Growth, Thermal and Spectral Properties of Er$^{3+}$-Doped and Er$^{3+}$/Yb$^{3+}$-Codoped Li$_3$Ba$_2$La$_3$(WO$_4$)$_8$ Crystals

Bin Xiao1,2, Zhubin Lin1, Lizhen Zhang1, Yisheng Huang1, Guofu Wang1*

1 Key Laboratory of Optoelectronics Material Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, China, 2 Graduate School of Chinese Academy of Sciences, Beijing, China

Abstract

This paper reports the growth and spectral properties of Er$^{3+}$-doped and Er$^{3+}$/Yb$^{3+}$-codoped Li$_3$Ba$_2$La$_3$(WO$_4$)$_8$ crystals. The Er$^{3+}$: Li$_3$Ba$_2$La$_3$(WO$_4$)$_8$ crystal with dimensions of 56 mm x 28 mm x 9 mm and Er$^{3+}$/Yb$^{3+}$: Li$_3$Ba$_2$La$_3$(WO$_4$)$_8$ crystal with dimensions of 52 mm x 24 mm x 8 mm were obtained by the top-seeded solution growth (TSSG) method. Thermal expansion coefficients and thermal conductivity of both crystals were measured. The spectroscopic characterizations of both crystals were investigated. The spectroscopic analysis reveals that the Er$^{3+}$/Yb$^{3+}$: Li$_3$Ba$_2$La$_3$(WO$_4$)$_8$ crystal has much better optical properties than the Er$^{3+}$: Li$_3$Ba$_2$La$_3$(WO$_4$)$_8$ crystal, thus it may become a potential candidate for solid-state laser gain medium material.

Introduction

Er$^{3+}$ is a well-known active ion for the solid-state laser in near infrared and up-conversion applications [1–3]. The $^4I_{13/2} \rightarrow ^4I_{15/2}$ transition has attracted much attention because its eye-safe emission around 1.55 μm has potential use in optical communication, range finding and medical treatment [4,5,6]. The green output emission of Er$^{3+}$ ions has already been used in various fields, such as data storage and laser display [7,8]. Unfortunately, the optical absorption band of the excited energy level ($^4I_{11/2}$) is weak, which means Er$^{3+}$ ions cannot be effectively pumped. This problem is normally solved by adding a certain amount of Yb$^{3+}$ sensitizing ions, since Yb$^{3+}$ ions have a broad and high absorption band around 980 nm and the energy transfer from Yb$^{3+}$ to Er$^{3+}$ ions is efficient [9,10,11,12]. Laser oscillation has been observed in several Er$^{3+}$ and Yb$^{3+}$ codoped laser hosts, such as YAG, Y$_2$SiO$_5$ [13], YCa$_3$O\times(BO$_3$)$_2$ [4], GdCa$_3$O(BO$_3$)$_2$ [5], YVO$_4$ [14], YAl$_5$O$_{24}$ [15], and NaCe(WO$_4$)$_2$ [16]. Among them, the slope efficiencies of Er$^{3+}$/Yb$^{3+}$ codoped YCa$_3$O(BO$_3$)$_2$ and GdCa$_3$O(BO$_3$)$_2$ crystals are the highest, and exhibit a better thermal property than phosphate glass [4,5]. However, the full widths at half the maximum (FWHM) of absorption bands around 980 nm of the Er$^{3+}$/Yb$^{3+}$ codoped YCa$_3$O(BO$_3$)$_2$ (4 mm) and GdCa$_3$O(BO$_3$)$_2$ (3 mm) crystals are narrow [4,5,15,17,18]. The narrow absorption bands need crucially temperature controlling, because the emission wavelength of the pumping diode changes at 0.2–0.3 nm/K with the operating temperature of the laser device [19,20]. As a consequence, it is necessary to explore novel materials with large absorption bandwidths for solid-state laser application.

Li$_3$Ba$_2$La$_3$(WO$_4$)$_8$ (Ln = La–Lu, Y) belongs to the monoclinic system with space group C2/c, which was firstly discovered by our group [21]. Due to the existence of a statistical distribution of Ln and Li atoms, these crystals have a high structure disorder, which results in the absorption and emission lines broadening homogeneously when rare-earth ions are doped and occupy the positions of Ln$^{3+}$ ions [22], Li$_3$Ba$_2$La$_3$(WO$_4$)$_8$ (hereafter denoted as LBLW) is a member of this family. In this work, the thermal expansion coefficients and thermal conductivity of Er$^{3+}$: LBLW and Er$^{3+}$/Yb$^{3+}$: LBLW single crystals grown by TSSG method were measured. The room-temperature polarized absorption and fluorescence spectra as well as the up-conversion mechanism of both kinds of crystals were reported and analyzed.

Materials and Methods

1. Crystal Growth

The Er$^{3+}$: LBLW and Er$^{3+}$/Yb$^{3+}$: LBLW crystals were grown by the top-seeded solution growth (TSSG) method from a flux of Li$_2$WO$_4$. The crystal growth was carried out in a vertical tubular furnace. The schematic diagram of crystal growth apparatuses is same as that in Ref. [23]. The furnace temperature was controlled by an AL-708 controller with controlling accuracy of ±0.1 K. The raw materials of Er$^{3+}$: LBLW and Er$^{3+}$/Yb$^{3+}$: LBLW were synthesized by the solid-state reaction. The chemicals used were WO$_3$, Li$_2$CO$_3$, BaCO$_3$, La$_2$O$_3$, Er$_2$O$_3$ and Y$_2$O$_3$ with the purity of 99.99%. The solutions were composed of 25 mol% of solute (LBLW) and 75 mol% of solvent (Li$_2$WO$_4$). The crystal growth procedure is similar to that in Ref. [23]. When the growth ended, the crystals were drawn out of the solution and cooled down to room temperature at a cooled rate of 15 K/h. Fig. 1 shows the grown Er$^{3+}$: LBLW and Er$^{3+}$/Yb$^{3+}$: LBLW crystals with dimensions of 56 mm x 28 mm x 9 mm and 52 mm x 24 mm x 8 mm, respectively.
The concentrations of rare earth ions were determined to be 0.41 at.% Er\(^{3+}\) in Er\(^{3+}\): LBLW crystal and 0.48 at.% Er\(^{3+}\) and 3.18 at.% Yb\(^{3+}\) in Er\(^{3+}\)/Yb\(^{3+}\): LBLW crystal by the inductively coupled plasma atomic emission spectrometry (ICP-AES, Ultima2, Jobin-Yvon).

2. Thermal Properties

The thermal expansion of crystal is an important thermal factor for the crystal growth [24,25]. The thermal expansion coefficients were measured using a thermal expansion dilatometer (NETZSCH DIL 402 PC). The linear thermal expansion coefficient is defined as:

\[\alpha = \frac{1}{L_0} \frac{\Delta L}{\Delta T} \]

where \(L_0 \) is the initial length of the sample at room temperature, and \(\Delta L \) is the change in length when the temperature changes \(\Delta T \).

Since the LBLW crystal with monoclinic is of anisotropy, the thermal expansion coefficient \(\alpha_{ij} \) is a second rank tensor with four nonzero components in the orthogonal crystallo-physical axes (\(a, b, c^* \)) [26]. Thus, in order to obtain thermal expansion ellipsoid, the measurement should be carried out along at least four different directions. Therefore, four rectangular samples were cut from both the Er\(^{3+}\)-doped and Er\(^{3+}\)/Yb\(^{3+}\)-codoped LBLW crystals, of which three were along the crystallographic \(a, b \)- and \(c^* \)-axis and the fourth, namely \(c' \), was cut with the anti-clockwise angle (\(\phi \)) 45° with respect to the \(c \)-axis. During the measurement, the samples were heated at a heating rate of 5 K/min in the range of 300~1100 K in the air atmosphere.

The processes to determine the thermal expansion tensor in both crystals is similar, therefore here, for brevity, we mainly discuss the Er\(^{3+}\)-doped one. The measured thermal expansion ratios \(\Delta L/L_0 \) versus \(T \) are shown in Fig. 2 (a). It can be found that when the temperature is below 450 K, the value of \(\Delta L/L_0 \) rise nonlinearly with the temperature. This may be due to the error caused by the thermal dilatometer at temperature below 450 K.
By linear fitting of the curves above 450 K, the values of the thermal expansion coefficients along a, b, c^* and c' axes are derived as $\alpha_a = 11.3 \times 10^{-6}$ K$^{-1}$, $\alpha_b = 8.07 \times 10^{-6}$ K$^{-1}$, $\alpha_{c^*} = 8.82 \times 10^{-6}$ K$^{-1}$ and $\alpha_{c'} = 9.81 \times 10^{-6}$ K$^{-1}$, respectively. The values of the diagonal elements in the crystallo-physical axes are $\alpha_{11} = \alpha_a$, $\alpha_{22} = \alpha_b$ and $\alpha_{33} = \alpha_{c^*}$, $\alpha_{13} = \alpha_{c'}$ can be deduced from the equation [26],

$$\alpha_{13} = \frac{\alpha_{c'} - (\alpha_{11} - \alpha_{13}) \times \sin 2\phi/2}{\cos 2\phi} = 0.25 \times 10^{-6} \text{K}^{-1}$$ (2)

Thus, the thermal expansion tensor for the Er$^{3+}$-doped LBLW crystal in the crystallo-physical axes can be written as

$$\alpha_{ij} = \begin{pmatrix} \alpha_{11} & 0 & 0 \\ 0 & \alpha_{22} & 0 \\ 0 & 0 & \alpha_{33} \end{pmatrix} = \begin{pmatrix} 11.30 & 0 & 0.25 \\ 0 & 8.07 & 0 \\ 0.25 & 0 & 8.82 \end{pmatrix} \times 10^{-6} \text{K}^{-1}$$ (3)

The next step is to find the values of the principal thermal expansion. For a monoclinic crystal, one of the principal axes (X_{III}) of the thermal expansion ellipsoid coincides with the crystallographic b-axis. The other two principle axes (X_1, X_{III}) which can be calculated from the secular equation $\det(\alpha_{ij} - \delta_{ij}) = 0$ [29] are in the (0 1 0) plane. For Er$^{3+}$-doped LBLW crystal, the eigenvalues are $\alpha_{11} = 11.33 \text{K}^{-1}$ and $\alpha_{33} = 8.80 \text{K}^{-1}$, and the linear thermal expansion tensor in the principal axes is

$$\begin{pmatrix} \alpha_{11} & 0 & 0 \\ 0 & \alpha_{22} & 0 \\ 0 & 0 & \alpha_{33} \end{pmatrix} = \begin{pmatrix} 11.33 & 0 & 0 \\ 0 & 8.07 & 0 \\ 0 & 0 & 8.80 \end{pmatrix} \times 10^{-6} \text{K}^{-1}$$ (4)

the angle ρ between the crystallo-physical c^*-axis and principal X_{III} axis can be evaluated by

$$\tan 2\rho = \frac{2\alpha_{33} - 2\alpha_{11}}{2\alpha_{11}} = -5.70^\circ$$ (5)

the minus value of ρ denotes the clockwise angle from c^*-axis to the XIII axis (see Fig. 2 (b)).

The values of the linear thermal expansion coefficients along the optical indicatrix axes are more important in practice because the laser elements are normally cut along these axes. The orientation

| Table 1. Comparison of linear thermal expansion values of Er$^{3+}$: LBLW and Er$^{3+}$/Yb$^{3+}$: LBLW with other crystals (in units 10^{-6} K$^{-1}$). |
|---|---------------|---------------|---------------|---------------|
| Crystallo-physical axes | Principal axes | Optical indicatrix axes | Ref |
| α_a | α_b | α_{c^*} | α_1 | α_{III} | α_{III} | α_5 | α_6 | α_7 | α_8 | α_{III} |
| Er$^{3+}$: LBLW | 11.30 | 8.07 | 8.82 | 11.33 | 8.07 | 8.79 | 11.17 | 8.07 | 8.94 | This work |
| Er$^{3+}$/Yb$^{3+}$: LBLW | 10.25 | 8.01 | 9.15 | 11.32 | 8.01 | 9.08 | 11.18 | 8.01 | 9.22 | This work |
| K$^{3+}$ (WO$_4$)$_2$ | 13.6 | 2.8 | 20.5 | 10.6 | 2.8 | 23.4 | 14.56 | 2.8 | 19.54 | [31] |
| KL$^{3+}$ (WO$_4$)$_2$ | 10.6 | 3.35 | 15.1 | 8.89 | 3.35 | 16.72 | 11.19 | 3.35 | 14.55 | [32] |
| Er$^{3+}$: LiB_{3}La$_{3}$(MoO$_4$)$_2$ | 16.9 | 18.5 | -19.6 | | | | | | | |

doi:10.1371/journal.pone.0040631.t001
of the optical indicatrix axes \((X, Y, Z)\) with respect to the
crystallographic axes \((a, b, c)\) is from that of Ref [30]: \((a, X) = 19^\circ\) and \((c, Z) = 20^\circ\) (see Fig. 2 (b)). Using the detailed procedure
described in Ref. [26], the ellipsoid in the optical indicatrix axis
can be determined as

\[
\begin{pmatrix}
11.17 & 0 & -0.61 \\
0 & 8.07 & 0 \\
-0.61 & 0 & 8.95 \\
\end{pmatrix} \times 10^{-6} \text{K}^{-1}
\]

The linear thermal expansion coefficient for both \(\text{Er}^{3+}\)-doped and \(\text{Er}^{3+}/\text{Yb}^{3+}\)-doped crystals along the directions of
crystallo-physical axes \((a, b, c)\), principal axes \((X_I, X_{II}, X_{III})\) and
optical indicatrix axes \((X, Y, Z)\) are included in Table 1. The values
of \(x_{a/a} \) and \(x_{c/c} \) are 0.71 and 0.78, respectively. The thermal
expansion exhibits a larger anisotropy than \(\text{Li}_3\text{Ba}_2\text{La}_3(\text{MoO}_4)_8\) crystal [33], which means the LBLW crystal is easier to crack
during the cooling process. Therefore, a slow annealing rate
should be applied in the crystal growth procedure.

The thermal conductivity coefficient \((\kappa)\) of both \(\text{Er}^{3+}\)-doped and
\(\text{Er}^{3+}/\text{Yb}^{3+}\)-doped crystals were measured by the laser-flash
method [Model NETZSCH LFA 457, Germany] in the temper-
range 350–700 K. Four samples along \(a, b, c\) and \(c^*\) crystallographic directions for each crystal were prepared for
thermal conductivity measurements. The dimension of the
samples was about 6 mm \(x\) 6 mm \(x\) 2 mm. Fig. 3 shows the evolution of \(\kappa\) with temperature of both kinds of crystals. The average values of thermal conductivity at 400 K are 0.95 and
0.94 Wm \(^{-1}\)K \(^{-1}\) for \(\text{Er}^{3+}\)-doped and \(\text{Er}^{3+}/\text{Yb}^{3+}\)-co-doped LBLW,
respectively. Compared with other typical tungstate crystals, such
as \(\text{KGeWO}_4\) \((=3.3 \text{ Wm}^{-1}\text{K}^{-1})\) [29], \(\text{KYWO}_4\) \((=2.7 \text{ Wm}^{-1}\text{K}^{-1})\) [34] and \(\text{KLa}_2\text{WO}_4\) \((=3.3 \text{ Wm}^{-1}\text{K}^{-1})\) [35],
the thermal conductivity of the LBLW crystal is very low. The low
thermal conductivity may be related to the disordered structure of
LBLW crystal which can increase the probability of phonon-phonon scattering. In fact, \(\text{NdGe}_2\text{WO}_4\) with disordered structure also has very low thermal conductivity \((=1.2 \text{ Wm}^{-1}\text{K}^{-1})\) [29].

3. Spectral Properties

Two cubic samples with dimensions of
7.4 mm \(x\) 3.8 mm \(x\) 5.8 mm and 7.2 mm \(x\) 2.4 mm \(x\) 4.7 mm were

cut from the \(\text{Er}^{3+}\)-doped and \(\text{Er}^{3+}/\text{Yb}^{3+}\)-codoped LBLW,
respectively. Each face of samples was perpendicular to one of
the optical indicatrix axes. All the surfaces of these cuboids were
polished for spectral experiments. The polarized absorption
spectra from 300 nm to 1700 nm were measured using a Perkin-Elmer UV-VIS-NIR spectrometer (Lambda 900). The polarized fluorescence spectra were recorded by a spectropho-
tometer (FLS920, Edinburgh) equipped with a xenon lamp as the
excitation source. Two photomultiplier tubes (PMT) (Hamamatsu
R955 and R5509) were used as the detectors in the VIS and NIR
regions, respectively. Furthermore, the up-conversion spectroscop-
ic experiments were carried out by a monochromator (Triax550,
Jobin-Yvon) excited at 976 nm with a diode laser, and the power range of the diode emission was from 40 to 1400 mW. The signals were detected with a PMT (R943-02, Hamamasu). All measurements were performed at room temperature.

The absorption spectra of the Er$^{3+}$: LBLW and Er$^{3+}$/Yb$^{3+}$: LBLW crystals at room temperature are shown in Fig. 4. These sharp absorption lines are attributed to the Er$^{3+}$ ions and the $^2F_{5/2} \rightarrow ^2F_{7/2}$ transition of Yb$^{3+}$ ions. In comparison with Er$^{3+}$: LBLW crystal, such broad and strong absorption band around 900–1050 nm was mainly attributed to the $^4I_{13/2} \rightarrow ^4I_{15/2}$ transition of Er$^{3+}$ ions and the $^2F_{7/2} \rightarrow ^2F_{5/2}$ transition of Yb$^{3+}$ ions. The absorption coefficients for Er$^{3+}$/Yb$^{3+}$: LBLW crystal are 1.76 cm$^{-1}$ at 980 nm, 2.54 cm$^{-1}$ at 974 nm and 1.80 cm$^{-1}$ at 978 nm for $|X|$, $|E|$, $|J|$ and $|E|$, $|Z|$ respectively. They are roughly ten times as large as those of the Er$^{3+}$: LBLW crystal (0.15 cm$^{-1}$, 0.14 cm$^{-1}$ and 0.22 cm$^{-1}$ for $|X|$, $|E|$, $|J|$ and $|E|$, $|Z|$ respectively). Therefore, the crystal co-doped with Yb$^{3+}$ ions can significantly increase the absorption of the pump energy if pumped at around 900 nm. It should be also noted that the FWHMs of Er$^{3+}$: LBLW crystal around 980 nm are 35 nm, 38 nm and 54 nm for $|X|$, $|E|$, $|J|$ and $|E|$, $|Z|$, respectively, and these values are larger than those of Er$^{3+}$/Yb$^{3+}$: YCa$_4$O(BO$_3$)$_3$ and Er$^{3+}$/Yb$^{3+}$: GdCa$_4$O(BO$_3$)$_3$ crystals [4,5]. The broad absorption bands which can relax the requirement of accurate temperature control of diode laser make Er$^{3+}$/Yb$^{3+}$: LBLW crystal suitable for diode laser pumping.

The Judd-Ofelt theory [36,37] has been widely used to analyze the spectroscopic properties of the rare earth ions except Yb$^{3+}$ ion in crystals. The oscillator strength parameters Q_t ($t = 2, 4, 6$) can be fitted from the room-temperature absorption spectra, then the spontaneous emission probabilities, radiative lifetime and fluorescence branching ratios can be obtained. The detailed calculation procedure is similar to that reported in Ref [38]. The reduced matrix elements values of unit tensor operators used in the calculation could be found in Ref [39,40]. Except for the two high

| Table 2. Polarized oscillator strength parameters Ω_t, measured and calculated line strengths for polarized spectra of Er$^{3+}$: LBLW crystal at room temperature. |

J-Manifold	Ω_t	S_{mod}	S_{calc}
$^4I_{13/2}$	1525	1.172	1.21
$^4I_{11/2}$	984	6.32	6.07
$^4I_{9/2}$	801	2.817	2.98
$^4I_{7/2}$	656	1.47	1.14
$^4S_{5/2}$	545	1.48	1.13
$^4F_{7/2}$	489	5.864	5.68
$^4F_{5/2}$	450	2.109	1.79
$^4I_{9/2}$	407	1.873	1.47

RMSAS(10^{-2} cm$^{-2}$)4

| $\Omega^1:J^1 (10^{-2} \text{cm}^2)$ | 14.31, 1.72, 0.51 |
| $\Omega^2:J^2 (10^{-2} \text{cm}^2)$ | 11.94, 1.60, 0.78 |

$^4I_{13/2}$ at 980 nm, 2.54 cm$^{-1}$ at 974 nm and 1.80 cm$^{-1}$ at 978 nm for $|X|$, $|E|$, $|J|$ and $|E|$, $|Z|$, respectively. They are roughly ten times as large as those of the Er$^{3+}$: LBLW crystal (0.15 cm$^{-1}$, 0.14 cm$^{-1}$ and 0.22 cm$^{-1}$ for $|X|$, $|E|$, $|J|$ and $|E|$, $|Z|$, respectively). Therefore, the crystal co-doped with Yb$^{3+}$ ions can significantly increase the absorption of the pump energy if pumped at around 900 nm. It should be also noted that the FWHMs of Er$^{3+}$/Yb$^{3+}$: LBLW crystal around 980 nm are 35 nm, 38 nm and 54 nm for $|X|$, $|E|$, $|J|$ and $|E|$, $|Z|$, respectively, and these values are larger than those of Er$^{3+}$/Yb$^{3+}$: YCa$_4$O(BO$_3$)$_3$ and Er$^{3+}$/Yb$^{3+}$: GdCa$_4$O(BO$_3$)$_3$ crystals [4,5]. The broad absorption bands which can relax the requirement of accurate temperature control of diode laser make Er$^{3+}$/Yb$^{3+}$: LBLW crystal suitable for diode laser pumping.

The Judd-Ofelt theory [36,37] has been widely used to analyze the spectroscopic properties of the rare earth ions except Yb$^{3+}$ ion in crystals. The oscillator strength parameters Q_t ($t = 2, 4, 6$) can be fitted from the room-temperature absorption spectra, then the spontaneous emission probabilities, radiative lifetime and fluorescence branching ratios can be obtained. The detailed calculation procedure is similar to that reported in Ref [38]. The reduced matrix elements values of unit tensor operators used in the calculation could be found in Ref [39,40]. Except for the two high

| Table 3. Spontaneous emission probabilities $A_{J\rightarrow J'}^{em}$, fluorescence branching ratios β and radiative lifetimes τ_r for Er$^{3+}$: LBLW crystal. |

$J \rightarrow J'$	τ_r (ms)	$A_{J\rightarrow J'}^{em}$ (S$^{-1}$)	β (%)	τ_r (ms)					
$^4I_{13/2}$ \rightarrow $^4I_{15/2}$	1543	77.53	136.04	100.00	245.41	100.00	141.58	100.00	3.44
$^4I_{11/2}$ \rightarrow $^4I_{15/2}$	2746	17.31	30.70	13.66	46.70	14.06	29.49	14.19	14.19
$^4I_{9/2}$ \rightarrow $^4I_{15/2}$	988	303.54	86.34	391.43	85.94	283.13	85.81		
$^4S_{5/2}$ \rightarrow $^4F_{9/2}$	3125	0.66	0.04	1.56	0.04	0.79	0.04	0.39	
$^4S_{5/2}$ \rightarrow $^4F_{7/2}$	1666	82.29	5.28	144.34	3.93	80.54	4.31		
$^4S_{5/2}$ \rightarrow $^4F_{5/2}$	1215	36.16	2.32	79.35	2.16	41.27	2.21		
$^4S_{5/2}$ \rightarrow $^4F_{3/2}$	842	428.09	27.49	1024.96	27.94	520.20	27.82		
$^4S_{5/2}$ \rightarrow $^4F_{1/2}$	545	1010.05	64.86	2418.35	65.92	1227.38	65.63		

doi:10.1371/journal.pone.0040631.t003
absorption bands which centered at 524 nm and 379 nm, namely \(^4I_{13/2} \rightarrow ^4I_{11/2} \) and \(^4I_{13/2} \rightarrow ^4G_{11/2} \), respectively (see Fig. 4), all the other ones were chose to fit the oscillator strength parameters for \(E||X, E||Y \) and \(E||Z \) polarizations. Because those two transitions belong to hypersensitive transition [41,42], they are sensitive to the variation of local structure around Er\(^{3+}\) ions. Here, only the spectrum of the Er\(^{3+}\): LBLW crystal was calculated for brevity. Table 2 lists the values of the measured \((\delta^{mea}) \) and calculated \((\delta^{calc}) \) line strengths, the intensity parameters \(\Omega^{±1,±2} \) for each polarization as well as the effective intensity parameters which are defined as \(\Omega^q = \Omega^{±1,±2}/3 \). After obtaining the oscillator strength parameters \(\Omega^{±1,±2} \) for each polarization, the spontaneous emission probabilities of the electric- and magnetic-dipole transitions (named \(\mathcal{A}_J^{eff} \) and \(\mathcal{A}_J^{md} \) respectively), fluorescence branching ratio \(\beta \) and radiative lifetime \(\tau \), of some typical transitions could be gained. The values of these spectroscopic parameters are all outlined in Table 3.

The Er\(^{3+}\): LBLW crystal could not be efficiently excited by Xenon lamp because of the weak absorption at 976 nm. Moreover, considering the small phonon energy of the (WO\(_4\))\(^2−\) groups (roughly 900 cm\(^{-1}\)) [43], the multiphonon relaxation from the \(^4I_{11/2} \) to \(^4I_{13/2} \) multiplets of Er\(^{3+}\) ions was slow. Therefore, the emission band surrounding 1550 nm \(^4I_{13/2} \rightarrow ^4I_{15/2} \) for Er\(^{3+}\): LBLW crystal is too weak to be distinguished. Thus, the fluorescence spectra of the Er\(^{3+}/\)Yb\(^{3+}\): LBLW crystal were only recorded (see Fig. 5). The stimulated-emission cross-sections were calculated by the Fichtbauer-Ladenburg (F-L) formula [44,45],

\[
\sigma_{qF-L}^q = \frac{A^q \lambda^2 \mathcal{F}(\lambda)}{8\pi c \nu \lambda^2}
\]

where \(\mathcal{A}^q \) is the spontaneous emission probability for \(q \) polarization, \(\mathcal{F}(\lambda) \) is the fluorescence intensity as a function of wavelength. The peak emission cross-sections are about \(0.81 \times 10^{-20} \) \(1.23 \times 10^{-20} \) and \(0.84 \times 10^{-20} \) \(20 \) \(20 \) cm\(^2\) for \(E||X, E||Y \) and \(E||Z \) polarizations, respectively, which are comparable to other co-doped crystals, such as \(1.89 \times 10^{-20} \) \(0.71 \times 10^{-20} \) \(0.95 \times 10^{-20} \) \(20 \) \(20 \) \(20 \) \(20 \) cm\(^2\) for Er\(^{3+}/\)Yb\(^{3+}\): KY(WO\(_4\))\(_2\) [46], Er\(^{3+}/\)Yb\(^{3+}\): LaPO\(_4\) [47] and \(20 \) \(20 \) \(20 \) \(20 \) cm\(^2\) for Ce\(^{3+}/\)Er\(^{3+}\): NaLa(MoO\(_4\))\(_2\) [48].

The Er\(^{3+}\) laser via the \(^4I_{13/2} \rightarrow ^4I_{15/2} \) transition operates in a quasi-three scheme, therefore the re-absorption losses should be considered. The useful laser wavelength could be evaluated by the so-called effective gain cross section [49],

\[
\sigma^q_{gain} = \beta \sigma^q_{em} - (1 - \beta) \sigma^q_{abs}
\]

here, \(\sigma^q_{em} \) is the emission cross-section, \(\sigma^q_{abs} \) is the absorption cross-section and \(\beta \) is the population inversion of Er\(^{3+}\) ions. Results of the wavelength dependences around 1550 nm for several \(\beta \) values (\(\beta = 0.4, 0.5, 0.6, 0.7 \)) are shown in Fig. 6. It can be noted that the wavelengths under the low population inversion, for all polarizations, are all located approximately 1590 nm. Additionally, a laser oscillating at shorter wavelength can also be realized by increasing the values of \(\beta \).
Fig. 7 shows the up-conversion fluorescence spectra for Er3+: LBLW and Er3+/Yb3+: LBLW crystals in the range from 500 to 700 nm excited at 976 nm radiation of diode laser. Note that the fluorescence intensity of Er3+/Yb3+ co-doped LBLW crystal is much larger than that of Er3+ doped LBLW. This means there existed fast and efficient Yb3+→Er3+ energy transfer in Er3+/Yb3+: LBLW crystal. Fig. 8 displays the up-conversion mechanisms and simplified energy levels of Er3+ and Yb3+ ions in Er3+/Yb3+: LBLW crystal. Two different mechanisms, namely Er3+ excited state absorption (ESA) and a two-step Yb-Er energy transfer (ET), may exist in the up-conversion process [5,20,50].

For the Er3+/Yb3+ crystal, the green emissions of 530 and 553 nm (2H\textsubscript{11/2}→4I\textsubscript{15/2} and 4S\textsubscript{3/2}→4I\textsubscript{15/2}, respectively) can be explained by the following steps: Firstly, the Er3+ ions were excited from ground state to the excited state 4I\textsubscript{11/2} by means of ground state absorption (GSA) and by ET process from 2F\textsubscript{5/2} level of Yb3+ to Er3+. The ET process is dominant because of the large absorption cross-section around 980 nm of Yb3+ ions. Secondly, some Er3+ ions at the 4I\textsubscript{11/2} level were promoted up to the higher 2F\textsubscript{7/2} level by ET process from 2F\textsubscript{5/2} level of Yb3+ or by ESA of Er3+ ions, then the ions at the 2F\textsubscript{7/2} level relaxed non-radiatively to the lower levels 2H\textsubscript{11/2} and 4S\textsubscript{3/2} owning to the small energy gap between them. When the Er3+ ions at the 2H\textsubscript{11/2} and 4S\textsubscript{3/2} levels transited to the ground state, they produced 530 and 553 nm green emissions, respectively. The green emissions of the Er3+: LBLW crystal also experienced the above processes except the lack of ET process. Because the lifetime of the 4S\textsubscript{3/2} level is much longer than that of the 2H\textsubscript{11/2} level [51], more ions would non-radiatively decay to the 4S\textsubscript{3/2} level. As a consequence, the intensity of 553 nm is stronger than 530 nm.

For the red emission of 661 nm (4F\textsubscript{9/2}→4I\textsubscript{15/2}), population on the 4F\textsubscript{9/2} might be accumulated by two ways: ESA and ET process. Both ways excited Er3+ ions from 4I\textsubscript{13/2} to 4F\textsubscript{9/2}. Besides, the ions at the 4S\textsubscript{3/2} level also relaxed rapidly to the 4F\textsubscript{9/2} level. The red emission intensity is also significantly weaker than that of Er3+/Yb3+ crystal because of lacking of ET process in the Er3+: LBLW crystal.

The dependence of integrated up-conversion fluorescence intensity on the excitation power at 976 nm for Er3+/Yb3+ crystal is shown in Fig. 9. According to the relation \(I_{up} \propto P^n\) [52], where \(n\) is the number of photon involved in the up-conversion process and \(I\) is the excitation power. The slopes (for green and red light are all near 2) indicate that two photon processed populated the 3H\textsubscript{11/2}, 4S\textsubscript{3/2} and 4F\textsubscript{9/2} levels. However, due to the competition between the linear decay and the depletion of the intermediate excited states, the values of \(n\) may be lower than 2 (see Fig. 9) [53].
Results and Discussion

The Er$^{3+}$: LBLW and Er$^{3+}$/Yb$^{3+}$: LBLW have been successfully grown by the TSSG method from the flux of Li$_2$WO$_4$. The thermal expansion coefficients in the optical indicatrix axes were $\alpha_x = 11.17 \times 10^{-6}$ K$^{-1}$, $\alpha_y = 8.07 \times 10^{-6}$ K$^{-1}$ and $\alpha_z = 8.94 \times 10^{-6}$ K$^{-1}$ for the Er$^{3+}$: LBLW crystal, and $\alpha_x = 11.18 \times 10^{-6}$ K$^{-1}$, $\alpha_y = 8.01 \times 10^{-6}$ K$^{-1}$ and $\alpha_z = 9.22 \times 10^{-6}$ K$^{-1}$ for the Er$^{3+}$/Yb$^{3+}$: LBLW crystal. The anisotropy of thermal expansion indicates that the LBLW crystals are easier to crack; thus, slow cooling rate should be adopted after the crystals were withdrawn from the melt. The Er$^{3+}$: LBLW crystal has broad absorption bands near 980 nm (35 nm, 38 nm and 34 nm for E//[X, E//[Y and E//[Z, respectively), which make it very suitable for diode pumping. The effective J-O intensity parameters of the Er$^{3+}$: LBLW were calculated to be $\Omega_{eff}^2 = 1.94 \times 10^{-20}$ cm2, $\Omega_{eff}^2 = 1.60 \times 10^{-20}$ cm2, $\Omega_{eff}^2 = 0.78 \times 10^{-20}$ cm2, respectively. Considering the re-absorption losses of the quasi-three scheme, the effective emission cross-section around 1550 nm was also calculated. Under the 976 nm excitation, the up-conversion emissions of three visible optical bands, corresponding to the 41H$_{11/2}$--41I$_{15/2}$, 41S$_{3/2}$--41I$_{15/2}$ and 41F$_{5/2}$--41I$_{15/2}$, respectively, for Er$^{3+}$/Yb$^{3+}$: LBLW crystal were observed. The investigation of up-conversion spectra denotes that the energy transfer between Yb$^{3+}$ and Er$^{3+}$ is efficient. The spectroscopic analysis reveals that the Er$^{3+}$/Yb$^{3+}$: LBLW crystal has much better optical properties than the Er$^{3+}$: LBLW crystal. Therefore, the Er$^{3+}$/Yb$^{3+}$: LBLW crystal may become a potential candidate for solid-state laser gain medium material.

Author Contributions

Conceived and designed the experiments: BX GW. Performed the experiments: BX ZL. Analyzed the data: BX GW. Contributed reagents/materials/analysis tools: YH LZ. Wrote the paper: BX GW.

References

1. Gallis S, Huang M, Kaloyeros AE (2007) Efficient energy transfer from silicon oxidycarbide matrix to Er ions via indirect excitation mechanisms. Appl Phys Lett 90: 161914–161914.
2. Zhao D, Wang GF (2010) Growth and spectroscopic characterization of Er$^{3+}$-Sr$_2$YBO$_3$: crystal. J Lumin 130: 424–428.
3. Chen G, Ohlbachansky TY, Kachynska A, Agren H, Prasad PN (2011) Intense visible and near-infrared upconversion photoluminescence in cubic Li$_2$YF$_4$:Er$^{3+}$ nanocrystals under excitation at 1490 nm. ACS Nano 5: 4981–4986.
4. Burns PA, Daver JM, Dekker P, Piper JA, Jiang H, et al. (2004) Optimization of Er, Yb:YCOB for CW laser operation. IEEE J Quantum Electron 40: 1575–1580.
5. Denker B, Galagan B, Ileva L, Oisko V, Sverchkov S, et al. (2004) Luminescence and laser properties of Yb-Er:GeCa$_2$O$_5$: crystal; a new crystal for eye-safe 1.5-1.5 μm lasers. Appl Phys B-Lasers Opt 79: 577–581.
6. Tolkich NA, Kurlichk SV, Kisel VE, Kuleshov NV, Mal'nev VV, et al. (2007) Efficient W continuous-wave diode-pumped Er:Yb:YAG laser. Opt Lett 32: 3233–3235.
7. Silversmith A (1994) Upconversion excitation of green fluorescence in Er: YAG. J Lumin 60: 636–639.
8. Scheps R (1996) Upconversion laser processes. Prog Quantum Electron 20: 271–338.
9. Han XM, Wang GF, Tsutou T (2002) Growth and spectral properties of Er$^{3+}$/Yb$^{3+}$-codoped KYWO_4: crystal. J Cryst Growth 242: 412–420.
10. Zhao D, Hua ZS, Lin ZB, Wang GF (2005) Growth and spectral properties of Er$^{3+}$/Yb$^{3+}$/Cr$^{3+}$-codoped Sr$_2$YBO$_3$: crystal. J Cryst Growth 270: 401–405.
11. Wei B, Zhang LZ, Lin ZB, Wang GF (2007) Optical transition probability of Er$^{3+}$ ions in Er$^{3+}$/Yb$^{3+}$-codoped Ca$_3$La$_2$Bu$_2$O$_{12}$ (La = Y, Gd, La) crystals. Mater Res Innov 11: 154–157.
12. Georgopoulou AN, Barbour C, Benalloul P, Babakhnyar IB, Tajev KO (2009) luminescence of Ba$_2$SiO$_4$: crystal doped with Er$^{3+}$ and Yb$^{3+}$. Inorg Mater 45: 1032–1035.
13. Schwizer T, Jensen T, Heumann E, Huber G (1995) Spectroscopic properties of diode pumped 1.6 μm laser performance in Yb:codoped Er:Y$_2$O$_3$: and Er:Y$_2$O$_3$:Opto. Opt Commun 118: 557–561.
14. Sokolka I, Heumann E, Kuck S, Lukasiewicz T (2000) Laser oscillation of Er$^{3+}$:YVO$_4$: and Er$^{3+}$:Y$_2$O$_3$:YVO$_4$: crystals in the spectral range around 1.6 μm. Appl Phys B-Lasers Opt 71: 489–496.
15. Chen Y, Liu Y, Gong X, Liao Z, Huang Y (2007) 1.1 W diode-pumped Er:Yb laser at 1520 nm. Opt Lett 32: 2759–2761.
16. Huang JH, Chen YJ, Gong XH, Lin YF, Luo ZD, et al. (2012) Spectral properties and 1.5–1.6 μm laser operation of Er:Yb:NaGd$_2$O$_4$: crystal. Laser Phys 22: 146–151.
17. Jiang H, Wang J, Zhang H, Hu X, Teng B, et al. (2002) Spectroscopic properties of Yb-doped GeCa$_2$O$_5$: crystal. Chem Phys Lett 357: 15–19.
18. Wang P, Dawes JM, Burns P, Piper JA, Zhang JH, et al. (2002) Diode-pumped cw tunable Er$^{3+}$:Yb$^{3+}$:YCOB laser at 1.5–1.6 μm in Yb:Er:Y$_2$O$_3$: crystal. Laser Phys 12: 383–387.
19. Mateos X, Pujo M, Guell F, Solé R, Gavaldà J, et al. (2002) Sensitization of Er$^{3+}$ emission at 1.5 μm by Yb$^{3+}$ in KYbO$_4$: single crystals. Phys Rev B 66: 214104.
20. Mateos X, Solé R, Gavaldà J, Aguilo M, Diaz F, et al. (2005) Ultraviolet and visible emissions of Er$^{3+}$ in KYbO$_4$: single crystals doped with Yb$^{3+}$ ions. J Lumin 115: 131–137.
21. Li H, Zhang LZ, Wang GF (2009) Growth, structure and spectroscopic characterization of a new laser crystals Nd$^{3+}$Li$_2$Ba$_2$Gd$_2$O$_{12}$: J Alloys Compd 476: 484–488.
42. Nieboer E, Jørgensen C, Peacock R, Reisfeld R, Peacock R (1975) The intensities of lanthanide $f \leftrightarrow f$ transitions. Springer Berlin/Heidelberg. 83–122.

43. Macalik L, Hanuza J, Kaminskii AA (2000) Polarized Raman spectra of the oriented NaY(WO$_4$)$_2$ and KY(WO$_4$)$_2$ single crystals. J Mol Struct 555: 289–297.

44. Auli B, Jensen H (1982) Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J Quantum Electron 5: 925–930.

45. Sato Y, Taira T (2005) Comparative study on the spectroscopic properties of Nd:GdVO$_4$ and Nd:YVO$_4$ with hybrid process. IEEE J Quantum Electron 11: 613–620.

46. Mateos X, Solé R, Gavaldà J, Aguiló M, Massons J, et al. (2006) Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO$_4$)$_2$: codoped with Er$^{3+}$ and Yb$^{3+}$. Opt Mater 28: 423–431.

47. Lüsecke R, Ryba-Romanowski W, Speghini A, Bertinelli M (2009) Luminescence spectroscopy of Er$^{3+}$-doped and Er$^{2+}$, Yb$^{3+}$-codoped LaPO$_4$ single crystals. J Lumines 129: 521–525.

48. Sani E, Toncelli A, Torelli M, Lis DA, Zharikov EV, et al. (2005) Effect of cerium codoping in Er$^{3+}$, Ce$^{3+}$:NaLa(MoO$_4$)$_2$ crystals. J Appl Phys 97: 123531–123536.

49. Ohta K, Saito H, Obara M (1993) Spectroscopic characterization of Tm$^{3+}$: YVO$_4$ crystal as an efficient diode pumped laser source near 2000 nm. J Appl Phys 73: 3149–3152.

50. Nii H, Ozaki K, Herren M, Morita M (1998) Up-conversion fluorescence of Er$^{3+}$ and Yb$^{3+}$-doped TeO$_2$-based oxide glass and single crystals. J Lumines 76–77: 116–119.

51. Song F, Han L, Tan H, Su J, Yang J, et al. (2006) Spectral performance and intensive green upconversion luminescence in Er$^{3+}$/Yb$^{3+}$-codoped NaY(WO$_4$)$_2$ crystal. Opt Commun 259: 179–186.

52. Jaque D, Enguita O, Luo ZD, Garcia Solé J, Caldiño GU (2004) Up-conversion luminescence in the NdAl$_5$(BO$_4$)$_4$ (NAB) microchip laser crystal. Opt Mater 25: 9–15.

53. Polmara M, Gamelin DR, Lüthi SR, Güdel HU (2000) Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B 61: 3337–3346.