Kidney Function and Estimated Vascular Risk in Patients with Primary Dyslipidemia

Konstantinos Tziomalos¹, Emmanuel S. Ganotakis², Irene F. Gazi³, Devaki R. Nair⁴ and Dimitri P. Mikhailidis¹,*

¹Department of Clinical Biochemistry (Vascular Prevention Clinic) and Department of Surgery, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
²Department of Internal Medicine, University Hospital of Heraklion, University of Crete Medical School, Heraklion, Crete, Greece
³Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
⁴Department of Clinical Biochemistry (Vascular Prevention Clinic), Royal Free Hospital, London, UK

Abstract: Background: Chronic kidney disease (CKD) is associated with increased vascular risk. Some studies suggested that considering markers of CKD might improve the predictive accuracy of the Framingham risk equation.

Aim: To evaluate the links between kidney function and risk stratification in patients with primary dyslipidemia.

Methods: Dyslipidemic patients (n = 156; 83 men) who were non-smokers, did not have diabetes mellitus or evident vascular disease and were not on lipid-lowering or antihypertensive agents were recruited. Creatinine clearance (CrCl) was estimated using the Cockcroft-Gault equation. Estimated glomerular filtration rate (eGFR) was calculated using the Modification of Diet in Renal Disease (MDRD) equation. We estimated vascular risk using the Framingham equation.

Results: In both men and women, there was a significant negative correlation between estimated Framingham risk and both eGFR and CrCl (p < 0.001 for all correlations). When men were divided according to creatinine tertiles, there were no significant differences in any parameter between groups. When men were divided according to either eGFR or CrCl tertiles, all estimated Framingham risks significantly increased as renal function declined (p<0.001 for all trends). When women were divided according to creatinine tertiles, all estimated Framingham risks except for stroke significantly increased as creatinine levels increased. When women were divided according to either eGFR or CrCl tertiles, all estimated Framingham risks significantly increased as renal function declined.

Conclusions: Estimated vascular risk increases as renal function declines. The possibility that incorporating kidney function in the Framingham equation will improve risk stratification requires further evaluation.

Key Words: Creatinine, estimated glomerular filtration rate, chronic kidney disease, vascular risk, Framingham risk score.

INTRODUCTION

Primary prevention of vascular disease should be guided by the assessment of global risk [1-3]. Patients with higher vascular risk should be managed more aggressively [1, 3, 4]. A number of risk estimation engines that consider different risk factors have been developed [5, 6]. The Framingham risk score for subjects without evident vascular disease is well established [5].

The Framingham calculation considers the following vascular risk factors: age, gender, total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), smoking, systolic blood pressure (SBP), diastolic blood pressure (DBP), the presence of diabetes mellitus (DM) and left ventricular hypertrophy [5]. Limitations of the Framingham risk equation include the absence of family history (FaHist) of premature vascular disease and age limits [1, 7, 8]. Furthermore, triglyceride (TG) levels and potentially relevant emerging risk factors are not considered [1, 7, 8]. In some studies, the assessment of emerging risk factors, such as high sensitivity C-reactive protein (hsCRP), added to the prognostic accuracy of the Framingham risk equation [9,10]. Similarly, chronic kidney disease (CKD) is associated with increased vascular risk in the general population [11-14]. Some studies suggested that considering markers of CKD might improve the predictive accuracy of the Framingham equation [15-17].

The aim of the present study was to evaluate the links between kidney function and risk stratification (using the Framingham equation) in non-smokers with primary dyslipidemia and no evident vascular disease or DM.
METHODS

Patient Selection

The records of 645 consecutive patients referred to a specialist centre for dyslipidemia were assessed [18, 19]. Among these patients, 234 untreated
1. Treatment with any lipid lowering or antihypertensive agent during the previous 4 months.
2. Those with fasting serum glucose concentration > 5.0 mmol/l required a normal oral glucose tolerance test in order to be included in the survey.
3. Abnormal liver function tests: Reference ranges were: aspartate aminotransferase = 5 - 40 u/l; alanine aminotransferase = 5 - 40 u/l; gamma-glutamyl transferase = 10 - 48 u/l; alkaline phosphatase = 35 - 130 u/l; albumin = 35 - 55 g/l; bilirubin = 3 - 17 μmol/l (values up to 25 μmol/l were allowed provided all other liver function tests were normal).
4. Abnormal renal function: Reference ranges were: urea = 3.0 - 6.5 mmol/l (values up to 7.5 mmol/l were allowed for those above the age of 70 years); creatinine = 60 - 120 μmol/l; sodium = 135 - 145 mmol/l; potassium = 3.5 - 5.0 mmol/l.
5. Abnormal thyroid function tests: Reference ranges were: thyroid stimulating hormone = 0.5 - 4.7 mU/l; free thyroxine = 10 - 25 pmol/l.
6. Declared or determined history of alcohol or drug abuse. For alcohol consumption, the limits were set at 21 and 14 units/week for men and women, respectively.
7. Psychiatric conditions, whether involving medication or not.
8. Chronic inflammatory disease (e.g. rheumatoid arthritis, Crohn’s disease, ulcerative colitis, collagen diseases) or cancer [since an acute phase response may influence several variables (e.g. HDL-C)] [20-23].
9. Treatment with retinoic acid derivatives, tamoxifen, androgens, oestrogens (hormone replacement therapy or oral contraceptives), progestins, fish oils or ciclosporin since these drugs may exert effects on lipids [24-28].
10. Current or recent (4-month) pregnancy.
11. Current smokers or those who quit had quit for less than 6 months before sampling. A 6-month period was selected to allow time for reversal of measured variables within a practical time frame.

Clinical and Laboratory Investigations

Collection of samples: All samples were collected in the morning after fasting for a minimum of 12 h with water only allowed.

Lipid profile: Serum TC, HDL-C and TG levels were assayed by standard enzymatic methods (Boehringer Mannheim, Sussex, England) adapted for the Hitachi 911 analyser (HDL-C was measured after precipitating apolipoprotein B using a phosphotungstate procedure). Serum low density lipoprotein cholesterol (LDL-C) levels were calculated by the Friedewald formula. Patients with serum TG levels > 4.5 mmol/l, in whom LDL-C cannot be determined by the above formula, are not included in the analysis.

Liver and renal function profiles and serum glucose concentration were all determined by standard methods used in our department.

Creatinine clearance (CrCl) was estimated using the Cockcroft-Gault equation: CrCl (ml/min) = [140 – age (in years)] x [weight (in kg)] x 0.85 (if female) / [72 x serum creatinine (in mg/dl)] [29]. Estimated glomerular filtration rate (eGFR) was calculated using the Modification of Diet in Renal Disease (MDRD) equation: eGFR (ml/min/1.73 m²) = 186 x [serum creatinine (in mg/dl)]^1.154 x [age (in years)] ^(-0.203) x 0.742 (if female) x 1.210 (if black) [30].

The Department of Clinical Biochemistry, Royal Free Hospital participates in several quality assurance programs and has full Clinical Pathology Accreditation (CPA).

Calculation of Vascular Risk Using the Framingham Equation [www.bhsoc.org]

The Framingham risk engine can only be used to calculate vascular risk in the absence of cardiovascular disease (CVD). The following variables are considered: age, gender, SBP and DBP, serum TC and HDL-C levels, smoking status and the presence/absence of DM or left ventricular hypertrophy based on electrocardiographic criteria [5]. The equation estimates the 10-year risk for coronary heart disease (CHD), stroke and overall CVD based on either SBP (SBP-CHD, SBP-stroke and SBP-CVD, respectively) or DBP (DBP-CHD, DBP-stroke and DBP-CVD, respectively). We also estimated CVD risk taking a FaHist of premature vascular disease (any event before the age of 60 years) into consideration (termed SBP-CVD+FaHist and DBP-CVD+FaHist, respectively). A positive FaHist was considered to add 50% to the overall risk.

The Framingham equation has age limits (32 to 74 years). To increase the number of patients, men aged 24-31 years were entered as 32 years old and those aged 75-76 years were entered as 74 years old. Similarly, women aged 27-31 years were entered as 32 and those aged 75-78 years were entered as 74 years old.

Statistical Analysis

All data were analyzed using the statistical package SPSS (version 12.0; SPSS Inc., Chicago, IL). Continuous values are expressed as median and range. Correlations between variables were assessed using Spearman Rank correlation. The Kruskal-Wallis test was used to assess the trend of variables divided according to creatinine, eGFR or CrCl tertiles. The chi-square test was used to compare the agreement between eGFR and CrCl in classifying patients in tertiles of renal function. Because we assessed the correlation between indices of renal function (creatinine, eGFR and CrCl) and 22 other parameters, a 2-tailed p < 0.031 was considered significant [31]. In all other analyses, a 2-tailed p < 0.05 was considered significant.
RESULTS

The clinical characteristics of the 156 patients (83 men) enrolled in this survey are listed in Table 1. Estimated risk for CHD, stroke and CVD based on SBP and DBP are shown in Table 2.

Significant correlations between the indices of renal function (creatinine, eGFR and CrCl) and other parameters are shown in Tables 3 and 4. In men, there was a significant positive correlation between creatinine levels and SBP-CHD, SBP-CVD, DBP-CHD and DBP-CVD (Table 3). In women, creatinine levels correlated significantly with all estimated risks (Table 4). In both men and women, there was a significant negative correlation between all estimated risks and both eGFR and CrCl (p < 0.001 for all correlations; Tables 3 and 4).

When men were divided according to creatinine tertiles, there were no differences in any parameter between groups. When men were divided according to either eGFR or CrCl tertiles, all estimated risks increased significantly as renal

Table 1. Clinical Characteristics of the Study Population

	Men (n = 83)	Women (n = 73)
Age (years)	49 (24-76)	55 (27-78)
Weight (kg)	81.2 (61.1-119.0)	65.3 (45.7-96.0)
Systolic blood pressure (mmHg)	130 (85-170)	135 (100-185)
Diastolic blood pressure (mmHg)	80 (60-100)	80 (70-115)
Lipid profile		
TC (mmol/l)	7.1 (4.5-12.2)	7.6 (4.5-11.7)
LDL-C (mmol/l)	5.0 (2.4-9.3)	5.4 (2.7-9.7)
HDL-C (mmol/l)	(0.6-2.1)	1.4 (0.6-2.6)
TG (mmol/l)	2.2 (0.7-7.4)	1.6 (0.5-4.8)
TC/HDL-C	6.3 (3.6-14.2)	5.6 (2.7-12.3)
LDL-C/HDL-C	4.3 (2.4-10.2)	4.0 (1.4-8.9)
Lipoprotein a (g/l)	0.25 (0.05-2.10)	0.34 (0.05-1.54)
Fibrinogen (g/l)	3.05 (1.44-5.47)	3.51 (2.11-6.29)
Glucose (mmol/l)	4.8 (3.6-5.6)	4.7 (3.3-6.1)
Urate (mmol/l)	0.38 (0.21-0.81)	0.28 (0.17-0.51)
Renal function		
Creatinine (μmol/l)	93 (72-112)	74 (51-120)
eGFR (MDRD) (ml/min/1.73 m²)	80 (62-115)	76 (42-120)
Creatinine clearance (CG) (ml/min)	101 (58-153)	82 (30-148)

TC, total cholesterol; LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; TG, triglycerides; eGFR, estimated glomerular filtration rate; MDRD, modification of diet in renal disease equation. CG, cockcroft-gault equation.

Table 2. Estimated Vascular Risk of the Study Population

	Men (n = 83)	Women (n = 73)
SBP-CHD	11.2 (0.7-41.4)	9.1 (0.0-22.1)
SBP-stroke	1.1 (0.1-8.5)	1.4 (0.1-9.7)
SBP-CVD	12.4 (0.8-49.3)	10.6 (0.1-31.8)
DBP-CHD	10.7 (0.5-40.0)	9.3 (0.0-23.1)
DBP-stroke	0.9 (0.0-8.7)	1.3 (0.0-8.3)
DBP-CVD	11.7 (0.5-45.4)	11.0 (0.0-31.4)
SBP-CVD + FaHist	14.6 (1.2-73.9)	12.0 (0.1-47.7)
DBP-CVD + FaHist	14.3 (0.7-68.1)	13.5 (0.0-47.1)

CHD, coronary heart disease; CVD, cardiovascular disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; FaHist, family history; SBP-CHD, estimated CHD risk based on SBP; SBP-stroke, estimated stroke risk based on SBP; SBP-CVD, estimated CVD risk based on SBP; DBP-CHD, estimated CHD risk based on DBP; DBP-stroke, estimated stroke risk based on DBP; DBP-CVD, estimated CVD risk based on DBP; SBP-CVD + FaHist, estimated CVD risk based on SBP and the presence of FaHist; DBP-CVD + FaHist, estimated CVD risk based on DBP and the presence of FaHist.
function declined (p<0.001 for all trends; Tables 5 and 6). It should be noted that there was significant disagreement in the classification of men in tertiles according to eGFR or CrCl. Thus, among men in the lowest, middle and higher eGFR tertile, only 46, 29 and 70%, respectively, were also in the lowest, middle and higher CrCl tertile, respectively (p<0.001).

When women were divided according to creatinine tertiles, all estimated risks except for stroke significantly increased as creatinine levels increased (Table 7). When women were divided according to either eGFR or CrCl tertiles, all estimated risks significantly increased as renal function declined (Tables 8 and 9). There was significant disagreement in the classification of women in tertiles

Table 3. Significant Correlations Between Markers of Renal Function and Other Parameters in Men (n = 83). Due to Multiple Correlations, a p value < 0.031 is Considered Significant

Correlations between serum creatinine levels and other parameters	Parameter	r	P
	TC	0.252	0.022
	LDL-C	0.249	0.023
	TC/HDL-C	0.256	0.02
	LDL-C/HDL-C	0.291	0.008
	SBP-CHD	0.289	0.008
	SBP-CVD	0.259	0.018
	DBP-CHD	0.292	0.007
	DBP-CVD	0.268	0.014

Correlations between eGFR (MDRD) and other parameters	Parameter	r	P
	Age	-0.544	<0.001
	SBP-CHD	-0.605	<0.001
	SBP-stroke	-0.456	<0.001
	SBP-CVD	-0.588	<0.001
	DBP-CHD	-0.620	<0.001
	DBP-stroke	-0.520	<0.001
	DBP-CVD	-0.607	<0.001
	SBP-CVD + FaHist	-0.501	<0.001
	DBP-CVD + FaHist	-0.533	<0.001

Correlations between creatinine clearance (CG) and other parameters	Parameter	r	P
	Age	-0.807	<0.001
	Weight	0.599	<0.001
	HDL-C	-0.283	0.010
	SBP-CHD	-0.697	<0.001
	SBP-stroke	-0.703	<0.001
	SBP-CVD	-0.708	<0.001
	DBP-CHD	-0.714	<0.001
	DBP-stroke	-0.763	<0.001
	DBP-CVD	-0.727	<0.001
	SBP-CVD + FaHist	-0.632	<0.001
	DBP-CVD + FaHist	-0.667	<0.001

For abbreviations, see Tables 1 and 2.
Table 4. Significant Correlations Between Markers of Renal Function and Other Parameters in Women (n = 73). Due to Multiple Correlations, a p value < 0.031 is Considered Significant

Correlations between serum creatinine levels and other parameters	Parameter	r	p
	Age	0.330	0.004
	Triglycerides	0.273	0.019
	Glucose	0.258	0.029
	Urate	0.408	0.001
	SBP-CHD	0.361	0.002
	SBP-stroke	0.317	0.006
	SBP-CVD	0.349	0.002
	DBP-CHD	0.348	0.003
	DBP-stroke	0.344	0.003
	DBP-CVD	0.348	0.003
	SBP-CVD+ FaHist	0.360	0.002
	DBP-CVD+ FaHist	0.370	0.001

Correlations between eGFR (MDRD) and other parameters	Parameter	r	p
	Age	-0.535	<0.001
	Fibrinogen	-0.298	0.011
	Glucose	-0.342	0.003
	Triglycerides	-0.308	0.008
	Urate	-0.435	<0.001
	SBP-CHD	-0.510	<0.001
	SBP-stroke	-0.502	<0.001
	SBP-CVD	-0.511	<0.001
	DBP-CHD	-0.499	<0.001
	DBP-stroke	-0.544	<0.001
	DBP-CVD	-0.515	<0.001
	SBP-CVD+ FaHist	-0.525	<0.001
	DBP-CVD+ FaHist	-0.538	<0.001

Correlations between creatinine clearance (CG) and other parameters	Parameter	r	p
	Age	-0.685	<0.001
	Weight	0.318	0.006
	Fibrinogen	-0.275	0.019
	Glucose	-0.303	0.01
	SBP-CHD	-0.556	<0.001
	SBP-stroke	-0.628	<0.001
	SBP-CVD	-0.582	<0.001
	DBP-CHD	-0.531	<0.001
	DBP-stroke	-0.649	<0.001
Table 4 contd....

Correlations between creatinine clearance (CG) and other parameters	r	p
DBP-CVD	-0.569	<0.001
SBP-CVD+ FaHist	-0.607	<0.001
DBP-CVD+ FaHist	-0.612	<0.001

For abbreviations, see Table 2.

Table 5. Significant Differences Between Groups when men were Divided According to Estimated Glomerular Filtration Rate Tertiles (Modification of Diet in Renal Disease Equation)

Estimated Glomerular Filtration Rate Tertiles (ml/min/1.73 m^2)	p for Trend			
< 75 (n = 28)	75-86 (n = 28)	> 86 (n = 27)		
LDL-C (mmol/l)	5.2 (3.3-7.7)	4.5 (2.4-6.9)	4.9 (2.6-9.3)	0.028
TC/HDL-C	7.2 (4.6-10.9)	5.5 (3.6-9.0)	6.4 (4.6-14.2)	0.002
LDL-C/HDL-C	5.2 (3.1-7.7)	3.5 (2.4-6.5)	4.3 (2.8-10.2)	<0.001
Age (years)	52.5 (43-76)	51.5 (25-67)	36 (24-70)	<0.001
SBP-CHD	17.2 (6.9-41.4)	10.2 (1.3-22.8)	5.4 (0.7-25.9)	<0.001
SBP-stroke	1.5 (0.2-8.5)	1.3 (0.1-4.4)	0.4 (0.1-7.7)	<0.001
SBP-CVD	18.2 (7.1-49.3)	11.6 (1.4-26.0)	5.7 (0.8-32.5)	<0.001
DBP-CHD	16.3 (7.7-40.0)	10.0 (0.7-22.8)	5.0 (0.5-24.6)	<0.001
DBP-stroke	1.2 (0.4-8.7)	1.2 (0.0-3.9)	0.2 (0.0-4.7)	<0.001
DBP-CVD	17.8 (8.5-45.4)	10.8 (0.7-25.8)	5.2 (0.5-29.3)	<0.001
SBP-CVD+ FaHist	19.8 (7.1-73.9)	14.6 (2.1-35.5)	7.9 (1.2-32.5)	<0.001
DBP-CVD+ FaHist	19.2 (8.8-68.1)	15.4 (1.0-32.8)	7.3 (0.7-29.3)	<0.001

For abbreviations, see Tables 1 and 2.

Table 6. Significant Differences Between Groups when men were Divided According to Creatinine Clearance (Cockcroft-Gault Equation)

Creatinine Clearance Tertiles (ml/min)	p for Trend			
< 90 (n = 28)	90-109 (n = 28)	> 109 (n = 27)		
TG (mmol/l)	1.6 (0.7-3.3)	2.5 (0.8-7.4)	2.5 (0.9-4.8)	0.02
HDL-C (mmol/l)	1.2 (0.7-2.1)	1.1 (0.8-1.9)	1.0 (0.6-1.4)	0.042
Weight (kg)	72.9 (61.1-83.0)	87.1 (62.0-96.6)	84.5 (72.2-119.0)	<0.001
Age (years)	58.5 (44-76)	49 (31-64)	34 (24-51)	<0.001
SBP-CHD	16.1 (7.9-41.4)	12.1 (1.6-24.8)	5.2 (0.7-13.2)	<0.001
SBP-stroke	2.2 (0.5-8.5)	1.1 (0.2-7.7)	0.3 (0.1-1.5)	<0.001
SBP-CVD	18.4 (8.4-49.3)	13.4 (2.8-32.5)	5.6 (0.8-14.6)	<0.001
DBP-CHD	16.5 (7.2-40.0)	12.3 (1.2-21.2)	5.0 (0.5-12.9)	<0.001
DBP-stroke	2.3 (0.5-8.7)	0.9 (0.1-4.2)	0.2 (0.0-1.2)	<0.001
DBP-CVD	18.3 (8.5-45.4)	13.6 (1.3-25.2)	5.2 (0.5-13.8)	<0.001
SBP-CVD+FaHist	19.4 (10.8-73.9)	16.7 (4.2-36.9)	7.6 (1.2-20.7)	<0.001
DBP-CVD+FaHist	19.7 (8.5-68.1)	16.3 (1.9-33.3)	6.4 (0.7-17.8)	<0.001

For abbreviations, see Tables 1 and 2.
Table 7. Significant Differences Between Groups when Women were Divided According to Serum Creatinine Tertiles

Parameter	Serum Creatinine Tertiles (μmol/l)	P for Trend		
	≤ 67 (n = 24)	68-79 (n = 24)	≥ 80 (n = 25)	
DBP (mmHg)	80 (70-115)	85 (70-110)	80 (70-105)	0.041
TC (mmol/l)	7.6 (4.9-10.1)	7.1 (4.5-11.7)	8.0 (6.0-10.1)	0.023
TG (mmol/l)	1.2 (0.5-3.6)	1.7 (0.6-4.8)	1.8 (0.6-3.7)	0.044
LDL-C (mmol/l)	5.7 (2.7-8.4)	4.6 (2.7-9.7)	5.9 (3.9-7.8)	0.028
Urate (mmol/l)	0.24 (0.17-0.33)	0.30 (0.21-0.50)	0.32 (0.19-0.51)	0.006
SBP-CHD	4.8 (0.2-22.1)	6.4 (0.0-18.3)	11.2 (1.0-20.8)	0.015
SBP-CVD	6.3 (0.3-31.8)	9.2 (0.1-24.8)	13.3 (1.4-24.1)	0.03
DBP-CHD	4.9 (0.1-23.1)	8.6 (0.0-22.4)	12.3 (0.9-22.8)	0.022
DBP-CVD	6.3 (0.1-31.4)	10.3 (0.0-24.2)	14.2 (1.2-25.8)	0.029
SBP-CVD+FaHist	8.1 (0.3-47.7)	9.6 (0.1-24.8)	18.3 (2.1-36.1)	0.013
DBP-CVD+FaHist	8.0 (0.1-47.1)	11.0 (0.0-26.4)	18.3 (1.8-27.0)	0.009

For abbreviations, see Tables 1 and 2.

Table 8. Significant Differences Between Groups when Women were Divided According to Estimated Glomerular Filtration Rate Tertiles (Modification of Diet in Renal Disease Equation)

Estimated Glomerular Filtration Rate Tertiles (ml/min/1.73 m²)	P for Trend			
< 69 (n = 24)	69-83 (n = 25)	> 83 (n = 24)		
DBP (mmHg)	82 (70-105)	85 (70-115)	80 (70-90)	0.005
TG (mmol/l)	1.9 (0.9-3.7)	1.7 (0.6-4.8)	1.2 (0.5-3.6)	0.012
Fibrinogen (g/l)	3.64 (2.54-5.76)	3.58 (2.32-5.16)	3.15 (2.11-6.29)	0.028
Glucose (mmol/l)	4.8 (4.2-5.6)	4.7 (3.7-6.1)	4.4 (3.3-6.0)	0.032
Urate (mmol/l)	0.32 (0.19-0.51)	0.30 (0.21-0.50)	0.25 (0.17-0.33)	0.001
Age (years)	61 (40-72)	55 (38-78)	48 (27-67)	<0.001
SBP-CHD	12.1 (1.0-20.8)	8.6 (1.1-22.1)	3.6 (0.0-18.5)	<0.001
SBP-stroke	2.2 (0.4-7.8)	1.5 (0.2-9.7)	0.5 (0.1-6.3)	0.001
SBP-CVD	14.7 (1.4-24.1)	10.0 (1.3-31.8)	4.6 (0.1-19.5)	<0.001
DBP-CHD	12.5 (0.9-22.8)	9.8 (1.2-23.1)	3.4 (0.0-19.2)	<0.001
DBP-stroke	2.0 (0.3-5.1)	1.6 (0.2-8.3)	0.6 (0.0-2.9)	<0.001
DBP-CVD	14.8 (1.2-25.8)	11.4 (1.4-31.4)	4.1 (0.0-20.0)	<0.001
SBP-CVD+FaHist	20.2 (2.1-36.1)	10.8 (1.9-47.7)	5.2 (0.1-25.6)	<0.001
DBP-CVD+FaHist	18.4 (1.8-27.0)	12.8 (1.9-47.1)	4.1 (0.0-24.0)	<0.001

For abbreviations, see Tables 1 and 2.

according to eGFR or CrCl. Thus, among women in the lowest, middle and higher eGFR tertile, only 71, 44 and 67%, respectively, were also in the lowest, middle and higher CrCl tertile, respectively (p < 0.001).

DISCUSSION

CKD is defined as the presence of either eGFR < 60 ml/min/1.73m² or persistent albuminuria [30]. The prevalence of CKD is rising due to the progressive aging of the
population and the increasing number of patients with type 2 DM [32-36]. It was reported that approximately 13.1% of the US adult population has CKD [37]. The prevalence of CKD in the UK ranges between 5.8 and 12.0% [38,39]. In both countries, CKD is more frequent in women than in men [37, 39].

Several studies showed that impaired renal function is associated with increased vascular mortality in the general population [11-14], in patients with stable CHD [40-42], acute coronary syndromes (ACS) [43, 44], stroke [45] or peripheral arterial disease (PAD) [46]. CKD is also a risk factor for stroke in the general population [47] and in patients with CHD [48] although others reported an association only with hemorrhagic stroke [49]. CKD is associated with increased risk for PAD [50] and renal artery stenosis in the general population [51] and correlates with ankle-brachial index (ABI) in patients with PAD [52]. Both established and emerging risk factors are implicated in the increased vascular morbidity and mortality in CKD [53].

In our study, estimated vascular risk significantly increased as kidney function deteriorated. In previous reports, the Framingham risk score was higher in patients with CKD than in those with normal kidney function [54]. In addition, the Framingham model appears to underestimate vascular risk in patients with CKD [55]. In contrast, an analysis of the Atherosclerosis Risk in the Communities (ARIC) study showed that accounting for CKD did not improve discrimination of the Framingham equation for vascular events [17]. In the same study, considering renal function improved discrimination for total mortality in white men but not in white women [17].

The MDRD equation is the proposed method for eGFR assessment in clinical practice [30]. It is currently recommended that serum creatinine levels should not be used as the sole means to assess kidney function [33]. However, the MDRD equation was developed in patients with CKD and appears to be less accurate in patients with normal kidney function or moderately reduced eGFR [30,56,57]. The Cockcroft-Gault equation also misclassified approximately 30% of subjects in population studies [58]. Significant differences in classification regarding renal function comparing MDRD and Cockcroft-Gault equations were also seen in the present study. Other indices of kidney function might also be useful. Cystatin C levels might reflect GFR more accurately than creatinine [59]. Elevated cystatin C levels were associated with vascular events in elderly subjects [60] and in patients with established CHD [61]. However, cystatin C levels also show variations depending on age, gender, body weight, smoking and presence of inflammation [62].

We estimated vascular risk using the Framingham risk equation. Some studies performed in the UK showed that the Framingham engine accurately predicts vascular events [63] although others reported an overestimation of CHD risk with this model [64-66]. A meta-analysis showed a considerable variation in the predictive value of the Framingham risk score in different populations [67]. It appears to overestimate risk in low risk populations and to underestimate risk in high risk populations [67]. The Prospective Cardiovascular Munster (PROCAM) score is also used to estimate vascular risk [6]. This score considers all risk factors of the Framingham equation but replaces LDL-C for TC levels and includes TG levels and FaHist of CHD [6]. Elevated TG levels appear to be associated with increased vascular risk [68]. Studies in the UK showed that PROCAM and Framingham models have similar predictive values [65, 66]. In contrast, we reported that, in dyslipidemic patients without established vascular

Table 9. Significant Differences Between Groups when Women where Divided According to Creatinine Clearance Tertiles (Cockcroft-Gault Equation)
Creatinine Clearance Tertiles (ml/min)

Fibrinogen (g/l)
Glucose (mmol/l)
Weight (kg)
Age (years)
SBP-CHD
SBP-stroke
SBP-CVD
DBP-CHD
DBP-stroke
DBP-CVD
SBP-CVD+ FaHist
DBP-CVD+ FaHist

For abbreviations, see Tables 1 and 2.
Kidney Function and Estimated Vascular Risk

function declines. The possibility that incorporating kidney function in the Framingham predictive equation will improve risk stratification requires further work.

ABBREVIATIONS

ABI = Ankle-brachial index
ACS = Acute coronary syndromes
ARIC = Atherosclerosis risk in the communities
CHD = Coronary heart disease
CKD = Chronic kidney disease
CrCl = Creatinine clearance
CVD = Cardiovascular disease
DBP = Diastolic blood pressure
DM = Diabetes mellitus
eGFR = Estimated glomerular filtration rate
FaHist = Family history
HDL-C = High density lipoprotein cholesterol
hsCRP = High sensitivity C-reactive protein
LDL-C = Low density lipoprotein cholesterol
MDRD = Modification of diet in renal disease
PAD = Peripheral arterial disease
PROCAM = Prospective cardiovascular munster
SBP = Systolic blood pressure
SHARP = Study of heart and renal protection
TC = Total cholesterol
VA-HIT = Veterans’ affairs high-density lipoprotein intervention trial

DECLARATION OF INTEREST

This study was performed independently; no company or institution supported it financially. Some of the authors have attended conferences, given lectures and participated in advisory boards or trials sponsored by various pharmaceutical companies. Konstantinos Tziomalos is supported by a grant from the Hellenic Atherosclerosis Society.

REFERENCES

[1] Grundy SM, Pasternak R, Greenland P, Smith S Jr, Fuster V. Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation 1999; 100: 1481-92.
[2] Pearson TA, Blair SN, Daniels SR, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction from the American Heart Association and the American College of Cardiology. Circulation 2002; 106: 388-91.
[3] Graham I, Atar D, Borch-Johnsen K, et al. European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Eur Heart J 2007; 28: 2375-414.
[4] Grundy SM. Primary prevention of coronary heart disease: integrating risk assessment with intervention. Circulation 1999; 100: 988-98.
[5] Anderson KM, Wilson PW, O’ Dell PM, Kannel WB. An updated coronary risk profile. A statement for health professionals. Circulation 1991; 83: 356-62.
Mikhailidis DP, Spyro Poulos KA. The effect of tamoxifen on lipid metabolism. Cancer Treat Rev 2009; 35: 175-80.

Grundy SM, Balady GJ, Criqui MH, et al. Primary prevention of coronary heart disease: guidelines from the Framingham: a statement for healthcare professionals from the AHA Task Force on Risk Reduction. American Heart Association. Circulation 1998; 97: 1876-87.

Jurgensen JS. The value of risk scores. Heart 2006; 92: 1713-4.

Koenig W, Lowel H, Baumert J, Meisinger C. C-reactive protein modulates risk prediction based on the Framingham Score: implications for future risk assessment: results from a large cohort study in southern Germany. Circulation 2004; 109: 1349-53.

Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347: 1557-65.

Astor BC, Hallan SI, Miller ER, III, Yeung E, Coresh J. Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population. Am J Epidemiol 2008; 167: 1226-34.

Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004; 351: 1296-305.

Meisinger C, Doring A, Lowel H. Chronic kidney disease and risk of incident myocardial infarction and all-cause and cardiovascular disease mortality in middle-aged men and women from the general population. Eur Heart J 2006; 27: 1245-50.

Van Biesen W, De Bacquer D, Verbeke F, Delanghe J, Lameire N, Vankulborst R. The glomerular filtration rate in an apparently healthy population and its relation with cardiovascular mortality during 10 years. Eur Heart J 2007; 28: 478-83.

Ajanl UA, Ford ES, McGuire LC. Distribution of lifestyle and emerging risk factors by 10-year risk for coronary heart disease. Eur J Cardiovasc Prev Rehabil 2006; 13: 745-52.

Cao JJ, Biggs ML, Barzilay J, Astor BC, Hallan SI, Miller ER, III, Yeung E, Coresh J. Chronic kidney disease: a new cardiovascular risk factor. Semin Vasc Med 2002; 2: 417-28.

Koren-Morag N, Goldbourt U, Tanne D. Renal dysfunction and the long-term risk of acute coronary events based on the 10-year Framingham risk scores, and cardiac and mortality outcomes. Eur J Cardiovasc Prev Rehabil 2006; 13: 745-52.

Korevaar NS, McMurray JJ, Velazquez EJ, Anavekar NS, McMurray JJ, Velazquez EJ, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 2004; 351: 1285-95.

Shlipak GM, Heidenreich PA, Noguchi H, Browner WS, McClellan MB. Association of renal insufficiency with treatment and outcomes after myocardial infarction in elderly patients. Ann Intern Med 2002; 137: 555-62.

Perkovic V, Ninomiya T, Arima H, et al. Chronic kidney disease, cardiovascular events, and the effects of perindopril-based blood pressure lowering: data from the PROGRESS study. J Am Soc Nephrol 2007; 18: 2766-72.

Pasqualini L, Schillaci G, Pirro M, Ninomiya T, Arima H, Perkovic V, et al. Chronic kidney disease, cardiovascular events, and the effects of perindopril-based blood pressure lowering: data from the PROGRESS study. J Am Soc Nephrol 2007; 18: 2766-72.

Khusoohu H, Hoffman JL. Advice on statistical analysis for Circulation Research. Circ Res 2002; 91: 662-71.

Meguid EN, Belo TJ. Chronic kidney disease: the global challenge. Lancet 2005; 366: 331-40.

Levy AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 2003; 139: 137-47.

Fox CS, Larson MG, Leip EP, Cullen B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA 2004; 291: 844-50.

Bos MJ, Koudstaal PJ, Hofman A, Breteler MM. Decreased glomerular filtration rate is a risk factor for hemorrhagic but not for ischemic stroke: the Rotterdam Study. Stroke 2007; 38: 3127-32.

Meguid EN, Belo TJ. Chronic kidney disease: the global challenge. Lancet 2005; 366: 331-40.

Kruskall J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States. JAMA 2007; 298: 2038-47.

Raymond NT, Zehnder D, Smith SC, Stinson JA, Lehnert H, Higgins RM. Elevated relative mortality risk with mild-to-moderate chronic kidney disease decreases with age. Nephrol Dial Transplant 2007; 22: 3214-20.

Stevens PE, O'Donoghue DJ, de Los Santos S, et al. Chronic kidney disease management in the United Kingdom: NEOFIRICA project results. Kidney Int 2007; 72: 92-9.

Athyros VG, Mikhailidis DP, Liberopoulos EN, et al. Effect of statin treatment on renal function and serum uric acid levels and their relation to vascular events in patients with coronary heart disease and metabolic syndrome: a subgroup analysis of the GREEK Atherosclerosis and Coronary Heart disease Epidemiology and Prevention [GREACE] Study. Nephrol Dial Transplant 2007; 22: 118-27.

Athyros VG, Mikhailidis DP, Papageorgiou AA, et al. The effect of statins versus untreated dyslipidaemia on renal function in patients with coronary heart disease. A subgroup analysis of the Greek Atherosclerosis and Coronary Heart disease Epidemiology and Prevention [GREACE] study. J Clin Pathol 2004; 57: 728-34.

Tonelli M, Isles C, Curhan GC, et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation 2004; 110: 1557-63.

Anavekar NS, McMurray JJ, Velazquez EJ, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 2004; 351: 1285-95.

Shlipak MG, Heidenreich PA, Noguchi H, Chertow GM, Browner WS, McClellan MB. Association of renal insufficiency with treatment and outcomes after myocardial infarction in elderly patients. Ann Intern Med 2002; 137: 555-62.

Perkovic V, Ninomiya T, Arima H, et al. Chronic kidney disease, cardiovascular events, and the effects of perindopril-based blood pressure lowering: data from the PROGRESS study. J Am Soc Nephrol 2007; 18: 2766-72.

Pasqualini L, Schillaci G, Pirro M, et al. Renal dysfunction predicts long-term mortality in patients with lower extremity arterial disease. J Intern Med 2007; 262: 688-77.

Wannamethee SG, Shaper AG, Perry IJ. Serum creatinine concentration and risk of ischemic stroke or TIA in patients with cardiovascular disease. J Intern Med 2007; 262: 688-77.

Stevens PE, O'Donoghue DJ, de Los Santos S, et al. Chronic kidney disease management in the United Kingdom: NEOFIRICA project results. Kidney Int 2007; 72: 92-9.
obese patients with the metabolic syndrome: the FenOrli study. Curr Med Res Opin 2005; 21: 1997-2006.

[95] Hottelart C, El Esper N, Rose F, Achard JM, Fournier A. Fenofibrate increases creatininemia by increasing metabolic production of creatinine. Nephron 2002; 92: 536-41.

[96] Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus [the FIELD study]: randomised controlled trial. Lancet 2005; 366: 1849-61.

[97] Ansquer JC, Foucher C, Rattier S, Taskinen MR, Steiner G. Fenofibrate reduces progression to microalbuminuria over 3 years in a placebo-controlled study in type 2 diabetes: results from the Diabetes Atherosclerosis Intervention Study [DAIS]. Am J Kidney Dis 2005; 45: 485-93.

[98] Shepherd J, Kastelein JJ, Bittner V, et al. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT [Treating to New Targets] study. J Am Coll Cardiol 2008; 51: 1448-54.

[99] Chonchol M, Cook T, Kjekshus J, Pedersen TR, Lindenfeld J. Simvastatin for secondary prevention of all-cause mortality and major coronary events in patients with mild chronic renal insufficiency. Am J Kidney Dis 2007; 49: 373-82.

[100] MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360: 7-22.

[101] Sever PS, Dahlof B, Poulter NR, et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial–Lipid Lowering Arm [ASCOT-LLA]: a multicentre randomised controlled trial. Lancet 2003; 361: 1149-58.

[102] Baigent C, Landry M. Study of Heart and Renal Protection [SHARP]. Kidney Int Suppl 2003; S207-S210.

[103] Tonelli M, Collins D, Robins S, Bloomfield H, Curhan GC. Gemfibrozil for secondary prevention of cardiovascular events in mild to moderate chronic renal insufficiency. Kidney Int 2004; 66: 1123-30.

[104] Athyros VG, Elisaf M, Papageorgiou AA, et al. Effect of statins versus untreated dyslipidemia on serum uric acid levels in patients with coronary heart disease: a subgroup analysis of the GREek Atorvastatin and Coronary-heart-disease Evaluation [GREACE] study. Am J Kidney Dis 2004; 43: 589-99.

[105] Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med 2008; 359: 1811-21.

[106] Gerstein HC, Mann JF, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and non diabetic individuals. JAMA 2001; 286: 421-6.

[107] Arlov J, Evans JC, Meigs JB, et al. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and non diabetic individuals: the Framingham Heart Study. Circulation 2005; 112: 969-75.

[108] Karagiannis A, Mikhailidis DP, Tziomalos K, Kakafika AI, Athyros VG. Has the time come for a new definition of microalbuminuria? Curr Vasc Pharmacol 2008; 6: 81-3.

[109] Garg AX, Kiberd BA, Clark WF, Haynes RB, Clase CM. Albuminuria and renal insufficiency prevalence guides population screening: results from the NHANES III. Kidney Int 2002; 61: 2165-75.

[110] Cirillo M, Lanti MP, Menotti A, et al. Definition of kidney dysfunction as a cardiovascular risk factor: use of urinary albumin excretion and estimated glomerular filtration rate. Arch Intern Med 2008; 168: 617-24.

[111] Foster MC, Hwang SJ, Larson MG, et al. Cross-classification of microalbuminuria and reduced glomerular filtration rate: associations between cardiovascular disease risk factors and clinical outcomes. Arch Intern Med 2007; 167: 1386-92.

[112] Olsen MH, Wachtell K, Ibsen H, et al. Reductions in albuminuria and in electrocardiographic left ventricular hypertrophy independently improve prognosis in hypertension: the LIFE study. J Hypertens 2006; 24: 775-81.

© Tziomalos et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.