TORUS ACTIONS, LOCALIZATION AND INDUCED REPRESENTATIONS ON COHOMOLOGY

JIM CARRELL

Abstract. The purpose of this note is to describe the action of a (say finite) group W on the cohomology algebra of a projective variety X over \mathbb{C} in the following setting: there exists an equivariantly formal action on X by an algebraic torus S such that W acts on $H^*_S(X)$ as a graded algebra and $\mathbb{C}[\text{Lie}(S)]$-module and on $H^*(X^S)$ as a graded \mathbb{C}-algebra and, in addition, the cohomology restriction map $H^*_S(X) \to H^*_S(X^S)$ is W-equivariant. A sufficient condition for an action of a group W on $H^*(X^S)$ to define an action on $H^*(X)$ which admits a lift to $H^*_S(X)$ satisfying the above conditions was given in [CK]. In this note we show that under the above conditions, the actions of W on $H^*_S(X)$ and $H^*(X^S)$ are equivalent. In particular, if W acts on the fixed point set X^S, then the action of W on $H^*(X)$ is a sum of induced representations, one for component of X^S. This gives a simple proof of the Alvis-Lusztig-Treumann theorem which describes Springer’s Weyl group action on the cohomology of a Springer variety in a flag variety of type A. A slight rewording of the hypotheses allows one to state the above result for arbitrary actions of a algebraic torus.

1. Introduction

Let X be a projective variety, and let S be an algebraic torus acting on X. Suppose this torus action is equivariantly formal. In [CK], the author and Kiumars Kaveh gave a sufficient condition for a (finite) group W which acts on the cohomology algebra $H^*(X^S)$ of the fixed point set X^S to also act on cohomology algebra $H^*(X)$ of X. Here all cohomology will be over \mathbb{C}, so coefficients are suppressed. The goal of this note is to continue to develop this theme. In particular, we will give a sufficient condition for representations of W on $H^*(X^S)$ and $H^*(X)$ to be equivalent. A key step is to show that $H^*(X^S)$ has a filtration whose associated graded is isomorphic with $H^*(X)$. The proof of this result uses the evaluation mapping due to Puppe. An interesting corollary is that if (S, X) and (S, Y) are a pair of equivariantly formal torus actions, then an S-equivariant map $\phi : X \to Y$ which induces a surjection $\phi^* : H^*(Y) \to H^*(X)$ also induces a surjection on the cohomology of fixed point sets: that is, ϕ induces a surjection $H^*(Y^S) \to H^*(X^S)$. Using an assumption of surjectivity, we will give a short proof of the Alvis-Lusztig and Treumann theorem [AL, Treu] which shows a large class of Weyl group representations of the Weyl group on the cohomology of a Springer fibre are certain induced representations.

2. The main result

Let us first describe the general set up and recall the main result from [CK]. Suppose Y is a complex projective variety with vanishing odd Betti numbers and $H^*(Y)$ is its cohomology algebra over \mathbb{C}. Suppose that Y admits an algebraic torus action (S, Y). Then it follows from the Borel fixed point theorem that the fixed point locus Y^S is nonempty.
Recall that the equivariant cohomology of an arbitrary space Y over \mathbb{C} is defined to be $H^*_\mathcal{W}(Y) = H^*(Y_\mathcal{W})$ where $Y_\mathcal{W}$ is the Borel space $(Y \times E)/\mathcal{W}$, E being a contractible space with a free \mathcal{W}-action (cf. [Bri]). Furthermore, $H^*(E/\mathcal{W})$ has a natural identification with the algebra $\mathbb{C}[s]$, where $s = \text{Lie}(\mathcal{W})$, which is assumed to be graded in even degrees.

Recall also that the forgetful map $H^*_\mathcal{S}(Y) \to H^*_\mathcal{W}(Y)$ is the cohomology restriction map induced by the inclusion of \mathcal{W} into \mathcal{S} along a fibre. A key fact which we will use throughout is the well known localization theorem (cf. [Bri]): the inclusion $i : Y^\mathcal{S} \to Y$ induces an injection $i^*_\mathcal{S} : H^*_\mathcal{S}(Y) \to H^*_\mathcal{W}(Y^\mathcal{S})$, and, furthermore, $i^*_\mathcal{S}$ becomes an isomorphism after localizing $H^*_\mathcal{W}(Y^\mathcal{S})$ at finitely many elements $f_1, \ldots, f_r \in \mathbb{C}[s]$. Note that by the Kunneth formula, $H^*_\mathcal{S}(Y^\mathcal{S}) = \mathbb{C}^s \otimes H^*_\mathcal{W}(Y^\mathcal{S})$.

Now let \mathcal{W} be a finite group which acts topologically on Y, and suppose \mathcal{W} commutes with the action of \mathcal{S}; that is, $\mathcal{W} \times \mathcal{S}$ acts on Y. Then \mathcal{W} acts on $H^*_\mathcal{S}(Y)$ and $H^*_\mathcal{S}(Y^\mathcal{S})$ by $\mathbb{C}[s]$-module isomorphisms. Assume also that X is an \mathcal{S}-stable subvariety of Y, and note that $X^\mathcal{S}$ is necessarily nonempty too. We are not assuming, however, that \mathcal{W} acts on X or $X^\mathcal{S}$. The main result in [CK] is the following:

Theorem 2.1. Suppose the cohomology restriction map $H^*_\mathcal{W}(Y) \to H^*_\mathcal{W}(X)$ is surjective: hence X has trivial odd cohomology. Assume also that $H^*_\mathcal{W}(X^\mathcal{S})$ is a graded \mathcal{W}-algebra. Then there exist graded \mathbb{C}-algebra representations of \mathcal{W} on the equivariant cohomology algebras $H^*_\mathcal{S}(X)$ and $H^*_\mathcal{S}(X^\mathcal{S})$ via $\mathbb{C}[s]$-module isomorphisms such that the localization map $i^*_\mathcal{S} : H^*_\mathcal{S}(X) \to H^*_\mathcal{S}(X^\mathcal{S})$ is \mathcal{W}-equivariant. In particular, the forgetful map induces a graded \mathbb{C}-algebra representation of \mathcal{W} on $H^*_\mathcal{W}(X)$.

A nice consequence of this theorem is that it gives an elementary construction of Springer’s representation [Spr2, Spr3] of the Weyl group of $SL(n, \mathbb{C})$ on $H^*(B_x)$ for the Springer variety B_x of complete flags in \mathbb{C}^n fixed by an arbitrary nilpotent $x \in \text{sl}(n, \mathbb{C})$. See Section 6 for more details. In this note we treat the question of how, in the setting described above, one can determine the irreducible decomposition of \mathcal{W} on $H^*_\mathcal{W}(X)$.

The next theorem is a statement of the main result of this note.

Theorem 2.2. Assume X has vanishing odd cohomology. Suppose a finite group \mathcal{W} acts on both of the \mathbb{C}-algebras $H^*_\mathcal{S}(X)$ and $H^*_\mathcal{S}(X^\mathcal{S})$ via graded $\mathbb{C}[s]$-module isomorphisms and that the cohomology restriction map $H^*_\mathcal{S}(X) \to H^*_\mathcal{S}(X^\mathcal{S})$ is \mathcal{W}-equivariant. Then \mathcal{W} acts linearly on both $H^*_\mathcal{W}(X)$ and $H^*_\mathcal{W}(X^\mathcal{S})$ via the forgetful maps, and these actions are equivalent: that is, $H^*_\mathcal{W}(X) \cong H^*_\mathcal{W}(X^\mathcal{S})$ as \mathcal{W}-modules. More precisely, $H^*_\mathcal{W}(X^\mathcal{S})$ has a \mathcal{W}-stable filtration $F_{-1} = \{0\} \subset F_0 \subset F_1 \subset \cdots \subset F_m \subset F_{m+1} \subset \cdots \subset H^*_\mathcal{W}(X^\mathcal{S})$ such that $F_i F_j \subset F_{i+j}$ and $Gr_F H^*_\mathcal{W}(X^\mathcal{S}) \cong H^*_\mathcal{W}(X)$ via a \mathcal{W}-equivariant isomorphism of graded \mathbb{C}-algebras.

Of course, the assumption that \mathcal{W} acts on both $H^*_\mathcal{S}(X^\mathcal{S})$ and $H^*_\mathcal{S}(X)$ is part of the conclusion of Theorem 2.1. In the case the action of \mathcal{W} on $H^*_\mathcal{W}(X)$ is induced by an action of \mathcal{W} on $X^\mathcal{S}$ and $X^\mathcal{S}$ is finite, we get the following more explicit description:

Corollary 2.3. Assume $X^\mathcal{S}$ is finite and \mathcal{W} acts on it. If this action of \mathcal{W} is simply transitive (resp. transitive), then $H^*_\mathcal{W}(X)$ is the regular representation of \mathcal{W} (resp. the induced representation $\text{Ind}_{\mathcal{W}_z}(\mathbb{C})$ associated to the trivial one dimensional representation of the isotropy group \mathcal{W}_z for any $z \in X^\mathcal{S}$). In general, the representation of \mathcal{W} on $H^*_\mathcal{W}(X)$ is either the regular representation or a direct sum of induced representations corresponding to the orbits of \mathcal{W} on $X^\mathcal{S}$.

Example 2.4. Let G denote a semisimple complex algebraic group, and suppose B and T denote, respectively, a Borel subgroup of G and a maximal torus of G contained in B.

2
The Weyl group $W = N_G(T)/T$ acts smoothly on the flag variety $B = G/B$ of G (on the right) by viewing G/B as K/H. Since this action is simply transitively on \mathcal{B}^T, the corollary implies the action $(W, H^*(B))$ on cohomology is the regular representation. This is of course well known.

3. GKM-VARIETIES AND W-ACTIONS ON THE MOMENTUM GRAPH

Recall that one calls X a GKM-variety if the torus action (S, X) is equivariantly formal (for example, X has vanishing odd cohomology), and X has only finitely many S-stable curves [GKM]. Let $E(X)$ denote the set of these S-stable curves. It follows immediately from [Car1] that X^S is finite since every fixed point lies on an S-stable curve (in fact, on at least dim X such curves), and every S-stable curve contains exactly two fixed points.

Recall that the momentum graph of (S, X) is the graph \mathfrak{M} with vertex set X^S and edge set $E(X)$, where two vertices x and y are on an edge C if and only if $C^S = \{x, y\}$. By fixing a G_m-action $\lambda : \mathbb{C}^* \rightarrow S$ on X with fixed point set X^S, one may orient each edge $C = S \cdot z$ of \mathfrak{M} by defining the source of C to be $\lim_{t \to 0} \lambda(t)z$ and sink of C to be $\lim_{t \to \infty} \lambda(t)z$. If x is the source of C and y is its sink, we will write $C = C(x, y)$. Every S-stable curve C in X is smooth, hence is determined by its S-stable tangent line in $T_x(X)$ on which S acts by a character χ of S such that $<\chi, \lambda> > 0$. This determines a unique weight α_C of degree two in $\ast \subset \mathbb{C}[s]$. The edge C of \mathfrak{M} is labelled be this weight.

Since $H^*_S(X^S) = \mathbb{C}[s] \otimes H^0(X^S)$ and $H^0(X^S) = \mathbb{C}^{X^S}$, $H^*_S(X^S)$ is naturally identified with $(\mathbb{C}[s])^{X^S}$, the algebra of $\mathbb{C}[s]$-valued functions on X^S. By the fundamental theorem of [GKM], the image of the restriction map $i^*_S : H^*_S(X) \rightarrow H^*_S(X^S)$ is

$$\{ f \in (\mathbb{C}[s])^{X^S} \mid f(x) - f(y) \in \alpha_C \mathbb{C}[s] \text{ if } C = C(x, y) \}.$$

We will say that W acts on \mathfrak{M} if W acts on X^S and acts linearly on \ast so that if $x, y \in X^S$ lie on an edge $C(x, y)$ with weight α, then $w \cdot x$ and $w \cdot y$ lie on an edge $C(w \cdot x, w \cdot y)$ with weight $w(\alpha)$. Then W acts in two ways on $H^*_S(X^S)$: on the right by

$$f \cdot w(x) = f(w \cdot x),$$

and on the left by

$$w \cdot f(x) = w \cdot (f(w^{-1} \cdot x)),$$

The right action of W commutes with the $\mathbb{C}[s]$-module structure of $H^*_S(X^S)$ while the left action commutes with a twist.

Lemma 3.1. Suppose X is a GKM-variety with respect to the torus action (S, X), let \mathfrak{M} be its momentum graph, and suppose W acts on \mathfrak{M}. Then the image the localization map $i^*_S : H^*_S(X) \rightarrow H^*_S(X^S)$ is stable under both the left and right actions of W on $H^*_S(X^S)$, and these actions descend via the forgetful map to $H^*(X)$.

Proof. Suppose $f \in H^*_S(X^S)$ lies in the image of i^*_S, and consider an edge $C = C(x, y) \in \mathfrak{M}$. Then $f(x) - f(y) \in \alpha_C \mathbb{C}[s]$. Thus,

$$f \cdot w(x) - f \cdot w(y) = f(w \cdot x) - f(w \cdot y) \in w(\alpha) \mathbb{C}[s],$$

where $\beta \in \ast$ is the weight of $C(w \cdot x, w \cdot y)$. Hence the image of i^*_S is stable under the right action. For the left action, the same reasoning gives

$$w \cdot f(x) - w \cdot f(y) = w \cdot (f(w^{-1} \cdot x)) - w \cdot (f(w^{-1} \cdot y)) \in w(w^{-1}(\alpha)) \mathbb{C}[s] = \alpha \mathbb{C}[s].$$

The final assertion is obvious. \qed

3
Example 3.2 ([Carl]). Let G, B, T and W be as in Example 2.4. An important example of a GKM-variety is G/B with its canonical T-action or, more generally, any T-invariant subvariety of G/B. The fixed point set $(G/B)^T = \{ wB \mid w \in W \}$ is naturally identified with W via $w = wB$, and every T-stable curve C in G/B has exactly two fixed points which can be written x and $y = rx$, where r is a reflection in W and $x < y$ in the Bruhat order on W. Thus the momentum graph of G/B is identified with the Bruhat graph of W, namely the graph with vertex set W, where two vertices x, y are joined by a directed edge $[x,y]$ from x to y if $x^{-1}y$ is a reflection and the length of y is greater than the length of x. The directed edge $[x,y]$ corresponds to a T-stable curve $C(x,y)$. Namely, if $x^{-1}y = r_\alpha$, where $\alpha > 0$, and U_α is the one dimensional unipotent subgroup of G corresponding to α, then $C(x,y) = \overline{U_\alpha xB}$ is a T-stable curve joining xB and yB. The curve $w\overline{U_\alpha xB}$ is also T-stable and joins wxB and wyB. Hence the action of W on itself by left translation induces an action of W on the momentum graph of G/B by $w \cdot [x,y] = [w \cdot x, w \cdot y]$.

The right action of W on $H^*_T(G/B)$ is well known to be induced from the (topological) action of W on G/B. It’s important properties are proven in [KK, Km, Tym]. Borel’s classical picture of the cohomology $H^*(G/B)$ of G/B as the coinvariant algebra $\mathbb{C}[t]/I_W^T$ of W implies the right action of W on $H^*(G/B)$ is the regular representation of W. Here I_W^T is the ideal generated by the W-invariants vanishing at 0. As remarked, this is also a direct consequence of Theorem 2.2. The left action of W on $H^*_T(G/B)$ is defined in the unpublished paper [Knu], and its properties were studied by Tymoczko. In fact, the left action of W is trivial on $H^*(G/B)$ ([Tym, Prop. 4.2]). Tymoczko also posed question of describing the left action of W on the cohomology of a regular semisimple Hessenberg variety. We will describe these varieties next.

Remark 3.3. To each B-submodule \mathfrak{h} of \mathfrak{g} and each semi-simple element $t \in t$, there is a smooth T-variety $X_\mathfrak{h}$ in G/B called a Hessenberg variety such that $(X_\mathfrak{h})^T = W$ ([DPS]). By definition, $X_\mathfrak{h} = \{ gB \mid g^{-1}t \in \mathfrak{h} \}$.

The above remarks imply that $X_\mathfrak{h}$ admits a left W-action. Interestingly, it is no longer the case that the action of W on $H^*(X_\mathfrak{h})$ is trivial. In fact, it was recently shown that $H^*(X_\mathfrak{h})^W$ is the image of $H^*(G/B)$ under the cohomology restriction map (cf. [AHHM]). Since $(G/B)^T = (X_\mathfrak{h})^T$ it cannot be the case that the cohomology of G/B surjects on that of $X_\mathfrak{h}$ unless they coincide. When Δ is the set of simple roots and $\mathfrak{h}/\mathfrak{b} = \sum_{\alpha \in \Delta} \mathfrak{b} - \alpha$, $X_\mathfrak{h}$ is the toric variety associated with the Weyl fan composed of the Weyl chambers. In this case, the representation of W on $H^*(X_\mathfrak{h})$ was described by Procesi in [Proc]. The question of what this W-representation is in general was originally posed by Tymoczko (loc-cit). In [SW], Shareshian and Wachs conjectured a combinatorial formula for the character of the left W-action on $H^*(X_\mathfrak{h})$ involving quasisymmetric functions and indifference graphs which was proved by Brosnan and Chow in [BC] and later by Guay-Paquet [GP].

Summarizing the information about the right action from Theorem 2.2 and Corollary 2.3, we get

Proposition 3.4. If X is a GKM-variety with respect to an algebraic torus S and a (finite) group W acts on the moment graph of (S,X), then W acts on $H^*_S(X)$ on the right by $\mathbb{C}[S]$-automorphisms. The representation $(W, H^*(X))$ obtained via the forgetful map is equivalent to the representation of W on $H^0(X^S)$ which is completely determined as a sum of induced representations by the orbit structure of W on X^S as in Corollary 2.3.
4. The Evaluation mapping

Suppose as usual that X has an algebraic torus action (S, X) and vanishing odd cohomology. In this section we will obtain a filtration of $H^*(X^S)$ whose associated graded algebra is isomorphic with $H^*(X)$. This generalizes the main theorem in [CKP]. For simplicity, we will assume $S = \mathbb{G}_m$. The generalization to arbitrary S is straightforward.

Theorem 4.1. Assume X has vanishing odd cohomology, and let S be a one dimensional algebraic torus acting on X. Then $H^*(X^S)$ admits a filtration

$$(1) \quad F_{-1} = \{0\} \subset F_0 \subset F_1 \subset \cdots \subset F_m \subset F_{m+1} \subset \cdots \subset H^*(X^S)$$

satisfying $F_i F_j \subset F_{i+j}$ with the property that there exists a graded \mathbb{C}-algebra isomorphism

$$(2) \quad \text{Gr}_FH^*(X^S) = \bigoplus_{i \geq 0} F_i/F_{i-1} \cong \bigoplus_{i \geq 0} H^{2i}(X) = H^*(X).$$

Proof. Since the cohomology $H^*(X)$ is trivial in odd degrees, it follows that the action of S is equivariantly formal. Thus $H^*_S(X)$ is a free $\mathbb{C}[s]$-module of rank $r = \dim H^0(X^S)$. Let $f_1, \ldots, f_r \in \mathbb{C}[s]$ be elements such that the restriction $i_S^* : H^*_S(X) \to H^*_S(X^S)$ is an isomorphism after localization at these elements. We will say $a \in \mathfrak{s}$ is regular if $f_i(a) \neq 0$ for $i = 1, \ldots, r$. By equivariant formality, we have the following well known exact sequence

$$(3) \quad 0 \longrightarrow \mathbb{C}[s]^+ H^*_S(X) \longrightarrow H^*_S(X) \longrightarrow H^*(X) \longrightarrow 0,$$

where the map $H^*_S(X) \longrightarrow H^*(X)$ is induced by inclusion of X in X_S and $\mathbb{C}[s]^+$ is the augmentation ideal (i.e. the maximal ideal of $0 \in \mathfrak{s}$). If V is a \mathbb{C}-vector space and $a \in \mathfrak{s}$, let V_a be the $\mathbb{C}[s]$-module defined by putting $f \cdot v = f(a)v$ for any $f \in \mathbb{C}[s]$ and $v \in V$. Similarly, if M is an $\mathbb{C}[s]$-module, put $M[a] = M \otimes_{\mathbb{C}[s]} \mathbb{C}_a$. When M is free of rank r, then $\dim_{\mathbb{C}} M[a] = r$. Now, the exact sequence (3) implies

$$H^*_S(X)[a] \cong H^*(X)[a] = H^*(X).$$

Furthermore, the Localization Theorem implies that

$$(4) \quad i_S^* : H^*_S(X)[a] \to H^*_S(X^S)[a]$$

is an isomorphism of $\mathbb{C}[s]$-algebras for any regular $a \in \mathfrak{s}$, hence also an isomorphism of (ungraded) \mathbb{C}-algebras. For any $i \geq 0$, put

$$ F_i = \sum_{j \leq i} H^*_S(X).$$

This defines an increasing filtration of $H^*_S(X)$ such that $F_i F_j \subset F_{i+j}$ for $i, j \geq 0$. Moreover, defining $F_i[a]$ to be the image of F_i in $H^*_S(X)[a]$, we obtain, for any regular a, a filtration $F(i, a)$ of $H^*(X^S)$ as follows. Let $e_a : H^*_S(X^S)[a] \to H^*(X^S)$ be the unique \mathbb{C}-algebra isomorphism such that $e_a(f \otimes \phi) = f(a) \phi$. Now put

$$ F(i, a) = e_a(i_S^*(F_i[a])).$$

Then define the filtration (1) of $H^*(X^S)$ to be this filtration. Returning to the filtration $F_i[a]$ of $H^*_S(X)[a]$, we obtain from the forgetful map in (3) a filtration $G(i, a) \subset G(i + 1, a)$ of $H^*(X) \equiv H^*(X)[a]$ such that

$$ \bigoplus_{i \geq 0} G(i, a)/G(i - 1, a) \cong \bigoplus_{i \geq 0} F(i, a)/F(i - 1, a)$$
is a graded \(\mathbb{C} \)-algebra isomorphism via (4). It remains to establish the graded ring isomorphism
\[
\bigoplus_{i \geq 0} G(i, a)/G(i - 1, a) \cong H^*(X).
\]
But \(G(i, a)/G(i - 1, a) \cong H^{2i}(X)[a] \), and this gives rise to the natural multiplication
\[
G(i, a)/G(i - 1, a) \otimes G(j, a)/G(j - 1, a) \to H^{2i}(X)[a] \otimes H^{2j}(X)[a] \to H^{2(i+j)}(X)[a]
\]
via the ring structure of \(H^*(X)[a] \). But \(H^*(X) = H^*(X)[a] \) by definition, so the proof of Theorem 4.1 is finished.

It is clear that the filtration is preserved by equivariant maps. This has an interesting and useful consequence. Suppose \(X \) is an \(S \)-stable subvariety of \(Y \) such that the cohomology restriction map \(i^* : H^*(Y) \to H^*(X) \) is surjective and suppose also that \(Y \) has vanishing odd cohomology. Let \(E \) and \(F \) be the filtrations of \(H^*(Y^S) \) and \(H^*(X^S) \) defined in Theorem 4.1. Then, if \(\rho : X^S \to Y^S \) is the inclusion, \(\rho^*(E_i) \subset F_i \) for all \(i \). This gives the commutative diagram
\[
\begin{array}{ccc}
\text{Gr}_E H^*(Y^S) & \longrightarrow & H^*(Y) \\
\rho^* & | & | \\
\text{Gr}_F H^*(X^S) & \longrightarrow & H^*(X),
\end{array}
\]
where \(\rho \) is the graded \(\mathbb{C} \)-algebra morphism induced by \(\rho^* \). Since the horizontal maps are isomorphisms and \(i^* \) is surjective, it follows that \(\rho^*(E_i) = F_i \) for all \(i \). Since \(\bigcup F_i = H^*(Y^S) \), it follows that \(\rho^* \) is surjective. Thus we have proved the following, which may be of some interest independently.

Theorem 4.2. Assume that \(X \) is an \(S \)-stable subvariety of the \(S \)-variety \(Y \) such that the cohomology restriction map \(i^* : H^*(Y) \to H^*(X) \) is surjective. Suppose also that the odd cohomology of \(Y \) vanishes. Then the cohomology restriction map \(\rho^* : H^*(Y^S) \to H^*(X^S) \) is also surjective.

We will give a somewhat surprising application of this theorem in Section 6.

Remark 4.3. The fact that the evaluation map and localization can be used to obtain a filtration of \(H^*(X^S) \) whose associated graded is \(H^*(X) \) is a remark of Puppe (cf. [P1, P2]), who was interested in obtaining results about \(H^*(X^S) \) from \(H^*(X) \) rather than the reverse. Puppe’s results appeared at almost the same time as a paper of the author and David Lieberman which asserts the existence of the filtration in Theorem 4.1 when \(X \) is smooth and the torus action \((S, X)\) is replaced by a holomorphic vector field with simple zeros (cf. [CL, CKP]). The connection between these results was finally noticed at an Oberwolfach workshop in 2006 and resulted in the paper [CKP].
equivalent to the representation of \(W \) on \(\text{Gr}_FW^*(X^S) = \bigoplus_{i \geq 0} F_i/F_{i-1} \). This follows from the following lemma.

Lemma 5.1. Let \(W \) be a finite group acting linearly on a \(\mathbb{C} \)-vector space \(V \) having an \(W \)-invariant filtration

\[
V_0 = \{0\} \subset V_1 \subset \cdots V_{m-1} \subset V_m = V.
\]

Then the induced representation of \(W \) on \(\text{Gr } V = \bigoplus_{i \geq 0} V_i/V_{i-1} \) is equivalent to the given representation of \(W \) on \(V \).

Proof. Since \(W \) is finite, every \(W \) invariant subspace of \(V \) has an \(W \)-invariant complement. Applying this fact to \(F_i \subset F_{i+1} \) for each \(i \), one gets a \(\mathbb{C} \)-linear \(W \)-equivariant isomorphism between \(V \) and \(\text{Gr } V \). \(\square \)

To prove Corollary 5.3 suppose \(X^S = \{x_1, \ldots, x_r\} \) and \(W \) acts transitively. Let \(K \) be the isotropy group of \(x_1 \). By the Orbit Stabilizer Theorem, \(|W/K| = r \). Since \(H^0(X^S) = \mathbb{C}^{|X^S|} \), a basis of \(H^0(X^S) \) is given by the functions \(\delta_1, \ldots, \delta_r \) on \(X^S \) defined by the conditions \(\delta_i(x_j) = \delta_{ij} \). By definition, the subspace \(Y = \mathbb{C}\delta_1 \) is a \(K \)-stable line. Moreover, if \(W/K = \{w_1K, \ldots, w_rK\} \), then \(w_i \cdot \delta_1 = \delta_1 \) provided \(w_i \cdot x_1 = x_i \). For \(w_i \cdot \delta_1(x_i) = \delta_1((w_i)^{-1}, x_i) = \delta_1(x_1) = 1 \) while if \(i \neq j \), \((w_i)^{-1} \cdot x_j \neq x_i \), so \(w_i \cdot \delta_1(x_j) = 0 \). Consequently,

\[
H^0(X^S) = \sum_{\sigma \in W/K} \sigma Y.
\]

If \(K = \{e\} \), then \((W, H^0(X^S))\) is the regular representation. Otherwise, the representation of \(W \) on \(H^0(X^S) \) is induced as claimed. The other assertion of the Corollary is straightforward. \(\square \)

6. **Remarks on Springer varieties**

Let \(G, B, T \) and \(W \) be as in Example 2.4. Recall that the flag variety \(B = G/B \) of \(G \) parameterizes the set of all Borel subgroups of \(G \), or, equivalently, the set of all Borel subalgebras of \(\mathfrak{g} \). Let \(\mathcal{N} \subset \mathfrak{g} \) denote the nilpotent cone: that is, the set of all nilpotent elements of \(\mathfrak{g} \). For any \(x \in \mathcal{N} \), the set \(\mathcal{B}_x \) of all Borel subalgebras of \(\mathfrak{g} \) containing \(x \) is a closed connected subvariety of \(B \) called the Springer variety associated to \(x \). Springer varieties are also called a Springer fibres since every \(\mathcal{B}_x \) is the fibre over \(x \in \mathcal{N} \) of Springer’s resolution of \(\mathcal{N} \) \([Spr1]\). Although \(W \) acts on \(B \), it does not in general act on \(\mathcal{B}_x \). However, a celebrated result of Springer \([Spr2, Spr3]\) says that \(W \) admits a graded \(\mathbb{C} \)-algebra representation on \(H^*(\mathcal{B}_x) \) for any \(x \in \mathcal{N} \). In Springer’s original construction, \(W \) acts on \(\ell \)-adic cohomology, but there are also constructions of Springer’s representations on classical cohomology via intersection cohomology and homotopy theory \([\text{BBM}, \text{KL}, \text{Ross}, \text{Sloth}, \text{Treu}]\).

We will be concerned, primarily, with Springer fibres \(\mathcal{B}_x \) for Levi nilpotents \(x \) that is, nilpotents that lie in a Levi subalgebra of \(\mathfrak{g} \). We will use the letter \(I \) to denote a Levi subalgebra of \(\mathfrak{g} \), and \(L \) to denote its corresponding Levi subgroup of \(G \). Without loss of generality, we may assume the parabolic subgroup associated to \(L \) is a subgroup of \(B \) and that the centre of \(L \) is a torus \(S \subset T \). If \(x \in I \) is nilpotent, then \(\mathcal{B}_{L,x} \) will denote the Springer fibre associated to \(x \) in the flag variety \(L/L \cap B \) of \(L \). The components of the fixed point set \(\mathcal{B}_S \) are identified with the flag varieties \(L/(L \cap wBw^{-1}) \) as \(w \) ranges over a set of representatives of \(W/W_L \). A nilpotent \(x \in I \) is called parabolic if it is also regular in \(I \) in the sense that it lies in a unique Borel subalgebra of \(I \). As mentioned in the introduction, if \(x \in I \) is parabolic and the cohomology restriction map \(i^* : H^*(B) \to H^*(\mathcal{B}_x) \) is surjective, then Springer’s action of \(W \) lifts from \(H^*(\mathcal{B}_x) \) to \(H^*_S(\mathcal{B}_x) \), where \(S \subset T \) is the center of the
Levi subgroup L of G with Lie algebra \mathfrak{l}. Let W_L be the Weyl group of L with respect to T. Now, the surjectivity result Theorem \ref{thm:main} has the following slightly surprising consequence:

Theorem 6.1. Let $x \in \mathfrak{l}$ be a Levi nilpotent such that $i^*: H^*(\mathcal{B}) \to H^*(\mathcal{B}_x)$ is surjective. Then the cohomology restriction map $H^*(\mathcal{B}_L) \to H^*(\mathcal{B}_{L,x})$ is also surjective. Furthermore, if H is a subtorus of T containing \mathcal{S} which acts on $\mathcal{B}_{L,x}$ such that $(\mathcal{B}_{L,x})^H = (\mathcal{B}_{L,x})^S$, then W_L lifts to $H^*_H(\mathcal{B}_{L,x})$.

Proof. This follows immediately from Theorems \ref{thm:main} and \ref{thm:coho}.

The theorem of Alvis–Lusztig and Treumann (\cite{AL, Lus, Treu}) says the following over \mathbb{C}:

Theorem 6.2. Suppose x is a nilpotent element of a Levi subalgebra \mathfrak{l} of \mathfrak{g}. Then the W-action on $H^*(\mathcal{B}_x)$ is equivalent to the induced representation $\text{Ind}_{W_L}^W(H^*(\mathcal{B}_{x,L}))$, where L is the Levi subgroup of G corresponding to \mathfrak{l}, $W_L \subset W$ is its Weyl group, and $\mathcal{B}_{x,L}$ is the Springer variety in the flag variety of L corresponding to x.

We will give a geometric proof under the assumption that the cohomology restriction map $i^*: H^*(\mathcal{B}) \to H^*(\mathcal{B}_x)$ is surjective. Now the Weyl group $W_L = N_L(T)/T$ of L acts on the flag variety $L_w = L/(L \cap wBu^{-1})$ for each $w \in W$. Moreover, the connected components of \mathcal{B}^S are permuted by W and each one is isomorphic to some L_w. Furthermore, the components are fixed by W_L, so the set of components of \mathcal{B}^S is in one to one correspondence with W/W_L. Now let $w_1, \ldots, w_k \in W$ denote a complete set of representatives for W/W_L. Denoting $L_w \cap \mathcal{B}_x$ by $L_{w,x}$, we have

$$(\mathcal{B}_x)^S = \bigcup_{1 \leq i \leq k} L_{w_i,x}.$$

Now the action of W on $H^*(\mathcal{B}^S)$ is induced by the action of W on \mathcal{B}^S, and, by Theorem \ref{thm:induced}, we have a filtration of $H^*((\mathcal{B}_x)^S)$ such that $\text{Gr}H^*((\mathcal{B}_x)^S) \cong H^*(\mathcal{B}_x)$.

From the diagram \ref{fig:coho} with $Y = \mathcal{B}$ and $X = \mathcal{B}_x$, it follows that one can construct inductively a graded action of W on $H^*((\mathcal{B}_x)^S)$ so that all the morphisms in the diagram are W-equivariant. Applying the surjectivity assumption together with Theorems \ref{thm:main} and \ref{thm:coho} it follows that since

$$H^*((\mathcal{B}_x)^S) = \bigoplus H^*(L_{w_i,x}),$$

then $H^*((\mathcal{B}_x)^S) \cong \text{Ind}_{W_L}^W(H^*(\mathcal{B}_{x,L}))$ where $\mathcal{B}_{x,L}$ denotes $L_{e,x}$. \hfill \Box

If x is a regular nilpotent in the Levi subalgebra \mathfrak{l}, then the fixed point set $(\mathcal{B}_x)^S$ is finite, and in fact W acts on this finite set. Thus we obtain a more concrete picture.

Corollary 6.3. Suppose x is a regular nilpotent in a Levi subalgebra \mathfrak{l} of \mathfrak{g}. Assume also that the cohomology restriction map $H^*(\mathcal{B}) \to H^*(\mathcal{B}_x)$ is surjective. Then Springer’s representation of W on $H^*(\mathcal{B}_x)$ is $\text{Ind}_{W_L}^W(\mathbb{C})$. That is, it is induced by the trivial representation of the Weyl group W_L of L.

Remark 6.4. It is well known that every nilpotent in $\mathfrak{sl}(n, \mathbb{C})$ is regular in a Levi subalgebra \mathfrak{l} and, moreover, the cohomology restriction map $H^*(\mathcal{B}) \to H^*(\mathcal{B}_x)$ is surjective (cf. \cite{Spalt}). The above proofs of Theorem \ref{thm:main} are therefore valid for type A. The determination of when the cohomology restriction map $H^*(\mathcal{B}) \to H^*(\mathcal{B}_x)$ is surjective is an interesting open question. A necessary condition for surjectivity of the cohomology restriction map in the middle dimension is that the component group $A(x) = Z_G(x)^0/Z_G(x)$ is trivial. The conjugacy classes of these groups have been computed in \cite{Somm}. It has also been recently shown that if G is simply laced, then $H^2(\mathcal{B}) \to H^2(\mathcal{B}_x)$ is always surjective \cite{CVX}.
Springer’s Weyl group action in type A has an interesting history which we will briefly recall here. Let us assume $G = GL(n, \mathbb{C})$ and B and T are the subgroups of upper triangular matrices and the diagonal matrices in G respectively. Here we may take W to be the $n \times n$ permutation matrices $P(n)$ acting explicitly on B on the left. Suppose x is an upper triangular nilpotent element of $\mathfrak{gl}(n, \mathbb{C})$. Then B is the set of complete flags in \mathbb{C}^n, and B_x consists of all flags

$$V_0 = \{0\} \subset V_1 \subset \cdots \subset V_{n-1} \subset \mathbb{C}^n$$

such that $x(V_i) \subset V_{i-1}$ for all $i \geq 1$. By the above remark, Theorem 6.2 says that Springer’s representation always has the form $\text{Ind}_{W_{L_x}}^W(\mathbb{C})$. Here $W_L = P(\mu_1) \times \cdots \times P(\mu_m)$, where $\mu_1 \geq \cdots \geq \mu_m$ is the partition of n dual to the partition corresponding to a regular nilpotent in I. This fact was originally conjectured by Kraft in [Kraft] and subsequently verified in a beautiful paper of DeConcini and Procesi in [DP]. In fact, Kraft made two conjectures. First, suppose $y \in \mathfrak{gl}(n, \mathbb{C})$ is nilpotent and C_y is the closure of its G-conjugacy class. Let $C_y \cap \mathfrak{t}$ denote the schematic intersection of C_y and the Lie algebra \mathfrak{t} of T. Kraft first conjectured that if P is a parabolic subgroup of $GL(n, \mathbb{C})$ containing B and y is a Richardson element in P (that is, the P-conjugacy class of y is dense in the nilradical of P), then the natural representation of W on $A(C_y \cap \mathfrak{t})$ is $\text{Ind}_{W_{L_y}}^W(\mathbb{C})$. He then conjectured that if x is a regular nilpotent in I, then $A(C_y \cap \mathfrak{t})$ and $H^*(B_x)$ are isomorphic both as S_n-modules and graded \mathbb{C}-algebras. As mentioned above, this was verified by DeConcini and Procesi loc.cit. In [Car2], using torus actions, the Kraft-DeConcini-Procesi isomorphism was extended to certain pairs (x, y) of nilpotents in an arbitrary semi-simple Lie algebra \mathfrak{g} over \mathbb{C} where x is a regular nilpotent in a Levi subalgebra I and y is a Richardson element in the nilradical of the parabolic subalgebra associated to I. This requires the surjectivity assumption for $H^*(B_x)$ and the further assumption that the stabilizer in G of y be connected.

Acknowledgement. I would like to thank Mark Goresky for pointing out the paper [Treu] of Teumann and also Kiumars Kaveh for many useful remarks.

References

[AHHM] Abe, H.; Harada, M.; Horiguchi, T.; Masuda, M. The cohomology rings of regular nilpotent Hessenberg varieties in Lie type A. [arXiv:1404.1217] 3.

[AL] Alvis, D.; Lusztig, G. On Springer’s correspondence for simple groups of type E_n ($n = 6, 7, 8$). Math. Proc. Camb. Phil. Soc. 92, pp. 6572, 1982. MR662961 (83k:20040)

[BBM] Borho, W.; Brylinski, J.-L.; MacPherson, R. Springer’s Weyl group representations through characteristic classes of cone bundles. Math. Ann. 278 (1987), no. 1-4, 273289.

[Br] Brion, M. Equivariant cohomology and equivariant intersection theory. Notes by Alvaro Rittatore. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514.

[BC] Brosnan, P.; Chow, T. Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties. (English summary) Sm. Lothar. Combin. 78B (2017), Art. 3, 12 pp.

[Car1] Carrell, J. B. The Bruhat Graph of a Coxeter Group, a Conjecture of Deodhar, and Rational Smoothness of Schubert Varieties. Proc. Symp. Pure Math. 56, 5361 (1994)

[Car2] Carrell, J. B. Orbits of the Weyl group and a theorem of DeConcini and Procesi. Compositio Math. 60 (1986), no. 1, 45–52.

[Car3] Carrell, J. B. Torus actions and cohomology. The adjoint representation and the adjoint action, 83–158. Encyclopaedia Math. Sci., 131, Springer, Berlin, 2002.

[CK] Carrell, J. B.; Kaveh, K. Springer’s Weyl group representation via localization, Can. Math. Bull.

[CKP] Carrell, J.; Kaveh, K.; Puppe, V. Vector fields, torus actions and equivariant cohomology. Pacific J. Math. 232 (2007), 61–76.

[CL] Carrell, J. B.; Lieberman, D. A. Vector fields and Chern numbers, Math. Ann. 225 (1977), 263273.

[CVX] Chen, T.-H.; Vilonen, K.; Xue, T. On the cohomology of Fano varieties and the Springer correspondence. With an appendix by Dennis Stanton. Adv. Math. 318 (2017), 515533.
[DLP] De Concini, C.; Lusztig, G.; Procesi, C. Homology of the zero-set of a nilpotent vector field on a flag manifold. J. Amer. Math. Soc. 1 (1988), no. 1, 15–34.

[DP] De Concini, C.; Procesi, C. Symmetric functions, conjugacy classes, and the flag variety. Invent. Math., 64 (1981) 203–219.

[DPS] De Mari, F.; Procesi, C.; Shayman, M. Hessenberg varieties. Trans. Amer. Math. Soc. 332 (1992), no. 2, 529534.

[GKM] Goresky, M.; Kottwitz, R.; MacPherson, R. Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131 (1998), no. 1, 253–283.

[GMcP] Goresky, M.; MacPherson, R. On the spectrum of the equivariant cohomology ring. Canad. J. Math. 62 (2010), no. 2, 262–283.

[G-P] Guay-Paquet, M. A modular relation for the chromatic symmetric functions of $(3 + 1)$-free posets. 2013. arXiv:1306.2400.

[HS] Hotta, R.; Springer, T. A. A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups. Invent. Math. 41 (1977) 113–127.

[KL] Kazhdan, D.; Lusztig, G. A topological approach to Springer’s representations. Adv. in Math. 38 (1980), 222–228.

[Knu] Knutson, A. A Schubert calculus recurrence from the noncomplex W-action on G/B, arXiv:math.CO/0306304.

[Kraft] Kraft, H. P. Conjugacy classes and Weyl group representations, Young tableaux and Schur functions in algebra and geometry (Torun, 1980), 191205, Astérisque, 8788, Soc. Math. France, Paris, 1981.

[KK] Kostant, B.; Kumar, S. T-equivariant K-theory of generalized flag varieties. J. Differential Geom. 32 (1990), no. 2, 549603.

[KP] Kumar, S.; Procesi, C. An algebro-geometric realization of equivariant cohomology of some Springer fibers. Journal of Algebra 368 (2012), 70–74.

[Lus] Lusztig, G. An induction theorem for Springer’s representations. Representation theory of algebraic groups and quantum groups, 253259, Adv. Stud. Pure Math., 40, Math. Soc. Japan, Tokyo, 2004.

[Proc] Procesi, C. The toric variety associated to Weyl chambers. Mots, 153161, Lang. Raison. Calc., Herm, Paris, 1990.

[P1] Puppe, V. Cohomology of fixed point sets and deformation of algebras. Manuscripta Math. 23 (1977/78), no. 4, 343–354.

[P2] Puppe, V. Deformations of algebras and cohomology of fixed point sets. Manuscripta Math. 30 (1979/80), no. 2, 119–136.

[Ross] Rossmann, W. Picard-Lefschetz theory for the coadjoint quotient of a semisimple Lie algebra. (English summary) Invent. Math. 121 (1995), 531–578.

[SW] Shareshian, J.; Wachs, M. L. Chromatic quasisymmetric functions and Hessenberg varieties. Configuration Spaces. CRM Series, Springer, 2012.

[Skl] Slodowy, P. Four lectures on simple groups and singularities. Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, 11. Rijksuniversiteit Utrecht, Mathematical Institute, Utrecht, 1980. ii+64 pp.

[Treu] Treumann, D. A topological approach to induction theorems in Springer theory. Represent. Theory 13 (2009), 8–18.

[Tym] Tymoczko, J. S. Permutation actions on equivariant cohomology of flag varieties. Toric topology, 365384, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008.
