Impact of Resting Areas on Consumer Store Choice

A.S. Suresh,
Associate Professor,
Institute of Management, Christ University, Bengaluru,
Ph.D Scholar,
Sri Chandrasekharendra Saraswathi Vishwawamaha Vidyalaya
University, Kanchipuram, India

ABSTRACT

In this era where retailers find it difficult to achieve differentiation through pricing, promotion, product and place, the store shopping experience itself becomes a source of competitive advantage. Therefore, this research study is undertaken about resting areas, in order to understand the influence of resting areas on shopping experience and store choice decision from the shopper's perspective. A survey of retail shoppers was conducted and exploratory factor analysis used to identify factors of resting area and store choice decision factors. One way Anova, regression is employed to find out commonalities and differences among different categories of retail stores with respect to importance of resting areas. This study revealed eight decision making factors from the shoppers' perspective: of which one was Resting Areas which is used for the study to further garner insights. Identifying store choice decision factors gives a better understanding about patronage motives than when it is applied to the market as a whole. This enables retail managers to develop the appropriate retailing strategies with respect to resting areas to satisfy each segment.

Keywords: Retail, Resting Areas, store choice, shopping experience, Atmospherics.

INTRODUCTION:

Traditionally the unorganized retail market is a family’s livelihood in the country. Small retailers have their shop in the front and house at its back. In the country more than 92% of the retailers operate in less than 500 square feet of shopping space. INR 65,000 crore is the expected market size of organized retail in the year 2017-18, as per Global retail consultants KSA Technopak.

In today’s scenario products categories like jewelry, food, shoes etc are slowly becoming lifestyle products, due to the increasing purchasing power of Indian urban consumer. This is the right time for Indian retailers to take advantage and diversify and experiment with new retail formats to build strong and new brands. Retail should be perceived as brand rather than seeing it as retailers’ selling brands.

NEED FOR THE STUDY:

Changing trends in retail, brand internationalization and consumption behaviors come along with the change in how people shop. One of the main change is that consumers are paying more attention to check whether the shopping experience by itself is a pleasant one or is it just a chore. In this era where retailers find it difficult to achieve differentiation through pricing, promotion, product and place, the store shopping experience itself becomes a source of competitive advantage. It is of high relevance and importance that retailers study about every aspect of the store atmospherics particularly resting areas in order to make the shopping experience a delightful one for its customers.
LITERATURE REVIEW:

The driving force behind shopping is the answer to the question “why do people shop?” The answer for the question can be obtained by examining the consumer purchasing/shopping motives. Motivation refers to the drive, urge, wish, or desire that leads to a goal-oriented behavior (Patel & Sharma, 2009). In other words, these are nothing but the reasons for an individual to leave home for shopping. There might be several drives for individuals to go for shopping. Consumers are not interested in the actual products or services that a store offers, they are interested only in the benefits that they gain out of it. Some get satisfied just in purchasing what they had planned for, these types of individuals are called as Utilitarian shoppers (Tauber, 1972). They pay less attention to the decorations or the extra add on facility which the store offers, and are considered to be irrelevant to their shopping objectives and motives (Fischer) whereas others, the non-utilitarian or the hedonistic look for fun, entertainment and rest during shopping (Babin, Darden, & Griffin, 1994).

There are many type of retail formats, of which the largest in India are the Shopping Malls. According to Mohammed Ismail El-Adlys research there are three main factors which is attributed to Shopping malls attractiveness which is comfort, entertainment, diversity and mall Essence. The factor comfort is the most significant factor among all and has a value of 0.794. There are seven attributes under the comfort factor, which are the mall security, parking space, comfort, width, cleanliness, and seating/resting space. Also (Nicholls, Li, Kranendonk, & Roslow, 2002) found out that today’s mall shoppers are leisurely in nature than that of the 90’s. They usually shop on weekdays and on average spend about 2-3 hours in a store. In contrast to this, (Yavas, 2003) experiment/research shows that both the considered shopper segments view availability of Seats, rest areas in the mall as least important factor when it comes to choosing between two malls.

“Impulse buying behavior is an enigma in the marketing world, for here is a behavior which the literature and consumers both state as innormative sense wrong, yet accounts for a substantial volume of the goods sold every year across a broad range of product categories (Hausman, 2000). The sales of a particular store would increase if there are more number of hedonistic buyers who are more likely to engage in impulse buying. The research by (Smith, Sherman, & Mathur, 1997) confirms that not only the cognitive factors but also the in-store environment and the emotional state of consumers are responsible for store selection and their purchase behavior and hence it is vitally important to acknowledge and provide sufficient aesthetics inside the store to satisfy the customers. Satisfied customers not only give repeat purchases but also ensures to do their bit of word of mouth propaganda which in turn brings new customers to the stores (Singh, Katiyar, & Verma, 2014).

According to (Applebaum, 1951) “To buy is to purchase. To shop is to visit business establishments for inspection or purchase of goods”. And it is not always that only the purchaser visits the store. Many a times there will be bundle carrier as well, like another accompanying a child in buying. Though the decision maker is the child, the parent is the one who pays for it. Hence it essential to account for the needs of the bundle carrier as well. (OXENFELDT, 1975) says that, consumers tend to have both opinions and feelings towards each store, which would ultimately lead to a decision making and therefore it is vitally important to build a good store image in the minds of the consumers. In order to do that a holistic approach has to be adopted which takes care of the products variety, assortment and availability, competitive pricing and the store atmospherics. (Store Atmospherics Provide Competitive Edge, 2005) suggests that there are three important parameters that decide the attractiveness of a retail store, in the eyes of a customer viz: 1) the cleanliness associated with the store 2) passive atmospherics which includes the lighting, temperature, aisle width etc. 3) the active atmospherics which includes the music and Instore TV. The younger customers have an inclination towards the active atmosphere while the affluent mature customers are inclined towards the passive atmosphere of the retail stores. (Lunardo & Roux, 2014) says consumers feel that an overly arousing store environment is a deception to entice them to buy. With a change in the traditional landscape of retail store which is marked by the dwindling of the mom and pop store and the rise of organized retail store, establishing a store image has become ubiquitous for the owners. Store image is blend of tangible and intangible attributes (Color and décor of the interiors of the outlet, music played inside the outlet, crowding and lighting within the outlet, design, layout, signage, olfactory factor, and tactile factor). Further (Sen & Srivastava, 2016) throwlight on how cultural conditioning influences the consumption behavior of customers. Customers who were highly conditioned by culture preferred a utilitarian product over a hedonistic one, while consumers who belonged to a region that was relatively less conditioned by culture, preferred hedonistic over utilitarian products but did not perceive them as being different from utilitarian products in terms of brand personality. Preferences for utilitarian and hedonistic products depend on decision targets. According to (Lim & Ang, 2008) Consumers deciding for others were more likely to choose hedonistic over utilitarian options than were consumers deciding for themselves. (Lu, Liu, & Fang, 2016) cast light on how both the utilitarian and hedonistic aspects of a self-service experience influence a
consumer’s future behavioral intentions with the technology. Three variables were found to influence a consumer’s utilitarian value: ease of use, perceived control, and functionality. Two variables were found to influence hedonistic value judgments: need for human interaction and personal innovativeness in information technology. Retailers trying to implement self-service technology must not only be mindful of the benefits or utility of the technology, but also how the consumer perceives the process or enjoyment of using the technology.

**RESEARCH GAP:**

Prior research in the field of marketing has supported the relationship between various in-store attributes like color, music, lighting, crowd etc. However negligible attention is paid to the relationship between the resting areas inside a retail store and the sales of the particular store.

**STATEMENT OF THE PROBLEM:**

In today’s scenario one of the store managers Key responsibility area would be to ensure customer satisfaction and to increase number of walk-ins. With that in mind, managers work to make the store a better place to shop in comparison to other retail outlets. One of the ways by which they achieve this is by working on the store atmospherics. One such element is Resting Areas. Resting Areas being one of the important attribute of store atmospherics, if not given proper concentration/attention, the store might lose out on the customers.

**OBJECTIVE:**

- To identify the influence of Resting areas on consumer’s store choice decisions.

**HYPOTHESIS:**

H0: There is no significant effect of resting area on store choice decision.
H1: There is significant effect of resting area on store choice decision.

**RESEARCH METHODOLOGY:**

Retail shoppers above the age of 17 are the population of the study. The population of the study includes gender, marital status, income level, etc. The survey method of research was used in the study of population. A survey of 300 retail shoppers selected randomly as the sample size using convenience sampling was conducted and exploratory factor analysis were used to identify factors of resting area and store choice decision factors.

**STATISTICAL TOOLS ADOPTED FOR THE STUDY:**

**Factor Analysis:**

To group the variables responsible for store choice decision into different logical factors, factor analysis with varimax rotation.

**Regression Analysis:**

To find the relationship between resting areas and the store choice decision Regression analysis is used.

**LIMITATIONS OF THE STUDY:**

The sample population were primarily only from the Bangalore Location, so the results can be different when the samples are collected from different geographies.

**DATA INTERPRETATION AND ANALYSIS:**

**Factor Analysis:**

| KMO and Bartlett’s Test – Factor Analysis |
|-------------------------------------------|
| Kaiser-Meyer-Olkin Measure of Sampling Adequacy | .600 |
| Bartlett's Test of Sphericity | Approx. Chi-Square | 332.335 |
| | df | 153 |
| | Sig. | .000 |

Table 1: KMO and Bartlett’s Test – Factor Analysis
The KMO value is at 0.6 which tells the sampling is just adequate and the significance value which is at .000 tells that the tests are significant and proceed with the further test.

Figure 1: Total Variance Explained – Factor Analysis

| Component   | Initial Eigen Values | Extraction sums of Squared Loadings | Rotation sums of Squared Loadings |
|-------------|----------------------|-------------------------------------|----------------------------------|
|             | Total                | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % |
| 1           | 2.089                | 11.606       | 11.606       | 2.089 | 11.606       | 11.606       | 2.089 | 11.268       | 11.268       |
| 2           | 1.395                | 7.748        | 19.354       | 1.395 | 7.748        | 19.354       | 1.352 | 7.508        | 18.776       |
| 3           | 1.28                 | 7.111        | 26.465       | 1.28  | 7.111        | 26.465       | 1.259 | 6.993        | 25.77        |
| 4           | 1.228                | 6.822        | 33.287       | 1.228 | 6.822        | 33.287       | 1.203 | 6.684        | 32.453       |
| 5           | 1.14                 | 6.335        | 39.621       | 1.14  | 6.335        | 39.621       | 1.173 | 6.518        | 38.971       |
| 6           | 1.136                | 6.309        | 45.93        | 1.136 | 6.309        | 45.93        | 1.146 | 6.369        | 45.341       |
| 7           | 1.037                | 5.762        | 51.692       | 1.037 | 5.762        | 51.692       | 1.097 | 6.095        | 51.436       |
| 8           | 1.014                | 5.634        | 57.326       | 1.014 | 5.634        | 57.326       | 1.06  | 5.891        | 57.326       |
| 9           | 0.974                | 5.409        | 62.735       |        |              |              |       |              |              |
| 10          | 0.962                | 5.343        | 68.078       |        |              |              |       |              |              |
| 11          | 0.931                | 5.172        | 73.251       |        |              |              |       |              |              |
| 12          | 0.904                | 5.024        | 78.274       |        |              |              |       |              |              |
| 13          | 0.845                | 4.694        | 82.968       |        |              |              |       |              |              |
| 14          | 0.779                | 4.329        | 87.297       |        |              |              |       |              |              |
| 15          | 0.692                | 3.843        | 91.14        |        |              |              |       |              |              |
| 16          | 0.687                | 3.817        | 94.957       |        |              |              |       |              |              |
| 17          | 0.495                | 2.748        | 97.705       |        |              |              |       |              |              |
| 18          | 0.413                | 2.295        | 100          |        |              |              |       |              |              |

57.326% of variance is explained by the 8 first components. So for further studies only these 8 components are considered. However, analysis was restricted to factors related to resting areas.

Figure 2: Rotated Component Matrix – Factor Analysis

| Component                          | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|------------------------------------|------|------|------|------|------|------|------|------|
| Seating Availability               | 0.832|      |      |      |      |      |      |      |
| Kids Play Area                    | 0.806|      |      |      |      |      |      |      |
| Wash Room                          | 0.794|      |      |      |      |      |      |      |
| Credit card Facility               |      | 0.737|      |      |      |      |      |      |
| Distance & Size of Outlet          |      | 0.699|      |      |      |      |      |      |
| Store Special Promotion            |      | 0.463|      |      |      |      |      |      |
| In Store Music                     | 0.632|      |      |      |      |      |      |      |
| Ample Parking Area                 | 0.558|      |      |      |      |      |      |      |
| Merchandise Availability           | 0.497|      | 0.43 |      |      |      |      |      |
| Central Business District          | 0.801|      |      |      |      |      |      |      |
| Cleanliness                        | 0.48 |      |      |      |      |      |      |      |
| Easy Return Policy                 |      | 0.721|      |      |      |      |      |      |
| Endorsement                        |      | 0.441|      |      |      |      |      |      |
| Good Brand Value                   |      |      |      | 0.763|      |      |      |      |
| Ad Support                         |      |      |      | 0.572|      |      |      |      |
| Recommendation by family           |      |      |      |      |      |      | 0.731|      |
| Availability of Sales Personnel    |      |      |      |      |      |      |      | 0.811|
| Queue Free                         |      |      |      |      |      |      |      |      |

Extraction method: Principal Component Analysis
Rotation Method: Varimax with Kaiser Normalization
A rotation converged in 12 iterations.
The rotated component matrix classified various components into different variables. As the table suggests, seating Availability, kids play area and wash room has been classified into one factor which is here after referred as “Resting Area”.

It is assumed that the values of variables “Seating Availability”, “Kids Play Area” and “Wash room” if is more than or equal to 3 it is considered that the respondent would visit the store. Hence a fourth variable “Store Choice Decision” based on the responses to the above mentioned variables emerged.

**REGRESSION ANALYSIS:**

**Resting Areas and Store Choice Decision:**

Now to find the importance/effect on store choice decision due to resting areas, a regression analysis is done between the variables “Store Choice Decision” and “Resting Areas”

| Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
|-------|---|----------|-------------------|---------------------------|
| 1     | .848<sup>a</sup> | .719     | .718              | .24274                    |

The adjusted R2 value is 0.718 which means 71.8% contribution is coming from these independent variables.

| Model | Sum of Squares | df | Mean Square | F | Sig. |
|-------|----------------|----|-------------|---|------|
| Regression | 44.078 | 1 | 44.078 | 748.075 | .000<sup>b</sup> |
| Residual | 17.264 | 293 | .059 |
| Total | 61.342 | 294 | |

P value in the Anova table is ‘0’ which is <0.05 which means that the regression model is significant. Since the significance value is less than 0.05, we reject H0, that is there is no significant effect on store choice decision due to resting area.

| Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. |
|-------|-----------------------------|---------------------------|---|------|
| (Constant) | -.849 | .059 | -14.503 | .000 |
| Resting Areas | .416 | .015 | .848 | 27.351 | .000 |

The p value of the variable is<0.05 which means it is significant. The regression equation for the model is -0.849+(0.416*Resting Area).
Resting Area and Time Preference:

Table 5: Model Summary Table – Regression Analysis – Resting Areas & Time Preference

| Model | R  | R Square | Adjusted R Square | Std. Error of the Estimate |
|-------|----|----------|------------------|---------------------------|
| 1     | .128\(^a\) | .016     | .010             | .92607                    |

Adjusted R square value (coefficient of determination) is 0.010, which means that only 1% contribution is coming from these independent variables.

Table 6: Anova Table – Regression Analysis – Resting Areas & Time Preference

| Model   | Sum of Squares | df | Mean Square | F     | Sig.  |
|---------|----------------|----|-------------|-------|-------|
| Regression | 4.193          | 2  | 2.097       | 2.445 | .089\(^b\) |
| Residual | 250.420        | 292| .858        |       |       |
| Total   | 254.613        | 294|             |       |       |

a. Dependent Variable: Resting Areas
b. Predictors: (Constant), Weekend, Weekday

P value in the Anova table is ‘0.089’ which is >0.05 which means that the regression model is not significant. Since the significance value is greater than 0.05, we accept H0, that is there is no significant relationship between the time of purchase/shopping and resting areas.

Table 7: Coefficients Table – Regression Analysis – Resting Areas & Time Preference

| Model | Unstandardized Coefficients | Standardized Coefficients | t      | Sig.  |
|-------|-----------------------------|---------------------------|-------|-------|
|       | B                           | Std. Error                | Beta  |       |
| 1     | (Constant)                 | 3.802                     | .133  | 28.618          | .000  |
|       | Weekday                    | .042                      | .039  | 1.072           | .285  |
|       | Weekend                    | -0.073                    | .040  | -1.804          | .072  |

a. Dependent Variable: Resting Areas

From the coefficients table, it is seen that the values of both the variables (weekday and weekend) are not significant i.e. their p value is >0.05. Hence none of these values are seen in the regression equation.

Cross tabs:

Figure 3: Cross Tabulation Age * Seating Availability

| Seating Availability | Not Important | Slightly Important | Moderately Important | Important | Very Important | Total |
|----------------------|---------------|--------------------|----------------------|-----------|----------------|-------|
| Age 17 - 21          |               |                    |                      |           |                |       |
| Count             | 0             | 6                  | 13                   | 20        | 6              | 45    |
| % within Age       | 0.0%          | 13.3%              | 28.9%                | 44.4%     | 13.3%          | 100.0%|
| % within Seating   | 0.0%          | 18.8%              | 31.0%                | 15.5%     | 7.1%           | 15.1% |
| Availability       |               |                    |                      |           |                |       |
| % of Total         | 0.0%          | 2.0%               | 4.3%                 | 6.7%      | 2.0%           | 15.1% |
| Age 22 - 29         |               |                    |                      |           |                |       |
| Count             | 6             | 14                 | 13                   | 41        | 25             | 99    |
| % within Age       | 6.1%          | 14.1%              | 13.1%                | 41.4%     | 25.3%          | 100.0%|
| % within Seating   | 50.0%         | 43.8%              | 31.0%                | 31.8%     | 29.8%          | 33.1% |
| Availability       |               |                    |                      |           |                |       |
| % of Total         | 2.0%          | 4.7%               | 4.3%                 | 13.7%     | 8.4%           | 33.1% |
It can be seen that 56.5% of the people aged above 60 have responded saying that they would prefer a store with seating availability. Also 47.0% of people who are aged between 29-36 would prefer a store with seating area availability which is significant.

Figure 4: Cross Tabulation Age * Kids Play Area
Approximately about 32% of the respondents in the category of 22 - 29, 29 – 36 and 36 – 60 would prefer a store having Kids play area. 56.5% of the respondents of the age group 60 and above, would consider shopping at a store which has Kids ply area. And none of the respondents in the age group 60 and above considers resting areas as least important.

**Figure 5: Cross Tabulation Age * Wash Room**

| Age     | Wash Room | Total | Not Important | Slightly Important | Moderately Important | Important | Very Important |
|---------|-----------|-------|---------------|--------------------|----------------------|-----------|-----------------|
| 17 - 21 | Count     |       | 0             | 14                 | 7                    | 14        | 10              | 45          |
|         | % within Age |   | 0.0%          | 31.1%              | 15.6%                | 31.1%     | 22.2%           | 100.0%     |
|         | % within Wash Room | | 0.0%          | 33.3%              | 14.0%                | 13.2%     | 11.2%           | 15.1%      |
|         | % of Total  |   | 0.0%          | 4.7%               | 2.3%                 | 4.7%      | 3.3%            | 15.1%      |
| 22 - 29 | Count     |       | 6             | 17                 | 16                   | 33        | 27              | 99         |
|         | % within Age |   | 6.1%          | 17.2%              | 16.2%                | 33.3%     | 27.3%           | 100.0%     |
|         | % within Wash Room | | 50.0%         | 40.5%              | 32.0%                | 31.1%     | 30.3%           | 33.1%      |
|         | % of Total  |   | 2.0%          | 5.7%               | 5.4%                 | 11.0%     | 9.0%            | 33.1%      |
| 29 - 36 | Count     |       | 2             | 6                  | 15                   | 32        | 28              | 83         |
|         | % within Age |   | 2.4%          | 7.2%               | 18.1%                | 38.6%     | 33.7%           | 100.0%     |
|         | % within Wash Room | | 16.7%         | 14.3%              | 30.0%                | 30.2%     | 31.5%           | 27.8%      |
|         | % of Total  |   | 0.7%          | 2.0%               | 5.0%                 | 10.7%     | 9.4%            | 27.8%      |
| 36 - 60 | Count     |       | 3             | 5                  | 10                   | 16        | 15              | 49         |
|         | % within Age |   | 6.1%          | 10.2%              | 20.4%                | 32.7%     | 30.6%           | 100.0%     |
|         | % within Wash Room | | 25.0%         | 11.9%              | 20.0%                | 15.1%     | 16.9%           | 16.4%      |
|         | % of Total  |   | 1.0%          | 1.7%               | 3.3%                 | 5.4%      | 5.0%            | 16.4%      |
| Above 60| Count     |       | 1             | 0                  | 2                    | 11        | 9               | 23         |
|         | % within Age |   | 4.3%          | 0.0%               | 8.7%                 | 47.8%     | 39.1%           | 100.0%     |
Only less than 5% of respondents in each age group do not prefer a shop based on the presence of wash rooms. And about 30% of respondents in the age group of 29 and above prefer a shopping destination which has washroom facility.

Figure 6: Cross Tabulation Marital Status * Seating Availability

About 72% of the married respondents would prefer a store which has seating availability. And less than 4% of the total respondents do not prefer a shopping destination based on resting areas availability.
There is very meager/no huge difference in preference when it comes to wash rooms. Both married and single respondents seem to prefer shopping at a place which has washroom facility.

Married respondents feel it is important to have kids play area in the shopping place so that they can shop peacefully letting the kids play over there. About 30% of the married respondents says it is very important and another 34% says it is important to make a store choice.
FINDINGS:

- Resting area which is an amalgamation of Seating Availability, Kids Play Area and Wash Rooms contributes significantly when it comes to store choice decision among the shoppers.
- The preference of Resting Areas does not change with respect to the time of purchase, whether it is weekday or weekend (or) if its mornings or afternoons or evenings.
- Seating Area Availability is most preferred by the people above 60 years of age but not to exclude the category of 29-36 and 36-60 years of people who consider it to be important when it comes to store choice decision.
- Wash rooms have no biasing with respect to age groups. Almost all the age groups under study, prefer a store which would have a wash room.
- Married people find Kids play area a significant factor in selecting/making a store choice decision.
- The presence of resting areas in a retail outlet is an important factor when it comes to choosing a store. Hence, it is important for a retail store to focus on having good resting areas.

RECOMMENDATIONS:

- Managers must take into consideration that the presence of kids play area to ensure that Book store customers shop more peacefully and thus make happy and informed choices. Play Area reduces the tension created by the kids of the customers thus letting them to shop peacefully.
- Washrooms are a must in all types of stores. Managers must ensure that proper washrooms provided based on the number of customer walk-ins.
- Kids Play area must be cleaned and must be in proper functioning form before 4 PM, as the customers who come post 4 PM tend to use the kids play area extensively.
- If the store is planning to attract married people to its store, based on the category of store the manager must ensure that there is a kids play area.

CONTRIBUTION TO THE BODY OF KNOWLEDGE:

The primary aim of this study is to analyze the impact of resting areas on store choice decision. So far many studies have focused on other elements of store atmospherics affecting the store choice decision whereas this study provides insights into importance of resting areas across multiple categories of retail stores.

CONCLUSION:

Objective was to identify factors of resting areas that were responsible for the customer store choice decision. This was done using factor analysis. Further with the help of regression analysis the impact of the factors on store choice decision was determined which will assist to strategize better and use resting areas as differentiator to compete.

REFERENCES:

Patel, V., & Sharma, M. (2009). Consumers’ Motivations to Shop in Shopping Malls: a Study of Indian Shoppers. (S. Samu, R. Vaidyanathan, & D. Chakravarti, Eds.) Association for Consumer Research, 8, 285-290. Retrieved from http://www.acrwebsite.org/volumes/14915/volumes/ap08/AP-08

Applebaum, W. (1951). Studying Customer Behavior in Retail Stores. *Journal of Marketing, 16*(2), 172-178.

Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or Fun: Measuring hedonistic and Utilitarian Shopping Value. *Journal of Consumer Research, 20*, 644-656.

El-Adly, M. (2007). Shopping malls attractiveness: a segmentation approach. *International Journal of Retail & Distribution Management, 35*, 936-950. doi:10.1108/09590550710828245

Hausman, A. (2000). A multi-method investigation of consumer motivations in impulse buying

Lim, E., & Ang, S. (2008, March). hedonistic vs. utilitarian consumption: A cross-cultural perspective based on cultural conditioning. *Journal of Business Research, 61*(3), 225.

Lu, J., Liu, Z., & Fang, Z. (2016, July). hedonistic products for you, utilitarian products for me. *Judgment and Decision Making, 11*(4), 332-341.
Lunardo, R., & Roux, D. (2014). In-store arousal and consumers’ inferences of manipulative intent in the store environment. *European Journal of Marketing, 49*(5), 646-667.

Nicholls, J., Li, F., Kranendonk, C. J., & Roslow, S. (2002). The seven year itch? Mall shoppers across time. *Journal of Consumer Marketing, 19*(2), 149-165. doi:http://dx.doi.org/10.1108/07363760210420568

OXENFELDT, A. R. (1975). Developing a favorable price-quality image. *Journal of Retailing*.

Sen, A., & Srivastava, A. K. (2016, September). Students’ Purchase Intention for Apparels An Empirical Study on Atmospherics of Selected Organized Retail Outlet of Bilaspur City. *SUMEDHA Journal of Management, 5*(3).

Singh, P., Katiyar, N., & Verma, G. (2014). Retail Shoppability: The Impact Of Store Atmospherics & Store Layout On Consumer Buying Patterns. *INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 3*(8).

Smith, R. B., Sherman, E., & Mathur, A. (1997). Store Environment and Consumer Purchase (2005). *Store Atmospherics Provide Competitive Edge*. Chain Store Age.

Tauber, E. (1972). Why Do People Shop? *Journal of Marketing, 36*, 46-49.

Yavas, U. (2003). A Multi-Attribute Approach to Understand Shopper Segments. *International Journal of Retail & Distribution Management, 541*-548.