Cancer associated fibroblasts secreted exosomal miR-1290 contributes to prostate cancer cell growth and metastasis via targeting GSK3β

Shuo Wang1,2, Peng Du†1†, Yudong Cao1,2, Jinchao Ma1,2, Xiao Yang1, Ziyi Yu1 and Yong Yang1

© The Author(s) 2022

INTRODUCTION
Prostate cancer (PC) is the most common non-cutaneous cancer diagnosed in men with an estimated new 1,600,000 cases annually [1, 2]. Although the therapies for the treatment of PC including androgen deprivation therapy (ADT) surgical prostatectomy, radiotherapy and hormone therapy improve overall survival outcomes, severe side effects remain inevitable [3–5]. Therefore, identifying novel therapeutic targets for PC may promote the development of approaches for early detection and therapies. Increasing evidences indicated that the cellular interaction within the tumor microenvironment (TME) exhibits key roles in reprogramming tumor initiation, growth and metastasis [6, 7]. CAFs are the main stromal cells in the TME that facilitate the progression of human cancers via interacting with cancer cells [8, 9]. Recently, evidences have shown that CAFs could facilitate prostate tumor growth and invasion [10–12]. However, the mechanisms by which CAFs regulate the tumorgenesis of prostate tumor remain largely unknown.

CAFs could promote tumor growth and metastasis through communicating with cancer cells within TME [13]. In addition, the crosstalk between CAFs and cancer cells are often mediated by extra-cellular signals including exosomes [14]. Exosomes are 40–130 nm nano-sized extracellular vesicles that are secreted by cells [15]. Additionally, exosomes can act as mediators for intercellular crosstalk by the delivery of biomolecules, such as proteins, microRNAs (miRNAs), mRNA, DNA and lipids [16, 17]. miRNAs are able to negatively mediate gene expression [18, 19]. Furthermore, miRNAs are highly enriched in exosomes, and exosomes can transfer functional miRNA molecules from CAFs to cancer cells [20–22].

In the present study, our results indicated that miR-1290 level was significantly elevated in CAFs-Exo compared to NFs-Exo. In addition, CAFs could transfer exosomes to PC cells, resulting in a marked increase of miR-1290 level in cells. Moreover, exosomal miR-1290 could inhibit GSK3β/β-catenin signaling by binding with the downstream target GSK3β mRNA. Meanwhile, miR-1290 antagonist notably reversed the effects of CAFs-Exo on PC cells through activating GSK3β/β-catenin signaling. Collectively, exosomal miR-1290 from CAFs could promote PC cell growth and metastasis via inhibiting GSK3β/β-catenin signaling, suggesting that miR-1290 may serve as potential therapeutic target for the treatment of PC.

MATERIALS AND METHODS
Isolation of primary human fibroblasts
PC tissues and matched adjacent non-cancerous tissues (10 pairs) were collected from the patients with PC who underwent surgery. This study was approved by the Ethics Committee of Peking University Cancer Hospital & Institute, and each participant gave the written informed consent. According to previously report, primary human CAFs and NFs were isolated from tumor tissues and matched non-cancerous tissues respectively [23]. Next, the morphology of CAFs and NFs were captured with a light microscope.

Cell culture and cell transfection
Human PC cell lines PC3, 22RV1 and LNCaP were obtained from American Type Culture Collection. These cell lines were authenticated by STR
probing and tested negative for mycoplasma contamination. PC cells were cultured in F-12K medium or in RPMI-1640 (Thermo Fisher Scientific) containing 10% FBS in a humified 5% CO₂ atmosphere at 37 °C. In addition, CAFs and NFs were maintained in DMEM/F12 medium containing 10% FBS at 37 °C with 5% CO₂.

MiR-1290 agomir (50 nM), miR-1290 antagomir (anti-miR-1290, 100 nM) and negative control (NC) was purchased from RIBOBIO. Meanwhile, GSK3β was ligated into the pcDNA3.1 vector to obtain pcDNA3.1-GSK3β (GSK3β-OE) plasmids (GenePharma). Next, NC, miR-1290 agomir, anti-miR-1290 or GSK3β-OE plasmids were transfected into PC cells using Lipofectamine 2000.

Immunofluorescence (IF) assay
CAFs and NFs were probed with primary antibodies against vimentin (Abcam) and α-SMA (Abcam) overnight at 4 °C. Next, cells were incubated with secondary antibody conjugated with fluorescent Alexa Fluor® 594 (Abcam) in darkness. Finally, cells were captured with a fluorescence microscope. Nuclei were stained with DAPI for 15 min.

Exosome isolation and identification
Exosome isolation and uptake
NFs-Exo and CAFs-Exo were labeled with PKH26 membrane dye (Sigma). Next, PC3 cells were treated with above exosomes for 24 h and then photographed by a fluorescence microscope. Phalloidin was used to label F-actin of the cytoskeleton, DAPI was used to label nuclei.

RNA-seq
Total RNA was extracted from CAFs-Exo or NFs-Exo with the TRIpure Total RNA Extraction Reagent (ELK Biotechnology). RNA-seq libraries were prepared from all samples using the NEBNext Ultra Directional RNA Library Prep Kit for Illumina. Next, sequencing was performed by Illumina Hiseq sequencer (Illumina). The DEMs between CAFs-Exo and NFs-Exo were screened by the limma package. DEMs were obtained with |log2 (fold change)| > 1 and adjusted p-value < 0.05.

To predict the possible functions of the target genes of DEMs and the potential pathways they may participate in, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted [24].

Cell-counting Kit-8 (CCK-8) assay
PC3 and 22RV1 cells were plated onto 96-well plates overnight. Cells were then treated with CAFs-Exo or NFs-Exo (50 µg/ml) for 48 h at 37 °C. Later on, each well was added with CCK-8 reagent (10 µL, Beyotime), and cells underwent 2 h of incubation at 37 °C. Subsequently, the absorbance of each well was measured by a microplate reader at the wavelength of 450 nm.

Transwell assays
PC3 and 22RV1 cells (100 µL) suspended in serum-free media were added to the 24-well Transwell inserts (Corning). The lower chamber contained the culture medium with 10% FBS. Next, cells on the bottom surface of the chamber were stained with 0.2% crystal violet at 24 h. Later on, the migrated or invaded cells were examined using a microscope. For detecting cell invasion ability, Transwell inserts were pre-coated with matrigel (BD Bioscience).

Real-time quantitative polymerase chain reaction (RT-qPCR) assay
Total RNA was isolated by TRIpure Total RNA Extraction Reagent and transcribed using EntiLink™ 1st Strand cDNA Synthesis Kit. Later on, qPCR was conducted with the EnTurbo™ SYBR Green PCR SuperMix kit and analyzed with the StepOne™ Real-Time PCR System. The level of each miRNA was normalized against U6, using 2^（ΔΔCT）method. U6 forward, 5'-CTCCTCCTCCGACCACT-3’ and reverse, 5’-AACGGTTCAGCAATTTGCCGT-3’; miR-135b-3p forward, 5’-CCAGTATGGCGTAAAGACCC-3’ and reverse, 5’-CTCAACTGGTGCTGTGAGCT-3’; miR-549a-3p forward, 5’-CCGGTGACACACTTGGATGAG-3’ and reverse, 5’-CTCACTTGGTGGTGCTGGAGCT-3’; miR-1290 forward, 5’-GGCTGGATTTTTTGGATAGG-3’ and reverse, 5’-CTCAACTGTTGTTGACAC-3’; miR-224-5p forward, 5’-GAAGGACTCCAGAGTGTGGT-3’ and reverse, 5’-CTCAACTGGTGCTGTGAGCT-3’; miR-1290 forward, 5’-CTCACTTGGTGGTGCTGGAGCT-3’; GSK3β forward, 5’-GGCTGCCAGGAAAACCACCC-3’; reverse, 5’-CCCCCTTGATCCCTCCCCA-3’. All kits were provided from ELK Biotechnology.

Fig. 1 Characteristics of fibroblasts derived from patients with PC. A Representative morphology of CAFs and NFs isolated from patients with PC. Upper panels, scale bar = 50 µm; lower panels, scale bar = 20 µm. B, C IF staining for vimentin and α-SMA expressions of CAFs and NFs. Scale bar = 20 µm.
Sphere-forming assay
PC3 and 22RV1 cells were cultured in DMEM/F12 medium containing 4 ng/ml insulin (Sigma), 2% B27 (Thermo Fisher Scientific), 20 ng/ml EGF (Sigma), 10 ng/ml FGF (Sigma). After 14 days of incubation, cells were observed under a light microscopy.

Luciferase reporter and TOPflash reporter assays
The fragment of 3′UTR of GSK3β containing the binding site of miR-1290 was inserted into the pGL6-miR-based luciferase reporter vector. Next, PC3 cells were co-transfected with well-designed pGL6-miR-based reporter plasmids, along with a miR-1290 agomir using Lipofectamine 2000 for 48 h. Subsequently, the Dual Luciferase Reporter Assay System (Beyotime) was used to measure luciferase activity in cell lysates. For the TOPflash reporter assay, PC3 cells were co-transfected with TOPflash reporter gene (TCF Reporter Plasmid; Millipore), along with anti-miR-1290. At 48 h post-transfection, the reporter activities were assayed by Dual Luciferase Reporter Assay System (Beyotime). Renilla luciferase activity was used for normalization.

RNA pull-down assay
The biotinylated-miR-1290 probe was incubated with Dynabeads™ M-280 (Thermo Fisher Scientific) at 4 °C for 30 min. PC3 cells were collected, lysed, and sonicated. After that, the biotin-beads complex was added to the lysates and incubated at 4 °C overnight with gentle mixing by vortex. Subsequently, the RNA mix bound to the beads was eluted and extracted with TRIzol reagent (Thermo Fisher Scientific). Later on, RNA samples were
Animal models
Male BALB/c nude mice (18–22 g; 6 weeks old) were obtained from the Charles River. PC3 cells (1 × 10^7 cells in 200 μL PBS) were injected into the left flank of each mouse subcutaneously. When the tumor reached about 200 mm^3, mice were divided into 4 groups (n = 6 per group; the sample size used in animal study is usually based on the experience in previous research) randomly: control, NFs-Exo, CAFs-Exo and CAFs-Exo + anti-miR-1290. After that, NFs-Exo or CAFs-Exo (1 mg/kg) was injected into the tumor twice a week. Meanwhile, 50 nM miR-1290 agomir was injected into the tumor twice per week. Animals were sacrificed on day 21, and the tumors were isolated and weighted.

Regarding as liver metastasis model, nude mouse was anesthetized with 1% pentobarbital sodium. After that, the spleen of mouse was subcapsularly injection of PC3 cells (5 × 10^6 cells). Mice were sacri-

RESULTS

CAFs-Exo promoted PC cell migration and invasion
CAFs play key roles in tumor progression through transferring exosomes to neighboring cells [25]. To explore the role of CAFs in PC progression, NFs and CAFs were collected from patients with PC firstly. Then, cell morphologies were observed using a microscope. CAFs and NFs displayed the typical spindle-shape morphology (Fig.1A). Additionally, CAFs and NFs were positive for vimentin, which was verified by IF assay (Fig. 1B). Meanwhile, a-SMA level was much higher in CAFs than that in NFs (Fig. 1C).

Collectively, CAFs and NFs were isolated successfully.

Next, exosomes were isolated from the supernatant of CAFs (CAFs-Exo) and NFs (NFs-Exo), and the isolated vesicles were identified using TEM, nanoparticle tracking analysis (NTA) and western blot analysis. The results indicated that these vesicles (40–130 nm in diameter) were round and cup-shaped (Fig. 2A, B).

In addition, exosomal markers TSG101 and CD9 were highly expressed, but exosomal negative marker calnexin was negative expressed in these vesicles. (Fig. 2C and Supplemental Material). These results suggested that the isolated vesicles were exosomes.

To determine if exosomes could be absorbed by PC3 cells, PKH26-labeled CAFs-Exo or PKH26-labeled NFs-Exo were added into PC3 cells. The results revealed that PKH26 dye was observed in CAFs-Exo- and NFs-Exo-treated PC3 cells, indicating that exosomes released by CAFs and NFs could be internalized by PC3 cells (Fig. 2D).

We next to explore the effects of CAFs-Exo on PC cells (PC3 and 22RV1 cells). Compared to NFs-Exo, CAFs-Exo remarkably enhanced PC cell proliferation, migration, and invasion (Fig. 3A–C). Collectively, CAFs-Exo facilitated PC cell migration and invasion.

Identification of the DEMs between CAFs-Exo and NFs-Exo
As we know, exosomes could shuttle miRNAs to neighboring cells in the TME [26]. To explore the mechanisms how CAF-Exo exerts their pro-tumor effects on PC cells, the DEMs between CAFs-Exo and NFs-Exo was investigated using RNA sequencing assay. As shown in Fig. 4A, B, 7 downregulated miRNAs and 11 upregulated miRNAs were detected in CAF-Exo compared with NFs-Exo. In addition, GO results showed that the target genes of these 18
DEM were primarily enriched in “regulation of cell communication”, “intracellular” and “cellular process” (Fig. 4C). KEGG pathway analysis revealed that the target genes of DEMs were mainly involved in “microRNAs in cancer” pathway (Fig. 4D).

CAFs secreted exosomal miR-1290 promoted PC cell migration, invasion, EMT, and stemness

With the aim of exploring the DEMs, cell experiments were conducted accordingly. Among these DEMs, miR-1290, miR-135b-5p and miR-224-5p level was notably elevated in CAFs-Exo compared to NFs-Exo (Fig. 5A). In addition, we found miR-1290 level was obviously elevated in PC tissues compared to adjacent normal tissues (Supplementary Fig. 1A). Moreover, high miR-1290 level correlated with shorter overall survival rates in patients with castration-resistant PC [27]. Meanwhile, miR-1290 level was obviously elevated in CAFs compared with that in NFs (Supplementary Fig. 1B). Thus, we focused our attention on miR-1290 in the next experiments, since the level of miR-1290 in CAFs-Exo was much higher that in NFs-Exo (Fig. 5A).

Next, the result of RT-qPCR assay showed the level of miR-1290 was notably elevated in PC cells incubated with CAFs-Exo compared to cells treated with NFs-Exo (Fig. 5B). In addition, anti-miR-1290 remarkably lessened miR-1290 level in PC cells (Fig. 5C). Furthermore, CAFs-Exo significantly enhanced PC cell proliferation, migration, and invasion, whereas these phenomena were abolished by anti-miR-1290 (Fig. 5D–F). Moreover, CAFs-Exo remarkably increased the sphere-forming efficiency and notably elevated stemness markers CD133 and OCT4 expressions in PC cells; however, the effects of CAFs-Exo were reversed by anti-miR-1290 as well (Fig. 6A–C and Supplemental Material). Meanwhile, CAFs-Exo markedly downregulated E-cadherin level and upregulated N-cadherin and vimentin level in PC cells compared to NFs-Exo, whereas the effects of CAFs-Exo were abolished by anti-miR-1290 (Fig. 6B, C and Supplemental Material). All these data illustrated that CAFs secreted exosomal miR-1290 was able to promote PC cell migration, invasion, EMT and stemness.

GSK3β is a direct target of miR-1290 in PC cells

To explore the mechanism by which CAFs secreted exosomal miR-1290 promoted the growth and tumorgenesis in PC, the downstream targets of miR-1290 were predicted by TargetScan [28], miRWalk [29], and DIANA-microT databases [30], as described previously. These databases commonly indicated that GSK3β might be the direct target of miR-1290 (Fig. 7A). In addition,
GSK3β has been found to exhibit a key role in the development of human cancers such as breast cancer, colorectal cancer, and PC [31–33]. RT-qPCR result showed that GSK3β level was notably downregulated in PC tissues compared to normal tissues (Supplementary Fig. 1C). Moreover, dual-luciferase reporter assay showed that the luciferase activity was lower in PC cells co-transfected with GSK3β-WT and miR-1290 agomir (Fig. 7B). Furthermore, miR-1290 agomir markedly reduced GSK3β level in PC cells (Fig. 7C and Supplemental Material). Additionally, RNA pull-down assay results revealed that GSK3β could be pulled down by miR-1290 directly (Fig. 7D). Collectively, GSK3β is a direct binding target of miR-1290.

Next, TOPflash reporter assay was used to examine the effect of exosomal miR-1290 on the Wnt pathway in PC3 cells. The result suggested that CAFs-Exo remarkably increased transcriptional activity of TOP, while anti-miR-1290 could reverse the enhancement of the transcriptional activity of TOP caused by CAFs-Exo (Fig. 7E). Meanwhile, CAFs-Exo significantly elevated β-catenin, c-Myc and Cyclin D1 level and reduced GSK3β level in PC cells compared to NFs-Exo, whereas these changes were reversed by anti-miR-1290 (Fig. 7F, G and Supplemental Material).

Furthermore, the effects of CAFs-Exo on cellular proliferation, migration and invasion were evaluated in an androgen-dependent PC cell line (LNCaP). As shown in Supplementary Fig. 2A, GSK3β level was notably reinforced in LNCaP cells when transfected with GSK3β-OE plasmids. Meanwhile, CAFs-Exo significantly facilitated LNCaP cell proliferation, migration, and invasion (Supplementary Fig. 2B, C). Consistently, anti-miR-1290 abolished the promotion effect of CAFs-Exo on LNCaP cell proliferation. Importantly, the effects of anti-miR-1290 on cells were all abolished when GSK3β was overexpressed (Supplementary Fig. 2B, C). To sum up, CAFs secreted exosomal miR-1290 was able to promote the growth and tumorgenesis of PC cells through inhibiting GSK3β/β-catenin signaling.

CAFs secreted exosomal miR-1290 promoted PC cell growth and metastasis in vivo through downregulation of GSK3β

Finally, we explored the effect of CAFs-Exo on the growth and metastasis of PC in vivo. Upon subcutaneous transplantation of PC3 cells, CAFs-Exo notably increased the tumor volume and weight compared to control or NFs-Exo group, whereas, that effects were significantly inhibited by anti-miR-1290 (Fig. 8A–C).
addition, IHC assay result revealed that the number of Ki67-positive tumor cells was much higher in CAFs-Exo-treated group than that in the control or NFs-Exo group; however, this phenomenon was reversed by anti-miR-1290 (Fig. 8D). Meanwhile, a mouse model of liver metastasis was established by subcapsular injection of the spleen method, and the data indicated that increased liver metastatic nodules were detected in CAFs-Exo group compared to control or NFs-Exo group. Similar to Ki67 stating, the promoting effect of CAFs-Exo on tumor metastasis was significantly inhibited by anti-miR-1290 (Fig. 8E).

DISCUSSION

CAFs in the TME have emerged as important player in the development of human cancers, including prostate cancer [9, 34, 35]. In addition, crosstalk between CAFs and cancer cells in the TME contributes to tumor invasion and metastasis in various cancers [36–38]. Recently, exosomes have been found to emerge as critical mediators for intercellular communication between cancer cells and CAFs through transporting biomolecules including miRNAs [22, 39]. A recent study reported that breast cancer cell-derived exosomes could accelerate the activation of CAFs [40]. Donnarumma et al reported that CAFs-Exo was able to promote the EMT process and breast cancer cell stemness [41]. Hu et al. found that CAFs-Exo could enhance colorectal cancer cell metastasis through enhancing cell stemness and EMT [42]. Yang et al. showed that CAFs-derived exosomal miR-210 was able to promote the migration and invasion of non-small cell lung cancer cells [43]. In the present study, we found that CAFs-Exo notably enhanced PC cell migration and invasion. Additionally, CAFs-Exo promoted PC cell stemness via upregulation of CD133 and OCT4. All these data indicated that CAFs-Exo was able to enhance PC cell migration, invasion, EMT and stemness. However, the mechanisms by which CAFs-Exo promoted cancer growth and metastasis remain largely unclear. Thus, we focus on investigating the communication between CAFs and PC cells.

Recent studies revealed that exosomes contribute to tumor progression in cancer cells through delivering miRNAs [44, 45]. Thus, RNA-sequencing assay was performed to screen DEMs...
between NFs-Exo and CAFs-Exo. Our results indicated that miR-1290 level was highly expressed in CAFs-Exo compared to NFs-Exo. MiR-1290 was found to be abnormally upregulated in human cancers, such as non-small cell lung cancer, oral squamous cell carcinoma and gastric cancer [46–48]. The data from Starbase showed that there are no differences regarding as miR-1290 level between PC tissues (n = 5) and normal tissues (n = 2) (Supplementary Fig. 3A). However, the sample size was too small to draw a meaningful conclusion. Our results found that miR-1290 level was obviously upregulated in PC tissues. Similar to our result, exosomal miR-1290 was found to act as a prognostic marker in castration-resistant PC, and increased miR-1290 level was related to worse overall survival of patients with castration-resistant PC [27]. However, it is still unclear why miR-1290 level is increased in PC cells. Our results indicated that CAFs could transfer exosomes to PC cells, leading to the increase of miR-1290 in PC cells. Furthermore, CAFs-Exo promoted PC cell migration, invasion, EMT and stemness, whereas these effects were abolished by anti-miR-1290. EMT and cancer stem-like cells (CSCs) have emerged as important contributors to drive metastatic dissemination of carcinomas [49–51]. These data showed that CAFs secreted exosomal miR-1290 promoted EMT and stemness, leading to the metastasis of PC. Thus, we speculated that blocking the function of CAFs-secreted exosomal miR-1290 might serve as an alternative approach for the treatment of PC.

MiRNAs play key roles in cancer progression through regulating target gene expressions [52]. MiR-1290 could promote the proliferation of colorectal cancer cells via targeting INPP4B [53]. Additionally, Yan et al. showed that miR-1290 contributed to glioma cell migration and invasion through downregulating LHX6 [54]. Meanwhile, Wu et al. found that GSK3β was a direct target of miR-1290 in A549 cells [55]. Our results consistent with the previous research showing that GSK3β is a downstream target gene of miR-1290. GSK3β is a serine/threonine kinase involved in multiple cellular processes such as cell proliferation, cell cycle and metabolic pathways [56–58]. The data from TCGA database showed that there is no difference as for GSK3β level between PC tissues and adjacent normal tissue (Supplementary Fig. 3B).
However, our results showed that GSK3β level was notably reduced in PC tissues. The reason for this disparity may be due to the individual differences in patients with PC.

Importantly, GSK3β was able to contribute to the degradation of β-catenin, which related to cell proliferation [59–61]. Meanwhile, upregulation of the Wnt/β-catenin signaling pathway could promote prostate cancer development [62, 63]. Thus, we focus on investigating the relationships among miR-1290, GSK-3β, and β-catenin in PC cells. MI-R1246 has been found to enhance lung cell migration and invasion by activating Wnt/β-catenin signaling via inhibiting GSK-3β expression [56]. In this study, we found that CAFs-Exo obviously reduced GSK3β level and elevated β-catenin, c-Myc and Cyclin D1 level in PC cells in vitro and in vivo; whereas these changes were reversed by anti-miR-1290. Collectively, CAFs secreted exosomal miR-1290 promoted PC cell growth and metastasis via downregulating GSK3β-β-catenin signaling.

It has been shown that one miRNA can regulate numerous mRNAs [64]; thus, more studies are needed to investigate whether exosomal miR-1290 affects the progression of PC via targeting other genes.

CONCLUSION

Collectively, we found that exosomal miR-1290 from CAFs could promote tumor growth and metastasis via downregulating GSK3β-β-catenin signaling, suggesting that inhibiting CAFs-derived exosomal miR-1290 may provide a new modality for the treatment of growth and metastasis in PC.

DATA AVAILABILITY

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

1. Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32:1105–40.
2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.
3. Janiczek M, Szylberg L, Kasperska A, Kowalewska A, Parol M, Antosik P, et al. Immunotherapy as a promising treatment for prostate cancer: A systematic review. J Immunol Res. 2017;2017:4861570.
4. Gharbi J, Heidenreich A, Andreastro P, et al. Microvesicles in prostate cancer: An update. Cancers (Basel). 2018;10:406.
5. Mokbel K, Wazir U, Mokbel K. Chemoprevention of prostate cancer by natural agents: Evidence from molecular and epidemiological studies. Anticancer Res. 2019;39:5231–59.
6. Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020;5:166.
7. Corn KG, Windham MA, Rafat M. Lipids in the tumor microenvironment: From cancer progression to treatment. Prog Lipid Res. 2020;80:101055.
8. Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 2017;45:229–36.
9. Kubo N, Araki K, Kuwano H, Shiraibe K. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol. 2016;22:6841–50.
10. Yu S, Jiang Y, Wan F, Wu J, Gao Z, Liu D. Immortalized cancer-associated fibroblasts promote prostate cancer carcinogenesis, proliferation and invasion. Anticancer Res. 2017;37:4311–8.
11. Neuvirt H, Bouchal J, Kharaischvili A, Pitterl F, et al. Microvesicle-associated fibroblasts promote prostatic cancer growth and progression through upregulation of cholesterol and steroid biosynthesis. Cell Commun Signal. 2020;18:11.
12. Zhang Y, Zhao J, Ding M, Su Y, Cui D, Jiang C, et al. Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis. J Exp Clin Cancer Res. 2020;39:282.
13. Zhou Q, Wu X, Wang X, Yu J, Pan T, Li Z, et al. The reciprocal interaction between tumor cells and activated fibroblasts mediated by TGF-αR1/3L2L signaling promotes gastric cancer metastasis. Oncogene 2020;39:1414–28.
10

41. Donnarumma E, Fiore D, Nappa M, Roscigno G, Adamo A, Iaboni M, et al. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget. 2017;8:19592–608.

42. Hu JL, Wang W, Lan XL, Zeng ZC, LiangYS, Yan YR, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell sterness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18:91.

43. Yang F, Yan Y, Yang Y, Hong X, Wang M, Yang Z, et al. MiR-210 in exosomes derived from CAFs promotes non-small cell lung cancer migration and invasion through PTEN/PI3K/AKT pathway. Cell Signal. 2020;73:109765.

44. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer. 2020;19:43.

45. Dou D, Ren X, Han M, Xu X, Ge X, Gu Y, et al. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PTEN-L1 pathway. Front Immunol. 2020;11:2026.

46. Jin JJ, Liu YH, Si JM, Ni R, Wang J. Overexpression of miR-1290 contributes to cell proliferation and invasion of non small cell lung cancer by targeting interferon regulatory factor 2. Int J Biochem Cell Biol. 2018;95:113–20.

47. Qin WJ, Wang WP, Wang XH, Zhang XT, Du JD. MiR-1290 targets CCNG2 to promote the metastasis of oral squamous cell carcinoma. Eur Rev Med Pharmacol. 2019;23:10332–42.

48. Lin M, Shi C, Lin X, Pan J, Shen S, Xu Z, et al. sMicroRNA-1290 inhibits cells proliferation and migration by targeting FOXA1 in gastric cancer cells. Gene. 2016;582:137–42.

49. Li Y, Lu Z, Zhang S, Wang Z, He L, Tang M, et al. Genetic fate mapping of transient cell fate reveals N-Cadherin activity and function in tumor metastasis. Dev Cell. 2020;54:593–607.e595.

50. Bakir B, Chiarella AM, Pitaresi JR, Rustgi AK, EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 2020;30:764–76.

51. Babaei G, Aiz SG, Jaghi NZZ. EMT, cancer stem cells and autophagy: The three main axes of metastasis. Biomed Pharmacother. 2021;133:110909.

52. Wu M, Wang G, Tian W, Deng Y, Xu Y, MiRNA-based Therapeutics for Lung Cancer. Curr Pharm Des. 2018;24:5989–96.

53. Ma Q, Wang Y, Zhang H, Wang F. miR-1290 contributes to colorectal cancer cell proliferation by targeting INPP4B. Oncol Res. 2018;26:1167–74.

54. Yan L, Cai K, Sun K, Gu J, Liang J. MiR-1290 promotes proliferation, migration, and invasion of glioma cells by targeting LHX6. J Cell Physiol. 2018;233:6621–9.

55. Wu L, Liu T, Xiao Y, Li X, Zhi J, Zhao Y, et al. Polygonatum odoratum lectin induces apoptosis and autophagy by regulation of microRNA-1290 and miR-15a-3p in human lung adenocarcinoma A549 cells. Int J Biol Macro. 2016;85:217–26.

56. Yang F, Xiong H, Duan L, Li Q, Li X, Zhou Y. MiR-1246 promotes metastasis and invasion of A549 cells by targeting GSK3β-Mediated Wnt/β-catenin pathway. Cancer Res Treat. 2019:51:1420–9.

57. Walz A, Ugolok A, Chandra S, Kozikowski A, Carneiro BA, O’Halloran TV, et al. Molecular pathways: Revisiting glycogen synthase kinase-3β as a target for the treatment of cancer. Clin Cancer Res. 2017;23:1891–7.

58. Pecoraro C, Faggion B, Ballboni B, Carbono D, Peters GJ, Diana P, et al. GSK3β as a novel promising target to overcome chemoresistance in pancreatic cancer. Drug Resist Updat. 2021;58:100779.

59. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Effects of cannabinoid interactions with β-catenin pathway and PPARY on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin (Shanghai). 2017;49:853–66.

60. Reabarzi S, Chairoungdua A, Saeneng K, Kasemsuk T, Saengsawang W, Zhu W, et al. A silyl andrographolide analogue suppresses Wnt/β-catenin signaling pathway in colon cancer. Biomed Pharmacother. 2018;101:414–21.

61. Rubinfeld B, Albert L, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272:1023–6.

ACKNOWLEDGEMENTS
This study was supported by the Science Foundation of Peking University Cancer Hospital-2021-7.

AUTHOR CONTRIBUTIONS
SW, YC, and JM made major contributions to the conception, design, investigation, and manuscript drafting of this study. XY, ZY, and YY were responsible for investigation, data analysis, data interpretation. PD made substantial contributions to conception and design of the study and revised the manuscript critically for important intellectual content. All authors agreed to be accountable for all aspects of the work. All authors read and approved the final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
All procedures were approved by the ethics committee of the Peking University Cancer Hospital & Institute.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41420-022-01163-6.

Correspondence and requests for materials should be addressed to Peng Du.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022