Induction of Mitosis Delay And Apoptosis By RTA 404 In Glioblastoma Multiforme

Tai-Hsin Tsai
Kaohsiung Medical University https://orcid.org/0000-0002-1956-4311

Ann-Shung Lieu
Kaohsiung Medical University

Tzuu-Yuan Huang
Changhua Christian Hospital

Aij-Lie Kwan
Kaohsiung Medical University

Chih-Lung Lin
Kaohsiung Medical University

Yi-Chiang Hsu (jenway74@isu.edu.tw)
School of Medicine, I-Shou University, Kaohsiung, Taiwan https://orcid.org/0000-0002-6256-9521

Research

Keywords: RTA 404, CDDO-TFEA, GBM, Cell cycle

Posted Date: August 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-789618/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Glioblastoma multiforme (GBM) is the vicious malignant brain tumor in adults. Despite advances multi-disciplinary treatment, GBM continues to have a poor overall survival. CDDO-trifluoroethyl-amide, a trifluoroethylamidederivative of CDDO, is an Nrf2/ARE pathway activator. RTA 404 is used to inhibit proliferation and induce differentiation and apoptosis in glioma cells. However, it not clear what effect it may have on tumorigenesis in GBM.

Methods

This in vitro study evaluated the effects of RTA 404 on GBM cells. To do this, we treated GBM8401 cell lines with RTA 404 and assessed apoptosis, cell cycle. DNA content and induction of apoptosis were analyzed by flow cytometry and protein expression by Western blot analysis.

Results

RTA 404 significantly inhibited the proliferation induced cell apoptosis on GBM 8401 cell line. Typical plasma membrane undergoes structural changes that cause translocation of phosphatidylserine from the inside to outside. Due to cell external pressure cause mitochondrial membrane potential change lead to cell apoptosis. Caspase-3 active respond to apoptosis phenomenon, continuous progression of apoptosis. In addition, treatment with RTA 404 led to an accumulation of G2/M-phase cells. An analysis of Cyclin B1, CDK1 and Cyclin B1/CDK1 complex association suggested that cell cycle progression seems also to be regulated by RTA 404. Therefore, RTA 404 may not only induced cell cycle G2/M arrest, it may also exert apoptosis in established GBM cells.

Conclusion

RTA 404 can inhibit proliferation, cell cycle progression and induce apoptosis in GBM cells in vitro, possibly though its inhibition of Cyclin B1, CDK1 expression, and Cyclin B1/CDK1 association.

Introduction

Glioma, the most common brain tumor is classified by The World Health Organization (WHO) into four grades based on histologic features [1, 2]. WHO grade IV, also called glioblastoma multiforme (GBM), is angiogenic and can cause necrosis. Glioblastoma multiforme are aggressive tumors of the central nervous system. Despite advancesin multi-disciplinary treatment, GBM continues to have poor overall survival. Patients with glioblastoma have a median survival rate of about twelve months [3]. Therefore, it is very important to identify new and effective anticancer drugs and understand the pharmacological mechanism of the drugs to help treat malignant tumors.
One component found in Chinese herbal medicine for hepatitis, oleanolic acid, has been modified chemically creating an oleanane triterpenoid, 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO), a plant synthesized drug [4]. The therapeutic effect of CDDO results from its ability to up-regulate Nrf2 by changing the conformation of the Nrf2-repressing, Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) [5]. Antioxidant Response Element (ARE) has been found by several animal and human studies to activate Nrf2-controlled antioxidant genes upstream [5]. Much research has been devoted to manipulating these compounds to generate new derivatives with higher sought-after activities, increasing for example their anti-inflammatory activity and creating additional functional groups with the potential in the treatment of conditions. At present, CDDO derivatives have been used to treat lung injury [5], inflammation [6], and chronic kidney disease [7]. More and more evidence confirms that CDDO and its derivatives have anti-cancer effects. CDDO and its derivatives, CDDO-Me and CDDO-Im have been extensively investigated for their strong antiproliferative, antiangiogenic, antimetastatic activities, and for their capability to induce apoptosis and differentiation in cancer cells [8].

RTA 404, a trifluoroethylamide derivative of CDDO, has been found to have anti-oxidation, anti-inflammatory, and anti-proliferative effects, and also have enhanced ability to cross the blood-brain barrier.[9].Currently, CDDOTEFA has been used in neurodegenerative diseases, neuroinflammatory diseases, and neurooncology tumors. It has also been shown to enhance Nrf2 expression and signaling in various models of neurodegeneration [10], including those that simulate multiple sclerosis [11], amyotrophic lateral sclerosis [12], and Huntington's disease [13]. RTA 404 has been found to have neuroprotective effects in some animal models of degenerative diseases, including ischemic stroke [9] and autoimmune encephalomyelitis [11]. It has also been found to induce apoptosis of neuroblastoma cells [14]. Furthermore, RTA 404 can inhibit proliferation, cell locomotion, cell cycle progression and induce apoptosis in GBM cells[15].

Although RTA 404 has been found to inhibit some cancers [16], it is unclear what effect RTA 404 may have on GBM and how it may achieve its effect. This study aims at focusing especially on RTA 404 and its chemo-preventive activities against glioma cells GBM8401. Efforts have been initiated to inspect the effects of RTA 404 on cell growth and cell cycle regulation, and expression levels of downstream molecules were additionally evaluated. The results illustrated that RTA 404 reduced glioma cell proliferation and induced glioma cell apoptosis in GBM8401 cells. This study demonstrated also that the increase in the G2 and M population of GBM8401 cells can be attributed to the repression of Cyclin B and CDK1 after exposure to RTA 404.

Result

RTA 404 decrease cell viability on GBM8401 cell line

We wanted to know whether RTA 404 could mediate the survival of human brain malignant glioma cells (GBM 8401) and mitigate their proliferation. To find out, we performed an *in vitro* study in which we
treated each of the glioma cell lines with increasing doses of RTA 404 (0, 1, 1.5, 2 μM) for 24 hours and then measured proliferation by PB. As can be seen in Figure 1, there was a significant decrease in survival and proliferation of the GBM 8401 cells, both dose-dependently decreased by increased doses of RTA 404 (GBM8401; 24 hrs: y = -24.339x + 111.61, R² = 0.841, 48 hrs: y = -30.959x + 107.27 R² = 0.7175, 72 hrs: y = -30.813x + 105.13 R² = 0.6821) 24 to 72 h after treatment.

RTA 404 induced cell apoptosis on GBM8401 cell line

To clarify the role of RTA 404 in the apoptosis of GBM8401 cells, the cells were treated with RTA 404 for 4 h followed by detecting the Annexin V-FITC and PI staining, caspase 3 assay, and MMP2 assay. Cell population and apoptotic ratios were analyzed by flow cytometry. Compared with the untreated (control) cells, an Annexin-FITC/PI assay exhibited significant changes in the percentage of apoptosis on RTA 404-treated cells (Fig. 2A). RTA 404 treated cells had significant increase in the percentage of apoptotic cells compared with the untreated (control) cells (Fig 2B, y = 1.0137x + 0.187 R² = 0.9202). The loss of mitochondrial membrane potential (ΔΨm), an early cellular metabolism event coinciding with caspase activation, is a hallmark of apoptosis. In non-apoptotic cells, JC-1 is present as a green monomer in the cytosol, but it accumulates as red aggregates in the mitochondria. In apoptotic and necrotic cells, although JC-1 is present in the monomeric form, it stains the cytosol green. We wanted to explore the possible effect of RTA 404 on ΔΨm in the GBM cells. To do this, we used JC-1 as a dye to assess ΔΨm loss in the RTA 404 treated cancer cells. As shown in Fig 3A (left), ΔΨm of the cancer cells was reduced after treatment with RTA 404. Fig 3A (right) illustrates typical FL-1/FL-2 dot plots for apoptotic and nonapoptotic GBM8401 cells stained by JC-1. Non-RTA 404-treated cancer cells did not undergo apoptosis, resulting in red fluorescing JC-1 aggregates. The green fluorescing monomers in the lower part of the figure indicate apoptotic cells. Taken together, these observations suggest that treatment with RTA 404 led to a significant reduction in the ΔΨm of the GBM8401 cells (Fig 3B, y = 11.482x - 4.7167 R² = 0.6904). The results, summarized in Fig 2 and 3, suggest that RTA 404 may mediate GBM8401 cell line survival. Thus, we hypothesized that the proliferation of these cells was inhibited by pathways of apoptosis.

Moreover, loss of mitochondria membranes potential was detected also due to RTA 404 treatment. Finally, a significant rise in the percentage of caspase-3 activity was detected in RTA 404-treated cancer cells (Fig.4 A and B, y = 2.863x - 2.2267 R² = 0.8766). Therefore, these results indicated that incubation with RTA 404 inhibited cell survival and proliferation and underwent cell apoptosis.

RTA 404 induced cell cycle arrest in G2/M phase in GBM 8401 cell line.

To further investigate the effect of RTA 404 on glioma cell growth, the cell cycle distribution among RTA 404 treated cells was analyzed and quantified by flow cytometry. Cells were treated with RTA 404 for 24 h followed by processing and analysis. As shown in Figure 5(A), treatment with RTA 404 led to an increment in the G2/M phase cell population, implying that GBM 8401 cells underwent a delay in the
G2/M phase checkpoint. These results suggested that exposure to RTA 404 enhanced cell populations in the G2/M phase (Figure 5B).

Mitosis protein synthesis inhibited by RTA 404 treatment on GBM 8401 cell line.

We were interested in what role RTA 404 might play in mitosis in GBM 8401. Mitosis protein synthesis of RTA 404-treated cells was analyzed using MPM-2 Staining. Figure 6 shows cells exposed to RTA 404 at different concentrations (0, 1, 1.5 and 2μM) before processing and analysis. Figure 6(A) shows that exposure to RTA 404 resulted in an increase in the mitosis protein. These results indicated that RTA 404 increased the mitosis protein synthesis (Figure 6B, y = 16.635x - 1.955 R² = 0.8103).

RTA 404 inhibited glioma cell cycle arrest through the cell cycle relates protein and induced apoptosis through the cyclinB1/CDK1 complex dissociation and p21 signaling pathway

As shown above, we found that RTA 404 induced apoptosis and inhibited cell cycle in the GBM cells. Figure 7 (A and B) shows the results of our Western blot analysis of cellular proteins extracted from the brain cancer cell lines treated with RTA 404. We measured the relative intensities of cyclin A2, cyclin B1, CDK1, NRF2, CHK1/2 and p21 gene expression. We found the protein expressions of cyclin A2, cyclin B1, CDK1, NRF2, CHK2 and to be significantly down-regulated, but the p-CHK2, CHK1 and tumor suppressor gene p21 up-regulated in RTA 404-treated GBM8401 cells.

Therefore, we wanted to investigate whether RTA 404 exerted its effects on cell cycle arrest through Cyclin B1 and CDK1. Co-IP is an effective means of quantifying protein-protein interactions in cells (Figure 8A). They were found to have significant decreases in cyclinB1/CDK1 complex (Figure 8B) in COOD-TREA treatment. These results suggest that the increased mitosis protein synthesis, G2/M phase arrest may occur via Cyclin B1, CDK1,and Cyclin B1/CDK1; and apoptosis may occur via the p21 signaling pathway.

Discussion

This study demonstrated that RTA 404 reduced glioma cell proliferation and induced glioma cell apoptosis in GBM8401 cells. In addition, treatment with RTA 404 led to an accumulation of G2/M-phase cells. Cell cycle progression seems also to be regulated by RTA 404 through inhibition of Cyclin B1, CDK1, and Cyclin B1/CDK1 complex. Therefore, RTA 404 may not only induce cell cycle G2/M arrest, but it may also exert apoptosis in established GBM cells.

Induction of apoptosis and arrest of the cell cycle are two of the best approaches to suppressing cancerous tumors [17].Apoptosis is the one of programmed cell death that is involved in intrinsic and extrinsic pathways that activate the caspase family of cysteine proteases. The apoptotic markers such as Bax induce apoptosis via mitochondrial membrane potential alteration that results in the translocation of cytochrome c from the mitochondrial inner membrane to the cytosol that triggers signaling of caspase cascades[18, 19]. Cytochrome c activates caspase-9, thereby caspase-9 cleaves and activates caspase-3[20]. Caspase-9 activates downstream caspase-3[20], which is well known as one of the apoptotic
mediators leading to DNA damage and eventually apoptosis. In the extrinsic pathway, stimulation of the TNF family of receptors results in the activation of caspase-8[21]. Caspase-8 can directly activate caspase-3[22]. Finally, there is an activation of the same target apoptotic molecules such as caspase-3[23]. Many anticancer drugs induce apoptosis by activation of the intrinsic pathway[24]. The available evidence indicates that CDDO induces apoptosis by activation of the extrinsic caspase-8 pathway [25–29]. In the present study, it was revealed that RTA 404 induced cytotoxicity in GBM8401 cells, while there was no change in normal skin fibroblasts Hs-68 cells and normal lung fibroblasts MRC-5 cells (data not shown). RTA 404 decreased cell viability of GBM8401 cells by apoptotic induction as seen in the increasing number of Annexin V positive cells with nuclear chromatin condensation and DNA fragmentation after incubation with RTA 404 in a dose-dependent manner. (Fig. 2). Moreover, a significant rise in the percentage of caspase-3 activity was detected in RTA 404-treated cancer cells (Fig. 3). RTA 404 also decreased the aggregate to monomer ratio of JC-1 corresponding with the decreased number of cells with intact mitochondrial membrane potential evaluated by fluorescent microscope (Fig. 4). Therefore, according to the effects of RTA 404 in the up-regulation of caspase-3 and alteration of mitochondrial membrane potential, it could be implied that RTA 404 has potential in apoptotic induction via an intrinsic pathway on GBM8401 cell.

Cell cycle deregulation is a unique feature of human cancer. The mechanism of this characteristic is involved with the mutation of cell cycle regulatory genes which allows for a cell to avoid the checkpoint control systems[30]. It has been revealed that treatment with RTA 404 in various types of cell lines could induce cell cycle arrest in different phases. Alabran et al observed an increase in sub-G1/G0 and severe depletion in the S-phase populations following treatment with RTA 404. Severe depletion in S-phase indicates that DNA synthesis is extremely sensitive to RTA 404. However, the author also cannot rule out G2/M block in addition to the S-phase depletion, since cells trapped in the G2/M at the time of treatment by triterpenoids did not progress into G1/G0 phase[14]. In the human brain, malignant glioma cell lines incubated with RTA 404 resulted in cell cycle arrest in the G2/M phase [15]. As shown in Fig. 5, treatment with RTA 404 led to an increment in the G2/M phase cell population, implying that GBM 8401 cells underwent a delay in the G2/M phase checkpoint. These results suggested that exposure to RTA 404 enhanced cell populations in the G2/M phase.

Cancer cells frequently display unscheduled division. Cell cycle progression is dependent on highly ordered events controlled by a subfamily of cyclin-dependent kinases (CDKs), the activity of which is modulated by cyclins[31]. The cyclin B1/Cdk1 complex is shown to specifically regulate the entry into mitosis [32]. A large number of proteins are phosphorylated by the cyclin B1–Cdk1 complex prior to mitotic entry. Through its cytoplasmic, nuclear, and centrosomal localization, cyclin B1/Cdk1 is able to synchronize different events in mitosis such as nuclear envelope breakdown and centrosome separation [33]. Regulation of the mitotic events is linked to the control of the activity of the cyclin B1–Cdk1 complex to make cells enter mitosis, arrest at G2-phase, or skip mitosis [34]. In our study showed that treatment with RTA 404 led to an increment in the G2/M phase cell population, implying that GBM 8401 cells underwent a delay in the G2/M phase checkpoint. Exposure to RTA 404 resulted in an increase in the mitosis protein. These results indicated that RTA 404 increased mitosis protein synthesis. We found the
protein expressions of cyclin A2, cyclin B1 and CDK1 to be significantly down-regulated in RTA 404-treated GBM8401. Co-IP is an effective means of quantifying protein-protein interactions in cells (Fig. 9). They were found to have significant decreases in Cyclin B1, CDK1, and cyclinB1/CDK1 complex. These results suggest that the increased mitosis protein synthesis, G2/M phase arrest may occur via Cyclin B1, CDK1, and Cyclin B1/CDK1.

Conclusions

In summary, RTA 404 significantly inhibited the proliferation and induced cell apoptosis on GBM 8401 cell line; it induced glioma cell cycle arrest and accumulation of G2/M-phase via inhibiting the Cyclin B1, CDK1, and Cyclin B1/CDK1. These findings suggest that CDDDO-TFEA can inhibit proliferation, cell cycle progression and induce apoptosis in GBM cells in vitro, possibly through its inhibition of Cyclin B1, CDK1, and Cyclin B1/CDK1. Therefore, RTA 404 may not only induce cell cycle G2/M arrest, but it may also exert apoptosis in established GBM cells.

Materials And Methods

Materials

2-cyano-3,12-dioxo-N-(2,2,2-trifuoroethyl)-oleana-1,9(11)-dien-28-amide, RTA 404, was purchased from Cayman Chemical, DMSO (dimethyl sulfoxide) and PrestoBlue™ Cell Viability Reagent (PB) were purchased from ThermoFisher (USA). Cell culture medium (DMEM), fetal bovine serum, antibiotics, sodium pyruvate, trypsin, and phosphate-buffered saline (PBS) were obtained from Gibco, BRL (Grand Island, NY), and polyvinylidene fluoride membrane (PVDF) (Millipore), and molecular weight markers from Bio-Rad (USA). All other reagents and compounds were of analytical grade.

Cell culture

Human brain malignant glioma GBM 8401 cells were obtained from Bioresource Collection and Research Center (BCRC, Hsinchu, Taiwan). All cell lines were incubated in an atmosphere containing 5% CO2 at 37°C. GBM8401 cells were cultured in an RPMI1640 medium with supplemental 10% fetal bovine serum (FBS) and U87 MG cells in modified Eagle's medium (MEM) with supplemental 10% FBS.

Cell viability

A density of 5000 cells was suspended in a culture medium containing 10% FBS and placed in a 96-well plate (0.1 ml of medium per each well) and incubated in an atmosphere containing 5% CO2, saturated humidity, and 37°C for 24 h. The cells were added with 0, 1, 1.5, 2 µM RTA 404 and incubated with PrestoBlue™ Cell Viability Reagent for 10 mins. The reaction was measured at 570 nm using a multiwell plate reader (iQUANT; BioTek Instruments, Inc., USA). When there were no cells, we subtracted the background absorbance of the medium. All samples were assayed at least in triplicate, and the mean
was calculated for each experiment. Results were expressed as a percent of control, control being 100%. Each experiment was performed in triplicate with a mean (+/-SEM) used to express results.

Cell cycle analysis

The GBM8401 cells were plated in 6-well plates (1x10^6) in a cell incubator and cultured overnight. The next day, the cells were centrifuged in a 10ml centrifuge tube and the supernatant was collected. They were washed twice in PBS and added with 1x Trypsin. They were then placed in a 37 °C oven for 1–2 minutes. Once the cells fell off, they were collected in a centrifuge tube run at 2500 rpm for 5 minutes to remove the supernatant. Then, 1 ml of PBS was added to wash the remaining culture solution and the cells were centrifuged again at 2500 rpm for five minutes. 500 µl of PBS was added to break up the cell pallet and then 500 µl of 70% ethanol was slowly added to the cells for fixation. They were placed in a refrigerator and left there overnight. The next day those cells were centrifuged at 2500 rpm for 5 min, and the supernatant containing Ethanol was removed. The cells were washed in one ml PBS. 5 µl of RNase A 100 mg /ml was added to PBS and placed in an oven at 37 ° C.

To facilitate cell cycle analysis, a fluorescent nucleic acid dye PI was used to identify the proportion of cells in each of the three inter-phase stages. After a 30-minute reaction time, 20 µl of propidium iodide 2mg/ml (final concentration 40 µg/ml) was added and the cells were placed an oven at 37 ° C for 15 minutes. The cells were treated with RTA 404 for 24 h followed by harvesting and fixing in 1mL of ice-cold ethanol (70%) at -20° C for at least 8 h. DNA was stained with PI/RNaseA staining buffer, and the cell cycle was analyzed using a FACSCalibur flow cytometer. Data were interpreted using WinMDI 2.9 software.

Apoptosis measurement

The cells were cultured in 6 well culture plates (Orange Scientific, EU). After exposure to RTA 404 for 4 h, the cells were harvested by centrifugation, resuspended in, and incubated with 1 x annexin-binding buffer containing 5 IL of annexin V-FITCand 1 IL of propidium iodide (PI) (100 mg/mL), and incubated at room temperature for 15min. The stained cells were analyzed on a FACSCalibur flow cytometer (BD Pharmingen) using WinMDI 2.9 free software (BD Pharmingen).

Evaluation of mitochondrial membrane potential

The cells were seeded into 24-well plates (Orange, United Kingdom). Following treatment with RTA 404 for 6 h, we added 10 µg/mL JC-1 (Sigma, USA) to the culture medium at 50 µL/well, which was then incubated at 37°C for 20 min for mitochondrial staining. After being washed twice with warm PBS, the cells were fixed with 2% paraformaldehyde and detected by FACS Calibur flow cytometer (JC-1). Data were analyzed using WinMDI 2.9. JC-1 was also detected by using fluorescence microscopy (Olympus CKX41 and U-RFLT 50, Japan).

Western blotting
All samples were lysed in 200 µl of lysis buffer. A total of 50–75µg of protein per sample were loaded onto 10–12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis membranes for electrophoretic separation and then transferred to PVDF membranes and subjected to electrophoresis at 50 V for 4 h. After blocking overnight with Odyssey blocking buffer (USA), the membranes were incubated with primary antibodies [Cyclin A2 (1:1000; proteintech; 18202-1-AP), Cyclin B1 (1:1000; proteintech; 55004-1-AP), CDK1 (1:1000;cell signaling; E1Z6R), NRF2 (1:1000; proteintech; 16396-1-AP), CHK2 (1:1000; abgent.com; AP4999a), p-Chk2 (1:1000; abgent; AP50241), CHK1 (1:1000; proteintech; 22018-1-AP), p21 (1:1000; Cell Signaling; #2947), and β-actin (1:20000; Sigma; A5441)] for 2 h at room temperature. Subsequently, the membranes were washed several times and then incubated with a corresponding secondary antibody (IRDye Li-COR, USA) at a dilution of 1:20,000 for 30–45 min. Antigens were then visualized using a near-infrared fluorescence imaging system (Odyssey LICOR, USA), and the data were interpreted using the Odyssey2.1 software or a chemiluminescence detection kit (ECL; Amersham Corp., Arlington Heights, IL, USA).

Mitotic index analysis

Mitotic index was assessed based on MPM-2 (anti-phospho-Ser/Thr-Pro) expression. After treatment with CDDOTFEA, cells were harvested and fixed in 70% ethanol overnight. The cells were then washed and suspended in 100 µL of IFA-Tx buffer (4% FCS, 150 nM NaCl, 10 nM HEPES, 0.1% sodium azide, and 0.1% Triton X-100) with the MPM-2 antibody at room temperature for 1 h. The cells were then washed and resuspended in IFA-Tx buffer with a rabbit anti-mouse FITC-conjugated secondary antibody (1:50 dilution; Serotec) for 1 h at room temperature in the dark. Finally, the cells were washed and resuspended in 500 µL of PBS with 20 µg/mL PI (Sigma) for 30 min in the dark. MPM-2 expression was measured by FACSCalibur flow cytometer. Data were analyzed using WinMDI 2.9.

Co-immunoprecipitation (Co-IP)

Co-IP is an effective means of quantifying protein-protein interactions in cells. Briefly, after incubation at room temperature overnight, 500 mg of cellular proteins were labeled using anti-CDK1 antibody. The protein–antibody immunoprecipitates were collected using protein A/G plus-agarose beads (SC-2003 Santa Cruz BioTechnology). Following the final wash, the samples were boiled and centrifuged to transform the agarose beads into pellets. Finally, cyclin B1 proteins were performed using western blot analysis. Antigens were visualized and data were analyzed using Odyssey 2.1 software.

Data analysis

Data are expressed as the mean ± standard error of the mean of at least three independent experiments. Student’s t-test or one-way analysis of variance with Scheffe’s posthoc test was used for statistical analysis. A P-value of < .05 was considered statistically significant.

Abbreviations

Antioxidant Response Element (ARE)
2-cyano-3-,12-dioxoolean-1,9-dien-28-oic acid (CDDO)

CDDO imidazolide (CDDO-Im)

CDDO methyl ester (CDDO-Me)

CDDO trifluoroethyl amide (RTA 404)

Glioblastoma multiforme (GBM)

Kelch-like ECH-associated protein 1 (Keap1)

Nuclear factor erythroid 2-related factor 2 (Nrf2)

Reactive nitrogen species (RNS)

World Health Organization (WHO)

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

The data used to support the findings of this study are available in article supplementary material.

Competing interests

The Authors declare that there is no conflict of interest.

Funding

The author(s) received no specific funding for this work.

Authors’ contributions

All authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Acknowledgements
The author(s) received no specific funding for this work.

References

1. **Cahill D, Turcan S.** Origin of Gliomas. *Seminars in neurology.* 2018; 38: 5-10.

2. **Bush NA, Chang SM, Berger MS.** Current and future strategies for treatment of glioma. *Neurosurgical review.* 2017; 40: 1-14.

3. **Zachariah MA, Oliveira-Costa JP, Carter BS, Stott SL, Nahed BV.** Blood-based biomarkers for the diagnosis and monitoring of gliomas. *Neuro-oncology.* 2018; 20: 1155-61.

4. **Gao F, Zuo Q, Jiang T, Song H, Zhou J.** A newly synthesized oleanolic acid derivative inhibits the growth of osteosarcoma cells in vitro and in vivo by decreasing c-MYC-dependent glycolysis. *Journal of cellular biochemistry.* 2019; 120: 9264-76.

5. **Wang YY, Zhang CY, Ma YQ, He ZX, Zhe H, Zhou SF.** Therapeutic effects of C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me; bardoxolone methyl) on radiation-induced lung inflammation and fibrosis in mice. *Drug design, development and therapy.* 2015; 9: 3163-78.

6. **Shanmugam MK, Dai X, Kumar AP, Tan BK, Sethi G, Bishayee A.** Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. *Cancer letters.* 2014; 346: 206-16.

7. **Wang YY, Yang YX, Zhe H, He ZX, Zhou SF.** Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. *Drug design, development and therapy.* 2014; 8: 2075-88.

8. **Borella R, Forti L, Gibellini L, De Gaetano A, De Biasi S, Nasi M, Cossarizza A, Pinti M.** Synthesis and Anticancer Activity of CDDO and CDDO-Me, Two Derivatives of Natural Triterpenoids. *Molecules (Basel, Switzerland).* 2019; 24.

9. **Yang T, Sun Y, Li Q, Li S, Shi Y, Leak RK, Chen J, Zhang F.** Ischemic preconditioning provides long-lasting neuroprotection against ischemic stroke: The role of Nrf2. *Experimental neurology.* 2020; 325: 113142.

10. **Gupta K, Patani R, Baxter P, Serio A, Story D, Tsujita T, Hayes JD, Pedersen RA, Hardingham GE, Chandran S.** Human embryonic stem cell derived astrocytes mediate non-cell-autonomous neuroprotection through endogenous and drug-induced mechanisms. *Cell death and differentiation.* 2012; 19: 779-87.

11. **Pareek TK, Belkadi A, Kesavapany S, Zaremba A, Loh SL, Bai L, Cohen ML, Meyer C, Liby KT, Miller RH, Spom MB, Letterio JJ.** Triterpenoid modulation of IL-17 and Nrf-2 expression ameliorates...
neuroinflammation and promotes remyelination in autoimmune encephalomyelitis. *Scientific reports*. 2011; 1: 201.

12. **Neymotin A, Calingasan NY, Wille E, Naseri N, Petri S, Damiano M, Liby KT, Risingsong R, Sporn M, Beal MF, Kiaei M.** Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. *Free radical biology & medicine*. 2011; 51: 88-96.

13. **Stack C, Ho D, Wille E, Calingasan NY, Williams C, Liby K, Spom M, Dumont M, Beal MF.** Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington's disease. *Free radical biology & medicine*. 2010; 49: 147-58.

14. **Alabran JL, Cheuk A, Liby K, Spom M, Khan J, Letterio J, Leskov KS.** Human neuroblastoma cells rapidly enter cell cycle arrest and apoptosis following exposure to C-28 derivatives of the synthetic triterpenoid CDDO. *Cancer biology & therapy*. 2008; 7: 709-17.

15. **Tsai TH, Lieu AS, Wang YW, Yang SF, Hsu YC, Lin CL.** Therapeutic Potential of RTA 404 in Human Brain Malignant Glioma Cell Lines via Cell Cycle Arrest via p21/AKT Signaling. *BioMed research international*. 2021; 2021: 5552226.

16. **Wang YY, Zhe H, Zhao R.** Preclinical evidences toward the use of triterpenoid CDDO-Me for solid cancer prevention and treatment. *Molecular cancer*. 2014; 13: 30.

17. **Saleem M, Asif J, Asif M, Saleem U.** Amygdalin from Apricot Kernels Induces Apoptosis and Causes Cell Cycle Arrest in Cancer Cells: An Updated Review. *Anti-cancer agents in medicinal chemistry*. 2018; 18: 1650-5.

18. **Liu X, Kim CN, Yang J, Jemmerson R, Wang X.** Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. *Cell*. 1996; 86: 147-57.

19. **Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD.** The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. *Science (New York, NY)*. 1997; 275: 1132-6.

20. **Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X.** Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. *Cell*. 1997; 91: 479-89.

21. **Boldin MP, Goncharov TM, Goltsev YV, Wallach D.** Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. *Cell*. 1996; 85: 803-15.

22. **Stennicke HR, Jürgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q, Ellerby HM, Ellerby LM, Bredesen D, Green DR, Reed JC, Froelich CJ, Salvesen GS.** Pro-caspase-3 is a major physiologic target of caspase-8. *The Journal of biological chemistry*. 1998; 273: 27084-90.
23. Jeong SY, Seol DW. The role of mitochondria in apoptosis. *BMB reports*. 2008; 41: 11-22.

24. Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy. *Blood*. 2001; 98: 2603-14.

25. Ito Y, Pandey P, Place A, Sporn MB, Gribble GW, Honda T, Kharbanda S, Kufe D. The novel triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid induces apoptosis of human myeloid leukemia cells by a caspase-8-dependent mechanism. *Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research*. 2000; 11: 261-7.

26. Stadheim TA, Suh N, Ganju N, Sporn MB, Eastman A. The novel triterpenoid 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) potently enhances apoptosis induced by tumor necrosis factor in human leukemia cells. *The Journal of biological chemistry*. 2002; 277: 16448-55.

27. Ito Y, Pandey P, Sporn MB, Datta R, Kharbanda S, Kufe D. The novel triterpenoid CDDO induces apoptosis and differentiation of human osteosarcoma cells by a caspase-8 dependent mechanism. *Molecular pharmacology*. 2001; 59: 1094-9.

28. Pedersen IM, Kitada S, Schimmer A, Kim Y, Zapata JM, Charboneau L, Rassenti L, Andreeff M, Bennett F, Sporn MB, Liotta LD, Kipps TJ, Reed JC. The triterpenoid CDDO induces apoptosis in refractory CLL B cells. *Blood*. 2002; 100: 2965-72.

29. Ikeda T, Sporn M, Honda T, Gribble GW, Kufe D. The novel triterpenoid CDDO and its derivatives induce apoptosis by disruption of intracellular redox balance. *Cancer research*. 2003; 63: 5551-8.

30. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell*. 2011; 144: 646-74.

31. Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. *Science (New York, NY)*. 1989; 246: 629-34.

32. Nurse P. Universal control mechanism regulating onset of M-phase. *Nature*. 1990; 344: 503-8.

33. Takizawa CG, Morgan DO. Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. *Current opinion in cell biology*. 2000; 12: 658-65.

34. Wang Z, Fan M, Candas D, Zhang TQ, Qin L, Eldridge A, Wachsmann-Hogiu S, Ahmed KM, Chromy BA, Nantajit D, Duru N, He F, Chen M, Finkel T, Weinstein LS, Li JJ. Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression. *Developmental cell*. 2014; 29: 217-32.

Figures
Figure 1

RTA 404 mediates the survival of GBM8401 cell by inhibiting proliferation: Cells were treated with increasing doses of RTA 404 for 24-72h in vitro. The survival of RTA 404-treated cancer cells was measured using the PB assay. Results are expressed as percentage of the control, control being 100%. All data are reported as the mean (± SEM) based on results of at least three separate experiments. Statistical analysis was performed using the t test, with differences between the treatment and control groups (0 μM RTA 404, # vs 24 hrs treatment) considered significant at p < 0.05, delineated by * and # SEM, standard error of the mean; RTA 404, CDDO trifluoroethyl amide.
Figure 2

RTA 404 induced cell apoptosis on GBM 8401 cells. (A) Annexin V-FITC and PI staining (B) Results are expressed as percentage of the control, control being 100%. All data are reported as the mean (± SEM) based on results of at least three separate experiments. Statistical analysis was performed using the t test, with differences between the treatment and control groups (0 μM RTA 404) considered significant at p < 0.05, delineated by *.
Figure 3

The disruption of mitochondrial membrane potential due to RTA 404 treatment. (A) JC-1 was also detected by using fluorescence microscopy and flow cytometry. (B) Results are expressed as percentage of the control, control being 100%. All data are reported as the mean (± SEM) based on results of at least three separate experiments. Statistical analysis was performed using the t test, with differences between the treatment and control groups (0 μM RTA 404) considered significant at p < 0.05, delineated by *.
Figure 4

(A) Numbers of active caspase-3 induced by RTA 404 treatment on GBM 8401 cell line. (B) Results are expressed as percentage of the control, control being 100%. All data are reported as the mean (± SEM) based on results of at least three separate experiments. Statistical analysis was performed using the t test, with differences between the treatment and control groups considered significant at p < 0.05, delineated by *.
Figure 5

(A) Cell cycle arrest in G2/M phase because of RTA 404 treatment on GBM 8401 cell line. The cell cycle analysis of the cancer cells after being cultured with RTA 404 for 24 h. RTA 404 induced an increase in the G2/M phase cell percentage (%). Cells underwent staining with propidium iodide to analyze DNA content, which was then quantified through flow cytometry (Figure 5B). In each group of bars, * indicates
that the number of G2/M cells in the RTA 404 treatment group was significantly higher than that of the control group (P < .05).

Figure 6

Mitosis protein synthesis inhibited by RTA 404 treatment on GBM 8401 cell line. Flow cytometry analysis of MPM-2 expression in RTA 404-treated GBM 8401 cells. (A) Cells were untreated or treated with 0, 1, 1.5 and 2 μM RTA 404. After 24 h of treatment, cells were fixed with 70% ethanol, stained with MPM-2 and PI, and analyzed by FACScan. (B) Results are expressed as percentage of the control, control being 100%. All data are reported as the mean (± SEM) based on results of at least three separate experiments. Statistical analysis was performed using the t test, with differences between the treatment and control groups (0 μM RTA 404) considered significant at p < 0.05, delineated by *.
Figure 7

(A) RTA 404 regulated cell cycle related gene expression (Cyclin A2, Cyclin B1, CDK1) and apoptosis (p21)-related gene expression in GBM8401 cells. Cells were treated with RTA 404 for 24 h. Gene and protein expressions were subsequently detected using Western blot analysis. (B) Results are expressed as percentage of the control, control being 100%. All data are reported as the mean (± SEM) based on results of at least three separate experiments. Statistical analysis was performed using the t test, with differences between the treatment and control groups considered significant at p < 0.05, delineated by *
Co-immunoprecipitation (Co-IP) is an effective means of quantifying protein–protein interactions in cells (Primary target CDK1, secondary target Cyclin B1). Cells were treated with RTA 404 for 24 h. Gene and protein expressions were subsequently detected using Western blot analysis. (B) Results are expressed as percentage of the control, control being 100%.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementaryfile.pdf