SOLANUM BETACEUM IMPROVES COGNITIVE FUNCTION BY DECREASING N-METHYL-D-ASPARTATE ON ALZHEIMER RATS MODEL

by Indri Safitri
SOLANUM BETACEUM IMPROVES COGNITIVE FUNCTION BY DECREASING N-METHYL-D-ASPARTATE ON ALZHEIMER RATS MODEL

INDRA SAFITRI1, HANI BADRIYAH HIDAYATI**, AGUS TURCHAN1, SUHARTATI1, SITI KHAERUNNISA1

1Department of Biochemistry, Faculty of Medicine, Airlangga University, Indonesia. 2Department of Neurology, Airlangga University, Dr. Soetomo General Hospital, Indonesia. 3Department of Neurosurgery, Airlangga University, Dr. Soetomo General Hospital, Indonesia. 4Department of Medical Biochemistry, Wijaya Kusuma University, Indonesia. Email: hanikhidayati@yahoo.com

Received: 19 December 2018, Revised and Accepted: 22 July 2019

ABSTRACT

Objective: The purpose of this study was to evaluate the effect of Solanum betaceum towards cognitive function, i.e. memory, and the level of N-Methyl-D-aspartate receptor (NMDAR) and brain derived neurotrophic factor (BDNF) as a drug candidate therapy for Alzheimer rats model.

Methods: Forty adult male albino rats were divided into five groups (K0, K1, P1, P2 and P3). Four groups (K1, P1, P2 and P3) of Alzheimer’s disease (AD) rats were induced by aluminum chloride with dose 2 g/L for 21 days period and three groups (P1, P2 and P3) in 22nd day administered orally with 100 mg/kg bw/day, 200 mg/kg bw/day, and 400 mg/kg bw/day of S. betaceum respectively for 14 days. The level of NMDAR and BDNF was measured by enzyme-linked immunosorbent assay methods, whereas memory was measured by the Morris water maze test.

Results: S. betaceum administration increased cognitive function significantly (p=0.037) of AD induced-rats by decreasing the time to reach the target of Morris water maze and maintaining the low levels of NMDAR significantly (p=0.006), but the level of BDNF did not increase significantly (p=0.346). These results indicated that ethanol extracts of S. betaceum could decrease brain NMDAR and increase cognitive function by promote better memory function but did not significantly increased the level of BDNF in AD-induced rats.

Conclusion: This study revealed that the treatment of AD-induced rats with S. betaceum extracts significantly improve memory function and decrease the level of NMDAR.

Keywords: Solanum betaceum, Memory, N-Methyl-D-Aspartate receptor, Brain-derived neurotrophic factor, Aluminum chloride, Alzheimer

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license [http://creativecommons.org/licenses/by/4.0/]. DOI: http://dx.doi.org/10.22159/ijbp.2019.v11i5.11015

INTRODUCTION

Alzheimer’s disease (AD), a progressive, irreversible age-related neurodegenerative disease, is characterized by gradually progressive debilitating cognitive decline such as memory loss, disorientation in time and space, difficulty in solving problems, language impairment, psychosocial impairment, behavioral symptoms, hallucinations, paranoia, and delusions, and among others [1-5]. AD is the sixth leading cause of death and a leading cause of dementia among elderly populations of Americans [5]. AD remains a big problem with a significant social, health, and financial burden on society [2]. The latest report infer that AD affects approximately 5 million Americans and 48 million people worldwide (World Health Organization, 2015) and the incidence of AD continuously and rapidly increase with a new diagnosis being made every 68 s [2,6-8]. The population of the world is rapidly aging, so the number of people with dementia is supposed to increase. AD is the most common cause of dementia [2,9].

AD is known as a result from over-production and impaired clearance of β-amyloid [1]. The extracellular β-amyloid plaques, intracellular neurofibrillary tangles, large scale of neuronal death and neural atrophy, the loss of synapses, changes in neurotransmitter expression, and reduced neuropeptide numbers, which all contribute to cognitive decline in a progressive manner, are the main hallmarks of AD [3,10]. Impairment of memory and other cognitive functions in the initial stages of AD are associated with changes in the entorhinal cortex and the hippocampus. Around 80% of the hippocampal neurons may die over the development of the disease, and this progressive loss is manifest in the cognitive impairment and other symptoms seen in patients with AD [3]. Hippocampus is a critical area of neuronal-damaged in AD [7]. Hippocampus, a fundamental role of learning and memory, represents the primary region of adulthood neurogenesis and exerts the largest potential for brain neuroplasticity [11]. Brain-derived neurotrophic factor (BDNF) is one of the fundamental neurotrophic factor in learning and memory, particularly expressed ubiquitously in the brain and playing a key regulator role of development, cognition and plasticity of the hippocampus [9,11-15]. BDNF, a synaptic plasticity marker, is important for long-term potentiation (LTP) like mediating the Regulation of excitatory synapses during early LTP [13,16]. BDNF is secreted in pre- and post-synaptic areas. Synaptic BDNF is secreted in response to activity and can activate pre- and post-synaptic TrkB receptors. BDNF increases the expression of glutamate-containing synaptic vesicles presynaptically, whereas postsynaptically BDNF-TrkB signaling induces N-Methyl-D-Aspartate receptor (NMDAR) phosphorylation [13]. BDNF and NMDA play key role of synaptic plasticity in the hippocampus [13].

Until now pharmacologic management trying to treat AD is only partial inhibitors rather than cures [18]. AD still a big health problem due to lack of efficacy and adequacy of current treatments [5]. Fundamental strategy to combat AD is understanding about the underlying neurobiological processes of cognitive decline [17]. Nutrition may be taken into account play an important role to postpone or prevent the development of the disease. There is strong evidence supporting the importance of nutrition in the prevention and management of AD [10]. A classic feature of AD is dysfunction of hippocampal synaptic plasticity thus modification of synaptic plasticity would be beneficial for memory improvement in AD [7]. Solanum betaceum is promising sources of antioxidants due to their high anthocyanins (ACN) content and associated with beneficial effects of health due to anti-inflammatory effects and improved cognitive behavior [18]. Therefore, the current
study aimed to determine whether cognitive impairment of AD, neuroplasticity in the hippocampus can be prevented or improved by S. betacenum by checking the BDNF and NMDA levels.

METHODS

Setting

This study has been conducted in the Animal Research Laboratory of the Medical Biochemistry Department Universitas Airlangga, Surabaya city, East Java Province, Indonesia.

Chemicals and reagents

The level of NMDA and BDNF was obtained using niholoseuropein.com, California, Sandiego, USA, with Cat No. MBS2699595 and Cat No. MBS261374, respectively. Aluminum chloride (AlCl₃) has used Cat No. 0.01081.0500, MERCK, USA. All of other chemicals and reagents were used of reagent grade and highest purity. Fresh red S. betacenum was purchased from local Orchard in Wonosobo, Central Java, Indonesia, identified by Indonesian Institute of Science and processed immediately on arriving at the laboratory.

Animals

Fifty male, 3 months albino rats with an average weight of ±150-180 g were used for this study. The animals were aclimatized to the laboratory conditions for 7 days, allowed free access to food and water ad libitum, and maintained under 12 h light and dark cycles at room temperature.

Grouping and experimental design

The animals were randomly divided into five groups (n=10) as follows:

- Group K₁: Negative control
- Group K₂: Aluminum chloride (AlCl₃)
- Group P₁: AlCl₃ and ethanol extract of S. betacenum 100 mg/kgBW
- Group P₂: AlCl₃ and ethanol extract of S. betacenum 200 mg/kgBW
- Group P₃: AlCl₃ and ethanol extract of S. betacenum 400 mg/kgBW

3 g/L (3 mg/mL) of the stock solution of AlCl₃ was used in this study. Duration of AlCl₃ administration was 21 days. 1st until 21th days, the rats were given AlCl₃, and followed by administration of S. betacenum in the 22nd until 28th days. This study was carried out in accordance with the guidelines Ethical Clearance provided by the Animal Care and Use Committee, Faculty of Medicine, Universitas Airlangga with certificate No.259/EC/KEP/KOMA/2018.

Preparation of S. betacenum ethanol extract

Fresh red S. betacenum (Tamarillo) fruits were dried by fresh dryer. Dry powder was extracted by maceration using ethanol solvent for 3 h × 24 h 3 times at room temperature, then separated between filtrate and residue. The ethanol extract was filtered and evaporated with a rotary vacuum evaporator to obtain a viscous extract. The ethanol extract of S. betacenum was added to the treatment diet in a suspension form with aquadest. During the experiment, the extract of S. betacenum was simultaneously administered into the treatment group before AlCl₃ exposure.

Consolidation training and memory test (Morris water maze)

The Morris water maze, a water-filled of the round pool, is a well-established apparatus to evaluate hippocampal-dependent spatial learning and memory in rats [17,19]. Rats were trained with extra-maze visual cues (a colorful poster; a traffic cone, and two black-and-white construction paper designs) which are placed around the pool. An escape platform was hidden 1 cm just beneath the surface of the water (Morris, 1984). Most protocols used four start locations: North, South, East, and West. Animals were given a series of daily trials using a random or semi-random set of start locations. Semi-random start position sets were most common, such the four positions were used, with the restriction that one trial each day was from each of the four positions. The rats were gently lowered that the tail first into the pool with maximum immobility time was set to 60 s. If the mouse located the platform before 60 s had past, it was immediately removed from the pool, whereas if more than 60 s of swimming, the mouse was gently guided to the platform and allowed to re-orient to the distal visual cues with 20 s additional time before being removed from the pool. The memory test was performed with no symbol marks used. The frequency of reaching targets and settling time in the area was recorded and calculated [19]. The value of memory test, as the time required for the rat to reach the target, was expressed in second. The less time to reach the target is indicated good memory of the rats.

Determining level of NMDA and BDNF

Samples were collected from the left or right hippocampus and analyzed using the enzymelinked immunosorbent assay (ELISA) method. The fixed hippocampus was homogenized using a sonicator added by buffer lysis and then centrifuged at 15,000 rpm for 15 min at 4°C. The supernatant was used to be analyzed. Samples were immediately stored at –20°C. The level of NMDA and BDNF in the hippocampus was determined using the ELISA test.

Statistical analysis

The statistical analysis was performed by one-way ANOVA and Kruskal-Wallis test, to determine the significant difference between experimental groups was assessed by least significant difference and Mann-Whitney-U test with p < 0.05. Data analysis was used by SPSS vers.23.

RESULTS AND DISCUSSION

Table 1 summarized about mean, standard deviation, ANOVA test of NMDAR and BDNF of control and treatment group. ANOVA test revealed NMDAR levels between group differs significantly with p < 0.006

Variable	Group	K₁	K₂	P₁	P₂	P₃	SI	ANOVA
NMDAR	3.7±1.12²	3.7±1.06²	3.9±1.09²	4.2±0.56²	4.3±0.98²	0.006*		
BDNF	56.1±11.12²	36.0±8.8³	53.5±2.41²	50.5±4.67²	49.2±11.02²	0.000²		

Variable	Group	K₁	K₂	P₁	P₂	P₃	SI	Kruskal-Wallis
Memory/escape latency	10.7±1³	3.5±1³	15.85²	15.57²	16.71²	0.038*		

Variable	Category	Group	K₁	K₂	P₁	P₂	P₃	SI	Kruskal-Wallis
Memory/escape latency	Mean	10.7±1³	3.5±1³	15.85²	15.57²	16.71²	0.038*		
	Median	11	27	13	8	16			
	Minimum	3	20	4	3	3			
	Maximum	21	83	50	33	51			

*Significantly with p<0.05. **mean±SD. *Different superscript means significant between groups. NMDAR: N-Methyl-D-Aspartate receptors; BDNF: Brain-derived neurotrophic factor. Standard deviation.
Table 2 summarized mean, median, minimum, maximum and of memory test of rats control and treatment group. The distribution of memory test from K1 to P4 is abnormal, thus used Kruskal-Wallis statistic and revealed differs significantly with p=0.038 (p<0.05). BDNF in a dose of 100 mg/kg b.w. was the best dose rather than 200 mg/kg b.w. or 400 mg/kg b.w. for improving memory improvement in AD induced-rats as shown by Morris water maze test.

Administration of S. betacrum for group P1, P2, and P3 rats showed a significant increase with p=0.006 (p<0.05) in their level of NMDAR (Table 1) and decrease time in memory escape latency test compared to Group K1 rats which shows the protective effect of memory loss by S. betacrum.

It was well established that AD has been related to the depletion of cognitive decline and the most common form of dementia with symptoms such as memory loss, disorientation in time, and space, difficulty solving problems, and among others [5,4]. In this study, we have chosen the fresh S. betacrum fruits to evaluate its ameliorative effect against AD. This study was aimed to determine the beneficial effect of S. betacrum administration on cognitive function, i.e. memory of AD-rats by determining the value of NMDAR and BDNF levels of the hippocampal brain. Male, 3 months old albino rats were used as an animal model in this study due to its translationally appropriate and reproducible model to investigate age-related changes to neural systems and cognition [17].

S. betacrum (Timurillo) fruits, previously known as Ceylonumde betacrum, are native and exotic fruits of subtropical and high tropical areas like Indonesia. The commonly used other names are "nome de palo," tree tomato, and "nome de ahoil." This fruit belongs to the Solanacense family and Solanum genus (Bobo, 1995) [18,20-22]. S. betacrum has known as oval- or egg-shaped fruits with a glossy thin and various color of the skin such as reddish-brown, purple-red, golden yellow, and orange-red to cream-yellow. S. betacrum has orange pulp, dark red seeds with sour and bland taste. The pigment of S. betacrum has been published, such as carotenoids and ACN [20,23-24]. S. betacrum has divided into two until four types which are distinguished according to their skin colour. Purple-red (often divided into purple and red) and yellow (often divided into amber and gold). The main difference of S. betacrum between the yellow cultivars and purple-red cultivars can be seen in the anthocyanin content, which is greatly higher in the purple-red cultivars [22]. Our study has used red S. betacrum to be given into AD-rats models.

red S. betacrum is containing rich anthocyanin [22]. Recently, ACN have shown to be beneficial effect in memory function in amyloid. Diet in amyloid may positively impact cognitive function and may exert beneficial effect on the prevention and treatment of dementia. Study before which was conducted by Kent et al., 2015, provided evidence that anthocyanin-rich cherry juice consumption improves memory and cognition in older adults with mild cognitive impairment. This study was a randomized controlled trial, assessed cognitive outcomes in 49 older adults (70 years old) with mild-to-moderate dementia after consumption of 200 mL/day of anthocyanin-rich cherry juice within 12 weeks [22]. Hippocampal-dependent spatial learning and memory can be evaluated using a well-established apparatus called the Morris water maze. Our observations on Morris water maze test, showed significant differences between control, AD-model and protective group's rats suggest that oral administration of S. betacrum might improve memory impairment and behavioral changes in AD-rats models. The results of our study derive strong support from the previous study that consumption of anthocyanin showed significant improvement in memory and cognitive impairment [25].

Neurobiochemical, it has been known that excessive amounts of Aβ peptide in the brain, particularly Aβ42, are responsible as underlying pathology for AD. There are various potential links between AD with the NMDA and NMDAR such as NMDA may be a down-stream target of Aβ, meaning that Aβ mediates the function of NMDAR, the signal of NMDAR may influence the assembly of Aβ plaques, NMDAR may bind Aβ through direct or indirect interactions and may mediate Aβ activity relative to plasticity and/or synaptic transmission. The pathogenesis of AD is highly linked with alterations in glutamate signaling, and the tissues affected by AD contain high densities of glutamatergic neurons. Chronic and moderate activation of NMDA receptors result in excitotoxicity 24 leading to neurodegeneration. This hypothesis of excitotoxicity is supported by clinical evidence indicating that the NMDA antagonist memantine slows AD progression. Prolonged Ca2+ elevation suppresses synaptic function, leading to subsequent synaptotoxicity and eventually atrophy; these events correlate with the loss of learning and memory functions in AD. Multiple neurotrophic factors have been demonstrated to enhance defense against excitotoxicity [24]. One of the fundamental neurotrophic factors are found in learning and memory is BDNF [33]. BDNF played a pivotal regulatory role in the regulation of hippocampal structure, development, maintenance, growth, neuronal survival, differentiation, axon growth, formation of neurons, dendritic remodeling, synaptic transmission and modulation, neurotransmitter release, promotion synaptic growth and plasticity of the hippocampus, and cognition [9,14,15]. NMDAR and BDNF of hippocampus play a pivotal role of synaptic plasticity in the hippocampus [13]. Rao et al. observed that the expression of BDNF in AD brains is decreased and NMDAR-mediated excitotoxicity play a key role in the development of AD [16]. The results of our study showed that in memory-impaired AD-rats induced by Aiclo, S. betacrum 36 administration decrease the level of NMDAR significantly with p=0.006 (p<0.05), but did not change the level of BDNF with p=0.280 (p<0.05).

Limitation
Limitation of the present study is designed only for behavioral, BDNF, and NMDAR by ELISA aspects involved in the AD. The remaining parameters, including various biochemical changes, morphometric, cholinergic, histological aspects, and gene expression studies, should be performed.

CONCLUSION
Overall, treatment of cognitive impairments in AD-induced rats with S. betacrum extract showed its potential in improving effect in memory function as showed in the decreasing time to reach the target of Morris water maze test and decreasing of NMDAR levels of the hippocampal rats. This study strongly indicated that extract of S. betacrum fruits could be good natural sources to improve memory function significantly by a different mechanism of action, such as decreasing the level of NMDAR, but not by changing the level of BDNF, in AD-induced rats. Therefore, consumption of S. betacrum in daily dietary intake is a one-step action toward the prevention of cognitive impairments in AD management principle. Further studies are needed to search another parameter involved in memory function of AD-induced rat models.

ACKNOWLEDGMENT
This study was conducted by the support of Research and Innovation Institute, Faculty of Medicinae of Atma University, Surabaya, East Java, Indonesia. We would like to thank for all research fundings to the Ministry of Research, Technology and Higher Education, the Republic of Indonesia.

CONFLICTS OF INTEREST
The authors declare that all of the authors have no conflicts of interest.

REFERENCES
1. Apostolova LG. Alzheimer disease. Continuum (Minneap Minn). 2016;22:419-34.
2. Kordev I. Alzheimer’s disease: A clinical and basic science review. Med Sci Res 2014;42:24-33. Available from: http://msr.evn.mau.edu/vol42-2014-2.
3. Kocian S, Degan Z. Mechanisms of Alzheimer’s disease pathogenesis and prevention. The brain, neural pathology, N-acetyls-D-opioid receptors, tau protein and other risk factors. Clin Psychopharmacol Neurosci 2017;15:1-8.
4. Saubie-Castro A, Alvarado-Echeveria I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer's disease: An update. Ann Neurosci 2017;24:40-56.
5. Cooper EL, Ma MJ. Alzheimer disease: Clues from traditional and complementary medicine. J Tradit Complement Med 2017;7:380-5.
6. Lim HS, Kim BY, Kim YJ, Joong SJ. Phytochemical allylglazicol exerts a neuroprotective effect on hippocampal cells and ameliorates scopoline-induced memory impairment in mice. Behav Brain Res 2018;330:261-8.
7. Zhu G, Yang S, Xie Z, Wan X. Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hippocampal long-term potentiation and memory in AD mice. Neuropharmacology 2018;138:331-40.
8. Ghanim A. Alzheimer's disease therapies: Selected advances and future perspectives. Alexandria J Med 2015;51:1-5. Available from: http://www.sciencedirect.com/science/article/pii/S090500861400092X.
9. Yuasa CM, Tinson RF, Hentinger JC, Yuasa KM, Edwards JM, Lawren MC, et al. Interactions between stress and physical activity on Alzheimer's disease pathology. Neurobiol Stress 2018;8:58-71.
10. Muñoz Fernández SS, Lina Ribeiro SM. Nutrition and Alzheimer disease. Clin Geriatr Med 2018;24:677-97.
11. Park HS, Kim CJ, Kuok HB, No MH, Heo JW, Kim TW. Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain. Neuropharmacology 2018;133:451-61.
12. Kennedy KM, Reece UD, Horn MM, Sizemore AN, Unni AK, Meerebeeck ME, et al. BDNF val66met polymorphism affects aging of multiple types of memory. Brain Res 2015;1612:164-17.
13. Leal G, Branham CR, Duarte CB. BDNF and hippocampal synaptic plasticity. Vitamins and Hormones. 1st ed. Amsterdam: The Netherlands: Elsevier Inc.; 2017. p. 153-93.
14. Marson MP, Maulesky S, Martin B. BDNF and 5-HT: A dynamic duo in stress-related diseases and neurodegenerative disorders. Trends Neurosci 2004;27:589-94.
15. Song JH, Yu JF, Tan L. Brain-derived neurotrophic factor in Alzheimer's disease: Risk, mechanisms, and therapy. Mol Neurobiol 2015;52:1477-93.
16. Kumar K, Kumar A, Keegan RM, Deshmukh R. Recent advances in the pharmacology and neuropharmacology of Alzheimer's disease. Biomed Pharmacother 2018;98:297-307.
17. McQuillan JA, Johnson SA, Burke SN, Buxton JL. Rat Models of Cognitive Aging. CRC's Handbook of Models for Human Aging. 2nd ed. London, United Kingdom: Elsevior Inc.; 2019. p. 111-30. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128113530000178.
18. Oliva CM, Castro MP, Garzón GA. Stability of anthocyanins from Rubus idaeus L. Berth and Solanum betacynum Cav. dark-red straw as affected by temperature, storage time and water activity. Acta Biol Colomb 2009;14:141-50.
19. Bernhart CD, Yang D, Lein PJ. Using the Morris water maze to assess spatial learning and memory in weanling mice. PLoS One 2015;10:e0124521.
20. García JM, Prieto LJ, Guévara A, Malagon D, Osorio C. Chemical studies of yellow tamarillo (Solanum betacynum Cav.) fruit flavor by using a molecular sensory approach. Molecules 2016;21. pii: E1729.
21. Li Y, Zhang J, Xu DP, Zhou T, Zhou Y, Li S, et al. Bioactivities and health benefits of wild fruits. Int J Mol Sci 2016;17. pii: E1288.
22. Schotmans WC. Tamarillo (Solanum betacynum (Cav.) J. Postharvest Biology and Technology of Tropical and Subtropical Fruits. Manganese to White Sapote. Vol. 4. Sesiion: Woodhead Publishing Limited, 2011. p. 427-42e.
23. Gannasip SP, Adzahin NM, Harnah MY, Mustafa S, Muhammad K. Physicochemical properties of tamarillo (Solanum betacynum Cav.) hydrocolloid fractions. Food Chem 2015;182:292-301.
24. Osorio C, Hurtado N, Dávid C, Hofmann T, Heredia-Mira JF, Lucía A. Chemical characterization of anthocyanins in tamarillo (Solanum betacynum Cav.) and Aránd es berry (Rubus idaeus L.) fruits. Food Chem 2012;132:1915-21.
25. Kent K, Charlin K, Rooderrey S, Barham M, Potter J, Traynor V. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur J Nutr 2017;56:333-41.

4th International Conference on Pharmacy and Pharmaceutical Science (ICPPS) 2019
SOLANUM BETACEUM IMPROVES COGNITIVE FUNCTION BY DECREASING N-METHYL-D-ASPARTATE ON ALZHEIMER RATS MODEL

ORIGINALITY REPORT

20% SIMILARITY INDEX
10% INTERNET SOURCES
19% PUBLICATIONS
0% STUDENT PAPERS

PRIMARY SOURCES

1. Slava Rom, Viviana Zuluaga-Ramirez, Sachin Gajghate, Alecia Seliga et al. "Hyperglycemia-Driven Neuroinflammation Compromises BBB Leading to Memory Loss in Both Diabetes Mellitus (DM) Type 1 and Type 2 Mouse Models", Molecular Neurobiology, 2018

2. G. Leal, C.R. Bramham, C.B. Duarte. "BDNF and Hippocampal Synaptic Plasticity", Elsevier BV, 2017

3. repository.uhamka.ac.id

4. Katherine Kent, Karen Charlton, Steven Roodenrys, Marijka Batterham et al. "Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia", European Journal of Nutrition, 2015
| Publication |
|-------------|
| "Biological, Diagnostic and Therapeutic Advances in Alzheimer's Disease", Springer Science and Business Media LLC, 2019 |
| Bing-You Yang, Jin-Yan Tan, Yan Liu, Bo Liu, Shuang Jin, Hong-Wei Guo, Hai-Xue Kuang. "A UPLC-TOF/MS-based metabolomics study of rattan stems of effects on Alzheimer's disease rats model", Biomedical Chromatography, 2018 |
| Joseph A. McQuail, Sarah A. Johnson, Sara N. Burke, Jennifer L. Bizon. "Rat Models of Cognitive Aging", Elsevier BV, 2018 |
| Hao Wang, Haijuan Sui, Yan Zheng, Yibing Jiang, Yijie Shi, Jia Liang, Liang Zhao. "Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway", Nanoscale, 2019 |
| Ricardo Adrian Nugraha, Radityo Bagus Wicaksono, Devianty Octavia, Devy Putri Zennita et al. "PS 12-21 CARDIOVASCULAR MANIFESTATION AFTER LONG-TERM..." |
| Rank | Source/Title | Percentage |
|------|--|------------|
| 10 | Hye-Sang Park, Chang-Ju Kim, Hyo-Bum Kwak, Mi-Hyun No, Jun-Won Heo, Tae-Woon Kim. "Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain", Neuropharmacology, 2018 | 1% |
| 11 | ffarmasi.uad.ac.id | 1% |
| 12 | staff.ui.ac.id | 1% |
| 13 | bmccomplementmedtherapies.biomedcentral.com | 1% |
| 14 | www.vitawithimmunity.com | 1% |
| 15 | www.utas.edu.au | <1% |
| 16 | Junliang Lv, Yonghai Li. "L 2 error estimates and superconvergence of the finite volume element methods on quadrilateral meshes", Advances in Computational Mathematics, 2011 | <1% |
| Source | Title |
|-----------------|---|
| doczz.fr | Amyloid and Tau PET Imaging of Alzheimer Disease and Other Neurodegenerative Conditions |
| eprints.fbme.utm.my | Liposomes Decorated with 2-(4′-Aminophenyl)benzothiazole Effectively Inhibit Aβ Fibril Formation and Exhibit in Vitro Brain-Targeting Potential |

Publications

Paul A. Rowley, Alexey A. Samsonov, Tobey J. Betthauser, Ali Pirasteh, Sterling C. Johnson, Laura B. Eisenmenger. "Amyloid and Tau PET Imaging of Alzheimer Disease and Other Neurodegenerative Conditions", Seminars in Ultrasound, CT and MRI, 2020

Spyridon Mourtas, Barbara Mavroidi, Antonia Marazioti, Maria Kannavou, Marina Sagnou, Maria Pelecanou, Sophia G. Antimisiaris. "Liposomes Decorated with 2-(4′-Aminophenyl)benzothiazole Effectively Inhibit Aβ Fibril Formation and Exhibit in Vitro Brain-Targeting Potential", Biomacromolecules, 2020
No.	Title	Author(s)	Source
24	Impaired social behaviors and minimized oxytocin signaling of the adult mice deficient in the N-methyl-d-aspartate receptor GluN3A subunit	Jin Hwan Lee, James Ya Zhang, Zheng Zachory Wei, Shan Ping Yu.	Experimental Neurology, 2018
25		www.biomedcentral.com	<1%
26		www.biomed.cas.cz	<1%
27	Nutrition and Alzheimer Disease	Shirley Steffany Muñoz Fernández, Sandra Maria Lima Ribeiro.	Clinics in Geriatric Medicine, 2018
28		www.eurekaselect.com	<1%
29	Transcranial Direct Current Stimulation Improves Cognitive Function in Mild to Moderate Alzheimer Disease	Mengjie Cai, Zhiwei Guo, Guoqiang Xing, Haitao Peng et al.	Alzheimer Disease & Associated Disorders, 2019
30		ijrnl.mums.ac.ir	<1%

Ali Hosseini-Sharifabad, Mohammad Rabbani,
Yasaman Seyed-Yousefi, Maryam Safavi. "Magnesium Increases the Protective Effect of Citicoline on Aluminum Chloride-induced Cognitive Impairment", Clinical Psychopharmacology and Neuroscience, 2020

Birsen Elibol-Can, Ilknur Dursun, Ilknur Telkes, Ertugrul Kilic, Sinan Canan, Ewa Jakubowska-Dogru. "Examination of Age-dependent effects of fetal ethanol exposure on behavior, hippocampal cell counts, and doublecortin immunoreactivity in rats", Developmental Neurobiology, 2014

Hao Chen, Yong He, Jiadong Ji, Yufeng Shi. "A Machine Learning Method for Identifying Critical Interactions Between Gene Pairs in Alzheimer's Disease Prediction", Frontiers in Neurology, 2019
Exclude quotes	Off
Exclude bibliography	On
Exclude matches	< 10 words
SOLANUM BETACEUM IMPROVES COGNITIVE FUNCTION BY DECREASING N-METHYL-D-ASPARTATE ON ALZHEIMER RATS MODEL