Memory Window and Endurance Improvement of Hf$_{0.5}$Zr$_{0.5}$O$_2$-Based FeFETs with ZrO$_2$ Seed Layers Characterized by Fast Voltage Pulse Measurements

Wenwu Xiao1*, Chen Liu1*, Yue Peng2, Shuaizhi Zheng1, Qian Feng2, Chunfu Zhang2, Jincheng Zhang2, Yue Hao2, Min Liao1* and Yichun Zhou1

Abstract

The HfO$_2$-based ferroelectric field effect transistor (FeFET) with a metal/ferroelectric/insulator/semiconductor (MFIS) gate stack is currently being considered as a possible candidate for high-density and fast write speed non-volatile memory. Although the retention performance of the HfO$_2$-based FeFET with a MFIS gate stack could satisfy the requirements for practical applications, its memory window (MW) and reliability with respect to endurance should be further improved. This work investigates the advantage of employing ZrO$_2$ seed layers on the MW, retention, and endurance of the Hf$_{0.5}$Zr$_{0.5}$O$_2$ (HZO)-based FeFETs with MFIS gate stacks, by using fast voltage pulse measurements. It is found that the HZO-based FeFET with a ZrO$_2$ seed layer shows a larger initial and 10-year extrapolated MW, as well as improved endurance performance compared with the HZO-based FeFET without the ZrO$_2$ seed layer. The results indicate that employing of a direct crystalline high-k/Si gate stack would further improve the MW and reliability of the HfO$_2$-based FeFETs.

Keywords: HfO$_2$-based FeFET, Memory window, Retention, Endurance, ZrO$_2$ seed layer

Background

HfO$_2$-based ferroelectric thin films are considered as promising gate-stack materials for ferroelectric field effect transistors (FeFETs) because of their complementary metal-oxide-semiconductor (CMOS) compatibility and scalability. Among several kinds of gate stack structures that can be used in FeFETs, a metal/ferroelectric/insulator/semiconductor (MFIS) represents a more practical configuration because it follows the current MOS device architectures and matches well with the modern high-k metal-gate (HKMG) processes. Therefore, great efforts have been made to design and fabricate FeFETs with MFIS gate stack structures for applications in embedded nonvolatile memories, negative capacitance field effect transistors, artificial neurons, synapses, and logic-in-memory devices [1–8].

Up to now, high-density and fast write speed FeFETs with MFIS gate stack structures have been successfully fabricated using HKMG processes [9, 10]. In addition to the high integration density and fast write speed, a large memory window (MW) and a high reliability with respect to retention and endurance are also critical for employing FeFETs for nonvolatile memory applications [11–14]. Owing to a large band offset to silicon, a high coercive field and a moderate dielectric constant of the HfO$_2$-based ferroelectric thin films, HfO$_2$-based FeFETs with MFIS gate stack structures exhibit reliable retention properties (10-year extrapolation) [15–17]. However, although the HfO$_2$-based thin films demonstrate moderate endurance over 1×10^8 switching cycles [14, 18], HfO$_2$-based FeFETs with MFIS gate stack structures have a rather limited endurance ranging from 1×10^4 to 1×10^7 switching cycles [17, 19–23]. Theoretically, employing of high-k insulator layers is expected to...
reduce the electric field in the MFIS gate stack, which would alleviate the band bending, thereby improving the endurance properties and the MWs of the HfO$_2$-based FeFETs [12, 14]. Experimentally, Ali et al. verified that increasing the k value of the ultrathin insulator layer (i.e., using SiON instead of SiO$_2$) can effectively improve the endurance properties as well as the MW of the HfO$_2$-based FeFETs [13]. In our previous research [24], we reported that the insertion of a crystalline ZrO$_2$ high-k layer in the MFIS gate stacks could improve the crystalline quality and suppress the formation of monoclinic phase in Hf$_{0.5}$Zr$_{0.5}$O$_2$ (HZO) thin films, which leads to a large MW of 2.8 V characterized by DC voltage sweep method.

In this work, we report on the characterization of the MWs, retention, and endurance of the HZO-based FeFETs with and without crystalline ZrO$_2$ seed layers by using fast positive and negative voltage pulse measurements. Moreover, the advantage of employing crystalline ZrO$_2$ seed layers on the MW and endurance properties is discussed.

Methods

The n-channel FeFETs with and without ZrO$_2$ seed layers were fabricated using a gate last process, as described in [24]. The ZrO$_2$ seed layer and the HZO layer were both grown at a growth temperature of 300 °C by atomic layer deposition (ALD). The schematic of the fabricated FeFETs is shown in Fig. 1a, whose channel width (W) and length (L) were 80 and 7 µm, respectively. Meanwhile, TaN/HZO/TaN and TaN/HZO/ZrO$_2$/TaN capacitors were also fabricated to evaluate the ferroelectric properties of the HZO thin films. The polarization–voltage (P–V) hysteresis loops of the capacitors were measured using a Radiant Technologies RT66A ferroelectric test system, while the device characteristics of FeFETs were measured by an Agilent B1500A semiconductor device analyzer with a pulse generator unit (B1525A) [20]. Two main test sequences used for MW and endurance measurements are shown in Fig. 1b and c. For MW and retention measurements, program/erase (P/E) pulses were first applied to the gates of FeFETs, and read operations were performed at different time intervals using I_D–V_D sweep (V_D = 0.1 V) to sense V_{TH}. Generally, V_{TH} is determined as a gate voltage corresponding to a drain current of 10^{-7} A·W/L [25], and the MW is defined as the difference of V_{TH} values between programmed and erased states. For endurance measurements, the MW was measured after a certain number of alternating P/E pulses.

Results and Discussion

Figure 2a shows the P–V hysteresis loops of the TaN/HZO/TaN and TaN/HZO/ZrO$_2$/TaN capacitors. Remarkably, the TaN/HZO/ZrO$_2$/TaN capacitor possesses even better ferroelectric properties than the TaN/HZO/TaN capacitor, which is consistent with the reported results [26], indicating that the crystalline ZrO$_2$ seed layer could indeed improve the crystalline quality and suppress the formation of monoclinic phase in HZO thin films [24]. Figure 2b shows the I_D–V_G curves of the HZO-based FeFETs with and without additional crystalline ZrO$_2$ seed layers after P/E pulses. The red symbol lines represent the I_D–V_G curves after applying a program pulse of 7 V/100 ns, while the blue symbol lines represent the I_D–V_G curves after applying an erase pulse.

Fig. 1 a Schematic of the fabricated FeFETs. The additional crystalline ZrO$_2$ seed layer is marked by black gridlines. b, c Test sequences used for MW and endurance measurements.
of $-7\, \text{V}/100\, \text{ns}$. One can see that the I_D-V_G curves of both FeFETs show counterclockwise switching characteristics, suggesting that the MWs of the present FeFETs are originated from the polarization switching of the HZO layers, rather than the charge trapping and injection. Nevertheless, the HZO-based FeFET with the additional crystalline ZrO$_2$ seed layer exhibits an improved MW of 1.4 V, approximately 1.8 times larger than that (0.8 V) of the HZO-based FeFET without the additional crystalline ZrO$_2$ seed layer. Moreover, the obtained MW of 1.4 V is comparable to the best results reported to date [9, 11, 14, 17, 21–23, 27].

Reliability with respect to the retention of the HZO-based FeFETs with and without additional crystalline ZrO$_2$ seed layers was also evaluated. Figure 3 shows the V_{TH} retention characteristics after applying a program pulse of $7\, \text{V}/100\, \text{ns}$ and an erase pulse of $-7\, \text{V}/100\, \text{ns}$ at room temperature. It is clear that the V_{TH} values are approximately linear with the logarithmic time scale. The extrapolated MW after 10 years for the HZO-based FeFET with the additional crystalline ZrO$_2$ seed layer is 0.9 V, larger than that (0.6 V) for the HZO-based FeFET without the additional crystalline ZrO$_2$ seed layer. Since the thick capacitance equivalent thickness (CET) of the ZrO$_2$ (1.5 nm)/SiO$_2$ (2.6 nm) gate insulator layers would lead to an enhanced depolarization field in the gate stack [13, 15], further improvement in retention properties could be expected if the thickness of the SiO$_2$ layer is reduced.

Figure 4 shows the evolution of I_D-V_G curves after ±$7\, \text{V}/100\, \text{ns}$ alternating P/E cycles. For the FeFET with the additional crystalline ZrO$_2$ seed layer, both significant shift and slope degradation in the I_D-V_G curves are observed from the early stages of P/E cycling, and the I_D-V_G curves in the erased states exhibit more slope degradation compared with the program states. For the FeFET with the additional crystalline ZrO$_2$ seed layer, although the I_D-V_G curves in erased states exhibit an obvious positive shift during the early stages of P/E cycling that is attributed to the “wake up” effect [13, 28–32], no obvious shift of I_D-V_G curves in the program states is observed up to 1×10^8 cycles. Moreover, for the FeFET with the additional crystalline ZrO$_2$ seed layer, the I_D-V_G curves in both erased and program states exhibit only a slight slope degradation up to 1×10^8 cycles.

According to previous reports [12, 28, 33], the parallel shift in I_D-V_G curves is attributed to the gradual accumulation of trapped charges in the gate stack, while the slope degradation in I_D-V_G curves is the result of interface trap generation. Since trapped charges can be detrapped by electrical means, but generation of interface...
traps is irreversible, minimizing interface trap generation is extremely important for improving the endurance properties [28]. The interface traps generated by P/E cycling (Δ\(N_{it}\)) can be described using Eq. (1) [34, 35]:

\[
\Delta SS = \frac{\Delta N_{it} k T \ln 10}{C_{FI} \Phi_F}
\]

(1)

where ΔSS is the change of the subthreshold swing, \(k\) is the Boltzmann constant, \(T\) is the absolute temperature, \(C_{FI}\) is the total capacitance of gate stack, and \(\Phi_F\) is the Fermi potential. The Δ\(N_{it}\) as a function of the P/E cycle for the HZO-based FeFETs with and without additional crystalline ZrO\(_2\) seed layers is shown in Fig. 5. Clearly, for the FeFET without the additional crystalline ZrO\(_2\) seed layer, the Δ\(N_{it}\) increases obviously from the early stages of the P/E cycling, and Δ\(N_{it}\) in the erased states is much larger than that in the program states. However, the Δ\(N_{it}\) for the FeFET with the additional crystalline ZrO\(_2\) seed layer almost does not change up to 1 × 10\(^3\) cycles, and it is always smaller than that for the FeFET without the additional crystalline ZrO\(_2\) seed layer. Because inserting the additional ZrO\(_2\) seed layer reduces the electric field in the gate stack and thus the band bending is weaker, the interface trap generation is alleviated [12, 14].

Figure 6 shows the evolution of gate leakage current characteristics (\(I_G-V_G\) curves) of HZO-based FeFETs with and without ZrO\(_2\) seed layers with P/E cycling. For the FeFET without the additional crystalline ZrO\(_2\) seed layer, the gate leakage current increases dramatically from the early stages of the P/E cycling. However, the gate leakage current for the FeFET with the additional crystalline ZrO\(_2\) seed layer almost does not change up to 5 × 10\(^2\) cycles, and it is always smaller than that for the FeFET without the additional crystalline ZrO\(_2\) seed layer. It is reported that the increase in the gate leakage current might be related to the generated interface traps [28]. The reduction in the gate leakage current with cycling for the FeFET with the additional crystalline ZrO\(_2\) seed layer would be attributed to the suppression of interface trap generation.

The \(V_{TH}\) values for program and erase states extracted from the \(I_D-V_G\) curves of the HZO-based FeFETs with and without additional crystalline ZrO\(_2\) seed layers are shown in Fig. 7. The HZO-based FeFET with the additional crystalline ZrO\(_2\) seed layer always exhibits a larger MW than the HZO-based FeFET without the additional crystalline ZrO\(_2\) seed layer. Moreover, the MW of the HZO-based FeFET without the additional crystalline ZrO\(_2\) seed layer decreases obviously from the early stages of P/E cycling, while the MW of the HZO-based FeFET with the additional crystalline ZrO\(_2\) seed layer decreases slightly up to 1 × 10\(^3\) cycles. As the P/E cycling number is further increased, the HZO-based
FeFET with the additional crystalline ZrO\textsubscript{2} seed layer also shows obvious degradation in the slope of the \(I_D - V_G \) curves and the MW, due to the enhanced generation of interface traps. However, the MW of the HZO-based FeFET with the additional crystalline ZrO\textsubscript{2} seed layer is still larger than 0.9 V up to \(1 \times 10^4 \) cycles, which is approximately 2.3 times larger than that (0.4 V) of the HZO-based FeFET without the additional crystalline ZrO\textsubscript{2} seed layer. As discussed previously, the decrease of the required electric field for obtaining more saturated polarization states are probably responsible for the improved endurance properties.

Conclusions

The MWs as well as the reliability with respect to retention and endurance of the HZO-based FeFETs with the TaN/HZO/SiO\textsubscript{2}/Si and TaN/HZO/ZrO\textsubscript{2}/SiO\textsubscript{2}/Si MFIS gate stacks were characterized by fast voltage pulse measurements. The results show that the HZO-based FeFET with the additional crystalline ZrO\textsubscript{2} seed layer exhibits a large initial memory window of 1.4 V and an extrapolated 10-year retention of 0.9 V, larger than the initial memory window (0.8 V) of the HZO-based FeFET without the additional crystalline ZrO\textsubscript{2} seed layer. Moreover, the reliability with respect to the endurance of the HZO-based FeFET can be improved by inserting the crystalline ZrO\textsubscript{2} seed layer in between the HZO layer and the SiO\textsubscript{2}/Si substrate. The MW and endurance improvement of HZO-based FeFETs with ZrO\textsubscript{2} seed layers are primarily related to the improved crystalline quality of the HZO layer and the suppressed generation of interface traps due to the decrease of the required electric field for obtaining more saturated polarization states. On the basis of this work, it is expected that employing of a direct crystalline high-k/Si gate stack would further improve the MWs and reliability of the HfO\textsubscript{2}-based FeFETs, and thus warrant further study and development.

Abbreviations

CMOS: Complementary metal-oxide-semiconductor; FeFET: Ferroelectric field effect transistor; FeFETs: Ferroelectric field effect transistors; HKMG: High-k metal-gate; HZO: Hf\textsubscript{0.5}Zr\textsubscript{0.5}O\textsubscript{2}; I\textsubscript{D}: Drain current; L: Length; MFIS: Metal/ferroelectric/insulator/semiconductor; MW: Memory window; P/E: Program/erase; P–V: Polarization–voltage; SS: Subthreshold swing; V\textsubscript{G}: Gate voltage; V\textsubscript{TH}: Threshold voltage; W: Width; \(\Delta N \text{it} \): The generated interface traps

Acknowledgements

Not applicable.

Authors’ Contributions

WWX carried out the experiments and drafted the manuscript. WWX and CL did the data analysis and interpreted the results. WWX, ML, YP, and SZZ designed the experiments. CL helped to measure the device. ML and SZZ helped to revise the manuscript. WWX, CL, and ML participated in the discussion of results. QF, CFZ, JCZ, YH, and YCZ supported the study. All the authors read and approved the final manuscript.
Funding
This work was financially supported by the National Natural Science Foundation of China (Grant No. 51702273), the “Huxiang Young Talents Plan” Support Project of Hunan Province (Grant No. 2018RS3087), the general project of Hunan Provincial Education Department (Grant No. 18C0108), and the Science and Technology Innovation Project of Hunan Province (Grant No. 2017XK02048).

Availability of Data and Materials
The datasets supporting the conclusions of this article are included within the article.

Competing Interests
The authors declare that they have no competing interests.

Author details
1 Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China. 2 State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China.

Received: 27 April 2019 Accepted: 24 June 2019

Published online: 26 July 2019

References
1. Mulasamosanovic H, Chicca E, Bertele M, Molajak T, Slesazek S (2018) Mimicking biological neurons with a nanoscale ferroelectric transistor. Nanoscale 10:21755–21763

2. Mulasamosanovic H, Molajak T, Slesazek S (2018) Accumulative polarization reversal in nanoscale ferroelectric transistors. ACS Appl Mater Interfaces 10:23997–24002

3. Mulasamosanovic H, Ocker J, Muller S, Noack M, Muller J, Polakowski P, Mikolajick T, Slesazek S (2017) Novel ferroelectric FET based synapse for neuromorphic systems. In: Symposium on VLSI Technology. pp 176–177

4. Hoffmann M, Pelic S, Chatterjee K, Khan Al, Sahaluddin S, Slesazek S, Schröder U, Mikolajick T (2016) Direct observation of negative capacitance in polycrystalline ferroelectric HfO2. Adv Funct Mater 26:8649–8664

5. Lee MH, Wei YT, Chu KY, Huang JJ, Chen CW, Cheng CC, Chen MJ, Lee HY, Chen YS, Lee LH, Tsai MJ (2015) Steep slope and near non-hysteresis of FETs with antiferroelectric-like HfZO for low-power electronics. IEEE Electron Device Lett. 36:294–296

6. Yin X, Aitz A, Nahas J, Datta S, Gupta S, Niemier M, Hu XS (2016) Exploiting ferroelectric FETs for low-power non-volatile logic-in-memory circuits. In: Proc IEEE/ACM Int. Conf. Comput.-Aided Design (CCAD), pp 1–8

7. Breyer ET, Mulasamosanovic H, Molajak T, Slesazek S (2018) Reconfigurable NAND/NOR logic gates in 28 nm HKMG and 22 nm FD-SOI FeFET technology. IEEE Electron Device Lett. 39:1126–1129

8. Zhou JR, Han GQ, Xu N, Li J, Peng Y, Zhang SZ, Zhou YC (2019) Performance improvement of Hf 0.5Zr0.5O2 based ferroelectric thin films for ferroelectric field-effect transistors. IEEE Electron Device Lett. 40:399–402

9. Zeng BJ, Xiao WW, Liao Ji, Liu H, Liao M, Peng QX, Zheng SZ, Zhou YC (2018) Compatibility of Hf metal gate electrodes with Hf 0.5Zr0.5O2 ferroelectric thin films for ferroelectric field-effect transistors. IEEE Electron Device Lett. 39:1508–1511

10. Yurchuk E, Muller J, Paul J, Schloßer T, Martin D, Hoffmann R, Mikolajick T, Frey L (2012) Nanosecond polarization switching and long retention in a novel MFS-FET based on ferroelectric HfO2. IEEE Electron Device Lett. 33:185–187

11. Müller J, Polakowski P, Müller S, Mikolajick T (2015) Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects. ECS J Solid State Sci Technol 4:30–35

12. Müller S, Müller J, Schröder U, Mikolajick T (2013) Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications. IEEE Trans. Device Mater Reliab 13:93–97

13. Müller J, Polakowski P, Riedel S, Bütten T, Kämpfe T, Rudolph M, Pätzold B, Seidel K, Löh D, Hoffmann R, Czernohorsky M, Kühnel K, Steinke P, Calvo J, Zimmermann K, Müller J (2018) High endurance ferroelectric hafnium oxide-based FeFET memory without retention penalty. IEEE Trans Electron Devices 65:3769–3774

14. Ni K, Sharma P, Zhang JC, Jerry M, Smith JA, Tapily K, Clark R, Mahapatra S, Datta S (2018) Critical role of interlayer in Hf 0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance. IEEE Trans Electron Devices 65:2461–2469

15. Gong N, Ma T-P (2016) Why is FE-HfO2 more suitable than PZT or STT for scaled nonvolatile 1T-1M memory cell? A retention perspective. IEEE Electron Device Lett 37:1122–1126

16. Müller J, Polakowski P, Müller S, Mikolajick T (2015) Ferroelectric hafnium oxide based materials and devices: assessment of current status and future prospects. ECS J Solid State Sci Technol 4:30–35

17. Müller J, Bocsek TS, Schröder U, Hoffmann R, Mikolajick T, Frey L (2012) Nanosecond polarization switching and long retention in a novel MFS-FET based on ferroelectric HfO2. IEEE Electron Device Lett. 33:185–187

18. Müller S, Müller J, Schröder U, Mikolajick T (2013) Reliability characteristics of ferroelectric Si:HfO2 thin films for memory applications. IEEE Trans. Device Mater Reliab 13:93–97

19. Müller S, Summerfelt SR, Müller J, Schröder U, Mikolajick T (2012) Ten-nanometer ferroelectric Si:HfO2 films for next-generation FRAM capacitors. IEEE Electron Device Lett. 33:1300–1302

20. Zeng BJ, Xiao WW, Liao Ji, Liu H, Liao M, Peng QX, Zheng SZ, Zhou YC (2018) Compatibility of Hf metal gate electrodes with Hf 0.5Zr0.5O2 ferroelectric thin films for ferroelectric field-effect transistors. IEEE Electron Device Lett. 39:1508–1511

21. Yurchuk E, Müller J, Paul J, Schlosser T, Martin D, Hoffmann R, Mueller S, Slesazek S, Schroeder U, Bocshke R, Bentum RV, Mikolajick T (2014) Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors. IEEE Electron Devices Lett. 35:3699–3706

22. Chen KT, Chen HY, Liao CY, Sang CY, Lo C, Liao MH, Li KS, Chang ST, Lee MH (2019) Non-volatile ferroelectric FETs using 5-nm Hf 0.5Zr0.5O2 with high data retention and read endurance for 1T memory applications. IEEE Electron Device Lett. 40:399–402

23. Chatterjee K, Kim S, Karbasian G, Tan AJ, Yadav AK, Khan Al, Hu CM, Sahaluddin S (2017) Self-aligned, gate last, FDSOI, ferroelectric gate memory device with 5.5-nm Hf 0.5Zr0.5O2, high endurance and breakdown recovery. IEEE Electron Device Lett. 38:1379–1392

24. Xiao WW, Liu C, Peng Y, Zheng SZ, Peng Q, Zhang CF, Zhang JC, Hao Y, Liao M, Zhou YC (2019) Performance improvement of Hf 0.5Zr0.5O2 based ferroelectric-field-effect transistors with ZrO2 seed layers. IEEE Electron Device Lett. 40:714–717

25. Ortiz-Conde A, Sanchez FXG, Liou JJ, Cerdeira A, Estrada M, Yue Y (2002) A review of recent MOSFET threshold voltage extraction methods. Microelectron Reliab 42:583–596

26. Onaya T, Nakatame T, Sawamoto N, Ohi A, Ikeda N, Chikyow T, Ogura A (2017) Improvement in ferroelectricity of Hf 0.5Zr0.5O2 thin films using ZrO2 seed layer. Appl Phys Express 10:081501–1–081501–4

27. Cheng CH, Chin A (2014) Low-leakage-current DRAM-like memory using a one-transistor ferroelectric MOSFET with a Hf-based gate dielectric. IEEE Electron Device Lett. 35:138–140

28. Yurchuk E, Mueller S, Martin D, Slesazek S, Schroeder U, Mikolajick T, Mueller J, Paul J, Hoffmann R, Schlosser T, Schröder U, Bocshke R, Bentum RV, Trentzsch M (2014) Origin of the endurance degradation in the novel HfO2-based 1 T ferroelectric non-volatile memories. In: IEEE International Reliability Physics Symposium (IRPS). pp 265.1–265.5

29. Pelc M, Fengler F, Larcher L, Padovani A, Schenk T, Grimley ED, Sang XH, LeBeau JM, Slesazek S, Schroeder U, Mikolajick T (2016) Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv Funct Mater 26:4601–4612

30. Zhou DY, Xu J, Li Q, Guan Y, Cao F, Dong X, Muller J, Schenk T, Schroeder U (2013) Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl Phys Lett 103:192904

31. Kim HI, Park MH, Kim YJ, Lee YH, Moon T, Kim KD, Hyun SD, Hwang CS (2018) A study on the wake-up effect of ferroelectric Hf 0.5Zr0.5O2 films by pulse-switching measurement. Nanoscale 8:1383–1389

32. Park MH, Kim HI, Kim YJ, Lee YH, Moon T, Kim KD, Hyun SD, Hwang CS (2015) Study on the size effect in Hf 0.5Zr0.5O2 films thinner than 8 nm before and after wake-up field cycling. Appl Phys Lett 107:192907
33. Gong N, Ma T-P (2018) A study of endurance issues in HfO$_2$-based ferroelectric field effect transistors: charge trapping and trap generation. IEEE Electron Device Lett 39:15–18
34. Enlow EW, Pease RL, Alexander DR (1987) Subthreshold technique for fixed and interface trapped charge separation in irradiated MOSFETs. Mission Research Corp. Tech. Rep, Albuquerque
35. Zhu WJ (2003) Hafnium oxide and hafnium aluminum oxide for CMOS application. Ph.D. dissertation (Chapter 2). Dept. Elect. Eng., Yale Univ, New Haven

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.