Origins of Catalyst Inhibition in the Manganese-Catalysed Oxidation of Lignin Model Compounds with H2O2

Barbieri, Alessia; Kasper, Johann B.; Mecozzi, Francesco; Lanzalunga, Osvaldo; Browne, Wesley R.

Published in:
Chemsuschem

DOI:
10.1002/cssc.201900689

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Barbieri, A., Kasper, J. B., Mecozzi, F., Lanzalunga, O., & Browne, W. R. (2019). Origins of Catalyst Inhibition in the Manganese-Catalysed Oxidation of Lignin Model Compounds with H2O2. Chemsuschem, 12(13), 3126-3133. https://doi.org/10.1002/cssc.201900689

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-07-2020
Origins of Catalyst Inhibition in the Manganese-Catalysed Oxidation of Lignin Model Compounds with H₂O₂

Alessia Barbieri, [a] Johann B. Kasper,[b] Francesco Mecozzi,[b] Osvaldo Lanzalunga,[a] and Wesley R. Browne*[b]

The upgrading of complex bio-renewable feedstock, such as lignocellulose, through depolymerisation benefits from the selective reactions at key functional groups. Applying homogeneous catalysts developed for selective organic oxidative transformations to complex feedstock such as lignin is challenged by the presence of interfering components. The selection of appropriate model compounds is essential in applying new catalytic systems and identifying such interferences. Here, it was shown by using as an example the oxidation of a model substrate containing a β-O-4 linkage with H₂O₂ and an in situ-prepared manganese-based catalyst, capable of efficient oxidation of benzylc alcohols, that interference from compounds liberated during the reaction can prevent its application to lignocellulose depolymerisation.

Introduction

Lignin is one of the most abundant biopolymers on earth. It is a heterogeneous tri-dimensional phenolic polymer built from phenyl propane units linked by various groups.[1–3] In combination with cellulose and hemicellulose, it forms cellulose fibres walls that impart rigidity to trees and protection from oxidative degradation caused by microorganisms.[5] The structural complexity of lignin is a key aspect of its functionality (protection for plants) but presents a challenge to its use as a source of chemicals and complicates processes such as cellulose-based ethanol production.[5–8] Its separation from the carbohydrate components in pulp and paper manufacturing is challenging and energy-intensive.[9–11] Efficient, economic and sustainable depolymerisation pathways that enable liberation of cellulose from lignocellulosic materials have been a major focus over the last decades.[2] The β-O-4 linkage (Figure 1) is the most abundant (∼55%) linkage in lignin polymers.[2,3] Hence, the oxidation of the functional groups adjacent to this linkage and particularly at benzylic positions represents an attractive starting point for lignin depolymerisation.[1–2,12–15]

Selective oxidative depolymerisation of lignin with homogeneous catalysts is a promising approach in terms of energy efficiency and offers opportunities to make use of a wide range of ligands and complexes already available for small-molecule oxidation. Given the scale of the process, catalysts based on first-row transition metals together with simple ligands are especially relevant. A further consideration is to distinguish between hard and soft wood pulp and especially the relative abundance of chemical linkages, with softwood lignin containing primarily coniferyl alcohol-based components and hardwood a large number of components from sinapyl alcohol.[16] Furthermore, the atom-economic terminal oxidants O₂ and H₂O₂ are favoured owing to their non-persistent toxicity and environmental impact.

Biomimetic metalloporphyrin catalysts, functionalized with halogens and sulfonate groups[18–21] as well as Fe-porphyrins,[12] Co(salen)[15,22–24] and polyoxometalate-based compounds[9–11,25–28] have been applied in oxidation catalysis over the last decades, including in delignification. In contrast, non-porphyrin-based metal complexes have drawn only modest attention, for example, with the ligands tetra-amido macrocycle (TAML), 1,4,7-trimethyl-1,4,7-triazacyclononane (Me₃TACN) and 1,2-bis-(4,7-dimethyl-1,4,7-triazacyclonon-1-yl)-ethane (DTNE).[29] Nevertheless, catalysts such as [([Me₃TACN]MnIV][µ-O])₃(ClO₄)₂

Figure 1. β-O-4 linkage (red) in lignin and a lignin model compound (1) bearing the characteristic β-O-4 linkage and a guaiacol motif.[36,37]
manganese is explored; however, in contrast to most non-heme catalysts, especially non-heme iron complexes, for which complexion leads to a loss of catalytic activity, inhibition in the MnII/PCA/butanedione system is shown to be dependent on inhibitor concentration as well as time. The conclusions reached hold implications for the application of other transition-metal-based complexes and especially for understanding catalyst inhibition mechanisms.

Results and Discussion

The oxidation of 1-phenyl-1,2-ethanediol and 1 with \(\text{H}_2\text{O}_2 \) was studied here by using conditions optimized earlier for the oxidation of secondary aliphatic and benzyl alcohol. With the in situ-prepared manganese catalyst (Scheme 1), 1-phenyl-1,2-ethanediol underwent 60% conversion to the corresponding \(\alpha \)-hydroxyketone, as reported previously. Surprisingly, only minor (<10%) conversion of 1 was achieved under these conditions (Figure S1 in the Supporting Information). The low conversion was not owing to loss of \(\text{H}_2\text{O}_2 \) because it remained in solution unreacted. Notably, the conversion to ketone product, that is, the turnover number was approximately 100 regardless of whether the initial concentration of 1 was 0.05 or 0.5 m (Figure S1 in the Supporting Information), which is consistent with the zero-order dependence on the substrate of the reaction observed previously.

Inhibition of manganese catalyst by 1 and phenols

The origin of the lack of conversion was explored through the effect of 1 on the conversion of 1-phenyl-1,2-ethanediol (Figure 2) to the corresponding \(\alpha \)-hydroxyketone. The conversion decreased from 60 to 0% as the concentration of 1 increased, with the most pronounced decrease between 5 and 20 mol% of 1 (with respect to 1-phenyl-1,2-ethanediol). Notably, the duration over which oxidation of 1-phenyl-1,2-ethanediol was observed (with <50 mol% 1) was unaffected, but instead the rate decreased. Furthermore, the \(\text{H}_2\text{O}_2 \) was consumed to a concomitantly lesser extent, excluding that wasteful degradation of \(\text{H}_2\text{O}_2 \) is responsible for the decrease in conversion (Figure S2 in the Supporting Information).

The oxidation rate of 1-phenyl-1,2-ethanediol was lower if the diol was added 5 min after addition of \(\text{H}_2\text{O}_2 \) compared with the rate if it was present before addition of \(\text{H}_2\text{O}_2 \), confirming that the effect on catalytic activity was owing to the presence of 1. The difference between 1-phenyl-1,2-ethanediol and 1 lies in the guaiacol moiety of the latter, and indeed addition of 5 mol% of guaiacol was sufficient to see a complete suppression of the catalytic oxidation of 1-phenyl-1,2-ethanediol (Figure 3). These data indicate that guaiacol or simple phenolic compounds are responsible for the loss in catalytic activity, as confirmed by the inhibition observed with several mono and di-oxygenated aromatic compounds. The inhibition by 1,2-dimethoxybenzene was much less pronounced than the inhibition observed with phenol and especially ortho-di-hydroxylated catechol (which showed complete inhibition), indicating that
alcohol groups available for coordination are important (Figure 3).

Notably, however, a tenfold increase in [Mn II] (to 0.5 mM) resulted in inhibition only by catechol, and even so after a short delay the reaction proceeded at the same rate as without inhibitor (Figure 4, see below).

Reaction of Mn II with catechol in absence of H 2O 2

The reaction of catechol with the manganese catalyst prior to the addition of H 2O 2 was studied by (resonance) Raman, UV/Vis absorption spectroscopy and cyclic voltammetry. Addition of catechol [in a hundredfold excess with respect to Mn(ClO 4) 2] to a mixture of Mn(ClO 4) 2, PCA and 1-phenyl-1,2-ethanediol in CH 3CN resulted in the appearance of an absorption band at 600 nm, reaching a maximum absorbance within 2–3 min. An additional absorption band at 410 nm was noticeable after 6 min, but in contrast to the band at 600 nm, the 410 nm band continued to increase in absorbance over 1 h (Figure 5a). With a tenfold increase in [Mn II] (10:1 ratio of catechol/Mn II) the maximum absorbance at 600 nm also increased tenfold (Figure 5b); however, although the band at 410 nm appeared more rapidly and with greater absorbance, it did not increase more than a few fold over that with the lower concentration of Mn II (Figure 5b).

These bands were not observed in the absence of 1-phenyl-1,2-ethanediol or catechol (Figures S3 and S4 in the Supporting Information).
Information). Surprisingly, although it was present in a large excess, the relative amount of 1-phenyl-1,2-ethanediol also had a significant effect on the two absorption bands (Figure S5 in the Supporting Information). The maximum absorbances at 410 and 600 nm increased with the concentration of 1-phenyl-1,2-ethanediol until 0.5 M, and thereafter the changes were less pronounced. The large excess needed indicates that complexation to manganese by the diol is not significant but instead the relative basicity of the solution is important (see below).

The rate and extent of formation of the absorption band at 600 nm was unaffected by the absence of O₂, in contrast to the absorption band at 410 nm, which increased more rapidly with O₂-purged solutions and hardly appeared in N₂-purged solutions (i.e., only residual oxygen reacted, Figure 6). Notably, the rate of increase in absorption at 620 nm was similar regardless of the concentration of O₂, but the induction period observed in air-equilibrated solutions was absent in O₂-purged solutions, indicating that oxygen plays the role of initiator. The presence of both catechol and 1-phenyl-1,2-ethanediol (in large excess) was essential for the appearance of both bands. Aliphatic diols such as glycerol did not show similar effects.

Raman spectra recorded at \(\lambda_{\text{exc}} = 632.8 \) nm (i.e., in resonance with the 600 nm absorption band) show the appearance of bands at 624, 1264, 1324, 1474 and 1569 cm\(^{-1}\) concomitant with the changes in absorbance at 600 nm (Figure 7). The bands at 1264 and 1474 cm\(^{-1}\) are characteristic of the catecholate C–O stretching modes, and the absorbance at 600 nm is typical of LMCT (ligand-to-metal charge transfer) bands of Mn⁴⁺ catecholate species. The absorbance reached \((\approx 0.45, \text{ Figure 5b})\) is consistent with the molar absorptivity of \([\text{Mn}^{IV}(\text{catecholato})]^{2−}(4500 \text{ M}^{-1} \text{cm}^{-1})\).\(^{45–50}\) These data indicate that in the first 2–3 minutes of the reaction the deep blue \([\text{Mn}^{IV}(\text{catecholato})]^{2−}\) was formed.

Raman spectroscopy at \(\lambda_{\text{exc}} = 355 \) nm (i.e., resonant with the 410 nm absorption band), showed the appearance of the bands at 795, 1235, 1550 and 1665 cm\(^{-1}\), after a delay of ap-
approximately 6 min (Figure 8) that was consistent with the lag time observed by UV/Vis spectroscopy (Figure 5a). Moreover, the change in intensity of the Raman bands at 1550 and 1665 cm\(^{-1}\) over time tracked the change in absorbance at 410 nm. The Raman bands at 1550 and 1665 cm\(^{-1}\) are characteristic of quinone C=O stretching modes and may indicate the formation of a quinone dimer.\(^{[51–53]}\) Addition of catechol (1 mol\%) to 1-phenyl-1,2-ethanediol in the absence of Mn(ClO\(_4\))\(_2\) resulted in the appearance of an absorption band at 410 nm over 60 min together with an unassigned band at 340 nm (Figure S7 in the Supporting Information) that was absent in the presence of Mn(ClO\(_4\))\(_2\). The maximum absorbance reached, however, was much less than in the presence of Mn(ClO\(_4\))\(_2\).

Influence of reaction components on redox chemistry and UV/Vis spectroscopy of catechol

The cyclic voltammetry of catechol in CH\(_3\)CN showed an expected oxidation wave at approximately 1.0 V and reduction of the dimer formed by radical coupling at 0.5 V. Addition of 1-phenyl-1,2-ethanediol, which is itself redox inactive, had a pronounced effect on the cyclic voltammetry of catechol with an almost 1 V shift in the redox potential of catechol towards negative potentials (Figure 9). The addition of Mn\(^{II}\) salts and PCA at the same concentrations as present under catalytic conditions did not affect the voltammetry significantly. These changes indicate that the diol facilitates oxidation of the catechol by Mn\(^{II}\) and O\(_2\) simply as a proton acceptor (see below). Indeed, the preparation of the complex Mn\(^{IV}\)(catecholato)\(_3\)\(^{2-}\) requires addition of a base.\(^{[45–50]}\)

The addition of butanedione, a major reaction component typically present in 25 mol\%, immediately induced a reduction of both the putative Mn\(^{IV}\)(catecholato)\(_3\) species (absorbing at 600 nm) and the species responsible for the absorption band at 410 nm. However, the absorbance at 600 nm reappeared eventually after addition of butanedione (Figure 10a, see the absorbance at 600 nm vs. time). The open-circuit potential in time (Figure S8 in the Supporting Information) as well as the cyclic voltammetry (Figure S9 in the Supporting Information) indicated that the recovery of the Mn\(^{IV}\) complex was inhibited by the lower redox potential of the solution, highlighted by a shift in the oxidation potential by 0.5 V. The addition of AcOH, which was formed in situ rapidly through oxidation of butanedione under reaction conditions, resulted in immediate disappearance of the bands at 410 and 600 nm, with the former band largely obscured by the butanedione present. These changes are consistent with the positive shift in the oxidation potential of the catechol (Figure S9 in the Supporting Information) and inhibition of complexation to manganese expected upon protonation of catechol.
Effect of catechol on induction period in the catalysed oxidation of 1-phenyl-1,2-ethanediol

Although UV/Vis absorption spectroscopy indicated formation of catechol oxidation products and the Mn IV(catecholate)3 species, these species underwent reduction in the presence of butanedione and AcOH. However, the relation between inhibition period and catechol concentration (Figure 11) indicated that the oxidation of catechol proceeded under reaction conditions. If the concentration of catechol was close (0.05 and 0.2 mol % with respect to the diol or 5 and 20 equiv. with respect to Mn II) to that of Mn II, the oxidation of 1-phenyl-1,2-ethanediol with H2O2 proceeded smoothly. If the catechol concentration exceeded that of Mn II (40–60 equiv.), inhibition was observed regardless of initial catechol concentration (Figure 11). Above 60–100 equiv. of catechol with respect to manganese, conversion was not seen even over several hours (Figure 11), and there was also negligible consumption of H2O2. Hence, although we cannot be certain that the duration of the inhibition period is related to the rate of catechol oxidation, there is a clear correlation indicating that this is the case.

Addition of catechol (0.5 mol%) 10 min after addition of H2O2 resulted in a halt of the oxidation of 1-phenyl-1,2-ethanediol, with the same induction period (50 min) as observed if catechol and 1-phenyl-1,2-ethanediol were present before addition of H2O2 (Figure 12). Similarly, if 1-phenyl-1,2-ethanediol was added 5 min after addition of H2O2 (Figure 12), the induction period was also approximately 50 min, indicating that regardless of the addition sequence of reagents, the same lag time was observed.

Figure 10. UV/Vis absorption spectrum (2 mm path length) of Mn(ClO4)2·6H2O (0.5 mm), PCA (2.5 mm) and 1-phenyl-1,2-ethanediol (0.5 mm) in CH3CN (black), (i) after addition of catechol (5 mm) (i), immediately after addition of 0.5 equiv. butanedione at 3.2 min (ii), subsequent changes (iii) and after addition of acetic acid at 18 min (iv); (b) with addition of butanedione and AcOH 39 and 46 min after addition of catechol, respectively. The absorbances at 600 and 410 nm over time are shown as insets, respectively.

Figure 11. Oxidation of 1-phenyl-1,2-ethanediol (0.5 mm) in the presence of Mn(ClO4)2·6H2O: 0.25 mm (black), 1 mm (red), 2.0 mm (blue), 2.5 mm (green), 3.0 mm (pink) and 5.0 mm catechol (orange); The formation of 2-hydroxyacetophenone was followed through the Raman band at 1692 cm⁻¹ (λex = 785 nm). See Scheme 1 for conditions and Figure S10 in the Supporting Information for changes at 864 (H2O2) and 842 cm⁻¹ (substrate).

Figure 12. Oxidation of 1-phenyl-1,2-ethanediol (0.5 mm) in the presence of catechol and 1-phenyl-1,2-ethanediol present before addition of H2O2 (red), catechol added 10 min after addition of 1-phenyl-1,2-ethanediol and H2O2 (black), 1-phenyl-1,2-ethanediol added 5 min after addition of catechol and H2O2 (blue). The formation of the ketone product was determined from the intensity of the band at 1692 cm⁻¹ in the Raman spectrum (λex = 785 nm) of the reaction mixture. See Scheme 1 for conditions and Figure S11 in the Supporting Information for changes at 864 (H2O2) and 842 cm⁻¹ (substrate).
Mechanistic considerations

Although the oxidation of 1 to its corresponding ketone proceeded with a turnover number of approximately 100, it is clear that inhibition by a species produced during oxidation occurred. The inhibition in the oxidation of 1-phenyl-1,2-ethanediol in the presence of 1 confirmed this conclusion. In the first instance, the release of guaiacol from 1 was a likely candidate as inhibitor. Indeed, inhibition by catechol and a variety of phenolic compounds was observed. This inhibition is of relevance to the use of this catalytic system in the oxidation of lignin because such motifs are abundant. UV/Vis and resonance Raman spectroscopic data show that catechol formed the known blue complex \([\text{Mn}^{IV}(\text{catecholato})_2]^{2+}\) in the presence of 1-phenyl-1,2-ethanediol, and under aerobic conditions the catechol underwent oxidation manifested in the absorption band at 410 nm. The presence of 1-phenyl-1,2-ethanediol was essential to the observation of this species owing to the need for a proton acceptor; it should be noted that the formation of the \(\text{Mn}^{IV}\) complex required the addition of a base. In the presence of butanedione and/or acetic acid, the \(\text{Mn}^{IV}\) complex rapidly disappeared, presumably owing to reduction to the relatively colourless \(\text{Mn}^{II}\) or \(\text{Mn}^{III}\) state. These changes are consistent with the effect of alcohol, butanedione and acetic acid on the cyclic voltammetry of catechol in \(\text{CH}_3\text{CN}\), specifically the potential for catechol oxidation. Hence, although the formation of catechol manganese(IV) complexes can occur, the formation of similar complexes under reaction conditions can only be speculated upon. However, the inhibition of the catalyst under reaction conditions by catechol depended on its concentration relative to the concentration of manganese ions. If near-stoichiometric amounts were used the inhibition was apparent. After a lag time that depended on initial catechol concentration (relative to manganese), the oxidation of 1-phenyl-1,2-ethanediol proceeded with the same rate as in the absence of catechol. Hence, phenolic compounds act as sacrificial inhibitors rather than permanently deactivate the catalyst.

The inhibition of the catalyst in the oxidation of 1 is unlikely to be owing to oxidation products of 1 such as mandelic acid because the concentrations of these compounds under reaction conditions were insufficient to inhibit reactivity (Figure S12 in the Supporting Information); nor is it caused by guaiacol residue from the synthesis of 1 because it is not present in sufficient amounts (determined by \(^1\text{H NMR spectroscopy}) to cause the inhibition observed in the oxidation of 1-phenyl-1,2-ethanediol in the presence of 1. The formation of guaiacol from 1, for example, by one-electron oxidation, is reasonable but owing to its subsequent oxidation under reaction conditions it is not possible to confirm its presence under reaction conditions.

Conclusions

Spectroscopic analysis confirms the tendency of phenolic compounds such as catechol to chelate manganese and to undergo oxidation in the presence of aromatic diols such as 1-phenyl-1,2-ethanediol. Under reaction conditions, catechol can inhibit the activity of the catalyst through chelation but oxidation eventually “releases” the manganese ions to reform the catalytic system. The presence of such species in lignin therefore is likely to impact the effectiveness of the catalytic system and increases the concentration of manganese required for the oxidative degradation of the polymer. However, the formation of other potentially chelating compounds (such as mandelic acid derivatives) during the oxidation is likely to have a greater impact because these are less susceptible to removal by further oxidation. These results emphasise the challenge in translating results from reactions with model compounds to the complex mixtures of compounds encountered with biorenewable resources. Indeed, the success of robust complexes such as \([\text{Me}_5\text{DTNE}\text{Mn}^{IV}(\mu-O)]_2\text{ClO}_4_2\) \([\text{DTNE}=1,2\text{-bis}(4,7\text{-dimethyl-1,4,7-triazacyclonon-1-yl})\text{-ethane}]\) and \([\text{Me}_5\text{TACN}\text{Mn}^{IV}(\mu-O)]_2\text{PF}_6_2\) \([\text{Me}_5\text{TACN}=1,4,7\text{-trimethyl-1,4,7-triazacyclonanone}]\) used in soft-wood oxidation highlights the need to build similar robust catalysts for oxidation of \(\beta\)-O-4 linkages in lignin. In the present study, we have explored the use of a manganese-based catalyst that was prepared in situ. Although simple and economic, the lability of the ligand (pyridine-2-carboxylic acid) as well as the low concentrations used mean that even low concentrations of other potential ligands can bind the manganese ions and inhibit oxidation. Hence, the development of polydentate ligand-based catalysts is ultimately necessary in applications involving complex mixtures such as lignin.

Experimental Section

All reagents were obtained from commercial sources and used as received unless stated otherwise. Solvents were of HPLC grade or better. 1 was prepared as reported elsewhere.\(^{37}\) Oxidation catalysis: Stock solutions containing \(\text{Mn(ClO}_4)_2\cdot6\text{H}_2\text{O}\) (0.1 \(\mu\)mol, 0.01 \(\mu\)mol \%) and PCA (5 \(\mu\)mol, 0.5 \(\mu\)mol \%) were mixed at room temperature for 20 min. The substrate (1 mmol, 0.5 \(\mu\)mol), \(\text{NaOAc}\) (10 \(\mu\)mol, 1 \(\mu\)mol \%) in water, butanedione (0.5 \(\mu\)mol, 0.5 equiv.) and acetic acid (0.2 mmol, 0.2 equiv.) were added to give a final volume of 2 mL in \(\text{CH}_3\text{CN}\). After approximately 5 min, \(\text{H}_2\text{O}_2\) (3 equiv., 50 wt \%) in water was added. Deviations from this procedure are noted appropriately in the main text. Reaction progress was determined in situ by Raman spectroscopy at \(\lambda_{os}=785\) nm primarily through monitoring changes in the intensity of the O–O stretching band of \(\text{H}_2\text{O}_2\) at 864 cm\(^{-1}\). The

C=O stretching band of 2-hydroxy-1-phenylethanone at 1692 cm\(^{-1}\) and 1230 cm\(^{-1}\) and the C=O stretching band of 1-phenyl-1,2-ethanediol at 1282 cm\(^{-1}\). After 1 h, acetophenone or 1,2-dichloroethane (0.5 mmol, 0.5 equiv) was added as internal standard, and an aliquot of the reaction mixture was diluted in \(\text{C}_2\text{H}_5\text{CN}\) prior to analysis by \(^1\text{H NMR spectroscopy (400 MHz). In the case of competition experiments, the same procedure was followed, and the addition sequence of the reagents is noted in the main text. Raman spectra were recorded using a PerkinElmer RamanFlex fiber optic coupled spectrometer with samples in 1 cm path length quartz cuvettes. \(^1\text{H NMR (400 MHz) spectra were recorded on a Bruker Avance spectrometer. Cyclic voltammograms were recorded by using a CHInstruments CHI760 bipotentiostat with a glassy carbon working electrode, an Ag/AgCl reference electrode and a platinum counter electrode. The Bu_4NPF_6 (0.1 mM) as supporting electrolyte did not interfere with the catalytic activity of the...}
system. UV/Vis absorption spectra were recorded by using a Jena-Analytik Specord 600 spectrophotometer. Raman spectra were recorded at 355 and 632.8 nm by using custom-built Raman spectrometers. See the Supporting Information for details.

Acknowledgements

Financial support was provided by The Netherlands Ministry of Education, Culture and Science (Gravity Program 024.001.035 to J.B.K. and W.R.B.) and COST association COST action CM1305.

Conflict of interest

The authors declare no conflict of interest.

Keywords: catalysis · inhibition · lignin · manganese · oxidation

[1] Z. Zhang, J. Song, B. Han, Chem. Rev. 2017, 117, 6834–6880.
[2] J. Zakzeski, P. C. A. Brujinicin, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 2010, 110, 3552–3599.
[3] F. S. Chaker, A. J. Ragauskas, Ind. Crops Prod. 2004, 20, 131–141.
[4] S. R. Ritter, Chem. Eng. News 2008, 86, 15.
[5] L. R. Lynd, J. H. Cushman, R. J. Nichols, C. E. Wyman, Science 2007, 318, 1255–1259.
[6] S. H. Mood, A. H. Golfeshan, M. Tabatabaei, G. S. Jouzani, G. H. Najafi, M. Gholami, M. Ardjmand, Energy, 2014, 55, 4457–4466.
[7] F. Cui, T. Wijesekera, D. Dolphin, R. Farrell, P. Skerker, Bioresour. Technol. 2018, 270, 38–45.
[8] F. Cui, C.-L. Chen, J. S. Gratzl, R. Patt, J. Mol. Catal. A 2003, 239, 157–168.
[9] S. J. Dong, J. G. Harvey, P. Saiasah, D. Pipjoer, J. W. de Boer, P. Alsters, B. L. Feringa, W. R. Browne, ChemSusChem 2013, 6, 1774–1778.
[10] J. R. Hartman, B. M. Foxman, S. R. Cooper, Inorg. Chim. Acta, 2010, 36, 2494–2502.
[11] J. W. de Boer, R. Hoen, C. Smit, A. Meetsma, R. Hage, R. P. van Summeren, P. L. Alsters, B. L. Feringa, Dalton. Trans. 2010, 39, 10375–10381.
[12] Y. Cui, C.-L. Chen, J. S. Gratzl, P. Skerker, Bioresour. Technol. 2007, 98, 1322–1327.
[13] J. W. de Boer, R. Hoen, C. Smit, J. Wood Chem. Technol. 2003, 25, 1932–1941.
[14] Y. Cui, C.-L. Chen, J. S. Gratzl, P. Skerker, J. Mol. Catal. A 2009, 144, 411–417.
[15] K. Kervinen, H. Korpi, J. G. Mesu, F. Soulimani, T. Repo, B. Rieger, M. Leskela, B. M. Weckhuysen, Eur. J. Inorg. Chem. 2005, 2591–2599.
[16] A. Gaspar, J. A. F. Gamelas, D. V. Evtuguin, C. P. Neto, Green Chem. 2007, 9, 717.
[17] Y. S. Kim, H. M. Chang, J. F. Kadla, J. Wood Chem. Technol. 2007, 27, 225–241.
[18] T. Voitl, P. R. von Rohr, ChemSusChem 2008, 1, 763–769.
[19] V. Alves, E. Capanaem, C.-L. Chen, J. Gratzl, J. Mol. Catal. A 2003, 206, 37–51.
[20] C. Crestini, R. Saladino, P. Tagliatesta, T. Boschi, Bioorg. Med. Chem. 2005, 13, 4711–4721.
[21] G. M. Keser/C252, G. T. Balogh, S. Bokotey, G. /C141rvai, B. Bert/C243k, ChemSusChem 2013, 6, 2622–2632.
[22] J. A. Reingold, S. U. Son, S. B. Kim, C. A. Dullaghan, M. Oh, P. C. Frake, G. B. Carpenter, D. A. Sweigart, Dalton Trans. 2006, 2385–2398.
[23] M. Oh, G. B. Carpenter, D. A. Sweigart, Organometallics 2002, 21, 1290–1295.
[24] J. M. Nichols, L. M. Bishop, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2010, 132, 12554–12555.
Investigating inhibition: Upgrading lignocellulose by depolymerisation needs selective functional-group transformation. A homogeneous catalyst based on Mn\(^{II}\) and pyridine-2-carboxylic acid can oxidise model compounds bearing the β-O-4 linkage with H\(_2\)O\(_2\) selectively but is inhibited by catechol-based compounds present in lignocellulose through chelation, preventing application to lignocellulose depolymerisation.