1-COHOMOLOGY OF SIMPLICIAL AMALGAMS OF GROUPS

RIEUWERT J. BLOK AND CORNELIU G. HOFFMAN

Abstract. We develop a cohomological method to classify amalgams of groups. We generalize this to simplicial amalgams in any concrete category. We compute the non-commutative 1-cohomology for several examples of amalgams defined over small simplices.

Keywords: complexes of groups amalgam cohomology Goldschmidt’s lemma incidence geometries

MSC: 20F05 20E06.

Acknowledgements. Part of the work for this paper was completed during an RiP visit to the Matematisches Forschungsinstitut Oberwolfach in Spring of 2011. The authors would like to express their gratitude for the wonderful research environment.

1. Introduction

Recognizing the completion G of an amalgam from the multiplication table of that amalgam can be viewed as playing a Sudoku game on the multiplication table of G. More generally, the aim of the game is to decide what G might look like: You are given a set of subgroups and their intersections and you need to decide what the largest group containing such a structure can be. This approach is very useful for example in the classification of finite simple groups. More precisely, induction and local analysis provides a set of subgroups of the minimal counterexample to the classification and then amalgam type results such as the Curtis-Tits and Phan theorems show that the group is known after all.

This leaves open the question of whether just the structure of the subgroups involved determines the group. Most approaches to this problem [4, 12, 14, 24] use induction together with a lemma by Goldschmidt [11, 13] that describes the isomorphism classes of amalgams of two groups in terms of double coset enumeration. The results presented here are much more general in that they address the classification of amalgams of any finite rank ≥ 2 and any number of groups.

In a recent work [5] we used Bass-Serre theory of graphs of groups to classify all possible amalgams of Curtis-Tits shape with a given diagram. This note describes a method for higher rank amalgams. In general an amalgam can be defined over an arbitrary partially ordered set. In this paper we shall only consider amalgams defined over the poset of faces of a simplicial complex. Goldschmidt’s Lemma arises as the case where the simplicial complex is an edge on two vertices.

Our starting point is a connected simplicial complex $X = (V, \Sigma)$ and a fixed amalgam $G_0 = \{G_\sigma, \psi_\tau^\sigma \mid \sigma \subseteq \tau, \sigma, \tau \in \Sigma\}$, where the connecting maps $\psi_\tau^\sigma : G_\tau \rightarrow G_\sigma$ are injective group homomorphisms whose image we shall denote $G_{\sigma, \tau}$. We call such an amalgam a simplicial amalgam.
Note that if G_0 is an amalgam, then it is also a complex of groups in the sense of Bass [2], Serre [22], and Haefliger [17]. The difference comes from the fact that in a complex of groups, for each chain of simplices $\sigma \subseteq \rho \subseteq \tau$ the diagram

$$
\begin{array}{ccc}
G_\sigma & \rightarrow & G_\rho \\
\uparrow & & \uparrow \\
 & \leftarrow & G_\tau
\end{array}
$$

is required to commute up to inner automorphism of G_σ, whereas in a simplicial amalgam, we insist that this inner automorphism be the identity. As a consequence, there are more complexes of groups than simplicial amalgams. Thus, the notion of isomorphism for complexes of groups is weaker than that of simplicial amalgams.

Our aim is to classify amalgams of type G_0, where we define an amalgam of type G_0 to be an amalgam whose groups G_σ and $G_{\sigma, \tau}$ are those of G_0 (For precise definitions see Section 2). Thus the classification reduces to classifying the collections of connecting maps up to isomorphism of the resulting amalgam. To this end we first create a collection of automorphism groups $A_0 = \{A_\sigma, \alpha_{\sigma, \tau} | \sigma \subseteq \tau \in \Sigma\}$, where

$$A_\sigma = \{g \in \text{Aut}(G_\sigma) | g(G_{\sigma, \tau}) = G_{\sigma, \tau} \text{ for all } \tau \text{ with } \sigma \subseteq \tau \in \Sigma\}$$

and, for each pair (σ, τ) with $\sigma \subseteq \tau$, we have a connecting (“restriction”) map $\alpha_{\sigma, \tau}: A_\sigma \rightarrow A_\tau$ given by $\text{ad}(\psi_{\sigma, \tau}^\sigma)(f) = (\psi_{\sigma, \tau}^\sigma)^{-1} \circ f \circ \psi_{\sigma, \tau}^\sigma$. For the rest of the paper we will abusively denote by $(\psi_{\sigma, \tau}^\sigma)^{-1}$ (respectively $(\varphi_{\sigma, \tau}^\sigma)^{-1}$), the inverse of the isomorphism $\psi_{\sigma, \tau}^\sigma: G_\tau \rightarrow G_{\sigma, \tau}$ (respectively $\varphi_{\sigma, \tau}^\sigma: G_\tau \rightarrow G_{\sigma, \tau}$). We view A_0 as a coefficient system on the simplicial complex X.

In Section 3, we define a non-commutative first cohomology set $H^1(X, A_0)$ on X with coefficients in A_0 and in Section 4 we use this to prove the following result.

Theorem 1. If X is a non-empty connected simplicial complex, then the isomorphism classes of amalgams of type G_0 are parametrized by $H^1(X, A_0)$.

The correspondence between 1-cocycles and amalgams of type G_0 is constructive, as is the correspondence between 1-coboundaries and isomorphisms between such amalgams.

In Section 6 we show that there is a result completely analogous to Theorem 1 in the much more general setting of simplicial amalgams in any concrete category.

Theorem 2. Let 0G be a simplicial amalgam over X in a concrete category C and let 0A be the associated coefficient system. Then, the isomorphism classes of amalgams of type 0G are parametrized by $H^1(X, ^0A)$.

For definitions and notation see Section 6. We finish the paper by illustrating the use of Theorem 2 with some examples.

2. Amalgams and complexes of groups

Definition 2.1. We define a simplicial complex to be a pair $X = (V, \Sigma)$ where V is a set of vertices and $\Sigma \subseteq P(V)$ is a collection of finite subsets of V with the property that $\{v\} \in \Sigma$
for every \(v \in V \) and if \(\tau \in \Sigma \), then any subset \(\sigma \subseteq \tau \) also belongs to \(\Sigma \). An element \(\sigma \in \Sigma \) is called a simplex of rank \(|\sigma| - 1 \). The boundary \(\partial \tau \) of a simplex \(\tau \) consists of all simplices of rank \(|\tau| - 2 \) contained in \(\tau \).

From now on we fix a particular connected simplicial complex \(X = (V, \Sigma) \), with \(V = \{1, 2, \ldots, n\} \) for some \(n \in \mathbb{N}_{\geq 1} \). Given a simplex \(\tau = \{i_1, i_2, \ldots, i_k\} \) with \(i_1 < i_2 < \cdots < i_k \), we have \(\partial \tau = \{\tau_j \mid j = 1, \ldots, k\} \), where \(\tau_j = \{i_j\} \) for all \(j = 1, \ldots, k \). The natural ordering of \(V \) now induces an ordering on \(\partial \tau \) in which \(\tau_j < \tau_l \), whenever \(j < l \). We shall write \(\tau = \tau_1 \).

Definition 2.2. A simplicial amalgam over the complex \(X = (V, \Sigma) \) is a collection \(G = \{G_\sigma, \varphi_\sigma \mid \sigma \subseteq \tau, \sigma, \tau \in \Sigma\} \), where each \(G_\sigma \) is a group and, for each pair \((\sigma, \tau) \) such that \(\sigma \subseteq \tau \) we have a monomorphism \(\varphi_\sigma: G_\tau \hookrightarrow G_\sigma \), called an inclusion map such that, whenever \(\sigma \subseteq \rho \subseteq \tau \), we have \(\varphi_\rho \circ \varphi_\tau = \varphi_\sigma \). For simplicity we shall write \(\hat{G}_{\sigma, \tau} = \varphi_\sigma(G_\tau) \leq G_\sigma \). We shall use the shorthand notation \(\hat{G} = \{G_\bullet, \varphi_\bullet\} \).

A completion of \(\hat{G} \) is a group \(G \) together with a collection \(\phi = \{\phi_\sigma \mid \sigma \in \Sigma\} \) of homomorphisms \(\phi_\sigma: G_\sigma \rightarrow G \), such that whenever \(\sigma \subseteq \tau \), we have \(\phi_\sigma \circ \varphi_\tau = \phi_\tau \). The amalgam \(\hat{G} \) is non-collapsing if it has a non-trivial completion. A completion \((\hat{G}, \hat{\phi}) \) is called universal if for any completion \((G, \phi) \) there is a (necessarily unique) surjective group homomorphism \(\tau: \hat{G} \rightarrow G \) such that \(\phi = \pi \circ \hat{\phi} \).

Definition 2.3. We define a homomorphism between the amalgams \(G^{(1)} = \{G_\bullet^{(1)}, \varphi_\bullet^{(1)}\} \) and \(G^{(2)} = \{G_\bullet^{(2)}, \varphi_\bullet^{(2)}\} \) to be a map \(\phi = \{\phi_\sigma \mid \sigma \in \Sigma\} \) where \(\phi_\sigma: G_\sigma^{(1)} \rightarrow G_\sigma^{(2)} \) are group homomorphisms such that

\[
\phi_\sigma \circ (1) \varphi_\sigma = (2) \varphi_\sigma \circ \phi_\tau.
\]

We call \(\phi \) an isomorphism of amalgams if \(\phi_\sigma \) is bijective for all \(\sigma \in \Sigma \).

Definition 2.4. Adopting the notation from Definition 2.3, suppose \(\hat{X} = (\hat{V}, \hat{\Sigma}) \) is a simplicial complex such that \(V \subseteq \hat{V} \) and \(\Sigma \subseteq \hat{\Sigma} \). Given a simplicial amalgam \((\hat{G}_\bullet, \hat{\varphi}_\bullet) \) over \(\hat{X} \), we define a simplicial amalgam \((G_\bullet, \varphi_\bullet) \) over \(X \) as follows.

\[
G_\sigma = \begin{cases}
G_\sigma & \text{if } \sigma \in \Sigma \\
\{1\} & \text{else}
\end{cases}
\quad \text{and} \quad
\hat{\varphi}_\sigma = \begin{cases}
\varphi_\sigma & \text{if } \sigma, \tau \in \Sigma \\
\{1\} & \text{otherwise}
\end{cases}
\]

Now if \(\phi = \{\phi_\sigma \mid \sigma \in \Sigma\}: G^{(1)} \rightarrow G^{(2)} \) is a homomorphism, then we define \(\hat{\phi} = \{\hat{\phi}_\sigma \mid \sigma \in \Sigma\}: \hat{G}^{(1)} \rightarrow \hat{G}^{(2)} \) as follows.

\[
\hat{\phi}_\sigma = \begin{cases}
\phi_\sigma & \text{if } \sigma \in \Sigma \\
\text{id}: \hat{G}_\sigma^{(1)} = \{1\} \rightarrow \{1\} = \hat{G}_\sigma^{(2)} & \text{else}
\end{cases}
\]

Lemma 2.5. With the notation of Definition 2.4 the assignment \(G \mapsto \hat{G} \) and \(\phi \mapsto \hat{\phi} \) is an embedding of the category of simplicial amalgams over \(X \) into the category of simplicial amalgams over \(\hat{X} \). In particular, \(\phi: G^{(1)} \xrightarrow{\cong} G^{(2)} \) if and only if \(\hat{\phi}: \hat{G}^{(1)} \xrightarrow{\cong} \hat{G}^{(2)} \). Moreover, completions are preserved. That is \((G, \phi)\) is a completion of \((\hat{G}_\bullet, \hat{\varphi}_\bullet)\) if and only if \((G, \phi)\) (defined in the obvious way) is a completion of \((\hat{G}_\bullet, \hat{\varphi}_\bullet)\).
Example 2.10. Consider a group G acting flag-transitively on a geometry $\Gamma = (O, I, \tau, *)$, where O denotes the set of objects, I denotes the set of types, $\text{typ}: O \to I$ is a type map and $*$ is a symmetric reflexive relation on O called the incidence relation. In the terminology of Buekenhout we shall assume that Γ is connected, transversal, and residually connected. Let X be the simplicial complex in which $V = I$ and $\Sigma = P(V) - \{\emptyset\}$. Fix a chamber (maximal flag) $F = (o_i)_{i \in I}$, and for each non-empty subset $\sigma \subseteq I$, let $F_\sigma = (o_j)_{j \in \sigma}$. We

Proof This is a completely straightforward exercise. □

Lemma 2.5 allows us to replace X by a simplicial complex of rank at least 2, if necessary. It also allows us to assume that all subsets of V of cardinality $\leq k$ are simplices in Σ. For the rest of the paper $G_0 = \{G_\bullet, \psi_\bullet\}$ will be a fixed amalgam over $X = (V, \Sigma)$.

Definition 2.6. Let $G_0 = \{G_\bullet, \psi_\bullet\}$ be an amalgam over $X = (V, \Sigma)$. An amalgam of type G_0 is an amalgam $G = \{G_\bullet, \varphi_\bullet\}$, where, for each $\sigma \in \Sigma$, the group G_σ is that of G_0 and in which $\varphi_\sigma^\sigma(G_\sigma) = \sigma_\sigma \psi_\sigma^\sigma(G_\sigma)$ for each pair (σ, τ) with $\sigma \subseteq \tau \in \Sigma$.

The aim of this note is to describe the isomorphism classes of all amalgams that have the same type as G_0. Note that the classification of amalgams of type G_0 essentially comes down to classifying all collections of connecting maps $\{\varphi_\sigma^\sigma | \sigma \subseteq \tau \in \Sigma\}$. Since we classify the amalgams up to isomorphism, some of the φ_σ^σ one can specify in advance.

Definition 2.7. We call an amalgam $G = \{G_\sigma, \varphi_\sigma^\sigma\}$ of type G_0 normalized if for any simplex τ we have $\varphi_\tau^\tau = \psi_\tau^\tau$, where τ is the least maximal face in $\partial \tau$.

Lemma 2.8. Suppose that G is normalized as in Definition 2.7. Suppose that $\sigma \subseteq \tau$ have the same largest element i. Then, $\varphi_\sigma^\tau = \psi_\sigma^\tau$.

Proof Note that, by induction on $|\sigma|$ and $|\tau|$ we have $\varphi_\sigma^i = \psi_\sigma^i$ and $\varphi_\tau^i = \psi_\tau^i$. Indeed $|\sigma| - 1$ applications of the map $\rho \mapsto \rho$ leave the simplex $\{i\}$. Now since $\psi_\tau^i = \psi_\sigma^i \circ \varphi_\sigma^\tau = \psi_\sigma^i \circ \psi_\sigma^\tau$ and all maps are injective, the claim follows. □

Proposition 2.9. Every amalgam of type G_0 is isomorphic to a normalized amalgam.

Proof Let $G^{(1)} = \{G_\bullet, \varphi_\bullet^\bullet\}$ be an arbitrary amalgam of type G_0. We will construct a normalized amalgam $G^{(2)} = \{G_\bullet, \zeta_\bullet\}$ along with an isomorphism $\phi: G^{(1)} \to G^{(2)}$. We will define ζ_σ^σ and ϕ_τ by induction on the rank of τ. To start the induction let $\phi_\tau = \text{id}$ for all simplices τ of rank 0. Assume that all ζ_σ^σ and ϕ_τ have been defined for τ of rank at most $s \geq 0$. Now let τ be a simplex of rank $s + 1$. Define

$$\phi_\tau = (\psi_\tau^\tau)^{-1} \phi_\tau \varphi_\tau^\tau,$$

where τ is the least maximal face in $\partial \tau$.

Next, for each σ define ζ_τ^σ via Equation (2.1) to be $\zeta_\tau^\sigma = \phi_\sigma \circ \varphi_\tau^\sigma \circ \phi_\tau^{-1}$. A direct verification shows that, for any triple $\sigma \subseteq \rho \subseteq \tau$, we have $\zeta_\rho^\sigma \circ \zeta_\sigma^\rho = \zeta_\tau^\rho$.

It now follows by definition that $G^{(2)}$ is normalized and that ϕ is an isomorphism. □

Proposition 2.9 says that we only need to classify normalized amalgams up to isomorphism.

Example 2.10. Consider a group G acting flag-transitively on a geometry $\Gamma = (O, I, \tau, *)$, where O denotes the set of objects, I denotes the set of types, $\text{typ}: O \to I$ is a type map and $*$ is a symmetric reflexive relation on O called the incidence relation. In the terminology of Buekenhout we shall assume that Γ is connected, transversal, and residually connected. Let X be the simplicial complex in which $V = I$ and $\Sigma = P(V) - \{\emptyset\}$. Fix a chamber (maximal flag) $F = (o_i)_{i \in I}$, and for each non-empty subset $\sigma \subseteq I$, let $F_\sigma = (o_j)_{j \in \sigma}$. We
now define an amalgam $G_0 = \{ G_\ast, \psi_\ast \}$ over X setting $G_\sigma = \text{Stab}_G(F_\sigma)$, for each $\sigma \in \Sigma$ and letting $\psi_\sigma : G_\tau \to G_\sigma$ be the inclusion map of subgroups of G whenever $\sigma \subseteq \tau$. The group G_σ is called the standard parabolic subgroup of type σ. A result due to Soulé, Tits, and Pasini now says that G is the universal completion of G_0 if and only if the complex whose simplices are the flags of Γ is simply-connected.

3. Coefficient systems and 1-cohomology

Let $X = (V, \Sigma)$ be a simplicial complex. For any $k \in \mathbb{N}$, let Σ_k be the set of all simplices of rank k and, for $l \in \mathbb{N}$, let $\Sigma_{\leq l} = \bigcup_{0 \leq k \leq l} \Sigma_k$.

Definition 3.1. A coefficient system on the simplicial complex $X = (V, \Sigma)$ is a collection

$$A = \{ A_\sigma, \alpha_\tau^\sigma \mid \sigma \subseteq \tau \text{ with } \sigma, \tau \in \Sigma \}$$

where A_σ is a group and $\alpha_\tau^\sigma : A_\sigma \to A_\tau$ is a group homomorphism such that whenever $\sigma \subseteq \rho \subseteq \tau$, we have $\alpha_\tau^\rho \circ \alpha_\rho^\sigma = \alpha_\tau^\sigma \circ \alpha_\rho^\sigma$. As for amalgams, we shall use the shorthand notation $A = \{ A_\ast, \alpha_\ast^\bullet \}$.

Definition 3.2. We define a homomorphism between coefficient systems $A^{(2)} = \{ A_\ast^{(2)}, (2)\alpha_\ast^\bullet \}$ and $A^{(1)} = \{ A_\ast^{(1)}, (1)\alpha_\ast^\bullet \}$ to be a map $\chi = \{ \chi_\sigma \mid \sigma \in \Sigma \}$ where $\chi_\sigma : A_\sigma^{(2)} \to A_\sigma^{(1)}$ are group homomorphisms such that

$$(3.1) \quad \chi_\tau \circ (2)\alpha_\tau^\sigma = (1)\alpha_\tau^\sigma \circ \chi_\sigma.$$

We call χ an isomorphism of coefficient systems if χ_σ is bijective for all $\sigma \in \Sigma$.

Definition 3.3. Adopting the notation from Definition 3.2, suppose $X = (\tilde{V}, \tilde{\Sigma})$ is a simplicial complex such that $V \subseteq \tilde{V}$ and $\Sigma \subseteq \tilde{\Sigma}$. Given a coefficient system $(A_\ast, \alpha_\ast^\bullet)$ over X, we define a coefficient system $(\tilde{A}_\ast, \tilde{\alpha}_\ast^\bullet)$ over \tilde{X} as follows.

$$\tilde{A}_\sigma = \begin{cases} A_\sigma & \text{if } \sigma \in \Sigma \\ \{ 1 \} & \text{else} \end{cases} \quad \text{and} \quad \tilde{\alpha}_\sigma^\tau = \begin{cases} \alpha_\tau^\sigma & \text{if } \sigma, \tau \in \Sigma \\ A_\sigma \to \tilde{A}_\tau = \{ 1 \} & \text{else} \end{cases}.$$

Now if $\phi = \{ \phi_\sigma \mid \sigma \in \Sigma \} : A^{(2)} \to A^{(1)}$ is a homomorphism, then we define $\tilde{\phi} = \{ \tilde{\phi}_\sigma \mid \sigma \in \tilde{\Sigma} \} : \tilde{A}^{(2)} \to \tilde{A}^{(1)}$ as follows.

$$\tilde{\phi}_\sigma = \begin{cases} \phi_\sigma & \text{if } \sigma \in \Sigma \\ \text{id} : \tilde{A}_\sigma^{(2)} = \{ 1 \} \to \{ 1 \} = \tilde{A}_\sigma^{(1)} & \text{else} \end{cases}.$$

Lemma 3.4. With the notation of Definition 3.3 the assignment $A \mapsto \tilde{A}$ and $\phi \mapsto \tilde{\phi}$ is an embedding of the category of simplicial amalgams over X into the category of coefficient systems over \tilde{X}. In particular, $\phi : A^{(2)} \xrightarrow{\cong} A^{(1)}$ if and only if $\tilde{\phi} : \tilde{A}^{(2)} \xrightarrow{\cong} \tilde{A}^{(1)}$.

Proof This is a completely straightforward exercise. □

Lemma 3.4 allows us to replace X by a simplicial complex of rank at least 2, if necessary. It also allows us to assume that all subsets of V of cardinality $\leq k$ are simplices in Σ. Given a coefficient system $A = \{ A_\ast, \alpha_\ast^\bullet \}$ on X, we define a cochain complex of pointed sets

$$C : C^0 \xrightarrow{d_0} C^1 \xrightarrow{d_1} C^2.$$
Proof for any Part

Proof with the fact that

We now define a right action of

Using the definition of

(3.2)

\[\tau \]

Definition 3.6. For ordinary cohomology theory with

Note that the maps \(d_i \) are not necessarily group homomorphisms, although they can be, for instance when the \(A_\sigma \)'s are abelian groups. Therefore this is not a chain complex of groups, but merely a chain complex of pointed sets, where the pointing identifies the identity as a base point in each group \(A_\sigma \). It is easy to see that the maps \(d_i \) preserve the base point.

Lemma 3.5. We have \(d_1 \circ d_0(C^0) = (\text{id}_r)_{\tau \in \Sigma_2} = \text{id}_2 \).

Proof It suffices to prove that for any \(\sigma \) of rank 0 and any \(\tau \) of rank 2, the composition

\[A_\sigma \hookrightarrow C^0 \xrightarrow{d_0} C^1 \xrightarrow{d_1} C^2 \rightarrow A_\tau \]

sends \(A_\sigma \) to \(\text{id}_{A_\sigma} \). Since the diagram of \(\alpha \)'s is commutative, this is a computation in ordinary cohomology theory with \(\alpha_\tau \) applied. \(\square \)

Definition 3.6. For \(i = 0, 1 \), the set of \(i \)-cocycles of \(C \) is \(Z^i(X, A) = \{ z \in C^i \mid d_i(z) = \text{id}_{i+1} \} \).

We now define a right action of \(C^0 \) on \(C^1 \) as follows:

(3.2) \[(b_{ij} \mid 1 \leq i < j \leq n)^{\sigma(a_k | 1 \leq k \leq n)} = (\alpha_{ij}^j(a_j^{-1}) \cdot b_{ij} \cdot \alpha_{ij}^i(a_i) \mid 1 \leq i < j \leq n) \],

for any \((b_{ij} \mid 1 \leq i < j \leq n) \in C^1 \) and \((a_k \mid 1 \leq k \leq n) \in C^0 \).

Lemma 3.7. Let \(a, b \in C^0 \). Then, we have

(a) \(d_0(a) = \text{id}_{i+1} \), and

(b) \((d_0(a))^b = d_0(ab) \).

Proof Part (a) is immediate from the definition, and part (b) follows from part (a) together with the fact that \(C^0 \) acts on \(C^1 \) from the right. \(\square \)

Lemma 3.8. The action of \(C^0 \) on \(C^1 \) preserves \(Z^1(X, A) \).

Proof Let \(a = (a_1, \ldots, a_n) \in C_0 \) and let \(z = (z_{ij} \mid 1 \leq i < j \leq n) \in Z^1(X, A) \). Then \(z^a = y = (y_{ij} = \alpha_{ij}^j(a_j^{-1}) \cdot z_{ij} \cdot \alpha_{ij}^i(a_i) \mid 1 \leq i < j \leq n) \). The projection of the co-boundary \(d_1(z^a) \) on \(A_\tau \) for some simplex \(\tau = \{ i, j, k \} \) with \(i < j < k \) equals:

\[\alpha_{ijk}^j(y_{jk})^{-1} \alpha_{ijk}^i(y_{ik}) \alpha_{ijk}^{ij}(y_{ij}) \]

Using the definition of \(y \) we get

\[\alpha_{ijk}^j \left(\alpha_{ijk}^i(a_i^{-1}) \cdot z_{ij}^{-1} \cdot \alpha_{ijk}^k(a_k) \right) \cdot \alpha_{ijk}^j \left(\alpha_{ijk}^{ij}(a_i^{-1}) \cdot z_{ik} \cdot \alpha_{ijk}^i(a_i) \right) \]

\[\cdot \alpha_{ijk}^{ij} \left(\alpha_{ijk}^i(a_i^{-1}) \cdot z_{ij}^{-1} \cdot \alpha_{ijk}^j(a_j) \right) \]
We use the composition property of the α-homomorphisms and some cancellations to get:

$$\alpha_{ijk}^j(a_j^{-1}) \cdot \alpha_{ijk}^{jk}(z_{jk}^{-1}) \cdot \alpha_{ijk}^{ik}(z_{ik}^{-1}) \cdot \alpha_{ijk}^{ij}(z_{ij}^{-1}) \cdot \alpha_{ijk}(a_j),$$

and this equals $\text{id}_{A_{ijk}}$ since z is a cocycle. □

Definition 3.9. The zero cohomology set is $H^0(X, \mathcal{A}) = Z^0(X, \mathcal{A})$. The orbits in $Z^1(X, \mathcal{A})$ under the action defined above are called 1-cohomology classes. The first cohomology set is the collection of C_0 orbits of 1-cocycles. We write

$$H^1(X, \mathcal{A}) = Z^1(X, \mathcal{A})^{C_0}.$$

Moreover, for each $z \in Z^i(X, \mathcal{A})$ we denote its cohomology class as $[z]$. Note that for $z \in Z^0(X, \mathcal{A})$ we have $[z] = \{z\}$.

Corollary 3.10. The zero cohomology set $H^0(X, \mathcal{A})$ is a group.

Proof This follows from Lemma 3.7 since $d_0(ab) = ((\text{id}_1)^a)b = \text{id}_1^b = \text{id}_1$. □

3.1. A cohomology exact sequence

Definition 3.11. A normal subsystem of \mathcal{A} is a collection $\{N_\sigma \mid \sigma \in \Sigma\}$ of normal subgroups $N_\sigma \triangleleft A_\sigma$ such that $\mathcal{N} = \{N_\sigma, \alpha_\sigma^\bullet\}$ is a coefficient system on X. We shall denote this as $\mathcal{N} \triangleleft \mathcal{A}$. The normal sub coefficient system naturally gives rise to a quotient coefficient system by setting $\mathcal{A}/\mathcal{N} = \{A_\sigma/N_\sigma, \alpha_\sigma^\bullet\}$. Note that for $i = 0, 1$, $C^i(\mathcal{N}) \triangleleft C^i(\mathcal{A})$ and therefore, $C^i(\mathcal{A}/\mathcal{N}) \cong C^i(\mathcal{A})/C^i(\mathcal{N})$.

Theorem 3.12. The group $H^0(X, \mathcal{A}/\mathcal{N})$ acts on $H^1(X, \mathcal{N})$ in a natural way. The orbits of this action are precisely the fibers of the map $H^1(X, \mathcal{N}) \xrightarrow{i_1} H^1(X, \mathcal{A})$, which takes each $C^0(\mathcal{N})$ orbit on $Z^1(X, \mathcal{N})$ to the unique C^0 orbit on $Z^1(X, \mathcal{A})$ that contains it.

Proof Given $\overline{a} = (a_\sigma N_\sigma)_{\sigma \in \Sigma_0} \in H^0(X, \mathcal{A}/\mathcal{N})$ and $n = (n_\tau)_{\tau \in \Sigma_1} \in Z^1(X, \mathcal{N})$, let $a = (a_\sigma)_{\sigma \in \Sigma_0} \in C^0(\mathcal{A})$. We define

$$[n]^\overline{a} = [n^a].$$

We claim that this is well-defined. Indeed, let $m \in C^0(\mathcal{N})$ and $a \in C^0(\mathcal{A})$ and let $m' \in C^0(\mathcal{N})$ be such that $am = m'a$. Then, $n^{am} = n^{m'a}$ and so $[n^{am}] = [(n^{m'})^a] = [n^a]$. Suppose now that moreover, $\overline{a} \in Z^0(X, \mathcal{A}/\mathcal{N})$. Then, $d_0(a) \in C^1(\mathcal{N})$. This means that for each $\{i, j\} \in \Sigma_1$ with $i < j$, we have $m_{ij} = (d_0(a))_{ij} = \alpha_{ij}^j(a_j^{-1})\alpha_{ij}^i(a_i) \in N_{ij}$. Hence, if $n = (n_{ij})_{\{i, j\} \in \Sigma_1}$, then,

$$n^a = (\alpha_{ij}^j(a_j^{-1}) n_{ij} \alpha_{ij}^i(a_i))_{\{i, j\} \in \Sigma_1} = (\alpha_{ij}^j(a_j^{-1}) n_{ij} \alpha_{ij}^i(a_j) m_{ij})_{\{i, j\} \in \Sigma_1},$$

and this belongs to $C^1(\mathcal{N})$ since $N_{ij} \triangleleft A_{ij}$. This concludes the proof of our claim. □

By definition $i_1([n^a])$ and $i_1([n])$ are in the same cohomology class of $H^1(X, \mathcal{A})$. Conversely, suppose that $[n]$ and $[n']$ are in $H^1(X, \mathcal{N})$ such that $i_1([n]) = i_1([n'])$. Then there is some $a \in C^0(X, \mathcal{A})$ with $n' = n^a$. We claim that $d_0(a) \in C^1(\mathcal{N})$ so that $[n]$ and $[n']$ are in the same $H^0(X, \mathcal{A}/\mathcal{N})$-orbit. Indeed define $d_0(a) = (m_{ij})_{\{i, j\} \in \Sigma_1}$. Then Equation (3.3) still holds for $[n'] = [n^a]$. Since n' and n belong to $C^1(\mathcal{N})$ and $C^1(\mathcal{N}) \triangleleft C^1(\mathcal{A})$, also $m \in C^1(\mathcal{N})$. □
Theorem 3.13. For any \(\mathcal{N} \leq \mathcal{A} \) there is a natural exact sequence of pointed sets

\[
0 \to H^0(X, \mathcal{N}) \xrightarrow{i_0} H^0(X, \mathcal{A}) \xrightarrow{n_0} H^0(X, \mathcal{A}/\mathcal{N}) \xrightarrow{\delta^0} H^1(X, \mathcal{N}) \xrightarrow{i_1} H^1(X, \mathcal{A}) \xrightarrow{n_1} H^1(X, \mathcal{A}/\mathcal{N})
\]

Proof For \(j = 0, 1 \), the map \(i_j \) is given by the inclusion maps \(N_\sigma \hookrightarrow A_\sigma \) and the map \(\kappa_j \) is given by the canonical homomorphism \(A_\sigma \to A_\sigma/N_\sigma \) for any \(\sigma \in \Sigma \). The map \(\delta^* \) is defined as

\[
\delta^*((a_\sigma N_\sigma)_{\sigma \in \Sigma_0}) = d_0((a_\sigma)_{\sigma \in \Sigma_0}).
\]

That this is well-defined can be seen as follows. Since the \(\alpha^*_\sigma \) are group homomorphisms that preserve \(\mathcal{N} \), it follows that the following diagram commutes:

\[
\begin{array}{cccccc}
0 & \to & C^0(\mathcal{N}) & \to & C^0(\mathcal{A}) & \to & C^0(\mathcal{A}/\mathcal{N}) & \to & 0 \\
\downarrow{d_0} & & \downarrow{d_0} & & \downarrow{d_0} & & & & \\
0 & \to & C^1(\mathcal{N}) & \to & C^1(\mathcal{A}) & \to & C^1(\mathcal{A}/\mathcal{N}) & \to & 0 \\
\downarrow{d_1} & & \downarrow{d_1} & & \downarrow{d_1} & & & & \\
0 & \to & C^2(\mathcal{N}) & \to & C^2(\mathcal{A}) & \to & C^2(\mathcal{A}/\mathcal{N}) & \to & 0
\end{array}
\]

Note that the \(d_0 \)'s and \(d_1 \)'s are merely maps of pointed sets. Note that \(d_1 \circ d_0 = 0 \) and that the rows in the diagram are exact sequences of group homomorphisms. A pointed-set version of the Snake Lemma shows that \(\delta^* \) is well-defined and that the sequence is exact up to \(H^1(X, \mathcal{N}) \). Exactness at \(H^1(X, \mathcal{N}) \) follows from Theorem 3.12. It is easy to see that \(\text{im}(i_1) \leq \ker(\kappa_1) \). Let \([a] \in \ker(\kappa_1) \). Since \(a \in Z^1(X, \mathcal{A}) \), we have \(d_1(a) = \text{id}_2 \), and since \([a] \in \ker(\kappa_1) \) there exists some \(b \in C^0(\mathcal{A}) \) such that \(a^b = n \in C^1(\mathcal{N}) \). By Lemma 3.8 we know that \(d_1(n) = \text{id}_2 \) and so \([a] = [n] \in H^1(X, \mathcal{N})\). \(\square \)

Lemma 3.14. Assume \(X \) is a 2-simplex and \(\mathcal{N} \leq \mathcal{A} \) is a normal subsystem such that, for each \(\sigma \leq \tau \in \Sigma \), \(\alpha^*_\tau : N_\sigma \to N_\tau \) is an isomorphism. Then \(H^1(X, \mathcal{A}) = H^1(X, \mathcal{A}/\mathcal{N}) \).

Proof By Theorem 3.13 it suffices to show that \(H^1(X, \mathcal{N}) = 0 \) and that \(\kappa_1 \) is onto. Without loss of generality assume that \(X \) is the set of non-empty subsets of \(\{1, 2, 3\} \). Let \(n = (n_{ij}) \in Z^1(X, \mathcal{N}) \). That means that \(\alpha_{123}^2(n_{23}^{-1})\alpha_{123}^3(n_{13})\alpha_{123}^1(n_{12}^{-1}) = 0 \). Because of this, and since all \(\alpha \) maps are isomorphisms we can find \(m = (m_1, m_2, m_3) \) such that

\[
\begin{align*}
\alpha_{123}^3(m_3^{-1})\alpha_{123}^2(m_2) &= n_{23}, \\
\alpha_{123}^1(m_3^{-1})\alpha_{123}^3(m_1) &= n_{13}, \\
\alpha_{123}^2(m_2^{-1})\alpha_{123}^1(m_1) &= n_{12}.
\end{align*}
\]

Then, \(d_0(m) = \text{id}_1^m = n \). Thus \(H^1(X, \mathcal{N}) = 0 \). Now take \(\bar{a} = (\bar{a}_{ij}) \in Z^1(X, \mathcal{A}/\mathcal{N}) \). This means that for a representative \(a = (a_{ij}) \) we have \(d_1(a) = n \in N_{123} \). Now let \(a' = (a'_{ij}) \) be given by \(a'_{12} = a_{12}m^{a_{12}}, \) where \(n = \alpha_{123}^2(m) \) and \(a'_{ij} = a_{ij} \) otherwise. Now

\[
d_1(a') = \alpha_{123}^3(a_{23}^{-1})\alpha_{123}^1(a_{13})\alpha_{123}^2(a_{12}^{-1})n^{-1} = \text{id}_{123}.
\]

Clearly \((a_{ij}') = (\bar{a}_{ij}) \) so we are done. \(\square \)
3.2. The coefficient system of an amalgam

We now construct a coefficient system $A_0 = \{A_\bullet, \alpha_\bullet\}$, for the amalgam G_0 by setting for each $\sigma \in \Sigma$

$$A_\sigma = \{g \in \text{Aut}(G_\sigma) \mid g(\overline{G}_{\sigma, \tau}) = \overline{G}_{\sigma, \tau} \text{ for all } \tau \in \Sigma \text{ with } \sigma \subseteq \tau\}$$

(in particular, if σ is maximal, this implies $A_\sigma = \text{Aut}(G_\sigma)$). Moreover, for each pair (σ, τ) with $\sigma \subseteq \tau$ we define $\alpha^\sigma_\tau : A_\sigma \rightarrow A_\tau$ given by $\text{ad}(\psi^\sigma_\tau)$, where $\text{ad}(x)(y) = x^{-1}yx$. If $\phi = \{\phi_\sigma \mid \sigma \in \Sigma\} : G^{(1)} \rightarrow G^{(2)}$ is a homomorphism of simplicial amalgams, then $\chi = \{\chi_\sigma = \text{ad}(\phi_\sigma) \mid \sigma \in \Sigma\} : A^{(2)}_0 \rightarrow A^{(1)}_0$ is a homomorphism of coefficient systems. One verifies easily that this assignment defines a contravariant functor from the category of simplicial amalgams over X to the category of coefficient systems over X.

We now let C^\bullet_0 be the cochain complex associated to A_0.

Example 3.15. In Example 2.10 take Γ to be the projective 3-space $PG(V)$, where V has dimension 4 over \mathbb{F}_2 and let $G = \text{SL}_4(2)$. Thus G_0 is an amalgam over a complex $X = (V, \Sigma)$, where Σ consists of all non-empty subsets of $V = \{1, 2, 3\}$. A computation with GAP now reveals the following: $\alpha_{12}^1 : A_1 \rightarrow A_2$ and $\alpha_{23}^3 : A_3 \rightarrow A_{23}$ are surjective. This implies that every element in C^1_0 is in a cohomology class with an element $(\text{id}_{12}, \text{id}_{23}, a_{13})$, for some $a_{13} \in A_{13}$. However, another calculation shows that $\alpha_{123}^{13} : A_{123} \rightarrow A_{123}$ is an isomorphism. Now for $(\text{id}_{12}, \text{id}_{23}, a_{13}) \in Z^1(X, A_0)$ the 1-cocycle condition forces $a_{13} = \text{id}_{13}$ so that $H^1(X, A_0) = 0$.

4. The correspondence between cohomology classes and amalgams

Consider the reference amalgam $G_0 = \{G_\bullet, \psi_\bullet\}$ over the connected simplicial complex $X = (V, \Sigma)$. Using Lemma 2.5 we can assume that X has rank at least 2 and contains all 3-subsets of V as a simplex. Recall that every amalgam of type G_0 has the same target subgroups $\overline{G}_{\sigma, \tau}$. Consider now $G = \{G_\bullet, \psi_\bullet\}$ a normalized amalgam of type G_0. For each $\sigma = \{i, j\} \in \Sigma_1$ with $i < j$ define $a^\sigma_{ij} = (\varphi^\sigma_{ij})^{-1} \circ \psi^\sigma_{ij}$. Note that it follows that $a_\sigma \in A_\sigma$ and so the collection $a = \{a^\sigma_\sigma \mid \sigma \in \Sigma_1\}$ is an element of C^1.

Proposition 4.1. The collection $a = \{a^\sigma_\sigma \mid \sigma \in \Sigma_2\}$ is an element of $Z^1(X, A_0)$. Moreover the correspondence $G \rightarrow \{a_\bullet\}$ is a bijection between the set of normalized amalgams of type G_0 and the set $Z^1(X, A_0)$.

Proof We first need to prove that $a \in Z^1(X, A_0)$. Let us consider $\tau = \{i_1, i_2, i_3\} \in \Sigma_2$, such that $i_1 < i_2 < i_3$. In order to have a cleaner set of notations (and no double subscripts) we will assume that $i_1, i_2, i_3 = 1, 2, 3$. The general case is similar. The amalgam G is normalized so $\varphi^2_{12} = \psi^2_{12}, \varphi^3_{12} = \psi^2_{12}, \varphi^3_{23} = \psi^3_{23}$ and $\varphi^3_{13} = \psi^3_{13}$. We also have that $\varphi^1_{12} = \psi^1_{12}a_{12}^{-1}, \varphi^3_{13} = \psi^3_{13}a_{13}^{-1}$ and $\varphi^3_{23} = \psi^3_{23}a_{23}^{-1}$.
The information above is summarised in the following diagram

Here the straight arrows signify the maps ψ^τ_σ and the curved maps signify the maps φ^τ_σ, wherever they differ. Thus, the diagram obtained by considering only straight arrows corresponds to the amalgam \mathcal{G}_0 and the diagram obtained by taking the curved arrows wherever possible corresponds to the amalgam \mathcal{G}. Both these diagrams commute. Note that by the commutativity of the squares, a walk in the diagram for \mathcal{G} from G_{123} to G_{123} along the path

\[
\{1,2,3\} \to \{1,2\} \to \{1\} \to \{1,3\} \to \{3\} \to \{2,3\} \to \{2\} \to \{1,2\} \to \{1,2,3\}
\]

gives

\[
id_{G_{123}} = (\psi_{123}^{12})^{-1}(\varphi_{12}^2)^{-1}(\varphi_{23}^3)^{-1}(\varphi_{13}^1)^{-1} \varphi_{12}^1 \psi_{123}^{12}.
\]

Using, that, for $i < j$, we have $\varphi^i_{ij} = \psi^i_{ij} a^{-1}_{ij}$ and $\varphi^j_{ij} = \psi^j_{ij}$, we have

\[
id_{G_{123}} = (\psi_{123}^{12})^{-1}(\psi_{12}^2)^{-1}(\psi_{23}^3)^{-1} (\psi_{13}^3)(a_{13})(\psi_{13}^1)^{-1}(\psi_{12}^1 a_{12}^{-1}) \psi_{123}^{12}.
\]

Then, using that the diagram commutes we find

\[
id_{G_{123}} = (\psi_{123}^{12})^{-1} \psi_{123}^{-1}(\psi_{23}^3)^{-1} a_{23}^{-1} \psi_{123}^3(a_{13})\psi_{123}^1 a_{12}^{-1} \psi_{123}^{12}.
\]

This last equation means that for any amalgam \mathcal{G}_0, the collection α^G_τ is a 1-cocycle.

Conversely suppose $a = \{a_\sigma \mid \sigma \in \Sigma_1\}$ is a 1-cocycle. We need to construct an amalgam \mathcal{G} so that $a = \{a^\mathcal{G}_\sigma\}$. We first define φ^τ_σ for any $\sigma \subseteq \tau \in \Sigma$. Let $\max \sigma = j$ and $k = \max \tau$. It follows from Lemma 2.8 that we must define

\[
\varphi^\tau_\sigma = \psi^\tau_\sigma \text{ if } j = k.
\]

We also define

\[
\varphi^\tau_\sigma = (\psi^\tau_\sigma)^{-1} \circ \psi^j_{jk} a^{-1}_{jk} \circ \psi^k_\tau \text{ if } j < k.
\]

Note that this definition is also forced upon us. Namely, for $\sigma = \{j\}$ and $\tau = \{j,k\}$ this is the only possibility since we insist that $a = \{a^\mathcal{G}_\sigma\}$. Moreover, normality already forced us
to set \(\varphi^j_\sigma = \psi^j_\sigma \) and \(\varphi^{(j,k)}_\sigma = \psi^{(j,k)}_\sigma \). Hence our definitions of \(\varphi^j_\sigma \) and \(\varphi^\sigma_\tau \) are forced upon us by the requirements

\[
\varphi^j_\sigma = \varphi^{(j,k)}_\sigma \circ \varphi^{(j,k)}_\sigma = \varphi^j_\sigma \circ \varphi^\sigma_\tau.
\]

It now suffices to show that for any \(\rho \subset \sigma \subset \tau \) we have

\[
(4.1)
\]

Let \(i = \max \rho \) and let \(j \) and \(k \) be as above. If \(i = j = k \) then (4.1) follows since all \(\psi \) commute. If \(\{i, j, k\} = \{i, k\} \), then either \(\varphi^\sigma_\tau = \psi^\sigma_\sigma \) or \(\varphi^\rho_\tau = \psi^\rho_\rho \). Suppose the latter holds. Then,

\[
\varphi^\rho_\tau = (\psi^j_\rho)^{-1} \circ \psi^i_\rho a^i_\rho \circ \psi^j_\rho \circ \psi^i_\rho (\psi^j_\sigma)^{-1} \circ \psi^i_\sigma a^i_\sigma \circ \psi^j_\sigma \circ \psi^i_\sigma \circ \varphi^\sigma_\tau
\]

and a similar argument holds in the former case. Finally let \(i < j < k \). Then, (4.1) amounts to

\[
(\psi^j_\rho)^{-1} \circ \psi^i_\rho a^i_\rho \circ \psi^j_\rho = (\psi^j_\sigma)^{-1} \circ \psi^i_\sigma a^i_\sigma \circ \psi^j_\sigma \circ (\psi^j_\rho)^{-1} \circ \psi^i_\rho a^i_\rho \circ \psi^j_\rho \circ (\psi^j_\sigma)^{-1} \circ \psi^i_\sigma a^i_\sigma \circ \psi^j_\sigma
\]

Multiplying by \((\psi^j_\rho)^{-1}\psi^j_\rho\) on the left and \((\psi^j_\rho)^{-1}\psi^j_\rho\) on the right, replacing \((\psi^j_\rho)^{-1} = (\psi^j_\rho)^{-1}\) and using that \((\psi^j_\rho)^{-1} = (\psi^j_\rho)^{-1}\) and the \(\psi \) all commute this reduces to

\[
\alpha_{ijk}(a^{-1}) = \alpha_{ijk}(a^{-1})\alpha_{ijk}(a^{-1})
\]

and this is equivalent to the fact that \(a \) is a cocycle. We already demonstrated that, for any 1-cocycle \(a \) there is (at most) a unique normalized amalgam \(G \) with \(a = \{a^\phi_\sigma\} \), so we are done.

4.1. Isomorphisms and co-boundaries

Proposition 4.2. Two normalized amalgams of type \(G_0 \) are isomorphic if and only if the corresponding 1-cocycles are cohomologous.

Proof For \(l = 1, 2 \), let \((l)G = \{G_0, (l)\varphi_\bullet\} \) be a normalized amalgam of type \(G_0 \) corresponding to a cocycle \(z^{(l)} = \{z^{(l)}_\sigma \mid \sigma \in \Sigma_l\} \). Recall that this means that, for \(\{i, j\} \in \Sigma_l \) with \(i < j \) we have

\[
(4.2)
\]

Suppose \(\phi : G_0^{(1)} \rightarrow G_0^{(2)} \) is an isomorphism. It then follows that \((l)\varphi_\tau = \psi_\tau^\phi \) for all \(\tau \) with \(|\tau| > 1 \). In particular Equation 2.1 becomes \(\varphi_\tau \circ \psi_\tau^\rho = \psi_\rho^\phi \circ \phi_\tau \) and so we have

Moreover if \(i < j \), we get the following commutative diagram:

\[
(4.3)
\]
If we compare the two cocycles \(z^{(1)}_{ij} = (\varphi^i_{ij})^{-1} \circ \psi^i_{ij} \) we see that
\[
z^{(1)}_{ij} = (\varphi^i_{ij})^{-1} \circ \psi^i_{ij} = \alpha^i_{ij}(\phi_{ij}^{-1}) \circ (\varphi^i_{ij})^{-1} \circ \psi^i_{ij} = \alpha^i_{ij}(\phi_{ij}^{-1}) \circ z^{(2)}_{ij} \circ \alpha^i_{ij}(\phi_i).
\]
This shows that in fact the diagram (4.3) is commutative if and only if \(z^{(1)} = (\varphi^i_{ij})_{\{k\mid 1 \leq k \leq n\}} \). In particular, \(z^{(1)} \) and \(z^{(2)} \) are cohomologous. (Note here that since \(\phi \) preserves all \(G_\sigma \) and \(G^\tau \), we have \(\phi_k \in A_k \), for all \(k \).)

Conversely, suppose that \(z^{(1)} \) and \(z^{(2)} \) are cohomologous, that is, they belong to the same \(C^0 \)-orbit. Let \(f = \{ f_k \mid k \in V \} \in C^0 \) such that \(z^{(1)} = (z^{(2)})^f \). We now define an isomorphism \(\phi : (1)G \to (2)G \). First set
\[
\phi_k = f_k \text{ for all } 1 \leq k \leq n.
\]
We now note that since \((1)G \) and \((2)G \) are normalized of the same type, Equation (4.2) must be satisfied and inductive use together with the composition properties of the \(\alpha \) maps, shows that, for each simplex \(\tau = \{i_1, \ldots, i_m\} \), with \(i_1 < \cdots < i_m \), we must have
\[
\phi_\tau = \alpha^{i_m}_{\tau}(f_{i_m}).
\]
It now suffices to check that for all simplices \(\sigma \subset \tau \) we have
\[
\phi_\sigma \circ (1)\varphi^\sigma_\tau = (2)\varphi^\sigma_\tau \circ \phi_\tau.
\]
For \(\sigma = \{i\} \) and \(\tau = \{i, j\} \) with \(i < j \), this requires the diagram (4.3) to be commutative and we already saw that this is equivalent to \(z^{(1)} = (z^{(2)})^{(i,j)} \). Thus for all \(\tau \) with \(|\tau| = 2 \), we’re done.

Next, consider \(\sigma \subset \tau \) where \(|\tau| > 2 \). Suppose that \(i \) and \(j \) are the largest vertices of \(\sigma \) and \(\tau \) respectively. If \(i = j \), then
\[
\phi_\tau = \alpha^i_\tau(f_i) = \alpha^i_\sigma(\phi_i) = (\psi^\sigma_\tau)^{-1} \circ \phi_\sigma \circ \psi^\sigma_\tau = (\varphi^\sigma_\tau)^{-1} \circ \phi_\sigma \circ (1)\varphi^\sigma_\tau
\]
and we are done. Here the last equality follows from Lemma 2.8.

If \(i \neq j \), then \(i < j \). Since, for \(l = 1, 2 \), \((l)G \) is normalized, we have \((l)\varphi_i^l = \psi_i^l \) and \((l)\varphi_{ij}^l = \psi_{ij}^l \), again by Lemma 2.8. It follows that the left and right square in the diagram below are commutative.

![Diagram](image-url)
Moreover, the middle square is commutative because of the rank-2 case. The top and bottom square are also commutative and so the result follows. □

The proof of Theorem 1 is now complete.

Example 4.3. In Example 3.15 we considered the special case of Example 2.10, where the amalgam \(\mathcal{G}_0 \) consists of standard parabolic subgroups of \(\text{SL}_4(2) \) as it acts on the projective 3-space \(\text{PG}(V) \), where \(V = \mathbb{F}_2^4 \). We computed that \(H^1(X, \mathcal{A}) = 0 \), so that by Theorem 1 there exists a unique amalgam of this type.

5. **Amalgams over small complexes**

5.1. **Goldschmidt’s Lemma**

The simplest case of the theory is the celebrated Goldschmidt’s Lemma. It arises as follows from our setup. Let \(X \) be the 1-simplex \(\{\{1\}, \{2\}, \{1, 2\}\} \) and let \(\mathcal{G}_0 \) be a generic amalgam over \(X \). We denote its three groups by \(G_1, G_2, G_{12} \) and let \(\psi^i \colon G_{12} \to G_i \), for \(i = 1, 2 \). We also define the three automorphisms groups as in Subsection 3.2 as \(A_{12} = \text{Aut}(G_{12}) \) and

\[
A_i = \{ g \in \text{Aut}(G_i) \mid g(\overline{G}_{i, (1,2)}) = \overline{G}_{i, (1,2)} \}
\]

respectively \(\overline{A}_i = \text{ad}(\psi^i)(A_i) \leq A_{12} \). Theorem 1 now reads as

Corollary 5.1. (Goldschmidt’s Lemma, see [13, §2.7] and [11, Ch. 16]) There is a 1-1 correspondence between isomorphism classes of amalgams of type \(\mathcal{A}_0 = \{G_1, G_2, G_{12}\} \) and double cosets of \(\overline{A}_1 \) and \(\overline{A}_2 \) in \(A_{12} \).

5.2. **Triangular complexes**

Let \(X \) be the 2-dimensional simplex consisting of all non-empty subsets of \(V = \{1, 2, 3\} \) and let \(\mathcal{G}_0 \) be a generic amalgam over \(X \). Such an amalgam arises naturally from a group acting flag-transitively on a rank 3 geometry as in Example 2.10.

![Diagram of amalgams](image)

In order to apply Theorem 1, we need to consider the corresponding coefficient system \(\mathcal{A} \).
Here $A_i = \{g \in \text{Aut}(G_i) \mid g(G_{ij}) = G_{ij} \text{ for all } j \neq i\}$, $A_{ij} = \{g \in \text{Aut}(G_{ij}) \mid g(G_{123}) = G_{123}, A_{123} = \text{Aut}(G_{123}) \}$ and the arrows represent the maps $\alpha^\sigma_\tau: A_\sigma \to A_\tau$, which can be viewed as restriction maps.

We shall consider $N = \text{Inn}(G_{123})$ and note that for any σ there is a group $N_\sigma \triangleleft A_\sigma$ so that $N \cong N_\sigma$ and that α^σ_τ restricted to N_σ gives an isomorphism between N_σ and N_τ. We define then $\overline{A}_\sigma = A_\sigma/N_\sigma$ and $\overline{\alpha}^\sigma_\tau: \overline{A}_\sigma \to \overline{A}_\tau$. Define then the set

$$\overline{C}^1 = \{(a_{23}, a_{13}, a_{12}) \mid a_{ij} \in \overline{A}_{ij} \text{ and } \overline{\alpha}^{23}_{123}(a_{23}^{-1})\overline{\alpha}^{13}_{123}(a_{13})\overline{\alpha}^{12}_{123}(a_{12}^{-1}) = id_{\overline{A}_{123}}\}$$

The group $\overline{C}^0 = \overline{A}_1 \times \overline{A}_2 \times \overline{A}_3$ acts on \overline{C}^1 via

$$(a_{23}, a_{13}, a_{12})^{(d_1, d_2, d_3)} = (\overline{\alpha}^3_{23}(d_3^{-1})a_{23}\overline{\alpha}^2_{23}(d_2), \overline{\alpha}^3_{13}(d_3^{-1})a_{13}\overline{\alpha}^1_{23}(d_1), \overline{\alpha}^2_{12}(d_2^{-1})a_{12}\overline{\alpha}^1_{12}(d_1))$$

Proposition 5.2. The isomorphism classes of amalgams of type \mathcal{G}_0 are in bijection to the orbits of \overline{C}^0 on \overline{C}^1

Proof Immediate from Theorem 1 and Lemma 3.14

Remark 5.3. Note that the group and the action is exactly as in the example of triangular rank two amalgams from [7], however the existence of the group G_{123} gives smaller A's and insures that we only need to take the orbits in \overline{C}^1.

6. Generalizations

The techniques we have developed in this paper so far can be used in the more general setting of concrete categories. In this section we merely outline this generalization since the translations are rather straightforward and we are mainly interested in group theory. Our main reference for (concrete) categories is [1].

We start by recalling a few definitions from category theory. For a category \mathbf{C}, we denote the collection of objects $\text{obj}(\mathbf{C})$ and for $A, B \in \text{obj}(\mathbf{C})$ we let $\text{hom}_\mathbf{C}(A, B)$ denote the collection of \mathbf{C}-morphisms from A to B
Definition 6.1. A *concrete category* (over \(\text{Set} \)) is a category \(\mathcal{C} \) equipped with a functor \(F : \mathcal{C} \to \text{Set} \) that is faithful, that is, for objects \(A, B \in \text{obj}(\mathcal{C}) \), the hom-set restrictions

\[
F : \text{hom}_\mathcal{C}(A, B) \to \text{hom}_\text{set}(FA, FB)
\]

are injective. The functor \(F \) is called the *forgetful functor*. In [1] a concrete category over \(\text{Set} \) is called a construct.

Since a given category might be concrete over several categories, the functor \(F \) is part of the definition of a concrete category. For each \(A \in \text{obj}(\mathcal{C}) \) we shall write \(|A| = F(A) \). Moreover, using that \(F \) is faithful, we shall abusively identify each \(f \in \text{hom}_\mathcal{C}(A, B) \) with the set function \(F(f) \in \text{hom}_\text{set}(|A|, |B|) \). Note however, that in general not all functions \(f : |A| \to |B| \) correspond to morphisms of \(\mathcal{C} \).

Definition 6.2. A morphism \(A \xrightarrow{f} B \) is called an *embedding* if

1. the underlying function \(|A| \xrightarrow{f} |B| \) is injective, and
2. \(f \) is initial, i.e. for any \(C \in \text{obj}(\mathcal{C}) \), a function \(|C| \xrightarrow{g} |A| \) underlies a \(\mathcal{C} \)-morphism whenever \(|C| \xrightarrow{f} |B| \) underlies a \(\mathcal{C} \)-morphism.

Remark 6.3. Note that condition 2. ensures that if you can compose a morphism with \(f^{-1} \) in \(\text{Set} \) then you can do so in \(\mathcal{C} \). More precisely, suppose that \(h \in \text{hom}_\mathcal{C}(C, B) \) so that \(h(|C|) \subseteq f(|A|) \). We can then define the composition of functions \(g = f^{-1} \circ h \in \text{hom}_\text{set}(|C|, |A|) \). Now since \(f \circ g = h \) and \(h \) is a \(\mathcal{C} \) morphism, so is \(g \).

We now consider a simplicial complex \(X = (V, \Sigma) \) and a concrete category \((\mathcal{C}, F)\). The simplicial complex \(X \) gives rise to its poset category \(\text{X} \) in which \(\text{obj}(\text{X}) = \Sigma \) and

\[
\text{hom}_\text{X}(A, B) = \begin{cases}
\{ \text{"} A \leq B \text{"} \} & \text{if } A \leq B \\
\emptyset & \text{if } A \nleq B
\end{cases}
\]

In this setting, an amalgam (cf. Definition 2.2) is a functor.

Definition 6.4. A *simplicial amalgam over \(X \) in the (concrete) category \(\mathcal{C} \) is a contravariant functor \(\mathcal{G} : \text{X} \to \mathcal{C} \) such that for any pair of simplices \(\sigma, \tau \) with \(\sigma \leq \tau \), the map \(\mathcal{G}("\sigma \leq \tau") : \mathcal{G}(\tau) \to \mathcal{G}(\sigma) \) is an embedding (so in particular \(\mathcal{G}("\sigma \leq \tau") \) is a monomorphism). By analogy with the group theoretic setting we shall denote \(\mathcal{G}(\sigma) \) by \(\mathcal{G}_\sigma \) and \(\mathcal{G}("\sigma \leq \tau") \) by \(\varphi^\sigma_\tau \) and write \(\mathcal{G} = (\mathcal{G}_\bullet, \varphi^\bullet_\bullet) \).

Since \(\text{X} \) and \(\mathcal{C} \) are fixed in this section, we shall simply call \(\mathcal{G} \) an amalgam.

Definition 6.5. For an amalgam \(\mathcal{G} \) and each \(\sigma, \tau \in \Sigma \) with \(\sigma \leq \tau \) we define

\[
|\mathcal{G}_{\sigma, \tau}| = \varphi^\sigma_\tau(|\mathcal{G}_\tau|) \subseteq |\mathcal{G}_\sigma|.
\]

Note that this is a set, not an object of \(\mathcal{C} \). Given an amalgam \(^0\mathcal{G} \), an amalgam of type \(^0\mathcal{G} \) is an amalgam \(\mathcal{G} \) such that \(\mathcal{G}_\sigma = ^0\mathcal{G}_\sigma \) for all \(\sigma \in \Sigma \) and \(|\mathcal{G}_{\sigma, \tau}| = |\mathcal{G}_{\sigma, \tau}| \) for all \(\sigma, \tau \in \Sigma \) with \(\sigma \leq \tau \). We call \(\mathcal{G} \) *normalized* if for any simplex \(\tau \) we have \(\mathcal{G}("\overline{\tau} \leq \tau") = ^0\mathcal{G}("\overline{\tau} \leq \tau") \).

In this setting, a morphism of amalgams (see Definition 2.3) is a natural transformation.
Definition 6.6. We define a homomorphism between the amalgams \(G^{(1)} = \{G^{(1)}_{\sigma}, \varphi^{(1)}_{\sigma}\} \) and \(G^{(2)} = \{G^{(2)}_{\sigma}, \varphi^{(2)}_{\sigma}\} \) to be a natural transformation \(\phi: G^{(1)} \rightarrow G^{(2)} \). That is, \(\phi = \{\phi_{\sigma} | \sigma \in \Sigma\} \) where \(\phi_{\sigma} \in \text{hom}_C(G^{(1)}_{\sigma}, G^{(2)}_{\sigma}) \) is such that, when \(\sigma \leq \tau \) we have

\[
\begin{array}{c}
G^{(1)}_{\sigma} \\
\downarrow \phi_{\sigma}
\end{array} \rightarrow \begin{array}{c}
G^{(2)}_{\sigma} \\
\downarrow \phi_{\tau}
\end{array}
\]

\((6.1) \)

We call \(\phi \) an isomorphism of amalgams if it is a natural isomorphism, that is, if \(\phi_{\sigma} \) is an isomorphism for all \(\sigma \in \Sigma \).

Definition 6.7. The simplicial amalgams over \(X \) in \(C \) and homomorphisms of such amalgams form the objects and morphisms of a category that we shall denote \(\text{Amal}_X(C) \). It is a subcategory of the functor quasi-category \([X, C] \), which itself is (isomorphic to) a category since \(X \) is a small category (see [1]).

One can now easily reprove Proposition 2.9. Next, we define what is the coefficient system associated to an amalgam \(G = \{G_{\sigma}, \psi_{\sigma}\} \). Recall that an automorphism of \(A \in \text{obj}(C) \) is an isomorphism in \(\text{hom}_C(A, A) \). The collection of all automorphisms of \(A \) is denoted \(\text{Aut}_C(A) \) and forms a group.

Definition 6.8. The coefficient system associated to the amalgam \(G = \{G_{\sigma}, \psi_{\sigma}\} \) is the (covariant) functor \(A: X \rightarrow \text{Group} \), where for each simplex \(\sigma \in \Sigma = \text{obj}(X) \) we have

\[A(\sigma) = \{g \in \text{Aut}_C(G_{\sigma}) | g(|\overline{G}_{\sigma, \tau}|) = |\overline{G}_{\sigma, \tau}| \text{ for all } \tau \text{ with } \sigma \leq \tau\}, \]

and for every \(\sigma, \tau \in \Sigma \) with \(\sigma \leq \tau \) we have

\[A("\sigma \leq \tau") : A_{\sigma} \rightarrow A_{\tau}, \quad f \mapsto (\psi_{\sigma})^{-1} \circ f \circ \psi_{\tau}. \]

As before we shall write \(A = \{A_{\sigma}, \alpha_{\sigma}\} \), where \(A_{\sigma} = A(\sigma) \) and \(\alpha_{\sigma} = A("\sigma \leq \tau") \).

Remark 6.9. Since morphisms of amalgams are required to be embeddings, it follows from Remark 6.3 that the \(\alpha \)'s are well-defined. Moreover, since \(((\psi_{\tau})^{-1} \circ f \circ \psi_{\sigma})^{-1} = (\psi_{\tau})^{-1} \circ f^{-1} \circ \psi_{\sigma} \), \(\alpha_{\tau} \) maps \(A_{\sigma} \) to \(A_{\tau} \).

It is now immediate to prove Propositions 4.1 and 4.2 in this categorical setting and Theorem 2 follows.

Of course one can apply these generalizations to many natural categories such as \(\text{Ring} \), \(\text{Top} \) and so on. We choose to exemplify with another category of group theoretic flavour. We refer the reader to [20] for details.

6.1. Sheaves on geometries.

We shall define the notion of a sheaf on a geometry in the sense of Ronan and Smith (cf. [20, 21]) and show that it is an example of an amalgam over a simplicial complex.
Let k be a field and let G be a finite group. Let Γ be an incidence geometry with type set I on which G acts flag transitively. Let $X(\Gamma) = (V(\Gamma), \Sigma(\Gamma))$ be the simplicial complex whose vertices are the objects of Γ and whose simplices are the flags of Γ. We let G act on $X(\Gamma)$ in accordance with its action on Γ itself.

Definition 6.10. A $(G$-equivariant) sheaf on $X(\Gamma)$ is a collection

$$F_\Gamma = \{F_\sigma, \phi^\sigma_\tau : \sigma \subseteq \tau \in \Sigma(\Gamma)\},$$

where F_σ is a k-vector space and $\phi^\sigma_\tau : F_\tau \to F_\sigma$ is a linear map whenever $\sigma \subseteq \tau \in \Sigma$. Moreover, $\phi^\sigma_\rho \circ \phi^\rho_\tau = \phi^\sigma_\tau$ whenever $\sigma \leq \rho \leq \tau$. Finally we require that G acts on the set $\prod_\sigma F_\sigma$. More precisely, $g \in G$ acts linearly via $\tilde{g}_\sigma : F_\sigma \to F_{\sigma g}$ and the following diagram commutes.

(6.2) \[
\begin{array}{ccc}
F_\sigma & \xrightarrow{\tilde{g}_\sigma} & F_{\sigma g} \\
\phi^\sigma_\tau & \downarrow & \phi^\sigma_{\tau g} \\
F_\tau & \xrightarrow{\tilde{g}_\tau} & F_{\tau g}
\end{array}
\]

Suppose moreover that G is transitive on the chambers of the geometry Γ. In this case, much of the information contained in a sheaf is redundant. For more details on the construction see Section 2 of [21]. Indeed, let us take c a chamber of the geometry and for each subflag σ of c consider G_σ, the stabilizer of σ. A stalk at c is a system

$$F = \{F_\sigma, \phi^\sigma_\tau : \sigma \subseteq \tau \subseteq c\},$$

where F_σ is a kG_σ-module and ϕ^σ_τ is a kG_σ-module homomorphism whenever $\sigma \subseteq \tau \subseteq c$.

We then have (see theorem 2.3 of [21])

Theorem 6.11. Every stalk is the restriction (to the faces of c) of a unique sheaf.

We shall now consider the category GRep of pairs (G, V) where G is a (finite) group and V is a k representation of G. A homomorphism in $\text{hom}_{\text{GRep}}((G_1, V_1), (G_2, V_2))$ is a pair (ϕ, ψ), where $\phi : G_1 \to G_2$ is a group homomorphism, $\psi : V_1 \to V_2$ is a linear map, and for all $g \in G_1$ and $v \in V_1$, we have

$$\psi(gv) = \phi(g)\psi(v).$$

The functor $F : \text{GRep} \to \text{Set}$, $F((G, V)) = G \times V$ and $F((\phi, \psi)) = \phi \times \psi$ makes (GRep, F) into a concrete category. Let X be the simplex of faces of c. We then can define $\text{Amal}_X(\text{GRep})$ to be the category of simplicial amalgams over X in GRep. There is an obvious forgetful functor $\mathcal{G} : \text{Amal}_X(\text{GRep}) \to \text{Amal}_X(\text{Group})$ from this category into the category of simplicial amalgams over X in the category Group. The following is now quite clear.

Theorem 6.12. The category of sheaves over Γ is equivalent to the fiber category \mathcal{G}_A where A is the amalgam of parabolics of G defined by Γ.

This suggests that the category $\text{Amal}_X(\text{GRep})$ would be interesting to study as the various fiber categories will say something about the representation theory of various groups.
References

[1] J. Adamek, H. Herrlich, and G. Strecker. Abstract and concrete categories. Aug 1990.
[2] H. Bass. Covering theory for graphs of groups. *Journal of Pure and Applied Algebra*, 89(1-2):3–47, October 1993.
[3] C. D. Bennett, R. Gramlich, C. Hoffman, and S. Shpectorov. Curtis-Phan-Tits theory. In *Groups, combinatorics & geometry (Durham, 2001)*, pages 13–29. World Sci. Publishing, River Edge, NJ, 2003.
[4] C. D. Bennett and S. Shpectorov. A new proof of a theorem of Phan. *J. Group Theory*, 7(3):287–310, 2004.
[5] R. Blok and C. Hoffman. A classification of Curtis-Tits amalgams. arXiv:0907.1388v2
[6] R. J. Blok and C. Hoffman. Curtis-Tits groups generalizing Kac-Moody groups of type \tilde{A}_n. arXiv:0911.0824v2.
[7] R. J. Blok and C. Hoffman. Bass-Serre theory and counting rank two amalgams. *J. Group Theory*, 14(3):389–400, 2011.
[8] A. Chermak. Triangles of groups. *Trans. Amer. Math. Soc.*, 347(11):4533–4558, 1995.
[9] J. M. Corson. Complexes of groups. *Proc. London Math. Soc. (3)*, 65(1):199–224, 1992.
[10] J. M. Corson. Groups acting on complexes and complexes of groups. In *Geometric group theory (Columbus, OH, 1992)*, volume 3 of *Ohio State Univ. Math. Res. Inst. Publ.*, pages 79–97. de Gruyter, Berlin, 1995.
[11] A. Delgado, D. Goldschmidt, and B. Stellmacher. *Groups and graphs: new results and methods*, volume 6 of *DMV Seminar*. Birkhäuser Verlag, Basel, 1985. With a preface by the authors and Bernd Fischer.
[12] J. Dunlap. Uniqueness of Curtis-Phan-Tits amalgams. Ph.D. thesis, Bowling Green State University, 2005.
[13] D. M. Goldschmidt. Automorphisms of trivalent graphs. *The Annals of Mathematics*, 111(2):377–406, 1980.
[14] R. Gramlich. Weak Phan systems of type C_n. *J. Algebra*, 280(1):1–19, 2004.
[15] R. Gramlich, C. Hoffman, and S. Shpectorov. A Phan-type theorem for $\text{Sp}(2n,q)$. *J. Algebra*, 264(2):358–384, 2003.
[16] R. Gramlich. Developments in finite Phan theory. *Innov. Incidence Geom.*, 9:123–175, 2009.
[17] A. Haefliger. Complexes of groups and orbihedra. In *Group theory from a geometrical viewpoint (Trieste, 1990)*, pages 504–540. World Sci. Publ., River Edge, NJ, 1991.
[18] A. Haefliger. Extension of complexes of groups. *Ann. Inst. Fourier (Grenoble)*, 42(1-2):275–311, 1992.
[19] P. Keen. In consideration of a geometry. Master’s thesis, University of Birmingham, 2009.
[20] M. A. Ronan and S. D. Smith. Sheaves on buildings and modular representations of Chevalley groups. *J. Algebra*, 96:319–346, 1985.
[21] M. A. Ronan and S. D. Smith. Universal presheaves on group geometries, and modular representations. *J. Algebra*, 102:135–154, 1986.
[22] J.-P. Serre. *Trees*. Springer-Verlag, Berlin, 1980.
[23] J. R. Stallings. Non-positively curved triangles of groups. In *Group theory from a geometrical viewpoint (Trieste, 1990)*, pages 491–503. World Sci. Publ., River Edge, NJ, 1991.
[24] C. Wiedorn. Flag-transitive c-extensions of the $F_4(2)$-building—the amalgams. *European J. Combin.*, 28(2):641–652, 2007.

(Rieuwert J. Blok) DEPARTMENT OF MATHEMATICS AND STATISTICS, BOWLING GREEN STATE UNIVERSITY, BOWLING GREEN, OH 43403, U.S.A.

E-mail address: blokr@member.ams.org

(Corneliu G. Hoffman) UNIVERSITY OF BIRMINGHAM, EDGBASTON, B15 2TT, U.K.

E-mail address: C.G.Hoffman@bham.ac.uk