First Report of Klebsiella pneumoniae–Carbapenemase-3-Producing Escherichia coli ST479 in Poland

Dominika Ojdana, Paweł Sacha, Dorota Olszańska, Piotr Majewski, Piotr Wieczorek, Jadwiga Jaworowska, Anna Sięńko, Anna Jurczak, and Elżbieta Tryniszewska

1 Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, 15a Waszyngtona Street, 15-269 Bialystok, Poland
2 Department of Microbiological Diagnostics and Infectious Immunology, University Hospital of Białystok, 15a Waszyngtona Street, 15-269 Bialystok, Poland

Correspondence should be addressed to Dominika Ojdana; dominika.ijdana@umb.edu.pl

Received 30 May 2014; Accepted 5 November 2014

An increase in the antibiotic resistance among members of the Enterobacteriaceae family has been observed worldwide. Multidrug-resistant Gram-negative rods are increasingly reported. The treatment of infections caused by Escherichia coli and other Enterobacteriaceae has become an important clinical problem associated with reduced therapeutic possibilities. Antimicrobial carbapenems are considered the last line of defense against multidrug-resistant Gram-negative bacteria. Unfortunately, an increase of carbapenem resistance due to the production of Klebsiella pneumoniae carbapenemase (KPC) enzymes has been observed. In this study we describe the ability of E. coli to produce carbapenemase enzymes based on the results of the combination disc assay with boronic acid performed according to guidelines established by the European Community on Antimicrobial Susceptibility Testing (EUCAST) and the biochemical Carba NP test. Moreover, we evaluated the presence of genes responsible for the production of carbapenemases (blaKPC, blaVIM, blaIMP, blaOXA-48) and genes encoding other β-lactamases (blaSHV, blaTEM, blaCTX-M) among E. coli isolate. The tested isolate of E. coli that possessed the blaKPC-3 and blaTEM-34 genes was identified. The tested strain exhibited susceptibility to colistin (0.38 μg/mL) and tigecycline (1 μg/mL). This is the first detection of blaKPC-3 in an E. coli ST479 in Poland.

1. Introduction

E. coli is a common etiological factor of urinary tract infection, gastroenteritis, neonatal meningitis, and many nosocomial infections such as pneumonia, bloodstream infections, and surgical site infections [1]. The treatment of infections caused by E. coli is challenging, because of the increasing resistance of bacteria to antibiotics. The phenomenon of multidrug resistance has been reported worldwide and results in reduction of therapeutic possibilities [2].

The aim of this study was to evaluate the presence of bla genes responsible for carbapenemases production (blaKPC, blaVIM, blaIMP, blaOXA-48) and genes encoding other β-lactamases (blaSHV, blaTEM, blaCTX-M). Additionally, we sought to determine the sequence type (ST) of a tested E. coli strain.

2. Materials and Methods

The tested E. coli strain was isolated in February 2014 from the swab of an intestinal fistula obtained from a patient hospitalized in the intensive care unit at the University Hospital of Białystok (Poland).

Biochemical identification (GN cards) and the preliminary susceptibility test (AST-N259 cards) were performed using the VITEK 2 automated system (bioMérieux, France). Additionally, the susceptibility to antibiotics of the tested strain was performed using E-tests (bioMérieux, France). The results of the susceptibility tests were interpreted according to EUCAST recommendations [3]. The screening detection of carbapenemases was performed according to EUCAST. Moreover, the biochemical Carba NP test was
performed according to the Nordmann and Poirel protocol [4]. Further, molecular analysis was performed with the use of polymerase chain reactions (PCRs). Plasmid DNA was extracted with the use of Plasmid Mini (A&A Biotechnology, Gdynia, Poland) according to the manufacturer’s instructions. PCR amplifications for bla genes responsible for carbapenemases production (blaKPC, blaVIM, blaIMP, blaOXA-48) and genes encoding other β-lactamases (blaSHV, blaTEM, blaCTX-M) were performed using appropriate primers and conditions as described previously [5–8]. PCR ampli-
cions were separated electrophoretically according to a previously described protocol [8]. Moreover, sequencing of bla amplicons was performed at Genomed (Warsaw, Poland).

Multilocus sequence typing (MLST) was performed ac-
cording to Institut Pasteur’s MLST scheme (http://www.pasteur.
.r/recherche/genopole/PF8/mlst/primers)

3. Results

The combination disc assay showed that the difference in the size of the inhibition zone between meropenem and meropenem with boronic acid was higher than 7 mm. The biochemical Carba NP test was positive after 1 minute. The obtained results indicated carbapenem resistance mediated by KPC among the tested strains of E. coli.

The tested strain was analyzed for the presence of resis-
tance mechanisms against β-lactam antibiotics using PCR amplifications for bla genes responsible for carbapenemases production (blaKPC, blaVIM, blaIMP, blaOXA-48) and genes encoding other β-lactamases (blaSHV, blaTEM, blaCTX-M). The blaKPC and blaTEM genes were found in E. coli. The obtained sequence of the blaKPC gene showed identity with the sequence of the blaKPC3 gene (GeneBank accession no. AF395881.1). The obtained sequence of the blaTEM gene showed identity with the sequence of the blaTEM34 gene (GeneBank accession no. KC844056.1) responsible for production of broad-spectrum β-lactamase type TEM-34. Results of PCRs and minimum inhibitory concentration (MIC) values of tested antibiotics are presented in Table 1.

The analysis of allelic profile (dinB-5, icdA-37, pabB-4, polB-10, putP-78, trpA-8, trpB-2, uidA-30) with use of the E. coli MLST sequence type database (http://www.pasteur.fr/cgi-bin/genopole/DF8/mlstdbnet.pl?page=profile-query&file=Eco_profiles.xml) showed that the tested E. coli strain belonged to the ST479 type.

4. Discussion

A significant increase of E. coli isolates resistant to third-generation cephalosporins has been observed in Europe [9]. Studies have shown a high percentage (65%–100%) of extended-spectrum β-lactamase (ESBL) production among E. coli isolates resistant to third-generation cephalosporins [10]. One of the therapeutic options for treatment of infections due to ESBL-producing E. coli may be carbapenems. Resistance against carbapenems among E. coli rods is uncommon, which may be a result of AmpC β-lactamase production and loss of porins. Unfortunately, strains resistant to carbapenems due to the production of KPCs have recently been observed [11].

KPC producers have previously been reported in distinct geographic locations: European countries (Greece, Israel, Spain, Italy, Portugal, France, Poland, Germany, UK, and the Czech Republic), the United States, China, and South America [12]. KPC production is mainly prevalent among Enterobacteriaceae species. The significant majority of reports describe identification and the prevalence of blaKPC genes among nosocomial K. pneumoniae strains. Moreover, the occurrence of blaKPC genes among other Enterobacteriaceae species, for example, E. coli, Enterobacter, and Citrobacter freundii was observed [13]. The most commonly reported variant is KPC-2. Single reports describe the occurrence of KPC-3 among E. coli in Europe. In Spain, a multiresistant E. coli strain producing both KPC-3 and VIM-1 carbapenemases was described. In Italy, a KPC-3-producing E. coli isolate was found in abdominal drainage. Both cases were reported in

MIC [µg/mL]	VITEK 2 automated system and AST-N259 card	
Antimicrobial agents	Diffusion test with use of E-tests	
Amikacin	R 96	R ≥ 64
Amoxicillin/clavulanic acid	N	R ≥ 32
Cefepime	1 4	1 2
Piperacillin/tazobactam	R > 256	R ≥ 128
Cefuroxime	N	R ≥ 64
Cefotaxime	N	R 2
Ceftazidime	R > 256	R 32
Colistin	S 0.38	S ≤ 0.5
Ertapenem	R 8	R 4
Gentamicin	R 16	I 4
Tobramycin	N	R ≥ 16
Aztreonam	R 192	N
Imipenem	I 3	I 8
Meropenem	S 0.75	I 1
Doripenem	I 1.5	N
Tigecycline	S 1	S ≤ 0.5
Ciprofloxacin	N	R ≥ 4
Trimethoprime/sulfamethoxazole	N	R ≥ 320

Genes encoding carbapenemases	Genes encoding other β-lactamases
blaKPC-positive*	blaTEM-positive**
blaVIM-negative	blaSHV-negative
blaOXA-48-negative	blaCTX-M-negative*
blaIMP-negative	blaIMP-negative

R: resistant; S: susceptible; I: intermediate; * genes encoding β-lactamase type KPC-3, ** genes encoding β-lactamase type TEM-34; N: not tested.
2014 [14]. Our study is first report of blaKPC-3 genes in E. coli ST479, in Poland.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors thank Małgorzata Dzieduszow and Elżbieta Jablonowska for technical assistance. They are grateful to Steven Snodgrass for editorial assistance. This work was partially funded by the Medical University of Białystok, Poland. Moreover, this work was supported by funds from Leading National Research Center in Białystok.

References

[1] R. Gaynes and J. R. Edwards, “Overview of nosocomial infections caused by gram-negative bacilli,” *Clinical Infectious Diseases*, vol. 41, no. 6, pp. 848–854, 2005.

[2] P. Nordmann, G. Cuzon, and T. Naas, “The real threat of *Klebsiella pneumoniae* carbapenemase-producing bacteria,” *The Lancet Infectious Diseases*, vol. 9, no. 4, pp. 228–236, 2009.

[3] The European Committee on Antimicrobial Susceptibility Testing, *Breakpoint Tables for Interpretation of MICs and Zone Diameters*, Version 4.0, 2014, http://www.eucast.org.

[4] P. Nordmann, L. Poirel, and L. Dortet, “Rapid detection of carbapenemase-producing *Enterobacteriaceae*,” *Emerging Infectious Diseases*, vol. 18, no. 9, pp. 1503–1507, 2012.

[5] P. T. Sacha, D. Ojdana, P. Wieczorek et al., “Genetic similarity and antimicrobial susceptibility of *Klebsiella pneumoniae*—producing carbapenemase (KPC-2) isolated in different clinical specimens received from University Hospital in Northeastern Poland,” *African Journal of Microbiology Research*, vol. 6, no. 41, pp. 6888–6892, 2012.

[6] M. J. Ellington, J. Kistler, D. M. Livermore, and N. Woodford, “Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases,” *Journal of Antimicrobial Chemotherapy*, vol. 59, no. 2, pp. 321–322, 2007.

[7] Z. Aktaş, C. B. Kayacan, I. Schneider, B. Can, K. Midilli, and A. Bauernfeind, “Carbapenem-hydrolyzing oxacillinase, OXA-48, persists in *Klebsiella pneumoniae* in Istanbul, Turkey,” *Chemotherapy*, vol. 54, no. 2, pp. 101–106, 2008.

[8] D. Ojdana, P. Sacha, and P. Wieczorek, “The occurrence of *blaCTX-M*, *blaERV*, and *blaTEM* genes in extended-spectrum β-lactamase positive strains of *Klebsiella pneumoniae*, *Escherichia coli*, and *Proteus mirabilis* in Poland,” *International Journal of Antibiotics*, vol. 2014, Article ID 935842, 7 pages, 2014.

[9] D. Kumar, A. K. Singh, M. R. Ali, and Y. Chander, “Antimicrobial susceptibility profile of extended spectrum β-lactamase (ESBL) producing *Escherichia coli* from various clinical samples,” *Infectious Diseases: Research and Treatment*, vol. 7, no. 2014, pp. 1–8, 2014.

[10] European Centre for Disease Prevention and Control, *Annual Epidemiological Report 2012. Reporting on 2010 Surveillance Data and 2011 Epidemic Intelligence Data*, ECDC, Stockholm, Sweden, 2013.