Transcriptome analysis reveals underlying immune response mechanism of fungal disease in Gastrodia elata Bl. f. glauca S. Chow

Yanhua Wang
Jilin Agricultural University https://orcid.org/0000-0002-5138-2657

Yugang Gao (jlnydxgyg@163.com)
Jilin Agricultural University

Pu Zang
Jilin Agricultural University

Yue Xu
Jilin Agricultural University

Research article

Keywords: Gastrodia elata Bl. f. glauca S. Chow, transcriptome, fungal, disease response, mechanism, transcription factors, Changbai Mountain area

DOI: https://doi.org/10.21203/rs.3.rs-29231/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Gastrodia elata Bl. f. glauca S. Chow is a rare medicinal plant. G. elata f. glauca is unavoidably infected by pathogens in their growth process, for they are usually grown in a semi-wild state. If it happens, that will seriously affect the yield and quality of their tubers. In previous work, we have successfully isolated and identified the pathogenic fungus from infected tubers in G. elata f. glauca. In this study, healthy and fungal diseased mature tubers of G. elata f. glauca from Changbai Mountain area were used as experimental materials.

Results

A total of 7540 differentially expressed Unigenes (DEGs) were identified (FDR < 0.01, log2FC > 2). Further analysis revealed that transcription factors (TFs) in plant hormone signal transduction pathway and plant pathogen interaction pathway, like WRKY22, GH3, TIFY/JAZ, ERF1, WRKY33, TGA, played vital role in fungal disease response. They mainly involved signal transduction, environmental adaptation, biosynthesis/metabolism of secondary metabolites. In addition, we found jasmonic acid/ethylene is the noteworthy signaling pathway in response to fungal disease in G. elata f. glauca.

Conclusions

The results reveal an underlying immune response mechanism of fungal disease in G. elata f. glauca and provide a novel insight into the breeding of disease resistant varieties of G. elata f. glauca.

Background

Gastrodia elata Bl. f. glauca S. Chow is a form of Gastrodia elata Bl. G. elata Bl., called tianma in Chinese, is a perennial monocotyledon. Its dry tuber is usually used as a precious traditional Chinese medicine Gastrodiae Rhizoma. It is recorded that Gastrodiae Rhizoma has the functions of resting wind and relieving spasmodic, calming liver and inhibiting yang, dispelling wind and relaxing channels and collaterals. Clinically, it is commonly used in children with infantile convulsions, epileptic convulsions, tetanus, headache and vertigo, hand and foot failure, limb numbness, rheumatism arthralgia and other symptoms[1]. According to Compendium of Materia Medica, taking for a long time can help the vital essence run smoothly in body, relax one's body and prolong one's life. Sheng Nong's Herbal Classic lists it as one of the top grades, which means it is tonic and nontoxic. Modern pharmacological research has shown that Gastrodiae Rhizoma has the effects of analgesia[2, 3], anti-inflammation[4], antiasthma[5], antioxidation[6–9], antidepress[10–13], anticonvulsion[14, 15], anti-osteoporosis[16, 17], neuroregulation[18, 19], neuroprotection[20–23], lowering blood pressure[24, 25], reducing blood lipid[25, 26], improving memory[27, 28], inhibiting melanin synthesis and so on. It also has auxiliary therapeutic effect on Alzheimer's disease (AD)[27] and Parkinson's disease (PD)[6, 7, 20, 22] which are the common degenerative diseases nowadays.
G. elata Bl. is an obligate fungal heterotrophic plant with highly degraded leaves and bracts. More than 80% of its life cycle exists underground in the form of tuber, depending almost entirely on fungi to provide nutrient[29]. It is closely related to at least two types of fungi: *Mycena* to promote seed germination and *Armillaria Mellea* to ensure reproductive growth. The growth and development of *G. elata* Bl. usually goes through seed, protocorm, juvenile tuber (also called mima in Chinese), immature tuber (also called baima in Chinese), mature tuber (also called jianma in Chinese), scape, flower, and fruit. During the growth and development of *G. elata*, it is susceptible to infection by non-essential fungi such as *Penicillium*[30], *Ilyonectria robusta*[31] and *Trichoderma hamatum*[32]. Of course, it can cause serious damage to the planting industry[33–38]. Now, it could make this possible to breed varieties with stable heredity by genomics-based techniques.

Wild *G. elata* is found in many countries such as Nepal, Bhutan, India, Japan, North Korea, New Zealand, Australia, Siberia and China. According to the bible *Flora of Yunnan*, there are six varietas of *G. elata*, and they are *G. elata* Bl. f. *pilifera* Tuyama, *G. elata* Bl. f. *viridis* Makino, *G. elata* Bl. f. *glauca* S. Chow, *G. elata* Bl. f. *alba* S. Chow, *G. elata* Bl. f. *elata* and *G. elata* Bl. f. *flavida* S. Chow. In China, we called them maotianma, lvitianma, wutianma, songtianma, hongtianma, huangtianma, respectively. Among them, *G. elata* f. *glauca* is one of the most popular in the market because of its good shape and high dry rate. In China, *G. elata* Bl. f. *glauca* is mainly distributed in northeastern Yunnan, western Guizhou, southern Sichuan and Changbai Mountain area.

So far, the most studied *G. elata* Bl. variety is *G. elata* Bl. f. *glauca* in Zhaotong City, Yunnan Province. However, the genomics research of *G. elata* Bl. f. *glauca* genetics in Changbai Mountain area is almost blank. In fact, *G. elata* Bl. f. *glauca* is not only a traditional Chinese medicinal material in Changbai Mountain, but also one of the most vital special economic crops in Jilin Province. Therefore, whether it is thought from the breeding of high-quality traditional Chinese medicine germplasm resources, or considered on the improvement of local economic development level, the research on disease response mechanism of *G. elata* Bl. f. *glauca* in Changbai Mountain area has important production significance and application value. In this study, we made a detailed comparison between healthy and fungal diseased *G. elata* Bl. f. *glauca* tubers by means of transcriptome sequencing and metabolic pathway analysis. That would provide a new insight for the breeding of disease resistant varieties of *G. elata* Bl. f. *glauca*.

Results

Sequencing overview

A total of 45.88 GB clean data were generated by sequencing platform, and clean data number of each sample was more than 6.23 GB. GC content ranged from 47.16% to 49.09%, and Q30 of each sample was above 92.92% (Additional file: Table S1). The sequencing results showed that sequencing fragments had high randomness and reliability (Additional file: Figure S1A). After transcript *de novo* assembly, 60324 Unigenes in total were obtained, and the N50 was 2409 kb. Furthermore, 19670 (32.61%) of them were over 1 kb in length (Additional file: Figure S1B). All these indicative data display high assembly integrity.

Functional annotation and differential expression analysis

DEGs annotation and function classification
A total of 5140 DEGs were annotated to seven databases. nr (RefSeq non-redundant proteins) had the largest number of annotated DEGs (5066), while KEGG had the least (1745) (Fig.1a). The venn diagram of function annotation in different database as Fig.1b. It was learned that those DEGs between healthy and fungal diseased samples chiefly classified into “signal transduction mechanisms”, “carbohydrate transport and metabolism”, “defense mechanisms”, “energy production and conversion”, “general function prediction only”, “posttranslation modification, protein turnover, chaperones”, “translation, ribosomal structure and biogenesis” (Fig.1c, d). We can believe that G. elata Bl. f. glauca possibly respond to fungal disease by enhancing or weakening these physiological or biological activities.

GO enrichment and KEGG enrichment analysis

Using GO database, 2482 DEGs were enriched into 3958 GO terms. GO terms are usually classified into 3 categories: biological process (BP), cellular component (CC), molecular function (MF). Here, 2363 (59.70%) of these GO terms fell into BP, 509 (1.49%) belong to CC, and 1086 (27.44%) were part of MF. Noteworthily, 36 GO terms were about signal transduction, and 24 GO terms were relevant to hormone. By Kolmogorov-Smirnov test, 421 GO terms were significantly enriched (P-value<0.05). Part of them were showed in Additional file: Table S2 and top 30 were displayed as Fig.2a.

Using KEGG database, 122 pathways were enriched and top 50 was showed as Figure 2c. The enrichment degree was based on the P-value and enrichment factor (Fig. 2b). 9 pathways were significantly enriched (p<0.05), and they fell into 3 pathway categories: metabolism, environmental information processing, organismal systems. Specific pathway names displayed in Table 1.

Pathway category	Pathway description	Specific pathway	ko ID	DEG	All Unigene	P-value
Metabolism	Carbohydrate metabolism	Starch and sucrose	ko00500	49	169	0.041
	metabolism					
	Metabolism cofactors and vitamins	Ubiquinone and other	ko00130	12	32	0.047
	Terpenoids and polyketides	terpenoid-quinone biosynthesis				
	Metabolism terpenoids and polyketides	Brassinosteroid biosynthesis	ko00905	7	11	0.005
	of and flavonoids	Diterpenoid biosynthesis	ko00904	7	12	0.009
	Biosynthesis of other secondary	Flavone and flavonol	ko00944	5	5	0.001
	metabolites	biosynthesis				
	Phenylpropanoid biosynthesis	Phenylpropanoid biosynthesis	ko00940	36	96	0.001
	Flavonoid biosynthesis	Flavonoid biosynthesis	ko00941	14	32	0.008
Environmental	Signal transduction	Plant hormone signal	ko04075	44	136	0.008
Information Processing		transduction				
Organismal Systems	Environmental adaptation	Plant-pathogen interaction	ko04626	38	122	0.023

Table 1 KEGG pathway enrichment analysis (p<0.05)
Differential expression analysis

A total of 7540 DEGs were identified. 4326 of these DEGs were up-regulated in diseased group, and 3214 were down-regulated (Fig.3a, b). In addition, 40440 Unigenes did not demonstrate significantly differential expression. In other words, DEGs between healthy and diseased samples accounted for 15.71% of all Unigenes.

Transcription factor prediction

By the standard of FDR<0.01 and FC>2, 1295 DEGs were identified as transcription factors with transcription factor prediction tool (Fig.4). Here, transcription factor family covers transcription factor (TF), transcription regulator (TR), protein kinases (PK). It could be clear to see that many DEGs were the members of transcription factor families MYB, ERF, C2H2, NAC, bHLH, C3H, WRKY, bZIP, GRAS, PHD, SNF2, SET. Coincidently, most of those transcription factor families have been proved that their expression or regulation can directly or indirectly affect plant disease resistance[39-58]. Exceptionally, present reports about C3H are mainly related to cold resistance, rather than disease resistance[59, 60].

KEGG pathways analysis

So far, it has been proved that plant disease resistance is relative to plant-pathogen interaction, plant hormone signal transduction, and other pathways about certain secondary metabolite biosynthesis or metabolism[56, 61-64]. Consistently, we got similar results in this study (Fig.5-7, Table 1).

In plant-pathogen interaction (Fig.5), genes except WRKY1/2 were all up-regulated. They were CDPK (calcium-dependent protein kinase), Rboh (respiratory burst oxidase homolog), CNGC (cyclic nucleotide gated channel), calcium-binding protein CML (calmodulin-like protein), LRR (leucine-rich repeat) receptor-like serine/threonine-protein kinase FLS2, MEKK1 (mitogen-activated protein kinase kinase kinase 1), MKK4/5 (mitogen-activated protein kinase kinase 4/5), WRKY transcription factor 33, WRKY transcription factor 22, RIN4 (RPM1-interacting protein 4), serine/threonine-protein kinase PBS 1, molecular chaperone HtpG. Biological processes these up-regulated genes principally involved were hypersensitive response (HR), cell wall reinforcement, defense-related gene induction, phytoalexin accumulation and miRNA production. Some of these genes were involved in PAMP-triggered immunity. Only WRKY transcription factor 2 displayed down-regulated expression, and it was connected with HR, defense-related gene induction and programmed cell death.

Further to analyze the map of plant hormone signal transduction (Fig.6), we learned that GH3 (auxin responsive glycoside hydrolase 3 gene family), AHP (histidine-containing phosphotransfer protein), ARR-B (two-component response regulator ARR-B family), PIF4 (phytochrome-interacting factor 4), ERF1 (ethylene-responsive transcription factor 1), JAZ (jasmonate ZIM domain-containing protein) were up-regulated. In the same pathway, AUX1 (auxin influx carrier), ARF (auxin response factor), CRE1 (cytokinin receptor enzyme), DELLA protein, PP2C (protein phosphatase 2C), EIN2 (ethylene-insensitive protein 2), BZR1/2 (brassinosteroid resistant 1/2), JAR1 (jasmonic acid-amino synthetase), COI1 (coronatine-insensitive protein 1), transcription factor TGA showed down-regulated. As it described, transcription factor TGA is connected with disease resistance. DEGs in this metabolic pathway involved many biological processes, such as cell enlargement, plant growth, cell division, shoot initiation, stem growth, stomatal closure, seed dormancy, fruit ripening, senescence, monoterprenoid biosynthesis, indole alkaloid biosynthesis, cell elongation, of course, disease resistance as well. Interestingly, above biological processes usually accompanied by phosphorylation (+p), dephosphorylation (-p),
ubiquitination (+u). Phosphorylation and ubiquitination are common post-translational modification of proteins. They play an important role in pattern-triggered immunity (PTI), and simultaneously be necessary to receptor complex activation signals and cell homeostasis. Noteworthily, phytohormone played a vital role in this pathway. Specifically, they included jasmonic acid (JA), salicylic acid (SA), ethylene (ET), brassinosteroid (BR), auxin, cytokinin, gibberellin, abscisic acid.

Furthermore, numerous DEGs regulating secondary metabolites biosynthesis, like ubiquinone, brassinosteroid, diterpenoid, phenylpropanoid, flavone and flavonol, revealed active state. In addition, genes related metabolic process of secondary metabolites also revealed significant differential expression. In starch and sucrose metabolism pathway, DEGs related to fructose and glucose synthesis is up-regulated, while DEGs linked to starch and glycogen production showed down-regulated expression.

In particular, brassinosteroid is one of crucial phytohormone closely related to plant growth and stress response. In brassinosteroid biosynthesis map, CYP90D2 (steroid 3-oxidase) showed up-regulated expression; CYP90A1 (cytochrome P450 family 90 subfamily A polypeptide 1) displayed down-regulated expression; CYP734A1/BAS1 (PHYB activation tagged suppressor 1) was mix-regulated, with two genes up-regulated and one gene down-regulated (Fig.7).

In summary, fungal disease response is a complex process involving multiple biological processes. And meanwhile, there is more than one gene participated in this process. Interestingly, one gene was not appeared in single pathway. That is to say, one gene may perform more than one function simultaneously. Anyway, these significantly enriched pathways would well reveal the underlying response mechanism of fungal disease in *G. elata* Bl. f. *glauca*.

Potential immune response mechanism of fungal disease in *G. elata* Bl. f. *glauca*

Actually, in this study, many genes related to stress response and disease resistance demonstrated high expression and significant difference. Moreover, They were members of certain transcription factor families, like WRKY, GH3, JAZ, CML, ERF, TGA. Furthermore, these genes were closely connected with derivatives of jasmonic acid, salicylic acid, brassinosteroid, ethylene and auxin. By BLAST (blast.ncbi.nlm.nih.gov/Blast.cgi), it is revealed that amino acid sequences of four JAZ genes in *G. elata* family were highly similar to certain sequences in *Dendrobium catenatum*, *Phalaenopsis equestris*, *Apostasia shenzhenica* (Figure 8). Noteworthily, they were all belong to TIFY10 family.

Finally, we found 10 candidate genes responding to fungal disease in *G. elata* Bl. f. *glauca* (Fig.8; Table 2). Seven of them participated in plant hormone signal transduction (ko04075) pathway, and three were part of plant-pathogen interaction (ko04626) pathway.

| Table 2 Information of disease resistance genes. ko04626: plant-pathogen interaction; ko04075: plant hormone signal transduction. K13425: WRKY22; K14487: GH3; K13464: JAZ; K13448: CML; K14516: ERF1; K13424: WRKY33; K14431: TGA. |
gene ID	FDR	log2FC	regulated	pathway	KEGG entry	nr annotation
c65017.graph_c0	8.65E-170	10.60551	up	ko04626	K13425	probable WRKY transcription factor 27, [Phalaenopsis equestris]
c32310.graph_c0	7.67E-97	9.531941	up	ko04075	K14487	probable indole-3-acetic acid-amido synthetase GH3.1 [Phalaenopsis equestris]
c75818.graph_c1	5.48E-19	5.547811	up	ko04075	K13464	protein TIFY 10a-like [Dendrobium catenatum]
c76234.graph_c1	1.23E-15	5.462372	up	ko04075	K13464	protein TIFY 10c-like [Dendrobium catenatum]
c60520.graph_c0	1.11E-77	4.956140	up	ko04075	K13464	protein TIFY 10a-like [Dendrobium catenatum]
c75190.graph_c0	3.26E-110	4.430928	up	ko04626	K13448	probable calcium-binding protein CML18 [Phalaenopsis equestris]
c78203.graph_c0	7.49E-63	4.276427	up	ko04075	K14516	ethylene-responsive transcription factor 1B-like [Dendrobium catenatum]
c78388.graph_c1	1.21E-46	3.499401	up	ko04075	K13464	protein TIFY 10a-like [Dendrobium catenatum]
c71906.graph_c0	6.55E-51	2.652510	up	ko04626	K13424	WRKY transcription factor WRKY24-like isoform X1 [Dendrobium catenatum]
c74033.graph_c1	8.03E-27	-2.15672	down	ko04075	K14431	transcription factor TGA1-like [Dendrobium catenatum]

Discussion

According to research in available, plant disease response mechanisms mainly include PAMP-triggered immunity (PTI), effector-triggered immunity (ETI) and systemic acquired resistance (SAR). ETI is usually accompanied by the occurrence of hypersensitivity reaction (HR), giving rise to programmed cell death (PCD). Moreover, ETI can also induce SAR. As is known to all, PTI and SAR are non-specific immunity, while ETI is specific immunity. From what we study, it can be concluded that the disease response mechanism of *G. elata* Bl. f. *glauc*a involves all above three kinds of mechanisms in the whole process of infection. Resistance genes (R genes) were classified into nine types based on intracellular and extracellular pathogen recognition mechanisms[65]. Here, we discovered potential R genes in *G. elata* Bl. f. *glauc*a were probably the members of
transcription factor families like WRKY, GH3, TIFY/JAZ, CML, ERF, TGA. Coincidentally, it has been reported that these above transcription factors did be widely involved in various defense responses[56, 66–78]. Interestingly, GH3 and CML can also regulates fruit development[79, 80]. However, it still needs further study on how these genes perform their functions in respond to fungal disease in *G. elata* Bl. f. *glauca*.

In fact, plant hormones also have a vital role in the process of plant-pathogen interaction. Simultaneously, ETI itself can also induce and generate certain special plant hormone signal[80]. In this research, we found a large number of DEGs annotated to signal transduction mechanisms by means of functional annotation. Furthermore, lots of DEGs were markedly enriched into plant hormone signal transduction pathway in which mainly involved jasmonic acid and ethylene using the KEGG database. Consistently, it has been reported that auxin[81, 82], cytokinins[83, 84], ethylene[82, 85–87], gibberellin[88], abscisic acid[82, 89, 90], brassinosteroids[87], salicylic acid[82, 85, 91], jasmonic acid[82, 85, 91–93], strigolactones[94] can actively participate in disease response. Among them, salicylic acid pathway and jasmonic acid/ethylene pathway are considered as the most common plant hormone signal transduction pathways in response to biological or abiotic stress. It could even be said that the plant resistance to pathogen is initially stimulated by gene expression regulated by transcription factors and ultimately be mediated by plant hormones. Therefore, it is necessary to study phytohormone metabolism of *G. elata* Bl. f. *glauca* in the following work.

In addition, some DEGs in ubiquinone and other terpenoid-quinone biosynthesis pathway, like 4CL, were also significant differential expression between healthy and diseased group. 4CL belongs to the plant phenylpropane derivative, which is related to the synthesis of flavonoids and lignin and is a key enzyme in the biosynthetic pathway. A report indicates that Fm4CL-like 1 is involved in secondary cell wall development and lignin synthesis and it play an important role in osmotic stress by affecting cell wall and stomatal development[95]. This may be a part of fungal disease response mechanism in *G. elata* Bl. f. *glauca*.

Conclusions

In conclusion, fungal disease response mechanism in *G. elata* Bl. f. *glauca* is quite complicated. Firstly, JA/ET signal transduction play a positive role in regulation. The up-regulation expression of JAZ and ERF1 indirectly induces ubiquitin mediated proteolysis. Secondly, SA signal transduction reveals negative regulation. The down-regulation expression of TGA indirectly triggered disease resistance. Thirdly, brassinosteroid biosynthesis also makes contributions to fungal disease response. CYP90A1 and CYP90D2 display down-regulation and up-regulation, respectively. Last but not least, auxin signaling pathway involves in fungal disease response actively. However, JA/ET signaling pathway is undoubtedly the most highlighted. As the candidate genes response to fungal disease in *G. elata* Bl. f. *glauca*, their specific functions still need to be further verified. Of course, more insight into the molecular mechanisms of fungal disease response also requires to be revealed.

Methods

Plant material and growth conditions

Three healthy tubers (HGe) and three fungal diseased tubers (DGe) were used in this experiment. They were identified as mature tubers of *G. elata* Bl. f. *glauca* S. Chow by Professor Yugang Gao in Jilin Agricultural University.
These samples were collected from a planting base (126°44'20"E, 42°24'30"N) in Jingyu County, Baishan City, Jilin Province. Jingyu County is located in the western foot of Changbai Mountain and the upper reaches of Songhua River, with average altitude 775 m, annual average temperature 2.5°C, effective accumulated temperature 2224°C, annual average rainfall 767.3 mm, frost-free period 110 d or so.

RNA extraction

Fresh *G. elata* Bl. f. *glauca* tubers used for RNA extraction were washed with sterile water, and after surface disinfection, 100 mg or so healthy tissue was cut near the infected tissue from diseased tubers. Tissues were taken from the same part of healthy tubers to keep uniformity between the two samples, each of which has three biological replications. The total RNA was extracted from each tissue using RNAprep Pure Plant Total RNA Extraction Kit (Polysaccharides & Polyphenolics-rich) (centrifugal column type, catalog No. DP441). RNA was quantified in an Implen NanoPhotometer N50 ultra-micro ultraviolet spectrophotometer (Thermo Scientific; www.thermofisher.com). The purity and integrity of RNA was determined in an Agilent 2100 Bioanalyzer (Agilent; www.agilent.com). Finally, qualified total RNA was obtained, and the quality indicators were shown in Additional file: Table S2.

cDNA library construction and sequencing

cDNA library was constructed and sequenced by Biomarker Technologies (www.biomarker.com.cn). Follow steps are required to build the library: purification and fragmentation of mRNA, synthesis and purification of double-stranded cDNA, the end repair or dA tail addition, junction ligation and USER (uracil-specific excision reagent) enzyme digestion, ligated products purification and fragments size classification, library amplification, magnetic bead purification or sorting of amplification products, library quality control. cDNA library was checked for quality and quantity using Agilent Bioanalyzer (Agilent; www.agilent.com). All RNA sequences of 150 bp between 5'-terminal and 3'-terminal was sequenced through Illumina Noveseq high-flux sequencing platform. Paired-end sequencing data was generated for each sample with 2×150 bps read lengths.

Reads mapping and transcript de novo assembly

The resulting reads called raw data are stored in fastq format. The raw data of each sequencing sample includes two fastq files containing reads determined at both ends of all cDNA fragments. The quality of raw reads was assessed using the fastqc program (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Data filtering on raw data to remove low quality reads and reads containing connector or poly-N, we obtained high quality clean data.

Using Trinity software with default parameters, the sequence assembly of clean data is carried out in combined assembly. In this way, the sequencing depth can be increased indirectly, and transcripts with low expression abundance in *G. elata* Bl. f. *glauca* RNA samples can be assembled more completely. Clean data of each sample was aligned with assembled transcript or Unigene library to obtain mapped reads that matched transcript or Unigene library.

Gene expression and annotation
A Unigene supported by a minimum of three mapped high-quality reads was considered as expressed. DEGs were evaluated with the DESeq2 package. Benjamini-Hochberg method was used to correct the significant P-value obtained from the original hypothesis test. Finally, FDR (false discovery rate, corrected P-value) was used as one of the key indexes of DEGs identification. This is done for the sake of reducing the false positive caused by independent statistical hypothesis test to a large number of gene expression values. FC (fold change) means the ratio of gene expression levels between healthy tubers and diseased tubers. Negative log2FC values indicate higher expression in healthy samples, while positive log2FC values showed higher expression in disease ones. In addition, the gene expression abundance, described by FPKM (reads per kilobase of exon model per million mapped reads) value, is also a factor to be considered for DEGs identification. When gene expression abundance is small, that is to say, be with low signal values, it may not be detected in subsequent validation.

In organisms, different gene products coordinate with each other to perform biological functions, and enrichment analysis helps to further interpret the gene functions. All Unigenes were annotated into databases such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), COG (clusters of orthologous groups), KOG (clusters of euKaryotic Orthologous Groups), eggNOG (Evolutionary Genealogy of Genes: Non-supervised Orthologous Groups). The differential expression and enrichment analysis were conducted using Fisher's exact test to obtain an adjusted P-value (less than 0.05) with an FDR correction.

Supplementary Information

Additional file 1: Table S1. Sequencing and reads mapping.

Additional file 3: Figure S1. (a) Raw data quality. (b) de novo assembly.

Additional file 2: Table S2. GO terms enrichment of DEGs. KS: Kolmogorov-Smirnov test (p<0.01).

Additional file 3: Table S3. Concentration, purity and integrity of total RNA.

Abbreviations

DEG: differentially expressed Unigene; TF: transcription factor; AD: Alzheimer's disease; PD: Parkinson's disease; BP: biological process; CC: cellular component; MF: molecular function; KS: Kolmogorov-Smirnov test; nr: RefSeq non-redundant proteins; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; COG: clusters of orthologous groups, KOG: clusters of euKaryotic Orthologous Groups; eggNOG: Evolutionary Genealogy of Genes: Non-supervised Orthologous Groups; TR: transcription regulator, PK: protein kinases; CDPK: calcium-dependent protein kinase; Rboh: respiratory burst oxidase homolog; CNGC: cyclic nucleotide gated channel; CML: calmodulin-like protein; LRR: leucine-rich repeat; MEKK1: mitogen-activated protein kinase kinase kinase 1; MKK4/5: mitogen-activated protein kinase kinase 4/5; RIN4: RPM1-interacting protein 4; HR: hypersensitive response; GH3: glycoside hydrolase 3; AHP: histidine-containing phosphotransfer protein; ARR-B: two-component response regulator ARR-B family; PIF4: phytochrome-interacting factor 4; ERF1: ethylene-responsive transcription factor 1; JAZ: jasmonate ZIM domain-containing protein; AUX1: auxin influx carrier; ARF: auxin response factor; CRE: cytokinin receptor enzyme; PP2C: protein phosphatase 2C; EIN2: ethylene-insensitive protein 2; BZR1/2: brassinosteroid resistant 1/2; JAR1: jasmonic acid-amino synthetase; COI1:
coronatine-insensitive protein 1; +p: phosphorylation; -p: dephosphorylation; +u: ubiquitination; PTI: pattern-triggered immunity; JA: jasmonic acid; SA: salicylic acid; ET: ethylene; BR: brassinosteroid; ETI: effector-triggered immunity; SAR: systemic acquired resistance; R genes: Resistance genes; HGe: healthy tubers; DGe: diseased tubers; FDR: false discovery rate; FC: fold change.

Declarations

Acknowledgements

We are grateful to Zhaochun Li, the manager of Jingzhen Tianma Co., Ltd, for experimental materials. We extend sincere gratitude to all teammates in our laboratory for material processing. We also thank BMKCloud (www.biocloud.net) for providing an analysis platform.

Author's contributions

YG contributed in research conceiving, material collection, and paper revision. PZ provided technical assistance. YX carried out the experiment. YW participated in study design, experiment progress, and manuscript writing. All authors read and approved the final manuscript.

Funding

This work was supported by the Science and Technology Development Program of Jilin Province Fund (20190301079NY, 20170204017YY), National Key Research and Development Program Fund (2016YFC0500300).

Availability of data and materials

The sequence data generated during the current study are available in the NCBI SRA repository via accession numbers SAMN14380862 and SAMN14380861 (www.ncbi.nlm.nih.gov/bioproject/PRJNA612737). All data analyzed during this study are included in this published article and its additional files.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declared that they have no competing interests.

References
1. Chinese Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China. In. Beijing. China: China Medical Science and Technology Press; 2015: p. 58.

2. Qiu F, Liu T, Qu Z, Qiu C, Yang Z, Hu W. Gastrodin inhibits the activity of acid-sensing ion channels in rat primary sensory neurons. Eur J Pharmacol. 2014;731:50–7.

3. Sun W, Miao B, Wang XC, Duan JH, Ye X, Han WJ, Wang WT, Luo C, Hu SJ. Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons. Plos One. 2012;7(6):e39647.

4. Chen C, Fu YH, Li MH, Ruan LY, Xu H, Chen JF, Zhao WL, Meng HH, Xing YX, Hong W, et al. Nuclear magnetic resonance-based metabolomics approach to evaluate preventive and therapeutic effects of Gastrodia elata Blume on chronic atrophic gastritis. J Pharm Biomed Anal. 2019;164:231–40.

5. Jang YW, Lee JY, Kim CJ. Anti-asthmatic activity of phenolic compounds from the roots of Gastrodia elata Bl. Int Immunopharmacol. 2010;10(2):147–54.

6. Jiang G, Hu Y, Liu L, Cai J, Peng C, Li Q. Gastrodin protects against MPP(+)−induced oxidative stress by up regulates heme oxygenase-1 expression through p38 MAPK/Nrf2 pathway in human dopaminergic cells. Neurochem Int. 2014;75(9):79–88.

7. Zhang XL, Yuan YH, Shao QH, Wang ZZ, Zhu CG, Shi JG, Ma KL, Yan X, Chen NH. DJ-1 regulating PI3K-Nrf2 signaling plays a significant role in benibenzyl compound 20C-mediated neuroprotection against rotenone-induced oxidative insult. Toxicol Lett. 2017;271(Complete):74–83.

8. Luo L, Kim SW, Lee HK, Kim ID, Lee H, Lee JK. Anti-oxidative effects of 4-hydroxybenzyl alcohol in astrocytes confer protective effects in autocrine and paracrine manners. Plos One. 2017;12(5):e0177322.

9. Shi A, Xiang J, He F, Zhu Y, Zhu G, Lin Y, Zhou N: The phenolic components of Gastrodia elata improve prognosis in rats after cerebral ischemia/reperfusion by enhancing the endogenous antioxidant mechanisms. Oxidative Medicine and Cellular Longevity,2018,(2018-3-22) 2018,2018(2):1–16.

10. Lin YE, Lin SH, Chen WC, Ho CT, Sheen LY. Anti-depressant effects of Gastrodia elata Blume and its compounds gastrodin and 4-hydroxybenzyl alcohol, via the monoaminergic system and neuronal cytoskeletal remodeling. J Ethnopharmacol. 2016;182:190–9.

11. Shin EJ, Kim JM, Nguyen XKT, Nguyen TTL, Lee SY, Jung JH, Kim MJ, Whang WK, Yamada K, Nabeshima T, et al. Effects of Gastrodia elata Bl. on phencyclidine-induced schizophrenia-like psychosis in mice. Curr Neuropharmacol. 2011;9(1):−.

12. Chen PJ, Hsieh CL, Su KP, Hou YC, Chiang HM, Sheen LY. Rhizomes of Gastrodia elata Bl. possess antidepressant-like effect via monoamine modulation in subchronic animal model. Am J Chin Med. 2009;37(06):1113–24.

13. Lin YE, Lin SH, Chen WC, Ho CT, Lai YS, Panyod S, Sheen LY. Antidepressant-like effects of water extract of Gastrodia elata Blume in rats exposed to unpredictable chronic mild stress via modulation of monoamine regulatory pathways. J Ethnopharmacol. 2016;187:57–65.

14. E-J S, J-H B, Nguyen TTL, B-D J, K-W O, Kim MJ, Jang CG, Ali SF, Ko SK, Yang CH. Gastrodia elata Bl. attenuates cocaine-induced conditioned place preference and convulsion, but not behavioral sensitization in mice: importance of GABAA receptors. Curr Neuropharmacol. 2011;9(1):−.

15. Matias M, Silvestre S, Falcao A, Alves G. Gastrodia elata and epilepsy: Rationale and therapeutic potential. Phytomedicine. 2016;23(12):1511–26.
16. Huang Q, Shi J, Gao B, Zhang H, Fan J, Li X, Fan J, Han Y, Zhang J, Yang L. Gastrodin: an ancient Chinese herbal medicine as a source for anti-osteoporosis agents via reducing reactive oxygen species. Bone. 2015;73:132–44.

17. Liu S, Fang T, Yang L, Chen Z, Mu S, Fu Q. Gastrodin protects MC3T3-E1 osteoblasts from dexamethasone-induced cellular dysfunction and promotes bone formation via induction of the NRF2 signaling pathway. Int J Mol Med. 2018;41(4):2059–69.

18. Lin YE, Chou ST, Lin SH, Lu KH, Panyod S, Lai YS, Ho CT, Sheen LY. Antidepressant-like effects of water extract of Gastrodia elata Blume on neurotrophic regulation in a chronic social defeat stress model. J Ethnopharmacol. 2018;215:132–9.

19. Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P, Xu Y, Zhao Q, Si G. A review on central nervous system effects of gastrodin. Front Pharmacol. 2018;9:24.

20. Huang JY, Yuan YH, Yan JQ, Wang YN, Zhu CG, Guo QL, Shi JG, Chen NH. 20C, a bibenzyl compound isolated from Gastrodia elata, protects PC12 cells against rotenone-induced apoptosis via activation of the Nrf2/ARE/HO-1 signaling pathway. Acta Pharmacol Sin. 2016;37(6):731–40.

21. Ng CF, Ko CH, Koon CM, Xian JW, Leung PC, Fung KP, Ho Yin Edwin C, Lau CBS: The aqueous extract of rhizome of Gastrodia elata protected Drosophila and PC12 cells against beta-amyloid-induced neurotoxicity. Evidence-Based Complementray and Alternative Medicine, 2013,(2013-9-23) 2013, 2013(2013):516741.

22. Doo AR, Kim SN, Hahm DH, Yoo HH, Park JY, Lee H, Jeon S, Kim J, Park SU, Park HJ. Gastrodia elata Blume alleviates L-DOPA-induced dyskinesia by normalizing FosB and ERK activation in a 6-OHDA-lesioned Parkinson's disease mouse model. BMC Complement Altern Med. 2014;14:107–7.

23. Liu B, Gao JM, Li F, Gong QH, Shi JS. Gastrodin attenuates bilateral common carotid artery occlusion-induced cognitive deficits via regulating Aβ-related proteins and reducing autophagy and apoptosis in rats. Front Pharmacol. 2018;9:405.

24. Dai R, Wang T, Si X, Jia Y, Wang L, Yuan Y, Lin Q, Yang C. Vasodilatory effects and underlying mechanisms of the ethyl acetate extracts from Gastrodia elata Blume. Canadian Journal of Physiology Pharmacology. 2016;95(5):1–8.

25. Lee OH, Kim KI, Han CK, Kim YC, Hong HD. Effects of acidic polysaccharides from gastrodia rhizome on systolic blood pressure and serum lipid concentrations in spontaneously hypertensive rats fed a high-fat diet. Int J Mol Sci. 2012;13(1):698–709.

26. Sunmin P, Sol KD, Suna K. Gastrodia elata Blume water extracts improve insulin resistance by decreasing body fat in diet-induced obese rats: vanillin and 4-hydroxybenzaldehyde are the bioactive candidates. Eur J Nutr. 2011;50(2):107–18.

27. Ding YF, Bao XM, Lao LF, Ling YX, Wang QW, Xu SJ. p-Hydroxybenzyl alcohol prevents memory deficits by increasing neurotrophic factors and decreasing inflammatory factors in a mice model of Alzheimer’s Disease. J Alzheimers Dis. 2019;67(3):1007–19.

28. Chen PJ, Liang KC, Lin HC, Hsieh CL, Su KP, Hung MC, Sheen LY. Gastrodia elata Bl. attenuated learning deficits induced by forced-swimming stress in the inhibitory avoidance task and Morris water maze. J Med Food. 2011;14(6):610–7.
29. Yuan Y, Jin X, Liu J, Zhao X, Zhou J, Wang X, Wang D, Lai C, Xu W, Huang J. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat Commun. 2018;9(1):1615.

30. Liu J, Zang P, Gao Y, Zhao Y, He Z, Zhu H, Wei X. First Report of Penicillium oxalicum Causing Blue Mould on Gastrodia elata Bl. in Jilin Province, China. Plant Disease 2019(ja).

31. Qiao M, Tian WG, Feng B, Yu ZF, Peng ZX. First report of soft rot associated with Ilyonectria robusta in Gastrodia elata. In: Plant Disease. 2019.

32. Han M, Mi NC, Lee HR, Park EJ. First report of soft rot associated with Trichoderma hamatum in Gastrodia elata. Plant Disease 2017, 101(6).

33. Yuan X, Zeng Q, Khokhani D, Tian F, Severin GB, Waters CM, Xu J, Zhou X, Sundin GW, Ibekwe AM: A Feed-forward signaling circuit controls bacterial virulence through linking cyclic di-GMP and two mechanistically distinct sRNAs; ArcZ and RsmB. Environmental microbiology 2019.

34. Krzyzanowska DM, Maciąg T, Siwinska J, Krychowiak M, Jafra S, Czajkowski R. Compatible mixture of bacterial antagonists developed to protect potato tubers from soft rot caused by Pectobacterium spp. and Dickeya spp. Plant disease 2019(ja).

35. Chane A, Barbey C, Robert M, Mertean A, Konto ghioghi Y, Beury cirou A, Feuilloley M, Patek M, Gobert V, Latour X. Biocontrol of soft-rot: confocal microscopy highlights virulent pectobacterial communication and its jamming by rhodococcal quorum-quenching. Molecular Plant-Microbe Interactions 2019(ja).

36. Raoul des Essarts Y, Pédron J, Blin P, Van Dijk E, Faure D, Van Gijsegem F. Common and distinctive adaptive traits expressed in Dickeya dianthicola and Dickeya solani pathogens when exploiting potato plant host. Environ Microbiol. 2019;21(3):1004–18.

37. Hong CY, Zheng JL, Chen TY, Chao HR, Lin YH. PFLP-intensified disease resistance against bacterial soft rot through the MAPK pathway in PAMP-Triggered Immunity. Phytopathology. 2018;108(12):1467–74.

38. Rai M, Ingle AP, Paralikar P, Anasane N, Gade R, Ingle P. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Applied Microbiology Biotechnology. 2018;102(4):1–13.

39. Wang L, Wang H, He S, Meng F, Zhang C, Fan S, Wu J, Zhang S, Xu P: GmSnRK1.1, a sucrose non-fermenting-1(SNF1)-related protein kinase, promotes soybean resistance to Phytophthora sojae. Frontiers in plant science 2019, 10(undefined):996.

40. Perochon A, Váry Z, Malla KB, Halford NG, Paul MJ, Doohan FM. The wheat SnRK1α family and its contribution to Fusarium toxin tolerance. Plant science: an international journal of experimental plant biology. 2019;288(undefined):110217.

41. Grimplet J, Agudelo Romero P, Teixeira RT, Martinez Zapater JM, Fortes AM. Structural and functional analysis of the GRAS gene family in grapevine indicates a role of GRAS proteins in the control of development and stress responses. Frontiers in plant science. 2016;7(undefined):353.

42. Lim CW, Baek W, Lim S, Han SW, Lee SC. Expression and functional roles of the pepper pathogen-induced bZIP Transcription factor CabZIP2 in enhanced disease resistance to bacterial pathogen infection. Molecular plant-microbe interactions: MPMI. 2015;28(7):825–33.

43. Shen L, Liu Z, Yang S, Yang T, Liang J, Wen J, Liu Y, Li J, Shi L, Tang Q, et al. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40. J Exp Bot. 2016;67(8):2439–51.
44. Li X, Fan S, Hu W, Liu G, Wei Y, He C, Shi H. Two cassava Basic Leucine Zipper (bZIP) transcription factors (MebZIP3 and MebZIP5) confer disease resistance against cassava bacterial blight. Frontiers in plant science. 2017;8(undetermined):2110.

45. Zhao XY, Qi CH, Jiang H, Zhong MS, You CX, Li YY, Hao YJ: MdHII4 transcription and translation levels associated with disease in apple are regulated by MdWRKY31. Plant molecular biology 2019, 101(null):149–162.

46. Zhang F, Wang F, Yang S, Zhang Y, Xue H, Wang Y, Yan S, Wang Y, Zhang Z, Ma Y. MdWRKY100 encodes a group I WRKY transcription factor in Malus domestica that positively regulates resistance to Colletotrichum gloeosporioides infection. Plant science: an international journal of experimental plant biology. 2019;286(undetermined):68–77.

47. Kim JG, Mudgett MB: Tomato bHLH132 transcription factor controls growth and defense and is activated by effector XopD during pathogenesis. Molecular plant-microbe interactions: MPMI 2019, undetermined:MPMI05190122R.

48. Shan W, Chen JY, Kuang JF, Lu WJ. Banana fruit NAC transcription factor MaNAC5 cooperates with MaWRKYs to enhance the expression of pathogenesis-related genes against Colletotrichum musae. Mol Plant Pathol. 2016;17(3):330–8.

49. Liu Q, Yan S, Huang W, Yang J, Dong J, Zhang S, Zhao J, Yang T, Mao X, Zhu X, et al. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice. Plant molecular biology. 2018;98(null):289–302.

50. Meisrimler CN, Pelgrom AJE, Oud B, Out S. Van den AG: Multiple downy mildew effectors target the stress-related NAC transcription factor LsNAC069 in lettuce. The Plant journal: for cell molecular biology. 2019;99(6):1098–115.

51. Shi H, Wang X, Ye T, Chen F, Deng J, Yang P, Zhang Y, Chan Z. The Cysteine2/Histidine2-Type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and C-REPEAT-BINDING FACTOR genes in Arabidopsis. Plant physiology. 2014;165(3):1367–79.

52. Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell. 2017;170(1):114–26.e115.

53. Zhao Y, Chang X, Qi D, Dong L, Wang G, Fan S, Jiang L, Cheng Q, Chen X, Han D, et al. A novel soybean ERF transcription factor, GmERF113, increases resistance to Phytophthora sojae infection in soybean. Frontiers in plant science. 2017;8(undetermined):299.

54. Wei Y, Chang Y, Zeng H, Liu G, He C, Shi H. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. Journal of pineal research. 2018;64(1):undetermined.

55. Kim NY, Jang YJ, Park OK. AP2/ERF family transcription factors ORA59 and RAP2. 3 interact in the nucleus and function together in ethylene responses. Frontiers in plant science. 2018;9(undetermined):1675.

56. Song N, Ma L, Wang W, Sun H, Wang L, Baldwin IT, Wu J: An ERF2-like transcription factor regulates production of the defense sesquiterpene capsidiol upon Alternaria alternata infection. Journal of experimental botany 2019, undetermined:undetermined.
57. Zhang YL, Zhang CL, Wang GL, Wang YX, Qi CH, Zhao Q, You CX, Li YY, Hao YJ. The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis. BMC plant biology. 2019;19(1):362.

58. Qiu Z, Yan S, Xia B, Jiang J, Yu B, Lei J, Chen C, Chen L, Yang Y, Wang Y, et al. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase. J Exp Bot. 2019;70(19):5343–54.

59. Pradhan SK, Pandit E, Nayak DK, Behera L, Mohapatra T. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis. BMC plant biology. 2019;19(1):352.

60. Xie Z, Lin W, Yu G, Cheng Q, Xu B, Huang B. Improved cold tolerance in switchgrass by a novel CCCH-type zinc finger transcription factor gene, associated with ICE1-CBF-COR regulon and ABA-responsive genes. Biotechnology for biofuels. 2019;12(undefined):224.

61. Yao Z, Chen Q, Chen D, Zhan L, Zeng K, Gu A, Zhou J, Zhang Y, Zhu Y, Gao W, et al. The susceptibility of sea-island cotton recombinant inbred lines to Fusarium oxysporum f. sp. vasinfectum infection is characterized by altered expression of long noncoding RNAs. Scientific reports. 2019;9(1):2894.

62. Su X, Lu G, Guo H, Zhang K, Li X, Cheng H. The dynamic transcriptome and metabolomics profiling in Verticillium dahliae inoculated Arabidopsis thaliana. Scientific reports. 2018;8(1):15404.

63. Gao Y, Wang W, Zhang T, Gong Z, Zhao H, Han GZ: Out of water: The origin and early diversification of plant R-genomes. Plant physiology 2018, 177(1):82–89.

64. Suzuki M, Wu S, Mimura M, Alseeakh S, Mccarty DR. Construction and applications of a B vitamin genetic resource for investigation of vitamin dependent metabolism in maize. The Plant Journal 2019.

65. Mithoe SC, Menke FL. Regulation of pattern recognition receptor signalling by phosphorylation and ubiquitination. Curr Opin Plant Biol. 2018;45(null):162–70.

66. Liu F, Li X, Wang M, Wen J, Yi B, Shen J, Ma C, Fu T, Tu J. Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection. Plant Biotechnol J. 2018;16(4):911–25.

67. Hussain A, Li X, Weng Y, Liu Z, Ashraf M, Noman A, Yang S, Ifnan M, Qiu S, Yang Y, et al: Ralstonia CaWRKY22 acts as a positive regulator in pepper response to by constituting networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58. International journal of molecular sciences 2018, 19(5):undefined.

68. Hussain RMF, Sheikh AH, Haider I, Quareshy M, Linthorst HJM: Arabidopsis WRKY50 and TGA transcription factors synergistically activate expression of PR1. Frontiers in Plant Science 2018, 9:930-.

69. Hui S, Hao M, Liu H, Xiao J, Li X, Yuan M, Wang S. The group I GH3 family genes encoding JA-Ile synthetase act as positive regulator in the resistance of rice to Xanthomonas oryzae pv. oryzae. Biochem Biophys Res Commun. 2019;508(4):1062–6.

70. Yang Y, Ahammed G, Wan C, Liu H, Chen R, Zhou Y: Comprehensive analysis of TIFY transcription factors and their expression profiles under jasmonic acid and abiotic stresses in watermelon. International journal of genomics 2019, 2019(undefined):6813086.

71. Ebel C, BenFeki A, Hanin M, Solano R, Chini A. Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance. PloS one. 2018;13(7):e0200566.
72. Chini A, Ben-Romdhane W, Hassairi A, Aboul-Soud MA. Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses. PloS one. 2017;12(6):e0177381.

73. Oblessuc P, Obulareddy N, DeMott L, Matioli C, Thompson B, Melotto M: JAZ4 is involved in plant defense, growth, and development in Arabidopsis. The Plant journal: for cell and molecular biology 2019, undefined(undefined):undefined.

74. Lee S, Rojas C, Oh S, Kang M, Choudhury S, Lee H, Allen R, Pandey S, Mysore K. Nucleolar GTP-binding protein 1–2 (NOG1-2) interacts with jasmonate-ZIMDomain protein 9 (JAZ9) to regulate stomatal aperture during plant immunity. Int J Mol Sci. 2018;19(7):undefined.

75. Liu S, Zhang P, Li C, Xia G. The moss jasmonate ZIM-domain protein PnJAZ1 confers salinity tolerance via crosstalk with the abscisic acid signalling pathway. Plant Sci. 2019;280(undefined):1–11.

76. Ma Q, Zhou Q, Chen C, Cui Q, Zhao Y, Wang K, Arkorfel E, Chen X, Sun K, Li X. Isolation and expression analysis of CsCML genes in response to abiotic stresses in the tea plant (Camellia sinensis). Scientific reports. 2019;9(1):8211.

77. Wu X, Qiao Z, Liu H, Acharya BR, Li C, Zhang W. CML20, an Arabidopsis calmodulin-like protein, negatively regulates guard cell ABA signaling and drought stress tolerance. Front Plant Sci. 2017;8:824.

78. An J, Zhang X, Bi S, You C, Wang X, Hao Y: The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant journal: for cell and molecular biology 2019, undefined(undefined):undefined.

79. Midhat U, Ting M, Teresinski H, Snedden W. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis. Plant molecular biology. 2018;96(null):375–92.

80. Sravankumar T, Akash, Naik N, Kumar R. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). Plant molecular biology. 2018;98(null):455–69.

81. Ye J, Zhong T, Zhang D, Ma C, Wang L, Yao L, Zhang Q, Zhu M, Xu M. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in Maize. Molecular plant. 2019;12(3):360–73.

82. Wang L, Li Q, Liu Z, Surendra A, Pan Y, Li Y, Zaharia L, Ouellet T, Fobert P. Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against fusarium head blight. PloS one. 2018;13(11):e0207036.

83. Wang S, Wang S, Sun Q, Yang L, Zhu Y, Yuan Y, Hua J. A role of cytokinin transporter in Arabidopsis immunity. Molecular plant-microbe interactions: MPMI. 2017;30(4):325–33.

84. Wang J, Shi H, Zhou L, Peng C, Liu D, Zhou X, Wu W, Yin J, Qin H, Ma W, et al. OsBSK1-2, an orthologous of AtBSK1, is involved in rice immunity. Frontiers in plant science. 2017;8(undefined):908.

85. Yuan M, Huang Y, Ge W, Jia Z, Song S, Zhang L, Huang Y. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genomics. 2019;20(1):144.

86. Zhou S, Zhang YK, Kremling KA, Ding Y, Bennett JS, Bae JS, Kim DK, Ackerman HH, Kolomiets MV, Schmelz EA, et al. Ethylene signaling regulates natural variation in the abundance of antifungal acetylated.
dieruloylsucroses and Fusarium graminearum resistance in maize seedling roots. New Phytol. 2019;221(4):2096–111.

87. Yuan P, Zhang C, Wang ZY, Zhu XF, Xuan YH. RAVL1 activates brassinosteroids and ethylene signaling to modulate response to sheath blight disease in rice. Phytopathology. 2018;108(9):1104–13.

88. Wang F, Wang C, Yan Y, Jia H, Guo X. Overexpression of cotton GhMPK11 decreases disease resistance through the gibberellin signaling pathway in transgenic Nicotiana benthamiana. Frontiers in plant science. 2016;7(undened):689.

89. Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, et al: Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. The New phytologist 2019, 223(2):853–866.

90. Hatmi S, Villaume S, Trotel Aziz P, Barka EA, Clément C, Aziz A. Osmotic stress and ABA affect immune response and susceptibility of grapevine berries to gray mold by priming polyamine accumulation. Frontiers in plant science. 2018;9(undened):1010.

91. Wang Q, Chen X, Chai X, Xue D, Zheng W, Shi Y, Wang A. The involvement of jasmonic acid, ethylene, and salicylic acid in the signaling pathway of -induced resistance to gray mold disease in tomato. Phytopathology. 2019;109(7):1102–14.

92. He Y, Zhang H, Sun Z, Li J, Hong G, Zhu Q, Zhou X, MacFarlane S, Yan F, Chen J. Jasmonic acid-mediated defense suppresses brassinosteroid-mediated susceptibility to Rice black streaked dwarf virus infection in rice. New Phytol. 2017;214(1):388–99.

93. Xu L, Yang H, Ren L, Chen W, Liu L, Liu F, Zeng L, Yan R, Chen K, Fang X. Jasmonic acid-mediated aliphatic glucosinolate metabolism is involved in clubroot disease development in Brassica napus L. Frontiers in plant science. 2018;9(undened):750.

94. Cai Y, Cai X, Wang Q, Wang P, Zhang Y, Cai C, Xu Y, Wang K, Zhou Z, Wang C, et al: Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis. Plant Biotechnology Journal 2019.

95. Chen X, Wang H, Li X, Ma K, Zhan Y, Zeng F. Molecular cloning and functional analysis of 4-Coumarate:CoA ligase 4(4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC plant biology. 2019;19(1):231.

Figures
Figure 1

Function annotation and classification of DEGs. (a) DEGs functional annotation in different databases. (b) Venn diagram of function annotation in different database. (c) eggNOG function classification. (d) KOG function classification.
Figure 2

(a) GO enrichment. (b) Statistics of pathway enrichment. (c) KEGG pathway enrichment. Each circle in figure B represents a KEGG pathway.
Figure 3

(a) Volcano map of DEGs. (b) MA plot of DEGs.
Figure 4

Transcription factor prediction. The x-axis shows transcription factor family name.
Figure 5

Plant-pathogen interaction pathway map. Red marks indicate up-regulated expression; blue marks indicate down-regulated expression.
Figure 6

Plant hormone signal transduction pathway. Red marks indicate up-regulated expression; blue marks indicate down-regulated expression.

Figure 7

Brassinosteroid biosynthesis. Red marks indicate up-regulated expression; blue marks indicate down-regulated expression.
Figure 8

Phylogenetic tree of TIFY10 in Orchidaceae plant.
Figure 9

Cluster heatmap of disease resistance related genes. The change in color from red to green indicates the change in log2FPKM value from large to small.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfiles.docx