Advances in molecular, genetic and immune signatures of gastric cancer: Are we ready to apply them in our patients’ decision making?

Stavros Gkolfinopoulos, Demetris Papamichael, Konstantinos Papadimitriou, Panos Papanastasopoulos, Vassilios Vassiliou, Panteleimon Kountourakis

Abstract

In the last few years we have witnessed a vast expansion of our knowledge regarding the molecular and genetic profile of gastric cancer. The molecular subtypes described have shed light on the pathogenesis of the disease, thus prompting the development of new therapeutic strategies and favoring a more individualized approach for treatment. Most of the clinical trials for so-called targeted therapies could be considered, at best, partially successful. In addition, checkpoint inhibitors have recently been added to our armamentarium in later stages of the disease, and combinations with chemotherapy and targeted agents are currently under development. In view of the rapid advances of molecular oncology, a new challenge for the clinical oncologist arises: The appropriate patient selection for each new therapy, which can be made possible only through the implementation of predictive biomarkers in our therapy decision making.

Keywords: Gastric cancer; Cancer Genome Atlas; Asian Cancer Research Group; Targeted therapy
INTRODUCTION

Gastric cancer (GC) is the fifth most common type of cancer and the third most common cause of cancer-related mortality worldwide[1]. Despite recent advances in cancer therapeutics, driven by the application of the findings of basic science in cancer genetics and host-tumor immune interactions, the prognosis of most patients with metastatic disease is dismal[2]. Indeed, in GC we seem to lack clear molecular targets based on key regulatory genes or the aberrant expression of growth factor receptors. Furthermore, the universal rise of immunotherapeutic approaches in various tumor types has only recently been incorporated in GC. It is evident that a wide spectrum of prognostic and predictive biomarkers is needed in order to rationalize our decisions when managing patients with this specific tumor type and tailor our treatment to suit better the individual patient’s unique needs.

Genetic heterogeneity of GC

Our understanding in GC genetics was greatly expanded in 2014, when four main molecular subtypes of the disease were recognized in the context of the Cancer Genome Atlas (TCGA) project[3]. Further efforts were undertaken in order to relate molecular subtypes with the known histological subtypes that Lauren had proposed roughly half a century ago as well as with the location of the primary tumor and prognosis[4]. These efforts were met with moderate success, since it is now widely accepted that there is an important degree of overlap. Various basic studies and clinical trials followed, aiming to discover a clinically meaningful way of utilizing the findings of the TCGA project[5]. Unfortunately, thus far, the results have fallen short of the initial high expectations, although some success has been noted in subgroups of patients across trials that exhibited unique molecular characteristics. In 2015, another major molecular classification was proposed, this time from the Asian Cancer Research Group (ACRG), which shares similarities with TCGA yet has enough differences to be considered completely distinct (Table 1). The novelty with the ACRG was that the molecular subtypes discovered were associated with clinical outcomes[6]. A short review and comparison of both classification systems will be presented, followed by a brief and non-exhaustive analysis of the most important clinical trials employing target or immunotherapeutic strategies in this expanding area of oncology.

MOLECULAR SUBTYPES OF GC

ACCORDING TO TCGA

The first and most comprehensive molecular characterization of gastric adenocarcinoma was reported by the TCGA Network. In this study, 295 (therapy naive) primary gastric adenocarcinoma samples were characterized using six different molecular platforms, including array-based somatic copy number analysis, whole-exome sequencing, array-based DNA methylation profiling, messenger RNA sequencing, microRNA sequencing, and reverse-phase protein array. No survival or racial differences were found among patients from each subgroup[3]. As mentioned before, there were four main subtypes discovered, which can roughly be categorized in the following groups.

Subtypes not inherently immunogenic

The following two subtypes are less likely to respond to immunotherapeutic strategies per se. Rather, combination approaches are probably required in order to attain a response using immunotherapy, such as adding chemotherapy to checkpoint inhibition or dual checkpoint inhibition. However, in cases with marked T-Cell infiltration, we might expect that the checkpoints are probably up-regulated, and thus immunotherapy might still work. Apart from immunotherapy, targeted therapy with tyrosine kinase inhibitors (TKI) may prove to be another option in select subgroups of patients that carry specific driver mutations.

Chromosomal instability (50% of samples): The majority of the tumors analyzed in the project have fallen in this category. This subtype is found more frequently in the gastroesophageal junction (GEJ)/cardia (65%), is of intestinal histology, and affects mainly older (> 70 yo) individuals[7]. Genetically, it is characterized by marked aneuploidy and high frequency of TPS53 mutations (73%). Consequently, it features a high number of focal amplification of receptor tyrosine kinases, most importantly VEGFA, EGRF (10%), ERBB2 (24%), ERBB3 (8%), and c-Met (8%) as well as amplification of genes encoding cell cycle mediators, such as CCNE1, CCND1,
and CDK6. These genetic aberrations contribute to making it the ideal candidate for application of targeted treatment, especially TKI inhibitors and monoclonal antibodies.

Genomically stable (20% of samples): The trademark characteristics of this subtype are diploidy and somatic mutations in CDH1 (37%), which is also the gene that is mutated in hereditary diffuse GC syndrome. Further common genetic aberrations are either RHOA mutations or CLDN18-ARHGAP rearrangements, both discovered in approximately 30% of tumors and usually mutually exclusive. All those mutations lead to disrupted intercellular cohesion and enhanced invasiveness, thus it is no surprise that most (73%) of these tumors belong to the diffuse histological variant. Most patients are of younger age (median 59 years), and there is no gender predominance. The inherent relative lack of immunogenicity and targetable driver mutations may lead to increased difficulty in applying individualized treatment in this subtype. Perhaps this is the single molecular subtype in TCGA classification where classic cytotoxic chemotherapy will continue to retain the primary role in treatment.

Highly immunogenic subtypes
The other two subtypes are characterized by extensive infiltration of PD-L1(+) immune cells, which are dispersed throughout the tumor instead of being located in the invasive margin, as is common with other malignancies. It is speculated that the patients who exhibit response to checkpoint inhibitors will belong to this particular subgroup, although this has not yet been proven.

Microsatellite-high (21% of samples): The second most common subtype in the TCGA classification is characterized by extensive DNA methylation and multiple somatic mutations. These types of tumors are diagnosed at an older age (median age 72 years), with a slightly higher preponderance in female patients (56%). The various and dispersed mutations across the genome are mostly a consequence of MLH1 promoter hypermethylation. Other important genes, with potentially targetable products, which are found mutated, are PIK3CA, EGFR, ERBB2, and ERBB3.

The extensively mutated genetic material of these tumors creates an opportunity for immune system-oriented strategies. Indeed, the high amount of neoantigens, often presented in MSI-high tumors, elicit an immune response, manifested through extensive PD-L1 expression, which in this subtype reaches 33% and 45% on tumor and immune cells, respectively.

Epstein-Barr virus-positive (9% of samples): This subtype, whose main characteristic is the high Epstein-Barr virus (EBV) burden, was found to occur predominantly in the gastric fundus or body (62%), and is more common in men (81%). In TCGA, a recurrent amplification of 9p24.1 genetic locus is described, which is the site of genes JAK2, CD274, and PDCD1LG2. The first accounts for the aberrant activation of the JAK-STAT pathway, while the latter two encode PD-L1 and PD-L2, respectively. The 9p amplifications are found in at least 15% of EBV (+) tumors and lead to enhanced neoepitope presentation. It is also characterized by extreme DNA hypermethylation, most notably of the CDKN2A promoter, which leads to complete lack of p16 (p16INK4A) protein. It also features recurrent PIK3CA (80%), ARID1A (55%), and BCOR (23%) mutations. These molecular alterations characterizing this particular subtype hint at the therapeutic potential of JAK inhibition, PI3K/MTOR inhibition and immunotherapeutic approaches.

Table 1 Molecular subtypes of gastric cancer according to the Cancer Genome Atlas and Asian Cancer Research Group

Molecular subtypes of gastric cancer	TCGA	ACRG
CIN (50%)	MSS/TP53− (35.7%)	MSS/EMT (15.3%)
MSI-H (21%)	MSS/TP53+ (26.3%)	MSS/EMT (22.7%)
GS (20%)	MSI-H	MSS/EMT
EBV + (9%)	MSS/EMT	

TCGA: Cancer Genome Atlas; ACRG: Asian Cancer Research Group; CIN: Chromosomal instability; MSI-H: Microsatellite-high; GS: Genomically stable; EBV: Epstein-Barr virus; MSS: Microsatellite stable; TP53: Tumor protein p53; EMT: Epithelial-mesenchymal transition.

The ACRG analyzed 300 GC samples using gene expression, genome-wide copy number microarray and targeted sequencing. Partially overlapping with the TCGA classification and sharing some similarities but also exhibiting enough differences to be categorized as a completely distinct classification, four molecular subtypes are described. In this case, the foundations of this molecular classification are based on the basis of MSI status, TP53 function, and epithelial-mesenchymal transition (EMT). In this classification the subtypes were associated with relevant clinical outcomes and revealed survival differences that were validated in independent cohorts.

The basis on which the first division took place was the loss of function of genes involved in the mismatch repair (MMR) system, thus distinguishing the MSI subtype. Then, the remaining tumors were divided depending on alterations in cell adhesion, angiogenesis, and motility, thus forming the MSS/EMT subtype. The rest were divided in two subtypes, depending on the loss of function of TP53, namely the microsatellite stable/TP53 intact (MSS/TP53+) and microsatellite stable/TP53 loss (MSS/TP53−) subtypes. Among these subtypes, the MSI showed the best overall prognosis, followed by
MSS/TP53+, MSS/TP53−, and MSS/EMT\(^6\). More extensively, the molecular subtypes and their main specific characteristics are:

Microsatellite stable/TP53 loss (35.7% of samples)

This subtype is characterized by the highest rate of TP53 mutations (60%). Also, it features a greater aneuploidy and recurrent focal amplifications in MDM2, ROBO2, GATA6, MYC, ERBB2, EGFR, CCNE1, and CCND1\(^6\).

Microsatellite stable/TP53 intact (26.3% of samples)

Compared to the rest, this subtype is characterized by a higher prevalence of EBV infection. In addition to exhibiting an active TP53 pathway, it is associated with APC, ARID1A, KRAS, PI3KCA, and SMAD4 mutations\(^6\).

Microsatellite-high (22.7% of samples)

This subtype occurred frequently in the antrum (75%), was mostly (> 60%) of intestinal-type histology, and was diagnosed more frequently at early stages (I or II), thus exhibiting the best overall survival. Genetically, it was associated with the presence of hypermutation, especially in genes encoding KRAS (23.3%), the PI3K-PTEN-mTOR pathway (42%), ARID1A (44.2%), ERBB2 (16.3%), ERBB3 (14%), and ALK (16.3%)\(^6\).

Microsatellite stable/epithelial-mesenchymal transition (15.3% of samples)

This subtype was associated with diffuse type histology, as it was expected considering that it features aberrations in genes responsible for cell adhesion and motility. It presents at a significantly younger age with most of the patients diagnosed at advanced stages (III/IV). Consequently, it carries the worst overall prognosis and a higher chance of recurrence. It is also characterized by higher rates of peritoneal spread, which can also be attributed to the above-mentioned genetic changes\(^6,15\).

Comparison between TCGA and ACRG classifications

It is evident that, when comparing the two classifications, certain similarities exist between the different subtypes. Apart from the obvious association between the MSI subtypes in both classifications, it can be argued that roughly the equivalent of the genomically stable (GS) subtype in the ACRG classification is the microsatellite stable/epithelial-mesenchymal transition (MSS/EMT) subtype, while analogies exist between the EBV and chromosomal instability (CIN) subtypes on one hand, and MSS/TP53+ and MSS/TP53- on the other, respectively\(^14\). However, as has been stated previously, there are certain major differences. For instance, while in the TCGA classification, EBV is a distinct subtype; ACRG EBV-infected tumors represent a part of the spectrum of the wider MSS/TP53+ subtype, which, moreover, is not characterized by hypermethylation or hypermutation. Another important difference is that in ACRG classification, CDH1 and RHOA mutations did not occur as frequently in the MSS/EMT as in its approximately equivalent GS subtype\(^14\). It can be argued that these differences, among others, point also to the genetic heterogeneity of GC between different populations of different ethnic backgrounds, suggesting potentially different pathogenetic mechanisms for this disease in different parts of the globe.

CLINICAL TRIALS FOCUSING ON MOLECULAR AND IMMUNE BIOMARKERS

Targeting molecular pathways

HER2 inhibition: HER2 protein in GC is overexpressed mainly as a result of gene amplification. Its overexpression results in increased cell proliferation via its main target pathways, namely PI3K/Akt/mTOR and the RAS/MAPK\(^16\). Consequently, its blockade may potentially halt tumor progression, at least temporarily, until an alternative pathway is switched-on driving resistance.

HER2 amplification is mainly a characteristic of GEJ tumors (15%-32%) rather than distal ones (10%-15%)\(^14\). Also, the exact location of the protein in the cell differs, depending on the level of differentiation of the tumor. Well-differentiated tumors express the protein in the cell surface, whereas it is located mainly in the cytoplasm in poorly differentiated cancer cells\(^17\). HER2 targeting has been implemented in various lines of therapy, with both monoclonal antibodies and TKIs with variable success (Table 2).

Trastuzumab, a chimeric monoclonal antibody targeting the domain IV of HER2, has gained approval in first-line therapy when combined with fluoropyrimidine/cisplatin chemotherapy doublet, after the positive results of the phase III ToGA trial. A subset analysis of this trial has indicated that the provided survival benefit is narrowed only to the group of patients where HER2 is clearly overexpressed, as manifested by combined immunohistochemistry (IHC) (+2) and fluorescent in situ hybridization (FISH) positivity, or IHC (+3) positivity. As a result, Trastuzumab should be administered to a specific subset of patients fulfilling the criteria mentioned above\(^18\).

In an attempt to replicate the positive results of CL-EOPATRA, where another HER2-targeting monoclonal antibody Pertuzumab gained approval in the treatment of advanced breast cancer, the phase III JACOB trial was initiated. In this trial, Pertuzumab was combined with chemotherapy doublet and Trastuzumab in stage IV treatment-naïve GC patients. Although the mOS was numerically superior in the Pertuzumab arm by 3.3 mo, with a 16% reduction in the risk of death, the trial missed statistical significance only just barely (\(P = 0.0565\)). Furthermore, as opposed to the ToGA trial, the majority of subgroups were consistent with the overall analysis. The combination therapy also resulted in more
incidents of diarrhea and hypokalemia. Another attempt at HER2 inhibition in first line was the phase III TRIO-013/LOGIC trial, where, in a selected population of HER2 positive patients, the addition of Lapatinib, a small intracellular TKI of ERBB1 and ERBB2, was evaluated on whether it would improve the survival benefit derived by Oxaliplatin/ Capecitabine doublet chemotherapy. Unfortunately, the trial failed to demonstrate a statistically significant survival benefit. However, it did raise the question of the accuracy of the current method of appreciating HER2 positivity, since the observed clinical benefit closely correlated with the degree of gene amplification as well as with HER2 protein levels, implying that implementing a different scoring system where HER2 over-expressing tumors are defined by an IHC score of more than 3 (IHC: 3+) or 2 (FISH) values, may be more precise.

Lapatinib was also evaluated in the second line in the phase III Asian TyTAN trial, where it was added to weekly Paclitaxel. It is interesting to note that the trial was performed in an unselected population, with 31% demonstrating weak (IHC: 1+) or none at all HER2 positivity. No survival benefit was noted in the study population, although in the subgroup with strong HER2 positivity (IHC: 3+), median survival improved to 14 mos vs 7.6 mos (P = 0.0176).

Another negative phase III trial compared a monoclonal antibody used in HER2(+) breast cancer, Trastuzumab Emtansine (TDM-1), and taxane monotherapy in HER2(+) patients (GATSBY trial). However, in the TyTAN trial, HER2 expression was evaluated in a select few who retain HER2 positivity. However, this is currently hypothesis-generating and should be confirmed.

Table 2 Main targeted agents evaluated in metastatic gastric cancer

Biologic target	Targeted agent	Name/type of trial	Line of therapy	Study arms	Results	Ref.	
c-MET	Rilotumumab	RIOMET-1	Phase III	ECX + Ril	Negative effect	[58]	
		EXPAND	Phase III	XP + Cet	No benefit	[48]	
EGFR	Cetuximab	AIO	Phase II	FOLFOX + Cet	> 4 EGFR gene copies: increased OS (log-rank P = 0.011; HR = 0.2, 95% CI: 0.0-0.8, P = 0.022)	[50]	
Panitumumab	REAL-3	Phase III	1st	EOX ± Pani	No benefit	[49]	
Trastuzumab	ToGA	Phase III	1st	XP/FP ± H	OS: 13.8 vs 11.1, P = 0.0046; OS (IHC+3, IHC+2/FISH+): 16 mos vs 11.8 mos, P = 0.0036	[18]	
Pertuzumab	JACOB	Phase III	1st	FP + H ± Pert	No benefit	[19]	
HER-2	Lapatinib	Tytan	Phase III	Pac w ± Lap	No benefit (unselected population) OS (IHC+3+):	[21]	
			2nd				
Trastuzumab	GATSBY	Phase II-III	2nd, 3rd	TDM-1 vs taxane	14 mos vs 7.6 mos, P = 0.0176	[22]	
mTOR	Everolimus	GRANITE-1	Phase III	Everolimus vs placebo	No benefit	[55]	
	Bevacizumab	AVAGAST	Phase III	XP ± Bev	Primary endpoint (OS) was not met PFS: 6.7 mos vs 5.3 mos, P = 0.0037; ORR: 46% vs 37.4%, P = 0.0315	[25]	
VEGF, VEGFR	Ramucirumab	RAINBOW	Phase III	2nd	Ram w vs placebo	OS: 5.2 mos vs 3.8 mos, P = 0.047	[26]
Apatinib	Phase III	beyond 1st line	2nd line	FOLFOX ± Ram	No benefit	[28]	
						[30]	

ECX: Epirubicin-Cisplatin-Capecitabine; Ril: Rilotumumab; XP: Cisplatin-Capecitabine; Cet: Cetuximab; EOX: Epirubicin - Oxaliplatin - Capecitabine; Pan: Panitumumab; FP: Cisplatin - 5Fu; H: Herceptin; Pert: Pertuzumab; Pac: w: Paclitaxel weekly; Lap: Lapatinib; TDM-1: Trastuzumab emtansine; Bev: Bevacizumab; Ram: Ramucirumab; Apa: Apatinib; OS: Overall survival; PFS: Progression free survival; ORR: Overall response rate.
med within a clinical trial.

Inhibition of angiogenesis: Neoangiogenesis has an established role in GC pathogenesis, mainly through vascular endothelial growth factor (VEGF)/VEGFR2 signaling, as there is evidence that VEGF serum levels correlate with increased stage and worse prognosis\(^{[23]}\). In animal models, VEGFR2 inhibition led to angiogenesis impairment and tumor regression\(^{[24]}\).

Based on these data, targeting this pathway, either the receptor or the ligand, with monoclonal antibodies and TKIs has been studied in various clinical trials. In this case, targeting VEGFA with Bevacizumab in combination with traditional chemotherapy in first line has not provided a substantial survival benefit in a phase III trial, although results showed a significant improvement in progression free survival (PFS) (6.7 mo vs 5.3 mo) and overall response rate (46% vs 37.4%)\(^{[25]}\).

On the contrary, targeting the receptor has been more effective. In the phase III REGARD trial, Ramucirumab, a monoclonal antibody blocking VEGFR2 demonstrated superior survival over placebo in second line\(^{[26]}\). Also, the same drug, when combined with a taxane in second line, also led to a statistically significant survival benefit of 2.2 mo\(^{[27]}\). The attempt to expand the use of Ramucirumab in first line in combination with FOLFOX in a phase II trial did not produce the required results\(^{[28]}\). However, there is another ongoing phase III trial of Ramucirumab combined with Cisplatin and a fluoropyrimidine in HER2 negative patients in first line (RAINFALL; NCT02314117) that may clarify its efficacy in this setting\(^{[29]}\).

Inhibiting angiogenesis with TKIs also has a role in the management of advanced GC. Apatinib, a multitargeted inhibitor mainly targeting VEGFR2, significantly improved OS over placebo in a phase III trial in patients with heavily pretreated advanced GC, which led to its regulatory approval as monotherapy beyond second line\(^{[30]}\). Also, Regorafenib, another multitarget kinase inhibitor targeting, among others, VEGFR2, is currently being tested in the same setting in a phase III trial after successfully achieving its primary endpoint of superiority of PFS in a relevant phase II trial\(^{[31,32]}\). Sorafenib resulted in disease stabilization and moderately good PFS in chemotherapy-refractory patients in first- and second-line, but its addition to chemotherapy did not provide adequately encouraging results to justify a phase III trial\(^{[33-36]}\).

Therefore, it appears that inhibition of angiogenesis has a definite role in advanced GC. Still, there are only hints regarding the potential predictive biomarkers that would help in individualizing its use. For instance, the two less immunogenic subtypes in the TCGA classification, namely the CIN and GS, were associated with VEGFA gene amplification and elevated expression of angiogenesis-related pathways, respectively, providing some clues regarding the importance of angiogenic pathways as a driving force of progression in tumors with these molecular signatures\(^{[44]}\). It must also be noted that the positive results with angiogenesis inhibition have been produced in the later lines of treatment, which may imply that in the early stages of GC progression, angiogenesis has a less substantial role, while it is more prominent in later stages of the natural course of the disease. Lastly, it is important to note that targeting the receptor rather than the ligand seems to be the appropriate strategy, a phenomenon for which we have not yet reached a clear and robust explanation but may prove crucial for future anti-angiogenic strategies.

EGFR inhibition: Epidermal growth factor receptor (EGFR) or Erb-B1 is a transmembrane receptor found overexpressed in 30% of GC, while the EGFR gene is amplified in nearly 5%\(^{[37]}\). Increased EGFR signaling has been correlated with higher stage, poorly differentiated tumors, and increased invasiveness\(^{[38-40]}\). In preclinical models, Cetuximab, a chimeric anti-EGFR antibody, induces antibody-dependent cell-mediated cytoxicity (ADCC)\(^{[41]}\). Phase II trials with Cetuximab, Panitumumab, or Erlotinib combined with cytotoxics have yielded responses ranging between 41% and 65%, while second line Gefitinib or Erlotinib monotherapy has provided less impressive results, with responses between 9% and 11%, limited mostly to proximal GC\(^{[42-47]}\).

These data have prompted testing of anti-EGFR targeting in phase III trials. However, both EXPAND and REAL3 phase III trials testing Cetuximab and Panitumumab in combination with Cisplatin–Capectabine and EOX, respectively, did not show any PFS or OS benefit. Again, this may be attributed to poor patient selection, since the study population was not evaluated for EGFR expression or gene amplification\(^{[48,49]}\). The potential importance of this parameter has been made clear in at least two studies: in the phase II study combing FOLFOX with Cetuximab, where the patients that exhibited greater than four EGFR gene copies demonstrated increased OS, and also in the TRANS-COG, where the subset of EGFR-amplified patients derived a statistically significant survival benefit with the addition of Gefitinib (HR = 0.19; P = 0.007)\(^{[50,51]}\).

This appears to have been taken into account in a phase III trial of second-line Nimotuzumab with Irinotecan (NCT01813253), which is currently recruiting patients that harbor EGFR-overexpressing (IHC: +2/3) tumors\(^{[52]}\).

PI3K/Akt/mTOR inhibition: Resistance to targeted therapies often appears as a result of activation of downstream effectors by alternative molecular pathways. The PI3K/Akt/mTOR pathway in GC may become constitutively activated either through mutations in the PI3K gene, which occurs most often in EBV(+) and MSI tumors, or through inactivation of PTEN gene, the main negative regulator of the pathway, which is mostly found in the MSI subtype\(^{[53,54]}\).

Targeting this pathway with an mTOR inhibitor, Everolimus, has produced encouraging results in a phase II trial, producing a median PFS of 2.7 mo and OS of 10.1 mo\(^{[54]}\). However, the phase III GRANITE-1 trial
that compared Everolimus to placebo in an unselect- ed patient population, as second- or third-line therapy, failed to demonstrate any survival benefit. Once again, the study population was unselected for PI3K pathway activation\(^{[55]}\). Impairment of Akt function via allosteric inhibition in a phase II study of the small molecule MK-2206, in unselected patients, did not produce any positive results either\(^{[56]}\).

The above findings, rather than just annulling the findings of basic science, may be viewed as a further indication for the need of appropriate patient selection. PI3k/Akt/mTOR inhibition may still have a role where activation of this pathway is indeed the driver of cancer progression.

MET inhibition: The MET proto-oncogene encodes the c-MET receptor tyrosine kinase that has a crucial role in cell proliferation, angiogenesis, and migration. Its canonical activation pathway is via binding of its ligand, hepatocyte growth factor (HGF), but the activation can result independently of the binding through gene amplification or somatic mutation. The MET gene has been found amplified in 4%-10% of GC, while its protein product has been found overexpressed by IHC in up to 70%\(^{[37]}\). The implications of this deviation between gene amplification and protein overexpression have been made evident in the MET-targeted clinical trials.

All phase II and III trials that included patients based on MET overexpression via IHC provided negative results. A probable explanation is the vague definition of MET positivity by IHC. In the phase III RILOMET study, the addition of Rilutumumab, an HGF-targeting monoclonal antibody, to triplet chemotherapy (ECX) proved detrimental. The study was terminated prematurely because of increased risk of death in the investigational arm\(^{[36]}\). The main targeted agents evaluated in various clinical settings in GC are presented in Table 2.

Targeting cancer stemness
A possible way in which tumors survive complete elimination from cytotoxic chemotherapy is the presence of cancer stem cells. Cancer “stemness” is frequently manifested through the activation of the STAT3 pathway, which induces the transcription of Nanog and Myc genes. The rationale for investigating this pathway in GC after failure of previous therapies in a large phase III trial (BRIGHTER) was provided by encouraging response and disease control data from phase I and II trials, where the small molecule BB1608 (Napabucasin) was combined with Paclitaxel. This trial is ongoing, however, interim analysis indicated diminished possibility of achieving the primary endpoint of OS\(^{[59,60]}\).

Targeting DNA damage repair pathway
Poly (ADP-ribose) polymerase (PARP) is essential in correcting single-strand DNA breaks induced by cytotoxic agents. Inhibition of PARP has provided significant benefit in the subgroup of patients with breast and ovarian cancer that already exhibit a certain level of defect in the DNA repair mechanism, such as loss of function of BRCA1/2 genes. Since BRCA1/2 mutations in GC are rare, this strategy was implemented in tumors that are characterized by other defects in the repair pathway, like in the ATM gene, a quality termed “BRCaness”\(^{[61,62]}\). Preclinical and early clinical trials on tumors with ATM deficiency and TP53 mutations were completed with significant success\(^{[63]}\). However, the phase III GOLD trial failed to reveal a statistically significant, according to predetermined criteria, survival benefit in patients treated with Olaparib and Paclitaxel. This failure might once again be attributed to poor patient selection, since the study population was not selected based on TP53 mutations, while furthermore only 18% of patients were ATM negative\(^{[64]}\).

Targeting the tumor microenvironment
Andecaliximab, previously known as GS-5745, is a monoclonal antibody that targets matrix metalloprotease (MMP) 9, an extracellular enzyme involved in matrix remodeling, angiogenesis, tumor growth, and metastasis. Encouraging results from the phase I study, where it was combined with FOLFOX in patients both treatment naive and pretreated, have secured its evaluation in a phase III trial (NCT02545504), where it is tested in first line in the same combination. The trial has completed accrual, and results are awaited. It is important to note that this strategy, if successful, has the potential to be implemented in a wide spectrum of patients with GC, without the need for a predictive biomarker. Also, since MMP inhibition affects the collagenous stroma of the tumor, not only will it clear the path for the chemotherapy drugs to reach cancer cells, but also it will enhance tumor immunogenicity, with obvious implications for a potential combination with immunotherapy\(^{[65]}\).

Manipulating immune responses
Immunotherapy, mainly through the form of checkpoint inhibitors, has over the last few years been added to the armamentarium of various cancer therapeutic approaches, with serial approvals for the treatment of a wide spectrum of solid and hematologic malignancies. Unfortunately, the only single predictive biomarker we currently have at our disposal is PD-L1, which is far from being the most efficient in the field. Indeed, patients without PD-L1 expression can still respond, while others who express the biomarker do not derive benefit. In GC, contrary to melanoma or lung cancer, PD-L1 is expressed mostly in myeloid-derived immune cells and not in tumor cells\(^{[61]}\). The presence of MSI, as manifested through IHC or polymerase chain reaction (PCR), is considered predictive for response to immunotherapy, while other approaches, such as IFN-γ signature and immunoscore, have not yet been incorporated to clinical practice.

There is adequate evidence supporting the implementation of immunotherapy in GC management, both
preclinical and clinical. Firstly, there seems to be an association between PD-L1 and disease burden and, consequently, to limited survival[66]. In addition, according to the data from TCGA, as previously mentioned, elevated PD-L1 expression has been noted in the EBV(+) GC subtype, which correlates with the significant amount of the neoantigens produced as an effect of viral infection, as well as of amplification of 9p24[3]. Furthermore, it is well established that MSI-high tumors also mount a robust immune response, which predicts for clinical outcome and benefit of immune checkpoint blockade[67-69]. Clinical trials thus far have focused on checkpoint inhibitors, especially anti-PD-1/anti-PD-L1 and anti-CTLA4 antibodies, with the best results having been produced by the former.

The first trial to test an anti-PD1 inhibitor in advanced disease was the Keynote-12, where the safety and activity of Pembrolizumab in this setting was assessed. Only patients with PD-L1 positive tumors were enrolled. PD-L1 positivity was deemed as membrane staining in ≥ 1% of cells, or alternatively as the presence of a distinctive PD-L1 positive pattern at the interface between neoplastic cells and their adjacent stroma. In this trial, no association between PD-L1 levels and response was observed. The results were similar to other trials of anti-PD-1 in various solid malignancies, with a response rate of 22% (95%CI: 10-39) and manageable toxicity profile, prompting the initiation of two large phase III trials[70]. The Keynote-061 is evaluating Pembrolizumab vs Paclitaxel in the second line[71]. In the first-line setting, Keynote-062 has three arms comparing pembrolizumab as monotherapy and platinum/S-FU combination with or without pembrolizumab[72]. Finally, following the most recent trend of combining immunotherapy with targeted therapies or chemotherapy, two multicenter phase IB/II studies are ongoing, determining activity and safety of Pembrolizumab in combination with anti-HER2 agents in patients with HER2 positive GC (NCT02901301 and NCT02689284)[73,74]. Their results are eagerly awaited.

Continuing with PD-1/PD-L1 inhibition, Nivolumab, another anti-PD-1 agent, was the first to gain approval in the third line setting, following the positive results of the pivotal phase III trial ONO-4538/BMS-936558 (ATTRACTION 2). This trial, which employed an all-Asian study population, showed a statistically significant, albeit numerically small, survival benefit for Nivolumab over placebo in heavily pretreated patients with advanced/metastatic GC or GEJC. Median OS was 5.3 mo vs 4.1 mo (HR = 0.63, P < 0.0001) and mPFS was 1.61 mo vs 1.45 mo (HR = 0.60, P < 0.0001) in the Nivolumab (n = 330) and placebo arms (n = 163), respectively[75]. This resulted in the Food and Drug Administration (FDA) approval of Nivolumab for GC or GEJC, in third line or beyond, irrespective of PD-L1 expression.

Finally, in the field of PD-1/PD-L1 axis inhibition, another promising agent is the anti-PD-L1 Avelumab, which has provided promising clinical activity in unselected patients, treated as first-line maintenance or second-line after progression, in the phase Ib trial JAVELIN. In this trial, patients were randomized after treatment with a first-line chemotherapy-based regimen by progression status: patients achieving disease control received Avelumab as switch maintenance, while those with progressive disease received the drug as second line. An acceptable safety profile, which was the primary endpoint of the trial, was demonstrated. Overall response rate was 9.0% and 9.7% in the two subgroups, respectively[76]. Following these positive results, two randomized phase III trials were developed: JAVELIN Gastric 100, testing Avelumab as switch maintenance in the first line setting, and JAVELIN Gastric 300, in the third line[77,78]. Unfortunately, it was recently announced that JAVELIN Gastric 300, comparing single-agent Avelumab with physician’s choice of chemotherapy, did not meet its primary endpoint of superior overall survival. The other phase III trial is still ongoing.

Less encouraging has been the use of anti-CTLA4 inhibitors. Firstly, regarding Ipilimumab, the Phase II trial (NCT01585987) that compared the drug to placebo in the second line was stopped prematurely when it became evident that the final analysis would procure no PFS benefit[79]. Also, no responses were reported with Tremelimumab, another anti-CTLA-4 inhibitor in the same setting[80]. It should also be noted that higher toxicity was observed in these trials, as compared to anti-PD-1/PD-L1 blockade. These differences might be attributed to the different targeting of these two classes of checkpoint inhibitors. While those targeting the PD-1 axis have an immediate effect in the tumor microenvironment, the anti-CTLA-4 modulates the immune response mainly in the lymph nodes.

In an attempt to enhance the activity of anti-CTLA-4 agents, combination treatment with anti-PD-1 was tested. The CheckMate-32 was a phase I/II trial with three arms: 160 pretreated patients were randomized to receive either Nivolumab monotherapy in the dose of 3 mg/kg, or Nivolumab plus Ipilimumab in the doses of 3-1 mg/kg in the second arm or 1-3 mg/kg in the third arm of the study. In all three arms, notable responses were observed, with an overall disease-control rate of 38%. The responses differed between PD-L1-positive (≥ 1%) and PD-L1-negative (< 1%) tumors, reaching 27% and 12%, respectively. The highest overall response rate (26%) and overall survival (6.9 mo) were observed in arm 3 (Nivolumab 1 mg/kg and Ipilimumab 3 mg/kg), which prompted the launch of a phase III trial[81]. The ongoing CheckMate-649 investigates Nivolumab plus Ipilimumab vs FOLFOX/XELOX in the first line, and a subgroup analysis regarding PD-L1 expression has already been planned[82].

Conclusively, immunotherapy could have a role in GC management, although, as in the management of other cancers, better predictive biomarkers are required. Moreover, it remains to be seen whether there is rationale for combining immunotherapy with targeted therapies and/or chemotherapy.
CONCLUSION

Even though most clinical trials investigating targeted agents have not produced the desired results so far, their failures might be attributed mostly to erroneous study planning and unscrupulous patient selection. The value of recognizing distinct molecular cancerous pathways goes far beyond mere classification purposes, and shall be better appreciated when these results could be applied in everyday practice with the purpose of providing clinically meaningful outcomes for our patients. Unfortunately, it is still unclear whether the clinical benefits of implementing next-generation sequencing and targeted therapies in the clinic will outweigh the economic burden of such a practice. Perhaps a way to tackle this issue is to create a panel of the main molecular and immune signatures of implemented pathways in order to categorize appropriately the patients in distinct prognostic and predictive subgroups. The results of the TCGA and ACRG classifications, among others, may provide the basis of such a molecular/immune signature panel that remains to be validated prospectively in large clinical trials providing the basis for rational stratification and design.

Health economics concerns aside, if our goal is to optimize outcomes for our GC patients, we probably need to implement these new molecular signatures in our daily practice. Due to the complexity of the disease, the constant evolution of tumors, and our still limited understanding of its biology, our mission to provide the best therapy to our patients is extremely difficult and challenging. However, through targeting tumorigenic drivers and awakening the immune system through immune-oriented strategies, it might be possible that we will at least be able to achieve the goal of life prolongation, while, at the same time, effectively alleviate cancer-related symptoms. A potential, hopefully not overly idealized, glimpse to the future of managing this disease, entails its multidisciplinary approach by a variety of experts from diverse scientific backgrounds, towards an individualized approach for each unique patient.

REFERENCES

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-E386 [PMID: 25220842 DOI: 10.1002/ijc.29210]

2. Maron SB, Catenacci DVT. Update on Gastroesophageal Adenocarcinoma Targeted Therapies. Hematol Oncol Clin North Am 2017; 31: 511-527 [PMID: 28501091 DOI: 10.1016/j.hoc.2017.01.009]

3. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014; 513: 202-209 [PMID: 25079317 DOI: 10.1038/nature14380]

4. Lin X, Zhao Y, Song WM, Zhang B. Molecular classification and prediction in gastric cancer. Comput Struct Biotechnol J 2015; 13: 448-458 [PMID: 26308657 DOI: 10.1016/j.csbj.2015.08.001]

5. Sohn BH, Hwang JE, Ingh JH, Lee HS, Oh SC, Shin JJ, Lee KW, Kim EH, Yim SY, Lee SH, Cheong JH, Joong W, Cho YJ, Kim J, Chae J, Lee J, Kang WK, Kim S, Noh SH, Ajan A, Lee JS. Clinical Significance of Four Molecular Subtypes of Gastric Cancer Identified by The Cancer Genome Atlas Project. Clin Cancer Res 2017; 15: 4441-4449 [PMID: 28747339 DOI: 10.1181/10780432.CCR-16-2211]

6. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, Liu J, Yue YG, Wang J, Yu KC, Ye XS, Do JG, Liu S, Gong L, Fu J, Jin JG, Chei MG, Sohn TS, Lee JH, Bae JM, Kim ST, Park SH, Sohn I, Jung SH, Tan P, Chen R, Hardwick J, Kang WK, Ayers M, Honguey D, Reinhard C, Loboda A, Kim S, Aggarwal A. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 2015; 21: 449-456 [PMID: 25894828 DOI: 10.1038/nm.3850]

7. Chia NY, Tan P. Molecular classification of gastric cancer. Ann Oncol 2016; 27: 763-769 [PMID: 26861606 DOI: 10.1016/annonc/mdw040]

8. Fakhri B, Lim KH. Molecular landscape and sub-classification of gastrointestinal cancers: a review of literature. J Gastrointest Oncol 2017; 8: 379-386 [PMID: 28736626 DOI: 10.21037/jgo.2016.11.01]

9. Aprile G, Giampieri R, Bonotto M, Bittoni A, Ongaro E, Cardellino GG, Graziano F, Giuliani F, Fasola G, Bacino S, Scartozzi M. The challenge of targeted therapies for gastric cancer patients: the beginning of a long journey. Expert Opin Investig Drugs 2014; 23: 925-942 [PMID: 2406575 DOI: 10.1517/13543784.2014.912631]

10. Corso G, Marrelli D, Pascale V, Vindigni C, Rovelli F. Frequency of CDH1 germline mutations in gastric carcinoma coming from high- and low-risk areas: metaanalysis and systematic review of the literature. BMC Cancer 2012; 12: 8 [PMID: 22225527 DOI: 10.1186/1471-2407-12-8]

11. Ma C, Patel K, Singhji AD, Ren B, Zhu B, Shaiik F, Sun W. Preregistered Death-Ligand 1 Expression Is Common in Gastric Cancer Associated With Epstein-Barr Virus or Microsatellite Instability. Am J Surg Pathol 2016; 40: 1496-1506 [PMID: 27465786 DOI: 10.1097/PAS.0000000000000698]

12. Gu L, Chen M, Guo D, Zhu H, Zhang W, Pan J, Zhong X, Li X, Qian H, Wang X. PD-L1 and gastric cancer prognosis: A systematic review and meta-analysis. PLoS One 2017; 12: e0182692 [PMID: 28796808 DOI: 10.1371/journal.pone.0182692]

13. Le DT, Uram JN, Wang H, Bartlett BR, Kembrell H, Frying AD, Skora AD, Lubers BS, Azad NS, Laheru D, Biedrzycki B, Donehower RC, Zaheer A, Fisher GA, Crocetsen T, Lee JH, Duffy SM, Goldberg RM, de la Chapelle A, Koshiji M, Bhaijee F, Huebner T, Hruban RH, Wood LD, Cuka N, Pardoll DM, Papadopoulos N, Kizler KW, Zhou S, Cornish TC, Taube JM, Anders RA, Eskleman JR, Vogelstein B, Diaza LA Jr. PD-1 blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015; 372: 2509-2520 [PMID: 26028255 DOI: 10.1056/NEJMoa1505096]

14. Garattini SK, Basile D, Cattaneo M, Fanotto V, Ongaro E, Bonotto M, Negri FV, Meronato R, Ermacora P, Cardellino GG, Giovannioni M, Pilla N, Scartozzi M, Antuzonno L, Silvestris N, Fasola G, Aprile G. Molecular classifications of gastric cancers: Novel insights and possible future applications. World J Gastrointest Oncol 2017; 9: 194-208 [PMID: 28567184 DOI: 10.4251/wjg.v9.i5.194]

15. Lee J, Cristescu R, Kim KM, Kim K, Kim ST, Park SH, Kang WK. Development of mesenchymal subtype gene signature for clinical application in gastric cancer. Oncotarget 2017; 8: 66305-66315 [PMID: 29029313 DOI: 10.18632/oncotarget.19985]

16. Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 2008; 19: 1523-1529 [PMID: 18441328 DOI: 10.1093/annonc/mdn169]

17. Kameda T, Yasui Y, Yoshioka K, Tsujino T, Nakayama H, Ito M, Ito H. Expression of ERBB2 in human gastric carcinomas: relationship between p185ERBB2 expression and the gene amplification. Cancer Res 1990; 50: 8002-8009 [PMID: 1979253]

18. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Oomura Y, Satoh T, Aprile G, Kullikov E, Hill J, Lehmle M, Rüschoff J, Kang YK, ToGA Trial Investigators. Trastuzumab in combination with chemotherapy versus chemotherapy alone for HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010; 376: 687-697 [PMID: 20728210 DOI: 10.1016/S0140-6736(10)61121-X]

19. Tabernero J, Hof P, Shen L, Ohtsu A, Shah MA, Cheng K, Song...
C, Wu H, Eng-Wong J, Kang Y. Pertuzumab (P) + trastuzumab (H) + chemotherapy (CT) for HER2-positive metastatic gastric or gastroesophageal junction cancer (mGC/GEJC): final analysis of a phase III trial (JACOB). Ann Oncol 2017; 28: v209-v268 [DOI: 10.1093/annonc/mdx369]

20 Hecht JR, Bang YJ, Qin SK, Chung HC, Xu JM, Park JO, Jeziorski K, Shpiryk Y, Hoff PM, Sobrero A, Salman P, Li J, Protsenko SA, Wainberg ZA, Buyse M, Ajenjar K, Houi V, Garcia A, Kaneko T, Huang Y, Khan-Wasti S, Santillana S, Press MF, S lamon D. Lapatinib in Combination With Cetapictib Plus Oxaliplatin in Human Epidermal Growth Factor Receptor 2-Positive Advanced or Metastatic Gastric, Esophageal, or Gastroesophageal Adenocarcinoma: T RIO-013LOGIC—A Randomized Phase III Trial. J Clin Oncol 2016; 34: 443-451 [PMID: 26628478 DOI: 10.1200/JCO.2015.62.6598]

21 Satoh T, Xu RH, Chung HC, Sun GP, Doi T, Xu JM, Tsuji A, Omuro Y, Li J, Wang JW, Miwa H, Qin SK, Chung YH, Ye KH, Feng JF, Mukaiyama A, Kobayashi M, Ohtsu A, Bang YJ. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: T ytan—a randomized, phase III trial. J Clin Oncol 2014; 32: 2039-2049 [PMID: 24868024 DOI: 10.1200/JCO.2013.53.6136]

22 Kang YK, Shah MA, Ohtsu A, Van Cutsem E, Ajani JA, Van der Horst T, Harle-Yge ML, Piao Y, Althaus B, Thuss-Patience PC. A randomized, open-label, multicenter, adaptive phase 2/3 study of trastuzumab emtansine (T-DM1) versus a taxane (TAX) in patients (pts) with previously treated HER2-positive locally advanced or metastatic gastric/gastroesophageal junction adenocarcinoma (LA/GE/GJC). J Clin Oncol 2016; 34: Abstract 5 [DOI: 10.1200/jco.2016.34.4_suppl.5]

23 Jüttner S, Wissmann C, Jöns T, Vieth M, Hertel J, Hetzel S, Schlag PM, Kemmer W, Höcker M. Vascular endothelial growth factor D and its receptor VEGFR-3: two novel independent prognostic markers in gastric adenocarcinoma. J Clin Oncol 2006; 24: 228-240 [PMID: 16344322 DOI: 10.1200/JCO.2004.00.3467]

24 Jung YD, Mansfield PF, Akagi M, Takeda A, Liu W, Bucana CD, Hicklin DJ, Ellis LM. Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 2002; 38: 1133-1140 [PMID: 12080280 DOI: 10.1016/S0959-8049(02)00013-8]

25 Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, Lim HY, Yamada Y, Wu J, Langer B, Starnawski M, Kang YK. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III trial. J Clin Oncol 2011; 29: 3966-3976 [PMID: 21844504 DOI: 10.1200/JCO.2011.36.2236]

26 Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Tomasek J. Yoon HH, et al. Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 2002; 38: 1133-1140 [PMID: 12080280 DOI: 10.1016/S0959-8049(02)00013-8]

27 Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY, Cunningham AB. 3rd. Phase II study of sorafenib in combination with docetaxel and cisplatin in the treatment of metastatic or advanced gastric and gastroesophageal junction adenocarcinoma (ECCG 5203). J Clin Oncol 2010; 28: 2947-2951 [PMID: 20458043 DOI: 10.1200/JCO.2009.27.9788]

28 Janjigian YY, Vakiani E, Ku GY, Herrera JM, Tang LH, Bouvier N, Viale A, Socci ND, Capanu M, Berger M, Ison DH. Phase II Trial of Sorafenib in Patients with Chemotherapy Refractory Metastatic Esophageal and Gastroesophageal (GE) Junction Cancer. PLoS One 2015; 10: e0134731 [PMID: 26275293 DOI: 10.1371/journal. pone.0134731]

29 Kang Y, Lee KH, Shen L, Yeh K, Hong YS, Park YI, Yang SH, Shin DB, Zang DY, Choi HK, Chung YJ, Kim YH, Ryo HY, Park SR, Nam B, Ryu MH. Randomized phase II study of cetapictib and cisplatin with or without sorafenib in patients with metastatic gastric cancer: STARTGATE study. Ann Oncol 2014; 25: e210-e210 [DOI: 10.1093/annonc/mdu334.1]

30 Martin-Richard M, Gallego R, Pericay C, García Fonciellas J, Queiroz E, Casado E, Barros J, Branco V, Vasconcelos I, Caixas J, Trigo A, Sánchez del Pulgar E, Esteban F, García-Ríos C, García-Ríos C, García-Ríos C, García-Ríos C. Impact of expression of human epidermal growth factor receptors EGFR and ERBB2 on survival in stage II/III gastric cancer. Histopatology 2009; 55: 278-286 [PMID: 19409937 DOI: 10.1111/j.1365-2559.2008.03205.x]

31 Wang KL, Wu TY, Cho IS, Wang H, Resseckova E, Correa AM, Hofstetter WL, Swisher SG, Ajani JA, Rashid A, Albarracin CT. Expression of epidermal growth factor receptor in esophageal and esophagogastrectomy junction adenocarcinomas: association with poor outcome. Cancer 2007; 109: 658-667 [PMID: 17211865 DOI: 10.1002/cncr.22819]
Gkolfinopoulos S et al. Gastric cancer molecular subtypes and therapy

10.1002/cncr.22445

40 Nagatsu K A, Akizawa M, Kuwata T, Doi T, Ohtsu A, Fujii H, Ochiai A. Expression profiles of HER2, EGFR, MET and FGFR2 in a large cohort of patients with gastric adenocarcinoma. Gastric Cancer 2013; 16: 227-238 [DOI: 10.1007/s10120-014-0360-6]

41 Kimura H, Sakai K, Aito T, Shimoyama T, Tamura T, Nishio K. Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci 2007; 98: 1275-1280 [DOI: 10.1111/j.1349-7006.2007.00510.x]

42 Enzinger PC, Burtenshaw BA, Niederwieser D, Ye X, Douglas K, Ison DH, Villardel VM, Cohen SJ, Mayer RJ, Venook A, Benson AB 3rd, Goldberg RM. CALGB 80403 (Alliance)E1206: A Randomized Phase II Study of Three Chemotherapy Regimens Plus Cetuximab in Metastatic Esophageal and Gastroesophageal Junction Cancers. J Clin Oncol 2016; 34: 2736-2742 [DOI: 10.1200/jco.2011.28.110]

43 Wainberg ZA, Lin L5, DiCarlo B, Dao KM, Patel R, Park DJ, Wang HJ, Elshoff R, Ryba N, Hecht JR. Phase II trial of modified FOLFOX6 and erlotinib in patients with metastatic or advanced adenocarcinoma of the oesophagus and gastro-oesophageal junction. Br J Cancer 2011; 105: 760-765 [DOI: 10.1038/bjc.2011.281]

44 Lordick F, Luber B, Lorenzen S, Hegewisch-Becker S, Folprecht G, Wöll E, Decker T, Endlicher E, Röthling N, Schuster T, Keller G, Peschel C. Cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric and gastro-oesophageal junction cancer. Br J Cancer 2011; 105: 500-505 [PMID: 20665868 DOI: 10.1038/sj.bjc.6605521]

45 Tebbutt NC, Price TJ, Ferraro DA, Wong N, Veillard AS, Hall M, Sjoquist KM, Pavlakis N, Strickland A, Varma SC, Cooray P, Tebbutt NC, Al-Batran SE, Smith H, Costantini C, Rizvi S, Lebwohl D, Van Cutsem E. Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J Clin Oncol 2013; 31: 3935-3943 [PMID: 24043745 DOI: 10.1200/JCO.2012.48.3552]

46 Ramanathan RK, McDonough SL, Kennecke HF, Isqbal S, Baranda JC, Seery TE, Lim HJ, Hezel AF, Vacciaro GM, Blanke CD. Phase 2 study of MK-2260, an allosteric inhibitor of AKT, as second-line therapy for advanced gastric and gastroesophageal junction cancer: A SWOG cooperative group trial (S1005). Cancer 2015; 121: 2193-2197 [PMID: 25827820 DOI: 10.1002/cncr.29363]

47 Maron SB, Catenacci DV. Novel Targeted Therapies for Esophageal Cancer. Surg Oncol Clin N Am 2017; 26: 293-312 [DOI: 10.1016/j.soc.2016.10.002]

48 Catenacci DVT, Tebbutt NC, Davidenko I, Murad AM, Al-Batran SE, Ison DH, Tjulandin S, Gotovkin E, Karaszewska B, Bondarenko I, Tejani MA, Udrea AA, Tehfe M, Delaunay C, Turcinton C, Tang R, Ang A, Zhang Y, Hecht T, Shiubu R, Cunningham D, Rilottumab plus erubicin, cisplatin, and bevacizumab as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2017; 18: 1467-1482 [PMID: 28958504 DOI: 10.1016/S1470-2045(17)30566-1]

49 Kataoka K, Deleensnijder A, Lordick F. Will molecular target agents enable the multidisciplinary treatment in stage IV gastric cancer? Eur J Surg Oncol 2017; 43: 1835-1845 [PMID: 28888797 DOI: 10.1016/j.ejso.2017.08.006]

50 Shah MA, Muro K, Shiokata S, Tebbutt NC, Bang YJ, Lordick F, Borodynskiy L, Li C. The BRIGHTER trial: A Phase III randomized double-blind study of BBI-608 + weekly paclitaxel versus placebo (PBO) + weekly paclitaxel in patients (pts) with pretreated advanced gastric and gastro-oesophageal junction (GEJ) adenocarcinoma. J Clin Oncol 2016; 34: TPS444 [DOI: 10.1200/JCO.2016.34.15_suppl.TPS444]

51 Lordick F, Shiokata K, Janjigian YY. New agents on the horizon in gastric cancer. Ann Oncol 2017; 28: 1767-1775 [PMID: 28184417 DOI: 10.1093/annonc/mdx051]

52 Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 2008; 9: 759-769 [PMID: 18815293 DOI: 10.1038/nrm2514]

53 Bang YJ, Im SA, Lee KW, Cho YJ, Song EK, Lee KH, Kim YH, Park JO, Chun HG, Zang DY, Fielding A, Rowbottom J, Hodgson
A Study of Nivolumab by Itself or Nivolumab in Combination With Pembrolizumab in Patients With Relapsed/Refractory Advanced HER2+ Gastric/oesophageal Junction or Gastric Cancer. J Clin Oncol 2017; 35: TPS219 [DOI: 10.1200/JCO.2017.35.4_suppl.TPS219]

Kang YK, Boku N, Sato T, Ryu MH, Cho Y, Kato K, Chung HC, Chen JS, Muro K, Kang WK, Yeh KH, Yoshikawa T, Oh SC, Bai LY, Tamura T, Lee KW, Yamamoto Y, Kim JG, Chin K, Oh DY, Minashi K, Cho JY, Tsuda M, Chen LT. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12; ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390: 2461-2471 [PMID: 28993052 DOI: 10.1016/S1470-2243(17)31827-5]

Oh DY, Lockhart AC, Hong DL, Taylor MH, Bajars M, Von Heydebreck A, Moehler MH, Safran H. Avelumab (MSB0010718C), an anti-PD-L1 antibody, as a third-line treatment in patients with advanced gastric or gastro-oesophageal junction cancer: a phase Ib JAVELIN Solid Tumor trial. J Clin Oncol 2016; 34: TPS188 [DOI: 10.1200/JCO.2016.34.4_suppl.tps188]

Fang W, Chen Y, Sheng J, Zhou T, Zhang Y, Jia J, Lu L, Huang J, Peng P, Zhang L. Association between PD-L1 Expression on Tumour-Infiltrating Lymphocytes and Overall Survival in Patients (GOLD): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 2017; 18: 1637-1651 [PMID: 29103871 DOI: 10.1016/S1470-2243(17)30682-4]

Moehler MH, Taieb J, Gurtler JS, Boku N. Maintenance therapy with avelumab (MSB0010718C; anti-PD-L1) vs continuation of first-line chemotherapy in patients with unresectable, locally advanced or metastatic gastric cancer: The phase 3 JAVELIN Gastric 300 trial. J Clin Oncol 2016; 34: TPS4135 [DOI: 10.1200/JCO.2016.34.14.15_suppl.TPS4135]

Moehler MH, Cho JY, Kim YH, Kim JW, Di Bartolomeo M, Ajani JA, Yamaguchi K, Balogh A, Kong-Sanchez MT, Bang YJ. A randomized, open-label, two-arm phase II trial comparing the efficacy of sequential ipilimumab (ipi) versus best supportive care (BSC) vs BSC ± chemotherapy as third-line treatment for patients with unresectable, recurrent, or metastatic gastric cancer: The phase 3 JAVELIN Gastric 300 trial. J Clin Oncol 2016; 34: TPS4134 [DOI: 10.1200/JCO.2016.34.14.15_suppl.TPS4134]

Bristol-Myers Squibb. A Study of Nivolumab by Itself or Nivolumab Combined With Ipilimumab in Patients With Advanced or Metastatic Solid Tumors. [accessed 2017 Dec 20]. In: ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: URL: https://clinicaltrials.gov/ct2/show/NCT01928394 ClinicalTrials.gov Identifier: NCT01928394

Janjigian YY, Adenis A, Aucoin JS, Barone C, Boku N, Chau I, Cleary JM, Feeney K, Franke FA, Moehler M, Roca EL, Schenker M, Li M, Janja JA. Checkmate 649: A randomized, multicenter, open-label, phase 3 study of nivolumab (Nivo) plus ipilimumab (Ipi) versus oxaliplatin plus fluoropyrimidine in patients (Pts) with previously untreated advanced or metastatic gastric (G) or gastroesophageal junction (GEJ) cancer. J Clin Oncol 2017; 35: TPS213 [DOI: 10.1200/JCO.2017.35.4_suppl.TPS213]

P- Reviewer: Skierucha M, Tomizawa M S- Editor: Ji FF L- Editor: Filipodia E- Editor: Tan WW
