A Linearithmic Time Locally Optimal Algorithm for the Multiway Number Partition Optimization

Kaan Gokcesu, Hakan Gokcesu

Abstract—We study the problem of multiway number partition optimization, which has a myriad of applications in the decision, learning and optimization literature. Even though the original multiway partitioning problem is NP-hard and requires exponential time complexity algorithms; we formulate an easier optimization problem, where our goal is to find a solution that is locally optimal. We propose a linearithmic time complexity \(O(N \log N)\) algorithm that can produce such a locally optimal solution. Our method is robust against the input and requires neither positive nor integer inputs.

I. INTRODUCTION

A. Multiway Number Partition Problem

The multiway number partitioning (\(K\)-way number partitioning) [1]–[6] is the problem of partitioning a set of numbers \(X\) into \(K\) number of subsets \(\{X_k\}_{k=1}^{K}\) such that the individual sums \(\{S_k\}_{k=1}^{K}\) of the subsets \(\{X_k\}_{k=1}^{K}\) are as similar as possible. In this work, we deal with the optimization version of the multiway number partition problem. The exact optimization objective can be defined in a number of ways such as the maximization of the minimum set sum, the minimization of the maximum sum or the minimization of the difference between the maximum and the minimum set sums; all of which are equivalent when \(K = 2\), but they are all different when \(K \geq 3\) [7], [8].

A closely related problem is the number partition problem, where the partition is done over \(K = 2\) subsets [6]. Another closely related problem is the subset-sum problem, where the goal is to find a subset of a set, whose sum equals a target value \(T\) [9]. One more closely related problem is the bin packing problem, where the goal is to find a partition with the smallest possible number of subsets \(K\) given that the subset sum is bounded [10]. Unfortunately, all of these problems are NP-complete for their combinatorial versions and NP-hard for their optimization versions [11]–[13].

Despite the hardness, for the number partition problems, there exist efficient methods to solve them in many instances. There can be an exponential number of optimal solutions, which makes one possibly easier to identity. All in all, because of its limited structure, number partitioning a comparatively easier problem than other NP-hard problems [2], [14].

Even though, it is an NP-hard problem and requires exponential in \(N\) (number of samples) time complexity, there exists polynomial time approximation methods and pseudo-polynomial time (dependent on the input values) exact algorithms [12]. It is a well studied subject with an ongoing extensive research and all of these approaches can be promising given the appropriate application (even though pseudo-polynomial algorithms may have limited uses for high precision inputs) [6], [13], [15]–[21].

B. Applications of Multiway Number Partitioning

The multiway number partition problem has a lot of applications in learning, optimization and decision problems, e.g., scheduling, encryption, allocation, selection, dataset partitioning [22]–[70]. Given the optimization objective, some prominent examples are as follows.

1) Minimize the difference between max and min set sums: The first popular objective is the minimization of the difference between the largest set sum and the smallest set sum. This is a common objective in research about multiway number partitioning [2]. An example application is the problem of choosing fair teams [14]. Let each element \(x\) in the input set \(X\) correspond to a player’s ability and the power of a team be equal to the sum of the player abilities. The objective is to create \(K\) teams, where the strongest and the weakest teams are as close as possible to each other.

2) Minimize the maximum set sum: Another popular objective is the minimization of the largest set sum. This objective is commonly called the processor scheduling problem in some literature [12], [36], [39], [40]. The input set \(X\) of \(N\) positive elements correspond to the individual run-times of a set of \(N\) tasks. The aim here is to assign each task to one of the identical machines (such as parallel processor cores) such that we minimize the total time it takes to complete all the tasks, i.e., the last task should be completed as early as possible. Similarly, the berth allocation problem [47], [48] in the field of operations research deals with the allocation of berth space in container terminals for incoming vessels. Here, the operator needs to assign arriving vessels to berths for container loading (or unloading) such that they are taken care of as soon as possible. This is a multiway partitioning problem given the number of berths \(K\) and incoming vessels loading (or unloading) times \(X\) [49], [50].

3) Maximize the minimum set sum: One last popular objective is the maximization of the minimum set sum. This objective commonly arises in fair division [50], [57]. Moreover, it appears in sequencing maintenance actions for modular engines [52], [53]. Let us have \(K\) number of engines that we want to keep alive, where each engine needs a certain critical part for its operation. Let us have \(N\) number of that part with possibly different lifespan \(X\). This is equivalent to maximizing the minimum set sum when we want to keep the engine with the shortest lifetime as long as possible. Another example is the case of veto election, where voters veto a candidate (each veto has a different weight) [42]. If the candidate with the smallest total veto wins, a group’s best strategy will be to partition their veto weights among the opposing candidates and maximizing the minimum set sum.
C. Algorithms in Literature

Given an input set X of size N, the most straightforward algorithm for the multway partition problem is the brute force approach, which has $O(K^N)$ time complexity. The problem is NP-hard and its solution takes exponential time to find. There exist efficient sub-optimal approaches. Most notable ones are the greedy number partitioning method [15], the multfit algorithm [16] and the largest differencing method (i.e., Karmarkar-Karp set differencing algorithm) [71], which can run in $O(N \log N)$ time and $O(N)$ space [27], [72]. There also exists approximate methods, whose runtime complexities are polynomial in the number of elements N and exponential in the approximation parameter ϵ^{-1} [11], [10], [73]–[75]. There are dynamic programming approaches [12], [13], [76], [77], which can find an optimal solution in pseudo-polynomial time and space, where the complexities are polynomially dependent on the maximum of the input set X. Note that, in such approaches the inputs are assumed to be positive and integer. Thus, their performance is highly dependent on the precision of the inputs. The complete anytime algorithm in [6] can use sub-optimal algorithms as decision heuristics to generate optimal algorithms. It creates a K-ary tree from the sub-optimal algorithm selections (much like a modification of the brute force approach) to create anytime algorithms with linear memory usage. However, its worst-case time complexity is exponential. There are also hybrid algorithms [21], which combines the complete anytime algorithm and other methods from the subset sum problem and the bin packing problem to achieve an even better performance (albeit still exponential in the worst case). There are also algorithms which can produce locally optimal solutions for the set partition problem when $K = 2$ in polynomial time [63], [78]. Instead of a seemingly arbitrary sub-optimal heuristic, a locally optimal solver may prove to be more useful in many scenarios.

D. Contributions and Organization

Although the sub-optimal algorithms have polynomial runtime, their solutions can be significantly far from an optimal. While approximate methods’ runtime is polynomial in N, they are exponential in the approximation precision ϵ. The pseudo-polynomial algorithm is an exact solver but has limited use for high precision or non-integer inputs. Even though, the complete anytime algorithm is an exact solver with better runtime than brute force, its complexity is still exponential in the worst case. Improving the exponential complexity is futile because of the NP-hardness of the problem but fast algorithms are always desired especially with the emergence of big data. Although [63] design efficient algorithms for a locally optimal solution, they are only applicable when $K = 2$. To this end, we tackle the ‘weaker’ version of the multway number partition problem and extend the results of [63] to the generic case of $K \geq 2$. In Section II, we mathematically formulate the problem definition. In Section III, we provide an efficient algorithm that can find a locally optimal solution in $O(N \log N)$ time and $O(N)$ space. In Section IV, we extend our methods to any real inputs and finish with concluding remarks.
III. A Linearithmic Complexity Method

A. Iterative Algorithm

Before we propose the algorithm, we make some initial assumptions similar to [3].

Assumption 1. Let the set X be composed of only positive elements, i.e.,
\[x > 0, \quad \forall x \in X. \]

Assumption 2. Let the set $X = \{x_n\}_{n=1}^N$ be in ascending order, i.e.,
\[x_n \leq x_{n+1}, \quad \forall n \in \{1, 2, \ldots, N-1\}. \]

Thus, our input X is a positive ordered set.

Remark 1. If the set is not ordered, we can do a simple merge sort to sort the set in $O(N \log N)$ time and $O(N)$ space [27].

Remark 2. We point out that there is no requirement for the elements to be integers.

Given the input X set, the algorithm works as follows:
1) Put all elements into the first set, i.e., $X_1 = X$ and $X_k = \emptyset$ for $k \geq 2$. Thus, $S_1 = S$, where S is the sum of all elements in X and $S_k = 0$ for $k \geq 2$. Create the index set $K = \{1, \ldots, K\}$
2) If $|K| = 1$, STOP; else continue.
3) Find an index i of a set with the largest sum, i.e., $i = \arg\max_k S_k$.
4) Find an index j of a set with the smallest sum, i.e., $j = \arg\min_k S_k$.
5) Let X_i be the set of elements whose move decreases the absolute difference between the set sums S_i and S_j, i.e.,
\[X_i = \{ x \in X_i : |(S_i - x) - (S_j + x)| < |S_i - S_j| \} \]
(8)
6) IF $|X_i| = 0$ (i.e., empty), set $K \leftarrow K \setminus \{i\}$, return to Step 2; ELSE set $x = \max_{x \in X_i} x$.
7) Move x, from X_i to X_j and update the sets and their sums accordingly. Return to Step 2.

Remark 3. A few remarks about the algorithm:
- At the beginning of our algorithm, all elements of X are assigned to a single set X_1, i.e.,
\[X_1 = X, \quad X_k = \emptyset, \forall k \neq 1. \]
(9)
- At the beginning, we have the set sums
\[S_1 = \sum_{x \in X} x, \quad S_k = 0, \forall k \neq 1. \]
(10)
- At each iteration of the algorithm (from Step 2 to itself), we either discard a maximum sum set X_i, or move a single element from a maximum sum set X_i to a minimum sum set X_j.

We start our analysis of the algorithm with some important observations.

B. Preliminaries

We start with some preliminary results and show that the algorithm definitely terminates as in [3].

Proposition 1. After each element move between sets X_i and X_j, we have the following at Step 2:
\[\max(S_i^{\text{new}}, S_j^{\text{new}}) < \max(S_i^{\text{old}}, S_j^{\text{old}}), \]
\[\min(S_i^{\text{new}}, S_j^{\text{new}}) > \min(S_i^{\text{old}}, S_j^{\text{old}}), \]
where S_i^{old}, S_j^{old} and S_i^{new}, S_j^{new} are the set sums before and after the element move respectively.

Proof. Let the set sums be S_i^{old} and S_j^{old} before moving an element $x \in X_i$. We have
\[S_i^{\text{old}} = \frac{1}{2}(\mu^{\text{old}} + \delta^{\text{old}}), \quad S_j^{\text{old}} = \frac{1}{2}(\mu^{\text{old}} - \delta^{\text{old}}), \]
(11)
where $\mu^{\text{old}} = S_i^{\text{old}} + S_j^{\text{old}}$ and $\delta^{\text{old}} = S_i^{\text{old}} - S_j^{\text{old}}$. Let
\[S_i^{\text{new}} = \frac{1}{2}(\mu^{\text{new}} + \delta^{\text{new}}), \quad S_j^{\text{new}} = \frac{1}{2}(\mu^{\text{new}} - \delta^{\text{new}}), \]
(12)
for some μ^{new} and δ^{new}, similarly. Since
\[S_i^{\text{new}} = S_i^{\text{old}} - x, \quad S_j^{\text{new}} = S_j^{\text{old}} + x \]
(13)
for some $x \in X_i$, we have $\mu^{\text{new}} = \mu^{\text{old}}$. Moreover, we know from Step 2 that the absolute difference strictly decreases, hence, $|\delta^{\text{new}}| < |\delta^{\text{old}}|$. Thus, we have
\[\mu^{\text{old}} - \delta^{\text{old}} < \mu^{\text{new}} - |\delta^{\text{new}}| \leq \mu^{\text{new}} + |\delta^{\text{new}}| < \mu^{\text{old}} + \delta^{\text{old}}, \]
(14)
which concludes the proof.

Proposition 2. After each element move, we have
\[\max_k S_k^{\text{new}} \leq \max_k S_k^{\text{old}}, \]
\[\min_k S_k^{\text{new}} \geq \min_k S_k^{\text{old}}, \]
where $\{S_k^{\text{old}}\}_{k=1}^K$ and $\{S_k^{\text{new}}\}_{k=1}^K$ are the set sums before and after the move respectively.

Proof. When an element x is moved from set X_i to X_j; it does not change the set sums S_k, where $k \notin \{i, j\}$. From Proposition 1, we know that $\max(S_i, S_j)$ decreases and $\min(S_i, S_j)$ increases, which concludes the proof.

Proposition 3. The values of the maximum set sum and the minimum set sum strictly decreases and increases respectively after a finite number of element transfers in the algorithm.

Proof. From Proposition 1, we know that when a transfer happens between two set sums, their maximum and minimum strictly decreases and increases respectively. Since there is a finite number of sets, the minimum and the maximum set sums strictly decreases and increases respectively after a finite number of iterations.

Lemma 1. The algorithm definitely terminates.

Proof. From Proposition 3, we know that the maximum and the minimum set sums strictly decreases and increases respectively after a finite number of iterations. Since there is a finite number of elements N, there exists a finite number of possible maximum and minimum set sum values. Hence, after a finite number of iterations, the algorithm terminates.
C. Local Optimality

In this section, we prove the local optimality of our algorithm as in [63]. We start with a few useful results and build the local optimality claim from there.

Proposition 4. If moving the element \(x \in X_i \) from \(X_i \) to \(X_j \) cannot decrease the absolute distance, neither can any \(x \in X' : x \geq x^* \).

Proof. The proof comes from the fact that if moving \(x^* \) cannot decrease the absolute difference, it means

\[
x^* \geq |S_i - S_j|.
\]

For any \(x \geq x^* \), we have

\[
x \geq |S_i - S_j|.
\]

which concludes the proof. \(\square \)

Proposition 5. Let us have a set of sets \(\{X_k\}_{k=1}^K \) whose sums are nonincreasing, i.e., \(\tilde{S}_k \geq \tilde{S}_{k+1} \). If there is no element in \(X_1 \) whose move to \(X_k \) can decrease \(|\tilde{S}_i - \tilde{S}_j| \); there exists no element in \(X_1 \) whose move to \(X_k \) can decrease \(|\tilde{S}_i - \tilde{S}_k| \) for all \(k \).

Proof. Since \(\tilde{S}_1 \) is maximum, \(X_1 \) cannot be empty. Since there exist no element whose move can decrease \(|\tilde{S}_i - \tilde{S}_K| \), we have

\[
x \geq \tilde{S}_1 - \tilde{S}_K, \quad \forall x \in X_1.
\]

Since \(\tilde{S}_K \) is less than or equal to all \(\tilde{S}_k \), we have

\[
x \geq \tilde{S}_1 - \tilde{S}_k, \quad \forall x \in X_1; \forall k,
\]

which concludes the proof. \(\square \)

Lemma 2. At some point in the algorithm, let \(X_i \) and \(X_j \) be sets with maximum and minimum sum respectively, i.e., \(S_i \geq S_k \geq S_j, \forall k \). If there exists no \(x \in X_i \) whose move to \(X_j \) can decrease \(|S_i - S_j| \); there can never be an \(x \in X_i \) whose move to \(X_k \) can decrease \(|S_i - S_k| \) for all \(k \) for the duration of the algorithm.

Proof. From **Proposition 2** we know that the maximum and the minimum set sums are nonincreasing and nondecreasing respectively. Thus, if there exists no \(x \in X_i \) whose move to the set with minimum sum can decrease the absolute set difference, there can never be. Moreover, from **Proposition 5** if moving to the set with minimum sum does not decrease the absolute difference, we cannot decrease the absolute difference with any set. Henceforth, if a maximum sum set cannot get closer to a minimum sum set at any point, it can never get closer to any set since it will remain a maximum sum set from **Proposition 2** which concludes the proof. \(\square \)

Theorem 1. The algorithm terminates at a locally optimal K-way partitioning solution.

Proof. From **Lemma 2** we know that if a maximum sum set cannot get closer to a minimum sum set at any point, it satisfies local optimality. The algorithm continues by discarding such maximum sum sets until only a single set remains. Hence, at the end, all the sets will satisfy the local optimality criterion, which concludes the proof. \(\square \)

D. Complexity Analysis

Here, we prove the linearithmic time complexity of our method as in [63].

Proposition 6. While \(X_1 \) stays a maximum sum set, the elements leave \(X_1 \) in a nonincreasingly ordered fashion.

Proof. We know from **Proposition 2** that the maximum and the minimum set sums are nonincreasing and nondecreasing respectively. From Step 5 the maximum valued feasible element is moved. Hence, a larger element cannot be transferred after a smaller element, which concludes the proof. \(\square \)

Proposition 7. While \(X_1 \) stays a maximum sum set, the elements arrive at \(X_i \) for any \(i \) in a nonincreasing fashion.

Proof. The proof follows **Proposition 6** \(\square \)

Lemma 3. If at some point in the algorithm, \(X_1 \) stayed a maximum sum set but there is no element left that can decrease the absolute sum difference, we have a local optimal solution.

Proof. From **Proposition 2** we know that the maximum and the minimum set sums are nonincreasing and nondecreasing respectively. If \(X_1 \) cannot get closer to a minimum sum set at some point, it can never do so, hence, it is local optimal. Let us look at the next largest sum set \(X_i \) for some \(i \), whose minimum valued element is \(x_n \) for some \(n \). From **Proposition 7** we know that \(x_n \) is the last arrived element in \(X_i \). From the algorithm, we know that \(X_i \) can only receive \(x_n \), when it is a minimum sum set. After receiving \(x_n \), the set sum of \(X_i \) is at most \(x_n \) greater that the minimum set sum, which cannot decrease from **Proposition 2**. Hence, moving \(x_n \) can never make \(X_i \) closer to a minimum sum set, which means no element in \(X_i \) can ever make it closer to a minimum sum set from **Proposition 4**. Following **Proposition 5**, \(X_i \) cannot get closer to any set, which makes it locally optimal. Following a similar argument, all sets are locally optimal, which concludes the proof. \(\square \)

Lemma 4. If at some point in the algorithm, \(X_1 \) is no longer a maximum sum set, the sets with greater or equal sums are locally optimal.

Proof. The proof follows from a similar argument as the proof of **Lemma 3**. From **Proposition 7**, a maximum sum set is at a distance at most its minimum element from the minimum set sum. Hence, it is locally optimal. Similarly, all sets with greater or equal set sums are locally optimal. \(\square \)

Lemma 5. In our algorithm, only \(X_1 \)’s elements are moved.

Proof. The proof follows from **Lemma 4** which implies an element that is already moved from \(X_1 \) to another set cannot be moved a second time. \(\square \)

Theorem 2. The algorithm has \(O(N) \) time complexity.

Proof. The proof follows from **Lemma 5**. Since every element is moved at most once from \(X_1 \), there are at most \(O(N) \) moves. Since these moves are in nonincreasing order, we can check feasible moves in descending order. Each check and movement takes \(O(1) \) time. Moreover, updating the ordered
set sums takes at most $O(\log K)$ time. Hence, we have $O(N \log N)$ time complexity.

IV. DISCUSSIONS AND CONCLUSION

We observe that if \mathcal{X} contains 0 valued elements, it is inconsequential since they can be arbitrarily assigned to \mathcal{X}_k for any k at the end [63]. Secondly, if the sample set includes not only positive samples but also negative ones, we can deal with them with the following changes to the algorithm:

1) Put all positive elements into the first set and all negative elements into the last set, i.e., $\mathcal{X}_1 = \{x \in \mathcal{X} : x > 0\}$, $\mathcal{X}_K = \{x \in \mathcal{X} : x < 0\}$ and $\mathcal{X}_k = \emptyset$ for $2 \leq k \leq K - 1$.
 Thus, $S_1 = S_+$ and $S_K = S_-$, where S_+ and S_- are the sum of all positive and negative elements respectively; and $S_k = 0$ for $2 \leq k \leq K - 1$. Create the index set $\mathcal{K} = \{1, \ldots, K\}$.

2) If $|\mathcal{K}| \leq 1$, STOP; else continue.

3) Find an index i of a set with the largest sum, i.e., $i = \arg \max_k S_k$.

4) Find an index j of a set with the smallest sum, i.e., $j = \arg \min_k S_k$.

5) Let $\mathcal{X}_+ \text{ and } \mathcal{X}_-$ be the sets of positive and negative elements respectively whose move decreases the absolute difference between the sum sets S_i and S_j, i.e.,
 \begin{align}
 \mathcal{X}_+ &= \{x \in \mathcal{X}_1 : |(S_i - x) - (S_j + x)| < |S_i - S_j|\} \\
 \mathcal{X}_- &= \{x \in \mathcal{X}_1 : |(S_i + x) - (S_j - x)| < |S_i - S_j|\}
 \end{align}

6) If $|\mathcal{X}_+ \cup \mathcal{X}_-| = 0$, set $\mathcal{K} \leftarrow \mathcal{K} \setminus \{i, j\}$ return to Step 2.
 ELSE set $x = \arg \max_{x \in \mathcal{X}_+ \cup \mathcal{X}_-} |x|$.

7) Move x, between \mathcal{X}_i and \mathcal{X}_j, then update the sets and their sums accordingly. Return to Step 2.

Remark 4. Similar to [Lemma 7] this version of the algorithm also definitely terminates, since the values of the maximum and the minimum set sums strictly change in finite number of iterations.

Remark 5. This version of the algorithm also terminates at a locally optimal solution. Its proof follows similar arguments to the ones in Section III-C. Since locally optimal sets are jointly discarded, the final solution is locally optimal.

Remark 6. This version of the algorithm takes linearithmic $O(N \log N)$ time to terminate. Its proof follows similar arguments to the ones in Section III-D. Since every element can only be moved once, we have at most $O(N)$ moves.

In conclusion, we studied the optimization version of the K-way partitioning problem, which is a multiway generalization of the number partition problem [63]. While this set partition problem is NP-hard and requires exponential complexity to solve; we formulated a weaker version of this NP-hard problem, where the goal is to find a locally optimal solution. We proposed an algorithm that can find locally optimal solutions in linearithmic $O(N \log N)$ time and linear $O(N)$ space. Our algorithms require neither positive nor integer elements in the input set, hence, they are widely applicable.

REFERENCES

[1] R. L. Graham, “Bounds on multiprocessor timing anomalies,” SIAM journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429, 1969.
[2] S. Mertens, “Number partitioning,” Computational Complexity and Statistical Physics, p. 125, 2006.
[3] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third annual ACM symposium on Theory of computing, 1971, pp. 151–158.
[4] A. M. Turing, “On computable numbers, with an application to the entscheidungsproblem,” Proceedings of the London mathematical society, vol. 2, no. 1, pp. 230–265, 1937.
[5] L. A. Levin, “Universal sequential search problems,” Problemy peredachi informatsii, vol. 9, no. 3, pp. 115–116, 1973.
[6] R. E. Korf, “A complete anytime algorithm for number partitioning,” Artificial Intelligence, vol. 106, no. 2, pp. 181–203, 1998.
[7] ——, “Objective functions for multi-way number partitioning,” in Third Annual Symposium on Combinatorial Search, 2010.
[8] R. Walter, “Comparing the minimum completion times of two longest-first scheduling-heuristics,” Central European journal of operations research, vol. 21, no. 1, pp. 125–139, 2013.
[9] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education India, 2006.
[10] D. S. Hochbaum and D. B. Shmoys, “Using dual approximation algorithms for scheduling problems theoretical and practical results,” Journal of the ACM (JACM), vol. 34, no. 1, pp. 144–162, 1987.
[11] R. M. Karp, “Reducibility among combinatorial problems,” in Complexity of computer computations. Springer, 1972, pp. 85–103.
[12] M. R. Garey and D. S. Johnson, Computers and intractability. freman San Francisco, 1979, vol. 174.
[13] R. E. Korf, “Multi-way number partitioning,” in Twenty-First International Joint Conference on Artificial Intelligence, 2009.
[14] B. Hayes, “Computing science: The easiest hard problem,” American Scientist, vol. 90, no. 2, pp. 113–117, 2002.
[15] R. L. Graham, “Bounds for certain multiprocessor anomalies,” Bell system technical journal, vol. 45, no. 9, pp. 1563–1581, 1966.
[16] E. G. Coffman, Jr, M. R. Garey, and D. S. Johnson, “An application of bin-packing to multiprocessor scheduling,” SIAM Journal on Computing, vol. 7, no. 1, pp. 1–17, 1978.
[17] M. Dell’Amico and S. Martello, “Optimal scheduling of tasks on identical parallel processors,” ORSA Journal on Computing, vol. 7, no. 2, pp. 191–200, 1995.
[18] M. D. Moffitt, “Search strategies for optimal multi-way number partitioning,” in Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
[19] E. L. Schreiber and R. E. Korf, “Improved bin completion for optimal bin packing and number partitioning,” in Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
[20] E. L. Schreiber and R. Korf, “Cached iterative weakening for optimal multi-way number partitioning,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1, 2014.
[21] E. L. Schreiber, R. E. Korf, and M. D. Moffitt, “Optimal multi-way number partitioning,” Journal of the ACM (JACM), vol. 65, no. 4, pp. 1–61, 2018.
[22] M. M. Neyshabouri, K. Gokceus, H. Gokceus, H. Ozkan, and S. S. Kozat, “Asymptotically optimal contextual bandit algorithm using hierarchical architectures,” IEEE transactions on neural networks and learning systems, vol. 30, no. 3, pp. 923–937, 2018.
[23] J. R. Cano, F. Herrera, and M. Lozano, “On the combination of evolutionary algorithms and stratified strategies for training set selection in data mining,” Applied Soft Computing, vol. 6, no. 3, pp. 323–332, 2006.
[24] ——, “Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability,” Data & Knowledge Engineering, vol. 60, no. 1, pp. 90–108, 2007.
[25] K. Gokceus, M. Ergeneici, E. Ertan, and H. Gokceus, “An adaptive algorithm for online interference cancellation in emg sensors,” IEEE Sensors Journal, vol. 19, no. 1, pp. 214–223, 2018.
[26] S. García, A. Fernández, and F. Herrera, “Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems,” Applied Soft Computing, vol. 9, no. 4, pp. 1304–1314, 2009.
[27] H. Kellerser, U. Fersch, and D. Fisinger, Knapsack problems. Springer, 2014.
[28] A. Golbraikh and A. Tropsha, “Predictive qsar modeling based on diversity sampling of experimental datasets for the training and test set selection,” Molecular diversity, vol. 5, no. 4, pp. 231–243, 2000.
K. Gokcesu and H. Gokcesu, “Generalized huber loss for robust learning and efficient minimization for a robust statistics,” arXiv preprint arXiv:2108.12627, 2021.

V. Sarkar, “Partitioning and scheduling parallel programs for execution on multiprocessors,” Ph.D. dissertation, Stanford University, 1987.

G. B. Mathews, “On the partition of numbers,” Proceedings of the London Mathematical Society, vol. 1, no. 1, pp. 486–490, 1896.

K. Gokcesu and H. Gokcesu, “Recruiting experts: An efficient optimal mixture of learning systems in dynamic environments,” arXiv preprint arXiv:2009.09249, 2020.

M. Dell’Amico, M. Iori, S. Martello, and M. Monaci, “Heuristic and exact algorithms for the identical parallel machine scheduling problem,” INFORMS Journal on Computing, vol. 20, no. 3, pp. 333–344, 2008.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan, “Optimization and approximation in deterministic sequencing and scheduling: a survey,” in Annals of discrete mathematics. Elsevier, 1979, vol. 5, pp. 287–326.

K. Gokcesu and H. Gokcesu, “Optimal and efficient algorithms for general mixed losses against switching oracles,” arXiv preprint arXiv:2108.06411, 2021.

T. Walsh, “Where are the really hard manipulation problems? the phase transition in manipulating the veto rule,” in Twenty-First International Joint Conference on Artificial Intelligence, 2009.

R. Merkle and M. Hellman, “Hiding information and signatures in trapdoor knapsacks,” IEEE transactions on Information Theory, vol. 24, no. 5, pp. 525–530, 1978.

A. Shamir, “A polynomial time algorithm for breaking the basic merkle-hellman cryptosystem,” in 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982). IEEE, 1982, pp. 145–152.

R. L. Rivest, A. Shamir, and L. M. Adleman, “Cryptographic communication systems and method,” Sep. 20 1983, uS patent 4,405,829.

K. Gokcesu and H. Gokcesu, “Optimally efficient sequential calibration of binary classifiers to minimize classification error,” arXiv preprint arXiv:2108.08780, 2021.

K. Buhrkal, S. Zuglian, S. Ropke, J. Larsen, and R. Lushy, “Models for the discrete berth allocation problem: A computational comparison,” Transportation Research Part E: Logistics and Transportation Review, vol. 47, no. 4, pp. 461–473, 2011.

N. Umang, M. Bierlaire, and I. Vacca, “Exact and heuristic methods to solve the berth allocation problem in bulk ports,” Transportation Research Part E: Logistics and Transportation Review, vol. 54, pp. 14–31, 2013.

Ç. Iris, D. Pacino, S. Ropke, and A. Larsen, “Integrated berth allocation and quay crane assignment problem: Set partitioning models and computational results,” Transportation Research Part E: Logistics and Transportation Review, vol. 81, pp. 75–97, 2015.

E. Lalla-Ruiz, C. Expósito-Izquierdo, B. Melián-Batista, and J. M. Moreno-Vega, “A set-partitioning-based model for the berth allocation problem under time-dependent limitations,” European Journal of Operational Research, vol. 250, no. 3, pp. 1001–1012, 2016.

K. Gokcesu and H. Gokcesu, “Regret analysis of global optimization in univariate functions with lipschitz derivatives,” arXiv preprint arXiv:2108.10859, 2021.

D. K. Friesen and B. L. Deuermeyer, “Analysis of greedy solutions for a replacement part sequencing problem,” Mathematics of Operations Research, vol. 6, no. 1, pp. 74–87, 1981.

B. D. K. Friesen and M. A. Langston, “Scheduling to maximize the minimum processor finish time in a multiprocessor system,” SIAM Journal on Algebraic Discrete Methods, vol. 3, no. 2, pp. 190–196, 1982.

E. G. Coffman, M. R. Garey, and D. S. Johnson, “Approximation algorithms for bin-packing—an updated survey,” in Algorithm design for computer system design. Springer, 1984, pp. 49–106.

T. Dantzig, Number: The language of science. Penguin, 2007.

S. J. Brams, S. J. Brams, and A. D. Taylor, Fair Division: From cake-cutting to dispute resolution. Cambridge University Press, 1996.

A. Biswas and S. Barman, “Fair division under cardinality constraints,” in IJCAI, 2018, pp. 91–97.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization by simulated annealing: an experimental evaluation; part ii, graph coloring and number partitioning,” Operations research, vol. 39, no. 3, pp. 378–406, 1991.

D. Biggs, B. De Ville, and E. Suen, “A method of choosing multiway partitions for classification and decision trees,” Journal of applied statistics, vol. 18, no. 1, pp. 49–62, 1991.

W.-Y. Loh and Y.-S. Shih, “Split selection methods for classification trees,” Statistics sinica, pp. 815–840, 1997.

H. Kim and W.-Y. Loh, “Classification trees with unbiased multiway splits,” Journal of the American Statistical Association, vol. 96, no. 454, pp. 589–604, 2001.

N. Kim and R. Peng, “A memory allocation and assignment method using multiway partitioning,” in IEEE International SOC Conference, 2004. Proceedings. IEEE, 2004, pp. 143–144.

K. Gokcesu and H. Gokcesu, “Efficient locally optimal number set partitioning for scheduling, allocation and fair selection,” arXiv preprint arXiv:2109.04809, 2021.

A. Dasdan and C. Aykanat, “Two novel multiway circuit partitioning algorithms using relaxed locking,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 16, no. 2, pp. 169–178, 1997.

A. Kose, H. Gokcesu, N. Evirgen, K. Gokcesu, and M. Medard, “A novel method for scheduling of wireless ad hoc networks in polynomial time,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 468–480, 2020.

H. Liu and D. Wong, “Network-flow-based multiway partitioning with area and pin constraints,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 7, pp. 1366–1380, 2007.

K. Gokcesu and H. Gokcesu, “Low regret binary sampling method for efficient global optimization of univariate functions,” arXiv preprint arXiv:2201.07164, 2022.

K. S. Chatha and R. Venmuri, “Maggellan: Multiway hardware-software partitioning and scheduling for latency minimization of hierarchical control-dataflow task graphs,” in Proceedings of the ninth international symposium on Hardware/software codesign, 2001, pp. 42–47.

Y.-C. Jiang and J.-F. Wang, “Temporal partitioning data flow graphs for dynamically reconfigurable computing,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 12, pp. 1351–1361, 2007.

P. Karthikeyan, T. Sasaki, and S. B. Priya, “Key exchange techniques based on secured energy efficiency in mobile cloud computing,” Applied Mathematics & Information Sciences, vol. 13, no. 6, pp. 1039–1045, 2019.

N. Karmarkar and R. M. Karp, The differentiating method of set partitioning. Computer Science Division (EECS), University of California Berkeley, 1982.

R. E. Korf, “A hybrid recursive multi-way number partitioning algorithm,” in Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

S. K. Sahni, “Algorithms for scheduling independent tasks,” Journal of the ACM (JACM), vol. 23, no. 1, pp. 116–127, 1976.

G. J. Woeginger, “A polynomial-time approximation scheme for maximizing the minimum machine completion time,” Operations Research Letters, vol. 20, no. 4, pp. 149–154, 1997.

N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid, “Approximation schemes for scheduling on parallel machines,” Journal of Scheduling, vol. 1, no. 1, pp. 55–66, 1998.

S. Martello, Knapsack problems: algorithms and computer implementations. Wiley-Interscience series in discrete mathematics and optimisation, 1990.

R. E. Korf and E. L. Schreiber, “Optimally scheduling small numbers of identical parallel machines,” in Twenty-Third International Conference on Automated Planning and Scheduling, 2013.

K. Gokcesu and H. Gokcesu, “A quadratic time locally optimal algorithm for np-hard cardinality partition optimization,” arXiv preprint arXiv:2109.07882, 2021.

S. S. Skiena, The algorithm design manual. Springer, 1998, vol. 2.