Improved fluorescent *Listeria* spp. biosensors for analysis of antimicrobials by flow cytometry

Sebastian J. Reich | Jonas Stohr | Oliver Goldbeck | Bastian Fendrich | Peter Crauwels | Christian U. Riedel

Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany

Correspondence
Christian U. Riedel, Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany. Email: christian.riedel@uni-ulm.de

Funding information
Bundesministerium für Bildung und Forschung, Grant/Award Number: 031B0826A

Abstract
The global increase in antibiotic resistance of pathogenic microorganisms requires the identification and characterization of novel antimicrobials. Bacterial biosensors expressing fluorescent proteins such as pHluorin variants are suitable for high-throughput screenings. Here, we present *Listeria* spp. pH-sensitive biosensors with improved fluorescence for single-cell analysis of antimicrobials by flow cytometry.

KEYWORDS
antimicrobials, biosensors, fluorescence, *Listeria*, single-cell analysis

The increasing global challenges with (multi)drug-resistant bacteria highlight the demand for novel antimicrobial compounds to treat life-threatening infections (World Health Organization, 2014). Despite this growing need for novel anti-infective agents, the number of new antibiotics on the market is steadily decreasing (Theuretzbacher et al., 2020; Towse et al., 2017). A major bottleneck in the development of new antimicrobial drugs is the lack of rapid, cost-effective, and reliable screening tools for lead compound identification (Miethke et al., 2021). Recently, our group has developed live biosensors of the food-borne pathogen *Listeria monocytogenes* for the detection of antimicrobial compounds that kill target bacteria by pore formation and disruption of membrane integrity (Crauwels et al., 2018). The biosensor is based on monitoring intracellular pH by expression of the green fluorescent protein-derivative pHluorin, which is characterized by two distinct excitation peaks that change in relative fluorescence intensities in response to pH (Miesenböck et al., 1998). These biosensors were successfully used to determine the susceptibility of bacteria to the lantibiotic nisin, measure antimicrobial activity in supernatants for natural and recombinant producers of antimicrobial peptides, and screen a library of bacteria isolated from raw milk for producers of antimicrobials (Desiderato et al., 2021; Goldbeck et al., 2021; Weixler et al., 2022). Similar to the previously published biosensor strain *L. monocytogenes* EGDe/pNZ-P_{help}-pHluorin (*Lm pHin*), a new vector was constructed, in which the pHluorin gene was replaced with a gene for pHisentri2, a pHluorin derivative with enhanced fluorescence (Mahon, 2011). The backbone of pNZ44 (McGrath et al., 2001) was linearized by restriction with BglII and PstI (FastDigest enzymes, Thermo Fisher Scientific) to remove the p44 promoter. The strong, constitutive P_{help} promoter was amplified from pPL2luxP_{help} (Riedel et al., 2007) using primers P_{help-fw} (TTTTATATTACAGCTCCAATCATTATGCTTTGGCAGTTTATTC) and P_{help-rv} (CTTTACTCATGGTTTCACTCTTCTTCTAC) using Q5 polymerase (New England Biolabs) and a standard PCR protocol with 61.9°C annealing temperature and 15 s elongation time. The gene encoding pHluorin2 was obtained as a synthetic DNA fragment codon-optimized for *L. monocytogenes* by a commercial service provider (Eurofins Genomics) and amplified using primers pHin2LM_{fw} (GTAGAAGGAGAGTGAAACCATGAGTAAAGGTGAAGAATTATTTAC) and pHin2LM_{rv} (CATTATGCTTTGGCAGTTTATTC) and P_{help-rv} (CTTTACTCATGGTTTCACTCTTCTTCTAC) using Q5 polymerase, 58.6°C annealing, 45 s elongation). Vector backbone and PCR products were assembled in a single isothermal reaction as described by Gibson et al. (2009). Relevant parts of the resulting plasmid pNZ-pHin2LM (Figure 1a) were verified by Sanger
sequencing (Microsynth Seqlab). Correct plasmids were used to transform *L. monocytogenes* EGDe and *Listeria innocua* LMG 2785 by electroporation using a previously described protocol (Monk et al., 2008) and positive clones were selected on brain heart infusion (BHI) agar containing 10 µg/ml chloramphenicol. Following successful transformation, biosensor strains carrying plasmids pNZ-Phelp-pHLuorin or pNZ-pHin2^{Lm} were initially checked for fluorescence by imaging in an iBright™ FL1000 Imaging System (Thermo Fisher Scientific) with fluorescence detection mode at 488 nm (Figure 1b).

Both new strains containing pNZ-pHin2^{Lm} (Li pHin2, Lm pHin2) showed brighter fluorescence on agar plates than the previously published strain Lm pHin, whereas the empty vector control strain L. *innocua* LMG 2785/pNZ44 (Li pH44) showed no fluorescence above background.

To further analyze the fluorescence properties of the biosensors, bacteria were grown in BHI overnight (i.e., approx. 16 h), washed once in phosphate-buffered saline (PBS), and adjusted to an OD₆₀₀ of 3 in filter-sterilized (pore size 0.2 µm) *Listeria* minimal buffer (LMB) (Crauwels et al., 2018) adjusted to different pH (5.5–8.5). Aliquots of 100 µl were distributed into single wells of a black microtiter plate and mixed with 100 µl of LMB containing the cationic detergent cetyltrimethylammonium bromide (final concentration 0.002% w/v) for membrane disruption. After incubation for 30 min at room temperature, fluorescence excitation spectra (350–490 nm) were recorded at an emission wavelength of 520 nm using a Tecan Infinite® M200 multimode plate reader (Tecan).

Similar to the previously published *Lm* pHin (Crauwels et al., 2018), *L. innocua* LMG 2785/pNZ-pHin2^{Lm} (Li pH2) and *L. monocytogenes* EGDe/pNZ-pHin2^{Lm} (Lm pHin2) displayed the typical excitation spectrum of pHluorin proteins with excitation peaks at 400 and 475–480 nm (Figure 2). All three strains also showed the characteristic ratiometric, pH-dependent shift in fluorescence intensities across the excitation spectrum. However, fluorescence intensities were up to 6.7- and 9-fold higher for Li pHin2^{Lm} and Lm pHin2^{Lm} compared to Lm pHin depending on excitation wavelength and pH (Figure 2). This is in line with data showing about 8-fold higher fluorescence for pHluorin2 over pHluorin when expressed in eukaryotic cells (Mahon, 2011). To further demonstrate that the new biosensors behave similarly to the previously published strain, dose–response experiments were performed with nisin A and pediocin PA-1 (both purchased from Sigma-Aldrich), two antimicrobial peptides that kill target bacteria by disrupting membrane integrity (Brötz et al., 1998; Chikindas et al., 1993). In particular, 2-fold dilutions of the peptides were prepared in microtiter plates, starting with concentrations of 10 µg/ml nisin and 1.25 µg/ml pediocin. The sensor strains were prepared as described above and 100 µl aliquots were added to

![Figure 1](image1.png)

Figure 1 (a) Plasmid map of pNZ-pHin2^{Lm} with pHluorin2 codon-optimized for *Listeria monocytogenes* under control of the strong, constitutive Phelp-promoter, repC and repA encode replication proteins, and cat for a chloramphenicol acetyltransferase used for selection. (b) Fluorescence of *Listeria innocua* LMG 2785/pNZ44 (Li pH44), LMG 2785/pNZ-pHin2^{Lm} (Li pH2), *L. monocytogenes* EGDe/pNZ-pHin2^{Lm} (Lm pH2), or EGDe/pNZ-Phelp-pHLuorin (Lm pHin) imaged in an iBright FL1000 in an overlay (photograph and fluorescence detection mode at 488 nm).

![Figure 2](image2.png)

Figure 2 Relative fluorescence units at 520 nm (RFU) across a spectrum of excitation wavelengths (350–490 nm) of *Listeria innocua* LMG2785/pNZ-pHin2^{Lm} (Li pHin2, left), *Listeria monocytogenes* EGDe/pNZ-pHin2^{Lm} (Lm pHin2, middle), or EGDe/pNZ-Phelp-pHLuorin (Lm pHin, right). Bacteria were resuspended in LMB adjusted to the indicated pH and permeabilized with cetyltrimethylammonium bromide (0.002%). Values are means of *n* = 3 independent cultures per strain.
bacteriocin dilutions. After incubation for 30 min at room temperature in the dark, fluorescence at 510 nm was measured after excitation at the two maxima (400 and 470 nm) and the ratio 400/470 was calculated (Figure 3). This ratio is an indicator of the average cell integrity across the entire population of sensor bacteria in the well of the microtiter plate. All three strains had comparable dose–response curves and showed a complete shift in excitation ratios at concentrations of 2.5 µg/ml of nisin and 625 ng/ml of pediocin, respectively (Figure 3). Furthermore, the pHin2 sensor strains showed a higher dynamic range of excitation ratios between

FIGURE 3 Ratios of fluorescence intensities at 510 nm after excitation at 400 and 470 nm (ratio RFU 400/470) of *Listeria innocua* LMG 2785/pNZ-pHin2^{2m} (Li pHin2; black bars), *Listeria monocytogenes* EGDe/pNZ-pHin2^{2m} (Lm pHin2, red bars) or EGDe/pNZ P_{new}:pHluorin (Lm pHin, blue bars) in LMB containing nisin (left) or pediocin (right) at the indicated concentrations. All values are mean ± standard deviation (SD) of \(n = 3 \) independent cultures per strain.

FIGURE 4 Analysis of *Listeria* spp. biosensor strains by flow cytometry. (a) Gating strategy to identify single bacterial cells that express pHluorin (pHin pos.). Among all recorded events, bacteria were gated based on their forward and side scatter (FSC, SSC; left panel). Singlets were identified by plotting the FSC aspect ratio over the FSC (middle) and pHluorin (pHin pos.) singlets were analyzed for fluorescence intensity (emission wavelength 528 nm) after excitation with the 405 nm (Ex405/Em528) and 488 nm laser right (Ex488/Em528). (b) Histogram plot of fluorescence intensity in the singlet gate of Lm pHin (yellow), Lm pHin2 (red), Li pHin2 (green), and the empty vector control strain Li pNZ44 (black). (c) Dot plots of fluorescence intensity from the Ex405/Em528 and Ex488/Em528 channels of untreated Li pHin2 (left panel) or after incubation with nisin (10 µg/ml, 30 min; right panel), allowing discrimination between bacteria with intact or disrupted plasma membranes, respectively.
of 8 of 5

about 8

∼ 40 of 5

comparable regarding challenges with membrane
channel compared to

Lm and

intensity; MFI = 38,507 ± 2098AU;

interaction with homogenous fluorescence in the 405/528 nm (excitation

suspension were then analyzed. The gating strategy (Figure 4a)

above, subsequently diluted 1:50 in PBS pH = 6.2 and 50 µl of the

was as follows: (i) bacterial cells were identified based on FSC and

SSC; (ii) bacteria were then gated for singlet events based on the

FSC aspect ratio; (iii) singlet events (min. 10,000 per sample) were

analyzed for fluorescence intensity (in arbitrary units; AU) at

528 nm for both excitation lasers (405 and 488 nm, respectively).

This revealed that >98% of the (singlet) bacteria showed bright

fluorescence at 528 nm when excited with either the 405 or the

488 nm laser confirming homogenous expression of pHluorin2 by

Li pHin2 (Figure 4a). Similar results were obtained for

Lm pHin2 (Figure A1). All three biosensor strains showed a single

population with homogenous fluorescence in the 405/528 nm (excitation/emission) channel (Figure 4b). Flow cytometry confirmed

about 8-fold higher fluorescence of **Li** pHin2 (mean fluorescence

intensity; MFI = 38,507 ± 2098AU; N = 3 independent cultures)

and **Lm** pHin2 (MFI = 37,886 ± 530 AU) in the 405/528 nm

channel compared to **Lm** pHin (MFI = 4143 ± 515 AU), which is

in line with plate reader measurements (Figure 2). Additionally,

flow cytometry was performed on untreated and nisin-treated

(10 µg/ml, 30 min) **Li** pHin2 biosensors (Figure 4c) using PBS

pH = 6.2 as sheath fluid. This allowed us the detection of

biosensor bacteria in clearly distinct gates according to the

405/528 and 488/528 nm channels depending on the treatment.

Bacteria in these two gates either represent untreated, intact, or

nisin-treated, membrane-disrupted bacteria, respectively. This

demonstrates that flow cytometry can be used to assess

intracellular pH and in consequence membrane integrity of

pHluorin-expressing sensor bacteria on a single-cell level.

In conclusion, we provide two new biosensors of the genus

Listeria that allow the analysis of membrane damage using the

dichroic ratiometric pH-dependent fluorescent protein pHluorin2

(Mahon, 2011). Both strains show up to 9-fold higher fluorescence

compared to previously published strain **L. monocytogenes** EGD/e/

pNZ-P_eGFP-PHluorin (Crauwels et al., 2018). All three strains behave

comparable regarding challenges with membrane-damaging chemi-

cals and peptides. The improved fluorescence properties of the

new strains may facilitate analysis in matrices with high background

fluorescence, where the **BSL1** strain **L. innocua**/pNZ-pHin2^Lm^ can

be used when **BSL2** strains are not allowed. Moreover, they were shown

to be suitable for single-cell analysis of membrane integrity by flow

cytometry.

AUTHOR CONTRIBUTIONS

Sebastian J. Reich: Conceptualization (equal); data curation (equal); formal

analysis (lead); methodology (equal); supervision (equal); validation

(equal); visualization (equal); writing—original draft (equal); writing—

review and editing (equal).

Jonas Stohr: Formal analysis (supporting).

Oliver Goldbeck: Methodology (supporting); supervision (equal); validation

(equal); writing—review and editing (equal).

Bastian Fendrich: Formal analysis (supporting).

Peter Crauwels: Methodology (equal); supervision (equal); validation

(equal); writing—original draft (equal); writing—review and editing

(equal).

ACKNOWLEDGMENTS

This study was supported by a grant from the German Ministry for

Education and Research to CUR (Grant No. 031B0826A) within the

AMPLIFY consortium. Open Access funding enabled and organized by

Projekt DEAL.

CONFLICT OF INTEREST

None declared.

DATA AVAILABILITY STATEMENT

The data generated or analyzed during this study are included in the

published article. The sequence of pNZ-pHin2^Lm^ is available in

GenBank, accession number ON668434: https://www.ncbi.nlm.nih.

gov/nuccore/ON668434.

ETHICS STATEMENT

None required.

ORCID

Sebastian J. Reich http://orcid.org/0000-0001-5685-7757

Christian U. Riedel http://orcid.org/0000-0001-7134-7085

REFERENCES

Brötz, H., Josten, M., Wiedemann, I., Schneider, U., Götz, F., Bierbaum, G.,

& Sahl, H. G. (1998). Role of lipid-bound peptidoglycan precursors in the

formation of pores by nisin, epidermin and other lantibiotics.

Molecular Microbiology, 30(2), 317–327. https://doi.org/10.1046/j.

1365-2958.1998.01065.x

Chikindas, M. L., Garcia-Garcéa, M. J., Driessen, A. J. M., Ledeboer, A. M.,

Nissen-Meyer, J., Nes, I. F., Abee, T., Konings, W. N., & Venema, G. (1993). Pediocin

PA-1, a bacteriocin from *Pedicoccus acidilactici*

PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of

target cells. *Applied and Environmental Microbiology*, 59(11),

3577–3584. https://doi.org/10.1128/AEM.59.11.3577-3584.1993

Crauwels, P., Schäfer, L., Weixler, D., Bar, N. S., Diep, D. B., Riedel, C. U., &

Seibold, G. M. (2018). Intracellular phluorin as sensor for easy

assessment of bacteriocin-induced membrane-damage in *Listeria

monocytogenes*. *Frontiers in Microbiology*, 9, 3038. https://doi.org/10.

3389/fmicb.2018.03038

Desiderato, C. K., Sachsenmaier, S., Ovcinnikov, K. V., Stohr, J., Jacksch, S.,

Deseif, D. N., Crauwels, P., Egert, M., Diep, D. B., Goldbeck, O., &

Riedel, C. U. (2021). Identification of potential probiotics producing
bacteriocins active against *Listeria monocytogenes* by a combination of screening tools. *International Journal of Molecular Sciences*, 22(16):8615. https://doi.org/10.3390/ijms22168615

Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nature Methods*, 6(5), 343–345. https://doi.org/10.1038/nmeth.1318

Goldbeck, O., Desef, D. N., Ovchinnikov, K. V., Perez-Garcia, F., Christmann, J., Sinner, P., Crauwels, P., Weixler, D., Cao, P., Becker, J., Kohlstedt, M., Kager, J., Eikmanns, B. J., Seibold, G. M., Herwig, C., Wittmann, C., Bar, N. S., Diep, D. B., & Riedel, C. U. (2021). Establishing recombinant production of pediocin PA-1 in *Corynebacterium glutamicum*. *Metabolic Engineering*, 68, 34–45.

Mahon, M. J. (2011). pHluorin2: An enhanced, ratiometric, pH-sensitive green florescent protein. *Advances in Bioscience and Biotechnology*, 2(3), 132–137. https://doi.org/10.4236/abb.2011.23021

McGrath, S., Fitzgerald, G. F., & van Sinderen, D. (2001). Improvement and optimization of two engineered phage resistance mechanisms in *Lactococcus lactis*. *Applied and Environmental Microbiology*, 67(2), 608–616. https://doi.org/10.1128/AEM.67.2.608-616.2001

Miesenböck, G., De Angelis, D. A., & Rothman, J. E. (1998). Visualizing secretion and synaptic transmission with pH-sensitive Green fluorescent proteins. *Nature*, 394(6689), 192–195. https://doi.org/10.1038/28190

Monk, I. R., Gahan, C. G. M., & Hill, C. (2008). Tools for functional postgenomic analysis of *Listeria monocytogenes*. *Applied and Environmental Microbiology*, 74(13), 3921–3934. https://doi.org/10.1128/AEM.00314-08

Riedel, C. U., Monk, I. R., Casey, P. G., Morrissey, D., O’Sullivan, G. C., Tangney, M., Hill, C., & Gahan, C. G. (2007). Improved luciferase tagging system for *Listeria monocytogenes* allows real-time monitoring in vivo and in vitro. *Applied and Environmental Microbiology*, 73(9), 3091–3094. https://doi.org/10.1128/AEM.02940-06

Theuretzbacher, U., Outterson, K., Engel, A., & Karién, A. (2020). The global preclinical antibacterial pipeline. *Nature Reviews Microbiology*, 18(5), 275–285. https://doi.org/10.1038/s41579-019-0288-0

Tows, A., Hoyle, C. K., Goodall, J., Hirsch, M, Mestre-Ferrandiz, J., & Rex, J. H. (2017). Time for a change in how new antibiotics are reimbursed: Development of an insurance framework for funding new antibiotics based on a policy of risk mitigation. *Health Policy*, 121(10), 1025–1030. https://doi.org/10.1016/j.healthpol.2017.07.011

Weixler, D., Berghoff, M., Ovchinnikov, K. V., Reich, S., Goldbeck, O., Seibold, G. M., Wittmann, C., Bar, N. S., Eikmanns, B. J., Diep, D. B., & Riedel, C. U. (2022). Recombinant production of the lantibiotic nisin using *Corynebacterium glutamicum* in a two-step process. *Microbial Cell Factories*, 21(1), 11. https://doi.org/10.1186/s12934-022-01739-y

World Health Organization. (2014). *Antimicrobial resistance: Global report on surveillance*. Weixler, D., Berghoff, M., Ovchinnikov, K. V., Reich, S., Goldbeck, O., Seibold, G. M., Wittmann, C., Bar, N. S., Eikmanns, B. J., Diep, D. B., & Riedel, C. U. (2022). Improved fluorescent *Listeria* spp. biosensors for analysis of antimicrobials by flow cytometry. *MicrobiologyOpen*, 11, e1304. https://doi.org/10.1002/mbo3.1304

APPENDIX

Figure A1

How to cite this article: Reich, S. J., Stohr, J., Goldbeck, O., Fendrich, B., Crauwels, P., & Riedel, C. U. (2022). Improved fluorescent *Listeria* spp. biosensors for analysis of antimicrobials by flow cytometry. *MicrobiologyOpen*, 11, e1304. https://doi.org/10.1002/mbo3.1304