Bounds on learning in polynomial time

Heinz Horner and Anthea Bethge
Institut für Theoretische Physik
Ruprecht-Karls-Universität Heidelberg

November 4, 2018

Paper presented at the Minerva Workshop on Neural Networks, Eilat, 25-27 March 1997

Abstract

The performance of large neural networks can be judged not only by their storage capacity but also by the time required for learning. A polynomial learning algorithm with learning time $\sim N^2$ in a network with N units might be practical whereas a learning time $\sim e^N$ would allow rather small networks only. The question of absolute storage capacity α_c and capacity for polynomial learning rules α_p is discussed for several feed-forward architectures, the perceptron, the binary perceptron, the committee machine and a perceptron with fixed weights in the first layer and adaptive weights in the second layer. The analysis is based partially on dynamic mean field theory which is valid for $N \to \infty$. Especially for the committee machine a value α_p considerably lower than the capacity predicted by replica theory or simulations is found. This discrepancy is resolved by new simulations investigating the learning time dependence and revealing subtleties in the definition of the capacity.

1 Introduction

Given some neural network architecture and some set of training examples, the question is not only, whether the network is able to learn the set, but also how many training cycles are required to do so. Especially for large networks the requirement of reasonably fast learning algorithms can pose decisive restrictions. To be more precise, for a network with N nodes a polynomial learning algorithm, with learning time growing as N^2, might be acceptable for rather large N whereas an exponential behavior $\sim e^N$ would tolerate small networks only. This question is going to be analyzed in the following for the task of a random classification (dichotomy) of a random set of P input patterns in various feed forward networks with N input nodes and a single threshold output unit. The quantities of interest are the maximal storage capacity $\alpha_c = P_{\text{max}}/N$ and the maximal polynomial capacity $\alpha_p = P_p/N$ with P_p being the maximal size of the training set which can be learned in polynomial time.
Methods of statistical physics have turned out to be quite useful for the investigation of various properties of large neural networks. One of the most prominent examples is the computation of the storage capacity of a simple perceptron without hidden units by E. Gardner (1988). For unbiased examples $\alpha_c = 2$ is found for $N \to \infty$. Learning can be done by the perceptron learning rule proposed by Rosenblatt (1962) which determines suitable couplings for $\alpha < \alpha_c$ after a finite number of learning cycles. Each learning cycle consists of the presentation of each pattern once and the adjustment of the couplings for each pattern requires $\sim N$ computations. The total learning algorithm is therefore polynomial $\sim N^2$ and $\alpha_p = \alpha_c$. An efficient way to implement such a rule is the adatron described by Anlauf and Biehl (1990).

The question of maximal storage capacity and learning has also been addressed for more complicated networks, for instance a perceptron with binary weights $W_i = \pm 1$ (Kraut and Mezard (1989), Horner (1992), Horner (1993)) and for perceptrons with hidden layers (Barkai et al. (1992), Engel et al. (1992), Priel et al. (1994)). For those architectures $\alpha_p < \alpha_c$ is expected. For the maximal storage capacity, following Gardner’s approach (Gardner (1988)), the volume in the space of synaptic weights W_i compatible with the learning task is computed within replica theory. The maximal storage capacity is reached if this volume shrinks to zero. Depending on α, a solution with broken replica symmetry can be found, indicating the decomposition of the available phase space into disjoint ergodic components. Alternatively within the framework of dynamic mean field theory a stochastic motion of the weights $W_i(t)$ in the available part of the phase space is investigated (Horner (1992)). Depending on α, diverging time scales can appear. This indicates again ergodicity breaking and decomposition of the phase space into disjoint ergodic components. The critical values of α need, however, not be the same for the two approaches. Both schemes can be generalized to finite temperature (noise) and for slowly decreasing temperature the above process corresponds to learning by simulated annealing. For a finite number of temperature steps this procedure is polynomial $\sim N^2$.

In the following we discuss the question of learning in polynomial time for several examples. We start with the simple perceptron, briefly describe the ideas behind the dynamic mean field analysis and turn to the perceptron with binary weights. This is followed by a discussion of perceptrons with one layer of hidden units. In the committee machine learning is done for the weights connecting the input nodes with the hidden units and fixed connections from the hidden units to the output node. The number of hidden units in this case is assumed to be finite. Another architecture (coding machine) proposed by Bethge et al. (1994) has fixed connections in the first layer which map the input onto a large layer of hidden units. Learning is done with the weights connecting the hidden units to the output unit.

We focus exclusively on learning a set of unbiased random patterns leaving aside the most interesting question of generalization ability for patterns constructed by some other rule.
The Perceptron

The perceptron can be viewed as the elementary building block of any neural network. It has N input nodes and a single output node connected by synaptic weights W_i. The set of patterns $\mu = 1 \cdots P$ is characterized by its inputs $\xi^\mu_i = \pm 1$ and the desired outputs $\zeta^\mu = \pm 1$, both chosen randomly with equal probability. On presentation of pattern μ, the output unit receives a stimulus

$$h_\mu = \frac{1}{\sqrt{N}} \sum_i W_i \xi^\mu_i.$$ \hspace{1cm} (1)

The learning task is to find weights such that \(\text{sign}(h_\mu) = \zeta_\mu\) for all patterns. Without loss of generality we may choose $\zeta^\mu = 1$ for all patterns and consider the more stringent task $h^\mu > \kappa > 0$ together with the constraint $\sum_i W^2_i = N$. The resulting maximal storage capacity $\alpha_c(\kappa)$ is (Gardner (1988)) for $N \to \infty$

$$\frac{1}{\alpha_c(\kappa)} = \int_{-\infty}^{\kappa} \frac{1}{\sqrt{2\pi}} (\kappa - h)^2 e^{-h^2/2}$$

and $\alpha_c(0) = 2$. At maximal loading, the probability distribution of the stimuli h_μ is

$$P(h) = \frac{1}{P} \sum_\mu \delta(h - h_\mu)$$

$$= \frac{1}{2} \left(1 + \text{erf} \frac{\kappa}{\sqrt{2}} \right) \delta(h - \kappa) + \frac{1}{\sqrt{2\pi}} e^{-h^2/2} \Theta(h - \kappa).$$

We are going to use this result later on.

As learning rule (for $\kappa = 0$) we have investigated a slightly modified adatron (Anlauf and Biehl(1990)), where upon presentation of pattern μ the weights are modified according to

$$\Delta_\mu W_i = \frac{1}{\sqrt{N}} \gamma(t) (\kappa(t) - h_\mu) \Theta(\kappa(t) - h_\mu) - \eta W_i.$$ \hspace{1cm} (4)

The learning time t counts the number of learning cycles. The parameters are allowed to change during the learning process such that $\gamma(t) \to 1$ and $\kappa(t) \to 0$ for $t \to \infty$. The last term ensures the normalization $\langle W^2_i \rangle = 1$ of the weights. Simulations yield for the median t_{med} of the learning time (time required for error free learning in 50% of the training sets investigated)

$$t_{med} \approx \frac{5.5}{2 - \alpha}.$$ \hspace{1cm} (5)

Since each cycle requires $\sim N^2$ computations this algorithm is polynomial.
3 Dynamic mean field theory

Dynamic mean field theory was originally introduced by Sompolinsky and Zippelius (1982) as alternative to the replica theory of spin glasses. It was applied to learning in perceptrons with binary weights by Horner (1992) and to perceptrons with hidden units by Bethge (1997).

Applying dynamic mean field theory to learning in neural networks one defines some cost function depending on the set of patterns and the weights. It corresponds to the energy in physical systems, and it is chosen to be zero for weights such that all patterns are classified without errors, and positive otherwise. The weights $W_i(t)$ are considered as dynamic variables following some stochastic equation of motion, a Langevin equation for continuous weights or a master equation for discrete weights. Both equations allow for finite temperatures corresponding to learning with noise. Learning by simulated annealing is such a process where the temperature is slowly reduced. One unit of time corresponds to the presentation of αN patterns and therefore scales as N^2. This means that learning $P = \alpha N$ patterns in finite time yields a polynomial N^2 algorithm.

In the limit $N \to \infty$ a mean field approximation becomes exact. The order parameters of this theory are correlation functions

$$Q(t_1, t_2) = \frac{1}{N} \sum_i \langle W_i(t_1)W_i(t_2) \rangle,$$

and corresponding response functions, and in addition similar functions for the stimuli $h_\mu(t)$. The resulting mean field equations are coupled nonlinear integro-differential equations. In order to follow learning one would have to solve these equations with some initial condition, for instance randomly chosen weights.

Assuming, however, the system has reached equilibrium, the order parameter functions depend on $t = t_1 - t_2$ only and the theory simplifies considerably. The quantity $1 - Q(t)$ is a measure of the portion of phase space explored in time t (note $Q(0) = 1$).

If the system equilibrates in finite time, which is the case at high temperatures, $Q(t)$ reaches some asymptotic value Q_a and $1 - Q_a$ is a measure of the size of the total accessible part of phase space. Asymptotically $Q(t) - Q_a \sim t^{-\nu}e^{-t/t_0(T)}$ is found. At some lower temperature $T = T_f$ a freezing transition is possible with $t_o(T_f) \to \infty$. For $T < T_f$ one finds $Q(t) - Q_c \sim t^{-\nu}$ with $Q_c > Q_a$. This means that the accessible part of phase space can no longer be explored in finite time and the system is no longer ergodic.

Depending on the behavior of $Q_c(T) - Q_a(T)$ for $T \to T_f^-$ one distinguishes continuous transitions, if $Q_c(T) - Q_a(T) \to 0$, and discontinuous transitions otherwise. For a system undergoing a discontinuous transition $Q(t)$ shows a plateau near $Q_c(T_f)$ already above the transition $Q(t)$. This means that the system for time shorter than some $t_c(T)$ explores primarily one of the ergodic components which strictly forms only below the transition. The whole scenario is sketched in Fig.1.
The appearance of diverging time scales for $T < T_f$ is also expected for nonequilibrium initial conditions appropriate for the question of learning, and one can therefore conclude that optimal learning is not possible if $T_f > 0$. As will be discussed later this is the case for all values of α for the binary perceptron, and for $\alpha > \alpha_p$ for the committee machine.

4 The binary perceptron

The weights of this network are restricted to $W_i = \pm 1$ and learning according to Eq.(4) is no longer possible. For small networks an exact enumeration of all values is possible (Krauth and Opper (1989)). Extrapolating to $N \to \infty$ the value $\alpha_c \approx 0.833$ derived within replica theory (Krauth and Mezard (1989)) is found. This requires, however, $\sim 2^N$ computations.
Polynomial $\sim N^2$ learning can be done by training according to Eq.(4) assuming continuous weights $W^{(\text{perc})}_i$ and choosing $W_i = \text{sign}(W^{(\text{perc})}_i)$. In order to estimate the results we can write $W_i = W^{(\text{perc})}_i + \Delta W_i$ and modify the normalization of the $W^{(\text{perc})}_i$ such that $\langle \Delta W_i \rangle = 0$. This yields $\langle \Delta W^2_i \rangle \approx 0.4$ and the distribution of the stimuli h_μ is obtained by convolution of the perceptron result, Eq.(3), with a gaussian of width $\langle \Delta W^2_i \rangle$. The resulting distribution for $\alpha = 0.52$ is shown in Fig.2 and for all values of α there is a tail extending to $h < 0$. This means that part of the patterns are not classified correctly. The resulting error rate is shown in Fig.3.

Dynamic mean field theory has been applied to this problem by Horner (1992, 1993). A discontinuous ergodicity breaking transition is found for all α and the resulting freezing temperature $T_f(\alpha)$ is shown in Fig.4. Simulations with restricted learning time show that very little improvement of the error rate is achieved if the system is cooled below the freezing temperature and therefore the error rate at T_f is a reasonable measure of the performance of an N^2 algorithm. As can be seen from Fig.3 the performance is superior to that of the clipped perceptron, but a finite fraction of errors remains at all values of α.

![Figure 4](image1.png)

Fig.4 Dynamic freezing temperature $T_f(\alpha)$ and transition temperature $T_{S=0}$ derived from replica theory (Krauth and Mezard (1989)).

The capacity $\alpha(N, \tau_L)$ for samples of various size N and total learning time τ_L has been evaluated by simulated annealing (Horner (1993)). The results shown in Fig.5 indicate that the full capacity can be reached for $\tau_L \sim e^N$ only.

![Figure 5](image2.png)

Fig.5 Capacity $\alpha(N, \tau_L)$ for the binary perceptron. The insert shows $Z = \alpha(N, \tau_L)/\alpha(N, \infty)$ with $x = N/\ln \tau_L$.
5 The committee machine (tree structure)

The committee machine with nonoverlapping receptive fields (tree structure) has $N = K M$ input nodes, K hidden units and a single output unit. Learning is done with the weights W_{il} connecting the input nodes with the K hidden units whereas the weights connecting the hidden units with the output node are fixed $W_l = 1$ (see Fig.6).

Figure 6 Committee machine with nonoverlapping receptive fields, $M = 5$ and $K = 3$.

Presenting pattern μ, the hidden units receive a stimulus, Eq.(1)

$$h_{il}^\mu = \frac{1}{\sqrt{M}} \sum_i W_{il} \xi_i^\mu.$$ (7)

With $\zeta_\mu = 1$ the learning task is now to determine the weights such that

$$\sum_l \text{sign}(h_{il}^\mu) > 0$$ (8)

A possible learning procedure is the following: Presenting pattern μ for example in a network with $K = 3$ one of the possibilities given below shows up during learning,

$\text{sign}(h_{il}^\mu)$	prob. learning
+ + +	1/8
+ + -	3/8
+ - -	3/8
- + -	1/8
- - -	1/8

where equal probability for each possibility is assumed for simplicity. This means that on average the weights of each subperceptron are updated $\frac{5}{8} \alpha N$ times per learning cycle. Since the perceptron learning rule allows for each of the 3 subperceptrons a maximal number of M updates at maximal capacity, we arrive at the estimate $\alpha_p(3) = \frac{5}{8} = 1.6$. This is below the capacity of a simple perceptron with N inputs and for larger K even lower values are found, for instance $\alpha_p(5) = 1.39$ or $\alpha_p(7) = 1.25$.

In general learning for the committee machine can be viewed as a two step process: i) Selecting the subperceptrons to be modified, ii) modifying the weights of the selected subperceptrons. The second step is polynomial $\sim N^2$. It might turn
out that the initial restricted random choice of the subperceptrons used to embed a given pattern is not optimal and that better distributions of the learning load exist. Testing this possibilities, however, is a combinatorial problem requiring of the order of $P!$ computations.

A polynomial learning algorithm therefore has to be local in the sense that the decision which of the subperceptrons to select for training has to be done instantaneously as learning goes on. In the following we analyze a modified form of the least action algorithm proposed by Nilsson (1965). Among the candidates for learning, this means among the subperceptrons with $h_i^\mu < 0$, we select those with the smallest value of $|h_i^\mu|$. This is done by introducing a cost function $E(\{h_i\})$ which is zero if $\sum_i \text{sign}(h_i) > 0$ and monotonously increasing otherwise. For $K = 3$

$$E(\{h_i\}) = -\frac{1}{T} h_1 \Theta(-h_1) \left(1 - \Theta(h_2 - h_1) \Theta(h_3 - h_1) \right) + \text{permutations} \quad (9)$$

is appropriate.

With this cost function it is also possible to investigate simulated annealing and to perform the corresponding analysis based on dynamic mean field theory, which has been done by Bethge (1997). Her calculation shows that a continuous ergodicity breaking transition exists for $\alpha > \alpha_p(K)$ with $\alpha_p(3) \approx 1.75$. The same value was found by Barkai et al. (1992) and by Engel et al. (1992) for the onset of replica symmetry breaking. This agreement is actually expected for a continuous transition in contrast to a discontinuous transition as pointed out in the previous section. Applying the arguments given in Sect.3, we have to conclude that error free polynomial learning is not possible for $\alpha > \alpha_p(K)$.

This appears to be in clear contradiction to the results of simulations reported by Barkai et al. (1992), Engel et al. (1992) and Priel et al. (1994) where for $K = 3$ values of α_c between 2 and 2.75 were obtained. Up to 6000 learning cycles were used, a value much larger than what would be expected from Eq.(5) assuming that the learning time is ruled by the perceptron learning part of the algorithm. The apparent improvement can also not be due to a better handling of the combinatorial part where the subperceptrons to be trained are selected. This would result in a strong size dependence which was not observed. In these investigations successful learning of all patterns with probability $1/2$ was used as criterion for α_c. Priel et al. (1994) also determined the median of the time required for perfect learning as function of α. They found for instance for $K = 3$ and $\alpha = 2$ the value $\tau_{med} \approx 25$ and a divergence around $\alpha_c \approx 2.75$.

In order to understand this discrepancy we have performed preliminary simulations on a committee machine with $N = 150$ and $K = 3$ using the modified least action algorithm described above together with the perceptron learning rule Eq.(4). Fig.7 shows the probability $R(\alpha, t_L)$ that after time t_L, this means after presentation of $t_L N$ patterns, error free learning is not yet reached. For comparison the learning curve for a simple perceptron is also shown. The results were obtained for a single set of patterns and in each of the 1000 runs used for each value of α the patterns were presented in a different random order. For different sets of
patterns similar curves are obtained but we have not tried to average over different sets or to investigate finite size effects. Judging from the simulations performed by Priel et al. (1994) \(N = 150 \) seems to be sufficient to eliminate drastic finite size effects.

There appears to be a qualitative difference between the learning curves for \(\alpha < \alpha_p = 1.75 \) and \(\alpha > \alpha_p \), respectively. The fraction \(R(\alpha, t_L) \) decays rapidly to zero for \(\alpha < \alpha_p \) whereas a much slower decay \(\sim t_L^{-1} \) or even slower is observed otherwise. For all values of \(\alpha \) investigated, a finite median \(t_{med} \) of the learning time defined by \(R(\alpha, t_{med}) = \frac{1}{2} \) exists. The average learning time is computed from the probability \(P(\alpha, t_L) = -\partial R(\alpha, t_L)/\partial t_L \) resulting in

\[
\langle t_L \rangle = \int_0^\infty dt \; R(\alpha, t).
\]

The simulations indicate that for \(\alpha > \alpha_p \) this integral does not exist and furthermore for any finite \(t_L \) the probability for error free polynomial learning is less than one.

This result has certainly to be reconfirmed by additional simulations. Nevertheless it reveals new subtleties in the determination or even the definition of the storage capacity of neural networks. If for instance a certain fraction of successful learning is used to determine the storage capacity different values may result even in the limit \(N \rightarrow \infty \) depending on which fraction is required. There could also be another critical value \(\alpha_c \) separating a region where \(R(\alpha, t_L) \rightarrow 0 \) for \(t_L \rightarrow \infty \) from a region where this limit is finite. The results of the simulation also allow for speculations on the fractal structure of the accessible part of phase space being composed of almost disconnected subregions.

6 Perceptron with divergent preprocessing

The last architecture to be discussed shows a possibility to increase the storage capacity beyond the capacity of a simple perceptron yet retaining a polynomial
learning rule. The architecture of this network (coding machine) is shown in Fig.8. The input layer is divided into \(L \) nonoverlapping receptive fields of size \(M = N/L \). Each receptive field has its own part of size \(K > M \) of the hidden layer. The fixed weights connecting input and hidden layer are supposed to establish a one to one mapping of the input patterns \(\xi^\mu_i = \pm 1 \) onto internal representations \(\hat{\xi}^\mu_k = \pm 1 \) assuming binary inputs and threshold hidden units. For example each of the \(2^M \) different inputs at any of the receptive fields can be mapped for \(K = 2^M \) onto an internal representation with a single active node in each part of the hidden layer, generating a sparse coding internal representation. This mapping could be achieved by unsupervised learning of the winner takes all type. For \(K \ll K_{\text{max}} = 2^M \) randomly chosen weights \(W_{i l} \) would also be possible. If the set of patterns has some structure reflected onto the subdivision into receptive fields, other unsupervised learning procedures are possible. The complete hidden layer is finally connected to an output unit and the corresponding weights \(W_l \) are determined by supervised perceptron learning.

The whole architecture can also be viewed as a prototype for data processing in the brain, having in mind for instance the mapping of a comparatively small number of neurons in the retina onto a much larger number of neurons in the primary visual cortex.

![Fig.8 Coding machine with \(L = 4 \) receptive fields of size \(M = 2 \) and \(K = 2^M \) hidden units for each receptive field.](image)

Even for uncorrelated random input patterns the resulting internal representations are correlated. Neglecting these correlations for a moment the second layer can be viewed as a simple perceptron of size \(\bar{K} = L K \) and the capacity is \(\alpha_p = \alpha_c = 2K/M \). Since learning in the second layer can be done with the perceptron algorithm it is polynomial \(\sim (\alpha_c M)^2 \). The effect of correlations within the internal representations has been examined for \(K = 2^N \) by Bethge et al. (1994) with the result

\[
\alpha_c = \frac{2}{M}(2^M - 1). \tag{11}
\]

This shows that the correlations indeed give rise to negligible corrections and the coding machine is a useful and fast learning architecture if capacities beyond the limits of the perceptron are required.
7 Outlook

The performance of different feed forward neural network architectures under the constraint of learning in polynomial time has been subject of this study. The main results are the following: For the simple perceptron and the coding machine learning uncorrelated random patterns the full capacity α_c can be exhausted by a polynomial learning rule. For a perceptron with binary weights error free polynomial learning is not possible. The finite size scaling inferred from simulations indicates that the full capacity $\alpha_c \approx 0.833$ obtained from replica theory can only be reached allowing for learning times $\sim e^N$. A mean field analysis of this architecture yields a discontinuous ergodicity breaking transition in a region where the replica symmetric solution is stable.

For the committee machine with nonoverlapping receptive fields a continuous transition shows up for $\alpha > \alpha_p$, and because of the diverging time scales at the transition α_p is a bound of the maximal capacity which can be reached by polynomial learning. This bound is well below the corresponding value of a simple perceptron of same size and the value α_c obtained from replica theory with one step replica symmetry breaking is even higher. The dynamic transition coincides, however, with the onset of replica symmetry breaking. From simulations, storage capacities well above α_p were deduced. Preliminary simulations evaluating the probability of perfect learning as function of learning time indicate that this discrepancy is due to subtleties in the evaluation of the numerical data.

We have not addressed the most interesting question of generalization ability for patterns created by some rule, for instance a teacher neural network. If teacher and student have the same architecture the situation is quite different, but for different architectures or for a restricted training set the present discussion might be of relevance.
References

J. K. Anlauf and M. Biehl (1990), Europhys.Lett. 10, 387.
E. Barkai, D. Hansel and H. Sompolinsky (1992), Phys.Rev.A 45, 4146.
A. Bethge, R. Kühn and H. Horner (1994), J.Phys.A 27, 1929.
A. Bethge (1997), Thesis, Heidelberg.
A. Bethge, H. M. Köhler, F. Tschepe, H. Vollmayr and A. Zippelius (1992), Phys.Rev.A 45, 7590.
E. Gardner (1988), Europhys.Lett. 4, 481.
H. Horner (1992), Z.Physik B 86, 291.
H. Horner (1993), Physika A 200, 552.
W. Krauth and M. Mezard (1989), J.Phys.(Paris) 50, 3054.
W. Krauth and Opper (1989), J.Phys.A 22, L519.
N. J. Nielsson (1965), Learning Machines (McGraw-Hill, New York).
A. Priel, M. Blatt, T. Grossman, E. Domany and I. Kanter (1994), Phys.Rev.E 50, 577.
F. Rosenblatt (1962), Principles of Neurodynamics (Spartan, New York)
H. Sompolinsky and A. Zippelius (1982), Phys.Rev.B 25, 6860.