Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution

S Ahmad¹, Y C Wong² and K V Veloo¹
¹Faculty of Agro-Based Industry, University of Malaysia Kelantan, Locked bag 100, 17600, Jeli, Kelantan, Malaysia
²Faculty of Bioengineering and Technology, University of Malaysia Kelantan, Locked bag 100, 17600, Jeli, Kelantan, Malaysia

E-mail: veni.v@umk.edu.my

Abstract. Reactive red 120 is used as a textile dye for fabric coloring. The dye waste is produced during textile finishing process subsequently released directly to water bodies which giving harmful effects to the environment due to the carcinogenic characteristic. Adsorption process becomes an effective treatment to treat textile dye. This research emphasizes the treatment of textile dye namely reactive red 120 (RR120) by using sugarcane bagasse powder. The batch study was carried out under varying parameters such as 60 minutes contact time, pH (1-8), dye concentration (5-25 mg/L), particle size (125-500 µm) and biosorbent dosage (0.01-0.2 g/L). The maximum adsorption percentage of RR120 was 94.62%. The adsorption of dye was increased with the decreasing of pH, initial dye concentration and particle size. Sugarcane bagasse powder as low-cost biosorbent was established using Fourier Transform Infrared (FTIR) and scanning electron microscopy (SEM). This locally agricultural waste could be upgraded into useful material which is biosorbent that promising for decolorization of colored textile wastewater.

1. Introduction
Dye is commonly applied in many industrial sectors such as food, paper, plastics, pharmaceuticals, cosmetics and widely used in textile industry [1-3]. However, the usage of dye upon urbanization giving rise to colored water pollution when the colored water discharge from the factory not properly treated. 10-15% dye is lost during textile finishing process which directly releases to water source [4]. The colored water imperils the environment since the dye is noted as among most hazardous pollutant [5]. As years past, many conventional methods have been used to treat textile effluent, for instance, ion exchange, Fenton-reagent method, electrochemical, precipitation, membrane separation, reverse osmosis, fungal decolorization and microbial degradation [6]. Since the dye is very stable and not degradable material it could not completely treat by a conventional method and will produce secondary pollutant as a by-product. In recent years, adsorption as a surface phenomenon has gained wide attention and popularly used in textile wastewater treatment [7]. Adsorption is a simple method, easy to handle, function able at very low concentration, safe and cost effective to remove pollutant in the textile wastewater compared to the previous methods [8]. Some of the adsorbents are proven as good dye remover precursors such as durian seed [9], coffee [10], rambutan peel [11, 12], rice husk [13, 14], egg shell [15, 16] including sugarcane bagasse [17, 18]. Sugarcane bagasse known as one of largest
agro-industrial waste in Malaysia which consists of lignin (18%), cellulose (45%) and hemicellulose (28%) [19]. Agricultural waste selected is free availability, easier to obtain including can solve the agricultural waste disposal problem. Sugarcane bagasse was used in removing safranin O with the adsorption capacity obtained 62.884 mg/g, 58.853 mg/g and 54.822 mg/g for base-treated SB, raw SB and acid-treated SB respectively [20]. It was known as an efficient adsorbent on the adsorption of Congo red with adsorption capacity 38.2 mg/g and followed pseudo-second order kinetic model [21]. A study reported adsorption capacity on methylene blue and acid orange II removal using sugarcane bagasse treated with propionic acid achieved were 59.5 mg/g and 25.5 mg/g respectively [22]. This research emphasizes the removal of reactive red 120 using sugarcane bagasse powder. The batch study was carried out under varying parameters such as contact time, pH, dye concentration, particle sizes and biosorbent dosage.

2. Experimental

2.1. Materials
Sugarcane bagasse was collected from roadside juice hawker in Tanah Merah, Kelantan. Modifying agents were 0.1-1.0 M of HCl and NaOH as pH adjustment and reactive red 120 (C_{44}H_{24}Cl_{2}N_{14}Na_{6}O_{20}S_{6}) was purchased from Sigma-Aldrich, USA.

![Molecular structure of reactive red 120](image)

Figure 1: The molecular structure of reactive red 120 [23].

2.2. Preparation of biosorbent
Sugarcane bagasse was collected, cut into small pieces (approximately 2 cm) and washed for three times with tap water followed by deionized water to remove the dust and any dirty, that would affect the analytical procedure. The wet sugarcane bagasse then dried under the sun and continued drying process in the oven at 60°C for 24 hours. The dried sugarcane bagasse was ground into powder, sieved at 125, 150, 300 and 500 µm and kept into powder jars for experimental usage and characterization purposes such as scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR).

2.3. Adsorption experiment
Biosorbent was added into the 100 mL of the dye solution at 15 mg/L of dye concentration and pH 3 in 250 mL Erlenmeyer flask. The experiment was carried out on a multi-channel shaker at 150 rpm and at room temperature. The sample was withdrawn at a determined contact time (10, 15, 30, 45 and 60 minutes) and filtered using filter paper. The optimum contact time was determined at minute 15th and used throughout further adsorption experiments. The absorbance of the supernatant was determined at maximum wavelength 514 nm using UV/VIS spectrophotometer. The result was reported on the basis of percentage dye removal. The efficiency of dye removal percentage was measured by following equation (1) [24].

\[
\text{Dye removal (\%) } = \frac{(C_i - C_t)}{C_i} \times 100
\]
Where C_i and C_t refers to initial dye concentration (mg/L) and dye concentration in the solution at contact time t.

2.4. Characterization

Fourier Transform Infrared FTIR (Thermo Scientific Nicolet iN10 Infrared Microscope) analysis was applied to the sugarcane bagasse powder and dye-loaded sugarcane bagasse powder to determine the surface functional groups and the spectra were recorded from 4000 to 500 cm$^{-1}$. Scanning electron microscopy (SEM) characterization is a technique to analyze morphology and topography of biosorbent surface material. It is also used to determine the particle shape and porous structure of biosorbent.

3. Results and discussion

3.1. Characterization of prepared biosorbent

3.1.1. Fourier Transform Infrared (FTIR).

Figure 2 showed a broad band at 3334.25 cm$^{-1}$ indicated the presence of hydroxyl group, O-H in cellulose, hemicellulose, and pectin. At 2894.62 cm$^{-1}$ peak showed stretching correspond to asymmetric and symmetric vibrations of $-\text{CH}_2$ group respectively [25]. The presence of peaks at 1728.25 and 1603.76 cm$^{-1}$ indicated carbonyl group, C=O and alkene group, C=C stretching vibration. The vivid absorption band of carboxylic acid group, C-OH stretch at 1033.91 cm$^{-1}$ might be presented in cellulose.

![FTIR spectrum of sugarcane bagasse powder](image)

Figure 2: FTIR spectrum of sugarcane bagasse powder.

3.1.2. Scanning electron microscopy (SEM).

The micrographs showed before and after dye adsorption. Based on the micrographs in Figure 3, micrograph (a) represented biosorbent before dye adsorption meanwhile micrograph (b) showed dye-loaded sugarcane bagasse powder for reactive red 120. There were significant differences between before and after dye adsorption of sugarcane bagasse powder morphological surface. Micrograph (a) clearly showed that sugarcane bagasse powder was porous and fibrous texture. Dye filled the empty pores of biosorbent surface vividly seen in the micrographs (b). The result was almost similar with safranin O adsorption using sugarcane bagasse [20].
3.2. Effect of contact time
The effect of contact time on the dye removal percentage of sugarcane bagasse was investigated at different contact times (1, 3, 5, 7, 10, 15, 30, 45 and 60 minutes) using 100 mL solution. Generally, the dye removal percentage was increasing with the increase of the contact time [26]. The result showed the dye percentage removal was increased rapidly at the initial stage of 10th-minute dye adsorption due to a large number of free surface sites of biosorbent were available [12]. After that, it was gradually increased from 28.23% to 37.10% at the 15th minute. After a 15th minute of dye adsorption, the percentage of dye removal showed no significant difference in the amount of removing dye in this state. This could be considered as equilibrium state since the active sites of biosorbent were fully occupied. Therefore, it was concluded that at 15th minute as an optimum time for reactive red 120 removal using sugarcane bagasse powder.

![Micrographs of reactive red 120 before adsorption (a) and dye-loaded sugarcane bagasse powder after adsorption (b).](image)

3.3. Effect of pH
The solution pH is an important factor in the adsorption process as it may affect the surface charge of adsorbent and the ionization degree of the dye. As shown in Figure 5 the percentage of dye removal was found to decrease with the increase of pH value. At pH 1 showed the highest percentage of dye removal (76.62%) which indicated as optimum pH. The dye removal percentage slowly decreased from 76.62 to 9.71% for pH 1 to 8 respectively. At low pH, the dye removal percentage higher because there was an electrostatic attraction between negative charges of anionic dye and positively charge biosorbent surface [27]. As going up the pH scale caused the number of positively charges surface site decreased and negatively charges increased [28]. This condition caused electrostatic repulsion between

![Graph showing percentage of dye removal vs. time.](image)
biosorbent and anionic dye which caused the decrement of the percentage of dye removal onto sugarcane bagasse.

![Figure 5: The percentage removal of various pH onto sugarcane bagasse powder for RR120 (Biosorbent dosage= 0.2 g/L, initial dye concentration= 15 mg/L, time= 15 minutes time interval, temperature= room temperature, particle size= 300 µm, agitation speed=150 rpm).]

3.4. Effect of dye concentration
The initial dye concentration parameter provides a vital driving force to encounter all mass transfer resistance of the dye between the dye molecules and solid phase adsorbent [29]. Figure 6 illustrated the percentage of dye removal decreased from 88.19 to 67.29% for RR120 with the increase of dye concentration (5-25 mg/L). The increased of dye concentration lead to decrease in adsorption process, suggesting the adsorption of this phenolic dye was highly dependent on dye concentration. This phenomenon was caused unoccupied active sites on the biosorbent surface were filled with dye molecules and saturation of biosorbent surface might be occurred when the dye concentration increased [30]. Saturation happened due to limited capacity of biosorbent surface which similar to the adsorption of methylene blue and crystal violet by sugar can stalks [31]. This finding agreed with the literature, the adsorption of methylene blue, bromophenol blue and coomasive brilliant blue by α-chitin nanoparticles could be removed using very low dye concentration which were 6, 10 and 5 mg/L referred to methylene blue, bromophenol blue and coomasive brilliant blue respectively [32]. In recent study, low dye concentration which 10 mg/L applied to remove methylene blue using activated orange peel resulted maximum dye percentage 88% compared to 50 mg/L which just 82% [33].

![Figure 6: The percentage removal of various initial dye concentration onto sugarcane bagasse powder for RR120 (Biosorbent dosage= 0.2 g/L, pH=1, time= 15 minutes, temperature= room temperature, particle size= 300 µm, agitation speed=150 rpm).]
3.5. Effect of particle size

Figure 7 presented the highest percentage of dye removal (95.20%) obtained by using smallest particle size (125 µm) which as expected. The maximum dye removal followed by other particle sizes such as 150, 300 and 500 µm which resulted to 87.02, 80.88 and 79.42% of dye removal respectively. The decreasing of particle size of sugarcane bagasse powder have increased the adsorption rate of RR120. Low particle size would increase the surface area availability which increased the active sites of sugarcane bagasse [34]. This was agreed with previous study onto reactive red 120 dye removal using Chara Contraria [35]. In the study found the dye uptake increased with decreasing particle sizes. The optimum particle size evaluated was 125-250 µm.

![Figure 7: The percentage removal of various particle sizes onto sugarcane bagasse for RR120 (Biosorbent dosage = 0.2 g/L, pH = 1, contact time = 15 minutes, temperature = room temperature, dye concentration = 5 mg/L, agitation speed = 150 rpm).](image)

3.6. Effect of biosorbent dosage

The effect of various biosorbent dosage was studied at room temperature by using the biosorbent amount from 0.01 to 0.2 g/L. Figure 8 showed the adsorption of RR120 percentage increased from 73.57 to 94.62% with the increase in the amount of sugarcane bagasse (0.01-0.05 g/L). This was due to greater availability of the surface area and more binding sites at a higher amount of the biosorbent dosage [36, 37]. The dye removal percentage was maintained 94.62% after 0.1 g/L of biosorbent dosage added. This was because there were no binding sites existing for dye molecule to attach on its surface sites.

![Figure 8: The percentage removal of various biosorbent dosage onto sugarcane bagasse for RR120 (particle size= 125 µm, pH=1, contact time= 15 minutes, temperature= room temperature, dye concentration= 5 mg/L, agitation speed=150 rpm).](image)
4. Conclusion

Sugarcane bagasse powder was used as an alternative biosorbent to remove reactive red 120 as textile dye. The maximum dye removal percentage was 94.62% at optimum conditions studied were pH 1, 15th minutes contact time, 5 mg/L, 125 µm size and 0.1 g/L dosage which was considered high for untreated material. Recent literatures found dyes could be removed using very low dye concentration. The need of market is to produce green technology biosorbent and limit the procedure costs. Sugarcane bagasse powder has been proven to be good alternative and low-cost biosorbent for the removal of RR120 from aqueous solution and could solve the agriculture disposal problem.

Acknowledgement

This project is supported by Research Acculturation Grant Scheme (RAGS) under Ministry of Higher Education (MOHE) and University of Malaysia Kelantan (UMK) for the funding of the project.

References

[1] Oladipo M A, Bello I A, Adeoye D O, Abdulsalam K A and Giwa A A 2013 Sorptive removal of dyes from aqueous solution: a review Advances in Environmental Biology 7(11) 3311
[2] Ta W S 2016 Removal of dye by adsorption: a review International Journal of Applied Engineering Research 11(4) 2675
[3] Wong Y C, Senan M S R and Atiqah N A 2013 Removal of methylene blue and malachite green dye using different form of coconut fibre as absorbent Journal of basic & applied science 9 172
[4] Mohammed M A, Shitu A and Ibrahim A 2014 Removal of methylene blue using low cost adsorbent: a review Research Journal of Chemical Sciences 4(1) 91
[5] Mohamed S 2016 Agricultural by-products/ waste as dye and metal ions adsorbents: a review International Journal of Engineering and Science 6(6) 1
[6] Kousha M, Daneshvar E, Sohrabi M S, Jokar M and Bhatnagar A 2012 Adsorption of acid orange II dye by raw and chemically modified brown macroalga Stoechospermum marginatum Chemical Engineering Journal 192 67
[7] Kyzas G Z, Fu J and Matis K A 2013 The change from past to future for adsorbent materials in treatment of dyeing wastewaters Materials 6 5131
[8] Asouhidou D D, Triantafyllidis K S, Lazaridis N K and Matis K A 2009 Adsorption of Remazol Red 3BS from aqueous solutions using APTES-and cyclodextrin-modified HMS-type mesoporous silicas Colloids and Surfaces A 346(1) 83

[9] Mohd Azmier A, Norhidayah A and Olubenga S B 2015 Adsorption kinetic studies for the removal of synthetic dye using durian seed activated carbon Journal of Dispersion Science and Technology 36 670

[10] Lafi R, Fradaj A, Hafiane A and Hameed B H 2014 Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution Korean Journal Chemical Engineering 31(12) 2198

[11] Njoku V O, Foo K Y, Asif M and Hameed B H 2014 Preparation of activated carbons from rambutan (Nephelium lappaceum) peel by microwave-induced KOH activation for acid yellow 17 dye adsorption Chemical Engineering Journal 250 198

[12] Mohd Azmier A and Rasyidah A 2011 Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies Chemical Engineering Journal 171 510

[13] Binod K, Upendra K and Pandey K M 2014 Suitability of rice husk as bio sorbent for removal of dyes from aqueous solution on the basis of chemical oxygen demand analysis Global Journal of Research in Engineering (E) 14(6)

[14] Li Y, Zhang X, Yang R, Li G and Hu C 2016 Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue Water Science and technology 73(5) 1122

[15] Elkady M F, Amal M I and Abd El-Latif M 2011 Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads Desalination 278 412

[16] Kassa B and Akeza H 2014 Removal of methyl orange from aqueous solutions using thermally treated eggshell (locally available and low cost biosorbent) Chemistry and Materials Research 6(7)

[17] Pankaj S and Harleen K 2011 Sugarcane bagasse for the removal of erythrosin B and methylene blue from aqueous waste Applied Water Science 1 135

[18] Abd El-Aziz A S, Aref A M A, Mohamed M A E, Soliman A S, Aly A A E, Helmey V and Mohamed N G 2013 Application of modified bagasse as a biosorbent for reactive dyes removal from industrial wastewater Journal of Water Resources and Protection 5 10

[19] Pehlivan E, Tran H T, Ouédraogo W K I, Schmidt C, Zachmann D and Bahadir M 2013 Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions Food Chemistry 138 133

[20] Farahani M, Kashisaz M and Abdullah S R S 2015 Adsorption of Safranin O from Aqueous Phase Using Sugarcane Bagasse International Journal of Ecological Science and Environmental Engineering 2(3) 17

[21] Zhang Z, Moghaddam L, O’Hara I A and Doherty W O S 2011 Congo Red adsorption by ball-milled sugarcane bagasse Chemical Engineering Journal 178 122

[22] Said A E A, Aly A A M, Abd El-Wahab M M, Soliman S A, El-Hafez A A A, Helmey V, Goda M N 2012 Resources and Environment 2(3) 93

[23] Manase A 2012 Batch adsorption of reactive red 120 from waste waters using activated carbon from waste tea International Journal of Advanced Engineering Technology 3 24

[24] Yao T, Guo S, Zeng C, Wang C and Zhang L 2015 Investigation on efficient adsorption of cationic dyes on porous magnetic polyacrylamide microspheres Journal of Hazardous Materials 292 90

[25] Zaheer S, Bhatti H N, Sadaf S, Safa Y and Zia-ur Rehman M 2014 biosorption characteristics of sugarcane bagasse for the removal of foron blue E-BL dye from aqueous solutions The Journal of Animal & Plant Sciences 24(1) 272

[26] Krishi R R, Foo K Y, Hameed B H 2014 Adsorptive removal of methylene blue using the natural adsorbent - banana leaves Desalination and Water Treatment 52 6104
[27] Mohamad Amran M S, Dalia K M, Wan Azlina W A K and Azni I 2011 Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review Desalination 280 1
[28] Porselvi E and Krishnamoorthy P 2014 Removal of Acid Yellow by Agricultural Waste Journal of Material and Environmental Science 5(2) 408
[29] Banerjee S and Chattopadhyaya 2017 Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product Arabian Journal of Chemistry 10 1629
[30] Khashayar B, Doulati A F, Aziz S M, Yousefi L N, Zia-e-din S S 2010 Adsorption of acid blue 25 dye on diatomite in aqueous solutions Indian Journal of Chemical Technology 17 7
[31] Gamal O R, Talaat Y M, Osama E E 2011 Removal of basic dyes from aqueous solutions by sugar cane stalks Advances in Applied Science Research 2(4) 283
[32] Dhananasekaran S, Palanivel R and Pappu S 2015 Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by α-chitin nanoparticles Journal of Advanced Research 7 113
[33] Tesfaye T and Semegn E 2014 Study on effect of different parameters on adsorption efficiency of low cost activated orange peels for the removal of methylene blue dye International Journal of Innovation and Scientific Research 8 106
[34] Chutima J 2014 Removal of reactive dye by adsorption over chemical pretreatment coal-based bottom ash Procedia Chemistry 9 121
[35] Abuzer C, Gizem I and Hüseyin B 2012 Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Chara contraria Chemical Engineering Journal 191 228
[36] Atul K K, Neha G, Chattopadhyaya M C 2014 Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota Journal of Saudi Chemical Society 18 200
[37] Kumar P S and Kirthika K 2009 Equilibrium and kinetic study of adsorption of nickel from aqueous solution onto bael tree leaf powder Journal of Engineering Science and Technology 4(4) 351