A simple remark on infinite series is presented. This applies to a particular recursion scenario, which in turn has applications related to a classical theorem on Euler’s phi-function and to recent work by Ron Brown on natural density of square-free numbers.

1 A Basic Fact about Infinite Series

In a recent paper [1], Ron Brown has computed the natural density of the set of square-free numbers divisible by a but relatively prime to b, where a and b are relatively prime square-free integers. Here we note a simple remark on infinite series, one of whose consequences generalizes a key argument in that work. We then derive a consequence of a well-known result on the Euler ϕ-function. The \(m = p\) case of that consequence follows from En-Naoui [2] who anticipates some of our arguments.

Remark 1 Let \(\sum_{i=1}^{\infty} a_i\) be an absolutely convergent series of complex numbers, and for \(i \geq 1\), \(f_i : \mathbb{N} \cup \{0\} \to \mathbb{C}\) with \(\lim_{N \to \infty} f_i(N) = D\) (independent of \(i\)) and the \(f_i\) uniformly bounded. Then \(\lim_{N \to \infty} \sum_{i=1}^{\infty} a_i f_i(N) = D \sum_{i=1}^{\infty} a_i\).

Proof. This is a special case of the Lebesgue Dominated Convergence Theorem (using the counting measure and applied to the sequence \(\{a_i f_i(n)\}_{n=1}^{\infty}\)). To preserve the elementary character of the arguments here, we give an "Introductory Analysis" proof.

Let \(\varepsilon > 0\) be given. By uniform boundedness, there is a constant \(B\) for which \(|f_i(N) - D| < B\) for all \(i\) and \(N\). Choose \(k \in \mathbb{N}\) with \(\sum_{i=k+1}^{\infty} |a_i| < \frac{\varepsilon}{2B}\), and choose \(M\) such that for all \(N \geq M\) and \(1 \leq i \leq k\), \(|f_i(N) - D| < \varepsilon / (1 + 2 \sum_{j=1}^{k} |a_j|)\).
Then we have for \(N \geq M \)
\[
\left| \sum_{i=1}^{\infty} a_i f_i(N) - D \sum_{i=1}^{\infty} a_i \right| = \left| \sum_{i=1}^{k} a_i (f_i(N) - D) \right|
\leq \sum_{i=1}^{k} |a_i| \left| (f_i(N) - D) \right| + \sum_{i=k+1}^{\infty} |a_i| \left| (f_i(N) - D) \right|
\leq \sum_{i=1}^{k} |a_i| \cdot \varepsilon / (1 + 2 \sum_{i=1}^{k} |a_i|) + \frac{\varepsilon}{2B} \cdot B < \varepsilon.
\]

\[\blacksquare\]

2 A Consequence and Some Applications

For all applications of the remark above, we first derive the following consequence involving a "linear division-based" recursion.

Lemma 2 Let, \(F, G : \mathbb{N} \cup \{0\} \to \mathbb{C} \), \(1 < m \in \mathbb{N} \), \(\alpha, \beta, D \in \mathbb{C} \) satisfy the conditions (1) \(\lim_{N \to \infty} F(N)/N = D \), \(\beta \) \(\beta \) is even, \(\beta \) is odd, \(G(N) = \alpha F(\lfloor N/m \rfloor) + \beta G(\lfloor N/m \rfloor) \), and (4) \(F(0) = G(0) = 0 \). Then \(\lim_{N \to \infty} G(N)/N = \frac{\alpha D}{m - \beta} \).

Proof. Recursively expand (using condition (3) and \(\lfloor a/b \rfloor/c = \lfloor a/(bc) \rfloor \) for positive integers \(a, b, c \)) we have for \(N > 0 \)
\[
G(N)/N = \frac{\alpha}{m} \frac{F(\lfloor N/m \rfloor)}{N/m} + \frac{\alpha \beta}{m^2} \frac{F(\lfloor N/m^2 \rfloor)}{N/m^2} + \cdots + \frac{\alpha \beta^{j-1}}{m^j} \frac{F(\lfloor N/m^j \rfloor)}{N/m^j} + \frac{\alpha \beta^{j-1}}{m^j} \frac{G(\lfloor N/m^j \rfloor)}{N/m^j}
\]

By properties (1), (2) and (4), this implies we have
\[
G(N)/N = \sum_{i=1}^{\infty} \frac{\alpha \beta^{i-1} F(\lfloor N/m^i \rfloor)}{m^i N/m^i}
\]

After all, for any fixed \(N \) this is actually a finite sum by (4) and the final term in display (*) above is 0 for large \(j \). Now by Lemma 1, taking \(a_i = \frac{\alpha \beta^{i-1}}{m^i} \) and \(f_i(N) = \frac{F(\lfloor N/m^i \rfloor)}{N/m^i} \), it follows that \(\lim_{N \to \infty} G(N)/N = D \sum_{i=1}^{\infty} \frac{\alpha \beta^{i-1}}{m^i} = \frac{D\alpha}{m - \beta} \).

\[\blacksquare\]

We can derive some simple applications.

Application 1. Let \(m \) be an integer greater than 1. Call an integer \(n \) oddly divisible by \(m \) if the largest nonnegative integer \(i \) with \(m^i | n \) is odd. Similarly define evenly divisible. (Note that by this definition, a number not divisible by \(m \) is evenly divisible by \(m \).) Set \(F(n) = n \) and \(G(n) = |\{ i \in \mathbb{N} : 1 \leq i \leq n, i \text{ oddly divisible by } m \}| \). Since there is a 1-1 correspondence between \(\{ i \in \mathbb{N} : 1 \leq i \leq n, i \text{ oddly divisible by } m \} \)
and \(\{i \in \mathbb{N} : 1 \leq i \leq \lfloor n/m \rfloor \text{ and } i \text{ is evenly divisible by } m\} \), we quickly see that \(G(n) = F(\lfloor n/m \rfloor) - G(\lfloor n/m \rfloor) \). Now apply the Lemma with \(D = \alpha = -\beta = 1 \) to get \(\lim_{N \to \infty} G(N)/N = \frac{1}{m+1} \). So the natural density of numbers oddly divisible by \(m \) is \(\frac{1}{m+1} \). (This is also easily arrived at by an inclusion-exclusion argument.)

Application 2. In Brown\[1\] the natural density of the set of square-free numbers divisible by primes \(p_1, \cdots, p_k \) is shown to be \(\frac{6}{\pi^2} \prod_{j=1}^{k} \frac{1}{p_j} \). (In fact, he more generally computes the density of the set of such numbers also not divisible by a further set of primes and reduces that problem to this one.) Using that the natural density of the set of square-free numbers is \(\frac{6}{\pi^2} \), the cited result follows directly from \[?\] Lemma 3, which states that, for a square-free integer \(t \) and a prime \(p \) not dividing \(t \), if the natural density of the set of square-free numbers divisible by \(t \) is \(D \), then the natural density of the set of square-free numbers divisible by \(tp \) is \(D/(p+1) \). To do this (converting to our notation), letting \(C \) be the set of square-free numbers, \(F(x) = |\{r \in C : t|r, r \leq x\}| \) and \(G(x) = |\{r \in C : pt|r, r \leq x\}| \) Brown quickly establishes that \(F(x/p) = G(x/p) + G(x) \). Noting that we can replace arguments here with their greatest integers, and that all hypotheses are in place, we can apply Lemma 2 with \(\alpha = 1, \beta = -1, m = p \) to arrive at \(\lim_{N \to \infty} G(N)/N = \frac{D}{p+1} \).

3 Application to a Classical Theorem on Euler’s \(\varphi \)-function

It is well-known that \(\lim_{N \to \infty} \left(\sum_{n=1}^{N} \frac{\varphi(n)}{n} \right)/N = \frac{6}{\pi^2} \). (See for example \[3\].)

From this we can derive the following proposition, where we sum only over multiples of an integer \(m \):

Proposition 3 Let \(m \) be a positive integer, and let \(p_1, \cdots, p_k \) the distinct prime divisors of \(m \). Then

\[
\lim_{N \to \infty} \left(\sum_{m|n \leq N} \frac{\varphi(n)}{n} \right)/N = \frac{6}{\pi^2 m} \prod_{j=1}^{k} \frac{p_j}{1+p_j}
\]

Some numerical evidence:

\(N = 1000, m = 5 \). Here \(\sum_{m|n \leq 1000} \frac{\varphi(n)}{n} \approx .1016 \) while \(\frac{6}{5 \pi^2} \approx .1013 \).

\(N = 100000, m = 200 \). Here \(\sum_{m|n \leq 100000} \frac{\varphi(n)}{n} \approx .001691 \), while \(\frac{6}{200 \pi^2} \cdot \frac{2}{3} \cdot \frac{5}{6} \approx .001689 \).
\[N = 1000000, \ m = 12348. \] Here \(\frac{\sum_{n \leq 1000000} \varphi(n)}{1000000} \approx .00002153, \) while \(\frac{6 \cdot 3 \cdot 7}{12348} \approx .00002154. \)

Proof. The result will follow inductively from the following Claim: Let \(p \) be a prime, \(k \) a positive integer and \(t \) an positive integer not divisible by \(p \). Then if \(\lim_{N \to \infty} \left(\sum_{n \leq N} \frac{\varphi(n)}{n} \right) / N = L \), it follows that

\[
\lim_{N \to \infty} \left(\sum_{tp^j \mid n \leq N} \frac{\varphi(n)}{n} \right) / N = \frac{L}{p^{j+1}}.
\]

To establish the claim, we first handle the case \(j = 1 \). We set \(F(N) = \sum_{t \mid n \leq N} \frac{\varphi(n)}{n} \), \(G(N) = \sum_{pt \mid n \leq N} \frac{\varphi(n)}{n} \). We can bijectively correspond the set \(A \) of integers divisible by \(t \) and less than or equal to \(N/p \) with the set \(B \) of multiples of \(pt \) less than or equal to \(N \) by multiplication by \(p \). We write \(A = A_1 \cup A_2 \), with multiples of \(p \) in \(A_1 \) and nonmultiples of \(p \) in \(A_2 \), and note that (from the usual computation of \(\varphi \) in terms of prime factorization) for \(n \in A_1, \varphi(n)/n = \varphi(pn)/(pn) \), while for \(n \in A_2, \varphi(n)/n = \frac{p-1}{p} \varphi(pn)/(pn) \). So

\[
G(N) = \sum_{pt \mid n \leq N} \frac{\varphi(n)}{n} = \sum_{n \in A_1} \frac{\varphi(np)}{np} + \sum_{n \in A_2} \frac{\varphi(np)}{np} = \sum_{n \in A_1} \frac{\varphi(n)}{n} + \frac{p-1}{p} \sum_{n \in A_2} \frac{\varphi(n)}{n} = \frac{p-1}{p} F([N/p]) + \frac{1}{p} G([N/p])
\]

Applying our lemma with \(m = p, \alpha = \frac{p-1}{p}, \beta = \frac{1}{p}, D = L \) we get

\[
\lim_{N \to \infty} G(N)/N = \frac{D\alpha}{m - \beta} = \frac{L}{p + 1}.
\]

Now we can proceed to the general case of the claim. We now bijectively correspond the set \(A \) of integers divisible by \(t \) and less than or equal to \(N/p^j \) with the set \(B \) of multiples of \(p^jt \) less than or equal to \(N \) by multiplication by \(p^k \), and similarly \(j = 1 \) case write \(A = A_1 \cup A_2 \), with multiples of \(p \) in \(A_1 \) and
nonmultiples of p in A_2. Then
\[
\sum_{p^ti|n \leq N} \frac{\varphi(n)}{n} = \sum_{t|n \leq N/p^j} \frac{\varphi(p^j i)}{p^i}.
\]

Dividing through by N we get
\[
\sum_{p^t|n \leq N^j} \frac{\varphi(n)}{n} / N = \frac{p-1}{p^{j+1}} \sum_{t|n \leq N/p^j} \frac{\varphi(i)}{i} + \frac{1}{p} \sum_{pt|n \leq N/p^j} \frac{\varphi(i)}{i}.
\]

where the first limit of the first term is given by the hypothesis $\lim_{N \to \infty} \left(\sum_{t|n \leq N} \frac{\varphi(n)}{n} \right) / N = L$ and the limit of the second term follows from the $j = 1$ case above. That concludes the proof of the claim, and hence the proposition. \qed

References

[1] Brown R., What Proportion of Square-Free Numbers are Divisible by 2? Or by 30, but not by 7?, Private Communication 1/2021

[2] En-Naoui E., Some Remarks on Sum of Euler’s Totient Function, arXiv:2101.02040v1

[3] P. Erdos and H. N. Shapiro, Canad. J. Math. 3 (1951), 375-385.