EXTREME KOHONOV SPECTRA

FEDERICO CANTERO MORÁN AND MARITHANIA SILVERO

Abstract. We prove that the spectrum constructed by González-Meneses, Manchón and the second author is stably homotopy equivalent to the Khovanov spectrum of Lipshitz and Sarkar at its extreme quantum grading.

1. Introduction

Khovanov homology is a powerful link invariant introduced by Mikhail Khovanov in [Kho00] as a categorification of the Jones polynomial. More precisely, given an oriented diagram \(D \) representing a link \(L \), he constructed a finite \(\mathbb{Z} \)-graded family of chain complexes

\[
\cdots \rightarrow C^{i,j}(D) \xrightarrow{d_i} C^{i+1,j}(D) \xrightarrow{d_{i+1}} C^{i+2,j}(D) \rightarrow \cdots
\]

whose bigraded homology groups, \(Kh^{i,j}(D) \), are link invariants satisfying

\[
J(L)(q) = \sum_{ij} q^i (-1)^j \text{rank}(Kh^{i,j}(L)),
\]

where \(J(L) \) is the Jones polynomial of \(L \). The groups \(Kh^{i,j}(L) \) are known as Khovanov homology groups of \(L \), and the indexes \(i \) and \(j \) as homological and quantum gradings, respectively.

A decade later, Lipshitz and Sarkar [LS14] constructed a \(\mathbb{Z} \)-graded family of spectra \(X^j(D) \) associated to a link diagram \(D \), and they proved that

For each \(j \in \mathbb{Z} \), the spectrum \(X^j(D) \) is a link invariant up to homotopy and there is a canonical isomorphism \(H^*(X^j(D)) \cong Kh^{*,j}(D) \).

The construction of these spectra was later simplified in [LLS15] and [LLS17], where it was shown that each spectrum \(X^j \) can be obtained as the suspension spectrum of the realisation of a certain cubical functor on pointed topological spaces.

For a given link diagram \(D \), the Khovanov chain complex is trivial for all but finitely many \(j \)'s. Let \(j_{min}(D) \) be the minimal quantum grading such that the complex \(\{C^{i,j}(D), d_i\} \) is non-trivial. In [CMS17] González-Meneses, Manchón and Silvero introduced a simplicial complex \(X_D \) satisfying the following

The simplicial complex \(X_D \), if not contractible, is a link invariant up to stable homotopy and there is a canonical isomorphism \(H^{*+n-1}(X_D) \cong Kh^{*,j_{min}}(D) \), with \(n_- \) the number of negative crossings of \(D \).

In this paper we show that, for the minimal quantum grading, both constructions are stably homotopy equivalent.

Both authors were supported by project MTM2016-76453-C2 (AEI/FEDER, UE) and acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through the María de Maeztu Programme for Units of Excellence in R&D (MDM-2014-0445).
2. A stable homotopy equivalence

2.1. States and enhancements. Let 2^n be the poset $\{1 \to 0\}^n$, which has an initial element $\vec{0} = (1,1,\ldots,1)$ and a terminal element $\vec{0} = (0,0,\ldots,0)$, and write $|v| = \sum_{i=1}^{n} v_i$.

Let D be an oriented link diagram with n ordered crossings, where $n_+ (n_-)$ of them are positive (negative). A state is an assignment of a label, 0 or 1, to each crossing in D. There is a bijection between the set S of states of D and the elements of 2^n by considering $v \in 2^n$ as the state that assigns the i^{th} coordinate of v to the i^{th} crossing of D. Write $D(v)$ for the set of topological circles and chords obtained after smoothing each crossing of D according to its label by following Figure 1.

An enhancement of a state v is a map x assigning a sign ± 1 to each of the $|D(v)|$ circles in $D(v)$. Write $\tau(v,x) = \sum x(c)$ where c ranges over all circles in $D(v)$, and define, for the enhanced state (v,x), the integers

$$h(v,x) = h(v) = -n_+ + |v|, \quad q(v,x) = n_+ - 2n_- + |v| + \tau(v,x).$$

Let $j_{\min} = \min \{ q(v,x) \mid (v,x) \text{ is an enhanced state of } D \}$, and for any state v write $v^\sim = (v,x_-)$ with x_- the constant function with value -1.

Proposition 1. [GMS17, Proposition 4.1] In this setting, $j_{\min} = q(\vec{0}^-)$ and $q(v,x) = j_{\min}$ if and only if $(v,x) \in S_{\min}$, where

$$S_{\min} = \{ \text{enhanced states } (v,x) \text{ such that } |D(v)| = |D(\vec{0})| + |v| \text{ and } x = x_- \}.$$

In particular, $j_{\min} = n_+ - 2n_ - - |D(\vec{0})|$.

Proposition 2. Let $v \in S_{\min}$. If $u < v$ then $u^- \in S_{\min}$.

Proof. Note that the Khovanov differential d either splits one circle into two or merges two circles into one. As $|D(v)| = |D(\vec{0})| + |v|$, necessarily v is obtained from $\vec{0}$ by performing $|v|$ splittings in the crossings corresponding to non-zero coordinates of v. Hence, if u and v differ on k coordinates, v is obtained from u by performing k splittings, that is, $|D(u)| = |D(v)| - k = |D(\vec{0})| + |u|$. \hfill \square

2.2. The simplicial complex for extreme Khovanov homology. Let D be an oriented link diagram. In [GMS17], a simplicial complex X_D was constructed, whose simplicial cochain complex is canonically isomorphic to the extreme Khovanov complex $\{C^{i,j_{\min}}(D), d_i\}$ shifted by $n_+ - 1$. Next, we review the construction of X_D (cf. Figure 2).

The Lando graph G_D associated to D consists of a vertex for each chord in $D(\vec{0})$ having both endpoints in the same circle, and an edge between two vertices if the endpoints of the corresponding chords alternate in the same circle. The simplicial complex X_D is defined as the independence complex of the graph G_D; in other words, the simplices of X_D are the subsets of pairwise non-adjacent vertices of G_D. Alternatively, it is the clique complex of the complement graph of G_D.
2.3. Functors to the Burnside category. Let \mathbf{Top}_* be the category of pointed topological spaces with basepoint \ast. Let \mathbf{Set}_* be the category of pointed sets, which we view as a subcategory of \mathbf{Top}_* as the subcategory of discrete spaces. Let \mathcal{B} be the Burnside 2-category for the trivial group, whose objects are finite sets, morphisms are spans and 2-morphisms are correspondences. We will freely refer to the results and notation of [LLS15] and [LLS17] in what follows (see also the survey [LS17]).

The category \mathbf{Set}_* sits inside \mathcal{B} by sending a pointed set A to $A \setminus \{\ast\}$, and a morphism $f: A \to B$ to the span $A \setminus \{\ast\} \leftarrow A \setminus f^{-1}(\ast) \rightarrow B \setminus \{\ast\}$.

Recall from [LLS15, Definition 5.1] that an N-dimensional spatial refinement of a functor $F: 2^n \to \mathcal{B}$ is another functor $\tilde{F}: 2^n \to \mathbf{Top}_*$ with values in wedges of spheres of dimension N satisfying certain properties. The following observation is straightforward from that definition:

Lemma 3. A functor $F: 2^n \to \mathcal{B}$ has a 0-dimensional spatial refinement \tilde{F} if and only if F factors as $2^n \to \mathbf{Set}_* \hookrightarrow \mathcal{B}$. If this is the case, the refinement is $\tilde{F}: 2^n \to \mathbf{Set}_* \subset \mathbf{Top}_*$.

Let 2^n_+ be the poset obtained as follows: Take a second copy of 2^n, and rename its terminal object $\vec{0}$ as \circ. The poset 2^n_+ is the union of both copies along the subposet $2^n \setminus \{\vec{0}\}$. Alternatively, it is the result of adding two cones to $2^n \setminus \{\vec{0}\}$ with apices $\vec{0}$ and \circ. If $\tilde{F}: 2^n \to \mathbf{Top}_*$ is an N-dimensional spatial refinement, then its totalisation is defined as follows: extend \tilde{F} to a functor $\tilde{F}_+: 2^n_+ \to \mathbf{Top}_*$ by declaring $\tilde{F}_+(\circ) = \ast$ and define:

$$\text{Tot} \tilde{F} = \operatorname{hocolim} \tilde{F}_+ \in \mathbf{Top}_*.$$

2.4. Khovanov spectra. Fix a link diagram D and let $\mathcal{F}: 2^n \to \mathcal{B}$ be the functor constructed in [LLS17, Proposition 6.1] whose value at a vertex v is the set of all possible enhancements associated to the state v. Let \mathcal{F}^j be the subfunctor whose values are those enhancements with quantum grading j. If \mathcal{F}^j is an N-dimensional spatial refinement of \mathcal{F}^j, then the Khovanov spectrum of Lipshitz and Sarkar in quantum grading j is [LLS15, Theorem 3]

$$X^j \simeq \Sigma^{-N-n} - \Sigma^\infty \text{Tot} \mathcal{F}^j. \quad (1)$$

When $j = j_{\text{min}}$, we can restate Propositions 1 and 2 in the following way:
Proposition 4. The value of $\mathcal{F}_{\text{min}}^j$ at a vertex $v \in 2^n$ is either the singleton x_- for the case when $(v, x_-) \in S_{\text{min}}$, or empty otherwise. Moreover, the value of $\mathcal{F}_{\text{min}}^j$ at an arrow $v > u$ is, depending on the values of $\mathcal{F}_{\text{min}}^j(u)$ and $\mathcal{F}_{\text{min}}^j(v)$,

$\mathcal{F}_{\text{min}}^j(u)$	$\mathcal{F}_{\text{min}}^j(v)$
\emptyset	\emptyset
x_-	x_-
\emptyset	\emptyset

In particular, we obtain the following corollary:

Corollary 5. $\mathcal{F}_{\text{min}}^j$ factors through Set_\ast, and therefore the factorisation $\tilde{\mathcal{F}}_{\text{min}}^j$ is the 0-dimensional spatial refinement of $\mathcal{F}_{\text{min}}^j$. In fact, it further factors through the inclusion $\text{Set} \subset \text{Set}_\ast$ sending a set A to the pointed set $A \cup \{\ast\}$. If we write $\hat{\mathcal{F}}_{\text{min}}^j$ for the latter factorisation, we get

$$\begin{array}{c}
2^n \xrightarrow{\mathcal{F}_{\text{min}}^j} B \\
\text{Set} \xrightarrow{\mathcal{F}_{\text{min}}^j} \text{Set}_\ast
\end{array}$$

2.5. A homotopy equivalence. Let Poset be the category of posets, and let SComp be the category of simplicial complexes. There are functors

$$\begin{array}{c}
\text{Poset} \xrightarrow{\kappa} \text{SComp} \xrightarrow{|\cdot|} \text{Top},
\end{array}$$

where κ takes a simplicial complex to its poset of non-empty faces, κ takes a poset P to the simplicial complex whose 0-simplices are the elements of P, and whose i-simplices are ascending chains of $i+1$ elements in P. The functor $|\cdot|$ takes a simplicial complex to its realisation. The composition $\kappa \circ |\cdot|$ takes a simplicial complex Y to its barycentric subdivision $\text{sd}(Y)$. We will denote the composition $|K(\cdot)|$ by $\|\cdot\|$. If P is a poset and $F : P \to \text{Top}$ is a functor taking every element of P to a singleton, then $\|P\|$ is a model for the homotopy colimit of F.

Let $S'_{\text{min}} \subset 2^n$ be the subposet of those states v such that $(v, x_-) \in S_{\text{min}}$. The poset 2^n can be identified with the poset of faces of the $(n-1)$-dimensional simplex with the arrows reversed, where we identify $\vec{0}$ with the empty face and $\vec{1}$ with the top-dimensional face. Under this identification, the poset of faces of X_D becomes precisely S'_{min} [GMS17, Proposition 4.3]. Therefore, if $F : S'_{\text{min}} \to \text{Top}$ is a functor with values on singletons, then

$$\text{hocolim} F \simeq \|S'_{\text{min}} \setminus \{\vec{0}\}\| = |\text{sd}(X_D)| \cong |X_D|.$$

(2) hocolim $F \simeq \|S'_{\text{min}} \setminus \{\vec{0}\}\| = |\text{sd}(X_D)| \cong |X_D|.$

Theorem. There is a homotopy equivalence

$$\mathcal{X}_{\text{min}}^j \simeq \Sigma^{1-n} - \Sigma^\infty |X_D|.$$

Proof. From (1) and Corollary 5 we have that $\mathcal{X}_{\text{min}}^j \simeq \Sigma^{-n} - \Sigma^\infty \text{hocolim} \mathcal{F}_{\text{min}}^j$. We will prove that $\text{hocolim} \mathcal{F}_{\text{min}}^j \simeq \Sigma^{\|S'_{\text{min}} \setminus \{\vec{0}\}\|} |X_D|$, and the result will follow from the homeomorphism $\|S'_{\text{min}} \setminus \{\vec{0}\}\| \cong |X_D|.$
As 2^n_+ is constructed as the pushout of two cubes, there is a pushout diagram

$$
\begin{align*}
\text{hocolim } \tilde{F}^{j_{\text{min}}} |_{2^n \setminus \{\vec{0}\}} & \longrightarrow \text{hocolim } \tilde{F}^{j_{\text{min}}} |_{2^n} \\
\downarrow & \quad \downarrow \\
\text{hocolim } \tilde{F}^{j_{\text{min}}} |_{2^n \setminus \{\vec{0}\}} & \longrightarrow \text{hocolim } \tilde{F}^{j_{\text{min}}},
\end{align*}
$$

and as the two cubes have final elements $\vec{0}$ and \circ, we have

$$
\text{hocolim } \tilde{F}^{j_{\text{min}}} |_{2^n} \simeq \tilde{F}^{j_{\text{min}}} (\vec{0}) = \{x_-, *\}, \quad \text{hocolim } \tilde{F}^{j_{\text{min}}} |_{2^n \setminus \{\vec{0}\}} \simeq \tilde{F}^{j_{\text{min}}} (\circ) = \ast.
$$

We now proceed to the computation of the upper left term in the diagram. Recall from the second part of Corollary 5 that $\tilde{F}^{j_{\text{min}}}$ factors as $\hat{F}^{j_{\text{min}}}$:

$$
2^n \rightarrow \text{Set} \subset \text{Top} \subset \text{Set}^\ast.
$$

Since the inclusion $\text{Top} \subset \text{Top}^\ast$ is a left adjoint, it preserves colimits, and therefore

$$
\text{hocolim } \hat{F}^{j_{\text{min}}} |_{2^n \setminus \{\vec{0}\}} = \text{hocolim } \hat{F}^{j_{\text{min}}} |_{2^n \setminus \{\vec{0}\} \cup \{*\}}.
$$

Now, from Proposition 4, it follows that $\hat{F}^{j_{\text{min}}}(u)$ is either a point or empty depending on whether u belongs to S'_{min} or not; therefore

$$
\text{hocolim } \hat{F}^{j_{\text{min}}} |_{2^n \setminus \{\vec{0}\}} = \text{hocolim } \hat{F}^{j_{\text{min}}} |_{S'_{\text{min}} \setminus \{\vec{0}\}}
$$

and since the latter functor is constant with values on singletons, (2) leads to

$$
\text{hocolim } \hat{F}^{j_{\text{min}}} |_{S'_{\text{min}} \setminus \{\vec{0}\}} \simeq \|S'_{\text{min}} \setminus \{\vec{0}\}||.
$$

Finally, we face again the original pushout diagram in Top^\ast:

$$
\|S'_{\text{min}} \setminus \{\vec{0}\}|| \cup \{*\} \longrightarrow \ast
$$

$$
\begin{align*}
\{x_-, *\} \longrightarrow & \text{hocolim } \hat{F}^{j_{\text{min}}} \\
\downarrow & \quad \downarrow \\
& \{x_-, *\} \longrightarrow \text{hocolim } \hat{F}^{j_{\text{min}}},
\end{align*}
$$

where the left vertical map collapses $\|S'_{\text{min}} \setminus \{\vec{0}\}||$ to $\{x_-, *\}$. Replacing $\{x_-, *\}$ by $\text{Cone}(\|S'_{\text{min}} \setminus \{\vec{0}\}||) \cup \{*\}$ and the \ast in the upper right corner by $\text{Cone}(\|S'_{\text{min}} \setminus \{\vec{0}\}||)$ with basepoint the apex of the cone, we obtain a homotopy equivalent cofibrant pushout diagram, whose colimit is the (unreduced) suspension of $\|S'_{\text{min}} \setminus \{\vec{0}\}||$. □

Remark 6. One can similarly define a maximal quantum grading j_{max} and define a simplicial complex Y_D as the Alexander dual of X_D where D^* is the mirror image of D (cf. [PS17, Theorem 7.4]). The fact that the Khovanov spectrum of a link diagram is the Spanier-Whitehead dual of the Khovanov spectrum of its mirror image, immediately implies that $X^{j_{\text{max}}} \simeq \Sigma^{n+1} \Sigma^\infty Y_D$.

References

[GMS17] J. González-Meneses, P. M. G. Manchón, and M. Silvero, *A geometric description of the extreme Khovanov cohomology*, Proceedings of the Royal Society of Edinburgh: Section A Mathematics (2017), 117.

[Kho00] M. Khovanov, *A categorification of the Jones polynomial*, Duke Math. J. 101 (2000), no. 3, 359–426.

[LLS15] T. Lawson, R. Lipshitz, and S. Sarkar, *Khovanov homotopy type, Burnside category, and products*, arXiv:1505.00213, 2015.
The cube and the Burnside category, Categorification in geometry, topology, and physics, Contemp. Math., vol. 684, Amer. Math. Soc., Providence, RI, 2017, pp. 63–85.

R. Lipshitz and S. Sarkar, A Khovanov stable homotopy type, J. Amer. Math. Soc. 27 (2014), no. 4, 983–1042.

Spatial refinements and Khovanov homology, arXiv:1709.03602, 2017.

J. H. Przytycki and M. Silvero, Homotopy type of circle graph complexes motivated by extreme Khovanov homology, J. Algebr. Comb. (2017).