There is non-conclusive evidence from systematic reviews of randomized controlled trials highlighting that a perioperative fraction of inspired oxygen (FiO2) ≥ 60% confers a greater mortality risk [1]. In the context of critically ill patients, mostly observational studies have addressed mortality risk in patients managed under hyperoxemia—defined differently as partial arterial pressure of oxygen (PaO2) greater than 100 mmHg to 487 mmHg—finding a higher mortality risk in these patients [2]. Potential mechanisms of damage by hyperoxemia have recently been reviewed by Singer et al. [3].

For these reasons, recent findings by Martín-Fernández et al. [4] are noteworthy since they found that patients admitted to the ICU after major surgery who had a PaO2 > 100 mmHg for more than 48 h had lower 90-day mortality rates than those with a PaO2 ≤ 100 mmHg, being associated with a lower adjusted mortality risk. The famous Sagan standard says that “extraordinary claims require extraordinary evidence.” Unfortunately, we believe that the claims by Martín-Fernández et al. were not supported by extraordinary evidence for several methodological and statistical reasons, most of which have previously been covered by editors of respiratory, sleep, and critical care journals [5].

One strategy to diminish confounding is multivariable regression adjustment. Unfortunately, the authors only adjusted their models for variables that had a p-value < 0.1 in univariate analyses. This approach is not recommended since it does not adequately control for known confounding variables [5]. Building causal diagrams a priori is a better way of selecting appropriate confounding variables to adjust for. Furthermore, they categorized a discrete quantitative variable (APACHE-II) which, if not categorized, could have resulted in different model results. It is not clear whether the authors verified statistical assumptions before creating their models, which is particularly important since APACHE-II and age were both included for adjustment of the models and are at a high risk of collinearity [7]. Regarding the model election, it is unclear why the authors preferred a logistic regression model over a Cox regression analysis which would have been a more appropriate model to apply since they had time-to-event data.
We were very intrigued since Martín-Fernández et al. reported that patients in both groups had a FiO₂ of 0.5 with little-to-no variance, without reporting peripheral oxygen saturation (SpO₂). The authors need to clarify whether all patients at their center are managed with the same FiO₂ regardless of their SpO₂. Otherwise, this could suggest this study was not observational, but instead experimental which would raise important ethical issues. Noteworthy, there is a published thesis associated with the same ethics approval number (PI 20–2070), reporting the same number of patients, but with important differences in selection criteria since there is no mention of patients having met 48 h with the same PaO₂ with little-to-no variance, without reporting peripheral oxygen saturation.

Furthermore, since the statistical methods in both the thesis and the paper were the same, it is not clear why the variables for adjustment in both works were different.

We truly believe that these questions may compromise the findings by Martín-Fernández et al. Thus, we requested the dataset from the authors to perform re-analyses and verify these points. Similar to many data sharing requests, our enquiry was rejected by the authors without clear responses to our worries, reflecting the breach that exists between current data availability statements in medical journals and actual data sharing practices [9].

Acknowledgements
None.

Authors’ contributions
MAGG contributed to conception of the idea, coordination, manuscript preparation, and manuscript review. JMG contributed to conception of the idea, coordination, literature search, manuscript preparation, and manuscript review. AKG contributed to literature search, manuscript preparation, and manuscript review. LAMV contributed to literature search and manuscript preparation. EIZL contributed to manuscript review. ORPN contributed to conception of the idea and manuscript review. All authors read and approved the final manuscript.

Funding
None.

Availability of data materials
Not applicable.

Declarations

Ethical approval and consent to participate
Not applicable.

Consent for publication
All the authors have given the consent for publication.

Competing interests
The authors declare no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References
1. Wetterslev J, Meyhoff CS, Jorgensen LN, Gluud C, Lindshou J, Rasmussen LS. The effects of high perioperative inspiratory oxygen fraction for adult surgical patients. Cochrane Database Syst Rev. 2015;2015:CD008884.
2. NI Y-N, Wang Y-M, Liang B-M, Liang Z-A. The effect of hyperoxia on mortality in critically ill patients: a systematic review and meta analysis. BMC Pulm Med. 2019;19:53.
3. Singer M, Young PJ, Laffey JG, Asfar P, Taccione FS, Skrifvars MB, et al. Dangers of hyperoxia. Crit Care. 2021;25:440.
4. Martín-Fernández M, Heredia-Rodríguez M, González-Jiménez I, Lorenzo-López M, Gómez-Pesquera E, Poves-Álvarez R, et al. Hyperoxemia in post-surgical sepsis/septic shock patients is associated with reduced mortality. Crit Care. 2022;26:4.
5. Lederer DJ, Bell SC, Branson RD, Chalmers JD, Marshall R, Maslove DM, et al. Control of confounding and reporting of results in causal inference studies. Ann Am Thorac Soc. 2019;16:22–8.
6. Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci. 2010;25:1–21.
7. Vatcheva KP, Lee M. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiol. 2016;06:227.
8. González-Jiménez I, Tamayo-Gómez E, Martín-Fernández M. Efecto de la Presión Parcial de Oxígeno sobre la Mortalidad en los Enfermos con Infecciones Graves. Universidad de Valladolid, 2021. https://uvadoc.uva.es/bitstream/handle/10324/47509/TFG‑M2132.pdf?sequence=1
9. Tedersoo L, Kungas R, Oras E, Koster K, Eenmaa H, Leijen Å, et al. Data sharing practices and data availability upon request differ across scientific disciplines. Sci Data. 2021;8:192.

Ready to submit your research? Choose BMC and benefit from:
- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions