A NON-HYPERELLIPTIC CURVE WITH TORSION CERESA CYCLE MODULO ALGEBRAIC EQUIVALENCE

ARNAUD BEAUVILLE AND CHAD SCHÖN

ABSTRACT. We exhibit a non-hyperelliptic curve C of genus 3 such that the class of the Ceresa cycle $[C] - [C^-]$ in JC modulo algebraic equivalence is torsion.

1. INTRODUCTION

Let C be a complex curve of genus $g \geq 2$, and p a point of C. We embed C into its Jacobian J by the Abel-Jacobi map $x \mapsto [x] - [p]$; we denote by C^- the image of C under the involution $(-1)_{} : a \mapsto -a$ of J. The Ceresa class is the class $\cj(C) := [C] - [C^-]$ in the group $A_1(J)$ of 1-cycles on J modulo algebraic equivalence (it is independent of the choice of p). Since $(-1)_{}$ acts trivially on $H^0(J,\mathbb{Z})$ for p even, $\cj(C)$ belongs to the Griffiths group $G(J)$, the kernel of the cycle class map $A_1(J) \to H^{2g-2}(J,\mathbb{Z})$.

Ceresa classes have played a prominent role in the study of Griffiths groups, especially in the development of techniques for showing that a given element is non-zero [C, C-P, H]. In addition they played an important role in showing that $G(J)$ can have infinite rank [N]. As the conjectures of Bloch and Beilinson were developed and are studied $\cj(C)$ appears repeatedly [Bl, BST], [Z, §1.5], always as an element of infinite order.

When C is hyperelliptic, $\cj(C) = 0$; in fact $C - C^-$ is zero as a cycle when p is a Weierstrass point. In this note we will exhibit what we believe to be the first example of a non-hyperelliptic curve C with $\cj(C) = 0$ in $A_1(J) \otimes \mathbb{Q}$. The curve C has genus 3, and admits an automorphism σ of order 9, such that the quotient variety $J/\langle \sigma \rangle$ is uniruled. This implies that the Griffiths group of a resolution of $J/\langle \sigma \rangle$ is torsion; going back to J gives the result.

2. MAIN RESULT

Theorem. Let $C \subset \mathbb{P}^2$ be the genus 3 curve defined by $X^4 + XZ^3 + Y^3Z = 0$. Then $\cj(C) = 0$ in $A_1(J) \otimes \mathbb{Q}$.

Proof: Let ζ be a primitive 9-th root of unity. We consider the automorphism σ of C defined by $\sigma(X, Y, Z) = (X, \zeta^2 Y, \zeta^3 Z)$. We use the fixed point $p = (0, 0, 1)$ to embed C in its Jacobian J, so that the action of σ on J preserves C and C^-. We denote by V the quotient variety $J/\langle \sigma \rangle$, and by $\pi : J \to V$ the quotient map. Let $F \subset J$ be the subset of elements with nontrivial stabilizer; the singular locus $\Sing V$ of V is $\pi(F)$. We put $J^o := J \setminus F$ and $V^o := V \setminus \Sing V$.

Lemma 1. $\Sing V$ is finite; the points $\pi(x)$ for $x \in \Ker(1, -\sigma)$ are non-canonical singularities.

Proof: The space $T_0(J)$ is canonically identified with $H^0(C, K_C)^*$. The elements of $H^0(C, K_C)$ are of the form $L \frac{X}{Y^2 Z} \frac{dZ - ZdX}{dY^2 Z}$, with $L \in H^0(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(1))$ [FK, §9.3, Corollary of Theorem 1]. It follows that the eigenvalues of σ on $H^0(C, K_C)$ are $\zeta^5, \zeta^7, \zeta^8$, and those on $T_0(J) = H^0(C, K_C)^*$ are ζ, ζ^2, ζ^4.

Thanks to E. Colombo and B. van Geemen for their crucial input. The second named author thanks S. Katz and M. Reid for helpful discussions.
Therefore $\ker(1_J - \sigma^d)$ is finite for $0 < d < 9$, so F is finite. Since $1 + 2 + 4 < 9$, Reid's criterion [K] Theorem 3.1] implies that the singular points $\pi(x)$ for $x \in \ker(1_J - \sigma)$ are not canonical.

Lemma 2. Let V be a resolution of singularities; it suffices to prove that V has Kodaira dimension $-\infty$ [M]. Suppose this is not the case: there exist an integer $r \geq 1$ and a nonzero section of K_V^r. By restriction to $\rho^{-1}(V^o) \cong V^o$, we get a section ω of $K_{V^o}^r$, whose pull back under π is a nonzero section of $K_{\tilde{V}}^r$; therefore ω is a generator of $K_{\tilde{V}}^r$, hence extends to a generator of the reflexive sheaf $K_{\tilde{V}}^{[r]}$ (with the notation of [R]). By construction this generator remains regular on \tilde{V}, which means that the singularities of \tilde{V} are canonical [K] Proposition 1.2, contradicting Lemma 1.

Lemma 3. Let X be a uniruled smooth projective threefold. The Griffiths group $G(X)$ is torsion.

Proof: Let $\rho : \tilde{V} \to V$ be a resolution of singularities; it suffices to prove that \tilde{V} has Kodaira dimension $-\infty$. Suppose this is not the case: there exist an integer $r \geq 1$ and a nonzero section ω of $K_{\tilde{V}}^r$. By restriction to $\rho^{-1}(V^o) \cong V^o$, we get a section ω of $K_{V^o}^r$, whose pull back under π is a nonzero section of $K_{\tilde{V}}^r$; therefore ω is a generator of $K_{\tilde{V}}^r$, hence extends to a generator of the reflexive sheaf $K_{\tilde{V}}^{[r]}$ (with the notation of [R]). By construction this generator remains regular on \tilde{V}, which means that the singularities of \tilde{V} are canonical [K] Proposition 1.2, contradicting Lemma 1.

Remark. One can actually deduce from [BLS] Theorem 1 (ii) that $G(X) = 0$ – but we will not need this fact.

Proof of the Theorem: We can choose the resolution $\rho : \tilde{V} \to V$ so that $E := \rho^{-1}(\text{Sing} V)$ is a normal crossing divisor, whose irreducible components are smooth and rational [Fu] Corollary of Theorem 1.

Let C and C^- be the images in V of C and C^-, and let \tilde{C} and \tilde{C}^- be their proper transforms in \tilde{V}. We have $[\tilde{C}] - [\tilde{C}^+] = \frac{1}{\pi_*}([C] - [C^-]) = 0$ in $H^4(V^o, \mathbb{Q})$. Now we have an exact sequence [D Corollaire 8.2.8]

$$H^2(\tilde{E}, \mathbb{Q}) \xrightarrow{i_*} H^4(\tilde{V}, \mathbb{Q}) \to H^4(V^o, \mathbb{Q}),$$

where \tilde{E} is the normalization of E, and i the composition $\tilde{E} \to E \to \tilde{V}$. Therefore we have $[\tilde{C}] - [\tilde{C}^-] = i_*z$ in $H^4(\tilde{V}, \mathbb{Q})$ for some class $z \in H^2(\tilde{E}, \mathbb{Q})$. Since the components of \tilde{E} are rational, z is the class of an element \tilde{z} of $A_1(\tilde{E}) \otimes \mathbb{Q}$. Then $[\tilde{C}] - [\tilde{C}^-] - i_*\tilde{z} \in A_1(\tilde{V}) \otimes \mathbb{Q}$ is homologous to zero, hence equal to zero by Lemma 3. Restricting to $\tilde{V} - E \cong V^o$, we get $[\tilde{C}] - [\tilde{C}^-] = 0$ in $A_1(V^o \otimes \mathbb{Q})$, hence $[\tilde{C}] - [\tilde{C}^-] = \pi^*(\tilde{C} - \tilde{C}^-) = 0$ in $A_1(J^o) \otimes \mathbb{Q}$. But the restriction map $A_1(J) \to A_1(J^o)$ is an isomorphism [Fu] Example 10.3.4, hence the Theorem.

3. COMPLEMENTS

Corollary 1. Let Θ be a Theta divisor on J. We have $[C] = \frac{[\Theta]^2}{2}$ in $A_1(J) \otimes \mathbb{Q}$ (Poincaré formula).

Proof: Indeed for any genus 3 curve C we have $[\Theta]^2 = [C] + [C^-]$ in $A_1(J) \otimes \mathbb{Q}$ (if p, q are two distinct points of C, the intersection of Θ with its translate by $[p] - [q]$ is the union of a translate of C and a translate of C^- — see for instance [Mu] Lecture IV]). Thus the corollary is equivalent to the theorem.

Recall that the modified diagonal cycle $\Gamma(C, p)$, first considered in [G-S], is the element $\Gamma(C, p) = A_1(C^o)$ defined as follows. We denote by $[x, x, x], [x, x, p], [x, p, p]$ etc. the classes in $A_1(C \times C \times C)$ of the image of C by the maps $x \mapsto (x, x, x), x \mapsto (x, x, p), x \mapsto (x, p, p)$ etc. Then:

$$\Gamma(C, p) := [x, x, x] - [x, x, p] - [x, p, p] - [p, p, p] + [x, x, p] + [x, p, p] + [p, p, p] + [p, p, x].$$

By [FLV] Remark 3.4, we have
Corollary 2. \(\Gamma(C, p) = 0 \) in \(A_1(C^3) \otimes \mathbb{Q} \).

Finally let us mention the result of \([B3]\): the class of \([C] - [C^-] \) in the intermediate Jacobian \(J_1(J) \) is torsion. It can be also deduced from our theorem, though the proof in \([B3]\) is more direct.

In \([BLLS]\) the authors construct a genus 7 curve with the same property, and suggest that the corresponding Ceresa cycle should be torsion modulo algebraic equivalence (Remark 1.2).

REFERENCES

[B1] A. Beauville: Sur l’anneau de Chow d’une variété abélienne. Math. Ann. 273 (1986), 647-651.
[B2] A. Beauville: Algebraic cycles on Jacobian varieties. Compositio Math. 140 (2004), 683-688.
[B3] A. Beauville: A non-hyperelliptic curve with torsion Ceresa class. C.R. Acad. Sci. Paris, to appear; preprint arXiv:2105.07160.
[BLLS] D. Bisogno, W. Li, D. Litt, P. Srinivasan: Group-theoretic Johnson classes and non-hyperelliptic curves with torsion Ceresa class. Preprint arXiv:2004.06146.
[Bl] S. Bloch: Algebraic cycles and values of L-functions. J. reine angew. Math. 350 (1984), 94-107.
[Bl-S] S. Bloch, V. Srinivas: Remarks on correspondences and algebraic cycles. Amer. J. Math. 105 (1983), no. 5, 1235-1253.
[B-K] E. Brieskorn, H. Knörrer: Plane algebraic curves. Birkhäuser Verlag, Basel, 1986.
[BST] J. Buhler, C. Schoen, J. Top: Cycles, L-functions and triple products of elliptic curves. J. Reine Angew. Math. 492 (1997), 93-133.
[C] G. Ceresa: \(C \) is not algebraically equivalent to \(C^- \) in its Jacobian. Ann. of Math. 117 (1983), no. 2, 285-291.
[C-P] A. Collino, G. P. Pirola: The Griffiths infinitesimal invariant for a curve in its Jacobian. Duke Math J. 78 (1995), 59-88.
[D] P. Deligne: Théorie de Hodge, III. Publ. Math. IHES 44 (1974), 5-77.
[Fuj] A. Fujiki: On resolutions of cyclic quotient singularities. Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 1, 293-328.
[Ful] W. Fulton: Intersection theory. Ergebnisse der Math. 2. Springer-Verlag, Berlin, 1984.
[FLV] L. Fu, R. Laterveer, C. Vial: Multiplicative Chow-Künneth decompositions and varieties of cohomological K3 type. Ann. Mat. Pura Appl. 200 (2021), no. 5, p. 2085-2126.
[G-S] B. Gross, C. Schoen: The modified diagonal cycle on the triple product of a pointed curve. Ann. Inst. Fourier 45 (1995), 649-679.
[H] B. Harris: Homological versus algebraic equivalence in a Jacobian. Proc. Nat. Acad. Sci. U.S.A. 80 (1983), no. 4, 1157-1158.
[M] Y. Miyaoka: On the Kodaira dimension of minimal threefolds. Math. Ann. 281 (1988), 325-332.
[Mu] D. Mumford: Curves and their Jacobians. The red book of varieties and schemes, Lecture Notes in Math. 1358. Springer-Verlag, Berlin, 1999.
[N] M. Nori: Cycles on the generic abelian threefold. Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 3, 191-196.
[R] M. Reid: Canonical 3-folds. Journées de Géometrie Algébrique d’Angers, pp. 273-310, Sijthoff & Noordhoff, 1980.
[V] C. Voisin: Birational invariants and decomposition of the diagonal. Birational Geometry of Hypersurfaces, pp. 3-71; Lecture Notes of the UMI 26, Springer, 2019.
[Z] S-W Zhang: Gross-Schoen cycles and dualising sheaves. Invent. math. 179 (2010), no. 1, 1-73.