Online Supplement

A comprehensive review of environmental risk factors and cardiovascular diseases

Thomas Münzel MD¹, Omar Hahad PhD¹, Mette Sørensen PhD²,³, Jos Lelieveld PhD⁴, Georg Daniel Duerr MD⁵, Mark Nieuwenhuijsen PhD⁶,⁷,⁸, Andreas Daiber PhD¹

¹ Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany.
² Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark.
³ Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark.
⁴ Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany.
⁵ Department of Cardiac Surgery, University Medical Center Mainz, Johannes Gutenberg University, Germany.
⁶ Institute for Global Health (ISGlobal), Barcelona, Spain
⁷ Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
⁸ CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain

Correspondence to:
Thomas Münzel, MD
Department of Cardiology
University Medical Center Mainz, Johannes Gutenberg University, Germany
Langenbeckstrasse 1, 55131 Mainz
Tel.: +496131 17-7250
Fax.: +49 6131 17-6615
Email: tmuenzel@uni-mainz.de
Table S1. Epidemiological/observational evidence for an association between traffic noise and cardiovascular disease, events, and mortality with focus on recent studies.

First author / year	Population / cohort	Noise sources	Major outcomes	Ref	
Roca-Barceló, 2021	21,936 CVD deaths	Aircraft noise	CVD and CHD mortality risk tended to increase with increasing levels of aircraft noise (L_{dn}), while no linear trend was found for stroke mortality.	1	
Kupcikova, 2021	502,651 subjects	Road traffic noise	Road traffic noise exposure ($L_{den} > 65$ vs. ≤ 55 dB(A)) led to 0.77% (95% CI 0.60-0.95) higher SBP, 0.49% (95% CI 0.32-0.65) higher DBP, 0.79% (95% CI 0.11-1.47) higher triglycerides, and 0.12% (95% CI −0.04-0.28) higher glycated hemoglobin.	2	
Yankoty, 2021	1,065,414 subjects	Total environmental / transportation noise	The HRs for incident MI were 1.12 (95% CI 1.08-1.15), 1.11 (95% CI 1.07-1.14), and 1.10 (95% CI 1.06-1.14) per 10 $dB(A)$ increase in L_{Aeq24}, L_{den}, and L_{night}, respectively.	3	
Gilani, 2021	909 subjects	Road traffic noise	An OR of 2.25 (95% CI 1.38-3.67) for the prevalence of CAD per 5 $dB(A)$ increase in road traffic noise (L_{den}) was found.	4	
Saucy, 2021	24,886 CVD deaths	Aircraft noise	Acute increases in aircraft noise 2 hours preceding death were associated with total CVD mortality (OR 1.44, 95% CI 1.03-2.04) for the highest group of exposure ($L_{Aeq} > 50$ vs. < 20 dB).	5	
Baudin, 2021	5,860 subjects	Aircraft noise	Aircraft noise levels per 10 $dB(A)$ increase in L_{night} increased the odds of antihypertensive medication by 43% (OR 1.43, 95% CI 1.19-1.73).	6	
Osborne, 2020	498 subjects	Combination of road traffic and aircraft noise	Higher noise exposure per 5 $dB(A)$ increase in L_{Aeq24} predicted major CV events (HR 1.341, 95% CI 1.147-1.567).	7	
Bai, 2020	37,441 cases of incident acute MI and 95,138	Road traffic noise	Road traffic noise (L_{Aeq24}) per IQR increase was associated with an elevated risk of incident acute MI (HR 1.07, 95% CI 1.06-1.08) and CHF (HR, 1.07 95% CI 1.06-1.09).	8	
Study	Subjects	Noise Source	Findings		
-----------------------	-----------------------------------	----------------------------	---		
Thacher, 2020	52,758 subjects	Road traffic noise	At the most exposed façade, road traffic noise per IQR increase was associated with a 13% (HR 1.13, 95% CI 1.06-1.19) and 11% (HR 1.11, 95% CI 0.99-1.25) higher CVD and stroke mortality, respectively. At the least exposed façade, road traffic noise remained to be associated with CVD (HR 1.09, 95% CI 1.03-1.15), IHD (HR 1.10, 95% CI 1.01-1.21), and stroke (HR 1.06, 95% CI 0.95-1.19) mortality.		
Thacher, 2020	52,053 subjects	Road traffic noise	There was no association between road traffic noise and filled prescriptions for antihypertensive drugs.		
Andersson, 2020	6,304 men	Road traffic noise	The HRs were 1.08 (95% CI 0.90-1.28) for CV mortality, 1.14 (95% CI 0.96-1.36) for IHD incidence, and 1.07 (95% CI 0.85-1.36) for stroke incidence in response to road traffic noise (L_{Aeq24} >60 vs. <50 dB).		
Shin, 2020	Subjects without a history of hypertension (701,174) or diabetes mellitus (914,607)	Road traffic noise	An increase in L_{Aeq24} per 10 dB(A) was associated with an 8% increase in incident diabetes mellitus (HR 1.08, 95% CI 1.07-1.10) and a 2% increase in incident hypertension (HR 1.02, 95% CI 1.01-1.10). Similar estimates were obtained for L_{night}.		
Baudin, 2020	6,105 subjects	Aircraft noise	An increase per 10 dB(A) in L_{night} was associated with an increased risk of hypertension (RR 1.03, 95% CI 1.01-1.06). An association was also found between aircraft noise annoyance and hypertension risk (RR 1.06, 95% CI 1.00-1.13 for highly annoyed vs. not highly annoyed).		
Pyko, 2019	20,012 subjects	Road traffic, railway, aircraft noise	In subjects exposed to all three traffic noise sources at ≥45 dB L_{den}, risks of IHD were elevated with a HR of 1.57 (95% CI 1.06-2.32), and a comparable observation for stroke (HR 1.42, 95% CI 0.87-2.32).		
Héritier, 2019	4.4 million subjects	Road traffic, railway, aircraft	MI mortality was increased in response to road traffic (HR 1.034, 95% CI 1.014-1.055), railway (HR 1.020, 95% CI 1.000-1.040).		
Study	Year	Subjects/Subjects	Noise Type	Noise Description	Findings
-------	------	------------------	------------	-----------------	----------
Héritier, 2018	4.41 million subjects	Combination of road traffic, railway, aircraft noise	For the core night, the highest HR was observed for IHD mortality (1.025, 95% CI 1.016-1.034), while this association was lower for the daytime (1.018, 95% CI 1.009-1.028). HF mortality and daytime noise was associated with the highest HR (1.047, 95% CI 1.027-1.068).		
Pyko, 2018	4,854 subjects	Road traffic, railway, aircraft noise	Aircraft noise increased the incident risk of hypertension by 16% (HR 1.16, 95% CI 1.08-1.24) per 10 dB increase in L_{den}. Road traffic and railway noise were not associated with incidence of hypertension.		
Yang, 2018	663 subjects	Road traffic noise	Road traffic noise per 5 dB(A) increase was associated with the prevalence of CVD (OR 2.23, 95% CI 1.26-3.93).		
Cai, 2018	21,081 incident CVD cases	Road traffic noise	No associations were found between road traffic noise and incident CVD, IHD, or CBVD in the total population.		
Hahad, 2018	14,639 subjects	Road traffic, railway, aircraft noise	Traffic-related noise annoyance is associated with increased prevalence of AF.		
Héritier, 2017	4.41 million subjects	Road traffic, railway, aircraft noise	HRs for MI mortality were per 10 dB increase in L_{den} 1.038 (95% CI 1.019-1.058) for road traffic, 1.018 (95% CI 1.004-1.031) for railway, and 1.026 (95% CI 1.004-1.048) for aircraft noise.		
Zeeb, 2017	137,577 cases and 355,591 controls	Road traffic, railway, aircraft noise	There was no association between any of the traffic noise sources and incident hypertension. Likewise, no association between nighttime noise levels and hypertension was found. For the group of subjects with newly diagnosed hypertension followed by hypertensive heart disease, the ORs were elevated.		
Fuks, 2017	41,072 subjects	Road traffic noise	A weak relationship between road traffic noise and incident self-reported hypertension was found, whereas no conclusive association with measured hypertension was established.		
Study	Subjects/Populations	Exposure/Noise Type	Findings		
----------------------------	--	-----------------------------------	--		
Pitchika, 2017	2,552 subjects	Road traffic noise	No association between road traffic noise (L_{Aeq24}) and prevalent hypertension was found.		
Roswall, 2017	50,744 subjects	Road traffic noise	Road traffic noise was associated with a higher risk of MI, with a HR of 1.14 (95% CI 1.07-1.21) per IQR increase in L_{den}.		
Evrard, 2017	1,244 subjects	Aircraft noise	Only in men, a 10 dB(A) increase in aircraft noise (L_{night}) was associated with risk of hypertension (OR of 1.34, 95% CI 1.00-1.97).		
Dimakopoulou, 2017	780 subjects	Aircraft noise	A 10 dB increase in L_{night} resulted in an OR of 2.63 (95% CI 1.21-5.71) for hypertension and of 2.09 (95% CI 1.07-4.08) for doctor-diagnosed cardiac arrhythmia.		
Sørensen, 2017	57,053 subjects	Road traffic noise	An IRR of 1.14 for HF (95% CI 1.08-1.21) per IQR increase in L_{den} road traffic noise was found.		
Seidler, 2016	19,632 cases and 834,734 controls	Road traffic, railway, aircraft noise	A 10 dB increase in L_{Aeq24} was associated with higher odds of MI in response to road traffic (2.8%, 95% 1.2-4.5) and railway noise (2.3%, 95% CI 0.5-4.2), but not aircraft noise. Aircraft noise levels of 60 dB and above were associated with increased MI risk (OR 1.42, 95% CI 0.62-3.25).		
Recio, 2016	Cohort of subjects ≥65 years	Road traffic noise	Short-term road traffic noise increased the risk of death from IHD, MI, and CBVD.		
Monrad, 2016	57,053 subjects	Road traffic, railway noise	A 10 dB increase in L_{den} road traffic noise was associated with a 6% increased risk of AF (IRR 1.06, 95% CI 1.00-1.12), which was weaker after further adjustment for air pollutants. AF risk was not related to railway noise.		
Sørensen, 2011	57,053 subjects	Road traffic noise	An IRR of 1.14 for stroke (95% CI 1.03-1.25) per 10 dB increase in L_{den} road traffic noise was found.		
Beelen, 2009	120,852 subjects	Road traffic noise, traffic intensity	Traffic intensity was associated with CV mortality, with highest RR of 1.11 (95% CI 1.03-1.20 per increase in 10,000 motor vehicles/24 h). Road traffic noise (>65 dB(A)) was associated with increased risk of IHD (RR 1.15, 95% CI 0.86-1.53) and HF mortality (RR 1.99, 95% CI 1.05-3.79),		
which was attenuated after further adjustment air pollution and traffic intensity.

CVD: Cardiovascular disease, CHD: Coronary heart disease, L_{dn}: Day-night noise levels, SBP: Systolic blood pressure, DPB: Diastolic blood pressure, HR: Hazard ratio, MI: Myocardial Infarction, $L_{Aeq(time \ period)}$: Noise levels over a certain period of time, L_{night}: Night noise levels, IHD: Ischemic heart disease, CHF: Congestive heart failure, IQR: Interquartile range, CBVD: Cerebrovascular disease, dB: Decibel, OR: Odds ratio, CI: Confidence interval, CAD: Coronary artery disease, L_{den}: Day-evening-night noise levels, AF: Atrial fibrillation, IRR: Incidence rate ratio, RR: Relative risk
Table S2. Human studies on the association of atherosclerosis, vascular (endothelial) dysfunction, inflammation, or oxidative stress with ambient air pollution or traffic noise with focus on recent studies.

First author / year	Population / cohort	Air pollutants	Major outcomes	Ref
Riggs, 2021	73 subjects with moderate to high CVD risk	PM$_{2.5}$, O$_3$	An IQR increase in PM$_{2.5}$ was associated with augmentation pressure (3.1 mmHg), pulse pressure (5.9 mmHg), and aortic systolic pressure (8.1 mmHg). An IQR increase in O$_3$ was positively associated with augmentation index (5.5%), augmentation pressure (3.1 mmHg), and aortic systolic pressure (10 mmHg).	34
Liu, 2021	40 chronic obstructive pulmonary disease patients and 75 controls	PAHs	A 1-fold increase in hydroxylated PAHs was associated with a 4.1-15.1% elevation of malonaldehyde, which was stronger in subjects with impaired lung function.	35
Ni, 2021	740 subjects	PM$_{2.5}$	Acute increases in PM$_{2.5}$ were associated with increased soluble lectin-like oxidized LDL receptor-1, but not with nitrite.	36
Nassan, 2021	456 men	PM$_{2.5}$ species	Acute increases in PM2.5 species were associated with metabolic pathways involved in inflammation, oxidative stress, immunity, and nucleic acid damage and repair.	37
Mann, 2021	299 children	traffic-related air pollutants (sum of PAH456, NO$_2$, elemental carbon, PM$_{2.5}$)	Acute increases in traffic-related air pollutants were associated with 8-isoprostane.	38
Hennig, 2020	4,814 subjects	PM$_{2.5}$, PM$_{10}$, NO$_2$	Air pollutants were marginally associated with progression of atherosclerosis (carotid intima media thickness, coronary calcification, thoracic aortic calcification) in subjects with no or low baseline atherosclerotic burden.	39
Hennig, 2020	4,814 subjects	Particle number	Per IQR increase in particle number and road traffic noise	40
Study	Subjects	Pollutants	Findings	
------------	----------	------------	--	
Prunicki, 2020	100 subjects	PM$_{2.5}$, NO, NO$_2$, CO, PAHs	Air pollutants were associated with acute inflammation, oxidative stress, endothelial dysfunction, altered hemostasis, diastolic blood pressure, and monocyte enrichment.	
Salimi, 2020	615 subjects	PM$_{2.5}$, PM$_{10}$	PM$_{2.5}$ (-0.09, 95% CI -0.15 - -0.03) and PM$_{2.5}$ (-0.07, 95% CI -0.13 - -0.09) were inversely associated with brachial artery flow-mediated dilation.	
Riggs, 2020	100 subjects	PM$_{2.5}$	A 10 μg/m3 increase in PM$_{2.5}$ was associated with a 12.4% decrease in reactive hyperemia index (95% CI -21.0 - -2.7). Increased PM$_{2.5}$ was associated with elevated F-2 isoprostane metabolite, angiopoietin 1, vascular endothelial growth factor, placental growth factor, intracellular adhesion molecule-1, and matrix metalloproteinase-9 as well as reduced vascular adhesion molecule-1.	
Li, 2019	73 subjects	PM$_{2.5}$, BC, NO$_2$, CO	Increases in air pollutants were associated with reductions in circulating high-density lipoprotein cholesterol and apolipoprotein A-I as well as elevations in HDL oxidation index, oxidized LDL, malondialdehyde, and C-reactive protein.	
Lin, 2019	26 subjects	PAHs	Increases in 5-, 12-, and 15-hydroxyeicosatetraenoic acid as well as 9- and 13-hydroxyoctadecadienoic acid were observed. Decreases in paraoxonase and arylesterase as well increases in C-reactive protein and fibrinogen were observed.	
Yang, 2019	364 subjects	PM$_{2.5}$	Increases in PM$_{2.5}$ were related to higher incidence of high-risk plaque (HR 1.62, 95% CI 1.22-2.15), formation of either fibrofatty or necrotic core component in newly developed	
Study	Participants	Exposure	Findings	
-------	--------------	----------	----------	
Morishita, 2019	50 subjects	Particle number, BC	Acute increases in particle number and BC were associated with increases in aortic augmentation pressure and trend toward lower reactive hyperemia index.	
Balmes, 2019	87 subjects	O$_3$	Acute O$_3$ exposure did not alter C-reactive protein, monocyte-platelet conjugates, and microparticle-associated tissue factor activity, whereas increases in endothelin-1 and decreases in nitrotyrosine were observed.	
Han, 2019	60 subjects with prediabetes and 60 healthy subjects	PM$_{2.5}$	Acute exposure to PM$_{2.5}$ resulted in increased exhaled nitric oxide, white blood cells, neutrophils, interleukin-1α, and glycated hemoglobin. Compared to healthy subjects, pre-diabetic subjects displayed pronounced PM$_{2.5}$-associated systemic inflammation, elevated systolic and diastolic blood pressure, impaired endothelial function, and elevated fasting glucose.	
Xia, 2019	215 pregnant women	PM$_{2.5}$	Acute increases in PM$_{2.5}$ and lead constituent was associated with endothelial dysfunction (increased endothelin-1, E-selectin, and intracellular adhesion molecule-1) and inflammation (increased interleukin-1β, interleukin-6, tumor necrosis factor-α). Elevated inflammation and endothelial dysfunction were partially mediated by the effect of PM$_{2.5}$ and lead constituent on blood pressure.	
Li, 2019	3,820 subjects	PM$_{2.5}$, BC, O$_3$, sulfate, NO$_X$	Negative associations of acute PM$_{2.5}$ and BC with P-selectin, of O$_3$ with monocyte chemoattractant protein 1, and of sulfate and NO$_X$ with osteoprotegerin were found.	
Ljungman, 2018	5,842 subjects	Proximity to roadway, PM$_{2.5}$, particle number, sulfate, O$_3$	Living in the vicinity of a major roadway was associated with higher arterial stiffness (carotid-femoral pulse-wave velocity). No associations were found for PM$_{2.5}$, particle number, sulfate, or O$_3$.	
Zhang, 2018	4,544 subjects	PM$_{2.5}$, PM$_{10}$	PM$_{2.5}$ and PM$_{10}$ were associated with a higher prevalence of	
Study	Sample Size	Exposure	Description	Reference
-----------------------	-------------	-------------------------	--	-----------
Choi, 2018	6,430 patients who underwent intracoronary acetylcholine provocation test	PM\textsubscript{10}	PM\textsubscript{10} was associated with coronary artery spasm and transient ST-segment elevation during the acetylcholine provocation test.	54
Dorans, 2017	3,506 subjects	PM\textsubscript{2.5}	The presence/extent of thoracic aortic calcium Agatston score or abdominal aortic calcium Agatston score was not consistently associated with PM\textsubscript{2.5} or major roadway proximity.	55
Li, 2017	3,996 subjects	PM\textsubscript{2.5}, sulfate, NO\textsubscript{x}, BC, O\textsubscript{3}	Acute increases in PM\textsubscript{2.5} and sulfate were associated with increased C-reactive protein, which was also true for NO\textsubscript{x} in case of interleukin-6 and for BC, sulfate, and O\textsubscript{3} in case of tumor necrosis factor receptor 2. Conversely, BC, sulfate, and NO\textsubscript{x} were negatively associated with fibrinogen, and sulfate was negatively associated with tumor necrosis factor \(\alpha \).	56
Day, 2017	89 subjects	O\textsubscript{3}	Acute increases in O\textsubscript{3} per 10 ppb increase were associated with increased soluble P-selectin (36.3%, 95% CI 29.9-43.0), diastolic blood pressure (2.8%, 95% CI 0.6-5.1), exhaled nitric oxide (18.1%, 95% CI 4.5-33.5), exhaled breath condensate nitrite and nitrate (31.0%, 95% CI 0.2-71.1), and decreased augmentation index (−9.5%, 95% CI −17.7 - −1.4).	57
Mirowsky, 2017	13 subjects with CAD	O\textsubscript{3}	Per acute IQR increase in O\textsubscript{3}, changes were determined for plasminogen activator inhibitor-1 (40.5%, 95% CI 8.7-81.6), tissue plasminogen factor (6.6%, 95% CI 0.4-13.2), monocytes (10.2%, 95% CI 1.0-20.1), interleukin-6 (15.9%, 95% CI 3.6-29.6), neutrophils (8.7%, 95% CI 1.5-16.4), baseline diameter of the brachial artery (−2.5%, 95% CI −5.0-	58
The probability of having increased brachial-ankle pulse wave velocity was higher in inactive subjects with higher PM$_{10}$, PM$_{2.5}$, NO$_2$, particle number, and lung deposited surface area.

PM$_{2.5}$ and NO$_X$ were associated with progression of coronary calcification.

Episodic increases in PM$_{2.5}$ were related to higher endothelial cell apoptosis, elevated circulating monocytes, increased T (but not B) lymphocytes, and an anti-angiogenic plasma profile.

Reactive hyperemia index was inversely associated with acute increases PM$_{2.5}$, BC, NO$_X$, and CO with high oxidative potential.

PM$_{2.5}$ from dust/soil and several crustal and transition metals (including magnesium, iron, strontium, cobalt, titanium) were associated with increases in endothelin-1. Manganese, potassium, and CO were associated with increases in intracellular adhesion molecule-1. PM$_{2.5}$ from industry and metal cadmium was associated with decreased vascular cell adhesion molecule 1.

Acute increases in PM$_{2.5}$ were associated with brachial-ankle pulse wave velocity, whereas no association was found for NO$_2$. NO$_2$ was associated with increased C-reactive protein.

Acute increases in BC were associated with increased arterial stiffness.

First author / year	Population / cohort	Noise sources	Major outcomes	Ref
Schmidt, 2021	70 subjects with CVD	Aircraft noise	Acute aircraft noise exposure at night impaired endothelial function (flow-mediated dilation) and cardiac diastolic	66

Traffic noise

- **Schmidt, 2021**: 70 subjects with CVD, Aircraft noise
 - Acute aircraft noise exposure at night impaired endothelial function (flow-mediated dilation) and cardiac diastolic
| Study | Sample Size | Noise Source | Findings | |
|---|---|---|---|---|
| Hahad, 2021 | 5,000 subjects | Aircraft, railway noise | Aircraft and railway noise annoyance were associated with increased midregional pro atrial natriuretic peptide, which predicted incident CVD. |
| Biel, 2020 | 46 subjects | Total environmental noise (traffic noise included) | Acute increases in both air pollution and noise were associated with endothelial function and heart rate variability. |
| Eze, 2020 | 1,389 subjects | Road traffic, railway, aircraft noise | Both air pollution and traffic noise were associated with DNA methylation, with both distinct and shared enrichments for pathways linked to cellular development, immune responses, and inflammation. |
| Thiesse, 2020 | 26 subjects | Road traffic noise | After sleeping with highly intermittent road traffic noise, evening cortisol levels were elevated. |
| Herzog, 2019 | 70 subjects | Railway noise | Acute railway noise exposure was associated with impaired flow-mediated dilation. Proteomic analysis indicated substantial changes of plasma proteins in response to noise centered on proinflammatory, redox, and pro-thrombotic pathways. |
| Cai, 2017 | 144,082 subjects | Road traffic noise | An IQR increase in L_{day} road traffic noise was associated with 0.7% (95% CI 0.3-1.1) higher triglycerides, 1.1% (95% CI 0.02-2.2) higher C-reactive protein, and 0.5% (95% CI 0.3-0.7) higher high-density lipoprotein, with only the latter being robust to further control for air pollution. |
| Foraster, 2017 | 2,775 subjects | Road traffic, railway, aircraft noise | A 0.87% (95% CI 0.31-1.43) increase in brachial-ankle pulse wave velocity per IQR increase in L_{den} railway noise was observed. Total number of noise events at night, but not at day, was related to brachial-ankle pulse wave velocity. |
| Lefèvre, 2017 | 1,244 | Aircraft noise | Aircraft noise was associated with cortisol in the evening. |
| Halonen, 2017 | 2,592 subjects | Road traffic noise | A 9.1μm (95% CI –7.1-25.2) increase in carotid intima-media thickness per 10 dB(A) increase in L_{night} was observed. |
| Author(s), Year | Subjects | Noise Exposure | Effects | Reference |
|----------------|----------|----------------|---------|-----------|
| Schmidt, 2015 | 60 subjects at increased risk of CVD | Aircraft noise | Acute aircraft noise exposure at night impaired endothelial function and increased systolic blood pressure. | 76 |
| Sørensen, 2015 | 39,863 subjects | Road traffic noise | Slightly higher cholesterol may be linked to road traffic noise. | 77 |
| Schmidt, 2013 | 75 subjects | Aircraft noise | Acute aircraft noise exposure at night was associated with impaired flow-mediated dilation, which was attenuated by the administration of Vitamin C. Adrenaline was increased and pulse transit time decreased in response to noise. | 78 |

CVD: Cardiovascular disease, PM\(_{(\text{diameter size})}\): Particulate matter, \(\text{NO}_2\): Nitrogen dioxide, IQR: Interquartile range, \(L_{\text{night}}\): Night noise levels, OR: Odds ratio, CI: Confidence interval, \(O_3\): Ozone, \(\text{NO}_x\): Nitrogen oxides, HR: Hazard ratio, BC: Black carbon, CO: Carbon monoxide, PAHs: Polycyclic aromatic hydrocarbons, NO: Nitrogen monoxide, CAD: Coronary artery disease, \(L_{\text{den}}\): Day-evening-night noise levels, \(L_{\text{day}}\): Day noise levels
Table S3. Animal in vivo studies on non-auditory noise effects on cardiovascular and endothelial dysfunction, inflammation, or oxidative stress. Only articles that are not mentioned in the main article text and used <100 dB average sound pressure level are listed here.

First author / year	Animals and model	Noise scenario	Major outcomes	Ref
Borg, 1981	Sprague-Dawley, spontaneously hypertensive rats (SHR)	80 - 100 dB (noise type unknown), 10 h/d for entire lifespan	Noise exposure caused a shorter lifespan and higher frequency of CVD in spontaneously hypertensive rats as compared to normotensive rats.	79
Peterson, 1984	Rhesus monkeys	85 dB (realistic noise sequence), 24 h/d for 6 months	Noise exposure caused a substantial increase in blood pressure as well as disruption of the diurnal rhythm of heart rate, blood pressure, and caused "pauses" in cardiac rhythm.	80
Peterson, 1984	Macaque monkeys	87 - 90 dB (construction noise), 4 - 8 h/d for 97 d	Noise exposure caused an increase in blood pressure by 8.2% (4 h/d scenario) and 16.5% (8 h/d scenario). Whereas blood pressure increases persisted after noise cessation, the heart rate returned to baseline.	81
Kirby, 1984	Macaque monkeys	95 dB (broadband noise), 30 min	Noise exposure caused a more pronounced increase in blood pressure in the offspring of hypertensive monkeys, whereas heart rate was significantly changed. Also the resting blood pressure in the offspring of hypertensive monkeys was higher than offspring of normotensive monkeys.	82
Wu, 1992	Rats	85 - 95 dB (unknown noise type), 12 - 16 h/d for 4 - 8 weeks	Noise exposure impaired endothelium-dependent vasodilation as determined by acetylcholine (ACh)-response in the isolated thoracic aorta. Noise also increased the sensitivity to the vasoconstrictor serotonin, but not phenylephrine or potassium chloride, and increased systolic blood pressure by 31 mmHg.	83
Altura, 1992	Rats	Up to 100 dB (broadband noise), 4 h/d for 2 - 4 weeks	Noise exposure led to increased systolic and diastolic blood pressure (16 mmHg) along with magnesium deficiency and reduced lumen sizes of microvessels.	84
Morvai, 1989	CFY rats	95 dB (industrial)	Noise exposure lowered cardiac output and hepatic blood flow.	85
Year	Species	Noise Duration/Condition	Summary	
------------	--------------------------	--	---	
1994	Rats	Up to 100 dB (broadband noise), 4 h/d for 3 - 4 weeks	Noise exposure increased systolic blood pressure by 25 mmHg (3 weeks noise) and by 37 mmHg (4 weeks noise), which was associated with pronounced endothelial dysfunction in isolated mesenteric arterial rings.	
1994	Wistar rats and SHR	65 dBA (low frequency noise, 4 and 250 Hz), 24 h/d for 52 weeks	Noise exposure was associated with significantly increased microvessel wall area, number of microvessels with an outer diameter > 19 microns, the degree of cardiac fibrosis, and the extent of ischemic myocardial lesions in SHR, but not in normotensive rats. Noise did not alter cardiac weights and dimensions, heart rate, and dp/dtmax.	
2000	Wistar-Kyoto rats and SHR	95 dB (noise type unknown), 3 min	Noise exposure led to a tetrodotoxin-sensitive increase in glutamate release in the amygdala of SHR, but not normotensive rats. Also pressor response to noise was enhanced in SHR, all of which indicates an exaggerated stress response of glutamatergic neurons in the amygdala of SHR as compared to normotensive rats.	
2007	Rats	90 dB (noise type unknown), 15 min/d for 3 – 5 weeks	Noise exposure impaired the microvascular integrity (mesenteric arteries) in rats as revealed by significantly more leaks per venule length and greater leak area per venule length. Co-treatment with vitamin E plus a-lipoic acid or Traumeel (a homeopathic anti-inflamatory-analgesic) partly prevented these adverse effects of noise.	
2013	Rats	90 dB (low frequency noise, ≤ 500 Hz) for 3 months	Noise exposure caused significant myocardial fibrosis (increased collagen deposition between the cardiomyocytes) in rats. Also connexin43/muscle ratio was decreased by noise. Transmission electron microscopy also revealed noise-induced changes of cardiomyocyte ultrastructure, e.g. altered interstitial collagen deposits and changes in mitochondria and intercalated discs of the cardiomyocytes.	
2013	Wistar rats	70 – 80 dB (octave-band noise (8-16	Noise exposure increased corticosterone levels, affected various parameters of the endocrine glands and cardiac function. Markers of	
Ersoy, 2014	Albino rats	Noise type and protocol unknown	Noise exposure significantly decreased superoxide dismutase expression in the cerebral cortex but increased malondialdehyde levels in the brainstem and cerebellum. Rosuvastatin increased superoxide dismutase expression in the cerebral cortex and brain stem, but significantly decreased malondialdehyde values in the brain stem.	94
Gannouni, 2014	Wistar rats	70 dB (noise type unknown)	Noise exposure caused time-dependent changes in the morphological structure of the adrenal cortex involving disarrangement of cells and modification in thickness of the different layers of the adrenal gland. These observations are compatible with noise-induced changes of the morphological structure of heart tissue causing irreversible cell damage and leading to necrosis or cell death.	95
Said, 2016	Albino rats	80 - 100 dB (chronic and intermittent octave band noise, 8-16 kHz), 8 h/d for 20 d	Noise exposure adversely affected the cardiovascular system by increased levels of circulating stress hormones (e.g. corticosterone, adrenaline, noradrenaline, endothelin-1). Noise also negatively affected oxidative stress markers (e.g. higher malondialdehyde levels and decreased superoxide dismutase expression). These data are compatible with endothelial dysfunction, which was further supported by impaired nitric oxide metabolism and elevated blood pressure in noise-exposed rats.	96
Cui, 2016	Rats	Up to 100 dB (octave band noise, 0.4-6.3 kHz), 4 h/d for 30 d	Noise exposure caused a transient increase in markers of inflammation, blood glucose, triglycerides, and alterations in the microbiome that returned to baseline at 14 d after noise exposure cessation.	97
Kvandova, 2020	C57BL/6 mice and Ogg1-/- mice	72 dB (aircraft noise), 24 h/d for 4 d	Noise exposure induced oxidative DNA damage that was associated with enhanced leucocyte oxidative burst activity and other markers of inflammation (e.g. cyclooxygenase-2 as well as oxidative stress	98
(e.g. 4-hydroxynonenal, 3-nitrotyrosine levels and NOX-2 expression). Noise impaired endothelial function (ACh-response) but not endothelium-independent relaxation (nitroglycerin-response). Genetic deficiency in 8-oxoguanine glycosylase knockout (Ogg1^{-/-}) further aggravated most of these adverse noise effects and induced a significant impairment of the endothelium-independent relaxation (nitroglycerin-response).

Table S4. Epidemiological/observational evidence for an association between ambient air pollution and cardiovascular disease, events, and mortality with focus on recent studies.
First author / year	Population / cohort	Air pollutants	Major outcomes	Ref
Slawsky, 2021	5,681 patients who underwent cardiac catheterization	PM$_{2.5}$ from ammonium bisulfate and ammonium nitrate	OR of CAD increased by 20% (95% CI 1.11-1.30) per IQR increase in PM$_{2.5}$ from ammonium bisulfate. Ammonium nitrate was associated with a 18% increased OR of CAD (95% CI 1.05-1.32) per IQR increase in PM$_{2.5}$ from ammonium nitrate. Results for MI were broadly similar to those of CAD.	99
Aturinde, 2021	538,573 hospital admissions	BC, CO, PM$_{10}$, PM$_{2.5}$, SO$_x$	There were significant place-specific associations between air pollutants and CVD admissions.	100
Wang, 2021	7 cities	PM$_{10}$	A 10 μg/m3 acute increase in PM$_{10}$ was associated with a 0.13% (95% CI −0.01-0.26%) increase in CV emergency ambulance calls.	101
Cao, 2021	32,135 subjects	PM$_{2.5}$	A positive relationship between PM$_{2.5}$ and stage 1 hypertension (SBP: 130-139 mmHg or DBP: 80-89 mmHg; OR 1.05, 95% CI 1.02-1.08 per 10 μg/m3 increase) was observed.	102
Leili, 2021	2,091 hospital admissions	PM$_{2.5}$	An acute increase in PM$_{2.5}$ was associated with increased risk of hospitalization due to HF and MI.	103
Shin, 2021	92,567 acute MI patients	PM$_{2.5}$	An acute increase in PM$_{2.5}$ was associated with acute MI.	104
Liao, 2021	96,582 subjects with a history of stroke or acute MI	PM$_{2.5}$	Analyses restricted to PM$_{2.5}$-levels <12 μg/m3 showed increased risk of CVD mortality (HR 2.31, 95% CI 1.96-2.71), stroke (HR 1.41, 95% CI 1.09-1.83), and acute MI (HR 1.51, 95% CI 1.21-1.89) per 10 μg/m3 increase in PM$_{2.5}$.	105
Dehom, 2021	93,857 renal transplant recipients	PM$_{2.5}$	PM$_{2.5}$ was associated with increased risk of CVD (HR 2.38, 95% CI 1.94-2.92 per 10 μg/m3 increase) and CHD mortality (HR 3.10, 95% CI 1.96-4.90 per 10 μg/m3 increase).	106
Kaihara, 2021	835,405 acute CVD hospital	PM$_{2.5}$	Acute increases in PM$_{2.5}$ was associated with increased CVD hospitalizations as well as higher hospitalization durations	107
Study	Population Details	Outcomes Description	Reference	
-------------------------------	---	--	-----------	
Ren, 2021	332,090 CVD admissions	A 10 μg/m³ acute increase in PM$_{2.5}$ was associated with increased CVD hospital admissions (1.23%, 95% CI 1.01-1.45).	108	
Du, 2021	23,256 subjects	IQR increases in PM$_{2.5}$, PM$_{10}$, and SO$_2$ were associated with SBP (changes: 0.64-1.86 mmHg), DBP (changes: 0.35-0.70 mmHg), and the prevalence of hypertension (ORs 1.09-1.19).	109	
Xu, 2021	5,143 post-CVD patients	Increased CVD (HR 1.57, 95% CI 1.27-1.94) and MI mortality (HR 1.82, 95% CI 1.16-2.83) in response to PM$_{2.5}$.	110	
Raza, 2021	34,748 subjects	Increased risk of IHD among subjects with increased PM$_{2.5}$ and PM$_{10}$ exposure.	111	
Thabethe, 2021	3 cities	Increased risk of CVD mortality in response to PM$_{10}$.	112	
Rahman, 2021	340,758 CVD emergency department visits, 253,407 hospital admissions, and 16,858 deaths	Increases in CVD emergency department visits (0.27%, 95% CI 0.07-0.47), hospitalizations (0.32%, 95% CI 0.08-0.55), and deaths (0.87%, 95% CI 0.27-1.47) per 10 μg/m³ increase in PM$_{2.5}$.	113	
Raza, 2021	2,221 subjects	PM$_{2.5}$ levels above the median increased the risk of IHD by 13% (95% CI 17-45) and the risk of stroke recurrence by 21% (95% CI 19-80).	114	
Kim, 2021	1,469,972 subjects	Among physical active young adults exposed to high levels of PM$_{2.5}$ or PM$_{10}$, the risk of CVD was pronounced.	115	
Meng, 2021	398 cities and 19.7 million CV deaths	An acute increase in NO$_2$ per 10 μg/m³ increase was associated with a 0.37% (95% CI 0.22-0.51) increase in CV mortality.	116	
Sepandi, 2021	69,000 emergency hospital admissions for	The cumulative RRs for emergency hospital admissions for CVD were 1.13 (95% CI 1.01-1.26), 1.15 (95% CI 1.02-1.29), and 1.08 (95% CI 1.01-1.18) for CO, NO$_2$, and PM$_{2.5}$, respectively.	117	
Reference	Sample Size	Exposure	Outcomes	
-------------------	------------------------------	----------	---	
Khajavi, 2021	4,580 subjects	PM$_{10}$	PM$_{10}$ increased the risk of incident hypertension (HR 1.96, 95% CI 1.48-2.62).	
Alexeeff, 2021	169,714 patients with COPD	PM$_{2.5}$	A 10 µg/m3 increase in PM$_{2.5}$ was associated with an elevated risk of CV mortality (HR 1.10, 95% CI 1.01-1.20).	
Coleman, 2021	5,591,168 cancer patients	PM$_{2.5}$	PM$_{2.5}$ increased CV mortality (HR 1.32, 95% CI 1.26-1.39).	
Lin, 2021	28,548 outpatient clinic visits for hypertension	PM$_{2.5}$	Acute increases in PM$_{2.5}$ was associated with increased outpatient clinic visits for hypertension.	
Yazdi, 2021	63,006,793 subjects	PM$_{2.5}$, NO$_2$, O$_3$	PM$_{2.5}$ was associated with an increased risk of hospital admissions for MI, ischemic stroke, and AF with the highest effect seen for stroke.	
Wang, 2021	432,530 subjects	PM$_{2.5}$, PM$_{10}$, PM$_{2.5-10}$, NO$_2$, NO$_x$	HRs of HF for a 10 µg/m3 increase in PM$_{2.5}$, PM$_{10}$, PM$_{2.5-10}$, NO$_2$, and NO$_x$ were 1.85 (95% CI 1.34-2.55), 1.61 (95% CI 1.30-2.00), 1.13 (95% CI 0.80-1.59), 1.10 (95% CI 1.04-1.15), and 1.04 (95% CI 1.02-1.06), respectively.	
Fasola, 2021	1,585 subjects	PM$_{2.5}$, PM$_{10}$, NO$_2$	Acute increases in PM$_{2.5}$, PM$_{10}$, and NO$_2$ were associated with increased risk of CV hospitalization.	
Li, 2021	10,466 HF hospitalizations	PM$_{2.5}$	Acute increases in PM2.5 were associated with increased risk of HF hospitalization.	
Sokoty, 2021	43,424 patients with CVD	CO	Acute increases in CO increased the incidence of CV hospitalization.	
Abohashem, 2021	503 subjects	PM$_{2.5}$	PM$_{2.5}$ was associated with major adverse CV events (HR 1.404, 95% CI 1.135-1.737).	
Pang, 2021	34,040 subjects	Traffic-related air pollution	Higher odds of valvular heart disease in response to traffic-related air pollution.	
Sui, 2021	27,431 CV	PM$_{2.5}$	An acute increase per 10 µg/m3 in PM$_{2.5}$ was related to a...	
Study	Data Points	PM Metric	Description	
---------------------	--	-----------	---	
deSouza, 2021	3,666,657 CV hospitalizations among Medicaid adults	PM$_{2.5}$	A 0.9% (95% CI 0.6-1.1) increase in CV admission rates per 10 µg/m3 acute increase in PM$_{2.5}$ was observed.	
Xu, 2021	31,462 subjects	PM$_{2.5}$	OR of hypertension was 1.08 (95% CI, 1.04-1.12) per 10 µg/m3 increase in PM$_{2.5}$.	
Li, 2021	Citywide study	O$_3$	An acute increase in O$_3$ per 10 µg/m3 was associated with a 0.59% (95% CI 0.30-0.88) higher risk CVD death.	
Kim, 2020	196,167 subjects	PM$_{2.5}$	A 10 µg/m3 increase in PM$_{2.5}$ was associated with 4 and 10% increases in the incidence of total CVD (95% CI 0-9) and IHD (95% CI 4-16), respectively.	
Zhang, 2020	178,780 subjects	PM$_{2.5}$, PM$_{10}$	PM$_{2.5}$ and PM$_{10}$ were associated with increased incidence of arrhythmias.	
Elliott, 2020	104,990 females	PM$_{2.5}$	PM$_{2.5}$ was associated with increased risk of CVD (HR 1.09, 95% CI 0.99-1.20).	
Stafoggia, 2020	2,154,810 CVD hospitalizations	PM$_{2.5}$, PM$_{10}$	Relative increases of total CVD admissions per 10 µg/m3 acute variation in PM$_{10}$ and PM$_{2.5}$ were 0.55% (95% CI 0.32-0.77) and 0.97% (0.67-1.27), respectively.	
Wu, 2020	26,749 CV events	PM$_{2.5}$	Acute increases in PM$_{2.5}$ was associated with elevated risk of CV events.	
Prabhakaran, 2020	5,342 subjects	PM$_{2.5}$	Long-term exposures of 1, 1.5, and 2 years increased the risk of incident hypertension by 53% (HR 1.53, 95% CI 1.19-1.96), 59% (HR 1.59, 95% CI 1.31-1.92), and 16% (HR 1.16, 95% CI 0.95-1.43) per IQR increase in PM$_{2.5}$, respectively.	
Quintyne, 2020	Citywide CV hospitalizations	Air quality index for health	Air quality is related to CV hospital admissions.	
Bi, 2020	1,172,516 CVD emergency department visits	PM$_{2.5}$	Temporal changes in the risk of CVD emergency department visits were associated with acute increases in PM$_{2.5}$.	
Peralta, 2020	Ventricular	PM$_{2.5}$	An acute increase in PM$_{2.5}$ was associated with 39% higher	
Reference	Sample Size/Study Details	Exposure	Effect	Notes
-----------	---------------------------	----------	--------	-------
Hu, 2020	4,720 acute MI emergency hospitalizations	PM$_{0.01-0.03}$, PM$_{0.03-0.05}$, PM$_{0.05-0.10}$, PM$_{0.10-0.30}$	For an IQR increase of particle number concentrations for size ranges 0.01-0.03 μm, 0.03-0.05 μm, 0.05-0.10 μm, and 0.10-0.30 μm, acute MI hospitalizations increased by 6.68% (95% CI 2.77-10.74), 6.53% (95% CI 2.08-11.17), 5.78% (95% CI 0.92-10.88%), and 5.92% (95% CI 1.31-10.74), respectively.	
Kuźma, 2020	2,645 acute coronary syndrome hospital admissions	NO$_2$	The increase in the number of acute coronary syndrome hospitalizations was associated with an IQR increase in NO$_2$, with an OR of 1.08 (95% CI 1.02-1.15), 1.09 (95% CI 1.01-1.18), and 1.11 (95% CI 1.00-1.22) for patients with acute coronary syndrome, non-ST-segment elevation MI, and unstable angina, respectively.	
Wang, 2020	45,714 CVD hospitalizations	PM$_{2.5}$, PM$_{10}$	A 10 µg/m3 acute increase in PM$_{2.5}$ and PM$_{10}$ contributed to a 1.01% (95% CI 0.67-1.34) and 0.48% (95% CI 0.26-0.70) increase in CVD hospitalizations, respectively.	
So, 2020	24,541 females	PM$_{2.5}$, PM$_{10}$	PM$_{2.5}$ was associated with CVD mortality (HR 1.14, 95% CI 1.03-1.26 per IQR increase). A similar association was found for PM$_{10}$.	
Phosri, 2020	Citywide CV hospital admissions	PM$_{10}$	Acute changes in PM$_{10}$ were associated with increased risk of CV hospital admissions.	
Mueller, 2020	7,752 IHD and 14,228 CBVD hospital visits	PM$_{10}$	IRRs for acute increases in PM$_{10}$ and outpatient visits were 1.020 for CBVD (95% CI 1.004-1.035) and 0.994 (95% CI 0.974-1.014) for IHD.	
Author, Year	Study Design	PM_{2.5} Constituents	Findings	
-------------	-------------	-------------------------------	----------	
Yang, 2020	Nationwide study (161 communities)	PM_{2.5} constituents	Acute changes in elemental carbon, nitrate, organic carbon, ammonium, and sulfate were related to risk of CV and MI mortality.	
Rodins, 2020	4,105 subjects	NO₂, PM₁₀, PM_{2.5}	No association between air pollutants and risk of CHD was observed.	
Hystad, 2020	157,436 subjects	PM_{2.5}	A 10 μg/m³ increase in PM_{2.5} was associated with increased risk of CVD events (HR 1.05, 95% CI 1.03-1.07), MI (HR 1.03, 95% CI 1.00-1.05), stroke (HR 1.07, 95% CI 1.04-1.10), and CVD mortality (HR 1.03, 95% CI 1.00-1.05).	
Wang, 2020	56,827 CV emergency ambulance dispatches	PM_{2.5}, PM_{2.5-10}, PM₁₀	A 10 μg/m³ increase in PM_{2.5}, PM_{2.5-10}, and PM₁₀ was associated with an increase of 0.69% (95% CI 0.00-1.39), 2.04% (95% CI 0.64-3.45), and 0.60% (95% CI 0.11-1.10) in CV emergency ambulance dispatches.	
Tapia, 2020	86,970 cardiorespiratory deaths	PM_{2.5}	An acute increase per 10 μg/m³ in PM_{2.5} was associated with cardiorespiratory mortality (RR 1.029, 95% CI 1.01-1.05).	
Cramer, 2020	22,882 females	PM_{2.5}, PM₁₀	PM_{2.5} (HR 1.35, 95% CI 1.01-1.81) and PM₁₀ (HR 1.35, 95% CI 1.01-1.81) was associated with increased risk of fatal MI.	
Dahlquist, 2020	8,899 subjects	PM_{2.5}	Acute increases in PM_{2.5} increased the risk of AF.	
Li, 2020	118,229 subjects	PM_{2.5}	Per 10 μg/m³ increase in PM_{2.5}, for total CHD the HR was 1.43 (95% CI 1.35-1.51), for nonfatal CHD the HR was 1.45 (95% CI 1.36-1.56), and for fatal CHD the HR was 1.38 (95% CI 1.25-1.53).	
Liang, 2020	116,972 subjects	PM_{2.5}	Per 10 μg/m³ increase in PM_{2.5}, the HRs were 1.251 (95% CI 1.220-1.283) for CVD incidence and 1.164 (95% CI 1.117-1.213) for CVD mortality.	
Gestro, 2020	1,625 emergency department admissions for acute coronary	PM_{2.5}	Acute increases in PM_{2.5} increased the risk of emergency department admissions for acute coronary syndrome.	
Study	Number	Exposure	Effect of Exposure	
---------------	-------------------------	----------	--------------------	
Kim, 2020	38,928 OHCA	PM$_{2.5}$	Acute changes in PM$_{2.5}$ was associated with a higher risk of OHCA (1.59%, 95% CI 1.51-1.66 per 10 μg/m3 increase).	
Yang, 2020	1,016,579 outpatients	PM$_{2.5}$	An increase per 10 μg/m3 in PM$_{2.5}$ was associated with a 0.584% (95% CI 0.346-0.689) increase in cardiac arrhythmias.	
Choi, 2020	40,899 cancer survivors	PM$_{2.5}$	PM$_{2.5}$ was associated with greater risk of CVD (HR 1.31, 95% CI 1.07-1.59).	
Kojima, 2020	103,189 OHCA	PM$_{2.5}$	A 10 μg/m3 increase in PM$_{2.5}$ was associated with a 1.6% increase in OHCA.	
Yan, 2020	37,386 subjects	SO$_2$	HR of hypertension incidence for a 10 μg/m3 increase in SO$_2$ was 1.176 (95% CI 1.163-1.189).	
Yang, 2020	116,821 subjects	PM$_{2.5}$	A 10 μg/m3 increase in PM$_{2.5}$ resulted in a HR of 1.22 (95% CI 1.16-1.27) for cardiometabolic mortality.	
Wang, 2020	53 million Medicare beneficiaries	PM$_{2.5}$	A 10 μg/m3 increase in PM$_{2.5}$ was associated with an 8.8% increase in CVD deaths.	
Ishii, 2020	137,678 acute MI cases	PM$_{2.5}$	Acute increases per 10 μg/m3 in PM$_{2.5}$ were associated with admission for acute MI, MI with nonobstructive coronary arteries, and MI with CAD.	
Liu, 2020	306,963 CVD hospital admissions	PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$	CVD hospitalizations were increased by 0.401% (95% CI 0.029-0.775), 0.316% (95% CI 0.086-0.547), 0.903% (95% CI 0.252-1.559), and 2.647% (95% CI 1.607-3.697) per 10 μg/m3 acute increase in PM$_{2.5}$, PM$_{10}$, SO$_2$, and NO$_2$, respectively.	
Zhao, 2020	249,372 OHCA	PM$_{2.5}$, CO, O$_{3}$, SO$_2$	PM$_{2.5}$, CO, O$_{3}$, and, SO$_2$ were associated with OHCA.	
Qiu, 2020	hospital admissions due to acute MI (156,717), congestive HF	PM$_{2.5}$	A 10 μg/m3 acute increase in PM$_{2.5}$ exposure was associated with an increase of 4.3% (95% CI 2.2-6.4) in acute MI hospital admission rate, 3.9% (95% CI 2.4-5.5) in congestive HF rate, and 2.6% (95% CI 0.4-4.7) in ischemic stroke rate.	
Study	Number of Subjects/Events	Exposure	Effect Size	Reference
------------------	---------------------------	----------	-------------	-----------
Kim, 2020	436,933 subjects	PM$_{2.5}$	An increase per 10 μg/m3 in PM$_{2.5}$ increased CV mortality by 4.7% (95% CI 3.6-5.8).	169
Chen, 2020	1,335 cases of acute aortic dissections	PM$_{2.5}$	A 10 μg/m3 acute increase in PM$_{2.5}$ was associated with a 3.38% (95% CI 1.02-5.79) increase in acute aortic dissection hospitalizations.	170
Zhu, 2020	Citywide CV hospitalizations	Combination of PM$_{2.5}$, PM$_{coarse}$, CO, SO$_{2}$, NO$_{2}$, O$_{3}$	An acute increase per 10 μg/m3 in multiple air pollutants increased the emergency department visits for CV causes by 4.36% (95% CI 1.06-7.76).	171
Nhung, 2020	135,101 hospital records	PM$_{2.5}$	Acute increases in PM$_{2.5}$ per IQR increase were associated with a 6.3% (95% CI 3.0-9.8) increase in admissions for IHD and 23.2% (95% CI 11.1-36.5) for HF.	172
Lefler, 2019	635,539 subjects	PM$_{2.5}$, PM$_{2.5-10}$, SO$_{2}$	PM$_{2.5}$, PM$_{2.5-10}$, and SO$_{2}$ were associated with increased risk of cardiopulmonary and all-cause mortality.	173
Wei, 2019	95,277,169 hospital admissions	PM$_{2.5}$	Acute increases in PM$_{2.5}$ were associated with increased CV hospital admissions.	174
Lee, 2019	670 patients hospitalized with the first onset of AF	PM$_{2.5}$	The occurrence of AF was associated with acute increases in PM$_{2.5}$.	175
Lim, 2019	548,780 subjects	O$_{3}$	O$_{3}$ was associated with deaths caused by CVD (HR 1.03, 95% CI 1.01-1.06 per 10 ppb increase) and IHD (HR 1.06, 95% CI 1.02-1.09).	176
Weaver, 2019	2,192 cardiac catheterization patients	PM$_{2.5}$	PM$_{2.5}$ was related to CAD, MI, and hypertension.	177

PM$_{(diameter\ size)}$: Particulate matter, OR: Odds ratio, CAD: Coronary artery disease, CI: Confidence interval, IQR: Interquartile range, MI: Myocardial infarction, BC: Black carbon, CO: Carbon monoxide, SO$_{2}$: Sulfur oxides, CVD: Cardiovascular disease, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, HF: Heart failure, HR: Hazard ratio, CHD: Coronary heart disease, SO$_{2}$: Sulfur dioxide, IHD:
Ischemic heart disease, NO₂: Nitrogen dioxide, RR: Relative risk, COPD: Chronic obstructive pulmonary disease, O₃: Ozone, AF: Atrial fibrillation, NOₓ: Nitrogen oxides, CBVD: Cerebrovascular disease, IRR: Incidence rate ratio, OHCA: Out-of-hospital cardiac arrest, Oₓ: Photochemical oxidants

Suppl. Table S5. Animal in vivo studies on association of cardiovascular and endothelial dysfunction, inflammation, or oxidative stress with air pollution. Articles before 2013 are reviewed in ¹⁷⁸, ¹⁷⁹. Only articles that are not mentioned in the main article text are listed here.

First author / year	Animals and model	Air pollutants	Major outcomes	Ref
Ying, 2013	Wildtype and ApoE⁻/⁻ mice	Whole body concentrated ambient PM₂.₅ (68 µg/m³) and/or Ni (450 ng/m³) for 2 weeks	A strong inflammatory response (TNF-α, IL-6, MCP-1, E-selectin, VCAM-1) in mice exposed to concentrated ambient PM₂.₅ was observed. Ni exposure led to altered endothelial function (ACh)	¹⁸⁰
Study	Species	Treatment	Exposure	Outcome
-------	---------	-----------	----------	---------
Robertson, 2013	C57BL/6 wildtype and CD36−/− mice	Filtered air (FA) or 1 ppm O₃ for 4h.	6 h/d, 5 d/w	Compared to identical exposure to FA in WT mice, O₃ induced a reduction (by 85%) in Ach dependent relaxation. CD36−/− mice were robust against the O₃-induced alterations of Ach-dependent vasorelaxation in aortic rings. When compared with serum from WT mice exposed to a single dose of ozone, ex-vivo incubation of WT aortic rings with serum from CD36−/− mice exposed to ozone induced the same degree of vasodilatory impairment.
Chen, 2013	Wildtype and ApoE−/− mice	Ambient particulate matter (PM) or filtered air continuously for 2 months	Diesel exhaust particulate exposure increased total cholesterol, LDL, TNF-alpha and C-reactive protein as well as TNF-alpha and IL-6 in bronchoalveolar lavage. Analysis of aortic arch indicated plaque area in PM-exposed group increased significantly compared to filtered air group.	
Miller, 2013	Wildtype and ApoE−/− mice	4 weeks of twice weekly oropharyngeal instillation of 35 μL diesel exhaust particulate or saline	In ApoE−/− mice treated with diesel exhaust particles, brachiocephalic atherosclerotic plaques were larger and had more plaques per section of artery and buried fibrous layers.	
Brocato, 2014	FVB/N mice	100 μg PM₁₀ (collected from Jeddah, Saudi Arabia) or water by aspiration	Increases in neutrophil concentration, TNF-alpha, and IL-6 levels were observed in mice exposed to PM₁₀. PM₁₀ induced genes involved in cholesterol and lipid metabolism, inflammation, and atherosclerosis.	
Paffett, 2015	Male Sprague-Dawley rats	Ozone (1 ppm) for 4h	Augmentations in broncho-alveolar lavage cellularity and neutrophil count and numbers of circulating neutrophils and macrophages in response to ozone exposure were observed. In rats exposed to ozone, the baseline coronary artery internal diameter was decreased and the percent increase in tone following isolation and mounting was elevated in the vessels. Likewise, in the ozone group coronary artery constriction in response to serotonin was more pronounced. Furthermore, ozone...	
Study	Species/Model	Exposure/Condition	Summary	
-------------	-------------------	--	---	
Vella, 2015	Wistar rats	Ozone (0.8 ppm for 16 h)	Insulin resistance was triggered by ozone exposure through muscle c-Jun N-terminal kinase activation, a process that was mirrored by toxic mediators in bronchoalveolar lavage fluids. Insulin resistance was prevented by pretreatment with the chemical chaperone 4-phenylbutyric acid, the antioxidant N-acetylcysteine, or the JNK inhibitor SP600125, indicating that ozone sequentially triggered oxidative stress, ER stress, and JNK activation leading to impaired insulin signaling in muscle. These data suggest that ozone could boost the development of diabetes.	
Cui, 2015	C57BL/6 mice	PM$_4$ (10 µg) 3x per week for 1 month	PM administration decreased the levels of bone marrow-derived stem cells accompanied by increased ROS formation, impaired Akt activation, increased inflammation (TNF-α, IL-1β) and proliferation of stem cells (with or without induction of apoptosis – see the different results in the 2 references). Antioxidant treatment with N-acetylcysteine treatment or transgenic overexpression of 3 antioxidant enzymes (SOD1, SOD3, GPx-1) lead to reduced ROS formation, inflammatory mediators and prevented PM-triggered decrease in stem cell levels by restored Akt activity.	
Wei, 2016	Pregnant Sprague Dawley rats	Ambient traffic air pollutants (field experiment in Beijing with cages placed at a main road: PM$_{2.5}$ was 73.5 µg/m3 over 2 weeks)	The risks of obesity and metabolic syndrome in rats and their offspring were increased by chronic exposure to air pollution particles. In dams and offspring chronic exposure to unfiltered traffic air pollutants increased tissue and systemic oxidative stress, increased perivascular and peribronchial inflammation in the lungs, induced dyslipidemia, and led to a pronounced proinflammatory status of epididymal fat. These results suggested that TLR2/4-dependent inflammatory activation and lipid oxidation	
in the lung can spill over systemically, resulting in inherited metabolic dysfunction and weight gain.

Study	Genotype	Treatment	Observations
Haberzettl, 2016	C57Bl/6 wildtype and lung-specific ecSOD^{tg} mice	Whole body concentrated ambient PM_{2.5} or filtered air for 9 or 30 days.	9-day PM_{2.5} exposure was shown to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta) in control diet-fed mice. Treatment with the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or lung-specific overexpression of ecSOD prevented PM_{2.5}-induced vascular insulin resistance and inflammation.
Zhong, 2016	Diabetes-prone KK mice	Ozone (0.5 ppm for 4 h/d, 5 d/week for 3 weeks)	O₃ exposure in KK mice induced an impaired insulin response as indicated by decreased plasma insulin and leptin levels. Chronic O₃ exposure was associated with lung inflammation and increased monocytes/macrophages in both blood and visceral adipose tissue with more inflammatory monocytes/macrophages at the systemic and local level along with higher CD4+ T cell activation. Multiple inflammatory genes including CXCL-11, IFN-γ, TNF-α, IL-12, and iNOS as well as oxidative stress-related genes such as Cox4, Cox5a, Scd1, Nrf1, and Nrf2 were up-regulated in visceral adipose tissue of mice exposed to O₃.
Orona, 2016	BALB/c mice	UAP-BA and ROFA via intranasal instillation (1 mg/kg)	Local and systemic inflammatory responses were induced by acute exposure to Buenos Aires air particles (UAP-BA) and Residual Oil Fly Ash (ROFA) in middle-aged mice. This was evident by reduced alveolar area in the lung, epicard inflammation in the heart, higher IL-6 levels, and reduced paraoxonase 1 expression in serum as well as elevated systemic oxidative stress markers.
Wang, 2018	Wildtype and AMPKα2^{−/−} mice	PM_{2.5} (64 µg/m³ for 6 months)	AMPKα2 deficiency exacerbated chronic PM_{2.5} exposure-induced cardiac dysfunction and lung injury as mirrored by severe fibrotic lung injury and left ventricular dysfunction in AMPKα2^{−/−} mice as compared to wildtype mice. Lungs and heart of AMPKα2^{−/−} mice exposed to PM_{2.5} showed lower levels of peroxiredoxin 5 and
Reference	Species	Exposure	Findings
-----------	---------	----------	----------
Guan, 2018	Sprague-Dawley rats	PM$_{2.5}$ or filtered air for 6 or 12 weeks	Middle cerebral artery (MCA) narrowing and thickening in relation with pronounced expression of inflammatory cytokines were induced by PM$_{2.5}$ exposure for 12, but not 6 weeks. Omega-3 fatty acids significantly attenuated vascular alterations and inflammatory cytokine expression, without favorable changes in lipid profiles.
Rao, 2019	Wildtype and brain-specific Adra$_{2b}$tg mice	Concentrated ambient PM$_{2.5}$ (8 to 10-fold enrichment of ambient air; 6 h/d, 5 d/week, for 12 weeks)	Fine ambient particulate matter (PM$_{2.5}$) induced behavior changes and increased blood pressure synergistically in high salt diet treated mice via upregulation of the α2B-adrenergic receptor in the brain of wildtype mice. Inflammatory genes (TLR2, TLR4 and IL-6) as well as antioxidant genes (SOD1, NQO1, Nrf2 and Gclm) were induced in the brain of PM$_{2.5}$-exposed wildtype mice. Brain-specific overexpression of the α2B-adrenergic receptor further aggravated the adverse effects of PM$_{2.5}$.
Gao, 2020	Wildtype and AMPKα2$^{-/-}$ mice	PM$_{2.5}$ (10 mg/kg/d via intratracheal instillation) for 4 weeks, metformin (300 mg/kg/d)	PM$_{2.5}$-induced lung injury and cardiac dysfunction were prevented by metformin independent of AMP-activated protein kinase α2. In both the wildtype and AMPKα2$^{-/-}$ mice, metformin also decreased systemic and pulmonary inflammation, suppressed induction of pulmonary and myocardial fibrosis and oxidative stress, preserved left ventricular ejection fraction, and increased levels of mitochondrial antioxidant enzymes.
Hill, 2021	Wildtype and lung-specific ecSODtg mice	Concentrated ambient PM$_{2.5}$ (60 or 100 µg/m3 for 9 d)	Fine particulate matter (PM$_{2.5}$) inhalation caused alterations in the plasma lipidome in wildtype mice leading to vascular inflammation and insulin resistance. PM$_{2.5}$ increased plasma levels of palmitate, myristate and palmitoleate but reduced a number of phospholipids. These PM2.5-induced changes were prevented in lung-specific ecSODtg mice.
References

1. Roca-Barcelo A, Nardocci A, de Aguiar BS, Ribeiro AG, Failla MA, Hansell AL, Cardoso MR, Piel FB. Risk of cardiovascular mortality, stroke and coronary heart mortality associated with aircraft noise around Congonhas airport, Sao Paulo, Brazil: a small-area study. *Environmental health : a global access science source* 2021;20:59.

2. Kupcikova Z, Fecht D, Ramakrishnan R, Clark C, Cai YS. Road traffic noise and cardiovascular disease risk factors in UK Biobank. *Eur Heart J* 2021;42:2072-2084.

3. Yankoty LI, Gamache P, Plante C, Goudreau S, Blais C, Perron S, Fournier M, Ragettli MS, Fallah-Shorshani M, Hatzopoulou M, Liu Y, Smargiassi A. Manuscript title: Long horizontal line term residential exposure to environmental/transportation noise and the incidence of myocardial infarction. *Int J Hyg Environ Health* 2021;232:113666.

4. Gilani TA, Mir MS. Association of road traffic noise exposure and prevalence of coronary artery disease: A cross-sectional study in North India. *Environ Sci Pollut Res Int* 2021.

5. Saucy A, Schaffer B, Tangermann L, Vienneau D, Wunderli JM, Roosli M. Does night-time aircraft noise trigger mortality? A case-crossover study on 24 886 cardiovascular deaths. *Eur Heart J* 2021;42:835-843.
6. Baudin C, Lefevre M, Babisch W, Cadum E, Champelovier P, Dimakopoulou K, Houthuijs D, Lambert J, Laumon B, Pershagen G, Stansfeld S, Velonaki V, Hansell AL, Evrard AS. The role of aircraft noise annoyance and noise sensitivity in the association between aircraft noise levels and medication use: results of a pooled-analysis from seven European countries. *BMC Public Health* 2021;21:300.

7. Osborne MT, Radfar A, Hassan MZO, Abohashem S, Oberfeld B, Patrich T, Tung B, Wang Y, Ishai A, Scott JA, Shin LM, Fayad ZA, Koenen KC, Rajagopalan S, Pitman RK, Tawakol A. A neurobiological mechanism linking transportation noise to cardiovascular disease in humans. *Eur Heart J* 2020;41:772-782.

8. Bai L, Shin S, Oiamo TH, Burnett RT, Weichenthal S, Jerrett M, Kwong JC, Copes R, Kopp A, Chen H. Exposure to Road Traffic Noise and Incidence of Acute Myocardial Infarction and Congestive Heart Failure: A Population-Based Cohort Study in Toronto, Canada. *Environmental health perspectives* 2020;128:87001.

9. Thacher JD, Hvidtfeldt UA, Poulsen AH, Raaschou-Nielsen O, Ketzel M, Brandt J, Jensen SS, Overvad K, Tjonneland A, Munzel T, Sorensen M. Long-term residential road traffic noise and mortality in a Danish cohort. *Environmental research* 2020;187:109633.

10. Thacher JD, Poulsen AH, Roswall N, Hvidtfeldt U, Raaschou-Nielsen O, Jensen SS, Ketzel M, Brandt J, Overvad K, Tjonneland A, Munzel T, Sorensen M. Road Traffic Noise Exposure and Filled Prescriptions for Antihypertensive Medication: A Danish Cohort Study. *Environmental health perspectives* 2020;128:57004.

11. Andersson EM, Ogren M, Molnar P, Segersson D, Rosengren A, Stockfelt L. Road traffic noise, air pollution and cardiovascular events in a Swedish cohort. *Environmental research* 2020;185:109446.

12. Shin S, Bai L, Oiamo TH, Burnett RT, Weichenthal S, Jerrett M, Kwong JC, Goldberg MS, Copes R, Kopp A, Chen H. Association Between Road Traffic Noise and Incidence of Diabetes Mellitus and Hypertension in Toronto, Canada: A Population-Based Cohort Study. *Journal of the American Heart Association* 2020;9:e013021.

13. Baudin C, Lefevre M, Babisch W, Cadum E, Champelovier P, Dimakopoulou K, Houthuijs D, Lambert J, Laumon B, Pershagen G, Stansfeld S, Velonaki V, Hansell A, Evrard AS. The role of aircraft noise annoyance and noise sensitivity in the association between aircraft noise levels and hypertension risk: Results of a pooled analysis from seven European countries. *Environmental research* 2020;191:110179.

14. Pyko A, Andersson N, Eriksson C, de Faire U, Lind T, Mitkovskaya N, Ogren M, Ostenson CG, Pedersen NL, Rizzuto D, Wallas AK, Pershagen G. Long-term transportation noise exposure and incidence of ischaemic heart disease and stroke: a cohort study. *Occupational and environmental medicine* 2019;76:201-207.

15. Heritier H, Vienneau D, Foraster M, Eze IC, Schaffner E, de Hoogh K, Thiesse L, Rudzik F, Habermacher M, Kopfli M, Pieren R, Brink M, Cajochen C, Wunderli JM, Probst-Hensch N, Roosli M. A systematic analysis of mutual effects of transportation noise and air pollution exposure on myocardial infarction mortality: a nationwide cohort study in Switzerland. *Eur Heart J* 2019;40:598-603.
16. Heritier H, Vienneau D, Foraster M, Eze IC, Schaffner E, Thiesse L, Ruzdik F, Habermacher M, Kopfli M, Pieren R, Schmidt-Trucksass A, Brink M, Cajochein C, Wunderli JM, Probst-Hensch N, Roosli M, group SNCs. Diurnal variability of transportation noise exposure and cardiovascular mortality: A nationwide cohort study from Switzerland. *Int J Hyg Environ Health* 2018;**221**:556-563.

17. Pyko A, Lind T, Mitkovskaya N, Ogren M, Ostenson CG, Wallas A, Pershagen G, Eriksson C. Transportation noise and incidence of hypertension. *Int J Hyg Environ Health* 2018;**221**:1133-1141.

18. Yang WT, Wang VS, Chang LT, Chuang KJ, Chuang HC, Liu CS, Bao BY, Chang TY. Road Traffic Noise, Air Pollutants, and the Prevalence of Cardiovascular Disease in Taichung, Taiwan. *International journal of environmental research and public health* 2018;**15**.

19. Cai Y, Hodgson S, Blangiardo M, Gulliver J, Morley D, Fecht D, Vienneau D, de Hoogh K, Key T, Hveem K, Elliott P, Hansell AL. Road traffic noise, air pollution and incident cardiovascular disease: A joint analysis of the HUNT, EPIC-Oxford and UK Biobank cohorts. *Environ Int* 2018;**114**:191-201.

20. Hahad O, Beutel M, Gori T, Schulz A, Blettner M, Pfeiffer N, Rostock T, Lackner K, Sorensen M, Prochaska JH, Wild PS, Munzel T. Annoyance to different noise sources is associated with atrial fibrillation in the Gutenberg Health Study. *Int J Cardiol* 2018;**264**:79-84.

21. Heritier H, Vienneau D, Foraster M, Eze IC, Schaffner E, Thiesse L, Rudzik F, Habermacher M, Kopfli M, Pieren R, Brink M, Cajochein C, Wunderli JM, Probst-Hensch N, Roosli M, group SNCs. Transportation noise exposure and cardiovascular mortality: a nationwide cohort study from Switzerland. *European journal of epidemiology* 2017;**32**:307-315.

22. Zeeb H, Hegewald J, Schubert M, Wagner M, Droge P, Swart E, Seidler A. Traffic noise and hypertension - results from a large case-control study. *Environmental research* 2017;**157**:110-117.

23. Fuks KB, Weinmayr G, Basagana X, Gruzieve O, Hampel R, Oftedal B, Sorensen M, Wolf K, Aamodt G, Aasvang GM, Aguilera I, Becker T, Beelen R, Brunekreef B, Caracciolo B, Cyrys J, Elsoua R, Eriksen KT, Foraster M, Fratiglioni L, Hilding A, Houthuijs D, Korek M, Kunzli N, Marrugat J, Nieuwenhuijsen M, Ostenson CG, Penell J, Pershagen G, Raaschou-Nielsen O, Swart WJR, Peters A, Hoffmann B. Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). *Eur Heart J* 2017;**38**:983-990.

24. Pitchika A, Hampel R, Wolf K, Kraus U, Cyrys J, Babisch W, Peters A, Schneider A. Long-term associations of modeled and self-reported measures of exposure to air pollution and noise at residence on prevalent hypertension and blood pressure. *The Science of the total environment* 2017;**593-594**:337-346.

25. Roswall N, Raaschou-Nielsen O, Ketzel M, Gammelmark A, Overvad K, Olsen A, Sorensen M. Long-term residential road traffic noise and NO2 exposure in relation to risk of incident myocardial infarction - A Danish cohort study. *Environmental research* 2017;**156**:80-86.
26. Evrard AS, Lefevre M, Champelovier P, Lambert J, Laumon B. Does aircraft noise exposure increase the risk of hypertension in the population living near airports in France? *Occupational and environmental medicine* 2017;74:123-129.

27. Dimakopoulou K, Koutentakis K, Papageorgiou I, Kasdagli M, Haralabidis AS, Sourtzi P, Samoli E, Houthuijs D, Swart W, Hansell AL, Katsouyanni K. Is aircraft noise exposure associated with cardiovascular disease and hypertension? Results from a cohort study in Athens, Greece. *Occupational and environmental medicine* 2017;74:830-837.

28. Sorensen M, Wendelboe Nielsen O, Sajadieh A, Ketzel M, Tjonneland A, Overvad K, Raaschou-Nielsen O. Long-Term Exposure to Road Traffic Noise and Nitrogen Dioxide and Risk of Heart Failure: A Cohort Study. *Environ Health Perspect* 2017;125:097021.

29. Seidler A, Wagner M, Schubert M, Droge P, Pons-Kuhnemann J, Swart E, Zeeb H, Hegewald J. Myocardial Infarction Risk Due to Aircraft, Road, and Rail Traffic Noise. *Deutsches Arzteblatt international* 2016;113:407-414.

30. Recio A, Linares C, Banegas JR, Diaz J. The short-term association of road traffic noise with cardiovascular, respiratory, and diabetes-related mortality. *Environmental research* 2016;150:383-390.

31. Monrad M, Sajadieh A, Christensen JS, Ketzel M, Raaschou-Nielsen O, Tjonneland A, Overvad K, Loft S, Sorensen M. Residential exposure to traffic noise and risk of incident atrial fibrillation: A cohort study. *Environ Int* 2016;92-93:457-463.

32. Sorensen M, Hvidberg M, Andersen ZJ, Nordsborg RB, Lillegard KG, Jakobsen J, Tjonneland A, Overvad K, Raaschou-Nielsen O. Road traffic noise and stroke: a prospective cohort study. *Eur Heart J* 2011;32:737-744.

33. Beelen R, Hoek G, Houthuijs D, van den Brandt PA, Goldbohm RA, Fischer P, Schouten LJ, Armstrong B, Brunekreef B. The joint association of air pollution and noise from road traffic with cardiovascular mortality in a cohort study. *Occupational and environmental medicine* 2009;66:243-250.

34. Riggs DW, Yeager R, Conklin DJ, DeJarnett N, Keith RJ, DeFilippis AP, Rai SN, Bhatnagar A. Residential proximity to greenness mitigates the hemodynamic effects of ambient air pollution. *Am J Physiol Heart Circ Physiol* 2021;320:H1102-H1111.

35. Liu J, Chen X, Qiu X, Zhang H, Lu X, Li H, Chen W, Zhang L, Que C, Zhu T. Association between exposure to polycyclic aromatic hydrocarbons and lipid peroxidation in patients with chronic obstructive pulmonary disease. *The Science of the total environment* 2021;780:146660.

36. Ni Y, Tracy RP, Cornell E, Kaufman JD, Szpiro AA, Campen MJ, Vedal S. Short-term exposure to air pollution and biomarkers of cardiovascular effect: A repeated measures study. *Environ Pollut* 2021;279:116893.

37. Nassan FL, Wang C, Kelly RS, Lasky-Su JA, Vokonas PS, Koutrakis P, Schwartz JD. Ambient PM2.5 species and ultrafine particle exposure and their differential metabolomic signatures. *Environ Int* 2021;151:106447.

38. Mann JK, Lutzker L, Holm SM, Margolis HG, Neophytou AM, Eisen EA, Costello S, Tyner T, Holland N, Tindula G, Prunicki M, Nadeau K, Noth EM, Lurmann F, Hammond SK, Balmes JR. Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children. *Environmental research* 2021;195:110870.
39. Hennig F, Geisel MH, Kalsch H, Lucht S, Mahabadi AA, Moebus S, Erbel R, Lehmann N, Jockel KH, Scherag A, Hoffmann B, Heinz Nixdorf Recall Study Investigative G. Air Pollution and Progression of Atherosclerosis in Different Vessel Beds-Results from a Prospective Cohort Study in the Ruhr Area, Germany. *Environmental health perspectives* 2020;128:107003.

40. Hennig F, Moebus S, Reinsch N, Budde T, Erbel R, Jockel KH, Lehmann N, Hoffmann B, Kalsch H, Heinz Nixdorf Recall Study Investigative G. Investigation of air pollution and noise on progression of thoracic aortic calcification: results of the Heinz Nixdorf Recall Study. *Eur J Prev Cardiol* 2020;27:965-974.

41. Prunicki M, Cauwenberghs N, Ataam JA, Movassagh H, Kim JB, Kuznetsova T, Wu JC, Maecker H, Haddad F, Nadeau K. Immune biomarkers link air pollution exposure to blood pressure in adolescents. *Environmental health : a global access science source* 2020;19:108.

42. Salimi S, Yanosky JD, Huang D, Montressor-Lopez J, Vogel R, Reed RM, Mitchell BD, Puett RC. Long-term exposure to particulate air pollution and brachial artery flow-mediated dilation in the Old Order Amish. *Environmental health : a global access science source* 2020;19:50.

43. Riggs DW, Zafar N, Krishnasamy S, Yeager R, Rai SN, Bhatnagar A, O'Toole TE. Exposure to airborne fine particulate matter is associated with impaired endothelial function and biomarkers of oxidative stress and inflammation. *Environmental research* 2020;180:108890.

44. Li J, Zhou C, Xu H, Brook RD, Liu S, Yi T, Wang Y, Feng B, Zhao M, Wang X, Zhao Q, Chen J, Song X, Wang T, Liu S, Zhang Y, Wu R, Gao J, Pan B, Pennathur S, Rajagopalan S, Huo Y, Zheng L, Huang W. Ambient Air Pollution Is Associated With HDL (High-Density Lipoprotein) Dysfunction in Healthy Adults. *Arterioscler Thromb Vasc Biol* 2019;39:513-522.

45. Lin Y, Ramanathan G, Zhu Y, Yin F, Rea ND, Lu X, Tseng CH, Faull KF, Yoon AJ, Jerrett M, Zhu T, Qiu X, Araujo JA. Pro-Oxidative and Proinflammatory Effects After Traveling From Los Angeles to Beijing: A Biomarker-Based Natural Experiment. *Circulation* 2019;140:1995-2004.

46. Yang S, Lee SP, Park JB, Lee H, Kang SH, Lee SE, Kim JB, Choi SY, Kim YJ, Chang HJ. PM2.5 concentration in the ambient air is a risk factor for the development of high-risk coronary plaques. *Europace* 2019;20:1355-1364.

47. Morishita M, Wang L, Speth K, Zhou N, Bard RL, Li F, Brook JR, Rajagopalan S, Brook RD. Acute Blood Pressure and Cardiovascular Effects of Near-Roadway Exposures With and Without N95 Respirators. *Am J Hypertens* 2019;32:1054-1065.

48. Balmes JR, Arjomandi M, Bromberg PA, Costantini MG, Dagincourt N, Hazucha MJ, Hollenbeck-Pringle D, Rich DQ, Stark P, Frampton MW. Ozone effects on blood biomarkers of systemic inflammation, oxidative stress, endothelial function, and thrombosis: The Multicenter Ozone Study in oldEr Subjects (MOSES). *PLoS One* 2019;14:e0222601.

49. Han Y, Wang Y, Li W, Chen X, Xue T, Chen W, Fan Y, Qiu X, Zhu T. Susceptibility of prediabetes to the health effect of air pollution: a community-based panel study with a nested case-control design. *Environmental health : a global access science source* 2019;18:65.
Xia B, Zhou Y, Zhu Q, Zhao Y, Wang Y, Ge W, Yang Q, Wang P, Si J, Luo R, Li J, Shi H, Zhang Y. Personal exposure to PM2.5 constituents associated with gestational blood pressure and endothelial dysfunction. *Environ Pollut* 2019;250:346-356.

Li W, Dorans KS, Wilker EH, Rice MB, Ljungman PL, Schwartz JD, Coull BA, Koutrakis P, Gold DR, Keaney JF, Jr., Vasan RS, Benjamin EJ, Mittleman MA. Short-term exposure to ambient air pollution and circulating biomarkers of endothelial cell activation: The Framingham Heart Study. *Environmental research* 2019;171:36-43.

Ljungman PLS, Li W, Rice MB, Wilker EH, Schwartz J, Gold DR, Koutrakis P, Benjamin EJ, Vasan RS, Mitchell GF, Hamburg NM, Mittleman MA. Long- and short-term air pollution exposure and measures of arterial stiffness in the Framingham Heart Study. *Environ Int* 2018;121:139-147.

Zhang S, Wolf K, Breitner S, Kronenberg F, Stafoggia M, Peters A, Schneider A. Long-term effects of air pollution on ankle-brachial index. *Environ Int* 2018;118:17-25.

Choi BG, Lee J, Kim SW, Lee MW, Baek MJ, Ryu YG, Choi SY, Byun JK, Mashaly A, Park Y, Jang WY, Kim W, Choi JY, Park EJ, Na JO, Choi CU, Lim HE, Kim EJ, Park CG, Seo HS, Oh DJ, Rha SW. The association of chronic air pollutants with coronary artery spasm, vasospastic angina, and endothelial dysfunction. *Coron Artery Dis* 2018;29:336-343.

Dorans KS, Wilker EH, Li W, Rice MB, Ljungman PL, Schwartz J, Coull BA, Kloog I, Koutrakis P, D'Agostino RB, Massaro JM, Hoffmann U, O'Donnell CJ, Mittleman MA. Residential proximity to major roads, exposure to fine particulate matter and aortic calcium: the Framingham Heart Study, a cohort study. *BMJ open* 2017;7:e013455.

Li W, Dorans KS, Wilker EH, Rice MB, Ljungman PL, Schwartz JD, Coull BA, Koutrakis P, Gold DR, Keaney JF, Jr., Vasan RS, Benjamin EJ, Mittleman MA. Short-Term Exposure to Ambient Air Pollution and Biomarkers of Systemic Inflammation: The Framingham Heart Study. *Arterioscler Thromb Vasc Biol* 2017;37:1793-1800.

Day DB, Xiang J, Mo J, Li F, Chung M, Gong J, Wenschler CJ, Omhman-Strickland PA, Sundell J, Weng W, Zhang Y, Zhang JJ. Association of Ozone Exposure With Cardiorespiratory Pathophysiologic Mechanisms in Healthy Adults. *JAMA Intern Med* 2017;177:1344-1353.

Mirowsky JE, Carraway MS, Dhandha R, Tong H, Neas L, Diaz-Sanchez D, Cascio W, Case M, Crooks J, Hauser ER, Elaine Dowdy Z, Kraus WE, Devlin RB. Ozone exposure is associated with acute changes in inflammation, fibrinolysis, and endothelial cell function in coronary artery disease patients. *Environmental health: a global access science source* 2017;16:126.

Endes S, Schaffner E, Cavelizel S, Dratva J, Stolz D, Schindler C, Kunzli N, Schmidt-Trucksass A, Probst-Hensch N. Is physical activity a modifier of the association between air pollution and arterial stiffness in older adults: The SAPALDIA cohort study. *Int J Hyg Environ Health* 2017;220:1030-1038.

Kaufman JD, Adar SD, Barr RG, Budoff M, Burke GL, Curl CL, Daviuglis ML, Diez Roux AV, Gassett AJ, Jacobs DR, Jr., Kronmal R, Larson TV, Navas-Acien A, Olives C, Sampson PD, Sheppard L, Siscovich DS, Stein JH, Szpiro AA, Watson KE. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. *Lancet* 2016;388:696-704.
61. Pope CA, 3rd, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O'Toole T. Exposure to Fine Particulate Air Pollution Is Associated With Endothelial Injury and Systemic Inflammation. *Circ Res* 2016;119:1204-1214.

62. Zhang X, Staimer N, Tjoa T, Gillen DL, Schauer JJ, Shafer MM, Hasheminassab S, Pakbin P, Longhurst J, Sioutas C, Delfino RJ. Associations between microvascular function and short-term exposure to traffic-related air pollution and particulate matter oxidative potential. *Environmental health: a global access science source* 2016;15:81.

63. Wu S, Yang D, Pan L, Shan J, Li H, Wei H, Wang B, Huang J, Baccarelli AA, Shima M, Deng F, Guo X. Chemical constituents and sources of ambient particulate air pollution and biomarkers of endothelial function in a panel of healthy adults in Beijing, China. *The Science of the total environment* 2016;560-561:141-149.

64. Wu CF, Shen FH, Li YR, Tsao TM, Tsai MJ, Chen CC, Hwang JS, Hsu SH, Chao H, Chuang KJ, Chou CCK, Wang YN, Ho CC, Su TC. Association of short-term exposure to fine particulate matter and nitrogen dioxide with acute cardiovascular effects. *The Science of the total environment* 2016;569-570:300-305.

65. Provost EB, Louwies T, Cox B, Op 't Roodt J, Solmi F, Dons E, Int Panis L, De Boever P, Nawrot TS. Short-term fluctuations in personal black carbon exposure are associated with rapid changes in carotid arterial stiffening. *Environ Int* 2016;88:228-234.

66. Schmidt FP, Herzog J, Schnorbus B, Ostad MA, Lasetzki L, Hahad O, Schafers G, Gori T, Sorensen M, Daiber A, Munzel T. The impact of aircraft noise on vascular and cardiac function in relation to noise event number: a randomized trial. *Cardiovasc Res* 2021;117:1382-1390.

67. Hahad O, Wild PS, Prochaska JH, Schulz A, Lackner KJ, Pfeiffer N, Schmidtmann I, Michal M, Beutel M, Daiber A, Munzel T. Midregional pro atrial natriuretic peptide: a novel important biomarker for noise annoyance-induced cardiovascular morbidity and mortality? *Clin Res Cardiol* 2021;110:29-39.

68. Biel R, Danieli C, Shekarrizfard M, Minet L, Abrahamowicz M, Baumgartner J, Liu R, Hatzopoulou M, Weichenthal S. Acute cardiovascular health effects in a panel study of personal exposure to traffic-related air pollutants and noise in Toronto, Canada. *Scientific reports* 2020;10:16703.

69. Eze IC, Jeong A, Schaffner E, Rezwan FI, Ghantous A, Foraster M, Vienneau D, Kronenberg F, Herceg Z, Vineis P, Brink M, Wunderli JM, Schindler C, Cajochen C, Roosli M, Holloway JW, Imboden M, Probst-Hensch N. Genome-Wide DNA Methylation in Peripheral Blood and Long-Term Exposure to Source-Specific Transportation Noise and Air Pollution: The SAPALDIA Study. *Environmental health perspectives* 2020;128:67003.

70. Thiesse L, Rudzik F, Kraemer JF, Spiegel K, Leproult R, Wessel N, Pieren R, Heritier H, Eze IC, Foraster M, Garbazza C, Vienneau D, Brink M, Wunderli JM, Probst-Hensch N, Roosli M, Cajochen C. Transportation noise impairs cardiovascular function without altering sleep: The importance of autonomic arousals. *Environmental research* 2020;182:109086.

71. Herzog J, Schmidt FP, Hahad O, Mahmoudpour SH, Mangold AK, Garcia Andreo P, Prochaska J, Koeck T, Wild PS, Sorensen M, Daiber A, Munzel T. Acute exposure to nocturnal train noise induces endothelial dysfunction and pro-thromboinflammatory changes of the plasma proteome in healthy subjects. *Basic Res Cardiol* 2019;114:46.
72. Cai Y, Hansell AL, Blangiardo M, Burton PR, BioShaRe, de Hoogh K, Doiron D, Fortier I, Gulliver J, Hveem K, Mbattachou S, Morley DW, Stolk RP, Zijlema WL, Elliott P, Hodgson S. Long-term exposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts. Eur Heart J 2017;38:2290-2296.

73. Foraster M, Eze IC, Schaffner E, Vienneau D, Heritier H, Endes S, Rudzik F, Thiesse L, Pieren R, Schindler C, Schmidt-Trucksass A, Brink M, Cajochen C, Marc Wunderli J, Roosl M, Probst-Hensch N. Exposure to Road, Railway, and Aircraft Noise and Arterial Stiffness in the SAPALDIA Study: Annual Average Noise Levels and Temporal Noise Characteristics. Environmental health perspectives 2017;125:097004.

74. Lefevre M, Carlier MC, Champelovier P, Lambert J, Laumon B, Evrard AS. Effects of aircraft noise exposure on saliva cortisol near airports in France. Occupational and environmental medicine 2017;74:612-618.

75. Halonen JI, Dehbi HM, Hansell AL, Gulliver J, Fecht D, Blangiardo M, Kelly FJ, Chaturvedi N, Kivimaki M, Tonne C. Associations of night-time road traffic noise with carotid intima-media thickness and blood pressure: The Whitehall II and SABRE study cohorts. Environ Int 2017;98:54-61.

76. Schmidt F, Kolle K, Kreuder K, Schnorbus B, Wild P, Hechtner M, Binder H, Gori T, Munzel T. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease. Clin Res Cardiol 2015;104:23-30.

77. Sorensen M, Hjortebjerg D, Eriksen KT, Ketzel M, Tjonneland A, Overvad K, Raaschou-Nielsen O. Exposure to long-term air pollution and road traffic noise in relation to cholesterol: A cross-sectional study. Environ Int 2015;85:238-243.

78. Schmidt FP, Basner M, Kroger G, Weck S, Schnorbus B, Muttray A, Sarlyar M, Binder H, Gori T, Warnholtz A, Munzel T. Effect of nighttime aircraft noise exposure on endothelial function and stress hormone release in healthy adults. Eur Heart J 2013;34:3508-3514a.

79. Borg E, Jarplid B. Life span and organ pathology in rats after life-long noise exposure. Am J Ind Med 1981;2:353-363.

80. Peterson EA, Augenstein JS, Hazeltion CL, Hetrick D, Levene RM, Tanis DC. Some cardiovascular effects of noise. J Aud Res 1984;24:35-62.

81. Peterson EA, Haselton CL, Augenstein JS. Daily noise duration influences cardiovascular responses. J Aud Res 1984;24:69-86.

82. Kirby DA, Herd JA, Hartley LH, Teller DD, Rodger RF. Enhanced blood pressure responses to loud noise in offspring of monkeys with high blood pressure. Physiol Behav 1984;32:779-783.

83. Wu CC, Chen SJ, Yen MH. Effects of noise on blood pressure and vascular reactivities. Clin Exp Pharmacol Physiol 1992;19:833-838.

84. Altura BM, Altura BT, Gebrewold A, Ising H, Gunther T. Noise-induced hypertension and magnesium in rats: relationship to microcirculation and calcium. Journal of applied physiology 1992;72:194-202.
85. Morvai V, Szakmary E, Szekely A, Ungvary G. The combined cardiovascular effect of alcohol and noise in rats. *Acta Physiol Hung* 1994;**82**:301-311.

86. Wu CC, Chen SJ, Yen MH. Attenuation of Endothelium-Dependent Relaxation in Mesenteric Artery during Noise-Induced Hypertension. *Journal of biomedical science* 1994;1:49-53.

87. Herrmann HJ, Rohde HG, Schulze W, Eichhorn C, Luft FC. Effect of noise stress and ethanol intake on hearts of spontaneously hypertensive rats. *Basic Res Cardiol* 1994;**89**:510-523.

88. Singewald N, Kouvelas D, Mostafa A, Sinner C, Philippu A. Release of glutamate and GABA in the amygdala of conscious rats by acute stress and baroreceptor activation: differences between SHR and WKY rats. *Brain research* 2000;**864**:138-141.

89. Baldwin AL, Bell IR. Effect of noise on microvascular integrity in laboratory rats. *J Am Assoc Lab Anim Sci* 2007;**46**:58-65.

90. Antunes E, Oliveira P, Borrecho G, Oliveira MJ, Brito J, Aguas A, Martins dos SJ. Myocardial fibrosis in rats exposed to low frequency noise. *Acta Cardiol* 2013;**68**:241-245.

91. Antunes E, Borrecho G, Oliveira P, Brito J, Aguas A, Martins dos Santos J. Immunohistochemical evaluation of cardiac connexin43 in rats exposed to low-frequency noise. *Int J Clin Exp Pathol* 2013;**6**:1874-1879.

92. Antunes E, Borrecho G, Oliveira P, Alves de Matos AP, Brito J, Aguas A, Martins dos Santos J. Effects of low-frequency noise on cardiac collagen and cardiomyocyte ultrastructure: an immunohistochemical and electron microscopy study. *Int J Clin Exp Pathol* 2013;**6**:2333-2341.

93. Gannouni N, Mhamdi A, Tebourbi O, El May M, Sakly M, Rouma KB. Qualitative and quantitative assessment of noise at moderate intensities on extra-auditory system in adult rats. *Noise & health* 2013;**15**:406-411.

94. Ersoy A, Koc ER, Sahin S, Duzgun U, Acar B, Ilhan A. Possible effects of rosuvastatin on noise-induced oxidative stress in rat brain. *Noise & health* 2014;**16**:16-25.

95. Gannouni N, Mhamdi A, El May M, Tebourbi O, Rouma KB. Morphological changes of adrenal gland and heart tissue after varying duration of noise exposure in adult rat. *Noise & health* 2014;**16**:416-421.

96. Said MA, El-Gohary OA. Effect of noise stress on cardiovascular system in adult male albino rat: implication of stress hormones, endothelial dysfunction and oxidative stress. *General physiology and biophysics* 2016;**35**:371-377.

97. Cui B, Gai Z, She X, Wang R, Xi Z. Effects of chronic noise on glucose metabolism and gut microbiota-host inflammatory homeostasis in rats. *Scientific reports* 2016;**6**:36693.

98. Kvandova M, Filippou K, Steven S, Oelze M, Kalinovic S, Stamm P, Frenis K, Vujacic-Mirski K, Sakumi K, Nakabeppu Y, Bagheri Hosseinabadi M, Dovinova I, Epe B, Munzel T, Kroller-Schon S, Daiber A. Environmental aircraft noise aggravates oxidative DNA damage, granulocyte oxidative burst and nitrate resistance in Ogg1(-/-) mice. *Free Radic Res* 2020;**54**:280-292.

99. Slawsky E, Ward-Caviness CK, Neas L, Devlin RB, Cascio WE, Russell AG, Huang R, Kraus WE, Hauser E, Diaz-Sanchez D, Weaver AM. Evaluation of PM2.5 air pollution sources and cardiovascular health. *Environ Epidemiol* 2021;**5**:e157.
100. Aturinde A, Farnaghi M, Pilesjo P, Sundquist K, Mansourian A. Spatial Analysis of Ambient Air Pollution and Cardiovascular Disease (CVD) Hospitalization Across Sweden. Geohealth 2021;5:e2020GH000323.

101. Wang X, Leng M, Liu Y, Qian ZM, Zhang J, Li Z, Sun L, Qin L, Wang C, Howard SW, Vaughn MG, Yan Y, Lin H. Different sized particles associated with all-cause and cause-specific emergency ambulance calls: A multicity time-series analysis in China. The Science of the total environment 2021;783:147060.

102. Cao H, Li B, Liu K, Pan L, Cui Z, Zhao W, Zhang H, Niu K, Tang N, Sun J, Han X, Wang Z, Xia J, He H, Cao Y, Xu Z, Meng G, Shan A, Guo C, Sun Y, Peng W, Liu X, Xie Y, Wen F, Zhang F, Shan G, Zhang L. Association of long-term exposure to ambient particulate pollution with stage 1 hypertension defined by the 2017 ACC/AHA Hypertension Guideline and cardiovascular disease: The CHCN-BTH cohort study. Environmental research 2021;199:111356.

103. Leili M, Nadali A, Karami M, Bahrami A, Afkhami A. Short-term effect of multi-pollutant air quality indexes and PM2.5 on cardiovascular hospitalization in Hamadan, Iran: a time-series analysis. Environ Sci Pollut Res Int 2021.

104. Shin J, Oh J, Kang IS, Ha E, Pyun WB. Effect of Short-Term Exposure to Fine Particulate Matter and Temperature on Acute Myocardial Infarction in Korea. International journal of environmental research and public health 2021;18.

105. Liao NS, Sidney S, Deosaransingh K, Van Den Eeden SK, Schwartz J, Alexeef SE. Particulate Air Pollution and Risk of Cardiovascular Events Among Adults With a History of Stroke or Acute Myocardial Infarction. Journal of the American Heart Association 2021;10:e019758.

106. Dehom S, Knutsen S, Bahjri K, Shavlik D, Oda K, Ali H, Pompe L, Spencer-Hwang R. Racial Difference in the Association of Long-Term Exposure to Fine Particulate Matter (PM2.5) and Cardiovascular Disease Mortality among Renal Transplant Recipients. International journal of environmental research and public health 2021;18.

107. Kaihara T, Yoneyama K, Nakai M, Higuma T, Sumita Y, Miyamoto Y, Watanabe M, Izumo M, Ishibashi Y, Tanabe Y, Harada T, Yasuda S, Ogawa H, Akashi YJ. Association of PM2.5 exposure with hospitalization for cardiovascular disease in elderly individuals in Japan. Scientific reports 2021;11:9897.

108. Ren Z, Liu X, Liu T, Chen D, Jiao K, Wang X, Suo J, Yang H, Liao J, Ma L. Effect of ambient fine particulates (PM2.5) on hospital admissions for respiratory and cardiovascular diseases in Wuhan, China. Respiratory research 2021;22:128.

109. Du J, Shao B, Gao Y, Wei Z, Zhang Y, Li H, Wang J, Shi Y, Su J, Liu Q, Liu Y, Wang P, Xie C, Wang C, Guo X, Li G. Associations of long-term exposure to air pollution with blood pressure and homocysteine among adults in Beijing, China: A cross-sectional study. Environmental research 2021;197:111202.

110. Xu D, Zhang Y, Sun Q, Wang X, Li T. Long-term PM2.5 exposure and survival among cardiovascular disease patients in Beijing, China. Environ Sci Pollut Res Int 2021.

111. Raza W, Krachler B, Forsberg B, Sommar JN. Air pollution, physical activity and ischaemic heart disease: a prospective cohort study of interaction effects. BMJ open 2021;11:e040912.
112. Thabethe NDL, Voyi K, Wichmann J. Association between ambient air pollution and cause-specific mortality in Cape Town, Durban, and Johannesburg, South Africa: any susceptible groups? *Environ Sci Pollut Res Int* 2021.

113. Rahman MM, Begum BA, Hopke PK, Nahar K, Newman J, Thurston GD. Cardiovascular morbidity and mortality associations with biomass- and fossil-fuel-combustion fine-particle-matter exposures in Dhaka, Bangladesh. *Int J Epidemiol* 2021.

114. Raza W, Krachler B, Forsberg B, Sommar JN. Does Physical Activity Modify the Association between Air Pollution and Recurrence of Cardiovascular Disease? *International journal of environmental research and public health* 2021; 18.

115. Kim SR, Choi S, Kim K, Chang J, Kim SM, Cho Y, Oh YH, Lee G, Son JS, Kim KH, Park SM. Association of the combined effects of air pollution and changes in physical activity with cardiovascular disease in young adults. *Eur Heart J* 2021.

116. Meng X, Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Milojivic A, Guo Y, Tong S, Coelho M, Saldiva PHN, Lavigne E, Correa PM, Ortega NV, Osorio S, Garcia, Kysely J, Urban A, Orru H, Maasikmets M, Jaakkola JJK, Ryti N, Huber V, Schneider A, Katsouyanni K, Analitis A, Hashizume M, Honda Y, Ng CFS, Nunes B, Teixeira JP, Holobaca IH, Fratianni S, Kim H, Tobias A, Iniguez C, Forsberg B, Astrom C, Ragettii MS, Guo YL, Pan SC, Li S, Bell ML, Zanobetti A, Schwartz J, Wu T, Gasparrini A, Kan H. Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities. *Bmj* 2021; 372:n534.

117. Sepandi M, Akbari H, Naseri MH, Alimohamadi Y. Emergency hospital admissions for cardiovascular diseases attributed to air pollution in Tehran during 2016-2019. *Environ Sci Pollut Res Int* 2021.

118. Khajavi A, Tamehri Zadeh SS, Azizi F, Brook RD, Abdi H, Zayeri F, Hadaegh F. Impact of short- and long-term exposure to air pollution on blood pressure: A two-decade population-based study in Tehran. *Int J Hyg Environ Health* 2021; 234:113719.

119. Alexeeff SE, Deosaransingh K, Liao NS, Van Den Eeden SK, Schwartz J. Particulate Matter and Cardiovascular Risk Among US Cancer Patients and Survivors. *JNCI Cancer Spectr* 2021; 5:pkab001.

120. Lin X, Du Z, Liu Y, Hao Y. The short-term association of ambient fine particulate air pollution with hypertension clinic visits: A multi-community study in Guangzhou, China. *The Science of the total environment* 2021; 774:145707.

121. Danesh Yazdi M, Wang Y, Di Q, Wei Y, Requia WJ, Shi L, Sabath MB, Dominici F, Coull BA, Evans JS, Koutrakis P, Schwartz JD. Long-Term Association of Air Pollution and Hospital Admissions Among Medicare Participants Using a Doubly Robust Additive Model. *Circulation* 2021; 143:1584-1596.

122. Wang M, Zhou T, Song Y, Li X, Ma H, Hu Y, Heianza Y, Qi L. Joint exposure to various ambient air pollutants and incident heart failure: a prospective analysis in UK Biobank. *Eur Heart J* 2021; 42:1582-1591.

123. Fasola S, Maio S, Baldacci S, La Grutta S, Ferrante G, Forastiere F, Stafoggia M, Gariazzo C, Silibello C, Carlino G, Viegi G, Group O. Short-Term Effects of Air Pollution on Cardiovascular Hospitalizations in the Pisan Longitudinal Study. *International journal of environmental research and public health* 2021; 18.
125. Li X, Cheng H, Fang Y, Chen Z, Qi G, Chen R, Kan H, Liu C, Cao J. Association between fine particulate matter and heart failure hospitalizations: a time-series analysis in Yancheng, China. *Environ Sci Pollut Res Int* 2021;**28**:26906-26912.

126. Sokoty L, Rimaz S, Hassanlouei B, Kermani M, Janani L. Short-term effects of air pollutants on hospitalization rate in patients with cardiovascular disease: a case-crossover study. *Environ Sci Pollut Res Int* 2021;**28**:26124-26131.

127. Abohashem S, Osborne MT, Dar T, Naddaf N, Abbasi T, Ghoneem A, Radfar A, Patrich T, Oberfeld B, Tung B, Fayad ZA, Rajagopalan S, Tawakol A. A leucopoietic-arterial axis underlying the link between ambient air pollution and cardiovascular disease in humans. *Eur Heart J* 2021;**42**:761-772.

128. Pang Y, Liu S, Yan L, Wang Q, Li L, Chu C, Ning J, Zhang B, Wang X, Ma S, Su D, Zhang R, Niu Y. Associations of long-term exposure to traffic-related air pollution with risk of valvular heart disease based on a cross-sectional study. *Ecotoxicol Environ Saf* 2021;**209**:111753.

129. Sui X, Zhang J, Zhang Q, Sun S, Lei R, Zhang C, Cheng H, Ding L, Ding R, Xiao C, Li X, Cao J. The short-term effect of PM2.5/O3 on daily mortality from 2013 to 2018 in Hefei, China. *Environ Geochem Health* 2021;**43**:153-169.

130. deSouza P, Braun D, Parks RM, Schwartz J, Dominici F, Kioumourtzoglou MA. Nationwide Study of Short-term Exposure to Fine Particulate Matter and Cardiovascular Hospitalizations Among Medicaid Enrollees. *Epidemiology* 2021;**32**:6-13.

131. Xu J, Zhang Y, Yao M, Wu G, Duan Z, Zhao X, Zhang J. Long-term effects of ambient PM2.5 on hypertension in multi-ethnic population from Sichuan province, China: a study based on 2013 and 2018 health service surveys. *Environ Sci Pollut Res Int* 2021;**28**:5991-6004.

132. Li M, Dong H, Wang B, Zhao W, Zare Sakhvidi MJ, Li L, Lin G, Yang J. Association between ambient ozone pollution and mortality from a spectrum of causes in Guangzhou, China. *The Science of the total environment* 2021;**754**:142110.

133. Kim OJ, Lee SH, Kang SH, Kim SY. Incident cardiovascular disease and particulate matter air pollution in South Korea using a population-based and nationwide cohort of 0.2 million adults. *Environmental health : a global access science source* 2020;**19**:113.

134. Zhang Z, Kang J, Hong YS, Chang Y, Ryu S, Park J, Cho J, Guallar E, Shin HC, Zhao D. Long-Term Particulate Matter Exposure and Incidence of Arrhythmias: A Cohort Study. *Journal of the American Heart Association* 2020;**9**:e016885.

135. Elliott EG, Laden F, James P, Rimm EB, Rexrode KM, Hart JE. Interaction between Long-Term Exposure to Fine Particulate Matter and Physical Activity, and Risk of Cardiovascular Disease and Overall Mortality in U.S. Women. *Environmental health perspectives* 2020;**128**:127012.

136. Stafoffia M, Renzi M, Forastiere F, Ljungman P, Davoli M, De’ Donato F, Garlazzo C, Michelozzi P, Scortichini M, Solimini A, Vieg G, Bellander T, Group BC. Short-term effects of particulate matter on cardiovascular morbidity in Italy: a national analysis. *Eur J Prev Cardiol* 2020.

137. Wu PC, Cheng TJ, Kuo CP, Fu JS, Lai HC, Chiu TY, Lai LW. Transient risk of ambient fine particulate matter on hourly cardiovascular events in Tainan City, Taiwan. *PLoS One* 2020;**15**:e0238082.
138. Prabhakaran D, Mandal S, Krishna B, Magsumbol M, Singh K, Tandon N, Narayan KMV, Shivashankar R, Kondal D, Ali MK, Srinath Reddy K, Schwartz JD, GeoHealth Hub Study investigators COECSi. Exposure to Particulate Matter Is Associated With Elevated Blood Pressure and Incident Hypertension in Urban India. Hypertension 2020;76:1289-1298.

139. Quintyne KI, Sheridan A, Kenny P, O'Dwyer M. Air Quality and Its Association with Cardiovascular and Respiratory Hospital Admissions in Ireland. Ir Med J 2020;113:92.

140. Bi J, D'Souza RR, Rich DQ, Hopke PK, Russell AG, Liu Y, Chang HH, Ebelt S. Temporal changes in short-term associations between cardiorespiratory emergency department visits and PM2.5 in Los Angeles, 2005 to 2016. Environmental research 2020;190:109967.

141. Peralta AA, Link MS, Schwartz J, Luttmann-Gibson H, Dockery DW, Blomberg A, Wei Y, Mittleman MA, Gold DR, Laden F, Coull BA, Koutrakis P. Exposure to Air Pollution and Particle Radioactivity With the Risk of Ventricular Arrhythmias. Circulation 2020;142:858-867.

142. Hu J, Tang M, Zhang X, Ma Y, Li Y, Chen R, Kan H, Cui Z, Ge J. Size-fractionated particulate air pollution and myocardial infarction emergency hospitalization in Shanghai, China. The Science of the total environment 2020;737:140100.

143. Kuzma L, Pogorzelski S, Struniański K, Bachorzewska-Gajewska H, Dobrzycki S. Exposure to air pollution-a trigger for myocardial infarction? A nine-year study in Białystok-the capital of the Green Lungs of Poland (BIA-ACS registry). Int J Hyg Environ Health 2020;229:113578.

144. Wang X, Yu C, Zhang Y, Shi F, Meng R, Yu Y. Attributable Risk and Economic Cost of Cardiovascular Hospital Admissions Due to Ambient Particulate Matter in Wuhan, China. International journal of environmental research and public health 2020;17.

145. So R, Jorgensen JT, Lim YH, Mehta AJ, Amini H, Mortensen LH, Westendorp R, Ketzel M, Hertel O, Brandt J, Christensen JH, Geels C, Frohn LM, Sisgaard T, Brauner EV, Jensen SS, Backalarz C, Simonsen MK, Loft S, Cole-Hunter T, Andersen ZJ. Long-term exposure to low levels of air pollution and mortality adjusting for road traffic noise: A Danish Nurse Cohort study. Environ Int 2020;143:105983.

146. Phosri A, Sihabut T, Jaikanlaya C. Temporal variations of short-term effects of particulate matter on hospital admissions in the most densely populated city in Thailand. The Science of the total environment 2020;742:140651.

147. Mueller W, Loh M, Vardoulakis S, Johnston HJ, Steinle S, Precha N, Kliengchuay W, Tantrakarnapa K, Cherrie JW. Ambient particulate matter and biomass burning: an ecological time series study of respiratory and cardiovascular hospital visits in northern Thailand. Environmental health : a global access science source 2020;19:77.

148. Yang J, Zhou M, Li M, Yin P, Hu J, Zhang C, Wang H, Liu Q, Wang B. Fine particulate matter constituents and cause-specific mortality in China: A nationwide modelling study. Environ Int 2020;143:105927.

149. Rodins V, Lucht S, Ohlwein S, Hennig F, Soppa V, Erbel R, Jockel KH, Weimar C, Hermann DM, Schramm S, Moebus S, Slomiany U, Hoffmann B. Long-term exposure to ambient source-specific particulate matter and its components and incidence of cardiovascular events - The Heinz Nixdorf Recall study. Environ Int 2020;142:105854.
150. Hystad P, Larkin A, Rangarajan S, AlHabib KF, Avezum A, Calik KBT, Chifamba J, Dans A, Diaz R, du Plessis JL, Gupta R, Iqbal R, Khatib R, Kelishadi R, Lanas F, Liu Z, Lopez-Jaramillo P, Nair S, Poirier P, Rahman O, Rosengren A, Swidan H, Tse LA, Wei L, Wielgosz A, Yeates K, Yusoff K, Zatonski T, Burnett R, Yusuf S, Brauer M. Associations of outdoor fine particulate air pollution and cardiovascular disease in 157 436 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. *Lancet Planet Health* 2020;4:e235-e245.

151. Wang X, Tian J, Li Z, Lai J, Huang X, He Y, Ye Z, Li G. Relationship between different particle size fractions and all-cause and cause-specific emergency ambulance dispatches. *Environmental health: a global access science source* 2020;19:69.

152. Tapia V, Steenland K, Vu B, Liu Y, Vasquez V, Gonzalez GF. PM2.5 exposure on daily cardio-respiratory mortality in Lima, Peru, from 2010 to 2016. *Environmental health: a global access science source* 2020;19:63.

153. Cramer J, Jorgensen JT, Hoffmann B, Loft S, Brauner EV, Prescott E, Ketzel M, Hertel O, Brandt J, Jensen SS, Backalarz C, Simonsen MK, Andersen ZJ. Long-Term Exposure to Air Pollution and Incidence of Myocardial Infarction: A Danish Nurse Cohort Study. *Environmental health perspectives* 2020;128:57003.

154. Dahlquist M, Frykman V, Kemp-Gudmunsdottir K, Svennberg E, Wellenius GA, P LSL. Short-term associations between ambient air pollution and acute atrial fibrillation episodes. *Environ Int* 2020;141:105765.

155. Li J, Liu F, Liang F, Huang K, Yang X, Xiao Q, Chen J, Liu X, Cao J, Chen S, Shen C, Yu L, Lu F, Wu X, Zhao L, Wu X, Li Y, Hu D, Huang J, Liu Y, Lu X, Gu D. Long-Term Effects of High Exposure to Ambient Fine Particulate Matter on Coronary Heart Disease Incidence: A Population-Based Chinese Cohort Study. *Environmental science & technology* 2020;54:6812-6821.

156. Liang F, Liu F, Huang K, Yang X, Li J, Xiao Q, Chen J, Liu X, Cao J, Shen C, Yu L, Lu F, Wu X, Wu X, Li Y, Hu D, Huang J, Liu Y, Lu X, Gu D. Long-Term Exposure to Fine Particulate Matter and Cardiovascular Disease in China. *J Am Coll Cardiol* 2020;75:707-717.

157. Gestro M, Condemi V, Bardi L, Tomaino L, Roveda E, Bruschetta A, Solimine U, Esposito F. Short-term air pollution exposure is a risk factor for acute coronary syndromes in an urban area with low annual pollution rates: Results from a retrospective observational study (2011-2015). *Arch Cardiovasc Dis* 2020;113:308-320.

158. Kim JH, Hong J, Jung J, Im JS. Effect of meteorological factors and air pollutants on out-of-hospital cardiac arrests: a time series analysis. *Heart* 2020;106:1218-1227.

159. Yang M, Zhou R, Qiu X, Feng X, Sun J, Wang Q, Lu Q, Zhang P, Liu B, Li W, Chen M, Zhao Y, Mo B, Zhou X, Zhang X, Hua Y, Guo J, Bi F, Cao Y, Ling F, Shi S, Li YG. Artificial intelligence-assisted analysis on the association between exposure to ambient fine particulate matter and incidence of arrhythmias in outpatients of Shanghai community hospitals. *Environ Int* 2020;139:105745.

160. Choi S, Kim KH, Kim K, Chang J, Kim SM, Kim SR, Cho Y, Lee G, Son JS, Park SM. Association between Post-Diagnosis Particulate Matter Exposure among 5-Year Cancer Survivors and Cardiovascular Disease Risk in Three Metropolitan Areas from South Korea. *International journal of environmental research and public health* 2020;17.
161. Kojima S, Michikawa T, Matsui K, Ogawa H, Yamazaki S, Nitta H, Takami A, Ueda K, Tahara Y, Yonemoto N, Nonogi H, Nagao K, Ikeda T, Sato N, Tsutsui H, Japanese Circulation Society With Resuscitation Science Study G. Association of Fine Particulate Matter Exposure With Bystander-Witnessed Out-of-Hospital Cardiac Arrest of Cardiac Origin in Japan. *JAMA Netw Open* 2020;3:e203043.

162. Yan M, Li C, Zhang L, Chen X, Yang X, Shan A, Li X, Wu H, Ma Z, Zhang Y, Guo P, Dong G, Liu Y, Chen J, Wang T, Zhao B, Tang NJ. Association between long-term exposure to Sulfur dioxide pollution and hypertension incidence in northern China: a 12-year cohort study. *Environ Sci Pollut Res Int* 2020;27:21826-21835.

163. Yang X, Liang F, Li J, Chen J, Liu F, Huang K, Cao J, Chen S, Xiao Q, Liu X, Shen C, Yu L, Lu F, Wu X, Wu X, Li Y, Zhao L, Hu D, Huang J, Lu X, Liu Y, Gu D. Associations of long-term exposure to ambient PM2.5 with mortality in Chinese adults: A pooled analysis of cohorts in the China-PAR project. *Environ Int* 2020;138:105589.

164. Wang B, Eum KD, Kazemiparkouhi F, Li C, Manjourides J, Pavlu V, Suh H. The impact of long-term PM2.5 exposure on specific causes of death: exposure-response curves and effect modification among 53 million U.S. Medicare beneficiaries. *Environmental health : a global access science source* 2020;19:20.

165. Ishii M, Seki T, Kaikita K, Sakamoto K, Nakai M, Sumita Y, Nishimura K, Miyamoto Y, Noguchi T, Yasuda S, Kanaoka K, Terasaki S, Saito Y, Tsutsui H, Komuro I, Ogawa H, Tsujita K, Kawakami K, on the behalf of the JI. Association of short-term exposure to air pollution with myocardial infarction with and without obstructive coronary artery disease. *Eur J Prev Cardiol* 2020:2047487320904641.

166. Liu Y, Sun J, Gou Y, Sun X, Zhang D, Xue F. Analysis of Short-Term Effects of Air Pollution on Cardiovascular Disease Using Bayesian Spatio-temporal Models. *International journal of environmental research and public health* 2020;17.

167. Zhao B, Johnston FH, Salimi F, Kurabayashi M, Negishi K. Short-term exposure to ambient fine particulate matter and out-of-hospital cardiac arrest: a nationwide case-crossover study in Japan. *Lancet Planet Health* 2020;4:e15-e23.

168. Qiu X, Wei Y, Wang Y, Di Q, Sofer T, Awad YA, Schwartz J. Inverse probability weighted distributed lag effects of short-term exposure to PM2.5 and ozone on CVD hospitalizations in New England Medicare participants - Exploring the causal effects. *Environmental research* 2020;182:109095.

169. Kim IS, Yang PS, Lee J, Yu HT, Kim TH, Ulhm JS, Kim JY, Pak HN, Lee MH, Joung B. Long-term fine particulate matter exposure and cardiovascular mortality in the general population: a nationwide cohort study. *J Cardiol* 2020;75:549-558.

170. Chen J, Lv M, Yao W, Chen R, Lai H, Tong C, Fu W, Zhang W, Wang C. Association between fine particulate matter air pollution and acute aortic dissections: A time-series study in Shanghai, China. *Chemosphere* 2020;243:125357.

171. Zhu Y, Wang Y, Xu H, Luo B, Zhang W, Guo B, Chen S, Zhao X, Li W. Joint effect of multiple air pollutants on daily emergency department visits in Chengdu, China. *Environ Pollut* 2020;257:113548.
172. Nhung NTT, Schindler C, Chau NQ, Hanh PT, Hoang LT, Dien TM, Thanh NTN, Kunzli N. Exposure to air pollution and risk of hospitalization for cardiovascular diseases amongst Vietnamese adults: Case-crossover study. *The Science of the total environment* 2020;703:134637.

173. Lefler JS, Higbee JD, Burnett RT, Ezzati M, Coleman NC, Mann DD, Marshall JD, Bechle M, Wang Y, Robinson AL, Arden Pope C, 3rd. Air pollution and mortality in a large, representative U.S. cohort: multiple-pollutant analyses, and spatial and temporal decompositions. *Environmental health : a global access science source* 2019;18:101.

174. Wei Y, Wang Y, Di Q, Choirat C, Wang Y, Koutrakis P, Zanobetti A, Dominici F, Schwartz JD. Short term exposure to fine particulate matter and hospital admission risks and costs in the Medicare population: time stratified, case crossover study. *Bmj* 2019;367:l6258.

175. Lee HH, Pan SC, Chen BY, Lo SH, Guo YL. Atrial fibrillation hospitalization is associated with exposure to fine particulate air pollutants. *Environmental health : a global access science source* 2019;18:117.

176. Lim CC, Hayes RB, Ahn J, Shao Y, Silverman DT, Jones RR, Garcia C, Bell ML, Thurston GD. Long-Term Exposure to Ozone and Cause-Specific Mortality Risk in the United States. *American journal of respiratory and critical care medicine* 2019;200:1022-1031.

177. Weaver AM, McGuinn L, Neas L, Mirowsky J, Devlin RB, Dhingra R, Ward-Caviness C, Cascio WE, Kraus WE, Hauser ER, Di Q, Schwartz J, Diaz-Sanchez D. Neighborhood sociodemographic effects on the associations between long-term PM2.5 exposure and cardiovascular outcomes and diabetes. *Environ Epidemiol* 2019;3.

178. Munzel T, Gori T, Al-Kindi S, Deanfield J, Lelieveld J, Daiber A, Rajagopalan S. Effects of gaseous and solid constituents of air pollution on endothelial function. *Eur Heart J* 2018;39:3543-3550.

179. Bevan GH, Al-Kindi SG, Brook RD, Munzel T, Rajagopalan S. Ambient Air Pollution and Atherosclerosis: Insights Into Dose, Time, and Mechanisms. *Arterioscler Thromb Vasc Biol* 2021;41:628-637.

180. Ying Z, Xu X, Chen M, Liu D, Zhong M, Chen LC, Sun Q, Rajagopalan S. A synergistic vascular effect of airborne particulate matter and nickel in a mouse model. *Toxicological sciences : an official journal of the Society of Toxicology* 2013;135:72-80.

181. Robertson S, Colombo ES, Lucas SN, Hall PR, Febbraio M, Paffett ML, Campen MJ. CD36 mediates endothelial dysfunction downstream of circulating factors induced by O3 exposure. *Toxicological sciences : an official journal of the Society of Toxicology* 2013;134:304-311.

182. Chen T, Jia G, Wei Y, Li J. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice. *Toxicology letters* 2013;223:146-153.

183. Miller MR, McLean SG, Duffin R, Lawal AO, Araujo JA, Shaw CA, Mills NL, Donaldson K, Newby DE, Hadoke PW. Diesel exhaust particulate increases the size and complexity of lesions in atherosclerotic mice. *Particle and fibre toxicology* 2013;10:61.
184. Brocato J, Sun H, Shamy M, Kluz T, Alghamdi MA, Khoder MI, Chen LC, Costa M. Particulate matter from Saudi Arabia induces genes involved in inflammation, metabolic syndrome and atherosclerosis. *J Toxicol Environ Health A* 2014;77:751-766.

185. Paffett ML, Zychowski KE, Sheppard L, Robertson S, Weaver JM, Lucas SN, Campen MJ. Ozone Inhalation Impairs Coronary Artery Dilation via Intracellular Oxidative Stress: Evidence for Serum-Borne Factors as Drivers of Systemic Toxicity. *Toxicological sciences : an official journal of the Society of Toxicology* 2015;146:244-253.

186. Vella RE, Pillon NJ, Zarrouki B, Croze ML, Koppe L, Guichardant M, Pesenti S, Chauvin MA, Rieusset J, Geloen A, Soulage CO. Ozone exposure triggers insulin resistance through muscle c-Jun N-terminal kinase activation. *Diabetes* 2015;64:1011-1024.

187. Cui Y, Jia F, He J, Xie X, Li Z, Fu M, Hao H, Liu Y, Liu DZ, Cowan PJ, Zhu H, Sun Q, Liu Z. Ambient Fine Particulate Matter Suppresses In Vivo Proliferation of Bone Marrow Stem Cells through Reactive Oxygen Species Formation. *PLoS One* 2015;10:e0127309.

188. Cui Y, Xie X, Jia F, He J, Li Z, Fu M, Hao H, Liu Y, Liu JZ, Cowan PJ, Zhu H, Sun Q, Liu Z. Ambient fine particulate matter induces apoptosis of endothelial progenitor cells through reactive oxygen species formation. *Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology* 2015;35:353-363.

189. Wei Y, Zhang JJ, Li Z, Gow A, Chung KF, Hu M, Sun Z, Zeng L, Zhu T, Jia G, Li X, Duarte M, Tang X. Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. *Faseb J* 2016;30:2115-2122.

190. Haberzettl P, O'Toole TE, Bhatnagar A, Conklin DJ. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress. *Environmental health perspectives* 2016;124:1830-1839.

191. Zhong J, Allen K, Rao X, Ying Z, Braunstein Z, Kankanala SR, Xia C, Wang X, Bramble LA, Wagner JG, Lewandowski R, Sun Q, Harkema JR, Rajagopalan S. Repeated ozone exposure exacerbates insulin resistance and activates innate immune response in genetically susceptible mice. *Inhal Toxicol* 2016;28:383-392.

192. Orona NS, Ferraro SA, Astort F, Morales C, Brites F, Boero L, Tiscornia G, Maglione GA, Saldiva PHN, Yakisich S, Tasat DR. Acute exposure to Buenos Aires air particles (UAP-BA) induces local and systemic inflammatory response in middle-aged mice: A time course study. *Environ Pollut* 2016;208:261-270.

193. Wang H, Shen X, Tian G, Shi X, Huang W, Wu Y, Sun L, Peng C, Liu S, Huang Y, Chen X, Zhang F, Chen Y, Ding W, Lu Z. AMPKalpha2 deficiency exacerbates long-term PM2.5 exposure-induced lung injury and cardiac dysfunction. *Free Radic Biol Med* 2018;121:202-214.

194. Guan L, Geng X, Shen J, Yip J, Li F, Du H, Ji Z, Ding Y. PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids. *Oncotarget* 2018;9:3765-3778.

195. Rao X, Asico LD, Zanos P, Mahabeleshwar GH, Singh Gangwar R, Xia C, Duan L, Cisse YM, Rengasamy P, Jose PA, Gould TD, Nelson R, Biswal S, Chen LC, Zhong J, Rajagopalan S. Alpha2B-Adrenergic Receptor Overexpression in the Brain
Potentiate Air Pollution-induced Behavior and Blood Pressure Changes. *Toxicological sciences: an official journal of the Society of Toxicology* 2019;169:95-107.

196. Gao J, Yuan J, Wang Q, Lei T, Shen X, Cui B, Zhang F, Ding W, Lu Z. Metformin protects against PM2.5-induced lung injury and cardiac dysfunction independent of AMP-activated protein kinase alpha2. *Redox biology* 2020;28:101345.

197. Hill BG, Rood B, Ribble A, Haberzetttl P. Fine particulate matter (PM2.5) inhalation-induced alterations in the plasma lipidome as promoters of vascular inflammation and insulin resistance. *Am J Physiol Heart Circ Physiol* 2021;320:H1836-H1850.