use in young adulthood had higher odds of any IPV victimization (AOR 1.72, 95% CI 1.04–2.84), both physical IPV victimization items (1: AOR 2.01, 95% CI 1.15–3.50; 2: AOR 2.11, 95% CI 1.06–4.21), IPV victimization injury (AOR 4.90, 95% CI 1.71–14.01), and sexual IPV victimization (AOR 2.44, 95% CI 1.05–5.65) at seven-year follow-up, while adjusting for demographic and behavioral variables.

Regarding IPV perpetration (Table 3, Panel B), participants who reported AAS use in young adulthood had higher odds of any IPV perpetration (AOR 2.11, 95% CI 1.06–4.23), physical IPV perpetration (1: AOR 2.58, 95% CI 1.06–6.27), and sexual IPV perpetration (AOR 3.80, 95% CI 1.44–10.02) at seven-year follow-up, while adjusting for demographic and behavioral variables. There were no statistically significant associations between legal PES use in young adulthood and IPV victimization nor IPV perpetration at seven-year follow-up.

Discussion

The aim of this study was to determine the cross-sectional and prospective associations between PES use and IPV victimization and IPV perpetration
Table 1. Demographic and descriptive statistics of Add Health participants (N = 12,288).

	Overall	Legal PES Users	AAS Users
	M (SD)/%	M (SD)/%	M (SD)/%
Age, ages 18–26 years (Wave III)	21.8 (1.8)	21.7 (1.8)	21.8 (2.0)
Sex, ages 11–18 years (Wave I)			
Female	49.4%	6.7%	20.8%
Male	50.6%	93.3%	79.2%
Race/ethnicity, ages 11–18 years (Wave I)			
White	68.5%	77.1%	77.3%
Hispanic/Latino	11.9%	9.5%	11.9%
Black/African American	15.2%	9.3%	9.8%
American Indian/Native American	0.5%	0.6%	<0.0%
Asian/Pacific Islander	3.1%	2.5%	0.9%
Other race/ethnicity	0.8%	0.9%	0.0%
Sexual orientation, ages 18–26 years (Wave III)			
Heterosexual	90.2%	94.5%	89.4%
Mostly heterosexual	6.9%	2.9%	4.2%
Gay, lesbian, or bisexual	3.0%	2.6%	
Household income (thousands of dollars), ages 11–18 years (Wave I)	46.3 (41.8)	53.1 (38.8)	45.5 (31.0)
Body mass index (kg/m²), ages 18–26 years (Wave III)	26.4 (6.4)	26.2 (5.1)	27.3 (6.2)
Alcohol use, ≥ 2 days, past 30 days, ages 18–26 years (Wave III)	47.0%	69.4%	53.3%
Ever lived with someone in a marriage-like relationship, ages 18–26 years (Wave III)	41.8%	38.7%	47.7%
Ever married or lived with partner, ages 24–32 years (Wave IV)	85.4%	84.0%	91.3%
Low self-control, ages 11–18 years (Wave I)	6.5 (3.2)	6.6 (3.2)	7.1 (3.7)
Depression score, ages 18–26 years (Wave III)	4.4 (4.0)	4.0 (3.8)	5.0 (4.2)
Childhood physical abuse, ages 18–26 years (Wave III)	28.8%	34.5%	48.6%
Childhood sexual abuse, ages 18–26 years (Wave III)	4.6%	6.0%	23.5%
IPV victimization, past year, ages 18–26 years (Wave III)			
Any IPV victimization	33.3%	33.0%	47.5%
Physical IPV victimization I*	23.8%	24.9%	38.3%

(continued)
Table 1. (continued)

	Overall	Legal PES Users	AAS Users
Physical IPV victimization	18.0%	23.1%	30.5%
IPV victimization injury	5.3%	5.6%	12.8%
Sexual IPV victimization	11.8%	13.8%	25.3%

IPV perpetration, past year, ages 18–26 years (Wave III)
- Any IPV perpetration | 28.2% | 26.1% | 38.9% |
- Physical IPV perpetration | 20.4% | 20.4% | 34.0% |
- Physical IPV perpetration injury | 15.6% | 12.0% | 19.5% |
- IPV perpetration injury | 5.3% | 5.6% | 12.8% |
- Sexual IPV perpetration | 5.7% | 7.0% | 10.1% |

Any IPV involvement, past year, ages 18–26 years (Wave III) | 37.7% | 37.1% | 51.4% |

IPV victimization, past year, ages 24–32 years (Wave IV)
- Any IPV victimization | 11.1% | 11.7% | 21.4% |
- Physical IPV victimization | 8.4% | 9.9% | 18.3% |
- Physical IPV victimization injury | 4.8% | 6.2% | 13.2% |
- IPV victimization injury | 1.6% | 1.5% | 5.7% |
- Sexual IPV victimization | 3.0% | 3.8% | 7.6% |

IPV perpetration, past year, ages 24–32 years (Wave IV)
- Any IPV perpetration | 5.9% | 6.9% | 13.5% |
- Physical IPV perpetration | 4.0% | 4.2% | 8.9% |
- Physical IPV perpetration injury | 2.6% | 1.3% | 2.4% |
- IPV perpetration injury | 0.9% | 0.9% | 1.6% |
- Sexual IPV perpetration | 1.5% | 3.4% | 7.1% |

Any IPV involvement, past year, ages 24–32 years (Wave IV) | 12.7% | 14.0% | 22.7% |

Anabolic-androgenic steroid use, past 7 years, ages 18–26 years (Wave III) | 2.0% | 13.8% | – |

Legal performance-enhancing substance use, past 12-months, ages 18–26 years (Wave III) | 8.8% | – | 61.5% |

Note. Analyses included preconstructed sample weighting. IPV=Intimate partner violence; PES=Performance-enhancing substance use; AAS=Anabolic-androgenic steroids.

- aPartner pushed or shoved you, or threw something at you that could hurt (any/none).
- bPartner slapped, hit, or kicked you (any/none).
- cInjury, such as a sprain, bruise, or cut, because of a fight with your partner (any/none).
- dPartner insisted on or made you have sexual relations with him/her when you did not want to (any/none).
- eYou pushed or shoved, or threw something at your partner that could hurt (any/none).
- fYou slapped, hit, or kicked your partner (any/none).
- gPartner had an injury, such as a sprain, bruise, or cut, because of a fight with you (any/none).
- hYou insisted on or made your partner have sexual relations with you when they did not want to (any/none).
Table 2. Panel A: Cross-Sectional Associations between Performance-Enhancing Substance Use and Intimate Partner Violence Victimization in Young Adulthood (18–26 Years) among Participants in Add Health.

	Any IPV Victimization	Physical IPV Victimization 1^a	Physical IPV Victimization 2^b	IPV Victimization Injury^c	Sexual IPV Victimization^d
Anabolic-androgenic steroid use, past 7 years	AOR (95% CI)	1.84 (1.11–3.07)^{***}	1.48 (0.84–2.62)	2.14 (0.93–4.96)	2.65 (1.44–4.87)^{**}
Legal performance-enhancing substance use, past 12-months	AOR (95% CI)	1.34 (1.04–1.72)^{***}	1.28 (0.96–1.72)	1.30 (0.79–2.14)	1.55 (1.12–2.15)^{***}

Table 2: Panel B: Cross-sectional associations between performance-enhancing substance use and intimate partner violence perpetration in young adulthood (18–26 Years) among participants in add health

	Any IPV Perpetration	Physical IPV Perpetration 1^e	Physical IPV Perpetration 2^f	IPV Peretration Injury^g	Sexual IPV Perpetration^h
Anabolic-androgenic steroid use, past 7 years	AOR (95% CI)	1.70 (1.00–2.90)^{***}	1.42 (0.65–3.11)	2.14 (0.93–4.96)	1.33 (0.58–3.06)
Legal performance-enhancing substance use, past 12-months	AOR (95% CI)	1.36 (1.02–1.81)^{***}	1.53 (1.01–2.33)^{***}	1.30 (0.79–2.14)	1.18 (0.79–1.75)

Note. Analyses included preconstructed sample weighting. **Boldface** indicates statistical significance (p < 0.05); * p < 0.05 ** p < 0.01.

IPV=Intimate partner violence; AOR=Adjusted odds ratio; CI=Confidence interval.

^aPartner pushed or shoved you, or threw something at you that could hurt (any/none).

^bPartner slapped, hit, or kicked you (any/none).

^cInjury, such as a sprain, bruise, or cut, because of a fight with your partner (any/none).

^dPartner insisted on or made you have sexual relations with him/her when you did not want to (any/none).

^eYou pushed or shoved, or threw something at your partner that could hurt (any/none).

^fYou slapped, hit, or kicked your partner (any/none).

^gPartner had an injury, such as a sprain, bruise, or cut, because of a fight with you (any/none).

^hYou insisted on or made your partner have sexual relations with you when they did not want to (any/none).

All analyses adjusted for age (W III), sex (W I), race/ethnicity (W I), sexual orientation (W III), household income (W I), body mass index (W III), alcohol use (W III), relationship status (W III), low self-control (W I), depression score (W III), childhood physical abuse (W III), childhood sexual abuse (W III).
Table 3. Panel A: Prospective Associations between Performance-Enhancing Substance Use in Young Adulthood (18–26 Years) and Intimate Partner Violence Victimization at Seven-Year Follow-Up (24–32 Years) among Participants in Add Health.

	Any IPV Victimization	Physical IPV Victimization 1^a	Physical IPV Victimization 2^b	IPV Victimization Injury^c	Sexual IPV Victimization^d
Anabolic-androgenic steroid use, past 7 years	AOR (95% CI)				
	1.72 (1.04–2.84)*	2.01 (1.15–3.50)[*]	2.11 (1.06–4.21)[*]	4.90 (1.71–14.01)**	2.44 (1.05–5.65)[*]
Legal performance-enhancing substance use, past 12-months	AOR (95% CI)				
	0.94 (0.69–1.26)	1.04 (0.78–1.40)	0.90 (0.60–1.34)	1.53 (0.65–3.62)	1.20 (0.69–2.10)

Table 3: Panel B: Prospective associations between performance-enhancing substance use in young adulthood (18–26 Years) and intimate partner violence perpetration at seven-year follow-up (24–32 Years) among participants in add health

	Any IPV Perpetration	Physical IPV Perpetration 1^e	Physical IPV Perpetration 2^f	IPV Perpetration Injury^g	Sexual IPV Perpetration^h
Anabolic-androgenic steroid use, past 7 years	AOR (95% CI)				
	2.11 (1.05–4.23)[*]	2.58 (1.06–6.27)[*]	0.64 (0.21–1.94)	1.60 (0.20–12.69)	3.80 (1.44–10.02)^{**}
Legal performance-enhancing substance use, past 12-months	AOR (95% CI)				
	1.26 (0.84–1.90)	1.52 (0.86–2.71)	0.94 (0.40–2.22)	1.55 (0.54–4.46)	1.46 (0.85–2.50)

Note. Analyses included preconstructed sample weighting. **Boldface** indicates statistical significance (p < 0.05); *p < 0.05 **p < 0.01.
IPV=Intimate partner violence; AOR=Adjusted odds ratio; CI=Confidence interval.
^aPartner pushed or shoved you, or threw something at you that could hurt (any/none).
^bPartner slapped, hit or kicked you (any/none).
^cInjury, such as a sprain, bruise, or cut, because of a fight with your partner (any/none).
^dPartner insisted on or made you have sexual relations with him/her when you did not want to (any/none).
^eYou pushed or shoved, or threw something at your partner that could hurt (any/none).
^fYou slapped, hit or kicked your partner (any/none).
^gPartner had an injury, such as a sprain, bruise, or cut, because of a fight with you (any/none).
^hYou insisted on or made your partner have sexual relations with you when they did not want to (any/none).
All analyses adjusted for age (W III), sex (W I), race/ethnicity (W I), sexual orientation (W III), household income (W I), body mass index (W III), alcohol use (W III), relationship status (W IV), low self-control (W I), depression score (W III), childhood physical abuse (W III), childhood sexual abuse (W III), and any IPV involvement (W III).
among a nationally representative cohort sample of U.S. young adults. Results showed patterns of association between legal PES use and AAS use and IPV involvement. Specifically, in cross-sectional analyses, both legal PES use and AAS use were associated with any IPV victimization and sexual IPV victimization, while AAS use was associated with physical IPV victimization by way of being pushed or shoved by an intimate partner. Similarly, both legal PES use and AAS use were associated with any IPV perpetration and physical IPV perpetration by way of having pushed or shoved an intimate partner, while legal PES use was also associated with physical IPV perpetration by way of having slapped or hit an intimate partner. Interestingly, however, legal PES use was no longer associated with IPV victimization nor perpetration in prospective analyses. However, AAS use was prospectively associated with all four forms of IPV victimization, as well as any IPV perpetration, physical IPV perpetration by way of having pushed or shoved an intimate partner, and sexual IPV perpetration.

Taken together, these are novel findings and expand prior research in several key ways. First, cross-sectional associations between legal PES use and both IPV victimization and perpetration add to the growing literature on the adverse correlates of their use (Ganson et al., 2020, 2021b; Nagata et al., 2020a). Second, associations between AAS use and both IPV victimization and perpetration expand prior research that has shown that AAS use is associated with interpersonal violence perpetration, such as physical fighting and aggression, and victimization (e.g., sexual abuse; Beaver et al., 2008; Ganson et al., 2021b; Ganson & Cadet, 2019; Gruber & Pope, 1999; Hauger et al., 2021; Ip et al., 2010, 2011). Third, the association between AAS use and both IPV victimization and perpetration is particularly salient as these findings were observed both cross-sectionally and longitudinally, while adjusting for potential confounding factors including prior IPV involvement, childhood abuse, and psychosocial functioning (i.e., low self-control and depression). The longitudinal findings are additionally robust given that the AAS use item assessed a seven-year retrospective period, indicating the potential longevity of the impacts of AAS use. To date, little research has explored the association between AAS use and IPV, particularly IPV perpetration, with one study showing positive cross-sectional associations between AAS use and teen dating violence among a sample of high school students (Ganson & Cadet, 2019). Fourth, the sample comprised of a diverse and nationally representative sample of U.S. adults, underscoring the application of the findings to multiple identity groups (i.e., sexual, gender, and racial/ethnic minorities), that are uniquely susceptible to IPV and PES use (Blashill et al., 2017; Capaldi et al., 2012; Nagata et al., 2020b; Swiatlo et al., 2020; Whitfield et al., 2021). Overall, the findings from this study underscore the need for more research on the adverse health and social effects of PES use, as well as prevention and intervention efforts to mitigate the effects of use.
The differences between the cross-sectional and prospective findings from this study warrant further contextualization. While the association between legal PES use and IPV involvement is significant cross-sectionally, this diminishes over time. Conversely the association between AAS use and IPV involvement is made more robust over time. It may be that the physical effects of legal PES use are not as long lasting as the physical effects of AAS use. For example, specifically regarding IPV perpetration, research has shown that AAS use can have neurological effects, whereby several key areas and systems of the brain are altered. For example, AAS use may affect the serotonergic system and dopaminergic pathways, which may influence aggressive behaviors (Pope et al., 2014). Other neurological effects include reduced emotion regulation, impulse control (Hauger et al., 2019b; Westlye et al., 2017), executive functioning (Hauger et al., 2020), and emotion recognition, which can increase anger (Hauger et al., 2019a). Thus, it is likely that the neurological effects of AAS use may increase risk for IPV perpetration due to a deficit in key skills needed for effective interpersonal relationships. The cross-sectional relationship between legal PES use and IPV perpetration therefore may be better explained by social factors. For example, legal PES use, particularly among men, is likely influenced by desires to increase muscle-mass and strength (Murray et al., 2017; Tylka, 2011), and there are overlaps between muscularity and adherence to traditional hegemonic norms of masculinity, such as aggression, dominance, and strength (Gattario et al., 2015; Luciano, 2007). In turn, greater adherence to these norms may increase engagement in IPV perpetration (Tarzia, 2020; Willie et al., 2018). Ultimately, it may be that these social factors are diminished by other social factors (e.g., positive intimate relationships and reduced or ceased use of legal PES). Future research using a shorter follow-up period (i.e., less than 7 years) may better describe whether legal PES use is prospectively associated with IPV perpetration.

The associations between PES use and IPV victimization are novel and prior research on correlates of PES use may provide greater context to these findings. Regarding AAS use, given the illicit and risky nature of AAS, it is likely that individuals who use AAS are involved in social relationships and social situations that may be unsafe or uncertain (Pope et al., 2017); that is, where the likelihood of IPV occurring is high. For example, individuals who use AAS are more likely to engage in high-risk sexual behavior (Ip et al., 2016) and report alcohol and illicit drug use (Ip et al., 2011). Theoretically, lifestyle and routine activities theories that suggest persons who engage in riskier behaviors are at an elevated risk for victimization (Cohen & Felson, 1979; Hindelang et al., 1978). Lastly, research has shown that AAS exposure can elicit a decrease in fear reactions (e.g., escape and freezing responses) in stressful situations among rats (Johansson et al., 2000; Steensland et al., 2005). This may indicate that those who used AAS may have a decreased ability to
protect themselves or avoid IPV victimization. Regarding the cross-sectional association between legal PES use and IPV victimization, the use of legal PES as a mechanism to increase muscle-mass and strength, which in the context of IPV victimization may be intended to protect again further interpersonal violence. For men specifically, being a part of a violent relationship may be a threat to their masculinity, as posited by precarious manhood (Vandello et al., 2008). Men whose masculinity is threatened via IPV victimization may seek to increase their muscularity and strength to protect themselves psychologically. This has been exemplified in research showing that men whose masculinity is threatened often exaggerate their strength (Frederick et al., 2017). Prior research has also shown that women may use AAS for the purpose of protecting against sexual assault (Gruber & Pope, 1999), which may be extended to the use of legal PES. Ultimately, future research is needed to better explain and contextualize the findings related to PES use and IPV victimization.

The findings from this study have important implications for health care and public health professionals. Health care professionals should be aware of the relationship between PES use and IPV involvement. Specifically, given the ease of access and widespread use of legal PES, it may be particularly important that health care professionals are screening for IPV involvement among those who report legal PES use. Relatedly, identifying AAS use and providing education on the potential physiological and social harms of use, including IPV involvement, is needed, as well as any medical treatment to mitigate the physiological effects of AAS use. Public health awareness and prevention programming should be used to reduce the use of PES (Elliott & Goldberg, 1996; Goldberg et al., 1991) and IPV (Niolon et al., 2017) and emphasize the potential detrimental interpersonal effects of PES use.

There are several limitations that should be noted of this study. First, all of the variables are based on retrospective self-report, which may increase the risk of reporting and recall bias. The risk of reporting bias may be particularly salient for reports of IPV perpetration. Second, there is the potential for unmeasured confounders that may influence the relationships between the key variables under study. However, we did adjust for several variables that are likely to influence the association between PES use and IPV involvement. This includes prior IPV involvement, alcohol use, childhood abuse, low self-control, depression, as well as demographic identifiers that have been shown to increase risk of PES use and IPV, such as sex and sexual orientation. Third, while Add Health has collected data on couples, our analyses were limited to the entire Add Health sample given the rarity of some of our measures (e.g., AAS use). This aligns with prior research on IPV (Dunn et al., 2021; Reingle et al., 2012; Spivey & Nodeland, 2021; Swiatlo et al., 2020). Similarly, we were limited in our analyses to investigating associations among the overall sample. Given the higher prevalence of AAS use and IPV among sexual, gender, and racial/ethnic diverse individuals, future research is warranted to
explore these associations among diverse samples. Furthermore, we dichotomized the IPV involvement items in accordance with prior literature (Dunn et al., 2021; Reingle et al., 2012; Spivey & Nodeland, 2021; Swiatlo et al., 2020). However, this may have reduced the detail of information. Finally, the legal PES use item combined multiple substances (e.g., creatine and androstenedione), which reduced our ability to identify nuances of association with IPV involvement. Additionally, while androstenedione was considered a legal substance in the U.S. at the time of data collection (2001–2002), this substance was banned in 2004.

Conclusion

The results from this study are among the first to show associations between PES use and IPV involvement. Cross-sectional findings showed the association between both legal PES use and AAS and IPV victimization and perpetration, while prospective associations underscored that AAS use was associated with both IPV victimization and perpetration across a seven-year period. These results expand on prior research emphasizing the relationship between PES use, particularly AAS use, and aggression, anger, and general interpersonal violence. Future research is needed to extrapolate and describe the specific frequency, dose, and duration of PES use that may further increase risk of IPV involvement.

Acknowledgments

The authors would like to thank Nicole E. Lisi for providing research assistance. This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health data files is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for this analysis.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the J.M.N.
supported by the National Institutes of Health (K08HL159350) and the American Heart Association (CDA34760281). No funding was used to support this study.

ORCID iD

Kyle T. Ganson https://orcid.org/0000-0003-3889-3716

References

Ahlgrim, C., & Guglin, M. (2009). Anabolics and cardiomyopathy in a bodybuilder: Case report and literature review. *Journal of Cardiac Failure, 15*(6), 496–500. https://doi.org/10.1016/j.cardfail.2008.12.014

Bacchus, L. J., Ranganathan, M., Watts, C., & Devries, K. (2018). Recent intimate partner violence against women and health: A systematic review and meta-analysis of cohort studies. *BMJ Open, 8*(7), Article e019995. https://doi.org/10.1136/bmjopen-2017-019995

Beaver, K. M., Vaughn, M. G., Delisi, M., & Wright, J. P. (2008). Anabolic-androgenic steroid use and involvement in violent behavior in a nationally representative sample of young adult males in the United States. *American Journal of Public Health, 98*(12), 2185–2187. https://doi.org/10.2105/AJPH.2008.137018

Bispo, M., Valente, A., Maldonado, R., Palma, R., Gloria, H., Nobrega, J., & Alexandrino, P. (2009). Anabolic steroid-induced cardiomyopathy underlying acute liver failure in a young bodybuilder. *World Journal of Gastroenterology, 15*(23), 2920–2922. https://doi.org/10.3748/wjg.15.2920

Blashill, A. J., Calzo, J. P., Griffiths, S., & Murray, S. B. (2017). Anabolic steroid misuse among US adolescent boys: Disparities by sexual orientation and race/ethnicity. *American Journal of Public Health, 107*(2), 319–321. https://doi.org/10.2105/AJPH.2016.303566

Breiding, M. J., Basile, K. C., Smith, S. G., & Black, M. C. (2015). *Intimate partner violence surveillance: Uniform definitions and recommended data elements. Version 2.0*. CDC. https://www.cdc.gov/violenceprevention/pdf/ipv/intimatepartnerviolence.pdf

Calzo, J. P., Sonneville, K. R., Scherer, E. A., Jackson, B., & Austin, S. B. (2016). Gender conformity and use of laxatives and muscle-building products in adolescents and young adults. *Pediatrics, 138*(2), Article e20154073. https://doi.org/10.1542/peds.2015-4073

Capaldi, D. M., Knoble, N. B., Shortt, J. W., & Kim, H. K. (2012). A systematic review of risk factors for intimate partner violence. *Partner Abuse, 3*(2), 231–280. https://doi.org/10.1891/1946-6560.3.2.231

Cohen, L. E., & Felson, M. (1979). Social change and crime rate trends: A routine activity approach. *American Sociological Review, 44*(4), 588–608. https://doi.org/10.2307/2094589
Copenhaver, M. M., Lash, S. J., & Eisler, R. M. (2000). Masculine gender-role stress, anger, and male intimate abusiveness: Implications for men’s relationships. *Sex Roles, 42*(5–6), 405–414. https://doi.org/10.1023/A:1007050305387

Daly, R. C., Su, T. P., Schmidt, P. J., Pagliaro, M., Pickar, D., & Rubinow, D. R. (2003). Neuroendocrine and behavioral effects of high-dose anabolic steroid administration in male normal volunteers. *Psychoneuroendocrinology, 28*(3), 317–331. https://doi.org/10.1016/S0306-4530(02)00025-2

Dunn, H. K., Pearlman, D. N., Montgomery, M. C., & Orchowski, L. M. (2022). Predictors of sexual intimate partner violence perpetration among men: A prospective analysis. *Journal of Interpersonal Violence, 37*(13–14), NP11161–NP11179. https://doi.org/10.1177/0886260521989735

Eisenberg, M. E., Wall, M., & Neumark-Sztainer, D. (2012). Muscle-enhancing behaviors among adolescent girls and boys. *Pediatrics, 130*(6), 1019–1026. https://doi.org/10.1542/peds.2012-0095

Elliott, D., & Goldberg, L. (1996). Intervention and prevention of steroid use in adolescents. *American Journal of Sports Medicine, 24*(Suppl 6), S46–S47. https://doi.org/10.1177/036354659602406s14

Frederick, D. A., Shapiro, L. M., Williams, T. R., Seoane, C. M., McIntosh, R. T., & Fischer, E. W. (2017). Precarious manhood and muscularity: Effects of threatening men’s masculinity on reported strength and muscle dissatisfaction. *Body Image, 22*(September 2017), 156-165. https://doi.org/10.1016/j.bodyim.2017.07.002

Ganson, K. T., & Cadet, T. J. (2019). Exploring anabolic-androgenic steroid use and teen dating violence among adolescent males. *Substance Use & Misuse, 54*(5), 779–786. https://doi.org/10.1080/10826084.2018.1536723

Ganson, K. T., Mitchison, D., Murray, S. B., & Nagata, J. M. (2020). Legal performance-enhancing substances and substance use problems among young adults. *Pediatrics, 146*(3), Article e20200409. https://doi.org/10.1542/peds.2020-0409

Ganson, K. T., Murray, S. B., Mitchison, D., Hawkins, M. A. W., Layman, H., Tabler, J., & Nagata, J. M. (2021a). Associations between adverse childhood experiences and performance-enhancing substance use among young adults. *Substance Use and Misuse, 56*(6), 854-860. https://doi.org/10.1080/10826084.2021.1899230

Ganson, K. T., Testa, A., Jackson, D. B., & Nagata, J. M. (2021b). Performance-enhancing substance use and criminal offending: A 15-year prospective cohort study. *Drug and Alcohol Dependence, 226*(2021), 108832. https://doi.org/10.1016/j.drugalcdep.2021.108832

Gattario, K. H., Frisén, A., Fuller-Tyszkiewicz, M., Ricciardelli, L. A., Diedrichs, P. C., Yager, Z., Franke, D. L., & Smolak, L. (2015). How is men’s conformity to masculine norms related to their body image? Masculinity and muscularity across Western Countries. *Psychology of Men and Masculinity, 16*(3), 337–347. https://doi.org/10.1037/a0038494
Goldberg, L., Bents, R., Bosworth, E., Trevisan, L., & Elliot, D. L. (1991). Anabolic steroid education and adolescents: Do scare tactics work? *Pediatrics, 87*(3), 283–286. https://doi.org/10.1542/peds.87.3.283

Gottfredson, M. R., & Hirschi, T. (1990). *A general theory of crime.* Stanford University Press.

Griffiths, S., Murray, S. B., & Touyz, S. (2015). Extending the masculinity hypothesis: An investigation of gender role conformity, body dissatisfaction, and disordered eating in young heterosexual men. *Psychology of Men and Masculinity, 16*(1), 108–114. https://doi.org/10.1037/a0035958

Gruber, A. J., & Pope, H. G. (1999). Compulsive weight lifting and anabolic drug abuse among women rape victims. *Comprehensive Psychiatry, 40*(4), 273–277. https://doi.org/10.1016/S0010-440X(99)90127-X

Harris, K.M. (2013). *The add health study: Design and accomplishments.* Carolina Population Center

Harris, K. M., Halpern, C. T., Whitsel, E. A., Hussey, J. M., Killeya-Jones, L. A., Tabor, J., & Dean, S. C. (2019). Cohort profile: The national longitudinal study of adolescent to adult health (Add Health). *International Journal of Epidemiology, 48*(5), 1415–1415K. https://doi.org/10.1093/ije/dyz115

Hauger, L. E., Havnes, I. A., Jørstad, M. L., & Bjørnebekk, A. (2021). Anabolic androgenic steroids, antisocial personality traits, aggression and violence. *Drug and Alcohol Dependence, 221*(2021), 108604. https://doi.org/10.1016/j.drugalcdep.2021.108604

Hauger, L. E., Sagoe, D., Vaskinn, A., Arnevik, E. A., Leknes, S., Jørstad, M. L., & Bjørnebekk, A. (2019a). Anabolic androgenic steroid dependence is associated with impaired emotion recognition. *Psychopharmacology, 236*(9), 2667-2676. https://doi.org/10.1007/s00213-019-05239-7

Hauger, L. E., Westlye, L. T., & Bjørnebekk, A. (2020). Anabolic androgenic steroid dependence is associated with executive dysfunction. *Drug and Alcohol Dependence, 208*(2020), 107874. https://doi.org/10.1016/j.drugalcdep.2020.107874

Hauger, L. E., Westlye, L. T., Fjell, A. M., Walhovd, K. B., & Bjørnebekk, A. (2019b). Structural brain characteristics of anabolic–androgenic steroid dependence in men. *Addiction, 114*(8), 1405-1415. https://doi.org/10.1111/add.14629

Hindelang, M. J., Gottfredson, M. R., & Garofalo, J. (1978). *Victims of personal crime: An empirical foundation for a theory of personal victimization.* Ballinger.

Ip, E. J., Barnett, M. J., Tenerowicz, M. J., Kim, J. A., Wei, H., & Perry, P. J. (2010). Women and anabolic steroids: An analysis of a Dozen users. *Clinical Journal of Sport Medicine, 20*(6), 475–481. https://doi.org/10.1097/JSM.0b013e3181fb5370

Ip, E. J., Barnett, M. J., Tenerowicz, M. J., & Perry, P. J. (2011). The anabolic 500 survey: Characteristics of male users versus nonusers of anabolic-androgenic steroids for strength training. *Pharmacotherapy, 31*(8), 757–766. https://doi.org/10.1592/phco.31.8.757

Ip, E. J., Yadao, M. A., Shah, B. M., & Lau, B. (2016). Infectious disease, injection practices, and risky sexual behavior among anabolic steroid users. *AIDS Care*
Psychological and Socio-Medical Aspects of AIDS/HIV, 28(3), 294–299. https://doi.org/10.1080/09540121.2015.1090539

Johansson, P., Lindqvist, A. S., Nyberg, F., & Fahlke, C. (2000). Anabolic androgenic steroids affect alcohol intake, defensive behaviors and brain opioid peptides in the rat. Pharmacology Biochemistry and Behavior, 67(2), 271–279. https://doi.org/10.1016/S0091-3057(00)00365-8

Kanayama, G., Hudson, J. I., & Pope, H. G. (2008). Long-term psychiatric and medical consequences of anabolic-androgenic steroid abuse: A looming public health concern? Drug and Alcohol Dependence, 98(1–2), 1–12. https://doi.org/10.1016/j.drugalcdep.2008.05.004

Luciano, L. (2007). Muscularity and masculinity in the United States: A historical overview In J. K. Thompson & G. Cafri (Eds.), The muscular ideal: Psychological, social, and medical perspectives (pp. 41–65). American Psychological Association. https://doi.org/10.1037/11581-002

McCreary, D. R., Saucier, D. M., & Courtenay, W. H. (2005). The drive for muscularity and masculinity: Testing the associations among gender-role traits, behaviors, attitudes, and conflict. Psychology of Men and Masculinity, 6(2), 83–94. https://doi.org/10.1037/1524-9220.6.2.83

Miller, E., & McCaw, B. (2019). Intimate Partner Violence. New England Journal of Medicine, 380(9), 850–857. https://doi.org/10.1056/NEJMra1807166

Murray, S. B., Nagata, J. M., Griffiths, S., Calzo, J. P., Brown, T. A., Mitchison, D., Blashill, A. J., & Mond, J. M. (2017). The enigma of male eating disorders: A critical review and synthesis. Clinical Psychology Review, 57(November 2017), 1-11. https://doi.org/10.1016/j.cpr.2017.08.001

Nagata, J. M., Ganson, K. T., Gorrell, S., Mitchison, D., & Murray, S. B. (2020a). Association between legal performance-enhancing substances and use of anabolic-androgenic steroids in young adults. JAMA Pediatrics, 174(10), 992-993. https://doi.org/10.1001/jamapediatrics.2020.0883

Nagata, J. M., Ganson, K. T., Griffiths, S., Mitchison, D., Garber, A. K., Vittinghoff, E., Bibbings-Domingo, K., & Murray, S. B. (2020b). Prevalence and correlates of muscle-enhancing behaviors among adolescents and young adults in the United States. International Journal of Adolescent Medicine and Health, 34(2), 119–129. https://doi.org/https://doi.org/10.1515/ijamh-2020-0001

Nikolopoulos, D. D., Spiliopoulou, C., & Theocharis, S. E. (2011). Doping and musculoskeletal system: Short-term and long-lasting effects of doping agents. Fundamental and Clinical Pharmacology, 25(5), 535–563. https://doi.org/10.1111/j.1472-8206.2010.00881.x

Niolon, P. H., Kearns, M., Dills, J., Rambo, K., Irving, S., Armstead, T. L., & Gilbert, L. (2017). Preventing intimate partner violence across the lifespan: A technical package of programs, policies and practices. Centers for Disease Control and Prevention. https://www.cdc.gov/violenceprevention/pdf/ipv-technicalpackages.pdf
Or, F., Kim, Y., Simms, J., & Austin, S. B. (2019). Taking stock of dietary supplements’ harmful effects on children, adolescents, and young adults. *Journal of Adolescent Health, 65*(4), 455–461. https://doi.org/10.1016/j.jadohealth.2019.03.005

Perrone, D., Sullivan, C. J., Pratt, T. C., & Margaryan, S. (2004). Parental efficacy, self-control, and delinquency: A test of a general theory of crime on a nationally representative sample of youth. *International Journal of Offender Therapy and Comparative Criminology, 48*(3), 298–312. https://doi.org/10.1177/0306624X03262513

Pope, H. G., Khalsa, J. H., & Bhasin, S. (2017). Body image disorders and abuse of anabolic-androgenic steroids among men. *JAMA-Journal of the American Medical Association, 317*(1), 23–24. https://doi.org/10.1001/jama.2016.17441

Pope, H. G., Wood, R. I., Rogol, A., Nyberg, F., Bowers, L., & Bhasin, S. (2014). Adverse health consequences of performance-enhancing drugs: An endocrine society scientific statement. *Endocrine Reviews, 35*(3), 341–375. https://doi.org/10.1210/er.2013-1058

Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. *Applied Psychological Measurement, 1*(3), 385–401. https://doi.org/10.1177/014662167700100306

Raine, A. (2002). Biosocial studies of antisocial and violent behavior in children and adults: A review. *Journal of Abnormal Child Psychology, 30*(4), 311–326. https://doi.org/10.1023/A:1015754122318

Raine, A. (2013). *The anatomy of violence: The biological roots of crime*. Vintage Books.

Reingle, J. M., Staras, S. A. S., Jennings, W. G., Branchini, J., & Maldonado-Molina, M. M. (2012). The relationship between marijuana use and intimate partner violence in a nationally representative, longitudinal sample. *Journal of Interpersonal Violence, 27*(8), 1562–1578. https://doi.org/10.1177/0886260511425787

Singh, V., Tolman, R., Walton, M., Chermack, S., & Cunningham, R. (2014). Characteristics of men who perpetrate intimate partner violence. *Journal of the American Board of Family Medicine, 27*(5), 661–668. https://doi.org/10.3122/jabfm.2014.05.130247

Smith, S. G., Zhang, X., Basile, K. C., Merrick, M. T., Wang, J., Kresnow, M., & Chen, J. (2015). National intimate partner and sexual violence survey: 2015 data brief-update release (pp. 1–124). National Center for Injury Prevention And. https://www.cdc.gov/violenceprevention/pdf/2015data-brief508.pdf

Spivey, E., & Nodeland, B. (2021). The victim-offender overlap in intimate partner violence: considering the role of self-control. *Deviant Behavior, 42*(6), 733–746. https://doi.org/10.1080/01639625.2020.1821259

Steensland, P., Blakely, G., Nyberg, F., Fahlke, C., & Pohorecky, L. A. (2005). Anabolic androgenic steroid affects social aggression and fear-related behaviors in male pair-housed rats. *Hormones and Behavior, 48*(2), 216–224. https://doi.org/10.1016/j.yhbeh.2005.02.010

Swiatlo, A. D., Kahn, N. F., & Halpern, C. T. (2020). Intimate partner violence perpetration and victimization among young adult sexual minorities. *Perspectives*
on Sexual and Reproductive Health, 52(2), 97–105. https://doi.org/10.1363/psrh.12138

Tarzia, L. (2020). Toward an ecological understanding of intimate partner sexual violence. Journal of Interpersonal Violence. https://doi.org/10.1177/0886260519900298

Tylka, T. L. (2011). Refinement of the tripartite influence model for men: Dual body image pathways to body change behaviors. Body Image, 8(3), 199–207. https://doi.org/10.1016/j.bodyim.2011.04.008

Vandello, J. A., & Bosson, J. K. (2013). Hard won and easily lost: A review and synthesis of theory and research on precarious manhood. Psychology of Men and Masculinity, 14(2), 101–113. https://doi.org/10.1037/a0029826

Vandello, J. A., Bosson, J. K., Cohen, D., Burnaford, R. M., & Weaver, J. R. (2008). Precarious manhood. Journal of Personality and Social Psychology, 95(6), 1325–1339. https://doi.org/10.1037/a0012453

Westlye, L. T., Kaufmann, T., Alnæs, D., Hullstein, I. R., & Bjørnebekk, A. (2017). Brain connectivity aberrations in anabolic-androgenic steroid users. NeuroImage: Clinical, 13(2017), 62-69. https://doi.org/10.1016/j.nicl.2016.11.014

Whitfield, D. L., Coulter, R. W. S., Langenderfer-Magruder, L., & Jacobson, D. (2021). Experiences of intimate partner violence among lesbian, gay, bisexual, and transgender college students: The intersection of gender, race, and sexual orientation. Journal of Interpersonal Violence, 36(11–12), NP6040–NP6064. https://doi.org/10.1177/0886260518812071

Whitton, S. W., Lawlace, M., Dyar, C., & Newcomb, M. E. (2021). Exploring mechanisms of racial disparities in intimate partner violence among sexual and gender minorities assigned female at birthCultural Diversity and Ethnic Minority Psychology. Educational Publishing Foundation, 27(4), 602–612. https://doi.org/10.1037/cdp0000463

Willie, T. C., Khondkaryan, E., Callands, T., & Kershaw, T. (2018). “Think Like a Man”: How sexual cultural scripting and masculinity influence changes in men’s use of intimate partner violence. American Journal of Community Psychology, 61(1–2), 240–250. https://doi.org/10.1002/ajcp.12224

Author Biographies

Kyle T. Ganson, PhD, MSW, is an Assistant Professor at the University of Toronto’s Factor-Inwentash Faculty of Social Work. His research focuses on eating disorders and muscle-building behaviors, violence perpetration and victimization, and high-risk behaviors among adolescents and young adults. He teaches courses on clinical social work practice and research.

Dylan B. Jackson, PhD, is an Assistant Professor in the Department of Population, Family, and Reproductive Health in the Johns Hopkins Bloomberg School of Public Health. His work largely focuses on child and adolescent health in the context of violence, crime, and the criminal legal
system. He currently serves as the Co-Director of the Health Criminology Research Consortium.

Alexander Testa, PhD is an Assistant Professor in the Department of Criminology and Criminal Justice at The University of Texas at San Antonio. His research examines the consequences of criminal justice contact, the impact of social structure on crime and punishment, the social determinants of health.

Jason M. Nagata, MD, MSc, is an Assistant Professor of Pediatrics at the University of California, San Francisco. His research focuses on health effects of adolescent and young adult behaviors using large national longitudinal cohort studies. He is interested in men’s health, eating disorders, and physical activity research.