Assessment of the diagnostic ability of RIFLE and SOFA scoring systems in comparison with protein biomarkers in acute kidney injury

https://doi.org/10.1515/labmed-2018-0099
Received July 25, 2018; accepted November 3, 2018

Abstract

Background: We aimed to assess the diagnostic sensitivity of Risk, Injury, Failure, Loss, and End-stage (RIFLE) and Sequential Organ Failure Assessment (SOFA) scoring systems regarding the serum creatinine level in acute kidney injury (AKI) patients hospitalized in the intensive care unit (ICU). This study also aims to compare the sensitivity of these scoring systems with that of mitochondrial pyruvate carrier 1 (MPC-1), interleukin-10 (IL-10) and neutrophil gelatinase-associated lipocalin (NGAL) as biomarkers.

Methods: This is a cross-sectional study. Thirty patients with increased creatinine level and decreased urine output were recognized as AKI patients, and 30 patients were selected as the control group. The serum levels of each of the proteins of interest were measured at the initial state (moment of entrance) and final state (14th day in the ICU). Statistical analysis was performed with respect to t-test, and a p-value < 0.05 was considered significant. The diagnostic ability of biomarkers was assessed using receiver operating characteristic (ROC) curve.

Results: The majority of patients were recognized in the risk level of RIFLE, and level 1 of SOFA scoring system. There was no correlation between RIFLE and SOFA (p = 0.123). The expression of MPC-1, IL-10 and NGAL was more remarkable compared with the serum creatinine level. The ROC area change for MPC-1 and IL-10 was higher compared with that for NGAL. As a result, MPC-1 and IL-10 are more reliable biomarkers than NGAL to predict the incidence of AKI in the earlier stage.

Conclusions: There was no significant correlation between SOFA and RIFLE classification, and also the sensitivity of these scoring systems was identified at the risk level for AKI patients. Instead, the level of biomarkers alters earlier, and in higher concentration, than creatinine and urine output changes; therefore, they are more reliable than RIFLE and SOFA scoring systems for prognosis purposes.

Keywords: acute renal injury; biomarker; RIFLE; SOFA.

Introduction

Acute kidney injury (AKI) is a frequent complication affecting approximately 10% of patients with acute illnesses requiring hospitalization [1]. AKI is the reason for increased morbidity, length of stay in the hospital and an enhancement in hospital mortality up to 9 times greater in patients with AKI than in patients without AKI [2–5]. The occurrence of AKI has also been related to increased risks of chronic kidney disease (CKD), stroke and other cardiovascular events [6, 7]. Approximately 4% of patients with AKI have been shown to require renal replacement therapy, and because of hemodynamic instability they
might need to receive continuous renal replacement therapy (CRRT) frequently [8, 9]. As AKI is economically expensive and incurs extra cost for patients, it is a target to both improved patient and health economic outcomes [2]. According to pieces of evidence, even minor changes in serum creatinine in AKI patients are associated with increased mortality [4].

Risk, Injury, Failure, Loss, and End-stage (RIFLE), a multilevel classification system, was proposed to cover a complete spectrum of acute renal dysfunction, including Risk of renal dysfunction, Injury to the kidney, Failure or Loss of kidney function and End-stage kidney disease (under the acronym of RIFLE) [5]. Originally, the aim of RIFLE classification was to standardize the definition and severity of AKI, rather than be a tool to predict mortality. Sequential Organ Failure Assessment (SOFA) score is another method to track a person’s status during the stay in the intensive care unit (ICU) and has been used to measure the effectiveness of renal therapy [10, 11]. However, these methods are not without limitations. For instance, risk patients defined by creatinine criteria are more severely ill compared with risk patients defined by urine output criteria (not well balanced) [12, 13]. Another limitation of RIFLE is the need for baseline creatinine, which may not always be available [14, 15]. Therefore, there is a need for more accurate and reliable methods to not only assess the severity and mortality but also for diagnosis.

Many biomarkers have been proposed, including neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), interleukin-18 (IL-18), cystatin C, angiotensigen and renin, as early markers of AKI, which may be useful for the detection of AKI before increases in serum creatinine [16–20]. Monocyte chemoattractant protein 1 (MCP-1) is a cytokine that activates monocytes and various inflammatory processes [21]. MCP-1 has shown a very strong relation with the progression of renal disease, which has been verified by preclinical studies proving that the blockade of the MCP-1 receptor (chemokine receptor 2 [CCR2]) reduces interstitial fibrosis [22, 23]. IL-10 is a multifunctional cytokine produced by a variety of other cells [24], which regulates proliferation, differentiation and function of immune, dendritic cells and endothelial cells in response to inflammatory/immune stimulation [25–27]. The diagnostic ability of NGAL in AKI has been assessed for a decade [28]. Kidney epithelial cells, in a stressed condition, predominantly secrete monomeric NGAL. Also, elevated urinary homodimeric levels and abundance of monomeric NGAL in AKI patients support this fact [29, 30]. In this study, we aimed to assess the diagnostic ability and sensitivity of RIFLE and SOFA scoring systems regarding the serum creatinine level and to compare these classification systems with the diagnostic sensitivity of MCP-1, IL-10 and NGAL as biomarkers for AKI.

Materials and methods

Patients

This cross-sectional study was performed with 60 patients who were hospitalized in the ICU. Thirty patients with increased creatinine level and reduced urine output (as per AKI criteria) were selected as the case group, and the other 30 patients were selected as the control group.

Inclusion and exclusion criteria

Patients older than 18 years and with AKI features (increased serum creatinine level, reduced urine volume), whose serum was available, were included in this study. Patients with a history of CKD, end-stage renal disease (ESRD) and kidney transplant were excluded from this study.

Performance

Blood samples were collected in five steps after ICU hospitalization (at the moment of entrance, 1st, 3rd, 7th and 14th day), each specimen was of 5 mL. Blood serum was separated by centrifugation and stored in −80 °C. Serum creatinine level and urine output were measured daily and every 6 h, respectively. Patients with a creatinine level 1.5-fold of baseline and urine volume less than 0.5 mL/kg/6 h were selected for the measurement of the serum level of IL-10, NGAL and MCP-1. Also, RIFLE classification and SOFA score variables such as PaO₂, FiO₂, Glasgow Coma Scale (GCS), blood pressure, bilirubin level and blood platelet counts were measured daily.

Ethical consideration

The study was carried out in accordance with the Declaration of Helsinki, and the Ethics Committee of the Sari University of Medical Sciences approved the protocol of this study. The study procedure and probable side effects...
were explained to the patient and written consent was acquired. The patients’ records were kept confidential.

Data analysis

Quantitative data were reported as mean ± standard deviation. Statistical analysis was performed with respect to T-test and a p-value < 0.05 was considered significant. The diagnostic ability was analyzed using receiver operating characteristic (ROC) curve, sensitivity and specificity as true positive and false positive, respectively. The cut-off point was determined from the curve. All data were analyzed using IBM SPSS Statistics for Windows, version 19.0 (SPSS Inc., Chicago, IL, USA).

Results

In the present study, among the case group patients, 56.67% of the patients were male and 43.33% of the patients were female. In the control group, 64.3% were male and 35.7% were female. According to chi-squared analysis, the gender difference between the two groups was not significant (p = 0.553). Also, the average age in the case and control groups was 61.46 ± 21.57 and 60.57 ± 20.21, respectively, and according to t-test analysis, the age difference between the case and control groups was not statistically significant (p = 0.872).

The severity of AKI in ICU patients based on SOFA and RIFLE scores is presented in Table 1. The RIFLE score was assessed in three levels (Risk, Injury, Failure) and by considering the creatinine level and urine output. Nonetheless, 21 (70%) patients were categorized with Risk exposure, eight (27%) patients with Injury exposure and one (3%) with Failure exposure. According to SOFA score, 19 patients obtained score 1 (creatinine 1.2–1.9 mg/dL), three patients obtained score 2 (creatinine 2–3.4 mg/dL), one patient obtained score 3 (creatinine 3.5–4.9 mg/dL) and the rest obtained score 0 (creatinine below 1.2 mg/dL). There was no significant correlation between RIFLE and SOFA score classification (p = 0.123).

Comparison of the level of biomarkers in the baseline state did not show any significant differences between the case and control groups. On the other hand, our results demonstrated that in the final state there was a significant difference between the case and control groups in terms of the level of biomarkers. Comparing the case group in the baseline and final state showed a statistically significant difference. On the contrary, no significant difference was observed in the control group at different states, except for MCP-1 which showed a significant decrease in the final state (p = 0.003) (Table 2).

ROC analysis provides us with information regarding the diagnostic ability of candidate biomarkers. The ROC profile was obtained for MCP-1, IL-10 and NGAL (Figure 1). The area under the ROC curve, cut-off, sensitivity and specificity for biomarkers are summarized in Table 2. The ROC area change for mitochondrial pyruvate carrier 1 (MPC-1) and IL-10 was higher compared to that for NGAL.

Discussion

There is considerable concern about AKI, as it is expensive and associated with a high rate of mortality, and increasingly policy guidelines suggest predicting AKI mortality [2]. In the UK, the actual incidence of AKI was difficult to assess until there were robust electronic patient records in all hospitals. According to previously documented in-hospital mortality, the rate of mortality associated with AKI incidence was recognized as very high compared to a population of patients without AKI [4, 5].

Therefore, it is necessary to establish an efficient method for the early detection of AKI incidence. RIFLE and SOFA score classification have been widely used to predict the mortality of AKI [31–34]. In a study on children with AKI, the maximum RIFLE score for half of the patients was achieved within 24 h, and 75% achieved the maximum score after a 7-day stay at the ICU, and finally, the authors of this study related the RIFLE scores to increased mortality [35]. Furthermore, the expression of creatinine, which is the main monitoring factor to achieve RIFLE and SOFA, almost occurs at low concentration levels [36, 37]. In a study by Chang et al. on patients concomitant with AKI admitted to the ICU, they recommended the application of SOFA by physicians to assess ICU mortality due to its
practicality and low cost. They mentioned that a SOFA score of \(\geq 11 \) on ICU day 1 should be considered an indicator of negative short-term outcomes [38]. In other words, SOFA and RIFLE are more suitable to standardize the definition and severity of AKI rather than for prognosis purposes, because of the non-sensitivity of serum creatinine which is the core criterion for SOFA and RIFLE classification. In the same way, the results of the present study demonstrated that the majority of patients were localized in the risk level of RIFLE and level 1 of SOFA; in other words, the detection limit for RIFLE and SOFA, in best condition, is in level 1, and not less. However, no correlation was observed between SOFA and RIFLE \((p = 0.123)\) (Table 1). This results reinforced the necessity of existence of other factors to diagnose AKI in early stages.

In this study, we investigated the diagnostic ability of MPC-1, IL-10 and NGAL as biomarkers for AKI incidence in early stages. It has been shown that the MPC-1 concentration was higher in kidney donors with AKI in comparison with donors without AKI [39]. Also, MCP-1 expression in mice peaks several days after inducing renal ischemia/reperfusion (I/R) injury coinciding with macrophage accumulation followed by significantly decreased survival and increased renal damage within the first 2 days [40]. Similarly, the results of the present study demonstrated that the MPC-1 level increased significantly in the case group in the final state, which confirms the association between AKI incidence and expression of MPC-1. However, in the control group, the MPC-1 level decreased in the final state, which can be attributed to the decrease of inflammation in patients. In this study, the ROC area in the initial state was 0.52, which increases to 0.73 in the final state. Therefore, MPC-1 can be reliably used to predict AKI.

As our results demonstrated, the IL-10 level decreased in AKI patients in the final state of ICU stay. On the contrary, in a study on induced aging rates, the mortality was associated with increased severity of septic AKI and an increased inflammatory response including IL-10 [41]. Also, administration of very high doses of endotoxin has shown sustained AKI and increased serum IL-10 level in 4 h, which implied the potential association between AKI and IL-10 [42]. The predicting ability of IL-10 was found to be reliable as the ROC area in the final state was 0.75 and more than that in the initial state (ROC area 0.51).

During the last decade, genomic analyses have shown upregulated NGAL gene after ischemic AKI, and so, NGAL has become a possible marker for the early detection of AKI [28, 43]. Also, studies on critically ill patients have consistently shown an association with NGAL levels in plasma or urine and severity of established AKI [44–46]. In the same way, our results demonstrated a significant increase in the NGAL level in AKI patients \((p = 0.015)\). Kashani et al. [44] obtained only a limited performance (ROC area 0.69) when NGAL was used to predict severe AKI; however, our performance was slightly better (ROC area 0.72), and there was no considerable difference compared to the initial state.

In conclusion, this study showed no significant correlation between SOFA and RIFLE classification, and also the higher sensitivity of these scoring systems was identified at risk level 1 for AKI patients. Furthermore, we
demonstrated a significant serum level alteration for each of MPC-1, IL-10 and NGAL in patients with AKI. The levels of these proteins alter earlier than creatinine and urine output changes; therefore, they are more reliable than RIFLE and SOFA scoring systems for prognosis purposes. MPC-1 and IL-10 are more reliable biomarkers as the ROC area for these proteins was higher in the final state compared with that in the initial state.

Acknowledgments: This study was the graduation thesis of Dr. Mohamadmehdi Kordjazi for his specialization degree in internal medicine. We obtained a grant from Molecular and Cell Biology Research Center of Mazandaran University of Medical Sciences.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References
1. Lafrance JP, Miller DR. Acute kidney injury associates with increased long-term mortality. J Am Soc Nephrol 2010;21:345–52.
2. Kerr M, Bedford M, Matthews B, O'Donoghue D. The economic impact of acute kidney injury in England. Nephrol Dial Transplant 2014;29:1362–8.
3. Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol 2014;9:12–20.
4. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 2005;16:3365–70.
5. Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int 2008;73:538–46.
6. Hsu RK, Hsu CY. The role of acute kidney injury in chronic kidney disease. Semin Nephrol 2016;36:283–92.
7. Odutayo A, Wong CX, Farkouh M, Altman DG, Hopewell S, Emdin CA, et al. AKI and long-term risk for cardiovascular events and mortality. J Am Soc Nephrol 2017;28:377–87.
8. Ricci Z, Ronco C, D'Amico G, De Felice R, Rossi S, Bolgian I, et al. Practice patterns in the management of acute renal failure in the critically ill patient: an international survey. Nephrol Dial Transplant 2006;21:690–6.
9. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 2005;294:813–8.
10. Kim IY, Kim JH, Lee DW, Lee SB, Rhee H, Seong EY, et al. Fluid overload and survival in critically ill patients with acute kidney injury receiving continuous renal replacement therapy. PloS One 2017;12:e0172137.
11. Orme RM, Perkins GD, McAuley DF, Liu KD, Mason AJ, Morelli A, et al. An efficacy and mechanism evaluation study of Levosimendan for the Prevention of Acute oOrgan Dysfunction in Sepsis (LeoPARDS): protocol for a randomized controlled trial. Trials 2014;15:199.

12. Cruz DN, Bolgan I, Perazella MA, Bonello M, de Cal M, Corradi V, et al. North East Italian Prospective Hospital Renal Outcome Survey on Acute Kidney Injury (NEIPHROS-AKI): targeting the problem with the RIFLE Criteria. Clin J Am Soc Nephrol 2007;2:438–25.

13. Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 2006;10:R73.

14. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative Work Group. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) group. Crit Care 2004;8:R204–20.

15. National Kidney Function. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39:S1–266.

16. Mishra J, Dent C, Tarabishi R, Milseneffes MM, Ma Q, Kelly C, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005;365:1231–8.

17. Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int 2004;66:1115–22.

18. Parikh CR, Jani A, Melnikov VY, Faubel S, Edelstein CL. Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 2004;43:405–14.

19. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 2002;62:237–44.

20. Alge JL, Karakala N, Neely BA, Janech MG, Tumlin JA, Chawla LS, et al. Association of elevated urinary concentration of renin-angiotensin system components and severe AKI. Clin J Am Soc Nephrol 2013;8:2043–52.

21. Wolf G, Jocks T, Zahner G, Panzer U, Stahl RA. Existence of a regulatory loop between MCP-1 and TGF-beta in glomerular immune injury. Am J Physiol Renal Physiol 2002;283:F1075–84.

22. Mansour SG, Puthumana J, Coca SG, Gentry M, Parikh CR. Biomarkers for the detection of renal fibrosis and prediction of renal outcomes: a systematic review. BMC Nephrol 2017;18:72.

23. Kitagawa K, Wada T, Furuiuchi K, Hashimoto H, Ishiwata Y, Asano M, et al. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol 2004;165:237–46.

24. Calcagni E, Elenkov I. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann N Y Acad Sci 2006;1069:62–76.

25. Lan YY, Wang Z, Raimondi G, Wu W, Colvin BL, de Creus A, et al. "Alternatively activated" dendritic cells preferentially secrete IL-10, expand Foxp3+CD4+ T cells, and induce long-term organ allograft survival in combination with CTLA4-Ig. J Immunol 2006;177:5868–77.

26. Nishihira K, Imanura T, Yamashita A, Hatakeyama K, Shibata Y, Nagatomo Y, et al. Increased expression of interleukin-10 in unstable plaque obtained by directional coronary atherectomy. Eur Heart J 2006;27:1685–9.

27. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001;19:683–765.

28. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 2003;14:2534–43.

29. Belcher JM, Sanyal AJ, Peixoto PP, Hall IE, Doshi MD, Weng WC, et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology 2014;60:622–32.

30. Martensson J, Xu S, Bell M, Martling CR, Venge P. Immunoassays distinguishing between HNL/NGAL released in urine from kidney epithelial cells and neutrophils. Clin Chim Acta 2012; 413:1661–7.

31. Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Crit Care Med 2007;35:1837–43.

32. Lopes JA, Jorge S, Resina C, Santos C, Pereira A, Neves J, et al. Prognostic utility of RIFLE for acute renal failure in patients with sepsis. Crit Care 2007;11:408.

33. Hoste EA, Kellum JA. Acute kidney injury: epidemiology and diagnostic criteria. Curr Opin Crit Care 2006;12:531–7.

34. Thakar CV, Worley S, Arrigain S, Yared JP, Paganini EP. Influence of renal dysfunction on mortality after cardiac surgery: modifying effect of preoperative renal function. Kidney Int 2005;67:1112–9.

35. Schneider J, Khemani R, Grushkin C, Bart R. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med 2010;38:933–9.

36. van Beek SC, Legemate DA, Vahl A, Bouman CS, Vogt L, Wisseling W, et al. Acute kidney injury defined according to the 'Risk,' 'Injury,' 'Failure,' 'Loss,' and 'End-stage' (RIFLE) criteria after repair for a ruptured abdominal aortic aneurysm. J Vasc Surg 2014;60:1159–67.

37. Palmieri T, Lavrentieva A, Greenhalgh A. An assessment of acute kidney injury with modified RIFLE criteria in pediatric patients with severe burns. Intensive Care Med 2009;35:2125–9.

38. Chang CH, Fan PC, Chang MY, Tian YC, Hung CC, Fang JT, et al. Acute kidney injury enhances outcome prediction ability of sequential organ failure assessment score in critically ill patients. PLoS One 2014;9:e109649.

39. Mansour SG, Puthumana J, Reese PP, Hall IE, Doshi MD, Weng FL, et al. Associations between deceased-donor urine MCP-1 and kidney transplant outcomes. Kidney Int Rep 2017;2:749–58.

40. Stroo I, Claessen N, Teske GJ, Butter LM, Florquin S, Leemans JA. Deficiency for the chemokine monocyte chemotactic protein-1 aggravates tubular damage after renal ischemia/reperfusion injury. PLoS One 2015;10:e0123203.

41. Liu C, Hu J, Mao Z, Kang H, Liu H, Fu W, et al. Acute kidney injury and inflammatory response of sepsis following cecal ligation and puncture in d-galactose-induced aging rats. Clin Interv Aging 2017;12:593–602.

42. Bhargava R, Altmann CJ, Andres-Hernando A, Webb RG, Okamura K, Yang Y, et al. Acute lung injury and acute kidney injury are established by four hours in experimental sepsis and are improved with pre, but not post, sepsis administration of TNF-alpha antibodies. PLoS One 2013;8:e79037.
43. Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P. Differential gene expression following early renal ischemia/reperfusion. Kidney Int 2003;63:1714–24.

44. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 2013;17:R25.

45. de Geus HR, Bakker J, Lesaffre EM, le Noble JL. Neutrophil gelatinase-associated lipocalin at ICU admission predicts for acute kidney injury in adult patients. Am J Respir Crit Care Med 2011;183:907–14.

46. Koyner JL, Vaidya VS, Bennett MR, Ma Q, Worcester E, Akhter SA, et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin J Am Soc Nephrol 2010;5:2154–65.