On the transfer of some t–locally properties

Omar Ouzzaouit1, Ali Tamoussit2

1Department of Mathematics, The Higher School of Education and Training, Ibn Zohr University, Agadir, Morocco
2Department of Mathematics, The Regional Center for Education and Training Professions Souss Massa, Inezgane, Morocco

Abstract

In this paper, we study the transfer of some t–locally properties which are stable under localization to t–flat overrings of an integral domain D. We show that D, $D[X]$, $D\langle X \rangle$, $D\left[X \right]_{\mathcal{N}v}$ and $D\left(X \right)$ are simultaneously t–locally PvMDs (resp., t–locally Krull, t–locally G-GCD, t–locally Noetherian, t–locally Strong Mori). A complete characterization of when a pullback is a t–locally PvMD (resp., t–locally GCD, t–locally G-GCD, t–locally Noetherian, t–locally Strong Mori, t–locally Mori) is given. As corollaries, we investigate the transfer of some t–locally properties among domains of the form $D + XK[X]$, $D + XK[[X]]$ and amalgamated algebras. A particular attention is devoted to the transfer of almost Krull and locally PvMD properties to integral closure of a domain having the same property.

Mathematics Subject Classification (2020). 13A15, 18A30, 13C11, 13F05, 13F20

Keywords. t–Flat overring, (t–)Nagata ring, Serre conjecture ring, pullback construction

1. Introduction

It is convenient to begin by recalling some definitions and notation. Let D be an integral domain with quotient field K. For a nonzero fractional ideal I of D, we let $I^{-1} := \{ x \in K \mid xI \subseteq D \}$. On D the v–operation is defined by $I_v = (I^{-1})^{-1}$; the t–operation is defined by $I_t := \bigcup J_v$, where J ranges over the set of all nonzero finitely generated ideals contained in I; and the w–operation is defined by $I_w := \{ x \in K \mid xJ \subseteq I \}$ for some nonzero finitely generated ideal J of D with $J^{-1} = D$ for all nonzero fractional ideals I of D. A nonzero ideal I of D is divisorial (or v–ideal) (resp., t–ideal, w–ideal) if $I_v = I$ (resp., $I_t = I$, $I_w = I$). In general, for each nonzero fractional ideal I of D, $I \subseteq I_w \subseteq I_t \subseteq I_v$, and the inclusions may be strict (cf. [14, Proposition 1.2]). So, v–ideals are t–ideals and t–ideals are w–ideals. For $*$ = t or w, a $*$–ideal which is also prime is called a $*$–prime ideal, $*$–maximal ideal is an ideal that is maximal among the

*Corresponding Author.
Email addresses: ouzzaouitomar@gmail.com; o.ouzzaouit@uiz.ac.ma (O. Ouzzaouit),
tamoussit2009@gmail.com (A. Tamoussit)
Received: 08.07.2020; Accepted: 14.01.2021
proper $+$-ideals and let $\text{Max}(D)$ denote the set of all $+$-maximal ideals of D. Notice that $w\text{-Max}(D) = t\text{-Max}(D)$ and each height-one prime is t–prime.

An integral domain D is said to be a Prüfer v–multiplication domain (for short, PvMD) (resp., t–almost Dedekind domain) if D_m is a valuation domain (resp., a DVR) for each t–maximal ideal m of D. Trivially, Krull domains and almost Dedekind domains are t–almost Dedekind domains and t–almost Dedekind domains are PvMDs. An integral domain D is a Strong Mori domain (for short, SM domain) (resp., Mori domain) if it satisfies the ascending chain condition (acc) on integral w–ideals (resp., v–ideals) of D. Clearly, Noetherian domains and Krull domains are SM and SM domains are Mori.

An integral domain D is a GCD domain (resp., generalized GCD domain (for short, G-GCD domain)) if the intersection of any two (integral) principal ideals (resp., invertible ideals) of D is still principal (resp., invertible). Notice that valuation domains are GCD domains, GCD domains are G-GCD domains and G-GCD domains form a subclass of PvMDs.

In this paper, we begin by the study of the transfer of some t–locally properties which are stable under localization to a t–flat overring of a domain D. Then we give several applications, namely for t–almost Dedekind domains. Among other results, we show that every t–linked overring of a t–almost Dedekind domain which is not a field is also a t–almost Dedekind domain. In our second major result we prove that for any integral domain D, the domains $D, D[X], D\langle X \rangle, D(X)$ and $D[X], D\langle X \rangle$ are simultaneously t–locally PvMDs (resp., t–locally Krull, t–locally G-GCD, t–locally Noetherian, t–locally SM). By the way, we treat a relevant case when D is a t–locally G-GCD domains. Next we establish necessary and sufficient conditions for a pullback construction to be t–locally PvMD (resp., t–locally GCD, t–locally G-GCD). As additional applications we recover the cases of domains of the form $D + XK[X], D + XK[[X]]$ and amalgamated algebras. Then we extend [14, Theorem 3.11] to t–locally Noetherian (resp., t–locally SM) domains arising from pullback constructions. Finally, while dealing with the integral closure of an integral domain, we show that the converse of [15, Theorem 2.13] holds with less hypotheses. Moreover, we investigate the transfer of the locally PvMD property to the integral closure \overline{D} of an integrally closed domain D in an algebraic field extension of its quotient field, and we prove that D is a locally PvMD if and only if so is \overline{D}.

2. Main results

Let (P) denote a property of integral domains. An integral domain D is said to be locally (P) (resp., t–locally (P)) if D_m is (P) for each maximal ideal (resp., t–maximal ideal) m of D. Notice that in domains that are Prüfer or of dimension one, t–locally (P) coincides with locally (P).

By an overring of D we mean any domain R between D and the quotient field of D. Recall from [12] that an overring R of D is said to be t–flat over D if $R_m = D_{m \cap D}$, for each t–maximal ideal m of R, or equivalently $R_p = D_{p \cap D}$, for each t–prime ideal p of R (cf. [5, Theorem 2.6]).

Proposition 2.1. Let (P) be a property of integral domains which is stable under localization. Then, for any integral domain D, the following statements are equivalent:

1. D is t–locally (P);
2. D_p is (P) for each t–prime ideal p of D;
3. Each t–flat overring of D is also t–locally (P).

Proof. (1) \Rightarrow (2) Assume that D is t–locally (P) and let p be a t–prime ideal of D. Then there exists a t–maximal ideal m of D such that $p \subseteq m$. It follows from [2, Lemma 1] that $D_p = (D_m)_p$. Hence, D_p is a (P) domain as a localization of the (P) domain D_m.

(2) ⇒ (3) Let R be a (proper) t–flat overring of D and q be a t–maximal ideal of R. Then, by [5, Lemma 1.2], $p := q \cap D$ is a t–prime ideal of D, and hence $D_p = R_q$ is a (P) domain. Thus, R is t–locally (P).

(3) ⇒ (1) Straightforward.

Similarly, using [16, Theorem 2], it easy to prove an analogue of the previous result when dealing with flat overrings of a locally (P) domain.

Corollary 2.2. Let (P) denote one of the following properties: GCD, Krull, PrMD, G-GCD, Noetherian, SM or Mori. Then, D is a t–locally (P) domain if and only if every t–flat overring of D is also t–locally (P).

For t–almost Dedekind domains, we get a more interesting result. Recall that an overring R of D is t–linked over D if, for each nonzero finitely generated ideal I of D such that $I^{-1} = D$, we have $(IR)^{-1} = R$. Notice that every t–flat overring is t–linked.

Corollary 2.3. Let D be a t–almost Dedekind domain which is not a field. Then, each t–locally overring of D is also t–almost Dedekind.

Proof. Let R be a (proper) t–linked overring of D. Since any t–almost Dedekind domain is a PrMD, it follows from [12, Proposition 2.10] that R is t–flat over D and then, by Proposition 2.1, R is a t–almost Dedekind.

Corollary 2.4. Let D be a t–almost Dedekind domain. We have:

1. If $R = \cap_\alpha D_\alpha$, with each D_α is a t–linked overring of D, then R is a t–almost Dedekind domain.

2. If T is an overring of D and p is a t–prime ideal of D, then $T_{D,p}$ is a t–almost Dedekind domain.

3. The complete integral closure of D is a t–almost Dedekind domain.

Proof. Follows from Corollary 2.3 and [4, Propositions 2.2(b), 2.9, and Corollary 2.3].

Now, let X be an indeterminate over an integral domain D. For each polynomial $f \in D[X]$, we denote by $c(f)$ the content of f, that is, the ideal of D generated by the coefficients of f. The sets $U = \{f \in D[X] | f \text{ is monic}\}$, $S = \{f \in D[X] | c(f) = D\}$ and $N_v = \{f \in D[X] | c(f)_v = D\}$ are multiplicatively closed subsets of $D[X]$. The localization $D\langle X \rangle := D[X]/U$ (resp., $D(X) := D[X]/S$, $D[X]_{N_v}$) is called the Serre conjecture (resp., the Nagata, the t–Nagata) ring of D. Note that $D[X] \subseteq D(X) \subseteq D(X)_{N_v}$.

Theorem 2.5. Let (P) denote one of the following properties: PrMD, Krull, G-GCD, Noetherian or SM. Then, for any integral domain D, the following statements are equivalent:

1. D is a t–locally (P) domain;
2. $D[X]$ is a t–locally (P) domain;
3. $D(X)$ is a t–locally (P) domain;
4. $D(X)$ is a t–locally (P) domain;
5. $D[X]_{N_v}$ is a t–locally (P) domain;
6. $D[X]_{N_v}$ is a locally (P) domain.

The proof of this theorem requires the following preparatory lemmas.

Lemma 2.6. Let D be an integral domain. Then:

1. $\text{Max}(D[X]_{N_v}) = t\text{-Max}(D[X]_{N_v}) = \{m[X]_{N_v} | m \in t\text{-Max}(D)\}$.
2. For each t–maximal ideal m of D, we have: $D[X]_m = (D[X]_{N_v})_m[X]_{N_v} = D(X)_m D(X) = D_m(X)$.
3. For each t–maximal ideal Q of $D[X]$, we have either: $Q \cap D = (0)$, or $Q \cap D$ is a t–maximal ideal of D and $Q = (Q \cap D)[X]$.

Proof. (1) [11, Propositions 2.1 and 2.2].
(2) [2, Lemma 2].
(3) [7, Proposition 2.2]. \hfill \square

Lemma 2.7. Let \(D \) be an integral domain with quotient field \(K \). Then, \(D(\bar{x}) \) is a \(\text{PvMD} \) (resp., Krull, \(G\text{-GCD} \), Noetherian, SM) if and only if \(D \) has the same property.

Proof. It is well known that \(D \) is a Krull (resp., \(G\text{-GCD} \)) domain if and only if \(D(\bar{x}) \) has the same property [1, Theorem 5.2(1)] (resp., [1, Theorem 5.1(1)]).

Now, if \(D \) is a \(\text{PvMD} \) (resp., a Noetherian domain, an SM domain), then so is \(D(\bar{x}) \) and hence its localization \(D(\bar{x}) \) has the same property. Conversely, assume that \(D(\bar{x}) \) is a \(\text{PvMD} \) and let \(\mathfrak{m} \) be a \(t \)-maximal ideal of \(D \). By [11, Corollary 2.3(2)], \(\mathfrak{m}D(\bar{x}) \) is a \(t \)-prime ideal of \(D(\bar{x}) \), and then \(D(\bar{x})_{\mathfrak{m}D(\bar{x})} = D(\bar{x})|_{\mathfrak{m}X} = D_{\mathfrak{m}}(\bar{x}) \) is a valuation domain. Thus, \(D_{\mathfrak{m}} \) is a valuation domain since \(D_{\mathfrak{m}} = D_{\mathfrak{m}}(\bar{x}) \cap K \). Therefore, \(D \) is a \(\text{PvMD} \). Next, assume that \(D(\bar{x}) \) is a Noetherian domain and let \(I \) be an ideal of \(D \). Then, \(ID(\bar{x}) \) is finitely generated and so is \(I \) [1, Theorem 2.2(2)]. Lastly, assume that \(D(\bar{x}) \) is an SM domain and let \(\mathfrak{m} \) be a \(t \)-maximal ideal of \(D \). By [11, Corollary 2.3(2)], \(\mathfrak{m}D(\bar{x}) \) is a \(t \)-prime ideal of \(D(\bar{x}) \), and then \(D(\bar{x})_{\mathfrak{m}D(\bar{x})} = D(\bar{x})|_{\mathfrak{m}X} = D_{\mathfrak{m}}(\bar{x}) \) is a Noetherian domain. Hence, \(D_{\mathfrak{m}} \) is a Noetherian domain and thus \(D \) is \(t \)-locally Noetherian. On the other hand, since \(D = D(\bar{x}) \cap K \), \(D \) is a Mori domain as an intersection of two Mori domains. Therefore, \(D \) is an SM domain. \hfill \square

Proof of Theorem 2.5. (1) \(\Rightarrow \) (2) Let \(Q \) be a \(t \)-maximal ideal of \(D[\bar{x}] \) and set \(P = Q \cap D \). If \(P = (0) \) then \(D[\bar{x}]_Q = K[\bar{x}]_{K[\bar{x}]} \) is a DVR, where \(K \) is the quotient field of \(D \). If \(P \neq (0) \) then, by Lemma 2.6(3), \(Q = P[\bar{x}] \) and \(P \) is a \(t \)-maximal ideal of \(D \). Hence, \(D_P \) is a \((\mathcal{P}) \) domain, so by Lemmas 2.6(2) and 2.7, \(D[\bar{x}]_Q = D[\bar{x}]_{P[\bar{x}]} = D_P(\bar{x}) \) is a \((\mathcal{P}) \) domain. Therefore, \(D(\bar{x}) \) is a \(t \)-locally \((\mathcal{P}) \) domain.

(2) \(\Rightarrow \) (3) and (3) \(\Rightarrow \) (4) follows from Corollary 2.1, since \(D(\bar{x}) = D[\bar{x}]_{\mathcal{U}} \) is a localization of \(D[\bar{x}] \) and \(D(\bar{x}) \) is a localization of \(D \).

(4) \(\Rightarrow \) (1) Let \(\mathfrak{m} \) be a \(t \)-maximal ideal of \(D \). Then, by [11, Corollary 2.3(2)], \(\mathfrak{m}D(\bar{x}) \) is a \(t \)-prime ideal of \(D(\bar{x}) \). Hence, \(D(\bar{x})_{\mathfrak{m}D(\bar{x})} = D(\bar{x})|_{\mathfrak{m}X} = D_{\mathfrak{m}}(\bar{x}) \) is a \((\mathcal{P}) \) domain. Thus, by Lemma 2.7, \(D_{\mathfrak{m}} \) is a \((\mathcal{P}) \) domain. Therefore, \(D \) is a \(t \)-locally \((\mathcal{P}) \) domain.

(1) \(\Rightarrow \) (6) Let \(Q \) be a maximal ideal of \(D[\bar{x}]_{N_v} \). By Lemma 2.6(1), \(Q = \mathfrak{m}[\bar{x}]_{N_v} \) for some \(t \)-maximal ideal \(\mathfrak{m} \) of \(D \). As \(D[\bar{x}]_{N_v}|_{\mathfrak{m}[\bar{x}]_{N_v}} = D[\bar{x}]|_{\mathfrak{m}X} = D_{\mathfrak{m}}(\bar{x}) \) and \(D_{\mathfrak{m}} \) is a \((\mathcal{P}) \) domain, it follows from Lemma 2.7 that \(D[\bar{x}]_{N_v}|_{\mathfrak{m}[\bar{x}]_{N_v}} \) is a \((\mathcal{P}) \) domain and hence, \(D[\bar{x}]_{N_v} \) is locally \((\mathcal{P}) \).

(6) \(\Leftrightarrow \) (5) This equivalence follows from Lemma 2.6(1).

(5) \(\Rightarrow \) (1) Let \(\mathfrak{m} \) be a \(t \)-maximal ideal of \(D \). Then, \(\mathfrak{m}[\bar{x}]_{N_v} \) is a \(t \)-maximal ideal of \(D[\bar{x}]_{N_v} \), and hence \(D[\bar{x}]_{N_v}|_{\mathfrak{m}[\bar{x}]_{N_v}} = D[\bar{x}]|_{\mathfrak{m}X} = D_{\mathfrak{m}}(\bar{x}) \) is a \((\mathcal{P}) \) domain. Thus, by Lemma 2.7, \(D_{\mathfrak{m}} \) is a \((\mathcal{P}) \) domain and hence, \(D \) is \(t \)-locally \((\mathcal{P}) \).

For the case of \(G\text{-GCD} \) domains we have a more precise result.

Proposition 2.8. For any integral domain \(D \), the following statements are equivalent:

1. \(D \) is a \(t \)-locally \(G\text{-GCD} \) domain;
2. \(D[\bar{x}] \) is a \(t \)-locally \(G\text{-GCD} \) domain;
3. \(D(\bar{x}) \) is a \(G\text{-GCD} \) domain;
4. \(D[\bar{x}]_{N_v} \) is a \(G\text{-GCD} \) domain.

Proof. The proof is similar to the proof of the above theorem by using the fact that \(D \) is a \(G\text{-GCD} \) domain if and only if \(D(\bar{x}) \) is a \(G\text{-GCD} \) domain (cf. [1, Theorem 5.1(1)]) \hfill \square

To avoid unnecessary repetition, let us fix some notation for the remainder of this paper.

Let \(T \) be an integral domain, \(\mathfrak{M} \) a maximal ideal of \(T \), \(K \) the residue field \(T/\mathfrak{M} \), \(\varphi : T \to K \) is the natural projection, \(D \) a proper subring of \(K \). Let \(R := \varphi^{-1}(D) \) be the
pullback arising from the following diagram of canonical homomorphisms:

\[
\begin{array}{ccc}
R & \longrightarrow & D \\
\downarrow & & \downarrow \\
T & \xrightarrow{\varphi} & K.
\end{array}
\]

We shall refer to this as a pullback diagram of type (\(\Box\)).

Proposition 2.9. Let \((\mathcal{P})\) denote one of the following properties: \(PrMD\), GCD or G-GCD. Then, for a pullback diagram of type (\(\Box\)), \(R\) is a \(t\)-locally \((\mathcal{P})\) domain if and only if \(qf(D) = K\), \(D\) and \(T\) are \(t\)-locally \((\mathcal{P})\) domains and \(T_{\mathfrak{m}}\) is valuation.

Proof. Recall that \(R\) is a \((\mathcal{P})\) domain if and only if \(qf(D) = K\), \(D\) and \(T\) are \((\mathcal{P})\) domains and \(T_{\mathfrak{m}}\) is valuation (cf. \([6, \text{Theorems 4.1 and 4.2(a-b)}]\)). Assume that \(R\) is a \(t\)-locally \((\mathcal{P})\) domain. Since \(\mathfrak{m}\) is a \(t\)-prime ideal of \(R\), \(R_{\mathfrak{m}}\) is a \((\mathcal{P})\) domain.

Let \(Q\) be a \(t\)-maximal ideal of \(T\). If \(Q = \mathfrak{m}\), then we localize the previous diagram at \(\mathfrak{m}\) to obtain the following pullback:

\[
\begin{array}{ccc}
R_{\mathfrak{m}} & \longrightarrow & D_{\varphi(\mathfrak{m})} \\
\downarrow & & \downarrow \\
T_{\mathfrak{m}} & \xrightarrow{\varphi} & K.
\end{array}
\]

It follows from \([6, \text{Theorems 4.1 and 4.2(a-b)}]\) that \(qf(D) = K\) and \(T_{\mathfrak{m}}\) is a \((\mathcal{P})\) domain. If \(Q \neq \mathfrak{m}\), then \(P := Q \cap R\) is a \(t\)-maximal ideal of \(R\) and hence \(T_Q = R_P\) is a \((\mathcal{P})\) domain. Thus, \(T\) is a \(t\)-locally \((\mathcal{P})\) domain.

Let \(P\) be a \(t\)-maximal ideal of \(D\) and set \(Q := \varphi^{-1}(P)\). Considering the following pullback:

\[
\begin{array}{ccc}
R_Q & \longrightarrow & D_P \\
\downarrow & & \downarrow \\
T_{\mathfrak{m}} & \xrightarrow{\varphi} & K.
\end{array}
\]

By \([6, \text{Theorems 4.1 and 4.2(a-b)}]\), \(D_P\) is a \((\mathcal{P})\) domain and \(T_{\mathfrak{m}}\) is a valuation domain.

Conversely, let \(Q\) be a \(t\)-maximal ideal of \(R\). If \(Q = \mathfrak{m}\), then, by \([6, \text{Theorems 4.1 and 4.2(a-b)}]\), \(R_{\mathfrak{m}}\) is a \((\mathcal{P})\) domain. If \(Q \neq \mathfrak{m}\), then there is only one \(t\)-maximal ideal \(P\) of \(T\) such that \(P \cap R = Q\) (cf. \([9, \text{Theorem 2.6(1)}]\)), and hence \(R_Q = T_P\) is a \((\mathcal{P})\) domain since \(T\) is a \(t\)-locally \((\mathcal{P})\) domain. Thus, \(R\) is a \(t\)-locally \((\mathcal{P})\) domain. \(\square\)

From \([3]\) we introduce the definition of amalgamated algebras along an ideal as follows:

Let \(A\) and \(B\) be two rings, \(f : A \rightarrow B\) a ring homomorphism and \(J\) an ideal of \(B\). The following subring of \(A \times B:\)

\[A \triangleright J = \{(a, f(a) + j) | a ∈ A \text{ and } j ∈ J\},\]

is called the *amalgamation* of \(A\) with \(B\) along \(J\) with respect to \(f\).

Corollary 2.10. Let \(A\) and \(B\) be two integral domains, \(J\) a maximal ideal of \(B\) and \(f : A \rightarrow B\) a ring homomorphism such that \(f^{-1}(J) = \{0\}\). Let \((\mathcal{P})\) denote one of the following properties: \(PrMD\), GCD or G-GCD. Then, \(A \triangleright J\) is a \(t\)-locally \((\mathcal{P})\) domain if and only if \(qf(A) = B/J\), \(A\) and \(B\) are \(t\)-locally \((\mathcal{P})\) domains and \(B_J\) is valuation.

Proof. By \([3, \text{Proposition 4.2}\]\), we have the following pullback:

\[
\begin{array}{ccc}
A \triangleright J & \longrightarrow & A \\
\downarrow & & \downarrow \tilde{f} \\
B & \xrightarrow{\varphi} & B/J,
\end{array}
\]

where \(\tilde{f} = \varphi \circ f\). The result follows immediately by applying Proposition 2.9. \(\square\)

Now, we recover the case of simple amalgamation.
Corollary 2.11. Let A be an integral domain, I a maximal ideal of A and let (\mathcal{P}) denote one of the following properties: PeMD, GCD or G-GCD. Then, $A \triangleright I$ is a t–locally (\mathcal{P}) domain if and only if A is a field.

Proof. Take $B = A$ and $f = \text{Id}_A$ in Corollary 2.10.

Corollary 2.12. Let K be a field, X an indeterminate over K, D a subring of K and let (\mathcal{P}) denote one of the following properties: PeMD, GCD or G-GCD. If R is an integral domain of the form $D + XK[X]$ or $D + XK[[X]]$, then R is a t–locally (\mathcal{P}) domain if and only if so is D and $\text{qf}(D) = K$.

Proof. Let $T = K[X]$ (resp., $T = K[[X]]$) and $\mathfrak{M} = XK[X]$ (resp., $\mathfrak{M} = XK[[X]]$). Then, T is a PID with $T/\mathfrak{M} \cong K$ and $T_{\mathfrak{M}}$ is a DVR. Thus the conclusion follows from Proposition 2.9.

We now study the transfer of the t–locally Noetherian (resp., the t–locally SM) notion to pullbacks. In fact, we extend [14, Theorem 3.11] to t–locally Noetherian (resp., t–locally SM) domains.

Proposition 2.13. For a pullback diagram of type (□), R is a t–locally Noetherian domain (resp., a t–locally SM domain) if and only if T is a t–locally Noetherian domain (resp., a t–locally SM domain), $T_{\mathfrak{M}}$ is Noetherian, $D = k$ is a field, and $[K : k]$ is finite. In particular, if T is local, then R is a t–locally Noetherian domain (resp., a t–locally SM domain) if and only if R is Noetherian.

Proof. Assume that R is t–locally Noetherian. If D is not a field, then D has a nonzero t–maximal ideal P. Set $Q = \varphi^{-1}(P)$. Then Q is a t–maximal ideal of R and so R_Q is Noetherian. Now consider the following pullback:

$$
\begin{array}{ccc}
R_Q & \longrightarrow & D_P \\
\downarrow & & \downarrow \\
T_S & \longrightarrow & K,
\end{array}
$$

where $S = R \setminus Q$. Necessarily $D_P = k$ is a field, which is absurd. Thus $D = k$ is a field. Now that $D = k$ is a field implies that \mathfrak{M} is a maximal ideal of R which is divisorial and so it is a t–maximal ideal. Localizing at \mathfrak{M}, we obtain the following pullback:

$$
\begin{array}{ccc}
R_{\mathfrak{M}} & \longrightarrow & k \\
\downarrow & & \downarrow \\
T_{\mathfrak{M}} & \longrightarrow & K.
\end{array}
$$

So that $R_{\mathfrak{M}}$ is Noetherian implies that $T_{\mathfrak{M}}$ is Noetherian and $[K : k]$ is finite.

Conversely, let Q be a t–maximal ideal of R. Then, we distinguish the following two possible cases:

Case 1: $Q = \mathfrak{M}$. Since $T_{\mathfrak{M}}$ is Noetherian, $D = k$ is a field, and $[K : k]$ is finite, it follows from [8, Theorem 4.12] that $R_{\mathfrak{M}}$ is Noetherian.

Case 2: $Q \neq \mathfrak{M}$. Then there is a unique t–maximal ideal P of T such that $P \cap R = Q$ and hence $R_Q = T_P$ is a Noetherian domain because T is a t–locally Noetherian domain.

Therefore, R is a t–locally Noetherian domain.

The case of t–locally SM domains is similar to the previous case by using [14, Theorem 3.11].

For the particular case, we have $T = T_{\mathfrak{M}}$ and so the conclusion follows from [8, Theorem 4.12].

Corollary 2.14. Let A and B be two integral domains, J a maximal ideal of B and $f : A \to B$ a ring homomorphism such that $f^{-1}(J) = \{0\}$. Then, $A \triangleright f^! J$ is a t–locally Noetherian domain (resp., a t–locally SM domain) if and only if B is a t–locally Noetherian domain (resp., a t–locally SM domain), B_J is Noetherian, A is a field, and $[B/J : A]$ is finite.
Proof. It follows from [3, Proposition 4.2] and Proposition 2.13. □

Corollary 2.15. Let K be a field, X an indeterminate over K, D a subring of K. If R is an integral domain of the form $D + XK[X]$ or $D + XK[[X]]$, then the following statements are equivalent.

1. R is a t–locally Noetherian domain;
2. R is a t–locally SM domain;
3. $D = k$ is a field and $[K : k]$ is finite;
4. R is Noetherian.

By adapting the proof of Proposition 2.13 and using [8, Theorem 4.18], we get the following:

Proposition 2.16. For a pullback diagram of type (\square), R is a t–locally Mori domain if and only if T is a t–locally Mori domain, $T_{\mathfrak{m}}$ is Mori, and $D = k$ is a field.

In [15, Theorem 2.13], Pirtle established that if D is an almost Krull domain, i.e., a locally Krull domain, with quotient field K, then the integral closure of D in a finite field extension of K is also almost Krull. Next, we show that the converse holds without the finiteness condition.

Proposition 2.17. Let D be an integrally closed domain with quotient field K, let L be an algebraic field extension of K and let \overline{D} be the integral closure of D in L. If \overline{D} is an almost Krull domain then so is D.

Proof. Let p be a prime ideal of D and q be a prime ideal of \overline{D} lying over p. Since \overline{D} is almost Krull, \overline{D}_q is a Krull domain and then, by [10, Theorem 1], $\overline{D}_q \cap K = D_p$ is also a Krull domain. That is, D is an almost Krull domain. □

In the case of locally PvMDs we get a stronger result.

Proposition 2.18. Let D be an integrally closed domain with quotient field K, let L be an algebraic field extension of K and let \overline{D} be the integral closure of D in L. Then, D is a locally PvMD if and only if so is \overline{D}.

Proof. Assume that D is a locally PvMD and let M be a maximal ideal of \overline{D}. Set $P = M \cap D$ and $S = D \setminus P$. Then, D_P is a PvMD. Since \overline{D} is the integral closure of D in L, \overline{D}_S is the integral closure of D_P in L and hence it follows from [13, Theorems 4.4 and 4.6] that \overline{D}_S is a PvMD. Thus we deduce from the equality $\overline{D}_M = (\overline{D}_S)_M \overline{D}_S$ that \overline{D}_M is a PvMD. Therefore, \overline{D} is a locally PvMD. The converse is similar to that of the proof of the previous proposition. □

Acknowledgment. The authors would like to thank the anonymous referee for careful reading of the manuscript and for detecting some typographical errors.

References

[1] D.D. Anderson, D.F. Anderson and R. Markanda, The rings $R(X)$ and $R(X)$, J. Algebra 95, 96-115, 1985
[2] J.T. Arnold, On the ideal theory of the Kronecker function ring and the domain $D(X)$, Canad. J. Math. 21, 558-563, 1969.
[3] M. D'Anna, C.A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, in: Commutative Algebra and Applications, Walter de Gruyter, Berlin, 155-172, 2009.
[4] D.E. Dobbs, E. Houston, T. Lucas and M. Zafrullah, t–Linked overrings and Prüfer v–multiplication domains, Comm. Algebra 17 (11), 2835-2852, 1989.
[5] S. El Baghdadi, On a class of Prüfer v–multiplication domains, Comm. Algebra 30, 3723-3742, 2002.
[6] M. Fontana and S. Gabelli, *On the class group and the local class group of a pullback*, J. Algebra **181**, 803-835, 1996.

[7] M. Fontana, S. Gabelli and E. Houston, *UMT-domains and domains with Prüfer integral closure*, Comm. Algebra **26**, 1017-1039, 1998.

[8] S. Gabelli and E. Houston, *Coherent-like conditions in pullbacks*, Michigan Math. J. **44**, 99-122, 1997.

[9] S. Gabelli and E.G. Houston, *Ideal theory in pullbacks*, in: Non-Noetherian Commutative Ring Theory, in: Math. Appl. **520**, 199-227, Kluwer Academic, Dordrecht, 2000.

[10] W. Heinzer, *Some properties of integral closure*, Proc. Am. Math. Soc. **18**, 749-753, 1967.

[11] B.G. Kang, *Prüfer v–multiplication domains and the ring $R[[X]]_{N_v}$*, J. Algebra **123**, 151-170, 1989.

[12] D.J. Kwak and Y.S. Park, *On t–flat overrings*, Chinese J. Math. **23**, 17-24, 1995.

[13] F. Lucius, *Rings with a theory of greatest common divisors*, Manuscripta Math. **95**, 117-136, 1998.

[14] A. Mimouni, *TW–domains and Strong Mori domains*, J. Pure Appl. Algebra **177**, 79-93, 2003.

[15] E.M. Pirtle, *Integral domains which are almost Krull*, J. Sci. Hiroshima Univ. Ser. A-I Math. **32** (2), 441-447, 1968.

[16] F. Richman, *Generalized quotient rings*, Proc. Amer. Math. Soc. **16**, 794-799, 1965.