Antioxidant defence barrier of great tit Parus major nestlings in response to trace elements

Beata Koim-Puchowska¹ · Joanna M. Drozdz-Afelt¹ · Robert Lamparski² · Aleksandra Menka¹ · Piotr Kaminski³,⁴

Received: 28 May 2019 / Accepted: 17 March 2020 / Published online: 2 April 2020

Abstract
Metals can have direct and indirect effects on the generation of reactive oxygen species in wild birds. The aim of this work has been to examine the effect of exposure to trace metals (copper Cu, iron Fe, cobalt Co, manganese Mn) on oxidative stress biomarkers such as lipoperoxidation TBARS and level of superoxide dismutase SOD, catalase CAT, and reduced glutathione GSH in the livers and kidneys of great tit Parus major nestlings (n = 165, 63 broods) living in polluted environments associated with soda plants and agricultural activities (Kujawy region) and from a reference site (Tuchola Forest), both in the north of Poland. As we predicted, the level of TBARS in both organs of chicks from polluted areas was higher than in those from reference site. This could be connected with Fe concentrations, particularly in areas adjacent to soda plants (livers Rs = 0.49, p < 0.002; kidneys Rs = 0.69, p < 0.001). We also showed differences in the level of antioxidants depending on the environment. CAT activity was higher in nestlings from Kujawy than in those from Tuchola. Meanwhile SOD activity (both organs) and GSH levels (kidneys) were lower in the polluted area compared to the reference site. Concentrations of Cu, Fe, Co, and Mn may play a role in regulating the antioxidant system components’ activity.

Keywords Anthropogenic pollution · Oxidative stress · Antioxidant defence barrier · Trace elements · Nestlings

Introduction
Chemical elements are natural and biochemically active elements of the environment (Kabata-Pendias 2010; Tchounwou et al. 2012). However, the anthropogenisation of the environment, such as by increased industrial activity and agriculture practices, has significantly increased the pools of elements in ecosystems, resulting in disorders such as increased mortality of chicks and adult birds, decrease in breeding success, genetic changes, paler plumage, lower carotenoids, depletion of available food, and also alterations to habitat, as well as changes to the community structure or the ecological relationships between species (Dauwe et al. 2005; Eeva et al. 2006; Geens et al. 2009; Berglund et al. 2010; Pamplona and Costantini 2011; Eeva et al. 2012; Rainio et al. 2013; Pacyna et al. 2018). Small passerines, the great tit included, are considered ideal candidates for biomonitoring of the point environment, as it is a widespread species with a rapid...
metabolic rate and a small area of feed search, as opposed to nocturnal birds or fish-eating birds (Deng et al. 2007; Berglund et al. 2011). Nestlings are a good source of information about the state of the environment, because during their stay in the nest they do not change their location, and food is provided to them from the local environment by their parents (Peakall and Burger 2003). The research material to determine the degree of contamination primarily consists of parenchymatous organs (liver, kidney), feathers, excrement, and blood (Isaksson et al. 2005; Deng et al. 2007; Isaksson et al.; 2009; Martinez-Haro et al. 2011; Sánchez-Virosta et al. 2015; Rubio et al. 2016; Turzańska-Pietras et al. 2018). The accumulation of metals in the organs of _P. major_ depends on several factors, i.e.: their concentration in food (which mainly consists of insects), water, and air; the period of exposure; their interaction with other elements; their form; but also the rate of the bird’s metabolism and detoxification (Deng et al. 2007; Koivula and Eeva 2010). Many works have investigated _P. major_ as a bioindicator of environmental pollution or measured the impact of heavy metals on different parameters determining the condition and reproductive success of birds (Dauwe et al. 2004; Dauwe et al. 2006). In recent years, a few papers have focused on oxidative stress as a secondary consequence of environmental pollution, including the effect of heavy metals (Koivula et al. 2011; Espín et al. 2014; Herrera-Dueñas et al. 2017; Stauffer et al. 2017; Sanches-Virosta et al. 2019, 2020).

It is confirmed that chemical elements are involved in generating reactive oxygen species (ROS) such as hydroxyl radical (OH•), superoxide radical (O2•−), or hydrogen peroxide (H2O2) (Koivula and Eeva 2010; Espín et al. 2014; de la Casa-Resino et al. 2015). Transition metals, e.g. Fe or Cu, may exist in more than one state of oxidation; hence, unpaired valence electrons allow them to participate in single-electron redox reactions. In biological systems, Fe(II) in particular catalyses the Fenton reaction, which creates hydroxyl radicals from hydrogen peroxide, while Fe (III) is regenerated via the Haber–Weiss reaction. A product of both of these reactions—hydroxyl radical (OH•)—is known for having very strong oxidative properties with such biomolecules as DNA, lipids, and proteins (Costantini 2008). The disturbance of the balance between the amount of generated ROS and the efficient activity of antioxidant mechanisms is associated with the state of oxidative stress, which results in such dysfunctions as disintegrations of the permeability of membranes, modifications in heme synthesis and the content of haemoglobin, haemolysis, damage to nuclear and mitochondrial DNA, mutagenesis, carcinogenesis, or intensification of apoptosis (Ercal et al. 2001; Isaksson et al. 2009; Halliwell and Gutteridge 2015; Isaksson 2015). The concentrations of thiobarbituric acid reacting substances (TBARS) are used as biomarkers of lipoperoxidation (Koivula and Eeva 2010; Espín et al. 2017; Isaksson et al. 2017). This complicated process disturbs the functioning of the membrane: it decreases fluidity and increases leakage,
component of antioxidant enzymes. We examined the level of these elements in tissues of chicks which grow and feed in various types of pollution. These studies are also planned in order to understand the relationships between different antioxidant biomarkers and transition metals in the livers and kidneys of great tit chicks in polluted areas, as compared with control groups from Tuchola Forest.

Study area

Studies were conducted in the area of the Inowroclaw Ecological Hazards Region (Kujawy, Central Poland) and Tuchola Forest (Northern Poland). Two types of environment were studied in the county of Inowroclaw in the Kujawy region (52°–53° N, 18°–20° E): (1) a strong degree of human impact, associated with sodium-industry activities and waste dumps (a), and (2) agriculture areas (b). The study area was chosen in an unpoluted area of the Tuchola natural forest complex (53°40′–54° N, 17°30′–18°35′ E), characterised by a lack of highly developed industry, large afforestation, which is 48.8% (average for the province: 22.73%), and numerous lakes and rivers. We sampled nestlings at two sites in each environment. Sites 1 (52°46′47.2″N 18°06′24.7″E) and 2 (52°46′01.7″N 18°06′29.0″E) (environments A) located in the immediate vicinity of the soda plant in Janikowo and at the landfill site of the soda plant near Giebna. Meanwhile, sites 3 and 4 (environment B) were located about 5 km from the soda plants. Nesting buildings were located near fields in the vicinity of the Notecki Canal (52°46′36.9″N 18°08′34.0″E) and Pakoskie Lake (52°47′35.1″N 18°05′08.5″E). The reference sites were located about 100 km north of the polluted areas (53°32′04.1″N 18°08′30.4″E and 53°32′10.6″N 18°07′48.6″E).

The study area in Kujawy was located on the border of two macrostructures of mesozoic tectonics: the Kujawski Wall and the Mogileńska Valley. The Kuyavian-Pomeranian underground mountain range is located under a blanket of quaternary and tertiary Cenozoic. This elevation is accompanied by Zechstein rock salt sediments, which in the Kujawy section of the embankment have been lifted in the form of salt columns. The salt pans are accompanied by salty sources and salty underground waters under hydrostatic pressure called “salines” (Piernik 2003). The salt deposits in this area provided the foundations for the development of the soda industry in Inowroclaw and Janikowo. The products of these factories are soda ash, baking soda, evaporated salt, calcium chloride, salt chloride mixtures, and salt itself. The production of soda ash by the Solvay method produces, besides the intended products, huge amounts of waste—lime sludge with a lot of sodium and chlorine. Thus, the high saturation of soil sorbing complex by Na ions (Piernik 2012; Kamiński et al. 2016) and the salinisation of surface water and groundwater (Hulisz et al. 2017) in the Kujawy region are linked to the natural salts deposit, but especially to industrial wastes, e.g. calcium and iron compounds, silicates, aluminosilicates, and solutions of KCl, NaCl, NH₄OH, Na₂SO₄, NaOH, MgCl₂, and CaCl₂ known as “sludge liquor”, stored in leaking earth tanks (settling ponds), which infiltrate into the substrate (Piernik 2003; Kamiński et al. 2016). Furthermore, environmental problems also include failures in pipelines draining the wastewater from the factory to the Noteć River and the Vistula River and delivering brine for soda production from the mine in Góra to the factory in Maťwi (Piernik 2003; Hulisz et al. 2017). Concentrations of Ca, Na, and Cl ions in surface waters, especially those contaminated with soda wastes and industrial brine, were many times higher than the highest permissible values of pollution for wastewater being conducted into waters and soil (Cl 1 g/dm, Na" 0.08 g/dm) (Hulisz et al. 2017). Our previous studies confirm a high level of salinity (Ec > 14 mS), alkalisations (pH > 8) of soil, and destabilisation of Ca, Mg, Na, and Fe management connected with sodium factories and agriculture practices (Kamiński et al. 2012; Kamiński et al. 2016). It has been shown that saline soils are high in sorbent soils and contain large amounts of iron minerals, especially in hydrated amorphous form. They accumulate significant amounts of certain elements, making them inaccessible to plants. Any change in the chemical balance caused by, for example, rainfall acid precipitation or a decrease in the level of organic matter may cause the mobility and phytoavailability of the associated elements in the soil sorbing complex (Kabata-Pendia 2010). In particular, high concentrations (ppm) of chemical elements Na (821.81 ± 823.663; 451.04 ± 412.291), Ca (83,778.73 ± 104,267.017; 40,552 ± 38,357,177), and Fe (5724.14 ± 1541.227; 9312.59 ± 2272.352) in soil from areas located in the vicinity of sodium factories (Kamiński et al. 2012) create the risk of incorporating toxic elements into the trophic chain. The research of Kamiński et al. (2012) indicated the accumulation of Na, Ca, or Fe at the levels > 2000 mg/kg, > 13,000 mg/kg, and > 500 mg/kg, respectively, in plant organs from these contaminated areas. In addition, it has been concluded that Na, Ca, Cu, and also Fe may both stimulate lipid peroxidation and modulate activity of antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APOX) of glycophytes in the Kujawy region. Subsequent ecosystem research in this area proved bioaccumulation of trace elements, in particular Zn, Cu, Mn, Co, and Cd, within the trophic chain: water–soil–plants–invertebrates (including insects, which constitute the main food for the chicks of P. major) (Kamiński et al. 2016). Also, studies conducted on human blood collected from people living permanently in this area indicate an increased level of toxic metals: Pb (0.0236 mg/L) and Cd (0.0008 mg/L) in comparison with the inhabitants of Tuchola (Pb, 0.014 mg/L; Cd, 0.0005 mg/L), although the concentration of Fe was lower in Kujawy (0.442 g/L) than in Tuchola (0.496 g/L). In addition, a
relationship has been demonstrated between Cd, Pb concentration, and the activity of the oxidative stress parameters studied in the blood serum, including the activity of superoxide dismutase (SOD) (Wieloch et al. 2012).

Additionally, the area located in the vicinity of Inowrocław is dominated by very fertile black lands (II and III bonitation class) (Wieloch et al. 2012). Simultaneously, fertilisers used in crop cultivation and technological progress in agriculture are also a source of heavy metals (Kabata-Pendias 2010; Nagajyoti et al. 2010). The content of organic matter ranges from 8.76 to 16.40% (Kamiński et al. 2016), which stimulated the development of agriculture in this area.

To sum up, despite the new environmental technologies being introduced in both factories and agricultural activities, the past effects of the sodium salt industry are still visible in the alkalisation and salinity of soil, and ground and surface waters, but also in the bioaccumulation of chemical elements in the trophic chain (Kamiński et al. 2016; Hulisz et al. 2017).

Material and methods

Investigations were carried out in two breeding seasons (2011 and 2012) from mid-April to July. In total, 145 nesting boxes were hung to implement the project (50 around the Janikosoda Plant in Janikowo and Giebnia; 50 around Pakoś and the Notecki Canal; 45 in Tuchola Forest). We monitored the sites regularly, every other day, in order to obtain research material. The livers and kidneys were collected from nestlings (n = 165) in different growth phases (1st age group, 1–7 days; 2nd age group, 8–14 days; 3rd age group, 15–21 days) (Table 1). Such a partition was performed because nestlings show three successive stages of development during their stay in the nest: (1) intensive development of internal organs, (2) a sharp increase in biomass, and (3) a fall in growth rate, and even a fall in body mass that conforms with the regularities for this group of birds (Kaufman 1962; Keskpaik and Davydov 1967). Chicks were randomly collected from nest boxes inhabited by *Parus major*. The number of chicks collected from a single brood did not exceed three, according to the permit obtained from the General Nature Conservation Dept. (DONOOŚogiz-4200/III-13/44/08/aj). Nestlings were euthanised with isoflurane. The livers and kidneys were immediately dissected and placed on dry ice in Dewar flasks and transported to a laboratory. The collected material was stored at 80 °C until further analyses. In total, we collected data (livers and kidneys; n = 165) from 63 breeding nests (SM-18, AE-20, BT-25). Due to the small amount of material obtained from the youngest chicks, each research sample in this age group was a combination of organs of three chicks from the same brood. Thus our research considered 123 samples (Table 1).

Concentration of chemical elements

The analysis of the concentration of chemical elements was preceded by homogenisation and mineralisation of samples. The Liver and kidney wet weight did not exceed 0.23 g and 0.1 g, respectively. Each piece of material (about 0.06 g of kidney and 0.1 g of liver) was dried at 50 °C to a constant mass and then homogenised in a porcelain mortar. The remaining material was used for biochemical analyses. The dried, powdered samples were placed in Eppendorf tubes and sent to an accredited laboratory—SGS Polska Sp. z o.o. Environment, Health and Safety in Pszczyna—for metal analysis. Mineralisation was done using the Berghof speedwave MWS-2 system (microwave pressure digestion unit with built-in in situ temperature measurement) to receive a clear solution. The contents of elements, ppm of dry weight (DW), were then determined using inductively coupled plasma mass spectrometry (ICP-MS AGILENT 7500 CE). The results were given in mg/kg DW (Wieloch et al. 2012). All determinations were made in the presence of 45Sc, 89Y, and 159 Tb as an internal standard to maintain apparatus stability and minimise matrix effects. Standard reference materials were not available for examined elements, and in-house controls and calibration curves were applied (Godwin et al. 2016).

Superoxide dismutase activity SOD

The biological material was rinsed with phosphate buffered saline PBS. The tissues were homogenised in a solution of 20 mm of the buffer of HEPES (pH 7.2) containing 1 mm EGTA, 210 mm mannitol, and 70 mm of the sucrose per gram of tissue. The obtained homogenate was placed in test tubes and centrifuged at 1500 × g for 5 min at 4 °C. The supernatant was kept in the freezer at −80 °C. The activity of superoxide dismutase (SOD) was measured using a commercial assay kit (SOD-100, Sigma) in the presence of 45Sc, 89Y, and 159 Tb as an internal standard to maintain apparatus stability and minimise matrix effects. Standard reference materials were not available for examined elements, and in-house controls and calibration curves were applied (Godwin et al. 2016).
dismutase was measured by the standard in a homogenate of the tissue using SOD Assay Kit (Cayman Chemical Co., No. 706002). All of the procedures were adopted in accordance with the methodology specified by Liu (1996) and by Maier and Chan (2002). This method utilises a tetrazolium salt for detection of superoxide radicals generated by xanthine oxidase and hypoxanthine. One unit of SOD is defined as the amount of enzyme needed to exhibit 50% of dismutation of superoxide radical. The absorbance was read at 450 nm using a plate reader. The results were interpreted comparatively with the standard well-known concentration. The results were given in U/ml.

Catalase CAT activity and reduced glutathione GSH concentration

Biological material was rinsed with phosphate buffered saline PBS. Tissues were suspended in a solution of 50 mm of potassium phosphate (pH 7.0) containing 1 mm EDTA per gram of tissue. The obtained homogenate was placed in test tubes and centrifuged at 10,000 × g for 15 min at 4 °C. The supernatant intended for the assay of CAT activity was kept in the freezer at −80 °C. The equal volume of MPA (metaphosphoric acid, Sigma-Aldrich) was added to samples intended for the assay of reduced glutathione and then mixed. Successively, samples were subjected to incubation at room temperature for 5 min and then were centrifuged at 2000 × g for 2 min, and supernatant was collected and then kept at −20 °C. The samples before the assay of CAT activity were diluted with the buffer and joined in the kit (15 × kidney; 25 × liver).

The catalase activity was measured in serum using CAT Assay Kit (Cayman Chemical Co., No. 707002). All of the procedures were adopted in accordance with the methodology specified by Johansson and Borg (1988) and by Wheeler et al. (1990). This method uses colorimetric measurement of formaldehyde, produced in the reaction of CAT with methanol in the presence of H2O2; 4-amino-3-hydrazino-5-mercapto-1,2,4-triazol (chromogen). One unit of CAT is defined as the amount of enzyme that will cause the formation of 1.0 nmol of formaldehyde per minute at 25 °C. The absorbance was read at 540 nm using a plate reader. The results were interpreted comparatively with the standard well-known concentration and were showed in nmol/min/ml.

The GSH concentration was marked using a standardised kit (Cayman Chemical Co., No. 703002). In this method, the glutathione reductase is used for the quantification of GSH. The SH group of GSH reacts with DTNB (5,5′-dithio-bis-2-(nitrobenzoic acid) producing yellow TNB (5-thio-2-nitrobenzoic acid). The mixed disulfide, GSTNB (between GSH and TNB), that is concomitantly produced is reduced by glutathione reductase to recycle GSH and produce more TNB. The rate of TNB production is directly proportional to the GSH concentration in the sample. The measurement of the absorbance of TNB at 405 nm provides an accurate estimation of GSH in the sample. Before the realisation of the assay on every ml of sample, 50 μl of the TEAM (trietanoloamina, Sigma-Aldrich Just. T58300) was added for the purpose of increasing the pH of the samples and as a result creating a suitable environment for further reactions. Glutathione concentration in the investigated samples was presented in μm.

Lipid peroxidation

Lipid peroxidation was approximated using a thiobarbituric acid reactive substances assay according to Hermes-Lima et al. (1995). This method is based on the reaction of a degradation product of lipid peroxidation with thiobarbituric acid (TBA) at high temperature and acidity to generate a coloured adduct that is measured spectrofluorometrically.

Dry liver and kidney were homogenised in 1.1% phosphoric acid and reacted with TBA solution (7% phosphoric acid and 0.1 mm butylatedhydroxytoluene BHT). For blanks, tissues were homogenised as described above, with the exception of the use of 3 mm HCl instead of TBA. The samples were heated to 100 °C for 15 min before the addition of butanol. Furthermore, the samples were mixed for 3 min and centrifuged at 2000 × g for 15 min. Absorbance in the organic phase was measured at 532 and 600 nm. The samples were compared to the blanks. TBARS level was investigated by using millimole coefficient of absorbance (156 mmol/cm). TBARS level was expressed in nmol/ml.

Statistical analysis

Arithmetic means and descriptive statistics of SOD and CAT activity and the concentration of GSH and level of TBARS and Fe, Cu, Mn, and Co concentration in the livers and kidneys of great tit nestlings were calculated. The results of Pearson’s χ2 test (χ2 = 10.666, df = 28, p = 0.999) indicates the comparable number of samples in each groups obtained in view of existing variable grouping (environment and age of nestlings). Then we introduced the data of the three groups of nestlings from different environments (Table 1). The data did not show a normal distribution; hence, non-parametric tests were used (ANOVA Kruskal–Wallis test, followed by multiple Kruskal–Wallis test) to estimate the significance of differences in the level of oxidative stress parameters and the concentration of elements in the livers and kidneys of nestlings from different environments. The relation between SOD, CAT, GSH, and TBARS and concentrations of Fe, Cu, Mn, and Co in both organs and between organs from different environments were calculated by correlation coefficient (R), according to the rank of Spearman test (significance level α < 0.05) (Stanisz 2006).
Results

Liver

We found significantly higher degrees of lipid peroxidation (1.05 ± 0.28; 1.36 ± 0.24) and CAT activity (280.95 ± 58.02; 243.72 ± 68.77) in the livers of nestlings from the Kujawy region (sodium factory and agricultural areas, respectively) than in those from the control area (TBARS, 0.759 ± 0.266; CAT, 200.12 ± 53.36). CAT activity in the liver was the highest especially in the vicinity of sodium factories. By contrast, SOD had more than 30% lower activity in the livers of nestlings from sodium factories (0.090 ± 0.048) compared to those from agricultural areas (0.090 ± 0.048). GSH concentrations in liver tissues did not differ among young tits in the studied environments (Table 2).

Fe, Cu, Co, and Mn concentration also differed in the livers from nestlings and depended on the environment (p < 0.05). Higher Fe concentration was found in the livers from agricultural areas (2273.03 ± 1070.17) compared to other environments (1523.62 ± 677.44 (sodium manufactures); 1483.59 ± 783.37 (control)) (Table 2). However, as Table 2 shows, Cu and Mn concentration was higher in the livers of control birds as opposed to Co level (lower in sodium factory areas).

Significant correlations were found between the level of oxidative stress parameters and concentrations of selected transition metals (p < 0.05) (Table 3). Increased SOD activity seemed to depend mostly on Mn concentration in all examined environments. Furthermore, SOD activity showed positive relations with Co (sodium factories, agricultural areas) and Cu (agricultural areas) (Fig. 1). We stated both positive (sodium factories, agricultural areas) and negative (control) correlations between CAT activity and Mn level. CAT activity was also positive in relation to Cu and negative in relation to Co in birds from sodium manufacturing areas. We found positive correlations with Co (sodium factories, control), Fe (agricultural areas), and Mn and negative with Fe (sodium factories), Mn (agricultural areas), and Cu (agricultural areas, control) for GSH concentrations. Lipid peroxidation was positively correlated with Fe (sodium factories), and negatively with Co (agricultural areas, control) and Mn (control) (Table 3).

Kidneys

We determined higher Fe concentrations in the kidneys of young tits from agricultural areas (550.55 ± 155.96) than in those from control (466.9 ± 167.205). However, the level of Cu, Co, and Mn was higher in birds from the control environment as compared to both Kujawy areas studied (p < 0.032; p < 0.000). SOD activity and GSH concentrations were higher in birds from the control environment (p < 0.05). By contrast, CAT activity and TBARS concentration were higher (p < 0.000; p < 0.043) in agricultural areas than near sodium factories and controls (CAT) and sodium factories (TBARS) (Table 2).

We found especially significant relations (p ≤ 0.021) between oxidative stress parameters (positive: SOD; negative: CAT, GSH, TBARS) and Co and Cu concentrations in the kidneys from nestlings from the agriculture area (Table 3, Fig. 2). Similarly, Co concentration was also positively correlated with SOD, and negatively with CAT and TBARS in birds from near sodium factories. Increased GSH and TBARS concentrations in sodium factories and SOD and CAT activity in control seemed to depend on increased Cu level. We found positive relations between Fe level and GSH and TBARS concentrations near sodium factories and negative relations with SOD activity in birds from agricultural areas. Furthermore, CAT and SOD activity were stimulated and blocked, respectively, by Fe level in birds from control. For Mn level, only relations with CAT were stated (Rs = 0.34; p ≤ 0.038) in birds from near sodium factories, and with SOD (Rs = 0.51; p ≤ 0.001) and TBARS (Rs = −0.71; p ≤ 0.000) in the control group (Table 3).

Element concentrations and level of biochemical indicators of oxidative stress: relations between organs

Liver and kidneys TBARS were found to significantly positively correlate with one another (within all environments, particularly in sodium manufacturing areas [Rs = 0.64; p < 0.001]). CAT activity in the livers positively correlated with CAT activity in the kidneys for chicks from the agricultural area (Rs = 0.54; p < 0.001). Furthermore, GSH level showed a negative relation between the chicks’ organs from near sodium factories. We found positive correlations in concentrations of Mn (all environments), Fe (sodium manufacture, control), and Co (sodium manufactures, agricultural areas) between organs. Concentration of Cu was only negatively correlated between the livers and kidneys of chicks from near sodium factories (Table 4).

Discussion

Changes in concentration of chemical elements in the nestlings of great tits depend on their level in the food chain and individual predispositions. It is quite significant that invertebrates, which are one of the major sources of the birds’ food, are particularly exposed to heavy metals (Carpene et al. 2006; Roodbergen et al. 2008), and thus, birds are very sensitive to changes occurring in the structure of the environment (Savard et al. 2000). In this work, invertebrates (including
insects) from agrocenosis and areas located near sodium plants probably accumulate pesticides and heavy metals getting into the environment as a result of agricultural practices and the sodium industry (Kamiński et al. 2016). Interestingly, our results (this paper) indicated significantly higher concentrations of Fe in both studied organs of chicks colonising agricultural areas, while Cu and Mn were higher in the control environment, and Co was lowest in the environment adjacent to the sodium plants (Table 2).

It is also difficult to indicate the toxic level of trace elements for insectivorous birds living in natural conditions. However, concentrations of the examined metals (this paper) were similar, lower or even higher than other results of research on wild birds by Llacuna et al. (1995). This shows especially higher average Cu and Fe concentrations in the liver and kidneys of adult great tits in Spain in relation to the results obtained in this paper (Table 2). In turn, we can conclude that the great tit’s chicks (this paper)

Table 2

Environment	Livers	Kidneys						
	N	Mean	SD	p	N	Mean	SD	p
Fe [mg*kg⁻¹]								
A	38	1523.618	677.436	0.003⁴⁴	38	540.547	168.070	0.027⁵⁵
B	44	2273.033	1070.169	0.002⁶⁶	44	550.553	155.961	1.000⁷⁷
C	41	1483.592	783.369	1.000⁸⁸	41	466.900	167.205	0.165⁹⁹
Cu [mg*kg⁻¹]								
A	38	12.658	2.780	<0.001⁰⁰	38	11.780	18.244	0.001¹¹
B	44	15.064	6.572	0.050¹²¹²	44	9.289	4.307	0.302¹³¹³
C	41	19.039	8.686	0.213¹⁴¹⁴	41	13.096	10.525	0.691¹⁵¹⁵
Co [mg*kg⁻¹]								
A	38	0.015	0.012	<0.001¹⁶¹⁶	38	0.012	0.011	<0.001¹⁷¹⁷
B	44	0.027	0.016	0.024¹⁸¹⁸	44	0.020	0.027	0.001¹⁹¹⁹
C	41	0.024	0.014	0.625²⁰²⁰	41	0.031	0.022	0.202²¹²¹
Mn [mg*kg⁻¹]								
A	38	5.359	1.296	<0.001²²²²	38	9.676	2.100	<0.001²³²³
B	44	5.280	1.406	<0.001²⁴²⁴	44	10.202	2.774	<0.001²⁵²⁵
C	41	6.836	1.318	1.000²⁶²⁶	41	16.568	6.324	1.000²⁷²⁷
SOD [U/ml]								
A	38	0.060	0.027	0.002²⁸²⁸	38	0.125	0.049	0.003²⁹²⁹
B	44	0.090	0.048	0.068³⁰³⁰	43	0.120	0.054	0.931³¹³¹
C	41	0.088	0.051	0.773³²³²	41	0.165	0.078	0.096³³³³
CAT [nmol/min/ml]								
A	38	280.950	58.018	0.049³⁴³⁴	38	111.643	39.841	<0.001³⁵³⁵
B	44	243.724	68.767	<0.001³⁶³⁶	43	141.541	49.775	<0.001³⁷³⁷
C	41	200.123	53.356	0.003³⁸³⁸	41	65.207	33.550	0.057³⁹³⁹
GSH [μM]								
A	38	47.492	20.165	0.108⁴⁰⁴⁰	38	4.974	2.625	0.047⁴¹⁴¹
B	44	50.097	17.587	0.070⁴²⁴²	43	3.534	2.473	<0.001⁴³⁴³
C	41	57.516	22.991	1.000⁴⁴⁴⁴	40	6.790	3.268	0.070⁴⁵⁴⁵
TBARS [nmol/ml]								
A	38	1.048	0.282	<0.001⁴⁶⁴⁶	38	0.989	0.592	0.041⁴⁷⁴⁷
B	40	1.357	0.242	0.001⁴⁸⁴⁸	44	1.229	0.687	1.000⁴⁹⁴⁹
C	41	0.759	0.266	0.001⁵⁰⁵⁰	35	0.947	0.780	0.080⁵¹⁵¹

Mean values are presented as Fe, Cu, Co, and Mn concentration [mg*kg⁻¹], SOD [U/ml], CAT [nmol/min/ml], GSH [μM], TBARS [nmol/ml], SD standard deviation, p – p value for multiple comparisons between environments (upper index): A (areas located in the vicinity of soda plants), B (agriculture sites), C (unpolluted sites). The bold p indicates a significant difference (p > 0.05) between environment indicated in the upper index.
accumulated higher concentrations, especially of Fe and Mn in their tissues, than rook (Corvus frugilegus) nestlings (1–13 days old) from agricultural and rural areas close to the Siedlce region (south-central Poland) (Orłowski et al. 2012). On the other hand, the research of Deng et al. (2007) carried out on adult great tits in settling areas of Badachu Park (Beijing, China) confirmed approximate concentrations or lower Mn and Cu levels as compared to the results obtained in this paper (Table 2), especially Cu in the kidneys and Mn in the livers. In turn, Mn concentration in the kidneys and Cu in the livers were higher in Great Tits examined by Deng et al. (2007). Differences in the concentration of elements in individual bird organs may be related to: the ability of the bird species to bioaccumulate elements, the age of the individual, and the degree of environmental pollution. The analytical method used to assess metal concentration is also significant.

Many reports indicated the contribution of trace metals in redox reactions, and thus the formation of ROS (Koivula and Eeva 2010; Jomova et al. 2012; Rainio et al. 2013; Kharroubi et al. 2014). The consequence of these processes is the damage of all classes of molecular components of cells, i.e. lipids, DNA, and proteins (Kaminski et al. 2009; Rainio et al. 2015; Sanchez-Virosta et al. 2019). The result of the excess of ROS in cells (oxidative stress) is the modulation of the activity of antioxidant system to restore homeostasis (Halliwell and Gutteridge 2015; Sanchez-Virosta et al. 2019). According to our prediction, our data (this paper) suggest increased generation of ROS, and consequently higher level of damage of lipids in the organs of nestlings studied in the polluted Kuyaw region as opposed to those from Tuchola (Table 2). We found higher SOD activity as opposed to CAT in both examined organs of nestlings in the control environment relative to environments located in the Kuyaw.

Table 3 Spearman coefficient analysis of biomarker responses: superoxide dismutase (SOD) and catalase (CAT) activities and levels of total glutathione (GSH) and lipoperoxidation (TBARS) on cooper (Cu), cobalt (Co), iron (Fe), and manganese (Mn) concentrations in the livers and kidneys of great tit nestlings from different sites

Livers	Relations	N	R_s	p
Sodium manufactures (A)	SOD and Mn	38	0.40	0.013
	CAT and Mn	38	0.42	0.009
	CAT and Co	38	−0.38	0.020
	CAT and Cu	38	0.40	0.014
	GSH and Fe	38	−0.34	0.039
	GSH and Mn	38	0.68	< 0.001
	MDA and Mn	38	0.40	0.014
	MDA and Mn	38	0.49	0.002
	MDA and Co	38	−0.32	0.049
Agricultures (B)	SOD and Mn	44	0.37	0.013
	SOD and Co	44	0.46	0.002
	SOD and Cu	44	0.52	0.000
	CAT and Mn	44	0.44	0.003
	GSH and Mn	44	−0.43	0.004
	GSH and Fe	44	0.37	0.015
	GSH and Cu	44	−0.50	0.001
control environment (C)	SOD and Mn	41	0.34	0.031
	SOD and Co	41	0.35	0.025
	CAT and Mn	41	−0.50	0.001
	GSH and Co	41	0.39	0.011
	GSH and Cu	41	−0.33	0.033
	MDA and Mn	41	−0.44	0.004
	MDA and Co	41	−0.57	< 0.001

Kidneys	Relations	N	R_s	p
Sodium manufactures (A)	SOD and Co	38	0.38	0.019
	CAT and Mn	38	0.34	0.038
	GSH and Fe	38	0.32	0.050
	GSH and Mn	38	−0.60	< 0.001
	MDA and Mn	38	−0.83	< 0.001
	MDA and Mn	38	−0.43	0.007
Agricultures (B)	SOD and Mn	43	−0.35	0.021
	SOD and Co	43	0.49	0.001
	SOD and Cu	43	0.48	0.001
	CAT and Mn	43	−0.58	< 0.001
	GSH and Mn	43	−0.68	< 0.001
	GSH and Co	43	−0.72	< 0.001
	MDA and Mn	43	−0.67	< 0.001
	MDA and Mn	44	−0.66	< 0.001
control environment (C)	SOD and Mn	41	0.51	0.001
	SOD and Co	41	0.49	0.001
	CAT and Mn	41	−0.39	0.011
	SOD and Mn	41	0.43	0.005
	GSH and Mn	43	0.43	0.005
	MDA and Mn	41	−0.79	< 0.001

r—Spearman’s correlation coefficient; p—probability level
region (Table 2). Such results may suggest the possibility of discriminating SOD function in polluted environments in consequence of increased level of ROS or activation of CAT, which decomposes H$_2$O$_2$ very efficiently, and thus, SOD is not activated. Similarly, Berglund et al. (2007) also showed a coordinated relationship between these two enzymes in the livers of pied flycatcher (*Ficedula hypoleuca*) from a polluted environment close to sulphide or smelting industry in northern Sweden. They confirm that the efficient operation of CAT (H$_2$O$_2$ decomposition) enabled the SOD to function at an appropriate level (Berglund et al. 2007). Secondly, as with SOD activity, the level of GSH in the kidneys of great tit nestlings was also higher in the control area as compared to the anthropically changed Kujawy region (this paper). This argument, as well as the high level of TBARS in organs of chicks colonising the Kujawy region, might tend confirm the impairment of the defence mechanisms of the chicks from polluted areas. However, differences in GSH concentrations in the livers of birds from various environment were not found (Table 2), just as in the work of Isaksson et al. (2005), Berglund et al. (2007), Isaksson et al. (2009), Koivula et al. (2011), and Rainio et al. (2013). Furthermore, Isaksson et al.
Table 4 Spearman coefficient analysis of superoxide dismutase (SOD) and catalase (CAT) activities and levels of total glutathione (GSH) and lipoperoxidation (TBARS), cooper (Cu), cobalt (Co), iron (Fe), and man-ganese (Mn) concentrations between liver and kidneys of great tit nestlings

Livers and kidneys Relations	N	Rs	p
sodium manufactures (A)			
SOD and SOD	38	0.026	0.877
CAT and CAT	38	0.161	0.335
GSH and GSH	38	-0.420	0.009
MDA and MDA	38	0.639	<0.001
Mn and Mn	38	0.601	<0.001
Fe and Fe	38	0.502	0.001
Co and Co	38	0.762	<0.001
Cu and Cu	38	-0.367	0.203
agricultures (B)			
SOD and SOD	43	0.222	0.153
CAT and CAT	43	0.538	<0.001
GSH and GSH	43	-0.123	0.433
MDA and MDA	40	0.380	0.016
Mn and Mn	44	0.561	<0.001
Fe and Fe	44	0.274	0.081
Co and Co	44	0.434	0.003
Cu and Cu	44	0.015	0.931
control environment (C)			
SOD and SOD	41	0.251	0.109
CAT and CAT	41	0.248	0.138
GSH and GSH	40	0.760	<0.001
MDA and MDA	35	0.449	0.008
Mn and Mn	31	0.488	0.002
Fe and Fe	41	0.541	<0.001
Co and Co	41	0.211	0.193
Cu and Cu	41	0.203	0.201

r, Spearman’s correlation coefficient; p probability level
The bold relations are statistically significant (p < 0.05)
The heavily anthropically affected environment forces the development of appropriate reactions to preserve a balanced mineral economy and activate an antioxidant system that protects against changes resulting from oxidative stress, and which may occur in every cell. These mechanisms determine survival, and on the other hand, affect the condition of the chicks and the reproduction of these birds (Costantini et al. 2015; Isaksson 2015).

Conclusions

Great tit nestlings do not have optimal conditions for growth and development in polluted environments. We found a high degree of lipid peroxidation, as well as lower activity of SOD in both the livers and kidneys, and a lower level of GSH in kidneys of great tits located in Kujawy relative to those from a reference environment. This may suggest dysfunction of the antioxidant system and increased exposure of chicks to the effects of oxidative stress in the Kujawy region. On the other hand, CAT activity was higher in the livers and kidneys of chicks from Kujawy, and the level of GSH did not differ between environments. Therefore, we need more information to confirm our prediction about the functioning of the antioxidant system. Fe concentrations could particularly influence peroxidation of lipids in polluted areas. The level of oxidative stress biomarkers (SOD, CAT, GSH) can be determined by the level of transition elements such as Fe, Cu, Mn, or Co, but probably indirectly by other factors (interaction with toxic...
metals, pesticides, fertilisers). Mutual regulation of the antioxid-

ant system in connection with the action of heavy metals still
remains an unexplored subject requiring more detailed
research.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Berghlund ÅM, Sturve J, Forlin L, Nyholm NEI (2007) Oxidative stress in
pied flycatcher (Ficedula hypoleuca) nestlings from metal contami-
nated environments in northern Sweden. Environ Res 105(3):330–
339. https://doi.org/10.1016/j.envres.2007.06.002

Berghlund S, Westrup B, Domellöf M (2010) Iron supplements reduce the
risk of iron deficiency anemia in marginally low birth weight infants.
Pediatrics 126(4):874–883. https://doi.org/10.1542/peds.2009-3624

Berghlund ÅMM, Koivula MJ, Eeva T (2011) Species- and age-related
variation in metal exposure and accumulation of two passerine bird
species. Environ Pollut 159:2368–2374. https://doi.org/10.1016/j.
envpol.2011.07.001

Carpene E, Andreani G, Monari M, Castellani G, Isani G (2006) Distribution of Cd, Zn, Cu and Fe among selected tissues of the
earthworm (Allolobophora caliginosa) and Eurasian woodcock (Scolopax rutila). Sci Total Environ 363(1–3):126–135. https://
doi.org/10.1016/j.scitotenv.2005.06.023

de la Casa-Resino I, Hernández-Moreno D, Castellano A, Soler
Rodriguez F, Pérez-López M (2015) Biomarkers of oxidative status
associated with metal pollution in the blood of the white stork
(Ciconia ciconia) in Spain. Toxicol Environ Chem 97(5):588–598.
https://doi.org/10.1080/02772248.2015.1051484

Costantini D (2008) Oxidative stress in ecology and evolution: lessons
from avian studies. Ecol Lett 11(11):1238–1251. https://doi.org/10.
1111/j.1461-0248.2008.01246.x

Costantini D, Lefèvre A, Coutrot AL, Moldovan-Doyen I, Hugonin JP,
Boutami S, Marquier F, Benisty H, Greffet JI (2015) Plasmonic
to the 10% of the total body weight of mice. Food Contami
60(1):8

Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2009) Does anthropogenic metal pollution increase oxidative stress in
oriental turtle dove (Streptopelia orientalis)? Biol Conserv 145(3):277–
285. https://doi.org/10.1016/j.biocon.2009.03.004

Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2005) Relationships
between metal concentrations in great tit nestlings and their environ-
ment and food. Environ Pollut 131(3):373–380. https://doi.org/10.
1016/j.envpol.2004.03.009

Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2005) Heavy-metal
concentrations in female laying great tits (Parus major). Environ
Pollut 140(1):71–78. https://doi.org/10.1016/j.envpol.2005.06.024

Deng H, Zhang Z, Chang C, Wang Y (2007) Trace metal concentration in
great tit (Parus major) and greenfinch (Carduelis sinica) at the
Western Mountains of Beijing, China. Environ Pollut 148(2):620–
626. https://doi.org/10.1016/j.envpol.2006.11.012

Eeva T, Ryömä M, Riihimäki J (2005) Pollution-related changes in diets of
two insectivorous passerines. Oecologia 145(4):629–639. https://
doi.org/10.1007/s00442-005-0145-x

Eeva T, Belskii E, Kuranov B (2006) Environmental pollution affects
complexity of life in wild bird populations. Mut Res-Gen Tox En
608(1):8–15. https://doi.org/10.1016/j.mrgentox.2006.04.021

Eeva T, Sillamäe S, Salminen JP, Nikklinen L, Tuominen A, Toivonen E,
Pihlaja K, Lehikoinen E (2008) Environmental pollution affects the
plumage color of great tit nestlings through carotenoid availability.
EcoHealth 5(3):328–337. https://doi.org/10.1007/s10393-008-
0184-y

Eeva T, Belskii E, Gilyazov AS, Kozlov MV (2012) Pollution impacts on
bird population density and species diversity at four non-ferrous smelter sites. Biol Conserv 150(1):33–41. https://doi.org/10.1016/j.
biocon.2012.03.004

Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxida-
tive stress part I: mechanisms involved in metal-induced oxidative
damage. Curr Top Med Chem 1(6):529–539. https://doi.org/10.
2174/156802601394831

Espín S, Martínez-López E, Jiménez P, María-Mojica P, García-
Fernández AJ (2014) Effects of heavy metals on biomarkers for
oxidative stress in Griffon Vulture (Gyps fulvus). Environ Res 129:
59–68. https://doi.org/10.1016/j.envres.2013.11.008

Espín S, Ruiz S, Sánchez-Virosta P, Lilley T, Eeva T (2017) Oxidative
status in relation to metal pollution and calcium availability in pied
flycatcher nestlings—a calcium manipulation experiment. Environ
Pollut 229:448–458. https://doi.org/10.1016/j.envpol.2017.05.094

Greens A, Dauwe T, Eens M (2009) Does anthropogenic metal pollution
affect carotenoid colouration, antioxidative capacity and physiological
group of great tits (Parus major)? Comp Biochem Physiol C
150(2):155–163. https://doi.org/10.1016/j.cbpc.2009.04.007

Glorieux C, Calderon PB (2018) Catalase down-regulation in cancer cells
exposed to arsenic trioxide is involved in their increased sensitivity
to a pro-oxidant treatment. Cancer Cell Int 18:24. https://doi.org/10.
1186/s12935-018-0524-0

Godwin CM, Smits JEG, Barclay RMR (2016) Metals and metalloids in
nestling tree swallows and their dietary items near oil sands mine
operations in Northern Alberta. Sci Total Environ 562:714–723.
https://doi.org/10.1016/j.scitotenv.2016.04.069

Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of
lead poisoning? Free Radical Bio Med 29(10):927–945. https://doi.
org/10.1006/fred.2000.1339

Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine.
Oxford University Press, USA

Hermes-Lima M, Willmore WG, Storey KB (1995) Quantification of
lipid peroxidation in tissue extracts based on Fe(III) xylene orange
complex formation. Free Radical Bio Med 19(3):271–280. https://
doi.org/10.1016/0891-5849(95)00020-X

Herrera-Dueñas A, Pineda-Pampileja J, Antonio-García MT, Aguirre JI
(2017) The influence of urban environments on oxidative stress
balance: a case study on the house sparrow in the Iberian
Peninsula. Front Ecol Evol. https://doi.org/10.3389/fevo.2017.
00106

Hulisz P, Krawiec A, Pindral S, Mendyk

Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-
superoxide dismutase (SOD), catalase (CAT) and glutathione perox-
idase (GPX): their fundamental role in the entire antioxidant defence
network. Alexandria J Med 54:287–293. https://doi.org/10.1016/j.
ajme.2017.09.001
Savard J-PL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landscape Urban Plan 48:131–142. https://doi.org/10.1016/S0169-2046(00)00037-2

Stanisz A (2006) The accessible course of the statistics with the application STATISTICA PL on examples from the medicine. StatSoft Polska, Kraków

Stauffer J, Panda B, Eeva T, Rainio M, Ilmonen P (2017) Telomere damage and redox status alterations in free-living passerines exposed to metals. Sci Total Environ 575:841–848. https://doi.org/10.1016/j.scitotenv.2016.09.131

Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. In: Luch a. (eds) molecular, clinical and environmental toxicology. Experientia Supplementum. Springer, Basel 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-46

Turzańska-Pietras K, Chachulska J, Polechońska L, Borowice M (2018) Does heavy metal exposure affect the condition of whitethroat (Sylvia communis) nestlings? Environ Sci Pollut R 25(8):7758–7766. https://doi.org/10.1007/s11356-017-1064-1

Wieloch M, Kamiński P, Ossowska A, Koim-Puchowska B, Stuczyński T, Kuligowska-Prusińska M, Dymek G, Mańkowska A, Odroważ-Sypniewska G (2012) Do toxic heavy metals affect antioxidant defense mechanisms in humans? Ecotox Environ Safe 78:195–205. https://doi.org/10.1016/j.ecoenv.2011.11.017

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.