Development of microsatellite markers for a monotypic and globally endangered species, *Glyptostrobus pensilis* (Cupressaceae)

Gang-Tao Wang1,2,3, Zheng-Feng Wang1,2,4,5, Rui-Jiang Wang1,2,4, Dan Liang1,2, and Guo-Bin Jiang1,2,3

PREMISE OF THE STUDY: Microsatellite markers were developed to facilitate studies of genetic diversity and structure in *Glyptostrobus pensilis*, a critically endangered and monotypic conifer species.

METHODS AND RESULTS: Using restriction site–associated DNA sequencing (RAD-Seq), we developed 10 polymorphic and 27 monomorphic microsatellite markers. Polymorphism was characterized using 333 individuals from nine populations. The number of alleles per locus ranged from one to 14 at the population level. The levels of observed and unbiased expected heterozygosities varied from 0.058 to 0.844 and 0.219 to 0.583, respectively. Nine of these 10 polymorphic markers were successfully cross-amplified in *Taxodium distichum*, the species most closely related to *G. pensilis*.

CONCLUSIONS: These microsatellite markers can be used to reveal the genetic diversity in existing populations of *G. pensilis*, enabling its conservation and restoration.

KEY WORDS: Cupressaceae; endangered species; genetic diversity; genetic markers; *Glyptostrobus pensilis*; RAD-Seq.
Table 1: Characteristics of 37 microsatellite markers developed in Glyptostrobus pensilis

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	GenBank accession no.
GP_19	F: GCCAGCAGATTATACCCAG	(GT),	314–338	MH236836
	R: GGGCCACCAAGAGATGC			
GP_43	F: AGGTGCTTGGTCAAAATCCC	(AC),	153–161	MH236849
	R: GTCTAATTTGGAAGGGCACAAC			
GP_46	F: AAGGGTGCTCATCCTCACAG	(GAA),	152–156	MH236852
	R: TCTAGCATTGAAACACATGCG			
GP_57	F: TATATATCTCAGGGGTCTCC	(GT),	207–212	MH236855
	R: TGGCCAGGATAATTTGCGG			
GP_58	F: AGAGGTAACTCCATCATGTC	(TC),	288–374	MH236856
	R: GTCACTACCTATCGAAGATGCG			
GP_71	F: ACCTAGAAGGCAATAGGCC	(AC),	199–201	MH236858
	R: AGGAGAAGCATCTACACTAAGG			
GP_75	F: TGGTAGACTATGGTCAGATCT	(GA),	149–153	MH236862
	R: TCAGCATTCTACCAAGATGTC			
GP_80	F: TGGTAGACCACTCAAGGCC	(CA),	145–147	MH236864
	R: AGAAGACAGCTACAGGCC			
GP_89	F: ACACCTACATCATCTAGGTC	(GT),	332–338	MH236868
	R: ATGCACTATTGACATGGTTC			
GP_94	F: AGCATTTGGAACATCAAGGCC	(AG),	130–172	MH236871
	R: ATGCTCTCACGTCAGGCCC			
GP_7	F: TGGGCTGATAGATGGGCCC	(GT),	332	MH236832
	R: TCTCTAGGCTGATGGGCCC	(GT),		
GP_8	F: ATCTCCATGCGTGACCACC	(CTT),	224	MH236833
	R: AGTGGGTGTTACATGCTGTC			
GP_9	F: CGACTCTATGCGTGACCACC	(AT),	343	MH236834
	R: CATCCTAGATGGCAGATATGC	(AT),		
GP_17	F: AATGGAGACAGGCAATAGG	(GA),	190	MH236835
	R: GCCCTAGCCATTAGTACACC			
GP_22	F: AAGAGGGTTGGCAGTGTC	(GGA),	156	MH236837
	R: GCCCTGCGTATAACATAGC			
GP_26	F: ACATGTTTACAAATCTCAGTGC	(CT),	156	MH236839
	R: GAGGGAATTGCGCCTCCCT			
GP_28	F: ACAACTCTTTGGAATGTGTC	(AT),	179	MH236840
	R: GGGTCTGAATATCAGATGTC			
GP_29	F: GATATGTGCAAAAAGGCC	(AC),	370	MH236841
	R: TCTTCAAGAACAGATCAGAC	(AC),		
GP_31	F: CGGTGATCCCTGCCTGCC	(AC),	394	MH236842
	R: ACCAGCTCAGAAATTTGCC			
GP_32	F: AGGTGATACAGGGTGAGGCC	(CT),	192	MH236843
	R: GGTGAAGAAGTGCAACTCGAC			
GP_35	F: GAACCTTTAATGGTGGAAGAGG	(GA),	251	MH236844
	R: GCCATGAAAGAAGAAATAGCC			
GP_36	F: TGCTTATCTCAGTCATCCCT	(AT),	207	MH236845
	R: CCCATTATGGAGACCGTGC			
GP_37	F: TCTGCTCCTCCACAGGAAATAGGC	(CT),	194	MH236846
	R: TGAACAACTTGGTGCTCTAAC			
GP_39	F: TGGAGAAGATATCTGATGGTCC	(GT),	153	MH236847
	R: TATGGAAATTTTGGCTCTACAG	(GT),		
GP_41	F: AACTTGGAAAGGTAATGGG	(GT),	175	MH236848
	R: ATCTTCTGCTTACCTAGCAC			
GP_44	F: TCAAGCCAGCTCAACCC	(AC),	185	MH236850
	R: TCAAGACCTTACCTTGCGG			
GP_47	F: AACTTGTTGCTTCACTGACC	(AC),	176	MH236853
	R: ATGTGGAAGAGTGGACACCCAG	(CT),		
GP_56	F: TGGATCTTATGGGTGATGAC	(AC),	213	MH236854
	R: GCTTTGACATGCGAGGGTG			
GP_64	F: TGCTTCACCTAGTGCGGAC	(AC),	184	MH236857
	R: TGTGGAAGGTGTTGACCATGAG	(AC),		
GP_72	F: CGGTGATGGGATCCATGTGC	(GT),	167	MH236859
	R: AAGGTGTTGCTGCGGCC			
a modified cetyltrimethylammonium bromide (CTAB) method (Doyle, 1991).

Restriction site–associated DNA sequencing (RAD-Seq; Baird et al., 2008) was used to obtain partial genomic DNA sequences of *G. pensilis*. The microsatellites were then selected and developed based on these sequences. Two samples, one from the South China Botanical Garden and the other from Conghua District, Guangzhou Province, China, were used to construct the RAD-Seq libraries with the restriction enzyme EcoRI (Promega Corporation, Madison, Wisconsin, USA), followed by 150-bp paired-end sequencing using a HiSeq X Ten genetic analyzer (Illumina, San Diego, California, USA). From the two samples, 35,615,442 and 35,297,882 raw sequences were obtained, respectively. The raw sequence data are available in the National Center for Biotechnology Information (NCBI) Sequence Read Archive database (accession no. SRR7133729 and SRR7133728).

These raw sequences were subsequently combined and re-assembled by CAP3 (Huang and Madan, 1999), resulting in 3,285,999 contigs with a total length of 787,094,171 bp. The minimum and maximum lengths of the contigs were 80 bp and 2016 bp, respectively. The raw sequence data are available in the National Center for Biotechnology Information (NCBI) Sequence Read Archive database (accession no. SRR7133729 and SRR7133728).

Microsatellites with dinucleotide and trinucleotide motifs with minimum lengths of the contigs were 80 bp and 2016 bp, respectively. The raw sequence data are available in the National Center for Biotechnology Information (NCBI) Sequence Read Archive database (accession no. SRR7133729 and SRR7133728).

Conclusions

In this study, 10 polymorphic and 27 monomorphic microsatellite markers were developed for *G. pensilis*. The cross-amplification test indicated that nine of the 10 polymorphic markers can be successfully amplified in six *T. distichum* individuals. These markers will offer valuable tools for future investigations of genetic diversity and structure, level of gene flow, and conservation genetic studies in these two species.
TABLE 2. Genetic diversities of 10 polymorphic microsatellites developed for
in eight Chinese populations and one Vietnamese population.a

Locus	A	H_o	uH_o	F	Adjusted P value
GP_19	4	0.833	0.773	−0.087	0.526
GP_43	1	0.000	0.000	—	—
GP_46	2	0.833	0.530	−0.667	0.242
GP_57	3	0.750	0.679	−0.125	0.571
GP_58	6	0.800	0.844	−0.059	0.863
GP_71	—	—	—	—	—
GP_75	2	1.000	0.545	−1.000	0.069
GP_80	2	1.000	0.545	−1.000	0.069
GP_89	1	0.000	0.000	—	—
GP_94	2	1.000	0.545	−1.000	0.069
Overall	—	—	—	—	—

Note: A = number of alleles; F = fixation index; H_o = observed heterozygosity; uH_o = unbiased expected heterozygosity.
*aSee Appendix 1 for locality and voucher information.
*a indicates a significant deviation from Hardy–Weinberg equilibrium after Holm’s sequential Bonferroni correction (P < 0.05).

ACKNOWLEDGMENTS

The authors thank Z. Wang, X. J. Liu, and B. Chen for their field assistance in collecting samples. This study was supported by the Guangzhou Wild Life Conservation and Management Office (SYZFCG-[2017]032, Guangzhou Water Pine Germplasm Resource Conservation Program), Guandong Forestry Department Program for Rare and Endangered Plant Conservation, Botanical Gardens Conservation International (BGCI) G. pensilis Conservation Program, and the STS Program of the Chinese Academy of Sciences (KFJ-3W-No1-1).

AUTHOR CONTRIBUTIONS

R.J.W. conceived and designed the project. R.J.W., G.T.W., and D.L. carried out the field collection. G.T.W., Z.F.W., and G.B.J. carried out the laboratory procedures. G.T.W. and Z.F.W. analyzed the data. All authors read and approved the final version of the manuscript.

DATA ACCESSIBILITY

The microsatellites and raw sequences developed in this article have been deposited in the National Center for Biotechnology Information (NCBI). The GenBank accession numbers for the microsatellites are provided in Table 1, and the accession numbers for the raw sequences in the NCBI Sequence Read Archive are SRR7133729 and SRR7133728.

LITERATURE CITED

Averyanov, L. V., K. L. Phan, T. H. Nguyen, S. K. Nguyen, T. V. Nguyen, and T. D. Pham. 2009. Preliminary observation of native Glyptostrobus pensilis (Taxodiaceae) stands in Vietnam. TAIWANIA 54: 191–212.

Baird, N. A., P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver, Z. A. Lewis, E. U. Selker, et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3: e3376.
LePage, B. A. 2007. The taxonomy and biogeographic history of Glyptostrobus Endlicher (Cupressaceae). *Bulletin of the Peabody Museum of Natural History* 48: 359–426.

Li, F. G., and N. H. Xia. 2004. The geographical distribution and cause of threat to *Glyptostrobus pensilis* (Taxodiaceae). *Journal of Tropical and Subtropical Botany* 12: 13–20.

Nguyen, M. T., D. D. Vu, T. T. X. Bui, and M. D. Nguyen. 2013. Genetic variation and population structure in Chinese water pine (*Glyptostrobus pensilis*): A threatened species. *Indian Journal of Biotechnology* 12: 499–503.

Peakall, R., and P. Smouse. 2012. GenAlEx 6.5 (version 6.5): Genetic analysis in Excel. Population genetic software for teaching and research—an update. *Bioinformatics* 28: 2537–2539.

Wu, Z. Y., J. F. Liu, W. Hong, D. M. Pan, and S. Q. Zheng. 2011. Genetic diversity of natural and planted *Glyptostrobus pensilis* populations: A comparative study. *Chinese Journal of Applied Ecology* 22: 873–879.

APPENDIX 1. Locality information for the *Glyptostrobus pensilis* and *Taxodium distichum* samples used in this study.\(^a\)

Species	Population code	N	Collection locality	Voucher no.
Glyptostrobus pensilis				
(Staunton ex D. Don) K. Koch	JX	59	Shangrao, Jiangxi Province, China	IBSC799028
			Yingtan, Jiangxi Province, China	IBSC799072
			Zixing, Hunan Province, China	IBSC799035, 799034, 799082
			The Chinese University of Hong Kong, China	IBSC799085
	HK	6	Ningde, Fujian Province, China	IBSC799064
			Sanming, Fujian Province, China	IBSC799019
			Quanzhou, Fujian Province, China	IBSC799016, 799075
			Fuzhou, Fujian Province, China	IBSC799068
	GD	74	Guangzhou, Guangdong Province, China	IBSC799061, 799020, 799014, 799078, 799079, 799041, 799042, 799054, 799083, 799084
			Zuhuai, Guangdong Province, China	IBSC799080, 799022
			Huaiji, Guangdong Province, China	IBSC799056
			Meizhou, Guangdong Province, China	IBSC799021, 799018, 799032
			Huizhou, Guangdong Province, China	IBSC799066, 799057, 799031, 799030
			Tianteng, Guangxi Province, China	IBSC799047
			Qinzhou, Guangxi Province, China	IBSC799048
			Guilin, Guangxi Province, China	IBSC799049
			Cangwu, Guangxi Province, China	IBSC799051
			Luchuan, Guangxi Province, China	IBSC799044
			Funing, Yunnan Province, China	IBSC799046
	ZJ	6	Hangzhou, Zhejiang Province, China	IBSC799050
			Shanghai, China	IBSC799059
			Wuhu, Hubei Province, China	IBSC799053
			Xinyang, Henan Province, China	IBSC799055
			Haiphong, Dak Lak Province, Vietnam	HN11357, 7111, 11946, 11950
Taxodium distichum (L.) Rich.			South China Botanical Garden, Guangzhou, Guangdong Province, China	(23°10′51″N, 113°21′08″E)
			Dák Lák, Dak Lak Province, Vietnam	IBSC799015

Note: N = number of individuals sampled.

\(^a\)All voucher specimens were deposited in the South China Botanical Garden Herbarium (IBSC), Guangzhou, China, or the Vietnam Academy of Science and Technology Herbarium (HN), Hanoi, Vietnam.