ORIGINAL RESEARCH

Association Between Subsequent Hospitalizations and Recurrent Acute Myocardial Infarction Within 1 Year After Acute Myocardial Infarction

Yun Wang, PhD; Erica Leifheit, PhD; Sharon-Lise T. Normand, PhD; Harlan M. Krumholz MD, SM

BACKGROUND: Patients who survive acute myocardial infarction (AMI) are at high risk for recurrence. We determined whether rehospitalizations after AMI further increased risk of recurrent AMI.

METHODS AND RESULTS: The study included Medicare fee-for-service patients aged ≥65 years discharged alive after AMI from acute-care hospitals in fiscal years 2009–2014. The outcome was recurrent AMI within 1 year of the index AMI. The Clinical Classifications Software (CCS) was used to classify rehospitalizations into disease categories. A Cox regression model was fit accounting for CCS-specific hospitalizations as time-varying variables and patient characteristics at discharge for the index AMI, adjusting for the competing risk of death. The rate of 1-year recurrent AMI was 5.3% (95% CI, 5.27%–5.41%), and median (interquartile range) time from discharge to recurrent AMI was 115 (34–230) days. Eleven disease categories (diabetes mellitus, anemia, hypertension, coronary atherosclerosis, chest pain, heart failure, pneumonia, chronic obstructive pulmonary disease, gastrointestinal hemorrhage, renal failure, complication of implant or graft) were associated with increased risk of recurrent AMI. Septicemia was associated with lower recurrence risk. Hazard ratios ranged from 1.6 (95% CI, 1.55–1.70, heart failure) to 1.1 (95% CI, 1.04–1.25, pneumonia) to 0.6 (95% CI, 0.58–0.71, septicemia).

CONCLUSIONS: Patient risk of recurrent AMI changed based on the occurrence of hospitalizations after the index AMI. Improving post–acute care to prevent unplanned rehospitalizations, especially rehospitalizations for chronic diseases, and extending the focus of outcomes measures to condition-specific rehospitalizations within 30 days and beyond is important for the secondary prevention of AMI.

Key Words: cardiovascular prevention ■ myocardial infarction ■ rehospitalization
Accordingly, we used national Medicare inpatient claims data to assess the association between subsequent hospitalizations and recurrent AMI within 1 year after an initial AMI and identify clinically important hospitalizations that increased the risk of recurrence. This study, which was based on 100% national data and detailed follow-up information about patients with AMI, is ideally positioned to generate information to update risk stratification for recurrent AMI in the year after hospital discharge.

METHODS

Restricted by our Data Use Agreement with the Centers for Medicare & Medicaid Services (CMS), the Medicare data used for this study cannot be made publicly available to other researchers for purposes of reproducing the results or replicating the procedure. However, Medicare data are available from the Centers for Medicare & Medicaid Services upon request (https://www.cms.gov/Research-Statistics-Data-and-Systems/Files-for-Order/Data-Disclosures-Data-Agreements/DUA__Forms.html).

Study Sample

We used the Centers for Medicare & Medicaid Services Medicare denominator files to identify all beneficiaries aged 65 years or older enrolled in the fee-for-service program for at least 12 months in fiscal years (FY) 2009–2014 (October 1, 2008 to September 31, 2014), a period in which all diagnosis codes were classified according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). We linked these enrollment data to Medicare fee-for-service inpatient claims to identify beneficiaries who were discharged alive after hospitalization for AMI at an acute-care hospital in the United States. This was designated the index AMI hospitalization. If a patient had >1 AMI hospitalization during the study period, we selected the first AMI during the study period as the index AMI. Data from FY 2008 were used to identify patients who were rehospitalized with AMI in FY 2009; FY 2015 data were used to ensure 1 year of follow-up for patients hospitalized with AMI during FY 2014.

AMI was defined as an ICD-9-CM principal discharge diagnosis code of 410.xx. We excluded patients with ICD-9-CM codes 410.x2 because the codes represent subsequent episodes of care related to the index AMI. We also excluded patients who had a length of stay ≤1 day (because these patients were unlikely to have had an AMI), had conflicting dates of death and hospitalization, or were subsequently transferred to another acute-care hospital for continuing care after the initial AMI.

Nonstandard Abbreviations and Acronyms

Abbreviation	Description
AMI	acute myocardial infarction
CABG	coronary artery bypass grafting
CAD	coronary artery disease
CATH	cardiac catheterization
CCS	Clinical Classifications Software
COPD	chronic obstructive pulmonary disease
DM	diabetes mellitus
FY	fiscal years
HR	hazard ratio
HTN	hypertension
ICD-9-CM	International Classification of Diseases, Ninth Revision, Clinical Modification
IQR	interquartile range
PCI	percutaneous coronary intervention
UTI	urinary tract infection

risk markers for adverse outcomes is limited, and many of the available data focus on mortality. There is scant information on the association between subsequent hospitalizations and recurrent AMI. A comprehensive, contemporary, national evaluation of such rehospitalizations could provide important information for the prevention of recurrent AMI, particularly among Medicare beneficiaries who are a high-risk population for AMI.
Patient baseline characteristics included age (continuous), sex, race (white, black, other), and clinical comorbidities identified using the method employed by the Centers for Medicare & Medicaid Services to profile hospital 30-day mortality measures for AMI. We determined comorbidities from secondary diagnosis codes for the index AMI hospitalization as well as the principal and secondary diagnosis codes from all hospitalizations during the 12 months before the index AMI. Because the maximum number of diagnosis codes in Medicare data increased from 10 to 25 in 2011, we restricted the 2011–2015 data to the first 10 diagnosis codes to calculate comorbidities.

Outcome
The primary outcome was recurrent AMI within 1 year of discharge for the initial AMI. For patients with >1 recurrent AMI, the first recurrence was selected. Deaths during the 1-year follow-up period without a recurrent AMI hospitalization were treated as competing risks in the analysis. Secondary outcomes included 30-day all-cause mortality, 30-day all-cause readmission, and 1-year all-cause mortality using the index AMI discharge as the time zero. Mean length of stay and mean Medicare payment for the index AMI hospitalization were also assessed.

Subsequent Hospitalizations
We identified all subsequent hospitalizations within 1 year after discharge for the initial AMI. For patients with a recurrent AMI, subsequent hospitalizations were restricted to the period prior to the recurrent AMI. Because of the large volume of individual ICD-9-CM codes, we used the Clinical Classifications Software (CCS), a diagnosis and procedure categorization algorithm developed by the Agency for Healthcare Research and Quality, to characterize the subsequent hospitalizations. Using the CCS single-level diagnosis-specific algorithm, we collapsed >14,000 individual ICD-9-CM principal discharge diagnosis codes into 285 clinically homogeneous, meaningful, and mutually exclusive disease categories (Table S1). If a patient had >1 hospitalization for the same disease category, the first one was selected. We excluded CCS hospitalizations that occurred at a frequency <1% to avoid counting hospitalizations for less frequent diseases in the Medicare population.

Statistical Analysis
We divided patients into 2 samples, 2009–2011 and 2012–2014. We used the first sample to conduct the main analysis and the second to confirm the findings. We compared baseline characteristics between patients who had a recurrent AMI and those who did not have a recurrent AMI using the chi-squared test for categorical variables and the t test for continuous variables. Using the 2009–2011 sample, for each patient, we estimated the baseline risk at the time of discharge of having a recurrent AMI within 1 year after discharge by fitting a Cox proportional hazards model with Markov Chain Monte Carlo simulations that modeled time to first recurrent AMI as a function of a patient’s baseline characteristics described above. The model also included in-hospital treatments (percutaneous coronary intervention, coronary artery bypass grafting, and cardiac catheterization), length of stay, and discharge to home (yes/no) because these variables may be associated with the outcome. We retained a variable in the model if the posterior probability of its nonzero coefficient was >0.95. We used the regression coefficients estimated from this model to calculate a baseline risk score for recurrent AMI for each patient. We standardized the score through the Z score method and stratified patients into 1 of 3 risk groups based on the risk score distribution: low (<10th percentile), average (10th–90th percentile), and high (>90th percentile). The baseline risk group represented a patient’s risk of recurrent AMI at discharge. We used variables selected using the 2009–2011 data to calculate the score for patients in the 2012–2014 data as well.

We fit a single-variable Cox regression model to describe the observed relationship between 1-year recurrent AMI and a CCS-specific condition-related subsequent hospitalization, without accounting for patient baseline risk of recurrence. The time a hospitalization occurred was used as a time-varying variable in the analysis. We repeated this analysis for each of the potential subsequent hospitalizations. To further assess the association between rehospitalizations and 1-year recurrent AMI, we fit the Cox regression model with Markov Chain Monte Carlo simulations that modeled recurrent AMI as a function of all potential subsequent hospitalizations (event, yes/no, and time) as time-varying variables, adjusted for the patient baseline risk score for recurrent AMI. We retained a rehospitalization in the model if the posterior probability of its nonzero coefficient was >0.95. To further assess the change in risk of recurrent AMI between patients with and without at least 1 subsequent rehospitalization, we fit the Cox model with a binary time-varying indicator (1=had ≤1 subsequent CCS-specific condition-related rehospitalizations; 0=no rehospitalization), stratified by baseline risk group and further by age group. If a patient had >1 CCS-specific condition-related rehospitalization, the time that the first event occurred was used for the model.

Analyses were conducted using SAS version 9.4, 64-bit Windows (SAS Institute Inc., Cary, NC). As
Table 1. Patient Baseline Characteristics by Study Sample

Demographics, n (%)	Fiscal Year 2009–2011	Fiscal Year 2012–2014
Age, mean (SD)	78.3 (8.6)	78.2 (8.5)
Female	218,034 (48.7)	207,463 (48.7)
White	391,029 (87.3)	373,133 (87.5)
Black	35,049 (7.8)	32,874 (7.7)
Other	21,612 (4.8)	20,419 (4.8)

Prior cardiovascular events, n (%)	Fiscal Year 2009–2011	Fiscal Year 2012–2014
Heart failure	57,891 (12.9)	53,063 (12.4)
AMI	18,926 (4.2)	16,607 (3.9)
Unstable angina	11,499 (2.6)	10,219 (2.4)
Chronic atherosclerosis	326,924 (73.0)	310,783 (72.9)
Cardiopulmonary respiratory failure or shock	20,232 (4.5)	18,717 (4.4)
Anterior MI (ICD-9 410.00–410.19)	40,964 (9.2)	39,685 (9.3)
Inferior/lateral/posterior MI (ICD-9 410.20–410.69)	60,444 (13.5)	58,558 (13.7)

Comorbidities, n (%)	Fiscal Year 2009–2011	Fiscal Year 2012–2014
Hypertension	299,244 (66.8)	284,380 (66.7)
Stroke	17,964 (1.8)	16,798 (1.8)
Renal failure	52,288 (11.7)	47,971 (11.2)
COPD	88,711 (19.8)	83,582 (19.6)
Pneumonia	64,817 (14.5)	61,108 (14.3)
Protein-calorie malnutrition	21,010 (4.7)	20,090 (4.7)
Dementia	48,997 (10.9)	46,521 (10.9)
Functional disability	10,927 (2.4)	10,162 (2.4)
Peripheral vascular disease	27,609 (6.2)	25,358 (5.9)
Metastatic cancer	29,141 (6.5)	27,664 (6.5)
Major trauma in past year	26,039 (5.8)	24,762 (5.8)
Major psychiatric disorder	9,417 (2.1)	8,867 (2.1)
Chronic liver disease	3,009 (0.7)	2,835 (0.7)
Depression	25,098 (5.6)	23,821 (5.6)
Diabetes mellitus	139,047 (31.1)	130,064 (30.5)
Parkinson or Huntington disease	6,186 (1.4)	5,845 (1.4)
Anemia	11,079 (2.4)	10,498 (2.4)
Asthma	10,699 (2.4)	10,178 (2.4)

In-hospital procedures, n (%)	Fiscal Year 2009–2011	Fiscal Year 2012–2014
Percutaneous coronary intervention	181,125 (40.5)	174,586 (40.9)
Coronary artery bypass grafting	41,365 (9.2)	40,676 (9.5)
Cardiac catheterization	260,515 (58.2)	250,689 (58.6)

Discharge disposition, n (%)	Fiscal Year 2009–2011	Fiscal Year 2012–2014
Home	253,528 (56.6)	241,745 (56.7)
Home with care	69,802 (15.6)	65,712 (15.4)
Skilled nursing facility or intermediate care facility	84,997 (19.0)	80,767 (18.9)

(Continued)
of 2019, the data were 5 years old. Analyses were repeated using the 2012–2014 data. Deaths before recurrent AMI were addressed using the Fine and Gray20 method for competing risks. The Lee, Wei, and Amato method 21 of robust sandwich variance matrix estimation was used to adjust for within-hospital clustering of patients. All statistical testing was 2-sided, and \(P < 0.05 \) was considered statistically significant. The study followed the guidelines for cohort studies described in the Strengthening the Reporting of Observational Studies in Epidemiology Statement: Guidelines for Reporting Observational Studies. 22 The Yale University Institutional Review Board reviewed the study protocol and granted a waiver of informed consent for the use of the deidentified database.

RESULTS

Study Sample and Patient Baseline Characteristics

The study included 884,931 (447,690 in 2009–2011 and 437,241 in 2012–2014) unique patients who were discharged alive after AMI, were not transferred to another acute-care hospital, and were hospitalized for >1 day during their index admission. Overall, patients had a mean age of 78.0 (SD, 8.6) years, and 47.7% were female. The most common comorbidities were chronic atherosclerosis (73.3%), hypertension (67.9%), diabetes mellitus (32.1%), and anemia (25.2%). During the index AMI hospitalization, 42.2% of patients had a percutaneous coronary intervention, 9.1% underwent coronary artery bypass grafting, and 58.2% had cardiac catheterization. The median length of stay was 4 (interquartile range [IQR], 2–7) days, and 57.5% of patients were discharged to home. Patient characteristics were no different between the 2009–2011 and 2012–2014 samples (Table 1).

Outcome	Fiscal Year 2009–2011	Fiscal Year 2012–2014				
	Without Recurrent AMI	Without Recurrent AMI				
	(n=426,426)	(n=419,120)				
	With Recurrent AMI	With Recurrent AMI				
	(n=21,264)	(n=18,121)				
	Aggregated	Aggregated				
	(n=447,690)	(n=437,241)				
Outcome	**Fiscal Year 2009–2011**	**Fiscal Year 2012–2014**				
Length of stay, mean (SD) days	6 (5.4)	6 (5.5)	5 (4.6)	5 (5.1)	5 (5.1)	5 (4.2)
Medicare payment, median (IQR), $1000	10.8 (8.3–16.1)	10.8 (8.4–16.2)	10.3 (7.1–14.2)	11.1 (8.5–16.7)	11.1 (8.5–16.8)	10.4 (7.1–14.8)
30-day mortality after discharge, n (%)	23,061 (5.2)	22,487 (5.3)	574 (2.7)	21,743 (5.0)	21,240 (5.1)	503 (2.8)
1-year mortality after discharge, n (%)	86,692 (19.4)	81,729 (19.2)	4963 (23.3)	76,542 (17.5)	72,639 (17.3)	3903 (21.5)
30-day all-cause readmission after discharge, n (%)	85,234 (19.0)	76,967 (18.1)	8270 (38.9)	72,910 (16.7)	65,913 (15.7)	6997 (38.6)

AMI indicates acute myocardial infarction; COPD, chronic obstructive pulmonary disease; ICD-9, International Classification of Diseases, Ninth Revision; IQR, interquartile range; and MI, myocardial infarction.

Outcome

For the 2009–2011 and 2012–2014 samples, the rates of 1-year recurrent AMI were 5.3% (95% CI, 5.27–5.41) and 4.6% (95% CI, 4.54–4.67), respectively (\(P < 0.001 \)). Among these patients who had a recurrent AMI, the median (IQR) days from discharge to a recurrent AMI was 115 (34–230) for the 2009–2011 sample and 106 (31–217) for the 2012–2014 sample. In the 2009–2011 and 2012–2014 samples, respectively, the median (IQR) survived days among patients who died within 1 year without a recurrent AMI were 56 (20–128) and 53 (19–121), and the median (IQR) survived days among patients who died with a recurrent AMI were 105 (49–188) and 97 (48–179).

All-cause mortality rates after the index AMI and before a recurrent AMI were 17.5% (95% CI, 17.4–17.6) and 15.7% (95% CI, 15.6–15.8) for the 2009–2011 and 2012–2014 samples, respectively. Compared with patients without a recurrent AMI, patients with a recurrent AMI had a higher 30-day postdischarge all-cause mortality rate (5.3% versus 2.7%; \(P < 0.001 \)), higher 30-day all-cause readmission rate (38.9% versus 18.1%; \(P < 0.001 \)), higher 1-year all-cause mortality rate (23.3% versus 19.2%; \(P < 0.001 \)), lower median Medicare payment ($10,300 versus $10,500), and shorter mean (SD) length of stay (5 [4.6] days versus 6 [5.5] days). These observed outcomes were similar in the 2009–2011 and 2012–2014 samples (Table 1).

Association Between Patient Baseline Characteristics and Recurrent AMI

In the 2009–2011 sample, the 5 baseline characteristics most strongly associated with 1-year
Wang et al Rehospitalization Associated with Recurrent AMI

recurrent AMI were AMI before the index admission (hazard ratio [HR], 1.8 [95% CI, 1.76–1.93]), unstable angina (HR, 1.5 [95% CI, 1.41–1.59]), diabetes mellitus (HR, 1.4 [95% CI, 1.39–1.47]), chronic atherosclerosis (HR, 1.3 [95% CI, 1.26–1.35]), and renal failure (HR, 1.2 [95% CI, 1.14–1.23]; Figure 1). Patients with a standardized risk <-1.2 times the SD, between −1.2 and 1.2, and >1.2 were stratified into low-, average-, and high-risk groups, respectively (Figure 2). The mean (SD) estimated rates of 1-year recurrent AMI were 1.7% (0.47) for the low-risk group, 5.1% (2.03) for average risk, and 14.3% (5.31) for high risk. Within a risk group, the rate of recurrence increased with patient age (Figure 3, top panel). Results were similar for the 2012–2014 sample (Figure 3, bottom panel).

Figure 1. Patient baseline characteristics associated with recurrent AMI within 1 year after the initial AMI.
AMI indicates acute myocardial infarction; CABG, coronary artery bypass grafting; CATH, cardiac catheterization; COPD, chronic obstructive pulmonary disease; and PCI, percutaneous coronary intervention.

Subsequent Hospitalizations

Among 285 CCS-specific conditions, 19 occurred in at least 1% of patients and were included in the model for the 2009–2011 sample (Table 2). The median (IQR) tetrachoric correlations among parts of these conditions were low (0.11 [95% CI, 0.08–0.16] in 2009–2011 and 0.12 [95% CI, 0.09–0.18] in 2012–2014). The highest correlation occurred between chronic obstructive pulmonary disease and bronchiectasis (CCS-127) and respiratory failure/insufficiency/arrest (CCS-131), which was 0.40 in 2009–2011 and 0.41 in 2012–2014. Among 447 690 patients in the 2009–2011 sample, 36.0% (n=161 327) had at least 1 rehospitalization for 1 of these 19 CCS-specific conditions before a recurrent AMI within 1 year. The 5 most common rehospitalization events were congestive heart failure (CCS-108,
9.8%), coronary atherosclerosis and other heart disease (CCS-101, 6.6%), septicemia (CCS-2, 4.0%), cardiac dysrhythmias (CCS-106, 3.7%), and pneumonia (CCS-122, 3.4%). The 5 events that occurred soonest after discharge were complications of surgical procedures or medical care (CCS-238; median, 53 [IQR, 12–165] days), coronary atherosclerosis and other heart disease (CCS-101; median, 54 [IQR, 19–154]...
days), congestive heart failure (CCS-108; median, 62 [IQR, 18–161] days), respiratory failure/insufficiency/arrest (CCS-131; median, 88 [IQR, 28–198] days), and cardiac dysrhythmias (CCS-106; median, 90 [IQR, 25–204] days; Figure 4, top panel). The findings were similar for the 2012–2014 sample (Figure 4, bottom panel). In-hospital mortality for these CCS-specific hospitalizations ranged from 0.3% (nonspecific chest pain, CCS-102) to 21.9% (septicemia, CCS-2).

Association Between Subsequent Hospitalizations and Recurrent AMI

Most of the 19 subsequent hospitalizations were associated with an increased recurrent AMI risk in the descriptive analysis without accounting for patient baseline risk of recurrent AMI (Table 3). The Cox model based on the 2009–2011 data identified 12 CCS-specific subsequent hospitalizations significantly associated to recurrent AMI risk (Figure 5). These hospitalizations were septicemia (CCS-2), diabetes mellitus with complications (CCS-50), deficiency and other anemia (CCS-59), hypertension with complications and secondary hypertension (CCS-99), coronary atherosclerosis and other heart disease (CCS-101), nonspecific chest pain (CCS-102), congestive heart failure (CCS-108), pneumonia (CCS-122), chronic obstructive pulmonary disease and bronchiectasis (CCS-127), gastrointestinal hemorrhage (CCS-153), acute and unspecified renal failure (CCS-157), and complication of device (implant or graft; CCS-237). All these rehospitalizations except septicemia (CCS-2) were associated with increased risk of recurrent AMI; septicemia (CCS-2) was associated with a lower risk of recurrent AMI (Figure 5). The HRs ranged from 1.6 (95% CI, 1.55–1.70, heart failure [CCS-108]) to 1.1 (95% CI, 1.04–1.25, pneumonia [CCS-122]); the HR for septicemia (CCS-2) was 0.6 (95% CI, 0.58–0.71; Figure 5).

Overall, 26.9% of patients in 2009–2011 and 22.5% of patients in 2012–2014 had at least 1 of the identified subsequent CCS-specific hospitalizations significantly associated with increased risk of recurrent AMI. For the low-, average-, and high-risk groups in the 2009–2011 sample, having at least 1 CCS-specific hospitalization was associated with an increase in the risk of recurrent AMI by 210% (95% CI, 77%–149%), 73% (95% CI 66%–79%), and 43% (95% CI 34%–52%), respectively. The younger age group (65–74 years) in the average-risk strata was most likely to have a recurrence with at least 1 CCS-specific hospitalization (Figure 6, left panel). The findings were similar for the 2012–2014 cohort (Figure 6, right panel).

DISCUSSION

In this study, we demonstrated that hospitalizations after AMI were associated with the risk of a subsequent AMI. Although patient baseline characteristics...
were also associated with the risk of a recurrent AMI, we showed that patient risk of recurrence was influenced by hospitalizations that occurred after discharge. Among the 12 rehospitalization categories identified in this study, 11 were associated with increased risk of recurrent AMI, with the increase in risk ranging from 14% (pneumonia) to 62% (heart failure). We found that patients who survived a hospitalization for septicemia had a lower risk of a recurrent AMI.

There are several potential explanations for the associations between subsequent hospitalizations and increased patient risk of recurrent AMI. It is possible that the hospitalization is a marker for the presence and severity of comorbidities. Sick patients tend to have more comorbidities23 and are more likely to be rehospitalized after AMI.24 We adjusted for baseline comorbidities, but information about the severity does not reside within the administrative codes in our Medicare database. Additionally, the hospitalizations may be a marker for postdischarge quality of care. Postdischarge care factors, such as continuity of care, type of care, and care providers, could impact AMI patient outcomes.25–27 Studies have identified associations between poor postdischarge care and subsequent hospitalizations,28–30 including recurrent AMI. Many subsequent hospitalizations identified by our study, including those for diabetes mellitus, anemia, hypertension, coronary atherosclerosis, chest pain, heart failure, pneumonia, chronic obstructive pulmonary disease and bronchiectasis, respiratory failure, gastrointestinal hemorrhage, renal failure, and complications of an implant or graft, have been individually identified as potential risk markers for recurrent AMI or major cardiovascular events in previous studies.6,8,31 Another possible explanation for our findings is that the hospitalization itself increased the risk. The reason for the hospitalization may have been associated with inflammation, a known contributor to AMI risk, or to other factors associated with AMI, such as stress or depression. It is also possible that the hospitalization

Figure 4. Median (interquartile range [IQR]) days to subsequent rehospitalizations within 1 year after discharge for index AMI.

The median (IQR) days to recurrent AMI were 115 (34–230) in the 2009–2011 sample and 106 (31–217) in the 2012 to 2014 sample. AMI indicates acute myocardial infarction; CAD, coronary artery disease; CCS_101, Coronary atherosclerosis and other heart disease; CCS_102, Nonspecific chest pain; CCS_106, Cardiac dysrhythmias; CCS_108, Congestive heart failure; CCS_109, Acute cerebrovascular disease; CCS_122, Pneumonia; CCS_131, Respiratory failure; insufficiency; arrest; CCS_153, Gastrointestinal hemorrhage; CCS_157, Acute and unspecified renal failure; CCS_159, Urinary tract infections; CCS_2, Septicemia; CCS_226, Fracture of neck of femur; CCS_237, Complication of device; implant or graft; CCS_238, Complications of surgical procedures or medical care; CCS_50, Diabetes mellitus with complications; CCS_55, Fluid and electrolyte disorders; CCS_59, Deficiency and other anemia; CCS_99, Hypertension with complications and secondary hypertension; CCS, Clinical Classifications Software; COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; HTN, hypertension; and UTI, urinary tract infection.
Wang et al

Rehospitalization Associated with Recurrent AMI

led to the discontinuation of secondary preventive medications or the addition of medications to a patient’s regimen, which may have resulted in nonadherence to the regimen.

The negative association of septicemia with recurrent AMI may represent a survivorship bias because patients who survived sepsis may have been healthier than those who died with sepsis and were therefore

Table 3. Observed Association Between a Targeted CCS-Specific Condition-Related Subsequent Hospitalization and 1-Year Recurrent AMI Based on a Single-Variable Cox Regression Model

Rehospitalization	FY 2009–2011	FY 2012–2014
	HR (95% CI)	HR (95% CI)
Septicemia (CCS-2; except in labor)	0.80 (0.72–0.89)	0.87 (0.78–0.97)
Diabetes mellitus with complications (CCS-50)	2.10 (1.85–2.37)	2.50 (2.18–2.86)
Fluid and electrolyte disorders (CCS-55)	1.49 (1.31–1.68)	1.74 (1.51–2.01)
Deficiency and other anemia (CCS-59)	1.87 (1.64–2.14)	1.97 (1.68–2.31)
Hypertension with complications and secondary hypertension (CCS-99)	2.35 (2.11–2.62)	2.39 (2.13–2.69)
Coronary atherosclerosis and other heart disease (CCS-101)	1.70 (1.61–1.80)	1.94 (1.82–2.08)
Nonspecific chest pain (CCS-102)	1.79 (1.63–1.97)	1.89 (1.68–2.13)
Cardiac dysrhythmias (CCS-106)	1.26 (1.16–1.37)	1.25 (1.13–1.38)
Congestive heart failure (CCS-108; non-hypertensive)	2.12 (2.03–2.21)	2.00 (1.90–2.11)
Acute cerebrovascular disease (CCS-109)	1.03 (0.90–1.18)	1.00 (0.88–1.17)
Pneumonia (CCS-122; except that caused by tuberculosis or sexually transmitted disease)	1.46 (1.33–1.59)	1.57 (1.42–1.73)
Chronic obstructive pulmonary disease and bronchiectasis (CCS-127)	1.93 (1.75–2.13)	1.75 (1.55–1.97)
Respiratory failure; insufficiency; arrest (CCS-131; adult)	1.54 (1.38–1.73)	1.28 (1.11–1.47)
Gastrointestinal hemorrhage (CCS-153)	1.42 (1.28–1.58)	1.48 (1.32–1.67)
Acute and unspecified renal failure (CCS-157)	1.60 (1.45–1.76)	1.47 (1.31–1.63)
Urinary tract infections (CCS-159)	1.37 (1.22–1.54)	1.35 (1.17–1.56)
Fracture of neck of femur (CCS-226; hip)	1.40 (1.18–1.66)	1.26 (1.02–1.56)
Complication of device; implant or graft (CCS-237)	1.98 (1.80–2.17)	2.13 (1.91–2.37)
Complications of surgical procedures or medical care (CCS-238)	0.90 (0.79–1.04)	1.03 (0.88–1.20)

AMI indicates acute myocardial infarction; CCS, Clinical Classifications Software; FY, fiscal years; and HR, hazard ratio.

Figure 5. Association between subsequent rehospitalizations and recurrent AMI after discharge for index AMI, accounting for baseline risk of recurrence.

AMI indicates acute myocardial infarction; CAD, coronary artery disease; CCS, Clinical Classifications Software; COPD, chronic obstructive pulmonary disease; DM, diabetes mellitus; and HTN, hypertension.
less likely to have a recurrent AMI. Our data showed that approximately 22% of AMI survivors rehospitalized for sepsis died during the sepsis hospitalization.

Our study, based on real-world data, has several important characteristics. We focused on the first year after an initial AMI, a period that has the highest risk of recurrent AMI. Our findings provide real-world empirical evidence of the importance of accounting for postdischarge rehospitalizations to help ensure better long-term outcomes. We showed that patient risk stratification for recurrent AMI was a dynamic measure that could change immediately after discharge. The CCS categories allowed the grouping of similar medical conditions to provide hospitals and physicians a parsimonious, clinically meaningful, and practically useful composite measure of rehospitalizations. Such a composite measure could be used more easily than a traditional approach based on individual ICD diagnosis codes. The 12 subsequent hospitalizations identified in the study were based on the CCS categories, which represent all principal diagnosis codes for rehospitalizations. These CCS categories are easy to collect and readily available at the time of discharge for the rehospitalization.

A model that combines rehospitalizations with patient baseline characteristics would allow hospitals and physicians to reevaluate patient risk for recurrent AMI throughout the first year and may help patients understand that their risk of recurrence depends not only on their baseline characteristics but also the sequence of rehospitalizations that occur after their initial AMI. The ability to identify individuals with the highest risk of recurrent AMI after a rehospitalization may aid in the provision of targeted, intensive, and higher-quality longitudinal care after discharge. Additionally, insight regarding the long-term risk of subsequent hospitalizations associated with recurrent AMI is important from a patient perspective as educating patients regarding their long-term risk might provide an even stronger incentive to follow-up and adhere to medications. Our study also provides evidence that hospitals and primary care physicians caring for patients with a history of AMI should be aware that subsequent hospitalizations can change patient risk of recurrent AMI.

Our study has several limitations. We considered only the first recurrent AMI and acknowledge that patients may experience multiple recurrent events, in which a recurrent event model can be fit. The subsequent hospitalizations identified in our study were based on the CCS categories, which represent multiple principal discharge diagnosis codes, while an individual rehospitalization only represents a single principal diagnosis code that could be more clinically important. We accounted for only inpatient rehospitalizations and did not consider outpatient care, observation stays, or emergency department visits. We treated subsequent rehospitalizations independently and acknowledge that some hospitalizations may have been related. Nevertheless, we found that the median tetrachoric correlation among these rehospitalizations was not high, indicating these rehospitalizations were not strongly related to each other. We
did not address whether the association between a subsequent hospitalization and a recurrent AMI depended on the hospitalization-free duration from an index AMI discharge to a rehospitalization, which could be clinically important. We restricted the 2011–2015 data to the first 10 diagnosis codes to align with the 2009–2010 data, which only contained 10 diagnosis codes. Accordingly, we may have missed some comorbidity information carried by the additional codes. Our study was limited by the availability of data resources, and therefore it did not incorporate information on medication adherence, nursing home stays, and home health services, which were associated with rehospitalizations and recurrent AMI in prior work.32–34 Moreover, we used comorbidity information from administrative data. These data lack detailed clinical information on patient functional status, left ventricular function, non–ST-segment–elevation myocardial infarction, and ST-segment elevation myocardial infarction, which could be important for assessing risk of recurrence and reducing measurement error.

In conclusion, patient risk of recurrent AMI changed on the basis of the occurrence of subsequent hospitalizations. Improving post–acute care to prevent unplanned rehospitalizations, especially those for chronic diseases, and extending the current focus on all-cause 30-day rehospitalizations to condition-specific rehospitalizations beyond the 30-day period are important for the secondary prevention of AMI. Moreover, there should be strong efforts to ensure that patients who experience these events have optimal secondary prevention strategies.

ARTICLE INFORMATION
Received October 8, 2019; accepted January 31, 2020.

Affiliations
From the Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA (Y.W., S.-L.T.N.); Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT (Y.W., H.M.K.); Departments of Chronic Disease Epidemiology (E.L.), and Health Policy and Management (H.M.K.), Yale School of Public Health, New Haven, CT; Department of Health Care Policy, Harvard Medical School, Boston, MA (S.-L.T.N.); Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT (H.M.K.).

Disclosures
Dr Krumholz was a recipient of a research grant, through Yale, from Medtronic and the US Food and Drug Administration to develop methods for postmarket surveillance of medical devices; is a recipient of research agreements with Medtronic and Johnson & Johnson (Janssen), through Yale, to develop methods of clinical trial data sharing; was a recipient of a research agreement, through Yale, from the Shenzhen Center for Health Information for work to advance intelligent disease prevention and health promotion; collaborates with the National Center for Cardiovascular Diseases in Beijing; chairs a Cardiac Scientific Advisory Board for UnitedHealth; is a participant/representativeative of the IBM Watson Development Board; is a member of the Advisory Board for Element Science and the Physician Advisory Board for Aetna; received payment from the Arnold & Porter Law Firm for work related to the Sanofi clopidogrel litigation and from the Ben C. Martin Law Firm for work related to the Cook inferior vena cava filter litigation; and is the founder of Hugo, a personal health information platform. Drs Krumholz and Normand work under contract to the Centers for Medicare & Medicaid Services to develop and maintain performance measures that are publicly reported. The remaining authors have no disclosures to report.

Supplementary Material
Table S1

REFERENCES
1. Brown TM, Deng L, Becker DJ, Bittner V, Levitan EB, Rosenson RS, Safford MM, Mintzer P. Trends in mortality and recurrent coronary heart disease events after an acute myocardial infarction among Medicare beneficiaries, 2001–2009. Am Heart J. 2015;170:249–255.
2. Buch P, Rasmussen S, Gislason GH, Rasmussen JN, Kober L, Gadsbøll N, Stender S, Madsen M, Torp-Pedersen C, Abildstrom SZ. Temporal decline in the prognostic impact of a recurrent acute myocardial infarction 1985 to 2002. Heart. 2007;93:210–215.
3. Chaudhry SI, Khan RF, Chen J, Dharmarajan K, Dodson JA, Masoudi FA, Wang Y, Krumholz HM. National trends in recurrent hospitalizations 1 year after acute myocardial infarction in Medicare beneficiarics: 1999–2010. J Am Heart Assoc. 2014;3:e001197. DOI: 10.1161/JAHA.114.001197.
4. Smolina K, Wright FL, Rayner M, Goldacre MJ. Long-term survival and recurrence after acute myocardial infarction in England, 2004 to 2010. Circ Cardiovasc Qual Outcomes. 2012;5:532–540.
5. Krumholz HM, Normand S-LT, Wang Y. Twenty-year trends in outcomes for older adults with acute myocardial infarction in the United States. JAMA Intern Med. 2019;2:e191938.
6. Gilpin E, Ricou F, Dittrich H, Nicod P, Henning H, Ross J. Factors associated with recurrent myocardial infarction within one year after acute myocardial infarction. Am Heart J. 1991;122:457–465.
7. McCormick D, Gurrwitz JH, Lessard D, Yarzebski J, Gore JM, Goldberg RJ. Use of aspirin, β-blockers, and lipid-lowering medications before recurrent acute myocardial infarction. Arch Intern Med. 1999;561.
8. Wang Y, Li J, Zheng X, Jiang Z, Hu S, Wadhera RK, Bai X, Lu J, Wang Q, Li Y, et al. Risk factors associated with major cardiovascular events 1 year after acute myocardial infarction. JAMA Netw Open. 2018;1:e181079.
9. Shang P, Liu GG, Zheng X, Ho PM, Hu S, Li J, Jiang Z, Li X, Bai X, Gao Y, et al. Association between medication adherence and 1-year major cardiovascular adverse events after acute myocardial infarction in China. J Am Heart Assoc. 2019;8:011793. DOI: 10.1161/JAHA.118.011793.
10. Shore S, Jones PG, Maddox TM, Bradley SM, Stolker JM, Arnold SV, Parashar S, Peterson P, Bhatt DL, Sperutz J, et al. Longitudinal persistence with secondary prevention therapies relative to patient risk after myocardial infarction. Heart. 2015;101:800–807.
11. Arnold SV, Smolderen KG, Buchanan DM, Li Y, Sperutz JA. Perceived stress in myocardial infarction: long-term mortality and health status outcomes. J Am Coll Cardiol. 2012;60:1756–1763.
12. Roe MT, Chen AY, Thomas L, Wang TY, Alexander KP, Hammill BG, Gliber WB, Ohman EM, Peterson ED. Predicting long-term mortality in older patients after non-ST-segment elevation myocardial infarction: the CRUSADE long-term mortality model and risk score. Am Heart J. 2011;162:875–883.e1.
13. Ketchum ES, Dickstein K, Kjekshus J, Pitt B, Wong MF, Linker DT, Levy WC. The Seattle Post Myocardial Infarction Model (SPMI): prediction of mortality after acute myocardial infarction with left ventricular dysfunction. Eur Heart J Acute Cardiovasc Care. 2014;3:46–55.
14. Plakhv Y, Shiyovich A, Gluzt H. Predictors of long-term (10-year) mortality postmyocardial infarction: age-related differences. Soroka Acute Myocardial Infarction (SAM1) Project. J Cardiol. 2015;65:216–223.
15. Smolderen KG, Buchanan DM, Gosch K, Whooley M, Chan PS, Vaccarino V, Parashar S, Shah AJ, Ho PM, Sperutz JA. Depression treatment and 1-year mortality after acute myocardial infarction: insights from the TRUMPH Registry (Translational Research Investigating Underlying Disparities in Acute Myocardial Infarction Patients’ Health Status). Circulation. 2017;135:1681–1689.
16. Tu JV, Austin PC, Walld R, Roos L, Agran J, McDonald KM. Development and validation of the Ontario acute myocardial infarction mortality prediction rules. J Am Coll Cardiol. 2001;37:992–997.
17. Krumholz HM, Wang Y, Mattera JA, Wang Y, Han LF, Ingber MJ, Roman S, Normand S-LT. An administrative claims model suitable for profiling hospital performance based on 30-day mortality rates among patients with an acute myocardial infarction. *Circulation*. 2006;113:1683–1692.

18. Centers for Medicare & Medicaid Services. 5010 implementation—Processing additional International Classification of Diseases, 9th Revision—Clinical Modification (ICD-9-CM) diagnosis and procedure codes in Pricer, Grouper, and the Medicare Code Editor (MCE), Pub 100-04. 2010. Available at: https://www.cms.gov/Regulations-and-Guidance/Transmittals/2010-Transmittals-Items/CMS1237956.html. Accessed January 16, 2020.

19. Elixhauser A, Steiner C, Palmer L. Clinical Classifications Software (CCS), 2015. U.S. Agency for Healthcare Research and Quality. Available at: https://www.hcup-us.ahrq.gov/toolssoftware/ccs/CCSUsersGuide.pdf. Accessed January 16, 2020.

20. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. *J Am Stat Assoc*. 1999;94:496–509.

21. Lee EW, Wei LJ, Amato DA, Leurgans S. Cox-type regression analysis for large numbers of small groups of correlated failure time observations. In: Klein JP, Goel PK, eds. Survival Analysis: State of the Art. Dordrecht: Kluwer Academic; 1992:237–247.

22. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *PLoS Med*. 2007;4:e296.

23. Di Bartolomeo S, Marino M, Guastaroba P, Valenf, De Palma R. Self-controlled case-series study to verify the effect of adherence to beta-blockers in secondary prevention of myocardial infarction. *J Am Heart Assoc*. 2015;4:e001575. DOI: 10.1161/JAHA.114.001575.

24. Wang Y, Pandolfi MM, Fine J, Metesersky ML, Wang C, Ho S-Y, Galusha D, Nuti SV, Murugiah K, Spenard A, et al. Community-level association between home health and nursing home performance on quality and hospital 30-day readmissions for Medicare patients. *Home Health Care Manag Pract*. 2016;28:201–205.
SUPPLEMENTAL MATERIAL
Table S1. Clinical Classifications Software categories.

CCS ID	Disease category
1	Tuberculosis
2	Septicemia (except in labor)
3	Bacterial infection; unspecified site
4	Mycoses
5	HIV infection
6	Hepatitis
7	Viral infection
8	Other infections; including parasitic
9	Sexually transmitted infections (not HIV or hepatitis)
10	Immunizations and screening for infectious disease
11	Cancer of head and neck
12	Cancer of esophagus
13	Cancer of stomach
14	Cancer of colon
15	Cancer of rectum and anus
16	Cancer of liver and intrahepatic bile duct
17	Cancer of pancreas
18	Cancer of other GI organs; peritoneum
19	Cancer of bronchus; lung
20	Cancer; other respiratory and intrathoracic
21	Cancer of bone and connective tissue
22	Melanomas of skin
23	Other non-epithelial cancer of skin
24	Cancer of breast
25	Cancer of uterus
26	Cancer of cervix
27	Cancer of ovary
28	Cancer of other female genital organs
29	Cancer of prostate
30	Cancer of testis
31	Cancer of other male genital organs
32	Cancer of bladder
33	Cancer of kidney and renal pelvis
34	Cancer of other urinary organs
35	Cancer of brain and nervous system
36	Cancer of thyroid
37	Hodgkin’s disease
38	Non-Hodgkin’s lymphoma
39	Leukemias
40	Multiple myeloma
41	Cancer; other and unspecified primary
42	Secondary malignancies
43	Malignant neoplasm without specification of site
	Description
---	--
44	Neoplasms of unspecified nature or uncertain behavior
45	Maintenance chemotherapy; radiotherapy
46	Benign neoplasm of uterus
47	Other and unspecified benign neoplasm
48	Thyroid disorders
49	Diabetes mellitus without complication
50	Diabetes mellitus with complications
51	Other endocrine disorders
52	Nutritional deficiencies
53	Disorders of lipid metabolism
54	Gout and other crystal arthropathies
55	Fluid and electrolyte disorders
56	Cystic fibrosis
57	Immunity disorders
58	Other nutritional; endocrine; and metabolic disorders
59	Deficiency and other anemia
60	Acute posthemorrhagic anemia
61	Sickle cell anemia
62	Coagulation and hemorrhagic disorders
63	Diseases of white blood cells
64	Other hematologic conditions
650	Adjustment disorders
651	Anxiety disorders
652	Attention-deficit, conduct, and disruptive behavior disorders
653	Delirium, dementia, and amnestic and other cognitive disorders
654	Developmental disorders
655	Disorders usually diagnosed in infancy, childhood, or adolescence
656	Impulse control disorders, NEC
657	Mood disorders
658	Personality disorders
659	Schizophrenia and other psychotic disorders
660	Alcohol-related disorders
661	Substance-related disorders
662	Suicide and intentional self-inflicted injury
663	Screening and history of mental health and substance abuse codes
670	Miscellaneous disorders
76	Meningitis (except that caused by tuberculosis or sexually transmitted disease)
77	Encephalitis (except that caused by tuberculosis or sexually transmitted disease)
78	Other CNS infection and poliomyelitis
79	Parkinson’s disease
80	Multiple sclerosis
81	Other hereditary and degenerative nervous system conditions
82	Paralysis
83	Epilepsy; convulsions
84	Headache; including migraine
85	Coma; stupor; and brain damage
Page	Description
------	-------------
86	Cataract
87	Retinal detachments; defects; vascular occlusion; and retinopathy
88	Glaucoma
89	Blindness and vision defects
Inflammation; infection of eye (except that caused by tuberculosis or sexually transmitted disease)	
90	Other eye disorders
91	Otitis media and related conditions
92	Conditions associated with dizziness or vertigo
93	Other ear and sense organ disorders
94	Other nervous system disorders
95	Heart valve disorders
Peri-; endo-; and myocarditis; cardiomyopathy (except that caused by tuberculosis or sexually transmitted disease)	
96	Essential hypertension
97	Hypertension with complications and secondary hypertension
98	Acute myocardial infarction
99	Coronary atherosclerosis and other heart disease
100	Nonspecific chest pain
101	Pulmonary heart disease
102	Other and ill-defined heart disease
103	Conduction disorders
104	Cardiac dysrhythmias
105	Cardiac arrest and ventricular fibrillation
106	Congestive heart failure; nonhypertensive
107	Acute cerebrovascular disease
108	Occlusion or stenosis of precerebral arteries
109	Other and ill-defined cerebrovascular disease
110	Transient cerebral ischemia
111	Late effects of cerebrovascular disease
112	Peripheral and visceral atherosclerosis
113	Aortic; peripheral; and visceral artery aneurysms
114	Aortic and peripheral arterial embolism or thrombosis
115	Other circulatory disease
116	Phlebitis; thrombophlebitis and thromboembolism
117	Varicose veins of lower extremity
118	Hemorrhoids
119	Other diseases of veins and lymphatics
120	Pneumonia (except that caused by tuberculosis or sexually transmitted disease)
121	Influenza
122	Acute and chronic tonsillitis
123	Asthma
124	Acute bronchitis
125	Other upper respiratory infections
126	Chronic obstructive pulmonary disease and bronchiectasis
127	Aspiration pneumonitis; food/vomitus
Code	Diagnosis
130	Pleurisy; pneumothorax; pulmonary collapse
131	Respiratory failure; insufficiency; arrest (adult)
132	Lung disease due to external agents
133	Other lower respiratory disease
134	Other upper respiratory disease
135	Intestinal infection
136	Disorders of teeth and jaw
137	Diseases of mouth; excluding dental
138	Esophageal disorders
139	Gastroduodenal ulcer (except hemorrhage)
140	Gastritis and duodenitis
141	Other disorders of stomach and duodenum
142	Appendicitis and other appendiceal conditions
143	Abdominal hernia
144	Regional enteritis and ulcerative colitis
145	Intestinal obstruction without hernia
146	Diverticulosis and diverticulitis
147	Anal and rectal conditions
148	Peritonitis and intestinal abscess
149	Biliary tract disease
150	Liver disease; alcohol-related
151	Other liver diseases
152	Pancreatic disorders (not diabetes)
153	Gastrointestinal hemorrhage
154	Noninfectious gastroenteritis
155	Other gastrointestinal disorders
156	Nephritis; nephrosis; renal sclerosis
157	Acute and unspecified renal failure
158	Chronic kidney disease
159	Urinary tract infections
160	Calculus of urinary tract
161	Other diseases of kidney and ureters
162	Other diseases of bladder and urethra
163	Genitourinary symptoms and ill-defined conditions
164	Hyperplasia of prostate
165	Inflammatory conditions of male genital organs
166	Other male genital disorders
167	Nonmalignant breast conditions
168	Inflammatory diseases of female pelvic organs
169	Endometriosis
170	Prolapse of female genital organs
171	Menstrual disorders
172	Ovarian cyst
173	Menopausal disorders
174	Female infertility
175	Other female genital disorders
Contraceptive and procreative management

Spontaneous abortion

Induced abortion

Postabortion complications

Ectopic pregnancy

Other complications of pregnancy

Hemorrhage during pregnancy; abruptio placenta; placenta previa

Hypertension complicating pregnancy; childbirth and the puerperium

Early or threatened labor

Prolonged pregnancy
 Diabetes or abnormal glucose tolerance complicating pregnancy; childbirth; or the
 puerperium

Malposition; malpresentation

Fetopelvic disproportion; obstruction

Previous C-section

Fetal distress and abnormal forces of labor

Polyhydramnios and other problems of amniotic cavity

Umbilical cord complication

OB-related trauma to perineum and vulva

Forceps delivery

Other complications of birth; puerperium affecting management of mother

Normal pregnancy and/or delivery

Skin and subcutaneous tissue infections

Other inflammatory condition of skin

Chronic ulcer of skin

Other skin disorders
 Infective arthritis and osteomyelitis (except that caused by tuberculosis or sexually
 transmitted disease)

Rheumatoid arthritis and related disease

Osteoarthritis

Other non-traumatic joint disorders

Spondylosis; intervertebral disc disorders; other back problems

Osteoporosis

Pathological fracture

Acquired foot deformities

Other acquired deformities

Systemic lupus erythematosus and connective tissue disorders

Other connective tissue disease

Other bone disease and musculoskeletal deformities

Cardiac and circulatory congenital anomalies

Digestive congenital anomalies

Genitourinary congenital anomalies

Nervous system congenital anomalies

Other congenital anomalies

Liveborn

Short gestation; low birth weight; and fetal growth retardation
Intrauterine hypoxia and birth asphyxia
Respiratory distress syndrome
Hemolytic jaundice and perinatal jaundice
Birth trauma
Other perinatal conditions
Joint disorders and dislocations; trauma-related
Fracture of neck of femur (hip)
Spinal cord injury
Skull and face fractures
Fracture of upper limb
Fracture of lower limb
Other fractures
Sprains and strains
Intracranial injury
Crushing injury or internal injury
Open wounds of head; neck; and trunk
Open wounds of extremities
Complication of device; implant or graft
Complications of surgical procedures or medical care
Superficial injury; contusion
Burns
Poisoning by psychotropic agents
Poisoning by other medications and drugs
Poisoning by nonmedicinal substances
Other injuries and conditions due to external causes
Syncope
Fever of unknown origin
Lymphadenitis
Gangrene
Shock
Nausea and vomiting
Abdominal pain
Malaise and fatigue
Allergic reactions
Rehabilitation care; fitting of prostheses; and adjustment of devices
Administrative/social admission
Medical examination/evaluation
Other aftercare
Other screening for suspected conditions (not mental disorders or infectious disease)
Residual codes; unclassified
E Codes: All (external causes of injury and poisoning)
E Codes: Cut/pierceb
E Codes: Drowning/submersion
E Codes: Fall
E Codes: Fire/burn
E Codes: Firearm
Code	Category
2606	E Codes: Machinery
2607	E Codes: Motor vehicle traffic (MVT)
2608	E Codes: Pedal cyclist; not MVT
2609	E Codes: Pedestrian; not MVT
2610	E Codes: Transport; not MVT
2611	E Codes: Natural/environment
2612	E Codes: Overexertion
2613	E Codes: Poisoning
2614	E Codes: Struck by; against
2615	E Codes: Suffocation
2616	E Codes: Adverse effects of medical care
2617	E Codes: Adverse effects of medical drugs
2618	E Codes: Other specified and classifiable
2619	E Codes: Other specified; NEC
2620	E Codes: Unspecified
2621	E Codes: Place of occurrence