M.N. Vetrova, M.A. Kulkova, M.T. Kashuba, N.A. Gavrylyuk, Ya.P. Gershkovych, E. Kaiser, A.M. Kulkov *

METHODS OF NATURAL SCIENCES FOR THE RECONSTRUCTION OF THE CERAMICS FIRING 1

The reconstruction of the Early Iron Age ceramics firing from the Northern Black Sea region is a part of the project's tasks of studying the ceramics of mobile and sedentary communities in the region (early nomads and the forest-steppe population). The ceramics firing process and the content of mineral phases were determined by DTA-TG methods. Data are given on five samples from the settlements of Glinjeni II-La Shanz and Subotiv, as well as the burials of Kasperovka, Pryshyb and Velykodolynske. In the paper mineralogical and phase composition of ceramic samples are revealed. It is established that the analyzed samples were burned at a temperature not exceeding 650 °C.

Key words: Northern Black Sea region, Early Iron Age, sedentary population, early nomads, diffraction thermogravimetric analysis, X-ray phase analysis, firing temperature.

Introduction

The problem of the production of handmade pottery by nomads, first of all, the reconstruction of the ceramics firing mode is the task of studying the ceramics of mobile and sedentary communities of the Northern Black Sea region: early nomads and the population of the forest-steppe zone.

1 The work was carried out as a part of the project No. 90 216, supported by the Volkswagen Foundation (Germany).

© M.N. Vetrova, M.A. Kulkova, M.T. Kashuba, N.A. Gavrylyuk, Ya.P. Gershkovych, E. Kaiser, A.M. Kulkov, 2019

DTA-TG method

Diffraction thermogravimetric analysis (DTA-TG) is widely used to determine the firing temperature of ceramics. The minerals are characterized by a stable solid phase and their composition can determine the firing temperature of vessels. During heating, reactions occur in minerals, and they are not observed upon reheating (Kulkova, Yushkova 2008).
Fig. 1. Analyzed ceramic samples of the Northern Black Sea region Early Iron Age: 1 — Glinjeni II-La Shanz; 2 — Subotiv; 3 — Kasperovka, barrow 2, grave 5; 4 — Velykodolynske, group 1, barrow 2, grave 11; 5 — Pryshyb, barrow 41, grave 2 (references to sources are given in the text)

Thus, with DTA ceramics, reactions will occur at temperatures above the burning temperature.

Samples and their research

An experimental research was conducted on fragments of vessels from the forest-steppe settlements of Glinjeni II—La Shanz (Glinjeni 10* and Subotiv (Subotiv 29), as well as the steppe burials of the early nomads Kasperovka (Kasperovka 89), Pryshyb (Pryshyb 105) and Velykodolynske (Velykodolynske 126). Samples were analyzed by two methods.

The fortified settlement of Subotiv, the right bank of the Dnieper (Гершкович 2016):

Sample Subotiv 29 (fig. 1, 2) — the upper part of a non-ornamented bowl with a curved rim, about 20 cm in diameter. Found (Belogradov-Chernoles culture, the end of the 11th — the end of the 9th century BC). The functional group kitchen 1, according to Ya. P. Hershkovich (Гершкович 2016, рис. В66, 9; Tab. K2).

The graves of the early nomads («Cimmerian» culture, 9th — 8th centuries BC — see: Gavrylyuk 2017: 242 ff., with all historiography):

Sample Kasperovka 89 (Kasperovka, barrow 2, grave 5: Гребеников, Елисеев, Клубницев 1984, 36—37) (fig. 1, 3) — poorly polished cup with a high neck, a bent rim, a spherical body and a concave bottom. The upper part of the body is decorated with a double belt carved geometric pattern. Type 4, option 1, according to N.A. Gavrylyuk. Dimensions: height 10 cm, diameter of the rim 8.0 cm, maximum diameter of the body 11.5 cm, diameter of the bottom 7.0 cm, ratio of height and maximum diameter of the body 0.87 (Гаврилюк 2017, 72, 150, рис. 14, 2).

Sample Pryshyb 105 (Pryshyb, barrow 41, grave 2 — Шапошникова, Фоменко, Клубницев, НА И А НАНУ, 1984/9, 38) (fig. 1, 5) — an unpolished pot with a short arcuate neck, an outward-bent rim and body with the largest expansion in the upper third of the height. The bottom is flat, on a high pallet. Type 1, option 3, according to N.A. Gavrylyuk. Dimensions: height 11 cm, diameter of the rim 7.5 cm, maximum diameter of the body 15 cm, diameter of the bottom 8.0 cm, the ratio of the height and maximum diameter of the body 0.73 (Гаврилюк 2017, 37, 139, рис. 4, 9).

Sample Velykodolynske 126 (Velykodolynske, group 1, barrow 2, grave 11 — Суботин, Черняков, Ядвичук 1976, 192—193) (fig. 1, 4) — a polished beaker with a high arcuate neck, an outward-bent rim, a spherical body and a rounded bottom with a hole. The upper part of the vessel body is decorated with a belt of carved geometric pattern, boun-

Table 1. RFA Ceramics Results

Sample number	quantitative phase composition (wt. %) according to Rietveld analysis
Glinjeni 10*	Quartz (54 %), muscovite / illite (26 %), albite (11 %), calcite (7.0 %), microcline (1 %), amphibole (less than 1.0 %)
Subotiv 29	Quartz (91 %), phlogopite (5.0 %), albite (1.0 %), magnetite (1.0 %), microcline (less than 1.0 %), anatase (less than 1.0 %)
Kasperovka 89	Quartz (80 %), albite (9 %), microcline (5.0 %), phlogopite/annite (5.0 %), calcite (less than 1.0 %), rutile, anatase (less than 1.0 %)
Pryshyb 105	Quartz (73 %), muscovite/illite (20 %), microcline (3.0 %), albite (less than 1.0 %), calcite (less than 1.0 %), anatase (less than 1.0 %)
Velykodolynske 126	Quartz (58 %), muscovite/illite (26 %), albite (8.0 %), microcline (7.0 %), rutile (1.0 %)

* Analyst O.G. Bubnova. RC «X-ray diffraction methods of research» St. Petersburg State University.

2 The name and samples numbering are given according to the project database.
Fig. 2. DTA curves (A — Subotiv 29; B — Glinjeni 10)

Table 2. The results of diffraction thermogravimetric analysis of ceramics

Sample Number	Weight Loss (%)	Crystallization water (25—200 °C)	Constitutional water (400—600 °C)	Decomposition of carbonate materials (600—850 °C)	Total loss (25—1100 °C)
Subotiv 29*		2.61	1.51	0.59	7.12
Glinjeni 10*		2.17	2.12	1.76	8.19
Pryshyb 105**		4.99	5.07	0.63	11.00
Velykodolynske 126**		2.88	3.85	0.05	6.98

* Analyst O.G. Bubnova. RC «X-ray diffraction methods of research» St. Petersburg State University.
** Analyst E. Naumysheva. RC ITKN NP SPbU.
ded above by a low roller and 4 symmetrically located single (2) and double conical protrusions—stops. On the roller there are oblique notches. Type 4, option 1, according to N.A. Gavrylyuk. Dimensions: height 13 cm, diameter of the rim 10 cm, maximum diameter of the body 14 cm, diameter of the bottom 3.0 cm, ratio of height and maximum diameter of the body 0.92 (Гаврилюк 2017, 70, 154, рис. 17).

Samples of ceramics were carefully wiped in an agate mortar for X-ray and thermogravimetric analysis. X-ray phase analysis (XRF) was performed on an automatic powder diffractometer Rigaku «Ultima IV» with radiation Co Kα. Shooting speed 2°/min. angles 2θ 5-70°. Filming was carried out at the St. Petersburg State University Resource Center «X-ray diffraction research methods (RMI)». DTA was held in two resource centers of St. Petersburg State University. The RC «RMI» on the device Netzsch STA 449 F3 and RC «Innovative technologies of composite nanomaterials» on the device Setsys Evolution 16 (Setaram, France). During TGA samples were heated from room temperature to 1100°C in oxygen (20 % N₂ 80 % O₂) atmosphere with speed 10°/min.

Results and discussion

XRF showed a similar mineralogical and phase composition of ceramic samples (tab. 1). Quartz, mica (muscovite/phlogopite), and feldspar (microcline/albite) were found in all ceramic samples. Calcite, rutile, anatase, amphibole and magnetite were also diagnosed by XRD.

DTA curves (fig. 2) show endothermic and exothermic peaks, which differ due to differences in mineral composition. Wide endothermic peak in the range 30—200 °C in all samples shows the output of adsorption water, that is, the dehydration of unbound water. This effect is also confirmed by a change in the mass of the samples in this temperature range.

Broad exothermic peak in the range 250—500 °C indicates burnout of organic material present in all samples. Apparently, the organic material was added as a binder or contained in the clays of which the vessels were made.

Endothermic peaks, ranging from 550 to 700 °C, are responsible for the release of water of crystallization from layered silicates. Peak in the area 650 °C indicates the preservation of kaolinite in the process of firing ceramics in antiquity and, accordingly, the firing temperature of such ceramics did not exceed this temperature value (Ravisankar et al. 2014). Illite/muscovite begins to lose water at a temperature of about 700 °C and their complete dehydration occurs at a temperature 850—900 °C (Maritan et al. 2005).

On the DTA curves of the samples with the highest content (according to X-ray diffraction data) of illite/muscovite, we observe endothermic peaks in this area 679 °C (Glinjeni 10), 670 °C (Pryshyb 105) and 650 °C (Vëlykodolynske 126). And the greatest loss of mass in temperatures responsible for the dehydration of clay minerals 200—400 °C is shown by the same samples (tab. 2).

Carbonates begin to decompose when the temperature is 650 °C. For systems with a high content of calcite and/or with a large number of coarse fragments of carbonate rocks, this process can continue until 1000—1100 °C (Trindade et al. 2009). In the sample Glinjeni 10 with the highest mineral content of the carbonate group, a bright endothermic peak is observed at a temperature of 854 °C. Also in this sample, the most pronounced mass loss is 1.76 % at a temperature of 600—850 °C, which indicates the decomposition of carbonate materials (Bayazit et al. 2016). In other samples, the peak in this area is weak and, according to X-ray diffraction data, calcite is present in an amount of less than 1.0 % or is completely absent.

The endothermic peak observed in the temperature range 566—576 °C is responsible for the alpha (α) — beta (β) quartz phase transition. This peak is manifested in all investigated samples. The long stay of ceramics in the burials (and in the cultural layer of the settlements) could lead to the appearance of secondary clay and carbonate minerals. Peaks around 650 °C, which are responsible for the dehydration of clay minerals, can relate to the decomposition of newly formed layered silicates and cannot be used to determine the calcination regime. Quartz neoplasma does not occur during ceramics burial.

Conclusions

Thus, the study of the ceramic firing mode and the content of mineral phases in the studied samples by the method of diffraction thermogravimetric analyzes (DTA-TG) allowed us to make the following conclusions. A peak around 570 °C, showing the transition of alpha-beta quartz, indicates that the analyzed vessels (samples) were burned at a temperature not exceeding 650 °C. Thus, in the manufacturing of the investigated vessels a campfire was used. The used X-ray phase analysis (XRD) and the diffraction thermogravimetric analysis method (TGAA) confirmed the assumptions of archaeologists that
some samples of dishes from the Pre-Scythian burials of the steppe zone of the Northern Black Sea region were made in the conditions of home production and used in the funeral rite after prolonged household usage.

Гаврилюк Н.А. Лепная керамика ранних кочевников Северного Причерноморья (IX — первая половина VII в. до н. э.). Киев, 2017.

Гершкович Я.П. Суботовское городище. Киев, 2016.

Гольцева Н.В., Кашуба М.Т. Глинжен 2. Многослойный памятник Среднего Поднестровья (материалы раскопок 1978 – 1989 и 90–95 гг.). Тирасполь, 1995.

Гребенников Ю.С., Елисеев В.Ф., Клюшинцев В.Н. Погребения преоскского периода в Южном Побужье. Ранний железный век Северо-Западного Причерноморья. Киев, 1984, с. 33—49.

Кашуба М.Т. Раннее железо в лесостепи между Дniestром и Сибром (культура Козия-Сахарная). Stratum plus. 2000, № 3, с. 241—488.

Кулькова М.А., Юшкова М.А. Анализ состава и технологий изготовления керамики эпохи бронзы — раннего железного века из Юго-Восточного Приднепровья, Поволжья и Припятьи. Хронология, периодизация и кросскультурные связи в каменном веке: Замятинский сборник. 2008, вып. 1, с. 201—219.

Суботин Л.В., Черников И.Т., Янченок В.И. Некоторые проблемы древнейшей истории Северо-Западного Причерноморья. Материалы по археологии Северного Причерноморья. 1976, вып. 8, с. 190—195.

Шапошникова О.Г., Фоменко В.П., Клюшинцев В.Н., Елисеев В.Ф. Отчет о работе Николаевской экспедиции в 1984 году. Научный архив ИА НАНУ. 1984/9.

Bayazit M., Işık I., Issi A., Gen E. Archaeometric investigation of the Late Chalcolithic-Early Bronze Age I and the 1st—2nd millennium BCE pottery from Kurki-Turkey. Applied Clay Science. 2016, vol. 126, p. 180—189.

Maritan L., Mazzoli C., Nodari L., Russo U. Second iron age grey pottery from Este (Northeastern Italy): study of provenance and technology. Applied Clay Science. 2005, vol. 29, p. 31—44.

Ravisankar R., Naseerutheen A., Rajalakshmi A., Raja Annamalai G., Chandrasekaran A. Application of thermogravimetry-differential thermal analysis (TG-DTA) technique to study the ancient potteries from Vellore dist, Tamilnadu, India. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014, no. 129, pp. 201—208.

Trindade M.J., Dias M.I., Coroado J., Rocha F. Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science. 2009, vol. 42, p. 345—355.

Методи природничих наук для реконструкції процесу випалу керамики

Проведено реконструкцію режиму випалювання керамики раннього залізного віку з Північного Причерномор’я за матеріалами деяких пам’яток осілості з лісостепу і поховань ранніх кочовиків степової зони. Режим випалу керамики і вміст мінеральних фаз визначені методом ДТА–ТГ. При нагріванні зразків спостерігаються характерні реакції, що відповідають за дегідратацію, декарбонізацію, фазові переходи і т. ін. Склад глини визначався за допомогою рентгенографічного аналізу (РФА).

Експериментальне дослідження було проведено на фрагментах посудин з лісостепових поселень Глинжен І–II, Явориця (Glinjeni I) та Суботів (Subotiv 29), а також степових поховань ранніх кочовиків Касперівка (Kasperivka 89), Пришиб (Pryshyb 105) і Великодолинське (Velykodolynske 126).

РФА показав схожий мінералогічний і фазовий склад зразків керамики (табл. 1). У всіх зразках були виявлені кварц, слюда (мусковіт/флогопіт), полівій шпати (мікроклін/альбіт). Були діагностовані кальцит, рутіл, анатаз, амфібол і магнетит (табл. 1).

Криві ДТА (рис. 2) показують ендотермічні і екзотермічні піки, котрі діагностують відмінності мінерального складу. Широкий ендотермічний пік в інтервалі 30—200 °C у всіх зразках показує вихід адорбційної води, тобто, дегідратацію незв’язаної води. Цей ефект також підтверджується зміною маси зразків в цьому інтервалі температур. Широкий екзотермічний пік в інтервалі 250—500 °C вказує на вигоряння органічного матеріалу, присутнього у всіх зразках.

Ендотермічні піки, що проявляються в інтервалі від 550 до 700 °C, відповідають за вихід кристалізаційної води із шаруватих силікатів. Пік в районі 650 °C вказує на збереження каліюлінта в процесі випалу керамики в давнину і, відповідно, температура випалу такої керамики не перевищувала цього значення (Ravisankar et al. 2014). Іліт/мусковіт починають втрачати воду при температурі близько 700 °C і їх повна дегідратація відбувається при температурі 850—900 °C (Maritan et al. 2005). На кривих ДТА зразків з найбільшим вмістом (за даними РФА) іліта/мусковіта ми спостерігаємо ендотермічні піки в цій області 679 °C (Glinjeni 10), 670 °C (Pryshyb 105) і 650 °C (Velykodolynske 126). А найбільшу втрату маси в температурах відповідають за дегідратацію глинистих мінералів 200—400 °C показують ші ж зразки (табл. 2).
Карбонати починають розкладатися при 650 °C. У зразку Glinjeni 10 з найбільшім вмістом мінералів групи карбонату спостерігається яскравий ендотермічний пік при температурі 854 °C. В інших зразках пік в цій області проявляється слабо і за даними РФА кальцит присутній в кількості менше за 1,0 %, або зовсім відсутній. В інших зразках ендотермічний пік спостерігається в інтервалі температур 566—576 °C.

Отже, пік в районі 570 °C вказує на те, що проаналізовані посудини (зразки) випалювалися при температурі, що не перевищувала 650 °C. Тобто, при виготовленні досліджених посудин використовувався випал у вогніщі. Використаний метод ДТА-ТТ підтверджує припущення археологів про те, що посуд, з якого були відібрани зразки, не був виготовлений спеціально для поховань, а тільки використовувався у поховальному обряді після тривалого побутового використання і був виготовлений в умовах домашнього виробництва.

Ключеві слова: регіон Северного Причорномор'я, ранній железний вік, оседле населення, ранні номади, дифракційний термогравіметричний аналіз, рентгенофазовий аналіз (РФА), температура випалу.

М.Н. Ветрова1, М.А. Кулькова1, М.Т. Кашуба2, Н.А. Гаврилюк3, Я.П. Гершкович4, Э. Кайзер5, А.М. Кульков6

1 Санкт-Петербургский педагогический университет им. Герцена, ORCID 0000-0002-8593-6178
2 Санкт-Петербургский педагогический университет им. Герцена, ORCID 0000-0001-9946-8751
3 Институт истории материальной культуры НАН, Санкт-Петербург, ORCID 0000-0001-8901-8116
4 Институт археологии Национальной академии наук Украины, ORCID 0000-0002-2369-5701
5 Институт археологии Национальной академии наук Украины, ORCID 0000-0002-5915-1300
6 Институт археологии Национальной академии наук Украины, ORCID 0000-0002-2001-2231

МЕТОДЫ ЕСТЕСТВЕННЫХ НАУК ДЛЯ РЕКОНСТРУКЦИИ ПРОЦЕССА ОБЖИГА КЕРАМИКИ

Проведена реконструкция режима обжига керамики раннего железного века из Северного Причерноморья из материалов некоторых памятников оседлости из лесостепії и погребений ранних кочевников степної зони. Режим обжига керамики и содержание минеральных фаз могут быть определены методом ДТА-ТГ. При нагреве образцов наблюдается характерные реакции, отвечающие за дегидратацию, декарбонатизацию, фазовые переходы и пр. Состав глин определялся рентгенфазовым анализом (РФА).

Экспериментальное исследование было проведено на фрагментах сосудов из лесостепных поселений Глинжена II-Ла Шанц (Glinjeni 10) и Суботив (Subotiv 29), а также степных погребений ранних кочевников Касперивка (Kasperivka 89), Пришиб (Pryshyb 105) и Великодолинское (Velykodolynske 126).

РФА показал схожий минералогический и фазовый состав образцов керамики (табл. 1). Во всех образцах керамики были обнаружены кварц, слюда (мусковит/флогопит), полевые шпаты (микроклин/альбит). Были диагностированы кальцит, рутил, анатаз, амфибол и магнетит (табл. 1).

Кривые ДТА (рис. 2) показывают эндотермические и экзотермические пики, которые показывают различия минерального состава. Широкий эндотермический пик в диапазоне 30—200 °C во всех образцах показывает выход адсорбционной воды, т. е. дегидратации не связанной воды. Этот эффект также подтверждается изменением массы образцов в этом интервале температур. Широкий экзотермический пик в интервале 250—500 °C указывает на выгорание органического материала, присутствующего во всех образцах.

Эндотермические пики, появляющиеся в диапазоне от 550 до 700 °C, отвечают за выход кристаллизационной воды из клиноков силикатов. Пик в районе 650 °C указывает на сохранение каолинита в процессе обжига керамики в древности и соответственно температура обжига такой керамики не превышала этого значения температуры (Ravisankar et al. 2014). Иллит/мусковит начинают терять воду при температуре около 700 °C и в полной дегидратации происходит при температуре 850—900 °C (Maritan et al. 2005). На кривых ДТА образцов с наибольшим содержанием (по данным РФА) иллита/мусковита мы наблюдаем эндотермические пики в этой области 679 °C (Glinjeni 10), 670 °C (Pryshyb 105) и 650 (Velykodolynske 126). А наибольшую потерю массы в температурах, отвечающих за дегидратацию глиноземистых минералов 200—400 °C, показывают эти же образцы (табл. 2).

Карбонаты начинают разлагаться при 650 °C. В образце Glinjeni 10 с наибольшим содержанием минералов группа карбоната наблюдается яркий эндотермический пик при температуре 854 °C. В других образцах пик в этой области проявляется слабо и по данным РФА кальцит присутствует в количестве менее 1,0 %, либо совсем отсутствует. В других образцах эндотермический пик, наблюдаемый в интервале температур 566—576 °C.

Пик в районе 570 °C, указывает на то, что проанализированные сосуды (образцы) обжигались при температуре не превышающей 650 °C. Т. е. при изготовлении исследованных сосудов использовался костровой обжиг. Использованный метод ДТА-ТГ подтвердил предположения археологов о том, что исследованные образцы посуды не были изготовлены специально для погребений, а только использовались в погребальном обряде после длительного бытового использования и были произведены в домашних условиях.

Ключевые слова: регион Северного Причерноморья, ранний железный век, оседлое население, ранние номады, дифракционный термогравиметрический анализ, рентгенографический анализ (РФА), температура обжига.
References

Bayazit M., Işık I., Issi A., Gen E. Archaeometric investigation of the Late Chalcolithic-Early Bronze Age I and the 1st-2nd millennium BCE potteries from Kuriki-Turkey. *Applied Clay Science*. 2016, vol. 126, p. 180-189.

Gavriluk N.A. Lepnaia keramika rannikh kochevnikov Severnogo Prichernomoria (IX - pervaja polovina VII v. do n. e.). Kyiv, 2017.

Gershkovich Ia.P. Subotovskoe gorodishche. Kyiv, 2016.

Goltseva N.V., Kashuba M.T. Glinzheni. Mnogosloinyi pamiatnik Srednego Podnestrovia (materialy raskopok 1978-79 gg. i 1989-90 gg.). Tiraspol, 1995.

Greben'nikov Iu.S., Eliseev V.F., Kliushintsev V.N. Pogrebeniia predskifskogo perioda v Iuzhnom Pobuzhe. *Rannii zheleznyi vek Severo-Zapadnogo Prichernomoria*. Kyiv, 1984, pp. 33-49.

Kashuba M.T. Rannee zhelezno v lesostepi mezhdv Dnestrom i Siretom (kultura Kozia-Sakharna). *Stratum plus*. 2000, 3, pp. 241-488.

Kul'kova M.A., Iushkova M.A. Analiz sostava i technologii izgotovleniia keramiki epokhi bronzy - rannego zheleznoego veka iz Iugo-Vostochnogo Priladozhia, Povolzhia i Priilmenia. *Khronologiiia, periodizatsii i krosskulturnye sviazy v kamennom veke: Zamiatinskii sbornik*. 2008, 1, pp. 201-219.

Maritan L., Mazzoli C., Nodari L., Russo U. Second iron age grey pottery from Este (Northeastern Italy): study of provenance and technology. *Applied Clay Science*. 2005, vol. 29, p. 31-44.

Ravisankar R., Naseerutheen A., Rajalakshmi A., Raja Annamalai G., Chandrasekaran A. Application of thermogravimetry-differential thermal analysis (TG-DTA) technique to study the ancient potteries from Vellore dist, Tamilnadu, India. *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*. 2014, no. 129, pp. 201-208.

Shaposhnikova O.G., Fomenko V.P., Kliushintsev V.N. Eliseev V.F. Otchet o rabote Nikolaevskoi ekspeditsii v 1984 godu. *Nauchnyi arkhiv IA NANU*. 1984/9.

Subotin L.V., Cherniakov I.T., Iadvichuk V.I. Nekotorye problemy drevneishei istorii Severo-Zapadnogo Prichernomoria. *Materialy po arkheologii Severnogo Prichernomoria*. 1976, 8, pp. 190-195.

Trindade M.J., Dias M.I., Coroado J., Rocha F. Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. *Applied Clay Science*. 2009, vol. 42, p. 345-355.