K-finite matrix elements of irreducible Harish–Chandra modules are hypergeometric

NERETIN Yu.A.\(^1\)

We show that each K-finite matrix element of an irreducible Harish-Chandra module can be obtained from spherical functions by a finite collection of operations.

1. **Notation.** Let \(G \) be a linear semisimple Lie group, let \(K \) be the maximal compact subgroup. Let \(\mathfrak{g} \) be the Lie algebra of \(G \), let \(\mathfrak{u}(\mathfrak{g}) \) be its universal enveloping algebra. Let \(L_X, R_X \), where \(X \in \mathfrak{g} \), be the left and right Lie derivatives on \(G \). Denote by \(\mathfrak{u}_l(\mathfrak{g}) \) (resp., \(\mathfrak{u}_r(\mathfrak{g}) \)) the algebra of differential operators on \(G \) generated by left (resp., right) derivatives.

By \(\Psi_s(g) \) we denote the spherical functions on \(G \), \(s \) is the standard parameter of a spherical function (see [5]).

For a finite-dimensional representation \(\xi \) of \(G \), denote by \(\mathfrak{M}(\xi) \) the space of finite linear combinations of matrix elements of \(\xi \).

2. **Formulation of the result.** Let \(V \) be an irreducible Harish-Chandra module (see, for instance, [3]) over \(G \), denote by \(\pi(g) \) operators of representation of \(G \) in some completion of \(V \). Let \(\sigma \) ranges in the set \(\hat{K} \) of all irreducible representations of \(K \). Let \(V = \bigoplus_{\sigma} V_\sigma \) be the decomposition of \(V \) into a direct sum of \(K \)-isotipical components.

Proposition. a) Let \(V \) be an irreducible Harish-Chandra module in a general position. Let \(V^\circ \) be the dual module. Let \(v \in V_\sigma, w \in V_\tau^\circ \). There exists an irreducible finite dimensional representation \(\xi \) of \(G \) and \(s \) such that the matrix element \(\{\pi(g)v, w\} \) is a finite sum

\[
\{\pi(g)v, w\} = \sum_j h_j(g) \cdot p_jq_j \Psi_s(g)
\]

where \(h_j \in \mathfrak{M}(\xi) \), \(p_j \in \mathfrak{u}_l(\mathfrak{g}) \), \(q_j \in \mathfrak{u}_r(\mathfrak{g}) \).

b) For an arbitrary Harish-Chandra module, each \(K \)-finite matrix element admits a representation

\[
\{\pi(g)v, w\} = \lim_{s \to s_0} \sum_j h_j(s; g) \cdot p_j(s)q_j(s) \Psi_s(g),
\]

where \(h_j(s; g) \) is an element \(\mathfrak{M}(\xi) \) depending in a parameter \(s \), and \(p_j(s) \in \mathfrak{u}_l(\mathfrak{g}) \), \(q_j(s) \in \mathfrak{u}_r(\mathfrak{g}) \). Moreover, the degrees of \(p_j(s), q_j(s) \), and the number of summands are uniformly bounded in \(s \) (for fixed \(V, \sigma, \tau \)).

3. **Proof.** First, we introduce additional notation.

Denote by \(P \) the minimal parabolic subgroup in \(G \), consider the decomposition \(P = MAN \), where \(N \) is the nilpotent radical, \(MA \) is the Levi factor of \(P \), \(M \) is the compact subgroup, \(A \simeq (\mathbb{R}^+)^k \) is the vector subgroup.

Consider the flag space \(G/P \), consider the corresponding Grassmannians, i.e., factor-spaces \(G/Q_\alpha \), where \(Q_\alpha \supset P \) are maximal parabolics in \(G \). Equip all the spaces \(G/P, G/Q_\alpha \) with \(K \)-invariant measures (this allows to define Jacobians below). For \(\omega \in G/P \), denote by \(\omega_\alpha \) its image under the map \(G/P \rightarrow G/Q_\alpha \).

For \(g \in G \), denote by \(J_\alpha(g, \omega) \) the Jacobian of the transformation \(g : G/Q_\alpha \rightarrow G/Q_\alpha \) at the point \(\omega_\alpha \).

\(^1\)supported by grant NWO-047.017.015
Let μ be a character $A \to \mathbb{C}^*$, let τ be an irreducible representation of M. We denote by $\mu \otimes \tau$ the representation of $P = MAN$, that is μ on A, τ on M and is trivial on N. By $\text{Ind}_P^G(\mu \otimes \tau)$ we denote the representation of G induced from $\mu \otimes \tau$, i.e., a representation of principal (nonunitary) nondegenerate series.

By the Subquotient Theorem, each Harish-Chandra module can be realized as a subquotient (and even as a subrepresentation) in some representation $\text{Ind}_P^G(\mu \otimes \tau)$, see, for instance, [6]. Hence, it is sufficient to prove the statement on matrix elements for the representations $\text{Ind}_G^P(\mu \otimes \tau)$ (they can be reducible).

Let ρ be a spherical representation with parameter s. Let $h \in V$ be a spherical vector, let h° be the spherical vector in V°. Vectors $v \in V_\sigma$, $w \in (V^\circ)_\tau$ can be represented in the form

$$v = \left(\sum a_\alpha \prod X_{\alpha_j} \right) \cdot h, \quad w = \left(\sum b_\beta \prod Y_{\beta_i} \right) \cdot h^\circ$$

for some $X_{\alpha_j}, Y_{\beta_i} \in \mathfrak{g}$. Thus

$$\{ \pi(g)v, w \} = \{ \pi(g) \left(\sum a_\alpha \prod X_{\alpha_j} \right) \cdot h, \left(\sum b_\beta \prod Y_{\beta_i} \right) \cdot h^\circ \} = \{ \left(\sum b_\beta \prod (-Y_{\beta_i}) \right) \pi(g) \left(\sum a_\alpha \prod X_{\alpha_j} \right) \cdot h, h^\circ \} = \{ \left(\sum b_\beta \prod (-L Y_{\beta_i}) \right) \left(\sum a_\alpha \prod (R X_{\alpha_j}) \right) \Psi_s(g) \cdot h, h^\circ \}$$

C^\star. Consider an induced representation $\pi = \text{Ind}_P^G(\chi \otimes 1)$, where 1 denotes one-dimensional representation of M. If $\chi = \chi_s$ is in a general position (in fact $s \in \mathbb{C}^k$ is outside a locally finite family of complex hyperplanes), then π is an irreducible spherical representation. This situation was considered in A^\star. Now examine the case of reducible π. For this, we must follow continuity of matrix elements as functions of parameters s.

For $t_\alpha \in \mathbb{C}$ define the representation

$$\rho_t(g)f(\omega) := f(g\omega) \prod J_\alpha(g, \omega)^{t_\alpha}$$

of G in the space of functions on G/P. It can be readily checked that this family of representations coincides with the family $\text{Ind}_P^G(\chi \otimes 1)$, where $\chi = \chi_s$ ranges in all the characters of A (and the dependence $s = s(t)$ is some linear transformation).

Thus, we obtain a realization of the family $\text{Ind}_P^G(\chi \otimes 1)$ such that the action of K is independent in χ and operators of representation are continuous functions in s.

C^\star. Let ξ be an irreducible finite-dimensional representation of G in the space H. Following [7], we consider the tensor product

$$\pi \otimes \xi = \text{Ind}_P^G(\chi \otimes 1) \otimes \xi = \text{Ind}_P^G(\chi \otimes \xi \big|_P)$$

The representation $\xi \big|_P$ is reducible and it admits a finite filtration with irreducible subquotients

$$H_1 \supset H_2 \supset H_3 \supset \ldots$$
The nilpotent subgroup $N \subset P$ acts in the subquotients H_j/H_{j+1} in a trivial way.

The representations of subgroup $MA \subset P$ in H_j/H_{j+1} have the form $\mu_j \otimes \tau_j$ for some characters μ_j of A and some irreducible representations τ_j of M.

Thus, the representation $\pi \otimes \rho$ has a filtration, whose subquotients are representations of principal series having the form $\text{Ind}_G^H(\chi \cdot \mu \otimes \tau)$.

D^\star. Fix a representation $\hat{\pi}$ of M and a character $\hat{\chi}$ of A. We intend to realize $\text{Ind}_G^H(\hat{\mu} \otimes \hat{\pi})$ as subquotient in an appropriate tensor product (1).

We can choose a representation ξ of G such that the restriction of ξ to M contains $\hat{\tau}$. Then restriction of ξ to $P = MAN$ contains a subquotient of form $\hat{\mu} \otimes \hat{\pi}$ with a certain character μ.

Next, we choose a character χ of A such that $\chi \cdot \hat{\mu} = \hat{\chi}$. Thus we obtain that $\text{Ind}_G^H(\chi \otimes 1) \otimes \xi$ contains a given representation $\text{Ind}_G^H(\hat{\mu} \otimes \hat{\pi})$ as a subquotient.

E^\star. K-finite matrix elements of $\text{Ind}_G^H(\hat{\mu} \otimes \hat{\pi})$ are contained in K-finite matrix elements of $\text{Ind}_G^H(\chi \otimes \xi)$. The latter matrix elements are finite linear combinations of products of K-finite matrix elements of $\text{Ind}_G^H(\chi)$ and matrix elements of ξ. This finishes proof of a) and b).

4. An application. Domains of holomorphy of matrix coefficients.

Corollary. Each domain of holomorphy $\Omega \subset G_\mathbb{C}$ of all the spherical functions is a domain of holomorphy of all the K-finite matrix elements of all the irreducible Harish-Chandra modules over G.

In particular, all such matrix elements are holomorphic in the Akhiezer–Gindikin domain \mathcal{H} (this is obtained in §).

Corollary. There is a submanifold $Y \subset G_\mathbb{C}$, such that for each irreducible Harish-Chandra module over G, the matrix-valued function $g \mapsto \rho(g)$ can be extended to a holomorphic function on the universal covering space of $G_\mathbb{C} \setminus Y$.

Proof. Spherical functions on G are multivalued holomorphic functions on $G_\mathbb{C}$ having singularities (branching) on a prescribed manifold $Y \subset G_\mathbb{C}$, see §. Hence, for Harish-Chandra modules in a general position, there is nothing to prove.

To prove the statement for exceptional values of s, we must follow details of B^\star.

Denote by V the space of K-finite functions on the flag space G/P (see B^\star).

Denote by $1 \in V$ the function $f(\omega) = 1$. Fix $\sigma, \tau \in \widetilde{K}$. Fix $w \in V_\sigma$, $w^* \in V_\tau$. Let consider the representations $\text{Ind}_P^G(\chi_s \otimes 1)$ and follow a behavior of the corresponding matrix element as a function of s.

Denote by $\mathcal{U}^N(g) \subset \mathcal{U}(g)$ the subspace consisting of all elements of degree $\leq N$. Let N be sufficiently large, such that $\mathcal{U}^N(g) \cdot 1$ contains the whole subspace V_σ for all generic characters χ. Consider a collection $r_1, r_2, \ldots \in \mathcal{U}^N$ such that for some generic χ

1. $r_j \cdot 1$ are linear independent in $\text{Ind}_P^G(\chi_s)
2. their linear combinations contains V_τ.

These properties remain valid for all s outside a certain algebraic submanifold M in the space of parameters. Thus we express our vector w as a linear combination of r_j, $w = \sum c_j(s) r_j(s)$, where c_j are certain rational functions.

Applying A^\star, we obtain, that our matrix element has a form $\Xi(s) \Psi_s(g)$, where $\Xi(s)$ is an element of $\mathcal{U}_l \otimes \mathcal{U}_e$ depending rationally in s.

2 A proof. Denote by G_c the compact form of G. Consider the induced representation $\text{Ind}_P^G_c(\hat{\pi})$. Let ξ be its irreducible subrepresentation. We consider ξ as a representation of G_c.
Now let \(s_0 \) be an exceptional value of \(s \). Let \(w \in V_\sigma, w^\circ \in V_\tau \). Consider a holomorphic curve \(\gamma(\varepsilon) \) (with \(\gamma(0) = s_0 \)) avoiding singularities of \(\Xi \) and singular values of the parameter \(s \). A priory, the function

\[
F(\varepsilon, g) = \Xi(\gamma(\varepsilon))\Psi_{\gamma(\varepsilon)}(g)
\]

is holomorphic in the domain \(0 < |\varepsilon| < \delta, g \in G_C \setminus Y \) and has a pole on the submanifold \(\varepsilon = 0 \). But we know, that that \(F(\varepsilon, g) \) has a finite limit as \(g \in G \) and \(\varepsilon \to 0 \). Hence it has no pole, and hence it is holomorphic at \(\varepsilon = 0 \). In particular it is holomorphic on the submanifold \(\varepsilon = 0 \), and this is the desired statement. □

A product of such matrices \(\rho(g_1) \cdot \rho(g_2) \) generally is divergent but sometimes it is well-defined (see [10], [8]). For each \(X \in g_C, g \in G_C \setminus Y \), we have

\[
\frac{d}{d\varepsilon}\rho(\exp(\varepsilon X)g) = \rho(X)\rho(g)
\]

Remark. There are exceptional situations, when a unitary representation admits a continuation to the whole complex group or its subsemigroup, apparently these cases are well-understood, see [13], [11], [12]. (Sections 1.1, 4.4, 5.4, 7.4-7.6, 9.7), [9], [2]. May be there are other (non-semigroup) cases of unexpectedly large (non-semigroup) domain of holomorphy. As far as I know, this problem never was considered.

5. Nonlinear semisimple Lie groups. For universal coverings of the groups \(SU(p, q), Sp(2n, \mathbb{R}), SO^*(2n) \) our construction survives, we only must replace spherical functions by appropriate Heckman–Opdam hypergeometric functions, see [4], Chapter 1.

I do not know, is it possible to express matrix elements of universal covering groups of \(SO(p, q) \) and \(SL(n, \mathbb{R}) \) in the terms of Heckman–Opdam hypergeometric functions.

References

[1] Akhiezer, D. N.; Gindikin, S. G. On Stein extensions of real symmetric spaces. Math. Ann. 286 (1990), no. 1-3, 1–12.
[2] Goodman R., *Holomorphic representations of nilpotent lie groups*, J. Funct. Anal., 31, 115-137
[3] Heckman, G.I., Opdam, E.M., *Root systems and hypergeometric functions*.I. Compositio Math, 64(1987), 329–352;
[4] Heckman, G.; Schlichtkrull, H. *Harmonic analysis and special functions on symmetric spaces*. Academic Press, 1994.
[5] Helgason S. *Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions*. Academic Press, 1984
[6] Knapp A. *Representation theory of real semisimple groups*. Princeton Univ. Press, 1986.
[7] Kostant, B. *On the tensor product of a finite and an infinite dimensional representation*. J. Functional Analysis 20 (1975), no. 4, 257–285.
[8] Krotz, B.; Stanton, R. J. Holomorphic extensions of representations. II. Geometry and harmonic analysis. Geom. Funct. Anal. 15 (2005), no. 1, 190–245.
[9] Litvinov G.L. *On completely reducible representations of complex and real Lie groups*. Funct. Anal. Appl., v.3, no.4
[10] Nelson E., *Analytic vectors*. Ann. Math.,70, 572-615.
[11] Neretin, Yu. A. *Holomorphic continuations of representations of the group of diffeomorphisms of the circle*. (Russian) Mat. Sbornik 180 (1989), no. 5, 635–657, 720; translation in; Russ.Acad.Sci. Sbornik.math., v.67(1990)
[12] Neretin, Yu. A. *Categories of symmetries and infinite-dimensional groups*. London Mathematical Society Monographs, 16, Oxford University Press, 1996, Russian edition: Editorial URSS, 1998
[13] Olshanskii G.I. *Invariant cones in Lie algebras, Lie semigroups and holomorphic discrete series*. Funct.Anal.Appl.15,275–285 (1982)

Math.Physical Group, ITEP, B.Cheremushkinskaya, 25, Moscow, 117259, Russia

Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

e-mail: neretin@mccme.ru