Indications of Lymph Node Metastasis and Survival Analysis in T1N+M0 Gastric Cancer: a Population-Based Study

Peng Jin
National Cancer Center

Yang Li
National Cancer Center

Shuai Ma
National Cancer Center

Wenzhe Kang
National Cancer Center

Hao Liu
National Cancer Center

Fuhai Ma
National Cancer Center

Haitao Hu
National Cancer Center

Weikun Li
National Cancer Center

Yantao Tian (zlyytyt@163.com)
National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College

Research article

Keywords: Early gastric cancer, T1 tumor, Adjuvant chemotherapy, Lymph node metastasis, prognosis

DOI: https://doi.org/10.21203/rs.3.rs-36648/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract

Background

Since the definition of early gastric cancer (EGC) was first proposed in 1971, the treatment of gastric cancer with or without lymph node metastasis (LNM) has changed a lot. The present study aims to identify risk factors for LNM and prognosis, and to further evaluate the indications for adjuvant chemotherapy (AC) in T1N+M0 gastric cancer.

Methods

A total of 1291 patients with T1N+M0 gastric cancer were retrieved from the Surveillance, Epidemiology, and End Results (SEER) database. Univariate and multivariate analyses were performed to identify risk factors for LNM. The effect of LNM on overall survival (OS) and cancer-specific survival (CSS) was compared with patients grouped into T1N0-1 and T1N2-3, as the indications for AC.

Results

The rate of LNM was 19.52%. Multivariate analyses showed age, tumor size, invasion depth, and type of differentiation and retrieved LNs were associated with LNM (p < 0.05). Cox multivariate analyses indicated age, sex, tumor size, N stage were independent predictors of OS and CSS (p < 0.05), while race was indicator for OS (HR 0.866; 95% CI 0.750–0.999, p = 0.049), but not for CSS (HR 0.878; 95% CI 0.723–1.065, p = 0.187). In addition, survival analysis showed the proportion of patients in N+/N0 was better distributed than N0-1/N2-3b. There were statistically significant differences in OS and CSS between patients with and without chemotherapy in pT1N1M0 patients (p < 0.05).

Conclusions

Both tumor size and invasion depth are associated with LNM and prognosis. LNM is an important predictor of prognosis. pT1N + M0 may be appropriate candidates for AC. Currently, the treatment and prognosis of T1N0M0/T1N+ M0 are completely different. An updated definition of EGC, taking into tumor size, invasion depth and LNM, may be more appropriate in an era of precision medicine.

Background

Gastric cancer is the fifth most common cancer and it is the third leading cause of cancer-related mortality worldwide [1]. In Japan and South Korea, EGC accounts approximately 60% [2]. In other parts of the world, the newly diagnosed EGC is also increasing. EGC was defined as a cancer limited to the mucosa and/or submucosa (T1 stage) regardless of the lymph node status [3]. It does not consider lymph node involvement. Although the definition has sparked controversies over the years, it is still widely
adopted in many clinical studies [4]. Since the indications were first introduced for endoscopic mucosal resection (EMR) in 1987, therapeutic EMR and endoscopic submucosal dissection (ESD) have been accepted as routine option for EGC [5]. However, the presence of LNM is as an absolute contraindication to ESD.

Over the past years, many studies indicated the depth of invasion is the most important factor which is associated with LNM. The incidence of LNM in EGC with submucosal and mucosal invasion is 8–25% and 2–5%, respectively [6–9]. LNM is also considered as one of the most important prognostic factor. The 5-year survival rate for patients with and without LNM is 87.3% and 94.2%, respectively [10]. In addition, the indication for AC in T1N+M0 gastric cancer is T1N2-3bM0, according to the latest Japanese gastric cancer treatment guidelines 2018 (5th edition) [11]. Whether AC is really unnecessary for T1N1M0 gastric cancer remains controversial. Moreover, the majority of gastric cancer occurs in Asia, data regarding LN metastasis for T1 cancer from non-asian patients is rare. Therefore, our study aims to identify risk factors for LNM and to further evaluate the indications for AC in T1N+M0 gastric cancer using Surveillance, Epidemiology, and End Results (SEER) database from USA.

Methods

Patients and Methods

All analyzed data were collected from SEER database between January 1988 and December 2012. The inclusion criteria included: (1) patients aged at least 20 years with gastric adenocarcinoma confirmed by histology (2) primary gastric cancer, (3) underwent radical surgery (4) The tumor pathological stage was T1M0 according to the 7th AJCC stage, (5) at least 1 lymph node examined; Patients were excluded due to: (1) unknown T and/or N, M category; (2) patients with previous malignancies; (3) patients received radiotherapy or chemotherapy prior to surgery; (4) patients without exact examined lymph node.

All cases have been recoded using the International Classification of Disease for Oncology third edition (ICD-O-3). The histological types were categorized into intestinal type and diffuse type. According to the ICD-O-3, diffuse type EGC includes signet ring cell carcinoma (M8490), diffuse carcinoma (M8145), and linitis plastica (M8142). Intestinal type EGC includes carcinoma (not otherwise specified; M8010), adenocarcinoma (not otherwise specified; M8140), tubular (M8211), and intestinal type (M8144). The patients were divided into two groups according to age (≤ 84 and > 85 years old) and tumor size (≤ 3 cm and > 3 cm). Tumor sites were divided into eight groups, as follows: cardiac, fundus, body, antrum, pylorus, lesser curve, large curve and overlapping/NOS.

Statistical Analyses

Statistical analyses were performed with SPSS 21.0. Fisher’s exact or chi-square tests was used for categorical variables. Logistic regression analyses were performed to identify risk factors for LNM. Cumulative survival rates of OS and CSS were analyzed using the Kaplan-Meier method. Multivariate Cox
regression was performed to explore the potential risk factors for poor OS and CSS. A P value < 0.05 was considered statistically significant.

Results

Patient characteristics

A total of 1291 patients with T1N + M0 gastric adenocarcinoma were enrolled (Fig. 1). Of those, 1039 (80.5%) were LN negative and 252 (19.5%) were LN positive. Further details are summarized in Table 1.
Table 1
Univariate analysis of risk factors for lymph node metastasis in T1N+ M0 gastric cancer.

Variables	LN negative (n = 1039), n(%)	LN positive (n = 252), n(%)	p
Age, years			0.025
20–84	978 (94.1)	246 (97.6)	
≥ 85	61 (5.9)	6 (2.4)	
Sex			0.887
Female	399 (38.4)	98 (38.9)	
Male	640 (61.6)	154 (61.1)	
Race			0.103
White	597 (57.5)	136 (54.0)	
Black	125 (12.0)	43 (17.1)	
others	317 (30.5)	73 (29.0)	
Primary Site			0.021
Cardia	258 (24.8)	45 (17.9)	
Fundus	21 (2.0)	4 (1.6)	
Body	125 (12.0)	36 (14.3)	
Antrum	380 (36.6)	92 (36.5)	
Pylorus	27 (2.6)	15 (6.0)	
Lesser curve	134 (12.9)	27 (10.7)	
Greater curve	40 (3.8)	13 (5.2)	
Overlapping/NOS	54 (5.2)	20 (7.9)	
Tumor size, cm			0.000
≤ 3	842 (81.0)	156 (61.9)	
> 3	197 (19.0)	96 (38.1)	
AJCC 7th pT			0.000
T1a	455 (43.8)	37 (14.7)	
T1b	565 (54.4)	205 (81.3)	

AJCC, American Joint Committee on Cancer; NOS, not otherwise specific
Variables	LN negative (n = 1039), n(%)	LN positive (n = 252), n(%)	p
T1 NOS	19 (1.8)	10 (4.0)	
Lymph nodes examined			0.000
1–15	581 (55.9)	103 (40.9)	
>15	458 (44.1)	149 (59.1)	
Tumor grade			0.000
Well differentiated	171 (16.5)	10 (4.0)	
Moderately differentiated	389 (37.4)	80 (31.7)	
Poorly differentiated	462 (44.5)	158 (62.7)	
Undifferentiated	17 (1.6)	4 (1.6)	
Lauren classification			0.061
Intestinal	789 (75.9)	177 (70.2)	
Diffuse	250 (24.1)	75 (29.8)	

AJCC, American Joint Committee on Cancer; NOS, not otherwise specific

Risk factors for LNM

The characteristics were compared between LN negative group and LN positive group (Table 1). The results showed that there were no significant differences between the groups in sex, race and Lauren classification (p > 0.05). The diffuse histologic type showed no more frequent LNM than the intestinal type (P = 0.061). But the two groups significantly differed in age, primary site, tumor size, invasion depth (T stage), tumor grade and retrieved LNs (p < 0.05). The proportion of patients with LNM was lower in elder patients (≥ 85) than younger patients (p = 0.025). A greater tumor size (> 3 cm), deeper invasion depth (T1b) were related with more frequent LNM (p < 0.001). In the patients with poorly differentiated type cancer, the rate of LNM was much higher than the differentiated type (p < 0.001). Multivariate analysis showed that age, tumor size, invasion depth, type of differentiation, and retrieved LNs were associated with LNM in T1N + M0 gastric cancer patients (Table 2).
Table 2
Multivariate analysis of risk factors for lymph node metastasis in T1N+M0 gastric cancer.

Variables	OR	95% CI	p
Age, years (≥ 85)	0.324	0.135–0.799	0.012
Primary Site	1.056	0.981–1.136	0.150
Tumor size, (≤3 cm)	2.024	1.471–2.786	0.000
AJCC 7th pT, T1b	3.238	2.340–4.479	0.000
Lymph nodes examined (≤15)	1.678	1.247–2.259	0.001
Tumor grade	1.744	1.358–2.240	0.000
Lauren classification^a	0.983	0.679–1.422	0.927

CI, confidence interval; OR, Odds ratio; ^a, Intestinal and diffuse type; AJCC, American Joint Committee on Cancer;

OS and CSS analyses in T1N+M0 gastric cancer patients

Univariate and multivariate analysis identified age, sex, tumor size, and LNM as significant predictors of OS and CSS (Table 3 and Table 4). Race was associated with OS (HR 0.866; 95% CI 0.750–0.999, p = 0.049), but not with CSS (HR 0.878; 95% CI 0.723–1.065, p = 0.187). In addition, there was significant difference on CSS in patients with or without chemotherapy (HR 0.474; 95%CI 0.265–0.848, p = 0.012). Therefore, we further evaluated the OS and CSS with patients divided into N0/N+ groups or N0-1/N2-3b groups (Fig. 2 and Fig. 3), which are the indications for AC according to the latest Japanese gastric cancer treatment guidelines 2018 (5th edition).
Table 3
Predictors of overall survival for T1N + M0 gastric cancer patients

Variable	Univariate		Multivariate	
	HR (95% CI)	p	HR (95% CI)	p
Age, years (≥80)	2.367 (1.790–3.132)	0.000	2.347 (1.763–3.125)	0.000
Sex				
Female	1.000			
Male	1.174 (1.320–2.295)	0.000		
Race				
White	1.000			
Black	1.476 (1.082–2.014)	0.014	0.866 (0.750–0.999)	0.049
others	2.177 (1.476–3.212)	0.000		
Primary Site		0.468		
Cardia	1.000			
Fundus	0.776 (0.471–1.278)	0.319		
Body	0.802 (0.301–2.137)	0.659		
Antrum	0.582 (0.327–1.039)	0.067		
Pylorus	0.632 (0.389–1.027)	0.064		
Lesser curve	0.626 (0.265–1.481)	0.286		
Greater curve	0.550 (0.307–0.985)	0.044		
Overlapping/ NOS	0.681 (0.326–1.421)	0.306		

AJCC, American Joint Committee on Cancer; NOS, not otherwise specific; CI, confidence interval; HR, hazard ratio
Variable	Univariate	Multivariate	
Tumor size, cm	0.000	1.814 (1.391–2.367)	0.000
≤ 3	1.000		
>3	2.106 (1.629–2.723)		
AJCC 7th pT	0.001	1.137 (0.886–1.461)	0.313
T1a	1.000		
T1b	0.870 (0.352–2.154)	0.764	
T1 NOS	1.451 (0.597–3.531)	0.412	
AJCC 7th pN	0.000	1.812 (1.368–2.400)	0.000
N0	1.000		
N1-N3b	1.984 (1.516–2.597)		
Lymph nodes examined	0.154	-	-
>15	1.000		
1–15	1.199 (0.934–1.538)		
Tumor grade	0.981	-	-
Well differentiated	1.000		
Moderately differentiated	0.955 (0.339–2.687)	0.930	
Poorly differentiated	0.927 (0.341–2.522)	0.882	
Undifferentiated	0.894 (0.330–2.420)	0.825	
Lauren classification	0.005	0.748 (0.544–1.030)	0.075

AJCC, American Joint Committee on Cancer; NOS, not otherwise specific; CI, confidence interval; HR, hazard ratio
Variable	Univariate	Multivariate
Intestinal	1.000	
Diffuse	1.560 (1.142–2.131)	
Radiotherapy	0.383	-
After surgery	0.842 (0.572–1.239)	
Chemotherapy	0.476	-
No/not known	1.000	
Yes	0.892 (0.652–1.222)	

AJCC, American Joint Committee on Cancer; NOS, not otherwise specific; CI, confidence interval; HR, hazard ratio
Table 4
Predictors of cancer specific survival for T1N + M0 gastric cancer patients

Variable	Univariate			Multivariate	
	HR (95% CI)	p	HR (95% CI)	p	
Age, years (≥ 80)	1.683 (1.125–2.517)	0.011	1.564 (1.027–2.381)	0.037	
Sex, Male	1.563 (1.091–2.238)	0.015	1.597 (1.109–2.300)	0.012	
Race	0.003		0.878 (0.723–1.065)	0.187	
	others	1.000			
White	1.579 (1.037–2.406)	0.033			
Black	2.448 (1.463–4.096)	0.001			
Primary Site	0.021		0.947 (0.872–1.029)	0.196	
Cardia	1.000				
Fundus	0.844 (0.456–1.599)	0.587			
Body	0.993 (0.324–3.045)	0.990			
Antrum	0.506 (0.241–1.063)	0.072			
Pylorus	0.401 (0.213–0.757)	0.005			
Lesser curve	0.694 (0.247–1.948)	0.488			

AJCC, American Joint Committee on Cancer; NOS, not otherwise specific; CI, confidence interval; HR, hazard ratio
Variable	Univariate	Multivariate		
Greater curve	0.531 (0.255–1.103)	0.090		
Overlapping/NOS	0.770 (0.319–1.858)	0.561		
Tumor size, > 3 cm	2.105 (1.498–2.958)	0.000	1.797 (1.260–2.565)	0.001
AJCC 7th pT	0.000	1.528 (1.078–2.166)	0.017	
T1a	1.000			
T1b	0.488 (0.173–1.380)	0.176		
T1 NOS	1.124 (0.414–3.050)	0.818		
AJCC 7th pN,N+	2.987 (2.137–4.173)	0.000	3.662 (2.382–5.631)	0.000
Lymph nodes examined, ≤ 15	0.923 (0.664–1.282)	0.633		
Tumor grade	0.411	-	-	
Undifferentiated	1.000			
Well differentiated	0.993 (0.230–4.282)	0.993		
Moderately differentiated	0.885 (0.214–3.650)	0.866		
Poorly differentiated	1.208 (0.297–4.916)	0.792		
Lauren classification	0.300	-	-	

AJCC, American Joint Committee on Cancer; NOS, not otherwise specified; CI, confidence interval; HR, hazard ratio
Subgroups analysis on OS and CSS

We divided the patients into different groups according to the number of LNMs (Fig. 2 and Fig. 3). Kaplan-Meier survival analysis showed that there were statistically significant differences in OS and CSS between pN0/N+ or pN0-1/N2-3b categories (p < 0.001), but an overlap in survival curves was found between categories pN0-1/N2-3b. The proportion of patients in pN0/N+ was better distributed and pN0/N+ category showed improved prognostic performance in predicting OS and CSS. A statistical assessment of the predictive performance of the two category methods revealed that the pN0/N+ category had a higher χ² (26.06 vs. 18.39) for OS, and the difference is much higher (45.47 vs. 24.37) for CSS. The pN0/N+ classifications for T1N+M0 seem to have an optimal prognostic stratification.

In addition, Kaplan-Meier survival analysis showed that there were statistically significant differences in OS and CSS between patients with and without chemotherapy in pT1N1M0 patients (p < 0.05). Therefore, pT1N1M0 may be an indication for AC in gastric cancer patients.

Discussion

Early gastric cancer (EGC) is defined as tumor confined to the mucosa or submucosa, regardless of LNM in 1971 by Murakami[3]. Even though, other classifications, such as Kodama’s classification[12] and Paris’s classification[13] were also proposed to define EGC, the Murakami definition is the still the most widely adopted one in recent studies. In an era of precision medicine, the diagnosis, treatment and prognosis of EGC with or without LNM are completely different. Currently, EMR and ESD are first alternative choice for patients without LNM, while radical surgery is necessary for patients with LNM. Several reports have focused on the risk factors of LNM and indicated that the lymph node status was an important prognostic factor[6, 9, 14–16]. In addition, the indications for AC in T1N+M0 gastric cancer is T1N2-3bM0, according to the latest Japanese gastric cancer treatment guidelines 2018 (5th edition)[17].

Variable	Univariate		Multivariate
Intestinal	1.000		
Diffuse	1.229	0.300	
	(0.833–1.813)		
Radiotherapy, after surgery	0.574	0.015	1.084 (0.576–2.040)
	(0.367–0.898)		0.803
Chemotherapy, after surgery	0.710	0.084	0.474 (0.265–0.848)
	(0.481–1.047)		0.012

AJCC, American Joint Committee on Cancer; NOS, not otherwise specific; CI, confidence interval; HR, hazard ratio
Whether AC is really unnecessary for T1N1M0 gastric cancer remains to be decided, but few studies have focused on this topic. Therefore, we investigated the incidence and risk factors of LNM, and evaluate the survival of T1N+M0 gastric cancer using the SEER database.

In the present study, we found the LNM rate for patients with T1N+M0 gastric cancer is 19.5%, which is comparable to previously reported 4%-24%[14, 18–20]. Our study also indicated that age, tumor size, invasion depth, type of differentiation and number of retrieved LNs were independent risk factors for LNM in EGC. Depth of invasion is the most important risk factors for LNM. Previous studies have reported the relationship of age and LNM. Higher risk for LNM was more indentified in young patients [21], and a lower risk in old patients [22]. However, other studies reported that LNM was not associated with age [23]. In the present study, old age (≥ 85) had a lower risk for LNM. Many previous reports have also confirmed that undifferentiated type is more aggressive[24], which was confirmed in our study.

In our study, the tumor size and depth of invasion are independent risk factors for LNM, which was consistent with previous studies [25]. Another important risk factor for LNM is the presence of lymphovascular invasion. However, among all these risk factors, depth of invasion might have the greatest impact.

In the present study, multivariate analyses showed age, sex, tumor size, invasion depth and LNM were related with OS and CSS. LNM has been identified as a significant predictor of OS by many studies. A study showed that the 5-year survival rate was 87.3% and 94.2% in EGC patients with LNM and without LNM, respectively. Roviello et al. reported that the 10-year OS in EGC patients was different for patients with different number of LNM. Patients with 1–3 LNM had a lower risk of recurrence, while in cases with four or more LNM, the risk of recurrence increased. Therefore, increased LNM was associated with decreased survival and higher recurrence rate.

If lymph node metastases are present, patients should receive AC after radical surgery according to the recommendations of the Chinese Society of Clinical Oncology and the European Society of Medical Oncology [17, 26]. However, AC are not recommended for patients with pT1N0M0 and pT1N1M0 according to the latest Japanese gastric cancer treatment guidelines 2018 (5th edition)[11]. Our study revealed that there were statistically significant differences in OS and CSS between pN0/N+ or pN0-1/N2-3b categories (p<0.001), but an overlap in survival curves was found between categories pN0-1/N2-3b. The proportion of patients in pN0/N+ was better distributed and pN0/N+ category showed improved prognostic performance in predicting OS and CSS. Moreover, multivariate analyses showed AC was associated with CSS. Therefore, pT1N1M0 may be appropriate candidate for AC, other studied have also showed these patients[27–29].

There are some limitations to our study. First, the retrospective study is based on SEER database, which represents only 28% of the U.S. population and lacks data on many medical details. Second, we just investigated the major risk factors in terms of LNM and prognosis, suggesting modification of the definition with tumor size, invasion depth and LNM. Further clinical studies are warranted to investigate more definitive parameters. The biological behavior and molecular mechanism of LNM in gastric cancer
needs to be clarified. An updated definition, which combines macroscopic types, pathological morphology and molecular classification, may be useful to make appropriate treatment decisions and follow-up plans. Furthermore, a unified and standardized definition makes different studies comparable.

Conclusions

In conclusion, both tumor size and invasion depth are associated with LNM and prognosis. LNM is an important predictor of prognosis. pT1N + M0 may be appropriate candidates for AC. Currently, the treatments and prognosis for patients with T1N0M0/T1N + M0 are completely different. An updated definition of EGC, taking into tumor size, invasion depth and LNM, may be more appropriate in an era of precision medicine.

Abbreviations

EGC, early gastric cancer; LNM, lymph node metastasis; AC, adjuvant chemotherapy; SEER, the Surveillance, Epidemiology, and End Results; OS, overall survival; CSS, cancer-specific survival; HR: hazard ratio; CI: confidence interval; EMR, endoscopic mucosal resection; ESD, endoscopic submucosal dissection; ICD-O-3, International Classification of Disease for Oncology third edition

Declarations

Ethics approval and consent to participate Data from a public database, with no private information disclosure.

Consent for publication All authors approved the final version submitted.

Competing interests The authors declare that they have no conflicts of interest.

Funding The research was sponsored by National Natural Science Foundation of China, No. 81772642; Capital’s Funds for Health Improvement and Research, No. CFH 2018-2-4022; Wu Jieping Medical Foundation, No. 320.6750.15276; Beijing Hope Run Special Fund of Cancer Foundation of China, No. LC2019L05.

Authors' contributions PJ and YL contributed equally to this work and they were involved in study concept, data acquisition, analysis, and interpretation, and production of tables, wrote the first draft, and revised it critically in light of comments from other authors; YTT was involved in study conception and design, data interpretation, manuscript revision, and discussion; SM, WZK, HL, and FHM were involved in data acquisition and literature review; HTH and WKL were involved in the manuscript revision and discussion.

Acknowledgements We would like to thank the funds supporting our study.
Data Availability Statement: Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394.

2. Gotoda T, Yanagisawa A, Sasako M, Ono H, Nakanishi Y. Shimoda T et al.: Incidence of lymph node metastasis from early gastric cancer: estimation with a large number of cases at two large centers. Gastric Cancer. 2000;3:219.

3. Murakami T. Pathomorphological diagnosis, definition and gross classification of early gastric cancer. Gann Monogr Cancer Res. 1971;11:53–66.

4. Chen J, Zhao G, Wang Y. Analysis of lymph node metastasis in early gastric cancer: a single institutional experience from China. World Journal of Surgical Oncology 2020;18.

5. Ono H, Kondo H, Gotoda T, Shirao K, Yamaguchi H. Saito D et al.: Endoscopic mucosal resection for treatment of early gastric cancer. Gut. 2001;48:225.

6. Kwee RM, Kwee TC. Predicting lymph node status in early gastric cancer. Gastric Cancer. 2008;11:134.

7. Pelz J, Merkel S, Horbach T, Papadopoulos T, Hohenberger W. Determination of nodal status and treatment in early gastric cancer. Eur J Surg Oncol. 2004;30:935.

8. Borie F, Millat B, Fingerhut A, Hay JM, Fagniez PL, De Saxce B. Lymphatic involvement in early gastric cancer: prevalence and prognosis in France. Arch Surg. 2000;135:1218.

9. Roviello F, Rossi S, Marrelli D, Pedrazzani C, Corso G. Vindigni C et al.: Number of lymph node metastases and its prognostic significance in early gastric cancer: a multicenter Italian study. J Surg Oncol. 2006;94:275.

10. Noh SH, Hyung WJ, Cheong JH. Minimally invasive treatment for gastric cancer: approaches and selection process. J Surg Oncol. 2005;90:188.

11. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer 2020.

12. Kodama Y, Inokuchi K, Soejima K, Matsuoka T, Okamura T. Growth patterns and prognosis in early gastric carcinoma. Superficially spreading and penetrating growth types. Cancer. 1983;51:320.

13. The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002. Gastrointest Endosc. 2003;58:3.

14. Choi AH, Nelson RA, Merchant SJ, Kim JY, Chao J, Kim J. Rates of lymph node metastasis and survival in T1a gastric adenocarcinoma in Western populations. Gastrointest Endosc. 2016;83:1184.

15. Huang B, Zheng X, Wang Z, Wang M, Dong Y, Zhao B. Prognostic Significance of the Number of Metastatic Lymph Nodes: Is UICC/TNM Node Classification Perfectly Suitable for Early Gastric Cancer? Ann Surg Oncol. 2009;16:61.
16. Lin J-X, Lin J-P, Li P, Xie J-W, Wang J-B. Lu Jet al.: New metastatic lymph node classification for early gastric cancer should differ from those for advanced gastric adenocarcinoma: Results based on the SEER database. World Journal of Clinical Cases. 2019;7:145.

17. < Gastric cancer_ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.pdf>.

18. Sano T, Sasako M, Kinoshita T, Maruyama K. Recurrence of early gastric cancer. Follow-up of 1475 patients and review of the Japanese literature. Cancer. 1993;72:3174.

19. Park DJ, Lee HK, Lee HJ, Lee HS, Kim WH, Yang HKet al.: Lymph node metastasis in early gastric cancer with submucosal invasion: feasibility of minimally invasive surgery. World J Gastroenterol 2004;10:3549.

20. Maruyama K, Gunven P, Okabayashi K, Sasako M, Kinoshita T. Lymph node metastases of gastric cancer. General pattern in 1931 patients. Ann Surg. 1989;210:596.

21. Takatsu Y, Hiki N, Nunobe S, Ohashi M, Honda M. Yamaguchi Tet al.: Clinicopathological features of gastric cancer in young patients. Gastric Cancer. 2016;19:472.

22. Lee JH, Nam BH, Ryu KW, Ryu SY, Kim YW. Kim Set al.: Tumor differentiation is not a risk factor for lymph node metastasis in elderly patients with early gastric cancer. Eur J Surg Oncol. 2014;40:1771.

23. Hsieh FJ, Wang YC, Hsu JT, Liu KH, Yeh CN. Clinicopathological features and prognostic factors of gastric cancer patients aged 40 years or younger. J Surg Oncol. 2012;105:304.

24. Oh SY, Lee KG, Suh YS, Kim MA, Kong SH, Lee HJet al. Lymph Node Metastasis in Mucosal Gastric Cancer: Reappraisal of Expanded Indication of Endoscopic Submucosal Dissection. Ann Surg. 2017;265:137.

25. Holscher AH, Drebber U, Monig SP, Schulte C, Vallbohmer D, Bollschweiler E. Early gastric cancer: lymph node metastasis starts with deep mucosal infiltration. Ann Surg. 2009;250:791.

26. Wang F-H, Shen L, Li J, Zhou Z-W, Liang H, Zhang X-Tet al.: The Chinese Society of Clinical Oncology (CSCO): clinical guidelines for the diagnosis and treatment of gastric cancer. Cancer Commun 2019;39:10.

27. Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC. Stemmermann GNet al.: Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 2001;345:725.

28. Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KHet al.: Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet. 2012;379:315.

29. Lee J, Lim DH, Kim S, Park SH, Park JO. Park YSet al.: Phase III trial comparing capecitabine plus cisplatin versus capecitabine plus cisplatin with concurrent capecitabine radiotherapy in completely resected gastric cancer with D2 lymph node dissection: the ARTIST trial. J Clin Oncol. 2012;30:268.

Figures
Figure 1

Kaplan-Meier survival analysis showed that there were statistically significant differences in OS and CSS between patients with and without chemotherapy in pT1N1M0 patients (p<0.05).
Figure 2

CSS analysis of patients with T1N+M0 gastric cancer according to different lymph node status. There were statistically significant differences in CSS between pN0/N+ or pN0-1/N2-3b categories (p<0.001), but an overlap in survival curves was found between categories pN0-1/N2-3b.
Figure 3

OS analysis of patients with T1N+M0 gastric cancer according to different lymph node status. There were statistically significant differences in OS between pN0/N+ or pN0-1/N2-3b categories (p<0.001), but an overlap in survival curves was found between categories pN0-1/N2-3b.
Figure 4

Flowchart of T1M0 gastric cancer patients included process