Conformally dressed black hole in $2 + 1$ dimensions

Cristián Martínez

Departamento de Física, Facultad de Ciencias, Universidad de Chile
Casilla 653, Santiago, Chile

and Centro de Estudios Científicos de Santiago, Casilla 16443, Santiago 9, Chile.

Jorge Zanelli

Centro de Estudios Científicos de Santiago, Casilla 16443, Santiago 9, Chile

and Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile,
Casilla 307, Santiago, Chile.

(August 8, 2018)

Abstract

A three dimensional black hole solution of Einstein equations with negative cosmological constant coupled to a conformal scalar field is given. The solution is static, circularly symmetric, asymptotically anti-de Sitter and non-perturbative in the conformal field. The curvature tensor is singular at the origin while the scalar field is regular everywhere. The condition that the Euclidean geometry be regular at the horizon fixes the temperature to be

$$T = \frac{9r_+}{16\pi l^2}.$$

Using the Hamiltonian formulation including boundary terms of the Euclidean action, the entropy is found to be $\frac{2}{3}$ of the standard value $(\frac{1}{4}A)$,

†Electronic address: martinez@cecs.cl

‡Electronic address: jz@cecs.cl
and in agreement with the first law of thermodynamics.

04.20.Jb, 97.60.Lf
I. INTRODUCTION

In the last ten years, three dimensional gravity has become a popular laboratory to understand the fundamentals of classical and quantum gravity [1]. Thus, the discovery of a black hole solution in 2+1 dimensions [2] has further contributed to the interest in three dimensional gravity. A complete review about this black hole can be found in [3].

Several generalizations of this solution have been constructed. For instance, minimally and non-minimally coupled dilaton field with various black holes (charged and uncharged, spinning and non-spinning) [4–6,28], are known. For other interesting extensions see [3] and references therein.

The purpose of this article is to report on an exact black hole solution conformally coupled to a massless scalar field in 2+1 dimensions. The solution is static, circularly symmetric and asymptotically anti-de Sitter and it possesses a curvature singularity at the origin. The scalar field is regular everywhere, has a fixed form and cannot be obtained as a perturbation around a matter-free massive black hole. The system can be shown to have a well-defined thermodynamic behaviour.

Here we consider gravity with cosmological constant conformally coupled to a massless scalar field in D dimensions. The action is

$$I = I_G + I_C,$$
(1)

$$I_G = \frac{1}{2\kappa} \int d^Dx \sqrt{-g}[R + 2l^{-2}],$$
(2)

$$I_C = -\frac{1}{2} \int d^Dx \sqrt{-g} \left[g^{\mu\nu} \nabla_\mu \Psi \nabla_\nu \Psi - \xi_D R \Psi^2 \right],$$
(3)

where R is the scalar curvature and $\xi_D = \frac{1}{4}(D-2)/(D-1)$. The value of ξ_D is chosen so that I_C be invariant under conformal transformations

$$g_{\mu\nu} \rightarrow \Omega^2(x)g_{\mu\nu}, \quad \Psi \rightarrow \Omega^{1-\frac{D}{2}}(x)\Psi.$$
(4)

This coupling, including electromagnetism and without cosmological constant in four dimensions, was previously considered by Bronnikov, Melnikov and Bocharova [7] and Bekenstein [8,9] (see also [10]). The uncharged BMBB black hole solution is static, spherically
symmetric and asymptotically flat (there is no cosmological constant). The metric is the extreme Reissner-Nordström metric solution and the scalar field is unbounded at horizon. In [9] it is shown that this divergence is not physically troublesome.

Recently, the uniqueness of the BMBB black hole has been established [11] and it was shown to be the only static, spherically symmetric, asymptotically flat black hole solution of the Einstein-conformal field equations in four space-time dimensions [12].

Below we present a black hole solution for the system described in Eq. (1) in three dimensions.

II. BLACK HOLE SOLUTIONS

In three dimensions, the action reads

\[I = \int d^3 x \sqrt{-g} \left[\frac{R}{2\kappa} + \frac{2l^{-2}}{2\kappa} - \frac{1}{2} g^{\mu\nu} \nabla_\mu \Psi \nabla_\nu \Psi - \frac{1}{16} R \Psi^2 \right] \]

(5)

where \(-l^{-2}\) is the cosmological constant and \(\Psi\) is the massless conformal scalar field.

The field equations are

\[G_{\mu\nu} - l^{-2} g_{\mu\nu} - \kappa T_{\mu\nu} = 0 \]

(6)

and

\[\Box \Psi - \frac{1}{8} R \Psi = 0, \]

(7)

where \(\Box \equiv g^{\mu\nu} \nabla_\mu \nabla_\nu\) is the Laplace-Beltrami operator in the metric \(g_{\mu\nu}\) and the matter stress tensor is

\[T_{\mu\nu} = \nabla_\mu \Psi \nabla_\nu \Psi - \frac{1}{2} g_{\mu\nu} g^{\alpha\beta} \nabla_\alpha \Psi \nabla_\beta \Psi \]

\[+ \frac{1}{8} [g_{\mu\nu} \Box - \nabla_\mu \nabla_\nu + G_{\mu\nu}] \Psi^2. \]

(8)

It is straightforward to check that by virtue of Eq. (7) the stress tensor is traceless. This in turn implies that the geometry has constant scalar curvature,
\[R = -6l^{-2}. \] (9)

We look for static, circularly symmetric three dimensional metrics whose expression in polar coordinates takes the form

\[ds^2 = -N^2(r)F(r)dt^2 + F^{-1}(r)dr^2 + r^2d\theta^2, \] (10)

where \(0 \leq r < \infty \) is the proper radial coordinate and \(0 \leq \theta \leq 2\pi \). The solution is easily obtained fixing the time scale so that \(N(r) = 1 \). Working with the advanced time coordinate \(v = t + \int F^{-1}(r)dr \), the \(r - r \) equation of (11) imposes the constraint

\[0 = (\Psi')^2 - \frac{1}{8}(\Psi^2)'', \] (11)

where prime denotes radial derivative. The above equation can be written as \(0 = \Psi^4(\Psi^{-2})'' \) whose general solution is

\[\Psi(r) = \frac{A}{\sqrt{r + B}} \quad A, B \text{ constants.} \] (12)

Comparing the curvature for the metric (10) with (9), one obtains directly

\[F(r) = \frac{r^2}{l^2} - a - \frac{b}{r} \quad a, b \text{ constants.} \] (13)

The \(v^v \) equation imposes the following relations among the constants of integration

\[a = 3B^2l^{-2} \quad b = 2B^3l^{-2} \quad A = \sqrt{\frac{8B}{\kappa}} \quad B \geq 0. \] (14)

Thus we obtain the black hole solution

\[F(r) = \frac{1}{l^2} \left[r^2 - 3B^2 - \frac{2B^3}{r} \right] = \frac{(r + B)^2(r - 2B)}{rl^2}, \] (15)

together with the matter field configuration

\[\Psi(r) = \sqrt{\frac{8B}{\kappa(r + B)}}, \] (16)

which can be explicitly checked to solve Eq. (7). It is easily shown in the advanced time coordinates that the surface where \(F \) vanishes \((r = 2B \equiv r_+) \) is null [13].
The asymptotic behaviour of the metric is truly anti-de Sitter (i.e., \(g_{00} \sim r^2 + O(r^0) \), without terms linear in \(r \)). Therefore, as shown in [14], the asymptotic symmetry group is the conformal one, which contains the anti-de Sitter group as a subgroup.

The Riemann tensor is singular at the origin as can be shown by evaluating the Kretschmann scalar

\[
R^{\mu\nu\lambda\rho}R_{\mu\nu\lambda\rho} = \frac{12(r^6 + 2B^6)}{l^4r^6}.
\]

(17)

This is the only singularity and is hidden by the event horizon.

The massless conformal scalar field \(\Psi \) is regular everywhere. Although one might expect the scalar field to endow the black hole with a hair, it should be noted that the solution is characterized by only one constant which, as we will show below, is related with the mass. Therefore, the presence of the scalar field does not generate an independent additional charge to the black hole, i.e., the scalar field produces no new hair. Furthermore, the solution presented here does not differ in the asymptotic region from a matter-free black hole.

III. THERMODYNAMICS

The Hamiltonian form of the action (5) is given by

\[
I = \int \left[\pi^{ij}\dot{g}_{ij} + P\dot{\Psi} - \mathcal{H}N - N^i\mathcal{H}_i \right] d^2x dt + B_H
\]

(18)

where \(B_H \) is a surface term.

In order to study the thermodynamics of this system we consider the minisuperspace of static, circularly symmetric geometries as described by (10) and scalar fields that depend only on the radial coordinate. The equations of motion obtained in this way are the same as (6,7) after imposing the above restrictions. Thus, reducing the Hamiltonian action (18) to the minisuperspace gives

\[
I = -2\pi(t_2 - t_1) \int N(r)\mathcal{H}(r)dr + B_H
\]

(19)

with
\[\mathcal{H} = \frac{1}{2\kappa} [F'(1 - \zeta) - 2Fr(\zeta'' - \zeta^{-1}(\zeta')^2)] - (2F + F' r)\zeta' - 2rl^{-2}] \quad (20) \]

\[\zeta \equiv \frac{\kappa}{8} \Psi^2 \quad (22) \]

The partition function for a thermodynamical ensemble is identified with the Euclidean path integral in the saddle point approximation around the Euclidean continuation of the classical solution \([16]\). In this approximation the Euclidean action is related to the thermodynamic functions (in units where \(\hbar = k_B = 1\) and \(\kappa = 8\pi\)) by

\[I_E = \text{free energy} \frac{T}{T} = \frac{M}{T} - S \quad (23) \]

where \(T, M, S\) denote temperature, mass, entropy, respectively and the Euclidean action \(I_E\), is related to the Lorentzian action by

\[I_E = -iI, \quad \tau = it \quad (24) \]

The Euclidean continuation of the metric is

\[ds_E^2 = N(r)F(r)dr^2 + F(r)^{-1}dr^2 + r^2 d\theta^2 \quad (25) \]

with \(\tau_1 \leq \tau \leq \tau_2\) periodic, \(r \geq r_+\), and the scalar field unchanged.

The condition that the geometries allowed in the variation should contain no conical singularities at the horizon implies

\[(\tau_2 - \tau_1)F'|_{r=r_+} = 4\pi \quad (26) \]

which directly yields the temperature \((N(r) = 1)\)

\[T \equiv \beta^{-1} = \frac{1}{\tau_2 - \tau_1} = \frac{9r_+}{16\pi l^2} \quad (27) \]

We now turn to the evaluation of the Euclidean action at the Euclidean solution. The classical solution is static and satisfies the constraint \(\mathcal{H} = 0\) and therefore the action at
the classical solution is given by a boundary term, B_E. This boundary term must be such that the geometry (25) be an true extremum among the class of metrics satisfying the right boundary conditions [17,18].

At infinity, we demand that the variations of the fields behave as

$$\delta N = 0,$$ \hfill (29)

$$\delta F \to -\delta \frac{3r^2}{4l^2},$$ \hfill (30)

$$\delta \zeta \to \frac{\delta r_+}{2r}.$$ \hfill (31)

At the horizon, we impose the regularity condition (26)

$$\beta F' \bigg|_{r=r_+} = 4\pi,$$ \hfill (32)

and

$$(\delta F)_{r_+} + F' \bigg|_{r=r_+} \delta r_+ = 0,$$ \hfill (33)

which is required by the definition of the horizon $F(r_+) = 0$. And, $(\delta N)_{r_+} = 0$.

The variation of the scalar field at the horizon is obtained by varying it with respect to r_+, maintaining the functional form of the classical solution, $\zeta = r_+/(2r + r_+)$. Hence

$$\delta \zeta = \frac{2}{9r_+} \delta r_+.$$ \hfill (34)

The variation of the Euclidean action is

$$\delta I_E = \frac{\beta}{8} [(1 - \zeta - r\zeta')\delta F + (F'r + 4Fr\zeta^{-1}\zeta')\delta \zeta$$

$$-2Fr\delta \zeta''\bigg|_{r_+} + \delta B_E$$

$$+ \text{terms vanishing on shell}.$$ \hfill (35)

For convenience we write $B_E = B_E(\infty) + B_E(r_+)$. The contribution from infinity is

$$\delta B_E(\infty) = \beta \delta \frac{3r^2}{32l^2}.$$ \hfill (36)
One can note here that the scalar field does not contribute to surface term at infinity. This is yet another indication of the non-existence the charges associated to the conformal scalar field.

At the horizon, we have

\[\delta B_E(r_+) = \beta \left[\frac{1}{9} \delta F + \frac{1}{36} F' \delta r_+ \right], \tag{37} \]

which, in view of (32) and (33), can be written as

\[\delta B_E(r_+) = -\frac{\pi}{3} \delta r_+ . \tag{38} \]

Combining (36) and (38), the Euclidean action is found to be

\[I_E = \beta \frac{3r_+^2}{32l^2} - \frac{\pi}{3} r_+ + B_0 , \tag{39} \]

where \(B_0 \) is an arbitrary constant independent of the fields at the boundaries. Imposing that \(I_E = 0 \) for \(r_+ \to 0 \), one finds that \(B_0 = 0 \). If we compare the above expression for \(I_E \) with (23) we learn that the energy and entropy are

\[M = \frac{3r_+^2}{32l^2} , \tag{40} \]
\[S = \frac{\pi r_+}{3} , \tag{41} \]

respectively. With these expressions, one can check that the first law of thermodynamics

\[dM = T \, dS \tag{42} \]

is satisfied.

IV. CONCLUDING REMARKS

The inclusion of the cosmological constant is absolutely necessary for obtaining the black hole solution. Inspite of the fact that the matter coupling in (1) is of the same form as that of the BMBB theory, the resulting black holes are entirely different: The BMBB solution is
asymptotically flat and is an extreme Reisner-Nordström hole, whereas the solution introduced here is asymptotically anti-de Sitter and non-extreme. Furthermore, one can readily see that the ansatz (10) \((N = 1)\) doesn’t yield an extension of the BMBB solution with cosmological constant in four dimensions.

The question of whether this solution represents a hairy black hole depends on the definition of hair one uses. In a very broad sense any matter field that can be sustained by a black hole could be regarded as some kind of hair, as it is the case at hand. However, in a more strict sense, it is necessary for the matter field to carry an independently conserved charge, which does not occurs in our case.

Other point of interest consists in looking for time-dependent solutions. The existence of these solutions could show that a black hole can be regarded as the result of collapsed matter fields [19–23]. However, for the system of massless conformal scalar matter field coupled to gravity, assuming a stationary spherically symmetric geometry, \((i.e., F = F(r, t) \text{ and } \Psi = \Psi(r, t))\), gives rise the same static solution (Birkhoff’s theorem).

A related question is whether the static solution presented here is stable under linear perturbations. The question can be addressed for the case of circularly symmetric perturbations and will be discussed elsewhere [24].

We note that the entropy differs by a factor of \(\frac{\sqrt{3}}{3}\) from the “area law” \(\frac{\pi}{2}r_+\). This deviation from the area law was also found in other systems of matter fields coupled to gravity [23]. In [26,27] this deviation is also shown to arise in “dirty” black hole and in systems of black holes coupled to strings.

Note added: A family of solutions of scalar-tensor fields coupled to gravity in 2+1 dimensions was recently reported [28]. It seems that the solution presented here might be obtained as a special —particularly simple— case among many others, but this is not completely clear to these authors at the moment.
ACKNOWLEDGMENTS

Useful discussions with M. Bañados, C. Teitelboim and R. Troncoso are gratefully acknowledged. This work was supported in part by Grants Nos. 2940012/94, 4950004/95 1940203 and 1960229 of FONDECYT (Chile) and Grant No. 27-953/ZI (USACH). The institutional support of a group of Chilean private companies (EMPRESAS CMPC, CGE, COPEC, MINERA ESCONDIDA, NOVAGAS Transportadores de Chile, BUSINESS DESIGN ASS., XEROX Chile) is also recognized.
REFERENCES

[1] For a recent review, see S. Carlip, “Lectures on (2+1)-Dimensional Gravity”, Davis preprint UCD-95-6, gr-qc/9503024 (1995).

[2] M. Bañados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992); M. Bañados, C. Teitelboim, M. Henneaux and J. Zanelli, Phys. Rev. D48, 1506 (1993).

[3] S. Carlip, Class. Quantum Grav. 12, 2853 (1995).

[4] K. C. K. Chan and R. B. Mann, Phys. Rev. D50, 6385 (1994); erratum, D52, 2600 (1995).

[5] K. C. K. Chan and R. B. Mann, “Spinning Black Holes in (2+1)-dimensional String and Dilaton Gravity” preprint WATPHY-95-04, gr-qc/9510069 (1995).

[6] P. M. Sá, A. Kleber, J. P. S. Lemos, “Black Holes in Three Dimensional Dilaton Gravity Theories”, preprint DF/IST-2-95, UATP-95/01, hep-th/9503089.

[7] N. Bocharova, K. Bronnikov and V. Melnikov, Vestn. Mosk. Univ. Fiz. Astron. 6, 706 (1970).

[8] J. D. Bekenstein, Ann. Phys. (N.Y.) 82, 535 (1974).

[9] J. D. Bekenstein, Ann. Phys. (N.Y.) 91, 75 (1975).

[10] J. Frøyland, Phys. Rev. D25 1470 (1982).

[11] B. C. Xanthopoulos and T. Zannias, J. Math. Phys. 32, 1875 (1991).

[12] B. C. Xanthopoulos and T. E. Dialynas, J. Math. Phys. 33, 1463 (1992).

[13] In these coordinates, the metric reads $ds^2 = -F dv^2 + 2dvdr + r^2 d\theta^2$. The horizon at $r = 2B \equiv r_+$ is generated by the geodesics $r(\lambda) = r_+ = \frac{d\theta}{d\lambda} = 0$. This surface is a marginally trapped since any of these geodesics satisfies $\frac{dv}{d\lambda} \frac{dr}{d\lambda} = -\frac{r^2}{2} \left(\frac{d\theta}{d\lambda} \right)^2 \leq 0$, so that r decreases or remains constant with increasing v.
[14] J. D. Brown, M. Henneaux, Commun. Math. Phys. **104**, 207 (1986).

[15] G. W. Gibbons, Nucl. Phys. **B204**, 337 (1982).

[16] G. W. Gibbons and S. W. Hawking, Phys. Rev. **D15**, 2753 (1977).

[17] T. Regge and C. Teitelboim, Ann. Phys. (N.Y.) **88**, 286 (1974).

[18] M. Bañados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. **72**, 957 (1994).

[19] R. B. Mann and S. F. Ross, Phys. Rev. **D47**, 3319 (1993).

[20] V. Husain, Phys. Rev. **D50**, 2361 (1994).

[21] K. S. Virbhadra, “Exact Solutions of the Einstein and Einstein-Scalar Equations in 2+1 Dimensions”, gr-qc/9408033 (1994).

[22] V. Husain, “Black hole solutions in 2+1 dimensiones”, preprint CGPG-95-10-8, gr-qc/9511003 (1995).

[23] N. Cruz and J. Zanelli, Class. Quantum Grav. **12**, 957 (1995).

[24] C. Martínez and J. Zanelli, “Stability of the 2+1 conformal scalar black hole”, (in preparation).

[25] J. D. Creighton and R. Mann, Phys. Rev. **D50**, 4569 (1995).

[26] M. Visser, Phys. Rev. **D48**, 5697 (1993).

[27] F. Englert, L. Houart and P. Windey, “The black hole entropy can be smaller than $A/4$”, PAR-LPTHE 95-11, ULB-TH 05/95, hep-th/9503202.

[28] K. C. K. Chan “Modifications of the BTZ black hole by dilaton/scalar”, preprint gr-qc/9603038.