\(q \)-Ultraspherical Polynomials for \(q \) a Root of Unity

Vyacheslav Spiridonov

Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada
e-mail: spiridonov@umontreal.ca

Alexei Zhedanov

Physics Department, Donetsk University, Donetsk, 340055, Ukraine

Abstract

Properties of the \(q \)-ultraspherical polynomials for \(q \) being a primitive root of unity are derived using a formalism of the \(so_q(3) \) algebra. The orthogonality condition for these polynomials provides a new class of trigonometric identities representing discrete finite-dimensional analogs of \(q \)-beta integrals of Ramanujan.

Mathematics Subject Classifications (1991). 17B37, 33D80

1. Introduction. There are many applications of quantum algebras, or \(q \)-analogues of Lie algebras in mathematical physics. In particular, it is well known that the corresponding representation theory is related to \(q \)-special functions and \(q \)-orthogonal polynomials. In this Letter we investigate from this point of view a class of \(q \)-ultraspherical polynomials for \(q \) a root of unity.

The monic \(q \)-ultraspherical polynomials satisfy three-term recurrence relation

\[
P_{n+1}(x) + u_n P_{n-1}(x) = x P_n(x), \quad n = 1, 2, \ldots
\]

and initial conditions \(P_0(x) = 1, \ P_1(x) = x \), where coefficients \(u_n \) have the form

\[
u_n = \frac{(1 - q^n)(1 - q^{n+2\beta-1})}{(1 - q^{n+\beta})(1 - q^{n+\beta-1})}.
\]

These polynomials are well investigated for \(0 \leq q \leq 1 \). The case of \(q \) a root of unity was considered only in the nontrivial limits \(\beta \to 0 \) or \(1 \) leading to the so-called sieved ultraspherical polynomials. In these limits the recurrence coefficients \(u_n > 0 \) for all \(n > 0 \), so that the sieved polynomials are orthogonal on an interval of real line with some continuous measure. Consider what happens if \(\beta \neq 0,1 \) and \(q \) is \(N \)th primitive root of unity, \(q = \exp 2\pi ip/N, \ (p, N) = 1 \). Then \(u_n \) can be rewritten in the form

\[
u_n = \frac{\sin \omega n \sin \omega (n + 2\beta - 1)}{\sin \omega (n + \beta) \sin \omega (n + \beta - 1)},
\]

where \(\omega = \pi p/N \). In order for \(P_n(x) \) to possess a positive weight function (i.e. to be “classical” orthogonal polynomials) \(u_n \) must be positive. Reality of \(u_n \) implies reality of the parameter \(\beta \). Then (3) cannot

\[1\] Published in Lett. Math. Phys. 37 (1996), pp. 173-180.

\[2\] On leave from the Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia
satisfy the positivity condition for all $n > 0$. One has to analyze thus the finite-dimensional cases when $u_0 = u_M = 0$ for some natural $M \geq 2$ and $u_n > 0$ for $0 < n < M$ (then M is the dimension of Jacobi matrix defining the eigenvalue problem (1)).

The possibility to construct finite-dimensional classical orthogonal polynomials on trigonometric grids (including those generated by q a root of unity) was mentioned in [3], however no explicit examples were presented. For examples of non-standard q-special functions at $q^N = 1$ related to the Lamé-type differential equations, see [7].

Recently we have found that a special class of q-ultraspherical polynomials for $q^N = 1$ can be obtained by “undressing” of the finite-dimensional Chebyshev polynomials [3, 4], existence of the more complicated cases has been pointed out as well. Here we describe q-ultraspherical polynomials with positive measure when q is the $p = 1$ primitive root of unity, i.e. when

$$q = \exp 2\pi i/N, \quad N = 2, 3, \ldots .$$

(4)

The main tool in our analysis will be the theory of representations of quantum algebra $so_q(3)$ introduced in [10, 11]. The connection of this algebra with some (finite-dimensional) class of q-ultraspherical polynomials for real q was mentioned in [13].

2. Restrictions upon the Parameters. Consider restrictions upon the parameters M and β necessary for positivity of u_n in the interval $0 < n < M$. There are two principally different situations. The first possibility is $M = N$, when dimension of representation coincides with N. Then the positivity condition leads to the following restrictions upon β (all the inequalities are modulo N):

$$-1/2 < \beta < 0, \quad 0 < \beta < 1, \quad 1 < \beta < 3/2.$$

(5)

Note that the ends of intervals do not belong to this class. Indeed, there are ambiguities in choosing the coefficients u_n for $\beta = 0, 1$. The cases $\beta = -1/2, 3/2$ lead to $u_M = 0$ for $M = 2, N - 2$, which is not allowed since we demand the dimension of representation to be equal to N.

The second possibility arises if 2β is a natural number:

$$2\beta = j = 1, 2, 3, \ldots , N - 1.$$

(6)

We define coefficients u_n in the case $\beta = 1$ as $u_0 = u_{N-1} = 0, u_1 = \ldots = u_{N-2} = 1$. Then the dimension of representations defined by (3) is determined by the general formula $M = N + 1 - j$. We note by passing that the even j cases describe undressing of the “discrete finite well” in discrete quantum mechanics [13]. The case $j = 1$ corresponds to the q-Legendre polynomials because u_n reduce to the ordinary Legendre polynomials’ recurrence coefficients for $N \to \infty$. This system has an interesting physical application in the Azbel-Hofstadter problem of electron on a two-dimensional lattice in a magnetic field [14].

It is not difficult to see that (5) and (6) are the only choices of β providing positive u_n (we skip the trivial case $\beta = -1/2$ when $M = 2$ and assume $\beta \neq 0$).

3. $so_q(3)$ Algebra and Its Representations. Consider the associative algebra of three generators defined by commutation relations

$$[K_0, K_1]_\omega = K_2, \quad [K_1, K_2]_\omega = -K_0, \quad [K_2, K_0]_\omega = -K_1,$$

(7)

where $[A, B]_\omega = e^{i\omega/2}AB - e^{-i\omega/2}BA$ denotes so-called q-mutator and $\omega = \pi/N$. Note that if K_0 and K_1 are hermitian operators then K_2 should be anti-hermitian. Note also that for $N \to \infty$ we get the ordinary rotation algebra $so(3)$, which justifies the name $so_q(3)$ for the algebra (7). This algebra was introduced (in a slightly different form) in 1986 by Odesskii [10] who considered its representations without discussion of unitarity. Its relations to quantum algebra $su_q(2)$ and q-special functions have been discussed in [11, 12].

2
A non-compact version of this algebra $so_q(2,1)$ for real q appeared to be quite useful as an algebra describing dynamical symmetry of special classes of discrete reflectionless potentials [8].

Construct the unitary finite-dimensional representations of $so_q(3)$ by the method, proposed in [12]. It is easy to see that there exists an orthonormal basis $|n\rangle$ for which the operator K_0 is diagonal whereas the operator K_1 is two-diagonal:

$$K_0|n\rangle = \lambda_n|n\rangle, \quad K_1|n\rangle = a_{n+1}|n+1\rangle + a_n|n-1\rangle,$$

where λ_n are eigenvalues of operator K_0 and a_n are matrix elements of a representation. Substituting (8) into (7) we find

$$\lambda_n = \frac{\cos \omega(n + \beta)}{\sin \omega}, \quad n = 0, 1, \ldots, M - 1,$$

$$a_n^2 = \frac{\nu - \cos \omega(n + \beta)\cos \omega(n + \beta - 1)}{4 \sin^2 \omega \sin \omega(n + \beta) \sin \omega(n + \beta - 1)},$$

where ν is the eigenvalue of Casimir operator of $so_q(3)$ algebra which can be represented in the form

$$Q = \frac{1}{2}(K_2\tilde{K}_2 + \tilde{K}_2K_2) - \cos \omega(K_0^2 + K_1^2),$$

where $\tilde{K}_2 = [K_0, K_1]_\omega$. The condition $a_0 = 0$ gives $\nu = \cos \omega \beta \cos \omega(\beta - 1)$, and then

$$a_n^2 = \frac{\sin \omega n \sin \omega(n + 2\beta - 1)}{4 \sin^2 \omega \sin \omega(n + \beta) \sin \omega(n + \beta - 1)}$$

coincide up to a constant factor with (9). Hence, all unitary irreducible finite-dimensional representations of the $so_q(3)$ algebra for $q = \exp 2\pi i/N$ are exhausted by two possibilities: (8) of the dimension N and (6) of a smaller dimension.

We introduce for brevity the following terminology: the representations (5) will be called “complementary series”; the cases (6) will be called “integer series” for $\beta = 1, 2, 3, \ldots$ and “half-integer series” for $\beta = 1/2, 3/2, \ldots$ (the case $\beta = 1/2$ is exceptional, for it belongs to both complementary and half-integer series). Such definitions are supported by the fact that eigenvalues of the Casimir operator (11) are continuous and quantized for the complementary and integer (half-integer) series respectively (cf. with the Lorentz algebra).

4. q-Ultraspherical Polynomials as Overlap Coefficients. q-Ultraspherical polynomials arise as overlap coefficients between two distinct bases in the space of $so_q(3)$ representations. Indeed, because K_1 is hermitian, we can choose another orthonormal basis $|s\rangle$ for which the operator K_1 is diagonal:

$$K_1|s\rangle = \mu_s|s\rangle,$$

$so_q(3)$ is a special case of the $AW(3)$ algebra describing symmetries of the Askey-Wilson polynomials [15]. From general properties of the latter algebra we know that the operator K_0 cannot be more than tridiagonal in this dual basis:

$$K_0|s\rangle = d_{s+1}|s+1\rangle + d_s|s-1\rangle + b_s|s\rangle,$$

where $s = 0, \ldots, M - 1$. The explicit form of matrix elements d_s and b_s depends on the representation series of $so_q(3)$. For integer and half-integer series we have the spectrum

$$\mu_s = \frac{\cos \omega(s + j/2)}{\sin \omega},$$

where j is an integer. Thus, for integer and half-integer series μ_s are quantized functions of s. For complementary series μ_s are continuous functions of s.
where $j = 2\beta = 1, 2, 3, \ldots$, and the matrix elements

$$d_s^2 = \frac{\sin \omega s \sin \omega(s + j)}{4\sin^2 \omega \sin \omega(s + j/2) \sin \omega(s - 1 + j/2)}, \quad b_s \equiv 0.$$ \hfill (16)

This case is symmetric – matrix elements in the bases $|n\rangle$ and $|s\rangle$ are identical.

For the complementary series we have

$$\mu_s = \frac{\cos(\omega(s + 1/2))}{\sin \omega}, \quad s = 0, 1, \ldots, N - 1,$$

$$d_s^2 = \frac{\sin \omega(s - \beta + 1/2) \sin \omega(s + \beta - 1/2)}{4\sin^2 \omega \sin \omega(s + 1/2) \sin \omega(s - 1/2)}, \quad s = 1, 2, \ldots, N - 2,$$ \hfill (18)

$$b_0 = b_{N-1} = \frac{\sin \omega(1/2 - \beta)}{2\sin \omega \sin \omega/2}, \quad d_0 = d_{N-1} = b_1 = b_2 = \ldots = b_{N-2} = 0. \quad \hfill (19)$$

Note that the coefficients d_n do not truncate automatically at the ends of the index intervals, one has to do it by hands. In this case the operator K_0 is tridiagonal instead of being two-diagonal as it is expected from the symmetry of $so_q(3)$ (after the replacement $K_2 \rightarrow iK_2$ this algebra looks totally symmetric under the cyclic permutations). This anomaly shows that permutations of generators are not necessarily unitary automorphisms of the “Cartesian” quantum algebras.

For any series: integer, half-integer or the complementary one, we can find the overlap coefficients between two bases $(s|n)$. These coefficients can be factorized, $(s|n) = (s|0)S_n(\mu_s)$, where $S_n(\mu_s)$ are symmetric polynomials satisfying the three-term recurrence relation

$$a_{n+1}S_{n+1} + a_nS_{n-1} = \mu_S S_n, \quad S_0 = 1, \quad S_1 = \mu_S/a_1.$$ \hfill (20)

Polynomials $S_n(\mu_s), \ n > 1$ are connected with $P_n(x)$ \cite{1} by the simple relation

$$P_n(x) = \sqrt{u_1u_2 \cdots u_n}S_n(\mu_s), \quad x = 2\mu_s \sin \omega.$$ \hfill (21)

Existence of the algebraic interpretation of q-ultraspherical polynomials in terms of the $so_q(3)$ algebra allows to calculate the weight function for these polynomials. Omitting the details (we use the method described, e.g. in \cite{3}), we present the final result.

For the integer and half-integer series the weight function has the form

$$w_s(j) = \sin \omega(s + j/2) \prod_{l=1}^{j-1} \sin \omega(s + l), \quad s = 0, 1, \ldots, N - j.$$ \hfill (22)

For the complementary series we have

$$w_s(2\beta) = w_0 \frac{\sin \omega(s + 1/2)}{\sin \omega/2} \prod_{l=0}^{s-1} \frac{\sin \omega(\beta + 1/2 + l)}{\sin \omega(-\beta + 3/2 + l)}, \quad s = 1, 2, \ldots, N - 1,$$ \hfill (23)

where w_0 is (undefined) value of the weight function at the points $s = 0$ and $s = N - 1$.

Clearly both weight functions \cite{22} and \cite{23} are known up to a normalization constant. This constant can not be found directly from the representation theory of $so_q(3)$ algebra and should be calculated separately. For the integer and half-integer series it is possible to derive weight functions together with normalization constants with the help of Darboux transformations.
5. Darboux Transformation and Normalization Constants. Let $P_n^{(j)}(x)$ be the monic q-ultraspherical polynomials belonging to integer or half-integer series. Write the orthogonality relation in the form

$$\sum_{s=0}^{N-j} P_n^{(j)}(x_s)P_n^{(j)}(x_s)w_s(j) = h_n(j)\delta_{nm},$$

(24)

where $h_n(j)$ are normalization constants which have to be found, and $w_s(j)$ is given by (22). Recall that for the taken series $x_s(j) = 2 \cos \omega(s + j/2)$.

The crucial observation is that the polynomials $P_n^{(j+2)}(x)$ and $P_n^{(j)}(x)$ are related to each other by the Darboux transformation [9] which is equivalent in our case to the transition to symmetric kernel polynomials [10]:

$$P_n^{(j+2)}(x_s(j + 2)) = \frac{P_n^{(j)}(x_s(j)) - A_n(j)P_n^{(j)}(x_s(j))}{x_s^2(j) - x_0^2(j)},$$

(25)

where

$$A_n(j) = \frac{P_n^{(j)}(x_0(j))}{P_n^{(j)}(x_0(j))}. \quad (26)$$

From the theory of kernel polynomials [10] it follows that the weight function is transformed as

$$w_s(j + 2) = w_{s+1}(j)(x_0^2(j) - x_{s+1}(j))/4,$$

(27)

and the normalization constants are transformed as

$$h_n(j + 2) = h_n(j)A_n(j)/4. \quad (28)$$

In our case the factor $A_n(j)$ can be easily found

$$A_n(j) = \frac{\sin \omega(n + j + 1)\sin \omega(n + j)}{\sin \omega(n + j/2)\sin \omega(n + j/2)}. \quad (29)$$

Then using (29), (28) and starting from $j = 2$ and $j = 1$ we obtain explicit expressions for the normalization constant in the case of integer series, $j = 2k$:

$$h_n(2k) = \frac{h_0(2)s_{n+k+1}s_{n+k+2} \ldots s_{n+2k-1}}{4^k s_{n+1}s_{n+2} \ldots s_{n+k-1}}, \quad n = 0, 1, \ldots, N - 2k, \quad (30)$$

where $s_n \equiv \sin \omega n$, and in the case of half-integer series, $j = 2k + 1$:

$$h_n(2k + 1) = \frac{h_0(1)s_1^2s_2^2 \ldots s_{n+1}s_{n+2} \ldots s_{n+2k}}{4^k s_1s_2s_3 \ldots s_{n+k-1}/2s_{n+k+1}/2}, \quad n = 0, 1, \ldots, N - 2k - 1, \quad (31)$$

where we assume that for $n = 0$ the product $s_1^2s_2^2 \ldots s_n^2$ is replaced by 1. The only coefficients left to be determined are $h_0(2)$ and $h_0(1)$. But these constants can be calculated directly. Indeed, for $j = 2$ we have the finite-dimensional Chebyshev polynomials

$$P_n(x_s) = \frac{\sin \omega(n + 1)(s + 1)}{\sin \omega(s + 1)}.$$

(32)

The weight function in this case is $w_s(2) = \sin^2 \omega(s + 1)$. Hence

$$h_0(2) = \sum_{s=0}^{N-2} \sin^2 \omega(s + 1) = N/2. \quad (33)$$

5
The \(q \)-Legendre polynomials case \(j = 1 \) is characterized by the surprisingly simple weight function, \(w_s(1) = \sin \omega(s + 1/2) \), from which we derive

\[
h_0(1) = \sum_{s=0}^{N-1} \sin \omega(s + 1/2) = \frac{1}{\sin \omega/2}.
\] (34)

Thus we have calculated \(h_n(j) \) for both integer (30) and half-integer (31) series.

The \(n = 0 \) values of the normalization constants \(h_n(j) \) provide non-trivial trigonometric identities of the form \(\sum_{r=0}^{M-1} w_r(j) = h_0(j) \). For \(j = 2k \) we get

\[
\sum_{r=0}^{N-2k} s_{r+k}s_{r+1}s_{r+2}\cdots s_{r+2k-1} = 2N s_{k+1}s_{k+2}\cdots s_{2k-1} \\
4s_1s_2\cdots s_{k-1},
\] (35)

where \(k = 2, 3, \ldots, [N/2] \). For \(j = 2k + 1 \) we get

\[
\sum_{r=0}^{N-2k-1} s_{r+k+1/2}s_{r+1}s_{r+2}\cdots s_{r+2k} = \frac{s_1s_2\cdots s_{2k}}{4s_{1/2}s_{3/2}\cdots s_{k-1/2}s_{k+1/2}}.
\] (36)

where \(k = 1, 2, \ldots, [N/2] \). These identities can be considered as discrete finite-dimensional analogs of the \(q \)-beta integrals of Ramanujan (the latter are defined for real \(q \), see e.g. [3]). Of course, in the case of \(q \)-ultraspherical polynomials we get only special cases of such identities. Their generalizations are obtained if we deal with general trigonometric (four-parameter) analogs of the Askey-Wilson polynomials. Existence of similar simple relations for the representations of complementary series is an interesting open problem which we hope to address in the future.

Acknowledgments. The authors are indebted to R.Askey, D.Masson, M.Rahman, S.Suslov, and L.Vinet for stimulating discussions. The work of V.S. is supported by NSERC of Canada and by Fonds FCAR of Québec. The work of A.Zh. is supported in part by the ISF Grant No. U9E000.

References

[1] Quantum Groups, Lect. Notes in Math. v. 1510, ed. P.P.Kulish (Springer-Verlag, Berlin, 1992).
[2] Askey R. and Ismail M., A generalization of ultraspherical polynomials, Studies in Pure Mathematics, ed. P.Erdös (Birkhäuser, Basel, 1983) pp. 55-78.
[3] Askey R. and Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Am. Math. Soc. 54, 1-55 (1985).
[4] Gasper G. and Rahman M., Basic Hypergeometric Series (Cambridge University Press, 1990).
[5] Al-Salam W., Allaway W., and Askey R., Sieved ultraspherical polynomials, Trans. Amer. Math. Soc. 284, 39-55 (1984).
[6] Nikiforov A.F., Suslov S.K., and Uvarov V.B., Classical Orthogonal Polynomials of Discrete Variable (Springer-Verlag, Berlin, 1991).
[7] Skorik S. and Spiridonov V., Self-similar potentials and the \(q \)-oscillator algebra at roots of unity, Lett. Math. Phys. 28, 59-74 (1993).
[8] Spiridonov V. and Zhedanov A., *Discrete reflectionless potentials, quantum algebras, and q-orthogonal polynomials*, Ann. Phys. (N.Y.) 237, 126-146 (1995).

[9] Spiridonov V. and Zhedanov A., *Discrete Darboux transformation, the discrete time Toda lattice and the Askey-Wilson polynomials*, Methods and Applications of Analysis 2, 369-398 (1995).

[10] Odesskii A.V., *An analogue of the Sklyanin algebra*, Funkt. Analiz i Prilozh. 20, 78-79 (1986).

[11] Fairlie D.B., *Quantum deformations of SU(2)*, J. Phys. A: Math. Gen. 23, L183-L187 (1990).

[12] Zhedanov A., *Quantum su_q(2) algebra: “Cartesian” version and overlaps*, Mod. Phys. Lett. A7, 2589-2593 (1992).

[13] Zakhariev B.N., *Discrete and continuous quantum mechanics. Exactly solvable models (Lessons of quantum intuition II)*, Sov. J. Part. Nucl. 23, 603-640 (1992).

[14] Wiegmann P.B. and Zabrodin A.V., *Algebraization of difference eigenvalue equations related to U_q(sl_2)*, Nucl. Phys. B451, 699-724 (1995).

[15] Zhedanov A., *Hidden symmetry of the Askey-Wilson polynomials*, Teor. Mat. Fiz. 89, 1146-1157 (1991).

[16] Chihara T.S., *An Introduction to Orthogonal Polynomials* (Gordon and Breach, 1978).