Ni2+ Selective Membrane Sensors Based on Sulfamethoxazole Diazonium Resorcinol in Poly (Vinyl Chloride) (PVC) Matrix

Fathi A. G. Elsaid · Salem Hamza · Nashwa Rizk · Hamdy A. B. Matter · Elsayda A. S. Amerah

Received: 3 December 2011 / Accepted: 21 April 2012 / Published online: 13 November 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract PVC-based membranes of sulfamethoxazole diazonium resorcinol (SDR) as electroactive material with dioctylphthalate (DOP), Dioctylsebacate (DOS), \(\alpha \)-Nitrophenyloctylether (\(\alpha \)-NPOE) as plasticizing solvent mediators have been found to act as Ni2+ selective sensor, the best performance was obtained with the sensor having a membrane of composition plasticizer:PVC:ionophore in the ratio 200:100:5 mg. The sensor exhibits Nernstian response in the activity range \(5 \times 10^{-6} \) to \(1.0 \times 10^{-1} \) M, performs satisfactorily over a wide pH range (5–9), with a fast response time (10 s). The sensor was found to work satisfactorily in partially different internal solution concentrations and could be used over a period of 2 months. Potentiometric selectivity coefficients determined by matched potential method (MPM) indicate excellent selectivity for Ni2+ ions. The sensors could be used successfully in the estimation of nickel as an indicator electrode in potentiometric titration.

Keywords Poly (vinyl chloride) · PVC membrane · Nernstian slopes · Nickel ion sensor · Potentiometry · Ion selective electrodes · Sulfamethoxazole diazonium resorcinol

1 Introduction

Nickel is widely used in electroplating, manufacture of Ni–Cd batteries, rods for arc welding, pigments for paints, ceramics, surgical and dental processes, magnetic tapes of computers and as catalysts. Its widespread use results in its presence normally at low concentration level in raw meats, chocolates, hydrogenated oils, milk and milk products, canned food, etc. and in various industrial and domestic effluents. Nickel is a moderately toxic element and is known to cause cancer of the respiratory system [1], skin disorder known as nickel–eczema [2], acute pneumonitis, asthma and increase in blood cells. Thus, it is important to know its concentration in various samples. A number
of methods such as flow injection spectrometry, flame and graphite furnace atomic absorption spectrometry, ICP-AES and flame photometry are used for its determination. These methods provide accurate results but are not very appropriate for analysis of large number of environmental samples because they require expertise and good infrastructure. On the other hand, selective ion sensors are very useful for the monitoring of heavy metals in large number of samples as they are convenient, fast, easy to operate, generally require no sample pre-treatment, suitable for online monitoring and cost little. Therefore, a number of nickel sensors based on heterogeneous membranes of porphyrins [3,4] crown ethers [5–8], cycles [9–11], ion exchangers [12,13], pentacyclooctaaza [14], 2,5-thiophenylbis(5-tertbutyl-1,3-benzexazole) [15], dioxime derivative [16] and Schiff bases [17–19] in PVC, nickel phosphate [20] in parafin and silicone rubber and nickel complex of 1,4,8,11-tetraazacyclotetradecane [21] in araldite have been reported. However, their performance is poor with regard to one or more sensor characteristics, i.e., working activity range, selectivity, response time, pH range and lifetime. In addition to these solid membrane sensors, liquid membrane sensors have also been investigated [22–24]. However, they are of limited use in view of attrition of liquid membrane during experimentation. To achieve wider applicability, these limitations need to be removed. Efforts in this direction are on experimentation. To achieve wider applicability, these limitations need to be removed. Efforts in this direction are on using different materials for preparation of membranes.

The main requirement to impart selectivity to the ion sensor is to use membranes of a material which shows strong affinity for a particular metal ion and poor to others. The main problem in the development of a good sensor is that such materials are not easily available. Thus, newer materials synthesized are continuously being examined for such roles. Continuing efforts in this direction, we have recently synthesized diverse porphyrin and studied their membranes in PVC matrix as Ni2+ selective sensors. Besides this, Schiff bases with N and O donor atoms are well known to form strong complexes with transition metal ions. Some of the Schiff bases are reported to form strong complexes with a specific ion due to geometric factors [25,26]. As a result, Schiff base complexes have attracted increasing attention in solvent extraction [27,28], ion exchangers [29,30] and catalytic studies [31,32]. Thus, Schiff bases offer a good possibility to be used as Ni2+ selective ionophore. PVC-based membranes of meso-tetrakis-4-tris-(4-allyl dimethylsilylphenyl)silyl-phenylporphyrin (I) and (sal)2 trien (II) [33], Ni (II) selective sensors based on Schiff bases membranes [34] have been studied as Ni2+ selective sensors and the results reported in the present communication show that they perform well and could be used for its selective quantification. Ion selective methods for determination of Ni2+ [35–42], Spectrophotometric methods [43–63], electrochemical methods [64], Titration methods [65], Potentiometric sensors for heavy metals, nickel (II) [66,67], Cadmium (II) [68,69], Pb (II) [70–73], Iron (III) [74], Aluminum (III) [75], Chromium (III) [76], Mercury (II) [77,78], Zinc (II) [79], Vanadium, zirconium and molybdenum [80–86].

2 Experimental

2.1 Apparatus

All Potentiometric measurements were made at 25 ± 1 °C with an Orion (Model 720) pH/mV meter. Double junction Ag/AgCl reference electrode was used. An Orion electrode (Model 90-02) filled with 10% (w/v) potassium chloride was used in the outer compartment. Combination glass (Ross pH) electrode (Orion Model 81-02) was used for all pH measurements.

2.2 Reagents and Materials

All chemicals were of analytical reagent grade unless otherwise stated and doubly distilled water was used throughout. Nickel chloride (Ni2+), PVC powder of molecular weight ∼10,000, Tetrahydrofuran (THF), Butylatedhydroxytoluene, o-NPOE, DOP and DOS, a plasticizer with a purity of ~99% were obtained from Aldrich Chem. Co. (Milwaukee, WI, USA). (Ni2+) (10−2 M) stock solution was prepared by dissolving 0.073 g of (Ni2+) in 25 ml of (0.05 M) phosphate buffer solution (pH 7). (Ni2+) (10−1 to 10−6 M) standard solutions were prepared by appropriate dilution of the stock (Ni2+) solution with 0.05 M phosphate buffer solution of pH 7.

The following cations and compound solutions were prepared and standardized using the standard methods. Dilute solutions (10−2 to 10−6 M) of these cations and compounds were prepared by tenfold dilution of the stock solutions with 0.05 M phosphate buffer solution of pH 7.

3 Synthesis of Ionophore

The azo products of sulfamethoxazole were prepared by coupling of sulfamethoxazole diazonium salts with the resorcinol [87]. Empirical formula (Molecular weight C16H14O5N4S (374) color orange, m.p. 198–200 °C. Elemental analysis % Calc. (found) %C: 51.34 (48.59), %H 3.74 (2.63), %N: 14.97 (13.89).

IR spectra for compound C16H14O5N4S ν OH: (3,543) (w), ν NH: (3,159)m, ν C=N: (1,614), ν N=N: (1,404), ν SO2: (1,341) (w), 1,163 (m).

UV spectrum The UV–visible absorption spectrum of the compound in ethanol within the wavelength ranges 200–800 nm. The spectrum shows two bands. The first band lying
at 267 nm is attributed to the low energy $\pi-\pi^*$ transition within the phenyl moiety. The second band located at 398 nm corresponds to $n-\pi^*$ transition of the N=N group.

^1HNMR (CDCl$_3$, 300 MHz); (ppm) 7.2 (3H CH$_3$), 8.0 (H ph), 10.9 (HN), (11–12.1 d,d HO…N), (12.3–12.7 d,d H ph).

4 Potentiometric Selectivity

The selectivity is the most important characteristic, as it determines the extent of utility of a sensor in real sample measurement. The selectivity coefficient values were determined by matched potential method (MPM), which was proposed by Gadzekpo and Christian [88] to overcome difficulties in obtaining selectivity coefficient values when ions of unequal charges are involved. In this procedure, the selectivity coefficient $K_{Ni^{2+}}^{\text{pot}}$ is calculated by the expression

$$K_{Ni^{2+},B}^{\text{pot}} = \frac{\Delta a_{Ni^{2+}}}{\Delta a_B} = \frac{a_{Ni^{2+}} - a_B}{a_{Ni^{2+}} - a_B}$$

and is, therefore, determined by measuring the change in potential upon increasing by a definite amount the primary ion activity from an initial values of $a_{Ni^{2+}}$ to $a_{Ni^{2+}}$ and a_B represents the activity of interfering ion (B) added to the same reference solution of activity $a_{Ni^{2+}}$ which causes the same potential change. The values of $a_{Ni^{2+}}$ and $a_{Ni^{2+}}$ were taken to be 1×10^{-3}M and 5×10^{-3} M, whereas the values of a_B were experimentally determined. The values determined by MPM are given in Table 1.

It is seen that the selectivity coefficients are much smaller than 1.0 showing that both the sensors are sufficiently selective over all the interfering ions studied.

5 Preparation of Membranes

The PVC-based membranes were prepared by dissolving ionophore solvent mediators DOP, DOS, o-NPOE and PVC in THF (5–10 mL). After complete dissolution of all the components and thorough mixing, the resulting mixture was poured into polyacrylates ring placed on a smooth glass plate and was allowed to evaporate. The transparent membranes of 0.4 mm thickness formed were removed carefully from the glass plate. A 5 mm diameter piece was cut out and glued to one end of a “Pyrex” glass tube. The membranes thus prepared were equilibrated for 8 days in 0.1 M Ni$_2$+ solution. Membranes of different composition were prepared and investigated and those, which gave reproducible results and better performance characteristics, were selected for further studies. The optimum composition of membranes for best performance is given in Table 2. The activity coefficient (γ) of metal ions was calculated from the modified form of the Debye–Huckel equation [89].

6 Results and Discussion

6.1 Working Activity Range and Slope

The potential generated across the membrane was investigated as a function of Ni$_2$+ activity in the range 5.0×10^{-6} to 1.0×10^{-1} M and the results obtained are shown in Fig. 1.

The coordination chemistry of Ni$_2$+ ions reveals that the ions have a remarkable preference for formation of square planar amine complexes. This has been extensively exploited in synthesizing a variety of thermodynamically stable N4 macrocycle complexes with varying ring size [95,96]. The 12-membered tetraphenyl substituted macrocycle was chosen as an ionophore for Ni$_2$+ -ISE as it has a flat and highly electron delocalized structure, and owing to its planar geometry and appropriate cavity size it is expected to greatly influence the chemical and physical properties of Ni$_2$+ ions. The tetra phenyl groups add the lipophilicity and thermodynamic stability for the rapid exchange of metal ions [97] sulfamethoxazole diazonium resorcinol (SDR). Therefore, it was used as an ion-active phase in Ni$_2$+ -ISE. SDR was

Table 1 Potentiometric selectivity coefficients ($K_{Ni^{2+}}^{\text{pot}}$) for the three proposed electrodes at 10^{-2} M internal solution

Interferon’s	o-NPOE	DOS	DOP
K$^{1+}$	1.3 x 10^{-3}	2.1 x 10^{-3}	1.6 x 10^{-3}
Na$^{2+}$	2.2 x 10^{-3}	1.3 x 10^{-3}	1.3 x 10^{-3}
Ca$^{2+}$	3.3 x 10^{-3}	1.9 x 10^{-3}	1.8 x 10^{-3}
Zn$^{2+}$	2.9 x 10^{-3}	3.5 x 10^{-3}	3.4 x 10^{-3}
Fe$^{3+}$	3.4 x 10^{-3}	3.3 x 10^{-3}	2.6 x 10^{-3}
Pb$^{2+}$	1.6 x 10^{-4}	2.4 x 10^{-3}	3.4 x 10^{-3}
Sn$^{2+}$	1.1 x 10^{-4}	1.9 x 10^{-3}	1.5 x 10^{-3}
Cd$^{2+}$	1.4 x 10^{-4}	2.5 x 10^{-3}	1.3 x 10^{-4}
Co$^{2+}$	1.3 x 10^{-4}	1.7 x 10^{-3}	1.4 x 10^{-4}
Cu$^{2+}$	1.6 x 10^{-3}	1.5 x 10^{-3}	1.5 x 10^{-4}
Mn$^{2+}$	1.7 x 10^{-3}	1.1 x 10^{-3}	2.7 x 10^{-4}
Ba$^{2+}$	1.4 x 10^{-3}	1.4 x 10^{-4}	1.3 x 10^{-3}
Sr$^{2+}$	1.2 x 10^{-4}	1.9 x 10^{-3}	1.2 x 10^{-3}
Ca$^{2+}$	1.8 x 10^{-3}	1.4 x 10^{-4}	1.6 x 10^{-3}
Mg$^{2+}$	1.4 x 10^{-3}	1.3 x 10^{-4}	2.5 x 10^{-3}
Table 2 Response characteristics for Ni\(^{2+}\) membranes

Electrode composition	Internal solution (M)	Slope (mV)	Measuring range (M)	Detection limit (M)
PVC:NOPE:SDR (100:200:5)	10\(^{-3}\)	29	1 \times 10\(^{-6}\) to 1 \times 10\(^{-1}\)	5 \times 10\(^{-6}\)
	10\(^{-2}\)	29	1 \times 10\(^{-6}\) to 1 \times 10\(^{-1}\)	5 \times 10\(^{-6}\)
	10\(^{-1}\)	30	1 \times 10\(^{-6}\) to 1 \times 10\(^{-1}\)	1 \times 10\(^{-5}\)
PVC:DOP:SDR (100:200:5)	10\(^{-3}\)	28	1 \times 10\(^{-6}\) to 1 \times 10\(^{-1}\)	5 \times 10\(^{-6}\)
	10\(^{-2}\)	29	1 \times 10\(^{-6}\) to 1 \times 10\(^{-1}\)	5 \times 10\(^{-6}\)
	10\(^{-1}\)	29	1 \times 10\(^{-6}\) to 1 \times 10\(^{-1}\)	1 \times 10\(^{-5}\)
PVC:DOS:SDR (100:200:5)	10\(^{-3}\)	28	1 \times 10\(^{-6}\) to 1 \times 10\(^{-1}\)	5 \times 10\(^{-6}\)
	10\(^{-2}\)	28	1 \times 10\(^{-6}\) to 1 \times 10\(^{-1}\)	5 \times 10\(^{-6}\)
	10\(^{-1}\)	29	1 \times 10\(^{-6}\) to 1 \times 10\(^{-1}\)	1 \times 10\(^{-5}\)

Fig. 1 Calibration curves and the optimum responses of the SDR with (\(\alpha\)-NPOE, DOP, and DOS) for Ni\(^{2+}\) at phosphate buffer solution pH = 8

used as a ionophore in the construction of ISEs for various metal ions. The potential response obtained is given in Table 2. As can be seen from the figure, the ligand gives the best potential response to Ni\(^{2+}\) ions in comparison to other alkali, alkaline earth, transition and heavy metal ions. Further, the response characteristics of the Ni\(^{2+}\)-selective electrode based on SDR were tested as a function of the membrane composition, nature of the plasticizer and the amount of the ionophore used. To achieve good selectivity, it is essential that no significant amount of other ions should enter the membrane phase. Tetraphenylborate (NaTPB) was added to all prepared membranes to reduce the interference from anions, optimize sensing selectivity and reduce bulk membrane impedance [98]. It is seen from Fig. 1 that the sensors having \(\alpha\)-NPOE plasticizer exhibit maximum activity range (linear response) of 2.5 \times 10^{-6} to 1.0 \times 10^{-1} M with Nernstian slope of 29.5 mV/decade of activity. Two plasticizers namely DOP and DOS were added in an attempt to improve the performance of the sensors and the results obtained are also shown in Fig. 1. All performance characteristics of the sensors determined from this figure are compiled in Table 2. It is seen that the addition of plasticizers to the membranes and the data are compared by atomic absorption spectroscopy (AAS) for the determination of nickel.

6.2 Effect of pH

The effect of pH on the performance of two sensors was also seen at two Ni\(^{2+}\) activities of 1.0 \times 10^{-3} and 1.0 \times 10^{-4} M. The potential of the sensors remains constant over a pH range of 6.0–9.5 (Fig. 2). This can be taken as the useful pH working range.
6.3 Effect of Internal Solution

The influence of the concentration of internal solution on the emf response of all Ni$^{2+}$ ion-selective electrodes was studied, and the results show that variation in the concentration range (1×10^{-1} to 1×10^{-4} M) of the internal solution does not significantly change the electrode response of slope while parameters like measuring range and detection limit [99] changed to considerable extent (Table 2). A 1×10^{-3} M concentration of internal solution gave the best response (Fig. 3) and was chosen for further studies.

6.4 Response and Lifetime

The response time of the sensor has been determined by measuring the time required to achieve a steady potential for 1.0×10^{-4} M solution, when Ni$^{2+}$ ion activity was rapidly increased tenfold from 1.0×10^{-5} to 1.0×10^{-4} M. The response time of the membrane without plasticizer is found to be 8 s. The low response time of the sensors are most probably due to the fast exchange of Ni$^{2+}$ between ionophore and the bulk solution occurring at the membrane interface. It is well known that the dynamic response time of a sensor is one of the most important factors in its evaluation. To measure the dynamic response time of the proposed sensor the concentration of the test solution has been successively changed from 1.0×10^{-6} to 1.0×10^{-2} M. The resulting data depicted in Fig. 4 show that the time needed to reach a potential within ±1 mV of the final equilibrium value after successive immersion of a series of Ni$^{2+}$ ions, each having a tenfold difference in concentration, is 8 s for (electrode). This is most probably due to the fast exchange kinetics of complexation–decomplexation of Ni$^{2+}$ with the ionophore at the test solution-membrane interface. To evaluate the reversibility of the electrode, a similar procedure in the opposite direction was adopted. The measurements have been performed in the sequence of high-to-low from 1.0×10^{-2} to 1.0×10^{-3} M sample concentrations and the results showed that the potentiometric response of the electrodes was reversible; although the time needed to reach equilibrium values (50 s) was longer than that of low-to-high sample concentrations. The life time of membrane is 2 months. To evaluate the reversibility of the electrode, a similar procedure in the opposite direction was adopted. The measurements have been performed in the sequence of high-to-low from 1.0×10^{-2} to 1.0×10^{-3} M sample concentrations and the results showed that, the potentiometric response of the electrodes was reversible; although the time needed to reach equilibrium values (50 s) was longer than that of low to high sample concentrations. Reproducibility of the electrode was examined using six similar constructed electrodes under the optimum conditions. The result showed good reproducibility (±0.4 mV) for the electrode.

Fig. 3 Effect of internal solution concentration on the membrane electrode for σ-NOPE

Fig. 4 The response time of the membranes SDR

Fig. 5 Potentiometric titration curve of Ni$^{2+}$ (1.0×10^{-3} M, 10 mL) with EDTA (1.0×10^{-2} M), using the sensor σ-NPOE
Table 3 Comparison of the potentiometric parameters of the proposed nickel sensor with the literature of reported nickel selective sensors

Ionophore	Linear range (M)	Slope	pH range	Response time (s)	References
N1,N2-Bis((naphthalen-1-yl)-methylene)ethane-1,2-diamine (NED)	1.0 × 10⁻¹ to 5.0 × 10⁻⁶	29.9	3.6–7.4	15	[90]
(2E,3E)-2H-1,4-Benzothiazine-2,3(4H)-Dioninediole	1.0 × 10⁻⁶ to 1.0	30.0	2.0–6.5	<10	[91]
3,4:12,13-Dibeno-1,6,10,15-tetraazacyclododecane	2.82 × 10⁻⁶ to 1.0 × 10⁻¹	30.5	2.5–7.5	18	[92]
4,4,4,4-21H,23H-Porphine-5,10,15,20-tetratylyl tetrakis (benzoic acid)(TBAP) and 2,3,7,8,12,13,17,18-octamethyl-21H,23H-porphine (OMP)	2.0 × 10⁻⁶ to 1.0 × 10⁻¹ and 1.0 × 10⁻⁵ to 1.0 × 10⁻¹	29.6 and 29.0	2.0–7.0	10–15	[93]
3-Hydroxy-N-[2-[(3-hydroxy-Nphenylbutyrimidoyl)-amino]-phenyl] Sulfamethoxazole diazonium resorcinol (SDR)	1.6 × 10⁻⁷ to 1.0 × 10⁻²	30.0 ± 0.2	1.0–12.0–12	12	[94]

Table 4 Comparison of the potentiometric parameters of the proposed nickel sensor with AAS

Number of samples	Standard solutions	Ni found (M)	Real samples⁴	References	
	ISE (M)	AAS (M)	ISE (M)	AAS (M)	
1	1 × 10⁻¹	1.6 × 10⁻¹	1.7 × 10⁻¹	3.0 × 10⁻⁵	2.9 × 10⁻⁵
2	1 × 10⁻²	1.2 × 10⁻²	1.1 × 10⁻²	5.1 × 10⁻⁵	4.8 × 10⁻⁵
3	1 × 10⁻³	1.1 × 10⁻³	1.1 × 10⁻³	3.1 × 10⁻⁵	3.4 × 10⁻⁵
4	1 × 10⁻⁴	1.3 × 10⁻⁴	1.2 × 10⁻⁴	9.1 × 10⁻⁴	1.1 × 10⁻⁴
5	1 × 10⁻⁵	1.1 × 10⁻⁵	1.1 × 10⁻⁵	8.8 × 10⁻⁴	9.8 × 10⁻⁴
6	1 × 10⁻⁶	1.7 × 10⁻⁶	1.3 × 10⁻⁶	2.1 × 10⁻⁵	2.2 × 10⁻⁵

7 Analytical Applications

7.1 Potentiometric Titration

The analytical application of the sensor ω-NOPE was tested and it was used as an indicator electrode to determine the endpoint in the potentiometric titration of Ni²⁺ with EDTA. 10 mL of a 1.0 × 10⁻³ M Ni²⁺ solution was titrated against a 1.0 × 10⁻² M EDTA solution at pH 6.0.

The plot obtained (Fig. 5) is of sigmoid shape, the sharp inflexion point observed corresponds to the stoichiometry of the Ni²⁺–EDTA complex. Thus, Ni²⁺ can be successfully determined potentiometrically using this sensor.

8 Conclusion

The PVC-based membrane electrode of ligand (SDR) with a composition of 5 mg ligand, 100 mg PVC and 200 mg ω-NOPE exhibits the best performance characteristics. The sensor exhibited good reproducibility with a useful life-time of 2 months. The proposed electrode was successfully applied in determining Ni²⁺ in the activity range 5 × 10⁻⁶ to 1.0 × 10⁻¹ M, performs satisfactorily over wide pH range (5–9) with a fast response time (10 s). Comparison of the potentiometric parameters of the proposed nickel sensor with the literature reported nickel selective sensors are shown in Tables 3 and 4.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Templeton, D.: Biological Monitoring of Chemical Exposure in the Workplace. World Health Organization, Geneva (1990)
2. Kristiansen, J.; Christensen, J.M.; Henriksen, T.; Nielsen, N.H.; Menne, T.: Determination of nickel in fingernails and forearm skin (Stratum Corneum). Anal. Chim. Acta 403, 265 (2000)
24. Pleniceanu, M.; Isvoranu, M.; Spinu, C.: Spectrophotometric analysis of the binary system Ni(II)-N-[2-Thylenimethyliden]-2-Aminothiazole and the Determination of Ni(II). Seria Chim. 30, 9 (2001)
25. Reglinski, J.; Morris, S.; Stevenson, D.E.: Supporting conformational change at metal centres. Part 2: four and five coordinate geometry. Polyhedron 21, 2175 (2002)
26. Yamada, S.: Schiff base nickel (II) complexes with coordination number exceeding four. Coord. Chem. Rev. 190, 537 (1999)
27. Memon, S.; Yilmaz, M.; Macromol., J.: Estimation of chromium(VI) adsorption efficiency of ... behavior of calix[6]arene ester derivative. Sci. Pure Appl. Chem. 39, 63 (2002)
28. Cimerman, Z.; Galic, N.; Bosner, B.: The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents. Anal. Chim. Acta 343, 145 (1997)
29. Gurumule, W.B.; Rahangadale, P.K.; Paliwal, L.J.; Khurat, R.B.: Ion-exchange properties of 4-hydroxyacetophenone-biuret-formaldehyde terpolymer. Ult. Sci. Phys. Sci. 15, 89 (2003)
30. Sima, J.; Fodran, P.; Hledik, J.; Kotocovaa, A.; Valigura, D.: Inorg. Chim. Acta 81, 143 (1984)
31. Belokon, Y.N.; Bespalova, N.B.; Churkina, D.T.; Cisarova, I.; Ezermitskaya, M.G.; Harutunyan, R.S.; Hrdina, R.; Kagan, H.B.; Kocovsky, P.; Kochetkov, K.A.; Larionov, O.V.; Lyssenko, K.A.; North, M.; Polasek, M.; Peregudov, A.S.; Prisazhnnyk, V.V.; Vyskocil, S.: Nickel(II) complexes of glycine-derived Schiff bases. J. Am. Chem. Soc. 125, 12860 (2003)
32. Cozzi, P.G.: Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 33, 410 (2004)
33. Gupta, V.K.; Jain, M.K.; Ishtaiwi, Z.; Langb, H.; Maheshwari, G.: Ni2+ selective sensors based on meso-tetrakis-[4-(tris-(4-allyl dimethylsilyl)-phenyl)-silyl]phenyl porphyrin and (sal) 2trien in poly(vinyl chloride) matrix. Talanta 70, 307 (2007)
34. Gupta, V.K.; Singh, A.K.; Pul, M.K.: Ni (II) selective sensors based on Schiff bases membranes in poly(vinyl chloride). Analyst. Chim. Acta 624, 223 (2008)
35. Li, L.; Ladf, K.: Nickel modification of carbon nanotubes grown on graphite for electrochemical sensors. Sens. Actuators B Chem. 132(1), 202 (2008)
36. Afkhami, A.; Tarighat, M.A.; Khammohammad, H.: Simultaneous determination of Co2+, Ni2+, Cu2+ and Zn2+ ions in vegetables with a new Schiff base using artificial neural networks. Talanta 77(3), 995 (2009)
37. Yari, A.; Gholivand, M.B.; Rahhedayat, F.: Characterization of a new nickel (II) ion selective optode based on 2-dimen-salicylaldehyde derivative as a neutral ionophore. Sens. Actuators B 119, 167 (2006)
38. Mashhadizadeh, H., Sheikhshoaie, I., Saeid-Nia, S.: Nickel (II) selective membrane potentiometric sensors for nickel(II) ions. Anal. Chim. Acta 125, 1247 (2000)
39. Jain, M.K.; Ishtaiwi, Z.; Langb, H.; Maheshwari, G.: Ni2+ selective sensors based on meso-tetrakis-[4-(tris-(4-allyl dimethylsilyl)-phenyl)-silyl]phenyl porphyrin and (sal) 2trien in poly(vinyl chloride) matrix. Talanta 70, 307 (2007)
40. Takeuchi, R.M.; Santos, A.L.; Padilha, P.M.; Stradiotto, N.R.: A new PVC-based 1, 10-dibenzy-1, 10-diaza-18-crown-6 selective electrode for detecting nickel (II)ion. Sens. Actuat. B Chem. 66(1–3), 98 (2000)
41. Candir, S.; Narin, I.; Soyak, M.: Ligandless cloud point extraction of Cr (III), Pb (II), Cu (II), Ni (II), Bi (III), and Cd (II) ions in...
environmental samples with Tween 80 and flame atomic absorption spectrometric determination. Talanta 77(1), 289 (2008)

44. Ghaedi, M.; Shokrollahi, A.; Ahmadi, F.; Rajabi, H.R.; Solyak, M.: Cloud point e xtraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry. J. Hazard. Mater. 150(3), 533 (2008)

45. Chen, S.; Xiao, M.; Lu, D.; Wang, Z.: The use of carbon nanotubes microcolumn preconcentration for inductively coupled plasma mass spectrometry determination of Mn, Co and Ni. Spectrochim. Acta Part B Atoms Spectros. 62(11), 1216 (2007)

46. Zarei, K.; Atabati, M.; Malekshabani, Z.: Simultaneous spectrophotometric determination of iron, nickel and cobalt in micellar media by using direct orthogonal signal correction-partial least squares method. Anal. Chim. Acta 556(1), 247 (2006)

47. Zhao, S.L.; Xia, X.Q.; Ma, H.R.; Xi, H.J.: Spectrophotometric determination of nickel with p-acetylsalennazo. Talanta 41(8), 1353 (1994)

48. Mohanapriya, S.; Lakshminarayanan, V.: Simultaneous purification and spectrophotometric determination of nickel present in as-prepared single-walled carbon nanotubes (SWCNT). Talanta 71(1), 493 (2007)

49. Vendramini, D.; Grassi, V.; Zagatto, E.A.G.: Spectrophotometric flow-injection determination of copper and nickel in plant digests exploiting differential kinetic analysis and multi-site detection. Anal. Chim. Acta 570(1), 124 (2006)

50. Magni, D.M.; Olivieri, Ac.; Bonivardi, A.L.: Artificial neural networks study of the catalytic reduction of resazurin: stopped-flow injection kinetic-spectrophotometric determination of Cu (II) and Ni (II). Anal. Chem. Acta 528(2), 275 (2005)

51. Chamjangali, M.A.; Bagherian, G.; Azizi, G.: Simultaneous determination of cobalt, nickel and palladium in micellar media using partial least square regression and direct orthogonal signal correction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 62(1–3), 189 (2005)

52. Yoshikuni, N.; Baba, T.; Tsunoda, N.; Oguma, K.: Aqueous two-phase extraction of nickel dimethylglyoximato complex and its application to spectrophotometric determination of nickel in stainless steel. Talanta 66(1), 40 (2005)

53. Ghaedi, M.: Selective and sensitized spectrophotometric determination of trace amounts of Ni (II) ion using α-benzyl dioxime in surfactant media. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 66(2), 295 (2007)

54. Fakhari, A.R.; Khorrami, A.R.; Naeimi, H.: Synthesis and analytical application of a novel tetradentate N 2O2 Schiff base as a chromogenic reagent for determination of nickel in some natural food samples. Talanta 66(4), 813 (2005)

55. Shokoufi, N.; Shemirani, F.; Memarzadeh, F.: Fiber optic-linear arrays in digital-kinetic analysis and multi-site detection. Spectrochim. Acta Part B Atomic Spectrosc. 59(5), 533 (2004)

56. Patil, S.A.; Unki, S.N.; Kulkarni, A.D.; Naik, V.H.; Badami, P.S.: Co (II), Ni (II) and Cu (II) complexes with coumarin-8-yl Schiff-bases: Spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79(5), 1128 (2011)

57. Reddy, K.H.; Prasad, N.B.L.; Reddy, T.S.: Analytical properties of 1-phenyl-1, 2-propanedine-2-oxide thiosemicarbazone: simultaneous spectrophotometric determination of copper (II) and nickel (II) in edible oils and seeds. Talanta 59(3), 425 (2003)

58. Ghasemi, J.; Shahabadi, N.; Seraji, H.R.: Spectrophotometric simultaneous determination of cobalt, copper and nickel using nitroso-R-salt in alloys by partial least squares. Anal. Chem. Acta 510(1), 121 (2004)

59. Öztürk, B.D.; Filik, H.; Tütem, E.; Apak, R.: Simultaneous derivative spectrophotometric determination of cobalt (II) and nickel (II) by dithizone without extraction. Talanta 53(1), 263 (2000)

60. Amini, M.K.; Isfahani, T.M.; Khorsani, J.H.; Pourhoseinning, M.: Development of an optical chemical sensor based on 2-(5-bromo-2-pyridylazo)-5-(diethylamino) phenol in Nafion for determination of nickel ion. Talanta 63(3), 713 (2004)

61. Vicente, S.; Maniasso, N.; Queiroz, Z.F.; Zagatto, E.A.G.: Spectrophotometric flow-injection determination of nickel in biological materials. Talanta 57(3), 475 (2002)

62. Chopra, N.; Chopra, D.; Kaur, D.; Bhatnagar, R.: Spectrophotometric flow injection spectrophotometric determination of nickel using bis(acetylacetonate)ethylenediamine. Analyt. Chim. Acta, 408(1–2), 123 (2000)

63. Sörgen, K.; Tütem, E.: Second derivative spectrophotometric method for simultaneous determination of cobalt, nickel and iron using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Talanta 62(5), 971 (2004)

64. Sheng, N.; Cai, W.; Shao, X.: An approach by using near infrared diffuse reflectance spectroscopy and resin adsorption for the determination of copper, cobalt and nickel ions in dilute solution. Talanta 79(2), 339 (2009)

65. Liu, Y.; Chang, X.; Wang, S.; Guo, Y.; Din, B.; Meng, S.: Solid-phase spectrophotometric determination of nickel in water and vegetable samples at sub-μg l−1 level with α-carboxyphenylidiazaminoazobenzene loaded XAD-4. Talanta 64(1), 160 (2004)

66. Ebdelli, R.; Rouis, A.; Mika, R.; Bonnamour, I.; Renault, N.J.; Ben Ouada, H.; Davenas, J.: Electrochemical impedance detection of Hg2+, Ni2+ and Eu3+ ions by a new azo-calix[4]arene membrane. J. Electroanal. Chem., 661(1), 31 (2011)

67. Garrido, G.; Ráfols, C.; Bosch, E.: Isotermal titration calorimetry of Ni (II) binding to histidin and to N-2-aminoethylglycine. Talanta 84(2), 347 (2011)

68. Srivastava, S.K.; Gupta, V.K.; Juin, S.: A PVC-based Benzo-15-Crown-5 membrane. Sensor for cadmium. Electroanalysis 8, 938 (1996)

69. Gupta, V.K.; Kumar, P.: Cadmium (II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix. Analyt. Chim. Acta 389, 205 (1999)

70. Gupta, V.K.; Chandra, S.; Mangla, R.: Dicyclohexano-18-crown-6 as active material in PVC matrix membrane for the fabrication of cadmium selective potentiometric sensor. Electrochim. Acta 47, 1579 (2002)

71. Gupta, V.K.; Al Khayat, M.; Singh A.K.; Pal, M.K.: Nano level detection of Cd (II) using poly (vinyl chloride) based membranes of Schiff bases. Anal. Chim. Acta 634(1), 36 (2009)

72. Gupta, V.K.; Kumar, P.; Mangla, R.: A new Zn2+–selective sensor based on 5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine in PVC matrix. Electroanalysis 12(9), 752 (2000)

73. Gupta, V.K.; Mangla, R.; Agarwal, S.; Pb (II) selective potentiometric sensor based on 4-tet-butylcalix[4]arene in PVC matrix. Electroanalysis 14, 1127 (2002)

74. Srivastava, S.K.; Gupta, V.K.; Jain, S.: Tin (II) selective PVC membrane electrode based on of Salicylaldehyde thiosemicarbazone loaded in Nafion. J. Electroanal. Chem. 495(12), 2547 (2006)

75. Gupta, V.K.: Iron (II) Selective electrode based on 5, 10, 15, 20-Tetraphenyl-21H, 23H-porphine in PVC matrix. Electroanalysis 12(9), 752 (2000)
plex of N, N′-bis (salicylidene)-1, 2-cyclohexanediamine. Electrochim. Acta 54, 3218 (2009)
78. Singh, A.K.; Gupta, V.K.; Gupta, B.: Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal. Chim. Acta 585(1), 171 (2007)
79. Gupta, V.K.; Singh, A.K.; Al Khayat, M.: Neutral carriers based polymeric membrane electrodes for selective determination of mercury (II). Anal. Chim. Acta 590(1), 81 (2007)
80. Rofouei, K.M.; Arab, P.; Gupta, V.K.: Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: Application to potentiometric monitoring of mercury ion (II). J. Hazard. Mater. 183, 402 (2010)
81. Srivastava, S.K.; Gupta, V.K.; Jain, S.: PVC-based 2, 2, 2-Cryptand. Anal. Chem. 68, 1272 (1996)
82. Gupta, V.K.; Goyal, R.N.: An electrochemical cell configuration incorporating an ion conducting membrane separator between reference and working electrode. Int. J. Electrochem. Sci. 4(1), 156 (2009)
83. Pleniceanu, M.; Preda, M.; Muresan, M.; Simoiu, L.: A selective spectrofluorimetric method for the determination of aminocephalos-porins in formulations and biological fluids. Anal. Lett. 29, 1485 (1996)
84. Diaz, M.T.; Bakker, E.: Comparative studies of praseodymium(III) selective sensors based on newlysynthesized Schiff’s bases. Anal. Chem. 73, 5582 (2001)
85. Heier, P.C.; Ammann, D.; Morf, W.E.; Simon, W.; Koryta, J. (Ed.): Medical and Biological Application of Electrochemical Devices. Wiley, New York (1980)
86. de Los, A.M.; Perez, A.; Martin, L.P.; Quintana, J.C.; Pedram, M.Y.: Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination. Sens. Actuators B 89, 262 (2003)
87. Vogel’s, A.L.: Textbook of Practical Organic Chemistry, 5th edn., chap. 2 Longman Group, UK (1989)
88. Gehring, P.M.; Morf, W.E.; Welti, M.; Pretsch, E.; Simon, W.: Catalysis of ion transfer by tetraphenylborates in neutral carrier-based ion-selective electrodes. Helv. Chim. Acta 73, 203 (1990)
89. Christian, G.D.: Analytical Chemistry, 6th edn., Chap. 6. Wiley, NJ (2003)
90. Kumar, K.G.; Poduval, R.; Augustine, P.; John, S.; Saraswathyamma, B.: A PVC plasticized sensor for Ni (II) ion based on a simple ethylenediamine derivative. Anal. Sci. 22, 1333 (2006)
91. Yari, A.; Azizi, S.; Kakanejadifard, A.: An electrochemical Ni (II)-selective sensor-based on a newly synthesized dioxime derivative as a neutral ionophore. Sens. Actuators B 119, 167 (2006)
92. Singh, A.K.; Singh, R.: Synthesis and spectral characterization of trinuclear, oxo-centered, carboxylate-bridged, mixed-valence iron complexes with Schiff bases. J. Incl. Phenom. Macrocycl. Chem. 53, 249 (2005)
93. Belhamel, K.; Ludwig, R.; Benamor, M.: Nickel ion-selective membrane electrode based on new t-octylcalix[6]arene derivative. Microchim. Acta 149, 145 (2005)
94. Gupta, V.K.; Singh, A.K.; Pal, M.K.: Ni(II) selective sensors based on Schiff bases membranes in poly(vinyl chloride). Analyst. Acta 624(2), 223 (2008)
95. Dietrich, B.; Viout, P.; Lehn, J.M.: Macroyclic Chemistry, pp. 384–386. V.C.H. Weinheim, Germany (1993)
96. Kimura, E.: Developments in functionalization of macrocyclic polyamines. Pure Appl. Chem. 61, 823 (1989)
97. Dietrich, B.; Viout, P.; Lehn, J.M.: Macro cyclic Chemistry, pp. 387–389. V.C.H. Weinheim, Germany (1993)
98. Gadzekpo, V.P.; Christian, G.D.: Determination of selectivity coefficients of ion-selective electrodes by a matched-potential method. Analyst. Chim. Acta 164, 279 (1984)
99. Bakker, E.; Pretsch, E.; Buhlmann, P.: Carrier-based ion-selective electrodes and bulk optodes. General characteristics. Chem. Rev. 97, 3083 (1997)