Size-Separable Tile Self-Assembly:
A Tight Bound for Temperature-1 Mismatch-Free Systems

Andrew Winslow
Tufts University, Medford, MA 02155, USA.
avinslow@cs.tufts.edu

Abstract. We introduce a new property of tile self-assembly systems that we call size-separability. A system is size-separable if every terminal assembly is a constant factor larger than any intermediate assembly. Size-separability is motivated by the practical problem of filtering completed assemblies from a variety of incomplete “garbage” assemblies using gel electrophoresis or other mass-based filtering techniques. Here we prove that any system without cooperative bonding assembling a unique mismatch-free terminal assembly can be used to construct a size-separable system uniquely assembling the same shape. The proof achieves optimal scale factor and temperature for the size-separable system. As part of the proof, we obtain two results of independent interest on mismatch-free temperature-1 two-handed systems.

Keywords: 2HAM, hierarchical, aTAM, glues, gel electrophoresis

1 Introduction

The study of theoretical tile self-assembly was initiated by the Ph.D. thesis of Erik Winfree [19]. He proved that systems of passive square particles (called tiles) that attach according to matching bonds (called glues) are capable of universal computation and efficient assembly of shapes such as squares. Soloveichik and Winfree [17] later proved that these systems are capable of efficient assembly of any shape, allowing for an arbitrary scaling of the shape, used to embed a roving Turing machine. In this original abstract Tile Assembly Model (aTAM), tiles attach singly to a growing seed assembly.

An alternative model, called the two-handed assembly model (2HAM) [3,4,6], hierarchical tile assembly model [8,14], or polyomino tile assembly model [9,10], allows “seedless” assembly, where tiles can attach spontaneously to form large assemblies that may attach to each other. This seedless assembly was proved by Cannon et al. [2] to be capable of simulating any seeded assembly process, while also achieving more efficient assembly of some classes of shapes.

A generalization of the 2HAM called the staged tile assembly model introduced by Demaine et al. [4] utilizes sequences of mixings, where each mixing combines a set of input assemblies using a 2HAM assembly process. The products of the mixing are the terminal assemblies that cannot combine with any
other assembly produced during the assembly process (called a producible assembly). This set of terminal assemblies can then be used as input assemblies in another mixing, combined with the sets of terminal assemblies from other mixings.

After a presentation by the author of work [20] on the staged self-assembly model at DNA 19, Erik Winfree commented that the staged tile assembly model has a unrealistic assumption: at the end of each mixing process, all producible but non-terminal assemblies are removed from the mixing. A similar assumption is made in the 2HAM model, where only the terminal assemblies are considered to be “produced” by the system.

Ignoring large producible assemblies is done to simplify the model definition, but allows unrealistic scenarios where “nearly terminal” systems differing from some terminal assembly by a small number of tiles are presumed to be eliminated or otherwise removed at the end of the assembly process. While filtering techniques, including well-known gel electrophoresis, may be employed to obtain filtering of particles at the nanoscale, such techniques generally lack the resolution to distinguish between macromolecules that differ in size by only a small amount.

Our results. In this work, we consider efficient assembly of shapes in the 2HAM model under the restriction that terminal assemblies are significantly larger than all non-terminal producible assemblies. We call a system factor-\(c\) size-separable if the ratio between the smallest terminal assembly and largest non-terminal producible assembly is at least \(c\). Thus, high-factor size-separable systems lack large but non-terminal assemblies, allowing robust filtering of terminal from non-terminal assemblies in these systems.

Our main result is an algorithm for converting 2HAM systems of a special class into size-separable 2HAM systems. A 2HAM system \(S = (T, f, \tau)\) consists of a set of tiles \(T\) that attach by forming bonds according to their glues and a glue-strength function \(f\), and two assemblies can attach if the total strength of the bonds formed meets or exceeds the temperature \(\tau\) of the system. If a system is temperature-1 (\(\tau = 1\), then any two assemblies can attach if they have a single matching glue. An assembly is said to be mismatch-free if no two coincident tile sides in the assembly or any assembly in the system have different glues. We prove the following:

Theorem Let \(S = (T, f, 1)\) be a 2HAM system with a mismatch-free unique terminal assembly \(A\). Then there exists a factor-2 size-separable 2HAM system \(S' = (T', f', 2)\) with a unique mismatch-free finite terminal assembly \(A'\) such that \(|S'| \leq 8|S|\) and \(A'\) has the shape of \(A\) scaled by a factor of 2.

Along the way, we prove two results of independent interest on temperature-1 mismatch-free systems. The bond graph of an assembly \(A\), denoted \(G(A)\), is the dual graph of \(A\) formed by a node for each tile, and an edge between two tiles if they form a bond. We show that any system with a unique mismatch-free
finite terminal assembly whose bond graph is not a tree can be made so without increasing the number of tile types in the system:

Lemma 7 (Tree-ification Lemma). Let $S = (T, f, 1)$ be a 2HAM system with unique mismatch-free finite terminal assembly A. Then there exists a 2HAM system $S' = (T', f', 1)$ with unique mismatch-free finite terminal assembly A' and $|S'| \leq |S|$, where A' has the shape of A and $G(A')$ is a tree.

The proof of the Tree-ification Lemma yields a simple algorithm for obtaining S': while a cycle in $G(A)$ remains, remove a glue on this cycle from the tile type containing it. The challenge is in proving such a process does not disconnect $G(A)$, regardless of the glue and cycle chosen.

We also prove that the tile types used only once in a unique terminal assembly, called 1-occurrence tiles, form a connected subgraph of $G(A)$. That is, these tiles taken alone form a valid assembly.

Lemma 9. Let $S = (T, f, 1)$ be a 2HAM system with unique mismatch-free finite terminal assembly A. Then the 1-occurrence tiles in A form a 1-stable subassembly of A.

For some questions about temperature-1 systems, results have been far easier to obtain for mismatch-free systems than for general systems allowing mismatches. For instance, a lower bound of $2n - 1$ for the assembly of a $n \times n$ square by any temperature 1 aTAM system was conjectured by Rothemund and Winfree [16], and proved for mismatch-free systems by Maňuch, Stacho, and Stoll [11]. Meunier [12] was able to show the same lower bound for systems permitted to have mismatches under the assumption that the seed tile starts in the lower left of the assembly, and removing this restriction remains open. In a similar vein, Reif and Song [15] have shown that temperature-1 mismatch-free aTAM systems are not computationally universal, while the same problem for systems with mismatches permitted is a notoriously difficult problem that remains open, despite significant efforts [8,7,18,13].

In spite of such results, constructing high-factor size-separable versions of temperature-1 mismatch-free systems remains challenging. One difficulty lies in the partitioning the assembly into two equal-sized halves that will come together for the final assembly step. Note that for many assemblies, such a cutting is impossible (e.g., the right assembly in Figure 1). Even if such a cutting is possible, removing the bonds connecting the two halves by modifying the tiles along the boundary may require a large increase in the number of tile types of the system.

Another challenge lies in coping with cycles in the bond graph. Factor-2 size-separability requires that the last assembly step consists of two completely assembled halves of the unique terminal assembly attaching. Cycles in the bond graph (e.g., the left assembly in Figure 1) prevent communication between the tiles inside and outside of the cycles, risking the possibility that the portion of the assembly inside a cycle still has missing tiles as the exterior takes part in the supposed final assembly step.
Loosely speaking, our approach is to first construct a version of \(A\) where the bond graph is a tree and a vertex cut of \(G(A)\) consisting of a path of 1-occurrence tiles exists. This modified version of \(A\) is then scaled in size and temperature by a factor of 2, using special \(2 \times 2\) macrotiles that only assemble along the boundary of the scaled assembly via mixed-strength bonds. Finally, the 1-occurrence tiles forming a vertex cut are given weakened glues such that only completely formed subassemblies on both sides of the cut can attach across the weak-glue cut.

2 Definitions

Here we give a complete set of formal definitions of tile self-assembly used throughout the paper. All of the definitions used are equivalent to those found in prior work on the two-handed tile assembly model, e.g. [1234].

Assembly systems. In this work we study the *two-handed tile assembly model* (2HAM), and instances of the model called systems. A 2HAM system \(\mathcal{S} = (T, f, \tau)\) is specified by three parts: a tile set \(T\), a glue-strength function \(f\), and a temperature \(\tau \in \mathbb{N}\).

The tile set \(T\) is a set of unit square *tiles*. Each tile \(t \in T\) is defined by a 4-tuple \(t = (g_n, g_e, g_s, g_w)\) consisting of four *glues* from a set \(\Sigma\) of glue types, i.e. \(g_n, g_e, g_s, g_w \in \Sigma\). The four glues \(g_n, g_e, g_s, g_w\) specify the glue types in \(\Sigma\) found on the north (N), east (E), south (S), and west (W) sides of \(t\), respectively. Each glue also defines a *glue-side*, e.g. \((g_n, N)\). Define \(g_D(t)\) to be the glue on the side \(D\) of \(t\), e.g. \(g_N(t) = g_n\).

The glue function \(f : \Sigma^2 \rightarrow \mathbb{N}\) determines the strength of the bond formed by two coincident glue-sides. For any two glues \(g, g' \in \Sigma\), \(f(g, g') = f(g', g)\). A unique *null glue* \(\varnothing \in \Sigma\) has the property that \(f(\varnothing, g) = 0\) for all \(g \in \Sigma\). In this work we only consider glue functions such that for all \(g, g' \in \Sigma\), \(f(g, g') = 0\) and if \(g \neq \varnothing, f(g, g) > 0\). For convenience, we sometimes refer to a glue-side with the null glue as a side *without a glue*.

Configurations and assemblies. A *configuration* is a partial function \(C : \mathbb{Z}^2 \rightarrow T\) mapping locations on the integer lattice to tiles. Define \(L_D(x, y)\) to
be the location in \mathbb{Z}^2 one unit in direction D from (x, y), e.g. $L_N(0, 0) = (0, 1)$. For any pair of locations $(x, y), L_D(x, y) \in C$, the bond strength between the these tiles is $f(g_D(C(x, y)), g_{D^{-1}}(C(L_D(x, y))))$. If $g_D(C(x, y)) \neq g_{D^{-1}}(C(L_D(x, y)))$, then the pair of tiles is said to form a mismatch, and a configuration with no mismatches is mismatch-free. If $g_D(C(x, y)) = g_{D^{-1}}(C(L_D(x, y)))$, then the common glue and pair of directions define a glue-side pair $(g_D(C(x, y), \{D, D^{-1}\})$.

The bond graph of C, denoted $G(C)$, is defined as the graph with vertices $\text{dom}(C)$ and edges $\{(x, y), L_D(x, y) : f(g_D(C(x, y)), g_{D^{-1}}(C(L_D(x, y)))) > 0\}$. That is, the graph induced by the neighboring tiles of C forming positive-strength bonds.

A configuration C is a τ-stable assembly or an assembly at temperature τ if $\text{dom}(C)$ is connected on the lattice and, for any partition of $\text{dom}(C)$ into two subconfigurations C_1 and C_2, the sum of the bond strengths between tiles at pairs of locations $p_1 \in \text{dom}(C_1)$, $p_2 \in \text{dom}(C_2)$ is at least τ, the temperature of the system. Any pair of assemblies A_1, A_2 are equivalent if they are identical up to a translation by (x, y) with $x, y \in \mathbb{Z}$. The size of an assembly A is $|\text{dom}(A)|$, and $t \in T$ is a k-occurrence tile in A if $|\{(x, y) \in \text{dom}(A) : A(x, y) = t\}| = k$. The shape of an assembly is the polyomino induced by $\text{dom}(A)$, and a shape is scaled by a factor k by replacing each cell of the polyomino with a $k \times k$ block of cells.

Two τ-stable assemblies A_1, A_2 are said to assemble into a superassembly A_3 if A_2 is equivalent to an assembly A_2' such that $\text{dom}(A_1) \cap \text{dom}(A_2') = \emptyset$ and A_3 defined by the union of the partial functions A_1 and A_2' is a τ-stable assembly. Similarly, an assembly A_1 is a subassembly of A_2, denoted $A_1 \subseteq A_2$, if A_2 is equivalent to an assembly A_2' such that $\text{dom}(A_1) \subseteq \text{dom}(A_2')$.

Producible and terminal assemblies. An assembly A is a producible assembly of a 2HAM system S if A can be assembled from two other producible assemblies or A is a single tile in T. A producible assembly A is a terminal assembly of S if A is producible and A does not assemble with any other producible assembly of S.

We also consider seeded versions of some 2HAM systems, where an assembly is producible if it can be assembled from another producible assembly and a single tile of T. Note that for any temperature-1 2HAM system S, the seeded version of S has the same set of terminal assemblies as S.

If S has a single terminal assembly A, we call A the unique terminal assembly (UTA) of S. In the case that $|A|$ is finite and mismatch-free, we further call A the unique mismatch-free finite terminal assembly (UMFTA) of S.

Size-separability. A 2HAM system $S = (T, f, \tau)$ is a factor-c size-separable if for any pair of producible assemblies A, B of S with A terminal and B not terminal, $|A|/|B| \geq c$. Since this ratio is undefined when S has infinite producible assemblies, such systems have undefined size-separability. Every system with defined size-separability has factor-c size-separability for some $1 \leq c \leq 2$.

3 Tree-ification

First, we prove that any \(\tau = 1 \) system producing a unique terminal assembly can be converted into a system with another unique terminal assembly with the same shape but whose bond graph is a tree. This is formalized in the Tree-ification Lemma (Lemma 7) at the end of this section.

Lemma 1. Let \(S = (T, f, 1) \) be a 2HAM system. Every 1-stable assembly consisting of tiles in \(T \) is a producible assembly of \(S \).

Proof. Let \(B \) be a 1-stable assembly consisting of tiles in \(T \). Perform a breadth-first traversal of \(G(B) \), starting at an arbitrary tile, to obtain an ordering on the tiles of \(B \). Now consider the set of assemblies \(\{A_n\} \) consisting of the first \(n \) tiles reached in the breadth-first traversal for \(1 \leq n \leq |B| \). The assembly \(A_1 \) is the root tile of the breadth-first traversal and so is trivially producible. Assume that the first \(n \) assemblies are producible. Assembly \(A_n \) is a superassembly of \(A_{n-1} \) and the tile reached in step \(n \) of the breadth-first search. So by induction all assemblies \(\{A_n\} \), including \(A_{|B|} = B \), are producible by \(S \). \(\Box \)

Lemma 2. Let \(S = (T, f, 1) \) be a 2HAM system with UTA \(A \). Let a glue-side pair appear twice on a simple cycle of \(G(A) \) between tiles \(t_1 \) and \(t_2 \), and \(t_3 \) and \(t_4 \). Then \(|\{t_1, t_2, t_3, t_4\}| \neq 4 \).

Proof. We prove the result by contradiction. Without loss of generality, assume the glue-side pair is \((1, \{E, W\}) \), so \(t_1 \) and \(t_3 \) are west of \(t_2 \) and \(t_4 \), respectively. Consider the seeded version of \(S \) additionally restricted in two ways: any producible assembly with \(t_1 \) and no tile east of \(t_1 \) must immediately attach \(t_4 \) east of \(t_1 \), and any producible assembly with \(t_2 \) and no tile west of \(t_2 \) must immediately attach \(t_3 \) west of \(t_2 \).

This seeded version of \(S \) has the same set of terminal assemblies as \(S \), and so has a unique terminal assembly \(A \). However, the assembly contains no occurrences of \(t_1 \) west of \(t_2 \) and so cannot be \(A \), a contradiction. \(\Box \)

Lemma 3. Let \(S = (T, f, 1) \) be a 2HAM system with UMFTA \(A \). Let a glue-side pair appear twice on a simple cycle of \(G(A) \) between tiles \(t_1 \) and \(t_2 \), and \(t_3 \) and \(t_4 \). Then \(|\{t_1, t_2, t_3, t_4\}| \neq 2 \).

Proof. We prove the result by contradiction. First, observe that if \(|\{t_1, t_2, t_3, t_4\}| = 2 \), then \(t_1 = t_3 \) and \(t_2 = t_4 \), otherwise \(S \) produces an infinite assembly from just this set of four tiles. Also, \(t_1 \) and \(t_2 \) must appear in the same relative positions in both occurrences of the glue-side pair, otherwise \(S \) produces an infinite assembly.

Growing a second cycle. We carry out seeded assembly, starting with the assembly \(C_1 \) consisting of tiles on the cycle. Recall that \(G(C_1) \) is a cycle with two occurrences of the adjacent tile pair \(t_1 \) and \(t_2 \). Starting at the second occurrence of the pair, we attach a sequence the single tiles to \(C_1 \) occurring along the cycle \(G(C_1) \), starting at the first occurrence of the pair (see Figure 2). The sequence finishes with reaching the first occurrence of \(t_1 \) and \(t_2 \) again, having
Fig. 2. Assembling C_2 (step (v)), starting with C_1 (step (i)). In steps (iii) and (iv), a blocking tile is replaced with the next tile along the cycle. The resulting bond graph has a spanning subgraph of two cycles sharing two vertices.

made a complete tour of tile attachments they occur along the cycle $G(C_1)$. We call the resulting assembly C_2.

Because the cycle is simple and thus non-self-intersecting, no tile attachment is prevented (blocked) by the presence of a tile appearing earlier along the cycle. However, tile attachments may be blocked by the presence of a tile of C_1. In this situation, we replace the blocking tile (called t_{old}) of C_1 with the next tile along the cycle (t_{new}).

Just before removing t_{old}, the assembly is spanned by the tiles of C_1 and the path of tiles attached so far. The cycle and path share two tiles: the second occurrence of t_1 and t_2 in C_1. Removing t_{old} yields a 1-stable assembly, and placing t_{new} yields another producible assembly. By Lemma 1, both of these
assemblies are producible assemblies of \mathcal{S}. Since A has no mismatches, t_{new} attaches to both neighbors of t_{old} along the simple cycle of $G(C_1)$.

We repeat this replacement process every time a blocking tile is encountered, and attach tiles until the first occurrence of t_1 and t_2 is reached. At this point, the path is closed to form a second cycle and we call the assembling resulting from growing this second cycle C_2.

The sequence of tiles around C_1 form a cycle in $G(C_2)$, and the newly attached sequence of tiles form a second cycle in $G(C_2)$. The cycles also share a common pair of vertices: the two tiles t_1 and t_2 in the second occurrence of the glue-side pair in C_1.

Cycle Pumping. We now grow additional cycles indefinitely to produce an infinite sequence of producible assemblies $\{C_n\}$ of \mathcal{S}. In the nth repetition, the second occurrence of the glue-side pair on the cycle formed in the $(n-1)$st repetition is used as the starting point for placing the tiles as they appear around the cycle. Assume by induction that the assembly at the start of the nth repetition, $G(C_{n-1})$, has a subgraph consisting of a sequence of $n-1$ cycles, where each cycle in the sequence shares two vertices with adjacent cycles in the sequence, and all vertices belong to some cycle. The sequence of tile placements to produce C_n then extends this graph with a path.

Replacing a blocking tile with the next tile along the path to the next tile along the nth cycle is always possible, as removing the tile removes at most one vertex from each cycle and disconnecting the graph requires removing at least two vertices from a cycle. At the end of the sequence of placements, the bond graph $G(C_n)$ of the resulting assembly consists of a sequence of n cycles, each sharing a pair of vertices with adjacent cycles in the sequence.

The set of locations of tiles in C_n is $\{i \cdot (x_{01} - x_{02}, y_{01} - y_{02}) + (x, y) \mid 0 \leq k \leq i, (x, y) \in \text{dom}(C_1)\}$, where (x_{01}, y_{01}) and (x_{02}, y_{02}) are the locations of t_1 in the first and second occurrences of the glue-side pairs, respectively. So $|C_n| > |C_{n-1}|$ and the nth cycle contains at least one vertex not found in any previous cycle. So $\{C_n\}$ contains arbitrarily large assemblies producible by \mathcal{S}, and A cannot be the UMFTA of \mathcal{S}, a contradiction. \hfill \Box

Lemma 4. Let $\mathcal{S} = (T, f, 1)$ be a 2HAM system with UTA A. Let a glue-side pair appear twice on a simple cycle of $G(A)$ between tiles t_1 and t_2, and t_3 and t_4. Then $|\{t_1, t_2, t_3, t_4\}| \neq 3$.

Proof. Assume without loss of generality that the glue-side pair is $(1, \{E, W\})$. Let t_1 and t_2 be west of t_3 and t_4, respectively. If $t_1 = t_4$ or $t_2 = t_3$, then \mathcal{S} produces an infinite assembly, so either $t_1 = t_3$ or $t_2 = t_4$; assume without loss of generality that $t_2 = t_4$.

Consider the subassembly C of A consisting only of the tiles forming the cycle. Since $G(C)$ is a cycle, removing t_1 from C and replacing it with t_3 yields a 1-stable (and thus producible by Lemma 1) assembly C' of \mathcal{S}. But C' has two occurrences of the same glue-side pair between tiles t_3 and t_2, contradicting Lemma 3. \hfill \Box

8
Lemma 5. Let $\mathcal{S} = (T, f, 1)$ be a 2HAM system with UMFTA A. Then no glue-side pair appears twice on a simple cycle of $G(A)$.

Proof. Suppose that some glue-side pair appears twice, and let the four tiles of the two occurrences be $t_1, t_2, t_3,$ and t_4. Consider $k = |\{t_1, t_2, t_3, t_4\}| \in \{1, 2, 3, 4\}$. Clearly $k \neq 1$, as otherwise \mathcal{S} produces an infinite assembly. By Lemma 2, $k \neq 4$. By Lemma 3, $k \neq 2$. Finally, Lemma 4 implies $k \neq 3$. So no glue-side pair can occur twice on a simple cycle of $G(A)$.

Lemma 6. Let $\mathcal{S} = (T, f, 1)$ be a 2HAM system with UMFTA A. Let (g, p) be the glue-side pair of an edge \(e\) in $G(A)$. Then if \(e\) lies on a simple cycle in $G(A)$, all edges with glue-side pair (g, p) lie on simple cycles of $G(A)$.

Proof. Consider a seeded version of \mathcal{S} modified in the following way: each time an attaching tile t leaves g exposed on a side in p, carry out the sequence of tile attachments as they occur on the cycle in A containing e. Let B be the assembly as it appears just after t is placed. The first of these attachments is the one of the two tiles forming the vertices of e in $G(A)$. Continue the attachments until attaching the next tile on the cycle is blocked by an existing tile (see Figure 3).

Fig. 3. An example demonstrating the proof of Lemma 6. Part (a): growing A using a seeded assembly process, the glue-side pair (g, E) appears. Part (b): immediately a sequence of single-tile attachments following those found on a cycle of A (parts (i) and (ii)) are placed. Part (c): the next tile in the cycle can no longer be placed, and a bond between the assembly of part (a) and the growing cycle is formed. Part (d): the resulting cycle consisting of paths through the sequence of single-tile attachments and the assembly before the sequence of attachments.
Each tile attached leaves an exposed glue matching a glue of the next tile in the cycle, so the blocking tile must form a bond with the last attached tile. Since the sequence of tile attachments follows a simple cycle in A, the blocking tile must have been part of B. So the final attachment results in a bond between the sequence of tile placements (part (c) of Figure 3) and B (part (a) of Figure 3). Thus a cycle is formed by a path starting at t through the sequence of single-tile attachments and a path through B ending at t.

Because this modified version of S only modified the order in which tiles attach, it produces a unique terminal assembly A. So all edges of A with glue-side pair (g, p) lie on simple cycles of $G(A)$. \hfill \Box

Lemma 7 (Tree-ification Lemma). Let $S = (T, f, 1)$ be a 2HAM system with UMFTA A. Then there exists a 2HAM system $S' = (T', f', 1)$ with UMFTA A' and $|S'| \leq |S|$, where A' has the shape of A and $G(A')$ is a tree.

Proof. The system S' and assembly A' are created by repeatedly breaking cycles in the bond graph of A. A cycle is broken by removing an edge of the cycle, i.e. an occurrence of a glue-side pair. The break is implemented in the tile set by replacing all occurrences of glues of the glue-side pair with the null glue. Such an operation could potentially disconnect $G(A')$, causing A' to no longer be 1-stable (and producible) assembly of S'. This could happen in two ways: either the glue-side pair occurs twice on a cycle, or the glue-side pair is a cut edge of the bond graph of A' elsewhere. By Lemma 5, no glue-side pair appears twice in any cycle. So the first possibility cannot occur. By Lemma 6, if a glue-side pair appears on a cycle, then it cannot be a single-edge cut anywhere in A. So removing all occurrences of a glue on the sides of the glue-side pair from S' does not cause A' to become 1-unstable. Moreover, removing glues cannot add to the set of producible assemblies of S', so A' remains the unique terminal assembly of S.

Returning to cycle breaking, each break decreases the number of edges in $G(A')$, so this process must terminate. At termination, $G(A')$ has no cycles, and so is a tree. Since we only removed glues from tiles of S to create S', the tile set is not larger. However, the removal of glues may cause multiple tile in S to be indistinguishable in S'. So $|S'| \leq |S|$. \hfill \Box

4 1-Occurrence Tile Types

In addition to tree-ification, we also make use of the existence of 1-occurrence tile types: tile types that appear only once in the terminal assembly of the system. These special tile types are utilized to modify the unique terminal assembly to contain unique tile types at two locations equally spaced along a traversal around the outside of the assembly.

Lemma 8. Let $S = (T, f, 1)$ be a 2HAM system with UMFTA A with $G(A)$ a tree and $|A| \geq 2$. Then A has at least two 1-occurrence tiles.
Proof. We prove the result by induction on $|T|$, and assume that each tile in T
has at least one occurrence in A. We use $|T| = 2$ as a base case, since if $|A| \geq 2$,
then $|T| \geq 2$. Since $|A| = |T|$, both tiles in A are 1-occurrence tiles and the claim
holds.

For the inductive step, we examine the leaf tiles of A and either find two
1-occurrence tiles or create a new system $S' = (T', f', 1)$ with a UMFTA A'
with $G(A')$ a tree, $|T'| < |T|$, and the same number of 1-occurrence tiles as in A.

Recall that any tree with at least two nodes, including $G(A)$, has at least two
leaves. If two leaf tiles are 1-occurrence tiles, then the claim holds. Otherwise at
least one leaf tile t is a k-occurrence tile with $k \geq 2$.

Since A is mismatch-free, t must have only one non-null glue g and all occ-
currences of t are leaves of $G(A)$. Without loss of generality, assume $g = g_{N}(t)$,
i.e. g is on the north side of t. The glue g is not the north glue of any other tile
in T, as otherwise t could be replaced with this other tile to yield a producible
assembly with size $|A|$ not equal to A, a contradiction. Moreover, since all non-
north glues of t are null, the tiles to the east, south, and west of each occurrence
of t must have the null glue on their west, north, and east sides, respectively.
So removing all occurrences of t from A yields a producible assembly A' for the
system $S' = (T - \{t\}, f, 1)$.

Since all occurrences of t in any producible assembly are leaves, removing
all occurrences of t from an assembly yields another 1-stable assembly. So an
assembly A_{S} is a producible assembly of S if and only if A_{S} with all occurrences
of t removed is a producible assembly of S'. So A' must be the UTA of S'.
Also, A' has the same number of 1-occurrence tiles as A. So by induction, the
mismatch-free unique terminal assembly A' of S' has at least two 1-occurrence
tiles and so does A. □

Lemma 9. Let $S = (T, f, 1)$ be a 2HAM system with UMFTA A. Then the
1-occurrence tiles in A form a 1-stable subassembly of A.

Proof. Suppose by contradiction that the 1-occurrence tiles in A do not form
a 1-stable subassembly. Then let t_{1} and t_{2} be a pair of 1-occurrence tiles such
that t_{1} and t_{2} are not connected with a path of 1-occurrence tiles in $G(A)$ and
the shortest path between t_{1} and t_{2} is as short as possible. In other words, t_{1}
and t_{2} are the closest pair of 1-occurrence tiles that are not part of a 1-stable
subassembly of A consisting only of 1-occurrence tiles.

Let t_{3} and t_{4} be the second and second-to-last tiles encountered along the
shortest path in $G(A)$ from t_{1} to t_{2}. By definition, t_{3} and t_{4} are not 1-occurrence
tiles. Without loss of generality, assume the glue-side pair between t_{1} and t_{3}
is $(1, \{W, E\})$, with t_{1} west of t_{3}, and the glue-side pair between t_{4} and t_{2} is
$(2, \{W, E\})$, with t_{4} west of t_{2}. Let B be the 1-stable subassembly of A consisting
of the aforementioned path between t_{1} and t_{2} (including an occurrence t_{4}) and
the shortest path in $G(A)$ between the two occurrences of t_{4}. The remainder of
the proof is a case analysis of B, proving that the existence B implies another
1-stable assembly with two occurrences of t_{1} or t_{2}. The three cases are seen in
Figure 4.
Fig. 4. The three cases for the closest pair of 1-occurrence tiles (t_1 and t_2) in A not in the same connected component of 1-occurrence tiles in $G(A)$. The shortest path between two occurrences of t_4 is used to create a 1-stable assembly containing two occurrences of t_1 or t_2.

Case (i). Suppose that the path between the two occurrences of t_4 does not contain a tile in the location east of the second occurrence of t_4. Attaching t_2 at this location yields a 1-stable assembly containing two occurrences of t_2.

Case (ii). Now suppose that the path between the two occurrences of t_4 contains a tile t_5 in the location east of the second occurrence of t_4. Begin attaching tiles as they appear along the path between t_2 and t_1, starting at t_4. If all tiles along the path can be attached, then the result is a 1-stable assembly containing two occurrences of t_1.

Case (iii). Assume the situation is identical to case (ii), but some tile placement along the path from t_2 to t_1 is blocked by an existing tile in the assembly. Since the assembly is producible, it must be a subassembly of A and thus mismatch-free. So the previous tile along the path and the blocking tile must share a glue-side pair. Moreover, this glue must have positive strength since the glue was sufficient for the next tile along the path from t_2 to t_1 to attach. So a cycle containing adjacent tiles t_4 (the second occurrence) and t_5 is formed by a portion of the path between the two occurrences of t_4 and the partial path from t_2 to t_1. So removing t_5 yields a 1-stable assembly containing both t_2 and an occurrence of t_4 with no tile to the east, and replacing t_5 with t_2 yields a 1-stable assembly containing two occurrences of t_2.

So in all three cases, a 1-stable and thus producible (by Lemma 1) assembly is created with two occurrences of a tile that appears only once in A. So A cannot be the unique terminal assembly of S, a contradiction. □

Lemma 10. Let $S = (T, f, 1)$ be a 2HAM system with UTA A. For any glue-side pair (g, p) occurring between a pair of 1-occurrence tiles in A, (g, p) occurs only once in A.

12
Lemma 11. Let $S = (T, f, 1)$ be a 2HAM system with UMFTA A with $G(A)$ a tree. For any tile $t \in T$, the simple path in $G(A)$ between any two occurrences of t uses the same glue-side of t on both occurrences.

Proof. Suppose, by contradiction, that there exists a simple path in $G(A)$ between two occurrences of a tile t such that the path uses, without loss of generality, the north glue-side of the first occurrence and the east glue-side of the second occurrence. Start with the 1-stable assembly formed by the path, including both occurrences of t. Carry out a sequence of tile attachments from the second occurrence of t as they appear along the path from the first to the second occurrence of t, including the final attachment of t. Now repeat this sequence of attachments indefinitely, starting from the occurrence of t just attached, to create an assembly B.

The assembly B is 1-stable and thus producible (by Lemma 10), and so B is a subassembly of A. Since A is mismatch-free and $G(A)$ is a tree, B is mismatch-free and $G(B)$ is a tree. So the repeated sequence of attachments cannot be blocked by an existing tile in the assembly and B is an infinite assembly. So A is not the unique terminal assembly of S, a contradiction. □

Lemma 12. Let $S = (T, f, 1)$ be a 2HAM system with UMFTA A with $G(A)$ a tree. Let edges $e, e' \in G(A)$, with e' between a pair of 1-occurrence tiles. Then there exists a second 2HAM system $S' = (T', f', 1)$ with $|T'| \leq 2|T|$ and UMFTA A' with $G(A') = G(A)$ and the unique path from e' to e in $G(A')$ consisting entirely of 1-occurrence tiles in A'.

Proof. The construction of S' is simple. Note that e' has a unique glue-side pair by Lemma 10. Find the shortest path in $G(A)$ from e' to e. Replace all glues along this path, including e, with unique glues, letting T' and f' be the updated tile set and glue function.

We claim that the resulting mismatch-free assembly A' with $G(A')$ a tree is the unique terminal assembly of S'. Certainly A' is a terminal assembly of S', as otherwise A was not a terminal assembly of S.

For any terminal assembly of S', all occurrences of newly created tiles in $T' - T$ can be swapped with the tiles in T they replaced to yield A. Then since A' is mismatch-free with $G(A')$ a tree and the glues along the path from e' to e in $G(A')$ are unique, any appearance of the tiles along this path in a terminal assembly of S' must lie along a complete path from e' to e. Otherwise replacing the newly created tiles yields a terminal assembly of S with a mismatch or a
cycle. In summary, \(A' \) must be the unique terminal assembly of \(S' \), as every terminal assembly must have a complete path from \(e' \) to \(e \) for every occurrence of a tile on the path, swapping all newly created tiles with the tiles they replaced must yield \(A \), and the tiles incident to \(e' \) are 1-occurrence tiles in \(A \).

We also claim that \(|T'| \leq 2|T|\) by now proving that the path of tiles between \(e' \) and \(e \) in \(A \) are all distinct. Suppose that two tiles along the path have the same type \(t \). By Lemma 11, the path between two occurrences of \(t \) must enter both occurrences using the same glue-side. So consider the seeded assembly process starting at the tiles incident to \(e' \), growing along the path to the first occurrence of \(t \), then to the second occurrence, and then growing from the second occurrence using the sequence of tile placements encountered when traveling from the first occurrence backwards to \(e' \). Since \(A \) is the mismatch-free unique terminal assembly of \(S \) and \(G(A) \) is a tree, this sequence of tile placements must cannot be blocked or form a cycle. So the resulting assembly, a subassembly of \(A \), has two occurrences of the 1-occurrence tiles incident to \(e' \), a contradiction. Lemma 10 implies the final result that the edges of \(G(A') \) corresponding to the cut are unique glue-side pairs.

\[\square \]

5 A Size-Separable Macrotile Construction

A simple barrier to general high-factor size-separability is the fact that any system with a tree-shaped unique terminal assembly \(A \) cannot be factor-\(c \) size-separable for any \(c > 1 + 1/|A| \). A more subtle challenge is how to partition assemblies into equal-sized 1-stable halves that will come together in the final assembly step. For instance, every 1-stable subassembly of the right assembly of Figure 1 has size at most one-third the size of the total assembly.

We resolve both of these issues by creating a temperature-2 2HAM system with a unique terminal assembly whose shape is the shape of \(A \) scaled by a factor of 2, and whose bond graph has an edge cut of two temperature-1 bonds that partitions \(G(A) \) into two subgraphs of equal size.

Lemma 13. Let \(S = (T, f, \tau) \) be a 2HAM system with \(P \) and \(P' \) producible assemblies of \(S \) with \(P \) a proper subassembly of \(P' \). Then \(P \) is not a terminal assembly.

Proof. Doty [5] proves that the greedy process of starting with the tiles of \(P' \) and repeatedly assembling pairs of \(\tau \)-stable assemblies into larger \(\tau \)-stable assemblies always suffices to yield \(P' \), regardless of the order in which the assemblies are merged. Since \(P \) is producible, there must also be such a sequence for \(P \), and since \(P \) is a subassembly of \(P' \), any such sequence utilizes a subset of the tiles in \(P' \). Then \(P' \) can be assembled by first assembling \(P \), then continuing the process to form \(P' \), so \(P \) is not terminal.

\[\square \]

Lemma 14. Let \(S = (T, f, 1) \) be a 2HAM system with UMFTA \(A \) with \(G(A) \) a tree. Then there exists a 2HAM system \(S' = (T', f', 2) \) with UMFTA \(A' \) and \(|S'| \leq 4|S| \) such that \(A' \) has the shape of \(A \) scaled by a factor of 2.
Proof. We start by describing common properties of all occurrences of each tile type \(t \in T \). Since \(G(A) \) is a tree, Lemmas 8 and 9 imply that there exists an edge \(e' \) in \(G(A) \) between two 1-occurrence tiles and Lemma 11 implies that any path between two occurrences of \(t \) use the same glue-side pair. So any breadth-first search \(G(A) \) starting at a 1-occurrence tile incident to \(e' \) visits all occurrences of \(t \) exactly once, and all via incoming edges from the same side of \(t \). Then since \(A \) is mismatch-free, if a direction is applied to each edge of \(G(A) \) according to the direction of traversal during the breadth-first search, all occurrences of \(t \) have the same set of incoming and outgoing edges. So all occurrences of \(t \) have their corners visited in the same order during a traversal of the boundary of \(A \).

We use these conditions to construct unique macrotile versions of each tile type according to their incoming and outgoing edges induced by the breadth-first search starting at \(e' \). All possible macrotile constructions (up to symmetry) are shown in Figure 5. For each glue-side pair in the original system, we use two glue-side pairs in the scaled system, one with strength-2 and the other with strength-1. The glue-side pair visited first in the counterclockwise traversal of the boundary starting at \(e' \) has strength 2, while the other pair has strength 1.

There are also three glues internal to each macrotile attaching each pair of adjacent tiles forming a macroedge whose corresponding edge of the tile either has an outgoing edge induced by the breadth-first search, or has no edge. These glues are unique to the macrotile type. The strengths of each of these glues is determined by whether the closest macroside has glues. If not, then the glue is strength-2, otherwise the glue is strength-1.

If the closest macroside does not contain a glue, then the strength-2 internal glue is necessary to allow assembly to continue along the boundary of the assembly in the counterclockwise direction (e.g. from the northwest to the southwest tile). If the closest macroside does contain a glue, then the strength-1 internal glue prevents the placement of the next tile in the macrotile (e.g. the southwest tile after the northwest tile) until a second tile from an adjacent macrotile (e.g. the southeast tile of the macrotile to the west) has been placed. As a result, no pair of tiles in a macrotile can be present in a common assembly unless all tiles between them along a counterclockwise traversal of the boundary of the macrotile assembly are also present.

Scaled assembly of \(A \). We claim that this scaled version of the system has a unique terminal assembly \(A' \) obtained by replacing each tile in the original unique terminal assembly with the corresponding \(2 \times 2 \) macrotile. First we prove that any subassembly of \(A' \) corresponding to a subtree of \(G(A) \) is producible. A subtree of size 1 corresponds to a leaf node, the lower-rightmost case in Figure 5, and is clearly producible. For larger subtrees, the assembly can be formed by combining the 4 tiles of the root macrotile to the (up to) three subtrees assemblies. Grow the assembly in counterclockwise order around the boundary, attaching either a subtree assembly (if the macroside has a glue) or the next tile of the root macrotile. In both cases, placing the second root tile along the macroedge is possible, as either the internal glue shared with the previous root tile is strength-2 or a second glue is provided by the subtree assembly. Then by
Fig. 5. The individual tiles enumerate (up to symmetry) all combinations of incoming and outgoing edges (large arrows) induced by a breath-first search of $G(A)$. The corresponding 2×2 macrotiles are used in the proof of Theorem 1 to construct a temperature-2 system that carries out the assembly of A at scale 2 in the order that the tiles appear along the boundary (small arrows). All internal macrotile glues are unique to the tile type, while all external macrotile glues correspond to the glues found on the surface of the inducing tile.

induction, the assembly A' corresponding to the subtree rooted at the root of the breadth-first search is producible.

By construction, A' is terminal because it corresponds to a mismatch-free terminal assembly in the original system that necessarily has no exposed glues. So A' is a terminal assembly of the scaled system. Next, we prove that A' is the unique terminal assembly of the system.

Terminal Assembly Uniqueness. We start by proving that every producible assembly can be positioned on a 2×2 macrotile grid, where every tile in the southwest corner is a southwest tile of some macrotile, every tile in the northwest corner is the northwest tile of some macrotile, etc. Start by noticing that each glue type appears coincident to only one of 12 edges of the grid: the 4 internal edges of each macrotile, and the 8 external edges. Suppose there is some smallest producible assembly that does not lie on a grid. Then this assembly must be formed by the attachment of two smaller assemblies that do lie on grids, and whose glues utilized in the attachment are coincident to only one of 12 edges of the grid. So if these assemblies are translated to have coincident matching glue
sides, then their grids must also be aligned and the assembly resulting from their
attachment also lies on the grid, a contradiction.

Let A'_p be a producible assembly of the macrotile system that is not A'. Construct an assembly A_p of the original input system S in the following way: replace each macrotile region with a single tile corresponding to one of the tiles in the macrotile region. If such a replacement is unambiguous, meaning that all tiles in each macrotile region belong to a common macrotile, then the resulting assembly is a 1-stable (and thus producible) assembly of S.

We also claim that such a replacement is always unambiguous. Suppose, for the sake of contradiction, that there is some A'_p such that replacement is ambiguous. The ambiguity must be due to two tiles in the same macrotile region bonded via external strength-2 glues on different macrosides to tiles in adjacent macrotiles, since no macroside has two strength-2 glues (see Figure 5). So there is some path in $G(A'_p)$ from the external glue of one of these tiles to the external glue to the other consisting of length-2 and length-3 subpaths through other macrotile regions, each consisting of tiles of a common macrotile. So this path can be unambiguously replaced with a path from tiles in S from one side of a tile location to the other side, with some tile of S able to attach at this location. But this yields a producible assembly of S (and thus a subassembly of A) with a cycle, a contradiction. Since constructing A_p from A'_p is always unambiguous, and A_p is a subassembly of A, A'_p is a subassembly of A'. Then by Lemma 13, A'_p is not terminal.

\[\boxdot \]

Theorem 1. Let $S = (T, f, 1)$ be a 2HAM system with UMFTA A. Then there exists a factor-2 size-separable 2HAM system $S' = (T', f', 2)$ with UMFTA A' and $|S'| \leq 8|S|$. Furthermore, A' has the shape of A scaled by a factor of 2.

Proof. We modify the construction used in the proof of Lemma 14 in two ways. First, we apply Lemma 12 to create a path of 1-occurrence tiles from e', the edge between a pair of 1-occurrence tiles utilized in the proof of Lemma 14 to the edge e reached after half of a complete counterclockwise traversal of the boundary of A starting at e'. This is done to the original system S, before the macrotile conversion is performed.

Next, we modify the macrotiles corresponding to 1-occurrence tiles in the unique terminal assembly A of this modified system S. By Lemma 10 the external glues used between every pair of 1-occurrence macrotiles, particularly those along the path of 1-occurrence macrotiles just constructed, appear only once in A'. Recall that Lemma 13 uses two glues to attach each pair of adjacent macrotiles. The first glue visited during a counterclockwise traversal starting at e' has strength 2, while the second has strength 1. We increase the strength of the second glue to 2, and eliminate the internal glue closest to this macroside in the macrotile closer to e' (the macrotile further from e' does not have this glue). See Figure 6 for an example.

We perform this modification for all of the (1-occurrence) macrotiles along the path from e' to e. Clearly the same terminal macrotile assembly exists as before, as we have only decreased the constraints for tiles to attach. Moreover,
Fig. 6. Modifying 1-occurrence macrotiles along the path from e' to e to eliminate internal glues. The original assembly with breadth-first search directions (left) yields the macrotile assembly (center) by Lemma 14. The modification in the proof of Theorem 1 (right) removes internal glues by strengthening unique external glues.

since we only created pairs of strength-2 glues on macroedges with (macro)glue-pairs that appear exactly once, it is still the case that no pair of tiles can bond to external glues on the same macroside. So the terminal assembly uniqueness argument in the proof of Lemma 14 still holds.

This modified A' has a path through the center of the macrotiles from e' to e containing no glues. So A' has a 2-edge cut of $G(A')$ consisting of two (non-macro)edges of $G(A)$ forming half of e' and e, respectively. These two edges both have strength 2, since they external glues between 1-occurrence tiles just modified to no longer include strength-1 glues. We reduce the strength these two edges to 1, yielding a 2-edge cut with total strength 2.

Size-separability. We claim that this system is factor-2 size-separable, which is true if the only 2-stable subassemblies containing tiles adjacent to both edges of the 2-edge cut have size $|A'|/2$. Consider the 2-stability of one of these assemblies, called A'_{half}. Clearly tiles adjacent to the cut are at opposite ends of a counterclockwise traversal of A'_{half}, and moreover a counterclockwise traversal (the traversal along the boundary of A') visits all tiles in A'_{half}.

Suppose some tile t along the traversal is missing. We claim that the subassembly A_{sub} consisting of the remainder of the tiles in the macrotile m containing t and any subtrees visited by the traversal before reaching the counterclockwisemost tile of m (northeast in Fig. 5) are only attached to the rest of the assembly by a single strength-1 glue. Observe in Figure 5 that the northeast tile is attached to the next tile in the traversal (the southeast tile of the north macrotile) by a strength-1 glue. Moreover, any path in $G(A'_{\text{half}})$ from A_{sub} to a location not in A_{sub} goes through m. It can be verified exhaustively that removing any tile of m leaves only this single strength-1 glue connecting A_{sub} to the rest of A'_{half}.

So A'_{half} is 2-stable, and any subassembly containing the first and last tiles visited by a counterclockwise traversal of the boundary of A'_{half} missing any tiles visited by the traversal (all of the tiles in A'_{half}) is not 2-stable. So the only 2-
stable subassemblies containing tiles adjacent to both edges of the 2-edge cut have size are A'_half and the other half of the cut, both with size $|A'|/2$.

The total size of this modified macrotile system is at most $8|\mathcal{S}|$, since invoking Lemma 12 increases the size of the system at most a factor of 2 and so the macrotile system has size at most $4 \cdot 2|\mathcal{S}|$.

\[\square\]

6 Open Problems

For temperature-1 systems with mismatch-free unique terminal assemblies, our result is nearly as tight as possible. Scaling to at least a factor of 2 and using temperature of at least 2 are both necessary, since any temperature-1 system or system with a tree-shaped assembly is at most factor-$(1 + 1/|A|)$ size-separable. The only remaining opportunity for improvement is to reduce the number of tile types used to less than $8|\mathcal{S}|$.

We contend that our result is a first step in understanding what is possible in size-separable systems, and a large number of open problems remain. Perhaps the most natural problem is to extend this result to the same set of systems, except permitting mismatches. We conjecture that a similar result is possible there:

Conjecture 1. Let $\mathcal{S} = (T, f, 1)$ be a 2HAM system with unique finite terminal assembly A. Then there exists factor-2 size-separable system $\mathcal{S}' = (T', f', 2)$ with a unique finite terminal assembly A' and $|\mathcal{S}'| = O(\mathcal{S})$. Furthermore, A' has the shape A scaled by a factor of $O(1)$.

Extending the result to mismatch-free systems at higher temperatures also is of interest because these systems are generally capable of much more efficient assembly. Soloveichik and Winfree [17] prove that one can construct a temperature-2 system that uses an optimal number of tiles (within a constant factor) to construct any shape, provided one is allowed to scale the shape by an arbitrary amount, and it is likely their construction can be modified to be factor-2 size-separable. However, it remains open to achieve high-factor size-separable systems at temperature 2 using only a small scale factor.

Conjecture 2. Let $\mathcal{S} = (T, f, 1)$ be a 2HAM system with UMFTA A. Then there exists factor-2 size-separable system $\mathcal{S}' = (T', f', 2)$ with a unique terminal assembly A' and $|\mathcal{S}'| = O(\mathcal{S})$. Furthermore, A' has the shape A scaled by a factor of $O(1)$.

In the interest of applying size-separability to system in the staged model of tile self-assembly, we pose the problem of developing size-separable systems with multiple terminal assemblies. Of course, one can construct systems where the smallest terminal assembly is less than half the size of the largest terminal assembly, ensuring that the system cannot even be factor-1 size-separable. But given a system whose ratio of smallest to largest terminal assembly is c, is a size-separable system with optimal factor $\frac{2}{c}$ always possible?
Conjecture 3. Let $\mathcal{S} = (T, f, 1)$ be a 2HAM system with finite terminal assemblies A_1, A_2, \ldots, A_k with A_1 and A_k the smallest and largest terminal assemblies. Then there exists factor-$|A_k|/|A_1|$ size-separable system $\mathcal{S}' = (T', f', 2)$ with $|\mathcal{S}'| = O(|\mathcal{S}|)$ and mismatch-free terminal assemblies A_1', A_2', \ldots, A_k' where A_i' has the shape of A_i scaled by a factor of $O(1)$.

We close by conjecturing that not every system can be made size-separable by paying only a constant factor in scale and tile types. We ask for an example of such a system:

Conjecture 4. There exists a 2HAM system $\mathcal{S} = (T, f, \tau)$ with a unique finite terminal assembly A such that any factor-2 size-separable system $\mathcal{S}' = (T', f', \tau')$ with unique finite terminal assembly A' with the shape of A either has $|\mathcal{S}'| \geq 100|\mathcal{S}|$ or the scale of A' is at least 100.

Acknowledgments

We thank the anonymous UCNC reviews for their comments that greatly improved the presentation of the paper.

References

1. Z. Abel, N. Benbernou, M. Damian, E. D. Demaine, M. L. Demaine, R. Flatland, S. D. Kominers, and R. Schweller. Shape replication through self-assembly and RNase enzymes. In Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1045–1064, 2010.
2. S. Cannon, E. D. Demaine, M. L. Demaine, S. Eisenstat, M. J. Patitz, R. T. Schweller, S. M. Summers, and A. Winslow. Two hands are better than one (up to constant factors): Self-assembly in the 2HAM vs. aTAM. In STACS 2013, volume 20 of LIPIcs, pages 172–184. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013.
3. H. Chen and D. Doty. Parallelism and time in hierarchical self-assembly. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1163–1182, 2012.
4. E. D. Demaine, M. L. Demaine, S. P. Fekete, M. Ishaque, E. Rafalin, R. T. Schweller, and D. L. Souvaine. Staged self-assembly: nanomanufacture of arbitrary shapes with $O(1)$ glues. Natural Computing, 7(3):347–370, 2008.
5. D. Doty. Productibility in hierarchical self-assembly. Technical report, arXiv, 2013.
6. D. Doty, M. J. Patitz, D. Reishus, R. T. Schweller, and S. M. Summers. Strong fault-tolerance for self-assembly with fuzzy temperature. In Foundations of Computer Science (FOCS), pages 417–426, 2010.
7. D. Doty, M. J. Patitz, and S. M. Summers. Limitations of self-assembly at temperature 1. In R. Deaton and A. Suyama, editors, DNA 15, volume 5877 of LNCS, pages 35–44. Springer Berlin Heidelberg, 2009.
8. J. I. Lathrop, J. H. Lutz, M. J. Patitz, and S. M. Summers. Computability and complexity in self-assembly. In A. Beckmann, C. Dimitracopoulos, and B. Löwe, editors, Logic and Theory of Algorithms, volume 5028 of LNCS, pages 349–358. Springer Berlin Heidelberg, 2008.
9. C. Luhrs. Polyomino-safe DNA self-assembly via block replacement. In A. Goel, F. C. Simmel, and P. Sosik, editors, DNA 14, volume 5347 of LNCS, pages 112–126. Springer Berlin Heidelberg, 2009.

10. C. Luhrs. Polyomino-safe DNA self-assembly via block replacement. Natural Computing, 9(1):97–109, 2010.

11. J. Maňuch, L. Stacho, and C. Stoll. Journal of computational biology. Journal of Computational Biology, 16(6):841–852, 2010.

12. P.-E. Meunier. The self-assembly of paths and squares at temperature 1. Technical report, arXiv, 2014. http://arxiv.org/abs/1312.1299.

13. P.-E. Meunier, M. J. Patitz, S. M. Summers, G. Theyssier, A. Winslow, and D. Woods. Intrinsic universality in tile self-assembly requires cooperation. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 752–771, 2014.

14. J. Padilla, M. J. Patitz, R. Pena, R. T. Schweller, N. C. Seeman, R. Sheline, S. M. Summers, and X. Zhong. Asynchronous signal passing for tile self-assembly: fuel efficient computation and efficient assembly of shapes. In G. Mauri, A. Dennunzio, L. Manzoni, and A. E. Porreca, editors, Unconventional Computation and Natural Computation (UCNC), volume 7956 of LNCS, pages 174–185. Springer Berlin Heidelberg, 2013.

15. J. Reif and T. Song. The computation complexity of temperature-1 tilings. Technical report, Duke University, 2014.

16. P. W. K. Rothemund and E. Winfree. The program-size complexity of self-assembled squares (extended abstract). In Proceedings of ACM Symposium on Theory of Computing (STOC), pages 459–468, 2000.

17. D. Soloveichik and E. Winfree. Complexity of self-assembled shapes. SIAM Journal on Computing, 36(6):1544–1569, 2007.

18. S. M. Summers. Universality in algorithm self-assembly. PhD thesis, Iowa State University, 2010.

19. E. Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, Caltech, 1998.

20. A. Winslow. Staged self-assembly and polyomino context-free grammars. In D. Soloveichik and B. Yurke, editors, DNA 19, 2013.