Revised Theoretical Limit of Subthreshold Swing in Field-Effect Transistors

Arnout Beckers, Farzan Jazaeri, and Christian Enz, Fellow, IEEE

Abstract—This letter reports a temperature-dependent limit for the subthreshold swing in MOSFETs that deviates from the Boltzmann limit at deep-cryogenic temperatures. Below a critical temperature, the derived limit saturates to a value that is independent of temperature and proportional to the extent of a band tail. Since the saturation is universally observed in different types of MOSFETs (regardless of dimension or semiconductor material), the band tail is attributed to the finite periodicity of the lattice in a semiconductor volume, and to a lesser extent to additional lattice perturbations such as defects or disorder.

I. INTRODUCTION

The Boltzmann limit of the subthreshold swing in FETs, \(SS = (k_B T/q) \ln 10 \), in 10, predicts at room temperature the well-known \(\approx 60 \text{ mV/dec} \), and at deep-cryogenic temperatures \((\leq 50 \text{ K}) \) an almost ideal, step-like switch \((k_B T/q) \) is the thermal voltage. However, the measurements in FETs at deep-cryogenic temperatures reach merely \(\approx 11 \text{ instead of 0.8 mV/dec at } 4.2 \text{ K} \) [1]–[6], \(\approx 9 \text{ mV/dec instead of } 20 \mu \text{V/dec at } 100 \text{ mK} \) [7], and \(\approx 7 \text{ mV/dec instead of } 4 \mu \text{V/dec at } 20 \text{ mK} \) [8]. As shown in Fig. 1, this degradation is measured in structurally different FETs, operating in subthreshold at both low and high drain voltage \((V_{DS}) \) and for various technologies: mature and advanced bulk and FDSOI MOSFETs [4]–[14], FinFETs [15], [16], gate-all-around Si nanowire FETs [17], [18] junctionless FETs [19], [20], SiGe FETs [21], InP HEMTs [22], SiC FETs [23]–[30], etc.

It is simply not possible to explain this saturation of \(SS \) using the Boltzmann limit. Indeed, the Boltzmann limit is linear in \(T \), and its slope versus \(T \) is proportional to the slope factor \((m_0 + qN_{it}/C_{ox}) \) which is limited to 2 when neglecting the interface traps since \(C_{depl} < C_{ox} \) \((C_{ox} \) is the gate-oxide capacitance, and \(C_{depl} \) the depletion capacitance). Assuming a uniform density of interface traps over energy in the bandgap, does not help to model the behavior below 50 K, since it only further increases the linear slope of \(SS \) versus \(T \) \((m = m_0 + qN_{it}/C_{ox}) \) where \(N_{it} \) is the number of interface states per unit area). Furthermore, this approach has led to unreasonably high \(N_{it} \) at deep-cryogenic temperatures. Typical \(N_{it} \) values that have been reported in the literature are in the order of \(10^{13} \text{ } \text{cm}^{-2} \) at 4.2 K [16], [18], [19], and \(10^{16} \text{ cm}^{-2} \) at 20 mK [8]. The values at 4.2 K are still possible in principle. The values at 20 mK, however, exceed \(7 \times 10^{17} \text{ cm}^{-2} \) corresponding to the number of atomic lattice sites per unit area in silicon. Furthermore, it should be emphasized that the Boltzmann limit leads to a singularity in \(N_{it} \) near 0 K. Recently, relying on numerical simulations Bohuslavskyi et al. demonstrated that an exponential band tail and Fermi-Dirac statistics leads to saturation of \(SS \) at deep-cryogenic temperatures [12], [13]. The presence of a band tail in FDSOI FETs was explained by a combination of crystalline disorder, strain, residual impurities, etc. However, an imperfect band edge can already develop in a piece of semiconductor that is free from disorder or defects, but not infinitely periodic. Indeed, periodic boundary conditions are usually assumed for 3-D density-of-states (DOS) calculations which result in a perfectly sharp edge of the conduction band. Similarly for an electron in a 1-D periodic potential, the band edges are only perfect when the potential is infinitely periodic (Kroneck-Penney model). Invoking the finite periodicity of the crystal in a MOS device could give a better explanation why the saturation of \(SS \) is so universal among different MOS technologies.

The saturation has been measured in older technologies as well, before strain and nanometer dimensions were introduced that lead to disorder. Furthermore, little statistical variation on \(SS(4.2 \text{ K}) \) has been reported for 50 samples of the same technology (28-nm FDSOI) [32]. While defects and disorder vary among devices, all devices on a wafer have a similarly broken periodicity in the direction of the MOS interface due to wafer cleavage followed by lattice-matched material growth. The little statistical variation is then due to other lattice perturbations such as the ones proposed by Bohuslavskyi et al. [22], [33]. This is consistent with the fact that the \(SS \) in FDSOI devices improves when the channel is displaced away from the front-gate interface by back-gate biasing [32].

This project has received funding from the European Union’s Horizon 2020 Research & Innovation Programme under grant agreement No. 688539 MOS-Quito (MOS-based Quantum Information Technology).

The authors are with the Integrated Circuits Laboratory (ICLAB) at the Ecole Polytechnique Fédérale de Lausanne (EPFL), Microc, 2000 Neuchâtel, Switzerland (e-mail: arnout.beckers@epfl.ch).

Fig. 1. Saturating \(SS(T) \) measured in different FET technologies deviating from the Boltzmann limit. Colored markers are obtained from our measurements in Figs. 4(a) and 4(b) at \(I_{DS} = 100 \text{ pA} \) and \(1 \text{nA} \), respectively. All devices have gate lengths in the \(\mu \text{m} \)-range.

1

\[\text{Boltzmann limit, } (k_B T/q) \ln 10 \]
II. REVISITED THEORETICAL LIMIT

The total drain current in subthreshold can be approximated by

\[I_{DS} = q(W/L)\mu(k_BT/q)(n_D - n_S), \]

assuming a standard, bulk n-channel MOSFET, where \(q \) is the electron charge, \(W/L \) the width-over-length ratio of the transistor gate, \(\mu \) the free-carrier mobility (assumed constant along the channel), and \(n_D \) and \(n_S \) the electron densities at the drain and source sides [14]. Hence, \(SS = \partial V_{GS}/\partial \log I_{DS} \) can be expressed as \(m[[\partial n_D/\partial V_{TH} - \partial n_S/\partial V_{TH}]]/10 \), where \(V_{GS} \) is the gate-to-source voltage, \(m = \partial V_{GS}/\partial \psi_s \) is the slope factor, and \(\psi_s \) is the electrostatic potential at the surface compared to the bulk [Fig. 2(a)]. We assume that \(m = 1 + (C_{des} + C_{ox})/C_{ox} \) where \(C_{ox} \) is the interface-trap capacitance. The electron density in the band tail [Fig. 2(b)] is described by:

\[n = \int_{-\infty}^{E_{c,s}} DOS(E_{c,s}) \exp \left(\frac{E - E_{c,s}}{W_t} \right) f(E) dE, \]

where \(E_{c,s} \) is the conduction-band energy of the sharp band edge at the surface, \(W_t \) is the characteristic decay of an exponential band tail in the bandgap, and \(f(E) \) is the Fermi-Dirac function. For simplicity, since \(SS \) will not depend on the exact value of \(DOS(E_{c,s}) \), we assume that \(DOS(E_{c,s}) \) can be given by the conduction-band \(DOS \) in 2-D: \(N_c^0 = q_m^2/(\pi \hbar^2) \), where \(q_m = 2 \) is the degeneracy factor, \(m^* = 0.19 \) \(m_e \) is the effective mass in silicon (assumed independent), \(m_e \) is the electron mass, and \(h \) the reduced Planck constant. The solution of integral (1) takes the form of a Gaussian hypergeometric function \((F_1 = F_1(1, \theta; 1 + \theta), z) \):

\[\int_{-\infty}^{E_{c,s}} DOS(E_{c,s}) \exp \left(\frac{E - E_{c,s}}{W_t} \right) f(E) dE = N_c^{2D} W_t F_1(1, \theta; 1 + \theta; z), \]

where \(\theta = k_BT/W_t, z = -\exp [(E_{c,s} - E_{F,s})/(k_BT)] \) and \(E_{F,n} = E_F - qV \) is the quasi-Fermi energy of electrons and \(V \) is the channel voltage. The band diagram in Fig. 2(a) shows that \(E_F = E_F^0 - E_F^0/2 - q\Phi_F \), where \(E_F^0 \) is the conduction-band energy in thermal equilibrium, \(E_F^0 \) the bandgap, and \(\Phi_F = (k_BT/q) \ln(N_A/n_i) \) the Fermi potential with \(N_A \) the doping concentration and \(n_i \) the intrinsic carrier concentration. Using \(\psi_s = -(E_{c,s} - E_F)/q \), it follows that \(E_{F,n} = q\psi_s - E_F^0/2 - q\Phi_F + qV \). The latter can be inserted in (2) to yield \(n \) as a function of \(\psi_s \) where \(z = -\exp [-q\psi_s/(k_BT)] \), \(\psi_s = \psi_s^* \), and \(\psi_s^* = E_{F,n}/(2q) + \Phi_F + V \). The defined \(\psi_s^* \) depends only on \(T \) and \(N_A \) at a fixed \(V_{DS} \). Note that for \(\psi_s \) in subthreshold, ranging from 0 (flatband) to 2\(\Phi_F + V \) (threshold), \(\psi_s^* \) is always negative. The first derivative of a hypergeometric function \(F_1(a; b; c; z) \) is given by \((ab/c)F_1(a + 1, b + 1; c + 1; 1) \) [36]. Differentiating (2) with respect to \(\psi_s \) (applying the chain rule for \(z \)), we find that

\[\frac{\partial n}{\partial \psi_s} = -qzN_c^{2D} F_1(2, \theta + 1; \theta + 2; z) \frac{1}{\theta + 1}. \]

III. SATURATION VALUE

An expression for the saturation value of \(SS \) at deep cryogenic temperatures \((k_BT \ll W_t \text{ or } \theta \to 0) \) can be derived from (4)-(5):

\[SS^{k_BT \ll W_t} = m \left(\frac{W_t}{q} \right) \ln 10 \times F_1(1, 0; 1; z) \left(\frac{V_{DS}}{F_1(2, 1; 2; z)} \right)^{z} \]

where \(W_t \) is in Joules. Applying one of Euler’s linear transformations for hypergeometric functions, i.e., \(F_1(a, b; c; z) = (1 - z)^{-b}F_1(b, c - a; c; z) \) [36], where \(|z'| = |z|/(z - 1) | < 1 \) and \(c = a \), gives

\[SS^{k_BT \ll W_t} = m \left(\frac{W_t}{q} \right) \ln 10 \times \frac{F_1(0, 0; 1; z')}{F_1(0, 1; 2; z')} (1 - z')^{-1}. \]
limit follows the temperature-independent $m(W_i/q)\ln 10$ rather than $m(k_BT/q)\ln 10$. The revised limit demonstrates that a perfect MOS switch ($SS = 0$) cannot be obtained in the presence of a band tail. The problem of extracting anomalously high interface-trap density at deep-cryogenic temperatures is solved by using $m(W_i/q)\ln 10$.

REFERENCES

[1] A. Kamgar, “Subthreshold behavior of silicon MOSFETs at 4.2 K,” *Solid-State Electronics*, vol. 25, no. 7, pp. 537–539, Jul. 1982.

[2] I. M. Hafez, G. Ghibaudo, and F. Balestra, “Assessment of interface state density in silicon metal-oxide-semiconductor transistors at room, liquid-nitrogen, and liquid-helium temperatures,” *Journal of Applied Physics*, vol. 67, no. 4, pp. 1950–1952, 1990.

[3] F. Balestra and G. Ghibaudo, “Physics and performance of nanoscale semiconductor devices at cryogenic temperatures,” *Semiconductor Science and Technology*, vol. 32, no. 2, p. 023002, 2017.

[4] A. Beckers, F. Jazaeri, A. Ruffino, C. Bruschini, A. Baschirotto, and C. Enz, “Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing,” in *2017 47th European Solid-State Device Research Conference (ESSDERC)*, Sep. 2017, pp. 62–65.

[5] A. Beckers, F. Jazaeri, and C. Enz, “Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K,” *IEEE Journal of the Electron Devices Society*, vol. 6, pp. 1007–1018, 2018.

[6] H. Homulle, L. Song, E. Charbon, and F. Sebastiano, “The Cryogenic Temperature Behavior of Bipolar, MOS, and DTMOS Transistors in Standard CMOS,” *IEEE Journal of the Electron Devices Society*, vol. 6, pp. 263–270, 2018.

[7] R. M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu, and F. Sebastiano, “Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures,” *IEEE Journal of the Electron Devices Society*, vol. 6, pp. 996–1006, 2018.

[8] P. Galy, P. Lemieux, J. C. Lemyre, F. Arnaud, D. Drouin, and M. Pioro-Ladrière, “Cryogenic temperature characterization of a 28 nm FD-SOI dedicated structure for advanced CMOS and quantum technologies co-integration,” *IEEE Journal of the Electron Devices Society*, pp. 1–1, 2018.

[9] E. A. Gutierrez-D, J. Deen, and C. Claeys, *Low temperature electronics: physics, devices, circuits, and applications*. Elsevier, 2000.

[10] F. Balestra and G. Ghibaudo, *Device and circuit cryogenic operation for low temperature electronics*. Springer, 2001.

[11] T. Elewa, F. Balestra, S. Cristoloveanu, I. M. Hafez, J. Colinge, A. Aubert-Herve, and J. R. Davis, “Performance and physical mechanisms in SIMOX MOS transistors operated at very low temperature,” *IEEE Transactions on Electron Devices*, vol. 37, no. 4, pp. 1007–1019, April 1990.

[12] M. Shin, M. Shi, M. Mouis, A. Cros, E. Josse, G. T. Kim, and G. Ghibaudo, “Low temperature characterization of 14 nm FDSOI CMOS devices,” in *2014 11th International Workshop on Low Temperature Electronics (WOLTE)*, 2014, pp. 29–32.

[13] H. Bohuslavskyi, S. Barraud, M. Cassé, V. Barrai, B. Bertrand, L. Hutin, F. Arnaud, P. Galy, M. Sanquer, S. De Franceschi, and M. Vinet, “28 nm Fully-depleted SOI technology: Cryogenic control electronics for quantum computing,” in *2017 Silicon Nanoelectronics Workshop (SNW)*, June 2017, pp. 143–144.

[14] A. Beckers, F. Jazaeri, H. Bohuslavskyi, L. Hutin, S. De Franceschi, and C. Enz, “Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures,” *Solid-State Electronics*, vol. 139, pp. 106–115, 2017, IFL-IEEE EUROSOI 2018.

[15] H. A. A. Houari, A. M. T. A. A. Houari, B. Cretu, J. M. Routourou, A. Benfida, R. Carin, N. Colaert, E. Simo, A. Mercha, and C. Claeys, “DC and low-frequency noise performances of SOI p-FinFETs at very low temperature,” *Solid-State Electronics*, vol. 90, pp. 160–165, Dec. 2013.

[16] B. Cretu, D. Boudier, E. Simo, A. Veloso, and N. Colaert, “Assessment of DC and low-frequency noise performances of triple-gate FinFETs at cryogenic temperatures,” *Semiconductor Science and Technology*, vol. 31, no. 12, Dec. 2016.

[17] D. Boudier, B. Cretu, E. Simo, A. Veloso, and N. Colaert, “Detailed characterisation of Si Gate-All-Around Nanowire MOSFETs at cryogenic temperatures,” *Solid-State Electronics*, vol. 143, pp. 27 – 32, 2018.

[18] R. Trevisoli, M. d. Souza, R. T. Doria, V. Klichytska, D. Landre, and M. A. Alavinezhad, “Effect of the Temperature on Junctionless Nanowire Transistors Electrical Parameters down to 4 K,” in *2014 29th Symposium on Microelectronics Technology and Devices (SBMicro)*, Sep. 2014, pp. 1–4.
R. Trevisoli, M. de Souza, R. T. Doria, V. Kilchyska, D. Flandre, and M. A. Pavanello, “Junctionless nanowire transistors operation at temperatures down to 4.2 K,” *Semiconductor Science and Technology*, vol. 31, no. 11, p. 114001, 2016.

B. C. Paz, M. A. Pavanello, M. Cassé, S. Barraud, G. Reimbold, M. Vinet, and O. Faynot, “Cryogenic operation of Ω-gate p-type SiGe-on-insulator nanowire MOSFETs,” in *2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS)*, Mar. 2018, pp. 1–4.

J. Schleeh, H. Rodilla, N. Wadefalk, P. Nilsson, and J. Grahn, “Characterization and Modeling of Cryogenic Ultralow-Noise InP HEMTs,” *IEEE Transactions on Electron Devices*, vol. 60, no. 1, pp. 206–212, Jan 2013.

T. Kobayashi, S. Nakazawa, T. Okuda, J. Suda, and T. Kimoto, “Interface state density of SiO₂/p-type 4H-SiC (0001), (1120), (1100) metal-oxide-semiconductor structures characterized by low-temperature subthreshold slopes,” *Applied Physics Letters*, vol. 108, no. 15, p. 152108, Apr. 2016. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.4946862

J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. Morton, D. N. Jamieson, A. S. Dzurak, and A. Morello, “A single-atom electron spin qubit in silicon,” *Nature*, vol. 489, no. 7417, p. 541, 2012.

J. J. Morton, D. R. McCamey, M. A. Eriksson, and S. A. Lyon, “Embracing the quantum limit in silicon computing,” *Nature*, vol. 479, no. 7373, p. 345, 2011.

R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavský, R. Laviéville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, and S. De Franceschi, “A CMOS silicon spin qubit,” *Nature Communications*, vol. 7, p. 13575, Nov. 2016. [Online]. Available: http://www.nature.com/doifinder/10.1038/ncomms13575

L. Vanderstraeten, H. Bluhm, J. Clarke, A. Dzurak, R. Ishihara, A. Morello, D. Reilly, L. Schreiber, and M. Veldhorst, “Interfacing spin qubits in quantum dots and donor shot, dense, and coherent,” *npj Quantum Information*, vol. 3, no. 1, p. 34, 2017.

E. Charbon, F. Sebastiano, A. Vladimirescu, H. Homulle, S. Visser, L. Song, and R. M. Incandela, “Cryo-CMOS for quantum computing,” in *2016 IEEE International Electron Devices Meeting (IEDM)*, Dec 2016, pp. 13.5.1–13.5.4.

S. Schaal, A. Rossi, V. N. Ciriano-Tejel, T.-Y. Yang, S. Barraud, J. J. Morton, and M. F. Gonzalez-Zalba, “A CMOS dynamic random access architecture for radio-frequency readout of quantum devices,” *Nature Electronics*, vol. 1, p. 1, 2019.

A. Beckers, F. Jazaeri, and C. Enz, “Cryogenic MOS Transistor Model,” *IEEE Transactions on Electron Devices*, vol. 65, no. 9, pp. 3617–3625, Sep. 2018.

F. Jazaeri, A. Beckers, A. Tajalli, and J. Sallese, “A Review on Quantum Computing: From Qubits to Front-end Electronics and Cryogenic CMOSFET Physics,” in *2019 MIXDES - 26th International Conference “Mixed Design of Integrated Circuits and Systems”*, June 2019, pp. 15–25.

L. Vandervorst, “Cryogenic operation of CMOS-based microsystems and computers,” *Microprocessors and Microsystems*, vol. 13, no. 4, pp. 245–253, 1989. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0141933189900628

H. Bohuslavský, A. G. M. Jansen, S. Barraud, V. Barral, M. Cassé, L. Le Guevel, X. Jehl, L. Hutin, B. Bertrand, G. Billiot, G. Pillonnet, F. Arous, P. Galy, S. De Franceschi, M. Vinet, and M. Sanquer, “Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening,” *IEEE Electron Device Letters*, vol. 40, no. 5, pp. 784–787, May 2019.

H. Bohuslavský, “Cryogenic electronics and quantum dots on silicon-on-insulator for quantum computing,” Ph.D. dissertation, Communauté Université Grenoble Alpes, 2016, Chapter 4.

Y. Taur and F. H. Ning, *Fundamentals of Modern VLSI Devices*, 2nd ed. Cambridge University Press, 2009.

L. C. Andrews, *Special functions of mathematics for engineers*. Oxford University Press, 1997, ch. 9, pp. 357–363.

M. Abramowitz and I. A. Stegun, *Handbook of mathematical functions with formulas, graphs, and mathematical tables*. Dover Publications, 1968, ch. 15, pp. 555–559.

R. M. Jock, S. Shankar, A. M. Ttryshkin, J. He, K. Eng, K. D. Childs, L. A. Tracy, M. P. Lilly, M. S. Carroll, and S. A. Lyon, “Probing band-tail states in silicon metal-oxide-semiconductor heterostructures with electron spin resonance,” *Applied Physics Letters*, vol. 100, no. 2, p. 023503, Jan. 2012. [Online]. Available: http://aip.scitation.org/doi/10.1063/1.3675862