Identity of *Fasciola* spp. in sheep in Egypt

Said Amer\(^1,2\), Ahmed ElKhatam\(^3\), Shereif Zidan\(^4\), Yaoyu Feng\(^5*\) and Lihua Xiao\(^1*\)

Abstract

Background: In Egypt, liver flukes, *Fasciola* spp. (Digenea: Fasciolidae), have a serious impact on the farming industry and public health. Both *Fasciola hepatica* and *Fasciola gigantica* are known to occur in cattle, providing the opportunity for genetic recombination. Little is known on the identity and genetic variability of *Fasciola* populations in sheep.

Methods: This study was performed to determine the prevalence of liver flukes in sheep in Menofia Province as a representative area of the delta region in Egypt, as measured by postmortem examination of slaughtered animals at three abattoirs. The identity and genetic variability of *Fasciola* spp. in slaughtered animals were determined by PCR-sequence analysis of the nuclear ribosomal internal transcribed spacer 1 (ITS1) and the mitochondrial NADH dehydrogenase subunit 1 (*nad1*) genes.

Results: Physical inspection of the liver indicated that 302 of 2058 (14.7%) slaughtered sheep were infected with *Fasciola* spp. Sequence analysis of the ITS1 and *nad1* genes of liver flukes from 17 animals revealed that 11 animals were infected with *F. hepatica*, four with *F. gigantica*, and two with both species. Seventy eight of 103 flukes genetically characterized from these animals were *F. hepatica*, 23 were *F. gigantica*, and two had ITS1 sequences identical to *F. hepatica* but *nad1* sequences identical to *F. gigantica*. *nad1* sequences of Egyptian isolates of *F. gigantica* showed pronounced differences from those in the GenBank database. Egyptian *F. gigantica* haplotypes formed haplogroup D, which clustered in a sister clade with haplogroups A, B and C circulating in Asia, indicating the existence of geographic isolation in the species.

Conclusions: Both *F. hepatica* and *F. gigantica* are prevalent in sheep in Egypt and an introgressed form of the two occurs as the result of genetic recombination. In addition, a geographically isolated *F. gigantica* population is present in the country. The importance of these observations in epidemiology of fascioliasis needs to be examined in future studies.

Keywords: *Fasciola*, Genotype, ITS1, *nad1*, Hybridization, Egypt

Background

Fascioliasis is a foodborne disease caused by infection with liver flukes of the genus *Fasciola* and occurs in a wide range of mammalian hosts worldwide [1, 2]. Liver flukes reside in the bile duct of the definitive hosts, resulting in severe hepatic damage and associated health consequences [3]. In developing countries such as African nations, *Fasciola* infections have been recognized as a major constraint to animal farming [1, 4], contributing to the impeded economic development [5]. In addition, the incidence rate of human fascioliasis is high in areas of high animal infections [6]. The World Health Organization estimates that at least 2.4 million people in more than 70 countries are affected by fascioliasis (http://www.who.int/foodborne_trematode_infections/fascioliasis/en/). Being a multifactorial disease with limited drugs available for treatment, effective measures are urgently needed to control this important foodborne and zoonotic disease [7].

Fasciola hepatica (Linnaeus, 1758) and *Fasciola gigantica* (Cobbald, 1856) are the causative agents of the disease in both humans and animals. The distribution of the two species of *Fasciola* appears to be geographically associated. *F. hepatica* is common in temperate zones especially Europe, Americas and Australia, while *F. gigantica* is the
known species in tropical regions of Africa and Asia. Both species overlap in occurrence in subtropical areas [1, 2, 8–11]. Fasciola spp. have the ability to self-fertilize, cross-fertilize and in some cases undergo parthenogenesis [12]. Hybridization between the two Fasciola species has been documented, leading to the emergence of intermediate forms with mixed phenotypic characteristics and genetic structure [13–15]. Fasciola flukes of abnormal ploidy (triploid and mixoploid) have been reported; they are parthenogenetic with no evidence of sperm production [14, 16, 17].

Molecular analyses play a pivotal role in the identification of Fasciola spp. [18–20], resolving morphometric discrepancies associated with species identifications, especially those related to intermediate forms. Molecular analyses of the intermediate forms have detected individuals that have divergent copies of the nuclear ribosomal genes derived from both Fasciola species (the hybrid form), as well as individuals with nuclear DNA of one species while mitochondrial DNA of the other species (the introgressed form) [8, 14, 17, 21]. Noteworthy, all analyzed Fasciola flukes in Japan and South Korea are aspermic [21–23] and have mixed F. hepatica and F. gigantica sequences by analysis of the nuclear phosphoenolpyruvate carboxykinase and DNA polymerase delta genes, suggesting that the flukes are descendants of hybridization between the two species [24].

Egypt is one of the fascioliasis-endemic areas in the world [25]. The disease burden is high in several species of livestock [26] as well as humans [27]. Both species of Fasciola are present in cattle in Egypt, and the occurrence of the hybrid form has been reported [8]. Thus far, the introgressed form of Fasciola spp. has not been detected.

In contrast to cattle, no studies are available on the molecular identity of Fasciola spp. in sheep in Egypt. The present study was conducted to determine the occurrence rate of Fasciola spp. in sheep as measured by postmortem examination of slaughtered animals at abattoirs. In addition, the identity and genetic variability of Fasciola spp. derived from slaughtered animals were examined by PCR-sequence analysis of the nuclear ribosomal internal transcribed spacer 1 (ITS1) and the mitochondrial NADH dehydrogenase subunit 1 (nad1) gene.

Methods

Specimen collection
Livers from 2058 slaughtered adult sheep were collected during August 2012 to August 2014 during post-mortem inspection by veterinary officers at Shebein El Kom, Ashmoun and El Shouhada abattoirs in El Menofia Province (90 km East of Cairo), Egypt. The inspected sheep included 783 animals at Shebein El Kom, 1219 at Ashmoun, and 56 at El Shouhada abattoirs. The livers were physically inspected for the presence of Fasciola worms. Flukes from each infected individual were collected in plastic containers, washed in physiological saline and fixed in 95% ethanol. A total of 5–7 worms from 17 infected individuals were used in molecular analysis, resulting in 103 worms genetically characterized. Randomly selected individuals (11 of each Fasciola species) from genetically characterized worms (i.e. hologenophore specimens according to Astrin et al. [28]) were lightly pressed between two glass slides and used in morphometric analysis.

Morphometric analysis
Individual flukes were washed three times in PBS, stained in aceticarmine, and mounted in DPX medium [29]. Measurements, expressed in millimeters (mm) were made for 11 flukes of each Fasciola species, using a microscope equipped with a calibrated ocular micrometer (Leica Microsystems GmbH, Wetzlar, Germany). Six ratios were also calculated for each Fasciola type. Statistical analysis was conducted using the Student’s t-test implemented in SPSS 15.0 (SPSS, Chicago, Illinois), with values of P ≤ 0.05 at degree of freedom 20 considered significant.

DNA extraction and PCR analysis
Individual flukes fixed in ethanol were washed extensively with PBS. To avoid the inclusion of female genitalia that might contain foreign sperms, genomic DNA was extracted from a small portion of lateral margin of the posterior end using the FastDNA SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA, USA). Some of the genetically characterized flukes were used in morphometric measurement described above. The complete nuclear ITS1 and partial mitochondrial nad1 genes in the extracted DNA were amplified using primers of Itagaki et al. [21]. PCR reactions were done in 50 μl volume consisted of 1 μl of genomic DNA, 5 μl 10× GeneAmp PCR buffer (Applied Biosystems, Foster City, CA, USA), 8 μl of dNTP (Promega, Madison, WI, USA), 3 μl MgCl2, 1.5 μl of each primer, 0.3 μl of GoTag DNA polymerase (Promega) and 29.7 μl of molecular grade H2O. Each PCR consisted of 30 cycles of denaturation at 98 °C for 10 s, annealing at 56 °C (for ITS1) or 53 °C (for nad1) for 35 s, and extension at 68 °C for 50 s, with an initial denaturation step at 95 °C for 5 min and a final extension step at 68 °C for 10 min. PCR products were visualized by electrophoresis in 1.5% agarose gels.

DNA sequence analysis
PCR products were sequenced directly using the Big Dye® Terminator v3.1 Cycle Sequencing Kit and an ABI 3130 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). Sequences obtained were assembled using the ChromasPro (version 1.5) software (http://www.technelysium.
of one page of a document, as well as some raw textual content that was previously extracted for it. Just return the plain text representation of this document as if you were reading it naturally.

Compared to 9 variable sites (leading to 6 amino acid changes) representing 7 haplotypes in *F. gigantica*.

In a ML analysis of the *nad1* sequences, all *F. gigantica* haplotypes from this study clustered with those derived from several hosts from Egypt, forming a distinct haplogroup (designated as haplogroup D). This haplogroup clustered in a sister clade with other haplogroups (A, B and C) in Asia and the haplogroup in Zambia (designated as haplogroup E) with high bootstrap value (> 90) (Fig. 1). There were about 96–99% similarities in *nad1* sequences of *F. gigantica* between Egypt and other countries. In contrast, there were no geographic or host segregation in *F. hepatica*, as *nad1* sequences from this study were distributed in several clusters across the tree (Fig. 1). Similar tree structures were obtained in the Maximum Parsimony and Bayesian analyses of these sequences (data not shown).

Distribution of Fasciola species

Results of ITS1 and *nad1* sequence analyses showed that 11 of the 17 fascioliasis cases characterized genetically were infections of *F. hepatica*, 4 were of *F. gigantica*, and 2 had mixed infection of both *Fasciola* species. At the individual worm level, 78 of the 103 fluke sequenced were *F. hepatica* and 23 were *F. gigantica*. The remaining two worms (Worm IDs 38314 and 38318) derived from the same sheep showed ITS1 sequences identical to *F. hepatica* and mitochondrial *nad1* sequences identical to *F. gigantica*, representing an introgressed form of the two species.

Morphometric characteristics

Morphometric measurements showed that *F. gigantica* was significantly longer and narrower than *F. hepatica*. Similarly, the ratios Maximum body width/Total length, Pharynx length/Total length and Oesophagus length/Total length differed significantly between the two fluke species (Table 2).

Discussion

Sheep and goat farming is a key element in sustained economic development in developing countries [30]. Fascioliasis is a serious challenge to small ruminant farming worldwide because of the high occurrence of infection and the associated morbidity and mortality. A temporal increase in the incidence of *Fasciola* infection in sheep has been recorded over the last few decades [31, 32], and has been linked to global climate changes [33] and changes in irrigation systems, favoring the lifecycle of lymnaeid vectors. The present study showed an occurrence of *Fasciola* worms in 14.7% of sheep examined at three abattoirs in Egypt. This is lower than infection rates of 30–40% previously reported in sheep in Egypt by stool examinations [26, 34]. Prevalence rates among studies can be affected by diagnostic techniques used, age of the animals examined, time and location of
Table 1 Details of *Fasciola* nad1 sequences from Egypt and other countries used in phylogenetic analysis

Accession number	Species	Host	Location	Reference
LC076235 (4 replicates)	*F. hepatica*	Sheep	Egypt	This study
LC076228 (10 replicates)	*F. hepatica*	Sheep	Egypt	This study
LC076258 (3 replicates)	*F. hepatica*	Cattle	Egypt	This study
LC076241 (4 replicates)	*F. hepatica*	Sheep	Egypt	This study
LC076240 (6 replicates)	*F. hepatica*	Sheep	Egypt	This study
LC076271 (51 replicates)	*F. hepatica*	Sheep	Egypt	This study
LC070666	*F. hepatica*	Cattle	Peru	[11]
LC076199 (6 replicates)	*F. gigantica*	Sheep	Egypt	This study
LC076218 (16 replicates)	*F. gigantica*	Sheep	Egypt	This study
AB554188	*F. hepatica*	Sheep	Egypt	[8]
AB554180	*F. hepatica*	Sheep	Egypt	[8]
AB554190	*F. hepatica*	Buffalo	Egypt	[8]
AB477359	*F. hepatica*	Cattle	China	[50]
AB554185	*F. hepatica*	Sheep	Egypt	[8]
AB554181	*F. hepatica*	Sheep	Egypt	[8]
AB554183	*F. hepatica*	Sheep	Egypt	[8]
AB554186	*F. hepatica*	Sheep	Egypt	[8]
AB554194	*Fasciola* sp.	Buffalo	Egypt	[8]
LC076204 (3 replicates)	*F. gigantica*	Sheep	Egypt	This study
LC076199 (6 replicates)	*F. gigantica*	Sheep	Egypt	This study
LC076218 (16 replicates)	*F. gigantica*	Sheep	Egypt	This study
AB554162	*F. gigantica*	Cattle	Egypt	[8]
AB554167	*F. gigantica*	Cattle	Egypt	[8]
AB554165	*F. gigantica*	Cattle	Egypt	[8]
AB554154	*F. gigantica*	Buffalo	Egypt	[8]
AB554156	*F. gigantica*	Buffalo	Egypt	[8]
LC012900	*F. gigantica*	Cattle	India	[20]
LC128314	*F. gigantica*	Buffalo	India	[53]
AB894337	*F. gigantica*	Buffalo	Nepal	[52]
AB894370	*F. gigantica*	Capra	Bangladesh	[57]
AB604007	*F. gigantica*	Ruminant	Myanmar	[51]
LC012899	*F. gigantica*	Cattle	India	[20]
LC012897	*F. gigantica*	Cattle	India	[20]
LC127275	*F. gigantica*	Ruminant	Indonesia	[54]
LC127277	*F. gigantica*	Ruminant	Indonesia	[54]
LC127264	*F. gigantica*	Ruminant	Indonesia	[54]
AB385616	*F. gigantica*	Cattle	Vietnam	[17]
AB603724	*F. gigantica*	Cattle	Thailand	[44]
the investigation [35]. Elsewhere in Africa, *Fasciola* spp. were found in 10.8% of slaughtered sheep in Algeria [36] and 23% of slaughtered sheep in Chad [37]. Similarly, *F. hepatica* and *F. gigantica* were reported in 20–26% of slaughtered sheep in Ethiopia [38].

Results reported in the present study indicate that morphometric measurements differed significantly between *F. hepatica* and *F. gigantica* in five indices including total body length, maximum width, as well as ratios Maximum body width/Total length, Pharynx length/Total length and Oesophagus length/Total length. Comparable results were previously reported on *Fasciola* flukes from different hosts [39–41]. Traditional microscopic measurements are simple and may be helpful in morphometric characterization of Fasciolids [39]. Therefore, this technique is a valuable tool in discriminating the two common *Fasciola* species in areas with low occurrence or no recorded intermediate forms, including Egypt and other African countries. However, in countries such as Japan, Vietnam and Korea, liver flukes cannot be classified as *F. hepatica* or *F. gigantica* using morphometrics because of the presence of a variety of intermediate forms [21, 22].

Table 1 Details of *Fasciola* nad1 sequences from Egypt and other countries used in phylogenetic analysis (Continued)

Accession number	Species	Host	Location	Reference
AB983822	*F. gigantica*	Cattle	Zambia	a
AB983824	*F. gigantica*	Cattle	Zambia	a
AB983823	*F. gigantica*	Cattle	Zambia	a
AF219379	*P. westermani*			

GenBank (unpublished data)

Fig. 1 Phylogenetic relationships of *Fasciola* spp. from Egypt compared to reference nad1 sequences in the GenBank database based on the Maximum Likelihood analysis. Sequences obtained in this study are marked with a red diamond (see Table 1 for details on sequences used in the tree construction).
Molecular characterizations have identified a higher occurrence of *F. hepatica* (11/17) than *F. gigantica* (4/17), with mixed infections of both species in two slaughtered sheep. The higher prevalence of *F. hepatica* was reported by Moghaddam et al. in Iran [42], and mixed infections of the two species were previously reported in cattle in Egypt [8]. Elsewhere in Africa, *F. hepatica* infections of the two species were previously reported in Egypt [8]. Le et al. [14] and Blair [58] defined the *F. hepatica* haplotype diversity of the mitochondrial *nad1* gene in *F. hepatica* than in *F. gigantica*. This is largely in agreement with previous reports on genetic variability in mitochondrial genes *nad1* and cytochrome oxidase 1 of *F. hepatica* by other researchers [45–50]. Cwiklinski et al. [12] concluded that the *F. hepatica* genome is highly heterogeneous. In contrast, in the previous report on bovine *Fasciola* spp. collected from Cairo, Egypt, *F. gigantica* was shown to have higher genetic diversity than *F. hepatica* [8]. Such a discrepancy between studies might be attributed to differences in the number of flukes of both species characterized.

There are apparent genetic differences in mitochondrial sequences of *F. gigantica* between Egypt and other countries. Phylogenetic analysis of *nad1* sequences suggests that haplotypes of *F. gigantica* found in Asian countries can be categorized into three haplogroups: A, B and C [20, 44, 51, 52]. Haplogroup A is found in Indian subcontinent, including Nepal and Bangladesh [20, 52], while all three haplotypes are found in Southeast Asia, including Thailand and Myanmar [44, 51, 53, 54]. Our analysis suggested that Egyptian haplotypes of *F. gigantica* formed a monophyletic clade sister to those from Asia to the exclusion of Zambian samples (Fig. 1). In agreement with this, Ai et al. [55] described the separation of Chinese haplotypes from Niger ones.

In the present study, we identified two flukes with nuclear ITS1 data matching those of *F. hepatica* and mitochondrial *nad1* gene in *F. gigantica*. This might have been caused by the occurrence introgression. Hybrid forms between *F. hepatica* and *F. gigantica* have been reported in several Asian countries [21, 22, 56, 57] and Egypt [8]. Le et al. [14] and Blair [58] defined the hybrid form as the F1 offspring of a mating between the two *Fasciola* species, carrying mitochondrial genome of the maternal parent and nuclear rRNA genes of both parents. In contrast, the introgressed form is the offspring of the back-crossing of hybrids with one parent species, which homogenizes the ribosomal array to one species and mitochondrial genome to other species (paternal introgression) or both ribosomal and mitochondrial arrays (maternal introgression) to the same species. The fact that the parasite can survive for many years in the definitive host and both *Fasciola* species have high infection rates in ruminants in some areas has apparently facilitated the occurrence of hybrid and introgressed forms. Hybrid and/or introgressed forms might play an important role in genetic diversity of *Fasciola* spp. [59], leading to potential

Parameter	*Fasciola hepatica*	*Fasciola gigantica*	t-value	P-value (2-tailed)
Total length (range)	29.60–20.80 (25.34)	34.80–26.80 (29.9)	-4.18	0.0001*
Maximum width (range)	10.80–7.20 (9.65)	10.80–7.80 (8.75)	2.44	0.0242*
Shoulder breadth (range)	7.60–4.80 (5.80)	6.00–4.00 (5.42)	1.14	0.2671
Oral cone length (range)	3.60–2.00 (2.85)	3.20–2.20 (2.73)	0.67	0.5102
Oral sucker (L × W)	0.63–0.40 × 1.08–0.60 (0.53 × 0.76)	0.64–0.40 × 0.92–0.60 (0.51 × 0.79)	-0.65	0.5253
Ventral sucker (L × W)	1.20–0.80 × 1.32–0.92 (1.09 × 1.18)	1.32–0.88 × 1.32–1.00 (1.12 × 1.21)	-0.65	0.5211
Pharynx length (range)	0.80–0.60 (0.65)	0.80–0.60 (0.65)	0.23	0.8173
Oesophagus length (range)	1.20–1.00 (1.10)	1.28–0.80 (1.09)	0.15	0.8842
Maximum width/Total length	0.36–0.34 (0.38)	0.31–0.29 (0.29)	6.26	0.0001*
Pharynx length/Total length	0.03–0.03 (0.03)	0.02–0.02 (0.02)	3.36	0.0032*
Pharynx length/Oesophagus length	0.22–0.3 (0.23)	0.25–0.27 (0.24)	-0.47	0.6443
Oesophagus length/Total length	0.04–0.05 (0.04)	0.04–0.03 (0.04)	3.41	0.0031*
Oesophagus length/Oesophagus length	0.33–0.50 (0.39)	0.40–0.36 (0.40)	-0.40	0.6962
Pharynx length/Oesophagus length	0.67–0.6 (0.59)	0.63–0.75 (0.60)	-0.13	0.8081

Abbreviations: L, length; W, width

*P ≤ 0.05 (significant differences revealed by Student’s t-test)
emergence of more virulent forms. The existence of these two recombinant forms in Egypt needs confirmation using the newly developed genotyping tool targeting nuclear phosphoenolpyruvate carboxykinase and DNA polymerase delta genes [24].

Conclusions
The present study revealed a common occurrence of F. hepatica and F. gigantica in sheep in the middle delta region of Egypt, the existence of an introgressed form of the two species in some animals, and genetic differences in F. gigantica between Egypt and other areas. This and the previous identification of the hybrid form of F. hepatica and F. gigantica indicate that genetic recombination may play a significant role in shaping the population structure of Fasciola spp. in areas with high prevalence of both Fasciola spp. This and its epidemiologic implications warrant future studies.

Abbreviations
ITS1: Internal transcribed spacer 1; nad1: NADH dehydrogenase subunit 1; PCR: Polymerase chain reaction

Acknowledgments
The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Funding
This study was supported in part by National Natural Science Foundation of China (No. 31110103901), Kafr El Sheikh University, University of Sadat City, and Centers for Disease Control and Prevention. The funding bodies played no direct role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
Nucleotide sequences, including those representing all sequence types, from this study were deposited in the GenBank database under accession numbers LC076108–LC076196 for ITS1 and LC076197–LC076285 for nad1. The dataset analyzed in the current study is available from the corresponding author on reasonable request.

Authors’ contributions
SA, YF, and LX conceived and designed the experiments; SA, AELK, and SZ wrote the paper. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The study was approved by the Institutional Committees of the Post-graduate Studies and Research at Kafr El Sheikh University and University of Sadat City, Menofia, Egypt. Flukes were collected from slaughtered animals during post-mortem inspection by veterinary officers. Formal consent and permission for research use of the flukes were obtained from the attending abattoir veterinarians. No experiment was conducted on live animals.

Author details
1Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, USA. 2Department of Zoology, Faculty of Science, Kafr El Sheikh University, Kafr El Sheikh, Egypt.

Received: 18 July 2016 Accepted: 21 November 2016
Published online: 01 December 2016

References
1. Mas-Coma S, Bargues MD, Valero MA. Fascioliasis and other plant-borne nematode zoonoses. Int J Parasitol. 2005;35:1255–78.
2. Vázquez AA, Lounnas M, Sánchez J, Alba A, Milsé A, Hurtrez-Boussès S. Genetic and infective diversity of the liver fluke Fasciola hepatica (Trematoda: Digenea) from Cuba. J Helminthol. 2016;14:1–7.
3. Gajewska A, Smaga-Kozłowska K, Wiśniewski M. Pathological changes of liver in infection of Fasciola hepatica. Wiad Parazitol. 2005;51:115–23.
4. Mekroud A, Titi A, Benakhla A, Rondelaud D. The proportion of liver excised in Algerian abattoirs is not a good indicator of Fasciola hepatica infections in local cattle breeds. J Helminthol. 2006;80:319–21.
5. Espinosa JR, Terashima A, Herrera-Velt P, Marcos LA. Human and animal fascioliasis in Peru: impact in the economy of endemic zones. Rev Peru Med Exp Salud Publica. 2010;2:604–12.
6. Ashrafi K, Bargues MD, O’Neill S, Mas-Coma S. Fascioliasis: a worldwide parasitic disease of importance in travel medicine. Travel Med Infect Dis. 2014;12:636–9.
7. Knuppen-Schweizer G, Torgerson PR. Bovine fasciolosis: control strategies based on the location of Gaba truncatula habitats on farms. Vet Parasitol. 2015;208:777–83.
8. Amer S, Dar Y, Ichikawa M, Fukuda Y, Tada C, Itagaki T, et al. Identification of Fasciola species isolated from Egypt based on sequence analysis of genomic ITS1 and ITS2 and mitochondrial (ND1 and COI) gene markers. Parasitol Int. 2011;60:5–12.
9. Ashrafi K, Valero MA, Peiottko RV, Artigas P, Panova M, Mas-Coma S. Distribution of Fasciola hepatica and F. gigantica in the endemic area of Guilan, Iran: relationships between zonal overlap and phenotypic traits. Infect Genet Evol. 2015;31:99–109.
10. Beesley NJ, Civkliniski K, Williams DJ, Hodgkinson J. Fasciola hepatica from naturally infected sheep and cattle in Great Britain are diploid. Parasitol 2015;142:1196–201.
11. Ichikawa-Seki M, Ortiz P, Cabrera M, Hoban C, Itagaki T. Molecular characterization and phylogenetic analysis of Fasciola hepatica from Peru. Parasitol Int. 2016;65:171–4.
12. Civkliniski K, O’Neill SM, Donnelly S, Dalton JP. A prospective view of animal and human fasciolosis. Parasite Immunol. 2016: doi: 10.1111/par.12343.
13. Agatsuma T, Arakawa Y, Iwagami M, Honzako Y, Cahyaningsih U, Kang SY, et al. Molecular evidence of natural hybridization between Fasciola hepatica and F. gigantica. Parasitol Int. 2000;49:231–8.
14. Le TH, De NV, Agatsuma T, Thi Nguyen TG, Nguyen QD, McManus DP, et al. Human fascioliasis and the presence of hybrid/introgressed forms of Fasciola hepatica and Fasciola gigantica in Vietnam. Int J Parasitol. 2008;38:725–30.
15. Itagaki T, Ichinomiya M, Fukuda K, Fuyukyu S, Carmona C. Hybridization experiments indicate incomplete reproductive isolating mechanism between Fasciola hepatica and Fasciola gigantica. Parasitol Int. 2011;60:1278–84.
16. Terasaki K, Noda Y, Shibahara T, Itagaki T. Morphological comparisons and hypotheses on the origin of polyplids in parthenogenetic Fasciola sp. J Parasitol. 2000;86:724–9.
17. Itagaki T, Sakaguchi K, Terasaki K, Sasaki O, Yoshiba S, Van Dung T. Occurrence of spermatic diploid and aspermatic triploid forms of Fasciola in Vietnam and their molecular characterization based on nuclear and mitochondrial DNA. Parasitol Int. 2009;58:81–9.
18. Lottl WM, Brant SV, Dejong RJ, Le TH, Demiaszkiewicz A, Rajapakse RP, et al. Evolutionary origins, diversification, and biogeography of liver flukes [Digenina, Fasciolidae], Am J Trop Med Hyg. 2008:92:245–53.
19. Walker SM, Prodohl PA, Hoey EM, Fairweather I, Hanna RE, Brennan G, et al. Substantial genetic divergence between morphologically indistinguishable populations of Fasciola suggests the possibility of cryptic speciation. Int J Parasitol. 2012;42:1193–9.
20. Hayashi K, Ichikawa-Seki M, Mohantha UK, Singh TS, Shonki T, Sugiyama H, et al. Molecular phylogenetic analysis of Fasciola flukes from eastern India. Parasitol Int. 2015;64:334–8.

21. Itagaki T, Kikawa M, Sakaguchi K, Shoji M, Terasaki K, Shibahara T, et al. Genetic characterization of pathogenic Fasciola sp. in Japan on the basis of the sequences of ribosomal and mitochondrial DNA. Parasitol. 2005;131:679–85.

22. Itagaki T, Kikawa M, Terasaki K, Shibahara T, Fukuda K. Molecular characterization of pathogenic Fasciola sp. in Korea on the basis of NA sequences of ribosomal ITS1 and mitochondrial ND1 gene. J Vet Med Sci. 2005;67:1115–8.

23. Terasaki K, Moriyama-Gonda N, Noda Y. Abnormal spermatogenesis in the common liver fluke (Fasciola sp.) from Japan and Korea. J Vet Med Sci. 1998;60:1395–9.

24. Shoriki T, Ichikawa-Seki M, Shoriki K, Katakura K, Itagaki T. Characteristics of parthenogenetic Fasciola spp. in sheep with nuclear DNA, and their intraspecific relationships based on mitochondrial DNA. Parasitol Res. 2012;110:501–9.

25. Mucheka VT, Lamb JM, Plukener DM, Mukaratirwa S. DNA sequence analyses reveal co-occurrence of novel haplotypes of Fasciola gigantica with F. hepatica in South Africa and Zimbabwe. Vet Parasitol. 2015;214:144–51.

26. Haridy FM, El-Sherbiny GT, Morsy TA. Some parasitic flukes infecting farm animals in Al-Santa Center, Gharbia Governorate, Egypt. J Egypt Soc Parasitol. 2006;36:259–64.

27. Mekky MA, Tolba M, Abdel-Malek MO, Abbas WA, Zidan M. Human fascioliasis: a re-emerging disease in Upper Egypt. Am J Trop Med Hyg. 2015;93:76–9.

28. Astrin JJ, Zhou X, Misof B. The importance of biobanking in molecular characterization of parthenogenetic Fasciola spp. in Japan on the basis of nuclear protein-coding genes. Parasitol Int. 2016;65:180–3.

29. Yamaguti S. Systema helminthum: the digenetic trematodes of vertebrates, vol. I. New York: Interscience publisher; 1958.

30. World Bank. Sheep and goats in developing countries: their present and potential role. ISBN. 198302537494. http://www-wds.worldbank.org/servlet/WDSContentServer/WDSP/1999/12/02/000178830_98190194140949/Rendered/PDF/multi_page.pdf.

31. Martinez-Valladares M, Robles-Pérez D, Martínez-Pérez JM, Cordero-Pérez C. Prevalence of Fasciola hepatica, Fasciola gigantica and aspermic Fasciola hepatica in sheep in the northwest of Spain: relation to climatic conditions and/or-man-made environmental modifications. Parasit Vectors. 2013;6:282.

32. Olsen A, Frankena K, Badker R, Toft N, Thamsborg SM, Enemark HL, et al. Prevalence, risk factors and spatial analysis of liver fluke infections in Danish cattle herds. Parasit Vectors. 2015;8:160.

33. Bosco A, Rinaldi L, Musella V, Amadesi A, Cringoli G. Outbreak of acute fascioliasis in sheep farms in a Mediterranean area arising as a possible consequence of climate change. Geospat Health. 2015;9:319.

34. Asprem RM, Wustenfeld J, Volmer FE, Biberstein ES, de la Zarza BM, de la Riva CV, et al. Prevalence, risk factors and spatial analysis of liver fluke infections in Danish ruminants of Urmia city. Iran Iran J Parasitol. 2015;10:46–55.

35. Mucherah A, Masoud MM, Mahmodi M, Mahvi AH, Periago MV, Artigas P, et al. Human and animal fascioliasis in Mazandaran province, northern Iran. Parasitol Res. 2004;94:61–9.

36. Peng M, Ichinomiya M, Ohtori M, Ichikawa M, Shibahara T, Toet HM, et al. Evidence for high genetic diversity of NAD1 and COX1 mitochondrial flukes among triclabendazole resistant and susceptible populations and field isolates of Fasciola hepatica (Liver fluke) in Australia. Vet Parasitol. 2014;2001:60–9.

37. Martinez-Valladares M, Rop-Vázquez FA. Intraspecific mitochondrial DNA variation of Fasciola hepatica eggs from sheep with different level of anthelmintic resistance. Parasitol Res. 2014;113:2733–41.

38. Gabr SM, Johnston C, Hoey EM, Fairweather J, Borgsteede F, Gaarsenbeek C, et al. Population dynamics of the liver fluke, Fasciola hepatica: the effect of time and spatial separation on the genetic diversity of fluke populations in the Netherlands. Parasitol. 2011;138:215–23.

39. Elliott T, Muller A, Brockwell Y, Murphy N, Grillo V, Toet HM, et al. Evidence for high genetic diversity of NAD1 and COX1 mitochondrial flukes among triclabendazole resistant and susceptible populations and field isolates of Fasciola hepatica (Liver fluke) in Australia. Fam. Parasitol. 2010;65:424–7.

40. Hayashi K, Ichikawa-Seki M, Kikawa M, Shoriki S, Nishio M, Kishi Y, et al. Characterization of Fasciola spp. in Myanmar on the basis of mitochondrial and nuclear DNA markers. Parasitol Res. 2011;109:474–9.

41. Ashrafi K, Valero MA, Panova M, Periago MV, Massoud J, Mas-Coma S. Phenotypic analysis of adults of Fasciola hepatica, Fasciola gigantica and intermediate forms from the endemic region of Gilan. Iran Parasitol Int. 2006;55:249–60.

42. Mucheka VT, Lamb JM, Plukener DM, Mukaratirwa S. DNA sequence analyses reveal co-occurrence of novel haplotypes of Fasciola gigantica with F. hepatica in South Africa and Zimbabwe. Vet Parasitol. 2015;214:144–51.

43. Mucheka VT, Lamb JM, Plukener DM, Mukaratirwa S. DNA sequence analyses reveal co-occurrence of novel haplotypes of Fasciola gigantica with F. hepatica in South Africa and Zimbabwe. Vet Parasitol. 2015;214:144–51.

44. Ichikawa M, Bawn S, Maw NN, Htun LL, Thein M, Gyi A, et al. Characteristics of Fasciola spp. in Myanmar on the basis of mitochondrial and nuclear DNA markers. Parasitol Res. 2011;109:474–9.

45.Mucheka VT, Lamb JM, Plukener DM, Mukaratirwa S. DNA sequence analyses reveal co-occurrence of novel haplotypes of Fasciola gigantica with F. hepatica in South Africa and Zimbabwe. Vet Parasitol. 2015;214:144–51.

46. Mekky MA, Tolba M, Abdel-Malek MO, Abbas WA, Zidan M. Human fascioliasis: a re-emerging disease in Upper Egypt. Am J Trop Med Hyg. 2015;93:76–9.

47. Amin TA, Yousif MA, Abdel Rasoul AA, El-Sayed M, Ashrafi K, El-Wakeel A, Mohamed MY, et al. First phenotypic description of Fasciola hepatica/Fasciola gigantica intermediate forms from the human endemic area of the Nile Delta. Egypt Infect Genet Evol. 2008;5:81–7.

48. Ashrafi K, Valero MA, El-Sayed M, Ashrafi K, El-Wakeel A, Mohamed MY, et al. First phenotypic description of Fasciola hepatica/Fasciola gigantica intermediate forms from the human endemic area of the Nile Delta. Egypt Infect Genet Evol. 2008;5:81–7.