THE GAUSSIAN MOMENTS CONJECTURE
AND THE JACOBIAN CONJECTURE

HARM DERKSEN, ARNO VAN DEN ESSEN AND WENHUA ZHAO

ABSTRACT. We first propose what we call the Gaussian Moments Conjecture. We then show that the Jacobian Conjecture follows from the Gaussian Moments Conjecture. Note that the the Gaussian Moments Conjecture is a special case of ([11, Conjecture 3.2]). The latter conjecture was referred as Moment Vanishing Conjecture in ([9, Conjecture A]) and Integral Conjecture in [6, Conjecture 3.1] (for the one-dimensional case). We also give a counter-example to show that ([11, Conjecture 3.2]) fails in general for polynomials in more than two variables.

1. Introduction

For a random variable X we denote its expected value by $E(X)$. Suppose that $X = (X_1, \ldots, X_n)$ is a random vector with a multi-variate normal distribution. We make the following conjecture:

Conjecture 1.1 (Gaussian Moments Conjecture GMC(n)). Suppose that $P(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n]$ is a complex-valued polynomial such that the moments $E(P(X)^m)$ are equal to 0 for all $m \geq 1$. Then for every polynomial $Q(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n]$ we have $E(P(X)^m Q(X)) = 0$ for $m \gg 0$.

By using translations and linear maps, we can normalize the random vector X such that X_1, \ldots, X_n are independent, with mean 0 and variance 1.

The Gaussian Moments Conjecture is a special case of ([11, Conjecture 3.2]). Furthermore, because of Proposition 3.3 and relation (3.2) in [11], the Gaussian Moments Conjecture is the special case of ([11, Conjecture 3.1] for Hermite polynomials. Note that ([11, Conjecture 3.2]) was later referred as Moment Vanishing Conjecture in ([9] Conjecture 3.1).
A, and Integral Conjecture in [6, Conjecture 3.1] (for one-dimensional case). Unfortunately, this conjecture is false in general, as can be seen from the following

Proposition 1.2. Let $B = \{(x, y) \in \mathbb{R}^2 \mid y \geq 0, x^2 + y^2 \leq 1\}$, $P(x, y) = (x + iy)^2$ and $Q(x, y) = x + iy$. Then $\int_B P(x, y)^m \, dx \, dy = 0$ for all $m \geq 1$, but $\int_B Q(x, y)P(x, y)^m \, dx \, dy \neq 0$ for all $m \geq 1$.

Proof. For each $m \geq 1$, by using the polar coordinates (r, θ) we have

$$\int_B P(x, y)^m \, dx \, dy = \int_0^1 \int_0^\pi r^{2m} e^{2mi\theta} r \, dr \, d\theta = 0;$$

$$\int_B Q(x, y)P(x, y)^m \, dx \, dy = \int_0^1 \int_0^\pi r^{2m+1} e^{(2m+1)i\theta} r \, dr \, d\theta$$

$$= \frac{2i}{(2m+3)(2m+1)} \neq 0.$$

□

Remark 1.3. Note that Conjecture 3.2 in [11] is still open for univariate polynomials. It is also open for the (whole) disks or squares centered at the origin for polynomials in two variables.

Remark 1.4. The function $X_1^2 + X_2^2$ has an exponential distribution and more generally, $X_1^2 + \cdots + X_{2k}^2$ has a χ^2 distribution. So, if the Gaussian Moments Conjecture is true for all $n \geq 1$, then the conjecture is also true when we replace the Gaussian distributions by exponential or χ^2 distributions. The Moments Conjecture for exponential distributions is equivalent to [5, Conjecture 4.1], which is a weaker form of the Factorial Conjecture ([5, Conjecture 4.2]).

One of the main open conjectures in affine algebraic geometry is the notorious Jacobian Conjecture, which was first proposed by O. H. Keller [7] in 1939. See also [11] and [3].

Conjecture 1.5 (Jacobian Conjecture $JC(n)$). If $F : \mathbb{C}^n \to \mathbb{C}^n$ is a polynomial map that is locally invertible, then it is globally invertible.

The main result of this paper is:

Theorem 1.6. If GMC(n) is true for all $n \geq 1$, then $JC(n)$ is true for all $n \geq 1$.

Acknowledgment The main results of the paper were obtained when the authors organized and attended the two-week International Short-School/Conference on Affine Algebraic Geometry and the Jacobian Conjecture, which was supported by and held at Chern Institute
of Mathematics, Tianjin, China from July 14-25, 2014. The authors are very grateful to the institute for supports and hospitality.

2. Background

Suppose that A is a unital commutative C-algebra.

Definition 2.1. A Mathieu-Zhao space (or MZ space) is a C-linear subspace $V \subseteq A$ with the property that $f^m \in V$ for all $m \geq 1$ implies that for every $g \in A$, $f^m g \in V$ for $m \gg 0$.

Observe that in this definition we have changed the name Mathieu subspace, which was introduced by the third author in [11, 12], into Mathieu-Zhao space or MZ space. This follows a suggestion of the second author in [4]. For some more general studies of this new notion, see [12].

With the definition above we can now reformulate our main conjecture as follows.

Conjecture 2.2 (GMC(n), reformulation). The subspace

$$\{ P(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n] \mid \mathbb{E}(P(X_1, \ldots, X_n)) = 0 \}$$

is an MZ space of $\mathbb{C}[x_1, \ldots, x_n]$.

Suppose that G is a complex reductive algebraic group acting regularly on an affine variety Z. Then G also acts on the ring $\mathbb{C}[Z]$ of polynomial functions on Z. Let $K \subseteq G$ be a maximal compact subgroup. Then K is Zariski dense in G. The Reynolds operator $R_Z : \mathbb{C}[Z] \to \mathbb{C}$ is the averaging operator:

$$R_Z(f) = \int_{g \in K} g \cdot f \, d\mu,$$

where $d\mu$ is the Haar measure on K, normalized such that $\int_K d\mu = 1$.

Conjecture 2.3 (Mathieu Conjecture MC(Z)). The kernel $\ker(R_Z)$ of the Reynolds operator is an MZ space of $\mathbb{C}[Z]$.

This conjecture is equivalent to the conjecture $C(\mathbb{C}[Z])$ of [8] (see [8, Corollary 1.3]). The group G acts on its own coordinate ring, and $MC(G)$ implies $MC(Z)$ ([8 Corollary 1.7]). The following theorem was proven in [8, Theorem 5.5]:

Theorem 2.4 (Mathieu). If $MC(SL_n(\mathbb{C})/GL_{n-1}(\mathbb{C}))$ is true for all $n \geq 1$, then $JC(n)$ is true for all $n \geq 1$.

For later purposes, here we also point out that J. Duistermaat and W. van der Kallen [2] in 1998 had proved the Mathieu conjecture for the case of tori, which can be re-stated in terms of MZ spaces as follows.
Theorem 2.5 (Duistermaat and van der Kallen). Let $x = (x_1, x_2, \ldots, x_n)$ be n commutative free variables and M the subspace of the Laurent polynomial algebra $\mathbb{C}[x_1^{-1}, \ldots, x_n^{-1}, x_1, \ldots, x_n]$ consisting of the Laurent polynomials with no constant term. Then M is an MZ space of $\mathbb{C}[x_1^{-1}, \ldots, x_n^{-1}, x_1, \ldots, x_n]$.

Let $\partial_i = \frac{\partial}{\partial z_i}$ be the partial derivative with respect to z_i. Define $E_n : \mathbb{C}[w, z] = \mathbb{C}[w_1, \ldots, w_n, z_1, \ldots, z_n] \rightarrow \mathbb{C}[z]$ such that

$$E_n(P(w)Q(z)) = P(\partial)Q(z) \in \mathbb{C}[z].$$

Zhao made the following conjecture in [10]:

Conjecture 2.6 (Special Image Conjecture SIC(n)). $\text{Ker}(E_n)$ is an MZ space of $\mathbb{C}[w, z]$.

Zhao proved the following result ([10, Theorem 3.6, Theorem 3.7]):

Theorem 2.7 (Zhao). If SIC(n) is true for all $n \geq 1$, then JC(n) is true for all $n \geq 1$.

3. Reduction of the Jacobian Conjecture to the Gaussian Moments Conjecture

We define the linear map $\mathcal{F}_n : \mathbb{C}[w, z] = \mathbb{C}[w_1, \ldots, w_n, z_1, \ldots, z_n] \rightarrow \mathbb{C}$ by setting

$$\mathcal{F}_n(P) = E_n(P) |_{z=0}.$$

For $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, set $z^\alpha = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$ and $\alpha! = \alpha_1! \alpha_2! \cdots \alpha_n!$. Then we have

$$\mathcal{F}_n(w^\alpha z^\beta) = \begin{cases} \alpha! & \text{if } \alpha = \beta; \\ 0 & \text{if } \alpha \neq \beta. \end{cases}$$

Proposition 3.1. If $\text{Ker}(\mathcal{F}_n)$ is an MZ space of $\mathbb{C}[w, z]$, then $\text{Ker}(E_n)$ is an MZ space of $\mathbb{C}[w, z]$, i.e. SIC(n) is true.

Proof. Assume that $P^m \in \text{Ker}(E_n)$ for $m \geq 1$. Then for each $\alpha \in \mathbb{C}^n$ we have

$$E_n(P^m(w, z)) |_{z=\alpha} = E_n(P^m(w, z + \alpha)) |_{z=0} = \mathcal{F}_n(P^m(w, z + \alpha)) = 0.$$

Hence $P^m(w, z + \alpha) \in \text{Ker}(\mathcal{F}_n)$ for all $m \geq 1$. Since $\text{Ker}(\mathcal{F}_n)$ is an MZ space of $\mathbb{C}[w, z]$, for any $Q \in \mathbb{C}[w, z]$ and $\alpha \in \mathbb{C}^n$ we have $Q(w, z + \alpha)^m \in \text{Ker}(\mathcal{F}_n)$ for all $m \gg 0$. Therefore, for all $m \gg 0$ we have

$$E_n(Q(w, z)P(w, z)^m) |_{z=\alpha} = \mathcal{F}_n(Q(w, z + \alpha)P(w, z + \alpha)^m) = 0.$$
Define $Z_N \subseteq \mathbb{C}^n$ to be the zero set of all $\mathcal{E}_n(Q(w, z)P(w, z)^m)$ with $m \geq N$. Clearly, Z_N is Zariski closed for all N, and $\bigcup_{N=1}^{\infty} Z_N = \mathbb{C}^n$. It follows that $Z_N = \mathbb{C}^n$ for some integer N, because a countable union of Zariski closed proper subsets cannot be the whole affine space. So for $m \geq N$, $\mathcal{E}_n(Q(w, z)P(w, z)^m)$ is the zero function. □

Proposition 3.2. If $\text{GMC}(2n)$ is true, then $\ker(\mathcal{F}_n)$ is an MZ space of $\mathbb{C}[w, z]$.

Proof. Let $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ are $2n$ independent random variables with the normal distribution and with mean 0 and variance 1. Define complex-valued random variables W_j, Z_j and real-valued random variables R_j, T_j by

$$W_j = \frac{X_j - Y_ji}{\sqrt{2}} = R_j e^{-iT_j} \text{ and } Z_j = \frac{X_j + Y_ji}{\sqrt{2}} = R_j e^{iT_j}.$$

Then $R_1, \ldots, R_n, T_1, \ldots, T_n$ are independent, and for every $1 \leq j \leq n$, R_j^2 has an exponential distribution with mean 1 and $\mathbb{E}(R_j^{2k}) = k!$. Now consider

$$\mathbb{E}(W^\alpha Z^\beta) = \mathbb{E}(R^{\alpha + \beta} e^{i \sum_j (\beta_j - \alpha_j) T_j}) = \prod_{j=1}^{n} \left(\mathbb{E}(R^{\alpha_j + \beta_j}) \mathbb{E}(e^{i(\beta_j - \alpha_j) T_j}) \right).$$

If $\beta \neq \alpha$, then $\beta_j \neq \alpha_j$ for some j, whence $\mathbb{E}(e^{i(\beta_j - \alpha_j) T_j}) = 0$ and $\mathbb{E}(W^\alpha Z^\beta) = 0$. If $\alpha = \beta$, then we have

$$\mathbb{E}(W^\alpha Z^\alpha) = \mathbb{E}(R^{2\alpha}) = \prod_{j=1}^{n} \mathbb{E}(R_j^{2\alpha_j}) = \prod_{j=1}^{n} \alpha_j! = \alpha!$$

It follows that $\mathbb{E}(W^\alpha Z^\beta) = \mathcal{F}_n(w^\alpha z^\beta)$ for all $\alpha, \beta \in \mathbb{N}^n$. By linearity, we get $\mathbb{E}(Q(W, Z)) = \mathcal{F}_n(Q(w, z))$ for every polynomial $Q(w, z) \in \mathbb{C}[w, z]$. It follows readily from $\text{GMC}(2n)$ that $\ker(\mathcal{F}_n)$ is an MZ space of $\mathbb{C}[w, z]$. □

Now we can prove our main result Theorem 1.6.

Proof of Theorem 1.6. It follows directly from Proposition 3.1, Proposition 3.2 and Theorem 2.7. □

4. Some Special Cases of the Gaussian Moments Conjecture

We view $\mathbb{C}[x_1, \ldots, x_n]$ as the coordinate ring of $V \cong \mathbb{C}^n$, where V is viewed as the standard representation of $\text{O}(n)$.

Proposition 4.1. For homogeneous polynomials $P(x)$, $\text{GMC}(n)$ follows from $\text{MC}(V)$.
Proof. Let $\Phi : \mathbb{C}[x_1, \ldots, x_n] \to \mathbb{C}$ be given by $\Phi(P(x)) = \mathbb{E}(P(X))$. Any linear map $\mathbb{C}[x_1, \ldots, x_n]_d \to \mathbb{C}$ is determined by an element of $S^d(V)$. Since Φ is invariant under the action of $O(n)$ it is given by an element of $S^d(V)^{O(n)}$. But $S^d(V)^{O(n)}$ is at most one dimensional and is spanned by the restriction of the Reynolds operator R. So up to a constant, $\Phi(P(x)^m)$ is equal to $R(V(P(x)^m))$. If $\mathbb{E}(P(X)^m) = 0$ for $m \geq 1$, then $R(V(P(X)^m)) = 0$ for $m \geq 1$. If $Q(x)$ is homogeneous, then $R(V(P(x)^mQ(x))) = 0$ for $m \gg 0$. So $\mathbb{E}(P(X)^mQ(X)) = 0$ for $m \gg 0$. If $Q(X)$ is non-homogeneous then $\mathbb{E}(P(X)^mQ(X)) = 0$ for $m \gg 0$, because $\mathbb{E}(P(X)Q_d(X)) = 0$ for $m \gg 0$ for every homogeneous summand $Q_d(x)$ of $Q(x)$. \qed

Proposition 4.2. Suppose that X is a Gaussian Random Variable, and $P(x) \in \mathbb{C}[x]$ is a univariate polynomial such that $\mathbb{E}(P(X)^m) = 0$ for $m \geq 1$, then $P(x) = 0$. In particular, $\text{GMC}(n)$ is true for $n = 1$.

Proof. As observed in the beginning of this paper, $\text{GMC}(n)$ is a special case of the Image Conjecture for Hermite polynomials. For $n = 1$ the case of Hermite polynomials is proved in Corollary 4.3 of [6]. \qed

For a different proof of $\text{GMC}(1)$, see Proposition 4.7 and Remark 4.8 of this section.

Proposition 4.3. Let $P \in \mathbb{C}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ such that for each $1 \leq k \leq n$ $P(x, y)$ as a polynomial in x_k and y_k is homogeneous. Then $\text{GMC}(2n)$ holds for P.

Proof. For each $1 \leq k \leq n$, let d_k be the degree of f as a polynomial in x_k and y_k.

Making the change of variables for x_i and y_i ($1 \leq i \leq n$):

$$x_i = r_i \cos \theta_i \quad \text{and} \quad y_i = r_i \sin \theta_i,$$

we see that $P = (r_1^{d_1} \cdot r_2^{d_2} \cdots r_n^{d_n})F$ for some polynomial F in $\cos \theta_i$ and $\sin \theta_i$ ($1 \leq i \leq n$), which is independent on r_i ($1 \leq i \leq n$).

Let $S^n := (S^1)^n$, where S^1 is the unit circle in \mathbb{C}. Denote by $d\mu_n$ the measure of $d\theta_1 d\theta_2 \cdots d\theta_n$, which is a haar measure of the torus S_n. Then F can be viewed as S^n-finite function over the torus S^n. Furthermore, for any $m \geq 1$ we have

\begin{equation}
\mathbb{E}(P^m(X, Y)) = \int_{r_1 = 0}^1 \cdots \int_{r_n = 0}^1 (r_1^{md_1} \cdots r_n^{md_n}) (\int_{S^n} F_m d\mu_n) dr_1 \cdots dr_n = A_m \int_{S^n} F_m d\mu_n,
\end{equation}

for some nonzero constant A_m.

\[\int_{r_1 = 0}^1 \cdots \int_{r_n = 0}^1 (r_1^{md_1} \cdots r_n^{md_n}) (\int_{S^n} F_m d\mu_n) dr_1 \cdots dr_n = A_m \int_{S^n} F_m d\mu_n, \]
Hence, if $\mathbb{E}(P^m) = 0$ when $m \gg 0$, then so is $\int_{S^n} F^m$. Since $d\mu_n$ is a Haar measure of the torus S_n, applying the Duistermaat-van der Kallen Theorem [2,5] to F we see that for each polynomial G in $\cos \theta_i$ and $\sin \theta_i$ ($1 \leq i \leq n$), we have $\int_{S^n} F^m G d\mu_n = 0$ when $m \gg 0$.

Now for each monomial $M(x, y)$ in x_i and y_i ($1 \leq i \leq n$), by Eq. (4.1) with P^m replaced by $P^m M$, we see that $\mathbb{E}(P^m M) = 0$ when $m \gg 0$. Hence for each polynomial $Q(x, y)$, we also have $\mathbb{E}(P^m Q) = 0$ when $m \gg 0$. Therefore GMC$(2n)$ holds for P.

Since every homogeneous polynomial in two variables satisfies the condition of Proposition 4.3, we immediately have the following

Corollary 4.4. GMC(2) holds for all homogeneous polynomials P.

By a similar argument as in the proof of Proposition 4.3 we have also the following case of Conjecture 3.2 in [11]:

Corollary 4.5. Let B be the unit disk in \mathbb{R}^2 centered at the origin with the Lebesgue measure $dxdy$. Let $P \in \mathbb{C}[x, y]$ such that P is homogeneous and $\int_B P^m dxdy = 0$ for all $m \gg 0$. Then for every $Q \in \mathbb{C}[x, y]$ we have $\int_B P^m Q dxdy = 0$ for all $m \gg 0$.

In the rest of this section we point out that some results proved in [5] for the Factorial Conjecture ([5, Conjecture 4.2]) can also be proved similarly for GMC(n).

First, we give a proof for the following case of GMC(n), which is parallel to [5, Proposition 4.8].

Proposition 4.6. Let $F(x) \in \mathbb{C}[x_1, x_2, \ldots, x_n]$ such that $F(0) \neq 0$. Then $\mathbb{E}(F^m(X)) \neq 0$ for infinitely many $m \geq 1$.

Proof. Let $\Phi : \mathbb{C}[x_1, \ldots, x_n] \to \mathbb{C}$ be given by $\Phi(P(x)) = \mathbb{E}(P(X))$. Set $(-1)!! := 1$ and $(2k-1)!! := (2k-1)(2k-3)\cdots 1$ for all $k \geq 1$. Furthermore, for each $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in 2\mathbb{N}$, we set $(\alpha - 1)!! := \prod_{i=1}^{n}(\alpha_i - 1)!!$. Then for each $\alpha \in \mathbb{N}^n$, we have

$$
\Phi(x^\alpha) = \begin{cases}
(\alpha - 1)!! & \text{if } \alpha \in 2\mathbb{N}^n; \\
0 & \text{otherwise}.
\end{cases}
$$

(4.2)

Now assume that the proposition fails, i.e., there exists $N \geq 1$ such that $\Phi(F^m) = 0$ for all $m \geq N$. Since $F(0) \neq 0$, replacing F by $F/F(0)$ we may assume $F(0) = 1$. Write $F(x) = 1 - \sum_{i=1}^{k} c_i x^{\beta_i}$ with $c_i \in \mathbb{C}$ and $0 \neq \beta_i \in \mathbb{N}^n$ for all $1 \leq i \leq k$.

Note that if $c_i = 0$ for all $1 \leq i \leq k$, i.e., $F(x) = 1$, the proposition obviously holds. So we assume $c_i \neq 0$ for all $1 \leq i \leq k$. Replacing F by F^2 we may also assume that $0 \neq \beta_i \in 2\mathbb{N}$ for at least one $1 \leq i \leq k$.
Furthermore, by a reduction due to Mitya Boyarchenko (see the proof of [9, Theorem 4.1] or [10, Remarks 4.5 and 4.6]), we may also assume that $c_i \in \mathbb{Q}$ for all $1 \leq i \leq k$.

Let $B = \mathbb{Z}[c_1, c_2, \ldots, c_k]$ and p be an odd prime such that $p \geq N$ and $\nu_p(c_i) = 0$ for all $1 \leq i \leq k$, where ν_p denotes an extension of the p-valuation of \mathbb{Z} to B.

Since $p \geq N$ and $F^p \equiv 1 - \sum_{i=1}^{k} c_i^px^{p\beta_i} \pmod{pB}$, we have $\Phi(F^p) = 0$ and
\begin{equation}
(4.3) \quad 1 \equiv \sum_{1 \leq i \leq k, 0 \neq \beta_i \in 2\mathbb{N}} c_i^p (p\beta_i - 1)!! \pmod{pB}.
\end{equation}

Since each $0 \neq \beta_i \in 2\mathbb{N}$ in the sum above has at least one nonzero (and even) component, so $(p\beta_i - 1)!!$ is divisible by p. Then applying ν_p to Eq. (4.3) we get $\nu_p(1) = 0$, which is a contradiction. \hfill \qed

The next proposition is parallel to [5, Proposition 4.10].

Proposition 4.7. Let $F(x) = c_0M_0 + \sum_{i=1}^{d} c_iM_i$ with $M_0 = x_1^{k_1} \ldots x_n^{k_n}$ such that $k_1 \geq 1$ and $k_1 \geq k_j$ for all $2 \leq j \leq n$; $c_i \in \mathbb{C}$ ($0 \leq i \leq d$) with $c_0 \neq 0$; and M_i ($1 \leq i \leq d$) are monomials in x that are divisible by $x_1^{k_1+1}$. Then $\mathbb{E}(F^m(X)) \neq 0$ for infinitely many $m \geq 1$.

Proof. Replacing F by $c_0^{-1}F$ we may assume $c_0 = 1$ and replacing F by F^2 we may assume that k_1 is an even positive integer. Then under these assumptions the proof of [5, Proposition 4.10] works through similarly for the linear functional Φ of $\mathbb{C}[x_1, \ldots, x_n]$ given in Eq. (4.2). \hfill \qed

Remark 4.8. Note that when $n = 1$ the conditions of Proposition 4.7 hold automatically for all nonzero univariate polynomials $F(x)$. Hence $\text{GMC}(1)$ also follows directly from Proposition 4.7.

Proposition 4.9. Let $d \geq 1$ and $P(x) = \sum_{i=1}^{n} c_i x_i^d \in \mathbb{C}[x_1, \ldots, x_n]$ for some $c_i \in \mathbb{C}$ ($1 \leq i \leq n$). Assume that $\mathbb{E}(P^m(X)) = 0$ for all $m \gg 0$. Then $P = 0$. In particular, $\text{GMC}(n)$ holds for $P(x)$.

This proposition can be proved similarly as Proposition 4.16 in [5] if we choose the integer m there to be even, and the prime p to be $(m+2)d-1$ or $(m+1)d-1$, depending d is odd or even, respectively. Note that the components k_i’s in the proof of Proposition 4.16 in [5] for our case must be even when m is chosen to be even.

5. Moment Vanishing Polynomials

Let again $X = (X_1, \ldots, X_n)$ be a random vector with joint Gaussian distribution. For $n \geq 2$, there exist many polynomials $P(x) \in \mathbb{C}[x]$.

for which $\mathbb{E}(P(X)^m) = 0$ for all $m \geq 1$: if 0 lies in the closure of the $O(n)$ orbit of $P(x)$, then $\mathbb{E}(P(x)^m) = 0$ for all $m \geq 1$. Indeed, if there exists a sequence of orthogonal matrices A_1, A_2, \ldots such that $\lim_{k \to \infty} P(A_k(x)) = 0$, then we have $\mathbb{E}(P(X)) = \lim_{k \to \infty} \mathbb{E}(P(A_k(X))) = \mathbb{E}(\lim_{k \to \infty} P(A_k(X))) = \mathbb{E}(0) = 0$. A 1-parameter subgroup is a homomorphism $\lambda : \mathbb{C}^* \to O_n(\mathbb{C})$ of algebraic groups. We can view λ as an orthogonal matrix with entries in $\mathbb{C}[t, t^{-1}]$. If $P(\lambda(t)(x))$ lies in $t\mathbb{C}[t][x]$, then $\lim_{t \to 0} P(\lambda(t)x) = 0$ and 0 lies in the closure of the $O_n(\mathbb{C})$ orbit of $P(x)$. Conversely, the Hilbert-Mumford criterion states that if 0 lies in the $O_n(\mathbb{C})$-orbit closure of $P(x)$, then there exists such a 1-parameter subgroup $\lambda : \mathbb{C}^* \to O_n(\mathbb{C})$ such that $P(\lambda(t)(x)) \in t\mathbb{C}[t][x]$. If $Q(x) \in \mathbb{C}[x]$, then for large m, $Q(\lambda(t)(x))P(\lambda(t)x)^m \in t\mathbb{C}[t][x]$ and

$$\mathbb{E}(Q(X)P(X)^m) = \mathbb{E}(\lim_{t \to 0} Q(\lambda(t)(X))P(\lambda(t)X)) = \mathbb{E}(0) = 0.$$

We make the following conjecture:

Conjecture 5.1. If $\mathbb{E}(P(X)^m) = 0$ for all $m \geq 1$, then there exists a 1-parameter subgroup $\lambda : \mathbb{C}^* \to O_n(\mathbb{C})$ such that $P(\lambda(t)(x)) \in t\mathbb{C}[t][x]$.

References

[1] Hyman Bass, Edwin H. Connell and David Wright, *The Jacobian conjecture, reduction of degree and formal expansion of the inverse*. Bull. Amer. Math. Soc. 7, (1982), 287–330.

[2] J. J. Duistermaat and Wilberd van der Kallen, *Constant terms in powers of a Laurent polynomial*. Indag. Math. (N.S.) 9 (1998), no. 2, 221–231. [MR1691479].

[3] Arno van den Essen, *Polynomial Automorphisms and the Jacobian Conjecture*. Progress in Mathematics, 190. Birkhäuser Verlag, Basel, 2000.

[4] Arno van den Essen, *An Introduction to Mathieu Subspaces*, Lectures given at the International Conference/Short-School on Affine Algebraic Geometry, held at the Chern Institute of Mathematics, Tianjin, China, 14-25 July, 2014.

[5] Arno van den Essen, David Wright and Wenhua Zhao, *On the Image Conjecture*, J. of Algebra 340 (2011), 211–224.

[6] Arno van den Essen and Wenhua Zhao, *Mathieu subspaces of univariate polynomial algebras*, J. of Pure and Applied Algebra 217 (2013), no. 7, 1316–1324.

[7] O. H. Keller, *Ganze Gremona-Transformationen*. Monats. Math. Physik 47 (1939), no. 1, 299–306. [MR1550818].

[8] Olivier Mathieu, *Some conjectures about Invariant Theory and their applications*, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), Sémin. Congr. 2, Soc. Math. France, Paris, 1997.

[9] Jean-Pierre Françoise, Fedor Pakovich, Yosef Yomdin and Wenhua Zhao, *Moment Vanishing Problem and positivity; some examples*, Bull. des Sciences Mathématiques 135, issue 1, 10–32.

[10] Wenhua Zhao, *Images of commuting differential operators of order one with constant leading coefficients*, J. of Algebra 324 (2010), no. 2, 231–247.
[11] Wenhua Zhao, Generalizations of the Image Conjecture and the Mathieu Conjecture, J. of Pure and Applied Algebra 214 (2010), no. 7, 1200–1216.
[12] Wenhua Zhao, Mathieu Subspaces of Associative Algebras. J. Algebra 350 (2012), no. 2, 245-272. [MR2859886].

H. Derksen, Department of Mathematics, University of Michigan, USA. Email: hderksen@umich.edu

A. van den Essen, Department of Mathematics, Radboud University Nijmegen, The Netherlands. Email: A.vandenEssen@math.ru.nl

W. Zhao, Department of Mathematics, Illinois State University, Normal, IL 61761. Email: wzhao@ilstu.edu