Contenido de carbono y estructura horizontal de un bosque templado en Guadalupe y Calvo, Chihuahua

Carbon stock and horizontal structure of a temperate forest in Guadalupe y Calvo, Chihuahua

Samuel Alberto García García¹, Eduardo Alanís Rodríguez¹*, Oscar Alberto Aguirre Calderón¹, Eduardo Javier Treviño Garza¹ y Gabriel Graciano Ávila¹

Abstract

The need to know the structure and amount of carbon stored in forest ecosystems is very important, as these are a major sink of carbon dioxide (CO₂). This study was developed in the ejido Chinatú, municipality of Guadalupe y Calvo, Chihuahua, where random samplings were carried out at eight circular sites of 1 000 m² distributed in 80.46 hectares of surface. The horizontal structure was analyzed based on the importance value index (IVI) and diametric classes; in addition, the mixing ratio, richness and diversity of species were determined according to the Margalef index (DMg) and Shannon-Weiner index (H’), the carbon stored in the aerial biomass was estimated by means of allometric equations, based on the volume for each of the species. Ten species with a density of 460 N ha⁻¹ were identified. The species with the highest ecological value (IVI) was Pseudotsuga menziesii, with 26.14 %; the wealth and diversity obtained were DMg = 1.47 and H’= 1.96, respectively; the diametric distribution is balanced, in the form of a Liocourt curve, and the stored carbon content was 45.20 Mg C ha⁻¹. These analyses show that the forest is homogeneous, without broad dominance of any specific species, and is in a good state of conservation since the smaller diameter categories abound in small individuals that will later replace the mature mass.

Key words: Biomass, characterization, CO₂, diversity, Pseudotsuga menziesii (Mirb.) Franco, carbon sinks.

Resumen

Es importante conocer la estructura y la cantidad de carbono almacenado en los ecosistemas forestales, ya que representan uno de los principales sumideros de dióxido de carbono (CO₂) en los ecosistemas terrestres. Este estudio se llevó acabo en el ejido Chinatú, municipio Guadalupe y Calvo, Chihuahua, donde se realizó un muestreo aleatorio de ocho sitios circulares de 1 000 m² distribuidos en 80.46 ha de superficie. Se analizó la estructura horizontal con base en el Índice de Valor de Importancia (IVI) y clases diamétricas; además, se determinó el cociente de mezcla, la riqueza y diversidad de especies de acuerdo con los índices de Margalef (DMg) y de Shannon-Weiner (H’); el carbono almacenado en la biomasa aérea se estimó mediante ecuaciones alométricas, por medio del volumen para cada una de las especies. Se identificaron 10 taxones con una densidad de 460 individuos (N ha⁻¹), la especie de mayor valor ecológico (IVI) fue Pseudotsuga menziesii con 26.14 %, la riqueza y diversidad obtenida fue de DMg = 1.47 y H’= 1.96, respectivamente, la distribución diamétrica correspondió a una curva de Liocourt balanceada, y el contenido de carbono almacenado fue de 45.20 Mg C ha⁻¹. Estos análisis muestran que el bosque es homogéneo, sin dominancia amplia de alguna especie en particular y está en buen estado de conservación, ya que en las categorías diamétricas menores hay abundante presencia de individuos pequeños que, posteriormente, sustituirán a la masa madura.

Palabras clave: Biomasa, caracterización, CO₂, diversidad, Pseudotsuga menziesii (Mirb.) Franco, sumideros de carbono.

Fecha de recepción/Reception date: 6 de diciembre de 2019
Fecha de aceptación/Acceptance date: 7 de octubre de 2020

¹Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. México.
*Autor para correspondencia: eduardo.alanisrd@uanl.edu.mx
Introducción

Los bosques cubren aproximadamente 31 % de la superficie terrestre y almacenan aproximadamente 45 % del carbono terrestre (Bonan, 2008; FAO-PNUMA, 2020), por lo que tienen un papel importante en el ciclo global del carbono y la regulación del sistema climático global.

En México, los bosques templados representan alrededor de 20 % del territorio nacional (Challenger, 1998); de ellos, 14 % son bosques de pino y pino-encino, 5 % de encino y 1 % de otras especies (Rzedowski, 1991). Los bosques de *Pseudotsuga* no rebasan las 25 000 ha de superficie (Rzedowski, 1978); se ubican en la Sierra Madre Occidental, Sierra Madre Oriental y en el centro – sur del país (Castruita-Esparza *et al*., 2016; Ortega, 2017; García *et al*., 2019); además sus poblaciones son pequeñas y fragmentadas (Reyes-Hernández *et al*., 2006).

La realización de un buen manejo de los bosques requiere de la caracterización de su estructura, para entender su funcionamiento como base para la toma de decisiones (Aguirre *et al*., 2003; Corral *et al*., 2005; Castellanos-Bolaños *et al*., 2008; Aguirre-Calderón, 2015).

La estructura forestal influye en las tasas y magnitudes de la acumulación de carbono en la biomasa viva y muerta, lo cual es relevante para la función de regulación climática de los ecosistemas de bosques templados (Hardiman *et al*., 2011; Urbano y Keeton, 2017).

En este contexto, el objetivo del presente estudio fue conocer la estructura horizontal, riqueza, diversidad y estimar el contenido de carbono de un bosque templado, con presencia de especies en peligro de extinción como *Pseudotsuga menziesii* (Mirb.) Franco, con la finalidad de ofrecer información base para su conservación en Guadalupe y Calvo, Chihuahua.
Materiales y Métodos

El estudio se llevó a cabo en un bosque mixto constituido principalmente por *Pseudotsuga menziesii*, *Pinus arizonica* Engelm. y *Quercus tuberculata* Liebm; en el paraje “El Triste”, el cual se ubica en el ejido Chinatú, municipio Guadalupe y Calvo, al suroeste del estado de Chihuahua entre las coordenadas 26°24’ N y 106°64’ O (Figura 1). Tiene una superficie de 80.46 ha y altitudes entre 2 530 y 2 830 m. Pertenece a la región hidrológica Río Fuerte, que a su vez corresponde a la provincia fisiográfica Sierra Tarahumara, dentro de la subprovincia Gran Meseta y Cañones Chihuahuenses. Los tipos de suelo predominantes en el área son Litosol y Regosol en una mínima parte. El clima está clasificado como templado subhúmedo, la temperatura media anual de la región es de 13.7 °C, con una precipitación media anual de 1 126.8 mm (Chávez, 2009).

![Figura 1. Localización del área de estudio y sitios de muestreo.](image-url)
Evaluación en campo

Para evaluar la comunidad vegetal se establecieron ocho sitios circulares de muestreo de 1 000 m2; este tamaño de muestra se determinó con la siguiente fórmula:

$$n = \frac{t^2 \cdot CV^2}{E^2_{\%}}$$

Donde:

n = Número de puntos necesarios para la precisión deseada; E, con el nivel de probabilidad implicado por el valor de t

$t = t$ de Student

CV = Coeficiente de variación (en porcentaje) del bosque por muestrear

E = Error permisible o precisión deseada (en porcentaje) para el volumen promedio (o área basal)

La distribución aleatoria se generó a partir de las coordenadas de los vértices del área previamente recorrida, con ello se obtuvieron coordenadas aleatorias mediante la fórmula “ALEATORIO.ENTRE” del programa Excel; posteriormente, los primeros ocho pares de coordenadas resultantes se georreferenciaron en QGIS 2.18.28, con el cual se generó el mapa de ubicación y muestreo (Figura 1).

En los sitios de muestreo se consideraron los árboles con diámetro normal (d$_{1.30}$) \geq 7.5 cm para el arbolado adulto. Por individuo se registró la altura total (h) con un hipsómetro Suunto Pm-5, el diámetro normal (DAP) con una cinta diamétrica Forestry Suppliers, el diámetro de copa con una cinta métrica de 100 m, fibra de vidrio cruceta Truper® (norte – sur y este – oeste) (Alanís-Rodríguez et al., 2020) y se registró la especie de cada individuo.
Riqueza, diversidad y estructura horizontal

Se midieron los valores absolutos y relativos de la abundancia, dominancia y frecuencia; a continuación, se obtuvo el valor promedio para cada taxón y se calculó el Índice de Valor de Importancia (IVI) del estrato arbóreo; además se determinó el cociente de mezcla, el cual permite tener una idea general de la intensidad de mezcla (CM) (Alvis, 2009). La diversidad de la comunidad vegetal se evaluó utilizando los índices de Shannon-Weiner (H’) (Shannon, 1948), y el de Margalef (D_Mg) (Magurran, 2004) (Cuadro 1).
Cuadro 1. Índice de Valor de Importancia (IVI), cociente de mezcla (CM), índice de riqueza (D_{Mg}) e índice de diversidad (H').

Índices	Descripción
Índice de Valor de Importancia (IVI)	$IVI = A_r + F_r + D_r$
Donde:	
IVI = Índice de valor de importancia	
A_r = Abundancia relativa	
D_r = Dominancia relativa	
F_r = Frecuencia relativa	
Cociente de mezcla (CM)	$CM = \frac{S}{N} \times \frac{S}{N}$
Donde:	
S = Número total de especies en el muestreo	
N = Número total de individuos en el muestreo	
Margalef (D_{Mg})	$D_{Mg} = \frac{S - 1}{ln(N)}$
Donde:	
S = Número de especies	
N = Número total de individuos	
Shannon-Weiner (H')	$H' = - \sum_{i=1}^{S} P_i \times ln(P_i)$
 Donde:
 S = Número de especies
 P_i = Proporción de individuos de la especie i |

53
Estimación de volumen, biomasa y contenido carbono

El cálculo del volumen se determinó de acuerdo con la fórmula de volumen total árbol con corteza \(V_{ta_{cc}} \) y los parámetros propuestos (Cuadro 2).

\[
V_{ta_{cc}} = b_0 * D^{b_1} * h^{b_2} + b_3 * D^2
\]

Donde:

\(D \) = Diámetro normal del árbol \(i \) (cm)

\(h \) = Altura total del árbol \(i \) (m)

\(b_i \) = Coeficientes propuestos

Cuadro 2. Parámetros del modelo para la estimación de volumen de las especies evaluadas.

Especie	\(b_0 \)	\(b_1 \)	\(b_2 \)	\(b_3 \)
Pinus durangensis Martínez	0.000085	1.995095	0.764492	0.000050
Pinus arizonica Engelm.	0.000067	1.783568	1.098266	0.000063
Pinus ayacahuite C. Ehrenb. ex Schltdl.	0.000082	2.102772	0.606456	0.000054
Abies durangensis Martínez	0.000066	1.788316	1.055175	0.000013
Arbutus xalapensis Kunth	0.000142	1.483474	1.121788	0.000116
Juniperus deppeana Steud.	0.000591	1.338876	0.707074	0.000029
Picea chihuahuana Martínez	0.000061	1.992235	0.869354	0.000057
Pseudotsuga menziesii (Mirb.) Franco	0.000062	1.882421	0.946587	0.000010
Quercus sideroxyla Bonpl.	0.000188	1.851694	0.572656	0.000044
Quercus tuberculata Liebm.	0.000188	1.851694	0.572656	0.000044

Fuente: Corral-Rivas y Vargas-Larreta (2013).
La determinación de la biomasa se efectuó multiplicando el volumen por la densidad de la madera de cada una de las especies (Cuadro 3) y la cantidad de individuos (N ha⁻¹) registrados. Posteriormente, se estimó el contenido de carbono multiplicando el valor de la biomasa por la concentración de carbono 0.5 (Change, 2006; Ordóñez et al., 2008).

Cuadro 3. Densidad de la madera de las especies evaluadas para el predio “El Triste” del ejido Chinatu en Guadalupe y Calvo, Chihuahua.

Especie	Densidad (g cm⁻³)	Fuente
Pinus durangensis Martínez	0.47	Silva-Arredondo y Návar-Cháidez, 2012
Pinus arizonica Engelm.	0.43	Sotomayor, 2008
Pinus ayacahuite C. Ehrenb. ex Schltdl.	0.37	Vázquez-Cuecuecha et al., 2015
Abies durangensis Martínez	0.38	Sotomayor, 2008
Arbutus xalepensis Kunth	0.75	Ordóñez et al., 2015
Juniperus deppeana Steud.	0.46	Nájera y García, 2009
Picea chihuahuana Martínez	0.42	Sotomayor-Castellanos y Hernández-Maldonado, 2012
Pseudotsuga menziesii (Mirb.) Franco	0.45	Zanne et al., 2009
Quercus sideroxyla Bonpl	0.61	De la Paz y Dávalos-Sotelo, 2008
Quercus tuberculata Liebm.	0.77	Silva-Arredondo y Návar-Cháidez, 2012
Resultados y Discusión

La comunidad vegetal evaluada estuvo integrada por 10 especies, con una densidad total de 460 N ha\(^{-1}\), distribuidos en siete géneros de cuatro familias. Las familias de mayor representatividad fueron Pinaceae, con seis taxones y Fagaceae con dos. El número de taxa registrados (10) es similar a lo documentado por Álvarez et al. (2004) para un bosque de *Pseudotsuga menziesii* en el ejido La Barranca, municipio Pinal de Amoles, Querétaro, pero menor a lo citado por Encina-Domínguez et al. (2008) en un bosque de oyamel localizado en la sierra de Zapalinamé, Coahuila.

La distribución diamétrica del bosque presentó una tendencia exponencial negativa en forma de curva de Liocourt o “J invertida” (Figura 2), que revela una comunidad en proceso de regeneración, con un desarrollo hacia etapas de crecimiento mayores. Se registró una alta cantidad de individuos jóvenes que sustituirán a la comunidad vegetal madura, constituida por árboles, probablemente, en fase longeva pertenecientes a las clases diamétricas superiores (Arruda et al., 2011; Hernández-Stefanoni et al., 2011).

![Figura 2. Densidad de especies arbóreas por clase diamétrica.](attachment:figura2.png)
En investigaciones desarrolladas en México, se han consignado resultados similares; por ejemplo, los de López-Hernández et al. (2017) en un bosque templado de Puebla y de Encina-Domínguez et al. (2008) en uno de oyamel en Coahuila. En otras localidades se han registrado estructuras irregulares y desbalanceadas, como es el caso de algunas poblaciones de *Pseudotsuga menziesii* en Tlaxcala y Puebla (Guerra et al., 2012).

Las especies con mayor densidad fueron *Pseudotsuga menziesii*, con 154 N ha⁻¹; *Pinus arizonica*, con 83 N ha⁻¹; y *Quercus tuberculata*, con 48 N ha⁻¹; mientras que a *Pinus durangensis* le correspondió la menor densidad, con tan solo 5 N ha⁻¹ (Cuadro 4). La superioridad de *Pseudotsuga menziesii* sobre especies de pino o encino, también la señalan Domínguez-Calleros et al. (2014) en un predio de Chalchihuites, Zacatecas con 324 N ha⁻¹, y Aguirre-Calderón et al. (2003) indican para el cerro El Potosí en Galeana, Nuevo León una densidad de 240 N ha⁻¹.

Cuadro 4. Valores de densidad, dominancia, frecuencia e *IVI* de un bosque mixto del municipio Guadalupe y Calvo.

Especie	Densidad N ha⁻¹	Dominancia G (m² ha⁻¹)	(%)	Frecuencia N/Sitio (%)	IVI (%)		
Pseudotsuga menziesii (Mirb.) Franco	154	5.23	33.42	27.92	7	17.07	26.14
Quercus tuberculata Liebm.	48	4.50	10.33	24.02	6	14.63	16.33
Pinus arizonica Engelm.	83	2.47	17.93	13.17	6	14.63	15.25
Arbutus xalepensis Kunth	43	2.34	9.24	12.52	2	4.88	8.88
Juniperus deppeana Steud.	38	0.78	8.15	4.18	5	12.20	8.17
Pinus ayacahuite C. Ehrenb. ex Schltdl.	21	0.71	4.62	3.79	6	14.63	7.68
Abies durangensis Martínez	40	1.19	8.70	6.36	3	7.32	7.46
Quercus sideroxyla Bonpl.	16	0.41	3.53	2.17	3	7.32	4.34
Pinus durangensis Martínez	5	0.64	1.09	3.40	2	4.88	3.12
Picea chihuahua Martínez	14	0.46	2.99	2.47	1	2.44	2.63
Total general	460	18.72	100.00	100.00	41	100.00	100.00

IVI = Índice de Valor de Importancia.

El área basal (dominancia) resultó ser de 18.72 G m² ha⁻¹, similar a lo citado por Hernández-Salas et al. (2013), quienes obtuvieron entre 19.58 G m² ha⁻¹ y 23.70 G m² ha⁻¹ en bosques templados del ejido El Largo, municipio Madera, Chihuahua;
sin embargo, el valor es bajo en contraste con lo detallado por Encina-Domínguez et al. (2008) y Domínguez-Calleros et al. (2014) autores que estimaron 29.69 G m\(^2\) ha\(^{-1}\) y 34.43 G m\(^2\) ha\(^{-1}\), respectivamente.

En el presente estudio, las especies que sobresalieron fueron *Pseudotsuga menziesii*, con 5.23 G m\(^2\) ha\(^{-1}\); *Quercus tuberculata*, con 4.50 G m\(^2\) ha\(^{-1}\); *Pinus arizonica*, con 2.47 G m\(^2\) ha\(^{-1}\); y *Arbutus xalepensis*, con 2.34 G m\(^2\) ha\(^{-1}\). En conjunto estos taxones representaron 77.63 % del total. *Picea chihuahuana* Martínez registró el menor valor: 0.46 G m\(^2\) ha\(^{-1}\) (2.47 %).

La mayor frecuencia en el muestreo la presentó *Pseudotsuga menziesii* con 17.07 %, con presencia en siete sitios, seguida de *Quercus tuberculata*, *Pinus arizonica* y *Arbutus xalepensis* con 14.62 % y se observaron en seis sitios. *Picea chihuahuana* fue la especie con menor frecuencia, ya que se registró solo en un sitio. Gordon (1968) y García y González (1998) señalan que existen muy pocas y pequeñas poblaciones de *P. chihuahuana* en la Sierra Madre Occidental, las cuales se consideran un elemento relictual endémico.

De acuerdo con los valores relativos de densidad, dominancia y frecuencia, se determinó el Índice de Valor de Importancia (*IVI*), cuyos resultados evidenciaron a *Pseudotsuga menziesii* como la especie de mayor valor ecológico, con 26.14 %; seguida por *Quercus tuberculata*, con 16.33 %; y *Pinus arizonica*, 15.25 %. Estas tres especies representaron 57.71 % del *IVI*; en tanto que a *Picea chihuahuana* le correspondió el menor valor (2.63 %). Guerra et al. (2012) indican que *Pseudotsuga menziesii* convive con especies de encinos y coníferas tolerantes como el oyamel.

El cociente de mezcla (*CM*) tuvo un valor de 1:46; es decir, que por cada 46 individuos es posible registrar una especie diferente. Por lo tanto, este tipo de bosque se considera como homogéneo; otros como el ripario subandino presentan mayor heterogeneidad, tal es el caso del evaluado por Chaves y Rodríguez (2012) en la Cordillera Occidental de los Andes, Colombia, en donde calcularon un *CM* de 1:8. Melo (2019) documenta *CM* desde 1:04 hasta 1:34 para fragmentos de bosque seco tropical en Tolima, Colombia.
La riqueza de especies en el bosque bajo estudio, de acuerdo con el índice de Margalef (D_{Mg}), fue de 1.47, superior a lo registrado por López-Hernández et al. (2017) quienes obtuvieron un $D_{Mg} =$ 1.35 en bosques templados de Puebla, México. También fue mayor a lo citado por Návar-Cháidez y González-Elizondo (2009) en un bosque templado de Durango ($D_{Mg} =$ 1.04) y Hernández-Salas et al. (2013) que obtuvieron valores de $D_{Mg} =$ 0.81, 0.91 y 0.90 en tres evaluaciones efectuadas en distintos periodos.

La diversidad con base en el Índice de Shannon (H') tuvo un valor de H'=1.96, el cual indica una baja diversidad; ya que de acuerdo con Margalef (1972) el índice tiene un intervalo de 1 a 5, en el cual los valores menores a 2 demuestran baja diversidad. Los resultados obtenidos en esta investigación son similares al valor de H'=1.82 obtenido por García-Aranda et al. (2011) en un bosque templado con presencia de *Pseudotsuga menziesii* en Zaragoza, N. L. Sin embargo, es superior a lo descrito en otros estudios, tal es el caso de Návar-Cháidez y González-Elizondo (2009), quienes registraron valores de H'=0.53 a 1.33 para el rodal Cielito Azul en Durango; González et al., (2018) calcularon un valor de H'=1.76 para un bosque de *Abies vejarii* Martínez en Nuevo León; y Delgado et al. (2016) estimaron valores de H'=0.77 a 1.58 en Pueblo Nuevo, Durango. De acuerdo con esos valores la comunidad vegetal evaluada presenta una mayor diversidad que otros bosques templados de México.

Referente al volumen de las especies, se obtuvo un total de 168.58 m³ ha⁻¹. A *Quercus tuberculata*, *Pseudotsuga menziesii* y *Pinus arizonica* les correspondió el mayor volumen con 49.24, 37.64 y 26.14 m³ ha⁻¹, respectivamente. Respecto a su biomasa, se registraron cifras entre 1.85 Mg ha⁻¹ y 28.98 Mg ha⁻¹; con un comportamiento similar al antes descrito; en este rubro se integró *Arbutus xalepensis* como una de las especies que más biomasa aportaron.

En relación con el contenido de carbono almacenado, se determinó que el bosque tiene en total 45.29 Mg C ha⁻¹. *Quercus tuberculata* y *Pseudotsuga menziesii* que tuvieron el mayor valor de importancia, también presentaron el contenido de carbono más alto con 14.49 Mg C ha⁻¹ y 11.08 Mg C ha⁻¹; seguidos de *Pinus arizonica* (5.62
Mg C ha\(^{-1}\)) y *Arbutus xalepensis* (5.16 Mg C ha\(^{-1}\)) que, igualmente, ocuparon los primeros lugares en *IVI*. La especie con menor volumen, biomasa y contenido de carbono fue *Picea chihuahuana*, lo cual es atribuible a su bajo valor de importancia (Cuadro 5).

Cuadro 5. Valores de volumen, biomasa y contenido de carbono de un bosque mixto del municipio Guadalupe y Calvo.

Especie	Volumen (m\(^3\) ha\(^{-1}\))	Biomasa (t ha\(^{-1}\))	Carbono (Mg C ha\(^{-1}\))
Quercus tuberculata Liebm.	37.64	28.98	14.49
Pseudotsuga menziesii (Mirb.) Franco	49.24	22.16	11.08
Pinus arizonica Engelm.	26.14	11.24	5.62
Arbutus xalepensis Kunth	13.77	10.33	5.16
Abies durangensis Martínez	13.68	5.20	2.60
Pinus durangensis Martínez	8.44	3.97	1.98
Pinus ayacahuite C. Ehrenb. ex Schltdl.	7.49	2.77	1.38
Quercus sideroxyla Bonpl.	3.36	2.05	1.02
Juniperus deppeana Steud.	4.41	2.03	1.02
Picea chihuahuana Martínez	4.42	1.85	0.93

| Total | 168.58 | 90.57 | 45.29 |
En un estudio similar realizado en un bosque de *Abies religiosa* de la Ciudad de México, Ávila-Akerberg (2010) registró un promedio de 108 Mg C ha\(^{-1}\); Razo-Zárate *et al.* (2013) calcularon 138.69 Mg C ha\(^{-1}\) en un bosque de oyamel en Hidalgo; mientras que, Ordóñez *et al.* (2015) estimaron 103.1 Mg C ha\(^{-1}\) en bosques bajo manejo de San Pedro Jácuaro, Michoacán; González (2008) obtuvo un promedio de 80.98 Mg C ha\(^{-1}\) para bosques con dominancia de *Pinus maximinoi* H.E.Moore y 71 Mg C ha\(^{-1}\) en rodales con dominancia de *Pinus oocarpa* Schiede ex Schltdl. en el norte de Chiapas, México; y Martínez *et al.* (2016) indican que bosques templados de Durango, México almacenan 26.87 Mg C ha\(^{-1}\).

Conclusiones

En el bosque templado estudiado las familias de mayor relevancia son Pinaceae y Fagaceae. La distribución diamétrica indica que la vegetación arbórea está en proceso de regeneración, ya que la mayoría de sus individuos se localizan en las clases diamétricas menores que posteriormente sustituirán a la masa madura. *Pseudotsuga menziesii, Quercus tuberculata* y *Pinus arizonica* registran el mayor valor de importancia. Estas especies presentan los valores más altos de volumen, biomasa y contenido de carbono. De acuerdo con el cociente de mezcla, el bosque evidencia una tendencia a la homogeneidad. La riqueza y diversidad de especies es ligeramente mayor a la de otros estudios realizados en bosques similares. Esta investigación puede servir de referencia para futuros planes de conservación o restauración en bosques que no estén sujetos al aprovechamiento forestal y que poseen especies vulnerables como *P. menziesii* (Bajo Protección Especial), *P. chihuahuana* (Peligro de Extinción) según la NOM-059-SEMARNAT-2010 (Semarnat, 2002) y *A. durangensis* la cual es una especie endémica.
Conflicto de intereses

Los autores declaran no tener conflicto de interés.

Contribución por autor

Samuel Alberto García García y Eduardo Alanís Rodríguez: diseño de la investigación, análisis de datos y redacción del escrito; Oscar Alberto Aguirre Calderón: elaboración y revisión del manuscrito, coordinación y ejecución de las actividades de campo; Eduardo Javier Treviño Garza: captura, análisis de datos y revisión del manuscrito; Gabriel Graciano Ávila: identificación de especies, redacción y revisión del manuscrito.

Referencias

Aguirre, O. A., G. Hui, K. Von Gadow and J. Jiménez. 2003. An analysis of spatial forest structure using neighbourhood based variables. Forest Ecology and Management 183(1): 137-145. Doi: 10.1016/S0378-1127(03)00102-6.

Aguirre-Calderón, O. A. 2015. Manejo forestal en el siglo XXI. Madera y bosques 21: 17-28. Doi: 10.21829/myb.2015.210423.

Álvarez F., A. D., J. Vargas V., J. López P. Ramírez y E. Guízar. 2004. Aspectos ecológicos de *Pseudotsuga menziesii* en el ejido La Barranca, Pinal de Amoles, Querétaro. Anales del Instituto de Biología. Serie Botánica 75(2): 191-203. http://www.redalyc.org/articulo.oa?id=40075202 (25 de mayo de 2020)

Alanís-Rodríguez, E., A. Mora-Olivo y J. S. Marroquín de la Fuente. 2020. Muestreo ecológico de la vegetación. Editorial Universitaria de la Universidad Autónoma de Nuevo León. Monterrey, México. 245 p. https://www.researchgate.net/publication/343137042_Muestreo_Ecologico_de_la_vegetacion (18 de septiembre de 2020)
Alvis, J. 2009. Análisis estructural de un bosque natural localizado en zona rural del municipio de Popayán. Biotecnología en el Sector Agropecuario y Agroindustrial 7(1): 115-122. http://www.scielo.org.co/pdf/bsaa/v7n1/v7n1a13.pdf (25 de mayo de 2020).

Arruda M., D., D. Oliveira B., F. Vieira C., G. Soares T., R. Duque B., S. D’ngelo N. and Y. R. Ferreira N. 2011. Structural aspects and floristic similarity among tropical dry forest fragments with different management histories in Northern Minas Gerais, Brazil. Revista Árvore 35(1): 131-142. Doi: 10.1590/S0100-67622011000100016.

Ávila-Akerberg, V. 2010. Forest Quality in the Southwest of Mexico City. Assessment towards Ecological Restoration of Ecosystem Services. Friburgo, Alemania: Culterra (Band 56).
https://www.claraboya.com.mx/storage/app/media/docpub/magdalena/tesis/TesisAvilaAkerberg2009.pdf (26 de mayo de 2020).

Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882): 1444-1449. Doi: 10.1126/science.1155121.

Castellanos-Bolaños, J. F., E. J. Treviño-Garza, O. A. Aguirre-Calderón, J. Jiménez-Pérez, M. Musalem-Santiago y R. López-Aguillón. 2008. Estructura de bosques de pino pátula bajo manejo en Ixtlán de Juárez, Oaxaca, México. Madera y Bosques 14(2): 51-63. Doi:10.21829/myb.2008.1421212.

Castruita-Esparza, L. U., A. Correa-Díaz, A. Gómez-Guerrero, J. Villanueva-Díaz, M. E. Ramírez-Guzmán, A. Velázquez-Martínez and G. Ángeles-Pérez. 2016. Basal area increment series of dominant trees of Pseudotsuga menziesii (Mirb.) Franco show periodicity according to global climate patterns. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 22(3): 379-397. Doi:10.5154/r.rchscfa.2015.10.048.
Challenger, A. 1998. Utilización y conservación de los ecosistemas terrestres de México: pasado presente y futuro.
http://bibliotecasibe.ecosur.mx/sibe/book/000023389 (26 de mayo de 2020).

Change, I. P. O. C. 2006. IPCC guidelines for national greenhouse gas inventories 2013-04-28. https://www.ipcc-tfi.iges.or.jp/meeting/pdfies/Washington_Report.pdf (26 de mayo de 2020).

Chaves C., G. C. y S. A. Rodríguez. E. 2012. Estructura y composición florística del bosque ribereño subandino de la subcuenca de Yumbillo, Yumbo (Valle del Cauca). Revista de Investigación Agraria y Ambiental 3(1): 63-66. Doi: 10.22490/21456453.933.

Chávez, N. 2009. Estudio regional forestal de la Unidad De Manejo Forestal No. 0808 “Guadalupe Y Calvo, Chihuahua”. Asociación Regional de Silvicultores de Guadalupe y Calvo A.C.
http://www.conafor.gob.mx:8080/documentos/docs/9/1147ERF_UMAFOR0808.pdf (29 de mayo de 2020).

Corral, J., O. A. Aguirre C., J. Jiménez P. y S. Corral. 2005. Un análisis del efecto del aprovechamiento forestal sobre la diversidad estructural en el Bosque Mesófilo de Montaña “El Cielo”, Tamaulipas, México. Investigaciones Agrarias: Sistema de Recursos Forestales 14(2): 217–228.
https://185.79.129.77/index.php/IA/article/view/2278 (1 de junio de 2020).

Corral-Rivas, J. J. y B. Vargas-Larreta. 2013. Validación y calibración del sistema biométrico utilizado en la elaboración de los programas de manejo forestal maderable en la UMAFOR 0808 "Guadalupe y calvo", Chihuahua. Informe técnico. Conafor. Chihuahua, Chih., México.
https://www.cnf.gob.mx:8443/snif/seif_chihuahua/component/phocadownload/category/2-sistemas-biometricos?download=7:estudio-biometrico-umafor-0808 (29 de mayo de 2020).
De la Paz O., C. y R. Dávalos-Sotelo. 2008. Algunas características anatómicas y tecnológicas de la madera de 24 especies de Quercus (encinos) de México. Madera y Bosques 14(3):43-80. Doi: 10.21829/myb.2008.1431206.

Delgado Z., D. A., S. A. Heynes S., M. D. Mares Q., M. L. Piedra L., F. I. Retana R., K. Rodríguez C., A. I. Villanueva H., M. S. González E. y L. Ruacho G. 2016. Diversidad y estructura arbórea de dos rodales en Pueblo Nuevo, Durango. Revista Mexicana de Ciencias Forestales 7(33): 94-107. Doi: 10.29298/rmcf.

Domínguez-Calleros, P. A., G. A. Chávez-Flores, E. Rodríguez-Téllez, J. J. Corral-Rivas, J. R. Goche-Telles y M. A. Díaz-Vásquez. 2014. Caracterización silvícola de Pseudotsuga Menziesii en la Reserva de la Biosfera ”La Michilía”. Madera y Bosques 20(2):23-31. Doi: 10.21829/myb.2014.202161.

Encina-Domínguez, J. A., F. J. Encina-Domínguez, E. Mata-Rocha y J. Valdés-Reyna. 2008. Aspectos estructurales, composición florística y caracterización ecológica del bosque de oyamel de la Sierra de Zapalinamé, Coahuila, México. Boletín de la Sociedad Botánica de México (83): 13-24. Doi:10.17129/botsci.1785.

Organización de las Naciones Unidas de la Alimentación y la Agricultura- Programa de las Naciones Unidas para el Medio Ambiente (FAO-PNUMA). 2020. El estado de los bosques del mundo 2020. Los bosques, la biodiversidad y las personas. Roma. Doi: 10.4060/ca8642es.

García C., F. T., G. Monjarás G., G. Galindo F., A. Ponce M., V. M. Chávez Á. y J. Márquez G. 2019. Morfogénesis in vitro de brotes adventicios del pinabete mexicano Pseudotsuga menziesii (Mirb.) Franco. Revista Mexicana de Ciencias Forestales 10(56): 113-135. Doi:10.29298/rmcf.v10i56.545.
García A., A. y M. S. González E. 1998. Pináceas de Durango. Instituto de Ecología A. C. http://biblioteca.uaaan.mx/cgi-bin/koha/opac-detail.pl?biblionumber=33760&shelfbrowse_itemnumber=61108 (2 de junio de 2020).

García-Aranda, M. A., A. E. Estrada-Castillón, C. M. Cantú-Ayala y M. Pando M. 2011. Clasificación de nueve sitios de bosque mixto de coníferas con presencia de *Taxus globosa* en la Sierra Madre Oriental, Nuevo León y Tamaulipas, México. Botanical Sciences 90 (1): 53-62. doi:10.17129/botsci.385.

González, C. R., E. J. Treviño-Garza, Á. Duque-Montoya, M. González-Tagle, M. Gómez-Cárdenas y A. Bautista-Cruz. 2018. Diversidad y estructura arbórea en un bosque de *Abies vejarii* Martínez en el sur del estado de Nuevo León. Revista Mexicana de Ciencias Forestales 9(45):36-65. doi:10.29298/rmcf.v9i45.142.

González Z., M. 2008. Estimación de la biomasa aérea y la captura de carbono en regeneración natural de *Pinus maximinoi* HE Moore, *Pinus oocarpa* var. *ochoterenai* Mtz, y *Quercus* sp. en el norte del estado de Chiapas, México. Tesis de maestría. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). Turrialba, Costa Rica. 97 p. http://201.207.189.89/bitstream/handle/11554/4965/Estimacion_de_la_biomasa_aerea.pdf?sequence=1&isAllowed=y (9 de junio de 2020).

Gordon, A. G., 1968. Ecology of *Picea chihuahuana* Martínez. Ecology 49:880-896. Doi:10.2307/1936540.

Guerra De la C., V., J. C. López-Domínguez, J. López Upton, C. Bautista Sampayo y L. Hernández G. 2012. Estructura silvícola de poblaciones de *Pseudotsuga menziesii* (Mirb.) Franco en Tlaxcala y Puebla. Revista Mexicana de Ciencias Forestales 3(13): 73-86. Doi:10.29298/rmcf.v3i13.490.

Hardiman, B. S., G. Bohrer, C. M. Gough, C. S. Vogel and P. S. Curtis. 2011. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92: 1818–1827. Doi: 10.1890/10-2192.1.
Hernández-Salas, J., O. A. Aguirre-Calderón, E. Alanís-Rodríguez, J. Jiménez-Pérez, E. J. Trevino-Garza, M. A. González-Tagle y A. Domínguez-Pereda. 2013. Efecto del manejo forestal en la diversidad y composición arbórea de un bosque templado del noroeste de México. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 19(2): 189-200. Doi: 10.5154/r.rchscfa.2012.08.052.

Hernández-Stefanoni, J. L., J. M. Dupuy, F. Tun-Dzul and F. May-Pat. 2011. Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landscape Ecology 26:355-370. Doi:10.1007/s10980-010-9561-3.

López-Hernández, J. A., O. A. Aguirre-Calderón, E. Alanís-Rodríguez, J. C. Monárrez-González, M. A. González-Tagle y J. Jiménez-Pérez. 2017. Composición y diversidad de especies forestales en bosques templados de Puebla, México. Madera y Bosques 23(1): 39-51. Doi:10.21829/myb.2017.2311518.

Magurran, A. E. 2004. Measuring biological diversity. Blackwell Publishing Company. Cambridge, MA, USA. 256 p. https://www2.ib.unicamp.br/profs/thomas/NE002_2011/maio10/Magurran%202004%20c2-4.pdf (4 de junio de 2020).

Margalef, R. 1972. Homage to E. Hutchison, or why is there an upper limit to diversity. Transactions of the Connecticut Academy of Arts and Sciences 44: 211-235. http://hdl.handle.net/10261/166281 (4 de junio de 2020).

Martínez B., R. A., O. A. Aguirre-Calderón, B. Vargas-Larreta, J. Jiménez-Pérez, E. J. Treviño-Garza y J. I. Yerena. Y. 2016. Modelación de biomasa y carbono arbóreo aéreo en bosques del estado de Durango. Revista Mexicana de Ciencias Forestales 7(35): 91-105. Doi:10.29298/rmcf.v7i35.77.
Melo, O. 2019. Estructura de fragmentos de bosque seco tropical en el sur del departamento del Tolima, Colombia. Boletín Científico. Centro de Museos. Museo de Historia Natural 23(1): 31-51. Doi:10.17151/bccm.2019.23.1.2.

Nájera, L. J. A. y R. P. García. 2009. Propiedades físicas de la madera de Juniperus deppeana y Arbustus xalapensis de la región del Salto Durango. TecnoINTELECTO Instituto Tecnologico de Cd. Victoria 6(1): 37–41. Doi:10.5154/r.rchscfa.2010.09.083.

Návar-Cháidez, J. J. y S. González-Elizondo. 2009. Diversidad, estructura y productividad de bosques templados de Durango, México. Polibotánica. 27: 71-87. https://www.polibotanica.mx/ojs/index.php/polibotanica/article/view/785 (4 de junio de 2020).

Ordóñez D., J. A., A. Galicia N., N. J. Venegas M., T. Hernández T, M. D. J.Ordóñez D. y R. Dávalos-Sotelo. 2015. Densidad de las maderas mexicanas por tipo de vegetación con base en la clasificación de J. Rzedowski: compilación. Madera y bosques 21: 77-216. Doi: 10.21829/myb.2015.210428.

Ordóñez, J. A. B., B. H. de Jong, F. García-Oliva, F. L. Aviña, J. V. Pérez, G. Guerrero and O. Masera. 2008. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, México. Forest Ecology and Management 255(7): 2074-2084. Doi:10.1016/j.foreco.2007.12.024.

Ortega A., E. J. 2017. Generación de un modelo de regresión segmentado a través de un análisis dendroclimático en Pseudotsuga menziesii (Mirb.) Franco. Tesis de maestría. Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León. Linares, N.L., México. 52 p. http://eprints.uanl.mx/16480/ (9 de junio de 2020).
Razo-Zárate, R., A. R. Gordillo-Martínez, R. Rodríguez-Laguna, C. C. Maycotte-Morales y A. Acevedo-Sandoval. 2013. Escenarios de carbono para el bosque de oyamel del Parque Nacional El Chico, Hidalgo, México. Revista Latinoamericana de Recursos Naturales 9 (1): 17-21.
https://www.itson.mx/publicaciones/rlrn/Documents/v9-n1-3-escenarios-de-carbono-para-el-bosque-de-oyamel-del-parque-nacional-el-chico-hidalgo-mexico.pdf (9 de junio de 2020).

Reyes-Hernández, V. J., J. J. Vargas-Hernández, J. López. U y H. Vaquera-Huerta. 2006. Similitud fenotípica de poblaciones mexicanas de Pseudotsuga Carr. Agrociencia 40(4): 545-556. https://www.redalyc.org/pdf/302/30240413.pdf (10 de junio de 2020).

Rzedowski, J. 1978. Vegetación de México. Ed. Limusa. México, D. F., México. 504 p. http://bioteca.biodiversidad.gob.mx/janium/Documentos/7369.pdf (11 de junio de 2020).

Rzedowski, J. 1991. Diversidad y orígenes de la flora fanerogámica de México. Acta Botánica Mexicana 14: 3-21. Doi:10.21829/abm14.1991.611.

Secretaria de Medio Ambiente y Recursos Naturales (Semarnat). 2002. Norma Oficial Mexicana NOM-059-ECOL-2001, Protección ambiental– Especies nativas de México de flora y fauna silvestres– Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio– Lista de especies en riesgo. Diario Oficial de la Federación. 6 de marzo de 2002. México, D.F., México.
https://www.biodiversidad.gob.mx/pdf/NOM-059-ECOL-2001.pdf (10 de junio de 2020).

Shannon, C. E., 1948. The mathematical theory of communication. The Bell System Technical Journal 27(3): 379-423. Doi:10.1002/j.1538-7305.1948.tb01338.x.
García et al., Contenido de carbono y estructura horizontal...

Silva-Arredondo, F. M. y J. D. J. Návar-Cháidez. 2012. Estimación de la densidad de madera en árboles de comunidades forestales templadas del norte del estado de Durango, México. Madera y bosques 18(1): 77-88. Doi:10.21829/myb.2012.1811139.

Sotomayor, C. 2008. Tabla FITECMA de clasificación de características mecánicas de maderas mexicanas, Morelia, México. Facultad de Ingeniería en Tecnología de la Madera. Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Mich. México. 64 p. https://doi.org/10.13140/RG.2.1.3497.4884 (16 de junio de 2020).

Sotomayor-Castellanos, J. R. y S. A. Hernández-Maldonado. 2012. Características elásticas de maderas mexicanas. Investigación e Ingeniería de la Madera 8(2): 3-78. https://www.researchgate.net/publication/261064509_Caracteristicas_elasticas_de_maderas_mexicanas (6 de junio de 2020).

Urbano, A. R. and W. S. Keeton. 2017. Carbon dynamics and structural development in recovering secondary forests of the northeastern US. Forest Ecology and Management 392: 21-35. Doi:10.1016/j.foreco.2017.02.037.

Vázquez-Cuecuecha, O. G., E. M. Zamora-Campos, E. García-Gallegos and J. A. Ramírez-Flores. 2015. Densidad básica de la madera de dos pinos y su relación con propiedades edáficas. Madera y bosques 21(1): 129-138. Doi:10.21829/myb.2015.211437.

Zanne, A. E., G. López-González, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B. Miller, N. G. Swenson, M. C. Wieman and J. Chave. 2009. Global Wood Density Database. https://doi.org/10.5061/dryad.234 (6 de junio de 2020).

Todos los textos publicados por la Revista Mexicana de Ciencias Forestales –sin excepción– se distribuyen amparados bajo la licencia Creative Commons 4.0 Atribución-No Comercial (CC BY-NC 4.0 Internacional), que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.