Application of Mutant ap3 Allele-based Markers for the Selection of the Long-lasting Flower Phenotype (Misome-shō) in Evergreen Azalea Cultivars

Yu Gobara¹, Kyeong-Seong Cheon², Akira Nakatsuka³ and Nobuo Kobayashi³*

¹United graduate School of Agricultural Science, Tottori University, Tottori 680-8553, Japan
²Department of Forest Bio-Resource, National Institute of Forest Science, Suwon 16631, Republic of Korea
³Faculty of Life and Environmental Science, Shimane University, Matsue, 690-8504, Japan

There is a long-lasting flower trait with a temporal color change, known as “misome-shō”, in Japanese evergreen azalea. This trait has been found in several wild Japanese evergreen azalea species, such as Rhododendron kaempferi ‘Nikkō-misome’, R. macrosepalm ‘Kochō-zoroi’, R. indicum ‘Chōjyu-hō’, and R. × hannoense ‘Amagi-beni-chōjyu’. The corollas of long-lasting flower cultivars undergo a conversion of normal corollas to sepaloid corollas due to loss of function of the MADS-box B class gene, APETALA3 (AP3) homolog. Also, the long-lasting flower trait was shown to be recessive to normal flowers and controlled by a single gene. To develop a DNA marker for selection of the long-lasting flower phenotype, we carried out a multiplex-PCR approach to detect the ap3 mutant allele related to long-lasting flower traits, and investigated the flower phenotypes in crossed progenies of 23 cross combinations and 245 individuals. The normal flower phenotype individuals in the crossed progenies were homozygous for the normal allele or heterozygous for the normal allele and the ap3 mutant allele. On the other hand, the long-lasting flower phenotype individuals in the crossed progenies were homozygous for the ap3 mutant allele of long-lasting cultivars. These results support the idea that the long-lasting flower trait is caused by a mutation in the AP3 homolog, and it has been newly clarified that any combination of these mutant alleles in long-lasting flower cultivars has the long-lasting flower phenotype. In conclusion, our data indicate that efficient selection of individuals with long-lasting flowers will be possible by using selection DNA markers linked to the long-lasting flower trait.

Key Words: AP3, breeding, MADS-box gene, marker assisted selection, mutant allele.
floral morphology, inheritance, and a MADS-box B class gene related to floral morphology. In a previous morphological study, we indicated that the long-lasting flower trait is a floral homeotic mutant with a sepaloid corolla (Kobayashi et al., 2010; Gobara et al., 2017). In addition, the long-lasting flower trait was shown to be a recessive trait of the normal flower phenotype and is controlled by a single gene (Gobara et al., 2017). Therefore, it takes a long-term breeding cycle to develop long-lasting flowers with new flower traits, such as double flowers and hose-in-hose flowers.

A marker-associated selection (MAS) (Xu and Crouch, 2008) system is important for rapid selection of the long-lasting flower phenotype, which is a recessive trait, during the juvenile period. In long-lasting cultivars, transcription of the AP3 homolog was reduced, and a long terminal repeat retrotransposon was independently inserted into exons 1, 2, and 7 or an unknown sequence in exon 1 of the gDNA of each cultivar. This insertion apparently abolished the normal mRNA sequence of the AP3 homolog (Cheon et al., 2018). Based on this insertion, DNA markers for the detection of the ap3 mutant allele were developed for each long-lasting cultivar. In a previous study (Cheon et al., 2018), normal flower phenotypes of the F1 progenies between normal and long-lasting cultivars were heterozygous for the normal and ap3 mutant alleles. In addition, it was shown that long-lasting flowers in crossed progenies between normal and long-lasting cultivars were homozygous for the ap3 mutant allele in one cross combination.

In this study, to develop a rapid selection marker for the long-lasting flower phenotype in evergreen azaleas, we carried out a multiplex-PCR approach to detect the ap3 mutant allele related to the long-lasting flower trait in crossed progenies of various cross combinations using the DNA markers described by Cheon et al. (2018).

Materials and Methods

Plant materials

The normal flower azaleas *R. kaempferi*, *R. macrosepalum*, *R. indicum* ‘Ōsakuzuki’, *R. ripense*, *R. × pulchrum* ‘Ōmurasaki’, and Kurume azalea ‘Wakakae’de’, and the long-lasting flower cultivars *R. kaempferi* ‘Nikkō-misome’, *R. macrosepalum* ‘Kochō-zoroi’, *R. indicum* ‘Chōjyu-hō’, and *R. × hannoense* ‘Amagi-beni-chōjyu’ were used. A total of 69 F1 progenies from 11 cross combinations between normal and long-lasting cultivars and a total of 25 F1 progenies of six cross combinations between long-lasting cultivars were used (Table 1). In addition, a total of 151 crossed progenies of six cross combinations between the F1 hybrids of normal and long-lasting cultivars were used (Table 2). These plants were obtained from the azalea resource collection at the Plant Breeding Laboratory of the Faculty of Life and Environmental Sciences, Shimane University.

DNA marker analysis

Genomic DNA was extracted from the leaves of each plant using the modified CTAB method (Kobayashi et al., 1998). The multiplex-PCR primers described by Cheon et al. (2018) that can distinguish each *ap3* mutant allele in long-lasting cultivars are shown in Table 3 and Figure 1A. The Pr2 and Pr8 primers, which were newly designed from the AP3 homolog sequences of *R. kaempferi* ‘Nikkō-misome’ (*rkap3-NM*, DDBJ Acc. No. AB861605) and *R. × hannoense* ‘Amagi-beni-chōjyu’ (*rhap3-AC*, DDBJ Acc. No. AB861608), were used in this study. The three PCR primers Pr8, Pr9, and Pr10 were designed to amplify approximately 425 bp fragments in ‘Nikkō-misome’, and approximately 180 bp fragments in cultivars other than ‘Nikkō-misome’. The three PCR primers Pr1, Pr3, and Pr4 were designed to amplify approximately 315 bp fragments in ‘Kochō-zoroi’ (*rmap3-KZ*, DDBJ Acc. No. AB861606), and approximately 180 bp fragments in cultivars other than ‘Kochō-zoroi’. The three PCR primers Pr5, Pr6, and Pr7 were designed to amplify approximately 600 bp fragments in ‘Chōjyu-hō’ (*riap3-CH*, DDBJ Acc. No. AB861607), and approximately 220 bp fragments in cultivars other than ‘Chōjyu-hō’. The three PCR primers Pr1, Pr2, and Pr3 were designed to amplify approximately 500 bp fragments in ‘Amagi-beni-chōjyu’, and approximately 180 bp fragment in cultivars other than ‘Amagi-beni-chōjyu’. A multiplex-PCR was performed with the primer set in Table 3 to detect the *ap3* mutant alleles of each long-lasting cultivar and the normal alleles of normal flowers as the insets in *rmap3-KZ* and *rhap3-AC* were located in exon 1. The normal alleles, *rmap3-KZ*, and *rhap3-AC* were detected using four primers, Pr1, Pr2, Pr3, and Pr4. The multiplex-PCR was performed in 10 μL reaction mixtures containing 10 ng DNA template, 1× Ex-Taq buffer, 200 μM dNTPs, 0.25 U Ex-Taq (TaKaRa Bio Inc., Shiga, Japan), and 0.2 μM of each primer. The reaction conditions were as follows: denaturation at 94°C for 3 min; 35 cycles of denaturation at 94°C for 30 s, annealing at 61°C for 30 s, extension at 72°C for 30 s, and a final extension at 72°C for 2 min. The amplified PCR products were analyzed by electrophoresis in a 1.5% agarose gel (Nippon Genetics Co., Ltd., Tokyo, Japan) using 0.5× TBE buffer and run at 100 V for 30 min. When using the Pr2 and Pr9 primers, the annealing temperature was changed to 56°C. The crossed progenies between the F1 hybrids of normal and long-lasting cultivars had their genotypes determined using the DNA markers before blooming. We investigated the flower phenotypes of the crossed progenies that bloomed from 2013 to 2020 and identified genotypes of the AP3 homolog through the multiplex-PCR.
Table 1. PCR amplification profiles for the ap3 mutant alleles and the flower phenotypes in F1 progenies.

Line	Seed Parents	Pollen Parents	Phenotype	Genotype
	R. macrosepalum ‘Kochō-zoroi’ × Kurume azalea ‘Wakakaede’		L	rmap3-KZ/rmap3-KZ
06012	R. indicum ‘Chōjyū-hō’ × R. oldhamii			
07097	R. × hanoense ‘Amagi-beni-chōjyū’ × R. × pulchrum ‘Ōmurasaki’			
99088	Hybrid ‘Tenkō’ (R. × hanoense ‘Amagi-beni-chōjyū’ × R. kaempferi ‘Nikkō-misome’)			
05216	R. × hanoense ‘Amagi-beni-chōjyū’ × Kurume azalea ‘Kirin’	N (14)	AP3	rkap3-NM
99094	R. × hanoense ‘Amagi-beni-chōjyū’ × R. ripense	N (3)	AP3	rkap3-CH
04093	Hybrid ‘Tō-sei’ (R. transiens ‘Hatsusimo’ × pot azalea ‘Star light’)	N (6)	AP3	rkap3-AC

	Long-lasting flower-type	Normal flower-type		
05063	Kurume azalea ‘Wakakaede’ × R. indicum ‘Chōjyū-hō’	N (10)	AP3	rkap3-CH
04171	R. oldhamii × R. macrosepalum ‘Kochō-zoroi’	N (5)	AP3	rkap3-KZ
99090	R. kiusianum × R. × hanoense ‘Amagi-beni-chōjyū’	N (2)	AP3	rkap3-AC
04083	Hybrid ‘Tō-sei’ × Hybrid ‘Tenkō’	N (6)	AP3	rkap3-AC

	Long-lasting flower-type	Long-lasting flower-type	
06032	R. kaempferi ‘Nikkō-misome’ × R. indicum ‘Chōjyū-hō’	L (3)	rkap3-NM/riap3-CH
06021	R. indicum ‘Chōjyū-hō’ × R. kaempferi ‘Nikkō-misome’	L (2)	rkap3-NM/riap3-CH
06027	R. macrosepalum ‘Kochō-zoroi’ × R. kaempferi ‘Nikkō-misome’	L (2)	rkap3-NM/rmap3-KZ
06019	R. × hanoense ‘Amagi-beni-chōjyū’ × R. kaempferi ‘Nikkō-misome’	L (9)	rkap3-NM/rkap3-AC
05067	R. × hanoense ‘Amagi-beni-chōjyū’ × R. indicum ‘Chōjyū-hō’	L (7)	riap3-CH/rhap3-AC
98051	R. × hanoense ‘Amagi-beni-chōjyū’ × R. macrosepalum ‘Kochō-zoroi’	L (2)	rmap3-KZ/rhap3-AC

Notes: N: normal flower phenotype; L: long-lasting flower phenotype. Parentheses show the individual number.

Genotype was based on the multiplex-PCR products, which were rkap3-NM (425 bp); rmap3-KZ (315 bp); riap3-CH (600 bp); and rhap3-AC (500 bp) as shown in the mutant allele. AP3 shows the normal allele.

Results

Detection of the ap3 mutant allele in long-lasting cultivars

The PCR products obtained using the three primers (Pr8, Pr9, and Pr10) amplified approximately 425 bp fragments in ‘Nikkō-misome’, and approximately 180 bp fragments in the other cultivars (Fig. 1B). The PCR products obtained using the primers Pr5, Pr6, and Pr7 amplified approximately 600 bp fragments in ‘Chōjyū-hō’, and approximately 220 bp fragments in cultivars other than ‘Chōjyū-hō’ (Fig. 1B). The PCR products obtained using the four primers Pr1, Pr2, Pr3, and Pr4 amplified approximately 315 bp fragments in ‘Kochō-zoroi’, 500 bp fragments in ‘Amagi-beni-chōjyū’, and 180 bp fragments in cultivars other than these (Fig. 1B).

Detection of the ap3 mutant allele in crossed progenies

All analyzed F1 progenies between the normal and long-lasting cultivars had normal flower phenotypes and were heterozygous for the ap3 mutant allele and the normal allele (Table 1; Fig. 1C). On the other hand, all analyzed F1 progenies between the long-lasting cultivars had long-lasting flower phenotypes and were homozygous for the ap3 mutant alleles (Table 1; Fig. 1D).

In the crossed progenies between the F1 hybrids of...
normal and long-lasting cultivars, normal and long-lasting flower phenotypes exhibited an approximately 3:1 split (Table 2; Fig. 3A). In all combinations of the crossed progenies between the F₁ hybrids of normal and long-lasting cultivars, normal alleles were detected in normal flower phenotypes, and homozygous \textit{ap3} mutant alleles were detected in the long-lasting flower phenotypes (Table 2; Fig. 2). The genotype segregation pattern in the crossed progenies between the F₁ hybrids of the normal and long-lasting cultivars, identified by the multiplex-PCR, corresponded to the expected ratio (Table 4).

Table 2. PCR amplification profiles for the \textit{ap3} mutant alleles and the flower phenotypes in the crossed progenies between F₁ hybrids of normal and long-lasting cultivars.

Line	Parents (allele/allele)	Phenotype	Genotype
	Seed × Pollen		
13003	04093-5 (\textit{AP3/rkap3-NM}) × 05216-1 (\textit{AP3/rhap3-AC})	N (6)	\textit{AP3/\textit{AP3}}
		N (3)	\textit{AP3/rkap3-NM}
		N (3)	\textit{AP3/rhap3-AC}
		L (3)	\textit{rkap3-NM/rhap3-AC}
13006	04093-5 (\textit{AP3/rkap3-NM}) × 07097-1 (\textit{AP3/riap3-CH})	N (9)	\textit{AP3/\textit{AP3}}
		N (9)	\textit{AP3/rkap3-NM}
		N (9)	\textit{AP3/riap3-CH}
		L (7)	\textit{rkap3-NM/riap3-CH}
13013	04093-5 (\textit{AP3/rkap3-NM}) × 06025-1 (\textit{AP3/riap3-CH})	N (2)	\textit{AP3/\textit{AP3}}
		N (7)	\textit{AP3/rkap3-NM}
		N (7)	\textit{AP3/riap3-CH}
		L (7)	\textit{rkap3-NM/riap3-CH}
13016	04171-1 (\textit{AP3/rmap3-KZ}) × 07097-1 (\textit{AP3/riap3-CH})	N (10)	\textit{AP3/\textit{AP3}}
		N (9)	\textit{AP3/rmap3-KZ}
		N (7)	\textit{AP3/riap3-CH}
		L (7)	\textit{rmap3-KZ/riap3-CH}
13018	04171-1 (\textit{AP3/rmap3-KZ}) × 05216-1 (\textit{AP3/rhap3-AC})	N (5)	\textit{AP3/\textit{AP3}}
		N (8)	\textit{AP3/rmap3-KZ}
		N (5)	\textit{AP3/rhap3-AC}
		L (5)	\textit{riap3-CH/rhap3-AC}
13020	06025-1 (\textit{AP3/riap3-CH}) × 05216-1 (\textit{AP3/rhap3-AC})	N (5)	\textit{AP3/\textit{AP3}}
		N (8)	\textit{AP3/riap3-CH}
		N (5)	\textit{AP3/rhap3-AC}
		L (5)	\textit{riap3-CH/rhap3-AC}

\(z\) N: normal flower phenotype. \(L\): long-lasting flower phenotype. Parentheses show the individual number.

\(y\) Genotype was based on multiplex-PCR products, which were \textit{rkap3-NM} (425 bp); \textit{rmap3-KZ} (315 bp); \textit{riap3-CH} (600 bp); and \textit{rhap3-AC} (500 bp) as shown in the mutant allele. \textit{AP3} shows the normal allele.

Table 3. Primers used for the multiplex-PCR analysis.

Detecting gene	No.	Name	Sequence (5′-3′)	Reference
\textit{rhap3-AC} (‘Amagi-beni-chōjyu’)	Pr1	AP3-AMAGI (MAR) F1	GAGAGTGAAGAAATGGCGAG	Cheon et al., 2018
	Pr2	AP3 AMA-R1	CTTCACTTTTAAGTATTATAGGC	developed in this study
	Pr3	5RACE-AP3-2	GTATTCATGGAGCTTCTCGG	Cheon et al., 2018
\textit{rmap3-KZ} (‘Kochō-zoroi’)	Pr1	AP3-AMAGI (MAR) F1	GAGAGTGAAGAAATGGCGAG	Cheon et al., 2018
	Pr3	5RACE-AP3-2	GTATTCATGGAGCTTCTCGG	Cheon et al., 2018
	Pr4	AP3 KOCHO (MAR) R	GGATAACGCTCTAGAAGGG	Cheon et al., 2018
\textit{riap3-CH} (‘Chōjyu-hō’)	Pr5	AP3-CHOJYU (MAR) F1	GCGAATACCTAGAACGAAGCA	Cheon et al., 2018
	Pr6	AP3-CHOJYU (MAR) R1	ATGGAGGAGGCTGATATGAA	Cheon et al., 2018
	Pr7	AP3-CHOJYU (MAR) R2	GGAGACCAGTACGCTTATTTA	Cheon et al., 2018
\textit{rkap3-NM} (‘Nikkō-misome’)	Pr8	AP3-NIKKO (MAR) F1	ATAGAAGGAGAATGGGACG	developed in this study
	Pr9	AP3 AMA-R1	CTTCACTTTTAAGTATTATAGGC	same with primer 2
	Pr10	AP3-NIKKO (MAR) R1	AAGCAAATGTCGTGAGATCG	Cheon et al., 2018
Discussion

The vase life of flowers is one of the most important characteristics required by consumers (Imanishi et al., 1992). Normal flowering azalea plants finish flowering in about two weeks. In contrast, long-lasting flower cultivars keep their corollas for more than 100 days, with the flowers then turning greenish (Kobayashi, 2013). This is similar to the “autumn-like color” of hydrangeas, in which flowering continues with changes in the flower color (Yoshida et al., 2008).

The corollas of long-lasting flower cultivars involves the conversion of normal corollas to sepaloid corollas due to loss of function of the AP3 homolog (Cheon et al., 2018). In addition, the long-lasting flower trait was shown to be recessive to normal flowers and con-
trolled by a single gene (Gobara et al., 2017). Similar mutations of sepaloid petals have been found in other plants, and Singh et al. (2014) suggested that the development of sepaloid petals in *Papaver somniferum* was caused by the reduced expression of *PapsAP3-1*; this trait is a recessive trait controlled by a single gene. In herbaceous peony (*Paeonia lactiflora*), a spontaneous corolla mutant under natural conditions was closely associated with selective expression alterations of duplicated *AP3* and *PI* genes; down-regulation of duplicated B class genes may result in a reduction in the *AP3-PI* heterodimer in sepaloid corollas (Gong et al., 2017). Additionally, Lange et al. (2013) suggested that sepaloid petal development in *Eschscholzia californica* was caused by a lack of function of the MADS-box B class gene, *EScaGLO*. DNA markers related to flower shape mutation have been developed for double-flowered cultivars caused by mutations of the MADS-box C class gene *AGAMOUS* in gentians (*Gentiana scabra*) (Tasaki et al., 2017) and *Matthiola incana*.

Table 4. Segregation data for the *ap3* mutant alleles in the crossed progenies between F1 hybrids of normal and long-lasting cultivars.

Line	Parents	No. of progenies	Genotypic segregation	Expected ratio	\(\chi^2 \)	P				
	Seed × Pollen		Homozygous normal allele	Normal allele and mutant allele	Homozygous normal allele	Normal allele and mutant allele	Homozygous mutant allele			
13003	04093 × 05216	15	6	6	3	1	2	1	1.800	0.407
13006	04093 × 07097	34	9	18	7	1	2	1	0.353	0.838
13013	04093 × 06025	19	2	14	3	1	2	1	4.368	0.113
13016	04171 × 07097	33	10	16	7	1	2	1	0.576	0.750
13018	04171 × 05216	27	8	13	6	1	2	1	0.333	0.846
13020	06025 × 05216	23	5	13	5	1	2	1	0.391	0.822
(Nakatsuoka and Koishi, 2018). However, there are no reports of any DNA markers related to an improvement in the ornamental value and vase life of flowers caused by B class gene mutations such as the long-lasting flower trait in azalea.

The long-lasting flower trait in azalea is commercially important, and we have been conducting studies on breeding materials (Kobayashi, 2020). In a previous study, DNA markers to detect the ap3 mutant allele were developed in long-lasting cultivars (Cheon et al., 2018). In this study, we used a multiplex-PCR approach to detect the ap3 mutant allele related to the long-lasting flower trait in normal flowers and long-lasting flower cultivars, and crossed progenies of 23 cross-combinations and 245 individuals using the DNA markers described by Cheon et al. (2018). As a result of the multiplex-PCR, we found normal flowers were homozygous for the AP3 gene, and each long-lasting cultivar had a homozygous ap3 mutant allele (Fig. 1B). In all cross combinations, individuals with the normal flower phenotype were homozygous for the normal allele or heterozygous for the normal allele and the ap3 mutant allele (Tables 1 and 2). On the other hand, the F1 progenies between long-lasting cultivars and long-lasting flower phenotype individuals in the cross progenies between F1 hybrids of normal and long-lasting flower cultivars were homozygous for the ap3 mutant allele derived from different species of the long-lasting cultivars (Tables 1 and 2).

The genotype that was detected before blooming by using the DNA markers was linked to the flower phenotype in all crossed progenies. The reliability of the DNA markers for long-lasting flower trait selection was confirmed in this study. Figure 3 shows the relationship between flower phenotypes and genotypes in crossed progenies of long-lasting cultivars derived from the four different species clarified in this report. It was revealed that all of the ap3 mutant alleles in each long-lasting flower cultivar were recessive to normal alleles (Fig. 3B). There was no dominant/recessive relationship between the ap3 mutant alleles of each long-lasting flower cultivar derived from the four different species, and we confirmed that any combination of these mutant alleles had a long-lasting flower phenotype (Fig. 3B). These results strengthen the concept that the long-lasting flower trait is caused by a mutation in the AP3 homolog. These results also suggest the possibility of breeding new azalea cultivars with the characteristics of multiple species by interspecific crossing using long-lasting cultivars, rather than simply through varietal crossing.

We have been conducting various studies on the morphological mutations found in evergreen azalea cultivars such as hose-in-hose, double-flowers, narrow-petals, and narrow-leaf mutations, to apply them in our breeding program (Kobayashi, 2016). In previous studies, we reported the development of DNA markers to select hose-in-hose cultivars (Cheon et al., 2017a), and the genetic analysis of the double-flowered trait (Cheon et al., 2017b) and narrow-petal and -leaf mutations (Tasaki et al., 2019). We are selecting the long-lasting flower phenotype during the juvenile period using these MAS systems. Among the selected individuals, candidates for new long-lasting flower cultivars have been developed.

In conclusion, interspecific crossing using the long-lasting flower trait that is present across species can contribute to the development of new long-lasting cultivars with high ornamental value. In addition, it was shown that an efficient selection process for long-lasting individuals is possible by using selection DNA markers linked to the long-lasting flower trait.

Acknowledgements

The authors thank the faculty of Life and Environmental Sciences of Shimane University for financial support in publishing this report.

Literature Cited

Cheon, K. S., A. Nakatsuoka, Y. Gobara and N. Kobayashi. 2017a. Mutant RopI-1 allele-based marker development for selection of the hose-in-hose flower phenotype in Rhododendron obtusum cultivars. Euphytica 213: 3. DOI: 10.1007/s10681-016-1808-x.

Cheon, K. S., A. Nakatsuoka, K. Tasaki and N. Kobayashi. 2017b. Floral morphology and MADS gene expression in double-flowered Japanese evergreen azalea. Hort. J. 86: 269–276.

Cheon, K. S., A. Nakatsuoka, K. Tasaki and N. Kobayashi. 2018. Long-lasting corolla cultivars in Japanese azaleas: a mutant AP3/DEF homolog identified in traditional azalea cultivars from more than 300 years ago. Front. Plant Sci. 8: 2239. DOI: 10.3389/fpls.2017.02239.

Gobara, Y., A. Nakatsuoka, K. S. Cheon and N. Kobayashi. 2017. Floral morphology and inheritance of the long-lasting flower trait (misome-sho) in Japanese evergreen azalea cultivars. Hort. Res. (Japan) 16: 383–390 (In Japanese with English abstract).

Gong, P., X. Ao, G. Liu, F. Cheng and C. He. 2017. Duplication and whorl-specific down-regulation of the obligate AP3–PI heterodimer genes explain the origin of Paeonia lactiflora plants with spontaneous corolla mutation. Plant Cell Physiol. 58: 411–425.

Imanishi, H., F. Yonezawa and H. Imanishi. 1992. Psychological research on the attitude of florist customers towards flowers. J. Japan. Soc. Hort. Sci. 60: 981–987 (In Japanese with English abstract).

Itô, I. and J. L. Creech. 1984. A Brocade Pillow: Azaleas of Old Japan. John Weatherhill, Inc., New York and Tokyo.

Kobayashi, N. 2013. Evaluation and application of evergreen azalea resources of Japan. Acta Hortic. 990: 213–219.

Kobayashi, N. 2016. Tsutsuji. p. 151–180. In: M. Shibata (ed.). Hana no hinshu kairyou no nihonshi (In Japanese). Bunkyō, Tokyo.

Kobayashi, N. 2020. Japanese azalea germplasm; the living horticulture properties. Acta Hortic. 1291: 163–168.

Kobayashi, N., T. Handa, Y. Yoshimura, Y. Tsumura, K. Arisumi and K. Takayanagi. 2000. Evidence for introgressive hybridization based on chloroplast DNA polymorphisms and morphological variation in wild evergreen azalea popula-
tions of the Kirishima mountains, Japan. Edinb. J. Bot. 57: 209–219.

Kobayashi, N., T. Horikoshi, H. Katsuyama, T. Handa and K. Takayanagi. 1998. A simple and efficient DNA extraction method for plants, especially woody plants. Plant Tissue Cult. Biotechnol. 4: 76–79.

Kobayashi, N., M. Ishihara, M. Ohtani, K. S. Cheon, D. Mizuta, K. Tasaki and A. Nakatsuka. 2010. Evaluation and application of the long-lasting flower trait (misome-sho) of azalea cultivars. Acta Hortic. 855: 165–168.

Kurashige, Y. and N. Kobayashi. 2008. Evergreen azalea cultivars and breeding trends in the Taisho era inferred by discovered “azalea research notes” of Kanagawa agricultural research station. Hort. Res. (Japan) 7: 323–328 (In Japanese with English abstract).

Kurashige, Y., M. Mine, N. Kobayashi, T. Handa, K. Takayanagi and T. Yukawa. 1998. Investigation of sectional relationships in the genus *Rhododendron* (Ericaceae) based on *matK* sequences. J. Jap. Bot. 73: 143–154.

Lange, M., S. Orashakova, S. Lange, R. Melzer, G. Theißen, D. R. Smyth and A. Becker. 2013. The *seirena* B class floral homeotic mutant of California Poppy (*Eschscholzia californica*) reveals a function of the enigmatic PI motif in the formation of specific multimeric MADS domain protein complexes. Plant Cell 25: 438–453.

Nakatsuka, T. and K. Koishi. 2018. Molecular characterization of a double-flower mutation in *Matthiola incana*. Plant Sci. 268: 39–46.

Singh, S. K., A. K. Shukla, O. P. Dhawan and A. K. Shasany. 2014. Recessive loci *Pps-1* and *OM* differentially regulate *PISTILLATA-1* and *APETALA3-1* expression for sepal and petal development in *Papaver somniferum*. PloS One 9: e101272. DOI: 10.1371/journal.pone.0101272.

Tasaki, K., A. Higuchi, K. Fujita, A. Watanabe, N. Sasaki, K. Fujiwara, H. Abe, Z. Naito, R. Takahashi, T. Hikage and M. Nishihara. 2017. Development of molecular markers for breeding of double flowers in Japanese gentian. Mol. Breed. 37: 33. DOI: 10.1007/s11032-017-0633-9.

Tasaki, K., A. Nakatsuka, K. S. Cheon and N. Kobayashi. 2019. Genetic demonstration of the involvement of *WUSCHEL*-related homeobox (*WOX*) genes in narrow-petal and narrow-leaf mutations in traditional Japanese azalea cultivars. Euphytica 215: 5. DOI: 10.1007/s10681-018-2323-z.

Xu, Y. and J. H. Crouch. 2008. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 48: 391–407.

Yoshida, K., D. Ito, Y. Shinkai and T. Kondo. 2008. Change of color and components in sepals of chameleon hydrangea during maturation and senescence. Phytochemistry 69: 3159–3165.