Angle-restricted sets
and zero-free regions for the permanent

P. Etingof (MIT)

1. Introduction

A subset \(S \subset \mathbb{C}^* := \mathbb{C} \setminus \{0\} \) is called a zero-free region for the permanent if the permanent of a square matrix (of any size \(n \)) with entries in \(S \) is necessarily nonzero. The motivation for studying such regions comes from the work of A. Barvinok ([B1]), where he shows that the logarithm of the permanent of such a matrix can be computed within relative error \(\varepsilon \) in quasi-polynomial time \(n^{O \left(\log n - \log \varepsilon \right)} \) (while the problem of efficient computation of general permanents is hopelessly hard). Namely, it is shown in [B1] that the disk \(|z - 1| \leq 1/2 \) and a certain family of rectangles are zero-free regions, which enables efficient approximate computation of permanents of matrices with entries from these regions.\(^1\)

The goal of this note is to give a systematic method of constructing zero-free regions for the permanent. We do so by refining the approach of [B1] using the clever observation that a certain restriction on a set \(S \) involving angles implies zero-freeness ([B1]); we call sets satisfying this requirement angle-restricted. This allows us to reduce the question to a low-dimensional geometry problem (notably, independent of the size of the matrix!), which can then be solved more or less explicitly. We give a number of examples, improving some results of [B1]. This technique also applies to more general problems of a similar kind, discussed in [B2].

Acknowledgements. This note was inspired by the Simons lectures of A. Barvinok at MIT in April 2019; namely, it is a (partial) solution of a “homework problem” given in one of these lectures. I am very grateful to A. Barvinok for useful discussions, suggestions and encouragement. I am also very indebted to two anonymous referees for thorough reading of the paper and very useful comments and corrections.

2. Definition and basic properties of angle-restricted sets

For \(u, v \in \mathbb{C}^* \) let \(\alpha(u, v) \in [0, \pi] \) be the angle between \(u \) and \(v \). Let \(\theta, \phi \in (0, 2\pi/3) \). Note that if \(u_1, \ldots, u_n \in \mathbb{C}^* \) are such that \(\alpha(u_i, u_j) \leq \theta \)

\(^1\)We note that a (randomized) efficient algorithm for computing the permanent of a matrix with nonnegative entries was proposed earlier in [JSV].
then there exists \(\lambda \in \mathbb{C}^* \) such that \(|\arg(\lambda u_i)| \leq \theta/2 \) for all \(i \) (where we agree that \(\arg(z) \) takes values in \((-\pi, \pi] \)).

Definition 2.1. (i) We denote by \(A_{\theta,\phi} \) the set of subsets \(S \subseteq \mathbb{C}^* \) such that for any \(u_1, \ldots, u_n \in \mathbb{C}^* \) with \(\alpha(u_i, u_j) \leq \theta \) for all \(i, j \) and any \(a_1, \ldots, a_n, b_1, \ldots, b_n \in S \), the numbers \(v = \sum_i a_i u_i \) and \(w = \sum_i b_i u_i \) are nonzero and \(\alpha(v, w) \leq \phi \). In other words, if \(u_i \) belong to the angle \(|\arg(z)| \leq \theta/2 \) then there exists \(\mu \in \mathbb{C}^* \) such that \(\mu v, \mu w \) belong to the angle \(|\arg(u)| \leq \phi/2 \). We say that a set \(S \subseteq \mathbb{C}^* \) is \((\theta, \phi)\)-angle restricted if \(S \in A_{\theta,\phi} \). If \(\theta = \phi \) then we denote \(A_{\theta,\phi} \) by \(A_\theta \).

(ii) We denote by \(A^2_{\theta,\phi} \) the set of subsets \(S \subseteq \mathbb{C}^* \) such that for any \(a, b, c, d \in S \) the map \(z \mapsto \frac{az+b}{cz+d} \) maps the angle \(\{ z \in \mathbb{C}^* : |\arg(z)| \leq \theta \} \) into the angle \(\{ u \in \mathbb{C}^* : |\arg(u)| \leq \phi \} \). In other words, \(S \in A^2_{\theta,\phi} \) if and only if any \(a, b, c, d \in S \) satisfy the condition of (i) for \(n = 2 \). We denote \(A^2_{\theta,\phi} \) by \(A^2_\theta \).

(iii) We denote by \(B^2_{\theta,\phi} \) the set of subsets \(S \subseteq \mathbb{C}^* \) such that for any \(a, b \in S \) the map \(z \mapsto \frac{az+b}{z+1} \) maps the angle \(\{ z \in \mathbb{C}^* : |\arg(z)| \leq \theta \} \) into the angle \(\{ u \in \mathbb{C}^* : |\arg(u)| \leq \phi/2 \} \). We denote \(B^2_{\theta,\phi} \) by \(B^2_\theta \).

Remark. Condition (i) for \(n = 2 \) says that for any \(u_1, u_2 \in \mathbb{C}^* \) with \(\alpha(u_i, u_j) \leq \theta \) and \(a, b, c, d \in S \) we have \(\alpha(au_1 + bu_2, cu_1 + du_2) \leq \phi \). This can be written as \(|\arg(\frac{az+b}{cz+d})| \leq \phi \), where \(z := \frac{u_1}{u_2} \), which implies that the two definitions of \(A^2_{\theta,\phi} \) in (ii) are equivalent.

It is clear that \(A_{\theta,\phi} \subseteq A^2_{\theta,\phi} \) and \(B^2_{\theta,\phi} \subseteq A^2_{\theta,\phi} \) (as \(\frac{az+b}{cz+d} = \frac{az+b}{z+1} \cdot \frac{z+1}{cz+d} \)), and that \(A_{\theta,\phi}, A^2_{\theta,\phi} \) are invariant under rescaling by a nonzero complex number, while \(B^2_{\theta,\phi} \) is invariant under rescaling by a positive real number. Also it is obvious that if \(S \) belongs to any of these sets then so do all subsets of \(S \). Finally, it is clear that any ray emanating from 0 is in \(A_\theta \), so we will mostly be interested in sets \(S \) that are not contained in a line.

The motivation for studying these notions comes from the following result of A. Barvinok ([B1]).

Theorem 2.2. (i) If \(S \in A_{\pi/2} \) then any square matrix with entries from \(S \) has nonzero permanent.

(ii) The disk \(|z - 1| \leq 1/2 \) is in \(A_{\pi/2} \).

This implies that any square matrix with entries \(a_{ij} \) such that \(|a_{ij} - 1| \leq 1/2 \) has nonzero permanent. This allowed A. Barvinok to give in [B1] an algorithm for efficient approximate computation of (logarithms of) permanents of such matrices with good precision.

The sets \(A_{\theta,\phi} \) for more general \(\theta \) and \(\phi \), also studied by A. Barvinok, have similar properties and applications (see [B1, B2]). Namely,
as explained in [B2], the condition that $S \in A_{\theta,\phi}$ for suitable θ and ϕ guarantees that some quite general combinatorially defined multivariate polynomials $P(z_1, \ldots, z_n)$, such as the graph homomorphism partition function, are necessarily non-zero whenever $z_1, \ldots, z_n \in U$, and can be efficiently approximated there.

The sets $A^2_{\theta,\phi}, B^2_{\theta,\phi}$ introduced here play an auxiliary role, but they are fairly easy to study (as their definition involves a small number of parameters), and yet we will show that a convex set belonging to $A^2_{\theta,\phi}$ must belong to $A_{\theta,\phi}$.

Proposition 2.3. (i) If $S \in A^2_{\theta,\phi}$ and $a, b \in S$ then $\alpha(a, b) < \pi - \theta$ and $\alpha(a, b) \leq \phi$.

(ii) If $S \in A^2_{\theta,\phi}$ and $a_1, \ldots, a_n \in S$ then for any $u_1, \ldots, u_n \in \mathbb{C}^*$ with $\alpha(u_i, u_j) \leq \theta$ for all i, j we have $\sum_j a_j u_j \neq 0$.

Proof. (i) If $a, b \in S$ then $au_1 + bu_2$ does not vanish if $\alpha(u_1, u_2) \leq \theta$. Suppose $b/a = re^{i\psi}$ where $0 \leq \psi \leq \pi$ (this can always be achieved by switching a, b if needed). Then $\psi < \pi - \theta$, since otherwise we may take $u_2 = 1$, $u_1 = -b/a$ (so that $\alpha(u_1, u_2) \leq \theta$) and $au_1 + bu_2 = 0$, a contradiction. Also $\psi \leq \phi$, since otherwise $\alpha(au_1 + bu_2, a(u_1 + u_2))$ for $u_1 = 1$ and $u_2 = N \gg 1$ will exceed ϕ.

(ii) By (i) we have $\alpha(a_i, a_j) < \pi - \theta$ and $\alpha(a_i, a_j) \leq \phi < 2\pi/3$. Thus after rescaling by a complex scalar we may assume that

$$|\text{arg}(a_j)| < \frac{1}{2}(\pi - \theta)$$

for all j. Let $u_1, \ldots, u_n \in \mathbb{C}^*$ with pairwise angles $\leq \theta$. By rescaling by a complex scalar we may make sure that $|\text{arg}(u_j)| \leq \theta/2$. Then $|\text{arg}(a_j u_j)| < \pi/2$, so $\text{Re}(a_j u_j) > 0$ for all j. Thus $\sum_j a_j u_j \neq 0$. \qed

Proposition 2.4. Let $\phi \leq \pi/2$. Then a set $S \subset \mathbb{C}^*$ is in $A^2_{\theta,\phi}$ if and only if the map $z \mapsto \frac{az + b}{cz + d}$ maps the angle $\{z \in \mathbb{C}^* : |\text{arg}(z)| \leq \theta\}$ into $\{u \in \mathbb{C}^* : |\text{arg}(u)| \leq \phi\} \cup \{0, \infty\}$.

Proof. Only the “if” direction requires proof. It suffices to show that for $a, b \in S$ and $z \in \mathbb{C}^*$ with $|\text{arg}(z)| \leq \theta$ one has $az + b \neq 0$. Assume the contrary. For any $c \in S$, the map $w \mapsto \frac{aw + b}{cw + d}$ must map the angle $|\text{arg}(z)| \leq \theta$ to the set $\{u \in \mathbb{C}^* : |\text{arg}(u)| \leq \phi\} \cup \{0, \infty\}$, while mapping z to 0. Considering these maps for $c = a, b$ near $w = z$ and using that $\phi \leq \pi/2$, we get that $b/a > 0$, i.e., $z < 0$, a contradiction. \qed
3. Convexity and reduction to $n=2$

The following theorem reduces checking that a convex set is (θ, ϕ)-angle restricted to checking that it is in $A_{\theta, \phi}^2$, which is just a low-dimensional geometry problem.

Theorem 3.1. (i) If $S \in A_{\theta, \phi}$ then so is the convex hull of S.

(ii) If $S \in A_{\theta, \phi}^2$ is convex then $S \in A_{\theta, \phi}$.

Proof. (i) Let $CH(S)$ be the convex hull of S. Assume $S \in A_{\theta, \phi}$. Let $a_1, ..., a_n, b_1, ..., b_n \in CH(S)$. Then $a_i = \sum_j r_{ij} a_{ij}$ where $a_{ij} \in S$, $r_{ij} > 0$ and $\sum_j r_{ij} = 1$. Similarly, $b_i = \sum_k s_{ik} b_{ik}$ where $b_{ik} \in S$, $s_{ik} > 0$ and $\sum_k s_{ik} = 1$. Let $u_1, ..., u_n \in \mathbb{C}^*$ with angle between each two $\leq \theta$. Let $u_{ijk} = r_{ij} s_{ik} u_i$. Consider

$$v := \sum_{i,j,k} a_{ij} u_{ijk} = \sum_{i,j,k} a_{ij} r_{ij} s_{ik} u_i = \sum_i a_i s_{ik} u_i = \sum_i a_i u_i$$

and

$$w := \sum_{i,j,k} b_{ik} u_{ijk} = \sum_{i,j,k} b_{ik} r_{ij} s_{ik} u_i = \sum_i b_i r_{ij} u_i = \sum_i b_i u_i.$$

Since $a_{ij}, b_{ik} \in S$, we have that $v, w \neq 0$ and the angle between them does not exceed ϕ. Thus $CH(S) \in A_{\theta, \phi}$.

(ii) Denote by $R_{n, \theta} \subset \mathbb{CP}^{n-1}$ the set of points $u = (u_1, ..., u_n)$ such that the pairwise angles between u_i and u_j (when both are nonzero) are at most θ. It is clear that $R_{n, \theta}$ is closed (hence compact). By Proposition 2.3(ii) for any $a_1, ..., a_n \in S$ we have $\sum_j a_j u_j \neq 0$. Now fix $a_1, ..., a_n, b_1, ..., b_n \in S$ and consider the function

$$f(u_1, ..., u_n) = \text{Im} \log \frac{\sum_j a_j u_j}{\sum_j b_j u_j}$$

(we choose a single-valued branch of this function). The function f is harmonic on $R_{n, \theta}$ in each variable. Let $u \in R_{n, \theta}$ be a global maximum or minimum point of f. By the maximum principle we may choose $u = (u_1, ..., u_n)$ so that each u_i is zero or has argument $\pm \theta/2$. By reducing n if needed and relabeling, we may assume that all u_j are nonzero and that $u_j = r_j e^{i\theta/2}$ for $j = 1, ..., m$ and $u_j = r_j e^{-i\theta/2}$ for $j = m+1, ..., n$, where $r_j > 0$ for all j. By rescaling by a positive real

Note that using the coordinates $v_i := \frac{\sum_{j=1}^n u_j}{\sum_{j=1}^n u_j}$, $1 \leq i \leq n-1$, we may identify $R_{n, \theta}$ with a closed region in \mathbb{C}^{n-1}. Thus we may apply the maximum principle for harmonic functions on subsets of a Euclidean space.
number, we may assume that \(\sum_{j=1}^{m} r_j = r \) and \(\sum_{j=m+1}^{n} r_j = 1 \). Thus we have
\[
v = \sum_{j} a_j u_j = a r e^{i\theta/2} + b e^{-i\theta/2}, \quad w = \sum_{j} b_j u_j = c r e^{i\theta/2} + d e^{-i\theta/2},
\]
where
\[
a = \sum_{j=1}^{m} a_j r_j / r, \quad b = \sum_{j=m+1}^{n} a_j r_j, \quad c = \sum_{j=1}^{m} b_j r_j / r, \quad d = \sum_{j=m+1}^{n} b_j r_j.
\]

Since \(S \) is convex and \(a, b, c, d \) are convex linear combinations of the numbers \(\{a_j, j \leq m\}, \{a_j, j > m\}, \{b_j, j \leq m\}, \{b_j, j > m\} \) respectively, we get that \(a, b, c, d \in S \). Thus, using that \(S \in A^2_{\theta, \phi} \), and setting \(z = r e^{i\theta} \), we see that the angle between \(v \) and \(w \) does not exceed \(\phi \), as claimed. \(\square \)

Lemma 3.2. Let \(S \in A^2_{\theta, \pi/2} \), and \(a, b \in S \) with \(b/a = x + iy \), \(x, y \in \mathbb{R} \). Then we have \(x \geq 0 \) and
\[
|y| \leq \frac{2 \sqrt{x} + (x + 1) \cos \theta}{\sin \theta},
\]
and if \(\theta > \pi/2 \) then
\[
(x + \frac{1}{\cos \theta})^2 + y^2 \leq \tan^2 \theta.
\]

In particular, if \(\theta > \pi/2 \) then
\[
\frac{1 - \sin \theta}{|\cos \theta|} \leq x \leq \frac{1 + \sin \theta}{|\cos \theta|},
\]
i.e., \(b/a \) is separated from the imaginary axis and from infinity (so any \(S \in A^2_{\theta, \pi/2} \) is bounded). Moreover, conditions [1], [2], together with condition [1] with \(a \) and \(b \) switched are also sufficient for the set \(\{a, b\} \) to be in \(A^2_{\theta, \pi/2} \).

Proof. Let \(a, b \in S \) with \(b/a = x + iy \). Pick \(u_1 = re^{i\theta} \), \(u_2 = 1 \). The angle between \(au_1 + bu_2 \) and \(au_1 + au_2 \) does not exceed \(\pi/2 \). Hence the real part of \(\frac{au_1 + bu_2}{au_1 + au_2} \) is non-negative. Thus, we have
\[
\text{Re} \left(\frac{re^{i\theta} + x + iy}{re^{i\theta} + 1} \right) \geq 0, \ \forall r > 0.
\]
This yields
\[
\text{Re} \left((re^{i\theta} + x + iy)(re^{i\theta} + 1) \right) \geq 0, \ \forall r > 0,
\]
i.e.,
\[
r^2 + ((x + 1) \cos \theta \pm y \sin \theta)r + x \geq 0, \ \forall r > 0.
\]
This implies that \(x \geq 0 \), and minimizing with respect to \(r \), we get

\[(x + 1) \cos \theta \pm y \sin \theta \geq -2\sqrt{x},\]

which yields

\[|y| \leq \frac{2\sqrt{x} + (x + 1) \cos \theta}{\sin \theta},\]

as claimed.

Similarly, the real part of \(\frac{a_1}{b_1} + b_2 \) is non-negative. Thus, we have

\[\text{Re} \left(\frac{re^{\pm i\theta} + x + iy}{(x + iy)(re^{\mp i\theta} + 1)} \right) \geq 0, \forall r > 0.\]

This yields

\[\text{Re}((re^{\pm i\theta} + x + iy)((x - iy)(re^{-\mp i\theta} + 1))) \geq 0, \forall r > 0,\]

i.e.

\[xx^2 + (x^2 + y^2 + 1)r \cos \theta + x \geq 0, \forall r > 0.\]

This is satisfied automatically if \(\theta \leq \pi/2 \), but if \(\theta > \pi/2 \) then minimizing the left hand side with respect to \(r \) gives the condition

\[(x^2 + y^2 + 1) \cos \theta + 2x \geq 0, \forall r > 0,\]

which is equivalent to (2).

Finally, to check that \{a, b\} \(\in A_{\theta, \pi/2} \), it suffices to check that for any \(u_1, u_2 \in \mathbb{C}^* \) that are within angle \(\theta \) of each other, the angles

\[\alpha(au_1 + bu_2, au_1 + au_2), \alpha(au_1 + bu_2, bu_1 + au_2), \alpha(au_1 + bu_2, bu_1 + bu_2)\]

do not exceed \(\pi/2 \). Clearly, it suffices to choose \(u_1 = re^{\pm i\theta} \) and \(u_2 = 1 \). Thus, conditions (1), (2), together with condition (1) with \(a \) and \(b \) switched are sufficient for the set \{a, b\} to be in \(A_{\theta, \pi/2} \), as claimed. \(\square \)

Thus we see that the region for \(b/a \) is bounded by two parabolas given by (1) and their inversions under the circle \(|z| = 1\), as well as the circle given by (2) if \(\theta > \pi/2 \) (note that this circle is stable under inversion).

Proposition 3.3. Suppose that \(\phi \leq \pi/2 \). Then

(i) if \(S \in A_{\theta, \phi}^2 \) then the closure \(\overline{S} \) of \(S \) in \(\mathbb{C}^* \) belongs to \(A_{\theta, \phi}^2 \); (ii) if \(S \in A_{\theta, \phi}^2 \) then the convex hull \(CH(S) \) of \(S \) belongs to \(A_{\theta, \phi}^2 \).

Proof. (i) follows by continuity from Proposition 2.4, since the set \(\{u \in \mathbb{C}^*: \text{arg}(u) \leq \phi \} \cup \{0, \infty\} \) is closed in the Riemann sphere.

(ii) Let \(a, b, b', c, d \in \mathbb{C}^* \) be such that the maps \(z \mapsto \frac{az + b}{cz + d} \) and \(z \mapsto \frac{az + b'}{cz + d} \) satisfy the condition of Proposition 2.4, \(r \in [0, 1] \) and \(b'' := rb + (1 - r)b' \). We claim that the map \(z \mapsto \frac{az + b'}{cz + d} \) also satisfies the
condition of Proposition \[2.4\]. It suffices to show this for \(z \neq -d/c \). We have
\[
\frac{az + b''}{cz + d} = r \frac{az + b}{cz + d} + (1 - r) \frac{az + b'}{cz + d},
\]
and \(\frac{az + b}{cz + d}, \frac{az + b'}{cz + d} \) belong to the set \(\{ u \in \mathbb{C}^* : |\arg(u)| \leq \phi \} \cup \{0\} \), which is convex since \(\phi \leq \pi/2 \). Hence \(\frac{az + b''}{cz + d} \) also belongs to this set, as claimed.

Also note that the condition of Proposition \[2.4\] is invariant under the transpositions \((a, b, c, d) \mapsto (b, a, d, c)\) and \((a, b, c, d) \mapsto (c, d, a, b)\), which generate a group \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) acting transitively on \(a, b, c, d \). Now (ii) follows by using this symmetry and applying the above claim four times (to each of the four variables \(a, b, c, d \)). \[\square\]

This proposition gives a simple method of constructing convex polygons which are in \(A_{\theta, \pi}^2 \) for \(\phi \leq \pi/2 \) by doing a finite check on the vertices. We will see examples of this below.

4. The sets \(A_{\pi/2}^2 \) and \(B_{\pi/2}^2 \)

From now on we focus on the case \(\theta = \phi = \pi/2 \) relevant for zero-free regions for the permanent. The general case can be treated by similar methods.

4.1. Explicit characterization. Let us give a more explicit characterization of the sets \(A_\theta^2 \) and \(B_\theta^2 \) for \(\theta = \pi/2 \). Let
\[
F(a, b, c, d) = (\text{Im}(a\bar{d} - b\bar{c}))^2 - 4\text{Re}(a\bar{c})\text{Re}(b\bar{d}),
\]
and
\[
G_1(a, b) = (a_2 - b_2)^2 - 4a_1b_1, \quad G_2(a, b) = (a_1 - b_1)^2 - 4a_2b_2,
\]
where \(a_1 + ia_2 = e^{i\pi/4}a, b_1 + ib_2 = e^{i\pi/4}b, a_j, b_j \in \mathbb{R} \). Note that
\[
F(a, b, c, d) = F(b, a, d, c) = F(c, d, a, b) = F(d, c, b, a).
\]

Lemma 4.1. (i) \(S \in A_{\pi/2}^2 \) if and only if for any \(a, b, c, d \in S \) we have \(F(a, b, c, d) \leq 0 \).

(ii) \(S \in B_{\pi/2}^2 \) if and only if \(|\arg(a)| \leq \pi/4 \) for \(a \in S \), and for any \(a, b \in S \) we have \(G_1(a, b) \leq 0 \), \(G_2(a, b) \leq 0 \).

Proof. (i) Suppose that \(F(a, b, c, d) \leq 0 \) for all \(a, b, c, d \in S \). Then \(\text{Re}(a\bar{c}) \geq 0 \) for all \(a, c \in S \) (as we can take \(b = d \)). Therefore, \(\frac{a + b}{c + d} \neq 0 \) when \(\text{Re}(z) \geq 0 \). Indeed, otherwise, we must have \(\text{Re}(b/a) = |a|^{-2}\text{Re}(b\bar{a}) \leq 0 \), so \(\text{Re}(b/a) = 0 \) and \(b/a = it \) for some real \(t \neq 0 \). But then \(F(a, b, a, a) = t^2|a|^4 > 0 \), a contradiction.
Thus by the definition of $A^2_{\pi/2}$, it suffices to show that for $a, b, c, d \in S$ one has $\Re \frac{az + b}{cz + d} \geq 0$ whenever $z = it, t \in \mathbb{R}$. We have

$$\frac{ait + b}{cit + d} = \frac{(ait + b)(-\bar{c}it + \bar{d})}{|cit + d|^2}$$

and

$$\Re \left((ait + b)(-\bar{c}it + \bar{d}) \right) = \Re(a\bar{c})t^2 - \Im(a\bar{d} - b\bar{c})t + \Re(b\bar{d}).$$

Since $\Re(a\bar{c}), \Re(b\bar{d}) \geq 0$, the condition for this to be ≥ 0 is that the discriminant of this quadratic function is ≤ 0, which gives the result.

Conversely, if $S \in A^2_{\pi/2}$ then the above calculation shows that $F(a,b,c,d) \leq 0$ for all $a,b,c,d \in S$.

(ii) Let $a' = a_1 + ia_2, b' = b_1 + ib_2$. The condition on a', b' is that for $t \in \mathbb{R}$ we have $\Re \frac{a'it + b'}{it + 1} \geq 0$ and $\Im \frac{a'it + b'}{it + 1} \geq 0$. We have

$$\frac{a'it + b'}{it + 1} = \frac{(a'it + b')(it + 1)}{t^2 + 1},$$

and

$$(a'it + b')(it + 1) = a't^2 + (a' - b')it + b' = (a_1t^2 - (a_2 - b_2)t + b_1) + i(a_2t^2 + (a_1 - b_1)t + b_2).$$

Since $a_1, a_2, b_1, b_2 \geq 0$ (as seen by setting $t = 0$ and $t = \infty$), the condition is that the discriminants of these two quadratic functions must be ≤ 0, which gives the result. \hfill \Box

4.2. Examples.

Example 4.2. Lemma 4.1(ii) implies that the interval $[a, b] \subset \mathbb{R}$ for $0 < a \leq b$ is in $B^2_{\pi/2}$ iff $b/a \leq 3 + 2\sqrt{2}$.

Example 4.3. Let $a = 1/2, b = 1 + i/2, c = 1 - i/2$ and $d = 3/2 + t$. Let us find the largest $t > 0$ for which $\{a, b, c, d\}$ is in $B^2_{\pi/2}$ (hence in $A^2_{\pi/2}$). Since a, b, c belong to the disk $|z - 1| \leq 1/2$, which was shown by A. Barvinok in [31] to belong to $B^2_{\pi/2}$, it suffices to check when $G_i(a,d) \leq 0, G_i(b,d) \leq 0, G_i(c,d) \leq 0$. The first condition gives the inequality of Example 4.2, which is $3 + 2t \leq 3 + 2\sqrt{2}$, i.e. $t \leq \sqrt{2}$. The second (or, equivalently, third) condition gives the inequalities $t^2 \leq 2t + 3, (1 + t)^2 \leq 3(2t + 3)$ which hold for $0 \leq t \leq \sqrt{2}$. Thus we find that the optimal value is $t = \sqrt{2}$ and the quadrilateral with vertices $1/2, 1 \pm i/2$ and $3/2 + \sqrt{2}$.
is in $A_{\pi/2}^2$, hence in $A_{\pi/2}$, thus it is a zero-free region for the permanent.

Example 4.4. Let us find the values of $t > 1/2$ for which the union of the disk $|z-1| \leq 1/2$ and the point $1+t$ belongs to $B_{\pi/2}^2$ (hence to $A_{\pi/2}^2$). Such t are determined by the condition that $G_1(1+\frac{1}{2}e^{i(\phi-\pi/4)}, 1+t) \leq 0$ for all ϕ (the condition involving G_2 is the same due to axial symmetry).

This can be written as

$$(t + \frac{1}{\sqrt{2}} \cos \phi)^2 \leq 4(1 + t)(1 + \frac{1}{\sqrt{2}} \sin \phi)$$

for all ϕ. This gives

$$t \leq 1 + \sqrt{2} \sin \phi - \frac{\sqrt{2}}{2} \cos \phi + \sqrt{6\sqrt{2} \sin \phi - 2\sqrt{2} \cos \phi - \sin 2\phi - \cos 2\phi + 9},$$

and minimizing this function (numerically), we get the answer

$$t \leq t_* = 1.64......$$

Thus the ice cream cone, which is the convex hull of the disk $|z-1| \leq 1/2$ and the point $1 + t_*$ (significantly larger than the disk):

belongs to $A_{\pi/2}^2$, hence to $A_{\pi/2}$, and thus is a zero-free region for the permanent.
Example 4.5. Let \(S = \{ a, b \} \), and \(b/a = x + iy \). Let us compute when \(S \in A_{\pi/2}^2 \). By Lemma 3.2 the conditions for this are
\[
y^2 \leq 4x, \quad y^2 \leq 4(x^2 + y^2).
\]
This gives
\[
(3) \quad |y| \leq 2\sqrt{x}; \quad \text{and} \quad |y| \leq \frac{2x^{3/2}}{\sqrt{1-4x}}, \quad x < 1/4.
\]
So we get a region which is bounded by a parabola and its inversion with respect to the circle \(|z| = 1 \), which is a cissoid of Diocles:

By Proposition 3.3 this is also the necessary and sufficient condition for the segment \([a, b] \subset \mathbb{C}^{*}\) to be in \(A_{\pi/2}^2 \).

Example 4.6. Consider now a 3-element set \(S = \{ 1, a, b \} \) and let us give a necessary condition for it to be in \(A_{\pi/2}^2 \).

Proposition 4.7. Assume \(a \notin \mathbb{R} \). Then one has
\[
a_1 \frac{(|1+a| - 1 - a_1)^2}{a_2^2} \leq b_1 \leq a_1 \frac{(|1+a| + 1 + a_1)^2}{a_2^2},
\]
where \(a = a_1 + ia_2, \ b = b_1 + ib_2 \) and \(a_1, a_2, b_1, b_2 \in \mathbb{R} \). In other words, one has \(K^{-1} \leq \frac{b_1}{a_1} \leq K \), where \(K := \frac{(1+a)^2}{a_2^2} \). Thus any \(S \in A_{\pi/2}^2 \) which is not contained in a line is bounded and separated from the origin.

Proof. We have the inequalities \(F(a, 1, 1, b) \leq 0 \) and \(F(a, b, 1, 1) \leq 0 \), which yields
\[
(a_1b_2 - a_2b_1)^2 \leq 4a_1b_1, \quad (a_2 - b_2)^2 \leq 4a_1b_1,
\]
or, equivalently,
\[
|a_1b_2 - a_2b_1| \leq 2\sqrt{a_1b_1}, \quad |a_2 - b_2| \leq 2\sqrt{a_1b_1}.
\]
From the second inequality
\[|b_2| \leq 2\sqrt{a_1b_1} + |a_2|. \]
Hence
\[|a_1b_2| \leq (2\sqrt{a_1b_1} + |a_2|)a_1. \]
Thus
\[|a_2b_1| \leq 2\sqrt{a_1b_1} + |a_1b_2| \leq 2(1 + a_1)\sqrt{a_1b_1} + |a_2|a_1. \]
Hence
\[b_1 \leq \frac{2(1 + a_1)\sqrt{a_1b_1}}{|a_2|} + a_1 \]
This yields
\[b_1 \leq a_1\frac{(1 + a_1) + (1 + a_1)^2}{a_2^2}, \]
as claimed. From this we also have
\[|a_2| \leq 2\sqrt{a_1b_1} + |b_2| \leq 2\sqrt{a_1b_1} + \frac{2\sqrt{a_1b_1} + |a_2|b_1}{a_1}, \]
which yields
\[b_1 \geq a_1\frac{(1 + a_1 - 1 - a_1)^2}{a_2^2}, \]
again as claimed.

\[\square \]

4.3. **Rectangular and trapezoidal regions.** Let us now try to characterize rectangular and trapezoidal regions which are in \(A_{\pi/2} \) (hence in \(A_{\pi/2} \)).

Proposition 4.8. (i) Let \(R(M, L, N) \) be the rectangle \(M \leq x \leq M + L, \ |y| \leq N \). Then \(R(M, L, N) \in A_{\pi/2} \) if
\[N \leq \frac{2M^{3/2}}{\sqrt{L + 24M}}. \]

(ii) Let \(T(M, L, t) \) be the trapezoid \(M \leq x \leq L, |y| \leq tx \). Then \(T(M, L, t) \in A_{\pi/2} \) if \(t < \sqrt{2} - 1 \) and
\[L \leq M \left(\frac{t^2 + t^{-2} - 4 + (t^{-1} - t)\sqrt{t^2 + t^{-2} - 6}}{2} \right)^{1/2} \]
\[= Mt^{-1}(1 + o(t)) \text{ as } t \to 0. \]
Proof. In coordinates the desired basic inequality looks like

\[(a_2d_1 - a_1d_2 - b_2c_1 + b_1c_2)^2 \leq 4(a_1c_1 + a_2c_2)(b_1d_1 + b_2d_2),\]

where the subscript 1 denotes the real part and the subscript 2 the imaginary part.

(i) Since the absolute values of \(a_2, b_2, c_2, d_2\) don’t exceed \(N\), the basic inequality would follow from the inequality

\[N^2(a_1 + b_1 + c_1 + d_1)^2 \leq 4(a_1c_1 - N^2)(b_1d_1 - N^2) = 4a_1c_1b_1d_1 - 4N^2(a_1c_1 + b_1d_1) + N^4.\]

(as long as \(N \leq M\), which follows from the inequality in (i)). This, in turn, would follow from the inequality

\[N^2((a_1 + b_1 + c_1 + d_1)^2 + 4(a_1c_1 + b_1d_1)) \leq 4a_1c_1b_1d_1.\]

Let \(q\) be the largest of \(a_1, b_1, c_1, d_1\) and \(p\) the second largest. Then the latter inequality would follow from the inequality

\[N^2((a_1 + b_1 + c_1 + d_1)^2 + 4(a_1c_1 + b_1d_1)) \leq 4M^2pq.\]

Now observe that on the left hand side we have 24 quadratic monomials in \(a_1, b_1, c_1, d_1\), which are all \(\leq pq\) except one, which is \(q^2 \leq (M + L)q\). So the last inequality would follow from the inequality

\[N^2(23p + M + L) \leq 4M^2p,\]

or

\[N^2(M + L) \leq p(4M^2 - 23N^2).\]

This, in turn, follows from the inequality

\[N^2(M + L) \leq M(4M^2 - 23N^2),\]

or

\[N^2(L + 24M) \leq 4M^3,\]

giving

\[N \leq \frac{2M^{3/2}}{\sqrt{L + 24M}},\]

as claimed.

(ii) Since \(|a_2| \leq ta_1, |b_2| \leq tb_1, |c_2| \leq tc_1, |d_2| \leq td_1\), the basic inequality would follow from the inequality

\[4t^2(a_1d_1 + b_1c_1)^2 \leq 4(1 - t^2)^2a_1c_1b_1d_1,\]

which is equivalent to the inequality

\[t^2(a_1^2d_1^2 + b_1^2c_1^2) \leq (1 - 4t^2 + t^4)a_1b_1c_1d_1,\]
or \(\mu + \frac{1}{\mu} \leq t^{-2} - 4 + t^2 \), where \(\mu = \frac{a \cdot d}{b \cdot c} \). The largest value of this ratio is \(L^2 / M^2 \), so it sufficient to require that

\[
\frac{L^2}{M^2} + \frac{M^2}{L^2} \leq t^2 - 4 + t^{-2} := T.
\]

This is satisfied whenever

\[
L \leq M \left(\frac{T + \sqrt{T^2 - 4}}{2} \right)^{1/2},
\]

as claimed.

In particular, if \(L = 1 \) and \(M \) is small then for the rectangle we have \(N = 2M^{3/2}(1 + o(M)) \). Comparing this to the bound \([3]\), we see that this is sharp up to a factor \(1 + o(M) \). This also relaxes the bound \(N \leq CM^2 \) from \([B1]\).

Also for the trapezoid we have \(M \geq t(1 + o(t)) \), so its short side has half-length \(N = tM \), so the largest possible \(N \) is \(\sim M^2 \).

4.4. Maximal angle-restricted sets. From now on we will only consider closed convex sets \(S \), since we have seen that if \(S \in A_{\pi/2}^2 \) then so do its closure and its convex hull, and a convex set is in \(A_{\pi/2} \) iff it is in \(A_{\pi/2}^2 \).

It is clear from Zorn’s lemma that any \((\pi/2, \pi/2)\)-angle restricted set is contained in a maximal one, which is necessarily closed and convex. The problem of finding and classifying maximal \((\pi/2, \pi/2)\)-angle-restricted sets is a special case of a more general problem of optimal control theory – to find maximal regions \(R \) with the property that a given function \(F(z_1, ..., z_n) \) is \(\leq 0 \) when all \(z_i \in R \); one of the simplest and best known problems from this family is to describe curves of constant width \(\ell \) (in this case \(F(z_1, z_2) = |z_1 - z_2|^2 - \ell^2 \)). As is typical for such problems, the problem of describing maximal regions in \(A_{\pi/2} \) is rather nontrivial; presumably, it can be treated by the methods of the book \([BCGGG]\).

Maximal regions can also be constructed as limits of nested sequences \(\Pi_n \) of convex \(n \)-gons, each obtained from the previous one by “pushing out” a point on one of the sides as far as it can go while still preserving the property of being in \(A_{\pi/2} \). This approach should be good for numerical computation of maximal regions, since the verification that the region is in \(A_{\pi/2}^2 \) (equivalently, in \(A_{\pi/2} \)) is just a finite check on the vertices of the polygon.

Here we will not delve into this theory and will restrict ourselves to proving the following result. Let \(\mu_S(a) := \max_{b, c, d \in S} F(a, b, c, d) \). We have seen that \(S \in A_{\pi/2} \) iff \(\mu_S(a) \leq 0 \ \forall a \in S \).
Proposition 4.9. A closed convex set \(S \in A_{\pi/2} \) (not contained in a line) is maximal iff \(\mu_S(a) = 0 \) for all \(a \in \partial S \).

Proof. Note that \(S \) is bounded by Proposition 4.7, hence compact. Suppose \(S \in A_{\pi/2} \) is maximal and \(a \in \partial S \) is such that there are no \(b,c,d \in S \) with \(F(a,b,c,d) = 0 \). Then \(\mu_S(a) = -\varepsilon < 0 \). Now take sufficiently small \(\delta \) and let \(S' = S \cup \{|z-a| \leq \delta\} \), which is strictly larger than \(S \) as \(a \in \partial S \). Let us maximize \(F(x,b,c,d) \) over \(x,b,c,d \in S' \). If these points are further than \(\delta \) from \(a \) then they are in \(S \) so \(F(x,b,c,d) \leq 0 \). Otherwise, if one of them is \(\delta \)-close to \(a \), say, \(x \) (it does not matter which one because of the permutation symmetry of \(F \)), then \(F(x,b,c,d) \leq F(a,b,c,d) + \varepsilon \leq 0 \) (a number \(\delta \) with this property exists due to uniform continuity of \(F \) on \(S \)). So \(S' \) and its convex hull are in \(A_{\pi/2} \), contradicting the assumption that \(S \) is maximal.

Conversely, suppose \(\mu_S(a) = 0 \) on \(\partial S \), let \(S' \supset S \) be a larger convex region. Then there exists \(a \in \partial S \) which is an interior point of \(S' \). Also there exist \(b,c,d \in S \) with \(F(a,b,c,d) = 0 \). But for fixed \(b,c,d \) the function \(F(z,b,c,d) \) is inhomogeneous quadratic in \(z, \bar{z} \) with nonnegative degree 2 part, which implies that there is a point \(a' \) arbitrarily close to \(a \) with \(F(a',b,c,d) > 0 \). Hence \(S' \notin A_{\pi/2} \) and \(S \) is maximal. \(\square \)

Thus, we see that if \(S \in A_{\pi/2} \) and \(a \in \partial S \) with \(\mu_S(a) < 0 \) then \(S \) can be enlarged near \(a \) (e.g. by adding a point \(a' \notin S \) close to \(a \) and taking the convex hull of \(S \) and \(a' \)), so that the larger set \(S' \) is still in \(A_{\pi/2} \). Otherwise, if \(\mu_S(a) = 0 \), then \(a \) must be on the boundary of any \(S' \in A_{\pi/2} \) containing \(S \). We will say that \(S \) is maximal at \(a \) if \(\mu_S(a) = 0 \) and non-maximal at \(a \) if \(\mu_S(a) < 0 \).

Example 4.10. Let \(S \) be the disk \(|z - 1| \leq 1/2 \). Then \(S \) is maximal at the three points \(a = 1/2, 1 \pm i/2 \) and not maximal at any other points of the boundary circle. The proof is by a direct computation. Namely, if \(a \neq 1/2, 1 \pm i/2 \) but \(|a-1| = 1/2 \), then it can be shown that for any \(b \) with \(|b-1| \leq 1/2 \) one has \(G_1(a,b) < 0 \) and \(G_2(a,b) < 0 \).

References

[B1] A. Barvinok, Approximating permanents and Hafnians, Discrete analysis, 2017:2, 34 pp.
[B2] A. Barvinok, Combinatorics and complexity of partition functions, Springer, 2016.
[BCGGG] R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, and P.A. Griffiths, Exterior Differential Systems. Springer, 2011.
[JSV] M. Jerrum, A. Sinclair, E. Vigoda, A Polynomial-Time Approximation Algorithm for the Permanent of a Matrix with Nonnegative Entries, Journal of the ACM, Volume 51, Issue 4, July 2004, Pages 671-697.