The Intersection Graph of Subgroups of the Dihedral Group of Order 2pq

Peshawa M. Khudhur1*, Rashad R. Haji 2, Sanhan M.S. Khasraw3

1Department of Mathematics, Faculty of Science, Soran University, Erbil, Kurdistan Region, Iraq
2Department of Petroleum and Mining Engineering, Tishk International University, Erbil, Kurdistan Region, Iraq
3Department of Mathematics, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq

Abstract
For a finite group G, the intersection graph \(\Gamma_G \) of G is the graph whose vertex set is the set of all proper non-trivial subgroups of G, where two distinct vertices are adjacent if their intersection is a non-trivial subgroup of G. In this article, we investigate the detour index, eccentric connectivity, and total eccentricity polynomials of the intersection graph \(\Gamma_G \) of subgroups of the dihedral group \(G = D_{2pq} \) for distinct primes \(p < q \). We also find the mean distance of the graph \(\Gamma_G \).

Keywords: dihedral group, intersection graph of subgroups, detour distance, mean distance.
Mathematics Subject Classification: 05C25, 20F16, 05C10.

Received: 8/4/2021 Accepted: 9/6/2021

*Email: peshewa.khezer@soran.edu.iq
1. Introduction

The concept of intersection graph of subgroups of a finite group was defined and studied by Csákány and Pollák in 1969 [1]. They found the clique number and degree of vertices of an intersection graph of subgroups of a dihedral group, quaternion group, and quasi-dihedral group.

Let G be a finite non-abelian group. The intersection graph Γ_G of G is an undirected simple (without loops and multiple edges) graph whose vertex-set consists of all nontrivial proper subgroups of G, for which two distinct vertices H and K of Γ_G are adjacent if $H \cap K$ is a non-trivial subgroup of G. This kind of graph has been studied by researchers; we refer the reader to see [2-6].

Let Γ be any graph. The set of vertices and the set of edges of Γ will be denoted by $V(\Gamma)$ and $E(\Gamma)$, respectively. If there is an edge between vertices u and v, then we write $uv \in E(\Gamma)$. The cardinality of $V(\Gamma)$, denoted by $|V(\Gamma)|$, is called the order of Γ, while the cardinality of $E(\Gamma)$, denoted by $|E(\Gamma)|$, is called the size of Γ. For any vertex v in Γ, the number of edges incident to v is called the degree of v and denoted by $deg\Gamma v$ [7]. The chromatic number of a graph Γ is $\chi(\Gamma)$, which is the smallest number of colors for $V(\Gamma)$ such that adjacent vertices have different colors.

A $u - v$ path is a walk with no two vertices repeated, for any two distinct vertices u and v in Γ. The shortest $u - v$ path in Γ is called the distance between u and v, denoted by $d(u, v)$, and the longest $u - v$ path in Γ is called the detour distance between u and v, denoted by $D(u, v)$. The eccentricity of a vertex $v \in V(\Gamma)$, denoted by $ecc(\Gamma)$, is the longest distance between v and all other vertices of Γ. The diameter of a graph Γ, denoted by $diam(\Gamma)$, is defined as $diam(\Gamma) = max\{ecc(v) \mid v \in V(\Gamma)\}$ [8]. The detour index, eccentric connectivity and total eccentricity polynomials are defined by $D(\Gamma, x) = \sum_{u,v \in V(\Gamma)} x^{D(u,v)}$ [9], $\zeta(\Gamma, x) = \sum_{u \in V(\Gamma)} deg(\Gamma) x^{ecc(\Gamma)}$ and $\theta(\Gamma, x) = \sum_{u \in V(\Gamma)} x^{ecc(\Gamma)}$ [10], respectively. The detour index $dd(\Gamma)$, the eccentric connectivity index and the total eccentricity $\zeta(\Gamma)$ of a graph Γ are the first derivatives of their corresponding polynomials at $x = 1$, respectively. The transmission of a vertex v in Γ is $\tau(\Gamma, v) = \sum_{u \in V(\Gamma)} d(\Gamma, v)$.

In this paper, we consider the graph $\Gamma_{D_{2pq}}$ of the dihedral group D_{2pq} where p and q are distinct primes. Some properties of the connected graph $\Gamma_{D_{2pq}}$ will be presented. The dihedral group D_{2pq} of order $2pq$ is defined by $D_{2pq} = \langle r, s \rangle: r^{2p} = s^2 = 1, srs = r^{-1} \rangle$ for prime numbers $p < q$.

2. Some properties of the intersection graph of D_{2pq} for prime numbers $p < q$

In order to determine the vertex set of the graph $\Gamma_{D_{2pq}}$, it is required to list all non-trivial proper subgroups of the dihedral group D_{2pq} for distinct primes $p < q$. In [6], the set of all non-trivial proper subgroups of the group D_{2n} are classified for all $n \geq 3$. Here, we only consider the case when $n = pq$ for distinct primes $p < q$.

Lemma 2.1[6]. The non-trivial proper subgroups of the dihedral group D_{2pq} for distinct primes $p < q$ are:

1- cyclic groups $G_i = \langle s^{i}, r \rangle$ of order 2, where $i = 1, 2, \ldots, pq$.
2- dihedral groups $H_i^p = \langle r^p, s^{i/p} \rangle$ of order 2p, where $i = 1, 2, \ldots, p$ and $H_i^q = \langle r^q, s^{i/q} \rangle$ of order 2q, where $i = 1, 2, \ldots, q$.

4924
3- cyclic groups $l_p = \langle r^p \rangle$ of order q, $l = \langle r \rangle$ of order pq, and $l_q = \langle r^q \rangle$ of order p.

According to the above classification of subgroups of the group D_{2pq} for primes $p < q$, as given in Lemma 2.1, we can determine the structure of the set of vertices of the graph $\Gamma_{D_{2pq}}$ as the non-trivial proper subgroups by $V(\Gamma_{D_{2pq}}) = A \cup B \cup C$, where $A = \{G_1, G_2, ..., G_{pq}\}$, $B = \{H_i^p \mid 1 \leq i \leq p \}$, and $C = \{l_p, l_q\}$. So, we can distinguish subgraphs Γ_A as complement of the complete graph K_{pq}, $\Gamma_{B \cup \{l\}}$ as the complete graph K_{p+q+1}, and $\Gamma_{C - \{l\}}$ as the complement of the complete graph K_2. Through this article, we fixed the sets A, B, and C.

In this section, some basic properties of the intersection graph of D_{2pq} are investigated, such as the order and chromatic number of the graph $\Gamma_{D_{2pq}}$.

Theorem 2.2. The order of the graph $\Gamma_{D_{2pq}}$ is $|V(\Gamma_{D_{2pq}})| = p + q + 3$.

Proof: Since the set of vertices of $\Gamma_{D_{2pq}}$ are the non-trivial subgroups of D_{2pq} which are classified in the sets A, B, and C, and since $|A| = pq$, $|B| = p + q$, and $|C| = 3$, then $|V(\Gamma_{D_{2pq}})| = |A| + |B| + |C| = pq + p + q + 3$.

Theorem 2.3. The size of the graph $\Gamma_{D_{2pq}}$ is $|E(\Gamma_{D_{2pq}})| = \frac{(p+q)^2 + 4(pq+1) + 3(p+q)}{2}$.

Proof: It is clear that each vertex of A is adjacent with only two vertices of B. The vertices in the set A are non-adjacent. Also, each vertex of $B \cup \{l\}$ is adjacent with all other vertices of $B \cup \{l\}$, that is, $B \cup \{l\}$ is a complete graph. Moreover, the vertex $l_p \in C$ is adjacent with p vertices of B, which are $H_i^p \mid i = 1, 2, ..., p$, and $l_q \in C$ is adjacent with q vertices of B which are $H_i^q \mid j = 1, 2, ..., q$. Finally, the vertex $l \in C$ is adjacent with l_p and l_q. Thus $|E(\Gamma_{D_{2pq}})| = 2pq + \frac{(p+q)^2 + 4(pq+1) + 3(p+q)}{2} + p + q + 2$.

Theorem 2.4. The chromatic number of the graph $\Gamma_{D_{2pq}}$ is $\chi(\Gamma_{D_{2pq}}) = p + q + 1$.

Proof: From Theorem 2.2, $cl(\Gamma_{D_{2pq}}) = p + q + 1$. This means that the graph $\Gamma_{D_{2pq}}$ is at least $p + q + 1$ colorable. The vertices $G_1, G_2, ..., G_{pq}$ and H_i^p can be colored with the same color as the vertex I, the vertices l_p and H_i^q can share the same color, and the vertices l_q and H_i^p can share the same color. Thus, the minimum number of colors that can be used to color the graph $\Gamma_{D_{2pq}}$ is $p + q + 1$.

Therefore, $\chi(\Gamma_{D_{2pq}}) = p + q + 1$.

Theorem 2.5. Let $\Gamma = \Gamma_{D_{2pq}}$ be the graph of the dihedral group D_{2pq}. Then $diam(\Gamma) = 3$.

Proof: Let u and v be two distinct vertices in Γ. If u and v are joint by an edge, then $d(u, v) = 1$. Otherwise, $u \cap v = \{e\}$. There are five cases to consider.

Case1. If $u = G_i$ and $v = G_j$, where $i \equiv j (mod p)$ or $i \equiv j (mod q)$, then there exists $v' \in B$ such that $v' = H_k^p$ or $v' = H_k^q$, for some k and k'. If $i \equiv k (mod p)$ or $j \equiv k' (mod q)$, then uv', $v'v \in E(\Gamma)$ and so $d(u, v) = 2$. Otherwise, if $i \not\equiv j (mod p)$ and $i \not\equiv j (mod q)$, take $v' = H_k^p$ and then there exists $w \in B$, where $w = H_l^p$ such that $k \not\equiv l (mod p)$ and $k \not\equiv l (mod q)$. Thus, uv', $v'w$, $wv \in E(\Gamma)$ and then $d(u, v) = 3$.

Case2. If $u = G_i$ and $v = H_i^p$ or $v = H_i^q$, $i = 1, ..., p$; $k = 1, ..., q$, where $i \not\equiv j (mod p)$ and $k \not\equiv j (mod q)$, then there exists $v' \in B$ such that $v' = H_i^p$ or $v' = H_i^q$, where $j \equiv l (mod q)$ or $j \not\equiv l (mod p)$, so uv', $v'v \in E(\Gamma)$ and $d(u, v) = 2$.

Case3. If $u = I_p$ and $v = I_q$, then we take $v' = I_l$ so that uv', $v'v \in E(\Gamma)$ and $d(u, v) = 2$.

Case4. If $u = l_p$ and $v \in \{H_i^q \mid i = 1, ..., q\}$ (or $u = l_q$ and $v \in \{H_i^p \mid i = 1, ..., p\}$), then we take $w = I$, which implies that uw, $wv \in E(\Gamma)$ and so $d(u, v) = 2$.

4925
Case 5. If \(u = G_j \) and \(v \in C \), then there are three possibilities for \(v \). If \(v = I_p \), then there exists \(v' \in \{ H_i^p \mid i = 1, \ldots, p \} \) such that \(uu', v'v \in E(\Gamma) \) if \(i \equiv j \mod p \). If \(v = I_q \), then there exists \(v' \in \{ H_i^q \mid i = 1, \ldots, q \} \) such that \(uu', v'v \in E(\Gamma) \) if \(i \equiv j \mod q \). Finally, if \(v = I \), then there exists \(v' \in B \) such that \(uu', v'v \in E(\Gamma) \). In all possibilities, \(d(u, v) = 2 \).

As a consequence from the above theorem, we state the following.

Corollary 2.6. Let \(\Gamma = \Gamma_{D_{2pq}} \) be the graph of the dihedral group \(D_{2pq} \). Then

\[
d(u, v) = \begin{cases}
1 & \text{if } u = G_i, v = H_j^p \land i \equiv j \mod p, \quad 1 \leq i \leq p, 1 \leq j \leq p, \\
& \text{or } u = G_i, v = H_j^q \land i \equiv j \mod q, 1 \leq i \leq q, 1 \leq j \leq q, \\
2 & \text{if } u = G_i, v = G_j, (i \equiv j \mod p \text{ or } q) 1 \leq i, j \leq p, 1 \leq j \leq q, \\
& \text{or } u = G_i, v = H_j^p \land i \not\equiv j \mod p, 1 \leq i \leq p, 1 \leq j \leq p, \\
& \text{or } u = G_i, v = H_j^q \land i \not\equiv j \mod q, 1 \leq i \leq p, 1 \leq j \leq q, \\
3 & \text{if } u = G_i, v = G_j, (i \not\equiv j \mod p \land i \not\equiv j \mod q) 1 \leq i, j \leq p.
\end{cases}
\]

Lemma 2.7. Let \(\Gamma = \Gamma_{D_{2pq}} \) be the intersection graph of subgroups of the dihedral group \(D_{2pq} \) with distinct primes \(p \) and \(q \). Then

\[
\deg_r(v) = \begin{cases}
2 & \text{if } v = G_i, \text{ for } 1 \leq i \leq p, \\
p + 1 & \text{if } v = I_p, \\
q + 1 & \text{if } v = I_q, \\
p + q + 2 & \text{if } v = I, \\
p + 2q + 1 & \text{if } v = H_i^p, \text{ for } 1 \leq i \leq p, \\
2p + q + 1 & \text{if } v = H_i^q, \text{ for } 1 \leq j \leq q.
\end{cases}
\]

Proof: see [7].

3. Detour index, eccentric connectivity, and total eccentricity polynomials of the graph \(\Gamma_{D_{2pq}} \)

In this section, we find detour index, eccentric connectivity, and total eccentricity polynomials of the intersection graph \(\Gamma_{D_{2pq}} \) of \(D_{2pq} \).

Theorem 3.1. Let \(\Gamma_{D_{2pq}} \) be the intersection graph of \(D_{2pq} \) with primes \(p < q \). Then

\[
D(u, v) = \begin{cases}
3p + q - 1 & \text{if } u = H_i^p, v = H_j^p, 1 \leq i, j \leq p \land i \not\equiv j, \\
3p + q & \text{if } u = H_i^p, v \in \{I_p, I_q, H_j^q; 1 \leq j \leq q\}, 1 \leq i \leq p, \\
3p + q + 1 & \text{if } u = H_i^p, v \in \{I_p, G_j; 1 \leq j \leq pq\}, 1 \leq i \leq p, \\
& \text{or } u = H_i^p, v \in \{I_q, I\}, 1 \leq i \leq q, \\
& \text{or } u = I, v \in \{I_p, I_q\}, \\
& \text{or } u = G_i, v = H_j^q, 1 \leq i \leq p, 1 \leq j \leq q \\
& \land uv \in E(\Gamma), \\
3p + q + 2 & \text{if } u = G_i, v \in \{I_p, I_q\}, 1 \leq i \leq p, q, \\
& \text{or } u = I_p, v \in \{I_q, H_j^q; 1 \leq i \leq q\}, \\
& \text{or } u = G_i, v = H_j^q, 1 \leq i \leq p, 1 \leq j \leq q \\
& \land uv \in E(\Gamma), \\
3p + q + 3 & \text{if } u = G_i, v \in \{I_p, G_j\}, 1 \leq i, j \leq p, 1 \leq j \leq q \land i \not\equiv j.
\end{cases}
\]

Proof: For \(D(u, v) = 3p + q - 1 \), the longest path from \(H_i^p \) to \(H_j^p \) where \(1 \leq i, j \leq p \) and \(i \not\equiv j \) is the path that starts from \(H_i^p \), passing alternatively through \(2p - 3 \) elements of...
A, p + q − 1 elements of B, and \(I_p, I\) and \(I_q\) vertices of B, and ending at \(H_i^p\). So, the path has length
\[(2p - 3) + (p + q - 1) + 3 = 3p + q - 1.\]
Hence \(D(H_i^p, H_j^p) = 3p + q - 1.\) For \(D(u, v) = 3p + q\), there are two cases. Case1, the longest path, that starts from \(H_i^p\) for some \(1 \leq i \leq p\) to \(S \in \{I, I_q\}\), is the path passing alternatively through \(2p - 1\) of vertices of A, \(p + q - 3\) elements of B, and \(I_q\) vertices of B, and ending at \(S \in \{I, I_q\}\). So, the length of this path is
\[\lfloor 1 + (2p - 1) + (p + q - 3) + (1 + 2) \rfloor = 3p + q.\]
Thus, \(D(H_i^p, X) = 3p + q\), for all \(1 \leq i \leq p\) and \(X \in \{I, I_q\}\).

Case2, the longest path, that starts from \(H_i^p\) for some \(1 \leq i \leq p\) to \(H_j^q\), for some \(1 \leq j \leq q\), is the path passing alternatively through \(2p - 1\) of vertices of A, \(p + q - 3\) elements of B, and \(I_q\) and \(I\) element of B, and ending at \(H_j^q\), for some \(1 \leq j \leq q\). So, the length of this path is
\[\lfloor 1 + (2p - 1) + (p + q - 3) + (2 + 1) + 1 \rfloor - 1 = 3p + q.\]
Thus, \(D(H_i^p, H_j^q) = 3p + q\), for all \(1 \leq i \leq p\) and \(1 \leq j \leq q\).

For \(D(u, v) = 3p + q + 1\), the longest path, that starts from \(G_i\) to \(H_j^q\) for some \(1 \leq j \leq p\) for some \(1 \leq i \leq p q\), is the path passing alternatively through \(p + q - 1\) of vertices of B, \(2p - 1\) vertices of A, and \(I\) and \(I_p\) vertices of C, and ending at \(H_j^q\) for some \(1 \leq j \leq p\). So, the length of the path is
\[\lfloor 1 + (p + q - 1) + (2p - 1) + 2 + 1 \rfloor - 1 = 3p + q + 1.\]
Thus, \(D(G_i, H_j^p) = 3p + q + 1\), for all \(1 \leq i \leq p q\) and \(1 \leq j \leq p\).

The longest path, that starts from \(H_i^p\) to \(I_p\) for some \(1 \leq i \leq p\), is the path passing alternatively through \(2p - 1\) of vertices of A and \(p + q - 3\) elements of B with \(I\), and ending at \(I_p\). So the length of the path is
\[\lfloor 1 + (2p - 1) + (p + q - 3) + (2 + 1) + 1 \rfloor - 1 = 3p + q + 1.\]
Hence, \(D(H_i^p, I_p) = 3p + q + 1\), for all \(1 \leq i \leq p\).

The longest path, that starts from the vertex \(H_i^q\) to \(I\) for some \(1 \leq i \leq q\), is the path passing alternatively through \(2p\) vertices of A, \(p + q - 1\) vertices of B, and the vertex \(I_q\) of C, and ending at \(I\). So the length of the path is
\[\lfloor 1 + (2p) + (p + q - 1) + 1 + 1 \rfloor - 1 = 3p + q + 1.\]
Hence, \(D(H_i^q, I) = 3p + q + 1\), for all \(1 \leq i \leq q\).

In a similar way, we can prove the detour distance between all other vertices in the graph \(D_{2pq}\).

Theorem 3.2. Let \(D_{2pq}\) be the intersection graph of \(D_{pq}\) with distinct primes \(p < q\). Then
\[
D(D_{2pq}, X) = \left(\frac{pq-1}{2}\right)^{3p+q+3} + \left(p^2 + q + 1\right)\frac{4q(p+1)+2(p+2)+q(q-1)}{2}\frac{3p+q+1}{3p+q+1} + \frac{p(q+2)x^{3p+q}}{2} + \frac{p(p-1)x^{3p+q}}{2},
\]
Proof:
\[
D(D_{2pq}, X) = \sum_{u, v \in V(T)} x^{D(u,v)} = \left(\frac{pq-1}{2}\right)^{3p+q+3} + (pq)\left(p^2 + q + 1\right)\frac{4q(p+1)+2(p+2)+q(q-1)}{2}\frac{3p+q+1}{3p+q+1} + \frac{p(q+2)x^{3p+q}}{2} + \frac{p(p-1)x^{3p+q}}{2},
\]
It follows from Theorem3.1 that
\[
D(D_{2pq}, X) = \sum_{u, v \in V(T)} x^{D(u,v)} = \left(\frac{pq-1}{2}\right)^{3p+q+3} + (pq)\left(p^2 + q + 1\right)\frac{4q(p+1)+2(p+2)+q(q-1)}{2}\frac{3p+q+1}{3p+q+1} + \frac{p(q+2)x^{3p+q}}{2} + \frac{p(p-1)x^{3p+q}}{2},
\]
\[p^x D(H^q J) + q^x D(H^q J) + x^D(l_p J) + x^D(l_p J_q) + x^D(l_j J) \] where \(\frac{(pq - 1)}{2} = \frac{(pq - 1)(pq - 2)}{2} \), \(\frac{p}{2} \).

Therefore,
\[D \left(I_{2pq}, x \right) = \frac{(pq - 1)(pq - 2)}{2} x^{3p + q + 3} + \left[p^2 (q - 1) + q + 1 \right] x^{3p + q + 2} + \left[2pq + p + \frac{q(q - 1)}{2} + 2q \right] x^{3p + q + 1} + p(q + 2) x^{3p + q} + \frac{p(p - 1)}{2} x^{3p + q - 1} \]

Corollary 3.3. Let \(\Gamma_{D_{2pq}} \) be the intersection graph of \(D_{2pq} \) with distinct primes \(p < q \). Then
\[dd(I_{D_{2pq}}) = 3p^3 q(q + 1) + q^3 \left(\frac{p^2}{2} + \frac{1}{2} \right) - \frac{3}{2} p^3 + \frac{3}{2} p^2 q + \frac{3}{2} q^2 p + 4p^2 q^2 + 5p^2 + 3q^2 + 3pq + \frac{33}{2} p + \frac{17}{2} q + 10. \]

Proof: The result follows directly by taking the first derivative of \(D \left(I_{D_{2pq}}, x \right) \) at \(x = 1 \).

Theorem 3.4. Let \(\Gamma_{D_{2pq}} \) be the intersection graph of \(D_{2pq} \) with distinct primes \(p < q \). Then
\[ecc(v) = \begin{cases} 2 & \text{if } v \in B \cup \{l\}, \\ 3 & \text{if } v \in A \cup C - \{l\}. \end{cases} \]

Proof: The proof follows directly from Corollary 2.6.

Theorem 3.5. Let \(\Gamma_{D_{2pq}} \) be the intersection graph of \(D_{2pq} \) with distinct primes \(p < q \). Then
\[\zeta \left(I_{D_{2pq}}, x \right) = (2pq + p + q + 2) x^3 + \left[(p + q)^2 + 2(pq + p + q + 1) \right] x^2. \]

Proof: It follows from Lemma 2.7 and Theorem 3.4 that
\[\zeta \left(I_{D_{2pq}}, x \right) = \sum_{u \in V(I_{D_{2pq}})} \text{deg}(u) x^{ecc(u)} = 2pq x^3 + (q + 2 + p + q - 1) p x^2 + (p + 2 + p + q - 1) q x^2 + (p + 1) x^3 + (p + q + 2) x^2 + (q + 1) x^3. \]

Theorem 3.6. Let \(\Gamma_{D_{2pq}} \) be the intersection graph of \(D_{2pq} \) with distinct primes \(p < q \). Then
\[\theta \left(I_{D_{2pq}}, x \right) = (pq + 2) x^3 + (p + q + 1) x^2. \]

Proof: It follows from Theorem 3.4 that
\[\theta \left(I_{D_{2pq}}, x \right) = \sum_{u \in V(I_{D_{2pq}})} x^{ecc(u)} = pq x^3 + px^2 + qx^2 + px^2 + x^2 + x^2 + x^2 = (pq + 2) x^3 + (p + q + 1) x^2. \]

Theorem 3.7. Let \(\Gamma_{D_{2pq}} \) be the intersection graph of \(D_{2pq} \) with distinct primes \(p < q \). Then
\[\xi \left(I_{D_{2pq}} \right) = 2(p^2 + q^2) + 7(2pq + p + q) + 10. \]

Proof: From Theorem 3.5, one can see that
\[\frac{d}{dx} \zeta \left(I_{D_{2pq}}, x \right) |_{x=1} = 3(2pq + p + q + 2) + 2[(p + q)^2 + 2(pq + p + q + 1)]. \] The result follows.

4. The mean distance of the intersection graph \(\Gamma_{D_{2pq}} \)

In this section, we find the mean distance of the intersection graph of subgroups of \(D_{2pq} \) for distinct prime numbers \(p \) and \(q \).

Theorem 4.1. The transmission of the graph \(\Gamma_{D_{2pq}} \) is
\[\sigma \left(I_{D_{2pq}} \right) = p^2 (3q + 1)(q + 1) + q^2 (3p + 1) + q(8p + 7) + 7p + 8. \]

Proof: From Corollary 2.6, we have
\[\sigma(G_i) = q(2) + (pq - (q + 1))(3) + 2(1) + (p + q - 2)(2) + 2(2) + (1)(3) = 3pq + q + 2p + 2, \text{ for all } i = 1, 2, ..., pq, \]
\[\sigma(H_i^p) = q(1) + (pq - q)(2) + (p + q - 1)(1) + 2(1) + (1)(2) = 2pq + p + 3, \text{ for all } i = 1, 2, ..., p. \]

Also, \(\sigma(H_i^q) = p(1) + (pq - q)(2) + (p + q - 1)(1) + 2(1) + (1)(2) = 2pq + q + 3, \text{ for all } i = 1, 2, ..., q. \)
Note that the vertices I_p and I_q are non-adjacent but the vertex I is adjacent to both I_p and I_q. So, $C = \{I_p, I_q, I\}$ induced a path subgraph of $\Gamma_{D_{2pq}}$.

Thus, $(I_p) = p(q(2) + p(1) + q(2) + (1)(1) + (1)(2) = 2pq + p + 2q + 3$,

$\sigma(I_p) = p(q(2) + (p + q)(1) + 2(1) = 2pq + p + q + 2$, and

$\sigma(I_q) = pq(2) + q(1) + p(2) + (1)(1) + (1)(2) = 2pq + 2p + q + 3$.

Now, we can find the transmission of the graph $\Gamma_{D_{2pq}}$ as

$\sigma(\Gamma_{D_{2pq}}) = \sum_{i=1}^{p} \sigma(G_i) + \sum_{i=1}^{p} \sigma(H_i^p) + \sum_{i=1}^{q} \sigma(H_i^q) + \sigma(I) + \sigma(I_p) + \sigma(I_q)$

$= pq[3pq + 2p + q + 2] + p[2pq + p + 3] + q[2pq + q + 3] + 6pq + 4(p + q) + 8$

$= p^2(3q + 1)(q + 1) + q^2(3p + 1) + q(8p + 7) + 7p + 8$.

Theorem 4.2. The mean distance of the graph $\Gamma_{D_{2pq}}$ is

$$\mu(\Gamma_{D_{2pq}}) = \frac{p^2(3q+1)(q+1)+q^2(3p+1)+q(8p+7)+7p+8}{(p+q)(p+q+2)}.$$

Proof: Since the order of the graph $\Gamma_{D_{2pq}}$ is $pq + p + q + 3$ and the transmission of the graph $\Gamma_{D_{2pq}}$ is given in Theorem 4.1, we can find the mean distance of the graph $\Gamma_{D_{2pq}}$ as

$$\mu(\Gamma_{D_{2pq}}) = \frac{p^2(3q+1)(q+1)+q^2(3p+1)+q(8p+7)+7p+8}{(p+q)(p+q+3)(p+q+2)}$$, where $p < q$ are prime numbers.

References

[1] B. Csák'k'e'án, G. Pollá'k, "The graph of subgroups of a finite groups," *Czechoslovak Math. J.*, no. 19, pp. 241-247, 1969.

[2] S. Akbari, F. Heydari, and M. Maghasedi, "The intersection graph of a group, , 14 (5), 155065 (2015)." *Journal of Algebra and its applications*, vol. 14, no. 5, 2015.

[3] H. J. Bandelt and H. M. Mulder, "Distance-hereditary graphs," *Journal of Combinatorial Theory, Series B*, vol. 2, no. 41, pp. 182-208, 1986.

[4] B. Zelinka, "Intersection graphs of finite abelian groups," *Czechoslovak Mathematical Journal*, vol. 25, no. 2, pp. 171-174, 1975.

[5] R. Rajkumar, and P. Devi, "Intersection graph of subgroups of some non-abelian groups," *Malaya journal matematik*, vol. 4, no. 2, pp. 238-242, 2016.

[6] G. H. Shirdel, H. Rezapour, R. Nasiri, "Lower and Upper Bounds for Hyper-Zagreb Index of Graphs," *Iraqi Journal of Science*, vol. 61, no. 6, pp. 1401-1406, 2019.

[7] A. Aubad, "A4-Graph of Finite Simple Groups," *Iraqi Journal of Science*, vol. 62, no. 1, pp. 289-294, 2021.

[8] T. Doslic, M. Ghorbani and M. A. Hosseinzadeh, ", Eccentric connectivity polynomial of some graph operations," *Util. Math.*, no. 84, pp. 179-209, 2011.

[9] R. J. Shahkoohi, O. Khomali and A. Mahmiani , "The Polynomial of Detour Index for a Graph," *World Applied Sciences Journal*, vol. 15, no. 10, pp. 1473-1483, 2011.

[10] I. Althofer, "Average distances in undirected graphs and the removal of vertices," *Journal of Combinatorial Theory, Series B*, vol. 48, no. 1, pp. 140-142, 1990.

[11] D. Bienstock, E. Győri, "Average distance in graphs with removed elements," *Journal of Graph theory*, vol. 12, no. 3, pp. 375-390, 1988.

[12] D. Bienstock, E. Győri, "Average distance in graphs with removed elements," *Journal of Graph theory*, vol. 12, no. 3, pp. 375-390, 1988.

[13] S. Khasraw, " On Intersection Graph of Dihedral Group, : Jornal of Mathematics and Computational Science, Vol.11, no.6, pp.6714.6728