Rainbow matchings in properly-colored hypergraphs

Hao Huang ∗ Tong Li † Guanghui Wang ‡

Abstract

A hypergraph H is properly colored if for every vertex $v \in V(H)$, all the edges incident to v have distinct colors. In this paper, we show that if H_1, \ldots, H_s are properly-colored k-uniform hypergraphs on n vertices, where $n \geq 3k^2s$, and $e(H_i) > \left(\binom{n}{k} - \binom{n-s+1}{k}\right)$, then there exists a rainbow matching of size s, containing one edge from each H_i. This generalizes some previous results on the Erdős Matching Conjecture.

Keywords: rainbow matching, properly-colored hypergraphs

1 Introduction

A k-uniform hypergraph is a pair $H = (V, E)$, where $V = V(H)$ is a finite set of vertices, and $E = E(H) \subseteq \binom{V}{k}$ is a family of k-element subsets of V called edges. A matching in a hypergraph H is a collection of vertex-disjoint edges. The size of a matching is the number of edges in the matching. The matching number $\nu(H)$ is the maximum size of a matching in H. In 1965, Erdős [4] asked to determine the maximum number of edges that could appear in a k-uniform n-vertex hypergraph H with matching number $\nu(H) < s$, for given integer $s \leq \frac{n}{k}$. He conjectured that the problem has two extremal constructions. The first one is a hyper-clique consisting of all the k-subsets on $ks - 1$ vertices. The other one is a k-uniform hypergraph on n vertices containing all the edges intersecting a fixed set of $s - 1$ vertices. Erdős posed the following conjecture:

Conjecture 1.1 ([4]) Every k-uniform hypergraph H on n vertices with matching number $\nu(H) < s \leq \frac{n}{k}$ satisfies $e(H) \leq \max\{\binom{ks-1}{k}, \binom{n}{k} - \binom{n-s+1}{k}\}$.

The case $s = 1$ is the classic Erdős–Ko–Rado Theorem [9]. The graph case ($k = 2$) was verified in [5] by Erdős and Gallai. The problem seems to be significantly harder for hypergraphs. When $k = 3$, Frankl, Rödl and Ruciński [11] proved the conjecture for $s \leq \frac{n}{4}$. Luczak and Mieczkowska [14]

∗Department of Math and CS, Emory University, Atlanta, GA 30322, USA. Email: hao.huang@emory.edu. Research supported in part by the Collaboration Grants from the Simons Foundation.
†Department of Mathematics, Shandong University, Jinan, China.
‡Department of Mathematics, Shandong University, Jinan, China. Research supported by NNSF (No. 11471193, 11631014).
proved it for sufficiently large \(s \). The \(k = 3 \) case was finally settled by Frankl [8]. For general \(k \), a short calculation shows that when \(s \leq \frac{n}{k+1} \), we always have \((\binom{n}{k}) - (\frac{n-s+1}{k}) > (\frac{ks-1}{k})\). For this range, the second construction is believed to be optimal. Erdős [4] proved the conjecture for \(n \geq n_0(k, s) \). Bollobás, Daykin and Erdős [2] proved the conjecture for \(n > \frac{3k^3}{s} \), which was further improved to \(n \geq \frac{3k^2 s}{\log k} \) by Frankl, Luczak and Mieczkowska [10]. On the other hand, in an unpublished note, Füredi and Frankl proved the conjecture for \(n \geq \frac{5}{3}sk - \frac{2}{3}s \). Currently the best range is \(n \geq \frac{3}{2}sk - 2s \) by Frankl and Kupavskii [9].

In this paper, we consider a generalization of Erdős Matching Conjecture to properly-colored hypergraphs. A hypergraph \(H \) is properly colored if for every vertex \(v \in V(H) \), all edges incident to \(v \) are colored differently. A rainbow matching in a properly-colored hypergraph \(H \) is a collection of vertex disjoint edges with pairwise different colors. The size of a rainbow matching is the number of edges in the matching. The rainbow matching number, denoted by \(\nu_r(H) \), is the maximum size of a rainbow matching in \(H \). Motivated by the Erdős Matching Conjecture, we consider the following problem: how many edges can appear in a properly-colored \(k \)-uniform hypergraph \(H \) such that its rainbow matching number satisfies \(\nu_r(H) < s \leq \frac{n}{k} \)? In fact, it is called Rainbow Turán problem and is well studied in [13]. Note that here if we let \(H \) be rainbow, that is, every edge of \(H \) receives distinct colors, then we obtain the original Erdős Matching Conjecture.

More generally, let \(H_1, \ldots, H_s \) be properly-colored \(k \)-uniform hypergraphs on \(n \) vertices, a rainbow matching of size \(s \) in \(H_1, \ldots, H_s \) is a collection of vertex disjoint edges \(e_1, \ldots, e_s \) with pairwise different colors, where \(e_1 \in E(H_1), \ldots, e_s \in E(H_s) \). For simplicity, we call it an \(s \)-rainbow matching. Then what is the minimum \(M \), such that by assuming \(e(H_i) > M \) for every \(i \), it guarantees the existance of an \(s \)-rainbow matching?

In this paper, we prove the following result, which generalizes Theorem 1.2 and Theorem 3.3 of [12].

Theorem 1.2 Let \(H_1, \ldots, H_s \) be properly-colored \(k \)-uniform hypergraphs on \(n \) vertices. If \(n \geq 3k^2 s \) and every \(e(H_i) > \frac{n}{k} - (\frac{n-s+1}{k}) \), then there exists an \(s \)-rainbow matching in \(H_1, \ldots, H_s \).

2 Preliminary results

In this section, we list some preliminary results about “rainbow” hypergraphs, which is a special case of properly-colored hypergraphs. In the next section, we will prove our main theorem with the help of these results. A hypergraph \(H \) is rainbow if the colors of any two edges in \(E(H) \) are different. From now on, when we say an edge \(e \) is disjoint from a collection of edges, it means that not only \(e \) is vertex-disjoint from those edges, but it also has a color different from the colors of
all these edges. We start by the following lemma for graphs. Note that here although each G_i is rainbow, a color may appear in more than one G_i's.

Lemma 2.1 Let G_1, \ldots, G_s be rainbow graphs on n vertices. If $n \geq 5s$ and $e(G_i) > \binom{n}{2} - \binom{n-s+1}{2}$, then there exists an s-rainbow matching in G_1, \ldots, G_s.

Proof. We do induction on s. The base case $s = 1$ is trivial. For every vertex $v \in V(G_i)$ and $j \neq i$, let G^j_i be the subgraph of G_j induced by the vertex set $V(G_j) \setminus \{v\}$. Since there are at most $n - 1$ edges containing v in $E(G_j)$, we have $e(G^j_i) \geq e(G_j) - (n - 1) > \binom{n}{2} - \binom{n-s+1}{2} - (n - 1) = \binom{n-1}{2} - \binom{n-1-(s-1)+1}{2}$. By induction, there exists an $(s-1)$-rainbow matching $\{e_j\}_{j \neq i}$ in $\{G^j_i\}_{j \neq i}$, which spans $2(s-1)$ vertices. So if some G_i has a vertex v with degree greater than $3(s-1)$, then there exists an edge e in G_i which contains v and disjoint from the edges of the $(s-1)$-rainbow matching, which produces an s-rainbow matching. Hence we may assume that the maximum degree of each G_i is at most $3(s-1)$.

Now pick an arbitrary edge uv in G_1. Assume the color of uv is $c(uv)$. Then we delete the vertices u, v and the edge colored by $c(uv)$ in G_2, \ldots, G_s. Denote the resulting graphs by G'_2, \ldots, G'_s.

We can see that when $n \geq 5s$, for each $i \in \{2, \ldots, s\}$, we have $e(G'_i) > \binom{n}{2} - \binom{n-s+1}{2} - 2.3(s-1)-1 > \binom{n-2}{2} - \binom{n-2-(s-1)+1}{2}$. By induction on s, there exists an $(s-1)$-rainbow matching in the graphs G'_2, \ldots, G'_s. Taking these $s-1$ edges with the edge uv, we obtain an s-rainbow matching in G_1, \ldots, G_s.

Lemma 2.2 Let H_1, \ldots, H_s be rainbow k-uniform hypergraphs on n vertices. If $n \geq 3k^2s$ and $e(H_i) > \binom{n}{k} - \binom{n-s+1}{k}$, then there exists an s-rainbow matching in H_1, \ldots, H_s.

Proof. We do induction on both k and s. According to Lemma 2.1 the case $k = 2$ holds for every s and $n \geq 5s$. And for every k, the case $s = 1$ is trivial. We first consider the situation when some H_i has a vertex v with degree greater than $k(s-1)\binom{n-2}{k-2} + s - 1$. For every vertex $v \in V(H_i)$ and $j \neq i$, let H^j_i be the subgraph of H_j induced by the vertex set $V(H_j) \setminus \{v\}$. Since there are at most $\binom{n-1}{k-1}$ edges containing v in $E(H_j)$, we have $e(H^j_i) \geq e(H_j) - \binom{n-1}{k-1} > \binom{n}{k} - \binom{n-s+1}{k} - \binom{n-1}{k} = \binom{n-1}{k} - \binom{n-1-(s-1)+1}{k}$. By inductive hypothesis for the case $(n-1, k, s-1)$, there exists an $(s-1)$-rainbow matching $\{e_j\}_{j \neq i}$ in $\{H^j_i\}_{j \neq i}$, which spans $k(s-1)$ vertices. So if some H_i has a vertex v with degree greater than $k(s-1)\binom{n-2}{k-2} + s - 1$, then there exists an edge e in $E(H_i)$ which contains v and disjoint from the edges of the $(s-1)$-rainbow matching, which produces an s-rainbow matching. Hence we may assume that the maximum degree in each hypergraph H_i is at most $k(s-1)\binom{n-2}{k-2} + s - 1$.

3
By induction on s, we know that for every i there exists an $(s-1)$-rainbow matching in the hypergraphs $\{H_j\}_{j \neq i}$, spanning $k(s-1)$ vertices. If for some i, the s-th largest degree of H_i is at most $2(s-1)\left(\frac{n-2}{k-2}\right) + s - 1$, then the sum of degrees of these $k(s-1)$ vertices in H_i is at most

$$(s-1)[k(s-1)\left(\frac{n-2}{k-2}\right) + s - 1] + (s-1)(k-1)[2(s-1)\left(\frac{n-2}{k-2}\right) + s - 1] = (3k-2)(s-1)^2\left(\frac{n-2}{k-2}\right) + (s-1)^2k.$$

Since $n \geq 3k^2s$, we have $e(H_i) > \binom{n}{k} > \binom{n-s+1}{k} > (s-1)^2(3k-\frac{1}{2})\left(\frac{n-2}{k-2}\right) > (3k-2)(s-1)^2\left(\frac{n-2}{k-2}\right) + (s-1)^2k + s - 1$, which guarantees the existence of an edge in H_i which is disjoint from the previous $(s-1)$-rainbow matching in $\{H_j\}_{j \neq i}$, which produces an s-rainbow matching. So we may assume that each H_i contains at least s vertices with degree above $2(s-1)\left(\frac{n-2}{k-2}\right) + s - 1$.

Now we may greedily select distinct vertices $v_i \in V(H_i)$, such that for each $1 \leq i \leq s$, the degree of v_i in H_i exceeds $2(s-1)\left(\frac{n-2}{k-2}\right) + s - 1$. Consider all the subsets of $V(H_i) \setminus \{v_1, \ldots, v_s\}$ which together with v_i form an edge of H_i. Denote the $(k-1)$-uniform hypergraph by H'_i. Then $e(H'_i) > 2(s-1)\left(\frac{n-2}{k-2}\right) + s - 1 - (s-1)\left(\frac{n-2}{k-2}\right) > \binom{n-s}{k-1} - \binom{n-2s+1}{k-1}$. By the inductive hypothesis for the case $(n-s,k-1,s)$, there exists an s-rainbow matching $\{e_i\}_{1 \leq i \leq s}$ in $\{H'_i\}_{1 \leq i \leq s}$. Taking the edges $e_i \cup \{v_i\}$, we obtain an s-rainbow matching in $\{H_i\}_{1 \leq i \leq s}$.

3 Main Theorem

In this section we prove our main result, Theorem 1.2 using induction and Lemma 2.2.

Proof. We split our proof into two cases.

Case 1: $k = 2$. Now H_1, \ldots, H_s are properly-colored graphs. We do induction on s. The base case $s = 1$ is trivial. For every vertex $v \in V(H_i)$ and $j \neq i$, let H'_i be the subgraph of H_j induced by the vertex set $V(H_j) \setminus \{v\}$. Since there are at most $n-1$ edges containing v in $E(H_j)$, we have $e(H'_i) \geq e(H_j) - (n-1) > \binom{n}{2} - \binom{n-s+1}{2} - (n-1) = \binom{n-1}{2} - \binom{n-1}{2} - (s-1)\binom{n-1}{2}$. By induction, there exists an $(s-1)$-rainbow matching $\{e_j\}_{j \neq i}$ in $\{H'_i\}_{j \neq i}$, which spans $2(s-1)$ vertices. So if some H_i has a vertex v of degree greater than $3(s-1)$, then there exists an edge e in H_i which contains v and disjoint from the edges of the $(s-1)$-rainbow matching, which produces an s-rainbow matching. Hence we may assume the maximum degree in each H_i is at most $3(s-1)$.

For every color c in H_i and $j \neq i$, let H'_i be the subgraph of H_j obtained by deleting all the edges colored by c in $E(H_j)$. Since each H_j is properly colored, there are at most $\binom{n}{2}$ edges colored by c in $E(H_j)$. So $e(H'_i) \geq e(H_j) - \binom{n}{2} - \binom{n-s+1}{2} - \binom{n-1}{2} - (s-1)\binom{n-1}{2}$. By induction, there exists an $(s-1)$-rainbow matching $\{e_j\}_{j \neq i}$ in $\{H'_i\}_{j \neq i}$, which spans $2(s-1)$ vertices $u_1, \ldots, u_{2(s-1)}$. Also since H_i is properly colored, it has at most one edge containing each u_j and colored by c. So if the number of edges in H_i colored by c is greater than $2(s-1)$, then there exists an edge e in
Taking the edges colored, we can see that each vertex v in H_i has a vertex of degree greater than $k(s-1)\binom{n-2}{k-2}+s-1$. For every vertex $v \in H_i$ and $j \neq i$, let H_i^j be the subgraph of H_j induced by the vertex set $V(H_j) \setminus \{v\}$. Since there are at most $\binom{n-1}{k-1}$ edges containing v in $E(H_j)$, we have $e(H_i^j) \geq e(H_j) - \binom{n-1}{k-1} > \binom{n}{k} - \binom{n-1}{k-1} - \binom{n-1}{k-1} = \binom{n}{k} - \binom{(n-1)-(s-1)+1}{k}$. By induction, there exists an $(s-1)$-rainbow matching $\{e_j\}_{j \neq i}$ in $\{H_i^j\}_{j \neq i}$, which spans $k(s-1)$ vertices. So if some H_i has a vertex v with degree greater than $k(s-1)\binom{n-2}{k-2}+s-1$, then there exists an edge e in $E(H_i)$ which contains v and disjoint from the edges of the $(s-1)$-rainbow matching, which produces an s-rainbow matching. Hence we may assume the maximum degree in each hypergraph H_i is at most $k(s-1)\binom{n-2}{k-2}+s-1$.

Case 2: $k \geq 3$. We do induction on s. The case $s = 1$ is trivial. We first consider the situation when some H_i has a vertex of degree greater than $k(s-1)\binom{n-2}{k-2}+s-1$. For every vertex $v \in H_i$ and $j \neq i$, let H_i^j be the subgraph of H_j induced by the vertex set $V(H_j) \setminus \{v\}$. Since there are at most $\binom{n-1}{k-1}$ edges containing v in $E(H_j)$, we have $e(H_i^j) \geq e(H_j) - \binom{n-1}{k-1} > \binom{n}{k} - \binom{n-1}{k-1} - \binom{n-1}{k-1} = \binom{n}{k} - \binom{(n-1)-(s-1)+1}{k}$. By induction, there exists an $(s-1)$-rainbow matching $\{e_j\}_{j \neq i}$ in $\{H_i^j\}_{j \neq i}$, which spans $k(s-1)$ vertices. So if some H_i has a vertex v with degree greater than $k(s-1)\binom{n-2}{k-2}+s-1$, then there exists an edge e in $E(H_i)$ which contains v and disjoint from the edges of the $(s-1)$-rainbow matching, which produces an s-rainbow matching. Hence we may assume the maximum degree in each hypergraph H_i is at most $k(s-1)\binom{n-2}{k-2}+s-1$.

By induction on s, we know that for every i there exists an $(s-1)$-rainbow matching in the hypergraphs $\{H_j\}_{j \neq i}$, spanning $k(s-1)$ vertices. If for some i, the s-th largest degree of H_i is at most $2(s-1)\binom{n-2}{k-2}+s-1$, then the sum of degrees of these vertices in H_i is at most

$$
(s-1)[k(s-1)\binom{n-2}{k-2}+s-1]+(s-1)(k-1)[2(s-1)\binom{n-2}{k-2}+s-1] = (3k-2)(s-1)^2\binom{n-2}{k-2}+(s-1)^2 k.
$$

On the other hand, the maximum degree of the subgraph of H_i by deleting these $k(s-1)$ vertices is at most $s-1$, otherwise we can find an s-rainbow matching. Since $n \geq 3ks$, we have $e(H_i) > \binom{n}{k} - \binom{n-1}{k-1} > (s-1)^2(3k-1)\binom{n-2}{k-2} > (3k-2)(s-1)^2\binom{n-2}{k-2} + (s-1)^2 k + \frac{(s-1)[n-k(s-1)]}{k}$, which guarantees the existence of an edge in H_i disjoint from the previous $(s-1)$-rainbow matching in $\{H_j\}_{j \neq i}$, which produces an s-rainbow matching. So we may assume that each H_i contains at least s vertices with degree above $2(s-1)\binom{n-2}{k-2}+s-1$.

Now we may greedily select distinct vertices $v_i \in V(H_i)$, such that for each $1 \leq i \leq s$, the degree of v_i in H_i exceeds $2(s-1)\binom{n-2}{k-2}+s-1$. Consider all the subsets of $V(H_i) \setminus \{v_1, \ldots, v_s\}$ which together with v_i form an edge of H_i. Denote the $(k-1)$-uniform hypergraph by H_i^s. Since each H_i is properly colored, we can see that each H_i^s is rainbow and $e(H_i^s) > 2(s-1)\binom{n-2}{k-2} + s-1 - (s-1)\binom{n-2}{k-2} > \binom{n}{k} - \binom{n-2s+1}{k-1}$. By Lemma 222 there exists an s-rainbow matching $\{e_i\}_{1 \leq i \leq s}$ in $\{H_i^s\}_{1 \leq i \leq s}$. Taking the edges $e_i \cup \{v_i\}$, we obtain an s-rainbow matching in $\{H_i\}_{1 \leq i \leq s}$. ■
4 Concluding Remarks

In this short note, we propose a generalization of the Erdős hypergraph matching conjecture to finding rainbow matchings in properly-colored hypergraphs, and prove Theorem 1.2 for $s < n/(3k^2)$. The following conjecture seems plausible.

Conjecture 4.1 There exists constant $C > 0$ such that if H_1, \ldots, H_s are properly-colored k-uniform hypergraphs on n vertices, with $n \geq Cks$ and every $e(H_i) > {n \choose k} - {n-s+1 \choose k}$, then there exists an s-rainbow matching in H_1, \ldots, H_s.

Recall that for the special case when each H_i is identical and rainbow, Frankl and Kupavskii [9] were able to verify it for $C = 5/3$. However the proof relies on the technique of shifting, while the property of a hypergraph being properly colored may not be preserved under shifting.

It is tempting to believe that Erdős Matching Conjecture can be extended to properly-colored hypergraphs for the entire range of s, that is, once the number of edges in each hypergraph exceeds the maximum of $({n \choose k} - {n-s+1 \choose k}$ and $({ks-1 \choose k}$, then one can find an s-rainbow matching. However this is false in general, a simple construction is by taking $s = 2$ and $n = 2k$. The maximum of these two expressions is $({2k-1 \choose k}$, while one can let H_1 be a rainbow K_{2k} with an edge coloring c_1, and H_2 be on the same vertex set with edge coloring c_2, such that $c_2(e) = c_1([2k] \setminus e)$. Then clearly each H_i contains $({2k \choose k} > ({2k-1 \choose k}$ edges and there is no 2-rainbow matching. It would be interesting to find constructions for s close to n/k, and formulate a complete conjecture for properly-colored hypergraphs.

References

[1] J. Akiyama, P. Frankl, On the size of graphs with complete-factors, *J. Graph Theory*, 9(1)(2010), 197–201.
[2] B. Bollobás, D.E. Daykin, P. Erdős, Sets of independent edges of a hypergraph, *Q. J. Math. Oxf. Ser.*, (2) 27 (105)(1976), 25–32.
[3] M. Deza, P. Frankl, Erdős–Ko–Rado theorem – 22 years later, *SIAM J. Algebr. Discrete Methods*, 4(4) (1983), 419–431.
[4] P. Erdős, A problem on independent r-tuples, *Ann. Univ. Sci. Budapest. Eötvös Sect. Math.*, 8(1965), 93–95.
[5] P. Erdős, T. Gallai, On the maximal paths and circuits of graphs, *Acta Math. Acad. Sci. Hung.*, 10(1959), 337–357.
[6] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, *Quart. J. Math. Oxford Ser.*, (2)12 (1961), 313–320.
[7] P. Frankl, Improved bounds for Erdős’ matching conjecture, *J. Combin. Theory Ser. A*, 120 (2013), 1068–1072.

[8] P. Frankl, On the maximum number of edges in a hypergraph with a given matching number, *Discrete Appl. Math.*, 216 (2017), 562–581.

[9] P. Frankl, A. Kupavskii, The Erdős Matching Conjecture and concentration inequalities, available at [arXiv:1806.08855](https://arxiv.org/abs/1806.08855).

[10] P. Frankl, T. Łuczak, K. Mieczkowska, On matchings in hypergraphs, *Electron. J. Combin.*, 19 (2012), 42.

[11] P. Frankl, V. Rödl, A. Ruciński, On the maximum number of edges in a triple system not containing a disjoint family of a given size, *Combin. Probab. Comput.*, 21(2012), 141–148.

[12] H. Huang, P. Loh, B. Sudakov, The size of a hypergraph and its matching number, *Combin. Probab. Comput.*, 21 (2012), 442–450.

[13] P. Keevash, D. Mubayi, B. Sudakov and J. Verstraëte, Rainbow Turán problems, Combinatorics, Probability and Computing 16 (2007), 109C126.

[14] T. Łuczak, K. Mieczkowska, On Erdős extremal problem on matchings in hypergraphs, *J. Combin. Theory Ser. A*, 124 (2014), 178–194.