Micromycetes colonizing and damaging leaves of evergreen rhododendron (*Rhododendron* L.) in nursery

Maria Kowalik*, Barbara Kierpiec-Baran, Klaudia Duda-Franiak
Department of Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland

Abstract

In May and October 2010–2012, mycological studies were conducted on 10 cultivars of rhododendron bushes growing in containers in the nursery of ornamental plants. Out of 3000 specimens of infested leaf fragments, 2566 fungal colonies belonging to 41 species were isolated. The following species colonizing the leaves and causing their necrosis were extracted in the largest number of colonies: *Alternaria alternata*, *Aspergillus niger*, *Epicoccum nigrum*, *Humicola grisea*, *Pestalotiopsis sydowiana*, *Phoma pomorum*, *Sordaria fimicola*, *Trichoderma koningii*, *Trichoderma polysporum*, *Truncatella truncata*, *Umbelopsis isabellina* and others. The research showed that the micromycetes colonies colonizing and damaging rhododendron leaves varied in species composition and number of colonies in different years and at different times. The study determined which rhododendron cultivars were characterized by good health and which had the greatest susceptibility to infection by micromycetes.

Keywords: rhododendron; cultivar; health status; leaves; fungi

Introduction

Evergreen rhododendron (*Rhododendron* L.) is a valuable plant in modern gardens. Their harmonious, fragrant flowers that vary in color, form and size are the pride of rhododendrons. Outside of the flowering period, however, their evergreen leaves determine the decorative aspects of these plants. Evergreen rhododendrons and other plants are susceptible to pathogenic organisms, such as the most common micromycetes. Currently, more than 200 myco-biota species have been identified in the phyllosphere of rhododendrons that can determine the health of the leaves.

These organisms deteriorate the condition of shrubs, contribute to defoliation and reduce the value of nursery stock in trade, often leading to the exclusion of cultivars from cultivation. To evaluate the usefulness of some cultivars of rhododendron for cultivation, research is carried out on the health status of nursery material [1–4].

The aim of the study was to identify micromycetes species inhabiting and damaging the leaves of selected cultivars of evergreen rhododendron (*Rhododendron* L.).

Material and methods

In the years 2010–2012, studies were carried out in May and October on the bushes of 10 rhododendron cultivars: *R. forrestii* ‘Baden Baden’, *R. calophytum* ‘Dominik’, *R. brachycarpum* ‘Flautando’, *R. wardii* ‘Goldbukett’, *R. yakushimanum* ‘Golden Torch’ and ‘Sneezy’, *R. catawbiense* ‘Nova Zembla’ and ‘Roseum Elegans’, *R. ponticum* ‘Rasputin’ and *R. campylocarpum* ‘Simona’, grown in containers in the nursery of ornamental plants. A total of 3000 affected leaf fragments were collected for mycological analysis. The leaf fragments were decontaminated in 70% ethanol. Micromycete isolation and culture were carried out according to the standard methods practiced in mycology [5].

Meteorological data contained in Fig. 1 and Fig. 2 came from weather station Davis Vantage Pro2, located in Kraków Fiolkowa.

Results

In 10 cultivars of 4–6-year *Rhododendron* L. evergreen rhododendron shrubs grown in the nursery of ornamental plants, light brown stains were mostly visible on the edges
of the leaves and the top of the leaf blade as well as oval and irregular spots along the midrib of the leaf. The tissues developed necrotic spots and died. Leaves with necrosis fell off across a large area.

Micromycetes colonizing and damaging the leaves of rhododendron belonged to 41 species. 2566 micromycetes colonies were isolated from the infected tissues (Tab. 1). The most numerous fungal colonies belonged to the following species: Alternaria alternata, Aspergillus niger, Epicoccum nigrum, Humicola grisea, Pestalotiosis sydowiana, Phoma pomorum, Sordaria fimicola, Trichoderma koningii, T. polysporum, Truncatella truncate, and Umbelopsis isabellina.

Micromycetes communities inhabiting the phyllosphere of selected evergreen rhododendron cultivars differed in species composition and number of colonies. From the material collected in 2010–2012, 1241 colonies were isolated in the spring study period, including 33 species (Tab. 2), while 1325 colonies of 30 species were isolated in the autumn (Tab. 3). In May the leaves of individual cultivars were colonized by 12 to 18 species, numbering from 76 to 181 colonies. The most micromycetes colonies were found on the leaves of 'Simona', with fewer found on 'Rasputin' and 'Nova Zembla'. The greatest number of species were found on 'Baden Baden' and 'Rasputin'. Aspergillus niger and Pestalotiosis sydowiana inhabited the leaves of ten cultivars of rhododendron.

Between 51 and 205 colonies were isolated from the rhododendron leaves collected in October, and the number of colonies ranged from 8 to 19. 'Simona' leaves were colonized by the most micromycetes colonies and species. The fewest fungal colonies inhabited the 'Dominik' cultivar, while the fewest species were found on 'Golden Torch'. The leaves of all of the cultivars were inhabited at different frequencies by the following: A. alternata, H. grisea, Ph. pomorum and U. isabellina.

Discussion

The phyllosphere of evergreen rhododendron was dominated by P. sydowiana, U. isabellina and A. alternata. P. sydowiana has been cited in many studies as a harbinger of disease symptoms that appears as the brown edges and tips of the leaves [2,4,12–14]. However, Łabanowski et al. [15] do not attribute pathogenic properties to these fungi. Kita and Mazurek [16] write about the occurrence of P. fibricola, P. rhododendri and T. truncata (syn. P. truncata) in the phyllosphere of azaleas with falling leaves and evergreen rhododendrons, whereas Kowalik [2,5] documents the strong participation of P. sydowiana and T. truncata on infected leaves of rhododendron and pontic azaleas in home gardens, arboretums, and natural habitats.

The mass colonization of the living and fallen leaves of evergreen rhododendron by A. alternata is mentioned by the above-named authors, while publications by Kowalik and Muras [17], Kowalik et al. [3,14] have documented the presence and the role of this necrophor in the process of the death and severe premature fall of leaves. Kozłowska and Konieczny [18] have also written about the role of necrophors in these processes. The necrophors E. nigrum, H. grisea and S. fimicola played a significant role in the whole community, which has been confirmed by previous studies [2,3,5,13,14,19], whereas the saprophytes Ch. crispatum, Ch. globosum, H. fuscocatra and M. heterogamus constituted a small percentage of the total fungal communities isolated from the infected leaves.

The high, but uneven colonization of rhododendron leaves by the hygrophilous fungus U. isabellina appears to be associated with a large amount of rainfall in the last year of the study, as this type of fungus prefers moist habitats, such as wet leaves [20].

The results do not confirm the previous studies concerning the participation of A. niger in colonizing and damaging rhododendron leaves [3,14,19].

The significant share of micromycetes of the Trichoderma and Phoma genera confirms that they stimulate progressive necrosis of leaves [5] and contribute to their death [14,19].

Frequent rainfall and continued high humidity were conducive to the intensified process of necrotizing rhododendron leaf tissue in October 2010–2012. The colonization and damage of leaves by micromycetes, especially by P. sydowiana, S. fimicola and E. nigrum, was conducive to the formation of fog and rain dew.

It can be assumed that the intensive sporulation and induction of necrosis by A. alternata, A. niger, P. expansum, P. jenensis, T. koningii, T. polysporum, T. viride and T. truncata in May 2010 was favored by a rapid increase in ambient temperature.

According to Kryczyński and Weber [21], natural environmental factors, such as water and temperature, affect both plants and pathogenic and saprotrophic micromycetes. During the vegetation period when the temperature rises, fungi grow faster, penetrate plant tissues faster and also reproduce faster.

The following pathogens were not found in this study; Botrytis cinerea, Colletotrichum gloeosporioides, Cylindrocladium scoparium, Exobasidium vaccinii, Phomopsis archeri, Pycnostysanus azalea and Septoria azalea, whose appearance on the leaves of Rhododendron L. has been documented in many publications [3,5,15,22].

Comparing the species composition and the quantitative properties of mycobiota, including fungi and fungi-like organisms isolated from the leaves of Rhododendron spp., in backyard growing conditions, in the natural environment and in nursery production, it should be noted that the spectrum of micromycetes is much lower in the phyllosphere of the nursery material.

Conclusions

(i) The species composition and the number of colonies of micromycetes colonizing and damaging evergreen rhododendron leaves depend on year and time of the year.

(ii) A lower number of micromycetes colonies and species were found colonizing evergreen rhododendron leaves in container cultivation than under constant growing conditions, which shows less pathogen and saprotroph pressure in the ornamental plant nursery.

(iii) The necrosis symptoms caused by micromycetes decreased the suitability of nursery plants.
The rhododendron cultivars 'Sneezy', 'Golden Torch', 'Flautando', 'Baden Baden' and 'Goldbukett' were characterized by high health. The 'Simona' cultivar had the greatest susceptibility to infection by micromycetes, including *P. sydowiana*, which caused extensive leaf necrosis.

![Bar chart showing monthly rainfall in May–October 2010–2012](image1.png)

Fig. 1 Monthly rainfall in May–October 2010–2012 powered by a Davis Vantage Pro2 weather station in Kraków Fiołkowa.

![Line chart showing monthly average humidity in May–October 2010–2012](image2.png)

Fig. 2 Monthly average humidity in May–October 2010–2012 powered by a Davis Vantage Pro2 weather station in Kraków Fiołkowa.
Tab. 1 Micromycetes isolated from leaves of evergreen rhododendron (*Rhododendron* L.) shrubs in 2010–2012.

Fungus	Number of colonies	2010	2011	2012	Total	%
Alternaria alternata (Fr.) Keissl.	137 20 54 211 8.22					
Alternaria tenuissima (Kunze) Wiltshire	2 - 1 3 0.12					
Aspergillus niger Thiegh.	57 33 11 101 3.94					
Chaetomium crispatum (Fuckel) Fuckel	- 1 12 13 0.51					
Chaetomium globosum Kunze	4 21 1 26 1.01					
Cladosporium alliicola H.D. Shin & U. Braun	- - 1 1 0.04					
Drechslera poae (Baudyš) Shoemaker	- 18 - 18 0.70					
Epicoccum nigrum Vuill.	46 3 3 52 2.03					
Fusarium poae (Peck) Wollenw.	2 - - 2 0.08					
Humicola fuscoatra Traaen	37 34 - 71 2.77					
Isaria farinosa (Holmsk.) Fr.	- 5 3 8 0.31					
Monographella nivalis (Schaffnit) E. Müll.	5 - - 5 0.19					
Mortierella alpina Peyronel	18 31 1 50 1.95					
Mortierella hyalina (Harz) W. Gams	- 11 9 20 0.78					
Mucor heterogamus Vuill.	2 - - 2 0.08					
Mucor hiemalis Wehmer	- 18 9 27 1.05					
Oidiodendron tenuissimum (Peck) S. Hughes	- 3 - 3 0.12					
Paraphoma chrysanthemica (Hollós) Gruyter, Aveskamp & Verkley	- - 1 1 0.04					
Penicillium expansum Link	24 17 - 41 1.60					
Penicillium herquei Bainier & Sartory	4 - 10 14 0.55					
Penicillium jensenii K.M. Zaleski	23 9 1 33 1.29					
Penicillium miczynskii K.M. Zaleski	4 - - 4 0.16					
Penicillium waksmanii K.M. Zaleski	- 10 1 11 0.43					
Pestalotiopsis sydowiana (Bres.) B. Sutton	348 377 173 898 35.00					
Phialophora cyclaminis J.H. Beyma	3 - - 3 0.12					
Phoma eupyrena Sacc.	9 15 5 29 1.13					
Phoma glomerata (Corda) Wollenw. & Hochapfel	- 14 2 16 0.62					
Phoma leveillei Boerema & G.J. Bollen	28 4 - 32 1.25					
Phoma medicaginis Malbr. & Roum.	- - 11 11 0.43					
Phoma pomorum Thüm.	- - 74 74 2.88					
Pleurostomophora richardiae (Nannf.) L. Mostert, W. Gams & Crous	- 2 27 29 1.13					
Sarocladium kiliense (Grütz) Summerb.	14 4 - 18 0.70					
Sordaria fimicola (Roberge ex Desm.) Ces. & de Not.	39 3 41 83 3.23					
Trichoderma asperellum Samuels, Lieckf. & Nirenberg	- 12 - 12 0.47					
Trichoderma koningii Oudem.	64 32 7 103 4.01					
Trichoderma polysporum (Link) Rifai	24 - 34 58 2.26					
Trichoderma viride Pers.	33 - - 33 1.29					
Truncatella truncata (Lév.) Steyaert	38 13 1 52 2.03					
Umbelopsis isabellina (Oudem.) W. Gams	95 163 115 373 14.54					
Umbelopsis vinacea (Dixon-Stew.) Arx	- 18 2 20 0.78					

Total 1060 896 610 2566 100.00
Tab. 2 Micromycetes isolated from leaves of evergreen rhododendron (Rhododendron L.) shrubs in May 2010–2012.

Cultivar	Fungus	Number of colonies
'Baden Baden'	Alternaria alternata (Fr.) Keissl.	16 - 30 8 15 9 4 25 9 9 125
'Dominik'	Alternaria tenuissima (Kunze) Wiltshire	- - - - - - 1 - - - 1
'Flarandi'	Aspergillus niger Thiegh.	15 12 1 17 6 3 2 12 15 1 84
'Goldbuckett'	Chaetomium crispatum (Fuckel) Fuckel	- - - 2 1 - 1 - 2 5 11
'Golden Torch'	Chaetomium globosum Kunze	- - 1 - - - - - 1 1
'Raspitn'	Cladosporium allicola H.D. Shin & U. Braun	- - - - - - - - - 1
'Roseum Elegans'	Epicoccum nigrum Link	2 - 3 7 - - - - 19 - 31
'Simona'	Humicola fuscoatra Traaen	1 - 3 - - - 1 - - - 5
'Snooky'	Humicola grisea Traaen	- - - - - - - - 1 1 2
'Tota l'	Monographella nivalis (Schaffnit) E. Müll.	- - - - - - 1 1 - 3 5
'Roseum Elegans'	Mortierella alpina Peyronel	5 6 - 2 - 12 - 5 - - 30
'Goldbuckett'	Mortierella hyalina (Harz) W. Gams	2 - - 4 1 - - 2 - - 9
'Raspitn'	Mucor hiemalis Wehmer	1 - - 4 - 2 5 - - - 12
'Golden Torch'	Oidiodendron tenuissimum (Peck) S. Hughes	- - - - - - - - 1 1 2
'Raspitn'	Penicillium expansum Link	2 - - 5 4 - - - 5 1 17
'Roseum Elegans'	Penicillium herquei Bainier & Sartory	- - - - - - - - 4 - - 4
'Golden Torch'	Penicillium jensenii K.M. Zaleski	- 2 - - 2 - 4 8 - 8 24
'Roseum Elegans'	Penicillium miczynskii K.M. Zaleski	4 - - - - - - - - 4
'Goldbuckett'	Penicillium waksmanii K.M. Zaleski	1 - 1 - - - 6 - - 3 11
Total	Pestalotiopsis sydowsiana (Bres.) B. Sutton	33 42 32 53 51 32 41 45 21 383
'Raspitn'	Phoma eupyrena Sacc.	- 4 1 - - 4 - 5 - 14
'Raspitn'	Phoma glomerata (Corda) Wollenw. & Hochapfel	- 1 - - 7 4 - - 2 - 14
Total	Phoma leveillei Boerema & G.J. Bollen	1 1 5 1 8 - 3 - 7 2 28
'Roseum Elegans'	Phoma medicaginis Malbr. & Roum.	- - - - - - 10 - 1 - 11
Total	Pleurostomophora richardsiae (Nannf.) L. Mostert, W. Gams & Crous	- - 3 - - 5 5 - 16 - 29
'Raspitn'	Sarocladium kiliense (Grütz) Summerb.	4 - - 6 - - - - 5 - 18
Total	Sordaria fimicola (Roberge ex Desm.) Ces. & de Not.	5 - - - 7 5 14 - - - 31
'Raspitn'	Trichoderma koningii Oudem.	5 6 - 10 1 4 26 5 9 7 73
'Raspitn'	Trichoderma polysporum (Link) Rifai	3 19 1 - - 7 11 8 9 - 58
'Roseum Elegans'	Trichoderma viride Pers.	- 5 - 5 - - 12 - 11 - 33
'Raspitn'	Truncatella truncata (Lév.) Steyaert	3 9 6 4 1 6 6 5 - - 40
Total	Umbelopsis isabellina (Oudem.) W. Gams	12 5 2 10 - 23 14 8 23 14 111
'Raspitn'	Umbelopsis vinacea (Dixon-Stew.) Arx	- 3 6 - - - 4 - - 5 - 18
Total colonies	115 115 101 132 84 154 148 135 181 76 1241	
Total species	18 13 15 14 12 16 18 15 16 13 33	
Tab. 3 Micromycetes isolated from leaves of evergreen rhododendron (*Rhododendron* L.) shrubs in October 2010–2012.

Cultivar	Number of colonies	Fungus	Number of colonies
'Baden Baden'		Alternaria alternata (Fr.) Keissl.	11 6 10 6 - - 13 12 4 21 3 86
'Dominik'		Alternaria teniissima (Kunze) Wiltshire	- - - - - - - - - - 2 - 2
'Flurstich'		Aspergillus niger Thiegh.	4 - 8 - 1 1 - 3 - - - 17
'Goldbuckett'		Chaetomium crispatum (Fuckel) Fuckel	- - - - - - - - - - 1 - 2
'Golden Torch'		Chaetomium globosum Kunze	4 - 1 1 - 3 10 2 4 - 25
'Rasputin'		Drechslera poae (Baudys) Shoemaker	2 1 2 - - 6 4 - 2 1 18
'Roseum Elegans'		Epicoccum nigrum Link	1 - - 3 - 8 2 2 5 - 21
'Simona'		Fusarium poae (Peck) Wollenw.	- - - - - - - - - - 2 - 2
'Sneezy'		Humicola grisea Traesen	12 6 2 5 5 1 16 18 4 - 69
'Tootal'		Isaria farinosa (Holmuk.) Fr.	1 - 2 - - - 3 1 1 8
'Roseum Elegans'		Mortierella alpina Peyronel	- 1 4 1 7 2 - 4 - 1 20
'Novazembla'		Mortierella hyalina (Harz) W. Gams	- 4 1 1 2 - - 1 2 - 11
'Rasputin'		Mucor heterogamus Vuill.	- - - - - - - - - - 2 - 2
'Simona'		Mucor hiemalis Wehmer	- 2 - - - 8 - 5 - - 15
'Sneezy'		Paraphoma chrysanthemicola (Holliós) Gruyter, Aveskamp & Verkley	- - - - - - - - - - 1 - - - 1
'Tootal'		Penicillium expansum Link	1 - 5 - - 12 - - 6 - 24
'Roseum Elegans'		Penicillium herquei Bainier & Sartory	- - - - - - - - - - 6 4 10
'Sneezy'		Penicillium jenseni K.M. Zaleski	1 - - 2 - - - 1 2 3 9
'Sneezy'		Pestalotiopsis sydowiana (Bres.) B. Sutton	65 18 28 58 56 38 69 54 87 42 515
'Sneezy'		Phialophora cyclaminis J.E.H. Beyma	- - - - - - 3 - - - 3
'Sneezy'		Phoma exsyprena Sacc.	6 - - - - 4 5 - - - 15
'Sneezy'		Phoma glomerata (Corda) Wollenw. & Hochapfel	- - - - 2 - - - - - - 2
'Sneezy'		Phoma leveille Boerema & G.J. Bollen	- - - - - - - - - - 4 - 4
'Sneezy'		Phoma pomorum Thüm	6 - 2 - 7 17 20 3 10 7 2 74
'Sneezy'		Sordaria fimicola (Roberge ex Desm.) Ces. & de Not.	3 - - 4 6 2 6 17 14 - 52
'Sneezy'		Trichoderma asperellum Samuels, Lieckf. & Nirenberg	2 1 - 3 - 2 - 1 1 3 12
'Sneezy'		Trichoderma koningii Oudem.	1 - 2 1 - 10 7 7 2 - 30
'Sneezy'		Truncatella truncata (Lév.) Steyaert	- - - - 8 - - - - 4 - 12
'Sneezy'		Umbelopsis isabellina (Oudem.) W. Gams	22 11 53 11 26 31 31 39 31 7 262
'Sneezy'		Umbelopsis vinacea (Dixon-Stew.) Arx	- - - - 2 - - - - - - 2
'Sneezy'		Total colonies	142 51 120 115 120 166 167 172 205 67 1325
'Sneezy'		Total species	16 10 13 16 8 18 13 16 19 10 30
Acknowledgments
Research supported by the Ministry of Science and Higher Education of Poland as part of the statutory activities of the Department of Plant Protection, University of Agriculture in Krakow.

Authors’ contributions
The following declarations about authors’ contributions to the research have been made: concept of the study: MK, BKB; determination of the specimens: BKB, MK, KDF; writing the manuscript: MK, KDF.

Competing interests
No competing interests have been declared.

References
1. Czekalski M. Ulistnienie – ozdoba różaneczników zawsze zielonych poza okresem kwitnienia. Zesz Probl Post Nauk Roln. 2008;525:55–62.
2. Kowalik M. Diversity of fungi colonizing and damaging leaves of pontic azalea Azalea pontica. Acta Mycol. 2013;48(2):227–236. http://dx.doi.org/10.5586/am.2013.024
3. Kowalik M, Kierpiec B, Bonio J, Żołna M. Fungi inhabiting spots and necroses on the leaves of azaleas (Rhododendron) in the Botanical Garden of the Jagiellonian University. Phytopathology. 2011;62:41–48.
4. Purmale L, Apine I, Nikolajewa V, Grantina L, Verkley G, Tomson E. Endophytic fungi in evergreen rhododendron cultivated in vitro and in vivo. Environmental and Experimental Biology. 2012;10:1–7.
5. Kowalik M. Fungi and fungi-like Oomycetes isolated from affected leaves of rhododendron. Acta Mycol. 2008;43(1):21–27. http://dx.doi.org/10.5586/am.2008.003
6. Domsh KH, Gams W, Anderson TH. Compendium of soil fungi. London: Acad. Press; 1980.
7. Ellis MB, Ellis JP. 1987. Microfungi on land plants. London: Croom Helm; 1987.
8. Guba EE. Monograph of Monochaeta and Pestalotia. Cambridge: Harvard Univ. Press; 1961.
9. Rifai MA. A revision of genus Trichoderma. Mycological Papers. 1987;116:1–56.
10. Kirk PM, Cannon PF, Minter DW, Stalpers JA. Ainsworth & Bisby’s Dictionary of the Fungi. 10th ed. Wallingford: CABI; 2008.
11. Index Fungorum [Internet], 2014 [cited 2014 Sep 09]; Available from: http://www.indexfungorum.org
12. Keith LM, Velasquez ME, Zee FT. Identification and characterization of Pestalotiopsis spp. causing scab disease of guava Psidium guajava in Hawaii. Plant Dis. 2006;90:16–23. http://dx.doi.org/10.1094/ PD-90-0016
13. Kowalik M, Muras P, Kierpiec B, Żołna M. Zdrowotność liści różaneczników zawsze zielonych Rhododendron L. Zesz Probl Nauk Roln. 2010;551:117–123.
14. Kowalik M, Muras P, Żołna M, Kierpiec B. Grzyby wyosobnione z nekrotycznych plam na liściach różniczeków zawsze zielonych Rhododendron L. Zesz Probl Nauk Roln. 2010;554:49–55.
15. Łabanowski G, Orlikowski LB, Soika G, Wojdyła A, Korbin M. Ochrona roślin wzrosowatych. Kraków: Plantpress; 2001.
16. Kita W, Mazurek J. Skład gatunkowy fyllosfery różniczkarza w Ogorzędzie Botanicznym we Wrocławiu i w Arboretum w Wolsławicach. Erra Polonica. 2003;1:425–36.
17. Kowalik M, Muras P. Grzyby zasiedlające opadłe liście różniczkarza. Roczn AR Poznań 2007;333:41:69–73.
18. Kozłowska M, Konieczny G. Biologia odporności roślin na patogeny i szkodniki. Poznań: Wydawnictwo Akademii Rolniczej w Poznaniu; 2003.
19. Kowalik M, Kierpiec B, Żołna M. Fungi living and the fallen leaves of rhododendron and azalea (Rhododendron L.). Acta Sci Pol Hortorum Cultus. 2012;11(2):161–166.
20. Kaboosi H, Bebbahani B. An overview on effective parameters in production of single cell oil by microorganisms of the fungus Mortierella isabellina. Ann Biol Res. 2012;3(3):1650–1654.
21. Kryczynski S, Weber Z. Fitopatologia. Tom 1. Podstawy fitopatologii. Poznań: PWRiL; 2010.
22. Jones RK, Benson DM. Rhododendron disease. Journal American Rhododendron Society. 1984;38:154–156.

Miomycetes kolonizujące i uszkadzające liście różniczeków zimozielonych

Rhododendron L. w szkółce

Streszczenie
Badania mykologiczne przeprowadzono w latach 2010–2012 wykorzystując krewy różanecznika zimozielonego (Rhododendron L.). Rośliny pochodziły z uprawy pojemnikowej, ze szkółki roślin ozdobnych. Celem badań była weryfikacja gatunków mykologicznych bytujących na liściach dziesięciu odmian różanecznika. Stwierdzono, że zbiorowiska grzybów kolonizujących w porażonych liściach różanecznika najliczniej izolowano: Alternaria alternata, Aspergillus niger, Epicoccum nigrum, Humicola grisea, Pestalotiopsis sydowiana, Phoma pomorum, Sordaria fimicola, Trichoderma koningii, Trichoderma polysporum, Truncatella truncata, Umbelopsis isabellina. Stan zdrowotny krewków różniczeków była dobry, jednak symptomy nekrose występują podczas okresu kwitnienia, będąc w skutku uszkodzenia blaszki liściowej przez kolonizujące miromycetes obniżył przydatność materiału szkółkarskiego do uprawy. Wysoka zdrowotność cechowała krewka odmian: ‘Sneezv’, ‘Golden Torch’, ‘Flautando’, ‘Baden Baden’ i ‘Goldbukett’. Odmiana ‘Simona’ była szczególnie podatna na porażenie przez micromycetes, w tym przez Pestalotiopsis sydowiana, sprwąc rozległych nekros liści.