O-hydroxy Schiff bases derived from 2-hydroxy-4-methoxy benzaldehyde: Synthesis, X-ray studies and Hydrogen Bonding Attributes

1. 1H NMR of N'-[(Z)-(2-hydroxy-4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide: – Page 2
2. 13C NMR of N'-[(Z)-(2-hydroxy-4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide: – Page 3
3. 1H NMR of N'-[(Z)-(2-hydroxy-4-methoxyphenyl)methylidene]pyridine-3-carbohydrazide: – Page 4
4. 13C NMR of N'-[(Z)-(2-hydroxy-4-methoxyphenyl)methylidene]pyridine-3-carbohydrazide:– page 5
5. Mass spectrum of N'-[(Z)-(2-hydroxy-4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide: – page 6
6. Mass spectrum of N'-[(Z)-(2-hydroxy-4-methoxyphenyl)methylidene]pyridine-3-carbohydrazide:– page 7
7. Table 1: Bond lengths, r (Å) and bond angles, A (º) of the molecule in ground state:– page 8
8. Table 2. Assignment of electronic excitations for the molecules. Only selected transitions with enough oscillator strength around the main peak are included (H stands for HOMO and L for LUMO) : – page 9
9. Electronic Spectra of Compounds 1 and 2: – page 10
10. Molecular electrostatic potential of the compounds. 1 and 2: – page 11
11. Crystal data and structure refinement table :- page 13-14
12. Bond lengths of compounds 1 & 2 :- page 15-16
13. Bond angles of compounds 1 & 2 :- page 16-17
1H NMR of N'-(Z)-(2-hydroxy-4-methoxyphenyl)methylidcarbohydrazide

![NMR Spectrum](image)

NMR-isoniazid
13C NMR of $N'-(Z)-(2$-hydroxy-4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide
1H NMR of N’-[(Z)-(2-hydroxy-4-methoxyphenyl)methylidene]pyridine-3-carbohydrazide
13C NMR of $N'\text{-[}(Z)\text{-}(2\text{-hydroxy-4-methoxyphenyl)methylidene]pyridine-3-}
\text{carbohydrazide}$
Mass spectrum of \(N' - [(Z) - (2\text{-hydroxy-4\text{-methoxyphenyl})\text{methylidene}}]\text{pyridine-4\text{-carbohydrazide}} \)
Mass spectrum of \(N'\)-(Z)-(2-hydroxy-4-methoxyphenyl)methylidene]pyridine-3-carbohydrazide
Table 1: Bond lengths, r (Å) and bond angles, A (°) of the molecule in ground state.

r/A	1	2		
	XRD	B3LYP/ cc-pVDZ	XRD	B3LYP/ cc-pVDZ
R(1-2)	1.352	1.339	1.331	1.341
R(1-6)	1.33	1.342	1.334	1.337
R(2-3)	1.376	1.398	1.363	1.398
R(3-4)	1.385	1.403	1.379	1.395
R(4-5)	1.391	1.402	1.376	1.402
R(4-7)	1.5	1.503	1.389	1.407
R(5-6)	1.375	1.397	1.492	1.498
R(7-8)	1.211	1.223	1.227	1.224
R(7-9)	1.368	1.38	1.35	1.381
R(9-10)	1.366	1.359	1.379	1.357
R(10-11)	1.285	1.294	1.286	1.293
R(11-12)	1.453	1.447	1.444	1.448
R(12-13)	1.41	1.414	1.405	1.413
R(12-17)	1.405	1.426	1.399	1.425
R(13-14)	1.372	1.382	1.368	1.382
R(14-15)	1.4	1.414	1.388	1.413
R(15-16)	1.389	1.397	1.385	1.398
R(16-17)	1.403	1.405	1.386	1.403
R(OH)	1.355	1.341	1.357	1.345
R(OCH3)	1.363	1.358	1.358	1.357
R(O-CH3)	1.422	1.422	1.419	1.422
R(O18-H---N10)	1.884	1.746	1.884	1.69
R(O34-H---O12)	2.016	1.86	1.875	1.93
R(O34-H---N10)	--	--	--	--
A(2-1-6)	115.8	116.8	116.3	117.2
A(1-2-3)	124	123.9	123.6	123.7
A(1-6-5)	124.2	124.2	124.6	124.1
A(2-3-4)	119.3	118.7	119.3	118.5
A(3-4-5)	117	118	118.9	118.8
A(3-4-7)	125.2	123.4	117.2	117.7
A(5-4-7)	117.8	118.6	125.8	124.9
A(4-5-6)	119.6	118.4	117	117.4
A(4-7-8)	122.1	123	120.6	122.4
A(4-7-9)	114.9	114.9	117.2	115.3
A(8-7-9)	123	122.1	122.2	122.3
A(7-9-10)	117.9	119.3	118.7	119.3
A(9-10-11)	118.1	119.4	116.3	119.8
A(10-11-12)	120.6	120.8	121.4	120.5
A(11-12-13)	120.2	120.5	119.4	120.6
A(11-12-17)	121.3	121.4	123.2	121.2
A(13-12-17)	118.4	118.1	117.4	118.2
Table 2. Assignment of electronic excitations for the molecules. Only selected transitions with enough oscillator strength around the main peak are included (H stands for HOMO and L for LUMO).

Molecule	Peak	Transition energy/eV (state)	Oscillator strength	Wave function (excitation amplitude)
A(12-13-14)	1	3.272 (1)	0.714	H → L (0.99)
A(12-17-16)	2	4.232 (3)	0.390	H → L + 1 (0.95)
A(12-17-18)	2	3.376 (1)	0.820	H → L (0.99)
A(13-14-15)	2	4.186 (3)	0.284	H - 1 → L (0.71), H → L + 1 (0.66)
A(14-15-16)	2	5.046 (10)	0.198	H - 3 → L (0.77), H - 4 → L (0.36), H - 5 → L (0.37)
Figure 1. Electronic spectra of compound 1 & 2
Fig. 2. Molecular electrostatic potential of the compounds. 1 and 2
Table 3: Crystal data and structure refinement Table

Parameter	Value	Value		
	Compound 1	**Compound 2**		
CCDC deposit No.	1046722	1046723		
Empirical formula	C_{14}H_{15}N_{3}O_{4}	C_{14}H_{15}N_{3}O_{4}		
Formula weight	289.29	289.29		
Temperature	293(2) K	289.29		
Wavelength	1.54178 Å	1.54178 Å		
Crystal system, space group	Monoclinic, *P*2₁/C	Triclinic, *P*–1		
Unit cell dimensions				
	a = 7.2054(2) Å	*a* = 6.4749(11) Å		
	b = 12.4742(3) Å	*b* = 7.8787(14) Å		
	c = 14.8390(3) Å	*c* = 14.395(3) Å		
	β = 96.6560(10)°	*α* = 93.757(9)°		
		β = 96.6560(10)°		
		γ = 103.982(8)°		
Volume	1324.76(6) Å	689.8(2) 689.8(2)		
Z, Calculated density	4, 1.450 Mg/m³	2, 1.393 Mg/m³		
Absorption correction	Multi–scan	Multi–scan		
Absorption coefficient	0.907 mm⁻¹	0.871 mm⁻¹		
F(000)	608	304		
Crystal size	0.25 x 0.25 x 0.25 mm	0.26 x 0.26 x 0.26 mm		
Theta range for data collection	4.64° to 64.27°	3.17° to 64.30°		
Limiting indices	$-8 \leq h \leq 6$	$-8 \leq h \leq 7$		
	$-13 \leq k \leq 14$	$-8 \leq k \leq 9$		
	$-16 \leq l \leq 16$	$-16 \leq l \leq 16$		
Reflections collected / unique	10721 / 2139 [R(int) = 0.0319]	6324 / 2224 [R(int) = 0.0342]		
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2		
Data / restraints / parameters	2139 / 0 / 199	2224 / 0 / 199		
Goodness-of-fit on F^2	1.072	1.043		
Final R indices [$I>2\sigma(I)$]	$R_I = 0.0331$, $wR^2 = 0.0815$	$R_I = 0.0431$, $wR^2 = 0.1217$		
R indices (all data)	$R_I = 0.0341$, $wR^2 = 0.0823$	$R_I = 0.0499$, $wR^2 = 0.1283$		
Largest diff. peak and hole	0.151 and -0.195 e. Å$^{-3}$	0.182 and -0.162 e. Å$^{-3}$		
Atoms	Length	Atoms	Length	
----------	------------	----------	------------	
N1–C2	1.3411(19)	C1–N6	1.331(2)	
N1–C6	1.3415(19)	C1–C2	1.363(2)	
C2–C3	1.3813(19)	C2–C3	1.379(2)	
C3–C4	1.3927(19)	C3–C4	1.376(2)	
C4–C5	1.3911(19)	C4–C5	1.389(2)	
C4–C7	1.5013(18)	C4–C7	1.492(2)	
C5–C6	1.384(2)	C5–N6	1.334(2)	
C7–O8	1.2320(17)	C7–O8	1.2273(19)	
C7–N9	1.3479(17)	C7–N9	1.350(2)	
N9–N10	1.3812(15)	N9–N10	1.3791(18)	
N10–C11	1.2868(17)	N10–C11	1.286(2)	
C11–C12	1.4441(18)	C11–C12	1.444(2)	
C12–C13	1.4025(19)	C12–C17	1.399(2)	
C12–C17	1.4088(19)	C12–C13	1.405(2)	
C13–C14	1.3724(19)	C13–C14	1.368(2)	
C14–C15	1.3939(19)	C14–C15	1.388(2)	
C15–O19	1.3631(16)	C15–O19	1.3576(19)	
--------	--------	--------	--------	
C15–C16	1.3871(19)		C15–C16	1.385(2)
C16–C17	1.3903(19)	C16–C17	1.386(2)	
C17–O18	1.3509(16)	C17–O18	1.3566(18)	
O19–C20	1.4361(16)	O19–C20	1.419(2)	

Table 5. Bond angles (°) Compounds 1 and 2

Compound 1		Compound 2	
Atoms	**Angle**	**Atoms**	**Angle**
C2–N1–C6	117.01(12)	N6–C1–C2	123.65(16)
N1–C2–C3	123.83(13)	C1–C2–C3	119.32(16)
C2–C3–C4	118.61(13)	C4–C3–C2	118.93(14)
C5–C4–C3	118.13(12)	C3–C4–C5	117.18(15)
C5–C4–C7	118.32(12)	C3–C4–C7	125.80(13)
C3–C4–C7	123.52(12)	C5–C4–C7	117.01(14)
C6–C5–C4	119.04(13)	N6–C5–C4	124.60(16)
N1–C6–C5	123.29(13)	C1–N6–C5	116.32(14)
O8–C7–N9	123.93(12)	O8–C7–N9	122.19(15)
O8–C7–C4	121.52(12)	O8–C7–C4	120.61(14)
N9–C7–C4	114.48(11)	N9–C7–C4	117.20(13)
Bond	Distance(Å)	Bond	Distance(Å)
------------------	-------------	------------------	-------------
C7-N9-N10	119.36(11)	C7-N9-N10	118.73(13)
C11-N10-N9	115.62(11)	C11-N10-N9	116.34(13)
N10-C11-C12	121.97(12)	N10-C11-C12	121.37(14)
C13-C12-C17	117.68(12)	C17-C12-C13	117.37(15)
C13-C12-C11	119.50(12)	C17-C12-C11	123.20(14)
C17-C12-C11	122.81(12)	C13-C12-C11	119.39(14)
C14-C13-C12	122.07(13)	C14-C13-C12	122.02(15)
C13-C14-C15	119.03(12)	C13-C14-C15	119.46(15)
O19-C15-C16	124.20(12)	O19-C15-C16	124.12(14)
O19-C15-C14	114.82(12)	O19-C15-C14	115.57(13)
C16-C15-C14	120.97(12)	C16-C15-C14	120.30(15)
C15-C16-C17	119.39(12)	C15-C16-C17	119.84(15)
O18-C17-C16	117.50(12)	O18-C17-C16	117.06(14)
O18-C17-C12	121.64(12)	O18-C17-C12	121.93(14)
C16-C17-C12	120.86(12)	C16-C17-C12	121.00(14)
C15-O19-C20	117.68(10)	C15-O19-C20	118.63(12)