Comparative genomic of biosynthetic gene cluster of andrimid antibiotic from *Serratia plymuthica* UBCF_13

R Fatiah¹, I Sulianyah¹,³,₄, D H Tjong²,⁴, J Jamsari¹,³,₄*
¹Department of Agricultural Science, Faculty of Agriculture, Andalas University, Padang, West Sumatera, 25163 Indonesia
²Department of Biology, Mathematics and Life Sciences Faculty, Andalas University, Padang, West Sumatra, 25163 Indonesia
³Department of Agrotechnology, Agriculture Faculty, Andalas University, Padang, West Sumatra, 25163 Indonesia
⁴Biotechnology Magister Program, Andalas University, Padang, West Sumatra, Indonesia
E-mail: jamsari@agr.unand.ac.id

Abstract. *Serratia plymuthica* UBCF_13 was a promising bacterium to control plant pathogenic fungal. Availability of this bacterium genome and genome mining approaches has assisted to identify gene-encoded antibiotics. In this study, we identified the biosynthetic gene cluster (BGC) of andrimid and compared it with andrimid BGC from other bacterial strains and species. Andrimid is a hybrid non-ribosomal peptide-polyketide antibiotic that blocks the carboxyl-transfer reaction of bacterial acetyl-CoA carboxylase (ACC) and thereby inhibits fatty acid biosynthesis with submicromolar potency. Andrimid encoded by a gene cluster containing 20 genes, AdmA-T. Understanding the mechanism of synthesis of the non-ribosomal peptide (NRP) and polyketide assembly will assist the effort to manipulate production and increase efficacy of this antibiotic.

Keywords: Genome mining, andrimid, antibiotic, *Serratia plymuthica*, comparative genomic

1. Introduction
Microorganisms are an important sources of bioactive compounds and secondary metabolites that are part of important drug formation used for many fields, such as clinic field and to control plant pathogen [1]–[3]. *Serratia plymuthica* UBCF13 and other strains of this bacteria are promising biocontrol agents for pathogens [4]–[7]. It produces several compounds that have the role as biocontrol, including hydrolytic enzymes and antibiotics. In this study, we found andrimid is one of the antibiotics that potent to produce by UBCF_13. Andrimid is a promising candidate antibiotic that interferes with the β-subunit of acetyl-CoA carboxylase (ACC) enzyme through the reaction of carboxyltransferase. The ACC converts acetyl-CoA to malonyl-CoA, the substrate for fatty acid biosynthesis. Besides alpha-linolenic acid metabolism, fatty acid biosynthesis is also a critical pathway associated with lipid metabolism. Therefore, inhibition of ACC prevents cell growth [8]–[10]. Many antibiotics belong to polyketides (PKs) and nonribosomal peptides (NRPs) represent the family. This two large families have diverse structures and complex microbial metabolites that include many therapeutically valuable antibacterial drugs [11].
Andrimid had been isolated from various organisms, such as *Enterobacter sp.* that present in the egg of *Nilaparvata lugens* (brown planthopper) [12], *Pseudomonas fluorescens* [13], and *Serratia proteamaculans* [14]. Andrimid has specific activity against the white blight pathogen of rice plants, *Xanthomonas campestris* pv. *Oryzae* [12], potent in vitro inhibition of methicillin-resistant *Staphylococcus aureus* [13]. Understanding the mechanism of synthesis of non-ribosomal peptide (NRP) and polyketide assembly will assist effort to manipulate production and increase efficacy of this antibiotic. This study will show the comparison between biosynthetic gene clusters of andrimid from different species of bacteria.

2. Materials and methods

2.1. Identification of Andrimid Biosynthetic Gene Cluster (BGC) and Function of The Genes

The Whole genome sequence of *S. plymuthica* UBCF_13 was obtained by whole genome sequencing using Illumina platform and submitted in NCBI (accession number CP068771). A Secondary metabolite genomic-based approach was identified by using antiSMASH [15]. The function of identified andrimid biosynthetic gene cluster was analyzed using BLASTX and Conserved Domains on website of The National Center for Biotechnology Information (NCBI-https://www.ncbi.nlm.nih.gov) [16], [17].

2.2. Comparation of the BGC

The BGCs of andrimid were curated based on information from antiSMASH result. Each of gene in andrimid BGC was BLAST in NCBI. Locus of andrimid BGC from each bacterium was obtained based on BLAST information, therefore the sequences could collect. The multi alignment was obtained by alignment tool in Geneious software (version 2020.2.3, default settings). The phylogenetic construction of the BGCs was performed by MEGA X [18].

3. Results and discussion

3.1. Identification of Andrimid Biosynthetic Gene Cluster and Function of The Genes

Andrimid is a form hybrid assembly line of NRPS/PKS. Genome-based analysis using antiSMASH identified that the BGC of andrimid in UBCF_13 involves 20 genes (*admA-T*) (Figure 1a). Comparative BGC andrimids from different bacteria was shown in Figure 2. By comparing gene function of andrimid from UBCF_13 and *Pantoea agglomerans* that proposed by Jin et al. [19], the role of the genes distinguishes to be four roles (i) iterative type II PKS to form the polyunsaturated fatty acid (green), (ii) formation and insertion of β-phenylalanine (blue), (iii) construction of the succinimide precursor from valine, glycine, and C2 units from 2 equiv of malonyl-CoA (red), and (iv) host resistance and enzyme priming (yellow) (Figure 1b). Further information about the genes functions in the andrimid BGC shows in Table 1.
Figure 1. (a) The cluster of andrimid within the genome of *Serratia plymuthica* UBCF_13, (b) The scheme of andrimid synthesis and proposed biosynthesis of andrimid by Jin et al. (2006) [19]

Modular NRPS and PKS assembly lines are generally composed of multiple enzymes. They are responsible for initiation, elongation and termination of polyketide or peptide chains to produce the core scaffold of natural product [20]. Acylsuccinimide is an essential fragment of andrimid. The experiment indicated that this fragment was derived from a combination of acetate and amino acid building block. Proposed biosynthesis proceed has through a dipeptide-like intermediate formed from ɤ-amino-8-keto acids that are in turn formed from valine and glycine homologated with acetate, presumably via malonyl-CoA [13].

Figure 2. Comparative andrimid BGCs from different bacteria. Phylogenetic tree (left) and structure of andrimid BGCs from different bacteria (right). The colouring shapes are the genes in BGC. Each colour represents different role.
β-Phenylalanine is a constituent of andrimid [21]. The chemical structure of andrimid contains four characteristic subunits, including the β-amino acid (S)-β-phenylalanine, an unsaturated fatty acid chain, an L-valine-derived β-ketoamide moiety, and the pyrrolidinedione head group [22]. Inhibition of bacterial growth by pyrrolidinediones is without targeting the counterpart enzyme in the human host [22]. It makes this antibiotic to be potential broad-spectrum antibiotic with high selectivity for prokaryotic ACC. The first heterologous expression of andrimid was done by Jin et al [19]. Bacterial resistance producing adrimid is obtained by involving a 2-fold strategy of antibiotic efflux and target replacement. Heterologous expression admQ in E. coli strain caused this host to be resistant to andrimid. Based on homology analysis, this gene encode enzyme that has role as purine efflux pump. AdmT encodes the β-subunit of ACC and is likely to be an andrimid-resistant form of this enzyme [19]. Antibiotic producers have to be resistant against to their products to avoid suicide [23].

4. Conclusion
The BGC andrimid within the Serratia plymuthica UBCF_13 genome is composed of 20 genes (admA-T). All of the genes are also constituent andrimid from other species. Not all of the genes have a role in NRP/PKS assembly, some of them have the role as a resistant gene toward andrimid as a mechanism to avoid suicide.

Acknowledgments
This study was fully funded by the General Directorate of Higher Education through PMDSU ResearchGrantfiscal year 2020 contract number:T/10/UN.16.17/PT.01.03/AMD/PMDSUPangan/2020

References
[1] S. J. Pidot, S. Coyne, F. Kloss, and C. Hertweck, “Antibiotics from neglected bacterial sources,” Int. J. Med. Microbiol., vol. 304, no. 1, pp. 14–22, 2014.
[2] W. Wohlleben, Y. Mast, E. Stegmann, and N. Ziemert, “Antibiotic drug discovery,” Microb. Biotechnol., vol. 9, no. 5, pp. 541–548, Sep. 2016.
[3] J. E. E. U. Hellberg, M. A. Matilla, and G. P. C. Salmond, “The broad-spectrum antibiotic, zeamine, kills the nematode worm Caenorhabditis elegans,” Front. Microbiol., 2015.
[4] G. Berg, “Diversity of antifungal and plant-associated Serratia plymuthica strains,” J. Appl. Microbiol., vol. 88, no. 6, pp. 952–960, 2000.
[5] H. Meziane et al., “Control of green and blue mould on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action,” Postharvest Biol. Technol., vol. 39, no. 2, pp. 125–133, 2006.
[6] S.-S. Shen, F.-Z. Piao, B.-W. Lee, and C.-S. Park, “Characterization of Antibiotic Substance Produced by Serratia plymuthica A21-4 and the Biological Control Activity against Pepper Phytophthora Blight,” Plant Pathol. J., vol. 23, no. 3, pp. 180–186, Sep. 2007.
[7] S. N. Aisyah et al., “Suppression of Colletotrichum gloeosporioides by Indigenous Phyllobacterium and its Compatibility with Rhizobacteria,” Asian J. Plant Pathol., vol. 11, no. 3, pp. 139–147, 2017.
[8] C. Freiberg et al., “Identification and Characterization of the First Class of Potent Bacterial Acetyl-CoA Carboxylase Inhibitors with Antibacterial Activity,” J. Biol. Chem., vol. 279, no. 25, pp. 26066–26073, Jun. 2004.
[9] X. Liu, P. D. Fortin, and C. T. Walsh, “Andrimid producers encode an acetyl-CoA carboxyltransferase subunit resistant to the action of the antibiotic,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 36, pp. 13321–13326, 2008.
[10] J. Guo et al., “Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin,” Ecotoxicol. Environ. Saf., 2020.
[11] J. Masschelein et al., “A PKS/NRPS/FAS Hybrid Gene Cluster from Serratia plymuthica RVH1 Encoding the Biosynthesis of Three Broad Spectrum, Zeamine-Related Antibiotics,” PLoS One, vol. 8, no. 1, pp. 1–11, Jan. 2013.
[12] A. Fredenhagen et al., “Andrimid, a New Peptide Antibiotic Produced by an Intracellular Bacterial Symbiont Isolated from a Brown Planthopper,” J. Am. Chem. Soc., vol. 109, no. 14, pp. 4409–4411, 1987.

[13] J. Needham, M. T. Kelly, M. Ishige, and R. J. Andersen, “Andrimid and Moiramides A-C, Metabolites Produced in Culture by a Marine Isolate of the Bacterium Pseudomonas fluorescens: Structure Elucidation and Biosynthesis,” J. Org. Chem., vol. 59, no. 8, pp. 2058–2063, 1994.

[14] M. A. Matilla, V. Nogellova, B. Morel, T. Krell, and G. P. C. C. Salmond, “Biosynthesis of the acetyl-CoA carboxylase-inhibiting antibiotic, andrimid in Serratia is regulated by hfg and the LysR-type transcriptional regulator, admX,” Environ. Microbiol., vol. 18, no. 11, pp. 3635–3650, Nov. 2016.

[15] K. Blin, M. H. Medema, R. Kottmann, S. Y. Lee, and T. Weber, “The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters,” Nucleic Acids Res., 2017.

[16] G. P. Rédei, “BLASTP,” in Encyclopedia of Genetics, Genomics, Proteomics and Informatics, 2008.

[17] A. Marchler-Bauer et al., “CDD: NCBI’s conserved domain database,” Nucleic Acids Res., vol. 43, no. D1, pp. D222–D226, 2015.

[18] S. Kumar, G. Stecher, M. Li, C. Knyaz, and K. Tamura, “MEGA X: Molecular evolutionary genetics analysis across computing platforms,” Mol. Biol. Evol., 2018.

[19] M. Jin, M. A. Fischbach, and J. Clardy, “A biosynthetic gene cluster for the acetyl-CoA carboxylase inhibitor andrimid,” J. Am. Chem. Soc., vol. 128, no. 33, pp. 10660–10661, Aug. 2006.

[20] M. Alanjary, C. Cano-Prieto, H. Gross, and M. H. Medema, “Computer-aided re-engineering of nonribosomal peptide and polyketide biosynthetic assembly lines,” Nat. Prod. Rep., vol. 36, no. 9, pp. 1249–1261, 2019.

[21] E. Juaristi and V. A. Soloshonok, Enantioselective Synthesis of β-Amino Acids. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005.

[22] C. Freiberg et al., “Novel bacterial acetyl coenzyme A carboxylase inhibitors with antibiotic efficacy in vivo,” Antimicrob. Agents Chemother., vol. 50, no. 8, pp. 2707–2712, 2006.

[23] K. H. Almabruk, L. K. Dinh, and B. Philmus, “Self-Resistance of Natural Product Producers: Past, Present, and Future Focusing on Self-Resistant Protein Variants,” ACS Chem. Biol., 2018.
Table 1. Proposed gene function of The Andrimid BGC UBCF_13

Gene	Adm-	Number of Amino Acids	Protein sequence homolog	Query cover (%)	Similarity (%)	Proposed Function
A	94	acyl carrier protein [Erwiniaeae] (WP_187509966.1)	100	93.62	Acyl carrier protein	
B	220	AdmB [Pantoea agglomerans] (AAO39096.1)	100	80.63	Unknown	
C	249	SDR family NAD(P)-dependent oxidoreductase (FabG) [Serratia plymuthica] (WP_062867889.1)	100	99.60	Beta-Keto acyl carrier protein reductase (BKR), involved in Type II FAS, classical (c) SDRs	
D	734	beta-ketoacyl-[acyl-carrier-protein] synthase family protein [Serratia plymuthica] (WP_062867888.1)	100	99.46	Ketoacyl synthase	
E	110	(3R)-hydroxymyristoyl-[acyl-carrier-protein] dehydratase [Serratia plymuthica] (FabZ) (VEA66623.1)	100	89.09	Dehydratase	
F	274	transglutaminase domain-containing protein [Serratia plymuthica] (WP_062867886.1)	100	99.27	Transglutaminase	
G	131	hypothetical protein [Serratia plymuthica] (WP_062867885.1)	90	99.15	Unknown	
H	541	phenylalanine aminomutase (D-beta-phenylalanine forming) [Serratia plymuthica] (WP_062869696.1)	95	100	Phenylalanine aminomutase	
I	87	AdmI [Pantoea agglomerans] (AAO39103.1)	96	82.56	Acyl carrier protein	
J	522	AMP-binding protein [Serratia plymuthica] (WP_073999736.1)	100	95.59	Adenylate forming domain	
K	562	AMP-binding protein [Erwinia persicina] (WP_187509976.1)	100	87.72	The adenylation domain of nonribosomal peptide synthetases (NRPS)	
L	135	ester cyclase [Erwinia persicina] (WP_187509977.1)	100	95.56		
M	877	Beta-ketoacyl-acyl-carrier-protein synthase I [Serratia plymuthica] (VE120163.1)	100	89.05	Ketoacyl synthase	
N	104	Dabb family protein [Serratia plymuthica] (WP_126528357.1)	100	87.50	Stress responsive A/B Barrel Domain	
O	969	Beta-ketoacyl-acyl-carrier-protein synthase I [Serratia plymuthica] (VEA66611.1)	100	91.33	Acyl transferase domain in polyketide synthase (PKS) enzymes	
P	574	AMP-binding protein [Serratia plymuthica] (WP_062867877.1)	100	98.78	The adenylation domain of nonribosomal peptide synthetases (NRPS)	
Q	402	Purine efflux pump PbuE [Serratia plymuthica] (VEA66608.1)	98	96.71	Transporter	
R	237	4'-phosphopantetheinyld transferase superfAMILY protein [Serratia plymuthica] (WP_062867875.1)	100	99.16	Phosphopantetheinyl transferase	
S	295	Transglutaminase domain-containing protein [Burkholderia ubonensis] (WP_059981348.1)	93	34.77	Transglutaminase	
T	304	acetyl-CoA carboxyltransferase subunit beta [Serratia plymuthica (WP_062867873.1)]	100	100	Acetyl-CoA carboxylase subunit beta	