Assessment of coronary artery disease using coronary computed tomography angiography and biochemical markers

Gitsios Gitsioudis, Hugo A Katus, Grigorios Korosoglou

Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany

Author contributions: All the authors solely contributed to this paper.

Correspondence to: Grigorios Korosoglou, MD, Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany. gkorosoglou@hotmail.com

Received: February 20, 2014 Revised: April 16, 2014 Accepted: May 29, 2014

Abstract

Chronic inflammatory mechanisms in the arterial wall lead to atherosclerosis, and include endothelial cell damage, inflammation, apoptosis, lipoprotein deposition, calcification and fibrosis. Cardiac computed tomography angiography (CCTA) has been shown to be a promising tool for non-invasive assessment of theses specific compositional and structural changes in coronary arteries. This review focuses on the technical background of CCTA-based quantitative plaque characterization. Furthermore, we discuss the available evidence for CCTA-based plaque characterization and the potential role of CCTA for risk stratification of patients with coronary artery disease.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Atherosclerotic plaque composition; Quantification analysis; Multi-slice cardiac computed tomography; Biomarkers

Core tip: This review gives an overview of the current status of noninvasive assessment of coronary artery disease (CAD) and the ability of cardiac computed tomography angiography (CCTA) and cardiac biomarkers for the diagnostic classification and risk stratification of patients with suspected and known CAD. Since all techniques described herein are available in the clinical routine and are associated with an acceptable time spent the translation to the clinical realm appears promising. Focusing on CCTA-based quantitative plaque characterization we herein present the (1) available evidence; (2) comparison with other techniques of plaque characterization; and (3) the value of “bio-imaging” for the risk stratification of patients with CAD.

INTRODUCTION

Sudden vessel occlusion as a consequence of atherosclerotic plaque rupture with subsequent coronary artery thrombosis is the most common cause of acute myocardial infarction (AMI) and sudden cardiac death in the industrialized world[1]. Conventional X-ray coronary angiography still remains the gold standard for detection of coronary artery disease (CAD). However, this technique is invasive and provides limited information on the composition of atherosclerotic plaque[2]. Coronary computed tomography angiography (CCTA) on the other hand, is a very fast evolving and in the meanwhile well-established non-invasive technique for the visualization of both coronary artery lumen narrowing and coronary calcification[3]. In addition, CCTA with the help of commercially available software tools provides objective and quantitative assessment of atherosclerotic plaque composition[4].

Based on recent developments with CCTA hardware
and software technologies, including iterative reconstruction algorithms, a substantial reduction in radiation exposure and improvement of image quality could be achieved\(^7\)\(^{-}\)\(^{11}\). In addition, dedicated post-processing tools constituted major steps towards the reliable and quantitative assessment of atherosclerotic plaque composition\(^12\)\(^{-}\)\(^{17}\).

The growing body of evidence for the prognostic value of CCTA-based plaque characterization underscores its potential for implementation in the clinical realm. In this regard, features indicating plaque vulnerability include a large necrotic core, thin fibrous cap and positive vessel remodeling\(^6\)\(^{,18}\)\(^{-}\)\(^{22}\). The early and non-invasive detection of such vulnerable rupture-prone atherosclerotic lesions remains a major challenge in patient care.

DATA ON THE FEASIBILITY OF CCTA-BASED CORONARY PLAQUE CHARACTERIZATION

First generation CCTA scanners offered limited ability for the reliable detection of coronary lesions due to technical limitations, including limited spatial and temporal resolution, and partial volume effects caused by coronary calculations. With the development of 256- or even 320-slice multi-slice CT-scanners however, faster gantry rotation speed, Z-direction focal-spot sampling and spherical detector design could overcome these limitations, offering high isotropic spatial resolution of approximately 400-600 µm and a temporal resolution of approximately 83-175 ms\(^7\)\(^{,9}\)\(^{,23}\)\(^{-}\)\(^{26}\).

Current SCCT guidelines introduced a scheme for the qualitative characterization of different plaque types for clinical reporting\(^27\). In general, the percentage of calcium content is < 20% in non-calcified plaque, between 20% and 80% in mixed plaque and > 80% in calcified plaque. The reproducibility of this qualitative assessment (calcified, non-calcified, mixed plaques) has been shown to be good for both intra- and inter-observer agreements with more than 88%\(^28\)\(^{-}\)\(^{29}\). The accuracy of this qualitative plaque characterization approach has been validated by virtual histology-intravascular ultrasound (VH-IVUS) for different plaque types\(^30\).

Others and we showed the feasibility and practicability of semi-automated and automated post-processing software tools for the quantitative assessment of atherosclerotic coronary plaque size and composition in patients undergoing CCTA for clinical reasons\(^17\)\(^{,31}\)\(^{-}\)\(^{33}\). This volumetric approach allows for assessment of (1) total plaque volume, (2) plaque composition (distribution of (non-) calcified content) and (3) maximum, mean and minimum plaque intensities in hounsfield units (HU). Hoffman et al\(^{33}\) showed that limits of agreement are approximately 60% for small volumes (10 mm\(^3\)) and 28% for larger volumes (100 mm\(^3\)). According to the tissue specific attenuation properties, three different plaque components can potentially be distinguished, including: (1) lipid-rich (14-70 HU); (2) fibrotic (71-150 HU); and (3) calcified components (> 150-200 HU)\(^{14}\). Lipid and fi-
hsCRP was not associated with coronary artery calcification in this context. However, there is still a lack of a uniform attenuation cut-off values defining these tissue qualities due to overlapping attenuation intervals. Figure 1 shows representative examples of a (A) non-calcified and (B) of a partially calcified atherosclerotic coronary plaques with the corresponding Gaussian curves, respectively for different plaque components.

Previous ex vivo studies compared CCTA-based plaque characteristics with histopathology. In this regard, 16- and 64-slice CCTA provided precise detection of calcified lesion, while its accuracy for the differentiation between lipid-rich and fibrocalcific components was lower. Further experimental studies are now warranted to reevaluate the potential of 256- and 320-slice scanners in this context.

VIRTUAL HISTOLOGY-INTRAVASCULAR ULTRASOUND

VH-IVUS with radiofrequency backscatter analysis is the clinical gold standard technique for the visualization of coronary vessel wall morphology. In ex vivo studies of coronary arteries, IVUS has been shown to successful identify plaque features as regional calcification, lipid-rich necrotic cores and fibro-fatty plaques with high accuracy. From a clinical point of view, the PROSPECTIVE trial could show the prognostic impact of IVUS-based plaque characterization in patients with acute coronary syndromes. In contrast to CCTA, VH-IVUS enables for detailed measurement of fibrous cap thickness and for the detection of thin-cap fibroatheromas (TCFA). Pundziute et al. showed that 32% of partially calcified plaques in CCTA were characterized as TCFA by VH-IVUS.

However, there are still some limitations both during IVUS data acquisition and in the post-processing raw data handling. In addition, the assessment of the entire coronary tree requires a 3-vessel catheter-based interrogation, which may involve additional risks for the patients. In this regard, CCTA would be a valuable non-invasive alternative to IVUS, especially in light of the good correlation of the 2 techniques in terms of plaque composition assessment.

OPTICAL COHERENCE TOMOGRAPHY AND NEAR INFRARED SPECTROSCOPY

Other intravascular imaging techniques like optical coherence tomography (OCT) and near infrared spectroscopy (NIS) have also been applied for the assessment of coronary plaque composition. OCT which is the light analogue of IVUS enables for a resolution of 10-20 μm, which is about 10 times higher than that provided by IVUS. OCT detects erosions and can also differentiate between red and white thrombus. However, OCT cannot visualize vessel wall structures under the condition of blood flow, has limited penetration depths of 1-2 mm, and is therefore not appropriate for deeper imaging of blood vessels. Despite continuing improvements in the performance of both IVUS and OCT, their use has been mostly limited to structural imaging so far. On the other hand, near infrared spectroscopy (NIS) belongs to a different class of imaging methods which measures absorption spectra from blood vessels in order to assess lipid content. However, additional experimental and clinical data are required to assess the methodological reliability and to define precise clinical applications with this technique. Finally, the detection of lipid subtypes, such as oxidized low-density lipoprotein (ox LDL) is still limited using NIS.

RISK STRATIFICATION USING CCTA AND BIOCHEMICAL MARKERS

The primary adverse outcome of CAD is acute myocardial infarction (AMI) and sudden cardiac death. Therefore, there is a great need for robust diagnostic algorithms, which may include cardiac biomarkers and non-invasive imaging techniques, for the risk stratification.
of patients with subclinical or presumably stable CAD. In this regard, the detection of rupture-prone coronary plaques or of elevated cardiac troponins may help the classification of patients with presumably low risk et those with high-risk, aiding in the guidance of pharmacologic and interventional treatment strategies. Non-invasive assessment of functional wall motion analysis by dobutamine stress cardiac magnetic resonance imaging (MRI) or stress echocardiography has also been shown to identify patients at high risk for future cardiac events\(^{[33,34]}\). However, in contrast to CCTA these imaging modalities provide no information on coronary artery pathologies and plaque composition.

Several cardiovascular biomarkers are well established in clinical routine to complement clinical assessment and 12-lead ECG in the diagnosis, risk stratification, triage, and management of patients with suspected acute coronary syndrome (ACS). Especially cardiac troponins were shown to aid the diagnostic classification and risk stratification of patients with ACS\(^{[55-57]}\). Recently others and we could show an association between CTA atherosclerotic plaque characteristics and small blood level troponin increases in patients with stable CAD\(^{[58,59]}\), which could be explained by chronic clinically silent rupture of non-calcified plaque with subsequent microembolisation. In an experimental setting, high mobility group box 1 (HMGB1) protein was found to be a critical mediator of acute ischemic injury, predicting adverse outcomes after myocardial infarction\(^{[60,61]}\). In addition, we could show that HMGB1 serum levels are associated with coronary calcification and with non-calcified plaque composition in patients with suspected or known stable CAD\(^{[50]}\).

Incorporation of ox-LDL transforms macrophages into foam cells, which built the core of atherosclerotic plaques. In this regard, the presence and extent of non-calcified plaques are associated with high non-HDL, which suggest a relationship between lipid profile and plaque composition\(^{[62,64]}\).

CRP was initially supposed to be a causal player for atherosclerotic plaque development and inflammation\(^{[65]}\). However, further basic science research has questioned a direct atherogenic mechanism\(^{[66,67]}\). Others and we could show that serum levels of hsCRP are only weakly correlated with plaque composition and coronary artery calcification and largely determined by the presence of risk factors\(^{[68,69]}\). More specific markers of inflammation could provide a stronger association with plaque formation and atherosclerotic inflammation. In this regard, the dal-PLAQUE study recently showed that myeloperoxidase levels are associated with carotid plaque inflammation, which was assessed using 18F-fluorodeoxyglucose positron emission tomography/computed tomography\(^{[70]}\). An overview of the most interesting studies in the area of comprehensive “bio-imaging” using cardiac computed tomography and biomarkers are presented in Table 1.

Several CCTA outcome studies on the other hand, have assessed the prognostic value of plaque burden and plaque morphology in both symptomatic and asymptomatic cohorts\(^{[18,71-74]}\). The value of risk assessment in patients with CAD using a CCTA-based semi-automated plaque assessment has been recently shown\(^{[75]}\). Ongoing studies now investigate the potential complementary value of high-sensitive Troponin T (hsTnT) and quantitatively assessed coronary plaque burden for the risk stratification of patients with intermediate likelihood for CAD.

CONCLUSION

Imaging of coronary artery disease using CCTA is a feasible and robust approach for non-invasive plaque characterization. Growing body of evidence exists for the ability of CCTA based quantitative plaque characterization for the prediction of clinical outcome in patients with suspected or known coronary artery disease.

REFERENCES

1. **Naghabi M**, Libby P, Falk E, Cassells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovic DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantine C, Insull W, Schwartz RS, Vogel S, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah FK, Willerson JT. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. *Circulation* 2003; **108**: 1772-1778 [PMID: 14557340 DOI: 10.1161/01.CIR.0000111517.69230.0F]

2. **Libby P**. Inflammation in atherosclerosis. *Nature* 2002; **420**: 868-874 [PMID: 12490960 DOI: 10.1038/nature01323]

3. **Voros S**, Rinehart S, Qian Z, Joshi P, Vazquez G, Fischer C, Belur P, Hulten E, Villines TC. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. *JACC Cardiaco Imaging* 2011; 4: 537-549 [PMID: 21565743 DOI: 10.1016/j.jcmg.2011.03.006]

4. **Achenbach S**, Moselwski F, Ropers D, Ferencik M, Hoffmann U, MacNeill B, Pohle K, Baum U, Anders K, Jang IK, Daniel WG, Brady TJ. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. *Circulation* 2004; **109**: 14-17 [PMID: 14691045 DOI: 10.1161/01.CIR.0000111517.69230.0F]

5. **Schroeder S**, Kopp AF, Baumbach A, Meinsner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C, Claussens KD, Karsch KR. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. *J Am Coll Cardiol* 2001; **37**: 1430-1435 [PMID: 11300457 DOI: 10.1016/S0735-1097(01)01115-9]

6. **Versteelen MO**, Kietelaela BL, Dagnelie PC, Joosen IA, Dedic A, Raaijmakers RH, Wildberger JE, Nieman K, Crinjs HJ, Niessen WJ, Daemen MJ, Hofstra L. Additive value of semiautomated quantification of coronary artery disease using cardiac computed tomographic angiography to predict future acute coronary syndrome. *J Am Coll Cardiol* 2013; **61**: 2296-2308 [PMID: 23562925 DOI: 10.1016/j.jacc.2013.02.065]

7. **de Graaf FR**, Schuijf JD, van Velzen JE, Kroft LJ, de Roos A, Reiber JH, Boersma E, Schalij MJ, Spanò F, Jukema JW, van...
der Wall EE, Bax JJ. Diagnostic accuracy of 320-row multi-detector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease. Eur Heart J 2010; 31: 1908-1915 DOI: [PMID: 20437991]

Hosch W, Heye T, Schulz F, Lehrke S, Schröter F, Miittenis E, Kauczor HU, Katus HA, Korosoglou G. Image quality and radiation dose in 256-slice cardiac computed tomography: comparison of prospective versus retrospective image acquisition protocols. Eur J Radiol 2011; 80: 127-135 DOI: [PMID: 20708667 DOI:10.1016/j.ejrad.2010.07.011]

Chao SP, Law WY, Kuo C, Hung HF, Cheng JJ, Lo HM, Otsuka M, Tanaka A. The diagnostic accuracy of 256-row CT coronary angiography for the prediction of acute coronary syndrome. J Cardiology Imaging 2013; 6: 488-487 DOI: [PMID: 23498679 DOI: 10.1016/j.jcmg.2012.09.016]

Tanaka A, Kawarabayashi T, Nishibori Y, Sano T, Nishida Y, Fukuda D, Shimada K, Yoshikawa J. No-reflow phenomenon and lesion morphology in patients with acute myocardial infarction. Circulation 2002; 105: 2148-2152 DOI: [PMID: 11994274 DOI: 10.1161/01.CIR.105.076592.07]

Virmani R, Butnaru FP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006; 47: C13-C18 DOI: [PMID: 16631505 DOI:10.1016/j.jacc.2005.10.065]

Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, Mehran R, McPherson J, Farhat N, Marso SP, Parise H, Templin B, White R, Zhang Z, Serruys PW. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011; 364: 226-235 DOI: [PMID: 21247313 DOI: 10.1056/NEJMoa1012358]

Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, Malik S, Fuster V, Finn AV. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 2013; 61: 1041-1051 DOI: [PMID: 23473409 DOI: 10.1016/j.jacc.2012.10.054]

Ong TK, Chin SP, Liew CK, Chan WL, Seyfarth MT, Liew HB, Rapaea A, Fong YY, Ang CK, Sim KH. Accuracy of 64-row multidetector computed tomography in detecting coronary artery disease in 134 symptomatic patients: influence of calcification. Am J Cardiol 2006; 151: 1323.e1-1323.e6 DOI: [PMID: 16781246]

Stolzmann P, Scheffel H, Leschka S, Plass A, Baumüller S, Marincek B, Alkadhi H. Influence of calcifications on diagnostic accuracy of coronary CT angiography using prospective ECG triggering. AJR Am J Roentgenol 2008; 191: 1684-1689 DOI: [PMID: 19020236]

Hsiao EM, Rybicki FJ, Steiginer M. CT coronary angiography: 256-slice and 320-detector row scanners. Curr Cardiol Rep 2012; 14: 68-75 DOI: [PMID: 20425186 DOI: 10.1007/s11886-009-0075-z]

Voros S. What are the potential advantages and disadvantages of volumetric CT scanning? J Cardiovasc Comput Tomogr 2009; 3: 67-70 DOI: [PMID: 19201673 DOI: 10.1016/j.jcct.2008.12.010]

Raff GL, Abidov A, Achenbach S, Berman DS, Boxt LM, Budoff MJ, Cheng V, DeFrance T, Hellinger JC, Karsberg RP. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr 2009; 3: 122-136 DOI: [PMID: 19272853 DOI:10.1016/j.jcct.2009.01.001]

Lehman SJ, Schlett CL, Bamberg F, Lee H, Donnelly P, Shtrum L, Kriegel MF, Brady TJ, Hoffmann U. Assessment of coronary plaque progression in coronary computed tomography angiography using a semiquantitative score. JACC Cardiovasc Imaging 2009; 2: 1262-1270 DOI: [PMID: 19099929 DOI: 10.1016/j.jcmg.2009.07.007]

Rinehart S, Vazquez G, Qian Z, Murrieta L, Christian K, Voros S. Quantitative measurements of coronary arterial stenosis, plaque geometry, and composition are highly reproducible with a standardized coronary arterial computed tomographic approach in high-quality CT datasets. J Cardiovasc Comput Tomogr 2011; 5: 35-43 DOI: [PMID: 21131252 DOI: 10.1016/j.jcct.2010.09.006]

Pundziute G, Schuijf JD, Jukema JW, Decramer I, Sarno G, Vanhoenacker PK, Reiber JH, Schalij MJ, Wijns W, Bax JJ. Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultrasound radiofrequency data analysis. JACC Cardiovasc Interv 2008; 1: 176-182 DOI: [PMID: 19463297 DOI: 10.1016/j.jcin.2008.01.007]

Otsuka M, Bruining N, Van Pelt NC, Mollet NR, Litghtart JM, Vourvouri E, Hamers R, de Jaegere P, Wijns W, Van Domburg RT, Stone GW, Veldhof S, Verheyse S, Dudek D, Serruys PW, Krestin GP, De Feyter P. Quantification of coronary plaque by 64-slice computed tomography: a comparison with quantitative intracoronary ultrasound. Invest
32 Boegers MJ, Broersen A, van Velzen JE, de Graaf FR, El-Naggar HM, Kitslaar PH, Dijkstra J, Delgado V, Boersma E, de Roos A, Schlach J, Holier J, Jukema JW. Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. *Eur Heart J* 2012; 33: 1007-1016 [DOI: 10.1093/eurheartj/ehr245]

33 Hoffmann U, Moslelevski F, Niemann K, Jang IK, Ferencik M, Rahman AM, Cury RC, Abbara S, Joneidi-Jafari H, Achenbach S, Brady TJ. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. *J Am Coll Cardiol* 2006; 47: 1655-1662 [DOI: 10.1016/j.jacc.2006.01.041]

34 Becker CR, Nikolau K, Muders M, Babarya G, Crispin A, Schoepf UJ, Leehrs U, Reiser MF. Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. *Eur Radiol* 2013; 23: 1904-1908 [PMID: 23692811 DOI: 10.1007/s00330-013-2811-9]

35 Schroeder S, Kuettner A, Leitzt M, Janzen J, Kopp AF, Herde D, Heuschmid M, Burgstahl C, Berthmann M, Claussen CD. Reliability of differentiating human coronary plaque morphology using contrast-enhanced spiral computed tomographic imaging: a comparison with histology. *J Comput Assist Tomogr* 2004; 28: 449-454 [PMID: 15223734 DOI: 10.1097/00002788-200407000-00003]

36 Nikolaou K, Becker CR, Muders M, Babarya G, Scheidler J, Flohr T, Leehrs U, Reiser MF, Fayad ZA. Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. *Atherosclerosis* 2004; 174: 243-252 [PMID: 15136054 DOI: 10.1016/j.atherosclerosis.2004.01.041]

37 Schroeder S, Kettner A, Wojak T, Janzen J, Heuschmid M, Athanasiou T, Beck T, Burgstahl C, Herde D, Claussen CD, Kopp AF. Non-invasive evaluation of atherosclerosis with contrast enhanced 16 slice spiral computed tomography: results of ex vivo investigations. *Heart* 2004; 90: 1471-1475 [PMID: 15547032 DOI: 10.1136/hrt.2004.037861]

38 Obaid DR, Calvert PA, Gopalan D, Parker RA, Hoole SP, West NE, Goddard M, Rudd JH, Bennett MR. Atherosclerotic plaque composition and classification identified by contrast-enhanced tomography: assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology. *Circ Cardiovasc Imaging* 2013; 6: 655-664 [PMID: 23960215 DOI: 10.1161/CIRCIMAGING.112.00250]

39 Sarwar A, Rieber J, Mooyaart EA, Seneviratne SH, Houser SL, Bamberg F, Rafiel OC, Gupta R, Kalra MK, Pien H, Lee H, Brady TJ, Hoffmann U. Calcified plaque: measurement of area at thin-section flat-panel CT and 64-section multi-detector CT and comparison with histopathologic findings. *Radiology* 2008; 249: 301-306 [PMID: 18710960 DOI: 10.1148/radiol.2483072033]

40 Garcia-Garcia HM, Mintz GS, Lerman A, Vinc VG, Margolis MP, van ES GA, Morel MA, Nair A, Virmani R, Burke AP, Stone GW, Serruys PW. Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. *Eurointervention* 2009; 5: 177-189 [PMID: 20449298]

41 Mehta SK, McCrory JR, Frutkin AD, Dolla WJ, Marso SP. Intravascular ultrasound radiofrequency analysis of coronary atherosclerosis: an emerging technology for the assessment of vulnerable plaque. *Eur Heart J* 2007; 28: 1283-1288 [PMID: 17483541 DOI: 10.1093/eurheartj/ehm112]

42 Murashige A, Hiro T, Fujii T, Imoto K, Murata T, Fukumoto Y, Matsuzaki M. Detection of lipid-laden atherosclerotic plaque by wavelet analysis of radiofrequency intravascular ultrasound signals: in vitro validation and preliminary in vivo application. *J Am Coll Cardiol* 2005; 45: 1954-1960 [PMID: 15962392 DOI: 10.1016/j.jacc.2004.08.080]

43 Nair A, Kuban BD, Tzuce EM, Soolen J, Lautenschlager P, Nissen SE, Vinc VG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. *Circulation* 2002; 106: 2200-2206 [PMID: 12390948 DOI: 10.1111/j.0003-856X.2001.55564.18341.5E]

44 Nair A, Margolis MP, Kuban BD, Vinc VG. Automated coronary plaque characterisation with intravascular ultrasound backscatter: ex vivo validation. *EuroIntervention* 2007; 3: 113-120 [PMID: 17927694]

45 Kubo T, Imanishi T, Takakura S, Kuroi A, Ueno S, Yamano T, Tamimoto T, Matsuos Y, Mashe T, Kitabata H, Tsuka K, Tomobuchi Y, Akasaka T. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angiography. *J Am Coll Cardiol* 2007; 50: 933-939 [PMID: 17765119 DOI: 10.1016/j.jacc.2007.04.082]

46 Garcia-Garcia HM, Gogas BD, Serruys PW, Bruining N. IVUS-based imaging modalities for tissue characterization: similarities and differences. *Int J Cardiovasc Imaging* 2011; 27: 215-224 [PMID: 21327914 DOI: 10.1007/s10554-010-9797-9]

47 Choi BJ, Kang DK, Tahk SJ, Choi SY, Yoon MH, Lim HS, Kang SJ, Yang HM, Park JS, Zheng M, Hwang GS, Shin JH. Comparison of 64-slice multidetector computed tomography with spectral analysis of intravascular ultrasound backscatter signals for characterizations of noncalcified coronary arterial plaques. *Am J Cardiol* 2008; 102: 988-993 [PMID: 18929608 DOI: 10.1016/j.amjcard.2008.05.060]

48 Voros S, Rinehart S, Vazquez-Figueroa JG, Kalynych A, Karmpaliotis D, Qian Z, Joshi PH, Anderson H, Murrieta L, Wilmer C, Carlson H, Ballard W, Brown C. Prospective, head-to-head comparison of quantitative coronary angiography, quantitative computed tomography angiography, and intravascular ultrasound for the prediction of hemodynamic significance in intermediate and severe lesions, using fractional flow reserve as reference standard (from the AT-LANTA I and II Study). *Am J Cardiol* 2014; 113: 23-29 [PMID: 24238960 DOI: 10.1016/j.amjcard.2013.09.010]

49 Voros S, Rinehart S, Qian Z, Vazquez G, Anderson H, Murrieta L, Wilmer C, Carlson H, Taylor K, Ballard W, Karmpaliotis D, Kalynych A, Brown C. Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomography for atherosclerotic plaque characterisation with intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the AT-LANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study. *JACC Cardiovasc Imaging* 2011; 4: 198-208 [PMID: 21349459 DOI: 10.1016/j.jcmg.2010.10.008]

50 Kume T, Akasaka T, Kawamoto T, Ogasawara Y, Watanabe N, Toyota E, Nishi Y, Sukmawan R, Sadahara Y, Yoshida K. Assessment of coronary arterial thrombus by optical coherence tomography. *Am J Cardiol* 2006; 97: 1713-1717 [PMID: 16765119 DOI: 10.1016/j.amjcard.2006.01.031]

51 Rosenthal A, Jaffer FA, Ntziachristos V. Intravascular multispectral optoacoustic tomography of atherosclerosis: prospects and challenges. *Imaging Med* 2012; 4: 299-310 [PMID: 23144663 DOI: 10.2127/jim.12.0.20]

52 Waxman S, Dixon SR, L’Allier P, Moses JW, Petersen JL, Cutlip D, Tardif JC, Nesto RW, Muller JE, Hendricks MJ, Sum ST, Gardner CM, Goldstein JA, Stone GW, Krucoff MW. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. *JACC Cardiovasc Imaging* 2009; 2: 858-868 [PMID: 19608137 DOI: 10.1016/
Katus HA, Remppis A, Neumann FJ, Scheffold T, Diederich KW, Vinar G, Noe A, Matern G, Kuebler W. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 1991; 83: 902-912 [PMID: 1990939 DOI: 10.1161/01.CIR.83.3.902]

Korosoglou G, Labadze N, Hansen A, Selter C, Giannitsis E, Katus H, Kuecherer H. Usefulness of real-time myocardial perfusion imaging in the evaluation of patients with first time chest pain. Am J Cardiol 2004; 94: 1225-1231 [PMID: 15541235 DOI: 10.1016/j.amjcard.2004.07.104]

Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Katus HA, Lindahl B, Morrow DA, Clemmensen PM, Johanson P, Hod H, Underwood R, Bax JJ, Bonow RO, Pinto F, Gibbons RJ, Fox KA, A Woo D, Newby LK, Galvani M, Hamm CW, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasche P, Rakhilev J, Ohmam EM, Antman EM, Wallentin LC, Armstrong PW, Simoons ML, Januzzi JL, Nieminen MS, Gheorghiade M, Filipatos G, Luepker RV, Fortmann SP, Rosamond WD, Levy D, Wood D, Smith SC, Miller M, Hadamitzky M, Hausleiter J, Kaufmann P, Maffei E, Raff G, Shaw LJ, Villines TC, Dunning A, Curry RC, Feuchtner G, Kim YJ, Leipsic J, Min JK. Relationship of low- and high-density lipoproteins to coronary artery plaque composition by CT angiography. J Cardiovasc Comput Tomogr 2013; 7: 83-90 [PMID: 23622582 DOI: 10.1016/j.jcct.2013.01.008]

Zhang YX, Clift WJ, Schoeffl GI, Higgins G. Coronary C-reactive protein distribution: its relation to development of atherosclerosis. Atherosclerosis 1999; 145: 375-379 [PMID: 10488966 DOI: 10.1016/S0021-9150(99)00105-7]

Clapp BR, Hirschfeld GM, Storry C, Gallimore JR, Stidwill RP, Singer M, Deanfield JE, MacAllister RJ, Pepys MB, Valance P, Hingorani AD. Inflammation and endothelial function: direct vascular effects of human C-reactive protein on nitric oxide bioavailability. Circulation 2005; 111: 1530-1536 [PMID: 15795363 DOI: 10.1161/01.CIR.0000193366.31153.51]

Koike T, Kajitama S, Y, Nishijima K, Zhang J, Ozaki Y, Morimoto M, Watanabe T, Bhakdi S, Ozaki M, Yasu H, Takahashi S, Asada Y, Chen YF, Fan J. Human C-reactive protein does not promote atherosclerosis in transgenic rabbits. Circulation 2009; 120: 2088-2094 [PMID: 19001190 DOI: 10.1161/CIRCULATIONAHA.109.827796]

Blaha MJ, Rivera J, Budoff MJ, Blankstein R, Agatston A, O’Leary DH, Cushman M, Lakoski S, Criqui MH, Szlko M, Blumenthal RS, Nancy A. Association between obesity, high-sensitivity C-reactive protein 22 ng/L, and subclinical atherosclerosis: implications of JUPITER from the Multi- Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31: 1430-1438 [PMID: 21474825 DOI: 10.1161/AT VBAHA.111.223768]

Hamirani YS, Pandey S, Rivera J, Ndumele C, Budoff MJ, Blumenthal RS, Nancy A. Markers of inflammation and coronary artery calcification: a systematic review. Atherosclerosis 2008; 201: 1-7 [PMID: 18561954 DOI: 10.1016/j.atherosclerosis.2008.04.045]

Duivenvoorden R, Mani V, Woodward M, Kallend D, Suchankova G, Fuster V, Rudd JH, Tawakol A, Farkouh ME, Fayad ZA. Association of serum inflammatory biomarkers with plaque inflammation assessed by FDG PET/CT: the dal-PLAQUE study. JACC Cardiovasc Imaging 2013; 6: 1087-1094 [PMID: 23535522 DOI: 10.1016/j.jcmg.2013.03.009]

Andreini D, Pontone G, Mustiaq B, Bartorelli AL, Bertella E, Antonioli L, Formenti A, Cortinovis S, Veglia F, Annoni A, Agostoni P, Montorsi F, Ballerini G, Fiorentini C, Pepi M. A long-term prognostic value of coronary CT angiography in suspected coronary artery disease. JACC Cardiovasc Imaging 2012; 5: 690-701 [PMID: 22789937 DOI: 10.1016/j.jcmg.2012.03.009]

Hadamitzky M, Distler R, Meyer T, Hein F, Kastrati A, Martin J, Schömig A, Hausleiter J. Prognostic value of coronary computed tomography angiography compared to stress test results with calcium scoring and clinical risk scores. Circ Cardiovasc Imaging 2011; 4: 16-23 [PMID: 20888832 DOI: 10.1161/CIRC IMAGING.110.955331]

Motoyama S, Sato M, Hariguaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, Hong ND, Virmani R, Kondo T, Ozaki Y, Narula J. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 2009;
Bamberg F, Sommer WH, Hoffmann V, Achenbach S, Nikolaou K, Conen D, Reiser MF, Hoffmann U, Becker CR. Meta-analysis and systematic review of the long-term predictive value of assessment of coronary atherosclerosis by contrast-enhanced coronary computed tomography angiography. J Am Coll Cardiol 2011; 57: 2426-2436 [PMID: 21658564 DOI: 10.1016/j.jacc.2010.12.043]
