Documentation of hypoglycemic and wound healing plants in Kodiyampalayam coastal village (southeast coast of India)

Satyavani Kaliamurthi, Gurudeeban Selvaraj*, Ramanathan Thirugnanasambandam
Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608502, India

ABSTRACT

Objective: To document the hypoglycemic and wound healing plant species especially halophytes and associates were carried out in the coastal village of Kodiyampalayam (Southeast coast of India).

Methods: The data were collected during the month of December 2011 to November 2012 with personal interviews and group discussion of local coastal fisher women community and traditional practitioner.

Results: The results indicated the traditional knowledge of 33 medicinal plant species, photographs, vernacular name, habit, active part and their mode of action. Among these, Citrullus colocynthis, Coccinia grandis, Rhizophora apiculata, Rhizophora mucronata, Bruguiera cylindrica, Excoecaria agallocha and Andrographis paniculata were discovered in huge number.

Conclusions: This study concludes medicinal uses of halophytes and associates in the coastal area. It will be needed scientific validation for development of novel therapeutic agents.

KEYWORDS
Coastal village, Halophytes, Diabetes, Wound-healing, Rhizophora apiculata

1. Introduction

Every living thing on the earth vary from flora to fauna system for their habits and habitats. There are twelve mega–biodiversity countries around the world, among these India has the largest biodiversity of vegetation. In the modern life style, people are lack of the physical workout. As a result it leads to various kinds of metabolic disorders and diseases. Diabetes mellitus is the major metabolic disorder, caused by either inadequate insulin production or resistance to insulin which leads to diabetes mellitus[1]. There are three major types of diabetes viz., insulin–dependent diabetes, non–insulin dependent diabetes and gestational diabetes. However most of the people suffered with Type 2 diabetes a prototype multi–factorial complex it accounts for 90% to 95% in the incidence of diabetes[2]. Nearly 2.5% to 7% of the populations were diagnosed with Type 2 and considered India as one as one of the leading causes of morbidity and mortality around the world[3]. Currently, insulin and oral hypoglycemic agents are used in the treatment of diabetes. The main undesirable effect of insulin is that hypoglycemia can cause brain damage, swelling, erythema and stinging[4]. Therefore several pre–clinical studies are ongoing to develop substitutes for treatment of diabetes mellitus from plant sources. Multi disciplinary ethno–botanical science deals with the direct relationship between the people and plants and also study’s the complex use of plants in
particular culture system for disease curing and healing\[5\]. Despite treatment, ulcers readily become chronic wounds. Unresponsive wounds on debilitated patients and those with multiple medical problems should be addressed based on a triad of care: intrinsic, extrinsic and wound environment factors. Intrinsic factors include the patient’s medical status, prescribed medication and concomitant disease. Extrinsic factors include repetitive trauma, off-loading and pressure reduction. The wound environment examination includes the amount of necrotic tissue, fibrotic tissue, percent of granulation, re–epithelialization, cellular activity in the wound, and devices and dressings used for treatment. Previously, the antidiabetic potential of mangrove and associates species \textit{viz.}, \textit{Citrullus colocynthis} (\textit{C. colocynthis}), \textit{Aegiceras corniculatum} (\textit{A. corniculatum}), \textit{Excoecaria agallocha} (\textit{E. agallocha}), \textit{Rhizophora apiculata} (\textit{R. apiculata}) and \textit{Rhizophora mucronata} (\textit{R. mucronata}) were reported\[6-11\].

The coastal village of Kodiyampalayam is located in Nagapattinam district of Tamil Nadu in southern India. There are wide ranges of halophytes and associated plant species were distributed in the village. But there is no report on ethno–botanical information in the coastal village. Hence, the present study was aimed to document the indigenous knowledge and utilization of medicinal plants along Kodiyampalayam coastal village.

2. Materials and methods

2.1. Study area

Kodiyampalayam coastal village is an extension of Pichavaram mangrove forest which is spread irregularly (unevenly) in the Kaveri delta. The artificial mangrove forest is situated away from 5 km southeast of the Kollidam, Nagapattinam district, Tamil Nadu, India lying between 11.33 latitude and 79.73 longitude. Kodiyampalayam is 205 km distance from Chennai. The total area is covered by the mangrove, about 500 hectares. This mangrove forest is influenced by the sea water from the Bay of Bengal. It received from brackish water from Colcroon estuaries and fresh water from Kollidam. The average depth of the estuary is 2.5 m and width 100 m to 200 m. The sand bars appear at the mouth of the estuary. Their position and extent very frequently due to tidal effect while water flow due to flooding during the monsoon resulting in erosion and later accretion in summer. The largest wetlands surrounding the eastern complex are used for aquaculture. Drainage canals from aquaculture farms and domestic sewage are discarded into the Kollidam (Figure 1).

2.2. Ethnobotanical survey

Present information on the medicinal plants used by the local people of Kodiyampalayam coastal village has been collected during 2011–2012 (Figure 2). Two to three attempts were undertaken for the interview and discussion with the local medicine man to gather maximum information about the plants used in diabetes and wound healing. The information was further verified by cross checking and validated by the common response from the village on some species of treatment. The plants were identified comparing with authentic specimens. All the recorded plants have been documented in the paper along with their scientific and local names, useful parts, habit and medicinal values. The methods adopted for investigation are those of Schultes\[12\].

3. Results

In the present survey revealed that the local people of Kodiyampalayam coastal village, Nagapattinam District, Tamil Nadu, India were using twenty eight species of medicinally important plants belonging to 25 families. They were listed by their scientific names and vernacular names followed by active part and uses (Table 1). The medicinal plants including mangroves were categorized into shrubs (4), herbs (12), trees (13) and remaining were grass, climbers and creepers. Majority of species belongs to \textit{Cucurbitaceae} (3), \textit{Rhizophoraceae} (3), \textit{Euphorbiaceae} (2), \textit{Acanthaceae} (2) and \textit{Liliaceae} (2). As a result, more than 20 species used to control blood glucose level in the case of diabetics mellitus followed by diabetic wound, ulcer wound, itching, scabies, inducing
Table 1

List of medicinal flora in Kodiyampalayam coastal village.

Scientific name	Vernacular name	Habit	Active parts	Mode of Action
A. vasica	Adhatoda	Shrub	Leaves	Leaf juice used to control blood sugar
A. corniculatum	Mukkuthi	Tree	Leaves	Leaf juice used for reduce pain and diabetes
Aegle marmelos (*A. marmelos*)	Vilvam	Tree	Leaves	The dried and powdered leaves are used to control blood sugar
Allium cepa (*A. cepa*)	Vengkaayam	Herb	Bulb	Bulb of the onion is used to control blood sugar
Allium sativum (*A. sativum*)	Vellai poondu	Herb	Leaves	Juices of the leaves is used to control blood sugar
Aloe vera (*A. vera*)	Kattrazhai	Herb	Leaves gel	Leaf gels are taken orally to control blood sugar
A. paniculata	Nilavembu	Tree	Leaves	The juice of the leaves used to control blood sugar
Arincennia marina	Venkandal	Tree	Leaves	Treatment for small pox and ulcer wound
Azadirachta indica (*A. indica*)	Veempu	Tree	Leaves	Powdered leaves are used to control blood sugar
B. cylindrica	Pannu kuchi	Tree	Leaves, roots	Leaf juice taken for digestion and inducing appetite in diabetic patients
Calophyllum inophyllum	Punnai	Tree	Root and Seed oil	Root and seed oil applied for the treatment of diabetic wound and scabies
Cassia quadrangularis	Pirandai	Shrub	Aerial part	Aerial part of the plant boiled in water and juice taken for digestion and inducing appetite in diabetic patients
Carallus colocynthis	Paeikomati	Prostrate	Creeper fruit	Leaves are used to control blood sugar
Coccinia grandis	Koovai	Creeper	Fruit	Fruits are used to control blood sugar
Curcuma longa	Kasturimamal	Herb	Rhizome	Rhizome is used to control blood sugar
Cynodon dactylon	Arugampul	Grass	Leaves	Powdered leaf were taken orally to reduce blood pressure and excess blood glucose level
Eclipta alba	Karsalankanni	Herb	Leaves	Leaf is used to control blood sugar
Excoecaria agallocha	Thillai	Tree	Leaves	Leaf juice used for reduce blood glucose level and fish poison
Ficus benghalensis	Aalamaram	Tree	Bark	Bark decoction is used to control blood sugar
Hibiscus rosasinensis	Semparthai	Herb	Leaves	Fresh leaf juice is taken regularly for anti-diabetic effect and Hair growth
Heliotropium curassavicum		Perennial herb	Leaves	Leaves used for external application to ulcers, wounds, and local inflammations
Isona coccinea	Idlipoo	Shrub	Flower	Flower juice is boiled with coconut oil and applied topically on the itching places of diabetic wound to cure
Melothria maderaspatana	Musumusukai	Climber	Leaves	Powdered leaf juices used in the treatment for cold, cough and maintain blood sugar level
Mimosa pudica	Thottasiniki	Creeper	Leaves	Used for wound healing activities
Oximun sanctum	Tulsi	Shrub	Leaves	Early morning a pinch of leaf is taken to control blood sugar
Phyllanthus emblica	Nelliikaai	Tree	Fruit	Fruits are very good antioxidant properties
Rhizophora apiculata	Surapunmi	Tree	Leaves	Used as an antiseptic
Rhizophora mucronata	Surapunmi	Tree	Leaves, roots	Juice of matured leaves and roots are used during childbirth and to control blood sugar
Sesuvium portulacastrum	Orputu	Perennial herb	Leaves	Used as a pickles for human consumption
Suaedra maritima	Mottamiri	Herb	Leaves and shoots	The aerial parts were used for pickles preparation
Suaedra monoica	Poomiri	Herb	Leaves	Leaf paste were applied for wounds
Solanium nigrum	Manakal	Herb	Leaves	Leaf juice were taken orally for diabetes and reduce hot temperature conditions of our body
Syzygium cumini	Naaval	Tree	Seeds	Dried seed powder taken orally to reduce the blood glucose level

Table 2

Photograph of anti-diabetic and wound healing species along Kodiyampalayam coastal village.

Images	Systematic classification	Images
![A. vasica](image)	*A. vasica* L.	
Class: Magnoliopsida
Order: Lamiales
Family: Acanthaceae
Genus: Adhatoda
Species: A. vasica | ![A. paniculata](image) | *A. paniculata* (Burm.F.) Wall. ex Nees
Class: Magnoliopsida
Order: Lamiales
Family: Acanthaceae
Genus: Andrographis
Species: A. paniculata |
Table 2, continued
Photograph of anti-diabetic and wound healing species along Kodiyampalayam coastal village.

Images	Systematic classification	Images	Systematic classification
![Image](image1)	**A. corniculatum (L.) lanco**		
Class: Magnoliopsida			
Order: Ericales			
Family: Myrsinaceae			
Genus: Aegiceras			
Species: *A. corniculatum*	![Image](image2)	**A. indica**	
Class: Magnoliophyta			
Order: Sapindales			
Family: Meliaceae			
Genus: Azadirachta			
Species: *A. indica*			
![Image](image3)	**Aegle marmelos L. Correa**		
Class: Magnoliopsida			
Order: Sapindales			
Family: Rutaceae			
Genus: Aegle			
Species: *A. marmelos*	![Image](image4)	**B. cylindrica (L.) Blume**	
Class: Magnoliopsida			
Order: Malpighiales			
Family: Rhizophoraceae			
Genus: Bruguiera			
Species: *B. cylindrica*			
![Image](image5)	**Allium cepa L.**		
Class: Magnoliopsida			
Order: Asparagales			
Family: Amaryllidaceae			
Genus: Allium			
Species: *A. cepa*	![Image](image6)	**Cissus quadrangularis L.**	
Class: Magnoliopsida			
Order: Vitales			
Family: Vitaceae			
Genus: Cissus			
Species: *C. quadrangularis*			
![Image](image7)	**Aloe vera (L.) Burm.F.**		
Class: Liliopsida			
Order: Asparagales			
Family: Xanthorrhoeaceae			
Genus: Aloe			
Species: *A. vera*	![Image](image8)	**Citrus colocynthis (L.) Schrad.**	
Class: Magnoliopsida			
Order: Cucurbitales			
Family: Cucurbitaceae			
Genus: Citrus			
Species: *C. colocynthis*			
![Image](image9)	**Carcuma longa L.**		
Class: Magnoliopsida			
Order: Zingiberales			
Family: Zingiberaceae			
Genus: Carcuma			
Species: *C. longa*	![Image](image10)	**Ficus benghalensis L.**	
Class: Magnoliopsida			
Order: Malpighiales			
Family: Moraceae			
Genus: Ficus			
Species: *F. benghalensis*			
![Image](image11)	**Cynodon dactylon (L.) Pers**		
Class: Magnoliopsida			
Order: Poales			
Family: Poaceae			
Genus: Cynodon			
Species: *C. dactylon*	![Image](image12)	**Hibiscus rosa-sinensis L.**	
Class: Magnoliopsida			
Order: Gentianales			
Family: Malvaceae			
Genus: Hibiscus			
Species: *H. rosa-sinensis*			
![Image](image13)	**Curcuma longa L.**		
Class: Magnoliopsida			
Order: Zingiberales			
Family: Zingiberaceae			
Genus: Curcuma			
Species: *C. longa*	![Image](image14)	**Heliotropium curassavicum L.**	
Class: Magnoliopsida			
Order: Poales			
Family: Boraginaceae			
Genus: Heliotropium			
Species: *H. curassavicum*			
![Image](image15)	**Eclipta prostrata L.**		
Class: Magnoliopsida			
Order: Gentianales			
Family: Gentianaceae			
Genus: Eclipta			
Species: *E. prostrata*	![Image](image16)	**Ixora coccinea L.**	
Class: Magnoliopsida			
Order: Gentianales			
Family: Rubiaceae			
Genus: Ixora			
Species: *I. coccinea*			
![Image](image17)	**Excoecaria agallocha L.**		
Class: Magnoliopsida			
Order: Malpighiales			
Family: Euphorbiaceae			
Genus: Excoecaria			
Species: *E. agallocha*	![Image](image18)	**Mimosa pudica L.**	
Class: Magnoliopsida			
Order: Fabales			
Family: Fabaceae			
Genus: Mimosa			
Species: *M. pudica*			
![Image](image19)	**Ocimum sanctum L.**		
Class: Magnoliopsida
Order: Lamiales
Family: Lamiaceae
Genus: Ocimum
Species: *O. sanctum* | ![Image](image20) | **Suaeda maritima L.**
Class: Magnoliopsida
Order: Chenopodiaceae
Family: Chenopodiaceae
Genus: Suaeda
Species: *S. maritima* |
appetite in diabetic patients, reduce blood pressure and good antioxidant properties. The systematic classification and photographs of the plant species was showed in Table 2.

4. Discussion

Coastal people use plant part either separately or mixed together to treat diseases. The medical man pointed out the curative nature of diabetes totally depends upon natural resources for collection of plants and their parts[13]. Generally, fresh part of the plant is used for the preparation of medicine. When fresh plant parts are not available, dried parts are also used. In the present study, different types of preparation made from medicinally important plants such as leaf/flower juice, bulb, gels, seed oil, decoction, powder, rhizome, fresh fruits and leaves. Majority of the preparation were in the form of juices (kasaya) obtained from leaves Adhatoda vasica (A. vasica), Aegiceras corniculatum (A. corniculatum), Allium sativum (A. sativum), Andrographis paniculata (A. paniculata), Bruguiera cylindrica (B. cylindrica), Cissus quadrangularis (C. quadrangularis), Excoecaria agallocha (E. agallocha), Hibiscus rosasinensis (H. rosasinensis), Melothria maderaspatana (M. maderaspatana), Rhizophora mucronata (R. mucronata) and Solanum nigrum (S. nigrum).

The people of Kodiyampalayam coastal area prescribed combination of plant species to rapidly cure the diseases. For example, flower juice of Idilipoo (Ixora coccinea) boiled with coconut oil and applied totally for the treatment of itching places of diabetic wound. During the ethno survey, we underwent several problems such as, some of them declined to answer few questions for fear of being investigated later by government agencies while others did not wish to divulge their professional secrets and communication language. By mutual contacts, friendly approaches and financial compensation were useful in overcoming such obstacles. Medicinal plants play an important role in providing knowledge to the researchers in the field of ethno pharmacology. Many valuable herbal drugs have been discovered by knowing that a particular plant was used by the ancient folk healers for the treatment of some kind of ailment[14]. Apart from this additional information were also gathered while comparing the same species with other districts ethno survey. For example, leaves paste of A. paniculata applied externally on bitten site of scorpion sting and snakebites along the Madurai district of Tamilnadu[15]. Floral resources used in the local health traditions are gradually becoming extinct due to population explosion and other anthropogenic reasons. In order to reverse this trend, domestication of wild medicinal plants is of utmost importance[16]. Partially we concentrated on conservation of coastal species like C. colocynthis and Heliotropium curassavicum through in vitro tissue culture techniques[17,18]. Farmers should be involved in the cultivation of medicinal plants at least in their uncultivated land this will enhance their income and in turn help in the conservation of the species.

In conclusion, the present investigation has highlighted the antidiabetic and wound healing therapeutic value of plant species along the Kodiyampalayam coastal village. It would help the researchers for chosen the study plant for screening the pharmacological activities especially diabetes. Also new approaches of conservation strategy will be needed to restore the indigenous knowledge of medicinal plants and natural drug development for the future generation.

Table 2, continued
Photograph of anti–diabetic and wound healing species along Kodiyampalayam coastal village.

Images	Systematic classification	Images	Systematic classification
	Phyllanthus emblica L.		**Suaeda monoica Forsk. ex Gmel**
	Class: Magnoliopsida		Class: Dicotyledons
	Order: Malpighiales		Order: Chenopodiales
	Family: Phyllanthaceae		Family: Chenopodiaceae
	Genus: Phyllanthus		Genus: Suaeda
	Species: *P. emblica*		Species: *S. monoica*
	Rhizophora apiculata Blume		**Solanum nigrum L.**
	Class: Magnoliopsida		Class: Magnoliopsida
	Order: Malpighiales		Order: Solanaceae
	Family: Rhizophoraceae		Family: Solanaceae
	Genus: Rhizophora		Genus: Solanum
	Species: *R. apiculata*		Species: *S. nigrum*
	Rhizophora mucronata Poir		**Syzygium cumini L.**
	Class: Magnoliopsida		Class: Dicotyledonae
	Order: Malpighiales		Order: Myrtales
	Family: Rhizophoraceae		Family: Myrtaceae
	Genus: Rhizophora		Genus: Syzygium
	Species: *R. mucronata*		Species: *S. cumini*
Conflict of interest statement

The authors declared no conflict of interest.

Acknowledgements

The authors are grateful to the authorities of Annamalai University and University Grants Commission, New Delhi, Grant No: UGC Ref. No.: 39–439/2010, (SR) dated 06.01.2011 for providing all support during the study period.

Comments

Background

Ethnobotanical study deals with the relationship between the practioners and plant species. The complex usage of plants and their parts in coastal system. Therefore there is need of documentation.

Research frontiers

This paper explains diabetic and diabetic wound healing properties of coastal medicinal plants documented based on the information collected from coastal people.

Related reports

Ethnobotanical information was collected based on the personal interview of coastal people. The folklore is useful to document coastal life medicine.

Innovations and breakthroughs

Coastal plant diversity, identification and authentication of plant materials with medicinal importance were carried out.

Applications

Based on this survey it has been found that coastal medicinal plant is safe to humans. This is useful information for pharmaceutical industry.

Peer review

This is a valuable research work in which authors have demonstrated the diabetic and diabetic wound healing properties of medicinal plants on coastal life particularly coastal fisher women community.

References

[1] Pareek H, Sharma S, Khajja BS, Jain K, Jain GC. Evaluation of hypoglycemic and anti–hyperglycemic potential of Tridax procumbens (Linn.) BMC Complement Altern Med 2009; 9: 48.
[2] Cheng D. Prevalence, predisposition and prevention of type II diabetes. Nutr Metab (Lond) 2005; 2 : 29.
[3] Seghrouchni I, Drai J, Bannier E, Rivière J, Calmard P, Garacía I, et al. Oxidative stress parameters in type I, type II and insulin–treated type 2 diabetes mellitus: insulin treatment efficiency. Clin Chim Acta 2002; 32: 89–96.
[4] Patil RN, Patil RY, Ahirwar B, Ahirwar D. Evaluation of antidiabetic and related actions of some Indian medicinal plants in diabetic rats. Asian Pac J Trop Med 2011; 4: 20–23.
[5] Hedberg I. Research on medicinal and poisonous plants of tropics. In: Leewenerg AJM, editor. Past, present and future in medicinal and poisonous plants of the tropics. Dehra Dun, India: International Book Distribution; 1987, p. 9–15.
[6] Gurudeeban S, Ramanathan T. Antidiabetic effect of Citrullus colocynthis in alloxan–induced diabetic rats. Invent Rapid Ethnopharmacol 2010; 1: 112.
[7] Gurudeeban S, Satyavani K, Ramanathan T, Balasubramanian T. Antidiabetic effect of black mangrove Aegiceras corniculatum in alloxan–induced diabetic rats. J Adv Pharm Technol Res 2012; 3: 52–56.
[8] Satyavani K. Nanoencapsulation, characterization and ointment formulation of rutin from Excoecaria agallocha L. on control of type II diabetes and diabetic foot ulcer using Wistar Albino rats [dissertation]. Parangipet, Tamil Nadu, India: Annamalai University; 2013, p. 241.
[9] Gurudeeban S, Satyavani K, Ramanathan T. Alpha glucosidase inhibitory effect and enzyme kinetics of coastal medicinal plants. Bangladesh J Pharmaco 2012; 7: 186–191.
[10] Gurudeeban S, Satyavani K, Ramanathan T, Balasubramanian T. An in silico approach of alpha–ketoglutarate dependent dioxygenase FTO inhibitors derived from Rhizophora mucronata. Drug Invent Today 2012; 4: 594–598.
[11] Gurudeeban S, Satyavani K, Ramanathan T, Ravikumar P. Dipeptidyl peptidase IV inhibitors derived from a mangrove Rhizophora mucronata: an in silico approach. Bangladesh J Pharmaco 2012; 7: 203–210.
[12] Schultes RE. The role of the ethnobotanist in the search for new medicinal plants. Lloyida 1962; 25: 257–266.
[13] Kala CP. Health traditions of Buddhist community and role of amchis in trans–Himalayan region of India. Curr Sci 2005; 89: 1331–1338.
[14] Ekka NR, Dixit VK. Ethno–pharmacognostical studies of medicinal plants of Jashpur district (Chattisgarh), Int J Green Pharm 2007; 1: 2–4.
[15] Ignacimuthu S, Ayyanar M, Sankara Sivaraman K. Ethnobotanical investigations among tribes in Madurai district of Tamil Nadu (India). J Ethnobiol Ethnomed 2006; 2: 25.
[16] Uniyal B, Shiva V. Traditional knowledge on medicinal plants among rural women of the Garhwal Himalaya, Uttarakanch, Ind J Trad Knowl 2005; 4: 259–266.
[17] Satyavani K, Ramanathan T, Gurudeeban S. Effect of plant growth regulators on callus induction and plantlet regeneration of bitter apple (Citrullus colocynthis) from stem explant. Asian J Biotechnol 2011; 3: 246–253.
[18] Satyavani K, Dheepak V, Gurudeeban S, Ramanathan T. Direct organogenesis of seaside Heliotrope (Heliotropium curassavicum) using stem explants. Pakistan J Biol Sci 2013; 16: 1216–1219.