Genetic links between bacterial dynamin and flotillin proteins

Felix Dempwolff1 and Peter L Graumann2,*

1SYNMIKRO; LOEWE-Centre for Synthetic Microbiology; Marburg, Germany; 2SYNMIKRO; LOEWE-Centre for Synthetic Microbiology; Department of Chemistry; Marburg, Germany

Dynamin is a membrane-associated GTPase that confers motor-like functions in membrane dynamics, such as endocytosis, in eukaryotic cells. Flotillin (reggie) proteins are also a widely conserved class of membrane proteins, associated with the formation of protein assemblies within the membrane, and with endocytotic processes. Bacterial dynamin has been shown to bind to membranes in vitro and to mediate membrane fusion. Bacillus subtilis DynA localizes to the cell division septum, and it was recently shown that it indeed plays a role in cell division. Interestingly, dynamin shows a genetic interaction with flotillin proteins in this prokaryotic model organism and the absence of both proteins results in a cell division and cell shape defect. Here, we show that in addition to the morphological phenotypes, a dynamin/flotillin double deletion strain shows a synthetic defect in cell motility, much stronger than that of flotillin single mutant cells. While the contribution of altered cell shape and slower growth of the double deletion strain on motility cannot be clearly assessed, our data emphasize the fact that dynamin and flotillin proteins play tightly connected functions in a wide range of aspects in membrane processes in bacteria.

Dynamin has first been discovered and described in eukaryotic cells.1 Due to the fact that it is also conserved in many bacterial species,2 dynamin must have evolved early in evolution. The protein is a GTPase that can perform motor-like tasks in the context of membrane-bending and fusion. It can tubulate on membranes, and undergoes GTP-driven conformational changes. One of its major functions is the pinching off of clathrin-coated vesicles, by constricting the neck of these structures, and it has additional functions, such as in organelle division.3-5 No such processes are known to occur in bacteria, so the presence of dynamin in many bacterial genomes has been puzzling. Through cell biological, biochemical, and genetic experiments, it has become clear that bacterial dynamin is involved in cell division, a fundamental process in which membrane bending and fusion must occur.6,7 DynA in Bacillus subtilis appears to be expressed in low amounts and localizes to the cell membrane, with an enrichment at the division septum.6,7 Midcell localization occurs after the initial formation of the Z ring by FtsZ (Fig. 1), the bacterial tubulin ortholog.8 Deletion of dynA has no considerable phenotype, but exacerbates the division defect of two other genes, whose products play a role in cell division.7 Purified DynA binds to membrane vesicles and promotes their fusion,6 indicating that the protein may be involved in the final step of cell division, the generation of two separate membranes from the invaginating cell membrane.

Additional evidence for an involvement of dynamin in division comes from its link to flotillin proteins, which belong to a class of proteins conserved from bacteria to human, existing in many different domain architectures, in which the SPFH domain (for “stomatin prohibitin, flotillins, and HflC/K”) is the conserved part.9,10 Flotillins are membrane associated, either through a single N-terminal membrane span, as in many bacteria, or through a membrane anchor, as in eukaryotic cells. The N-terminus is followed by the SPFH domain (for “s”, pro hin, flo til l in, and “K”).

Keywords: Dynamin, membrane curvature, flotillin, lipid microdomains, organization of membrane proteins

*Correspondence to: Peter L Graumann; Email: peter.graumann@synmikro.uni-marburg.de

Submitted: 05/13/2014
Revised: 06/12/2014
Accepted: 06/13/2014
http://dx.doi.org/10.4161/cib.29578

Dempwolff, F., Wischhusen, H. M., Specht, M., Graumann, P. L. The deletion of bacterial dynamin and flotillin genes results in pleiotrophic effects on cell division, cell growth and in cell shape maintenance. BMC Microbiol 2012; 12:298; PMID:23249255; http://dx.doi.org/10.1186/1471-2180-12-298

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

ARTICLE ADDENDUM

Communicative & Integrative Biology 7:5, e970972; October 1, 2014; © 2014 Taylor & Francis Group, LLC
B. subtilis flotillin T has a further domain at its C terminus, which is also predicted to form a short coiled coil. Flotillins play a role in the nerve recovery after severing in fish (where they were first discovered and termed “reggie” proteins,11) clathrin-independent endocytosis,12 cytoskeletal rearrangements,13 cell-cell adhesion,14 as well as nutrient uptake,15 and thus in a wide variety of membrane dynamics. Recently, it was shown that flotillins in bacteria also play important roles in membrane processes, including the timing of the differentiation process of sporulation,16 cell shape maintenance, and cell division.17

Interestingly, a deletion of the gene encoding flotillin T protein in *B. subtilis* results in cell filamentation.7 A flotillin double mutant (*floT* and *floA*) in *B. subtilis* also shows a cell filamentation defect, and overproduction of flotillin T results in the considerable shortening of cells,18 supporting the idea that flotillins are directly involved in the division process.

However, the activity of DynA does not appear to be restricted to cell division. A *floT* dynA double deletion strain has an additional defect in cell shape maintenance, and the deletion of *dynA* in addition to the major player in shape maintenance, MreB, exacerbates the severe *mreB* defect. MreB is an actin-like protein that forms extended filaments underneath the bacterial cell membrane,19 which move in a seconds time frame along various angles relative to the longitudinal axis of the cell. The absence of DynA in *mreB* mutant cells leads to cell filamentation and most pronounced to an exacerbated loss of maintaining the correct cell width, generating huge oval-shaped cells.

During our analysis of *dynA* *floT* double mutant cells, we noted an additional phenotype: when inoculated on soft agar plates, mutant cells spread across the surface much slower than wild type cells, and also considerably slower than *floT* single mutant cells (Fig. 2). These results show that the loss of *dynA* in *floT* mutant cells exacerbates the motility defect. This could be due to several non-exclusive reasons: 1) the defect in cell morphology could decrease swimming efficiency, or 2) double mutant cells grow considerably slower than wild type cells, which may also affect the speed of swimming and/or the assembly of flagella due to energetic constraints. Thus, at this stage, it is impossible to state which is the main reason for the severe motility defect in *dynA/floT* double mutant cells. However, the synthetic effect on motility underscores the genetic link between bacterial dynamin and flotillin.

Thus, the functions of flotillins and of dynamin converge at the process of cell division, where membrane binding as well as membrane fusion are important events. It is not yet clear which of the two stages are affected by the loss of dynamin and flotillins, or if even both may be compromised. What is known for flotillins is that they are part of membrane structures also containing NfeD proteins,17 and additional proteins such as KinC,20 for which biochemical and cell biological evidence has been presented, and likely several other proteins, such as cell wall metabolism component Pbp5, secretory protein SecY, membrane transporters like FhuD, as well as energy metabolism-related protein AtpDG.21 It has recently been shown...
that the overproduction of flotillins increases the stability of a protease, FtsH, within the membrane, which in turn affects cell division and other membrane-associated processes.

How might flotillins and dynamin cooperate? The absence of flotillin or their overproduction has been shown to affect membrane fluidity, and some lipids are known to facilitate membrane bending, such as cardiolipin. It is well conceivable that flotillins are associated with specific lipids such as cardiolipin, which would facilitate membrane bending, or membrane fusion, performed by dynamin; both processes are crucial steps during bacterial cell division (Fig. 1). Indeed, flotillin T has been co-isolated with negatively charged phospholipids, such as phosphatidylglycerol or cardiolipin and it has been proposed that induction of positive membrane curvature at the septum is achieved by insertion of the paddle domain of dynamin; interactions between dynamin dimers from opposite sides of the closing septum may initiate fusion of the two membranes. It will be exciting to elucidate this possible mechanism at a molecular scale.

Intriguingly, dynamin mutations are found in neural disorders, and dynamin plays a role in memory formation, which is interesting in light of the fact that flotillins/reggies have been identified to be essential for nerve regeneration and axon growth. Although this connection may be far fetched, the tight connection of flotillin and dynamin-like proteins in bacteria indicates that their eukaryotic counterparts could also be closely connected in their activities. First evidence of an interplay of both protein families comes from the observation that dynamin is necessary for flotillin turnover at eukaryotic membranes.

In summary, bacterial cells provide a new avenue to study the function of dynamin and flotillin proteins at a molecular level. Given their implication in an exceedingly broad range of membrane-associated cellular processes, it will be important to continue to investigate the two classes of proteins in all cells.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
This work was supported by the Deutsche Forschungsgemeinschaft and by the LOEWE Center for Synthetic Microbiology, SYNMIKRO.

References
1. Shpeter HS, Valle RB. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 1989; 59:421-32; PMID:2529977; http://dx.doi.org/10.1006/0929-8674(89)90027-5
2. Low HH, Löwe J. A bacterial dynamin-like protein. Nature 2006; 444:766-9; PMID:17122778; http://dx.doi.org/10.1038/nature05312
3. Ferguson SM, De Camilli P, Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 2012; 13:75-88; PMID:22233676
4. Low HH, Löwe J. Dynamin architecture—from monomer to polymer.Curr Opin Struct Biol 2010; 20:791-8; PMID:20970992; http://dx.doi.org/10.1016/j.ceb.2010.09.011
5. Hinsihaw JE. Filling the GAP for dynamin. Nat Cell Biol 2006; 8:432-3; PMID:16901207; http://dx.doi.org/10.1038/ncb0506-432
6. Bürmann F, Eber N, van Baarle S, Bramkamp M. A bacterial dynamin-like protein mediating nucleotide-independent membrane fusion. Mol Microbiol 2011; 79:1294-304; PMID:21205012; http://dx.doi.org/10.1111/j.1365-2958.2011.07523.x
7. Dempwolf F, Wichbusen HM, Specht M, Graumann PL. The deletion of bacterial dynamin and flotillin genes results in pleiotropic effects on cell division, cell growth and in cell shape maintenance. BMC Microbiol 2012; 12:298; PMID:23240295; http://dx.doi.org/10.1186/1471-2180-12-298
8. Margolin W, Fnz and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 2005; 6:862-71; PMID:16222797; http://dx.doi.org/10.1038/nrm1745
9. Langhorsz MF, Reuter A, Stuermer CA. Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 2005; 62:2228-40; PMID:16091845; http://dx.doi.org/10.1007/s00018-005-5166-4
10. Brownman DT, Hoogg MR, Robbins SM. The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol 2007; 17:394-402; PMID:17766116; http://dx.doi.org/10.1016/j.tcb.2007.06.005
11. Schulte T, Paschke K, Gaessing U, Lortspeich F, Stuermer CA. Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development 1997; 124:577-87; PMID:9053333
12. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem 2009; 78:857-902; PMID:19317650; http://dx.doi.org/10.1146/annurev.biochem.78.081307.110540
13. Ludwig A, Otto GP, Riento K, Hams E, Fallon PG, Nichols BJ. Flotillin microdomains interact with the cortical cytoskeleton to control uracil formation and neurophil recruitment. J Cell Biol 2010; 191:771-81; PMID:21059848; http://dx.doi.org/10.1083/jcb.201005140
14. Restnik N, Sepcic K, Plemenitas A, Windoffer R, Leube R, Virenc-P. Desmosome assembly and cell-cell adhesion are membrane raft-dependent processes. J Biol Chem 2011; 286:1499-507; PMID:21071449; http://dx.doi.org/10.1074/jbc.M110.187946
15. Ge-L, Qi-W, Wang L, Miao H, Li YX, Li BL, Song B. Flotillin play an essential role in Pick CI-like 1-mediated cholesterol uptake. Proc Natl Acad Sci U S A 2011; 108:551-6; PMID:21187433; http://dx.doi.org/10.1073/pnas.1014454108
16. Donovan C, Bramkamp M. Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 2009; 155:1786-99; PMID:19383680; http://dx.doi.org/10.1099/mic.0.025312-0
17. Dempwolf F, Möller HM, Graumann PL. Synthetic motority and cell shape defects associated with deletions of flotillin/reggie paralogs in Bacillus subtilis and interplay of these proteins with NleD proteins. J Bacteriol 2012; 194:4652-61; PMID:22753055; http://dx.doi.org/10.1128/JB.00910-12
18. Mulich-Sius B, Schneider J, Lopez D. Overproduction of flotillin influences cell differentiation and shape in Bacillus subtilis. MBio 2013; 4:e00719-13; PMID:24224288; http://dx.doi.org/10.1128/mBio.00719-13
19. Reimold C, Defesa Saufo HJ, Dempwolf F, Graumann PL. Mutations of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol Biol Cell 2013; 24:2340-9; PMID:23783036; http://dx.doi.org/10.1091/mbc.E12-10-0728
20. Lopez D, Koler R. Functional microdomains in bacterial membranes. Genes Dev 2010; 24:1893-902; PMID:20718308; http://dx.doi.org/10.1101/gad.1945010
21. Bach JN, Bramkamp M. Flotillins functionally organize the bacterial membrane. Microbiol 2013; 88:1205-17; PMID:23651456; http://dx.doi.org/10.1111/mmi.12252
22. Lee YH, Kingston AW, Helmann JD. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis. J Bacteriol 2012; 194:993-1001; PMID:22179609; http://dx.doi.org/10.1128/JB.00654-11
23. Bramkamp M. Structure and function of bacterial dynamin-like proteins. Biol Chem 2012; 393:1203-14; PMID:23109540; http://dx.doi.org/10.1515/978-1151-95010-4
24. González-Jamert AM, Haro-Acuña V, Molinero F, Cavadie P, Beijaclaue JA, Càdizena AM. Dynamin-2 in nervous system disorders. J Neurochem 2014; 128:210-23; PMID:24102355; http://dx.doi.org/10.1111/jnc.12455
25. Fa M, Stanisieowska A, Sared F, Francis Y, Arranico O. Dynamin 1 is required for memory formation. PLoS One 2014; 9:e91954; PMID:24643165; http://dx.doi.org/10.1371/journal.pone.0091954
26. Stuermer CA. How do flotillin regulate regeneration and axon growth. Cell Tissue Res 2013; 349:71-7; PMID:22350847; http://dx.doi.org/10.1007/s00441-012-1343-6
27. Meister M, Zul A, Tilkkenen R. Role of dynamin and clathrin in the cellular trafficking of flotillins. FIBS J 2014; In press; PMID:24899731; http://dx.doi.org/10.1111/febs.12834.