Association between obstructive sleep apnea and comorbidities with periodontal disease in adults

Catalina Latorre, Francina Escobar, Juliana Velosa, Daniela Rubiano, Patricia Hidalgo-Martinez, Liliana Otero

Abstract:
Background: Several studies have reported an association between periodontal disease and obstructive sleep apnea (OSA). However, heterogeneity of results suggests that there is insufficient evidence to support this association. Aims: The objective of this study was to identify the association between periodontal disease and OSA in adults with different comorbidities. Settings and Design: One hundred and ninety-nine individuals (107 women and 92 men) underwent polysomnography with a mean age of 49.9 years were recruited. Materials and Methods: The presence of OSA, comorbidities, and periodontal disease was evaluated in each individual. Student's t-tests or Chi-square and ANOVA tests were used to determine the differences between groups. Results: The prevalence of periodontal disease was 62.3% and 34.1% for gingivitis. The results showed no statistically significant association between all groups of patients with OSA and non-OSA patients for gingivitis (P = 0.27) and for periodontitis (P = 0.312). However, statistically significant association was shown between periodontitis and mild OSA compared with the periodontitis and non-OSA referent (P = 0.041; odds ratio: 1.37 and 95% confidence interval 1.11–2.68). The analysis between OSA and comorbidities showed a statistically significant difference for patients with OSA and hypertension (P < 0.001) and for patients with OSA and hypertensive cardiomyopathy (P < 0.001) compared with healthy individuals. Periodontitis was more likely in men with severe OSA and with any of two comorbidities such as hypertension or hypertensive cardiomyopathy. Women with hypertension or hypertensive cardiomyopathy were more likely to have mild OSA, and these associations were statistically significant (P < 0.05). Conclusions: This study identified association between periodontitis and mild OSA and this association was more frequent in women with hypertension or hypertensive cardiomyopathy. Periodontitis was associated with severe OSA in men who showed any of two comorbidities such as hypertension or hypertensive cardiomyopathy.

Key words: Comorbidities, obstructive sleep apnea, periodontal disease

INTRODUCTION

Periodontal disease is an infectious and chronic condition that leads to the destruction of the tissues supporting the tooth due to the accumulation of bacterial biofilm. There are considerable variations in the prevalence of periodontitis between countries, but the risk of periodontitis increases in race of Africans and Hispanic.[1] Periodontal disease includes different periodontopathogens such as Porphyromonas gingivalis, Prevotella intermedia, Bacteroides forsythus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, Capnocytophaga, Propionibacterium acne, and Staphylococcus epidermidis, and Pseudomonas aeruginosa among others.[3] This microbiota triggers a local inflammation characterized by the infiltration of inflammatory cells such as polymorphonuclear cells, macrophages, lymphocytes, and plasma cells into the periodontal tissue that releases cytokines, interleukins, prostaglandins, and cell adhesion proteins.[4,5] The pathogenic microorganisms associated with periodontal disease enter the bloodstream, elevating the levels of pro-inflammatory cytokines such as interleukin 1 (IL1) and tumor necrosis factor-α (TNFα). These alterations appear to be the major mechanisms associated with the association between periodontitis and systemic diseases such as cardiovascular disease, diabetes mellitus, and obstructive sleep apnea (OSA).[6-8]

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Latorre C, Escobar F, Velosa J, Rubiano D, Hidalgo-Martinez P, Otero L. Association between obstructive sleep apnea and comorbidities with periodontal disease in adults. J Indian Soc Periodontol 2018;22:215-20.
However, OSA and periodontitis could be associated due to the fact that both diseases share risk factors and due to inflammatory mediators are involved in the pathogenesis of OSA and periodontitis. Although the association between OSA and periodontitis has been reported, the interactions between OSA severity and other comorbidities have not been established yet.\[17\]

The purpose of this study was to identify the association between periodontal disease and OSA in adults with different comorbidities.

MATERIALS AND METHODS

Population and sample

The sample in this study included patients between 30 and 85 years of age who lived in Bogotá and attended the sleep clinic for a polysomnographic study. A convenience sample of 199 adults was obtained for this study. Patients who were selected underwent a polysomnographic study that was interpreted by a single professional according to the AASM criteria. Severity was classified according to the apnea–hypopnea index (AHI), with nonapnea defined as AHI \(<5\), mild apnea as AHI \(5–14.9\), moderate apnea as AHI \(15–29.9\), and severe apnea as AHI \(>30\). The Ethics Committees of the local faculty of dentistry and local clinic sleep approved this study. Once the patients agreed to participate in the study, informed consent was solicited and signed. Before the procedure at sleep clinic, a questionnaire was conducted that recorded the medical and pharmacological antecedents reported by the patient. History of systemic disease was based on a questionnaire completed by each patient, and it was compared with medicament ingest reported by each patient. The body mass index (BMI) of each patient was also measured and calculated. Parafunctional habits and smoking status in each patient were documented.

All patients selected at sleep clinic underwent intraoral clinical and periodontal examinations. Probing was performed on all teeth present in the mouth. The periodontal disease outcome measures included clinical attachment loss and periodontal pocket depth. Periodontal pocket was defined as the measurement up 4 mm from the gingival margin to the bottom of pocket. The gingival margin measurement was taken from the cementoenamel junction to the gingival margin. Three skilled examiners were calibrated for periodontal assessments so that measurements were comparable and similar. The calibrated examiners performed probing depth and gingival margin at six sites per tooth for each fully erupted tooth, except third molars, in each patient. The clinical attachment levels were calculated, and a periodontal diagnosis was provided based on the 1999 Armitage classification used to determine the severity of periodontitis based on insertion loss. Patients were classified into three groups after periodontitis assessment: healthy, gingivitis, and periodontitis.\[18\]

Statistical analyses

The descriptive statistics of basic demographic variables were calculated as means, medians, ranges, standard deviations, and 95\% confidence intervals (CIs). The proportion of patients with or without OSA and periodontal and systemic diseases were determined. Student’s \(t\)-tests (numerical variables) or Chi-square tests (proportions) were used to determine the differences between groups. Subsequently, ANOVA was performed to establish differences according to group. \(P < 0.05\) was established as the significance threshold.

RESULTS

This study consisted of 199 individuals (107 women and 92 men) with a mean age of 49.9 years, of whom 53.8\% were women with an average BMI = 27.6. Individuals were divided upon AHI, resulting in 58 individuals with nonapnea, 68 with mild OSA, 37 with moderate OSA, and 36 with severe OSA. The prevalence of comorbidities in this sample was 32\% for arterial hypertension, 16.6\% for hypertensive cardiomyopathy, 13.6\% for coronary artery disease, 4.5\% for diabetes, and 16.5\% for hypothyroidism. A significant association was observed between OSA severity (\(P = 0.0001\)) and age, patients with severe and moderate OSA were 58 years and patients with mild OSA were 51 years on average, while patients without OSA were 40 years old on average.

The prevalence of periodontal disease was 62.3\% for periodontitis and 34.1\% for gingivitis. The percentage of individuals who showed healthy periodontal status was 3.5\%. The analysis to identify the periodontal condition based on the presence and severity of OSA showed no statistically significant association between all groups of patients with OSA and non-OSA patients for gingivitis (\(P = 0.27\)) and for periodontitis (\(P = 0.312\)). However, statistically significant association was shown between periodontitis and no-OSA referent (\(P = 0.041\); odds ratio: 1.37 and 95\% CI: 1.11–2.68) [Table 1].

The analysis between OSA and comorbidities showed a statistically significant association for patients with OSA (severe, moderate, and mild) and hypertension compared with patients with hypertension and no apnea (\(P < 0.001\)). Similar results were found for patients with OSA and hypertensive cardiomyopathy compared with hypertensive cardiomyopathy and no OSA (\(P < 0.001\)). The frequencies of the systemic diseases associated with OSA are shown in Table 2.
Systemic conditions were also evaluated based on the diagnosis of OSA and periodontal disease. This evaluation revealed that periodontitis is more likely in men with severe OSA and any of two comorbidities such as arterial hypertension or hypertensive cardiomyopathy. Women with arterial hypertension or hypertensive cardiomyopathy were more likely to have mild OSA and these associations were statistically significant \(P < 0.05 \), Tables 3 and 4.

DISCUSSION

The present study examined the relationship between OSA associated with different comorbidities and periodontal disease and found a statistically significant association between mild OSA and periodontitis \(P < 0.05 \). These results coincide with previous findings reported by Sanders et al. (2015), who studied 12,469 in Hispanic community of Latinos between 18 and 74 years and found the higher prevalence of periodontitis in individuals with mild sleep disorder breathing. Other studies in different populations such as Korea, North American, and Taiwan have demonstrated a significant association between Severe OSA and periodontitis. In contrast, Loke et al. did not find a significant association between OSA severity with the prevalence of periodontal disease severity categories.

The relationship between periodontitis and OSA has not been elucidated. Al-Jewair et al. in a systematic review and meta-analysis found a statistically significant association between periodontitis and non-OSA referent (\(P < 0.001 \)).

Table 1: Periodontal condition based on the presence and severity of obstructive sleep apnea

Periodontal diagnosis	OSA diagnosis	Total (%)	Severe OSA (%)	Moderate OSA (%)	Mild OSA (%)	No OSA (%)
Healthy			7 (3.5)	2 (28.6)	3 (42.9)	2 (28.6)
Gingivitis*			68 (34.1)	25 (20.1)	24 (19.3)	42 (33.8)
Periodontitis*				28 (16.3)	23 (33.8)	
Total			199	36	37	68

Distribution of periodontal disease between OSA and nonapneic patients.

*Analysis between all groups of patients with OSA and non-OSA patients for gingivitis showed not statistically significant association (\(P=0.27 \)). Similar findings were found for comparisons between all groups of patients with OSA and non-OSA and periodontitis \(P=0.312 \). **Statistically significant association was shown between periodontitis and mild OSA compared with periodontitis and non-OSA referent \(P=0.041 \; OR: 1.37; 95\% CI: 1.11-2.68 \). OSA – Obstructive sleep apnea, CI – Confidence interval; OR – Odds ratio; \(P \) – p value.

Our study investigated the relationship between periodontal disease and OSA associated with several comorbidities and the results showed that periodontitis was more frequent in men with severe or moderate OSA with any of two comorbidities such as arterial hypertension or hypertensive cardiomyopathy. Women with periodontitis showed statistically significant association with mild OSA and with any of these two comorbidities (arterial hypertension or hypertensive cardiomyopathy). The association between OSA and hypertension has been previously reported. More than 50% of people with OSA have hypertension, and OSA is one of the most common causes of secondary and refractory hypertension.

Systemic inflammation likely justifies the biological plausibility of the relationship between OSA and HTA in which hypoxia and the cyclic reoxygenation of OSA produce oxidative stress and activate the pro-inflammatory transcription factor, i.e., nuclear factor-kappa B, thereby stimulating the production of other systemic pro-inflammatory markers such as IL-8, TNFα, C-reactive protein, and intercellular and vascular cell adhesion molecules. In addition, the relationship between arterial hypertension and periodontitis has been investigated, but the interpretation of results and identification of biological mechanisms that explain this relationship are difficult due to the heterogeneity of studies, the periodontal and hypertension diagnosis criteria, and the bacterial load and the inflammatory status at the moment of the clinical parameters’ measurement.

Table 2: Frequency of comorbidities according to obstructive sleep apnea diagnosis

Systemic disease	Presence	OSA diagnosis	Severe OSA (%)	Moderate OSA (%)	Mild OSA (%)	No OSA (%)
Arterial hypertension	Yes		20 (31.3)*	18 (28.1)*	20 (31.3)*	6 (9.4)*
No		16 (11.9)	19 (14.1)	48 (35.6)	52 (38.5)	
Diabetes mellitus	Yes		2 (22.2)	3 (33.3)	3 (33.3)	1 (11.1)
No		34 (17.9)	34 (17.9)	65 (34.2)	57 (30)	
Hypertensive cardiomyopathy	Yes		1 (33.3)**	7 (21.2)**	12 (39.4)**	2 (6.1)*
No		25 (15.1)	30 (18.1)	56 (33.1)	56 (33.7)	
Coronary artery disease	Yes		10 (37)	9 (33.3)	8 (29.6)	0
No		26 (17.7)	28 (16.3)	60 (34.9)	58 (33.7)	
Hypothyroidism	Yes		4 (13.3)	4 (13.3)	15 (50)	7 (23.3)
No		32 (18.9)	33 (19.5)	53 (31.4)	51 (30.2)	

*Statistically significant, \(P<0.001 \) for patients with hypertension and OSA (severe, moderate, mild) versus patients with hypertension and without apnea. **Statistically significant, \(P<0.001 \) for patients with hypertensive cardiomyopathy and OSA (severe, moderate, mild) versus patients with hypertensive cardiomyopathy and without apnea. OSA – Obstructive sleep apnea; \(P \) – p value.
association in women and men with periodontitis. In our knowledge, there are not studies that report association between periodontitis and hypertensive cardiomyopathy until now, but arterial hypertension is the main risk factor for hypertensive cardiomyopathy,[34] therefore, although this association is biologically plausible, it is important to clarify in future studies if hypertensive cardiomyopathy is associated with OSA because this pathology and arterial hypertension are overlapping.

Hypothyroidism was also statistically associated with periodontitis and mild sleep apnea. Previous studies have been reported the association between OSA and hypothyroidism[35,36] and between hypothyroidism and periodontitis,[37,38] however, the physiopathology of these interrelationships has not been established and the association between hypothyroidism, periodontitis, and sleep apnea has not been previously documented. Diabetes mellitus was frequently observed in patients with OSA, but this association was not statistically significant.

Other risk factors common to OSA and periodontitis include male gender and advanced age.[23] Our study found a significant relationship between older men and the severity of OSA ($P < 0.001$). These findings coincide with those reported by Punjabi, who found that more than 50% of adults over 65 years old have some form of complaint related to a chronic sleep disorder.[39] However, the association between periodontal disease and OSA is weaker in older adults because, unlike periodontal disease (which increases with age), OSA decreases among the elderly.[40] Recently, the relationship between periodontitis and mild apnea was demonstrated for young adults (18–34 years) with greater significance compared with other age groups in Hispanic population residing in the US.[24] Our study did not verify this finding because our population was composed of adults older than 30 years, but we found that mild apnea was more frequently in women with periodontitis. Although this study is convenience sample, and for this reason is more difficult to generalize, it is important to investigate the role of the chronic intermittent hypoxia in the stimulation

Table 3: Periodontal diagnosis and systemic conditions

Condition	Healthy (%)	Gingivitis (%)	Periodontitis (%)
Sex			
Female	3 (1.5)	40 (20.1)	64 (32.1)
Male	4 (2)	28 (14)	60 (30.1)
Arterial hypertension			
Yes	1 (0.5)	22 (11)	41 (20.6)
No	6 (3)	46 (23.1)	83 (41.7)
Diabetes mellitus			
Yes	0	2 (1)	7 (3.5)
No	7 (3.5)	66 (33.1)	117 (58.8)
Hypertensive cardiomyopathy			
Yes	1 (0.5)	11 (5.5)	21 (10.5)
No	6 (3)	57 (28.6)	103 (51.7)
Coronary artery disease			
Yes	1 (0.5)	9 (4.5)	17 (8.5)
No	6 (3)	59 (29.6)	107 (53.7)
Diabetes mellitus		8 (4)	22 (11)

Distribution of comorbidities in patients based on periodontal status

Table 4: Frequency of comorbidities according to obstructive sleep apnea and periodontal diagnosis

Condition	Presence	Male	Female	Arterial hypertension	Hypothyroidism	Diabetes mellitus	Coronary artery disease	Severe OSA	Moderate OSA	Mild OSA	Severe OSA	Moderate OSA	Mild OSA	Severe OSA	Moderate OSA	Mild OSA	Severe OSA	Moderate OSA	Mild OSA
Healthy		1 (0.5)	0	0	0	0	0	0	0	0	0	0	0	0	0				
OSA		1 (0.5)	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

**Statistically significant association ($P < 0.05$) was observed for the group of patients with periodontitis, coronary artery disease, diabetes mellitus, and severe OSA compared with the other groups of patients with other periodontal comorbidities and OSA conditions referent. OSA – Obstructive sleep apnea; P – P value compared with the other groups of men with other periodontal comorbidities and OSA conditions referent. OSA – Obstructive sleep apnea; P – P value.
of bone remodeling like a protective mechanism to preserve bone density in elderly adults and the biological mechanisms involved in periodontitis and OSA in younger and older individuals.\cite{1,2}

CONCLUSIONS

Our study demonstrated a significant association between Periodontitis and mild OSA and this association was more frequent in women with hypertension or hypertensive cardiomyopathy. In addition, periodontitis was associated with severe OSA in men who showed any of two comorbidities such as hypertension or hypertensive cardiomyopathy. This work suggests the need to perform routine dental evaluations and integral and multidisciplinary treatment for patients with OSA.

Financial support and sponsorship

This work was funded by COLCIENCIAS through grant 369 Project 501953731808.

Conflict of interests

There are no conflicts of interest.

REFERENCES

1. Kornman KS, Page RC, Tonetti MS. The host response to the microbial challenge in periodontitis: Assembling the players. Periodontol 2000 1997;14:33-53.
2. Loe H, Brown LJ. Early onset periodontitis in the United States of America. J Periodontol 1991;62:608-16.
3. Haffajee AD, Socransky SS. Microbiology of periodontal diseases: Introduction. Periodontol 2000 2005;38:9-12.
4. Fuji R, Saito Y, Tokura Y, Nakagawa KI, Okuda K, Ishihara K, et al. Characterization of bacterial flora in persistent apical periodontitis lesions. Oral Microbiol Immunol 2009;24:502-5.
5. Arregoces FE, Uriza CL, Porras JV, Camargo MB, Morales AR. Relation between ultra-sensitive C-reactive protein, diabetes and periodontal disease in patients with and without myocardial infarction. Arq Bras Endocrinol Metabol 2014;58:362-8.
6. Gunaratnam K, Taylor B, Curtis B, Cistulli P. Obstructive sleep apnoea and periodontitis: A novel association? Sleep Breath 2009;13:233-9.
7. Khader YS, Albashaireh ZS, Alomari MA. Periodontal diseases and the risk of coronary heart and cerebrovascular diseases: A meta-analysis. J Periodontol 2004;75:1046-53.
8. De Nardin E. The role of inflammatory and immunological mediators in periodontitis and cardiovascular disease. Ann Periodontal 2001;6:30-40.
9. Sleep-related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. The report of an American academy of sleep medicine task force. Sleep 1999;22:667-89.
10. Garvey JF, Pengo MF, Drakatos P, Kent BD. Epidemiological aspects of obstructive sleep apnea. J Thorac Dis 2015;7:920-9.
11. Ruiz AJ, Sepúlveda MA, Martínez PH, Muñoz MC, Mendoza LO, Centanaro OP, et al. Prevalence of sleep complaints in colombia at different altitudes. Sleep Sci 2016;9:100-5.
12. Vgontzas AN, Papanicolaou DA, Bixler E0, Kales A, Tyson K, Chrousos GP, et al. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: Role of sleep disturbance and obesity. J Clin Endocrinol Metab 1997;82:1313-6.
13. Kendzerska T, Mollaeva T, Gershon AS, Leung LS, Hawker G, Tomlinson G, et al. Untreated obstructive sleep apnea and the risk for tomilinson long-term adverse outcomes: A systematic review. Sleep Med Rev 2014;18:49-59.
14. Shamsuzzaman A, Amin RS, Calvin AD, Davison D, Somers VK. Severity of obstructive sleep apnea is associated with elevated plasma fibrinogen in otherwise healthy patients. Sleep Breath 2014;18:761-6.
15. How KY, Song KP, Chan KG. Porphyromonas gingivalis: An overview of periodontopathic pathogen below the gum line. Front Microbiol 2016;7:53.
16. Li X, Kolltelvte KM, Tronstad L, Olsen I. Systemic diseases caused by oral infection. Clin Microbiol Rev 2000;13:547-58.
17. Gamsisz-Ish K, Kiyani E, Bingol Z, Baser U, Ademoglu E, Yalcin F, et al. Does obstructive sleep apnea increase the risk for periodontal disease? A Case-control study. J Periodontol 2017;88:443-9.
18. Armitage GC. Periodontal diagnoses and classification of periodontal diseases. Periodontol 2000 2004;54:9-21.
19. Seo WH, Cho ER, Thomas RJ, An SY, Ryu Jj, Kim H, et al. The association between periodontitis and obstructive sleep apnea: A preliminary study. J Periodontol Res 2013;48:500-6.
20. Ahmad NE, Sanders AE, Sheats R, Brame JL, Essick GK. Obstructive sleep apnea in association with periodontitis: A case-control study. J Dent Hyg 2013;87:188-99.
21. Keller JJ, Wu CS, Chen YH, Lin HC. Association between obstructive sleep apnea and chronic periodontitis: A population-based study. J Clin Periodontol 2013;40:111-7.
22. Sanders AE, Essick GK, Beck JD, Cai J, Beaver S, Finlayson TL, et al. Periodontitis and sleep disordered breathing in the Hispanic community health study/Study of Latinos. Sleep 2015;38:1195-203.
23. Loke W, Girvan T, Impugnadin P, Verrett R, Schoolfield J, Mealey BL, et al. Investigating the association between obstructive sleep apnea and periodontitis. J Periodontol 2015;86:232-43.
24. Al-Jewair TS, Al-Jasser R, Almas K. Periodontitis and obstructive sleep apnea’s bidirectional relationship: A systematic review and meta-analysis. Sleep Breath 2015;19:1111-20.
25. Lavie L, Lavie P. Molecular mechanisms of cardiovascular disease in OSAHS: The oxidative stress link. Eur Respir J 2009;33:1467-84.
26. Fitzsimmons TR, Sanders AE, Bartold PM, Slade GD. Local and systemic biomarkers in gingival crevicular fluid increase odds of periodontitis. J Clin Periodontol 2010;37:30-6.
27. Rimoldi SF, Scherrer U, Messerli FH. Secondary arterial hypertension: When, who, and how to screen? Eur Heart J 2014;35:1245-54.
28. Natsios G, Pastaka C, Vavougios G, Zarogiannis SG, Tsalaki V, Dimoulis A, et al. Age, body mass index, and daytime and nocturnal hypoxia as predictors of hypertension in patients with obstructive sleep apnea. J Clin Hypertens (Greenwich) 2016;18:146-52.
29. Baguet JP, Hamer L, Lévy P, Pierre H, Rossini E, Mourt E, et al. Night-time and diastolic hypertension are common and underestimated conditions in newly diagnosed apneic patients. J Hypertens 2005;23:521-7.
30. Martin-Cabezas R, Seelam N, Petit C, Agossa K, Gaertner S, Tenenbaum H, et al. Association between periodontitis and arterial hypertension: A systematic review and meta-analysis. Am Heart J 2016;180:98-112.
31. Tsioufis C, Kasiakogias A, Thomopoulos C, Stefanadis C. Periodontitis and blood pressure: The concept of dental hypertension. Atherosclerosis 2011;219:1-9.
32. Eleid MF, Konecny T, Orban M, Sengupta PP, Somers VK, Parish JM, et al. High prevalence of abnormal nocturnal oximetry in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2009;54:1805-9.
33. Baguet JP, Barone-Rochette G, Tamisier R, Levy P, Pépin JL. Mechanisms of cardiac dysfunction in obstructive sleep apnea. Nat Rev Cardiol 2012;9:679-88.
34. Kai H, Kudo H, Takayama N, Yasuoka S, Aoki Y, Imaiumi T, et al. Molecular mechanism of aggravation of hypertensive organ
35. Kuczyński W, Gabryelska A, Mokros Ł, Białasiewicz P. Obstructive sleep apnea syndrome and hypothyroidism – Merely concurrence or causal association? Pneumonol Alergol Pol 2016;84:302-6.

36. Zhang M, Zhang W, Tan J, Zhao M, Zhang Q, Lei P, et al. Role of hypothyroidism in obstructive sleep apnea: A meta-analysis. Curr Med Res Opin 2016;32:1059-64.

37. Elangovan S, Nalliah R, Allareddy V, Karimbux NY, Allareddy V. Outcomes in patients visiting hospital emergency departments in the United States because of periodontal conditions. J Periodontol 2011;82:809-19.

38. Yussif NM, El-Mahdi FM, Wagih R. Hypothyroidism as a risk factor of periodontitis and its relation with Vitamin D deficiency: Mini-review of literature and a case report. Clin Cases Miner Bone Metab 2017;14:312-6.

39. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 2008;5:136-43.

40. Launois SH, Pépin JL, Lévy P. Sleep apnea in the elderly: A specific entity? Sleep Med Rev 2007;11:87-97.

41. Mizutani S, Ekuni D, Tomofuji T, Azuma T, Katoaka K, Yamane M, et al. Relationship between xerostomia and gingival condition in young adults. J Periodontal Res 2015;50:74-9.

42. Bixler EO, Vgontzas AN, Ten Have T, Tyson K, Kales A. Effects of age on sleep apnea in men: I. Prevalence and severity. Am J Respir Crit Care Med 1998;157:144-8.

43. Sforza E, Thomas T, Barthélémy JC, Collet P, Roche F. Obstructive sleep apnea is associated with preserved bone mineral density in healthy elderly subjects. Sleep 2013;36:1509-15.