PAPER

Generation of long- and short-range potentials from atom-molecules to quark-gluon systems by the GPT potential

Shinsho Oryu

Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
E-mail: oryu@rs.noda.tus.ac.jp

Keywords: generation of Efimov’s potential, long-range nuclear potential, general particle transfer potential, long-range three-body force potential, a new Faddeev treatment

Abstract

The general particle transfer (GPT) potential generates not only the Yukawa-type potential but also the $1/r^n$-type potential in the hadron system, where the mass dependence of the transferred (exchanged) particle is clarified. The GPT potential from the atom-molecule system to the quark-gluon system was studied, where pico-meter physics could be highlighted. It is demonstrated that the long-range three-body Efimov potential is connected with the short-range three-body force potential by the GPT potential. Some applications for historical few-body problems in physics are summarized.

1. Introduction

In our previous papers [1–7], it was shown that the general particle transfer (GPT) potential can be applicable to a wide range of physics; for example, it can not only involve the Efimov theory, but also covers a wide hierarchy from atom-molecule to quark-gluon systems [8–20]. The Efimov theory was experimentally confirmed in an ultracold gas of cesium atoms [17] where the two-body scattering length could be infinite for the $1/r^2$ potential [21]. Since the $1/r^2$ potential could not always be generated in the atom-atom interaction, it should be shown why the $1/r^2$ potential enters for the atomic-molecular system.

On the other hand, in hadron systems, the Efimov condition can not usually be satisfied. However, the GPT potential verifies the Efimov properties by a ‘quasi two-nucleon potential’ with the (πN)N systems which gives a Yukawa-type potential for short-range, but the $1/r^n$ potential for long-range where n is related to the mass of the transferred particle [6, 22] as has been discussed in previous papers. However, some extension will be shown in section 2. Other generalizations of the GPT theory will be given in section 3. Applications for some physical systems will be discussed in section 4. Discussion will be given in section 5.

2. Derivation of the GPT potential for the Hadron system

It is well known that the Lippmann-Schwinger equation for the Coulomb potential can not be solved because of the singularity coincidence between that of the potential and of the Green’s function at the on-energy-shell point [23]. In the dispersion theoretical terminology, this fact is represented by the ‘pinching singularity’ at the threshold between the right-hand cut and the left-hand cut [24, 25]. We demonstrated in the previous paper that the kernel of the quasi two-body equation (Q2E) in the three-body problem has a ‘pinching singularity’ at the threshold of Q2E in the same way as in the Coulomb potential case. Therefore, we pointed out that the Q2E potential has a long-range property as similar to that in the case of the Coulomb potential [6, 7].

Let us recall that the ‘quasi two-body potential’ is essential to the ‘particle transfer mechanism’, which is given by the Born term of the Alt-Grassberger- Sandhas (AGS) equation [26–28],

$$Z_{\alpha,\beta}(q_{\alpha}, q_{\beta}; E) = \frac{4\pi \alpha_{\beta}}{E - q_{\alpha}/2\mu_{\beta} + \epsilon_{\beta}},$$

(1)

© 2022 The Author(s). Published by IOP Publishing Ltd
where \(g_a \), \(g_b \) are the form factors. Here, \(p_a \) and \(q_a \) are the corresponding two-body momentum and spectator particle momentum. Operator \(\Omega(q_a, q_b; \sigma) \) represents the spin-isospin, angular momentum effects, in the three-body re-coupling coefficient between two-channels, and the channel connection for \(q_a, q_b \), where \(n = 2 \) denotes one particle transfer.

Hereafter we abbreviate the channel notations, i.e.,

\[
\frac{g(p)g(p')}{E - q^2/2 \mu + \epsilon_B}.
\]

Therefore, by omitting the operator, equation (2) becomes

\[
Z(q, q'; E) = \frac{g(p)g(p')}{E - q^2/2 \mu + \epsilon_B} = 2\mu\epsilon_B(q^2 - q'^2).
\]

(3)

\[
\sigma = \sqrt{2\mu|E_0|}; \quad \text{for } E_0 \equiv E + \epsilon_B.
\]

(4)

Since \(g(p), g(p') \) are almost constant near small \(q, q' \) and \(\sigma \), then the Fourier transformation of the operator form could also be represented by

\[
F[Z(q, q'; E)] = \frac{e^{-\sigma|r - r'|}}{|r - r'|} \Omega(r; 2) \frac{e^{-\sigma r}}{r} \rightarrow V_0 \frac{e^{-\sigma r}}{r},
\]

(5)

with \(r = |r - r'| \). Here, \(\sigma \) is an energy dependent parameter given by equation (4), where \(\sigma = 0 \) denotes the Coulomb-like potential. \(V_0 \) is a constant which is defined in a specific region for the eigenvalue of the operator.

In the previous papers, the energy dependence of the potential is smoothed by utilizing the 'Euler integral of the second kind' \([1–7, 29–31]\), let us utilize the operator signs \(F \) and \(\mathcal{E} \) for the Fourier transformation and the so-called Euler transformation,

\[
\mathcal{E}[F[Z(q, q'; E)]] = V_0 \frac{e^{-\sigma r}}{r} \left\{ \frac{e^{-\sigma r}}{r} \right\} = \frac{1}{P} \int_0^{\infty} \sigma n-2 e^{-\sigma} \left\{ \frac{e^{-\sigma r}}{r} \right\} d\sigma \rightarrow \frac{V_0}{r(r + a)^{n+1}} \frac{e^{-\sigma r}}{r}
\]

(7)

with

\[
P = \int_0^{\infty} \sigma n-2 e^{-\sigma} d\sigma = \frac{\Gamma(n - 1)}{a^{n-1}},
\]

(8)

Therefore, the one particle transfer operator \(\Omega(r, 2) \) in equation (5) is generalized to an \(n \) -particle transfer operator \(\Omega(r, n) \) by the weight function \(\sigma n-2 \) in the Euler transformation,

\[
\mathcal{E}[F[Z(q, q'; E)]] \equiv V(n, a; r) = \Omega(r, n) \frac{a^{n-1}}{r(r + a)^{n+1}} \rightarrow V_0(n; r) \frac{a^{n-1}}{r(r + a)^{n-1}},
\]

(9)

(10)

(11)

where \(V_0(n; r) \) is the eigenvalue of the operator. Equation (10) is the so-called GPT potential.

On the other hand, equation (11) becomes

\[
V(n, a; r) \rightarrow V_0(n) \frac{e^{-(n-1)\sigma r/a}}{r},
\]

(12)
$$n = \mu / m_\pi + 1$$

Figure 1. The n-μ relation of equation (15) is illustrated, where μ is the transferred particle mass in unit of the pion mass m_π, and n is the index number of the long-range potential. The damping range $a = 1/m_\pi$ in the Euler transformation gives the $1/r^2$ potential for one pion transfer.

Table 1. The GPT potential $\Omega(r; n) a^{n-1}/[r(r + a)^{n-1}]$ is illustrated. The potential properties for the longer and shorter ranges are shown with respect to the parameter n. The potential depths V_0 and V_0' are given for the short-range and the long-range expansion for the eigenvalue of the operator $\Omega(r; n)$.

n	$r \ll a$	GPT- potential	$a \ll r$
1	$V_0(1)/r$	$\Omega(r; 1)/r$	$V_0'(1)/r$
2	$V_0(2) e^{-\mu(r+a)/r}$	$\Omega(r; 2) a/r(r + a)$	$V_0'(2) a/r^3$
3	$V_0(3) e^{-\mu(r+a)/r}$	$\Omega(r; 3) a^2/r(r + a)^2$	$V_0'(3) a^2/r^4$
4	$V_0(4) e^{-\mu(r+a)/r}$	$\Omega(r; 4) a^3/r(r + a)^3$	$V_0'(4) a^3/r^5$
5	$V_0(5) e^{-\mu(r+a)/r}$	$\Omega(r; 5) a^4/r(r + a)^4$	$V_0'(5) a^4/r^6$
6	$V_0(6) e^{-\mu(r+a)/r}$	$\Omega(r; 6) a^5/r(r + a)^5$	$V_0'(6) a^5/r^7$
...
n	$V_0(n) e^{-(n-1)\mu/r}$	$\Omega(r; n) a^{n-1}/[r(r + a)^{n-1}]$	$V_0'(n) a^{n-1}/r^n$

\[\equiv V_0(n) \frac{e^{-\mu r}}{r} \quad \text{for} \quad r \ll a \quad (13) \]

\[\rightarrow V_0'(n) \frac{a^{n-1}}{r^n} \quad \text{for} \quad a \ll r, \quad (14) \]

where $V_0(n)$ and $V_0'(n)$ represent the short-range and the long-range limits of $V_0(n; r)$, respectively. The $n = 2$ case is given by a simple Laplace transformation with equation (7).

Comparing equations (12) and (13), we have,

\[n = a\mu + 1 \equiv \mu/m_\pi + 1, \quad (15) \]

where the damping range a in equation (7) should be defined by the ‘inverse of the pion mass’. The result introduces a relation between the exchange particle mass and the index number n: i.e., $n = 2$ for $\mu = m_\pi$; $n = 3$ for $\mu = 2m_\pi$; $n = 4$ for $\mu = 3m_\pi$, and so on. The transferred mass relation is shown in figure 1.

Consequently, equations (12) and (14) are summarized in table 1, where the GPT potential for $a \ll r$ becomes the $(n-1)$-pion transfer Yukawa potentials, while for $a \ll r$, n-order long range potentials are indicated. These results are also illustrated in figure 2 where $0 \leq n$ represents the branch points on the first Riemann sheet or the physical plane.

Finally, a simple Laplace transformation with $n = 2$ gives one-pion exchange, or a branch point of one-pion production. Therefore, the weight function represents $(n-1)$-π-meson production. In this context, the operator $\Omega(r; n)$ depends on the index number and the transferred particle mass.
3. Consideration of the GPT potential

3.1. A Nucleon-Nucleon potential

In order to confirm the Efimov effect in the Hadron system, some typical properties are calculated. In the beginning, the deuteron binding energy by the GPT potential of equation (11) is calculated for the case: $n = 2$ of the one pion transfer GPT potential, i.e.,

$$V(2; r) = V_0(2; r) \frac{a}{r(r + a)}$$

where a damping constant $a = 1/m_\pi$ is adopted. For the simplicity, we adjusted the potential depth V_0 to reproduce the experimental deuteron binding energy: $E_0 = 2.226$ MeV. In order to obtain an accurate energy level, we used a high precision analysis with more than 100 figures where an energy sequence and the wave functions were obtained. By using these results, the energy ratio E_n/E_{n+1} and the rms radii $\sqrt{\langle r^2 \rangle_1}/\sqrt{\langle r^2 \rangle_n}$ are calculated for the rms radius $\langle r^2 \rangle_n \equiv \langle n|r^2|n \rangle$. The ratios of the energy eigenvalues and the rms radii are monotonous for all the number n in the potential V_0/r^2 of equation (17), that is, $E_n/E_{n+1} = 171.0$ and $\sqrt{\langle r^2 \rangle_1}/\sqrt{\langle r^2 \rangle_2} = 13.1$, however $3 \leq n$ is necessary to obtain the constant values for the original GPT potential equation (16) because of the short-range effect. These numerical results are well fitted with the analytical predictions $E_n/E_{n+1} = 170.98$ and $\sqrt{\langle r^2 \rangle_1}/\sqrt{\langle r^2 \rangle_2} = 13.076$ which were discussed in the article [1, 32]. Furthermore, the first excited state of the np triplet state: $E_2 = 13$ keV is obtained, however such an experimental result has not been measured yet [32].

3.2. One pion exchange potential (OPEP)

The one pion exchange nucleon-nucleon potential (OPEP) has the range $r \sim 1/m_\pi$ where the Hamiltonian of the $N-\pi$ interaction: $H'_{NN\pi}$ is given by the pseudo-scalar meson with the meson creation and annihilation operators [33-38]. Therefore, the second order perturbation formula for the N-N interaction is given by using momentum conservation at vertices for the nucleon and meson momenta q_1, q_2, and k,

$$W_2 = \sum_k \left\{ \frac{\langle 0|H_{NN\pi}|m\rangle \langle m|H_{NN\pi}|0 \rangle}{E_0 - [E'(q_1, q_2) + \omega_k]} + (1 \leftrightarrow 2) \right\},$$

where $\omega_k = \sqrt{k^2 + m_\pi^2}$ is the meson energy, and E_0 denotes the initial two-nucleon energy.

If we neglect the nucleon-recoil effect by the meson creation and annihilation, or adopt a static approximation [35] $0 = E_0 \approx E'(q_1, q_2)$ assuming $\Delta = m_\pi/M_N = 0.14703$ is small, Therefore, the static approximation of equation (18) becomes

$$W_2 \approx \sum_k \left\{ \frac{\langle 0|H_{NN\pi}|m\rangle \langle m|H_{NN\pi}|0 \rangle}{-\omega_k} + (1 \leftrightarrow 2) \right\},$$
which gives the Yukawa potential or the OPEP,

\[V^\Psi(r) = \Omega^\Psi(r; 2) \frac{e^{-m_\pi r}}{r}, \]

\[\Omega^\Psi(r; 2) = \frac{f_2^2}{3} \left\{ \sigma_1 \cdot \sigma_2 + \left(1 + \frac{3}{m_\pi r} + \frac{3}{m_\pi^2 r^2}\right) S_{12}\right\}, \]

\[S_{12} = \frac{3}{r^2} (\sigma_1 \cdot r)(\sigma_2 \cdot r) - \sigma_1 \cdot \sigma_2, \]

However the exact ‘quasi two-body potential’ for \((\pi\mathrm{N})-\mathrm{N}\) should be obtained by equation (1) or equation (18) for \(E_0 \simeq E'(q_1, q_2)\) [35].

3.3. The three-body force potentials

In the quasi two-body one pion exchange \(N_1-(N_2 \pi_3)\) GPT potential, the two-body form factors for the \((N_1 \pi_3)\) \((N_2 \pi_3)\), and \((N_1 N_2)\) systems are represented by the GPT potentials for the systems \(\pi_3-(N_1 \pi_4)\), \(\pi_3-(N_2 \pi_4)\) and \(N_1-(N_2 \pi_4)\). The process is repeated by the same way. In this context, a nucleon exchange \(\pi(N_1 N_2)\) GPT potential is given by the index number with \(2 \ll n\) which is negligible due to the long range property in equation (15) [6].

Therefore, the unique long range GPT potential:

\[V(2, a; r_\delta) = V_\delta(2; r_\delta) \equiv \Omega_\delta(r_\delta; 2)a_{ij} / r_\delta^2 \rightarrow \frac{V_\delta(2)}{r_\delta^2} \]

could survive for any channels in the long range region.

In the hadron system, since the GPT potential is generated by another GPT potential with a pion exchange, and again and again like a 'fractal structure', therefore such a potential could be given by a 'nonlinear three-body potential'.

1. Let us propose a nonlinear three-body potentials, by using equation (22),

\[V_{\text{GPT}}(r_1, r_2, r_3) \rightarrow V_{\text{long}}(r_1, r_2, r_3) = \left[\sum_{i=j=1}^{3} \{ V_{\Omega}(2) / r_\delta^2 \}^{-1} \right]^{-1} \]

\[= \frac{1}{r_{12}^2 / V_{120} + r_{23}^2 / V_{230} + r_{31}^2 / V_{310}} \approx \frac{1}{\alpha_{12} r_{12}^2 + \alpha_{23} r_{23}^2 + \alpha_{31} r_{31}^2} \]

\[\rightarrow \left. \frac{V_0}{r_{12}^2 + r_{23}^2 + r_{31}^2} \equiv \frac{1}{\rho^2}, \right. \]

where equation (25) is called the three-body Efimov potential. Therefore, the nonlinear potential equation (24) satisfies the three-body long range 'Efimov potential' of equation (25) for the case \(\alpha_{12} = \alpha_{23} = \alpha_{31} = 1 / V_0\) where \(\alpha_{ij} = 1 / V_{\Omega}(2) \rightarrow 1 / V_0\) is required [7].

By this method, we could define a 'generalized nonlinear three-body GPT (3GPT)' potential by an 'entangled channel' form with equation (10),

\[V_{\text{GPT}}(r_1, r_2, r_3) \equiv \left[\sum_{i=j=1}^{3} \{ V_{\Omega}(n; r_\delta) \}^{-1} \right]^{-1} \]

\[\equiv \left[\sum_{i=j=1}^{3} \left(\frac{\Omega_\delta(r_{ij}; n)a_{ij}^{n-1}}{r_{ij} + a_{ij}^{n-1}} \right) \right]^{-1}, \]

which could be generalized to \(N\)-body form with

\[\rightarrow \left[\sum_{i=j=1}^{N} \left(\frac{\Omega_\delta(r_{ij}; n)a_{ij}^{n-1}}{r_{ij} + a_{ij}^{n-1}} \right) \right]^{-1}. \]

(2) While the short-range part equation (13) of equation (27) gives a nonlocal three-body potential for the three-nucleon case,

\[V_{\text{GPT}}(r_1, r_2, r_3) \rightarrow V_{\text{short}}(r_1, r_2, r_3) = \left[\sum_{i=j=1}^{3} \{ V_{\Omega}'(2)e^{-r_{ij} / r_\delta} \}^{-1} \right]^{-1}, \]

where it is usually known as an attractive potential: \(V_{\Omega}' < 0\). This is the so-called three-body force (3BF) potential in the three-nucleon system. Therefore, the triton binding energy is compensated by an attractive three-body (nucleon) potential; however a nuclear ground state energy by a three-cluster calculation is usually
corrected by a repulsive three-cluster force. The reason why the sign difference occurs will be understood in the next paragraph.

(3) For the three-cluster system, equation (29) could be replaced by the Gaussian-type form,

\[V_{\text{GPT}}(r_1, r_2, r_3) \rightarrow V_{\text{short}}(r_1, r_2, r_3) = \left[\sum_{i,j=1}^{3} \left(W_{ij0} e^{-\frac{1}{r_{ij}}} \right) \right]^{-1}, \]

where \(W_{ij0} \) expansion was adopted for a very short-range region with \(0 < W_{ij0} \) which is closely related to the anti-symmetrization between clusters by the Pauli principle [39, 40].

Finally, it should be stressed that the ‘short range three-body force (3BF) potential’ could be smoothly continued to the ‘long range three-body force potential’ equation (25) through the mediation of the GPT potential with equation (27).

Therefore, the total three-body Hamiltonian of the hadron system is given by

\[H = K + V_{\text{linear}} + V_{\text{short}} + V_{\text{long}}, \]

\[V_{\text{linear}} = V_{12} + V_{23} + V_{31}, \]

\[V_0 = V_{\text{had}} + V_{\text{C}}, \]

where \(K \) is the three-body kinetic energy and the linear potential \(V_{\text{linear}} \) consists of the two-body hadron and the Coulomb potential for the three-body system which is calculated by the well-known Faddeev equation [27]. \(V_{\text{short}} \) and \(V_{\text{long}} \) are nonlinear short-range and the long-range three-body hadron potentials defined by equation (27).

In the molecular system, for example, the CsH\(_2\)Pd\(_{12}\) cub-octahedron cluster takes on a three-body CsH\(_2\) quasi-molecule in the Pd\(_{12}\) cage [36, 37]. Therefore, the entire Hamiltonian could be represented by using the hadron potentials and the Coulomb potentials with the electron effects,

\[H = K + V_{\text{linear}} + V_{\text{short}} + V_{\text{long}} + V_{\text{Coul}}, \]

\[V_{\text{Coul}} = V_{\text{ions}} + V_{\text{electrons}}, \]

where \(V_{\text{Coul}} \) indicates the Coulomb effects of the other ions and electrons. In such a molecular system, the calculation range should be considered from the 10\(^{-2}\)fm region to several \(10^7 \)fm region in one stretch with 100 figures accuracy. The system has been considered as a nano scale nuclear fusion reactor Pd\(_{12}\) [36, 37].

4. Application of the GPT potential

4.1. Some hierarchies from atom-molecule to quark-gluon systems

The GPT potential is introduced for a general particle exchange system such as the photon, the electron, the meson, the nucleon, the hyperon, the nucleus, even for the quark and gluon etc.. Therefore, it could be applicable for many different hierarchical systems.

(1) The Atom-Molecule Systems:

The electric-bond for the molecular system has been understood as given by the photon exchange or the electron exchange. The GPT potential with \(n=1 \) indicates only the 1/r potential for all the region which corresponds to a massless particle exchange making an ‘ionic bond’ by a photon exchange or the Coulomb potential (see table 1). While, for the \(n=2 \) GPT potential, the short-range potential has a Yukawa-type, a 1/r\(^2\)-type for the long-range where a nonzero mass particle like an electron could get involved in making a molecule, therefore (n-1)-electron exchanges generate a molecule of the ‘covalent bonds’ in chemistry [41, 42].

On the other hand, the Efimov theory requires that the two-body system should have an infinite scattering length, which is given by the 1/r\(^2\)-type potential. The Caesium (Cesium) atomic system was investigated to confirm the Efimov theory [17]; however it was not very clear where the 1/r\(^2\) potential comes from. The GPT theory has a solution that one electron exchange leads the 1/r\(^2\)-type potential for the criterion equation (15): \(n = \mu/m_e + 1 \) with the infinite scattering length. In this context, let us call the electron the ‘Efimov particle’ in the molecular system.

Analogously, the pion should be the ‘Efimov particle’ in the hadron systems. As a matter of fact, since the other atomic system does not necessarily generate the 1/r\(^2\) potential, then the Efimov effect could not occur. For example, 1/r\(^4\) and 1/r\(^2\) potentials are the Van der Waals potentials [43, 44], where the five- and six-electron exchanges take part in the potentials which occur in one of the ‘covalent bonds’ in chemistry [41, 42]. Although, the Van der Waals potential is one of the long range potentials, the potential gives neither an infinite scattering length nor the Efimov effect.
(2) The nuclear systems:
We mentioned above that the GPT potential mediates the short-range and the long-range hadron three-body force potentials. This fact is confirmed in a neutron rich nucleus such as ^{6}He, where the ground state is adjusted by the long-range three-body force potential in equation (27) and in table 1 for $n = 3$,

$$V_{\text{GPT}}(r_1, r_2, r_3) = \sum_{i<j=1}^{3} \left(\frac{\Omega_0(r_{ij}^{-n} a_{ij}^{n-1})}{r_{ij}^{n} (r_{ij} + a_{ij})^{n-1}} \right)^{-1} - 1,$$

$$= \sum_{i<j=1}^{3} \left(\frac{\Omega_0(r_{ij}^{-3} a_{ij}^{2})}{r_{ij} (r_{ij} + a_{ij})^{2}} \right)^{-1} - 1,$$

$$= \sum_{i<j=1}^{3} \left(\frac{V_{\text{GPT}}(3)}{r_{ij}^{3}} \right)^{-1} - 1,$$

$$= \frac{1}{\beta_{22} r_{12}^{3} + \beta_{23} r_{23}^{3} + \beta_{31} r_{31}^{3}}. \quad (36)$$

Therefore, if we adopt $\beta_{22} = \beta_{23} = \beta_{31} = 1/V_0$, and $\beta_0 = 1/V_{00} \equiv 1/V_0(<0)$, then we obtain the long-range three-body force potential,

$$V_{\text{long}}(r_{12}, r_{23}, r_{34}) = \frac{V_0}{r_{12}^{3} + r_{23}^{3} + r_{34}^{3} + 1} = \frac{V_0}{\rho^3 + 1}. \quad (37)$$

where the factor ‘1’ in the denominator is adopted to truncate the short-range part of the potential which is seen in equation (34) of the article by Thompson et al [45, 46].

Furthermore, equation (37) suggests that the two-pion exchange entangled long-range three-body force is essential to reproduce the ground state binding energy of ^{6}He. It should be emphasized that the ground state energy has been adjusted by the ‘repulsive’ three-body short-range force for the usual nuclei; however, the ground state energy for the neutron rich nuclei with a nuclear halo could be reproduced by ‘attractive’ three-body long range forces.

(3) Quark-gluon systems:
If we put $n \to -|n|$ in equation (10), we obtain,

$$V(n, a; r) = \Omega(r; n) \frac{a^{-1}}{r(r + a)^{n-1}}$$

$$= \Omega(r; |n|) \frac{(r + a)^{n+1}}{a^{n+1} r}$$

$$\rightarrow \frac{V_0(|n|)}{r} \quad \text{for} \quad r \ll a, \quad (38)$$

$$\rightarrow \frac{V_0'(|n|)}{a^{n+1}} \quad \text{for} \quad a \ll r. \quad (39)$$

The potential becomes 1/r-type with any $|n|$ for $r \ll a$, but r^{n+1}-type for $a \ll r$. It seems that the $|n|$ case represents ‘zero’ mass particle transfer for $r \ll a$, while for $a \ll r$, r^{n+1}-order potential could exist. Therefore, it seems that $n < 0$ could correspond to the quark-quark interaction, because of the confinement property [47] (see table 2), where the negative n represents the branch points of the second Riemann sheet in figure 2. If it indicates the quark-quark system with gluon exchanges, then $\Omega(r; |n|)$ is given by the spin-isospin, color and flavor operators, and gives different potential depths $V_{0}(|n|)$ and $V_{0}'(|n|)$ for the short- and the long-range regions. If $0 < V_{0}'(|n|)$ is given, then equation (40) is the confinement potential. The quark-quark scattering observables on the second Riemann sheet could not be observed [47].

4.2. Analyticity of AGS kernel and a new calculation method by the GPT concept
The kernel of the AGS equation is given by the Born term: equation (1) and the propagator $\tau(E; q)$,

$$\tau(E; q) \sim \frac{1}{E - q^2/2\mu + \epsilon_B}. \quad (41)$$

The AGS Born term corresponds to a potential of the quasi two-body equation in the three-body system where the branch point of the left-hand (potential) cut is the Q2T: $q = \sqrt{2\mu(E + \epsilon_B)}$. On the other hand, the scattering cut by equation (41) is also defined in the region from $q = \sqrt{2\mu(E + \epsilon_B)}$ to $+\infty$. Therefore, the analytic structure is illustrated by the complex q-plane where the pinching singularity between the left and right-hand cuts occurs at the Q2T. However, in such a case, the equation could not be solved because of the pinching singularity. Therefore, if we adopt an approximation (Aprr-1) that the left-hand cut is given on the real axis from
is the origin with nucleon exchange potentials. While if the right-hand cut could be started from the Q2T till atoms, mesons, nucleons, nuclei, hyperons, and perhaps quark-gluons where such a particle is denoted by the point A and $Q2T$ (Appr. I) where the large round curve is neglected by taking an infinite radius $R \to \infty$.

Figure 3. The complex energy plane with the real and the imaginary axes. The solid thick line along the left real axis running from a point A ($r=2$) to $-\infty$ is the potential cut of the quasi two-body equation. Several small round points on the cut indicate the one-pion ($n=2$), two-pion ($n=3$), and also including nucleon transfer points, so on. The solid thick line along the real axis is the quasi two-body scattering cut from the Q2T ($r=1$) to $+\infty$, and including the three-body scattering cut from 'three-body break up threshold (3BT: $n=0$) to $+\infty$, respectively. The integral path is illustrated by red curve on the ‘physical’ (1st Riemann) sheet: $0 \leq q < \infty$ along the right hand cut which turns at A and Q2T (Appr. I) where the large round curve is neglected by taking an infinite radius $R \to \infty$.

Table 2. The GPT potential for the unphysical Riemann energy plane. By putting $n \to -|n|$ in the original GPT potential: $\Omega(r; n) a^{-n+1}/[r(a+n+1)] \to \Omega(r; |n|) (r + a)^{-n+1}/[a(a+n+1)]$ is illustrated, which corresponds to the dotted path for the second Riemann sheet in figure 2. The potential properties for the long- and short-ranges are shown with respect to the parameter a and n. $V_0(|n|)$ and $V_0(|n|)$ are constants.

$	n	$	$r \ll a$	GPT potential	$a \ll r$						
0	$V_0(0)/r$	$\Omega(r; 0)(r + a)/ar$	$V_0(0)/a$								
1	$V_0(1)/r$	$\Omega(r; 1)(r + a)^2/2a^2$	$V_0(1)r/2a^2$								
2	$V_0(2)/r$	$\Omega(r; 2)(r + a)^3/3a^3$	$V_0(2)r^2/3a^3$								
3	$V_0(3)/r$	$\Omega(r; 3)(r + a)^4/4a^4$	$V_0(3)r^3/4a^4$								
4	$V_0(4)/r$	$\Omega(r; 4)(r + a)^5/5a^5$	$V_0(4)r^4/5a^5$								
5	$V_0(5)/r$	$\Omega(r; 5)(r + a)^6/6a^6$	$V_0(5)r^5/6a^6$								
6	$V_0(6)/r$	$\Omega(r; 6)(r + a)^7/7a^7$	$V_0(6)r^6/7a^7$								
7	$V_0(7)/r$	$\Omega(r; 7)(r + a)^8/8a^8$	$V_0(7)r^7/8a^8$								
...								
$	n	$	$V_0(n)/r$	$\Omega(r;	n)[(r+a)^{n+1}/a^{n+1}]$	$V_0(n)r^n/a^{n+1}$

the point ‘A’ to $-\infty$ in figure 3, then the left-hand cut includes the full effects of n-pion transfers and also several nucleon exchange potentials. While if the right-hand cut could be started from the Q2T till $+\infty$, then the Q2T is the origin with $E_{min} = E + \epsilon_0 = 0 = q$, and the integral variable becomes $0 \leq q < \infty$ (see figure 3).

On the other hand, if the origin of the scattering cut is given by taking the origin at the 3BT: $E = 0 = q$ (see figure 4), and the potential cut is the same as the Appr. I, then the method should be another approximation (Appr.-II) which corresponds to the usual three-body Faddeev calculation [27, 28]. In the Appr.-II, the Q2T is a moving pole with the three-body free energy E, where the singularity is given by a $1/r$-type GPT potential with a massless particle transfer. In the Faddeev calculation, such a singular pole and the logarithmic potential cut have been avoided by using a contour deformation.

The numerical difference between Appr.-I, and Appr.-II has been carefully investigated by Hiratsuka et al for the triplet n-p scattering length, π-D scattering length, the nd total cross section, the differential cross sections, the nd doublet scattering length and the triton binding energy. They claimed that those results by the Appr.-I method are a better fit to the experimental results than the case of Appr.-II [32, 48–50].

5. Discussion

It has been understood that a potential is generated by a particle transfer which is given by photons, electrons, atoms, mesons, nucleons, nuclei, hyperons, and perhaps quark-gluons where such a particle is denoted by the
word ‘general particle’ in this method. Therefore, an action of particle transfer is essential; however, it was not very clear why the long-range potential enters in the case of a non zero mass particle before the GPT theory. Efimov started from a long-range potential with an infinite scattering length; therefore, the so-called Efimov physics papers do not discuss about these problems [8, 9, 51].

It is known that the $1/r^2$-type potential gives an infinite scattering length [9, 21]; the scattering length is usually finite in nuclear physics which is defined by the scattering amplitude at zero energy. However the calculated scattering amplitude diverges at zero energy because of the threshold singularity. The scattering length (or amplitude) at zero energy has been obtained by an extrapolation from the values at several very small energies, or a gradient of the wave function for a short range potential [38]. Finally, it should be recalled that the phase shift analysis is based on the short range nuclear potential theory, which could depend on a proper truncation.

Since the pion is the lightest exchange particle in the hadron system, all other exchange particles are heavier when the index number becomes $2 < n$. Even for the cluster-cluster interaction, it would be written by one pion exchange in the long-range limit. The solution (or integration) ‘started from the 3BT’ such as Appr.II could be only available for the unbound ‘Efimov- or the Borromean-system’ [52–55].

The GPT potential represents a supplemental property in quantum dynamics which could be compared with the case of the ‘Lorentz transformation’ in special relativity where it satisfies $\beta = v/c = 0$. The GPT potential does not change any traditional nuclear physics except for the behavior at the threshold. The GPT potential tells a beginning of the ‘pico-meter science’, which could exist between atomic-molecular science and nuclear science, such as ‘low energy nuclear fusion’ problems [36, 37, 56].

Finally, it should be emphasized that the GPT potential does not suggest the ‘fifth force’ but should be considered in a category of the ‘unified theory’. However, as mentioned above, it is interesting that some unknown particles such as $n=1$, and $n=0$ were predicted which should be clarified. The paper proposes a ‘fundamental correction’ to the potential form which has been overlooked for very many years.

Acknowledgments

The author would like to acknowledge Drs Yasuhsa Hiratsuka and Takashi Watanabe for valuable discussions and also to express thanks to Profs. Isaac E. Lagaris, and Benjamin F. Gibson for helpful suggestions.

Data availability statement

No new data was created or analyzed in this study.
References

[1] Oryu S 2012 Universal structure of the three-body system Phys. Rev. C 86 044001
[2] Oryu S, 2018 A New Feature of the Efimov-like Structure in the Hadron system - Long Range Force as a Recoil Effect - Few-Body Syst. 59 51
[3] Oryu S 2010 Long-range property in time-dependent interaction with three-body structure and new aspect. Annual Report Quantum Bio-Informatics 5 (Quantum Bio-Informatics Center of Tokyo University of Science) 26–34
[4] Oryu S 2013 Long range Potential Component in the NN Force Few-Body Syst. 54 283–6
[5] Oryu S, Watanabe T, Hiratsuka Y, Kodama A, Togawa Y and Takeda M 2017 A New Horizon of Few-Body Problems: Exact Coulomb treatment and the energy-momentum transfer of the three-body Faddeev equation. J. Phys. Conference Series 915 012001
[6] Oryu S 2020 A Possibility of a Long Range Three-Body Force in the Hadron System Few-Body Syst. 61 33
[7] Oryu S 2021 The General Particle Transfer Potential in a Range of Physical Systems and its Long Range Component Few-Body Syst. 62 56
[8] Efimov V 1970 Energy levels arising from resonant two-body forces in a three-body system Phys. Lett. B33 563
[9] Efimov V 1973 Energy levels of three resonantly interacting particles Nucl. Phys. A210 157
[10] Amado R D and Noble J V 1971 A new Pathology of Three-Particle Systems, Phys. Lett. 35B 25–7
[11] Adhikari S K, Fonseca A C and Tomio L 1982 Method for resonances and virtual states: Efimov virtual states Phys. Rev. C 26 77–82
[12] Bedaque P F, Hammer H-W and van Kolck U 1999 The three-boson system with short-range interaction Nucl. Phys. A 646 444
[13] Braaten E and Hammer H-W 2001 Three-Body Recombination into Deep Bound States in a Bose Gas with Large Scattering Length Phys. Rev. Lett. 87 160407
[14] D’Incao J P, Suno H and Eby R B D 2004 Limits on Universality in Ultracold Three-Body Recombination Phys. Rev. Lett. 93 123201–1–4
[15] Floechtinger S, Schmidt R R, Moroz S and Wetterich C 2009 Foundation renormalization for triton formation in ultracold fermion gases Phys. Rev. A 79 013603
[16] Braaten E and Hammer H-W 2006 Universality in few-body systems with large scattering length Phys. Rep. 428 259
[17] Kraemer T et al 2006 Evidence for Efimov quantum states in an ultracold gas of cesium atoms Nature 440 315–8
[18] Knoop S, Ferlaino F, Mark M, Berninger E, Naegerl H and Grimm R 2009 Observation of an Efimov-like resonance in ultracold atom-dimer scattering Nat. Phys. 5 227–30
[19] Zaccanti M, Deissler B, D’erico C, Fattori M, Jona-Lasinio M, Mueller S, Rosati G, Inguscio M and Modugno G 2009 Observation of an Efimov spectrum in an atomic system Nat. Phys. 5 586–91
[20] Barontini G, Weber C, Rabatti F, Catani J, Thalhammer G, Inguscio M and Minardi F 2009 Heteronuclear Atomic E
[21] Hodgson P E, Gadioli E and Gadioli E 1997 Compendium of Chemical Terminology, XML one-line corrected version
[22] Amado R D and Noble J V 1971 A new Pathology of Three-Particle Systems, Phys. Lett. 35B 25–7
[23] Adhikari S K, Fonseca A C and Tomio L 1982 Method for resonances and virtual states: Efimov virtual states Phys. Rev. C 26 77–82
[24] Bedaque P F, Hammer H-W and van Kolck U 1999 The three-boson system with short-range interaction Nucl. Phys. A 646 444
[25] Zaccanti M, Deissler B, D’erico C, Fattori M, Jona-Lasinio M, Mueller S, Rosati G, Inguscio M and Modugno G 2009 Observation of an Efimov spectrum in an atomic system Nat. Phys. 5 586–91
[26] Barontini G, Weber C, Rabatti F, Catani J, Thalhammer G, Inguscio M and Minardi F 2009 Heteronuclear Atomic Efimov Resonances Phys. Rev. Lett. 103 043201–1–4
[27] Nicholson A. F 1962 Bound states and Scattering in an 1/r^2 potential Australian J. Phys. 15 174–79
[28] Oryu S 2021 The General Particle Transfer Potential in a Range of Physical Systems and its Long Range Component The 8-th Asia Paciﬁc Few-Body Problems in Physics (Kanazawa Japan) (Few-Body Syst. Springer Nature)
[29] Latypov D M and Mukhamedzhanov A M 1992 On the Coulomb singular kernel of Lippmann-Schwinger -type equation J. Math. Phys. 33 3105
[30] Ahloulo L V 1979 Complex Analysis (New York: McGraw-Hill)
[31] Ablowitz M J and Fokas A S 2003 Complex Variables: Introduction and Applications, Cambridge Texts in Applied Mathematics II edn (Cambridge : Cambridge University Press)
[32] Alt E O, Grasserberger P and Sandhas W 1967 Reduction of the three-particle collision problem to multi-channel two-particle Lippmann-Schwinger equations Nucl. Phys. B2 167–80
[33] Faddeev L D 1961 Scattering theory for a three-particle system Sov. Phys.-JETP 12 1014–19
[34] Afnan I and Thomas A W, 1977 Modern Three-Headron Physics Topics in Current Physics (New York: Springer Verlag)
[35] Abramowitz M and Stegun I A, (ed) 1972 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover Publications)
[36] Sawada T 1996 Present Status of the Long Range Component of the Nuclear Force Modern Phys. A 11 5365
[37] Sawada T 1993 Bound States of the Nuclear–Monopole System Foundations of Physics 23 291
[38] Oryu S, Hiratsuka Y and Watanabe T 2016 Few-Body Problem in Nuclear Reaction: Beyond the horizon of the three-body Faddeev equations EJP Web of Conferences 122 08001
[39] Reid R V 1968 local phenomenological nucleon-nucleon potentials Annals of. Phys. 50 411–48
[40] Kenneth S K 1988 Introductory Nuclear Physics (New York: Wiley & Sons)
[41] Takeda G and Miyazawa H 1965 Physics of Elementary Particles (in Japanese) (Tokyo: Syokabo)
[42] Oryu S, Watanabe T, Hiratsuka Y, Takeda M and Togawa Y 2020 A Possibility of Nuclear Reaction Near the Three-Body Break-up Threshold Recent Progress in Few-Body Physics Springer Proceedings in Physics 238 (Caen, France) (ed) pp 795–9
[43] Oryu S, Watanabe T, Hiratsuka Y, Takeda M and Togawa Y 2019 An Investigation of the Nuclear Reaction Near the Three-Body Break-up Threshold: As a Ultra Low Energy Nuclear Synthesis Few-Body Syst. 60 42 1–9
[44] Hodgson P E, Gadioli E and Gadioli E 1997 Introductory Nuclear Physics (Oxford: Clarendon)
[45] Ikeda K and Tamagaki R 1977 Microscopic Methods for the Interactions between Complex Nuclei Supplement of the Prog. Theor. Phys. 62 1–10
[46] Wildermuth K and Tang T C 1977 A Unified Theory of Nucleus (Braunschweig: Vieweg & Sohn)
[47] McNaught A D and Wilkinson A 1997 Compendium of Chemical Terminology 2nd edn (Oxford: Blackwell Scientific Publications)
[48] Mieders G L and Tarr D A 2004 Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (New York; John Wiley & Sons)
[49] Nic M, Jirat J, Kosata B and Jenkins A 2006 Compendium of Chemical Terminology, XML one-line corrected version
[50] Niewiarowski P H, Lopez S, Ge L, Hagen E and Dinhojwala A 2008 The Role of Temperature and Humidity PLoS One 3 e2192 S
[51] Thompson J I, Danilin B V, Efros V D, Vaagen J S, Bang J M and Zhukov M V 2000 Pauli Blocking in Three-Body Models of Halo Nuclei Phys. Rev. C 61 024318
[52] Zhukov M V, Danilin B V, Fedorov D V, Bang J M, Thompson J I and Vaagen J S 1993 Bound state properties of Borromean halo nuclei: He^9 and Li^12 Phys. Rep. Review Section of Phys. Lett. 231 151–99

ORCID iDs

Shinsho Oryu https://orcid.org/0000-0002-9360-553X
[47] Bali G S 2001 QCD forces and heavy quark bound states Phys. Rep. 343 1–136
[48] Hiratsuka Y, Oryu S and Watanabe T 2014 NNpion Faddeev Calculation (The 6th Asia Pacific Few-Body Problem in Physics) (Adelaide)
[49] Oryu S, Hiratsuka Y and Watanabe T 2016 A New Treatment Below the Three-Body Break up Threshold in the NNπ System International Few-Body Problems in Physics 113 (EPJ Web of Conference 113) (Chicago) 08014
[50] Oryu S, Hiratsuka Y and Watanabe T 2012 n-d Doublet Scattering Length and Triton Binding Energy Problem 20th International Conference of Few-Body Problem in Physics (Book of Abstract International Few-Body Conference in Physics) (Fukuoka, Japan)
[51] Naidon P and Endo S 2017 Efimov physics: a review Rep. Prog. Phys. 80 056001
[52] Id Betan R. M 2017 Cooper pair in the Borromean nuclei 6He and 11Li using continuum single particle level density Nucl. Phys. A 959 147–8
[53] Manton N and Mee N 2017 Nuclear Physics The Physical World: An Inspirational Tour of Fundamental Physics (Oxford: Oxford University Press) 387–389
[54] Vaagen J S, Gridnev D K, Heiberg-Andersen H, Danilin B V, Ershov S N, Zagrebaev V I, Thompson I J, Zhukov M V and Bang J M 2000 Borromean Halo Nuclei Physica Scripta T 88 209–13
[55] Oishi T, Hagino K and Sagawa H 2010 Diproton correlation in the proton-rich Borromean nucleus 17Ne Phys Rev C 82 066901-1-066901-6
[56] Takahashi A, Ido H, Hattori A, Seto R, Kamei A, Hachisuka I, Yokose T, Mori Y, Taniike A and Furuyama Y 2020 Latest Progress in Research on AHE and Circumstantial Nuclear Evidence by Interaction of Nano-Metal and H(D)-Gas J. Condensed Matter Nucl. Sci. 33 14–32