Transverse momentum of charged particles at low Q^2 at HERA

Anastasia Grebenyuk

on behalf of the H1 collaboration

DIS 2011, Newport News, VA USA. April 2010
Outline

- Introduction and motivation
- Analysis details
- Results
- Summary
Evolution equations

- **DGLAP (RAPGAP)**
 - DGLAP model: $Q_0^2 \ll k_{T1}^2 \ll \cdots \ll k_{Tn}^2 \ll Q^2$
 - DGLAP works when Q^2 is large, but x is not too small

- **CDM (Color Dipole Model)**
 - CDM = non-DGLAP
 - Random walk in transverse momentum (ordering in angle)

- **CCFM (CASCADE)**
 - CCFM = non-DGLAP
 - Random walk in transverse momentum

beyond-DGLAP models (random walk in k_T)

- **CDM (Color Dipole Model)**
 - (not evolution equation, but gives BFKL-like final state)
 - works for small x and Q^2 is not large

- **CCFM**
 - Valid for both, small and large x
HFS as an access to the dynamics of the cascade

\(F_2(x, Q^2) \) has little sensitivity to discriminate between DGLAP and beyond-DGLAP. Semi-inclusive measurements \(ep \rightarrow e' hX \) are believed to possess higher discriminating power.

The observables for physics beyond DGLAP at HERA:

- Transverse energy flow
- Forward jets with \(p_{Tjet}^2 \sim Q^2 \)
- Transverse momentum spectra:

Low \(p_T \) region:
hadronisation effects are expected to play a role.
Small sensitivity to different parton dynamic models.

Hadrons at large \(p_T \):
disfavoured by the strong \(p_T \) ordering \(\rightarrow \) difference between different parton dynamics
Experimental setup and reconstruction

- HERA beam energies: $E_e = 27.6$ GeV, $E_p = 920$ GeV
- Data 2006e+: $L = 88.64$ pb$^{-1}$

Scattered electron

Information from scattered positron (E'_e, θ'_e) and hadronic final state is used to reconstruct the kinematics:

\[
Q^2_e = 4E_e E'_e \cos^2 \frac{\theta'_e}{2}
\]

\[
ye\Sigma = 2E_e \frac{\Sigma_h}{\Sigma^2}
\]

\[
\Sigma_h = \sum_h (E_h - p_{z,h}) ; \quad \Sigma = \Sigma_h + \Sigma_e
\]

In this analysis:

$5 < Q^2 < 100$ GeV2, $0.05 < y < 0.6$

$10^{-4} < x < 10^{-2}$

For *charged particles*

Extension to the forward region is performed. Track selection:

$p_T > 0.15$ GeV, $10^\circ < \theta < 155^\circ$, (last preliminary results $20^\circ < \theta < 155^\circ$)
Reference frames

- **Laboratory frame:**

\[\eta = - \ln \tan \left(\frac{\theta}{2} \right) \]
\[\theta - \text{with respect to proton direction} \]
\[\eta > 0 \Leftrightarrow \text{proton direction} \]

- **Hadronic centre-mass system (HCM):**

\[\eta^* = - \ln \tan \left(\frac{\theta^*}{2} \right) \]
\[\theta^* - \text{with respect to virtual photon direction} \]
\[\eta^* < 0 \Leftrightarrow \text{proton direction} \]

\[p_T^* \text{ distribution is studied in } 0 < \eta^* < 1.5 \text{ and } 1.5 < \eta^* < 4 \text{ region} \]
p_T^* spectra: DATA vs. DJANGOH/RAPGAP/CASCADE

Central region ($0 < \eta^* < 1.5$, $10^\circ < \theta_{\text{lab}} < 155^\circ$)

DJANGOH(CDM) describes new data for whole p_T^* spectra

RAPGAP(DGLAP) is below the data for $p_T^* > 1$ GeV (especially in the forward region)

In contrast, CASCADE(CCFM) is systematically above the data (except high p_T^*)

Current region ($1.5 < \eta^* < 4$, $16^\circ < \theta_{\text{lab}} < 155^\circ$)
p_T^* distribution in bins of (x, Q^2); central region

Results

- $5 < Q^2 < 10 \text{ GeV}^2$
- $0.0001 < x < 0.00024$
- $0.0024 < x < 0.0005$
- $0.0005 < x < 0.002$

- $10 < Q^2 < 20 \text{ GeV}^2$
- $0.0002 < x < 0.00052$
- $0.00052 < x < 0.0011$
- $0.0011 < x < 0.0037$

- $20 < Q^2 < 100 \text{ GeV}^2$
- $0.0004 < x < 0.0017$
- $0.0017 < x < 0.01$

H1 Preliminary

- $0 < \eta^* < 1.5$
- $10^\circ < \theta_{lab} < 155^\circ$

- RAPGAP(DGLAP) is substantially below the data at lowest x and Q^2 region at large p_T^*
p_T^* distribution in bins of (x, Q^2); current region region

Results

- H1 Preliminary
 - $1.5 < \eta^* < 4$
 - $16^\circ < \theta_{lab} < 155^\circ$
 - H1 data (prelim.)

- RAPGAP (DGLAP) provides better description of the data compared to the forward region
Results

- **η*** - distributions

Charged particles with $p_T^* < 1$ GeV:

- Strong sensitivity to hadronisation parameters.
- Weak sensitivity to different parton dynamics.

Charged particles with $p_T^* > 1$ GeV:

- Strong sensitivity to different parton dynamics.
- Weak sensitivity to hadronisation parameters.
η^* distribution in bins of (x, Q^2) for $p_T^* < 1$ GeV

DJANGOH(CDM) provides reasonable description of the data for all (x, Q^2)-bins. RAPGAP(DGLAP) is slightly above the data for lowest x.

H1 Preliminary

$p_T^* < 1$ GeV

$10^\circ < \theta_{lab} < 155^\circ$

- **H1 data (prelim.)**
- **RAPGAP**
- **DJANGOH**
- **CASCADE**
\(\eta^* \) distribution in bins of \((x, Q^2)\) for \(p_T^* > 1\) GeV;

\[
\begin{align*}
5 < Q^2 < 10 \text{ GeV}^2 & : \\
0.0001 < x < 0.00024 & : & 0.00024 < x < 0.0005 & : & 0.0005 < x < 0.002
\end{align*}
\]

\[
\begin{align*}
10 < Q^2 < 20 \text{ GeV}^2 & : \\
0.0002 < x < 0.00052 & : & 0.00052 < x < 0.0011 & : & 0.0011 < x < 0.0037
\end{align*}
\]

\[
\begin{align*}
20 < Q^2 < 100 \text{ GeV}^2 & : \\
0.0004 < x < 0.0017 & : & 0.0017 < x < 0.01
\end{align*}
\]

- RAPGAP(DGLAP) is below the data for almost all \((x, Q^2)\)-bins.
- The difference is more pronounced in proton direction \((\eta^* < 2)\)
Transverse momenta and rapidity spectra were measured with H1 detector at HERA (2006 e^+p data)

- **Low \(p_T^* \) region (\(p_T^* < 1 \) GeV):
 - Sensitivity to the fragmentation parameters
 - Both RAPGAP(DGLAP) and DJANGOH(CDM) provide reasonable description of the data for both \(p_T^* \) and \(\eta^* \) distributions

- **Hard \(p_T^* \) region (\(p_T^* > 1 \) GeV):
 - Sensitivity to the different parton dynamic models
 - DJANGOH(CDM) is better than RAPGAP(DGLAP) in describing both, \(p_T^* \) and \(\eta^* \) measured spectra, especially at low \(x \)

→ data are in favour of CDM (Colour Dipole Model) model