Group-Theoretical Classification of BPS States
in $D = 4$ Conformal Supersymmetry: the Case of $1/N$-BPS

V. K. Dobrev
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria
e-mail: dobrev@inrne.bas.bg

Abstract—In an earlier paper we gave the complete group-theoretical classification of BPS states of the
N-extended $D = 4$ conformal superalgebras $su(2, 2/N)$, but not all interesting cases were given in detail. In
the present paper we spell out the interesting case of $1/N$-BPS and possibly protected states.

DOI: 10.1134/S1063779612050103

1. INTRODUCTION

Recently, superconformal field theories in various
dimensions are attracting more interest, especially in
view of their applications in string theory. Thus, the
classification of the UIRs of the conformal superalge-
bras is of great importance. For some time such classi-
fication was known only for the $D = 4$ superconfor-
mal algebras $su(2, 2/1)$ [1] and $su(2, 2/N)$ for arbitrary N
[2], (see also [3, 4]). Then, more progress was made
with the classification for $D = 3$ (for even N), $D = 5,$
and $D = 6$ (for $N = 1, 2$) in [5] (some results being con-
junctural), then for the $D = 6$ case (for arbitrary N) was
finalized in [6]. Finally, the cases $D = 9, 10, 11$ were
treated by finding the UIRs of $osp(1/2n)$, [7].

After we have known the UIRs the next problem to
address is to find their characters since these give the
structure of the UIRs. Fortunately, most of the

dimensional irreps of the internal (or

algebra

su

D = 6 case (for arbitrary N) was
more progress was made

classification was known only for the
bras

su

s

considered.

s

Δ^+

is the positive root system

su

for $N = 4$, and r_1, \ldots, r_{N-1} are non-negative integers which are Dynkin labels of the finite-
dimensional irreps of the internal (or R) symmetry algebra $su(N)$.

We recall the root system of the complexification
G^C of G (as used in [4]). The positive root system Δ^+ is
comprised of α_{ij}, $1 \leq i \leq j \leq 4 + N$. The even positive
root system Δ^+_0 is comprised of α_{ij}, with $i, j \leq 4$ and $i,

1 The article is published in the original.

2 Plenary talk at the International Workshop “Supersymmetries and Quantum Symmetries”, Dubna, 18–23.7.2011.
the latter (odd) roots will be denoted as \(X_{i,k} \), where \(i = 1, 2, 3, 4, k = 1, \ldots, N \).

We use lowest weight Verma modules \(V^\Lambda \) over \(g^C \), where the lowest weight \(\Lambda \) is characterized by its values on the Cartan subalgebra \(\tilde{H} \) and is in 1-to-1 correspondence with the signature \(\chi \). If a Verma module \(V^\Lambda \) is irreducible then it gives the lowest weight irrep \(L_\Lambda \) with the same weight. If a Verma module \(V^\Lambda \) is reducible then it contains a maximal invariant submodule \(I^\Lambda \) and the lowest weight irrep \(L_\Lambda \) with the same weight is given by factorization: \(L_\Lambda = V^\Lambda / I^\Lambda \) [22].

There are submodules which are generated by the singular vectors related to the even simple roots [4]. These generate an even invariant submodule \(I^\Lambda_e \) present in all Verma modules that we consider and which must be factored out. Thus, instead of \(V^\Lambda \) we shall consider the factor-modules:

\[
\tilde{V}^\Lambda = V^\Lambda / I^\Lambda_e. \tag{2.2}
\]

The Verma module reducibility conditions for the \(4N \) odd positive roots of \(g^C \) were derived in [3, 4] adapting the results of Kac [22]:

\[
d = d^4_{N k} - z \delta_{N 4} \tag{2.3a}
\]

\[
d^1_{N k} = 4 - 2k + 2j_1 + z + 2m_k - 2m / N \tag{2.3b}
\]

\[
d^2_{N k} = 2 - 2k - 2j_2 + z + 2m_k - 2m / N \tag{2.3c}
\]

\[
d^3_{N k} = 2 - 2 + 2N + 2j_1 - z - 2m_k + 2m / N \tag{2.3d}
\]

\[
d_1 = d^4_{N k} - z \delta_{N 4} \tag{2.3e}
\]

\[
d^1_{N 1} = 2 + 2k - 2N + 2j_1 - z - 2m_k + 2m / N \tag{2.3f}
\]

\[
d^2_{N k} = 2k - 2N - 2j_1 - z - 2m_k + 2m / N \tag{2.3g}
\]

where in all four cases of (2.3) \(k = 1, \ldots, N, m = 0 \), and

\[
m_k = \sum_{i = 1}^{N-1} r_i, \quad m = \sum_{k = 1}^{N-1} m_k = \sum_{k = 1}^{N-1} kr_k. \tag{2.4}
\]

Note that we shall use also the quantity \(m^* \) which is conjugate to \(m \):

\[
m^* = \sum_{k = 1}^{N-1} k r_{N-k} = \sum_{k = 1}^{N-1} (N - k) r_k, \tag{2.5}
\]

\[
m + m^* = Nm_1. \tag{2.6}
\]

We need the result of [2] (cf. part (i) of the Theorem there) that the following is the complete list of lowest weight (positive energy) UIRs of \(su(2, 2) / N \):

\[
d \geq d^\Lambda_{\text{max}} = \max (d^4_{N 1}, d^4_{N N}), \tag{2.7a}
\]

\[
d = d^4_{N 1} \geq d^4_{N N}, \quad j_1 = 0, \tag{2.7b}
\]

\[
d = d^2_{N N} \geq d^2_{N 1}, \quad j_2 = 0, \tag{2.7c}
\]

\[
d = d^1_{N 1} = d^1_{N N}, \quad j_1 = j_2 = 0, \tag{2.7d}
\]

where \(d^\Lambda_{\text{max}} \) is the threshold of the continuous unitary spectrum. Note that in case (d) we have \(d = m_1, z = 2m / N - m_1 \), and that it is trivial for \(N = 1 \).

Next we note that if \(d > d^\Lambda_{\text{max}} \) the factorized Verma modules are irreducible and coincide with the UIRs \(L_\Lambda \). These UIRs are called long in the modern literature, cf., e.g., [10, 18, 23–27]. Analogously, we shall use for the cases when \(d = d^\Lambda_{\text{max}} \), i.e., (2.7a), the terminology of semi-short UIRs, introduced in [10, 23], while the cases (2.7b, 2.7c, 2.7d) are also called short UIRs, cf., e.g., [10, 18, 24–27].

Next consider in more detail the UIRs at the four distinguished reducibility points determining the UIRs list above: \(d^1_{N 1}, d^2_{N 1}, d^3_{N N}, d^4_{N N} \). We note a partial ordering of these four points:

\[
d^1_{N 1} > d^2_{N 1}, \quad d^3_{N N} > d^4_{N N}. \tag{2.8}
\]

Due to this ordering at most two of these four points may coincide.

First we consider the situations in which no two of the distinguished four points coincide. There are four such situations:

\[
a: d = d^\Lambda_{\text{max}} = d^4_{N 1} = d^4 \equiv 2 + 2j_2 + z + 2m_1 - 2m / N > d^3_{N N} \tag{2.9a}
\]

\[
b: d = d^2_{N 1} = d^4 \equiv z - 2j_2 + 2m_1 - 2m / N > d^3_{N N}, \quad j_2 = 0 \tag{2.9b}
\]

\[
c: d = d^\Lambda_{\text{max}} = d^3_{N N} \equiv d^4 \equiv 2 + 2j_1 - z + 2m / N > d^1_{N 1} \tag{2.9c}
\]

\[
d: d = d^3_{N N} = d^4 \equiv 2m / N - 2j_1 - z > d^1_{N 1}, \quad j_1 = 0, \tag{2.9d}
\]

where for future use we have introduced notations \(d^a, d^b, d^c, d^d \), the definitions including also the corresponding inequality.

We shall call these cases single-reducibility-condition (SRC) Verma modules or UIRs, depending on the context. In addition, as already stated, we use for the cases when \(d = d^\Lambda_{\text{max}}, \) i.e., (2.9a), (2.9c), the terminol-
ology of semi-short UIRs, while the cases (2.9b), (2.9d), are also called short UIRs.

The factorized Verma modules $\overline{\mathcal{V}}^\kappa$ with the unitary signatures from (2.9) have only one invariant odd submodule which has to be factorized in order to obtain the UIRs.

We consider now the four situations in which two distinguished points coincide:

\[\begin{array}{ll}
\text{ac}: d = d_{\text{max}} & (2.10a) \\
\equiv d_{ac} = 2 + j_1 + j_2 + m_1 = d_{N,1} = d_{N,N} \\
ad: d = d^{ad} & (2.10b) \\
\equiv 1 + j_2 + m_1 = d_{N,1} = d_{N,N}, \; j_1 = 0 \\
bc: d = d^{bc} & (2.10c) \\
\equiv 1 + j_2 + m_1 = d_{N,1} = d_{N,N}, \; j_2 = 0 \\
bd: d = d^{bd} & (2.10d) \\
\equiv m_1 = d_{N,1} = d_{N,N}, \; j_1 = j_2 = 0.
\end{array} \]

We shall call these double-reducibility-condition (DRC) Verma modules or UIRs. The cases in (2.10a) are semi-short UIR, while the other cases are short.

3. BPS AND POSSIBLY PROTECTED STATES

BPS states are characterized by the number κ of odd generators which annihilate them—then the corresponding state is called $\frac{\kappa}{4N}$-BPS state. The most interesting case for BPS states is when $N = 4$ since is related to super-Yang-Mills, cf., [10–18]. Also group-theoretically the case $N = 4$ is special since the $\mathfrak{u}(1)$ subalgebra carrying the quantum number τ becomes central and one can invariantly set $\tau = 0$. When $N \neq 4$ we can also set $\tau = 0$ though this does not have the same group-theoretical meaning as for $N = 4$.

In the paper [20] we gave the complete classification of the BPS states, but not all interesting cases were given in detail. In the present paper motivated by the paper [21] we spell out the interesting case of $1/N$-BPS states, i.e., the cases when $\kappa = 4$.

It is convenient to consider the case of general N while treating separately R-symmetry scalars and R-symmetry non-scalars.

3.1. R-Symmetry Scalars

We start with the simpler cases of R-symmetry scalars when $r_i = 0$ for all i, which means also that $m_1 = m = m^* = 0$.

These cases are valid also for $N = 1$, however for $N = 1$ in all cases we have $\kappa < 4$, [20].

In fact only three cases are relevant for $\kappa = 4$.

\[a \quad d = (d_{N,1}^{ad})_{|m=0} = 2 + 2j_2 + 2j_1 = (d_{N,1}^{bd})_{|m=0} = 0 + 2j_1. \]

The last inequality leads to the restriction: $j_2 > j_1$, i.e., $j_1 > 0$, and then we have:

\[\kappa = N, \quad m_1 = m = 0, \quad j_2 < 0. \]

These semi-short UIRs may be called semi-chiral since they lack half of the anti-chiral generators: $X^+_{1,4+k}, \; k = 1, \ldots, N$.

Thus, in both cases above the interesting case $\kappa = 4$ occurs only for $N = 4$, as $1/4$-BPS.

\[b \quad d = (d_{N,1}^{bc})_{|m=0} = 2 + j_1 + j_2, \quad z = j_1 - j_2, \]

\[\kappa = 2N, \; \text{if} \; j_1, j_2 > 0, \]

\[\kappa = N + 1, \; \text{if} \; j_1, j_2 = 0, \]

\[\kappa = N + 1, \; \text{if} \; j_1 > 0, j_2 > 0, \]

\[\kappa = 2, \; \text{if} \; j_1 = j_2 = 0. \]

Here, κ is the number of mixed elimination: chiral generators $X^+_{1,4+k}, \; (k = 1, \ldots, N + (1 - N)\delta_{j_1,0})$, and anti-chiral generators $X^+_{3,5+N-k}, \; (k = 1, \ldots, N + (1 - N)\delta_{j_2,0})$. Thus, in the cases when $\kappa = 2N$ the semi-short UIRs may be called semi-chiral-anti-chiral since they lack half of the chiral and half of the anti-chiral generators.

The interesting case $\kappa = 4$ occurs only for $N = 2$ as $1/2$-BPS.

3.2. R-Symmetry Non- Scalars

Below we need some additional notation. Let $N > 1$ and let i_0 be an integer such that $0 \leq i_0 \leq N - 1$, $r_i = 0$ for $i \leq i_0$, and if $i_0 \leq N - 1$ then $r_{i_0+1} > 0$. Let now i'_0 be an integer such that $0 \leq i'_0 \leq N - 1$, $r_{N-i} = 0$ for $i \leq i'_0$, and if $i'_0 < N - 1$ then $r_{N-1-i'_0} > 0$.

The interesting cases of $1/N$-BPS states, i.e., when $\kappa = 4$, are given in the following list:

\[a \quad d = d^{ad} = 2 + 2j_2 + 2m^*/N, \quad N \geq 5, \]

\[j_1 \text{ arbitrary}, \; j_2 > 0, \; i_0 = 3, \; 0 \leq i'_0 \leq N - 5, \]

\[j_2 > j_1 + \sum_{k=4}^{N-1} (2k/N - 1) r_k. \]
Here are eliminated four anti-chiral generators $X_{3,4+k}^r$, $k \leq 4$.

- \mathbf{b} $d = d^b = 2m^*/N$, $N \geq 5$,

 \[j_2 = 0, j_1 \text{ arbitrary, } i_0 = 1, 0 \leq i_0 \leq N - 3, \quad (3.4) \]

\[
\sum_{k=2}^{[N-1/2]} (1 - 2k/N) r_k > j_1 + \sum_{k=2}^{[N+1/2]} (2k/N - 1) r_k.
\]

Here are eliminated four anti-chiral generators $X_{3,5+N-k}^r$, $X_{4,5+N-k}^r$, $k \leq 2$.

- \mathbf{c} $d = d^c = 2 + j_1 + 2m/N$, $N \geq 5$,

 \[j_1 > 0, j_2 \text{ arbitrary, } i_0 = 3, 0 \leq i_0 \leq N - 5, \quad (3.5) \]

\[
\sum_{k=1}^{N-4} (1 - 2k/N) r_k.
\]

Here are eliminated four chiral generators $X_{1,4+k}^r$, $X_{2,4+k}^r$, $k \leq 4$.

- \mathbf{d} $d = d^d = 2m/N$, $N \geq 5$,

 \[j_1 = 0, j_2 \text{ arbitrary, } i_0 = 1, 0 \leq i_0 \leq N - 3, \quad (3.6) \]

\[
\sum_{k=1}^{[N-1/2]} (1 - 2k/N) r_k > j_2 + \sum_{k=1}^{[N+1/2]} (2k/N - 1) r_k.
\]

Here are eliminated four chiral generators $X_{1,5}^r$, $X_{2,5}^r$, $X_{3,5}^r$, $X_{4,5}^r$, $k \leq 2$.

- \mathbf{e} $d = d^e = 2 + j_1 + j_2 + m_1$, $N \geq 4$,

 \[j_1 + m/N = j_2 + m^*/N, \quad j_1 j_2 > 0, \quad i_0 + i_0' = 2, \quad (3.7a) \]

\[j_1 > 0, j_2 = 0, i_0 = 0, i_0' = 2, \quad (3.7b) \]

\[j_1 = 0, j_2 > 0, i_0 = 2, i_0' = 0. \quad (3.7c) \]

Here are eliminated four generators: chiral generators $X_{1,4+k}^r$, $k \leq 1 + i_0' (1 - \delta_{j_1,0})$, and anti-chiral generators $X_{3,5+N-k}^r$, $k \leq 1 + i_0 (1 - \delta_{j_2,0})$.

- \mathbf{f} $d = d^f = 1 + j_2 + m_1 = 2m/N$, $N \geq 3$,

 \[j_1 = 0, j_2 > 0, i_0 = 1, i_0' = 0. \quad (3.8) \]

Here are eliminated two chiral generators $X_{1,5}^r$, $X_{2,5}^r$, and two anti-chiral generators $X_{3,5+N-k}^r$, $k = 1, 2$.

- \mathbf{g} $d = d^g = 1 + j_1 + m_1 = 2m^*/N$, $N \geq 3$,

 \[j_2 = 0, j_1 > 0, i_0 = 0, i_0' = 1. \quad (3.9) \]

Here are eliminated two chiral generators $X_{1,4+k}^r$, $k = 1, 2$, and two anti-chiral generators $X_{3,5}^r$, $X_{4,5}^r$.

- \mathbf{h} $d = d^h = m_1$, $N \geq 2$,

 \[j_1 = j_2 = 0, \quad i_0 = i_0' = 0. \quad (3.10) \]

Here are eliminated two chiral generators $X_{1,5}^r$, $X_{2,5}^r$, and two anti-chiral generators $X_{3,5}^r$, $X_{4,5}^r$.

Note that according to the results of [20] the following cases would not be protected: ad for $r_{N-1} > 2$, bc for $r_1 > 2$, bd for r_1, $r_{N-1} > 2$ when $N > 2$, and for $r_1 > 4$ when $N = 2$.

ACKNOWLEDGMENTS

The author would like to thank the Organizers for the kind invitation to speak at the International Workshop “Supersymmetries and Quantum Symmetries”, Dubna, 18–23.7.2011. The author was supported in part by Bulgarian NSF grant DO 02–257.

REFERENCES

1. M. Flato and C. Fronsdal, Lett. Math. Phys. 8, 159–162 (1984).
2. V. K. Dobrev and V. B. Petkova, Phys. Lett. B 162, 127–132 (1985).
3. V. K. Dobrev and V. B. Petkova, Lett. Math. Phys. 9, 287–298 (1985).
4. V. K. Dobrev and V. B. Petkova, Fortsch. Phys. 35, 537–572 (1987).
5. S. Minwalla, Adv. Theor. Math. Phys. 2, 781–846 (1998).
6. V. K. Dobrev, J. Phys. A 35, 7079–7100 (2002).
7. V. K. Dobrev and R. B. Zhang, Phys. At. Nucl. 68, 1660–1669 (2005).
8. V. K. Dobrev, Phys. Part. Nucl. 38, 1079–1162 (2007).
9. P. J. Heslop and P. S. Howe, Classical Quantum Gravity 17, 3743–3768 (2000).
10. S. Ferrara and E. Sokatchev, Int. J. Theor. Phys. 40, 935–984 (2001).
11. L. Andrianopolii, S. Ferrara, E. Sokatchev, and B. Zupnik, Adv. Theor. Math. Phys. 3, 1149–1197 (1999).
12. S. Ferrara and E. Sokatchev, J. High Energy Phys. 0005, 038 (2000); S. Ferrara and E. Sokatchev, Int. J. Mod. Phys. B 14, 2315 (2000); S. Ferrara and E. Sokatchev, New J. Phys. 4, 2–22 (2002).
13. A. V. Ryzhov, J. High Energy Phys. 0111, 046 (2001); A. V. Ryzhov, “Operators in the $D = 4, N = 4$ SYM and the AdS/CFT Correspondence,” UCLA Thesis (2003). arXiv:hep-th/0307169
14. E. D’Hoker and A. V. Ryzhov, J. High Energy Phys. 0202, 047 (2002).
15. G. Arutyunov and E. Sokatchev, Nucl. Phys. B 635, 3–32 (2002); G. Arutyunov and E. Sokatchev, Classical Quantum Gravity Lett. 20, L123–L133 (2003).
16. E. D’Hoker, P. Heslop, P. Howe, and A. V. Ryzhov, J. High Energy Phys. 0304, 038 (2003).
17. F. A. Dolan, Nucl. Phys. B 790, 432–464 (2008).
18. B. Eden and E. Sokatchev, Nucl. Phys. B 618, 259–276 (2001).
19. V. K. Dobrev and V. B. Petkova, “Proceedings,” in Lecture Notes in Physics, Ed. by A. O. Barut and H. D. Doebner (Springer, Berlin, 1986), Vol. 261, pp. 291–299, 300–308.
20. V. K. Dobrev, “Group-Theoretical Classification of BPS and Possibly Protected States in D=4 Conformal Supersymmetry,” Nucl. Phys. B 854, 878–893 (2012). arXiv: hep-th/1012.3685; Preprint SISSA/86/2010/EP and ESI 2289 (2010).
21. G. Bossard, P. S. Howe, K. S. Stelle, and P. Vanhove, “The Vanishing Volume of D = 4 Superspace,” CBPF-NF-011/11. arXiv:1105.6087 [hep-th].
22. V. G. Kac, “Representations of Classical Lie Superalgebras,” in Lecture Notes in Math (Springer, Berlin, 1978), Vol. 676, pp. 597–626.
23. D. Z. Freedman, S. S. Gubser, K. Pilch, and N. P. Warner, Adv. Theor. Math. Phys. 3, 363–417 (1999).
24. S. Ferrara and E. Sokatchev, Lett. Math. Phys. 52, 247–262 (2000).
25. G. Arutyunov, B. Eden, and E. Sokatchev, Nucl. Phys. B 619, 359–372 (2001).
26. M. Bianchi, S. Kovacs, G. Rossi, and Y. S. Stanev, J. High Energy Phys. 0105, 042 (2001).
27. P. J. Heslop and P. S. Howe, Phys. Lett. B 516, 367–375 (2001).