Pilot survey of hen eggs consumed in the metropolitan area of Rio de Janeiro, Brazil, for polyether ionophores, macrolides and lincosamides residues

Bernardete Ferraz Spisso*, Mararlene Ulberg Pereira, Rosana Gomes Ferreira, Mychelle Alves Monteiro, Rafaela Pinto da Costa, Tatiana Avila Cruz and Armi Wanderley da Nobrega

National Institute for Quality Control in Health/Oswaldo Cruz Foundation (INCQS/FIOCRUZ), Av. Brasil 4365, Rio de Janeiro, RJ, Brazil

(Received 1 June 2010; final version received 9 October 2010)

A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method, which has recently been developed and validated, was used for the identification and quantification of polyether ionophore, macrolide and lincosamide residues in commercial eggs sold in the metropolitan area of Rio de Janeiro, Brazil. The method was applied to 100 samples and the results showed a high incidence of polyether ionophore residues (25%). Salinomycin was detected in 21% of samples, but only two non-compliant results (5.3 and 53 µg kg⁻¹) were found if maximum limits (tolerances) established by European Union were adopted in Brazil and if a method decision limit (CC₁₀) of 3.4 µg kg⁻¹ was considered. In 8% of analyzed samples, more than one studied coccidiostat was found. The lincosamide, lincomycin, and the macrolide, tylosin, were detected at trace levels in 4 and 1% of the samples, respectively. Lasalocid, clarithromycin and erythromycin were not found.

Keywords: eggs; veterinary drug residues, antibiotics, tylosin

Introduction

Eggs are an important source of animal protein and also contribute to everyday needs for minerals, vitamins and fatty acids. The consumption of eggs has increased in Brazil despite prejudices in relation to their intake. In 2007, per capita annual consumption was 132 eggs – unimpressive when compared to Mexico (375 eggs), Japan (347 eggs) and USA (258 eggs) (Quevedo 2009) – even though Brazil was seventh in the world ranking of egg producers, only behind China, USA, India, Japan, Mexico and Russian (FAO 2009). The egg export sector has increased significantly since 2004; thus, to participate in the strictest markets, such as European Union, Brazil’s egg production chain needs to monitor quality, wholesomeness, traceability and animal welfare standards and control residues and contaminants in hen eggs.

Macrolides, lincosamides and polyether ionophores antibiotics are administered via feed or drinking water to prevent or treat bacterial and coccidial infection diseases in poultry and other food-producing animals. However, the failure to follow good veterinary practices or cross-contamination of feed can lead to potentially harmful levels of residues in commercial eggs. Unlike polyether ionophores, which are used only in animals, the other mentioned classes of veterinary drugs are also used in humans, increasing concerns of cross-resistance with respect to foodborne pathogens and reinforcing the continuance of research on the impact of antibiotic use in agricultural on resistance (American Society for Microbiology 2009).

The ionophore coccidiostats are registered in Brazil as follows: lasalocid (LAS) for chickens, turkeys, beef cattle, ovine and rabbits; monensin (MON) for chickens, turkeys and beef cattle; salinomycin (SAL) for poultry and quail and maduramicin (MAD), narasin (NAR) and semduramicin (SEM) for chickens only (Brasil 2008). Use of the macrolide, tylosin (TYL), the lincosamide, lincomycin (LIN) and the coccidiostats, LAS and MON, as zootechnical feed additives, among other drugs, is prohibited in Europe, but allowed in Brazil to improve the rate of growth and efficiency of feed utilization in swine (LIN, SAL, TYL, ERY), chickens (LIN, TYL), laying hens (TYL), ovines (MON), beef cattle (LAS, MON, SAL) and dairy calves (LAS, MON) (Brasil 2008). For the lincosamides, there are veterinary medicinal products registered in Brazil to treat and control infections in laying hens based on the association of lincomycin and spectinomycin, with the recommendation that the eggs must be discarded 10 days after the last administration. Other products based on the same association are not indicated for animals producing eggs for human consumption. Macrolide-based products, mainly

*Corresponding author. Email: bernardete.spisso@incqs.fiocruz.br

ISSN 1939–3210 print/ISSN 1939–3229 online
© 2010 Taylor & Francis
DOI: 10.1080/19393210.2010.531400
http://www.informaworld.com
tylosin-based, are generally not for use in laying hens (Compêndio de Produtos Veterinários 2009).

A search of the Rapid Alert System for Food and Feed (RASFF) online database showed that residues of tylosin (7.3 mg kg\(^{-1}\)) were found in whole fresh liquid eggs from Spain in 2008. In 2007, lasalocid (5 μg kg\(^{-1}\)) was detected in quail eggs from France and, in 2006, salinomycin (4 μg kg\(^{-1}\)) was detected in raw eggs from Poland (RASFF 2010). Polyether ionophores are not for use in animals from which eggs are produced for human consumption, but the occurrence of residues in eggs is well documented. Monitoring results in several countries have revealed that it was mainly due to cross-contamination of feed for poultry reared for meat production (Kennedy et al. 1996, 1998a,b; Lynas et al. 1998; Rösen 2001; Mortier et al. 2005a). Assuming that feed cross-contamination was unavoidable and to protect public health and assure good functionality of the domestic market in Member States, the Commission of the European Communities (2009) recently established maximum limits (ML) or tolerances for coccidiostats in foodstuffs as follows: for cod liver oil, EU MRLs can be defined for eggs. Tolerance levels for LAS and MON in eggs are not required by US regulations, but MRLs due limits (MRL) defined by Regulations (EC) No. 470/2009 (European Parliament and Council of the European Union 2009) and No. 37/2010 (European Commission 2010), which lists a MRL of 150 μg kg\(^{-1}\) in eggs for LAS alone, among the polyether ionophores. European Union (EU) MRLs of 150, 200 and 50 μg kg\(^{-1}\) for ERY, TYL and LIN, respectively, are defined for eggs. Tolerance levels for LAS and MON in eggs are not required by US regulations, but MRLs of 200 μg kg\(^{-1}\) for TYL and 25 μg kg\(^{-1}\) for ERY have been established for this matrix (US Code of Federal Regulations 2009). In Brazil, the MRLs are generally those recommended by Codex Alimentarius. Since no Codex MRL or ML has previously been set for polyether ionophores in eggs, EU limits can be adopted. Regarding macrolides, a MRL of 300 μg kg\(^{-1}\) of TYL in eggs was proposed by Codex (Codex Alimentarius Commission 2009a). Table 1 summarizes the tolerances and the MRLs for the studied drugs in eggs adopted by the various authorities.

Although significant endeavors have been made in Brazil in recent years as regards food safety issues, currently eggs are screened by the National Residues and Contaminants Control Plan of the Secretariat of Animal and Plant Health and Inspection of the Ministry of Agriculture, Livestock and Food Supply only for nitrofuran metabolites, chloramphenicol and sulfonamides (Brasil 2010). Hence, coccidiostats and a wider range of antibiotics need to be evaluated.

To the best of our knowledge, no data on the presence of polyether ionophores, macrolides or lincosamides residues in Brazilian eggs is available in the literature. Therefore, the aim of this study was to determine the occurrence and contamination level of 10 drugs from the three mentioned classes in eggs sold within the metropolitan area of Rio de Janeiro. The analyses were carried out with an in-house-validated liquid chromatographic–tandem mass spectrometric (LC–MS/MS) method (Spisso et al. 2010) applied to a hundred samples.

Materials and methods

Sample collection and preparation

Since no previous information was available, analytical and economic considerations were also taken into account when adopting the statistically based Codex sampling strategy (Codex Alimentarius Commission 2009b). The number of samples for non-biased sampling admitted a defined confidence of 99% that the prevalence of non-compliant results in the general population would not exceed a percentage of 5%. As the minimum number of samples following these statements is 90, a total of 100 samples were collected. Samples (sample size of 12 eggs) of 33 brands and different lots of shell eggs were purchased from retail markets in the Rio de Janeiro metropolitan region between November and December 2009. Whole eggs were homogenized, transferred into first-use polypropylene bottles and stored at −80°C until analysis.

Chemicals and materials

Methanol (MeOH) and acetonitrile (ACN) were HPLC grade and obtained from J.T. Baker (Phillipsburg, NJ, USA) and Merck (Darmstadt, Germany). HPLC–MS/MS grade formic acid and acetic acid were obtained from Sigma-Aldrich (St. Louis, MO, USA). Methyl methanesulfonate (MMS) was obtained from Sigma-Aldrich (St. Louis, MO, USA). All other reagents were of analytical grade.

Table 1. MRLs and MLs (tolerances) values for the studied antibiotics in eggs.

Analyte	EU	US	Codex Alimentarius
LAS	150	n.r.	–
MAD	2*	–	–
MON	2*	n.r.	–
NAR	2*	–	–
SAL	3*	–	–
SEM	2*	–	–
CLA	–	–	–
ERY	150	25	–
TYL	200	200	300
LIN	50	–	–

Note: *MLs (tolerances); n.r. = not required.
Germany), respectively. Sodium acetate (NaOAc) and formic acid (FOA) were Merck Suprapur® reagents. Ultra pure water was provided by a Milli-Q system (Millipore, Bedford, MA, USA). Narasin (NAR), salinomycin (SAL) and nigericin sodium (NIG) were supplied by Sigma-Aldrich (St. Louis, MO, USA). The sodium salts of lasalocid (LAS), monensin (MON) and the ammonium salt of maduramicin (MAD) were obtained from Dr. Ehrenstorfer (Augsburg, Germany). The sodium salt of semduramicin (SEM) from Phibro Animal Health was a gift from Dr Petra Gowik (Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Berlin, Germany).

Tylosin tartrate (TYL) and lincomycin hydrochloride (LIN) were certified reference standards from US Pharmacopeial Convention (Rockville, MD, USA). Clarithromycin (CLA) and erythromycin (ERY) were certified reference standards from the Brazilian Pharmacopeial Convention (Santa Maria, RS, Brazil) and WHO Collaborating Centre for Chemical Reference Substances (Stockholm, Sweden), respectively.

Stock standard solutions of 1 mg ml\(^{-1}\), except for LAS (that was prepared at 10 µg ml\(^{-1}\)) as the standard is provided as an acetonitrile solution at 0.1 mg ml\(^{-1}\), were made up by dissolving each standard in methanol and stored in Eppendorf micro-tubes at −80 °C.

Intermediate and working standard solutions were prepared freshly at several concentrations by appropriate dilution of stock standard solutions in methanol.

Sample extraction

To a sample of 2 g of egg, 50 µl of NIG at 0.6 µg ml\(^{-1}\) was added as a surrogate standard to assess possible losses during the analytical procedure. After homogenizing and standing for 10 min, the sample was extracted with 8 ml of acetonitrile (2 × 4 ml portions) using a vortex for 15 s at each solvent addition and a mechanical shaker for 30 min at 240 rpm after the total volume of the solvent has been added. Centrifugation was performed for 5 min at 12,000 g and 4°C. Then, 250 µl of the supernatant was evaporated under nitrogen at 46–48°C, reconstituted with 1 ml of 5 mmol l\(^{-1}\) NaOAc: MeOH (70:30, v/v) and filtered directly to the HPLC vial using a 0.22-µm polyvinylidene fluoride (PVDF) membrane filter.

Calibration curves were constructed by spiking blank samples with six different concentration levels of standards (including zero) and extracting as described for the samples. In addition to standard solutions to verify system suitability, quality control samples, including blank samples and spiked samples at 1 MRL, 1 ML and 1 CC\(_{0}\) (for CLA), were added to the batch to monitor requirements of analytical quality assurance.

Liquid chromatography conditions

HPLC analysis was carried out on a Shimadzu Prominence HPLC instrument (Kyoto, Japan) equipped with a quaternary pump (LC-20AD), a membrane degasser (DGU-20A5), an auto-sampler (SIL-20AC), a column oven (CTO-20AC) and a system controller (CBM-20A). Sample aliquots (stored at 4°C in the auto-sampler) of 5 µl were injected on a 50 × 2.1 mm ACE C\(_{18}\) analytical column (Advanced Chromatography Technologies, Aberdeen, Scotland), with a guard column containing the same sorbent. Gradient elution was performed with water, acetonitrile and methanol all containing 0.1% formic acid (mobile phases A, B and C, respectively) at 35°C and at a flow rate of 0.3 ml min\(^{-1}\). The run started at 7% B, followed by a 4-min linear gradient to 80% B, immediately changed to 95% B (4.10 min), followed by a linear gradient to 100% B at 6 min. This eluent was maintained up to 8 min, when a 0.5-min linear gradient to 100% C was performed. The column was washed for 3 min in 100% C, the initial condition was reestablished in 0.5 min, while 6 min was required to re-equilibrate. The total run time was then 18 min.

Tandem mass spectrometry conditions

A triple quadrupole mass spectrometer, API5000 (Applied Biosystems/MDS Sciex, Foster City, CA, USA), equipped with electrospray ionization (TurboIonSpray® source) was employed in positive multiple reaction monitoring (MRM) acquisition mode, acquiring the three most intense fragment ions. The optimization of MRM parameters was performed by direct infusion of standards. Table 2 shows these parameters. An ionspray potential of 4500 V, an entrance potential of 10 V and a source temperature of 600°C were set. Nitrogen was used as nebulizer and dryer gas (55 psi), as collision gas (10 arbitrary unit) and as Curtain™ gas (10 psi).

Identification and quantitation

The most intense MRM transition was selected for quantification and the two additional MRM transitions monitored for confirmation. Identification of one MRM transition, in addition to the quantitation transition, was considered sufficient for conclusions regarding the detection of the analyte, as described in 2002/657/EC (European Commission 2002). IntelliQuan algorithm in Analyst® software (Applied Biosystems/MDS Sciex) was chosen for peak integration. A signal-to-noise ratio of at least 3 was required for detection of MRM peaks. Samples were considered contaminated when the calculated concentrations were higher than the method limits of detection.
All quantifications were done using matrix-matched calibration curves (samples spiked before extraction) fitted by weighted regression analysis ($1/x^2$ weight) using Analyst®. Thus, recovery corrections were not necessary.

Validation studies

The procedure was validated at five concentration levels around the MRL, ML or the concentration selected as the lowest validation level (LVL): 25–225 mg kg$^{-1}$ for LAS and ERY (corresponding to 0.5–4.5 Codex MRL for ERY and 1/6–1.5 EU MRL for LAS and ERY), 1–5 mg kg$^{-1}$ for MAD, MON, NAR and SEM (corresponding to 0.5–2.5 EU ML), 1.5–7.5 mg kg$^{-1}$ for SAL (corresponding to 0.5–2.5 EU ML), 100–450 mg kg$^{-1}$ for TYL (corresponding to 1/3–1.5 Codex MRL and 0.5–2.25 EU MRL), 25–125 mg kg$^{-1}$ for LIN (corresponding to 0.5–2.5 EU MRL) and 5–15 mg kg$^{-1}$ for CLA (corresponding to 1.0–3.0 LVL). NIG was used as a surrogate compound and to calculate relative retention times. A full description of the validation procedure and results will be reported elsewhere (Spisso et al. 2010). Recoveries over 100% were observed for MAD, MON, NAR, SAL and SEM when spiked samples were calculated against matrix-matched calibration curves constructed with standards added to the dry residues obtained after the extraction and evaporation of the samples. Notwithstanding, recovery corrections were implicitly included in result calculations since matrix-fortified calibration curves (constructed with samples spiked at the beginning of the sample preparation procedure, before sample extraction) were used. Overall RSD was below 12% for all analytes, except for LIN (20 and 22% at 25 and 75 mg kg$^{-1}$, respectively), in repeatability conditions (three different days, same operators). Table 3 summarizes method critical concentrations and overall recoveries. Limits of detection (LOD) and limits of quantification (LOQ) were estimated

Substance	Molecular mass (Da)	Precursor ion (m/z)	Product ion (m/z)	Dwell time (ms)	DP	CE	CXP
LAS A	590.4	613.3	377.3(100)	20	316	49	30
			595.4(39)		39	14	
			577.3(39)		45	20	
MAD a	916.5	939.6	877.5(100)	20	301	45	32
			895.5(17)		65	32	
			859.5(13)		81	30	
MON A	670.4	693.4	675.3(100)	25	341	51	24
			479.3(52)		69	18	
			461.2(47)		67	32	
			531.2(52)		63	20	
NAR A	764.5	787.4	431.2(100)	25	341	73	34
			531.2(52)		63	20	
			403.3(25)		83	16	
NIG	724.5	747.5	703.4(100)	25	341	75	26
			729.4(67)		55	24	
			501.3(38)		77	18	
SAL A	750.5	773.5	431.1(100)	20	346	67	32
			531.1(49)		61	20	
			265.2(49)		71	22	
SEM	872.5	895.5	833.4(100)	20	246	39	20
			705.4(39)		81	18	
			851.5(36)		51	26	
CLA	747.5	748.6	158.1(100)	15	106	37	10
			590.3(46)		37	20	
			116.2(23)		53	22	
LIN	406.2	407.2	126.4(100)	30	166	35	8
			359.3(16)		25	28	
			389.1(4)		23	12	
ERY	733.5	734.5	158.2(100)	15	181	41	12
			576.3(55)		25	20	
			116.2(32)		61	16	
TYL	915.5	916.6	174.2(100)	25	246	51	14
			772.5(45)		39	26	
			116.2(9)		73	16	

Note: DP, declustering potential (V); CE, collision energy (eV); CEP, collision exit potential (V). NIG was used as a surrogate compound.

Table 2. LC–MS/MS parameters for the target analytes. Relative abundances are given in parentheses.
using a signal-to-noise ratio of \(\geq 3 \) and \(\geq 10 \), respectively.

Results and discussion

Baseline resolution was obtained for all peaks. Short dwell times had to be adjusted to give sufficient acquisition data points for correct peak integration, since very sharp peaks were obtained using the described chromatographic conditions. Protonated molecular ions \([\text{M}+\text{H}]^+\) were observed for LIN, ERY, CLA and TYL, while all the ionophores were detected as the sodiated ions \([\text{M}+\text{Na}]^+\), due to their high affinity for mono- and bi-valent metal cations, especially \(\text{Na}^+\). This is consistent with published data (Matabudul et al. 2001, Matabudul and Lumley 2002, Dubois et al. 2004, Mortier et al. 2005b, Dubreil-Chêneau et al. 2009). The reduced injection volume, the dilution of the sample extracts and the improved chromatography reduced but did not eliminated matrix effects, which were negated by using matrix-matched calibration curves (matrix calibration points spiked before extraction).

Table 4 shows the occurrence and levels of antibiotic residues found in the collected samples. Of the 100 samples analyzed, at least one drug was detected in 30 samples (30%). More than one analyte was found in eight samples. NAR and SAL were detected simultaneously in four samples, MON and SAL in one sample, SAL and SEM in two samples and MON, NAR and SAL in one sample. SAL was the residue most frequently found (21% of samples), showing contamination levels ranging between 0.05 \(\mu\text{g kg}^{-1}\) (near LOD) and 53 \(\mu\text{g kg}^{-1}\). SAL mean concentration was 0.90 \(\mu\text{g kg}^{-1}\) (excluding the extreme value of 53 \(\mu\text{g kg}^{-1}\)), around 1/3 of the ML established in EU legislation. LAS was the only polyether ionophore not found in any sample. No samples contained residues of the macrolides ERY and CLA, as was foreseen for CLA since it is not registered for animals reared for food production. TYL was detected at trace levels in one sample only, with an estimated concentration of 0.61 \(\mu\text{g kg}^{-1}\) (near to the LOQ of 0.53 \(\mu\text{g kg}^{-1}\)), well below the Codex MRL of 300 \(\mu\text{g kg}^{-1}\) and the EU MRL of 200 \(\mu\text{g kg}^{-1}\). LIN was detected in four samples, but the mean value did not exceed 1/20 the MRL.

For 87% of contaminated samples (26 of 30 samples), the levels of antibiotics were below the MRLs recommended by either Codex Alimentarius or the European Commission or below European MLs in the case of polyether ionophores. Only 2% of the total number of collected samples (7% of contaminated samples or two of 30 samples) was non-compliant, i.e. the obtained results were higher than CC\(\alpha\). The concentration of SAL exceeded the ML by a factor of over 17 in one sample. This very high concentration (53 \(\mu\text{g kg}^{-1}\)) gives rise to suspicion of abuse of the coccidiostat in laying hens or a severe problem of feed cross-contamination. When the results were evaluated regarding the 33 different commercial brands of eggs, surprisingly, two of the four most contaminated samples with salinomycin were from the same brand (all three samples collected from this brand were contaminated). Also, two other brands showed an incidence of contamination of 100%, as five positive results were found in five collected samples from each brand.

Residues incidence seems to be higher in red (34%) than in white (27%) eggs.

These results confirm the widespread contamination of eggs with residues of polyether ionophores described by several authors. Mortier et al. (2005b)
Table 4. Occurrence and levels of the studied antibiotics in 100 egg samples from markets in Rio de Janeiro.

Analyte	n.d. (<LOD)	LOD to <LOQ	1LOQ to 2LOQ	>2LOQ ≤ CCα	>CCα	Mean ± SD	Minimum	Maximum	Contaminated samples (%)	Violative samples (%)
LAS	100	0	0	0	0	1.33 ± 0	1.33	1.33	0	0
MAD	99	0	1	0	0	0.08 ± 0.04	0.05	0.12	3	0
MON	97	3	0	0	0	0.19 ± 0.26	0.06	0.66	5	0
NAR	95	4	0	1	0	0.90 ± 1.39a	0.05	53.0	21	2
SAL	79	5	7	7	2	0.28 ± 0.15	0.10	0.47	4	0
SEM	96	2	2	0	0	0.61 ± 0	0.61	0.61	1	0
CLA	100	0	0	0	0	2.16 ± 0.38	1.74	2.66	4	0
ERY	100	0	0	0	0	–	–	–	–	–
TYL	99	0	1	0	0	–	–	–	–	–
LIN	96	4	0	0	0	–	–	–	–	–

Note: LOD, method limit of detection; LOQ, method limit of quantification; S.D., standard deviation.

aMean concentration and standard deviation, excluding the extreme value of 53.0 μg kg⁻¹.

Figure 1. MRM chromatograms of an egg sample with an estimated concentration of salinomycin at 0.18 μg kg⁻¹ and traces of semduramicin (concentration between LOD and LOQ).
found a similar incidence of coccidiostats contamination (35.6%) in eggs from eight European countries, and SAL as one of the most frequently detected drug (18.8%), in addition to LAS. Also, SAL was responsible for the highest concentration found – 63 μg kg⁻¹. In Northern Ireland, several surveys showed that LAS was often found in analyzed eggs, with incidence rates decreasing from 66.5% in 1994 to 20.5% in 1998 (Kennedy et al. 1996, 1998b). In Sweden, narasin was found in 12 of 24 eggs analyzed in 1999 (Rösen 2001). As shown from feeding trials (Kennedy et al. 1998b), LAS has the highest potential for accumulation compared to MON and SAL; nevertheless, the drug was not found in any samples, indicating that it is probably not much used in Brazil. This study also suggests that SAL is probably the most widely used polyether ionophore in the Brazilian poultry industry, as is true in Denmark (Hansen 2009). National consumption data of ionophores were not found.

MRM chromatograms of an egg sample with an estimated concentration of salinomycin at 0.18 μg kg⁻¹ and traces of semduramicin (concentration between LOD and LOQ) is shown in Figure 1.

Conclusions
The results indicate a high incidence of contamination of Brazilian eggs with polyether ionophores (25%), although most of residue levels were near to the LOQ. Macrolide and lincosamide contamination were limited to a few samples (5%). Even though the incidence of samples with residues of coccidiostats above the permitted limits was small, the extreme value of 53.0 μg kg⁻¹, almost 18-fold higher than the permitted limit, and the frequency of contamination in commercial brands suggest that efforts are necessary to intensify monitoring controls regarding the use of coccidiostats. This high concentration might pose a consumer risk due to salinomycin inotropic effect, i.e., its ability to increase myocardial contractility (European Food Safety Authority 2004). Also, low levels of antibiotics at a high incidence may contribute to resistance and environmental concerns. Investigations should be carried out on non-compliant samples by the competent authorities to identify the origin of the contamination. Finally, more samples should be taken to improve the statistical significance of the data, enabling a dietary exposure assessment, taking into account consumption patterns of foods of animal origin in Brazil.

Acknowledgements
The authors are grateful to Claudio Cerqueira Lopes (Federal University of Rio de Janeiro, UFRJ) for providing lasalocid, monensin and maduramicin standards. This study was financially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos (FINEP).

References
American Society for Microbiology. 2009. Antibiotic Resistance: An Ecological Perspective on an Old Problem. A report from the American Academy of Microbiology.

Brasil 2008. Secretaria de Defesa Agropecuária. Ministério da Agricultura, Pecuária e Abastecimento. Antimicrobianos, anticoccidianos e agonistas autorizados (atualização 03/12/2008) [Internet]. Available from: http://www.agricultura.gov.br. Accessed: 18 May 2010.

Brasil 2010. Secretaria de Defesa Agropecuária. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa no. 8 de 29 de abril de 2010: aprova os Programas de Controle de Resíduos e Contaminantes em Carnes (Bovina, Avicola, Suína e Equina), Leite, Mel, Ovos e Pescado para o exercício de 2010. DOU Seção 1 82:27-30.

Codex Alimentarius Commission 2009a. Maximum Residue Limits for Veterinary Drugs in Foods, Updated at the 32nd Session of the Codex Alimentarius Commission (July 2009). CAC/MRL 02-2009. Available from: http://www.codexalimentarius.net/vetdrugs/data/MRL2_e_2009.pdf. Accessed: 12 May 2010.

Codex Alimentarius Commission 2009b. Report of the Eighteenth Session of the Codex Committee on Residues of Veterinary Drugs in Foods (May 2009). ALINORM 09/32/31, Appendix V. Available from: http://www.codexalimentarius.net/web/archives.jsp?lang=en. Accessed: 12 May 2010.

Commission of the European Communities. 2009. Commission Regulation (EC) No. 124/2009 of 10 February 2009 setting maximum levels for the presence of coccidiostats or histomonostats in food resulting from the unavoidable carry-over of these substances in non-target feed. Off J Eur Commun. L40:7–11.

Compêndio de Produtos Veterinários 2009. SINDAN [Internet]. Available from: http://www.cpvs.com.br/cpvs/index.html. Accessed: 26 October 2009.

Dubois M, Pierret G, Delahaut Ph. 2004. Efficient and sensitive detection of residues of nine coccidiostats in egg and muscle by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B. 813:181–189.

Dubreil-Chénéau E, Besirali M, Roudaut B, Verdon E, Dubois M, Pierret G, Delahaut Ph. 2004. Efficient and sensitive detection of residues of nine coccidiostats in egg and muscle by liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr B. 813:181–189.

Dubreil-Chénéau E, Besirali M, Roudaut B, Verdon E, Sanders P. 2009. Validation of a multi-residue liquid chromatography–tandem mass spectrometry confirmatory method for 10 anticoccidials in eggs according to Commission Decision 2002/657/EC. J Chromatogr A. 1216:8149–8157.

European Commission 2010. Commission Regulation (EU) No. 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off J Eur Commun. L15:1–72.

European Food Safety Authority 2004. Opinion of the scientific panel on additives and products or substances used in animal feed on a request from the Commission on the evaluation of coccidiostat Kokcisan® 120G (Question No. EFSA-2003-050). Adopted on 7 May 2004. EFSA J.
European Parliament and Council of the European Union 2009. Regulation (EC) No. 470/2009 of 6 May 2009 laying down Community procedures for the establishment of residue limits of pharmacologically active substances in foodstuffs of animal origin, repealing Council Regulation (EEC) No. 2377/90 and amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation (EC) No. 726/2004 of the European Parliament and of the Council. Off J Eur Commun. L152:11-22.

FAO 2009. FAOSTAT. FAO Statistical Yearbook 2009. Agricultural production. Production of milk and eggs (Table B12). Available from: http://www.fao.org/economic/ess/publications-studies/statistical-yearbook/fao-statistical-yearbook-2009/en. Accessed: 15 April 2010.

Hansen M. 2009. Anticoccidials in the environment: occurrence, fate, effects and risk assessments of ionophores. PhD thesis. Copenhagen: University of Copenhagen.

Kennedy DG, Blanchflower WJ, Hughes PJ, McCaughey WJ. 1996. The incidence and cause of lasalocid residues in eggs in Northern Ireland. Food Addit Contam. 13(7):787–794.

Kennedy DG, Smyth WG, Hewitt SA, McEvoy JDG. 1998a. Monensin carry-over into unmedicated broiler feeds. Analyst. 123:2529–2533.

Kennedy DG, Hughes PJ, Blanchflower WJ. 1998b. Ionophore residues in eggs in Northern Ireland: incidence and cause. Food Addit Contam. 15(5):535–541.

Lynas L, Currie D, McCaughey WJ, McEvoy JDG, Kennedy DG. 1998. Contamination of animal feeding-stuffs with undeclared antimicrobial additives. Food Addit Contam. 15(2):162–170.

Matabudul DK, Lumley ID, Points JS. 2002. The determination of 5 anticoccidial drugs (nicarbazin, lasalocid, monensin, salinomycin and narasin) in animal livers and eggs by liquid chromatography linked with tandem mass spectrometry (LC–MS–MS). Analyst. 127(6):760–768.

Matabudul DK, Conway B, Lumley I, Sumar S. 2001. The simultaneous determination of the ionophore antibiotics in animal tissues and eggs by tandem electrospray LC–MS–MS. Food Chem. 75:345–354.

Mortier L, Daeseleire E, Van Peteghem C. 2005b. Determination of the ionophoric coccidiostats narasin, monensin, lasalocid and salinomycin in eggs by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 19:533–539.

Mortier L, Huet AC, Charlier C, Daeseleire E, Delahaut P, Van Peteghem C. 2005a. Incidence of residues of nine anticoccidials in eggs. Food Addit Contam. 22(11):1120–1125.

Quevedo A. 2009. Preços baixos. Anuário 2010 da Avicultura Industrial 111184:61-64.

Rapid Alert System for Food and Feed (RASFF) 2010. Online searchable database. [Internet]. Available from: http://ec.europa.eu/food/food/rapidalert/rasff_portal_database_en.htm. Accessed: 16 April 2010.

Rosen J. 2001. Efficient and sensitive screening and confirmation of residues of selected polyether ionophore antibiotics in liver and eggs by liquid chromatography-electrospray tandem mass spectrometry. Analyst. 126:1990–1995.

Spisso BF, Ferreira RG, Pereira MU, Monteiro MA, Cruz TA, Costa RP, Lima AMB, Nóbrega AW. 2010. Simultaneous determination of polyether ionophores, macrolides and lincosamides in hen eggs by liquid chromatography-electrospray ionization tandem mass spectrometry using a simple solvent extraction. Anal. Chim. Acta. 682:82–92.

US Code of Federal Regulations 2009. US Code of Federal Regulations: Title 21, Part 556, Section 500 (Chapter I) Washington (DC): US Government Printing Office. Available from: http://www.fda.gov. Accessed: 11 May 2010.