Nitric oxide-induced calcium release

Activation of type 1 ryanodine receptor by endogenous nitric oxide

Sho Kakizawa,1,* Toshiko Yamazawa2 and Masamitsu Iino3
1Department of Biological Chemistry; Graduate School of Pharmaceutical Sciences; Kyoto University; Kyoto, Japan; 2Department of Molecular Physiology; The Jikei University School of Medicine; Tokyo, Japan; 3Department of Pharmacology; Graduate School of Medicine; The University of Tokyo; Tokyo, Japan

Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

There are an increasing number of studies showing that protein S-nitrosylation, the addition of a nitric oxide (NO) group to cysteine thiols, provides important roles in a wide range of signaling pathways.1,2 Because the ryanodine receptor (RyR), a Ca2+ release channel expressed in the SR/ER, has about 100 cysteine residues per subunit and almost half of these thiols are kept in a reduced state under the resting condition,3 RyR is thought to be one of the substrate proteins for S-nitrosylation. In accordance with this notion, the open probability of RyR1 measured in lipid bilayers is increased by NO donors,4-7 and this increase is accompanied by an increase in S-nitrosylation of the Ca2+ release channel at cysteine 3635.4-9 In addition, NO-induced activation of RyR1 in lipid bilayers and in SR vesicles is influenced by pO2 levels: RyR1 is activated by submicromolar levels of NO in the tissue pO2 level (~10 mmHg) but not in the ambient O2 level (~150 mmHg).4 In these previous studies, the redox regulations of RyRs were extensively studied using in vitro experimental systems, especially in lipid bilayers and SR samples isolated from skeletal muscles.1,10,11 Although S-nitrosylation of RyR1 is implicated in the enhancement of Ca2+ leak from the skeletal muscle SR in pathological conditions,12,13 physiological significance of S-nitrosylation-mediated modulation of RyR1 activity by endogenous NO remained elusive.

We previously found that burst stimulation (BS) of parallel fibers (PFs) generates a localized increase in NO concentration in Purkinje cell (PC) dendrites, as well as NO-dependent long-term potentiation (LTP) at the PF-PC synapse in the cerebellum.14 Because this LTP is also sensitive to the intracellular Ca2+ concentration, we examined a crosstalk between NO and Ca2+ signaling in PCs. Bath application of 1-Hydroxy-2-oxo-3-...
(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC7), a NO donor, induced an increase in the intracellular Ca\(^{2+}\) concentration in PCs. The NO-induced Ca\(^{2+}\) increase was independent of Ca\(^{2+}\) influx from the extracellular medium, but was dependent on the activity of RyR1 and the sarco/endoplasmic reticulum Ca\(^{2+}\) ATPase (SERCA), suggesting that the Ca\(^{2+}\) increase is mediated by Ca\(^{2+}\) release from the intracellular store through RyR1. In addition, our study using RyR1-expressing HEK293 cells indicated that S-nitrosylation of RyR1 at cysteine 3635 is both necessary and sufficient for the NO-induced Ca\(^{2+}\) increase, which is hereafter referred to as “NO-induced Ca\(^{2+}\) release (NICR).” We then showed that BS to PFs induces intracellular Ca\(^{2+}\) release in PC dendrites. When BS—which induces NO-dependent-LTP—was applied to PF, Ca\(^{2+}\) levels were transiently but clearly elevated in PC dendrites. This BS-induced Ca\(^{2+}\) increase was indicated to be due to Ca\(^{2+}\) release mediated by RyR1, because the Ca\(^{2+}\) increase was abolished by the application of thapsigargin and cyclopiazonic acid, SERCA inhibitors and dantrolene, a RyR antagonist. In addition, the Ca\(^{2+}\) release was inhibited by the application of \(N^\text{G}-\)Nitro-L-arginine methyl ester (L-NAME), a broad inhibitor of NO synthases (NOS), and was not observed in the cerebellum of mice deficient in neuronal type NOS (nNOS). These results strongly suggest that BS to PFs induces NICR in the PC dendrites.

Figure 1. NO-induced Ca\(^{2+}\) release (NICR) is not affected by peroxynitrite. (A–C) Ca\(^{2+}\) response, induced by a series of 60 BS at 1 Hz (BS; gray bar) in the standard ACSF (A; data were obtained from 10 cells in 10 slices), was not inhibited by peroxynitrite scavenger, uric acid (B; 100 \(\mu\)M, n = 7 cells in 7 slices), or peroxynitrite decomposition catalyst, FeTPPS (C; 10 \(\mu\)M, n = 6 cells in 6 slices). Uric acid or FeTPPS was present in bathing solution from 30 min before the recording. (D) Ca\(^{2+}\) response to bath application of 10 \(\mu\)M peroxynitrite (ONOO-) (open circle; n = 6 cells, 6 slices). It was abolished by 100 \(\mu\)M uric acid (open triangle; n = 7 cells, 7 slices) or 10 \(\mu\)M FeTPPS (open triangle; n = 7 cells, 7 slices), but was insensitive to 10 mM ascorbic acid applied intracellularly through the patch pipette (closed circle; n = 8 cells; 8 slices). (E) Summary of data in (A–D). The peak Ca\(^{2+}\) responses are shown. UA, uric acid; Fe, FeTPPS; Asc, ascorbic acid. Data are presented as mean ± SEM *p < 0.05, ANOVA / Tukey-Kramer test.
Figure 2. Cerebellar LTP is not affected by peroxynitrite. (A–C) Cerebellar LTP, induced by BS in the standard ACSF (A; n = 8 cells in 8 slices), was not inhibited by 100 μM uric acid (B; n = 5 cells in 5 slices) or 10 μM FeTPPS (C; n = 5 cells in 5 slices). (D) Effects of uric acid (UA) and FeTPPS on the magnitude of LTP (normalized EPSC averaged between 21–30 min after BS). Data are presented as mean ± SEM.

Materials and Methods

Preparation of cerebellar slices, Ca²⁺ imaging and electrophysiological analysis were performed essentially as described previously. C57BL/6 mice (postnatal days 24–32) were sacrificed by cervical dislocation under anesthesia with diethyl ether. The cerebellum was excised, and parasagittal cerebellar slices (250 μm thick) were prepared from the vermis. Whole-cell recordings were obtained from visually identified PCs at room temperature (23–25°C).

For intracellular Ca²⁺ imaging in PCs, a Ca²⁺-sensitive dye, Oregon Green 488 BAPTA-1 (100 μM), was introduced into Purkinje cells through the patch pipette. Five to nine sequential confocal images (excitation at 488 nm), obtained at 3–4 μm z-axis intervals, were acquired every 0.8 sec using an upright microscope (BX51WI; Olympus) equipped with a confocal scanning unit and an argon laser (FV300, Olympus), and projected onto a plane to obtain dendrite images at 10 sec intervals.

For focal stimulation of PFs, a stimulation pipette was filled with standard bathing solution and used to apply square pulses (0.1 ms in duration, 0–20 V in amplitude) to the molecular layer, specifically in the middle portion of the molecular layer approximately one-third of the distance below the pial surface. The intensity of each stimulus was adjusted to evoke PF-EPSCs with an amplitude of 60–120 pA. The ionic current was recorded from PCs using a patch-clamp amplifier (EPC-9, HEKA, Lambrecht/Pfalz, Germany) at a holding potential of −90 or −80 mV, after compensating for liquid junction potential. The signals were filtered at 2 kHz and
Figure 3. A schematic diagram of signalling pathways for nitric oxide-induced Ca\(^{2+}\) release (NICR) in cerebellar Purkinje cells. Nitric oxide (NO) is produced at the parallel-fiber terminal in response to neuronal activity, and diffuses into the cerebellar Purkinje cell. Then, type 1 ryanodine receptors (RyR1), located in the endoplasmic reticulum (ER) membrane, are S-nitrosylated and activated, resulting in Ca\(^{2+}\) release from the ER. Cyclic GMP and peroxynitrite, which is produced by the reaction of NO and superoxide, are unlikely to be involved in NICR. nNOS, neuronal NO synthase; IP\(_3\)R1, inositol 1,4,5-trisphosphate receptor; SERCA, sarco/endoplasmic reticulum Ca\(^{2+}\) ATPase.

Disclosed at 20 kHz. After obtaining a stable initial recording for at least 10 min, 60 burst stimulations (1 burst stimulation: 5 pulses at 50 Hz) were repeatedly applied at 1 Hz to induce LTP. Series resistance and membrane resistance were monitored throughout the experiments, and the data were discarded when either of these resistances varied by more than 10%. The data were also discarded when the slope of PF-EPSC amplitude averaged every minute during the initial recording for 10 min was larger than 2% or when the amplitude did not become stable within 20 min after the onset of whole-cell configuration.14

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

References

1. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 2005; 6:150-66; PMID:15688001; http://dx.doi.org/10.1038/nrm1569
2. Shahani N, Sawa A. Nitric oxide signaling and nitrative stress in neurons: role for S-nitrosylation. Antioxid Redox Signal 2011; 14:1493-504; PMID:20812870; http://dx.doi.org/10.1089/ars.2010.3580
3. Zaik R, Leharte SF, Marks AR. Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 2007; 76:367-85; PMID:17506640; http://dx.doi.org/10.1146/annurev.biochem.76.053105.094237
4. Eu JP, Sun JH, Xu L, Stamler JS, Meissner G. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Cell 2008; 102:499-509; PMID:17066111; http://dx.doi.org/10.1016/S0092-8674(08)00054-4
5. Stoyanovsky D, Murphy T, Anno PR, Kim YM, Salama G. Nitric oxide activates skeletal and cardiac ryanodine receptors. Cell Calcium 1997; 21:19-29; PMID:9506074; http://dx.doi.org/10.1016/S0929-8674(00)90093-2
6. Sun JH, Xu L, Eu JP, Stamler JS, Meissner G. Nitric oxide, NOC-12, and S-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms. An allosteric function for O2 in S-nitrosylation of the channel. J Biol Chem 2003; 278:8184-9; PMID:12509428; http://dx.doi.org/10.1074/jbc.M211094200
7. Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryanodine recep-tor) by poly-S-nitrosylation. Science 1998; 279:234-7; PMID:9422697; http://dx.doi.org/10.1126/science.279.5348.234
8. Porter Moore C, Zhang JZ, Hamilton SL. A role for cysteine 3635 of RyR1 in REDox modulation and calmodulin binding. J Biol Chem 1999; 274:56831-4; PMID:10601232; http://dx.doi.org/10.1074/jbc.274.52.56831
9. Sun JH, Xin CL, Eu JP, Stamler JS, Meissner G. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A 2001; 98:11158-62; PMID:11562475; http://dx.doi.org/10.1073/pnas.201289098
10. Hidalgo C, Donoso P, Carrascoso MA. The ryanodine receptors Ca\(^{2+}\) release channels: cellular redox sensors? IUBMB Life 2005; 57:315-22; PMID:16036616; http://dx.doi.org/10.1080/1521654050092328
11. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2010; 2:a003996; PMID:20906976; http://dx.doi.org/10.1073/cshperspect.a003996
12. Bellinger AM, Reiken S, Carlson C, Mongillo M, Liu X, Rothman L, et al. Hypernitrrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat Med 2009; 15:325-30; PMID:19198614; http://dx.doi.org/10.1038/nm.1916
13. Durham WJ, Aracena-Parks P, Long C, Rossi AE, Gnoeasakera SA, Boncompagni S, et al. RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y525R RyR1 knockin mice. Cell 2008; 133:53-65; PMID:18394989; http://dx.doi.org/10.1016/j.cell.2008.02.042
14. Namiki S, Kakizawa S, Hirose K, Iino M. NO signaling decodes frequency of neuronal activity and generates synapse-specific plasticity in mouse cerebellum. J Physiol 2005; 566:849-63; PMID:15919714; http://dx.doi.org/10.1113/jphysiol.2005.088799
15. Kakizawa S, Yamazawa T, Chen Y, Ito A, Murayama T, Oymadida H, et al. Nitric oxide-induced calcium release via ryanodine receptors regulates neuronal function. EMBO J 2011; 31:417-28; PMID:22083648; http://dx.doi.org/10.1002/emboj.2011.386
16. Kobayashi S, Yano M, Suemori T, Ono M, Tareishi H, Mochizuki M, et al. Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J Am Coll Cardiol 2009; 53:1993-2005; PMID:19460614; http://dx.doi.org/10.1016/j.jacc.2009.01.065
17. Zhao F, Li P, Chen SR, Louis CF, Fruen BR. Dantrolene inhibition of ryanodine receptor Ca\(^{2+}\) release channels. Molecular mechanism and isoform selectivity. J Biol Chem 2001; 276:13810-6; PMID:11278295
18. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC. Targeted disruption of the neuronal nitric oxide synthase gene. Cell 1993; 75:1273-86; PMID:8240792; http://dx.doi.org/10.1016/0021-9258(93)90054-4
19. Rizzuto R, Guo X, Burgin B, Rhee S, Otsuji N, et al. Rapid activation of ryanodine receptors by calcium released from the endoplasmic reticulum in permeabilized cells. J Biol Chem 1999; 274:1562-9; PMID:9980091; http://dx.doi.org/10.1074/jbc.274.2.1562
20. Ishida KT, Klam E. Sources and targets of reactive oxy-gen species in synaptic plasticity and memory. Antioxid Redox Signal 2007; 9:233-44; PMID:1715936; http://dx.doi.org/10.1089/ars.2007.9.233
21. Pachter MR, Beckman JS, Luckey L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007; 87:315-424; PMID:17237348; http://dx.doi.org/10.1152/physrev.00029.2006
22. Becker BF. Towards the physiological function of uric acid. Free Radic Biol Med 1993; 14:615-31; PMID:8325534; http://dx.doi.org/10.1016/0891-5849(93)90143-1
22. Stern MK, Jensen MP, Kramer K. Peroxynitrite decomposition catalysts. J Am Chem Soc 1996; 118:8735-6; http://dx.doi.org/10.1021/ja961279f
23. Lancel S, Tissier S, Mordon S, Marechal X, Depontieu F, Scherpereel A, et al. Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J Am Coll Cardiol 2004; 43:2348-58; PMID:15193704; http://dx.doi.org/10.1016/j.jacc.2004.01.047
24. Tsukada K, Hasegawa T, Tsutsumi S, Kanoh H, Kuwano H, Miyazaki T, et al. Effect of uric acid on liver injury during hemorrhagic shock. Surgery 2000; 127:439-46; PMID:10776436; http://dx.doi.org/10.1067/msy.2000.104486
25. Kakizawa S, Yamasaki M, Watanabe M, Kano M. Critical period for activity-dependent synapse elimination in developing cerebellum. J Neurosci 2000; 20:4954-61; PMID:10864953