The trace fossil *Lepidenteron lewesiensis*: a taphonomic window on diversity of Late Cretaceous fishes

Małgorzata Bieńkowska-Wasiluk¹ · Alfred Uchman² · Agata Jurkowska²,³ · Ewa Świerczewska-Gładysz⁴

Abstract The trace fossil *Lepidenteron lewesiensis* (Mantell 1822) provides an exceptional taphonomic window to diversity of fishes as shown for the Upper Cretaceous of Poland, in the Middle Turonian–Lower Maastrichtian deposits of the Opole Trough, Miechów Trough, Mazury-Podlasie Homocline, and SE part of the Border Synclinorium. *Lepidenteron lewesiensis* is an unbranched burrow lined with small fish scales and bones, without a constructed wall. It contains scales, vertebrae, and bones of the head belonging to ten taxa of teleostean fishes: two undetermined teleosteans, six undetermined Clupeocephala, one Dercetidae, and one undetermined euteleostean. The preservation of fish remains suggests that fishes were pulled down into the burrow by an animal, probably by eunicid polychaetes.

Keywords Ichnofossil · *Lepidenteron lewesiensis* · Upper Cretaceous · Fishes · Taphonomy · Poland

Introduction

Apart from otoliths or teeth, preservation of fishes requires special, restricted taphonomic conditions, such as anoxia on the sea floor or sudden burial (Schafer 1972; Allison and Briggs 1991; Behrensmeyer 1991). More rarely fish remains are preserved in coprolites of their predators or scavengers (Wilson 1987). An exceptional taphonomic window for fish remains is exemplified by the trace fossil *Lepidenteron lewesiensis* (Mantell 1822). It is an
unbranched burrow lined with small fish scales and bones, without a constructed wall. Its age ranges from the Upper Triassic to the Miocene (Suhr 1988), although it is mostly characteristic of the Upper Cretaceous epicontinental, it is mainly marly sediments of Europe (Jurkowska and Uchman 2013), in which the record of fishes is underrepresented because of a prevailing, non-anoxic sea floor during deposition. Fish remains in these burrows were noted from the Cenomanian–Maastrichtian Chalk of England (Mantell 1822, 1844, 1851; Agassiz 1843; Davies 1879; Bather 1911) and the Turonian of the Czech Republic (Fritsch 1878; see also Ekrt et al. 2008), but without a precise characterization, and only Davies (1879) mentioned scales of Beryx, Bercopsis, Dercetis and Osmeroides. Since that time, fish remains from Lepidenteron lewesiensis have not been studied for over 135 years. In this paper, the first, more detailed description of actinopterygian fish remains from the trace fossil L. lewesiensis (Mantell 1822) is presented on the basis of material from the Cretaceous of Poland. This study contributes also to a better understanding of this trace fossil and reconstruction of the diversity of fishes during time interval represented by the studied trace fossils.

The material comes from the trace fossil Lepidenteron lewesiensis collected recently from the Campanian and Maastrichtian of the Miechów Synclinorium (the southern part of the Szczecin-Miechów Synclinorium), southern Poland (see Jurkowska and Uchman 2013). Additional material derives from other localities in Poland, i.e., from the Middle Turonian–Lower Maastrichtian deposits of the SE part of the Border Synclinorium, Opole Trough, and the Mazury-Podlasie Homocline (Fig. 1). Fishes in the Middle Turonian–Lower Maastrichtian sediments of Poland are rare and are represented by isolated teeth of sharks (Książkiewicz 1927; Niedźwiedzki and Kalina 2003).

Geological setting

The outcrops studied are located in extra-Carpathian Poland: in the Opole Trough, in the Miechów Synclinorium (the southern part of the Szczecin-Miechów Synclinorium), in the SE part of the Border Synclinorium, and in the Mazury-Podlasie Homocline (Fig. 1).

Eustatically triggered transgression started in the middle Albian and during the Turonian the sea covered rapidly most of the study territory (Pożaryski 1960; Marcinowski 1974; Marcinowski and Radwański 1983, 1989), where it persisted until the Maastrichtian (Pożaryski 1960). Initial facies variability during the Albian and the Cenomanian was quickly followed by a uniform facies during the Turonian and Coniacian. The latter facies are represented mostly by limestones, marls, and claystones, which are recently best exposed in large quarries in the Opole Trough. During the late Late Cretaceous, monotonous carbonate sedimentation dominates (Marcinowski 1974; Walaszczyk 1997). The Coniacian and the Maastrichtian of Miechów Synclinorium and Border Synclinorium are composed of opkas (siliceous limestones) and marls, while the Mazury-Podlasie Homocline is characterized by white chalk deposits.

Opole Trough

The Cretaceous (Cenomanian–Middle Coniacian) succession of the Opole Trough (Fig. 1b) is about 100 m thick (Alexandrowicz and Radwan 1973). The specimens of Lepidenteron lewesiensis come from the Folwark Quarry (Fig. 2). The same trace fossil occurs (first note) also in the Odra II Quarry in the Inoceramus perplexus Zone, but it was not analyzed.

The Folwark section, 54 m-thick, is in an active quarry of the cement industry, located about 10 km SW from the town of Opole (Fig. 2). It is composed of Upper Turonian to Lower Coniacian deposits (Alexandrowicz and Radwan 1973; Walaszczyk 1988, 1992; Tarkowski 1991; Kędzierski 2008). The lower part of the succession is represented by marly limestones with thin layers of marls and clayey marls (Olszewska-Nejbert 2007). These deposits belong probably to the uppermost part of the Inoceramus perplexus Zone and the lower part of the Mytyloides scupini Zone (Walaszczyk 1992; Walaszczyk and Wood 1998). Overlying marls, siliceous marls, and clayey marls belong to the M. scupini, Cremnoceramus waltersdorffensis waltersdorffensis, Cremnoceramus deformis erectus, and the Cremnoceramus crassus crassus + Cremnoceramus deformis Zones (Walaszczyk 1992; Walaszczyk and Wood 1998).

Specimens of Lepidenteron lewesiensis were found in marls of the Mytyloides scupini and Cremnoceramus waltersdorffensis waltersdorffensis Zones. These deposits are rich in fossils, including siliceous sponges, mainly hexactinellids (e.g., Leonhard 1897; Świerczewska-Gładysz 2012b; Świerczewska-Gładysz and Jurkowska 2013), bivalves, especially inoceramids (Walaszczyk 1988, 1992; Tarkowski 1991), echinoids (Olszewska-Nejbert 2007), and ammonites (Walaszczyk 1988). The whole succession has been intensively bioturbated (Kędzierski and Uchman 2001).

Miechów Synclinorium

In the Miechów Synclinorium (Fig. 1a, b), Cretaceous strata are represented by the Upper Albian trough of the Lower Maastrichtian (Rutkowski 1965; Heller and Moryc 1984; Hakenberg 1986; Walaszczyk 1992). The
Campanian–Lower Maastrichtian succession reaches about 300–400 m (Rutkowski 1965; Heller and Moryc 1984) and represents siliceous limestones (opokas) with marly intercalations and cherts in the lower part.

The specimens of *Lepidenteron lewesiensis* were collected in eight sections (Fig. 3), where they are relatively common (Jurkowska and Uchman 2013). Seven of them, i.e., the Rzeźuśnia, Parkoszowice, Wężeć, Komorów, Moczydło, Strzeżów, and Wodzisław sections, are located in the southern part of the Miechów Trough, while the Jędrzejów section is situated in its northern part (the GPS coordinates and lithological details from these sections were described by Jurkowska and Uchman 2013). The specimens come from the ‘*Inoceramus* azerbaydjanensis’—‘*I.* vorhelmensis’, ‘*I.* tenuilinetaus’, *Sphaeroceramus pertenuformis*, ‘*I.* inkermanensis’, ‘*I.* costaceus’—‘*I.* redbirdensis’, *Endocostea typica* zones (Fig. 3).

In the Rzeźuśnia, Wężeć, Komorów and Moczydło sections, fossils are relatively abundant, dominated by hexactinellid sponges. Less common are lithistid sponges, bivalves, gastropods and echinoids. In the Strzeżów, Parkoszowice and Wodzisław sections, the deposits are
very fossiliferous with abundant inoceramid and pectinid bivalves, sponges (mainly hexactinellids), gastropods and echinoids.

SE part of the Border Synclinorium

In the SE part of the Border Synclinorium (Fig. 1b), the Upper Cretaceous succession is best exposed in the Middle Vistula River section (e.g., Pożarski 1938; Marcinowski and Radwan’ski 1983; Świdrowska 2007; Voigt et al. 2008). The specimens studied come from an inactive quarry located on the eastern bank of the Vistula river (Fig. 1b), c. 500 m to the south of the village of Piotrawin, where the Upper Campanian siliceous limestones (opoks; the so-called Piotrawin Opoka after Walaszczyk 1998, 2004), c. 30 m thick, crop out (Fig. 3). The lower part of the succession corresponds to the ‘Inoceramus’ altus Zone, whereas the middle and upper parts belong to the ‘Inoceramus’ inkermanensis Zone (Walaszczyk 2004, 2012). The most abundant fossils are siliceous sponges (S’wierczewska-Gładysz 2006, 2012a; S’wierczewska-Gładysz and Jurkowska 2013), ammonites (Błaszkiewicz 1980; Machalski 2012), belemnites (Kongiel 1962; Remin 2012), inoceramids (Walaszczyk 2004), bivalves, and gastropods (Abdel-Gawad 1986, 1990). The nautiloids, echinoids, brachiopods, and solitary corals also are numerous.

Materials and methods

The studied collection of Lepidenteron lewesiensis comprises 53 specimens. Details of the fish remains were analyzed under a stereo microscope at the Institute of Geology of the Warsaw University. The studied specimens are kept at the Institute of Geological Sciences of the Jagiellonian University, Kraków, collection no INGUJ220P/L/1–53, comparative material of Dercetis is kept in the Natural History Museum in Wien (NHMW).

The trace fossil Lepidenteron lewesiensis

The specimens of Lepidenteron lewesiensis described here are fragments of horizontal or oblique, simple, tubular, straight or slightly curved burrows, which are elliptical in cross section, 0.9–3.5 cm in width and 4–15 cm long. Every specimen contains fish scales, vertebrae, and bones of the head (see Fig. 4). Fin rays are more difficult to recognize, but they were found in a few specimens. The specimens studied contain from one to four types, mostly two types of scales. Every type, except in one case, refers to a separate taxon of fish. Scales, vertebrae and bones of the head are disarticulated and displaced. They are concentrated close to the lower margin of the burrow. The scales (Figs. 4, 5) are thin, in both cycloid and ctenoid forms, or thick in the form of scutes (bony plates). Only one specimen contains a few articulated vertebrae (Fig. 5i).
The trace fossil *Lepidoterron lewesiensis*: a taphonomic window

Stage and substage	Inoceramus stratigraphy	Miechów Synclinorium	Border Synclinorium	Mazury-Podlasie Homocline
CAMPANIAN				
Lower	Trochoceras *radiosus*			
	Endocostea typica			
MAASTRICHTIAN				
Lower	*T. costaeus*/*hedbirdensis*			
	'Inoceramus' *inkeranensis*			
Upper				
'Inoceramus' *altus*				
Upper	*Sphaeroceras pertenuiformis*			
Middle				
	Inoceramus *tenulineatus*			
	Cataceramus subcompressus			
Lower	*Inoceramus* *azerbaydaensis*			
	'Inoceramus' *vorliemensis*			
	Cataceramus beckumensis			

Legend:
- Siliceous limestones ("opoka")
- Marls
- White chalk
- Cherts
In the Mięchów Synclinorium, *Lepidenteron lewesiensis*, called also “*Terebella*” (for taxonomy see Suhr 1988) occurs in the transition from the distal *Cruziana* to the *Zoophycos* ichnofacies in totally bioturbated marls, which accumulated in deeper waters beyond the range of tempestites (Jurkowska and Uchman 2013). Abundant hexactinellid sponges, co-occurring in all studied stages with the *Lepidenteron lewesiensis* also indicate a calm-water environment of a deeper shelf and a slow rate of sedimentation (e.g., Olszewska-Nejbert and Świerczewska-Gładysz 2011; Świerczewska-Gładysz 2012a, b; Świerczewska-Gładysz and Jurkowska 2013).

Lepidenteron lewesiensis is interpreted as a burrow of a predator or scavenger of fishes and the fish debris, which accumulated fish debris as waste after feeding. The trace-maker is not certain, but eunicid polychaetes or anguillid fishes were considered as possible candidates, while...
The trace fossil *Lepidenteron lewesiensis*: a taphonomic window
stomatopod crustaceans have been rather eliminated (Jurkowska and Uchman 2013).

Fishes from Lepidenteron lewesiensis

Super-class Actinopterygii Cope 1887
Infra-class Neopterygii Regan 1923
Division Teleostei Müller 1845 (*sensu* Patterson and Rosen 1977)

Teleostei indet.
Figures 4a, b and 5a, b, i

Description: Cycloid scales, very thin, transparent, 2–5 mm in diameter, the overall shape circular, oval and rectangular. We observed three types: (1) oval, about 3 mm in diameter (Fig. 5a); (2) rectangular, about 3 mm wide, with lateral line canal (Fig. 5a); (3) circular, 2–5 mm in diameter (Fig. 5b, i). Types 1 and 2 probably belong to the same taxon. Type 3 probably represents a few taxa, but the poor state of preservation does not permit a closer interpretation.

Remarks: Many telost taxa have cycloid scales. They are typical of primitive teleosts but are also present in many highly advanced ones. Type 1 could belong to ichthyodectiform or Osmeroideidae (see Geinitz 1868; Fietritz 1996), it resembles the recent salmoniform Onchorhynchus and gadiform Microgadus (Patterson et al. 2002). Some circular scales classified here in type 3 resemble scales of the Cretaceous Cyclolepis that is sometimes synonymized with Autolepis (see Geinitz 1868; Fritsch 1878; Cockerell 1919) or recent Osmeridae (Patterson et al. 2002). The three forms of scales refer to at least two taxa of fishes. More precise identification of the cycloid scales from the study area must await the discovery of diagnostic skeletal remains.

Occurrence: Upper Turonian to Lower Coniacian—Folwark, type unnumbered (*M. scupini* Zone–C. waltersdorffensis waltersdorffensis Zone); Middle Campanian—Mielnik: type unnumbered (*I’. azerbaydjanensis–I’. vorhelmensis* Zone), Rzeżuśnia type unnumbered (*I’. azerbaydjanensis–I’. vorhelmensis* Zone), Parkoszowice, type 2 (*I’. tenuilineatus* Zone), Upper Campanian—Piotravin; type 4 (*I’. altus* Zone–I’. inkermanensis Zone), Moczydlo type unnumbered (*I’. inkermanensis* Zone), Strzęzów; type 1, 2, 3, two more types possible (*I’. inkermanensis* Zone) and Jędrzejów; type 2 (*I’. inkermanensis Zone–I’. costaeacus–I’. redbirdensis Zone).

Sub-cohort Euteleostei Greenwood et al. 1966
Order Aulopiformes Rosen 1973
Family Dercetidae Pictet 1850

Dercetidae indet.
Figure 5i–k

Description: A few vertebrae, some of them articulated and isolated tri-radiate flank scutes. Scutes, about 4 mm across, display serration on two posterior margins (Fig. 5j, k). Vertebræ are elongate with hourglass-like profile (Fig. 5i).

Remarks: The fishes were about 25 cm long as can be estimated by comparing the size of scutes and the total length of *Dercetis triqueter* Pictet 1850. The flank scutes differs from *Nardodercetis vandewallei* (Taverne 2005a) and *Ophidercetis italiensis* (Taverne 2005b) known from Campanian–Maastrichtian of Italy and *Dercetis* (Fig. 5i), because they have serration on the posterior margins. Tri-radiate scutes have the recent pufferfish of the family Tetrodontidae and the porcupinefish of the family Diodontidae (see Williams et al. 2012; fig. 2), but only one diodontid preserved as dental plate is known from the Cretaceous (Gallo et al. 2009).
The trace fossil *Lepidenteron lewesiensis*: a taphonomic window

Tetradontiformes from the Cretaceous is low; so far only three families, i.e., Cretatriacanthidae, Plectocretacicidae, and Protetriacanthidae, were recognized (Tyler and Sorbini 1996; Santini and Tyler 2003). The described herein tri-radiate scutes were not reported in Tetradontiformes from the Cretaceous. Elongate shape of vertebrae is characteristic of Dercetidae, but the well-developed transverse processes typical of this family are not visible, probably they were broken or they are hidden in the matrix. The family Dercetidae is ranging from the Late Cretaceous (Cenomanian) to the Paleocene (Danian); its members are common in Tethyan deposits of Europe, in Asia, Africa, South America and Central America (Gallo et al. 2005). More precise identification of the tri-radiate scutes from the study area must await the discovery of diagnostic skeletal remains.

Occurrence:

Upper Turonian to Lower Coniacian—Folwark (M. scupini Zone—C. waltersdorferensis waltersdorferensis Zone); Upper Campanian—Komorów and Weżerów (S. pertenuiformis Zone).

Euteleostei indet.

Figure 5 m–o

Description: Thick scutes with ornamentation (ridges and tubercles), 3–5 mm wide, the overall shape rectangular and diamond-like.

Remarks: Such ornamented scutes with ridges and tubercles are typical of many representatives of Gasterosteiformes, especially the pipefishes and seahorses (Syngnathidae). Co-occurring bones, probably opercle and preopercle, also resemble these belonging to Syngnathidae (Fig. 5o) (see Jungersen 1910). The oldest representative of the order, i.e., *Gasterorhamphus zuppichinii* Sorbini 1981, comes from the Upper Cretaceous and does not have scutes. The oldest representative of the Syngnathidae comes from Eocene (Patterson 1993). Ornamented scutes with ridges and tubercles display also the Cretaceous Tetradontiformes (Tyler and Sorbini 1996), but the analyzed scutes are not similar to them. As presented here, the scutes are different from aulopiform dercetid scutes that typically show a heart-shaped or tri-radiate form. They are also different from scutes of the aulopiform *Cimolichthys* and *Enchodus*, that are hexagonal and rounded plates (see Woodward 1902–1912), respectively. Also the acanthomorph teleosts from the Cretaceous have scutes (see González-Rodríguez et al. 2013), but they are not similar to the studied material. More precise determination of those scutes awaits the discovery of better preserved material.

Occurrence: Upper Turonian to Lower Coniacian—Folwark (M. scupini Zone—C. waltersdorferensis waltersdorferensis Zone); Upper Campanian—Komorów (S. pertenuiformis), Piotrawin (‘I. altus Zone—‘I. inkermanensis Zone) and Strzęków (‘I. inkermanensis); Lower Maastrichtian—Wodzisław (E. typica Zones).

Discussion

The trace fossil *Lepidenteron lewesiensis* contains some head bones such as opercles, preopercles, jaws, and frontales, but we did not find diagnostic features that allow taxonomic assignments. As there is considerable variation in scale shape and size even between different body parts of the same fish species, scale outline is not the best indicator for estimation of fish size. All scales were in size between 1 and 7 mm. The jaw bones suggest that the jaws were 1–2.5 cm long. Opercles are 0.5–1 cm high. Comparing those sizes with the length of the body of some Cretaceous fishes, such as *Dercetis*, *Hoplopteryx*, *Berycopsis*, the estimated length of fishes from the studied burrows ranges from a few cm to about 25 cm, and the height of their body ranges from about 1 cm to a few centimeters.

The burrows contain remains of one to four fish taxa, similarly to the observations from the Upper Cretaceous of England by Davies (1879), who stated that the burrows contain remains of a few individuals. The low diversity of fishes in burrow can indicate that the trace-maker was a selective predator and/or scavenger, or only a few fish taxa were available as food. It is less probable that the trace-maker used dispersed fish remains that could lay on the sea floor, because a higher diversity of fishes would be expected in such a case.

Taking into account the estimated size of the fishes, it was possible that they were pulled into the burrow. This allowed preservation of scales and bones. The fish remains do not have signs of dissolution or abrasion. It seems that the studied fish remains did not pass through the digestive system of the trace-maker, which would have swallowed the fish, but rather the fish body was peeled piece by piece and the scales and bones were accumulated as a waste. This excludes rather anguillid fishes as the trace-makers (see Jurkowska and Uchman 2013), but favors animals with catching body appendages, such as crustaceans or a predator with sharp appendages, like the bobbit worm (*eunicid polychaete*).

Trace-makers fed on teleostean with cycloid and ctenoid scales, and with scutes. It was either a predator, living hidden in sediment and hunting on fishes or a scavenger, feeding on fish carcases. The trace maker had skeletal elements from at least ten taxa of teleostean fishes. Two of them were classified as the undetermined teleostans, six were ascribed to undetermined Clupeocephala, one to Dercetidae, and one to undetermined euteleostean.
Preservation potential of fish remains in burrows was higher, because they were hidden from scavengers and protected by the tracemaker. Moreover, the possible lowered oxygenation within the burrow and possible action of microbes in the specific geochemical environment of burrows (e.g., Aller and Aller 1986; Lalonde et al. 2010) can conserve the fish remains. We do not expect any special geochemical conditions in the basins, because strong bioturbation (Jukrowska and Uchman 2013) points to good oxygenation conditions on the sea floor (which can cause quick decomposition of organic matter) and stenohaline fauna (e.g., ammonites, abundant inoceramids, and planktic foraminifers) suggest a normal, stable salinity. Therefore, the trace fossil *Lepidenteron lewesiensis* (Mantell 1822) provides a taphonomic window on the diversity of fishes as shown for the Upper Cretaceous of Poland. Although taxonomic assignment of the fish remains is not precise in the present state of study, probably new material in the future can provide information.

Conclusions

The trace fossil *Lepidenteron lewesiensis* (Mantell 1822) occurs in Poland in the Middle Turonian–Lower Maastrichtian deposits, which accumulated in a calm-water environment with a slow rate of sedimentation of a deeper shelf beyond the range of tempestites. It contains scales of ten taxa of teleostean fishes: two undetermined teleostans, six undetermined Clupeocephala, one Dercetidae, and one undetermined euteleostean. It also contains vertebrae and bones of heads of undetermined teleosteans. The preservation of fish remains suggests that fish bodies were fragmented piece by piece by an animal, probably by an eunici polychaete.

Acknowledgments We are very grateful to Dr. Lionel Cavin (Geneva) and the anonymous reviewer for constructive comments on an earlier version of the manuscript. Additional support was provided by the Jagiellonian University (DS funds), National Science Center (Grant Number: PRO-2011/01/N/ST10/07717), and the Laboratory of Geology (University of Lodz) BSt Grant No. 560/844. We are grateful to Dr. Johann Egger (Wien) and Kilian Eichenseer M.Sc. (Erlangen) for help with translating the abstract into German. We are grateful to Dr. Ursula Göhlích (Wien) for access to the *Dercetis* specimen.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Abdel-Gawad, G.I. 1980. Some gastropods from the upper Campanian of the middle Vistula Valley, Central Poland. *Acta Geologica Polonica* 40(1–2): 97–110.

Agassiz, L. 1833-1843. *Recherches sur les poissons fossiles*, vol. 5. Neuchâtel: Petitpierre.

Alexandrowicz, S.W., and D. Radwan. 1973. Kreda opolska—problematyka stratygraficzna i złożowa. *Przegląd Geologiczny* 20(4): 183–188.

Aller, J.Y., and R.C. Aller. 1986. Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic. *Deep Sea Research, Part A* 33(6A): 755–790.

Allison, P.A., and D.E.G. Briggs. 1991. Taphonomy of nonmineralized tissues. In *Taphonomy: releasing the data locked in fossil record*, Topics in Geobiology, vol. 9, ed. P.A. Allison, and D.E.G. Briggs. 25–70. New York: Plenum Press.

Bather, F.A. 1911. Upper Cretaceous terebelloids from England. *Geological Magazine* 8: 481–487 and 549–556.

Behrensmeyer, A.K. 1991. Terrestrial vertebrate accumulations. In *Taphonomy: releasing the data locked in fossil record*, Topics in Geobiology, Volume 9, eds P.A. Allison and D.E.G. Briggs. 291–335.

Bittner, A.M., and A. Pisera. 1979. Brachiopods from the Upper Cretaceous chalk of Mielenik (Eastern Poland). *Acta Geologica Polonica* 29(1): 67–88.

Błaszkiewicz, A. 1980. Campanian and Maastrichtian ammonites of the Middle Vistula River Valley, Poland; a stratigraphic-paleontological study. *Prace Instytutu Geologicznego* 42: 1–63.

Cockerell, T.D.A. 1919. Some American Cretaceous fish scales, with notes on the classification and distribution of Cretaceous fishes. *United States Geological Survey Professional Paper* 120: 165–202.

Cope, E.D. 1887. Geology and paleontology. *American Naturalist* 21(11): 1014–1019.

Dadlez, R., S. Marek, and J. Pokorski. 2000. *Geological map of Poland without cenozoic deposits, scale 1:1,000,000*. Warszawa: Państwowy Instytut Geologiczny.

Davies, W. 1879. On some fish exuviae from the Chalk, Generally referred to *Dercetis elongatus* AG; And on the new species of fossil Annelide, *Terebella lewesiensis*. *Geological Magazine* 6: 145–148.

Ekrt, B., M. Košiák, M. Mazuch, S. Voigt, and F. Wiese. 2008. New specimen of *Terebella lewesiensis* from the Upper Cretaceous chalk of Mielnik (Eastern Poland). *Acta Geologica Polonica* 29(1): 67–88.

Fritsch, A., 1878. *Die Reptilien und Fische der böhmischen Kreidezeit*. Prag, Verlag des Verfrissers—In den Jahren 1878–1881.

Fielitz, C. 1996. A late Cretaceous (Turonian) ichthyofauna from Lac à poissons of the middle Vistula Valley, Central Poland. *Acta Palaeontologica Polonica* 36(1–3): 69–224.

Gallo, V., F.J. de Figueiredo, and H.M.A. da Silva. 2005. Ana lise filogenética dos Dercetidae (Teleostei, Aulopiformes). *Arquivos do Museu Nacional, Rio de Janeiro* 63(2): 329–352.

Geaßdzieka, E. 1981. Coccoliiths and index foraminifera from the Lower Cretaceous chalk of Mielenik region, Eastern Poland. *Acta Palaeontologica Polonica* 26(1): 73–84.

Geinitz, H.B. 1868. Die fossilen Fischschuppen aus dem Plänerkalke in Strehlen. *Denkschriften der Gesellschaft für Naturkunde und Heilkunde in Dresden* 2: 1–18.
González-Rodríguez, K.A., H.P. Schultze, and G. Arratia. 2013. Miniature armored acanthomorph teleosts from the Albain/Cenomanian (Cretaceous) of Mexico in Mesozoic fishes—global diversity and evolution, ed. G. Arratia, H.P. Schultze, and M.V.H. Wilson, 457–487. München: Verlag Dr. Friedrich Pfeil.

Greenwood, P.H., D.E. Rosen, S.H. Weitzman, and G.S. Myers. 1966. Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the American Museum of Natural History 131(4): 339–456.

Hakenberg, M. 1986. Albian and Cenomanian in the Miecho´w Basin. Studia Geologica Polonica 86: 57–85.

Heller, I., and W. Moryc. 1984. Stratygrafia utworo ´w kredy go´rnej Przedgo´rza Karpat. Biuletyn Instytutu Geologicznego 346: 63–108.

Jaskowiak, M., A. Krassowska, S. Marek, and A. Raczy´nska. 1968. Kreda. In Atlas Geologiczny Polski 1:2000000., ed. J. Znosko, Warszawa.

Jagt, J.W.M., J. Walaszczyk, E.A. Yazykova, and M. Zatoń. 2004. Linking southern Poland and northern Germany: Campanian cephalopods, incoeramid bivalves and echinoids. Acta Geologica Polonica 54(4): 573–586.

Jungersen, H.F.E. 1910. Ichthyotomical contributions. II. The structure of the Aulostomidae, Synagnostidae and Solenostomidae. Mémoires de l’Académie Royale des Sciences et des Lettres de Danemark 8: 269–363.

Jurbowska, A. 2014. Stratygografia incoeramowa i architektura depozy- cji wyższej kredy górnej niecki miechowskiej. Unpublished PhD Thesis, Jagiellonian University, Kraków.

Jurkowska, A., and A. Uchman. 2013. The trace fossil Lepidenteron lewesiensis (Mantell, 1822) from the Upper Cretaceous of southern Poland. Acta Geologica Polonica 63(4): 611–623.

Kędzierski, M. 2008. Calcareous nanofossil and incoeramid biostratigraphies of a Middle Turonian to Middle Coniacian section of the mucus lining of terebellid polychaete worms. Chemical Geology 271(1–2): 44–51.

Kędzierski, M., and A. Uchman. 2001. Ichnofabrics of the Upper Cretaceous marlstones in the Opole region, southern Poland. Acta Geologica Polonica 51(1): 81–91.

Kongiel, R. 1962. On belemnites from Maastrichtian, Campanian and Santonian sediments in the Middle Vistula Valley. Prace Muzeum Ziemi 5: 1–148.

Książkiewicz, M. 1927. Les poissons fossiles du crétacé supérieur des environs de la Gosciewie. Bulletin de l’Académie Polonaise des Sciences, Série B: 979–1006.

Lalonde, S.V., L.T. Dafoe, S.G. Pemberton, M.K. Gingras, and K.O. Patterson, R.T., C. Wright, A.S. Chang, L.A. Taylor, P.D. Lyons, A. Dallimore, and A. Kumar. 2002. Atlas of common squamato-logical (fish scale) material in coastal British Columbia and an assessment of the utility of various scale types in paleofisheries reconstruction. Palaeontologia Electronica 4(2): 1–88.

Peryt, D. 1981. Planktonic foraminifers and the age of chalk from Mielnik (eastern Poland). Bulletin de l’Académie Polonaise des Sciences, Série des Sciences de la Terre 29(2): 137–142.

Pictet, F.J. 1850. Description de quelques poissons fossiles du Mont Liban. Genèse. J.G. Fick.

Pożarski, W. 1938. Senons Stratigraphie im Durchbruch der Weichsel zwischen Rachów und Puławy in Mittelpolen. Biuletyn Państwowego Instytutu Geologicznego 6: 1–94.

Pożarski, W. 1960. An outline of stratigraphy and Palaeoecography of the Cretaceous in the Polish Lowland. Prace Instytutu Geologicznego 30: 377–418.

Pożarski, W. 1974. Tektonika cz. 1. Niż Polski. In Budowa geologiczna Polski, IV, ed. W. Pożarski, 2–34. Wydawnictwa Geologiczne, Warszawa.

Regan, C.T. 1923. The skeleton of Lepidosteus, with remarks on the origin and evolution of the lower neopterygian fishes. Proceedings Zoological. Society London 1923: 445–461.

Remin, Z. 2012. The Belemnella stratigraphy of the Campanian-Maasrichtian boundary; a new methodological and taxonomic approach. Acta Geologica Polonica 62(4): 495–534.

Roberts, C.D. 1993. Comparative morphology of spined scales and their phylogenetic significance in the Teleostei. Bulletin of Marine Science 52(1): 63–113.

Rosen, D.E. 1973. Interrelationships of higher euteleostean fishes In Interrelationship of Fishes, eds Greenwood, P.H., Miles, R.S., and Patterson, C., 397–513. Zoological Journal of the Linnean Society 53, Supplement 1; London:Academic Press.

Rutkowski, J. 1965. Senon okolic Miechowa. Rocznik Polskiego Towarzystwa Geologicznego 35(1): 1–47.
Santini, F., and J.C. Tyler. 2003. A phylogeny of the families of fossil and extant tetraodontiform fishes (Acanthomorpha, Tetraodontiformes), Upper Cretaceous to recent. Zoological Journal of the Linnean Society 139(4): 565–617.

Schäfer, W. 1972. Ecology and palaeoecology of marine environments. Chicago: The University of Chicago Press.

Sorbian, L. 1981. The Cretaceous fishes of Nardo. 1. Order gasterocephaliformes (Pisces). Bollettino del Museo Civico di Storia Naturale di Verona 8:1–27. [Zoological Record Volume 119].

Suhr, P. 1988. Taxonomie und Ichnologie fossiler Wohnrohren. Freiberger Forschungshefte 419: 81–87.

Świderska, J. 2007. Kreda w rejonie lubelskim—sedymentacja i jej tektoniczne uwarunkowania. Biuletyn Państwowego Instytutu Geologicznego 422: 63–78.

Świerczewska-Gładysz, E. 2006. Late Cretaceous siliceous sponges from the Middle Vistula River Valley (Central Poland) and their palaeoecological significance. Annales Societatis Geologorum Poloniae 76(3): 227–296.

Świerczewska-Gładysz, E. 2012a. Hexactinellid sponge assemblages across the Campanian-Maastrichtian boundary in the Middle Vistula River section, central Poland. Acta Geologica Polonica 62(4): 561–580.

Świerczewska-Gładysz, E., and A. Jurkowska. 2013. Occurrence and palaeoecological significance of lyssacinosid sponges in the Upper Cretaceous deposits of southern Poland. Facies 59(4): 763–777.

Tarkowski, R. 1991. Stratigraphy, macrofossils and palaeogeography of the Upper Cretaceous from the Opole Trough. Zeszyty Naukowe AGH, Geologia 51: 3–156.

Taverne, L. 2005a. Les poissons crétacés de Nardo. 22°. Nardodercetis vandewaldae gen. et sp. nov. (Teleostei, Aulopiformes, Dercetidae). Bollettino del Museo Civico di Storia Naturale di Verona, Geologia Paleontologia Preistoria 29: 81–93.

Taverne, L. 2005b. Les poissons crétacés de Nardo. 21°. Ophidercetis italiensis gen. et sp. nov. (Teleostei, Aulopiformes, Dercetidae). Une solution ostéologique au problème des genres Dercetis et Benthesikyme (=Leptotrachelus). Bollettino del Museo Civico di Storia Naturale di Verona, Geologia Paleontologia Preistoria 29: 55–79.

Tyler, J.C., and L. Sorbini. 1996. New superfamily and three new families of tetraodontiform fishes from the Upper Cretaceous: the earliest and most morphologically primitive plectognaths. Smithsonian Contributions to Paleobiology 82: 1–59.

Voigt, S., M. Wagreich, F. Suryik, I. Walaszczyk, D. Ulicny, S. Cech, T. Voigt, F. Wiese, M. Wilmsen, B. Niebuhr, M. Reich, H. Funk, J. Michalik, J.W.M. Jagt, P.J. Felder, and A.S. Schulz. 2008. Cretaceous. In Geology of Central Europe, vol. 2: Mesozoic and Cenozoic, ed. T. McCann, 923–997. London: The Geological Society of London.

Walaszczyk, I. 1988. Inoceramid stratigraphy of the Turonian and Coniacian strata in the environs of Opole (Southern Poland). Acta Geologica Polonica 38(1–4): 51–61.

Walaszczyk, I. 1992. Turonian through Santonian deposits of the Central Polish Uplands; their facies development, inoceramid paleontology and stratigraphy. Acta Geologica Polonica 42(1–2): 1–122

Walaszczyk, I. 1997. Biostratigraphie und Inoceramen des oberen Unter-Campan unteren Ober-Campan. Norddeutschlands. Geologie und Paläontologie in Westfalen 49: 1–111

Walaszczyk, I. 2004. Inoceramids and inoceramid biostratigraphy of the Upper Campanian to basal Maastrichtian of the Middle Vistula River section, central Poland. Acta Geologica Polonica 54(1): 95–168

Walaszczyk, I. 2012. Integrated stratigraphy of the Campanian-Maastrichtian boundary succession of the Middle Vistula River (central Poland) section; introduction. Acta Geologica Polonica 62(4): 485–493

Walaszczyk, I., and W.A. Cobban. 2000a. Inoceramid faunas and biostratigraphy of the Upper Turonian–Lower Coniacian of the United States Western Interior. Special Papers in Palaeoontology 64: 1–117

Walaszczyk, I., and W.A. Cobban. 2000b. Inoceramid faunas and biostratigraphy of the Upper Turonian-Lower Coniacian of the United States Western Interior. Paleontology Special Papers 64: 1–117.

Walaszczyk, I., and C.J. Wood. 1998. Inoceramid and biostratigraphy at the Turonian/Coniacian boundary; based on the Salzgitter-Salder Quarry, Lower Saxony, Germany, and the Shupa Nadbrzeżna section, Central Poland. Acta Geologica Polonica 48(4): 395–434.

Williams, J.T., E. Delrieu-Trottin, and S. Planes. 2012. A new species of Indo-Pacific fish, Canthigaster criobe, with comments on other Canthigaster (Tetraodontiformes: Tetraodontidae) at the Gambier Archipelago. Zootaxa 3523: 80–88.

Wilson, M.V.H. 1987. Predation as a source of fish fossils in Eocene lake sediments. Palaios 2(5): 497–504.

Woodward, A.S. 1902–1912. The fossil fishes of the English Chalk. Monograph of the Palaeontographical Society, London, 257 pp.

Zelaźniewicz, A. 2008. Regionalizacja tektoniczna Polski—stan obecny i próba uporządkowania. Przegląd Geologiczny 56: 887–894.

Zelaźniewicz, A., P. Aleksandrowski, Z. Buła, P.H. Karnkowski, A. Konon, N. Oszczypko, A. Ślączka, J. Żaba, and K. Żytko. 2011. Regionalizacja tektoniczna Polski. Wrocław: Komitet Nauk Geologicznych PAN.