TOTALLY IN Variant DIVisors OF ENdOMORPHISMS
OF PROJECTIVE SPACES

ANDREAS HÖRING

Abstract. Totally invariant divisors of endomorphisms of the projective space are expected to be always unions of linear spaces. Using logarithmic differentials we establish a lower bound for the degree of the non-normal locus of a totally invariant divisor. As a consequence we prove the linearity of totally invariant divisors for \mathbb{P}^3.

1. Introduction

An endomorphism of a complex projective variety X is a finite morphism $f : X \to X$ of degree at least two. A totally invariant subset of f is a subvariety $D \subset X$ such that we have a set-theoretic equality $f^{-1}(D) = D$. The projective space $X = \mathbb{P}^n$ admits many endomorphisms (simply take $n+1$ homogeneous polynomials of degree m without a common zero), and it is an interesting problem to understand their dynamics [FS94]. A well-known conjecture claims that totally invariant subvarieties of endomorphisms $f : \mathbb{P}^n \to \mathbb{P}^n$ are always linear subspaces. This conjecture is known for divisors of degree $n+1$ [HN11, Thm.2.1] and smooth hypersurfaces of any degree. In fact, by results of Beauville [Bea01, Thm.], Cerveau-Lins Neto [CLN00] and Paranjape-Srinivas [PS89, Prop.8] a smooth hypersurface D of degree at least two does not admit an endomorphism, in particular it is not a totally invariant subset of $f : \mathbb{P}^n \to \mathbb{P}^n$. However there are examples of singular normal hypersurfaces $D \subset \mathbb{P}^n$ of degree n that admit an endomorphism $g : D \to D$ [Zha14, Ex.1.9]. One should thus ask if g is induced by an endomorphism of the projective space. The main result of this paper is a negative answer to this question:

1.1. Theorem. Let $f : \mathbb{P}^n \to \mathbb{P}^n$ be an endomorphism of degree at least two, and let $D \subset \mathbb{P}^n$ be a prime divisor of degree $d \geq 2$ that is totally invariant. Denote by $Z \subset D$ the non-normal locus of D. Then we have

\[\deg(Z) > (d-1)^2 - \frac{n(n-1)}{2}. \] (1)

In particular if $d \geq 1 + \sqrt{\frac{n(n-1)}{2}}$, then D is not normal.

Date: October 18, 2017.

2010 Mathematics Subject Classification. 14J70, 14F10, 14J40.

Key words and phrases. endomorphism, totally invariant divisor.

\[1\] This statement is claimed in [BCS04], but the proof has a gap.
Note that if \(d = n \), then the inequality (1) simplifies to
\[
\deg(Z) > \frac{1}{2}(n - 2)(n - 1).
\]
However, by a well-known result about singularities of irreducible plane curves \([\text{Fis}01, \text{3.8}]\), one has \(\deg(Z) \leq \frac{1}{2}(n - 1)(n - 2) \). Thus an irreducible divisor \(D \) of degree \(n \) is not totally invariant. This observation significantly improves \([\text{Zha}13, \text{Thm}1.1]\), combined with \([\text{NZ}10, \text{Thm}1.5(5) \text{(arXiv version)}]\) we obtain:

1.2. Corollary. Let \(f : \mathbb{P}^3 \to \mathbb{P}^3 \) be an endomorphism, and let \(D \subset \mathbb{P}^n \) be a prime divisor that is totally invariant. Then \(D \) is a hyperplane.

Notation and terminology.

We work over the complex field \(\mathbb{C} \). Let \(f : \mathbb{P}^n \to \mathbb{P}^n \) be an endomorphism, and let \(D \subset \mathbb{P}^n \) be a totally invariant prime divisor. Then (e.g. by \([\text{BH}14, \text{Lemma} \, 2.5]\)) there exists a unique effective divisor \(R \) such that the logarithmic ramification formula
\[
K_{\mathbb{P}^n} + D = f^*(K_{\mathbb{P}^n} + D) + R
\]
holds, and we call \(R \) the logarithmic ramification divisor. Since \(\rho(\mathbb{P}^n) = 1 \) one easily deduces that \(d := \deg D \leq \deg(-K_{\mathbb{P}^n}) = n + 1 \).

Given a locally free sheaf \(E \to X \) over some manifold \(X \) and \(x \in X \) a point, we denote by \(E_x \) the \(\mathbb{C} \)-vector space \(E \otimes \mathcal{O}_X/m_x \) where \(m_x \subset \mathcal{O}_X \) is the ideal sheaf of \(x \). If \(\alpha : E_1 \to E_2 \) is a morphism of sheaves between locally free sheaves \(E_1 \) and \(E_2 \), we denote by \(\alpha_x : E_{1,x} \to E_{2,x} \) the linear map induced between the vector spaces.

2. The sheaf of logarithmic differentials

We consider the complex projective space \(\mathbb{P}^n \) of dimension \(n \geq 2 \).

2.1. Assumption. In this whole section we denote by \(D \subset \mathbb{P}^n \) a prime divisor of degree \(d \geq 2 \). We suppose that there exists a subset \(W \subset \mathbb{P}^n \) of codimension at least three such that \(D \setminus W \) has at most normal crossing singularities.

2.A. Definition and Chern classes. Since \(D \) has normal crossing singularities in codimension two, the sheaf of logarithmic differentials in the sense of Saito \([\text{Sai}80]\) and the sheaf of logarithmic differentials in the sense of Dolgachev \([\text{Dol}07, \text{Defn.}2.1]\) coincide by \([\text{Dol}07, \text{Cor.}2.2]\), we will denote this sheaf by \(\Omega_{\mathbb{P}^n}(\log D) \). The sheaf \(\Omega_{\mathbb{P}^n}(\log D) \) is reflexive (it is defined as a dual sheaf \([\text{Dol}07, \text{p.36, line -4}]\) and locally free in the points where \(D \) has normal crossing singularities. By \([\text{Dol}07, (2.8)]\) there exists a residue exact sequence
\[
0 \to \Omega_{\mathbb{P}^n} \to \Omega_{\mathbb{P}^n}(\log D) \to \nu_*(\mathcal{O}_D) \to 0,
\]
where $\nu : \tilde{D} \to D$ is the normalisation\footnote{The statement in \cite[2.8]{Dol07} is for a desingularisation, but since $\pi_*(\mathcal{O}_{D''}) = \mathcal{O}_{D'}$ for any birational morphism $\pi : D'' \to D'$ between normal varieties, the statement holds for the normalisation.}.

Our goal is to compute the first and second Chern class of the sheaf $\Omega_{\mathbb{P}^n}(\log D)$. Recall first that
\begin{equation}
\label{eq:chern_classes}
c_1(\mathcal{O}_D) = D, \quad c_2(\mathcal{O}_D) = D^2.
\end{equation}

Denote by $Z \subset D$ the non-normal locus of D. Since D is Cohen-Macaulay, we know by Serre’s criterion that $Z \subset \mathbb{P}^n$ is empty or a projective set of pure dimension $n-2$. We have an exact sequence
\begin{equation}
0 \to \mathcal{O}_D \to \nu_*\mathcal{O}_{\tilde{D}} \to \mathcal{K} \to 0,
\end{equation}
where \mathcal{K} is a sheaf with support on Z. Since D has normal crossings on $D \setminus W$ the restriction of (4) to $D \setminus W$ is
\begin{equation}
0 \to \mathcal{O}_{D \setminus W} \to \nu_*\mathcal{O}_{\tilde{D}} \to \mathcal{O}_{\mathbb{P}^n(D \setminus W)} \to 0.
\end{equation}

Since Z is empty or of pure dimension $n-2$ and W has codimension at least three in \mathbb{P}^n, we see that W does not contain any irreducible component of Z. The second Chern class $c_2(\nu_*(\mathcal{O}_{\tilde{D}}))$ is determined by intersecting with the class of a general linear 2-dimensional subspace $P \subset \mathbb{P}^n$. Since P is disjoint from W, the sequence (5) combined with (3) yields
\begin{equation}
\label{eq:chern_classes1}
c_1(\nu_*(\mathcal{O}_{\tilde{D}})) = D, \quad c_2(\nu_*(\mathcal{O}_{\tilde{D}})) = D^2 - [Z].
\end{equation}

Recall now that $c_1(\Omega_{\mathbb{P}^n}) = (n + 1)H$, $c_2(\Omega_{\mathbb{P}^n}) = \frac{n(n+1)}{2}H^2$ where H is the hyperplane class. Then the exact sequence (2) combined with (6) yields
\begin{equation}
\label{eq:chern_classes2}
c_2(\Omega_{\mathbb{P}^n}(\log D)) = \left(\frac{(n + 1)(n - 2d)}{2} + d^2\right)H^2 - [Z].
\end{equation}

Thus if we twist by $\mathcal{O}_{\mathbb{P}^n}(m)$ we obtain that
\begin{equation}
\label{eq:chern_classes3}
c_2(\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(m)) = \left(\frac{(n + 1)(n - 2d)}{2} + d^2\right)H^2 - [Z] - (n - 1)(n + 1 - d)mH^2 + \frac{n(n - 1)}{2}m^2H^2.
\end{equation}

For $m = 1$ this formula simplifies to
\begin{equation}
\label{eq:chern_classes4}
c_2(\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1)) = (d - 1)^2H^2 - [Z].
\end{equation}

2.B. \textbf{Global sections of $\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1)$}. We now choose homogeneous coordinates X_0, \ldots, X_n on \mathbb{P}^n. Since $D \subset \mathbb{P}^n$ is a prime divisor of degree $d \geq 2$, we have
\[H^0(D, \mathcal{O}_D(1)) = \langle X_0|_D, X_1|_D, \ldots, X_n|_D \rangle,
\]
and, for simplicity’s sake, we denote by $X_0|_D, X_1|_D, \ldots, X_n|_D$ also their images in $H^0(D, \nu_*(\mathcal{O}_{\tilde{D}}))$ under the natural inclusion $H^0(D, \mathcal{O}_D) \subset$
By Bott’s theorem we have $H^1(\mathbb{P}^n, \Omega_{\mathbb{P}^n}(1)) = 0$, so the cohomology sequence associated to the sequence (2) twisted by $\mathcal{O}_{\mathbb{P}^n}(1)$ shows that $X_0|_D, X_1|_D, \ldots, X_n|_D$ lift to global sections of $\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1)$. In fact if we denote by f an irreducible homogeneous polynomial defining the hypersurface D, these global sections can be written in homogeneous coordinates as

$$d\left(\frac{X_0 \cdot f}{f}\right), d\left(\frac{X_1 \cdot f}{f}\right), \ldots, d\left(\frac{X_n \cdot f}{f}\right).$$

The following elementary lemma is fundamental for our proof.

2.2. Lemma. Under the assumption 2.1, let

$$\alpha : \mathcal{O}_{\mathbb{P}^n}^{\oplus n+1} \to \Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1)$$

be the morphism of sheaves defined by the global sections (9). Then α is surjective on $\mathbb{P}^n \setminus D_{\text{sing}}$. If $x \in D_{\text{sing}}$ is a point such that in local analytic coordinates u_1, \ldots, u_n around x the hypersurface D is given by $u_1 \cdot u_2 = 0$, the linear map

$$\alpha_x : (\mathcal{O}_{\mathbb{P}^n}^{\oplus n+1})_x \to (\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1))_x$$

has rank at least $n-1$.

For the proof recall the well-known local description of logarithmic differentials in the points where D is a normal crossings divisor: fix a point $x \in D$ and let u_1, \ldots, u_n be holomorphic coordinates in an analytic neighbourhood of x. If D is given by $u_1 = 0$ in these coordinates (so $x \in D_{\text{nons}}$), then $\Omega_{\mathbb{P}^n}(\log D)$ is locally generated by

$$du_1, du_2, \ldots, du_n.$$

If D is given by $u_1 \cdot u_2 = 0$ a set of local generators is

$$du_1, du_2, du_3, \ldots, du_n.$$

Proof of the first statement. We prove the statement for $x \in D \setminus D_{\text{sing}}$, the (easier) case $x \in \mathbb{P}^n \setminus D$ is left to the reader. Up to linear coordinate change we can suppose that $x = (1 : 0 : \ldots : 0)$. The affine set $U_0 := \{x \in \mathbb{P}^n \mid x_0 \neq 0\}$ is isomorphic to \mathbb{C}^n under the isomorphism

$$(X_0 : \ldots : X_n) \mapsto (X_1 \cdots X_n) = (Y_1, \ldots, Y_n).$$

In this affine chart the forms (9) can be written as

$$\frac{df_b}{f_b} + \frac{Y_1 df_b}{f_b} + \cdots + \frac{Y_n df_b}{f_b} + dY_n,$$

where $f_b(Y_1, \ldots, Y_n) := f(1, Y_1, \ldots, Y_n)$ is the deshomogenisation of f. Since $x \in D$ is a smooth point one of the partial derivatives $\frac{\partial f_b}{\partial Y_i}(x)$ is non-zero, so
up to renumbering the coordinates \(Y_1, \ldots, Y_n\) we can suppose that \(\frac{\partial f_b}{\partial Y_1}(x) \neq 0\). Thus \(f_b, Y_2, \ldots, Y_n\) form a set of holomorphic coordinates around \(x\) and

\[
\frac{df_b}{f_b} dY_2, \ldots, dY_n
\]

is a set of generators for \((\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1))|_{U_0}\) in a neighbourhood of \(x\). Yet in the point \(x = (0, \ldots, 0)\) the global sections (10) are equal to \(\frac{df_b}{f_b} dY_1, \ldots, dY_n\), so they contain this generating set.

Proof of the second statement. Up to linear coordinate change we can suppose that \(x = (1 : 0 : \ldots : 0)\) and as before we consider the affine chart \(U_0 \cong \mathbb{C}^n, Y_i = \frac{X_i}{X_0}\) and the expression (10) of the global sections in these affine coordinates. Up to renumbering we can suppose that \(u_1, u_2, Y_3, \ldots, Y_n\) are coordinates in an analytic neighbourhood of \((0, \ldots, 0) \in \mathbb{C}^n\). Thus \((\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1))|_{U_0}\) is generated in a neighbourhood of the origin by \(\frac{du_1}{u_1}, \frac{du_2}{u_2}, dY_3, \ldots, dY_n\).

The logarithmic forms \(Y_i \frac{df_b}{f_b} + dY_i\) are equal to \(dY_i\) in the origin, so they generate the subspace

\[
\langle dY_3, \ldots, dY_n \rangle \subset (\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1))_x.
\]

In the coordinates \(u_1, u_2, Y_3, \ldots, Y_n\) the polynomial \(f_b\) is equivalent to \(u_1 \cdot u_2\), and

\[
\frac{d(u_1 \cdot u_2)}{u_1 u_2} = \frac{du_1}{u_1} + \frac{du_2}{u_2}
\]

is a non-zero element of \((\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1))_x\) which is not in the \((n - 2)\)-dimensional subspace \(\langle dY_3, \ldots, dY_n \rangle\). Thus the global sections generate a subspace of dimension at least \(n - 1\). \(\square\)

3. Proof of the main theorem

The proof of Beauville’s result [Bea01, Thm.] on endomorphisms of smooth hypersurfaces \(D \subset \mathbb{P}^n\) is based on the fact that a global section of \(\Omega_X(2)\) with isolated zeroes maps under the tangent map to a global section of \(\Omega_X(2m)\) which still has isolated zeroes [ARVdV99, Lemma 1.1]. The following technical statement gives an analogue for our setting:

3.1. Lemma. Let \(S\) be a smooth projective surface, and let \(E_1\) be a vector bundle on \(S\) of rank \(n \geq 2\). Suppose that there exists a linear subspace \(V \subset H^0(S, E_1)\) such that \(\dim V > r \text{rk} E_1\) and the evaluation morphism

\[
ev : V \otimes \mathcal{O}_S \to E_1
\]

is surjective in the complement of a finite set \(Z_S \subset S\). Suppose also that for every point \(x \in Z_S\) the linear map

\[
ev_x : (V \otimes \mathcal{O}_S)_x \to E_{1,x}
\]

has rank at least \(n - 1\).
Suppose that there exists a vector bundle E_2 on S of rank n and an injective morphism of sheaves

$$\varphi : E_1 \rightarrow E_2$$

such that the following holds:

(a) The linear map $\varphi_x : E_{1,x} \rightarrow E_{2,x}$ has rank at least $n-2$ in every point $x \in S$. The set B_S where $\text{rk}(\varphi_x) = n-2$ is finite.

(b) Denote by $R_S \subset S$ the closed set such that $\text{rk}(\varphi_x) < n$. Then R_S is disjoint from Z_S.

Then we have $c_2(E_1) \leq c_2(E_2)$.

Proof. Denote by $|V|$ the projective space associated to the vector space V. Consider the projective set

$$B := \{(x, \sigma) \in X \times |V| \mid \varphi(ev(\sigma(x))) = 0\},$$

and denote by $p_1 : B \rightarrow X$ and $p_2 : B \rightarrow |V|$ the natural projections. If $x \in B_S \subset R_S$, then $x \not\in Z_S$ by hypothesis (b). Thus $(\varphi \circ ev)_x$ has rank $n - 2$ and $\dim p_1^{-1}(x) = \dim V - n + 1$. Analogously if $x \in R_S \setminus B_S$ (resp. $x \in Z_S$), then $\dim p_1^{-1}(x) = \dim V - n$. Finally for $x \in S \setminus (R_S \cup Z_S)$ we obviously have $\dim p_1^{-1}(x) = \dim V - n - 1$. Thus we see that all the irreducible components of B have dimension at most $\dim V - n + 1$.

We will now argue by induction on the rank n.

Start of the induction: $n = 2$. Then all the irreducible components have dimension at most $\dim V - 1 = \dim |V|$, so the general fibre of p_2 is finite or empty. Hence for a general $\sigma \in |V|$, we have an induced section

$$\mathcal{O}_S \xrightarrow{\sigma} E_1 \xrightarrow{\varphi} E_2$$

of E_2 which vanishes at most in finitely many points (so it computes $c_2(E_2)$).

In particular the section $\mathcal{O}_S \xrightarrow{\sigma} E_1$ vanishes at most in finitely many points and clearly $c_2(E_1) \leq c_2(E_2)$.

Induction step: $n > 2$. In this case all the irreducible components have dimension at most $\dim V - 1 < \dim |V|$, so the general p_2-fibre is empty. Thus a general $\sigma \in |V|$ defines a morphism

$$\mathcal{O}_S \xrightarrow{\sigma} E_1 \xrightarrow{\varphi} E_2$$

that does not vanish, hence it defines a trivial subbundle of both E_2 and E_1. In particular the quotients E_2/\mathcal{O}_S and E_1/\mathcal{O}_S are locally free and it is easy to check that the space of global sections V/\mathcal{O}_S and the induced map $\tilde{\varphi} : E_1/\mathcal{O}_S \rightarrow E_2/\mathcal{O}_S$ still satisfy the conditions of the lemma. Since $c_2(E_i) = c_2(E_i/\mathcal{O}_S)$ we can conclude. □

Proof of Theorem 1.1. Since \mathbb{P}^n has Picard number one, the endomorphism f is polarised, i.e. we have $f^*H \equiv mH$ for some $m \in \mathbb{N}$ and H the hyperplane class. Since D is totally invariant, we know by [BH14 Cor.3.3] (cf. also [HN11 Prop.2.4]) that the pair (\mathbb{P}^n, D) is log-canonical. Since D
is Cohen-Macaulay its non-normal locus \(Z \) has pure dimension \(n - 2 \) and every irreducible component of \(Z \) is an lc centre of the pair \((X, D)\). Thus we know by [BH14, Cor.3.3] that (up to replacing \(f \) by some iterate \(f^l \)) every irreducible component of \(Z \) is totally invariant and not contained in the logarithmic ramification divisor \(R \). Since \(D \) is totally invariant for any iterate \(f^l \), we can suppose from now on that these properties hold for \(f \).

Since the pair \((X, D)\) is log-canonical there exists a subset \(W \subset \mathbb{P}^n \) of codimension at least three such that \(D \setminus W \) has at most normal crossing singularities. Thus we can use the logarithmic cotangent sheaf \(\Omega_{\mathbb{P}^n}(\log D) \) introduced in Section 2. Since \(D \) is a totally invariant divisor, the tangent map

\[
df : f^*\Omega_{\mathbb{P}^n} \to \Omega_{\mathbb{P}^n}
\]

induces an injective morphism of sheaves

\[
df_{\log} : f^*\Omega_{\mathbb{P}^n}(\log D) \to \Omega_{\mathbb{P}^n}(\log D).
\]

Let \(P \subset \mathbb{P}^n \) be a general 2-dimensional linear subspace, and \(S := f^{-1}(P) \) its preimage. Then \(S \) is a smooth surface, and we claim that

\[
\varphi : f^*(\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1)) \otimes \mathcal{O}_S \to \Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(m) \otimes \mathcal{O}_S
\]

satisfies the conditions of Lemma 3.1.

Proof of the claim. Consider the \(n + 1 \)-dimensional subspace \(V \subset H^0(\mathbb{P}^n, \Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1)) \) defined by the global sections of \(\mathcal{O}_{\mathbb{P}^n}(1) \). By Lemma 2.2 the evaluation morphism is surjective in the complement of the singular locus \(D_{\text{sing}} \), and if \(x \in Z \) is a general point, it has rank at least \(n - 1 \). Since \(P \) is general of dimension two, the intersection \(P \cap D_{\text{sing}} \) consists only of general points of \(Z \), so if we denote by

\[
ev_S : f^*(V \otimes \mathcal{O}_{\mathbb{P}^n}) \otimes \mathcal{O}_S \to f^*(\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1)) \otimes \mathcal{O}_S
\]

the restriction of the (pull-back of the) evaluation morphism to \(S \) it is surjective in the complement of the finite set \(Z_S := f^{-1}(P \cap Z) \) and has rank at least \(n - 1 \) in the points of \(Z_S \). Since \(Z \) is totally invariant, the finite set \(Z_S \) is contained in \(Z \cap S \). Since \(Z \) is not contained in the logarithmic ramification divisor \(R \) and \(P \) is general, the intersection \(Z \cap R \cap S \) is empty. This shows that the sets \(R_S := R \cap S \) and \(Z_S \) are disjoint.

Thus we are left to show that \(\text{rk} \varphi_x \geq n - 2 \) for every \(x \in S \) and the set \(B_S \) where equality holds is finite. For the tangent map \(df \) this is well-known: if \(W \subset \mathbb{P}^n \) is a variety of dimension \(d \) and \(x \in W \) is a general point, the finite map \(W \to f(W) \) is étale in \(x \), in particular the tangent map \(df \) has rank at least \(\dim W \) in \(x \). This shows that the sets

\[
\{x \in \mathbb{P}^n \mid \text{rk} \ df_x \leq n - k\}
\]

have codimension at least \(k \) in \(\mathbb{P}^n \). Since \(\Omega_{\mathbb{P}^n} \) and \(\Omega_{\mathbb{P}^n}(\log D) \) identify in the complement of \(D \) we are thus left to consider points of \(D \). Yet if \(x \in D_{\text{nons}} \) (resp. \(x \in Z \) general) the vector space \(\Omega_{\mathbb{P}^n}(\log D)_x \) contains a linear subspace that is naturally isomorphic to \(\Omega_{D,x} \) (resp. \(\Omega_{Z,x} \)), so we can reduce to the case of the tangent map of \(f|_D \) (resp. \(f|_Z \)). This proves the claim.
We can now finish the proof by comparing the Chern classes. Since \(f^*H \equiv mH \) we have \([S] = m^{n-2}H^{n-2}\) and \(f^*[Z] = m^2(\deg Z)H^2\). Thus it follows from (8) that
\[
c_2(f^*(\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(1)) \otimes \mathcal{O}_S) = \left((d-1)^2 - \deg Z\right)m^n.
\]
By (7) and Lemma 3.1 this is less or equal than
\[
\tag{11}
c_2(\Omega_{\mathbb{P}^n}(\log D) \otimes \mathcal{O}_{\mathbb{P}^n}(m) \otimes \mathcal{O}_S) = \left(\frac{(n+1)(n-2d)}{2} + d^2 - \deg Z\right)m^{n-2} - (n-1)(n+1-d)m^{n-1} + \frac{n(n-1)}{2}m^n.
\]
Since we can replace \(f \) by some iterate the inequality holds for all sufficiently divisible \(m \in \mathbb{N} \). Thus by considering only the terms of order \(m^n \) we obtain
\[
\tag{12}
(d-1)^2 - \deg Z \leq \frac{n(n-1)}{2}.
\]
This inequality is always strict since otherwise we obtain
\[
0 \leq \left(\frac{(n+1)(n-2d)}{2} + d^2 - \deg Z\right)m^{n-2} - (n-1)(n+1-d)m^{n-1}
\]
for all sufficiently divisible \(m \in \mathbb{N} \). Now recall that \(d \leq n+1 \) and \(d = n+1 \) is excluded since we suppose that \(D \) is a prime divisor [HN11, Thm.2.1]. Hence we have \(-(n-1)(n+1-d) < 0\) which yields a contradiction. Thus the strict form of (12) holds, this is equivalent to our statement. \(\square \)

References

[ARVdV99] E. Amerik, M. Rovinsky, and A. Van de Ven. A boundedness theorem for morphisms between threefolds. *Ann. Inst. Fourier (Grenoble)*, 49(2):405–415, 1999.

[BCS04] Jean-Yves Briend, Serge Cantat, and Mitsuhiro Shishikura. Linearity of the exceptional set for maps of \(\mathbb{P}^k(\mathbb{C}) \). *Math. Ann.*, 330(1):39–43, 2004.

[Bea01] Arnaud Beauville. Endomorphisms of hypersurfaces and other manifolds. *Internat. Math. Res. Notices*, (1):53–58, 2001.

[BH14] Amaël Broustet and Andreas Höring. Singularities of varieties admitting an endomorphism. *Math. Ann.*, 360(1-2):439–456, 2014.

[CLN00] D. Cerveau and A. Lins Neto. Hypersurfaces exceptionnelles des endomorphismes de \(\mathbb{C}P(n) \). *Bol. Soc. Brasil. Mat. (N.S.)*, 31(2):155–161, 2000.

[Dol07] Igor V. Dolgachev. Logarithmic sheaves attached to arrangements of hyperplanes. *J. Math. Kyoto Univ.*, 47(1):35–64, 2007.

[Fis01] Gerd Fischer. *Plane algebraic curves*, volume 15 of *Student Mathematical Library*. American Mathematical Society, Providence, RI, 2001. Translated from the 1994 German original by Leslie Kay.

[FS94] John Erik Fornæss and Nessim Sibony. Complex dynamics in higher dimension. I. *Astérisque*, (222):5, 201–231, 1994. Complex analytic methods in dynamical systems (Rio de Janeiro, 1992).

[HN11] Jun-Muk Hwang and Noboru Nakayama. On endomorphisms of Fano manifolds of Picard number one. *Pure Appl. Math. Q.*, 7(4, Special Issue: In memory of Eckart Viehweg):1407–1426, 2011.
[NZ10] Noboru Nakayama and De-Qi Zhang. Polarized endomorphisms of complex normal varieties. *Math. Ann.*, 346(4):991–1018, 2010.

[PS89] K. H. Paranjape and V. Srinivas. Self-maps of homogeneous spaces. *Invent. Math.*, 98(2):425–444, 1989.

[Sai80] Kyoji Saito. Theory of logarithmic differential forms and logarithmic vector fields. *J. Fac. Sci. Univ. Tokyo Sect. IA Math.*, 27(2):265–291, 1980.

[Zha13] De-Qi Zhang. Invariant hypersurfaces of endomorphisms of the projective 3-space. In *Affine algebraic geometry*, pages 314–330. World Sci. Publ., Hackensack, NJ, 2013.

[Zha14] De-Qi Zhang. Invariant hypersurfaces of endomorphisms of projective varieties. *Adv. Math.*, 252:185–203, 2014.

Andreas Höring, Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351 CNRS, Université de Nice Sophia-Antipolis, 06108 Nice Cedex 02, France

E-mail address: hoering@unice.fr