RESEARCH PAPER

Effects of genistein aglycone in osteoporotic, ovariectomized rats: a comparison with alendronate, raloxifene and oestradiol

A Bitto1, BP Burnett2, F Polito1, H Marini3, RM Levy2, MA Armbuster2, L Minutoli1, V Di Stefano1, N Irrera1, S Antoci1, R Granese4, F Squadrito1 and D Altavilla1

1Section of Pharmacology, Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy; 2Primus Pharmaceuticals Inc., Scottsdale, AZ, USA; 3Section of Physiology and Human Nutrition, Department of Biochemical, Physiological and Nutritional Sciences, University of Messina, Messina, Italy and 4Department of Obstetrical and Gynecological Sciences, University of Messina, Messina, Italy

Background and purpose: Genistein aglycone positively affects bone loss in postmenopausal women, but bone quality data are still lacking. To clarify this, we investigated the effects of genistein compared with alendronate, raloxifene and oestradiol in an animal model of established osteoporosis.

Experimental approach: Six months after ovariectomy, 96 ovariectomized (OVX) rats were divided into 8 equal groups, randomized to treatments (genistein aglycone (1 and 10 mg kg−1 s.c.); alendronate (0.003 and 0.03 mg kg−1 s.c.); raloxifene hydrochloride (0.05 and 0.5 mg kg−1 s.c.); 17α-ethinyl oestradiol (0.003 and 0.03 mg kg−1 s.c.)) for 12 weeks. Untreated OVX (n = 12) and sham OVX (n = 12) were used as controls. At the beginning and end of treatment, bone mineral density (BMD) and bone mineral content (BMC) were assessed. At the end of the experiment, calcium, phosphorus, bone-alkaline phosphatase (b-ALP), collagen C-telopeptide (CTX), osteoprotegerin (OPG) and soluble receptor activator of nuclear factor-κB ligand (sRANKL) were assayed. Femurs were removed and tested for breaking strength and histology.

Key results: Genistein (10 mg kg−1) showed a greater increase in both BMD (P < 0.0001 vs OVX) and BMC than all the other treatments. Moreover, genistein significantly increased breaking strength, bone quality, b-ALP (P < 0.0001 vs OVX) and OPG, and reduced CTX and sRANKL compared with the other treatments at all dose levels.

Conclusions and implications: The results strongly suggest that the genistein aglycone might be a new therapy for the management of postmenopausal osteoporosis in humans.

British Journal of Pharmacology (2008) 155, 896–905; doi:10.1038/bjp.2008.305; published online 11 August 2008

Keywords: genistein; menopause; osteoporosis; alendronate; raloxifene; oestradiol

Abbreviations: b-ALP, bone-alkaline phosphatase; BMC, bone mineral content; BMD, bone mineral density; CTX, collagen C-telopeptide; ER, oestrogen receptor; OPG, osteoprotegerin; OVX, ovariectomized; sRANKL, soluble receptor activator of nuclear factor-κB ligand

Introduction

Osteoporosis is a systemic disease, characterized by reduced bone mass and structural deterioration of bone tissue. It is considered a public health issue threatening a large part of the population above 50 years of age (Hohenhaus et al., 2007; Levine, 2007). Often presenting as a silent disease, it generally occurs asymptomatically and, consequently, the afflicted individuals will only be diagnosed after the occurrence of fractures. Overall, the disease increases significantly the risk of fractures and requires suitable medical treatment (Barlow, 2007).

Currently available treatments for postmenopausal osteoporosis include hormone replacement therapy, bisphosphonates, calcitonin, strontium ranelate, teriparatid and selective oestrogen receptor modulators (SERMs), such as raloxifene. Several experimental studies compared the effects of currently used therapies for osteoporosis in ovariectomized (OVX) animals (Frollik et al., 1996; Sato et al., 1996; Bourrin et al., 2002; Helvering et al., 2005), but the results were variable and different doses were used. Moreover,
Effects of genistein in experimental osteoporosis
A Bitto et al

Materials and methods

Animals
All procedures complied with the standards for care and use of animal subjects as stated in the Guide for the Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, National Academy of Sciences, Bethesda, MD, USA). The experimental protocols were reviewed and approved by the Ethics Committee of the University of Messina. A total of 108 OVX and 12 sham OVX female Sprague-Dawley rats (Charles River, Calco, Italy), aged 12 weeks and weighing about 250–275 g were purchased.

At 6 months following surgery, postmenopausal osteoporosis was assessed by BMD measurement and animals were then randomized into different experimental groups. During the experiment, animals were housed in the Animal Facility of the Department of Clinical and Experimental Medicine and Pharmacology of University of Messina, maintained under controlled environmental conditions (12-h light–dark cycle, temperature approximately 24 °C), and provided with standard food for laboratory animals and water ad libitum. Body weight was monitored throughout the study.

Randomization and treatments
At 6 months after ovariectomy (age: 9 months), animals were divided into 9 groups of 12 animals each (Table 1). A group of OVX rats was left untreated (untreated OVX). Both the untreated OVX and the sham OVX groups were used as controls. The different treatments (genistein aglycone (1 and 10 mg kg\(^{-1}\)); alendronate (0.003 and 0.03 mg kg\(^{-1}\)); 17-α-ethinyl oestradiol (0.003 and 0.03 mg kg\(^{-1}\)); raloxifene hydrochloride (0.05 and 0.5 mg kg\(^{-1}\)) were administered subcutaneously, daily, for 12 weeks. All animals underwent BMD and bone mineral content (BMC) evaluation at baseline and after 12 weeks of treatment. At the end of the experiment (animals aged approximately 12 months), BMD and BMC were taken, blood was collected for the subsequent analysis, right femurs were removed for histology, fixed in 10% neutral-buffered formalin and stored. Left femurs were disarticulated and immediately tested for strength assessment.

Assays for BMD and BMC
BMD and the relative BMC of the femurs were measured using dual-energy X-ray absorptiometry (Hologic QDR-4500A; Hologic, Waltham, MA, USA). For basal and final measurements, animals were anaesthetized with sodium pentobarbital (50 mg kg\(^{-1}\) i.p.). During the analysis period, daily measurements were made for BMD and BMC following the manufacturer’s instructions, to assess the long-term reproducibility of the measured parameters quality control (QC). A measured value of ±1.5% was taken as acceptable. Whenever two points obtained in succession were found outside the limits of the QC curve, the procedure was repeated. The coefficient of variation for femur BMD and BMC was 1.15 and 1.10%, respectively. Moreover, accuracy of BMD and BMC final measurements were determined by duplicate scans of femurs.

Body weight, biochemical analysis and uterine assessments
Body weight (expressed in grams) was monitored at the end of the experiments. After blood collection by cardiac puncture under general anaesthesia (sodium pentobarbital 50 mg kg\(^{-1}\) i.p.), animals were killed. Uteri were removed immediately after perfusion fixation and weights were
subsequently recorded. Blood was centrifuged and serum was stored immediately at \(-20^\circ\)C for analysis.

Sera were then collected to evaluate in duplicate, by commercially available ELISA kits, calcium, phosphorus (Wako Pure Chemical Industries Ltd, Wako, Bethesda, MD, USA), bone-alkaline phosphatase (b-ALP; IDS Ltd, UK), collagen C-telopeptide (CTX, Nordic Bioscience Diagnostics, Nordic, Herlev, Denmark), OPG (IDS Ltd) and soluble receptor activator of NF-\(\kappa\)B ligand (sRANKL; IDS Ltd).

Femur-breaking strength

Immediately after death, the maximum load (breaking strength) tolerated by femurs was measured without knowledge of the treatments, on coded samples using a calibrated tensometer (Sans, Shenzen, China). A three-point bending strength test was performed, femurs were placed horizontally on a two-point sample holder (15 mm span) with the anterior aspect facing up, and a load was placed at the centre of the bone at the rate of 10.0 mm/min until the bone fractured. Maximum tolerated load was expressed in Newton (N).

Histology

Analysis was performed by an investigator, unaware of the treatments. For tissue collection, the leg was disarticulated at the hip, knee and ankle. For microscopic histological evaluation, femurs were removed and immediately fixed in 10% neutral-buffered formalin.

The femur was cleaned of soft tissue, placed in decalcifying solution (8% hydrochloric acid (37% v/v) and 10% formic acid (89% v/v) in phosphate-buffered saline) for about 24 h at 37°C, dehydrated in 95% (v/v) ethanol and then embedded in paraffin. Three 5-\(\mu\)m-thick paraffin-embedded horizontal bone sections were cut from the proximal end of the diaphysis, stained with haematoxylin–eosin and examined by light microscopy. Femur heads (the area between the hip joint cartilage and metaphyseal cartilage) were assessed for the quality of bone and trabecular density, according to the score shown in Table 2. Cartilage integrity is considered as an additional index of bone quality, because osteoporosis is also responsible for cartilage deterioration and treatments that restore bone integrity are also able to preserve a good trophism of the cartilage indirectly.

Statistical analysis

All data are expressed as means ± s.d. The significance of difference in BMD femoral neck and BMC was assessed by a two-way repeated measures ANOVA followed by Tukey’s
multiple comparison test. For all other data, comparisons between different treatments were analysed by one-way ANOVA followed by Tukey’s multiple comparison test. In all cases, a probability error of less than 0.05 was selected as the criterion for statistical significance. Graphs were drawn using GraphPad Prism (version 4.0 for Windows).

Drugs

Genistein aglycone was a kind gift of Primus Pharmaceuticals Inc., Scottsdale, AZ, USA; alendronate, 17-α-ethinyl oestradiol and raloxifene hydrochloride were purchased from Sigma Aldrich (Milan, Italy). All substances were prepared fresh daily and administered at a volume of 100 μL. The vehicle used to solubilize genistein aglycone, raloxifene and oestradiol was 33% DMSO in 0.9% NaCl, whereas alendronate was dissolved in a 0.9% NaCl solution.

Results

Effect of the different treatments on body weight, uterine weight, and serum calcium and phosphorus

The final body weights were significantly greater for animals in the OVX treatment and untreated groups (Table 3) compared with the sham OVX animals. There were no statistically significant differences in weights observed between any of the active treatment groups and that of the untreated OVX control group (Table 3).

The final serum calcium and phosphorus levels were not significantly different between the sham OVX and the OVX animals. Likewise, there were no changes in the blood levels of these two elements observed among the several pharmacological treatments (Table 3).

The final uterine weights were decreased in the OVX untreated control group compared with sham OVX rats. The OVX rats treated with 17-α-ethyl oestradiol had significantly greater uterine weights compared with both untreated OVX and the treatment groups (Table 3).

Effect of the treatments on femoral BMD and BMC

At 6 months after ovariectomy, OVX animals had a significant decrease in femoral neck BMD compared with sham OVX animals (P<0.0001; Figure 1a) as well as in BMC (P<0.0001; Figure 1b). After 12 weeks of therapy, all the active treatments succeeded in increasing BMD and BMC in OVX animals. Both doses of genistein aglycone produced marked increases in BMD (P<0.0001 vs OVX) and BMC (P<0.0001 vs OVX) as shown in Figures 1a and b. Comparing results for each therapy, the higher dose of genistein aglycone showed a greater increase in both BMD and BMC than all the other treatments (Figures 1a and b). Alendronate, the most effective drug for postmenopausal osteoporosis, showed a statistically significant lower bone-building capability compared with genistein aglycone in this model (P<0.0001).

Effect of the treatments on bone markers

At the end of experiment, serum levels of b-ALP, a marker of bone formation, were significantly higher (Figure 2a) over all other treatments. Alendronate, raloxifene hydrochloride and 17-α-ethyl oestradiol significantly reduced CTX plasma levels at any dose levels (Figure 2b). Genistein aglycone administration also reduced the circulating levels of the resorption marker: indeed the higher dose of the isoflavone caused a greater decrease in CTX than the other treatments at any dose levels (P<0.0001 vs OVX).

The serum levels of the bone resorption marker CTX were significantly higher in the OVX untreated group than in the sham OVX group (P<0.0001). Alendronate, raloxifene hydrochloride and 17-α-ethyl oestradiol significantly reduced CTX plasma levels at any dose levels (Figure 2b). Genistein aglycone administration also reduced the circulating levels of the resorption marker: indeed the higher dose of the isoflavone caused a greater decrease in CTX than the other treatments at any dose levels (P<0.0001 vs OVX).

At the end of experiment, serum levels of sRANKL were significantly higher, whereas serum OPG levels were lower in the OVX untreated group than in the sham OVX group (P<0.0001) (Figures 3a and b). As a consequence, the sRANKL/OPG ratio was higher in OVX rats than in sham OVX animals (P<0.001; Figure 3c). All the pharmacological interventions significantly increased OPG concentration, reduced sRANKL and lowered the sRANKL/OPG ratio in OVX rats. However, the effect of genistein aglycone (10 mg kg⁻¹) on the OPG system was greater than the other treatment at any dose tested (sRANKL/OPG: P<0.001 vs OVX) (Figures 3a–c).

Table 3 Effects of alendronate, raloxifene, genistein and oestradiol on body weight, uterine weight, calcium and phosphorus serum levels

Treatment	Body weight (g)	Uterine weight (g)	Calcium (μg mL⁻¹)	Phosphorus (μg mL⁻¹)
Sham OVX	260 ± 18	0.63 ± 0.06*	102.2 ± 2.7	86.4 ± 1.8
OVX untreated	355 ± 12	0.38 ± 0.05	100 ± 3	84.7 ± 1.7
OVX + alendronate (0.003 mg kg⁻¹)	352 ± 10	0.37 ± 0.05	97.7 ± 2.1	86.1 ± 1.3
OVX + alendronate (0.03 mg kg⁻¹)	353 ± 8	0.38 ± 0.04	99.1 ± 1.2	85.8 ± 1.5
OVX + 17-α-ethinyl oestradiol (0.003 mg kg⁻¹)	350 ± 13	0.51 ± 0.06*	98 ± 1.3	85.3 ± 1.9
OVX + 17-α-ethinyl oestradiol (0.03 mg kg⁻¹)	352 ± 10	0.48 ± 0.05*	97.5 ± 1.2	84.5 ± 1.2
OVX + genistein (1 mg kg⁻¹)	350 ± 14	0.38 ± 0.06	100.3 ± 2.1	85.3 ± 2.2
OVX + genistein (10 mg kg⁻¹)	342 ± 12	0.38 ± 0.03	100.7 ± 2.5	86 ± 2.1
OVX + raloxifene hydrochloride (0.05 mg kg⁻¹)	353 ± 9	0.37 ± 0.04	99.8 ± 2.4	84.3 ± 2
OVX + raloxifene hydrochloride (0.5 mg kg⁻¹)	355 ± 11	0.38 ± 0.05	99.6 ± 3.1	84.9 ± 1.4

Abbreviation: OVX, ovariectomized.

*P<0.05 vs corresponding value in OVX-untreated group; n = 12 for all groups.
Effect of the treatments on the mechanical properties of the femur and on bone quality

In the results obtained from the three-point bending test of the femur, untreated OVX animals had significantly reduced breaking strength compared with sham OVX rats ($P<0.0001$) (Figure 4a). All the pharmacological treatments succeeded in improving the breaking strength of the femur. Genistein aglycone, however, caused a greater increase in the amount of pressure required to fracture the femur compared with other treatments at any dose level tested ($P<0.0001$; Figure 4a).

The histological score (Figure 4b) of all groups evaluated following the criteria shown in Table 1 revealed a greater effect of genistein aglycone on bone quality compared with all the other treatments at any dose level tested. Bone histology (Figures 5 and 6) revealed a marked effect of genistein aglycone in treating osteoporosis induced by ovariectomy. Histology of the femur head in animals treated

Figure 1 Effects of alendronate, raloxifene, genistein and oestradiol on femoral bone mineral density (BMD) (a) and bone mineral content (BMC) (b) in ovariectomized (OVX) rats. Data are shown as the mean ± s.d. of 12 animals. BMD: $*P<0.0001$ vs untreated OVX; $^\#P<0.0001$ vs untreated OVX; $^\p P<0.0001$ vs all other treatments. BMC: $*P<0.0001$ vs untreated OVX; $^\p P=0.006$ vs untreated OVX; $^\p P<0.0001$ vs untreated OVX.

Figure 2 Effects of alendronate, raloxifene, genistein and oestradiol on serum bone-alkaline phosphatase (b-ALP) (a) and collagen C-telopeptide (CTX) (b) in ovariectomized (OVX) rats. Data are shown as the mean ± s.d. of 12 animals. b-ALP: $*P<0.0001$ vs untreated OVX; $^\p P=0.098$ vs untreated OVX; $^\p P=0.005$ vs untreated OVX; $^\p P<0.0001$ vs untreated OVX; CTX: $*P<0.0001$ vs untreated OVX; $^\p P=0.008$ vs untreated OVX; $^\p P<0.0001$ vs untreated OVX.
with genistein aglycone showed a restored architecture of cortical and trabecular bone with well-organized bone matrix correlating with the enhanced resistance to fracture (Figure 4a), observed in femurs subjected to a constant load (\(P < 0.0001 \) vs OVX).

Discussion

This study clearly shows that genistein aglycone, a well-known, but low concentration, soyabean isoflavone, was able to counteract the bone loss in an experimental model of established osteoporosis. In this context, the OVX rat is considered an appropriate model for studying human menopausal osteoporosis because of many similarities in their pathophysiological mechanisms of bone deterioration (Kalu, 1991; Wronski et al., 1991; Frost and Jee, 1992).

Drugs that interfere with steps in the resorptive pathway resulting in bone loss (antiresorptive agents) (Jordan et al., 2006) or that amplify or mimic steps in the anabolic pathway to build new and improved skeletons (anabolic or bone-forming agents) are specifically recommended to treat bone loss (Canalis et al., 2007). Safe anabolic agents are needed to build bone, restoring both bone structure and strength, rather than just prevention or slower progression of bone fragility, as occurs with current antiresorptive agents.

Oestrogen replacement therapy, SERMs (that is, raloxifene hydrochloride) and bisphosphonates (that is, alendronate) are widely used to oppose accelerated bone resorption in senile or postmenopausal osteopaenia/osteoporosis. All of these treatments predominantly exert antiresorptive effects by inhibiting, through several different mechanisms, the activity of osteoclasts (Jordan et al., 2006) rather than promoting osteoblast activity. Increasing clinical evidence suggests a role for genistein aglycone in the treatment of postmenopausal bone loss (Morabito et al., 2002; Marini et al., 2007, 2008); however, proof of efficacy in the

Figure 3 Effects of alendronate, raloxifene, genistein and oestradiol on serum osteoprotegerin (OPG) (a), soluble receptor activator of NF-κB ligand (sRANKL) (b) and sRANKL/OPG (c) in ovariectomized (OVX) rats. Data are shown as the mean ± s.d. of 12 animals. OPG: \(^{*} P < 0.0001 \) vs untreated OVX; \(^{\dagger} P < 0.0001 \) vs all other treatments; \(^{\ddagger} P < 0.0001 \) vs untreated OVX. sRANKL: \(^{*} P < 0.0001 \) vs untreated OVX; \(^{\dagger} P = 0.002 \) vs untreated OVX; \(^{\ddagger} P = 0.003 \) vs untreated OVX; \(^{\ast} P < 0.0001 \) vs all other treatments; \(^{\ddagger} P < 0.0001 \) vs untreated OVX; \(^{\ddagger} P = 0.002 \) vs untreated OVX; \(^{\ast} P = 0.003 \) vs untreated OVX; \(^{\ddagger} P < 0.0001 \) vs all other treatments; \(^{\ddagger} P < 0.0001 \) vs untreated OVX.

Figure 4a Effects of alendronate, raloxifene, genistein and oestradiol on femur bone structure in ovariectomized (OVX) rats. Data are shown as the mean ± s.d. of 12 animals. OPG: \(^{*} P < 0.0001 \) vs untreated OVX; \(^{\dagger} P < 0.0001 \) vs all other treatments; \(^{\ddagger} P < 0.0001 \) vs untreated OVX. sRANKL: \(^{*} P < 0.0001 \) vs untreated OVX; \(^{\dagger} P = 0.002 \) vs untreated OVX; \(^{\ddagger} P = 0.003 \) vs untreated OVX; \(^{\ast} P < 0.0001 \) vs all other treatments; \(^{\ddagger} P < 0.0001 \) vs untreated OVX; \(^{\ddagger} P = 0.002 \) vs untreated OVX; \(^{\ast} P = 0.003 \) vs untreated OVX; \(^{\ddagger} P < 0.0001 \) vs all other treatments; \(^{\ddagger} P < 0.0001 \) vs untreated OVX.
treatment of established osteoporosis is still lacking (Tempfer et al., 2007).

Our experimental data demonstrate that two doses of genistein aglycone, given by subcutaneous injection in OVX osteoporotic rats, were able to produce a marked increase in BMD and BMC in accordance with our recent observations in osteopaenic, postmenopausal women treated orally (the preferable route of administration), with 54 mg per day of aglycone genistein (Morabito et al., 2002; Marini et al., 2008), in the same range of dosing, as that used in the present experimental model. Not only did genistein aglycone increase BMD and BMC but the isoflavone also restored structure to osteoporotic bone as well or better than other well-accepted treatments. Indeed, some of the positive effects of genistein aglycone that we observed have been previously reported (Fanti et al., 1998; Ishimi et al., 2000) in both young OVX rats and mice, treated subcutaneously.

![Figure 4](image-url)

Figure 4 Effects of alendronate, raloxifene, genistein and oestradiol on femur-breaking strength (a) and histological score (b) in ovariectomized (OVX) rats. Data are shown as the mean ± s.d. of 12 animals. Femoral-breaking strength: *P < 0.0001 vs untreated OVX; *P = 0.006 vs untreated OVX; **P < 0.0001 vs untreated OVX. Histological score: *P < 0.0001 vs untreated OVX; **P < 0.05 vs all other treatments.

![Figure 5](image-url)

Figure 5 (a–f) Light microscopy of the cortical and trabecular structure of the femur head: effects of alendronate and raloxifene (haemotoxylin and eosin, original magnification × 5).
Besides the changes observed in BMD, BMC and structure, genistein aglycone was more effective than alendronate, a very useful drug for the prevention of fractures in postmenopausal women with osteoporosis (Iwamoto et al., 2007), in inhibiting osteoclastic markers, CTX and sRANKL. In addition, genistein aglycone, at any dose tested, significantly reduced CTX and sRANKL plasma levels to a greater extent than raloxifene hydrochloride or 17α-ethinyl oestradiol. Genistein aglycone was also the most effective treatment in terms of the osteoblastic activity markers, b-ALP, OPG and had a better sRANKL/OPG ratio. These findings show the positive and unique role of genistein aglycone in stimulating osteoblasts, while also damping osteoclasts, compared with all the other available current therapies for osteoporosis. However, the basis of the ‘dual’ activity is unknown.

Unlike 17β-oestradiol, which displays relatively equivalent binding on both ER subtypes, and raloxifene, which binds with greater affinity to ER-α, genistein aglycone binds selectively to ER-β over ER-α, from 7- to 48-fold, depending on the assay system employed (Kuiper et al., 1997, 1998; Barkhem et al., 1998; Hsieh et al., 2006). Despite a relatively low affinity for ER-α, genistein aglycone can act as a full agonist in some assay systems (Barkhem et al., 1998). The selective activation of ER-β by genistein aglycone is likely to be mediated by a greater capacity to recruit co-regulators of ER-β, than those of ER-α (An et al., 2001), through de novo protein synthesis in osteoblasts (Yamaguchi and Sugimoto, 2000; Yamaguchi et al., 2000). Osteoblasts express both receptor types and can be influenced by selective binding of oestrogenic compounds (Onoe et al., 1997; Valachovicova et al., 2004). The consequence of selective receptor modulation is enhanced transcriptional activation or repression of promoters and other genes under ER-β regulation, relative to those regulated by ER-α.

ER-β is robustly expressed in developing human bone, especially the trabecular bone that is most subject to loss following gonadal hormone deprivation (Bord et al., 2001). There is a greater than ninefold increase in ER-β expression in cultured human osteoblasts during bone mineralization, whereas ER-α levels remain unchanged during this process (Arts et al., 1997; Setchell and Lydeking-Olsen, 2003). Though experimental observations support the role for positive actions of genistein aglycone on bone that could
be related to a weak oestrogenic effect on a subtype of ER-α (Hertrampf et al., 2007), the accumulating evidence strongly suggests the important involvement of ER-β in bone formation and, by extension, the use of selective ER-β agonists such as genistein aglycone to treat bone loss through osteoblast stimulation. The increased b-ALP activity of genistein aglycone in comparison to other treatments in the current study is supportive of this mechanism of action.

The concentration of genistein aglycone must be properly titrated, however, as some reports suggest insufficient stimulation of ER-β may occur, leading to few or even absent beneficial effects at low doses (Mäkelä et al., 1999; Setchell, 2001; Kostelac et al., 2003; Altavilla et al., 2004; McCarty, 2006).

Postmenopausal osteoporosis also results from an imbalance between resorption and formation associated with decreased OPG/RANKL balance (Simonet et al., 1997; Hofbauer and Heufelder, 2000; Li et al., 2000), thus indicating that the OPG/RANKL system might represent a good pharmacological target in the treatment of osteoporosis. Genistein aglycone has been shown to selectively antagonize the bone catabolic effects of parathyroid hormone in osteoblasts by reducing parathyroid hormone-induced increases in RANKL and reversing decreases in OPG expression in vitro (Chen and Wong, 2006). In the present paper, all the pharmacological interventions significantly increased OPG concentration, reduced sRANKL and lowered sRANKL/OPG balance in OVX rats. However, the effect of highest dose of genistein aglycone on the OPG system was greater than the other treatment at any dose tested. These data are in agreement with previous studies indicating a strong effect of genistein aglycone on the OPG/RANKL balance (Crisafulli et al., 2004; Marini et al., 2008), highly correlated with the augmented BMD in femur neck and lumbar spine.

Studies have also shown that genistein aglycone inhibits tyrosine phosphorylation in osteoclasts at the same concentrations that reduce osteoclast number in vitro, presumably by inducing osteoclast apoptosis (Gao and Yamaguchi, 2000). Increases in intracellular calcium signalling may also in part mediate genistein aglycone’s inhibitory effects on osteoclasts, as inhibitors of the calcium-dependent signalling molecules, calmodulin and protein kinase C, antagonize the reduction in osteoclast number induced by genistein aglycone (Gao and Yamaguchi, 1999). Increases in osteoclast intracellular calcium levels induced by genistein aglycone may be mediated by direct inhibition of inward-rectifier K⁺ channels independent of genistein aglycone’s activity on tyrosine kinases (Okamoto et al., 2001).

In conclusion, genistein aglycone showed a positive effect on osteoporotic bone in the present experimental model confirmed by decreasing osteoclastic resorption and increasing osteoblastic formation markers. This putative ‘uncoupling’ of the bone remodelling process in bone growth may be a selective event in osteoporotic bone. Though all pharmacological treatments succeeded in improving the breaking strength of the femur, genistein aglycone caused the greatest increase in breaking strength and was supported by restored bone architecture in the femoral head of OVX-treated rats. Collectively, our results strongly suggest that genistein aglycone might be a new potential therapy for the management of postmenopausal osteoporosis in humans combining a powerful bone-forming as well as an anti-resorptive activity.

Acknowledgements

This study was supported by departmental funding assigned to Professor Francesco Squadrito and by a generous donation from Primus Pharmaceuticals Inc.

Conflict of interest

BP Burnett, RM Levy and MA Armburster work for Primus Pharmaceuticals Inc. Scottsdale, AZ, USA. The other authors have nothing to declare.

References

Ahlborg HG, Johnell O, Karlsson MK (2004). Long term effects of oestrogen therapy on bone loss in postmenopausal women: a 23 year prospective study. BJOG 111: 335–339.

Albertazzi P (2002). Purified phytoestrogens in postmenopausal bone health: is there a role for genistein? Climacteric 5: 190–196.

Altavilla D, Crisafulli A, Marini H, Esposito M, D’Anna R, Corrado F et al. (2004). Cardiovascular effects of the phytoestrogen genistein. Curr Med Chem Cardiovasc Hematol Agents 2: 179–186.

An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC (2001). Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 276: 17808–17814.

Arts J, Küiper GG, Janssen JM, Gustafsson JA, Löwik CW, Pols HA et al. (1997). Differential expression of estrogen receptors alpha and beta mRNA during differentiation of human osteoblast SV-HFO cells. Endocrinology 138: 5067–5070.

Barkhem T, Carlson B, Nilsson Y, Enmark E, Gustafsson J, Nilsson S (1998). Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol 54: 105–112.

Barlow DH (2007). Osteoporosis guidelines. Climacteric 10 (Suppl 2): 79–82.

Bord S, Horner A, Beavan S, Compston J (2001). Estrogen receptors alpha and beta are differentially expressed in developing human bone. J Clin Endocrinol Metab 86: 2309–2314.

Bourrin S, Ammann P, Bonjour JP, Rizzoli R (2002). Recovery of proximal tibia bone mineral density and strength, but not cancellous bone architecture, after long-term bisphosphonate or selective estrogen receptor modulator therapy in aged rats. Bone 30: 195–200.

Canalis E, Giustina A, Bileziskian JP (2007). Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357: 905–916.

Castelo-Branco C, Figueras F, Sanjuan A, Pons F, Vicente J, Vanrell JA (1999). Long-term postmenopausal hormone replacement therapy effects on bone mass: differences between surgical and spontaneous patients. Eur J Obstet Gynecol Reprod Biol 83: 207–211.

Chen WE, Wong MS (2006). Genistein modulates the effects of parathyroid hormone in human osteoblastic SaOS-2 cells. Br J Nutr 95: 1039–1047.

Collaborative Group on Hormonal Factors in Breast Cancer (1997). Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 350: 1047–1059.

Crisafulli A, Altavilla D, Squadrito G, Romeo A, Adamo EB, Marini R et al. (2004). Effects of the phytoestrogen genistein on the circulating soluble receptor activator of nuclear factor kappaB
Fanti P, Monier-Faugère MC, Geng Z, Schmidt J, Morris PE, Cohen D et al. (1998). The phytoestrogen genistein reduces bone loss in short-term ovariectomized rats. Osteoporos Int 8: 274–281.

Frolik CA, Bryant HU, Black EC, Magee DE, Chandrasekhar S (1996). Time-dependent changes in biochemical bone markers and serum cholesterol in ovariectomized rats: effects of raloxifene HCl, tamoxifen, estrogen, and alendronate. Bone 18: 621–627.

Frost HM, Jee WS (1992). On the rat model of human osteopenias and osteoporoses. Bone Miner 18: 227–236.

Gao YH, Yamaguchi M (1999). Suppressive effect of genistein aglycone on rat bone osteoclasts: apoptosis is induced through Ca2+ signaling. Biol Pharm Bull 22: 805–809.

Hsieh RW, Rajan SS, Sharma SK, Guo Y, DeSombre ER, Mrksich M et al. (2006). Comparative effects of antifracture drugs in postmenopausal women after 2-year genistein administration. J Bone Miner Res 23: 715–720.

Ishimi Y, Arai N, Wang X, Wu J, Umegaki K, Miyaura C et al. (2007). Effects of antifracture drugs in postmenopausal women. J Bone Miner Res 22: 1790–17919.

Jordan N, Barry M, Murphy E (2006). Comparative effects of antiresorptive drugs on bone and uterus in ovariectomized mice. Biochem Biophys Res Commun 324: 679–701.

Kuiper GG, Carlsson B, Grandien K, Enmark E, Håggblad J, Nilsson S et al. (2005). Expression profiling of rat femur revealed suppression of bone formation genes by treatment with alendronate and estrogen but not raloxifene. Mol Pharmacol 68: 1225–1238.

Jordan N, Barry M, Murphy E (2006). Comparative effects of antiresorptive drugs on bone and uterus in ovariectomized mice. Biochem Biophys Res Commun 324: 679–701.

Kuiper GG, Carlsson B, Grandien K, Enmark E, Håggblad J, Nilsson S et al. (2005). Expression profiling of rat femur revealed suppression of bone formation genes by treatment with alendronate and estrogen but not raloxifene. Mol Pharmacol 68: 1225–1238.

Hertrampf T, Gruca MJ, Seibel J, Lauenbach U, Fritzemeier KH, Diehl P (2007). The bone-protective effect of the phytoestrogen genistein is mediated via ER alpha-dependent mechanisms and strongly enhanced by physical activity. Bone 40: 1529–1535.

Helvering LM, Liu R, Kulkarni NH, Wei T, Chen P, Huang S et al. (2003). Expression profiling of rat femur revealed suppression of bone formation genes by treatment with alendronate and estrogen but not raloxifene. Mol Pharmacol 68: 1225–1238.

Hofbauer LC, Heufelder AE (2000). The role of the receptor activator of nuclear factor-kB ligand and osteoprotegerin in the pathogenesis and treatment of metabolic bone diseases. J Clin Endocrinol Metab 85: 2355–2363.

Hohenhaus MH, McGarry KA, Col NF (2007). Hormone therapy for the prevention of bone loss in menopausal women with osteopenia: is it a viable option? Drugs 67: 2311–2321.

Hsieh RW, Rajan SS, Sharma SK, Guo Y, DeSombre ER, Mrksich M et al. (2006). Identification of ligands with bicyclic scaffolds provides insights into mechanisms of estrogen receptor subtype selectivity. J Biol Chem 281: 17909–17919.

Ishimi Y, Arai N, Wang X, Wu J, Umegaki K, Miyaura C et al. (2000). Difference in effective dosage of genistein on bone and uterus in ovariectomized mice. Biochem Biophys Res Commun 274: 697–701.

Iwamoto J, Takeda T, Sato Y (2007). Effects of antifracture drugs in postmenopausal, male and glucocorticoid-induced osteoporosis—strongly enhanced by physical activity. J Bone Miner Res 23: 715–720.

Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, Attteritano M et al. (2007). Effects of the phytoestrogen genistein on bone metabolism in osteoporotic postmenopausal women: a randomized trial. Ann Intern Med 146: 839–847.

Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, Attteritano M et al. (2008). OPG and sRANKL serum concentrations in osteoporotic, postmenopausal women after 2-year genistein administration. J Bone Miner Res 23: 715–720.

McCarty MF (2006). Isoflavones made simple—genistein’s agonist activity for the beta-type estrogen receptor mediates their health benefits. Med Hypotheses 66: 1093–1114.

Messina M, Ho S, Alekel DL (2004). Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr Opin Clin Nutr Metab Care 7: 649–658.

Million Women Study Collaborators (2003). Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362: 419–427.

Morabito N, Crisafulli A, Vergara C, Gaudio A, Lasco A, Frisina N et al. (2002). Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: a randomized double-blind placebo-controlled study. J Bone Miner Res 17: 1904–1912.

Okamoto F, Okabe K, Kajiya H (2001). Genistein, a soybean isoflavone, inhibits inward rectifier K(+) channels in rat osteoclasts. Jpn J Physiol 51: 501–509.

Onoe Y, Miyaura C, Ohita H, Nozawa S, Suda T (1997). Expression of estrogen receptor beta in bone and uterus in ovariectomized mice. Biochem Biophys Res Commun 274: 697–701.

Iwamoto J, Takeda T, Sato Y (2007). Effects of antifracture drugs in postmenopausal, male and glucocorticoid-induced osteoporosis—usefulness of alendronate and risedronate. Expert Opin Pharmacother 8: 2743–2756.

Jordaan N, Barry M, Murphy E (2006). Comparative effects of antiresorptive agents on bone mineral density and bone turnover in postmenopausal women. Clin Interv Aging 1: 377–387.

Kalu DN (1991). The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15: 175–191.

Kostelac D, Rechkmmer G, Briviba K (2003). Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51: 7632–7635.

Kuiper GG, Carlsson B, Grandien K, Enmark E, Håggblad J, Nilsson S et al. (1997). Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138: 863–870.

Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT et al. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139: 4252–4263.

Levine JP (2007). Effective strategies to identify postmenopausal women at risk for osteoporosis. Gynecol Endocrinol 22: 22–30.

Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL et al. (2000). RANK is the intrinsically hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 97: 1566–1571.

Makela S, Savolainen H, Aavik E, Myllärniemi M, Strauss L, Taskinen E et al. (1999). Differentiation between vasculoprotective and uterotropic effects of ligands with different binding affinities to estrogen receptors alpha and beta. Proc Natl Acad Sci USA 96: 7077–7082.

Marini H, Minutoli L, Polito F, Bitto A, Altavilla D, Attteritano M et al. (2007). Effects of the phytoestrogen genistein on bone metabolism in osteoporotic postmenopausal women: a randomized trial. Ann Intern Med 146: 839–847.

This article is available free of charge on the BJPharmacol website (http://www.brjpharmacol.org).