Some remarks on n-uninorms in IF-sets

Martin Kalina

Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering, Slovak University of Technology
Radlinského 11, SK-810 05 Bratislava, Slovakia
e-mail: martin.kalina@stuba.sk

Received: 11 October 2019 Revised: 9 November 2019 Accepted: 11 November 2019

Abstract: Uninorms and nullnorms are well-known monoidal and monotone operations on the unit interval. Akella [2007] proposed their generalization to n-uninorms. Really, we get both, proper uninorms as well as proper nullnorms as special cases of 2-uninorms. Moreover, proper uninorms as well as proper nullnorms can be characterized as 2-uninorms with some special types of 2-neutral elements. In the present paper, we discuss a classification of 2-uninorms from another point of view as it was done by Akella in 2007 and 2009. Then, we look at 2-uninorms in IF-sets and point out some differences between 2-uninorms on the unit interval and 2-uninorms in IF-sets.

Keywords: IF-sets, Nullnorm, Uninorm, n-Uninorm.

2010 Mathematics Subject Classification: 03E72, 08A72.

1 Introduction

Uninorms were introduced by Yager and Rybalov [21] as a generalization of both t-norms and t-conorms (for details on t-norms and their duals, t-conorms, see, e.g., [13, 17]). Since that time, researchers study properties of several distinguished families of uninorms. In [16], Karaçal and Mesiar introduced uninorms in bounded lattices. In [5], Bodjanova and Kalina constructed uninorms in bounded lattices with arbitrarily given underlying t-norm and t-conorm.

Another generalization of t-norms and t-conorms, called t-operators, was introduced by Mas et al. In [18, 19], Mas et al. studied t-operators on finite chains. In 2001, Calvo et al. [6] introduced nullnorms when trying to solve Frank’s functional equation [11] where one of the operations in the equation was a uninorm. Afterwards, Mas et al. [20] showed that nullnorms
and \(t\)-operators coincide in the unit interval. Karaçal et al. [15] introduced nullnorms in bounded lattices.

Akella [1, 2] introduced 2- and \(n\)-uninorms in the unit interval and gave a characterization of these operations. In this paper, we characterize 2-uninorms (or more general on \(n\)-uninorms) from the point of view of their two-neutral elements. Particularly, we split the system of all 2-uninorms into 9 (not necessarily disjoint) subclasses. Afterwards, we point out some differences in the structure of 2- (and \(n\)-) uninorms in IF sets.

Intuitionistic fuzzy sets (also, IF-sets), introduced by Atanassov, are a special type of lattice-valued fuzzy sets, introduced by Goguen [12]. Important milestones in the theory of IF-sets, besides the monograph by Atanassov [3], are the papers by Deschrijver [7, 8], and Deschrijver and Kerre [9]. In [7] Deschrijver has shown that there exist \(t\)-norms which are not representable as a pair of a \(t\)-norm and a \(t\)-conorm. In [8] the author has shown that there exist uninorms in IF-sets which are neither conjunctive nor disjunctive. In [9], Deschrijver and Kerre have shown that the theory of IF-sets is equivalent to the theory of interval-valued sets.

A further development of uninorms in IF-sets (or, equivalently, in interval-valued sets) is the paper by Kalina and Král’ [14], where the authors have shown that for arbitrary pair \((a, e)\) of incomparable elements of interval-valued sets there exists a uninorm having \(a\) as the annihilator and \(e\) as the neutral element.

2 Basic definitions and some known facts

An IF-set [3] can be represented as a special case of \(L\)-fuzzy set [12], where \(L\) is a bounded lattice. Membership grades of an IF-set are elements \((x_1, x_2) \in [0, 1]^2\) such that \(x_1 + x_2 \leq 1\). The set of all IF-membership grades will be denoted by \(L^*\). For arbitrary \((x_1, x_2), (y_1, y_2) \in L^*\) the following holds

\[
(x_1, x_2) \leq_{L^*} (y_1, y_2) \iff x_1 \leq x_2 \land y_1 \geq y_2.
\]

Thus, the least and the greatest elements of \(L^*\) are \(0 = (0, 1)\), \(1 = (1, 0)\), respectively. We will write these values in bold letters to distinguish them from the real numbers 0 and 1.

Following the notation introduced in [4], we will write \(x \parallel y\) if \(x, y \in L^*\) are incomparable. For \(x \in L^*\) we denote \(\Vert x = \{z \in L^*; z \parallel x\}\).

Definition 1 ([21]). An associative, commutative and monotone operation \(U : [0, 1]^2 \to [0, 1]\) is said to be a uninorm if it has a neutral element \(e \in [0, 1]\)

A uninorm \(U\) has an annihilator \(a = U(0, 1)\), where \(a \in \{0, 1\}\).

Definition 2 ([10]). A uninorm \(U\) is said to be conjunctive if \(U(0, 1) = 0\), and \(U\) is called disjunctive if \(U(0, 1) = 1\).

Lemma 1 ([10]). A uninorm \(U\) is a \(t\)-norm whenever its neutral element is \(e = 1\). In that case the annihilator of \(U\) is \(a = 0\).

\(U\) is a \(t\)-conorm whenever its neutral element is \(e = 0\). In that case the annihilator of \(U\) is \(a = 1\).
Lemma 2 ([10]). Let \(U \) be a uninorm, \(e \in]0, 1[\) be its neutral element. Then
\[
T_U(x, y) = \frac{U(ex, ey)}{e}, \quad S_U(x, y) = \frac{U(e + (1 - e)x, e + (1 - e)y) - e}{1 - e},
\]
are a \(t \)-norm and a \(t \)-conorm, respectively.

The operations \(T_U \) and \(S_U \) from Lemma 2 are called the underlying \(t \)-norm and the underlying \(t \)-conorm, respectively.

Definition 3 ([6]). An associative, commutative and monotone operation \(V : [0, 1]^2 \to [0, 1] \) is said to be a nullnorm if there exists an element \(a \in [0, 1] \) such that
\[
\begin{align*}
& (1b) \quad V(0, x) = x \text{ for all } x \in [0, a], \\
& (2b) \quad V(1, x) = x \text{ for all } x \in [a, 1].
\end{align*}
\]

Lemma 3 ([6]). Let \(V \) be a nullnorm and \(a \in [0, 1] \) be such that
\[
\begin{align*}
& (1b) \quad V(0, x) = x \text{ for all } x \in [0, a], \\
& (2b) \quad V(1, x) = x \text{ for all } x \in [a, 1].
\end{align*}
\]
Then \(a \) is the annihilator of \(V \).

Similarly like for uninorm \(U \), also for nullnorm \(V \) there exist its underlying \(t \)-norm \(V_T \) and \(t \)-conorm \(V_S \) given by, respectively,
\[
V_T(x, y) = \frac{V(a + (1 - a)x, a + (1 - a)y) - a}{1 - a}, \quad V_S(x, y) = \frac{V(ax, ay)}{a}
\]
for \(a \in]0, 1[\).

Definition 4 ([1]). Let \(F : [0, 1]^2 \to [0, 1] \) be a commutative operation. Then \(\{e_1, e_2\}_z \) is called a 2-neutral element of \(F \) if \(F(e_1, x) = x \) for all \(x \in [0, z] \) and \(V(e_2, x) = x \) for all \(x \in [z, 1] \), where \(0 < z < 1 \) and \(e_1 \in [0, z] \), \(e_2 \in [z, 1] \).

Definition 5 ([1]). Let \(F : [0, 1]^2 \to [0, 1] \) be a monotone, commutative and associative operation that has a 2-neutral element \(\{e_1, e_2\}_z \).

Lemma 4 ([1]). Let \(F \) be a 2-uninorm whose 2-neutral element is \(\{e_1, e_2\}_z \). Then
\[
U_1(x, y) = \frac{F(zx, zy)}{z}, \quad U_2(x, y) = \frac{F(z + (1 - z)x, z + (1 - z)y) - z}{1 - z}
\]
are uninorms whose neutral elements are \(\tilde{e}_1 = \frac{z_1}{z} \) and \(\tilde{e}_2 = \frac{z - z}{1 + z} \), respectively.

Definition 6 ([1]). Let \(F : [0, 1]^2 \to [0, 1] \) be a commutative operation and \(0 = z_0 < z_1 < z_2 < \cdots < z_{n-1} < z_n = 1 \). Then \(\{e_1, e_2, \ldots, e_n\}_{(z_1, z_2, \ldots, z_{n-1})} \) is called an \(n \)-neutral element of \(F \) if for all \(i \in \{1, 2, \ldots, n\} \) we have \(e_i \in [z_{i-1}, z_i] \).

Definition 7 ([1]). An associative, commutative and monotone operation \(F : [0, 1]^2 \to [0, 1] \) will be called \(n \)-uninorm if it has an \(n \)-neutral element \(\{e_1, e_2, \ldots, e_n\}_{(z_1, z_2, \ldots, z_{n-1})} \).
3 Characterization and classes of 2-uninorms and a generalization to \(n \)-uninorms

Let us consider proper uninorms and proper nullnorms as 1-uninorms. Then we adopt the following definition:

Definition 8. Let \(F_n \) be an \(n \)-uninorm for \(n > 1 \). We say that \(F_n \) is a proper \(n \)-uninorm if \(F_n \) is not an \((n - 1)\)-uninorm.

For a proper 2-uninorm \(F \), the operations \(U_1 \) and \(U_2 \) given by equality (1), will be called the lower and the upper underlying uninorm, respectively.

Let us a look at 2-neutral elements. For a given \(0 < z < 1 \), there are 9 possibilities how to set a 2-neutral element \(\{e_1, e_2\}_z \). Namely,

\[
\begin{align*}
 e_1 & = 0, & e_2 & = z, \\
 e_1 & \in [0, z[, & e_2 & \in]z, 1[, \\
 z, & \quad & 1.
\end{align*}
\]

As a corollary to Lemma 1 we get the following

Corollary 1. Let \(F \) be a 2-uninorm whose 2-neutral element is \(\{e_1, e_2\}_z \) for \(z \in]0, 1[\). Set \(U_1(x, y) = \frac{F(x,y)}{z} \) and \(U_2(x, y) = \frac{F(x+(1-z)x,y+(1-z)y)}{1-z} \).

Then

(a) \(U_1 \) is a \(t \)-norm if \(e_1 = z \), \(U_2 \) is a \(t \)-norm if \(e_2 = 1 \);

(b) \(U_1 \) is a proper uninorm if \(e_1 \in]0, z[\), \(U_2 \) is a proper uninorm if \(e_2 \in]z, 1[\);

(c) \(U_1 \) is a \(t \)-conorm if \(e_1 = 0 \), \(U_2 \) is a \(t \)-conorm if \(e_2 = z \).

Let us check all 9 possibilities of setting a 2-neutral element.

Lemma 5. Let \(F \) be a 2-uninorm whose 2-neutral element is \(\{z, 1\}_z \) \((\{0, z\}_z)\) for \(0 < z < 1 \). Then \(F \) is a \(t \)-norm \((t \)-conorm\) that is the ordinal sum of two \(t \)-norms \(F = (\langle T_1, 0, z \rangle, \langle T_2, z, 1 \rangle) \) \((of two \ t \)-conorms \(F = (\langle S_1, 0, z \rangle, \langle S_2, z, 1 \rangle))\).

Proof. We will prove only the \(t \)-norm case.

As the first step, let us prove that \(F(0, 1) = 0 \). Since \(\{z, 1\}_z \) is the 2-neutral element of \(F \), we have by associativity

\[
F(0, 1) = F(F(0, z), 1) = F(0, F(z, 1)) = F(0, z) = 0.
\]

Monotonicity of \(F \) implies that 0 is the annihilator of \(F \).

As the second step, we prove that 1 is the neutral element of \(F \). Since we know that 1 is the partial neutral element of \(F \) in the interval \([z, 1]\). Let \(x \in [0, z] \).

\[
F(x, 1) = F(F(x, z), 1) = F(x, F(z, 1)) = F(x, z) = x.
\]

The proof is completed. \(\square \)
Lemma 6. Let F be a 2-uninorm whose 2-neutral element is $\{z\}_z (\{e_1, z\}_z, \{z, e_2\}_z)$ for $0 < z < 1$ and $0 < e_1 < z, z < e_2 < 1$. Then F is a uninorm whose neutral element is z (the underlying t-conorm S is the ordinal sum of two t-conorms $S = (\langle S_1, e_1, z \rangle, \langle S_2, z, 1 \rangle)$, e_2 and the underlying t-norm T is the ordinal sum of two t-norms $T = (\langle T_1, 0, z \rangle, \langle T_2, z, e_2 \rangle)$).

Proof. In the case that $\{z\}_z$, we have that z is a partial neutral element in the interval $[0, z]$ as well as in the interval $[z, 1]$, i.e., z is the neutral element of F. Hence, directly by Definition 1 we get that F is a uninorm with the neutral element z.

In the case that $\{e_1, z\}_z$ is the 2-neutral element of F, we get applying Lemma 5 to the interval $[e_1, 1]$ that $S = (\langle S_1, e_1, z \rangle, \langle S_2, z, 1 \rangle)$ is a t-conorm which is the underlying operation of F. The rest of the proof is due to Definition 1.

Dually we could prove the case when $\{z, e_2\}_z$ is the 2-neutral element of F. □

Lemma 7. Let F be a 2-uninorm whose 2-neutral element is $\{0, 1\}_z$ for $0 < z < 1$. Then, F is a nullnorm and z is its annihilator.

Proof. The fact that F is a nullnorm with the annihilator z is directly due to Definition 3. □

The remaining three cases lead to proper 2-uninorms.

Lemma 8. Let F be a 2-uninorm whose 2-neutral element is $\{e_1, e_2\}_z$ for $0 < e_1 < z < e_2 < 1$. Then F is a proper 2-uninorm.

We omit the proof of this lemma since the assertion is obvious.

Lemma 9. Let F be a 2-uninorm whose 2-neutral element is $\{e, 1\}_z$ for $0 < e < z < 1$. Then F is a proper 2-uninorm whose upper underlying uninorm is reduced to a t-norm.

Proof. The fact that the upper underlying uninorm is reduced to a t-norm is due to Lemma 5. The rest of the proof is obvious. □

Lemma 10. Let F be a 2-uninorm whose 2-neutral element is $\{0, e\}_z$ for $0 < z < e < 1$. Then F is a proper 2-uninorm whose lower underlying uninorm is reduced to a t-conorm.

The assertion of Lemma 10 is a dual case of Lemma 9. That is why the proof is omitted.

Generalizing Lemma 6, we get the following

Proposition 1. For $n \geq 2$, let F be a proper n-uninorm where $\{e_1, e_2, \ldots, e_n\}_{(z_1, z_2, \ldots, z_{n-1})}$ is its n-neutral element. Then there exists $1 \leq i \leq n$ such that $z_{i-1} < e_i < z_i$ and moreover, F is an $(n + 1)$-uninorm whose $(n + 1)$-neutral element is $\{e_1, e_2, \ldots, e_n\}_{(z_1, z_2, \ldots, z_i, z_{i+1}, \ldots, z_{n-1})}$.

Proof. We have to prove two items for $n \geq 2$:

1) There exists i such that $z_{i-1} < e_i < z_i$,

2) $\{e_1, e_2, \ldots, e_n\}_{(z_1, z_2, \ldots, z_i, z_{i+1}, \ldots, z_{n-1})}$ is an $(n + 1)$-neutral element of F.

25
To prove item 1), it is enough to realize that, for \(n \geq 2 \), if there were no \(i \) such that \(z_{i-1} < e_i < z_i \), the operation \(F \) would have diagonal blocks either \((T_1, S_1, T_2, S_2, \ldots)\) or \((S_1, T_1, S_2, T_2, \ldots)\), where \(T_1, T_2 \) are \(t \)-norms, and \(S_1, S_2 \) are \(t \)-conorms. In each of these two cases the \(n \)-neutral element could be reduced to the \((n - 1)\)-neutral element, since in the first case \(e_1 = e_2 \) and in the second case \(e_2 = e_3 \) either \(\{e_2, \ldots, e_n\}(z_2, \ldots, e_i, \ldots, z_{n-1}) \) or \(\{e_1, \ldots, e_n\}(z_1, \ldots, e_i, \ldots, z_{n-1}) \), respectively. This proves the item 1) for \(n \geq 3 \). For \(n = 2 \) the statement is due to Lemmas 8, 9 and 10.

Item 2) is a direct consequence of item 1). □

4 2-uninorms on IF-sets

\((L^*, \leq_{L^*})\) is a bounded lattice with incomparable elements. The incomparability of some elements will be crucial in our considerations.

Example 1. On the bounded lattice \((L^*, \wedge, \vee, 0, 1)\), \(T_\wedge(z_1, z_2) = z_1 \wedge z_2\) is the greatest \(t \)-norm. When we choose an arbitrary element \(x \notin \{0, 1\}\), \(T_\wedge\) can be considered as the ordinal sum \(t \)-norm \(((T_\wedge, 0, x), (T_\wedge, x, 1))\).

On the other hand, since \(\|x\| \neq \emptyset \), we can define

\[
\hat{T}_\wedge(z_1, z_2) = \begin{cases}
 z_1 \wedge z_2 & \text{for } (z_1, z_2) \in ([0, x] \cup [x, 1])^2, \\
 z_2 & \text{for } z_1 \in \|x\|, z_2 \in [0, x] \\
 z_1 & \text{for } z_1 \in [0, x], z_1 \in \|x\|, \\
 x & \text{otherwise.}
\end{cases}
\]

(2)

Hence, \(\hat{T}_\wedge\) is not a \(t \)-norm, but \(\{x, 1\}_x\) is a 2-neutral element of \(\hat{T}_\wedge\). This means that \(\hat{T}_\wedge\) is a proper 2-uninorm.

Example 2. Let \(x \notin \{0, 1\} \) be an element in \(L^*. \)

\[
\hat{U}(z_1, z_2) = \begin{cases}
 z_1 \wedge z_2 & \text{for } (z_1, z_2) \in [0, x]^2, \\
 z_1 & \text{for } z_1 \in [0, x] \text{ and } z_2 \notin [0, x], \\
 & \text{and for } z_1 \in [x, 1] \text{ and } z_2 \in \|x\|, \\
 z_2 & \text{for } z_2 \in [0, x] \text{ and } z_1 \notin [0, x], \\
 & \text{and for } z_2 \in [x, 1] \text{ and } z_1 \in \|x\|, \\
 z_1 \vee z_2 & \text{for } (z_1, z_2) \in [x, 1]^2, \\
 x & \text{otherwise.}
\end{cases}
\]

(3)

The operation \(\hat{U}\) is restricted to \([0, x] \cup [x, 1]\), if \(\hat{U}\) has no neutral element on the whole \(L^* \), i.e., it is not a uninorm. On the other hand, \(\{x\}_x\) is a 2-neutral element, hence \(\hat{U}\) is a proper 2-uninorm.
Example 3. Let \(x \notin \{0, 1\} \) be an element in \(L^* \).

\[
V(z_1, z_2) = \begin{cases}
 z_1 \lor z_2 & \text{for } (z_1, z_2) \in [0, x]^2, \\
 z_1 \land z_2 & \text{for } (z_1, z_2) \in [x, 1]^2, \\
 x & \text{otherwise.}
\end{cases}
\]

(4)

\(V \) is a nullnorm whose annihilator is \(x \). In this case, if we are looking for a modification \(\tilde{V} \) of \(V \) in such a way that \(\tilde{V} \) is reduced to \([0, x] \cup [x, 1] \), but \(\tilde{V} \) is not a nullnorm, we will not succeed. Really, we have that \(V(1, 0) = x \) and hence also \(\tilde{V}(1, 0) = x \) and this implies that \(x \) is the annihilator of \(\tilde{V} \).

Remark 1. Dually to the operation \(\hat{T}_α \) introduced by (2), we can define on \(L^* \) an operation \(\hat{S}_α \) starting from the t-conorm \(S_α(z_1, z_2) = z_1 \lor z_2 \) and an element \(x \notin \{0, 1\} \). This means that, unlike the situation with the operations in the unit interval, an arbitrary form of the 2-neutral element, except of the case when \(\{0, 1\} \), is the 2-neutral element, may lead to proper 2-uninorms.

As a corollary to the above considerations in Examples 1 – 3, we get the following proposition.

Proposition 2. For arbitrary \(n \geq 2 \) there exists a proper \(n \)-uninorm \(F : L^* \times L^* \to L^* \) such that \(F \) has no \((n + 1)\)-neutral element, i.e., \(F \) is not an \((n + 1)\)-uninorm.

Proof. It is enough to modify the construction in Example 1. For arbitrary \(n \geq 2 \), let us choose \(0 = \zeta_0 < \zeta_1 < \zeta_2 < \cdots < \zeta_{n-1} < \zeta_n = 1 \) and we define an operation \(\hat{T} \) by

\[
\hat{T}(z_1, z_2) = \begin{cases}
 z_1 & \text{for } z_1 \in [\zeta_{i-1}, \zeta_i], i \in \{1, 2, \ldots, n-1\} \text{ and } z_2 \geq \zeta_i, \\
 z_2 & \text{for } z_2 \in [\zeta_{i-1}, \zeta_i], i \in \{1, 2, \ldots, n-1\} \text{ and } z_1 \geq \zeta_i, \\
 \zeta_{i-1} & \text{for } i \in \{1, 2, \ldots, n\} \text{ and } (z_1, z_2) \in [\zeta_{i-1}, \zeta_i]^2, \\
 \text{or } (z_1, z_2) \in [\zeta_{i-1}, 1]^2 \text{ and } z_1 \|_{\zeta_i} \text{ or } z_2 \|_{\zeta_i}.
\end{cases}
\]

We get that \(\{\zeta_1, \zeta_2, \ldots, \zeta_n\}(\zeta_1, \zeta_2, \ldots, \zeta_{n-1}) \) is the \(n \)-neutral element of \(\hat{T} \) and there exists no \((n + 1)\)-neutral element of \(\hat{T} \).

5 Conclusions

In this paper, we have discussed 2-uninorms in the unit interval and in the \(L^* \) lattice of IF-membership grades. We have shown that there are substantial differences between 2-uninorms in the unit interval and 2-uninorms in the \(L^* \) lattice. The results on 2-uninorms we have generalized to \(n \)-uninorms.

Acknowledgements

The work on this paper was supported from the VEGA grant agency, grant No. 1/0006/19, and from the APVV grant agency, grant No. 18-0052.
References

[1] Akella, P. (2007). Structure of n-uninorms, *Fuzzy Sets and Systems*, 158, 1631–1651.

[2] Akella, P. (2009). C-sets of n-uninorms, *Fuzzy Sets and Systems*, 160, 1–21.

[3] Atanasov, K.T. (1999). *Intuitionistic Fuzzy Sets*. Springer, Heidelberg.

[4] Birkhoff, G. (1967). *Lattice Theory*. American Mathematical Society Colloquium Publishers, Providence, RI.

[5] Bodjanova, S. & Kalina, M. (2014). Construction of uninorms on bounded lattices. In: *IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014*, Subotica, 61–66.

[6] Calvo, T., De Baets, B. & Fodor, J. (2001). The functional equations of Frank and Alsina for uninorms and nullnorms, *Fuzzy Sets and Systems*, 120, 385–394.

[7] Deschrijver, G. (2008). A representation of t-norms in interval valued L-fuzzy set theory, *Fuzzy Sets and Systems*, 159, 1597–1618.

[8] Deschrijver, G. (2013). Uninorms which are neither conjunctive nor disjunctive in interval-valued fuzzy set theory, *Information Sciences*, 244, 48–59.

[9] Deschrijver, G. & Kerre, E.E. (2003). On the relationship between some extensions of fuzzy set theory, *Fuzzy Sets and Systems*, 133(2), 227–235.

[10] Fodor, J., Yager, R.R. & Rybalov, A. (1997). Structure of uninorms. *Int. J uncertainty, Fuzziness and Knowledge-Based Systems*, 5, 411–427.

[11] Frank, M. (1979). On the simultaneous associativity of $F(x; y)$ and $x + y - F(x; y)$, *Aeq. Math.*, 19, 194–226.

[12] Goguen, J. A. (1967). L-fuzzy sets. *Journal of Mathematical Analysis and Applications*, 18(1), 145–174.

[13] Grabisch, M., Marichal, J.L., Mesiar, R., & Pap, E. (2009). *Aggregation Functions*, Cambridge University Press, Cambridge.

[14] Kalina, M., & Král’, P. (2016). Uninorms on interval-valued fuzzy sets, In: *Carvalho J., Lesot M.J., Kaymak U., Vieira S., Bouchon-Meunier B., Yager R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2016*, Communications in Computer and Information Science, vol 611. Springer, Cham, 522–531.

[15] Karaçal, F., Ince, M. A., & Mesiar, R. (2015). Nullnorms on bounded lattices. *Information Sciences*, 325, 227–236.

[16] Karaçal, F., & Mesiar, R. (2015). Uninorms on bounded lattices. *Fuzzy Sets and Systems*, 261, 33–43.
[17] Klement, E. P., Mesiar, R., & Pap, E. (2000). *Triangular Norms*. Springer, Berlin, Heidelberg.

[18] Mas, M., Mayor, G., & Torrens, J. (1999). t-operators. *Journal of Uncertainty, Fuzziness and Knowledge-Based Systems* 7, 31–50.

[19] Mas, M., Mayor, G., & Torrens, J. (1999). t-operators and uninorms in a finite totally ordered set. *Internat. J. Intell. Systems*, 14 (9), 909–922.

[20] Mas, M., Mayor, G., & Torrens, J. (2002). The distributivity condition for uninorms and t-operators. *Fuzzy Sets and Systems* 128, 209–225.

[21] Yager, R. R., & Rybalov, A. (1996). Uninorm aggregation operators, *Fuzzy Sets and Systems*, 80, 111–120.