A Mini Review of Antibacterial Properties of ZnO Nanoparticles

Sergey V. Gudkov1*, Dmitriy E. Burmistrov1, Dmitriy A. Serov1,3, Maxim B. Rebezov1,2, Anastasia A. Semenova2 and Andrey B. Lisitsyn2

1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia, 2V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russia, 3Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Moscow, Russia

The development of antibiotic resistance of bacteria is one of the most pressing problems in world health care. One of the promising ways to overcome microbial resistance to antibiotics is the use of metal nanoparticles and their oxides. In particular, numerous studies have shown the high antibacterial potential of zinc oxide nanoparticles (ZnO-NP) in relation to gram-positive and gram-negative bacteria. This mini-review includes an analysis of the results of studies in recent years aimed at studying the antibacterial activity of nanoparticles based on zinc oxide. The dependence of the antibacterial effect on the size of the applied nanoparticles in relation to E. coli and S. aureus is given. The influence of various ways of synthesis of zinc oxide nanoparticles and the main types of modifications of NP-ZnO to increase the antibacterial efficiency are also considered.

Keywords: nanoparticles, zinc oxide, antibiotics, antibacterial, bacteriostatic, bactericidal, fungicidal, green synthesis

INTRODUCTION

Today, antibiotics are the “gold standard” in treatment of many bacterial infections [1, 2]. However, microorganisms can develop antibiotic resistance. The majority of pathogenic microorganisms have an ability to develop resistance to at least some antimicrobial agents [3]. Antibiotic resistance in bacteria is achieved by several mechanisms: prevention of drug penetration into a cell [4, 5], changes in an antibiotic target [6, 7], enzymatic inactivation of antibiotics [8], active excretion of an antibiotic from a cell [4] and so on.

According to the data of the World Health Organization (WHO), lower respiratory infections and gastrointestinal infections are among the top ten factors of morbidity and mortality [9]. Appearance of antibiotic resistant strains significantly increased the number of deaths and severity of bacterial infections. Deaths of patients due to antibiotic resistant bacterial strains exceed the total number of global deaths due to cancer and diabetes mellitus [10, 11]. Despite the significant quantity of available antibiotics, resistance to almost all of them was confirmed. Antibiotic resistance emerges shortly after a new drug is approved for use [3, 12]. The indicated events urged WHO to endorse the Global action plan on antimicrobial resistance in 2015 [13]. Secondary bacterial infections can be a cause of increased lethality among patients in intensive care; in particular, bacterial co-infection and secondary infection are found in patients with COVID-19 [14, 15]. All above mentioned make a search for new antimicrobial preparations a high priority task of public health in the world.

The number of scientific publications devoted to a search for new antimicrobial compounds is about 99000 only in 2018–2020; 5900 of them are devoted to a search for antibacterial compounds based on metal compounds [16].
Humans have been used antimicrobial properties of several metals and their ions since ancient times. For example, utensils from Cu and Ag were used in ancient Persia, Rome and Egypt [17]. It is known today that a wide range of metals has the antimicrobial activity: Ag, Al, As, Cd, Co, Cr, Cu, Fe, Ga, Hg, Mo, Mn, Ni, Pb, Sb, Te, Zn [18–20].

The basis of the antimicrobial activity of metals is an ability of metal ions to inhibit enzymes [21, 22], facilitate generation of reactive oxygen species (the Fenton reaction) [23], cause the damage of cell membranes [24], prevent uptake of vitally important macroelements by microbes [25]; moreover, several metals can exert the direct genotoxic activity [26–28].

The use of nanoparticles based on metals and their oxides is of great interest. One of the well-studied metals affecting biological objects is zinc (Zn) and its oxide (ZnO). Zinc is an active element and exhibits strong reduction properties. It can easily oxidize to objects is zinc (Zn) and its oxide (ZnO). Zinc is an active element and exhibits strong reduction properties. It can easily oxidize to zinc oxide. Zinc plays an important role in the human body, since it is one of the most important trace elements [29]. Zinc is found in all tissues of the human body, with the highest concentration found in myocytes (85% of the total zinc content in the body) [30]. Zinc has been shown to be critical for the proper functioning of a large number of macromolecules and enzymes, where it plays both a catalytic (coenzyme) and structural role. In turn, structures Zincfinger provide a unique scaffold that allows protein subdomains to interact with either DNA or other proteins [31].

Zinc is also essential for the functioning of metalloproteins. Although zinc is considered relatively non-toxic, there is growing evidence that free zinc ions can cause negative effects on cells. To assess the toxicity of a test substance in vitro, animal cell cultures are usually used. It is known that nerve cells are the most sensitive to exogenous influences [32–34]. It has been reported that exposure to zinc ions leads to neuronal degradation [35]. To eliminate the cytotoxic effect, zinc cations are bound with bioactive ligands (for example, proteins) and zinc oxide nanoparticles are synthesized. Nanostructured ZnO can have various morphological forms and properties.

At present, there is a growing interest to nanoparticles of metals and metal oxides as compounds with antibacterial potential: Ag [36, 37], Cu [38], ZnO [10], TiO2 [39, 40], CuO [41, 42], Fe2O3 [43, 44]. ZnO nanoparticles have several advantages: high antibacterial effectiveness at low concentrations (0.16–5.00 mmol/L), activity against a wide range of strains, relatively low cost [43, 51, 60]. ZnO nanoparticles are synthesized by the physio-chemical sol-gel method from zinc salts [43, 61], sol-gel combustion method [62], solothermal chemical synthesis at low temperatures [64] and mechanical method [65]. In several cases, stabilizing agents, for example, chitosan are added [66, 67].

The mechanisms of action of zinc oxide nanoparticles can be reduced to the following: disruption of the cell membrane [68, 69], binding to proteins and DNA, generation of reactive oxygen species (ROS) [10, 70, 71], disturbance of the processes of bacterial DNA amplification, alteration (more often, down-regulation) of expression in a wide range of genes [72]. The direct bactericidal action of ZnO nanoparticles against both gram-negative and gram-positive bacteria and fungi was shown [73, 66, 74].

Nanoparticles of a number of metal oxides lead to the production of ROS upon interaction with bacteria [75]. The metal ions released by the nanoparticles affect the respiratory chain and inhibit some enzymes. This leads to the formation and accumulation of singlet oxygen, hydroxyl radical, hydrogen peroxide, superoxide anions, and other ROS. ROS can cause damage to the internal components of bacteria, such as proteins and DNA [76].

It has been shown that exposure to sublethal ROS concentrations can stimulate the manifestation of defense reactions. This process is called hormesis [77]. Hormesis induces defense mechanisms on two levels. The first level is enzymatic (short-term reaction). At this level, antioxidant enzymes are activated. The second level is long-term adaptation. Long-term adaptation consists of two sublevels: transcriptional and genomic. At the level of transcription, ROS induces adaptation due to the activation of antioxidant mechanisms within a few hours or days [78]. At the genomic level, ROS can cause damage to the DNA structure, which activates the mechanisms for repairing DNA damage. These mechanisms include homologous recombination and excisional repair. In these mechanisms, two of the DNA polymerases responsible for DNA synthesis have poor validation activity and may include abnormal bases in DNA strands, which leads to a high frequency of spontaneous mutations and genome plasticity under adverse influences [79]. Such plasticity of the genome can lead to the development of resistance to metals and metal oxide nanoparticles [80].

The adaptation mechanisms of bacteria in relation to nanoparticles also include overexpression of extracellular substances by bacterial cells, such as flagellin, which form an extracellular matrix that promotes agglomeration and deactivation of nanoparticles [81]. Despite the existing mechanisms of adaptation of bacteria to the impact, numerous studies have noted the high antibacterial potential of ZnO nanoparticles.

LITERATURE REVIEW

Despite the apparent wide range of strains, against which nanoparticles exert the antimicrobial activity, their effectiveness against particular strains can be significantly different. As a rule, gram-negative bacteria are less sensitive to ZnO nanoparticles than gram-positive bacteria [62, 66, 82]. Somewhat higher resistance of gram-negative bacteria can be
TABLE 1 | Main characteristics, physicochemical and biological parameters of ZnO nanoparticles presented in the review.

n	Size, nm	Structure	Shape	Composition of material	Type of microorganism	BE	Concentration	Exposure time and temperature	Medium	Synthesis path	Authors	
1	3	Oxo-alkoxy phase variety	Sph	The metal oxide core is surrounded by a shell of surface groups, (OR, -OH)	E. coli, P. aeruginosa, St. aureus	BS	0.5-1.5 M	24 h, 35°C	TCS	Sol-gel method	[62]	
2	<50 ± 9	Cryst	Sph	ZnO	V. cholerae, E. coli, C. jejuni, St. aureus (MSPA)	BC	0.78; 1.56; 3.125; 6.25; 12.5; 25; 50 mM	48 h, 37°C (for C. jejuni 42°C)	LB medium, MBA	Chemical method followed by mechanical and heat treatment	[67]	
3	50-70	Cryst	Sph	ZnO, chitosan	St. aureus, E. coli	BS	30 μL/ml	37°C	TSA	Microwave heating using chitosan as a stabilizing agent	[66]	
4	18	Cryst	Sph	ZnO	E. coli, St. aureus, P. aeruginosa, B. subtilis	BS	10–100 μg/ml	24 h, 35 ± 2°C	NA	Sol-gel method by post heat treatment	[43]	
5	9.3 ± 3.9	Cryst	Sph	ZnO	M. tuberculosis	BS, BC	1-64 μg/ml	24 h, 37°C	LJ medium	Chemical deposition	[65]	
6	5.3, 33.9, 4.5, 21.2, 6.8, 38.2, 5.3, 6.7	Cryst	Sph	Colloidal suspensions of ZnO NPs and GPTMS-ZnO dispersions in water	St. aureus, E. coli	BS, BC	1.25-0.01 mg/ml	24 h, 37°C	M-HM	Sol-gel method with varying reaction times for NP size control followed by the addition of (3-glycidoxypropyl) trimethoxysilane (GPTMS) as a surface modifier	[62]	
7	50 ZnO; ~ 1000	Cryst	GO-ss; ZnO-Sph	Spindle-shaped GO structures covered with crystals of ZnO NPs	E. coli, S. typhimurium, B. subtilis, E. faecalis	BC	100 μM	12 h, 37°C	LB broth	Modified hammers method	[62]	
8	~18	Cryst	Sph	ZnO	St. aureus, P. aeruginosa, B. subtilis, P. mirabilis, E. coli, C. albicans, C. tropicalis	BS, BC, FS	50, 100, 200 μg/ml	24 h, 37°C for bacteria and 26°C to 32°C for yeast	MHA, for fungi Sabouraud dextrose agar SDA, BHI, MH broth, SD broth	Chemical using A. indica water extract followed by heat treatment	[68]	
9	10	Cryst	Sph	ZnO	St. aureus, P. aeruginosa, E. coli, C. albicans, A. niger, T. rubrum	BS, BC	10-5187 μM	5 days, 3 weeks 34°C for fungi, 18 h, 34°C for bacteria, post heat treatment	M-HM, LB	Chemical synthesis using an aqueous extract of chelidonium majus	[69]	
10	33	Cryst	Sph	ZnO	E. coli, S. choleraesuis, B. subtilis	BS	10 mg/ml	48 h, 37°C	MHA	Chemical followed by mechanical and heat treatment	[66]	
11	Length 90-100; dia 80-90	Cryst	Rod	ZnO	B. cereus, S. aureus, P. aeruginosa a S. typhimurium	BS, BC	0.01–100 mg/ml	24 h, 35°C	TSA	Sonocidal method	[63]	
12	~30	–	Sph	ZnO	C. jejuni, S. enterica, E. coli	BS	0.025-0.1 mg/ml	C. jejuni 24 h, 42°C, S. enterica, E. coli 16 h, 37°C	M-HB, LB	Used as a finished commercial product, inframid advanced materials LLC (manchester, CT)	[72]	
13	20	Cryst	Sph	ZnO	S. typhimurium, S. aureus	BS	1.33 mM	25; 50 μg/ml	24 h, 37°C	NA	Sol-gel method	[73]
14	20	Cryst	Sph	ZnO	S. typhimurium, S. aureus	BS	1.33 mM	25; 50 μg/ml	24 h, 37°C	NA	Sol-gel method	[71]
15	23-26	Cryst	Sph	ZnO	K. pneumonia, S. aureus, C. albicans, P. notatum	BS	62.5-100 μg/ml	–	MHA	Chemical using powder extract of dry ginger rhizome (Zingiber officinalis) followed by thermal and mechanical treatment	[74]	
16	23.7-86.8	Cryst	Flow	ZnO	S. aureus, E. coli, C. albicans	BS	0.25; 0.5 mg/ml	24 h, 37°C (C. albicans at 28°C)	NA, SDA	Sol-gel method at various temperatures (25°C, 35°C, 55°C, 75°C)	[64]	
17	F2ZnO–1750-2250; B2ZnO–36.71-51.85	Cryst	F2ZnO-Flow; B2ZnO-Sph	ZnO	E. coli	BS	0.1-0.4 g/ml	24 h, 37°C	MHA	Wet chemical method	[63]	

(Continued on following page)
n	Size, nm	Structure	Shape	Composition of material	Type of microorganism	BE	Concentration	Exposure time and temperature	Medium	Synthesis path	Authors	
18	60–70	Cryst	-	ZnO	S. aureus, P. aeruginosa, E. coli	BS	125–1028 μg/ml	18 h, 35 ± 1°C	MHA	Chemical method using an aqueous extract of Fridlem pretense flowers, followed by heat treatment	[102]	
19	ZnO -21.05, Ag-ZnO -30.13	Cryst, ZnO, and LF ZnO, dopad Ag	Sph	ZnO, Ag, AgO	E. coli, K. pneumonia, P. aeruginosa, S. typhi, S. aureus, Fusarium spp., R. necativ	BS, FIS	100 mg/ml	8–24 h, 37°C	NA, PDA	Chemical method using an aqueous extract of cannabis sativa leaves	[103]	
20	22	Cryst	Sph	ZnO	B. subtilis, S. mutans, S. Aureus, E. coli, P. aeruginosa, K. oxytoca	BS	0.0005 g (0.5 mg)	weighed portions of NPs were placed in a well in agar seeded with bacteria	24 h, 37 °C	MHA	Sol-gel method	[104]
21	20–25	Cryst	Sph, hex	ZnO	S. aureus, S. typhimurium, A. flavus, A. fumigatus	BS	20–100 μg/ml	24 h, 37 °C	MHB, LB broth	Chemical deposition method followed by thermal and mechanical treatment	[105]	
22	200–5000	Cryst	Sph, ZnO, ZnO, ZnO, ZnO, ZnO, Cu, Cu, Cu, Cu, Cu	ZnO, Mn, Fe, Co, Ni, Cu	E. coli	BS	0.5 mg/ml	48 h, 37 °C	NB	Solothermal method	[96]	
23	42–64	Cryst	Sph, oval	ZnO	A. hydrophila, E. coli, S. aureus, P. aeruginosa, E. faecalis, S. pyogenes, A. flavus, A. niger, C. albicans	BS	1.2–25 μg/ml	24 h, 37 °C	MHA	Biosynthesis of zinc oxide nanoparticles using reproducible bacteria aeromonas hydrophila as an environmentally friendly reducing agent	[97]	
24	20–50	Cryst	Sph	Chemically pure	S. paratyphi, E. coli, S. aureus	BS	20 μL of extract was applied to a 6 mm disc	24 h, 37 °C	MHA	Chemical using an aqueous extract of Tabernaemontana divaricata leaves followed by heat treatment	[98]	
25	800–3000	Cryst	Flow	ZnO	S. aureus, E. coli	BS	25–125 mg/L	18–24 h, 37 °C	MHA	Chemical precipitation	[99]	
26	5	Cryst	Sph	ZnO-NP nanoparticles in the form of a powder bound in a polystyrene film (ZnO-PSt) or suspended in a polyvinylpolydione (ZnO-PVP) gel	L. monocytogenes, S. enteritidis, E. coli	BS	0.1–0.5 mg/ml	48 h, 22 °C	LB, SHI, TSB	Sol-gel method followed by heat treatment	[100]	
27	4.45 ± 0.37	Cryst	Sph	ZnO	S. aureus, E. coli	BS	0.375–1.5 mg/ml for E. coli; 0.09–0.375 mg/ml for S. aureus	24 h, 37°C	TSB	Chemical precipitation	[101]	
28	3	Cryst	-	-	S. aureus, E. coli	BS	0.5–16 mg/ml	24 h, 37°C	NB	Sonochemical method	[102]	
29	~249	Cryst	Without shape	ZnO	E. coli	BS	0.1.0.25 g/L	8–16 h, 37 °C	LB	Commercial product from Nanophase Technologies and Nanostructured and amorphous materials	[103]	
30	~20	Cryst	Sph	ZnO, Ag	E. coli, S. aureus	BS	20–70 μg/ml	24 h, 37°C	NA, LB broth	Chemical using thymus vulgaris leaf extract	[104]	
31	~124.6	Cryst	Sph	ZnO	S. aureus, B. subtilis, E. coli, S. paratyphi	BS	20–100 μg/ml	24 h, 37°C	MHA	Chemical using an aqueous extract of Tectone Grandis (L.)	[105]	
n	Size, nm	Structure	Shape	Composition of material	Type of microorganism	BE	Concentration	Exposure time and temperature	Medium	Synthesis path	Authors	
----	---------	-----------	-------	------------------------	-----------------------	----	---------------	-------------------------------	--------	----------------	---------	
32	24±2; ZnO-Fe 197	Cryst	Rod	ZnO, Fe	E. coli, B. safensis	BC	15-25 µL	24 h, 37°C	MHA	Chemical synthesis using Amaranthus spinosus leaf extract as a reducing agent	[106]	
33	20-30	Cryst	Rod, flow, Sph	ZnO	E. coli, S. aureus	BS	0.625-10 mg/ml	24 h, 37°C	NB	Solvothermal method	[107]	
34	4, 10, 30	Cryst	Sph	ZnO	E. coli, S. aureus	BS	12.5-1000 µg/ml	24 h, 37°C	LB broth, NA	Solvothermal method	[108]	
35	70	Cryst	Sph, rod	ZnO	E. coli	BS	0, 3, 6, 12 mM/L	12 h, 37°C	TSA	Used ready-made commercial material from alta a Marian, USA	[109]	
36	13.79; ZnO-Mn (5% Mn) 16.72; ZnO-Mn (10% Mn) 17.43	Cryst	Seed-like	ZnO, Mn	E. coli, K. pneumoniae, S. dysenteriae, S. typh, P. aeruginosa, B. subtilis, S. aureus	BS	50-250 µg/ml	24 h, 37°C	MHA	Chemical deposition method	[109]	
37	3-25	Cryst	Sphyn	Hexag (CE: ZnO- NP); triang (WPE: ZnO-NP)	ZnO	B. subtilis, E. coli, C. albicans	BS	0.5 mg/ml	24 h, 37°C	NA	Sol-gel method	[110]
38	<5	Cryst	Sphyn	ZnO	S. epidermidis, B. subtilis, K. pneumoniae, P. aeruginosa	BS	10 µg/ml	24 h, 37°C	NA	Sol-gel method	[111]	
39	~28	Cryst	Sphyn	ZnO	K. aerogenes, E. coli, P. desmolyticum, S. aureus	BS	200-400 µg/well	36 h, 37°C	NA	Sol-gel method	[112]	
40	66	Cryst	Hexag	ZnO	S. aureus, Proteus sp., Acinetobacter sp, P. aerogenes, E. coli, M. luteus, S. aureus, S. pneumoniae, E. coli, P. aeruginosa	BS	20 µg/ml	24 h, 37°C	NA	Synthesis using Ficus carica leaf extract	[113]	
41	14.18	Cryst	Sphyn	ZnO	E. coli	BS	70-150 µg/ml	24 h, 37°C	MHA	Synthesis using Rubia Cordifolia root extract	[114]	
42	~1000	Cryst	Flow	Ag and TiO2 nanoparticles on the surface of large ZnO particles in the shape of a flower	E. coli	BS	0.4 g/L	24 h, 37°C	LB	Simple hydrothermal synthesis	[115]	
43	16±2	Cryst	Sphyn	Sodium alginate (SA)/poly (vinyl alcohol) (PVA) fiber mats containing ZnO NPs	S. aureus, E. coli	BS	1-8 mg/ml	24 h, 37°C	LB broth, NA	Sol-gel method	[116]	
44	20.99-32.24	Cryst	Hexag	ZnO, ZnO + Fe (1-17%)	E. coli, P. aeruginosa	BS	24 h, 30°C	NA	Sol-gel method	[117]		
45	2-28	Cryst	Sphyn	ZnO	Pseudomonas sp., Fusarium sp	BS, FS	10% M	24 h, 37°C	NA	Chemical method including the use of surfactants under various conditions	[118]	
46	60-80	Cryst	Sphyn	NP-ZnO, evenly distributed in the polymer medium	E. coli, S. aureus	BS	—	24 h, 37°C	-	One-stage plasma synthesis of thin nanocomposite films of polymer/NP-ZnO by co-precipitation of a renewable polymer based on geranium essential oil and zinc nanoparticles obtained as a result of thermal decomposition of zinc acetylacetonate	[119]	
47	>100	Cryst	Sphyn	ZnO, ZnO coated with TG (thioglycerol)	E. coli	BS, BC	8-55 mg/100 ml	12 h, 37°C	LB	Wet chemical synthesis	[71]	
explained by the peculiarities of their cell wall structure. In contrast to gram-positive bacteria, the cell wall of gram-negative bacteria includes the additional outer membrane containing lipopolysaccharides (LPS) [83]. It is shown that LPS can improve the barrier properties of the outer membrane and, therefore, increase bacterial resistance, in particular, to antibiotics [84]. Epidemiologically significant microorganisms deserve a special attention, for example, *Mycobacterium tuberculosis*, against which ZnO nanoparticles exert the bacteriostatic effect but not bactericidal [85].

On the contrary, several microorganisms (for instance, *Campylobacter jejuni*) have an increased sensitivity to ZnO nanoparticles, which make them a convenient model for studying molecular 126 mechanisms of the antimicrobial effect of nanoparticles [24]. ZnO nanoparticles (ZnONPs) disturb the processes of bacterial DNA amplification, reduce expression of a wide range of genes of *C. jejuni* that are responsible for virulence, significantly alter expression of genes of oxidative and general stress [24]. An important feature of ZnO nanoparticles used in one of the studies is the antibacterial activity against resistant bacterial strains, for example, carbapenem-resistant *Acinetobacter baumannii* (RS-307 and RS-6694) [86]. The dependence of effectiveness on a bacterial growth phase was shown for ZnO nanoparticles. In particular, ZnO nanoparticles are effective against gram-negative and gram-positive bacteria at the exponential growth phase; however, the antibacterial properties of nanoparticles are significantly decreased at the lag and stationary phases [52]. A range of bactericidal concentrations of ZnO nanoparticles is usually significantly less than a range of 4 [62]. At present, an active search for methods to increase the antimicrobial action of nanoparticles is carried out. Below we present the literature search. Nanoparticles are classified by the method for synthesis, size, structure, form, absence or presence of the envelope or nucleus. The objects, on which nanoparticles influenced, are classified by types, biological effect of nanoparticles, concentration of nanoparticles, duration of exposure, temperature and environment. The data are presented in table 1.

Let us consider proposed methods for increasing antibacterial properties of ZnO nanoparticles. The first method for increasing antibacterial properties of ZnO nanoparticles is to use a combination of different metal compounds [52, 90]. For example, the CuO and ZnO have comparable effectiveness against gram-negative *Escherichia coli* and gram-positive *Staphylococcus aureus* at the exponential growth phase. ZnO nanoparticles were practically inactive at the lag and stationary phases, while CuO nanoparticles retained the significant activity [52]. Ag and ZnO nanoparticles in different ratios inhibit the growth of antibiotic resistant *Mycobacterium tuberculosis* strains but did not lead to bacterial death [85]. ZrO₂-ZnO nanoparticles have the pronounced antimicrobial action in contrast to ZrO₂ nanoparticles, but the antimicrobial effect of ZrO₂-ZnO nanoparticles does not exceed that of ZnO nanoparticles [94]. However, combinations of metal oxides not always give the synergetic effect. In particular, *CdO-ZnO* nanoparticles have the antimicrobial action comparable with that of CdO nanoparticles [90]. Doping of ZnO nanoparticles with the Fe ions enables achieving a significant antibacterial effect against *E. coli*, *Pseudomonas aeruginosa* [117]. TiO₂/ZnO nanoparticles have more pronounced bactericidal effect against *E. coli* compared to ZnO nanoparticles. Ag/TiO₂/ZnO nanoparticles are more effective than TiO₂/ZnO nanoparticles [115]. Compared to ZnO nanoparticles, ZnO-Mn nanoparticles have higher antimicrobial activity against *K. pneumoniae*, *Shigella dysenteriae*, *S. enterica Typhimurium*, *P. aeruginosa* and other bacteria [109].

The second method for increasing antimicrobial effectiveness is to use combinations of ZnO nanoparticles and carbon
nanoparticles, in particular, spindle-shaped graphene oxide (GO) nanoparticles [68, 108, 109]. It is shown that GO-ZnO nanoparticles effectively inhibit the growth of gram-negative (E. coli, S. typhimurium) and gram-positive (Bacillus subtilis, Enterococcus faecalis) bacteria [68]. With that, the antibacterial effectiveness of the mixture of GO-ZnO nanoparticles turned to be nearly twice as high as that of ZnO nanoparticles and almost four times higher than that of GO nanoparticles [82].

The third method is coating ZnO nanoparticles with modifying agents. Gelatin-coated ZnO nanoparticles showed higher inhibition of the growth of gram-negative bacteria compared to gram-positive bacteria [91]. As was mentioned above, overcoming antibiotic resistance in gram-negative bacteria is a more difficult task. Gelatin-coated ZnO nanoparticles inhibit biofilm formation of C. albicans (an additional resistance factor) [91]. These nanoparticles also inhibit angiogenesis in chick embryos, which makes them candidates for the development of preparations preventing undesirable angiogenesis [91]. The chemical surface modification of nanoparticles using (3-glycidoxypropyl) trimethoxysilane (GPTMS) and decrease in a size up to 5 nm lead to an increase in antimicrobial effectiveness of nanoparticles against S. aureus [62]. Treatment with polystyrene increased the bacteriostatic effect of ZnO nanoparticles against E. coli and Listeria monocytogenes; with that, uncoated ZnO nanoparticles did not have the bacteriostatic effect against L. monocytogenes [100]. Modification of ZnO nanoparticles with polyethylene glycol or starch also alters properties of nanoparticles [121]. Modification with polyethylene glycol increased the bacteriostatic effect of ZnO nanoparticles against E. coli and S. aureus; with that, effectiveness against gram-negative bacteria was higher. Polyethylene enhanced cytotoxicity of ZnO nanoparticles toward the cancer cell line (MG-63) by induction of apoptosis. Modification with starch allowed retention of antibacterial properties of ZnO nanoparticles and reduction of cytotoxicity compared to modification with polyethylene glycol [121]. Treatment with thiglycoler, contrary to the expectations, did not increase the bacteriostatic and bactericidal activity of ZnO nanoparticles [71]. Polymer films from sodium alginate/polyvinyl alcohol gained bacteriostatic properties after incorporation of ZnO nanoparticles, which can be used in the development of more durable materials [116].

The fourth method is modification of the synthesis method leading to changes in the geometrical characteristics of nanoparticles. ZnO nanoparticles synthesized by the sonochemical method have more pronounced inhibitory properties against Bacillus cereus, S. aureus, S. Typhimurium and Pseudomonas aeruginosa than ZnO nanoparticles synthesized by the classical physio-chemical methods [63]. Nanoparticles synthesized at comparatively low temperatures are flower-shaped and have the comparable antimicrobial activity against gram-positive (S. aureus) and gram-negative (E. coli) bacteria and, to a lesser extent, fungi (C. albicans) [64]. When using ROS photocatalytic generation and release of Zn²⁺, flower-shaped ZnO nanoparticles show more pronounced antimicrobial activity against E. coli than more lacunary hexagon-shaped ZnO-NPs [70].

Antibacterial properties of nanoparticles depend on their size [122-124]. For several nanoparticles, the highest antibacterial activity is achieved at the smallest size [103, 107, 125]; however, we have not found in the literature a clear dependence of antibacterial effectiveness on a nanoparticle size. We had to
analyze literature by ourselves and build a graph reflecting a dependence of an inhibition zone size on a size of ZnO nanoparticles (Figure 1). Analysis of literature allows stating that the highest potential antimicrobial effectiveness of nanoparticles against both E. coli, and S. aureus is observed at a nanoparticle size of about 100 nm. It is necessary to note that “green chemistry” not always leads to synthesis of effective nanoparticles. For example, in studies on S. aureus, only two types of nanoparticles out of six (33%) had the antibacterial activity at a level higher than average. When studying on E. coli, only one of five (20%) types of nanoparticles generated using “green chemistry” exerted the antibacterial activity at a level higher than average. Therefore, it can be suggested that nanoparticles generated by “green chemistry” still have insufficient effectiveness.

As can be seen in Figures 1B,D, quite high dispersion of effectiveness is seen in the region of small sizes of nanoparticles (1–50 nm). Therefore, we studied the dependence of the minimum inhibitory concentration (MIC) on sizes of ZnO nanoparticles (Figures 1A,C). It is shown that the use of nanoparticles with sizes of up to 10 nm is not effective. Usually, at these average sizes of nanoparticles, distribution of nanoparticles by sizes is rather complex and not always narrow. Nanoparticles with small sizes are quite prone to aggregation. Apparently, high dispersion of antibacterial activity at small sizes of nanoparticles can be explained by this fact.

Flower-shaped ZnO nanoparticles can reach large sizes (up to 3 μm) and demonstrate the antimicrobial activity against both gram-positive (S. aureus) and gram-negative (E. coli) bacteria [99]. For spherical ZnO nanoparticles, the antimicrobial activity practically does not depend on the type of a targeted organism. Hexagonal ZnO nanoparticles have higher bactericidal activity against antibiotic resistant Staphylococcus epidermidis, B. subtilis, Klebsiella pneumoniae and P. aeruginosa strains compared to ZnO-NPs with the triangular shape [111]. Thorn-like ZnO nanoparticles cause significant reduction in the growth of B. subtilis, E. coli and C. albicans colonies demonstrating the antibacterial and antifungal activities [110].

The fifth method is modification by physio-chemical methods, for example, by annealing in the Ar environment at high temperatures, or plasma oxidation. With that, the effects of modification can be different: Ar annealing decreases the antibacterial activity of ZnO nanoparticles, while plasma oxidation improves antibacterial properties of ZnO nanoparticles against E. coli and S. aureus [120]. The sixth method is the use of additives causing photocatalysis of reactive oxygen species (ROS). This modification enables a significant increase in antibacterial properties of ZnO nanoparticles [70, 93]. The seventh method is the so-called “green synthesis” [126–128]. ZnO nanoparticles generated by “green synthesis” have the antimicrobial activity against gram-negative and gram-positive bacteria, as well as several fungi of the genus Candida [88]. In turn, nanoparticles synthesized using the Tabernaemontana divaricata extract demonstrated the antibacterial activity against S. aureus, E. coli and lower activity against S. enterica Paratyphoid [98]. The eight method is a change in the environment conditions. At acidic pH levels, ZnO nanoparticles had higher bacteriostatic action against S. aureus and E. coli than at neutral pH [101]. The combination of all approaches described above can be most promising, for example, the use of Ag-ZnO nanoparticles synthesized in the Cannabis sativa extract. The generated nanoparticles can be used in combination with photocatalysis and have the antibacterial and antifungal activities.

CONCLUSION

Zinc oxide nanoparticles have significant antimicrobial potential. The use of various methods of synthesis, chemical modification, as well as joint use with other nanomaterials affects the physical and morphological characteristics of nanoparticles, which, in turn, leads to a change in their antibacterial properties. As a result, nanoparticles based on zinc oxide are increasingly used not only in nanoelectronics and optics, but also in such industrial areas as cosmetic, food, rubber, pharmaceutical, household chemicals, etc. The use of packaging with incorporated zinc oxide nanoparticles is possible will allow in the future to prevent the growth of microorganisms and spoilage of food. In turn, the use of medical dressing materials containing ZnO nanoparticles will allow avoiding microbial contamination of the wound and promotes its early healing. Thus, zinc oxide nanoparticles can be considered as a promising new generation antimicrobial agent.

AUTHOR CONTRIBUTIONS

SG designed this topic. DB, MR contributed to collecting related references. DB made a table. DS, SG, MR wrote most of the manuscript. AS and AL were involved in discussing the manuscript and translating it into English.

FUNDING

This work was supported by the Ministry of Science and Education of the Russian Federation (Grant Agreement 075-15-2020-775).

ACKNOWLEDGMENTS

Authors acknowledge the immense help received from the scholars whose articles are cited and included in references to this manuscript. The authors are also grateful to authors/editors/publishers of all those articles, journals and books from where the literature for this article has been reviewed and discussed.
47. Baruwati B, Kumar D, Manorama S Hydrothermal synthesis of highly crystalline ZnO nanoparticles: a competitive sensor for LPG and EtOH. Sensor Actuator B Chem (2006) 119(2):676–82. doi:10.1016/j.snb.2006.01.028

48. Vaseem M, Umar A, Hahn Y ZnO nanoparticles: growth, properties, and applications. In: Metal oxide nanostructures and their applications. 5(1). Stevenson Ranch, CA: American Scientific Publishers (2010). 1–36.

49. Chang S, Chen K Zinc oxide nanoparticle photodetector. J Nanomater (2012) 602–398. doi:10.1155/2012/602398

50. Mishchenko T, Mitroshina E, Balalaeva I, Krysko D, Krysko O, Vedunova M, Krysko D Antibacterial activity of ZnO nanoparticles against Gram-positive and Gram-negative bacteria. Int J Biol Macromol (2019) 124:1132–6. doi:10.1016/j.ijbiomac.2018.11.228

51. Abdelhady M Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int Carbohydr Chem (2012) 2012(12): 840591. doi:10.1155/2012/840591

52. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. Int J Microbiol (2009) 107(4):1193–201. doi:10.1111/j.1365-2672.2009.04303.x

53. Sreelakshmi A, Mahmad S, Senni A, Kaus NHM, Ann LC, Bakhori SMK, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Lett (2015) 7(3):219–42. doi:10.1007/s40820-015-0040-x

54. Saha R, Debarnath M, Paul B, Medhi S, Saksia E Antibacterial and nonlinear dynamical analysis of flower and hexagon-shaped ZnO microstructures. Sci Rep (2020) 10(1):1–14. doi:10.1038/s41598-020-59534-x

55. Dutta RK, Nenavathu BP, Gangshetty MK, Reddy AV Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B Biointerfaces (2012) 94:43–50. doi:10.1016/j.colsurfb.2012.01.046

56. Xie Y, He Y, Irwin PJ, Jin T, Shi X Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol (2011) 77(7):2325–31. doi:10.1128/AEM.02149-10

57. Akbar A, Sadiq M, Imran A, Muhammad N, Rehman Z, et al. Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatal Agric Biotechnol (2019) 17:36–42. doi:10.1016/j.jbcb.2018.11.005

58. Janaki AC, Salilatha E, Gunasekaran S Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrosc Rom Acta A Mol Biomol Spectros (2013) 146:17–22. doi:10.2478/v10431-013-0240-1

59. Li M, Zhu L, Lin D Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol (2011) 45(5):1977–83. doi:10.1021/es102624t

60. Tang S, Zheng J Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater (2018) 7(13):e1701503. doi:10.1002/adhm.201701503

61. Gudkov SV, Grinberg MA, Sukhov V, Vedeneev V Effect of ionizing radiation on physiological and molecular processes in plants. J Environ Radiat (2019) 2028–24. doi:10.1016/j.jenrad.2019.02.001

62. Rochat T, Nicolas P, Delumeau O, Rabatiová A, Koruliová J, Leduc A, et al. Genome-wide identification of genes directly regulated by the pleiotropic transcription factor SpaX in Bacillus subtilis. Nucleic Acids Res (2012) 40(19): 9571–83. doi:10.1093/nar/gks755

63. Tkachenko A Stress responses of bacterial cells as mechanism of development of antibiotic tolerance. Appl Biochem Microbiol (2015) 58:108–27. doi:10.1134/ S0003683815021144

64. GravesJr, Tajkarimi M, Cunningham Q, Campbell A, Harrison SH, et al. Rapid evolution of silver nanoparticle resistance in Escherichia coli. Front Genet (2015) 6:42. doi:10.3389/fgene.2015.00042

65. Muñoz-Martínez N, Salas Orozco MF, Martínez-Castañón GA, Torres Méndez F, Ruiz F Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int J Mol Sci (2019) 21(10):28888. doi:10.3390/ijms20120808

66. Zhong L, Liu H, Samal M, Yun K Synthesis of ZnO nanoparticles-decorated spindles-shaped graphene oxide for application in synergistic antibacterial activity. J Photochem Photobiol B Biol (2018) 183:293–301. doi:10.1016/j.jphot生物.2018.04.048

67. Kashaf N, Huang YY, Hamblin MR Advances in antimicrobial photodynamic inactivation at the nanoscale. Nanophotonics (2017) 6(5):853–79. doi:10.1515/nanoph-2016-0189

68. Ikaida H Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev (2003) 67(4):593–656. doi:10.1128/MMBR.67.4.593-656.2003

69. Heidary M, Zaker Bostanabad S, Amini SM, Jafari A, Ghalmi Nobar M, Ghodousi A, et al. The anti-mycobacterial activity of Ag, ZnO, and Ag-ZnO nanoparticles against MDR- and XDR-Mycobacterium tuberculosis. Infect Drug Resist (2019) 12:3425–35. doi:10.2147/IDR.S221408

70. Tiwari V, Mishra N, Gadani K, Solanki PS, Shah NA, Tiwari M Mechanism of antibacterial activity of zinc oxide nanoparticle against carbapenem-resistant acinetobacter baumannii. Front Microbiol (2018) 9:1218. doi:10.3389/fmicb.2018.01218

71. Siddique S, Shah ZH, Shahid S, Yasmyn F Preparation, characterization and antibacterial activity of ZnO nanoparticles on broad spectrum of microorganisms. Acta Chim Slov (2013) 60(3):660–5.
90. Al-Hada NM, Mohamed Kamari H, Abdullah CAC, Saion E, Shaari AH, Talib ZA, et al. Down-top nano fabrication of binary (ClO₄)₂/ZnO nanoparticles and their antibacterial activity. Int J Nanomed (2017) 12:8309–23. doi:10.2147/IJN.S154045

91. Divya M, Vaseeharan B, Abinaya M, Vijayakumar S, Govindarajan M, Alharbi NS, et al. Bisopolymer gelatin coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. J Photochem Photobiol B Biol (2017) 178:211–8. doi:10.1016/j.jphotobiol.2017.11.008

92. Dobrucka R, Dlugaszewska J, Kaczenrek M. Cytotoxic and antimicrobial effects of biosynthesized ZnO nanoparticles using Chelidonium majus extract. Biomed Microdevices (2018) 20(1):5. doi:10.1007/s10544-017-2033-9

93. Al-Hada NM, Mohamed Kamari H, Abdullah CAC, Saion E, Shaari AH, Talib ZA, et al. Down-top nano fabrication of binary (ClO₄)₂/ZnO nanoparticles and their antibacterial activity. Int J Nanomed (2017) 12:8309–23. doi:10.2147/IJN.S154045

94. Precious Ayanwale A, Reyes-López SY. ZrO₂-ZnO nanoparticles as photocatalysts for dye degradation and antimicrobial activity. J Photochem Photobiol B Biol (2017) 178:211–8. doi:10.1016/j.jphotobiol.2017.11.008

95. Saliani M, Jalal R, Kafshdare Goharshadi E. Effects of pH and temperature on the photocatalytic and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Tabernaemontana divaricata and its photocatalytic and antimicrobial performances: Experimental and DFT studies. Ceram Int (2019) 45(21):19216–24. doi:10.1016/j.ceramint.2019.09.025

96. Navale G, Thripuranthaka M, Late D, Shinde S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Technochem Nanomed (2015) 3(1):1033.

97. Qi K, Xing X, Mengyu L, Wang Q, Liu S, Lin H, et al. Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceram Int (2019) 45(2):1494–502. doi:10.1016/j.ceramint.2019.09.116

98. Ayasunwale A, Reyes-López SY. ZnO-ZnO₂ nanoparticles as antibacterial agents. ACS Omega (2019) 4(21):19216–24. doi:10.1021/acsomega.9b02527

99. Kumar K, Mandal B, Naidu E, Sinha M, Kumar S, Reddy P. Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci Rep (2020) 10(1):1–6. doi:10.1038/s41598-020-64419-0

100. Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial activity of zinc oxide nanoparticles against pathogenic bacteria and fungi. J Photochem Photobiol B Biol (2017) 178:211–8. doi:10.1016/j.jphotobiol.2017.11.008

101. Dobrucka R, Dlugaszewska J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci (2016) 23(4):517–23. doi:10.1016/j.sjbs.2015.05.016

102. Chauhan A, Verma R, Kumar S, Sharma A, Shandilya P, Li X, et al. Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci Rep (2020) 10(1):1–6. doi:10.1038/s41598-020-64419-0

103. Precious Ayanwale A, Reyes-López SY. ZnO₂-ZnO nanoparticles as antibacterial agents. ACS Omega (2019) 4(21):19216–24. doi:10.1021/acsomega.9b02527

104. Navale G, Thripuranthaka M, Late D, Shinde S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Technochem Nanomed (2015) 3(1):1033.

105. Qi K, Xing X, Mengyu L, Wang Q, Liu S, Lin H, et al. Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceram Int (2019) 45(2):1494–502. doi:10.1016/j.ceramint.2019.09.116

106. Ayasunwale A, Reyes-López SY. ZnO-ZnO₂ nanoparticles as antibacterial agents. ACS Omega (2019) 4(21):19216–24. doi:10.1021/acsomega.9b02527

107. Navale G, Thripuranthaka M, Late D, Shinde S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Technochem Nanomed (2015) 3(1):1033.

108. Qi K, Xing X, Mengyu L, Wang Q, Liu S, Lin H, et al. Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: Experimental and DFT studies. Ceram Int (2019) 45(2):1494–502. doi:10.1016/j.ceramint.2019.09.116

109. Ayasunwale A, Reyes-López SY. ZnO₂-ZnO nanoparticles as antibacterial agents. ACS Omega (2019) 4(21):19216–24. doi:10.1021/acsomega.9b02527

110. Navale G, Thripuranthaka M, Late D, Shinde S. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Technochem Nanomed (2015) 3(1):1033.

111. Siddiqui F, Hashmi S, Mushtaq S, Renouard S, Blondeau JP, Abbasi R, et al. Novel green microbial route to synthesize ZnO-Ag nanoparticles against pathogenic bacteria and fungi. J Photochem Photobiol B Biol (2017) 178:211–8. doi:10.1016/j.jphotobiol.2017.11.008

112. Prachi A, Patel R, Singh N, Negi D, Rawat S. Green synthesis of zinc oxide nanoparticles using Rubia cordifolia root extract against different bacterial strains. J Nanoparticle Res (2019) 21(6):19216–24. doi:10.1007/s11051-006-7959-6

113. Pant H, Pandit R, Sharma R, Amarjargal A, Kim H, Park C, et al. Antibacterial and pho-toctalytic properties of Ag/TiO₂/ZnO nano-owers pre-pared by facile one-pot hydrothermal process. Ceram Int (2019) 45(1):375–80. doi:10.1016/j.ceramint.2018.10.050

114. Ehsan S, Sajjad M. Biogenic synthesis of zinc oxide nanoparticles and its combined efficacy with different antibiotics against multidrug resistant bacteria. J Biomater Nanobiotech (2017) 8(2):159–75. doi:10.4262/jbn.2017.82011

115. Prachi A, Patel R, Singh N, Negi D, Rawat S. Green synthesis of zinc oxide nanoparticles using Rubia Cordifolia root extract against different bacterial pathogens. Indo American Journal of Pharmaceutical Research (2017) 7(09): 759–65. doi:10.25821/zenodo.1036347

116. Pant H, Pandit R, Sharma R, Amarjargal A, Kim H, Park C, et al. Antibacterial and pho-toctalytic properties of Ag/TiO₂/ZnO nano-owers pre-pared by facile one-pot hydrothermal process. Ceram Int (2019) 45(1):375–80. doi:10.1016/j.ceramint.2018.10.050

117. Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP, Jayakumar R. Biogenic synthesis of zinc oxide nanoparticles and its combined efficacy with different antibiotics against multidrug resistant bacteria. J Biomater Nanobiotech (2017) 8(2):159–75. doi:10.4262/jbn.2017.82011

118. Prachi A, Patel R, Singh N, Negi D, Rawat S. Green synthesis of zinc oxide nanoparticles using Rubia Cordifolia root extract against different bacterial pathogens. Indo American Journal of Pharmaceutical Research (2017) 7(09): 759–65. doi:10.25821/zenodo.1036347

119. Pant H, Pandit R, Sharma R, Amarjargal A, Kim H, Park C, et al. Antibacterial and pho-toctalytic properties of Ag/TiO₂/ZnO nano-owers pre-pared by facile one-pot hydrothermal process. Ceram Int (2019) 45(1):375–80. doi:10.1016/j.ceramint.2018.10.050

120. Shalumon KT, Anulekha KH, Nair SV, Nair SV, Chennazhi KP, Jayakumar R. Biogenic synthesis of zinc oxide nanoparticles and its combined efficacy with different antibiotics against multidrug resistant bacteria. J Biomater Nanobiotech (2017) 8(2):159–75. doi:10.4262/jbn.2017.82011
123. Kavitha T, Gopalan AI, Lee KP, Park SY. Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. *Carbon* (2012) 50(8):2994–3000. doi:10.1016/j.carbon.2012.02.082

124. Leung YH, Chan CM, Ng AM, Chan HT, Chiang MW, Djurišić AB, et al. Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination. *Nanotechnology* (2012) 23(47):475703. doi:10.1088/0957-4484/23/47/475703

125. Bai X, Li L, Liu H, Tan L, Liu T, Meng X. Solvothermal synthesis of ZnO nanoparticles and anti-infection application in Vivo. *ACS Appl Mater Interfaces* (2020) 7(2):1308–17. doi:10.1021/acsami.9b14958

126. Selim YA, Azb MA, Ragab I, H M Abd El-Azim M. Green synthesis of zinc oxide nanoparticles using aqueous extract of deverra tortuosa and their cytotoxic activities. *Sci Rep* (2020) 10:3445. doi:10.1038/s41598-020-60541-1

127. Vidya C, Hiremath S, Chandraprabha MN, Lourdu Antonyraj MA, Venu Gopal I, Jain A, et al. Green synthesis of ZnO nanoparticles by Calotropis gigantea. *Int J Carr Eng Technol* (2013) 1:118–20.

128. Nagajyothi PC, Minh An TN, Sreekanth TVM, Lee JI, Lee DJ, Lee KD. Green route biosynthesis: characterization and catalytic activity of ZnO nanoparticles. *Mater Lett* (2013) 108:160–3. doi:10.1016/j.matlet.2013.06.095

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Gudkov, Burmistrov, Serov, Rebegov, Semenova and Lisitsyn. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.