COMPLEX INTERPOLATION OF NONCOMMUTATIVE HARDY SPACES ASSOCIATED SEMIFINITE VON NEUMANN ALGEBRA

TURDEBEK N. BEKJAN AND KORDAN N. OSPANOV

ABSTRACT. We studied complex interpolation noncommutative Hardy space associated with semi-finite von Neumann algebra and extend Pisier’s interpolation theorem for this case.

1. Introduction

In [12], Pisier give a new proof of the interpolation theorem of Peter Jones (see [10] or [5], p.414). He obtained the complex case of Peter Jones’ theorem as a consequence of the real case. The Pisier’s method does to extend to the noncommutative case and the case of Banach space valued H^p-spaces (see §2 and §2 in [12]). In Pisier and Xu[?] obtained noncommutative version of P. Jones’ theorem for noncommutative Hardy spaces associated with a finite subdiagonal algebra in Arveson’s sense [1] (It is stated in [13] without proof, see the remark following Lemma 8.5 there). The first named author [2], using Pisier’s method, proved that the real case of Peter Jones’ theorem for noncommutative Hardy spaces associated semifinite von Neumann algebra holds (also see [15]).

This paper is devoted to the study of complex interpolation of noncommutative Hardy spaces associated semifinite von Neumann algebra. Using the Pisier method in [12], we proved the complex case of Peter Jones’ theorem for noncommutative Hardy spaces associated semifinite von Neumann algebra.

2. Preliminaries

We use standard notation and notions from noncommutative L_p-spaces theory (see e.g. [13, 16]). Throughout this paper, we denote by \mathcal{M} a semifinite von Neumann algebra on the Hilbert space \mathcal{H} with a normal faithful semifinite trace τ. A closed densely defined linear operator x in \mathcal{H} with domain $D(x)$ is said to be affiliated with \mathcal{M} if and only if $u^*xu = x$ for all unitary operators u which belong to the commutant \mathcal{M}' of \mathcal{M}. If x is affiliated with \mathcal{M}, then x is said to be τ-measurable if for every $\varepsilon > 0$ there exists a projection $e \in \mathcal{M}$ such that $e(\mathcal{H}) \subseteq D(x)$ and $\tau(e^+e) < \varepsilon$ (where for any projection e we let $e^+ = 1 - e$). The set of all τ-measurable operators will be denoted by $L_0(\mathcal{M})$. The set $L_0(\mathcal{M})$ is a $*$-algebra with sum and product being the respective closure of the algebraic
sum and product. For a positive self-adjoint operator \(x = \int_0^\infty \lambda d\nu(\lambda) \) (the spectral decomposition) affiliated with \(\mathcal{M} \), we set
\[
\tau(x) = \sup_n \tau(\int_0^n \lambda d\nu(\lambda)) = \int_0^\infty \lambda \tau(e_\lambda).
\]
For \(0 < p < \infty \), \(L_p(\mathcal{M}) \) is defined as the set of all \(\tau \)-measurable operators \(x \) affiliated with \(\mathcal{M} \) such that
\[
\|x\|_p = \tau(|x|^p)^{1/p} < \infty.
\]
In addition, we put \(L_\infty(\mathcal{M}) = \mathcal{M} \) and denote by \(\|\cdot\|_\infty \) the usual operator norm. It is well-known that \(L_p(\mathcal{M}) \) is a Banach space under \(\|\cdot\|_p \) (\(1 \leq p \leq \infty \)) satisfying all the expected properties such as duality.

In this paper, \([K]_p \) denotes the closed linear span of \(K \) in \(L_p(\mathcal{M}) \) (relative to the \(w^\ast \)-topology for \(p = \infty \)) and \(J(K) \) is the family of the adjoints of the elements of \(K \).

Henceforth we will assume that \(\mathcal{D} \) is a von Neumann subalgebra of \(\mathcal{M} \) such that the restriction of \(\tau \) to \(\mathcal{D} \) is still semifinite. Let \(\mathcal{E} \) be the (unique) normal positive faithful conditional expectation of \(\mathcal{M} \) with respect to \(\mathcal{D} \) such that \(\tau \circ \mathcal{E} = \tau \).

Definition 2.1. A \(w^\ast \)-closed subalgebra \(\mathcal{A} \) of \(\mathcal{M} \) is called a subdiagonal algebra of \(\mathcal{M} \) with respect to \(\mathcal{E} \) (or \(\mathcal{D} \)) if
\begin{enumerate}[(i)]
 \item \(\mathcal{A} + J(\mathcal{A}) \) is \(w^\ast \)-dense in \(\mathcal{M} \),
 \item \(\mathcal{E}(xy) = \mathcal{E}(x)\mathcal{E}(y) \), \(\forall x, y \in \mathcal{A} \),
 \item \(\mathcal{A} \cap J(\mathcal{A}) = \mathcal{D} \).
\end{enumerate}

\(\mathcal{D} \) is then called the diagonal of \(\mathcal{A} \).

It is proved by Ji [9] that a semifinite subdiagonal algebra \(\mathcal{A} \) is automatically maximal, i.e., \(\mathcal{A} \) is not properly contained in any other subalgebra of \(\mathcal{M} \) which is subdiagonal algebra respect to \(\mathcal{E} \).

Since \(\mathcal{D} \) is semifinite, we can choose an increasing family of \(\{e_i\}_{i \in I} \) of \(\tau \)-finite projections in \(\mathcal{D} \) such that \(e_i \to 1 \) strongly, where 1 is identity of \(\mathcal{M} \) (see Theorem 2.5.6 in [14]). Throughout, the \(\{e_i\}_{i \in I} \) will be used to indicate this net.

Let \(x \in L_0(\mathcal{M}) \). We define the distribution function of \(x \) by
\[
\lambda_t(x) = \tau(e_{(t,\infty)}(|x|)), \quad t \geq 0,
\]
where \(e_{(t,\infty)}(|x|) \) is the spectral projection of \(|x| \) corresponding to the interval \((t, \infty) \). Define
\[
\mu_t(x) = \inf\{s > 0 : \lambda_s(x) \leq t\}, \quad t > 0.
\]
The function \(t \mapsto \mu_t(x) \) is called the generalized singular numbers of \(x \). For more details on generalized singular value function of measurable operators, see [8].

For \(0 < p < \infty \), \(0 < q \leq \infty \), the noncommutative Lorentz space \(L^{p,q}(\mathcal{M}) \) is defined as the space of all measurable operators \(x \) such that
\[
\|x\|_{p,q} = \left(\int_0^\infty [t^{1/p} \mu_t(x)]^q \frac{dt}{t} \right)^{1/q} < \infty.
\]
Equipped with \(\| \|_{p,q} \), \(L^{p,q}(\mathcal{M}) \) is a quasi-Banach space. Moreover, if \(p > 1 \) and \(q \geq 1 \), then \(L^{p,q}(\mathcal{M}) \) can be renormed into a Banach space. More precisely,

\[
x \mapsto \left(\int_0^\infty \left[t^{-1+1/p} \int_0^t \mu_s(x) ds \right]^q \frac{dt}{t} \right)^{1/q}
\]
gives an equivalent norm on \(L^{p,q}(\mathcal{M}) \). It is clear that \(L^{p,p}(\mathcal{M}) = L^p(\mathcal{M}) \) (for details see [7, 18]).

The space \(L^{p,\infty}(\mathcal{M}) \) is usually called a weak \(L_p \)-space, \(0 < p < \infty \). Its quasi-norm admits the following useful description in terms of the distribution function:

\[
\| x \|_{p,\infty} = \sup_{s > 0} s \lambda_s(x)^{1/p}
\]

(see Proposition 3.1 in [3]).

For \(0 < p < \infty \), \(0 < q \leq \infty \), we define the noncommutative Hardy-Lorentz space

\[
H^{p,q}(\mathcal{A}) = \text{closure of } \mathcal{A} \cap L^{p,q}(\mathcal{M}) \text{ in } L^{p,q}(\mathcal{M}).
\]

\[
H^{p,q}_0(\mathcal{A}) = \text{closure of } \mathcal{A}_0 \cap L^{p,q}(\mathcal{M}) \text{ in } L^{p,q}(\mathcal{M}).
\]

3. Complex interpolation

Let \(S \) (respectively, \(\overline{S} \)) denote the open strip \(\{ z : 0 < \Re z < 1 \} \) (respectively, the closed strip \(\{ z : 0 \leq \Re z \leq 1 \} \)) in the complex plane. Let \((X_0, X_1) \) be a compatible couple of complex Banach spaces. Let \(\mathcal{F}(X_0, X_1) \) be the family of all functions \(f : S \to X_0 + X_1 \) satisfying the following conditions:

- \(f \) is continuous on \(S \) and analytic in \(S \);
- \(f(k + it) \in X_k \) for \(t \in \mathbb{R} \) and the function \(t \mapsto f(k + it) \) is continuous from \(\mathbb{R} \) to \(X_k \), \(k = 0, 1 \);
- \(\lim_{|t| \to \infty} \| f(k + it) \|_{X_k} = 0 \), \(k = 0, 1 \).

We equip \(\mathcal{F}(X_0, X_1) \) with the norm:

\[
\| f \|_{\mathcal{F}(X_0, X_1)} = \max \left\{ \sup_{t \in \mathbb{R}} \| f(it) \|_{X_0}, \sup_{t \in \mathbb{R}} \| f(1 + it) \|_{X_1} \right\}.
\]

Then \(\mathcal{F}(X_0, X_1) \) becomes a Banach space. Let \(0 < \theta < 1 \). The complex interpolation space \((X_0, X_1)_\theta \) is defined as the space of all those \(x \in X_0 + X_1 \) for which there exists \(f \in \mathcal{F}(X_0, X_1) \) such that \(f(\theta) = x \). Equipped with

\[
\| x \|_\theta = \inf \left\{ \| f \|_{\mathcal{F}(X_0, X_1)} : f(\theta) = x, \; f \in \mathcal{F}(X_0, X_1) \right\},
\]

\((X_0, X_1)_\theta \) becomes a Banach space.

Let \(\mathcal{N} \) be the algebra of infinite diagonal matrices with entries from \(\mathcal{M} \) and \(\mathcal{B} \) be the algebra of infinite diagonal matrices with entries from \(\mathcal{A} \), i.e.

\[
\mathcal{N} = \left\{ x : x = \begin{pmatrix} x_1 & 0 & \cdots \\ 0 & x_2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, \; x_i \in \mathcal{M}, \; i \in \mathbb{N} \right\}
\]
and

\[\mathcal{B} = \left\{ a : a = \begin{pmatrix} a_1 & 0 & \cdots \\ 0 & a_2 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}, a_i \in \mathcal{A}, i \in \mathbb{N} \right\}. \]

For \(x \in \mathcal{N} \) with entries \(x_i \), define \(\Phi(x) \) to be the diagonal matrix with entries \(\mathcal{E}(x_i) \) and

\[\nu(x) = \sum_{i \geq 1} \tau(x_i). \]

Then \((\mathcal{N}, \nu) \) is a simifinite von Neumann algebra and \(\mathcal{B} \) is a simifinite subdiagonal algebra of \((\mathcal{N}, \nu) \) respect to \(\Phi \).

Using same method as in the proof of Lemma 4.1 of [12], we obtain that

Lemma 3.1. Let \(1 < p < \infty \). If \(\theta = \frac{1}{p} \), then there is a bounded nature inclusion

\[(L^{1,\infty}(\mathcal{N})/J(H_0^{1,\infty}(\mathcal{B})), \mathcal{N}/J(\mathcal{B}_0))_{1-\theta,\infty} = H^{p,\infty}(\mathcal{B}) \quad (3.1) \]

with equivalent norms.

Proof. Let \(1 < r < q < \infty \). Set \(\eta = 1 - \frac{1}{r}, \gamma = 1 - \frac{1}{q} \). It is clear that \(0 < \eta < \gamma < 1 \).

Using Theorem 4.1 in [19] and Theorem 6.3 in [2], we know that

\[(L^1(\mathcal{N}), \mathcal{N})_{\eta, r} = L^r(\mathcal{N}), (L^1(\mathcal{N}), \mathcal{N})_{\gamma, q} = L^q(\mathcal{N}) \]

and

\[(H^1(\mathcal{B}), \mathcal{B})_{\eta, r} = H^r(\mathcal{B}), (H^1(\mathcal{B}), \mathcal{B})_{\gamma, q} = H^q(\mathcal{B}). \]

On the other hand, (i) and (iii) of Lemma 6.5 in [2], we have that \((H^1(\mathcal{B}), H^s(\mathcal{B})) \) is \(K \)-closed with respect to \((L^1(\mathcal{N}), L^s(\mathcal{N})) \) and \((H^q(\mathcal{B}), \mathcal{B}) \) is \(K \)-closed with respect to \((L^q(\mathcal{N}), \mathcal{N}) \). Hence by Theorem 1.2 in [11], we obtain \((H^1(\mathcal{B}), \mathcal{B}) \) is \(K \)-closed with respect to \((L^1(\mathcal{N}), \mathcal{N}) \). Since on can extend \(\Phi \) to a contractive projection from \(L^p(\mathcal{N}) \) onto \(L^p(\mathcal{B} \cap \mathcal{B}^*) \) for every \(1 \leq p \leq \infty \), we deduce that \((H^1(\mathcal{B}), \mathcal{B}_0) \) is \(K \)-closed with respect to \((L^1(\mathcal{N}), \mathcal{N}) \). By Holmstedt’s formula (see [4], p. 52-53), we get \((H_0^{1,\infty}(\mathcal{B}), \mathcal{B}_0) \) is \(K \)-closed with respect to \((L^{1,\infty}(\mathcal{N}), \mathcal{N}) \). Therefore,

\[(J(H_0^{1,\infty}(\mathcal{B})), J(\mathcal{B}_0))_{1-\eta,\infty} = J(H_0^{q,\infty}(\mathcal{B})). \]

Since

\[(L^{1,\infty}(\mathcal{N})/J(H_0^{1,\infty}(\mathcal{B})), \mathcal{N}/J(\mathcal{B}_0)) \]

is a compatible couple (see [12], p. 351-352), the space

\[(L^{1,\infty}(\mathcal{N})/J(H_0^{1,\infty}(\mathcal{B})), \mathcal{N}/J(\mathcal{B}_0))_{1-\theta,\infty} \]

can be identified with the space

\[L^{p,\infty}(\mathcal{N})/J(H_0^{p,\infty}(\mathcal{B})). \]

By Theorem 4.1 in [19] and Theorem 6.3 in [2], for \(1 < p_0 < p < p_1 < \infty \) and \(0 < \theta < 1 \) with \(\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \), we have that

\[(L^{p_0}(\mathcal{N}), L^{p_1}(\mathcal{N}))_{\theta,\infty} = L^{p,\infty}(\mathcal{N}), (H^{p_0}(\mathcal{B}), H^{p_1}(\mathcal{B}))_{\theta,\infty} = H^{p,\infty}(\mathcal{B}). \]
Applying Theorem 4.2 in [2] and interpolation, we deduce that

\[L^{p,\infty}(\mathcal{N})/J(H^{p,\infty}_0(\mathcal{B})) \]

can be identified with \(H^{p,\infty}(\mathcal{B}) \). Hence, (3.1) holds.

For \(1 \leq p \leq \infty \), we define \(K_p : L^p(\mathcal{M}) \to L^{p,\infty}(\mathcal{N}) \) by

\[
K_p(x) = \begin{pmatrix}
x & 0 & 0 & \ldots \\
0 & 2^{-\frac{1}{p}}x & 0 & \ldots \\
0 & 0 & 3^{-\frac{1}{p}}x & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \quad \forall x \in L^p(\mathcal{M}).
\]

Then

\[
\|x\|_p = \|K_p(x)\|_{p,\infty}.
\] (3.2)

Indeed, it is clear that for any \(x \in \mathcal{M} \),

\[
\|K_p(x)\|_\infty = \|x\|_\infty.
\]

If \(1 \leq p < \infty \) and \(x \in L^p(\mathcal{M}) \), then

\[
\|x\|_p^p = \tau(|x|^p) = \int_0^{+\infty} \tau(\sum_{j\geq 1} f_{t, j+1}^p(x)) dt = \sup_{t>0} \sum_{j\geq 1} t^p \tau(\sum_{j\geq 1} f_{t,\infty}^p(x)) = \sup_{t>0} \sum_{j\geq 1} t^p \nu(e_{t,\infty}^p(K_p(x))) = \sup_{t>0} t^p \lambda_t(K_p(x)) = \|K_p(x)\|_{p,\infty}^p.
\]

Hence, \(K_p \) has norm 1. Note that \(K_p \) maps \(H^p_0(\mathcal{A}) \) into \(H^{p,\infty}_0(\mathcal{B}) \). Let

\[
\tilde{K}_p : L^p(\mathcal{M})/H^p_0(\mathcal{A}) \to L^{p,\infty}(\mathcal{N})/H^{p,\infty}_0(\mathcal{B})
\]

be the mapping canonically associated to \(K_p \). We have following result (see Lemma 4.2 in [12]).

Lemma 3.2. Let \(1 < p < \infty \) and \(\theta = \frac{1}{p} \). Then \(\tilde{K}_p \) defines a contraction from \((L^1(\mathcal{M})/J(H^1_0(\mathcal{A})), \mathcal{M}/J(\mathcal{A}_0))_{1-\theta} \) into \(H^{p,\infty}(\mathcal{B}) \).

Proof. Let

\[
X = \left\{ \begin{pmatrix} x & 0 & 0 & \ldots \\
0 & 2^{-\frac{1}{p}}x & 0 & \ldots \\
0 & 0 & 3^{-\frac{1}{p}}x & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix} : \forall x \in L^1(\mathcal{M}) \right\}.
\]
We equip \(X \) with the norm
\[
\left\| \begin{pmatrix} x & 0 & 0 & \ldots \\ 0 & 2^{-1/p}x & 0 & \ldots \\ 0 & 0 & 3^{-1/p}x & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \right\|_X = \|x\|_1.
\]
Then \(X \) becomes a Banach space. It is clear that \(X \subset L^{1,\infty}(\mathcal{N}) \) and this inclusion has norm one. Let
\[
X_0 = \left\{ \begin{pmatrix} x & 0 & 0 & \ldots \\ 0 & 2^{-1/p}x & 0 & \ldots \\ 0 & 0 & 3^{-1/p}x & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} : \forall x \in J(H_0^1(\mathcal{M})) \right\}.
\]
Then we have that
\[
X/X_0 \subset L^{1,\infty}(\mathcal{N})/J(H_0^{1,\infty}(\mathcal{B}))
\]
with norm one.

For any \(z \in S \), let
\[
K_z(x) = \begin{pmatrix} x & 0 & 0 & \ldots \\ 0 & 2^{z^{-1}}x & 0 & \ldots \\ 0 & 0 & 3^{z^{-1}}x & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \forall x \in L^1(\mathcal{M}) \cap \mathcal{M}.
\]
Then \(\{\tilde{K}_z\}_{z \in \mathbb{T}} \) is an analytic families of linear operators on
\[
L^1(\mathcal{M})/J(H_0^1(\mathcal{A})) \cap \mathcal{M}/J(\mathcal{A}_0)
\]
into
\[
X/X_0 + N/J(\mathcal{B}_0).
\]
From (3.2), it follows that if \(\text{Re}(z) = 0 \), \(\tilde{K}_z \) is a contraction from
\[
L^1(\mathcal{M})/J(H_0^1(\mathcal{A}))
\]
into \(X/X_0 \) and if \(\text{Re}(z) = 1 \), it is a contraction from \(\mathcal{M}/J(\mathcal{A}_0) \) into \(N/J(\mathcal{B}_0) \).
Hence, by Stein’s interpolation theorem for analytic families of operators (see Theorem 1 in [6]), we obtain that \(\tilde{K}_p \) is a contraction from
\[
(L^1(\mathcal{M})/J(H_0^1(\mathcal{A})), \mathcal{M}/J(\mathcal{A}_0))_{1-\frac{1}{p}}
\]
into
\[
(X/X_0, N/J(\mathcal{B}_0))_{1-\frac{1}{p}}.
\]
By Theorem 4.7.1 in [4], \(\tilde{K}_p \) is a contraction from
\[
(L^1(\mathcal{M})/J(H_0^1(\mathcal{A})), \mathcal{M}/J(\mathcal{A}_0))_{1-\frac{1}{p}}
\]
into
\[
(X/X_0, N/J(\mathcal{B}_0))_{1-\frac{1}{p}, \infty}.
\]
By (3.3), \tilde{K}_p is a contraction from
\[(L^1(\mathcal{M})/J(H_0^1(A)), \mathcal{M}/J(A_0))_{1-\frac{1}{p}} \]
into
\[(L^{1,\infty}(\mathcal{N})/J(H_0^{1,\infty}(B)), N/J(B_0))_{1-\frac{1}{p},\infty}. \]
Using Lemma 3.1, we obtain the desired result. \hfill \square

Theorem 3.3. Let $1 < p < \infty$ and $\frac{1}{p} = 1 - \theta$. Then
\[H^p(A) = (H^1(A), A)_\theta. \quad (3.4) \]

Proof. Let q be the conjugate of p, so that $\frac{1}{p} + \frac{1}{q} = 1$. The inclusions
\[(H^1(A), A)_\theta \subset (L^1(\mathcal{M}), \mathcal{M})_\theta = L^p(\mathcal{M}) \]
and
\[(H^1(A), A)_\theta \subset \{ x \in L^p(\mathcal{M}) : x \perp J(H_0^1(A)) \} \]
imply $(H^1(A), A)_\theta \subset H^p(A)$. To prove the converse we dualize. Hence we have to prove that
\[(L^1(\mathcal{M})/J(H_0^1(A)), \mathcal{M}/J(A_0))_{1-\frac{1}{q}} \subset H^q(A). \quad (3.5) \]
Let $x \in L^1(\mathcal{M}) \cap \mathcal{A}$. By (3.2) and Lemma 3.2, we have that
\[\|x\|_q = \left\| \begin{pmatrix} x & 0 & 0 & \ldots \\ 0 & 2^{-\frac{1}{q}} x & 0 & \ldots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \right\|_{q,\infty} \leq \|x\|_{(L^1(\mathcal{M})/J(H_0^1(A)), \mathcal{M}/J(A_0))_{1-\frac{1}{q}}}. \]
Hence, we get (3.5). \hfill \square

Let $BMO(\mathcal{M})$ be the space defined in Definition 5.1 in [2]. By Theorem 5.1 in [2], we have that $H^1(\mathcal{A})^* = BMO(\mathcal{M})$. We use the reiteration theorem (Theorem 4.6.1 in [4]) and Wolff’s theorem (Theorem 2 in [17]) to obtain that

Corollary 3.4. Let $1 < p < \infty$ and $\frac{1}{p} = 1 - \theta$. Then
\[H^p(A) = (H^1(A), BMO(\mathcal{M}))_\theta. \quad (3.6) \]

Acknowledgement. T.N. Bekjan is partially supported by NSFC grant No.11771372.

References

[1] W.B. Arveson, *Analyticity in operator algebras*, Amer. J. Math. 89 (1967), 578–642.
[2] T. N. Bekjan, *Noncommutative Hardy space associated with semi-finite subdiagonal algebras*, J. Math. Anal. Appl. 429 (2015), 1347–1369.
[3] T. N. Bekjan, Z. Chen, P. Liu and Y. Jiao, *Noncommutative weak Orlicz spaces and martingale inequalities*, Studia Math. 204(3) (2011), 195–212.
[4] J. Bergh and J. Lőfström, *Interpolation Spaces, An Introduction*, Springer-Verlag, 1976.
[5] C. Bennett and R. Sharpley, *Interpolation of Operators*, Academic Press, 1988.
133–252.

[6] M. Cwikel and S. Janson, *Interpolation of analytic families of operators*, Studia Math. 79 (1) (1984), 61–71.

[7] P. G. Dodds, T. K. Dodds and B. de Pager, *Noncommutative Banach function spaces*, Math. Z. 201 (1989), 583–587.

[8] T. Fack and H. Kosaki, *Generalized s-numbers of τ-measurable operators*, Pac. J. Math 123 (1986), 269–300.

[9] G. Ji, *Maximality of semifinite subdiagonal algebras*, Journal of Shaanxi normal university (natural science edition) 28 (1) (2000), 15–17.

[10] P. Jones, *L^∞ estimates for the $\overline{\partial}$-problem in a half plane*, Acta Math. 150 (1983), 137–152.

[11] S. Kisliakov, *Interpolation of H^p-spaces: some recent developments*, Function spaces, interpolation spaces, and related topics (Haifa 1995), Israel Mathematica and conference proceedings, Bar-Ilan University, Ramat Gan 13 (1999), 102–140.

[12] G. Pisier, *Interpolation between H^p spaces and non-commutative generalizations I*, Pacific J. Math. 155 (1992), 341-368.

[13] G. Pisier and Q. Xu, *Noncommutative L^p-spaces*, In Handbook of the geometry of Banach spaces Vol. 2 (2003), 1459–1517.

[14] S. Sakai, *C^*-algebras and W^*-algebras*, Springer-Verlag, New York, 1971.

[15] F. Sukochev, K. Tulenov and D. Zanin, *Nehari-type theorem for non-commutative Hardy spaces*, J. Geom. Anal. 27 (3) (2017), 1789–1802.

[16] M. Terp, *L^p-spaces associated with an arbitrary von Neumann algebra*, Notes, Math. Institute, Copenhagen Univ., 1981.

[17] T. Wolff, *A note on interpolation spaces*, Springer Lecture Notes in Math. 908 (1982), 199–204.

[18] Q. Xu, *Analytic functions with values in lattices and symmetric spaces of measurable operators*, Math. Proc. Camb. Phil. Soc. 109 (1991), 541-563.

[19] Q. Xu, *Applications du théorème de factorisation pour des à fonctions o valeurs in lattices opératours*, Studia Math. 95 (1990), 273-292.

College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, China.

E-mail address: bekjant@yahoo.com

Faculty of Mechanics and Mathematics, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan.

E-mail address: ospanov.kn@enu.kz