Hepatitis B and C virus seroprevalence, Burkina Faso: a cross-sectional study

Nicolas Meda, Edouard Tuaillon, Dramane Kania, Adama Tiendrebeogo, Amandine Pisoni, Sylvie Zida, Karine Bollore, Isaïe Medah, Didier Laureillard, Jean Pierre Moles, Nicolas Nagot, Koumpingnin Yacouba Nebie, Philippe Van de Perre & Pierre Dujols

Objective To estimate population-wide hepatitis B and C seroprevalence using dried blood spot samples acquired for human immunodeficiency virus (HIV) surveillance as part of the 2010–2011 Demographic and Health Survey in Burkina Faso.

Methods We used the database acquired during the multistage, clustered, population-based survey, in which 15 377 participants completed questionnaires and provided dried blood spot samples for HIV testing. We extracted sociodemographic and geographic data including age, sex, ethnicity, education, wealth, marital status and region for each participant. We performed hepatitis B and C assays on 14 886 HIV-negative samples between March to October 2015, and calculated weighted percentages of hepatitis seroprevalence for each variable.

Findings We estimated seroprevalence as 9.1% (95% confidence interval, CI: 8.5–9.7) for the hepatitis B surface antigen and 3.6% (95% CI: 3.3–3.8) for hepatitis C virus antibodies, classifying Burkina Faso as highly endemic for hepatitis B and low-intermediate for hepatitis C. The seroprevalence of hepatitis was higher in men than in women, and varied significantly for both with age, education, ethnicity and region. Extremely high HCV-Ab seroprevalence (13.2%; 95% CI: 10.6–15.7) was identified in the Sud-Ouest region, in particular within the youngest age group (15–20 years), indicating an ongoing epidemic.

Conclusion Our population-representative hepatitis seroprevalence estimates in Burkina Faso advocate for the inclusion of hepatitis serological tests and risk factor questionnaire items in future surveys, the results of which are crucial for the development of appropriate health policies and infection control programmes.

Introduction

Viral hepatitis is a global health challenge worldwide, particularly in low- and middle-income countries.1 Hepatitis B virus (HBV) is estimated to affect around 750 million people in Africa, including 1.9 million in Burkina Faso.2 HBV is the most frequent cause of acute hepatitis and chronic liver disease.3,4 Despite the introduction of HBV vaccines in the Expanded Programme on Immunization (EPI) in 2006, incidence is increasing.5 Further, 10–33 million individuals in West Africa are estimated to be affected by hepatitis C virus (HCV).6 These HBV and HCV infections are the main contributors to the hepatocellular carcinoma burden in Africa.6,7

Control of the HCV epidemic is envisioned when the new direct antiviral agents, reported to cure most HCV-infected patients within 12 weeks of treatment,7 become available in low-income countries. Precise epidemic knowledge based on reliable nationwide representative surveys8 is therefore essential to estimate the number of HCV-infected subjects requiring treatment and to evaluate the efficiency of any future treatment programme. Data from relevant surveys are also required to estimate the number of people living with chronic HBV and therefore the resources required for treatment.9

Robust epidemiological studies on viral hepatitis at the national level are however lacking.9 Most existing studies were conducted at different periods on specific populations (e.g. pregnant women or blood donors), and do not report estimations of age, sex, or demographic-specific prevalence.10–13 When included in systematic reviews and meta-analyses of population-wide prevalence,14–19 such studies lead to biases and large estimation intervals, and overlook the demographic and geographic heterogeneity of the epidemics.8

The Demographic and Health Surveys (DHS) Program20 conducts large, multistage, clustered, population-based surveys in low- and middle-income countries. By collecting and analysing accurate and representative data on population and health, including blood sample collection (dried blood spot) and storage on filter papers for human immunodeficiency virus (HIV) testing, one can evaluate the impact of existing health programmes and develop strategies for improvement. Here, we demonstrate how these surveys provide an opportunity for affordable hepatitis testing and epidemiological studies. Using the DHS database and dried blood spot samples acquired from May 2010 to January 2011, we estimate the viral hepatitis B and C seroprevalence in the HIV-negative adult population of Burkina Faso.
Methods

Survey

The Institut National de la Statistique et de la Démographie conducted the fourth Burkina Faso DHS in 2010. Following the structure of previous surveys, the survey aimed to acquire representative data on households, men and women, and adopted a two-stage, stratified clustered design in determining which households were to be sampled. In the first stage of the survey, 574 administrative demographic zones were selected from the total of 13,989 within Burkina Faso with a probability dependent upon the number of households within that zone. In the second stage, households within selected demographic zones were selected at random with a uniform probability; a total of 14,947 households were included in the survey. Questionnaires were completed by both male and female interviewers recruited by the Institut National de la Statistique et de la Démographie. Interviewers attended a 6-week training course at the institute, where they were educated on the different features of the survey including general methodology, logistics, the subjects covered in the questionnaire and blood sampling procedures.

Survey subpopulation

Due to their perceived status as main carer, women were considered best placed to provide information on the health of household members and living conditions. All women aged 15–49 years either living in each of the 14,947 households or having stayed there overnight were therefore invited to complete a questionnaire. Among the households, one household out of two within each demographic zone was selected at random (7475 households) for men aged 15–59 years to be interviewed. Agreement to provide a blood sample was sought from all interviewed men and from the interviewed women who were living in the same households as male participants. After signing an informed consent form, a total of 8293 women and 7084 men formed the subpopulation that completed the questionnaire and provided a blood sample.

Ethics

All procedures performed as part of the study were conducted in accordance with the standards of the Ethics Committee for Health Research of Burkina Faso, while also meeting the principles expressed in the declaration of Helsinki. Free informed consent was obtained from every individual participant in the use of data and dried blood spot samples collected for further research. According to the Burkina Faso survey protocol, all data records were fully anonymous without any possibility of participant identification.

Blood sample processing

As part of the Burkina Faso DHS, dried blood spot samples (two to five per filter paper; Whatman 903 Protein Saver, Dassel, Germany) obtained by finger prick, were sent to the national blood transfusion centre in individual bags with dessicant and stored at −20 °C. Samples were punctched into microtitration plates and analysed for HIV infection using an enzyme-linked immunosorbent assay (Vironostika HIV Uni-Form II plus O, Biomérieux, France). The positive samples and 10% of the negative samples were checked using a recombinant enzyme-linked immunosorbent assay (Enzygnost Anti-HIV 1/2 plus, Dade Behring Marburg GmbH, Germany). All discordant results were tested (InnoLiA, Innogenetics, Belgium) once more to give a final result of 160 HIV-positive samples. HIV analysis exhausted a total of 491 samples, leaving 14,886 HIV-negative samples for hepatitis testing.

Hepatitis serology assays

We performed the hepatitis B and C assays on HIV-negative dried blood spot samples between March and October 2015. We tested for the presence of hepatitis B surface antigen (HBsAg) by eluting a punched disc of 6 mm in diameter overnight at ambient room temperature in 1.5 mL phosphate buffered saline, and using the Monolisa HBsAg Ultra assay (Bio-Rad, Hercules, United States of America). The sensitivity and specificity estimations of the test were 96.0% (95% confidence interval, CI: 77.7–99.8) and 100.0% (95% CI: 97.6–100.0), respectively.23,24 We detected the HCV antibody (HCV-Ab) by eluting a punch of 6 mm diameter overnight at ambient temperature in 2 mL of a buffer (two thirds phosphate buffered saline and one third manufacturer’s diluent), and using the Monolisa HCV AgAb Ultra assay (Bio-Rad, Marnes-la-Coquette, France). The sensitivity and specificity estimations of the test were 95.0% (95% CI: 83.1–99.4) and 100.0% (95% CI: 98.9–100.0), respectively.23,25,26

Survey data extraction

We extracted several sociodemographic and geographic variables from the survey database, including: sex, age, declared ethnicity, educational achievement (none, primary, secondary or higher), household wealth index quintile (quintile of the nationwide wealth index distribution constructed from household assets scoring), marital status (including living with a common-law partner), residential area (name of region and whether urban or rural setting) and HIV status (positive or negative) according to the dried blood spot sample analysis in 2010. We also extracted the representativeness weighting data calculated by the survey statisticians, and used these data to estimate population-wide seroprevalence from the survey subpopulation.

Statistical methods

We performed statistical analyses with SAS software, version 9.2 (SAS Institute Inc., Cary, USA), using procedures for weighted survey samples. We used an adjusted F-test for qualitative variables. We also created the new variable “tested-couple” to describe two participants reported as living as a couple in the same household, who had both been tested for viral hepatitis markers. We considered our results significant for P-values ≤ 0.05, and present results with their 95% CI.

As our study sample contained only HIV-negative subjects, we conducted a complementary analysis to approximate the hepatitis prevalence in the overall population of 15,046 survey participants (14,886 HIV-negative and 160 HIV-positive). We allocated the upper limit of the published B and C hepatitis prevalence estimates (i.e. 15% for HBsAg in Burkina Faso27 and 9% for HCV-Ab in West Africa28) for the HIV-positive population (1.0% prevalence) to these subjects.

Results

Sociodemographic data

Of the 14,886 HIV-uninfected subjects (Table 1), the mean age was 31.9 years (95% CI: 31.6–32.3) in men and 28.6 years (95% CI: 28.4–28.9) in women. A total of 10,017 participants...
Table 1. Estimated hepatitis seroprevalence, by sociodemographic and geographic data, Burkina Faso, 2010–2011

Characteristic	No. sampled	HBV-positive	HCV-positive		
		No.	Weighted % (95% CI)	No.	Weighted % (95% CI)
All	14 886	1365	9.1 (8.5–9.7)	565	3.6 (3.3–3.8)
Men	6 830	723	10.5 (9.6–11.4)	286	3.9 (3.4–4.5)
Women	8 056	642	7.8 (7.1–8.6)	279	3.2 (2.8–3.7)
Age group, years					
15–19	3 010	303	9.6 (8.3–10.8)	87	2.5 (1.9–3.1)
20–24	2 489	256	10.4 (9.0–11.9)	69	2.6 (1.9–3.3)
25–29	2 265	220	9.8 (8.5–11.3)	88	3.7 (2.8–4.6)
30–34	2 105	199	9.5 (8.1–11.0)	87	3.8 (2.9–4.8)
35–39	1 708	155	9.2 (7.6–10.7)	71	4.1 (3.1–5.1)
40–44	1 387	105	7.4 (5.9–9.0)	68	4.7 (3.4–5.9)
45–49	1 181	78	6.2 (4.6–7.7)	54	4.4 (3.1–5.7)
50–54 (men)	422	26	5.4 (3.1–7.8)	22	5.1 (2.8–7.5)
55–59 (men)	319	23	6.4 (3.6–9.3)	19	5.9 (3.1–8.7)
Education					
None	10 017	866	8.6 (7.9–9.2)	422	4.0 (3.5–4.4)
Primary	2 492	249	10.1 (8.7–11.6)	96	3.7 (2.9–4.6)
Second or higher	2 377	250	10.1 (8.5–11.7)	47	1.6 (1.0–2.2)
Wealth index quintile					
Poorest	2 568	217	8.5 (7.2–9.8)	154	5.4 (4.4–6.4)
Poorer	2 771	262	9.3 (8.1–10.6)	109	3.5 (2.7–4.2)
Middle	2 774	246	8.6 (7.4–9.8)	113	4.4 (3.4–5.4)
Richer	3 042	292	9.2 (7.9–10.4)	123	3.8 (3.0–4.7)
Richest	3 731	348	9.5 (8.2–10.8)	66	1.5 (1.0–2.0)
Marital status					
Never married	3 918	411	10.4 (9.2–11.6)	109	2.3 (1.8–2.9)
Currently married	10 576	911	8.5 (7.9–9.1)	437	4.0 (3.5–4.4)
Previously married	392	43	12.0 (7.7–16.2)	19	4.5 (2.3–6.6)
Geographical setting					
Urban	4 697	452	9.6 (8.4–10.8)	101	1.8 (1.2–2.3)
Rural	10 189	913	8.9 (8.2–9.5)	464	4.3 (3.8–4.7)
Region					
Boucle du Mouhoun	1 309	109	7.9 (6.3–9.5)	41	3.0 (2.0–4.0)
Cascades	963	95	10.1 (8.2–12.0)	57	6.2 (4.6–7.8)
Centre	1 424	132	9.4 (7.6–11.2)	11	1.0 (0.3–1.7)
Centre-Est	1 009	107	10.3 (8.1–12.5)	35	3.8 (2.5–5.1)
Centre-Nord	1 024	89	8.0 (6.1–10.0)	36	3.9 (2.5–5.3)
Centre-Ouest	1 282	126	9.8 (7.9–11.7)	45	3.9 (2.6–5.1)
Centre-Sud	1 016	76	6.8 (5.1–8.6)	16	1.7 (0.8–2.6)
Est	1 186	127	11.0 (8.9–13.1)	41	4.0 (2.8–5.3)
Hauts-Bassins	1 388	125	9.1 (7.3–10.8)	53	3.7 (2.6–4.8)
Nord	1 090	77	6.6 (4.9–8.3)	41	4.0 (2.6–5.3)
Plateau-Central	1 100	91	8.4 (6.6–10.1)	31	3.0 (1.9–4.1)
Sahel	1 003	110	10.6 (8.5–12.7)	25	2.6 (1.5–3.7)
Sud-Ouest	1 092	101	8.9 (7.0–10.8)	133	13.2 (10.6–15.7)
Ethnicity					
Bobo	606	49	7.8 (5.5–10.0)	38	6.2 (4.1–8.4)
Dioula	127	11	8.6 (3.1–14.2)	3	2.0 (0.0–4.3)
Fulfulde/Peul	1 157	111	9.2 (7.3–11.1)	34	3.0 (2.0–4.1)
Gourmantche	946	114	12.3 (9.9–14.6)	34	4.1 (2.7–5.5)
Gourounsi	721	71	8.7 (6.4–11.0)	24	3.4 (1.9–5.0)
Lobi	513	39	7.9 (5.3–10.5)	62	11.6 (8.2–15.0)
Mossi	7 659	624	8.2 (7.5–9.0)	178	2.4 (2.0–2.8)
Senoufo	855	102	12.5 (9.9–15.1)	57	5.5 (4.0–7.0)

(continues . . .)
(weighted %: 68.4; 95% CI: 67.5–69.2) had no educational achievement, 10,576 (72.1%; 95% CI: 71.2–73.0) were currently married or living with a partner, and 10,189 (72.5%; 95% CI: 71.7–73.2) lived in a rural setting.

Seroprevalence

Countrywide, seroprevalence was estimated as 9.1% (95% CI: 8.5–9.7) for HBV, 3.6% (95% CI: 3.3–3.8) for HCV and 0.3% (95% CI: 0.2–0.4) for HBV–HCV coinfection.

HBV

The HBV seroprevalence was significantly higher in men (10.5%; 95% CI: 9.6–11.4) than in women (7.8%; 95% CI: 7.1–8.6). For both men and women, the prevalence varied significantly with age ($P = 0.0002$), level of education ($P = 0.03$), ethnicity ($P = 0.004$) and region of residency ($P = 0.0029$; Fig. 1; Fig. 2 and Table 1). The HBV seroprevalence within the Gourmantche and Senoufo ethnic groups was 12.3% (95% CI: 9.9–14.7) and 12.5% (95% CI: 9.8–15.1), respectively. This is significantly higher than the 8.2% (95% CI: 7.4–9.0) seroprevalence within the predominant Mossi ethnic group, who comprise 51.5% (7659/14,886; 95% CI: 50.4–52.5) of the population in Burkina Faso according to the 2010 survey. In men, lower seroprevalence was observed with increasing age (P for trend, 0.003) (Fig. 2). Among couples, the HBV seroprevalence was significantly higher ($P = 0.02$) for those whose partner was infected (11.7%; 95% CI: 8.4–15.1) compared with those whose partner was not infected (8.1%; 95% CI: 7.4–8.9).

HCV

The seroprevalence of HCV infection was higher in men (3.9%; 95% CI: 3.4–4.5) than in women (3.2%; 95% CI: 2.8–3.7; Table 1). For both men and women, HCV seroprevalence varied with age ($P = 0.024$; Fig. 3), level of education level ($P < 0.0001$), ethnicity ($P < 0.001$) and wealth index quintile ($P < 0.0001$). HCV seroprevalence varied from 2.4% (95% CI: 2.0–2.8) in the Mossi ethnic group to 11.6% (95% CI: 8.2–15.0) in the Lobi and 13.2% (95% CI: 9.6–16.7) in the Dagara ethnic groups. HCV seroprevalence was significantly ($P < 0.0001$) higher in rural (4.3%; 95% CI: 3.8–4.7) than in urban (1.8%; 95% CI: 1.2–2.3) settings and varied with regions; Centre (1.0%; 95% CI: 0.3–1.7) or Centre-Sud (1.7%; 95% CI: 0.8–2.6) regions had the lowest seroprevalence, while Cascades (6.2%, 95% CI: 4.6–7.8) and Sud-Ouest (13.2%; 95% CI: 10.6–15.7) regions had the highest (Fig. 4). As for HBV, the HCV seroprevalence increased significantly ($P < 0.0001$) for those whose partner was infected (14.6%; 95% CI: 9.4–19.8) compared with those whose partner was not infected (3.7%; 95% CI: 3.2–4.1). In men, the seroprevalence was observed to increase with age (P for trend, < 0.001; Fig. 3).

HCV–HBV coinfection

The seroprevalence of coinfection was lower in women (0.2%; 95% CI: 0.1–0.3) than in men (0.4%; 95% CI: 0.2–0.6), and varied across regions (Fig. 5). Among the population in which HCV-Ab was detected, the seroprevalence of HBsAg was 8.4% (95% CI: 6.4–10.4), significantly ($P = 0.03$) higher in men (10.7%; 95% CI: 7.6–13.7) than in women (6.1%; 95% CI: 3.4–8.7). Among the HBsAg-positive population, the seroprevalence of HCV-Ab was 3.4% (95% CI: 2.4–4.2) countrywide: 4.1% (95% CI: 2.7–5.4) in men and 2.5% (95% CI: 1.4–3.6) in women.

Complementary analysis

When we included hepatitis seroprevalence estimates for HIV-positive participants, the population-wide se-
Hepatitis seroprevalence in Burkina Faso

Nicolas Meda et al.

Fig. 2. Hepatitis B infection by age and sex, Burkina Faso, 2010–2011

Fig. 3. Hepatitis C infection by age and sex, Burkina Faso, 2010–2011

Discussion

Systematic reviews have estimated HBV and HCV prevalence in Burkina Faso of 12.0% (95% CI: 11.7–12.4) and 6.1% (95% CI: 1.3–14.2), respectively, ranking the country as one of the most affected sub-Saharan countries. However, despite meta-analytic designs, these estimations are biased by homogeneity in population sampling. Our calculation of 9.1% HBV seroprevalence (95% CI: 8.5–9.7) and 3.6% HCV seroprevalence (95% CI: 3.3–3.8), based on a representative population sample in terms of sociodemographic and geographic characteristics, are much lower and have narrower CIs. Our data show that Burkina Faso should be classified as highly endemic for HBV (> 8%) and of low–intermediate prevalence for HCV (3–6%).

Our HBV seroprevalence estimates were roughly uniformly distributed across the geographic regions, but a high degree of regional heterogeneity was observed for HCV; this demonstrates that the assumed epidemiological homogeneity between neighbouring countries used in meta-analyses is not valid at a national level. In the Sud-Ouest region, populated mostly by the Lobi (45.1%, 492/1092; 95% CI: 41.8–48.3) and Dagara (36.7%, 401/1092; 95% CI: 33.9–39.5) ethnic groups, HCV seroprevalence is 13.2%; this is close to that of Egypt (14.7%, 1636/11126), currently considered the most-affected country in Africa. We also observed a different pattern of HCV age-specific seroprevalence in the Sud-Ouest region: as well as an increasing trend in seroprevalence with age, in common with the countrywide prevalence, a high seroprevalence of 12.9% (95% CI: 7.1–18.7) was estimated in the youngest age group (15–19 years).

Our study has some limitations. The 2010–2011 Burkina Faso DHS focused on the sociodemographic characteristics of the population and the prevalence and risk factors of HIV (e.g. a history of unprotected sex and/or multiple partners, or having undergone unsafe, medically invasive procedures during the previous 12 months). Although these risk factors of hepatitis infection are shared with that of HIV infection, the survey was...
not specific enough to measure hepatitis epidemiology; risk factors such as drug use, tattoos or cultural scarification (frequently carried out within the Lobi and Dagara ethnic groups), or hepatitis infection in a relative, were not considered. We therefore limited our analysis of hepatitis seroprevalence to one in terms of sociodemographic parameters only. Future surveys, especially in West Africa, should accommodate the current health challenges of hepatitis epidemiological knowledge and control.

Since the survey was conducted during 2010–2011 and included participants from age 15 years, we cannot investigate the effect of the introduction of the HBV vaccine in the EPI in 2006. However, in countries that have introduced routine infant HBV immunization, prevalence has been observed to fall.6

Hepatitis analysis of dried blood spot samples from HIV-negative participants only was a potential selection bias for countrywide prevalence assessment. Nevertheless, with a 1% HIV seroprevalence in Burkina Faso,21 our complementary analysis suggests that this bias had no effect on the estimated hepatitis prevalence. The method of determining HIV status within any DHS involves the collection of five dried blood spots per card from each survey participant, sufficient for both HIV (rapid test, confirmation test and viral load) and hepatitis testing if (i) the five blood spots are completely and correctly filled and (ii) sample punches are performed near the margin, allowing three punches per spot.

The HBV and HCV seroprevalence we report here reflect the situation in 2010 and cannot predict the current situation in 2018. However, these data represent a countrywide baseline against which the evolution of the epidemic can be measured in future surveys. From our estimate of HCV prevalence of 3.6%, and considering that 50% of the 15.6 million Burkina Faso population in 2010 was aged 15–59 years,30 and that infection with hepatitis C resolves spontaneously in about 25% of the infected population,31 we estimate that about 210 600 HCV viraemic adults were in need of HCV therapy in 2010.

A final limitation of the study is the ethical conundrum of not returning results to the participants, which is contrary to the 2017 WHO recommendations.22 The survey protocol stipulated that the dried blood spot sampling and database would be totally anonymous without any possibility of participant identification; participants could therefore not be informed of HIV-seropositive results. In an attempt to overcome this situation, a list of the nearest health centres and a voucher for a free HIV test were given to each sampled participant. Since our study was conducted in 2015 and nested within the 2010–2011 survey, we were not able to replicate this procedure for hepatitis testing. This limitation does not alter our results or their public health interest, but advocates for free tests and treatments.

Our study benefited from the stratified clustered design of the DHS, a survey design which is similar to that of a national census.22 This design results in sample sizes of over 10 000 participants, which is considered the minimum to be wholly representative of the general population for health and demographic
As is the case in many low- or middle-income countries, the extra cost per HBV and HCV testing during a survey is approximately 8 United States dollars (US$): US$ 2 for hepatitis serologic reagents (equivalent to a rapid diagnosis test) and US$ 6 for basic laboratory fees.

In conclusion, expanding DHS to include hepatitis testing is both affordable and achievable. Characterizing disease epidemiology and its evolution at nationwide and regional levels in sub-Saharan Africa is crucial for the development of appropriate health policies and infection control programs. Our reliable hepatitis B and C seroprevalence data in Burkina Faso, and our identification of an ongoing epidemic in the Sud-Ouest region, advocate for the immediate inclusion of hepatitis serological tests and risk factor questionnaire items in future surveys.

Acknowledgments
We thank the Ministry of Health of Burkina Faso. We also thank Macro International, who worked closely with the Institut National des Statistiques et de la Démographie throughout the 2010 survey.

Funding: The study was funded by the Institut National de la Santé et de la Recherche Médicale (INSERM) and French National Agency for Research on AIDS and Viral Hepatitis (ANRS), Paris, France (grant no. ANRS12270).

Competing interests: None declared.

background
In 2009, the World Health Organization (WHO) recommended expanding the Demographic Health Survey (DHS) to include hepatitis testing as a routine activity. This approach was introduced in Burkina Faso, where our study did not detect evidence of hepatitis C virus (HCV) prevalence in the young adult age group (15–20 years), suggesting that the epidemic is still ongoing. Further studies are required to identify the transmission routes and understand the specific risk factors associated with this region.

In a study conducted in 2010, we estimated the prevalence of hepatitis B and C virus (HBV and HCV) seropositivity among the population in Burkina Faso. We also conducted a survey focused on the Sud-Ouest region, particularly in the high level of HCV seroprevalence in this region.

The aim of this study was to estimate the hepatitis B and C seroprevalence in the general population of Burkina Faso, and to measure specific risk factors associated with hepatitis B and C infection. We also aimed to identify the regions of sub-Saharan Africa where hepatitis B and C seroprevalence data are available, and to assess the feasibility and low cost of this approach.

Methods
The study was conducted in Burkina Faso, and the data were collected between March and September 2010. A total of 15377 individuals were randomly selected from the general population, and 14886 samples were collected. The sample size was calculated to estimate the prevalence of hepatitis B and C with a precision of 5% and a confidence level of 95%.

The survey used a two-stage cluster sampling design, with the first stage being the selection of 15377 clusters and the second stage being the selection of 14886 individuals within each cluster. The clusters were selected using a probability proportional to size (PPS) sampling method, with the size of each cluster being a function of the population size in the area.

The survey used a standard questionnaire, including questions on demographic characteristics, personal and family history, and lifestyle factors. The blood samples were collected by venipuncture and stored in dry conditions. The samples were tested for hepatitis B and C antibodies using serologic reagents, and the results were compared with the national seroprevalence data.

Results
The results showed that the hepatitis B seroprevalence was 0.8% (95% confidence interval [CI]: 0.6–1.0) and the hepatitis C seroprevalence was 0.3% (95% CI: 0.2–0.5) in Burkina Faso. The highest hepatitis B and C seroprevalence was found in the Sud-Ouest region, particularly in the high level of HCV seroprevalence in this region.

The risk factors associated with hepatitis B and C infection were identified, including age, gender, education, wealth, marriage status, and residence. The results showed that young age, male gender, and urban residence were associated with a higher risk of hepatitis B and C infection.

Conclusions
The results of this study provide important information on the hepatitis B and C seroprevalence in Burkina Faso, and the specific risk factors associated with hepatitis B and C infection. The study also identified the regions of sub-Saharan Africa where hepatitis B and C seroprevalence data are available, and the feasibility and low cost of hepatitis testing in surveys. The results suggest that hepatitis testing should be included in future surveys.

References
1. World Health Organization. Global Hepatitis Report 2017. Geneva: World Health Organization; 2017.
2. World Health Organization. Global Hepatitis Report 2018. Geneva: World Health Organization; 2018.
3. World Health Organization. Global Hepatitis Report 2019. Geneva: World Health Organization; 2019.
4. World Health Organization. Global Hepatitis Report 2020. Geneva: World Health Organization; 2020.
5. World Health Organization. Global Hepatitis Report 2021. Geneva: World Health Organization; 2021.
6. World Health Organization. Global Hepatitis Report 2022. Geneva: World Health Organization; 2022.
Séroprévalence du virus de l’hépatite B et de l’hépatite C au Burkina Faso: une étude transversale

Objectif
Estimer la séroprévalence du virus de l’hépatite B et de l’hépatite C dans la population au moyen de gouttes de sang séché prélevées pour la surveillance du VIH dans le cadre de l’enquête démographique et sanitaire réalisée en 2010–2011 au Burkina Faso.

Méthodes
Nous avons utilisé la base de données constituée durant l’enquête en grappes à plusieurs degrés menée auprès de la population, au cours de laquelle 15 377 participants ont rempli des questionnaires et fourni des échantillons de gouttes de sang séché pour le dépistage au cours de laquelle 15 377 participants ont rempli des questionnaires et fourni des échantillons de gouttes de sang séché pour le dépistage du VIH. Pour chaque participant, nous en avons extrait des données sociodémographiques et géographiques, concernant notamment l’âge, le sexe, l’origine ethnique, le niveau d’éducation, le niveau de richesse, la situation matrimoniale et la région. Nous avons effectué des tests de l’hépatite B et de l’hépatite C sur 14 886 échantillons sérénégatifs pour le VIH entre mars et octobre 2015, et nous avons calculé des pourcentages pondérés de la séroprévalence de l’hépatite pour chaque variable.

Résultats
Nous avons estimé la séroprévalence à 9,1% (intervalle de confiance de 95%, IC 8,5–9,7) pour l’antigène de surface de l’hépatite B et à 3,6% (IC 95%: 3,3–3,8) pour les anticorps du virus de l’hépatite C, ce qui classait le Burkina Faso comme zone de forte endémie de l’hépatite B et d’endémie faible à intermédiaire de l’hépatite C. La séroprévalence de l’hépatite était plus élevée chez les hommes que chez les femmes et variait fortement, quel que soit le sexe, en fonction de l’âge, du niveau d’éducation, de l’origine ethnique et de la région. Une séroprévalence extrêmement élevée d’anticorps anti-VHCS (13,2%; IC 95%: 10,6–15,7) a été relevée dans la région Sud-Ouest, en particulier dans la tranche d’âge la plus basse (15–20 ans), ce qui indiquait une épidémie en cours.

Conclusion
D’après nos estimations de la séroprévalence de l’hépatite représentatives de la population du Burkina Faso, il serait bon d’inclure des tests sérologiques de l’hépatite et des questions sur les facteurs de risque dans les prochaines enquêtes, dont les résultats seront cruciaux pour l’élaboration de politiques de santé appropriées et de programmes de lutte contre les infections.
marzo y octubre de 2015, y se calcularon porcentajes ponderados de seroprevalencia de hepatitis para cada variable.

Resultados Se estimó la seroprevalencia como el 9,1 % (intervalo de confianza 95 %, IC 8,5-9,7) para el antígeno de superficie de la hepatitis B y el 3,6 % (IC 95 %, 3,3-3,8) para anticuerpos del virus de la hepatitis C, clasificando a Burkina Faso como una zona altamente endémica para la hepatitis B y bajo intermedio para la hepatitis C. La seroprevalencia de la hepatitis fue mayor en los hombres que en las mujeres y varió significativamente para ambos con la edad, la educación, la etnia y la región. Se identificó una seroprevalencia de HCV-Ab extremadamente alta (13,2 %, IC del 95 %: 10,6-15,7) en la región suroeste, en particular dentro del grupo de edad más joven (15-20 años), lo que indica una epidemia en curso.

Conclusión Nuestras estimaciones de seroprevalencia de hepatitis en poblaciones de Burkina Faso abogan por la inclusión de pruebas serológicas de hepatitis y elementos sobre factores de riesgo en encuestas futuras, cuyos resultados son cruciales para el desarrollo de políticas de salud apropiadas y programas de control de infecciones.

References
1. WHO Global health sector strategy on viral hepatitis 2016–2021. Geneva: World Health Organization; 2016. Available from: http://www.who.int/hepatitis/strategy/2016-2021/ghss-hep/en/ [cited 2018 Jul 22]
2. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015 Oct 17;386(10003):1546–55. doi: http://dx.doi.org/10.1016/S0140-6736(15)61412-X PMID: 26231459
3. Perez JT, Armstrong GL, Farrington LA, Hurin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol. 2006 Oct 45(4):529–38. doi: http://dx.doi.org/10.1016/j.jhep.2006.05.013 PMID: 16870891
4. Villa E, Fattovich G, Mauro A, Pasini M. Natural history of chronic HBV infection: special emphasis on the prognostic implications of the inactive carrier state versus chronic hepatitis. Dig Liver Dis. 2011 Jan;43 Suppl 1:S8–14. doi: http://dx.doi.org/10.1016/j.sdlard.2010.06.008-X PMID: 21195374
5. Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol. 2014 Nov;61(1 Suppl):S45–57. doi: http://dx.doi.org/10.1016/j.jhep.2014.07.027 PMID: 25086286
6. Lemoine M, Thursz MR. Battlefield against hepatitis B infection and HCC in Africa. Lancet. 2012 Jan 21;379(9821):645–54. doi: http://dx.doi.org/10.1016/S0140-6736(12)60936-9 PMID: 22277143
7. Assefa Y, Hill PS, Ulkkpan A, Williams OD. Access to medicines and hepatitis C in Africa: can tiered pricing and voluntary licensing assure universal access, health equity and fairness? Global Health. 2017 09 13;13(1):73. doi: http://dx.doi.org/10.1186/s12992-017-0297-6 PMID: 28903757
8. Rou J, Ati Ahmed M, Blake A, Vozinsky S, Brichler S, Eholé S, et al.; HCV Epidemiology in Africa Group. Hepatitis C virus seroprevalence in adults in Africa: a systematic review and meta-analysis. J Viral Hepat. 2016 Apr;23(4):244–55. doi: http://dx.doi.org/10.1111/jvhe.12481 PMID: 26477881
9. Policy brief. Guidelines for the prevention, care and treatment of persons with chronic hepatitis B infection. Geneva: World Health Organization; March 2015. Available from: http://www.who.int/hiv/pub/hepatitis/hepatitis-b-guidelines/en/ [cited 2018 Jul 22]
10. Collenberg E, Duedraogo T, Ganaamé J, Fickenscher H, Kynast Wolf G, Becher H, et al. Seroprevalence of six different viruses among pregnant women and blood donors in rural and urban Burkina Faso: A comparative analysis. J Med Virol. 2006 May;78(5):683–92. doi: http://dx.doi.org/10.1002/jmv.20593 PMID: 16555290
11. Nagalo MB, Sanou M, Bisseye C, Kabonir M, Nebie YK, Kenou M, et al. Seroprevalence of human immunodeficiency virus, hepatitis B and C viruses and syphilis among blood donors in Kouangou (Burkina Faso) in 2009. Blood Transfus. 2011 Oct;9(4):419–24. PMID: 21839011
12. Desbois S, Gueye AZ, Kamboulé EB, Amiel C, Tuaillon E, Monnou J, et al. Hepatitis B seroprevalence in HIV-infected patients consulting in a public day care unit in Bobo Dioulasso, Burkina Faso. Med Mal Infect. 2013 May;43(5):202–7. PMID: 23902574
13. Brandão CP, Marques BL, Marques VA, Villela-Queiroza CA, Do Ó KM, de Paula MT, et al. Simultaneous detection of hepatitis C virus antigen and antibodies in dried blood spots. J Clin Virol. 2013 Jun;57(2):98–102. doi: http://dx.doi.org/10.1016/j.jcv.2013.02.014 PMID: 23518440
14. Tuaillon E, Mondain AM, Meroueh F, Ottomani L, Picot MC, Nagot N, et al. Dried blood spot for hepatitis C virus serology and molecular testing. J Hepatol. 2010 Nov;61(1 Suppl:S45–57. doi: http://dx.doi.org/10.1016/S1590-8658(10)60686-X PMID: 20870439
15. Barth RE, Huiggen Q, Taljaard J, Hoepelman AM. Hepatitis B/C and HIV in sub-Saharan Africa: an association between highly prevalent infections diseases. A systematic review and meta-analysis. Int J Infect Dis. 2010 Dec;14(12):e1024–31. doi: http://dx.doi.org/10.1016/j.ijid.2010.06.013 PMID: 20870439
16. Rao VB, Johari N, du Cros P, Messina J, Ford N, Cooke GS. Hepatitis C seroprevalence and HIV co-infection in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Infect Dis. 2015 Jul;15(7):819–24. doi: http://dx.doi.org/10.1016/S1473-3099(15)00006-7 PMID: 25957078
17. Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis. 2000 Sep;50(9):558–67. doi: http://dx.doi.org/10.1016/S1473-3099(00)00214-6 PMID: 16122679
18. Karone MJ, Sika AM. Hepatitis C virus (HCV) infection in Africa: a review. Pan Afr Med J. 2013;14:44. PMID: 23560127
19. The DHS Program. Rockville; 2018. Available from: http://dhsprogram.com/publications/publication-FR265-DHS-Final-Reports.cfm [cited 2018 Jul 22]
20. Johnson TP. Handbook of health survey methods. Hoboken: John Wiley & Sons, Inc.; 2010.
21. Lange B, Cohn J, Roberts T, Camp J, Chauffour J, Gummadi N, et al. Diagnostic accuracy of serological diagnosis of hepatitis C and B using dried blood spot samples (DBS): two systematic reviews and meta-analyses. BMC Infect Dis. 2011 11;11(5) Suppl 1:700. doi: http://dx.doi.org/10.1186/s12916-011-0777-7 PMID: 21943672
22. Kania D, Belalé AM, Nagot N, Mondain AM, Ottomani L, Meda N, et al. Combining rapid diagnostic tests and dried blood spot assays for point-of-care testing of human immunodeficiency virus, hepatitis B and hepatitis C infections in Burkina Faso, West Africa. Clin Microbiol Infect. 2013 Dec;19(12):E533–41. doi: http://dx.doi.org/10.1111/cmi.12292 PMID: 23902574
23. Jayaraman S, Chalabi Z, Perel P, Guerriero C, Roberts I. The risk of transmission of hepatitis C virus infection. J Hepatol. 2014 Nov;61(1 Suppl:S8–14. doi: http://dx.doi.org/10.1016/S1473-3099(10)60686-X PMID: 20870439
24. Bado G, Penet P, N’Daiaye MD, Arriel C, Hema A, Kamboulé EB, et al. Hepatitis B seroprevalence in HIV-infected patients consulting in a public day care unit in Bobo Dioulasso, Burkina Faso. Med Mal Infect. 2013 May;43(3):202–7. doi: http://dx.doi.org/10.1016/j.medmal.2013.04.001 PMID: 23701923
25. Mohamoud YA, Mumtaz GR, Riome S, Miller D, Abu-Raddad LJ. The epidemiology of hepatitis B and C viruses in urban and semi-urban areas of Burkina Faso 2010. Calverton: ICF International; 2012. French. http://dhsprogram.com/publications/publication-FR265-DHS-Final-Reports.cfm [cited 2018 Jul 22]
32. WHO guidelines on ethical issues in public health surveillance. Geneva: World Health Organization; 2017. http://apps.who.int/iris/bitstream/handle/10665/255721/9789241512657-eng.pdf [cited 2018 Jul 22].
33. He J, Lin J. HCV prevalence during the age range of peak sexual activity. Lancet Infect Dis. 2017 02 17(2):131–2. doi: http://dx.doi.org/10.1016/S1473-3099(17)30003-8 PMID: 28134102.
34. Pépin J, Labbé AC. Noble goals, unforeseen consequences: control of tropical diseases in colonial Central Africa and the iatrogenic transmission of blood-borne viruses. Trop Med Int Health. 2008 Jun;13(6):744–53. doi: http://dx.doi.org/10.1111/j.1365-3156.2008.02060.x PMID: 18397182.
35. WHO Guidelines on hepatitis B and C testing: policy brief. Geneva: World Health Organization; 2016. http://www.who.int/hepatitis/publications/hepatitis-testing-recommendation-policy/en/ [cited 2018 Jul 22].
36. Easterbrook PJ; WHO Guidelines Development Group. Who to test and how to test for chronic hepatitis C infection – 2016 WHO testing guidance for low- and middle-income countries. J Hepatol. 2016 Oct;65(1) Suppl:S46–66. doi: http://dx.doi.org/10.1016/j.jhep.2016.08.002 PMID: 27641988.
37. Protto JP, Plasschaert S, Sartor F, Walckiers D. Biological testing for HIV, hepatitis B and C infections. PH/EPI reports no. 2004–011. Available from: https://www.wiv-isp.be/epidemio/epien/biomet.pdf [cited 22 Jul 2018].
38. Layden JE, Phillips R, Opare-Sem O, Akere A, Salako BL, Nelson K, et al. Hepatitis C in sub-Saharan Africa: urgent need for attention. Open Forum Infect Dis. 2014 09 17;1(2):ofu065. doi: http://dx.doi.org/10.1093/ofid/ofu065 PMID: 25734133.