Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides

Jean Luc Do Rego1,2,3, Jae Young Seong4, Delphine Burel1,2,5, Jérôme Leprince1,2,5, David Vaudry1,2,5, Van Luu-The6, Marie-Christine Tonon1,2,5, Kazuyoshi Tsutsui7,8, Georges Pelletier6 and Hubert Vaudry1,2,3,5*

INTRODUCTION

The regulatory effects of steroid hormones in the central nervous system (CNS) have long been recognized (McEwen, 1994; Baulieu et al., 1999; Dubrovsky, 2005; Leskiewicz et al., 2006). Steroids acting on the CNS originate from two sources: (1) steroids produced by peripheral endocrine glands, i.e., gonads, adrenal, and placenta, that have to cross the blood–brain barrier to act on the brain, are usually designated as neuroactive steroids; (2) steroids directly synthesized within the CNS, either de novo from cholesterol or by in situ metabolism of circulating steroid precursors, are designated by the generic term neurosteroids (Robel and Baulieu, 1985; 1994; Baulieu, 1997, 1998). The capability of the nervous system to synthesize steroids was originally discovered in mammals (Corpéchot et al., 1981, 1983; Lanthier and Patwardhan, 1986) and was subsequently generalized in other vertebrates including birds, amphibians, and fish (Mensah-Nyagan et al., 1999; Mellon and Vaudry, 2001; Tsutsui et al., 2003, 2009; Do Rego et al., 2009; Diotel et al., 2010) indicating that de novo neurosteroidogenesis is a conserved property in the vertebrate phylum.

There is growing evidence that neurosteroids play an important role as endogenous modulators of neuronal functions and behavioral processes, and that alterations of neurosteroid concentrations may contribute to the pathophysiology of neuronal disorders (Majewska, 1992; Robel et al., 1999; Rupprecht and Holsboer, 1999; Lapchak et al., 2000; Lapchak and Araujo, 2001; Rupprecht et al., 2001; Dubrovsky, 2005; Belelli et al., 2006; Strous et al., 2006). For instance, in rat, infusion of pregnenolone sulfate (Δ5PS) and dehydroepiandrosterone sulfate (DHEAS) into...
the nucleus basalis magnocellularis enhances learning and memory (Mayo et al., 1993; Robel et al., 1995). Reciprocally, deficit in cognitive performances in aged rats and mice is correlated with low Δ⁵PS and DHEAS levels in the hippocampus (Flood et al., 1988, 1992; Vallée et al., 1997, 2001; Ladurelle et al., 2000). In chickens, administration of DHEA and DHEAS enhances learning and memory (Migues et al., 2002). In humans, DHEA and DHEAS are considered to play a role in memory both in normal subjects and aging patients (Sunderland et al., 1989; Nasman et al., 1991; Strous et al., 2006). More specifically, with regards to Alzheimer’s disease, decreased levels of several neurosteroids have been observed in the frontal cortex, hippocampus, amygdala, striatum, hypothalamus, and cerebellum (Sunderland et al., 1989; Nasman et al., 1991; Weił-Engerer et al., 2002; Schumacher et al., 2003). The best known role of neurosteroids is their involvement in the control of mood disorders. Numerous behavioral investigations have shown that neurosteroids exert anxiolytic (Hodge et al., 2002; Strous et al., 2003), anti-depressant (Uzunova et al., 2003; van Broekhoven and Verkes, 2003), anti-aggressive (Kavaliers and Kinsella, 1995; Pinna et al., 2008), hypnotic (Lancel et al., 1997; Damianisch et al., 2001), anti-convulsive (Landgren et al., 1987; Belleti et al., 1989), and anti-stress actions (Patchev et al., 1996; Hu et al., 2000). In animal models, an effect of neurosteroids in eating disorders has been reported (Reddy and Kulkarni, 1998, 1999; Kaur and Iwata, 2003). However, most of the actions of neurosteroids are mediated via allosteric modulation of neurotransmitter receptors, including the GABAA/central-type benzodiazepine receptor (CBR) complex (Belelli and Lambert, 2005; Belelli et al., 2006; Zheng, 2009), N-methyl-d-aspartate (NMDA; Mameli et al., 2005; Monnet and Maurice, 2006), kainate (Costa et al., 2000; Dubrovsky, 2005), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA; Rupprecht and Holsboer, 2001; Dubrovsky, 2005), glycine (Jiang et al., 2006; Mitchell et al., 2007), sigma (Monnet et al., 1995; Maurice et al., 2006), serotonergic (Kostowski and Bienkowski, 1999; Shannon et al., 2005a,b), nicotinic (Valera et al., 1992; Bullock et al., 1997), and muscarinic receptors (Horishita et al., 2005; Steffensen et al., 2006). For example, the effects of GABA on the GABAA receptor are allosterically potentiated by progesterone and deoxycorticosterone metabolites such as allopregnanolone, pregnanolone, and tetrahydrodeoxycorticosterone (Majewska et al., 1986; Majewska, 1992; Paul and Purdy, 1992; Bergeron et al., 1996). On the other hand, Δ⁵PS and DHEA have been reported to inhibit GABAA receptor activity (Majewska and Schwartz, 1987; Park-Chung et al., 1999). Allopregnanolone is a negative modulator of the NMDA receptors (Wu et al., 1991; Bowly, 1993). In contrast, Δ⁵PS and DHEA potentiate several NMDA-receptor-mediated responses, and thus act as excitatory neurosteroids (Wu et al., 1991; Irwin et al., 1992; Fahey et al., 1995b; Compagnone and Mellon, 1998). At the AMPA and kainate receptors, Δ⁵PS behaves as a negative modulator (Rupprecht, 1997; Mellon and Griffen, 2002). It has also been demonstrated that DHEAS acts as a sigma receptor agonist, Δ⁵PS as a sigma receptor inverse agonist, and progesterone as a sigma receptor antagonist (Monnet et al., 1995).

The biochemical pathways leading to the synthesis of steroids in the nervous system of vertebrates have now been almost completely elucidated (Tsutsui and Yamaazaki, 1995; Tsutsui et al., 1999; Compagnone and Mellon, 2000; Do Rego et al., 2009; Diotel et al., 2011; Vaudry et al., 2011) and it is now firmly established that neurosteroids regulate neuronal activity (Reddy, 2003, 2010; Dubrovsky, 2005; Belleti et al., 2006; Strous et al., 2006). Over the last decade, a number of studies have thus been undertaken to decipher the neuronal mechanisms involved in the regulation of neurosteroid production. In the present report, we review the current knowledge regarding the effects and mode of action of neurotransmitters, peptide hormones, and neuropeptides on the
biosynthesis of neurosteroids in the CNS of vertebrates. Remarkably, most of these studies have been conducted in the brain of amphibians and birds. In fact, since the rate of steroid synthesis is relatively high in the CNS of frog, quail, and zebra finch (Mensah-Nyagan et al., 1994, 1996; Tsutsui et al., 2006, 2009; Do Rego et al., 2007a; Schlinger and Remage-Healey, 2011), these animals have proved to be suitable models in which to investigate the neuronal mechanisms regulating neurosteroid production.

EFFECT OF GLUTAMATE ON NEUROSTEROID BIOSYNTHESIS

In the quail forebrain, all classes of ionotropic glutamate receptors, i.e., NMDA, AMPA, and kainate receptors, are expressed in the medial preoptic nucleus, a region which is enriched with P450arom-containing cell bodies (Cornil et al., 2000), suggesting that these neurons may be regulated by glutamate. Consistent with this hypothesis, incubation of quail hypothalamic fragments with AMPA and kainate, and to a certain extent NMDA, inhibits P450arom activity (Balthazart et al., 2001a). In mice, administration of NMDA or glutamate within the nidopallium provokes a substantial decrease in the local concentration of estradiol (Remage-Healey et al., 2008; Cornil, 2009). These observations indicate that, in birds and mammals, glutamate exerts an inhibitory action on the formation of neurosteroids. In the quail brain, the inhibitory effects of AMPA and kainate are mimicked by ATP, Ca2++, and Mg2+, and the Ca2+ response is abrogated by PKA, PKC, and CAMK (Balthazart et al., 2001b, 2003). Since P450arom possesses several consensus phosphorylation sites in its sequence (Harada, 1988; Balthazart et al., 2003), it appears that the rapid inhibitory effect of AMPA, kainate, or NMDA on P450arom activity can be ascribed to Ca2+-dependent phosphorylation of the P450arom protein (Balthazart et al., 2001c, 2003).

EFFECT OF MELATONIN ON NEUROSTEROID BIOSYNTHESIS

Measurement of neurosteroid content and/or biosynthesis in the brain of vertebrates has revealed that marked changes in Δ5P, 7α-hydroxyprogrenolone (7α-OH-Δ5P), P, THP, and Δ5PS occur during circadian and seasonal cycles (Jo et al., 1990; Takase et al., 1999; Inai et al., 2003; Matsunaga et al., 2004; Tsutsui et al., 2008). These changes often parallel or mirror variations in plasma melatonin concentrations (Hau and Gwinner, 1994; Warren and Cassone, 1995; Marumoto et al., 1996; Murakami et al., 2001). It has been shown that melatonin regulates locomotor activity in house sparrow, Japanese quail, red-bellied newt, ural owl, and Sprague Dawley rat (Hau and Gwinner, 1994; Warren and Cassone, 1995; Murakami et al., 2001), 7α-OH-Δ5P, in very much the same as melatonin, regulates locomotor activity in Japanese quail and red-bellied newt (Matsunaga et al., 2004; Tsutsui et al., 2008), suggesting that melatonin may control 7α-OH-Δ5P production. In support of this notion, male quails which exhibit marked diurnal variations in locomotor activity also show substantial changes in brain level of 7α-OH-Δ5P while female quails which do not show locomotor rhythms have low level of 7α-OH-Δ5P (Tsutsui et al., 2008). Similarly, it has been found that the synthesis of 7α-OH-Δ5P in the brain of male newts undergoes marked diurnal changes with higher levels during the dark phase when locomotor activity of males is high. In contrast, 7α-OH-Δ5P production in female newts does not change (Haraguchi et al., 2009, 2010; Koyama et al., 2009; Tsutsui et al., 2010). In male quail, suppression of endogenous melatonin through pinealectomy (Px) and orbital enucleation (Ex) causes a significant increase of the expression of CYP7B mRNA and biosynthesis of 7α-OH-Δ5P (Tsutsui et al., 2008). ICV injection of melatonin suppresses the effects of Px and Ex on CYP7B gene transcription and 7α-OH-Δ5P production. Finally, the melatonin receptor antagonist luzindole abolates the inhibitory effect of melatonin on 7α-OH-Δ5P formation (Tsutsui et al., 2008). Collectively, these data support the contention that, in male birds, melatonin inhibits the expression of CYP7B and that the subsequent decrease of 7α-OH-Δ5P in the brain is responsible for the nocturnal reduction of locomotor activity.

EFFECT OF PROLACTIN ON NEUROSTEROID BIOSYNTHESIS

In male newts, as in many other wild animals, locomotor activity increases during the breeding season (Iwata et al., 2000). This hyperlocomotor response is associated with a concomitant increase in 7α-OH-Δ5P in the newt brain (Haraguchi et al., 2009, 2010). The pituitary hormone prolactin (PRL) exerts pleiotropic functions in the control of reproduction in urodèles (Polzonetti-Magni et al., 1995; Kikuyama et al., 2003). In particular, PRL is involved in migration to water at the breeding season (Chadwick, 1941) and stimulates expression of courtship behavior with rapid tail vibration by male newts (Toyoda et al., 1993). Indeed, in male newts, plasma PRL concentration increases during the breeding season (Matsuda et al., 1990; Mosconi et al., 1994) and it has been shown that PRL acts centrally to activate courtship behavior (Toyoda et al., 2005), suggesting that PRL may be involved in the control of 7α-OH-Δ5P synthesis in the brain to increase locomotor activity during the reproductive period. In support of this hypothesis, PRL receptor immunoreactivity is observed in CYP7B-expressing neurons in the anterior preoptic area (Poa) and the magnocellular preoptic nucleus (Mg) of the newt brain (Haraguchi et al., 2010). Hypophysectomy markedly reduces brain concentration and biosynthesis of 7α-OH-Δ5P in breeding male newts and these effects are suppressed by ICV injection of PRL (Haraguchi et al., 2010). Reciprocally, ICV administration of newt PRL antiserum dose-dependently decreases 7α-OH-Δ5P synthesis (Haraguchi et al., 2010). Taken together, these observations indicate that PRL directly acts on Mg neurons expressing CYP7B to enhance the biosynthesis of 7α-OH-Δ5P which in turn mediates the stimulatory effect of PRL on locomotion.

EFFECT OF GABA ON NEUROSTEROID BIOSYNTHESIS

Gamma-aminobutyric acid (GABA) is the major neurotransmitter in the CNS (Krnjevic and Schwartz, 1966; Meldrum, 1982; Paredez and Agmo, 1992). In mammals, brain nuclei that express steroidogenic enzymes (Tsutsui et al., 1999; Do Rego et al., 2009) are innervated by GABAergic nerve fibers (Tappaz et al., 1983; Sakau et al., 1988) and are also enriched with GABA_A receptors (De Montis et al., 1981; McDonald and Mascagni, 1996; Bäckberg et al., 2004), suggesting that GABA may regulate the activity of steroidogenic nerve cells. As a matter of fact, pharmacological studies have shown that administration of the GABA synthesis inhibitor isoniazid induces an increase of endogenous Δ5P and P in the rat brain (Barbaccia et al., 1996). In contrast, in rat retinal
ganglion cells, GABA, acting through GABA$_A$ receptors, stimulates the biosynthesis of Δ^3P (Guanerri et al., 1995).

The effect and mechanism of action of GABA in the control of neurosteroidogenesis has been mainly investigated in non-mammalian vertebrate models. Indeed, in amphibians as in mammals, a rich GABAergic innervation (Franzoni and Morino, 1989; Hollis and Boyd, 2005) and a dense accumulation of GABA$_A$ receptor subunits (Aller et al., 1997) have been observed in hypothalamic regions which contain steroidogenic neurons (Mensah-Nyagan et al., 1994, 1999; Tsuchi et al., 1999; Do Rego et al., 2009). In the frog *Rana esculenta*, double labeling experiments have shown the presence of GABA$_A$ receptor a3 and β_2/β_3 subunit-like immunoreactivity in 3β-HSD-expressing cell bodies (Figure 1A) in the Poa, the posterior tuberculum, the nucleus of the periventricular organ, and the ventral and dorsal hypothalamic nuclei of the hypothalamus (Do Rego et al., 2000) suggesting that, in amphibians as in mammals, GABA may play a role in the control of neurosteroid biosynthesis. In agreement with this hypothesis, GABA has been shown to inhibit in a dose-dependent manner *de novo* biosynthesis of various neurosteroids including 17OH-Δ^3P, P, 17OH-P, and DHEA, by frog hypothalamic explants (Do Rego et al., 2000). The inhibitory effect of GABA on neurosteroid production is mimicked by the GABA$_A$ receptor agonist baclofen (Do Rego et al., 2000). The observation that bicuculline and SR95531 induce on their own a significant stimulation of steroid formation suggests that endogenous GABA exerts a tonic inhibitory control on neurosteroid-producing neurons (Do Rego et al., 2000). These data indicate that GABA inhibits the biosynthesis of neurosteroids through activation of GABA$_A$ receptors (Figure 1D). Since several neuroactive steroids are potent allosteric regulators of GABA$_A$ receptor function in amphibians (Le Foll et al., 1997a,b; Hollis et al., 2004) as in mammals (Majewska, 1992; Belelli and Lambert, 2005; Belelli et al., 2006), these observations reveal the existence of an ultrashort feedback loop through which certain neurosteroids may regulate their own production via modulation of GABA$_A$ receptor activity (Figure 1D).

EFFECT OF ENDOZEPINES ON NEUROSTEROID BIOSYNTHESIS

The term endozepines designates a family of endogenous peptides that act as natural ligands of CBRs and peripheral-type benzodiazepine receptors also called translocator protein (TSPO; Tonn et al., 2006). The occurrence of endozepines has been reported in the CNS of all classes of vertebrates including fish (Malagon et al., 1992b; Matsuda et al., 2007), amphibians (Malagon et al., 1992a; Lihrmann et al., 1994), birds (Todaro et al., 1991; Rose et al., 1992), and mammals (Alho et al., 1989; Tonn et al., 1990; Tong et al., 1991; Malagon et al., 1993). The endozepine family encompasses diazepam-binding inhibitor (DBI), an 86-amino acid polypeptide (Guidotti et al., 1983), and its processing products the triakontatetraneuropeptide (TTN) and the octadecaneuropeptide (ODN; Ferrero et al., 1984; Slobodyansky et al., 1989). TTN is a selective ligand of TSPO (Slobodyansky et al., 1989; Papadopoulos et al., 2006) while ODN acts as an inverse agonist of CBRs.
Endozepines have been shown to regulate steroid secretion by adrenocortical cells (Yanagibashi et al., 1989; Papadopoulos, 1993; Lesouhaitier et al., 1996, 1998) and Leydig cells (Papadopoulos et al., 1990, 1991a,b; Garnier et al., 1993, 1994; Duparc et al., 2003). Concurrently, it has been found that TTN stimulates Δ^3P biosynthesis by isolated mitochondria from C6 glioma cells (Papadopoulos et al., 1992) indicating that endozepines may be involved in the regulation of neurosteroid production.

The distribution of endozepines has been investigated in the brain of mammals and amphibians by in situ hybridization and immunohistochemistry. In the rat brain, DBI mRNA is expressed in various glial cell populations of the ependyma, area postrema, and cerebellum (Alho et al., 1988; Tong et al., 1991; Burgi et al., 1999). In rat, monkey, and human, endozepine immunoreactivity is found in astrocytes in the arcuate nucleus of the hypothalamus, ependymocytes bordering the third ventricle, tanyocytes in the median eminence, pituicytes in the neurohypophysis, and Bergman cells in the cerebellum (Slobodyansky et al., 1992; Malagon et al., 1993; Alho et al., 1995; Yanase et al., 2002). In the frog _R. esculenta_, DBI mRNA and ODN-like immunoreactivity are present in radial glial cells of the periventricular systems of the diencephalon and rhombencephalon (Malagon et al., 1992a; Lihrmann et al., 1994). Immunolabeling of consecutive sections revealed that, in the Poa, the dorsal and ventral hypothalamic nuclei, the nucleus of the periventricular organ, and the posterior tuberculum of the frog brain, ODN-immunoreactive ependymocytes project toward 3β-HSD-positive perikarya (Do Rego et al., 2001; Figures 1B,C). These neuroanatomical observations led us to investigate the possible effects of endozepines on neurosteroid biosynthesis in the diencephalon of amphibians.

Incubation of frog hypothalamic slices with graded concentrations of human and rat ODN induces a dose-dependent stimulation of the conversion of [3H]Δ^3P into Δ^4-3-ketosteroids and Δ^3-3β-hydroxysteroids _in vitro_ (Do Rego et al., 2001). The biological activity of ODN is borne by the C-terminal portion of the peptide (Do Rego et al., 2007b) whose sequence has been strongly preserved across vertebrate species (Mocchetti et al., 1986; Lihrmann et al., 1994; Tonon et al., 2006). The stimulatory action of ODN on neurosteroid biosynthesis is mimicked by β-carbolines that act as inverse agonists of CBR, and is blocked by the CBR antagonist flumazenil (Do Rego et al., 2001). The fact that flumazenil alone inhibits the formation of neurosteroids supports the view that ODN plays a physiological role as an endogenous positive modulator of CBR (Do Rego et al., 2001; Figure 1D).

In intact mammalian endocrine cells, TTN stimulates the secretion of glucocorticoids (Yanagibashi et al., 1989; Papadopoulos et al., 1991a) and testosterone (Garnier et al., 1993; Duparc et al., 2003). TTN also stimulates steroidogenesis by mitochondria isolated from adrenocortical and testicular Leydig cells (Bessman et al., 1989; Yanagibashi et al., 1989; Papadopoulos et al., 1991a). In frog adrenal tissue, TTN stimulates corticosterone and aldosterone secretion _in vitro_ (Lesouhaitier et al., 1996, 1998). Since TSPO is expressed not only in peripheral organs but also in the CNS (Braestrup and Squires, 1977; Benavides et al., 1983a,b; Anholt et al., 1984; Richards and Möhler, 1984; Gehlert et al., 1985), these observations suggest that TTN may be involved in the regulation of neurosteroidogenesis. To test this hypothesis, we have investigated the effect of TTN on the biosynthesis of steroids in the brain of amphibians.

Double labeling experiments have shown the presence of TSPO-like immunoreactivity in steroidogenic neurons of the frog Poa and dorsal hypothalamus (Do Rego et al., 1998; Figure 2A). Exposure of frog hypothalamic fragments to synthetic human TTN causes a concentration-dependent stimulation of the conversion of [3H]Δ^3P into 17OH-Δ^3P and 17OH-P (Do Rego et al., 1998). The TSPO agonist Ro5-4864 mimics the stimulatory effect of TTN while the TSPO antagonist PK11195 inhibits TTN-induced steroid production. In contrast, the action of TTN is not impaired by flumazenil, indicating that TTN acts specifically through TSPO to activate neurosteroid biosynthesis (Do Rego et al., 1998; Figure 2B).

The fact that ODN and TTN, acting via CBR and TSPO, respectively, stimulate the formation of a number of neurosteroids suggests that endozepines should play multiple functions. Indeed, _in vivo_ studies indicate that endozepines, like neurosteroids, exert numerous behavioral effects. In particular, endozepines induce anxiety (Guidotti, 1991; Garcia de Mateos-Verchere et al., 1999), increase aggressivity (Guidotti et al., 1983; Ferrero et al., 1984; Kavaliers and Hirst, 1986; Guidotti, 1991), and possess anti-convulsant properties (Garcia de Mateos-Verchere et al., 1999). In addition, endozepines are potent anorexigenic neuropeptides (Garcia de Mateos-Verchere et al., 2001; Do Rego et al., 2007). Since endozepines and neurosteroids are involved in the control of the same behavioral processes, it is conceivable that neurosteroids can mediate some of the neurobiological effects of endozepines.

EFFECTS OF VASOTOCIN AND MESOTOCIN ON NEUROSTEROID BIOSYNTHESIS

Anatomical studies support the existence of neurochemical communication between steroidogenic neurons on the one hand, and neurons producing either arginine vasopressin (AVP) and oxytocin (OXT) in mammals or their orthologs arginine vasotocin (AVT) and mesotocin (MT) in submammalian vertebrates on the other hand. For instance, in birds, AVT-immunoreactive fibers innervate aromatase-expressing neurons in the preopticus nucleus and the lateral septum (Viglietti-Panzica et al., 1994; Balthazart, 1997). In the brain of amphibians, AVT- and/or MT-containing fibers project in the vicinity of 3β-HSD- and P450C17-positive neurons (Do Rego et al., 2006; Figure 3A). In addition, the Poa, the dorsal and ventral hypothalamic nuclei, the suprachiasmatic nucleus, the posterior tuberculum, the nucleus of the periventricular organ, and the ventral part of the magnocellular preoptic nucleus of the frog diencephalon that contain the major populations of steroidogenic neurons are also enriched with AVP and MT receptor mRNAs. These close neuroanatomical relationships led us to investigate the possible effects of AVT and MT on neurosteroid biosynthesis in amphibians.

Static incubation of frog hypothalamic explants with AVT or MT stimulates the biosynthesis of 17OH-Δ^3P, P, 17OH-P, and DHEA in a concentration-dependent manner (Do Rego et al., 2006). This stimulatory effect is observed within the first 30-min, indicating that AVT and MT act at the post-translational level, possibly by activating phosphorylation of steroidogenic enzymes.
FIGURE 2 | Effect of the triakontatetraeneuropeptide (TTN) on neurosteroid biosynthesis. (A) Immunohistochemical localization of 3β-HSD-like immunoreactivity (red) and translocator protein (TSPO)-like immunoreactivity (green) in the anterior preoptic area (Poa) of the frog brain. 3β-HSD-positive neurons that possess TSPO appear in yellow. For details regarding antibodies and immunohistochemical procedures, see reference by Do Rego et al. (1998). In brief, polyclonal antibodies raised in rabbit were used to label 3β-HSD-containing neurons, and polyclonal antibodies raised in chicken were used to label the TSPO-expressing cells. Scale bars: 10 μm. (B) Schematic drawing depicting the effect of TTN on steroidogenic neurons. TTN, acting through TSPO, stimulates the biosynthesis of 17OH-Δ5P, DHEA, and 17OH-P.

FIGURE 3 | Effect of vasotocin (AVT) and mesotocin (MT) on neurosteroid biosynthesis. (A) Immunohistochemical localization of P450Δ5-like immunoreactivity (red) and AVT-like immunoreactivity (green) in the medial amygdala (MA) of the frog brain. AVT-containing nerve endings are located in close proximity of P450Δ5-expressing neurons. For details regarding antibodies and immunohistochemical procedures, see reference by Do Rego et al. (2006). In brief, polyclonal antibodies raised in rabbit were used to label 3β-HSD- or P450Δ5-containing neurons, and a mouse monoclonal antibody was used to label AVT-immunoreactive fibers. Scale bars: 10 μm. (B) Schematic drawing depicting the effects of AVT and MT on steroidogenic neurons. AVT acting through a V1a-like receptor, and MT acting through an MT receptor, stimulate the biosynthesis of 17OH-Δ5P, DHEA, 17OH-P, and P.

The mammalian peptides AVP and OXT also induce a dose-related stimulation of neurosteroid biosynthesis (Do Rego et al., 2006). Pharmacological studies conducted with specific AVT and MT agonists and antagonists revealed that the effect of AVT and MT are mediated through V1a and MT receptors, respectively (Do Rego et al., 2006; Figure 3B). These observations are in agreement with the intense expression of V1a and MT receptor mRNAs in the hypothalamic nuclei that contain neurosteroidogenic neurons (Do Rego et al., 2006). Interestingly, in frog adrenocortical cells, AVT
is also a potent stimulator of corticosteroid secretion although, in this latter case, AVT acts via V2 receptors (Larcher et al., 1989, 1992).

In vertebrates, AVP and related peptides exert a vast array of biological effects in the CNS (De Wied et al., 1993; Reghunandan et al., 1998). For instance, in mammals, AVP enhances learning and memory (Alescio-Lautier and Soumireu-Mourat, 1998; Croiset et al., 2000; Engelmann et al., 2000; Engelmann, 2008) and increases aggressivity and anxiety-like behaviors (Ferris et al., 1997; Everts and Koolhaas, 1999; Heinrichs and Domes, 2008; Amikishieva et al., 2011; Mak et al., 2011; Meyer-Lindenberg et al., 2011). In birds, depending of the species, AVT increases or attenuates aggressive behavior (Goodson et al., 2004, 2009; Dewan et al., 2011). In amphibians, AVT stimulates vocalization and courtship behavior (Woolley et al., 2004; Moore et al., 2005; Thompson et al., 2008; Kikuyama et al., 2009). Certain neurosteroids also affect cognitive and mnemonic functions, aggressiveness and sexual activity (Frye, 2001; Vallée et al., 2001; Darnaudery et al., 2002; MacKenzie et al., 2011; Meyer-Lindenberg et al., 2011). It thus appears that some of the behavioral effects of AVP/AVT may be ascribed to their stimulatory action on neurosteroid biosynthesis.

EFFECT OF NEUROPEPTIDE Y ON NEUROSTEROID BIOSYNTHESIS

Hydroxysteroid sulfotransferase (HST) catalyzes the transfer of a sulfate moiety from 3′-phosphoadenosine 5′-phosphosulfate (PAPS, a universal donor of sulfate radical) on the 3-hydroxyl group of steroids (Klaassen and Boles, 1997; Strott, 2002). While the presence of HST-containing neurons has been clearly demonstrated in the amphibian hypothalamus (Beaujean et al., 1999; Vaudry et al., 2011), the existence of HST in the brain of mammals is still a matter of debate (Geese and Raftogianis, 2001; Shimada et al., 2001; Shimizu et al., 2001; Kohjitani et al., 2006). Neuropeptide Y (NPY) is one of the most widely distributed biologically active peptides in the CNS of vertebrates (Allen et al., 1983; De Quindt and Emson, 1986; Bons et al., 1990; Danger et al., 1990, 1991; Aste et al., 1991; Hendry, 1993) and NPY, like sulfated neurosteroids, exerts a wide range of neurobiological activities (Dumont and Quirion, 2006).

In frog, the Poa and the magnocellular preoptic nucleus where HST-positive cell bodies are located (Beaujean et al., 1999; Do Rego et al., 2009) are abundantly innervated by NPY-immunoreactive fibers (Danger et al., 1985), suggesting that NPY could play a role in the regulation of HST-expressing neurons. In support of this hypothesis, double labeling experiments revealed that, in the frog diencephalon, numerous NPYergic axon terminals are apposed onto HST-expressing perikarya (Beaujean et al., 2002; Figure 4A). In addition, the mRNAs encoding the Y1 and Y5 NPY receptor subtypes are expressed in the Poa and the magnocellular preoptic nucleus (Beaujean et al., 2002). Incubation of frog hypothalamic tissue with [3H]Δ5P or [3H]DHEA as steroid precursors and [35S]PAPS as a sulfate donor leads to the biosynthesis of [3H, 35S]Δ5PS or [3H, 35S]DHEAS, respectively, confirming the existence of a biologically active form of HST in the amphibian brain (Beaujean et al., 1999). Synthetic frog NPY (Chartrel et al., 1991) causes a concentration-dependent inhibition of the de novo formation of Δ5PS and DHEAS (Beaujean et al., 2002). The inhibitory effect of NPY is suppressed by the Y1 receptor antagonist BIBP3226 while the Y2 receptor antagonist NPY(13–36) is
Neuropeptide Y and sulfated neurosteroids are known to regulate the same behavioral activities including response to novelty (von Horsten et al., 1998; Tasan et al., 2009), feeding and satiety (Kalra and Kalra, 2004a,b; Ramos et al., 2005; Beck, 2006; Ueno et al., 2008), and reproductive behavior (Wehrenberg et al., 1989). NPY and sulfated neurosteroids are also implicated in the physiopathology of cognitive disorders, pain, epilepsy, anxiety, and depression (Engel and Grant, 2001; Rupprecht and Holsboer, 2001; Dumont and Quirion, 2006; Gibbs et al., 2006; Reddy, 2010; Thorsell, 2010; Nguyen et al., 2011). The fact that NPY reduces the biosynthesis of sulfated neurosteroids would thus indicate that some of the neurophysiological and behavioral activities of these latter factors could be mediated by neurosteroids. To test this hypothesis, it will be necessary to investigate whether specific activities of these regulatory factors are impaired in conditional KO mice lacking selectively expression of steroidogenic enzymes in the brain. The neuroendocrine regulation of neurosteroid biosynthesis by neurotransmitters, neuropeptides, and hormonal factors is currently an emerging theme that will undoubtedly flourish in the years to come.

ACKNOWLEDGMENTS

This work was supported by grants from the Institut National de la Santé et de la Recherche Médicale (INSERM U413/U982), the Ministère des Affaires Etrangères (France–Québec exchange program to Georges Pelletier and Hubert Vaudry), a France–Québec exchange program (INSERM-Fonds de la Recherche en Santé du Québec, FRSQ, to Georges Pelletier and Hubert Vaudry), France–Korean exchange programs (INSERM-Korea Science and Engineering Foundation, KOSEF, to Jae Young Seong and Hubert Vaudry; and Science and Technology Amicable Relationships, STAR, to Jean Luc Do Rego, Jae Young Seong, and Hubert Vaudry), a France–Japan exchange program (INSERM-Japan Society for the Promotion of Science, JSPS, to Kazuyoshi Tsutsui, Hubert Vaudry, and Jean Luc Do Rego), the Plate-Forme Régionale de Recherche en Imagerie Cellulaire de Haute-Normandie (PRI-MACEN), and the Région Haute-Normandie. Hubert Vaudry is Associated Researcher at the Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University, Québec.

REFERENCES

Alho, H., Fremeau, R. T. Jr., Tiedge, H., Wilcox, J., Bovolin, P., Brossus, J., Roberts, J. L., and Costa, E. (1988). Diazepam binding inhibitor gene expression: location in brain and peripheral tissues of rat. Proc. Natl. Acad. Sci. U.S.A. 85, 7018–7022.

Alho, H., Kolmer, M., Harjuntausta, T., and Helen, P. (1995). Increased expression of diazepam binding inhibitor in human brain tumors. Cell Growth Differ. 6, 309–314.

Allen, Y. S., Adrian, T. E., Allen, J. M., Tatemoto, K., Crow, T. J., Bloom, S. R., and Polak, J. M. (1983). Neuropeptide Y distribution in the rat brain. Science 221, 877–879.

Allen, M. L., Janusonis, S., Fite, K. V., and Panzica, G. C. (1991). Immunohistochemical studies in the rat brain. J. Chem. Neuroanat. 2, 301–318.

Alho, H., Fremeau, R. T. Jr., Tiedge, H., Wilcox, J., Bovolin, P., Brossus, J., Roberts, J. L., and Costa, E. (1988). Diazepam binding inhibitor gene expression: location in brain and peripheral tissues of rat. Proc. Natl. Acad. Sci. U.S.A. 85, 7018–7022.

Alho, H., Kolmer, M., Harjuntausta, T., and Helen, P. (1995). Increased expression of diazepam binding inhibitor in human brain tumors. Cell Growth Differ. 6, 309–314.

Allen, Y. S., Adrian, T. E., Allen, J. M., Tatemoto, K., Crow, T. J., Bloom, S. R., and Polak, J. M. (1983). Neuropeptide Y distribution in the rat brain. Science 221, 877–879.

Amikushieva, A. V., Iliniteskaia, S. I., Nikolov, V. P., and Popova, N. A. (2011). Effect of vasopressin V1B receptor antagonist, SSR140692, on anxiety-like behavior and Lewis lung carcinoma metastasis in mice. Exp. Oncol. 33, 126–129.

Ansholt, R. R., Murphy, K. M., Mack, G. E., and Snyder, S. H. (1984). Peripheral-type benzodiazepine receptors in the central nervous system: localization to olfactory nerves. J. Neurosci. 4, 593–603.

Aste, N., Viglietti-Panzica, C., Fasolo, A., Andreone, C., Vaudry, H., Pelletier, G., and Panzica, G. C. (1991). Localization of neuropeptide Y-immunoreactive cells and fibres in the brain of the Japanese quail. Cell Tissue Res. 265, 219–230.

Bäckberg, M., Ultenius, C., Fritschy, J. M., and Meister, B. (2004). Cellular localization of GABA receptor subunit mRNA in the rat hypothalamus: relationship with neurons containing orexigenic or anorexigenic peptides. J. Neuroendocrinol. 16, 589–604.

Balthazar, J., Baillien, M., and Ball, G. F. (2001). Rapid and reversible inhibition of brain aromatase activity. J. Neuroendocrinol. 13, 63–73.

Balthazar, J., Baillien, M., and Ball, G. F. (2003). Multiple mechanisms control aromatase activity at the genomic and non-genomic level. J. Steroid Biochem. Mol. Biol. 86, 367–379.

Balthazar, J., Baillien, M., Charlier, T. D., Cornil, C. A., and Ball, G. F. (2001c). Calcium-dependent phosphorylation processes control brain aromatase activity at the genomic and non-genomic level. J. Steroid Biochem. Mol. Biol. 86, 367–379.

Balthazar, J., Baillien, M., Charlier, T. D., and Ball, G. F. (2003). Calcium-dependent phosphorylation processes control brain aromatase in quail. Eur. J. Neurosci. 17, 1591–1606.

Frontiers in Endocrinology | Neuroendocrine Science

January 2012 | Volume 3 | Article 4 | 8
Barbaccia, M. L., Rossetti, G., Trabucci, M., Purdy, R. H., Mostallino, M. C., Perra, C., Concas, A., and Biggio, G. (1996). Isoxazolid-induced inhibition of GABAergic transmission enhances neurosteroid content in the rat brain. Neuropharmacology 35, 1299–1305.

Baulieu, E. E. (1997). Neurosteroids: of the nervous system by the nervous system. Recent Prog. Horm. Res. 52, 1–32.

Baulieu, E. E. (1998). Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 23, 963–987.

Baulieu, E. E., Robel, P., and Schumacher, M. (1999). “Neurosteroids: a new regulatory function in the nervous system, for the nervous system. ed E. E. Baulieu, P. Robel, and M. Schumacher (Tokowa, NJ: Karger), 1–26.

Beaujean, D., Mensah-Nyagan, A. G., Do Rego et al. Control of neurosteroid biosynthesis. Fundam. Clin. Pharmacol. 4, 307–340.

Darnaudery, M., Pallarès, M., Piazza, P. V., Le Moal, M., and Mayo, W. (2002). The neurosteroid pregnenolone sulfate infused into the medial septum nucleus increases hippocampal acetylcholine and spatial memory in rats. Brain Res. 95, 237–242.

De Montis, G. M., Oliazan, M. C., Mulas, G., Lloyd, K. G., and Tagliamonte, A. (1981). GABA receptors distribution in rat substantia nigra. Neuroni. Lett. 23, 257–261.

De Quidt, M. E., and Emsom, P. C. (1986). Distribution of neurosteroid Y-like immunoreactivity in the rat central nervous system II. Immunohistochemical analysis. Neuroscience 18, 545–618.

De Wied, D., Diamant, M., and Fodor, M. (1993). Central nervous system effects of the neurophosphoryl hormones and related peptides. Front. Neuroendocrinol. 14, 231–302.

Dewan, A. K., Ramey, M. L., and Tri- cas, T. C. (2011). Arginine vasotocin neuronal phenotypes, telencephalic fiber varicosities, and social behavior in butterflies (Chaetodontidae): potential similarities to birds and mammals. Horm. Behav. 59, 56–66.

Diotel, N., Do Rego, J. L., Anglade, I., Vaillant, C., Pellegrini, E., Gueguen, M. M., Mironov, S., Vaudry, H., and Kah, O. (2011). Activity and expression of steroidogenic enzymes in the brain of adult zebrafish. Eur. J. Neurosci. 34, 45–56.

Diotel, N., Le Page, Y., Mouriec, K., Tong, S. K., Pellegrini, E., Vaillant, C., Anglade, I., Brion, F., Pakdel, K., Chung, B. C., and Kah, O. (2010). Activity and expression of steroidogenic enzymes in the brain of adult zebrafish. Eur. J. Neurosci. 34, 172–192.

Djebali, M., Hofman, S. W., and Stein, D. G. (2004). Allopregnanolone and Vaudry, H. (1991). Neurosteroid Y in the trout brain and pituitary: localization, characterization, and action on gonadotropin release. Endocrinology 128, 2360–2366.

Danger, J. M., Guy, J., Benyamina, J., Jégou, S., Leboungeler, F., Coté, J., Tonon, M. C., Pelletier, G., and Vaudry, H. (1985). Localization and identification of neurosteropeptide Y (NPY)-like immunoreactivity in the frog brain. Peptides 6, 1223–1226.

Danger, J. M., Tonon, M. C., Jenks, B. G., Saint-Pierre, S., Martel, L. C., Fasolo, A., Breton, B., Quirion, R., Pelletier, G., and Vaudry, H. (1990). Neurosteropeptide Y localization in the central nervous system and neuroendocrine functions. Fundam. Clin. Pharmacol. 4, 307–340.

De Quidt, M. E., and Emsom, P. C. (1986). Distribution of neurosteroid Y-like immunoreactivity in the rat central nervous system II. Immunohistochemical analysis. Neuroscience 18, 545–618.

De Wied, D., Diamant, M., and Fodor, M. (1993). Central nervous system effects of the neurophosphoryl hormones and related peptides. Front. Neuroendocrinol. 14, 231–302.

Dewan, A. K., Ramey, M. L., and Tri- cas, T. C. (2011). Arginine vasotocin neuronal phenotypes, telencephalic fiber varicosities, and social behavior in butterflies (Chaetodontidae): potential similarities to birds and mammals. Horm. Behav. 59, 56–66.

Diotel, N., Do Rego, J. L., Anglade, I., Vaillant, C., Pellegrini, E., Gueguen, M. M., Mironov, S., Vaudry, H., and Kah, O. (2011). Activity and expression of steroidogenic enzymes in the brain of adult zebrafish. Eur. J. Neurosci. 34, 45–56.

Diotel, N., Le Page, Y., Mouriec, K., Tong, S. K., Pellegrini, E., Vaillant, C., Anglade, I., Brion, F., Pakdel, K., Chung, B. C., and Kah, O. (2010). Activity and expression of steroidogenic enzymes in the brain of adult zebrafish. Eur. J. Neurosci. 34, 172–192.

Djebali, M., Hofman, S. W., and Stein, D. G. (2004). Allopregnanolone and
activity relationships of a series of analogs of the endopine oxtetra-
neuropeptide (ODN11–18) on neu-
rosteroid biosynthesis by hypothal-
amic explants. J. Med. Chem. 30, 3070–3076.
Dubrovsky, B. O. (2005). Steroids, neu-
roactive steroids and neurosteroids in
psychopathology. Prog. Neuro-
psychopharmacol. Biol. Psychiatry 29, 169–192.
Dumont, Y., and Quirion, R. (2006).
"Neuropeptide Y", in Handbook of
Biologically Active Peptides, ed. A. J.
Kastin (New York: Academic Press), 683–688.
Duparc, C., Lefebvre, H., Tonon, M. C.,
Vauv-le-Th, V., Pelletier, G., and Vaudry, H. (2001). The oxtetra-
neuropeptide ODN stimulates neur-
osteroid biosynthesis through acti-
vation of central-type benzodi-
azepine receptors. J. Neurochem. 76,
128–138.
Do Rego, J. L., Mensah-Nyagan, A. G.,
Beaujean, D., Leprince, J., Tonon, M. C.,
Luu-Th, V., Pelletier, G., and Vaudry, H. (2001). The oxtetra-
neuropeptide ODN stimulates neuro-
steroid biosynthesis through activi-
tion of central-type benzodi-
zepine receptors. J. Neurochem. 76,
128–138.
Do Rego, J. L., Mensah-Nyagan, A. G.,
Beaujean, D., Vaudry, D., Sieghart, W.,
Luu-Th, V., Pelletier, G., and Vaudry, H. (2000). GABA, acting
through
GABA receptors, inhibits biosynthesis of neurosteroids in the
frog hypothalamus. Proc. Natl. Acad. Sci. U.S.A. 97, 13925–13930.
Do Rego, J. L., Mensah-Nyagan, A. G., Feuillel, M., Ferrara, P.,
Pelletier, G., and Vaudry, H. (1998). The endopine triaktante-
traneuropeptide diazepam-binding
inhibitor [17-30] stimulates neuro-
steroid biosynthesis in the frog hypo-
thalamus. Neuroscience 83, 555–570.
Do Rego, J. L., Orta, M. H., Leprince, D., Leprince, J., Luu-
Th, V., Pelletier, G., and Vaudry, H. (2000). GABA, acting
through
GABA receptors, inhibits biosynthesis of neurosteroids in the
frog hypothalamus. Proc. Natl. Acad. Sci. U.S.A. 97, 13925–13930.
Do Rego et al. Control of neurosteroid biosynthesis

Frontiers in Endocrinology | Neuroendocrine Science
January 2012 | Volume 3 | Article 4 | 10

progestosterone decrease cell death and cognitive deficits after a contusion of
the rat pre-frontal cortex. Neuro-
science 123, 349–359.
Do Rego, J. L., Orta, M. H., Leprince, J., Tonon, M. C., Vaudry, H., and
Costentin, J. (2007). Pharmacolog-
ic characterization of the receptor
mediating the anorexigenic action of the

doxtetra-neuropeptide: evidence for an endopinebrain tonic regulat-
ing food intake. Neuropsychophar-
macology 32, 1641–1648.
Do Rego, J. L., Acharjee, S., Seong, J. Y., Galas, L., Alexandre, D., Bizet,
P., Burlet, A., Kwon, H. B., Luu-
Th, V., Pelletier, G., and Vaudry, H. (2006). Vasotocin and mesotocin
stimulate the biosynthesis of neuro-
steroids in the frog brain. J. Neurosci.
26, 674–677.

Do Rego, J. L., Mensah-Nyagan, A. G., Men-
us-exo-neuropeptide on non-genomic
effects of progestins and androgens in medi-
ating sexual receptivity of rodents. Brain Res. 37, 201–222.
Garcia de Mateos-Verchere, J., Lep-
rine, J., Tonon, M. C., Vaudry, H., and
Costentin, J. (1999). Reduc-
tion of pentylenetetrazol-induced convulsions by the oxtetra-
neuropeptide ODN. Peptides 20,
1431–1436.
Garcia de Mateos-Verchere, J., Leprince,
J., Tonon, M. C., Vaudry, H., and
Costentin, J. (2001). The oxtetra-
neuropeptide [diazepam-binding inhibi-
tor (33-40)] exerts potent anorexigenic effects in rodents. Eur.
J. Pharmacol. 414, 225–231.
Garnier, M., Bourjade, N., Oppeguer, S. O.,
Hudson, J. R. Jr., and Papadopoulos, V. (1994). The polypeptide
diazepam-binding inhibitor and a higher affinity mitochondrial peripheral-type
benzodiazepine receptor sustain
constitutive neurotoxicity in the
R2C Leydig tumor cell line. J. Biol.
Chem. 269, 22105–22112.
Garnier, M., Bourjade, N., Oke,
B. O., Brown, A. S., Riord, J.,
Ferrara, P., Shoyab, M., Suarez-
Quian, C. A., and Papadopoulos, V. (1993). Diazepam binding
inhibitor is a paracrine/autocrine
protein that mediates the anorexi-
genesis of an endogenous polypep-
tide with agonistic action on benzodi-
ame receptors. Proc. Natl. Acad.
Sci. U.S.A. 80, 3531–3535.
Gorius, E., Cardounel, A., and Kalimi,
A. (2001). Pregnenolone protects
mouse hippocampal (HT-22) cells against glutamate and amyloid beta
protein toxicity. Neurochem. Res. 26,
15–21.
Harada, N. (1988). Novel properties of human placental aromatase
as cytochrome P-450: purification and characteriza-
tion of a unique form of aromatase. J. Biochem. 103, 106–113.
Haraguchi, S., Koyama, T., Do Rego,
J. L., and Tsutsui, K. (2009). Seasonal changes in the syn-
thesis of 7α-hydroxypregnenolone

Geese, W. J., and Raftogianis, R.
B. (2001). Biochemical character-
ization and tissue distribution of
human SU2281. Biochem. Biophys.
Res. Commun. 288, 280–289.
Gehlert, D. R., Yamamura, H. I., and
Wamsley, J. K. (1985). Autoradi-
ographic localization of "peripheral-
type" benzodiazepine binding sites
in the rat brain, heart and kidney.
Naunyn Schmiedebergs Arch.
Pharmacol. 328, 454–461.
Gibbs, J. L., Flores, C. M., and Harg-
reaves, K. M. (2006). Attenuation of
capsaicin-evoked mechanical allo-
dynia by peripheral neuropeptide Y
Y1 receptors. Pain 124, 167–174.

Goodson, J. L., Kabelik, D., and Scheck,
S. E. (2009). Dynamic neumo-
modulation of aggression by vasotocin: influence of social
context and social phenotype in territorial songbirds.
Bioll. Lett. 5, 554–556.

Goodson, J. L., Lindberg, L., and John-
son, P. (2004). Effects of central
vasotocin and mesotocin manipula-
tions on social behavior in male
and female zebra finches. Horm. Behav.
45, 136–143.
Grazzini, E., Guillou, M., Mouillac, B.,
and Zingg, H. H. (1998). Inhibi-
tion of oxytocin receptor function
by direct binding of progesterone.
Nature 392, 509–512.

Guarneri, P., Guarneri, R., Cascio, C.,
Piccoli, F., and Papadopoulos, V. (1995). Y-aminobutyric acid type
\(A\)/benzodiazepine receptors regu-
late rat retina neurosteroidogenesis.
Brain Res. 683, 65–72.
Guidotti, A. (1991). Role of DBI in brain
and its posttranslational process-
ing products in normal and abnor-
mal behavior. Neuropeharmacology 30, 1425–1433.
Guidotti, A., Forchetti, C. M., Corda, M.
G., Kondel, D., Bennett, C. D., and
Costa, E. (1983). Isolation, charac-
terization and purification to homo-
genity of an endogenous polypep-
tide with agonistic action on benzo-
diazepine receptors. Proc. Natl. Acad.
Sci. U.S.A. 80, 3531–3535.

Gusroy, E., Cardounel, A., and Kalimi,
A. (2001). Pregnenolone protects
mouse hippocampal (HT-22) cells against glutamate and amyloid beta
protein toxicity. Neurochem. Res. 26,
15–21.
Harada, N. (1988). Novel properties of human placental aromatase
as cytochrome P-450: purification and characteriza-
tion of a unique form of aromatase. J. Biochem. 103, 106–113.
Haraguchi, S., Koyama, T., Do Rego,
J. L., and Tsutsui, K. (2009). Seasonal changes in the syn-
thesis of 7α-hydroxypregnenolone

Frontiers in Endocrinology | Neuroendocrine Science
January 2012 | Volume 3 | Article 4 | 10
stimulating locomotor activity in newts. *Ann. N. Y. Acad. Sci.* 1163, 410–413.

Hargach, S., Koyama, T., Hasunuma, L., Vaudry, H., and Tsutsui, K. (2010). Prolactin increases the synthesis of 7α-hydroxypregnenolone, a key factor for induction of locomotor activity, in breeding male newts. *Endocrinology* 151, 2211–2222.

Hau, M., and Gwinner, E. (1994). Melatonin facilitates synchronization of sporad circadian rhythms to light. *J. Comp. Physiol. A.* 175, 343–347.

He, J., Hoffman, S. W., and Stein, D. G. (2004). Allopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury. *Restor. Neurol. Neurosci.* 22, 19–26.

Heinrichs, M., and Domes, G. (2008). Neuropeptides and social behaviors: effect of oxytocin and vasopressin in humans. *Prog. Brain Res.* 170, 337–350.

Hendry, S. H. (1993). “Organization of neuropeptide Y neurons in the mammalian central nervous system,” in *The Biology of Neuropeptide Y and Related Peptides*, eds W. F. Colomers and C. Wahlestedt (Totowa, NJ: Humana Press), 65–156.

Hodge, C. W., Goetz, F. W., Roberts, H., Vaudry, H., and Boyd, S. K. (1994). Allopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury. *Restor. Neurol. Neurosci.* 22, 19–26.

Irwin, R. W., Maragakis, N. J., Rogawski, M. A., Purdy, R. H., Farb, D. H., and Paul, S. M. (1992). Pregnenolone sulfate augments NMDA receptor mediated increases in intracellular Ca2+ in cultured rat hippocampal neurons. *Neurosci. Lett.* 141, 30–34.

Iwata, T., Toyoda, F., Yamamoto, Y., and Kawahara, R. (2005). A study of a dendritic marker, microtubule-associated protein 2 (MAP-2), in rats neonatally treated neurosteroids, pregnenolone and dehydroepiandrosterone (DHEA). *Neurotox. Res.* 8, 145–149.

Jiang, P., Yang, C. X., Wang, Y. T., and Xu, T. L. (2006). Mechanisms of modulation of pregnenolone on glycnergic response in cultured spinal dorsal horn neurons of rats. *Neuroscience* 141, 2041–2050.

Jo, D. H., Sánchez de la Peña, S., Halberg, E., Ungar, F., Baulieu, E. E., and Robel, P. (1990). Circadian-infradian rhythmic variation of brain neurosteroids in the female rat. *Prog. Clin. Biol. Res.* 341B, 125–134.

Kaneko, K. (1994). Androgenic enhancement of motor neuron regeneration. *Ann. N. Y. Acad. Sci.* 743, 141–164.

Kato, S. P., and Kalra, P. S. (2004a). NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. *Peptides* 25, 463–471.

Kaur, G., and Kulkarni, S. K. (2001). Subchronic studies on modulation of feeding behavior and body weight by neurosteroids in female mice. *Methods Find. Exp. Clin. Pharmacol.* 23, 115–119.

Kavaleris, M., and Hirst, M. (1986). An octadecaneuropeptide (ODN) derived from diazepam binding inhibitor increases aggressive interactions in mice. *Brain Res.* 383, 343–349.

Kavaliers, M., and Kinsella, D. M. (1995). Male preference for the odors of estrous female mice is reduced by the neurosteroid pregnenolone sulfate. *Brain Res.* 682, 222–226.

Kikuyama, S., Hasunuma, I., Toyoda, F., Hargach, S., and Tsutsui, K. (2009). Hormone-mediated reproductive behavior in the red-bellied newt. *Ann. N. Y. Acad. Sci.* 1163, 79–86.

Kikuyama, S., Tanaka, S., and Moore, F. L. (2003). “Reproductive biology and phylogeny of urodela,” in *Endocrinology of Reproduction*, ed. D. M. Sever (Enfield, NH: Science Publishers), 275–321.

Kimonides, V. G., Khatibi, N. H., Svendsen, C. N., Sofroniew, M. V., and Herberg, J. (1998). Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. *Proc. Natl. Acad. Sci. U.S.A.* 95, 1852–1857.

Kimonides, V. G., Spillantini, M. G., Sofroniew, M. V., and Herberg, J. (1999). Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures. *Neuroscience* 89, 429–436.

Klaassen, C. D., and Boles, I. W. (1997). Sulfation and sulphotransferases 5: the importance of 3’-phosphosydno sine 5’-phosphosulfate (PAPS) in the regulation of sulfation. *FASEB J.* 11, 404–418.

Koenig, H. L., Schumacher, M., Ferraz, B., Do, T. A. N., Ressouches, A., Guennoun, R., Jung-Testas, I., Robel, P., Akowa, Y., and Baulieu, E. E. (1995). Progesterone synthesis and myelin formation by Schwann cells. *Science* 268, 1500–1503.

Kohjintiti, A., Fuda, H., Hanyu, O., and Strott, C. A. (2006). Cloning, characterization and tissue expression of rat SULT2B1a and SULT2B1b steroid/sulpho transferase isomor: divergence of the rat SULT2B1 gene structure from orthologous human and mouse genes. *Gene* 367, 66–73.

Kostowski, W., and Bienkowski, P. (1999). Discriminative stimulus effects of ethanol: neuropharmacological characterization. *Alcohol* 17, 63–80.

Koyama, T., Hargach, S., Vaudry, H., and Tsutsui, K. (2009). Diurnal changes in the synthesis of 7α-hydroxypregnenolone stimulating locomotor activity in newts. *Ann. N. Y. Acad. Sci.* 1163, 444–447.

Krnevic, K., and Schwartz, S. (1966). Is gamma-amino-butyric acid an inhibitory transmitter? *Nature* 211, 1372–1374.

Ladurelle, N., Eychenne, B., Denton, D., Blair-W est, J., Schumacher, M., and Baulieu, E. E. (2000). Prolonged intracerebroventricular infusion of neurosteroids affects cognitive performances in the mouse. *Brain Res.* 858, 371–379.

Lancel, M., Faulhaber, J., Schiffl- holz, T., Romeo, E., di Michele, F., Holbober, F., and Rupprecht, R. (1997). Allopregnanolone affects sleep in a benzodiazepine-like fashion. *J. Pharmacol. Exp. Ther.* 282, 1213–1218.

Landgren, S., Backstrom, T., and Dubrovsky, B. (1987). The effect of progesterone and its metabolites on the interictal epileptiform discharge in the cat’s cerebral cortex. *Acta Physiol. Scand.* 131, 33–42.

Lanthier, A., and Patwardhan, V. V. (1986). Sex steroids and 5-ene-3β-hydroxysteroids in specific regions of the human brain and cranial nerves. *J. Steroid Biochem.* 25, 445–449.

Lapchak, P. A., and Arazoo, D. M. (2001). Preclinical development of neurosteroids as neuroprotective agents for the treatment of neurodegenerative diseases. *Int. Rev. Neurobiol.* 46, 379–397.

Lapchak, P. A., Chapman, D. F., Nunez, S. Y., and Zivin, J. A. (2000). Dehydroepiandrosterone sulfate is neuroprotective in a reversible spinal cord ischemia model. *Stroke* 31, 1953–1957.

Larcher, A., Delarue, C., Homo-Delarce, F., Kikuyama, S., Kupryszewski, G., and Vaudry, H. (1992). Pharmacological characterization of vasotocin stimulation of phosphoinositide turnover in frog adrenal gland. *Endocrinology* 130, 473–485.

Larcher, A., Delarue, C., Idere, S., Lefèvre, H., Feuilloley, M., Vandesande, F., Pelletier, G., and Vaudry, H. (1989). Identification of VT-like immunoreactivity in chromaffin cells of the frog adrenal gland: effect of VT on corticosteroid secretion. *Endocrinology* 125, 2691–2700.

Laurine, E., Lafitte, D., Grégoire, C., Sérée, E., Loret, E., Douillard, S., Michel, B., Briand, C., and Verdier, J. M. (2003). Specific binding of dehydroepiandrosterone to the N terminus of
the microtubule-associated protein MAP2. J. Biol. Chem. 278, 29979–29986.
Le Foll, F., Louiset, E., Castel, H., Vaudry, H., and Cazin, L. (1997a). Electrophysiological effects of various neuroactive steroids on the GABA(A) receptor in pituitary melanotroph cells. Eur. J. Pharmacol. 331, 303–311.
Le Foll, F., Castel, H., Louiset, E., Vaudry, H., and Cazin, L. (1997b). Multiple modulatory effects of the neuroactive steroid pregnanolone on GABA(A) receptor in frog pituitary melanotrophs. J. Physiol. 504, 387–400.
Leskiewicz, M., Budziszewska, B., Basta-Kaim, A., Zajac, A., Kacinski, M., and Lason, W. (2006). Effects of neuroactive steroids on the cell survival: molecular basis and clinical perspectives. Acta Neurobiol. Exp. (Wars.) 66, 359–367.
Lesouhaitier, O., Feuilloley, M., MacKenzie, E. M., Odontiadis, J., Lebrun, E. M., Warner, D. S., Pearlstein, R. D., Penning, D. H., Mehraein, S., and Boustany, R. M. (1994). Frog diazepam-binding inhibitor-related peptides (endozepines) in the rat. J. Physiol. Pharmacol. 45, 53–69.
Malagon, M., Vaudry, H., Vellarino, M., Gracia-Navarro, F., and Tonon, M. C. (1992a). Distribution and characterization of endogeneous-like immunoreactivity in the central nervous system of the frog Rana ridibunda. Peptides. 13, 99–107.
Malagon, M., Vellarino, M., Tonon, M. C., and Vaudry, H. (1992b). Localisation and characterization of diazepam-binding inhibitor (DBI)-like peptides in the brain and pituitary of the trout (Salmo gairdneri). Brain Res. 576, 208–214.
Malagon, M., Vaudry, H., Van Strien, F., Pelletier, G., Gracia-Navarro, F., and Tonon, M. C. (1993). Ontogeny of diazepam-binding inhibitor-related peptides (endoepeptides) in the rat brain. Neuroscience 57, 777–786.
Malik, A. S., Narayan, R. K., and Wendling, W. W. (2003). A novel dehydroepiandrosterone analog improves functional recovery in a rat traumatic brain injury model. J. Neurotrauma 20, 463–476.
Mameli, M., Carta, M., Partridge, L., Melcangi, R. C., Azcoitia, I., Balanda, S., and Boustan, R. M. (2002). Allopregnanolone attenuates N-methyl-D-aspartate-induced excitotoxicity and apoptosis in human NT2 cell line in culture. Neurosci. Lett. 328, 33–36.
MacKenzie, E. M., Odontiadis, J., Le Melleiro, J. M., Prior, T. L., and Baker, G. B. (2007). The relevance of neuroactive steroids in schizophrenia, depression, and anxiety disorders. Cell. Mol. Neurobiol. 27, 541–574.
Magnaghi, V., Cavarretta, L., Galiati, M., Martini, L., and Melcangi, R. C. (2001). Neuroactive steroids and peripheral myelin proteins. Brain Res. Rev. 37, 360–371.
Majewska, M. D. (1992). Neurosteroids: endogenous bimodal modulators of the GABA(A) receptor. Mechanism of action and physiological significance. Prog. Neurobiol. 38, 379–395.
Majewska, M. D., Harrison, N. L., Schwartz, R. D., Barker, J. L., and Paul, S. M. (1986). Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 232, 1004–1007.
Majewska, M. D., and Schwartz, R. D. (1987). Pregnenolone-sulfate: an endogenous antagonist of the gamma-aminobutyric acid receptor complex in brain? Brain Res. 404, 355–360.
Mak, P., Broussard, C., Vacy, K., and Broadbent, J. H. (2011). Modulation of anxiety behavior in the elevated plus maze using peptidic oxycin and vasopressin receptor ligands in the rat. J. Psychopharmacol. (in press). Pagination: 1099–1107.
Matsuda, K., Tanaka, S., Yamamoto, K., and Kikuyama, S. (1990). Annual changes of plasma prolactin levels in the newt, Cynops pyrrohogaster. Zoolog. Sci. 7, 1143.
Matsuda, K., Wada, K., Miura, T., Maruyama, K., Shimakura, S. I., Uchiyama, M., Leprince, J., Tonon, M. C., and Vaudry, H. (2007). Effect of the diazepam-binding inhibitor-derived peptide, octade-caneuropeptide, on food intake in goldfish. Neuroscience 150, 425–432.
Matsunaga, M., Ukena, K., Baulieu, E. E., and Tsutsui, K. (2004). 7α-Hydroxy pregnenolone acts as a neuronal activator to stimulate locomotor activity via modulatory actions of neuromodulatory sigma1 (σ1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol. Biochem. Behav. 84, 581–597.
Mayo, W., Della, R., Pelletier, C., Cherkawski, J., Le Moal, M., Baulieu, E. E., and Simon, H. (1993). Infusion of neurosteroids into the nucleus basalis magnocellularis affects cognitive processes in the rat. Brain Res. 607, 324–328.
McDonald, A. J., and Mascagni, F. (1996). Immunohistochemical localization of the β2 and β3 subunits of the GABAA receptor in the basolateral amygdala of the rat and monkey. Neuroscience 75, 407–419.
McEwen, B. S. (1994). Neuroactive (steroid) actions at the neuromodulatory sigma1 (σ1) receptor: bioactive and physiologival evidences, consequences in neuroprotection. Prog. Brain Res. 101, 1728–17278.
Maurice, T., Grégoire, C., and Espallergues, J. (2006). Neuroactive steroids act on the neuromodulatory sigma1 (σ1) receptor: bioactive and physiological evidences, consequences in neuroprotection. Prog. Brain Res. 101, 1728–17278.
Meyers-Nagay, A. G., Feuilloley, M., Dubé, D., Do Rego, J. L., Leboulenger, F., Pelletier, G., and Vaudry, H. (1994). Immunocytochemical and biological activity of 3β-hydroxysteroid dehydrogenase in the central nervous system of the frog. J. Neurosci. 14, 7306–7318.
Meyer-Lindenberg, A., Domes, G., Kirsch, P., and Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–538.
Miguéz, P. V., Johnston, A. N., and Rose, S. P. (2002). Dehydroepiandrosterone and its sulphate enhance memory retention in day-old chicks. Neuroscience 109, 243–251.
Mitchell, E. A., Gentet, L. J., Dempster, J., and Beledi, D. (2007). GABA(A) and glycine receptor-mediated transmission in rat lamina II neurons: relevance to the analgesic actions of neuroactive steroids. J. Physiol. 583, 1021–1040.
Mo, Q., Lu, S. F., Hu, S., and Simon, N. G. (2004). DHEA and DHEA-sulfate differentially regulate natural androgen receptor and its transcriptional activity. Brain Res. Mol. Brain Res. 126, 165–172.
Mocchetti, I., Einstein, R., and Brosius, J. (1986). Putative diazepam binding inhibitor peptide: cDNA clones from rat. Proc. Natl. Acad. Sci. U.S.A. 83, 7221–7225.
Monnet, F. P., Mahe, V., Pelletier, G., and Vaudry, H. (1996). Localization of 17β-hydroxysteroid dehydrogenase in the central nervous system of the frog. J. Neurosci. 14, 7306–7318.
Moore, F. L., Boyd, S. K., and Kelley, D. B. (2005). Historical perspective: hormonal regulation of behavior in amphibians. Horm. Behav. 48, 373–383.

Morrow, A. L. (2007). Recent developments in the significance and therapeutic relevance of neuroactive steroids – introduction to the special issue. Pharmacol. Ther. 116, 1–6.

Mosconi, G., Yamamoto, K., Kikuyama, S., Carnevali, O., Mancuso, A., and Vellano, C. (1994). Seasonal changes of plasma prolactin concentration in the reproduction of the crested newt (Triturus carnifex Lator). Gen. Comp. Endocrinol. 95, 342–349.

Murakami, K., Fellous, A., Baulieu, E. E., and Robel, P. (2000). Pregnenolone binds to microtubule-associated protein 2 and stimulates microtubule assembly. Proc. Natl. Acad. Sci. U.S.A. 97, 3579–3584.

Murakami, N., Kawanoto, T., Nakahara, K., Nasu, T., and Shioota, K. (2001). Effect of melatonin on circadian rhythm, locomotor activity and body temperature in the intact house sparrow, Japanese quail and owl. Brain Res. 889, 220–224.

Nasman, B., Olsson, T., Backstrom, T., Eriksson, S., Grankvist, K., Vitanen, M., and Bucht, G. (1991). Serum dehydroepiandrosterone sulfate in Alzheimer's disease and in multi-infarct dementia. Biol. Psychiatry 30, 684–690.

Nguyen, A. D., Herzog, H., and Sainsbury, A. (2011). Neuropeptide Y and peptide YY. Important regulators of energy metabolism. Curr. Opin. Endocrinol. Diabetes Obes. 18, 56–60.

Papadopoulos, V. (1993). Peripheral-type benzodiazepine/diazepam binding inhibitor receptor: biological role in stereoidogenic cell function. Endocr. Rev. 14, 222–240.

Papadopoulos, V., Baraldi, M., Guilarte, T. R., Knudsen, T. B., Lacapère, J. L., Lindemann, P., Norenberg, M. D., Nutt, D., Weisman, A., Zhang, M. R., and Gavish, M. (2006). Translocase protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci. 27, 402–409.

Papadopoulos, V., Berkovich, A., and Krueger, K. E. (1991a). The role of diazepam binding inhibitor and its processing products stimulate mitochondrial steroid biosynthesis via an interaction with mitochondrial benzodiazepine receptors. Endocrinology 129, 1481–1488.

Papadopoulos, V., Guarneri, P., Krueger, K. E., Guidotti, A., and Costa, E. (1992). Pregnenolone biosynthesis in C6-2B glioma cell mitochondria: regulation by a mitochondrial diazepam binding inhibitor receptor. Proc. Natl. Acad. Sci. U.S.A. 89, 5113–5117.

Papadopoulos, V., Mukhin, A. G., Costa, E., and Krueger, K. E. (1990). The peripheral-type benzodiazepine receptor is functionally linked to Leydig cell steroidogenesis. J. Biol. Chem. 265, 3772–3779.

Paradies, R. G., and Agoston, A. (1992). GABA and behavior: the role of receptor subtypes. Neurosci. Biobehav. Rev. 16, 1–150.

Park-Chung, M., Malayev, A., Purdy, R. H., Gibbs, T. T., and Farb, D. H. (1999). Sulfated and unsulfated steroids modulate gamma-aminobutyric acid A receptor function through distinct sites. Brain Res. 830, 72–87.

Patchev, V. K., Hassan, A. H. S., Holbofer, B., and Almeida, O. F. X. (1996). The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacol. 15, 533–540.

Paul, S. M., and Purdy, S. H. (1992). Neuroactive steroids. FASEB J. 6, 2311–2322.

Palm, J., Porter, J., Svec, D., Eiswirth, C., and Svec, F. (2000). The effect of dehydroepiandrosterone on Zucker rats selected for fat food preference. Physiol. Behav. 70, 431–441.

Pinna, G., Agis-Balboa, R. C., Pibiri, F., Nelson, M., Guidotti, A., and Costa, E. (2008). Neurosteroid biosynthesis regulates sexually dimorphic fear and aggressive behavior in mice. Neurochem. Res. 33, 1990–2007.

Plassart-Schiess, A., and Baulieu, E. E. (2001). Neurosteroids: recent findings. Brain Res. Rev. 37, 133–140.

Polonetti-Magni, A., Carnevali, O., Yamamoto, K., and Kikuyama, S. (1995). Growth hormone and prolactin in amphibian reproduction. Zool. Sci. 12, 683–694.

Ramos, E. J., Meguid, M. M., Campos, R. C., and Coelho, J. C. (2005). Neuropeptide Y, a melanocyte-stimulating hormone, and monoamines in food intake regulation. Nutrition 21, 269–279.

Reddy, D. S. (2003). Pharmacology of endogenous neuroactive steroids. Crit. Rev. Neurobiol. 15, 197–234.

Reddy, D. S. (2010). Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog. Brain Res. 186, 113–137.

Reddy, D. S., and Kulkarni, S. K. (1998). The role of the GABA-A and mitochondrial diazepam-binding inhibitor receptors on the effects of neurosteroids on food intake in mice. Psychopharmacology (Berl.) 137, 391–400.

Reddy, D. S., and Kulkarni, S. K. (1999). Sex and estrus cycle-dependent changes in neurosteroid and benzodiazepine effects on food consumption and plus-maze learning behaviors in rats. Pharmacol. Biochem. Behav. 63, 597–610.

Rupprecht, R., and Holsboer, F. (1999). Neuroactive steroids: mechanisms of action and implications for neuropsychopharmacology. Int. Rev. Neurobiol. 46, 461–477.

Sakaue, M., Saito, N., Taniguchi, H., Baba, S., and Tanaka, C. (1998). Immunohistochemical localization of γ-aminobutyric acid in the rat pituitary gland and related hypothalamic regions. Brain Res. 446, 343–353.

Schipper, A., and Partridge, L. D. (2005). Pregnenolone sulfate acts through a G-protein-coupled signal-like receptor to enhance short term facilitation in adult hippocampal neurons. Eur. J. Pharmacol. 53, 22–29.

Schlinger, B. A., and Remage-Healey, L. (2011). Neurosteroidogenesis: insights from studies of songbirds. J. Neuroendocrinol. 24, 16–21.

Schumacher, M., Akwa, Y., Guenoun, R., Roberts, F., Labombarda, F., Desarnaud, E., Rolpe, P., De Nicola, A. F., and Baulieu, E. E. (2000). Steroid synthesis and metabolism in the nervous system: trophic and protective effects. J. Neurootol. 29, 307–326.

Schumacher, M., Weil-Engerer, S., Liere, P., Roberts, F., Franklin, R. J., Garcia-Segura, L. M., Lambert, J. J., Mayo, W., Melcangi, R. C., Parducz, A., Suter, U., Carelli, C., Baulieu, E. E., and Akwa, Y. (2003). Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog. Neurobiol. 71, 3–29.
Shannon, E. E., Purdy, R. H., and Grant, K. A. (2005a). Discriminative stimulus effects of 5.6 mg/kg pregnenolone in DVA2/1 and C57BL/6 inbred mice. Alcohol 37, 35–45.

Shannon, E. E., Porcu, P., Purdy, R. H., and Grant, K. A. (2005b). Characterization of the discriminative stimulus effects of the neuroactive steroid pregnenolone in DVA2/1 and C57BL/6 inbred mice. J. Pharmacol. Exp. Ther. 314, 675–684.

Shimada, M., Yoshinari, K., Tanabe, E., Shimakawa, E., Kobashi, M., Nagata, K., and Yamazoe, Y. (2001). Identification of Spin1/2A1 as a rat brain neurosteroid sulfotransferase mRNA. Brain Res. 920, 222–225.

Shimizu, C., Fuda, H., Yanai, H., and Strott, C. A. (2003). Conservation of the hydroxysteroid sulfotransferase SUIT2B1 gene structure in the mouse: pre- and postnatal expression, kinetic analysis of isoforms, and comparison with prototypical SUIT2A1. Endocrinology 144, 1186–1193.

Slobodiansky, E., Guidotti, A., Wainbebe, C., Berkovich, A., and Costa, E. (1989). Isolation and characterization of a triacyltetrapeptide (TTN) a posttranslational product of diazepam binding inhibitor: specific action at the R05-4864 recognition sites. J. Neurochem. 53, 1276–1284.

Slobodiansky, E., Kujirr, G., and Kultas-llinsky, K. (1992). Diazepam binding inhibitor processing in the rhesus monkey brain: an immunocytochemical study. J. Chem. Neuroanat. 5, 169–180.

Steifens, S. C., Jones, M. D., Hales, K., and Allison, D. W. (2006). Dehydroepiandrosterone sulfate and estrone sulfate reduce DHEA-receptor-mediated in the hippocampus via muscarinic acetylcholine receptors. Hippocampus 16, 1080–1090.

Stein, D. G. (2001). Brain damage, sex hormones and recovery: a new role for progesterone and estrogen? Trends Neurosci. 24, 386–391.

Strott, C. A. (2002). Sulfonylation and molecular action. Endocr. Rev. 23, 703–732.

Strous, R. D., Maayan, R., Lapidus, R., Stryjer, R., Lustig, M., Kotler, M., and Weizman, A. (2003). Value of dehydroepiandrosterone (DHEA) augmentation in the management of negative symptoms in schizophrenia. Arch. Gen. Psychiatry 60, 133–141.

Strous, R. D., Maayan, R., and Weizman, A. (2006). The relevance of neurosteroids to clinical psychiatry: from the laboratory to the bedside. Eur. Psychopharmacol. 16, 155–169.

Sunderland, T., Merril, C. R., Harrington, M. G., Lawlor, B. A., Molchan, S. E., Martinez, R., and Murph, D. L. (1989). Reduced plasma dehydroepiandrosterone concentrations in Alzheimer’s disease. Lancet 2, 570.

Svec, E., and Portor, J. (1996). Effect of DHEA on macronutrient selection by Zucker rats. Physiol. Behav. 59, 721–727.

Svec, E., and Portor, J. (1998a). Dehydroepiandrosterone: a nutritional supplement with actions in the central nervous system. Nutr. Neurosci. 1, 9–19.

Svec, E., and Portor, J. (1998b). The actions of exogenous dehydroepiandrosterone in experimental animals and humans. Proc. Soc. Exp. Biol. Med. 218, 174–191.

Svec, E., Richards, R. J., and Portor, J. R. (1998). Investigating the debate: does DHEA alter food intake? Nutr. Neurosci. 1, 93–101.

Takase, M., Ukena, K., Yamazaki, T., Komimani, S., and Tsutsui, K. (1999). Pregnenolone, pregnenolone sulfate and cytochrome P450 side-chain cleavage enzyme in the amphibian brain and their seasonal changes. Endocrinology 140, 1936–1944.

Tappaz, M. L., Wassef, M., Oertel, W. H., Paut, L., and Pujol, J. F. (1983). Light- and electron-microscopic immunocytochemistry of glutamic acid decarboxylase (GAD) in the basal hypothalamus: morphological evidence for neuroendocrine γ-aminobutyrate (GABA). Neurosci. Biobehav. Rev. 7, 271–287.

Tasan, R. O., Lin, S., Hetzenauer, A., Singewald, N., Herzog, R., and Sperr, G. (2005). Increased novelty-induced motor activity and reduced depression-like behavior in neuropeptide Y (NPY)-Y4 receptor knockout mice. Neuroscience 138, 1717–1730.

Tasker, J. G., Di, S., and Malcher-Lopes, R. (2006). Minireview: rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology 147, 5549–5556.

Thompson, R. R., Dickinson, P. S., Rose, J. D., Dakin, K. A., Civiello, G. M., Segerdahl, A., and Bartlett, R. (2008). Pheronomes enhance somatosensory processing in newt brains through a vasotocin-dependent mechanism. Proc. Biol. Sci. 275, 1685–1693.

Thorsell, A. (2010). Brain neuropeptide Y and corticotropin-releasing hormone in mediating stress and anxiety. Exp. Biol. Med. 235, 1163–1167.

Todoraro, G. J., Rose, T. M., and Showay, M. (1991). Human DB1 (endorphin): relationship to a homologous membrane associated protein (MA-DB1). Neuropharmacology 30, 1373–1380.

Tong, Y., Toranzo, D., and Pelletier, G. (1991). Localization of diazepam-binding inhibitor (DBI) mRNA in the rat brain by high resolution in situ hybridization. Neuropeptides 20, 33–40.

Tonon, M. C., Désy, L., Nicolas, P., Vaudry, H., and Pelletier, G. (1990). Immunocytochemical localization of the endogenous benzodiazepine ligand octadecanepropeptide (ODN) in the brain. Neuropeptides 15, 17–24.

Tonon, M. C., Leprinse, J., Gandolfo, P., Compère, V., Pelletier, G., Malagon, M. M., and Vaudry, H. (2006). “Endozeines,” in Handbook of Biologically Active Peptides. Ed. A. J. Kastin (New York: Elsevier), 813–819.

Torres, J. M., and Ortega, E. (2003). DHEA, PREG and their sulfate derivatives on plasma and brain after CRH and ACTH administration. Neurochem. Res. 28, 1187–1191.

Toyoda, F., Hasunuma, I., Yamamoto, K., Yasamita, M., and Kikuyama, S. (2005). Prolactin acts centrally to enhance new courtship behavior. Gen. Comp. Endocrinol. 141, 172–177.

Toyoda, F., Ito, M., Tanaka, S., and Kikuyama, S. (1993). Hormonal induction of male courtship behavior in the Japanese newt, Gynops pyrrhogaster. Horm. Behav. 27, 511–522.

Vaudry, H., Do Rego, J. L., Burel, D., and Kajiyama, S. (2001). Neurosteroid biosynthesis in the quail brain: a review. J. Exp. Zool. Part A Comp. Exp. Biol. 305, 733–742.

Vaudry, H., Do Rego, J. L., Burel, D., Luu-The, V., Pelletier, G., and Tsutsui, K. (2011). Neurosteroid biosynthesis in the quail brain: a review. Avian Poultry Biol. Rev. 14, 63–72.

Vaudry, H., Do Rego, J. L., and Ukena, K. (2005). Neurosteroid biosynthesis in the quail brain: a review. Proc. Biol. Sci. 272, doi:10.1098/rspb.2004.2993.

Vallee, M., Mayo, W., Darnaudery, M., Coppechot, C., Young, J., Kohl, M., Le Moal, M., Baulieu, E. E., Robel, P., and Simon, H. (1997). Neurosteroids: deficient cognitive performance in aged rats depends on low pregnenolone sulfate levels in the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 94, 14865–14870.

Vallee, M., Mayo, W., and Le Moal, M. (2001). Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive ageing. Brain Res. 876, 1–8.

Valera, S., Ballivet, M., and Bertrand, D. (1992). Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A. 89, 9949–9953.

Viglietti-Panzica, C., Aste, N., Balthazart, J., and Panzica, G. C. (1994). Vasotocinergic innervation of sexually dimorphic medial preoptic nucleus of the male Japanese quail: Control of neurosteroid biosynthesis.
Do Rego et al.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 31 October 2011; paper pending published: 06 December 2011; accepted: 05 January 2012; published online: 24 January 2012.

Citation: Do Rego JL, Seong JY, Burel D, Leprince J, Vaudry D, Luu-The V, Tonon M-C, Tsutsui K, Pelletier G and Vaudry H (2012) Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides. Front. Endocrin. 3:4. doi: 10.3389/fendo.2012.00004

This article was submitted to Frontiers in Neuroendocrine Science, a specialty of Frontiers in Endocrinology.

Copyright © 2012 Do Rego, Seong, Burel, Leprince, Vaudry, Luu-The, Tonon, Tsutsui, Pelletier and Vaudry. This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.