Comparison of Clinical Outcomes Between Ticagrelor and Clopidogrel in Acute Coronary Syndrome: an Updated Meta-Analysis

Mengyi Sun
Jining Academy of Medical Sciences

Weichen Cui
Jiaxiang Women and Children's hospital

Linpeng Li (lip0522@163.com)
Jining academy of medical sciences https://orcid.org/0000-0002-1524-0598

Research Article

Keywords: ticagrelor, clopidogrel, acute coronary syndrome, percutaneous coronary intervention, meta-analysis

Posted Date: October 20th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-982100/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Ticagrelor is currently recommended for patients with acute coronary syndrome (ACS). However, recent studies have yielded controversial results.

Objective: To compare the clinical outcomes of ticagrelor and clopidogrel in ACS patients.

Methods: Three electronic databases were queried until April 1, 2021. Major adverse cardiovascular event (MACE) was the primary efficacy endpoint. The secondary efficacy endpoints included stroke, stent thrombosis (ST), cardiovascular (CV) death, all-cause death, and myocardial infarction (MI). The safety endpoints were (major and minor) bleeding. Odds ratios (ORs) and 95% confidence intervals (CIs) and were calculated to represent the estimated effect sizes.

Results: Nine clinical trials and 18 observational studies with 269,935 ACS patients were included. No significant difference was detected in MACE (OR 0.76, 95% CI 0.54-1.06, p = 0.11, I² = 66.74%), but ticagrelor introduced a higher risk of bleeding (1.49, 1.14-1.94, 0.00, 63.97%) and minor bleeding (1.57, 1.08-2.30, 0.02, 59.09%) in clinical trials. The secondary efficacy endpoints differed between clinical trials and observational studies. Subgroup analysis demonstrated that ticagrelor showed better therapeutic effects in patients underwent PCI (0.38, 0.23-0.63, 0.00, 0) than those intended for PCI (1.02, 0.70-1.49, 0.93, 68.99%). Meanwhile ticagrelor showed different therapeutic effects on ACS patients of different ethnicities and from different countries.

Conclusion:

This meta-analysis demonstrated that ticagrelor is not superior to clopidogrel in MACE but is associated with a higher risk of bleeding in ACS patients. Different PCI strategies, ethnicities, and countries may be the factors that contribute to different therapeutic efficacy of ticagrelor.

Introduction

Currently, cardiovascular disease (CVD) is the largest contributor to the disease burden, accounting for approximately one-third of the global deaths [1]. Besides, acute coronary syndrome (ACS) as a common and serious CVD, its incidence increases dramatically with age, proposing a great challenge to public medical care. Dual antiplatelet therapy (DAPT) is the mainstay treatment strategy against ACS, with timely vascularization as needed [2, 3]. As for the choice of antiplatelet agent, the 2016 American College of Cardiology (ACC) / American Heart Association (AHA) guidelines and the 2018 European Society of Cardiology (ESC) / European Association for Cardio-Thoracic Surgery (EACTS) guidelines recommend ticagrelor over clopidogrel for ACS treatment or the patients who have received percutaneous coronary intervention (PCI) [2, 4].

As a novel generated adenosine diphosphate receptor antagonist, ticagrelor provides faster, more potent, and more stable platelet inhibitory effects than clopidogrel [5, 6]. The large Platelet Inhibition and Patient Outcomes (PLATO) trial exhibited that compared with clopidogrel, ticagrelor reduced the incidence of stroke, myocardial infarction (MI), and cardiovascular (CV) death, without elevating the risk of major bleeding [7]. However, data from other large clinical trials [8, 9] and observational studies [10–12] drew controversial conclusions. Meanwhile, meta-analyses published recently also reported inconsistent results [13–16]. Therefore, we conducted a meta-analysis to review previous relevant studies and compare the clinical benefits of ticagrelor and clopidogrel treatments in the ACS population in the context of aspirin use to address these conflicting conclusions.

Methods

We reported the current meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline [17] (Online Resource ESM_1), and have registered the study in an international prospective register of systematic reviews PROSPERO (ID: CRD42021251212).

Literature search

Three electronic databases, Cochrane, EMBASE, and PubMed library, were searched for eligible citations prior to April 1, 2021. The following relevant keywords were used: “ticagrelor”, “clopidogrel”, “myocardial ischemia”, “ACS”, “percutaneous coronary intervention”, and “PCI”. The detailed search strategy was summarized in Online Resource ESM_2. Additionally, reference lists in relevant meta-analyses were manually searched for potential eligibility.

Inclusion and exclusion criteria

We reviewed the full text of the potentially eligible literature to determine if they fulfilled the inclusion criteria as follows: (1) Adult (≥18 years old) patients with ACS who underwent PCI (PCI strategy proportion equal to 100%) or intended for PCI (proportion less than 100%); (2) Clinical trials and observational studies that compared ticagrelor versus clopidogrel in the context of aspirin use; (3) One or more of the following outcomes reported during any follow-up period: MACE, all-cause death, CV death, MI, stroke, stent thrombosis (ST), bleeding, major or minor bleeding. Literature that met the following exclusion criteria would be excluded: (1) Studies with incomplete data, or with only reported unadjusted endpoints in observational studies; (2) Studies from the same sample source; (3) Studies not in English.

Study end points

The primary efficacy endpoints were trial-defined primary MACEs or efficacy endpoints (described as death / CV death, MI, and / or stoke) (Online Resource ESM_3). The secondary endpoints included stroke, ST, MI, CV death, and all-cause death. The safety endpoints were trial-defined bleeding (a composite of major or minor bleeding), major bleeding, and minor bleeding (Online Resource ESM_3). For the definitions of safety outcomes, if not otherwise specified, we prioritized PLATO definitions when available.

Data extraction
Data from included citations were independently populated with a standardized data extraction by two researchers (SMY and CWC), with any discrepancy resolved by a third researcher (LLP). The data systematically extracted in this meta-analysis included the authors’ last names, study type, country (where the study was conducted), publication year and journal, disease subtype, sample size, age, the proportion of male and PCI strategy, dosing regimen, reported outcomes assessing efficacy and safety, and duration of follow-up.

Quality assessment

We assessed the risk of bias of randomized controlled trials (RCTs) using the Cochrane Risk Bias Assessment Tool, which covers six domains of bias, classified into three levels including “low bias”, “unclear”, and “high bias” [18]. Meanwhile, we assessed the quality of observational studies using the Newcastle-Ottawa Scale (NOS), which consists of eight items divided into three aspects including “selection”, “comparability”, and “outcome” assessment. The NOS adopts the semi-quantitative principle of star allocation to assess the literature quality, with a full score of nine stars [19].

Statistical analysis

We used the odds ratios (ORs) to represent the estimated effects, which along with the corresponding 95% confidence intervals (CIs) were obtained via the Stata 16.0 software (StataCorp, CollegeStation, TX, USA) [20]. Given the inclusion of heterogeneous populations, we chose the random-effects model to pool the effect sizes for this meta-analysis. Furthermore, we used the Higgins’ I² statistics and Cochran’s Q test to estimate heterogeneity across studies. A p value < 0.05 was considered as statistically significant.

All analyses were performed by analyzing data from clinical trials and observational studies separately to reduce the heterogeneity due to different study types. Meanwhile, subgroup analyses were performed to search for potential sources of heterogeneity. In brief, we performed two subgroup analyses, including propensity score-adjusted analyses (PA) group and multivariate-adjusted analyses (MA) group, in the observational studies according to different data types. Additionally, we conducted pre-specified subgroup analyses based on PCI strategy, ethnicity, country, and duration of follow-up in the included RCTs.

The stability of our findings was evaluated by sensitivity analysis, that is, calculating the effects by including high quality RCTs. When more than ten studies were included, the presence of publication bias was investigated by the Egger’s test and displayed by visual estimation (symmetry) of contour-enhanced funnel plots.

Results

Eligible studies and patient characteristics

The process of searching, retrieving, and screening in this meta-analysis is shown in Fig. 1. A total of 5,145 potentially relevant literatures were screened. Then 1,299 duplicates were excluded, and 3,767 were retrieved for title and abstract screening. Subsequently, the full texts of 79 articles were reviewed for eligibility. Among them, forty-two articles did not meet the inclusion criteria, eight presented with incomplete data, and two employed same cohorts included in our study. Finally, twenty-seven studies with 269,935 patients (87,988 and 181,947 in the ticagrelor and clopidogrel groups, respectively) were included for the meta-analysis. Nine studies were clinical trials [5, 7-9, 21-25], and 18 were observational studies [10-12, 26-40]. The patients were enrolled from 2003 to 2019, and the articles were published from 2007 to 2020. Among them, nineteen studies included ACS patients underwent PCI, and eight included those intended for PCI. 253,979 patients received PCI. The countries in which these studies were conducted were East Asian countries such as China, Korea, and Japan, as well as European and American countries such as the United States, Canada, Sweden, the Netherlands, and England. In addition, the ethnicities of the cohorts included both East Asians and Caucasians, and the duration of follow-up ranged from one month to 468 days. The main study and population characteristics are summarized in Table 1.

Efficacy endpoints

For the clinical trials, no significant difference was found in the primary efficacy endpoint (MACE) between ticagrelor and clopidogrel groups (OR 0.76, 95% CI 0.54-1.06, p = 0.11, I² = 66.74%; Fig. 2a). Similar results were shown in both the MA group (OR 0.97, 95% CI 0.82-1.15, p = 0.76, I² = 84.18%; Fig. 2b) and the PA group (OR 0.86, 95% CI 0.75-1.00, p = 0.05, I² = 72.32%; Fig. 2b) in observational studies.

The ticagrelor group demonstrated reduced secondary endpoints, compared to the clopidogrel group, regarding ST (OR 0.72, 95% CI 0.58-0.90, p = 0.00, I² = 0.00%; Table 2a) in clinical trials, all-cause death (OR 0.83, 95% CI 0.70-0.98 p = 0.03, I² = 69.89%) and CV death (OR 0.66, 95% CI 0.44-0.99, p = 0.04, I² = 70.59%) in the PA group, and CV death (OR 0.59, 95% CI 0.45-0.79, p = 0.001) in the MA group (Table 2b).

Safety endpoints

Ticagrelor led to significantly higher risks of bleeding (OR 1.49, 95% CI 1.14-1.94, p = 0.00, I² = 63.97%) and minor bleeding (OR 1.57, 95% CI 1.08-2.30, p = 0.02, I² = 59.09%) over clopidogrel in clinical trials (Table 2a). The increased risks of bleeding (OR 1.39, 95% CI 1.06-1.83, p = 0.02, I² = 76.11%) and minor bleeding (OR 1.61, 95% CI 1.37-1.89, p = 0.00, I² = 0.00%) were also identified in the PA group of observational studies (Table 2b). However, only the minor bleeding risk (OR 1.21, 95% CI 1.14-1.72, p = 0.007; Table 2b) increased significantly in the MA group of observational studies.

Subgroup analysis

In the subgroup of PCI strategy, patients underwent PCI (OR 0.38, 95% CI 0.23-0.63, p = 0.00, I² = 0) benefited more from ticagrelor than those intended for PCI (OR 1.02, 95% CI 0.70-1.49, p = 0.93, I² = 68.99%) in MACE (Fig. 3a), but ticagrelor introduced a higher risk of bleeding in the patients either underwent PCI
Subgroup analysis based on different ethnicity was performed to study the clinical outcomes of ticagrelor and clopidogrel between Caucasian and East Asian populations. Ticagrelor showed a superior MACE reducing effect over clopidogrel in Caucasian patients (OR 0.84, 95% CI 0.75-0.94, p = 0.00, I² = 0; Fig. 3b). Meanwhile, it was related to a lower risk of bleeding (OR 1.09, 95% CI 0.99-1.20, p = 0.07, I² = 0; Fig. 3b). However, the results were inconsistent in East Asian populations. Ticagrelor was comparable with clopidogrel regarding MACE (OR 0.67, 95% CI 0.36-1.25, p = 0.21, I² = 77.78%; Fig. 3b) and related to a higher bleeding risk (OR 1.81, 95% CI 1.43-2.29, p = 0.00, I² = 0; Fig. 3b).

Subgroup analysis based on different Asian countries showed that Chinese patients benefited more from ticagrelor treatment than those in Korean and Japanese, while the risk of bleeding significantly increased in all three Asian countries (Fig. 3c). Further subgroup analyses were conducted to analyze the safety and efficacy of ticagrelor in different follow-up duration classifications. It showed that bleeding risk and MACE was comparable between the two groups during the follow-up duration (Online Resource ESM_6).

Sensitivity analyses and publication bias

Sensitivity analyses were performed by including high quality RCTs. The results remained consistent, except for bleeding (OR 1.57, 95% CI 0.97-2.53, p = 0.06, I² = 84.86%; Online Resource ESM_8).

According to different data type, publication bias was investigated in the two groups: the composite of propensity score matched/adjusted studies and clinical trials, and the composite of multivariable adjusted studies and clinical trials. By contour-enhanced funnel plots (Fig. 4) and the results of the Egger's test (Table 3), we detected no publication bias except for MACE and MI in the composite of propensity score matched/adjusted studies and clinical trials. The results of nonparametric trim-and-fill analysis showed that five studies were filled for MACE with the total results influenced, and two were filled for MI with the total results unaffected (Online Resource ESM_9, Table 4).

Discussion

This meta-analysis, based on 27 studies, suggested that ticagrelor was not only inferior to clopidogrel in patients with ACS, but also related to an increased bleeding risk. Whereas, ticagrelor was more effective in the treatment of those who underwent PCI than clopidogrel, as it significantly reduced the incidence of MACE. Meanwhile the present meta-analysis revealed that Caucasians and East Asians had inconsistent safety and efficacy profiles under ticagrelor treatment. Among East Asian patients, Chinese benefited more from ticagrelor compared to Korean and Japanese. Care should therefore be taken to screen the eligible population when applying ticagrelor, and the bleeding risk under ticagrelor treatment was of concern.

Recently, several studies have revisited the issues concerning clinical applications of ticagrelor and clopidogrel. Wu et al. [13] found that ticagrelor treatment was more beneficial than clopidogrel treatment in European, American and Asian populations, who had a higher risk of bleeding. However, this analysis mixed all studies together and ignored the heterogeneity between clinical trials and observational studies. Furthermore, Guan et al. [15] reported that the efficacy endpoint of ticagrelor was comparable to that of clopidogrel, but the safety endpoint of ticagrelor should be further studied. Similarly, they performed a mixed analysis while including studies involving patients with stable coronary atherosclerotic heart disease (CAD). Consistently, Fan et al. [16] reported that ticagrelor only exhibited a tendency to reduce MACE at the expense of bleeding. Although the current meta-analysis differentiated RCTs and observational studies, no further subgroup analysis based on other study (or population) characteristics was performed. In this meta-analysis, we performed pre-specified subgroup analyses for MACE and bleeding according to PCI strategy, ethnicity, country, and follow-up duration in RCTs. Additionally, we performed two subgroup analyses (the PA and MA groups) in observational studies according to different data types. The aforementioned meta-analyses on this issue reported different clinical efficacy of ticagrelor, but they consistently found increased bleeding risk. We conducted a comprehensive analysis from both clinical trial and real-world practice considerations to compare the clinical outcomes of ticagrelor and clopidogrel in different subgroups of patients. Therefore, some definitive evidence can be provided for clinicians to choose from ticagrelor and clopidogrel.

We found similar primary efficacy results for ticagrelor treatment in both clinical trials and observational studies, though the MA group differed slightly. The secondary efficacy endpoints differed in clinical trials and observational studies, which can be attributed to inherent differences between study types. In brief, clinical trials (especially RCTs) match baseline characteristics well. And observational studies, although clinical factors associated with treatment selection can be matched by propensity score matched / adjusted analyses or multivariable adjusted analyses, there are still some unadjusted or incomplete adjustment variables that may affect the results. This may explain the difference in bleeding in MA group, as well as the difference in the secondary endpoints between clinical studies and observational studies.

In addition to pharmacological treatment with DAPT, the primary management of ACS patients involves an early invasive strategy consisting of coronary angiography, PCI, and even coronary artery bypass grafting (CABG) [2, 4, 41]. Considering that a high proportion of high-risk patients with ACS received PCI after coronary angiography, we included those who underwent or intended for PCI to better compare the clinical outcomes. Subgroup comparison in this study revealed that ticagrelor could significantly reduce the incidence of MACE in patients underwent PCI, but induced a higher bleeding risk than clopidogrel.

Whereas, in patients intended for PCI, ticagrelor was not superior over clopidogrel regarding MACE and bleeding. In ACS patients intended for PCI, the proportion of PCI strategy ranged from 42% (Cannon 2007) to 84.8% (Goto 2015) in the ticagrelor group in clinical trials, and from 88.5% (Sahlén 2016) to 92.3% (Vercellino 2017) in observational studies. Ahn et al. reported no significant difference in the outcomes between PCI and CABG complete revascularization [42]. Thus, ACS patients who received PCI and CABG had different clinical characteristics from those receiving medical treatment alone. Ticagrelor could significantly reduce the risk of MACE in patients undergoing PCI, providing valuable suggestions for clinicians to choose from ticagrelor and clopidogrel according to the PCI strategy.
In terms of ethnicity, Caucasians made up 91% of the population included in the PLATO trial, whereas East Asians accounted for only 6%. Caucasians and East Asians differ substantially in phenotypes and genomics; Caucasian based recommendations do not necessarily apply to East Asians [13]. We conducted subgroup analyses between different ethnicities, and we found that ticagrelor in Caucasian patients statistically decreased the incidence of MACE, while not increasing the risk of bleeding. However, this was not the case for East Asian populations, where ticagrelor had a comparable effect to clopidogrel on MACE but was more likely to cause bleeding events. East Asians are thought to be more prone to bleeding events than Caucasians, but are relatively resistant to adverse ischemic outcomes after PCI (the so-called “East Asian paradox”) [43–45]. In addition, cytochrome P450 2C19 loss-of-function alleles related to high platelet reactivity are more common in Asian populations [46]. In a nutshell, there are significant ethnic differences between Caucasian and East Asian patients in terms of thrombosis, platelet P2Y12 receptor inhibition, and predisposition to bleeding complications [43]. Those differences might partly contribute to this inter-population disparity. The number of RCTs included in this meta-analysis is relatively small, requiring more RCTs for further elaboration.

In East Asia, the MACE incidence was significantly reduced by ticagrelor in Chinese, but not in Korean and Japanese, which can, at least partially, be attributed to the different proportions of patients, underwent PCI. Specifically, The Korean TICAKOREA trial was a multicenter randomized study, in which 81.5% of the ACS patients assigned to the ticagrelor group underwent PCI [8]. In another PHILO trial conducted mainly in Japan, 84.8% of patients treated with ticagrelor received PCI [9]. More importantly, data from four Chinese trials showed that up to 94% of patients underwent PCI. The proportion of patients underwent PCI might be partly contributed to the efficacy difference of the ticagrelor treatment among Asian countries. Additionally, baseline characteristic of included population, diagnostic criteria, and dosage regimen might be the reasons for the differences. The efficacy of ticagrelor among Asian populations needs to be validated by larger trials.

DAPT reduces the incidence of thrombotic events but exposes patients to an increased risk of bleeding. The optimal DAPT duration subsequent to a PCI remains unclear. The safety and efficacy of short-duration (≤ 3 months) DAPT in elderly patients were acceptable [47], and abbreviated-duration (≤ 6 months) DAPT in CAD population did not significantly increase the incidence of MACE, but dramatically reduced the risk of major bleeding [48]. In addition, Verdia et al. reported that, compared to the standard one-year DAPT, a shorter-duration (3 or 6 months) could protect against major CV ischemic events in an improved manner [49]. In this meta-analysis, MACE and bleeding endpoints were comparable between 1-month and 6-month follow-up. The recommended DAPT duration has shifted from 12 months to a more flexible approach on the basis of the individual's ischemia and bleeding risk. Thus, balancing the risk of ischemia and bleeding when using DAPT becomes a clinical challenge because patients with a low risk of ischemic events and a high risk of bleeding would benefit from shorter duration[50].

The current study has several limitations. First, the sample sizes of several RCTs and the number of RCTs are relatively small. Due to limited research data or controversial results, the results of bleeding are not robust in sensitivity analyses. Second, the follow-up duration subsequent to PCI varied from in-hospital to one year or longer. Although we performed subgroup analysis in terms of the duration, the total results might also have swayed to some extent. Third, we pooled trials with heterogeneous populations that varied in study design, disease subtype, treatment strategy, and endpoints definitions. Fourth, possible adverse drug reactions, loss of tolerability, and discontinuation of treatment are not incorporated into the consideration.

Conclusion

We suggest that in ACS patients, ticagrelor is comparable in efficacy to clopidogrel, while it associates with a higher risk of bleeding. Clinicians should selectively adopt ticagrelor and clopidogrel according to different PCI strategy, ethnicities, and countries.

Declarations

Acknowledgments

We thank TopEdit (www.topeditsci.com) for its linguistic assistance during the preparation of this manuscript.

Author contribution

LLP contributed to the conception or design of the work. SMY, CWC and LLP contributed to the acquisition, analysis, or interpretation of data for the work. SMY and CWC drafted the manuscript. LLP critically revised the manuscript. All authors gave final approval and agree to be accountable for all aspects of work ensuring integrity and accuracy.

Conflict of Interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Data Availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Funding

No funding was received to assist with the preparation of this manuscript.
References

1. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res. 2017; https://doi.org/10.1161/CIRCRESAHA.117.308903

2. Sousa-Uva M, Neumann FJ, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur J Cardiothorac Surg. 2019; https://doi.org/10.1093/ejcts/ezy289

3. Kamran H, Jneid H, Kayani WT, Virani SS, Levine GN, Nambi V, et al. Oral Antiplatelet Therapy After Acute Coronary Syndrome: A Review. Jama. 2021; https://doi.org/10.1001/jama.2021.0716

4. Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, et al. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention, 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease, 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes, and 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation. 2016; https://doi.org/10.1161/CIR.0000000000000404

5. Cannon CP, Husted S, Harrington RA, Scirica BM, Emanuelsson H, Peters G, et al. Safety, tolerability, and initial efficacy of AZD6140, the first reversible oral adenosine diphosphate receptor antagonist, compared with clopidogrel, in patients with non-ST-segment elevation acute coronary syndrome: primary results of the DISPERSE-2 trial. J Am Coll Cardiol. 2007; https://doi.org/10.1016/j.jacc.2007.07.053

6. Tantry US, Navarese EP, Myat A, and Gurbel PA. Selection of P2Y12 Inhibitor in Percutaneous Coronary Intervention and/or Acute Coronary Syndrome. Prog Cardiovasc Dis. 2018; https://doi.org/10.1016/j.pcad.2018.01.003

7. Cannon CP, Harrington RA, James S, Ardissino D, Becker RC, Emanuelsson H, et al. Comparison of ticagrelor with clopidogrel in patients with a planned invasive strategy for acute coronary syndromes (PLATO): a randomised double-blind study. Lancet (London, England). 2010; https://doi.org/10.1016/S0140-6736(09)62191-7

8. Park DW, Kwon O, Jang JS, Yun SC, Park H, Kang DY, et al. Clinically Significant Bleeding With Ticagrelor Versus Clopidogrel in Korean Patients With Acute Coronary Syndromes Intended for Invasive Management: a Randomized Clinical Trial. Circulation. 2019; https://doi.org/10.1161/CIRCULATIONAHA.119.041766

9. Goto S, Huang CH, Park SJ, Emanuelsson H, and Kimura T. Ticagrelor vs. clopidogrel in Japanese, Korean and Taiwanese patients with acute coronary syndrome – randomized, double-blind, phase III PHILO study. Circulation journal. 2015; https://doi.org/10.1253/circj.CJ-15-0112

10. Sahlén A, Varenhorst C, Lagerqvist B, Renlund H, Omerovic E, Erlinge D, et al. Outcomes in patients treated with ticagrelor or clopidogrel after acute myocardial infarction: Experiences from SWEDHEART registry. European Heart Journal. 2016; https://doi.org/10.1093/eurheartj/ehw284

11. Olier I, Sirker A, Hildick-Smith DJR, Kinnaird T, Ludman P, De Belder MA, et al. Association of different antiplatelet therapies with mortality after primary percutaneous coronary intervention. Heart (British cardiac society). 2018; https://doi.org/10.1136/heartjnl-2017-312366

12. You SC, Rho Y, Bikdeli B, Kim J, Siapos A, Weaver J, et al. Association of Ticagrelor vs Clopidogrel with Net Adverse Clinical Events in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. JAMA - Journal of the American Medical Association. 2020; https://doi.org/10.1001/jama.2020.16167

13. Wu H, Xiang X, Li D, Shen S, and Li X. Efficacy and Safety of Ticagrelor Compared to Clopidogrel in Patients Undergoing Percutaneous Coronary Intervention: A Meta-Analysis. Current pharmaceutical design. 2020; https://doi.org/10.2174/1381612826666200614184007

14. Watt H, Dahal K, Zahber HG, Katikaneni P, Modi K, and Abdulbaki A. Comparison of prasugrel and ticagrelor in patients with acute coronary syndrome undergoing percutaneous coronary intervention: A meta-analysis of randomized and non-randomized studies. Int J Cardiol. 2017; https://doi.org/10.1016/j.ijcard.2017.07.103

15. Guan W, Lu H, and Yang K. Choosing between ticagrelor and clopidogrel following percutaneous coronary intervention: A systematic review and Meta-Analysis (2007-2017). Medicine (Baltimore). 2018; https://doi.org/10.1097/MD.0000000000012978

16. Fan ZG, Zhang WL, Xu B, Ji J, Tian NL, and He SH. Comparisons between ticagrelor and clopidogrel following percutaneous coronary intervention in patients with acute coronary syndrome: a comprehensive meta-analysis. Drug Des Devel Ther. 2019; https://doi.org/10.2147/DDDT.S196535

17. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. International journal of surgery (London, England). 2010; https://doi.org/10.1016/j.ijsu.2010.02.007

18. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ (Clinical research ed.). 2011; https://doi.org/10.1136/bmj.d5928

19. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology. 2010; https://doi.org/10.1007/s10654-010-9491-z

20. Chaimani A, Higgins JP, Mavridis D, Spyridonos P, and Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One. 2013; https://doi.org/10.1371/journal.pone.0076654
21. Ren Q, Ren C, Liu X, Dong C, and Zhang X. Ticagrelor vs. clopidogrel in non-ST-elevation acute coronary syndromes. Herz. 2016; https://doi.org/10.1007/s00093-015-4359-3

22. Tang X, Li R, Jing Q, Wang G, Liu P, Zhang R et al. Assessment of Ticagrelor Versus Clopidogrel Treatment in Patients With ST-elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. J Cardiovasc Pharmacol. 2016; https://doi.org/10.1097/jcf.0000000000000390

23. Wang H and Wang X. Efficacy and safety outcomes of ticagrelor compared with clopidogrel in elderly Chinese patients with acute coronary syndrome. Ther Clin Risk Manag. 2016; https://doi.org/10.2147/TCRM.S108965

24. Yao Z, Li G, Fu C, and Li G. Analysis of antiplatelet activity and short-term prognosis of ticagrelor in AMI patients undergoing emergency PCI during perioperative period. International journal of clinical and experimental medicine. 2017; 10(6):9595-600.

25. Li XY, Su GH, Wang GX, Hu HY, and Fan CJ. Switching from ticagrelor to clopidogrel in patients with ST-segment elevation myocardial infarction undergoing successful percutaneous coronary intervention in real-world China: occurrences, reasons, and long-term clinical outcomes. Clinical cardiology. 2018; https://doi.org/10.1002/clc.23074

26. Alexopoulos D, Xanthopoulou I, Deftereos S, Hamilos M, Sifatidis G, Kanakakis I, et al. Contemporary antiplatelet treatment in acute coronary syndrome patients undergoing percutaneous coronary intervention: 1-year outcomes from the GReek AntiPlatElet (GRAPE) Registry. Journal of Thrombosis and Haemostasis. 2016; https://doi.org/10.1111/jth.13316

27. Chen IC, Lee CH, Fang CC, Chao TH, Cheng CL, Chen Y, et al. Efficacy and safety of ticagrelor versus clopidogrel in acute coronary syndrome in Taiwan: a multicenter retrospective pilot study. Journal of the chinese medical association. 2016; https://doi.org/10.1016/j.jcma.2016.02.010

28. Park KH, Jeong MH, Ahn Y, Ahn TH, Seung KB, Oh DJ, et al. Comparison of short-term clinical outcomes between ticagrelor and clopidogrel in patients with acute myocardial infarction undergoing successful revascularization; from Korea Acute Myocardial Infarction Registry-National Institute of Health. Int J Cardiol. 2016; https://doi.org/10.1016/j.ijcard.2016.04.044

29. Yudi MB, Clark DJ, Farouque O, Eccleston D, Andrianopoulos N, Duffy SJ, et al. Clopidogrel, prasugrel or ticagrelor in patients with acute coronary syndromes undergoing percutaneous coronary intervention. Internal Medicine Journal. 2016; https://doi.org/10.1111/imj.13041

30. Vercellino M, Sánchez FA, Boassi V, Perri D, Tacchi C, Secco GG, et al. Ticagrelor versus clopidogrel in real-world patients with ST elevation myocardial infarction: 1-year results by propensity score analysis. BMC Cardiovascular Disorders. 2017; https://doi.org/10.1186/s12872-017-0524-3

31. Zocca P, Van Der Heijden LC, Kok MM, Löwik MM, Hartmann M, Stoel MG, et al. Clopidogrel or ticagrelor in acute coronary syndrome patients treated with newer-generation drug-eluting stents: CHANGE DAPT. EuroIntervention. 2017; https://doi.org/10.4244/EIJ-D-17-00634

32. Wang HY, Li Y, Xu XM, Li J, and Han YL. Impact of baseline bleeding risk on efficacy and safety of ticagrelor versus clopidogrel in Chinese patients with acute coronary syndrome undergoing percutaneous coronary intervention. Chinese Medical Journal. 2018; https://doi.org/10.4103/0366-6999.239306

33. Choe JC, Cha KS, Ahn J, Park JS, Lee HW, Oh JH, et al. Comparison of prescription rates and clinical outcomes in acute coronary syndrome patients who underwent percutaneous coronary intervention using different P2Y12 inhibitors in a large observational study. International Journal of Cardiology. 2019; https://doi.org/10.1016/j.ijcard.2018.09.011

34. Kim C, Shin DH, Hong SJ, Ahn CM, Kim JS, Kim BK, et al. One-year clinical outcomes of ticagrelor compared with clopidogrel after percutaneous coronary intervention in patients with acute myocardial infarction: From Korean Health Insurance Review and Assessment Data. Journal of Cardiology. 2019; https://doi.org/10.1016/j.jcc.2018.08.005

35. Krishnamurthy A, Keeble C, Anderson M, Somers K, Burton-Wood N, Harland C, et al. Real-world comparison of clopidogrel, prasugrel and ticagrelor in patients undergoing primary percutaneous coronary intervention. Open Heart. 2019; https://doi.org/10.1136/openhrt-2018-000951

36. Sun Y, Li C, Zhang L, Yu T, Ye H, Yu B, et al. Clinical outcomes after ticagrelor and clopidogrel in Chinese post-stented patients. Atherosclerosis. 2019; https://doi.org/10.1016/j.atherosclerosis.2019.09.011

37. Welsh RC, Sidhu RS, Cairns JA, Lavi S, Kedev S, Moreno R, et al. Outcomes Among Clopidogrel, Prasugrel, and Ticagrelor in ST-Elevation Myocardial Infarction Patients Who Underwent Primary Percutaneous Coronary Intervention From the TOTAL Trial. Canadian journal of cardiology. 2019; https://doi.org/10.1016/j.tct.2019.04.026

38. Peyracchia M, Saglietto A, Bilocè C, Raposeiras-Roubin S, Abu-Assi E, Kinnaird T, et al. Efficacy and Safety of Clopidogrel, Prasugrel and Ticagrelor in ACS Patients Treated with PCI: A Propensity Score Analysis of the RENAMI and BleeMACS Registries. American Journal of Cardiovascular Drugs. 2020; https://doi.org/10.1007/s40256-019-00373-1

39. Turgeon RD, Koshman SL, Youngson E, Har B, Wilton SB, James MT, et al. Association of Ticagrelor vs Clopidogrel with Major Adverse Coronary Events in Patients Treated with PCI: A Propensity Score Analysis of the RENAMI and BleeMACS Registries. American Journal of Cardiovascular Drugs. 2020; https://doi.org/10.1016/j.ijcc.2019.04.026

40. Völz S, Peturssson P, Odenstedt J, Ioanes D, Haraldsson I, Angerås O, et al. Ticagrelor is Not Superior to Clopidogrel in Patients With Acute Coronary Syndromes Undergoing PCI: A Report from Swedish Coronary Angiography and Angioplasty Registry. Journal of the American Heart Association. 2020; https://doi.org/10.1161/JAHA.119.015990

41. Brilakis ES, Patel VG, and Banerjee S. Medical management after coronary stent implantation: a review. JAMA. 2013; https://doi.org/10.1001/jama.2013.7086

42. Ahn J-M, Park D-W, Lee CW, Chang M, Cavalcante R, Sotomi Y, et al. Comparison of Stenting Versus Bypass Surgery According to the Completeness of Revascularization in Severe Coronary Artery Disease: Patient-Level Pooled Analysis of the SYNTAX, PRECOMBAT, and BEST Trials. JACC. Cardiovascular interventions. 2017; https://doi.org/10.1016/j.jcin.2017.04.037

43. Levine GN, Jeong Y-H, Goto S, Anderson JL, Hoo Y, Mega JL, et al. World heart federation expert consensus statement on antiplatelet therapy in east asian patients with ACS or undergoing PCI. Global heart. 2014; https://doi.org/10.1016/j.gheart.2014.08.001
44. Kang J, Park KW, Palmerini T, Stone GW, Lee MS, Colombo A, et al. Racial Differences in Ischaemia/Bleeding Risk Trade-Off during Anti-Platelet Therapy: Individual Patient Level Landmark Meta-Analysis from Seven RCTs. Thrombosis and haemostasis. 2019; https://doi.org/10.1055/s-0038-1676545

45. Bae JS, Ahn J-H, Tantry US, Gurbel PA, and Jeong Y-H. Should Antithrombotic Treatment Strategies in East Asians Differ from Caucasians? Current vascular pharmacology. 2018; https://doi.org/10.2174/1570161116666180117103238

46. Scott SA, Sangkuhl K, Stein CM, Hulot JS, Mega JL, Roden DM, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy. 2013 update. Clinical pharmacology and therapeutics. 2013; https://doi.org/10.1038/clpt.2013.105

47. Roule V, Lemaitre A, Pommier W, Bignon M, Sabatier R, Blanchart K, et al. Safety and efficacy of very short dual antiplatelet therapy followed by P2Y12 inhibitor monotherapy in older patients undergoing percutaneous coronary intervention: meta-analysis of randomised controlled trials. Age and ageing. 2021; https://doi.org/10.1093/ageing/afab047

48. Ziada KM, Abdel-Latif AK, Charnigo R, and Moliterno DJ. Safety of an abbreviated duration of dual antiplatelet therapy (≤6 months) following second-generation drug-eluting stents for coronary artery disease: A systematic review and meta-analysis of randomized trials. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions. 2016; https://doi.org/10.1002/ccd.26110

49. Verdoia M, Kedhi E, Suryapranata H, Frati G, Biondi-Zoccai G, and De Luca G. Benefits of short-term or prolonged as compared to standard 1 year DAPT in patients with acute coronary syndrome treated with drug-eluting stents: a meta-analysis of 9 randomized trials. Journal of thrombosis and thrombolysis. 2020; https://doi.org/10.1007/s11239-019-02033-2

50. Howard TM and Khot UN. Dual antiplatelet therapy after percutaneous coronary intervention: Personalize the duration. Cleveland Clinic journal of medicine. 2021; https://doi.org/10.3949/ccjm.88a.20113

Tables

Table 1 Main features of the included studies.
No.	Study	Study type	Country	Enrollment	Population	Ticagrelor group	Clopidogrel group				
1	Yao, 2017/ Int J Clin Exp Med	RCT	China	2015.1-2016.6	AMI patients undergoing PCI	60 60.4 ± 12.7 63.3 100 Loading 180 mg; maintenance 90 mg once daily.	60 59.8 ± 10.8				
2	Li, 2018/ Clinical cardiology	RCT	China	2014.1-2017.3	STEMI patients undergoing PCI	161 59.8 ± 11.2 83.6 100 Loading 180 mg; maintenance 90 mg twice daily.	281 62.8 ± 12.9				
3	Tang, 2016/ J Cardiovasc Pharmacol	RCT	China	2013.1-2015.4	ACS patients with or without ST elevation intending for invasive management	200 64.36 ± 11.41 71 100 Loading 180 mg; maintenance 90 mg twice daily.	200 64.18 ± 11.09				
4	Park, 2019/ Circulation	RCT	Korea	2014.7-2017.6	ACS patients with or without ST elevation intending for invasive management	400 62.5 ± 11.3 74.2 81.5 Loading 180 mg; maintenance 90 mg twice daily.	400 62.3 ± 11.5				
5	Goto, 2015/ Circulation Journal	RCT	Japan, Taiwan and South Korea	NA	ACS patients with or without ST elevation intending for invasive management	401 67 ± 12.0 76.3 84.8 Loading 180 mg; maintenance 90 mg twice daily.	400 66 ± 11				
6	Cannon, 2010/ Lancet	RCT	43 countries	NA	ACS patients intending for invasive management	6732 61.0 (53-69) # 74.8 76.6 Loading 180 mg; maintenance 90 mg twice daily.	6676 61.0 (53-70) #				
7	Wang, 2016/ Therapeutics and Clinical Risk Management	RCT	China	2013.8-2014.9	ACS patients (65-93 years) intending for invasive management	100 79 (76-85) # 69 75 Loading 180 mg; maintenance 90 mg twice daily.	100 80 (74-86) #				
8	Cannon, 2007/ JACC	RCT	14 countries	2004.10-2005.8	NSTE-ACS patients intending for invasive management	334 64 ± 12.1 61 42 Loading 270 mg; maintenance 90 mg twice daily.	327 62 ± 11.0				
9	Ren, 2015/ Herz	Non RCT	China	NA	NSTEM patients undergoing PCI	149 56 ± 9.2 68.3 100 Loading 180 mg; maintenance 90 mg twice daily.	151 55 ± 8.0				
10	*Turgeon, 2020/ JAMA Internal Medicine	Cohort	Canada	2012.4-2016.3	ACS patients undergoing PCI	3711 61 (54-69) # 76.9 100 NA	3711 61 (55-71) #				
11	*You, 2020/ JAMA	Cohort	America, South Korean	2011.9-2019.3	ACS patients undergoing PCI	31290 NA 70.6 100 NA	31290 NA				
12	Yudi, 2016/ Internal Medicine Journal	Cohort	Australia	2009.7-2013.11	STEMI and NSTEACS patients undergoing PCI	526 61.7 ± 11.8 78.1 100 NA	956 67.5 ± 12.8				
13	*Wang, 2018/ Chinese, Medical Journal	Cohort	China	2011.10-2014.8	ACS patients undergoing PCI	779 60.54 ± 10.53 71.1 100 NA	1558 60.97 ± 10.54				
14	Sahle’n, 2016/ European Heart Journal	Cohort	Sweden	2010.1-2013.12	AMI patients intending for PCI	11954 67 (59-75) # 71.5 88.5 NA	33119 71 (62-80) #				
15	*Sun, 2019/ Atherosclerosis	Cohort	China	2014.8-2017.10	ACS patients undergoing PCI	1833 59.86 ± 10.12 74.9 100 NA	1833 60.35 ± 10.62				
	Study Details	Cohort/ Country	Study Period	Population	Age (Mean ± SE)	Male (%)	Loading	Maintenance	Comparison	Notes	
---	--------------	-----------------	--------------	------------	-----------------	---------	---------	-------------	------------	-------	
16	Völz, 2020/J Am Heart Assoc	Cohort Sweden	2005.1-2015.1	ACS patients undergoing PCI	2929	67.25 ± 11.64	72.7	100	NA	12168	67.30 ± 11.48
17	* Peyracchia, 2019/American Journal of Cardiovascular Drugs	Cohort Countries of America, Asia and Europe	2003-2016	ACS patients undergoing PCI	798	60.19 @	82.7	100	NA	1831	60.51
18	* Park, 2016/International Journal of Cardiology	Cohort Korea	2011.11-2015.6	AMI patients undergoing PCI	1377	63 (53-72) @	74.2	100	Loading 180 mg; maintenance 90 mg twice daily	1377	62.24 ± 12.53
19	Olier, 2018/Heart (British cardiac society)	Cohort England and Wales	2007.1-2014.12	STEMI patients undergoing PCI	13 105	63 (53-72) @	74.2	100	NA	58 248	64 (54-75) @
20	Krishnamurthy, 2019/Interventional cardiology	Cohort UK	2009.1-2011.12	STEMI patients undergoing PCI	811	63 (19) $	72.4	100	NA	1648	65 (21) $
21	Kim, 2019/Journal of Cardiology	Cohort Korea	2013-2014	AMI patients undergoing PCI	4811	57 (50-65) @	86	100	Loading 180 mg; maintenance 90 mg twice daily	15459	60 (52-68) @
22	* Choe, 2019/International Journal of Cardiology	Cohort Korea	2011.11-2015.6	ACS patients undergoing PCI	1203	66 (56-74) @	71.7	100	Loading 180 mg; maintenance 90 mg twice daily	1203	67 (56-75) @
23	* Chen, 2016/Journal of the Chinese Medical Association	Cohort Taiwan	2013.7-2015.2	ACS patients intending for PCI	224	63.8 ± 13.3	79.9	87.1	NA	224	63.7 ± 13.7
24	Zocca, 2017/EuroIntervention	Cohort Netherlands	2012.12-2015.8	ACS patients undergoing PCI	1053	63.9 ± 12.1	71	100	Loading 180 mg; maintenance 90 mg twice daily	1009	62.9 ± 11.6
25	Alexopoulos, 2016/Journal of Thrombosis and Haemostasis	Cohort Greece	2012.1-2013.8	ACS patients undergoing PCI	717	60.1 ± 11.4	84.9	100	Maintenance 90 mg twice daily	959	65.3 ± 12.5
26	Welsh, 2019/Canadian Journal of Cardiology	Cohort 20 countries	2010.8-2014.7	STEMI patients undergoing PCI	2188	NA	77.9	100	NA	6500	NA
27	Vercellino, 2017/BMC Cardiovascular Disorders	Case-control Italy	2011.2-2013.6	STEMI patients intending for PCI	142	66 (56-73) @	73.9	92.3	NA	259	67 (56-67) @

Note: *Subset following propensity-score matching; @recorded as median (Q1-Q3); $recorded as median; $recorded as median (IQR); the rest data of age recorded as mean ± standard error.*

Abbreviations: ACS, acute coronary syndrome; AMI, acute myocardial infarction; NSTE-ACS, non-ST-elevation ACS; STEMI, ST-elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; PCI, percutaneous coronary intervention; RCT, randomized controlled trial; Non RCT, non-randomized controlled trial; NA, not available.

Table 2 Comparison of ticagrelor and clopidogrel treatment for the safety and secondary efficacy endpoints in clinical trials and observational studies.

a. Comparison in clinical trials
Outcomes

Outcomes	Trials	OR (95%CI)	I²	P Value
Bleeding	7	1.49 (1.14, 1.94)	63.97	0.00 *
Major bleeding	6	1.22 (0.86, 1.73)	49.83	0.27
Minor bleeding	6	1.57 (1.08, 2.30)	59.09	0.02 *
All-cause death	7	0.88 (0.66, 1.17)	16.17	0.37
CV death	7	0.90 (0.59, 1.36)	40.73	0.61
MI	7	0.84 (0.59, 1.21)	44.50	0.35
Stoke	7	1.04 (0.78, 1.38)	0	0.81
Stent thrombosis	3	0.72 (0.58, 0.90)	0	0.00 *

Note: *significant p-value compared with clopidogrel group.

Abbreviations: CV death, cardiovascular death; MI, myocardial infarction; CI, confidence intervals; OR, odds ratios.

b. Comparison in observational studies

Outcomes	Propensity score-matched/adjusted analyses	Multivariable-adjusted analyses						
	NO.	OR (95%CI)	I²	P Value	NO.	OR (95%CI)	I²	P Value
Bleeding	7	1.39 (1.06, 1.83)	76.11	0.02 *	6	1.15 (0.86, 1.53)	81.88	0.35
Major bleeding	8	1.26 (0.90, 1.75)	75.23	0.17	2	1.12 (0.86, 1.45)	0	0.39
Minor bleeding	4	1.61 (1.37, 1.89)	0.00	0.00 *	1	1.21 (1.14, 1.72)	-	0.007 *
All-cause death	13	0.83 (0.70, 0.98)	69.89	0.03 *	8	0.90 (0.75, 1.07)	79.34	0.23
CV death	6	0.66 (0.44, 0.99)	70.59	0.04 *	1	0.59 (0.45, 0.79)	-	<0.001 *
MI	11	0.99 (0.84, 1.15)	48.41	0.87	4	0.9 (0.71, 1.15)	79.13	0.39
Stoke	11	0.84 (0.65, 1.09)	39.97	0.19	4	0.79 (0.59, 1.06)	52.70	0.12
Stent thrombosis	5	1.18 (0.81, 1.72)	6.26	0.39	2	1.45 (0.89, 2.37)	0	0.14

Note: *significant p-value compared with clopidogrel group.

Abbreviations: CV death, cardiovascular death; MI, myocardial infarction; CI, confidence intervals; OR, odds ratios.

Table 3 Publication bias of outcomes using Egger test.

Outcomes	Propensity score-matched/adjusted studies and clinical trials	Multivariable-adjusted studies and clinical trials				
	Studies	Prob >	z	Studies	Prob >	z
MACE	22	0.0184	15	0.1035		
All-cause death	20	0.9928	15	0.729		
CV death	13	0.7681	8	NA		
MI	18	0.0464	11	0.107		
Stoke	18	0.5027	11	0.9779		
Stent thrombosis	9	NA	5	NA		

Note: Publication bias was detected when the number of studies ≥ 10; P > 0.05, no significant publication bias.

Abbreviations: MACE, major adverse cardiac events; CV death, cardiovascular death; MI, myocardial infarction; NA, not available.

Table 4 Nonparametric trim-and-fill analysis.
Outcomes	Studies	Number	LnOR	95% CI
MACE	observed	22	-0.169	-0.299, -0.039
	observed + imputed	22+5	-0.072	-0.205, 0.062
MI	observed	19	-0.005	-0.058, 0.049
	observed + imputed	19+2	-0.001	-0.054, 0.053

Abbreviations: MACE, major adverse cardiac events; MI, myocardial infarction; CI, confidence intervals; OR, odds ratios.

Figures

Potentially relevant papers identified $n = 5145$
- EMBASE $n = 3492$
- PubMed $n = 960$
- Cochrane $n = 691$
- Additional records identified through other sources $n = 2$

Duplicates excluded $n = 1299$

Titles and abstracts screened for retrieval $n = 3846$

Studies excluded $n = 3767$

Potentially appropriate studies to be included in systematic review $n = 79$

Studies excluded $n = 50$
 - With incomplete data $n = 8$
 - Did not fulfill inclusion criteria $n = 42$

Studies included in systematic review $n = 29$

Studies excluded from meta-analysis $n = 2$
 - Data from same sample origin $n = 2$

Studies included in meta-analysis $n = 27$

Figure 1

Flowchart diagram of searching and screening of studies.
Figure 2

Comparison the primary efficacy outcomes (MACE) between ticagrelor and clopidogrel treatment. Forest plots reporting outcomes in clinical trials (a) and observational studies (b). MACE, major adverse cardiac events.
Figure 3

Subgroup comparison of MACE and bleeding outcomes between ticagrelor and clopidogrel treatment according to PCI strategy (a), ethnicity (b), Asian countries (c) in RCTs. MACE, major adverse cardiac events; PCI, percutaneous coronary intervention; RCT, randomized controlled trial.
Figure 4

Publication bias of outcomes using Contour-enhanced funnel plots. (a) Publication bias of outcomes in propensity score matched/adjusted studies and clinical trials; (b) Publication bias of outcomes in multivariable adjusted studies and clinical trials. MACE, major adverse cardiovascular events; CV death, cardiovascular death; MI, myocardial infarction.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- ESM.pdf