Islet-Specific CTL Cloned from a Type 1 Diabetes Patient Cause Beta-Cell Destruction after Engraftment into HLA-A2 Transgenic NOD/SCID/IL2RG Null Mice

Wendy W. J. Unger1*, Todd Pearson2, Joana R. F. Abreu1, Sandra Laban1, Arno R. van der Slik3, Sacha Mulder-van der Kracht1, Michel G. D. Kester3, Dave V. Serreze4, Leonard D. Shultz4, Marieke Griffioen3, Jan Wouter Drijfhout1, Dale L. Greiner2*

1 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands, 2 Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, 3 Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands, 4 The Jackson Laboratory, Bar Harbor, Maine, United States of America

Abstract

Despite increasing evidence that autoreactive CD8 T-cells are involved in both the initiation of type 1 diabetes (T1D) and the destruction of beta-cells, direct evidence for their destructive role in-vivo is lacking. To address a destructive role for autoreactive CD8 T-cells in human disease, we assessed the pathogenicity of a CD8 T-cell clone derived from a T1D donor and specific for an HLA-A2-restricted epitope of islet-specific glucose-6-phosphatase catalytic-subunit related protein (IGRP). HLA-A2/IGRP tetramer staining revealed a higher frequency of IGRP-specific CD8 T-cells in the peripheral blood of recent onset human individuals than of healthy donors. IGRP_{265–273}-specific CD8 T-cells that were cloned from the peripheral blood of a recent onset T1D individual were shown to secrete IFNγ and Granzyme B after antigen-specific activation and lyse HLA-A2-expressing murine islets in-vitro. Lytic capacity was also demonstrated in-vivo by specific killing of peptide-pulsed target cells. Using the HLA-A2 NOD-scid IL2rnull mouse model, HLA-A2-restricted IGRP-specific CD8 T-cells induced a destructive insulin. Together, this is the first evidence that human HLA-restricted autoreactive CD8 T-cells target HLA-expressing beta-cells in-vivo, demonstrating the translational value of humanized mice to study mechanisms of disease and therapeutic intervention strategies.

Citation: Unger WWJ, Pearson T, Abreu JRF, Laban S, van der Slik AR, et al. (2012) Islet-Specific CTL Cloned from a Type 1 Diabetes Patient Cause Beta-Cell Destruction after Engraftment into HLA-A2 Transgenic NOD/SCID/IL2RG Null Mice. PLoS ONE 7(11): e49213. doi:10.1371/journal.pone.0049213

Introduction

Non-obese diabetic (NOD) mice are widely used for studying the pathogenesis and therapy of autoimmune type 1 diabetes (T1D) [1]. Autoreactive CD4 and CD8 T-cells in NOD mice infiltrate and subsequently destroy the insulin-producing beta-cells in pancreatic islets, resulting in dysregulation of blood glucose levels and hyperglycemia [2;3]. Although studies using NOD mice have helped to define mechanisms of disease pathogenesis and to identify potential interventional and therapeutic strategies in autoimmune diabetes, there are discrepancies between disease pathogenesis in NOD mice and in humans. For example, while the lymphocytic infiltrate in the NOD pancreas is extensive, insulin in humans is multi-focal and targets islets scattered throughout a pancreas [1;4].

The recruitment of autoreactive CD4 T-cells is required for the initiation of autoreactivity in NOD mice, yet CD8 T-cells are increasingly being recognized as key pathogenic mediators in the destruction of beta-cells and progression of the disease in both diabetic NOD mice and humans [5–11]. Deficiency of CD8 T-cells due to the absence of MHC class I in NOD mice renders these mice completely resistant to T1D [6;7]. In humans, susceptibility to T1D is strongly associated with the HLA-A2 haplotype, with 60–70% of affected individuals expressing this allele [12]. Transgenic expression of HLA-A2 significantly accelerates disease onset in NOD mice, and is associated with the early appearance of HLA-A2-restricted CD8+ T-cells in prediabetic insulitic lesions [13].

The epitopes recognized by autoreactive cytotoxic T-cells are thought to be primarily derived from beta-cell proteins, and the identity of these epitopes in humans remains under active investigation. A known target of autoreactive CD8 T-cells in the NOD mouse is islet-specific glucose-6-phosphatase catalytic-subunit related protein (IGRP) [14;15]. Several epitopes from IGRP have been identified using HLA-A2 transgenic (Tg) NOD mice [16], and some of these epitopes are also targeted by CD8 T-cells.
Human IGRP-specific CD8 T-cells Kill Islets In Vivo

In Type 1 Diabetes (T1D) individuals [17,18], the IGRP-specific CD8 T-cells were identified in PBMC of HLA-A2-restricted islet cell clones from the peripheral blood of a recent onset T1D individual. We then used the new generation of HLA-A2 Tg mice to demonstrate the presence of IGRP-specific CD8 T-cells in the peripheral blood of a recent onset T1D individual and in human effector immune cells in vitro and in vivo [28].

Results

IGRP_{265–273}-specific CD8 T-cells Cloned from the Blood of Type 1 Diabetic Individuals are Effector CTLs

IGRP_{265–273}-specific CD8 T-cells have been identified as an epitope of islet autoantigenic CD8 T cells using HLA-A2 Tg NOD mice expressing HHD Tg mice that express a chimeric HLA-A2.1/H-2D^b molecule [16]. To assess potential involvement of CD8 T-cells specific for this epitope in β-cell destruction, we cloned these cells from the peripheral blood of a recent onset T1D individual. We used the new generation of HLA-A2 Tg immunodeficient humanized mice to assess the pathogenicity of human effector immune cells in vitro and in vivo [28].

Lysis of HLA-A2 Expressing Murine Islets in vitro

We next examined the potential of the IGRP-specific T-cell clone to recognize naturally processed and presented IGRP epitope by testing its reactivity with HLA-A2-expressing murine islets. Since dissociated islet cells exhibit a high degree of spontaneous cell death that can complicate data interpretation, we used a previously described assay in which intact islets are allowed to adhere and form monolayers before use [16]. We observed highly efficient islet cell killing of NOD-scid HHD⁺ IGPR_{265–273} cells, even at very low effector:target (E:T) ratios (Table 1). Approximately 15% of the NOD-scid HHD⁺ islet cells were lysed at an E:T ratio of 30, whereas only 0.6% HLA-A2-negative islets were killed (P<0.01). Lysis of NOD-scid HHD⁺ islets by IGRP-specific CD8 T-cells is significantly greater than with HLA-A2-restricted tumor-antigen-specific CD8 T-cells (Table 1).

Human IGRP-specific CD8 T-cells Lyse Peptide-pulsed Target Cells in vivo

To determine the cytotoxic activity of IGRP-specific CD8 T-cells in vivo, we adapted a murine in vivo cytotoxicity assay that is widely used to demonstrate cytotoxic actions of primed effector/memory CD8 T cells [34,35]. HLA-A2⁺ target cells (PBMC) were labeled with different concentrations of CFSE, pulsed with either IGRP_{265–273} or irrelevant peptide, mixed and injected into NOD-scid IL2^{−/−} mice that had received an intrasplenic injection of IGRP-specific T-cells 24 h earlier. Mice that had not been injected with the human T-cell clone were used as a negative control. IGRP-specific T-cells lysed IGRP-pulsed target cells in vitro, as demonstrated by the specific disappearance of the CFSE⁺-labeled target cells pulsed with IGRP-peptide (Table 2). In contrast, the number of CFSE[−]-labeled targets pulsed with control peptide remained unchanged, even in the presence of the IGRP-specific T-cells.

Intra-pancreatic Injection of IGRP-specific T-cells into NOD-scid IL2^{−/−} HHD Mice Leads to Infiltration and Islet Disruption

We next investigated whether human IGRP-specific CD8 T-cells can target and destroy HLA-A2 pancreatic beta-cells in vivo. The expression of both CD62L and the chemokine receptors CXCR3 and CCR4 (Figure S2) indicates the IGRP-specific T-cells express adhesion markers required to migrate to secondary lymphoid tissue and inflamed pancreatic tissue [36,37]. Since
NOD-scid II2γ−/− HHD mice are devoid of cytokines necessary for homeostatic T-cell proliferation, we hypothesized that the survival of the human CD8 T-cell clone would be facilitated by injecting human PBMC from non-diabetic donors 48 h earlier. This time span would be sufficient for the PBMC to expand in the lymphopenic environment and produce the necessary cytokines that may be required for survival of cloned CD8 T-cell in the absence of CD4 T-cell help. As a control, a diabetes-unrelated CD8 T-cell clone was injected intrapancreatically. Additional control mice received a sham-injection.

No changes in blood glucose levels were detected following injection of either IGRP-specific or control T-cell clones (data not shown). Four weeks after adoptive transfer of the human T-cell clones the pancreas was recovered and analyzed by histology for islet integrity and presence of the IGRP-specific CD8 T-cells. Both human IGRP-specific and control CD8 T-cells were present at detectable levels four weeks after injection (Figure 3A). However, their location differed greatly. Pancreata of recipient mice of IGRP-specific T-cells predominantly elicited intra-islet infiltration (Figure 3A). In contrast, control CD8 T-cells remained at the perivascular sites. Mice receiving a sham injection showed no infiltration of islets. Notably, insulin staining of pancreatic sections revealed that the islets were disrupted only in mice injected with the IGRP-specific T-clone, but not in those receiving the control CD8 T-cells or a sham injection (Figure 3A). The number of islets infiltrated with T-cells was significantly greater in mice injected with the IGRP T-clone, 10/49 (20%) than mice injected with the control T-clone, where none of 20 investigated islets showed infiltrating cells, although T-cells were occasionally found around the islets. (p = 0.013; two-tailed Fisher exact test). Moreover, absence of insulin staining was accompanied by positivity for cCaspase-3, pointing to beta-cell destruction by IGRP-specific T-cells (Figure 3B). Pancreata of mice that received control CD8 T-cells were negative for cCaspase-3 staining.

Discussion

This study provides the first evidence that autoreactive CD8 T-cells cloned from a T1D individual can participate in islet cell destruction in vivo using a novel humanized mouse model. IGRP265-273-specific CD8 T-cells producing IFNγ and expressing CD107a upon antigen-specific activation are capable of lysing murine HLA-A2 expressing islets in vitro. In vivo, these T-cells lysed target cells pulsed with islet peptide. Following intra-pancreatic injection into HLA-A2 transgenic NOD-scid II2γ−/− HHD mice, IGRP-specific CTLs localized to the islets and caused beta-cell destruction. However, no changes in blood glucose-levels were observed. No islet cell destruction was detected when mice were injected with equal numbers of control HLA-A2-restricted cloned CD8 T-cells.

The assumption that IGRP-specific CD8 T-cells possess diabetogenic potential in vivo was based on the observation that these clones were highly cytotoxic for HLA-A2 expressing islets in vitro. However, the extent of lysis observed was low in comparison to lysis of peptide-pulsed EBV-LCL. This difference might be explained by lower expression of HLA-A2 molecule (HHD) on murine islets compared with HLA-A2 levels on human cells, which consequently results in decreased presentation of the IGRP epitope. In addition, the IGRP-specific T-cells possess low-avidity T-cell receptors as revealed by low staining with specific tetramer and CD8 dependency of tetramer staining. This may be inherent to autoreactive T-cells, since these should have been eliminated during thymic education due to high-avidity interactions with their cognate self-antigen. Thus, besides weak recognition of the epitope by the low-avidity TCR of the IGRP-specific T-cells, these observations are also consistent with low amount of IGRP epitope presentation on the surface of the islets.

Using an adapted in vivo cytotoxicity assay, we obtained evidence that IGRP T-cells are capable of lysing targets in vivo. Mobilization of effector CD8 T-cells to infected tissue requires CD4 T-help [38], however, CD4 T-cells only provide this help when specifically activated by their cognate antigen at this site [39]. Given that human IGRP-specific CD4 T-cells were not available, we opted to inject the IGRP-specific CD8 T-cells intrapancreatically and to provide the optimal cytokine milieu for survival of the transferred T-cells by systemic injection of HLA-A2 PBMC from non-diabetic donors prior, for generation of the necessary cytokines (i.e. IL2, IL7, IL15) needed for T-cell homeostasis.

Immunohistochemical analysis of the pancreas four weeks after injection of the human CD8 T-cells revealed clear differences in localization between the IGRP-specific T-cells and control T-cells. IGRP-specific CTLs infiltrated into the islets, whereas control T-cells were retained in the peri-vascular areas. Our observation confirms previous findings that islet antigen expression is a key factor in governing the ability of the autoantigen-specific T-cells to accumulate in the islets [30;40;41]. Interestingly, both CD4 and CD8 T-cells migrating into pancreatic tissue expressed the chemokine receptor CXCR3, while distressed beta-cells produce its ligand CXCL-10 (IP-10) [42]. This feature may present a master factor in governing the ability of the autoantigen-specific T-cells to accumulate in the islets. Some human leukocytes were noted in the exocrine pancreatic tissue in both mice injected with IGRP-specific T-cells and control T-cells, which may be partly due to their intrapancreatic injection causing tissue damage and chemokine production leading to inflammatory infiltrates. The CD45 staining will target the injected T-clones as well as co-injected PBMC. Yet, since the same PBMC donor was used for all three T cells clones, the insulin lesions could be attributed to the particular humans T-cell clones injected, rather than the PBMC that were not as feeders of the CD8 T cells. Injection of the IGRP-specific T-cells resulted in a destructive inflammation, but not when a high number of cells from a control
Figure 2. Low-avidity IGRP-specific T-cells exhibit lytic activity in-vitro. A, Lytic capacity of the IGRP-specific T-cell was examined in a standard 4 h cytotoxicity assay. 3000 51Cr labeled HLA-A2+ IGRP- (black dots), control (grey squares) or non-peptide (white dots) pulsed targets were incubated with the IGRP-specific T-cells at the indicated ratios. B, Avidity of the IGRP-specific T-cells was examined by titrating the amount of specific (black dots) or control peptide (grey squares) on peptide-pulsed HLA-A2+ target cells. C, Tetramer staining in the presence of anti-CD8 antibody. IGRP-specific CTLs were tested 15 days after the last antigenic stimulation. Cells were labelled with A2/IGRP tetramer in the absence (left plot) or presence of an anti-CD8 antibody (1 µg/ml of SK1; BD Biosciences; middle plot), or T-cells were incubated with a mutated IGRP/A2 tetramer (right plot). After tetramer labelling T-cells were stained with anti-CD8 and expression was analysed by flow cytometry. Examples shown are representative of 3 independent experiments.

doi:10.1371/journal.pone.0049213.g002

HLA-A2-restricted CD8 T-cell clone were injected. Since no changes in blood glucose-levels of the recipient mice were observed upon injection of the IGRP-specific T-cells in spite of clear islet cell destruction, we speculate that adoptive transfer of islet-specific CD4 T-cells may be required for propagation and sustained CD8 T-cell expansion and cytotoxic activity [44]. A recent study employing the same HLA-A2 NOD-scidIL2rgnull mouse model showed that high frequencies of CD4 T-cells were present when mice were engrafted with PBMC from a T1D patient [45]. This was paralleled by the presence of diabetogenic epitope-specific CD6 T-cells. However, in this study no islet cell destruction was demonstrated, which may be due to lower frequency of islet-specific T-cells in the pancreas compared to our study. Yet, the fact that IGRPAP265-273-reactive CD8 T-cells were present among the islet-specific CD8 T-cells, as well as the recent finding that specific targeting of IGRP-reactive CD8 T-cells effectively inhibited diabetes development in NOD.B2mnull/HHD mice [46] corroborate our current findings that this epitope is pathogenic in human disease.

T-cell autoreactivity may require more than 4 weeks for complete beta cell destruction, and require CD4 T-cells acting in concert. Indeed, the limited survival of CD8 T-cell clones in mice in the absence of CD4 T-cells underscores this notion. Mouse CD4 T-cells specific for a low-affinity insulin-derived peptide required 20 weeks before hyperglycemia developed in 50% of recipient mice [47]. Despite the great value of immunocompetent NOD mice, there are discrepancies between the etiopathogenesis of T1D in NOD mice versus humans. These differences include the pattern of insulitis. The intra-islet infiltration pattern of human islet-specific T-cells and islet destruction observed in our study closely resembles the pathogenesis found in human inflamed pancreas [4;20] rather than inflammatory lesion typically observed in NOD mice [1;4]. The relevance of islet autoreactive T-cells circulating in the blood in the pathogenesis of insulitis in humans remains unresolved. Nonetheless, our current study on human peripheral blood CD8 T-cell clones, as well as our earlier studies on homing of human anti-islet CD4 T-cells clones to pancreatic tissue, imply that circulating human T-cells can contribute to insulitis. Recent studies on islet autoreactivity in an explanted human pancreas graft indicated that circulating islet-antigen autoreactive CD8 T-cells in peripheral blood were also present in pancreatic inflammatory lesions, albeit at a lower frequency. Moreover, additional islet autoreactivities that were below detection levels in the circulation could be detected in the inflamed pancreas [48].

In conclusion, our data provide first evidence that human autoreactive CD8 T-cells have the potential to target HLA-A2-matched beta-cells in-vivo, demonstrating the translational value of humanized mouse to study mechanisms of disease and interventional strategies.

Materials and Methods

Mice

NOD.Cg-Pkdcre+/- II2rgnull+/Sz (abbreviated as NOD-scid II2rgnull) [21], NOD.Cg-Pkdcre+/- (abbreviated as NOD-scid) [49] and NOD.Cg-Pkdcre+/- Tg(HLA-A/H2-D/B2M)1Dvs/Dvs (abbreviated as NOD-scid HHD) [16] mice were obtained from The Jackson Laboratory (Bar Harbor, ME). NOD.Cg-Pkdcre+/- Tg(HLA-A/H2-D/B2M)1Dvs/DvsSz (abbreviated as NOD-scid II2rgnull HHD) were generated by crossing NOD.Cg-Pkdcre+/- II2rgnull+/Sz mice with NOD.Cg-Pkdcre+/- Tg(HLA-A/H2-D/B2M)1Dvs/Dvs and selecting for homozygosity of the II2rgnull mutation and presence of the HHD transgene. HHD transgenics were maintained in a hemizygous fashion and evaluated for presence of the transgene by PCR or flow cytometry on peripheral blood before use in experiments. Mice at The University of Massachusetts Medical School and at The Jackson Laboratory were housed in a specific pathogen free facility in microisolator cages, and given autoclaved food and maintained on acidified autoclaved water and sulfamethoxazole/trimethoprim medicated water (Goldline Laboratories, Ft. Lauderdale, FL), provided on alternate weeks. All animal use was in accordance with the guidelines of the Institutional Animal Care and Use Committee (IACUC) of the University of Massachusetts Medical School and The Jackson Laboratory and conformed to the recommendations in the Guide for the Care and Use of Laboratory Animals.

Peptide Synthesis and Generation of HLA-A2-peptide Tetramers

Peptides were synthesized using Fmoc amino acids and PyBop/NMM chemistry. Synthetic peptides were analyzed by reversed phase HPLC (purity was at least 85%) and Maldi-ToF mass spectrometry (expected masses were confirmed). Tetrameric HLA-A2-peptide complexes were prepared as previously described [50].

Table 1. IGRP-specific T-cells lyse HLA-A2-positive islets in-vitro.

T ratio	Control T clone	Control T clone		
E : T	IGRP-T clone	Control T clone	IGRP-T clone	
30:1	14.7±3.2	5.6±0.4	0.6±3.3	1.1±4.3
10:1	9.8±2.0	0.3±3.3		

Data represent the percent specific cytotoxicity against the indicated targets by IGRPAP265-273 specific CD8 T-cells. HLA-A2-restricted, tumor-antigen-specific CD8 T-cells were used as a control. 51Cr release from islets cultured in medium alone (i.e. spontaneous release) for each target was measured in 9 independent wells to calculate specific cytotoxicity as described in Materials and Methods. Data are representative of 3 independent experiments.

*indicates a significant difference (p<0.01) in cytotoxicity against NOD-scid islet T-cells tested at the same E:T ratio. ** indicates a significant difference (p<0.05) in cytotoxicity against NOD-scid HHD islets between IGRP-specific CD8 T-cells and control T-cells.

doi:10.1371/journal.pone.0049213.t001
Cloning of IGRP265–273-specific CD8 T-cells

Peripheral blood mononuclear cells (PBMCs) from a HLA-A*0201+ recent onset diabetic patient were incubated with A2/IGRP tetramer on ice. One hour later, cells were incubated with anti-CD8 for 20 min. A2/IGRP tetramer CD8 double-positive T-cells were sorted and seeded at one cell per well in 96-well plates, each well containing 1.6 × 10^5 irradiated (50 Gy) allogeneic PBMCs, 5 × 10^3 irradiated (100 Gy) IGRP265–273 peptide-pulsed HLA-A2-expressing EBV-LCL in IMDM supplemented with 10% HS, 0.5% LeucoA, 0.1 ng/ml rh-IL12, 10 ng/ml rh-IL7, 25 U/ml rh-IL2 and 5 ng/ml rh-IL15. T-cell clones were isolated and restimulated every 2–3 weeks as described above. Every 3–4 days fresh media containing 5 ng/ml IL-15 and 25 U/ml IL-2 were added. From the panel of IGRP-reactive CD8 T-cell clones, we selected one T-cell clone, termed clone 7 for further characterization.

ELISpot Assays

To determine secretion of IFNγ, Granzyme B (GrB), and IL-10, 2 × 10^4 clone 7 cells were incubated with HLA-A2-expressing EBV-LCL pulsed with an IGRP-specific or a control peptide on anti-cytokine (IFNγ, GrB, and IL-10) antibody-precoated ELISA plates and after o/n culture in IMDM supplemented with 1% HS plates were developed according to the manufacturer’s protocol (U-CyTech, Utrecht, the Netherlands). Results are expressed as means ± SD of triplicate wells.

Analysis of CD107a Expression

Expression of CD107a on clone 7 cells was examined as described by Betts et al [51].

Table 2. In-vivo lysis of peptide-pulsed HLA-A2 cell targets by IGRP-specific CD8 T-cells.

Lysis of peptide-pulsed targets (% ±/– sem)	Lysis of control targets (% ±/– sem)
Experiment 1 13.7±2.1*	2.2±0.92
Experiment 2 21.85±3.1*	3.24±3.01

Data represent the percentage of specific cytotoxicity against IGRP-peptide pulsed HLA-A2 EBV-LCL by IGRP-specific CD8 T-cells in two independent experiments. 4 × 10^6 IGRP-specific T cells were injected intrasplenically. One day later, mice received an i.v. injection containing a 1:3 mixture of specific peptide-pulsed CFSEhi target cells and control peptide-pulsed CFSElo target cells. At 20 hr, the ratio of CFSEhi and CFSElo cells in the spleens was analyzed by flow cytometry.

*indicates a significant difference (p < 0.05) in cytotoxicity against control targets. In each experiment, 4 mice per group were used.

doi:10.1371/journal.pone.0049213.t002

Figure 3. IGRP-specific T-cells are able to infiltrate and destroy beta-cells following intra-pancreatic injection into NOD-scidIL2rnull HHD mice. NOD-scid IL2rnull HHD recipient mice were injected i.v. with 20 × 10^6 PBMC from an HLA-A*0201+ healthy donor. Two days later, these mice were injected intra-pancreatically with either 5 × 10^6 IGRP-specific T-cells (left), 5 × 10^6 control T-cells (middle) or were sham injected (right). Four weeks later, the pancreata were isolated and histologically examined. A. Sections of recipients of IGRP-specific or control T-cells, or of those receiving a sham injection were stained with H&E (upper panel) to visualize the histological integrity of the islets or stained for insulin (middle panel) to identify the beta cells or human CD45 (lower panel) to visualize the human T-cells. Similar data were obtained when staining sections for human CD8. B. Pancreatic sections were stained for insulin, cCaspase-3 to detect apoptotic cells and DAPI to identify nuclei. Individual fluorescence as well as an overlay is presented. Shown are representative examples of 5 mice per group.

doi:10.1371/journal.pone.0049213.g003
Analysis of TCR-Vα and Vβ Repertoire by RT-PCR and Sequence Analysis

Total RNA was isolated using RNA BEE (Tel-Test, Friendswood, TX). Random-primed cDNA was synthesized according to manufacturer’s instructions (Roche, Indianapolis, IN). PCR amplification of cDNA was performed with Cα or Cβ reverse primer (Cα: TggAgTCTCTgCTCTg, sequence Cβ: TCTCCCTTGACTCAGCTCAGCTC in combination with a specific forward primer for Vα or Vβ TCR [48] for primer sequences). Control PCR amplifications for β-actin were performed with each sample to confirm cDNA integrity. Aliquots of each reaction were run on agarose gel prestained with ethidium bromide, in order to compare amplicon intensities between reactions. Appropriate dilutions were performed prior to analysis when necessary. To establish whether clone 7 cells were monoclonal, PCR products were subjected to nucleotide sequence analysis using ALFexpress sequencer (Pharmacia-Biotech, Sweden).

Cytotoxicity Assays

Standard 51Cr release assays were performed using HLA-A2+ EBV-LCL as target cells. Target cells were labeled with 51Cr (100 μCi, Perkin Elmer, Billerica, MA) in the absence or presence of 1 μg/ml specific or control peptide for 1 h at 37°C. After extensive washing, cells were suspended in IMDM/10% HS and 3000 labeled target cells were co-incubated at effector to target (E:T) ratios of 20:1, 5:1 and 1:1 in 96 well round-bottom plates in triplicate for 4 h at 37°C. Controls included target cells incubated in medium alone for spontaneous release and target cells in 5% (v/v) Triton X-100 (Sigma, St. Louis, MO) in PBS for maximum release for each well was calculated by the formula [(supernatant cpm)/(supernatant cpm + SDS lysate cpm)] x 100%. This allows extensive washing, cells were suspended in IMDM/10% HS and NOD-SCID IL2rγnull recipient mice via the tail vein. Recipient mice received intraplastic injections of indicated numbers of clone 7 IGRP-specific CD8 T cells or control T-cells 24 h earlier. Spleens from recipient mice were collected 20 hours after target cell injection, and survival of each transferred population was assessed by flow cytometry. A minimum of 1×10^5 CFSEhi events were collected from each sample. Specific cytotoxic activity was calculated using the following equation: [(– (% specific lysis = (ملف: sample cpm–spontaneous cpm)/maximal cpm–spontaneous cpm)x100%.

Cytotoxicity Assays Using Murine Islets as Targets

Cytotoxicity assays using intact mouse islets as targets were performed as described previously [16]. Briefly, NOD-scid HHD and NOD-scid pancreatic islets (10 islets/well) were allowed to adhere in 96-well plates during a 10-day incubation at 37°C. Adherent islets were labeled with 5 μCi/well of 51Cr for 3 h at 37°C. Islets were washed and overlaid with 100 μl of medium containing various numbers of cultured clone 7 cells. For establishing E:T ratios, each islet was assumed to contain 750 cells. A minimum of three wells were established for each E:T ratio. Spontaneous release controls consisted of nine wells of medium alone (i.e., spontaneous release) from the release by each well of islets cultured with a given number of T-cells.

In-vivo Cytotoxicity

To examine the cytotoxic potential of clone 7 cells in-vivo, an established in-vivo cytotoxicity assay was used with modifications [34,35]. PBMC from HLA-A*0201+ healthy donors were labeled with either 2 μM or 0.2 μM CFSE (Sigma; CFSEhi and CFSElo cells, respectively) for 15 minutes at 37°C. CFSEhi cells were pulsed with 3 μg/ml IGRP265–273 peptide for 45 minutes at 37°C. CFSElo cells were pulsed with a control peptide. Both cell populations were washed, combined at equal ratios and 5×10^6 cells of each population were intravenously injected into NOD-scid IL2rγnull recipient mice via the tail vein. Recipient mice received intraplastic injections of indicated numbers of clone 7 IGRP-specific CD8 T cells or control T-cells 24 h earlier. Spleens from recipient mice were collected 20 hours after target cell injection, and survival of each transferred population was assessed by flow cytometry. A minimum of 1×10^5 CFSEhi events were collected from each sample. Specific cytotoxic activity was calculated using the following equation: [[(CFSElo/(CFSEhi+CFSElo) in IGRP-T-cell recipients)/(CFSEhi+CFSElo in control T-cell recipients)])x100].

Adoptive Transfer Experiments

NOD-scid IL2rγnull HHD recipient mice were injected i.v. with 2×10^6 PBMC from a HLA-A*0201+ healthy donor. Two days later, mice were injected intra-pancreatically with 5×10^5 control clone 7 cells, 5×10^5 control tumor-antigen specific T-cells (PRAME-specific T-cell clone) or sham injected. Blood glucose levels were monitored twice weekly. After 4 weeks, pancreata were recovered for histological analysis. Paraffin-embedded tissues were sectioned at 4 μm and stained with hematoxylin and eosin (H&E) or used for immunohistochemistry. Immune-stained tissues utilized antibodies with specificity for insulin, human CD45 (DAKO, Carpinteria, CA), and employed a standard avidin–biotin complex methodology [52]. The sections were developed using 3-diaminobenzidine and counterstained with hematoxylin for light microscopic visualization. Alternatively, sections were incubated with guinea pig anti-insulin that was visualized by staining with anti-guinea pig IgG conjugated to Alexa-488 and rabbit anti-Caspase-3 antibody that was visualized by staining with anti-rabbit IgG conjugated to Alexa-594 (Invitrogen). Nuclei were visualized with DAPI and the visualization. Alternatively, sections were incubated with guinea pig anti-insulin that was visualized by staining with anti-guinea pig IgG conjugated to Alexa-488 and rabbit anti-Caspase-3 antibody that was visualized by staining with anti-rabbit IgG conjugated to Alexa-594 (Invitrogen). Nuclei were visualized with DAPI and the secondary lymphoid tissue.

Supporting Information

Figure S1 IGRP265–273 specifically binds to HLA-A2. Peptide binding to HLA-A1, -A2, -A3 and –B8 was assessed using a competition based binding assay [11]. The percentage of fluorescent-labeled reference peptide bound to a specific HLA-allele at different concentrations of unlabeled IGRP265–273 peptide is shown. The IC50 value defines the concentration of IGRP265–273 peptide needed to inhibit 50% binding of the fluorescent-labeled reference peptide. IC50 value HLA-A2:63 nM; IC50 value HLA-A1, HLA-A3, HLA-B8:12590 nM.

Figure S2 IGRP-specific T-cells express adhesion molecules important for migration into inflamed pancreas and secondary lymphoid tissue. IGRP-specific T-cells were
stained with antibodies against TCRαβ, CD2, CD28, HLA-DR, CD45RA, CD45RO, CXCR3, CCR4, CCR5, CCR7, CCR8, and CD62L and analyzed by flow cytometry. Dashed lines represent isotype antibody staining, solid lines represent specific antibody staining. These results are representative of 3 experiments.

(TIF)

Table S1 Clone 7 IGRP/A2 binding T-cells cloned from a type 1 diabetic individual are clonal. Clonality of IGRP-specific clone 7 T-cells was determined by examining expression of TCR Vα and TCR Vβ chains. Specific PCR with Cα or Cβ reverse primer in combination with a specific forward primer for Vα or Vβ TCR revealed expression of Vβ13c and Vβ19 transcripts in clone 7 T-cells. Control PCR amplifications for β-actin were performed for each sample to confirm cDNA integrity. PCR amplification of cDNA was performed with Cα or Cβ reverse primer (Cα: TgTgggAg-ATCTCTgCTTCACCAgCTCAgCTC in combination with a specific forward primer for Vα or Vβ TCR ([48] for primer sequences). Control PCR amplifications for β-actin were performed with each sample to confirm cDNA integrity. Aliquots of each reaction were run on agarose gel prestained with ethidium bromide, in order to compare amplicon intensities between reactions. Appropriate dilutions were performed prior to analysis when necessary. To establish whether clone 7 cells were monoclonal, PCR products were subjected to nucleotide sequence analysis using ALExpresser sequencer (Pharmacia-Biotech, Sweden).

(TIF)

Acknowledgments

We thank Prof P. van der Bruggen and Dr. N. Demotte (Ludwig Institute for Cancer Research, 74 av. Hippocrate, UCL4750, B-1200 Brussels, Belgium) for generation of and helpful suggestions using the mutant tetramers.

Author Contributions

Conceived and designed the experiments: WWJU TDG LOR. Performed the experiments: WWJU TP JRA SMvdK ARvdS. Analyzed the data: WWJU TP SL SMvdK. Contributed reagents/materials/analysis tools: MGDK MG JW DVS LDB. Wrote the paper: WWJU TP DLG BOR.

References

1. Atkinson MA, Leiter EH (1999) The NOD mouse model of type 1 diabetes: As good as it gets? Nat Med 5: 601-04.
2. Atkinson MA, Machamer NK (1999) The Pathogenesis of Insulin-dependent Diabetes Mellitus. The New England journal of medicine 331: 1429–36.
3. Roep BO, Atkinson M, von Herrath M (2004) Satisfaction (not guaranteed): re-evaluating the use of animal models of type 1 diabetes. Nat Rev Immunol 4: 989-97.
4. In’t Veld P, Lievens D, De Grijse J, Ling Z, Van der Auwera B, et al. (2007) Screening for Insulins in Adult Autoimmune-Positive Organ Donors. Diabetes 56: 2400-04.
5. Kuwert W, Gobbold S, Wahlmann H, Kolb H (1987) L3T4 and Lyt-2 T cells are both involved in the generation of low-dose streptozotocin-induced diabetes in mice. Clin Exp Immunol 70: 305–02.
6. Serreze DV, Leiter EH, Christianson GJ, Greiner D, Roopenian DC (1994) Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulin resistant. Diabetes 43: 505-09.
7. Wicker LS, Leiter EH, Todd JA, Renijian RJ, Peterson E, et al. (1994) Beta 2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes 43: 500-04.
8. Santamaria P, Utsugi T, Park BJ, Averill N, Kawazu S, et al. (1995) Beta-cell-autoantibodies are present in NOD/SCID mice engrafted with human blood cells: a model for human type 1 diabetes. J Clin Invest 95: 2437–45.
9. Wong FS, Visintin I, Wen L, Flavell RA, Janeway CA Jr (1996) CD8 T cell recognition of the HLA-A*0201-restricted T cell epitope of preproinsulin targets killing of beta-cells in human type 1 diabetes. J Clin Invest 112: 353-65.
10. Skowerra A, Ellis RJ, Varela-Calvino R, Arif S, Huang GC, et al. (2008) Glucose-regulated cytotoxic T-cell epitope of preproinsulin targets killing of beta-cells in human type 1 diabetes. J Clin Invest 118: 3390–402.
11. Jacubovitch I, Nichol L, Tricco M, Santamaria P, Di Lorenzo T (2008) Identification of novel IGRP epitopes targeted in type 1 diabetes patients. Clin Immunol 127: 35-65.
12. Shultz LD, Lyons BL, Burzesski LM, Gott B, Chen X, et al. (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγc null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174: 6477-89.
13. Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, et al. (2005) Development of functional human blood and immune systems in NOD/SCID/IL2Rγc [gamma] nullmice. Blood 100: 1359-73.
14. Toh M, Hirama H, Kobayashi K, Suzue K, Kawahata M, et al. (2002) NOD/SCID/gamma nullmice as an excellent recipient mouse model for engraftment of human cells. Blood 100: 3175-82.
15. King M, Pearson T, Shultz LD, Leif J, Bottino R, et al. (2008) A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clin Immunol 126: 303-14.
16. Jaiswal S, Pearson T, Friberg H, Shultz LD, Greiner DL, et al. (2009) Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2Rγc nullmice. PLoS One 4: e7251.
17. Strowig T, Guer C, Plos A, Liu YF, Arrey F, et al. (2009) Priming of protective T-cell responses against virus-induced tumors in mice with human immune system components. J Exp Med 206: 1425–34.
18. Unger WWJ, Pinke GGM, Mulder-van der Kracht S, van der Slak AR, Kester MGD, et al. (2007) Human Clonal CD8 Autoimmunity to an IGRP Islet Epitope Shared between Mice and Men. Ann NY Acad Sci 1103: 192–95.
19. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7: 118–30.
20. Seder RA, Darrah PA, Koedev M (2003) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8: 247–258.
21. Pittet MJ, Rubino-Godoy V, Biele D, Guillaume P, Batard P, et al. (2003) Alpha 3 domain mutants of peptide/MHC class I multimers allow the selective isolation of high avidity tumor-reactive CD8+ T cells. J Immunol 171: 1914-49.
22. Langel R, van den Berg HA, Grootik E, Cole DK, Woodbridge J, et al. (2007) Different T cell receptor affinity thresholds and CD8+ coreceptor dependence govern cytotoxic T lymphocyte activation and tetramer binding properties. J Biol Chem 282: 23799-10.
23. Solor RD, Benjamin PK, Buxton SE, Garrett TP, et al. (1990) A binding site for the T-cell co-receptor CD8 on the alpha 3 domain of HLA-A2. Nature 345: 41–46.
33. Demotte N, Stroobant V, Courtoy PJ, Van Der SP, Colau D, et al. (2008) Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28: 414–24.
34. Van Stipdonk MJ, Hardenberg G, Bijker MS, Lemmens EE, Droin NM, et al. (2003) Dynamic programming of CD8+ T lymphocyte responses. Nat Immunol 4: 361–63.
35. Jarchum I, Baker JC, Yamada T, Takaki T, Marron MP, et al. (2007) In Vivo Cytotoxicity of Insulin-Specific CD8+ T-Cells in HLA-A*0201 Transgenic NOD Mice. Diabetes 56: 2511–60.
36. van Halteren AG, Kardol MJ, Mulder A, Roep BO (2005) Homing of human autoreactive T cells into pancreatic tissue of NOD-scid mice. Diabetologia 48: 73–82.
37. Roep BO, Kleijwegt FS, van Halteren AG, Bonato V, Boggi U, et al. (2010) Iset inflammation and CXCL10 in recent-onset type 1 diabetes. Clin Exp Immunol 159: 338–43.
38. Nakanishi Y, Lu B, Gerard C, Iwasaki A (2009) CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462: 510–13.
39. Lemmon GP, Bettini M, Burton AR, Vincent E, Arnold PV, et al. (2009) T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event. Immunology 31: 641–53.
40. Yamanouchi J, Verdaguer J, Han B, Amrani A, Serra P, et al. (2003) Cross-priming of diabetogenic T cells dissociated from CTL-induced shedding of beta cell antigens. J Immunol 171: 6900–09.
41. Hamilton-Williams EE, Palmer SE, Charlton B, Slattery RM (2003) Beta cell MHC class I is a late requirement for diabetes. Proc Natl Acad Sci USA 100: 6688–93.
42. van Halteren AG, Roep BO, Gregori S, Cooke A, van Ewijk W, et al. (2002) Cross-reactive mycobacterial and self hla60 epitope recognition in I-Ag7 expressing NOD, NOD-asap and Bissu AB/H mice. J Autoimmun 18: 139–47.
43. Rhode A, Pauza ME, Barral AM, Rodrigo E, Oldstone MB, et al. (2005) Islet-specific expression of CXCL10 causes spontaneous islet infiltration and accelerates diabetes development. J Immunol 175: 3516–24.
44. Krishnamurthy B, Dudek NL, McKenzie MD, Purcell AW, Brooks AG, et al. (2006) Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. J Clin Invest 116:3258–65.
45. Whitfield-Larry F, Young EF, Talmage G, Fudge E, Azami A, et al. (2011) HLA-A*2 Matched Peripheral Blood Mononuclear Cells From Type 1 Diabetic Patients, but Not Nondiabetic Donors, Transfer Insulitis to NOD-scid/gcnull/HLA-A2 Transgenic Mice Concurrent With the Expansion of Islet-Specific CD8+ T cells. Diabetes 60: 1726–33.
46. Niens M, Grie AE, Marron M, Kay TW, Greiner DL, et al. (2011) Prevention of “Humanized” diabetogenic CD8+ T-cell responses in HLA-transgenic NOD mice by a multipepptide coupled-cell approach. Diabetes 60: 1229–36.
47. Levietti MG, Lewis DM, Suri A, Unanue ER (2008) Weak proinsulin peptide-major histocompatibility complexes are targeted in autoimmune diabetes in mice. Diabetes 57: 1032–60.
48. Velthuis JH, Unger WW, van der Slik AR, Duncker G, Engelse M, et al. (2009) Accumulation of autoreactive effector T cells and allo-specific regulatory T cells in the pancreas allograft of a type 1 diabetic recipient. Diabetologia 52: 494–03.
49. Shahid LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, et al. (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154: 180–91.
50. Ahman JD, Moss PAH, Gaulder PJR, Barouch DH, Heysey-Williams MG, et al. (1996) Phenotypic Analysis of Antigen-Specific T Lymphocytes. Science 274: 94–96.
51. Bets MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, et al. (2003) Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 281: 65–78.
52. Murray AG, Petzelbauer P, Hughes CCW, Costa J, Askanae P, et al. (1994) Human T-Cell-Mediated Destruction of Allogeneic Dermal Microvessels in a Severe Combined Immunodeficient Mouse. Proc Natl Acad Sci USA 91: 9146–50.