Protein, Carbohydrate and Lipid Analysis of *Ficus ficoides* (Lamarck, 1822) from Vanjiure, Southeast Coast of India

K.G. Selvi* and P. Jeevanandham

PG and Research Department of Zoology, T.B.M.L.College, Porayar-609307, TamilNadu, India

*Corresponding author

Abstract

The marine edible gastropod *Ficus ficoides* was collected from Vanjiure coast and its biochemical composition quantified in different organs such as whole animal, Foot, Mantle, Gill, Hepatopancreas, Testis & Ovary sex wise by using a standard methods. The percentage of total protein, Carbohydrate and lipid range was recorded in different organs of male *F. ficoides* was WA, F, M, G, HP, & T was (22.19-25.23, 44.98-47.50, 34.24-45.73, 35.23-42.99, 43.08-46.85 and 35.63-39.12) (12.39-18.34, 11.80-16.41, 15.51-17.97, 17.76-20.50,15.80-20.00 & 15.22-18.59) and (21.75-23.91, 17.74-26.46, 22.28-23.34, 18.93-22.62, 22.95-24.97 & 26.51-29.71) respectively. In female it was WA, F, M, G, HP, & O was (20.95-23.90, 35.14-38.48, 31.41-35.92, 34.13-40.41, 33.39-37.76 & 29.08-34.05), (11.96-14.25, 10.31-13.00, 11.63-14.21, 14.57-16.90, 12.00-16.33 & 10.84-15.73) and (18.19-21.61, 17.03-21.56, 15.40-20.24, 15.84-21.40, 15.01-21.49 & 22.54-25.67) respectively. Season wise the maximum and minimum biochemical content recorded and analyzed in different organs and the F- value of ANOVA shows significance at alpha 0.05 in both male and female animal. Present study result shows the seasonal variations of protein, carbohydrate and lipid content is due to the availability of food and growth of this study animal.

Keywords

Biochemical composition, seasons, organs, sex, Anova.

Introduction

Figsnails (Mesogastropods: Ficidae) are commonly called palchangu found in the warm seas of the world (Feinberg, 1979). Figsnails can be caught in sandy or muddy sub tidal habitats by bottom trawling (Lai, 1987).

In most of the Indian coasts it was seen that molluscs family so collected during fishing are regarded as fishery waste and are not used for edible purposes in India but rather used for poultry feedings, manure preparations and ornamental purposes. These molluscs, however, are a vital source of bioactive compounds of pharmaceutical importance (Morse *et al.*, 1991).

The demand for protein rich food is increasing, especially in developing countries, stimulating the exploration of unexploited or non-traditional resources. In contrast to other countries the value of the edible gastropods as food has not been
realized in India by majority of the people. The nutritional potential of the edible gastropod *Ficus ficoides* captured from Vanjiure coast has largely remained unexploited locally.

The knowledge on biochemical composition of any edible organisms is extremely important since the nutritive value is reflected in its biochemical contents (Nagabhushanam and Mane, 1978). Investigation on biochemical composition in different body parts will be more meaningful than the whole animal (Giese, 1969). Seasonal variations in the biochemical constituents of gastropod were reported by Stickle, 1973; Lambert and Dehnel, 1974; Suryanarayanan and Nair, 1976; Ansari, *et al* 1981; Maruthamuthu, 1988; Thivakaran, 1988; Stella, 1995 and Shanmugam, 2006.

Cyclical changes in biochemical composition of animal tissue are mainly studied to assess the nutritive status of an organism. This information may, however, be used in supplementing other studies like assessment of the course of the reproductive cycle. Marine bivalves indicated that seasonal cycle of energy storage and biochemical cycles are closely related to reproductive activity (Ruiz, *et al*., 1992).

Hence, the present study is planned to observe the protein, carbohydrate and lipid content in different organs such as the foot, mantle, gill, hepatopancreas, Testis, Ovary and whole animal body tissue of adult male and female animals were collected fortnightly from the field and were brought to the laboratory and kept in the tanks filled with sea water for 24 hours to ensure that the gut contents were released. These animals were dissected and the respective tissues were pooled up for biochemical analysis. The proximate compositions such as protein, carbohydrate and lipid of the experimental samples were determined by using standard methods and values were expressed as percentage of wet weight (mg/100mg) tissue.

Test Sample Preparation

To observe the protein, carbohydrate and Lipid content in different organs such as the foot, mantle, gill, hepatopancreas, Testis, Ovary and whole animal body tissue of adult male and female animals were collected from Vanjiure (Latitude: 100 51’52” N and Longitude: 0790 50’ 56” E) coast. The study was conducted from January 2014 to December 2014. Four seasons recognized at the study area viz., post monsoon (January –March), summer (April-June), Pre monsoon (July-September) and Monsoon (October -December). The Northeast monsoon brings in heavy rainfall to the study area and is the deciding factor of the nature and extent of various seasons.

Estimation of Total Protein

The Folin-Ciocalteu Phenol method of Lowry, *et al*., 1951 was adopted for the estimation of total protein in the tissue.

Estimation of Total Carbohydrate

The estimation of total carbohydrate content, the procedure of Dubois, *et al*., 1956 using phenol-sulfuric acid was followed.

Estimation of Total Lipid

The total lipid was estimated gravimetrically using chloroform-methanol method described by Folch, *et al*. (1956).
Statistical Analysis

Statistical significance was evaluated by using ANOVA two factors with MS Office Excel Statistical Tool pack.

Results and Discussion

Biochemical contents quantified during the entire study period shown in Table 1-3. The fluctuation of protein, carbohydrate and lipid in the entire study period is due to the availability of food, growth and reproductive cycle.

Biochemical contents in male \textit{F. ficoides}:
The percentage of total protein range was recorded in different organs of adult species was whole animal body tissue (WA), Foot (F), Mantle (M), Gill (G), Hepatopancreas (HP), and Testis (T) was 22.19-25.23, 44.98-47.50, 34.24-45.73, 35.23-42.99, 43.08-46.85 and 35.63-39.12 respectively. The carbohydrate content observed in the different organs viz., WA, F, M, G, HP & T were 12.39-18.34, 11.80-16.41, 15.51-17.97, 17.76-20.50, 15.80-20.00 & 15.22-18.59 respectively. The range of lipid content observed in the organs of WA, F, M, G, HP & T were 21.75-23.91, 17.74-26.46, 22.28-23.34, 18.93-22.62, 22.95-24.97 & 26.51-29.71 respectively

Biochemical contents in Female \textit{F. ficoides}:
The percentage of total protein range was recorded in different organs of adult species was whole animal body tissue (WA), Foot (F), Mantle (M), Gill (G), Hepatopancreas (HP), and Ovary (O) was 20.95-23.90, 35.14-38.48, 34.24-45.73, 35.23-42.99, 33.39-37.76, and 29.08-34.05 respectively. The range of lipid content observed in the organs of WA, F, M, G, HP & T were 18.19-21.61, 17.03-21.56, 15.40-20.24, 15.84-21.40, 15.01-21.49 & 22.54-25.67 respectively.

Season Wise Biochemical Content

Season wise the maximum and minimum biochemical content recorded in different organs shows significant results Table 4-5. Seasonal changes of protein, carbohydrate and lipid content proves the growth and reproductive cycle of the study animal \textit{F. ficoides}.

In the male \textit{F. ficoides} the maximum protein content observed seasons and its respective organ was Postmonsoon- HP (46.85) and rest of the seasons the foot has protein between ranges of 44.98-47.50. The whole animal body tissue shows minimum protein in all the seasons with the ranges of 22.19-25.23. In case of female \textit{F. ficoides} the highest and lowest of protein recorded in the organ of gills & WA body tissues in all the seasons were Postmonsoon (36.97 & 39.00), summer(48.41 & 22.64), Premonsoon (40.11 & 22.12) & Monsoon (35.37 & 20.95) respectively.

Carbohydrate was quantified in both male and female animal’s season wise. In both male and female maximum carbohydrate observed in the organ of gill in all the seasons were postmonsoon (20.50, 15.66), summer (19.86, 16.90), Premonsoon (19.06, 15.58) and Monsoon (17.76, 14.57). The minimum carbohydrate recorded in both male and female \textit{F. ficoides} in the organ of foot in all the seasons were postmonsoon (16.41, 10.31), summer (15.31, 12.29), Premonsoon (13.00, 13.00) and Monsoon (11.80, 10.79) respectively.

In all the seasons the highest lipid content recorded in the organ of Testis & Ovary
were postmonsoon (26.51, 22.86), summer (28.32, 23.27), Premonsoon (29.71, 25.65) and Monsoon (26.87, 22.54). The minimum lipid observed in different organs of male animal were postmonsoon (mantle-23.24), Summer & premonsoon (gills-22.62 & 21.00) and monsoon (foot-17.74). In female animal minimum lipid observed data were postmonsoon & monsoon (HP-18.45 & 15.01) and summer & premonsoon was (mantle-20.24 & 17.72) respectively.

In the present study the fluctuations in the biochemical constituent are largely attributable to the reproductive and feeding activities of the study animal. Further, the male *F. ficoides* have higher percentage of protein content than the female animal in all the seasons. Male and female *F. ficoides* has maximum protein in foot and gill organ shows more activity during the season of monsoon is a copulation period and minimum amount of protein recorded during the season of post monsoon period is the snail shows less activity after that spawning period. This present study was supported by Ranajit kumar khalua, *et al.*, 2014 in his work he is reported that the maximum protein storage is due to the edible gastropod snail Bellama bengalensis having more activity during spawning period. This present work was supported by earlier studies of Soma Saha, 2004 in *K. opima* and similar, observations have been made by Palpandi *et al.* 2010 in *C. melo* and *Thais mutabilis* by Kamalkanth *et al* 2014.

Fig.1 Ficus ficoides
Table 1 Seasonal Changes of Protein Content in Different Organs of *F. ficoides* in Both Male and Female Animals

Seasons	Whole Animal body	Foot	Mantle	Gill	Hepatopancreas	Gonad														
	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀
Post-mer	25.23 ± 0.10	23.90 ± 0.5	46.58 ± 2.8	35.14 ± 0.74	45.73 ± 2.60	31.41 ± 5.77	42.99 ± 0.60	36.97 ± 1.31	46.85 ± 0.36	33.39 ± 0.67	39.12 ± 0.25	29.08 ± 0.83								
Summer	24.70 ± 1.2	22.64 ± 0.7	47.50 ± 1.16	38.48 ± 1.27	42.60 ± 1.68	34.79 ± 2.03	42.10 ± 1.54	40.41 ± 0.23	44.28 ± 2.86	37.76 ± 0.06	36.86 ± 2.46	30.52 ± 2.79								
Pre-mer	23.67 ± 0.5	22.12 ± 0.4	47.43 ± 0.8	37.60 ± 1.28	39.97 ± 3.72	35.92 ± 2.29	41.00 ± 1.78	40.11 ± 3.32	44.90 ± 2.79	35.67 ± 1.31	35.69 ± 5.04	31.92 ± 2.64								
Monsoon	22.19 ± 0.2	20.95 ± 0.39	44.98 ± 2.91	35.37 ± 2.85	34.24 ± 2.92	34.03 ± 1.48	35.23 ± 0.99	34.13 ± 1.35	43.08 ± 0.80	35.23 ± 0.99	35.63 ± 0.51	34.05 ± 1.17								

♀ - Male; ♂ - Female

Table 2 Seasonal Changes of Carbohydrate Content in Different Organs of *F. ficoides* in Both Male and Female Animals

Seasons	Whole Animal body	Foot	Mantle	Gill	Hepatopancreas	Gonad														
	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀	♂	♀
Post-mer	18.34 ± 5.56	13.28 ± 5.69	16.41 ± 1.75	10.31 ± 1.13	17.97 ± 0.31	14.21 ± 1.04	20.50 ± 0.36	15.66 ± 1.14	20.10 ± 0.50	16.33 ± 2.01	18.59 ± 2.06	15.73 ± 0.69								
Summer	17.56 ± 2.76	14.26 ± 1.33	15.31 ± 1.75	12.29 ± 1.13	17.29 ± 0.88	14.08 ± 1.49	19.68 ± 0.90	16.90 ± 0.56	17.10 ± 5.49	13.53 ± 1.57	18.23 ± 2.91	14.48 ± 1.06								
Pre-mer	16.67 ± 2.76	14.25 ± 1.33	13.60 ± 1.75	13.00 ± 1.13	17.03 ± 0.52	13.23 ± 0.31	19.06 ± 0.70	15.58 ± 1.51	15.80 ± 2.71	12.94 ± 0.64	17.20 ± 2.14	13.78 ± 0.89								
Monsoon	12.39 ± 2.76	11.96 ± 1.33	11.80 ± 1.75	10.79 ± 1.13	15.51 ± 0.21	11.63 ± 1.36	17.76 ± 2.15	14.57 ± 1.00	17.39 ± 0.69	12.00 ± 0.26	15.22 ± 2.51	10.84 ± 1.53								

288
Table 3: Seasonal Changes of Lipid Content in Different Organs of *F. ficoides* in Both Male and Female Animals

Seasons	Whole Animal body	Foot	Mantle	Gill	Hepatopancreas	Gonad
	♂	♀	♂	♂	♂	♂
Post-monsoon	23.91 ± 0.80	21.14 ± 1.01	26.46 ± 1.95	20.77 ± 0.76	23.34 ± 1.80/21.50 ± 1.10	18.92 ± 3.83
Summer	23.66 ± 1.70	21.61 ± 0.38	24.48 ± 2.60	21.56 ± 1.23	23.30 ± 1.09/22.62 ± 1.01	21.40 ± 1.21
Pre-monsoon	23.55 ± 0.43	21.00 ± 0.68	22.45 ± 0.85	20.40 ± 1.93	22.65 ± 1.14/21.00 ± 0.88	19.70 ± 1.10
Monsoon	21.75 ± 1.22	18.19 ± 1.78	17.74 ± 0.85	17.03 ± 1.93	22.28 ± 1.14/18.93 ± 0.53	15.84 ± 1.96

Table 4: Anova Analysis for between Seasons and Organs in Male *F. ficoides*

Source of Variation (Male)	SS	Df	MS	F	P-value
Protein					
Between seasons	86.51336	3	28.83779	9.371048	0.000982
Between organs	1308.362	5	261.6724	85.03234	1.83E-10
Error	46.15992	15	3.077328		
Carbohydrate					
Between seasons	42.77636	3	14.25879	14.81754	9.34E-05
Between organs	53.86225	5	10.77245	11.19458	0.000124
Error	14.43437	15	0.962291		
Lipid					
Between seasons	27.53379	3	9.177929	4.02927	0.027503
Between organs	104.6746	5	20.93492	9.190793	0.000365
Error	34.16721	15	2.277814		

Significance at *p* = 0.05
Table 5 Anova Analysis for between Seasons and Organs in Female *F. ficoides*

Source of Variation	(Female)	SS	Df	MS	F	P-value
Protein						
Between seasons		25.96388	3	8.654626	2.757386	0.078768
Between organs		638.5666	5	127.7133	40.6898	3.34E-08
Error		47.0806	15	3.138706		
Carbohydrate						
Between seasons		21.36458	3	7.121528	6.218702	0.005884
Between organs		33.82844	5	6.765688	5.907974	0.003271
Error		17.17769	15	1.145179		
Lipid						
Between seasons		61.03879	3	20.34626	19.8739	1.75E-05
Between organs		80.49049	5	16.0981	15.72436	1.68E-05
Error		15.35652	15	1.023768		

Significance at p = 0.05

Carbohydrate content was higher in the gills of both male and female *F. ficoides* in all the seasons followed by foot, mantle, Hepatopancreas, gonad and whole animal body. Season wise changes in the carbohydrates content may be due to accumulation and utilization of carbohydrate at different stages of their life cycle like gametogenesis and spawning. Similar work was reported by Baskara 2001 in the foot tissue of Lambis lambis and in the C.melo by Palpandi et al., 2010.

In the present study the lipid content was higher than the carbohydrate and lower than that of the protein values. The highest lipid content recorded in all the seasons in the gonad of both male and female *F. ficoides*.

This similar work is reported in other edible molluscs are Ananda Kumar et al., 1986 reported in the value of lipid to range from 15.0- 23.6 in Hemifusus pugilinus; Ramesh, et al., 1992 observed in Chicoreus ramosus, the lipid values assessed at 2 percent in foot muscle; Rajakumar, 1995 observed the lipid content in Rapana rapiformis ranged from 0.85-2.12 percent in male and 0.95-2.96 in female.

The spawning cycle and food supply are the main factors responsible for this seasonal variation of protein, carbohydrate and lipid content. The nutritional contents of adult *F. ficoides* are closely linked to the reproductive cycle and availability of natural food.

Acknowledgement

Authors are thankful to the Principal, HOD, Associate & Assistant professors of the Department of Zoology, T.B.M.L.College, Porayar for providing necessary facilities to execute this work.
References

Ananda Kumar, S., Amutha Rani, G., Gladys Chandra Leela, A., Pragatheswaran, V. 1986. Biochemical studies on a little known marine gastropod Hemifusus pugilinus Born (Volemidae). *J. Marine Biol. Assoc. India*, 28: 1–2.

Anasri, A., Parulekar, A.H., Motondkar, S.G.D. 1981. Seasonal changes in meat weight and biochemical composition in the black clam, Villorita cyprinoides (grey). *Indian J. Marine Sci.*, 10: 12–137.

Baskara, S.S. 2001. Studies on eco biology of the spider conch Lambis lambis (Linne, 1758) from the Mandapam waters, southeast coast of India. Ph.D thesis Annamalai University, 160.

Beukema, J.J. 1997. Caloric values of marine invertebrates with an emphasis on the soft parts of marine bivalves. *Oceanography. Mar. Biol.*, 35: 387–414.

Caers, M., Coutteau, P., Sorgeloo, P. 2000. Impact of starvation and of feeding algal and artificial diets on the lipid content and composition of juvenile Oysters (Cossostrea gigas) and Clams (T.philippinarum). *Mar. Biol.*, 136: 891–899.

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F. 1956. Colorimetric method for determination of sugar and related substances. *Anal. Chem.*, 28(3): 350–356.

Folch, J.M., Lees, G. H. 1956. Sloane Stanley: A simple method for the isolation and purification of total lipids from animal tissues. *J. Biol. Chem.*, 226: 497–509.

Gabbott, P.A., Bayne, B.L. 1973. Biochemical effects of temperature and nutritive stress on Mytilus edulis.L. *Mar. Biol. Assoc. UK*, 53: 269–286.

Galap, C., Leboulenger, F., Grillot, J.P. 1997. Seasonal variations in biochemical constituents during the reproductive cycle of the female dog cockle Glycymeris glycymeris. *Mar. Biol.*, 129: 625–634.

Giese, A. C. 1969. A new approach to the biochemical composition of the molluscan body. *Oceanography Mar. Biol. Ann. Rev.*, 7: 175–229.

Kamalkanth, S., Christy Ponni, A., Muniyan, M., Chandravathani, S. 2014. Biochemical composition of intertidal Muricid Gastropod Thyas mutbbilis (Link) in Tranquebar, Nagapattinam District, Southeast coast of TamilNadu, India. *Int. J. Modern Res. Rev.*, 2(1): 8–14.

Lai, K.Y. 1987. Marine gastropods of Taiwan (2), Taipei: Taiwan Museum, 116.

Lambert, P., Dehnelm, P.A. 1974. Seasonal variations in the biochemical composition during the reproductive cycle of intertidal gastropod Thai lamellose (Gmelin) (Gastropod: Prosoboeanchia) *Can. J. Zool.*, 52: 305–318.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin phenol reagent. *J. Biol. Chem.*, 193: 265–273.

Maruthamuthu, S.1988. Studies on Littorina undulata (Gray,1839) (Mesogastropods: ittorinidae) from Tranquebar and Mandapam Waters, Southeast Coast of India. Ph.D.Thesis, Annamalai University, India, 106–133.

Morse, A.N.C., Thompson, M.F., Sarajoni R., Nagabhushanam, R. 1991. Bioactive compounds from marine organisms with emphasis on the Indian Ocean. *Marine Drugs*, 16: 164–167.
Nagabhushanam, R., Mane, V.H. 1978. Seasonal variation in the biochemical composition of *perna viridis* at Ratnagiri on the west coast of India. *Hydrobiologia*, 57(3): 69–72.

Palpandi, C., Vairamani, S., Shanmugam, A. 2010. Proximate composition and fatty acid profile of different tissues of the marine neogastropod *Cymbium melo* (Solander, 1786). *Indian J. Fish.*, 57(3): 35–39.

Rajakumar, T. 1995. Studies on *Rapana rapiformis* (Born)(Mollusca:Gastropoda:Muricidae: Rapaninae) from Parangipettai coastal water, India. Ph.D. Thesis, Annamalai University, 185.

Ramesh, M.X., Ayyakkannu, K. 1992. Nutritive value of *Chicoreus ramosus*: A status report. *Phuket Mar. Biol. Cent. Spec.*, 10: 14.

Ranajit Kumar Khalua, Satyajit Tripathy, Bhagyasree Paul, Debabrata Bairy. 2014. Seasonal Variation of Carbohydrate, Protein and Lipid of Common Freshwater Edible Gastropod (*Bellamya bengalensis*) of Medinipur District, West Bengal. *Res. J. Biol.*, 2: 49–52.

Ruiz, C., Abad, M., Sedano, F., Martin, O.G., Sanchez, J.L. 1992. Influence of seasonal environmental changes on the gamete production and biochemical composition of Crassostrea gigas (Thunberg) in suspended culture in El Grove, Galicia, Spain. *J. Exp. Mar. Biol. Ecol.*, 155: 249–262.

Shanmugam, A., Bhuvaneswari, T., Arumugam, M., Nazeer, R.A., Sambasivam, S. 2006. Tissue chemistry of *Babylonia spirata* (Linnaeus). *Indian J. Fish.*, 53(1): 33–39.

Soma Saha. 2004. Tissue chemistry of inflated clam *Katelysia opima* (Gmelin). M. Sc. thesis, Annamalai University, India, 25.

Spector, A.A., Yorek, M.A. 1985. Membrane lipid composition and cellular function. *J. Lipid Res.*, 26: 1015–1035.

Stella, C. 1995. Studies on the taxonomy and ecobiology of *Chicoreus* sps. (Gastropoda:Family: Muricidae) Parangipettai, Southeast Coast of India (Lat 11030°N; Long 79035°E) Ph.D., Thesis, Annamalai University, India. 1–195.

Stickle, W.B., Mrozek, J.P. 1973. Seasonal changes in the body component of the subtidal prosobranch *Fusitrition oregonensis*. *Veliger*, 16: 195–199.

Suryanarayanan, H., Nair, N.B. 1976. Seasonal variation in the biochemical constitutes of *Cellona radiatta* (Born). *Indian J. Mar. Sci.*, 5: 126–128.

Thivakaran, G.A. 1988. Studies on Littorinidae *Littorina quadricentus* (Philippi) and *Nodillittorina pyramidalis* (Ouoy and Gaimard, 1833) (gastropoda: Prosobranchia: Littorinidae) from the Tranquebar rocky shore (Southeast Coast of India) Ph.D., Thesis, Annamalai University, India, 179.

How to cite this article:
Selvi, K.G., and Jeevanandham, P. 2016. Protein, Carbohydrate and Lipid Analysis of *Ficus ficoides* (lamarck, 1822) from Vanjire, Southeast coast of India. *Int.J.Curr.Microbiol.App.Sci.* 5(5): 284-292. doi: http://dx.doi.org/10.20546/ijcmas.2016.505.031