GENERALIZED SCHUR-WEYL DUALITIES FOR QUANTUM AFFINE SYMMETRIC PAIRS AND ORIENTIFOLD KLR ALGEBRAS

ANDREA APPEL AND TOMASZ PRZEŻDZIECKI

ABSTRACT. Let \mathfrak{g} be a complex simple Lie algebra and $U_qL\mathfrak{g}$ the corresponding quantum affine algebra. We construct a functor θF between finite-dimensional modules over a quantum symmetric pair subalgebra of affine type $U_q\mathfrak{k} \subset U_qL\mathfrak{g}$ and an orientifold KLR algebra arising from a framed quiver with a contravariant involution, providing a boundary analogue of the Kang-Kashiwara-Kim-Oh generalized Schur-Weyl duality. With respect to their construction, our combinatorial model is further enriched with the poles of a trigonometric K-matrix intertwining the action of $U_q\mathfrak{k}$ on finite-dimensional $U_qL\mathfrak{g}$-modules. By construction, θF is naturally compatible with the Kang-Kashiwara-Kim-Oh functor in that, while the latter is a functor of monoidal categories, θF is a functor of module categories. Relying on a suitable isomorphism à la Brundan-Kleshchev-Rouquier, we prove that θF recovers the Schur-Weyl dualities due to Fan-Lai-Li-Luo-Wang-Watanabe in quasi-split type $A\mathfrak{III}$.

CONTENTS

1. Introduction 2
2. Quantum affine algebras 6
3. Quantum affine symmetric pairs 9
4. Trigonometric K-matrices 12
5. oKLR algebras 16
6. The combinatorial model 22
7. Boundary Schur–Weyl dualities 30
8. The BKR isomorphism in type C 37
9. Boundary Schur-Weyl duality in type A 40
References 47

2020 Mathematics Subject Classification. 81R50, 17B37, 16T25.

Key words and phrases. Quantum affine algebras; Khovanov-Lauda-Rouquier algebras; Schur-Weyl duality; Quantum affine symmetric pairs.

The first author is partially supported by the Programme FIL 2020 of the University of Parma and co-sponsored by Fondazione Cariparma. The second author is supported by the ERC Starting Grant No. 759967 Categorified Donaldson-Thomas Theory, and the EPSRC grant No. EP/W022834/1 Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality.
1. Introduction

1.1. In the present paper, we introduce a boundary analogue of Kang-Kashiwara-Kim-Oh generalized Schur-Weyl dualities between quantum affine algebras and Khovanov-Lauda-Rouquier (KLR) algebras (also known as quiver Hecke algebras). More precisely, let g be a complex simple Lie algebra and $U_q Lg$ the corresponding quantum affine algebra. Given an affine quantum symmetric pair (QSP) subalgebra $U_q \mathfrak{k} \subset U_q Lg$, we construct a functor

$$\theta F : \theta R_Q(\lambda)-\text{mod}^{fd} \to U_q \mathfrak{k}-\text{mod}^{fd}$$

where $\theta R_Q(\lambda)$ denotes the orientifold KLR algebra $(oKLR)$ associated to a distinguished quiver Q endowed with a contravariant involution θ and a framing λ, which depends upon the choice of a suitable family of finite-dimensional $U_q Lg$-modules. By construction, the functor θF intertwines the standard module category structures on $\theta R_Q(\lambda)-\text{mod}^{fd}$ and $U_q \mathfrak{k}-\text{mod}^{fd}$, and it is expected to yield, under a suitable localization, an equivalence of categories with a boundary analogue of the Hernandez-Leclerc category for $U_q Lg$. Finally, we prove that θF recovers the Schur-Weyl dualities constructed by Fan-Lai-Li-Luo-Wang-Watanabe between the (quasi-split type AIII) QSP algebra $U_q \mathfrak{k}$ and the affine Hecke algebra of type C.

While there is a natural parallelism between the results described above and those in [KKK18], their proof requires several new ideas, which we describe in detail in the rest of this introduction.

1.2. The classical Schur-Weyl duality is a fundamental symmetry, which allows us to identify the category of finite-dimensional representations of the symmetric group S_ℓ with the subcategory of \mathfrak{sl}_N-modules appearing in the decomposition of the ℓ-tensor power of the vector representation $V := \mathbb{C}^N$ of \mathfrak{sl}_N (when $\ell \leq N$). This symmetry can be realized as a functor $V^{\otimes \ell} \otimes S_\ell \cdot : S_\ell-\text{mod}^{\text{ad}} \to U \mathfrak{sl}_N-\text{mod}^{\text{ad}}$, using the fact that $V^{\otimes \ell}$ is an $(U \mathfrak{sl}_N, S_\ell)$-bimodule. The quantum analogue of this construction appears as a duality between quantum groups and Hecke algebras. In the affine setting, it is due to Chari-Pressley [CP96] and amounts to a functor $\hat{H}_{\ell,q^2}-\text{mod}^{\text{ad}} \to U_q L\mathfrak{sl}_N-\text{mod}^{\text{ad}}$ between the affine Hecke algebra \hat{H}_{ℓ,q^2} and the quantum loop algebra $U_q L\mathfrak{sl}_N$, arising from their joint action on the ℓ-tensor product of the affinized vector representation $V := \mathbb{C}(q)^N[z, z^{-1}]$.

1.3. More recently, in the series of papers [KKK18, KKK15, KKKO15, KKKO16, KKKO18], Kang, Kashiwara, Kim and Oh defined a generalized version of Chari and Pressley’s Schur-Weyl duality, which goes beyond type A and is expressed in terms of KLR algebras. More precisely, given a complex simple Lie algebra g, the construction depends on a combinatorial datum consisting of a (possibly infinite) set of finite-dimensional $U_q Lg$-representations $V(i)$, each decorated with a non-zero scalar
$X(i) \in \mathbb{C}(q)$. By comparing the order of the poles of the trigonometric R-matrices on $V(i) \otimes V(j)$ at $X(j)/X(i)$, one obtains a quiver Q for the KLR algebra, which, given a dimension vector β, we denote by $R_Q(\beta)$.

A suitable $(U_qL\mathfrak{g}, R_Q(\beta))$ bimodule \mathbb{V}^β is constructed as a direct sum of various tensor products of affinized representations $V(i)$. The action of $R_Q(\beta)$ on \mathbb{V}^β is given in terms of normalized R-matrices of $U_qL\mathfrak{g}$. The bimodule yields a functor $R_Q(\beta)\text{-mod}^{fd}_{gr} \rightarrow U_qL\mathfrak{g}\text{-mod}^{fd}$, and taking the sum over all possible dimension vectors, one obtains a monoidal functor

$$F: \bigoplus_{\beta} R_Q(\beta)\text{-mod}^{fd}_{gr} \rightarrow U_qL\mathfrak{g}\text{-mod}^{fd}.$$

We emphasize that, a priori, Q is not related to the Dynkin diagram of \mathfrak{g}. However, it was shown in [KKK15] that there does exist a combinatorial datum such that the two coincide. In that case, F induces an equivalence with the Hernandez-Leclerc category $C_Q \subset \text{Rep}^{fd}(U_qL\mathfrak{g})$ [Fuj22, Nao21].

1.4. A quantum affine symmetric pair (QSP) subalgebra is a distinguished coideal subalgebra $U_q\mathfrak{k} \subset U_qL\mathfrak{g}$ (also known in the literature as Letzter-Kolb coideal subalgebras or affine quantum groups) [Kol14]. Building on previous work by Bao-Wang [BW18b] and Balagovic-Kolb [BK19], the first author and B. Vlaar proved in [AV22a] that QSP subalgebras of arbitrary Kac-Moody type give rise to universal K-matrices, i.e., universal solutions of Cherednik’s generalized reflection equation. The latter can be thought of as a boundary analogue of the Yang-Baxter equation, since it arises as a consistency condition in the case of particles moving on a half-line [Che84, Skl88] and produces representations of type \mathcal{B} braid groups (cylindrical braid groups). As in the case of the universal R-matrix, universal K-matrices formally descend to finite-dimensional $U_qL\mathfrak{g}$-modules. In the case of irreducible modules, they give rise to trigonometric K-matrices, i.e., rational solutions of the reflection equation satisfying a unitarity condition, see [AV22b].

1.5. Our main result is the construction of a boundary analogue of the functor F for affine QSP subalgebra. The key idea is to enhance the combinatorial model developed by Kang-Kashiwara-Kim in [KKK18] by further taking into account the poles of the trigonometric K-matrix on the representations $V(i)$. Such an enhanced combinatorial datum yields a framed quiver Q equipped with a contravariant involution. The framing depends on the choice of two (families of) parameters of the QSP subalgebra $U_q\mathfrak{k}$, which appear in the expressions of the poles of the K-matrix. For generic parameters, we expect that the framing is trivial.

1.6. In [VV11], Varagnolo and Vasserot introduced a modified KLR algebra $\theta R_Q(\beta; \lambda)$, associated to a framed quiver with an involution. In this paper, we consider a mild generalization, which we call an orientifold KLR algebra $(o\text{KLR})$ [Prz21, PdW20, PdR21].
By considering a completed tensor product of the $U_q\mathfrak{g}$-modules $V(i)$, we construct, in Section 7, a $(U_q, \theta R_Q(\beta; \lambda))$-bimodule θV^β, whose ωKLR algebra action is given in terms of normalized R- and K-matrices. This construction yields a functor θF, which intertwines the respective categorical actions, as illustrated below.

\[
\begin{array}{ccc}
\bigoplus_{\beta} R_Q(\beta) \text{-mod}_{gr} & \xrightarrow{F} & U_q\mathfrak{g} \text{-mod}_{fd} \\
\downarrow & & \downarrow \\
\bigoplus_{\beta} \theta R_Q(\beta; \lambda) \text{-mod}_{gr} & \xrightarrow{\theta F} & U_q\mathfrak{t} \text{-mod}_{fd}
\end{array}
\]

The vertical arrow on the KLR side is given by induction, while that on the quantum affine side is given by restriction.

Moreover, we prove in Section 9 that, in the case of quasi-split QSP subalgebras of type AII, the functor θF recovers the ωSchur-Weyl duality between $U_q\mathfrak{t}$ and the 3-parameter affine Hecke algebra of type C constructed by Fan, Lai, Li, Luo, Wang, and Watanabe in [FLL+20]. The proof, which eventually reduces to an explicit and direct computation, relies on a modified Brundan-Kleshchev-Rouquier isomorphism constructed in Section 8 between (certain completions of) ωKLR algebras and affine Hecke algebras of type C, generalizing similar constructions obtained in [VV11, PdW20].

1.7. The functor θF does not immediately yield an equivalence, but it is expected to give rise to one under a suitable localization procedure, which we briefly outline below.

In the case of the functor F, this procedure involves replacing the category of modules over the KLR algebra with a localized quotient \mathcal{T} [KKK18]. Namely, one first modds out the kernel of the functor F and then localizes the quotient with respect to a family of commuting objects whose image through F is the trivial $U_q\mathfrak{g}$-module. The functor F factors through \mathcal{T} and yields an equivalence of monoidal categories $F : \mathcal{T} \rightarrow \mathcal{C}_{\text{HL}}$, where \mathcal{C}_{HL} is a Hernandez-Leclerc-type subcategory of $U_q\mathfrak{g} \text{-mod}_{fd}$ [HL10, KKK18, Fuj22, Nao21].

A similar strategy can be applied towards the construction of a \mathcal{T}-module category $\theta \mathcal{T}$, to which θF descends, yielding an analogue of the diagram (1.1). The corresponding localization procedure would involve a family of commuting objects in a module category. This requires the construction of suitable K-matrices for ωKLR algebras, which are expected to correspond, under the functor θF, to the trigonometric K-matrices for $U_q\mathfrak{g}$-modules constructed in [AV22b]. The resulting functor is finally expected to give a rise to an equivalence of module categories between $\theta \mathcal{T}$ and a boundary analogue of the Hernandez-Leclerc category, which will be the subject of future work.

1.8. Future directions. Following the seminal work of Bao-Wang [BW18a, BW18b], a general picture has begun to emerge that most fundamental algebraic, geometric, and
categorical constructions in quantum groups can be generalized to quantum symmetric pairs. Fundamental results in this direction have been obtained in [ES18, BK19]. In the same spirit, the finite-dimensional representation theory of affine QSP subalgebras is expected to be as rich and interesting as that of quantum affine algebras. Several recent advances, such as the new Drinfeld presentation in the split affine QSP case (see, e.g., [LW21]), and the study of σ-quiver varieties [Li19], suggest that the algebraic and geometric methods based, respectively, on Drinfeld polynomials and Nakajima quiver varieties are likely to have their QSP analogues.

The results of the present paper show that the recent approach based on Kang-Kashiwara-Kim-Oh Schur-Weyl duality also successfully extends to quantum symmetric pairs. While a direct understanding of their representation theory is, in large part, still out of reach, the boundary Schur-Weyl duality offers an alternative method, exploiting the combinatorial nature of KLR representation theory.

Moreover, the natural grading on oKLR algebras suggests the existence of a graded representation theory of quantum affine symmetric pairs. More specifically, we expect the gradings to manifest themselves through q-characters and deformations of Grothendieck modules, compatible with analogous deformations of Grothendieck rings in the case of quantum affine algebras [HL15, Nak04, VV02]. On the oKLR side, the Grothendieck module of the category of finite-dimensional representations has been described in terms of certain irreducible highest weight modules $\theta V(\lambda)$ over the Enomoto–Kashiwara algebra [EK06, EK08, VV11]. Following [KR11, Prz21], we expect that significant new information about the representation theory of quantum affine symmetric pairs may be extracted from the dual canonical basis of $\theta V(\lambda)$. In rank one, this is expected to be related with the combinatorics of tridiagonal pairs developed by Ito-Terwilliger [IT10].

1.9. Outline. In Sections 2 and 3, we recall the basic definitions of quantum affine algebras and their quantum symmetric pairs (QSP). In Section 4, we briefly discuss the construction of rational K-matrices for finite-dimensional modules over quantum affine algebras. In Section 5, we review the definition of orientifold KLR algebras (oKLR) associated to a framed quiver with an involution and we describe the module structure on their category of finite-dimensional graded modules. In Section 6, we introduce the enhanced combinatorial model and discuss few examples. In Section 7, we present the main result of the paper, providing the construction of the Schur-Weyl duality functor $^\theta F$ (Thm. 7.2.1) and its compatibility with the Kang-Kashiwara-Kim functor (Thm. 7.3.2). In Section 8, we construct an isomorphism à la Brundan-Kleshchev-Rouquier (BKR) between suitable completions of oKLR algebras and affine Hecke algebras of type C (Thm. 8.2.1). In Section 9, we prove that, through the BKR isomorphism, the functor $^\theta F$ recovers the ι/jSchur-Weyl dualities between quasi-split QSP subalgebras of type AIII and affine Hecke algebras of type C constructed in [FLL+20] (Thm. 9.5.2).
Acknowledgements

We would like to thank Martina Balagović, Sachin Gautam, Stefan Kolb, Vidas Regelskis, Catharina Stroppel, Paul Terwilliger, Bart Vlaar, and Curtis Wendlandt for their interest in this work and for useful discussions. We also thank the anonymous reviewer for their insightful suggestions and comments which led to an improved manuscript.

2. Quantum affine algebras

In this section we recall the definition of quantum affine algebras and basic results on their irreducible finite-dimensional modules.

For any lattice $\Lambda \subset \mathbb{R}^n$, we denote by Λ_+ its non-negative component. We regard q as an indeterminate and set $k := \mathbb{C}(q)$.

2.1. Quantum affine algebras. Let g be a complex finite-dimensional simple Lie algebra with Cartan subalgebra $h \subset g$. Let $I := \{1, 2, \ldots, \text{rank}(g)\}$ be the set of vertices of the corresponding Dynkin diagram, $A = (a_{ij})_{i,j \in I}$ the Cartan matrix, (\cdot, \cdot) the normalized invariant bilinear form on g, $\Pi := \{\alpha_i | i \in I\}$ a basis of simple roots and $\Pi^\vee := \{\alpha_i^\vee | i \in I\} \subset h$ a basis of simple coroots such that $\alpha_i(\alpha_j^\vee) = a_{ij}$. Let $Q := \mathbb{Z}\Pi \subset h^*$ and $Q^\vee := \mathbb{Z}\Pi^\vee \subset h$ be the root and coroot lattice, respectively. Let $\Phi^+ \subset Q_+$ be the set of positive roots. Finally, let $\Lambda := \{\Lambda_i | i \in I\}$ be the set of fundamental weights and $P := \mathbb{Z}\Lambda \subset h^*$ the weight lattice.

Let $\hat{\mathfrak{g}}$ be the (untwisted) affine Lie algebra\footnote{The results of this paper apply to the case of twisted affine Lie algebras. However, in order to simplify the exposition, we consider only the untwisted case.} associated to g with affine Cartan subalgebra $\hat{h} \subset \hat{\mathfrak{g}}$ [Kac90, Ch. 7]. Let $\hat{I} := \{0\} \cup I$ be the set of vertices of the affine Dynkin diagram and $\hat{A} = (a_{ij})_{i,j \in \hat{I}}$ the extended Cartan matrix [Kac90, Table Aff. 1]. We denote by \hat{Q} and \hat{Q}^\vee the affine root and coroot lattices, respectively. Let $\delta \in \hat{Q}_+$ and $c \in \hat{Q}_+^\vee$ be the unique elements such that

$$\{\lambda \in \hat{Q} | \forall i \in \hat{I}, \lambda(\alpha_i^\vee) = 0\} = \mathbb{Z}\delta \quad \text{and} \quad \{h \in \hat{Q}^\vee | \forall i \in \hat{I}, \alpha_i(h) = 0\} = \mathbb{Z}c$$

In particular, $\delta - \alpha_0 = \sum_{i \in I} a_{i,0} \alpha_i \in \hat{\Phi}_+$ is the highest root, c is central in $\hat{\mathfrak{g}}$ and, under the identification $\nu : \hat{h} \to \hat{h}^*$ induced by the bilinear form, one has $\nu(c) = \delta$. We fix $d \in \hat{h}$ such that $\alpha_i(d) = \delta_{i,0}$ for any $i \in \hat{I}$. Note that d is uniquely defined up to a summand proportional to c and we obtain a natural identification $\hat{h} = h \oplus \mathbb{C}c \oplus \mathbb{C}d$. Finally, we set $\hat{Q}_x := \hat{Q}^\vee \oplus \mathbb{Z}d \subset \hat{h}$, $\hat{P} := \{\lambda \in \hat{h}^* | \lambda(\hat{Q}_x^\vee) \subseteq \mathbb{Z}\}$, and $\hat{P}_\delta := \hat{P}/(\hat{P} \cap \hat{Q}_\delta)$.
Fix pairwise coprime non-negative integers \(\{ \epsilon_i \mid i \in \hat{I} \} \) such that the matrix \((\epsilon_i a_{ij})_{i,j \in \hat{I}}\) is symmetric and set \(q_i := q^{\epsilon_i} \). The quantum Kac–Moody algebra associated to \(\hat{\mathfrak{g}} \) is the algebra \(U_q \hat{\mathfrak{g}} \) over \(k \) with generators \(E_i, F_i, i \in \hat{I} \), and \(K_h, h \in \hat{Q}_\text{ext}^\vee \), subject to the following defining relations. For any \(h, h' \in \hat{Q}_\text{ext}^\vee \) \(^2\)

\[
K_h K_{h'} = K_{h+h'} \quad \text{and} \quad K_{\mathbf{0}} = 1,
\]

and, for any \(i, j \in \hat{I} \),

\[
K_h E_i = q^{\alpha_i(h)} E_i K_h, \quad K_h F_i = q^{-\alpha_i(h)} F_i K_h
\]

\[
[E_i, F_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}
\]

\[
\text{Serre}_{ij}(E_i, E_j) = 0 = \text{Serre}_{ij}(F_i, F_j) \quad (i \neq j)
\]

where \(K_i^{\pm 1} := K_i^{\pm \epsilon_i \alpha_i^\vee} \) and \(\text{Serre} \) denotes the usual quantum Serre relations (see, e.g., [Lus10]). On \(U_q \hat{\mathfrak{g}} \) we consider the Hopf algebra structure with coproduct

\[
\Delta(K_h) = K_h \otimes K_h, \quad \Delta(E_i) = E_i \otimes 1 + K_i \otimes E_i, \quad \Delta(F_i) = F_i \otimes K_i^{-1} + 1 \otimes F_i
\]

Finally, the Chevalley involution \(\omega : U_q \hat{\mathfrak{g}} \rightarrow (U_q \hat{\mathfrak{g}})^{\text{op}} \) is the isomorphism of Hopf algebras defined by

\[
\omega(K_h) = K_{-h}, \quad \omega(E_i) = -F_i, \quad \omega(F_i) = -E_i \quad (2.1)
\]

for any \(i \in \hat{I} \) and \(h \in \hat{Q}_\text{ext}^\vee \).

We denote by \(U_q \hat{\mathfrak{n}}^\pm \) (resp. \(U_q \hat{\mathfrak{n}}^- \)) the subalgebra generated by the elements \(\{ E_i \}_{i \in \hat{I}} \) (resp. \(\{ F_i \}_{i \in \hat{I}} \)), and we set \(U_q \hat{\mathfrak{b}}^\pm := U_q \hat{\mathfrak{n}}^\pm U_q \hat{\mathfrak{h}} \), where \(U_q \hat{\mathfrak{h}} \) is the commutative subalgebra generated by \(K_h, h \in \hat{Q}_\text{ext}^\vee \). Similarly, we denote by \(U_q \mathfrak{g} \) the finite-type subalgebra generated by \(E_i, F_i, i \in I \), and \(K_h, h \in Q^\vee \), and by \(U_q \mathfrak{h}, U_q \mathfrak{n}^\pm, U_q \mathfrak{b}^\pm \subset U_q \mathfrak{g} \) their finite-type counterparts. Finally, we denote by \(U_q \hat{\mathfrak{g}}' \) the subalgebra obtained by replacing the extended coroot lattice \(\hat{Q}_\text{ext}^\vee \) with the standard coroot lattice \(Q^\vee \).

The quantum loop algebra \(U_q L \mathfrak{g} \) is the quotient of \(U_q \hat{\mathfrak{g}}' \) by the ideal generated by \(K_{\epsilon} - 1 \), where \(K_{\epsilon} = K_0 \prod_{i \in \hat{I}} K_i^{\epsilon_i} \). Note that the Hopf algebra structure and the Chevalley involution descend to \(U_q L \mathfrak{g} \).

\(^2\)In this paragraph only, we denote the zero element of \(\hat{Q}_\text{ext}^\vee \) by \(\mathbf{0} \) in order to avoid confusion with the element \(K_0 = K_{\epsilon_0 \alpha_0^\vee} \).
2.2. Finite–dimensional modules. We assume henceforth that every module is type 1, i.e., the action of the generators K_i ($i \in \hat{I}$) is semisimple with eigenvalues in $q^\mathbb{Z}$. Recall that the categories of finite–dimensional modules over $U_q\mathfrak{g}'$ and $U_q\mathfrak{g}$ are isomorphic, since the action of the central element K_c is necessarily trivial. Note also that finite–dimensional modules admit a weight decomposition over \hat{P}_δ.

It is well–known that irreducible modules are classified by rank(\mathfrak{g})–tuples of monic polynomials in $\mathbb{C}[u]$ [CP95, Thm. 12.2.6]. The category $U_q\mathfrak{g}$-mod^{af} is monoidal, but it is not semisimple, and it is not braided in the usual sense (see Section 2.3). We denote by $(U_q\mathfrak{g})^{\text{af}}$ the completion of $U_q\mathfrak{g}$ with respect to finite–dimensional module, i.e., $(U_q\mathfrak{g})^{\text{af}}$ is the algebra of endomorphisms of the forgetful functor from $U_q\mathfrak{g}$-mod^{af} to k–vector spaces. The monoidal structure induces on $(U_q\mathfrak{g})^{\text{af}}$ the structure of a cosimplicial algebra (see, e.g., [AV22a, §2.10-2.11] and [ATL19, §8.9]).

2.3. The spectral R-matrix. Set $U_q\mathfrak{g}[z, z^{-1}] := U_q\mathfrak{g} \otimes \mathbb{k}[z, z^{-1}]$ and consider the (homogeneous) grading shift automorphism

$$\Sigma_z : U_q\mathfrak{g}[z, z^{-1}] \rightarrow U_q\mathfrak{g}[z, z^{-1}]$$

given by $\Sigma_z(K_h) := K_h$, $\Sigma_z(E_i) := z^{\delta_{ia}}E_i$, and $\Sigma_z(F_i) := z^{-\delta_{ia}}F_i$. Note that, by specializing z in k^\times, we obtain a one-parameter family of automorphism of $U_q\mathfrak{g}$. Let $\Delta_z, \Delta_z^{op} : U_q\mathfrak{g}[z, z^{-1}] \rightarrow (U_q\mathfrak{g} \otimes U_q\mathfrak{g})[z, z^{-1}]$ be the shifted coproduct defined by $\Delta_z(x) := \text{id} \otimes \Sigma_z(\Delta(x))$ and $\Delta_z^{op}(x) := \text{id} \otimes \Sigma_z(\Delta^{op}(x))$. The grading shift naturally descends on $U_q\mathfrak{g}$. For any $V \in U_q\mathfrak{g}$-mod^{af} with action $\pi_V : U_q\mathfrak{g} \rightarrow \text{End}(V)$, we consider the infinite-dimensional modules $V(z) := V \otimes \mathbb{k}(z)$ and $(V(z)) := V \otimes \mathbb{k}((z))$ with the natural action given by $\pi_V(\Sigma_z(x))$.

By [Dri87], $U_q\mathfrak{g}$ has a universal spectral R-matrix, i.e., a formal series $R(z)$, whose coefficients belong to a suitable completions of $U_q\mathfrak{g} \otimes U_q\mathfrak{g}$, such that $\Sigma_a \otimes \Sigma_b R(z)) = R(\frac{b}{a}z)$ ($a, b \in k^\times$) and the following identities are satisfied:

$$R(z)\Delta_z(x) = \Delta_z^{op}(x)R(z),$$
$$\Delta_z \otimes \text{id}(R(zw)) = R_{13}(zw)R_{23}(w),$$
$$\text{id} \otimes \Delta_w (R(z)) = R_{13}(z)R_{12}(zw).$$

In particular, the Yang–Baxter equation holds:

$$R_{12}(z)R_{13}(zw)R_{23}(w) = R_{23}(w)R_{13}(zw)R_{12}(z).$$ \hfill (2.2)

Moreover, for any $V, W \in U_q\mathfrak{g}$-mod^{af}, the operator

$$R_{VW}(z) := \pi_V \otimes \pi_W (R(z)) \in \text{End}(V \otimes W)[z]$$

is well-defined and yields an intertwiner

$$R_{VW}^\vee(z) := (1_{2}) \circ R_{VW}(z) : V \otimes W((z)) \rightarrow W((z)) \otimes V.$$
2.4. **The trigonometric R-matrix.** In the case of irreducible modules the operator \(R_{VW}(z) \) is, up to a scalar factor, a trigonometric R-matrix.

Theorem 2.4.1 ([Dri87]). Let \(V, W \in U_qLg\text{-mod}^{id} \) be two irreducible modules. There exists a canonical function \(f_{VW}(z) \in k((z)) \) such that

\[
R_{VW}(z) := f_{VW}(z)^{-1}R(z) \in \text{End}(V \otimes W)((z))
\]

is a rational non-vanishing operator, satisfying the spectral Yang-Baxter equation (2.2) and the unitarity relation

\[
R_{VW}(z)^{-1} = (1 2) \circ R_{WV}(z^{-1}) \circ (1 2).
\]

The proof of the theorem relies on the generic irreducibility of the tensor product \(V \otimes W \), i.e., on the irreducibility of the module \(V \otimes W((z)) \) over \(U_qLg((z)) \) (cf. [KS95, §4.2] or [Cha02, Thm. 3]). Note also that the function \(f_{VW}(z) \) is uniquely determined by the condition \(R(z)(v \otimes w) = v \otimes w \), where \(v \in V \) and \(w \in W \) are highest weight vectors.

Remarks 2.4.2.

1. As before, this yields a rational intertwiner

\[
R_{VW}^\vee(z) := (1 2) \circ R_{VW}(z) : V \otimes W(z) \to W(z) \otimes V,
\]

which is sometimes referred to as the normalized R-matrix, see e.g., [KKK18].

2. If \(V \) is an irreducible real module, i.e., \(V \otimes V \) is irreducible, the normalized R–matrix satisfies \(R_{VW}^\vee(1) = \text{id} \) (see, e.g., [FHR22]).

3. By considering the shifted module \(V(w) \), one obtains an intertwiner

\[
R_{VW}^\vee(w, z) := R_{V(w)W(z)}^\vee : V(w) \otimes W(z) \to W(z) \otimes V(w).
\]

Since the spectral R–matrix satisfies the identity \(\Sigma a \otimes \text{id}(R(z)) = R(\frac{a}{z}) \), it follows that \(R_{VW}^\vee(w, z) \) depends rationally on \(z/w \) only, and it is denoted \(R_{VW}^\vee(z/w) \) \(\nabla \)

3. **Quantum affine symmetric pairs**

3.1. **Generalized Satake diagrams.** Classical and quantum Kac-Moody algebras are defined in terms of a combinatorial datum encoded by the Dynkin diagram and the Cartan matrix. Similarly, classical and quantum symmetric pairs (the latter are also known as *Letzter-Kolb coideal subalgebras* or *quantum groups*) arise from a refinement of such a datum, see, e.g., [KW92, Let02, Kol14].

Let \(\text{Aut}(\hat{A}) \) be the group of *diagram automorphisms* of the affine Cartan matrix, i.e., the group of bijections \(\tau : \hat{I} \to \hat{I} \) such that \(a_{ij} = a_{\tau(i)\tau(j)} \). Let \(X \subset \hat{I} \) be a proper subset of indices. Note, in particular, that the corresponding Cartan matrix \(A_X \) is necessarily
of finite type. We denote by $\op_X \in \text{Aut}(A_X)$ the opposition involution of X, i.e., the involutive diagram automorphism on X induced by the action of the longest element w_X of the parabolic Weyl group W_X on Q_X, see, e.g., [AV22a, §3.11].

Following the recent approach proposed by Regelskis and Vlaar in [RV20, RV22], we say that a pair (X, τ) is a (generalized affine) Satake diagram and write $(X, \tau) \in \text{Sat}(\hat{A})$ if $X \subset \hat{I}$, τ is an involutive diagram automorphism which preserves X, and

1. $\tau|_X = \op_X$,
2. for any $i \in \hat{I} \setminus X$ such that $\tau(i) = i$, the connected component of $X \cup \{i\}$ containing i is not of type A_2.

A list of Satake diagrams for \hat{A} is given in [RV22, App. A, Tables 5, 6, 7]. Henceforth, we fix an affine Satake diagram $(X, \tau) \in \text{Sat}(\hat{A})$.

3.2. Pseudo–involutions. The diagram automorphism $\tau \in \text{Aut}(\hat{A})$ extends canonically to an automorphism of \hat{g}', given on the generators by $\tau(\alpha_j^\vee) := \alpha_{\tau(j)}^\vee$, $\tau(e_i) = e_{\tau(i)}$, and $\tau(f_i) = f_{\tau(i)}$. We then consider the Lie algebra automorphism $\vartheta : \hat{g}' \to \hat{g}'$ given by
\[
\vartheta := \text{Ad}(\tilde{w}_X) \circ \omega \circ \tau,
\]
where ω denotes the Chevalley involution and $\text{Ad}(\tilde{w}_X)$ denotes the automorphism of g given by the triple exponentials.\(^3\) Note that, since $\alpha_i(\tau(c)) = \alpha_{\tau(i)}(c) = 0$, one has $\tau(c) = c$ and $\vartheta(c) = -c$. In [RV22], ϑ is referred to as a pseudo–involution of \hat{g} of the second kind (cf. [KW92]).

3.3. Quantum pseudo–involution. The pseudo–involution ϑ has a distinguished lift ϑ_q at the quantum level as an algebra automorphism of $U_q\hat{g}'$. This is obtained by choosing a suitable lift for each of the three factors in ϑ. We follow the construction of ϑ_q given in [AV22a]. First, one considers the usual Chevalley involution on $U_q\hat{g}$ given by (2.1). Then, the diagram automorphism τ extends canonically to an automorphism of $U_q\hat{g}'$ given on the generators by $\tau(E_i) = E_{\tau(i)}$, $\tau(F_i) = F_{\tau(i)}$ and $\tau(K_h) = K_{\tau(h)}$.

By [Lus10, §5], the quantum Weyl group of $U_q\hat{g}$ provides a suitable quantisation of $w_X \in W_X$. Namely, let S_X be the quantum Weyl group operator corresponding to w_X acting on any integrable $U_q\hat{g}$–module,\(^4\) and set $S_\vartheta := \xi_\vartheta \cdot S_X$. Here ξ_ϑ is the operator defined on any weight vector of weight λ as the multiplication by $q^{(\vartheta(\lambda),\lambda)/2 + (\lambda,\rho_X)}$, where ρ_X is the half–sum of the positive roots in Φ_X. Therefore, S_ϑ can be thought of as

\(^3\)More precisely, if $w_X = s_{i_1} \cdots s_{i_k}$ is a reduced expression of the longest element, then $\tilde{w}_X = \tilde{s}_{i_k} \cdots \tilde{s}_{i_1}$, where $\tilde{s}_i = \exp(e_i) \exp(-f_i) \exp(e_i)$. It is well–known that the operators s_i ($i \in I$) induce an action of the braid group on any integrable g–module. In particular, their adjoint action gives rise to an automorphism of g. For a concise summary of the main properties of triple exponentials, we refer the reader to [AV22a, §3.7].

\(^4\)More precisely, given a reduced expression $s_{i_1} \cdots s_{i_k}$ of w_X in terms of fundamental reflections, set $S_X := S_{i_1} \cdots S_{i_k}$, where $S_j = T_{j,1}^m$ in the notation from [Lus10, 5.2.1].
an element of the completion of $U_q\widehat{\mathfrak{g}}$ with respect to integrable modules. By [AV22a, Lemma 4.3 (iii)], $\mathcal{T}_\theta := \text{Ad} \mathcal{S}_\theta$ yields an automorphism of $U_q\widehat{\mathfrak{g}}$.

The quantum pseudo–involution ϑ_q is given by

$$\vartheta_q := \mathcal{T}_\theta \circ \omega \circ \tau.$$

Note that, as in the classical case, ϑ_q is independent of the order of the three factors. Moreover, ϑ_q descends to an automorphism of $U_qL\mathfrak{g}$.

3.4. QSP subalgebras.

It is well–known that there is a family of coideal subalgebras of $U_q\widehat{\mathfrak{g}}$ associated to the pseudo–involution ϑ, introduced in [Let02, Kol14, RV20] and parametrized by two sets, $\Gamma \subset (k^\times)^\hat{I}$ and $\Sigma \subset k^{\hat{I}}$ (cf. Remark 3.4.1).

Let $U_q\widehat{\mathfrak{g}}_X \subset U_q\widehat{\mathfrak{g}}$ be the subalgebra generated by E_i, F_i, and K_i ($i \in X$). The QSP subalgebra of $U_q\widehat{\mathfrak{g}}$ corresponding to ϑ with parameters $(\gamma, \sigma) \in \Gamma \times \Sigma$ is the subalgebra $U_q\mathfrak{k} \subset U_q\widehat{\mathfrak{g}}$ generated by $U_q\widehat{\mathfrak{g}}_X$, the elements K_h with $h \in (Q^\vee)^\theta$, and the elements B_i ($i \in \hat{I} \setminus X$) given by

$$B_i := F_i + \gamma_i \cdot \vartheta_q(F_i) + \sigma_i \cdot K_i^{-1}.$$

In the following, a morphism of $U_q\mathfrak{k}$–modules will be simply referred to as a QSP intertwiner.

Remarks 3.4.1.

1. Roughly, $\Gamma \times \Sigma$ is the set of all pairs (γ, σ) satisfying $(\gamma_i, \sigma_i) = (1, 0)$ ($i \in X$) and $U_q\mathfrak{k} \cap U_q\widehat{\mathfrak{g}} = U_q\widehat{\mathfrak{g}}^\theta$. For the explicit description of the sets Γ and Σ see, e.g., [AV22a, §6.8].

2. Following [AV22a, §7.4], we shall regard the tuple γ as a diagonal operator on integrable modules. Namely, we fix henceforth a group homomorphism $\gamma : \hat{P} \to \mathbb{F}^\times$ such that $\gamma(\alpha_i) := \gamma_i$ ($i \in \hat{I}$). Then, γ acts on any weight vector of weight λ as the multiplication by $\gamma(\lambda)$.

3. By [AV22a, §6.2], it follows that $U_q\mathfrak{k} \subset U_q\widehat{\mathfrak{g}}'$.

3.5. Coideal property and monoidal action.

It is well–known that $U_q\mathfrak{k}$ is a right coideal subalgebra of $U_q\widehat{\mathfrak{g}}$, i.e., $\Delta(U_q\mathfrak{k}) \subset U_q\mathfrak{k} \otimes U_q\widehat{\mathfrak{g}}$, see [Kol14]. The categorical counterpart of this property is described in terms of module categories. Roughly, a module category (resp. a morphism of module categories) is the analogue for a monoidal category (resp. a tensor functor) of what a module (resp. a morphism of modules) is to a ring (resp. a morphism of rings).

We briefly recall these notions following [Har01]. Let \mathcal{A} be a monoidal category with tensor product \otimes and unit object $\mathbf{1}$. A (right) monoidal action of \mathcal{A} on a category \mathcal{B} is a functor $\triangleleft : \mathcal{B} \times \mathcal{A} \to \mathcal{B}$ together with an associativity constraint and a unit constraint

$$\Phi : \triangleleft \circ (\text{id} \otimes \triangleleft) \to \triangleleft \circ (\triangleleft \otimes \text{id}) \quad \text{and} \quad u : \triangleleft \circ (\text{id} \times \mathbf{1}) \to \text{id},$$

where \triangleleft is the monoidal product.
satisfying the analogues of the pentagon axiom and the unit axiom for a monoidal category (see [Har01, Eqns. (6)–(7)]).

Then, we say that \(\mathcal{B} \) is a module category over \(\mathcal{A} \) (or, equivalently, that \((\mathcal{B}, \mathcal{A}) \) is an action pair) if it is equipped with a monoidal action of \(\mathcal{A} \).

Example 3.5.1. Set \(\mathcal{A} = U_q\mathfrak{g}\)-mod and \(\mathcal{B} = U_q\mathfrak{k}\)-mod. Since \(U_q\mathfrak{k} \) is a coideal subalgebra in \(U_q\mathfrak{g} \), the standard tensor product induces a functor
\[
\triangleright: U_q\mathfrak{k}\text{-mod} \times U_q\mathfrak{g}\text{-mod} \to U_q\mathfrak{k}\text{-mod}
\]
which is readily verified to be a monoidal action of \(U_q\mathfrak{g}\)-mod on \(U_q\mathfrak{k}\)-mod.

Let now \((\mathcal{B}, \mathcal{A}) \) and \((\mathcal{B}', \mathcal{A}') \) be two action pairs. A functor \((\mathcal{B}, \mathcal{A}) \to (\mathcal{B}', \mathcal{A}') \) is the datum of
- a monoidal functor \(F_A: \mathcal{A} \to \mathcal{A}' \),
- a functor \(F_B: \mathcal{B} \to \mathcal{B}' \),
- a natural isomorphism \(\omega: F_B \circ \triangleright \to \triangleright \circ (F_B \times F_A) \) satisfying the analogue of the consistency condition for the tensor structure of a monoidal functor (see [Har01, Eqns. (8)–(9)]).

More concisely, we shall say that the functor \(F_B \) intertwines through \(F_A \) the action of \(\mathcal{A} \) on \(\mathcal{B} \) and of \(\mathcal{A}' \) on \(\mathcal{B}' \).

4. Trigonometric K-matrices

In this section, we briefly review the construction of trigonometric K-matrices on irreducible finite-dimensional \(U_q\mathfrak{L}_g \)-modules. The results of this section are due to the first author and Vlaar [AV22b].

4.1. \(\tau \)-invariant shifts. Henceforth, we replace the homogeneous grading shift defined in §2.3 with a fixed \(\tau \)-invariant grading shift. Namely, we fix a morphism \(\Sigma^\tau_z : U_q\mathfrak{L}_g[z, z^{-1}] \to U_q\mathfrak{L}_g[z, z^{-1}] \) given by
\[
\Sigma^\tau_z(K_h) = K_h, \quad \Sigma^\tau_z(E_i) = z^{\chi_i}E_i, \quad \Sigma^\tau_z(F_i) = z^{-\chi_i}F_i,
\]
where \(\chi: \hat{I} \to \mathbb{Z}_{\geq 0} \) is a non-zero \(\tau \)-invariant function. In particular, \(\Sigma^\tau_z \circ \tau = \tau \circ \Sigma^\tau_z \). Examples of \(\tau \)-invariant grading shifts are those determined by the characteristic function of any union of \(\tau \)-orbits (e.g., the principal grading shift). Clearly, the homogeneous grading shift \(\Sigma^\tau_z \) is \(\tau \)-invariant if and only if \(\tau(0) = 0 \). In this case, we say that the QSP subalgebra is \(\tau \)-restrictable.

Let \(V \in U_q\mathfrak{L}_g \)-mod and with action \(\pi_V : U_q\mathfrak{L}_g \to \text{End}(V) \). As before, we denote by \(\pi_{V,\Sigma^\tau_z} \) the \(\tau \)-shifted action of \(U_q\mathfrak{L}_g \) on the modules \(V(z) := V \otimes \mathbb{k}(z) \) and \(V(\langle z \rangle) := V \otimes \mathbb{k}(\langle z \rangle) \). Note that the \(\tau \)-analogue of Theorem 2.4.1 holds with \(\Delta_z \) replaced...
by the \(\tau \)-shifted coproduct \(\Delta_\tau(x) = \text{id} \otimes \Sigma_\tau(\Delta(x)) \). Henceforth, we fix a \(\tau \)-invariant grading shift and drop the superscript \(\tau \).

4.2. Spectral K-matrices. Fix a QSP subalgebra \(U_q \mathfrak{k} \subset U_q \hat{g} \). By Remark 3.4.1 (3), every finite–dimensional \(U_q L_\mathfrak{g} \)–module \(V \) is naturally acted upon by \(U_q \mathfrak{k} \) through the projection \(U_q \hat{g} \twoheadrightarrow U_q L_\mathfrak{g} \). In the following, we shall consider the restriction of \(V \) to \(U_q \mathfrak{k} \). With a slight abuse of notation, we will denote by the same symbol an element in \(U_q \mathfrak{k} \) and its image in \(U_q L_\mathfrak{g} \).

Set
\[
\mathcal{G} := \{ g \in (U_q L_\mathfrak{g})^{\text{id}, \times} \mid \text{Ad}(g)(U_q L_\mathfrak{g}) = U_q L_\mathfrak{g}, \Sigma_z(g) = g \}.
\]
By [AV22b, Thm. 4.2.1], \(U_q L_\mathfrak{g} \) has a \(\mathcal{G} \)-family of universal spectral K-matrices relative to the QSP subalgebra \(U_q \mathfrak{k} \). Namely, for any \(g \in \mathcal{G} \), there is a canonical formal series \(K(z) \in (U_q L_\mathfrak{g})^{\text{id}, \times}[z] \) such that \(\Sigma_a(K(z)) = K(az) \) \((a \in \mathfrak{k}^\times)\) and the following properties hold.

1. For any \(b \in U_q \mathfrak{k} \),
\[
K(z) \cdot \Sigma_z(b) = \psi(\Sigma_1/z(b)) \cdot K(z),
\]
where \(\psi = \text{Ad}(g) \circ \partial_q^{-1} \).

2. Set \(R(z)^\psi := \psi \otimes \text{id}(R(z)) \). Then,
\[
\Delta_{w/z}(K(z)) = R^{-1}_\psi \cdot 1 \otimes K(w) \cdot R(zw)^\psi \cdot K(z) \otimes 1.
\]

Moreover, \(K(z) \) is a solution of Cherednik’s reflection equation
\[
R(w/z)^{\psi_2}_1 \cdot 1 \otimes K(w) \cdot R(zw)^\psi \cdot K(z) \otimes 1 = K(z) \otimes 1 \cdot R(zw)^{\psi_2}_1 \cdot 1 \otimes K(w) \cdot R(w/z),
\]
where \(R(z)_{21}^{\psi} := \psi \otimes \text{id}(R(z))_{21} \).

Remark 4.2.1. The result above relies on the construction of universal K–matrices for quantum Kac–Moody symmetric pairs given in [AV22a, Thm. 8.11-8.12], building on the work of Bao-Wang [BW18b] and Balagović-Kolb [BK19].

The equation (4.1) was first introduced by Cherednik in [Che92, Eq. (4.14)].

4.3. Trigonometric K-matrices. A finite–dimensional \(U_q L_\mathfrak{g} \)–module \(V \) is

1. **QSP irreducible** if it is irreducible as a module over \(U_q \mathfrak{k} \);

2. **generically QSP irreducible** if \(V((z)) \) is irreducible as a module over \(U_q \mathfrak{k}((z)) \).\(^5\)

Such condition is the natural counterpart of the generic irreducibility of the tensor product and yields the following QSP analogue of Theorem 2.4.1, see [AV22b, Thm. 5.2.1].

\(^5\)Note that \(V((z)) \) is equipped with the shifted action (see §4.1).
Theorem 4.3.1 ([AV22b]).

1. Every finite-dimensional irreducible $U_q\mathfrak{g}$-module is generically QSP irreducible.

2. Let $V, W \in U_q\mathfrak{g}$-modfd be irreducible modules. There is a formal Laurent series $g_V(z) \in \mathbb{k}(\!(z)\!)$ and a polynomial non-vanishing operator $\tilde{K}_V(z) \in \text{End}(V)[z]$ (unique up to a scalar) such that

$$K_V(z) = g_V(z) \cdot \tilde{K}_V(z),$$

where $K_V(z): V(\!(z)\!) \to \psi^*(V)(\!(z^{-1})\!)$ is the formal QSP intertwiner given by the action of $K(z)$ on V.

3. The operators $\tilde{K}_V(w)$ and $\tilde{K}_W(z)$ satisfy Cherednik's reflection equation in $\text{End}(V \otimes W)(z, w)$

$$R_{\psi^*(V)}(w) \psi^*(V)(w/z)_{21} \cdot 1 \otimes \tilde{K}_W(w) \cdot R_{\psi^*(V)}(V)(zw) \cdot \tilde{K}_V(z) \otimes 1 =$$

$$= \tilde{K}_V(z) \otimes 1 \cdot R_{\psi^*(W)}(V)(zw)_{21} \cdot 1 \otimes \tilde{K}_W(w) \cdot R_{WV}(w/z),$$

(4.2)

where $R_{WV}(z)$ is the trigonometric R-matrix (cf. §2.4), and $R_{WV}(z)_{21} := (1 2) \circ R_{WV}(z) \circ (1 2)$.

4.4. Unitary K-matrices. Let $V, W \in U_q\mathfrak{g}$-modfd be irreducible modules. By Theorem 2.4.1, the trigonometric R-matrix $R_{WV}(z)$ satisfies the unitarity condition $R_{WV}(z)^{-1} = (1 2) \circ R_{WV}(z^{-1}) \circ (1 2)$. The analogue result for trigonometric K-matrices requires an additional assumption to hold, see [AV22b, Prop. 5.4.1].

Theorem 4.4.1 ([AV22b]). Let $V \in U_q\mathfrak{g}$-modfd be a ψ-involutive irreducible module, i.e., such that $(\psi^2)^*(V) \simeq V$. The trigonometric K-matrices $\tilde{K}_V(z)$ and $\tilde{K}_{\psi^*(V)}(z)$ from Theorem 4.3.1 give rise through normalization to two non-vanishing QSP intertwiners

$$K_V(z) : V(z) \to \psi^*(V)(z^{-1}) \quad \text{and} \quad K_{\psi^*(V)}(z) : \psi^*(V)(z) \to V(z^{-1})$$

satisfying the unitarity condition

$$K_V(z)^{-1} = K_{\psi^*(V)}(z^{-1}).$$

(4.3)

Moreover, if $V(\zeta)$ is QSP irreducible for some $\zeta \in \mathbb{k}^\times$, then $K_V(\zeta)$ is well-defined and invertible.

Remark 4.4.2. In contrast with the case of the R-matrix, the normalization yielding the unitary K-matrix $K_V(z)$ is non-canonical in general, since it follows from the normalization of the operator $\tilde{K}_{\psi^*(V)}(z) \circ \tilde{K}_V(z)$. In certain cases, however, there is a canonical normalization. We refer the reader to [AV22b, §5.4–5.6].
4.5. **Trigonometric K-matrices for Kirillov–Reshetikhin modules.** Kirillov–Reshetikhin modules are minimal affinizations of irreducible $U_q\mathfrak{g}$-modules whose highest weight is a multiple of a fundamental weight. More precisely, for any $i \in I$, $k \in \mathbb{Z}_{>0}$, and $a \in \mathbb{C}^\times$, the Kirillov-Reshetikhin module $W_{k,a}^{(i)}$ is the unique irreducible $U_q\mathfrak{g}$-module whose Drinfeld polynomials are all trivial except for the node i, where the roots are given by a q_i-string of length k starting at a, see, e.g., [KR87, CP95]. The fundamental representations of $U_q\mathfrak{g}$ are the simplest non–trivial Kirillov–Reshetikhin modules. Specifically, we set $\mathcal{V}_{\omega_i} := W_{1,1}^{(i)}$.

Let $\eta_0 \in \text{Aut}(\hat{A})$ be the diagram automorphism which fixes the affine node and acts on any other node as the opposition involution op_I, see §3.1. From the classification of generalized Satake diagrams of affine type in [RV22, App. A, Tables 5, 6 and 7] it follows that a QSP subalgebra is τ-restrictable (i.e., τ fixes the affine node) if and only if τ is either the identity or η_0 (except in type $D^{(1)}_n$ with n even, where $\eta_0 = \text{id}$ but there exist nontrivial involutive diagram automorphisms fixing 0). By [AV22b, Thm. 7.8.1], the following holds.

Theorem 4.5.1 ([AV22b]). Let $U_q\mathfrak{k} \subset U_q\mathfrak{g}$ be a τ–restrictable QSP subalgebra. Let W be a Kirillov-Reshetikhin $U_q\mathfrak{g}$-module.

1. There is a unique QSP intertwiner (up to a scalar multiple)

 $$K_W(z) : W(z) \to (\eta_0 \tau)^*(W)(z^{-1})$$

 up to a scalar multiple and a unique shift in W. Moreover, $K_W(z)$ is a solution of the diagrammatic reflection equation

 $$R_{W V}(\frac{w}{z})_{21} \cdot \text{id} \otimes K_W(w) \cdot R_{(\eta_0 \tau)^*(V)} W(z w) \cdot K_V(z) \otimes \text{id} =$$

 $$K_V(z) \otimes \text{id} \cdot R_{(\eta_0 \tau)^*(V)} W(z w)_{21} \cdot \text{id} \otimes K_W(w) \cdot R_{W V}(\frac{w}{z}) .$$

2. If $\tau = \eta_0$, there is a unique QSP intertwiner

 $$K_W(z) : W(z) \to W(z^{-1})$$

 up to a scalar multiple and a unique shift in W. Moreover, $K_W(z)$ is a solution of the standard reflection equation

 $$R_{W V}(\frac{w}{z})_{21} \cdot \text{id}_V \otimes K_W(w) \cdot R_{W V}(z w) \cdot K_V(z) \otimes \text{id}_W =$$

 $$K_V(z) \otimes \text{id}_W \cdot R_{W V}(z w)_{21} \cdot \text{id}_V \otimes K_W(w) \cdot R_{W V}(\frac{w}{z}) .$$

3. If $\tau = \text{id}$, there is a unique QSP intertwiner

 $$K_W(z) : W(z) \to W^*(z^{-1})$$

 up to a scalar multiple and a unique shift in W. Moreover, under the identification of W and W^* as vector spaces, $K_W(z)$ gives rise to a solution of the transposed
reflection equation

\[R_{WV}(\frac{w}{z})_{21}^{tv} \cdot id_V \otimes K_W(w) \cdot (R_{WV}(zw)^{-1})_{21}^{tv} \cdot K_V(z) \otimes id_W = \]
\[= K_V(z) \otimes id_W \cdot (R_{WV}(zw)^{-1})_{21}^{tv} \cdot id_V \otimes K_W(w) \cdot R_{WV}(\frac{w}{z})] . \]

Remark 4.5.2. The result appears as a direct consequence of Theorem 4.3.1 (3) in the case \(\psi = \omega \circ \tau \). More precisely, one first observes that, by [Cha02, Eqs. (2.20) and (2.21)], if \(W = W_{k,\alpha} \), then there is an isomorphism of \(U_qLg \)-modules

\[\omega^*(W) \simeq \eta_0^*(W)(a^{-2}q_i^{-2(k-1)}) . \]

This yields (1) and (2). In order to prove (3), one then observes that, by [Cha02, Eqs. (2.20) and (2.21)], there exists an integer \(c \in \mathbb{Z} \) depending only on \(g \) such that, for any irreducible finite-dimensional \(U_qLg \)-module \(V \), one has \(\eta_0^*(V) \simeq V^*(q^c) \). \(\nabla \)

5. oKLR algebras

In this section, we review the definition and the basic properties of KLR and orientifold KLR (oKLR) algebras, in particular their polynomial representation and their convolution product.

5.1. Quiver with an involution. Let \(\mathcal{S}_n = \langle s_1, \ldots, s_{n-1} \rangle \) denote the symmetric group on \(n \) letters, and \(\mathcal{W}_n = \langle s_0, s_1, \ldots, s_{n-1} \rangle \) the Weyl group of type \(B_n \), i.e., \((\mathbb{Z}/2\mathbb{Z})^n \times S_n\).

Let \(\Gamma = (J, \Omega) \) be a quiver with vertices \(J \) and arrows \(\Omega \). We assume that \(\Gamma \) does not have loops. Given an arrow \(a \in \Omega \), let \(s(a) \) be its source, and \(t(a) \) its target. If \(i, j \in J \), let \(\Omega_{ij} \subset \Omega \) be the subset of arrows \(a \) such that \(s(a) = i \) and \(t(a) = j \). Let \(a_{ij} = |\Omega_{ij}| \) and abbreviate \(\overline{a}_{ij} = a_{ij} + a_{ji} \). We assume that \(a_{ij} < \infty \) for all \(i, j \in J \).

Definition 5.1.1. A (contravariant) involution of the quiver \(\Gamma \) is a pair of involutions \(\theta: J \rightarrow J \) and \(\theta: \Omega \rightarrow \Omega \) such that:

1. \(s(\theta(a)) = \theta(t(a)) \) and \(t(\theta(a)) = \theta(s(a)) \) for all \(a \in \Omega \),
2. if \(t(a) = \theta(s(a)) \) then \(a = \theta(a) \).

We denote by \(J^\theta \) the subset of fixed points of \(\theta \). Let \(\mathbb{N}[J] \) be the commutative semigroup freely generated by \(J \). We call elements of \(\mathbb{N}[J] \) dimension vectors. Given a dimension vector \(\beta = \sum_{i \in J} \beta(i) \cdot i \), set \(||\beta|| = \sum_{i \in J} \beta(i) \).

We call a sequence \(\nu = \nu_1 \cdots \nu_n \in J^n \) a composition of \(\beta \) of length \(\ell(\nu) = n \) if \(|\nu| = \sum_{k=1}^n \nu_k = \beta \). We also set \(||\nu|| = n \). Let \(J^\beta \) denote the set of all compositions of \(\beta \). There is a left action of \(\mathcal{S}_n \) on \(J^n \) by permutations

\[s_k \cdot \nu_1 \cdots \nu_n = \nu_1 \cdots \nu_{k-1} \nu_k \cdots \nu_{n} \quad (1 \leq k \leq n - 1), \]

(5.1)

whose orbits are the sets \(J^\beta \) for all \(\beta \) with \(||\beta|| = n \).
Let \(J^* = \bigcup_{\beta \in \mathbb{N}[J]} J_\beta \) be the set of compositions of all dimension vectors. We consider \(J^* \) as a monoid with respect to concatenation: \(\nu \mu = \nu_1 \cdots \nu_{l\nu} \mu_1 \cdots \mu_{l\mu} \), with the zero dimension vector composition as the identity.

The involution \(\theta \) induces an involution \(\theta: \mathbb{N}[J] \to \mathbb{N}[J] \). We call dimension vectors in \(\mathbb{N}[J]^\theta \) self-dual. We will always assume, for any \(\beta \in \mathbb{N}[J]^\theta \), that if \(i \in J^\theta \) then \(\beta(i) \) is even. Set \(\|\beta\|_\theta = \|\beta\|/2 \) and

\[
\theta(-): \mathbb{N}[J] \to \mathbb{N}[J]^\theta, \quad \beta \mapsto \theta \beta = \beta + \theta(\beta). \tag{5.2}
\]

We call a sequence \(\nu = \nu_1 \cdots \nu_n \in J^n \) an isotropic composition of \(\beta \) if \(\theta|\nu| = \sum_{i=1}^n \theta \nu_i = \beta \). Let \(\theta J^\beta \) denote the set of all isotropic compositions of \(\beta \). There is a left action of \(\mathcal{W}_n \) on \(J^n \) extending (5.1), given by

\[
s_0 \nu_1 \cdots \nu_n = \theta(\nu_1) \nu_2 \cdots \nu_n,
\]
whose orbits are the sets \(\theta J^\beta \) for all self-dual \(\beta \) with \(\|\beta\|_\theta = n \). Let \(\theta J^* = \bigcup_{\beta \in \mathbb{N}[J]^\theta} \theta J^\beta \) be the set of all isotropic compositions of all self-dual dimension vectors.

5.2. KLR and oKLR algebras

We recall the definition of orientifold KLR algebras as given by the second author in [Prz21] (see also [VV11, Prz19, PdW20, PdR21]).

Definition 5.2.1. Let \(\Gamma \) be a quiver with a contravariant involution \(\theta \) and a dimension vector \(\lambda \in \mathbb{N}[J] \) such that \(\lambda(i) = 0 \) if \(i \in J^\theta \). Note that \(\lambda \) need not be self-dual. We call \(\lambda \) the framing dimension vector, and the datum \((\Gamma, \theta, \lambda) \) an enhanced quiver.

Let \((\Gamma, \theta, \lambda) \) be a fixed enhanced quiver. Set

\[
P_{ij}(u, v) = \delta_{i \neq j} (v - u)^{\alpha_{ij}}, \quad P_i(u) = \delta_{i \neq \theta(i)} (-u)^{\lambda(i)}
\]
for \(i, j \in J \), and define \((Q, Q') \) as

\[
Q_{ij}(u, v) = P_{ij}(u, v) P_{ji}(v, u), \quad Q'_i(u) = P_i(u) P_{\theta(i)}(-u), \quad (i, j \in J).
\]

Definition 5.2.2. Let \(\beta \in \mathbb{N}[J]^\theta \) with \(\|\beta\|_\theta = n \), and \(\alpha \in \mathbb{N}[J] \) with \(\theta \alpha = \beta \).

1. The KLR algebra \(\mathcal{R}(\alpha) \) associated to \((\Gamma, \alpha) \) is the \(k \)-algebra generated by \(e(\nu) \) \((\nu \in J^n) \), \(x_l \) \((1 \leq l \leq n) \) and \(\tau_k \) \((1 \leq k \leq n - 1) \), subject to relations (5.3), (5.5), (5.6), (5.8), (5.10) and (5.11).

2. The orientifold KLR algebra \(\theta \mathcal{R}(\beta; \lambda) \) associated to \((\Gamma, \theta, \lambda; \beta) \) is the \(k \)-algebra generated by \(e(\nu) \) \((\nu \in \theta J^\beta) \), \(x_l \) \((1 \leq l \leq n) \), and \(\tau_k \) \((0 \leq k \leq n - 1) \), subject to all the relations (5.3)–(5.13).

- **Idempotent relations:**
 \[
e(\nu)e(\nu') = \delta_{\nu \nu'} e(\nu), \quad x_l e(\nu) e(\nu x_l, \quad \tau_k e(\nu) = e(s_k \cdot \nu) \tau_k, \quad \tau_0 e(\nu) = e(s_0 \cdot \nu) \tau_0, \tag{5.3}
\]

- **Polynomial relations:**
 \[
x_l x_{l'} = x_{l'} x_l \tag{5.5}
\]
• Quadratic relations:

\[\tau_k^2 e(\nu) = Q_{\nu_k,\nu_{k+1}}(x_{k+1}, x_k) e(\nu), \]

\[\tau_0^2 e(\nu) = Q'_{\nu_1}(-x_1) e(\nu), \]

\[\tau_k \tau_{k'} = \tau_{k'} \tau_k \text{ if } k \neq k' \pm 1, \]

\[\tau_0 \tau_k = \tau_k \tau_0 \text{ if } k \neq 1, \]

\[(\tau_{k+1} \tau_k \tau_{k+1} - \tau_k \tau_{k+1} \tau_k)e(\nu) = \delta_{\nu_k,\nu_{k+2}} \frac{Q_{\nu_k,\nu_{k+1}}(x_{k+1}, x_k) - Q_{\nu_k,\nu_{k+1}}(x_{k+1}, x_{k+2})}{x_k - x_{k+2}} e(\nu), \]

\[((\tau_1 \tau_0)^2 - (\tau_0 \tau_1)^2)e(\nu) = \]

\[= \begin{cases}
Q'_{\nu_2}(x_2) - Q'_{\nu_1}(x_1) & \text{if } \nu_1 \neq \nu_2, \nu_2 = \theta(\nu_1) \\
Q_{\nu_1,\nu_2}(x_2,-x_1) & \text{if } \nu_1 \neq \theta(\nu_1), \nu_2 = \theta(\nu_2), \\
Q_{\nu_1,\nu_2}(x_2,-x_1) & \text{if } \theta(\nu_1) = \nu_1 \neq \nu_2 = \theta(\nu_2), \\
0 & \text{else},
\end{cases} \]

• Mixed relations:

\[(\tau_k x_l - x_{s_k(l)} \tau_k)e(\nu) = \begin{cases}
-e(\nu) & \text{if } l = k, \nu_k = \nu_{k+1}, \\
e(\nu) & \text{if } l = k + 1, \nu_k = \nu_{k+1}, \\
0 & \text{else},
\end{cases} \]

\[(\tau_0 x_1 + x_1 \tau_0)e(\nu) = \begin{cases}
0 & \text{if } \nu_1 \neq \theta(\nu_1), \\
-2e(\nu) & \text{if } \nu_1 = \theta(\nu_1),
\end{cases} \]

\[\tau_0 x_l = x_1 \tau_0 \text{ if } l \neq 1, \]

where, in all the relations above, \(1 \leq l, l' \leq n \) and \(1 \leq k, k' \leq n - 1 \), except (5.10), where \(1 \leq k \leq n - 2 \).

These algebras are endowed with the following grading:

\[\deg e(\nu) = 0, \]

\[\deg x_k = 2, \]

\[\deg \tau_k e(\nu) = \begin{cases}
-2 & \text{if } \nu_k = \nu_{k+1}, \\
\alpha_{\nu_k,\nu_{k+1}} & \text{otherwise},
\end{cases} \]
\[
\text{deg } \tau_0 e(\nu) = \begin{cases}
-2 & \text{if } \theta(\nu_1) = \nu_1, \\
\theta \lambda(\nu_1) & \text{otherwise.}
\end{cases}
\]

If $\lambda = 0$, we abbreviate

$\theta^0 R(\beta) = \theta^0 R(\beta; \lambda)$.

Remark 5.2.3. It follows from the PBW theorems (see, e.g., [Rou08, Thm. 3.7], [Prz21, Prop. 2.9]) for the KLR and oKLR algebras that $R(\alpha)$ is in fact isomorphic to the subalgebra of $\theta^0 R(\beta; \lambda)$ generated by $e(\nu)$ ($\nu \in J^{\alpha}$), x_l ($1 \leq l \leq n$) and τ_k ($1 \leq k \leq n - 1$).

Let 1 and $\theta 1$ denote the regular representations (in degree zero) of the trivial algebras $R(0)$ and $\theta^0 R(0; \lambda)$, respectively. For a fixed $\lambda \in \mathbb{N}[J]$, set

$R\text{-mod}_{gr} = \bigoplus_{\alpha \in \mathbb{N}[J]} R(\alpha)\text{-mod}_{gr}$, $\theta^0 R(\lambda)\text{-mod}_{gr} = \bigoplus_{\beta \in \mathbb{N}[J]^\theta} \theta^0 R(\beta; \lambda)\text{-mod}_{gr}$,

and abbreviate $\theta^0 R\text{-mod}_{gr} = \theta^0 R(\lambda = 0)\text{-mod}_{gr}$. We use analogous notation for direct sums of categories of finite dimensional modules.

5.3. Polynomial representation.

Set

$\mathbb{P}_\nu := k[x_1, \ldots, x_n]e(\nu)$, \quad \hat{\mathbb{P}}_\nu := \mathbb{P}_\nu$, \quad \hat{\mathbb{K}}_\nu := k((x_1, \ldots, x_n))e(\nu)$,

$\theta^0 \mathbb{P}_\beta := \bigoplus_{\nu \in \theta^0 J^{\beta}} \mathbb{P}_\nu$, \quad \theta^0 \hat{\mathbb{P}}_\beta := \bigoplus_{\nu \in \theta^0 J^{\beta}} \hat{\mathbb{P}}_\nu$, \quad \theta^0 \hat{\mathbb{K}}_\beta := \bigoplus_{\nu \in \theta^0 J^{\beta}} \hat{\mathbb{K}}_\nu$.

We abbreviate $x_{-l} = -x_l$ for $1 \leq l \leq n$. There is a natural left action of the Weyl group W_n on $k((x_1, \ldots, x_n))$ given by $w \cdot x_l = x_{w(l)}$. This extends to an action on $\theta^0 \hat{\mathbb{K}}_\beta$ by

$w \cdot fe(\nu) = w(f)e(w \cdot \nu)$,

for $w \in W_n$ and $f \in k((x_1, \ldots, x_n))$.

Proposition 5.3.1. The algebra $\theta^0 R(\beta; \lambda)$ has a faithful polynomial representation on $\theta^0 \mathbb{P}_\beta$, given by:

- $e(\nu)$ ($\nu \in \theta^0 J^{\beta}$) acting as projection onto \mathbb{P}_ν,
- x_1, \ldots, x_n acting naturally by multiplication,
- $\tau_1, \ldots, \tau_{n-1}$ acting via

\[
\tau_k \cdot fe(\nu) = \begin{cases}
\frac{s_k(f) - f}{x_k - x_{k+1}} e(\nu) & \text{if } \nu_k = \nu_{k+1}, \\
P_{\nu_k, \nu_{k+1}}(x_k, x_{k+1}) s_k(f) e(s_k \cdot \nu) & \text{otherwise},
\end{cases}
\]
• \(\tau_0 \) acting via

\[
\tau_0 \cdot f e(\nu) = \begin{cases}
\frac{s_0(f) - f}{x_1} e(\nu) & \text{if } \theta(\nu_1) = \nu_1, \\
\tilde{P}_{\nu_1}(x_1) s_0(f) e(s_0 \cdot \nu) & \text{otherwise}.
\end{cases}
\]

Proof. See [Prz21, Prop. 2.7].

Next, for each \(i, j \in J \), we choose holomorphic functions \(c_{ij}(u, v) \in k[u, v] \) such that

\[
c_{ij}(u, v)c_{ji}(v, u) = 1, \quad c_{ii}(u, v) = 1, \quad c_{ij}(u, v) = c_{\theta(j)\theta(i)}(-v, -u).
\]

Moreover, for each \(i \in J \), we also choose holomorphic functions \(c_i \in k[u] \) such that

\[
c_i(u)c_{\theta(i)}(-u) = 1, \quad i = \theta(i) \Rightarrow c_i(u) = 1.
\]

Set

\[
\tilde{P}_{ij}(u, v) = P_{ij}(u, v)c_{ij}(u, v), \quad \tilde{P}_i(u) = P_i(u)c_i(u).
\]

Note that the corresponding \((Q, Q')\) remain unchanged.

Corollary 5.3.2. There is an injective \({}^\theta \mathbb{P}_\beta \)-algebra homomorphism

\[
{\theta R}(\beta; \lambda) \hookrightarrow {}^\theta \hat{K}_\beta \times k[\mathfrak{W}_n]
\]

given by

\[
\tau_0 e(\nu) = \begin{cases}
x_1^{-1}(s_0 - 1) e(\nu) & \text{if } \nu_1 = \theta(\nu_1), \\
\tilde{P}_{\nu_1}(x_1) s_0 e(\nu) & \text{otherwise},
\end{cases}
\]

\[
\tau_k e(\nu) = \begin{cases}
(x_k - x_{k+1})^{-1}(s_k - 1) e(\nu) & \text{if } \nu_k = \nu_{k+1}, \\
\tilde{P}_{\nu_k, \nu_{k+1}}(x_k, x_{k+1}) s_k e(\nu) & \text{otherwise},
\end{cases}
\]

for \(1 \leq k \leq n - 1 \).

Proof. See [Prz21, Corollary 2.8].

Given \(\alpha \in \mathbb{N}[J] \) with \(\theta \alpha = \beta \), let

\[
\mathbb{P}_\alpha := \bigoplus_{\nu \in J^\alpha} \mathbb{P}_\nu, \quad \hat{\mathbb{P}}_\alpha := \bigoplus_{\nu \in J^\alpha} \hat{\mathbb{P}}_\nu, \quad {}^\theta \hat{K}_\alpha := \bigoplus_{\nu \in J^\alpha} \hat{K}_\nu.
\]

The embedding (5.16) restricts to a \(\mathbb{P}_\alpha \)-algebra homomorphism

\[
\mathcal{R}(\alpha) \hookrightarrow \hat{K}_\alpha \times k[\mathfrak{S}_n].
\]
5.4. One-dimensional modules. Given $\mu \in \theta J^\beta$, let $\theta L(\mu)$ be the free k-module ku_μ with generator u_μ of degree zero.

Lemma 5.4.1. Setting

$$x_l \cdot u_\mu = 0, \quad \tau_k \cdot u_\mu = 0, \quad e(\nu) \cdot u_\mu = \delta_{\nu,\mu}u_\mu,$$

for $1 \leq l \leq n$, $0 \leq k < n$ and $\nu \in \theta J^\beta$, makes $\theta L(\mu)$ into an $\theta R(\beta; \lambda)$-module if and only if

(a) $\mu_k \neq \mu_{k+1}$ and $\overline{a}_{\mu_k,\mu_{k+1}} \geq 1$ (for $1 \leq k < n$),

(b) whenever $\mu_k = \mu_{k+2}$, then $\overline{a}_{\mu_k,\mu_{k+1}} \neq 1$ (for $1 \leq k < n-1$),

(c) $\mu_1 \neq \theta(\mu_1)$ and $\theta \lambda(\mu_1) \geq 1$.

Proof. The proof is based on a direct inspection of the defining relations of $\theta R(\beta; \lambda)$. The definition of the action (5.18) implies that the LHS of the relations (5.6)–(5.13) must be zero. The RHS of (5.11) is zero if and only if $\mu_k \neq \mu_{k+1}$. Moreover, the RHS of (5.6) is zero if and only if $\mu_k = \mu_{k+1}$ (which cannot be the case) or the polynomial $Q_{\mu_k,\mu_{k+1}}(x_{k+1}, x_k)$ has no constant term. The latter is the case if and only if $\overline{a}_{\mu_k,\mu_{k+1}} \geq 1$. Similarly, the RHS of (5.10) is zero if and only if condition (b) holds.

Next, the RHS of (5.12) is zero if and only if $\mu_1 \neq \theta(\mu_1)$. Moreover, the RHS of (5.7) is zero if and only if $\mu_1 = \theta(\mu_1)$ (which cannot be the case) or $Q_{\mu_1}(-x_1)$ has no constant term. The latter is the case if and only if $\theta \lambda(\mu_1) \geq 1$.

Since all the other relations hold without any extra assumptions, we have proven the necessity and sufficiency of conditions (a)–(c).

Note that if $\mu \in J^\alpha$ and conditions (a)–(b) are satisfied then (5.18) (with $1 \leq k < n$) defines the structure of a $R(\alpha)$-module on ku_μ, which we then denote by $L(\mu)$.

5.5. Convolution product and monoidal action. We recall the definition of the convolution product of modules over KLR algebras. Let $\alpha, \alpha' \in \mathbb{N}[J]$ with $\|\alpha\| = n$ and $\|\alpha'\| = n'$. Set

$$e_{\alpha, \alpha'} = \sum_{\nu \in J^{\alpha + \alpha'}, \nu_1 \cdots \nu_n \in J^\alpha} e(\nu) \in R(\alpha + \alpha').$$

There is a non-unital algebra homomorphism

$$\iota_{\alpha, \alpha'}: R(\alpha, \alpha') := R(\alpha) \otimes R(\alpha') \to R(\alpha + \alpha')$$

given by $e(\nu) \otimes e(\mu) \mapsto e(\nu \mu)$ for $\nu \in J^\alpha$, $\mu \in J^{\alpha'}$ and

$$x_l \otimes 1 \mapsto x_l e_{\alpha, \alpha'}, \quad 1 \otimes x_l \mapsto x_{m+l} e_{\alpha, \alpha'}, \quad \tau_k \otimes 1 \mapsto \tau_k e_{\alpha, \alpha'}, \quad 1 \otimes \tau_k \mapsto \tau_{m+l} e_{\alpha, \alpha'},$$

$$x_l \otimes 1 \mapsto x_l e_{\alpha, \alpha'}, \quad 1 \otimes x_l \mapsto x_{m+l} e_{\alpha, \alpha'}, \quad \tau_k \otimes 1 \mapsto \tau_k e_{\alpha, \alpha'},$$

(5.19)
where $1 \leq l \leq n$, $1 \leq l' \leq n'$, $1 \leq k < n$, and $1 \leq k' < n'$. Let M be a graded $R(\alpha)$-module and N be a graded $R(\alpha')$-module. Their convolution product is defined as
\[M \circ N = R(\alpha + \alpha')e_{\alpha,\alpha'} \otimes R(\alpha,\alpha') (M \otimes N). \]

Next, let $\beta \in N[J]^\theta$ with $||\beta||_\theta = n$. Set
\[\theta e_{\beta,\alpha'} = \sum_{\nu \in \theta J^\beta + \theta \alpha', \nu_1 \cdots \nu_n \in \theta J^\beta} e(\nu) \in \theta R(\beta + \theta \alpha'; \lambda). \]

There is an injective non-unital algebra homomorphism
\[\theta \iota_{\beta,\alpha'} : \theta R(\beta, \alpha'; \lambda) := \theta R(\beta; \lambda) \otimes R(\alpha') \rightarrow \theta R(\beta + \theta \alpha'; \lambda) \]

given by formulae (5.19)-(5.20) (with $\nu \in \theta J^\beta$ and $e_{\beta,\alpha'}$ replaced by $\theta e_{\beta,\alpha'}$) and $\nu_0 \otimes 1 \mapsto \nu_0 \theta e_{\beta,\alpha'}$. The convolution action of $N \in R(\alpha')$-mod$_{gr}$ on $M \in \theta R(\beta; \lambda)$-mod$_{gr}$ is defined as
\[M \circ N = \theta R(\beta + \theta \alpha'; \lambda) \theta e(\beta, \alpha') \otimes R(\beta, \alpha'; \lambda) (M \otimes N). \]

Proposition 5.5.1. The category R-mod$_{gr}$ is monoidal with product \circ and unit 1. Moreover, there is a right monoidal action of R-mod$_{gr}$ on $\theta R(\lambda)$-mod$_{gr}$ via \circ. The product and the action restrict to the full subcategories R-mod$_{gr}$ and $\theta R(\lambda)$-mod$_{gr}$, and descend to the corresponding Grothendieck groups.

Proof. In the case of KLR algebras, the proof is well known, see, e.g., [KL09, §3.1]. In the orientifold case, the argument is analogous, so we only highlight the main points. The crucial fact is that the $\theta R(\beta, \alpha'; \lambda)$-module $\theta R(\beta + \theta \alpha'; \lambda)$ is free of finite rank (see, e.g., [VV11, Lem. 8.7]). Firstly, it implies that $M \circ N$ is finite dimensional whenever M and N are. Secondly, it implies that the bifunctor $- \circ -$ is biexact, and hence descends to the Grothendieck groups of graded finite dimensional modules. Thirdly, the existence of a suitable associativity constraint (see §3.5) follows from the natural isomorphisms
\[M \circ (N \circ P) \cong \theta R(\beta + \theta \alpha^\circ; \lambda) e \otimes_{\theta R(\beta; \lambda) \otimes \theta R(\alpha') \otimes \theta R(\alpha^\circ)} (M \otimes N \otimes P) \cong (M \circ N) \circ P, \]
where $\alpha^\circ = \alpha' + \alpha''$ and e is the sum of all idempotents $e(\nu)$ such that $\nu \in \theta J^\beta + \theta \alpha^\circ$, $\nu_1 \cdots \nu_n \in \theta J^\beta$, $\nu_{n+1} \cdots \nu_{n+n''} \in J^\alpha'$ and $\nu_{n+n'+1} \cdots \nu_{n+n'+n''} \in J^\alpha''$. \hfill \Box

6. The combinatorial model

Throughout this section, we fix the following data:
- an affine Satake diagram (X, τ) with pseudo-involution ϑ;
- a QSP subalgebra $U_q \mathfrak{t} \subseteq U_q \mathfrak{g}$, associated to (X, τ), with parameters (γ, σ);
- a QSP admissible twisting operator $\psi \in \text{Aut}(U_q \mathfrak{g})$ (cf. §4.2).
6.1. **J–data.** Let J be a fixed index set. A J–datum is a choice, for each $i \in J$, of a finite-dimensional $U_q Lg$-module $V(i)$ and a non-zero scalar $X(i) \in k^\times$ such that the following properties are satisfied.

(P1) **Admissibility.** For any $i \in J$, the module $V(i)$ is an irreducible real module (i.e., $V(i) \otimes V(i)$ is irreducible).

(P2) **R-matrices.** For any $i, j \in J$, there is a non-vanishing unitary trigonometric R-matrix

$$R_{V(i)V(j)}(w/z) : V(i)_z \otimes V(j)_w \to V(i)_z \otimes V(j)_w$$

such that $R_{V(i)V(i)}^w(1) = id$, where $V(i)_z = (V(i))(z)$ (cf. Theorem 2.4.1 and Remarks 2.4.2).

(P3) **Poles.** For any $i, j \in J$, the poles of the R-matrix $R_{V(i)V(j)}(w/z)$ are in $q^{1/m} C[q^{1/m}]$ for some $m > 0$.

For any $i, j \in J$, we denote by $d_{ij}(z) \in k[z]$ the denominator of the trigonometric R-matrix $R_{V(i)V(j)}(z)$, i.e., the polynomial of smallest degree such that $d_{ij}(z)R_{V(i)V(j)}(z)$ is defined over $k[z]$. Moreover, we denote by $d_{ij} \in Z_{\geq 0}$ the order of the pole of $R_{V(i)V(j)}(z)$ at $z = X(j)/X(i)$.

Remark 6.1.1. The conditions (P1)–(P3) are easily satisfied.

- Kirillov–Reshetikhin modules are known to satisfy (P1).

- The existence and uniqueness of a unitary trigonometric R-matrix on a tensor product of finite–dimensional irreducible $U_q Lg$–modules is guaranteed by Theorem 2.4.1. Thus, (P2) is automatically satisfied (see also Remark 2.4.2 (2)).

- The condition (P3) is related to the explicit computation of the denominators $d_{ij}(z)$. Unfortunately, this is a difficult, largely open problem for arbitrary irreducible modules. However, it is well–known that (P3) is satisfied by good modules, as defined by Kashiwara in [Kas02], i.e., irreducible finite–dimensional modules over $U_q Lg$ with a bar involution, a crystal basis with a simple crystal graph, and a global basis.

6.2. **Enhanced J–data.** An enhanced J–datum is a J–datum $(V(i), X(i))_{i \in J}$ equipped with an involution $\theta : J \to J$ such that the following properties are satisfied. Set $J^\theta = \{i \in J | \theta(i) = i\}$.

(Q0) **Symmetry.** For any $i \in J$, we have $X(\theta(i)) = X(i)^{-1}$, and there is an isomorphism of $U_q \frak k$–modules $V(\theta(i)) \simeq \psi^*(V(i))$.

(Q1) **Admissibility.** For any $i \in J$, there is an isomorphism of $U_q \frak k$–modules $(\psi^2)^*(V(i)) \simeq V(i)$.

\[\nabla \]
(Q2) \(\theta\)-invariance. For any \(i \in J^0\), we have \(X(i)^2 = 1\), and the module \(V(i)\) is QSP irreducible (i.e., it is irreducible under restriction to \(U_q\mathfrak{g}\), cf. §4.3), and there is an isomorphism of \(U_q\mathfrak{g}\)-modules \(\psi^*(V(i)) \simeq V(i)\).

(Q3) K-matrices. For any \(i \in J\), there is a non-vanishing unitary K-matrix, i.e., a QSP intertwiner

\[
K_{V(i)}(z) : V(i)_z \to V(\theta(i))_{1/z} \simeq \psi^*(V(i))_{1/z},
\]

satisfying Cherednik’s reflection equation (4.2) and the unitarity condition (4.3) (cf. Theorem 4.4.1). Moreover, if \(i \in J^0\), then \(K_{V(i)}(1) = \text{id}\).

(Q4) Poles. For any \(i \in J\), the poles of the K-matrix \(K_{V(i)}(z)\) are in \(q^{1/m}C[q^{1/m}]\) for some \(m > 0\).

For any \(i, j \in J\), we denote by \(d_i(z) \in k[z]\) the denominator of the trigonometric K-matrix \(K_{V(i)}(z)\) and by \(d_i \in \mathbb{Z}_{\geq 0}\) the order of the pole of \(K_{V(i)}(z)\) at \(z = X(i)\).

Remark 6.2.1. As before, the conditions (Q0)–(Q3) are easily satisfied.
- It is useful to observe that the condition (Q0) can be satisfied by construction. Namely, given an index set \(J\) with an involution \(\theta\), choose a representative for any \(\theta\)-orbit and consider the corresponding partition \(J = J_+ \sqcup J^0 \sqcup J_-\) with \(\theta(J_-) = J_\). Then, choose, for any \(i \in (J_\sqcup J^0)\), a finite-dimensional irreducible real \(U_q\mathfrak{g}\)-module \(V(i)\) and a non-zero scalar \(X(i) \in k^\times\). Finally, for any \(\theta(i) \in J_\), set \(V(\theta(i)) := \psi^*(V(i))\) and \(X(\theta(i)) := X(i)^{-1}\).
- The requirement \((\psi^2)^*(V) \simeq V\) in (Q1) can easily be overcome, since it is always possible to choose involutive twisting operator \(\psi\), i.e., \(\psi = \omega \circ \tau\), see [AV22b, Ex. 3.6.3 (2)]. With this choice, Kirillov–Reshetikhin modules satisfy also the condition \(\psi^*(V) \simeq V\) in (Q2) (up to a shift, see [AV22b, Thm. 7.8.1]). Note also that (Q1) follows automatically whenever (Q0) is satisfied.
- By Theorem 4.4.1, the condition \((\psi^2)^*(V) \simeq V\) guarantees the existence of a unitary K-matrix. Thus, (Q3) is automatically satisfied.

The condition (Q4) is, however, harder to verify, since the properties of the poles of trigonometric K-matrices are at the moment largely unknown.

6.3. Enhanced \(J\)-quivers. In [KKK18, §3], Kang, Kashiwara, and Kim defined a quiver attached to a \(J\)-datum, which we refer to as the associated \(J\)-quiver. We extend their construction to a quiver with a framing and a contravariant involution, naturally associated to an enhanced \(J\)-datum.

Definition 6.3.1.

(1) Let \((V(i), X(i))_{i \in J}\) be a \(J\)-datum. The associated \(J\)-quiver \(\Gamma\) (c.f. [KKK18, §3]) is the quiver defined as follows:

- the set of vertices is \(J\);
for any $i, j \in J$, there are d_{ij} arrows from i to j.

(2) Let $(V(i), X(i))_{i \in J}$ be an enhanced J-datum with involution θ. The associated enhanced J-quiver is the J-quiver associated to the underlying J-datum, additionally equipped with the framing dimension vector $\lambda \in \mathbb{N}[J]$ given by $\lambda(i) = d_{\theta(i)}$.

The enhanced J-quiver has several convenient properties, which are easily proved.

Proposition 6.3.2. Let Γ be an enhanced J-quiver. Then the following holds.

1. The quiver Γ has neither loops nor cycles.
2. If $\lambda(i) \neq 0$ then $\lambda(\theta(i)) = 0$. In particular, $\lambda(i) = 0$ for $i \in J^\theta$.
3. The involution θ on J lifts to a contravariant involution of the quiver Γ.

Proof. Part (1) is proved as in [KKK18]. Namely, since $V(i)$ is real, $R_{V(i)V(j)}(z)$ has no pole at $z = 1$, thus $d_{ii} = 0$. The condition (P3) then guarantees that no cycle can appear. Part (2) follows similarly from the unitarity condition on the K-matrix (Q3).

For part (3), it is enough to observe that, by definition of the twisting operator ψ, see [AV22a, §2], one has

$$(R_{\psi^*(V(i))\psi^*(V(j))}(w/z))_{21} = (F_{V(i)V(j)}^{-1})_{21} \circ R_{V(j)V(i)}(z/w) \circ F_{V(j)V(i)}$$

where F is a (constant) Drinfeld twist in U_qLg. Therefore, $d_{\theta(i)\theta(j)} = d_{ji}$ and the result follows. \hfill \square

6.4. Enhanced J–quivers of Dynkin type.

It is well-known that every quiver of Dynkin type can be realized as the J–quiver associated to a J–datum for a Lie algebra g of the same type (see, e.g., [KKK15, Fuj20, Fuj22, Nao21]). The analogue result for enhanced J–quiver is much more restrictive. By Proposition 6.3.2 (3), every enhanced J–quiver is naturally equipped with a contravariant involution θ. However, the latter exists only in the cases of Dynkin quivers of type A, and affine Dynkin quivers of type A and D.

In §6.5–6.7, we provide an explicit realisation as enhanced J–quivers of the following three examples: the linearly oriented quiver of type A; the bipartite quiver of type A; the linearly oriented quiver of affine type D.

We briefly summarize our approach. In analogy with [KKK18, KKK15], the J–datum $(V(i), X(i))_{i \in I}$ is given entirely in terms of the fundamental representations V_{ω_i} ($i \in I$) of the quantum affine algebra U_qLg of the same type. The definition of the enhanced J–datum is quite subtle. First, we equip J with the unique contravariant involution θ. Then, we carefully choose the QSP subalgebra in order to satisfy the condition (Q0). We proceed as follows.

6We shall consider in fact only small fundamental representations, i.e., irreducible under restriction to U_qg. In particular, these are isomorphic to their finite type counterparts as U_qg-modules.
• We fix a τ–restrictable QSP subalgebra $U_q^\mathfrak{g} \subset U_q L\mathfrak{g}$ with twisting operator $\psi = \omega \circ \tau$ (cf. §4.5). By Theorem 4.5.1 (1), for any $i \in J$, we obtain a trigonometric K-matrix

$$V(i)(z) \rightarrow (\eta_0 \tau)^*(V(i))(z^{-1})$$

where η_0 is the extension of the opposition involution op_J.

• In type A, the contravariant involution θ satisfies $V(\theta(i)) = V(i)$. Therefore, if $\tau = \eta_0$, the symmetry condition $(Q0)$ is automatically satisfied 7. On the other hand, if $\tau = \text{id}$, the same condition fails, since $\eta_0 \neq \text{id}$ and $\eta_0^*(V(i)) \not\simeq V(i)$ 8.

• In affine type \hat{D}_N, we consider a J–datum involving only the vector representation V_{ω_1} and the two spin representations $V_{\omega_{N-1}}$ and V_{ω_N}. As before, the contravariant involution θ satisfies $V(\theta(i)) = V(i)$. When N is even, $\eta_0 = \text{id}$ and we consider τ–restrictable QSP subalgebras with $\tau = \text{id} = \eta_0$. Thus, $(Q0)$ is automatically satisfied in this case. On the other hand, when N is odd, $\eta_0 \neq \text{id}$ and one has $\eta_0^*(V_{\omega_1}) \simeq V_{\omega_1}$, but $\eta_0^*(V_{\omega_{N-1}}) \simeq V_{\omega_N}$. Thus, in order to satisfy $(Q0)$, in this case we can only consider QSP subalgebras with $\tau = \eta_0$.

• In affine type \hat{D}_N with N odd, one can consider a simple modification of the J–datum such that the two spin representations correspond to each other through θ. By the same argument, $(Q0)$ holds for any QSP subalgebra with $\tau = \text{id}$ (cf. Remark 6.7.2).

Finally, the enhanced J–datum is obtained by θ together with the trigonometric K-matrices given by Theorem 4.5.1 with respect to the QSP subalgebra chosen as above.

Remark 6.4.1. In the examples §6.6 and §6.7 below, we do not include a description of the framing 9. This is due to the fact that, with the exception of the first fundamental representation, an explicit expression for the poles of trigonometric K-matrices is at the moment largely unknown. Even though some progress towards more general Kirillov–Reshetikhin modules has recently been made in [KOW22] from the point of view of crystal combinatorics, no explicit formula for the poles has yet been derived. Nevertheless, the poles are expected to depend rationally on the parameters (γ, σ) defining the QSP subalgebra (see, e.g., [RV16] or also §9.4). In this case, the condition $(Q4)$ would always be satisfied for suitable choices of parameters, yielding a generically trivial framing.

7Recall that $(Q0)$ requires that, for any $i \in J$, $V(\theta(i)) \simeq \psi^*(V(i))$.

8This corresponds to the fact that the fundamental representations are not self–dual in type A.

9For the example §6.5, the framing is described in §9.4 together with an explicit expression of the trigonometric K-matrix for the fundamental representation in type A_{III}.

▽
6.5. Example: the linearly oriented quiver of type A. This example is discussed in details in §9.4 in the case of a (not necessarily τ-restrictable) quasi-split QSP subalgebra of type A_{III}. We provide here a brief summary in greater generality.

Let $g = \mathfrak{sl}_{N+1}$ and $V = V_{\omega_1}$. Note that, as a $U_q g$-module, V is isomorphic to the vector representation. Set $J := \mathbb{Z}_{\text{odd}}$ and consider the involution θ on J given by $\theta(n) = -n$.\footnote{In particular, $J^{\theta} = \emptyset$. The case with $J = \mathbb{Z}_{\text{even}}$ and $J^{\theta} = \{0\}$ is analogous, so we omit it.} For any $i \in J$, set $V(n) := V$ and $X(n) = q^n$.

First, we observed that the conditions (P1)–(P3) are clearly satisfied. In particular, (P3) holds, since the R-matrix $R_{VV}(z,w)$ is known to have only one simple pole at $w/z = q^2$, see (9.1). The resulting J-quiver with θ is in Figure 1, where we use the notation (ω_i, p) to indicate (V_{ω_i}, p). This is the main example considered in [KKK18].

We fix a QSP subalgebra $U_q \mathfrak{k} \subset U_q L g$ with $\tau = \eta_0$ and we consider the twisting operator $\psi = \omega \circ \tau$. Then, by Theorem 4.5.1, the conditions (Q0), (Q1), (Q2) and (Q3) are automatically satisfied. It remains to verify the condition (Q4). In [RV18], Regelskis and Vlaar computed explicitly the trigonometric K-matrices for V. Therefore, (Q4) holds, provided the QSP parameters are carefully chosen, as outlined in §9.4.

6.6. Example: the bipartite quiver of type A. We shall now discuss the enhancement of an example from [KKK15] involving multiple fundamental representations. Let $g = \mathfrak{sl}_{N+1}$. Let $J = \{1, \ldots, N\}$ be a set with the involution $\theta(i) = N + 1 - i$. We consider J as the set of vertices of a quiver Q of type A_N, with an edge between i and j if and only if $|i-j| = 1$, and equipped with a bipartite (i.e., alternating) orientation.

Let $U_q \mathfrak{k} \subset U_q L g$ be a QSP subalgebra with $\tau = \eta_0$ and twisting operator $\psi = \tau \circ \omega$. We consider the corresponding trigonometric K-matrices on the fundamental representations $V_{\omega_i} (i \in I)$ given by Theorem 4.5.1.

Proposition 6.6.1. Set $p = -q$.\footnote{In particular, $J^{\theta} = \emptyset$. The case with $J = \mathbb{Z}_{\text{even}}$ and $J^{\theta} = \{0\}$ is analogous, so we omit it.}
(1) The quiver Q admits a contravariant involution if and only if N is even.
(2) Let $N = 2m$ and set, for any $i \in J$,
\[
V(i) = \begin{cases} V_{\omega_i} & \text{if } i \text{ is a source in } Q \\ V_{\omega(i)} & \text{if } i \text{ is a sink in } Q \end{cases}
\]
\[
X(i) = \begin{cases} p^m & \text{if } i \text{ is a source in } Q \\ p^{-m} & \text{if } i \text{ is a sink in } Q \end{cases}
\]

If the condition (Q4) is satisfied, the datum $(V(i), X(i))_{i \in J}$ defines an enhanced J-datum with respect to the involution θ. The resulting J-quiver Γ is isomorphic to Q^{rev}, i.e., the quiver obtained from Q by reversing all the arrows, see Figure 2.

Proof. (1) The existence of an involution when $N = 2m$ is obvious from Figure 2. Instead, when $N = 2m + 1$, it is enough to observe that the central vertex $m + 1$ is bound to be fixed by the involution. Since $m + 1$ is supposed to be either a source or a sink, the involution cannot be contravariant.

(2) The proof relies on some results from [KKK15]. Let w be a Coxeter element adapted to Q. Without loss of generality, let us assume that m is odd, and the central arrow sends $m + 1$ to m. In that case even vertices are sources and odd vertices are sinks, and
\[
w = s_2 s_4 \cdots s_{2m} s_1 s_3 \cdots s_{2m-1}.
\]
Choose the height function
\[
\xi_i = \begin{cases} m + 1 & \text{if } i \text{ is odd,} \\ m & \text{if } i \text{ is even.} \end{cases}
\]

Let Π_0 and Δ_+ denote the sets of simple and positive roots of \mathfrak{g}, respectively. By [KKK15, Thm. 4.3.1], there exists a J-datum such that the corresponding J-quiver Γ is isomorphic to Q^{rev}. To compute this datum, we need to consider the repetition quiver of Q, and a certain bijection $\phi: \hat{\Pi}_0 \to \hat{\Delta}$, where $\hat{\Pi}_0 = \{1, 3, \cdots, m\} \times 2\mathbb{Z} \sqcup \{2, 4, \cdots, 2m\} \times \mathbb{Z}_{\text{odd}}$ and $\hat{\Delta} = \Delta_+ \times \mathbb{Z}$. The bijection is defined recursively according
to the rules in [KKK15, §3.1]. To determine the J-datum, we need to find the preimage of $\Pi_0 \times \{0\}$ under ϕ.

For any source vertex i, we have, by definition, $\phi(i, m) = (\alpha_i, 0)$. We also claim that $w^m(\alpha_i) = \alpha_{\theta(i)}$, so that, by the recursive rule in the definition of ϕ, we have $\phi(i, -m) = (\alpha_{\theta(i)}, 0)$. Then, we have

$$V(i) = \text{pr}_1 \circ \phi^{-1}(\alpha_i, 0), \quad X(i) = \text{pr}_2 \circ \phi^{-1}(\alpha_i, 0),$$

which, according to [KKK15, Thm. 4.3.1], defines the desired J-datum.

It remains to prove the claim. Write $i = 2j$ and assume, without loss of generality, that $i < m$. An easy calculation shows that $w^j(\alpha_i) = \alpha_1 + \cdots + \alpha_{2i}$, and that the subsequent $m - i$ applications of w shift the string of simple roots by $2(m - i)$ so that $w^{m-j}(\alpha_i) = \theta(w^j(\alpha_i))$. The subsequent j applications of w shrink the string to $\alpha_{\theta(i)}$.

From Theorem 4.5.1, the conditions (Q0)–(Q3) are automatically satisfied (see also §6.4).

\[\square \]

6.7. Example: the quiver of affine type D. We conclude with the example of a quiver of type other than A. Let $g = so_{2N}$. As before, let $U_qk \subset U_qLg$ be a QSP subalgebra with $\tau = \eta_0$, and set $\psi = \tau \circ \omega$. We shall construct an enhanced J–datum relying on the fundamental representations V_{ω_1}, $V_{\omega_{N-1}}$, V_{ω_N}, where the vertices of the affine Dynkin diagram of g are numbered as in Figure 3. Note that all three modules are small, and, as U_qg–modules, are isomorphic to the vector representation and the spin representations, respectively.

Set $J = \{0, 1, \ldots, N\}$ and let θ be the involution on J given by $\theta(i) = N - i$. We consider the assignments

$$V(i) = \begin{cases} V_{\omega_{N-1}} & \text{if } i = 0, 1 \\ V_{\omega_i} & \text{if } i = N - 1, N \\ V_{\omega_1} & \text{if } i = 2, \ldots, N - 2 \end{cases}$$

and

$$X(i) = \begin{cases} (-1)^N q^{-2(N-2)} & \text{if } i = 0, 1 \\ (-1)^N q^{2(N-2)} & \text{if } i = N - 1, N \\ q^{2i-N} & \text{if } i = 2, \ldots, N - 2 \end{cases}$$

Proposition 6.7.1. If the condition (Q4) is satisfied, the datum $(V(i), X(i))_{i \in J}$ defines an enhanced J-datum with respect to the involution θ. The resulting J-quiver is represented in Figure 3 for N odd, and in Figure 4 for N even.

Proof. The proof relies entirely on the explicit computation of the denominators of the R–matrix between all fundamental representations in affine type D, provided in
In particular, one has that
\[d_{11}(z) = (z - q^2)(z - q^{2N-2}), \quad d_{(N-1)(N-1)}(z) = \prod_{s=1}^{\lfloor \frac{N}{2} \rfloor} (z - (-q)^{4s-2}) = d_{NN}(z), \]
\[d_{1N}(z) = z - (-q)^N = d_{1(N-1)}(z), \quad d_{(N-1)N}(z) = \prod_{s=1}^{\lfloor \frac{N}{2} \rfloor} (z - (-q)^{4s}). \]

We immediately observe that, by restriction to the vertices \(J' = \{2, \ldots, N-2\} \), the datum \((V(i), X(i))_{i \in J'}\) gives rise to a linearly oriented quiver of type \(A_{N-3} \), as in the finite analogue of Figure 1. Then, by the denominators formulae above, the spin representations placed at the four extremal vertices are shown to a single arrow each, towards either incoming to \(V(2) \) or outcoming from \(V(N-2) \). The resulting \(J \)-quiver are represented in Figures 3 and 4 when \(N \) is odd or even, respectively. As before, one finally observes that, provided the condition (Q4) is satisfied, these assignments give rise to an enhanced \(J \)-datum with respect to \(\theta \). □

Remark 6.7.2. As mentioned in §6.4, the case with \(N \) odd is of further interest, since in this case the spin representations correspond to each other through \(\eta_0 \). Let \(U_q\mathfrak{t} \subset U_qLg \) be a \(\tau \)-restrictable QSP subalgebra with \(\tau = \text{id} \) and set
\[
\theta'(i) = \begin{cases}
N - i & \text{if } i = 2, \ldots, N-2 \\
N - 1 - i & \text{if } i = 0, 1 \\
N + 1 - i & \text{if } i = N - 1, N
\end{cases}
\]
Then, it follows immediately from Theorem 4.5.1 that, provided the condition (Q4) is satisfied, the previous assignments give rise to an enhanced \(J \)-datum with respect to \(\theta' \). □

7. Boundary Schur–Weyl dualities

In this section, we prove the main result of the paper, consisting in the construction of a boundary Schur-Weyl duality functor. We fix the following datum:
- an affine Satake diagram \((X, \tau)\) with pseudo-involution \(\vartheta \);
- a QSP subalgebra \(U_q\mathfrak{t} \subset U_qLg \) with parameters \((\gamma, \sigma)\);
- a QSP admissible twisting operator \(\psi \in \text{Aut}(U_qLg) \);
- a set \(J \) with an involution \(\theta \);
- an enhanced \(J \)-datum \((V(i), X(i))_{i \in J}\);
- the corresponding enhanced \(J \)-quiver \((\Gamma, \theta, \lambda)\), see Definition 6.3.1.
Henceforth we will consider oKLR algebras associated to \((\Gamma, \theta, \lambda)\) and varying dimension vectors \(\beta \in \mathbb{N}[J]^p\). Moreover, we fix the functions
\[
c_{ij}(u,v) \in \mathbb{k}[u,v], \quad c_i \in \mathbb{k}[u]
\]
as in (5.14)–(5.15).

7.1. Polynomial rings. As preparation for the main result, we need to introduce notation for various polynomial rings, their completions, and relate them to the polynomial rings that appeared earlier in §5.3 in the context of oKLR algebras. Let:
\[
\mathcal{O} := \mathbb{k}[X_{\pm 1}, \ldots, X_{\pm n}], \quad \mathcal{K} := \mathbb{k}(X_1, \ldots, X_n),
\]
where \(X_{-t} = X_t^{-1}\). The group \(\mathfrak{W}_n\) acts on \(\mathcal{O}\) and \(\mathcal{K}\) from the left by \(w \cdot X_t = X_{w(t)}\).
Given a self-dual dimension vector $\beta \in \mathbb{N}[J]^{\theta}$ with $\|\beta\|_{\theta}$, we also set
\[
\hat{O}_{\nu} := \mathbb{k}[X_1 - X(\nu_1), \ldots, X_n - X(\nu_n)], \quad \hat{O}_{\beta} := \bigoplus_{\nu \in \theta J^{\beta}} \hat{O}_{\nu} e(\nu),
\]
\[
\hat{K}_{\nu} := \mathbb{k}((X_1 - X(\nu_1), \ldots, X_n - X(\nu_n))), \quad \hat{K}_{\beta} := \bigoplus_{\nu \in \theta J^{\beta}} \hat{K}_{\nu} e(\nu).
\]

Lemma 7.1.1. There is a \mathbb{M}_n-equivariant algebra isomorphism
\[
\theta \hat{P}_{\beta} \cong \theta \hat{O}_{\beta}, \quad e(\nu) \mapsto e(\nu), \quad x_k e(\nu) \mapsto \left(\frac{X(\nu_k)}{X_k} - \frac{X_k}{X(\nu_k)}\right) e(\nu).
\] (7.1)

Proof. Observe that
\[
(X(\nu_k)X_k^{-1} - X(\nu_k)^{-1}X_k) = f(1 - X(\nu_k)^{-1}X_k),
\]
where
\[
f(z) = z + \frac{z}{1 - z} = 2z + \sum_{k \geq 2} z^k \in \mathbb{k}[z].
\]
Hence (7.1) is well-defined. Since the constant coefficient of f vanishes and the degree one coefficient is invertible, f has a composition inverse. Therefore, (7.1) is an isomorphism. The equivariance is clear. \qed

We identify
\[
\theta \hat{K}_{\beta} \rtimes \mathbb{k}[\mathbb{M}_n] \cong \theta \hat{K}_{\beta} \rtimes \mathbb{k}[\mathbb{M}_n]
\]
using (7.1) and, following (5.16), we regard the oKLR algebra $\theta \mathcal{R}(\beta; \lambda)$ as a subalgebra of $\theta \hat{K}_{\beta} \rtimes \mathbb{k}[\mathbb{M}_n]$.

7.2. Boundary Schur-Weyl duality functor

We will now construct a $(U_q \mathfrak{t}, \theta \mathcal{R}(\beta; \lambda))$-bimodule and the associated Schur-Weyl functor.

For each $\nu \in \theta J^{\beta}$, set
\[
V_{\nu} := V(\nu_1)_{z_{\nu,1}} \otimes \cdots \otimes V(\nu_n)_{z_{\nu,n}} e(\nu).
\]
It is a right $\mathcal{O} \otimes U_q \mathfrak{g}$-module, with X_k acting as $z_{\nu,k}$. Set
\[
\hat{V}_{\nu} := \hat{O}_{\nu} \otimes_{\mathcal{O}} V_{\nu}, \quad \theta \hat{V} \otimes_{\beta} := \bigoplus_{\nu \in \theta J^{\beta}} \hat{V}_{\nu},
\]
\[
\check{V}_{\nu} := \hat{K}_{\nu} \otimes_{\mathcal{O}} V_{\nu}, \quad \theta \check{V} \otimes_{\beta} := \bigoplus_{\nu \in \theta J^{\beta}} \check{V}_{\nu}.
\]

Theorem 7.2.1.

1. The space $\theta \check{V} \otimes_{\beta}$ has a natural structure of a $(U_q \mathfrak{t}, \theta \mathcal{R}(\beta; \lambda))$-bimodule induced by the action of the trigonometric R- and K-matrices.
(2) The subspace \(\theta \hat{V}^{\otimes \otimes} \subset \theta \hat{V}^{\otimes \otimes} \) is stable under the right action of the subalgebra \(\theta \hat{K}_\beta \otimes \mathbb{M}_n \). In particular, \(\theta \hat{V}^{\otimes \otimes} \) has the structure of \((U_q \mathfrak{g}, \theta \mathcal{R}(\beta; \lambda))\)-bimodule.

(3) There is a right exact functor

\[
\theta F_\beta : \theta \mathcal{R}(\beta; \lambda) \text{-mod}_{\mathfrak{g}} \longrightarrow U_q \mathfrak{g} \text{-mod}, \quad M \mapsto \theta \hat{V}^{\otimes \otimes} \otimes_{\theta \mathcal{R}(\beta; \lambda)} M.
\]

Summing over all self-dual dimension vectors, we get

\[
\theta F := \bigoplus_{\beta \in \mathbb{N}_{[J]}^\theta} \theta F_\beta : \theta \mathcal{R}(\lambda) \text{-mod}_{\mathfrak{g}} \longrightarrow U_q \mathfrak{g} \text{-mod}.
\]

Proof. (1) We first endow \(\theta \hat{V}^{\otimes \otimes} \) with the structure of a right \(\theta \hat{K}_\beta \otimes \mathbb{M}_n \)-module. For each \(\nu \in \theta J^\beta \) and \(k = 1, \ldots, n - 1 \), let \(\mathbf{R}_k^\nu : \hat{V}_\nu \rightarrow \hat{V}_{s_k(\nu)} \) be the intertwiner defined as follows. We first consider the \(\mathfrak{k} \)-linear map \(V_\nu \rightarrow V_{s_k(\nu)} \) given by the composition of the operator

\[
v_1 \otimes \cdots \otimes v_n \mapsto v_1 \otimes \cdots \otimes \mathbf{V}_{V(\nu), V(\nu_{k+1})}^{\nu}(z_{\nu, k+1}/z_{\nu, k}) \cdot (v_k \otimes v_{k+1}) \otimes \cdots \otimes v_n
\]

with the map identifying \(z_{\nu, k} \) (resp. \(z_{\nu, k+1} \)) with \(z_{s_k(\nu), k} \) (resp. \(z_{s_k(\nu), k+1} \)) and \(z_{\nu, \ell} \) with \(z_{s_k(\nu), \ell} \) for \(\ell \neq k, k + 1 \). We then extend it by \(\mathcal{O} \)-linearity. Similarly, let \(\mathbf{K}_\nu : \hat{V}_\nu \rightarrow \hat{V}_{s_0(\nu)} \) be the QSP intertwiner defined as follows. We first consider the \(\mathfrak{k} \)-linear map \(V_\nu \rightarrow V_{s_0(\nu)} \) given by the composition of the operator

\[
v_1 \otimes \cdots \otimes v_n \mapsto \mathbf{K}_{V(\nu)}(z_1) \cdot (v_1) \otimes v_2 \otimes \cdots \otimes v_n
\]

with the map identifying \(z_{\nu, 1} \) with \(z_{s_0(\nu), 1}^{-1} \) and \(z_{\nu, \ell} \) with \(z_{s_0(\nu), \ell} \) for \(\ell \neq 1 \). We then extend it by \(\mathcal{O} \)-linearity. From the Yang-Baxter equation (2.2) and the unitarity condition (2.3), it follows that

\[
\mathbf{R}_k^\nu \circ X_l = X_{s_k(l)} \circ \mathbf{R}_k^\nu,
\]

\[
\mathbf{R}_{s_k(\nu)}^{s_k(\nu)} \circ \mathbf{R}_k^\nu = \text{id}_{V_\nu},
\]

\[
\mathbf{R}_{s_k+1(\nu)}^s \circ \mathbf{R}_{k+1}^s \circ \mathbf{R}_k^\nu = \mathbf{R}_{s_k+1(\nu)}^s \circ \mathbf{R}_{k+1}^s \circ \mathbf{R}_k^\nu.
\]

Instead, from Cherednik’s generalized reflection equation (4.2) and the unitarity condition (4.3), it follows that

\[
\mathbf{K}_\nu \circ X_k = X_{s_0(k)} \circ \mathbf{K}_\nu,
\]

\[
\mathbf{K}_{s_0(\nu)}^s \circ \mathbf{K}_\nu = \text{id}_{V_\nu},
\]

\[
\mathbf{K}_{s_0 s_1(\nu)}^s \circ \mathbf{R}_1^s s_1(\nu) \circ \mathbf{K}_{s_1(\nu)}^s \circ \mathbf{R}_1^s = \mathbf{R}_1^s \circ \mathbf{K}_{s_1 s_0(\nu)}^s \circ \mathbf{R}_1^s \circ \mathbf{R}_1^s \circ \mathbf{K}_{s_0(\nu)}^s \circ \mathbf{K}_\nu.
\]

It follows that letting \(\theta \hat{K}_\beta \) act by multiplication and assigning

\[
e(\nu)s_0 \mapsto \mathbf{K}_\nu, \quad e(\nu)s_k \mapsto \mathbf{R}_k^\nu.
\]
makes $\theta \tilde{V}^\otimes \beta$ into a $(U_q^{\mathfrak{k}}, \theta \hat{\mathcal{K}}_{\beta} \rtimes \Delta \mathcal{H}_n^0)$-bimodule.

(2) It is enough to show that $\theta \tilde{V}^\otimes \beta$ is stable under the action of the generators $\tau_k \in \theta \mathcal{R}(\beta; \lambda)$. First assume that $1 \leq k \leq n - 1$. The proof is similar to that of [KKK18, Thm. 3.1.3]. There are two cases to be considered. First suppose that $\nu_k \neq \nu_{k+1}$. Then

$$e(\nu) \tilde{P}_{\nu_{k+1}, \nu_k}(x_k, x_{k+1}) = e(\nu) d_{\nu_k, \nu_{k+1}}(x_{k+1}/X_k)(x_{k} - x_{k+1})^{d_{\nu_k, \nu_{k+1}}(x_k, x_{k+1})} / d_{\nu_k, \nu_{k+1}}(X_{k+1}/X_k).$$

Let f denote the fraction on the RHS. One easily calculates that

$$x_k - x_{k+1} = \left(X_k / \nu_{k+1} + X(\nu_k) / X_{k+1} \right) \left(X_{k+1} / X_k - X(\nu_{k+1}) / X(\nu_k) \right),$$

where the first factor on the RHS is an invertible element of $\widehat{\mathcal{O}}_\nu$. Since $d_{\nu_k, \nu_{k+1}}$ is the multiplicity of the polynomial $d_{\nu_k, \nu_{k+1}}(X_{k+1}/X_k)$ at $X_{k+1}/X_k = X(\nu_{k+1}) / X(\nu_k)$, it follows that $f \in \widehat{\mathcal{O}}_\nu$. Hence

$$\hat{V}_\nu \tau_k \subset \hat{V}_\nu \tilde{P}_{\nu_{k+1}, \nu_k}(x_k, x_{k+1}) s_k \subset \hat{V}_\nu d_{\nu_k, \nu_{k+1}}(X_{k+1}/X_k) s_k,$$

which, by definition, is contained in $\hat{V}_{s_k \nu}$.

Secondly, suppose that $\nu_k = \nu_{k+1}$. By (P2), we have

$$\mathcal{R}^\nu_{V(\nu_k), V(\nu_k)}(X_{k+1}/X_k)|_{X_{k+1}/X_k = 1} = \text{id}.$$

Hence $\mathcal{R}^\nu_{V(\nu_k), V(\nu_k)}(X_{k+1}/X_k) - \text{id}$ has a zero at $X_{k+1}/X_k = X(\nu_{k+1}) / X(\nu_k) = 1$ and so

$$\hat{V}_\nu \tau_k = \hat{V}_\nu (x_k - x_{k+1})^{-1}(s_k - 1) \subset \hat{V}_\nu (X_{k+1}/X_k - 1)^{-1}(\mathcal{R}^\nu_{V(\nu_k), V(\nu_k)}(X_{k+1}/X_k) - 1) \subset \hat{V}_\nu.$$

Next, let $k = 0$. Again, there are two cases to be considered. First suppose that $\theta(\nu_1) \neq \nu_1$. Then

$$e(\nu) \tilde{P}_{\theta(\nu_1)}(x_1) = e(\nu) d_{\nu_1}(X_1) x_1^{d_{\nu_1}(x_1)} / d_{\nu_1}(X_1).$$

Let f denote the fraction on the RHS. Note that

$$x_1 = -(X(\nu_1)X_1)^{-1}(X_1 - X(\nu_1))(X_1 + X(\nu_1)).$$

Since d_{ν_1} is the multiplicity of the polynomial $d_{\nu_1}(X_1)$ at $X_1 = X(\nu_1)$, it follows that $f \in \widehat{\mathcal{O}}_\nu$. Hence

$$\hat{V}_\nu \tau_0 \subset \hat{V}_\nu \tilde{P}_{\theta(\nu_1)}(x_1) s_0 \subset \hat{V}_\nu d_{\nu_1}(X_1) s_0,$$

which, by definition, is contained in $\hat{V}_{s_k \nu}$.

Secondly, suppose that $\nu_1 = \theta(\nu_1)$. Then (Q0) implies that $X(\nu_1) = \pm 1$. By (Q3), we have $K_{V(\nu_1)}(X_1)|_{X_1=\pm 1} = \text{id}$. Hence $K_{V(\nu_1)}(X_1) - \text{id}$ has a zero at $X_1 = X(\nu_1) = \pm 1$ and so

$$\hat{V}_\nu \tau_0 = \hat{V}_\nu x_1^{-1}(s_0 - 1) \subset \hat{V}_\nu (X_1 \mp 1)^{-1}(K_{V(\nu_1)}(X_1) - 1) \subset \hat{V}_\nu.$$

Part (3) follows immediately from the bimodule structure. \hfill \square

7.3. **Compatibility with the Kang–Kashiwara–Kim functor.** We now consider the relationship between θF and the Kang–Kashiwara–Kim functor from [KKK18]. Take $\alpha \in \mathbb{N}[J]$ with $\theta \alpha = \beta$. Set

$$\tilde{\mathcal{O}}_\alpha := \bigoplus_{\nu \in J^\alpha} \tilde{O}_\nu e(\nu), \quad \hat{\mathcal{K}}_\alpha := \bigoplus_{\nu \in J^\alpha} \hat{\mathcal{K}}_\nu e(\nu), \quad \hat{V}^\otimes \alpha := \bigoplus_{\nu \in J^\alpha} \hat{V}_\nu, \quad \tilde{V}^\otimes \alpha := \bigoplus_{\nu \in J^\alpha} \tilde{V}_\nu$$

Note that there is a \mathcal{S}_n-equivariant algebra isomorphism

$$\hat{\mathcal{P}}_\alpha \simeq \tilde{\mathcal{O}}_\alpha, \quad e(\nu) \mapsto e(\nu), \quad x_k e(\nu) \mapsto \left(\frac{X_k}{X(\nu_k)} - 1\right) e(\nu). \quad (7.2)$$

We identify

$$\hat{\mathcal{K}}_\alpha \times k[\mathcal{S}_n] \simeq \hat{\mathcal{K}}_\alpha \times k[\mathcal{S}_n]$$

using (7.2), and consider $\mathcal{R}(\alpha)$ as a subalgebra of $\hat{\mathcal{K}}_\alpha \times k[\mathcal{S}_n]$ via (5.17). The right action of $\theta \hat{\mathcal{K}}_\beta \times k[\mathcal{S}_n]$ on $\theta \hat{V}^\otimes \beta$ restricts to a $\hat{\mathcal{K}}_\alpha \times k[\mathcal{S}_n]$-action on $\hat{V}^\otimes \alpha$. This action commutes with the left action of $U_q L\mathfrak{g}$ and yields the following result due to Kang, Kashiwara, and Kim [KKK18, Thm. 3.1.3 and 3.2.1].

Theorem 7.3.1 (KKK18).

1. The subspace $\hat{V}^\otimes \alpha \subset \hat{V}^\otimes \alpha$ is stable under the right action of the subalgebra $\mathcal{R}(\alpha)$ of $\hat{\mathcal{K}}_\alpha \times k[\mathcal{S}_n]$. In particular, $\hat{V}^\otimes \alpha$ has the structure of $(U_q L\mathfrak{g}, \mathcal{R}(\alpha))$-bimodule and yields a functor

$$F_\alpha : \mathcal{R}\text{-mod}_{gr} \longrightarrow U_q L\mathfrak{g}\text{-mod}, \quad M \mapsto \hat{V}^\otimes \alpha \otimes_{\mathcal{R}(\alpha)} M.$$

Summing over all the dimension vectors, one gets

$$F := \bigoplus_{\alpha \in \mathbb{N}[J]} F_\alpha : \mathcal{R}\text{-mod}_{gr} \longrightarrow U_q L\mathfrak{g}\text{-mod}. \quad (7.3)$$

2. The functor (7.3) is a tensor functor, which preserves finite-dimensional modules:

$$F : \mathcal{R}\text{-mod}^{fd}_{gr} \longrightarrow U_q L\mathfrak{g}\text{-mod}^{fd}.$$

We now prove that the functor θF is compatible with F, i.e., it is a functor of module categories over $\mathcal{R}\text{-mod}^{fd}_{gr}$ and $U_q L\mathfrak{g}\text{-mod}^{fd}$, respectively.

Theorem 7.3.2. The functors $(\theta F, F)$ intertwine the two monoidal actions:

$$\theta \mathcal{R}(\mathfrak{L})\text{-mod}_{gr} \simeq \mathcal{R}\text{-mod}_{gr}, \quad U_q \mathfrak{L}\text{-mod} \simeq U_q L\mathfrak{g}\text{-mod}.$$
Proof. We need to show that there are natural isomorphisms

\[\theta F(M \otimes N) \cong \theta F(M) \otimes F(N), \]

(7.4)

for all \(M \in {}^\theta \mathcal{R}(\lambda)\)-mod and \(N \in \mathcal{R}\)-mod.

Let \(\beta = \beta_1 + \beta_2 \) for some \(\beta_1 \in \mathbb{N}[J] \) and \(\beta_2 \in \mathbb{N}[J]^\theta \) with \(\| \beta_1 \|_\theta = m \) and \(\| \beta_2 \| = n \).

For each \(\nu \in \theta J \) with \(\nu' = \nu_1, \ldots, \nu_m \in \theta J_{\beta_1} \) and \(\nu'' = \nu_{m+1}, \ldots, \nu_{n+m} \in J^{\beta_2} \), there is an algebra homomorphism \(\hat{\mathcal{O}}_{\nu'} \otimes \hat{\mathcal{O}}_{\nu''} \rightarrow \hat{\mathcal{O}}_{\nu} \), restricting to the identity map on \(\hat{\mathcal{O}}_{\nu'} \) and sending \(1 - X_{m+k}X(\nu_{m+k})^{-1} \) to \(f(1 - X_{m+k}X(\nu_{m+k})^{-1}) \) for \(1 \leq k \leq n \). For any finite-dimensional \(\hat{\mathcal{O}}_{\nu'}\)-module \(L_1 \) and any finite-dimensional \(\hat{\mathcal{O}}_{\nu''}\)-module \(L_2 \), the induced morphism

\[L_1 \otimes L_2 \rightarrow \hat{\mathcal{O}}_{\nu} \otimes \hat{\mathcal{O}}_{\nu'} \otimes \hat{\mathcal{O}}_{\nu''} \]

\((L_1 \otimes L_2) \)

is an isomorphism. It follows that for any finite-dimensional \(\theta \hat{\mathcal{O}}_{\beta_1} \)-module \(L_1 \) and any finite-dimensional \(\hat{\mathcal{O}}_{\beta_2} \)-module \(L_2 \), the induced morphism

\[(\theta \hat{\mathcal{V}}^{\otimes \beta_1} \otimes \theta \hat{\mathcal{V}}^{\otimes \beta_2}) \otimes \theta \hat{\mathcal{O}}_{\beta_1} \otimes \theta \hat{\mathcal{O}}_{\beta_2} \]

\((L_1 \otimes L_2)\)

is also an isomorphism.

The module \(\theta \hat{\mathcal{V}}^{\otimes \beta} \otimes {}^\theta \mathcal{R}(\beta, \lambda) (M \otimes N) \cong \theta \hat{\mathcal{V}}^{\otimes \beta} \otimes {}^\theta \mathcal{R}(\beta_1, \beta_2; \lambda) (M \otimes N) \) is the quotient of \(\theta \hat{\mathcal{V}}^{\otimes \beta} \otimes {}^\theta \hat{\mathcal{O}}_{\beta_1} \otimes {}^\theta \hat{\mathcal{O}}_{\beta_2} (M \otimes N) \) by the submodule generated by \(ur \otimes v - u \otimes rv \), where \(r \in \theta \mathcal{R}(\beta_1, \beta_2; \lambda) \), \(u \in M \otimes N \) and \(v \in \theta \hat{\mathcal{V}}^{\otimes \beta} \). An analogous statement holds for \((\theta \hat{\mathcal{V}}^{\otimes \beta_1} \otimes \theta \hat{\mathcal{V}}^{\otimes \beta_2}) \otimes \theta \mathcal{R}(\beta_1, \beta_2; \lambda) (M \otimes N) \). This, together with (7.5), implies the existence of an isomorphism (7.4). It is routine to check that the conditions from [Har01, (8)–(9)] are also satisfied. \(\square \)

7.4. Basic properties of the Schur–Weyl functor

We now prove several basic properties of \(\theta F \).

Proposition 7.4.1

The functor \(\theta F \) has the following properties.

1. \(\theta F \) preserves finite-dimensional modules.
2. For any \(\mathcal{R}(\alpha) \)-module \(M \), we have
 \[\theta F(1 \otimes M) = F(M)|_{\mathfrak{u}_{\mathfrak{t}}}. \]
3. For any \(i \in J \) such that \(i \notin J^\theta \) and \(\theta \lambda(i) \geq 1 \), we have
 \[\theta F(\theta L(i)) \cong \text{coker } K_i(0), \]
 where \(K_i(x_1) = x_1^d c_i(x_1) K_{V(i)}(x_1) \) and \(x_1 = (X(i)X_1^{-1} - X(i)^{-1}X_1) \).

Proof. Part (1) is obvious and (2) follows immediately from Theorem 7.3.2. Let us prove (3). By Lemma 5.4.1, the \(\theta \mathcal{R}(\beta; \lambda) \)-module \(\theta L(i) \), with \(\beta = i + \theta(i) \), is well-defined. Let us abbreviate \(j = \theta(i) \). By definition,

\[\theta F(\theta L(i)) = (\hat{\mathcal{V}}_i \oplus \hat{\mathcal{V}}_j) \otimes \theta \mathcal{R}(\beta; \lambda) \theta L(i), \]
which is the quotient of \((\hat{V}_i \oplus \hat{V}_j) \otimes \theta L(i)\) by the subspace \(N\) spanned by elements of the form \(v \otimes r \cdot u_i - v \cdot r \otimes u_i\) for \(r \in \theta \mathcal{R} (\beta; \lambda)\). Since \(e(j)\) annihilates \(\theta L(i)\), it follows that \(\hat{V}_j \otimes \theta L(i) \subset N\). Next, since \(x_1 e(i) = (X(i)X^{-1} - X(i)^{-1}X_1) e(i)\) annihilates \(\theta L(i)\), we get that \((X_1 - X(i)) \hat{V}_i \otimes \theta L(i) \subset N\). Finally, since \(\tau_0\) annihilates \(\theta L(i)\), it follows that \(\tau_0(\hat{V}_j) \otimes \theta L(i) \subset N\). But \(\tau_0|_{\hat{V}_j} = K_i(0)\). Since \(\theta \mathcal{R} (\beta; \lambda)\) is generated by \(e(i), e(j), x_1\) and \(\tau_0\), we deduce that \(N\) is spanned by the aforementioned subspaces and that \(((\hat{V}_i \oplus \hat{V}_j) \otimes \theta L(i))/N \cong \text{coker } K_i(0)\). \(\square\)

8. The BKR isomorphism in type \(C\)

In this section only, we allow \(q\) to have a finite order, \(i.e., \text{ord}(q) \in \mathbb{Z}_{\geq 3} \cup \{\infty\}\), and we set

\[
\mathbb{k} := \begin{cases} \\
\mathbb{C}[q]/(q^{\text{ord}(q)} - 1) & \text{if } \text{ord}(q) < \infty \\
\mathbb{C}(q) & \text{if } \text{ord}(q) = \infty
\end{cases}
\]

The main result is the construction of an isomorphism between certain completions of the oKLR algebras and affine Hecke algebras of type \(C\) (Thm. 8.2.1) in analogy with a similar result due to Brundan-Kleshchev and Rouquier [BK09, Rou08].

8.1. Affine Hecke algebras of type \(C\). We recall the definition of the (3-parameter) affine Hecke algebra of type \(C\).

Definition 8.1.1. Fix \(p_0, p_1 \in \mathbb{k}^\times\). The affine Hecke algebra \(\mathcal{H}_{C_n}(p_0, p_1)\) of type \(C_n\) is the \(\mathbb{k}\)-algebra generated by \(T_k\) \((0 \leq k \leq n - 1)\) and \(X_l^{\pm 1}\) \((1 \leq l \leq n)\) subject to the relations:

- **quadratic relations:**
 \[
 (T_k - q)(T_k + q^{-1}) = 0 \quad (1 \leq k \leq n - 1),
 \]
 \[
 (T_0 - p_0)(T_0 + p_1^{-1}) = 0,
 \]

- **braid relations:**
 \[
 T_k T_{k+1} T_k = T_{k+1} T_k T_{k+1} \quad (1 \leq k \leq n - 1),
 \]
 \[
 (T_0 T_1)^2 = (T_1 T_0)^2,
 \]
 \[
 T_k T_{k'} = T_{k'} T_k \quad (k \neq k' \pm 1),
 \]

- **Laurent polynomial relations:**
 \[
 X_l X_{l'} = X_{l'} X_l, \quad (1 \leq l, l' \leq n),
 \]
 \[
 X_l X_l^{-1} = 1 = X_l^{-1} X_l \quad (1 \leq l \leq n),
 \]

- **mixed relations:**
 \[
 T_k X_k T_k = X_{k+1} \quad (1 \leq k \leq n - 1),
 \]
\(T_0 X_1^{-1} T_0 = p_0 p_1^{-1} X_1 + (p_0 p_1^{-1} - 1) T_0, \)
\(T_k X_l = X_l T_k \quad (l \neq k, k + 1). \)

The affine Hecke algebra of type \(B_n \) is the specialization \(\mathcal{H}_{B_n}(p) = \mathcal{H}_{C_n}(p, p) \). The finite Hecke algebra \(\mathcal{H}^f_{B_n}(p) \) of type \(B_n \) is the subalgebra of \(\mathcal{H}_{B_n}(p) \) generated by the \(T_k \).

Remark 8.1.2. We use the conventions of [VV11, §A.1] (the assignment \(q \mapsto p, p_0 \mapsto q_0, p_1 \mapsto q_1 \) gives a matching between our parameters and those in loc. cit.). This convention is the same as in [FLL+20, §2.3], if one matches the parameters as follows: \(q \mapsto q^{-1}, p_0 \mapsto q_0^{-1}, p_1 \mapsto q_1^{-1} \). To match our conventions with those of [Kat09, Definition 2.1], one uses the assignment \(T_k \mapsto q^{-1/2} T_k, \quad T_0 \mapsto q_0^{-1} T_0, \quad p_0 \mapsto -q_0. \)

\(\nabla \)

The intertwiners \(\Phi_k \in \mathcal{H}_{C_n}(p_0, p_1) \otimes_{\mathcal{O}} \mathcal{K} \) are defined as (see, e.g., [VV11, §A.3]):

\[
\begin{align*}
\Phi_k &= 1 + \frac{X_k - X_{k+1}}{q X_k - q^{-1} X_{k+1}}(T_k - q) \quad (1 \leq k \leq n - 1), \quad (8.1) \\
\Phi_0 &= 1 + p_1 \frac{X_1^2 - 1}{(X_1 + p_0)(X_1 - p_1)}(T_0 - p_0). \quad (8.2)
\end{align*}
\]

Proposition 8.1.3. The following hold.

1. There is an isomorphism of \(\mathcal{K} \)-algebras

\[
\mathbb{k}[\mathfrak{W}_n] \rtimes \mathcal{K} \cong \mathcal{H}_{C_n}(p_0, p_1) \otimes_{\mathcal{O}} \mathcal{K}, \quad s_k \mapsto \Phi_k \quad (0 \leq k \leq n - 1).
\]

2. The affine Hecke algebra \(\mathcal{H}_{C_n}(p_0, p_1) \) has a faithful representation on \(\mathcal{O} \) given by

- \(X_{\pm 1}, \ldots, X_{\pm n} \) acting naturally by multiplication,
- \(T_1, \ldots, T_{n-1} \) acting via

\[
(T_k - q) \cdot f = \frac{q X_k - q^{-1} X_{k+1}}{X_k - X_{k+1}}(s_k(f) - f),
\]
- \(T_0 \) acting via

\[
(T_0 - p_0) \cdot f = p_1^{-1} \frac{(X_1 + p_0)(X_1 - p_1)}{X_1^2 - 1}(s_0(f) - f).
\]

Proof. The first statement can be found, e.g., [VV11, §A.3]. The second statement is [Kat09, Thm. 2.7], taking into account the difference in conventions explained in Remark 8.1.2. \(\square \)
8.2. BKR-type isomorphism. We establish a Brundan–Kleshchev–Rouquier-style isomorphism between completions of orientifold KLR algebras and affine Hecke algebras of type \mathbb{C}, generalizing [VV11, Thm. A.4] and [PdW20, Thm. 1.1].

Assume $p_0, p_1 \neq \pm 1$. We now determine the datum defining $^\theta R(\beta; \lambda)$. Let $\xi \in k^\times$ and set

$$J = \{\xi \pm q^{2k} \mid k \in \mathbb{Z}\}, \quad \theta: i \mapsto i^{-1}, \quad a_{ij} = \delta_{j=q^2i}, \quad \lambda(i) = \delta_{i=p_1} + \delta_{i=-p_0}.$$

The resulting quiver $\Gamma = (J, \Omega)$ can, depending on ξ and the order of q, be of the following types:

ord(q)	ξ	Γ	J^θ
(1) ∞	1	A_∞	$\{1\}$
(2) ∞	q	A_∞	\emptyset
(3) ∞	$\notin \{\pm q^2\}$	$A_\infty \times A_\infty$	\emptyset
(4) $2m$	1	$A_m^{(1)}$	$\{\pm 1\}$
(5) $2m$	q	$A_m^{(1)}$	\emptyset
(6) $2m$	$\notin \{q^2\}$	$A_m^{(1)} \times A_m^{(1)}$	\emptyset
(7) m odd	1	$A_m^{(1)}$	$\{1\}$
(8) m odd	$\notin \{\pm q^2\}$	$A_m^{(1)} \times A_m^{(1)}$	\emptyset

Given a self-dual dimension vector β with $\|\beta\| = n$, let $^\theta R(\beta; \lambda)$ be the orientifold KLR algebra associated to the datum $(\Gamma, \theta, \beta, \lambda)$. Choose $X(-)$ in the J-datum to be the identity function.

Theorem 8.2.1. The isomorphism (7.1) extends to an algebra isomorphism

$$^\theta R(\beta; \lambda) \otimes_{^{\theta P}_\beta} {^{\theta \widehat{P}_\beta}} \sim \mathcal{H}_{C_n}(p_0, p_1) \otimes_{\Omega} ^\theta \widehat{\Omega}_{\beta}$$

(8.3)

given by:

$$\tau_k e(\nu) \mapsto \begin{cases}
\left(\frac{X_k}{X(\nu_{k+1})} + \frac{X(\nu_k)}{X_{k+1}} \right)^{-1} \left(\frac{X_{k+1}}{X_k} - 1 \right)^{-1} (\Phi_k - 1) e(\nu) & \text{if } \nu_k = \nu_{k+1}, \\
\left(\frac{X_k}{X(\nu_{k+1})} + \frac{X(\nu_k)}{X_{k+1}} \right) \left(\frac{X(\nu_{k+1})}{X(\nu_k)} - \frac{X_{k+1}}{X_k} \right) \Phi_k e(\nu) & \text{if } \nu_{k+1} = q^2 \nu_k, \\
\Phi_k e(\nu) & \text{otherwise},
\end{cases}$$
\[
\tau_0 e(\nu) \mapsto \begin{cases}
X(\nu_1) \left(X_1^{-1} - X_1^{-1} (\Phi_0 - 1) e(\nu) \right) & \text{if } \nu_1 = \theta(\nu_1), \\
\left(\frac{X_i}{X(\nu_1)} - \frac{X(\nu_1)}{X_i} \right) \lambda(\nu_1) \Phi_0 e(\nu) & \text{otherwise.}
\end{cases}
\]

Proof. The completed algebra on the LHS of (8.3) has a faithful representation on \(\theta \hat{\mathcal{P}}_\beta \) while the completed algebra on the RHS has a faithful representation on \(\theta \hat{\mathcal{O}}_\beta \). Therefore, it suffices to check that the actions of the generators agree under the isomorphism (7.1). This follows by a direct calculation using Proposition 5.3.1, Proposition 8.1.3 and (8.1)–(8.2). \(\square \)

Remark 8.2.2. A weaker statement about a Morita equivalence between orientifold KLR algebras and blocks of affine Hecke algebras of type \(\mathbb{C} \), in the case when \(\theta \) has no fixed points, can be found in [VV11, Thm. A.4]. A proof of the isomorphism of cyclotomic quotients, in type \(\mathbb{B} \) case, for any \(\theta \), appeared in [PdW20, Thm. 1.1]. The idea of comparing the polynomial representations goes back to [Rou08] (see also [MS19, MS21]). \(\nabla \)

9. Boundary Schur-Weyl duality in type A

In this section we study a particular instance of the boundary Schur-Weyl duality from Section 7 in the case \(\mathfrak{g} = \mathfrak{sl}_N \). Specifically, we consider only quasi-split affine QSP subalgebras of type \(\text{AIII} \) with the unitary K-matrices satisfying the standard reflection equation on the first fundamental representation.

9.1. The fundamental representation.
Recall that the first fundamental representation \(V_{\omega_1} \) of \(U_q \mathfrak{sl}_N \) extends, through the evaluation morphism, to a representation of the quantum loop algebra \(U_q L\mathfrak{sl}_N \). More precisely, we denote by \(V \) the \(N \)-dimensional \(U_q L\mathfrak{sl}_N \)-module with basis \(u_1, \ldots, u_N \) and action given by

\[
E_i \cdot u_r = \delta(r \equiv i + 1 \mod N) \ u_i, \\
F_i \cdot u_r = \delta(r \equiv i \mod N) \ u_{i+1}, \\
K_i \cdot u_r = q^{\delta(r \equiv i \mod N) - \delta(r \equiv i+1 \mod N)} \ u_r,
\]

where for simplicity we are adopting the cyclic notation on the indices of the Chevalley generators and the basis vectors \(u_k \) (e.g., \(u_N = u_0, E_N = E_0 \), and so on). More precisely, \(V = ev_1^*(V_{\omega_1}) \), where \(ev_1: U_q L\mathfrak{sl}_N \to U_q \mathfrak{sl}_N \) is the evaluation morphism at \(z = 1 \). We set \(V_z := V \otimes \mathbb{k}[z, z^{-1}] \) and \(V(z) := V \otimes \mathbb{k}(z) \) endowed with the shifted \(U_q L\mathfrak{sl}_N \)-action (cf. §2.3).

The explicit formulae for the unitary R-matrix on \(V \) is well-known and due to Jimbo [Jim85]. More precisely,

\[
R^V(z, w): V(z) \otimes V(w) \to V(w) \otimes V(z)
\]

is given by $u_r \otimes u_r \mapsto u_r \otimes u_r$ and

$$u_r \otimes u_s \mapsto \frac{(1-q^2)w^{\delta(r>s)}z^{\delta(r<s)}}{w-q^2z} \cdot u_r \otimes u_s + \frac{q(w-z)}{w-q^2z} \cdot u_s \otimes u_r \quad (r \neq s)$$ (9.1)

In particular, $R^\vee(z,w)$ is a rational function in w/z with only one simple pole at $w/z = q^2$.

9.2. Normalised parameters and K-matrices. Let (X, τ) be an affine Satake diagram of type A and $U_q\mathfrak{k} \subset U_q\mathfrak{sl}_N$ the corresponding QSP subalgebra with parameters $(\gamma, \sigma) \in \Gamma \times \Sigma$ (cf. §3.4). We are interested in the K-matrices on $V(z)$ supported on $U_q\mathfrak{k}$. From the point of view of the combinatorial model described in §6.2, it is convenient to consider $U_q\mathfrak{sl}_N$-modules V that are fixed by the chosen twisting operator, i.e., $\psi^*(V) = V$, or conversely to consider only twisting operators that fix a given module. In both cases, the corresponding K-matrix gives rise to a solution of the standard reflection equation (see, e.g., §4.5). Since V is small, there exists a distinguished twisting operator ψ which fixes it. Note, however, that this requires to impose a normalisation condition $\gamma(\delta) = \beta$ for a uniquely determined $\beta \in \mathbb{k}^\times$, cf. [AV22b, §7].

Therefore, for any QSP subalgebra in $U_q\mathfrak{sl}_N$ with normalized parameter γ, we obtain a rational QSP intertwiner

$$K(z): V(z) \to V(z^{-1})$$

which satisfies the standard reflection equation. By generic QSP irreducibility of the first fundamental representation, we recover in this way the QSP intertwiners explicitly described by Regelskis-Vlaar in [RV16, RV18]. By direct inspection, it then follows that the operators $K(z)$ can be normalized to be non-vanishing, unitary and such that $K(1) = \text{id}$. In particular, the condition (Q3) holds.

9.3. Quasi-split affine QSP subalgebras of type A_{III}. We provide the explicit formulae of the unitary K-matrix for the first fundamental representation in the case of quasi-split affine QSP subalgebra of type A_{III}. Our main reference is [RV16, RV18] as explained above. We note however that the K-matrices in this case first appeared in [AR95].

9.3.1. The non-restrictable case. Recall that a quasi-split QSP subalgebra is simply determined by a non-trivial involution on the Dynkin diagram. We first consider the case where the affine node, which is numbered N according to our cyclic notation, is not fixed by the involution, i.e., we consider the case of N even and Satake diagram...
For any $1 \leq r \leq N$, we set $\bar{r} := N - r$. The corresponding QSP subalgebra $U_q\mathfrak{k}$ is generated by $K_r K_{\bar{r}}^{-1}$ ($0 \leq r \leq N/2 - 1$) and

$$B_r := F_r + \gamma_r E_{r-1} K_r^{-1} + \sigma_r K_r^{-1} \quad (1 \leq r \leq N)$$

where the parameters γ_r, σ_r are determined according to Remark 3.4.1(1) by the following assignments ($\lambda, \mu \in k^\times$):

$$\gamma_N = q, \quad \gamma_{N-1} = \mu^{-2}, \quad \gamma_{N/2+1} = q \mu \lambda^{-1}, \quad \gamma_{N/2-1} = \lambda \mu,$$

$$\sigma_N = \frac{\mu - \mu^{-1}}{q - q^{-1}}, \quad \sigma_{N/2} = \frac{\lambda - \lambda^{-1}}{q - q^{-1}}, \quad \sigma_r = 0 \quad (0 \leq r < N/2)$$

Following [RV16, §9], the compact form of the K-matrix $K(z)$ on V supported on $U_q\mathfrak{k}$ is given by:

$$K(z) = \text{id} + \frac{z - z^{-1}}{(\lambda \mu - z)} \left(E_{NN} + \frac{M_2}{(\lambda^{-1} + (\mu z)^{-1})} \right) \quad (9.3)$$

where

$$M_2 = \sum_{1 \leq i \leq N/2 - 1} (\lambda E_{ii} + \lambda^{-1} E_{N-i,N-i} + \mu E_{i,N-i} + \mu^{-1} E_{N-i,i}).$$

It is convenient for us to consider the parameters $p_0 = \lambda \mu^{-1}$ and $p_1 = \lambda \mu$. Then, formula (9.3) reads $u_{N/2} \mapsto u_{N/2}$, $u_N \mapsto \left(1 + \frac{z - z^{-1}}{p_1 - z} \right) \cdot u_N$, and

$$u_r \mapsto \frac{(p_0^{-1} p_1 - 1) + (p_1 - p_0^{-1}) z \delta(r < \bar{r}) z^{-\delta(r > \bar{r})}}{(p_1 - z)(p_0^{-1} + z^{-1})} \cdot u_r + \frac{(p_0^{-1} p_1) \delta(r < \bar{r})(z - z^{-1})}{(p_1 - z)(p_0^{-1} + z^{-1})} \cdot u_{\bar{r}} \quad (9.4)$$

if $1 \leq r < N/2$.

Remark 9.3.1. Since the QSP subalgebra is non–restrictable, the K–matrix $K(z)$ does not fit into the framework described in Section 4. It is expected, however, that $K(z)$ is also induced by the action of a universal K–matrix. \hspace{1cm} ∇

\[11\text{Note that, both here and in §9.3.2, with respect to the formulae given in [RV16, §9.3], we are setting the shifting parameter } \eta \text{ equal to 1 and we are choosing suitable dressing parameters } \omega_i.\]
9.3.2. The restrictable case. For N even, we consider the Satake diagram

\[
\begin{array}{c}
\begin{array}{c}
N \\
\uparrow \\
1 \\
\uparrow \\
N-1 \\
\downarrow \\
\ldots \\
\downarrow \\
\frac{N}{2} - 1 \\
\uparrow \\
\ldots \\
\uparrow \\
\frac{N}{2} + 1
\end{array}
\end{array}
\]

The corresponding QSP subalgebra $U_q \mathfrak{k}$ is generated by $K_r K_{\bar{r}-1}^{-1} (1 \leq r < N/2)$ and $B_r = F_r + \gamma_r E_{\bar{r}-1} K_r^{-1} + \sigma_r K_r^{-1} (1 \leq r \leq N)$, where $\bar{r} = N + 1 - r$ and the parameters γ and σ are determined by the assignments:

\[
\gamma_N = q^{-1} \mu^{-2}, \quad \gamma_{N/2} = q^{-1} \mu^2, \quad \gamma_r = 1 \quad (1 \leq r < \frac{N}{2})
\]

\[
\sigma_N = \frac{1 - \mu^2}{q - q^{-1}}, \quad \sigma_{N/2} = \frac{(\lambda \mu - 1 - \lambda \mu^{-1})}{q - q^{-1}}, \quad \sigma_r = 0 \quad (0 \leq r < \frac{N}{2})
\]

For N odd, we consider the Satake diagram

\[
\begin{array}{c}
\begin{array}{c}
N \\
\uparrow \\
1 \\
\uparrow \\
N-1 \\
\downarrow \\
\ldots \\
\downarrow \\
\frac{N-3}{2} \\
\uparrow \\
\ldots \\
\uparrow \\
\frac{N-1}{2}
\end{array}
\end{array}
\]

In this case, the parameters of $U_q \mathfrak{k}$ are determined by

\[
\gamma_N = q^{-1} \mu^2, \quad \gamma_{N/2} = q^{-1} \lambda \mu^{-1}, \quad \gamma_r = 1 \quad (1 \leq r < \frac{N}{2})
\]

\[
\sigma_N = \frac{1 - \mu^2}{q - q^{-1}}, \quad \sigma_{N/2} = \frac{(\lambda \mu - 1 - \lambda \mu^{-1})}{q - q^{-1}}, \quad \sigma_r = 0 \quad (0 \leq r < \frac{N}{2})
\]

In both cases, the K-matrix is given by

\[
K = \text{id} + \frac{(z - z^{-1})}{(\lambda \mu - z) (\lambda^{-1} + (\mu z)^{-1})} M_2
\]

(9.7)

where

\[
M_2 = \sum_{1 \leq i \leq N/2} (\lambda E_{ii} + \lambda^{-1} E_{N+1-i,N+1-i} + \mu E_{i,N+1-i} + \mu^{-1} E_{N+1-i,i}).
\]
As before, we set \(p_0 = \lambda \mu^{-1} \) and \(p_1 = \lambda \mu \). Then, the formula (9.7) reads \(u_r \mapsto \bar{u}_r \) if \(r = \bar{r} \) and

\[
\begin{align*}
 u_r \mapsto & \frac{(p_0^{-1}p_1 - 1) + (p_1 - p_0^{-1})z^\delta(r<\bar{r})z^{-\delta(r>\bar{r})}}{(p_1 - z)(p_0^{-1} + z^{-1})}u_r + \frac{(p_0^{-1}p_1)^\delta(r<\bar{r}) (z - z^{-1})}{(p_1 - z)(p_0^{-1} + z^{-1})}u_{\bar{r}} \tag{9.8}
\end{align*}
\]

if \(r \neq \bar{r} \).

Note that, in the case \(\mu = 1 \), we get \(p_0 = p_1 =: p \) and (9.8) simplifies to \(u_r \mapsto \bar{u}_r \) if \(r = \bar{r} \) and

\[
\begin{align*}
 u_r \mapsto & \frac{(1 - p^2)z^\delta(r<\bar{r})z^{-\delta(r>\bar{r})}}{z - p^2z^{-1}}u_r + \frac{p(z - z^{-1})}{z - p^2z^{-1}}u_{\bar{r}} \tag{9.9}
\end{align*}
\]

if \(r \neq \bar{r} \).

9.4. The boundary Schur-Weyl functor. As anticipated in 6.5, we briefly describe here one example of the combinatorial model from §6.2 in this setting.

We consider a quasi-split affine QSP subalgebra of type \(\text{AIII} \) with a choice of parameters as described in §9.3 such that

1. the twisting \(\psi \) satisfying \(\psi^*(V) = V \) is QSP-admissible (cf. §4.2),

2. \(\lambda, \mu \in k^\times \) are such that \(\lambda \mu, \lambda \mu^{-1} \in q^{1/m}\mathbb{C}[q^{1/m}] \) for some \(m > 0 \).

Set \(J := \mathbb{Z}_{\text{odd}} \) and consider the involution \(\theta \) on \(J \) given by \(\theta(n) = -n \). Note that \(J^\theta = \emptyset \). For any \(i \in J \), we set \(V(n) := V \) and \(X(n) = q^n \).

As observed in 6.5, the conditions (Q0)–(Q3) are easily verified to hold. Moreover, by (9.3)-(9.8), the K-matrix has only two simple poles at \(z = \lambda \mu^{-1} \) and \(z = \lambda \mu \). Thus, the condition (Q4) follows from the condition (2) above.

By Definition 6.3.1, we obtain a quiver \(\Gamma \) whose nodes are indexed by odd numbers, there is an edge between any two consecutive numbers, and it is equipped with a natural contravariant involution induced from \(\theta \), i.e., \(\Gamma \) is an \(\text{A}_{\infty} \) quiver with a non-trivial involution and no fixed points:

\[
\begin{align*}
 & \cdots \rightarrow (\omega_1, q^{-n}) \rightarrow \cdots \rightarrow (\omega_1, q^{-5}) \rightarrow (\omega_1, q^{-3}) \rightarrow (\omega_1, q^{-1}) \rightarrow \cdots \\
 & \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
 & \cdots \rightarrow (\omega_1, q^n) \rightarrow \cdots \rightarrow (\omega_1, q^5) \rightarrow (\omega_1, q^3) \rightarrow (\omega_1, q) \rightarrow \cdots
\end{align*}
\]
Finally, the framing dimension vector λ on Γ is non-trivial if and only if $\lambda = q^n\mu^{\pm 1}$ for some $n \in \mathbb{Z}_{\text{odd}}$. In this case, the framing dimension vector is given by $\lambda(m) = \delta_{m,-n}$ for any $m \in \mathbb{Z}_{\text{odd}}$.

9.5. Hecke algebras and ι/j Schur–Weyl dualities. It is proved in [KKK18, KL21] that the functor F recovers Chari-Pressley’s quantum affine Schur-Weyl duality [CP96] through the BKR isomorphism between KLR algebras and affine Hecke algebras. We shall prove the analogue result for the functor θF.

More precisely, let $U_q\mathfrak{l} \subseteq U_q\text{Lat}_N$ be a quasi-split QSP subalgebra of type All with the choice of parameters described above. A Schur–Weyl duality functor between $U_q\mathfrak{l}$ and the 2-parameters affine Hecke algebra of type C (cf. §8.1) was constructed in [FLL+20], relying on an explicit action of the latter on $V^n_z := V(z_1) \otimes \cdots \otimes V(z_n)$.

Lemma 9.5.1. The action of $\mathcal{H}_{C_n}(p_0, p_1)$ on V^n_z, determined by the assignment

$$\Phi_k \mapsto R^\vee_{k,k+1}(z_k, z_{k+1}), \quad \Phi_0 \mapsto K_1(z_1), \quad X_l \mapsto z_l,$$

coincides with the action from [FLL+20, Prop. 2.5].

Proof. A formula for the action of the generators T_i is obtained by substituting the expressions (9.1), (9.4) and (9.8) for R- and K-matrices into the formulas (8.1)–(8.2) for the intertwiners. The lemma then follows from a straightforward comparison with the formulæ in [FLL+20, §2.4]. \hfill \Box

Let

$$F_{\text{AHC}} : \mathcal{H}_{C_n}(p_0, p_1)\text{-mod} \to U_q\mathfrak{l}\text{-mod}, \quad M \mapsto V^n_z \otimes_{\mathcal{H}_{C_n}(p_0, p_1)} M$$

be the functor defined by the bimodule V^n_z. For any $\beta \in N[J]^\theta$, let $\theta \mathcal{R}(\beta; \lambda)$-mod$_{\theta}$ be the full subcategory of $\theta \mathcal{R}(\beta; \lambda)$-mod whose objects are modules with a locally nilpotent action of the elements x_i. Also let $\mathcal{H}_{C_n}(p_0, p_1)$-mod$_{\beta}$ be the full subcategory of $\mathcal{H}_{C_n}(p_0, p_1)$-modules such that the action of the $X_i^{\pm 1}$ is locally nilpotent and their multiset of eigenvalues equals β.

Theorem 9.5.2. Let $\|\beta\|_C = n$. The following diagram commute

$$
\begin{array}{ccc}
\theta \mathcal{R}(\beta; \lambda) \otimes_{\theta \mathcal{P}_\beta} \theta \mathcal{P}_\beta\text{-mod} & \xrightarrow{\sim} & \mathcal{H}_{C_n}(p_0, p_1) \otimes_{\mathcal{O}} \theta \mathcal{O}_\beta\text{-mod} \\
\uparrow & & \downarrow \\
\theta \mathcal{R}(\beta; \lambda)\text{-mod}_{\theta} & \xrightarrow{\sim} & \mathcal{H}_{C_n}(p_0, p_1)\text{-mod}_{\beta} \\
\theta F_{\beta} & & F_{\text{AHC}} \\
U_q\mathfrak{l}\text{-mod} & \xleftarrow{\sim} & \mathcal{H}_{C_n}(p_0, p_1)\text{-mod}_{\beta}
\end{array}
$$

12More precisely, it is also necessary to take into account that the formulæ in [FLL+20] are given in terms of the left-coideal subalgebra $\omega(U_q\mathfrak{l})$.

F is the functor defined by the bimodule V for the intertwiners. The lemma then follows from a straightforward comparison with the formulæ in [FLL+20, Prop. 2.5].

F_{AHC} is defined by the bimodule V^n_z. For any $\beta \in N[J]^\theta$, let $\theta \mathcal{R}(\beta; \lambda)$-mod$_{\theta}$ be the full subcategory of $\theta \mathcal{R}(\beta; \lambda)$-mod whose objects are modules with a locally nilpotent action of the elements x_i. Also let $\mathcal{H}_{C_n}(p_0, p_1)$-mod$_{\beta}$ be the full subcategory of $\mathcal{H}_{C_n}(p_0, p_1)$-modules such that the action of the $X_i^{\pm 1}$ is locally nilpotent and their multiset of eigenvalues equals β.

θF_{β} is the functor from $\theta \mathcal{R}(\beta; \lambda)$-mod$_{\theta}$ to $\mathcal{H}_{C_n}(p_0, p_1)$-mod$_{\beta}$.

θF_{AHC} is the functor from $U_q\mathfrak{l}$-mod to $\mathcal{H}_{C_n}(p_0, p_1)$-mod$_{\beta}$.

$\omega(U_q\mathfrak{l})$ is the left-coideal subalgebra.
Proof. The diagram is composed of three triangles. The commutativity of the side ones follows immediately from the definition of the completions $\hat{\Theta}_\beta$ and $\hat{\Theta}_\beta$ (cf. §7.1). The commutativity of the triangle in the middle square follows directly from the BKR-type isomorphism constructed in Theorem 8.2.1 and Lemma 9.5.1. □

In the case of a restrictable QSP subalgebra, we further recover a finite-type Schur-Weyl duality between the Hecke algebra of type B and a finite-type QSP subalgebra in $U_q\mathfrak{sl}_N$. More precisely, let $U_q\mathfrak{k} \in U_q\mathfrak{L}\mathfrak{sl}_N$ be a restrictable affine QSP subalgebra from §9.3.2. Then, $U_q^{\text{fin}} := U_q\mathfrak{k} \cap U_q\mathfrak{sl}_N$ is the QSP subalgebra corresponding to the finite-type Satake diagram obtained from (9.5) (for N even) or (9.6) (for N odd) by removing the affine node.

Consider the operators $R^{\text{fin}}: V^\otimes 2 \to V^\otimes 2$ and $K^{\text{fin}}: V \to V$ on the fundamental representation given respectively by

$$
\begin{align*}
 u_r \otimes u_s &\mapsto \begin{cases}
 u_s \otimes u_r & \text{if } r > s, \\
 u_s \otimes u_r + (q - q^{-1})u_r \otimes u_s & \text{if } r < s, \\
 qu_r \otimes u_r & \text{if } r = s,
 \end{cases} \\
 u_r &\mapsto \begin{cases}
 u_{\bar{r}} & \text{if } r < \bar{r}, \\
 u_r + (p - p^{-1})u_r & \text{if } r > \bar{r}, \\
 pu_r & \text{if } r = \bar{r}.
 \end{cases}
\end{align*}
$$

By [BWW18, Thms. 2.6 and 4.4], the assignment

$$
T_0 \mapsto K^{\text{fin}}_1, \quad T_k \mapsto R^{\text{fin}}_{k,k+1} \quad (1 \leq k \leq n - 1)
$$

defines a $(U_q\mathfrak{k}^{\text{fin}}, \mathcal{H}_{B_n}^{\text{fin}}(p))$-bimodule structure on $V^\otimes n$, where $\mathcal{H}_{B_n}^{\text{fin}}(p)$ is the finite Hecke algebra of type B_n. Let

$$
\mathcal{F}_{\text{HB}}: \mathcal{H}_{B_n}^{\text{fin}}(p)\text{-mod} \to U_q\mathfrak{k}^{\text{fin}}\text{-mod}, \quad M \mapsto V^\otimes n \otimes \mathcal{H}_{B_n}^{\text{fin}}(p) M
$$

be the functor induced by the bimodule structure on $V^\otimes n$ (cf. [Wat20]).

Corollary 9.5.3. The diagram

$$
\begin{array}{c}
\theta R(\beta; \lambda)\text{-mod}_0 \xrightarrow{\theta F_\beta} U_q \mathfrak{k}\text{-mod} \\
\downarrow l \\
H_{C_n}(p_0, p_1)\text{-mod}_\beta \xrightarrow{F_{\text{AH'C}}} U_q \mathfrak{k}\text{-mod} \\
\text{res}_{p_0=p_1} \downarrow \text{res}_{\mu=1} \\
H_{B_n}^{\text{fin}}(p)\text{-mod} \xrightarrow{\mathcal{F}_{\text{HB}}} U_q \mathfrak{k}^{\text{fin}}\text{-mod}
\end{array}
$$
where the upper vertical arrow on the left is as in Theorem 9.5.2 and the bottom vertical arrows are given by restriction under the additional assumption $p_0 = p_1$ and $\mu = 1$ (cf. §9.3.2), is commutative.

Proof. Let $\theta \hat{\mathcal{V}} \otimes \beta$ be the module defined in §7.2 with respect to the combinatorial model described in §9.4. Relying on (9.1), (9.9), Theorem 8.2.1 and (9.10)-(9.11), one shows by direct inspection that

$$\theta \hat{\mathcal{V}} \otimes \beta \cong \mathcal{V} \otimes \mathcal{H}_{B_n}^\text{fin}(p) \otimes \mathcal{O} \theta \hat{\mathcal{O}} \beta$$

as $(U_q^\text{fin}, \mathcal{H}_{B_n}(p) \otimes \mathcal{O} \theta \hat{\mathcal{O}} \beta)$-bimodules. Hence, for any M in $\theta \mathcal{R}(\beta; \lambda)\text{-mod}_0$, we have

$$\theta F_\beta(M) = \theta \hat{\mathcal{V}} \otimes \mathcal{H}_{B_n}(p) \otimes \mathcal{O} \theta \hat{\mathcal{O}} \beta \cong \mathcal{V} \otimes \mathcal{H}_{B_n}^\text{fin}(p) M = F_{\mathcal{H}B}(M).$$

\[\Box\]

Remark 9.5.4. Relying on the explicit formulae for the K-matrix provided in [RV16, §9.3] and [SW21], a similar computation shows that the same result holds for arbitrary affine QSP subalgebras of type $AIII$. It is also expected that one can recover the Schur-Weyl functor with the 2-parameter affine Hecke algebra of type B defined in [CGM14]. This is, however, harder to verify since [CGM14] relies on the FRT presentation of QSP subalgebras.

\[\nabla\]

References

[AR95] J. Abad, M. Rios, *Non-diagonal solutions to reflection equations in su(n) spin chains*, Phys. Lett. B 352 (1995), no. 1-2, 92–95.

[ATL19] A. Appel, V. Toledano Laredo, *Coxeter categories and quantum groups*, Selecta Math. (N.S.) 25 (2019), no. 3, Paper No. 44, 97.

[AV22a] A. Appel, B. Vlaar, *Universal K-matrices for quantum Kac–Moody algebras*, Represent. Theory 26 (2022), 764-824.

[AV22b] A. Appel, B. Vlaar, *Trigonometric K-matrices for finite-dimensional representations of quantum affine algebras*, arXiv:2203.16503, 2022.

[BK19] M. Balagović, S. Kolb, *Universal K-matrix for quantum symmetric pairs*, J. Reine Angew. Math. 747 (2019), 299–353.

[BW18a] H. Bao, W. Wang, *Canonical bases arising from quantum symmetric pairs*, Invent. Math. 213 (2018), no. 3, 1099–1177.

[BW18b] H. Bao, W. Wang, *A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs*, Astérisque (2018), no. 402, vii+134.

[BWW18] H. Bao, W. Wang, H. Watanabe, *Multiparameter quantum Schur duality of type B*, Proc. Amer. Math. Soc. 146 (2018), no. 8, 3203–3216.

[BK09] J. Brundan, A. Kleshchev, *Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras*, Invent. Math. 178 (2009), no. 3, 451–484.

[Cha02] V. Chari, *Braid group actions and tensor products*, Int. Math. Res. Not. (2002), no. 7, 357–382.

[CP95] V. Chari, A. Pressley, *A guide to quantum groups*, Cambridge University Press, Cambridge, 1995, Corrected reprint of the 1994 original.
A. APPEL AND T. PRZEŹDZIECKI

[CP96] V. Chari, A. Pressley, *Quantum affine algebras and affine Hecke algebras*, Pacific J. Math. 174 (1996), no. 2, 295–326.

[CGM14] H. Chen, N. Guay, X. Ma, *Twisted Yangians, twisted quantum loop algebras and affine Hecke algebras of type BC*, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2517–2574.

[Che84] I. Cherednik, *Factorizing particles on a half line, and root systems*, Teoret. Mat. Fiz. 61 (1984), no. 1, 35–44.

[Che92] I. Cherednik, *Quantum Knizhnik-Zamolodchikov equations and affine root systems*, Comm. Math. Phys. 150 (1992), no. 1, 109–136.

[Dri87] V. Drinfeld, *Quantum groups*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 798–820.

[ES18] M. Ehrig, C. Stroppel, *Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality*, Adv. Math. 331 (2018), 58–142.

[EK06] N. Enomoto, M. Kashiwara, *Symmetric crystals and affine Hecke algebras of type B*, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 131–136.

[EK08] N. Enomoto, M. Kashiwara, *Symmetric crystals for \(gl_\infty \)*, Publ. Res. Inst. Math. Sci. 44 (2008), no. 3, 837–891.

[FLL+20] Z. Fan, C.-J. Lai, Y. Li, L. Luo, W. Wang, H. Watanabe, *Quantum Schur duality of affine type C with three parameters*, Math. Res. Lett. 27 (2020), no. 1, 79–114.

[FHR22] E. Frenkel, D. Hernandez, N. Y. Reshetikhin, *Folded quantum integrable models and deformed W-algebras*, Lett. Math. Phys. 112, 80 (2022).

[Fuj20] R. Fujita, *Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality*, Int. Math. Res. Not. IMRN 22 (2020), 8353–8386.

[Fuj22] R. Fujita, *Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types*, Represent. Theory 26 (2022), 211–263.

[Hart01] R. Haring-Oldenburg, *Actions of tensor categories, cylinder braids and their Kauffman polynomial*, Topology Appl. 112 (2001), no. 3, 297–314.

[HL10] D. Hernandez, B. Leclerc, *Cluster algebras and quantum affine algebras*, Duke Math. J. 154 (2010), no. 2, 265–341.

[HL15] D. Hernandez, B. Leclerc, *Quantum Grothendieck rings and derived Hall algebras*, J. Reine Angew. Math. 701 (2015), 77–126.

[IT10] T. Ito, P. Terwilliger, *The augmented tridiagonal algebra*, Kyushu J. Math. 64 (2010), no. 1, 81–144.

[Jim85] M. Jimbo, *A \(q \)-difference analogue of \(U(\mathfrak{g}) \) and the Yang-Baxter equation*, Lett. Math. Phys. 10 (1985), no. 1, 63–69.

[Kac90] V. Kac, *Infinite-dimensional Lie algebras*, third ed., Cambridge University Press, Cambridge, 1990.

[KW92] V. Kac, S. Wang, *On automorphisms of Kac-Moody algebras and groups*, Adv. Math. 92 (1992), no. 2, 129–195.

[KKK15] S.-J. Kang, M. Kashiwara, M. Kim, *Symmetric quiver Hecke algebras and \(R \)-matrices of quantum affine algebras, II*, Duke Math. J. 164 (2015), no. 8, 1549–1602.

[KKK18] S.-J. Kang, M. Kashiwara, M. Kim, *Symmetric quiver Hecke algebras and \(R \)-matrices of quantum affine algebras*, Invent. Math. 211 (2018), no. 2, 591–685.

[KKKO15] S.-J. Kang, M. Kashiwara, M. Kim, S.-J. Oh, *Symmetric quiver Hecke algebras and \(R \)-matrices of quantum affine algebras III*, Proc. Lond. Math. Soc. (3) 111 (2015), no. 2, 420–444.
[KKKO16] S.-J. Kang, M. Kashiwara, M. Kim, S.-J. Oh, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV, Selecta Math. (N.S.) 22 (2016), no. 4, 1987–2015.

[KKKO18] S.-J. Kang, M. Kashiwara, M. Kim, S.-j. Oh, Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 349–426.

[Kas02] M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), no. 1, 117–175.

[Kat09] S. Kato, An exotic Deligne-Langlands correspondence for symplectic groups, Duke Math. J. 148 (2009), no. 2, 305–371.

[KS95] D. Kazhdan, Y. Soibelman, Representations of quantum affine algebras, Selecta Math. (N.S.) 1 (1995), no. 3, 537–595.

[KL09] M. Khovanov, A. D. Lauda, A diagrammatic approach to categorification of quantum groups, I, Represent. Theory 13 (2009), 309–347.

[KR87] A. Kirillov, N. Reshetikhin, Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras. (Russian); translated from Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160 (1987), Anal. Teor. Chisel i Teor. Funktsii. 8, 211–221, 301. J. Soviet Math. 52 (1990), no. 3, 3156–3164.

[KR11] A. Kleshchev, A. Ram, Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann. 349 (2011), no. 4, 943–975.

[Kol14] S. Kolb, Quantum symmetric Kac-Moody pairs, Adv. Math. 267 (2014), 395–469.

[KOW22] H. Kusano, M. Okado, H. Watanabe, Kirillov-Reshetikhin modules and quantum K-matrices, arXiv:2209.10325 (2022).

[KL21] J.-H. Kwon, S.-M. Lee, Super Duality for Quantum Affine Algebras of Type A, International Mathematics Research Notices (2021), rnab230.

[Let02] G. Letzter, Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 117–165.

[Li19] Y. Li, Quiver varieties and symmetric pairs, Represent. Theory 23 (2019), 1–56.

[LW21] M. Lu, W. Wang, A Drinfeld type presentation of affine quantum groups I: Split ADE type, Adv. Math. 393 (2021), Paper No. 108111, 46.

[Lus10] G. Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010, Reprint of the 1994 edition.

[MS21] R. Maksimau, C. Stroppel, Higher level affine Schur and Hecke algebras, J. Pure Appl. Algebra 225 (2021), no. 8, Paper No. 106442, 44.

[MS19] V. Miemietz, C. Stroppel, Affine quiver Schur algebras and p-adic GL_n, Selecta Math. (N.S.) 25 (2019), no. 2, Paper No. 32, 66.

[Nak04] H. Nakajima, Quiver varieties and t-analogs of q-characters of quantum affine algebras, Annals of Math. 160 (2004), 1057–1097.

[Nao21] K. Naoi, Equivalence between module categories over quiver Hecke algebras and Hernandez-Leclerc’s categories in general types, Adv. Math. 389 (2021), Paper No. 107916, 47.

[PdR21] L. Poulain d’Andecy, S. Rostam, Morita equivalences for cyclotomic Hecke algebras of types B and D, Bull. Soc. Math. France 149 (2021), no. 1, 179–233.

[PdW20] L. Poulain d’Andecy, R. Walker, Affine Hecke algebras and generalizations of quiver Hecke algebras of type B, Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 531–578.

[Prz19] T. Przezdziecki, Quiver Schur algebras and cohomological Hall algebras, arXiv:1907.03679 (2019).
T. Przedziacki, *Representations of orientifold Khovanov–Lauda–Rouquier algebras and the Enomoto–Kashiwara algebra*, Pac. J. Math. 322 (2023), no. 2, 407–441.

V. Regelskis, B. Vlaar, *Reflection matrices, coideal subalgebras and generalized Satake diagrams of affine type*, 2016.

V. Regelskis, B. Vlaar, *Solutions of the \(U_q(\widehat{sl}_N) \) reflection equations*, J. Phys. A 51 (2018), no. 34, 345204, 41.

V. Regelskis, B. Vlaar, *Quasitriangular coideal subalgebras of \(U_q(g) \) in terms of generalized Satake diagrams*, Bull. Lond. Math. Soc. 52 (2020), no. 4, 693–715.

V. Regelskis, B. Vlaar, *Pseudo-symmetric pairs for Kac-Moody algebras*, Hypergeometry, integrability and Lie theory, 155–203, Contemp. Math., 780, Amer. Math. Soc., [Providence], RI, 2022.

R. Rouquier, *2–Kac–Moody algebras*, arXiv:0812.5023 (2008).

Y. Shen, W. Wang, *Schur duality and Kazhdan–Lusztig basis expanded*, arXiv:2108.00630, 2021.

E. K. Sklyanin, *Boundary conditions for integrable quantum systems*, Journal of Physics A: Mathematical and General 21 (1988), no. 10, 2375.

M. Varagnolo, E. Vasserot, *Perverse sheaves and quantum Grothendieck rings*, in Studies in memory of Issai Schur, Prog. Math. 210, Birkhäuser, 2002, 345–365.

M. Varagnolo, E. Vasserot, *Canonical bases and affine Hecke algebras of type B*, Invent. Math. 185 (2011), no. 3, 593–693.

H. Watanabe, *Crystal basis theory for a quantum symmetric pair \((U, U')\)*, Int. Math. Res. Not. IMRN (2020), no. 22, 8292–8352.