An isomorphism between the fusion algebras of V_L^+ and type $D^{(1)}$ level 2

by Michael Cuntz and Christopher Goff*

Joint Mathematics Meetings
Washington DC, 2009
Fusion Algebras

• Commutative, associative, with 1
• Has Z-basis and well-behaved involution
• Similar to Grothendieck rings of semisimple tensor categories
• Arise in Representation Theory: of finite groups, f.d.s.s. Lie algebras, etc., including Kac-Moody Lie algebras (KMLAs) and vertex operator algebras (VOAs)
KMLAs

- Generalization of f.d.s.s. Lie algebras
- Useful in Conformal Field Theory
- We looked at type $D^{(1)}$, affinization of type D (orthogonal) Lie algebra
- Kac-Peterson S-matrix (from modular group representation) determines the fusion algebra of irreducible representations
Kac-Peterson S-matrix

$$S_{\Lambda, \Lambda'} = c \sum_{w \in W^o} \det(w) \exp \left(-\frac{2\pi i \langle \Lambda + \rho | w(\Lambda' + \rho) \rangle}{k + h^\vee} \right)$$

- We explicitly calculated S for type $D^{(1)}$, at level 2.
- (The Weyl group with respect to the appropriate basis consists of permutation matrices with an even number of -1 entries.)
- In previous work of Cuntz, he recognizes S entries as determinants of certain matrices.
VOAs

- Algebraic relative of conformal field theory
- Fusion algebra of V_L is L^0/L
- V_L^+ refers to the Z_2-orbifold
- We looked at rank one even lattices L
- Fusion rules worked out (for any positive definite even lattice) by Abe, Dong, and Li [2003]
Our Work

• We calculated the S-matrix.
• We showed that the S-matrix from the KMLA “was” the S-matrix for the VOA. Hence the corresponding fusion algebras are isomorphic.
• Apparently, this was known to physicists:
 – Fuchs, Schellekens, and Schweigert, ‘95
 – Schellekens and Yankielowicz, ‘89
 – Dijkgraaf, Verlinde, and Verlinde, ‘88
• We found a computational proof.