MINIREVIEWS

104 Neuroprotection by dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide-1 analogs via the modulation of AKT-signaling pathway in Alzheimer’s disease

Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S

META-ANALYSIS

114 Remission is not maintained over 2 years with hematopoietic stem cell transplantation for rheumatoid arthritis: A systematic review with meta-analysis

Muthu S, Jeyaraman M, Ranjan R, Jha SK
World Journal of Biological Chemistry

Contents

Bimonthly Volume 12 Number 6 November 27, 2021

ABOUT COVER

Editorial Board Member of *World Journal of Biological Chemistry*, Jian-Xun Ding, PhD, Professor, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China. jxding@ciac.ac.cn

AIMS AND SCOPE

The primary aim of the *World Journal of Biological Chemistry* (*WJBC, World J Biol Chem*) is to provide scholars and readers from various fields of biological chemistry a platform to publish high-quality basic and clinical research articles and communicate their research findings online.

WJBC mainly publishes articles reporting research results and findings obtained in the field of biological chemistry and covering a wide range of topics including bioenergetics, cell biology, chromosomes, developmental biology, DNA, enzymology, extracellular matrices, gene regulation, genomics, glycochemistry, immunology, lipids, membrane biology, metabolism, molecular bases of disease, molecular biophysics, neurobiology, plant biology, protein structure and folding, protein synthesis and degradation, proteomics, and signal transduction.

INDEXING/ABSTRACTING

The *WJBC* is now abstracted and indexed in PubMed, PubMed Central, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (CSTJ), and Superstar Journals Database.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Hua-Ge Yu; Production Department Director: Yu-Jie Ma, Editorial Office Director: Yun-Xiaojiao Wu.

NAME OF JOURNAL	World Journal of Biological Chemistry
ISSN	ISSN 1949-8454 (online)
LAUNCH DATE	July 26, 2010
FREQUENCY	Bimonthly
EDITORS-IN-CHIEF	Vsevolod Gurevich, Chunpeng Craig Wan
EDITORIAL BOARD MEMBERS	https://www.wjgnet.com/1949-8454/editorialboard.htm
PUBLICATION DATE	November 27, 2021
COPYRIGHT	© 2021 Baishideng Publishing Group Inc

INSTRUCTIONS TO AUTHORS

https://www.wjgnet.com/bpg/gerinfo/204

GUIDELINES FOR ETHICS DOCUMENTS

https://www.wjgnet.com/bpg/GerInfo/287

GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

https://www.wjgnet.com/bpg/gerinfo/240

PUBLICATION ETHICS

https://www.wjgnet.com/bpg/GerInfo/288

PUBLICATION MISCONDUCT

https://www.wjgnet.com/bpg/GerInfo/208

ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/bpg/gerinfo/242

STEPS FOR SUBMITTING MANUSCRIPTS

https://www.wjgnet.com/bpg/GerInfo/239

ONLINE SUBMISSION

https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com https://www.wjgnet.com
Neuroprotection by dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide-1 analogs via the modulation of AKT-signaling pathway in Alzheimer’s disease

Yuka Ikeda, Nozomi Nagase, Ai Tsuji, Yasuko Kitagishi, Satoru Matsuda

ORCID number: Yuka Ikeda 0000-0003-4805-1758; Nozomi Nagase 0000-0003-3665-5714; Ai Tsuji 0000-0003-1619-7592; Yasuko Kitagishi 0000-0002-6906-7444; Satoru Matsuda 0000-0003-4274-5345.

Author contributions: Each author (Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S) participated sufficiently in this work of drafting the article and/or revising the article for the important rational content; all authors gave final approval of the version to be submitted.

Conflict-of-interest statement: The authors declare that they have no competing financial interests.

Country/Territory of origin: Japan

Specialty type: Neurosciences

Provenance and peer review: Invited manuscript; externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification

Grade A (Excellent): 0
Grade B (Very good): 0
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

Abstract

Alzheimer’s disease (AD) is the most common reason for progressive dementia in the elderly. It has been shown that disorders of the mammalian/mechanistic target of rapamycin (mTOR) signaling pathways are related to the AD. On the other hand, diabetes mellitus (DM) is a risk factor for the cognitive dysfunction. The pathogenesis of the neuronal impairment caused by diabetic hyperglycemia is intricate, which contains neuro-inflammation and/or neurodegeneration and dementia. Glucagon-like peptide-1 (GLP1) is interesting as a possible link between metabolism and brain impairment. Modulation of GLP1 activity can influence amyloid-beta peptide aggregation via the phosphoinositide-3 kinase/AKT/mTOR signaling pathway in AD. The GLP1 receptor agonists have been shown to have favorable actions on the brain such as the improvement of neurological deficit. They might also exert a beneficial effect with refining learning and memory on the cognitive impairment induced by diabetes. Recent experimental and clinical evidence indicates that dipeptidyl-peptidase-4 (DPP4) inhibitors, being currently used for DM therapy, may also be effective for AD treatment. The DPP-4 inhibitors have demonstrated neuroprotection and cognitive improvements in animal models. Although further studies for mTOR, GLP1, and DPP4 signaling pathways in humans would be intensively required, they seem to be a promising approach for innovative AD-treatments. We would like to review the characteristics of AD pathogenesis, the key roles of mTOR in AD and the preventive and/or therapeutic suggestions of directing the mTOR signaling pathway.

Key Words: Alzheimer’s disease; Cognitive disorder; Dementia; Glucagon-like peptide-1; Dipeptidyl peptidase-4; Mammalian/mechanistic target of rapamycin

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
INTRODUCTION

Alzheimer’s disease (AD) is a chronic neuro-degenerative disease of the central nervous system (CNS), which is described by a slow and unremitting pathology[1]. The chief clinical appearance of AD is progressive continuing dementia, which is categorized by intellectual symptoms such as diminished cognition, memorial dysfunction, and behavioral complaints[2]. The prevention of AD is a public health concern because of a lack of effective treatments. The onset of AD is associated with an increase in age and to a reduction in mitochondrial ATP synthesis in the hippocampus of the brain[3]. Estrogen has a neuro-protective effect on various nerve cells, however, estrogen also has a carcinogenic effect to non-nerve proliferating cells[4]. Pre-diabetic risk factors, obesity, and metabolic syndrome could promote cognitive dysfunction[5]. Neuro-pathological features of AD are neurofibrillary tangles, molded by hyperphosphorylated tau protein, which may accumulate into oligomers and/or amyloid plaques[6]. There might be an association between metabolism and brain function. Insulin works as a pro-survival neurotrophic factor with its receptors at cognitive areas in the brain[7]. The commonalities have been found between AD and type 2 diabetes mellitus, which is believed as a high-risk factor for AD[8]. In addition, the animal studies have shown that GLP1 may benefit on the neuro-degeneration[9]. The GLP1 receptor agonists have also been shown as possessing neuro-protective effects in AD, which seem to improve nearly all neuro-pathological features as well as cognitive functions of AD[10]. For example, neurofibrillary tangles, amyloid plaques, and neuro-inflammations in the hippocampus have been reduced in AD model mice[11,12]. In the rat model, it has been shown that a GLP1 receptor agonist also prevents synaptic damage induced by amyloid-beta accumulation, which supports the spatial memory by affecting the phosphoinositide-3 kinase (PI3K)-AKT pathway[11]. Targeting dipeptidyl-peptidase-4 (DPP4) inhibitors that is involved in the GLPI signaling has been considered as promising therapeutic models to AD[13]. Furthermore, mammalian/mechanistic target of rapamycin (mTOR) has been considered as a center that integrates multiple signaling cascades including the GLP1 receptor signaling, which may also be involved in the progression of AD[14]. We will review the several studies linking potential protective factors to pathogenesis of AD, focusing on the roles of GLP1 and DPP4 inhibitors in the PI3K/AKT/mTOR pathway. In addition, we will summarize the recent researches of the AD-associated biology, by which several diet factors could relate to the pathway. To overview the potential physical activities through the PI3K/AKT/mTOR signaling may contribute to the preventive and/or therapeutic strategy for AD.

PI3K/AKT/MTOR SIGNALING IS INVOLVED IN NEUROPROTECTION OF AD

The mTOR plays a significant role in diverse cellular processes including cell survival, cell proliferation, and cell death[15], which is a particular molecule bound to rapamycin. The rapamycin is an immune-suppressant used for the anti-rejection of tissue-transplantation[16]. Rapamycin also exhibits remarkable potential in the fields of neuro-protection, anti-aging, etc.[17]. It can inhibit the activity of the mTOR[18]. The mTOR is also a nutrient-sensor that mediates the signaling responses to energy status

Core Tip: Disorders of mammalian/mechanistic target of rapamycin (mTOR) signaling pathways are related to Alzheimer’s disease (AD). Although further studies for mTOR, glucagon-like peptide-1, and dipeptidyl-peptidase-4 signaling are needed, they seem to be a promising approach for innovative AD-treatments.

Citation: Ikeda Y, Nagase N, Tsuji A, Kitagishi Y, Matsuda S. Neuroprotection by dipeptidyl-peptidase-4 inhibitors and glucagon-like peptide-1 analogs via the modulation of AKT-signaling pathway in Alzheimer’s disease. World J Biol Chem 2021; 12(6): 104-113
URL: https://www.wjgnet.com/1949-8454/full/v12/i6/104.htm
DOI: https://dx.doi.org/10.4331/wjbc.v12.i6.104
in a cell[19]. Besides, the mTOR activity could be inhibited by nutritional signaling such as caloric restriction[20]. Inhibition of the mTOR could alter cellular responses from cell proliferation to cell quiescence with decreased protein synthesis[21]. Basically, mTOR-inhibition has been shown to increase resistance to stresses resulting in the regulation of age-related diseases, which may contribute to the extension of total life-time[22]. Modulation of the mTOR-function to inhibit cellular apoptosis is deeply involved in the protective effects of pharmacologic agents aiming against diabetes and neurodegenerative diseases[23]. The mTOR activation inhibits autophagy, which is often disrupted in age-related diseases[24]. In the mouse brain neurons, amyloid-beta oligomers have been thought to activate the JNK signaling, leading to insulin resistance[25]. Instead, activation of the PI3K/AKT signaling pathway could bring the inhibition of apoptosis cascade including caspase-signaling[26], leading to the inhibition of the induction of inflammatory cytokines[27]. Following the activation of growth-factor receptors with their ligand, PI3K/AKT gets activated directing to promotion of mitogen-associated protein kinase/extracellular signal-regulated kinases and mTOR[28]. On the other hand, adenosine monophosphate-activated protein kinase (AMPK) is an important signaling mediator of GLP1 receptor, which inhibits mTOR[29]. In fact, the AMPK-loss has resulted in hyper-proliferation and hyperactive mTOR signaling[30]. Therefore, the mTOR signaling could interact with several upstream components including PI3K/AKT and AMPK[31] (Figure 1). Increasing studies have established the involvement of the mTOR signaling in various neuro-degenerative diseases including AD[32]. In particular, activated mTOR signaling is a contributor to the progression of AD[33]. Furthermore, there is a close relationship between mTOR signaling and the presence of amyloid-beta plaques and cognitive impairment[34]. So, the development of mTOR-inhibitors may be useful for the prevention and treatment of AD and/or the other neuro-degenerative diseases. In the CNS, inhibition of the mTOR has been revealed to protect vascular functions in aging[35]. Appropriate dose of rapamycin may diminish neurofibrillary tangles and amyloid-beta plaques improving cognitive functions in AD model mice[36]. Similarly, mTOR inhibition without malnutrition is able to improve the pathology of AD[37]. Moreover, mTOR inhibition protects mitochondrial function, reduces oxidative stress, and maintains glucose homeostasis in aging[20,38]. Conversely, activation of the mTOR may shift metabolisms toward ketone-body consumption[39]. Elevated ketone-body metabolisms and/or the administration of the ketogenic diet have been shown neuro-protective against aging, neurodegeneration, and AD[40].

GLP1 and Dipeptidyl Peptidase-IV-Inhibition Exhibits Neuroprotective Effects in AD

GLP1 is an endogenous hormone secreted from intestinal L-cells in response to food-intake[41]. Proteolytic cleavage of the precursor GLP1 (1–37) produce two biological active forms[42]. GLP1 may stimulate insulin-secretion from beta-cells in pancreatic islets under hyperglycemic situations and may decrease glucagon secretion from alpha-cells in pancreatic islets[43]. Signal transduction of GLP1 is mediated by the GLP1 receptor, a G-protein coupled seven-pass-transmembrane domain receptor, heading to cyclic adenosine monophosphate-dependent activation of protein kinase A and AMPK. In fact, it has been shown that GLP1 receptor agonists-treatment activates the AMPK signaling within myoblast C2C12 cells[44]. On the contrary, the GLP1 receptor may also operate the downstream signal transduction from the PI3K/AKT pathway so as to work against cellular apoptosis[45]. Accordingly, the GLP1 receptor could dually modulate the activity of mTOR, a key kinase regulating proliferation, survival, and protection in balance. Actually, GLP1 receptor antagonists also stimulate insulin activation by the PI3K/AKT signaling pathway, with the following activation of mTOR and inhibition of GSK3-beta, an essential kinase involved in the phosphorylation of tau protein in AD[46]. GLP1 may also be involved in the regulation of autophagy, the reduction of the oxidative stress, and in the protection of CNS with induction of anti-inflammatory signaling[47]. In addition, GLP1 plays a critical role preventing cardiovascular diseases, in which GLP1 and its analogs may contribute a great deal in the treatment of the diseases[48]. Likewise, it has been shown that GLP1 receptor agonists reduce the infarct size, inflammation, and apoptosis in a rat model of stroke[49].
GLP1 is rapidly degraded by DPP4, a serine aminopeptidase expressed in various organs including brain, pancreas, liver, and gut[50]. Therefore, inhibitors of DPP4 may prolong the bioactive half-life of GLP1 in the circulation, which is additionally effective in amending hyperglycemia[51]. The DPP4 inhibitor, linagliptin, has been shown to protect neurons against amyloid beta-induced cytotoxicity and tau hyperphosphorylation by restoring insulin downstream signaling in AD[52]. Furthermore, the linagliptin alleviated amyloid-beta-induced mitochondrial dysfunction and intracellular ROS generation by a mechanism involving the activation of AMPK-Sirt1 signaling pathway[53]. Chronic administration of another DPP4 inhibitor, sitagliptin, in AD model mice is associated with increased levels of brain GLP1, reductions in the inflammation-biomarkers, and reduction of amyloid-beta deposition in a dose dependent manner[54,55]. Significant reduction in amyloid-beta-42 Level has been associated with the use of linagliptin implying potential application in AD[56]. Also, linagliptin improved vascular functions by increasing creation of nitric oxide and restraining concentration of apolipoprotein B[56]. DPP4 inhibitors can block the DDP4 to diminish GLP1-degradation, prolong GLP1 active life-time, and sensitize insulin-activity for the aim of lowering hyperglycemia[57], and for neuro-protection (Figure 2).

GLP1 and various DPP4 inhibitors (linagliptin, sitagliptin, saxagliptin, etc.) seem to be related to their ability to rescue the insulin cascade. Brain insulin signaling has been reported to dwindle with age[58]. So, restoring insulin signaling might be advantageous to patients with AD. Amazingly, intranasal insulin administration, improves memory in healthy adults without affecting circulating levels of insulin and/or glucose[59-61]. In addition, intranasal insulin improves cognitive performance in patients with early AD[59]. It is possible that therapeutic options for AD arise from this mechanism improving for neural insulin-resistance by the DPP4 inhibitors.

DIET WITH CERTAIN KINDS OF NATURAL PRODUCTS MAY IMPROVE AD

Potential preventive factors against AD including lifestyle factors have been suggested to be neuro-protective by epidemiological research[62]. In particular, diet could play a
Figure 2 Implication of decreased dipeptidyl-peptidase-4 activity, increased Glucagon-like peptide-1, increased Glucagon-like peptide-1-receptor agonists, and decreased mammalian/mechanistic target of rapamycin activity for the neuroprotection. Arrowhead means stimulation whereas hammerhead represents inhibition. Note that some critical pathways have been omitted for clarity. GLP1: Glucagon-like peptide-1; mTOR: Mammalian/mechanistic target of rapamycin; DPP4: Dipeptidyl-peptidase-4.

key role in the neuro-protection of AD[63]. However, the epidemiological analysis of the relations between nutrient and neuroprotection is very intricate. In addition, we think it unlikely that a single component plays a major role in the neuro-protection. The complexity of the human diet and synergistic and/or antagonistic effects among the various nutrients and food ingredients make it more difficult to examine their distinct effects. However, natural products from several plants and animal sources have been used as good preventive factors against AD through different mechanisms and analytical techniques. Here, we partially summarize them in a viewpoint of mTOR inhibition, GLP1 receptor agonists, GLP1 secretion, and DPP4 inhibition. (Figure 3).

First of all, dietary restriction elicits cell protective responses in nearly all cells and tissues including nerve-cells and brain, which could conduct to activation of SIRT1 and inhibition of mTOR and S6K in C57BL/6 mice[64]. Carnosic acid, a polyphenolic diterpene isolated from the herb rosemary (Rosmarinus officinalis) can inhibit the activity of mTOR[65].

Next, GLP1 receptor agonists could protect neurons. Currently, diabetes mellitus treatment based on GLP1 work is being developed. Geniposide, an iridoid glycoside extract from the gardenia fruit, is used in traditional Chinese medicine to alleviate symptoms of liver and inflammatory diseases[23,66]. Geniposide modulates GLP1 receptors signaling[66]. Loureirin B is a natural product derived from Sanguis draconis, which promotes insulin secretion of Ins-1 cells through GLP1 receptor[67]. Lamiothlomis rotata is an orally available Tibetan herb, which specifically reduces pain hypersensitivity states through the activation of GLP1 receptors[68]. Boschnaloside is the major tricyclic glycoside in Boschnia rossica, a well-known traditional Chinese medicine, which can interact with the extracellular domain of the GLP1 receptor[69].

As for compounds stimulating the GLP1 secretion, the ingredient of Hibiscus sabdarifla Linn can increase GLP1 secretion in the ileum[70]. Polygonatum cyrtomema polysaccharide stimulates GLP1 secretion from enteroendocrine cells[71]. Polysaccharides from the stems of Dendrobium officinale can decrease fasting blood sugar levels by stimulating GLP1 secretion[72]. Spergularia marina can induce GLP1 secretion, which is a halophyte that grows in mud flats[73]. Costus pictus D. Don, commonly known as insulin plant, is a traditional Indian antidiabetic herbal medicine, which acutely stimulates GLP1 secretion from intestinal L-cells[74]. Angelica dahurica extracts can improve glucose tolerance through the GLP1 secretion[75].

Finally, the intensive search for DPP-4 inhibitors in plant materials has resulted in the identification of macrocarpal A-C from Eucalyptus globulus as a potent inhibitor of DPP4[76]. Furthermore, a variety of other plant derived compounds have been reported to be DPP4 inhibitors. For example, emodin, a natural compound from Rheum palmatum Linn, inhibits DPP4 activity in a dose-dependent manner[77].
Figure 3 Simplified diagrams indicating the biochemical properties of several natural products are shown. Several herbs and/or their ingredients may contribute to the neuroprotection against the progression of Alzheimer’s disease. Hammerhead represents inhibition. DPP4: Dipeptidyl-peptidase-4; GLP1: Glucagon-like peptide-1; mTOR: Mammalian/mechanistic target of rapamycin.

Clerodane diterpene can potentiate hypoglycemia via the inhibition of DPP4[78]. Short-term berberine administration can decrease plasma glucose levels through local inhibition of intestinal DPP4[79]. Long-term supplementation with the egg protein hydrolysate exhibits mild in vivo DPP4-inhibitory activities[80]. Furthermore, DPP4 is significantly inhibited by cyanidin 3,5-diglucoside present in aronia berries juice[81].

PERSPECTIVES

It is clear that AD may be a multifactorial and incurable disease. Current treatment strategies against AD are mainly directed at reducing amyloid-beta development and inhibiting amyloid-beta aggregation via the mechanisms including secretase-inhibition and/or impeding tau hyper-phosphorylation[82]. However, medical trials seem to have failed to demonstrate their significant efficacy without any severe side-effects in clinical situations. Since diet with natural products involved in GLP1 signaling, introduced here, are considered safe for long-term use, they could be an encouraging therapeutic approach against AD. In particular, they could exhibit a lower hypoglycemia risk in comparison to other anti-diabetic medications. On the other hand, GLP1 analogues have been found to decrease appetite. It was noticed that pyramidal neurons of the hippocampus and Purkinje cells of the cerebellum have expressed with GLP1 receptor[83]. In addition, several research reports support extra-pancreatic actions of GLP1 and its analogs by crossing the blood brain barrier (BBB), which are independent of its actions on glucose regulation[84]. AD could be considered as a brain disorder that appears to have fused features of insulin deficiency and insulin resistance. Consequently, DPP4 inhibition, GLP1 secretion, GLP1 receptor agonists, and/or mTOR inhibition may all be effective towards the treatment of AD as well as the other neurodegenerative diseases. This approach might accept new targets with simultaneously multiple molecular mechanisms with minimal side effects. Evaluation for intensive experiments should be provided to obtain further insights. Also, long-term studies are mandatory to clarify its efficacy and safety for the treatment of AD as a brain disorder.

CONCLUSION

Current treatment strategies against AD are directed mainly at reducing amyloid-beta development and inhibiting amyloid-beta aggregation via the mechanisms including secretase-inhibition and/or impeding tau hyper-phosphorylation. However, medical trials seem to have failed to demonstrate their significant efficacy without any severe side-effects in clinical situations. Since diet with natural products involved in GLP1
signaling, introduced here, are considered safe for long-term use, they could be an encouraging therapeutic approach against AD. In particular, they could exhibit a lower hypoglycemia risk in comparison to other anti-diabetic medications.

REFERENCES

1. Melnikova I. Therapies for Alzheimer’s disease. *Nat Rev Drug Discov* 2007; 6: 341-342 [PMID: 17539055 DOI: 10.1038/nrd2314]

2. Xie Z, Lu H, Yang S, Zeng Y, Li W, Wang L, Luo G, Fang F, Zeng T, Cheng W. Salidroside Attenuates Cognitive Dysfunction in Senescence-Mutated Mouse 8 (SAMP8) Mice and Modulates Inflammation of the Gut-Brain Axis. *Front Pharmacol* 2020; 11: 568423 [PMID: 33362539 DOI: 10.3389/fphar.2020.568423]

3. Shi C, Xu J. Increased vulnerability of brain to estrogen withdrawal-induced mitochondrial dysfunction with aging. *J Bioenerg Biomembr* 2008; 40: 625-630 [PMID: 19139976 DOI: 10.1007/s10863-008-9195-1]

4. Simpkins JW, Yi KD, Yang SH. Role of protein phosphatases and mitochondrial in the neuroprotective effects of estrogens. *Front Neuroendocrinol* 2009; 30: 93-105 [PMID: 19410596 DOI: 10.1016/j.yfrne.2009.04.013]

5. Zhang X, Chen X, Xu Y, Yang J, Du L, Li K, Zhou Y. Milk consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses. *Nutr Metab (Lond)* 2021; 18: 7 [PMID: 33413488 DOI: 10.1186/s12986-020-00527-z]

6. Calsaloro V, Edison P. Novel GLP-1 (Glucagon-Like Peptide-1) Analogues and Insulin in the Treatment for Alzheimer’s Disease and Other Neurodegenerative Diseases. *CNS Drugs* 2015; 29: 1023-1039 [PMID: 26666230 DOI: 10.1007/s40263-015-0301-8]

7. Chen J, Gao L, Zhang Y, Su Y, Kong Z, Wang D, Yan M. Acteoside-improved streptozotocin-induced learning and memory impairment by upregulating hippocampal insulin, glucose transport, and energy metabolism. *Phytother Res* 2021; 35: 392-403 [PMID: 33029835 DOI: 10.1002/ptr.6811]

8. Hendris RD, Ou Y, Davis JE, Odle AK, Groves TR, Allen AR, Childs GV, Barger SW. Alzheimer amyloid-β peptide disrupts membrane localization of glucose transporter 1 in astrocytes: implications for glucose levels in brain and blood. *Neurobiol Aging* 2021; 97: 73-88 [PMID: 33161213 DOI: 10.1016/j.neurobiolaging.2020.10.001]

9. Day SM, Yang W, Wang X, Stern JE, Zhou X, Macauley SL, Ma T. Glucagon-Like Peptide-1 Cleavage Product Improves Cognitive Function in a Mouse Model of Down Syndrome. *eNeuro* 2019; 6 [PMID: 31040160 DOI: 10.1523/ENEURO.0031-19.2019]

10. Bak AM, Egeeford L, Gejl M, Steffensen C, Stecher CW, Smidt K, Brock B, Rungby J. Targeting amyloid-beta by glucagon-like peptide-1 (GLP-1) in Alzheimer’s disease and diabetes. *Expert Opin Ther Targets* 2011; 15: 1153-1162 [PMID: 21749267 DOI: 10.1517/14728222.2011.600691]

11. Cai HY, Yang JT, Wang ZJ, Zhang J, Yang W, Wu MN, Qi JS. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer’s disease. *Biochem Biophys Res Commun* 2018; 495: 1034-1040 [PMID: 29175324 DOI: 10.1016/j.bbrc.2017.11.114]

12. Solmaz V, Cinar BP, Yiğittürk G, Çaşuşoğlu T, Taşkıran D, Erbaş O. Exenatide reduces TNF-α expression and improves hippocampal neuron numbers and memory in streptozotocin treated rats. *Eur J Pharmacol* 2015; 765: 482-487 [PMID: 26386291 DOI: 10.1016/j.ejphar.2015.09.024]

13. Hussain H, Abbas G, Green IR, Ali I. Dipeptidyl peptidase IV inhibitors as a potential target for diabetes: patent review (2015-2018). *Expert Opin Ther Pat* 2019; 29: 535-553 [PMID: 31203700 DOI: 10.1080/13543776.2019.1632290]

14. Friedman LG, Qureshi YH, Yu WH. Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. *Neurotherapeutics* 2015; 12: 94-108 [PMID: 25421002 DOI: 10.1007/s12109-014-0320-z]

15. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. *Cell* 2012; 149: 274-293 [PMID: 22560797 DOI: 10.1016/j.cell.2012.03.017]

16. Benjamin D, Coloni M, Moroni C, Hall MN. Ramapycin passes the torch: a new generation of mTOR inhibitors. *Nat Rev Drug Discov* 2011; 10: 868-880 [PMID: 22307904 DOI: 10.1038/nrd3531]

17. Uberti VH, de Freitas BS, Molz P, Bromberg E, Schröder N. Iron Overload Impairs Autophagy: Effects of Ramapycin in Ameliorating Iron-Related Memory Deficits. *Mol Neurobiol* 2020; 57: 1044-1054 [PMID: 31664701 DOI: 10.1007/s12035-019-01794-4]

18. Tramutola A, Lanzillotta C, Barone E, Arena A, Zaliani I, Mosca L, Blarzino C, Butterfield DA, Perluigi M, Di Domenico F. Intranasal ramapycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome. *Transl Neurodegener* 2018; 7: 28 [PMID: 30410750 DOI: 10.1186/s40035-018-0133-9]

19. Laplante M, Sabatini DM. mTOR signaling at a glance. *J Cell Sci* 2009; 122: 3589-3594 [PMID: 19812304 DOI: 10.1242/jcs.051011]

20. Perluigi M, Di Domenico F, Butterfield DA. mTOR signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. *Neurobiol Dis* 2015; 84: 39-49 [PMID: 25796566 DOI: 10.1016/j.nbd.2015.03.014]

21. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE,
Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. *Nature* 2009; 460: 392-395 [PMID: 19587680 DOI: 10.1038/nature08221]

Johnson SC, Rabiniottovich PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. *Nature* 2013; 493: 338-345 [PMID: 23325216 DOI: 10.1038/nature11861]

Mohamed MAE, Abdel-Rahman RF, Mahmoud SS, Khattab MM, Safar MA. Metformin and trimetazidine ameliorate diabetes-induced cognitive impairment in status epilepticus rats. *Epilepsy Behav* 2020; 104: 106093 [PMID: 32351373]

Peng T, Liu X, Wang J, Liu Y, Fu Z, Ma X, Li J, Sun G, B Y, Lu J, Wan W, Lu H. Long noncoding RNA HAGLROS regulates apoptosis and autophagy in Parkinson’s disease via regulating mR-100/ATG10 axis and PI3K/Akt/mTOR pathway activation. *Artif Cells Nanomed Biotechnol* 2019; 47: 2764-2774 [PMID: 29820938 DOI: 10.1080/21691401.2019.1636805]

De Felice FG. Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. *J Clin Invest 2013; 123: 531-539* [PMID: 23485579 DOI: 10.1172/JCI64595]

Li C, Tang B, Feng Y, Tang F, Pui-Man Hoi M, Su Z, Ming-Yuen Lee S. Pinosatrin Exerts Neuroprotective Actions in Neurotoxin-Induced Parkinson’s Disease Models through Nrf2 Induction. *J Agric Food Chem* 2018; 66: 8307-8318 [PMID: 29961319 DOI: 10.1021/acs.jafc.8b02607]

Lin L, Chen H, Zhang Y, Lin W, Liu Y, Li T, Zeng Y, Chen J, Du H, Chen R, Tan Y, Liu N. IL-10 protects neutrites in Oxygen-Glucose-Deprived Cortical Neurons through the PI3K/Akt Pathway. *PLoS One* 2015; 10: e0136959 [PMID: 26366999 DOI: 10.1371/journal.pone.0136959]

Mejía-García TA, Portugal CC, Encarnação TG, Prado MA, Paes-de-Carvalho R. Nitric oxide regulates AKT phosphorylation and nuclear translocation in cultured retinal cells. *Cell Signal* 2013; 25: 2424-2439 [PMID: 23958999 DOI: 10.1016/j.cellsig.2013.08.008]

Yang S, Lin C, Zhou X, Wang J, Rao S, Xu W, Cheng Y, Yang L. Glucagon-like peptide-1 alleviates diabetic kidney disease through activation of autophagy by regulating AMP-activated protein kinase-mammalian target of rapamycin pathway. *Am J Physiol Endocrinol Metab* 2020; 319: E1019-E1030 [PMID: 32985526 DOI: 10.1152/ajpendo.00195.2019]

Crane ED, Wong W, Zhang H, O’Neil G, Crane JD. AMPK Inhibits mTOR-Driven Keratinocyte Proliferation after Skin Damage and Stress. *J Invest Dermatol* 2021; 141: 2170-2177.e3 [PMID: 33741392 DOI: 10.1016/j.jid.2020.12.036]

Gouras GK. mTOR: at the crossroads of aging, chaperones, and Alzheimer’s disease. *J Neurochem* 2013; 124: 747-748 [PMID: 23278352 DOI: 10.1111/jn.12098]

Yang F, Chu X, Yin M, Liu X, Yuan H, Niu Y, Fu L. mTOR and autophagy in normal brain aging and caloric restriction ameliorating age-related cognition deficits. *Behav Brain Res* 2014; 262: 84-90 [PMID: 24525424 DOI: 10.1016/j.bbr.2014.02.005]

Paccalin M, Pain-Barc S, Pluchon C, Paul C, Besson MN, Carret-Rebillat AS, Rioux-Bilan A, Gil R, Hugon J. Activated mTOR and PKR kinases in lymphocytes correlate with memory and cognitive decline in Alzheimer’s disease. *Dement Geriatr Cogn Disord* 2006; 22: 320-326 [PMID: 16954869 DOI: 10.1159/000095562]

Poizetta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer’s disease and its models. *Neuroscience* 2013; 251: 51-65 [PMID: 22687952 DOI: 10.1016/j.neuroscience.2012.05.050]

Bao C, Yang Z, Li Q, Cai Q, Li H, Shu B. Aerobic Endurance Exercise Ameliorates Renal Vascular Sclerosis in Aged Mice by Regulating PI3K/AKT/mTOR Signaling Pathway. *DNA Cell Biol* 2020; 39: 310-320 [PMID: 31971826 DOI: 10.1089/dna.2019.4966]

Majumder S, Richardson A, Strong R, Oddo S. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. *PLoS One* 2011; 6: e25416 [PMID: 21980451 DOI: 10.1371/journal.pone.0025416]

Thrasivoulou C, Soubvey E, Ridha H, Giuliani D, Giaroni C, Michael GJ, Saffrey MJ, Cowen T. Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. *Aging Cell* 2006; 5: 247-257 [PMID: 16842497 DOI: 10.1111/j.1474-9726.2006.00214.x]

Cao R, Li L, Ying Z, Cao Z, Ma Y, Mao X, Li J, Qi X, Zhang Z, Wang X. A small molecule protects mitochondrial integrity by inhibiting mTOR activity. *Proc Natl Acad Sci U S A* 2019; 116: 23332-23338 [PMID: 31653761 DOI: 10.1073/pnas.1911246116]

Guo J, Bakshi V, Lin AL. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice. *Front Aging Neurosci* 2015; 7: 213 [PMID: 26617154 DOI: 10.3389/fnagi.2015.00213]

Yang Q, Guo M, Wang X, Zhao Y, Zhao Q, Ding H, Dong Q, Cui M. Ischemic preconditioning with a ketogenic diet improves brain ischemic tolerance through increased extracellular adenosine levels and hypoxia-inducible factors. *Brain Res* 2017; 1667: 11-18 [PMID: 28427869 DOI: 10.1016/j.brainres.2017.04.010]

Cremonini E, Daveri E, Mastaloudis A, Oteaiz P.I. (-)-Epicatechin and Anthocyanins Modulate GLP-1 Metabolism: Evidence from C57BL/6d Mice and GLUTag Cells. *J Nutr* 2021; 151: 1497-1506 [PMID: 33693759 DOI: 10.1093/jn/nxab029]

Rammohan H, Forrissmann WG, Richter R. Proteolytic cleavage of glucagon-like peptide-1 by pancreatic beta cells and by fetal calf serum analyzed by mass spectrometry. *J Chromatogr A* 1999; 852: 285-295 [PMID: 10480253 DOI: 10.1016/s0021-9739(99)00389-1]

Meloni AR, DeYoung MB, Lowe C, Parides DG. GLP-1 receptor activated insulin secretion from pancreatic beta-cells: mechanism and glucose dependence. *Diabetes Obes Metab* 2013; 15: 15-27
Neuroprotection by DPP-4 inhibitors and GLP1-analogs

Xu F, Cao H, Chen Z, Gu H, Guo W, Lin B, Weng J. Short-term GLP-1 receptor agonist exenatide ameliorates intramyocellular lipid deposition without weight loss in db/db mice. *Int J Obes (Lond)* 2020; 44: 937-947 [PMID: 31911662 DOI: 10.1038/s41366-019-0513-y]

Yao M, Zhang J, Li Z, Bai X, Ma J, Li Y. Lisinaglitide Protects Nucleus Pulposus Cells Against High-Glucose Induced Apoptosis by Activating PI3K/Akt/mTOR/Caspase-3 and PI3K/Akt/GSK3β/Caspase-3 Signaling Pathways. *Front Med (Lausanne)* 2021; 8: 630962 [PMID: 33681258 DOI: 10.3389/fmed.2021.630962]

Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. *Neurobiol Aging* 2010; 31: 224-243 [PMID: 18479783 DOI: 10.1016/j.neurobiolaging.2008.04.002]

Pozo L, Bello F, Suarez A, Ochoa-Martinez FE, Mendez Y, Chang CH, Surani S. Novel pharmacological therapy in type 2 diabetes mellitus with established cardiovascular disease: Current evidence. *World J Diabetes* 2019; 10: 291-303 [PMID: 31139316 DOI: 10.4239/wjd.v10.i15.291]

Gardner H, Hamdy O. Oral GLP1 Analog: Where Does the Tide Go? *Clin Med Insights Endocrinol Diabetes* 2020; 13: 1179551420984130 [PMID: 33447122 DOI: 10.1177/1179551420984130]

Yang X, Feng P, Zhang X, Li D, Wang R, Ji C, Li G, Hölscer C. The diabetes drug semaglutide reduces infarct size, inflammation, and apoptosis, and normalizes neurogenesis in a rat model of stroke. *Neuropharmacology* 2019; 158: 107748 [PMID: 31465784 DOI: 10.1016/j.neuropharm.2019.107748]

Smith NJ, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. *Neurochem Int* 2019; 128: 94-105 [PMID: 31002893 DOI: 10.1016/j.neuint.2019.04.010]

Gilbert MP, Pratley RE. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. *Front Endocrinol (Lausanne)* 2020; 11: 178 [PMID: 32308645 DOI: 10.3389/fendo.2020.00178]

Kosaraju J, Holsinger RMD, Gao L, Tan CC, Andrieu S, Suckling J, Evangelou E, Pan A, Zhang C, Jia J, Feng L, Kua EH, Bello F, Suarez A, Ochoa-Martinez FE, Mendez Y, Chang CH, Surani S. Novel Pharmacological Therapy in Type 2 Diabetes Mellitus with Established Cardiovascular Disease: Current Evidence. *World J Diabetes* 2019; 10: 291-303 [PMID: 31139316 DOI: 10.4239/wjd.v10.i15.291]

Li Y, Tian Q, Li Z, Dang M, Lin Y, Hou X. Activation of Nrf2 signaling by sitagliptin and quercetin combination against β-amyloid induced Alzheimer’s disease in rats. *Drug Dev Res* 2019; 80: 837-845 [PMID: 31301179 DOI: 10.1002/ddr.21567]

Wiciński M, Görski K, Walczak M, Wódkiewicz E, Słupski M, Pawlak-Osińska K, Malinowski B. Neuroprotective Properties of Linagliptin: Focus on Biochemical Mechanisms in Cerebral Ischemia, Vascular Dysfunction and Certain Neurodegenerative Diseases. *Int J Mol Sci* 2019; 20 [PMID: 31434198 DOI: 10.3390/ijms20164052]

Pala L, Pezzatini A, Dicembrini I, Ciani S, Gelmini S, Vannelli BG, Cresci B, Mannucci E, Rotella E. Novel Inhibitor Linagliptin Attenuates Aβ-Induced Cytotoxicity through Activation of AMPK in Neuronal Cells. *J Neurosci Res* 2015; 21: 549-557 [PMID: 26010513 DOI: 10.1111/jnrs.12464]

D’Amico M, Di Filippo C, Marcello A, Abbatecola AM, Ferraraccio F, Rossi F, Paolillo G. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. *Exp Gerontol* 2010; 45: 202-207 [PMID: 20005285 DOI: 10.1016/j.exger.2009.12.004]

Li Y, Tian Q, Li Z, Dang M, Lin Y, Hou X. Activation of Nrf2 signaling by sitagliptin and quercetin combination against β-amyloid induced Alzheimer’s disease in rats. *Drug Dev Res* 2019; 80: 837-845 [PMID: 31301179 DOI: 10.1002/ddr.21567]

Erichsen JM, Calva CB, Reagan LP, Fadel JR. Intranasal insulin and orexins to treat age-related cognitive decline. *Physiol Behav* 2021; 234: 113370 [PMID: 33621561 DOI: 10.1016/j.physbeh.2021.113370]

Hallschmid M. Intranasal Insulin for Alzheimer’s Disease. *CNS Drugs* 2021; 35: 21-37 [PMID: 33515428 DOI: 10.1007/s40263-020-00781-x]

Hallschmid M. Intranasal insulin. *J Neuroendocrinol* 2021; 33: e12934 [PMID: 33506526 DOI: 10.1111/jnc.12934]

Yu JT, Xu W, Tan CC, Andrieu S, Stuckling J, Evangelou E, Pan A, Zhang C, Jia J, Feng L, Kua EH, Wang YJ, Wang HF, Tan MS, Li JQ, Hou XH, Wan Y, Tan L, Mok V, Dong Q, Touchoin J, Gauthier S, Aisen PS, Vellas B. Evidence-based prevention of Alzheimer’s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. *J Neurol Neurosurg Psychiatry* 2020; 91: 1201-1209 [PMID: 32690803 DOI: 10.1136/jnnp-2019-321913]

Monacci F, Acquarone E, Giannotti C, Borghi R, Nencioni A. Vitamin C and Aging and Alzheimer’s Disease. *Front Med (Lausanne)* 2021; 8: 630962 [PMID: 33681258 DOI: 10.1016/j.fmed.2021.630962]

Ma L, Dong W, Wang R, Li Y, Xu B, Zhang J, Zhao Z, Wang Y. Effect of caloric restriction on the SIRT1/mTOR signaling pathways in senile mice. *Brain Res Bull* 2015; 116: 67-72 [PMID: 26135885 DOI: 10.1016/j.brainresbull.2015.06.004]

Liu J, Su H, Qu QM. Carnosic Acid Prevents Beta-Amyloid-Induced Injury in Human Neuroblastoma SH-SY5Y Cells via the Induction of Autophagy. *Neurochem Res* 2016; 41: 2311-2323
Zhang Z, Wang X, Zhang D, Liu Y, Li L. Geniposide-mediated protection against amyloid deposition and behavioral impairment correlates with downregulation of mTOR signaling and enhanced autophagy in a mouse model of Alzheimer’s disease. *Aging (Albany NY)* 2019; 11: 536-548 [PMID: 30684442 DOI: 10.18632/aging.101759]

Ding Y, Xia S, Zhang H, Chen Q, Niu B. Loureirin B activates GLP-1R and promotes insulin secretion in Ins-1 cells. *J Cell Mol Med* 2021; 25: 855-866 [PMID: 33300675 DOI: 10.1111/jcem.16138]

Zhu B, Gong N, Fan H, Peng CS, Ding XJ, Jiang Y, Wang YX. Laminrophlamotis rotarly, an orally available Tibetan herbal painkiller, specifically reduces pain hypersensitivity states through the activation of spinal glucagon-like peptide-1 receptors. *Anesthesiology* 2014; 121: 835-851 [PMID: 25247855 DOI: 10.1097/ALN.0000000000000320]

Lin LC, Lee LC, Huang C, Chen CT, Song JS, Shiao YJ, Liu HK. Effects of boschniadoside from Boschnia rossica on dysglycemia and islet dysfunction in severely diabetic mice through modulating the action of glucagon-like peptide-1. *Phytomedicine* 2019; 62: 152946 [PMID: 31102890 DOI: 10.1016/j.phymed.2019.152946]

Kartonah NT, Fadhilah F, Ibrahim EI, Suryati Y. The Potential of *Hibiscus sabdariffa* Linn in Inducing Glucose-Like Peptide-1 via SGLT-1 and GLPR in DM Rats. *Biomed Res Int* 2019; 2019: 8724824 [PMID: 31828140 DOI: 10.1155/2019/8724824]

Xie SZ, Yang G, Jiang XM, Qin DY, Li QM, Zha XQ, Pan LH, Jin CS, Luo JP. *Polygonatum cyrtomema* Huay polysaccharide promotes GLP-1 secretion from Enteroendocrine L-cells through Sweet Taste Receptor-Mediated cAMP Signaling. *J Agric Food Chem* 2020; 68: 6864-6872 [PMID: 32456438 DOI: 10.1021/acs.jafc.0c02058]

Huang MT, Li YJ, Yang XB, Yang L, Xu YJ, Yan SF, Ren FC, Hu JM, Zhou J. Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale. *Carbohydr Polym* 2020; 241: 116326 [PMID: 32507202 DOI: 10.1016/j.carbpol.2020.116326]

Kim K, Lee YM, Rhyu MR, Kim HY. Spergularia marina induces glucagon-like peptide-1 secretion in NCI-H716 cells through bile acid receptor activation. *J Med Food* 2014; 17: 1197-1203 [PMID: 25260089 DOI: 10.1089/jmf.2013.3091]

Patibandla C, Khan ZJ, MacGregor L, Campbell MJ, Patterson S. Costus pictus D. Don leaf extract stimulates GLP-1 secretion from GLUTag L-cells and has cytoprotective effects in BRIN-BD11 β-cells. *J Ethnopharmacol* 2020; 260: 112970 [PMID: 32422353 DOI: 10.1016/j.jep.2020.112970]

Park EY, Kim EH, Kim CY, Kim MH, Chung JS, Oh YS, Moon HS, Jun HS. Angelica dahurica Extracts Improve Glucose Tolerance through the Activation of GPR119. *PLoS One* 2016; 11: e0158796 [PMID: 27391814 DOI: 10.1371/journal.pone.0158796]

Kato E, Kawakami K, Kawabata J. Macrophal C isolated from Eucalyptus globulus inhibits dipeptidyl peptidase 4 in an aggregated form. *J Enzyme Inhib Med Chem* 2018; 33: 106-109 [PMID: 29148282 DOI: 10.1080/14756366.2017.1396458]

Zou J, Luo H, Zeng Q, Dong Z, Wu D, Liu L. Protein kinase CK2α is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. *J Transl Med* 2011; 9: 97 [PMID: 21702981 DOI: 10.1186/1475-2876-9-97]

Huang PK, Lin SR, Riyaphan J, Fu YS, Weng CF. Polyalthia克拉多内酸Diterpenoid Potentiates Hypoglycemia via Inhibition of Dipeptidyl Peptidase 4. *Int J Mol Sci* 2019; [PMID: 30691220 DOI: 10.3390/ijms20030530]

Di MH, Fang HJ, Zheng GH, Liang XF, Ding YR, Liu X, Liu LP. DPP-4 inhibitors promote proliferation and migration of rat brain microvascular endothelial cells under hypoxic/high-glucose conditions, potentially through the SIRT1/HIF-1/VEGF pathway. *DNS Neurosci Ther* 2019; 25: 323-332 [PMID: 30136405 DOI: 10.1111/cns.13042]

Wang Y, Landheer S, van Gilst WH, van Amerongen A, Hammes HP, Henning RH, Deelman LE, Buikema H. Attenuation of renovascular damage in Zucker diabetic fatty rat by NWT-03, an egg protein hydrolysate with ACE- and DPP4-inhibitory Activity. *PLoS One* 2012; 7: e46781 [PMID: 23076136 DOI: 10.1371/journal.pone.0046781]

Kozuka M, Yamane T, Nakano Y, Nakagaki T, Ohkubo I, Ariga H. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice. *Biochem Biophys Res Commun* 2015; 465: 433-436 [PMID: 26296465 DOI: 10.1016/j.bbrc.2015.08.031]

Folch J, Petrov D, Etcheto M, Abad S, Sánchez-López E, García ML, Olloquequi J, Beas-Zarate C, Auladell C, Camins A. Current Research Therapeutic Strategies for Alzheimer’s Disease Treatment. *Neural Plast* 2016; 2016: 8501693 [PMID: 26881357 DOI: 10.1155/2016/8501693]

Hamilton A, Holscher C. Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. *Neuroreport* 2009; 20: 1161-1166 [PMID: 19107854 DOI: 10.1097/WNR.0b013e32832d0f14]

Athauda D, Foitynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. *Drug Discov Today* 2016; 21: 802-818 [PMID: 26851597 DOI: 10.1016/j.drudis.2016.01.013]
