Self-aligned InGaAs FinFETs with 5-nm fin-width and 5-nm gate-contact separation

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Vardi, Alon et al. "Self-aligned InGaAs FinFETs with 5-nm fin-width and 5-nm gate-contact separation." IEEE International Electron Devices Meeting (IEDM), December 2017, San Francisco, CA, USA, Institute of Electrical and Electronics Engineers, January 2018 © 2017 IEEE

As Published
http://dx.doi.org/10.1109/iedm.2017.8268411

Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Version
Author's final manuscript

Citable link
https://hdl.handle.net/1721.1/126197

Terms of Use
Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms
http://creativecommons.org/licenses/by-nc-sa/4.0/
Self-Aligned InGaAs FinFETs with 5-nm Fin-Width and 5-nm Gate-Contact Separation

Alon Vardi1, Lisa Kong1, Wenjie Lu1, Xiaowei Cai1, Xin Zhao1, Jesús Grajal1,2 and Jesús A. del Alamo1
1Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
2ETSI Telecomunicación, Universidad Politécnica de Madrid, C/ Ramiro de Maeztu 7, 28040 Madrid, Spain

Abstract—We demonstrate self-aligned InGaAs FinFETs with fin widths down to 5 nm fabricated through a CMOS compatible front-end process. Precision dry etching of the recess cap results in metal contacts that are about 5 nm away from the intrinsic portion of the fin. The new process has allowed us to fabricate devices with undoped fins and compare them with delta-doped fins. We find that in highly scaled transistors, undoped fin devices show better OFF-state and a tighter Vt distribution but similar ON-state characteristics. As compared with δ-doped-fin transistors, 2D Poisson-Schrodinger simulations reveal undoped fins making more effective use of the fin height.

I. INTRODUCTION

InGaAs is a promising channel material candidate for CMOS technologies beyond the 7 nm node [1-2]. In this dimensional range, only high aspect-ratio (AR) 3D transistors with a fin or nanowire configuration can deliver the necessary performance. Impressive InGaAs FinFET prototypes have recently been demonstrated [3-6]. However, unlike planar InGaAs MOSFETs [8], their performance is lagging behind Si FinFETs. There are many challenging issues that are unique to InGaAs FinFETs that have yet to be tackled. In this work we demonstrate a new process flow that uses dry recess and the InP stopper is removed controllably using the backend comprises of inter-level dielectric (ILD) deposition, via opening and pad formation.

II. PROCESS TECHNOLOGY

Two heterostructures have been studied in this work (Fig. 1). The significant difference is the presence or absence of a δ-doped InAlAs layer just below the conducting channel. For both samples, the channel is 50 nm thick InGaAs lattice matched to InP and the cap consists of 30 nm thick heavily-doped Si:InGaAs. In the delta-doped sample, there is an InP stopper between the cap and the channel which is used to calibrate the dry etching time for both samples.

Our fabrication process (Fig. 2) integrates several features developed in our group in the last few years [11-13]. The process starts with sputtering a low-ρ (Rd=5Ω/□) W/Mo ohmic-contact bilayer. This contact-first approach yields outstanding contact resistance in planar and fin devices [11,12].

E-beam lithography is used to define the gate recess. The SiO2 hard mask and W/Mo contact stack are etched by anisotropic RIE using CF3:H2 and SF6:O2 chemistries, respectively [11,13]. After a mesa definition step, the highly conductive cap is removed using Cl:BCl3 dry etching. On the δ-doped sample, the InP stopper is removed controllably using digital etch (DE). This also smooths the top surface of the channel (Fig. 3a) [14]. The undoped sample was processed side by side using the calibration established in the delta-doped sample. Due to the 60° slope of the dry recess, the highly doped cap extends ~15 nm on top of the fins. The DE pulls back the cap ~5 nm under the metal (Fig. 4c). This is also the distance between the ohmic contact and the fin as compared with ~20 nm in [15] obtained via a wet recess process.

After the last DE cycle, 1/4 monolayers of Al2O3/HfO2 are deposited to passivate the top facet of the fins in the undoped sample. 2 nm of Si3N4 is deposited by CVD on both samples as adhesion layer for the subsequent fin etch mask which consists of 90 nm thick Hydrogen Silsesquioxane (HSQ). This is exposed by e-beam lithography.

The fins are then etched in inductive coupled plasma (ICP) using a BCl3/SiCl4/Ar chemistry (Fig. 3b) [16]. This yields fins as narrow as 15 nm with highly vertical walls in the top ~70 nm. The fin height (Hf in Fig. 2) is 170-200 nm. To further thin down the fins and smooth the sidewalls, we perform several cycles of DE [14] (etch rate ~1 nm/cycle per side). This yielded fins as narrow as 5 nm, as seen in Fig. 4 in a finished device.

Immediately after the last DE cycle, 1 monolayer of Al2O3 and 3 nm HfO2 (EOT~0.8 nm) are deposited by ALD. Here, we increased the EOT w.r.t previous experiments, in order to reduce gate leakage at long gate lengths and enable a detailed study of the mobility. The front-end process is completed by Mo gate metal sputtering and definition using SFe2O3 dry etch. The gate covers the fins completely and overlaps with the source and drain regions. The backend comprises of inter-level dielectric (ILD) deposition, via opening and pad formation.

We have fabricated devices with W=5 to 25 nm, Lg=30 nm to 2 µm and number of fins Nf=1 to 200. Consistent with the
double-gate nature of our devices, all figures of merit are normalized by twice the channel height.

III. ELECTRICAL CHARACTERISTICS

The electrical characteristics of undoped and δ-doped fin array devices (Lg=50 nm) with Wf=5 nm (AR=Hf/Wf=10) and Lg=50 nm are shown in Fig. 5. Well-behaved characteristics and good sidewall control with Sd=65 mV/dec in the undoped channel are obtained. Fig. 6 shows electrical characteristics of Wf=25 nm, Lg=50 nm devices with single (top) and multiple fins (bottom). For both doped and undoped fins, OFF-state performance of array and single fin transistors is similar. This suggests interface-state dominated behavior. In contrast, gmn of single-fin devices is larger in arrays as expected from Rsd considerations.

Fig.7 summarizes gmn and Ssat (both at VDS=0.5 V) of undoped- and δ-doped-fin array devices of different Wf and Lg. Overall, undoped fins exhibit much better OFF-state behavior while δ-doped fins can show better ON performance over most of the range of (this trend is kept even when removing the effect of Rsd). For short Lg and narrow fins, the ON performance of undoped fins exceeds that of doped fins due to better scalability.

VTF rolloff (1VFS=50 mV) for different Wf is shown in Fig. 8. Excessive rolloff is observed for very narrow fins, a possible consequence of line-edge roughness. Except for the Wf=5 nm samples, the VT distribution in undoped fin transistors as Wf changes is much tighter than in doped fin devices, a key advantage. Rsd at a fixed VDS=VFS=V=0.6 V is shown in Fig. 9. Rsd and Rint defined in Fig. 9a-b are shown in Fig. 9c-d, respectively. Rsd of the doped sample is lower than in the undoped one suggesting more effective fin to S/D link. The Fin resistance Rfin is similar for both structures at the given overdrive, and scales roughly as 1/Wf.

IV. MOBILITY ANALYSIS

In order to study the scaling behavior of our FinFETs in the ON regime, we have carried out an extraction of the mobility. In an effort to mitigate the effect of interface states, we performed simultaneous measurements of ID-VGS characteristics and S-parameters at 1 GHz for VDS=10 mV for different Lg on relatively long-channel devices. From these measurements, we extracted the total gate capacitance, Cg=Cgs+Cgd, as a function of Lg. Results obtained for δ-doped- and undoped-fin devices with Wf=9 nm are shown in Fig. 10. From the slope of Cg-Lg (see inset) we extract the intrinsic Fin capacitance per unit length, Cfin Fig 11). From the combination of Lg and Cfin we extract the mobility (Fig 12). We correct for series resistance. Results of this analysis are summarized in Fig. 13 at two different values of electron concentration in the channel. First, there is a strong fin width dependence for Wf<20 nm, presumably due to sidewall roughness scattering. For a linear carrier concentration in the fin n0=10⁷ cm⁻¹, δ-doped fins show somehow higher mobility at all Wf. For n0=3x10⁷ cm⁻¹ equivalent results are obtained in both structures.

V. 2D SIMULATIONS

To explore the impact of doping on device characteristics, we performed 2D P-S simulations in the fin cross-section. The charge distribution in OFF and ON state are shown in Fig. 14. In the OFF state, the charge distribution is sharply concentrated against the bottom interface for doped fins but towards the top of the fin in undoped fins. The shielding effect of the δ-doped layer in the doped fins weakens charge control from the gate and hurts the subthreshold behavior. In the ON state, the charge distribution in the doped fins remains highly crowded against the bottom interface where interface roughness scattering should be at a minimum. In the undoped fins, the electrons pile up along the sidewalls with a higher concentration towards the top where interface roughness scattering should be worse. This might explain our mobility and transconductance results. For Wf=9 nm, there is complete volume inversion in the undoped sample mitigating sidewall roughness scattering.

Cfin as obtained from simulations is shown on Fig. 11. The simulated capacitance is in reasonable agreement with the measured data. Undoped and δ-doped fins have similar capacitance, however, the δ-doped structure is stretched out around threshold and, as a result, S degrades. This degradation is partially mitigated with Wf scaling.

To further explore the reason for the significantly lower mobility in undoped wide fins at low n0, we evaluated the weighted average <n,E> (shown in Fig. 14) at the fin sidewall surface. The results are shown in Fig. 15 as a function of n0. These data were also used to plot µ vs. <n,E> in Fig. 12. In wide fins and for the δ-doped structure, there is significant reduction in the electric field at low n0 with respect to the undoped fin. This is consistent with a higher mobility. For larger n0, the difference in <n,E> disappears and the mobility behavior is strongly affected by sidewall roughness scattering. In narrow fins, the difference is small throughout the full n0 range.

VI. BENCHMARK

Fig. 16 benchmarks gmn normalized by conducting gate periphery, and gmn/Wf for InGaAs FinFETs from this work and the literature as well as state-of-art Si FinFETs as a function of fin width. gmn/Wf is a figure of merit that highlights the desire to obtain high current on a minimum transistor footprint. Due to the increased EOT in this experiment, gmn is slightly lower than in [15]. When considering device footprint, however, this work shows record performance with a first-time demonstration of working transistors at the target Wf of 5 nm.

VII. CONCLUSIONS

We demonstrate InGaAs FinFETs with Wf=5 nm and gate- contact separation of 5 nm through an advanced self-aligned process. Undoped-fin devices exhibit better OFF-state characteristics and tighter VTF than doped fin devices. In the most scaled devices, gmn/Wf approaches state of art S, FinFETs.

ACKNOWLEDGMENT

Device fabrication was carried out at the Microsystems Technology Laboratories and the EBL Facility at MIT. This research was funded by DTRA (HDTRA1-14-1-0057), Lam Research, NSF (E3S STC grant #0939514), and Korea Institute of Science and Technology. The authors thank Dr. Winston Chern for many useful discussions.
REFERENCES: [1] del Alamo, IEDM2013, [2] Riel, MRS Bul. 39(8), 668 (2014), [3] Radosavljevic, IEDM2011, [4] Oxland, EDL 37(3), 261 (2016), [5] Djarr, VLSI2015, [6] Zota, IEDM2016, [7] Sun, VLSI2017, [8] Waldron, VLSI2014 [9] Lin, EDL, 37(4), 381 (2016), [10] del Alamo, EDS 49(3), 205 (2016), [11] Vardi, EDL, 36(2), 126 (2014), Lin, IEDM2013, [13] Lan, IEDM2014, [14] Lan, EDL, 35(4), 440 (2014), [15] Vardi, EDL, 37(9), 1104 (2016), [16] Zhao, EDL 35(5), 521 (2014)

Figure 1: Starting heterostructures.

Figure 2: Sketch of process flow.

Figure 3: SEM images of cleaved test structures: (a) after dry recess and digital etch, (b,c) after fin etch.

Figure 4: (a and b) Cross-section TEM images of finished device with $W_f=5$ nm fin. (c) FIB image along the fin of finished device with $L_g=60$ nm.

Figure 5: (a) Output, (b) subthreshold and (c) g_m characteristics of devices with $(W_f=5$ nm, $L_g=50$ nm, $N_f=34)$. Blue/red traces for undoped/δ-doped channels.

Figure 6: (a,a’) Output and (b,b’) subthreshold characteristics of devices with $W_f=25$ nm, $L_g=50$ nm and $N_f=1$ (top) and $N_f=34$ (bottom). Insets show saturated g_m characteristics. Blue/red traces for undoped/δ-doped channels.

Figure 7: Comparison between g_m and S_{sat} (both at $V_{DS}=0.5$ V) of undoped (blue) and δ-doped (red) structures at different W_f and L_g.

Figure 8: V_T (from max g_m, extrapolation at $V_{DS}=50$ mV) as a function of L_g for different W_f in undoped (a) and δ-doped (b) samples.

Figure 9: R_{on} (at $V_{GT}=0.6$ V) vs. L_g for different W_f in undoped (a) and δ-doped (b) samples. (c) R_{ds} and (d) R_{fin} obtained from linear fits of the data in (a,b): blue: undoped fins, red: δ-doped fins.
Figure 10: (a,b) Capacitance extracted from S parameters measurements at 1 GHz at $V_{DS}=10$ mV for (undoped,δ-doped) fins with $W_f=9$ nm. (c,d) I_D-V_{GT} curves collected during S parameter measurements. (Inset) C_g vs. L_g at $V_{GT}=0.5$ V, used for C_{fin} extraction shown in Fig. 11.

Figure 11: (a,b) Intrinsic fin capacitance extracted from S parameters measurements. (c,d) Fin capacitance evaluated from P-S simulations.

OFF state ($n_s=1\times10^{10}$ cm$^{-2}$)

Figure 12: Long channel mobility for undoped and δ-doped samples at $W_f=9$ and 25 nm, as a function of n_s (b) and average surface field at the fin sidewalls (b).

ON state ($n_s=3\times10^{10}$ cm$^{-2}$)

Figure 13: Long channel mobility for undoped (a) and doped (b) samples at two different carrier concentrations.

Figure 14: Charge distribution in $W_f=9$ and 25 nm doped and undoped fins in the OFF state ($n_s=1\times10^{10}$ cm$^{-2}$) and ON state ($n_s=3\times10^{10}$ cm$^{-2}$).

Figure 15: Weighted average of the surface field along the sidewalls as a function of n_s for different levels of δ-doping.

Figure 16: Benchmark of g_m normalized by conducting gate periphery (left) and g_m/W_f (right) as a function of W_f from this work and the literature. For reference, state-of-the-art Si FinFETs are also shown. Numbers represent the fin width to channel height aspect ratio.