Multiple myeloma (MM) is a currently incurable malignancy of plasma cells. Malignant myeloma cells (MMCs) are heavily dependent upon the bone marrow (BM) microenvironment for their survival. One component of this tumor microenvironment, B-Cell Activating Factor (BAFF), has been implicated as a key player in this interaction. This review discusses the role of BAFF in the pathophysiology of MM, and the potential of BAFF-inhibitory therapy for the treatment of MM. Multiple studies have shown that BAFF functions as a survival factor for MMCs. Furthermore, MMCs express several BAFF-binding receptors. Of these, only Transmembrane Activator and CAML Interactor (TACI) correlates with the MMC’s capability to ligate BAFF. Additionally, the level of expression of TACI correlates with the level of the MMC’s BM dependency. Ligation of BAFF receptors on MMCs causes activation of the Nuclear Factor of κ-B (NF-κB) pathway, a crucial pathway for the pathogenesis of many B-cell malignancies. Serum BAFF levels are significantly elevated in MM patients when compared to healthy controls, and correlate inversely with overall survival. BAFF signaling is thus an interesting target for the treatment of MM. Several BAFF-inhibitory drugs are currently under evaluation for the treatment of MM. These include BAFF-monoclonal antibodies (tabalumab) and antibody-drug conjugates (GSK2857916).

Blood Cancer Journal (2015) 5, e282; doi:10.1038/bcj.2015.3; published online 27 February 2015
and survival factors. The humoral components of the BM microenvironment have been extensively researched because of their potential as targets for monoclonal antibody (mAb) therapy. BAFF and APRIL, members of the TNF superfamily, are two such humoral factors involved in the pathophysiology of MM. Recently, several inhibitors of BAFF signaling have been developed for the treatment of autoimmune diseases.

BAFF IN THE PHYSIOLOGY OF NORMAL B CELLS AND PLASMA CELLS

BAFF (TNFSF-13B) was simultaneously discovered in 1999 by several independent research groups, under the names of BlyS, THANK-1, TALL-1 and BAFF. BAFF is a 285-amino acid type-II transmembrane protein, and a member of the TNF superfamily (TNFSF-13B). Surface-bound BAFF can be cleaved by a furin protease, resulting in a soluble, 152-amino acid 17-kDa molecule. APRIL (synonyms TALL-2, TRDL-2, TNFSF-13A), another member of the TNF superfamily, exhibits a high level of sequence similarity (~30% homology) to BAFF. Soluble BAFF forms biologically active homotrimers, but can also form heterotrimers with APRIL. The relevance of the formation of these heterotrimers is unknown. Furthermore, at neutral or basic pH, 20 trimers of soluble BAFF have been observed to associate into a 60-mer virus-like particle.

The BAFF gene is located at the distal arm of chromosome 13 (13q34). It consists of 6 exons, of which exon 1 encodes the transmembrane domain, exon 2 a furin processing site and exon 3-6 encodes a TNF homology domain which binds TNF receptors. Interestingly, alternative splicing leads to a short variant of the BAFF molecule (ΔBAFF). This isoform forms inactive heterotrimers with BAFF in vivo, functioning as a negative regulator of BAFF signaling.

Receptors of BAFF

BAFF can bind to three receptors of the TNF receptor (TNFR) family (see Figure 2): Transmembrane Activator and Calcium Modulator (TACI, TNFRSF-13B), B-cell Maturation Antigen (BCMA, TNFRSF-17) and the BAFF receptor (BAFF-R, synonyms BR3 and TNFRSF-13C). All three receptor subtypes are type III transmembrane proteins which lack a signal-peptide and contain cysteine-rich extracellular domains. The affinity of BAFF is in the nanomolar range for BAFF-R and TACI and in the micromolar range for BMCA. In contrast, APRIL demonstrates nanomolar affinity for BCMA and TACI, but is unable to ligate the BAFF-R. Interestingly, TACI activation requires additional multimerization such as assembly of BAFF into a 60-mer particle or oligomerization of APRIL by binding to heparan sulphate proteoglycans on the cell surface.

More recently, BAFF has been implicated as a functional high-affinity ligand for the Nogo-66 receptor (NgR) on astrocytes and microglia, where engagement by BAFF is involved in the pathogenesis of several autoimmune CNS diseases.

Functions of the BAFF receptors

BAFF-deficient mice display a greater than 90% loss of B cells in all stages beyond the T1 stage, which can be compensated by the overexpression of anti-apoptotic proteins such as members of the Bcl-2 family. Comparable B-cell lymphopenia develops when mice are deficient for BAFF-R, which is normally expressed by all mature B cells. These observations prove that the BAFF/BAFF-R
axis plays a vital role in the maturation and survival of B cells. Moreover, mutations leading to loss of function of BAFF-R are associated with common variable immune-deficiency disorder in humans.26 Interestingly, BAFF-transgenic mice develop auto-immunity and profound lymphocytosis, including a marked increase in plasma cells.27

BCMA-deficient mice exhibit no defect in B-cell homeostasis,28 but display impaired survival of long-lived plasma cells.29 As BCMA expression is restricted to antibody-producing cells, the BAFF/ APRIL-BCMA axis is probably essential in plasma cell physiology.

The role of TACI in B-cell physiology is complex. TACI-deficient mice develop an increased number of mature B cells, have elevated serum immunoglobulin levels and display signs of systemic lupus erythematosus (SLE)-like auto-immunity, implicating TACI as a negative regulator of B-cell maturation.30

In contrast, in vitro studies with human cell lines have shown that TACI plays an important role in CD40-independent immunoglobulin class switch recombination and TACI loss of function mutations are associated with common variable immune-deficiency disorder and IgA deficiency.31,32 This ambiguity suggests that TACI can serve both as a positive and as a negative regulator of B-cell differentiation, and it is speculated that the result of TACI engagement is largely context-dependent.33 An alternative explanation for the apparently ambivalent role of TACI could be that the absence of TACI would provide for an excess of soluble, unbound BAFF, which would be able to bind BAFF-R and thus promote B-cell longevity and auto-immunity. This would imply that TACI does not possess an intrinsic negative regulatory function.

Production of BAFF

BAFF is expressed and secreted by several cells of the immune system, including monocytes, macrophages, dendritic cells and by a subset of T lymphocytes.12,13 The expression of BAFF can be increased by several cytokines such as interferon-γ, interleukin (IL)-10 and granulocyte colony-stimulating factor, and by the activation of Toll-like receptors.34,35 When stimulated by pro-inflammatory cytokines, BAFF expression supports ongoing immune responses and stimulates the activation of the humoral immune system. Additionally, a significant fraction of circulating BAFF is produced by non-myeloid radiation-resistant cells, which are most likely to be stromal cells such as osteoclasts.36

THE ROLE OF BAFF IN THE PATHOPHYSIOLOGY OF MM

Both human myeloma cell lines (HMCLs) and primary MMCs are highly capable of binding soluble BAFF37–42 and, when cultured with recombinant human BAFF, show enhanced survival, proliferation, long-term growth and resistance to dexamethasone and lenalidomide,43–46 comparable with the effects of the established MMC growth factor IL-6.43 Additionally, the elimination of BAFF with a BAFF-mAb in a human myeloma mouse model resulted in a decrease of tumor burden, protected against lytic bone disease through decreased osteoclastogenesis and led to an overall increase in survival.45 These observations emphasize the importance of BAFF in the pathogenesis of MM.

BAFF receptors in MM

BCMA is invariably expressed in HMCLs and in primary MMCs,38,39,41–44 and, when compared with normal plasma cells,44,47,48 furthermore, successful donor lymphocyte infusion in MM patients is associated with the development of anti-BCMA antibodies, suggesting the presence of BCMA on the cell-surface of MMCs.49 However, despite its invariable presence, BCMA expression does not correlate with the capability to ligate BAFF, possibly because of the 1000-fold weaker affinity of BAFF for BCMA than for BAFF-R or TACI.52

BAFF-R expression is absent in most HMCLs,38,40 but has been reported to be variably present in primary MMCs.39,41,43–45,50–53

Figure 2. BAFF, APRIL and their receptors. Soluble BAFF and APRIL can activate multiple transmembrane receptors. The BAFF-R is a selective receptor for BAFF, and is important in early B-cell homeostasis and regulatory T-cell function. BCMA binds APRIL with nanomolar affinity and BAFF with micromolar affinity. BCMA expression is restricted to antibody-producing cells and BCMA function is paramount for plasma-cell longevity. The NgR binds both APRIL and BAFF and is important for CNS homeostasis and plays a role in CNS autoimmune diseases. TACI can bind 60-mer BAFF and heparan sulphate proteoglycan-bound APRIL with nanomolar affinity, and is implicated as negative regulator of B-cell maturation. Additionally, TACI is important for Ig-class switch recombination in the germinal center.
Proteasome inhibitors and immunomodulatory drugs

Recent progress in the understanding of MMC physiology led to the development of proteasome sub-unit inhibitors, such as bortezomib. By reversibly inhibiting the chymotryptic activity of the 26 sub-unit proteasome, bortezomib inhibits the NF-κB pathway, thus inhibiting proliferation and inducing apoptosis. When exposed to bortezomib, cultured MMCs show a decrease in autocrine production of both BAFF and APRIL. Furthermore,
through inhibition of both the canonical and non-canonical NF-kB pathways, bortezomib interferes with the downstream signaling of BAFF and APRIL.\(^4\) This shows us that, although bortezomib targets multiple processes, at least a part of its anti-myeloma effect may be attributed to the inhibition of the BAFF/APRIL axis.

Immunomodulatory drugs (IMiDs), such as thalidomide or lenalidomide, have also been approved for the treatment of MM. IMiDs have multiple mechanisms of action, including the induction of direct cytotoxicity in MMCs and the inhibition of angiogenesis and osteoclasts. In the latter cells, lenalidomide inhibits the paracrine production of BAFF and APRIL.\(^6\) Thus, as with bortezomib, there is evidence that at least part of the anti-myeloma effect of IMiDs may be attributed to the inhibition of BAFF/APRIL signaling.

Atacicept

Atacicept, produced by ZymoGenetics and Merck Serono, is a recombinant fusion protein that consists of the fragment crystallizable (Fc) region of human IgG and the binding domain of the TACI receptor. Atacicept is designed to bind and inactivate both BAFF and APRIL in their soluble form and thereby to inhibit their signaling.\(^6\) Because TACI expression on MMCs correlates directly with BM dependency, there is a strong rationale for the use of atacicept in MM. In a human myeloma mouse model, atacicept successfully showed anti-MM activity.\(^7\) Similar effects were observed for a BAFFR-Ig fusion protein, albeit to a lesser extent. Further testing in co-cultured MMCs and osteoclasts showed that atacicept decreased the survival rate of MMCs and that the drug was especially effective against TACI HIGH MMCs.\(^7\) A phase I study of atacicept in relapsed or refractory patients with MM confirmed clinical efficacy of atacicept, showing a stabilization of disease in several patients, accompanied by a stabilization of M-protein and a stabilization and/or decrease of the amount of CD138+ cells in the BM.\(^7\) However, no partial or complete responses were observed.

Through simultaneous neutralization of BAFF and APRIL, atacicept could give rise to clinically relevant immunosuppression. Indeed, one clinical trial of atacicept in SLE, in combined regiments with mycophenolate mofetil, was prematurely terminated owing to an increase in infectious diseases (ClinicalTrial.gov identifier: NCT00573157). This observation has prompted stagnation in the further development of atacicept for the treatment of MM and warrants caution and close monitoring of adverse events in any future clinical trials.

Antibody drug conjugates targeting BCMA

Soluble BCMA is elevated in the serum of MM patients,\(^7\) and successful donor lymphocyte infusion is associated with the formation of antibodies targeting BCMA.\(^6\) These observations, along with the ubiquitous yet selective expression of BCMA on MMCs, provide a strong rationale for the development of mAbs targeting BCMA. Indeed, an anti-BCMA mAb, bearing triple Fc mutations (S293D/A330L/I332E) to increase the antibody-dependent cellular cytotoxicity and conjugated with a cytotoxic agent, monomethyl auristatin F, was tested in MM. This antibody drug conjugate displayed remarkable biological activity against MMCs in both a mono-culture and a co-culture with osteoclasts, while retaining exquisite selectivity.\(^7\) Tai et al.\(^7\) in cooperation with GlaxoSmithKline, further developed this concept and produced GSK2857916, a similar anti-BCMA and monomethyl auristatin F antibody drug conjugate. This antibody drug conjugate does not bear the Fc point mutations, which can potentially cause instability and increased immunogenicity. Alternatively, the Fc glycans of GSK2857916 were defucosylated, which ameliorates the antibody-dependent cellular cytotoxicity reaction and negates the aforementioned side effects. In vitro, GSK2857916 displayed potent anti-MM activity, increasing G\(_2\)/M-

arrest, apoptosis and antibody-dependent cellular cytotoxicity while leaving co-cultured BMSCs, natural killer cells and PBMCs unaffected. Further testing showed that a mere two infusions with GSK2857916 achieved complete eradication of tumor burden in a xenograft mouse model. Importantly, GSK2857916 was highly effective in a disseminated MM mouse model, which implies it could be a potential option for late-stage extramedullary MM. GSK2857916 is currently in a phase I clinical trial in MM patients (ClinicalTrial.gov identifier: NCT0264387).

Another immune-based therapy targeting BCMA is adoptive T-cell therapy. This therapy employs genetically modified T cells with a chimeric antigen receptor capable of binding BCMA. This chimeric antigen receptor-T-cell therapy showed promising anti-MM activity in in vitro and xenograft mouse models.\(^7\) Adopting T-cell therapy could, however, in theory, produce a lasting immune reaction against BCMA-positive cells. This could, in the long term, severely compromise the healthy plasma cell population and the humoral immune system, necessitating life-long immunoglobulin suppletion. Extensive monitoring of the development of such a reaction during clinical testing is warranted.

Direct inhibitors of BAFF

Recent progress in the field of rheumatology, sparked by the observation that BAFF serum levels are elevated in multiple autoimmune diseases such as SLE,\(^7\) has led to the development of several direct inhibitors of BAFF. In a phase III randomized controlled trial, belimumab, a fully human mAb against BAFF, has been shown to have a modest effect in patients with active SLE.\(^7\) This has led to the regulatory approval of belimumab for the treatment of SLE by the United States Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Another direct inhibitor of BAFF is blisibimod, a fusion protein of four BAFF-binding peptides and the Fc locus of IgG, termed a ‘peptibody’. Blisibimod, contrary to BAFF, inhibits the action of both soluble and membrane-bound BAFF. Blisibimod is currently under evaluation in a phase III clinical trial for the treatment of SLE (ClinicalTrial.gov identifier: NCT01395745). Both belimumab and blisibimod have not yet been tested in myeloma models or patients.

Recently, Ely Lilly and Company created a selective fully human IgG4 mAb, tabalumab (LY2127399), with neutralizing activity against both membrane-bound and soluble BAFF.\(^7\) In murine xenograft models, tabalumab showed an anti-MM effect and inhibits osteoclastogenesis.\(^7\) In a phase I study, tabalumab was evaluated combined with bortezomib in relapsed or refractory MM patients. It was well tolerated and capable of inducing a partial response or better in 22/48 patients.\(^7\) Tabalumab is currently undergoing two additional phase I studies (ClinicalTrial.gov identifiers: NCT00689507 and NCT01556438) and a phase II/III trial (ClinicalTrial.gov: NCT01602224) in patients with MM.

For an illustration of the mechanism of action of aforementioned drugs, see Figure 4.

DISCUSSION

In this review, we have discussed the relevance of BAFF in the physiology of humoral immunity and the role of BAFF and its receptors in the pathophysiology of MM. Furthermore, we have described the progress of the development of inhibitors of BAFF signaling for the treatment of MM.

Limitations of BAFF-inhibitory drugs

There are a few possible limitations to the use of BAFF-inhibitory therapy. Firstly, BAFF is one of the numerous growth factors in MM, and the effects of BAFF inhibition could be counteracted through alterations in other signaling pathways. Secondly, TACI is,
as previously mentioned, probably the most important receptor for BAFF in MM. However, as both APRIL and BAFF share nanomolar affinity for TACI, one could speculate that the elimination of only BAFF and not APRIL might not suffice in inhibiting NF-κB activation. For this reason, drugs that inhibit both BAFF and APRIL are assumed to have a greater anti-MM effect than BAFF inhibition alone. As there have been no comparative studies between atacicept and BAFF-specific inhibitors, there is no evidence as of yet to support this assumption. Moreover, one clinical trial (ClinicalTrials.gov identifier: NCT00573157) with atacicept was terminated prematurely owing to an increased incidence of grade III infections in the group treated with atacicept. This is can probably be attributed to the fact that normal plasma cells require either BAFF or APRIL to survive, whereas atacicept blocks both. So, although atacicept is speculated to be more efficacious than BAFF inhibition alone, its use is accompanied by more severe immunosuppression.

A third limitation of BAFF-inhibitory therapy is the possible development of drug resistance. Because of the existence of subclones of MMCs already at the time of diagnosis and their subsequent clonal selection under pressure by treatment, patients with MM often develop drug resistance. As BAFF-inhibitory therapy targets external signals, it is probable that MMCs treated with this kind of therapy will develop mutations that replace the need for external BAFF stimulation, and that these subclones will be positively selected. Indeed, 30% of HMCLs, which resemble late-stage MMCs, exhibit mutational constitutive activation of NF-κB, of which more than half is comprised of mutations in BAFF signaling pathways. Possible methods to overcome the formation of resistance could involve the combination of BAFF inhibitors with existing drugs such as proteasome inhibitors or IMiDs. Alternatively, the use of BAFF-inhibitory drugs could be confined to very early stage MM or even monoclonal gammopathy of undetermined significance, which are both characterized by extensive BM dependency.

The role of APRIL
APRIL, when bound to heparan sulphate proteoglycans, is able to ligate TACI and activate NF-κB signaling. MMCs are capable of ligating APRIL in a manner similar to BAFF, and thereby inducing increased MMC survival, proliferation and resistance to dexamethasone. Moreover, serum APRIL levels are significantly elevated in patients with MM. This provides a rationale for the development of APRIL inhibitory drugs. Indeed, as mentioned before, several anti-MM drugs, including proteasome inhibitors, IMiDs and atacicept, partly achieve their effect through the neutralization of APRIL.

In contrast to the crucial role of BAFF in early B-cell homeostasis, APRIL-deficient mice only exhibit impaired IgA class-switch recombination. For this reason, APRIL-inhibitory drugs should be less likely to cause side effects due to the disruption of B-cell homeostasis than BAFF-inhibitory drugs would. Indeed, Guadagnoli et al. developed hAPRIL.01A, an APRIL antagonistic mAb. Testing in models of B-cell malignancies is currently ongoing.

CONCLUSION

This review has evaluated the connection between BAFF and MM. Paracrine BAFF signaling, primarily through the TACI receptor, is a vital factor in the pathogenesis of early-stage BM-dependent MM. BAFF-inhibitory drugs, developed for use in auto-immune diseases, have potential benefit for the treatment of MM. Multiple BAFF-inhibitory drugs are currently in phase I or II for clinical evaluation in MM.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We would like to thank Marcel Spaargaren and Jan Paul Medema for critically reading the manuscript.

REFERENCES

1 Ferlay J, Shin R, Bray F, Forman F, Mathers C, Parkin D. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2893–2917.
2 Parkin D, Bray F, Forman F, Pisani P. Global Cancer Statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.
3 Kumar S, Witzig T, Tsim M, Haug J, Wellink L, Fonseca R et al. Expression of VEGF and its receptors by myeloma cells. Leukemia 2003; 17: 2025–2031.
4 Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or suppressor? Nature 2003; 3: 756–767.
23 Schiemann B, Gommerman J, Vora K, Cachero T, Shulga-Morskaya S, Dobles M et al.
20 Day E, Cachero T, Qian F, Sun Y, Wen D, Pelletier M et al.
18 Bossen C, Schneider P. BAFF, APRIL and their receptors: Structure, function and mechanism.
17 Liu Y, Xu L, Opalka N, Kappler J, Shu H, Zhang G. Crystal structure of sTALL-1.
28 Xu S, Lam K. B-cell maturation protein, which binds the tumor necrosis factor receptor.
16 Moore P, Belvedere O, Orr A, Pieri K, LaFleur D, Feng P et al.
11 Navarra S, Guzmán R, Gallacher A, Hall S, Levy R, Jimenez R et al.
13 Mukhopadhyay A, Ni J, Zhai Y, Yu G, Aggarwal B. Identification and characterization of the tumor necrosis factor receptor.
15 Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer J, Holler N et al.
9 Karadag A, Oyajobi B, Apperley J, Russell R, Croucher P. Human myeloma cells provide survival signals for normal B cells.
6 Roccaro M, Sacco A, Maiso P, Kareem A, Azab A, Tai Y et al.
8 Tanaka Y, Abe M, Hiasha M. Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor.
5 Kusuhara A, Shiomi K, Tada K, Handa K, Mayumi T, Takagi Y et al.
357 Sassei S, Pucci L, Vicentini E, Vaino G, Bortoloni M, Dumini P et al.
12 Moore P, Belvedere O, Orr A, Pieri K, LaFleur D, Feng P et al.
36 Gorelik L, Gilbride K, Dobles M, Kalled S, Zandman D, Scott M. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J Exp Med 2003; 198: 937–945.
34 Scapini P, Bazzoni F, Cassatella M. Regulation of B-cell-activating factor antibody.
33 Litinskiy M, Nardelli B, Hilbert D, He B, Schaffer A, Casali P et al. Dcs induce CD40-independent immunoglobulin class switching through BlyS and APRIL. Nature Immunol 2002; 3: 822–829.
32 Castigli E, Wilson S, Ganibyan L, Rachid R, Bonilla F, Schneider L et al. TACI is mutant in common variable immunodeficiency and IgM deficiency. Nature Genet 2005; 37: 829–834.
31 Salzer U, Jennings S, Grimbacher B. To switch or not to switch – the opposing roles of TACI in terminal B cell differentiation. Eur J Immunol 2007; 37: 17–20.
29 O’Connor B, Ramam V, Erickson L, Cook W, Weaver L, Ahonen C et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004; 199: 91–97.
28 Seshasayee D, Valdez P, Yan M, Dixit V, Tumans D, Grewal I. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BlyS receptor. Immunity 2003; 18: 279–288.
27 Tarte K, Vos JD, Thykjaer T, Zhan F, Fiol G, Costes V et al. Expression of BAFF, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood 2004; 103: 689–694.
26 Moreaux J, Cremer F, Rene T, Raab M, Mahtouk K, Kaukel P et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005; 105: 1026–1030.
25 Sasaki Y, Casola S, Kutok J, Rajewsky K, Schmidt-Supprian M. TNF family member Bcl-2 can functionally substitute for the B cell survival but not for the differentiation of plasma cells. J Exp Med 2001; 193: 1697–1710.
24 Claudio J, Masih-Khan E, Tang H, Gonçalves J, Voralia M, Li Z et al. A molecular compendium of genes expressed in multiple myeloma. Mol Cell Biol 2011; 31: 509–518.
23 Litinskiy M, Nardelli B, Hilbert D, He B, Schaffer A, Casali P et al. Dcs induce CD40-independent immunoglobulin class switching through BlyS and APRIL. Nature Immunol 2002; 3: 822–829.
22 Castigli E, Wilson S, Ganibyan L, Rachid R, Bonilla F, Schneider L et al. TACI is mutant in common variable immunodeficiency and IgM deficiency. Nature Genet 2005; 37: 829–834.
21 Salzer U, Jennings S, Grimbacher B. To switch or not to switch – the opposing roles of TACI in terminal B cell differentiation. Eur J Immunol 2007; 37: 17–20.
20 Scapini P, Bazzoni F, Cassatella M. Regulation of B-cell-activating factor (BAFF)/Blys cytokine landscape in human neutrophils. Immunol Lett 2008; 116: 1–6.
19 Boulié M, Broughton C, Mackay F, Akira S, Marshall-Rothstein A, Rikfit I. Toll-like receptor 9-dependent and –independent dendritic cell activation by chromatim-myeloma G complexes. J Exp Med 2004; 199: 1631–1640.
18 Bossen C, Schneider P. BAFF, APRIL and their receptors: Structure, function and mechanism.
17 Liu Y, Xu L, Opalka N, Kappler J, Shu H, Zhang G. Crystal structure of sTALL-1.
16 Moore P, Belvedere O, Orr A, Pieri K, LaFleur D, Feng P et al. BlyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999; 285: 260–263.
15 Schneider P, Mackay F, Steiner Y, Hofmann K, Bodmer J, Holler N et al. A novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999; 189: 1747–1756.
14 Shu H, Hu W, Johnson H. TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J Leukoc Biol 1999; 65: 680–683.
13 Mukhopadhyay A, Ni J, Zhai Y, Yu G, Aggarwal B. Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-kB, and c-Jun NH2-terminal kinase. J Biol Chem 1999; 274: 15978–15981.
12 Moore P, Belvedere O, Orr A, Pieri K, LaFleur D, Feng P et al.
11 Navarra S, Guzmán R, Gallacher A, Hall S, Levy R, Jimenez R et al.
10 Moreaux J, Legouffe E, Jourdán E, Quittet P, Rème T, Lugagne C et al. BAF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2003; 103: 3148–3157.
9 Karadag A, Oyajobi B, Apperley J, Russell R, Croucher P et al. Human myeloma cells provide survival signals for normal B cells.
8 Tanaka Y, Abe M, Hiasha M. Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin. Clin Cancer Res 2007; 13: 816–823.
7 Karadag A, Oyajobi B, Apperley J, Russell R, Croucher P et al. Human myeloma cells promote the production of interleukin 6 by primary human osteoblasts. J Hematol 2005; 133: 310–316.
6 Roccaro M, Sacco A, Maiso P, Kareem A, Azab A, Tai Y et al.
5 Kusuhara A, Shiomi K, Tada K, Handa K, Mayumi T, Takagi Y et al.
4 Sassei S, Pucci L, Vicentini E, Vaino G, Bortoloni M, Dumini P et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004; 203: 1401–1407.
3 O’Connor B, Ramam V, Erickson L, Cook W, Weaver L, Ahonen C et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004; 203: 1401–1407.
2 Bellucci R, Wu C, Chiarietti S, Weller E, Davies F, Aiyer E et al. Complete response to donor lymphocyte infusion in multiple myeloma is associated with anti-tumor responses to highly expressed antigens. Blood 2004; 103: 656–663.
1 Nakamura N, Hase H, Sakurai D, Yoshida S, Abe M, Tsukada N et al. Expression of BAFF–R (BR3) in normal and neoplastic lymphoid tissues characterized with a new monoclonal antibody. Int Immunol 2000; 12: 509–516.

The role of B-cell activating factor in multiple myeloma
P.J. Hengeveld and M. Kersten

Blood Cancer Journal
Demchenko Y, Kuehl W. A critical role for the NFkB pathway in multiple myeloma. Oncotarget 2010; 1: 59–68.

Annunziata C, Davis E, Demchen Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

Keats J, Fonseca R, Chesi M, Schop R, Baker A, Chng W et al. Promiscuous mutations activate the noncanonical NF-kB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

Sun J, Li Y, Yu M, Sun Y, Feng J, Shen B. Analysis of an anti-B lymphocyte stimulator monoclonal antibody B7 and its binding activity to myeloma and lymphoma cell lines. Hybridoma 2006; 25: 238–242.

Klein B, Zhang X, Jourdan M, Content J, Houssiau F, Aarden L et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 1989; 73: 517–526.

Ju S, Wang Y, Ni H, Wang X, Jiang P, Kong X et al. Correlation of expression levels of BlyS and its receptors with multiple myeloma. Clin Biochem 2009; 42: 387–399.

Fragioudaki M, Boula A, Tsikaris G, Psakaris F, Spanoukadis M, Papadakis I et al. Multiple myeloma. Ann Hematol 2012; 91: 1413–1418.

Fragioudaki M, Tsikaris G, Pappa C, Aristeidou I, Tsiosutis C, Alegakis A et al. Serum BAFF levels are related to angiogenesis and prognosis in patients with multiple myeloma. Leuk Res 2012; 36: 1004–1008.

Bolkun L, Lemancewicz D, Jablonska E, Kulczynska A, Bolkun-Skornicka U, Kloczko J et al. BAFF and APRIL as TNF superfamily molecules and angiogenesis parallel progression of human multiple myeloma. Ann Hematol 2014; 93: 635–644.

Lemancewicz D, Bolkun L, Jablonska E, Kulczynska A, Bolkun-Skornicka U, Kloczko J et al. Evaluation of TNF superfamily molecules in multiple myeloma patients: Correlation with biological and clinical features. Leuk Res 2013; 37: 1089–1093.

Alexandrakis M, Roussou P, Pappa C, Messaritakis I, Xekalou A, Goulidaki N et al. Relationship between circulating BAFF serum levels with proliferating markers in patients with multiple myeloma. Biomed Res Int 2013; 2013: 1–6.

Wang P, Qian L, Yuan X, Hu C, Wang L, Huang Q et al. BlyS: a potential hallmark of multiple myeloma. Front Biosci 2013; 1: 324–331.

Breitkreutz I, Raab M, Vallet S, Hideshima T, Raji N, Mitiades C et al. Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in patients with multiple myeloma. BioMed Res Int 2013; 2013: 1–6.

Abe M, Kido S, Hiasa M, Nakano A, Oda A, Amou H et al. BAFF and APRIL as osteclast-derived survival factors for myeloma cells: a rationale for TACI-Fc treatment in patients with multiple myeloma. Leukemia 2006; 20: 1313–1315.

Yaccoby S, Pennisi A, Li X, Dillon S, Zhan F, Barlogie B et al. Atacicept (TACI-lg) inhibits growth of TACI^{high} primary myeloma cells in SCID-hu mice and in coculture with osteoclasts. Leukemia 2008; 22: 406–413.

Rossi J, Moreaux J, Hose D, Requien G, Rose M, Rouille V et al. Atacicept in relapsed/refractory multiple myeloma or active Waldenstrom’s macroglobulinemia: a phase I study. Br J Cancer 2009; 101: 1051–1058.

Sanchez E, Li M, Kitto A, Li J, Wang C, Kirk D et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br J Haematol 2012; 158: 727–738.

Ryan M, Hering M, Peckham D, McDonagh C, Brown L, Kim K et al. Antibody targeting of B-cell maturation antigen on malignant plasma cells. Mol Cancer Ther 2007; 6: 3009–3018.

Tao Y, Mayes P, Acharya C, Zhong M, Cea M, Cagnetta A et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 2014; 123: 3128–3138.

Carpenter R, Ebvuomwam M, Pittaluga S, Rose J, Raffeld M, Yang S et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 2013; 19: 2048–2060.

Petri M, Stoh W, Chatham W, McCune W, Chevrier M, Ryle J et al. Association of plasma B lymphocyte stimulator levels and disease activity in systemic lupus erythematosus. Arthritis Rheum 2008; 58: 2453–2459.

Manetta J, Bina H, Ryan P, Fox N, Witcher D, Kikly K. generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor. J Immunol Res 2014; 7: 121–131.

Raje N EF Jr, Richardson P, Schiller G, Hohl R, Cohen A et al. Phase 1 study of tabalumab, a human anti-BAFF antibody and bortezomib in patients with previously-treated multiple myeloma. ASH Annual Meeting and Exposition 2012. Abstract 447.

Castigli E, Scott S, Dedecoglu F, Bryce P, Jabara H, Bhan A et al. Impaired Iga class switching in APRIL-deficient mice. PNAS 2004; 101: 3903–3908.

Guadagnoli M, Kimberley F, Phan U, Cameron K, Vink P, Rodermond H et al. Development and characterization of APRIL antagonistic monoclonal antibodies for treatment of B-cell lymphomas. Blood 2011; 117: 6856–6865.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/