Activated α₂-Macroglobulin Binding to Cell Surface GRP78 Induces T-Loop Phosphorylation of Akt1 by PDK1 in Association with Raptor

Uma Kant Misra, Salvatore Vincent Pizzo*
Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America

Abstract

PDK1 phosphorylates multiple substrates including Akt by PIP₃-dependent mechanisms. In this report we provide evidence that in prostate cancer cells stimulated with activated α₂-macroglobulin (α₂M*) PDK1 phosphorylates Akt in the T-loop at Thr³⁰⁸ by using Raptor in the mTORC1 complex as a scaffold protein. First we demonstrate that PDK1, Raptor, and mTOR co-immunoprecipitate. Silencing the expression, not only of PDK1, but also Raptor by RNAi nearly abolished Akt phosphorylation at AktThr³⁰⁸ in Raptor-immunoprecipitates of α₂M*-stimulated prostate cancer cells. Immunodepleting Raptor or PDK from cell lysates of cells treated with α₂M* drastically reduced Akt phosphorylation at Thr³⁰⁸, which was recovered by adding the supernatant of Raptor- or PDK-depleted cell lysates, respectively. Studies of insulin binding to its receptor on prostate cancer cells yielded similar results. We thus demonstrate that phosphorylating the T-loop Akt residue Thr³⁰⁸ by PDK1 requires Raptor of the mTORC1 complex as a platform or scaffold protein.

Introduction

Tetrameric human α₂-macroglobulin (α₂M), a pan proteinase inhibitor, is expressed in most animal species [1]. The protein is synthesized by many cells and is present in plasma at a concentration of 1–5 μM. Tumors and their associated stroma also produce this protein as well as various proteinases that react with α₂M [2]. When α₂M reacts with a proteinase, the so called “bait region” in each subunit is cleaved followed by the rupture of a β-cysteinyl γ-glutamyl thiolester accompanied by a large conformational change in the molecule [3]. This exposes a receptor recognition site that is present in the carboxyl terminal domain of each subunit. Small nucleophiles such as methyamine or ammonia can directly rupture the thiolesters triggering a similar conformational change exposing the receptor recognition sites. These activated forms of α₂M are designated α₂M*. Although GRP78 (glucose regulated protein of Mr 78,000) is primarily known as a resident endoplasmic reticulum chaperone, it appears on the cell surface of many types of malignant cells [2,4–9]. Binding of α₂M* to tumor cell-surface GRP78 causes its autoprophosphorylation activating downstream pro-proliferative and anti-apoptotic signaling cascades including RAS/MAPK and PI 3-kinase/PDK1/Akt/mTORC1/mTORC2 [4–14].

Activation of PI 3-kinase and subsequent production of PIP₃ is the major signaling event triggered by cell binding of growth factors and hormones. Our previous studies suggest that α₂M* functions like a growth factor triggering PI 3-kinase activation and production of PIP₃ [2,4–10,13]. Most of the physiological effects of PIP₃ in cells are mediated by AGC kinase family members that control cell proliferation, survival, and metabolic responses [15–19]. These include Akt (PKB) isoforms, S6-kinase (S6K), and PKC isoforms. PDK1 itself, a member of the AGC family, is the common upstream kinase phosphorylating and activating at least 23 AGC kinases [15]. AGC kinases have a common mechanism of activation which involves the dual phosphorylation of two residues lying within two highly conserved motifs, the T-loop (Thr³⁰⁸ for Akt) and the hydrophobic motif (Ser⁴⁷³ for Akt) [15–19]. Phosphorylation of both is required for full activation of Akt. Phosphorylation of Akt at Thr³⁰⁸ is indispensable for kinase activity whereas phosphorylation of Ser⁴⁷³ enhances kinase activity by fivefold [20]. In the case of Akt, conformational change induced by PIP₃ binding to its PH domain promotes its phosphorylation by PDK1. PDK1 localizes at the plasma membrane through its COOH-terminal pH domain which binds to PIP₃ and facilitates the colocalization of Akt and PDK1 [15–19]. In PDK1 mutants that cannot bind PIP₃, Akt is not phosphorylated at Thr³⁰⁸ [21,22]. Thus other mechanisms might operate to enable Akt and PDK1 to interact at the membrane including PDK1 binding to scaffolding components such as growth factor receptor-bound protein 14 (GRB14) [23] or five repressor element under dual repression binding protein1 (FREUD1) [24]. Iys⁸³ linked ubiquitylation of Akt by the TNF receptor-associated factor (TRAF6) ligase also facilitates its recruitment to the plasma membrane [25]. The cellular distribution of PDK1 is dependent on distinct mechanisms including binding to soluble inositol phosphates that cause PDK1 localization in the cytosol, where many of its non-phosphoinositide-binding substrates reside [26]. PDK1 also binds to mAKAPz forming a complex with ERK and RSK, which enables RSK...
PDK1 is observed in the nucleus as well as in the cytoplasm [28].

Other mechanistic studies have probed the role of the PIF-pocket in PDK1 activity. Activation of AGC kinases that do not possess a PH domain is triggered through phosphorylation of their hydrophobic (HF) motif by mTORC1, which promotes that interaction with a motif in the PDK1 catalytic domain [15–19]. PDK1 then phosphorylates the T-loop residues eliciting activation. Mutation of the PIF-pocket abolished activation of S6K and SGK1 isozymes but does not affect PDK1-mediated Akt

phosphorylation [15–19]. In vitro studies using mutation of Ser473 to alanine has no effect on phosphorylation of AktThr308 and activation of Akt [29]. The PDK1 inhibitor GSK2334470 inhibited T-loop phosphorylation of S6K and SGK, but was ineffective in suppressing AktThr308 phosphorylation and hence Akt activation [30].

mTOR plays an important role in cell metabolism, proliferation, differentiation, and survival [31–35]. mTOR contains multiple HEAT repeats at the amino terminal half and a serine-threonine kinase domain in the carboxyl-terminal region, flanked by regulatory FAT and FATC regions. This structure provides the binding sites for multiple proteins that interact with mTOR, regulating its activity and subcellular localization. Scaffold proteins co-localize the molecules involved in the same signaling pathways and function as catalysts thereby activating different components in the signaling pathways [36]. Post-translational modifications resulting from the activity of a kinase can facilitate interactions of the targeted molecule(s) with other proteins which enable to simultaneously localize two or more other proteins. Scaffold proteins are instrumental in ensuring specificity and efficiency in regulating positive and negative feedback loops [37].

Activation of Akt via mTORC signaling is scaffold-dependent [38]. The catalytically active mTOR subunit exists in two independent multiprotein complexes, mTORC1 and mTORC2, with different regulatory properties and cellular activities. Assembly of these complexes is regulated by mTOR interacting proteins [34,35]. Some proteins interact constitutively with mTOR complexes, while others are transient partners regulated by phosphorylation or other factors [37,38]. The identity of mTORC1 and mTORC2 is defined by whether Raptor or Rictor, respectively are part of the complex. Raptor contains three HEAT repeats at the amino terminal domain and seven WD40 repeats in the carboxyl-terminal domain that recruit mTORC1 substrates [39].

Recruiting PDK1 to muscle A kinase anchoring protein (mAKABz) facilitates activation and release of the downstream target RSK [36]. Functions of PDK1 are also regulated by changes in its conformation, protein-protein interaction, and its subcellular localization [15–19]. Several proteins interact with PDK1 modulating its activity and subcellular localization as already noted above [27,36,40–43]. In addition to its function as a master kinase in receptor tyrosine kinase signaling, PDK1 functions as an adaptor protein in several signaling events independent of its kinase activity such as enhancing the GEF activity of RalGDS [44] and T-cell development by activating PKC and also acting as an adaptor in recruiting PKC and CARD11 to regulate IKK and NFkB [45]. Thus PDK1 may function in more diverse signaling pathways as a kinase, as a scaffold protein, and/or a kinase-independent regulatory protein. Akt is predominantly localized in the cytoplasm and the ER [46]. On growth factor stimulation a substantial translocation of Akt to the plasma membrane occurs. Recently studies demonstrate that mTORC2-dependent phosphorylation of Akt on Ser473 takes place on the surface of the ER [46]. Phosphorylation of Akt at Thr308 and Ser473 have been reported as either interdependent or independent of each other [46], but in either case both PDK1 and mTORC2 must be in close spatial proximity for efficient phosphorylation of Akt at both Thr308 and Ser473, respectively. Here we hypothesize that Raptor interacts physically with PDK1 in the mTORC1 signaling complex serving as a scaffolding protein which allows PDK1 to phosphorylate Akt at Thr308. We show that PDK1 co-immunoprecipitates with Raptor, and mTOR in zM*-stimulated prostate cancer cells. Downregulation of Raptor or PDK1 by RNAi nearly abolishes zM*-induced phosphorylation of Akt at Thr308 immunodepletion of PDK1 or Raptor reduced Akt at Thr308 significantly. Addition of the supernatant of Raptor or PDK1 depleted cell lysates restored AktThr308 phosphorylation. Thus, PIP3 production is a necessary, but not sufficient event in activating Akt by phosphorylation at Thr308. Whether these results will apply to activation of other PH domain-containing AGC kinases by PDK1 remains to be determined, but seems likely.

Materials and Methods

Materials

Culture media were purchased from Invitrogen. Activated z2-macroglobulin (z2M*) was prepared as described previously [2]. Antibodies against mTOR, p-AktThr308, p-AktSer473, Akt, and PDK1 were purchased from Cell Signaling Technology (Danvers, MA). Antibodies against Raptor were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-actin antibody was from Sigma (St. Louis, MO). [32P]-y-ATP (specific antibody 3000 Ci/ mmol) was purchased from Perkin-Elmer Life Sciences (Waltham, MA). All other materials were of analytical grade and procured locally.

Prostate cancer cell lines

We have used two human prostate cancer cell lines 1-LN and DU-145. The highly metastatic 1-LN cell line is derived from less metastatic PC-3 cells in nude mice and was a kind gift of Dr. Philip Walther (Duke University Medical Center, Durham, NC) [12]. DU-145 cells were purchased from ATCC (Manassas, VA). Cells were grown in 6 or 12 well plates in RPMI 1640 medium supplemented with 10% FBS 2 mM glutamine, 12.5 units/ml penicillin, 6.5 μg/ml streptomycin and 10 nM insulin (RPMI-S), in a humidified CO2 incubator at 37°C. After reaching 90% confluency, the medium was aspirated and a fresh volume of RPMI-S medium and the cells were used for experiments described below.

Co-immunoprecipitation of PDK1 with Raptor and mTOR in prostate cancer cells stimulated with zM*

Colocalization of interacting proteins has been widely studied by co-immunoprecipitation techniques. To test the hypothesis PDK1 is an interacting protein with Raptor in the mTOR signalosome, we first studied the colocalization of PDK1 with mTOR, and Raptor by co-immunoprecipitation in zM*-stimulated cells. 1-LN cells were grown over night in RPMI-S medium and the cells were used for experiments described below.
added and cells lysed over ice for 15 min. The lysates were transferred to separate Eppendorf tubes, centrifuged (1000 rpm/5 min/4°C) and supernatants used for protein extraction and immunoprecipitation. Equal amounts of lysate proteins (200–250 µg) in separate experiments were used for immunoprecipitation with Raptor antibodies (1:50, Santa Cruz Cat # SC101337). PDK1 antibodies (1:50) and mTOR antibodies (1:50) followed by the addition of 40 µl protein A agarose and contents incubated with rotation overnight at 4°C, Raptor, PDK1, mTOR immunoprecipitates were recovered by micro-centrifugation (2000 rpm/5 min/4°C) and washed twice with cold lysis buffer B. To each immunoprecipitate a volume of 1x sample buffer was added, tubes boiled for 5 min centrifuged, electrophoresed (4–20% or 10% acrylamide gels), transferred to Hybond-P membranes and the respective membranes immunoblotted with Raptor, PDK1, and mTOR antibodies. The protein bands on the membranes were visualized by ECF and STORM 860 Phosphorimager (GE Lifeiences). The specificity of antibodies employed here and in the experiments described below was determined by treating the cells with non-immunoinhibibles and cell lysate processed as above under the experimental conditions, no reactivity of these controls was observed. The membranes were probed for protein-loading controls [12,47]. Total cell lysates of cells treated as above were also immunoblotted for mTOR, Raptor, and PDK1 like in their immunoprecipitates.

Silencing expression of PDK1 and Raptor genes by RNAi
To understand the mechanistic details of phosphorylation of Akt at Thr308 by PDK1, we have used RNAis to downregulate the expression of PDK1 or Raptor. The chemical synthesis purification and annealing of PDK1 dsRNA were performed by Ambion of Raptor by Sigma. The PDK1 sense sequence is 5'- CAG AAG AUC AUU AAG UUG CAA-3', antisense 5'- UUA CAA CUU AAU GAA CUU CUG-3'. The Raptor sense sequence is: 5'- CUC AAC AAA UCU UUG CAG Au-3' (ID# SAS1_HSO1_00048387); antisense 5'- UCU GGA AAG AUU UGU UGA Gels - 3' (ID# SAS1_Hs) 1-00048387_AS.

The effect of silencing PDK1 or Raptor gene expression by RNAi on p-AktThr308 phosphorylation in prostate cancer cells stimulated with 2M
In all the experiments described below, downregulation of PDK1 or Raptor expression was achieved by transfecting the cancer cells with the respective dsRNAs (100 nM/48 h). Down-regulation of PDK1 or Raptor, as measured by Western blotting, was ~65–70% [12]. Prostate cancer cells grown overnight (1×10⁶ cells/well 6 well plates) were treated as follows: (1) lipoofectamine + buffer; (2) lipofectamine + 2M* (50 pM/25 min); (3) respective dsRNA (100 nM/48 h) then 2M* (50 pm/25 min); or (4) scrambled dsRNA (100 nM/48 h) then 2M*. We have used insulin (200 nM/15 min) as a positive control in these studies. The reactions were terminated by aspirating the medium, a volume of CHAPS lysis buffer added, cells lysed over ice for 15 min, centrifuged (1000 rpm/5 min/4°C), supernatants transferred to new tubes and protein concentration determined. As desired, equal amounts of lysate proteins (200–250 µg) were immunoprecipitated with either anti-PDK1 or Raptor antibodies as described above. Phosphorylation of Akt at Thr308 by PDK1 or Raptor immunoprecipitates was determined by kinase assays described elsewhere [2,6,7,9,12,47]. Briefly, the respective immunoprecipitates were washed with CHAPS lysis buffer B, supplemented with 0.5 M NaCl; lysis buffer B and Tri-HCl (pH 7.4) supplemented with 1 mM DTT, 1 mM PMSF and 1 mM benzamidine by centrifugation at 2,500 rpm for 5 min at 4°C. To each immunoprecipitate 40 µl of kinase buffer containing 50 mM Tris-HCl (pH 7.5) 10 mM MgCl₂, 1 mM DTT, 1 mM PMSF, 1 mM benzamidine and 20 µg/ml leupeptin was added followed by the addition of 30 µM AktThr308 kinase substrate (NH₂-KTTCGTPYEPLAEVRR-COOH) to the respective tubes. The peptide (NH₂- GGEFELFVKKK-COOH (ZAK2 peptide) served as the control. The reaction was initiated by adding 50 µM ATP and 5 µCi [³²P]γ-ATP in each tube and tubes incubated for 30 min at 30°C in a shaking water bath. The reaction was stopped by the addition of 5 µl of 0.5 M EDTA in each tube. The tubes centrifuged at 3000 rpm for 3 min, 40 µl of each supernatant applied on p81 phosphocellulose paper, allowed to dry and paper washed four times each time by immersing them in a liter of 1N H₃PO₄ for 3 min. The papers were rinsed with acetone and that radioactivity was counted in a liquid scintillation counter. In preliminary experiments kinase activities of AktThr308 kinase towards ZAK3 peptide were always 50 to 60% of buffer control. Hence control peptide activities are not being shown.

Determination of the effect of immunodepletion of Raptor and PDK1 in cell lysates of stimulated cells on AktThr308 phosphorylation
In addition to down regulating the expression of Raptor and PDK1 respective by RNAis on 2M/insulin stimulated AktThr308 phosphorylation by PDK1, we also studied the effect of immunodepleting Raptor and PDK1 on AktThr308 phosphorylation. The 1-LN prostate cancer cells were grown and stimulated with 2M* (50 pM/25 min) or insulin (200 nM/15 min) as described above. The reaction was terminated by expirating the media and cells lysed in liss buffer A containing 50 mM Tris-HCl (pH 7.5) 120 mM NaCl 0.1% NP10, 25 mM sodium fluoride, 1 mM sodium pyrophosphate, 0.1 mM sodium orthovanadate, 1 mM PMSF, 1 mM benzamidine and leupeptin (10 µg/ml) as above. The lysates were centrifuged at 1000 rpm/min/4°C, supernatants collected and protein concentration determined. In separate experiments to deplete PDK1 and Raptor in cell lysates, to an equal amount of lyse protein was added anti-PDK1 or Raptor antibody and immunoprecipitation of PDK1 and Raptor was done as described above. Washed PDK1 and Raptor immunoprecipitates were used for the assay of AktThr308 phosphorylation in absence or presence of cell lysates remaining after removal of PDK1 or Raptor, which was assessed by immunoblotting of PDK1 and Raptor and found to be negligible (data not shown). AktThr308 phosphorylation was assayed as described above.

Statistical analysis
Statistical analysis significance of the data was determined by students "t" test. P values of 0.05 are considered statistically significant.

Results
Raptor and PDK1 co-immunoprecipitate
Stimulation of 1-LN prostate cancer cells with 2M* causes a 2-3-fold increase in mTOR, Raptor, p-S6K, P-4EBP1, p-AktThr308, and p-AktSer473 in a time and dose-dependent manner [12]. To examine the interaction and co-localization of PDK1 and Raptor in the current study, we first performed co-immunoprecipitation studies. 1-LN cells stimulated with 2M* demonstrated co-immunoprecipitation of mTOR, Raptor, and PDK1 (Figure 1). These studies suggest interaction between mTOR or Raptor may facilitate PDK1-dependent downstream signaling induced in
prostate cancer cells stimulated with α2M*. Since Raptor is a scaffold protein and does not have a kinase function, we suggest that PDK1 uses Raptor as a platform for phosphorylating Akt at Thr308.

Inhibition of α2M*-induced AktThr308 phosphorylation

Raptor immunoprecipitates of prostate cancer cells transfected with dsRNA of PDK1 and Raptor, respectively

To further probe the proposed interaction of Raptor with PDK1 in the phosphorylation of Akt at Thr308 we silenced the expression of PDK1 or Raptor by RNAi and obtained Raptor immunoprecipitates from cells stimulated with α2M* (Figure 2). In prostate cancer cells transfected with PDK1 dsRNA, PDK1 was reduced ~65–70% (Figure 2A) and in cells transfected with Raptor dsRNA levels of Raptor were reduced by about the same degree [12]. As expected, in prostate cancer cells stimulated with α2M*, silencing PDK1 gene expression significantly reduced phosphorylation of Akt at Thr308 as determined by Western blotting to detect p-AktThr308 in cell lysates (Figure 2). These studies demonstrate that PDK1 is the AktThr308 kinase. We have shown earlier that down regulation of Raptor by RNAi significantly reduced phosphorylation of S6K at Thr308 and Thr244 and 4EBP1 [12]. S6K and 4EBP1 are direct down stream targets of mTORC1 which phosphorylates S6K at Thr308 while PDK1 phosphorylates S6K at Thr244. Since down regulation of Raptor not only reduced phosphorylation of S6K at Thr308 mediated by mTORC1 [12], but also phosphorylation of S6K at Thr244 we suggest that Raptor plays a role in the kinase activity of PDK1. We thus next studied phosphorylation of Akt at Thr308 by PDK1 employing kinase assays in Raptor immunoprecipitates of cells transfected Raptor RNAi and stimulated with α2M* (Figure 2A). Silencing Raptor gene expression nearly abolished α2M*-induced phosphorylation of Akt at Thr308 (Figure 2). Thus co-immunoprecipitation studies (Figure 1) and Raptor RNAi studies show that Raptor and PDK1 are interacting proteins in the phosphorylation of Akt at Thr308 and deficiency of either suppresses phosphorylation of Akt at Thr308. Similar results were obtained on phosphorylation of Akt at Thr308 in Raptor and PDK1 immunoprecipitates of 1-LN and DU-145 prostate cancer cells transfected with PDK1 and Raptor dsRNAs (Figure 3). Insulin has been widely used to study mTOR signaling. We also compared the effect of down regulating PDK1 expression by RNAi on AktThr308 phosphorylation in Raptor immunoprecipitates of 1-LN cells stimulated with insulin as well as α2M* (Figure 4). We show that stimulation of cells with insulin yielded comparable results. Prolonged activation of mTORC1 causes feedback inhibition of PI 3-kinase/Akt signaling. However, in this study we employed 20 min incubation in all experiments. In this short time period it is unlikely that feedback inhibition of PI 3-kinase/Akt signaling would occur and affect AktThr308 phosphorylation by PDK1. Since Raptor does not possess kinase activity, Raptor and PDK1 immunoprecipitates of cell lysates should demonstrate the same ability to phosphorylate Akt at Thr308 as is found in the current study. These studies further support our hypothesis that Raptor in the mTORC1 complex is required for PDK1-mediated T-loop phosphorylation of Akt and suggest that like mTORC2, mTORC1 complex also participates in Akt activation.

Suppression of phosphorylation of Akt at Thr308 in prostate cancer cells stimulated with α2M* and cell lysates immunodepleted of Raptor or PDK1, respectively

To further analyze the requirement of Raptor in Akt phosphorylation at Thr308 by PDK1, we immunodepleted α2M*-stimulated 1-LN cell lysates of Raptor with anti-Raptor or PDK1 antibodies. We measured phosphorylation of Akt at Thr308 by kinase assay in Raptor or PDK1 immunoprecipitate in absence or in presence of cell lysates depleted of Raptor (Figure 5A) or PDK1 of cells stimulated with α2M* or insulin (Figure 5B). Raptor immunoprecipitates in the absence of Raptor depleted lysates showed little or negligible Akt phosphorylation at Thr308 in both α2M and insulin-stimulated cells (Figure 5A and B). Addition of Raptor-depleted lysates to the reaction mixture resulted in several fold increase in AktThr308 phosphorylation (Figure 5A). This is largely because of PDK1 remaining in the Raptor-depleted cell lysates. Similar results were obtained in cells depleted of PDK1. Immunoprecipitates of PDK1 in the absence of PDK1 depleted cell lysates showed little or negligible phosphorylation of AktThr308 in both α2M and insulin-stimulated cells (Figure 5B). Addition of PDK1-depleted cell lysates resulted in a several fold increase in phosphorylation of Akt at 308 (Figure 5B). These results demonstrate the requirement of Raptor for phosphorylation of Akt at Thr308 by PDK1 and indicate the assembly of multiprotein signaling complex in initiating PDK1 signaling network. Formation of a similar multiprotein signaling complex has recently been suggested.

Discussion

PDK1 is a serine/threonine kinase that phosphorylates members of the conserved AGC kinase family including Akt at Thr308 and is implicated in critical cellular processes including survival, metabolism, and tumorigenesis. Activation of PDK1 in cancer through genomic or epigenetic changes is often associated with more aggressive tumors and poor prognosis.

Activated α2M* binds to cell surface GRP78 and activates downstream pro-proliferative and anti-apoptosis signaling cascades including RAS/MAPK, PI 3-kinase, PDK1, Akt and mTORC1 and mTORC2 signaling [4–14]. Raptor is an essential component of the mTORC1 complex which regulates mTORC1
activity [34,35]. Mice deficient in either Raptor or mTOR show serious developmental abnormalities [48–50]. For example, Raptor deficient mice become progressively dystrophic, tissues are impaired in their oxidative capacity, and cells contain increased glycogen stores [51,53]. Silencing Raptor or mTOR expression by RNAi equally decreases phosphorylation of S6K and 4EBP1, the direct downstream targets of mTORC1 [54]. Actively dividing cells transfected with Raptor RNAi show reductions in cell size and decreased S6K phosphorylation [54]. Since Raptor is without any enzyme activity, Raptor appears to modulate mTORC1 function by serving as a platform for mTORC1 assembly. The assembly of proteins into multiprotein complexes is an important mechanism that allows cells to carryout diverse functions that the individual proteins of the complex could not perform on their own. Using co-immunoprecipitation techniques it has been shown that Raptor forms a multiprotein complex of 4EBP1, S6K, mTOR, HERT, Akt and HSP90 in DU-145 cells and thereby it regulates telomerase activity [55]. Akt co-exists with ERK1/2 in a multiprotein complex containing PDK1 and RSK in MK-PT cells [56]. TFI-I also is a binding partner of Akt in Neuro 2A cells [57]. PDK1 is upstream of mTORC1-Raptor. PDK1 plays important role in the regulation of cellular responses in multiple organs by mediating PI 3-kinase signaling pathways through activating AGC kinases [15–19]. PDK1-mediated phosphorylation of Akt at Thr308 does not occur in either PDK1 null mice embryonic stem cells or tissue specific PDK1-knockdown mice [17,26,50]. Knockdown of PDK1 in pancreatic β-cell in mice results in progressive hyperglycemia [52]. In endothelial cell like Raptor, PDK1 maintains glucose homeostasis. Like Raptor, PDK1 knockout mice are embryonic lethal. Knock-in mice expressing a mutant of PDK1 incapable of binding to phosphoinositide were significantly smaller, insulin resistant, and hyperglycemic. Phosphorylation of Akt at Thr308 in these mice was markedly reduced [22]. The cellular responses elicited in Raptor and PDK1 deficient mice are quite similar. PDK1 is upstream of Raptor-mTORC1, therefore it is very likely Raptor plays an important role in PDK1-mediated signaling network.

Regulation of PDK1 activity occurs by several mechanisms including post-translational phosphorylation, which induces conformational changes stabilizing the protein, serving as anchors with respect to interaction with other proteins, or regulating the intracellular targeting of PDK1 to specific compartments such as cytoplasm, plasma membrane or the nucleus [15–19]. PDK1 is constitutively active. However, PDK1 is activated in membrane rafts in response to growth factors [58]. PDK1 exists as a dimer in cells and phosphorylation of the pH domain residue Thr153

Figure 2. PDK1 co-immunoprecipitates with Raptor. Bar diagram showing the presence of PDK1 in cell lysates (Panel A) and p-AktThr308 in Raptor immunoprecipitates (Panel B) from 1-LN and DU-145 cells transfected with PDK1 dsRNA and stimulated with α2M* (50 pM/20 min/37 °C). A representative immunoblot of PDK1 and p-AktThr308 from triplicate experiments is shown below the respective bar diagrams. The lanes in the bar diagram and immunoblot of PDK1 and p-AktThr308 are: (1) lipofectamine + buffer; (2) lipofectamine and α2M*; (3) dsPDK1 RNAi (100 nM/48 h/37 °C) then α2M*; and (4) scrambled dsRNAi (100 nM/48 h/37 °C) then α2M*. PDK1 protein is expressed as the ratio of PDK1/actin and that of p-AktThr308 in arbitrary fluorescent units (x10³). Values significantly different from transfected cells at 5% levels are marked with an asterisk (*). Panel C. Representative immunoblots from three experiments of p-AktThr308 and p-AktSer473 in Raptor immunoprecipitates of 1-LN cells stimulated with α2M*.

doi:10.1371/journal.pone.0088373.g002
regulates PH domain dimer-monomer equilibrium thereby converting an inactive dimer to an active monomer. Membrane bound PDK1, self-activates via autophosphorylation resulting in phosphorylation of the activation loop residue Ser241 and of PH domain residues Ser410 and Thr513. Subsequently, the active PDK1 kinase can phosphoactivate plasma membrane targets or can dissociate from membrane and phosphorylate cytoplasmic targets [59].

Dimerization of PDK1 may be due to the differential regulation of various pools of cytosolic PDK1. It is likely that active PDK1 monomers which dissociated from the plasma membrane may bind to Raptor and phosphorylate Akt at Thr308 [60]. Polyphosphoinositide PI (3,5) P2 is required for full activation and localization of mTORC1 by insulin and amino acids due to its interaction with WD40 domain of Raptor [61]. The PI 3-kinase inhibitor LY294002, inhibits phosphorylation of Akt at Thr308 in mTOR immunoprecipitates of prostate cancer cells stimulated with αM* [62]. AktThr308 phosphorylation, therefore, is PIPγ-dependent and should take place at the plasma membrane. We do not understand the precise mechanistic and subcellular location of Raptor-mediated phosphorylation of Akt at Thr308 reported here. PDK1 in unstimulated cells is mostly cytosolic in occurrence, but stimulation with growth factors causes domain residues Ser410 and Thr513. Subsequently, the active PDK1 kinase can phosphoactivate plasma membrane targets or can dissociate from membrane and phosphorylate cytoplasmic targets [59]. Dimerization of PDK1 may be due to the differential regulation of various pools of cytosolic PDK1. It is likely that active PDK1 monomers which dissociated from the plasma membrane may bind to Raptor and phosphorylate Akt at Thr308 [60]. Polyphosphoinositide PI (3,5) P2 is required for full activation and localization of mTORC1 by insulin and amino acids due to its interaction with WD40 domain of Raptor [61]. The PI 3-kinase inhibitor LY294002, inhibits phosphorylation of Akt at Thr308 in mTOR immunoprecipitates of prostate cancer cells stimulated with αM* [62]. AktThr308 phosphorylation, therefore, is PIPγ-dependent and should take place at the plasma membrane. We do not understand the precise mechanistic and subcellular location of Raptor-mediated phosphorylation of Akt at Thr308 reported here. PDK1 in unstimulated cells is mostly cytosolic in occurrence, but stimulation with growth factors causes domain residues Ser410 and Thr513. Subsequently, the active PDK1 kinase can phosphoactivate plasma membrane targets or can dissociate from membrane and phosphorylate cytoplasmic targets [59]. Dimerization of PDK1 may be due to the differential regulation of various pools of cytosolic PDK1. It is likely that active PDK1 monomers which dissociated from the plasma membrane may bind to Raptor and phosphorylate Akt at Thr308 [60]. Polyphosphoinositide PI (3,5) P2 is required for full activation and localization of mTORC1 by insulin and amino acids due to its interaction with WD40 domain of Raptor [61]. The PI 3-kinase inhibitor LY294002, inhibits phosphorylation of Akt at Thr308 in mTOR immunoprecipitates of prostate cancer cells stimulated with αM* [62]. AktThr308 phosphorylation, therefore, is PIPγ-dependent and should take place at the plasma membrane. We do not understand the precise mechanistic and subcellular location of Raptor-mediated phosphorylation of Akt at Thr308 reported here. PDK1 in unstimulated cells is mostly cytosolic in occurrence, but stimulation with growth factors causes
translocates to plasma membranes. PDK1 also may translocate to nuclei [62]. Akt is predominantly located in the cytoplasm and ER. After growth factor stimulation, a substantial translocation of Akt occurs. mTOR and Raptor are predominantly located in the ER and Golgi [63,64]. Recently studies demonstrate that mTORC2-dependent phosphorylation of AktS473 occurs on the surface of the ER [64]. Phosphorylation of Akt at Thr308 and Ser473 have been reported to be both interdependent or independent of each other [46], but in either case both PDK1 and mTORC2 must be in close spatial proximity for efficient phosphorylation of Akt at both Thr308 and Ser473, respectively.

This view is substantiated by the presence of both p-AktThr308 and p-AktSer473 in Raptor immunoprecipitates of 1-LN cells stimulated with α2M* (Figure 3). We have recently demonstrated that in prostate cancer cells treated with a cAMP analogue, Raptor is a co-factor for PDK1-dependent phosphorylation of Akt at Thr308 [65]. In this previous report, however, we did not study cell surface ligation by a characterized ligand to determine whether in receptor-mediated activation of the PI 3-kinase/Akt/mTOR pathway, Raptor performs such a function.

In conclusion, in this study we employ co-immunoprecipitation, RNAi, and immunodepletion techniques to demonstrate that PDK1-mediated phosphorylation of AktThr308 requires Raptor as a scaffold or co-factor in addition to the requirement for phosphoinositide participation in Akt activation. Thus PIP3 generation is a necessary, but not sufficient requirement in PDK1-dependent phosphorylation of AktThr308. A recent study suggests that physical association of PDK1 with Akt1 is sufficient for Akt phosphorylation in the T-loop, which is independent of PIP3/PIP2 induced plasma membrane translocation [66]. Raptor is a co-factor in the mTORC1 complex without enzymatic activity, but studies suggest that it modulates mTORC1 activity and downstream signaling consequent to its direct/indirect phosphorylation by ERK1, ERK1/2 [67], AMP-activated protein kinase [68], and RSK [69], respectively. Raptor may possibly modulate mTORC1 activity and downstream signaling by inducing conformational changes in mTORC1 and its interacting partners. Thus it would be reasonable to deduce that interaction of Raptor and PDK1 modulates T-loop phosphorylation of Akt1. These studies suggest that targeting Raptor may offer a promising approach for cancer therapeutics. A schematic representation of PDK1/Raptor-mediated phosphorylation of Akt is shown in Figure 6.

Author Contributions
Conceived and designed the experiments: UKM SVP. Performed the experiments: UKM. Analyzed the data: UKM SVP. Contributed reagents/materials/analysis tools: UKM SVP. Wrote the paper: UKM SVP.

References
1. Hart JP, Pizzo SV (2006) Proteinase Inhibitors: α-Macroglobulins and Kinins. In: Colman RW, Claves AW, Goldhaber SZ, Marder VJ, George JN, editors. Hemostasis and Thrombosis. Basic Principles and Clinical Practice. Baltimore: Lippincott, Williams, and Wilkins. 395 p.
2. Misra UK, Payne S, Pizzo SV (2011) Ligation of prostate cancer cell surface GRP78 activates a proproliferative and antiapoptotic feedback loop: a role for secreted prostate-specific antigen. J Biol Chem 286: 1248–1259.
3. Feldman SR, Gonas SL, Pizzo SV (1985) Model of α2-macroglobulin structure and function. Proc Natl Acad Sci USA, 82: 5700–5704.
4. Misra UK, Gonzalez-Gronow M, Gawdi G, Hart JP, Johnson CE, et al. (2002) The role of GRP78 in α2-macroglobulin-induced signal transduction. Evidence from RNA interference that the low density lipoprotein receptor-related protein a regulator of AGC kinase signal transduction. Semin Cell Dev Biol 15: 161–170.
5. Misra UK, Pizzo SV (2004) Potentiation of signal transduction mitogenesis and cellular proliferation upon binding of receptor-recognized forms of α2-macroglobulin to 1-LN prostate cancer cells. Cell Signal 16: 487–496.
6. Misra UK, Deedwania R, Pizzo SV (2005) Binding of activated α2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem 280: 26276–26286.
7. Misra UK, Deedwania R, Pizzo SV (2006) Activation and cross-talk between Akt, NFκB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78. J Biol Chem 281: 13064–13070.
8. Misra UK, Pizzo SV (2010) Modulation of the unfolded protein response in prostate cancer cells by antibody-directed against the carboxyl-terminal domain of GRP78. Apoptosis 15: 173–182.
19. Biondi RM (2004) Phosphoinositide-dependent protein kinase 1, a sensor of protein confirmation. Trends Biochem Sci 29: 136–142.
20. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ, et al. (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272: 31535–31540.
21. McManus EJ, Collins BJ, Ashby PR, Prescott AR, Murray-Tait V, et al. (2004) The in vivo role of Pdln1(3,4,5)3 binding to PDK1/PK HK domain defined by knockin mutation. EMBO J 10: 2071–2082.
22. Bayonas JR (2006) Dissecting the role of the 3-phosphoinositide-dependent protein kinase-1 (PDK1) signalling pathways. Cell Cycle 7: 2979–2982.

34. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR links oncogenic signaling to tumor cell metabolism. Cancer Cell 21: 372–378.

61. Bridges D, Ma JT, Park S, Inoki K, Weisman LS, et al. (2012) Phosphatidylinositol 3-kinase (PI3K) is required for viability of Rictor−/− cells. Cell Metab 8: 411–424.
62. Kikani CK, Dong LQ, Liu F (2005) "New"-clear functions of PDK1: beyond a master kinase in the cytosol? J Cell Biochem 96: 1157–1162.
63. Rosner M, Hengstschlager M (2012) Detection of cytoplasmic and nuclear PDK1 beta cell mass. Nat Genet 5: 589–593.
64. Boulbe D, Shaiken DD, Sarbassov DD (2011) Endoplasmic reticulum is a reservoir for PDK1. Biochem J 433: 357–369.
65. Okamoto Y, Nagawa A, Inoue H, Teshigawara K, et al. (2007) Restoration of glycosyltransferase expression in the liver normalizes postprandial glucose disposal in mice with hepatic deficiency of PDK1. Diabetes 56: 1000–1009.
66. Hashimoto N, Kafo Y, Uchida T, Aashara S, Shigeyama Y, et al. (2006) Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet 5: 589–593.
67. Kim DH, Sarbasov DD, Ali SM, King JE, Latek RR, et al. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163–173.
68. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, et al. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30: 214–226.
69. Bridges D, Ma JT, Park S, Inoki K, Weisman LS, et al. (2012) Phosphorylation of raptor by AMPK mediates a metabolic checkpoint. Mol Cell 30: 214–226.