Incompressible flow in porous media with fractional diffusion

Ángel Castro¹, Diego Córdoba¹, Francisco Gancedo² and Rafael Orive³

¹ Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, C/Serrano 123, 28006 Madrid, Spain
² Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, IL 60637, USA
³ Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain

E-mail: angel_castro@imaff.cfmac.csic.es, dcg@imaff.cfmac.csic.es, fgancedo@math.uchicago.edu and rafael.orive@uam.es

Received 20 February 2009
Published 12 June 2009
Online at stacks.iop.org/Non/22/1791

Abstract

In this paper we study heat transfer with a general fractional diffusion term of an incompressible fluid in a porous medium governed by Darcy’s law. We show the formation of singularities with infinite energy, and for infinite energy we obtain existence and uniqueness results of strong solutions for the sub-critical and critical cases. We prove the global existence of weak solutions for different cases. Moreover, we obtain the decay of the solution in \(L^p \), for any \(p \geq 2 \), and the asymptotic behaviour is shown. Finally, we prove the existence of an attractor in a weak sense and, for the sub-critical dissipative case with \(\alpha \in (1, 2] \), we obtain the existence of the global attractor for the solutions in the space \(H^s \) for any \(s > (N/2) + 1 - \alpha \).

Mathematics Subject Classification: 76S05, 76B03, 65N06.

1. Introduction

We use Darcy’s law to model the flow velocities, which yields the following relationship between the liquid discharge (flux per unit area) \(v \in \mathbb{R}^N \) and the pressure:

\[
v = -k \left(\nabla p + g \gamma T \right),
\]

where \(k \) is the matrix medium permeabilities in the different directions, respectively, divided by the viscosity, \(T \) is the liquid temperature, \(g \) is the acceleration due to gravity and the vector \(\gamma \in \mathbb{R}^N \) is the last canonical vector \(e_N \). While the Navier–Stokes and the Stokes systems
are both microscopic equations, Darcy’s law yields a macroscopic description of a flow in the porous medium [1]. To simplify the notation, we consider $k = g = 1$.

In this paper we study the transfer of the heat with a general diffusion term in an incompressible flow. The system which we consider is the following (for more details see [18]):

$$\frac{\partial T}{\partial t} + v \cdot \nabla T = -\nu \Lambda^\alpha T, \quad (1.1)$$

$$v = - (\nabla p + \gamma T), \quad (1.2)$$

$$\text{div } v = 0, \quad (1.3)$$

where $\nu > 0$, and the operator Λ^α is given by $\Lambda^\alpha \equiv (-\Delta)^{\alpha/2}$. We will treat the case $0 \leq \alpha \leq 2$ and denote it by DPM. The case $\alpha = 1$ is called the critical case, the case $1 < \alpha \leq 2$ is subcritical and the case $0 \leq \alpha < 1$ is supercritical. Roughly speaking, the critical and super-critical cases are mathematically harder to deal with than the sub-critical case.

In [9] Fabrie investigates a system of partial differential equations describing the natural convection in a porous medium under a gradient of temperature, which is obtained by coupling the energy equation and the Darcy–Forchheimer equation. He proves existence, uniqueness and regularity of the evolution problem as well as the existence of stationary solutions for the two-dimensional case. Moreover, a regularity theorem is established and a uniform estimate in time of the second-order space derivatives of the solutions of the three-dimensional case is given. In [11] the authors consider the large-time behaviour of solutions to the system

$$\gamma v_t + v + \nabla p - Ra^\alpha \gamma T = 0, \quad (1.4)$$

$$\text{div } v = 0, \quad (1.5)$$

$$T_t - \Delta T + v \nabla T - v_3 = 0, \quad (1.6)$$

describing the natural convection in a porous medium filling a bounded domain in \mathbb{R}^3. The asymptotic behaviour of the solutions is studied using the concept of an exponential attractor, i.e. a compact finite-dimensional set invariant under the flow associated with the system, and uniformly exponentially attracting all the trajectories within a bounded absorbing set. The main results include the existence of exponential attractors as well as their strong continuity in a singular (adiabatic) limit $\gamma \to 0$. In [17], using a different method (Galerkin), a global existence and uniqueness result is established for the strong solutions of the three-dimensional Bénard convection problem in a porous medium. Furthermore, a Gevrey class regularity is obtained for the finite-dimensional attractor of the system. Later, in [19], the authors deduce the $H^1 \times H^2$ regularity of the attractor. Combining this with a Fourier splitting method, they were able to establish the real analyticity of solutions in the attractor.

More recently the Boussinesq approximation of the equations of coupled heat and fluid flow in a porous medium is studied in [8]. This system corresponds to (1.1)–(1.3) with $\alpha = 2$. They show that the corresponding system of partial differential equations possesses a global attractor. They give lower and upper bounds of the Hausdorff dimension of the attractor depending on a physical parameter of the system, namely the Rayleigh number of the flow.

Next, we rewrite system (1.1) to obtain the velocity in terms of T. The 2D inviscid case is shown in [7]. Due to the incompressibility condition, we have $\Delta v = -\text{curl} (\text{curl } v)$. Then by computing the curl of the curl of Darcy’s law (1.2), we get

$$\Delta v = \left(\begin{array}{ccc} \frac{\partial^2 T}{\partial x_1 \partial x_3} & \frac{\partial^2 T}{\partial x_2 \partial x_3} & - \frac{\partial^2 T}{\partial x_1^2} - \frac{\partial^2 T}{\partial x_2^2} \end{array} \right).$$

Taking the inverse of the Laplacian

$$v = \frac{1}{4\pi} \int \frac{1}{|x - y|} \left(\begin{array}{ccc} \frac{\partial^2 T}{\partial x_1 \partial x_3} & \frac{\partial^2 T}{\partial x_2 \partial x_3} & - \frac{\partial^2 T}{\partial x_1^2} - \frac{\partial^2 T}{\partial x_2^2} \end{array} \right) dy$$
and integrating by parts we obtain
\[v(x, t) = -\frac{2}{3}(0, 0, T(x, t)) + \frac{1}{4\pi} PV \int_{\mathbb{R}^3} K(x - y)T(y, t) \, dy, \quad x \in \mathbb{R}^3, \quad (1.4) \]
where
\[K(x) = \left(\frac{3x_1x_3}{|x|^5}, \frac{3x_2x_3}{|x|^5}, \frac{2x_3^2 - x_1^2 - x_2^2}{|x|^5} \right). \]

In sections 2–4 we consider the case where the spatial domain can be either the whole \(\mathbb{R}^N \) or the torus \(\mathbb{T}^N \) with periodic boundary condition.

In section 2 we obtain results of the existence of strong solutions of system (1.1)–(1.3) under the hypothesis of regular initial data \(T_0 \in H^s \) with \(s > 0 \) and \(\alpha \in (1, 2] \). The case \(\alpha = 2 \) was also studied in [8]. For the supercritical case \(\alpha \in [0, 1) \), there is a global existence for small initial data \(T_0 \in H^s \) with \(s > N/2 + 1 \). Also, in the critical case \(\alpha = 1 \), the existence of strong solutions is obtained as in [3, 15] for the critical dissipative quasi-geostrophic equation.

In section 3 we present the results of the global existence of weak solutions. We prove a generalization of the classical Leray–Prodi–Serrin condition for the uniqueness of the solutions and obtain global existence and uniqueness for the subcritical case. In section 4, we obtain the decay of the solutions of (1.1)–(1.3) in \(\mathbb{R}^N \) and \(\mathbb{T}^N \) for the \(L^p \)-norms.

Since we are dealing with a dissipative system, in section 5 we study some attracting properties of the solutions of (1.1)–(1.3) in \(\mathbb{T}^N \) with a source term \(f \) time independent:
\[\partial_T + v \cdot \nabla T + \nu/\Lambda^\alpha T = f. \quad (1.5) \]
It is easy to see that \(\overline{T} \), the mean of the solution \(T \) of (1.5), satisfies
\[\frac{d}{dt} \overline{T} = \overline{f}, \]
where
\[\overline{T(t)} = \int_{\mathbb{T}^N} T(x, t) \, dx \quad \text{and} \quad \overline{f} = \int_{\mathbb{T}^N} f(x) \, dx. \]
Therefore, without loss of generality, we can assume that \(f \) and \(T \) are always mean zero. In particular, we prove the existence of a global attractor in the set of the weak solutions with the weak topology of \(L^2_{\text{loc}}(0, \infty; L^2(\mathbb{T}^N)) \) and a global classic compact attractor, connected and maximal in \(H^s \) with \(s > N/2 + 1 - \alpha \) in the topology of the strong solutions.

In section 6 we present the results of local existence and blow up of solutions with infinite energy for \(\nu > 0 \) in the case of \(\alpha = 1, 2 \).

2. Strong solutions

Here we show global existence results of the DPM system (1.1)–(1.3) in the sub-critical case. We use a maximum principle for the \(L^p \) norm of the solutions of DPM,
\[\| T(t) \|_{L^p} \leq \| T_0 \|_{L^p} \quad \text{with} \quad 1 \leq p \leq \infty, \quad (2.1) \]
which is a consequence of \(\nabla \cdot v = 0 \) and the following positivity lemma (see [6, 20]).

Lemma 2.1. For \(f, \Lambda^\alpha f \in L^p \) with \(0 \leq \alpha \leq 2 \) and \(1 \leq p \leq \infty \), the following is satisfied
\[\int |f|^{p-1} \text{sign}(f) \Lambda^\alpha f \, dx \geq 0. \quad (2.2) \]

Theorem 2.2. Let \(T_0 \in H^s \cap L^p \) with \(s > 0 \) and \(N/(\alpha - 1) < p < \infty \). Then, there exists \(T \in C([0, \infty); H^s) \), solution of DPM with \(1 < \alpha \leq 2 \).
Proof. For a solution of DPM we have
\[T_t = -\text{div}(v T) - v \Delta^s T. \]
We use the equality \(\partial_t v = \Lambda(R_t) \), where \(R_t \) is the Riesz transforms (see [23]), to get
\[\frac{1}{2} \frac{d}{dt} \| \Lambda^s T \|_{L^2}^2 = - \int \Lambda^{s+\frac{1}{2}} T \Lambda^{s+\frac{1}{2}} (R_t(v T)) \, dx - v \| \Lambda^{s+\frac{1}{2}} T \|_{L^2}^2. \]
The Hölder inequality and the Calderon–Zygmund inequalities for the Riesz transforms (see [23]) give
\[\frac{1}{2} \frac{d}{dt} \| \Lambda^s T \|_{L^2}^2 \leq \| \Lambda^{s+\frac{1}{2}} T \|_{L^2} \| \Lambda^{s+\frac{1}{2}} (v T) \|_{L^2} - v \| \Lambda^{s+\frac{1}{2}} T \|_{L^2}^2. \]
By the estimate for the operator \(\Lambda^s \) applied to the product of functions (see [24]) for \(s > 0 \)
\[\| \Lambda^s (fg) \|_{L^r} \leq C(\| f \|_{L^r} \| \Lambda^s g \|_{L^q} + \| g \|_{L^r} \| \Lambda^s f \|_{L^q}) \quad 1 < r < q' \leq \infty, \quad \frac{1}{r} = \frac{1}{q} + \frac{1}{q'}, \quad (2.3) \]
we have for \(q' = p, \)
\[\frac{1}{2} \frac{d}{dt} \| \Lambda^s T \|_{L^2}^2 \leq C \| \Lambda^{s+\frac{1}{2}} T \|_{L^q} (\| v \|_{L^p} \| \Lambda^{s+\frac{1}{2}} T \|_{L^q} + \| T \|_{L^q} \| \Lambda^{s+\frac{1}{2}} T \|_{L^q}) - v \| \Lambda^{s+\frac{1}{2}} T \|_{L^2}^2, \]
with \((1/p) + (1/q) = (1/2). \) Now, since \(v \) satisfies (1.4), again we apply the Calderon–Zygmund inequalities obtaining
\[\| v \|_{L^p} \leq C \| T \|_{L^q}, \quad \| \Lambda^{s+\frac{1}{2}} T \|_{L^2} \leq C \| \Lambda^{s+\frac{1}{2}} T \|_{L^q}, \]
and (2.1) gives
\[\frac{1}{2} \frac{d}{dt} \| \Lambda^s T \|_{L^2}^2 \leq C \| T_0 \|_{L^q} \| \Lambda^{s+\frac{1}{2}} T \|_{L^2} \| \Lambda^{s+\frac{1}{2}} T \|_{L^q} - v \| \Lambda^{s+\frac{1}{2}} T \|_{L^2}^2. \]
The inequality for the Riesz potential (see [23])
\[\| I_\beta(f) \|_{L^q} \leq C \| f \|_{L^q}, \quad 0 < \beta < N, \quad 1 < r < q < \infty, \quad \frac{1}{r} = \frac{1}{q} - \frac{\beta}{N}, \quad I_\beta = \Lambda^{-\beta}, \quad (2.4) \]
for \(r = 2 \) and \(\beta = N/p \), yields
\[\| \Lambda^{s+\frac{1}{2}} T \|_{L^q} \leq C \| \Lambda^{s+\frac{1}{2}} T \|_{L^2}. \]
We take \(p > N/(\alpha - 1) \), and therefore \(1 + \beta < \alpha \), so that
\[\| \Lambda^{s+\frac{1}{2}} T \|_{L^q} \leq \| \Lambda^{s+\frac{1}{2}} T \|_{L^q} \| \Lambda^s T \|_{L^q}^{1-\gamma}, \]
with \(\gamma = (2 - \alpha + 2\beta)/\alpha < 1. \) Applying the last two inequalities we obtain
\[\frac{1}{2} \frac{d}{dt} \| \Lambda^s T \|_{L^2}^2 \leq C \| T_0 \|_{L^q} \| \Lambda^{s+\frac{1}{2}} T \|_{L^2}^{1-\gamma} \| \Lambda^s T \|_{L^q}^{1-\gamma} - v \| \Lambda^{s+\frac{1}{2}} T \|_{L^2}^2, \]
and Young’s inequality gives
\[\frac{1}{2} \frac{d}{dt} \| \Lambda^s T \|_{L^2}^2 \leq C(v, \| T_0 \|_{L^q}) \| \Lambda^s T \|_{L^2}^2. \]
Furthermore, we have
\[\| \Lambda^s T \|_{L^2}^2(t) \leq \| \Lambda^s T_0 \|_{L^2} e^{Ct}. \]
From this a priori inequality together with the energy estimates argument we can conclude the global existence result. \(\blacksquare \)
Theorem 2.3. Let \(0 \leq \alpha \leq 1 \) be given and assume that \(T_0 \in H^s \), \(s > (N - \alpha)/2 + 1 \). Then there is a time \(\tau = \tau(\|\Lambda^s T_0\|) \) such that there exists a unique solution to DPM with \(T \in C(0, \tau), H^s \).

Proof. Since the fluid is incompressible we have for \(s > (N - \alpha)/2 + 1 \)
\[
\frac{1}{2} \frac{d}{dt} \|\Lambda^s T\|_{L^2}^2 = - \int \Lambda^s T \Lambda^s (v \nabla T) \, dx - v \|\Lambda^{s+\frac{1}{2}} T\|_{L^2}^2
\]
\[
= - \int \Lambda^s T (\Lambda^s (v \nabla T) - v \Lambda^s (\nabla T)) \, dx - v \|\Lambda^{s+\frac{1}{2}} T\|_{L^2}^2
\]
\[
\leq C \|\Lambda^s T\|_{L^2} \|\Lambda^s (v \nabla T) - v \Lambda^s (\nabla T)\|_{L^2} - v \|\Lambda^{s+\frac{1}{2}} T\|_{L^2}^2.
\]
Using the following estimate (see [13]):
\[
\|\Lambda^s (fg) - f \Lambda^s (g)\|_{L^p} \leq C \left(\|\nabla f\|_{L^\infty} \|\Lambda^{s-1} g\|_{L^p} + \|\Lambda^s f\|_{L^p} \|g\|_{L^\infty} \right) \quad 1 < p < \infty,
\]
we obtain for \(p = 2 \)
\[
\frac{1}{2} \frac{d}{dt} \|\Lambda^s T\|_{L^2}^2 \leq C \left(\|\nabla v\|_{L^\infty} + \|\nabla T\|_{L^\infty} \right) \|\Lambda^s T\|_{L^2}^2 - v \|\Lambda^{s+\frac{1}{2}} T\|_{L^2}^2.
\]
Applying Sobolev estimates we get
\[
\frac{1}{2} \frac{d}{dt} \|\Lambda^s T\|_{L^2}^2 \leq C \left(\|T_0\|_{L^2} + \|\Lambda^{N/2+1+\varepsilon} T\|_{L^2} \right) \|\Lambda^s T\|_{L^2}^2 - v \|\Lambda^{s+\frac{1}{2}} T\|_{L^2}^2.
\]
and taking \(\varepsilon = \alpha - (N/2) - 1 \) it follows that
\[
\frac{1}{2} \frac{d}{dt} \|\Lambda^s T\|_{L^2}^2 \leq C \left(\frac{1}{\alpha} + 1 \right) \left(\|T_0\|_{L^2}^2 + \|\Lambda^s T\|_{L^2}^2 \right) \|\Lambda^s T\|_{L^2}^2.
\]
(2.5)
Local existence is a consequence of the above \textit{a priori} inequality.

Let us consider two solutions \(T^1 \) and \(T^2 \) of DPM with velocities \(v^1 \) and \(v^2 \), respectively, and equal to the initial datum \(T^1(x, 0) = T^2(x, 0) = T_0(x) \). If we denote \(T = T^1 - T^2 \) and \(v = v^1 - v^2 \), we have
\[
\frac{1}{2} \frac{d}{dt} \|T\|_{L^2}^2 \leq - \int T v \cdot \nabla T^1 \, dx - v \|\Lambda^{s+\frac{1}{2}} T\|_{L^2}^2.
\]
For \(\alpha = 0 \) Calderon–Zygmund and Sobolev estimates give
\[
\frac{1}{2} \frac{d}{dt} \|T\|_{L^2}^2 \leq C \|T\|_{L^2} \|\nabla T^1\|_{L^\infty} \leq C \|T\|_{L^2}^2 \|T^1\|_{H^s}.
\]
Inequality (2.5) implies that \(\|T\|_{H^s(t)} \) is locally bounded. Furthermore, we can conclude
\[
\|T\|_{L^2(t)}^2 \leq \|T\|_{L^2}^2(0) \exp \left(C \int_0^t \|T^1\|_{H^s} \, d\sigma \right),
\]
which yields uniqueness.

The case \(\alpha > 0 \) is treated differently, we have
\[
\frac{1}{2} \frac{d}{dt} \|T\|_{L^2}^2 \leq \|T\|_{L^2} \|\nabla T^1\|_{L^p} \|\Lambda^s T\|_{L^2} - v \|\Lambda^{s+\frac{1}{2}} T\|_{L^2}^2,
\]
with \(q = 2N/(N - \alpha) \), and \(p = 2N/\alpha \). From (2.4) we obtain
\[
\|T\|_{L^p} \leq C \|\Lambda^{s+\frac{1}{2}} T\|_{L^2}, \quad \|\nabla T^1\|_{L^p} \leq C \|\Lambda^{s+\frac{1}{2}} T^1\|_{L^2} \leq C \|T^1\|_{H^s},
\]
and finally
\[
\frac{1}{2} \frac{d}{dt} \|T\|_{L^2}^2 \leq \frac{C}{\alpha} \|T\|_{L^2}^2 \|T^1\|_{H^s}.
\]
Uniqueness follows from integrating in time.
Remark 2.4. For the supercritical cases ($0 \leq \alpha < 1$), we have the same criterion as [7] for the formation of singularities in finite time. In fact, we have that $T \in C(0, \tau; H^s)$ with $s > N/2 + 1$ for any $\tau > 0$ if, and only if,

$$\int_0^\tau \|\nabla T\|_{\text{BMO}}(t) \, dt < \infty.$$

For small initial data we obtain the following global existence result for the supercritical case.

Theorem 2.5. Let $\nu > 0$, $0 \leq \alpha < 1$, and the initial datum satisfy the smallness assumption

$$\|T_0\|_{H^s} \leq \frac{\nu}{C}, \quad s > N/2 + 1,$$

for C a fixed constant. Then, there exists a unique solution of (1.1)–(1.3) in $C^1([0, \infty) ; H^s)$

Proof. We multiply (1.1) by $\Lambda^{2s}T$ and, by the Sobolev embedding, we get

$$\frac{1}{2} \frac{d}{dt} \|\Lambda^s T\|^2_{L^2} \leq C(\|\nabla v\|_{L^\infty} + \|\nabla T\|_{L^\infty})\|\Lambda^s T\|^2_{L^2} - \nu\|\Lambda^{s+\frac{1}{2}} T\|^2_{L^2}$$

$$\leq C(\|T\|_{L^2} + \|\Lambda^s T\|_{L^2})\|\Lambda^s T\|^2_{L^2} - \nu\|\Lambda^{s+\frac{1}{2}} T\|^2_{L^2}$$

with $s > 2$. Thus, we have

$$\frac{1}{2} \frac{d}{dt} (\|T\|^2_{L^2} + \|\Lambda^s T\|^2_{L^2}) \leq -\nu\|\Lambda^{s+\frac{1}{2}} T\|^2_{L^2} + C(\|T\|_{L^2} + \|\Lambda^s T\|_{L^2})\|\Lambda^s T\|^2_{L^2} - \nu\|\Lambda^{s+\frac{1}{2}} T\|^2_{L^2}.$$

Since

$$\|\Lambda^s T\|^2_{L^2} \leq \|\Lambda^{s+\frac{1}{2}} T\|^2_{L^2},$$

we obtain

$$\frac{1}{2} \frac{d}{dt} (\|T\|^2_{L^2} + \|\Lambda^s T\|^2_{L^2}) \leq \|\Lambda^s T\|^2_{L^2} (C(\|T\|_{L^2} + \|\Lambda^s T\|_{L^2}) - \nu) \leq 0$$

by the assumption of the smallness of the initial datum. \[\square\]

In the critical case $\alpha = 1$, we state the following regularity result.

Theorem 2.6. Let T be a solution to system (1.1)–(1.3). Then T verifies the level set energy inequalities, i.e. for every $\lambda > 0$

$$\int_{\mathbb{R}^N} T^2(t_1, x) \, dx + \int_{t_1}^{t_2} \int_{\mathbb{R}^N} |\Lambda^{1/2} \nabla T\|_{L^2}^2 \, dx \, dt \leq \int_{\mathbb{R}^N} T^2(t_1, x) \, dx, \quad 0 < t_1 < t_2$$

where $T_\lambda = (T - \lambda)_+$. It yields that for every $t_0 > 0$ there exists $\gamma > 0$ such that T is bounded in $C^\gamma ([t_0, \infty) \times \mathbb{R}^N)$.

With this result we show that the solutions of the diffusive porous medium with initial L^2 data and critical diffusion $(-\Delta)^{1/2}$ are locally smooth for any space dimension. The proof is analogous to the critical dissipative quasi-geostrophic equation that is shown in [3]. An analogous result can be obtained using the ideas of [15] to show that the solutions in 2D with periodic C^∞ data remain C^∞ for all time.
3. Weak solutions

In this section we prove the global existence of weak solutions for DPM with $0 < \alpha \leq 2$. First we give the definition of a weak solution.

Definition 3.1. The active scalar $T(x,t)$ is a weak solution of DPM if for any $\varphi \in C^\infty_c([0, \tau] \times \mathbb{R})$ with $\varphi(x, \tau) = 0$, it follows that

$$0 = \int_{\mathbb{R}^N} T_0(x) \varphi(x, 0) \, dx + \int_0^\tau \int_{\mathbb{R}^N} T(x, t) \left(\partial_t \varphi(x, t) + v(x, t) \cdot \nabla \varphi(x, t) - v \Lambda^\alpha \varphi(x, t) \right) \, dx \, dt,$$

(3.1)

where the velocity v satisfies (1.3) and is given by (1.2).

An analogous definition is considered in the periodic setting taking $\varphi \in C^\infty_c([0, \tau] \times \mathbb{T})$.

Theorem 3.2. Suppose $T_0 \in L^2(\mathbb{R}^N)$ and $0 < \alpha \leq 2$. Then, for any $\tau > 0$, there exists at least one weak solution $T \in C([0, \tau]; L^2(\mathbb{R}^N)) \cap L^2([0, \tau]; H^{\alpha/2}(\mathbb{R}^N))$ to the DPM equation.

To prove the theorem we modify system (1.1)–(1.3) with a small viscosity term and we regularize the initial data. In particular, for $\varepsilon > 0$, we consider the family T_ε of solutions given by the system

$$\begin{align*}
\frac{\partial T_\varepsilon}{\partial t} + v_\varepsilon \cdot \nabla T_\varepsilon &= -v \Lambda^\alpha T_\varepsilon + \varepsilon \Delta T_\varepsilon, \\
v_\varepsilon &= - (\nabla p_\varepsilon + \gamma T_\varepsilon), \\
\text{div } v_\varepsilon &= 0 \\
T_\varepsilon(x, 0) &= \phi_\varepsilon \ast T_0,
\end{align*}$$

(3.2)

where \ast denotes the convolution, $\phi_\varepsilon(x) = \varepsilon^{-N} \phi(x/\varepsilon)$ and

$$\phi \in C^\infty_c(\mathbb{R}^N), \quad \phi \geq 0, \quad \int \phi(x) \, dx = 1.$$

As we show in the previous section there is a global solution of (3.2) with $T_\varepsilon \in C([0, \tau]; H^s(\mathbb{R}^N))$ for any $s > 0$. We multiply by T_ε to get

$$\frac{1}{2} \frac{d}{dt} \left(\|T_\varepsilon\|_{L^2}^2 \right) + v \|\Lambda^{\alpha/2} T_\varepsilon\|_{L^2}^2 \leq 0,$$

and integrating in time

$$\|T_\varepsilon(\tau)\|_{L^2}^2 + 2v \int_0^\tau \|\Lambda^{\alpha/2} T_\varepsilon(s)\|_{L^2}^2 \, ds \leq \|T_0\|_{L^2}^2 \quad \forall \tau.$$

(3.3)

In particular, we find

$$T_\varepsilon \in C([0, \tau]; L^2(\mathbb{R}^N)) \quad \text{and} \quad \max_{0 \leq t \leq \tau} \|T_\varepsilon(t)\|_{L^2}^2 \leq \|T_0\|_{L^2}^2.$$

(3.4)

We pass to the limit using the Aubin–Lions compactness lemma (see [16]):

Lemma 3.3. Let $\{f_\varepsilon(t)\}$ be a sequence in $C([0, \tau]; H^s(\mathbb{R}^N))$ such that

(i) $\max_{0 \leq t \leq \tau} \|f_\varepsilon(t)\|_{H^s} \leq C$

(ii) for any $\varphi \in C^\infty_c(\mathbb{R}^N)$, $\{\varphi f_\varepsilon\}$ is uniformly Lipschitz in the interval of time $[0, \tau]$ with respect to the space $H^s(\mathbb{R}^N)$ with $r < s$, i.e.

$$\|\varphi f_\varepsilon(t_2) - \varphi f_\varepsilon(t_1)\|_{H^r} \leq C_s \|t_2 - t_1\| \quad 0 \leq t_1, t_2 \leq \tau.$$
Then, there exists a subsequence \(\{ f_{s_j} (t) \} \) and \(f \in C([0, T]; H^r(\mathbb{R}^N)) \) such that for all \(\lambda \in (r, s) \)
\[
\max_{0 \leq t \leq T} \| \varphi f_{s_j} (t) - \varphi f (t) \|_{H^r} \to 0 \quad \text{as } j \to \infty.
\]

First, by (3.4) we get \(T \in C([0, T]; L^2(\mathbb{R}^N)) \) and \((i) \) in the space \(L^2(\mathbb{R}^N) \). Next, we prove that the family \(T \) is Lipschitz in some space \(H^{-r}(\mathbb{R}^N) \) with \(r > N/2 + 2 \). Since \(T \) is a strong solution of (3.2) and continuous it follows that
\[
\| \varphi T_{i} (t_2) - \varphi T_{i} (t_1) \|_{H^{-r}} = \left\| \int_{t_1}^{t_2} \varphi \frac{d}{dt} T_{i} dt \right\|_{H^{-r}} \leq \max_{t_1 \leq t \leq t_2} \{ A(t) \} | t_2 - t_1 | ,
\]
where
\[
A(t) = \| \text{div} (\varphi v_{i} T_{i}) \|_{H^{-r}} + \| \text{div} (\varphi) v_{i} T_{i} \|_{H^{-r}} + v \| \varphi \Lambda^a T_{i} \|_{H^{-r}} + s \| \varphi \Delta T_{i} \|_{H^{-r}} .
\]
Applying the property that the Fourier transform of the product is the convolution of the respective Fourier transforms, we have
\[
\left| \int_{\mathbb{R}^N} \hat{\varphi} (\eta) \xi - \eta | \hat{T}_{i} (\xi - \eta) \ d\eta \right| \leq C \int_{\mathbb{R}^N} (|\xi|^2 + |\eta|^2) | \hat{\varphi} (\eta) | | \hat{T}_{i} (\xi - \eta) | \ d\eta \leq (1 + |\xi|^2) \| \varphi \|_{H^{-r}} \| T_{i} \|_{L^2} ,
\]
and it yields
\[
\| \varphi \Lambda^a T_{i} \|_{H^{-r}} \leq C (\varphi) \| T_{i} \|_{L^2} ; \left(\int_{\mathbb{R}^N} \left(1 + |\xi|^2 \right)^2 \ d\xi \right)^{1/2} \leq C (r, \varphi) \| T_0 \|_{L^2} .
\]
Analogously,
\[
\| \varphi \Delta T_{i} \|_{H^{-r}} \leq C (r, \varphi) \| T_0 \|_{L^2} .
\]
We have
\[
\| \text{div} (\varphi) v_{i} T_{i} \|_{H^{-r}} \leq C (r) \| \text{div} (\varphi) V_{i} T_{i} \|_{L^\infty} \leq C (r) \| \text{div} (\varphi) \|_{L^1} \| v_{i} T_{i} \|_{L^\infty} \leq C (r, \varphi) \| v_{i} T_{i} \|_{L^2} ;
\]
and by (3.4) and the fact that the velocity satisfies (1.4), it follows that
\[
\| \text{div} (\varphi) v_{i} T_{i} \|_{H^{-r}} \leq C (r, \varphi) \| T_0 \|_{L^2}^2 .
\]
In a similar way
\[
\| \text{div} (\varphi v_{i} T_{i}) \|_{H^{-r}} \leq \| \varphi v_{i} T_{i} \|_{H^{-r}} \leq C (s, \varphi) \| T_0 \|_{L^2}^2 .
\]
From (3.5), condition \((ii)\) of the Aubin–Lions lemma is satisfied. Therefore, there exists a subsequence and a function \(T \in C([0, T]; L^2(\mathbb{R}^N)) \) such that
\[
T_{i} \to T \quad \text{in } L^2 \quad \text{a.e. } t \quad \text{and} \quad \max_{0 \leq t \leq T} \| \varphi T_{i} (t) - \varphi T (t) \|_{H^{-r}} \to 0 \quad \text{as } \lambda \in (-r, 0) ,
\]
(3.6)
We pass to the limit in the weak formulation of the problem (3.2), i.e.,
\[
0 = \int_{\mathbb{R}^N} T_{i} (x, 0) \varphi (x, 0) \ d x + \int_{0}^{T} \int_{\mathbb{R}^N} T_{i} (x, t) \left(\partial_t \varphi (x, t) + v_{i} \varphi (x, t) \cdot \nabla \varphi (x, t) - v A^a \varphi (x, t) + s \Delta \varphi (x, t) \right) \ d x \ d t ,
\]
and we obtain
\[
0 = \int_{\mathbb{R}^N} T_0 (x) \varphi (x, 0) \ d x + \int_{0}^{T} \int_{\mathbb{R}^N} T (x, t) \left(\partial_t \varphi (x, t) - v A^a \varphi (x, t) \right) \ d x \ d t + \lim_{\varepsilon \to 0} \int_{0}^{T} \int_{\mathbb{R}^N} T_{\varepsilon} (v_{\varepsilon} \cdot \nabla \varphi) \ d x \ d t .
\]
Next, we decompose the nonlinear term
\[\int_0^\tau \int_{\mathbb{R}^N} T'(v_x \cdot \nabla \varphi) \, dx \, dt = \int_0^\tau \int_{\mathbb{R}^N} (T_x - T)(v_x \cdot \nabla \varphi) \, dx \, dt + \int_0^\tau \int_{\mathbb{R}^N} T(v_x \cdot \nabla \varphi) \, dx \, dt. \]

Using the Fourier transform in the first term, we have
\[
\left| \int_0^\tau \int_{\mathbb{R}^N} (T_x - T)(v_x \cdot \nabla \varphi) \, dx \, dt \right| \leq \max_{0 \leq t \leq \tau} \| (T_x - T) \nabla \varphi \|_{H^{-\alpha/2}} \int_0^\tau (\| v_x \|_{L^2} + \| \Lambda^{\alpha/2} v_x \|_{L^2}) \, dt.
\]

Due to (3.3) and (3.4) we get
\[
\int_0^\tau \left(\| v_x \|_{L^2} + \| \Lambda^{\alpha/2} v_x \|_{L^2} \right) \, dt \leq c(\tau) \| T_0 \|_{L^2}.
\]

Then, by (3.6) we have
\[
\lim_{\varepsilon \to 0} \int_0^\tau \int_{\mathbb{R}^N} T'(v_x \cdot \nabla \varphi) \, dx \, dt = \int_0^\tau \int_{\mathbb{R}^N} T(v \cdot \nabla \varphi) \, dx \, dt
\]
and we conclude the proof of theorem 3.2.

Remark 3.4. An analogous result of theorem 3.2 follows, with a similar argument in the torus \(\mathbb{T}^N \), with periodic boundary conditions.

We continue this section mentioning the result of the existence of weak solutions obtained for the non-homogeneous equation (1.5).

Theorem 3.5. Let \(\tau > 0 \) be arbitrary. Then for every \(T_0 \in L^2 \) and \(f \in L^2(0; T; H^{-\alpha/2}) \), there exists a weak solution of (1.5) satisfying \(T(x, 0) = T_0(x) \) and \(T \in C([0, \tau]; L^2) \cap L^2([0, \tau]; H^{\alpha/2}) \).

The proof is similar to theorem 3.2.

Although weak solutions may not be unique, there is at most one solution in the class of 'strong' solutions in the sub-critical case. This fact is well known for the quasi-geostrophic equation (see [4]) and it is a generalization of the classical Leray–Prodi–Serrin condition, related to the uniqueness of the solutions to the 3D Navier–Stokes equation (see [25]).

Theorem 3.6. Assume that \(\alpha \in (1, 2] \), \(\tau > 0 \) and \(T \) a weak solution of DPM with \(T_0 \in L^2 \). Then, there is a unique weak solution satisfying
\[
T \in C([0, \tau]; L^2) \cap L^2([0, \tau]; H^{\alpha/2}) \cap L^p([0, \tau]; L^q),
\]
for \(q > N/(\alpha - 1) \), and \(p = \alpha/(\alpha - N/q - 1) \).

Proof. We take the difference \(T = T^1 - T^2 \) of two solutions \(T^1 \) and \(T^2 \) of DPM with the same initial data. Considering \(v = v^1 - v^2 \), with \(v^1 \) and \(v^2 \) being the velocities corresponding to \(T^1 \) and \(T^2 \), then \(T \) satisfies
\[
\frac{\partial T}{\partial t} + v \cdot \nabla T^1 + v^2 \cdot \nabla T + v \Lambda^\alpha T = 0
\]
or analogously
\[
\frac{\partial T}{\partial t} + \text{div}(v T^1) + \text{div}(v^2 T) + v \Lambda^\alpha T = 0.
\]
We multiply the equation by $A^{-1}T$ and integrate by parts in the nonlinear terms to obtain
\[
d\frac{d}{dr} \|A^{-\frac{1}{2}}T\|_{L^2}^2 + v \|A^{\frac{1}{2}}(A^{-\frac{1}{2}}T)\|_{L^2}^2 \leq \int_{\mathbb{R}} (T v_2) \cdot (\nabla (A^{-1}T)) \, dx
\]
\[
+ \left| \int_{\mathbb{R}} (T v_1) \cdot (\nabla (A^{-1}T)) \, dx \right|.
\]
We take $(1/q) + (2/p) = 1$ and it yields
\[
\left| \int_{\mathbb{R}} (T v_1) \cdot (\nabla (A^{-1}T)) \, dx \right| \leq \|v_1\|_{L^p} \|T\|_{L^p} \|\nabla (A^{-1}T)\|_{L^p}
\]
and
\[
\left| \int_{\mathbb{R}} (T v_2) \cdot (\nabla (A^{-1}T)) \, dx \right| \leq \|T\|_{L^p} \|v_2\|_{L^p} \|\nabla (A^{-1}T)\|_{L^p}.
\]
Since $\nabla (A^{-1}) = (R_1, R_2)$ we obtain
\[
\left| \int_{\mathbb{R}} (T v^2) \cdot (\nabla (A^{-1}T)) \, dx \right| + \left| \int_{\mathbb{R}} (T^1 v) \cdot (\nabla (A^{-1}T)) \, dx \right| \leq C(\|T\|_{L^p} + \|T^2\|_{L^p}) \|T\|_{L^p}^2.
\]
The inequality for the Riesz potential (2.4) gives
\[
\|T\|_{L^p} \leq C \|A^{\frac{N}{2}} T\|_{L^2} = C \|A^{\frac{N}{2} + \frac{1}{2}}(A^{-\frac{1}{2}}T)\|_{L^2}.
\]
For q large enough, we can get $(N/2q) + 1/2 < \alpha/2$, and the following interpolation inequality:
\[
\|A^{\gamma} f\|_{L^2} \leq \|f\|_{L^2}^{1-s} \|A^{s} f\|_{L^2}^{1-\gamma}
\]
with $s < r, 0 < \gamma < 1$, yields
\[
\|A^{\frac{N}{2} + \frac{1}{2}}(A^{-\frac{1}{2}}T)\|_{L^2} \leq \|A^{-\frac{1}{2}}T\|_{L^2}^{1-s} \|A^{\frac{N}{2}}(A^{-\frac{1}{2}}T)\|_{L^2}^{1-\gamma},
\]
for $\gamma = (\alpha - N/q - 1)/\alpha$. Finally
\[
\frac{d}{dr} \|A^{-\frac{1}{2}}T\|_{L^2}^2 + v \|A^{\frac{1}{2}}(A^{-\frac{1}{2}}T)\|_{L^2}^2 \leq C(\|T_1\|_{L^p} + \|T_2\|_{L^p}) \|A^{-\frac{1}{2}}T\|_{L^2}^2 \|A^{\frac{N}{2}}(A^{-\frac{1}{2}}T)\|_{L^2}^{2(1-\gamma)}
\]
and
\[
\frac{d}{dr} \|A^{-\frac{1}{2}}T\|_{L^2}^2 \leq C \left(\|T_1\|_{L^p} + \|T_2\|_{L^p} \right)^{1/\gamma} \|A^{-\frac{1}{2}}T\|_{L^2}^2,
\]
which completes the proof.

Remark 3.7. If we take $T_0 \in L^2 \cap L^q$ for $q > N/(\alpha - 1)$ we can construct, as before, a solution that satisfies $\|T\|_{L^p} \leq \|T_0\|_{L^p}$, and in particular we have
\[
T \in L^\infty(0, \tau; L^q).
\]
Then this solution is unique in this space.

Remark 3.8. Suppose that $1 < \alpha \leq 2$, $v > 0$, $s > 0$, $f \in L^p \cap H^{s- \frac{1}{2}}(\mathbb{T}^N)$ and
\[
T_0 \in H^s \cap L^p(\mathbb{T}^N), \quad \text{where } 0 \leq \frac{1}{p} < \frac{\alpha - 1}{N}.
\]
Then, there is a weak solution T of (1.5) such that
\[
T \in C([0, \tau]; H^s(\mathbb{T}^N)) \cap L^2(0, \tau; H^{s+ \frac{1}{2}}(\mathbb{T}^N)).
\]
The proof follows applying an analogous analysis as in the proof of theorem 2.2. Moreover, as in theorem 3.6, the uniqueness of weak solutions for the non-homogeneous equation (1.5) is also obtained.
4. Decay estimates

Here, we obtain the decay of the solutions of \((1.1)–(1.3)\). The key to the argument is the following positivity lemma.

Lemma 4.1. Suppose \(\alpha \in [0, 2]\), \(\Omega = \mathbb{R}^N\), \(T^N\) and \(T, \Lambda^{\alpha}T \in L^p(\Omega)\) where \(p \geq 2\). Then

\[
\int_{\Omega} |T|^{p-2}T \Lambda^{\alpha}T \, dx \geq \frac{2}{p} \int_{\Omega} (\Lambda^{\frac{\alpha}{2}} |T|^\frac{\alpha}{2})^2 \, dx.
\]

This lemma is a consequence of different versions of the positivity lemma obtained in \([5, 6, 12, 20]\).

The immediate consequence of the previous lemma is the following decay results in the \(L^p\) space for solutions of \((1.1)–(1.3)\):

Corollary 4.2. Suppose that \(T_0 \in L^p\) where \(p \in [2, +\infty)\) and \(T\) is a weak solution of \((1.1)–(1.3)\):

1. If \(\Omega = \mathbb{T}^N\) and the mean value of \(T_0\) is zero, then

\[
\|T(t)\|_{L^q} \leq \|T_0\|_{L^p} \exp \left(-\frac{2\nu \lambda_1^\alpha t}{p}\right), \quad q \in [1, p],
\]

where \(\lambda_1 > 0\) is the first positive eigenvalue of \(\Lambda^{\frac{\alpha}{2}}\).

2. If \(\Omega = \mathbb{R}^N\), then

\[
\|T(t)\|_{L^p} \leq \|T_0\|_{L^p} \left[1 + \frac{4\alpha \nu c \|T_0\|_{\frac{2p}{N(p-2)}} t}{N(p-2)\|T_0\|_{\frac{2p}{N(p-2)}}} \right]^{-\frac{N(p-2)}{2p\alpha}},
\]

with \(c\) depending on \(\alpha\) and \(N\).

Proof. We multiply equation \((1.1)\) by \(|T|^{p-2}T\) and applying lemma 4.1 we obtain

\[
\frac{d}{dt} \|T(t)\|_{L^p}^p \leq -2\nu \int \Lambda^{\frac{\alpha}{2}} T^{\frac{\alpha}{2}} \, dx.
\]

In the case \(\Omega = \mathbb{T}^N\) we get

\[
\frac{d}{dt} \|T(t)\|_{L^p}^p + 2\nu \lambda_1^\alpha \|T(t)\|_{L^p}^p \leq 0,
\]

and the above inequality gives the exponential decay of \(\|T(t)\|_{L^p}\) for \(q \in [1, p]\).

In the case \(\Omega = \mathbb{R}^N\), using Gagliardo–Nirenberg inequality, we have

\[
\frac{d}{dt} \|T(t)\|_{L^p}^p \leq -2\nu c \left(\int |T|^{\frac{\alpha}{N}} \, dx\right)^{\frac{N-\alpha}{N}},
\]

with \(c\) depending on \(\alpha\) and \(N\). By interpolation we get

\[
\|T\|_{L^p} \leq \|T\|_{L^2}^{1-\beta} \left(\int |T|^{\frac{\alpha}{N}} \, dx\right)^{\frac{\beta \cdot \alpha}{N-\alpha}},
\]

with

\[
\beta = \frac{N(p-2)}{N(p-2) + 2\alpha}.
\]
Therefore,
\[
\frac{d}{dt} \| T(t) \|_{L^p}^p + 2cv \| T \|_{L^2}^{\frac{p}{2}} \| T \|_{L^p}^p \leq 0,
\]
since \(\beta \in (0, 1) \) and \(\| T(t) \|_{L^2} \leq \| T_0 \|_{L^2} \) yields
\[
\frac{d}{dt} \| T(t) \|_{L^p}^p + 2v \frac{c}{\| T \|_{L^2}^{\frac{p}{2}}} \| T \|_{L^p}^p - \| T(t) \|_{L^2}^p \| T_0 \|_{L^2}^{\frac{p}{2}} \| T_0 \|_{L^p}^p \leq 0.
\]

We integrate
\[
\frac{\beta}{\beta - 1} \left(\| T(t) \|_{L^p}^{p(1 - \frac{1}{\beta})} - \| T_0 \|_{L^p}^{p(1 - \frac{1}{\beta})} \right) \leq -\frac{2vct}{\| T_0 \|_{L^2}^{\frac{p}{2} - p}}.
\]
Again, since \(\beta \in (0, 1) \), we have
\[
\left(\frac{\| T(t) \|_{L^p}}{\| T_0 \|_{L^p}} \right)^{p(1 - \frac{1}{\beta})} \geq 1 + \frac{1 - \beta}{\beta} \frac{2vct}{\| T_0 \|_{L^2}^{\frac{p}{2} - p}} t,
\]
hence
\[
\| T(t) \|_{L^p} \leq \| T_0 \|_{L^p} \left(1 + \frac{1 - \beta}{\beta} \frac{2vct}{\| T_0 \|_{L^2}^{\frac{p}{2} - p}} t \right)^{-\frac{\beta}{p(1 - \beta)}}.
\]
Then, by the definition of \(\beta \), it follows the polynomial decay. \[\Box\]

Remark 4.3. As a consequence of the previous lemma for the case \(\Omega = \mathbb{R}^N \), we obtain the following estimate for the \(L^\infty \)-norm:
\[
\| T(t) \|_{L^\infty} \leq \| T_0 \|_{L^\infty},
\]
which can be improved as in [6]
\[
\| T(t) \|_{L^\infty} \leq \| T_0 \|_{L^\infty} \left(1 + \alpha ct \| T_0 \|_{L^\infty}^p \right)^{-\frac{1}{p}}.
\]

5. Long time behaviour

In this section we study some attracting properties of the solutions of (1.5) with \(\alpha \in (1, 2) \).

We introduce an abstract framework for studying the asymptotic behaviour of this system with respect to two topologies, weak and strong, depending on the uniqueness of the solution. Each system possesses a global attractor in the weak topology, but not necessarily in the strong topology, and in general, they are different.

First, we recall some definitions of [26]. Let \(X \) be a complete metric space. A *semiflow* on \(X \), \(\omega : [0, \infty) \times X \to X \), is defined to be a mapping \(\omega(t, x) = S(t)x \) that satisfies the following conditions: \(S(0)x = x \) for all \(x \in X \); \(\omega \) is continuous; the semigroup condition, i.e. \(S(s)S(t)x = S(s+t)x \) for all \(s, t \geq 0 \) and \(x \in X \), is valid.

A semiflow is *point dissipative* if there exists a bounded set \(B \subset X \) such that for any \(x \in X \) there is a time \(\tau(x) \) such that \(\omega(t, x) \in B \) for all \(t > \tau(x) \). In this case \(B \) is referred to as an *absorbing set* for the semiflow \(S(t) \).

A semiflow is *compact* if for any bounded \(B \subset X \) and \(t > 0 \), \(S(t)B \) lies in a compact subset in \(X \).
A ⊂ X is a global attractor if it satisfies the following conditions: A is non-empty, invariant and compact; A possesses an open neighbourhood U such that, for every initial data u₀ in U, S(t)u₀ converges to A as t → ∞:
\[\text{dist}(S(t)u₀, A) \to 0 \quad \text{as} \quad t \to \infty. \]
Recall that the distance of a point to a set is defined by
\[d(x, A) = \inf_{y \in A} d(x, y). \]
Now, we state the following result about the theory of global attractors (see [26]):

Theorem 5.1. Let S(t) be a point dissipative, compact semiflow on a complete metric space X. Then S(t) has a global attractor in X.

Furthermore, the global attractor attracts all bounded sets in X, which is the maximal bounded absorbing set and minimal invariant set for the inclusion relation.

Assuming in addition that X is a Banach space, U is convex and for any \(x \in X \), \(S(t)x : \mathbb{R}_+ \to X \) is continuous. Then, A is also connected.

In the case that \(U = X \), A is called the global attractor of the semigroup \(\{S(t)\}_{t \geq 0} \) in X.

5.1. Strong attractor

From remark 3.8, we immediately see that for any \(1 < \alpha \leq 2 \) and with \(s > (N/2) + 1 - \alpha \), the solution operator of the porous medium equation (1.5) well defines a semigroup in the space \(H^s \).

We begin this section with some useful a priori estimates of the solutions (1.5) with \(f \in L^p \).

Lemma 5.2. Let \(T = T(x, t) \) be a solution of (1.5), the initial data \(T₀ \in L^p \) with zero mean value and \(p \geq 2 \). Then, \(\|T\|_{L^p} \) is uniformly bounded with respect to \(\|T₀\|_{L^p} \). In particular,
\[
\|T(t)\|_{L^p} \leq \left(\|T₀\|_{L^p} - \frac{p}{\nu\lambda₁^{2}} \|f\|_{L^p} \right) \exp \left\{ -\frac{\nu\lambda₁^{2}}{p} t \right\} + \frac{p}{\nu\lambda₁^{2}} \|f\|_{L^p},
\]
and there exists an absorbing ball in \(L^p \). Moreover, for \(T₀ \in L^2 \), we get
\[
v \int_{\Omega} \|\Lambda₂^{-}\Lambda₁ T(s)\|_{L^2}^2 \, ds \leq \left(\|T₀\|_{L^2}^2 - \frac{\|f\|_{L^2}^2}{\nu\lambda₁^{2}} \right) \exp \left\{ -\nu\lambda₁^{2} t \right\} + \frac{\|f\|_{L^2}^2}{\nu\lambda₁^{2}} + \frac{1}{v} \|\Lambda₂^{-}\Lambda₁ f\|_{L^2}. \]

Proof. We multiply equation (1.5) by \(p|T|^{p-2}T \) with \(p \geq 2 \). Integrating, using lemma 4.1 and applying Holder’s inequality, we get
\[
\frac{d}{dt} \|T(t)\|_{L^p}^p + 2v\|\Lambda₂ T\|_{L^2}^2 \leq \|f\|_{L^p} \|T\|_{L^p}^{p-1}. \]

We denote \(\lambda₁ \) as the first eigenvalue of \(\Lambda \). Since \(T \) is mean zero, we have
\[
\|\Lambda₂ T\|_{L^2}^2 \geq \lambda₁ \|T\|_{L^p}^p.
\]
Therefore,
\[
\frac{d}{dt} \|T(t)\|_{L^p} + \frac{\nu\lambda₁^{2}}{p} \|T\|_{L^p} \leq \|f\|_{L^p},
\]
and integrating we prove estimate (5.1).

Now, to prove (5.2), we multiply equation (1.5) by \(2T \) and by (5.3)
\[
\frac{d}{dt} \|T(t)\|_{L^2}^2 + 2v\|\Lambda₂ T\|_{L^2}^2 \leq 2\|f\|_{L^2} \|T\|_{L^2}. \]
Integrating and applying the Young inequality, we get
\[\frac{d}{dt} \| T(t) \|_{L^2}^2 + v \| \Lambda^{\alpha/2} T \|_{L^2}^2 \leq \frac{1}{v} \| \Lambda^{-\alpha/2} f \|_{L^2}^2 \leq \frac{1}{v} \| f \|_{L^2}^2. \]

Integrating and using that \(\lambda_1 \) is the first eigenvalue of \(\Lambda \), we obtain
\[\| T(t) \|_{L^2}^2 \leq \left(\| T_0 \|_{L^2}^2 - \frac{\| f \|_{L^2}^2}{v \lambda_1^2} \right) \exp \left\{ -v \lambda_1^2 t \right\} + \frac{\| f \|_{L^2}^2}{v \lambda_1^2}. \]

(5.4)

On the other hand, integrating between \(t \) and \(t + 1 \), we have
\[\| T(t + 1) \|_{L^2}^2 + v \int_t^{t+1} \| \Lambda^{\alpha/2} T(s) \|_{L^2}^2 \, ds \leq \| T(t) \|_{L^2}^2 + \frac{1}{v} \| \Lambda^{-\alpha/2} f \|_{L^2}^2. \]

(5.5)

and we get estimate (5.2) by (5.4).

\[\square \]

Lemma 5.3. Let \(T = T(x, t) \) be a solution of (1.5), \(T_0 \in H^s \) with zero mean value and \(s > (N/2) + 1 - \alpha \). Then, \(\| \Lambda^s T \|_{L^2} \) is uniformly bounded with respect to \(\| \Lambda^s T_0 \|_{L^2} \) and there exists an absorbing ball in the space \(H^s \). Moreover, we have
\[\int_0^T \| \Lambda^{\alpha/2} T \|_{L^2}^2 \, dt < +\infty \]

(5.6)

and
\[v \int_t^{t+1} \| \Lambda^{\alpha/2} T \|_{L^2}^2 \]

is uniformly bounded with respect to \(\| \Lambda^s T_0 \|_{L^2} \).

(5.7)

Proof. We have that \(\alpha \in (1, 2) \) and that \(T_0 \in H^s \), where \(s > (N/2) + 1 - \alpha \). If \(s \in ((N/2)+1-\alpha, N) \), let \(r = s \). If \(s \in [N, +\infty) \), let \(r \) be any real number in \(((N/2)+1-\alpha, N) \).

Then, \(T_0 \in H^r \subseteq H^s \subseteq L^p \), where
\[\frac{1}{p} = \frac{1}{2} - \frac{r}{N} < \frac{\alpha - 1}{N}. \]

We multiply equation (1.5), with an initial data \(T_0 \) belonging to \(L^p \cap H^s \), by \(\Lambda^{2\alpha/2} T \) with \(0 < \alpha < s \). By an analogous analysis as in the proof of theorem 2.2 we get
\[\frac{d}{dt} \| \Lambda^\alpha T(t) \|_{L^2}^2 + v \| \Lambda^{\alpha+\alpha/2} T \|_{L^2}^2 \leq \frac{1}{v} \| \Lambda^{\alpha-\alpha/2} f \|_{L^2}^2 + c \| T \|_{L^p} \| \Lambda^{\alpha+\alpha/2} T \|_{L^2}^2. \]

Then, by (5.1), \(T \in L^\infty(0, \infty; L^p) \) and
\[\frac{d}{dt} \| \Lambda^\alpha T(t) \|_{L^2}^2 + v \| \Lambda^{\alpha+\alpha/2} T \|_{L^2}^2 \leq \frac{1}{v} \| \Lambda^{\alpha-\alpha/2} f \|_{L^2}^2 + C \| \Lambda^{\alpha/2} T \|_{L^2}^2. \]

Now, using the Gagliardo–Nirenberg and Holder inequalities, we have
\[C \| \Lambda^{\alpha+\alpha/2} T \|_{L^2}^2 \leq \frac{v}{2} \| \Lambda^{\alpha+\alpha/2} T \|_{L^2}^2 + \frac{C}{v} \| \Lambda^\alpha T \|_{L^2}^2 \]
and
\[\frac{d}{dt} \| \Lambda^\alpha T(t) \|_{L^2}^2 + v \| \Lambda^{\alpha+\alpha/2} T \|_{L^2}^2 \leq \frac{1}{v} \| \Lambda^{\alpha-\alpha/2} f \|_{L^2}^2 + \frac{C}{v} \| \Lambda^\alpha T \|_{L^2}^2. \]

Next, following from the above inequality and (5.2) the uniform boundedness of \(\| \Lambda^\alpha T(t) \|_{L^2} \) with respect to \(\| \Lambda^s T_0 \|_{L^2} \) can be obtained for \(\alpha \leq \alpha/2 \) by applying the uniform Gronwall lemma (see remark 5.4).
\[\| \Lambda^\alpha T(t + 1) \|_{L^2}^2 \leq \frac{1}{v} \exp \left(\frac{\| T_0 \|_{L^2}^2}{v \lambda_1^2} \right) \exp \left\{ -v \lambda_1^2 t \right\} + \frac{\| f \|_{L^2}^2}{v \lambda_1^2}. \]

(5.8)
This estimate can assure us that it also gives us an absorbing ball of the solutions in the space \(H^a \) with \(0 < a \leq a/2 \).

Moreover, we have (5.6) and (5.7) for \(0 < a \leq a/2 \). Therefore, with these estimates and a bootstrapping argument, the uniform boundedness of \(\| \Lambda^t T(t) \|_{L^2} \) is indeed valid for any \(s > (N/2) + 1 - a \) by using the uniform Gronwall lemma again. This also gives us, as before, an absorbing set in the space \(H^s \) for any \(s > (N/2) + 1 - a \) by using the uniform Gronwall lemma again. This also gives us, as before, an absorbing set in the space \(H^s \) for any \(s > (N/2) + 1 - a \) by using the uniform Gronwall lemma again.

\[\blacksquare \]

Remark 5.4. (Uniform Gronwall Lemma). Let \(g, h \) and \(y \) be non-negative locally integrable functions on \((t_0, \infty)\) such that

\[
\frac{dy}{dt} \leq gy + h, \quad \forall t \geq t_0
\]

and

\[
\int_t^{t+r} g(s) \, ds \leq c_1, \quad \int_t^{t+r} h(s) \, ds \leq c_2, \quad \int_t^{t+r} y(s) \, ds \leq c_3, \quad \forall t \geq t_0,
\]

where \(r, c_1, c_2 \) and \(c_3 \) are positive constants. Then,

\[
y(t + r) \leq \left(\frac{c_3}{r} + c_2 \right) e^{a_1}, \quad \forall t \geq t_0.
\]

The proof of this estimate is shown in [26].

Now, we prove a condition to apply theorem 5.1: the continuity of the solutions of (1.5) in the space \(H^s \) with respect to \(t \).

Lemma 5.5. Let \(T = T(x, t) \) be a solution of (1.5), \(T_0 \in H^s \) with zero mean value and \(s > (N/2) + 1 - a \). Then, \(\Lambda^t T \in C(0, \tau; L^2) \).

Proof. By lemma 5.3 we have that \(\Lambda^s T \in L^2(0, \tau; H^\frac{a}{2}) \). According to the Aubin–Lions compactness results (see [22]) we just need to show that \(\Lambda^t T \in L^2(0, \tau; H^{-\frac{a}{2}}) \). From equation (1.5) we get

\[
\| \Lambda^t T \|_{H^{-\frac{a}{2}}} \leq \| \Lambda^{1+r-\frac{a}{2}} (Tv) \|_{L^2} + \| \Lambda^{r+\frac{a}{2}} T \|_{L^2} + \| \Lambda^{r-\frac{a}{2}} f \|_{L^2}.
\]

Using (2.3) and the integral formulation of the velocity we have

\[
\| \Lambda^{1+r-\frac{a}{2}} (Tv) \|_{L^2} \leq C \| T \|_{L^p} \| \Lambda^{1+r-\frac{a}{2}} T \|_{L^q},
\]

where \((1/p)+(1/q)=1/2\). Now, as in the proof of lemma 5.3, we take \(r \leq s \) such that \(T_0 \in H^s \subseteq H^r \subset L^p \), with

\[
\frac{1}{p} = \frac{1}{2} - \frac{r}{N} < \frac{\alpha - 1}{N}.
\]

Then, considering \(q = N/r \), \(T \in L^\infty(0, \infty; L^p) \). Since \(r > (N/2) + 1 - \alpha \) (see the proof of lemma 5.3) we have that

\[
q = \frac{N}{r} < \frac{2N}{N + 2 - 2\alpha} = q^*.
\]

Therefore,

\[
\| \Lambda^{1+r-\frac{a}{2}} T \|_{L^q} \leq c \| \Lambda^{1+r-\frac{a}{2}} T \|_{L^p} \leq C \| \Lambda^{r+\frac{a}{2}} T \|_{L^2},
\]

applying the Gagliardo–Nirenberg inequality. Thus, coming to (5.4), we get

\[
\| \Lambda^t T \|_{H^{-\frac{a}{2}}} \leq (C \| T \|_{L^p} + 1) \| \Lambda^{r+\frac{a}{2}} T \|_{L^2} + \| \Lambda^{r-\frac{a}{2}} f \|_{L^2}.
\]
Finally, by (5.1) and (5.6), we obtain
\[\int_0^T \| \Lambda^s T_0(t) \|_{H^{-\frac{1}{2}}} \, dt < \infty, \]
and we conclude the proof.

\[\blacksquare \]

Lemma 5.6. Assume that the initial data, of a solution of equation (1.5), belong to \(H^s \) with zero mean value and \(s > N/2 + 1 - \alpha \). Then, for any fixed \(t > 0 \), the solution operator \(S(t) \) is a continuous map from \(H^s \) into itself.

Proof. We consider two solutions \(T^{(1)} \) and \(T^{(2)} \) of the porous medium equation (1.5) with two initial data \(T_0^{(1)} \) and \(T_0^{(2)} \) and velocities \(v^{(1)} \) and \(v^{(2)} \), respectively. Let \(T = T^{(1)} - T^{(2)} \) and \(v = v^{(1)} - v^{(2)} \). Then, since \(\text{div}(v) = 0 \), we have for any \(\varphi \in H^{\frac{1}{2}} \) that
\[(T_0, \varphi) + v(\Lambda^\frac{1}{2} T, \Lambda^\frac{1}{2} \varphi) = -(v \cdot \nabla T^{(2)}, \varphi) - (v^{(1)} \nabla T, \varphi). \]
(5.9)

Setting \(\varphi = T \), using that \(\text{div}(v^{(1)}) = 0 \) and Young’s inequality, we get
\[\frac{1}{2} \frac{d}{dt} \| T \|_{L^2}^2 + v \| \Lambda^\frac{1}{2} T \|_{L^2}^2 \leq \| \Lambda T^{(2)} \|_{L^q} \| T \|_{L^2}^2, \]
such that \((1/q_1) + (2/q_2) = 1 \). By the Gagliardo–Nirenberg inequality, we obtain
\[\frac{1}{2} \frac{d}{dt} \| T \|_{L^2}^2 + v \| \Lambda^\frac{1}{2} T \|_{L^2}^2 \leq \| \Lambda T^{(2)} \|_{L^q} \| T \|_{L^2}^{2(1-a)} \| \Lambda^\frac{1}{2} T \|_{L^2}^{2a}, \]
with \(a = N/(q_1 \alpha) \), where we will be choosing \(q_i \) such that \(a \in (0, 1) \). We again use Young’s inequality and we have
\[\frac{1}{2} \frac{d}{dt} \| T \|_{L^2}^2 + v \| \Lambda^\frac{1}{2} T \|_{L^2}^2 \leq c(v) \| \Lambda T^{(2)} \|_{L^q} \| T \|_{L^2}^2, \]
denoting \(q = 1/(1-a) \). Thus, by the Gronwall inequality, it follows that
\[\| T(t) \|_{L^2}^2 \leq C(v) \| T_0^{(1)} - T_0^{(2)} \|_{L^2}^2 \exp \left(\int_0^t \| \Lambda T^{(2)}(s) \|_{L^q}^2 \, ds \right). \]

If \(s \in ((N/2) + 1 - \alpha, (N/2) + 1 - (\alpha/2)) \), then we take \(r = s \). If \(s \in [(N/2) + 1 - (\alpha/2), +\infty) \), we take \(r \) any number in \((N/2) + 1 - \alpha, (N/2) + 1 - (\alpha/2)\). Then \(H^r \subseteq H^s \). We choose
\[q_1 = \frac{2N}{2 + N - 2r - \alpha} > 1, \]
then
\[a = \frac{2 + N - 2r - \alpha}{2\alpha} \in \left(0, \frac{1}{2} \right) \quad \text{and} \quad q < 2. \]

Therefore, using the following Sobolev inclusions:
\[L^q(0, \tau; W^{1,q}) \subset L^q(0, \tau; H^{s+\frac{1}{2}}) \subset L^2(0, \tau; H^{s+\frac{1}{2}}) \subset L^2(0, \tau; H^{s+\frac{1}{2}}), \]
we conclude that
\[\int_0^T \| \Lambda^\frac{1}{2} T(t) \|_{L^2}^2 \, dt \leq C(T^{(2)}, \tau) \| T^{(1)}_0 - T^{(2)}_0 \|_{L^2}^2. \]

Thus, using the Riesz lemma, it is immediate that the solution operator \(S(t) \) is a continuous map from \(H^s \) into itself when \(s \in ((N/2) + 1 - \alpha, \alpha/2) \).

We finish the proof studying the case \(s > \alpha/2 \). We do so by checking directly the Lipschitz continuity of the solution operator in the space \(H^s \). We consider \(\varphi = \Lambda^{2r} T \) in (5.9), then
\[\frac{1}{2} \frac{d}{dt} \| \Lambda^s T \|_{L^2}^2 + v \| \Lambda^{s+\frac{1}{2}} T \|_{L^2}^2 = -(v \cdot \nabla T^{(2)}, \Lambda^{2r} T) - (v^{(1)} \nabla T, \Lambda^{2r} T). \]
(5.10)
We estimate the two terms on the right-hand side of the variational formula separately. First, we get
\[
| (v \nabla T^{(2)}, \Lambda^2 T) | \leq c(v) \| \Lambda^{\frac{p}{2}} (v \cdot \nabla T^{(2)}) \|_{L^p}^2 + \frac{v}{4} \| \Lambda^{\frac{p}{2}} T \|_{L^2}^2.
\]
Using a similar estimate as (2.3) of Kenig, Ponce and Vega (see [14]), we have
\[
\| \Lambda^{\frac{p}{2}} (v^{(1)} \nabla T) \|_{L^2} \leq \| \Lambda^{\frac{p}{2}} T \|_{L^2} \| \Lambda T \|_{L^2} + \| T \|_{L^2} \| \Lambda^{\frac{p}{2}} T^{(2)} \|_{L^2}
\]
with $(1/p_1) + (1/p_2) = 1/2$ and $(1/q_1) + (1/q_2) = 1/2$. We select
\[
p_1 = \frac{2N}{N-\alpha}, \quad p_2 = \frac{2N}{\alpha}, \quad q_1 = \frac{N}{\alpha-1}, \quad q_2 = \frac{2N}{N+2-2\alpha},
\]
and using the Sobolev inequalities yields the following estimate:
\[
| (v^{(1)} \nabla T, \Lambda^2 T) | \leq c(v) \| \Lambda^2 T \|_{L^2}^2 \| \Lambda^{\frac{p}{2}} T^{(2)} \|_{L^2}^2 + \frac{v}{4} \| \Lambda^{\frac{p}{2}} T \|_{L^2}^2.
\]
(5.11)
We estimate the other term on the right-hand side of (5.10). Since \((v^{(1)} \cdot \nabla \Lambda^T, \Lambda^T) = 0\), \(\Lambda^s\) and \(\nabla\) are commutable, we have
\[
| (v^{(1)} \nabla T, \Lambda^2 T) | \leq \| \Lambda^s (v^{(1)} \cdot \nabla T) - v^{(1)} \cdot (\Lambda^s \nabla T) \|_{L^2} \| \Lambda T \|_{L^2}.
\]
Using the estimate of Kenig, Ponce and Vega (see [14]), we have
\[
\| \Lambda^s (v^{(1)} \cdot \nabla T) \|_{L^2} \leq \| \Lambda^{\frac{p}{2}} (v^{(1)} \cdot \nabla T) \|_{L^2} \| \Lambda T \|_{L^2} + \| \Lambda^{\frac{p}{2}} v^{(1)} \|_{L^2} \| \Lambda T \|_{L^2},
\]
with $(1/p_1) + (1/p_2) = 1/2$ and $(1/q_1) + (1/q_2) = 1/2$. We take
\[
p_1 = q_2 = \frac{2N}{\alpha}, \quad p_2 = q_1 = \frac{2N}{N-\alpha},
\]
and using the Sobolev inequalities, we get
\[
| (v^{(1)} \nabla T, \Lambda^2 T) | \leq \| \Lambda^{\frac{p}{2}} T \|_{L^2}^2 \| \Lambda^{\frac{p}{2}} T^{(2)} \|_{L^2} \| \Lambda T \|_{L^2} + \| \Lambda^{\frac{p}{2}} T \|_{L^2}^2 + \frac{v}{4} \| \Lambda^{\frac{p}{2}} T \|_{L^2}^2.
\]
Therefore, considering this estimate and (5.11) in (5.10), we obtain
\[
\frac{d}{dt} \| \Lambda T \|_{L^2}^2 + v \| \Lambda^{\frac{p}{2}} T \|_{L^2}^2 \leq c(v) \left(\| \Lambda^{\frac{p}{2}} T \|_{L^2}^2 + \| \Lambda^{\frac{p}{2}} T^{(2)} \|_{L^2}^2 \right) \| \Lambda T \|_{L^2}^2.
\]
So, by Gronwall’s lemma and since
\[
\int_0^T \left(\| \Lambda^{\frac{p}{2}} T^{(1)}(t) \|_{L^2}^2 + \| \Lambda^{\frac{p}{2}} T^{(2)}(t) \|_{L^2}^2 \right) \, dt < \infty,
\]
we get
\[
\| \Lambda T(t) \|_{L^2} \leq C(v, \| \Lambda^{\frac{p}{2}} T^{(1)} \|_{L^2}^2, \| \Lambda^{\frac{p}{2}} T^{(2)} \|_{L^2}^2) \| \Lambda T(t) \|_{L^2}^2.
\]
and conclude the proof of the lemma.

Finally, we present the existence of the global classic attractor.

Theorem 5.7. Let $\alpha \in (1, 2)$, $v > 0$, $s > (N/2) + 1 - \alpha$ and $f \in H^{s-\alpha} \cap L^p$ time-independent external source. Then, the operator S, such that $S(t) T_0 = T(t)$ for any $t > 0$ and T solution of (1.5), defines a semigroup in the space H^s and satisfies the following

(i) For any $t > 0$, $S(t)$ is a continuous compact operator in H^s.

(ii) For any $T_0 \in H^s$, S is a continuous map from $[0, t]$ into H^s.

(iii) $\{S(t)\}_{t \geq 0}$ possesses an attractor A that is compact, connected and maximal in H^s. A attracts all bounded subsets of H^s in the norm of H^s, for any $r > \alpha - (N/2) - 1$.

(iv) If \(\alpha > (N + 2)/4 \), \(A \) attracts all bounded subsets of periodic functions of \(L^2 \) in the norm of \(H^r \), for any \(r > \alpha - (N/2) - 1 \).

Proof. Items (i) and (ii) are already proven in lemmas 5.6 and 5.5, respectively.

To verify the rest of the items we use the results of semigroups and the existence of their attractors (see theorem 5.1). In particular, we need to prove the existence of a bounded subset \(B_0 \subset H^r \), an open subset \(U \) of \(H^r \), such that \(B_0 \subseteq U \subseteq H^r \), and \(B_0 \) is absorbing in \(U \), i.e. for any bounded subset \(B \subset U \), there is a \(\tau(B) \), such that \(S(t)B \subset B_0 \) for all \(t > \tau(B) \). This fact is proved in lemma 5.5.

Item (iv) can be checked easily since for \(\alpha > (N + 2)/4 \) we have that \(\alpha > (N/2) + 1 - \alpha \) and that for any \(T_0 \in L^2 \),

\[
\int_0^T \| \Lambda^\frac{\alpha}{2} T \|_{L^2} < \infty \quad \forall \tau > 0.
\]

This together with (5.5) completes the proof. ■

5.2. Weak attractor

We obtain the following estimate for the time derivative of a solution of (1.5).

Proposition 5.8. Let \(T \) be the weak solution of (1.5) obtained in theorem 3.5. Then,

\[
\frac{\partial T}{\partial t} \in L^r_{loc}(0, \infty; H^{-\sigma}) \quad \text{with} \quad \frac{N}{2} + 1 = \sigma + \frac{\alpha}{r}, \quad \sigma \in (0, 1).
\]

Proof. For a smooth \(\phi \) and \(0 < a < 1 \), we have

\[
\left| \int_{\mathbb{R}^N} \text{div}(v \cdot T) \phi \right| \leq \sum_i \int_{\mathbb{R}^N} |\Lambda^a(R_j v^j T)||\Lambda^{1-a} \phi|,
\]

where \(R_j \) are the Riesz transforms. Using inequality (2.3) with \((1/p) + (1/q) = 1/2\) and \(v \) satisfies that \(\| \Lambda^a v \|_{L^r} \leq c \| \Lambda^a T \|_{L^r} \) for any \(r \), we obtain

\[
\left| \int_{\mathbb{R}^N} \text{div}(v \cdot T) \phi \right| \leq c \| \Lambda^a T \|_{L^p} \| T \|_{L^q} \| \Lambda^{1-a} \phi \|_{L^2}.
\]

By interpolation, we get

\[
\| T \|_{L^q} \leq \| T \|_{L^2}^{1-s} \| T \|_{L^{\frac{2q}{q-2}}}^s \quad \text{such that} \quad s = \frac{N}{\alpha} \left(1 - \frac{2}{q} \right).
\]

Since \(H^{\alpha/2} \subset W^{a,p} \) and

\[
p = \frac{2N}{N + 2a - \alpha},
\]

we have

\[
\| \Lambda^a T \|_{L^p} \leq c \| \Lambda^\frac{\alpha}{2} T \|_{L^2} \quad \text{and} \quad \| T \|_{L^{\frac{2q}{q-2}}} \leq c \| \Lambda^\frac{\alpha}{2} T \|_{L^2}.
\]

Therefore, we obtain

\[
\left| \int_{\mathbb{R}^N} \text{div}(v \cdot T) \phi \right| \leq c \| T \|_{L^2}^{1-s} \| \Lambda^\frac{\alpha}{2} T \|_{L^2}^s \| \Lambda^{1-a} \phi \|_{L^2}.
\]

Furthermore, using that weak solutions belong to \(L^\infty(0, \tau; L^2) \cap L^2(0, \tau; H^{\frac{\alpha}{2}}) \) by theorem 3.5, it follows that

\[
\frac{\partial T}{\partial t} \in L^\infty_{loc}(0, \infty, H^{a-1}).
\]
We conclude the proof defining $\sigma = 2/(1 + s)$, $\sigma = 1 - a$ and using the relations of p, q, a and s.

By theorem 3.5, we have that T is a weak solution of (1.5) that satisfies
\begin{equation}
T \in L^2_{\text{loc}}[0, \infty; L^2] \cap L^\infty_{\text{loc}}(0, \infty; L^2) \cap L^2_{\text{loc}}(0, \infty; H^s),
\end{equation}
\begin{equation}
\frac{\partial T}{\partial t} \in L^r_{\text{loc}}[0, \infty; H^{-\sigma}), \quad \text{with } N \frac{r}{2} + 1 = \sigma + \frac{\alpha}{r}, \quad \sigma \in (0, 1).
\end{equation}

We observe that $L^2_{\text{loc}}[0, \infty; L^2]$ is a complete space metric. However, the weak solutions are not closed in this space. We define the space of generalized weak solutions $GW(f)$ formed by the functions $T \in L^2_{\text{loc}}[0, \infty; L^2]$ with the properties so that they are generalized weak solutions of (1.5) ($T \in GW(f)$) if T satisfies (1.5) in the sense of distributions and satisfies (5.12) and (5.13).

Given $T_1, T_2 \in L^p(0, \infty; X)$ (X is a Banach space), we consider the metric
\begin{equation}
d(T_1, T_2) = \sum_{n=0}^{\infty} \frac{1}{2^n} \min \left(1, \|T_1 - T_2\|_{L^p(0, \alpha; X)}\right)
\end{equation}
for the set $GW(f)$ (similarly for $p = \infty$). This metric is invariant on $L^2_{\text{loc}}[0, \infty; L^2]$ (see [2]).

Then applying classical compactness results (see [22]) for each $f \in L^\infty(0, \infty; L^2)$, the set $GW(f)$ is a closed subset of $L^2_{\text{loc}}[0, \infty; L^2]$. Now, we can state the following lemma.

Lemma 5.9. Given $f \in L^\infty(0, \infty; L^2)$ and considering the space $GW(f)$ with the metric defined (5.14), we have

(i) The set $\{(T, f)\}$ with $T \in GW(f)$ and $\|f\| \leq K_0$ in the norm of the space $L^\infty(0, \infty; L^2)$ is closed in $L^2_{\text{loc}}[0, \infty; L^2] \times L^\infty(0, \infty; L^2)$.

(ii) The mapping $S(t)$ is a semiflow on $L^2_{\text{loc}}[0, \infty; L^2]$ and $GW(f)$ is a positively invariant subset.

(iii) $S(t)$ restricted to $GW(f)$ is compact for $t > 0$.

(iv) $S(t)$ restricted to $GW(f)$ is point dissipative.

Proof. We verify (i) considering a sequence $\{T_n, f_n\} \in L^2_{\text{loc}}[0, \infty; L^2] \times L^\infty(0, \infty; L^2)$ such that $T_n \in GW(f_n)$ and $\|f_n\| \leq K_0$. We have that $f_n \rightharpoonup f$ in $L^\infty(0, \infty; L^2)$ and $T_n \rightharpoonup T$ in $L^2_{\text{loc}}[0, \infty; L^2]$. From the estimates of the time derivative of T_n and by the classical compactness results of [22], we easily obtain that $T \in GW(f)$ by using the weak formulation of the solutions. Moreover, $\{(T, f)\}$ is closed.

Next, we use a smoothing argument and the bound on the time derivative of T as in [21] to show the continuity of the semiflow. The positively invariant of $GW(f)$ is immediate.

The (iii) and (iv) are a consequence of the a priori estimates and the compactness result of [22].

By the above lemma and using the existence results of global attractors for a point dissipative compact semiflow on a complete metric space (see theorem 5.1), we prove the following attractor result.

Theorem 5.10. Let $f \in L^2$ independent of t and $\alpha \in (0, 2)$. Then, there exists a global attractor A, subset of the weak solutions of (1.5), for the semiflow generated by the time-shift on the space of generalized weak solutions $GW(f)$. Moreover, A attracts all bounded sets in $GW(f)$.

We note that the weak attractor is defined in a very weak sense and it gives us less useful information than the global attractor in the classic sense.
Remark 5.11. In the case of the time dependent external source \(f \in L^2_{\text{loc}}(0, \infty; L^2) \) it is possible to extend the results of the previous theorem.

We define \(f_t(t) = f(t + \tau) \) as the time-shift of \(f \) and we consider the hull \(\mathcal{H}^*(\mathcal{F}) \) of the positive time translates \(f_t \) with \(t \geq 0 \) of the external force \(f \in \mathcal{F} \) where \(\mathcal{F} \subset L^2_{\text{loc}}(0, \infty; L^2) \) is a bounded set. Assuming that \(\mathcal{H}^*(\mathcal{F}) \) is compact with respect to the weak topology of \(L^2_{\text{loc}}(0, \infty; L^2) \), then there exists a global weak attractor \(\mathcal{A} \), subset of the weak solutions of (1.5), for the semiflow \(S(t)(T, f) = (T_t, f_t) \). For more details one can refer to the works \([2, 21]\).

6. Solutions with infinite energy

A divergence free velocity field implies that there exists a stream function \(\psi \), in the two-dimensional case, such that
\[
v = \nabla^\perp \psi = (-\partial_x \psi, \partial_y \psi).
\]
We shall choose a stream function of the form
\[
\psi(x_1, x_2, t) = x_2 f(x_1, t).
\]
Taking the rotational over equation (1.2) we obtain
\[
\nabla \times v = \partial_{x_2} v_1 - \partial_{x_1} v_2 = -\Delta \psi = -x_2 \partial^2_{x_1} f = -\partial_{x_1} T.
\]
Therefore, the function \(T \) has the following expression:
\[
T(x_1, x_2, t) = x_2 \partial_{x_1} f(x_1, t) + \hat{g}(x_2, t),
\]
where we choose
\[
\hat{g}(x_2, t) = \frac{1}{\pi} x_2 \int_0^t \|\partial_{x_1} f(\tau)\|^2_{L^2(-\pi, \pi)} \, d\tau.
\]
Substituting the expression in (1.1), without diffusion in the two-dimensional case, we obtain
\[
\partial_t f_x = -\partial_t g - ff_{xx} + (f_x)^2 + gf_x
\]
(here and in the following section, we denote with subscript the derivatives with respect to \(x \)) where \(g \) satisfies
\[
g(t) = \frac{1}{\pi} \int_0^t \|f_x(\tau)\|^2_{L^2(-\pi, \pi)} \, d\tau
\]
and we define \(f \) as
\[
f(x, t) = \int_{-\pi}^{x} f_x(x', t) \, dx'.
\]
Note that the difference between this system and the one obtained in \([7]\) is that this one has the property of conserving the mean zero value of the initial data. Indeed, integrating equation (6.1) over the interval \([-\pi, \pi]\) and imposing a periodical condition on \(f_x \), we have
\[
\partial_t \int_{-\pi}^{\pi} f_x(x', t) \, dx' = (-f_x(\pi, t) + g(t)) \int_{-\pi}^{\pi} f_x(x') \, dx'.
\]
Therefore, if \(f_x \) is a solution of equation (6.1) and
\[
\int_{-\pi}^{\pi} f_x(\cdot, 0) \, dx' = 0,
\]
we obtain
\[
\int_{-\pi}^{\pi} f_x(x', t) \, dx' = 0, \quad \forall t > 0.
\]
6.1. Existence

In this section we prove the following theorem.

Theorem 6.1. Let \(\varphi_0 \in H^2(\mathbb{T}) \) with mean zero value and
\[
M_0 = \max_{x \in \mathbb{T}} \varphi_0(x).
\]
Then, there exists a solution \(f(x, t) \) of equation (6.1) with initial datum \(f_x(x, 0) = \varphi_0(x) \) such that
\[
f_x \in C([0, T), H^2(\mathbb{T})),
\]
with \(T = M_0^{-1} \).

In order to prove this theorem, first, we add other diffusion terms to equation (6.1). Thus, we have the following system:
\[
\begin{align*}
\partial_t f_x &= - \partial_x g - f_x f_{xx} + (f_x)^2 + g f_x + v(||f_{xx}||_{L^2}^2 + g^2) f_{xxx}, \\
f_x(x, 0) &= \varphi_0(x),
\end{align*}
\]
(6.4)
where \(g \) satisfies (6.2) and \(v > 0 \). In the next lemma, we prove the global existence of the solutions of (6.4).

Lemma 6.2. Let \(\varphi_0 \in H^3(\mathbb{T}) \) with mean zero value and \(v > 0 \). Then, there exists a function \(f(x, t) \) defined by (6.3) where \(f_x \) is a solution of equation (6.4) such that
\[
f_x \in C([0, \infty), H^3(\mathbb{T})).
\]

Proof. We note that if \(\varphi_0 \) has mean zero value then \(f \) has mean zero value. Multiplying equation (6.4) by \(f_x \) and integrating over the interval \([-\pi, \pi)\), we obtain
\[
\frac{1}{2} \frac{d}{dt} ||f_x||_{L^2}^2 = \frac{3}{2} \int_{-\pi}^{\pi} (f_x)^3 + g ||f_x||_{L^2}^2 + v(||f_{xx}||_{L^2}^2 + g^2) ||f_{xxx}||_{L^2}^2.
\]
Therefore,
\[
\frac{1}{2} \frac{d}{dt} ||f_x||_{L^2}^2 \leq \frac{3}{2} ||f_x||_{L^\infty} ||f_x||_{L^2} ||f_x||_{L^2}^2 + g ||f_x||_{L^2} ||f_{xx}||_{L^2}^2 - v(||f_{xx}||_{L^2}^2 + g^2) ||f_{xxx}||_{L^2}^2.
\]
Using Gagliardo–Nirenberg and Poincaré inequalities, we have
\[
||f_x||_{L^\infty} \leq C ||f_x||_{L^2} ||f_{xx}||_{L^2} \leq C ||f_{xx}||_{L^2}.
\]
Hence,
\[
\frac{1}{2} \frac{d}{dt} ||f_x||_{L^2}^2 \leq C(||f_{xx}||_{L^2}^2 ||f_x||_{L^2} + g ||f_x||_{L^2} ||f_{xx}||_{L^2})
- v||f_{xx}||_{L^2}^4 - v g^2 ||f_{xxx}||_{L^2}^2.
\]
And using Young’s inequality we obtain
\[
\frac{1}{2} \frac{d}{dt} ||f_x||_{L^2}^2 + \frac{v}{4} (||f_{xx}||_{L^2}^2 + g^2 ||f_{xxx}||_{L^2}^2) \leq C_v ||f_x||_{L^2}^2.
\]
Therefore,
\[
||f_x||_{L^2} \leq ||\varphi_0||_{L^2} \exp(C_v t) \tag{6.5}
\]
and
\[
\int_0^T ||f_{xx}||_{L^2}^4 \, dt \leq C(||\varphi_0||_{L^2}, v, T), \quad \forall T > 0. \tag{6.6}
\]
Taking a derivative over equation (6.4), multiplying by f_{xx} and integrating over the interval $[-\pi, \pi)$ yields
\[\frac{1}{2} \frac{d}{dt} \|f_{xx}\|^2_{L^2} + v(\|f_{xx}\|^2_{L^2} + g^2)\|f_{xxxx}\|^2_{L^2} = \frac{3}{2} \int_{-\pi}^{\pi} f_x(f_{xx})^2 \, dx + g\|f_{xx}\|^2_{L^2}. \]

Hence,
\[\frac{1}{2} \frac{d}{dt} \|f_{xx}\|^2_{L^2} \leq \frac{3}{2} \|f_{xx}\|^2_{L^2} + \nu (\|f_{xx}\|^2_{L^2} + g\|f_{xx}\|^2_{L^2}) \leq C\|f_{xx}\|^3_{L^2} + g\|f_{xx}\|^2_{L^2}. \]

Integrating between 0 and T, we obtain
\[\|f_{xx}\|^2_{L^2} \leq \|\varphi_0,xx\|^2_{L^2} + C(T) \int_0^T \|f_{xx}\|^2_{L^2}, \]
and we can conclude that $\|f_{xx}\|_{L^2}$ is bounded for all $T < \infty$.

Finally, we estimate $\|f_{xxxx}\|_{L^2}$ and $\|f_{xxxxx}\|_{L^2}$. Taking two derivatives on equation (6.4), multiplying by f_{xxx} and integrating over the interval $[-\pi, \pi)$ yields
\[\frac{1}{2} \frac{d}{dt} \|f_{xxx}\|^2_{L^2} + v(\|f_{xxx}\|^2_{L^2} + g^2)\|f_{xxxxx}\|^2_{L^2} = \frac{1}{2} \int_{-\pi}^{\pi} f_x(f_{xxx})^2 \, dx + g\|f_{xxx}\|^2_{L^2} \]
\[\leq C(T)\|f_{xxx}\|^2_{L^2}. \]
Applying Gronwall inequality, we have that $\|f_{xxx}\|_{L^2}$ is bounded for all $T < \infty$.

Lemma 6.3. Let f_\cdot be a global solution of equation (6.4) with initial data φ_0 and $M(t)$ the maximum of f_\cdot. Then
\[(M + g) t \leq \frac{M(0)}{1 - M(0)t}. \]

Proof. In this proof we use the techniques of paper [7] for the control of the maximum of the solution of equation (6.1). Let us denote $x_M(t)$ to be the point where f_\cdot reaches the maximum, then
\[(M + g) t = M^2 + gM + v(\|f_{xx}\|^2 + g^2) f_{xx}(x_M(t), t) \]
\[\leq M^2 + gM \leq (M + g)^2. \]
Since $g(0) = 0$ we obtain
\[M + g \leq \frac{M(0)}{1 - M(0)t}, \]
and the proof is finished.

Proof of theorem 6.1. Multiplying equation (6.4) by f_\cdot and integrating over the interval $[-\pi, \pi)$ yields
\[\frac{1}{2} \frac{d}{dt} \|f_\cdot\|^2_{L^2} \leq (M + g)\|f_\cdot\|^2_{L^2}. \]
Applying lemma 6.3 and Gronwall inequality we have that $||f_x||_{L^2}$ is bounded for all $T < M(0)^{-1}$. In a similar way, we can obtain that $||f_{xx}||_{L^2}$ and $||f_{xxx}||_{L^2}$ are bounded for all $T < M(0)^{-1}$ independently of ν.

To complete the proof, we consider a sequence of solutions $\{f^\epsilon\}_{\epsilon>0}$ of the equations

\[
\partial_t f_x^\epsilon = -g^\epsilon t - f^\epsilon f_{xx}^\epsilon + (f_x^\epsilon)^2 + g^\epsilon f_x^\epsilon + \epsilon(||f_{xx}^\epsilon||_{L^2} + (g^\epsilon)^2) f_{xx}^\epsilon
\]

(6.8)

where $\{\phi_0^\epsilon\}_\epsilon$ is a sequence in $H^3(\mathbb{T})$ such that

\[
\lim_{\epsilon \to 0} \phi_0^\epsilon = \phi_0 \in H^2.
\]

Moreover, we get

\[
M'(0) \equiv \max_{x \in \mathbb{T}} f_{x0}^\epsilon(x) \leq M(0) \equiv \max_{x \in \mathbb{T}} \phi_0(x)
\]

and

\[
||\phi_0^\epsilon||_{H^2(\mathbb{T})} \leq ||\phi_0||_{H^2(\mathbb{T})}.
\]

The above estimates provide that

\[
||f_x^\epsilon||_{H^2(\mathbb{T})} \text{ is bounded } \forall T < M(0)^{-1} \text{ uniformly in } \epsilon.
\]

Using Rellich’s theorem we conclude the proof taking the limit $\epsilon \to 0$. \hfill \blacksquare

Remark 6.4. We shall consider the equation

\[
\partial_t f_x = -\partial_t g - ff_{xx} + (f_x)^2 + gf_x - \nu \Lambda^\alpha f_x,
\]

which is (6.1) with an extra dissipating term. For this system we have a local existence theorem similar to theorem 6.1. Moreover, we can construct solutions that blow-up in finite time for $\alpha = 1, 2$ (see below) which show the existence of singularities for DPM with infinite energy. \hfill \blacksquare

6.2. Blow up

Next, we show that there exists a particular solution of equation (6.1), with $v \geq 0$, which blows up in finite time.

We consider the following ansatz of (6.1):

\[
f_x(x, t) = r(t) \cos(x),
\]

(6.10)

then r satisfies

\[
\frac{dr(t)}{dt} = r(t) \int_0^t r^2(\tau) \, d\tau + vr.
\]

(6.11)

We define the function

\[
\beta(t) = \int_0^t r^2(\tau) \, d\tau.
\]

(6.12)

Multiplying equation (6.11) by $r(t)$ we have that β satisfies

\[
\frac{d^2 \beta(t)}{dt^2} = 2\beta(t) \frac{d\beta(t)}{dt} + 2v \frac{d\beta}{dt}.
\]

Integrating with respect to the variable t yields

\[
\beta'(t) - \beta'(0) = \beta^2(t) - \beta^2(0) + 2v(\beta - \beta(0)).
\]
Since \(\beta(0) = 0 \) and \(\beta'(0) = r^2(0) \) we obtain
\[
\frac{\beta'(t)}{r(0)^2 + 2\nu \beta + \beta'(t)^2} = 1.
\]
If we choose \(r(0)^2 > \nu^2 \) it follows that
\[
\beta(t) = \sqrt{r(0)^2 - \nu^2} \tan \left(\sqrt{r(0)^2 - \nu^2} \tan^{-1} \left(\frac{\nu}{\sqrt{r(0)^2 - \nu^2}} \right) + \frac{\pi}{2} \right) - \nu.
\]
Therefore, the function
\[
f(x, t) = r(t) \cos(x)
\]
(6.13) is a solution of equation (6.1) which blows up at time
\[
t = \frac{\left(\frac{\pi}{2} - \tan^{-1} \left(\frac{\nu}{\sqrt{r(0)^2 - \nu^2}} \right) \right)}{\sqrt{r(0)^2 - \nu^2}}. \]

Acknowledgments

The authors were partially supported by the grant MTM2008-03754 of the MEC (Spain) and S-0505/ESP/0158 of the CAM (Spain).

References

[1] Bear J 1972 *Dynamics of Fluids in Porous Media* (New York: American Elsevier)
[2] Berselli L 2002 Vanishing viscosity limit and long-time behaviour for 2D quasi-geostrophic equations *Indiana Univ. Math. J.* 51 905–30
[3] Cafarelli L and Vasseur A 2006 Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation arXiv:math.AP/0608447
[4] Constantin P and Wu J 1999 Behaviour of solutions of 2D quasi-geostrophic equations *SIAM J. Math. Anal.* 30 937–48
[5] Córdoba A and Córdoba D 2003 A pointwise estimate for fractionaly derivatives with applications to P.D.E. *Proc. Natl Acad. Sci. USA* 100 15316–17
[6] Córdoba A and Córdoba D 2004 A maximum principle applied to quasi-geostrophic equations *Commun. Math. Phys.* 249 511–28
[7] Córdoba D, Gancedo F and Orive R 2007 Analytical behaviour of 2-D incompressible flow in porous media *J. Math. Phys.* 48 065206 (19pp)
[8] Efendiev M A, Fuhrmann J and Zelik S V 2004 The long-time behaviour of the thermoconvective flow in a porous medium *Math. Meth. Appl. Sci.* 27 907–30
[9] Fabrie P 1986 Solutions fortes et comportement asymptotique pour un modèle de convection naturelle en milieu poreux *Acta Appl. Math.* 7 49–77
[10] Fabrie P and Langlais M 1992 Mathematical analysis of miscible displacement in porous medium *SIAM J. Math. Anal.* 23 1375–92
[11] Fabrie P and Nicolaenko B 1996 Exponential attractors for non-dissipative systems modeling convection in porous media *Asymptotic Anal.* 12 295–327
[12] Ju N 2005 The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations *Commun. Math. Phys.* 255 161–81
[13] Kato T and Ponce 1998 Commutator estimates and the Euler and Navier–Stokes equations *Commun. Pure Appl. Math.* 41 891–907
[14] Kenig C E, Ponce G and Vega L 1991 Well-posedness of the initial value problem for the Korteweg-de Vries equation *J. Am. Math. Soc.* 4 323–47
[15] Kiselev A, Nazarov F and Volberg A 2007 Global well-posedness for the critical 2D dissipative quasi-geostrophic equation *Invent. Math.* 167 445–53
[16] Lions J L 1969 *Quelques Methodes de Resolution des Problemes aux Limites Non Linearies* (Paris: Dunod)
[17] Ly H V and Titi E S 1999 Global Gevrey regularity for the Bénard convection in a porous medium with zero Darcy–Prandtl number J. Nonlinear Sci. 9 333–62

[18] Nield D A and Bejan A 1999 Convection in Porous Media (New York: Springer)

[19] Oliver M and Titi E S 2000 Gevrey regularity for the attractor of a partially dissipative model of Bénard convection in a porous medium J. Diff. Eqns 163 292–311

[20] Resnick S 1995 Dynamical problems in nonlinear advective partial differential equations PhD Thesis University of Chicago

[21] Sell G 1996 Global attractor for the three-dimensional Navier–Stokes equations J. Dyn. Differ. Eqns 8 1–33

[22] Simon J 1987 Compact sets in the space \(L^{p}(0, T; B) \) Ann. Mat. Pura Appl. 146 65–96

[23] Stein E 1970 Singular Integrals and Differentiability Properties of Function (Princeton, NJ: Princeton University Press)

[24] Taylor M E 1991 Pseudodifferential Operators and Nonlinear PDE (Boston, MA: Birkhäuser Boston)

[25] Temam R 1984 Navier–Stokes Equations (Amsterdam: North-Holland)

[26] Temam R 1988 Infinite Dimensional Dynamical Systems in Mechanics and Physics (Berlin: Springer)