INTRODUCTION

Infantile hemangioma or hemangioma of infancy is recognized as a benign vascular tumor according to the International Society for the Study of Vascular Anomalies (ISSVA). This is a part of a new classification presented by ISSVA and has been accepted by various specialties. This classification is based on natural history, cellular turnover, and histological features of vascular anomalies. Infantile hemangioma, juvenile hemangioma, hemangioblastoma, benign hemangioendothelioma, and hypertrophic hemangioma are other referral terms used to describe the vascular nature of the disease.[1] This lesion may present as a small isolated lesion or as a large mass with visual impairment. Moreover, it may be associated with extensive systemic involvement.[2] Infantile periocular hemangioma (IPH) mainly involves young children. IPH usually shows a nonlinear growth pattern, and most of its growth occurs between 5.5 to 7.5 weeks of age, while 80% of the final size is reached by the age of approximately 3 months. Although most of the lesions follow a predictable course with spontaneous involution, others may result in serious ocular or systemic complications such as amblyopia and cardiac failure.[3,4] Considering the notable prevalence, specific natural course, and significant ocular complications of this disease, thorough knowledge about the nature of the disease, its clinical manifestations, and treatment indications and modalities is very beneficial for ophthalmologists who will likely be consulted in these cases. In this manuscript, we present a brief review of recent opinions regarding the pathogenesis, diagnosis, and treatment of the patients with IPH.
Epidemiology
Infantile hemangioma is found in approximately 4-5% of infants.\cite{5,6} The annual incidence of IPH has been reported as 5.4 per 100,000 patients (less than 19 years old) and a birth prevalence of 1 in 1586 live births.\cite{7} It is three times more frequent in females and is more prevalent in preterm infants. Risk factors attributed to this condition include multiple births, advanced maternal age, low birth weight, and in vitro fertilization.\cite{8} Other risk factors such as preeclampsia, placental anomalies,\cite{9} chorionic villus sampling, amniocentesis,\cite{10} prenatal maternal vaginal bleeding, progesterone therapy during early pregnancy, low level of maternal education, mother engaged in manual labor, multiple gestations, maternal medication use in periconceptional period, and positive family history of hemangioma have been reported.\cite{11} Although this tumor is more often seen in Caucasians, this race has not been reported as a considerable risk factor.\cite{12}

Pathogenesis
IPH is a benign vascular tumor without a well-understood pathogenesis. It arises from primitive stem cells referred to as hemangioma stem cells (HemSCs). Several studies, through the infusion of these cells into immune-deficient mice or growth in culture, have detected their vascular properties, and have suggested that these cells are capable of differentiation to both endothelial cells and pericytes. Hence, some authors categorized this tumor as a disease of stem cells.\cite{15-17} Tumor growth occurs in different phases. The proliferative phase is determined by the rapid proliferation of HemSCs that continues up to several months after birth. In this phase, the endothelium is metabolically active and immature, and vessels cannot be distinguished well histologically. By the end of the proliferation phase, differentiation begins with the development of mature and enlarged vessels. Subsequently, the involution phase begins with apoptosis of the endothelial cells and deposition of fibro-fatty tissue.\cite{15} The HemSCs in the proliferative phase express some of the pericyte markers such as \(\alpha \)-smooth muscle actin (\(\alpha \)-SMA), neural glial antigen-2 (NG2), platelet-derived growth factor receptor-\(\beta \) (PDGFR\(\beta \)), calponin, and smooth muscle myosin heavy chain. Other investigations have shown the critical role of Notch genes in angiogenesis. Specifically, NOTCH3, a normally expressed gene in vascular smooth muscle cells, was found to be expressed in HemSCs.\cite{15,16,18-21} Other studies found that genes such as HES and HEY genes, which interfere with Notch protein markers, may play a role in infantile hemangiomas as well.\cite{22} These studies have proposed that HES/HEY genes act as a downstream effector of Notch receptors in infantile hemangiomas. Moreover, HES/HEY gene transcription is decreased with the addition of a gamma-secretase inhibitor, another substance attributed to the infantile hemangioma.\cite{13-17,23} It is noteworthy to indicate that some capillary hemangioma patients carry germ line mutations in VEGFR1, VEGFR2, or TEM8. Some of these patients carry heterozygous missense mutations in VEGFR2 or TEM8. Low-level expression of VEGFR1 and subsequent increase in VEGFR2 may contribute to hemangioma formation.\cite{24}

It has been suggested that oral propranolol inhibits angiogenesis by down-regulating the expression of vascular endothelial growth factor (VEGF) in hemangioma-derived stem cells.\cite{25} Hypoxia and tissue markers for hypoxia are other areas of discussion in the pathogenesis of capillary hemangioma. Glucose transporter-1(GLUT-1) and Insulin-like growth factor-2 (IGF-2) are tissue markers of hypoxia.\cite{26} Prenatal hypoxia or placental cell emboli are two examples of hypoxic events associated with increasing level of hypoxia inducible factor 1 (HIF-1) and subsequent increasing of VEGF. A potent mTOR (mammalian target of rapamycin)/VEGF inhibitor, rapamycin, is able to reduce proliferation of hemangioma by reducing HIF-1-dependent expression of VEGF.\cite{27-33} Currently, the role of core 1 beta3Gal-T specific molecular chaperone (COSMC), the specific regulator molecular chaperone for T-synthase in the endoplasmic reticulum, is also being assessed. COSMC dysfunction may lead to overexpression of VEGFR2 and contribute to several vascular disorders including infantile hemangioma.\cite{24}

Clinical Presentations
Infantile hemangiomas are described according to color and shape (strawberry nevus, bluish discoloration),\cite{33} and level of involvement (subcutaneous, deep orbital, combined, segmental, focal and multifocal).\cite{34} Unilateral disease and upper eyelid involvement are more frequent in IPH.\cite{35} Superficial lesions appear a few months after birth as a red papule or nodule that may have a flat or rough surface. Blanching with pressure in these lesions can be helpful to distinguish them from port-wine stain in patients with Sturge-Weber syndrome. Deep lesions can cause some blue to purple discoloration of the skin, or they may only cause anatomical disfigurement without discoloration. [Figure 1] Hemangioma precursor symptoms are color-change, change in the thickness of the skin, and local anatomical distortion. These symptoms present at birth in 65% of patients.\cite{33,36} However, some lesions are not visible at birth but rather present at around 4 weeks of age. Infantile hemangioma exhibits different growth patterns. Deep lesions tend to grow later and longer than superficial hemangiomas.\cite{36} The distribution of facial segmental hemangiomas is associated with developmental neuroectodermal segments on the face and has a potential risk of underlying PHACES syndrome which is characterized by posterior fossa abnormalities.
Infantile Periocular Hemangioma; Tavakoli et al

Journal of Ophthalmic and Vision Research Volume 12, Issue 2, April-June 2017

present at birth, hemangiomas, arterial lesions, cardiac anomalies, eye abnormalities, and sternal clefting.\(^{39}\) In infants with large segmental facial hemangiomas, the incidence of PHACES syndrome increases by a range of 20\% to 30\%.\(^{40,41}\) Many IPHs are diagnosed on clinical examination, but imaging may play a role in deep types with anatomical disfigurement and also in lesions with orbital involvement. Imaging is also useful to assess the depth of lesions and their relation to adjacent structures. As a brief explanation, infantile hemangiomas are described as well-circumscribed masses with hyperechogenicity on ultrasonography. They present as high-flow and low-resistance vascular masses without shunting.\(^{42-45}\) Color Doppler ultrasonography is a useful tool for both diagnosis and monitoring the response to treatment; however, these modalities are applied less frequently for periocular lesions.\(^{42,44}\) On CT scan, capillary hemangiomas are homogenous and attenuated with rapid and uniform contrast enhancement compared to muscles. Calcification and bone remodeling is very rare. On MRI, they appear as well-circumscribed masses with isointense to hyperintense properties compared to extraocular muscles. On T1-weighted images, arterial flow void is seen and on T2-weighted images, increased signal and marked enhancement on post contrast images can be evident. On MR angiography, feeding vessels with the high flow may be observed.\(^{44,46,47}\)

Complications

IPH may result in several systemic, cutaneous, or ocular complications. There are some associated eye abnormalities in PHACES syndrome such as colobomas, microphthalmia, morning glory disc, optic nerve hypoplasia, and peripapillary staphyloma.\(^{40,41}\) Furthermore, this condition may be life-threatening, and may lead to secondary cerebrovascular or neurologic problems. Therefore, in patients with large segmental hemangiomas, PHACES must be ruled out, and an urgent cardiology consultation and head MRI is needed. Ocular complications due to periocular lesions include ptosis, strabismus, telangiectasia, ulceration, scarring, and facial disfigurement, but the most common ocular complication of periocular capillary hemangiomas in infants is visual loss secondary to amblyopia. The incidence of amblyopia is interestingly high due to the early age of the tumor onset.\(^{48}\) It varies from 76\% in older studies to 21\% in recent studies.\(^{48-51}\) The rate of amblyopia was reported to increase with large lesions and also with the delay in starting the treatment after 1 year of age.\(^{40,52}\) Although the patients are highly susceptible to amblyopia in this age period, the risk of amblyopia development should still be considered until 7 years of age. Amblyopia is frequently related to visual deprivation in the affected eye due to the mechanical effect of the mass. Moreover, eyelid mass may alter the topographic parameters of the cornea which result in astigmatism and anisometropia as another predisposing factor for the development of amblyopia.\(^{40,50,53}\) Diffuse and large hemangiomas and those of PHACES syndrome are more prone to amblyopia.\(^{40}\) Astigmatism is detected in 20 to 46 percent of eyes with periocular capillary hemangiomas. It may be permanent in some cases even after tumor disappearance.\(^{50,53}\) Strabismus results from both muscle infiltration and pressure effects of the tumor in some periocular infantile hemangiomas.\(^{40-50,53}\)

Management

As was mentioned earlier, most of the periocular capillary hemangiomas have a benign course with spontaneous resolution; thus, the indications for treatment should be clarified. If hemangiomas have a low risk of complications and are small in size without obvious disfigurement, regular follow-up and observation are recommended.\(^{54}\) The main concern for treatment is the prevention of amblyopia and life-threatening systemic complications such as airway obstruction and high cardiac output problems. Both medical and surgical modalities are suggested for the

![Figure 1. Various presentations of periocular infantile hemangioma. Upper left: superficial, upper lid; upper right: deep upper lid and ocular surface; middle left: superficial lower lid; middle right: deep lower lid; lower left: extensive facial involvement; lower right: orbital involvement (confirmed by incisional biopsy).](image-url)
management of periocular hemangiomas. It is important to discuss the risks and benefits of each treatment with the patient’s family.

Systemic corticosteroids were considered as the mainstay therapy for IPH before the introduction of beta-blockers in recent years. Corticosteroids inhibit VEGF-A product by HemSCs, which can slow down the vasculogenesis in hemangiomas. Moreover, it can suppress other proangiogenic factors such as urokinase plasminogen activator receptor, IL-6, monocyte chemoattractant protein 1, and matrix metalloproteinase-1 (MMP-1). Oral prednisolone with a dose of 2–3 mg/kg/day in a single morning dose for the intermittent short course (2 weeks) is recommended as an effective and safe treatment for IPH. Adverse effects of corticosteroids include adrenal suppression, Cushing’s syndrome, growth retardation, hypertension, immune suppression, temperament disturbance, and gastritis. Due to potential adverse effects of systemic corticosteroids, many have turned to local injections of a corticosteroid. There are several protocols, however, injecting a maximum of 1–5 ml depending on the size and number of lesions of triamcinolone 40 mg/ml with or without betamethasone 4 mg/ml has been widely suggested. A serious but rare complication of injection is a retinal artery or vein occlusion. This problem may be prevented by aspiration prior to injection. In addition, to decrease the risk of this complication, one should inject slowly, avoiding a big bolus going in at once and also avoiding increased local vascular pressure. Eyelid hypopigmentation, subcutaneous fat atrophy, skin necrosis, and periocular calcification are other infrequent complications. Topical corticosteroids have fewer side effects, but are less effective. The use of intermediate to high potency topical glucocorticosteroids for managing superficial tumors is of clinical interest as an additional alternative.

The effect of systemic beta-blockers such as propranolol in the treatment of hemangiomas was first noted in 2008 when two children showed a rapid regression of hemangiomas after receiving propranolol for cardiopulmonary indications. Oral propranolol has been associated with dramatic improvement of IPH lesions in young children [Figures 2 and 3]. This effect could be explained by the action of catecholamines, which upregulate VEGF-A and HIF1-α protein through cAMP and PKA signaling. Propranolol blocks catecholamine stimulation and leads to downregulation of other proangiogenic factors such as MMPs and IL-6 that contribute to hemangioma formation. Early effects of propranolol on hemangiomas are evidenced by shrinkage in the size and reduction of the surface redness due to a decrease in nitric oxide and subsequent vasoconstriction. Intermediate effects are a reduction in and blockage of proangiogenic factors and finally, after long time usage, it induces apoptosis in proliferating phase. The use of systemic propranolol may be indicated in lesions with difficult access for local therapy such as orbital hemangiomas. The dosage of propranolol is in the range of 1–3 mg/kg/day. Possible side effects of propranolol are bradycardia, hypotension, and bronchial hyperactivity especially in patients with reactive airways, hypoglycemia, hyperkalemia, sleep disorder, and gastrointestinal disturbance. For the best results and the least side effects, patients have been treated initially with a low dosage of oral propranolol 0.5 mg/kg/day, divided three times daily while hospitalized under pediatric specialist supervision. After toleration of two doses, the amount is doubled toward maximum dosage. Patients can be discharged after 2–3 days, and their medication is continued orally at home for several months. Topical beta blockers, such as timolol, are associated with fewer side effects and may be effective; these are recommended for localized and superficial hemangiomas. Recently this topical therapy has been recommended for deep lesions, and almost complete involution without a recurrence has been observed. Timolol maleate 0.5% solution or gel can be applied twice daily on the surface of the lesion. It takes from 4 to 8 weeks to show response and treatment should be continued until the end of the involutional phase. Few investigations in recent years support the effectiveness of intralesional propranolol in the treatment of hemangiomas. However, more studies are required to investigate its efficacy. The protocol recommends the use of 0.2 ml (1 mg/ml of propranolol) per centimeter diameter with the maximum volume of 1 ml per injection. Regression begins from the first 24 hours and continues for about 3 weeks. In patients with rebound growth of the lesion, reinjection may be effective.

Interferon alpha-2a and -2b is also recommended in lesions unresponsive to other modalities or in cases of
contraindications for corticosteroid and beta-blockers. A dosage of 1 to 3 million units/m² of body surface area can be used and continued for 2 to 12 months under the supervision of a pediatric specialist. Some notable adverse effects include transient neutropenia, liver function impairment, fever, flu-like syndrome, and neurotoxicity. Other immunosuppressive agents such as vincristine, vinblastine, and cyclophosphamide are reserved for life-threatening hemangiomas. These agents have serious potential side effects and should be prescribed under the supervision of an oncologist or pediatric specialist.

In lesions that show a poor medical response, surgery can be performed as both a diagnostic and therapeutic modality. It is also recommended at the end of the involutional phase for cosmetic purposes. Surgery is also a good option for deeper lid hemangiomas that do not have the superficial strawberry component. There is a high chance of bleeding and hemostasis should be considered especially in large masses.

Vascular-specific pulse dye laser has limited penetration of about 1.2 mm, so its application is limited to superficial types. It reduces skin redness and telangiectasia. It should be applied intermittently every 2 to 4 weeks. Adverse effects include skin atrophy, hypopigmentation, and scar formation. However, other forms of laser therapy such as long pulse dye laser with deeper penetration may be more effective.

Other treatments such as cryotherapy and intralesional bleomycin are not widely used due to the chance of scar formation or limited data.

In conclusion, periocular hemangioma is a common and potentially vision-threatening lesion in young children. Hemangioma stem cells and VEGF play a substantial role in the formation and involution of the disease. It may present as a superficial or a deep lesion, and also show a local or a more extensive involvement. Amblyopia is a major concern and usually, relates to the visual deprivation. Corneal topographic alterations, astigmatism, and strabismus, contribute to the amblyopia as well. The treatment strategy may include observation, or a series of medical treatments, injections and surgical measurements. Recently, the discovery of the effectiveness of propranolol in the treatment of infantile hemangiomas has made it the primary therapeutic option; however, there are still many unknown issues in the mechanism, pathogenesis, and treatment of the disease. Further research is warranted for better understanding of the molecular biochemistry of the disease and discovery of new treatments.

Declarations of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial Support and Sponsorship

Nil.

Conflicts of Interest

There are no conflicts of interest.

REFERENCES

1. Dasgupta R, Fishman SJ. ISSVA classification. Semin Pediatr Surg 2014;23:158-161.
2. Maguiness SM, Frieden IJ. Current management of infantile hemangiomas. Semin Cutan Med Surg 2010;29:106-114.
3. Chang LC, Haggstrom AN, Drolet BA, Baserga E, Chamlin SL, Garzon MC, et al. Growth characteristics of infantile hemangiomas: Implications for management. Pediatrics 2008;122:360-367.
4. Tollefson MM, Frieden IJ. Early growth of infantile hemangiomas: What parents’ photographs tell us? Pediatrics 2012;130:e314-320.
5. Kilcline C, Frieden IJ. Infantile hemangiomas: How common are they? A systematic review of the medical literature. Pediatr Dermatol 2008;25:168-173.
6. Dickson P, Christou E, Wargon O. A prospective study of infantile hemangiomas with a focus on incidence and risk factors. Pediatr Dermatol 2011;28:663-669.
7. Alniemi ST, Oripotterg RJ, Diehl N, Mohney BG. Incidence and clinical characteristics of periocular infantile hemangiomas. Arch Ophthalmol 2012;130:899-899.
8. Haggstrom AN, Drolet BA, Baserga E, Chamlin SL, Garzon MC, Horii KA, et al. Prospective study of infantile hemangiomas: Demographic, prenatal, and perinatal characteristics. J Pediatr 2007;150:294-300.
9. Garzon MC, Drolet BA, Baserga E, Haggstrom AN, Horii K, et al. Comparison of infantile hemangiomas in preterm and term infants: A prospective study. Arch Dermatol 2008;144:1231-1232.
10. Bauland CG, Smit JM, Scheffers, Bartels RH, van den Berg P, Zeebregts CJ, et al. Similar risk for hemangiomas after amniocentesis and transabdominal chorionic villus sampling. J Obstet Gynecol Res 2012;38:371-375.
11. Chen XD, Ma G, Chen H, Ye XX, Jin YB, Lin XX. Maternal and perinatal risk factors for infantile hemangioma: A case-control study. Pediatr Dermatol 2013;30:457-461.
12. Bang GM, Setabutr P. Periocular capillary hemangiomas: Indications and options for treatment. *Middle East Afr J Ophthalmol* 2010;17:121-128.

13. Ma Y, Cui W, Yang J, Qu J, Di C, Amin HM, et al. SALLA, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. *Blood* 2006;108:2726-2735.

14. Yang J, Chai L, Gao C, Fowles TC, Alipio Z, Dang H, et al. SALL4 is a key regulator of survival and apoptosis in human leukemic cells. *Blood* 2008;112:805-813.

15. Khan ZA, Boscolo E, Picard A, Psutka S, Mihm MC Jr. GLUT1: A newly discovered immunohistochemical marker for juvenile hemangioma. *Orbit* 2011;30:54.

16. Xu D, O TM, Shartava A, Wong A, Kitajewski A, Boscolo E, Bischoff J, et al. Isolation, characterization, and in vitro propagation of infantile hemangioma stem cells and an *in vivo* mouse model. *J Hematol Oncol* 2011;4:54.

17. Yuan SM, Chen RL, Chen HN, Zhou XJ. Mesenchymal stem cells in infantile hemangioendothelioma reside in the perivascular region. *Pediatr Dev Pathol* 2012;15:5-12.

18. Wu JK, Adepoju O, De Silva D, Baribault K, Boscolo E, Bischoff J, et al. A switch in Notch gene expression parallels stem cell to endothelial transition in infantile hemangioma. *Angiogenesis* 2010;13:15-23.

19. Smoller BR, Apfelberg DB. Infantile (juvenile) capillary hemangioma: A tumor of heterogeneous cellular elements. *J Cutan Pathol* 1993;20:330-336.

20. Boscolo E, Stewart CL, Greenberger S, Wu JK, Durham JT, Herman IM, et al. JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. *Arterioscler Thromb Vasc Biol* 2011;31:2181-2192.

21. Zhao Q, Wang YA, Yang JX, Zhou Q, Qin ZP, et al. CD133 selected stem cells from proliferating infantile hemangioma and establishment of an *in vivo* mouse model of hemangioma. *Clin Med J (Engl)* 2013;126:88-94.

22. Adepoju O, Kong K, Kitajewski A, Wong A, Boscolo E, Bischoff J, et al. Expression of HES and HEY genes in infantile hemangiomas. *Vasc Cell* 2011;3:19.

23. North PE, Waner M, Mizeracki A, Mihm MC Jr. GLUT1: A newly discovered immunohistochemical marker for juvenile hemangiomas. *Hum Pathol* 2000;31:11-22.

24. Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, et al. Suppressed NFAT-dependent VEGF signaling and constitutive VEGFR2 signaling in infantile hemangioma. *Nat Med* 2008;14:1236-1246.

25. Zhang L, Mai HM, Zheng JW, Wang YA, Yang JX, Qin ZP, et al. Propranolol inhibits angiogenesis via down-regulating the expression of vascular endothelial growth factor in hemangioma derived stem cell. *Int J Clin Exp Pathol* 2013;6:78-55.

26. Ritter MR, Dorrell MI, Edmonds J, Friedlander SF, Friedlander M. Insulin-like growth factor 2 and potential regulators of hemangiomas. *Mol Pharmacol* 2006;70:1469-1480.

27. Koening MK, Hebert AA, Roberson J, Samuels J, Slopis J, Woerner A, et al. Topical ramipracyclin to alleviate the cutaneous manifestations of tuberous sclerosis complex: A double-blind, randomized, controlled trial to evaluate the safety and efficacy of topically applied ramipracyclin. *Drugs RD* 2012;12:121-126.

28. Medici D, Olsen BR. Ramipracycin inhibits proliferation of hemangioma endothelial cells by reducing HIF-1-dependent expression of VEGF. *PLoS One* 2012;7:e42913.

29. Ritter MR, Rentisch J, Friedlander SF, Friedlander M. Myeloid cells in infantile hemangioma. *Am J Pathol* 2006;168:621-628.

30. North PE, Waner M, Buckmiller L, James CA, Mihm MC Jr. Vascular tumors of infancy and childhood: Beyond capillary hemangioma. *Cardiovasc Pathol* 2006;15:303-317.

31. Van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martinez-Martinez P, Vermeulen E, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. *Science* 2007;317:1554-1557.

32. Boye E, Olsen BR. Signaling mechanisms in infantile hemangioma. *Curr Opin Hematol* 2009;16:202-208.

33. Lee JH, Chen CH, Chen YH, Huang MJ, Huang J, Hung JS, et al. COSMC is overexpressed in proliferating infantile hemangioma and enhances endothelial cell growth via VEGFR2. *PLoS One* 2013;8:e56211.

34. Haik BG, Karcigolu ZA, Gordon RA, Pechous BP. Capillary hemangioma (infantile periocular hemangioma). *Surv Ophthalmol* 1994;38:399-426.

35. Schwartz SR, Biefl E, Keiser E, Steele M, Furlan L, Kodsi S. Risk factors for amблиopia in children with capillary hemangiomas of the eyelids and orbit. *J AAPOS* 2006;10:262-268.

36. Couto RA, Macellan MM, Zurakowski D, Greene AK. Infantile hemangioma: Clinical assessment of the involving phase and implications for management. *Plast Reconstr Surg* 2012;130:619-624.

37. Tambe K, Munshi V, Dewsbury C, Ainsworth JR, Willshaw H, Parulekar MV. Relationship of infantile periocular hemangioma depth to growth and regression pattern. *J AAPOS* 2009;13:567-570.

38. Frieden IJ, Reese V, Cohen D. PHACE syndrome. The association of posterior fossa brain malformations, hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities. *Arch Dermatol* 1996;132:307-311.

39. Kronenberg A, Biefl E, Keiser E, Steele M, Furlan L, Kodsi S. Ocular and systemic manifestations of PHACES (Posterior fossa malformations, Hemangiomas, Arterial anomalies, Cardiac defects and coarctation of the Aorta, Eye abnormalities, and Sternal abnormalities or ventral developmental defects) syndrome. *J AAPOS* 2005;9:169-173.

40. Cannady SB, Kahn TA, Traboulsi EI, Koltai PJ. PHACE syndrome: Report of a case with a glioma of the anterior skull base and ocular malformations. *Int J Pediatr Otorhinolaryngol* 2006;70:561-564.

41. Verity DH, Rose GE, Restori M. The effect of intralesional steroid injections on the volume and blood flow in periocular capillary haemangioma. *Orbit* 2008;27:41-47.

42. Spierer O, Neudorfer M, Leibovitch I, Stolovitch C, Kessler A. Colour Doppler ultrasound imaging findings in paediatric periocular and orbital haemangiomas. *Acta Ophthalmol* 2012;90:727-732.

43. Navarro OM, Lafian EE, Ngn BY. Pediatric soft-tissue tumors and pseudo-tumors: MR imaging features with pathologic correlation: Part I. Imaging approach, pseudotumors, vascular lesions, and adipojcytic tumors. *Radiographics* 2009;29:887-906.

44. Verity DH, Restori M, Rose GE. Natural history of periocular capillary haemangiomas: Changes in internal blood velocity and lesion volume. *Eye (Lond)* 2006;20:1228-1237.

45. Bilaniuk LT. Vascular lesions of the orbit in children. *Neuroradiology* *Clin* N Am *2005*;15:107-120.

46. Navarro OM. Soft tissue masses in children. *Radiol Clin North Am* 2011;49:1235-1299.

47. Haik BG, Jakobiec FA, Ellsworth RM, Jones IS. Capillary hemangioma of the lids and orbit: An analysis of the clinical features and therapeutic results in 101 cases. *Ophthalmology* 1979;86:760-792.

48. Robb RM. Refractive errors associated with hemangiomas of the eyelids and orbit in infancy. *Am J Ophthalmol* 1977;83:52-58.

49. Stigmar G, Crawford JS, Ward CM, Thomson HG. Ophthalmic sequelae of infantile hemangiomas of the eyelids and orbit. *Am J Ophthalmol* 1978;85:806-813.

50. Alniemi ST, Griepentrog GJ, Diehl N, Mohney BG. Incidence and...
clinical characteristics of periorificial infantile hemangiomata. *Arch Ophthalmol* 2012;130:89-93.

52. Frank RC, Cowan BJ, Harrop AR, Astle WF, McPhalen DE. Visual development in infants: Visual complications of periorificial haemangiomas. *Plast Reconstr Aesthet Surg* 2010;63:1-8.

53. Schwartz SR, Kdosi SR, Blei F, Ceisler E, Steele M, Furlan L. Treatment of capillary hemangiomas causing refractive and occlusional amblyopia. *J AAPOS* 2007;11:577-583.

54. Hernandez JA, Chia A, Quah BL, Seah LL. Periorificial capillary hemangioma: Management practices in recent years. *Clin Ophthalmol* 2013;7:1227-1232.

55. Greenberger S, Boscolo E, Adini I, Mulliken JB, Bischoff J. Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. *N Engl J Med* 2010;362:1005-1013.

56. Gangopadhyay AN, Sinha CK, Gopal SC, Gupta DK, Sahoo SP, Ahmad M. Role of steroid in childhood haemangioma: A 10 years review. *Int J Surg* 1997;2:49-51.

57. Sadan N, Wolach B. Treatment of hemangiomas of infants with high doses of prednisone. *J Pediatr* 1996;128:141-146.

58. Enjolras O, Riche MC, Merland JJ, Escande JP. Management of alarming hemangiomas in infancy: A review of 25 cases. *Pediatrics* 1990;85:491-498.

59. Awadein A, Fakhry MA. Evaluation of intralesional propranolol for periorificial capillary hemangioma. *Clin Ophthalmol* 2011;5:1135-1140.

60. Samimi DB1, Alabiad CR, Tse DT. An anatomically based approach to intralesional corticosteroid injection for eyelid capillary hemangiomas. *Ophthalmic Surg Lasers Imaging* 2012;43:190-195.

61. Egbert JE, Paul S, Engel WK, Summers CG. High injection pressure during intralesional injection of corticosteroids into capillary hemangiomas. *Arch Ophthalmol* 2001;119:677-683.

62. Akcam A, Karakas Z, Saribeyoglu ET, Unuvar A, Baykal C, Garipardic M, et al. Infantile hemangiomas, complications and follow-up. *Indian Pediatr* 2012;49:805-809.

63. Cruz OA, Zarnegar SR, Myers SE. Treatment of periorificial capillary hemangioma with topical clobetasol propionate. *Ophthalmology* 1995;102:2012-2015.

64. Elsas FJ, Lewis AR. Topical treatment of periorificial capillary hemangiomata. *J Pediatr Ophthalmol Strabismus* 1994;31:153-156.

65. Léauté-Labrèze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, Taieb A. Propranolol for severe hemangiomas of infancy. *N Engl J Med* 2008;358:2649-2651.

66. Aletaha M, Salour H, Bagheri A, Raffati N, Amouhashemi N. Oral propranolol for treatment of pediatric capillary hemangiomas. *J Ophthalmic Vis Res* 2012;7:130-133.

67. Aletaha M, Salour H, Bagheri A, Raffati N, Amouhashemi N. Successful treatment of orbital hemangioma with propranolol in a 5-year-old girl. *Orbit* 2012;31:18-20.

68. Annabi B, Lachambre MP, Plouffe K, Moudjian R, Béliveau R. Propranolol adrenergic blockade inhibits human brain endothelial cells tubulogenesis and matrix metalloproteinase-9 secretion. *Pharmacol Res* 2009;60:438-445.

69. Nilsson MB, Armaiz-Pena G, Takahashi R, Lin YG, Trevino J, Li Y, et al. Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. *J Biol Chem* 2007;282:29919-29926.

70. Storch CH, Hoeger PH. Propranolol for infantile haemangiomas: Insights into the molecular mechanisms of action. *Br J Dermatol* 2010;163:269-274.

71. de Graaf M, Breur JM, Raphaël MF, Vos M, Breugem CC, Parasman SG. Adverse effects of propranolol when used in the treatment of hemangiomas: A case series of 28 infants. *J Am Acad Dermatol* 2011;65:320-327.

72. Chung SH, Park DH, Jung HL, Shim JW, Kim DS, Shim JY, et al. Successful and safe treatment of hemangioma with oral propranolol in a single institution. *Korean J Pediatr* 2012;55:164-170.

73. Ni N, Guo S, Langer P. Current concepts in the management of periorificial infantile (capillary) hemangioma. *Curr Opin Ophthalmol* 2011;22:419-425.

74. Ni N, Langer P, Wagner R, Guo S. Topical timolol for periorificial hemangioma: Report of further study. *Arch Ophthalmol* 2011;129:377-379.

75. Guo S, Ni N. Topical treatment for capillary hemangioma of the eyelid using beta-blocker solution. *Arch Ophthalmol* 2010;128:255-256.

76. Xue K, Hildebrand GD. Deep periorificial infantile capillary hemangiomas responding to topical application of timolol maleate, 0.5%, drops. *JAMA Ophthalmol* 2013;131:1246-1248.

77. Jiménez-Hernández E, Dueñas-González MT, Quintero-Curiel JL, Velásquez-Ortega J, Magaña-Pérez JA, Berges-García A, et al. Treatment with interferon-alpha-2b in children with life-threatening hemangiomas. *Dermatol Surg* 2008;34:640-647.

78. Ezekowitz RA, Mulliken JB, Folkman J. Interferon-alpha-2b for life-threatening hemangiomas of infancy. *N Engl J Med* 1992;326:1456-1463.

79. Caddie MS, Calos MP. Analysis of the autonomus replication behavior in human cells of the dihydrofolate reductase putative chromosomal origin of replication. *Nucleic Acids Res* 1992;20:971-978.

80. Fawcett SL, Grant I, Hall PN, Kesslal AW, Nicholson JC. Vincristine as a treatment for a large haemangioma threatening vital functions. *Br J Plast Surg* 2004;57:168-171.

81. Wananukul S, Voramethkul W, Nuchprayoon P, Saksan P. Diffuse Neonatal Hemangiomatosis: Report of 5 cases. *J Med Assoc Thai* 2006;89:1297-1303.

82. Hurvitz SA, Hurvitz CH, Sloninsky L, Sanford MC. Successful treatment with cyclophosphamide of life-threatening diffuse hemangiomatosis involving the liver. *J Pediatr Hematol Oncol* 2000;22:527-532.

83. Gottschling S, Schneider G, Meyer S, Reinhard H, Dill-Mueller D, Graf N. Two infants with life-threatening diffuse neonatal hemangiomatosis treated with cyclophosphamide. *Pediatr Blood Cancer* 2006;46:239-242.

84. Vlahovic A, Simic R, Djokic D, Ceran C. Diffuse neonatal hemangiomatosis treatment with cyclophosphamide: A case report. *J Pediatr Hematol Oncol* 2009;31:588-590.

85. Pérez-Valle S, Peinador M, Herrera P, Sáenz P, Montoloi G, Vento M. Vincristine, an efficacious alternative for diffuse neonatal hemangiomatosis. *Acta Pediatr* 2010;99:311-315.

86. Levi M, Schwartz S, Blei F, Ceisler E, Steele M, Furlan L, et al. Surgical treatment of capillary hemangiomas causing amblyopia. *J AAPOS* 2007;11:230-234.

87. Sterker I, Gräfe G. Periorificial hemangiomas in childhood - Functional and esthetic results. *Strabismus* 2004;12:103-110.

88. Deans RM, Harris GJ, Kivlin JD. Surgical dissection of capillary hemangiomata. An alternative to intralesional corticosteroids. *Arch Ophthalmol* 1992;110:1743-1747.

89. Batta K, Goodyear HM, Moss C, Williams HC, Hiller L, Waters R. Randomised controlled study of early pulsed dye laser treatment of uncomplicated childhood haemangiomas: Results of a 1-year analysis. *Lancet* 2002;360:521-527.

90. Kono T, Sakurai H, Groff WF, Chan HH, Takeuchi M, Yamaki T, et al. Comparison study of a traditional pulsed dye laser versus a long-pulsed dye laser in the treatment of early childhood hemangiomas. *Lasers Surg Med* 2006;38:112-115.

91. Reischle S, Schuller-Petrovic S. Treatment of capillary hemangiomas of early childhood with a new method of cryosurgery. *J Am Acad Dermatol* 2000;42:809-813.

92. Muir T, Kirsten M, Fournier P, Dippenaar N, Jonescu GO. Intraleosomal bleomycin injection (IBI) treatment for haemangiomas and congenital vascular malformations. *Pediatr Surg Int* 2004;19:766-773.