Seagrass-Associated Molluscan and Fish Communities from the Early Pleistocene of the Island of Rhodes (Greece)

Efterpi Koskeridou¹, Danae Thivaiou¹, Christina Giamali², Konstantina Agiadi¹, Dimitra Mantzouka¹

¹ National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Hist. Geology - Paleontology, Panepistimioupoli Zographou, 157 84 Athens, Greece
² Goulandris Natural History Museum, Levidou 13, 145 62, Kifissia, Greece

ekosker@geol.uoa.gr

Abstract. Well-preserved leaves and rhizomes of the Mediterranean endemic marine angiosperm Posidonia oceanica and the rich associated mollusc and fish fauna are contained in the early Pleistocene shallow siliciclastic sediments of the Kritika Formation of the island of Rhodes (Greece). The leaf moulds are preserved in fine-grained sands, whereas the rhizomes are found in situ within coarse-grained sediments. The associated molluscan fauna includes 79 species, 47 gastropods and 32 bivalves, most of them extant. The rhizome-associated community comprises 49 species and the leaves-associated community includes 30 species. Small gastropods grazing on microalgae (Rissoidae, Cerithiidae, Trochidae) are the most abundant elements of the fauna, however carnivorous gastropods (Nassariidae, Naticidae, Muricidae) are also diverse. Among the bivalves Lucinidae (e.g., Lucinella) numerically dominate the deeper infauna and other chemosymbiont bivalves, as Ungulinidae (Diplodonta) are also common. Although many species are not associated exclusively with this seagrass and they may occur in other environments as well, they generally thrive on P. oceanica leaves and rhizomes. The Posidonia oceanica meadows were also inhabited by several characteristic fish species which thrive in the seagrass meadows of the eastern Mediterranean until today. The studied fauna is the first reported from the early Pleistocene of Greece and shows similarities to the modern counterparts of Posidonia oceanica meadows, providing new data on the resilience of seagrass ecosystems to environmental change in general.

1. Introduction

Marine phanerogams appeared during the Late Cretaceous. Even though they have been important components of temperate to tropical shallow-water marine environments together with their associated communities until the Holocene, they are rarely fossilized due to easy disintegration. Extensive relevant literature is given in [1].

Posidonia oceanica (Linnaeus) Delile is a marine plant endemic to the Mediterranean Sea and grows in massive clumps. Its meadows, as all the seagrasses, constitute an ecologically highly valuable marine habitat, as they contribute significantly to the oceanic primary production [2] and also play an important role in nutrient cycling [3]. Furthermore, they are an important nursery habitat for different groups of organisms [4] and especially molluscs [5], [6], [7], [8]. Although this species is scarce in the fossil record and in the Mediterranean there are only two studies from Sicily [9] and northern Italy [10], exceptionally well-preserved moulds of the leaves and casts of the rhizomes are contained in the
early Pleistocene shallow-water siliciclastic deposits of the Greek Island of Rhodes. Associated with these fossil remains are abundant molluscs, among other organisms, which show a remarkable affinity with the modern biotic component of *Posidonia oceanica* biocoenosis.

The main goal of this work is to document the mollusc communities associated with the Early Pleistocene seagrass leaves and rhizomes from Rhodes and to compare them with those from the present-day Mediterranean *Posidonia oceanica* meadows.

2. Geological setting
Rhodes is a Dodecanese island in the Aegean Sea that belongs to the eastern end of the tectonically active Hellenic arc-trench subduction system marking the African-Eurasian plate boundary.

![Figure 1. Location of study area; a. Location of island of Rhodes b. Simplified geological map and location of the studied sections.](image)

The Pleistocene deposits of Rhodes record three major, transgressive-regressive cycles: The Trianda, Rhodes and Lindos-Acropolis Synthems [11, 12]. The Trianda Synthem comprises continental (Damatria Formation), then brackish to shallow marine (Kritika Formation) siliciclastic sediments deposited into a muddy deltaic setting [13-15]. Although these formations have been first considered of Piacenzian-Gelasian [16], [17] or Calabrian ages [18], biostratigraphic analyses based on calcareous nannofossils placed the shallow marine, uppermost part of the Kritika Formation in the late Gelasian (~2 Ma) [15].

Fossil seagrass remains were found in nine levels of two sections (Figure 2) of Kritika Formation situated near the coastal village of Kritika [13], [15], [19]. Numerous *Posidonia oceanica* leaf moulds has been recovered from the lower part of Kritika 2 section in the clayey and fine-grained sandy beds and reddish vertical branches of seagrass rhizomes were found in both sections in coarse-grained layers, as they have been figured by the previous authors.

3. Material and methods
The stratigraphic sections under study were logged and measured during fieldwork (Figures 1, 2). The samples were collected from each of the three coarse-grained sand beds containing seagrass rhizomes,
as well as from the six levels of fine-grained sand or silty clay containing leaf moulds. Molluscan fauna is well-preserved in all samples. Sediment bulks (3 kg each) were sieved using a column of three sieves with diminishing mesh size (from 1 cm to 250 mm). After drying, the molluscs were identified at the species level. Species identification and ecology was carried out using a vast literature dealing with molluscs, mainly [20–41]. Trophic information for all gastropod species was obtained from literature and each species was assigned to a trophic group following the classification of feeding modes as described in [42]: carnivores (C) feeding on mobile organisms; scavengers (SC); deposit feeders (D) feeding on organic particles contained in the sediment; ectoparasites and specialized carnivores (E) feeding on much larger organisms on which they live during their life cycle; filter feeders (F) intercepting nutrient particles with their gills and/or mucous strings; microalgal or periphyton grazers (MG). H is used for herbivores in general. An estimation of the number of specimens of each group was made. In order to give broad indications of relative faunal abundance, the following categories were used: rare (1–10 specimens), present (11–20), common (21–50), abundant (51–100), and very abundant (100 specimens).

Figure 2. Lithological sections under study. Samples: R1–R3 (Rhizomes), L1–L6 (Leaves)

The seagrass-associated fish fauna was identified by studying the fish otoliths contained in these deposits, since otoliths have species-specific morphology. Sediment samples (25 kg each) were taken from the same levels as for the molluscs. The samples were sieved using a 250-μm sieve, and the residues were dried in an oven. Fish otoliths were picked from the dry residues under a stereoscope, and identified through direct comparison with already identified fossil material and using the literature
We separated the functional guilds based on their present-day ecology in the eastern Mediterranean [45] and compared the fauna to the modern equivalent *Posidonia oceanica* seagrass-associated fish fauna along the eastern coast of Rhodes [47]: SR, seagrass residents; OV, occasional visitors; JM, juvenile migrants; SM, seasonal migrants.

4. Results and Discussion

Most molluscs come from the samples R1 and R2 with the rhizomes of *Posidonia* from the Kritika 1 section, while less from the samples of the section Kritika 2. There are 47 gastropods, 32 bivalves (Tables 1 and 2), one annelid and the chiton *Acanthochitona fascicularis* (in R1) [48]; among gastropods the most abundant are *Bittium reticulatum, Bittium latreillii, Cerithium vulgatum, Tricolla speciosa, Jujubinus striatus, Bolma rugosa, Barbatia barbata* with other species referable to the same type of environment, i.e. *Posidonia* prairies [8].

A total of 10 species of bivalves and 20 species of gastropods were found in the fine-grained and laminated sands and silts containing the fossil leaves. Each of the 6 sampled levels yielded from 3 to 10 bivalve species and 3 to 19 gastropod species (Table 1). Among the bivalves, with 10 species the infaunal and epibyssate taxa are the most diverse. The co-occurrence of bivalves, such as *Venus verrucosa, Flexopecten hyalinus, Lima inflata, Talochlamys multisiretria*, and *Mimachlamys varia*, characterize modern *Posidonia*-vegetated bottoms [7], [8]. The high abundance of the deep-burrowing *Loripinus fragilis*, suggests a transport of these shells during storms. Herbivore gastropods are dominating with 8 species and common presence over the carnivores, although the number of specimens is never abundant.

A total of 32 species of bivalves and 35 species of gastropods were found in the coarse-grained sediment containing the *Posidonia oceanica* rhizome casts (Table 2). Among the bivalves, infaunal forms dominate in number of species, but epibyssate forms are also abundant. Some filter-feeder bivalves as *Gouldia minima* and *Papilllicardium papillosum, Barbatia barbata, Mimachlamys varia* are dominating in R2 sample where a high proportion of *Venus verrucosa* and *Diplodonta rotundata* also occur. The most common species in the sample R3 are almost the same, but with *Lucinella divaricata* being the most abundant. This is reflective of a higher input of organic matter for the sample. Herbivore gastropods (most of them grazing on epiphytes) dominate in number of species and specimens over the carnivores, especially in sample R2. The most frequent species are *Gibbula fanulum, Jujubinus striatus, Bittium reticulatum, Rissosoa guerinii* and *Tricolla speciosa*. Gastropod/bivalve ratios (epifaunal/infaunal ratios) are considerably high. Scavengers are also present but scattered and connected to two species: *Nassarius musivus* and *Tritia incrassata*. An important element of the biodiversity of the assemblage is the presence of ectoparasites, namely the members of the family Triphoridae as *Monophorus perversus, Marshallora adversa, Metaxia metaxa*. The absence of nesting species, borers and encrusting bivalves from the leaves bearing sediment is due to the soft substratum conditions and their presence in sample R1 is due to the existence of hard substrate elements.

In modern *Posidonia* meadows many bivalves as reported upwards and also Lucinidae (e.g., *Loripinus, Lucinella*) can be abundant or may even numerically dominate the deeper infauna, and chemosymbiotic bivalves, as Ungulinidae (e.g., *Diplodonta*) are frequently reported. Common epiphytic gastropods include small cerithids that graze on microalgae, as *Bittium reticulatum*, rissoids and trochids (as *Calliostoma, Jujubinus, Bolma, Tricolla*) are often reported as significantly abundant on these meadows [5], [7], [8], [49], [50]. All the taxa recorded in the present material are not restricted to *Posidonia* meadows. The only obligate seagrass feeder, gastropod species *Smaragdia viridis* is missing from the studied seagrass beds.

The seagrass leaves were transported before accumulation and burial, unlike the rhizomes of *Posidonia oceanica* which were found in life position within the sediment. The molluscs associated with the rhizomes may thus be considered as having lived in the same environment. A rapid burial in coarse-grained siliclastic sediment is inferred, which also points towards a control by storms.
The mollusc assemblages of all the other samples in comparison with sample R2 suggests less than optimal environmental conditions, probably in shallow and turbid waters at depths of about 10–20 m. The siliciclastic facies and the sedimentary structures of the deposits containing the seagrass remains, point to such environmental conditions [13].

The otolith investigation yielded 35 species of Teleost fish, mostly Gobiidae and Sparidae, but also Myctophiidae, Bothidae, and other families in smaller concentrations. Among the identified species, several are known to inhabit Posidonia oceanica meadows along the eastern coast of Rhodes until today [47]. In terms of functional guilds, SR include Spicara smaris, Serranus cabrilla, and Boops boops; OV include Apogon imberbis, Gobius cobitis, Gobius paganellus, Scorpaena notata, and Trachinus draco; JM include Sardina pilchardus, Mullus barbatus, Mullus surmuletus, and Pagellus bogaraveo; and SM comprises only Chromis chromis.

Table 1. Bivalve species associated with fossil Posidonia oceanica leaves (samples L1–L6) and rhizomes (R1–R3). Faunal abundance: ● rare; ●●: present; ●●●: common; ●●●●: abundant.

Species/ecology	Leaves	Rhizomes							
	L1	L2	L3	L4	L5	L6	R1	R2	R3
Deep infaunal									
Loripinus fragilis	●	●●	●●●	●●●					
Ctena decussata	●								
Lucinella divaricata		●	●●●	●●●					
Thracia phaseolina									
Shallow infaunal									
Ervillia castanea									
Glycymeris pilosa	●								
Gouldia minima	●								
Nucula nucleus	●								
Nucula sulcata A. Adams, 1856	●								
Papillicardium papillosum (Poli, 1791)	●								
Spaniorinus sp.									
Timocelea ovata									
Venus verrucosa									
Parvicardium minimum									
Diplodonta rotundata									
Spisula subtruncata									
Epibyssate									
Barbatia barbata									
Acar clathrata									
Talochlamys multistriata (Poli, 1795)									
Mimahlamys varia									
Limaria tuberculata									
Lima lima									
Lissoperctus haustorius (Poli, 1795)									
Palliolum excisum									
Nestling species									
Cardita calciculata									
Striara lactea									
Irus Irus									
Borer									
Hiatella rugosa									
Encrusting									
Anomia ephippium									
Ostrea lamellosa									
Mobile									
Erycina sp.									
Notolimea sp.									
Table 2. Gastropod species associated with fossil Posidonia oceanica leaves (samples L1–L6) and rhizomes (R1–R3). Faunal abundance: ● rare; ●●: present; ●●●: common; ●●●●: abundant

Species/ecology	Trophic Group	Leaves	Rhizomes						
	L1	L2	L3	L4	L5	L6	R1	R2	R3
Benthic									
Alvania cancellata (da Costa, 1778)	MG								
Rissoa membranacea (J. Adams, 1800)	MG								
Rissoa ventricosa Desmarest, 1814	MG								
Rissoa guerinii Recluz, 1843	MG								
Rissoa variabilis (Me格尔 von Muhfeld, 1824)	MG								
Homalopoma sanguineum (Linnaeus, 1758)	MG								
Tornus subcarinatus (Montagu, 1803)									
Cerithium vulgatum Bruguier, 1792	MG								
Gibbula magnus (Linnaeus, 1758)									
Gibbula ardens (Sais Marschlns, 1793)	MG								
Gibbula lancum (Gemlin, 1791)	MG								
Steromphala umbilicaris (Linnaeus, 1758)	MG								
Jujubinus striatus (Linnaeus, 1758)	MG								
Jujubinus exasperatus (Pennant, 1777)									
Clelandella miliaris (Brocchi, 1814)	MG								
Bittium lateritii (Paynadeuze, 1826)	MG								
Bittium reticulatum (da Costa, 1778)	MG, DE								
Bolma rugosa (Linnaeus, 1767)	MG								
Pusillina inconspicua (Alder, 1844)	DE, MG								
Tricola pullus (Linnaeus, 1758)	MG								
Tricola speciosa (Megerle von Muhfeld, 1824)	MG								
Calliostoma conulus (Linnaeus, 1758)	C								
Calliostoma ziczynphum (Linnaeus, 1758)	C								
Chausvetia turritellata (Deshayes, 1835)	C								
Gibberula miliaria (Linnaeus, 1758)	C								
Tritia incrassata (Sirem, 1768)	SC								
Nassarius musivus (Brocchi, 1814)	SC								
Naticarius stercusmuscuarum (Gmelin, 1791)	C								
Euspira catena (da Costa, 1778)	C								
Mitrella scripta (Linnaeus, 1758)	C								
Raphitoma linearis (Montagu, 1803)	C								
Muricopsis cristata (Brocchi, 1814)	C								
Pagodula echinata (Kiener, 1840)	C								
Mangelia scabrida (Méhos, 1803)	C								
Cerithiopsis tubercularis (Montagu, 1803)	E, C								
Metasia metaxa (Delle Chiaje, 1826)	EC								
Monophorus perversus (Linnaeus, 1758)	E, H								
Emarginula sicula J. E. Gray, 1826	E, H								
Diodora graeca (Linnaeus, 1758)	E, C								
Marshallora adversa (Montagu, 1803)	E, C, DE								
Chryssalida sp.	E								
Calyptraea chinensis (Linnaeus, 1758)	F								
Crepidula sp.	F								

5. Conclusions

The Early Pleistocene molluscan and fish assemblages associated with the Posidonia oceanica in siliciclastic sediments of Kritika sections, display a composition and structure, similar to that observed from present-day meadows in the Mediterranean.

The molluscan species, although not associated exclusively with this marine phanerogam, generally thrive with its leaves and rhizomes. Gastropods dominate the fauna and exhibit a relatively high biodiversity (47 species) however bivalves are also diverse (32 species). A marked increase in number of species in coarse-grained layers relative to those in clayey and fine-grained sandy beds is observed.
Acknowledgements
This research was possible thanks to the S.A.R.G. grant 70/4/13233 of the National and Kapodistrian University of Athens. Special thanks to Prof. Dr. P. Moissette for his help with the figures.

References
[1] S. Reich, E. Di Martino, J.A. Todd, F.P. Wesselingh and W. Renema, “Indirect paleo-seagrass indicators (IPSIs): a review.” Earth Science Reviews, vol. 143, pp. 161–186, 2015.
[2] M.A. Hemminga and C.M. Duarte, “Seagrass Ecology.” Cambridge University Press, 2000.
[3] M.D. Spalding, M. Taylor, C. Ravilious, F. Short and E. Green, “Global overview. The distribution and status of seagrasses.” In: Green, E.P., Short, F.T. (Eds.), World Atlas of Seagrasses. University of California Press, Berkeley, pp. 5–26, 2003.
[4] C.F. Boudouresque, G. Bernard, P. Bonhomme, E. Charbonnel, G. Diviacco, A. Meinesz, G. Pergent, C. Pergent-Martini, S. Ruitton and L. Tunesi, “Preservation and conservation of Posidonia oceanica, RAMOGE Publ., pp. 1-202, 2006. (in French)
[5] P.G. Albano and B. Sabelli, “The molluscan assemblages inhabiting the leaves and rhizomes of a deep water Posidonia oceanica settlement in the central Tyrrenhenian Sea.” Sci. Mar. vol. 76 (4), pp. 721-732, 2012.
[6] G.F. Russo, L.A. Chessa, D. Yinci, and E. Fresi, “Molluscs of Posidonia oceanica beds in the bay of Porto Conte north-western Sardinia): zonation pattern, seasonal variability and geographical comparison.” Posidonia Newsletter, vol. 4 (1), pp. 5-14, 1991.
[7] J.G. Harmelin, “Study of the infauna of the Posidonia oceanica Delile "mattes ",” Recueil des Travaux de la Station Marine d’Endoume, vol. 35, pp. 43–106, 1964. (in French)
[8] J.M. Pérès and J. Picard, “New benthic bionomics manual for the Mediterranean Sea.” Recueil des Travaux de la Station marine d'Endoume, vol. 31, pp. 1–137, 1964. (in French)
[9] I. Di Geronimo, “Layers with Posidonia of lower Pleistocene of Sicily,” in C.F. Boudouresque, A. Jeudy de Grissac and J. Olivier, J, eds., InternationalWorkshop Posidonia oceanic Beds, vol. 1: GIS Posidionie Publishers, Fr., Marseille, pp. 15–21, 1984. (in Italian)
[10] H.J. Gregor, “A new fossil seagrass — Posidonea frickhingeri n. gen. and sp. in the Paleogene of North Italy (Verona).” Zeitschrift Documenta Naturae, vol. 65, pp. 1–11, 1991.
[11] J.J. Cornée, P. Moissette, S. Joannin, J.P. Suc, F. Quillévéré, W. Krijgsman, F. Hilgen, E. Koskeridou, P. Münch, C. Lécuyer, P. Desvignes, “Tectonic and climatic controls on coastal sedimentation: the Late Pliocene-Middle Pleistocene of northeastern Rhodes, Greece,” Sedimentary Geology, vol. 187, pp. 159–181, 2006.
[12] J. Titschack, N. Joseph, J. Fietzke, A. Freiwald and R. G. Bromley, “Record of a tectonically controlled regression captured by changes in carbonate skeletal associations on a structured island shelf (mid-Pleistocene, Rhodes, Greece).” Sedimentary Geology, vol. 283, pp. 15–33, 2013.
[13] P. Moissette, E. Koskeridou, J.J. Cornée, F. Guillosheau, and C. Lecuyer, “Spectacular preservation of seagrasses and seagrass-associated communities from the Pliocene of Rhodes, Greece”. Palaios, 22 (2), 200-211, 2007.
[14] P. Moissette, E. Koskeridou, J.J. Cornée and J.J. André, “Fossil assemblages associated with submerged beachrock beds as indicators of environmental changes in terrigenous sediments: Examples from the Gelasion (Early Pleistocene) of Rhodes, Greece.” Palaeogeography Palaeoclimatology and Palaeoecology, vol. 369, pp. 14-27, 2013.
[15] P. Moissette, E. Koskeridou, H. Drinia and J.J. Cornée, “Facies associations in warm-temperate siliciclastic deposits: insights from early Pleistocene eastern Mediterranean (Rhodes, Greece)”. Geological Magazin, vol. 153(1), pp. 61-83, 2016.
[16] W. Sissingh, “Late Cenozoic Ostracoda of the South Aegean Island Arc.” Utrecht Micropaleontological Bulletins, vol. 6, pp. 1–187, 1972.
[17] L. Benda, J.E. Meulenkamp and A. Van De Weerd, “Biostratigraphic correlations in the Eastern
Mediterranean Neogene. 3. Correlation between mammal, sporomorph and marine microfossil assemblages from the Upper Cenozoic of Rhodos, Greece.” Newsletters on Stratigraphy, vol. 6, pp. 117–130, 1977.

[18] E. Thomsen, T.L. Rasmussen, and A. Hastrup, “Calcareous nanofossil, ostracode and foraminifera biostratigraphy of Plio-Pleistocene deposits, Rhodes (Greece), with a correlation to the Vrica section (Italy).” Journal of Micropalaeontology, vol. 20, pp. 143–154, 2001.

[19] P. Moissette, “Seagrass-associated bryozoan communities from the Late Pliocene of the Island of Rhodes (Greece).” In: Ernst A., Schäfer P. & Scholz J. (eds). Bryozoan Studies 2010, Lecture Notes in Earth System Sciences 143. SpringerVerlag, Berlin, Heidelberg, pp. 187-201, 2012.

[20] S. Cerulli-Irelli, “Malacological marine fauna.” Palaeontographia Italica, vol. 13–18, 1907. (in Italian)

[21] G.F. Dollfus, and J.C.B. Cotter, “Tertiary molluscs of Portugal. The Pliocene north of the Tagus (Plaisancien). I. Pelecypoda...” Commission du Service Géologique du Portugal, Imprimerie Nationale, Lisbonne, pp. 103, 1909. (in French)

[22] F. Nordsieck, “The European Sea Shell Snails (Prosobranchia) from the Arctic Ocean to Cape Verde and the Mediterranean.” Gustav Fischer Verlag, Stuttgart, pp. 273, 1968. (in German)

[23] F. Nordsieck, “The European sea shells (Bivalvia). From the Arctic Ocean to Cape Verde, the Mediterranean Sea and the Black Sea.” Gustav Fischer Verlag, Stuttgart, pp. 256, 1969. (in German)

[24] M. Zaccaria, “Geological studies on the Dodecanese islands (Aegean Sea). VIII. Fauna calabriana dell’isola di Rhodi.” Rivista Italiana di Paleontologia, vol. 74, pp. 275–306, 1968. (in Italian)

[25] P. Parenzan, “Identity card of the Mediterranean shells. Vol. II Bivalvi. Sec. parte.” Bios Taras Editrice, Taranto, pp. 546, 1976. (in Italian)

[26] N. Tebble, “British Bivalve Seashells.” A Handbook for Identification. Her Majesty’s Stationary Office, Edinburgh, 2nd edition, pp. 212, 1976.

[27] A. Verduin, “On characters, variability, and distribution of the European marine gastropods Bittium latreilli (Payraudeau) and Bittium lacteum (Philippi).” Basteria, vol. 40, pp. 133–142, 1976.

[28] R. Riedl, (ed.) “Fauna and flora of the Mediterranean. A systematic marine guide for biologists and nature lovers.” 3rd edition, Verlag Paul Parey, Hamburg, pp. 836, 1983. (in German)

[29] R.T Abbott, “Seashells of the Northern Hemisphere.” Dragon’s World Ltd, Limpsfield, pp. 191, 1991.

[30] G.T. Poppe and Y. Goto, “European Seashells. Volume I. (Polyclacophora, Cauchofoveata, Solenogastra, Gastropoda).” Verlag Christa Hemmen, Wiesbaden, pp. 352, 1992.

[31] G.T. Poppe and Y. Goto, “European Seashells. Volume II. Scaphopoda, Bivalvia, Cephalopoda.” Verlag Christa Hemmen, Wiesbaden, pp. 221, 1993.

[32] A. Barash and Z. Danin, “Fauna Palaestina. Mollusca I. Annotated list of Mediterranean molluscs of Israel and Sinai”. The Israel Academy of Sciences and Humanities, Keterpress Enterprises, Jerusalem, pp. 405, 1992.

[33] H. Göthel, “Color Atlas Mediterranean fauna. Low animal and fish”, Eugen Ulmer Gmbh & Co., Stuttgart, pp. 318, 1992. (in German)

[34] J.D. Peacock, “Late Quaternary marine mollusca as palaeoenvironmental proxies: a compilation and assessment of basic numerical data for NE Atlantic species found in shallow water.” Quaternary Science Reviews, vol. 12, pp. 263–275, 1993.

[35] R. Giannuzzi-Savelli, F. Pusateri, A. Palmeri and C. Ebreo, “Atlas of the Mediterranean Marine Shells The Conchiglia,” Roma, vol. 1, pp. 125, 1994. (in Italian)

[36] M. Oliverio and G. Buzzurro, “A new mediterranean species of the genus Homalopoma, with notes on the genus-group (Trochoidea, Turbinidae, Colloniinae).” Bollettino Malacologico,
vol. 30, pp. 182–188, 1994.

[37] S. Gofas, D. Moreno and C. Salas (Eds.), “Mollusks from Andalusia.” vol I and vol. II. Servicio de Publicaciones e Intercambio Científico, Universidad de Málaga, Málaga, pp. 798, 2011. (in Spanish)

[38] J.L. Urra, A. Mateo-Ramírez, P. Marina, C. Salas, S. Gofas and J.L. Rueda, “Highly diverse molluscan assemblages of Posidonia oceanica meadows in northwestern Alboran Sea (W Mediterranean): Seasonal dynamics and environmental drivers.” Estuarine, Coastal and Shelf Science, vol. 117, pp. 136-147, 2013a.

[39] J.L. Urra, A. Rueda, A. Mateo Ramirez, P. Marina, C. Tirado, C. Salas and S. Gofas, “Seasonal variation of molluscan assemblages in different strata of photophilous algae in the Alboran Sea (western Mediterranean).” Journal of Sea Research, vol. 83, pp. 83-93, 2013b.

[40] E. Koskeridou, D. Thivaiou and C. Giamali, “Molluscan assemblages in a highly variable setting in littoral bottoms of the Lower Pleistocene of Rhodes (Greece).” Bulletin of the Geological Society of Greece, vol. 47, pp. 178-183, 2013.

[41] E. Koskeridou, C. Giamali, A. Antonarakou, G. Kontakiotis and V. Karakitsios, “Early Pliocene gastropod assemblages from the eastern Mediterranean (SW Peloponnesse, Greece) and their palaeobiogeographic implications.” Geobios, vol. 50, pp. 267-277, 2017.

[42] J.L. Rueda, S. Gofas, J. Urra and C. Salas, “A highly diverse molluscan assemblage associated with eelgrass beds (Zostera marina L.) in the Alboran Sea: Micro-habitat preference, feeding guilds and biogeographical distribution.” Scientia Marina, vol. 73, (4), pp. 669-700, 2009.

[43] K. Agiadi, E. Koskeridou, M. Triantaphyllou, A. Girone and V. Karakitsios, “Fish otoliths from the Pliocene Heraklion basin (Crete, eastern Mediterranean).” Geobios, vol. 46 (6), pp. 461-472, 2013.

[44] P. Moissette, J.-J. Cornée, A. Antonarakou, G. Kontakiotis, H. Drinia, E. Koskeridou, T. Tsourou, K. Agiadi and V. Karakitsios, “Palaeoenvironmental changes at the Tortonian/Messinian boundary: a deep-sea sedimentary record of the eastern Mediterranean Sea.” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 2018. https://doi.org/10.1016/j.palaeo.2018.05.046

[45] K. Agiadi, A. Antonarakou, G. Kontakiotis, N. Kafousia, P. Moissette, J.J. Cornée, E. Manoutsoglou and V. Karakitsios, “Connectivity controls on the late Miocene eastern Mediterranean fish fauna.” International Journal of Earth Sciences, vol. 106(3), pp. 1147-1159, 2017.

[46] K. Agiadi, A. Girone, E. Koskeridou, P. Moissette, J.-J. Cornée, F. Quillévé, “Pleistocene marine fish invasions and paleoenvironmental reconstructions in the eastern Mediterranean.” Quaternary Science Reviews, vol. 196, pp. 80–99, 2018.

[47] S. Kalogirou, M., Corsini-Foka, A. Sioulas, H. Wennhage and L. Pihl, “Diversity, structure and function of fish assemblages associated with Posidonia oceanica beds in an area of the eastern Mediterranean Sea and the role of non-indigenous species.” Journal of Fish Biology, vol. 77, pp. 2338–2357, 2010.

[48] E. Koskeridou, E. Vardala-Theodorou and P. Moissette, “Pliocene and Pleistocene shallow-water chitons (Mollusca) from Rhodes Island, Greece.” Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, vol. 251(3), pp. 303–330, 2009.

[49] G.F. Russo, E. Fresi, D. Vinci, and L.A. Chessa, “Mollusk syntaxon of foliars stratum along a depth gradient in a Posidonia oceanica (L.) Delile meadow: Die variability.” In Boudouresque, C.F., Jeudy de Grissac, A., and Olivier, J., eds., Int. Workshop Posidonia oceanica Beds, vol. 1: GIS Posidionie Publishers, Fr., Marseille, pp. 303–310, 1984

[50] L. Mazzella, and G.F. Russo, “Grazing effect of two Gibbula species (Mollusca, Archaeogastropoda) on the epiphytic community of Posidonia oceanica leaves.” Aquatic Botany, vol. 35, pp. 357–373, 1989.