Effects of Body Mass Index on Lung Function Index of Chinese Population

Qiao Guo1,2, Jun Ye2, Jian Yang2, Changan Zhu1, Lei Sheng3 and Yongliang Zhang3,4,*

1Precision machinery and precision instruments, Institute of Engineering and Science, University of Science and Technology of China, Hefei, China
2Research Center for Information Technology of Sports and Health, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, China
3Jiangsu Institute of Sports Science, Nanjing, China
4Beijing Sport University, Beijing, China
Email: hunterle@mail.ustc.edu.cn, *ylzhangiim@hotmail.com

Abstract. To study the effect of body mass index (BMI) on lung function indexes in Chinese population. A cross-sectional study was performed on 10, 592 participants. The linear relationship between lung function and BMI was evaluated by multivariate linear regression analysis, and the correlation between BMI and lung function was assessed by Pearson correlation analysis. Correlation analysis showed that BMI was positively related with the decreasing of forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and FEV1/FVC (P <0.05), the increasing of FVC% predicted value (FVC%pre) and FEV1% predicted value (FEV1%pre). These suggested that Chinese people can restrain the decline of lung function to prevent the occurrence and development of COPD by the control of BMI.

1. Introduction

Chronic Obstructive Pulmonary Disease (COPD) has been a major public health problem around the world due to the morbidity, mortality and massive economic cost [1]. According to the Ministry of Health, COPD has become the fourth cause of death in urban and third in rural China in 2008 [2]. Approximately 65 million people are expected to die from COPD in next 30 years [3]. Lung function test has been ranked as golden standard for the diagnosis of COPD in Global Initiative for Chronic Obstructive Lung Disease (GOLD) [4]. Lung function indices had a positive relationship with the health condition of lung, low lung function indices were important features of COPD and higher indices means better health condition [5]. Several studies indicated that COPD could be diagnosed in early stage and prevented by early intervention [6]. Therefore we should pay attention to the change of lung function and prevent COPD by improving lung function.

The influence factors of lung function indices including age, sex, height, body mass index (BMI) and cigarette smoking. In which age, sex and height were the factors that cannot be changed, the effect of smoking status on lung function has been well studied. But the influence of BMI on lung function remains unclear. Warren J’s study indicated that there was a positive relationship between BMI and forced vital capacity (FVC) in 2013 [7], which is contrary to the conclusion of Joerg Steier’s study in 2014 [8]. Joyashree Banerjee’s study found a reverse correlation between BMI and forced expiratory volume in one second (FEV1) in obese subjects [9], and this result is in consistent with the study of Joerg Steier [8]. The study of Liu showed that the relationship between lung function and BMI is different in different age groups [10]. Therefore; we performed a cross-sectional study to estimate the
effects of body mass index on lung function indices of Chinese population to provide important reference value for the clinical diagnosis and treatment of COPD.

2. Methods

2.1. Material
The present study enrolled all the physical examination patients in Chinese PLA General Hospital during 2013 to 2015. Out of a total of 13764 patients, 3003 were excluded for the lack of lung function indices, and 169 underweight (BMI<18.5kg/m2) subjects were also excluded. 10592 patients met the criteria (aged 16-74 y, mean age 47.3±7.9 y). All participants were informed before the test.

2.2. Measurement Methods
Demographic characteristics (age and gender), physical activity level and cigarette smoking status were collected using a standardized questionnaire by trained professionals in the examination center. In which physical activity level was valued by International Physical Activity Questionnaire-short form (IPAQ-SF). Anthropometric measurements including height, weight and waist circumference (WC), these indices were measured nearest to 0.1cm, 0.1kg and 0.1cm, respectively. Participants were asked to take off their shoes and wear light clothes during the test. WC was measured at the respiratory minimum point and 1cm above the navel. All the Anthropometric data were measured twice and calculated the mean value for analysis. BMI was calculated from weight in kilograms divided by the square of height in meters. Lung function indices including FVC, FVC % predicted value (FVC%pre), FEV1 and FEV1% predicted value (FEV1%pre) were obtained using the Medikro SpiroStar USB portable spirometry. FEV1/FVC was calculated. The units of FVC and FEV1 are liters. FVC%pre, FEV1%pre and FEV1/FVC were expressed in percentage.

Participants were classified as smoking, quit smoking and non-smoking by inquiry. The following two questions were given to the participants by professional operator: (1) Have you ever smoked hookah, cigarette, cigar or pipe? (2) Do you smoke at present? The answers “yes” and “yes”, “yes” and “no”, “no” and “no” were defined as smoking, quit smoking and non-smoking, respectively. And the participants in smoking group were asked to provide the amount of their daily smoking.

Participants were divided into the normal-weight group (18.5kg/m2 ≤BMI <24.0kg/m2, n = 3449), the overweight group (24.0kg/m2 ≤BMI <28.0kg/m2, n = 5127) and the obese group (BMI ≥28.0kg/m2, n = 2016) [11].

2.3. Statistical Methods
The data were analyzed according to BMI group by SPSS 19.0. Descriptive statistics were used to illustrate physical activity level (low, medium, high), smoking status (smoking, quit smoking, non-smoking) and demographic characteristics (age,sex). Continuous variable such as age, WC, BMI and lung function indices were expressed as mean ± SD. Sex, smoking status, work characteristics, transportation and housework were expressed as categorical variables.

Taking the age, WC and lung function indices as review target, we investigated the factors effecting BMI grouping by one-way analysis of variance. Sex, smoking status, work characteristics, transportation and housework were analyzed by chi-square test. Bivariate correlation analysis was used to evaluate the relationship between BMI and lung function indices. Multivariate stepwise linear regressions were performed to determine the relationship between BMI and lung function indices after divided the data into two groups: (1) the subjects with normal weight or overweight, (2) the subjects with normal weight or obese. Regression analysis was performed in both group with lung function as dependent variable, BMI grouping as independent variable and adjusted age, sex, smoking status and physical activity level as confounding factors.

3. Results
Table 1 showed the basic characteristics of all participants classified by BMI. With the increase of BMI in normal-weight, overweight and obese group, WC (81.9±6.3, 91.3±5.6 and 101.0±7.2, respectively), smoking proportion (34.0%, 39.1% and 43.1%, respectively) and the proportion of participants who
never doing housework (21.0%, 25.0% and 30.2%, respectively) was increased, and reductions were observed in manual labor working (1.7%, 1.5% and 1.2%, respectively), walking or riding to walk (14.5%, 10.5% and 8.5%, respectively) and medium physical activity level (28.2%, 26.7% and 25.0%, respectively). The FVC%pre (87.98±15.60, 83.68±15.34 and 77.46±14.36, respectively) and FEV1%pre (87.04±16.15, 84.32±16.48 and 79.47±15.48, respectively) were reduced with the raise of BMI in normal-weight, overweight, and obese group, meanwhile FEV1/FVC (81.85±9.34, 82.25±8.61 and 82.71±8.42, respectively) was increased. FVC and FEV1 were greater in overweight group (3.58±0.79 and 2.93±0.67) than obese group (3.51±0.76 and 2.90±0.65), and least in normal-weight group (3.44±0.84 and 2.80±0.70). Significant difference in age, sex, WC, smoking status, transportation, housework and lung function indices were seen between different BMI groups (P <0.05). Work characteristics (P = 0.107) and physical activity level (P = 0.084) were not significantly different between BMI groups.

Table 1. Characteristics of the study participants according to BMI

Characteristics	normal weight	BMI overweight	obese	P for trend
n	3449	5127	2016	
age (yr)	47.4±8.1	47.7±7.6	46.6±7.7	<0.001
gender (%)				<0.001
male	74.2	90.8	93.9	
female	25.8	9.2	6.1	
WC (cm)	81.9±6.3	91.3±5.6	101.0±7.2	<0.001
BMI (kg/m²)	22.2±1.4	25.9±1.1	30.2±2.2	<0.001
smoking status (%)				<0.001
smoking	34.0	39.1	43.1	
quit smoking	9.6	14.1	14.8	
nonsmoking	56.5	46.8	42.1	
work characteristics (%)				0.107
sedentary	58.7	56.5	56.2	
light manual	39.7	41.9	42.7	
manual labor	1.7	1.5	1.2	
transportation (%)				<0.001
telecommuting	5.7	4.5	4.4	
Private transportation	51.7	52.0	55.0	
public transportation	28.1	33.0	32.1	
walk or bike	14.5	10.5	8.5	
housework (%)				<0.001
never	21.0	25.0	30.2	
occasionally	49.6	57.0	55.5	
frequently	29.3	18.0	14.4	
physical activity level (%)				0.084
low	65.9	67.3	69.5	
medium	28.2	26.7	25.0	
high	5.8	6.0	5.6	
FVC (L)	3.44±0.84	3.58±0.79	3.51±0.76	<0.001
FVC%pre	87.98±15.60	83.68±15.34	77.46±14.36	<0.001
FEV1 (L)	2.80±0.70	2.93±0.67	2.90±0.65	<0.001
FEV1%pre	87.04±16.15	84.32±16.48	79.47±15.48	<0.001
FEV1/FVC	81.85±9.34	82.25±8.61	82.71±8.42	0.002

Data are expressed as means ± SD, or percentages

WC, waist circumference; BMI, body mass index; FVC, forced vital capacity; FVC%pre, FVC% predicted value; FEV1, forced expiratory volume in one second; FEV1%pre, FEV1% predicted value
Table 2. Coefficients from multiple linear regression of lung function indices in BMI

lung function indices	Overweight (normal-weight)	BMI	Obese (normal-weight)	
	β (se)	P-value	β (se)	P-value
FVC	-0.032 (0.015)	0.037	-0.079 (0.010)	<0.001
FVC%pre	-0.045 (0.003)	<0.001	-0.056 (0.002)	<0.001
FEV1	-0.005 (0.013)	0.687	-0.047 (0.008)	<0.001
FEV1%pre	-0.027 (0.004)	<0.001	-0.039 (0.002)	<0.001
FEV1/FVC	0.005 (0.002)	0.006	0.004 (0.001)	0.001

FVC, forced vital capacity; FVC%pre, FVC% predicted value; FEV1, forced expiratory volume in one second; FEV1%pre, FEV1% predicted value

The results of multiple linear regression analysis were showed in Table 2. Compared with normal-weight group, overweight and obese were significantly related to the reduction of FVC, FVC%pre and FEV1%pre (P <0.05). In addition, overweight was significantly correlated with the increase of FVC/FEV1 (P = 0.006), but the relationship with FEV1 was not significant (P = 0.687). And the relationship between obese with the decrease of FEV1 (P <0.05) and the increase of FVC/FEV1 (P = 0.001) were also significant.

The results of Pearson correlation analysis indicated that BMI was reversely related to FVC%pre (r = -0.260 P <0.001), FEV1%pre (r = -0.181 P <0.001), and was positively related to FVC (r = 0.044 P <0.001), FEV1 (r = 0.059 P <0.001) and FEV1/FVC (r = 0.049 P <0.005) (Table 3).

Table 3. Lung function index correlation with BMI

lung function indices	BMI	
	P-value	r
FVC	<0.001	0.044
FVC%pre	<0.001	-0.260
FEV1	<0.001	0.059
FEV1%pre	<0.001	-0.181
FEV1/FVC	0.003	0.029

FVC, forced vital capacity; FVC%pre, FVC% predicted value; FEV1, forced expiratory volume in one second; FEV1%pre, FEV1% predicted value

4. Discussion

The present study investigated the relationship between BMI and lung function indices based on Chinese population. Compared with normal-weight group, overweight and obese were significantly related to the reduction of FVC, FVC%pre and FEV1%pre, and overweight was significantly correlated with the increase of FVC/FEV1. These indicated that obesity was related to a decline in lung function indices.

The results of our study showed that with the increase of BMI, WC and FEV1/FVC were increased, FVC%pre and FEV1%pre were reduced, and FVC and FEV1 firstly increased then decreased. Joerg Steier’s study indicated that with the increase of BMI, FVC%pre and FEV1%pre were decreased and the FEV1 and FVC were also decreased in obese subjects [8]. Denis E’s study demonstrated the positive relationship between BMI and FEV1/FVC [12]. These were in consistent with Banerjee’s study that pointed out that overweight and obese were related to lower FVC and obese was related to lower FEV1 [13]. Ji’s study showed that overweight and obese were related to lower FEV1%pre [14], which was also in agreement with our study. The potential physiological mechanism may be the decreased lung function caused by the upper airway soft tissue fat deposition, increased airway resistance, and decreased compliance of the lung and thorax in obese population [15]. The result of Davidson’s study indicated that overweight and obese were related to lower FEV1/FVC [7], which was contrary to our study. This was probably because the target of Davidson’s study was teenager and our study was aimed...
to teenager, middle-aged and elderly population. Zhang’s study found that BMI was positively related to FVC and FEV1 [16], and Gao et al demonstrated that BMI was reversely correlated with FEV1/FVC and FEV1%pre [17]. Both of their conclusions were in consistent with our results. The relationship between BMI and lung function indices was not unified in different studies so far [14]. And this relationship was different in different age stage [10], this may be caused by the difference of the correlation between BMI group and lung function indices and between BMI and lung function indices. BMI can be used as an important index for the evaluation of prognosis of COPD patient [14].

The limitation of this study was similar to the entire cross sectional studies; the data might be biased because the confounding factors that were not considered in the analysis, like education, economic, environment and regional difference. In addition, we only analyzed the relationship between BMI and lung function indices, but previous studies had demonstrated that regional adiposity was related to various health risk factors. Therefore, the association between lung function indices and regional adiposity should be further investigated.

5. Conclusions
In the lung function indices of Chinese population, FVC, FEV1 and FEV1/FVC were positively associated with BMI. FVE% pre and FEV1% pre were negatively associated with BMI. These suggested that Chinese people can restrain the decline of lung function to prevent the occurrence and development of COPD by the control of BMI.

6. Acknowledgment
This work was supported by the Science and Technology Service Network Program of Chinese Academy of Sciences (grant KFJ-STS-ZDTP-033). Qiao Guo and Jun Ye contributed equally to this work. The authors would like to thank all the participants in the survey.

7. References
[1] Vestbo Jorgen, Hurd Suzanne S, Agusti Alvar G, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: GOLD Executive Summary[J]. American journal of respiratory and critical care medicine, 2013, 187(4): 347~365.
[2] X. C. Fang, X. D. Wang, C. X. Bai. Burden and importance of proper management about chronic obstructive pulmonary disease in China [J]. International Journal of Respiration, 2011, 31(7): 493~497.
[3] Lin Hsien-Ho, Murray Megan, Cohen Ted, et al. Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based multiple risk factor, modelling study [J]. Lancet, 2008, 372(9648): 1473~1483.
[4] Chronic obstructive pulmonary disease group of respiratory diseases branch of Chinese Medical Association, Guidelines for the diagnosis and treatment of chronic obstructive pulmonary disease (2013)[J]. Chinese Journal of Tuberculosis and Respiratory Disease, 2013, 36(4): 255-264.
[5] AH Poon, EA Houseman, L Ryan, et al. Variants of Asthma and Chronic Obstructive Pulmonary Disease Genes and Lung Function Decline in Aging [J]. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 2014, 69(7): 907~913.
[6] NR Anthonisen, JE Connett, RP Murray. Smoking and lung function of lung health study participants after 11 year [J]. American Journal of Respiratory & Critical Care Medicine, 2002, 166(5): 675~679.
[7] WJ Davidson, KA Mackenzie Rife, MB Witmans, et al. Obesity Negatively Impacts Lung Function in Children and Adolescents [J]. Pediatric Pulmonology, 2014, 49(10): 1003~1010.
[8] J Steier. Observational study of the effect of obesity on lung volumes [J]. Thorax, 2014, 69(8): 752~759.
[9] J Banerjee, A Roy, A Singhamahapatra, et al. Association of Body Mass Index (BMI) with Lung Function Parameters in Non-asthmatics Identified by Spirometric Protocols [J]. J Clin Diagn Res, 2014, 8(2): 12~14.
[10] D Liu, X. G. Wang, D. L. Wen. Analysis on influence Factors of Lung Function of Healthy Adults: 10 386 Cases of 9 Cities in China [J]. Journal of Chinese Medical University, 2012, 41(6): 527~531.

[11] Y. Zhou, M. Q. Guan. Correlation analysis between hepatic adipose infiltration and hypertension, hyperlipidemia, diabetes mellitus and body mass index [J]. Modern Digestion and Intervention, 2017, 22(3):382-384.

[12] DE O'Donnell, A Deesomchok, YM Lam, et al.. Effects of BMI on Static Lung Volume in Patients with Airway Obstruction [J]. Chest, 2011, 140(2): 461~468.

[13] J Banerjee, A Roy, A Singhamahapatra. Association of Body Mass Index (BMI) with Lung Function Parameters in Non-asthmatics Identified by Spirometric Protocols [J]. Journal of Clinical & Diagnostic Research, 2014, 8(2): 12~14.

[14] H.Z. Ji, X. L. Xu, J. Guan, et al.. Correlation between body mass index and pulmonary function in patients with chronic obstructive pulmonary disease [J]. Journal of Chinese Practical and Diagnosis and Therapy, 2012, 26(5): 503~505.

[15] CM Salome, GG King, N Berend. Physiology of obesity and effects on lung function [J]. Journal of Applied Physiology, 2010, 108(108): 206~211.

[16] Y. X. Zhang, F. S. Li, W. J. Yang. The research on the relevance between lung function, age and body mass index in Uighur patients with COPD in Urumqi, Xinjiang [J]. Modern Medicine Journal of China, 2016, 18(8): 6~8.

[17] Z. Gao, F. S. Li, J Yang, et al.. Relationship between ages, body mass index and pulmonary function in patients with chronic obstructive pulmonary disease [J]. International Journal of Pathology and Clinical Medicine, 2010, 30(2): 134~136.

[18] Ferguson L D, Sattar N. Impact of Obesity on Cardiovascular Disease [J]. 2017.