Alzheimer’s Disease: Analyzing the Missing Heritability

Perry G. Ridge1,2, Shubhabrata Mukherjee3, Paul K. Crane3, John S. K. Kauwe4, Alzheimer’s Disease Genetics Consortium#

1 Department of Biology, Brigham Young University, Provo, Utah, United States of America, 2 ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah, United States of America, 3 Department of Medicine, University of Washington, Seattle, Washington, United States of America

Abstract

Alzheimer’s disease (AD) is a complex disorder influenced by environmental and genetic factors. Recent work has identified 11 AD markers in 10 loci. We used Genome-wide Complex Trait Analysis to analyze >2 million SNPs for 10,922 individuals from the Alzheimer’s Disease Genetics Consortium to assess the phenotypic variance explained first by known late-onset AD loci, and then by all SNPs in the Alzheimer’s Disease Genetics Consortium dataset. In all, 33% of total phenotypic variance is explained by all common SNPs. APOE alone explained 6% and other known markers 2%, meaning more than 25% of phenotypic variance remains unexplained by known markers, but is tagged by common SNPs included on genotyping arrays or imputed with HapMap genotypes. Novel AD markers that explain large amounts of phenotypic variance are likely to be rare and unidentifiable using genome-wide association studies. Based on our findings and the current direction of human genetics research, we suggest specific study designs for future studies to identify the remaining heritability of Alzheimer’s disease.

Citation: Ridge PG, Mukherjee S, Crane PK, Kauwe JSK, (2013) Alzheimer’s Disease: Analyzing the Missing Heritability. PLoS ONE 8(11): e79771. doi: 10.1371/journal.pone.0079771

Editor: Hemant K. Paudel, McGill University Department of Neurology and Neurosurgery, Canada

Received July 17, 2013; Accepted September 27, 2013; Published November 7, 2013

Copyright: © 2013 Ridge et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Support for this project was provided by the National Institutes of Health (R01AG042611, the Alzheimer’s Association (MNI-RG-11-205368) the Charleston Conference on Alzheimer’s disease and the Brigham Young University Gerontology Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Contributors to the genetic analysis data included Principal Investigators on projects that were individually funded by NIA, other NIH institutes, or private entities. The National Institutes of Health, National Institute on Aging (NIH-NIA) supported this work through the following grants: ADGC, U01 AG032984, R2C AG023652; NACC, U01 AG016976; NCRAD, U2A AG021886; NI LOAD, U2A AG026393; Banner Sun Health Research Institute P30 AG019610; Boston University, P30 AG013846, U01 AG10483, R01 CA129769, R01 MH082095, R01 AG017173, R01 AG025259, R01AG33193; Columbia University, P50 AG008702, R37 AG015473; Duke University, P30 AG028377, AG05128; Emory University, AG025688; Group Health Research Institute, U01 AG06781, U01 HG004610; Indiana University, P30 AG10133; Johns Hopkins University, P50 AG005146, R01 AG020688; Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG01674; Mount Sinai School of Medicine, P50 AG005135, P01 AG022219; New York University, P30 AG00851, M01RR00096, U1L RR028993, SRO1AG012101, SRO1AG022374, SRO1AG013616, R2CA036502, R01AG053137; Northwestern University, P30 AG013854; Oregon Health & Science University, P50 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG03146; TGen, R01 NS059873; University of Alabama at Birmingham, P50 AG016582, UL 1RR02777; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of California, Irvine, P50 AG016757, P50 AG016755, P50 AG016756, P50 AG016757; University of California, Los Angeles, P50 AG016767; University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG19724; University of Kentucky, P50 AG028383, P50 AG05144; University of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of Pittsburgh, P50 AG005133, P50 AG036553; University of Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; University of Miami, R01 AG027944, R0104914, R021547, R01 AG19757; University of Washington, P50 AG005136; Vanderbilt University, R01 AG09010; and Washington University, P50 AG005681, P01 AG03991. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant # NS39764, NIMH MH60451 and by Glaxo Smith Kline. Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen series was also funded by NIA grant AG043540 to AJM, The Banner Alzheimer’s Foundation, The Johnnie B. Byrd Sr. Alzheimer’s Institute, the Medical Research Council, and the state of Arizona and also includes samples from the following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council, local NHS trusts and Newcastle University), MRC London Brain Bank for Neurodegenerative Diseases (funding via the Medical Research Council), South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England (HEFCE), Alzheimer’s Research Trust (ART), BRACE as well as North Bristol NHS Trust Research and Innovation Department and DeNDRoN), The Netherlands Brain Bank (funding via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, International Parkinson Fonds, Internationale Stichting Alzheimer Onderzoek), Institut de Neuropatologia, Servei Anatomia Patològica, Universitat de Barcelona. ADNI Funding for ADNI is through the Northern California Institute for Research and Education by grants from Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elian Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co. Inc., Novartis AG, Pfizer Inc., F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., Alzheimer’s Association, Alzheimer’s Drug Discovery Foundation, the Dana Foundation, and by the National Institute of Biomedical Imaging and Bioengineering and NIA grants U01 AG024904, RC2 AG036535, K01 AG030514. The authors thank Drs. D. Stephen Snyder and Marilyn Miller from NIA who are ex-officio ADGC members. Support was also from the Alzheimer’s Association (LAF, IIRG-08-89720; MP-V, IIRG-05-14147) and the US Department of Veterans Affairs Administration, Office of Research and Development, Biomedical Laboratory Research Program. P.S.-H. is supported by Wellcome Trust, Howard Hughes Medical Institute, and the Canadian Institute of Health Research.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: kauwe@byu.edu
Introduction

Alzheimer’s disease (AD) is the most common form of dementia. Worldwide estimates of prevalence vary, with estimates of 24 to 35 million people affected [1-3]. Combined with an aging population, prevalence is expected to increase to 1 in 85 people by 2050 [2].

AD is a heterogeneous disease caused by a combination of environmental and genetic factors. The most important risk factor for Alzheimer’s disease is age [1,4]. Environmental risk factors include hypertension, estrogen supplements [5], smoking [6,7], stroke, heart disease, depression, arthritis, and diabetes [8]. In addition, certain lifestyle choices appear to decrease the risk of AD: exercise [9], intellectual stimulation [10], and maintaining a Mediterranean diet (including fish) [11,12].

The genetics of AD are complex. Several genes are known to harbor either causative or risk variants for AD. There are two primary types of AD as defined by age. The first is early-onset, or familial AD, and the second type is late-onset AD (LOAD), sometimes termed sporadic AD. Three genes, APP [13], PSEN1 [14], and PSEN2 [15] are known to harbor many highly penetrant, autosomal dominantly-inherited variants, which lead to early-onset AD but account for only a small fraction of total AD cases.

LOAD accounts for 99% of AD cases and is caused by a more complex underlying genetic architecture. Genome-wide association studies (GWAS) have identified 10 different loci that is integral to the development, evaluation and application (GWAS) have identified 10 different loci to early-onset AD but account for only a small fraction of total AD cases.

LOAD accounts for 99% of AD cases and is caused by a more complex underlying genetic architecture. Genome-wide association studies (GWAS) have identified 10 different loci to early-onset AD but account for only a small fraction of total AD cases. The genetics of AD are complex. Several genes are known to harbor either causative or risk variants for AD. There are two primary types of AD as defined by age. The first is early-onset, or familial AD, and the second type is late-onset AD (LOAD), sometimes termed sporadic AD. Three genes, APP [13], PSEN1 [14], and PSEN2 [15] are known to harbor many highly penetrant, autosomal dominantly-inherited variants, which lead to early-onset AD but account for only a small fraction of total AD cases.

LOAD accounts for 99% of AD cases and is caused by a more complex underlying genetic architecture. Genome-wide association studies (GWAS) have identified 10 different loci to early-onset AD but account for only a small fraction of total AD cases.

The genetics of AD are complex. Several genes are known to harbor either causative or risk variants for AD. There are two primary types of AD as defined by age. The first is early-onset, or familial AD, and the second type is late-onset AD (LOAD), sometimes termed sporadic AD. Three genes, APP [13], PSEN1 [14], and PSEN2 [15] are known to harbor many highly penetrant, autosomal dominantly-inherited variants, which lead to early-onset AD but account for only a small fraction of total AD cases.

LOAD accounts for 99% of AD cases and is caused by a more complex underlying genetic architecture. Genome-wide association studies (GWAS) have identified 10 different loci to early-onset AD but account for only a small fraction of total AD cases. The genetics of AD are complex. Several genes are known to harbor either causative or risk variants for AD. There are two primary types of AD as defined by age. The first is early-onset, or familial AD, and the second type is late-onset AD (LOAD), sometimes termed sporadic AD. Three genes, APP [13], PSEN1 [14], and PSEN2 [15] are known to harbor many highly penetrant, autosomal dominantly-inherited variants, which lead to early-onset AD but account for only a small fraction of total AD cases.

LOAD accounts for 99% of AD cases and is caused by a more complex underlying genetic architecture. Genome-wide association studies (GWAS) have identified 10 different loci to early-onset AD but account for only a small fraction of total AD cases.

The genetics of AD are complex. Several genes are known to harbor either causative or risk variants for AD. There are two primary types of AD as defined by age. The first is early-onset, or familial AD, and the second type is late-onset AD (LOAD), sometimes termed sporadic AD. Three genes, APP [13], PSEN1 [14], and PSEN2 [15] are known to harbor many highly penetrant, autosomal dominantly-inherited variants, which lead to early-onset AD but account for only a small fraction of total AD cases.

LOAD accounts for 99% of AD cases and is caused by a more complex underlying genetic architecture. Genome-wide association studies (GWAS) have identified 10 different loci to early-onset AD but account for only a small fraction of total AD cases. The genetics of AD are complex. Several genes are known to harbor either causative or risk variants for AD. There are two primary types of AD as defined by age. The first is early-onset, or familial AD, and the second type is late-onset AD (LOAD), sometimes termed sporadic AD. Three genes, APP [13], PSEN1 [14], and PSEN2 [15] are known to harbor many highly penetrant, autosomal dominantly-inherited variants, which lead to early-onset AD but account for only a small fraction of total AD cases.

LOAD accounts for 99% of AD cases and is caused by a more complex underlying genetic architecture. Genome-wide association studies (GWAS) have identified 10 different loci to early-onset AD but account for only a small fraction of total AD cases. The genetics of AD are complex. Several genes are known to harbor either causative or risk variants for AD. There are two primary types of AD as defined by age. The first is early-onset, or familial AD, and the second type is late-onset AD (LOAD), sometimes termed sporadic AD. Three genes, APP [13], PSEN1 [14], and PSEN2 [15] are known to harbor many highly penetrant, autosomal dominantly-inherited variants, which lead to early-onset AD but account for only a small fraction of total AD cases.

LOAD accounts for 99% of AD cases and is caused by a more complex underlying genetic architecture. Genome-wide association studies (GWAS) have identified 10 different loci to early-onset AD but account for only a small fraction of total AD cases. The genetics of AD are complex. Several genes are known to harbor either causative or risk variants for AD. There are two primary types of AD as defined by age. The first is early-onset, or familial AD, and the second type is late-onset AD (LOAD), sometimes termed sporadic AD. Three genes, APP [13], PSEN1 [14], and PSEN2 [15] are known to harbor many highly penetrant, autosomal dominantly-inherited variants, which lead to early-onset AD but account for only a small fraction of total AD cases.

LOAD accounts for 99% of AD cases and is caused by a more complex underlying genetic architecture. Genome-wide association studies (GWAS) have identified 10 different loci to early-onset AD but account for only a small fraction of total AD cases. The genetics of AD are complex. Several genes are known to harbor either causative or risk variants for AD. There are two primary types of AD as defined by age. The first is early-onset, or familial AD, and the second type is late-onset AD (LOAD), sometimes termed sporadic AD. Three genes, APP [13], PSEN1 [14], and PSEN2 [15] are known to harbor many highly penetrant, autosomal dominantly-inherited variants, which lead to early-onset AD but account for only a small fraction of total AD cases.
case-control status are reported in Table S1). Basic demographic information for the 10,922 individuals in the subset of the dataset used in this study is presented in Table 2. We collected chromosome length and number of genes per chromosome from the Vega database [25].

Genetic Analyses

We used Genome-wide Complex Trait Analysis (GCTA) [26], a tool that implements the methods described in Yang et al. [27], Lee et al. [28], and Yang et al. [29] to estimate the phenotypic variance explained by known AD genes and tagged by SNPs on the SNP arrays. Briefly, GCTA uses a mixed linear model and treats the effects of SNPs as random effects, effectively testing all the SNPs together for effect (in contrast to GWAS, which considers each SNP individually). We used age, sex, and 10 principal components as covariates. For the analyses in which we examined unexplained phenotypic variance, we also controlled for the 11 known AD markers (Table 1). The 11 known AD markers are the AlzGene.org top hits and are the markers with replicable evidence for association with AD. Each of these markers is present in our dataset except rs9349407 in CD2AP. As proxy we used rs9296559, which is in very high LD with rs9349407 (r²=1). We specified a population prevalence of LOAD at 0.13 [30].

Ethics Statement

All study procedures were approved by the Institutional Review Boards of Brigham Young University and the University of Washington.

Results

We estimated the variance in AD case-control status focusing first on the 11 known AD markers (Table 1). Together these markers account for 7.8% (standard error 0.03) of the phenotypic variance (Table 3). Next, we estimated the explained phenotypic variance for each chromosome (Figure 1). Chromosome 19 accounts for the highest proportion of phenotypic variance.

In all, the 2,042,116 SNPs in the HapMap imputed ADGC dataset explain 33.1% of phenotypic variance (genetic variance of 0.0711, standard error 0.0072). The APOE ε2 and ε4 alleles account for 5.9% (standard error 0.03) of the phenotypic variance (Table 3). The other 9 known high frequency SNPs identified in GWAS explain an additional 1.9% (standard error 0.03) (Table 3).

After controlling for these 11 markers, an additional 25.3% of the total phenotypic variance (genetic variance of 0.046, standard error 0.006) is explained with as-yet unidentified variants (Table 3). The remaining phenotypic variance explained by each chromosome after controlling for the 11 known markers is shown in Figure 2. SNPs on chromosomes 1, 4, 5 and 17 account for the largest percentage of remaining unexplained phenotypic variance compared to other chromosomes, each accounting for more than 2% (Figure 2). Chromosomes 9, 14, and 21 account for the least (<0.0001%) each; however, there is unexplained phenotypic variance on all the autosomes. There is no relationship between explained variance and chromosome length (p-value = 0.8), or number of genes per chromosome (p-value = 0.7).

Discussion

A clear understanding of the genetic architecture of Alzheimer’s disease provides the foundation of information needed to cure this terrible disease. While many large GWAS for AD have been performed and several replicable loci have been identified (as referenced in Table 1), relatively little phenotypic variance is explained by these variants. Our estimates of phenotype variance explained by common genetic variants and by the APOE locus are higher than those of Lee et al. [19]. We estimated total phenotypic variance explained by common SNPs to be ~33%. In contrast Lee et al. [19] estimated ~24%. In our study we used genotyped and HapMap imputed SNPs, whereas Lee et al. [19] used only directly genotyped SNPs. Inclusion of imputed SNPs improved heritability estimates and suggests that imputed SNPs should be included in such studies. In addition to using imputed variants, our dataset was larger and our controls were clinically ascertained. Differences in the estimates for APOE (~6% in this study compared to ~4% in Lee et al. [19]) could be due to these same characteristics as well as the direct genotyping of the APOE ε2 and ε4 alleles in our samples as opposed to the use of proxy markers. Regardless, both studies provide evidence that a considerable amount of variance in AD is explained by

Table 2. Demographic information for individuals in the analysis dataset.

	Count	Cases / Controls	Age (Cases / Controls)
Male	4489	2378/2111	74.8 (73.6 / 76.1)
Female	6433	3330/3103	75.3 (74.9 / 75.7)
Total	10922	5708/5214	75.1 (74.3 / 75.9)

We report total individuals, sex, case-control status, and average age for the 10,922 individuals analyzed in this report.

doi: 10.1371/journal.pone.0079771.0002

Table 3. Summary of genetic and phenotypic variance measurements.

SNP Set	Genetic Variance (Standard Error)	% Phenotypic Variance (Standard Error)
All SNPs	0.071 (0.0072)	33.12% (0.033)
APOE ε2/ε4	0.020 (0.0066)	5.92% (0.033)
All known AD markers (Table 1)	0.025 (0.0066)	7.78% (0.033)
All SNPs excluding known AD markers	0.046 (0.0060)	25.34% (0.033)

In this table we summarize our results, showing genetic and percent phenotypic variance for four different subsets of SNPs: all SNPs in the ADGC dataset, the two APOE alleles (ε2 and ε4), all known AD markers (as listed in Table 1), and all SNPs excluding those in Table 1.

doi: 10.1371/journal.pone.0079771.0003
yet unidentified genetic variation. Together these results show that there is clearly much work to be done if we are to solve the genetic architecture of AD. GWAS with sample sizes performed to date are able to identify common variants with moderate to small effect sizes. Results of GWAS in AD and other conditions suggest there may be a large number of such variants and that additional variants of this type can be identified by increasing sample sizes. However, additional loci detected with the GWAS strategy will likely have effects either similar to or smaller than SNPs already identified. The range of SNPs identifiable by current GWAS [20,31-36] is marked on Figure 3 by the large box bordered by dots (the GWAS search space), with recent GWAS hits inside the labeled oval. The GWAS being conducted by the International Genomics of Alzheimer’s Project represents a substantial increase in sample size and will undoubtedly identify additional common loci with small effects on AD risk. Nevertheless, it is unlikely that many common variants of even modest effect size remain to be identified.

There are still many AD variants that remain to be identified, however, and these variants exist on every autosome (Figure 2). Variants with large effects are almost certainly present in very low frequencies or they would have been identified in GWAS. While such variants are unlikely to be detected using traditional GWAS due to limitations of r^2 based “tagging” for alleles with different frequencies [37] the current analysis allows for high D’ values between common alleles and rare variants of large effect to contribute to the explained variance. These rare variants of large effect appear in the smaller box bordered with dashes in Figure 3. To date, identified alleles of this type have clear functional effects and large effect sizes compared to associated alleles from GWAS. Detecting rare variants of large effect requires different experimental designs than GWAS such as sequencing causal loci. Exome chip array studies target known variation in coding regions, even those of very low frequency; this may prove a promising and economical approach. However, accurately genotyping variants of less than 1-2% using these arrays is quite challenging, and for variants that are present below these frequencies other approaches are required.

Two seemingly contradictory hypotheses exist about the architecture of complex disease: the common disease/common variant hypothesis and the multiple rare variant hypothesis. In the first, many common variants of small effect size collectively explain disease risk, while in the second, rare variants, some with large effect and high penetrance, explain disease risk.

Figure 1. Unexplained Alzheimer's disease variance, by chromosome. In this figure we show phenotypic variance, by chromosome, explained by all SNPs. Error bars correspond to standard error.
doi: 10.1371/journal.pone.0079771.g001
However, as suggested by Singleton et al. [38] these two hypotheses are not mutually exclusive and the genetics of complex diseases are likely a hybrid of the two. Singleton et al. [38] suggests that both common and rare variants that increase or decrease disease risk are likely to be found in the same loci and coined the phrase “pleomorphic risk loci”. To date, AD genetics research has largely focused on common variants that influence disease risk, likely due to technological and financial constraints. However, the advent of next generation sequencing (NGS) and falling costs of this technology have made it possible to expand AD research to include searching for rare variants. Recently, this technology was used to identify a functional variant that protects against Alzheimer’s disease in the amyloid precursor protein (APP)[17]. Additionally, two groups recently used NGS to identify additional, likely functional, variants associated with AD in the triggering receptor expressed on myeloid 2 (TREM2) gene [16,18]. The TREM2 variant is present in about 1% of the general population and has a high odds ratio (2.9 to 5.1 depending on the dataset). Likewise, the APP variant is extremely rare (frequency of 0.00038), but confers a large protective effect on carriers. Larger scale applications of this technology and careful study design are likely to identify additional variants and further explain the remaining phenotypic variance in AD.

Family-based studies are also an effective application of NGS. These studies require carefully ascertained families and accurate pedigree data and can be used to identify high effect, low frequency variants (located in the box with longer dashes in Figure 3). Family-based studies are especially powerful because large effect, low frequency disease-causing (or disease-modifying) sequence features, some of which may be unique to a single family, are likely to segregate, at least partially, with disease status. These approaches have not yet been extensively applied in AD research. Nevertheless, family-based studies utilizing large-scale genome or exome sequencing have recently been used to identify disease-causing variants in several Mendelian [39-41] and complex disorders [42,43].

It is also possible that gene-gene interactions account for much of the unexplained variance in AD status [44]. These interactions are widespread and common [45,46] and approaches to understand the effects of epistatic interactions...
exist and continue to mature [44,47]. Several interesting candidate interactions have been identified and Ebbert et al. 2013 (accepted) recently demonstrated that allowing interactions improves the diagnostic utility of the known AD markers. Unfortunately, the complexity of this problem and the extremely large samples sizes required to perform agnostic screens for gene-gene interactions make it very difficult to conduct effective screens for these effects.

AD is a highly complex disease with substantial genetic and environmental components. Our results suggest that genetic variance accounts for ~30% of phenotypic variance, but over 75% of this phenotypic variance remains unexplained by currently identified AD genes. Future AD genetics research must leverage larger samples and novel technologies such as NGS to identify rare, high penetrant variation and gene-gene interactions that are likely to explain the remaining genetic and phenotypic variance in AD.

Genetic research in AD has followed roughly the same model as the study of other complex diseases; largely focusing on the identification of common variants of modest effect using association studies. Scientist in many disease fields have successfully identified numerous associated variants (this is a small representative sample [48-57]). The transition from a focus on common variants to a focus on the identification of low frequency variants is now underway. These rare, functionally relevant markers are often more easily characterized than common variants of small effect. This will lead to strong and testable hypotheses for the development of therapeutics, thus

![Figure 3. Variant search space.](doi: 10.1371/journal.pone.0079771.g003)
accelerating the progress toward effective prevention and treatment.

Supporting Information

Table S1. Missingness rates for covariates and case-control status. The Alzheimer's Disease Genetics Consortium dataset consists of 19,692 total individuals. We removed any individuals missing any of the covariates (listed here) or case-control status (included in this table).

DOCX

Acknowledgements

We would like to thank Mark T.W. Ebbert for his insightful comments on the manuscript.

Alzheimer’s Disease Genetics Consortium

Biological samples and associated phenotypic data used in primary data analysis were stored at the Principal Investigator’s institutions, and at the National Cell Repository for Alzheimer’s Disease (NCRAD), at the NIA Genetics of Alzheimer’s Disease Storage Site (NIAGADS) at the University of Pennsylvania, and the NIA Alzheimer’s Disease Genetics Consortium Data Storage Site at the University of Pennsylvania.

The members of the Alzheimer’s Disease Genetics Consortium are: Marilyn S. Albert, Roger L. Albin, Liana G. Apostolova, Steven E. Arnold, Clinton T. Baldwin, Robert Barber, Michael M. Barmada, Lisa L. Barnes, Thomas D. Bird, David G. Clark, Regina M. Carney, Minerva M. Carrasquillo, Steven L. Carroll, Helena C. Chui, David G. Clark, Jason Coneveaux, Paul K. Crane, David H. Cribbs, Elizabeth A. Crocco, Carlos Cruchaga, Philip L. De Jager, Charles DeCarli, Steven T. DeKosky, F. Yesim Demirci, Malcolm Dick, Thomas D. Bird, Deborah Blacker, Jennifer Williamson, Randall L. Wolter, Gerard D. Schellenberg, Julie A. Schneider, Lon S. Schneider, William W. Seeley, Amanda G. Smith, Joshua A. Sonnen, Salvatore Spina, Peter St George-Hyslop, Robert A. Stern, Rudolph E. Tanzi, John Q. Trojanowski, Juan C. Troncoso, Debby W. Tsuang, Otto Valladares, Viviana M. Van Deerlin, Linda J. Van Eldik, Badri N. Vardarajan, Harry V. Vinters, Jean Paul Vonsattel, Li-San Wang, Sandra Weintraub, Kathleen A. Welsh-Bohmer, Mary Sano, Andrew J. Saykin, John F. Waring, Joel H. Epidemiology, Harvard School of Public Health, Boston, Massachusetts, Department of Neurology, Mayo Clinic, Rochester, Minnesota, Swedish Medical Center, Seattle.
Washington, 23Department of Neurology, University of California San Francisco, San Francisco, California, 24Department of Medicine, Duke University, Durham, North Carolina, 25Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, 26Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, 27Departments of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, 28Department of Pathology and Immunology, Washington University, St. Louis, Missouri, 29Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 30USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, 31Fred Hutchinson Cancer Research Center, Seattle, Washington, 32Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, 33Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, 34Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, 35Department of Neurology, University of Southern California, Los Angeles, California, 36Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, 37Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, 38Department of Medicine, University of Washington, Seattle, Washington, 39Department of Neurology, University of California Irvine, Irvine, California, 40Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida, 41Department of Psychiatry and Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, Missouri, 42Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology & Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 43Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, 44Department of Neurology, University of California Davis, Sacramento, California, 45University of Virginia School of Medicine, Charlottesville, Virginia, 46Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California, 47Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, Florida, 48Department of Neurology, Mayo Clinic, Jacksonville, Florida, 49Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, 50Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana, 51Department of Neurology, Indiana University, Indianapolis, Indiana, 52Department of Epidemiology, Boston University, Boston, Massachusetts, 53Department of Psychiatry, New York University, New York, New York, 54C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Charlestown, Massachusetts, 55Department of Neurosciences, University of California San Diego, La Jolla, California, 56Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 57Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, 58Emory Alzheimer's Disease Center, Emory University, Atlanta, Georgia, 59Neurogenetics Program, University of California Los Angeles, Los Angeles, California, 60Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, 61Department of Neurology, Emory University, Atlanta, Georgia, 62Division of Genetics, Department of Medicine and Partners Center for Personalized Genetic Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 63Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 64Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, 65Vanderbilt Center for Human Genetics Research, Vanderbilt University, Nashville, Tennessee, 66Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 67Department of Pathology (Neuropathology), University of Pittsburgh, Pittsburgh, Pennsylvania, 68Institute of Neurology, University College London, Queen Square, London, 69Sanders-Brown Center on Aging, Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, 70Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, New York, 71Department of Pathology, Duke University, Durham, North Carolina, 72Department of Genome Sciences, University of Washington, Seattle, Washington, 73Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington, 74Sanders-Brown Center on Aging, Department of Neurology, University of Kentucky, Lexington, Kentucky, 75Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California, 76Department of Biostatistics, Boston University, Boston, Massachusetts, 77Department of Ophthalmology, Boston University, Boston, Massachusetts, 78University of Pittsburgh Alzheimer's Disease Research Center, Pittsburgh, Pennsylvania, 79Department of Biology, Brigham Young University, Provo, Utah, 80Department of Neurology, Oregon Health & Science University, Portland, Oregon, 81Department of Neurology, Portland Veterans Affairs Medical Center, Portland, Oregon, 82Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, 83Department of Neurology, Boston University, Boston, Massachusetts, 84Department of Pathology, Boston University, Boston, Massachusetts, 85Department of Neuropsychology, University of California San Francisco, San Francisco, California, 86Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, 87Department of Epidemiology, University of Washington, Seattle, Washington, 88Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, 89Group Health Research Institute, Group Health, Seattle, Washington, 90Department of Pathology, University of Washington, Seattle, Washington, 91Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, 92Department of Pathology, University of Michigan, Ann Arbor, Michigan, 93Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland, 94Department of Preventive Medicine, University of Southern California, Los Angeles, California, 95Department of Medicine - Pulmonary, New York University, New York, New York, 96Department of Neurology, University of Miami, Miami, Florida,
References

1. Querfurth HW, LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362: 329-344. doi:10.1056/NEJMra0909142. PubMed: 20107219.

2. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer's disease. Alzheimers Dement 3: 186-191. doi:10.1016/j.jzad.2007.04.381. PubMed: 19565837.

3. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D et al. (2011) Alzheimer's disease. Lancet.

4. Herrup K (2010) Reimaging Alzheimer’s disease—an age-based hypothesis. J Neurosci 30: 15755-16762. doi:10.1265/JNEUROSCI.4521-10.2010. PubMed: 21159946.

5. Patterson C, Feightner JW, Garcia A, Hsiung GY, MacKnight C et al. (2008) Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. CMAJ 178: 548-556. doi:10.1503/cmaj.070796. PubMed: 18299540.

6. Cataldo JK, Prochasska JJ, Glanz SA (2010) Cigarette smoking is a risk factor for Alzheimer's Disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis 19: 465-480. PubMed: 20110594.

7. Almeida OP, Hulse GK, Lawrence D, Flicker L (2002) Smoking as a risk factor for Alzheimer's disease: contrasting evidence from a systematic review of case-control and cohort studies. Addiction 97: 15-28. doi:10.1046/j.1360-0443.2002.00016.x. PubMed: 11895267.

8. Lindsay J, Laurin D, Verreault R, Hébert R, Helliwell B et al. (2002) Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156: 445-453. doi:10.1093/aje/kwf074. PubMed: 12196314.

9. Podewils LJ, Guiller E, Kuller LH, Fried LP, Lopez OL et al. (2005) Physical activity, APOE genotype, and dementia risk: findings from the Cardiovascular Health Cohort Study. Am J Epidemiol 161: 639-651. doi:10.1093/aje/kwi092. PubMed: 15781953.

10. Wang HX, Karp A, Winblad B, Fratiglioni L (2002) Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen project. Am J Epidemiol 155: 1081-1087. doi:10.1093/aje/kjf155.12.1081. PubMed: 12048221.

11. Scarmeas N, Stern Y, Mayeux R, Luchsinger JA (2006) Mediterranean diet, Alzheimer disease, and vascular mediation. Arch Neurol 63: 1709-1717. doi:10.1001/archneur.63.12.106019. PubMed: 17030648.

12. Patterson C, Feightner J, Garcia A, MacKnight C (2007) General risk factors for dementia: a systematic evidence review. Alzheimers Dement 3: 341-347. doi:10.1016/j.jzad.2007.07.001. PubMed: 18959556.

13. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349: 704-706. doi:10.1038/349704a0. PubMed: 1671712.

14. Sherrington R, Rogaei E, Liang Y, Rogaeva EA, Levesque G et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: 754-760. doi:10.1038/375754a0. PubMed: 7596406.

15. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: 973-977. doi:10.1126/science.7638622. PubMed: 7638622.

16. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E et al. (2012) TREM2 Variants in Alzheimer’s Disease. N Engl J Med, 368: 117–27. PubMed: 23150934.

17. Jonsson T, Awatil JK, Steinberg S, Snaedal J, Jonsson PV et al. (2012) A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 488: 96-99. doi:10.1038/nature11283. PubMed: 22801501.

18. Jonsson T, Stefansson H, P, Jonsdottir I, Jonsson PV et al. (2012) Variant of TREM2 Associated with the Risk of Alzheimer's Disease. N Engl J Med, 368: 107–16. PubMed: 23150908. PubMed: 23150908.

19. Lee SH, Harold D, Nyholt DR, Goddard ME, Zondervan KT et al. (2013) Estimation and partitioning of polygenic variation captured by common SNPs for Alzheimer’s disease, multiple sclerosis and endometriosis. Hum Mol Genet 22: 832-841. doi:10.1093/hmg/dds491. PubMed: 23193196.

20. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN et al. (2011) Common variants at MS4A4A/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43: 436-441. doi:10.1038/ng.801. PubMed: 21460841.

21. International HapMap Consortium (2003) The International HapMap Project. Nature 426: 789-796. doi:10.1038/nature02186. PubMed: 14685227.

22. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34: 816-834. doi:10.1002/gepi.20533. PubMed: 21058334.

23. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 85: 559-575. doi:10.1086/519795. PubMed: 17701901.
Common SNPs explain a large proportion of the heritability for human Alzheimer's disease. Twin Res Hum Genet Off J International Society For Twin Studies. PubMed: 20554627.

27. Wilming LG, Gilbert JG, Howe K, Trevanian S, Hubbard T et al. (2008) The vertebrate genome annotation (Vega) database. Nucleic Acids Res 36: D755-D760. PubMed: 18003653.

28. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88: 76-82. doi: 10.1016/j.ajhg.2010.11.011. PubMed: 21167468.

29. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK et al. (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42: 565-569. doi:10.1038/ng.608. PubMed: 20502675.

30. Lee SH, Shy WR, Goddard ME, Visscher PM (2011) Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet 89: 18-29. doi: 10.1016/j.ajhg.2011.02.002. PubMed: 21376301.

31. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N et al. (2011) Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 43: 519-525. doi:10.1038/ng.823. PubMed: 21552263.

32. Association; As (2012) Alzheimer’s Disease Facts and Figures. Report. Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC et al. (2011) Common variants at ABCAT1, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet 43: 429-435. doi:10.1038/ng.803. PubMed: 21460804.

33. Biffi A, Anderson CD, Desikan RS, Sabuncu M, Cortellini L et al. (2010) Genetic variation and neuroimaging measures in Alzheimer disease. Arch Neurol 67: 677-685. doi: 10.1001/archneurol.2010.108. PubMed: 20558387.

34. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A et al. (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41: 1088-1093. doi: 10.1038/ng.440. PubMed: 19734902.

35. Hu X, Pickering E, Liu YC, Hall S, Fournier H et al. (2011) Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer's disease. PLOS ONE 6: e16616. doi:10.1371/journal.pone.0016616. PubMed: 21390209.

36. Carraquillo MM, Belbin O, Hunter TA, Ma L, Bisciglio GD et al. (2010) Replication ofCLU, CR1, and PICALM associations with Alzheimer's disease. Arch Neurol 67: 961-964. doi: 10.1001/archneurol.2010.147. PubMed: 20554627.

37. Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M et al. (2010) Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet 19: 3295-3301. doi: 10.1038/hmg/ddq221. PubMed: 20534741.

38. Wray NR (2005) Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and interpretation of association studies. Twin Res Hum Genet Off J International Society For Twin Studies 8: 87-94. doi:10.1375/twin.8.2.87. PubMed: 15901470.

39. Singleton A, Hardy J (2011) A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Hum Mol Genet 20: R155-R162. doi:10.1093/hmg/ddr358. PubMed: 21875901.

40. Roes AF, Wang K, Evjenth R, Xing J, Johnston JJ et al. (2011) Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetylated transferase deficiency. Am J Hum Genet 89: 28-43. doi:10.1016/j.ajhg.2011.05.017. PubMed: 21700266.

41. Choi M, Scholt UJ, Ji W, Liu T, Tikhonova IR et al. (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A 106: 19096-19101. doi: 10.1073/pnas.0910672106. PubMed: 19861545.

42. Roach JC, Glusman G, Smit AF, Huff CD, Hubley R et al. (2010) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328: 636-639. doi:10.1126/science.1186802. PubMed: 20220176.

43. Krebs CE, Paisan-Ruiz C (2012) The use of next-generation sequencing in movement disorders. Front Genet 3: 75. PubMed: 22593763.