Continuous reduction in cerebral oxygenation during endurance exercise in patients with pulmonary arterial hypertension

Simon Malenfant1,2,3,4 | Patrice Brassard2,4 | Myriam Paquette2,4 | Olivier Le Blanc2,4 | Audrey Chouinard2,4 | Sébastien Bonnet1,2,3 | Steeve Provencher1,2,3

1Pulmonary Hypertension and Vascular Biology Research Group, Quebec City, QC, Canada
2Quebec Heart and Lung Institute Research Center, Université Laval, Quebec City, QC, Canada
3Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
4Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada

Correspondence
Simon Malenfant, Pulmonary Hypertension Research Group of the Quebec Heart and Lung Institute Research Center, Laval University, Quebec City, QC G1V 4G5, Canada.
Email: simon.malenfant.2@ulaval.ca

Funding information
Dr. Malenfant was supported by two doctoral scholarships, from the Fond de Recherche du Québec – Santé (27818) and the Department de Kinesiology – Université Laval and a postdoctoral scholarship from the Canadian Institutes of Health Research (358583) over the course of the work highlighted in this manuscript. Drs. Provencher and Bonnet are supported by the Canadian Institute of Health Research and Stroke Foundation of Canada. Dr. Bonnet holds a research chair on vascular biology supported by the Canadian Institute of Health Research. Dr. Provencher is a senior research scholar of the Fond de Recherche du Québec – Santé.

Abstract

Background: Patients with pulmonary arterial hypertension (PAH) have lower cerebral blood flow (CBF) and oxygenation compared to healthy sedentary subjects, the latter negatively correlating with exercise capacity during incremental cycling exercise. We hypothesized that patients would also exhibit altered CBF and oxygenation during endurance exercise, which would correlate with endurance time.

Methods: Resting and exercise cardiorespiratory parameters, blood velocity in the middle cerebral artery (MCAv; transcranial doppler) and cerebral oxygenation (relative changes in cerebral tissue oxygenation index (ΔcTOI) and cerebral deoxyhemoglobin (ΔcHHb); near-infrared spectroscopy) were continuously monitored in nine PAH patients and 10 healthy-matched controls throughout endurance exercise. Cardiac output (CO), systemic blood pressure (BP) and oxygen saturation (SpO\textsubscript{2}), ventilatory metrics and end-tidal CO\textsubscript{2} pressure (PETCO\textsubscript{2}) were also assessed noninvasively.

Results: Despite a lower workload and endurance oxygen consumption, similar CO and systemic BP, ΔcTOI was lower in PAH patients compared to controls (\textit{p} < .01 for interaction). As expected during exercise, patients were characterized by an altered MCAv response to exercise, a lower PETCO\textsubscript{2} and SpO\textsubscript{2}, as well as a higher minute-ventilation/CO\textsubscript{2} production ratio (\textit{V}\textsubscript{E}/\textit{VCO}\textsubscript{2} ratio). An uncoupling between changes in MCAv and PETCO\textsubscript{2} during the cycling endurance exercise was also progressively apparent in PAH patients, but absent in healthy controls. Both cHHb and ΔcTOI correlated with \textit{V}\textsubscript{E}/\textit{VCO}\textsubscript{2} ratio (\textit{r} = 0.50 and \textit{r} = -0.52; both \textit{p} < .05 respectively), but not with endurance time.

Conclusion: PAH patients present an abnormal cerebrovascular profile during endurance exercise with a lower cerebral oxygenation that correlate with hyperventilation but not endurance exercise time. These findings complement the physiological characterization of the cerebral vascular responses to exercise in PAH patients.

KEYWORDS
cerebral blood flow, cerebral oxygenation, cycling endurance test, exercise physiology, pulmonary arterial hypertension, pulmonary hypertension
Pulmonary arterial hypertension (PAH) is characterized by a progressive increase in pulmonary vascular resistance and a failing right ventricle (RV), resulting in early exercise intolerance and ultimately, premature death (Galie et al., 2015). Several mechanisms have been suggested to be responsible for exercise intolerance in these patients. In addition to RV dysfunction (Grunig et al., 2013), evidence of skeletal muscle and systemic vascular impairments are recognized as an important manifestation of PAH (Nickel et al., 2020). As such, it is now recognized that skeletal muscle impairments contribute to exercise intolerance, including weakness (Bauer et al., 2007; Mainguy et al., 2010), poor capillary density and oxygenation (Malenfant, Potus, Mainguy, et al., 2015; Potus et al., 2014), and poor mitochondrial oxidative phosphorylation and metabolism (Batt, Ahmed, Correa, Bain, & Granton, 2014; Malenfant, Potus, Fournier, et al., 2015). Recent studies have also proposed impaired cerebral blood flow (CBF) (Malenfant et al., 2017) and oxygenation (Malenfant et al., 2017; Muller-Mottet et al., 2015) as limiting factors for maximal exercise capacity in these patients.

Most PAH patients’ complaints refer to exertional dyspnea. While the neurophysiology of dyspnea has yet to be explained in PAH, several lines of evidence suggest that lower prefrontal oxygenation recently described in these patients during incremental exercise testing (Malenfant et al., 2017; Muller-Mottet et al., 2015) could be involved. Indeed, based on the multichannel near-infrared spectroscopy (NIRS) technique, Higashimoto et al. demonstrated that exertional dyspnea was associated with both prefrontal and premotor cortex overactivation in chronic obstructive pulmonary disease (COPD) patients (Higashimoto et al., 2011, 2015). Prefrontal oxygenation during incremental exercise to exhaustion also correlated with exercise capacity in PAH (Malenfant et al., 2017). However, dyspnea is most commonly reported at submaximal exercise level in PAH (Mainguy, Provencher, Maltais, Malenfant, & Saey, 2011). More importantly, cycling endurance tests were shown to elicit a markedly different physiological response compared to incremental cycling exercise to exhaustion in PAH (Mainguy et al., 2014). Thus, whether a submaximal exercise induces similar cerebrovascular and prefrontal oxygenation changes compared to incremental exercise to exhaustion in PAH remains to be explored.

Therefore, the objective of the current study was to assess changes in cerebral oxygenation and its physiological determinants during an endurance cycling protocol to further understand the cerebrovascular contribution to exercise intolerance in PAH patients compared to healthy controls. We hypothesized that patients would exhibit altered MCAv and oxygenation during endurance exercise, correlating with total endurance time.
Netherlands) according to the current guidelines (American Thoracic & American College of Chest, 2003). Following a 5-min rest period and 1 min of unloaded pedaling, the endurance cycling protocol was initiated at 75% of the maximal work rate achieved during the incremental cardiopulmonary exercise test (Malenfant et al., 2017). Patients were instructed to cycle at a minimum cadence of 60 rpm. Standardized encouragement was provided throughout the endurance cycling protocol. The endurance time represented the total exercise duration after workload increase until exhaustion, defined as the inability to maintain a minimum cadence of 60 rpm.

2.3.2 MCAv, oxygenation and physiological measurements

Heart rate (HR) was measured with cardiac 12-lead ECG. Minute-ventilation (V_e), oxygen consumption (V_e/VO_2), and carbon dioxide production (V_e/CO_2) were continuously monitored through a breath-by-breath expired gas analyzer (Breeze Suite, MedGraphics Corp.). Systemic oxygen saturation (SpO2) was continuously measured by pulse oximetry (Nonin Medical Inc). Mean arterial pressure (MAP) and cardiac output (CO) were both measured noninvasively by the Modelflow finger photoplethysmography technique (Nexfin, Edwards Lifesciences). This technique proves reliable to evaluate absolute CO at rest and during exercise in PAH patients (Lador et al., 2015). The cuff was placed on the left middle finger and referenced to the level of the heart using a height correcting unit. MCAv was monitored with transcranial Doppler ultrasonography (2.0-MHz probe; Doppler Box Compumedics DWL USA, Inc.). Identification and location of the left MCA was obtained using standardized procedures (Willie et al., 2011). The probe was attached to a commercially available headset and maintained in position using adhesive conductive ultrasonic gel (Tensive, Parker Laboratory) to ensure a stable position and angle throughout the endurance cycling protocol. Cerebral oxygenation was monitored by NIRS in the prefrontal cortex capillary beds using a single-distance, continuous wave light, dual-channel Oxiplex TS (ISS). Relative changes (Δ) from baseline in cerebral oxygenated ($\Delta cHbO_2$), deoxygenated ($\Delta cHHb$), and total (ΔcHb_{tot}) hemoglobin concentration were measured. The NIRS fiber optode consisted of eight light-emitting diodes operating at wavelengths of 690 and 830 nm and one detector fiber bundle with a separated distance of approximately 4 cm, corresponding to a light penetration depth of 2 cm in the brain tissue. The signal was analyzed using the modified Beer–Lambert law. Metrics evaluated were $[cHbO_2]/[cHb_{tot}]$ ratio, expressed as Δ from baseline in cerebral tissue oxygenation index ($\%\Delta cTOI$), while $\%\Delta cHHb$ was used as a surrogate of the local oxygen delivery and utilization matching.

2.3.3 Data acquisition and analysis

For MCAv, CO, MAP, and cerebral oxygenation metrics ($\%\Delta cHbO_2$ and $\%\Delta cTOI$), signals were acquired at 1,000 Hz via an analog-to-digital converter (Powerlab 16/30 ML880; ADInstruments) and stored offline for subsequent analysis using commercially available software (LabChart version 7; ADInstruments). Breath-by-breath respired gas and SpO2 were simultaneously acquired and stored offline for subsequent analysis. Changes in cerebral oxygen delivery from baseline during exercise was estimated according to the following formula: $\Delta cDO_2 = \Delta MCAv \times \Delta$ arterial oxygen content (estimated as $1.349 \times$ hemoglobin \times pulse oximetry (SpO2)). Exercise data from finger photoplethysmography and transcranial Doppler ultrasonography were resampled at 1 Hz and time-aligned with breath-by-breath measurements. Data points (MCAv, cDO2, SpO2, $P_{ET}CO_2$, $\Delta cHHb$, $\Delta cTOI$, V_e/VO_2, CO, HR, MAP, V_e, V_e/VCO_2 ratio) were analyzed at different stages of exercise (rest, warm-up, 25%, 50%, 75% of total exercise time, exercise exhaustion, and 1-min postexercise cooldown). Each time point value corresponded to a 10-s average value.

2.4 Statistical analysis

Data are reported as mean ± standard deviation unless specified. Unpaired t tests were used to compare variables from both groups at baseline when data were normally distributed. Normality was assessed using D’Agostino and Pearson normality tests. When not normally distributed, data were transformed using log$_{10}$. Unpaired t tests were then applied to transformed data. For exercise data, a mixed ANOVA (between-subjects factor: group; within-subjects factor: endurance time) was used. After a positive identification of an interaction effect (endurance time x groups), differences were located using paired (within-group) and independent (between-group) samples t tests, with Bonferroni correction. Pearson correlation coefficient was used to evaluate the relationship between $\Delta cHHb$ and $\Delta cTOI$ and exercise determinants unless otherwise specified. Power analysis indicated that eight patients would be needed to achieve a $\alpha = 0.05$ and a $\beta = 0.80$ for a difference of 13 cm/s and −8.0 ± 6.0% in the main study outcome (resting MCAv and exercise cTOI), respectively; using G*Power v3.1.9.3. A total of 11 patients were recruited for the larger protocol (Malenfant et al., 2017) to account for potential dropouts. Statistical significance was accepted at $p < .05$.

3 RESULTS

Baseline characteristics of PAH patients and control participants are presented in Table 1. Groups were similar for
TABLE 1 Baseline characteristics

	PAH group	Control group
Sex, M/F	n = 9	n = 10
Age, years	45 (12)	44 (15)
BMI, kg m⁻²	25.0 (4.1)	25.5 (3.1)
PAH subtype		
iPAH-HPAH ratio	7/2	NA
WHO functional class	II/III	NA
Resting hemodynamics		
mPAP, mmHg	47 (10)	NA
CI, L min⁻¹ m⁻²	3.0 (0.5)	NA
PVR, dyne s⁻¹ cm⁻⁵	568 (187)	NA
PAOP, mmHg	10 (2)	NA
SvO₂, %	70 (4)	NA
PAH-targeted agents		
Prostacyclin analogue	1	NA
PDE-5i	8	NA
ERA	5	NA
Monotherapy	4	NA
Combination therapy	5	NA
Exercise capacity		
6-Min walk test, m	515 (93)	NA
% predicted	89 (22)	NA
Endurance exercise		
75% WR, Watts	69 (26)	121 (43)**
Time, s	480 (266)	755 (326)*

Note: Data are presented as mean (standard deviation) unless otherwise specified.

Abbreviations: BMI: body mass index; CI: cardiac index; CPET: cardiopulmonary exercise test; ERA: endothelin receptor antagonist; mPAP: mean arterial pressure; PAH: pulmonary arterial hypertension; PAOP: pulmonary artery occlusion pressure; PDE-5i: phosphodiesterase type 5 inhibitors; PVR: pulmonary vascular resistance; RER: respiratory equivalent ratio; SvO₂: systemic venous oxygen saturation; V̇E/V̇CO₂: ventilatory equivalent for CO₂ slope; VO₂: oxygen consumption; WR: work rate. Significant difference between PAH and control groups: *p < .05; **p < .01; ***p < .001; ****p < .0001.

sex, age, and body mass index. Most patients were in WHO functional class II on combination therapy. Patients achieved 89% of their predicted walking distance for the 6MWT. Endurance time was 36% lower in PAH patients compared to healthy participants.

PAH patients had a constant decrease in ΔcTOI throughout the endurance cycling protocol, whereas it remained unchanged in controls (p = .0005 for interaction; Figure 1a). Consistently, ΔcHHb increased more prominently in PAH patients, although the difference did not reach statistical significance (p = .14 for interaction; Figure 1b). Despite higher V̇E/V̇CO₂ ratio (Table 2) and lower ṖĖCO₂ (Figure 2c) compared to healthy controls, exercise-induced changes in MCAv (Figure 2a), systemic blood pressure, CO (Table 2), and ΔcDO₂ (Figure 2b) were comparable between groups, and thus could not entirely explain the impaired cerebral oxygenation. Indeed, while controls initially exhibited a quick surge in MCAv and ΔcDO₂, subsequent changes were similar between groups. Conversely, PAH patients displayed lower VO₂ and SpO₂ throughout the exercise protocol (Table 2; Figure 2d).

Exploration of the potential mechanisms associated with changes in end-exercise cerebral oxygenation indicated a mild correlation between end-exercise V̇E/V̇CO₂ ratio and both ΔcHHb and ΔcTOI, while ΔcHHb correlated with end-exercise SpO₂ (Table 3). No correlation was found between cerebral oxygenation metrics and endurance time. Of note, MCAv remained elevated in patients after its initial surge until 1-min postexercise (Figure 2a), notwithstanding a constant ṖĖCO₂ reduction (Figure 2d). This pattern suggests an uncoupling between MCAv and ṖĖCO₂ in patients only.

4 DISCUSSION

To our knowledge, this is the first study to compare MCAv and cerebral oxygenation and their physiological responses to cycling endurance exercise in sex- and age-matched PAH patients and healthy controls. Our principal finding was that PAH patients displayed lower cerebral oxygenation throughout the endurance cycling protocol compared to healthy controls. Furthermore, those changes were not correlated with endurance time, but were mildly correlated with a steeper rise in V̇E/V̇CO₂ ratio and SpO₂. Lastly, patients presented an uncoupling between MCAv and ṖĖCO₂ throughout the exercise protocol. Altogether, the present study results indicate that the cerebrovascular response to cycling endurance exercise in PAH differs from incremental cycling exercise to exhaustion, thus complementing the physiological characterization of the MCAv and cerebral oxygenation responses to exercise in PAH patients.

4.1 Cerebral oxygenation and ventilatory response to exercise in PAH

During incremental exercise, PAH patients are characterized by an exaggerated ventilatory response to exercise, as expressed by a disproportionate rise in V̇E/V̇CO₂ ratio, hypocapnia and hypoxemia, consistent with ventilation/perfusion mismatch (Deboeck, Niset, Vachiery, Moraine, & Naeije, 2005; Sun, Hansen, Oudiz, & Wasserman, 2001; Vicenzi et al., 2016; Yasunobu, Oudiz, Sun, Hansen, & Wasserman, 2005). The pattern of endurance exercise response in our patients is consistent with those findings. A
possible association between low cerebral oxygenation and exercise-induced hyperventilation may be suggested by the correlation found between markers of cerebral oxygenation, for example ΔcHHb and ΔcTOI, and end-exercise $\dot{V}_{E}/\dot{V}_{CO_{2}}$ ratio and SpO2, suggesting that low brain O2 saturation might stimulate excessive ventilation in PAH.

Potential explanations for this finding might reside in three physiological mechanisms: (a) a potential brain O2 sensor capable of stimulating the brain stem respiratory network and lung ventilation in response to decrease in O2 delivery and saturation (Gourine & Funk, 2017; Neubauer & Sunderram, 2004). However, recent neuroscience advances in understanding the O2 sensing capability described that brain hypoxia sensors might be found in the brain stem astrocytes (Gourine et al., 2010). When activated in hypoxic conditions, brain stem ectonucleotidase activity leads to rapid degradation of adenosine triphosphate, which stimulates brain presymпатetic neurons in the central respiratory circuit leading to increases
in lung ventilation (Gourine et al., 2010; Rajani et al., 2018). Active neurons can adapt to limited O₂ delivery and metabolic stress by dilating nearby arterioles, and capillaries by adapting pericytes contractility (Hall et al., 2014; Kisler et al., 2017) and rising intracellular calcium in astrocytes (Mishra et al., 2016). As such, brain hypoxia sensors can modulate the neurovascular

TABLE 2	Endurance cycling exercise at 75% of peak workload		
	PAH group	Control group	Mixed ANOVA
	n = 9	n = 10	
VO₂, mlO₂ min⁻¹ Kg⁻¹			
Rest	4.1 (0.7)	3.6 (0.4)	Exercise p < .0001
Warm-up	6.9 (1.1)	7.2 (1.6)†	Ctrl vs. PAH p = .0008
25%	14.7 (4.0)+++	24.3 (4.7)+++,**	Interaction p < .0001
50%	16.5 (4.0)+++	26.8 (5.7)+++,**	
75%	17.6 (4.4)+++	28.0 (6.4)+++,**	
Exhaustion	18.0 (4.4)+++	28.1 (6.1)+++,**	
1-Min rest	14.4 (2.3)+++	16.9 (2.7)+++	
CO, L min⁻¹			
Rest	5.6 (1.4)	5.7 (1.5)	Exercise p < .0001
Warm-up	7.5 (2.2)	7.5 (2.1)	Ctrl vs. PAH NS
25%	9.7 (3.0)+++	11.6 (5.0)+++	Interaction NS
50%	10.6 (3.7)+++	12.5 (5.2)+++	
75%	10.7 (3.6)+++	12.6 (5.0)+++	
Exhaustion	11.1 (3.5)+++	12.2 (5.4)+++	
1-Min rest	9.7 (3.4)+++	10.3 (4.5)+++	
HR, bpm			
Rest	71 (11)	76 (13)	Exercise p < .0001
Warm-up	87 (10)+++	96 (12)+++	Ctrl vs. PAH p = .04
25%	122 (18)+++	144 (19)+++,*	Interaction p = .02
50%	135 (18)+++	154 (20)+++	
75%	140 (16)+++	159 (21)+++	
Exhaustion	142 (15)+++	161 (22)+++	
1-Min rest	123 (15)+++	138 (20)+++	
MAP, mmHg			
Rest	96 (14)	99 (9)	Exercise p < .0001
Warm-up	104 (20)	100 (13)	Ctrl vs. PAH NS
25%	131 (31)+++	130 (19)+++	Interaction NS
50%	135 (30)+++	129 (14)+++	
75%	137 (31)+++	122 (12)+++	
Exhaustion	132 (33)+++	122 (8)+++	
1-Min rest	119 (26)+++	102 (11)	
V̇E, L min⁻¹			
Rest	12 (3)	8 (1)	Exercise p < .0001
Warm-up	20 (4)	14 (4)	Ctrl vs. PAH NS
25%	50 (23)+++	53 (13)+++	Interaction NS
50%	61 (24)+++	63 (15)+++	
75%	69 (30)+++	68 (21)+++	
Exhaustion	72 (31)+++	72 (26)+++	
1-Min rest	53 (20)+++	49 (16)+++	

(Continues)
coupling to regional cerebral deoxygenation via astrocytes and pericytes, which in turn stimulate the brain stem neuronal respiratory network resulting in hyperventilation. Secondly, both peripheral and central chemoreceptors overactivity in PAH (Malenfant et al., 2017; Paula-Ribeiro et al., 2019; Vicenzi et al., 2016) might stimulate ventilation in an additive manner. Smith et al. demonstrated an hyperadditive two to fourfold response change in the central chemoreceptor response to carotid chemoreceptors hypersensitivity, resulting in further increase in ventilation in awaked dogs (Smith, Blain, Henderson, & Dempsey, 2015). Lastly, a potential-increased sensory feedback from group III/IV skeletal muscle afferents might further increase ventilatory response to exercise, thus contributing to a further decrease in $P_{ET}CO_2$ and ultimately blunting the MCAv increase response to exercise (Braz et al., 2014). Nonetheless interesting, those mechanisms remain to be confirmed in PAH animal models and remain speculative.

4.2 Cerebral oxygenation and endurance time

Based on findings from our recent study that documented a correlation between lower cerebral oxygenation and exercise capacity during incremental testing in PAH patients (Malenfant et al., 2017), it was reasoned that endurance cycling would also display an association with exercise intolerance. However, cerebral oxygenation was not associated with endurance time. Two outcomes of this study might explain this lack of association. First, we previously documented an attenuated dynamic cerebral autoregulation in PAH and as such, changes in MAP are more passively transmitted to the brain. The rather normal CO and MAP responses to endurance exercise should have resulted in a parallel increase in MCAv in patients. However, MCAv only mildly increased compared to healthy controls. A potential explanation for these equivocal findings is that a reduction in $P_{ET}CO_2$ occurs secondary to hyperventilation resulting in a subsequent cerebral vasodilation (Braz et al., 2014) and leading to lower ΔcHHb and ΔcTOI. However, prefrontal cortical oxygenation may not be representative of changes in local capillary and/or venous oxygenation in the brain. Therefore, endurance time may not be sensitive enough in this context to demonstrate an association with cerebral oxygenation metrics. Secondly, cerebral O_2 delivery at the different stages of exercise or at exhaustion was not different between groups despite longer endurance time in healthy controls. Therefore, despite a relatively normal O_2 delivery at exercise, this lowered cerebral oxygenation might indicate O_2 redistribution to active neurons in the motor cortex at the cost of the frontal cortex where cerebral oxygenation was monitored. Hence, cerebral oxygenation accounts as a limiting factor for exercise intolerance (Malenfant et al., 2017), but most likely through increased exercise hyperventilation. As demonstrated in COPD (Vogiatzis et al., 2013) and more recently in PAH (Ulrich et al., 2017), O_2 supplementation increases endurance time but not cerebral O_2 delivery, indicating that the supplementation most probably alleviates dyspnea sensation and legs discomfort to allow longer endurance time without normalizing either cerebral or skeletal muscle O_2 delivery (Malenfant, Potus, Mainguy, et al., 2015).

4.3 Uncoupling between MCAv and $P_{ET}CO_2$ during endurance exercise in PAH and potential clinical consequences

Another illustration of cerebrovascular abnormalities might reside in the observation of an uncoupling between changes in MCAv and $P_{ET}CO_2$ during the endurance exercise protocol, for example, absence of decrease in cerebral perfusion...
notwithstanding hyperventilation-induced hypocapnia, apparent in PAH patients, but absent in healthy controls. This finding has been previously observed in athletes with post-concussion syndrome (Clausen, Pendergast, Willer, & Leddy, 2016; Imhoff et al., 2017). Hence, alterations in two key CBF regulation mechanisms in PAH, for example, an attenuated dynamic cerebral autoregulation and a lower cerebrovascular reactivity to CO₂, might result in the inability of exercise-induced hypocapnia to dampen changes in MCAv. As such, CBF becomes more reliant on MAP (Malenfant et al., 2017; Treptow et al., 2016), and may eventually lead to a progressive breakdown of the blood–brain barrier resulting in extravascular edema and cerebral vessel frailty (Ogoh & Ainslie, 2009). Whether these abnormal CBF regulation mechanisms contribute to a 1.5 times higher odds of developing a stroke for PAH patients remains to be addressed (Shah, Sutaria, & Vyas, 2019).

4.4 Limitations

The validity of MCAv as a surrogate of CBF encompasses minimal variation in MCA diameter across a variety of physiological challenges. However, the MCA diameter is changing homogeneously among participants in response to changes in P_{ET}CO₂ (Coverdale, Gati, Opalevych, Perrotta, & Shoemaker, 2014; Verbree et al., 2014). Also, in response to handgrip exercise, a MCA diameter vasoconstriction of 2% was observed, without change in P_{ET}CO₂ (Verbree et al., 2017). Altogether,
these results indicate that the MCA is vasoactive under PETCO2 changes and during exercise. In our patients, PETCO2 dropped by ~7 mmHg at the end of the endurance exercise (corresponding to ~2% MCA vasoconstriction). Based on the model developed by Ainslie and Hoiland, a 2% MCA vasoconstriction is likely to result in a <5% discrepancy between flow and velocity (Ainslie & Hoiland, 2014). Hence, MCAv may be considered as a CBF surrogate for our patients. However, we acknowledge limitations of this interpretation. First, the aforementioned studies were conducted only in healthy subjects and secondly, other factors might influence the MCA diameter in PAH patients such as a lower cerebrovascular reactivity to CO2 (Malenfant et al., 2017; Treptow et al., 2016), attenuating the influence of hypocapnia on MCA diameter during exercise. Therefore, we recognize that care must be taken when interpreting the present data about MCAv as a surrogate of CBF in the present study.

Changes in skin blood flow may influence absolute NIRS light absorption (Miyazawa et al., 2013). We reported relative changes in percentage of cerebral TOI and HHb to minimize this confounding factor. Moreover, increase in cHHb is a known representative of altered O2 delivery in the cerebral capillary bed and is expected to be associated with impaired cerebral oxygen extraction.

The vascular O2 content depends on a balance between CBF and cerebral metabolic rate of oxygen, the latter depending on the O2 pool, the blood–brain barrier integrity, and the hemoglobin dissociation curve (Valabregue, Aubert, Burger, Bittoun, & Costalat, 2003). We acknowledge that hypocapnia and early lactic acid accumulation during exercise might potentially add to the burden of lower cerebral oxygenation because of an early rightward and downward shift of the hemoglobin dissociation curve, decreasing O2 affinity for Hb and therefore facilitating its release in the cerebrovascular circulation, which can influence the O2 content at the capillary end and contributing to its heterogeneity.

No significant changes were found in the MCAv of six healthy male subjects after 30 min and 60 min following administration of 100 mg of sildenafil (Arnavaz et al., 2003), while in a separate study, administration of the same dose of sildenafil in ten healthy controls causes no significant change in MCAv and artery diameter, but was associated with higher prevalence of headaches (Kruuse, Thomsen, Jacobsen, & Olesen, 2002). As such, the impact of sildenafil on the MCAv remains unlikely for our patients. However, a potential influence of PAH therapies cannot be excluded as sildenafil displayed beneficial effects on cerebral vascular reactivity indicative of an improvement in neurovascular coupling when investigated, while inhaled iloprost provoked deterioration of cerebral microvascular tone and oscillating properties in the posterior cerebral arteries of the same patients (Rosengarten et al., 2006). Therefore, a class-effect may not be ruled out.

Lastly, the discrepancy between PETCO2 and PaCO2 in PAH must be discussed. In contrast to healthy subjects in whom the arterial to end-tidal CO2 pressure gradient (P a – PETCO2) is reduced and close to zero during maximal exercise when corrected for temperature (Losa-Reyna, Torres-Peralta, Henriquez, & Calbet, 2015), this gradient remains slightly positive in PAH (Sun, Hansen, Oudiz, & Wasserman, 2002) suggesting an increased physiological dead space fraction. Surprisingly, however, a seminal study comparing lung absorption of multiple inert gases showed no or a limited increase in V T/V E despite marked pulmonary arterial obstruction (Dantzker & Bower, 1979). Importantly, both PETCO2 and PaCO2 are physiologically reduced at rest and during exercise in proportion to disease severity (Yasunobu et al., 2005) and independently predict mortality (Hooper, Pletz, Golpon, & Welte, 2007).

TABLE 3 Correlations between exercise tolerance determinants and cerebral oxygenation

	cTOI, % change from baseline	cHHb, % change from baseline
	Pearson r p value	Pearson r p value
End-exercise V̇E O2, mlO2 min⁻¹ kg⁻¹	.25 .29	-.06 .78
End-exercise CO, L/min	.10 .73	<.01 .99
End-exercise MCAv mean, cm/s	-.18 .45	.35 .15
End-exercise V̇E/V̇CO2	-.50 .03	52 .02
End-exercise PaO2, mmHg	.44 .06	-.44 .06
End-exercise SpO2, %	.49 .06	-.53 .03
aEndurance time, s	.30 .22	-.12 .63

Abbreviations: 6MWT: 6 min walk test; cHHb: cerebral deoxyhemoglobin at exhaustion; cTOI: cerebral tissue oxygenation index at exhaustion; mPAP: mean pulmonary arterial pressure; PVR: pulmonary vascular resistance; SvO2: systemic venous oxygen saturation; V̇E/V̇CO2: ventilatory equivalent for CO2 slope.

aSpearman r.
Moreover, both metrics exhibit parallel changes during exercise in pulmonary hypertension and accordingly, \(P_{ET}CO_2 \) is considered an imperfect although a relevant surrogate for \(PaCO_2 \) in PAH (Neder et al., 2016).

5 | CONCLUSION

The present study provides physiological evidence that PAH patients have functional abnormalities in MCAv and cerebral oxygenation during an endurance exercise test. These alterations include a reduction in cerebral oxygenation associated with end-exercise \(V_c/O_2 \) ratio and \(SpO_2 \) and an uncoupling between changes in MCAv and \(P_{ET}CO_2 \) in patients only. Altogether, these findings indicate a different cerebrovascular response to exercise between incremental and endurance exercise in PAH.

ACKNOWLEDGMENTS

We thank members of the Quebec Heart and Lungs Institute Research Center and the Pulmonary Hypertension and Vascular Biology Research Group for their contribution and suggestions along realization of the study. Specifically, we acknowledge the help of Luce Bouffard and Caroline Dionne for their help with patients’ recruitment; Éric Nadreau for helping with the endurance testing and Serge Simard for statistical analysis inputs. We also express our gratitude to the participants for their enthusiastic participation in this vigorous exercise protocol and for their availability to all the testing sessions.

CONFLICT OF INTEREST

The authors have declared no conflict of interest.

ORCID

Simon Malenfant https://orcid.org/0000-0002-3911-3702
Patrice Brassard https://orcid.org/0000-0002-6254-5044

REFERENCE

Ainslie, P. N., & Hoiland, R. L. (2014). Transcranial Doppler ultrasound: Valid, invalid, or both? Journal of Applied Physiology, 1985(117), 1081–1083. https://doi.org/10.1152/japplphysiol.00854.2014

American Thoracic Society and American College of Chest Physicians. (2003). ATS/ACCP Statement on cardiopulmonary exercise testing. American Journal of Respiratory and Critical Care Medicine, 167, 211–277.

Arnazv, A., Aurich, A., Weissenborn, K., Hartmann, U., Emrich, H. M., & Schneider, U. (2003). Effect of sildenafil (Viagra) on cerebral blood flow velocity: A pilot study. Psychiatry Research, 122, 207–209. https://doi.org/10.1016/S0925-4927(03)00018-0

Batt, J., Ahmed, S. S., Correa, J., Bain, A., & Granton, J. (2014). Skeletal muscle dysfunction in idiopathic pulmonary arterial hypertension. American Journal of Respiratory Cell and Molecular Biology, 50, 74–86.

Bauer, R., Dehnert, C., Schoene, P., Filsch, A., Bartsch, P., Borst, M. M., … Meyer, F. J. (2007). Skeletal muscle dysfunction in patients with idiopathic pulmonary arterial hypertension. Respiratory Medicine, 101, 2366–2369. https://doi.org/10.1016/j.rmed.2007.06.014

Braz, I. D., Scott, C., Simpson, L. L., Springham, E. L., Tan, B. W., Balanos, G. M., & Fisher, J. P. (2014). Influence of muscle metaboreceptor stimulation on middle cerebral artery blood velocity in humans. Experimental Physiology, 99, 1478–1487. https://doi.org/10.1113/epjphysiol.2014.081687

Clausen, M., Pendergast, D. R., Willer, B., & Leddy, J. (2016). Cerebral blood flow during treadmill exercise is a marker of physiological postconcussion syndrome in female athletes. The Journal of Head Trauma Rehabilitation, 31, 215–224. https://doi.org/10.1097/HTR.0000000000000145

Coverdale, N. S., Gati, J. S., Opalevych, O., Perrotta, A., & Shoemaker, J. K. (2014). Cerebral blood flow velocity underestimates cerebral blood flow during modest hypercapnia and hypocapnia. Journal of Applied Physiology, 1985(117), 1090–1096. https://doi.org/10.1152/japplphysiol.00285.2014

Dantzker, D. R., & Bower, J. S. (1979). Mechanisms of gas exchange abnormality in patients with chronic obstructive pulmonary vascular disease. Journal of Clinical Investigation, 64, 1050–1055. https://doi.org/10.1172/JCI109542

Deboeck, G., Niset, G., Vachieri, J. L., Moraine, J. J., & Naeije, R. (2005). Physiological response to the six-minute walk test in pulmonary arterial hypertension. European Respiratory Journal, 26, 667–672. https://doi.org/10.1183/09031936.05.00031505

Galie, N., Humbert, M., Vachiery, J. L., Gibbs, S., Lang, I., Torbicki, A., … Hoeper, M. (2015). 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). European Respiratory Journal, 46, 903–975. https://doi.org/10.1183/13993003.01032-2015

Gourine, A. V., & Funk, G. D. (2017). On the existence of a central respiratory oxygen sensor. Journal of Applied Physiology, 1985(123), 1344–1349. https://doi.org/10.1152/japplphysiol.00194.2017

Gourine, A. V., Kasyrov, M., Marin, N., Tang, F., Figueiredo, M. F., Lane, S., … Kasparov, S. (2010). Astrocytes control breathing through pH-dependent release of ATP. Science, 329, 571–575. https://doi.org/10.1126/science.1190721

Grunig, E., Tiede, H., Enymayew, E. O., Ehiken, N., Seyfarth, H. J., Bossone, E., … Fischer, C. (2013). Assessment and prognostic relevance of right ventricular contractile reserve in patients with severe pulmonary hypertension. Circulation, 128, 2005–2015. https://doi.org/10.1161/CIRCULATIONAHA.113.01573

Hall, C. N., Reynell, C., Gesslein, B., Hamilton, N. B., Mishra, A., Sutherland, B. A., … Attwell, D. (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 508, 55–60. https://doi.org/10.1038/nature13165

Higashimoto, Y., Honda, N., Yamagata, T., Matsuoka, T., Maeda, K., Satoh, R., … Fukuda, K. (2011). Activation of the prefrontal cortex is associated with exertional dyspnea in chronic obstructive pulmonary disease. Respiration, 82, 492–500. https://doi.org/10.1159/000324571
Higashimoto, Y., Honda, N., Yamagata, T., Sano, A., Nishiyama, O., Sano, H.,… Tohda, Y. (2015). Exertional dyspnoea and cortical oxygenation in patients with COPD. *European Respiratory Journal*, 46, 1615–1624. https://doi.org/10.1183/13993003.00541-2015

Hoepner, M. M., Pletz, M. W., Golpon, H., & Welte, T. (2007). Prognostic value of blood gas analyses in patients with idiopathic pulmonary arterial hypertension. *European Respiratory Journal*, 29, 944–950. https://doi.org/10.1183/09031936.00134506

Imhoff, S., Malenfant, S., Nadreau, E., Poirier, P., Bailey, D. M., & Brassard, P. (2017). Uncoupling between cerebral perfusion and oxygenation during incremental exercise in an athlete with postcon- cussion syndrome: A case report. *Physiological Reports*, 5, e13131. https://doi.org/10.14814/phy2.13131

Kisler, K., Nelson, A. R., Ramanathan, A., Wang, Y., Ahuja, A.,… Zlokovic, B. V. (2017). Pericyte degeneration leads to neu- rovascular uncoupling and limits oxygen supply to brain. *Nature Neuroscience*, 20, 406–416. https://doi.org/10.1038/nn.4489

Kruuse, C., Thomsen, L. L., Jacobsen, T. B., & Olesen, J. (2002). *Kisler, K., Nelson, A. R., Ramanathan, A., Wang, Y., Ahuja, A., … Zlokovic, B. V. (2017). Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nature Neuroscience, 20, 406–416. doi.org/10.1038/nn.4489 Neurobiology*, 39, 944–950. https://doi.org/10.1183/09031936.00134506

Kruuse, C., Thomsen, L. L., Jacobsen, T. B., & Olesen, J. (2002). The phosphodiesterase 5 inhibitor sildenafil has no effect on cere- bral blood flow or blood velocity, but nevertheless induces head- ache in healthy subjects. *Journal of Cerebral Blood Flow and Metabolism*, 22, 1124–1131. https://doi.org/10.1097/00004647-200209000-00010

Lador, F., Herve, P., Bringard, A., Gunther, S., Garcia, G., Savale, L., … Sitbon, O. (2015). Non-invasive determination of cardiac output in pre-capillary pulmonary hypertension. *PLoS ONE*, 10, e0134221. https://doi.org/10.1371/journal.pone.0134221

Losa-Reyna, J., Torres-Peralta, R., Henriquez, J. J., & Calbet, J. A. (2015). Arterial to end-tidal Pco2 difference during exercise in nor- mosia and severe acute hypoxia: Importance of blood temperature correction. *Physiological Reports*, 3, e12512.

Mainguy, V., Malenfant, S., Neyron, A. S., Saey, D., Maltais, F., Bonnet, S.,… Provencher, S. (2014). Alternatives to the six-minute walk test in pulmonary arterial hypertension. *PLoS ONE*, 9, e103626. https://doi.org/10.1371/journal.pone.0103626

Mainguy, V., Maltais, F., Saey, D., Gagnon, P., Martel, S., Simon, M., & Provencher, S. (2010). Peripheral muscle dysfunction in idiopathic pulmonary arterial hypertension. *Thorax*, 65, 113–117. https://doi.org/10.1136/thx.2009.171168

Mainguy, V., Provencher, S., Maltais, F., Malenfant, S., & Saey, D. (2011). Assessment of daily life physical activities in pulmonary ar- terial hypertension. *PLoS ONE*, 6, e27993. https://doi.org/10.1371/journal.pone.0027993

Maenfant, S., Brassard, P., Paquette, M., Le Blanc, O., Chouinard, A., Nadeau, V.,… Provencher, S. (2017). Compromised cerebrovascu- lar regulation and cerebral oxygenation in pulmonary arterial hy- pertension. *Journal of the American Heart Association*, 6, e006126. https://doi.org/10.1161/JAHA.117.006126

Malkenf, S., Potus, F., Fournier, F., Breuils-Bonnet, S., Pfieger, A., Bourassa, S.,… Provencher, S. (2015). Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension. *Journal of Molecular Medicine (Berlin)*, 93, 573–584. https://doi.org/10.1007/s00109-014-1244-0

Malkenf, S., Potus, F., Mainguy, V., Leblanc, E., Malefnat, M., Ribeiro, F.,… Provencher, S. (2015). Impaired skeletal muscle oxygenation and exercise tolerance in pulmonary hypertension. *Medicine and Science in Sports and Exercise*, 47, 2273–2282. https://doi.org/10.1249/MSS.0000000000006996

Mishra, A., Reynolds, J. P., Chen, Y., Gourine, A. V., Rusakov, D. A., & Attwell, D. (2016). Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles. *Nature Neuroscience*, 19, 1619–1627. https://doi.org/10.1038/nn.4428

Miyazawa, T., Horiiuchi, M., Kome, H., Sugawara, J., Fadel, P. J., & Ogoh, S. (2013). Skin blood flow influences cerebral oxygenation measured by near-infrared spectroscopy during dynamic exercise. *European Journal of Applied Physiology*, 113, 2841–2848. https://doi.org/10.1007/s00424-013-2723-7

Muller-Mottet, S., Hildenbrand, F. F., Keusch, S., Hasler, E., Maggiolini, M., Speich, R.,… Ulrich, S. (2015). Effects of exercise and vaso- dilators on cerebral tissue oxygenation in pulmonary hypertension. *Lung*, 193, 113–120. https://doi.org/10.1007/s00408-014-9667-5

Neder, J. A., Ramos, R. P., Ota-Arakaki, J. S., Ferreira, E. M., Hirai, D. M., Sperandio, P. A.,… O’Donnell, D. E. (2016). Insights into venti- lation-gas exchange coupling in chronic thromboembolic pulmonary hypertension. *European Respiratory Journal*, 48, 252–254. https://doi.org/10.1183/13993003.01948-2015

Neubauer, J. A., & Sunderram, J. (2004). Oxygen-sensing neurons in the central nervous system. *Journal of Applied Physiology*, 1985(96), 367–374. https://doi.org/10.1152/japplphysiol.00831.2003

Nickel, N. P., Yuan, K., Dorfmueller, P., Provencher, S., Lai, Y. C., Bonnet, S.,… de Jesus Perez, V. A. (2020). Beyond the lungs: Systematic manifestations of pulmonary arterial hypertension. *American Journal of Respiratory and Critical Care Medicine*, 201, 148–157. https://doi.org/10.1164/rccm.201903-0656CI

Ogoh, S., & Ainslie, P. N. (2009). Cerebral blood flow during exercise: Mechanisms of regulation. *Journal of Applied Physiology*, 1985(107), 1370–1380. https://doi.org/10.1152/japplphysiol.00573.2009

Paula-Ribeiro, M., Ribeiro, I. C., Aranda, L. C., Silva, T. M., Costa, C. M., Ramos, R. P.,… Silva, B. M. (2019). Carotid chemoreflex activity restrains post-exercise cardiac autonomic control in healthy humans and in patients with pulmonary arterial hypertension. *Journal of Physiology*, 597, 1347–1360. https://doi.org/10.1113/JP277190

Potus, F., Malenfant, S., Graydon, C., Mainguy, V., Tremblay, E., Breuils-Bonnet, S.,… Provencher, S. (2014). Impaired angiogenesis and peripheral muscle microcirculation loss contribute to exercise intolerance in pulmonary arterial hypertension. *American Journal of Respiratory and Critical Care Medicine*, 190, 318–328.

Rajani, V., Zhang, Y., Jalubula, V., Rancic, V., SheikhBahaei, S., Zwicker, J. D.,… Funk, G. D. (2018). Release of ATP by pre-Bot- zinger complex astrocytes contributes to the hypoxic ventilatory re- sponse via a Ca(2+)-dependent P2Y1 receptor mechanism. *Journal of Physiology*, 596, 3245–3269.

Rosengarten, B., Schermuly, R. T., Voswinckel, R., Kohstall, M. G., Olcheswski, H., Weissmann, N.,… Ghofrani, H. A. (2006). Sildenafil improves dynamic vascular function in the brain: Studies in patients with pulmonary hypertension. *Cerebrovascular Disease*, 21, 194–200. https://doi.org/10.1159/000090555

Shah, T. G., Sutaria, J. M., & Vyas, M. V. (2019). The association be- tween pulmonary hypertension and stroke: A systematic review and meta-analysis. *International Journal of Cardiology*, 295, 21–24. https://doi.org/10.1016/j.ijcard.2019.07.085

Smith, C. A., Blain, G. M., Henderson, K. S.,& Dempsey, J. A. (2015). Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2: Role of carotid body CO2. *Journal of Physiology*, 593, 4225–4243.
Sun, X. G., Hansen, J. E., Oudiz, R. J., & Wasserman, K. (2001). Exercise pathophysiology in patients with primary pulmonary hypertension. *Circulation, 104*, 429–435. https://doi.org/10.1161/hc901.093198

Sun, X. G., Hansen, J. E., Oudiz, R. J., & Wasserman, K. (2002). Gas exchange detection of exercise-induced right-to-left shunt in patients with primary pulmonary hypertension. *Circulation, 105*, 54–60. https://doi.org/10.1161/hc0102.101509

Treptow, E., Oliveira, M. F., Soares, A., Ramos, R. P., Medina, L., Lima, R., … Neder, J. A. (2016). Cerebral microvascular blood flow and CO2 reactivity in pulmonary arterial hypertension. *Respiratory Physiology and Neurobiology, 233*, 60–65. https://doi.org/10.1016/j.resp.2016.08.001

Ulrich, S., Hasler, E. D., Saxer, S., Furian, M., Muller-Mottet, S., Keusch, S., & Bloch, K. E. (2017). Effect of breathing oxygen-enriched air on exercise performance in patients with precapillary pulmonary hypertension: Randomized, sham-controlled crossover trial. *European Heart Journal, 38*, 1159–1168. https://doi.org/10.1093/eurheartj/ehx099

Valabregue, R., Aubert, A., Burger, J., Bittoun, J., & Costalat, R. (2003). Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange. *Journal of Cerebral Blood Flow and Metabolism, 23*, 536–545. https://doi.org/10.1097/01.WCB.0000055178.31872.38

Verbree, J., Bronzwaer, A. S., Gharig, E., Versluis, M. J., Daemen, M. J., van Buchem, M. A., … van Osch, M. J. (2014). Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI. *Journal of Applied Physiology, 1985*(117), 1084–1089. https://doi.org/10.1152/japplphysiol.00651.2014

Verbree, J., Bronzwaer, A., van Buchem, M. A., Daemen, M., van Lieshout, J. J., & van Osch, M. J. (2017). Middle cerebral artery diameter changes during rhythmic handgrip exercise in humans. *Journal of Cerebral Blood Flow and Metabolism, 37*, 2921–2927. https://doi.org/10.1177/0271678X16679419

Vicenzi, M., Deboeck, G., Fauro, V., Loison, J., Vachiery, J. L., & Naeije, R. (2016). Exercise oscillatory ventilation in heart failure and in pulmonary arterial hypertension. *International Journal of Cardiology, 202*, 736–740. https://doi.org/10.1016/j.ijcard.2015.09.087

Vogiatzis, I., Louvaris, Z., Habazettl, H., Andrianopoulos, V., Wagner, H., Roussos, C., … Zakynthinos, S. (2013). Cerebral cortex oxygen delivery and exercise limitation in patients with COPD. *European Respiratory Journal, 41*, 295–301. https://doi.org/10.1183/09031936.00016312

Willie, C. K., Colino, F. L., Bailey, D. M., Tzeng, Y. C., Binsted, G., Jones, L. W., … Ainslie, P. N. (2011). Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. *Journal of Neuroscience Methods, 196*, 221–237. https://doi.org/10.1016/j.jneumeth.2011.01.011

Yasunobu, Y., Oudiz, R. J., Sun, X. G., Hansen, J. E., & Wasserman, K. (2005). End-tidal PCO2 abnormality and exercise limitation in patients with primary pulmonary hypertension. *Chest, 127*, 1637–1646. https://doi.org/10.1378/chest.127.5.1637

How to cite this article: Malenfant S, Brassard P, Paquette M, et al. Continuous reduction in cerebral oxygenation during endurance exercise in patients with pulmonary arterial hypertension. *Physiol Rep*. 2020;00:e14389. https://doi.org/10.14814/phy2.14389