Cosmic variance of $z > 7$ galaxies: prediction from BLUETIDES

Aklant K. Bhowmick,1,1 Rachel S. Somerville,2,3 Tiziana Di Matteo,1 Stephen Wilkins,4 Yu Feng5 and Ananth Tenneti1

1McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
2Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
3Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
4Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK
5Berkeley Center for Cosmological Physics, University of California at Berkeley, Berkeley, CA 94720, USA

ABSTRACT
In the coming decade, a new generation of telescopes, including JWST and WFIRST, will probe the period of the formation of first galaxies and quasars, and open up the last frontier for structure formation. Recent simulations and observations have suggested that these galaxies are strongly clustered (with large-scale bias $\gtrsim 6$), and therefore have significant cosmic variance. In this work, we use BLUETIDES, the largest volume cosmological simulation of galaxy formation, to directly estimate the cosmic variance for current and upcoming surveys. Given its resolution and volume, BLUETIDES can probe the bias and cosmic variance of $z > 7$ galaxies between magnitude $M_{\text{UV}} \sim -16$ and $M_{\text{UV}} \sim -22$ over survey areas ~ 0.1 arcmin2 to ~ 10 deg2. Within this regime, the cosmic variance decreases with survey area/volume as a power law with exponents between ~ -0.25 and ~ -0.45. For the planned 10 deg2 field of WFIRST, the cosmic variance is between 3 per cent and 10 per cent. Upcoming JWST medium/deep surveys with areas up to $A \sim 100$ arcmin2 will have cosmic variance ranging from ~ 20 to 50 per cent. Lensed surveys have the highest cosmic variance $\gtrsim 40$ per cent; the cosmic variance of $M_{\text{UV}} \lesssim -16$ galaxies is $\lesssim 100$ per cent up to $z \sim 11$. At higher redshifts such as $z \sim 12$ (14), effective volumes of $\gtrsim (8 \text{ Mpc} h^{-1})^3$ ($\gtrsim (12 \text{ Mpc} h^{-1})^3$) are required to limit the cosmic variance to within 100 per cent. Finally, we find that cosmic variance is larger than Poisson variance and forms the dominant component of the overall uncertainty in all current and upcoming surveys. We present our calculations in the form of simple fitting functions and an online cosmic variance calculator (CV_AT_COSMIC_DAWN) that we publicly release.

Key words: galaxies: high-redshift.

1 INTRODUCTION

The underlying non-linear structure of the Universe and the physics of galaxy formation are imprinted in the abundances of observable galaxies, typically characterized by the galaxy luminosity function (LF) or stellar mass function (SMF). Therefore, a precise measurement of the LF and SMF, and its evolution through cosmic time, is of paramount importance. To this end, there has been significant progress in constraining LFs and SMFs at high redshifts (Duncan et al. 2014; Bouwens et al. 2015; Song et al. 2016; Bouwens et al. 2017; Livermore, Finkelstein & Lotz 2017) using galaxies within the legacy and frontier fields of the Hubble Space Telescope as well as data from Subaru Hyper Suprime Cam. Different parts of the LF can potentially be used to probe different aspects of structure and galaxy formation. For instance, the faint-end ($H \lesssim 33$) measurements coming from lensed surveys can provide constraints on the nature of dark matter (Menci et al. 2016, 2017; Ni et al. 2019). The faint end is also sensitive to modelling of stellar winds (Yung et al. 2019a). On the other hand, the bright end is sensitive to the modelling of active galactic nucleus (AGN) feedback as well as dust extinction (Somerville et al. 2008; Somerville & Davé 2015).

The next generation of infrared surveys such as JWST (Gardner et al. 2006) and WFIRST (Spergel et al. 2015) will reach unprecedented depths, vastly increasing the sizes of high-redshift ($z > 7$) galaxy samples. A major impediment in constraining the LF and SMF comes from the fact that galaxies are not uniformly distributed in space (referred to as galaxy clustering).
and therefore the number density estimates obtained from these deep (limited in volume) surveys are susceptible to significant field-to-field variance, which cosmologists refer to as cosmic variance.\footnote{Some use the term ‘cosmic variance’ to refer to the uncertainty due to our being able to probe only a limited fraction of the Universe within our cosmic horizon. Here, we use the term to mean ‘field-to-field’ variance.}

Recent observational measurements (Barone-Nugent et al. 2014; Harikane et al. 2016) have suggested that $z > 7$ galaxies exhibit exceptionally strong clustering properties (large-scale galaxy bias >6). This has also been predicted by recent hydrodynamic simulations (Bhowmick et al. 2018a) and semi-analytic modelling (Park et al. 2017). Therefore, cosmic variance is expected to be a significant, potentially dominant component of the uncertainty for these high-z galaxies (the other component being the Poisson variance arising from finite number counts).

In order to estimate the cosmic variance of a given galaxy population, the clustering strength must be known. For populations for which the clustering is well known, the cosmic variance is straightforward to compute (Somerville et al. 2004). However, for the majority of galaxy populations, the clustering and galaxy bias are difficult to measure and are not well known. In such a case, several theoretical approaches may be adopted to predict the galaxy clustering. This includes clustering predictions using halo occupation models (Moster et al. 2010; Yang et al. 2012; Campbell et al. 2018), semi-analytic models (Blaziot et al. 2006; Park et al. 2017), and hydrodynamic simulations (Khandai et al. 2015; Artale et al. 2017).

In the recent past, clustering predictions from halo occupation modelling (Trenti & Stiavelli 2008; Moster et al. 2011) and semi-analytic modelling (Chen et al. 2019) have been used to predict the cosmic variance, each focusing on a variety of redshift regimes. Trenti & Stiavelli (2008) in particular, analyse the effect of cosmic variance on the shapes of LFs at high redshifts (up to $z \sim 15$) by assuming an empirical one-to-one relation between halo mass and galaxy luminosity. The recent Ucc et al. (2020) use semi-analytical modelling on dark matter only simulations and estimates the impact of reionization feedback models on the cosmic variance at $z \gtrsim 6$. With BLUE TIDES (Feng et al. 2016), which is a recent cosmological hydrodynamic simulation for the high-redshift Universe, we now have access to the full galaxy population at $z \gtrsim 7$, and are able to make ‘ab initio’ predictions of the galaxy clustering (Waters et al. 2016b; Bhowmick et al. 2018a) and the galaxy–halo connection (Bhowmick et al. 2018b). Importantly, these ‘ab initio’ simulations naturally include scatter in the halo mass versus galaxy luminosity relationship, based on the physical processes that shape galaxy formation in each halo, as well as the second-order correlations such as assembly bias. In this work, we use standard methodology for describing cosmic variance from the literature (e.g. Somerville et al. 2004; Trenti & Stiavelli 2008) combined with clustering predictions from BLUE TIDES to make cosmic variance estimates for the number counts and the LFs for fields targeting very high redshift ($z \sim 7 - 14$) galaxies. Section 2 describes the basic methodology. Section 3 investigates the dependence of the cosmic variance on the various survey parameters, and also summarizes the cosmic variance estimates for the planned deep fields of JWST and WFIRST. We provide our main conclusions in Section 5.

2 METHODS

2.1 BLUETIDES simulation

BLUE TIDES is a high-resolution cosmological hydrodynamic simulation run until $z \sim 7.5$ using the cosmological code MP-GAGDET. With a simulation box size of $(400 \text{ Mpc} \, h^{-1})^3$ and 2×7048^3 particles, BLUE TIDES has a resolution comparable to ILLUSTRIS (Nelson et al. 2015), EAGLE (Schaye et al. 2015), and MASSIVE BLACK (Khandai et al. 2015) but is ~ 64 times the volume. The cosmological parameters are derived from the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP; Hinshaw et al. 2013) ($\Omega_0 = 0.2814$, $\Omega_m = 0.7186$, $\Omega_b = 0.0464$, $s_8 = 0.82$, $h = 0.697$, $n_s = 0.971$). The dark matter and gas particles have masses of 1.2×10^7 and $2.36 \times 10^6 \, M_{\odot} h^{-1}$, respectively. We identify haloes using an FOF Group finder (Davis et al. 1985), and the halo substructure using ROCKSTAR-GALAXIES (Behroozi, Wechsler & Wu 2013). For more details on BLUE TIDES, interested readers should refer to Feng et al. (2016).

The various subgrid physics models that have been employed in BLUE TIDES include a multiphase model for star formation (Springel & Hernquist 2003; Vogelsberger et al. 2013), molecular hydrogen formation (Krumholz & Gnedin 2011), gas and metal cooling (Katz, Weinberg & Hernquist 1996; Vogelsberger et al. 2014), SNII feedback (Nelson et al. 2015), black hole growth and AGN feedback (Di Matteo, Springel & Hernquist 2005; Springel, Di Matteo & Hernquist 2005), and a model for ‘Patchy’ reionization (Battaglia et al. 2013).

BLUE TIDES was targeted towards the high-redshift ($z > 7$) Universe, with its large volume that captures the statistics of the brightest (rarest) galaxies and quasars. The UV LFs (Feng et al. 2015, 2016; Waters et al. 2016b) are consistent with existing observational constraints (Bouwens et al. 2015). In addition, the predictions are broadly consistent across different hydrodynamic simulations and semi-analytic models (Yung et al. 2019a,b). Clustering properties are also consistent with currently available observations (Bhowmick et al. 2018a). BLUE TIDES has also enabled us to build halo occupation distributions (HOD) models for clustering of galaxies in the $z > 7.5$ regime (Bhowmick et al. 2018b). Photometric properties of high-redshift galaxies and the effect of stellar population synthesis (SPS) modelling as well as dust modelling have been extensively studied in Wilkins et al. (2016a,b, 2018). BLUE TIDES has allowed the study of the rarest supermassive black holes/first quasars and the role of tidal field in the black hole growth in the early Universe (Di Matteo et al. 2017). Dark matter only realizations have been used to trace their descendants to the present day (Tenneti et al. 2017).

We have also been able to make predictions from BLUE TIDES (Ni et al. 2018; Tenneti et al. 2019) for the recently discovered highest redshift quasar (Bahados et al. 2018).
2.2 Determining cosmic variance

The number of objects \(N \) within a field of view with volume \(V \) can be described by a probability distribution \(P(N|V) \). The cosmic variance (\(\sigma^2_g \)) can then be defined as

\[
\sigma^2_g = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle^2},
\]

where the \(p \)th moment of \(P(N|V) \) is given by \(\langle N^p \rangle = \sum_n n^p P(N|V) \). The first two terms in equation (1) represent the total variance in \(N \) that includes the contribution from cosmic variance and Poisson variance. The third term represents the Poisson variance that is subtracted to obtain \(\sigma^2_g \).

We use the BLUETIDES simulation to determine \(\sigma^2_g \) by computing the two-point galaxy correlation function \(\xi_{gg} \) of BLUETIDES galaxies and integrating it over the relevant volume, as in Peebles (1980, page 234). \(\sigma^2_g \) can be calculated using

\[
\sigma^2_g = \frac{1}{V^2} \int_V \xi_{gg}(r_1, r_2) d^3r_1 d^3r_2,
\]

where \(r_1 \) and \(r_2 \) are position vectors of galaxies integrated over the survey volume. With this approach, we can determine the cosmic variance for survey volumes as large as the BLUETIDES volume. In addition, for survey volumes (e.g. JWST medium/deep surveys and lensed surveys) that are small enough such that a sufficiently large number of them can be extracted from the simulation box, we also determine the full distribution of number counts and analyse the cosmic variance.

We extract a mock survey volume (corresponding to survey Area \(A \) and redshift width \(\Delta z \)) from a single snapshot of BLUETIDES, with median redshift \(z_{\text{med}} \). The survey volume \(V \) is modelled as a cuboidal box with line-of-sight length determined by the comoving distance between \(z \pm \Delta z/2 \), and transverse dimensions given by the comoving length subtended by the survey angular size \(\sqrt{A} \) at the median redshift.

3 COSMIC VARIANCE OF BLUETIDES GALAXIES

3.1 Clustering of BLUETIDES galaxies

Cosmic variance depends sensitively on how strongly clustered the galaxy population under consideration is; we therefore begin by presenting the clustering power of BLUETIDES galaxies. Fig. 1 shows the two-point correlation functions \(\xi(r) \) of galaxies from \(r \sim 0.01 \text{ Mpc} h^{-1} \) to \(r \sim 400 \text{ Mpc} h^{-1} \). \(\xi(r) \) increases with (1) decreasing \(M_{UV} \) thresholds (increasing luminosity) at fixed redshift, and (2) increasing redshift at fixed \(M_{UV} \) threshold. We note that \(\xi(r) \) can be
Table 1. Best-fitting values of the power-law fit parameters for ξ and σ_g for galaxy samples with various M_{UV} thresholds and redshifts.

M_{UV} ($<$)	z	γ	r_0 (Mpc h^{-1})	α	Σ
-16	7.5	-1.80	4.07	-0.43	0.61
-18	7.5	-1.86	4.74	-0.46	0.75
-20	7.5	-2.01	6.44	-0.51	1.37
-22	7.5	-2.15	9.00	-0.53	2.06
-16	8.0	-1.82	4.15	-0.44	0.70
-18	8.0	-1.90	5.08	-0.46	0.88
-20	8.0	-2.07	7.31	-0.55	1.48
-22	8.0	-2.26	10.83	-0.63	2.99
-16	9.0	-1.89	4.76	-0.48	0.94
-18	9.0	-2.98	5.86	-0.52	1.19
-20	9.0	-2.17	8.45	-0.62	2.33
-22	9.0	-2.49	14.06	-0.71	8.14
-16	10.0	-1.90	4.64	-0.49	0.98
-18	10.0	-2.09	6.47	-0.56	1.55
-20	10.0	-2.45	8.58	-0.74	3.70
-22	10.0	-2.67	19.98	-0.81	20.59
-16	11.0	-1.85	4.18	-0.49	0.90
-18	11.0	-2.03	6.54	-0.52	1.66
-20	11.0	-2.33	8.36	-0.77	4.61
-16	12.0	-1.94	4.93	-0.51	1.20
-18	12.0	-2.12	7.47	-0.60	2.35
-20	12.0	-2.33	8.89	-0.77	5.00
-16	13.0	-2.02	5.26	-0.55	1.45
-18	13.0	-2.24	8.64	-0.63	3.18
-20	13.0	-2.48	24.5	-0.77	19.72
-16	14.0	-2.06	5.98	-0.58	1.90
-18	14.0	-2.20	10.2	-0.64	4.01

well described by a power-law profile described as

$$\xi(r) = (r/r_0)^\gamma,$$ (3)

where r_0 is the correlation length and γ is a power-law exponent. The dashed lines in Fig. 1 show the power-law fits and the corresponding best-fitting parameters are listed in Table 1. We shall hereafter use these power-law fits to compute the cosmic variance using equation (2).

3.2 Dependence of cosmic variance on survey geometry

Here, we compute the cosmic variance σ_g and study its dependence on the various parameters of the survey.

3.2.1 Survey area

Fig. 2 shows the cosmic variance as a function of survey area. Over areas ranging from ~ 1 arcmin2 to ~ 1 deg2, the cosmic variance can range from ~ 1–2 per cent up to ~ 100 per cent depending on the magnitudes and redshifts of the galaxies. In the next section, we shall discuss in more detail the expected cosmic variance of upcoming surveys.

The dependence of cosmic variance on survey area can be described as a power law

$$\sigma_g = \Sigma \alpha^\beta,$$ (4)

where α is the power-law exponent and Σ is the pre-factor. This is not surprising as the clustering profile of these galaxies could also be described by a power law. The best-fitting values of Σ and β obtained from our results are summarized in Table 1.

We also investigate the dependence on the survey aspect ratio. We report no significant variation of the cosmic variance over aspect ratios ranging from 0.2 to 1 for fixed survey area. However, Moster et al. (2011) showed that for very elongated geometries (survey aspect ratio < 0.1), the cosmic variance can be reduced by factors ~ 5. This is due to a larger mean distance between two galaxies detected in such a survey. For a detailed discussion, we refer readers to Moster et al. (2011).

3.2.2 Redshift bin width

Fig. 3 shows the dependence of σ_g on redshift bin width for $M_{UV} < -16$ galaxies. As expected, σ_g decreases as Δz increases due to the increase in the comoving volume of the survey. Furthermore, the ratio $\sigma_g(\Delta z)/\sigma_g(\Delta z_{ref})$ (where the reference redshift width Δz_{ref} is chosen to be 1 in Fig. 3) has a somewhat universal power-law dependence on Δz, independent of magnitude, redshift, and survey type. This behaviour is also reported for $z < 3$ galaxies (Moster et al. 2011). We determine the best-fitting power law (shown as the black dashed line) to be

$$\sigma_g(\Delta z)/\sigma_g(\Delta z_{ref}) = (\Delta z/\Delta z_{ref})^{-0.32}. \quad (5)$$

3.3 Dependence of cosmic variance on galaxy UV magnitude

We now investigate the dependence of cosmic variance on absolute UV magnitude. We shall present results for survey geometries most relevant to upcoming deep surveys within JWST and WFIRST. They also cover a wide range of existing surveys that are listed in Table 3.

3.3.1 JWST- and WFIRST-like volumes

Fig. 4 shows the cosmic variance σ_g as a function of M_{UV} threshold at the redshift snapshots 7.5–14. The areas are representative of planned WFIRST (1–10 deg2) deep surveys as well as JWST (10–100 arcmin2) medium/deep surveys such as JADES and CEERS survey. We show redshift widths $\Delta z \sim 1$ as the photometric redshift uncertainties are expected to be significant. For the 1, 10 arcmin2, and 1 deg2 survey, we also present the estimates from the full distribution of number counts for an ensemble of simulation subvolumes; we find that these estimates are in reasonable agreement with those computed by integrating the correlation functions.

We see that the cosmic variance increases with decreasing M_{UV} at fixed redshift, which is expected since brighter galaxies are more strongly clustered (Park et al. 2017; Blomrick et al. 2018a,b). The scaling of the cosmic variance with respect to M_{UV} can range from $\sim |M_{UV}|^2$ to $\sim |M_{UV}|$ for M_{UV} between -16 and -20. For the more luminous galaxies with M_{UV} between -20 and -22, the scaling is steeper, particularly at $z \sim 10–14$. The redshift dependence (at fixed UV magnitude) of the cosmic variance is driven by the evolution of the galaxy clustering (increases with redshift) as well as comoving survey volume (increases with redshift for fixed survey geometry), wherein the former tends to increase and the latter tends to decrease the cosmic variance; for M_{UV} between -16 and -20 the two effects roughly cancel each other, leading to very marginal redshift dependence. For $M_{UV} < -20$, the cosmic variance increases with redshift since the clustering evolution becomes more pronounced, and becomes more important than the redshift dependence of the comoving survey volume.
A. K. Bhowmick et al.

Figure 2. The filled circles show the cosmic variance as a function of survey area \(A\) and a redshift width of \(\Delta z = 1\) for various \(M_{UV}\) threshold samples. Dashed lines of corresponding colour show power-law fits.

Figure 3. Cosmic variance as a function of redshift bin width \(\Delta z\) normalized with respect to a reference redshift width \(\Delta z_{\text{ref}} = 1\). We show this for galaxies with \(M_{UV} < -16\). \(\delta\) is a small (<0.1) horizontal offset added to the x-axis to avoid overlap between the data points. The black dashed line corresponds to the best-fitting power law. Circles and stars correspond to survey areas of 10 and 1 deg\(^2\), respectively. Squares correspond to survey area of 10 arcsec\(^2\).

We now broadly summarize the cosmic variance predictions for the various survey areas. For the 10 and 1 deg\(^2\) fields spanning the areas for the planned WFIRST deep surveys, the cosmic variance is \(\sim 3\)–10 per cent for the entire range of \(M_{UV}\) at \(z = 7.5\)–9; at higher redshifts (\(z \sim 9\)–14), the cosmic variance is \(\sim 3\)–10 per cent for \(M_{UV}\) between \(-16\) and \(-20\), but can exceed \(\sim 10\) per cent for galaxies with \(M_{UV} < -20\). The cosmic variance is significantly higher for 100 and 10 arcmin\(^2\) fields that span the areas for upcoming JWST medium/deep surveys. For a 100 arcmin\(^2\) field, the cosmic variance is between 20 and 50 per cent for UV magnitudes between \(-16\) and \(-20\). For a 10 arcmin\(^2\) field, the cosmic variance ranges from 30 to 70 per cent for \(M_{UV}\) between \(-16\) and \(-18\) up to \(z \sim 12\). For \(z > 12\), the cosmic variance within a 10 arcmin\(^2\) field is \(\gtrsim 100\) per cent for the entire range of UV magnitudes between \(-16\) and \(-22\).

We now cast these results in terms of the overall uncertainties in the expected number counts, which are summarized in Table 2. In a 10 deg\(^2\) survey within WFIRST, we predict \(\sim 50\,000\) galaxies at \(z \sim 7.5\) up to depths of \(H < 27.5\) (\(M_{UV} \lesssim -19.6\)) wherein the uncertainty due to cosmic variance amounts to \(\sim \pm 2500\) galaxies; at \(z \sim 11\), we expect \(\sim 170 \pm 7\) galaxies. In a 1 deg\(^2\) survey within WFIRST, we predict \(\sim 10\,000 \pm 800\) galaxies at \(z \sim 7.5\) up to depths of \(H < 28.5\) (\(M_{UV} \lesssim -18.6\)); at \(z \sim 11\), we predict \(\sim 85 \pm 10\) galaxies. For an area of \(\sim 100\) arcmin\(^2\) that broadly represents the JADES-deep and CEERS surveys, we expect to detect \(\sim 2200 \pm 450\) galaxies.
Cosmic variance of \(z > 7 \) galaxies

Figure 4. Filled circles show the cosmic variance as a function of \(M_{UV} \) threshold for various survey areas \(A \) with \(\Delta z = 1 \). The filled data points are computed by integrating the correlation function. The open data points for \(A = 1 \) arcmin\(^2\), 10 arcmin\(^2\), and 1 deg\(^2\) are computed from the full distribution of number counts of galaxies for an ensemble of simulation subvolumes (representing survey volumes). The dotted lines are estimates provided by CV\textsc{AT_COSMIC_DAWN}.

with \(M_{UV} < -16 \) at \(z \sim 7.5 \); likewise, at \(z \sim 11 \), we expect to detect \(\sim 150 \pm 45 \) galaxies.

Lastly, we also look at the relative importance between the uncertainty due to cosmic variance and Poisson variance. In Fig. 5, we show the ratio between cosmic variance and the Poisson variance, as a function of the number counts of galaxies for a range of redshifts, \(M_{UV} \) thresholds, and survey areas. We see that as we increase the number counts, the importance of cosmic variance (relative to Poisson variance) increases. Additionally, at fixed number count, a 1 deg\(^2\) survey (star shaped points) has a lower cosmic variance (relative to Poisson variance) compared to the 10, 100 arcmin\(^2\) surveys. Most importantly, we find that (apart from the obvious exception of very low galaxy number counts i.e. \(N \lesssim 10 \)), the uncertainty due to cosmic variance largely dominates over the Poisson variance.

Encountering rare luminous galaxies and environments in upcoming JWST medium/deep surveys: For the JWST medium/deep surveys (CEERS, JADES-medium/deep), the BLUTIDES volume is large enough to produce \(\gtrsim 1000 \) realizations. This enables us to construct the full distribution of the predicted number counts of galaxies within these surveys (in addition to the mean and cosmic variance, which only provides the first and second moments of the underlying distributions). We are therefore also able to probe the likelihood of encountering extreme (several standard deviations away from the mean) overdense/underdense regions within these surveys. Fig. 6 shows the normalized probability distributions of overdensity of galaxies. Here, we choose to show galaxies with \(M_{UV} < -16 \), but the distributions (when presented in the units of the standard deviations) do not significantly change for \(M_{UV} \) between \(-16\) and \(-19\) (approximate range of detection limits of the JWST medium/deep surveys). Also note that there is no significant redshift evolution of these distributions (when presented in the units of the standard deviations). The distributions of JADES deep (lower panel) are slightly broader than that of JADES medium (upper panel); this is expected due to lower volume of JADES deep compared to JADES medium. We find that the likelihood of these surveys to fall on underdense/overdense regions \(2\sigma \)'s away from the mean is \(\sim 5–10 \) per cent. BLUTIDES contains no underdense (void) regions with densities lower than \(2\sigma \)'s away from the mean. On the other hand, the most overdense regions found in BLUTIDES, correspond to \(\sim 3\sigma \)'s away from the mean; the likelihood of these extremely overdense regions to be encountered by a JWST medium/deep survey, is about 0.1–1 per cent.

The large volume of BLUTIDES also allows us to probe the likelihood of a (chance) detection of rare luminous (\(M_{UV} < -22 \)) galaxies within the JWST medium/deep surveys. We had so far
not discussed these objects in Fig. 2 because their clustering (and cosmic variance) could not be accurately probed due to excessive shot noise. Here, we simply quantify the likelihood of their detection by determining the fraction of survey realizations within BLUETIDES that contain these bright outliers. Fig. 7 shows the overall probability as a function of redshift for absolute UV magnitude thresholds ranging from ~ -21 to ~ -25. Note that $M_{UV} \sim -22$ corresponds to the magnitude of GNZ11 (Oesch et al. 2016, hereafter O16). For GN11 type galaxies (red lines), the likelihood of detection is about ~ 4 per cent at $z \sim 11 \pm 0.5$ for JADES medium survey. Due to the somewhat smaller volume for JADES-medium survey, the corresponding probabilities fall by about a factor of ~ 5.

Table 2. Average number of galaxies $\langle N \rangle$ at various threshold UV magnitudes $M_{UV} (<)$ and redshifts along with their uncertainties due to cosmic variance (δN_{cosmic}) and Poisson variance ($\delta N_{\text{Poisson}}$). The survey areas correspond to those presented in Fig. 4.

Survey	z	$M_{UV} (<)$	$\langle N \rangle \pm \delta N_{\text{cosmic}} \pm \delta N_{\text{Poisson}}$
10 arcmin2	7.5	-16	$210.9 \pm 63.6 \pm 14.5$
10 arcmin2	7.5	-18	$45.3 \pm 17.2 \pm 6.7$
10 arcmin2	7.5	-20	$7.7 \pm 3.9 \pm 2.8$
10 arcmin2	7.5	-22	$0.9 \pm 0.6 \pm 0.9$
10 arcmin2	11.0	-16	$14.3 \pm 7.0 \pm 3.8$
10 arcmin2	11.0	-18	$1.0 \pm 0.8 \pm 1.0$
10 arcmin2	11.0	-20	$0.0 \pm 0.1 \pm 0.2$
10 arcmin2	14.0	-16	$0.8 \pm 0.6 \pm 0.9$
10 arcmin2	14.0	-18	$0.0 \pm 0.1 \pm 0.2$
100 arcmin2	7.5	-16	$2182.2 \pm 451.0 \pm 46.7$
100 arcmin2	7.5	-18	$469.7 \pm 118.8 \pm 21.7$
100 arcmin2	7.5	-20	$79.8 \pm 25.7 \pm 8.9$
100 arcmin2	7.5	-22	$9.4 \pm 4.2 \pm 3.1$
100 arcmin2	11.0	-16	$148.9 \pm 45.4 \pm 12.2$
100 arcmin2	11.0	-18	$10.9 \pm 4.5 \pm 3.3$
100 arcmin2	11.0	-20	$0.5 \pm 0.3 \pm 0.7$
100 arcmin2	14.0	-16	$8.5 \pm 3.7 \pm 2.9$
100 arcmin2	14.0	-18	$0.3 \pm 0.2 \pm 0.5$

Figure 5. $\langle N \rangle$ is the mean value of the number count of galaxies in a survey. $\delta N_{\text{cosmic}} / \langle N \rangle$ is the ratio between the uncertainties in the number counts contributed by cosmic variance versus Poisson variance. The squares, circles, and star shaped markers correspond to survey areas of 10 arcmin2, 100 arcmin2, and 1 deg2, respectively. The redshift width is assumed to be 1. These numbers are computed from the full distribution of number counts for an ensemble of simulation subvolumes.

3.3.2 Lensed volumes

‘Lensed’ surveys are obtained by looking at gravitationally lensed backgrounds of massive clusters (e.g. Abell 2744, MACSJ0416.1–2403). Examples from current surveys include the Hubble Frontier Fields (Koekemoer et al. 2017). The magnification due to lensing makes it possible to detect objects 2–4 magnitudes deeper than the limiting magnitude (in the absence of lensing).

In order to estimate the cosmic variance for these lensed surveys, we consider simulation subvolumes over the range of $N_{<6\sim15\text{Mpc}h^{-1}kpc}$, based on the effective volume (V_{eff}) estimates made by Livermore et al. (2017) using lensing models (Bradač et al. 2009; Jauzac et al. 2015; Kawamata et al. 2016 and references therein). Fig. 8 shows the cosmic variance as a function of volume for redshifts 7.5–14 up to UV magnitudes of -16. We do not focus on galaxies fainter than $M_{UV} \sim -16$ as their statistics may be affected by limited particle resolution; we however note that current and future lensed surveys can reach up to ~ 2 magnitudes fainter.

We present the results for two different geometries (at fixed volume) i.e. ‘pencil beam’ like geometries assuming a redshift uncertainty of $\Delta z = 1$ (solid lines), and cubic geometries (dashed lines). We see that the cosmic variance is \sim40 per cent or higher across the entire range of magnitudes and redshifts. Additionally, there are also conditions (high enough luminosity, redshift, or small enough volume) when the cosmic variance can exceed 100 per cent, in which case the measurements are of limited value for providing constraints on the underlying physics. We therefore identify regimes under which the cosmic variance is contained within ~ 100 per cent. We primarily focus on $M_{UV} < -16$ (blue line) and $M_{UV} < -18$ (red line) since these surveys are primarily targeting the faint end of the LF. We shall first summarize the results for the pencil beam geometries: for $M_{UV} < -16$, the cosmic variance is below ~ 100 per cent for the entire range of effective volumes up to $z \sim 11$. At higher redshifts, to keep the cosmic variance of $M_{UV} < -16$ galaxies below 100 per cent, the volumes required are $\gtrsim 8\text{Mpc}h^{-1}kpc$ for $z \sim 12$, $\gtrsim 10\text{Mpc}h^{-1}kpc$ for $z \sim 13$, and $\gtrsim 12\text{Mpc}h^{-1}kpc$ for $z \sim 14$. Likewise, for $M_{UV} < -18$ galaxies, the cosmic variance is below...
We use the results of the previous two sections to construct a cosmic variance estimator for $z > 7$ galaxies.

We use the cosmic variance calculator CV_{AT,COSMIC_DAWN} (all occurrences of ‘CV_{AT,COSMIC_DAWN}’ are hyperlinks to the github repository) for $z > 7$. In particular, CV_{AT,COSMIC_DAWN} uses the fitting results summarized in Table 1 and equation (5) to compute cosmic variances for $M_{UV} < -21$ galaxies in current and upcoming JWST surveys.

The redshift width has been assumed to be 1.

3.5 Implications for galaxy luminosity functions: contribution of cosmic variance to total uncertainty

We now study the impact of cosmic variance on the galaxy LF. In Fig. 10, we compute the LF and the associated cosmic variance and total = cosmic + Poisson variance for various survey areas. The open and black points show current observational constraints. The cosmic variance, shown by the shaded regions, reflects the trends seen in Fig. 4, and is broadly consistent with uncertainties in observational measurements which typically include cosmic variance estimates.

The bottom panels show the fraction (δ_{σ}) of the total uncertainty that is contributed by cosmic variance. For fixed magnitude, we see that as survey area decreases, δ_{σ} decreases. Likewise, for fixed survey area, we see that as galaxies become brighter, δ_{σ} decreases. This is expected since number counts decrease with decreasing survey area and with increasing luminosity, which increases the contribution from Poisson variance. Furthermore, we see that $\delta_{\sigma} > 50$ per cent, implying that cosmic variance is the more dominant contribution to the overall uncertainty as compared to Poisson variance, the only exceptions being samples with very small ($\lesssim 10$) number counts (as also seen in Fig. 5).
4 POSSIBLE UNCERTAINTIES IN THE COSMIC VARIANCE ESTIMATES

Our cosmic variance estimates are subject to uncertainties, particularly because the estimates are based on a single hydrodynamic simulation run with a fixed cosmology and galaxy formation modelling. The cosmic variance estimates depend on cosmology due to its effect on the halo bias and matter clustering, as well as the comoving survey volume. For instance, between WMAP (Hinshaw et al. 2013) and PLANCK (Planck Collaboration XIII 2016) cosmologies, the comoving survey volume changes by ~ 15 per cent; the matter clustering changes by ~ 4–10 per cent (depending on the length-scale) and the halo bias (based on the Tinker et al. 2010 model) changes by ~ 0.5–3 per cent (depending on the halo mass scale). Adding these contributions up, we can overall expect a difference of ~ 25–30 per cent between cosmic variances σ_g predicted by the WMAP and PLANCK cosmologies. Additionally, uncertainties in the galaxy formation physics can also affect our cosmic variance estimates. In particular, a given sample of galaxies can populate haloes of different masses in different recipes of galaxy formation, thereby affecting the clustering amplitudes. For example, if the star formation within a galaxy sample is extremely ‘bursty’ or ‘episodic’, they may reside within a relatively small fraction of lower mass (more abundant) haloes, compared to a model that does not lead to bursty star formation. This will lead to lower clustering amplitude (for a fixed number density or LF).

5 SUMMARY AND CONCLUSIONS

In this work, we used the recent BLUETIDES simulation to estimate the cosmic variance for $z > 7$ galaxies to be detected by the planned deep surveys of JWST and WFIRST. Cosmic variance is expected to be a significant, potentially dominant source of uncertainty given the exceptionally strong clustering power ($\sigma_g \gtrsim 6$) of these galaxies seen in recent observations. We express the cosmic variance as an integral of the two-point correlation function over the survey volume, as commonly done in the literature (Peebles 1980; Moster et al. 2011).

The resolution and volume enables BLUETIDES to probe the large-scale bias, and therefore the cosmic variance of $z > 7$ galaxies with $M_{UV} \sim -16$ to $M_{UV} \sim -22$ over survey areas ~ 0.1 arcmin2 to ~ 10 deg2. Within this regime, the cosmic variance has a power-law dependence on survey volume (with exponent ~ -0.25 to -0.45). More luminous galaxies have larger cosmic variance than faint galaxies.

The above trends can be put in the context of upcoming deep surveys. The largest planned deep survey will naturally suffer from the least amount of cosmic variance; this corresponds to the 10 deg2 field of WFIRST, which will have a cosmic variance ranging from ~ 3 to 10 per cent, except for $M_{UV} < -22$ galaxies at $z > 12$ where the cosmic variance can exceed ~ 10 per cent. Upcoming JWST medium/ deep surveys (up to areas of 100 arcmin2) will have a cosmic variance of about 20–50 per cent for M_{UV} between -16 and -20. At the other end, the smallest surveys are the lensed surveys (Hubble Frontier fields) and are most susceptible to cosmic variance. They have cosmic variance $\gtrsim 40$ per cent over the entire range of magnitudes and redshifts. These are the only existing surveys that can probe the faint (M_{UV} thresholds...
Figure 9. The colour map shows the cosmic variance as a function of threshold M_{UV} magnitude and survey area A as calculated by CVAT_COSMIC_DAWN. The solid black lines show contours representing $\sigma_g \sim 0.1, 0.3, 1, 3,$ and 10. We show upcoming (JWST, WFIRST) and current (HUDF, SDF, CANDELS) surveys at various points on the plane positioned approximately by their survey area and limiting H-band magnitude (converted to M_{UV}). We also show upcoming (JWST lensed) and current (Hubble and Subaru Frontier fields) lensed surveys collectively as ‘Lensed surveys’. The left arrow indicates that the limiting magnitudes for the lensed surveys may be 3–4 magnitudes fainter than the faintest galaxies BLUETIDES can probe.
Table 3. List of upcoming and current high-redshift surveys using WFIRST, JWST, Hubble space telescope (HST), Hyper Suprime Cam (HSC), and Cosmic Assembly Near infrared Extragalactic Survey (CANDELS). HUDF refers to Hubble Ultra Deep Field and SDF refers to Subaru Deep Field. \(H(\wedge) \) is the detection limit in the \(H \) band of WFIRST.

Survey	Instrument	Area	\(H(\wedge) \)	Reference
WFIRST10	WFIRST	10 deg\(^2\)	\(~27.5\)	WFIRST science Sheet
WFIRST1	WFIRST	1 deg\(^2\)	\(~28.5\)	WFIRST science Sheet
ultraVISTA	VISTA	1 deg\(^2\)	\(~27.5\)	McCracken et al. (2012)
JADES-medium	JWST	\(~190\) arcmin\(^2\)	\(~29.7\)	JADES survey overview
JADES-deep	JWST	\(~46\) arcmin\(^2\)	\(~30.6\)	JADES survey overviews
CEERS	JWST	\(~100\) arcmin\(^2\)	\(~29\)	Finkelstein et al. (2017)
HUDF	HST	\(~10\) arcmin\(^2\)	\(~27\)	Rafelski et al. (2015)
GOODS	HST	\(~160\) arcmin\(^2\)	\(~27.7\)	Grogin et al. (2011)
COSMOS	HST	\(~2\) deg\(^2\)	\(~25.5\)	Grogin et al. (2011)
UDS	HST	\(~0.8\) deg\(^2\)	\(~25\)	Grogin et al. (2011)
SDF	HSC	\(~34\) arcmin\(^2\)	\(~27.5\)	Kashikawa et al. (2004)

Figure 10. Top panels: \(\Phi \) is the rest-frame UV LF. Different colours represent galaxies within simulation sub-volumes corresponding to different survey areas with \(\Delta z = 1 \). For each colour, the shaded region corresponds to uncertainty due to cosmic variance. For each colour, the dashed lines are upper and lower limits representing the total field to field variance (cosmic variance + Poisson variance). Bottom panels: \(\delta_\sigma \) is the ratio between the cosmic variance and the total field-to-field variance. Open stars (Livermore et al. 2017), open squares (Ishigaki et al. 2018), open diamonds (Bouwens et al. 2015), open circles (Laporte et al. 2012), filled stars (Bouwens et al. 2015), filled diamonds (McLeod, McLure & Dunlop 2016), and filled squares (Oesch et al. 2018) are observational measurements from current deep and lensed fields.
between ~-13 and -16) end of the LF. In order for these measurements to provide useful constraints (e.g. on the nature of dark matter), the cosmic variance must be contained within 100 per cent. For M_V thresholds up to -16, the cosmic variance is within 100 per cent for $z \sim 7$–11 for the entire range of effective volumes between ~ 6 and 14 ($\text{Mpc} h^{-1})^3$. At higher redshifts, effective volumes of $\gtrsim 8$ ($\text{Mpc} h^{-1})^3$ and $\gtrsim 12$ ($\text{Mpc} h^{-1})^3$ at $z \sim 12$ and $z \sim 14$, respectively, to keep the cosmic variance within 100 per cent.

Lastly, we study the impact of cosmic variance on the LF and estimate the contribution of cosmic variance to the total uncertainty. We find that across all redshifts and magnitude bins (with the exception of the most luminous bins with number counts $\lesssim 10$ objects), cosmic variance is the more dominant component of the uncertainty, as compared to Poisson variance.

We capture our results in the form of simple fitting functions and encode them in an online cosmic variance calculator (CV AT COSMIC_DAWN) that we publicly release.

ACKNOWLEDGEMENTS

We acknowledge funding from NSF ACI-1614853, NSF AST1517593, NSF AST-1616168, NSF AST-1716131, NASA ATP NNX17AK56G and NASA ATP 17-0123, and the BLUEWATERS PAID program. NSF:– National Science Foundation, ACI:– Division of Advanced Cyber Infrastructure, AST:– Division of Astronomical Sciences, NASA:– National Aeronautics and Space Administration, ATP:– Astrophysics Theory Program. The BLUETIDES simulation was run on the BLUEWATERS facility at the National Center for Supercomputing Applications.

REFERENCES

Artale M. C. et al., 2017, MNRAS, 470, 1771
Bañados E. et al., 2018, Nature, 553, 473
Barone-Nugent R. L. et al., 2014, ApJ, 793, 17
Battaglia N., Trac H., Cen R., Loeb A., 2013, ApJ, 776, 81
Behroozi P. S., Wechsler R. H., Wu H.-Y., 2013, ApJ, 762, 109
Bhowmick A. K., Di Matteo T., Feng Y., Lanusse F., 2018a, MNRAS, 474, 5393
Bhowmick A. K., Campbell D., Di Matteo T., Feng Y., 2018b, MNRAS, 480, 3177
Blaziot J. et al., 2006, MNRAS, 369, 1009
Bouwens R. J. et al., 2015, ApJ, 803, 34
Bouwens R. J., Illingworth G. D., Ellis R. S., Stefanon M., 2017, ApJ, 843, 129
Bradač M. et al., 2009, ApJ, 706, 1201
Campbell D., van den Bosch F. C., Padmanabhan N., Mao Y.-Y., Zentner A. R., Lange J. U., Jiang F., Villarreal A., 2018, MNRAS, 477, 359
Chabrier G., 2003, PASP, 115, 763
Chen Y., Mo H. J., Li C., Wang H., Yang X., Zhou S., Zhang Y., 2019, ApJ, 872, 180
Davis M., Efstathiou G., White S. D. M., 1985, ApJ, 292, 371
Di Matteo T., Springel V., Hernquist L., 2005, Nature, 433, 604
Di Matteo T., Croft R. A. C., Feng Y., Waters D., Wilkins S., 2017, MNRAS, 467, 4243
Duncan K. et al., 2014, MNRAS, 444, 2960
Feng Y., Di Matteo T., Croft R., Tenneti A., Bird S., Battaglia N., Wilkins S., 2015, ApJ, 808, L17
Feng Y., Di Matteo T., Croft R. A., Bird S., Battaglia N., Wilkins S., 2016, MNRAS, 455, 2778
Finkelstein S. et al., 2017, JWST Proposal ID 1345. Cycle 0 Early Release Science
Fioc M., Rocca-Volmerange B., 1997, A&A, 326, 950
Gardner J. P. et al., 2006, Space Sci. Rev., 123, 485
Grogin N. A. et al., 2011, ApJS, 197, 35
Harikane Y. et al., 2016, ApJ, 821, 123
Hinshaw G. et al., 2013, ApJS, 208, 19
Ishigaki M., Kawamata R., Ouchi M., Oguri M., Shimasaku K., Ono Y., 2018, ApJ, 854, 73
Jauzac M. et al., 2015, MNRAS, 452, 1437
Kashikawa N. et al., 2004, PASJ, 56, 1011
Katz N., Weinberg D. H., Hernquist L., 1996, ApJS, 105, 19
Kawamata R., Ouchi M., Ishigaki M., Shimasaku K., Ouchi M., 2016, ApJ, 819, 114
Khandai N., Di Matteo T., Croft R., Wilkins S., Feng Y., Tucker E., DeGraf C., Liu M.-S., 2015, MNRAS, 450, 1349
Koekemoer A. M. et al., 2017, American Astronomical Society Meeting Abstracts #230, p. 316.13
Krumholz M. R., Gnedin N. Y., 2013, ApJ, 729, 36
Laporte N. et al., 2012, A&A, 542, L31
Livermore R. C., Finkelstein S. L., Lotz J. M., 2017, ApJ, 853, 115
McCracken H. J. et al., 2012, A&A, 544, A156
McLeod D. J., McLure R. J., Dunlop J. S., 2016, MNRAS, 459, 3812
Menci N., Sanchez N. G., Castellano M., Grazian A., 2016, ApJ, 818, 90
Menci N., Merle A., Totzauer M., Schneider A., Grazian A., Castellano M., Sanchez N. G., 2017, ApJ, 836, 61
Moster B. P., Somerville R. S., Maulbetsch C., van den Bosch F. C., Macciò A. V., Naab T., Oser L., 2010, ApJ, 710, 903
Moster B. P., Somerville R. S., Newman J. A., Rix H.-W., 2011, ApJ, 731, 113
Nelson D. et al., 2015, Astron. Comput., 13, 12
Ni Y., Di Matteo T., Feng Y., Croft R. A. C., Tenneti A., 2018, MNRAS, 481, 4877
Ni Y., Wang M.-Y., Feng Y., Di Matteo T., 2019, MNRAS, 488, 5551
Oesch P. A. et al., 2016, ApJ, 819, 129(O16)
Oesch P. A. et al., 2018, ApJS, 237, 12
Park J. et al., 2017, MNRAS, 472, 1995
Peebles P. J. E., 1980, The Large-Scale Structure of the Universe, Princeton University Press, Princeton, New Jersey
Planck Collaboration XIII, 2016, A&A, 594, A13
Rafelski M. et al., 2015, AJ, 150, 31
Schaye J. et al., 2015, MNRAS, 446, 521
Somerville R. S., Davé R., 2015, ARA&A, 53, 51
Somerville R. S., Lee K., Ferguson H. C., Gardner J. P., Moustakas L. A., Giavalisco M., 2004, ApJ, 600, L171
Somerville R. S., Hopkins P. F., Cox T. J., Robertson B. E., Hernquist L., 2008, MNRAS, 391, 481
Song M. et al., 2016, ApJ, 825, 5
Spergel D. et al., 2015, preprint (arXiv:1503.03757)
Springel V., Hernquist L., 2003, MNRAS, 339, 289
Springel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776
Tenneti A., Di Matteo T., Croft R., Garcia T., Feng Y., 2018, MNRAS, 474, 597
Tenneti A., Wilkins S. M., Di Matteo T., Croft R. A. C., Feng Y., 2019, MNRAS, 483, 1388
Tinker J. L., Robertson B. E., Kravtsov A. V., Klypin A., Warren M. S., Yepes G., Gottlöber S., 2010, ApJ, 724, 878
Trenti M., Stiavelli M., 2008, ApJ, 676, 767
Ucci G. et al., 2020, preprint (arXiv:2004.11096)
Vogelsberger M., Genel S., Sijacki D., Torrey P., Springel V., Hernquist L., 2013, MNRAS, 436, 3031
Vogelsberger M. et al., 2014, MNRAS, 444, 1518
Waters D., Wilkins S. M., Di Matteo T., Feng Y., Croft R., Nagai D., 2016a, MNRAS, 461, L51
Waters D., Di Matteo T., Feng Y., Wilkins S. M., Croft R. A. C., 2016b, MNRAS, 463, 3520
APPENDIX A: PRESENTING COSMIC VARIANCE IN TERMS OF TELESCOPE SURVEY PARAMETERS

In addition to presenting cosmic variance as a function of the rest-frame intrinsic UV magnitude, it is also useful (for observers in particular) to present our estimates directly in terms of the apparent magnitude, which is fixed for a given survey. We therefore, in Fig. A1, also present our estimates in terms of the apparent magnitude. We choose the H-band magnitude of WFIRST, and present our estimates up to redshift 10.

Figure A1. The colour map shows the cosmic variance as a function of H-band (within WFIRST) magnitude and survey area A as calculated by CV$_{AT,COSMIC,DAWN}$. The solid black lines show contours representing $\sigma_g \sim 0.1, 0.3, 1, 3, 10$. We show upcoming (JWST, WFIRST) and current (HUDF, SDF, CANDELS) surveys at various points on the plane positioned approximately by their survey area and limiting H-band magnitude. We also show upcoming (JWST lensed) and current (Hubble and Subaru Frontier fields) lensed surveys collectively as 'Lensed surveys'. The left arrow indicates that the limiting magnitudes for the lensed surveys may be 3–4 magnitudes fainter than the faintest galaxies BLUETIDES can probe.

This paper has been typeset from a TeX/LaTeX file prepared by the author.