The X-ray emission from Nova V382 Velorum – I. The hard component observed with BeppoSAX

M. Orio,1,2* A. Parmar,3 R. Benjamin,4 L. Amati,5 F. Frontera,6 J. Greiner,6 H. Ögelman,4 T. Mineo,7 S. Starrfield8 and E. Trussoni1

1Osservatorio Astronomico di Torino, Strada Osservatorio, 20, 1-10025 Pino Torinese (TO), Italy
2Department of Astronomy, 474 N. Charter Str., University of Wisconsin, Madison, WI 53706, USA
3Astrophysics Division, Space Science Department of ESA, ESTEC, Postbus 299, 2200 AG Noordwijk, the Netherlands
4Physics Department, 1150 University Avenue, University of Wisconsin, Madison, WI 53706, USA
5TESRE-CNR, via Goberti 101, I-40129 Bologna, Italy
6Astrophysical Institut, 14882 Postdam, An der Sternwarte 16, Germany
7IFCAI-CNR, via La Malfa 153, I-90146 Palermo, Italy
8Department of Physics and Astronomy, PO Box 87150, Arizona State University, Tempe, AZ 85287-1504, USA

Accepted 2001 February 22. Received 2001 February 13; in original form 2001 January 23

ABSTRACT

We present BeppoSAX observations of Nova Velorum 1999 (V382 Vel), carried out in a broad X-ray band covering 0.1–300 keV only 15 d after the discovery and again after 6 months. The nova was detected at day 15 with the BeppoSAX instruments which measured a flux $F_x \approx 1.8 \times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$ in the 0.1–10 keV range and a 2σ upper limit $F_x < 6.7 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ in the 15–60 keV range. We attribute the emission to shocked nebular ejecta at a plasma temperature $kT = 6$ keV. At six months no bright component emerged in the 15–60 keV range, but a bright central supersoft X-ray source appeared. The hot nebular component previously detected had cooled to a plasma temperature $kT < 1$ keV. There was strong intrinsic absorption of the ejecta in the first observation and not in the second, because the column density of neutral hydrogen decreased from $N(H) = 1.7 \times 10^{23}$ to $N(H) = 10^{21}$ cm$^{-2}$ (close to the interstellar value). The unabsorbed X-ray flux also decreased from $F_x = 4.3 \times 10^{-11}$ to $F_x \approx 10^{-12}$ erg cm$^{-2}$ s$^{-1}$.

Key words: stars: individual: V382 Vel – novae, cataclysmic variables – X-rays: stars.

1 INTRODUCTION

Nova Velorum 1999 (V382 Vel) was discovered in outburst on 1999 May 22 (Williams & Gilmore 1999). It was the second brightest nova of this half of the century ($V = 2.6$; Seargent & Pearce 1999) and a ‘O–Ne–Mg nova’ (Shore et al. 1999a,b). In terms of the time to decay from visual maximum by 2 and 3 mag (see Della Valle & Livio 1995) it was a ‘fast’ nova, with $t_2 = 6$ d and $t_3 = 10$ d (Della Valle, Pasquini & Williams 1999). The peak ejection velocity v_{ej} inferred from the emission lines was $v_{ej} = 4000$ km s$^{-1}$ (Shore et al. 1999a). The estimated distance is 2 kpc (Della Valle et al. 1999).

The nova was declared a Target of Opportunity by the BeppoSAX Mission Scientist. The BeppoSAX X-ray satellite carries instruments that cover the energy range 0.1–300 keV. We present results from the coaligned Low-Energy Concentrator Spectrometer (LECS; 0.1–10 keV; Parmar et al. 1997), the Medium-Energy Concentrator Spectrometer (MECS; 1.8–10 keV; Boella et al. 1997), and the Phoswich Detection System (PDS; 15–300 keV; Frontera et al. 1991). The LECS and the MECS consist of grazing incidence telescopes with imaging gas-scintillation proportional counters in their focal planes. The non-imaging PDS consists of four independent units arranged in pairs each having a separate collimator, alternatively rocked on- and off-source during the observation.

Classical and recurrent novae are expected to emit X-rays in an outburst via three different mechanisms. Luminous ‘supersoft’ X-ray emission of the central source is thought to indicate that the white dwarf is still burning hydrogen in a shell (e.g. V1974 Cyg, Krautter et al. 1996; or N LMC 1995, Orio & Greiner 1999). This is important because if all the accreted envelope is not ejected the white dwarf mass increases, after repeated outbursts.

Shocks are not the main mechanism of nova outbursts: usually the mass outflow is not due to a ‘detonation’ but due to a radiatively driven super-wind (Bath & Shaviv 1976). However, shocks on a small scale, arising from complex phenomena in the nova wind or in the interaction between the ejecta and the circumstellar medium, are likely to be frequent. The recurrent nova RS Oph, and nova

© 2001 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/326/2/L13/1008738 by guest on 28 July 2018
V838 Her (N Her 1991), V351 Pup (N Pup 1991), V1974 Cyg (N Cyg 1992) and probably LMC 1992 were hard X-ray sources shortly after the outburst. Thermal bremsstrahlung models with temperatures in the range 0.5–20 keV and luminosities 10^{33}–10^{34} erg s$^{-1}$ fit the data. A list of references includes Mason et al. (1987), Lloyd et al. (1992), Orio et al. (1996), Balman, Krautter & Ögelman (1998) and Orio, Covington & Ögelman (2000). This information is largely based on the ROSAT data, and only in the energy range 0.2–2.4 keV. Only V838 Her was observed as early as 9 d after maximum. There are indications that the plasma temperature might have been much higher than the ROSAT range (e.g. Lloyd et al. 1992).

A third mechanism of X-ray emission is due to Compton degradation of radioactive decay, particularly of 22Na and 26Al (Livio et al. 1992; Starrfield et al. 1992; Pistinsher, Shaviv & Starrfield 1994). In the range 6–45 keV, Compton degradation might produce significant X-ray flux. Livio et al. (1992) argued that in this energy band X-ray emission is expected to be significant approximately 2 months after the outburst. However, the time for production of X-ray flux is inversely proportional to $\nu_{\epsilon j}$ and was calculated only for $\nu_{\epsilon j} \leq 1000$ km s$^{-1}$, lower than for V382 Vel. Therefore we do not rule out this mechanism being relevant at an earlier epoch. Gamma-ray observations of novae have not yielded very constraining upper limits so far (see Iyudin et al. 1995; Wanajo, Hashimoto & Nomoto 1999). The expected gamma-ray luminosity can be as high as 10^{35} erg s$^{-1}$, regardless of $\nu_{\epsilon j}$ and the related time-scale of emission, the X-ray flux would be higher in the PSD energy range than in the band covered by the MECS and LECS (see Livio et al. 1992).

In this paper we focus on the evolution of the hard X-ray emission (range 0.8–60 keV). No other classical nova has ever been observed immediately after maximum in such a broad energy range. We analyse the supersoft X-ray emission (below 0.8 keV) and the related white dwarf atmospheric model in a forthcoming paper (Orio et al., in preparation, hereafter Paper II).

2 OBSERVATIONS

V382 Vel was observed for the first time with BeppoSAX 15 d after the optical maximum, on 1999 June 7–8 for 42.5 ks with the two MECS, for 13.5 ks with the LECS, and for 23.3 ks with the PDS. The nova was then observed a second time on 1999 November 23 for 25.9 ks with the MECS, for 12.4 ks with the LECS, and for 12.4 ks with the PDS. Good data were selected from intervals when the elevation angle above the limb of the Earth was $>4^\circ$ and when the instrument configurations were nominal, using the SAXDAS 2.0.0 data analysis package. The standard PDS collimator dwell time of 96 s for each on- and off-source position was used together with a rocking angle of 210 arcmin. LECS and MECS data were extracted, centred on the position of V382 Vel using radii of 8 and 4 arcmin, respectively. The background subtraction for the imaging instruments was performed using standard files (1997 releases), but is not critical because the nova turned out to be a bright source. The background subtraction for the PDS was obtained during intervals when the collimator was offset from the source.

In 1999 June, the nova was detected with a count rate 0.1537 ± 0.0020 and 0.0620 ± 0.0026 counts s$^{-1}$ using the MECS and LECS, respectively (Orio, Torroni & Ricci 1999a). At higher energies, the 2σ upper limits obtained with the PDS were 0.0480 counts s$^{-1}$ in the 15–30 keV band and 0.0740 counts s$^{-1}$ in the 15–60 keV band. In the second BeppoSAX observation the count rate measured with the LECS was extremely high, 3.4860 \pm 0.0021 counts s$^{-1}$, due to the emergence of the central supersoft X-ray source (Orio, Parmar & Capalbi 1999b). In the range 0.8–10.0 keV the count rate was only 0.1030 \pm 0.0038 counts s$^{-1}$. As we mentioned in the introduction, in this paper we discuss the evolution of the hard X-ray emission, the only component detected by the MECS, with a count rate 0.0454 \pm 0.0015 counts s$^{-1}$ (more than a factor 3 lower than in June). Even in 1999 November, there was no PDS detection with 2σ upper limit 0.0800 counts s$^{-1}$ in the 15–50 keV range.

For both observations we examined the possibility of variable X-ray flux. With Kolmogorov–Smirnov tests we found that the flux in the MECS is not variable by more than 15 per cent at the 80 per cent confidence level in the first observation, and by not more than 40 per cent in the second observation. These results are within the statistical fluctuations and do not imply significant variability.

3 SPECTRAL ANALYSIS AND INTERPRETATION

We translated the PDS measurements into upper limits to the flux assuming a power-law spectrum with a photon index of 2.1. (This result is not critically model dependent.) The 2σ upper limits obtained are: $F_x < 6.7 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ at 15–60 keV in 1999 June, $F_x < 4.2 \times 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ in the 15–50 keV band in 1999 November. Ögelman, Krautter & Beuermann (1987) observed three novae using EXOSAT 3–7 months post-maximum: the upper limits for the flux obtained with the medium energy (ME) experiment at 6–50 keV were of the order of 10^{-13} erg cm$^{-2}$. Our BeppoSAX upper limits are lower than the flux measured in the MECS (regardless of the model assumed for the emission, see below), so we exclude radioactive decay as the main mechanism of emission, because we would measure a lower X-ray flux in the LECS–MECS range than at 16–45 keV with the PDS (see Section 1 and Livio et al. 1992). Lacking both a detailed spectral resolution and models of the evolving nebula predicting its X-ray luminosity, the observed X-ray flux of novae up to now has been fitted with thermal plasma models using a foreground absorbing column (Lloyd 1992; Balman et al. 1998). In Tables 1 and 2 we show the results of different spectral fits with models available in the XSPEC standard analysis package (Arnaud 1996). We fitted thermal models with and without ionization equilibrium, and a power-law model for comparison. We note that the latter describes the data less adequately, consistent with the belief that the X-ray emission is due to shocks. The thermal equilibrium model modified for low-energy absorption, MEKAL, is included to compare the data with Mukai & Ishida (2001) and with observations of V838 Her and V1974 Cyg. VMEKAL is used to test the effect of varying single element abundances. The non-equilibrium model NEI is included to test departures from ionization equilibrium. These may be expected when heating (arising from shocks) and subsequent cooling processes operate on a shorter time-scale than the ionization/recombination times of individual ions. At the energy range we are studying, hydrogen is fully ionized and in ionization equilibrium (see formula 1e of Rossi et al. 1997, for the recombination time), although the metals might be far from equilibrium. NEI is a constant temperature and single ionization parameter model; it is useful in characterizing the spectrum although it is not physically detailed. More detailed non-equilibrium models available in XSPEC are not specifically suited.
to the physics of nova shells. We find that the thermal models yield remarkably similar results, so they are not well constrained by the data.

The first observation is adequately modelled by a thermal plasma at a temperature \(kT = 6 \text{ keV} \). We compare this with \(kT = 10 \text{ keV} \) obtained by Mukai & Ishida (2001) at day 17 post-outburst. These authors found that the plasma temperature cooled again in four subsequent observations carried out using RossiXTE. The models in Table 1 also indicate unabsorbed luminosities of a few \(\times 10^{34} \text{ erg s}^{-1} \) (assuming a distance of 2 kpc) and \(N(H) = 0.6-2.7 \times 10^{21} \text{ cm}^{-2} \), which is unusually high. Mukai & Ishida (2001) derived a similar \(N(H) \) value at day 17 and later found that the intrinsic absorption decreased. In our bandpass the absorption is mainly due to photoelectric opacity of carbon and oxygen (Morrison & MacCammon 1983). In the direction of the nova the column density of neutral hydrogen is estimated to be \(3.7 \times 10^{21} \text{ cm}^{-2} \) (Dickey & Lockman 1990). Plateis et al. (2000) obtained a reddening consistent with \(N(H) \leq 2.5 \times 10^{21} \text{ cm}^{-2} \). The large value of \(N(H) \) at the early epoch is therefore due to intrinsic absorption of the ejecta, known to be rich in oxygen and probably carbon as well. The gas must have been optically thick to lower energy components in the nebular flux, such as the supersoft emission of the central source. Using the simple assumption that the emission measure \(EM = (n_e^2) V_{\text{shock}} \), where \(n_e \) is the electron density and \(V_{\text{shock}} \) is the volume filled by the shocked mass, the best-fitting \(EM \) in Table 1 is consistent with a shell filled in 15 d with a constant flow at \(V_{ej} = 4000 \text{ km s}^{-1} \) (\(V_{\text{shock}} = 6 \times 10^{12} \text{ cm}^{3} \)) and \(n_e = 2 \times 10^{6} \text{ cm}^{-3} \) (a value which is on the upper range derived for nova shells). However, the shocks could also originate in dense clumps along the line of sight or from a zone which is deeply buried inside the nova shell, with higher density and much lower volume than the whole nebula. The two thermal models MEKAL and NEI seem to require low abundances for the best fit, however this does not imply low abundance \(Z \) for all elements: simply in order to match the data, it is necessary to decrease the strength of the Fe K\(\alpha \) line at 6.97 keV. It is understood using the VMEKAL model, the only one allowing specification of single element abundances. Varying other elements, we derive Fe = 0.0–0.39 within the 2\(\sigma \) confidence level, while enhanced abundances are instead perfectly acceptable for the other elements.

Model	\(N(H) \)	\(kT \) (keV)	\(\nu \)	Z	Fe	\(F_s \) (erg cm\(^{-2}\) s\(^{-1}\))	\(EM \) (cm\(^{-3}\))	\(\chi^2/\text{dof} \)
MEKAL	16.8 ± 1.0	6.1 ± 0.9	0.09 ± 0.04	(4.3 ± 0.3) \times 10\(^{-11}\)	24.3 ± 1.8	1.2		
VMEKAL	16.8 ± 1.1	5.4 ± 0.6	0.21 ± 0.12	(4.6 ± 0.4) \times 10\(^{-11}\)	9.9 ± 0.7	1.1		
NEI	16.7 ± 1.0	6.2 ± 0.7	0.09 ± 0.04	(4.3 ± 0.3) \times 10\(^{-11}\)	26.8 ± 1.7	1.3		
Power law	19.3 ± 1.2	2.4 ± 0.2				(5.5 ± 1.1) \times 10\(^{-11}\)		1.6

Table 2. Same entries as in Table 1, for the best-fitting parameters to the BeppoSAX MECS and LECS (above 0.8 keV) spectrum observed for V382 Vel in 1999 November.

Model	\(N(H) \)	\(kT \) (eV)	\(\nu \)	Z	Fe	\(F_s \) (erg cm\(^{-2}\) s\(^{-1}\))	\(EM \) (cm\(^{-3}\))	\(\chi^2/\text{dof} \)
MEKAL	<0.18	616 ± 32	0.06 ± 0.03	(9.6 ± 0.5) \times 10\(^{-12}\)	11.3 ± 10.0	1.2		
VMEKAL	<0.21	626 ± 40	0.04 ± 0.02	(9.6 ± 0.5) \times 10\(^{-12}\)	10.2 ± 2.0	1.2		
NEI	0.04 ± 0.04	775 ± 45	0.08 ± 0.07	(9.0 ± 0.3) \times 10\(^{-13}\)	9.9 ± 2.3	1.3		
Power law	0.28 ± 0.12	5.6 ± 0.4				(9.8 ± 0.3) \times 10\(^{-13}\)		1.2

Figure 1. Observation of 1999 June: the LECS, MECS and PDS spectra and the best fit obtained with a VMEKAL model of a thermal plasma with depleted iron abundance (see text), enhanced abundance of all other elements (four times the solar value), \(kT = 6.2 \text{ keV} \), \(N(H) = 1.67 \times 10^{23} \text{ cm}^{-2} \) (the reduced \(\chi^2 \) is 1.13 per 83 dof). The residuals in units of \(\sigma \) are shown in the middle panel; below we plot the residuals of a fit done assuming solar abundances.

The value of \(\chi^2/\text{dof} \) decreases from 3.1 to 1.2, as we decrease Fe from 1 to the best-fitting value 0.21. In Fig. 1 we show (as an example, not implying it is necessarily the right model) the best VMEKAL fit (thermal plasma modified by low-energy absorption) to the combined LECS, MECS and PDS spectrum. We plot in the figure the data above 1.8 keV because there is no significant flux detection below. We compare the residuals of the fit with the reduced abundance and with solar iron. We remind the reader that the continuum optical depth at energy \(kT = 6.97 \text{ keV} \) is negligible, \(\tau_{\text{cont}} = 0.084N_{23} \) [where \(N_{23} = N(H)/10^{23} \text{ cm}^{-2} \), and so is the line optical depth (\(\tau_{\text{line}} = 0.087\tau_{\text{cont}}L_{15} \), where \(T_I \) is the temperature of the emitting region in units of \(10^7 \text{ K} \), and \(L_{15} \) is the region thickness in units of \(10^{15} \text{ cm} \)].
We simultaneously fitted the MECS spectrum and the LECS one, above 0.8 keV, observed in 1999 November with the same models. Above 0.8 keV, no X-ray emission is expected from the white dwarf atmosphere: preliminary fits to the whole 1–10 keV LECS spectrum indicate that we are also dealing with a separate spectral component. The plasma temperature is much lower, not exceeding 1 keV, and the value of N(H) is around the interstellar value, $\approx 10^{21}$ cm$^{-2}$. We note that the large intrinsic absorption of the ejecta almost completely thinned out and the temperature range is comparable with the one derived for N Cyg 1992 six months after optical maximum (Balman et al. 1998). We still derive the best thermal fits with a low value of the total heavy element abundance. As the VMEKAL fit indicates, at low energy this is not due (or not only) to iron. It could be due to very unusual abundance ratios of different elements, or possibly it is an effect of the lack of ionization equilibrium that NEI is unable to model due to inadequate sophistication. However, ionization equilibrium is commonly assumed after several months from optical maximum (see Contini, Orio & Prialnik 1995, and references therein).

The LECS–MECS spectrum above 0.8 keV and the best fit with the VMEKAL model are shown in Fig. 2 for comparison with the first data set. We found a nebular component even in the range below 0.8 keV, where the flux from the central source was thought to be dominant. ‘Disentangling’ it from the atmospheric continuum is the subject of Paper II. The point we want to make here is that the evolution and cooling of the hard X-ray emission occurred during the third week after optical maximum, a few days after the first BeppoSAX observation, and a luminosity ‘plateau’ followed for at least 39 d. In the 0.8–2.4 keV range the unabsorbed X-ray flux was 8×10^{-12} and 5×10^{-13} erg cm$^{-2}$ s$^{-1}$ in the first and second BeppoSAX observation, respectively. These fluxes can be compared with the ones derived with ROSAT: for V1974 Cyg, the flux in the 1–2.4 keV range reached a few $\times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$ at its peak around day 150 post-maximum (Balman et al. 1998) and for V351 Pup, $F_\lambda \approx 10^{-12}$ erg cm$^{-2}$ s$^{-1}$ in the 0.8–2.4 keV band 16 months post-maximum (see Orio et al. 1996). These two nova shells must have been intrinsically more luminous in these energy ranges and for a longer time, however no comparison is possible at an energy above 2.4 keV.

From our observations, and from the comparison with the ASCA and RossiXTE light curve derived between them by Mukai & Ishida (2001), we conclude the following.

(i) We attribute the hard X-ray emission to shocks in a small portion of the ejected nebula, in agreement with Mukai & Ishida (2001). Comptonized X-rays from radioactive decays are not definitely ruled out but are not the main source of the hard X-ray flux detected in these observations.

(ii) The unabsorbed X-ray luminosity in the range above 0.8 keV was a $\times 10^{34}$ erg s$^{-1}$ 15 d post-maximum. After a period of constant level, it decreased to a few $\times 10^{33}$ erg s$^{-1}$ five and a half months later.

(iii) In the first observation, large intrinsic absorption of the ejecta prevented detection of the X-ray flux below 2 keV, while the ejecta were transparent to supersoft X-ray radiation in the second observation.

(iv) The observed X-ray emitting nebular plasma was at a temperature in the several keV range at 15 d, it reached 10 keV at day 17 and immediately started cooling. It cooled to a temperature below 1 keV at six months.

(v) There is a high probability that the shocked material was significantly depleted in iron and that the abundance ratios of different elements were peculiar, although we cannot be more specific. While Mukai & Ishida (2001) dismiss the derived iron abundance as due to non-availability of completely adequate models, we suggest that it might actually be real.

(vi) A comparison with ROSAT observations of V1974 Cyg and V838 Pup shows that the evolution and cooling of the hard X-ray component from nova nebulae occur on different time-scales.

ACKNOWLEDGMENTS
We thank L. Piro, BeppoSAX Mission Scientist, for support; we are grateful also to M. Della Valle for useful discussions, C. Markwardt for computer support, and K. Mukai for sharing the ASCA results with us. MO has been supported by ASI and by the UW College of Arts and Sciences; JG by the German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF/DFLR) under contract No. 50 QQ 9602 3.

REFERENCES
Arnaud K. A., 1996, in Jacoby G., Barnes J., eds, ASP Conf. Ser. Vol. 101, Astronomical Data Analysis Software Systems V. Astron. Soc. Pac., San Francisco, p. 17
Balman S., Krautter J., Ögelman H., 1998, ApJ, 499, 395
Bath G. T., Shaviv G., 1976, MNRAS, 175, 305

© 2001 RAS, MNRAS 326, L13–L17
This paper has been typeset from a \TeX/LaTeX file prepared by the author.