UNIFORM ASYMPTOTIC FORMULAS OF RESTRICTED BIPARTITE PARTITIONS

NIAN HONG ZHOU

Abstract

In this paper, we investigate \(\pi(m, n)\), the number of partitions of the bipartite number \((m, n)\) into steadily decreasing parts, introduced by L.Carlitz ['A problem in partitions', Duke Math Journal 30 (1963), 203–213]. We give a relation between \(\pi(m, n)\) and the crank statistic \(M(m, n)\) for integer partitions. Using this relation, some uniform asymptotic formulas for \(\pi(m, n)\) are established.

1 Introduction and statement of results

We begin with some standard definitions from the theory of partitions [1]. An integer partition is a non-increasing sequence \(\lambda_1, \lambda_2, \ldots\), such that each \(\lambda_j\) is a nonnegative integer. The partition \((\lambda_1, \lambda_2, \ldots)\) will be denoted by \(\lambda\). We say \(\lambda\) is a partition of \(n\) if \(\lambda_1 + \lambda_2 + \cdots = n\). Let \(p(n)\) be the number of partitions of \(n\) and let \(p(0) := 1\). Then by Euler, we have the following famous generating function

\[
\sum_{n \geq 0} p(n)q^n = \frac{1}{(q; q)_\infty}, \quad (q \in \mathbb{C}, |q| < 1).
\]

(1.1)

Here \((a; q)_\infty = \prod_{j \geq 0} (1 - aq^j)\) for any \(a \in \mathbb{C}\) and \(|q| < 1\). One of the most celebrated result of the integer partition is the Hardy–Ramanujan asymptotic formula:

\[
p(n) \sim \frac{1}{4\sqrt{3n}} e^{2\sqrt{n/3}},
\]

(1.2)

as integer \(n \to +\infty\), see [2].

For partitions \(\alpha = (\alpha_1, \alpha_2, \ldots)\) and \(\beta = (\beta_1, \beta_2, \ldots)\), follows from [1, p.207] we say that the pair \((\alpha, \beta)\) is a pair of partitions with steadily decreasing parts if

\[
\min(\alpha_i, \beta_i) \geq \max(\alpha_{i+1}, \beta_{i+1}),
\]

holds for all integers \(i \geq 1\). Let \(\pi(m, n)\) be the number of partitions of the bipartite number \((m, n)\) of the form

\[
(m, n) = (\alpha_1 + \alpha_2 + \cdots, \beta_1 + \beta_2 + \cdots),
\]

with each pair \((\alpha, \beta)\) has steadily decreasing parts. A generating function for \(\pi(m, n)\) is given by Carlitz [3, 4]

\[
\sum_{m,n \geq 0} \pi(m, n)x^m y^n = \frac{1}{(x; xy)_{\infty}(x^2 y^2; x^2 y^2)_{\infty}(y; xy)_{\infty}},
\]

(1.3)
for all \(x, y \in \mathbb{C} \) with \(|x|, |y| < 1 \). This is analogous to the generating function (1.1) for the number of partitions of 1-partite number. In [5], Andrews extended (1.3) to \(r \)-partite number for any positive integer \(r \). For more related results, see [6, 7, 8].

In this paper, we investigate the asymptotics of \(\pi(m, n) \) analogous to the Hardy–Ramanujan asymptotic formula (1.2). To state our main results, we need the cubic partition function \(c(n) \) introduced by Chan [9] that

\[
\sum_{n \geq 0} c(n)q^n = \frac{1}{(q; q)_\infty (q^2; q^2)_\infty};
\]

and the crank statistic for integer partitions, introduced and investigated by Dyson [10] and Andrews and Garvan [11, 12]. Denoting by \(M(m, n) \) the number of partitions of \(n \) with crank \(m \), we have the generating functions

\[
\sum_{m \in \mathbb{Z}} \sum_{n \geq 0} M(m, n)q^n \zeta^m = \frac{(q; q)_\infty}{(\zeta q; q)_\infty (\zeta^{-1} q; q)_\infty} = \frac{1 - \zeta}{(q; q)_\infty} \sum_{n \in \mathbb{Z}} \frac{(-1)^n q^{\text{c}(n+1)}}{1 - \zeta q^n}.
\]

The first result of this paper is stated as follows.

Proposition 1.1. Let \(m \) and \(n \) be non-negative integers. We have

\[
\pi(m, n) = \sum_{0 \leq k \leq \min(m, n)} c(\min(m, n) - k) \alpha(|m - n|, k),
\]

where

\[
\alpha(s, k) = \sum_{\ell \geq 0} (-1)^\ell p(k - \ell(\ell + 1)/2 - \ell s),
\]

with \(p(r) := 0 \) for all \(r < 0 \). In particular, for each integer \(k \geq 0 \), \(\pi(0, k) = \pi(k, 0) = 1 \). Let \(D(m, n) := \pi(m, n) - \pi(m - 1, n) \) with \(\pi(-1, n) := 0 \). Then, we have

\[
D(m, n) = \sum_{0 \leq k \leq L_{m,n}} c(L_{m,n} - k)M(n - L_{m,n}, n - L_{m,n} + k),
\]

where \(L_{m,n} := \min(2n - m, m) \). In particular, if \(m \geq 2n \) then \(D(m, n) = 0 \).

By use of (1.7) of Proposition 1.1, we prove the following uniform asymptotic behavior for \(D(m, n) \), by using some results on the uniform asymptotics of \(M(m, n) \), proved by the author in [13].

Theorem 1.2. Uniformly for all integers \(m, n > 0 \) such that \(m \leq 2n \),

\[
D(m, n) \sim \frac{5c}{2^{\frac{3}{2}} \cdot 3} \cdot e^c \sqrt{\min(m, 2n - m)} \left(1 + e^{-\frac{c(n - m)}{2\sqrt{\min(m, 2n - m)}}} \right)^{-2},
\]

as \(\min(m, 2n - m) \to \infty \), where \(c = 2\pi \sqrt{5/12} \).

As a consequence of the above theorem, we prove the following asymptotic formula for \(\pi(m, n) \) which analogous the Hardy–Ramanujan asymptotic formula (1.2).
Theorem 1.3. Uniformly for all integers \(m, n > 0 \),
\[
\pi(m, n) \sim \frac{5}{24} \cdot \frac{e^{\sqrt{\min(m,n)}}}{3^{3/2} \min(m,n)^{3/2}} \left(1 + e^{-\frac{\sqrt{\min(m,n)}}{3}} \right)^{-1},
\]
as \(\min(m,n) \to \infty \), where \(c = 2\pi \sqrt{5/12} \). In particular,
\[
\pi(n,n) \sim \frac{5}{25} \cdot \frac{e^{\sqrt{n}}}{3^{n^{3/2}}},
\]
as \(n \to \infty \).

Remark 1.1. Since \(\alpha(s,k) \) of Proposition 1.1 has a similar expression to \(V\left(\ell, N + \frac{|\ell|^2 + |k|^2}{2} \right) \) the number of strongly concave compositions of \(N + \frac{|\ell|^2 + |k|^2}{2} \in \mathbb{N} \) with rank \(\ell \in \mathbb{Z} \), of \([14, \text{Proposition 1.2}] \) proved by the author, it is possible to give a proof of Theorem 1.3, by using the method used in the proof of \([14, \text{Theorem 1.3}] \).

By using (1.6) of Proposition 1.1, we illustrate some of our results in the following (All computations are done in Mathematica).

\(L \)	\(\pi(L^2, L^2) \)	\(A(L^2, L^2) \)	\(\pi(L^2, L^2) \) \(A(L^2, L^2) \)
10	2.02082 \cdot 10^{13}	2.14152 \cdot 10^{13}	\sim 0.9436
40	2.29293 \cdot 10^{64}	2.32601 \cdot 10^{64}	\sim 0.9858
70	2.99238 \cdot 10^{116}	3.01903 \cdot 10^{116}	\sim 0.9919
100	7.15231 \cdot 10^{168}	7.19331 \cdot 10^{168}	\sim 0.9943
\(L \)	\(\pi(L^2, L^2 + L) \)	\(A(L^2, L^2 + L) \)	\(\pi(L^2, L^2 + L) \) \(A(L^2, L^2 + L) \)
10	3.42924 \cdot 10^{13}	3.78489 \cdot 10^{13}	\sim 0.9060
40	4.00991 \cdot 10^{64}	4.11096 \cdot 10^{64}	\sim 0.9754
70	5.25671 \cdot 10^{116}	5.33209 \cdot 10^{116}	\sim 0.9859
100	1.25872 \cdot 10^{169}	1.27134 \cdot 10^{169}	\sim 0.9901

Here \(A(m,n) = \frac{5}{24} \cdot \frac{e^{\sqrt{\min(m,n)}}}{3^{3/2} \min(m,n)^{3/2}} \left(1 + e^{-\frac{\sqrt{\min(m,n)}}{3}} \right)^{-1} \).

Acknowledgements. The author would like to thank the anonymous referees for their very helpful comments and suggestions. This research was supported by the National Science Foundation of China (Grant No. 11971173).

2 Proofs of results

2.1 The proof of Proposition 1.1

Setting \(q = xy \) and \(\zeta = x \), the generating function (1.3) can be rewritten as

\[
\sum_{m,n \geq 0} \pi(m,n) q^m \zeta^n = \frac{1}{(q;q)_\infty (q^2;q^2)_\infty (\zeta;q)_\infty (\zeta^{-1} q;q)_\infty} \frac{(q;q)_{\infty}}{(q^2;q^2)_\infty (\zeta^{-1} q;q)_{\infty}}
\]

\[
= \frac{1}{(q;q)_\infty (q^2;q^2)_\infty} \sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{n(n+1)}{2}} 1 - \zeta q^n,
\]

(2.2)
by using (1.5). Therefore, by use of (2.2), we have for each \(m \geq 0 \),
\[
\sum_{n \geq 0} \pi(m + n, n)q^n = \frac{1}{(q; q)_{\infty}(q^2; q^2)_{\infty}} \sum_{n \geq 0} (-1)^n q^{\frac{m+n+1}{2} + nm} \]
\[
= \sum_{s \geq 0} c(s)q^s \left(\sum_{\ell \geq 0} (-1)^\ell p(n - \ell + 1/2 - m\ell) \right) q^n \]
\[
= \sum_{n \geq 0} \left(\sum_{0 \leq k \leq n} c(n - k)\alpha(m, k) \right) q^n.
\]
That is if \(m \geq n \) then
\[
\pi(m, n) = \sum_{0 \leq k \leq n} c(n - k)\alpha(m - n, k).
\]
From (1.3) we observe that \(\pi(m, n) = \pi(n, m) \), and the proof of (1.6) follows. We now
proof (1.7). By noting that \(\pi(-1, n) := 0 \) for all integers \(n \geq 0 \), and using (1.5) and (2.1)
implies that
\[
\sum_{n \geq 0} \sum_{m \geq 0} (\pi(m, n) - \pi(m - 1, n))q^n\zeta^{m-n} = \frac{1}{(q; q)_{\infty}(q^2; q^2)_{\infty}} \sum_{n \geq 0} M(m, n)q^n \zeta^m.
\]
Using (1.4) we further obtain that
\[
D(m, n) = \sum_{0 \leq \ell \leq n} c(n - \ell)M(m - n, \ell).
\]
Recall the well known results that \(M(m, n) = M(-m, n) \), and \(M(m, n) = 0 \) if \(|m| > n \), we have:
\[
D(m, n) = \sum_{0 \leq \ell \leq n} c(n - \ell)M(n - m, \ell)
\]
\[
= \sum_{0 \leq k \leq m} c(m - k)M(n - m, n - m + k). \tag{2.3}
\]
holds for \(0 \leq m \leq n \),
\[
D(m, n) = \sum_{0 \leq \ell \leq n} c(n - \ell)M(m - n, \ell)
\]
\[
= \sum_{0 \leq k \leq 2n-m} c(2n-m-k)M(n - (2n-m), n - (2n-m) + k). \tag{2.4}
\]
holds for \(n \leq m \leq 2n \), and
\[
D(m, n) = \sum_{m-n \leq \ell \leq n} c(n - \ell)M(m - n, \ell) = 0. \tag{2.5}
\]
holds for \(m - n > n \), that is \(m > 2n \). Combining (2.3)–(2.5) we get the proof of (1.7).
2.2 Auxiliary lemmas

To prove Theorem 1.2, we need the following uniform asymptotics of $M(m,n)$, which follows from [13, Corollary 1.4]. We note that the uniform asymptotics of $M(m,n)$ was first considered by Dyson [15] as an open problem, proved first by Bringmann and Dousse [16], and completed as the following form by the author [13].

Proposition 2.1. Uniformly for all integers $\ell, k \geq 0$, as $\ell \to \infty$,

$$M(k, k + \ell) \sim \frac{\pi}{12\sqrt{2}} \left(1 + e^{-\frac{\pi k}{\sqrt{6(\ell + k)}}} \right)^{-2} e^{2\pi \sqrt{\ell/6}} \frac{p(\ell)}{\ell^{3/2}}.$$

Proof. From [13, Corollary 1.4] and the Hardy–Ramanujan asymptotic formula (1.2), we have as $\ell \to \infty$,

$$M(k, k + \ell) \sim \frac{\pi}{\sqrt{6}} \left(1 + e^{-\frac{\pi k}{\sqrt{6(\ell + k)}}} \right)^{-2} \frac{p(\ell)}{\ell^{3/2}}$$

$$\sim \frac{\pi}{12\sqrt{2}} \frac{e^{2\pi \sqrt{\ell/6}}}{\ell^{3/2}} \left(1 + e^{-\frac{\pi k}{\sqrt{6(\ell + k)}}} \right)^{-2}$$

Here and throughout, $1_{\text{condition}} = 1$ if the ‘condition’ is true, and equals to 0 if the ‘condition’ is false. Notice that if $\ell > k^{2-1/8}$ and $\ell \to +\infty$ then

$$\frac{\pi k}{\sqrt{6(\ell + k)}} = \frac{\pi k}{\sqrt{6\ell}} (1 + O(\ell^{-1/8})) = \frac{\pi k}{\sqrt{6\ell}} + O \left(\ell^{-\frac{1}{2} + rac{1}{16}} \right),$$

we have

$$M(k, k + \ell) \sim \frac{\pi}{12\sqrt{2}} e^{2\pi \sqrt{\ell/6}} \frac{p(\ell)}{\ell^{3/2}} \left(1 + e^{-\frac{\pi k}{\sqrt{6(\ell + k)}}} \right)^{-2}$$

$$= \frac{\pi}{12\sqrt{2}} e^{2\pi \sqrt{\ell/6}} \frac{p(\ell)}{\ell^{3/2}} \left(1 + 1_{\ell > k^{2-1/8}} e^{-\frac{\pi k}{\sqrt{6(\ell + k)}}} \right)^{-2} \left(1 + O \left(\ell^{-\frac{1}{2} + rac{1}{16}} \right) \right)$$

$$\sim \frac{\pi}{12\sqrt{2}} e^{2\pi \sqrt{\ell/6}} \frac{p(\ell)}{\ell^{3/2}} \left(1 + e^{-\frac{\pi k}{\sqrt{6\ell}}} \right)^{-2},$$

which completes the proof.

We also need the asymptotics of the cubic partitions $c(n)$, which can be find in [17, Equation (1.5)].

Lemma 2.2. We have

$$c(n) \sim \frac{1}{8n^{5/4}} e^{\pi \sqrt{n}},$$

as integer $n \to +\infty$.

We finally need
Lemma 2.3. Define for all \(x \in [0, 1] \) that
\[
f(x) = \sqrt{1 - x} + \sqrt{2x/3}.
\]
Then \(f(x) \) is increasing on \([0, 2/5]\) and decreasing on \([2/5, 1]\). Moreover,
\[
f(2/5 + t) = \sqrt{5/3 - \kappa t^2} + O(|t|^3),
\]
as \(t \to 0 \), where \(\kappa := 2^{-4} \cdot 3^{-3/2} \cdot 5^{5/2} \).

Proof. The proof of this lemma is direct and we shall omit it. \(\square \)

2.3 The proof of Theorem 1.2 and Theorem 1.3

In this subsection, we always assume that \(m, n \) are integers with \(n \geq m > 0 \) and \(m \to \infty \).

We first prove Theorem 1.2. From Proposition 1.1, we split that
\[
D(m, n) = \sum_{0 \leq k \leq m} c(m - k)M(n - m, n - m + k)
\]
\[
= \left(\sum_{0 \leq k \leq m} + \sum_{|k - 2m/5| > m^{3/4}2^{-4}} \right) c(m - k)M(n - m, n - m + k)
\]
\[
=: I(m, n) + E(m, n).
\]

For \(E(m, n) \) defined as above, using Proposition 2.1 and Lemma 2.2 we have:
\[
E(m, n) = c(m) + M(n - m, n) + \sum_{1 \leq k < m} c(m - k)M(n - m, n - m + k)
\]
\[
\ll \frac{e \sqrt{m}}{m} + \frac{e^{2\pi \sqrt{m/6}}}{m^{3/2}} + \sum_{1 \leq k < m} \frac{e^{2\pi \sqrt{m-k+2k/3}}}{k^{3/2}(m-k)}
\]
\[
\ll e^{\pi \sqrt{m}} + \sum_{1 \leq k < m} \frac{1}{k^{3/2}} e^{\pi \sqrt{m}f(k/m)},
\]

By use of Lemma 2.3, we further find that
\[
E(m, n) \ll e^{\pi \sqrt{m}} + e^{\sqrt{m}f\left(2/5 + m^{-1/4}2^{-4}\right)} + e^{\pi \sqrt{m}f\left(2/5 - m^{-1/4}2^{-4}\right)} \ll e^{\pi \sqrt{5m/3 - \kappa mn^{1/8}}},
\] (2.6)

We now evaluate \(I(m, n) \). The using of Proposition 2.1 and Lemma 2.2 implies that
\[
I(m, n) \sim \frac{\pi}{96\sqrt{2}} \sum_{|k - 2m| \leq m^{3/4}2^{-4}} \left(1 + e^{-\frac{2\pi \sqrt{m}}{\sqrt{m-k}}} \right)^{-2} \frac{e^{2\pi \sqrt{5m/3 - \kappa mn^{1/8}}}}{(m-k)^{5/4}k^{3/2}}
\]
\[
\sim \frac{\pi}{96\sqrt{2}(3m/5)^{5/4}(2m/5)^{3/2}} \sum_{|k - 2m| \leq m^{3/4}2^{-4}} e^{\pi \sqrt{m}f(k/m)} \left(1 + e^{-\frac{2\pi \sqrt{5m/3 - \kappa mn^{1/8}}}{\sqrt{m-k}}} \right)^2.
\]
By use of Lemma 2.3 we further obtain that

\[
I(m, n) \sim \pi \left(1 + e^{- (1 + O(m^{-3/16})) \sqrt{2(m-1)/m}} \right)^{-2} e^{- \frac{\pi}{\sqrt{12m}}} \sum_{|k - \frac{n}{m}| \leq m^{3/4} \left(1 + O(m^{-3/16})\right)} e^{- \frac{\pi}{\sqrt{12m}} (k - 2m/5)^2}.
\]

(2.7)

Since \(n \geq m \) and \(m \to +\infty \), we have

\[
\left(1 + e^{- (1 + O(m^{-3/16})) \sqrt{2(m-1)/m}} \right)^{-2} \sim \left(1 + 1_{m > (n-m)^{2-1/4}} e^{- (1 + O(m^{-3/16})) \sqrt{2(m-1)/m}} \right)^{-2}
\]

\[= \left(1 + 1_{m > (n-m)^{2-1/4}} e^{- \frac{\pi}{\sqrt{12m}} (n-m) + O\left(m^{1/3} \sqrt{1/4}\right)} \right)^{-2}
\]

\[
\sim \left(1 + e^{- \frac{\pi}{\sqrt{12m}} (n-m)} \right)^{-2}.
\]

(2.8)

By using Abel’s summation formula, it is easy to find that

\[
\sum_{|k - 2m/5| \leq m^{3/4} \left(1 + O(m^{-3/16})\right)} e^{- \pi km^{-3/2} (k-2m/5)^2} \sim \int e^{- \pi km^{-3/2} x^2} \, dx = \frac{m^{3/4}}{\sqrt{\pi}},
\]

(2.9)

as \(m \to +\infty \). Substituting (2.8) and (2.9) to (2.7), and note that \(\kappa = 2^{-4} \cdot 3^{-3/2} \cdot 5^{5/2} \), we further obtain that

\[
I(m, n) \sim \frac{\pi m^{3/4} e^{2\pi \sqrt{m/12}}}{96 \sqrt{2(m/5)^{5/4}(2m/5)^{3/4} \kappa^{1/2}} \left(1 + e^{- \frac{\pi}{\sqrt{12m}} (n-m)} \right)^{-2}}
\]

\[= \frac{5 \cdot \pi}{2^{5/2} \cdot 3 \sqrt{2}} \frac{e^{2\pi \sqrt{m/12}}}{m^{2}} \left(1 + e^{- \frac{\pi}{\sqrt{12m}} (n-m)} \right)^{-2}.
\]

Therefore by Combining (2.6) we find that

\[
D(m, n) \sim \frac{5e}{2^{5/2} \cdot 3 \sqrt{m^{3/2}}} \left(1 + e^{- \frac{\pi}{\sqrt{12m}} (n-m)} \right)^{-2},
\]

with \(c = 2\pi \sqrt{5/12} \), holds for \(m \leq n \) and \(m \to +\infty \). Using (1.7) then the proof of Theorem 1.2 follows.

We now prove Theorem 1.3. Since \(D(m, n) = \pi(m, n) - \pi(m-1, n) \) and for all integers \(k, n \geq 1 \) such that \(k \leq n \),

\[
D(k, n) \ll k^{-2} e^{c \sqrt{k}},
\]

by using Theorem 1.2, we have

\[
\pi(m, n) = \pi(0, n) + \sum_{1 \leq k \leq m} D(k, n) \ll 1 + \sum_{1 \leq k \leq m} k^{-2} e^{c \sqrt{k}} \ll e^{c \sqrt{m}}.
\]
Let \([\cdot]\) be the greatest integer function. Using Theorem 1.2 again,
\[
\pi(m, n) = \pi\left(m - \lfloor m^{9/16}\rfloor, n\right) + \sum_{m - \lfloor m^{9/16}\rfloor < k \leq m} D(k, n)
\]
\[
\sim O\left(e^{\sqrt{m - \lfloor m^{9/16}\rfloor}}\right) + \sum_{m - \lfloor m^{9/16}\rfloor < k \leq m} \frac{5c}{2^5 \cdot 3k^2} \left(1 + e^{-\frac{e^{(n-k)}}{2\sqrt{m-k}}}\right)^{-2}
\]
\[
\sim O\left(e^{\sqrt{m - \lfloor m^{9/16}\rfloor}}\right) + \sum_{0 \leq k < \lfloor m^{9/16}\rfloor} e^{-\frac{ck}{2\sqrt{m}}} \left(1 + e^{-\frac{e^{(n-k)}}{2\sqrt{m}}}\right)^{-2},
\]
that is,
\[
\pi(m, n) \sim \frac{5ce^{\sqrt{m}}}{2^5 \cdot 3m^2} \sum_{0 \leq k < \lfloor m^{9/16}\rfloor} e^{-\frac{ck}{2\sqrt{m}}} \left(1 + 1 - m^{9/16}e^{-\frac{e^{(n-k)}}{2\sqrt{m}}}\right)^{-2}
\]
\[
= \frac{5ce^{\sqrt{m}}}{2^5 \cdot 3m^2} \sum_{0 \leq k < \lfloor m^{9/16}\rfloor} e^{-\frac{ck}{2\sqrt{m}}} \left(1 + 1 - m^{9/16}e^{-\frac{e^{(n-k)}}{2\sqrt{m}}} + O(m^{-3/8})\right)^{-2}
\]
\[
\sim \frac{5ce^{\sqrt{m}}}{2^5 \cdot 3m^2} \sum_{0 \leq k < \lfloor m^{9/16}\rfloor} e^{-\frac{ck}{2\sqrt{m}}} \left(1 + e^{-\frac{e^{(n-k)}}{2\sqrt{m}}}\right)^{-2}. \tag{2.10}
\]

On the other hand, by using Abel’s summation formula it is easy to find that
\[
\sum_{0 \leq k < \lfloor m^{9/16}\rfloor} e^{-\frac{ck}{2\sqrt{m}}} \left(1 + e^{-\frac{e^{(n-k)}}{2\sqrt{m}}}\right)^{-2} \sim \int_{0}^{\infty} e^{-\frac{e^{x}}{2\sqrt{m}}} \left(1 + e^{-\frac{e^{(n-k)}}{2\sqrt{m}}}\right)^{-2} dx = \frac{2\sqrt{m}}{e} \frac{1}{1 + e^{-\frac{2(n-k)}{2\sqrt{m}}}}.
\]

Therefore by combining (2.10) and above, if \(m \leq n\) and \(m \to +\infty\) then
\[
\pi(m, n) \sim \frac{5}{2^5 \cdot 3m^{3/2}} \left(1 + e^{-\frac{e^{(n-k)}}{2\sqrt{m}}}\right)^{-1}.
\]

Finally using (1.6) then the proof of Theorem 1.3 follows.

References

[1] George E. Andrews. The theory of partitions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.

[2] G. H. Hardy and S. Ramanujan. Asymptotic Formulae in Combinatory Analysis. Proc. London Math. Soc. (2), 17:75–115, 1918.

[3] L. Carlitz. A problem in partitions. Duke Math. J., 30:203–213, 1963.

[4] L. Carlitz. Generating functions and partition problems. In Proc. Sympos. Pure Math., Vol. VIII, pages 144–169. Amer. Math. Soc., Providence, R.I., 1965.

[5] George E. Andrews. An extension of Carlitz’s bipartition identity. Proc. Amer. Math. Soc., 63(1):180–184, 1977.

[6] D. P. Roselle. Generalized Eulerian functions and a problem in partitions. Duke Math. J., 33:293–304, 1966.
[7] L. Carlitz and D. P. Roselle. Restricted bipartite partitions. *Pacific J. Math.*, 19:221–228, 1966.

[8] Christine Bessenrodt. On pairs of partitions with steadily decreasing parts. *J. Combin. Theory Ser. A*, 99(1):162–174, 2002.

[9] Hei-Chi Chan. Ramanujan’s cubic continued fraction and an analog of his “most beautiful identity”. *Int. J. Number Theory*, 6(3):673–680, 2010.

[10] F. J. Dyson. Some guesses in the theory of partitions. *Eureka*, (8):10–15, 1944.

[11] F. G. Garvan. New combinatorial interpretations of Ramanujan’s partition congruences mod 5, 7 and 11. *Trans. Amer. Math. Soc.*, 305(1):47–77, 1988.

[12] George E. Andrews and F. G. Garvan. Dyson’s crank of a partition. *Bull. Amer. Math. Soc. (N.S.)*, 18(2):167–171, 1988.

[13] Nian Hong Zhou. On the distribution of rank and crank statistics for integer partitions. *Res. Number Theory*, 5(2):Art. 18, 8, 2019.

[14] Nian Hong Zhou. On the distribution of the rank statistic for strongly concave compositions. *Bull. Aust. Math. Soc.*, 100(2):230–238, 2019.

[15] Freeman J. Dyson. Mappings and symmetries of partitions. *J. Combin. Theory Ser. A*, 51(2):169–180, 1989.

[16] Kathrin Bringmann and Jehanne Dousse. On Dyson’s crank conjecture and the uniform asymptotic behavior of certain inverse theta functions. *Trans. Amer. Math. Soc.*, 368(5):3141–3155, 2016.

[17] Byungchan Kim, Eunmi Kim, and Hayan Nam. On the asymptotic distribution of cranks and ranks of cubic partitions. *J. Math. Anal. Appl.*, 443(2):1095–1109, 2016.

SCHOOL OF MATHEMATICAL SCIENCES
EAST CHINA NORMAL UNIVERSITY
500 DONGCHUAN ROAD
SHANGHAI 200241
PR CHINA
nianhongzhou@outlook.com