Generation and characterization of attosecond micro-bunched electron pulse trains via dielectric laser acceleration

Norbert Schönenberger
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
norbert.schoenenberger@fau.de
Particle accelerators: from RF to optical/photonic drive?

	Conventional linear accelerator (RF)
Based on	(Supercond.) RF cavities
Peak field limited by	**Surface breakdown:** 200 MV/m
Max. achievable gradients	**100 MeV/m**

RF cavity (TESLA, DESY)
Particle accelerators: from RF to optical/photonic drive?

	Conventional linear accelerator (RF)	Laser-based dielectric accelerator (optical)
Based on	(Supercond.) RF cavities	Silicon nano structures
Peak field limited by	Surface breakdown: 200 MV/m	Damage threshold: 30 GV/m
Max. achievable gradients	100 MeV/m	10 GeV/m

RF cavity (TESLA, DESY)
Acceleration by phase-synchronous propagation

- $t = 0$
- $t = \pi/2$
- $t = \pi$

1. Acceleration
2. Deceleration
3. Deflection
4. Deflection
Setup

Ti:Sa laser → BS → THG → BS → OPA → FP filter → Attenuator → BS → ASL → MCP → Spectrometer
Dielectric Laser Acceleration

Incident field: 0.5 GV/m
Pulse duration: 650 fs

P. Yousefi et al., Optics Letters Vol. 44, Issue 6, pp. 1520-1523 (2019)
Dielectric Laser Acceleration

Incident field: 0.5 GV/m
Pulse duration: 650 fs

P. Yousefi et al., Optics Letters Vol. 44, Issue 6, pp. 1520-1523 (2019)
Dielectric Laser Acceleration: Dynamics

![Graph showing energy and longitudinal position](image)

- Energy (keV): 27.7, 27.9, 27.5
- Longitudinal position (μm): 0, 0.31, 0.62
- Bunching
- Distance: 130 as
Streak camera

http://rasmus-ischebeck.de/media/Accelerator%20Physics/Drawings/PDFs/slides/Streak%20Camera.html
Streak camera

http://rasmus-ischebeck.de/media/Accelerator%20Physics/Drawings/PDFs/slides/Streak%20Camera.html
Dielectric Laser Acceleration: Dynamics
Dielectric Laser Acceleration: Bunching
Dielectric Laser Acceleration: Bunching

Experiment vs. Simulation

Electron density

Phase space

Norbert Schönenberger
EAAC September 2019
Shortest bunches
Bunching

Minimal bunch length achievable ~125 as
Net acceleration
Net acceleration

buncher

strong acceleration
Net acceleration

buncher

strong acceleration

![Graph showing net acceleration over z (m)](image)
Measured net acceleration

- Relatively low energy gain due to large input energy spread into second structure
- Inclusion of demodulator would greatly increase acceptance
Phase-reset structure – towards a photonic LINAC
Keeping the beam together

Alternate between transverse focusing-longitudinal defocusing and transverse defocusing-longitudinal focusing

net focusing
Keeping the beam together

Alternate between transverse focusing-longitudinal defocusing and transverse defocusing-longitudinal focusing

net focusing
Keeping the beam together

Alternate between transverse focusing-longitudinal defocusing and transverse defocusing-longitudinal focusing

net focusing
Keeping the beam together

Alternate between transverse focusing-longitudinal defocusing and transverse defocusing-longitudinal focusing

net focusing
Keeping the beam together

Alternate between transverse focusing-longitudinal defocusing and transverse defocusing-longitudinal focusing

net focusing

83 keV \rightarrow >1 MeV:
56% transmission for 100pm, 93% for 25pm emittance

U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, P. Hommelhoff, Phys. Rev. Lett. 121, 214801 (2018)
Thank you for your attention!