Mutational heterogeneity of angioimmunoblastic T-cell lymphoma indicates distinct lymphomagenic pathways

Mathijs Willemsen, Myrurgia Abdul Hamid, Bjorn Winkens and Axel zur Hausen

The 2016 revision of the World Health Organization classification of lymphoid neoplasms introduces the umbrella category "nodal T-cell lymphomas with TFH phenotype" (T(FH) phenotype), which includes angioimmunoblastic T-cell lymphoma (AITL), follicular T-cell lymphoma and nodal peripheral T-cell lymphoma (PTCL) with a T(FH) phenotype. One of the genetic features clustering T(FH) cell-derived lymphomas is a recurrent RHOA G17V mutation, which is present in approximately 60% of investigated cases. RHOA is a member of the Rho family of GTPases which function as molecular regulators of diverse cellular functions. Mutant RHOA acts as a dominant-negative signaling protein sequestering guanine nucleotide exchange factors (GEFs) thereby inhibiting wildtype RHOA and potentially other GEF-dependent proteins. In vivo, mutant RHOA has recently been shown to skew CD4 T-cell differentiation towards the T(FH) lineage and promote AITL lymphomagenesis. Thus, the RHOA G17V mutation can be viewed as pivotal genetic aberration in AITL and potentially other T(FH) cell-derived lymphomas. Mutations contributing to lymphomagenesis in wildtype RHOA AITL cases remain largely unknown. This mutational heterogeneity points towards the existence of distinct AITL lymphomagenic pathways. In this report, we explore the mutational landscape of AITL by assessing the data from large sequencing studies focusing on the association between RHOA mutational status and recurrent mutations in other genes to provide evidence for the existence of distinct lymphomagenic pathways in AITL.

Sequencing studies of AITL and/or PTCL published between 01-01-2014 and 28-02-2017 using an English language restriction were identified with PubMed. In total, 117 abstracts were screened. Only 34 articles were eligible for full text review. Studies were included in our analysis if they contained ten or more AITL cases and used targeted deep sequencing of RHOA, TET2, DNMT3A, IDH2, CD28 and multiple other genes or whole genome/exome/transcriptome approaches. Also, the original dataset had to be available to the authors. Five of the 34 articles met the prespecified inclusion criteria and were included in our analysis. The article selection process was performed by two authors.

In total, these studies analyzed 239 AITL cases using various sequencing techniques. Of interest, in 13.8% (33/239) of investigated AITL cases no detectable mutations were reported. RHOA was mutated in 61.1% (146/239) of the investigated AITL cases. The remaining 25.1% (60/239) of cases were wildtype, but carried mutations in other genes (Table 1a).

We focused on the data extract of all wildtype RHOA AITL cases to identify potentially recurrent mutations contributing to AITL lymphomagenesis other than RHOA. Only mutations occurring in more than 5% of targeted cases and identified in two or more studies were classified as recurrent. TET2, CD28, DNMT3A, PLCG1, IDH2, VAV1, FYN and STAT3 were mutated in 60.7% (34/56), 18.6% (8/43), 17.9% (10/56), 14.0% (6/43), 13.8% (8/58), 11.6% (5/43), 7.8% (4/51) and 7.0% (3/43) of targeted wildtype RHOA AITL cases, respectively (Supplementary Data set 1). As these mutations also frequently
occur in mutant RHOA AITL cases, we performed Mantel–Haenszel statistics to assess the association between these mutations and RHOA mutational status across different studies (SPSS v21 IBM Corp., Armonk, NY, USA). A \(p \)-value \(\leq 0.05 \) was considered significant.

Statistical analysis showed that mutations in TET2 and IDH2 were associated with mutant RHOA status (\(p < 0.001 \) for both genes). Mutations in DNMT3A and CD28, including CTLA4–CD28 fusion, also tend to show this association (\(p = 0.076 \) and 0.093). Interestingly, despite being mutated in a low number of cases, mutations in VAV1 tend to associate with wildtype RHOA status (\(p = 0.268 \)). Mutations in FYN, PLCG1 and STAT3 showed no significant association with RHOA mutational status (\(p = 0.972, 0.960 \) and 0.979) (Table 1b).

This study reports on the association between RHOA mutational status and other recurrent mutations in AITL. We found an association between mutant RHOA and mutations in TET2 and IDH2. Despite being mutually exclusive in acute myeloid leukemia, mutations in IDH2 and TET2 tend to co-occur in AITL.\(^{11} \) Gene expression profiling and promoter methylation analysis of double mutant AITL cases showed upregulation of genes associated with TLH phenotype and downregulation of genes associated with TLH1 phenotype.\(^{11} \) Mutant IDH2 and TET2 potentially cooperate with mutant RHOA to induce a potent TLH phenotype in vivo. This mechanism would explain the association found between these mutations in the present study. We also identified a strong tendency towards association between mutant RHOA and mutations in DNMT3A. The exact mechanism by which mutations in epigenetic modifiers contribute to lymphomagenesis remain to be elucidated, but alterations in hematopoietic stem cell differentiation is an attractive theory. The present study also identified a strong tendency towards association between mutant RHOA and mutations in CD28, including CTLA4–CD28 gene fusion. CD28 mutations in AITL are confined to hotspot residues

Table 1
RHOA mutational status of included studies (A) and association with recurrent mutations in wildtype RHOA AITL cases (B)

(A) Author	Sequencing method	AITL cases	No detectable mutations	Wildtype RHOA	Mutant RHOA*
Abate et al.\(^6\)	RNA-seq, TDS (VAV1)	60	15	20	25
Nguyen et al.\(^7\) 2017	TDS (71 genes)	48	6	9	33
Vallois et al.\(^9\)	TDS (69 genes)	72	8	18	46
Yoo et al.\(^10\)	TDS (70 genes)	29	3	5	21
Palomero et al.\(^8\)	RNA-seq, TDS (13 genes), allele-specific PCR (RHOA)	30	1	8	21

Total

(B) Gene	Mutant RHOA AITL cases/total\(^a\)	Wildtype RHOA AITL cases/total\(^d\)	Odds ratio	95% CI	\(p \)-value
TET2\(^c, e\)	101/146 (69.2%)	33/93 (35.5%)	3.46	1.92, 6.22	\(<0.001 \)
DNMT3A\(^c, e\)	34/146 (23.3%)	10/93 (10.8%)	2.14	0.99, 4.66	0.076
IDH2\(^c, e\)	51/146 (34.9%)	9/93 (9.7%)	6.68	2.89, 15.45	\(<0.001 \)
CD28	14/92 (15.2%)	7/69 (10.1%)	1.73	0.64, 4.73	0.399
CD28\(^f\)	24/92 (26.1%)	8/69 (11.6%)	2.60	0.98, 6.86	0.093
FYN\(^c\)	5/113 (4.4%)	3/78 (3.8%)	1.38	0.30, 6.29	0.972
PLCG1	6/92 (6.5%)	6/69 (8.7%)	0.85	0.26, 2.85	0.960
STAT3	2/92 (2.2%)	3/69 (4.3%)	0.68	0.13, 3.69	0.979
VAV1	2/92 (2.2%)	5/69 (7.2%)	0.27	0.046, 1.56	0.268

\(TDS \) targeted deep sequencing, \(CI \) confidence interval
\(^a\)Including non-G17V RHOA mutations
\(^b\)Only 29/45 AITL cases were analyzed using TDS
\(^c\)Only 30/35 AITL cases were analyzed by allele-specific PCR and targeted deep sequencing. Only one case showed no mutations in both techniques (no detectable mutations). RNA sequencing data not included due to uncertainty of diagnosis
\(^d\)Including cases with no detectable mutations
\(^e\) Missing data regarding mutational status of TET2 (\(n = 14 \)), DNMT3A (\(n = 14 \)) and IDH2 (\(n = 10 \)) from Vallois et al. included as not mutated
\(^f\)Including cases with CTLA4–CD28 gene fusion
D124 and T195 and render CD28 constitutively active10,12. The $\text{CTLA4}–\text{CD28}$ fusion gene has only been reported in an Asian cohort10. Therefore, validation of this fusion gene in other cohorts is essential to confirm the association between mutant RHOA and mutations in CD28. Altogether, these findings point towards a classic AITL lymphomagenic pathway (Fig. 1). Several therapeutic approaches targeting epigenetic modifiers, IDH2 or CD28 are currently in clinical trials or have already been approved for other diseases13,14. The tendency of these mutations to cluster will potentially help to develop novel combinatorial therapeutic regimens.

Despite being mutated in rather a low number of AITL cases, this study identified the tendency of mutations in VAV1 to associate with wildtype RHOA. VAV1 encodes a Rho GTPase family-specific GEF which is primarily expressed in the hematopoietic system15. The studies that targeted VAV1 identified three missense mutations (ES24D, ES56D and D797G), two frameshift deletions (151_158del and 778_783del), one fusion gene (VAV1–S100A7) and one in-frame deletion (778_786del)6,9,10. Abate et al. found the 778_786 in-frame deletion and VAV1–S100A7 fusion gene to be locked in a constitutively active conformation, indicated by high levels of Tyr174 phosphorylation6. Both genetic aberrations resulted in increased VAV1 catalytic-dependent functions downstream of RAC1, another member of the Rho family of GTPases6. These findings are in accordance with previous experiments showing that constitutively active VAV1 predominantly increases nucleotide exchange of RAC1 and to a lesser extend of RHOA16. Interestingly, the RAC1 pathway is upregulated in mutant RHOA compared to wildtype RHOA AITL cases, providing evidence that both mutations have similar effects on VAV1 catalytic-dependent pathways17. Additionally, Abate et al. found that the VAV1–S100A7 fusion gene resulted in increased NFAT activity, a functional readout of VAV1 non-catalytic activity, whereas both the 778_786 in-frame deletion and VAV1–S100A7 fusion gene increased expression of NFAT target genes6. A recently published study, not yet indexed by PubMed at the time of our search, identified activating VAV1 mutations in 8.2% (7/85) of wildtype RHOA AITL cases, compared to 0% (0/41) in mutant RHOA AITL cases, respectively18. They also showed that mutant RHOA enhances the non-catalytic functions of VAV1 through increased Tyr174 phosphorylation, thereby increasing NFAT activity and expression of NFAT target genes. Together, these data not only strengthen the association between mutant VAV1 and wildtype RHOA, but also provide evidence that mutant RHOA and mutant VAV1 have similar effects on catalytic and non-catalytic signaling pathways downstream of VAV1. Therefore, we deduce from these data that mutant RHOA and mutant VAV1 contribute to AITL lymphomagenesis in a similar manner. This would mean that VAV1 is part of an alternative AITL lymphomagenic pathway (Fig. 1). Previous clinicopathological studies have shown that mutant RHOA AITL cases have worse performance status, more frequent B-symptoms and splenomegaly and a more potent T_{FH} immunophenotype compared to wildtype RHOA AITL cases19,20. These data provide additional justification for separating AITL subgroups.

According to our analysis, no mutations were detectable in approximately 15% (range 3–25%) of AITL cases (Fig. 1). Exploring the mutational landscape of AITL using targeted deep sequencing panels enriched with members of the Rho family of GTPases and their regulatory proteins might identify driver mutations in this subgroup. It is also possible that other lymphomagenic mechanisms contribute to some AITL cases, for example mutations in signaling pathways directly regulating T_{FH} differentiation.
data from a relatively small sample size. Furthermore, there is significant technical heterogeneity between the sequencing studies from which the data is derived. The individual studies use different sequencing techniques, bioinformatics pipelines for data processing and mutation calling methods. Despite these limitations, this study remains noteworthy as it provides a unique perspective on associations and possible collaborations between the most common genetic aberrations in AITL as well as providing a rationale for future research.

In short, using data from large sequencing studies this study reports on varying associations between RHOA mutational status and other recurrent mutations in AITL. These findings enable us to identify three potentially distinct AITL lymphomagenic pathways. First, the classic pathway with the RHOA G17V mutation which is associated with mutations in TET2, DNMT3A, IDH2 and CD28. Secondly, the alternative pathway with mutations in VAV1 or potentially yet unidentified mutations in members of the Rho family of GTPases or their regulatory proteins. Third, AITL cases with unknown mutations which might arise from direct mutations in pathways regulating T FH differentiation. To what extend these different lymphomagenic pathways result in different clinical behavior of AITL is largely unknown. Additional evidence on the mutational landscape of AITL, especially wildtype RHOA AITL cases, is needed to either confirm or refute our findings. Furthermore, prospective data is needed to identify potential clinical differences between the distinct lymphomagenic pathways of AITL proposed in this manuscript.

Authors’ contributions
M.W. developed the initial hypothesis that lead to this work and wrote the manuscript. M.A.H. and A.Z.H. were involved in critical reviewing and revising the manuscript. B.W. supervised the statistical analysis.

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information accompanies this paper at (https://doi.org/10.1038/s41408-017-0047-2).

References
1. Swerdlow, S. H. et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127, 2375–2390 (2016).
2. Dobay, M. P. et al. Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica 102, e148–e151 (2017).
3. Cools, J. RHOA mutations in peripheral T cell lymphoma. Nat. Genet. 46, 320–321 (2014).
4. Hodge, R. G. & Ridley, A. J. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17, 496–510 (2016).
5. Cortes, J. R. et al. Role and Mechanisms of Rhoa G17V in the Pathogenesis of AITL. Blood 128, 621 (2016). (Abstract 608).
6. Abate, F. et al. Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc. Natl. Acad. Sci. USA 114, 764–769 (2017).
7. Nguyen, T. et al. Identification of cell-type-specific mutations in nodal T-cell lymphomas. Blood Cancer J. 7, e516 (2017).
8. Palomero, T. et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat. Genet. 46, 166–170 (2014).
9. Vallois, D. et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood 128, 1490–1502 (2016).
10. Yoo, H. Y. et al. Frequent CTLA4-CD28 gene fusion in diverse types of T cell lymphoma. Haematologica 101, 757–763 (2016).
11. Wang, C. et al. IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood 126, 1741–1752 (2015).
12. Rohr, J. et al. Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia 30, 1060–1070 (2016).
13. Willemsen, M. & Schouten, H. C. Inappropriate costimulation and aberrant DNA methylation as therapeutic targets in angioimmunoblastic T-cell lymphoma. Biomark. Res. 5, 6 (2017).
14. Schmitz, N. & Leval, L. How I manage peripheral T-cell lymphoma, not otherwise specified and angioimmunoblastic T-cell lymphoma: current practice and a glimpse into the future. Br. J. Haematol. 176, 851–866 (2017).
15. Bustello, X. R. Vav family exchange factors: an integrated regulatory and functional view. Small GTPases 5, e97357 (2014).
16. Crespo, P., Schuebel, K. E., Ostrom, A. A., Gutkind, J. S. & Bustelo, X. R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385, 169–172 (1997).
17. Wainscoat, R. et al. The RHOA G17V gene mutation occurs frequently in peripheral T-cell lymphoma and is associated with a characteristic molecular signature. Blood 123, 2893–2894 (2014).
18. Fujiwara M. et al. Activation of RHOA/VAV signaling in angioimmunoblastic T-cell lymphoma. Leukemia. https://doi.org/10.1038/leu.2017.273 (2017).
19. Nagao, R. et al. Clinicopathologic analysis of angioimmunoblastic T-cell lymphomas with or without RHOA G17V mutation using formalin-fixed paraffin-embedded sections. Am. J. Surg. Pathol. 40, 1041–1050 (2016).
20. Ondrejka, S. L. et al. Angioimmunoblastic T-cell lymphomas with the RHOA p. Gly17Val mutation have classic clinical and pathologic features. Am. J. Surg. Pathol. 40, 335–341 (2016).

Received: 19 November 2017 Revised: 19 November 2017 Accepted: 29 November 2017
Published online: 17 January 2018