Effect of valproic acid on miRNAs affecting histone deacetylase in a model of anaplastic thyroid cancer

Nur Selvi Gunel1 · Nihal Birden1 · Cansu Caliskan Kurt1 · Bakiye Goker Bagca1 · Behrouz Shademan1 · Fatma Sogutlu1 · Neslihan Pinar Ozates1 · Cigir Biray Avci1

Received: 31 May 2021 / Accepted: 29 July 2021 / Published online: 10 August 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract

Background Thyroid cancer is the most common malignant tumor of the endocrine system seen in the thyroid gland. More than 90% of thyroid cancers comprise papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC). Although anaplastic thyroid carcinoma (ATC) accounts for less than 2% of thyroid cancer. But patients’ lifespan after diagnosis is about 6 months. Surgical interventions, radioactive iodine use, and chemotherapy are not sufficient in the treatment of ATC, so alternative therapies are needed.

Methods and results The WST-1 assay test was performed to evaluate the anti-proliferative effects of Valproic acid (VPA). Also, the effect of VPA on miRNAs affecting histone deacetylase was determined by Quantitative RT-PCR. In the SW1736 cell line, IC50 dose for VPA was found 1.6 mg/ml. In our study, the level of oncogenic genes expression in cells treated with VPA, including miR-184, miR-222-5p, miR-124-3p, and miR-328-3p, decreased. Also, the expression of tumor inhibitory genes including miR-323-5p, miR-182-5p, miR-138-5p, miR-217, miR-15a-5p, miR-29b-3p, miR-324-5p and miR-101-5p increased significantly.

Conclusions VPA can ad-just countless gene expression patterns, including microRNAs (miRNAs), by targeting histone deacetylase (HDAC). However, further studies are required for more accurate results.

Keywords Anaplastic thyroid cancers · Valproic acid · miRNA · Histone deacetylase

Introduction

Thyroid cancer is the most common endocrine malignancy. Different types of cancer include papillary cancer (PTC), follicular cancer (FTC), medullary cancer (MTC), and anaplastic cancer (ATC), of which papillary cancer is the more common and the most dangerous type of anaplastic [1]. ATC has a poor prognosis because of the lack of early detection, its highly aggressive nature, as well as its failure with surgical interventions, radioactive iodine use, and chemotherapy [2, 3]. So that the survival rate is less than 25 weeks. Therefore, success in therapeutic approaches for thyroid cancer is crucial for patient survival [4].

MicroRNAs (miRNAs) are a group of regulators of gene expression. Which are endogenously synthesized and can affect the expression of genes. These molecules are single-stranded and noncoding RNAs so that in functional mode the length of these miRNAs does not exceed approximately 23 nucleotides [5]. Important point is that a miRNA can target multiple mRNAs and thereby show a regulatory effect on different genes. Besides, studies have shown that one mRNA is regulated by several miRNAs [6]. MiRNA expression differs in tissues. This difference in expression is also seen in a particularly healthy cell and its cancer cell, which may indicate the importance of miRNAs involved in the pathogenesis process [7]. Some miRNAs act as tumor suppressors or oncogenes by targeting cancer-related genes. They also play important roles in apoptosis, proliferation, migration, and cell invasion [8, 9]. MiRNAs decrease the expression of the target gene by reducing mRNA stability and/or preventing its translation [6, 10]. By reducing the abundance of specific proteins in this way, miRNAs exert management effects on many physiological processes. It is not surprising that their dysregulated expression may affect neoplastic disease [11, 12].
Cancer is associated with many genetic and epigenetic changes. Genetic changes are seen in the number and order of nucleotides of DNA, while epigenetic changes occur in the structural proteins of DNA (histones). Epigenetic modifications can alter the transcription and translation of target genes and increase or decrease their functional level [13]. Histone deacetylase (HDACs) enzymes remove acetyl groups from histone lysine units and reduce gene expression by altering DNA density [14]. These histone modifications can regulate the expression status of cancer-related genes [15]. The use of HDAC inhibitors induces overexpression of Let seven family miRNAs. This increase in expression by affecting HMGA2 leads to cell cycle blockage and cell death in cancer cells [16]. Therefore, HDACs inhibitors can be used as a treatment for cancer [17]. Valproic acid (VPA) is an anticonvulsant drug and inhibits HDAC [18]. It has been suggested that VPA binds to the catalytic site, inhibiting class I and II a HDACs [19]. Because it is well tolerated and induces differentiation and apoptosis of carcinoma cells, it has recently been tested in clinical trials as a potential chemotherapeutic agent for a variety of cancers [20, 21]. VPA as an HDAC inhibitor changes the expression profile of miRNA in the ATC model. However, further studies are required for more accurate results.

Materials and methods

Cell line and culture conditions

In our study, the effect of VPA as an HDAC inhibitor on the SW1736 cell line was evaluated by cell culture assays. These cells were commercially prepared as cancer cells (ATCC). For cell lines, RPMI 1640 (Biological industries) medium with L-Glutamine supported by %10 fetal bovine serum (FBS) (Biological industries) containing 2 mM L-Glutamine (Biological industries), 1% penicillin–streptomycin (Biological Industries) were used; incubated at 37 °C, 95% of humidity and 5% CO2 until adequate cell density obtained, and follow-ups were carried out using “inverted” microscope.

Cytotoxicity calculation

Individual effects of the active agents on cells were specified using Colorimetric WST-1 Assay Kits. This procedure lasted for 3 days and three replications were performed for the control group and different treated doses. For cytotoxicity experiments, (10 × 10^4) cell/ml was used for each well. Model cells were plated into 96 well plates; after the 24, 48, and 72 h (h) incubations following the addition of active agent solutions of appropriate concentrations, 10 µl/well WST-1 solution was added and incubated for 1 h.

Quantitative measurement of the formazan dye produced after the incubation was performed on a microplate reader (Multiskan FC, Thermo) every 15 min at 450 nm absorbance 620 nm reference range. IC_{50} doses which are defined as the inhibitor concentrations causing a 50% decrease in cell proliferation were determined for VPA on SW1736 cell lines.

Determination of gene expression changes

The expression changes produced by the IC_{50} doses of active agents were determined with real-time PCR in 48 h. For expression experiments, (5 × 10^5) cell/ml were plated into 6-well plates the specified dose was applied with dilutions suitable for the cells. The Active agent was not applied to the cells that were accepted as the control group. MiRNA isolation was obtained from SW1736 cell line with miRNAeasy mini Kit (Qiagen) and cDNA synthesis was performed using RT² First Strand Kit (miScript II RT kit). The expression changes of miRNAs were evaluated using the MIHS-108ZF plate (Qiagen).

Statistical analysis

The statistical analysis of the cytotoxic effect of VPA and change of gene expression in SW1736 cells was performed by using Graph pad Prism v8.0.2 and xCELLigence® RTCA (Roche) software, respectively. The ΔΔCT method was used for the miRNA fold change calculations.

Results

Evaluation of the effects of valproic acid on cell viability on the SW1736 cell lines via WST-1

To specify the VPA IC_{50} value, VPA dilutions of (10^{-3}–10 mg/ml) were evaluated with WST-1 test in the 24 h, 48 h, and 72 h for SW1736 cell lines. VPA IC_{50} values on SW1736 cell lines were found as 1.6 mg/ml in the 48 h (Fig. 1).

Gene expression changes caused by valproic acid in SW1736

When the gene changes of the SW1736 cells exposed to the IC_{50} dose of (1.6 mg/ml) VPA in the 48th hour were compared to the control group, it was determined that VPA increased miR-323-5p, miR-182-5p, miR-138-5p, miR-217, miR-15a-5p, miR-29b-3p, miR-324-5p, miR-101-5p, expressions 4.51 fold, 3.51 fold, 3.23 fold, 3.20 fold, 2.91 fold, 2.45 fold, 2.45 fold, 2.40 fold respectively while decreasing miR-184, miR-222-5p, miR-124-3p, miR-328-3p expressions...
0.24 fold, 0.25 fold, 0.31 fold, 0.40 fold respectively in SW1736 cell (Fig. 2).

Discussion

The number of patients with ATC makes up a small fraction of thyroid cancer, but the survival rate is often less than 1 year. Therefore, appropriate treatments are desperately needed. Mutations in BRAF are commonly seen in thyroid carcinoma [22]. Understanding the role of epigenetic changes in thyroid cancer can provide valuable opportunities to identify molecular mechanisms to provide novel therapeutic approaches. Epigenetic changes can affect miRNA expression [23]. MiRNAs can have regulatory effects on tumorigenesis, cancer cell proliferation, and other physiological processes [24]. They can act as tumor suppressors or oncogenes in different types of cancer because they can target different genes [8, 9]. Based on the findings, we examined the expression of mRNAs in the SW1736 cell line using microarrays.

In our study, increased expression of miR-217 in VPA-treated SW1736 cells showed that it could increase apoptosis of cells in anaplastic thyroid cancer. VPA increased the expression level of miR-217 by inhibiting HDAC. In a study by Zhu L and colleagues, it was found that MAPK1 is a target of miR-217. MiR-217 inhibits MAPK1 and reduces cell viability, migration, and invasion while enhancing cell apoptosis. They have introduced miR-217 as a tumor suppressor gene in cervical cancer [25]. Another study found that miR-217 expression was different in normal pancreatic cells compared with pancreatic cancer cells. And the increased expression of miR-217 inhibits cell growth and invasion of cancer cells, in contrast to the effect on E2F3 that induces apoptosis [26]. Other studies have shown that miR-217 binds to its target mRNA and acts as a tumor suppressor gene in gastric and liver cancers [27, 28].

Fig. 1 IC50 doses of VPA in the 24 h (A) 48 h (B) 72 h (C) on SW1736 cells. IC50 dose of VPA was determined as 1.6 mg/ml in the 48 h on SW1736
Fig. 2 Changes of miRNAs expression in the SW1736 cell line after treatment with VPA (A). The miRNAs affecting histone deacetylase in RT2 Profiler PCR Array gene table used in study (B). The heat map of the miRNA expression changes for VPA, in the SW1736 cells (C)
Studies have shown that miR-138 is less expression in thyroid cancer than in normal thyroid tissue [29]. Low expression of miR-138 is associated with increased cell migration. MiR-138-5p has been shown to directly target VIM (vimentin) in cancer cells. These changes allow cancer cells to migrate [30]. In our study, expression of this miRNA increased after treatment with VPA, indicating a positive effect of VPA on our studied cell line. And introduced miR-138 as a tumor suppressor gene.

The expression level of miR-15a in PTC tissue is lower than in normal tissue. Overexpression of miR-15a prevents the proliferation and invasion of PTC cells and induces apoptosis. Overexpression of miR-15a by targeting RET and AKT inhibits tumor growth [31]. In another study, increased expression of miR-15a-5p inhibited proliferation of HepG2 or SNU-182 cancer cells in vitro [32]. In our study, the expression of miR-15a-5p was also increased after the treatment of the studied cell line.

The results of our study showed that miR-323a-5p expression was induced by VPA on the SW1736 cell line which induced apoptosis of cells. And showed that VPA has antitumor activity. In other words, VPA by inhibiting HDAC could increase 323-miR expression. This increase in expression suppresses the tumor. One group showed that miR-323a-5p has a tumor suppressor function in neuroblastoma cells. And increased levels of miR-323a-5p decrease the proliferation of neuroblastoma cells [33]. A study by Men Y and colleagues found that miR-323a-3p expression was lower in esophageal cancer cell lines than in healthy esophageal epithelial cells and inhibits cell proliferation. Besides, miR-323a-3p prevented cell migration and invasion in some of these cell lines. These results further revealed the tumor suppressor status for miR-323a-3p [34].

In contrast, some miRNAs act as oncogenes. The expression of these miRNAs in cancer cells is higher than in healthy cells. These miRNAs induce cell proliferation and suppress apoptosis in the cell, leading the cells to become cancerous. MiR-184 has an oncogenic role in SCC squamous cell carcinoma. In a study by Wong TS and colleagues, plasma miR-184 levels were significantly higher in patients with SCC compared to normal subjects. They induced apoptosis of these cells by inhibiting miR-184 in cancer cells of the tongue [35]. Another study showed that miRNA-184 levels were higher in the EGFRm-BM group than in the control group [36]. A team of researchers showed that miR-184 enhances the biological behavior of cancer by targeting FIH-1 in the human glioma cell line A172 [36]. In microarray data analysis we found that expression of this miRNA in our SW1736 cell line was higher than in the control group. Expression of miR-184 decreased after treatment with VPA.

The cell cycle is controlled by a variety of factors. One of these factors is p27, which suppresses the cell cycle. These factors involved in the cell cycle are regulated by miRNAs. The observed miR-222 targeting p27 enhances cell proliferation. And acts as an oncogene [37, 38]. Some studies confirmed the effects of increased miR-222 expression on cancer cell metastasis [39, 40]. Inhibition of miR-222 results in PTEN rearrangement. As a result, cell proliferation and invasion are significantly suppressed and apoptosis is increased [41]. In our study, this miRNA was also increased in the studied cell lines and was identified as an oncogene in line with previous studies.

The level of miR-328-3p in ovarian cancer stem cells (CSC) is very high and may play an important role in the metastasis of these cells. Inhibition of miR-328 in rat ovarian xenografts inhibited tumor growth and prevented tumor metastasis [42]. In our study, a decrease in miR-328 was observed with Valproic acid. Our data showed that our drug reduced the expression of this miRNA and had antitumor effects.

One study found that treatment with imatinib alone was not able to grow anaplastic cells in thyroid cancer cells, but that combination therapy (imatinib and VPA) had a cytostatic effect. This effect is mediated by stunted G1 growth and acts through p21 expression and impaired AKT phosphorylation [43]. So combination therapies can be very helpful.

Conclusion

Many miRNAs have shown different expression levels in response to treatment with HDAC inhibitors. Some of them can enhance or decrease the antitumor response. However, further studies are needed to identify the precise mechanisms of miRNAs for antitumor activity. It is difficult to accurately identify clinical miRNAs because of their low stability, which is why it needs accurate verification. We suggest that the effect of VPA on miRNA and its association with the cell cycle, apoptosis, be considered in future studies. However, VPA is well tolerated and can induce tumor suppressor miRNAs such as mir-323a, mir-15-a, mir-318, mir-217 by inhibiting HDAC in ATC cells.

Author contributions NG: Writing—original draft. NB, FS, and NO: Methodology. CK: Methodology, data curation. BB: Data curation, methodology. CA: Conceptualization, writing—review & editing. BS: Conceptualization, writing—original draft.

Funding No funding was received.

Data availability All data obtained in the study can be accessed if desired.
Declarations

Conflict of interest All authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to publication All authors agree to publish the data of this study.

References

1. Viola D et al (2016) Treatment of advanced thyroid cancer with targeted therapies: ten years of experience. Endocr Relat Cancer 23(4):R185–R205. https://doi.org/10.1530/ERC-15-0555
2. Tumino D et al (2017) Updates on the management of advanced, metastatic, and radioiodine refractory differentiated thyroid cancer. Front Endocrinol 8:312. https://doi.org/10.3389/fendo.2017.00312
3. Ozdemir Kutbay N et al (2020) Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol 34(10):e22547. https://doi.org/10.1002/jbt.22547
4. BJ JW et al (2019) MiR-599 serves a suppressive role in anaplastic thyroid cancer by activating the T-cell intracellular antigen. Exp Ther Med 18(4):2413–2420. https://doi.org/10.3892/etm.2019.7864
5. PIRRÓ S et al (2021) The microRNA analysis portal is a next-generation tool for exploring and analyzing miRNA-focused data in the literature. Sci Rep 11(1):1–12. https://doi.org/10.1038/s41598-021-88617-6
6. Oliveto S et al (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8(1):45. https://doi.org/10.4331/wjbc.v8.i1.45
7. Wójcicka A et al (2016) Mechanisms in endocrinology: microRNA in diagnostics and therapy of thyroid cancer. Eur J Endocrinol 174(3):899–898. https://doi.org/10.1530/EJE-15-0647
8. Pileczki V et al (2016) MicroRNAs as regulators of apoptosis mechanisms in cancer. Cuijih Med 89(1):50. https://doi.org/10.1016/j.cjmed.2016.05.512
9. Alotaibi KD et al (2018) Phosphorus speciation in a prairie soil amended with MBM and DDG ash: sequential chemical extraction and synchrotron-based XANES spectroscopy investigations. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-21935-4
10. De Paulis V et al (2021) Epitranscriptomics: a new layer of microRNA regulation in cancer. Cancers 13(13):3372. https://doi.org/10.3390/cancers1313372
11. Ardekan A, Naeini MM (2010) The role of microRNAs in human diseases. Avicenna J Med Biotechnol 2(4):161
12. Kuang X et al (2016) Deregulated microRNA expression and its pathogenetic implications for myelodysplastic syndromes. J Hematol 21(10):593–602. https://doi.org/10.1080/2045332.2016.1193962
13. Zhu X, Cheng SY (2017) Epigenetic modifications: novel therapeutic approach for thyroid cancer. Endocrinol Metab 32(3):326
14. Rahhal R, Seto E (2019) Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res 47(10):4911–4926. https://doi.org/10.1093/nar/gkz292
15. Abend A, Kehat I (2015) Histone deacetylases as therapeutic targets—from cancer to cardiac disease. Pharmacol Ther 147:55–62. https://doi.org/10.1016/j.pharmthera.2014.11.003
16. Di Fazio P et al (2012) Downregulation of HMG2A by the pan-deacetylase inhibitor panobinostat is dependent on hsa-let-7b expression in liver cancer cell lines. Exp Cell Res 318(15):1832–1843. https://doi.org/10.1016/j.yexcr.2012.04.018
17. Jenke R et al (2021) Anticancer therapy with HDAC inhibitors: mechanism-based combination strategies and future perspectives. Cancers 13(4):634. https://doi.org/10.3390/cancers13040634
18. Chiu CT et al (2013) Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 65(1):105–142. https://doi.org/10.1124/pr.111.005512
19. Sixto-López Y et al (2020) Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-020-00304-2
20. Sanacari M et al (2018) Effect of valproic acid in comparison with vorinostat on cell growth inhibition and apoptosis induction in the human colon cancer SW48 cells in vitro. Exp Oncol. https://doi.org/10.11698/2312-8852.2018.40(2):95-100
21. Ma XJ et al (2017) The role and possible molecular mechanism of valproic acid in the growth of MCF-7 breast cancer cells. Croat Med J 58(5):349–357. https://doi.org/10.3325/cmj.2017.58.349
22. Zafon C et al (2019) DNA methylation in thyroid cancer. Endocr Relat Cancer 26(7):R415–R439
23. Wang F et al (2017) Reciprocal regulation between microRNAs and epigenetic machinery in colorectal cancer. Onco Lett 13(3):1048–1057. https://doi.org/10.3829/ol.2017.5593
24. Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66(15):7390–7394. https://doi.org/10.1158/0008-5472
25. Zhu L et al (2019) miR-217 inhibits the migration and invasion of HeLa cells through modulating MAPK1. Int J Mol Med 44(5):1824–1832. https://doi.org/10.3829/ijmm.2019.4328
26. Yang J et al (2017) MicroRNA-217 functions as a prognostic predictor and inhibits pancreatic cancer cell proliferation and invasion via targeting E2F3. Eur Rev Med Pharmacol Sci 21(18):4050–4057
27. Liu YP et al (2017) MicroRNA-217 suppressed epithelial-to-mesenchymal transition in gastric cancer metastasis through targeting PTPN14. Eur Rev Med Pharmacol Sci 21(8):1759–1767
28. Wang LP et al (2018) HOTAIR contributes to the growth of liver cancer via targeting miR-217. Oncol Lett 15(5):7963–7972. https://doi.org/10.3829/ol.2018.3841
29. Saiselet M et al (2016) miRNA expression and function in thyroid carcinomas: a comparative and critical analysis and a model for other cancers. Oncotarget 7(32):52475. https://doi.org/10.18632/oncotarget.9655
30. Sullivan TB et al (2018) Spatiotemporal microRNA profile in peripheral nerve regeneration: miR-138 targets vimentin and inhibits Schwann cell migration and proliferation. Neural Regen Res 13(7):1253. https://doi.org/10.4103/1673-5374.235073
31. Jin J et al (2019) miRNA-15a regulates the proliferation and apoptosis of papillary thyroid carcinoma via regulating AKT pathway. Onco Targets Ther 12:6217. https://doi.org/10.2147/OTT.S213210
32. Long J et al (2016) MicroRNA-15a-5p suppresses cancer proliferation and division in human hepatocellular carcinoma by targeting BDNF. Tumour Biol 37(5):5821–5828. https://doi.org/10.1007/s13277-015-4427-6
33. Soriano A et al (2019) Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cell Mol Life Sci 76(11):2231–2243. https://doi.org/10.1007/s00018-019-03041-4
34. Men Y et al (2017) MiR-323a-3p inhibits cell proliferation, migration, and invasion in esophageal squamous cell carcinoma via suppression FMR1. Int J Radiat Oncol Biol Phys 99(2):E610. https://doi.org/10.1016/j.ijrobp.2017.06.2069
35. Wong TS et al (2008) Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 14(9):2588–2592. https://doi.org/10.1158/1078-0432
36. Yuan Q et al (2014) Upregulation of miR-184 enhances the malignant biological behavior of human glioma cell line A172 by targeting FIH-1. Cell Physiol Biochem 34(4):1125–1136. https://doi.org/10.1159/000366326
37. Kometani T et al (2020) Increased expression of NPM1 suppresses p27Kip1 function in cancer cells. Cancers 12(10):2886. https://doi.org/10.3390/cancers12102886
38. Mortoglou M et al (2021) MicroRNA-regulated signaling pathways: potential biomarkers for pancreatic ductal adenocarcinoma. Stresses 1(1):30–47. https://doi.org/10.3390/stresses1010004
39. Han SH et al (2017) MicroRNA-222 expression as a predictive marker for tumor progression in hormone receptor-positive breast cancer. J Breast Cancer 20(1):35
40. Gao H et al (2017) MicroRNA-222 influences migration and invasion through MIA3 in colorectal cancer. Cancer Cell Int 17(1):1–10. https://doi.org/10.1186/s12935-017-0447-1
41. Zhou L et al (2016) Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol Lett 12(6):4419–4426. https://doi.org/10.3892/ol.2016.5250
42. Srivastava AK et al (2019) Inhibition of miR-328–3p impairs cancer stem cell function and prevents metastasis in ovarian cancer. Cancer Res 79(9):2314–2326. https://doi.org/10.1158/0008-5472
43. Catalano MG et al (2009) Effects of the histone deacetylase inhibitor valproic acid on the sensitivity of anaplastic thyroid cancer cell lines to imatinib. Oncol Rep 21(2):515–521. https://doi.org/10.3892/or_00000252

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.