Corona graphs as a model of small-world networks

Qian Lv, Yuhao Yi and Zhongzhi Zhang

Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai 200433, People’s Republic of China
E-mail: zhangzz@fudan.edu.cn

Received 21 August 2015
Accepted for publication 11 October 2015
Published 17 November 2015

Online at stacks.iop.org/JSTAT/2015/P11024
doi:10.1088/1742-5468/2015/11/P11024

Abstract. We introduce recursive corona graphs as a model of small-world networks. We investigate analytically the critical characteristics of the model, including order and size, degree distribution, average path length, clustering coefficient, and the number of spanning trees, as well as Kirchhoff index. Furthermore, we study the spectra for the adjacency matrix and the Laplacian matrix for the model. We obtain explicit results for all the quantities of the recursive corona graphs, which are similar to those observed in real-life networks.

Keywords: exact results, growth processes, network dynamics
1. Introduction

For decades we have wanted to know what a graph looks like. We want to reveal the principles of the networks’ behaviour covered by their complex topology and dynamics. We want to learn about how the network structure evolves over time and how it affects the properties of dynamical processes on it. For the nature of decentrality of real networks, it is hard to observe the networks directly. Instead we observe them by taking snapshots of their network structure and content and keep updating them. Yet this gives little information about the future, since many of them keep growing over time. Thus it is desirable to set up models to fit real networks in both structure and functionality. We can use the models to mimic real-life networks. We also expect that the properties of the models can be proven rigorously, thus we can find the relations between topological and dynamical properties of networks. Even if it is hard to give closed-form expressions for some quantities, it would be nice to make them tractable for convenience of estimation.

Among various network models, the ER graph proposed by Erdös and Rényi [1] is the earliest one. It generates a random graph by choosing a constant probability for joining every pair of vertices in the network. The model exhibit interesting statistical properties and has been well studied by many people. However the model lacks some important properties of real-world networks. For example many real-world networks exhibit the
small-world property [2–4] with their diameters growing logarithmically in the number of vertices, while maintaining a high clustering coefficient. The Watts–Strogatz (WS) model [3] is a typical graph model with the small-world effect. Nevertheless, because of its randomness, many of its properties cannot be derived precisely, for example eigenvalues of the adjacency and Laplacian matrices. Thus deterministic models are often used to mimic complex networks [5], since their structural [6] and spectral [7] characteristics can be determined analytically. In addition to the small-world effect, another important feature of a network is degree distribution. Many real-world networks exhibit a heavy-tailed distribution while some networks have an exponential distribution [8–10].

The famous preference attachment [11–14] scheme successfully described the growing process of networks with heavy-tailed degree distribution. This work, like the WS model [3], leads to a network with an exponential degree distribution.

Recently graph (matrix) products have been applied to modelling graphs with the same properties as real-life networked systems, such as the Cartesian product [15], dot product [16], and Kronecker product [17–21]. A merit of such methods is that the graph/matrix products facilitate estimation of the properties of the generated graphs.

In this paper we introduce a recursive way to generate small-world networks with an exponential degree distribution, based on corona product of graphs. We obtain exact solutions to many structural properties of the networks. Moreover, we derive all the eigenvalues for their adjacency matrix and Laplacian matrix, which are provided in a recursive way. Based on the obtained eigenvalues, we calculate the number of spanning trees, as well as the Kirchhoff index of the networks.

2. Graph construction

In this paper, we use corona product to generate a small-world network model. Literature about the corona product and its related graphs is partly established [22, 23]. Let $G = (V(G), E(G))$ be the embedded graph of a network. Suppose the graph is undirected and has vertex set $V(G) = \{1, 2, ..., N\}$ and edge set $E(G) \subseteq V(G) \times V(G)$. We define the number of vertices N as the order of the graph, and the number of vertices as the size of the graph, denoted as $M = |E(G)|$.

Given two graphs G_1 and G_2, their corona product $G_1 \circ G_2$ is defined as follows.

Definition 2.1. Let G_1 and G_2 be two graphs with disjoint vertex sets. G_1 has N_1 vertices and G_2 has N_2 vertices. Their corona product $G_1 \circ G_2$ is a new graph which consists of one copy of G_1 and N_1 copies of G_2. The ith vertex of G_1 is joined by a new edge with every vertex in the ith copy of G_2.

In this paper we investigate the case where G_2 is the q-complete graph, thus we give the definition of the recursive corona graph.

Definition 2.2. Let K_q be the q-complete graph ($q \geq 2$), then the gth generation of the recursive corona graph (RCG) $C_q(g + 1)$ is defined as the corona of the previous generation of the RCG $C_q(g)$ and K_q. More formally, $C_q(g + 1)$ is defined as $C_q(g + 1) = C_q(g) \circ K_q$, $g \geq 0$, with the initial condition $C_q(0) = K_q$.

Figure 1: Illustrates the construction process for a particular network $C_q(g)$.
3. Structural properties

In this section we derive several important quantities of the RCG, showing that it is an appropriate model for the small-world complex networks. Thanks to the deterministic feature of $C_q(g)$, we can give exact expressions for the properties of the graph. We will give the explicit results for its order, size, degree distribution, degree correlation, average distance, clustering coefficient, number of spanning trees and Kirchhoff index.

We denote by $N(g)$ and $M(g)$ respectively the order and the size of $C_q(g)$. Next we show how to derive these quantities. Assume that the number of vertices and the number of edges that are newly generated at step g are denoted as $L_V(g)$ and $L_E(g)$. Then it is obvious that we have $L_V(g) = qN(g-1)$ for $g \geq 1$, which leads to the result of $N(g)$ along with the initial condition $N(0) = q$. With respect to the size of the network, we have $L_E(g) = q(q-1)/2N(g-1) + qN(g-1)$, $g \geq 1$, and the initial condition $M(0) = q(q-1)/2$.

Proposition 3.1. The order and size of the graph $C_q(g) = (V(g), E(g))$ are, respectively,

$$N(g) = q(q+1)^g$$

and

$$M(g) = \frac{1}{2} q((q+1)^{g+1} - 2).$$

The average degree is $\bar{\delta}(g) = -2(q+1)^{-g} + q + 1$, which tends to $q + 1$ for large g. Note that many real-life networks are sparse and their average degree tends to a constant value.

3.1. Degree distribution

The degree distribution $P(\delta)$ for a network is a function indicating the fraction of vertices with degree δ over all vertices. The degree distribution is a very important characteristic of a graph. It is essential to the analysis of many other structural properties.

The cumulative degree distribution [8] is defined as

$$P_{\text{cum}}(\delta) = \sum_{\delta'=\delta}^{\infty} P(\delta'),$$

which is often used to analyze the degree distribution of a graph. The quantity gives the fraction of vertices whose degree δ' is greater than or equal to δ. In addition, networks whose degree distributions are exponential, $P(\delta) \sim e^{-\alpha \delta}$, also have an exponential cumulative distribution with the same exponent:

$$P_{\text{cum}}(\delta) = \sum_{\delta'=\delta}^{\infty} P(\delta') \approx \sum_{\delta'=\delta}^{\infty} e^{-\alpha \delta'} = \left(\frac{e^\alpha}{e^\alpha - 1} \right) e^{-\alpha \delta}. \quad (3)$$

Next we investigate the degree distribution of $C_q(g)$. We find that at time $g = 0$ the network has q vertices of degree $q-1$. Now we study the degree of some vertex v at step g. Let the value be $\delta_v(g)$; we look in detail at how the quantity evolves. We assume that vertex v is added to the network at step g_v ($g_v > 0$). For any $g_v > 0$, we have
Corona graphs as a model of small-world networks

\[\delta_v(g_v) = q, \text{ where } q - 1 \text{ edges link to other vertices in } K_q \text{ and the other edge links to } C_q(g - 1). \text{ At every step every existing vertex increases its degree by } q. \]

Theorem 3.2. The cumulative degree distribution of the graph \(C_q(g) \) follows an exponential distribution: \(P_{\text{cum}}(\delta) \sim (q + 1)^{-\frac{\theta}{q} + 1}. \)

Proof. The degree of vertex \(v \) at step \(g \), denoted as \(\delta_v(g) \), can be written as

\[\delta_v(g + 1) = \delta_v(g) + q. \]

Thus we have

\[\delta_v(g) = q(g - g_v + 1), (g_v > 0), \text{ and } \delta_v(g) = q(g + 1) - 1, (g_v = 0). \]

This means that the numbers of vertices with the degree equal to \(q, 2q, \ldots, gq, (g + 1)q - 1 \) are, respectively, \(q^2(q + 1)^{q-1}, q^2(q + 1)^{q-2}, \ldots, q^2 \).

For a certain value of degree \(\delta \), we have \(P_{\text{cum}}(\delta) = (N(0) + \sum_{g'=1}^{\theta} L\nu(g'))/N(g) \) where \(\theta = [g - (\delta + q)/q] \). Therefore we can find

\[P_{\text{cum}}(\delta) = \frac{1}{q(q + 1)^\theta} \left(q + \sum_{g'=1}^{\theta} q^2(q + 1)^{q-1} \right) \]

\[= \frac{1}{(q + 1)^\theta} + \frac{q}{(q + 1)^\theta} \sum_{g'=1}^{\theta} (q + 1)^{g'-1} \]

\[= (q + 1)^{\theta - \delta}. \]

For large \(g \) we have

\[P_{\text{cum}}(\delta) = (q + 1)^{\theta - \delta} \sim (q + 1)^{\frac{\delta}{q} + 1}. \]

3.2. Degree correlation

One important parameter for the degree correlation is the average degree of adjacent vertices of \(v(\delta) \), which refers as any vertex with degree \(\delta \). We denote the parameter by \(k_{nn}(\delta) \). If \(k_{nn}(\delta) \) increases with \(\delta \), this means that the vertices have a tendency to connect to vertices with a similar or larger degree. In this case we claim the graph to be assortative. The considered value of a vertex \(v(\delta) \) can be written as

\[k_{nn}(v) = \frac{1}{q(g - g_v + 1)} \left(q(g - g_v + 2) + (q - 1)q(g - g_v + 1) + \sum_{i=g_v}^{g-1} q \cdot q(g - i) \right) \]

\[= \frac{1}{2} q(g - g_v + 2) + \frac{1}{g - g_v + 1}. \]

According to equation (5), we can express it as

\[k_{nn}(\delta) = \frac{1}{2}(q + \delta) + \frac{q}{\delta}. \]
For the initial vertices we have
\[k_{nm}(v_0) = \frac{1}{q(g+1)-1} \left((q-1)(q-1) + \sum_{i=0}^{g} q \cdot q(g-i) \right) \]
\[= \frac{(g+2)r}{2} - \frac{(g+2)q - 2}{2(gq + q - 1)}, \quad (9) \]
which yields
\[k_{nm}(\delta_0) = \frac{1}{2} \left(\delta_0 + q + \frac{1-q}{\delta_0} \right). \quad (10) \]

By checking the results we can see that the considered graph is assortative.

3.3. Average distance

Given a graph \(G = (V, E) \), its average distance or mean distance is defined as
\[\mu(G) = \frac{1}{|V(G)|(|V(G)|-1)} \sum_{u,v \in V(G)} d(u, v) \]
where \(d(u, v) \) is the distance between the pair of vertices \(u \) and \(v \).

Theorem 3.3. The average distance of graph \(C_q(g) \) is
\[\mu(C_q(g)) = \frac{(q+1)^{-q}(2gq^2(q+1)^{2g-1}+(q+1)q+(q-2)((q+1)^2)^{g})}{q(q+1)^{q}-1}. \quad (11) \]

Proof. To begin with, we assume that the summation of distances between all pairs of vertices in \(C_q(g) \) is \(D(C_q(g)) \). The sum of distances between all pairs \((u, v) \), where \(u \) belongs to vertex set \(U \) and \(v \) belongs to a disjoint vertex set \(V \), is denoted as \(D(U, V) \).

In order to utilize the recursive construction process for the recursive corona graph we classify the vertex pairs in \(C_q(g) \) into four different categories, \(W \), \(X \), \(Y \), and \(Z \). The sum of the distances for the four categories is denoted as \(S_W \), \(S_X \), \(S_Y \), and \(S_Z \), respectively.

Category \(W \) refers to the pairs within the same \(K_q \) that we add to the network at step \(g \). Category \(X \) refers to the pairs \(u, v \) where \(u \) is selected from one of the \(N(g-1) \) \(K_q \)s added at step \(g \) and \(v \) selected from any other \(K_q \) added to the network at the same step. \(Y \) refers to the pairs where \(u \) is a new vertex and \(v \) is a vertex in \(C_q(g-1) \). As for category \(Z \), it indicates the pairs where both \(u \) and \(v \) are from the previous generation of the graph \(C_q(g-1) \). Thus we have the following equations:
\[D(C_q(g)) = S_W(g) + S_X(g) + S_Y(g) + S_Z(g), \quad (12) \]
\[S_W(g) = \frac{q(q-1)}{2} N(g-1), \quad (13) \]
\[S_X(g) = \sum_{i,j \in V(C_q(g-1))} \left(d_{i,j} + 2 \right) q^2 \]
\[= q^2 S_Z(g) + q^2 N(g-1) \cdot (N(g-1) - 1), \quad (14) \]
Corona graphs as a model of small-world networks

\[S_Y(g) = \sum_{i,j \in V(C_q(g-1))} (d_{i,j} + 1)q \]

\[= 2qS_Z(g) + qN(g-1) \cdot (N(g-1) - 1) + N(g-1)q, \]

\[S_Z(g) = D(C_q(g-1)). \]

Combining these recursive expressions we have

\[D(C_q(g)) = (q + 1)^2 D(C_q(g-1)) + \frac{1}{2} q^2 (2q(q + 1)^{g-1} - 1)(q + 1)^g \]

with the initial condition \(D(C_q(0)) = q(q - 1)/2 \) we get the result

\[D(C_q(g)) = \frac{1}{2} q(2gq^2(q + 1)^{2g-1} + (q + 1)^g + (q - 2)((q + 1)^2)^g). \]

Dividing \(D(C_q(g)) \) by \(\frac{N(g)N(g-1)}{2} \) yields equation (11). For large \(g \), we have \(\mu(C_q(g)) \sim 2g \sim 2 \log_q N(g) \), which increases logarithmically with the network order.

3.4. Clustering coefficient

Clustering coefficient \([3]\) is another crucial quantity used to characterize network structure. Many works about determining clustering coefficient and its related quantities are carried out on both graph models and graphs in reality \([3, 24–26]\).

The clustering coefficient of vertex \(v \) is defined as the following quantity:

\[c(v) = \frac{2e_v}{\delta_v(\delta_v - 1)}, \]

where \(e_v \) is the number of edges between the neighbours of vertex \(v \). The network clustering coefficient \(C(G) \) is defined as the average of \(c(v) \) among all vertices. That is,

\[c(G) = \frac{1}{|V(G)|} \sum_{v \in V(G)} c(v). \]

Theorem 3.4. Let \(v(\delta) \) be a vertex in \(C_q(g) \) whose degree is \(\delta \). Except for the initial vertices, its clustering coefficient is

\[c(v(\delta)) = \frac{q - 1}{\delta - 1} \approx \frac{q - 1}{\delta}. \]

Proof. Let us review the intermediate result in calculating the degree distribution that the number of vertices with degree \(q, 2q, \ldots, gq, (g + 1)q - 1 \) are, respectively, \(q^2(q + 1)^{g-1}, q^2(q + 1)^{g-2}, \ldots, q^2, q \). Except for the initial vertices, the clustering coefficients of other vertices follow the same rule: that is, a vertex with degree \(kq \) has \(kq \) neighbours, which are evenly distributed in \(k \) clusters. Each cluster forms a complete graph \(K_q \). Thus the clustering coefficient of vertex \(v \) is derived as

\[c(v) = \frac{kq(q - 1)/2}{kq(kq - 1)/2} = \frac{q - 1}{kq - 1}, \quad (g_e > 0), \]

\[\text{doi:10.1088/1742-5468/2015/11/P11024} \]
Corona graphs as a model of small-world networks

and for initial vertices
\[c(v) = \frac{(q-1)(q-2) + gq(q-1)}{(q(g+1)-1)(q(g+1)-2)}, \quad (g_v = 0). \] (23)

Theorem 3.4 is naturally gained.

Theorem 3.5. The clustering coefficient of RCG network \(C_q(g) \) is
\[c(C_q(g)) \sim \frac{q-1}{q+1} \Phi \left(\frac{1}{q+1}, 1, \frac{q-1}{q} \right), \] (24)
where \(\Phi \) is the Lerch transcendent function, and the clustering coefficient converges to a non-zero when the network order is high enough. For large \(q \), the clustering coefficient tends to 1.

Proof. From equations (23) and (20) we can obtain the clustering coefficient of \(C_q(g) \):
\[c(C_q(g)) = \frac{1}{N(g)} \left[\sum_{k=1}^{q} \frac{q-1}{kq-1} q^2(q-1)^{q-2} + \frac{(q-1)(gq+q-2)}{(q(g+1)-1)(q(g+1)-2)} \right], \] (25)
which leads to the result of theorem 3.5. Further we have
\[c(C_q(g)) \sim \frac{q-1}{q+1} \Phi \left(\frac{1}{q+1}, 1, \frac{q-1}{q} \right), \] (26)
which is high and tends to 1 when \(q \) is large. Figure 2 gives the clustering coefficient of some networks.

3.5. Spanning trees

Next we derive the number of spanning trees in graph \(C_q(g) \).

Theorem 3.6. The number of spanning trees of \(C_q(g) \) is
\[N_{tr} C_q(g) = q^{q-2}(q+1)^{1-q((q+1)^{q-1})^{q+1}}. \] (27)

Proof. According to Cayley’s theorem [27], the number of spanning trees of a complete graph \(K_q \) is equal to \(q^{q-2} \). Since all vertices of a \(K_q \) added to the graph are connected to a vertex in the original graph, these \(q+1 \) vertices consist of a new complete graph \(K_{q+1} \). Therefore we have the following recursive relation of the spanning trees of \(C_q(g) \):
\[N_{tr} C_q(g) = ((q+1)^{q-1})^{N(g)} N_{tr}(g-1). \] (28)
Together with the initial condition \(N_{tr} = q^{q-2} \), we can derive the expression for \(N_{tr} \):
\[N_{tr} C_q(g) = q^{q-2}(q+1)^{1-q((q+1)^{q-1})^{q+1}}. \] (29)

3.6. Kirchhoff index

Resistance distance is an important character of a graph, which can imply many of its dynamic properties. The Kirchhoff index [28] of a graph refers to the sum of resistance
between all vertex pairs in an associated electrical network obtained from the graph by replacing each edge of the graph by a unit resistance. Denote the effective resistance between vertices \(i \) and \(j \) as \(r(i,j) \), or \(r_{ij} \), then the Kirchhoff index \(R_{Kr} \) of graph \(G \) is defined as

\[
R_{Kr}(G) = \sum_{i,j \in V(G), i < j} r_{ij}.
\]

We denote the Kirchhoff index of graph \(C_q(g) \) by \(R_{Kr}(C_q(g)) \).

Theorem 3.7. The Kirchhoff index of \(C_q(g) \) is

\[
R_{Kr}(C_q(g)) = (q^3(2g + 1) - 2q - 1)(q + 1)^{2g-2} + q(q + 1)^{g-1}.
\]

Proof. We denote by \(r(U, V) \) the sum of all effective resistances between pairs \((u, v) \) in which \(u \) and \(v \) belong to two disjoint vertex sets \(U \) and \(V \) respectively. Similar to the method we used in calculating the average distance, we classify these pairs into
four categories \(W, X, Y, \) and \(Z \), where the definition is exactly the same as used in calculating the average distance. Then the sum of the distances for the four categories is denoted as \(R_W, R_X, R_Y, \) and \(R_Z \). We have the following equations:

\[
R_{K_4}(C_q(g)) = R_W(g) + R_X(g) + R_Y(g) + R_Z(g),
\]

\[
R_W(g) = \frac{q(q-1)}{2} \frac{2}{q+1} N(g-1),
\]

\[
R_X(g) = \sum_{i,j \in V(C_q(g-1))} \left(r_{i,j} + \frac{2}{q+1} \right) q^2
\]
\[
= q^2 R_Z(g) + \frac{2q^2 N(g-1)(N(g-1)-1)}{q+1},
\]

\[
R_Y(g) = \sum_{i,j \in V(C_q(g-1))} \left(r_{i,j} + \frac{1}{q+1} \right) q
\]
\[
= 2q R_Z(g) + q \frac{2}{q+1} N(g-1)(N(g-1)-1)
\]
\[
+ q \frac{2}{q+1} N(g-1),
\]

\[
R_Z(g) = R_{K_4}(C_q(g-1)),
\]

which yields

\[
R_{K_4}(C_q(g+1)) = q^2(2q(q+1)^g - 1)(q+1)^g + (q+1)^2 R_{K_4}(C_q(g)).
\]

Notice that the effective resistance between vertices \(v \) and \(u \) in a complete graph \(K_q \) is \(2/q \) since the potentials between any other vertices are identical, if we impose a potential difference between \(u \) and \(v \).

Along with the initial condition \(R_{K_4}(C_q(0)) = q - 1 \) we can deduce

\[
R_{K_4}(C_q(g)) = (q^3 - 2q - 1)(q+1)^{2g-2} + q(2q^2 g(q+1)^g + q + 1)(q + 1)^{g-2}
\]
\[
= (q^3 - 2q - 1 + 2gg^2)(q+1)^{2g-2} + (q+1)^{g-1} q
\]
\[
= (q^3(2g+1) - 2q - 1)(q+1)^{2g-2} + g(q+1)^{g-1}.
\]

This completes the proof.

\[\square \]

4. Spectral analysis

By convention the (unweighted) adjacency matrix \(A(G) \) of a graph \(G \) is defined as an \(N \times N \) matrix with the entry \(a_{i,j} \) representing the number of edges incident with endpoints \(i, j \). The degree matrix \(D(G) \), is defined as a diagonal matrix with its \(i \)th entry
on the main diagonal equal to the degree vertex \(i\). We call \(L(G) = D(G) - A(G)\) the Laplacian matrix of graph \(G\). These matrices determine the structure graph, and the eigenvalues of \(A(G)\) and \(L(G)\) are sensitive to many of the structural properties, which have a remarkable impact on the dynamic processes superimposed upon the network.

Definition 4.1. Given \(A(C_q(g))\), the adjacency matrix of \(C_q(g)\), we define the *spectra* of \(C_q(g)\) as

\[
\sigma(C_q(g)) := \sigma(g) = (\lambda_1(g), \lambda_2(g) \ldots \lambda_n(g)).
\]

Similarly, we have the following.

Definition 4.2. Given \(L(C_q(g))\), the Laplacian matrix of \(C_q(g)\), we define its Laplacian spectra as

\[
S(C_q(g)) := S(g) = (\gamma_1(g), \gamma_2(g), \ldots, \gamma_n(g)).
\]

4.1. Spectra of adjacency matrix

Theorem 4.1. The relation between \(\sigma(g)\) and \(\sigma(g - 1)\) is

1. \(\frac{\lambda_q(g - 1) + q - 1 \pm \sqrt{(q - 1 - \lambda g)^2 - 4q}}{2} \in \sigma(g)\) with multiplicity 1 for \(i = 1, \ldots, q(q + 1)^{g-1}\) and
2. \(-1 \in \sigma(g)\) with multiplicity \((q - 1)q(q + 1)^{g-1}\).

The result is a corollary of results in [22, 29].

4.2. Spectra of Laplacian matrix

Theorem 4.2. The relation between \(S(g)\) and \(S(g - 1)\) is

1. \(\frac{\gamma_q(g - 1) + q + 1 \pm \sqrt{(q + 1)^2 - 4q}}{2} \in S(g)\) with multiplicity 1 for \(i = 1, \ldots, q(q + 1)^{g-1}\) and
2. \(q + 1 \in S(g)\) with extra multiplicity \((q - 1)q(q + 1)^{g-1}\).

Note that in the first part \(\gamma_1(g - 1) = 0\) will generate an eigenvalue equal to \(q + 1\) with multiplicity 1 in iteration \(g\). So the actual multiplicity of \(q + 1\) is \((q - 1)q(q + 1)^{g-1} + 1\) for any \(g \geq 1\). The proof of theorem 4.2 is evident using methods in [22, 23, 29]. For convenience of the following discussion we give a similar proof here:

Proof. The Laplacian matrix of \(C_q(g)\) is

\[
L(C_q(g)) = \begin{pmatrix}
L(C_q(g - 1)) + qI_n & -I_n & \cdots & -I_n \\
-I_n & \vdots & \ddots & -I_n \\
& \ddots & \ddots & \ddots \\
& & \ddots & L(K_q) + I_q \otimes I_n \\
-I_n & \cdots & \cdots & -I_n
\end{pmatrix}.
\]

Let \(Y_1, \ldots, Y_{N(g-1)}\) be the Laplacian eigenvectors of \(C_q(g - 1)\) corresponding to the eigenvalues \(\gamma_1(g - 1), \gamma_2(g - 1), \ldots, \gamma_{N(g-1)}(g - 1)\), respectively. For \(i = 1, \ldots, N(g - 1)\), let
\[
\phi_i = \frac{\gamma_i(g-1) + q + 1 + \sqrt{(\gamma_i(g-1) + q + 1)^2 - 4\gamma_i(g-1)}}{2}, \\
\hat{\phi_i} = \gamma_i(g-1) + q + 1 - \sqrt{(\gamma_i(g-1) + q + 1)^2 - 4\gamma_i(g-1)}}{2}.
\]

Note that \(\phi_i, \hat{\phi_i}\) are Laplacian eigenvalues of \(C_q(g)\) corresponding to the eigenvectors
\[
\begin{pmatrix}
Y_i \\
g(\phi_i)Y_i \\
\vdots \\
g(\phi_i)Y_i
\end{pmatrix}
= L(C_q(g))
\begin{pmatrix}
Y_i \\
g(\phi_i)Y_i \\
\vdots \\
g(\phi_i)Y_i
\end{pmatrix},
\]
respectively. In fact \(\phi_i\) is obtained by solving
\[
\begin{pmatrix}
\gamma_i(g-1) + q + qg(\phi_i) \\
-1 + g(\phi_i) \\
\vdots \\
-1 + g(\phi_i)
\end{pmatrix}
Y_i = L(C_q(g-1)) + qI_n
\begin{pmatrix}
Y_i \\
g(\phi_i)Y_i \\
\vdots \\
g(\phi_i)Y_i
\end{pmatrix}
+ \sum_{j=1}^q (L(K_\gamma) + I_n)_{ij}I_n
\begin{pmatrix}
-1 \\
\vdots \\
-1
\end{pmatrix}
Y_i.
\]
Thus we can derive the following equations:
\[
\gamma_i(g+1) + q + qg(\phi_i) = \phi_i, \tag{43}
\]
\[
-1 + g(\phi_i) = \phi_i g(\phi_i). \tag{44}
\]

From equation (44) we can obtain that \(g(\phi_i) \neq 0\). Therefore we can substitute equation (44) into equation (43); we have
\[
(\gamma_i(g-1) + q - \phi_i)(\phi_i - 1) = -q, \tag{45}
\]
which leads to the result of the first part of the theorem.

If the Laplacian eigenvalues \(\nu_1 = 0, \nu_2 = \nu_3 = \ldots = \nu_q = q\) of \(L(K_\gamma)\) are correlated with the eigenvectors \(Z_1, Z_2, \ldots, Z_q\), respectively, then for \(j = 2, \ldots, q\) we have
\[
L(C_q(g))\begin{pmatrix}
0 \\
Z_j \otimes e_i
\end{pmatrix} = (q + 1)\begin{pmatrix}
0 \\
Z_j \otimes e_i
\end{pmatrix}. \tag{46}
\]
This completes the proof. \(\square\)
Next we use the results of the Laplacian spectra to prove theorems 3.6 and 3.7. First we give an alternative proof of theorem 3.6.

Proof. It is known that the number of spanning trees of a graph G has the following form \[30, 31\]:

$$N_{tr}(G) = \frac{\prod_{i=2}^{N} \tau_i}{N},$$

(47)

where N is the number of vertices and τ_i refers to N eigenvalues of the graph. Given that the graph is connected, let γ be the unique zero eigenvalue, then $\tau_i, i = 2, ..., N$ are $N - 1$ non-zero eigenvalues of the graph.

Theorem 4.2 tells us that the Laplacian spectrum of $C_q(g)$ consists of two parts. For the first part, we can derive from equation (45) that, in iteration g, γ_i in $C_q(g - 1)$ generates two eigenvalues ϕ_i and $\hat{\phi}_i$, which are subject to the relations $\hat{\phi}_i \phi_i = \gamma_i$ and $\hat{\phi}_i + \phi_i = \gamma_i + q + 1$. In particular, the trivial eigenvalue $\gamma_1 = 0$ generates $\phi_i = q + 1$ and $\hat{\phi}_i = 0$. As for the second part, there is an eigenvalue $\gamma = q + 1$ with multiplicity $(q - 1)q(q + 1)^{q-1}$. We denote by $S(g)$ the sum of all non-zero eigenvalues of $L(C_q(g))$ and by $\Upsilon(g)$ the product of all non-zero eigenvalues of $L(C_q(g))$. Then we can obtain

$$\Upsilon(g) = \prod_{i=2}^{N\text{(q)}} \gamma(g) = (q + 1)^{(q-1)q(q+1)^{q-1}+1} \prod_{i=2}^{N\text{(g-1)}} \phi_i \hat{\phi}_i$$

(48)

$$= (q + 1)^{(q-1)q(q+1)^{q-1}+1} \prod_{i=2}^{N\text{(g-1)}} \gamma(g - 1)$$

$$= \Upsilon(g - 1)q(q + 1)^{(q-1)q(q+1)^{q-1}+1}.$$

Equation (48) and the initial condition $\Upsilon(0) = q^{q-1}$ yield

$$\Upsilon(g) = q^{q-1}(q + 1)^{(q-1)(q+1)^{q-1}+g}.$$

(49)

Therefore

$$N_{tr}C_q(g) = q^{q-2}(q + 1)^{(q-1)(q+1)^{q-1}-1}.$$

□

The result is equivalent to what we derived using the combinatorial method.

In the following we give an alternative proof of theorem 3.7 using the spectral information.

Proof. The Kirchhoff index of a graph (G) can be expressed as [32, 33]

$$R_K(G) = N \sum_{i=2}^{N} \frac{1}{\tau_i},$$

(50)

where N and τ_i are the same as the previous definition. Let

$$S = \sum_{j=2}^{N} \prod_{i=2}^{N} \gamma_i = \prod_{i=2}^{N} \gamma_i \sum_{i=2}^{N} \frac{1}{\gamma_i}.$$

(51)
We can follow the clue of the previous analysis by separating the eigenvalues of its Laplacian matrix into two parts. Recall that the eigenvalues of the Laplacian consist of two parts $\Gamma^{(1)}$ and $\Gamma^{(2)}$ as defined by theorem 4.2. Assume that $\Gamma^{(1)} = \Gamma^{(1)} \setminus \{0\}$. For the first part of the eigenvalues of $L(C_{\gamma}(g))$, we denote them as ϕ_i and $\hat{\phi}_i$, $i = 1, 2, ..., N(g - 1)$. Suppose that the original eigenvalue in $L(C_{\gamma}(g - 1))$, which is correlated with ϕ_i and $\hat{\phi}_i$, is γ_i. Then

$$S(g) = S^{(1)}\Upsilon^{(2)} + S^{(2)}\Upsilon^{(1)},$$

where

$$S^{(1)} = \sum_{\gamma_i \in \Gamma^{(1)}, \gamma_j \in \Gamma^{(1)}} \prod_{i \neq j} \gamma_i,$$ \hspace{1cm} (53)

$$\gamma^{(2)} = \prod_{\gamma_i \in \Gamma^{(2)}} \gamma_i,$$ \hspace{1cm} (54)

$$S^{(2)} = \sum_{\gamma_i \in \Gamma^{(2)}, \gamma_j \in \Gamma^{(2)}} \prod_{i \neq j} \gamma_i,$$ \hspace{1cm} (55)

and

$$\gamma^{(1)} = \prod_{\gamma_i \in \Gamma^{(1)}} \gamma_i.$$ \hspace{1cm} (56)

Accordingly we can obtain

$$S^{(1)} = (q + 1) \prod_{i=2}^{N(g-1)} \phi_i \hat{\phi}_i \left(\sum_{j=1}^{N(g-1)} \left(\frac{1}{\phi_j} + \frac{1}{\hat{\phi}_j} \right) \right) + \prod_{i=2}^{N(g-1)} \phi_i \hat{\phi}_i,$$

$$= (q + 1) \prod_{j=2}^{N(g-1)} \left(\prod_{i \neq j}^{N(g-1)} \phi_i \hat{\phi}_j \right) + \prod_{i=2}^{N(g-1)} \phi_i \hat{\phi}_i,$$

$$= \Upsilon(g - 1) + (q + 1) \prod_{j=2}^{N(g-1)} \gamma_j(g - 1)(\gamma_j(g - 1) + q + 1),$$

$$= \Upsilon(g - 1) + (q + 1) \prod_{j=2}^{N(g-1)} \gamma_j(g - 1)\gamma_j(g - 1) + (q + 1) \prod_{j=2}^{N(g-1)} \gamma_j(g - 1)\gamma_j(g - 1)$$

$$+ (q + 1) \prod_{j=2}^{N(g-1)} \gamma_j(g - 1)(q + 1),$$

$$= (1 + (q + 1)(q(q + 1)^{q-1} - 1))\Upsilon(g - 1) + (q + 1)^2 S(g - 1).$$ \hspace{1cm} (57)

$$\Upsilon^{(2)} = (q + 1)(q^{-1}q(q + 1)^{q-1}),$$ \hspace{1cm} (58)

$$S^{(2)} = (q - 1)q(q + 1)(q(q + 1)^{q-1} + q - 2),$$ \hspace{1cm} (59)
\[\Upsilon^{(1)} = (q + 1)\Upsilon(g - 1). \]

Therefore we obtain a recursive relation of \(S(g) \). Considering the initial condition \(S(0) = (q - 1)q^{g-2} \), we derive

\[S(g) = q^{g-2}(q + 1)^{(g-1)(q+1)+g-1}((2g + 1)q^3 - 2q - 1)(q + 1)^g + q(q + 1)), \]

thus

\[R_{Kt}C_q(g) = (q + 1)^{g-2}((2g + 1)q^3 - 2q - 1)(q + 1)^g + q(q + 1)) = (q^3(2g + 1) - 2q - 1)(q + 1)^{2g-2} + q(q + 1)^{g-1}. \]

Note that equation (62) is consistent with equation (27). For large \(g \), the Kirchhoff index displays the following leading behaviour:

\[R_{Kt}C_q(g) \sim gN(g)^2 \sim N(g)^2 \log_{q+1} N(g). \]

5. Conclusion

In this paper, we have introduced a deterministically growing model to generate a small-world graph, by using the corona product. The advantage of such a model is that many of its properties can be solved exactly. We have derived explicitly many structural quantities of the small-world model. We have also found the eigenvalues for the adjacency matrix and the Laplacian matrix of the model. In future, the properties of various dynamical processes taking place on the small-world model deserve study.

Acknowledgment

This work was supported by the National Natural Science Foundation of China under grant No 11275049.

References

[1] Erdős P and Rényi A 1960 On the evolution of random graphs Publ. Math. Inst. Hung. Acad. Sci. 5 17–61
[2] Milgram S 1967 The small world problem Psychol. Today 2 60–7
[3] Watts D J and Strogatz S H 1998 Collective dynamics of ‘small-world’ networks Nature 393 440–2
[4] Kleinberg J 2000 The small-world phenomenon: an algorithmic perspective Proc. 32nd Annual ACM Symp. on Theory of Computing pp 163–70
[5] Zhang Z and Comellas F 2011 Farey graphs as models for complex networks Theor. Comput. Sci. 412 865–75
[6] Zhang Z and Wu B 2015 Pfaffian orientations and perfect matchings of scale-free networks Theor. Comput. Sci. 570 55–69
[7] Liu H, Dolgushev M, Qi Y and Zhang Z 2015 Laplacian spectra of a class of small-world networks and their applications Sci. Rep. 5 9024
[8] Newman M E J 2003 The structure and function of complex networks SIAM Rev. 45 167–256
[9] Barrat A and Weigt M 2000 On the properties of small-world network models Eur. Phys. J. B 13 547–60
[10] Ferrer-i-Cancho R, Janssen C and Solé R V 2001 Topology of technology graphs: small world patterns in electronic circuits Phys. Rev. E 64 046119

doi:10.1088/1742-5468/2015/11/P11024
Corona graphs as a model of small-world networks

[11] Barabási A L and Albert R 1999 Emergence of scaling in random networks Science 286 509–12
[12] Albert R and Barabási A L 2002 Statistical mechanics of complex networks Rev. Mod. Phys. 74 47
[13] Kleinberg J M, Kumar R, Raghavan P, Rajagopalan S and Tomkins A S 1999 The web as a graph: measurements, models, and methods computing and combinatorics Computing and Combinatorics (Lecture Notes in Computer Science vol 1627) (Berlin: Springer) pp 1–17
[14] Kumar R, Raghavan P, Rajagopalan S and Tomkins A 1999 Extracting large-scale knowledge bases from the web Proc. 25th Int. Conf. on Very Large Data Bases (San Mateo, CA: Morgan Kaufmann Publishers) pp 639–50
[15] Imrich W and Klavžar S 2000 Product Graphs, Structure and Recognition (Wiley Series in Discrete Mathematics and Optimization vol 56) (New York: Wiley)
[16] Young S J and Scheinerman E R 2007 Random dot product graph models for social networks Proc. 5th Int. Conf. on Algorithms and Models for the Web-Graph pp 138–49
[17] Weichsel P M 1962 The Kronecker product of graphs Proc. Am. Math. Soc. 13 47–52
[18] Leskovec J and Faloutsos C 2007 Scalable modeling of real graphs using Kronecker multiplication Proc. 24th Int. Conf. on Machine Learning pp 497–504
[19] Mahdian M and Xu Y 2007 Stochastic Kronecker graphs Proc. Fifth Workshop on Algorithms and Algorithms and Models for the Web-Graph (Berlin: Springer) pp 179–86
[20] Leskovec J 2009 Networks, communities and Kronecker products Proc. First ACM Int. Workshop on Complex Networks Meet Information and Knowledge Management pp 1–2
[21] Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C and Ghahramani Z 2010 Kronecker graphs: an approach to modeling networks J. Mach. Learn. Res. 11 985–1042
[22] Barik S, Pati S and Sarma B K 2007 The spectrum of the corona of two graphs SIAM J. Discrete Math. 21 47–56
[23] Liu Q 2014 The Laplacian spectrum of corona of two graphs Kragujevac J. Math. 38 163–70
[24] Holme P and Kim B J 2002 Growing scale-free networks with tunable clustering Phys. Rev. E 65 026107
[25] Tsourakakis C E 2008 Fast counting of triangles in large real networks without counting: algorithms and laws Proc. Eighth IEEE Int. Conf. on Data Mining (Los Alamitos, CA: IEEE Computer Society Press) pp 608–17
[26] Tsourakakis C E 2011 Counting triangles in real-world networks using projections Knowl. Inf. Syst. 26 501–20
[27] Johnson D L 1971 Minimal permutation representations of finite groups Am. J. Math. 857–66
[28] Klein D J and Randić M 1993 Resistance distance J. Math. Chem. 12 81–95
[29] Sharma R, Adhikari B and Mishra A 2015 On spectra of corona graphs Algorithms and Discrete Applied Mathematics (Lecture Notes in Computer Science vol 8959) (Berlin: Springer) pp 126–37
[30] Biggs N 1994 Algebraic Graph Theory 2nd edn (Cambridge: Cambridge University Press)
[31] Tzeng W J and Wu F Y 2000 Spanning trees on hypercubic lattices and nonorientable surfaces Appl. Math. Lett. 13 19–25
[32] Aldous D and Fill J 2002 Reversible Markov chains and random walks on graphs www.stat.berkeley.edu/~aldous/RWG/book.html
[33] Ghosh A, Boyd S and Saberi A 2008 Minimizing effective resistance of a graph SIAM Rev. 50 37–66

doi:10.1088/1742-5468/2015/11/P11024 16