Supplemental Materials for:

Parallel evolution of sperm hyper-activation Ca\(^{2+}\) channles

Jacob C. Cooper\(^*\) and Nitin Phadnis\(^1\)

\(^1\)Department of Biology, University of Utah

*address correspondence to:

Jacob C. Cooper, 257 South 1400 East, Department of Biology, University of Utah, Salt Lake City, UT 84112; tel: (801) 585-0493; email: jacob.cooper@utah.edu

This PDF includes:

- Supplemental Figures 1-6
- Supplemental Tables 1-5
Supplementary Figure 1: Every CatSper gene shows patterns of positive selection in the primate phylogeny. PAML model 0 dN/dS values are labeled on each branch, and branches where dN/dS>1 are in bold and colored. Branch color for each gene corresponds to the color code from Figure 1. In cases where dS=0 (causing dN/dS to be infinite), the number of non-synonymous (N*dN) and synonymous (S*dS) changes is reported instead. The values from this figure are summarized in Figure 1A.
| Species | Sequence |
|---------|----------|
| Hsap | MESPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSNKGFPQENEIIKLY 50 |
| Caty | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Panu | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Mfas | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Mmul | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Ppan | MESPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Ggor | MESPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Ptro | MESPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Nleu | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Cjac | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Cang | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Ccap | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Mleu | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Csab | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Nlar | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |
| Pabe | MELPLIYVSVLLLNIFEFSSGIVYNKDTEKRFACSSKGYPQETEIIKLF |

** **:***: *.:***** ***** ***:****:.** **:.*:***.

Species	Sequence
Hsap	LFLENLKIQCFFQTENIEASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN 100
Caty	LFSGNLKIQCFFQTENIEASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Panu	LFSGNLKIQCFFQTENIEASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Mfas	LFSGNLKIQCFFQTENIEASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Mmul	LFSGNLKIQCFFQTENIEASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Ppan	LFLENLKIQCFFQTENIEASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Ggor	LFLENLKIQCFFQTENIEASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Ptro	LFLENLKIQCFFQTENIEASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Nleu	LFLENLKIQCFFQTENIEASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Cjac	LFSENGLHIQCFFQTENELASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Cang	LFSGNLKIQCFFQTENELASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Ccap	LFSENLHIQCFFQTENELASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Mleu	LFSGNLKIQCFFQTENELASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Csab	LFSGNLKIQCFFQTENELASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Nlar	LFSGNLKIQCFFQTENELASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN
Pabe	LFSENLHIQCFFQTENELASKMLSVFTSGGLAPSLGIMNSTYNGIFHFN

** **:***: *.:***** ***** ***:****:.** **:.*:***.

Species	Sequence
Hsap	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL 150
Caty	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Panu	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Mfas	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Mmul	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Ppan	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Ggor	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Ptro	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Nleu	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Cjac	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Cang	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Ccap	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Mleu	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Csab	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Nlar	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL
Pabe	LTLFSDRILWVDIPRENTQSTDIAAVEEWLVRITLHHLNIYATEGTL

** **:***: *.:***** ***** ***:****:.** **:.*:***.
	Hsap	LDVIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV	200
Caty	LDRIRPEPILQWAPGVEIPASEMGKIYPHVVDLKVTKCPACNDVALLGFVM		
Panu	LDRIRPEPILQWALGEIPASEMGKIYPHVVDLKVTKCPACNDVALLGFVM		
Mfas	LDRIRPEPILQWALGEIPASEMGKIYPHVVDLKVTKCPACNDVALLGFVM		
Mmul	LDRIRPEPILQWALGEIPASEMGKIYPHVVDLKVTKCPACNDVALLGFVM		
Ppan	LDRIRPEPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		
Ggor	LDIIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		
Ptro	LDVIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		
Nleu	LDVIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		
Cjac	LDVFIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		
Cang	LDVFIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		
Ccap	LDVFIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		
Mleu	LDVFIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		
Csab	LDVFIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		
Nlar	LDVFIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		
Pabe	LDVFIREPILQWTPGDVIPESEISKLYPHVDLKVTKCPACNDVALLGFIV		

	Hsap	DTIVDGVYIGITFGGFWHDYDATTWFNMTQTIYSQLQEEYEDLSLVDMVLT	250
Caty	DALLDGVYIGITFGGFWHDYDATTWFNMTQTIYSQLQEEYEDLSLVDMVLT		
Panu	DALLDGVYIGITFGGFWHDYDATTWFNMTQTIYSQLQEEYEDLSLVDMVLT		
Mfas	DALLDGVYIGITFGGFWHDYDATTWFNMTQTIYSQLQEEYEDLSLVDMVLT		
Mmul	DALLDGVYIGITFGGFWHDYDATTWFNMTQTIYSQLQEEYEDLSLVDMVLT		
Ppan	DTIVDGVYIGITFGGFWHDYDATTWFNMTQTIYSQLQEEYEDLSLVDMVLT		
Ggor	DTIVDGVYIGITFGGFWHDYDATTWFNMTQTIYSQLQEEYEDLSLVDMVLT		
Ptro	DTIVDGVYIGITFGGFWHDYDATTWFNMTQTIYSQLQEEYEDLSLVDMVLT		
Nleu	DTIVDGVYIGITFGGFWHDYDATTWFNMTQTIYSQLQEEYEDLSLVDMVLT		
Cjac	DSVKGYVYMGMTFGGWYHAYTWINVTETIYSHLNEEHEGLSVDVMVLT		
Cang	DSVKGYVYMGMTFGGWYHAYTWINVTETIYSHLNEEHEGLSVDVMVLT		
Ccap	DSVKGYVYMGMTFGGWYHAYTWINVTETIYSHLNEEHEGLSVDVMVLT		
Mleu	DSVKGYVYMGMTFGGWYHAYTWINVTETIYSHLNEEHEGLSVDVMVLT		
Csab	DSVKGYVYMGMTFGGWYHAYTWINVTETIYSHLNEEHEGLSVDVMVLT		
Nlar	DSVKGYVYMGMTFGGWYHAYTWINVTETIYSHLNEEHEGLSVDVMVLT		
Pabe	DSVKGYVYMGMTFGGWYHAYTWINVTETIYSHLNEEHEGLSVDVMVLT		

	Hsap	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYNE	300
Caty	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Panu	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Mfas	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Mmul	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Ppan	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Ggor	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Ptro	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Nleu	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Cjac	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Cang	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Ccap	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Mleu	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Csab	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Nlar	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Pabe	NHFLVILTSLGLFLFSEDLSRHPYRSHLFSRSRADFGFVERVYVGKGLWYSE		
Species	Sequence	Length
Hsap	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Caty	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPYIFKG	350
Panu	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPYVFKG	350
Mfas	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPYVFKG	350
Mmul	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPYVFKG	350
Ppan	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Ggor	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Ptro	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Nleu	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Cjac	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Cang	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Ccap	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Mleu	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Csab	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Nlar	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350
Pabe	RCFANREHFEVDYVTVTFERNRTLSESSSCFYSQEPLLEWVPCLPHIFKG	350

Species	Sequence	Length
Hsap	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Caty	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Panu	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Mfas	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Mmul	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Ppan	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Ggor	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Ptro	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Nleu	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Cjac	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Cang	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Ccap	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Mleu	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Csab	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Nlar	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Pabe	IFRFPSSFSSPVGMVFHRPHSHFLYAYGNIWLSVDGGNTFQILANFHDDI	450
Hsap IKKTFHSFYSAITFVSRQGKVYSTKAGMGRYSAVGSVTERIFTLYDHL
Caty IKKSFHSFYSAITFVSRQGKVYTKGMRHGSAGTVKETIRFTLIFDYDHL
Panu IKKTFHSFYSAITFVSRQGKVYTKGMRHGSAGTVKETIRFTLIFDYDHL
Mfas IKKTFHSFYSAITFVSRQGKVYTKGMRHGSAGTVKETIRFTLIFDYDHL
Mmul IKKTFHSFYSAITFVSRQGKVYTKGMRHGSAGTVKETIRFTLIFDYDHL
Ppan IKKTFHSFYSAITFVSRQGKVYSTKAGMGRYSAVGSVTERIFTLYDHL
Ggor IKKTFHSFYSAITFVSRQGKVYSTKAGMGRYSAVGSVTERIFTLYDHL
Ptro IKKTFHSFYSAITFVSRQGKVYSTKAGMGRYSAVGSVTERIFTLYDHL
Nleu IKKTFHSFYSAITFVSRQGKVYSTKAGMGRYSAVGSVTERIFTLYDHL
Cjac ISRTFHSFYSAITFVSRQGKVYSTKAGLGRYAAAGSVNDRIFTLYDHL
Cang IKKTFHSFYSAITFVSRQGKVYSTKAGMGRHAGTVKETIRFTLIFDYDHL
Ccap ISKTFHSFYSAITFVSRQGKVYSTKAGLGRYTAAGSVNDRIFTLYDQL
Mleu IKKSFHSFYSAITFVSRQGKVYSTKAGMGRHAGTVKETIRFTLIFDYDHL
Csab IKKTFHSFYSAITFVSRQGKVYSTKAGMGRYSAVGSVTERIFTLYDHL
Nlar IKKTFHSFYSAITFVSRQGKVYSTKAGMGRYSAVGSVTERIFTLYDHL
Pabe IKKTFHSFYSAITFVSRQGKVYSTKAGMGRYSAVGSVTERIFTLYDHL

Hsap GFLHKLTLGRFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Caty GFLHKLTPGHFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Panu GFLHKLTPGHFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Mfas GFLHKLTPGHFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Mmul GFLHKLTPGHFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Ppan GFLHKLTPGHFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Ggor GFLHKLTPGHFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Ptro GFLHKLTPGHFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Nleu GFLHKLTPGHFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Cjac GFLHKLTPDNFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Cang GFLHKLTPDNFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Ccap GFLHKLTPDNFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Mleu GFLHKLTPDNFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Csab GFLHKLTPDNFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Nlar GFLHKLTPDNFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII
Pabe GFLHKLTPDNFEASGPPTAFGNSRNLFQGPPDMGFETALAPQHTSDELII

Hsap FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Caty FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Panu FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Mfas FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Mmul FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Ppan FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Ggor FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Ptro FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Nleu FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Cjac FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Cang FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Ccap FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Mleu FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Csab FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Nlar FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Pabe FFAYVPENPQTIYSKFFGNIHYGKVIHSGKTGRAYIRKVLQHHTTPGKF
Hsap RNAKGFRMLEIPLLTVFVGNPNLLEVTAEVTDFDDTSDYVITISAASKVLH
Caty RNSKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ
Panu RNSKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ
Mfas RNSKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ
Mmul RNSKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ
Ppan RNAKGFRMLEIPLLTVFVGNPNLLEVTAEVTDFDDTSDYVITISAASKVLQ
Ggor RNAKGFRMLEIPLLTVFVGNPNLLEVTAEVTDFDDTSDYVITISAASKVLQ
Ptro RNAKGFRMLEIPLLTVFVGNPNLLEVTAEVTDFDDTSDYVITISAASKVLQ
Nleu RNAKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ
Cjac RNAKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ
Cang RNAKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ
Ccang RNAKGIRKLEIPLLTVFVGNPNLLDVKAEVTFDDTDSYVVTISAASKLLH
Mleu RNSKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ
Csab RNSKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ
Nlar RNAKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ
Pabe RNAKGFRMLEIPLLTVFVGNPNLLEVKAEAAFDDTDSYLIAISAASKVLQ

Hsap QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Caty QGSTSMAFIMWSASVECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Panu QGSTSMAFIMWSASVECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Mfas WGSTSVAFIMWSASAECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Mmul WGSTSVAFIMWSASAECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Ppan QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Ggor QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Ptro QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Nleu QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Cjac QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Cang QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Ccang QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Mleu QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Csab QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Nlar QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI
Pabe QGSTSLAFIMWSASTECFVTTMVTLLKSSCYSLLRSMHHIPSFPFEDWI

Hsap SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Caty SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Panu SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Mfas SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Mmul SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Ppan SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Ggor SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Ptro SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Nleu SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Cjac SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Cang SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Ccang SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Mleu SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Csab SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Nlar SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Pabe SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF

****:********:**.********* *****.***********:** ****

Hsap SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Caty SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Panu SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Mfas SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Mmul SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Ppan SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Ggor SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Ptro SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Nleu SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Cjac SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Cang SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Ccang SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Mleu SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Csab SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Nlar SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF
Pabe SGVHKDSQGFNILKTLPINRPPSNMGIAIPLTDFNYHADPSKIPFPRNMF

****:********:**.********* *****.***********:** ****
	Sequence	Length
Hsap	HMSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	950
Caty	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	1000
Panu	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	1050
Mfas	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Mmul	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Ppan	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Ggor	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Ptro	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Nleu	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Cjac	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Cang	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Ccap	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Mleu	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Csab	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Nlar	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	
Pabe	HLSKKGKFKQCANVSTREECNCTKDFKGFHAVAFSDCREKFPKRFPIT	

	Sequence	Length
Hsap	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	950
Caty	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	1000
Panu	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	1050
Mfas	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Mmul	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Ppan	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Ggor	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Ptro	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Nleu	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Cjac	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Cang	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Ccap	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Mleu	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Csab	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Nlar	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	
Pabe	QYPVSIEINEDGRPQLQSLPVTLTVETVEMNRHNWLHTKEPIKMKKQFVDE	

	Sequence	Length
Hsap	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	1050
Caty	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Panu	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Mfas	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Mmul	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Ppan	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Ggor	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Ptro	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Nleu	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Cjac	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Cang	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Ccap	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Mleu	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Csab	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Nlar	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	
Pabe	VEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	

	Sequence	Length														
Hsap	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	950														
Caty	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	1000														
Panu	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE	1050														
Mfas	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Mmul	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Ppan	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Ggor	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Ptro	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Nleu	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Cjac	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Cang	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Ccap	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Mleu	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Csab	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Nlar	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Pabe	LEPILGAAYVPNGLSNSIKGSELHFHRVTISGVTFCNLIELFFQIYVDE															
Species	Hsap	Caty	Panu	Mfas	Mmul	Ppan	Ggor	Ptro	Nleu	Cjac	Cang	Ccap	Mleu	Csab	Nlar	Pabe
---------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------
Amino acids	APLFPFGHTLIAVAVVLGGLIFMAFMFQHLGIHPWKTQWIRRKQAK															
	FSSISLSELIHRSKSEEX	FSSITLSELIRRKXSEEX	LSSITLSELIRRXKSEEX	LSSITLSELIRRXKSEEX	LSSITLSELIRRXKSEEX	FSSISLSELIHRSKSEEX										

Supplementary Figure 2: *CATSPERβ* protein sequences align well across primates despite high levels of amino-acid divergence. This alignment for 16 primate species was generated with CLUSTAL Omega with default settings.
Supplementary Figure 3: Branch model analysis of Dpkd2. dN/dS values are labeled on each branch.

Supplementary Figure 4: *Drosophila pkd2* has indel variation in the *D. melanogaster* sub-group. *pkd2* is represented as a linear bar. Light grey sections indicate intracellular segments, while dark grey represents extracellular segments. Blue boxes represent the transmembrane domains, and the green box represents the C-terminal coiled coil domain. We split the gene into four segments for these analyses, as indicated by the brackets. Measurements were taken from the melanogaster sub-group. Ratios represent the rate of change of each segment compared to the rate of change of the whole gene. A higher value means that a specific region of the gene changes in length more than the average change in length of the gene. The extracellular domain explains a disproportionate amount of the change in length compared to the other segments of *pkd2*.
Supplementary Figure 5: Primate PKD2 does not show signs of recurrent selection. A) *Drosophila pkd2* is correctly grouped with the primate PKD2 genes in a maximum likelihood tree for the primate PKD and CatSper genes. Bootstrap values were calculated from 1000 iterations of the tree. B) Estimation of dN/dS for primate PKD2 along the primate phylogeny using the PAML branch model shows no branches with elevated dN/dS. C) The M7-M8 log likelihood test does not reject the null model of neutral or purifying selection for primate PKD2. Both *Drosophila pkd2* and primate PKD2 are represented as bars, with transmembrane domains in blue and the coiled coil domain in green. The red box in primate PKD2 is an EF-Hand domain that is not predicted to be present in *Drosophila pkd2*.
Supplementary Figure 6: Pipeline for homolog search and molecular evolutionary analyses. We used the first part of the pipeline to generate alignments for running the branch model of PAML. For the CatSper genes we ran the pipeline two ways: first without the 95% length filter to acquire sequences from every branch of the phylogeny for estimating dN/dS, and second with the 95% length filter for running the NSsites model tests.
Gene	species used	aligner	% aligned	Model 7 (β)	Model 8 (β+ω)	2ΔlnL	M7/M8 P-value	Model 8a (β+ω=1)	2ΔlnL (M8/M8a)	M8/M8a P-value
Catsper1	13	T-Coffee	92	-5954.560347	-5951.450387	6.220	0.0446	-5953.649166	4.40	0.0360
Catsper2	13	Clustal	99	-3960.619099	-3950.714800	19.81	4.996 E-5	-3960.617504	19.85	8.574 E-7
Catsper3	16	Muscle	98	-3354.750380	-3339.138875	31.22	1.660 E-7	-3354.057504	29.84	4.69 E-8
Catsper4	17	Muscle	96	-3947.619450	-3942.513649	10.21	0.0061	-3946.599674	8.17	0.00425
Catsperβ	16	T-Coffee	99	-8764.288301	-8743.208070	42.16	6.998 E-10	-8764.112789	41.81	1.006 E-10
CatsperΔ	12	T-Coffee	77	-6735.581784	-6678.633488	113.90	p < 1.0 E-21	-6734.887825	112.90	p < 1.0 E-21
Catsperγ	10	Clustal	99	-7796.750878	-7784.410876	24.68	4.373 E-6	-7796.674927	24.53	7.323 E-7
Catsperε	11	Clustal	98	-7563.057369	-7536.058409	54.00	1.881 E-6	-7561.730546	51.34	7.750 E-13
Catsperζ	17	Muscle	86	-1411.584002	-1408.224779	6.718	0.03476	-1411.410441	6.37	0.0116

Supplementary Table 1: PAML NSites results for CatSper genes. The highest (least significant) p-value, and the corresponding aligner is reported, along with the proportion of the original alignment and the number of species used in these analyses.
Supplementary Table 2: Sites under selection in each of the CatSper proteins. Each reported amino acid corresponds to the position and amino acid of the *H. sapeins* full amino acid sequence.

Gene	Length (aa)	Sites under selection*, BEB > 0.90	Total sites	Extracellular Sites	Intracellular Sites
Catsper1	780	none	0	0	0
Catsper2	530	63V, 65G, 134E, 175F, 310Q, 384M, 388A, 425E, 447S, 455S, 469I	11	2	9
Catsper3	398	50R, 116L, 131L, 140T, 202P, 204N, 240E	7	4	3
Catsper4	472	166I, 451V, 474Q	3	0	3
Catsperβ	1116	57K, 130E, 141L1 153V 163P, 175L, 203I, 211I, 220Y, 229Q, 236Q, 273R, 274H, 275S, 277S, 351I, 353I, 354F, 378R, 382I, 395S, 443I, 448D, 483S, 487S, 510R, 570G, 651D, 686S, 724H, 756R, 790T, 799H, 800Q, 814T, 845F, 857Q, 898M, 901M, 925D, 922N, 1004L, 1081Q, 1100F	44	42	2
CatsperΔ	798	48H, 589W, 590R, 591K	4	4	0
Catsperγ	1159	158P, 212R, 392S, 397I, 415T, 441D, 617H	7	7	0
Catsperɛ	968	66T, 94F, 95V, 96E, 109H, 110F, 111F, 161V, 268K	9	9	0
Catsperζ	160	108R, 136K	2	NA	2
Species	Strain	Source / Location			
-----------------	--------------	------------------------------------			
D. melanogaster	w^{118}	Bloomington Stock Center			
D. melanogaster	Iso female 95	Lake Kariba, Zimbabwe			
D. melanogaster	Iso female 159	Lake Kariba, Zimbabwe			
D. melanogaster	Iso female 216	Lake Kariba, Zimbabwe			
D. melanogaster	Iso female 346	Lake Kariba, Zimbabwe			
D. melanogaster	Iso female 13	70Km East of Wanie-Rukula, Congo			
D. melanogaster	Iso female 18	70Km East of Wanie-Rukula, Congo			
D. melanogaster	Iso female 26	70Km East of Wanie-Rukula, Congo			
D. simulans	w^{501}	UCSD Stock Center			
D. simulans	Iso female 15	70Km East of Wanie-Rukula, Congo			
D. simulans	Iso female 17	70Km East of Wanie-Rukula, Congo			
D. simulans	Iso female 20	70Km East of Wanie-Rukula, Congo			
D. simulans	Iso female 23	70Km East of Wanie-Rukula, Congo			
D. simulans	Iso female 24	70Km East of Wanie-Rukula, Congo			
D. simulans	Iso female 4	70Km East of Wanie-Rukula, Congo			
D. simulans	Iso female 5	70Km East of Wanie-Rukula, Congo			

Supplementary Table 3: D. melanogaster and D. simulans lines used for the McDonald-Kreitman test.
Supplementary Table 4: Statistics for the tests of recurrent selection for *Drosophila pkd2*. The $2\Delta\ln L$ and highest p-value are reported in Figure 2.

ME test	species used	aligner	% aligned	Model 7 (β)	Model 8 ($\beta+\omega$)	$2\Delta\ln L$	p-value	Model 8a ($\beta+\omega=1$)	$2\Delta\ln L$ (M8/M8a)	M8/M8a P-value
PAML	17	T-Coffee	83	-16893.966863	-16886.458028	15.02	0.00027	-16893.643337	14.37	0.00038
BUSTED	17	T-Coffee	83	-	-	-	0.0020	-	-	-

Supplementary Table 5 - PAML NSsite models for the primate PKD genes.

Gene	Model 7 (β)	Model 8 ($\beta+\omega$)	$2\Delta\ln L$	Highest p-value	aligner	% aligned	species used
PKD1	-27906.531879	-27906.532368	0.00	0.99	Clustal	98	7
PKD2	-5282.345595	-5282.345601	0.00	0.99	Clustal	99	11
PKD1L1	-18036.543699	-18031.994118	9.099	0.0106	Muscle	99	7
PKD1L2	NA	NA	NA	NA	Clustal	NA	1
PKD1L3	-10781.582277	-10754.534889	54.09	1.79 E -12	Clustal	99	9
PKD2L1	-5286.140128	-5285.175660	1.929	0.3811	Clustal	96	19
PKD2L2	-3766.462705	-3764.291786	4.342	0.114	Clustal	96	17