Evolution of Magnetic Fields in Stars Across the Upper Main Sequence:

I. A catalogue of magnetic field measurements with FORS 1 at the VLT?

S. Hubrig\(^1\), P. North\(^2\), M. Schöller\(^3\), and G. Mathys\(^1\)

\(^1\) European Southern Observatory, Casilla 19001, Santiago 19, Chile
\(^2\) Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne, Observatoire, CH-1290 Sauverny, Switzerland

Received <date> ; accepted <date> ; published online <date>

Abstract. To properly understand the physics of Ap and Bp stars it is particularly important to identify the origin of their magnetic fields. For that, an accurate knowledge of the evolutionary state of stars that have a measured magnetic field is an important diagnostic. Previous results based on a small and possibly biased sample suggest that the distribution of magnetic stars with mass below 3\(M_\odot\) in the H-R diagram differs from that of normal stars in the same mass range (Hubrig et al. 2000). In contrast, higher mass magnetic Bp stars may well occupy the whole main-sequence width (Hubrig, Schöller & North 2005b). In order to rediscuss the evolutionary state of upper main sequence magnetic stars, we define a larger and bias-free sample of Ap and Bp stars with accurate Hipparcos parallaxes and reliably determined longitudinal magnetic fields. We used FORS 1 at the VLT in its spectropolarimetric mode to measure the magnetic field in chemically peculiar stars where it was unknown or poorly known as yet. In this first paper we present our results of the mean longitudinal magnetic field measurements in 136 stars. Our sample consists of 105 Ap and Bp stars, two PGa stars, 17 HgMn stars, three normal stars, and nine SPB stars. A magnetic field was for the first time detected in 57 Ap and Bp stars, in four HgMn stars, one PGa star, one normal B-type star and four SPB stars.

Key words: stars:chemically peculiar - stars:evolution - stars:magnetic fields

1. Introduction

Ap and Bp stars are main-sequence A and B stars in the spectra of which the lines of some elements are abnormally strong (e.g., Si, Sr, rare earths) or weak (in particular, He). They undergo periodic variations of magnitude (in various photometric bands) and spectral line equivalent widths; the known periods of variability range from half a day to several decades. Among Ap stars, the magnetic chemically peculiar stars are especially important. For a long time, Ap stars were the only non-degenerate stars besides the sun in which direct detections of magnetic fields had been achieved. Today, they still represent a major fraction of the known magnetic stars. These stars generally have large-scale organized magnetic fields that can be diagnosed through observations of circular polarization in spectral lines. The unique large-scale organization of the magnetic fields in these stars, which in many cases appears to occur essentially under the form of a single large dipole located close to the centre of the star, contrasts with the magnetic field of late-type stars, which is most probably subdivided in a large number of small dipolar elements scattered across the stellar surface. The fact that magnetic fields of Ap stars are more readily observable than those of any other type of non-degenerate stars makes them a privileged laboratory for the study of phenomena related to stellar magnetism.

To properly understand the physics of Ap stars it is particularly important to know the origin of magnetic fields in these stars. It is the subject of a long debate, which is far from being closed (e.g., Braithwaite & Spruit 2004). After the discovery of magnetic fields in Ap and Bp stars it was proposed that these stars have acquired their field at the time of their formation or early in their evolution (what is currently observed is then a fossil field). An alternative suggestion is that magnetic fields are generated and maintained by a contemporary
become magnetic at a certain evolutionary state before reaching the zero-age main sequence (ZAMS), or during the core hydrogen burning, or at the end of their main-sequence life requires systematical studies of established cluster members, binary systems, and field stars with accurate Hipparcos parallaxes. Until now, there is only one case of a strongly magnetic Ap star of mass below $3\,M_\odot$ (either member of a nearby moving cluster or supercluster or belonging to a binary system) which is not much evolved away from the ZAMS: HD 66318 in NGC 2516 is claimed to have fulfilled only 16% of its main sequence lifetime (Bagnulo et al. 2003; see also Hubrig & Schwan 1991; Hubrig & Mathys 1994; Wade et al. 1996). Only a few double-lined spectroscopic binary systems containing a magnetic Ap star are currently known, and as far as the membership of Ap stars in distant open clusters is concerned, we should keep in mind that such studies are mostly based upon photometry and upon radial velocity determinations. But photometric criteria of cluster membership are more delicate to apply to peculiar stars, since strong backwarming effects lead to an anomalously energy distribution, thus affecting the position of such stars in colour-magnitude diagrams.

In our previous study of the evolutionary state of magnetic Ap stars with accurate Hipparcos parallaxes and accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields, we showed that the distribution of magnetic stars of mass below $3\,M_\odot$ differs from that of normal stars in the same temperature range at a high level of significance (Hubrig, North & Mathys 2000). Normal A stars occupy the whole width of the main sequence, without a gap, whereas magnetic stars are concentrated towards the centre of the main-sequence band. In particular, it was found that magnetic fields appear in stars that have already completed at least approximately 30% of their main-sequence lifetime.

Knowing the position of the magnetic stars in the H-R diagram, it became also possible to probe the evolution of magnetic field strength across the main sequence. However, no clear picture emerged from our data. Yet, the whole sample under study contained only 33 magnetic stars of mass below $3\,M_\odot$. We exclusively selected stars for which a strong surface magnetic field had been definitely detected. For these stars the mean magnetic field modulus, which is the average over the stellar disk of the modulus of the magnetic vector, has been derived through measuring the wavelength separation of resolved magnetically split components of spectral lines. The mean quadratic field has been diagnosed from the consideration of the differential magnetic broadening of spectral lines. A bias was present due to the fact that our sample contained a large fraction (about 2/3) of stars with rotational periods longer than 10 days, while the majority of the periods of magnetic stars fall between 2 and 4 days. Clearly, there was a need for more magnetic field measurements of Ap stars for which accurate Hipparcos parallaxes were obtained. To this purpose, we started a few years ago a long-term systematical search for magnetic fields in about 100 upper main sequence chemically peculiar stars with good Hipparcos parallaxes. These stars were chosen in a wider range of masses, among those whose magnetic field has been never or only poorly studied before, and presenting a distribution of rotational periods more representative of that of all Ap and Bp stars.

In this first paper, we present results of magnetic field measurements in 136 A and B stars. The detailed analysis of the evolution of the magnetic field across the H-R diagram in stars of different mass will be presented in a second paper. Some preliminary results of the analysis based on the magnetic field measurements from the first release of data for our ESO observing program have already been reported at various meetings (Hubrig, Schöller & North 2005b; Hubrig, North & Szeifert 2006). In general, we could confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields, i.e., that magnetic stars of mass below $3\,M_\odot$ are concentrated towards the centre of the main-sequence band. We could also show that, in contrast, higher mass magnetic Bp stars may well occupy the whole main-sequence width.

2. Basic data

The General Catalogue of Ap and Am stars (Renson, Gurbaldi & Catalano 1991) includes 2875 Ap stars showing abnormal enhancement of one or several elements in their atmosphere. Hipparcos parallaxes have been measured for about 940 Ap stars. 371 of them have a low parallax error of $\sigma_p < 0.2$ (Gomez et al. 1998).

Most studies of magnetic fields of Ap stars are based on measurements of the mean longitudinal magnetic field, which is an average over the visible stellar hemisphere of the component of the magnetic vector along the line of sight. It is derived from measurements of wavelength shifts of spectral lines between right and left circular polarization. Before our study, only 195 Ap stars had reliably measured longitudinal fields, ranging from tens of Gauss to about 20 kG (Bychkov, Bychkova & Madej 2003). But only for 114 stars with measured magnetic fields the parallax error was less than 20%. A part of these stars have been used for our study of the evolutionary state of magnetic stars six years ago.

For 49 stars the mean magnetic field modulus has been derived from measurements of the wavelength separation of resolved magnetically split components of spectral lines. The resolution of individual line components requires a combination of sufficient magnetic field strength and small enough projected rotational velocity. The mean field modulus is, by definition, much less aspect-dependent than the longitudinal field and, thus, it characterizes much better the intrinsic stellar magnetic field. Unfortunately, it can only be measured in a small fraction of Ap stars that have magnetically resolved lines. Therefore, longitudinal field measurements represent the standard method for searching magnetic fields in different types of stars, and longitudinal field measurements, due to their sensitivity to aspect, represent essential constraints for all models of the geometry and the detailed structure of the magnetic fields of these stars. This underscores the important
role of these data in understanding magnetism in upper-main sequence stars.

As Bagnulo et al. (2002) and Hubrig et al. (2004) have demonstrated, low resolution spectropolarimetry in H Balmer lines obtained with FORS 1 represents a powerful diagnostic method for the detection of stellar magnetic fields. FORS 1 is a multi-mode instrument which is equipped with polarization analyzing optics comprising super-achromatic half-wave and quarter-wave phase retarder plates, and a Wollaston prism with a beam divergence of 22° in standard resolution mode. In our latest study of magnetic fields in rapidly oscillating Ap stars with FORS 1 in spectropolarimetric mode, using GRISM 600B and an 0"4 slit, a formal uncertainty as small as 50 G has been achieved, suggesting that the potential of FORS 1 for measuring magnetic fields is even higher than indicated before (Hubrig et al. 2004). For the major part of our stellar sample we used the GRISM 600B in the wavelength range 3480–5890˚A at a spectral resolution of R 2000 to cover all hydrogen Balmer lines from H to the Balmer jump. During the last semester in 2005 we used the GRISM 1200g to cover the H Balmer lines from H to H, and the narrowest available slit width of 0"4 to obtain a spectral resolving power of R 4000. The determination of the mean longitudinal fields using FORS 1 is described in detail in Hubrig et al. (2004). All longitudinal field determinations for the 136 stars in our sample were obtained from observations with FORS 1 at the VLT executed in service mode from April 2003 to September 2005.

In order to be able to determine the location of the observed stars in the H-R diagram, we selected only stars for which distance and photometry can be obtained with small error bars. 127 out of 136 stars in our sample have accurately determined Hipparcos parallaxes with () 0.2. For all objects, there exists either Geneva or Strömgren photometry.

Nine stars in our sample are known members of nearby open clusters of different ages and have very accurate Hipparcos parallaxes. Their membership has been confirmed on photometric, proper motion and radial velocity grounds. They are excellent candidates for our study and the measurements of their magnetic fields allow us to put more stringent constraints on the origin of the magnetic fields.

Magnetic fields play an important role in the theoretical interpretation of the pulsations in rapidly oscillating Ap (roAp) stars. However, until now, the only systematic attempt to detect and to study their field has been done by Mathys (2003). Still, the knowledge of the magnetic fields in many roAp stars is very incomplete. Therefore, a few roAp stars, for which no magnetic field measurements have been reported before, have been included in our sample.

The presence of magnetic fields in so-called “non-magnetic” stars with HgMn or PGa peculiarity is still a subject of debate between various observers. To understand the role that magnetic fields play for the origin of chemical peculiarities in these stars, magnetic field measurement have been carried out for 17 HgMn and two PGa stars.

Recently, Neiner et al. (2003) presented the first detection of a magnetic field in the SPB star Cas. It is difficult to explain why chemically peculiar hot Bp stars and Slowly Pulsating B (SPB) stars co-exist at the same position in the H-R diagram, namely in the SPB instability strip. The pulsation periods of SPB stars range from about 1 to 3 days. It is especially intriguing that the magnetic fields of hot Bp stars do not show any detectable variations or vary with periods close to 1 day. A small sample of SPB stars and a few monoperiodic B stars with a non-homogeneous distribution of chemical elements on the stellar surface has been selected to search for an evidence of magnetic fields.

3. Results

193 new mean longitudinal magnetic field measurements for Ap, Bp stars and so-called “non-magnetic” stars are presented in Tables A1 and A2 respectively. In the first two columns we give the HD number and another identifier. The V magnitude and the spectral type are retrieved from the “General Catalogue of Ap and Am stars” by Renson et al. (1991) and in part from the SIMBAD database in case the studied stars had no entry in the catalogue. The modified Julian date of the middle of the exposures and the measured mean longitudinal magnetic field B are presented in columns 5 and 6. If there are several measurements for a single star, we give the reduced 2 for these measurements in column 7, following:

\[\frac{2}{n} = \frac{1}{n} \sum_{i=1}^{n} \frac{B_{l,i}}{B_{l,i}} \] \hspace{1cm} (1)

Finally, in column 8 we identify new detections by ND and confirmed detections by CD. We would like to point out that all claimed detections have a significance of at least 3 determined from the formal uncertainties we derive. In individual cases a detection could be caused by a statistical outlier in our rather large sample of individual stars, or by slightly underestimated errors.

Because of the strong dependence of the longitudinal field on the rotational aspect, its usefulness to characterise actual field strength distributions is limited, but this can be overcome, at least in part, by repeated observations to sample various rotational phases, hence various aspects of the field. Three observations per star should be the strict minimum to give a meaningful estimate of the intrinsic strength of the magnetic field of a star. This estimate consists of the rms longitudinal field, which is computed from all n measurements according to:

\[\overline{B_{l,i}} = \frac{1}{n} \sum_{i=1}^{n} \frac{B_{l,i}}{B_{l,i}} \] \hspace{1cm} (2)

While we asked for three observations per star, unfortunately, quite a number of stars of our program could be observed only once or twice. In the course of our systematical search for magnetic fields in 136 upper main sequence chemically peculiar stars with good Hipparcos parallaxes and in a wider range of mass, we discovered 67 new magnetic stars. For five other stars we could confirm earlier detections listed in the catalogue by Bychkov, Bychkova & Madej (2003). In 15 stars we confirmed our own detections a second or third time. In Fig. 11 we present V/I spectra in the vicinity
of the H line in one of the most massive stars in our sample, HD 115440, one star of intermediate mass, HD 157751, and in the low mass star HD 154708.

In the sample of Ap and Bp stars (Table A1), six roAp stars show magnetic fields well above the 3 level, strongly underlining the close observational connection between magnetic field and pulsation: HD 42659, HD 60435, HD 80316, HD 84041, HD 86181 and HD 154708. The star HD 154708 is likely one of the coolest and least massive among the Ap stars and exhibits the second-largest mean magnetic field modulus, 24.5 kG, ever measured in an Ap star (Hubrig et al. 2005a). Low-amplitude pulsations in HD 154708 have recently been discovered by Kurtz et al. (2006, in preparation).

Among the 17 HgMn stars, weak magnetic fields have been detected in four stars, HD 358 (= HR15, And), HD 65949, HD 65950, and HD 175640. Longitudinal magnetic field measurements in And as a function of rotational phase are presented in Fig. 2. The phases have been calculated according to the rotational ephemeris of Adelman et al. (2002). We also detected a magnetic field at >3 level in one PGa star, HD 19400, and in the normal B-type star HD 179761. Five years ago we already showed evidence for a relative magnetic intensification of Fe II lines produced by different magnetic desaturations induced by different Zeeman-split components in HD 179761 (Hubrig & Castelli 2001). As the relative intensification is roughly correlated with the strength of the magnetic field, it is a powerful tool for detecting magnetic fields which have a complex structure and are difficult to detect by polarization measurements.

Weak magnetic fields have also been discovered in four SPB stars: HD 53921, HD 74560, HD 85953, and HD 215573. There have been only a few isolated attempts to determine magnetic fields in SPB stars. Neiner et al. (2003) searched for a magnetic field in the B2IV star Cas, which lies in the region of the H-R diagram that belongs both to the SPB and the Cep instability strip. Using time-resolved spectro-polarimetric observations with the Musicos echelle spectropolarimeter at the 2 m Telescope Bernard Lyot they obtained clear Zeeman signatures indicative of the presence of a magnetic field over the rotational period of 5.4 d. This star was the first known magnetic SPB star. However, the role that magnetic fields play in the understanding of pulsational properties of SPB stars is still unclear, and further observations are needed to look for possible relations between magnetic field and pulsation patterns.

Normal B, HgMn, PGa, and SPB stars are usually regarded as non-magnetic stars. However, the intriguing discovery of mean longitudinal magnetic fields of the order of a few hundred Gauss in a sample of so-called “non-magnetic” stars rises a fundamental question about the possible ubiquitous presence of a magnetic field in upper main sequence stars. The structure of the field in these stars must be, however, sufficiently tangled so that it does not produce a strong net observable circular polarization signature.

In this paper, we presented results of our comprehensive study of magnetic fields in 136 upper main sequence stars. The magnetic field determination method is based on circular polarized FORS 1 spectra and shows the excellent potential of FORS 1 for measuring magnetic fields. The preliminary results of our analysis of the evolutionary state of magnetic chemically peculiar stars based on the smaller sample of stars measured with FORS 1 have been presented in the last years as meeting contributions (Hubrig et al. 2005b; Hubrig et al. 2006). In Paper II we will present the complete analysis based on a large sample of magnetic stars.
Acknowledgements. We would like to thank Thomas Szeifert for providing the FORS1 spectra extraction routines. This research made use of the SIMBAD database, operated at the CDS, Strasbourg, France.

References

Adelman, S.J., Gulliver, A.F., Kochukhov, O., Ryabchikova, T.A.: 2002, ApJ 575, 449
Bagnulo, S., Szeifert, T., Wade, G.A., Landstreet, J.D., Mathys, G.: 2002, A&A 389, 191
Bagnulo, S., Landstreet, J.D., Lo Curto, G., Szeifert, T., Wade, G.A.: 2003, A&A 403, 645
Braithwaite, J., Spruit, H.C.: 2004, Nature 431, 819
Bychkov, V.D., Bychkova, L.V., Madej, J.: 2003, A&A 407, 631
Gerbaldi, M., Floquet, M., Hauck, B.: 1985, A&A 146, 341
Gomez, A.E., Luri, X., Grenier, S., Figueras, F., North, P., Royer, F., Torra, J., Mennessier, M.O.: 1998, A&A 336, 953
Hubrig, S., Castelli, F.: 2001, A&A 375, 963
Hubrig, S., Kurtz, D.W., Bagnulo, S., Szeifert, T., Schöller, M., Mathys, G., Dziembowski, W.A.: 2004, A&A 415, 661
Hubrig, S., Mathys, G.: 1994, AN 315, 343
Hubrig, S., Nesvacil, N., Schöller, M., et al.: 2005a, A&A 440, L37
Hubrig, S., North, P., Mathys, G.: 2000, ApJ 539, 352
Hubrig, S., North, P., Szeifert, T.: 2006, in: “Astronomical Polarimetry: Current Status and Future Directions” (in press), also astro-ph/0501496
Hubrig, S., Schöller, M., North, P.: 2005b, in: “Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures”, E.M. de Gouveia dal Pino, G. Lugones, A. Lazarian (eds.), AIP Conf. Proc., Vol. 784, 145
Hubrig, S., Schwan, H.: 1991, A&A 251, 469
Kurtz, D.W., et al.: 2006. (in preparation)
Mathys, G.: 2003, in: “Magnetic fields in O, B, and A stars: Origin and connection to pulsation, rotation and mass loss”, L.A. Balona, H.F. Henrichs & R. Medupe (eds.), ASP Conf. Ser., Vol. 305, 65
Neiner, C., Geers, V.C., Henrichs, H.F., Floquet, M., Frémat, Y., Hubert, A.-M., Preuss, O., Wiersema, K.: 2003, A&A 406, 1019
Renson, P., Gerbaldi, M., Catalano, F.A.: 1991, A&AS 89, 429, also VizieR On-line Data Catalog III/162A.
Wade, G.A., North, P., Mathys, G., Hubrig, S.: 1996, A&A 314, 491

Appendix A: List of magnetic field measurements
APPENDIX A: LIST OF MAGNETIC FIELD MEASUREMENTS

Table A1. The mean longitudinal field measurements for our sample of Ap and Bp stars observed with FORS 1 in the frame of our ESO service programs 71.D-0308, 072.D-0377, 073.D-0464, and 075.D-0295. In the first two columns we give the HD number and another identifier. The V magnitude and the spectral type are retrieved from the “General Catalogue of Ap and Am stars” by Renson et al. (1991) and in part from the SIMBAD database in case the studied stars had no entry in the catalogue. The modified Julian date of the middle of the exposures and the measured mean longitudinal magnetic field $\|B_\|_1$ are presented in columns 5 and 6. If there are several measurements for a single star, we give the reduced squared mean $\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (B_i - \bar{B})^2}$ for all measurements in column 7. Finally, in column 8 we identify new detections by ND and confirmed detections by CD (see text).

HD	Other identifier	V	Sp. Type	MJD	$\|B_\|_1$	$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (B_i - \bar{B})^2}$	Comment
1048	HR49	6.2	A1 Si	52910.103	244 74	ND	
3326	HR151	6.1	A6 Sr	52908.190	49 49		
3980	HR183	5.7	A7 Sr Eu Cr	53559.410	1210 32	CD	
8783	CP 72 98	7.8	A2 Sr Eu Cr	52852.358	26 92		
10840	CP 61 139	6.8	B9 Si	53184.331	161 131		
19712	BD 02 563	7.3	A0 Cr Eu	52905.384	963 77	ND	
19918	CP 82 54	9.4	A5 Sr Eu Cr	52908.210	625 87	CD	
22374	BD+22 518	6.7	A1 Cr Sr Si	52999.039	31 57		
22488	CP 67 236	7.7	A3 Sr Eu Cr	53087.014	102 53		
23207	BD 19 732	7.5	A2 Sr Eu	53215.361	259 92		
24188	CP 72 262	6.3	A0 Si	53218.338	411 94	13.5 ND	
30612	HR1541	5.5	B9 Si	53087.032	404 55		
34797	HR1754	6.5	B8 He-weak Si	52999.066	713 54		
34798	HR1753	6.5	B8 He-weak Si	52999.055	56 82		
42659	BD 15 1299	6.7	A3 Sr Cr Eu	52999.119	392 72	ND	
55522	HR2718	5.9	B2IV/V	52999.190	38 73		
56350	CP 53 1284	6.7	A0 Eu Cr Sr	52999.239	736 125	ND	
56455	HR2761	5.7	A0 Si	52999.251	119 70		
58448	CP 61 814	7.1	B8 Si	52999.265	331 66		
60435	CP 57 1246	8.9	A3 Sr Eu	53000.072	296 52		
63401	HR3032	6.3	B9 Si	53002.053	236 70		
68826	CO 48 3586	9.3	B9 Si	53004.228	656 75	43.9 CD	
69144	HR3244	5.1	B2.5IV	53004.228	656 75		
74168	CO 51 3141	7.5	B9 Si	53002.111	437 101	ND	
74196	HR3448	5.6	B7 He-weak	52906.388	254 118		
75989	CO 40 4685	6.5	B9 Si	52992.341	368 107	ND	
80316	BD 19 2674	7.8	A3 Sr Eu	53004.286	409 105	13.5 CD	
83625	CP 53 2664	6.9	A0 Si Sr	52992.357	183 38		
84041	CO 28 7536A	9.4	A5 Sr Eu	53008.325	1208 64		
86181	CP 58 1700	9.4	F0 Sr	53002.170	479 72		
86199	CP 56 2646	6.7	B9 Si	53002.201	404 94		
88158	CP 61 1479	6.5	B8 Si	53003.345	921 67		
88385	CP 56 2919	8.1	A0 Cr Eu Si	53010.181	1054 65	ND	
89103	CO 48 5469	7.8	B9 Si	53010.202	2303 48		
89385	CP 53 3579	8.4	B9 Cr Eu Si	53010.218	255 61		
90264	HR4089	5.0	B8 He-weak	52824.019	114 108		
91239	CO 41 5923	7.4	B9 Eu Cr Si	53118.059	33 89		
92106	CP 80 468	7.8	A0 Sr Eu Cr	53100.239	258 71		
92385	CP 64 1374	6.7	B9 Si	53008.369	623 100	ND	
93020	CP 33 322	8.1	A0 Cr Sr	53020.332	165 59	23.3	
Table A1. Continued.

HD	Other identifier	V	Sp. Type	MJD	\(\beta \) \(\lambda \) [G]	\(\gamma \) [G]	Comment
92499	CO 42 6407	8.9	A2 Sr Eu Cr	53010.255	964 172	ND	
					53011.212	1255 69	CD
					53118.095	1191 148 142.3	CD
93030	HR4199	2.7	B0 Si N P	53012.231	205 137	ND	
96451	CP 74 771	6.9	A0 Sr	53074.346	108 70	ND	
98340	CP 58 3433	7.1	B9 Si	53074.362	977 73	ND	
99563	BD 08 3173A	8.5	F0 Sr	53012.247	235 73	CD	
					53015.225	670 84 37.0	CD
10539	CO 30 9691	8.0	A0 Sr Cr	53011.250	283 74	ND	
105382	HR4618	4.4	B6IIe	53011.195	923 86	ND	
					53015.247	431 109 65.4	CD
105770	CP 83 444	7.4	B9 Si	53011.233	160 58	ND	
					53120.145	254 83 8.5	ND
105999	CP 62 2619	7.4	F1 Sr Cr	53011.270	247 58	ND	
107696	HR4706	5.4	B8 Cr	52824.030	9 90	ND	
					53074.375	134 145 0.4	ND
108945	HR4766	5.5	A3 Sr	53015.335	347 51	ND	
114365	HR4965	6.1	A0 Si	52824.043	24 57	ND	
115226	CP 72 1373	8.5	A3 Sr	53074.392	820 139	ND	
					53086.299	654 66 66.5	CD
115440	CP 75 859	8.2	B9 Si	53077.215	3120 73	ND	
116890	HR5066	6.2	B9 Si	52824.055	119 62	ND	
117025	HR5069	6.1	A2 Sr Eu Cr	52824.067	455 73	ND	
					53120.164	416 94 29.2	CD
118913	CP 68 1981	7.7	A0 Eu Cr Sr	52824.081	385 71	ND	
					53120.181	544 75 41.0	CD
119308	CO 34 9094	7.8	B9 Sr Cr Eu	53120.204	325 73	ND	
122970	BD+06 2827	8.3	F0p	53015.350	352 101	CD	
125630	CP 66 2519	6.8	A2 Si Cr Sr	52824.107	659 54	ND	
					53120.221	9 63 74.5	ND
127453	CP 68 2132	7.4	B8 Si	52824.121	360 69	ND	
127575	CP 68 2135	7.7	B9 Si	53079.388	807 72	ND	
128775	CO 45 9337	6.6	B9 Si	53120.236	340 61	ND	
128974	HR5466	5.7	A0 Si	52824.144	40 45	ND	
129899	CP 76 894	6.4	A0 Si	53120.295	402 48	ND	
130158	HR5514	5.6	B9 Si	52824.176	28 44	ND	
					53116.312	51 43 0.9	ND
130557	HR5522	6.1	B9 Si Cr	52853.058	30 74	ND	
					53144.267	100 50 2.1	ND
131120	HR5543	5.0	B7 He-weak	52824.158	228 110	ND	
					53020.353	137 74	ND
					53030.366	63 69 2.9	ND
132322	CP 63 3473	7.4	A7 Sr Cr Eu	53111.311	357 51	ND	
133792	HR5623	6.3	A0 Sr Cr	52853.070	55 116	ND	
					53120.312	68 47 1.2	ND
134305	BD+13 2899	7.2	A6 Sr Eu Cr	53144.301	117 68	ND	
136933	HR5719	5.4	A0 Si	52823.223	56 68	ND	
138758	CP 74 1451	7.9	B9 Si	53086.328	415 47	ND	
138764	HR5780	5.2	B6 Si	52904.016	146 57	ND	
138769	HR5781	4.5	B31Vp	52904.027	16 58	ND	
					52908.022	260 84 4.8	ND
145102	CO 2611240	6.6	B9 Si	52763.315	48 75	ND	
Table A1. Continued.

HD	Other identifier	V	Sp. Type	MJD	$\langle B \rangle$ [G]	$\sigma = \Delta$	Comment
147869	HR6111	5.8	A1 Sr	52763.327	28 62		
				53144.318	68 47	1.1	
148112	HR6117	4.6	A0 Cr Eu	52763.338	62 53		
148898	HR6153	4.4	A6 Sr Cr Eu	52763.349	175 70		
149764	CO 3811087	6.9	A0 Si	52763.374	1213 70	ND	
				53120.325	20 68		
				53120.335	30 57	100.2	
149822	HR6176	6.4	B9 Si Cr	52763.361	645 54	ND	
150549	HR6204	5.1	A0 Si	52763.386	187 51	ND	
				53116.866	228 59	CD	
151525	HR6234	5.2	B9 Eu Cr	52733.395	14 60		
154708	CP 57 8336	8.8	A2 Sr Eu Cr	53120.376	7530 54	ND	
				53487.302	5764 25	CD	
157751	CO 3312069	7.6	B9 Si Cr	52793.271	4063 54	ND	
				53116.404	3968 55	5433.1	CD
160468	CP 68 2936	7.3	F2 Sr Cr	53116.395	63 63		
161277	CO 3911816	7.1	B9 Si	53134.339	1 42		
166469	HR6802	6.5	A0 Si Cr Sr	52793.287	15 55		
				52793.295	133 60		
				53136.274	42 52	1.9	
168856	BD 07 4589	7.0	B9 Si	53144.343	608 47	ND	
171184	BD 14 5110	8.0	A0 Si	52880.042	379 58	ND	
				53144.368	54 48	22.0	
171279	BD 07 4623	7.3	A0 Sr Cr Eu	53144.393	45 46		
172032	BD 16 4963	7.7	A9 Sr Cr	53151.105	8 67		
172690	CP 84 587	7.5	A0 Si Sr Cr	52793.314	225 71	ND	
				53134.368	230 60	12.4	CD
175744	HR7147	6.6	B9 Si	52901.019	147 53		
176196	CP 74 1739	7.5	B9 Eu Cr	52793.329	258 69	ND	
				53134.389	174 58	11.5	CD
183806	HR7416	5.6	A0 Cr Eu Sr	52793.345	229 45	ND	
				53120.424	172 43	20.9	CD
186117	CP 73 2061	7.3	A0 Sr Cr Eu	53134.413	52 55		
				53140.329	36 54	0.7	
192674	CO 5112473	7.5	B9 Cr Eu Sr	53137.362	30 45		
199180	BD+16 4401	7.7	A0 Si Cr	52822.344	215 74		
199728	HR8033	6.2	B9 Si	52822.357	254 60	ND	
201018	CO 3714125	8.6	A2 Cr Eu	53151.371	494 153	ND	
202627	HR8135	4.7	A1 Si	52793.374	118 57		
206653	CP 68 3444	7.2	B9 Si	52793.394	125 83		
212385	CO 3914697	6.8	A3 Sr Eu Cr	52822.413	145 59		
				53184.297	541 60	43.7	ND
221760	HR8949	4.7	A2 Sr Cr Eu	52793.415	103 80	ND	
223640	HR9031	5.2	B9 Si Sr Cr	52822.428	74 51		
Table A2. The mean longitudinal field measurements for our sample of so-called “non-magnetic” stars observed with FORS 1 in the frame of our ESO service programs 71.D-0308, 072.D-0377, 073.D-0464, and 075.D-0295. In the first two columns we give the HD number and another identifier. The V magnitude and the spectral type are retrieved from the “General Catalogue of Ap and Am stars” by Renson et al. (1991) and in part from the SIMBAD database in case the studied stars had no entry in the catalogue. The modified Julian date of the middle of the exposures and the measured mean longitudinal magnetic field $\langle B_l \rangle$ are presented in columns 5 and 6. If there are several measurements for a single star, we give the reduced 2 for all measurements in column 7. In column 8 we identify new detections by ND and confirmed detections by CD (see text).

HD	Other identifier	V	Sp. Type	MJD	$\langle B_l \rangle$ [G]	2	Comment
358	HR15	2.1	B9	52910.092	261	73	ND
			Mn Hg	52963.020	12	82	
				53519.448	109	49	
				53629.286	73	20	
				53630.208	30	30	
				53638.205	108	23	
				52963.156	83	46	
23408	HR1149	3.9	B7	52963.156	11	71	
23950	HR1185	6.1	B9	53215.403	62	79	
			Mn Hg	53216.418	50	55	0.7
			Si	52946.354			
49606	HR2519	5.8	B8	53292.067	178	129	
53929	HR2676	6.1	B9	53004.210	248	108	3.6
			Mn Hg	52992.728	95	74	
63975	HR3059	5.1	B8	53002.082	290	62	
65949	CP 60 966	8.4	B9	53002.067	179	53	
65950	CP 60 967	6.9	B9	53002.098	1	56	
71066	HR3302	5.6	A0	53008.304	151	100	
87752	CP 59 1843	9.8	B9	52763.410	46	52	
15537	HR6386	6.5	A0	53137.393	65	46	1.4
175640	HR7143	6.2	A0	52901.043	207	65	
186122	HR7493	6.3	B9	52822.312	215	76	
194783	HR7817	6.1	B9	52793.361	43	53	
202149	HR8118	6.7	B9	53137.411	43	39	
202671	HR8137	5.4	B7	53002.092	61	36	
221507	HR8937	4.4	B9	53116.028	58	56	
19400	HR939	5.5	B8	52822.371	217	65	
120709	HR5210	4.6	B5	53015.323	79	76	

HD	Other identifier	V	Sp. Type	MJD	$\langle B_l \rangle$ [G]	2	Comment
91375	HR4138	4.7	A2	53116.028	58	56	
179761	HR7287	5.1	B8	52822.280	267	60	
209459	HR8404	5.8	B9	52822.381	144	60	

HD	Other identifier	V	Sp. Type	MJD	$\langle B_l \rangle$ [G]	2	Comment
24587	HR1213	4.6	B6	52971.071	120	68	
26326	HR1288	5.4	B5	52909.389	119	80	
53921	HR2674	5.6	B9	52999.137	294	63	
74195	HR3447	3.6	B3	53002.123	277	108	
74560	HR3467	4.8	B3	53002.141	199	61	
85953	HR3924	5.9	B2	53002.152	131	42	
92287	HR4173	5.9	B3	53008.352	10	57	
123515	HR5296	6.0	B8	52824.093	59	50	
215573	HR8663	5.3	B6	52900.800	165	53	

HD	Other identifier	V	Sp. Type	MJD	$\langle B_l \rangle$ [G]	2	Comment