Composition and genomic organization of arthropod Hox clusters

Ryan M. Pace1,4, Miodrag Grbić2,3 and Lisa M. Nagy1*

Abstract

Background: The ancestral arthropod is believed to have had a clustered arrangement of ten Hox genes. Within arthropods, Hox gene mutations result in transformation of segment identities. Despite the fact that variation in segment number/character was common in the diversification of arthropods, few examples of Hox gene gains/losses have been correlated with morphological evolution. Furthermore, a full appreciation of the variation in the genomic arrangement of Hox genes in extant arthropods has not been recognized, as genome sequences from each major arthropod clade have not been reported until recently. Initial genomic analysis of the chelicerate Tetranychus urticae suggested that loss of Hox genes and Hox gene clustering might be more common than previously assumed. To further characterize the genomic evolution of arthropod Hox genes, we compared the genomic arrangement and general characteristics of Hox genes from representative taxa from each arthropod subphylum.

Results: In agreement with others, we find arthropods generally contain ten Hox genes arranged in a common orientation in the genome, with an increasing number of sampled species missing either Hox3 or abdominal-A orthologs. The genomic clustering of Hox genes in species we surveyed varies significantly, ranging from 0.3 to 13.6 Mb. In all species sampled, arthropod Hox genes are dispersed in the genome relative to the vertebrate Mus musculus. Differences in Hox cluster size arise from variation in the number of intervening genes, intergenic spacing, and the size of introns and UTRs. In the arthropods surveyed, Hox gene duplications are rare and four microRNAs are, in general, conserved in similar genomic positions relative to the Hox genes.

Conclusions: The tightly clustered Hox complexes found in the vertebrates are not evident within arthropods, and differential patterns of Hox gene dispersion are found throughout the arthropods. The comparative genomic data continue to support an ancestral arthropod Hox cluster of ten genes with a shared orientation, with four Hox gene-associated miRNAs, although the degree of dispersion between genes in an ancestral cluster remains uncertain. Hox3 and abdominal-A orthologs have been lost in multiple, independent lineages, and current data support a model in which inversions of the Abdominal-B locus that result in the loss of abdominal-A correlate with reduced trunk segmentation.

Keywords: Hox, Evolution, Development, Arthropod, Chelicerate, Tetranychus, Ixodes, Daphnia, Segmentation

Background

The Hox genes are a highly conserved set of homeodomain transcription factors that function in fundamental developmental processes in metazoans. This conservation also extends to their genomic arrangement [1–3]. They are typically found clustered in the genome, in the same trancriptional orientation, with their anterior–posterior (A/P) domains of expression and function mirroring their genomic position, commonly referred to as spatial collinearity [4–6], although in rare occurrences Hox genes are not clustered and are spread throughout the genome [7–9]. Among metazoans, Hox genes have been intensely studied in arthropods and it is hypothesized that a genomic cluster of ten genes (labial, proboscipedia, Hox3, Deformed, Sex combs reduced, fushi tarazu, Antennapedia, Ultrabithorax, abdominal-A, and Abdominal-B)
was present ancestrally within the clade [1], a hypothesis further supported by data from a member of the Onychophora, the sister clade to arthropods, that has a full complement of ten Hox genes [10].

While gene-based surveys in phylogenetically diverse arthropods support a general conservation of Hox genes in extant arthropods [11, 12], comparatively little is known about the conservation of the genomic arrangement of Hox genes (i.e., genomic clustering) throughout the phylum as the majority of data comes from insects. Hox genes in insects are generally positioned relatively close to each other on the same chromosome in the same transcriptional orientation, but have different amounts of intervening genes and intergenic space [13–16] (Fig. 1). However, there are several exceptions to this. For example, the Drosophila melanogaster Hox genes are split between the Antennapedia and Ultrabithorax complexes, separated by a large gap (~9.7 Mb) [17, 18] (Fig. 1). Only one other non-Drosophilid, the silk moth Bombyx mori, is known to contain a split genomic arrangement of Hox genes, where a large genic gap (~12 Mb) exists between labial and the rest of the Hox cluster [19, 20] (Fig. 1). Additionally, inversions that disrupt the transcriptional orientation of Hox genes are found in several taxa, including Drosophila and Anopheles gambiae [13, 14, 17, 18, 21, 22] (Fig. 1). These fragmented and inverted organizations appear unusual among insects.

There have been few descriptions of the genomic organization of arthropod Hox genes outside of insects. Two of the better characterized sets of Hox genes from genomic assemblies in non-insects include the myriapod Strigamia maritima [23] and the chelicerate Tetranychus

Fig. 1 Overall size and genomic organization of arthropod Hox genes varies. On the left is a representative phylogenetic tree depicting relationships among the arthropod taxa used in the comparative analysis, as depicted in [32, 100–102]. Mus musculus is used as an out-group. Colored boxes represent Hox genes (and mice homologs according to [103]) and miRNAs, with numbers to the right of the black line indicating approximate size of the genomic region displayed for individual taxa. All Hox genes are depicted in the same transcriptional orientation, except where indicated with a red arrowhead. Data on inversions within the Anopheles Hox cluster are conflicting, as published data only show a single microinversion of ftz [13, 14, 21]; however, the most recent genome assembly shows a large inversion from labial to Deformed as depicted here. Broken lines indicate large genomic spans in Bombyx (12 Mb from lab to pb, with 9.9 Mb removed here for ease of view), Drosophila (9.7 Mb from Antp to Ubx, with 6.7 Mb removed here for ease of view), and Tetranychus (2.9 Mb from pb to Dfd). The Anopheles, Tribolium, Nasonia, Apis, and Mesobuthus Hox gene clusters are depicted at 1/2 scale (denoted by the horizontal blue line), the Drosophila, Bombyx, and Tetranychus Hox gene clusters at 1/6 scale (denoted by the horizontal red line), and the Metaseiulus Hox gene cluster at 1/20 scale (denoted by the horizontal purple line). The number of intervening protein coding genes between Hox genes is indicated by horizontal line thickness. Numbers to the right indicate the respective length of the Hox clusters in the genome in megabase pairs (Mb), as calculated from the transcriptional start of the most 3’ Hox gene to the transcriptional stop of the most 5’ Hox gene, and the proportion of the genome that contains the Hox cluster is indicated as a percentage along with the genome size in parentheses, respectively.
The Strigamia genome contains nine of the ten canonical arthropod Hox genes grouped together (missing Hox3), in the same transcriptional orientation [23] (Fig. 1). In Tetranychus, there is a large gap between proboscipedia and Deformed, duplications of fushi tarazu and Antennapedia, losses of Hox3 and abdominal-A, and an inversion of Abdominal-B [24] (Fig. 1). These data from non-insect species suggest there is more variation in the genomic organization of arthropod Hox genes than previously appreciated. It is perhaps unsurprising then that an incomplete set of the canonical ten arthropod Hox genes is often found when performing degenerate PCR surveys [11, 25].

While the general paradigm is that most arthropods contain a similar set of ten Hox genes, there are examples where Hox gene loss or duplication (and divergence) has occurred [11, 25]. The best studied of the examples of gene loss are the fushi tarazu (ftz) and Hox3 genes [26–31]. In the case of the ftz gene, loss of homeotic function, without a loss of the gene itself, appears to have been relatively common and there is currently no evidence that its loss of homeotic function had any phenotypic consequence [32]. However, here we report that loss of abd-A in Tetranychus [24], the oribatid mite Archegozetes longisetosus [11], a pycnogonid [33], and three species of barnacle [34–36]—all of which have very reduced trunk segmentation—suggest some Hox gene losses correlate with discrete morphological change along the A/P body axis.

In contrast to the uncommon association of a loss of a Hox gene with morphological variation, there are numerous examples where morphological diversification along the A/P body axis is achieved through changes in the regulation of the Hox genes, leading to variation in the A/P expression boundaries of the Hox genes [37, 38] (see [12] for review), as well as to changes in their downstream targets [39, 40] (see [41] for review). The intergenic regions between Hox genes are thus important sites of regulation [42] and also include microRNAs (miRNAs), small non-coding RNAs, known to play essential roles in Hox gene regulation [43]. While there is no consensus on the number of conserved arthropod Hox gene-associated miRNAs, more than twenty are functionally annotated in Drosophila melanogaster between the Hox genes labial and Abdominal-B [44], with four of these miRNAs—miR-993, miR-10, miR-iab-4, and miR-iab-8—found in conserved positions within arthropod genomes [45–51] (Fig. 2). The last two, miR-iab-4 and miR-iab-8, reside at the same locus and produce sense (miR-iab-4) and antisense (miR-iab-8) transcripts [52, 53]. However, these views of arthropod Hox gene regulation are mainly derived from insects, leaving relatively little known about the extent of miRNA conservation and divergence throughout the Arthropoda.

With representative sequenced genomes from each major arthropod clade now available, we can examine the variation in the genomic organization and evolution of arthropod Hox gene clusters within a greater phylogenetic context, including the degree to which chromosomal arrangement, transcriptional orientation, and regulatory elements such as miRNAs are conserved. Using a comparative genomic approach, we examined how the spatial organization of Hox genes has changed during arthropod evolution. To this end, we performed a comparative analysis of the genomic structure of Hox genes that have been previously characterized in six insects, the centipede Strigamia maritima (Myriapoda) [23], several chelicerates including the scorpion Mesobuthus martensi, the spider mite Tetranychus, the predatory mite Metaseiulus occidentalis, and the vertebrate Mus musculus. In addition, we included in our comparative analysis the water flea Daphnia pulex (Crustacea) [54] and the deer tick Ixodes scapularis (Chelicerata) [55], arthropods that have yet to have the genomic organization of their Hox genes well characterized.

![Fig. 2](image-url) Comparison of the relative sizes of the coding, intronic, and untranslated regions of arthropod and vertebrate Hox genes. The relative sizes of amino acid coding sequence (CDS), introns, and total and 5′ and 3′ untranslated regions (UTRs) are shown for twelve arthropods surveyed and the vertebrate Mus musculus. Individual Hox genes are represented as a stack, in their respective genomic location of the Hox cluster, and labeled by color. The overall coding sequence length among arthropods ranges from 7.1 kb in Ixodes to 18.1 kb in Daphnia. The overall intron length among arthropods ranges from 14.5 kb in Ixodes to 624.6 kb in Bombyx. The overall UTR length among arthropods ranges from 2.3 kb in Anopheles to 30.5 kb in Drosophila. Asterisks indicate missing or incomplete data.
Methods
Hox genes and genomic sequence collection
Species choice
We focused our analysis on non-insect Hox clusters for which less information on Hox cluster organization has been published. Reliable analysis of genomic organization of a Hox cluster requires sufficiently long contigs and confidence in the accuracy of the assembly. Consequently, we limited our analysis to those genomes with sufficient quality coverage and assembly (at least 7X coverage with Sanger sequencing, or 15X coverage with 454 pyrosequencing) and for which the data were publicly available. At present, six of the published genomes of non-insect arthropods adhere to that standard and are included in our analysis. We note, however, that for none of these species is there a chromosome linkage map; so validating contig linkage relationships is not possible. We also included representatives of the major clades of insects for which a completed sequence was available and focused on the best-quality genome assemblies (6 species).

Databases used: Tetranychus urticae data were collected from the Online Resource for Community Annotation of Eukaryotes (OrcAE, http://bioinformatics.psb.ugent.be/orcae/) [56], Daphnia pulex data were collected from the JGI Daphnia pulex v1.0 genome database (http://genome.jgi-psf.org) [54]. Strigamia maritima data were collected from the EnsemblGenomes database (http://metazoa.ensembl.org/) [23]. Ixodes scapularis and Anopheles gambiae data were collected from the VectorBase IscaW1.4 and AgamP4 databases, respectively (https://www.vectorbase.org) [55, 57, 58]. Bombyx mori data were collected from the Silkworm Genome Database (http://www.silkdb.org/silkdb) [59] and from the work of [19, 20]. Apis mellifera data were collected from the Hymenoptera Genome Database (http://hymenopteragenome.org/) [60]. Drosophila melanogaster, Nasonia vitripennis, Tribolium castaneum, Metaseiulus occidentalis, Mesobuthus martensii, and Mus musculus data were collected from NCBI. Gene accession identification numbers are included in Additional file 1: Table S1.

Annotation of conserved arthropod Hox gene-associated miRNAs
In identifying conserved miRNAs, we undertook a sequence homology-based approach that was consistent with previous studies [45, 61–64]. Briefly, Hox gene-associated miRNAs were first curated from miRBase [44] by searching the genomic positions of the Hox genes for Bombyx, Drosophila, Anopheles, Apis, Nasonia, Tribolium, Daphnia, and Ixodes. Drosophila Hox gene-associated miRNA stem-loop sequences were then downloaded from miRBase and used in BLAST analyses to identify conserved Hox gene-associated miRNAs in Tetranychus, Mesobuthus, Metaseiulus, and Strigamia. Identification of putative precursor miRNA sequences was based on a BLAST hit with an alignment length greater than or equal to 20 nucleotides and greater than or equal to 80 percent identity (Additional file 2: Table S4). BLAST hits were then analyzed for predicted secondary structure using minimum free energy (MFE) with RNAfold [65] and miRAlign [61]. Only sequences with a predicted stem-loop structure with an MFE less than or equal to -20 kcal/mol and that contained the mature sequence on the stem were considered putative miRNAs (Additional file 2: Tables S4, Additional file 3: Table S5). Predicted precursor miRNA sequences were aligned to other arthropod miRNA sequences using MUSCLE [66], trimmed, and subsequently used in generating a maximum likelihood phylogenetic tree [67] to support orthology as previously described [68], using the HKY85 substitution model (Additional file 4: Figure S1; Additional file 5). Accession numbers or genomic locations of miRNAs are included in Additional file 1: Table S1.

Results
Comparison of the genomic arrangement of arthropod Hox genes
In Fig. 1, we compare key features of the genomic organization of the insect, non-insect and mouse Hox genes, including relative position on the chromosome, intergenic spacing, number of intervening genes, transcriptional orientation, and the position of Hox gene-associated miRNAs.

Overall size of the Hox cluster: None of the arthropod Hox clusters analyzed show the tightly linked genomic organization as seen in the vertebrate Mus musculus, in which Hox clusters range from 0.10 to 0.17 Mb in size (Fig. 1 and Additional file 6: Table S2). Daphnia contains the tightest linked arrangement of Hox genes observed in any arthropod with a sequenced genome to date (0.34 Mb; Fig. 1; Additional file 6: Table S2). The ten Daphnia Hox genes are located on a single genomic scaffold (scaffold 7), which measures 2.3 Mb in length. The Ixodes Hox genes are also located on a single genomic scaffold (DS891538), which measures 3.9 Mb in length, but the Ixodes Hox genes span ten times the genomic distance of the Daphnia Hox genes (3.48 Mb; Additional file 6: Table S2). The increase in the spatial arrangement of the Ixodes Hox cluster is correlated with its particularly large genome (1.7 Gb) [57] relative to other arthropods with sequenced genomes, which range from 91 Mb in Tetranychus [24] to 1.3 Gb in Aedes aegypti [69]. However, the Ixodes Hox cluster occupies a similar percentage of the genome (0.20 %) as other arthropod Hox clusters that lack large genomic gaps (0.3 ± 0.2 %, mean ± standard deviation).
Splits in the Hox cluster

The *Drosophila* Hox cluster is the best-known example of a split Hox cluster, in which the Antennapedia complex is separated from the genes in the Bithorax complex by 9.6 Mb. A similarly large split is evident in the *Bombyx* Hox cluster (12 Mb), but separates labial from the rest of the Hox genes [17–20]. We also observed a split in the Hox gene organization of *Tetranychus* [24]. The *Tetranychus* Hox genes are located on two genomic scaffolds: A 2.7-Mb scaffold (genomic scaffold 11) contains orthologs of proboscipedia (*Tu-pb*) and labial (*Tu-lab*) in a shared 5′ to 3′ orientation, and a 1.6-Mb scaffold (genomic scaffold 20) contains the remaining Hox genes Deformed (*Tu-Dfd*), Sex combs reduced (*Tu-Scr*), fushi tarazu (*Tu-Scr*), Antennapedia (paralogs 20g02430 and 20g02430, respectively), Ultrabithorax (*Tu-Ubx*), and Abdominal-B (*Tu-Abd-B*) (Fig. 1). At this time it is not possible to further align the genomic scaffolds into a contiguous sequence due to the holocentric nature of the three chromosomes of *Tetranychus* [24]. Presuming the scaffolds are contiguous in the genome, the gap between the *Tu-pb* locus and the *Tu-Dfd* locus is a minimum distance of ~2.9 Mb (2.47 Mb from the stop codon in *pb* to the 3′ end of scaffold 11 and 0.47 Mb from start codon in *Tu-Dfd* to the 5′ end of scaffold 20) and contains more than 100 predicted and manually annotated genes (Fig. 1). Thus, the *Tetranychus* Hox cluster split is unique in both where it is located (between *pb* and *Dfd*) and the number of genes interspersed in the region (Fig. 1). However, when the region between *Tu-pb* and *Tu-Dfd* is excluded, the length from the most 5′ to the most 3′ Hox gene in *Tetranychus* is reduced compared to most insects. For example, the *Scr* and *ftz* genes are a mere 1.1 kb apart (Fig. 1 and Additional file 6: Table S2).

We note that for species where Hox genes are found on separate genomic scaffolds (*Tetranychus, Metaseiulus*, and *Mesobuthus*), we have arranged the genomic scaffolds to reflect the expected genomic organization of Hox genes (Fig. 1). These data should be interpreted to represent the minimum genomic arrangement, and chromosome linkage mapping is needed to confirm this arrangement. It is possible that there are large genomic regions between Hox gene-containing scaffolds in both the scorpion and predatory mite, and an even larger than depicted gap between the *Tetranychus pb* and *Dfd* genes, but until the scaffolds can be further linked it is not possible to ascertain.

Transcriptional orientation

With very few exceptions, the Hox genes share the same transcriptional orientation on their respective chromosomes. In our sample, inversions are limited to the derived insects, *Drosophila, Bombyx*, and *Anopheles* [17–20]; and the *Abd-B* gene in *Tetranychus* [24] (Fig. 1). The inversion of *Tu-Abd-B* is also found in two other tetranychid mites (*T. lineatarius* and *T. evansi*, separated by 0.8 and 3 MYA, respectively; data not shown). This inversion is consistent with a model in which the loss of *abdominal-A* resulted from a chromosomal inversion that spanned both the *abd-A* and *Abd-B* loci at the base of this lineage.

Lineage-specific Hox gene duplications

As previously reported [24], several instances of Hox gene duplications were identified in *Tetranychus*. *Tetranychus* harbors two copies of both *fushi tarazu* and Antennapedia as tandem duplications, not present in other arthropods (Fig. 1). Needleman–Wunsch global alignment of the coding sequence shows the *Tu-ftz1* and *Tu-ftz2* and *Tu-Antp1* and *Tu-Antp2* orthologs share 74 and 55 percent identity, respectively, and at the amino acid level 67 and 33 percent identity, respectively (Additional file 7). Phylogenetic analysis of representative arthropod *ftz* and *Antp* sequences supports a hypothesis that the *Tetranychus ftz* and *Antp* paralogs emerged via lineage-specific duplications (Additional file 5: Figure S2). The percent identity for the *Tetranychus* duplicate *ftz* and *Antp* orthologs is consistent with another well-known tandem gene duplication located in an arthropod Hox cluster; e.g., *Tribolium zerknüllt* and *zerknüllt-2* share 54 % nucleotide identity and 37 % protein identity, respectively. Alignment of the *Tetranychus ftz* and *Antp* amino acid sequences suggests either partial duplications of the genes including the homeodomain-containing region, or deletions occurred post-duplication, upstream of the homeodomain in *Antp2440* and *ftz2530* as the putative coding sequence for both the *ftz* and *Antp* duplicates is substantially smaller (Additional file 5: Figure S2). Additionally, comparison of RNAseq profiles across four developmental stages (RNASeq from embryonic, larval, nymphal, and adult) reveal both *Antp2440* and *ftz2530* have markedly lower levels of expression than their respective paralogs (Additional file 9: Table S6). The scorpion genome revealed the presence of two complete Hox clusters (Fig. 1) [70]. Surveys of the remaining non-insect genomes sampled revealed no apparent Hox gene duplications.

Individual Hox gene characteristics

To further explore variation in Hox gene genomic complexes, we characterized the structure of the *Tetranychus, Daphnia*, and *Ixodes* Hox genes and compared them to *Anopheles, Drosophila, Bombyx, Tribolium, Nasonia, Apis, Strigamia, Metaseiulus, Mesobuthus*, and *Mus musculus* (Fig. 2). In general, we find chelicerates to have...
reduced amounts of coding sequence, intronic regions, and untranslated regions (Fig. 2). There is little variation in the coding sequence of myriapod, crustacean, and insect Hox genes. Compared to insects, chelicerates, Strigamia, and Daphnia contain reduced Hox gene intronic regions (Fig. 2). Similarly, where there are available data on the 5′ and 3′ untranslated regions (UTRs), the UTRs of chelicerate and Daphnia Hox genes are reduced compared to insects. For example, the average total intron length and intron number for Hox genes in Tetranychus are 5.32 kb and 2.0 introns, in Ixodes are 1.45 kb and 0.9 introns, and in Daphnia are 7.61 kb and 4.0 introns (Fig. 2 and Additional file 10: Table S3). In contrast, the average total intron length and intron number for Hox genes in Drosophila are larger at 25.66 kb and 3.8 introns (Fig. 2 and Additional file 10: Table S3). Similarly, the average length of untranslated regions of Tetranychus and Ixodes Hox genes (0.49 and 0.31 kb, respectively) is reduced compared to Drosophila (2.54 kb) and other arthropods (Fig. 2 and Additional file 10: Table S3). The decrease in untranslated regions and introns of individual Hox genes effectively reduces the size of the overall transcription units in Tetranychus and Ixodes (Fig. 2 and Additional file 6: Table S3). In Tetranychus, these features are not specific to the Hox cluster as a reduction of intergenic regions, introns, and untranslated regions is general features of the highly compact Tetranychus genome [24]. Nonetheless, the reduction in putative regulatory DNA associated with Tetranychus Hox genes has implications for their regulation during development.

Hox gene-associated miRNAs

We identified multiple sequences with homology to the four conserved miRNAs (i.e., mir-993, mir-10, mir-ia8-4, and mir-ia8-8) in Tetranychus (3/4), Mesobuthus (4/4), Metaseiulus (4/4), and Strigamia (4/4) (Fig. 1, Additional file 4: Figure S1; Additional file 2: Table S4, Additional file 3: Table S5). There are two sequences in Tetranychus separated by less than 500 bp that contain homology to mir-993 located near pb (Fig. 1). As mir-993 is typically found conserved between Hox3 and Dfd, the position of the Tetranychus mir-993 homologs adjacent to Tu-pb provides additional support for the complete loss of Hox3 from the genome. In Tetranychus mir-10 is located upstream of Tu-Dfd, differing from its expected conserved location between Dfd and Scr (Fig. 1). We were unable to locate mir-ia8-4/mir-ia8-8 in Tetranychus, which typically overlap each other in the region between abd-A and Abd-B (Fig. 1). The absence of mir-ia8-4/mir-ia8-8 from Tetranychus further validates the loss of abd-A from the Tetranychus genome. All four Mesobuthus and Strigamia miRNAs were found in the expected genomic positions: mir-10 is located between Dfd and Scr, mir-ia8-4/mir-ia8-8 is located between abd-A and Abd-B. In Mesobuthus, mir-993 lies between Hox3 and Dfd, whereas in Strigamia, despite the loss of Sm-Hox3 from its conserved position between pb and Dfd, mir-993 is located between pb and Dfd (Fig. 1). Metaseiulus contains a unique arrangement of Hox gene-associated miRNAs; both mir-993 and mir-10 are found on non-Hox gene-containing scaffolds, whereas mir-ia8-4/mir-ia8-8 is located on the Dfd-containing scaffold (Fig. 1).

Discussion

Changes in the genomic organization of arthropod Hox genes

To understand the conservation of Hox gene clustering throughout the arthropod phylum, we performed an arthropod-wide comparison of the genomic structure of Hox genes from representative arthropod genome sequences. We analyzed and compared the genomic organization of Hox genes from several insects, a crustacean, a myriapod, four chelicerates, and the vertebrate Mus musculus. Our data suggest the constraints maintaining Hox genes in a tightly clustered genomic complex have been lost during arthropod evolution (Fig. 1), although the sample size remains relatively small (e.g., there are an estimated 2–10 million arthropod species [71]). Excluding arthropods with Hox genes organized into distinct genomic complexes (e.g., Drosophila, Bombyx, and Tetranychus), the variation in clustering of Hox genes is mainly attributed to the amount of intervening space between Hox genes, not to a lack of Hox gene coding sequence, intron, and UTR lengths. For example, intervening space accounts for 0.25 Mb (72 %) of the Daphnia Hox gene cluster. In contrast, intervening space accounts for 3.45 Mb (99 %) of the Hox gene cluster in Ixodes. There does not appear to be a phylogenetic trend for proportion of intervening sequence. Furthermore, large gaps in the genomic arrangement of Hox genes have independently occurred in insects and chelicerates with sequenced genomes to date (Fig. 1). These large breaks do not appear at consistent locations within the cluster (Fig. 1). For example, the genomic split within the Tetranychus Hox genes represents a novel arrangement of Hox genes compared to those in dipteran and lepidopteran genomes.

The predatory mite Metaseiulus occidentalis was reported to have a disintegrated arrangement of Hox genes in the genome—each Hox gene is localized to a separate genomic scaffold, that if contiguous on a single chromosome would span approximately 12.1–14.2 Mb [72] (Fig. 1). While Metaseiulus, Tetranychus, and Ixodes are all are members of the chelicerate subclass Acari, Metaseiulus is more closely related to Ixodes (both are members of the Parasitiformes superorder, and
Bombyx duplications in both Tetranychus and cluster together in a phylogenetic analysis (Additional miRNAs, and we did not find any evidence for translo-
single copy of the four conserved Hox gene-associated
translocated from a conserved position between Tu
to upstream of
and
and none of the genes are tightly clustered in this region
(Fig. 1). Thus, these data suggest that compared to other arthropods, there may have been fewer constraints on mites and ticks to maintain the paradigmatic clustered arrangement of Hox genes.

While the mechanisms that constrain Hox genes into genomic clusters during evolution are not well under-
stood, they are believed to be tied to their temporal colli-
nearity in vertebrates [73]. The evolution of rapid development and simultaneous appearance of segments in flies (22 h [74]) has been proposed as a key factor in the loss of temporal collinearity and thus disintegration of Hox gene clusters [9]. Although it not known whether Tetra-
nychus Hox genes are temporally collinear, Tetra-
nychus embryonic development is also relatively short (~39 h [75]). The development of Bombyx mori, however, contradicts this model. While Bombyx have a split arrangement of Hox genes, Bombyx embryos take 10 days to complete embryogenesis [76]. Interestingly, in several insects and in Strigamia, expression of the posterior class Hox genes is temporally collinear [77–80]. Taken together, these data, or more so, lack of data, reveal that the temporal expression of Hox genes in arthropods is under-appreciated and under-studied. It is possible that shifts in the temporal collinearity of Hox gene expression, like anteroposterior shifts in expression domains, should also be considered as a driver of morphological change.

Conservation of miRNAs in arthropod Hox clusters

Four miRNAs located in close proximity to Hox genes are found conserved throughout Arthropoda—mir-993, mir-10, mir-iab-4, and mir-iab-8. To date there has only been one arthropod identified that contains duplicated copies. Bombyx has two copies of mir-993—mir-993a is present in the Hox cluster in the expected position between pb/Hox3 and Dfd, whereas mir-993b is located on a genomic scaffold separate from the scaffolds that con-
tain the Hox genes [51]. Similarly, Tetranymphus contains two copies of mir-993, although both are in the expected position downstream of pb (Fig. 1). However, the mir-
993 duplications in both Bombyx and Tetranymphus likely represent lineage-specific duplications, as they do not cluster together in a phylogenetic analysis (Additional file 4: Figure S1). We also found Tetranymphus mir-10 has translocated from a conserved position between Dfd and Scr to upstream of Tu-Dfd (Fig. 1). Strigamia contains a single copy of the four conserved Hox gene-associated miRNAs, and we did not find any evidence for translo-
cation (Fig. 1). We speculate that the losses of mir-iab-4 and mir-iab-8 from the Tetranymphus genome reflect the

loss of the nearby Hox gene abd-A. Notably, in Dros-
ophila, mir-iab-4 appears to be transcriptionally co-
regulated with abd-A and mir-iab-8 plays a regulatory role in the expression of abd-A and Ubx and maintain-
ing posterior segment identities during early patterning [53, 81]. In Tetranymphus, the loss of the region containing abd-A, mir-iab-4, and mir-iab-8 may have contributed to the reduced posterior patterning observed (described in further detail below). However, an examination of the expression and function of mir-iab-4 and mir-iab-8 in more phylogenetically basal arthropods, such as chelicer-
ates, remains to be determined.

Hox gene duplications

Despite all extant arthropods containing the same basic set of Hox genes [1, 12], there are an increasing number of examples of lineage-specific Hox gene duplications. Duplications of Hox genes have been previously observed via PCR surveys in several non-insect arthropods, e.g., Scr, Dfd, and Ubx, in the spider Cupiennius salei [82] and Dfd in the centipede Pachymerium ferrugineum [83]. Additionally, PCR and genomic surveys in horseshoe crabs suggest the entire Hox gene complex has under-
gone several duplications, potentially via whole genome duplication [84, 85], and similar large-scale duplications of Hox genes have been observed in scorpions [70, 86] (Fig. 1). Where available, analysis of gene expression data reveals the duplicated genes to have overlapping, but dis-
tinct spatial domains [82, 86]. We also observed Hox gene duplications in Tetranymphus for fitz and Antp. Whether the Tetranymphus duplicated Hox genes also contain over-
lapping, but distinct spatial domains of expression awaits examination. However, both Tetranymphus duplicated Hox genes are truncated in length suggesting potential pseudogenization of the loci. Consistent with a model of pseudogenization, both Tetranymphus duplicated Hox genes have lower RNASeq expression profiles compared to their respective paralogs (Additional file 9: Table S6), typical of a gene duplication event in which one duplicate is free to lose function retained by the other duplicate [87–89].

Loss of abd-A and evolution of arthropod posterior segmentation

In several arthropods there is a correlation between a reduced number of posterior segments and an absence of the posterior class Hox gene abd-A. abd-A was not identified in PCR surveys of Hox genes in three cir-
ruped crustaceans (Sacculina carinica, Elminius modes-
tus, and Trypetesa lampas) [34–36] and two chelicerates, including the pycnogonid Endeis spinosa [33] and the oribatid mite Archegozetes [11] (Fig. 3). The addition of Tetranymphus to this list suggests that this correlation has
emerged independently four times during arthropod evolution, once, in the lineage leading to the cirripedes, and three times within the Chelicerata (Fig. 3). Although both *Tetranychus* and the oribatid mite are members of the arachniforms lineage of chelicerates, the oribatid mites group more closely with the eriophyids, a group of mites that possess two pairs of legs and an elongated opisthosoma comprised of an uneven number of dorsal and ventral cuticular annuli that are not regarded as segments [90–92]. Based on the opisthosomal morphology of eriophyids, it might be expected that *abd-A* is present within this taxa and that loss of *abd-A* has occurred independently at least three times in the Chelicerata. However, a PCR survey of Hox genes and a molecular analysis of posterior body segments in eriophyids with a segmental marker such as *engrailed* have yet to be completed.

What role might the loss of *abd-A* have in the evolution of trunk morphology? It is possible that the loss of *abd-A* has no role in reducing the number of posterior segments and is merely a function of relaxed selection due to overlapping function with other Hox genes, e.g., *ulbx* and *Abd-B*. This may be similar to the loss, or derivation, of Hox3 in insects [93]. Alternatively, the loss of *abd-A* could be a key evolutionary event underlying the reduction in the number of posterior segments. In vertebrate somitogenesis, which is superficially similar to arthropod sequential segmentation, termination of segmentation is promoted by the onset of expression of the vertebrate *Abdominal-B* homologs *Hoxb13* and *Hoxc13* [94, 95]. This late onset of expression is entwined with the temporal collarinearity of vertebrate Hox genes, in which dynamic shifts in the three-dimensional chromatin arrangements within the Hox cluster occur during anteroposterior patterning [96, 97]. Again, while it is not well known whether arthropod Hox genes exhibit similar temporal controls overall, *Abd-B* is known to have a late onset of expression during segmentation in the apterygote *Thermobia domestica* and the orthopteran *Schistocerca gregaria* [77, 78]. In addition, during pupation *Drosophila* *Abd-B* contributes to a reduction of posterior segments in a sex-specific manner [98, 99]. Taken together these data suggest that in arthropods that display reduced posterior segmentation, the loss of *abd-A* may have contributed to a change in the temporal chromatin dynamics of Hox clusters, transcriptional regulation of *Abd-B*, and an early termination of segmentation.

Conclusions

The current data, from both genomic studies and PCR surveys, remain consistent with the idea that an ancestral arthropod had ten Hox genes. However, the accumulating non-insect Hox data raises questions as to whether ancestrally multiple Hox clusters were present and subsequently lost, and to what degree the ancestral arthropod clusters were dispersed within the genome. Vertebrate Hox genes are tightly clustered on the same chromosome with virtually no non-Hox genes interpersed within the cluster. Arthropod Hox genes are located on the same chromosome and in the same order and transcriptional orientation as their vertebrate orthologs, but they show varying degrees of dispersion. The Hox clusters in the genomes of *Daphnia* and *Strigamia* span relatively small genomic regions, while all chelicerates surveyed to date show a significantly more dispersed Hox cluster configuration, with the extreme example of the “atomized” cluster of the predatory mite. Within the insects surveyed here, there is an evident trend toward a greater dispersion of the Hox cluster within more derived species. Taken together, these data suggest the constraints maintaining Hox genes in a genomic cluster in arthropods have been relaxed in comparison with vertebrates and may play a functional role in the reduction of posterior body plans.
Additional files

Additional file 1: Table S1. Gene accession numbers or genomic loca-
tions of Hox genes used in this analysis.

Additional file 2: Table S4. Positive BLAST hits and genomic locations of
conserved Hox gene-associated miRNAs in Mesobuthus, Metaseiulus,
Tetranychus, and Strigamia.

Additional file 3: Table S5. Number of BLAST hits, alignments, and
sequences considered for conserved Hox gene-associated miRNAs in
Mesobuthus, Metaseiulus, Tetranychus, and Strigamia.

Additional file 4: Figure S1. Maximum likelihood phylogenetic tree of
arthropod Hox gene-associated miRNAs. Abbreviations used: Dm – Dros-
ophila melanogaster, Ag – Anopheles gambiae, Tc – Tribolium castaneum,
Nv – Nasonia vitripennis, Ap – Apis mellifera, Bm – Bombyx mori, Dp – Daph-
nia pulex, Sm – Strigamia maritima, Mm – Mesobuthus martensi, ls – iso-
des scapularis, Mo – Metaseiulus occidentalis, and Tu – Tetranychus urticae.

Additional file 5. Muscle alignment of arthropod miRNAs mir-993, mir-
10, and mir-let-4/8. Abbreviations used as in Additional file 4: Figure S1.

Additional file 6: Table S2. Calculated spatial relationship of Hox genes.

Additional file 7. Global alignment of Tetranychus fushi tarazu and
Antennapedia nucleotide and protein sequences.

Additional file 8: Figure S2. Maximum likelihood phylogenetic tree of
Antp (A) and fz (B). Phylogenetic trees were constructed with PhyML
[64] using full length protein sequences aligned with MUSCLE. PhyML
parameters were set as the following: WAG amino acid substitution model,
proportion of invariable sites estimated, and the number of categories
of substitution rate = 4. Statistical support was provided by approximate
likelihood ratio tests based on a Shimodaira-Hasegawa-like procedure,
with the scores shown in the tree.

Additional file 9: Table S6. RNASeq expression data for Tetranychus urti-
cae, Antennapedia and fushi tarazu. Data taken from embryonic (embryo_
techev, #), larval (larvae_techev, #), nymphal (nymph_techev, #), and adult
(adult_techev, #) developmental stages, values are reads per kilobase per
million mapped reads (RPKM).

Additional file 10: Table S3. Measurements of the size of Hox gene cod-
ing and non-coding regions.

Abbreviations
lab: labial, pb: proboscipedia; zen: zenkulli; D16: Deformed; Scr: Sex combs
reduced; ftz: fushi tarazu; Antp: Antennapedia; Ubx: Ultrabithorax; abd-A:
abdominal-A; Abd-B: Abdominal-B; miR: miRNA; microRNA; iab: infra-abdomi-
nal; PCR: polymerase chain reaction; BLAST: basic local alignment search tool;
MFE: minimum free energy; bp: base pairs; kb: kilobase pairs; Mb: megabase
pairs; Gb: gigabase pairs; CDS: coding sequence; UTR: untranslated region;
A: Abd-A; Abdominal-A; B: Abd-B Abdominal-B; N: Nasonia vitripennis; D:
Drosophila melanogaster; A: Antennapedia; T: Tribolium castaneum; N:
Nasonia vitripennis; M: Mus musculus; D: Drosophila melanogaster.

Authors’ contributions
RMP participated in the conception and design of the study, performed data
analysis, and wrote the manuscript. MG participated in data discussion and
critical revisions of the manuscript. LMN participated in the conception and
design of the study, data discussion and contributed to writing the manu-
script. All authors read and approved the final manuscript.

Author details
1 Department of Molecular and Cellular Biology, University of Arizona, Tucson,
AZ 85721, USA. 2 Department of Biology, University of Western Ontario,
London, ON N6A 5B7, Canada. 3 Universidad de la Rioja, 26006 Logroño, Spain.
4 Present Address: Division of Maternal-Fetal Medicine, Department of Obstet-
rics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA.

Acknowledgements
RMP was supported through NSF-IGERT grant DGE-0654435 and NIH Train-
ing Grant T32GM008659 in the duration of this study. MG acknowledges
funding by the Government of Canada through Genome Canada and the
Ontario Genomics Institute (OGI-046). Ontario Research Fund—Global Lead-
ership in Genomics and Life Sciences GL2.01-035 and NSERC Strategic Grant
STPGP322206-05. LMN acknowledges funding through NSF IOS 1024446. We
thank SD Hester and anonymous reviewers for their helpful comments on this
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 21 February 2016 Accepted: 20 April 2016
Published online: 10 May 2016

References
1. Akam M, Averof M, Castelli-Gair J, Dawes R, Falciani F, Ferrier DEK. The evol-
ving role of Hox genes in arthropods. Development. 1994;194:209–15.
2. Wang BB, Müller-Immergluck MM, Austin J, Robinson NT, Chisholm A,
Kenyon C. A homeotic gene cluster patterns the anteroposterior body
axis of C. elegans. Cell. 1993;74:29–42.
3. Garcia-Fernández J, Holland PW. Archetypal organization of the
amphioxus Hox gene cluster. Nature; 1994;370:563–6.
4. McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell.
1992;68:283–302.
5. Duboule D, Morata G. Colinearity and functional hierarchy among genes
of the homeotic complexes. Trends Genet. 1994;10:358–64.
6. Duboule D, Doleč P. The structural and functional organization of the
mussel HOX gene family resembles that of Drosophila homeotic genes.
EMBO J. 1989;8:1497–505.
7. Seo H-C, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen A,
Flaat M, Weisentbach J, Lehrlach H, Wincker P, Reinhardt R, Chourrout
D. Hox cluster disintegration with persistent anteroposterior order of
expression in Oikopleura dioica. Nature. 2004;431:67–71.
8. Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-
Gonzales E, Brenner S, Ragsdale CW, Rohkisr DS. The octopus genome
and the evolution of cephalopod neural and morphological novelties.
Nature. 2015;524:220–4.
9. Hoy MA, Waterhouse RM, Wu K, Estep AS, Ioannidis P, Palmer WJ,
Pomerantz AF, Simão FA, Thomas J, Jiggins FM, Murphy TD, Pritham EJ,
Robertson HM, Zdobnlov EM, Gibbs RA, Richards S. Genome sequenc-
ing of the phyotose predatory mite Metaseiulus occidentalis reveals
completely atomised Hox genes and super-dynamic intron evolution.
Genome Biol Evol 2016:eww048. doi:10.1093/gbe/eww048.
10. Janssen R, Eriksson BJ, Tait NN, Budd GE. Oncophorphan Hox genes
and the evolution of arthropod Hox gene expression. Front Zool.
2014;11:22.
11. Cook CE, Akam M, Smith ML, Telford MJ, Bastianello A. Hox genes
and the phylogeny of the arthropods. Curr Biol. 2001;11:759–63.
12. Hughes GL, Kaufman TC. Hox genes and the evolution of the arthropod
body plan1. Evol Dev. 2002;4:459–99.
13. Powers TP, Hogan J, Ke Z, Dymbrowski K, Wang X, Collins FH, Kaufman
TC. Characterization of the Hox cluster from the mosquito Anopheles
melanogaster (Diptera: Culicidae). Evol Dev. 2000;2:311–25.
14. Devenport MP, Blass C, Eggleton P. Characterization of the Hox gene
cluster in the melana vector mosquito Anopheles gambiae (Diptera:
Culicidae). Evol Dev. 2000;2:311–25.
15. Brown SJ, Fellers JP, Shippy TD, Richardson EA, Maxwell M, Stuart JJ,
Denell RE. Sequence of the Tribolium castaneum homeotic complex:
the region corresponding to the Drosophila melanogaster antenne-
pedia complex. Genetics. 2002;160:1067–74.
16. Ferrier DEK, Akam M. Organization of the Hox gene cluster in the grass-
hopper, Schistocerca gregaria. Proc Natl Acad Sci USA. 1996;93:13024–9.
17. Kaufman TC, Lewis R, Waimakoto B. Cytogenetic analysis of chromosome
3 in Drosophila melanogaster: the homeotic gene complex in polynute
chromosome interval 84a-B. Genetics. 1980;94:115–33.
18. Duncan I. The bithorax complex. Annu Rev Genet. 1987;21:285–319.

19. Yasukochi Y, Ashakumary LA, Wu C, Yoshido A, Nohata J, Mita K, Sahara K. Organization of the Hox gene cluster of the silkworm, Bombyx mori: a split of the Hox cluster in a non-Drosophila insect. Dev Genes Evol. 2004;214:606–14.

20. Chai C-L, Zhang Z, Huang F-F, Wang X-Y, Yu Q-Y, Liu B-B, Tian X, Q Y, Lu C, Xiang Z-H. Insect biochemistry and molecular biology. Insect Biochem Mol Biol. 2008;38:1111–20.

21. Negre B, Ruiz A. HOM-C evolution in Drosophila: Is there a need for Hox gene clustering? Trends Genet. 2007;23:55–9.

22. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276:565–70.

23. Chipman AD, Ferrier DEK, Brena C, Qu J, Hughes DST, Schröder R, Torres-Lengsfeld J, Almeida FC, Gilbert DS, Wang J. Gene clustering? Trends Genet. 2007;23:55–9.

24. Gibson G. Evolution: hox genes and the cellared wine principle. Curr Biol. 2004;14:R139–40.

25. Alonso CR, Maxton-Kuechenmeister J, Akam M. Evolution of Ftz protein homology of arthropod segments. Evol Dev. 1999;1:77–89.

26. Stauber M, Prell A, Schmidt-Ott UU. The anterior determinant of the Tribolium homeotic complex: insights into mechanisms constraining insect Hox clusters. Dev Genes Evol. 2008;218:127–39.

27. Warren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, et al. The Nasonia Genome Working Group, Beukeboom LW, Desplan C, Elsk CG, Grimmelikhuijzen CJP, Kitts P, Lynch JA, Murphy T, Oliveira EDCG, Smith CD, Zande LVD, Worley KC, Zdobnov EM, Aerts M, Alberts S, Anaya VH, Anzola JM, Barchuk AR, Behura SK, Bera AN, Berenbaum MR, Bertossa BC, Bitondi MKG, Bordenstein SR, et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science. 2010;327:343–8.

28. Webers A, Anzola JM, Evans JD, Reid JG, Reese JT, Childs KL, Zdobnov EM, Samanta MP, Miller J, Elsk CG. Computational and transcriptional evidence for microRNAs in the honey bee genome. Genome Biol. 2007;8:R97.

29. Leidos D, Paré A, McGinnis W. Three Drosophila Hox complex microRNAs do not have major effects on expression of evolutionarily conserved Hox gene targets during embryogenesis. PLoS ONE. 2012;7:e31365.

30. Averof M, Akam M. Hox genes and the diversification of insect and crustacean body plans. Dev Genes Evol. 2000;210:1840–50.

31. Manuel M, Jager M, Murienne J, Claibout C, Guyader HL. Hox genes in sea spiders (Pycnogonida) and the homology of arthropod head segments. Dev Genes Evol. 2006;216:481–91.

32. Gibert JM, Mouchel-Vielh E, Quilène E, Deutsch JS. Barnacle duplicate engrailed genes: divergent expression patterns and evidence for a vestigial abdomen. Evol Dev. 2002;4:194–202.

33. Blin M, Rabet N, Deutsch JS, Mouchel-Vielh E. Possible implication of Hox genes Abdominal-B and abdominal-A in the specification of genital and abdominal segments in crustaceans. Dev Genes Evol. 2003;213:90–6.

34. Mouchel-Vielh E, Rigolot C, Gibert JM, Deutsch JS. Molecules and the body plan: the Hox genes of Cirripedia (Crustacea). Mol Phylogenet Evol. 1998;9:382–9.

35. Averof M, Akam M. Hox genes in crustaceans. Nat Genet. 1995;37:420–3.

36. Averof M, Patel NH. Crustacean appendage evolution associated with changes in Hox gene expression. Nature. 1997;388:682–6.

37. Pavlopoulos A, Akam M. Hox gene Ultraabdominal regulates distinct sets of target genes at successive stages of Drosophila haltere morphogenesis. Proc Natl Acad Sci USA. 2011;108:2855–60.

38. Vachon G, Cohen B, Pfeifle C, McGuffin ME, Botas J, Cohen SM. Homologous genes of the Bithorax complex repress limb development in the abdomen of the Drosophila embryo through the target gene Distal-less. Cell. 1995;81:437–50.

39. Sanchez-Herrero E. Hox targets and cellular functions. Scientifica. 2013;2013:738257.
61. Wang X, Zhang J, Li F, Gu J, He T, Zhang X, Li Y. MicroRNA identification based on sequence and structure alignment. Bioinformatics. 2005;21:3610–4.

62. Ruan M-B, Zhao Y-T, Meng Z-H, Wang X-J, Yang W-C. Conserved microRNA expression in Gossypium hirsutum through small RNA sequencing. Genom. 2009;94:263–8.

63. Ikeda KT, Hirosy C, Hiraoka K, Noro E, Fujishima K, Tomita M, Kanai A. Identification, expression, and molecular evolution of microRNAs in the "living fossil" Triops cancriformis (tadpole shrimp). RNA. 2015;21:230–42.

64. Jiang J, Lv M, Liang Y, Ma Z, Cao J. Identification of novel and conserved miRNAs involved in pollen development in Brassica campestris ssp. chinensis s by high-throughput sequencing and degradome analysis. BMC Genom. 2014;15:1.

65. Gruber AR, Lorenz B, Bernhart SH, Neubock R, Hofacker IL. The Vienna RNA web site. Nucleic Acids Res. 2008;36(Web Server issue):W70–4.

66. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

67. Ødegaard F. How many species of arthropods? Erwin’s estimate revised. Curr. Biol. 1999;9:165–180.

68. Peterson MD, Rogers BT, Popadic A, Kaufman TC. The embryonic fate of arthropod signal transduction pathways. Dev Genes Evol. 2003;213:127–41.

69. Karch F, Bender W, Witeczek J, Verdon L, Navajas M, Nagy LM. Evidence for the plasticity of arthropod signal transduction pathways. Dev Genes Evol. 2015;225:61–70.

70. Pace RM, Eskridge PC, Grbic M, Nagy LM. Evidence for the plasticity of arthropod signal transduction pathways. Dev Genes Evol. 2014;224:209–22.

71. Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu Z, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Ronfard P, Zhu J, Sankarapandian S, Hogenkamp DG, Amedeo P, Arnesen E, Pettersen E, Bidwell S, Edler J, Bjerregaard MN, Griffen RN, Costas J, Coy MR, Grabherr M, Jiang C, Crawford M, et al. Genome-wide analysis of homeobox genes from Mesembryanthemum crystallinum reveals Hox gene duplication in scorpioid. Insect Biochem Mol Biol. 2015;61:25–33.

72. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PE, Altoen M, Baeckemeyer B, Blancke A, Boekhout T, Bootsma J, Cui W, Dettmann D, Dietrich K, et al. Phylogenomic investigation of the Chelicerata: a tetrastron SNP data sets. Front Zool. 2015;12:e10820.

73. Dunlop JA, Selden PA. Calibrating the chelicerate clock: a paleontological and molecular clock for the early history of animals. Curr. Biol. 2011;21:248–53.

74. Young T, Rowland JE, van de Graaff W, Duluc I, Freund J-N, Beck F, Mallo M, Deschamps C, Jox D and Hox genes differentially regulate posterior axial growth in mammalian embryos. Dev Cell. 2009;17:316–26.

75. Grbic M, Khila A, Lee K-Z, Bjelica A, Kockdon EM, Lobo NF, Campbell KS, Brown SE, Ronfard P, Zhu J, Sankarapandian S, Hogenkamp DG, Amedeo P, Arnesen E, Pettersen E, Bidwell S, Edler J, Bjerregaard MN, Griffen RN, Costas J, Coy MR, Grabherr M, Jiang C, Crawford M, et al. Genome-wide analysis of homeobox genes from Mesembryanthemum crystallinum reveals Hox gene duplication in scorpioid. Insect Biochem Mol Biol. 2015;61:25–33.

76. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PE, Altoen M, Baeckemeyer B, Blancke A, Boekhout T, Bootsma J, Cui W, Dettmann D, Dietrich K, et al. Phylogenomic investigation of the Chelicerata: a tetrastron SNP data sets. Front Zool. 2015;12:e10820.