Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs)

Gilles-Eric Seralini *, Gerald Jungers

University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France

A R T I C L E I N F O

Handling Editor: DR. Aristidis Tsatsakis

K e y w o r d s:
Endocrine disruptors
Nervous disruptors
Neurotoxicity
Cognitive
Behaviour
Pollutants

A B S T R A C T

Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80% of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of “spam” in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.

1. Introduction

Endocrine disruption (ED) or endocrine disruptors (EDs) emerged as scientific concepts in 1995 [Colborn [1]; Lindström et al. [2]; Ginsburg [3]] after numerous chemical pollutants were found to be responsible for reproductive dysfunction. This was first posited three decades prior [Carson [4]], EDs were reviewed more recently in a book [Seralini [5]], which advanced the understanding of the molecular bioaccumulation of identified xenobiotics, as well as their combined and long-term effects on the whole physiology of one or several generations. They have been identified in organisms at all levels of the ecosystem and are also ubiquitously found in the food chain.

The World Health Organization established in the United Nations Environment Programme [WHO [6]], a list of 176 compounds comprising materials, pesticides, and various pollutants (Table 1, columns 1–3) impacting not only reproduction, but also hormonal functions—directly or indirectly—primarily in mammals, including humans. This has enabled numerous countries to establish regulatory policies for the production and use of these chemicals or to manage contamination in food, air and water. Numerous political debates have been raised around regulatory thresholds, based on the effects of ENDs demonstrated on a population or a subpopulation of animals or humans, and published at epidemiological and molecular levels. The herbicide Roundup has been added as the 177th compound due to its widespread usage as a pesticide, combined with the relatively recent demonstration of its ED effects [Richard et al. [7]].

Epidemiology is not technically adapted to solve the questions on combined and long-term effects of molecules or mixtures on mammalian or human health [Mesnage et al. [8]]; this becomes further complicated when epigenetic and transgenerational impacts are studied [Skinner and Anway [9]]. For instance, pesticide accumulation is rarely measured in organs after death in order to ascertain whether they can be used as markers to correlate their levels with pathologies. Instead, the understanding of endocrine disruption may be aided by advances in the

* Corresponding author.

E-mail address: gilles-eric.seralini@unicaen.fr (G.-E. Seralini).

https://doi.org/10.1016/j.toxrep.2021.07.014

Received 28 May 2021; Received in revised form 22 July 2021; Accepted 29 July 2021

Available online 31 July 2021

2214-7500/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
combined knowledge of biochemical, cellular, organic and environmental effects in experimental animal models, farm animals, wildlife observations in contaminated areas, and occupational medicine in factories producing the chemicals in question.

The endocrine system is not limited to the control of sexual reproduction and development. Endocrine disruptors may affect the thyroid as well as the glucocorticoid axis, adrenal and pancreatic systems, adipose tissue and immune or neuroendocrine targets [Laessig et al. [10]; Masuo and Ishido [11]; Weiss [12]; Leon-Olea et al. [13]]. They even possess cognitive effects [Schanz and Widholm [14]], particularly via various neuromediator interferences.

Cells communicate via either chemical or electrical signals that are transmitted within the endocrine or nervous systems. Generally, in endocrinology, hormones may have a biphasic action dependent on the receptors’ availability and concentration, resulting in time-, dose- and sex-dependent effects that vary according to the targeted tissue and the specific organism. It is thus reductionist to say, for instance, that a hormone such as estradiol “stimulates ovulation”, since it can inhibit this function when used at pharmacological doses as a pill or during embryonic or foetal life. Endocrine disruptors may thus possess the potential of exerting similar biphasic ambivalent effects.

Thus, to determine whether hormonal disruptors may also interfere directly or indirectly with neural development [Grandjean and Landrigan [15]] or functioning even in adults, either through a neuroendocrine or a more general mechanism, this study examined the scientific literature to ascertain the effects of ENDS on the nervous system—including neurotoxicity, cognition, and behaviour—of the major internationally identified (according to WHO) endocrine disruptors.

2. Materials and methods

Each compound was numbered (Nb, Table 1) out of 176 known endocrine disruptors [WHO [6]], plus Roundup. Its name was associated with the keyword “nervous” or “neurotoxicity” or “cognitive” or “behavior(u)r” on the PubMed data bank, and eventually on Google Scholar. When the references were too numerous, “or” was excluded in order to directly associate the keywords. If more than 20 references were found to be published, “review” was added to the keywords and cited. Finally, a maximum of five references were indicated, focusing on the most recent research in humans or mammals, without excluding other models. The mechanisms were documented (Table 1, column 4) as direct effects on the neurons or the nervous system, or as indirect effects, including thyroid regulation.

Table 1

Nb	Endocrine disruptor	Class or use	Mechanisms of nervous disruption
1	Acetochlor	Herbicide	Roman [28]: antithyroid agents
			Helbing et al. [29]: thyroid hormone receptor gene expression in the brain
			Zafeiridou et al. [30]: compound action potential of the sciatic nerve
			Goldner et al. [31]: hypothyroidism
			Seok et al. [32]: central nervous system symptoms
			Lo et al. [33]: severe neurological and cardiovascular outcomes after acute poisoning
			Doicheva [34]: higher irritability, lack of coordination and orientation
			Sirohi et al. [35]: specific binding to lactoperoxidase
			Chihumuri et al. [36]: inhibit neuroprotection against amyloid peptides
2	Alachlor	Herbicide	Pan et al. [37]: reduction of thyroid-stimulating hormone receptors
			Roman [28]: hypothyroxinemia
			Brucker-Davis [38]: thyroid disruption in uterus or direct neurotoxicity
			Palanikumar et al. [39]: neurotoxicity by inhibition of acetylcholinesterase
3	Amitrole	Herbicide	Vieira et al. [40]: increase catalase activity and superoxide dismutase, glutathione reductase and peroxidase.
4	Anthracene	PAH	Mucio-Ramirez et al. [41]: decrease somatodendritic vasopressin release
5	Aroclor 1254	PCB mixture	Wei et al. [42]: oxidative stress in the brain
			Coburn et al. [43]: Inhibition of vasopressin release from magnocellular neuroendocrine cells

(continued on next page)
Nb	Endocrine disruptor	Class or use	Mechanisms of nervous disruption
5	BDE-209 PBDE	PBDE	Impacts the hypothalamo-pituitary-gonadal axis and induces fetal thyroid dysfunction.
6	BDE-47 PBDE	PBDE	Inhibits axonal growth via ryanojine receptor-dependent mechanisms.
7	Benzo(a)pyrene	PAH	Induces neurobehavioral function and monoamine, amino acid and choline neurotransmitter levels.
8	Benzo(a)anthracene	PAH	Increases the risk of childhood central nervous system tumors.
9	BB-153 PBB	PBB	Increases the risk of childhood central nervous system tumors.
10	Benzyldiene camphor	UV filter	Reduces expression of myelin associated genes like HMBP due to oligodendrocyte reduction.
11	Benzyl butyl phthalate	Phthalate	Potentially neurotoxic.
12	Bisphenol A	Plastics monomer	Induces oxidative stress in the brain.
13	Bisphenol A diglycid ether	Plastics monomer	Increases translocation of protein kinase C and decreases Ca2+ buffering in the brain.
14	Bisphenol F	Plastics monomer	Increases the risk of childhood central nervous system tumors.
15	Bromacil	Herbicide	Selectively toxic to dopaminergic neurons in vivo, and this toxicity is synuclein-dependent.
16	Butylate	Herbicide	Activates the hypothalamo-pituitary-gonadal axis and induces fetal thyroid dysfunction.

(continued on next page)
Nb	Endocrine disruptor	Class or use	Mechanisms of nervous disruption
23	Butylated hydroxyanisole	Antioxidant for long preservation of food products	Miyazaki et al. [91]: quinone reductase inducer which significantly and dose dependently blocked methamphetamine-induced elevation of quinoprotein, and ameliorated methamphetamine-induced cell death. Katsuki et al. [92]: abolishes neurotoxic action of arachidonic acid. Raciti et al. [93]: affects epigenetics with negative consequences on the development of the nervous system.
24	Cadmium (Cd)	Heavy metal	Jacobo-Estrada et al. [94]: induces toxicity in fetus on the central nervous system. Zhang et al. [95]: induces autophagy in neurons promoting neurodegenerative disorders. Sanders et al. [96]: exposure may be associated with poorer cognition. Bo et al. [97]: neurotoxic on the long-term. Al-Rubai et al. [98]: reduces neuron size and cell migration at high doses. Reduction in glial fibrillary protein and tubulin III.
25	Carbamazepine	Pharmaceutical anti-epileptic	Hansen et al. [99]: induces encephalopathy with hyperammonemia, intrinsic effects on cerebral receptors. Qualtieri et al. [100]: affects tests of memory, psychomotor speed, cognitive flexibility, and attention. Lee et al. [101]: inhibits classically acetylcholinesterase in the nervous system; induces cognitive impairments by disturbed neurodevelopment.
26	Carbaryl	Insecticide	Freeborn et al. [102]: affects electroencephalogram by decreasing theta area and delta frequency, increases beta frequency. Wang et al. [103]: acetylcholinesterase is inhibited by high dose and damages the sciatic nerve. Cocco et al. [104]: chronic exposure to PCBs affects the development and function of the nervous system.
27	CB-15	PCB	Lovato et al. [105]: a mixture of PCB can induce functional deficits and altered behavioral threat in zebrasfish. Ozcan et al. [106]: dioxin-like and non-dioxin-like PCB congeners are equally potent in causing cognitive decrements seen in children exposed prenatally to PCBs. Howard et al. [107]: binds the aryl hydrocarbon receptors with high affinity. Brucker-Davis et al. [108]: negative impact on neurocognitive development, negatively correlated on motor and expressive language in children.
28	CB-77	Coplanar PCB	Doi et al. [109]: four-month-olds children with a low-level of prenatal exposure exhibits a preference for the upright biological motion, impairs the development functioning and brain development.
29	CB-118	PCB	Cauli et al. [110]: impairs motor coordination at 2 months in males but not in female rats, reduces locomotor activity in females. Uwinana et al. [111]: does not appear to affect dopaminergic cells in cultures or levels of dopamine. To be further studied. Boix et al. [112]: exposition activates metabotropic glutamate receptors and that increases dopamine in females and reduces it in males. The opposite changes are observed for glutamate, in rat nucleus accumbens.
30	CB-126	Planar PCB	Marrone et al. [113]: Ca2+ homeostasis and androgen receptor signaling pathways are primarily disrupted in cerebellum proteome, contributing toward a premature ageing and neurotoxicity. Naert et al. [114]: birds bioaccumulate in brain and the central nervous system. Enayah et al. [115]: neurotoxic, and affects dopamine turnover in vitro.
31	CB-132	PCB	Cauli et al. [116]: many motor alterations and induces hyperactivity at adulthood in rats. Gascon et al. [117]: deleterious effects on neuropsychological development which are mainly attributable to prenatal exposure.
32	CB-138	PCB	Morse et al. [118]: local hypothyroidism occurs in the brains of fetal and neonatal rats exposed by increase in type II thyroxine 5’-deiodinase in the brain. Boix et al. [119]: affects motor activity in rats; increased glutamate release in nucleus accumbens following activation of metabotropic glutamate receptors would be involved in reduced dopamine release. Naert et al. [114]: birds bioaccumulate in brain and the central nervous system. Kilburn [118]: it is suggested that it causes protracted neurotoxicity in patients. Kilburn and Thornton. [119]: exposure is associated with protracted impairment of neurophysiological and psychological functions. The central nervous system is the most important target. Grutsch et al. [120]: the characteristic signs of acute toxicity are hypothermia, hyperexcitability, tremors and convulsions. In human, signs of acute toxicity are tremors and convulsions.
33	CB-153	PCB	Villanueva et al. [121]: Minor associations observed between exposure during gestation and child neurocognitive development. Balster et al. [122]: effect on operant behavior in mice. Liu et al. [123]: exposure could alter gene expression in the hypothalamic-pituitary-thyroid axis. Mårsussen et al. [124]: neurobehavioral effects, indicating adverse effects on the central nervous system: alteration of neurotransmitter functions, Ca2+: homeostasis processes, induction of protein kinase C and phospholipase A2 mobilization, and oxidative stress. Eriksson et al. [125]: significant decrease of preynaptic sodium-dependent choline uptake in mice. Burke et al. [126]: acute exposure of humans irreversibly inhibits acetylcholinesterase, and chronic exposure induces neurological deficits that range from cognitive impairments to tremors in childhood Yamada et al. [127]: inhibit neural induction via mitochondrial fusion protein mitofusin 1-mediated mitochondrial dysfunction in human stem cells. Sogor and et al. [128]: seems able to induce neurodevelopmental alterations in animals Lee et al. [129]: affects protein levels in the mice developing brain and induces persistent adult behavior and cognitive impairments; neurotoxic effects. Yeo et al. [129]: disability is improved.
34	CB-169	Planar PCB	Baile et al. [130]: induces dyskinesia of the tongue. Sapers et al. [131]: selective serotonin reuptake inhibitor, alters spatial learning and memory, anxiety, depression in rats.
35	CB-180	PCB	Hurley et al. [132]: induces thyroid follicular cell tumors in rodents; disrupts thyroid-pituitary homeostasis. (continued on next page)
Table 1 (continued)

Nb	Endocrine disruptor	Class or use	Mechanisms of nervous disruption
42	Coumaphos	Pharmaceutical	Abdelsalam [139]: inhibition of brain of acetylcholinesterase, inhibition of brain neurotoxic esterase, plus delayed neurotoxicity.
43	Coumestrol	Phytoestrogen	About-Denia et al. [134]: degeneration of axons and myelin in the spinal cord.
44	D4 Cyclic siloxane	Isoflavones	Jantaratnotai et al. [135]: suppression of interferon regulatory factor-1 and phosphorylated STAT1 expression in lipopolysaccharide-activated microglia.
45	D5 Cyclic siloxane	Mitotane	Andreou et al. [136]: unusual constriction of the isolated sciatic nerve, death of nerve fibers.
46	D6 Cyclic siloxane	Insecticide	Fuzzard et al. [137]: due to silicone implants, myalgias, chronic fatigue, cognitive impairment.
47	Daidzein	Insecticide	Yu et al. [138]: perinatal exposure enhances estrogen receptor alpha expression in several brain regions such as stria terminalis, arcuate hypothalamic nucleus, and central amygdaloid nucleus.
48	Dibromochloropropane	Herbicide	Roman GC [129]: inhibits thymoperoxidase that catalyzes iodination and thyroid hormone biosynthesis.
49	Desethylatrazine	Metabolite	Krieg [140]: decreases striatal dopamine levels and in synaptosomes in rat.
50	2,4-D	Herbicide agent orange	Yi et al. [141]: Increases various neurologic diseases; systemic atrophies affecting the nervous system, including spinal muscular atrophy, Alzheimer disease, and peripheral polyneuropathies.
51	2,4-Dichlorophenol	Chlorophenol	Bortolozzi et al. [142]: changes in various neurotransmitter systems, such as serotonin (5-HT) and dopamine (DA), were proposed to mediate some of the behavioral effects in rats.
52	3-Diltiazem	Pharmaceutical	Evangelista de Duffard et al. [143]: increases sensitivity in dopamine D2-like brain receptor from 2, 4-dichlorophenoxyacetic acid (2,4-D)-exposed and amphetamine challenged rats.
53	2,4-DDD (o,p"DDD)	Insecticide and pharmaceutical mitotane	Krieg [144]: at low concentrations, it may act at acetylcholine and γ-aminobutyric acid synapses in the central nervous system to modify neurobehavioral test performance.
54	2,4-DDT (o,p"DDD)	Insecticide	Stevens et al. [145]: Calcium channel blocker.
55	4,4'-DDD (p,p"DDD)	Insecticide	Heilmann et al. [146]: Some central nervous disorders were observed.
56	4,4'-DDE (p,p"DDE)	Insecticide	Lanser et al. [147]: Neuropsychologic and neurologic side effects.
57	4,4'-DDT (p,p"DDE)	Insecticide	Du Rostu et al. [148]: neurologic symptoms and neurotoxicity both central and peripheral.
58	D6(2-ethylhexyl) adipate	Plasticizer	Kaija et al. [149]: peripheral symptoms such as asthenia, muscle weakness, tremor, myalgia, and headache.
59	Dehydroepiandrosterone	Natural hormone	Li et al. [150]: provides robust ischemic neuroprotection but also exerts neurotoxicity when administered during ischemia and early reperfusion.
60	Dexethastone	Synthetic steroid	Coplan et al. [151]: glucocorticoid-induced neurotoxicity.

(continued on next page)
Table 1 (continued)

Nb	Endocrine disruptor	Class or use	Mechanisms of nervous disruption
61	Dibutyl phthalate	Phthalate	Uno et al. [169]: induced degeneration and depletion of the hippocampal pyramidal and dentate granular neurons in the brains of primate fetuses.
			Wojtowicz et al. [158]: Aryl hydrocarbon receptor is involved in dibutyl phthalate induced apoptosis and neurotoxicity, while the estrogen receptors and peroxysome proliferator-activated receptor gamma signaling pathways are impaired by the phthalate.
			Farsangehfar et al. [179]: could reduce total distance movement, impair memory function an induce anxiety in mice. Significant nuclei size reduction and condensation in dentate gyrus cells.
			Yan et al. [171]: link between oxidative stress and anxiety-like behavior produced by dibutyl phthalate at high doses.
			Chantong et al. [172]: potentiation of oxidative stress and pro-inflammatory cytokine expression in microglia cells.
			Tsuji et al. [173]: Dibutyltin is neurotoxic and poly-L-lactides toxicity increases with the increase in tin concentration.
62	Dibutyltin	Plastics stabilizer	Jenkins et al. [174]: developmental neurotoxicant; the incidence of apoptotic cell death, was increased in the neocortex and hippocampus.
			Kobayashi et al. [175]: synaptic parameters modulations; tributyltin metabolites inhibit various parameters of cholinergic activity with a potency ranking of tributyltin>- dibutyltin>- monobutyltin.
			Evangelista de Duffard et al. [146]: has effects on motor, sensory, or cognitive functions.
63	Dicofol	Insecticide	Lessenger et al. [176]: case report, neurological injury, cognitive and emotional difficulties persisted over an 18-month period.
			Cowie et al. [177]: disrupts proteins related to oxidative respiration and mitochondrial stress in the central nervous system.
			Schmidt et al. [178]: induced neurotoxicity by impaired mitochondrial bioenergetics and endoplasmic reticulum stress in rat dopaminergic cells.
64	Dieldrin	Insecticide	Babot et al. [179]: Long term exposure reduces gamma-aminobutyric acid type A and N-methyl–aspartate receptor function in primary culture of mouse cerebellar granule cells.
			Evangelista de Duffard et al [146]: motor sensory or cognitive function effects.
65	Diethylhexyl phthalate	Phthalate	Park et al. [181]: sex-dependent effect on anxiety proneness in childhood.
			Quinnes et al. [182]: transgenerational modifications in the expression of several pituitary hormones involved in the hypothalamic-pituitary-adrenal axis and in stress hormones.
66	Mono-2-ethylhexyl phthalate	DEHP Hydrolysis product	Huang et al. [183]: prenatal exposure was associated with decreased cognitive development in the young children.
			Téllez-Rojo et al. [184]: prenatal exposure creates sex specific neurodevelopmental effects.
			Doherty et al. [185]: prenatal associations between urinary phthalates in aged mothers and brain performances in young children.
67	Mono-n-butyl phthalate	DBP Hydrolysis product	Mao et al. [186]: induce spatial cognitive deficits through altering the expression of apoptosis-related protein.
			Won et al. [187]: increased exposure exhibited supralinear associations with social, thought and attention problems in children.
			Tomihara et al. [188]: developmental deficits may stem from both in utero toxicity and aberrant maternal care.
68	Diethylstilbestrol	Synthetic estrogen	Frye et al. [189]: effects on the aryl hydrocarbon receptor, the peroxisome proliferator-activated receptor and the retinoid X receptor, signal transduction pathways, and on calcium influx and/or neurotransmitter receptors.
			Sato et al. [190]: marked influence on synaptogenesis and neuronal vulnerability through mechanisms other than through estrogen receptors.
69	Diisononyl phthalate	Plasticizer	Peng L [192]: oral exposure of mice induced brain damage, and oxidative stress, inflammation, and apoptosis.
			Bobeg et al. [193]: behavioral effects, spatial learning effects in perinatally exposed rats.
70	Diphenhydramine	Antihistamine	Kim et al. [194]: Inhibitory effects on proton currents in microglial cells.
			Mansfield et al. [195]: reduced attention and increased self-reported drowsiness.
71	Dimethyl-benz(a)anthracene	PAH	Wilken et al. [196]: caused significant decrements in vigilance and cognitive functioning.
			Vaswani et al. [197]: alterations of opioid neuropeptides such as beta endorphin, meth-enkephalin and dynorphin levels.
			Jang et al. [198]: induced acute neurotoxicity via induction of oxidative stress and pro-inflammatory responses.
			Ma et al. [199]: cause cognitive deficits and anxiety.
72	Endosulfan (alpha/beta)	Insecticide	Caudle WM [199]: can alter the normal development and potential function of neurotransmission in the frontal cortex.
			Silva et al. [200]: neurotoxicity and developmental effects in the zebrasfish.
			Silva et al. [201]: effects on brain biogenic amine levels Developmental reproductive toxicity or endocrine disruption occurs only at doses causing neurotoxicity.
73	Endrin	Insecticide	Bagchi et al. [202]: induced lipid peroxidation and DNA damage in brain and regional distribution of catalase activity in rat brain.
			Gray et al. [203]: alteration of central nervous system function in rats and hamsters even though endrin produces gross morphological defects only in hamsters.
74	Estradiol	Natural hormone	Li et al. [204]: anxiety disorders, augmentation of vulnerability factors associated with anxiety disorder development; and facilitation of the maintenance of anxious symptoms post-development.
			Preciados et al. [48]: influences NRF1 regulated gene networks in the development of complex human brain diseases.
75	Estrone	Natural hormone	Perez-Alvarez et al. [205]: neuroprotective role after ischemic injury.
			Rossetti et al. [206]: neurotoxic bind specific receptors to promote essential brain functions.
Nb	Endocrine disruptor	Class or use	Mechanisms of nervous disruption
----	---------------------	--------------	----------------------------------
76	Ethinylestradiol	Synthetic hormone	Mahmoud et al. [207]: may influence adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation. Grimm et al. [208]: may act upon neuronal bioenergetics in a delicate balance with an age-related effect that might be involved in mitochondrial dysfunction underlying neurodegenerative disorders. Porserdy et al. [209]: alteration in expression of genes involved in synaptogenesis and synaptic function. In female brains, produced significant effects on pathways connected to the circadian rhythm, cytoskeleton and motor proteins and synaptic proteins. In male brains effects on pathways related to cholesterol biosynthesis and synaptic proteins.
77	Ethylene thiourea	Herbicide	Preciado et al. [48]: influences Nrf1 signaling pathways, and epigenomic multiple networks. Zaccarini et al. [210]: very low doses during development can affect key behavioral traits that are modulated by anxiety. Wang et al. [211]: induced abnormal innervation patterns in the anorectum of fetal rats
78	Ethylparaben	Antifungal	Merola et al. [213]: provoked behavioral changes including trembling of head, pectoral fins and spinal cord of zebrafish. Lynch et al. [214]: displayed significant fear generalization in rats. Alward et al. [215]: this aromatase inhibitor reduced the motivation to sing as well as song acoustic stereotypy.
79	Fadrozole	Pharmaceutical	Xing et al. [216]: dopamine neuron degeneration and aromatase activity inhibition could be respectively achieved in vivo with treatments with the product in female goldfish. Langlois et al. [217]: induced female- and male-biased sexual development on Silurana tropicalis brain mRNA levels, and reduced brain aromatase activity in frogs.
80	Fenbuconazole	Fungicide	Hurley et al. [132]: disrupts thyroid hormone excretion. Gerald et al. [218]: affected the acquisition and, mainly, the retention of instrumental conditioning in rats.
81	Fenitrothion	Organophosphate	Groszek et al. [219]: High concentration of the pesticides was found in adipose tissue and also in the brain. Respiratory failure was the syndrome; and inhibition of acetylcholinesterase activity persisted even for 30 days from poisoning.
82	Fenoxycarb	Insecticide	Ram et al. [220]: Neurobehavioral changes in freshwater fish exposed to organophosphate insecticides. Lenkie et al. [221]: allatostatin may be one of the effectors in the brain by which the pesticides inhibits juvenile hormone biosynthesis in cockroach. Fertig et al. [222]: permanent sexual dysfunction and mood changes (fatigue, anxiety, depression and suicidal ideation) during treatment with this 5-alpha-reductase inhibitor.
83	Finasteride	Pharmaceutical	Traish et al. [223]: Also non-sexual adverse effects such as diabetes, psychosis, depression, and cognitive function. Gangestad et al. [224]: sexual libido, ejaculatory disorders, disorders of the penis and testes, cognitive symptoms, and psychological symptoms. Godinho et al. [225]: toxic interactions with the central nervous system of mammals and lead to memory impairment by modulating the GABAergic system. Park et al. [181]: Progressive loss of nigrostriatal dopaminergic neurons induced by inflammatory responses to the pesticide.
84	Fipronil	Insecticide	Magalhaes et al. [226]: acts on maternal aggressive behavior through GABA(A) receptors. Simon-Delso et al. [227]: disrupting neural transmission in the central nervous system of invertebrates, inhibits neuronal receptors. Mears et al. [228]: 4-Aminobutyric acid (GABA) and glycine are inhibitory neurotransmitters and their antagonist, fipronil, is excitatory. Golub et al. [229]: provoked greater dendritic spine synapse density in prefrontal cortex of monkeys.
85	Fluoxetine	Pharmaceutical	Lenkie et al. [221]: allatostatin may be one of the effectors in the brain by which the pesticides inhibit juvenile hormone biosynthesis in cockroach. Fertig et al. [222]: permanent sexual dysfunction and mood changes (fatigue, anxiety, depression and suicidal ideation) during treatment with this 5-alpha-reductase inhibitor.
86	Flutamide	Pharmaceutical	Ahmadiani et al. [233]: Anticonvulsant effects on seizures involvement of benzodiazepine receptors. GK Sidhu, et al. [234]: known to inhibit acetylcholinesterase activity, not only in insect, but in aquatic and terrestrial organisms leading to nervous abnormalities among others. Liu et al. [235]: Acute formaldehyde exposure induced early Alzheimer-like changes in mouse brain. Provoked the permeability of the blood-brain barrier, activation of astrocyte and microglia, oxidative stress and inflammation.
87	Fonofos	Organo-phosphate	Zhang et al. [223]: Effects of neonatal treatment on hippocampal neurogenesis and synaptogenesis correlate with depression-like behaviors in preadolescent male rats. Ahmadiani et al. [233]: Anticonvulsant effects on seizures involvement of benzodiazepine receptors.
88	Formaldehyde	Solvent	Zenderedel et al. [237]: Its neurotoxic effect depend on acetylcholinesterase activity; provoked cholinergic signal reduction in cases of cognitive dysfunction. Tulpule et al. [238]: contribute to the impaired cognitive performance and neurodegeneration in diseases.
89	Furan	Solvent	Song et al. [239]: neurotoxic characteristics; neurological diseases. Johnston et al [240]: exhibits a peculiar mode of attack on the central nervous system
90	Galaxolide	Synthetic musk	Ayuk-Takem et al. [241]: neurotoxicity may be associated with the inhibition of cellular; polysoprenylated methylated protein methyl esterase activity; significant risk to individuals predisposed to developing degenerative disorders.
91	Genistein	Isoflavone	Li et al. [230]: Aromatase inhibitor reduced the motivation to sing as well as song acoustic stereotypy.
Nb	Endocrine disruptor	Class or use	Mechanisms of nervous disruption
----	----------------------------------	-------------------------------	--
92	Hexabromocyclododecane	Flame retardant	Maurice et al. [248]: Short-term effects of a perinatal exposure in rats provoked impairments of early locomotor activity and sensory development. Al Mousa et al. [249]: inhibiting reticulum Ca(2+)ATPase in human neuroblastoma cells and induced cells death possibly causing neurological disorders.
93	Hexachlorobenzene	Aromatic	Reed et al. [253]: exposure involved systemic impairment, as well as on nervous system. Li et al. [254]: can induce enhanced lipid peroxidation on rats, and the oxidative stress plays an important role in the mechanism of neurotoxicity. Goldy et al. [255]: behavioral teratogen, and suggests that human fetuses and sucking infants may be at risk because of the neurotoxic effects of the chemical. Nyfie et al. [256]: neural crest cell migration was inhibited by this toxicant disturbing a key neurodevelopmental process.
94	Heptachlor	Insecticide	Hong et al. [258]: induced nigral dopaminergic neuronal loss and Parkinsonism-like movement deficits in mice. Moser et al. [259]: perinatal exposure produced neurochemical and persistent neurobehavioral changes, including alterations in spatial learning and memory. Kirby et al. [260]: toxic effects of heptachlor epoxide may be responsible for loss of maximal dopamine uptake.
95	Heptachlor epoxide	Organo-chlorine	Yamaguchi et al. [261]: effects on calcium mediated transmitter release from brain synaptosomes of rats. Badawi et al. [262,263]: neurotoxic effects in the postnatal period of ontogeny in the rats. Murzakaev [264]: small doses affected central nervous activity.
96	Hexachlorobutadiene	Solvent	Badaeva et al. [264]: small doses affected central nervous activity. Chen et al. [265]: synaptic plasticity and neuro-immune system may be two principal affected areas. Kimura et al. [266]: over-activation of aryl hydrocarbon receptor following perinatal dioxin exposure, perturbs neuronal migration and morphological development in mammalian cortex, supporting previous observations of impaired dendritic structure, cortical dysgenesis, and behavioral abnormalities.
97	Hexachlorodibenzodioxin	Dioxin	Not specifically studied (see Methoxychlor). Mactutus et al. [267]: Neonatal exposure impairs early learning and retention of active avoidance in the rat. Evangelista de Duflard et al. [146]: effects on motor, sensory, or cognitive function; developmental neurotoxicant.
98	HPTE	Methoxychlor Metabolite	Mactutus et al. [268]: neurotoxic profile of tremor. Mactutus et al. [269]: effect on the development of behavioral and/or neural function. Andrade et al. [270]: can induce dyshomeostasis, potentially triggering neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. Championships, changes in heme synthesis have been associated with neurodegeneration.
99	Iodine (I)	Halogen; Essential element	Roman [28]: Iodine deficiency as a cause of autism. Evangelista de Duflard et al. [146]: effects on motor, sensory, or cognitive function; developmental neurotoxicant.
100	Kepone	Organo-chlorine	Mactutus et al. [267]: Neonatal exposure impairs early learning and retention of active avoidance in the rat. Evangelista de Duflard et al. [146]: effects on motor, sensory, or cognitive function; developmental neurotoxicant.
101	Lead	Heavy metal	Assi et al. [272]: wide spectrum of toxic effects, a real threat to the public health, including on the central nervous system Karri et al. [289]: lead to imbalance between the pro-oxidant elements and the antioxidants, and induced cognitive dysfunction. Cai et al. [273]: The central nervous system is particularly vulnerable. The brain accumulates metals. Aleknavic et al. [274]: induces a centrally-mediated sensitization of both autonomic and hypothalamic-pituitary-adrenal (HPA) axis.
102	Levonorgestrel	Synthetic Estrogen	Simone et al. [275]: in combination with ethinyl estradiol reduced brain-derived neurotrophic factor mRNA in the hippocampus resulting in a decline in learning and memory. Porcu et al. [276]: Long-term administration increased allopregnanolone levels and altered GABA(A) receptor subunit expression and anxiety-like behavior. Costa [277]: block the chloride channels of the GABA-A receptor.
103	Lindane	Organo-chlorine	Mariussen et al. [124]: has neurotoxic potentials after both acute and chronic exposure. Evangelista de Duflard et al. [146]: has effects on motor, sensory, or cognitive function modifying behavior.
Table 1 (continued)

	Class or use	Mechanisms of nervous disruption	
104	Limuron	Herbicide	Lichtensteiger et al. [279]: in antiandrogenic mixtures impacted genes encoding for components of excitatory glutamatergic synapses and genes controlling migration and pathfinding of glutamatergic and GABAergic neurons, as well as genes linked with increased risk of autism spectrum disorders. Schinn et al. [280]: in mixture inhibited swimming activity of juvenile rainbow trout. Richendrfer & Creton [281]: cause abnormalities in behavior and brain size during development, zebrasfish larvae had significantly smaller forebrain and hindbrain regions. Salaam et al. [282]: affect proliferation, differentiation and viability of cultured neuropheres. Hashjin et al. [283]: induced chronic toxicity and anxiety-like behavior in the male adult zebrafish. Rastogi et al. [284]: In mixture provoked neurologic self-reported symptoms, headache, watering in eyes, and burning sensation in eye/face, cholinergic symptoms, such as insomnia, headache, muscle cramps, weakness, and anorexia, in children. High frequency of neurologic symptoms may be due to parasympathetic hyperactivity. Valvassori et al. [285]: affects the central nervous system by inhibiting acetylcholinesterase, leading to an increase of acetylcholine in the synaptic cleft, and subsequent activation of cholinergic muscarinic and nicotinic receptors, and impairs aversive-memory retention but not non-associative memory, without affecting anxiety-related behaviors. de Juode et al. [286]: poorer verbal learning outcomes in children, may affect their neurodevelopment. Brody et al. [287]: behavioral dysfunction, notably serotonin-mediated egg-laying behavior in Gaoenhabbitis elegans. Li et al. [288]: potentiation on KCNQ2 potassium channels might be the possible mechanism of this product toxicity in the nervous system. Domico et al. [289]: acute exposure to high doses produces equipotent toxic effects in both dopamine and GABA neurons. Kimura et al. [290]: nerve conduction velocities and postural sway seem to be sensitive indicators of the effects on the central and peripheral nervous system. Lucchini et al. [291]: essential metal that plays a fundamental role for brain development and functioning. Environmental exposure may lead to accumulation in the basal ganglia and development of Parkinson-like disorders. Peres et al. [292]: Various neurotransmitter systems may be impaired, especially dopaminergic, but also cholinergic and GABAergic. Talarle et al. [293]: epigenetic mechanism in product-induced neurotoxicity, development of Parkinson’s disease. Zhang et al. [294]: overexposure amplified the role of autophagy in the mechanisms of common neurodegenerative disorders. Wuuk et al. [158]: apoptotic action during early stages of neural development with crucial involvement of retinoid X receptors. Torres-Sanchez et al. [294]: prenatal exposure impaired early child neurodevelopment. Zhang et al. [153]: showed remarkable GR antagonistic properties, disruption of glucocorticoid-responsive genes. Martini et al. [295]: perinatal exposure has an organizational effect on hippocampus-dependent memory and emotional behaviors. Schuh et al. [296]: inhibited brain mitochondrial respiration and increased hydrogen peroxide production and CREB phosphorylation. De Souza et al. [297]: acute and chronic progressive neurologic injury: seizures, myoclonus, ataxia or cerebral oedema, defective neurotransmitter function and abnormal oxidative phosphorylation. Kim & Kang [289]: chronic toxic encephalopathy. Yang et al. [289]: Sub chronically and chronically, principal target PAHsite appears to be the central nervous system. Anger et al. [300]: produce slight neurotoxic effects in fumigation, reduced performance on all cognitive tests. Moshtizky et al. [301]: neural inhibition from the brain (drosophila) act before farnesoid acid, a precursor of the product. Prestwich et al. [302]: is secreted by the mandibular organs of crustaceans, role partially known. DeLeo et al. [303]: Effect on thyroid hormone action and stress in frog and mammalian culture systems. Ruszkiewicz et al. [790]: potential neurotoxicity. Bronioswka et al. [304]: affected the viability of nerve cells, most likely by enhancing the process of apoptosis. Li et al. [305]: reduction of neuronal and muscular development in zebrasfish embryos. Faas et al. [306]: effect on female sexual behavior and gene expression in sexually dimorphic brain regions after pre- and postnatal exposure in rats. Maerkel et al. [306]: Sex- and region-specific alterations of progesterone receptor mRNA levels and estrogen sensitivity in rat brain. Singh et al. [307]: induced neurotoxicity in developing neurons derived from human stem cells by activation of aryl hydrocarbon receptor. Puertas et al. [308]: showed a decrease in working memory in children. The deficit found in intellectual function during early childhood suggests that prenatal exposure may have a significant impact on school performance. Shankland [309]: enhanced the release of neurotransmitters. Direct evidence is available on cholinergic and glutaminergic junctions, but other kinds of junctions may be affected. Foran et al. [310]: Auditory hindbrain atrophy and anomalous calcium binding protein expression after neonatal exposure. Sadek et al. [311]: induced neurotoxicity by cholinergic dysfunction, Ibc1-2/Bax balance, and antioxidant enzymes gene transcripts in rats. Sasaki-Hamada et al. [312]: Changes in hippocampal synaptic functions and protein expression in obese mice.
Table 1 (continued)

Nb	Endocrine disruptor	Class or use	Mechanisms of nervous disruption		
117	n-Butylbenzene	Chemical Synthesis Intermediate	Chalansonnent et al. [314]: a decrease in the concentrations of free malondialdehyde in brain structures was observed after acute administration of this product. Calculation of the changes in brain volumes and working memory, attention, and auditory processing, as well as increased impulsivity and anxiety.		
118	Nicotine	Alkald	England et al. [315]: exposure during pregnancy and adolescence may contribute to cognitive and behavioral deficits in later life. Exposure during adolescence is associated with deficits in working memory, attention, and auditory processing, as well as increased impulsivity and anxiety.		
119	Nonachlor	Organochlorine Insecticide	Perfluorodecane sulfonic acid [319]: key role in the development of hypertension-related cognitive impairment. Chlorinated Aromatic	Kim et al. [320]: key role in the development of hypertension-related cognitive impairment.	
120	Nonylphenol	Formulant	Chen et al. [321]: long-term toxicity in the rat: effects on thyroid. Axelrad et al. [322]: effects on auditory and neurological development of rat offspring.	Bianco et al. [323]: greater accumulation in the cerebral cortex, more accumulation in the cerebellum compared to the mesencephalus and thalamus, with consequences to neural behaviour.	
121	Norfluoxetine	Pharmaceutical	Lee et al. [324]: chronic exposure to low doses linked to the risk of developing cognitive impairment in elderly. Serafini et al. [325]: inhibited neuronal development and differentiation as indicated by the reduction of the neurotrophic factor GAP-43.	Couderc et al. [326]: perinatal exposure induced behavioral and neuro-developmental impairments. Pinna et al. [327]: selective brain steroidogenic stimulant, reduced post-traumatic stress disorder-like behavior in mice.	
122	Octachlorodibenzo-p-dioxin	Dioxin	Tawara et al. [328]: fetal growth may be influenced by maternal total exposure to dioxins.	Ghisari et al. [329]: negative impact on fetal brain development, resulting in cognitive dysfunctions. Shikimi et al. [330]: promote Parkinjne dendritic growth during neonatal life, may be mediated by estrogen receptor in the Parkinjne cell.	
123	Octachlorostyrene	Chlorinated Aromatic	Chu et al. [331]: 90-day toxicity in the rat: effects on thyroid. Chu et al. [332]: long-term toxicity in the rat: effects on thyroid.	Kim et al. [333]: role of background exposure in the development of dementia should be explored. Kim et al. [334]: greater cognitive decline with aging among elders with high serum concentrations of lipid metabolites in rat striatum.	
124	Octyl-methoxycinnamate	UV filter	Russkiewicz et al. [335]: neurotoxic effect of active ingredients in sunscreen products. Axelrad et al. [336]: effects on auditory and neurological development of rat offspring.	Bianco et al. [337]: total serum thyroxine levels had an inverse association with the product. Jin et al. [338]: total serum thyroxine levels had an inverse association with the product.	
125	Octylphenol	Formulant	Ghisari et al. [339]: negative impact on fetal brain development, resulting in cognitive dysfunctions. Shikimi et al. [340]: promote Parkinjne dendritic growth during neonatal life, may be mediated by estrogen receptor in the Parkinjne cell.	Ghisari et al. [341]: inhibitory effects on auditory and neurological development of rat offspring. Jin et al. [342]: total serum thyroxine levels had an inverse association with the product.	
126	Oxychlorodane	Chloride	Kim et al. [343]: role of background exposure in the development of dementia should be explored. Kim et al. [344]: greater cognitive decline with aging among elders with high serum concentrations of lipid metabolites in rat striatum.	Jain [345]: increased risk for nasal carcinoma; selective brain steroidogenic stimulant, reduced post-traumatic stress disorder-like behavior in mice.	
127	Parathion	Organophosphate Insecticide	Liu et al. [346]: effects on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum. Beard et al. [347]: positively associated with depression in male private pesticide applicators in the agricultural health study.	Liu et al. [348]: effects on endocannabinoid and endocannabinoid-like lipid metabolites in rat striatum. Beard et al. [349]: positively associated with depression in male private pesticide applicators in the agricultural health study.	
128	Pentamethyldiethanol	Herbicide	Camplito et al. [350]: Biomarkers indicative of neurotoxicity and physiological stress in caged clams exposed to a contaminated water containing the product. Pan et al. [351]: persistent neuroinflammation, neurobehavioral and neuropathological cognitive impairment in mouse.	Camplito et al. [352]: increased effects on the central nervous system. Camplito et al. [353]: persistent neuroinflammation, neurobehavioral and neuropathological cognitive impairment in mouse.	
129	Pentachloroethene	Chlorinated Aromatic	Hurley PM [354]: disrupted thyroid-pituitary homeostasis. Cheng et al. [355]: affected the timing and coordination of development in the central nervous system.	Hurley PM [356]: disrupted thyroid-pituitary homeostasis. Cheng et al. [357]: affected the timing and coordination of development in the central nervous system.	
130	Pentachloronitrobenzene	Herbicide	Den Besten et al. [358]: severe effects on rats thyroid.	Den Besten et al. [359]: severe effects on rats thyroid.	
131	Pentachlorobenzenes	Chlorinated Aromatic	Wierin et al. [360]: decreased levels of dopamine in the striatum, loss of dopaminergic neurons in the substantia nigra pars compacts and cognitive impairments. Motor coordination defects appeared at adult age after early life exposure.	Wierin et al. [361]: persistent neuroinflammation, neurobehavioral and neuropathological cognitive impairment in mouse.	
132	Perchlorate	Oxidizer	Brent GA [362]: exposure in pregnancy impacted cognitive outcomes in children. Gilbert et al. [363]: developmental exposure altered synaptic transmission in hippocampus of the adult rat.	Brent GA [364]: exposure in pregnancy impacted cognitive outcomes in children. Gilbert et al. [365]: developmental exposure altered synaptic transmission in hippocampus of the adult rat.	
133	Permethrin	Insecticide	Yang et al. [366]: significant effects on the central nervous system. Ren et al. [367]: Binding interactions with thyroid hormone transport proteins and potential toxicological implications. Oulhote et al. [368]: High serum concentrations at ages 5- and 7-years, but not prenatally, were associated with parent-reported behavioral problems at age 7. Ren et al. [369]: Binding interactions with thyroid hormone transport proteins and potential toxicological implications.	Yang et al. [360]: significant effects on the central nervous system. Ren et al. [361]: Binding interactions with thyroid hormone transport proteins and potential toxicological implications. Oulhote et al. [362]: High serum concentrations at ages 5- and 7-years, but not prenatally, were associated with parent-reported behavioral problems at age 7. Ren et al. [363]: Binding interactions with thyroid hormone transport proteins and potential toxicological implications.	
134	Perfluorodecane sulfonic acid	Perfluoroalkyl substance	Perfluorooalkyl amines [364]: increased risk for nasal carcinoma; selective brain steroidogenic stimulant, reduced post-traumatic stress disorder-like behavior in mice.	Perfluorooalkyl amines [365]: increased risk for nasal carcinoma; selective brain steroidogenic stimulant, reduced post-traumatic stress disorder-like behavior in mice.	
135	Perfluorohexane sulfonic acid	Perfluoroalkyl substance	Perfluorooalkyl amines [366]: increased risk for nasal carcinoma; selective brain steroidogenic stimulant, reduced post-traumatic stress disorder-like behavior in mice.	Perfluorooalkyl amines [367]: increased risk for nasal carcinoma; selective brain steroidogenic stimulant, reduced post-traumatic stress disorder-like behavior in mice.	
136	Perfluorotoluic carbonic acid	Perfluoroalkyl substance	Perfluorooalkyl amines [368]: increased risk for nasal carcinoma; selective brain steroidogenic stimulant, reduced post-traumatic stress disorder-like behavior in mice.	Perfluorooalkyl amines [369]: increased risk for nasal carcinoma; selective brain steroidogenic stimulant, reduced post-traumatic stress disorder-like behavior in mice.	

(continued on next page)
Nb	Endocrine disruptor	Class or use	Mechanisms of nervous disruption
137	Perfluorooctanoic acid	Perfluoroalkyl substance	Acute, embryonic exposure resulted in significant biochemical and behavioral changes in young adult zebrafish. Lien et al. [356]: prenatal exposure was found to associate with neurobehavioral symptoms related to attention deficit hyperactivity disorder among Asian seven-year-old children. Oulhote et al. [354]: sex-dimorphic associations between concentrations and strengths and difficulties. Jantzen et al. [355]: embryonic exposure resulted in significant biochemical and behavioral changes in young adult zebrafish. Oulhote et al. [354]: significant associations were found in regard to hyperactivity, peer relationship, and conduct problems, as well as internalizing and externalizing problems and autism. Ge et al. [357]: could significantly reduce the cell viability and mediate cell apoptosis in HAPI microglia cells of rat.
138	Perfluorooctane sulfonate	Perfluoroalkyl substance	Jantzen et al. [355]: embryonic exposure resulted in significant biochemical and behavioral changes in young adult zebrafish. Oulhote et al. [354]: significant associations were found in regard to hyperactivity, peer relationship, and conduct problems, as well as internalizing and externalizing problems and autism.
139	Perfluoroctanesulfon fluoride	Perfluoroalkyl substance	Starks et al. [358]: associated with better verbal learning and memory.
140	Phorate	Insecticide	Vandana et al. [359]: obvious effect on cholinesterase enzyme profile of olfactory bulb of mice after systemic administration of low doses for long terms.
141	Picrotoxin	Herbicide	Reddy et al. [360]: decreased neuronal branching and degenerating neurons, probably through a mitochondrial pathway.
142	Polyvinylchloride	Polymer; PVC	Podoli et al. [362]: acute intoxication resulted in vertigo, nausea and headache up to a narcotic effect. In patients with chronic occupational exposure, neurological disturbances included memory-motor polynuropathy, trigeminal sensory neuropathy, slight pyramidal signs and cerebellar and extrapyramidal motor disorders. Psychiatric disturbances present as neuroaesthetic or depressive syndromes. Sleep disorders and disorders of sexual functions are frequently encountered.
143	8-Prenylnaringenin	Prenylflavonoid	Bagatin et al. [364]: panolistic effects in rats with generalized anxiety and panic disorders. Oberbauer et al. [365]: promote neuronal differentiation and neurite outgrowth and are neuroprotective.
144	Prochloraz	Fungicide	Ghisari et al. [363]: inhibitory effect on rat pituitary cell growth increasing the risk or a negative impact on fetal brain development, resulting in cognitive dysfunctions.
145	Procyomide	Fungicide	Xiang et al. [367]: potential to disrupt thyroid homeostasis, agonistic effects.
146	Prodiamine	Herbicide	Radio et al [368]: selectively increased neurite outgrowth. Gilbert et al. [369]: an impaired capacity for hippocampal neurogenesis may contribute to impairments in synaptic plasticity and cognitive deficits.
147	Propylthiouracil	Thyroid inhibitor	Kirvina et al. [366]: agonizes the aryl hydrocarbon receptor and inhibits aromatase activity.
148	Pyrene	Polycyclic Aromatic Hydrocarbon	Chen et al. [371]: behavioral impairments resulting from postnatal BaP exposure are potentially long-lasting in rats. Wormald et al. [374]: neurobehavioral deficits; gestational exposure to BaP and dioxin reduced specific indices of learning and memory, including hippocampal-based synaptic plasticity mechanisms. Takeda et al. [375]: the fetal exposure of mice to diesel exhaust affected the emotional behaviors associated with the serotonergic and dopaminergic systems in the brain.
149	Pyrimethanil	Fungicide	Hurley PM [132]: disrupt thyroid-pituitary homeostasis only.
150	Pyreproxyfen	Juvenile hormone analog	Fourrier et al. [377]: changes in social integration, acceptance by nestmates and social behaviors performance in bees.
151	Resorcinol	Disinfectant, Chemical intermediate	Motonaga et al. [370]: inhibit thyroid peroxidase to cause developmental toxicity and neurotoxicity. Roman [28]: transient maternal hypothyroxinemia resulting from dietary and/or environmental exposure to this antithyroid agent.
152	Roundup	Main herbicide worldwide	Defarge et al. [378]: its formulations decrease aromatase activity below toxic levels. Gress et al. [379]: the product altered locomotor activity in rats. Mosdeto et al. [380]: it inhibits acetylcholinesterase in fish brain. Lee et al. [381]: the product is used for trauma-focused psychotherapies.
153	Sertraline	Psychotropic	Frölich et al. [382]: selective serotonin reuptake inhibitor, which has demonstrated efficacy on neuropsychiatric behavioral symptoms in general. Liu et al. [123]: exposure could alter gene expression in the hypothalamic-pituitary-thyroid axis and thyroid hormone levels. Wyatt et al. [383]: potent peroxisome proliferators; high dose shows a depressed plasma thyroxine level, with increase in thyroid stimulating hormone.
154	Short chain chlorinated paraffins	Flame retardant; plasticizer	(continued on next page)
Nb	Endocrine disruptor	Class or use	Mechanisms of nervous disruption
-----	---	---------------------	---
156	Tamoxifen	Pharmaceutical	Gunderson and Daroff [384]: epilepsy and later on all effects of brain injury and post-traumatic stress disorders.
			St Omer et al. [385]: together with 2.4D, increased significantly the concentration of norepinephrine in whole developing brain and increased dopamine.
157	Tetrabromo-bisphenol A	Flame retardant	Yi et al. [184]: increased the prevalence of endocrine disorders, especially in the thyroid and pituitary gland, and increased various neurologic diseases.
			Denk et al. [386]: granular neurons of the olfactory bulb and dentate gyrus, vascular cells and ependymal cells throughout the brain, and peripheral sensory neurons are modified by this treatment.
			Boele et al. [387]: Cognitive domains that rely on verbal abilities (verbal memory and fluency) seem to be at risk for deterioration after treatment.
			Park et al. [388]: induced the loss of both zebrafish neurontms and hair cells in the rat cochlea in a dose-dependent manner.
			Chen et al. [389]: induced apoptotic cell death, delayed cranial motor neuron development, inhibited primary motor neuron development and loosened muscle fiber during the early development in zebra fish.
			Jarema et al. [390]: may have developmental or pharmacological effects on the vertebrate nervous system.
			Wojtowicz et al. [391]: decreased the expression of PPAR-γ protein in neocortical neurons; and the mechanism of action also induced apoptotic and neurotoxic effects.
			Holmes et al. [392]: testosterone increased the expression of COX2 and apoptosis in dopamine neurons, increased incidence of Parkinson’s disease in men compared with women.
			Cunningham et al. [393]: reduces thyroid hormone levels by different mechanisms.
158	Testosterone	Natural hormone	Chen et al. [396]: inhibition of UDP-glucuronosyltransferases.
159	Tetrachloro-dibenzo-p-dioxin	Chlorinated dioxin	Dos Reis-Lunardelli et al. [399]: can alter animal behavior and learning and memory in rats.
160	Tetrachloro-dibenzo-furan	Chlorinated dioxin	Zamoner et al. [400]: reorganizes the cytoskeleton of glial cells through GluP phosphorylation and RhoA-dependent mechanisms.
			Pelcova et al. [395]: neurological and neurophysiological findings in workers with chronic intoxication 50 years after exposure.
161	PCB methyl sulfones	PCB metabolite	Xu et al. [394]: this dioxin-like compound suppresses acetylcholinesterase activity via transcriptional downregulations in vitro.
			Pelclova et al. [396]: PCB methyl sulfones together with 2.4D, increased significantly the concentration of norepinephrine in whole developing brain and increased dopamine.
162	Tetraiodothyronine	Natural hormone	X. Su et al. [401]: congeners products showed a strong inhibitory effect on the otic system development.
163	Thiazoylpyridine	Herbicide	Dolfi et al. [402]: increased the prevalence of endocrine disorders, especially in the thyroid and pituitary gland, and increased various neurologic diseases.
164	Toxaphene	Organo-chlorine	Xu et al. [390]: this dioxin-like compound suppresses acetylcholinesterase activity via transcriptional downregulations in vitro.
			Sanchez-Martín et al. [390]: aryl hydrocarbon receptor-dependent induction of apoptosis by the product in cerebellar granule cells from mouse.
			Chen et al. [396]: inhibition of UDP-glucuronosyltransferases.
165	2,4,6-Tribromophenol	BFR, Natural product	Kato et al. [397]: reduction of thyroid hormone levels by different mechanisms.
			Chen et al. [396]: inhibition of UDP-glucuronosyltransferases.
166	Trenbolone	Anabolic steroid	Dong et al. [403]: differential effects on the expression of thyroid hormone system.
			Quin et al. [404]: disrupted development of either the central nervous system or the hypothalamic-pituitary-gonadal axis.
			Ishihara et al. [405]: induces oxidative neuronal injury.
			Frye et al. [406]: effects through the aryl hydrocarbon receptor, the peroxisome proliferator-activated receptor and the retinoid X receptor, signal transduction pathways, calcium influx and/or neurotransmitter receptor.
			Leong et al. [407]: disrupts thyroid-pituitary homeostasis only.
			Calcio et al. [408]: modifies chronically female amphipod Gammarus behavior.
			Nishihara et al. [409]: developmental neurotoxicity and immunotoxicity in rats.
			Frye et al. [408]: effects through the aryl hydrocarbon receptor, the peroxisome proliferator-activated receptor and the retinoid X receptor, signal transduction pathways, calcium influx and/or neurotransmitter receptor.
167	Tributyltin	Fungicide	Kotalke [410]: neurotoxic, induces behavioral abnormalities and toxic to the developing central nervous system through AMPA receptor subunit.
			Yeung [411]: neurotoxicity inducing anxiety in man.
			Da Broi et al. [412]: produces pleasant inebriating effects with rapid dissipation, followed by central nervous system depression, coma.
			Kang et al. [413]: provokes chronic central nervous system disorders and peripheral neuropathy.
168	Trichloroethylene	Chlorinated solvent	Chiu WA et al. [414]: carcinogenic to humans by all routes of exposure and toxic to the central nervous system.
			Bale et al. [415]: interacts directly with several different classes of neuronal receptors by generally inhibiting excitatory ion channels/channels and potentiating the function of inhibitory receptors/channels.
169	Trichlorophenol	Fungicide	X. Su et al. [416]: increased the prevalence of endocrine disorders, especially in the thyroid and pituitary gland, and increased various neurologic diseases.
			Dong et al. [417]: altered expression of proteins involved in nervous system development.
170	Triclocarban	Antibacterial agent	Barros et al. [418]: modified chronically female amphipod Gammarus behavior.
171	Triclosan	Antibacterial agent	Wu et al. [419]: inhibited iodide uptake, but had differential effects on the expression of thyroid hormone synthesis-related genes and the activity of thyroid peroxidase.
172	Triiodothyronine	Natural thyroid hormone	Kato et al. [410]: aryl hydrocarbon receptor-dependent induction of apoptosis by the product in cerebellar granule cells from mouse.
			Chen et al. [396]: inhibition of UDP-glucuronosyltransferases.
			Dolfi et al. [402]: increased the prevalence of endocrine disorders, especially in the thyroid and pituitary gland, and increased various neurologic diseases.
			Kato et al. [410]: aryl hydrocarbon receptor-dependent induction of apoptosis by the product in cerebellar granule cells from mouse.
Each chemical compound or pollutant has been numbered (Nb) out of 177 known endocrine disruptors; its name was associated with the key word “nervous” or “neurotoxicity” or “cognitive” or “behavioral” or “immunological” or “cardiovascular” or “endocrine” or “developmental” or “behavio(u)r” or “weight” or “learning” or “memory” or “behavior” on PubMed data bank, or eventually on Google Scholar. When the number of references per compound were too numerous, “or” was excluded in order to directly associate the keywords. If more than 20 references were found to be published, “review” was added to the keywords and cited as a reference. Finally, a maximum of five references were indicated, focusing on the most recent research in humans or mammals, without excluding other models. The mechanisms of nervous disruption could be direct, on the neurons or the nervous system, or indirect, through endocrine disruption interfering with neurodevelopment or nervous system functioning, including thyroid regulation. PAH, polycyclic aromatic hydrocarbon; PCB, polychlorobiphenyl; PBB, polybrominated biphenyl; PBDE, polybrominated diphenyl ether; PFAS, perfluoroalkyl substances.

Declaration of Competing Interest

The authors Seralini & Jungers declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Nicolas Defarge for the initiation of this work and Frederick Hilary for secretarial assistance in the early stages. We would also like to extend our gratitude to Joël Spiroux de Vendomois for his work on this topic. Funds for the bibliographic study were provided by Léo Nature and Biocoop Foundations. This work was supported by the University of Caen Normandy, Network on Risks, Quality and Sustainable Development, as well as Spark-Vie, France.

References

1. T. Colborn, Pesticides-how research has succeeded and failed to translate science into policy: endocrinological effects on wildlife, Environ. Health Perspect. 103 (suppl 6) (1995) 81–85.
2. G. Lindstrom, et al., Workshop on perinatal exposure to dioxin-like compounds. I. Summary, Environ. Health Perspect. 113 (suppl 2) (1995) 135–142.
3. J. Ginsburg, Tackling environmental endocrine disrupters, Lancet (London, England) 347 (9014) (1996) 1501–1502.
4. R. Carson, Silent Spring Houghton Mifflin, Boston, MA, USA, 1962.
5. G.E. Seralini, Genetiquement Incorrect, Flammarion, Paris, 2003.
6. Å. Bergman, et al., State of the Science of Endocrine Disrupting Chemicals 2012, World Health Organization, 2013.
7. S. Richard, et al., Differential effects of glyphosate and roundup on human placental cells and aromatase, Environ. Health Perspect. 113 (6) (2005) 716–720.
8. R. Mesnage, et al., Potential toxic effects of glyphosate and its commercial formulations below regulatory limits, Food Chem. Toxicol. 80 (2015) 133–153.
9. M.K. Skinner, M.D. Anway, Seminiferous cord formation and germ-cell programming: epigenetic transgenerational actions of endocrine disruptors, Ann. N. Y. Acad. Sci. 1061 (2005) 18.
10. S.A. Laessig, M.M. McCarthy, E.K. Silbergeld, Neurotoxic effects of endocrine disruptors, Curr. Opin. Neurol. 12 (6) (1999) 745–751.
Y. Ishihara, et al., Protective actions of 17-
J.A. Yeung, Unusual case of anxiety: trichloroethylene neurotoxicity, Case Rep.
R.S. Waritz, et al., Thyroid function and thyroid tumors in toxaphene-treated rats,
B. Brunstr
C. Leonetti, et al., Brominated flame retardants in placental tissues: associations
D.-W. Chen, et al., The inhibition of UDP-glucuronosyltransferases (UGTs) by
H.-M. Xu, et al., Dioxin and dioxin-like compounds suppress acetylcholinesterase
D. Pelclova, et al., Neurological and neurophysiological findings in workers with
K.A. Jarema, et al., Acute and developmental behavioral effects of flame
J. Chen, et al., TBBPA exposure during a sensitive developmental window
G.-E. Seralini and G. Jungers
W.A. Chiu, et al., Human health effects of trichloroethylene: key findings and scientific issues, Environ. Health Perspectives 121 (3) (2013) 303–311.
X. Xu, et al., Urinary trichloroethylene levels and increased risk of attention deficit hyperactivity disorder among US school-aged children, Occupat. Environ. Med. 68 (8) (2011) 557–561.
X. Dong, et al., Multiple bioanalytical method to reveal developmental biological responses in zebratil embryos exposed to triclocarban, Chemosphere 193 (2018) 251–258.
S. Barros, et al., Chronic effects of triclocarban in the amphibid Gammarus locusta: behavioural and biochemical improvement, Ecotoxicology. Environ. Safety. 135 (2017) 276–283.
Y. Wu, F.A. Beland, J.-L. Fang, Effect of triclosan, triclocarban, 2, 2-
X. Dong, et al., Multiple bioanalytical method to reveal developmental biological responses in zebratil embryos exposed to triclocarban, Chemosphere 193 (2018) 251–258.
S. Barros, et al., Chronic effects of triclocarban in the amphibid Gammarus locusta: behavioural and biochemical improvement, Ecotoxicology. Environ. Safety. 135 (2017) 276–283.
Y. Wu, F.A. Beland, J.-L. Fang, Effect of triclosan, triclocarban, 2, 2-
X. Xu, et al., Urinary trichloroethylene levels and increased risk of attention deficit hyperactivity disorder among US school-aged children, Occupat. Environ. Med. 68 (8) (2011) 557–561.
X. Dong, et al., Multiple bioanalytical method to reveal developmental biological responses in zebratil embryos exposed to triclocarban, Chemosphere 193 (2018) 251–258.
S. Barros, et al., Chronic effects of triclocarban in the amphibid Gammarus locusta: behavioural and biochemical improvement, Ecotoxicology. Environ. Safety. 135 (2017) 276–283.
Y. Wu, F.A. Beland, J.-L. Fang, Effect of triclosan, triclocarban, 2, 2-
X. Xu, et al., Urinary trichloroethylene levels and increased risk of attention deficit hyperactivity disorder among US school-aged children, Occupat. Environ. Med. 68 (8) (2011) 557–561.
X. Dong, et al., Multiple bioanalytical method to reveal developmental biological responses in zebratil embryos exposed to triclocarban, Chemosphere 193 (2018) 251–258.
S. Barros, et al., Chronic effects of triclocarban in the amphibid Gammarus locusta: behavioural and biochemical improvement, Ecotoxicology. Environ. Safety. 135 (2017) 276–283.
Y. Wu, F.A. Beland, J.-L. Fang, Effect of triclosan, triclocarban, 2, 2-
X. Xu, et al., Urinary trichloroethylene levels and increased risk of attention deficit hyperactivity disorder among US school-aged children, Occupat. Environ. Med. 68 (8) (2011) 557–561.
X. Dong, et al., Multiple bioanalytical method to reveal developmental biological responses in zebratil embryos exposed to triclocarban, Chemosphere 193 (2018) 251–258.