ABSTRACT

Molecular target anticancer drugs are commonly used in various forms of cancers. It is a concern that the risk of serious adverse events (SAEs) and fatal adverse events (FAEs) of molecular target drugs are increasing. An up-to-date meta-analysis of all Phase II/III/IV randomized trials of molecular target anticancer drugs was conducted to calculate the increased risk of SAEs and FAEs. A systematic search of PubMed, Web of Science, and Cochrane Library up to April 6, 2017, was conducted. The study enrolled Phase II/III/IV randomized trials of cancer that compared molecular target drugs alone versus placebo or performed single-arm analysis of molecular target drugs. Data on SAEs and FAEs were extracted from the included studies and pooled to compute risk ratio (RR), the overall incidence, and 95% confidence interval (CI). In this meta-analysis, a total of 19,965 and 26,642 patients in randomized Phase II/III/III trials were included in the analysis of SAEs and FAEs associated with molecular target anticancer drug, respectively. There were significant differences in the relationship of molecular target anticancer drugs with SAEs (RR = 1.57, 95% CI = 1.35–1.82, P < 0.01) and FAEs (RR = 1.51, 95% CI = 1.19–1.91, P < 0.01, I² = 0%) compared to placebo. The overall incidence of SAEs and FAEs was 0.269 (95% CI = 0.262–0.276, P < 0.01) and 0.023 (95% CI = 0.020–0.025, P < 0.01), respectively. Molecular target anticancer drugs significantly increased the risk of SAEs and FAEs. For patients taking molecular target drugs, efforts are needed to prevent the occurrence of SAEs and FAEs.

KEY WORDS: Cancer, fatal adverse event, molecular target anticancer therapy, serious adverse event

INTRODUCTION

During the past two decades, the pharmacological approaches used in cancer therapy have changed extensively. Various deregulations within tumors and tumor microenvironments have helped to steer the direction of drug development in cancer.[1–3] The classical target of antineoplastic chemotherapy are the various steps of cell proliferation (DNA formation and function or the mitosis spindle).[4] Target therapy acts through several modalities that modulate or interact with cell membrane receptors (monoclonal antibodies), intracellular cascade pathways and signaling (small molecule tyrosine kinase inhibitors [TKIs]), or micro-environment factors associated with tumor vasculature or hypoxia.[5,6]

The monoclonal antibodies, rituximab or obinutuzumab, target the CD20 protein in malignant lymphoma,[7] and cetuximab targets epidermal growth factor receptor (EGFR) in colorectal cancer.[8,9] Another antibody, bevacizumab, which neutralizes vascular endothelial growth factor (VEGF) can suppress the blood supply and nutrition of growing tumor in several cancers such as breast cancer, colorectal cancer, and so on.[10,11] Imatinib, a TKI, was adopted to treat chronic myeloid leukemia[11] and acute lymphoblastic leukemia.[12] In addition, cancer cells could also be attacked by bispecific antibodies[13] and checkpoint inhibitors[14,15] through the activation of immune effectors and/or the reduction of their tolerance.

Molecular target therapies could substantially improve the outcome of patients with cancer in
daily practice. However, they could inevitably result in adverse effects such as nausea, emesis, and hair loss as well as serious adverse event (SAE) and fatal adverse event (FAE) such as thromboembolic events, bowel bleeding or perforation, and so on. SAE is defined as an adverse event that can result in death, life-threatening condition, hospitalization (short or prolonged), disability or permanent damage, and congenital anomaly or birth defect. Furthermore, it is an event that requires an intervention to prevent permanent impairment or damage, or any other adverse event that may jeopardize the patient and may require medical or surgical intervention (treatment) to prevent one of the other outcomes. FAE is defined as death caused in all likelihood by a drug.

To better understand, the overall risk of both SAEs and FAEs with molecularly target therapy, a meta-analysis of published Phase II/III trials was conducted to analyze if molecularly target anticancer therapy is connected with an increased incidence of SAEs and FAEs in patients with cancer.

METHODS

Literature search strategy

Cochrane Library, PubMed, and Web of Science were searched up to April 6, 2017. The search strategy was “afatinib or bevacizumab or brentuximab or bosutinib or cabozantinib or dabrafenib or dasatinib or docetaxel or erlotinib or everolimus or exemestane or gemcitabine or imatinib or ipilimumab or lapatinib or letrozole or methotrexate or mitumprotimut-T or neratinib or nilotinib or octreotide or pazopanib or ramucirumab or regorafenib or sorafenib or sunitinib or temsirolimus or trametinib or vandetanib or vorinostat.” We retrieved all eligible studies and checked their reference lists for additional relevant publications.

Inclusion criteria

Studies on the comparison between molecularly target anticancer drugs in combination with chemotherapy or biological therapy and chemotherapy or biological alone were eligible for inclusion. Studies that met all the following criteria were included: (i) prospective phase II, III or IV trials involving cancer patients; (ii) random assignment of participants to molecularly target anticancer therapy or control; and (iii) available data regarding SAEs or FAEs.

Exclusion criteria

The exclusion criteria were as follows: (i) not Phase II/III/IV randomized controlled trials; (ii) ongoing studies; (iii) review articles; and (iv) studies not within drug combination.

Data extraction

As for each study, the following information was extracted: year of publication, the first author’s surname, molecular target drug, the events of FAEs and SAEs, number of subjects, tumor type, and journal. Data extraction and information on study design and outcomes were performed by two independent reviewers. Any disagreements between reviewers were resolved by discussion and consensus with a third reviewer.

Statistical analysis

Effect estimates were analyzed with Review Manager 5.3 (Cochrane, Northern Europe), and single-arm analysis was performed with Comprehensive meta-analysis V2 (Biostat, Inc., USA and UK). The risk ratio (RR) was calculated with molecular target drug as baseline subtype, and their 95% confidence interval (CI) for each result was computed. Forest plots were generated for graphical presentations and heterogeneity was appraised by Q statistics and I² estimates. When effects were heterogeneous (I² > 50%), randomized effects model was carried out; otherwise, the fixed-effects model was used. Publication/reporting bias was visually evaluated by funnel plot. The difference was statistically significant when P < 0.05.

RESULTS

Literature search

As presented in Figure 1, 785 articles containing our search terms were obtained after the duplicates were removed. In these studies, based on titles or abstracts screening, 382 were excluded for nonrandom studies and 27 were excluded for reviews. The rest 221 studies were retrieved for full-text review, from which 89 articles were excluded for not reporting FAEs.
or SAEs and 30 were excluded for drug combination. Finally, 102 studies met the inclusion criteria and were included in the meta-analysis.

Characteristics of included studies
In this meta-analysis, few studies (9%) reported only adverse events above severity, 7% did not specify the criteria that was used to select which adverse events were reported. The brief description of included monoclonal antibodies was listed in Supplementary Table 1. The detailed characteristics of included studies for SAE and FAE were listed in Supplementary Table 2 and Supplementary Table 3, respectively. A total of 19,965 and 26,642 patients in randomized 53 and 65 Phase II/II/IV trials were included in the analysis of SAEs and FAEs in this meta-analysis, respectively. There were 4192 total SAEs and 330 total FAEs among the included patients. For SAEs, there were lung cancer (15 studies), head and neck carcinoma (1 study), renal cell carcinoma (4 studies), leukemia (2 studies), thyroid cancer (2 studies), prostate cancer (1 study), breast cancer (7 studies), angioimmunoblastic (1 study), pancreatic neuroendocrine tumor (2 studies), astrocytoma (1 study), pancreatic cancer (1 study), gastrointestinal tumor (6 studies), neuroendocrine tumor (1 study), soft-tissue sarcoma (1 study), hepatocellular carcinoma (7 studies), and myeloma (1 study).

The underlying malignancies involved in FAEs were lung cancer (20 studies), renal cell carcinoma (8 studies), myeloma (1 study), lymphoma (7 studies), melanoma (7 studies), prostate cancer (3 studies), leukemia (7 studies), neuroendocrine tumors (1 study), breast cancer (3 studies), astrocytomas (1 study), pancreatic neuroendocrine tumor (3 studies), gastrointestinal cancer (4 studies), hepatocellular cancer (6 studies), and thyroid cancer (3 studies).

Study quality
The quality of each enrolled study was graded by the Newcastle-Ottawa scale that provides a score from 0 to 9 for each study (a score of 6–9 indicated a good quality study). As presented in Supplementary Table 4, all the studies enrolled in this study were of good quality with scores of 6, 7, or 8.

Risk ratio of serious adverse events
Twenty-eight randomized trials were enrolled to analyze the SAEs of molecular target anticancer drugs compared with placebo [Table 1]. As shown in Figure 2, there was significant difference between molecular target anticancer drugs and placebo in terms of SAEs (RR = 1.57, 95% CI = 1.35–1.82, \(P < 0.01, \ P = 81\% \)) without bias [Supplementary Figure 1]. The results indicated that there was an increased risk of SAEs related to molecular target drugs compared with placebo. There was a significant difference in the incidence of SAEs with sorafenib (RR = 1.68, 95% CI = 1.21–2.35, \(P < 0.01, \ P = 85\% \)), erlotinib (RR = 2.13, 95% CI = 1.63–2.77, \(P < 0.01, \ P = 0\% \)), and everolimus (RR = 2.70, 95% CI = 1.05–6.94, \(P = 0.04, \ P = 95\% \)) compared to placebo, respectively, without bias [Supplementary Figure 2]. However, no significant difference was observed between regorafenib and placebo (RR = 1.15, 95% CI = 0.98–1.34, \(P = 0.08, \ P = 0\% \)) [Figure 3].

As shown in Figure 4, in single-arm analysis, there was a significant difference with molecular target drugs (event rate [ER] = 0.269, 95% CI = 0.262–0.276, \(P < 0.01 \)) with bias [Supplementary Figure 3]. Significant difference was observed in afatinib (ER = 0.241, 95% CI = 0.216–0.269, \(P < 0.01 \)), axitinib (ER = 0.339, 95% CI = 0.275–0.409, \(P < 0.01 \)), bosutinib (ER = 0.327, 95% CI = 0.271–0.387, \(P < 0.01 \)), cabozantinib (ER = 0.421, 95% CI = 0.366–0.488, \(P < 0.01 \)), dacotinib (ER = 0.118, 95% CI = 0.091–0.152, \(P < 0.01 \)), dasatinib (ER = 0.493, 95% CI = 0.458–0.529, \(P < 0.01 \)), docetaxel (ER = 0.070, 95% CI = 0.053–0.092, \(P < 0.01 \)), erlotinib (ER = 0.263, 95% CI = 0.245–0.282, \(P < 0.01 \)), everolimus (ER = 0.382, 95% CI = 0.351–0.415, \(P < 0.01 \)), exemestane (ER = 0.121, 95% CI = 0.086–0.169, \(P < 0.01 \)), gemcitabine (ER = 0.455, 95% CI = 0.383–0.549, \(P < 0.01 \), imatinib (ER = 0.187, 95% CI = 0.145–0.238, \(P < 0.01 \), lapatinib (ER = 0.074, 95% CI = 0.062–0.088, \(P < 0.01 \), letrozole (ER = 0.004, 95% CI = 0.000–0.057, \(P < 0.01 \), mohetrexate (ER = 0.113, 95% CI = 0.072–0.171, \(P < 0.01 \), neratinib (ER = 0.073, 95% CI = 0.060–0.087, \(P < 0.01 \), nilotinib (ER = 0.046, 95% CI = 0.034–0.061, \(P < 0.01 \), octreotide (ER = 0.042, 95% CI = 0.022–0.079, \(P < 0.01 \), pazopanib (ER = 0.402, 95% CI = 0.346–0.460, \(P = 0.01 \), ramucirumab (ER = 0.440, 95% CI = 0.383–0.499, \(P < 0.01 \), regorafenib (ER = 0.327, 95% CI = 0.299–0.355, \(P < 0.01 \), sorafenib (ER = 0.271, 95% CI = 0.254–0.288, \(P < 0.01 \), temsirolimus (ER = 0.410, 95% CI = 0.350–0.472, \(P < 0.01 \), trametinib (ER = 0.372, 95% CI = 0.277–0.479, \(P < 0.01 \), vandetanib (ER = 0.258, 95% CI = 0.225–0.294, \(P < 0.01 \), or vorinostat (ER = 0.413, 95% CI = 0.360–0.468, \(P < 0.01 \), compared to placebo [Figure 5].

Risk ratio of fatal adverse events
Thirty-seven randomized trials were included in the analysis of molecular target anticancer drugs compared to placebo [Table 2]. Among the 37 studies, there was a significant difference in the relationship of molecular target anticancer drug with FAEs (RR = 1.51, 95% CI = 1.19–1.91, \(P < 0.01, \ P = 0\% \)) compared to that with placebo [Figure 6]. The results suggested that there was an increased risk of FAEs related to molecular target drug compared with placebo. No bias was presented in funnel plot in Supplementary Figure 4. As presented in Figure 7, significant difference was observed between ipilimumab (RR = 4.41, 95% CI = 1.19–16.33, \(P = 0.03, \ P = 0\% \)) and erlotinib (RR = 2.25, 95% CI = 1.46–3.47, \(P < 0.01, \ P = 57\% \)) and placebo. No significant difference was observed between sunitinib (RR = 1.46, 95% CI = 0.34–6.28, \(P = 0.62, \ P = 0\% \)), vandetanib (RR = 1.04, 95% CI = 0.57–1.90, \(P = 0.90, \ P = 0\% \)), everolimus (RR = 1.01, 95% CI = 0.64–1.59, \(P = 0.97, \ P = 5\% \)), or sorafenib (RR = 1.80, 95% CI = 0.88–3.69, \(P = 0.11, \ P = 0\% \)) and placebo. However, there was a bias between ipilimumab or erlotinib and placebo while no bias was observed between other molecular target drugs and placebo [Supplementary Figure 5].
In single-arm analysis, there was a significant difference in molecular target anticancer drugs (ER = 0.023, 95% CI = 0.020–0.025, P < 0.01) [Figure 8] with bias [Supplementary Figure 6]. As shown in Figure 9, there was statistical significance in afatinib (ER = 0.005, 95% CI = 0.002–0.005, P < 0.001), bexacizimab (ER = 0.012, 95% CI = 0.003–0.045, P < 0.01), brentuximab (ER = 0.012, 95% CI = 0.003–0.045, P < 0.01), dabrafenib (ER = 0.003, 95% CI = 0.001–0.013, P < 0.01), dasatinib (ER = 0.014, 95% CI = 0.009–0.020, P < 0.01), erlotinib (ER = 0.048, 95% CI = 0.039–0.060, P < 0.01), everolimus (ER = 0.062, 95% CI = 0.039–0.068, P < 0.01), imatinib (ER = 0.011, 95% CI = 0.007–0.015, P < 0.01), ipilimumab (ER = 0.009, 95% CI = 0.006–0.015, P < 0.01).
Wang, et al.: Serious and fatal adverse event with molecular target drugs

Figure 2: Forest plot of relative risk of serious adverse events associated with molecular target anticancer drugs versus control

Study or Subgroup	Molecular target medicine	Placebo	Risk Ratio				
	Events	Total	Events	Total	Weight	M.H. Random. 95% CI	M.H. Random. 95% CI
Akira Kawai 2016	110	271	32	139	4.7%	1.78 [1.26, 2.47]	
Andrew X 2013	122	277	89	276	5.4%	1.37 [1.10, 1.70]	
Ann-Li Cheng 2013	13	149	1	75	0.5%	6.04 [0.87, 40.00]	
Arlene Chan 2016	193	1420	85	1420	5.1%	1.21 [0.92, 1.60]	
Axel Grotzky 2013	219	500	100	253	5.6%	1.13 [0.92, 1.33]	
Brose MS 2014	77	207	55	209	5.0%	1.41 [1.06, 1.88]	
Camillo Porto 2015	83	227	66	139	5.3%	0.77 [0.60, 0.98]	
Catherine Lombard-Bahs 2015	48	207	4	203	1.7%	11.77 [4.32, 32.04]	
David Neal Franz 2013	60	78	4	82	1.8%	4.75 [1.63, 12.35]	
Escudier B 2009	154	451	110	451	5.5%	1.40 [1.14, 1.72]	
Fabrice André 2014	117	284	55	285	5.1%	2.13 [1.62, 2.81]	
George D Demetri 2012	38	132	14	146	3.5%	1.36 [0.78, 2.32]	
Jin Li 2015	43	136	18	154	3.9%	1.19 [0.75, 1.91]	
Jin Soo Lee 2012	180	620	63	603	5.2%	1.24 [0.96, 1.61]	
John C Araujo 2013	376	762	317	760	5.9%	1.19 [0.96, 1.43]	
Jordi Bruix 2015	52	559	14	549	3.2%	3.65 [2.05, 6.50]	
Josep M Llovet 2008	153	297	184	302	5.0%	0.95 [0.82, 1.10]	
Jun Yao 2015	30	44	7	35	2.7%	3.88 [2.02, 7.85]	
Karen Kelly 2013	15	612	5	617	1.7%	1.88 [0.81, 4.57]	
Katrin Hoffmann 2015	3	24	3	25	0.9%	1.04 [0.23, 4.66]	
Masatoshi Kudo 2011	41	229	20	249	3.7%	2.03 [1.23, 3.36]	
Paul E Goss 2013	99	1573	77	1574	5.0%	1.29 [0.96, 1.72]	
Rossella Elisei 2013	90	214	25	189	4.4%	1.83 [1.26, 2.68]	
Scagliotti G 2010	78	436	39	459	4.5%	2.11 [1.47, 3.02]	
Vincent A Miller 2012	30	390	195	505	0.5%	15.00 [9.06, 109.18]	
Yi-Long Wu 2014	4	59	0	63	0.3%	9.80 [0.53, 174.55]	
Yoshito Komatsu 2014	33	132	13	145	3.3%	1.27 [0.72, 2.24]	
Total (95% CI)	10290	8632	100%	16320	1.57 [1.35, 1.82]		
Total events	2334	1381					

Heterogeneity: Tau² = 0.10; Chi² = 136.06, df = 26 (P < 0.0001); I² = 81%

Test for overall effect: Z = 5.82 (P < 0.0001)

P < 0.01), lapatinib (ER = 0.000, 95% CI = 0.000–0.005, P < 0.01), mitumprotimut-T (ER = 0.003, 95% CI = 0.000–0.004, P < 0.01), neratinib (ER = 0.003, 95% CI = 0.001–0.007, P < 0.01), nilotinib (ER = 0.013, 95% CI = 0.007–0.022, P < 0.01), pazopanib (ER = 0.006, 95% CI = 0.002–0.015, P < 0.01), sorafenib (ER = 0.013, 95% CI = 0.009–0.018, P < 0.01), sunitinib (ER = 0.018, 95% CI = 0.013–0.024, P < 0.01), vandetanib (ER = 0.035, 95% CI = 0.024–0.049, P < 0.01), and vorinostat (ER = 0.013, 95% CI = 0.005–0.033, P < 0.01).

DISCUSSION

The development of molecular target anticancer therapy, which was accelerated by the development of cancer biology, has presented impressive clinical advances with regards to efficacy and prognosis. However, although it seems that the actions of molecular target drugs on the preoncogenic pathways or molecules associated with tumor growth and survival may not always cause therapy-related SAEs and FAEs, the therapy-related SAEs and FAEs increased in recent studies. The risk of therapy-related SAEs and FAEs among cancer patients in Phase II/III/IV randomized trials of molecular target anticancer drugs were increased by 49% and 82%, respectively, with sorafenib in a study by Llovet et al.\[19\] and Porta et al.\[20\]. Moreover, the study by Porta et al.\[20\] indicated that a molecular target drug was effective and tolerable in elderly patients with metastatic renal cell carcinoma. For SAEs, significant difference was only observed between erlotinib or everolimus and placebo. Previous studies showed that everolimus was associated with a significantly risk of mucocutaneous toxicities (all-grade stomatitis, skin rash, and pruritus and mouth ulceration),\[21\] metabolic complications (all-grade and high-grade hyperglycemia, hypertriglyceridemia, and hypercholesterolemia),\[22\] and FAEs,\[23\] which was consistent with the outcome of our study. Furthermore, significant differences in the incidence of FAEs were only observed with ipilimumab and erlotinib when compared to placebo. Consistent with our meta-analysis, the previous study by Zhu et al.\[24\] indicated that ipilimumab is more associated with an increased risk of FAEs in cancer patients compared to control or placebo.\[24\] Interestingly, only erlotinib, one of the EGFR inhibitors, showed a significant difference in the incidence of both FAEs and SAEs compared to placebo.\[24\]
Figure 3: Forest plot of relative risk of serious adverse events associated with molecular target anticancer drugs versus control in subgroup analysis.

Studies by Llovet et al.[19] and Hoffmann et al.[28] indicated that the safety profile of the sorafenib group was similar to that of the placebo group, which was different from the outcome of our result. The heterogeneity in the subgroup analysis of everolimus was addressed in a study conducted by Porta et al. which showed that everolimus was generally well tolerated in elderly patients with metastatic renal cell carcinoma, and most adverse events were grade 1 or 2 in severity rather than SAEs.[20] Although no heterogeneity was observed in the analysis of the included molecular target drugs and the subgroup analysis of ipilimumab for FAEs, there was heterogeneity in the subgroup analysis of erlotinib compared to placebo, from the study by Kelly et al.[29] Interestingly, no heterogeneity was observed in the subgroup analysis of SAEs in erlotinib compared to placebo. In a single-arm analysis, for both SAEs and FAEs, there was a significant difference in molecular target drug, which suggested that molecular target could increase the
Wang, et al.: Serious and fatal adverse event with molecular target drugs

Figure 4: Forest plot of relative risk of serious adverse events associated with molecular target anticancer drugs versus control in single-arm analysis
Figure 5: Forest plot of relative risk of serious adverse events associated with molecular target anticancer drugs versus control in single-arm subgroup analysis
Table 2: Characteristics of 27 random trials enrolled to analyze FAEs of molecular target anticancer drug compared with placebo

Author	Molecular target medicine	FAE	Overall	Tumor type	Journal	Serial number*
Vincent A Miller 2012	Apatinib	395	2	Lung adenocarcinoma	The lancet oncology	4
	Placebo	195	0	Lung adenocarcinoma	The lancet oncology	4
Craig H Moskowitz 2015	Brentuximab	165	1	Hodgkin’s lymphoma	The lancet oncology	44
	Placebo	164	0	Hodgkin’s lymphoma	The lancet oncology	44
John C Araujo 2013	Dasatinib	762	6	Prostate cancer	The lancet oncology	9
	Placebo	760	4	Prostate cancer	The lancet oncology	9
Ronald P DeMatteo 2009	Imatinib	359	5	Gastrointestinal stromal tumour	The lancet oncology	45
	Placebo	354	0	Gastrointestinal stromal tumour	The lancet oncology	45
Jin Li 2015	Regorafenib	136	2	Colorectal cancer	The lancet oncology	26
	Placebo	68	0	Colorectal cancer	The lancet oncology	26
M. Dror Michaelson 2013	Sunitinib	584	4	Prostate Cancer	J Clin oncol	46
	Placebo	289	2	Prostate Cancer	J Clin oncol	46
George D. Demetri 2012	Sunitinib	228	4	Gastrointestinal Stromal Tumor	Clin Cancer Res	47
	Placebo	114	0	Gastrointestinal Stromal Tumor	Clin Cancer Res	47
Sophie Leboulleux 2012	Vandetanib	72	2	Thyroid cancer	The lancet oncology	48
	Placebo	73	1	Thyroid cancer	The lancet oncology	48
Jin Soo Lee 2012	Vandetanib	619	24	Non small cell lung cancer	J Clin oncol	36
	Placebo	303	12	Non small cell lung cancer	J Clin oncol	36
Samuel A. Wells Jr 2011	Vandetanib	231	5	Medullary Thyroid Cancer	J Clin oncol	58
	Placebo	99	2	Medullary Thyroid Cancer	J Clin oncol	58
Katrin Hoffmann 2015	Sorafenib	24	0	Hepatocellular carcinoma	BMC Cancer	32
	Placebo	25	0	Hepatocellular carcinoma	BMC Cancer	32
Jordi Bruix 2015	Sorafenib	559	4	Hepatocellular carcinoma	The lancet oncology	30
	Placebo	548	2	Hepatocellular carcinoma	The lancet oncology	30
Marcia S Brose 2014	Sorafenib	207	1	Thyroid cancer	The lancet oncology	91
	Placebo	209	1	Thyroid cancer	The lancet oncology	91
Masatoshi Kudo 2011	Sorafenib	229	0	Hepatocellular carcinoma	Eur J Cancer	33
	Placebo	227	0	Hepatocellular carcinoma	Eur J Cancer	33
Giorgio Scagliotti 2015	Sorafenib	436	13	Non small cell lung cancer	J Clin oncol	92
	Placebo	459	4	Non small cell lung cancer	J Clin oncol	92
Ann-Lii Cheng 2009	Sorafenib	149	0	Hepatocellular carcinoma	The lancet oncology	40
	Placebo	75	0	Hepatocellular carcinoma	The lancet oncology	40
Bernad Escudier 2009	Sorafenib	451	0	Renal Cell Carcinoma	N ENGL J MED	90
	Placebo	451	0	Renal Cell Carcinoma	N ENGL J MED	90
Llovet JM 2008	Sorafenib	297	0	Hepatocellular carcinoma	N ENGL J MED	31
	Placebo	302	0	Hepatocellular carcinoma	N ENGL J MED	31
James C Yao 2016	Everolimus	202	7	Neuroendocrine tumours	The lancet oncology	79
	Placebo	98	3	Neuroendocrine tumours	The lancet oncology	79
Robert J Motzer 2008	Everolimus	272	26	Renal Cell Carcinoma	The lancet oncology	80
	Placebo	138	18	Renal Cell Carcinoma	The lancet oncology	80
Fabrice André 2014	Everolimus	284	2	Breast cancer	The lancet oncology	82
	Placebo	285	2	Breast cancer	The lancet oncology	82
Jun Yao 2014	Placebo	35	0	Pancreatic neuroendocrine tumors	Med Oncol	63
	Everolimus	44	0	Pancreatic neuroendocrine tumors	Med Oncol	63
Catherine	Everolimus	207	6	Pancreatic neuroendocrine tumors	Pancreas	39
Lombard-Bohas 2015	Placebo	203	2	Pancreatic neuroendocrine tumors	Pancreas	39
James C Yao 2011	Everolimus	207	7	Pancreatic neuroendocrine tumors	N ENGL J MED	81
	Placebo	203	1	Pancreatic neuroendocrine tumors	N ENGL J MED	81
David Neal Franz 2013	Everolimus	0	78	Astrocytomases	The lancet oncology	99
	Placebo	0	39	Astrocytomases	The lancet oncology	99
Eugene D Kwon 2014	Ipilimumab	399	3	Prostate cancer	The lancet oncology	83
	Placebo	400	0	Prostate cancer	The lancet oncology	83
Alexander M M	Ipilimumab	471	4	Prostate cancer	The lancet oncology	83
Eggermont 2015	Placebo	474	0	Prostate cancer	The lancet oncology	83
Thomas J. Lynch 2012	Ipilimumab	70	1	Non small cell lung cancer	J Clin oncol	85
	Placebo	66	1	Non small cell lung cancer	J Clin oncol	85
M. Reck 2012	Ipilimumab	44	1	Small cell lung cancer	Ann Oncl	86
	Placebo	42	0	Small cell lung cancer	Ann Oncl	86
A.M.M. Eggermont 2016	Ipilimumab	475	5	Melanoma	N ENGL J MED	87
	Placebo	476	0	Melanoma	N ENGL J MED	87
Ulrich Gatzemeier 2015	Ipilimumab	580	8	Non small cell lung cancer	J Clin oncol	75
	Placebo	579	1	Non small cell lung cancer	J Clin oncol	75
Karen Kelly 2013	Ipilimumab	612	7	Non small cell lung cancer	J Clin oncol	60
	Placebo	342	0	Non small cell lung cancer	J Clin oncol	60
Ken Y 2016	Ipilimumab	527	53	Non small cell lung cancer	Journal of thoracic oncology	101
	Placebo	533	7	Non small cell lung cancer	Journal of thoracic oncology	101

Contd...
Table 2: Contd...

Author	Molecular target medicine	FAE	Overall	Tumor type	Journal	Serial number*
Meletios Dimopoulos	Vorinostat	315	4	Melanoma	The lancet oncology	88
2013	Placebo	320	5	Melanoma	The lancet oncology	88
Arnold Freedman 2013	Mitumprotimut-T	174	0	B-cell lymphoma	J Clin oncol	89
	Placebo	175	0	B-cell lymphoma	J Clin oncol	89
Paul E Goss 2013	Lapatinib	1573	0	Breast cancer	The lancet oncology	64
	Placebo	1574	0	Breast cancer	The lancet oncology	64
Arlene Chan 2016	Neratinib	1420	4	Breast cancer	The lancet oncology	65
	Placebo	1420	3	Breast cancer	The lancet oncology	65

*The serial number of included studies presented in Supplementary Material.

Figure 6: Forest plot of relative risk of fatal adverse events associated with molecular target anticancer drugs versus control

risk of SAEs and FAEs. Eleven and nineteen molecular target drugs were analyzed for SAEs and FAEs, respectively. Both FAEs and SAEs were estimated with EGFR inhibitors. With regards to SAEs, the incidence was much higher than that of FAEs, and letrozole had the lowest incidence (0.4%). The incidence of FAEs with the EGFR inhibitors was below 1.5% with erlotinib having the highest incidence. It was reported that EGFR-TKI was associated with the mitigation of the risk for certain types of toxicity like interstitial lung disease while afatinib was associated with a higher frequency of rash and
Figure 7: Forest plot of relative risk of fatal adverse events associated with molecular target anticancer drugs versus control in subgroup analysis.
Figure 8: Forest plot of relative risk of fatal adverse events associated with molecular target anticancer drugs versus control in single-arm analysis.
Figure 9: Forest plot of relative risk of fatal adverse events associated with molecular target anticancer drugs versus control in single-arm subgroup analysis.
diarrhea of grade ≥3 and gefitinib was associated with a higher frequency of hepatotoxicity of grade ≥3 in patients with EGFR mutation-positivity NSCLC.[25] The molecular drugs targeting VEGF receptor (VEGFR) as inhibitors and antibodies, also presented a significant increase in the risk of FAEs and SAEs. The highest incidence of SAEs was observed in prostate cancer patients treated with dasatinib, a TKI,[20] whereas the lowest incidence was observed in patients treated with letrozole,[31] an oral non-steroidal aromatase inhibitor. Previous meta-analyses illustrated that both VEGFR inhibitors and antibodies resulted in increased incidence of FAEs,[18,32,33] which was consistent with the result of this meta-analysis. The highest incidence of FAEs (n = 26) was observed in patients treated with everolimus, an mTOR inhibitor, from the study conducted by Motzer et al. on renal cell carcinoma[34] while the lowest incidence was observed in patients treated with lapatinib, an EGFR inhibitor.

When discussing the risk-benefit of molecular target anticancer therapy, evidence strength, benefit estimate, and the possibility of the incidence of SAEs and FAEs should be taken into account. This is the first meta-analysis to link molecular target anticancer drugs with an increased risk of both SAEs and FAEs in patients with cancer. This may help in decision-making by providing correlative information with regards to incidence and increased RR. The enrollment of well-conducted, good quality, Phase II/III/IV randomized trials was the strength of this meta-analysis. Besides, a large number of patients and recent studies were enrolled in our study. Moreover, well-selected studies were presented such that no heterogeneity was observed in the RR analysis of FAEs.

However, some limitations need to be acknowledged. First, the risk estimates at trial-level and confounders at patient-level excluded the outcomes to be generalized clinically. Second, bias might have been created by different therapy duration in the evaluation of RR with molecular target drugs. Third, SAEs and FAEs were not the primary endpoints of included trials, and SAEs and FAEs extracted by investigator might result in bias. Fourth, the data extracted represented only the pooled results. Last but not the least, with regard to SAEs, only one study was enrolled for the analysis of axitinib, bosutinib, cabozantinib, dasatinib, exemestane, letrozole, methotrexate, neratinib, octreotide, ramucirumab, temsirolimus, trtametinib, vandetanib, and vorinostat, in single-arm analysis. For FAEs, in single-arm analysis, only one study was included for the analysis of vorinostat, mitumprotimut-T, lapatinib, and neratinib. Therefore, more studies should focus on the relationship between temsirolimus, trametinib, vandetanib, or vorinostat and SAEs, and the relationship between vorinostat, mitumprotimut-T, lapatinib, or neratinib and FAEs.

In conclusion, molecular target anticancer drugs significantly increased the risk of SAEs and FAEs. For patients taking molecular target drugs, more effort is needed to prevent the incidence of SAEs and FAEs. It is crucial for physicians and patients to recognize the risk-benefit balance of molecular target drugs, and identify and treat the SAEs and FAEs associated with these drugs.

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (81600510); Guangzhou Industry-Academia-Research Collaborative Innovation Major Project (201704020015); Southern Medical University Science and Technology Development and Cultivation Project (KJ20161125).

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57-70.
2. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011;144:646-74.
3. Seyedi Z, Hashemzadeh MR, Colagar AH, Jaafari MR. Signal transducer and activator of transcription 3 downregulation in J774A.1 cell line as a model of M2 macrophages in tumor microenvironment. J Cancer Res Ther 2018;14:1121-5.
4. Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, et al. New drugs, new toxicities: Severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care 2017;21:89.
5. Lheureux S, Denoyelle C, Ohashi PS, De Bono JS, Mottaghy FM. Molecularly targeted therapies in cancer: A guide for the nuclear medicine physician. Eur J Nucl Med Mol Imaging 2017;44:41-54.
6. Tazi I, Nafi H, Mahmal L. Monoclonal antibodies in hematological malignancies: Past, present and future. J Cancer Res Ther 2013;Suppl 2:S74-9.
7. Ma B, Ujani C. The clinical development of obinutuzumab for the treatment of follicular lymphoma. Cancer Manag Res 2017;9:103-13.
8. Francesco A, Simioni PU. Immunotherapy for the treatment of colorectal tumors: Focus on approved and in-clinical-trial monoclonal antibodies. Drug Des Devel Ther 2017;11:177-84.
9. Li K, Li J. Current molecular targeted therapy in advanced gastric cancer: A Comprehensive review of therapeutic mechanism, clinical trials, and practical application. Gastroenterol Res Pract 2016;2016:4105615.
10. Roviello G, Bachelot T, Hudis CA, Curigliano G, Reynolds AR, Petrioli R, et al. The role of bevacizumab in solid tumours: A literature based meta-analysis of randomised trials. Eur J Cancer 2017;75:245-58.
11. Campiotti L, Suter MB, Guasti L, Gambacorti-Passerini C, Grandi AM, et al. Imatinib discontinuation in chronic myeloid leukaemia patients with undetectable BCR-ABL transcript level: A systematic review and a meta-analysis. Eur J Cancer 2017;77:48-56.
12. Giebel S, Czyz A, Ottmann O, Baron F, Brisset E, Ciceri F, et al. Use of tyrosine kinase inhibitors to prevent relapse after allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: A position statement of the acute leukemia working party of the European Society for Blood and Marrow Transplantation. Cancer 2016;122:2941-51.
13. Goebeler ME, Bargou R. Blinatumomab: A CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy. Leuk Lymphoma 2016;57:1021-32.

14. Mackiewicz J, Mackiewicz A. Programmed cell death 1 checkpoint inhibitors in the treatment of patients with advanced melanoma. Contemp Oncol (Pol) 2017;21:1-5.

15. Barbee MS, Ogunniyi A, Horvat TZ, Dang TO. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann Pharmacother 2015;49:907-37.

16. Reporting Serious Problems to FDA. What is a Serious Adverse Event? Vol. 2017; 2017. Available from: https://www.fda.gov/safety/medwatch/howtoreport/ucm053087.htm. [Last accessed on 2018 Feb 25].

17. Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B. Deaths: Final data for 2006. Natl Vital Stat Rep 2009;57:1-34.

18. Gyawali B, Shimokata T, Ando M, Honda K, Ando Y. Risk of serious adverse events and fatal adverse events with sorafenib in patients with solid cancer: A meta-analysis of phase 3 randomized controlled trials. Ann Oncol 2017;28:246-53.

19. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378‑90.

20. Porta C, Calvo E, Climent MA, Vaishampayan U, Osanto S, Ravaud A, et al. Efficacy and safety of everolimus in elderly patients with metastatic renal cell carcinoma: An exploratory analysis of the outcomes of elderly patients in the RECORD-1 trial. Eur Urol 2012;61:826‑33.

21. Abdel-Rahman O, Fouad M. Risk of mucocutaneous toxicities in patients with solid tumors treated with everolimus; a systematic review and meta-analysis. Expert Rev Anticancer Ther 2014;14:1529-36.

22. Lew S, Chamberlain RS. Risk of metabolic complications in patients with solid tumors treated with mTOR inhibitors: Meta-analysis. Anticancer Res 2016;36:1711-8.

23. Qi WX, Huang YJ, Yao Y, Shen Z, Min DL. Incidence and risk of treatment-related mortality with mTOR inhibitors everolimus and temsirolimus in cancer patients: A meta-analysis. PLoS One 2013;8:e65166.

24. Zhu J, Wu J, Li G, Li J, Lin Y, He Z, et al. Meta-analysis of randomized controlled trials for the incidence and risk of fatal adverse events in cancer patients treated with ipilimumab. Expert Opin Drug Saf 2017;16:423-8.

25. Zhou JG, Tian X, Cheng L, Zhou Q, Liu Y, Zhang Y, et al. The risk of neutropenia and leukopenia in advanced non-small cell lung cancer patients treated with erlotinib: A prisma-compliant systematic review and meta-analysis. Medicine (Baltimore) 2015;94:e1719.

26. Takeda M, Okamoto I, Nakaåwaka K. Pooled safety analysis of EGFR-TKI treatment for EGFR mutation-positive non-small cell lung cancer. Lung Cancer 2015;88:74-9.

27. Kroeze SG, Fritz C, Hoyer M, Lo SS, Ricardi U, Sahgal A, et al. Toxicity of concurrent stereotactic radiotherapy and targeted therapy or immunotherapy: A systematic review. Cancer Treat Rev 2017;53:25-37.

28. Hoffmann K, Ganten T, Gotthardtp D, Radeleff B, Settmacher U, Kollmar O, et al. Impact of neo-adjuvant sorafenib treatment on liver transplantation in HCC patients – A prospective, randomized, double-blind, phase III trial. BMC Cancer 2015;15:392.

29. Kelly K, Altorki NK, Eberhardt WE, O’Brien ME, Spigel DR, Crinò L, et al. Adjuvant erlotinib versus placebo in patients with stage IB-IIIA non-small-cell lung cancer (RADIANT): A randomized, double-blind, phase III trial. J Clin Oncol 2015;33:4007-14.

30. Araujo JC, Trudel GC, Saad F, Armstrong AJ, Yu EY, Bellmunt J, et al. Docetaxel and dasatinib or placebo in men with metastatic castration-resistant prostate cancer (READY): A randomised, double-blind phase 3 trial. Lancet Oncol 2013;14:1307-16.

31. Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J, et al. Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol 2009;27:2630-7.

32. Ranpura V, Hapani S, Wu S. Treatment-related mortality with bevacizumab in cancer patients: A meta-analysis. JAMA 2011;305:487-94.

33. Schutz FA, Je Y, Richards CJ, Choueiri TK. Meta-analysis of randomized controlled trials for the incidence and risk of treatment-related mortality in patients with cancer treated with vascular endothelial growth factor tyrosine kinase inhibitors. J Clin Oncol 2012;30:871-7.

34. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of everolimus in advanced renal cell carcinoma: A double-blind, randomised, placebo-controlled phase III trial. Lancet 2008;372:449-56.