Certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals

Asifa Tassaddiq1*, Gauhar Rahman2, Kottakkaran Sooppy Nisar3 and Muhammad Samraiz4

1 Introduction

Fractional calculus is the study of integrals and derivatives of arbitrary order which was a natural outgrowth of conventional definitions of calculus integral and derivative. In all areas of sciences, especially in mathematics, fractional calculus is a developing field with deep applications, though the idea was introduced more than three hundred years ago. Many theories of mathematics applicable to the study of fractional calculus were emerging at the end of the 19th century.

Fractional integral has been widely studied in the literature. The idea has been defined by many mathematicians with slightly different formulas, for example, Riemann–Liouville, Weyl, Erdélyi–Kober, Hadamard integral, and Liouville and Katugampola fractional integrals [21, 25, 26, 28, 34]. In the last few years, Khalil et al. [27] and Adeljawad [1] established a new class of fractional derivatives and integrals, called fractional conformable derivatives and integrals. Jarad et al. [23] introduced the fractional conformable integral operators. Based on that notion, one obtains generalizations of the Hadamard, Hermite–Hadamard, Opial, Grüss, Ostrowski, and Chebyshev inequalities, among others [2, 9, 14, 22, 35, 36, 39]). Furthermore, Set et al. [40–44] have contributed significant investigations in this direction. To study the further recent analysis for such a type of inequalities, the interested reader is referred to [5, 18, 24, 32, 33].
In [7], the Chebyshev functional for two integrable functions \(f \) and \(g \) on \([a, b]\) is defined as

\[
\mathcal{T}(f, g) = \frac{1}{b-a} \int_a^b f(\tau) g(\tau) \, d\tau - \frac{1}{b-a} \left(\int_a^b f(\tau) \, d\tau \right) \frac{1}{b-a} \left(\int_a^b g(\tau) \, d\tau \right). \tag{1}
\]

In [3, 4, 15, 17], the applications and several inequalities related to (1) are found. In ([10], also see [7]), the Chebyshev functional is defined by

\[
\mathcal{T}(f, g, h) = \int_a^b h(\tau) \, d\tau \int_a^b h(\tau)f(\tau)g(\tau) \, d\tau - \int_a^b h(\tau)f(\tau) \int_a^b h(\tau)g(\tau) \, d\tau, \tag{2}
\]

where \(f \) and \(g \) are integrable on \([a, b]\) and \(h \) is a positive and integrable function on \([a, b]\). Applications of the functional defined in (2) are found in probability and statistical problems. Further applications in differential and integral equations are found in [6, 16, 31]. Elezovic et al. [19] defined

\[
|\mathcal{T}(f, g, h)| \leq \frac{1}{2} \left(\int_a^b \int_a^b h(\theta)h(\theta)|\theta - \phi|^{\frac{1}{p} + \frac{1}{q}} \left| \int_0^\theta f'(\tau) \, d\tau \right|^p \, d\phi \right) \frac{1}{\frac{1}{p} + \frac{1}{q}} \left(\int_a^b \int_a^b h(\theta)h(\theta)|\theta - \phi|^{\frac{1}{p} + \frac{1}{q}} \left| \int_0^\theta g'(\tau) \, d\tau \right|^q \, d\phi \right) \frac{1}{\frac{1}{p} + \frac{1}{q}},
\]

where \(f' \in L^p([a, b]), g' \in L^q([a, b]), p, q, r > 1, \frac{1}{p} + \frac{1}{q} = 1, \frac{1}{q} + \frac{1}{r} = 1 \) and \(\frac{1}{p} + \frac{1}{q} = 1 \). In [13], the authors defined the following fractional integral inequality for Chebyshev functionals:

\[
2 |\mathcal{I}^\alpha h(\tau)\mathcal{I}^\alpha h(\tau) - \mathcal{I}^\alpha h(\tau)\mathcal{I}^\alpha h(\tau)| \leq \frac{\|f'\|_p \|g'\|_q}{\Gamma^\alpha(\alpha)} \int_0^\tau \int_0^\tau (\tau - \phi)^{\alpha-1}(\tau - \phi)^{\alpha-1}|\theta - \phi| h(\theta) \, d\phi \, d\theta, \tag{4}
\]

where \(f' \in L^p([0, \infty]), g' \in L^q([0, \infty]), p, q > 1, \frac{1}{p} + \frac{1}{q} = 1 \).

Let us consider the extended Chebyshev functional [8, 30]

\[
\tilde{\mathcal{T}}(f, g, h, h') = \int_a^b h'(\tau) \, d\tau \int_a^b h(\tau)f(\tau)g(\tau) \, d\tau + \int_a^b h(\tau) \int_a^b h'(\tau)f(\tau)g(\tau) \, d\tau - \int_a^b h(\tau)f(\tau) \int_a^b h'(\tau)g(\tau) \, d\tau - \int_a^b h'(\tau)f(\tau) \int_a^b h(\tau)g(\tau) \, d\tau. \tag{5}
\]

In [4, 11, 29], various researchers have addressed the functionals (2) and (5). Recently Rahman et al. [38] defined fractional conformable inequalities for Chebyshev functionals (1) and (2). The present paper aims to develop certain fractional conformable inequalities for the Chebyshev functionals (2) and (5). Also, we will discuss some particular cases of our main result.
2 Preliminaries

In this section, we present the following well-known definitions from [20, 23].

Definition 2.1 The Riemann–Liouville fractional integral \(I_{a}^{\alpha} \) and \(I_{b}^{\alpha} \) of order \(\alpha > 0 \), for a continuous function \(f \in [a, b] \), is defined by

\[
I_{a}^{\alpha}f(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{\tau} (\tau - t)^{\alpha-1} f(t) \, dt, \quad a < \tau \leq b,
\]

where \(\Gamma \) is the gamma function; for further details as regards gamma and related functions, see [45].

Definition 2.2 The fractional conformable integral \(\beta I_{a}^{\alpha} \) of order \(\beta > 0 \), for a continuous function is defined by

\[
\beta I_{a}^{\alpha}f(t) = \frac{1}{\Gamma(\beta)} \int_{a}^{\tau} \left(\frac{\tau^\alpha - t^\alpha}{\alpha} \right)^{\beta-1} \frac{f(t)}{t^{1-\alpha}} \, dt; \quad 0 < \tau \leq b.
\]

Clearly one can get \(0 I_{0}^{\alpha}f(t) = f(t) \) and

\[
\beta I_{a}^{\alpha} \gamma I_{a}^{\alpha} f(t) = \beta + \gamma I_{a}^{\alpha} f(t) = \gamma I_{a}^{\alpha} \beta I_{a}^{\alpha} f(t); \quad \beta, \lambda > 0.
\]

In [23, 35, 37, 38, 40, 43], one has studied fractional conformable integral operators and has established certain inequalities by employing the said fractional integral operators.

Remark 1 If we consider \(\alpha = 1 \), then (7) will lead to the fractional integral in (6).

3 Main results

In this section, we establish certain fractional conformable inequalities for the weighted and the extended Chebyshev functionals.

Theorem 3.1 Let \(f \) and \(g \) be two differentiable functions on \([0, \infty)\) and let \(h \) be positive and integrable function on \([0, \infty)\). If \(f' \in L^p([0, \infty]), \; g' \in L^q([0, \infty]), \; p, q, r > 1 \) with \(\frac{1}{p} + \frac{1}{r} = 1, \; \frac{1}{q} + \frac{1}{r} = 1 \) and \(\frac{1}{r} + \frac{1}{p} = 1 \), then the following inequality holds for all \(\tau > 0, \alpha, \beta > 0 \):

\[
2|\beta I_{a}^{\alpha}h(\tau) \beta I_{a}^{\alpha}hg(\tau) - \beta I_{a}^{\alpha}hf(\tau) \beta I_{a}^{\alpha}hg(\tau)| \\
\leq \left(\frac{\|f\|_p}{\Gamma(\beta)} \int_{0}^{\tau} \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\beta-1} \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\beta-1} \theta^\alpha \, d\theta \right)^{\frac{1}{2}} \\
\times \left(\frac{\|g'\|_q}{\Gamma(\beta)} \int_{0}^{\tau} \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\beta-1} \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\beta-1} \theta^\alpha \, d\theta \right)^{\frac{1}{2}} \\
\times \theta^{\alpha-1} \theta^{\alpha-1} h(\theta) h(\theta) |\theta - \theta|^{\frac{1}{p} + \frac{1}{r}} \, d\theta \, d\theta \\
\times \theta^{\alpha-1} \theta^{\alpha-1} h(\theta) h(\theta) |\theta - \theta|^{\frac{1}{p} + \frac{1}{r}} \, d\theta \, d\theta \\
\times \theta^{\alpha-1} \theta^{\alpha-1} h(\theta) h(\theta) |\theta - \theta|^{\frac{1}{p} + \frac{1}{r}} \, d\theta \, d\theta.
\]
Let us define

\[H(\theta, \vartheta) = (f(\theta) - f(\vartheta))(g(\theta) - g(\vartheta)); \quad \theta, \vartheta \in (0, \tau). \]

(9)

Multiplying (9) by \(\frac{1}{\Gamma(\beta)} (\frac{\tau^\alpha - \theta^\alpha}{\alpha})^{\beta-1} \vartheta^{\alpha-1} h(\vartheta) \) and then integrating with respect to \(\vartheta \) over \((0, \tau)\), we have

\[
\frac{1}{\Gamma(\beta)} \int_0^\tau \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\beta-1} \vartheta^{\alpha-1} h(\vartheta) H(\theta, \vartheta) d\vartheta = \frac{\beta}{\gamma} \mathcal{J}^\alpha h(\tau) - g(\theta) \beta \mathcal{J}^\alpha h(\tau) - f(\theta) \beta \mathcal{J}^\alpha h(\tau) + f(\theta) g(\theta) \beta \mathcal{J}^\alpha h(\tau).
\]

(10)

Again, multiplying (10) by \(\frac{1}{\Gamma(\beta)} (\frac{\tau^\alpha - \theta^\alpha}{\alpha})^{\beta-1} \vartheta^{\alpha-1} h(\vartheta) \) and then integrating with respect to \(\nu \) over \((0, \tau)\), we have

\[
\frac{1}{\Gamma(\beta)} \int_0^\tau \int_0^\tau \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\beta-1} \vartheta^{\alpha-1} \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\beta-1} \vartheta^{\alpha-1} h(\vartheta) h(\theta) H(\theta, \vartheta) d\vartheta d\theta = 2 \beta \mathcal{J}^\alpha h(\tau) \beta \mathcal{J}^\alpha h(\tau) - \beta \mathcal{J}^\alpha h(\tau) \beta \mathcal{J}^\alpha h(\tau).
\]

(11)

Also, on the other hand, we have

\[H(\theta, \vartheta) = \int_\theta^\vartheta \int_\theta^\vartheta f(x)g'(y) dx dy. \]

(12)

By employing the Hölder inequality, we have

\[|f(\theta) - f(\vartheta)| \leq |\theta - \vartheta|^{\frac{1}{\gamma}} \left(\int_\theta^\vartheta |f'(x)|^\gamma dx \right)^{\frac{1}{\gamma}} \]

(13)

and

\[|g(\theta) - g(\vartheta)| \leq |\theta - \vartheta|^{\frac{1}{\gamma}} \left(\int_\theta^\vartheta |g'(y)|^\gamma dy \right)^{\frac{1}{\gamma}}. \]

(14)

Then \(H \) becomes

\[|H(\theta, \vartheta)| \leq |\theta - \vartheta|^{\frac{1}{\gamma}} \left(\int_\theta^\vartheta |f'(x)|^\gamma dx \right)^{\frac{1}{\gamma}} \left(\int_\theta^\vartheta |g'(y)|^\gamma dy \right)^{\frac{1}{\gamma}}. \]

(15)

Therefore, from (11) and (15), we can write

\[
2 \beta \mathcal{J}^\alpha h(\tau) \beta \mathcal{J}^\alpha h(\tau) - \beta \mathcal{J}^\alpha h(\tau) \beta \mathcal{J}^\alpha h(\tau) = \frac{1}{\Gamma(\beta)} \int_0^\tau \int_0^\tau \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\beta-1} \vartheta^{\alpha-1} \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\beta-1} \vartheta^{\alpha-1} h(\vartheta) h(\theta) |H(\theta, \vartheta)| d\vartheta d\theta
\]
\[
\frac{1}{\Gamma^{2}(\beta)} \int_{0}^{\tau} \int_{0}^{\tau} \left(\frac{\tau^{a} - \vartheta^{a}}{\alpha} \right)^{\beta-1} \theta^{a-1} \left(\frac{\tau^{a} - \vartheta^{a}}{\alpha} \right)^{\beta-1} \vartheta^{a-1} h(\vartheta) d\vartheta \\
\times |\vartheta - \theta|^{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}} \int_{0}^{\theta} |f'(x)|^{p} dx \left| \int_{0}^{\theta} |g'(\tau)|^{q} d\tau \right|^{\frac{1}{q}} d\theta d\vartheta.
\]

(16)

Now, by using the Hölder inequality for the double integral, we have

\[
2^{\beta} \mathcal{J}^a h(\tau) \mathcal{J}^a h f(\tau) - \beta \mathcal{J}^a h f(\tau) \mathcal{J}^a h g(\tau)
\leq \frac{1}{\Gamma^{2}(\beta)} \left(\int_{0}^{\tau} \int_{0}^{\tau} \left(\frac{\tau^{a} - \vartheta^{a}}{\alpha} \right)^{\beta-1} \theta^{a-1} \left(\frac{\tau^{a} - \vartheta^{a}}{\alpha} \right)^{\beta-1} \vartheta^{a-1} h(\vartheta) d\vartheta \\
\times |\vartheta - \theta|^{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}} \int_{0}^{\theta} |f'(x)|^{p} dx \left| \int_{0}^{\theta} |g'(\tau)|^{q} d\tau \right|^{\frac{1}{q}} d\theta d\vartheta \right)^{\frac{1}{2}}.
\]

(17)

Now, using the following properties:

\[
\left| \int_{0}^{\theta} |f'(x)|^{p} dx \right| \leq \|f'\|_{p}, \quad \int_{0}^{\theta} |g'(\tau)|^{q} d\tau \leq \|g'\|_{q}^{q},
\]

(18)

(17) can be written as

\[
2^{\beta} \mathcal{J}^a h(\tau) \mathcal{J}^a h f(\tau) - \beta \mathcal{J}^a h f(\tau) \mathcal{J}^a h g(\tau)
\leq \left(\frac{\|f'\|_{p}}{\Gamma^{\nu}(\beta)} \right)^{\frac{1}{2}} \left(\int_{0}^{\tau} \int_{0}^{\tau} \left(\frac{\tau^{a} - \vartheta^{a}}{\alpha} \right)^{\beta-1} \theta^{a-1} \left(\frac{\tau^{a} - \vartheta^{a}}{\alpha} \right)^{\beta-1} \vartheta^{a-1} h(\vartheta) d\vartheta \\
\times |\vartheta - \theta|^{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}} \int_{0}^{\theta} |g'(\tau)|^{q} d\tau \right)^{\frac{1}{2}}.
\]

(19)

Therefore,

\[
2^{\beta} \mathcal{J}^a h(\tau) \mathcal{J}^a h f(\tau) - \beta \mathcal{J}^a h f(\tau) \mathcal{J}^a h g(\tau)
\leq \left(\frac{\|f'\|_{p} \|g'\|_{q}^{q}}{\Gamma^{2}(\beta)} \right)^{\frac{1}{2}} \left(\int_{0}^{\tau} \int_{0}^{\tau} \left(\frac{\tau^{a} - \vartheta^{a}}{\alpha} \right)^{\beta-1} \left(\frac{\tau^{a} - \vartheta^{a}}{\alpha} \right)^{\beta-1} \vartheta^{a-1} h(\vartheta) d\vartheta \\
\times |\vartheta - \theta|^{\frac{1}{p} + \frac{1}{q} + \frac{1}{r}} d\theta d\vartheta \right)^{\frac{1}{2}},
\]

which gives the required proof.
By considering \(\alpha = 1 \) in Theorem 3.1, we get the following well-known result of Dahmani et al. [12].

Corollary 1 Let \(f \) and \(g \) be two differentiable functions on \([0, \infty)\) and let \(h \) be positive and integrable function on \([0, \infty)\). If \(f' \in L^p([0, \infty]), \quad g' \in L^q([0, \infty]), \quad p,q,r > 1 \) with \(\frac{1}{p} + \frac{1}{r} = 1, \quad \frac{1}{q} + \frac{1}{r} = 1 \) and \(\frac{1}{q} + \frac{1}{p} = 1 \), then the following inequality holds for all \(\tau > 0, \beta > 0 \):

\[
2 | \frac{\partial}{\partial \tau} \beta \mathcal{A} h(\tau) \mathcal{A} f(\tau) - \frac{\partial}{\partial \tau} \beta \mathcal{A} h(\tau) \mathcal{A} g(\tau) | \\
\leq \left(\frac{\|f'\|_p}{\Gamma(\beta)} \int_0^\tau (\tau - \theta)^{\beta-1} h(\theta) |H(\theta)| \theta \, d\theta \right)^{\frac{1}{p}} \\
\times \left(\frac{\|g'\|_q^r}{\Gamma(\beta)} \int_0^\tau (\tau - \theta)^{\beta-1} h(\theta) |G(\theta)| \theta \, d\theta \right)^{\frac{1}{q}} \\
\leq \frac{\|f'\|_p \|g'\|_q^r}{\Gamma(\beta)} \left(\int_0^\tau (\tau - \theta)^{\beta-1} h(\theta) |H(\theta)| \theta \, d\theta \right)^{\frac{1}{p}} \\
\times \frac{\|g'\|_q^r}{\Gamma(\beta)} \left(\int_0^\tau (\tau - \theta)^{\beta-1} h(\theta) |G(\theta)| \theta \, d\theta \right)^{\frac{1}{q}}.
\]

Remark 2 Similarly, by considering \(\alpha = \beta = 1 \) in Theorem 3.1, we get the inequality (3).

Theorem 3.2 Let \(f \) and \(g \) be two differentiable functions on \([0, \infty)\) and let \(h \) and \(h' \) be positive and integrable functions on \([0, \infty)\). If \(f' \in L^p([0, \infty]), \quad g' \in L^q([0, \infty]), \quad p,q,r > 1 \) with \(\frac{1}{p} + \frac{1}{r} = 1, \quad \frac{1}{q} + \frac{1}{r} = 1 \) and \(\frac{1}{q} + \frac{1}{p} = 1 \), then the following inequality holds for all \(\tau > 0, \alpha, \beta > 0 \):

\[
| \frac{\partial}{\partial \tau} \beta \mathcal{A} h(\tau) \mathcal{A} f(\tau) + \frac{\partial}{\partial \tau} \beta \mathcal{A} h(\tau) \mathcal{A} g(\tau) | \\
\leq \frac{\|f'\|_p \|g'\|_q^r}{\Gamma(\beta)} \left(\int_0^\tau (\tau - \theta)^{\beta-1} h(\theta) |H(\theta)| \theta \, d\theta \right)^{\frac{1}{p}} \\
\times \frac{\|g'\|_q^r}{\Gamma(\beta)} \left(\int_0^\tau (\tau - \theta)^{\beta-1} h(\theta) |G(\theta)| \theta \, d\theta \right)^{\frac{1}{q}}.
\]

Proof Multiplying (10) by \(\frac{1}{\Gamma(\beta)} (\frac{\tau^\alpha - \theta^\alpha}{\alpha})^{\mu-1} \theta^\alpha h(\theta) \) and then integrating with respect to \(\theta \) over \((0, \tau)\), we have

\[
\frac{1}{\Gamma(\beta)} \int_0^\tau \int_0^\tau \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\mu-1} \theta^\alpha h(\theta) |H(\theta, \tau)| \, d\theta \, d\tau \\
= \frac{\beta}{\Gamma(\beta)} \mathcal{A} h(\tau) \mathcal{A} f(\tau) + \frac{\beta}{\Gamma(\beta)} \mathcal{A} h(\tau) \mathcal{A} g(\tau) \\
- \frac{\beta}{\Gamma(\beta)} \mathcal{A} h(\tau) \mathcal{A} f(\tau) - \frac{\beta}{\Gamma(\beta)} \mathcal{A} h(\tau) \mathcal{A} g(\tau).
\]

Using (15) in (22), we obtain

\[
| \frac{\partial}{\partial \tau} \beta \mathcal{A} h(\tau) \mathcal{A} f(\tau) + \frac{\partial}{\partial \tau} \beta \mathcal{A} h(\tau) \mathcal{A} g(\tau) | \\
\leq \frac{1}{\Gamma(\beta)} \int_0^\tau \int_0^\tau \left(\frac{\tau^\alpha - \theta^\alpha}{\alpha} \right)^{\mu-1} \theta^\alpha h(\theta) |H(\theta, \tau)| \, d\theta \, d\tau.
\]
Applying the similar procedure of Theorem 3.1, we obtain the desired proof. □

If we consider \(\alpha = 1 \) in Theorem 3.2, then we get the following well-known result [12].

Corollary 2 Let \(f \) and \(g \) be two differentiable functions on \([0, \infty)\) and let \(h \) and \(h' \) be positive and integrable functions on \([0, \infty)\). If \(f' \in L^p([0, \infty]) \), \(g' \in L^q([0, \infty]) \), \(p, q, r > 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1, \frac{1}{q} + \frac{1}{r} = 1 \) and \(\frac{1}{q} + \frac{1}{r} = 1 \), then the following inequality holds for all \(\tau > 0, \beta > 0 \):

\[
\left| \int_0^\tau f(\theta)h'\theta(\theta)d\theta \right|^{\frac{1}{p}} \left| \int_0^\tau g(\theta)h(\theta)d\theta \right|^{\frac{1}{q}} \leq \left(\int_0^\tau |f'\theta(\theta)|^p d\theta \right)^{\frac{1}{p}} \left(\int_0^\tau |g'\theta(\theta)|^q d\theta \right)^{\frac{1}{q}}.
\]

Remark 3 If we let \(\beta = \alpha = 1 \) in Theorem 3.2, then we get the inequality (4).

4 Concluding remarks

In this paper, we established certain fractional conformable inequalities related to the weighted and the extended Chebyshev functionals. The inequalities obtained in the present paper are more general than the existing classical inequalities cited therein. This work will reduce to the inequalities some Riemann–Liouville integral inequalities by taking \(\alpha = 1 \), which have been presented earlier by [12]. Also, one can get the classical results by taking \(\alpha = \beta = 1 \).

Acknowledgements

Asifa Tassaddiq would like to thank Deanship of Scientific Research at Majmaah University, for supporting this work under Project Number (R-1441-74). The authors are thankful to the anonymous reviewers and editors for their useful suggestions and comments, significantly improving the quality of this manuscript.

Funding

None.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally. All authors read and approved the final manuscript.

Author details

1Department of Basic Sciences and Humanities, College of Computer and Information Sciences, Majmaah University, Al Majmaah, Saudi Arabia.
2Department of Mathematics, Shaheed Benazir Bhutto University, Pakistan.
3Department of Mathematics, College of Arts and Sciences, Prince Sattam Bin Abdulaziz University, Wadi Aldawasir, Saudi Arabia.
4Department of Mathematics, University of Sargodha, Sargodha, Pakistan.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
23. Jarad, F., Urlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017
24. Kashuri, A., Liko, R.: Ostrowski type conformable fractional integrals for generalized (g1
19. Elezovic, N., Marangunic, L., Pecaric, G.: Some improvement of Gr"{u}sst type inequality. J. Math. Inequal. 22. Huang, C.J., Rahman, G., Nisar, K.S., Ghaffar, A., Qi, F.: Some inequalities of Hermite–Hadamard type for k
21. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011)
20. Gorenflo, R., Mainardi, F.: Fractional calculus, integral and differential equation of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Wien (1997)
17. Dragomir, S.S.: Some integral inequalities of Gr"{u}sst type. Indian J. Pure Appl. Math. 38(1), 37–49 (2007)
16. Dragomir, S.S.: A generalization of Gruss's inequality in inner product spaces and applications. J. Math. Anal. Appl. 237(1), 74–82 (1999)
15. Dahmani, Z., Tabharit, L., Taf, S.: New inequalities via Riemann–Liouville fractional integration. J. Adv. Res. Pure Math. 10(3), 31–38 (2018)
14. Dahmani, Z., Tabharit, L.: On weighted Gr"{u}sst type inequalities via fractional integration. J. Adv. Res. Pure Math. 2(4), 30–36 (2011)
13. Dahmani, Z., Mechouar, O., Brahami, S.: Certain inequalities related to the Chebyshev's functionals Involving Riemann–Liouville operator. Turk. J. Math. Anal. Appl. 3(4), 38–44 (2011)
12. Dahmani, Z., Khameli, A., Fareha, K.: Some RL-integral inequalities for the weighted and the extended Chebyshev functions. Konuralp J. Math. 5(1), 43–48 (2017)
11. Dahmani, Z.: About some integral inequalities using Riemann–Liouville integrals. Gen. Math. 20(4), 63–69 (2012)
10. Dahmani, Z.: New inequalities in fractional integrals. Int. J. Nonlinear Sci. 9(4), 493–497 (2010)
9. Dahmani, Z.: New inequalities for a class of differentiable functions. Int. J. Nonlinear Anal. Appl. 2(2), 19–23 (2011)
8. Dahmani, Z.: The Riemann–Liouville operator to generate some new inequalities. Int. J. Nonlinear Sci. 12, 452–455 (2011)
7. Chebyshev, P.L.: Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites. Proc. Math. Soc. Charkov 2, 93–98 (1882)
6. Cerone, P., Dragomir, S.S.: A refinement of the Gruss inequality and applications. Tamkang J. Math. 38(1), 37–49 (2007)
5. Budak, H., Pehlivan, E., Sancak, M.Z.: On generalized weighted fractional inequalities. Turk. J. Inequal. 3(2), 34–52 (2019)
4. Belarbi, S., Dahlma, Z., Khameli, A., Fareha, K.: Some new fractional integral inequalities. J. Math. Inequal. 9(2), 19–23 (2015)
3. Anastassiou, G., El-Shahed, M., Erturk, V.S., Baleanu, D.: The conformable fractional operators. J. Comput. Appl. Math. 293, 366–376 (2016)
2. Akdemir, A.O., Ekinci, A., Set, E.: Conformable fractional integrals and related new integral inequalities. J. Nonlinear Convex Anal. 18(4), 661–674 (2017)
1. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015). https://doi.org/10.1016/j.cam.2014.10.016

References
42. Set, E., Choi, J., Çelik, B.: Certain Hermite–Hadamard type inequalities involving generalized fractional integral operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(4), 1539–1547 (2018).
43. Set, E., Mumcu, I., Demirbaş, S.: Conformable fractional integral inequalities of Chebyshev type. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113, 2253–2259 (2019). https://doi.org/10.1007/s13398-018-0614-9
44. Set, E., Noor, M.A., Awan, M.U., Gözpinar, A.: Generalized Hermite–Hadamard type inequalities involving fractional integral operators. J. Inequal. Appl. 2017, 169 (2017).
45. Tassaddiq, A.: A new representation of k-gamma functions. Mathematics 7, 133 (2019).