Development of lesson plan device based on inquiry based learning to improve learning outcome and critical thinking skill

M Zaini¹*, Ita², F Zannah³

¹Department of Biology Education, Universitas Lambung Mangkurat, Banjarmasin, Indonesia
²Department of Biology Education, Islamic State University of Banjarmasin, Banjarmasin, Indonesia
³Faculty of Teacher Training and Education, Universitas Muhammadiyah Palangkaraya, Indonesia

*Corresponding author: muhammadzaini@ulm.ac.id

Abstract. This research is a development research that aims to evaluate the validity, practicality, and effectiveness of lesson plan device based on inquiry based learning which has been developed on interaction of living things and its environment topic in junior high school. This research adapts Tessier’s model to developed the lesson plan device include syllabi, lesson plan, worksheet, learning material, and media. The instruments used in this research were validation sheet, response questionnaire, learning outcome test, and critical thinking skills observation sheet. The results showed that: 1) the validity of lesson plan device based on expert assessment was in a valid category, b) the practically of the lesson plan device categorized as very good and c) the effectiveness based on learning outcome and critical thinking skills. The subjects for the field test were 29 grade VII students at Public Junior High School 13 Banjarmasin, South Kalimantan. The learning outcome result showed that has exceeded the passing grade and the critical thinking skill was in a very good category. This result concluded that the lesson plan device based on inquiry based learning developed have been proved worthy for biology learning, especially on on interaction of living things and its environment topic.

1. Introduction
Entering the 21st century students have to emphasize on global skill mastery. Students are not just prepared to master the knowledge and skills only, but also must have the skills to face the 21st century challenges successfully. Learning activities need to accommodate the development of students' thinking skills, one of which is critical thinking skill. Critical thinking skill is one of the main goals that expected to be achieved on learning process [1].

The teacher duty already completed when the lesson was over and abilities that will be measured already fulfilled. In fact, teacher still ignore the learning process, inform the materials, sort the materials, motivate the students, and develop good evaluations. He doesn't pay attention to how students absorb the materials, master it, and get good scores. As a result, student’s thinking skills will not increase [2].

According to OECD [3] PISA cognitive questions that aim to measure science literacy presented in 2 groups i.e. 1) standard unit that consist of static materials include text, graphic, table, and graphic and
related questions, and 2) interactive unit that consist of interactive stimulate materials and related questions. Standard unit demands learning experience through scientific work and interactive unit demand students’ technology literacy. Both of these abilities need to be encouraged so the students will have science and technology literacy.

The ability of scientific literacy is a fundamental thing that must be possessed by students in facing challenges in the 21st century, it is necessary to design the learning activities and assessment that could stimulate the increase of science literacy. A scientifically literate student must be able to demonstrating the most essential skills of science literacy, communicate his or her ideas through writing or speaking. Therefore, the students must have the knowledge in order to explore specific types of scientific issues in depth [4]. One way that could be done is by design the learning based on observation or investigation, one of them is inquiry-based learning.

Lesson plan device in school need to be reconstructed through development research. This research process an iterative design that focus on implementation and development in education [5]. The “development research” term popularized by Richey & Klein [6] as a systematic study of design process, development, and evaluation that aims to create learning or non-learning products (device). There are two main paradigms on design-based research i.e. design as problem solving and design as action reflection [7]. teaching sets based on development research is a learning process innovation. Through this way, will be produced a valid, practical, and effective lesson plan device (high quality intervention) [8]. Development result product stated valid (relevant) because of intervention and design based on scientific knowledge [8].

Most studies about teaching sets based on development researches using inquiry based learning have been conducted, and only few data are available about lesson plan device based on inquiry based learning about interaction of living things and its environment topic. Therefore, the aim of this research is to evaluate the validity, practicality, and effectivity of lesson plan device based on inquiry based learning which has been developed on interaction of living things and its environment topic in junior high school.

2. Methods
Tessier model used in this research because each steps aim to improve the quality of prototype as final product. Those steps are 1) self-evaluation, 2) expert test, 3) individual test, 4) small group test and 5) field test.

Research conducted for six months (July-December 2015) at SMPN 13 Banjarmasin. Research subjects are expert team consists of 3 lecturers from biology education that actively validating lesson plan device since 4 years ago. For individual test subject consists of 3 students from 7th A grade, small group test subject consists of 15 students from 7th B grade. Subject for the field test consists of 29 students from class 7th A grade. Subjects come from the same school. Research subjects determined purposively i.e. students with different academic ability. Validity data obtained from expert team decision using lesson plan validation assessment format. Practicality data obtained from observer assessment toward learning implementation by partner teacher, using lesson plan implementation assessment format. Effectivity data obtained from cognitive learning outcome and critical thinking ability observation.

Data analysis to state the lesson plan device validity using score 1-4 (1= less, 2= moderate, 3= valid, and 4= very valid). Data analysis to state the effectivity id lesson plan device i.e. 1) cognitive learning outcome based on the total of correct answers, then referred to passing grade criteria (passing grade = 85), and critical thinking skills results analyzed descriptively.

3. Results and Discussion

3.1. The Validity of Lesson Plan Device
Lesson plan device validity obtained from experts’ opinion about syllabi, lesson plan, worksheets, teaching materials and learning media. Table 1 report the results of the lesson plan device validation analysis from experts’ opinion.
Table 1. The Results of Lesson Plan Device Validity

Indicators	Score	Category
Syllabi		
Systematic	4	Very Valid
Suitability basic competency (BC) with core competency (CC)	4	Very Valid
Material coverage	3	Valid
Learning plan suits students’ potency	3	Valid
Include scientific approach	3	Valid
Assessment based on BC, CC, and main material	3	Valid
Media, tools, and learning materials in accordance with BC, CC, and main material	3	Valid
Time allocation in accordance with learning activities	4	Very Valid
Lesson Plan		
Completeness of lesson plan components	4	Very Valid
Activity to motivate students	4	Very Valid
Formulation of learning objectives to encourage critical thinking ability	3	Valid
Formulation of the using purpose	3	Valid
Integrated character education on lesson plan	3	Valid
There are preliminary, core, and closing activity	4	Very Valid
Suitability between learning experiences, objectives, and time allocation	3	Valid
Include scientific approach	3	Valid
Learning steps allow the life proficiency to emerge	3	Valid
Learning activities emphasize learning experiences	4	Very Valid
Utilization of contextual learning resources	3	Valid
Learning media are practical to use	4	Very Valid
Learning model require active students	3	Valid
Include tools and materials	3	Valid
Include assessment instruments	4	Very Valid
Include references on lesson plan	3	Valid
Students’ Worksheet		
Systematic	4	Very Valid
Emphasize scientific process	3	Valid
Use default language	4	Very Valid
Interesting outlook	3	Valid
Efficiency (time, cost, and effort)	4	Very Valid
Teaching Material		
Systematic	3	Valid
Materials are relevant with basic competency	3	Valid
Materials descriptions in accordance to students’ development level	3	Valid
Materials in accordance with scientific truth	3	Valid
Materials are up-to-date	3	Valid
Materials in accordance with daily life	4	Very Valid
Encourage curiosity	3	Valid
Encourage students’ interaction with learning resource	3	Valid
Encourage students to build their own knowledge	3	Valid
Sentences structure in accordance with students’ comprehension level	3	Valid
Image utilization to support material descriptions	3	Valid
Spelling accuracy	4	Very Valid
Terms and sentences structure accuracy	4	Very Valid
Systematic	3	Valid
Materials are relevant with basic competency	3	Valid
Learning Media		
Media in accordance with learning objectives	3	Valid
Based on the validation results, the lesson plan device that developed is valid and very valid. Lesson plan device validity also obtained from students’ opinion about worksheet, teaching materials and evaluation tools. The results of students’ opinion of lesson plan device are shown in the table 2.

Table 2. The Results of Students’ Opinion about Lesson Plan Device

Indicators	Score	Category
Students’ Worksheet		
Outlook	3	Good
Worksheet could be studied individually or in group	3	Good
Learning activities on worksheet are fun	3	Good
Worksheet materials comprehension	3	Good
Increase scientific knowledge	4	Very Good
Used language	3	Good
Inquiry model emerge learning interest	3	Good
Worksheet instructions	3	Good
Emerge thinking ability	4	Very Good
Teaching Materials		
Studied science teaching materials	3	Good
Pictures attached	3	Good
Additional informations to add knowledge	3	Good
Materials could be used to increase awareness to preserve environment	4	Very Good
Foreign terms comprehension	3	Good
Teaching materials increase learning interest	3	Good
Teaching materials increase learning outcome	3	Good
Evaluation Tools		
Sentences on each question	3	Good
Instructions	3	Good
Picture attached	3	Good
Main question formulation	3	Good
Table on each question	3	Good

Note: 1 = Less, 2 = Moderate, 3 = Good, dan 4 = Very Good

Based on the students’ opinion results, the lesson plan device that developed is categorized good and very good. The results of lesson plan device validation show that this research produced a valid device based on the expert assessment and the student opinion. This finding is supported by previous researches [9,10]. Device stated valid if assessment toward all validated aspects are in good category [9] and also the valid lesson plan device is if components in accordance with lesson plan device validation indicators [10].
3.2. **The Practicality of Lesson Plan Device**

The practicality of lesson plan device was measured through the lesson plan implementation by partner teacher and students’ responses toward learning implementation. The results of lesson plan implementation by partner teacher are presented in Table 3.

Table 3. The Result of Lesson Plan Implementation by Partner Teacher

Aspects	Score	Category
Preliminary activities	4	Very Good
Core activities		
Orientation	3	Good
Formulate the problems	4	Very Good
Formulate the hypotheses	3	Good
Collect the data	4	Very Good
Test the hypotheses	3	Good
Formulate the conclusions	4	Very Good
Closing activities	3	Good

Based on Table 3, partner teacher’s ability to implement the lesson plan categorized good and very good. This result shows practicality of lesson plan device which have been developed because the partner teacher can implement the lesson plan well. The ability of teachers to implement lesson plans properly has a big impact toward teaching-learning process and students’ individual development [11]. Therefore, the teacher's ability to implement the learning plan developed is an important thing.

Design-based research is a synergy between practice and research, encourage practices development as many as possible. Furthermore, the results of student responses toward inquiry-based learning implementation are presented in Table 4.

Table 4. The Results of Students’ Responses toward Learning Implementation

Statements	Agree
Learning model useful on learning science	F 15
Learning model is attractive	% 100
Learning model help to understanding science materials	
This model motivates to learn science	F 12
This model encourages to active learning	% 80
Steps are easy to follow	F 12
Save times	% 80
Easy to relate materials with daily life’s problem	F 14
Enhancing group works	% 93.3

Based on Table 4, students’ responses toward learning implementation categorized good and very good. This is supported by previous researches which show that inquiry-based lesson plan device that developed get positive responses from [12].

3.3. **The Effectivity of Lesson Plan Device**

The effectivity of lesson plan device was measured through cognitive learning outcome and critical thinking skills. The analysis results of cognitive learning outcome are presented in Table 5.

Table 5. The Results of Cognitive Learning Outcome

Cognitive Learning Outcome	Total Students	Passed	%
Product	29	25	86.2
Process	29	26	89.7

Based on Table 5, there are 86.2% of students who pass the passing grade for cognitive learning outcome of product and there are 89.7% of students who pass the passing grade for cognitive learning outcome of process.
Learning outcomes can achieve passing grade because the instrument used has been validated. Test instruments should be valid and reliable to decrease mistakes in measurement process [13]. Inquiry-based lesson plan device can improve student competence, because inquiry syntax could accommodate spiritual, social, knowledge, and skill competency [14]. The analysis results of critical thinking skills are presented in Table 6.

Table 6. The Results of Critical Thinking Skills

Indicators	Average (%)	Category
Formulate the problems	86,4	Very Good
Formulate the hypotheses	80,8	Good
Do observation	86,5	Very Good
Collect the data	81,8	Good
Analyze the data	86,9	Very Good
Formulate the conclusions	87,4	Very Good

Based on Table 6, critical thinking skill of students categorized good and very good as found by the previous research also report that teaching sets based on inquiry based learning can improve critical thinking skill [12,15]. Critical thinking skills become one of learning device effectiveness [16]. Students’ critical thinking skills include formulate the problems, formulate the hypotheses, collect the data, analyze the data, and make conclusion are in good category [16].

4. Conclusion

The result of development research concluded that the teaching sets based on inquiry based learning were feasible to use in biology learning. This was supported by the data collected during the study, namely the lesson plan device validity from the expert’s assessment, the practicality which categorized as good and very good, and the effectiveness of the lesson plan device which can increase the cognitive learning outcome and critical thinking skill.

References

[1] Haghparast M, Nasaruddin F H, Abdullah N 2014 *Procedia-soc. behav. sci.* **129** 527
[2] Jeenthong T, Ruenwongsa P, Sriwattanarothai N 2014 *Procedia-soc. behav. sci.* **116** 292
[3] OECD Programme for International Student Assessment 2015 PISA 2015 Released Field Trial Item Kognitif Released Cognitive Items
[4] Balgopal M, Wallace A 2013 *Am. biol. Teach.* **75** 170
[5] Rawson C, Hughes-Hassell S 2015 *School Libraries Worldwide* **21** 11
[6] Richey RC, Klein JD 2014 *Design and Development Research: Methods, Strategies, and Issues* (London: Routledge)
[7] Kennedy-Clark S 2013 *J. Learn. Des.* **6** 26
[8] Plomp T 2013 *Educ. des. res.* **11** 50
[9] Vishnumolakala VR, Southam DC, Treagust DF, Mocerino M, Qureshi S 2017 *Chem. Educ. Res. Pract.* **18** 340
[10] Beck C, Butler A, Burke da Silva K. 2014 *CBE-Life Sci. Educ.* **13** 444
[11] Gedviliene G, Gerviene S, Pasvenskiene A, Ziziene S *Eur. sci. j.* **10** 28
[12] Duran M, Dökme İ 2016 *Eurasia J. Math. Sci. Technol. Educ.* **12** 2887
[13] Taheroost H 2016 *J. Acad. Res. Manag.* **5** 28
[14] Zimbardi K, Bugarcic A, Colthorpe K, Good JP, Lluka LJ 2013 *Advances in Physiology Education* **37** 303
[15] Wardani S, Lindawati L & Kusuma SBW 2017 *Indones. Sci. Educ. J.* **6** 196
[16] Zaini M 2016 *J. Res. Method Educ.* **6** 50