Landslide Triggered by Orthogonal Tunnel Excavation and Prevention Measures in Jimei Village, Sichuan Province, China

zhongfu wang (mailto:xfjtwzf@163.com)
North China University of Water Resources and Electric Power

Han Dong Liu
North China University of Water Resources and Electric Power

Si Ming He
Institute of Mountain Hazards and Environment Chinese Academy of Sciences

Yunfeng Fang
Hydrochina Huadong: Hydrochina Huadong Engineering Corp

Research Article

Keywords: tunnel-landslide system, ancient landslide, stability evaluation, deformation monitoring, numerical simulation, prevention measures

DOI: https://doi.org/10.21203/rs.3.rs-530013/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Landslide triggered by orthogonal tunnel excavation and prevention measures in Jimei Village, Sichuan Province, China

Zhong Fu Wang¹,²,³ (Corresponding author) E-mail: xfjtwzf@163.com
Han Dong Liu¹,² E-mail: Liuhandong@ncwu.edu.cn
Si Ming He⁴ E-mail: hsm@imde.ac.cn
Yunfeng Fang⁵ E-mail: fang_yf@ecidi.com

1. North China University of Water Resources and Electric Power. Zhengzhou 450046, China
2. Henan Key Laboratory of Geotechnical and Structure Engineering. Zhengzhou 450046, China
3. Research Center on Levee Safety and Disaster Prevention, MWR, Zhengzhou 450003, China
4. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
5. Zhejiang Huadong Construction Engineering Co., Ltd, Hangzhou 310014, China

Abstract: The axis of highway tunnels constructed in mountains under complex geological conditions is usually orthogonal to the section of potential landslide. The tunnel construction may lead to landslide, which then may result in the deformation and/or cracking of tunnels. Therefore, it is very important and practical for tunnel projects to study the complex interaction mechanism between orthogonal tunnel and landslide and provide appropriate prevention measures for tunnel.

This paper, on the base of geological survey, on-site monitoring and numerical simulation, analyzed the deformation and reason of an ancient landslide revived by tunnel construction and studied the prevention measures for tunnel. The results show that the reason for the revival of the
ancient landslide resulted mainly from the tunnel construction through sliding surface, and the
ancient landslide is generally stable because most landslide deformation occurred beyond the
tunnel and in the upper part of landslide. The numerical simulation was used to optimize the
tunnel prevention scheme by the analysis to the stability, stresses and deformation of landslide
based on stress-strain control theory. The original anti-slide pile design was cancelled and finally
the tunnel is reinforced by upper soil removal and moving upper soil into toe. This tunnel has
successfully completed and are under good operation. The used prevention measures were proven
to be effective according to the monitoring data about displacements and stress of landslide and
tunnel during operation period, and saved about seven million USS. The research results in this
paper may offer a beneficial reference to projects with similar geological conditions.

Keywords: tunnel-landslide system, ancient landslide, stability evaluation, deformation
monitoring, numerical simulation, prevention measures

1. Introduction

China suffers from abundant severe geological hazards each year, and more than 65% of
these hazards are statistically landslides (Technical Guidance Centre for Geological Disasters, 2019).
When various tunnels are constructed in the mountains in southwestern China, it is very difficult
to avoid potential large landslides due to the insufficient instigation on complex geological
conditions, although the distance between tunnels and potential landslides are set to be as far as
possible in the initial design stage. Tunnels may interact strongly with landslides during tunnel
construction and operation. Slopes may creep or even slide due to tunnel construction, and then
tunnels suffer from deformation and cracking due to slope failure, which could pose a great threat
to the construction safety and operation of tunnel (Karakus and Fowell, 2005; Tang et al., 2014;
At present, some scholars have paid more attention to the interaction between tunnels and landslides and the damage to engineering structures, and have obtained some achievements.

Ruggeri et al. (2016) analyzed the deep-seated landslide which was triggered during the excavation of the Piscopio I tunnel of the new Ionian national road in Italy, and then provided the suitable stabilizing measures. Zhang et al. (2017) analyzed the interaction between tunnel and landslide in mountain area, and studied the minimum safety distance between tunnel vault and sliding belt and its influence factors on the base of the slip-line theory. Zhou et al. (2020) analyzed the structural damage of tunnel concrete and sidewalls induced by loess landslide and investigated the landslide deformation. The interaction between a slow-moving landslide in clay soil and a railway tunnel protected by sheet pile walls, which goes through the landslide accumulation, was presented by long-term deformation and stress monitoring and FEM modelling (Vassallo et al. 2016, Mishra et al. 2017, Minardo et al. 2018, Vassallo et al., 2019).

Konagai et al. (2005) analyzed the landslide-induced damage to Kizawa tunnel in the 2004 Mid-Niigata Prefecture earthquake in Japan. Kaya et al. (2015) conducted a comprehensive analysis to the slope failure mechanism triggered by the excavation of Arakli tunnel by kinetics, limit equilibrium method and numerical simulation. Jiao et al. (2013) assessed the effect of two coal mine tunnels on an ancient landslide by using borehole data, deformation monitoring and numerical simulation, and the results show that the landslide is generally stable, partially with shallow slope failure. De-pei et al. (2002) and Jian-qiang et al. (2002) studied the relationship between tunnel deformation and landslide, presented five geological models for their relationship, and proposed an idea that landslide may be predicted by tunnel deformation. Tao and Zhou (2003,
2007) analyzed the landslide-tunnel interaction and deformation based on three types of geological mechanical models, and concluded that the distance between tunnel and sliding surface is the key factor for tunnel deformation. Liu et al. (2012) carried out a preliminary analysis to various geological problems and treatment measures for Chuanzhusi highway tunnel through ancient landslide. Ma (2003, 2007) established the tunnel-landslide interaction theory on the base of tunnel type and geological model, and analyzed the tunnel and landslide deformation mechanism and stabilizing measures under consideration of parallel, oblique and orthogonal directions.

The above research results show that tunnel-landslide systems differ greatly in stress and deformation. Generally, the tunnel-landslide interaction decreases with increasing distance. Moreover, when the tunnel orthogonally crosses the landslide, especially crosses the sliding belt of thick landslide, they will interact heavily with each other, which finally results in the strong cracking and deformation of tunnel and then poses a great threat to projects. This paper took the example of Jimei tunnel in southwest China orthogonally across a 60m thick ancient landslide, and analyzed the tunnel-landslide deformation and prevention measures based on geological survey, on-site monitoring and numerical simulation.

2. Regional geological setting

As a part of S26 highway in Sichuan Province in China, the Xuyong-Gulin highway begins from Xuyong County, Luzhou City, and ends at Erlang Town, Gulin County, as shown in Fig. 1. The study area is north of Yunnan-Guizhou Plateau and south of Sichuan Basin, generally with low terrain in the northwest and high terrain in the southeast. The study area belongs to medium-mountain landform, and steep scars here are well developed, with highest elevation of 1843m, lowest elevation of 700m, and height difference of more than 1000m.
Fig. 1 Location of Jimei tunnel. (A) schematic location in china; (B) location of Xuyong-Gulin highway; (C) 3D terrain of Jimi tunnel and landslide.

The geological survey results indicate that the strata in the study area, from top to bottom, consist basically of: (1) artificial Miscellaneous fill ($Q_{4}^{ac}$), generally distributed in the subgrade range; (2) landslide accumulation layer ($Q_{4}^{df}$), found in the landslide range; (3) colluvium and...
diluvium layer \( Q^{c+d} \), with gravel, block stones and gravel silty clay, which is basically in the slope at the landslide tail; (4) alluvial and pluvial layer \( Q^{a+p} \) of sub-circular and sub-angular boulders, basically distributed in the stream riverbed (Fig. 1); (5) upper Member of middle Jurassic Shaximiao Formation \( J^2_s \), consists mainly of interbedded fine mudstone and silty sandstone of various thicknesses; (6) lower Member of middle Jurassic Shaximiao Formation \( J^1_s \), made mainly of argillaceous siltstone and siltstone, partially with fine sandstone lens and oil shale.

The about 23 km long Baiyangping syncline, with approximate West-East (WE) axis and eastward inclination, has a great effect on the study area because the study area is located in the southeast part of the syncline. The study area is a bedding slope with predominant attitude of \( \angle 13^\circ \leq 37^\circ - 55^\circ \leq 15^\circ \), obviously steep at slope back and gentle at slope front. In the fine sandstone, there are two developed sets of joint, namely, L1: \( 160^\circ - 190^\circ \leq 65^\circ - 70^\circ \) and L2: \( 250^\circ \leq 80^\circ \).

The study area has four distinct seasons, abundant sunshine, and a little rainfall, with most rainfall in the period from May to August and annual precipitation of about 494.4 mm.

3. Tunnel description and site conditions

The Jimei tunnel and landslide are located in the K12+506 - K13+535 section in Jimei Village, Deyao Town, Gulin County, Sichuan Province, China, and the tunnel consists of one 978 m long left tunnel and 1029 m long right tunnel. The landslide approximately has a north dip direction, and the tunnel axis is orthogonal to the landslide profile. During the preliminary design stage, the landslide was identified as an ancient landslide, and then the tunnel was design to be located in the bedrock beyond the landslide. Unfortunately, the tunnel was found to be still through the ancient landslide during the tunnel excavation period. The left tunnel crossed...
orthogonally the ancient landslide in the ZK12+750 - ZK12+835 region and ZK13+042 - ZK13+107 region, respectively, which resulted in the deformation and cracking of landslide and tunnel.

3.1 Characteristics of ancient landslide

The landslide boundary was determined by the landslide deformation and adjacent terrain (Gu et al., 2017; Pánek et al., 2008). The ancient landslide is generally like W in shape, with slope of about 21°. A nameless stream, which is the branch of Gulin River, flows along the slope toe. The landslide is generally about 700m long and 400-900m wide, steep and wide in the upper part and gentle and narrow in the lower part, with developed gentle platform in the middle and lower part. The slope surface is mostly occupied by farmland, with a preliminary school and many resident houses. The landslide deformation had a direct effect on the tunnel structure and buildings on the slope surface. The ancient landslide was basically stable before tunnel excavation.

According to the geological survey and borehole data, the ancient landslide has different characteristics in different zones. The landslide can be divided into two zones (zone I and zone II). Zone I, about 980m long and 330m wide, is located in ZK 12+506 – ZK 12+840 section, with main sliding direction of about 354° and average slope of 18.5°, accounting for 53% of the whole landslide area (Fig. 2). Zone II, about 550m long and averagely 405m wide, is located in ZK12+840 - ZK13+160 section, with main sliding direction of about 358° and average slope of 17.8°, accounting for 47% of the whole landslide area. The borehole data show that the ancient landslide is up to 72.6m thick, averagely more than 50m thick, and the whole landslide is over 11 million m³ in volume, being the giant traction-type deep-seated rocky bedding landslide. This ancient landslide originally slid along weak structural plane, and subsequently suffered from
multi-zone multi-period and multi-layer slides due to long-term exterior forces.

Fig. 2 The geological structure of the study area

3.2 Composition of landslide

The sliding body in zone I consists mainly of block stone and gravel, with a little silty clay, and has uneven texture. There are a large number of undisintegrated rocks in zone I due to the incomplete disintegration after slope failure (Fig. 3 and Fig. 4). However, zone II is greatly
different from zone I in material components, which consists basically of gravel with breccia clay, plastic to soft plastic, with multi-layer smooth surfaces, partially with 16.5-50.0m long block stone.

The potential failure surface is basically identical to the original failure surface, and some potential sliding surface is directly on the underlying bedrock.

**Fig.3** Core from (A) borehole BK23; (B) borehole BK14.
3.3 Features of sliding surface and sliding bed

According to drilling (Fig.3 and Fig.4), supplementary investigation data by on-site survey (Fig.5), and deformation monitoring (Fig.6), geometry and position of the sliding surface was determined. Both the sliding surface and sliding bed in zone I and zone II share some similar features: (1) sliding happened along weak structural planes, and falls into the category of traction-type bedrock bedding landslide; (2) the sliding surfaces were greater than 60m in the front and middle sections, with large scale; (3) have experienced multi-zone, multi-stage, and multi-layer slide.

However, there are many differences between the two zones: (1) in longitudinal direction, the sliding surface of zone I is gentle and smooth, with gentle undulation, and the middle and back sections are steep; while that of zone II is greatly undulating, and the middle and back sections are gentle. In transverse direction, zone I varies sharply in the sliding surface boundary, with bedrock scarp found at the eastern boundary; while zone II changes greatly in thickness, largely undulating.

(2) All the sliding surfaces were found in the regions with adverse engineering geology, but for zone II, the sliding surface is mainly along the weak oil shale which is the interface between J₂ s
and $J_2^1$; for zone I, the sliding surface is generally along the weak structural plane in $J_2^2$. (3) The bottom of sliding body in zone II is 5-25m lower than that in zone I, with more energy release, and is above the adjacent riverbed. However, sliding surface of in zone I is below the riverbed, and thus riverbed provides some resistance to this sliding body. Thus, the bottom of sliding body in zone I has better stability.

3.4 Formation mechanism of ancient landslide

The ancient landslide was originally developed in a bedding bedrock form, which was affected by many factors such as strata attitude, structure, groundwater, river corrosion, and slope angle.

The landslide is located at a bedding slope in the southwest of Baiyangping syncline. The slope has an attitude of $32^\circ \pm 15^\circ$ - $26^\circ$ with steep upper part and gentle lower part (Fig. 2), and the slope consists of sandstone-mudstone interlayer of Jurassic Shaximiao Formation. There is abundant fractures in the sandstone, which could help groundwater flow rapidly. In addition, there are two sets of joints in the slope, approximately normal to each other, which tends to be subject to tension and lateral shearing. The infiltration of surface water through fractures can lead to large pore water pressure, retains on the impervious mudstone surface, and thus poses a great threat to slope stability by softening the mudstone and reducing its mechanical parameters. Furthermore, the long-term river corrosion against slope toe resulted in the high and steep scar, and finally large-scale bedding landslide happened due to rainfall, forming the initial ancient landslide. Subsequently, many years of weathering, rainfall, corrosion and human activities shaped the current landslide. No deformation happened in the ancient slope since the last 100 years, and the slope was generally stable before the tunnel excavation.
The slid bedrock has not yet fully disintegrated, and thus it is difficult to distinct the true bedrock from false bedrock. Therefore, the tunnel did not completely avoid the ancient landslide, and goes through zone I and zone II. In August 2014, the left tunnel was firstly excavated in sliding body of zone II from the chainage ZK13+107, and finally went through the sliding body of 103m length successfully by means of strong reinforcement and the adjustment of construction method in January 2015, without deformation and cracks later. The tunnel entered subsequently into zone I, with the whole ZK12+835 to +516 section of left tunnel in sliding body, and the sliding surface crossed obliquely the top left of right tunnel in K12+720 to +506 section. As a result, over 300m long tunnel passes through the ancient landslide. The excavation of right tunnel in zone I resulted in the cracks on ground surface, cracks & deformation on tunnel, and deformation in soil.

4.1 Landslide deformation and emergency monitoring

Some arc-shaped cracks with 10-40cm width and 5-20cm depth occurred in the region about 270m right from tunnel, over 500m long intermittently, and generally transfixed at the landslide tail. Much evidence indicated that partial ancient landslide on the right side of the tunnel in zone I was reactivated by the tunnel excavation, resulting in deformable body with obvious outline of basically transfixed cracks (Fig. 5).

To ensure the tunnel safety, a displacement monitoring system was installed within the ancient landslide of zone I in January 2015 before tunnel excavation on the base of the borehole-revealed sliding body shape and measured ground surface deformation as shown in Fig. 2. This system includes five ground monitoring sites, namely, JC01, JC02, JC05, JC06 and JC08,
and three inclinometer sites, namely, JC02, JC06 and JC08. The inclinometers, with 60m depth in JC02, 75m depth in JC06, and 75m depth in JC08, were applied to observe the displacement variation with depth, with one monitoring point every 1m depth. The measurement of vertical and horizontal displacements was conducted every 24h interval with GPS.

Fig.5 Damage to tunnel and slope. (A) damage scope; (B) crack in the aqueduct; (C) deformation of landslide in the western boundary; (D) settlement crack behind landslide; (E) Eastern boundary of the landslide; (F) bedrock of the landslide in eastern boundary; (G) deformation of the left tunnel vault
The measured data were plotted in Fig. 6, which indicates that the maximum displacement on the ground surface occurred at JC08 and was about 85mm. The maximum displacements on the ground surface were 6mm at JC09, 4mm at JC10 and 5mm at JC18. Zone II and the lower part of zone I had small displacement, indicating that most displacement occurred in the middle and upper part of zone I. The displacements before October 15, 2015 increased gradually, generally smaller than 19 mm, partly up to 34 mm near the ground surface. Subsequently, the displacement of tunnel was basically controlled with timely reinforcement. On October 15, 2015, however, the deep displacement increased sharply, with 35-51mm, 45-64 mm and 60-74 mm at JC02, JC06 and JC08, respectively. The displacements increased in a gradual way from top to bottom. The two potential sliding surfaces were verified by the two abrupt changes in JC08. After October 15, 2015, the measurement was terminated because the landslide sliding damaged the three inclinometers.

According to the shape of the displacement curve, depth of the slip surface could be detected, 31m at JC02, 46m at JC06, 55m at JC06. The position of the sliding surface determined by deformation monitoring is consistent with the position revealed in the engineering geological survey profile.

---

**Fig. 6** Curves for measured displacement at different depths in various periods
The landslide can cause the tunnel to be subject to two kinds of deformation (Poisel et al., 2009; Tao and Zhou, 2007; Wei et al., 2019), one is the plunging, longitudinal bending and overall movement due to landslide pushing and creeping forces, and the other is the squeezing deformation by landslide creeping.

On October 15, 2015, the excavation and secondary lining of right tunnel had been finished, and the left tunnel entrance was constructed at ZK12+644 and the left tunnel exit at ZK12+682. On the same day, oblique cracks were found within the tunnel bottom and secondary lining in the ZK12+829 to +817 section, and remarkable deformation was observed in the primary support structure in ZK12+799 to +766 section, which resulted in twist break and deformation in the tunnel top. The right wall deformed greatly beyond the limit by up to 65-69cm, and some concrete dropped from primary support on the tunnel top. Some longitudinal and connected cracks, up to 3mm wide, were observed on the top right and bottom left of the right tunnel in K12+540 to +719 section. By the middle of December 2015, great deformation and many cracks were observed in the right tunnel of K12+505 to +719 section, with some minor cracks in K12+719 to +799 section. At the same time, cracks occurred in the left tunnel of ZK12+505 to +849 section, especially abundant in ZK12+800 to +767 section.

Some monitoring gauges were installed immediately after the severe tunnel deformation, as shown in Fig. 7, with displacement gauges at K12+560, K12+600 and K12+722, strain gauges for temporary oblique support at K12+560, K12+580, K12+600 and K12+620, steel bar stress gauges at K12+538, and concrete stress gauges for secondary lining at K12+554. Type and resolution of the monitoring gauges were shown in Table 1. The tunnel displacement curves are shown in Fig. 8,
stress curves of temporary oblique support in Fig. 9, stress curves of lining steel bars in Fig. 10, and stress curves of secondary lining concrete at K12+554 in Fig. 11. All the gauges began successively to work from the middle of November, 2015. The tunnel displacement at K12+720 kept stable since December 12, 2015, with a cumulative displacement of 6.19mm, and the displacement at K12+560 and K12+600 stayed stable since January 2, 2016, with a cumulative displacement of about 5.70mm. The stresses of oblique supports at K12+560, K12+580 and K12+620 within ancient landslide were generally stable, only with a short-term sharp increase at K12+600 on December 13, 2015 and then a tendency to about 60MPa. Since December 2, 2015, the steel bar at the right of lining was obviously under tension but basically stable, without any significant increase in stress. The right side wall of lining was under tension of about 2MPa, and the tunnel top and left side wall were under compression of about 4MPa. The measured data above indicated that the tunnel within the ancient landslide was generally stable since January 3, 2016.

| monitoring equipment | Type specification | Basic parameters |
|----------------------|--------------------|-----------------|
| displacement gauges  | JSS30A             | measurement range 0.5~20m, division ratio 0.01mm, measurement accuracy 0.06mm, size 410mm×100mm×35mm, ambient temperature 0~40 degrees. |
| Supporting strain gauge | 9000 vibrating string type | measurement range 0~3000με, Sensitivity 1με, frequency range 450~1000HZ, size 170mm×265mm, ambient temperature -20~80 degrees. |
| concrete stress meter | SZZX-A150 vibrating string type | measurement range -1500με~1500με, Sensitivity 1με, measuring mark distance size 157mm, ambient temperature -20~125 degrees. |
| steel stress meter   | 9011 vibrating string type | measurement range 3000kg/cm²~3000 kg/cm², Sensitivity 0.025%FS, size 750mm, ambient temperature -20~80 degrees. |
Fig. 7 Monitoring gauges for tunnel. (a) displacement of secondary lining of right tunnel and stress of temporary oblique support; (b) stress of steel bar in lining; (c) stress of concrete of secondary lining

Fig. 8 Displacement curves for tunnel within ancient landslide

Fig. 9 Stress curves for temporary oblique support
Fig. 10 Stress curves of steel bar at K12+538. (a) in inner lining; (b) in outer lining.

Fig. 11 Stress curves for concrete of secondary lining at K12+554.
5. Numerical analysis to landslide induced by tunnel excavation

5.1 Model and parameters

Engineering geological analysis, geological survey, field monitoring and numerical simulation are often used to study the slope failure mechanism and predict the landslide movement. It is difficult to conduct accurate numerical simulation for practical application because of the spatial & temporal variation of strata and geological structure complexity (Marcato et al., 2012), but increasing improvement in the numerical simulation have been achieved due to much quantitative analysis to landslide deformation, movement and risk (Chen and Wu, 2018; Han et al., 2014; Jacquemart, 2017; Jiao, 2013; Kalenchuk et al., 2009; Zhang et al., 2015). In addition, numerical calculation parameters may be optimized by abundant data from borehole, field investigation, laboratory tests, and on-site monitoring, which causes the numerical simulation more accuracy and applicable (Pirulli et al., 2011; Poisel et al., 2009). Generally, too much simplification in geological structures during numerical modelling may reduce the simulation precision, and thus establishing accurate and complex 3D numerical model is the key to reasonable analysis to landslide stability. Combining on-site investigation data, geological structures, terrain feature and hydrological conditions with deformation monitoring data, the 3D numerical model of Jimei landslide was developed including sliding body, sliding belt, tunnel lining, and bedrock, as shown in Fig. 12. The FLAC$^{3D}$ program, which can well simulate the interaction between rock/soil and structures, was used to analyze the stress and deformation of landslide.
For the initial stress condition, the tectonic stresses were ignored, and only gravity-induced stresses were considered. For the boundary conditions, the model bottom was fixed in the vertical direction, and the sides are fixed horizontally and vertically. The elastic-plastic constitutive relation and Mohr-Coulomb failure criterion were applied for rock/soil, and the entity elements were used for the primary and the secondary linings with linearly elastic model.

The model parameters should be determined in an appropriate way. The Poisson's ratio, unit weight and elastic modulus were obtained by laboratory tests using samples from each borehole (Fig.1). The soil samples were adopted every one meter in depth from each borehole. The strength parameters were determined by back analysis utilizing uniform design, RBF neural network model (Wang et al., 2013), and measured displacement data about landslide surface. Table 2 lists the comparison between monitoring data and back analysis based results, indicating that all the errors of monitoring points are less than 5% except that the errors of JC01 X displacement, JC06 Z displacement and JC08 Z displacement are greater than 5%, which means that the parameters from back analysis are appropriate. Table 3 lists the geotechnical parameters for numerical calculation.
Table 2 Comparison between field monitoring data and back-analysis calculation results

| Location | JC02 displacement (Y/mm) | JC02 displacement (Z/mm) | JC06 displacement (Y/mm) | JC06 displacement (Z/mm) | JC08 displacement (Y/mm) | JC08 displacement (Z/mm) |
|----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Measured data | 54.0 | 36.2 | 68.0 | 12.8 | 85.0 | 21.6 |
| Calculated results | 52.6 | 35.5 | 65.6 | 11.9 | 81.3 | 20.8 |
| Errors | 2.5% | 1.9% | 3.5% | 7.0% | 4.35% | 3.7% |

Note: Y and Z represent the horizontal displacement and vertical displacement, respectively.

Table 3 Numerical model parameters

| Location       | Elasticity modulus (E/Pa) | Poisson's ratio (μ) | Cohesion (C/kPa) | Internal friction angle (°) | Unit weight (kN/m³) |
|----------------|---------------------------|---------------------|------------------|-----------------------------|---------------------|
| sliding belt   | 4E+07                     | 0.35                | 30               | 19                          | 2320                |
| sliding body   | 7.0E+07                   | 0.33                | 36               | 28                          | 2350                |
| bedrock        | 5.0E+09                   | 0.26                | 6000             | 42                          | 2640                |
| tunnel lining  | 9.0E+09                   | 0.20                | —                | —                           | 2500                |

5.2 Simulation results and analysis

Based on the 3D numerical calculation, the stress and deformation of the tunnel and sliding body after tunnel reinforcement and soil removal was achieved. The Y-direction displacement contour after reinforcement of tunnel is shown in Fig. 13, indicating that the sliding body deformation basically occurs in the region over the tunnel, and changes gradually from landslide tail to front in a decreasing way. The displacement contour (Fig. 14) and shear strain increment contour (Fig. 15) are plotted along some typical sections (Fig. 13) to clearly observe the stress & deformation within the slope. Fig. 14 suggests that the ancient landslide will fail again due to tunnel excavation, and the deformation feature by numerical simulation is similar to on-site investigation results of gradual deformation decreasing from tail to front. Additionally, great
displacement occurs on the top and right side wall of left tunnel, with terrible inward invasion of right wall. Fig. 15 indicates the distribution of maximum shear strain within the slope, with maximum value of about 0.62, and the sliding surface was not thoroughly developed.

Fig. 13 Y-displacement contour after completion of tunnel excavation (unit: m)

Fig. 14 Y-displacement contour after tunnel excavation for typical section (I-I) (unit: m)
The displacement and stress contours are shown in Figs. 16 and 17. Most displacement occurs in the medium and lower sections of the sliding body, with maximum displacement of around 23.60mm. The maximum displacement of tunnel is at the top of left tunnel, approximately 5.8mm. After soil removal, the maximum shear strain increment of the sliding body is very small, with maximum value of only 0.01. The strength reduction method was applied to analyze the stability of landslide after soil removal, and the calculated safety factor is 1.32, indicating that the tunnel will be generally stable by means of concrete lining.
6. Discussion

6.1 Prevention measures for landslide and tunnel

Increasing anti-slide force by anti-slide pile, slope-toe backfilling, retaining wall, and anchor cable and and/or reducing sliding force by drainage and slope-top unloading are two major measures for landslide prevention ((Brunet et al., 2017; Di Maio et al., 2010; Segoni et al., 2018; Wang et al., 2019). Jimei tunnel, as a key part of highway, has a direct effect on the commence of the highway operation, and thus the time-saving and reliable measures should be used first if the construction and operation safety of tunnel is guaranteed.

According to on-site survey and numerical simulation results, the ancient landslide in zone II are generally stable, without tunnel deformation and ground cracking, and thus no treatment is needed for landslide in this zone, only with monitoring hereafter. The ancient landslide in zone I is also generally stable, but the left tunnel is completely in the sliding body and the right tunnel is just across the sliding surface, which resulted in the damage to right tunnel and upper slope. The depth of the tunnel is greater than 60m, the adjacent strata affected is averagely 35-40m deep, and thus it is not feasible to use the anti-slide piles as tunnel reinforcement. In addition, the anti-slide...
piles would need very high cost and larger length of up to 80m. However, the lower landslide is thick and upper landslide is thin, and hence it is suitable to stabilize the landslide by removing soil from upper part into slope toe and conducting some reinforcement at lower part.

![Fig.18 Bird view of construction site after soil removal](image)

**6.2 landslide and tunnel monitoring system**

A monitoring system was established to measure the stress and displacement of landslide and tunnel during the operation period of Jimei tunnel. The content and purpose of the system is described as follows.

1. The stress and strain of surrounding rock and tunnel structure will be measured during tunnel operation period.

2. According to monitoring data, the stability and safety of tunnel and landslide will be analyzed, and the range, speed and tendency of deformation for landslide and tunnel will be also evaluated to safeguard the tunnel operation.

3. The tunnel deformation limit will be judged as early as possible to provide early warning.
the subsequent safety measures.

The monitoring data measured from October 2016 to March 2020 show that the displacement at various depths are generally stable, and the change in stresses of steel bar, concrete and support is little, indicating the treatment applied is successful. Thus, the anti-slide piles were not installed, saving about seven million US$. There are few successful treatment cases of such tunnel-landslide systems under complex conditions, so the analysis and design in this paper can provide some beneficial reference to similar projects.

7. Conclusions

An ancient landslide was reactivated in October 2015 after the excavation of Jimei tunnel in Sichuan Province, China, which triggered many severe geological problems such as tunnel deformation, ground surface cracks and supporting structure damage. Such slope failure may have great threat to residents and facilities, and sharply increase the construction cost. Several methods were used to analyze the interaction between Jimei tunnel and the ancient landslide, and the proposed reinforcement was evaluated in this paper.

At first, the composition and distribution of the ancient landslide was analyzed based on the UAV aerial photography, geological prospecting and field geological survey. Secondly, the parameters of the sliding zone and sliding body were determined with back analysis according to the monitoring data about the surface deformation. Finally, the landslide failure mechanism due to tunnel excavation was discussed by 3D numerical simulation, and the evaluation on the effect of proposed reinforcement was carried out.

The borehole data show that the Jimei landslide, as an ancient landslide, is more than 50m thick on average, with over 11 million m$^3$ in volume, being the giant deep-seated landslide. The
sliding body consists basically of block stone and gravel, and the slope failure generally resulted from the tunnel excavation through the sliding belt. Most displacement of the sliding body mainly occurred above the tunnel because the potential sliding surface under the tunnel is gentle and the deep-seated sliding body prevented further sliding. In addition, the range and value of overall displacement of the sliding body by back analysis match well the field survey and measured data. In view of tunnel construction period, sliding body thickness and deformation characteristics, some soil above the tunnel in zone I was suggested to be removed. Numerical simulation results show that the tunnel and sliding body will be subject to small displacements and keep stable after soil is removed. The monitoring data measured during tunnel operation period testified the success of the treatment, and this paper may present a beneficial reference to similar projects.

Acknowledgments

The authors would like to acknowledge the National Key Research and Development Program (Grant No. 2019YFC1509704), High-level Talent Project of North China University of Water Resource and Electric Power (Grant No.201518), National Natural Science Foundation of China (Grant No. U1704243), and Levee Safety and Disaster Prevention Engineering Research Center of Ministry of Water Resources.

References

Bandini, A., P. Berry, and D. Boldini, 2015, Tunnelling-induced landslides: The Val di Sambro tunnel case study: Engineering Geology, v. 196, p. 71-87. https://doi:10.1016/j.enggeo.2015.07.001
Bayer, B., A. Simoni, D. Schmidt, and L. Bertello, 2017, Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy: Engineering Geology, v. 226, p. 20-32.

Brunet, M., L. Moretti, A. Le Friant, A. Mangeney, E. D. Fernández Nieto, and F. Bouchut, 2017, Numerical simulation of the 30–45 ka debris avalanche flow of Montagne Pelée volcano, Martinique: from volcano flank collapse to submarine emplacement: Natural Hazards, v. 87, p. 1189-1222.

Chen, K.-T., and J.-H. Wu, 2018, Simulating the failure process of the Xinmo landslide using discontinuous deformation analysis: Engineering Geology, v. 239, p. 269-281. https://doi:10.1016/j.enggeo.2018.04.002

De-pei, Z., M. A. Jian-qiang, Z. Lu-xing, and M. Hui-ming, 2002, Relationship between tunnel deformation with slope disasters and its prediction model: journal of The China Railway Society, v. 24, p. 81-86.

Di Maio, C., R. Vassallo, M. Vallario, S. Pascale, and F. Sdao, 2010, Structure and kinematics of a landslide in a complex clayey formation of the Italian Southern Apennines: Engineering Geology, v. 116, p. 311-322.

Gu, D. M., D. Huang, W. D. Yang, J. L. Zhu, and G. Y. Fu, 2017, Understanding the triggering mechanism and possible kinematic evolution of a reactivated landslide in the Three Gorges Reservoir: Landslides, v. 14, p. 2073-2087.

Han, Z., G. Chen, Y. Li, L. Xu, L. Zheng, and Y. Zhang, 2014, A new approach for analyzing the velocity distribution of debris flows at typical cross-sections: Natural Hazards, v. 74, p. 2053-2070.
Itasca Consulting Group Inc, 2005, FLAC3D: fast Lagrangian analysis of continua in 3 dimensions, user manual (version 3.0). Itasca Consulting Group Inc., Minneapolis, Minnesota.

Jacquemart, M., L. Meier, C. Graf, and F. Morsdorf, 2017, 3D dynamics of debris flows quantified at sub-second intervals from laser profiles: Natural Hazards, v. 89, p. 785-800.

Jian-qiang, M., and Z. De-pei, 2002, Deformation Analysis for Landslide-Tunnel Interaction: journal of Southwest Jiaotong University v. 37, p. 371-376.

Jiao, Y.-Y., Z.-H. Wang, X.-Z. Wang, A. C. Adoko, and Z.-X. Yang, 2013, Stability assessment of an ancient landslide crossed by two coal mine tunnels: Engineering Geology, v. 159, p. 36-44. https://doi:10.1016/j.enggeo.2013.03.021

Kalenchuk, K. S., D. J. Hutchinson, and M. S. Diederichs, 2009, Application of spatial prediction techniques to defining three-dimensional landslide shear surface geometry: Landslides, v. 6, p. 321-333. https://doi:10.1007/s10346-009-0168-1

Karakus, M., and R. J. Fowell, 2005, Back analysis for tunnelling induced ground movements and stress redistribution: Tunnelling and Underground Space Technology, v. 20, p. 514-524.

Kaya, A., A. Akgün, K. Karaman, and F. Bulut, 2015, Understanding the mechanism of slope failure on a nearby highway tunnel route by different slope stability analysis methods: a case from NE Turkey: Bulletin of Engineering Geology and the Environment, v. 75, p. 945-958. https://doi:10.1007/s10064-015-0770-5

Komu, M. P., U. Guney, T. E. Kilickaya, and C. Gokceoglu, 2019, Using 3D Numerical Analysis for the Assessment of Tunnel–Landslide Relationship: Bahce–Nurdag Tunnel (South of Turkey): Geotechnical and Geological Engineering, v. 38, p. 1237-1254.
Konagai, K., M. Numada, A. Zafeirakos, J. Johansson, A. Sadr, and T. Katagiri, 2005, An example of landslide-inflicted damage to tunnel in the 2004 Mid-Niigata Prefecture earthquake: Landslides, v. 2, p. 159-163. https://doi:10.1007/s10346-005-0057-1

Liu, H., J. Shen, W. Wei, and Z. Guan, 2012, Geological Problems and Treatment Measures For Highway Tunnel Through Ancient Landslide: Journal of Engineering Geology, v. 20, p. 540-547.

Ma, H., 2003, DISCUSSION ON PROBLEMS OF SLOPE DISASTER AND TUNNEL DEFORMATION: Chinese Journal of Rock Mechanics and Engineering, v. 22, p. 2719-2724.

Ma, H., and H. Wu, 2016, Progress and Expectation of Research on Tunnel-Landslide System: Chinese Journal of Underground Space and Engineering, v. 12, p. 522-531.

Minardo, A., E. Catalano, A. Coscetta, G. Zeni, L. Zhang, C. Di Maio, R. Vassallo, R. Coviello, G. Macchia, L. Picarelli, and L. Zeni, 2018, Distributed Fiber Optic Sensors for the Monitoring of a Tunnel Crossing a Landslide: Remote Sensing, v. 10, p. 1291. https://doi:10.3390/rs10081291

Mishra, Mayank & Vassallo, Roberto & Santarsiero, Giuseppe & Masi, Angelo. (2017). Landslide-pile-tunnel interaction by 2D and 3D finite element modelling. 10.7712/120117.5752.17314.

Pánek, T., J. Hradecký, V. Smolková, and K. Šilhán, 2008, Giant ancient landslide in the Alma water gap (Crimean Mountains, Ukraine): notes to the predisposition, structure, and chronology: Landslides, v. 5, p. 367-378.

Pirulli, M., A. Colombo, and C. Scavia, 2011, From back-analysis to run-out prediction: a case study in the Western Italian Alps: Landslides, v. 8, p. 159-170. https://doi:10.1007/s10346-010-0248-2
Poisel, R., H. Angerer, M. Pöllinger, T. Kalcher, and H. Kittl, 2009, Mechanics and velocity of the Lärchberg–Galgenwald landslide (Austria): Engineering Geology, v. 109, p. 57-66. https://doi:10.1016/j.enggeo.2009.01.002

Ruggeri, P., V. Fruzzetti, A. Vita, A. Paternesi, G. Scarpelli, and D. Segato, 2016, Deep-seated landslide triggered by tunnel excavation, p. 1759-1766.

Segoni, S., L. Piciullo, and S. L. Gariano, 2018, A review of the recent literature on rainfall thresholds for landslide occurrence: Landslides, v. 15, p. 1483-1501.

Tang, H., C. Li, X. Hu, A. Su, L. Wang, Y. Wu, R. Criss, C. Xiong, and Y. Li, 2014, Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring: Landslides, v. 12, p. 511-521.

Tao, Z., and D. Zhou, 2003, MODEL TEST ON DEFORMATION MECHANISM OF TUNNEL AT LANDSLIDE SITE: Journal of Engineering Geology, v. 11, p. 323-328.

Tao, Z., and D. Zhou, 2007, deformationg law and disaster prediction of tunnel in creep landslide: Journal of Southwest Jiaotong University, v. 42, p. 163-169.

Technical Guidance Centre for Geological Disasters, 2019, National Geological Hazard Bulletin. https://www.cgs.gov.cn/gzdt/zsdw/202003/W0202003331377465119094.pdf

Vassallo, R., M. Mishra, G. Santarsiero, and A. Masi, 2016, Interaction of a Railway Tunnel with a Deep Slow Landslide in Clay Shales: Procedia Earth and Planetary Science, v. 16, p. 15-24.

Vassallo, R., M. Mishra, G. Santarsiero, and A. Masi, 2019, Modeling of Landslide–Tunnel Interaction: the Varco d’Izzo Case Study: Geotechnical and Geological Engineering, v. 37, p. 5507-5531.
Wang Z., H. Liu, and S. He, 2013, Dynamic deformation monitoring and three-dimensional numerical analysis of K62 landslide of approach road of A’hai Hydropower Station: Chinese Journal of Geotechnical Engineering, v. 35, p. 94-101.

Wei, Z.-l., Y.-q. Shang, H.-y. Sun, H.-d. Xu, and D.-f. Wang, 2019, The effectiveness of a drainage tunnel in increasing the rainfall threshold of a deep-seated landslide: Landslides, v. 16, p. 1731-1744.

Zhang, Y., J. Yang, and F. Yang, 2015, Field investigation and numerical analysis of landslide induced by tunneling: Engineering Failure Analysis, v. 47, p. 25-33.

Zhang, Z.-g., Q.-h. Zhao, C. Xu, and X.-y. Xu, 2017, Interaction analyses between tunnel and landslide in mountain area: Journal of Mountain Science, v. 14, p. 1124-1139.

Zhou, S., Z. Tian, H. Di, P. Guo, and L. Fu, 2020, Investigation of a loess-mudstone landslide and the induced structural damage in a high-speed railway tunnel: Bulletin of Engineering Geology and the Environment.
Figure 1

Location of Jimei tunnel. (A) schematic location in china; (B) location of Xuyong-Gulin highway; (C) 3D terrain of Jami tunnel and landslide. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research
Figure 2

The geological structure of the study area Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 3

Core from (A) borehole BK23; (B) borehole BK14.
Figure 4

Geological profile of (a) 1-1'; (b) 2-2'.
Figure 5

Damage to tunnel and slope. (A) damage scope; (B) crack in the aqueduct; (C) deformation of landslide in the western boundary; (D) settlement crack behind landslide; (E) Eastern boundary of the landslide; (F) bedrock of the landslide in eastern boundary; (G) deformation of the left tunnel vault Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country,
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.

**Figure 6**

Curves for measured displacement at different depths in various periods

**Figure 7**

Monitoring gauges for tunnel. (a) displacement of secondary lining of right tunnel and stress of temporary oblique support; (b) stress of steel bar in lining; (c) stress of concrete of secondary lining
**Figure 8**

Displacement curves for tunnel within ancient landslide

**Figure 9**

Stress curves for temporary oblique support
Figure 10

Stress curves of steel bar at K12+538. (a) in inner lining; (b) in outer lining.
Figure 11

Stress curves for concrete of secondary lining at K12+554

Figure 12

3D numerical model of landslide and tunnel
Figure 13

Y-displacement contour after completion of tunnel excavation (unit: m)
Figure 14

Y-displacement contour after tunnel excavation for typical section (I-I) (unit: m)

Figure 15

Maximum shear strain increment contour along section (I-I) after tunnel excavation
Figure 16

Y-displacement contour after soil removal along section I-I (unit: m)

Figure 17

Maximum shear strain increment contour after soil removal along section I-I
Figure 18

Bird view of construction site after soil removal Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.