Equitable Colorings of Planar Graphs without Short Cycles

Keaitsuda Nakprasit
Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand
E-mail address: kmaneeruk@hotmail.com

Kittikorn Nakprasit
Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand
E-mail address: kitnak@hotmail.com

Abstract

An equitable coloring of a graph is a proper vertex coloring such that the sizes of every two color classes differ by at most 1. Chen, Lih, and Wu conjectured that every connected graph G with maximum degree $\Delta \geq 2$ has an equitable coloring with Δ colors, except when G is a complete graph or an odd cycle or Δ is odd and $G = K_{\Delta,\Delta}$. Nakprasit proved the conjecture holds for planar graphs with maximum degree at least 9. Zhu and Bu proved that the conjecture holds for every C_3-free planar graph with maximum degree at least 8 and for every planar graph without C_4 and C_5 with maximum degree at least 7.

In this paper, we prove that the conjecture holds for planar graphs in various settings, especially for every C_3-free planar graph with maximum degree at least 6 and for every planar graph without C_4 with maximum degree at least 7, which

*Corresponding Author
improve or generalize results on equitable coloring by Zhu and Bu. Moreover, we prove that the conjecture holds for every planar graph of girth at least 6 with maximum degree at least 5.

Key Words: Equitable coloring; Planar graph; Cycle; Girth

1 Introduction

Throughout this paper, all graphs are finite, undirected, and simple. We use $V(G)$, $|G|$, $E(G)$, $e(G)$, $\Delta(G)$, and $\delta(G)$, respectively, to denote vertex set, order, edge set, size, maximum degree, and minimum degree of a graph G. We write $xy \in E(G)$ if x and y are adjacent. The graph obtained by deleting an edge xy from G is denoted by $G - \{xy\}$. For any vertex v in $V(G)$, let $N_G(v)$ be the set of all neighbors of v in G. The *degree* of v, denoted by $d_G(v)$, is equal to $|N_G(v)|$. We use $d(v)$ instead of $d_G(v)$ if no confusion arises. For disjoint subsets U and W of $V(G)$, the number of edges with one end in U and another in W is denoted by $e(U,W)$. We use $G[U]$ to denote the subgraph of G induced by U.

An *equitable* k-coloring of a graph is a proper vertex k-coloring such that the sizes of every two color classes differ by at most 1. We say that G is equitably k-colorable if G has an equitable k-coloring.

It is known [2] that determining if a planar graph with maximum degree 4 is 3-colorable is NP-complete. For a given n-vertex planar graph G with maximum degree 4, let G' be a graph obtained from G by adding $2n$ isolated vertices. Then G is 3-colorable if and only if G' is equitably 3-colorable. Thus, finding the minimum number of colors need to color a graph equitably even for a planar graph is an NP-complete problem.

Hajnal and Szemerédi [4] settled a conjecture of Erdős by proving that every graph G with maximum degree at most Δ has an equitable k-coloring for every $k \geq 1 + \Delta$. In its ‘complementary’ form this result concerns decompositions of a sufficiently dense graph into cliques of equal size. This result is now known as Hajnal
and Szemerédi Theorem. Later, Kierstead and Kostochka [6] gave a simpler proof of Hajnal and Szemerédi Theorem in the direct form of equitable coloring. The bound of the Hajnal-Szemerédi theorem is sharp, but it can be improved for some important classes of graphs. In fact, Chen, Lih, and Wu [11] put forth the following conjecture.

Conjecture 1. Every connected graph G with maximum degree $\Delta \geq 2$ has an equitable coloring with Δ colors, except when G is a complete graph or an odd cycle or Δ is odd and $G = K_{\Delta, \Delta}$.

Lih and Wu [8] proved the conjecture for bipartite graphs. Meyer [9] proved that every forest with maximum degree Δ has an equitable k-coloring for each $k \geq 1 + \lceil \Delta/2 \rceil$ colors. This result implies conjecture holds for forests. The bound of Meyer is attained at the complete bipartite $K_{1,m}$: in every proper coloring of $K_{1,m}$, the center vertex forms a color class, and hence the remaining vertices need at least $m/2$ colors. Yap and Zhang [13] proved that the conjecture holds for outerplanar graphs. Later Kostochka [5] extended the result for outerplanar graphs by proving that every outerplanar graph with maximum degree Δ has an equitable k-coloring for each $k \geq 1 + \lceil \Delta/2 \rceil$. Again this bound is sharp.

In [14], Zhang and Yap essentially proved the conjecture holds for planar graphs with maximum degree at least 13. Later Nakprasit [10] extended the result to all planar graphs with maximum degree at least 9.

Other studies focused on planar graphs without some restricted cycles. Li and Bu [7] proved that the conjecture holds for every planar graph without C_4 and C_6 with maximum degree at least 6. Zhu and Bu [15] proved that the conjecture holds for every C_3-free planar graph with maximum degree at least 8 and for every planar graph without C_4 and C_5 with maximum degree at least 7. Tan [11] proved that the conjecture holds for every planar graph without C_4 with maximum degree at least 7. Unfortunately the proof contains some flaws.

In this paper, we prove that each graph G in various settings has an equitably m-colorable such that $m \leq \Delta$. Especially we prove that the conjecture holds for planar graphs in various settings, especially for every C_3-free planar graph with maximum...
degree at least 6 and for every planar graph without C_4 with maximum degree at
least 7, which improve or generalize results on equitable coloring by Zhu and Bu [15].
Moreover, we prove that the conjecture holds for every planar graph of girth at least
6 with maximum degree at least 5.

2 Preliminaries

Many proofs in this paper involve edge-minimal planar graph that is not equitably
m-colorable. The minimality is on inclusion, that is, any spanning subgraph with
fewer edges is equitably m-colorable. In this section, we describe some properties
of such graph that appear recurrently in later arguments. The following fact about
planar graphs in general is well-known and can be found in standard texts about
graph theory such as [12].

Lemma 1. Every planar graph G of order n and girth g has $e(G) \leq (g/(g-2))(n-2)$. Especially, a C_3-free planar graph G has $e(G) \leq 2n - 4$ and $\delta(G) \leq 3$.

Let G be an edge-minimal C_3-free planar graph that is not equitably m-colorable
with $|G| = mt$, where t is an integer. As G is planar and without C_3, a graph G has
an edge xy where $d(x) = \delta \leq 3$. By edge-minimality of G, the graph $G - \{xy\}$ has
an equitable m-coloring ϕ having color classes V'_1, V'_2, \ldots, V'_m. It suffices to consider
only the case that $x, y \in V'_1$. Choose $x \in V'_1$ such that x has degree δ and order
V'_1, V'_2, \ldots, V'_i in a way that $N(x) \subset V'_1 \cup V'_2 \cup \cdots \cup V'_i$. Define $V_1 = V'_1 - \{x\}$ and
$V_i = V'_i$ for $1 \leq i \leq m$.

We define \mathcal{R} recursively. Let $V_i \in \mathcal{R}$ and $V_j \in \mathcal{R}$ if there exists a vertex in V_j
which has no neighbors in V_i for some $V_i \in \mathcal{R}$. Let $r = |\mathcal{R}|$. Let A and B denote
$\bigcup_{V_i \in \mathcal{R}} V_i$ and $V(G) - A$, respectively. Furthermore, we let A' denote $A \cup \{x\}$ and B'
denote $B - \{x\}$. From definitions of \mathcal{R} and B, $e(V_i, \{u\}) \geq 1$ for each $V_i \in \mathcal{R}$ and
$u \in B$. Consequently $e(A, B) \geq r[(m - r)t + 1]$ and $e(A', B') \geq r(m - r)t$.

Suppose that there is k such that $k \geq \delta + 1$ and $V_k \in \mathcal{R}$. By definition of \mathcal{R},
there exist $u_1 \in V_{i_1}, u_2 \in V_{i_2}, \ldots, u_s \in V_{i_s}, u_{i_{s+1}} \in V_{i_{s+1}} = V_k$ such that
$e(V_1, \{u_1\}) = \ldots = e(V_k, \{u_k\}) = \ldots = e(V_s, \{u_s\}) = \ldots = e(V_{i_{s+1}}, \{u_{i_{s+1}}\}) =$
\(e(V_1, \{u_2\}) = \cdots = e(V_s, \{u_{s+1}\}) = 0 \). Letting \(W_1 = V_1 \cup \{u_1\}, W_i = (V_i \cup \{u_2\}) - \{u_1\}, \ldots , W_i = (V_i \cup \{u_{s+1}\}) - \{u_s\}, \) and \(W_k = (V_k \cup \{x\}) - \{u_{s+1}\} \), otherwise \(W_i = V_i \), we get an equitable \(m \)-coloring of \(G \). This contradicts to the fact that \(G \) is a counterexample.

Thus, in case of \(C_3 \)-free planar graph, we assume \(\mathcal{R} \subseteq \{V_1, V_2, \ldots , V_\delta \} \) where \(\delta \leq 3 \) is the minimum degree of non-isolated vertices.

We summarize our observations here.

Observation 2. If \(G \) is an edge-minimal \(C_3 \)-free planar graph that is not equitably \(m \)-colorable with order \(mt \), where \(t \) is an integer, then we may assume

(i) \(\mathcal{R} \subseteq \{V_1, V_2, \ldots , V_\delta \} \) where \(\delta \leq 3 \) is the minimum degree of non-isolated vertices;

(ii) \(e(u, V_i) \geq 1 \) for each \(u \in B \) and \(V_i \in \mathcal{R} \);

(iii) \(e(A, B) \geq r[(m - r)t + 1] \) and \(e(A', B') \geq r(m - r)t \).

3 Results on \(C_3 \)-free Planar Graphs

First, we introduce some useful tools and notation that will be used later.

Theorem 3. \(\exists \) (Grötzsch, 1959) If \(G \) is a \(C_3 \)-free planar graph, then \(G \) is 3-colorable.

Lemma 4. Let \(m \) be a fixed integer with \(m \geq 1 \). Suppose that any \(C_3 \)-free planar graph of order \(mt \) with maximum degree at most \(\Delta \) is equitably \(m \)-colorable for any integer \(t \geq k \). Then any \(C_3 \)-free planar graph with order at least \(kt \) and maximum degree at most \(\Delta \) is also equitably \(m \)-colorable.

Proof. Suppose that any \(C_3 \)-free planar graph of order \(mt \) with maximum degree at most \(\Delta \) is equitably \(m \)-colorable for any integer \(t \geq k \). Consider a \(C_3 \)-free planar graph \(G \) of order \(mt + r \) where \(1 \leq r \leq m - 1 \) and \(t \geq k \). If \(r = m - 1 \) or \(m - 2 \), then \(G \cup K_{m-r} \) is equitably \(m \)-colorable by hypothesis. Thus also is \(G \). Consider \(r \leq m - 3 \). Let \(x \) be a vertex with minimum degree \(d \). We assume that \(G - \{x\} \) is equitably \(m \)-colorable to use induction on \(r \). Thus the coloring of \(G - \{x\} \) has \(r + 1 \)
color classes with size \(t - 1 \). Since there are at most \(d \) forbidden colors for \(x \) where \(d \leq 3 \), we can add \(x \) to a color class of size \(t - 1 \) to form an equitable \(m \)-coloring of \(G \). This completes the proof \(\Box \)

Lemma 5. \cite{1} If \(G \) is a graph with maximum degree \(\Delta \geq |G|/2 \), then \(G \) is equitably \(\Delta \)-colorable.

Observation 6. By Lemmas 4 and 5, for proving that the conjecture holds for \(C_3 \)-free planar graphs it suffices to prove only \(C_3 \)-free planar graphs of order \(\Delta t \) where \(t \geq 3 \) is a positive integer.

Lemma 7. \cite{14} Let \(G \) be a graph of order \(mt \) with chromatic number \(\chi \) such that \(\chi \leq m \), where \(t \) is an integer. If \(e(G) \leq (m - 1)t \), then \(G \) is equitably \(m \)-colorable.

Lemma 8. Suppose \(G \) is a \(C_3 \)-free planar graph with \(\Delta(G) = \Delta \). If \(G \) has an independent \(s \)-set \(V' \) and there exists \(U \subseteq V(G) - V' \) such that \(|U| > s(1 + \Delta)/2 \) and \(e(u, V') \geq 1 \) for all \(u \in U \), then \(U \) contains two nonadjacent vertices \(\alpha \) and \(\beta \) which are adjacent to exactly one and the same vertex \(\gamma \in V' \).

Proof. Let \(U_1 \) consist of vertices in \(U \) with exactly one neighbor in \(V' \). If \(r = |U_1| \), then \(r + 2(|U| - r) \leq \Delta s \) which implies \(r \geq 2|U| - \Delta s > s \). Consequently, \(V' \) contains a vertex \(\gamma \) which has at least two neighbors in \(U_1 \). Since \(G \) is \(C_3 \)-free, this two neighbors are not adjacent. Thus \(U_1 \) contains two nonadjacent vertices \(\alpha \) and \(\beta \) which are adjacent to exactly one and the same vertex \(\gamma \in V' \). \(\Box \)

Lemma 9. \cite{10} If a graph \(G \) has an independent \(s \)-set \(V' \) and there exists \(U \subseteq V(G) - V' \) such that \(e(u, V') \geq 1 \) for all \(u \in U \), and \(e(G[U]) + e(V', U) < 2|U| - s \), then \(U \) contains two nonadjacent vertices \(\alpha \) and \(\beta \) which are adjacent to exactly one and the same vertex \(\gamma \in V' \).

Notation. Let \(q_{m, \Delta, t} \) denote the maximum number not exceeding \(2mt - 4 \) such that each \(C_3 \)-free planar graph of order \(mt \), where \(t \) is an integer, is equitably \(m \)-colorable if it has maximum degree at most \(\Delta \) and size at most \(q_{m, \Delta, t} \).
The next Lemma is similar to that in [10] except that we use V_1 instead of V_1' which is erratum. Nevertheless later arguments in [10] stand correct.

Lemma 10. Let G be an edge-minimal C_3-free planar graph that is not equitably m-colorable with order mt, where t is an integer, and maximum degree at most Δ. If $e(G) \leq (r+1)(m-r)t - t + 2 + q_{r,\Delta,t}$, then B contains two nonadjacent vertices α and β which are adjacent to exactly one and the same vertex $\gamma \in V_1$.

Proof. If $e(G[A']) \leq q_{r,\Delta,t}$, then $G[A']$ is equitably r-colorable. Consequently, G is equitably m-colorable. So we suppose $e(G[A']) \geq q_{r,\Delta,t} + 1$. By Observation 2, $e(A'-V_1', B') \geq (r-1)(m-r)t$. Note that $e(G[B]) = e(G[B'])$, $e(V_1, B) = e(V_1', B') + 1$. So $e(G[B]) + e(V_1, B) = e(G[B']) + e(V_1', B') + 1 = e(G) - e(G[A']) - e(A'-V_1', B') + 1 < 2mt - 2rt - t + 3 = 2|B| - |V_1|$. By Lemma 9, B contains two nonadjacent vertices α and β which are adjacent to exactly one and the same vertex $\gamma \in V_1$.

Lemma 11. Let G be an edge-minimal C_3-free planar graph that is not equitably m-colorable with order mt, where t is an integer, and maximum degree at most Δ. If B contains two nonadjacent vertices α and β which are adjacent to exactly one and the same vertex $\gamma \in V_1$, then $e(G) \geq r(m-r)t + q_{r,\Delta,t} + q_{m-r,\Delta,t} - \Delta + 4$.

Proof. Suppose $e(G) \leq r(m-r)t + q_{r,\Delta,t} + q_{m-r,\Delta,t} - \Delta + 3$. If $e(G[A']) \leq q_{r,\Delta,t}$, then $G[A']$ is equitably r-colorable. Consequently, G is equitably m-colorable. So we suppose $e(G[A']) \geq q_{r,\Delta,t} + 1$. This with Observation 2 implies $e(G[A']) + e(A, B') \geq q_{r,\Delta,t} + 1 + r(m-r)t$. Note that $e(G[A']) + e(A, B') = e(G[A]) + e(A, B)$. Let $A_1 = (A - \{\gamma\}) \cup \{\alpha, \beta\}$ and $B_1 = (B \cup \{\gamma\}) - \{\alpha, \beta\}$. Then $e(G[A_1]) + e(A_1, B_1) \geq e(G[A]) + e(A, B) - \Delta + 2 \geq q_{r,\Delta,\gamma} + 1 + r(m-r)t - \Delta + 2$. So $e(G[B_1]) = e(G) - e(G[A_1]) + e(A_1, B_1) \leq q_{m-r,\Delta}, \gamma$ which implies $G[B_1]$ is equitably $(m-r)$-colorable. Combining with $(V_1 - \{\gamma\}) \cup \{\alpha, \beta\}, V_2, \ldots, V_r$, we have G equitably m-colorable which is a contradiction.

Corollary 12. Let G be an edge-minimal C_3-free planar graph that is not equitably m-colorable with order mt, where t is an integer, and maximum degree at most Δ.

Then \(e(G) \geq r(m - r)t + q_{r,\Delta,t} + q_{m-r,\Delta,t} - \Delta + 4 \) if one of the following conditions are satisfied:

(i) \((m - r)t + 1 > (t - 1)(1 + \Delta)/2;\)

(ii) \(e(G) \leq (r + 1)(m - r)t - t + 2 + q_{r,\Delta,t}.\)

Proof. This is a direct consequence of Lemmas 8, 10, and 11.

Now we are ready to work on \(C_3 \)-free planar graphs.

Lemma 13. (i) \(q_{1,\Delta,t} = 0. \) (ii) \(q_{2,\Delta,t} \geq 3 \) for \(t \geq 3. \) (iii) \(q_{3,\Delta,t} \geq 2t. \)

Proof. (i) and (ii) are obvious. (iii) is the result of Theorem 3 and Lemma 7.

Lemma 14. \(q_{4,\Delta,t} \geq \min\{q_{3,\Delta,t} + 3t + 3 - \Delta, 4t - \Delta + 9\} \) for \(\Delta \geq 5 \) and \(t \geq 3. \)

Proof. Consider \(\Delta \geq 5 \) and \(t \geq 3. \) Suppose \(G' \) is a \(C_3 \)-free planar graph with maximum degree at most \(\Delta \) and \(e(G') \leq \min\{q_{3,\Delta,t} + 3t + 3 - \Delta, 4t - \Delta + 9\} \) but \(G' \) is not equitably 4-colorable. Let \(G \subseteq G' \) be an edge-minimal graph that is not equitably 4-colorable. From Table 1 \(e(G) > e(G'). \) This contradiction completes the proof.

\(r \)	lower bounds on size	Reasons
3	\(q_{3,\Delta,t} + 3t + 3 - \Delta \) or \(q_{3,\Delta,t} + 3t + 2 \)	Corollary 12(ii), Lemma 13
2	\(4t - \Delta + 9 \) or \(5t + 5 \)	Corollary 12(ii), Lemma 13
1	\(q_{3,\Delta,t} + 3t + 3 - \Delta \) or \(5t + 2 \)	Corollary 12(ii), Lemma 13

Table 1: Lower bounds on size of \(G \) in the proof of Lemma 14.

Lemma 15. \(q_{5,\Delta,t} \geq \min\{q_{3,\Delta,t} + 6t + 6 - \Delta, q_{4,\Delta,t} + 4t + 3 - \Delta, 7t + 2\} \) for \(\Delta \geq 5 \) and \(t \geq 3. \)

Proof. Use Table 2 for an argument similar to the proof of Lemma 14.
r	lower bounds on size	Reasons
3	\(q_{3,\Delta,t} + 6t + 6 - \Delta\) or \(q_{3,\Delta,t} + 7t + 2\)	Corollary 12(ii), Lemma 13
2	\(q_{3,\Delta,t} + 6t + 6 - \Delta\) or \(8t + 5\)	Corollary 12(ii), Lemma 13
1	\(q_{4,\Delta,t} + 4t + 3 - \Delta\)	Corollary 12(i), Lemma 13

Table 2: Lower bounds on size of \(G\) in the proof of Lemma 15

Corollary 16. (1) \(q_{4,6,t}\) is at least \(5t - 3\) and \(4t + 3\) for \(t\) at least 3 and 6, respectively.
(2) \(q_{4,7,t}\) is at least \(5t - 4\) and \(4t + 2\) for \(t\) at least 3 and 6, respectively.
(3) \(q_{5,6,t}\) is at least \(9t - 6\) and \(8t\) for \(t\) at least 3 and 6, respectively.
(4) \(q_{5,7,t}\) is at least \(9t - 8\) and \(8t - 2\) for \(t\) at least 3 and 6, respectively.

Proof. The results can be calculated directly from Lemmas 13 to 15.

Corollary 17. Each \(C_3\)-free planar graph \(G\) with maximum degree at most 7 and \(|G| \geq 18\) has an equitable 6-coloring. Moreover, each \(C_3\)-free planar graph \(G\) with maximum degree 6 has an equitable 6-coloring.

Proof. Let \(G\) be an edge-minimal \(C_3\)-free planar graph that is not equitably \(\Delta\)-colorable with \(|G| = 6t\), where \(t\) is an integer at least 3, and maximum degree at most 7.

Consider the case \(r = 3\). By Corollaries 12(ii) and 16, \(e(G) > \min\{2q_{3,\Delta,t} + 9t + 3 - \Delta, q_{3,\Delta,t} + 11t + 2\} \geq 13t - 4 \geq 12t - 4\).

Consider the case \(r = 2\). By Corollary 12(i), \(e(G) > q_{4,\Delta,t} + 8t + 6 - \Delta\). It follows from Corollary 16 that \(e(G) > \min\{13t - 5, 12t + 1\} \geq 12t - 4\) for \(t \geq 3\).

Consider the case \(r = 1\). We have \(e(B', V_1) \geq 5t\) by Observation 2. But \(y\) has at most \(\Delta - 1\) neighbors in \(B'\) because \(xy \in E(G)\), so \((t - 1)\Delta - 1 \geq e(B', V_1)\).

Consequently, \((t - 1)\Delta - 1 \geq 5t\). That is \(t \geq 4\) when \(\Delta \leq 7\). By Corollary 12(i), \(e(G) > q_{5,\Delta,t} + 5t - 4\). Using Corollary 16, we have \(e(G) > \min\{14t - 12, 13t - 6\}\). It follows from \(t \geq 4\) that \(e(G) > 12t - 4\).

Since we have contradiction for all cases, the counterexample is impossible. Use Lemma 4 to complete the first part of the proof.
Observation 6 implies each C_3-free planar graph G with maximum degree 6 has an equitable 6-coloring.

Note that a graph G in Corollary 17 has an equitable m-coloring with $m < \Delta(G)$.

Lemma 18. Each C_3-free planar graph G with maximum degree at most 7 has an equitable 7-coloring.

Proof. Use Table 3 for an argument similar to the proof of Lemma 14.

r	lower bounds on size	Reasons
3	$q_{3,\Delta,t} + 12t + q_{4,\Delta,t} + 3 - \Delta$	Corollary 12(i), Lemma 13
2	$q_{5,\Delta,t} + 10t + 6 - \Delta$	Corollary 12(i), Lemma 13
1	$q_{6,\Delta,t} + 6t + 3 - \Delta$	Corollary 12(i), Lemma 13

Table 3: Lower bounds on size of G in the proof of Lemma 18

Using Corollary 16 and $q_{6,\Delta,t} = 12t - 4$ from Corollary 17 we have $e(G) > 14t - 4$ for each case of r, which is a contradiction. Thus the counterexample is impossible. Use Observation 6 to complete the proof.

Theorem 19. Each C_3-free planar graph G with maximum degree $\Delta \geq 6$ has an equitable Δ-coloring.

Proof. Zhu and Bu [15] proved that the theorem holds for every C_3-free planar graph with maximum degree at least 8. Use Corollary 17 and Lemma 18 to complete the proof.

Next, we show that the conjecture holds also for a planar graph of maximum degree 5 if we restrict the girth to be at least 6.

Corollary 20. Each planar graph G of girth at least 6 with maximum degree at most 6 and $|G| \geq 15$ has an equitable 5-coloring. Moreover, each planar graph G with girth at least 6 and maximum degree $\Delta \geq 5$ has an equitable Δ-coloring.
Proof. Let \(G \) be an edge-minimal planar graph of girth at least 6 that is not equitably \(\Delta \)-colorable with \(|G| = 5t \), where \(t \) is an integer at least 3, and maximum degree at most 6.

Then for \(t \geq 3 \), we have \(e(G) \leq (15/2)t - 3 \) from Lemma 11 and \(e(G) > \min\{9t - 6, 8t\} \) from Corollary 16 which leads to a contradiction. Thus the counterexample is impossible. Use Lemma 4 to complete the first part of the proof.

Observation 6 implies each planar graph \(G \) with girth at least 6 and maximum degree 5 has an equitable 5-coloring. Use Theorem 19 to complete the proof.

4 Results on Planar Graphs without \(C_4 \)

First we introduce the result by Tan [11].

Lemma 21. If a planar graph \(G \) of order \(n \) does not contain \(C_4 \), then \(e(G) \leq (15/7)n - (30/7) \) and \(\delta(G) \leq 4 \).

The proof of Lemma 21 by Tan is presented here for convenience of readers.

Proof. Let \(f \) and \(f_i \) denote the number of faces and the number of faces of length \(i \), respectively. We need only to consider the case that \(G \) is connected. A graph \(G \) cannot contain two \(C_3 \) that share the same edge since \(G \) does not contain \(C_4 \). It follows that \(3f_3 \leq e(G) \).

Consider \(5f - 2f_3 = 5(f_3 + f_5 + \cdots + f_n) - 2f_3 \leq 3f_3 + 5f_5 + \cdots + nf_n = \sum_{1 \leq i \leq n} if_i = 2e(G) \). Thus \(f \leq (8/15)e(G) \). Using Euler’s formula, we have \(e(G) \leq (15/7)n - (30/7) \). The result about minimum degree follows from Handshaking Lemma.

From Lemma 21, each edge-minimal counterexample graph has \(1 \leq r \leq 4 \). The following tools in this section are quite similar to that of the previous section. Thus we omit the proofs of them.

Lemma 22. Let \(m \) be a fixed integer with \(m \geq 1 \). Suppose that any planar graph without \(C_4 \) of order \(mt \) with maximum degree at most \(\Delta \) is equitably \(m \)-colorable.
for any integer $t \geq k$. Then any planar graph without C_4 of order at least kt and maximum degree at most Δ is also equitably m-colorable.

Observation 23. By Lemmas 5 and 22, for proving that the conjecture holds for planar graphs without C_4 it suffices to prove only planar graphs without C_4 of order Δt where $t \geq 3$ is a positive integer.

Lemma 24. Suppose G is a planar graph without C_4 with $\Delta(G) = \Delta$. If G has an independent s-set V' and there exists $U \subseteq V(G) - V'$ such that $|U| > s(2 + \Delta)/2$ and $e(u, V') \geq 1$ for all $u \in U$, then U contains two nonadjacent vertices α and β which are adjacent to exactly one and the same vertex $\gamma \in V'$.

Notation. Let $p_{m, \Delta, t}$ denote the maximum number not exceeding $(15/7)mt - (30/7)$ such that each planar graph without C_4 of order mt, where t is an integer, is equitably m-colorable if it has maximum degree at most Δ and size at most $p_{m, \Delta, t}$.

Lemma 25. Let G be an edge-minimal planar graph without C_4 that is not equitably m-colorable with order mt, where t is an integer, and maximum degree at most Δ. If $e(G) \leq (r + 1)(m - r)t - t + 2 + p_{r, \Delta, t}$, then B contains two nonadjacent vertices α and β which are adjacent to exactly one and the same vertex $\gamma \in V_1$.

Lemma 26. Let G be an edge-minimal planar graph without C_4 that is not equitably m-colorable with order mt, where t is an integer, and maximum degree at most Δ. If B contains two nonadjacent vertices α and β which are adjacent to exactly one and the same vertex $\gamma \in V_1$, then $e(G) \geq r(m - r)t + p_{r, \Delta, t} + p_{m-r, \Delta, t} - \Delta + 4$.

Corollary 27. Let G be an edge-minimal planar graph without C_4 that is not equitably m-colorable with order mt, where t is an integer, and maximum degree at most Δ. Then $e(G) \geq r(m - r)t + p_{r, \Delta, t} + p_{m-r, \Delta, t} - \Delta + 4$ if one of the following conditions are satisfied:

(i) $(m - r)t + 1 > (t - 1)(2 + \Delta)/2$;

(ii) $e(G) \leq (r + 1)(m - r)t - t + 2 + p_{r, \Delta, t}$.

12
Now we are ready to work on planar graphs without C_4.

Lemma 28.
(i) $p_{1,\Delta,t} = 0$. (ii) $p_{2,\Delta,t} = 2$. (iii) $p_{3,\Delta,t} \geq 6$ for $t \geq 3$. (iv) $p_{4,\Delta,t} \geq 3t$.

Proof. (i), (ii) and (iii) are obvious. (iv) is the result of Lemma [7].

Lemma 29.
$p_{5,\Delta,t} \geq \min\{p_{4,\Delta,t} + 16t + 3 - \Delta, 6t + 11 - \Delta, 7t + 2\}$ for $\Delta \geq 8$ and $t \geq 3$.

Proof. Use Table 4 for an argument similar to the proof of Lemma 14.

r	lower bounds on size	Reasons
4	$p_{4,\Delta,t} + 16t + 3 - \Delta$ or $p_{4,\Delta,t} + 4t + 2$	Corollary 27(ii), Lemma 28
3	$6t + 11 - \Delta$ or $7t + 8$	Corollary 27(ii), Lemma 28
2	$6t + 11 - \Delta$ or $8t + 4$	Corollary 27(ii), Lemma 28
1	$p_{4,\Delta,t} + 4t + 3 - \Delta$ or $7t + 2$	Corollary 27(ii), Lemma 28

Table 4: Lower bounds on size of G in the proof of Lemma 29.

Lemma 30.
$p_{6,\Delta,t} \geq \min\{p_{4,\Delta,t} + 8t + 5 - \Delta, 9t + 15 - \Delta, 11t + 4, p_{5,\Delta,t} + 5t + 3 - \Delta\}$ for $\Delta \geq 8$ and $t \geq 3$.

Proof. Use Table 5 for an argument similar to the proof of Lemma 14.

r	lower bounds on size	Reasons
4	$p_{4,\Delta,t} + 8t + 5 - \Delta$ or $p_{4,\Delta,t} + 9t + 2$	Corollary 27(ii), Lemma 28
3	$9t + 15 - \Delta$ or $11t + 8$	Corollary 27(ii), Lemma 28
2	$p_{4,\Delta,t} + 8t + 5 - \Delta$ or $11t + 4$	Corollary 27(ii), Lemma 28
1	$p_{5,\Delta,t} + 5t + 3 - \Delta$	Corollary 27(i), Lemma 28

Table 5: Lower bounds on size of G in the proof of Lemma 30.
Corollary 31. (1) $p_{5,8,t}$ is at least $7t - 5$ and $6t + 3$ for t at least 3 and 8, respectively. (2) $p_{6,8,t}$ is at least $12t - 10$ and $9t + 7$ for t at least 3 and 6, respectively. (3) $p_{7,8,t}$ is at least $18t - 15$ and $15t + 1$ for t at least 3 and 6, respectively.

Proof. The results can be calculated directly from Lemmas 28 to 30.

Corollary 32. Each planar graph G without C_4 with maximum degree at most 8 and $|G| \geq 21$ has an equitable 7-coloring. Moreover, each planar graph G without C_4 with maximum degree 7 has an equitable 7-coloring.

Proof. Let G be an edge-minimal planar graph without C_4 that is not equitably Δ-colorable with $|G| = 7t$, where t is an integer at least 3, and maximum degree at most 8.

Consider the case $r = 4$. By Corollaries 27(ii) and 31, $e(G) > \min\{p_{4,\Delta,t} + 12t + p_{3,\Delta,t} + 3 - \Delta, p_{4,\Delta,t} + 14t + 2\} \geq 15t + 1 \geq 15t - (30/7)$ for $t \geq 3$.

Consider the case $r = 3$. By Corollaries 27(ii) and 31, $e(G) > \min\{p_{3,\Delta,t} + 12t + p_{4,\Delta,t} + 3 - \Delta, p_{3,\Delta,t} + 15t + 2\} \geq 15t + 1 \geq 15t - (30/7)$ for $t \geq 3$.

Consider the case $r = 2$. By Corollaries 27(i) and 31, $e(G) > 10t + p_{5,\Delta,t} + 3 - \Delta \geq 15t - (30/7)$ for $t \geq 3$.

Consider the case $r = 1$. We have $e(B',V_1) \geq 6t$ by Observation 2. But y has at most $\Delta - 1$ neighbors in B' because $xy \in E(G)$, so $(t - 1)\Delta - 1 \geq e(B',V_1)$. Consequently, $(t - 1)\Delta - 1 \geq 5t$. That is $t \geq 4.5$ when $\Delta \leq 8$. By Corollary 27(i), $e(G) > p_{6,\Delta,t} + 6t - 5$. Using Corollary 31, we have $e(G) > \min\{18t - 15, 15t + 1\}$. It follows from $t \geq 4.5$ that $e(G) > 15t - (30/7)$.

Since we have contradiction for all cases, the counterexample is impossible. Use Lemma 22 to complete the first part of the proof.

Observation 23 implies each planar graph G without C_4 with maximum degree 7 has an equitable 7-coloring.

Lemma 33. Each planar graph G without C_4 with maximum degree at most 8 has an equitable 8-coloring.
r	lower bounds on size	Reasons
4	$p_{4,\Delta,t} + 16t + p_{4,\Delta,t} + 3 - \Delta$ or $p_{4,\Delta,t} + 19t + 2$	Corollary 27(ii), Lemma 28
3	$15t + p_{5,\Delta,t} + 9 - \Delta$	Corollary 27(i), Lemma 28
2	$p_{6,\Delta,t} + 12t + 5 - \Delta$	Corollary 27(i), Lemma 28
1	$p_{7,\Delta,t} + 7t + 3 - \Delta$	Corollary 27(i), Lemma 28

Table 6: Lower bounds on size of G in the proof of Lemma 33

Proof. Use Table 6 for an argument similar to the proof of Lemma 14.

Using Corollary 31 and $q_{7,\Delta,t} = 15t - 4$ from Corollary 32, we have $e(G) > (120/7)t - (30/7)$ for each case of r, which is a contradiction. Thus the counterexample is impossible. Use Observation 23 to complete the proof.

Theorem 34. Each planar graph G without C_4 with maximum degree $\Delta \geq 7$ has an equitable Δ-coloring.

Proof. Nakprasit [10] proved that the theorem holds for every planar graph with maximum degree at least 9. Use Corollary 32 and Lemma 33 to complete the proof.

5 Acknowledgement

The first author was supported by Research Promotion Fund, Khon Kaen University, Fiscal year 2011.

References

[1] B.-L. Chen, K.-W. Lih, and P.-L. Wu, Equitable coloring and the maximum degree, *Europ. J. Combinatorics* 15(1994), 443–447.
[2] M. R. Garey and D. S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-completeness*, W. H. Freeman and Company, New York, 1979.

[3] H. Grötzsch, Ein Drefarbensatz fur dreikreisfreie Netze auf der Kugel, *Wiss Z Martin-Luther-Univ Halle-Wittenberg, Mat-Natur Reche* 8(1959), 102–120.

[4] A. Hajnal and E. Szemerédi, Proof of conjecture of Erdős, in: *Combinatorial Theory and its Applications, Vol. II* (P. Erdős, A. Rényi and V. T. Sós Editors), (North-Holland, 1970), 601–623.

[5] A. V. Kostochka, Equitable colorings of outerplanar graphs, *Discrete Math.* 258(2002), 373–377.

[6] H. A. Kierstead and A. V. Kostochka, A short proof of the Hajnal-Szemerédi Theorem on equitable colouring, *Combin. Probab. Comput.* 17(2008), 265–270.

[7] Q. Li and Y. Bu, Equitable list coloring of planar graphs without 4- and 6-cycles, *Discrete Math.* 309(2009), 280–287.

[8] K.-W. Lih and P.-L. Wu, On equitable coloring of bipartite graphs, *Discrete Math.* 151(1996), 155–160.

[9] W. Meyer, Equitable Coloring, *American Math. Monthly* 80(1973), 920–922.

[10] K. Nakprasit, Equitable colorings of planar graphs with maximum degree at least nine, *Discrete Math.* 312(2012), 1019–1024.

[11] X. Tan, Equitable ∆-coloring of planar graphs without 4-cycles, *The Ninth International Symposium on Operations Research and Its Applications* (2010), 400–405.

[12] D. B. West, Introduction to graph theory, Second edn, Prentice Hall, pp. xx+588, 2001.
[13] H.-P. Yap and Y. Zhang, The equitable Δ-colouring conjecture holds for outer-planar graphs, *Bull. Inst. Math. Acad. Sin.* 25(1997), 143–149.

[14] Y. Zhang and H.-P. Yap, Equitable colourings of planar graphs, *J. Combin. Math. Combin. Comput.* 27(1998), 97–105.

[15] J. Zhu and Y. Bu, Equitable list colorings of planar graphs without short cycles, *Theoretical Computer Science* 407(2008), 21–28.