Rare decays at LHCb

Marco Santimaria1

INFN - Laboratori Nazionali di Frascati, via Enrico Fermi 54, 00044 Frascati (IT)
E-mail: marco.santimaria@cern.ch

Abstract. Flavour-changing neutral-current processes, such as $b \rightarrow s\ell^+\ell^-$, are forbidden at tree level in the Standard Model and hence might receive comparatively large corrections from new particles. This proceeding paper highlights recent measurements from LHCb on $b \rightarrow s\ell^+\ell^-$ and purely-leptonic decays, including tests of lepton flavour universality and searches for lepton flavour violation.

1. Theoretical framework

Rare b–hadron decays offer a rich phenomenology for indirect searches of New Physics (NP), making it possible to probe energies above the TeV scale.

$b \rightarrow s\ell^+\ell^-$ decays are flavour-changing neutral-current (FCNC) processes that can only occur at the loop level in the Standard Model (SM) \cite{1}. The presence of new particles can be spotted via precision measurements of theoretically well-known observables, such as $b \rightarrow s\mu^+\mu^-$ differential branching fractions, angular coefficients as well as ratios of $b \rightarrow s\ell^+\ell^-$ rates for different final state leptons.

Due to the non-perturbative nature of QCD interactions at the b–quark mass scale, an effective Hamiltonian can be built to factorise the high- and low-energy contributions in the limit $M_b \ll M_W$:

$$H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_i V_{\text{CKM}}^i C_i(\lambda) O_i(\lambda),$$

where G_F is the Fermi constant and V_{CKM} are the relevant CKM matrix elements. The long-distance (i.e. low-energy) contributions are described by the local operators O_i, which are factorised from the short-distance contributions, encoded in the Wilson coefficients C_i, at the energy scale λ. The SM local operators describing $b \rightarrow s\ell^+\ell^-$ processes mentioned in this proceeding paper are the vector $O_9^{(\prime)} = (\pi P_L(R)b)(\bar{\ell}\gamma^\mu l)$ and axial-vector $O_{10}^{(\prime)} = (\pi P_L(R)b)(\bar{\ell}\gamma^\mu\gamma^5 l)$ operators, where the prime symbol represents chirality-flipped cases, as projected by $P_L(R) = (1 \pm \gamma^5)/2$.

A generic NP contribution at the scale Λ_{NP} takes the form $\Delta H_{\text{eff}} = (c_i/\Lambda_{\text{NP}}^2)O_i$, and can both alter the value of SM Wilson coefficients or introduce new operators.

2. Branching fractions

Differential branching fractions of various $b \rightarrow s\mu^+\mu^-$ decays have been measured at LHCb as a function of the dilepton invariant mass squared, q^2. Some examples are shown in Fig. 1.
the dimuon mass distribution. The mass distribution of the

![Figure 1](image1)

Figure 1. Differential branching fractions of $B^+ \rightarrow K^+\mu^+\mu^-$, $B^0 \rightarrow K^0\mu^+\mu^-$ and $B_s^0 \rightarrow \phi\mu^+\mu^-$ decays measured at LHCb, compared with LCSR and lattice form factor predictions [2, 3].

In both Run 1 and Run 2 data, measured rates appear to be consistently lower with respect to the SM predictions, whose uncertainty is dominated by the form factors. The discrepancies amount to 5.1 σ and 4.8 σ on the $B^+ \rightarrow K^+\mu^+\mu^-$ and $B^0 \rightarrow \phi\mu^+\mu^-$ branching fractions, respectively, according to a recent CKM-independent prediction employing up-to-date HPQCD form factors [4, 5]. On the experimental side, the precision is limited by the knowledge of $B \rightarrow J/\psi X$ branching fractions used for normalisation. For these reasons, the discrepancies cannot be attributed to anomalous muonic couplings: observables with reduced hadronic contributions should be investigated.

2.1. Purely-leptonic decays

Purely-leptonic final states allow for more precise theoretical predictions. For example, the SM branching fraction of $B_s^0 \rightarrow \mu^+\mu^-$ decays depends only on the Wilson coefficient C_{10} and on a single hadronic constant, known at $\approx 0.5\%$ [6], leading to the prediction $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (3.66 \pm 0.14) \times 10^{-9}$ [7], in which the main uncertainty comes from the inclusive measurement of V_{cb}. A V_{cb}-independent estimate gives instead $\mathcal{B}(B_s^0 \rightarrow \mu^+\mu^-) = (3.78 \pm 0.15) \times 10^{-9}$ [8]. The most-precise LHCb measurement, shown in Fig. 2 (left), agrees with the expectation within one standard deviation [9, 10]. A recent precise measurement from the CMS experiment confirms SM compatibility [11], and is reported in Fig. 2 (right) together with the latest LHC results.

![Figure 2](image2)

Figure 2. Left: Dimuon invariant mass spectrum for the LHCb analysis of $B_s^0 \rightarrow \mu^+\mu^-$ decays. Right: measurements of the $B_s^0 \rightarrow \mu^+\mu^-$ branching fraction from LHC experiments compared to the SM prediction.
These measurements substantially limit the parameter space of two Higgs-doublet models [12] and Minimal Supersymmetric Standard Model [13], in which the rate of $B^0(S) \rightarrow \mu^+\mu^-$ decays is proportional to $\tan^4 \beta$ and $\tan^6 \beta$, respectively.

More fully-leptonic decays are analysed at LHCb, leading to the world’s best upper limits summarised in Tab. 1. These results put strong constraints on NP contributions due for example to scalar and pseudoscalar currents [14, 15].

Table 1. Upper limits on the branching fraction of various fully-leptonic decays at LHCb. A light scalar with $m(a) = 1$ GeV is assumed.

Channel	B upper limit (95% CL)	Reference
$B^0(s) \rightarrow e^+ e^-$	3.0×10^{-9}	[16]
$B^0(s) \rightarrow \tau^+ \tau^-$	2.1×10^{-3}	[17]
$B^0(s) \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	1.8×10^{-10}	[18]
$B^0(s) \rightarrow a(\mu^+ \mu^-)a(\mu^+ \mu^-)$	2.3×10^{-10}	[18]
$B^0(s) \rightarrow J/\psi(\mu^+ \mu^-)\mu^+ \mu^-$	1.0×10^{-9}	[18]

3. Angular observables

The differential decay rate of a B meson to a vector meson (e.g. a K^{*0}) and two leptons can be described by the q^2 and the three angles $\Omega = (\varphi, \theta_K, \theta_\ell)$, defined in Fig. 3 (left):

$$\frac{d^4 \Gamma[B^0 \rightarrow K^{*0} \mu^+ \mu^-]}{dq^2 d\Omega} = \frac{9}{32\pi} \sum_i I_i(q^2)f_i(\Omega),$$

i.e. a superposition of angular moments f_i with coefficients I_i.

The leading hadronic uncertainty cancels in the combination of angular coefficients

$$P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}},$$

where S_5 is a CP-averaged coefficient and F_L represents the longitudinal polarisation fraction of the K^{*0} [19].

The most-precise LHCb measurement of P'_5 is reported in Fig. 3 (right) from the angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays performed on Run 1 and a portion of Run 2 data [20]. The results show local deviations in the fourth and fifth q^2 bins of 2.5 σ and 2.9 σ with respect to the SM prediction. The data can be explained with a ~ 3 σ shift on the real part of the Wilson coefficient C_9, although this deviation depends on the choice of the SM nuisance parameters such as form factors and long-distance contributions from the charmonium modes.

A similar trend in P'_5 is observed in the LHCb analysis of $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ decays [21], whereas a recent measurement of the observable F_L on $B^0 \rightarrow \phi \mu^+ \mu^-$ decays agrees with the SM prediction [22].
4. Ratios of branching fractions

Leptonic Flavour Universality (LFU), i.e. the fact that lepton electroweak couplings are equal, is a property of the SM which has been verified in several channels [23]. However, the discrepancies highlighted in the previous sections prompted the verification of LFU in $b-$hadron decays. Penguin decays of $b-$hadrons can serve as LFU tests via measurements of the ratios of branching fractions:

$$R_h = \frac{\int_{q_{\text{max}}^2}^{q_{\text{min}}^2} \frac{d\Gamma[B \to H \mu^+ \mu^-]}{dq^2} dq^2}{\int_{q_{\text{max}}^2}^{q_{\text{min}}^2} \frac{d\Gamma[B \to H e^+ e^-]}{dq^2} dq^2},$$

with H being a strange hadron. These observables are free from QCD contributions and are predicted in the SM with percent precision due to high-order QED effects [24].

Since LFU in $J/\psi \to \ell^+ \ell^-$ decays is verified with per mille precision [23], the LHCb observables are built as double ratios with respect to the J/ψ resonant modes, in order to profit from the cancellation of detection differences between electrons and muons. In the case of $B^+ \to K^+ \ell^+ \ell^-$ decays, the ratio is defined as:

$$R_K = \frac{B(B^+ \to K^+ \mu^+ \mu^-)}{B(B^+ \to K^+ e^+ e^-)} \times \frac{B(B^+ \to K^+ J/\psi (\mu^+ \mu^-))}{B(B^+ \to K^+ J/\psi (e^+ e^-))},$$

where resonant and rare modes are distinguished by their q^2 values.

Fig. 4 shows the mass spectra of the electron and muon modes from the latest R_K measurement at LHCb [25], yielding the most precise LFU test in this sector. Several other LFU tests have been conducted at LHCb on different decay modes and are summarised in Tab. 2.

Figure 3. Left: angular basis from the $B^0 \to K^{*0} \mu^+ \mu^-$ analysis. Right: P_3' measurement from LHCb compared with the SM prediction [20].

Figure 4. Mass spectra of $B^+ \to J/\psi (\ell^+ \ell^-) K^+$ (left) and $B^+ \to K^+ \ell^+ \ell^-$ (right) decays [25].
Tab. 3. For example, the upper limits on the branching fraction of $B_{\ell\ell}$ have been conducted at LHCb, leading to the world’s best limits on the $B_{\ell\ell}$ decay rates to experimentally accessible levels [30]. Numerous searches have been conducted at LHCb, leading to the world’s best limits on the $B_{\ell\ell}$ decay modes reported in Tab. 3. For example, the upper limits on the branching fraction of $B_{(s)}^{-}\rightarrow e^{\pm}\mu^{\mp}$ decays can be translated into lower bounds on Leptoquark masses at the 100 TeV level in the framework of the Pati-Salam model [31, 32], while the recent search for $B_{(s)}^{0}\rightarrow p\mu^{-}$ decays represents a sensitive probe of both lepton and baryon number violation involving third-generation quarks, which are foreseen by Grand Unified Theory models [33].

Table 3. Upper limits on the branching fraction of LFV modes searched at LHCb.

Channel	B upper limit (95% CL)	Reference
$B_{(s)}^{0}\rightarrow e^{\pm}\mu^{\mp}$	$1.3(6.3)\times 10^{-9}$	[34]
$B_{(s)}^{0}\rightarrow \tau^{\pm}\mu^{\mp}$	$1.4(4.2)\times 10^{-5}$	[35]
$B^{+}\rightarrow K^{+}\mu^{-}\mu^{+}$	9.5×10^{-9}	[36]
$B^{+}\rightarrow K^{+}\mu^{+}\mu^{-}$	8.8×10^{-9}	[36]
$B^{+}\rightarrow K^{+}\mu^{+}\tau^{-}$	5×10^{-5}	[37]
$B^{0}\rightarrow K^{0}\mu^{+}\mu^{-}$	11.7×10^{-9}	[38]
$B_{(s)}^{0}\rightarrow p\mu^{-}$	19.8×10^{-9}	[38]
$B_{(s)}^{0}\rightarrow K^{0}\tau^{+}\tau^{-}$	1.2×10^{-5}	[39]
$B^{0}\rightarrow K^{0}\tau^{-}\mu^{+}$	9.8×10^{-6}	[39]
$B_{(s)}^{0}\rightarrow p\mu^{-}$	$3.1(14.0)\times 10^{-9}$	[40]

5. Searches for Lepton Flavour Violating decays
The conservation of the lepton flavour is an accidental symmetry of the SM, known to be broken in the neutrino sector. However, the induced charged Lepton Flavour Violation (LFV) occurs at immeasurably small rates of order 10^{-54} [29]. NP models contemplating a violation of the LFU, e.g. via Z' or Leptoquark mediators, typically do not conserve lepton flavour, and can thus enhance LFV decay rates to experimentally accessible levels [30]. Numerous searches have been conducted at LHCb, leading to the world’s best limits on the $B_{\ell\ell}$ decay modes reported in Tab. 3. For example, the upper limits on the branching fraction of $B_{(s)}^{-}\rightarrow e^{\pm}\mu^{\mp}$ decays can be translated into lower bounds on Leptoquark masses at the 100 TeV level in the framework of the Pati-Salam model [31, 32], while the recent search for $B_{(s)}^{0}\rightarrow p\mu^{-}$ decays represents a sensitive probe of both lepton and baryon number violation involving third-generation quarks, which are foreseen by Grand Unified Theory models [33].

6. Conclusions
In recent years, several deviations with respect to the SM predictions have been observed in $b\rightarrow s\ell^{+}\ell^{-}$ decays at LHCb. Although individual significances on clean observables do not exceed $2-3$ standard deviations, a coherent pattern seem to emerge: further experimental investigation is required to clarify these anomalies.
References

[1] Glashow S, Iliopoulos J and Maiani L 1970 Phys. Rev. D 2 1285–1292
[2] Aaij R et al. (LHCb) 2014 JHEP 06 133 (Preprint 1403.8044)
[3] Aaij R et al. (LHCb) 2021 Phys. Rev. Lett. 127 151801 (Preprint 2105.14007)
[4] Buras A J 2022 (Preprint 2209.03968)
[5] Parrott W G, Bouchard C and Davies C T H 2022 (Preprint 2207.13371)
[6] Bazavov A et al. 2018 Phys. Rev. D 98 074512 (Preprint 1712.09262)
[7] Beneke M, Bobeth C and Szafron R 2019 JHEP 10 232 (Preprint 1908.07011)
[8] Buras A J and Venturini E 2022 Eur. Phys. J. C 82 615 (Preprint 2203.11960)
[9] Aaij R et al. (LHCb) 2022 Phys. Rev. Lett. 128 041801 (Preprint 2108.09284)
[10] Aaij R et al. (LHCb) 2022 Phys. Rev. D 105 012010 (Preprint 2108.09283)
[11] CMS 2022 URL https://cds.cern.ch/record/2815334
[12] Logan H E and Nierste U 2000 Nucl. Phys. B 586 39–55 (Preprint hep-ph/0004139)
[13] Babu K S and Kolda C F 2000 Phys. Rev. Lett. 84 228–231 (Preprint hep-ph/9909476)
[14] Fleischer R, Jaarsma R and Tetlalmatzi-Xolocotzi G 2017 JHEP 05 156 (Preprint 1703.10160)
[15] Chala M, Egede U and Spannowsky M 2019 Eur. Phys. J. C 79 431 (Preprint 1902.10156)
[16] Aaij R et al. (LHCb) 2020 Phys. Rev. Lett. 124 211802 (Preprint 2003.03999)
[17] Aaij R et al. (LHCb) 2017 Phys. Rev. Lett. 118 251802 (Preprint 1703.02508)
[18] Aaij R et al. (LHCb) 2022 JHEP 03 109 (Preprint 2111.11339)
[19] Matias J, Mescia F, Ramon M and Virto J 2012 JHEP 04 104 (Preprint 1202.4266)
[20] Aaij R et al. (LHCb) 2020 Phys. Rev. Lett. 125 011802 (Preprint 2003.04831)
[21] Aaij R et al. (LHCb) 2021 Phys. Rev. Lett. 126 161802 (Preprint 2012.13241)
[22] Aaij R et al. (LHCb) 2021 JHEP 11 043 (Preprint 2107.13428)
[23] Workman R L and Others (Particle Data Group) 2022 PTEP 2022 083C01
[24] Bordone M, Isidori G and Pattori A 2016 Eur. Phys. J. C 76 440 (Preprint 1605.07633)
[25] Aaij R et al. (LHCb) 2022 Nature Phys. 18 277–282 (Preprint 2103.11769)
[26] Aaij R et al. (LHCb) 2017 JHEP 08 055 (Preprint 1705.05802)
[27] Aaij R et al. (LHCb) 2020 JHEP 05 040 (Preprint 1912.08193)
[28] Aaij R et al. (LHCb) 2022 Phys. Rev. Lett. 128 191802 (Preprint 2110.09501)
[29] Calibbi I and Signorelli G 2018 Riv. Nuovo Cim. 41 71–174 (Preprint 1709.00294)
[30] Glashow S L, Guadagnoli D and Lane K 2015 Phys. Rev. Lett. 114 091801 (Preprint 1411.0565)
[31] Valencia G and Willenbrock S 1994 Phys. Rev. D 50 6843–6848 (Preprint hep-ph/9409201)
[32] Santimaria M (LHCb) 2020 PoS EPS-HEP2019 249
[33] Georgi H and Glashow S L 1974 Phys. Rev. Lett. 32 438–441
[34] Aaij R et al. (LHCb) 2018 JHEP 03 078 (Preprint 1710.04111)
[35] Aaij R et al. (LHCb) 2019 Phys. Rev. Lett. 123 211801 (Preprint 1905.06614)
[36] Aaij R et al. (LHCb) 2019 Phys. Rev. Lett. 123 241802 (Preprint 1909.01010)
[37] Aaij R et al. (LHCb) 2020 JHEP 06 129 (Preprint 2003.04352)
[38] LHCb 2022 (Preprint 2207.04005)
[39] LHCb 2022 (Preprint 2209.09846)
[40] LHCb 2022 (Preprint 2210.10412)