Recent advances in structural characterization of biomacromolecules in foods via small-angle X-ray scattering

Yang Sun¹*, Xiujuan Li²*, Ruixin Chen¹, Fei Liu⁴ and Song Wei⁵*

¹College of Vocational and Technical Education, Yunnan Normal University, Kunming, China, ²Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China, ³Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China

Small-angle X-ray scattering (SAXS) is a method for examining the solution structure, oligomeric state, conformational changes, and flexibility of biomacromolecules at a scale ranging from a few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to minutes can be also covered by SAXS. With many advantages, SAXS has been extensively used, it is widely used in the structural characterization of biomacromolecules in food science and technology. However, the application of SAXS in charactering the structure of food biomacromolecules has not been reviewed so far. In the current review, the principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups and corresponding applications of in situ capabilities: combination of chromatography, time-resolved, temperature, pressure, flow-through are elaborated. Recent applications of SAXS for monitoring structural properties of biomacromolecules in food including protein, carbohydrate and lipid are also highlighted, and limitations and prospects for developing SAXS based on facility upgraded and artificial intelligence to study the structural properties of biomacromolecules are finally discussed. Future research should focus on extending machine time, simplifying SAXS data treatment, optimizing modeling methods in order to achieve an integrated structural biology based on SAXS as a practical tool for investigating the structure-function relationship of biomacromolecules in food industry.

KEYWORDS
SAXS, structural characterization, food biomacromolecules, modeling, in situ capabilities, time-resolved, chromatography, integrated structural biology
Introduction

Bioactive macromolecules, including peptides, nuclear acids, proteins, carbohydrates, and lipids, are not only essential components of food but also are the dominant substances for food to realize its functions. Meantime, biomacromolecules are widely used as additives for beverages, yogurt, cereal products, nuts, snacks, etc. to improve the food nutrition (1). Besides, other functional properties, such as gelation, foamyability, water retention and emulsification, typical functions induced by structural changes of biomacromolecules, play significant roles in food processing. Therefore, the structure-function relationship of biomacromolecules is one of the most important topics in food science and technology.

Several experimental techniques are available for the structural characterization of biomacromolecules. High-resolution structural techniques, including crystallography, electron microscopy (EM) and nuclear magnetic resonance (NMR) have yielded incredibly detailed structural information at the atomic level on highly populated static states (2–4). However, due to the requirement of good crystals for crystallography, requirement of solubilized and monodisperse sample, and the low molecular weight requirement of NMR, a significant fraction of food biomacromolecules cannot be analysed using these three high-resolution methods (5). Furthermore, because of the highly heterogeneous and polydisperse of most food biomacromolecules, it is also challenging for conventional techniques, Fourier Transform Infrared spectroscopy (FTIR), dynamic light scattering (DLS) to monitor the change in the structure of biomacromolecules, especially the dynamics of self-assemble scattering (DLS) to monitor the change in the structure of Transform Infrared spectroscopy (FTIR), dynamic light scattering. Therefore, developing of alternative structural characterization techniques in that: a very small amount of sample and it has several advantages over direct SAXS is sensitive to both ordered and not-ordered features ranging from a few Angstroms to hundreds of nanometers. The one-dimensional (1D) scattered intensity of biomacromolecules can be generated via small-angle X-ray scattering (SAXS) is a powerful tool for structural characterization of samples under resolutions from a few Angstroms to hundreds of nanometers. SAXS is sensitive to both ordered and not-ordered features in the sample and it has several advantages over direct characteristic techniques in that: a very small amount of sample for measurement, rapid data collection, no crystallization or fixation requirement, high-throughput screening model and multiple in situ capacities, etc. (6). These features make SAXS an interesting technique for academic and industrial applications of highly interdisciplinary field, including life science, biomedicine, and biomaterial engineering.

Since SAXS was first used to study the geometry of typical milk proteins β-lactoglobulin tetramer, there have been nearly 60 years of research on food biomacromolecules. Several studies have reviewed the advances and applications of SAXS in food field (7–13). Gilbert summarized the principle and the latest activities in the application of SANS to food colloids (14). This work provides information for the SANS expert who is interested in applying this method to food colloids and the food scientist that wishes to gain knowledge of the former.

However, a work concluding the recent development and applications of modeling programs and in situ capabilities of SAXS for the structural characterization of food biomacromolecules is not available yet. Therefore, in the present review, the SAXS principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups of in situ capabilities: coupled with chromatography, time-resolved, temperature, pressure, flow-through, are elaborated. Recent applications of SAXS for studying the structural properties of food biomacromolecules including proteins, carbohydrates and lipids are highlighted. Moreover, the limitations and prospects of SAXS are also discussed. We hope this review will provide reference information for food scientists who investigate the relationship between the structure and function of biomacromolecules using SAXS.

Principle, theoretical calculation, and programs

A typical bio-SAXS measurement is performed using a sample concentration at least ~0.5–10 mg ml⁻¹ with a ~15–30 μl of volume, and generally takes less than a few minutes on a synchrotron beamline or dozens of minutes to hours using an in-house instrument (15). The principle of SAXS is that a monochromatic incident X-ray beam and a surface particle results in scattering of the beam in all directions. The one-dimensional (1D) scattered intensity I(q) and the average of the various conformers present in the population of scattered particles are recorded using a two-dimensional (2D) detector. The magnitude of the scattering vector \(q = 4\pi \sin \theta / \lambda \), where \(\theta \) is the half of the angle between incident and scattered beams. At small angles (\(\theta < 5^\circ \)), the inhomogeneity in the electron clouds can be observed, which will provide information about the size and shape of biomacromolecules in the sample (16). The “background” scattering from the buffer is independently measured and subtracted from that of the solution (17).

The radius of gyration (\(R_g \)) of biomacromolecules can be estimated directly from small \(q \) values using Guinier approximation (18), \(I(q) = I(0) \exp \left(-q^2 R_g^2 / 2 \right) \), where \(I(q) \) is the scattering intensity and \(I(0) \) is the forward scattering intensity. The pair-distance distribution function \(p(r) \) (19), corresponding to the paired set of distances between all electrons within the scattered particle, can be generated via indirect Fourier transform by using the GNOM (20), PRIMUS...
Figure 1

Kratky (26), dimensionless Kratky (27), and Porod-Debye plots flexibility of biomacromolecules can be evaluated using the Porod approximation (24, 25). Moreover, the compactness or volume of the biomacromolecules can be calculated by comparing with molecular weight determined from I.

The net scattering intensity is critically dependent on the scale factor, especially at high q regions (as shown in Figure 2A), and any minor deviation from the accurate value may have a significant impact on the final results (30). As seen from Figures 2B–F, a sharp decrease in the net scattering intensity at high q regions is observed due to a slight increase in scale factor (1.000–1.001) for background buffer subtraction. SAXS allows the determination of the structural properties under a broad range from a few Angstroms to hundreds of nanometers, which covers the size of biomacromolecules and their complex (Figure 2G). The maximum distance within a scattered particle (D_{max}) can be assessed by the distance r of the p(r) distribution equals zero (Figure 2H). When the p(r) curve with a maximum frequency at a distance less than half of the D_{max} (olive curve in Figure 2H), the scattered particle adopts rather extended and elongated conformation in solution. Therefore, the change in conformation and structure of biomacromolecules can be monitored by p(r) profile. Moreover, an accurate determination of the scale factor for background subtraction has significant implications for obtaining the further reliable structural parameters of biomacromolecules.

Small-angle X-ray scattering profile can then be used for a further series of theoretical calculations to obtain structural information, ab initio model and ensemble structures. By translating scattering curves into bead representations consisting of a set of dummy atoms, an ab initio model of biomacromolecule with a resolution of 10–30 Å can be obtained via DAMMIN (31) and GASBOR programs (32). It is noted that DAMMIN is the most used in the modeling programs for reconstructing low-resolution shape of biomacromolecule. An iterative phase retrieval method, density from solution scattering (DENSS), has been expanded to analyze SAXS data, which may avoid many of the assumptions limiting the resolution and accuracy of modeling algorithms by explicitly calculating electron density (33). Deep learning methods, such as DecodeSAXS, have been reported used to classify and reconstruct the shapes with model parameters (34, 35). Critical Assessment of Protein Structure Prediction (CASP), a machine learning program, utilizes SAXS data to build improved models simulating the global shape of the target (36). Google’s AlphaFold 2 indisputably won the CASP14 competition. The results are so incredibly accurate that many have hailed this code as the solution to the long-standing protein structure prediction problem.

MONSA program (31) can be used to treat biomacromolecules containing multiple phases (e.g., intensities from protein/nucleic acid complexes) (6). SREFLEX (37), SASREF (38), and CORAL (39) programs can be used for high-resolution modeling of rigid bodies. SAXSDom has been utilized to model stable multi-domain proteins with flexible linker regions (40). Moreover, CRYSTOL is used to compare the SAXS data with a PDB file with an X-ray or NMR structure of a protein or a protein-DNA(RNA) complex (41). SUPCOMB is a tool for superimposing one 3D structure onto another (42). In the case of flexible and mixed biomacromolecule systems (protein, DNA, and RNA), the structural ensembles of the biomacromolecule can be acquired by the ensemble optimization method (EOM) (43). For the oligomeric and transient state system, the volume fraction of components can be calculated using OLIGOMER, and the ab initio model of intermediate may be acquired by DAMMIX (21, 44). A hybrid resolution molecular dynamic (MD) method (hySAXS) has been used to create an ensemble of structures for intrinsically disordered proteins (IDPs), which is comparable to the experimental SAXS data (45). The extended experimental inferential structure determination method (X-EISD) (46) and Bayesian/Maximum entropy (BME) method (47) can be also used to calculate the maximum log-likelihood of an IDPs ensemble derived from SAXS. LIPMIX (48) and BILMIX programs (49) enable polydispersity of the model in multimembrane and asymmetric lipid vesicles and simultaneously generate the corresponding size distribution, respectively. The program ELLLIP can reconstruct the quasi-atomistic models of ellipsoidal liposomes (50) as well as bi-micellar systems involving proteins (51).

Several integrated docking methods by fitting the theoretical scattering curve of possible models to the experimental SAXS data have been developed to estimate the structure of complexes. Examples of such docking methods include SASREF (38), FoXSDock (52), HADDOCK (53), ClusPro FMFT-SAXS (54), pyDockSAXS (55), RosettaDockSAXS (56), PatchDock (57), and ATTRACT-SAXS (58). It has shown that iSPOT can filter docked structure and characterize a native-like model combined SAXS with footprinting data by generating theoretical scattering of crystal structure (59). Molodenskiy et al. presented a PyMOL plugin, MPBuilder, which provided a set of adaptable routines for modeling membrane proteins (MPs), protein-detergent complex, bicaules, and lipid scaffold (saponin nanoparticles, nanodiscs) validated with SEC-SAXS data (60).

A comprehensive list of programs to reconstruct the structure and model of biomacromolecules based on SAXS data is shown in Table 1, and many of the programs are publicly available to academic users and moderately easy to
operate. The details and applications of each program please see the corresponding reference. The popularity of SAXS has been propelled by novel data analysis and modeling algorithms. Developing user-friendly modeling programs will facilitate the utilization of SAXS for large-scale studies, which is also a major achievement in the community toward broader use of the method in combination with complementary techniques and enabling the cross-validation of structural data (61).

In situ capabilities of small-angle X-ray scattering

Size-exclusion chromatography-small-angle X-ray scattering

The online purification system coupled with SAXS, such as size-exclusion chromatography (SEC), gel filtration chromatography, and reversed-phase chromatography, is a standard approach for separating oligomeric species or components in a heterogeneous sample (62). The programs like CHROMIXS (63), DATASW (64), DELA (65), EFAMIX (66), and US-SOMO HPLC-SAXS module (67) have been developed to process chromatography-SAXS data. The scheme for SEC-SAXS setup is shown in Figures 1, 6, and applications of chromatography combined with SAXS for studying biomacromolecules are summarized in Table 2.

Although the nanocluster model for describing casein micelle structure is widely accepted, little direct evidence at the nanometer scale supported this model. Sun et al. (29) reported a method that can prove and quantify the conformation and the fine structure of the casein cluster based on SEC-SAXS. The SEC-SAXS results showed that casein cluster presented \(R_g \) values ranging from 39.45 to 40.77 Å with a \(D_{max} \) of 180 Å. The dimensionless Kratky plot suggested a rather extended and elongated conformation of casein cluster in solution. The experimental \(M_w \) according to the Bayesian Interference analysis was 50.3–64.7 kD with a probability of 91.54%, indicating the presence of 2–3 casein monomers in the cluster. Further, the DAMMIX and OLIGOMER results indicated that the cluster consisted of four species, \(\alpha_s \)-\(\beta \)-\(\alpha_s \)-casein, \(\alpha_s \)-casein, \(\alpha_s \)-casein and \(\alpha_s \)-\(\alpha_s \)-casein with a volume fraction of 64.3, 22.8, 8.5, and 4.4 %, respectively. The results of EOM indicated the presence of two conformers in \(\alpha_s \)-\(\beta \)-\(\alpha_s \)-casein, the elongated one (\(\sim60 \) Å of \(R_g \)) with 64.7% of volume fraction and the compact one (\(\sim35 \) Å of \(R_g \)) with 35.3% of volume fraction. It is the first time to reveal the structural properties of casein cluster based on SEC-SAXS, which may help understand better for internal structure of
casein micelles regarding their primary casein cluster. Therefore, SAXS has been proved to be a powerful tool to study the structure and dynamics of the flexible, disordered and mixed biomacromolecules.

Time-resolved and time-dependent small-angle X-ray scattering

Small-angle X-ray scattering measurements are performed over a set time period ranging from microseconds to hours to assess the time-resolved (TR-SAXS) and time-dependent (in situ or real time) changes in structure and function for protein, carbohydrate, fat or non-nutritive compounds, such as gelatinization, assembly, micellization or colloid formation as well as in digestion and hydrolysis (68). This method is particularly suited to differentiate triggers of structural changes, including optical excitation (69), electron transfer (70), temperature jump (T-jump) (71), pH-jump (72), photoreduction (73), and reactant concentration jump (74).

Kuang et al. investigated the lamellar structure change of waxy corn starch during gelatinization and reveal the gelatinization mechanism by TR-SAXS in the temperature range from 35 to 141.85 °C with a measurement of 60 s at each degree (75). Gilbert reviewed the latest activities in the application of time-dependent SAXS to food colloids (14). Hempt et al. reported a novel digestion model of milk using an integrated online flow-through TR-SAXS with an in vitro cell co-culture model (76). Krishnamoorthy et al. reported an approach based on the time-dependent SAXS from protein spherical nucleic acids to elucidate the enzymatic degradation of DNA, which should prove invaluable in probing other enzyme-catalyzed reactions on the nanoscale (77). The details of TR-SAXS...
Program	Accepted experimental file	Functionality	Output	Web server	References
Membrane protein (MP) Builder	The plugin of both PyMOL and ATSAS, SAXS data	Generation and refinement of all-atom protein-detergent, bicelle, and lipid-scaffold (saponin nanoparticles, nano-discs) complexes	Models of protein-detergent assemblies without minimized energy	https://github.com/emblsaxs/MPBuilder	(60)
Critical assessment of protein Structure prediction (CASP)	SAXS data	SAXS-assisted protein structure prediction	Predicted solution structure	https://predictioncenter.org/	(36)
CRYSOL in ATSAS	PDR, SAXS data	Evaluating atomic structure of biomacromolecules based on SAXS experimental data	Fitting with chi values	https://www.embl-hamburg.de/biosaxs/crysol.html	(51)
CORAL combines the algorithms of SASREF, BUNCH in ATSAS	PDR, SAXS data	Rigid body modeling of multidomain protein complexes against multiple SAXS data	PDB and fitting	https://www.embl-hamburg.de/biosaxs/manuals/coral.html	(39)
DAMMIN or MONSA in ATSAS	Output file of the program Gnom in ATSAS	Restoring ab initio shape of biomacromolecules	PDB and fitting	https://www.embl-hamburg.de/biosaxs/manuals/dammin.html	(31)
GASBOR in ATSAS	Output file of the program Gnom in ATSAS	Restoring ab initio of protein structure using a chain-like ensemble of dummy residues	PDB-like file	https://www.embl-hamburg.de/biosaxs/manuals/gasbor.html	(32)
OLIGOMER in ATSAS	PDR, SAXS data	Computation of volume fractions of mixtures of protein with SAXS data from the components	Fitting and file containing volume fractions of components in mixture	https://www.embl-hamburg.de/biosaxs/manuals/oligomer.html	(21)
DAMMIX in ATSAS	PDR, SAXS data	Restoring ab initio shape of intermediate state component and its volume fraction	PDB and fitting	https://www.embl-hamburg.de/biosaxs/manuals/dammix.html	(44)
EOM in ATSAS	Amino acid sequence, PDB of domains/subunits, SAXS data	Fits an average theoretical scattering intensity derived from an ensemble of conformations to experimental SAXS data.	PDB and fitting	https://www.embl-hamburg.de/biosaxs/manuals/eom.html	(43)
FoXS	PDR, SAXS data	Computing a theoretical scattering profile of a structure and fitting of experimental profile	Fitting file of PDB with SAXS curve	https://modbase.compbio.ucsf.edu/foxs/	(52)
SAXSdom	Sequence of individual domain	Multidomain protein assembly modeling	PDB file of multidomain protein	https://github.com/jianlin-cheng/SAXSdom	(40)
FoXSDock	PDB files of receptor and ligand, SAXS data	Docking two rigid protein structures based on a SAXS profile of their complex	PDB file of complex	https://modbase.compbio.ucsf.edu/foxsdock	(52)
ATTRACT-SAXS	PDB files of receptor and ligand, SAXS data	Docking protein-protein benchmark with simulated SAXS data without a physiochemical force field	High-quality solution models of protein-protein complexes.	http://www.attract.ph.tum.de/services/ATTRACT/attract.html	(58)
RosettaDockSAXS	SAXS data	Predicting unknown 3D atomic structures of protein-protein complexes	3D atomic structures	https://rosie.rosettacommons.org/docking/	(56)
DecodeSAXS	SAXS data	Machine learning methods to build 3D models	3D models	http://liulab.cscb.ac.cn:19005/submit/	(35)
pyDockSAXS	PDB files of receptor and ligand, SAXS data	Structural models of protein-protein interactions at large scale.	Models of complex	life.bsc.es/pid/pydocksaxs	(114)

(Continued)
TABLE 1 (Continued)

Program	Accepted experimental file	Functionality	Output	Web server	References
ClusPro	PDB files of receptor and ligand	Protein–protein docking server based on fast Fourier transform (FFT) data	Models of complex	http://cluspro.org/nousername.php	(115)
X-EISD	Sequence of protein, SAXS experimental data	Generating ensembles of IDPs	Ensembles	https://github.com/THGLab/X-EISD	(46)
BME	Experimental data. Calculated data from simulation trajectory	Generating ensembles	Ensembles	https://github.com/KULL-Centre/BME	(47)
SAXScreen	SAXS data, ITC titration curve, ligand, and buffer SAXS data	Screening protocol utilizing SAXS to obtain structural information involving protein-RNA interactions.	Models of complex	https://github.com/zharmad/SAXScreen	(116)

equipped with the laser pulse recording as a function of the time delay between laser pulse and incident X-ray are shown in Figure 3.

The SAXS beam equipped with the microfluidic device (continuous flow and stopped-flow) may not only reduce the sample damage by radiation (78), but also monitor the dynamic structural alternations during interactions in real-time (79). Hsu et al. characterized the transient partially folded state of bovine α-lactalbumin (BLA) coupled with TR-SAXS following a T-jump (74). The structural responses of BLA after an 11.5°C T-jump from the initial temperatures of 60, 65, and 70°C were individually recorded from 20 µs to 70 ms delay. Three states were molten globule state and two terminal unfolded states, U₁ and U₂. The application of TR-SAXS for structural characterization of biomacromolecules in foods is listed in Table 3.

Temperature

Temperature is one of the most important parameters controlling the formation, morphology, and structure of biomacromolecules, since much of biochemistry is thermally driven, functionally relevant conformational changes can also be triggered by changes in temperature. Generally, a trigger T-jump using a nanosecond laser pulse or an infrared (IR) light with a wavelength of 1450 nm (Figure 3, right upper) can be applied to most temperature-sensitive biomacromolecules to perturb the structural dynamics and reveal the changes in structural kinetics and association under various temperature conditions (80).

Berntsson et al. developed a CoSAXS beamline for millisecond T-jump experiments tracked by TR-SAXS with the Eiger2 and Mythen2 detectors and recorded the scattering of the solvent (80). A ~15°C T-jump can be triggered by a 2 ms infrared laser light and maintained for several seconds with additional laser pulses. The structural changes in lysozyme induced by a T-jump were observed and the population of lysozyme structures differed at this temperature. Moreover, the data showed that IR radiation absorbed directly by the solvent did not show a significant effect compared with that induced by the thermal changes in the protein. Thus, the temperature induced change in structure of biomacromolecule and thermal dynamics of system can be monitored by SAXS effectively based on the scattering characteristic of sample in SAXS profile.

Pressure

High-pressure (HP) food treatment including pasteurization, sterilization, and shelf-life extension, has widely been used to ensure food safety and preserve various thermally sensitive nutrients and bioactive compounds (81). HP-SAXS can also be used to track a wide range of structural changes of food biomacromolecules under pressure in real time (82). Moreover, the experimental setup of TR-SAXS studies of kinetic events induced by sub-millisecond timescale hydrostatic pressure jumps (P-jump, 1–5,000 bar) is also available in several synchrotron SAXS beamlines (83). Typically, the diamond anvil cell (DAC) covers the measurement of milk, solid powders, crystals and crystalline liquids (84). Hydrostatic pressure cell (HPC) is widely used to study phase diagrams of lipid, nano-assemblies, or pressure-dependent structure-function of biomacromolecules (85, 86).

Lehmkuhler et al. reported the pressure-induced formation of super crystals from high-quality PEGylated colloidal nanoparticles using 5 ms P-jump SAXS (87). They demonstrated the crystallization pressure (p_c) of the suspension by tracking SAXS patterns at pressures above 2 kbar in steps of 100 bar and verified p_c between 2.9 and 3 kbar. They observed that the pressure (p_f) jumped from 2.9 to 3.58 kbar averaging over 200 ms exposure time.
The characteristic time (\(t_w\)) decreased from 6.1 to 0.07 s with a reduction in Bragg reflection width from 0.138 to 0.0458 Å\(^{-1}\), suggesting the higher the \(P_J\), the faster the formation of nanoparticle structure. The results showed that a larger \(P_J\) jump induced attractive interactions and thereby accelerated the formation of colloidal nanocrystal superlattices with enhanced crystal quality. Therefore, HP-SAXS can be utilized to track the structural change during interactions of biomacromolecules as well as to monitor the preparation of various biobased nanostructures. Exploiting easy operation setup will broad the applications of SAXS for complex biomacromolecule system.

Applications of small-angle X-ray scattering in characterizing food biomacromolecules

Proteins

As one of the most significant biomacromolecules in food, protein plays an essentially nutritional role in vivo. Meanwhile, protein-based ingredients fulfill several technical functions in food formulations and contribute to texture, color, flavor, and other properties such as solubility, stability.
emulsification, gelation and foaming (88). These researches involve studying protein structure-function relationships, optimizing the utilization of the components of the product, improving the quality, reducing costs, and developing novel protein application (89). SAXS is one of the most suitable techniques for protein structure and function relations study.

According to Yang et al. SAXS was used to investigate the nanostructure of quinoa protein (Chenopodium quinoa) isolates (QPI), one of the emerging proteins native to South America with a well-balanced amino acid profile, and the effect of NaCl and CaCl$_2$ on the heat-induced gelation of QPI (90). Thermal treatment increased the sample $I(q)$ in low-q region and the scattering intensity remained almost the same in the high-q region, which suggested that heat-induced QPI aggregation and then gelation merely occurred on the micron scale, while the internal structure of QPI on the nanoscale changed little. A Guinier shoulder in the mid-q region ($0.02 \, \text{Å}^{-1} < q < 0.08 \, \text{Å}^{-1}$) of the Kratky plot suggested the existence of nanoscale protein particles or inhomogeneities in QPI gel containing 0–200 mM NaCl. By fitting with correlation length model ($I(q) = \frac{A}{Q^n} + \frac{C}{Q^m}$), the correlation length (ζ) or particle size of $\sim 32 \, \text{Å}$ was obtained for all the QPI gels containing 0–200 mM NaCl. Calcium binding or protein cross-linking induced minor protein inhomogeneities as indicated by substantial changes in the SAXS curve as well as a small peak at $q \sim 0.2 \, \text{Å}^{-1}$ in SAXS patterns of QPI gel containing CaCl$_2$.

Pohl et al. (91) reported a high-throughput SAXS screening approach to assess the conformational stability and initial dispersion state of Thermomyces lanuginosus (TLL) and Rhizomucor miehei (RML), important lipases used in the food industry. They found repulsion in nine different kinds of the buffer as indicated by the decreased intensity in the low q-region induced by interparticle diffraction, and a significantly reduced repulsion and reduced oligomerization in phosphate buffer. Salt (35, 70, 140 mM NaCl) had minimal impact on SAXS profiles of TLL in histidine buffer at pH 5.5 and pH 7.5. The major species in the solution in all conditions was found to be monomeric, which confirmed that the differences in SAXS data were related to protein-protein interaction, suggesting that SAXS is used more widely as a tool to gain in-depth knowledge especially for the later stages of protein formulation in the food industry (Figure 4).

The structure of casein micelles contributes to the primary physicochemical and organoleptic properties of milk. Yang et al. (92) analyzed the changes in the internal structure of CNs under HHP (up to $\sim 1,000 \, \text{MPa}$) using in situ HP-SAXS equipped with DAC at room temperature. They found a decrease in both scattering intensities at low q ($\sim 0.003 \, \text{Å}^{-1}$) and high q ($\sim 0.08 \, \text{Å}^{-1}$), suggesting the disruption of CNs and solubilization of the colloidal calcium phosphate (CCP) nanoclusters under HP treatment. The SAXS profiles under pressures ranging from 270 to 960 MPa showed two isosbestic points at q values of ~ 0.013 and $0.03 \, \text{Å}^{-1}$, which confirmed the appearance of “sub-micelles” and dissociation of CCP. When the pressure returned to atmospheric pressure, the CNs structure reverted partially to the native one (Figure 5A). Similarly, Yang et al. (84) reported the hierarchical structure of milk at various lengths under a pressure of 200 or 400 MPa at
25, 40, or 60°C using HP-SAXS (Figure 5B). The changes in CNs nanostructures varied with pressure rather than time, and temperature played a central role during the HP process.

Consequently, SAXS can be used as an effective technique not only to track the dynamic properties of biomacromolecule interactions but also to monitor the internal structure of biomacromolecule assemblies.

Carbohydrates

Carbohydrates contribute to the bulk of dietary energy and play a vital role due to their diverse biological properties and functionalities in the food industry, as a thickening, gelating, emulsifying, encapsulating, or bulking agent (93). Starch, as an important polysaccharide macronutrient, determines the processing and nutritional quality of starch-based foods (94). Increased attention is needed to identify significant opportunities for real-time monitoring of structural changes during starch processing, such as swelling, gelatinization, retrogradation, and digestibility of starch.

Liu group reported dynamic changes in lamellar structure and gelatinization of cereal starches with different amylose contents in real time using in situ SAXS (Figure 6; 75, 95, 96). In the low-q region, the curves fitted with a simple power law equation, \(I(q)\sim q^{-\alpha} \), where mass fractal dimension (0 < \(\alpha < 3 \)) was an indication of compactness, whereas the surface fractal dimension (3 < \(\alpha < 4 \)) was considered smooth. During gelatinization, all cereal starches showed a decreasing \(\alpha \) value in the \(q \)-region between 0.01 and 0.02 Å\(^{-1}\), with the corresponding size of ~30 to ~60 nm with the temperature increasing from ~70 to ~90°C, implying a mass fractal structure of the starch gel. Interestingly, an isosbestic point in the middle \(q \)-region was observed for all samples, which confirmed a two-step gelatinization of starches, namely, two-correlation length (\(\xi_1 \)) of particles in the paste/gel system. The structural parameters of lamellae, the average thickness of amorphous layers (\(d_a \)), crystalline and amorphous layer thickness (\(d_c \)) and the long

TABLE 3 Application of time-resolved small-angle X-ray scattering (TR-SAXS) at various synchrotron beamlines.

Samples	X-ray source	\(q \)-Range	Acquisition time	References
Gluten protein mixtures	ESRF beamline ID02	\(1.2 \times 10^{-6} \) - \(6.0 \times 10^{-3} \) Å\(^{-1}\)	5 ms	(126)
Gelation of pea and whey proteins	APS beamline 9-ID-C	\(1.0 \times 10^{-4} \) - 0.3 Å\(^{-1}\)	A 90 s measurement every 2–5 min	(127)
Polyphenol pea protein gel	APS beamline 9-ID-C	\(1.0 \times 10^{-4} \) - 1.0 Å\(^{-1}\)	20 s	(128)
Zein-based oleo gel	APS beamline 9-ID-C	\(1.0 \times 10^{-4} \) - 1.2 Å\(^{-1}\)	20 s	(129)
Liquid/liquid phase separation of BSA-YCl system	ESRF beamline ID02	\(9.0 \times 10^{-5} \) - 7.0 \(\times 10^{-3} \) Å\(^{-1}\)	5–50 ms	(130)
Cellulose nanofibers	NSLS beamline X9	\(1.0 \times 10^{-3} \) - 0.3 Å\(^{-1}\)	10 s	(131)
Gelation of amylose	SPring-8 BL-40B2	\(1.0 \times 10^{-4} \) - 0.8 Å\(^{-1}\)	1–62 min	(132)
Lipid/surfactant assemblies	ESRF beamline ID02	\(3.0 \times 10^{-3} \) - 0.19 Å\(^{-1}\)	20 ms	(133)
Waxy corn starch	SSRF BL16B1	0.025–0.15 Å\(^{-1}\)	60 s	(75)
Milk lipid crystallization during digestion	Australian Synchrotron SAXS beamline	0.005 < \(q < 1.0 \) Å\(^{-1}\)	5 s	(68)
Milk digestion in presence of a cell	Swiss Light Source SAXS beamline	\(0.006 < q < 0.5 \) Å\(^{-1}\)	70 min with an exposure time of 1 s and a 9 s delay	(76)
Knit oil-in-water emulsion	EMBL P12 beamline	\(0.01 < q < 0.5 \) Å\(^{-1}\)	3,500 s with a 1 s exposure and 9 s delay	(108)
Oleic acid (OA) and glycerol monooleate (GMO) self-assemblies	ELETTRA Austrian SAXS beamline	\(0.018 < q < 0.5 \) Å\(^{-1}\)	Five frames with an exposure time of 20 s	(134)
Liquid depot formulations	ELETTRA Austrian SAXS beamline	\(0.02 < q < 0.5 \) Å\(^{-1}\)	10 min with a 5 s exposure with 5 s delay	(135)
Lipid vesicles and Ca\(^{2+}\)	ESRF beamline ID02	\(0.0067 < q < 0.5124 \) Å\(^{-1}\)	35 frames, first frame 0.04 s after mixing, last frame 361.16 s with a 0.02 s exposure	(136)
Soy phosphatidylcholine-citrem nanoparticles	ELETTRA Austrian SAXS beamline	\(0.01 < q < 0.4 \) Å\(^{-1}\)	Four frames with a 0.25 s exposure	(137)
period distance (d_{ac}) parameters were calculated based on Lorentz-corrected SAXS profiles. For high-amylose maize starch (HAM), d_{c} increased from 65°C with a decreased d_{a} value, demonstrating swelling of the lamellae following water uptake. For normal maize starch (NMS) and mung bean starch (MBS), d_{c} increased from 60°C with a decreasing value of d_{a}. Both d_{ac} and d_{c} rapidly decreased at 72.2, 70.2, and 69.4°C for the high amylopectin (HAP), normal rice starch (NS) and HAM samples, respectively (96).

Starch has a strong tendency to retrograde and undergoes syneresis on cooling, namely, retrogradation. The retrogradation starts with the self-assembly of amylose to form a double helix during the cooling and storage of starch gel, followed by the partial crystallization of branched polymers (amylopectin) after prolonged storage (97). Zeng et al. (94) reported the SAXS patterns of retrograde starch with α values of all samples ranging from 1.32 to 2.43, indicating the mass fractal structures of all retrograde starch samples. Compared with storage day 1, the fractal dimensions (D_m) on storage day 24 increased from 1.32 to 2.30, which was consistent with the formation of ordered crystalline structures in the long-range and an increase in the ordered structure of starch during storage.
Starch digestibility based on sustained dietary energy and low glycemic index (GI) of foods plays a vital role in public health (98). Yang et al. used SAXS to investigate thermally and enzymatically digested corn starches under various treatment times. The semi-crystalline lamellar structure of starch exhibited a scattering peak at a q-region of $0.06-0.07\,\text{Å}^{-1}$ with a size of 9-10 nm corresponding to the alternating crystalline and amorphous lamellar structure of amylopectin. The peak area of thermally treated and enzymatic digested starch was quantified by fitting SAXS data ($0.02\,\text{Å}^{-1} < q < 0.2\,\text{Å}^{-1}$) with a power-law function.
function combined with a Lorentzian peak with $I(q) = B + Cq^{-\alpha} - \frac{C}{4\pi}(q_0-W(q-q_0)^2)$ (99). The thermal treatment induced water uptake in the amorphous regions of the granule during heating, leading to an increase in the intensity of the low q-region. In contrast, enzymatically treated samples showed changes in the crystalline and amorphous regions within the semi-crystalline lamellar structure and the amorphous growth rings. However, both treatments had little impact on the mass fractal structures of starch as the power law exponent (α) and long period distance (d) were around ~ 2 and ~ 10 nm for all samples.

Overall, the structural parameters of biomacromolecules derived from SAXS data facilitated the determination of the structure-function relationship and the evolution of nanomaterials based on the role of carbohydrates in the food industry.

Lipids

Fats and oils are important sources of energy and nutrition, and contribute to the desirable functionality, texture and palatability of foods (100). Chemically, fats consist mainly of triglycerides (TAGs) combined with free fatty acid moieties. Besides nutritional properties, lipids facilitate the delivery of lipophilic nutraceuticals. Lipid-based colloid formation or oleogelation is designed to simulate the structure and semi-solid rheological behavior, and is widely utilized in the food industry, including coating, bakery, dairy products, meat, plant-based and artificial meat products (101).

Clemente et al. (102) explored the water/oil/water interface of phospholipid 1,2-dimyristoyl-snglycerol-3-phosphocholine [DMPC; 1% (wt/wt)] dissolved in a mixture of volatile solvents such as cyclohexane/chloroform (volume ratio 2:1) using microfluidic devices and investigated the role of μ-SAXS (a sketch of the device provided in Figure 7 Top). The structural characteristics of oil/DMPC bilayers were indicated by the decay in the intensity of the SAXS pattern with an inflection at $q = 0.074 \, \text{Å}^{-1}$ corresponding to the first minimum value in the form factor of flat objects extending over large distances (Figure 7 Bottom left), which was also reported in previous studies involving the liquid/liquid (L/L) interface of w/o emulsions generated by a microfluidic apparatus (103). The bilayer thickness was found to shrink under treatment at 50°C for 1 h, but not to increase the order of the lipid bilayers, as suggested by the minimum position ($q = 0.074 \, \text{Å}^{-1}$) shifting toward higher q-region ($q = 0.088 \, \text{Å}^{-1}$). The authors reported that the phase behavior and structural dynamics of phospholipids at the L/L interfaces can be detected well via micro-focusing SAXS (Figure 7 Bottom right), which may provide deeper
insight into the role of double lipid emulsions in the food industry.

Pham et al. (104) investigated the lipid self-assembly during in vitro digestion of bovine, human and goat milk using in situ TR-SAXS. The SAXS data revealed similar structural behavior during the early stages of the digestion of three types of milk, indicating lamellar (L_α), inverse hexagonal (H_2), and continuous cubic (V_2) phases (Figure 8 Top and Middle). All the milk tested self-assembled into non-lamellar liquid crystalline structures, with coexisting lamellar phases associated with calcium soap formation. By tracking the changes in L_α, H_2, and V_2 phases, the investigators concluded that different structures were formed during the digestion of all three infant formulas tested. During the digestion, soy and human milk that released long-chain fatty acids showed an inverse micellar cubic I_2 phase at the oil–water interface, while bovine and goat milk yielded a greater proportion of medium-chain fatty acids tended to exhibit either the V_2 or a H_2 hexagonal phase. In addition, a TR-SAXS equipped with pH-stat or HHP system was used to monitor both the kinetics of lipolysis and structural behavior during the in vitro digestion of lipids in the presence of carbohydrates, such as chitosan (105), amylose (106), and other commercial supplements (as shown in Figure 8 Bottom).

Undoubtedly, the TR-SAXS (106–108) facilitates real-time monitoring of the crystallization of milk lipids under different treatments, but also assessment of the lipid self-assembly during in vitro digestion or under varying buffer conditions, which play a critical role in industrial applications involving the processing and storage of lipid-based foods.

Other biomacromolecules

Traditionally, natural sausage casings are made from collagen-rich intestinal submucosa derived from bovine, porcine and ovine sources. Collagen arrangement in the intestinal submucosa provides strength to animal tissues, although the relationship between structure and strength is not well-characterized. Gunn et al. (109) demonstrated collagen fibril orientation, orientation index (OI) and d-spacing of bovine, porcine and ovine sausage casings using SAXS. The d-spacing was calculated in the range of 64.8–65.2 nm, and the collagen
fibrils were arranged in planar layers with OI values of 0.86–0.91 based on the X-ray adsorption edge energies of all samples.

Pectin has been approved as Generally Recognized as Safe (GRAS) and as a food emulsifier, stabilizer, thickener, and gelling agent (110). Mendez et al. (111) elucidated the different emulsification mechanisms of three pectin sources (watermelon, citrus and apple) using SAXS. The two shoulder-like peaks in the low-q (q < ~0.03 Å⁻¹) and high-q regions were as attributed to intermolecular interactions and chain clusters, and the scattering of rod-like pectin chains, respectively. The R² value of all samples with cross-sections of rod-like pectin chains ranged from 1.4 to 2.3 nm. The P₂ corresponding to the smallest structural level ranged from 1.8 to 2.8, suggesting the existence of flexible folded chains rather than ideal rigid rods. The R² values, referring to the size of the molecular clusters originating as a result of chain bending, determined for pectin solutions (20–38 nm) fall within the range previously determined by SAXS (6.3–42 nm) for pectin with different degrees of esterification.

Food-grade surfactants, like lauric arginate (LAE), have been used widely as a preservative against a wide range of food pathogens and spoilage organisms such as processed meats, dairy products and fruit juices (112). Nallamilli et al. (113) reported a coacervation complex of LAE with λ-carrageenan consisting of loosely packed and disordered LAE molecules with an internal bilayer-like structure indicated by a scattering intensity peak at q ≈ 0.161 Å⁻¹, based on which, a periodicity value of d = 2π/q~3.9 nm was calculated. This was consistent with the quantitative analysis involving fitting a Teubner-Strey structure factor yielding d-spacing of the lamellae from 3.75 to 4.01 nm. Formation of bilayer coacervates was observed at the LAE/carrageenan weight ratio of 2 and the maximum coacervation was detected at a ratio of 5.

Conclusion and outlook

In the current review, recent advances in the structural characterization of food biomacromolecules using SAXS are summarized, including the principle, theoretical calculation methods, in situ capabilities, and applications. The unique feature of SAXS not only provides direct and rapid structural information of biomolecules in their native state but also facilitates the elucidation of conformational dynamics in real-time. SAXS combined with online chromatography represents a fascinating tool for separating and detecting mixtures and flexible systems synchronously, such as disordered fragments in proteins, long-chain ribonucleic acid and IDPs, which significantly widens the range of SAXS applications. Microfluidics installed in SAXS facilitate the study of binding kinetics by reducing the required sample volume to the sub-microliter level. A combination of T-jump or P-jump pump coupled to TR-SAXS allows direct tracking of the structural dynamics triggered by changes in temperature or pressure over a set time period ranging from microseconds to hours. Based on the volume of studies reported, SAXS is becoming a promising tool for monitoring the structure, conformation, interaction, kinetics, and reaction of biomacromolecules to provide molecular insights into the structure-function relationship of biomolecules in different food processing applications.

In the next decade, the application of the fourth-generation of high-brilliance synchrotron facilities will provide insight into the biomacromolecules at the atomic and molecular levels, and promote cutting-edge research via high-resolution imaging, ultrafast process exploration and advanced structural analysis based on SAXS. Furthermore, with the development of artificial intelligence (AI), research that was previously inconceivable or wildly impractical, especially involving protein structure prediction, is now feasible. We have reason to anticipate potential future applications of AI coupled with high-brilliance SAXS in understanding not merely the individual biomacromolecules and complexes in the food industry, but entire cells or even tissues in life science.

Author contributions

YS: conceptualization, methodology, software, writing—review and editing, revise, and supervision. XL and RC: software and writing—review and editing. FL: writing and editing. SW: writing—review and editing, revise, and supervision.

Funding

We acknowledge financial support from the Basic Research Program of Yunnan Province (202201AT070031) and High-level Talent of Yunnan Normal University.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
65. Malaby AW, Chakravarthy S, Irving TC, Kathuria SV, Bilsel O, Lambright DS, et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. *J Appl Crystallogr.* (2021) 54:169–79. doi: 10.1107/S1600576720001536

66. Konarev PV, Babushka MV, Davydova LA, Fedorova NV, Volyansky PE, Svergun DI, et al. BILMX: a new approach to restore the size polydispersity and electron density profiles of lipid bilayers from lipid membranes using small-angle X-ray scattering data. *J Appl Crystallogr.* (2020) 53:236–43.

67. Thompson MC, Barad BA, Wolff AM, Sun Cho H, Schotte F, Schwarz DMC, et al. Temperature-jump solution X-ray scattering reveals distinct motions in a dynamic enzyme. *Nat Chem.* (2019) 11:1008–66. doi: 10.1038/s41557-019-0329-3

68. Clulow AJ, Salim M, Hawley A, Boyd BJ. A closer look at the behaviour of milk lipids during digestion. *Chem Phys Lipids.* (2018) 211:107–16. doi: 10.1016/j.chemphys.2017.10.009

69. Ravishankar H, Nors Pedersen M, Sitsel A, Li C, Duelli A, Levantino M, et al. Tracking Ca2+ATPase intermediates in real-time by X-ray solution scattering. *Sci Adv.* (2020) 6.eaaz9081. doi: 10.1126/sciadv.aaz9081

70. Heyes DJ, Hardman SJ, Pedersen MN, Woodhouse J, De La Mora E, Wolff M, et al. Light-induced structural changes in a full-length cytoplasmic phytochrome probe by time-resolved X-ray scattering. *Commun Biol.* (2019) 2:1. doi: 10.1038/s42003-018-0242-0

71. Manalastas-Cantos K, Konarev PV, Hajizadeh NR, Kikhney AG, Petoukhov MV, Molodenskiy DS, et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. *J Appl Crystallogr.* (2021) 54:343–55. doi: 10.1107/S16005767200013412

72. Schneidman-Duhovny D, Hammel M, Tainer JA, Sali A. FoXS, FoXSDock and MultiFoXS: single-state and multi-state modeling of proteins and their complexes based on SAXS profiles. *Nucleic Acids Res.* (2016) 44:W424–9. doi: 10.1093/nar/gkw389

73. Kim TW, Lee SJ, Jo J, Kim JG, Ki H, Kim CW, et al. Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering. *Proc Natl Acad Sci USA.* (2020) 117:14996–5005. doi: 10.1073/pnas.1913442117

74. Hsu D, Delecluze D, Kosheleva I, Kohlestedt KL, Chen LX. Unfolding bovine u-lactalbumin with T-jump: characterizing disordered intermediates via time-resolved X-ray solution scattering and molecular dynamics simulations. *Chem Phys.* (2015) 154:105101. doi: 10.1039/C5CP039194

75. Kuang Q, Xu J, Liang Y, Xie F, Tian F, Zhou S, et al. Lamellar structure change of waxy corn starch during gelatinisation by time-resolved synchrotron SAXS. *Food Hydrocoll.* (2017) 62:43–8.

76. Hempt C, Gonsart M, Buerki-Thurnherr T, Hirsch C, Salenting S. Nanostructure generation during milk digestion in presence of a cell culture model simulating the small intestine. *J Colloid Interface Sci.* (2020) 574:430–40. doi: 10.1016/j.jcis.2020.04.059

77. Krishnamoorthy K, Kewalramani S, Ehlen A, Moreau LM, Mirkin CA, de la Cruz MO, et al. Enzymatic degradation of DNA probed by in situ X-ray scattering. *ACS Nano.* (2019) 13:11382–91.

78. Narayanan T, Konovolov O. Synchrotron scattering methods for nanomaterials and soft matter research. *Mater. Sci.* (2020) 13:752.

79. Ilhan-Assiysli E, Yaldiz B, Bor G, Yaghmur A, Yesil-Celiktas O. Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of self-assemblies. *Colloids Surf B Biointerfaces.* (2021) 201:111633. doi: 10.1016/j.colsurfb.2021.111633

80. Berntsson O, Terry AE, Plivelic TS. A setup for millisecond time-resolved X-ray solution scattering experiments at the CoSAXS beamline at the MAX IV Laboratory. *J Synchrotron Radiat.* (2021) 28:555–6. doi: 10.1107/S1600577522000996

81. Balasubramaniam VM. Process development of high pressure-based technologies for food: research advances and future perspectives. *Curr Opin Food Sci.* (2021) 42:270–277.

82. Ferreira Zielinski AA, Sanchez-Camargo ADP, Benvenutti L, Ferro DM, Dias JL, Salvador Ferreira SR. High pressure fluid technologies: recent advances to the production of natural pigments for food and pharmaceutical applications. *Trends Food Sci Technol.* (2021) 118:850–69.

83. Harish B, Gillilan RE, Zou J, Wang I, Raleigh DP, Royer CA. Protein unfolded states populated at high and ambient pressure are similarly compact. *Biophys J.* (2012) 100:2592–8. doi: 10.1016/j.bpj.2011.04.031

84. Yang S, Tyler AL, Ahmre N, Kirkengaard JKR. Skimmed milk structural dynamics during high hydrostatic pressure processing from in situ SAXS. *Food Res Int.* (2017) 147:110527. doi: 10.1016/j.foodres.2017.110527

85. Dai DK, Gillilan RE, Huang Q, Miller R, Ting E, Lazarev A, et al. High-pressure small-angle X-ray scattering for biological solutions and soft materials. *J Appl Crystallogr.* (2021) 54:111–22. doi: 10.1107/S1600576720014752

86. Vella J, Hemar Y, Gu Q, Wu ZR, Li N, Stihlin TD. In-situ SAXS investigation of high-pressure triglyceride polymorphism in milk cream and anhydrous milk fat. *LWT.* (2021) 135:110174.

87. Lehmkhuler F, Schroer MA, Markmann V, Frenzel L, Möller J, Lange H, et al. Kinetics of pressure-induced nanocrystal superlatice formation. *Phys Chem Chem Phys.* (2019) 21:21349–54. doi: 10.1039/c8cp04656e

88. Loveday SM. Food proteins: technological, nutritional, and sustainability attributes of traditional and emerging proteins. *Annu Rev Food Sci Technol.* (2019) 10:31–39. doi: 10.1146/annurev-food-032818-121128

89. Afroz M, Tan TC, Easa AM, Gammoh S, Alu'datt MH. Molecular forces governing protein-protein interaction: structure-function relationship of
complexes protein in the food industry. *Crit Rev Food Sci Nutr.* (2022) 62:4036–52. doi: 10.1080/10408398.2021.1871589

10. Yang Z, de Campo L, Gilbert EE, Knott R, Cheng L, Storer B, et al. Effect of NaCl and CaCl2 concentration on the rheological and structural characteristics of thermally-induced protein gels. *Food Hydrocoll.* (2022) 124:107350.

11. Pohl C, Mahapatra S, Kulakova A, Streicher W, Peters GHJ, Nørgaard A, et al. Combination of high throughput and structural screening to assess protein stability. A screening perspective. *Eur J Pharm Biopharm.* (2022) 171:1–10. doi: 10.1016/j.ejpb.2022.08.018

12. Yang Z, Gu Q, Banjar W, Li N, Hemar Y. In situ study of skim milk structure changes under high hydrostatic pressure using synchrotron SAXS. *Food Hydrocoll.* (2018) 77:772–6.

13. Comerford KB, Papanikoloou Y, Jones JM, Rodrigues J, Slavin J, Angadi S, et al. Toward an evidence-based definition and classification of carbohydrate food quality: an expert panel report. *Nutrients.* (2021) 13:2667. doi: 10.3390/nu13082667

14. Zeng X, Zheng B, Li T, Chen L. How to synchronously slow down starch digestion and retrogradation: a structural analysis study. *Int J Biol Macromol.* (2022) 212:43–53. doi: 10.1016/j.ijbiomac.2022.05.099

15. Xu J, Blennow A, Li X, Chen L, Liu X. Gelatinization dynamics of starch in dependence of its lamellar structure, crystalline polymorphs and amylose content. *Carbohydr Polym.* (2020) 229:115481. doi: 10.1016/j.carbpol.2019.115481

16. Xu J, Li Z, Zheng Y, Zhou Q, Lv Q, Chen L, et al. The effects of molecular fine structure on rice starch granule gelatinization dynamics as investigated by in situ small-angle X-ray scattering. *Food Hydrocoll.* (2022) 121:107014.

17. Díaz-Calderón P, Simone E, Tyler AI, Ennione J, Foster T. A structural study of the self-association of different starches in presence of bacterial cellulose fibrils. *Carbohydr Polym.* (2022) 288:119561. doi: 10.1016/j.carbpol.2022.119561

18. Li C, Gong B, Hu Y, Liu X, Guan X, Zhang B. Combined crystalline, lamellar and granular structural insights into in vitro digestion rate of native starches. *Food Hydrocoll.* (2020) 105:108523.

19. Yang Z, Svedlund P, Hemar Y, Mo G, Wei Y, Li Z, et al. Effect of high hydrostatic pressure on the supramolecular structure of corn starch with different amylose contents. *Int J Biol Macromol.* (2016) 85:664–14.

20. Bascuas S, Morell P, Hernandez I, Quiles A. Recent trends in oil structuring methods. *Food Hydrocoll.* (2021) 116:106612.

21. Wang G, Chen H, Wang L, Zou Y, Wan Z, Yang X. Formation of protein oelagels via capillary attraction of engineered protein particles. *Food Hydrocoll.* (2022) 133:107912.

22. Clemente I, Torbensen K, Di Cola E, Rossi F, Ristori S, Abou-Hassan A. Exploring the water/oil/water interface of phospholipid stabilized double emulsions by micro-focused synchrotron SAXS. *RSC Adv.* (2019) 9:33429–35. doi: 10.1039/c9ra05894

23. Di Cola E, Torbensen K, Clemente I, Rossi F, Ristori S, Abou-Hassan A. Lipid-stabilized water/oil interfaces studied using micro-focused small-angle X-ray scattering. *Langmuir.* (2017) 33:9105–10. doi: 10.1021/acs.langmuir.7b02076

24. Pham AG, Peng K-Y, Salim M, Ramírez G, Hawley A, Clulow AJ, et al. Correlating digestion-driven self-assembly in milk and infant formulas with correlated UV measurements for biomolecular structure analysis. *J Appl Crystallogr.* (2018) 51:97–111.

25. Kim H, Min B, Yun YD, Choi HJ, Jin KS. Size-exclusion chromatography combined with small-angle X-ray scattering by size-exclusion chromatography combined with light and X-ray scattering methods. *J Chromatogr A.* (2013) 1301:100–4. doi: 10.1016/j.chroma.2013.06.048

26. Ryan TM, Tremwell K, Murphy JM, Keown JR, Casey L, Pearce FG, et al. An optimized SEC-SAXS system enabling high X-ray dose for rapid SAXS assessment with correlated UV measurements for biomolecular structure analysis. *J Appl Crystallogr.* (2018) 51:97–111.

27. Kim H, Min B, Yun YD, Choi HJ, Jin KS. Size-exclusion chromatography combined with small-angle X-ray scattering on the 4C small-angle X-ray scattering beam at pohang light source II. *Bull Korean Chem Soc.* (2020) 41:1052–5.

28. Inoue R, Nakagawa T, Morishima K, Sato N, Okuda A, Urade R, et al. Newly developed Laboratory-based Size exclusion chromatography Small-angle x-ray scattering System (La-SSS). *Sci Rep.* (2019) 9:12610. doi: 10.1038/s41598-019-48911-w

29. Buciarelli S, Midggaard SR, Nors Pedersen M, Skou S, Arleth L, Vestergaard B. Size-exclusion chromatography small-angle X-ray scattering of water soluble proteins on a laboratory instrument. *J Appl Crystallogr.* (2018) 51:1623–32. doi: 10.1107/S1600577718014462

30. Banc A, Pinçemalle J, Costanzo S, Chauveau E, Appavou M-S, Morel M-H, et al. Phase separation dynamics of gluten protein mixtures. *Soft Matter.* (2019) 15:6160–70.

31. Chen D, Kuzmenko I, Iavvsky J, Pinho L, Campaella O. Structural evolution during gelation of pea and whey proteins envisaged by time-resolved ultra-small-angle x-ray scattering (USAXS). *Food Hydrocoll.* (2022) 126:107449.

32. Chen D, Zhu X, Iavvsky J, Whitmer T, Hatzisakis E, Jones OG, et al. Polyphenols Weaken Pea Protein Gel by Formation of Large Aggregates with Diminished Noncovalent Interactions. *Biomacromolecules.* (2021) 22:1081–14. doi: 10.1021/acs.biomac.0c01753

33. Tuong-KI L, Iavvsky J, Padua GW. Formation and characterization of reined-in beadol oegels. *J Agric Food Chem.* (2020) 68:13276–81. doi: 10.1021/acs.jafc.0c01837

34. Da Vela S, Braun MK, Dörr A, Greco A, Möller J, Fu Z, et al. Kinetics of liquid-liquid phase separation in protein solutions exhibiting LCST phase behavior studied by time-resolved USAXS and VSANS. *Soft Matter.* (2016) 12:9334–41. doi: 10.1039/c6sm01837h

35. Mao Y, Su Y, Hsiao BS. Probing structure and orientation in polymers using synchrotron small- and wide-angle X-ray scattering techniques. *Eur Polym J.* (2016) 81:433–46.
132. Yamamoto K, Suzuki S, Kitamura S, Yuguchi Y. Gelation and structural formation of amylose by in situ neutralization as observed by small-angle X-ray scattering. Gels. (2018) 4:57.

133. Royes I, Bjønnessdal VA, Brun G, Narayanan T, Lund R, Tribet C. Transition kinetics of mixed lipid:photosurfactant assemblies studied by time-resolved small angle X-ray scattering. J Colloid Interface Sci. (2022) 610:830–41. doi: 10.1016/j.jcis.2021.11.133

134. Gontsarik M, Yaghmur A, Salentinig S. Dispersed liquid crystals as pH-adjustable antimicrobial peptide nanocarriers. J Colloid Interface Sci. (2021) 583:672–82. doi: 10.1016/j.jcis.2020.09.081

135. Yaghmur A, Rappolt M, Jonassen ALU, Schmitt M, Larsen SW. In situ monitoring of the formation of lipidic non-lamellar liquid crystalline depot formulations in synovial fluid. J Colloid Interface Sci. (2021) 582:773–81.

136. Komorowski K, Schaeper J, Sztucki M, Sharpnack L, Brehm G, Köster S, et al. Vesicle adhesion in the electrostatic strong-coupling regime studied by time-resolved small angle X-ray scattering. Soft Matter. (2020) 16:4142–54.

137. Khaliqi K, Ghazal A, Azmi IDM, Amenitsch H, Mortensen K, Salentinig S, et al. Direct monitoring of lipid transfer on exposure of citrem nanoparticles to an ethanol solution containing soybean phospholipids by combining synchrotron SAXS with microfluidics. Analyst. (2017) 142:3118–26. doi: 10.1039/c7an00860k