Vitamin D differentially regulates *Salmonella*-induced intestine epithelial autophagy and interleukin-1β expression

Fu-Chen Huang

Abstract

AIM

To investigate the effects of active vitamin D3 on autophagy and interleukin (IL)-1β expression in *Salmonella*-infected intestinal epithelial cells (IECs).

METHODS

Caco-2 cells, NOD2 siRNA-, Atg16L1 siRNA- or vitamin D receptor (VDR) siRNA-transfected Caco-2 cells were pretreated with 1,25-dihydroxyvitamin D3 (1,25D3), and then infected by wild-type *S. typhimurium* strain SL1344. The conversion of LC3-I to LC3-II was detected by Western blot analysis and LC3 + autophagosome was analyzed by immunofluorescence. Caco-2 cells or VDR siRNA-transfected cells were pretreated with 1,25D3, and then infected by SL1344. Membrane protein and total RNA were analyzed by Western blot and RT-PCR for VDR and Atg16L1 protein and mRNA expression, respectively. Atg16L1 siRNA-transfected Caco-2 cells were pretreated by 1,25D3 and then infected with SL1344. Total RNA was analyzed by RT-PCR for IL-1β mRNA expression.

RESULTS

The active form of vitamin D, 1,25D3, showed enhanced VDR-mediated Atg16L1 mRNA expression, membranous Atg16L1 protein expression leading to enhanced autophagic LC3II protein expression and LC3 punctae in *Salmonella*-infected Caco-2 cells which was counteracted by Atg16L1 and VDR siRNA, but Atg16L1 mediated suppression of IL-1β expression. Thus, active vitamin D may enhance autophagy but suppress inflammatory IL-1β expression in *Salmonella*-infected IECs.
CONCLUSION
Active vitamin D might enhance autophagic clearance of Salmonella infection, while modulation of inflammatory responses prevents the host from detrimental effects of overwhelming inflammation.

Key words: Vitamin D; Atg16L1; Autophagy; Interleukin-1β; Salmonella; Intestinal epithelia

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In this study, the enhanced autophagy expression and down-regulation of inflammatory responses in Salmonella-infected intestinal epithelial cells by active vitamin D provide a rationale of its alternative therapy for invasive bacterial infection and other inflammatory disorders.

Huang FC. Vitamin D differentially regulates Salmonella-induced intestine epithelial autophagy and interleukin-1β expression. World J Gastroenterol 2016; 22(47): 10353-10363 Available from: URL: http://www.wjgnet.com/1007-9327/full/v22/47/10353.htm DOI: http://dx.doi.org/10.3748/wjg.v22.i47.10353

INTRODUCTION
The incidence of food-borne human infections caused by Salmonella enteritidis and by multi-drug-resistant strains of S. typhimurium has increased substantially[1], with similar trends being reported from Europe[2] and Taiwan[3]. Intestinal epithelial cells (IECs) serve as not only a barrier to bacteria colonizing the gut but also rather as an integral and essential component of the innate mucosal immune system of the host.

Although clear evidence of the beneficial effects of vitamin D on a variety of systemic diseases exists, there has been renewed interest in this vitamin, which has a broad range of activities on microbial infections. Recent research has begun to unravel important roles of vitamin D in the regulation of innate immunity[4]. Vitamin D may play a role in protecting against infection during pregnancy and bacterial vaginosis. Four studies included in a systemic review[5] demonstrated the therapeutic effect of vitamin D supplementation for colitis. Thus, supplementation with vitamin D3 could provide a novel strategy to reduce antibiotic use and indirectly prevent the emerging epidemic of bacterial resistance.

The role of autophagy has been expanded in recent years to include diverse immunological effector and regulatory functions. Increasing evidence indicates the potential of autophagy in controlling infections by directing intracellular or ingested pathogens to lysosomes, leading to their destruction[6]. Several studies have linked autophagy to host defense against several intracellular bacterial pathogens that use different strategies to establish infection, such as Listeria monocytogenes, Shigella flexneri[7] and S. enterica serovar typhimurium[8]. Therefore, dissecting the molecular mechanisms by which Salmonella utilizes autophagy has the potential to lead to the identification of novel drug candidates to prevent and treat Salmonella infection and related intracellular infections.

Autophagy plays an essential role in the clearance of Salmonella by alveolar macrophages. Previous studies have linked nucleotide-binding oligomerization domain-containing protein 2 (NOD2) function to autophagy[9,10]. NOD2 is critical for the autophagic response to invasive bacteria, which recruits autophagy-related protein 16-like 1 (ATG16L1) to the plasma membrane at bacterial entry sites. The observation that NOD2 is a vitamin D target gene[11,12] and vitamin D receptor (VDR) transcriptionally regulates ATG16L1 as a VDR target gene[13,14] also links vitamin D signaling to autophagy. Atg16L1 is required for autophagy in IECs and protection of mice from Salmonella infection[15]. 1,25-dihydroxyvitamin D3 (1,25D3), the active form of vitamin D, up-regulates NOD2 mRNA expressions in Salmonella-infected IECs[16], and the interaction of NOD2 and Arg16L1 plays a critical role in Salmonella-induced autophagy in IECs[17]. These results strongly suggest that stimulation of NOD2 and Atg16L1 expression in human epithelial cells by 1,25D3 would recruit Atg16L1 to boost autophagy, which would then contribute to innate immune responses of vitamin D to bacterial infection.

Therefore, this study was designed to investigate the effects of active vitamin D3 on Salmonella-induced autophagy via enhanced NOD2 and Atg16L1 mRNA expression and membranous recruitment of proteins in IECs.

MATERIALS AND METHODS

Bacterial strains
The wild-type Salmonella enterica serovar typhimurium (S. typhimurium) strain used in this work was SL1344. Salmonella inoculum was prepared as described previously[16,18]. Bacteria were grown overnight in static cultures with minimal aeration in LB medium. The bacteria were collected by centrifugation at 14000 g for 5 min, washed with sterile PBS, and resuspended in tissue culture medium without antibiotics.

Cell culture and infection
Caco-2 cells were purchased from the American Type Culture Collection (Manassas, VA, United States) and were cultured as described previously[16,18,19]. Briefly, Caco-2 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin in a 5% CO2 atmosphere at 37 °C. Passage 10-30 was used for all experiments. The cells were seeded in tissue culture
plates and grown to 60%-75% confluence. About 1 h before addition of bacteria, the cells were washed and placed in antibiotic-free medium.

Cell fractionation
Cytosolic, membranous and nuclear extracts from untreated and treated cultured cells were prepared by the method previously described.\(^{[16,19,20]}\) Protein concentrations in cell fractions were determined using a Bio-Rad assay kit.

Western blotting
Equal amounts of total protein from colon tissue or cultured cells were separated by SDS-PAGE and then transferred to nitrocellulose membranes by semi-dry blotting as previously described.\(^{[16,19,20]}\) After blocking the membranes with 5% non-fat dry milk, they were probed with antibodies to either ATG16L1 (Cell Signaling, Beverly, MA, United States), NOD2 (Cayman Chemical, Ann Arbor, MI, United States), LC3B (Cell Signaling) or total GAPDH (Santa Cruz Biotechnology, Dallas, TX, United States). After washes, the membranes were incubated with appropriate horseradish peroxidase-associated secondary antibodies before signals were visualized with the enhanced chemiluminescence detection system (Amersham Bioscience, Piscataway, NJ, United States).

RNA isolation and cDNA synthesis
Total RNA was prepared from control or infected cells with the Trizol reagent (Invitrogen Corporation, Carlsbad, CA, United States), following the manufacturer’s directions. The RNA was reverse transcribed using the GeneAmp kit (Roche Diagnostics, Nutley, NJ, United States) as described in detail earlier.\(^{[16]}\)

Real-time reverse transcription PCR
Real-time reverse transcription PCR analyses were performed in a fluorescence temperature cycler (LightCycler; Roche Diagnostics) as described previously.\(^{[16,19,20]}\) to determine the NOD2 and Atg16L1 and interleukin-1β (IL-1β) mRNA expression levels using the comparative threshold cycle (ΔΔCT) method of relative quantitation.

Immunofluorescence
The immunofluorescence study of LC3 was performed as previously described.\(^{[16,19,20]}\) Briefly, cultured cells after treatment and infection were washed, fixed and permeabilized and then incubated with rabbit anti-LC3B (Cell Signaling Technology). Secondary antibody was goat anti-rabbit IgG conjugated with Alexa Fluor 594 fluorochrome (Invitrogen Molecular Probes, Eugene, OR, United States). After extensive washing, the nucleic acid stain 4,6-diamidino-2-phenyindole dihydrochloride (DAPI) was added to visualize the nucleus. Then, the coverslips were examined under immunofluorescence conditions by using a Zeiss Axio Observer Z1 (Carl Zeiss, Jena, Germany). The percentage of cells with endogenous LC3 punctate was determined by counting the number of positively stained cells from 100 randomly chosen cells from three separate experiments.

RNA interference in cultured cells
RNA interference (RNAi) experiments in cultured cells were performed as described previously.\(^{[16,19,20]}\) Cells were transfected according to the manufacturer’s protocol, which was modified in our Lab. After 48 to 72 h incubation in a 37 °C incubator, the cells were infected by bacteria, and then the cells were lysed and RNA or proteins extracted over ice for further experiments.

Cell viability and morphologic features
Representative cell populations from each condition were examined under light microscopy. No significantly morphologic change was observed under any condition. Cell viability in untreated or treated cells was found to be > 90% as analyzed by trypan blue exclusion (data not shown).

Statistical analysis
All above experiments were carried out at least twice with similar results. Statistical analysis was performed using the paired Student’s t-test and ANOVAs (StatView; SAS Institute, Cary, NC, United States). P values < 0.05 were considered significant.

RESULTS

1,25 D3 enhanced the autophagy expression in Salmonella-infected Caco-2 cells
In order to explore if active vitamin D plays a role in Salmonella-induced autophagy in IECs, Caco-2 cells were pretreated with 1,25D3, and then infected by wild-type S. typhimurium strain SL1344. The conversion of LC3-I to LC3-II was detected by Western blot analysis and LC3+ autophagosome was analyzed by immunofluorescence. As shown in Figure 1, Salmonella-induced autophagy in Caco-2 cells was accompanied by an increase in the conversion of LC3-I to LC3-II (Figure 1A and B) and increased LC3 punctae-containing cells in immunofluorescent analysis (Figure 2C and D), while 1,25D3 enhanced Salmonella-induced LC3-II protein and LC3+ autophagosome expressions in Caco-2 cells. This suggested that 1,25D3 up-regulated the autophagic process in Salmonella-infected Caco-2 cells.

Involvement of VDR in 1,25D3-enhanced Atg16L1 mRNA expressions in Salmonella-infected Caco-2 cells
To examine if 1,25D3 up-regulates Salmonella-induced Atg16L1 mRNA expression in IECs, Caco-2 cells were untreated or pretreated with 1,25D3 and then infected with wild-type Salmonella strain SL1344 for 1 h. Total
A previous study demonstrated that 1,25D₃ enhanced NOD2 and Atg16L1 mRNA and membranous protein expression in Salmonella-infected Caco-2 cells depending on VDR expression in Salmonella-infected Caco-2 cells. As shown in Figure 4, 1,25D₃ enhanced the membranous Atg16L1 protein expression in Salmonella-infected Caco-2 cells compared to Salmonella infection only. Following knockdown of VDR, the 1,25D₃-enhanced Atg16L1 membranous protein expression in Salmonella-infected cells was diminished in VDR-silenced cells (Figure 4), but not in control siRNA-silenced cells. Therefore, specific suppression by siRNA targeting VDR attenuated the enhanced effect of 1,25D₃ on Atg16L1 membranous protein expression in Salmonella-infected Caco-2 cells.

Figure 1 Effect of 1,25D₃ on autophagy expression in Salmonella-infected Caco-2 cells. Caco-2 cells were untreated (CON) or treated with 1,25D₃ (D3) and then infected by *S. typhimurium* wild-type strain SL1344 (SL). Immunoblots were performed on whole cell lysates with antibody to detect autophagy LC3I/II protein expression. The results shown are representative of three separate experiments. GAPDH was detected for normalization of cytosolic protein. Representative immunoblots (A) and densitometric quantification of immunoreactive bands (B) are shown. The relative band intensities of LC3-II in untreated (white) and treated (black) Caco-2 cells were quantified as fold-increases compared with the control cells.

RNA was analyzed by real-time quantitative PCR for Atg16L1 mRNA expression. As shown in Figure 3B, 1,25D₃ enhanced Atg16L1 mRNA expression in Salmonella-infected Caco-2 cells compared to Salmonella infection alone.

To investigate if VDR was involved in the 1,25D₃-mediated up-regulation of Atg16L1 mRNA in Salmonella-infected cells, VDR siRNA-transfected cells were untreated or treated with 1,25D₃ for 6 h and infected by *S. typhimurium* wild-type strain SL1344. Knockdown of VDR was confirmed by Western blot (Figure 3A). Following knockdown of VDR, the 1,25D₃-enhanced Atg16L1 mRNA expression in Salmonella-infected cells was diminished in VDR-silenced cells (Figure 3B), but not in control siRNA-silenced cells. Therefore, specific suppression by siRNA targeting VDR attenuated the enhanced effect of 1,25D₃ on Atg16L1 mRNA expression in Salmonella-infected Caco-2 cells.

Figure 2 Immunofluorescence study (A) to show numerous LC3 punctae (red) in *Salmonella*-infected Caco-2 cells. Western blot of Atg16L1 proteins expression was analyzed in membranous extract of *Salmonella*-infected Caco-2 cells in the presence or absence of 1,25D₃. As shown in Figure 4, 1,25D₃ enhanced the membranous Atg16L1 protein expression in *Salmonella*-infected Caco-2 cells compared to *Salmonella* infection only. Following knockdown of VDR, the 1,25D₃-enhanced Atg16L1 membranous protein expression in *Salmonella*-infected cells was diminished in VDR-silenced cells (Figure 4), but not in control siRNA-silenced cells. Therefore, specific suppression by siRNA targeting VDR attenuated the enhanced effect of 1,25D₃ on Atg16L1 membranous protein expression in *Salmonella*-infected Caco-2 cells.

Involvement of NOD2 and Atg16L1 in 1,25D₃-mediated enhancement of autophagy expression in Salmonella-infected Caco-2 cells

Based on the above observation that 1,25D₃ enhanced NOD2 and Atg16L1 mRNA expressions in *Salmonella*-infected Caco-2 cells and the interaction of NOD2 and Atg16L1 in *Salmonella*-induced autophagy in IECs, we investigated the involvement of NOD2 or Atg16L1 in 1,25D₃-enhanced autophagy in *Salmonella*-infected IECs. NOD2 siRNA- or Atg16L1 siRNA-transfected Caco-2 cells were untreated or pretreated with 1,25D₃ and then infected with wild-type *Salmonella* strain SL1344 for 1 h. Knockdown of NOD2 or Atg16L1 with specific siRNA in Caco-2 cells was confirmed by Western blot in a previous report. The conversion of LC3-I to LC3-II was detected by Western blot analysis (Figure 2A and B). The Caco-2 cells were fixed, permeabilized, immunostained with antibody to endogenous LC3 and visualized by fluorescence microscopy. Immunofluorescence study (Figure 2C) showed numerous LC3 punctae (red) in *Salmonella*-infected cells. Pre-treatment of the cells with 1,25D₃ significantly increased the LC3II protein as above, while NOD2 siRNA- or Atg16L1-transfected Caco-2 cells significantly diminished 1,25D₃-enhanced conversion of LC3 (Figure 2A and B) to a level below that detected in the SL1344 infection only group. The 1,25D₃-enhanced percentage of cells showing accumulation of LC3 punctae was significantly diminished by NOD2 or Atg16L1 siRNA (Figure 2C and D). Our results suggest that NOD2 and Atg16L1 become involved in the effect of 1,25D₃ on autophagy expression in *Salmonella*-infected Caco-2 cells.

1,25D₃ up-regulated membranous Atg16L1 protein expression in Salmonella-infected Caco-2 cells, depending on VDR

A previous study demonstrated that 1,25D₃ enhanced NOD2 mRNA and membranous protein expression in IECs. Likewise, we proceeded to investigate the effect of 1,25D₃ on Atg16L1 protein expression in IECs. Western blot of Atg16L1 proteins expression was analyzed in membranous extract of *Salmonella*-infected Caco-2 cells in the presence or absence of 1,25D₃. As shown in Figure 4, 1,25D₃ enhanced the membranous Atg16L1 protein expression in *Salmonella*-infected Caco-2 cells compared to *Salmonella* infection only. Following knockdown of VDR, the 1,25D₃-enhanced Atg16L1 membranous protein expression in *Salmonella*-infected cells was diminished in VDR-silenced cells (Figure 4), but not in control siRNA-silenced cells. Therefore, specific suppression by siRNA targeting VDR attenuated the enhanced effect of 1,25D₃ on Atg16L1 membranous protein expression in *Salmonella*-infected Caco-2 cells.
Figure 2 Involvement of NOD2 and Atg16L1 in 1,25D3-enhanced autophagy expression in Salmonella-infected Caco-2 cells. Caco-2 cells were transfected with control siRNA, NOD2 siRNA or Atg16L1 siRNA (siCON: non-target control siRNA; siNOD2: siRNA to NOD2; siAtg16L1: siRNA to Atg16L1) for 48 h. The transfected cells were left uninfected (CON) or infected by wild-type *S. typhimurium* strain SL1344 (SL) in the absence or presence of 1,25D3 (D3). Knockdown of NOD2\(^{[21]}\) and Atg16L1\(^{[18]}\) was confirmed previously by Western blot. The transfected cells were pretreated with 1,25D3 prior to wild-type *S. typhimurium* strain SL1344 infection for 1 h. Immunoblotting was performed on whole cell lysates with antibody to detect autophagy LC3-I/II protein expression. The results shown are representative of three separate experiments. GAPDH was detected for normalization of cytosolic protein. Representative immunoblots (A) and densitometric quantification of immunoreactive bands (B) are shown. The relative band intensities of LC3-I/II in Caco-2 cells are quantified as fold-increases compared with the control cells. The cells were fixed, permeabilized and stained with anti-LC3 (red), and LC3 puncta formation was detected by a confocal microscope; representative images of LC3 punctae are depicted. Scale bar = 10 μm (C); The percentage of cells showing accumulation of LC3 punctae is reported (D). Data are mean ± SEM of three independent experiments. \(^a\)P < 0.05.
detect mRNA expression. As shown in Figure 5, VDR mRNA and protein were up-regulated in Salmonella-infected cells and even higher in 1,25D3-treated cells.

Involvement of VDR in 1,25D3-enhanced autophagy expression in Salmonella-infected Caco-2 cells

To investigate the role of VDR in 1,25D3-enhanced autophagy expression in Salmonella-infected Caco-2 cells, VDR siRNA-transfected Caco-2 cells were untreated or pretreated by 1,25D3 and then infected with wild-type Salmonella strain SL1344 for 1 h. The conversion of LC3-I to LC3-II was detected by Western blot analysis and LC3 autophagosome was analyzed by immunofluorescence. 1,25D3 enhanced Salmonella-induced LC3-II protein and LC3 autophagosome expressions in Caco-2 cells, while VDR siRNA-transfected Caco-2 cells significantly diminished the enhancement of 1,25D3 on the conversion of LC3 (Figure 6A and B) or the percentage of LC3 punctae (Figure 6C and D). Our results suggest that VDR is involved in the effect of 1,25D3 on autophagy expression in Salmonella-infected Caco-2 cells.

Involvement of Atg16L1 in 1,25D3-mediated suppression of Salmonella-induced IL-1β mRNA expression in Caco-2 cells

In order to determine the effect of 1,25D3 on IL-1β mRNA expression in Salmonella-infected Caco-2 cells and the involvement of Atg16L1, Atg16L1 siRNA-transfected Caco-2 cells were untreated or pretreated by 1,25D3 and then infected with wild-type Salmonella strain SL1344 for 1 h. Knockdown of Atg16L1 with specific siRNA in Caco-2 cells was confirmed previously. Total RNA was analyzed by real-time quantitative PCR for IL-1β mRNA expression. As shown in Figure 7, Salmonella-induced IL-1β mRNA expression in Caco-2 cells was down-regulated by 1,25D3. Following knockdown of Atg16L1, the 1,25D3-mediated suppression of IL-1β mRNA expression in Salmonella-infected cells was diminished in Atg16L1-silenced cells, but not in control siRNA-silenced cells (data not shown). Therefore, specific suppression by...
siRNA targeting Atg16L1 attenuated the suppressive effect of 1,25D3 on Salmonella-induced IL-1β mRNA expression in Caco-2 cells.

DISCUSSION

Vitamin D is an important mediator of intestinal epithelial defenses against infectious agents. Vitamin D deficiency predisposes to more severe intestinal injury in an infectious model of colitis. However, the mechanism is unknown. Based on previous reports that 1,25D3 signaling induces NOD2 expression in human IECs and activated NOD2 recruits ATG16L1 to control autophagy to kill Salmonella, we investigated the effect of vitamin D on autophagy expression in IECs after Salmonella infection and the involvement of NOD2 and Atg16L1. We observed that 1,25D3 increased the Atg16L1 mRNA (Figure 3) and membranous protein expression (Figure 4) in Salmonella-infected Caco-2 cells and the enhancement of 1,25D3 on autophagy expression in Salmonella-infected Caco-2 cells (Figure 1) is NOD2- and Atg16L1-dependent (Figure 2). It suggests vitamin D enhances autophagy in Salmonella-infected IECs, depending on enhanced NOD2 and Atg16L1 expression. Atg16L1 is required for autophagy in IECs and protection of mice from Salmonella infection. Additionally, the association of autophagy-related Atg16L1 gene polymorphism with sepsis severity in patients with sepsis and ventilator-associated pneumonia provides the rationale to investigate the role of Atg16L1 gene polymorphism in patients with septic complication in Salmonella colitis and potential therapy of active vitamin D on invasive microorganisms.

ATG16L1 is a VDR target gene and VDR regulates autophagic activity through ATG16L1. Intestinal epithelial VDR deletion leads to defective autophagy in a colitis model. Lack of intestinal epithelial VDR down-regulates expression of Atg16L1 and the resulting microbial dysbiosis may sensitize the colonic mucosa to chemical-induced colitis. Low levels of intestinal epithelial VDR correlated with reduced ATG16L1 and dysbiotic microbial ecology dominated by intestinal Bacteroides known to contribute to the pathogenesis of inflammatory bowel disease (IBD). An increased risk of IBD following enteric infections with Salmonella was reported. The abnormalities in the handling of intracellular bacteria through autophagy might play a role in Crohn’s disease pathogenesis. This indicates the fundamental relationship between VDR, autophagy, and gut microbial assemblage that is essential for maintaining intestinal homeostasis, but also in contributing to the pathophysiology of IBD. 1,25D3 up-regulates the VDR through stabilization of the receptor in rat intestinal epithelial cells (IEC-6) or the activation of gene expression in cells other than IECs. Pretreatment with 1,25D3 can increase the VDR protein expression in Caco-2 cells. Colonic epithelial VDR levels are markedly reduced in patients with inflammatory bowel diseases or in experimental colitis models, whereas vitamin D analog therapy that ameliorates colitis up-regulates epithelial VDR.

Thus, active vitamin D may enhance VDR expression to maintain intestinal homeostasis, induce autophagic defense against Salmonella infection and prevent IBD attack. We demonstrated that 1,25D3 enhances VDR mRNA and protein expression (Figure 5), which is involved in 1,25D3-enhanced Atg16L1 mRNA (Figure 3).
and protein expression (Figure 4) in Salmonella-infected Caco-2 cells, subsequently resulting in enhanced Atg16L1-mediated autophagy (Figure 2). Collectively, our study suggests that 1,25D3 may have applicability for infectious diseases and autoimmune diseases through its actions on ATG16L1 and VDR.

Mice lacking VDR are much more susceptible to dextran sodium sulfate (DSS)-induced mucosal injury, leading to extensive ulceration and early death\(^\text{[34]}\). Chemical-induced colitis in the VDR knockout mice was accompanied by high colonic expression of TNF-\(\alpha\), IL-1\(\alpha\), and IL-1\(\beta\)\(^\text{[35]}\). VDR knockout mice were hyper-responsive to exogenously injected lipopolysaccharide, and cultures of the peritoneal exudates of moribund DSS-treated VDR knockout mice were positive for bacterial growth. This suggests that VDR may suppress overwhelming inflammation and maintain intestinal epithelial integrity to prevent bacterial invasion during colitis. Treatment of IL-10 knockout mice with 1,25D3 resulted in the suppression of IBD symptoms\(^\text{[36]}\). 1,25D3 in the diet or delivered rectally decreased the severity and extent of inflammation in wild-type mice\(^\text{[35]}\). Furthermore, human studies documented some benefits of supplemental vitamin D in maintaining remission of Crohn’s disease\(^\text{[37]}\). However, the mechanism is not clear. Vitamin D hormone not only can induce VDR expression\(^\text{[38]}\) but also can suppress TNF-\(\alpha\) production\(^\text{[39]}\). Here, we observed that the enhancement of 1,25D3 on Atg16L1 expression depends on VDR (Figures 3 and 4) while 1,25D3 suppressed Atg16L1-mediated IL-1\(\beta\) expression (Figure 7). Thus, gut epithelial VDR signaling enhanced by active vitamin D could be a useful therapeutic target in the management of IBD and appears to play an essential role in controlling mucosal inflammation.

Sorbara et al\(^\text{[40]}\) showed that Atg16L1 suppresses inflammatory cytokines induced by NOD2 signaling in an autophagy-independent manner. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1\(\beta\) production\(^\text{[41]}\). Atg16L1 polymorphisms exhibit an excessive production of IL-1\(\beta\) in human peripheral mononuclear cells\(^\text{[42]}\). Thus, in theory,
vitamin D therapy can shift the balance to favor inhibition of inflammation. Here, we showed that 1,25D3 suppresses Salmonella-induced IL-1β mRNA expression depending on Atg16L1 (Figure 7). IL-1β is one of the key mediators of intestinal inflammation in IBD, with a role in amplifying mucosal inflammation, consistent with the finding that IL-1β is up-regulated in IBD patients and animal models. The IL-1β-induced increase in intestinal epithelial tight junction permeability has been postulated to be an important pathogenic mechanism contributing to intestinal inflammation. This could be a mechanism by which vitamin D therapy ameliorates IBD.

Limitations
Almost all of the current data on how vitamin D can influence innate immune function has stemmed from studies of human cells. A limited number of animal models have been utilized with varying results, and future studies will need to improve this lack significantly. Finally, intestinal VDR expression was lower in patients with active Crohn’s disease compared to uninfected control cells (CON). Results are represented as mean ± SEM for at least three determinations from independent experiments. *P < 0.05.

Figure 7 Involvement of Atg16L1 in suppressed Salmonella-induced IL-1β mRNA expression in Caco-2 cell by 1,25D3. Caco-2 cells were transfected with wild-type S. typhimurium strain SL1344 (SL) infection for 1 h. Total RNA was prepared after infection and analyzed by real-time quantitative PCR to estimate amounts of IL-1β transcript. The amount of IL-1β mRNA produced, normalized to the corresponding amount of GAPDH transcript, is shown as the fold-increase over uninfected control cells (CON). Results are represented as mean ± SEM for at least three determinations from independent experiments. *P < 0.05.

ACKNOWLEDGMENTS
We thank the Stem Cell Research Core Laboratory (grant CLRPG8B0052) for technical support.

REFERENCES
1 Glynn MK, Bopp C, Dewitt W, Dabney P, Mokhtar M, Angulo...
De Novo sphingolipid synthesis is essential for

Huang FC, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gut 2010; 59: 1360-141, 1630-141, [PMID: 20637199]

Huang FC. De Novo sphingolipid synthesis is essential for Salmonella-induced autophagy and human beta-defensin 2 expression in intestinal epithelial cells. Gut Pathog 2016; 8: 5 [PMID: 26893616 DOI: 10.1186/s13099-016-0088-2]

Huang FC. The critical role of membrane cholesterol in salmonella-induced autophagy in intestinal epithelial cells. Int J Mol Sci 2014; 15: 12558-12572 [PMID: 25029544 DOI: 10.3390/ijms15071258]

Huang FC. Differential regulation of interleukin-8 and human beta-defensin 2 in pseudomonas aeruginosa-infected intestinal epithelial cells. BMC Microbiol 2014; 14: 275 [PMID: 25433669 DOI: 10.1186/s12866-014-0275-6]

Huang FC. Regulation of Salmonella flagellin-induced interleukin-8 in intestinal epithelial cells by muramyl dipeptide. Cell Immunol 2012; 278: 1-9 [PMID: 23121969 DOI: 10.1016/j.cellimm.2012.06.013]

Assa A, Vong L, Pinnell LJ, Avitzur N, Johnson-Henry KC, Sherman PM. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. J Infect Dis 2014; 210: 1296-1305 [PMID: 24755435 DOI: 10.1093/infdis/jiu235]

Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Netea MG, Giamarellos-Bourboulis EJ. Association of autophagy-related 16-like 1 (ATG16L1) gene polymorphism with sepsis severity in patients with sepsis and ventilator-associated pneumonia. Eur J Clin Microbiol Infect Dis 2014; 33: 1609-1614 [PMID: 24791954 DOI: 10.1007/s10096-014-2118-7]

Jess T, Simonsen J, Nielsen NM, Jørgensen KT, Bager P, Ei belthor S, Frisch M. Enteric Salmonella or Campylobacter infections and the risk of inflammatory bowel disease. Gut 2011; 60: 318-324 [PMID: 21193449 DOI: 10.1136/gut.2010.223396]

Lapauquette D, Darfeulie-Michaud A. Abnormalities in the handling of intracellular bacteria in Crohn’s disease. J Gastroenterol Hepatol 2010; 24 Suppl 1: S26-S29 [PMID: 20616747 DOI: 10.1111/j.1440-1746.2010.06557.x]

Kuballa P, Huet R, Riaux JD, Daly MJ, Xavier RJ. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS One 2008; 3: e3391 [PMID: 18582389 DOI: 10.1371/journal.pone.0003391]

Messer JS, Murphy SF, Logsdon MF, Lodelo JP, Grimm WA, Bartulis SJ, Vogel TP, Burn M, Boone DL. The Crohn’s disease: associated ATG16L1 variant and Salmonella invasion. BMJ Open 2013; 3: [PMID: 23794574 DOI: 10.1136/bmjopen-2013-002790]

Billmann-Born S, Lipinski S, Böck J, Till A, Rosenstiel P, Schreiber S. The complex interplay of NOD-like receptors and the autophagy machinery in the pathophysiology of Crohn disease. Eur J Cell Biol 2011; 90: 593-602 [PMID: 21146253 DOI: 10.1016/j.ejcb.2010.01.015]

Wiese RJ, Uhland-Smith A, Ross TK, Prahm JL, DeLuca HF. Up-regulation of the vitamin D receptor in response to 1,25-dihydroxyvitamin D3 results from ligand-induced stabilization. J Biol Chem 1992; 267: 20082-20086 [PMID: 13281912]

Mangelsdorf DJ, Pike JW, Haussler MR. Avian and mammalian receptors for 1,25-dihydroxyvitamin D3: in vitro translation to characterize size and hormone-dependent regulation. Proc Natl Acad Sci USA 1987; 84: 354-358 [PMID: 2432610]

Sun J, Mustafi R, Cerda S, Chumsangsri A, Xia YR, Li YC, Bissommete M. Lithocholic acid down-regulation of NF-kappaB activity through vitamin D receptor in colorectal cancer cells. J Cell Sci
Steroid Biochem Mol Biol 2008; 111: 37-40 [PMID: 18515093 DOI: 10.1016/j.jsbmb.2008.01.003]
33 Li YC, Chen Y, Du J. Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation. J Steroid Biochem Mol Biol 2015; 148: 179-183 [PMID: 25603468 DOI: 10.1016/j.jsbmb.2015.01.011]
34 Kong J, Zhang Z, Musch MW, Ning G, Sun J, Hart J, Bissonnette M, Li YC. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol 2008; 294: G208-G216 [PMID: 17962355 DOI: 10.1152/ajpgi.00398.2007]
35 Froicu M, Cantorna MT. Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol 2007; 8: 5 [PMID: 17397543 DOI: 10.1186/1471-2172-8-5]
36 Cantorna MT, Mansick C, Bemiss C, Mahon BD. 1,25-Dihydroxycholecalciferol prevents and ameliorates symptoms of experimental murine inflammatory bowel disease. J Nutr 2000; 130: 2648-2652 [PMID: 11053501]
37 Meeker S, Seamons A, Maggio-Price L, Paik J. Protective links between vitamin D, inflammatory bowel disease and colon cancer. World J Gastroenterol 2016; 22: 933-948 [PMID: 26811638 DOI: 10.3745/wjg.v22.i3.933]
38 Zella LA, Kim S, Shevde NK, Pike JW. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol 2006; 20: 1231-1247 [PMID: 16497728 DOI: 10.1210/me.2006-0015]
39 Chen Y, Liu W, Sun T, Huang Y, Wang Y, Deb DK, Yoon D, Kong J, Thadhani R, Li YC. 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages. J Immunol 2013; 190: 3687-3695 [PMID: 23436936 DOI: 10.4049/jimmunol.1202373]
40 Sorbara MT, Ellison LK, Ramjeet M, Travassos LH, Jones NL, Girardin SE, Philpott DJ. The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. Immunity 2013; 39: 858-873 [PMID: 24238340 DOI: 10.1016/j.immuni.2013.10.013]
41 Saltib T, Fujita N, Jung MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008; 456: 264-268 [PMID: 18849965 DOI: 10.1038/nature07383]
42 Plantinga TS, Crisan TO, Oosting M, van de Veerdonk FL, de Jong DJ, Philpott DJ, van der Meer JW, Girardin SE, Joosten LA, Netea MG. Crohn’s disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 2011; 60: 1229-1235 [PMID: 21406388]
43 McAlindon ME, Hawkey CJ, Mahida YR. Expression of interleukin 1 beta and interleukin 1 beta converting enzyme by intestinal macrophages in health and inflammatory bowel disease. Gut 1998; 42: 214-219 [PMID: 9536946]
44 Ludwiczek O, Vannier E, Borggraefe I, Kaser A, Siegmund B, Dinarello CA, Tilg H. Imbalance between interleukin-1 agonists and antagonists: relationship to severity of inflammatory bowel disease. Clin Exp Immunol 2004; 138: 323-329 [PMID: 15408044 DOI: 10.1111/j.1365-2249.2004.02599.x]
45 Cominelli F, Nast CC, Clark BD, Schindler R, Liere R, Eysselein VE, Thompson RC, Dinarello CA. Interleukin 1 (IL-1) gene expression, synthesis, and effect of specific IL-1 receptor blockade in rabbit immune complex colitis. J Clin Invest 1990; 86: 972-980 [PMID: 2168444 DOI: 10.1172/JCI147997]
46 Liu W, Chen Y, Golan MA, Annunziata ML, Du J, Dougherty U, Kong J, Musch M, Huang Y, Pekow J, Zheng C, Bissonnette M, Hanauer SB, Li YC. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J Clin Invest 2013; 123: 3983-3996 [PMID: 23945234 DOI: 10.1172/JCI65842]

P-Reviewer: Rigby RG S-Editor: Yu J L-Editor: Filipodia E-Editor: Wang CH
