DECOMPOSITIONS OF EHRHART h^*-POLYNOMIALS FOR RATIONAL POLYTOPES

MATTHIAS BECK, BENJAMIN BRAUN, AND ANDRÉS R. VINDAS-MELÉNDEZ

ABSTRACT. The Ehrhart quasipolynomial of a rational polytope P encodes the number of integer lattice points in dilates of P, and the h^*-polynomial of P is the numerator of the accompanying generating function. We provide two decomposition formulas for the h^*-polynomial of a rational polytope. The first decomposition generalizes a theorem of Betke and McMullen for lattice polytopes. We use our rational Betke–McMullen formula to provide a novel proof of Stanley’s Monotonicity Theorem for the h^*-polynomial of a rational polytope. The second decomposition generalizes a result of Stapledon, which we use to provide rational extensions of the Stanley and Hibi inequalities satisfied by the coefficients of the h^*-polynomial for lattice polytopes. Lastly, we apply our results to rational polytopes containing the origin whose duals are lattice polytopes.

1. INTRODUCTION

For a d-dimensional rational polytope $P \subset \mathbb{R}^d$ (i.e., the convex hull of finitely many points in \mathbb{Q}^d) and a positive integer t, let $L_P(t)$ denote the number of integer lattice points in tP. Ehrhart’s theorem [9] tells us that $L_P(t)$ is of the form $\text{vol}(P)t^d + k_{d-1}(t)t^{d-1} + \cdots + k_1(t)t + k_0(t)$, where $k_0(t), k_1(t), \ldots, k_{d-1}(t)$ are periodic functions in t. We call $L_P(t)$ the Ehrhart quasipolynomial of P, and Ehrhart proved that each period of $k_0(t), k_1(t), \ldots, k_{d-1}(t)$ divides the denominator q of P, which is the least common multiple of all its vertex coordinate denominators. The Ehrhart series is the rational generating function

$$Ehr(P;z) = \sum_{t \geq 0} L(P,t) z^t = \frac{h^*(P;z)}{(1-z^q)^{d+1}},$$

where $h^*(P;z)$ is a polynomial of degree less than $q(d+1)$, the h^*-polynomial of P.

Our first main contributions are generalizations of two well-known decomposition formulas of the h^*-polynomial for lattice polytopes due to Betke–McMullen [4] and Stapledon [33]. (All undefined terms are specified in the sections below.)

Theorem 3.2. For a triangulation T with denominator q of a rational d-polytope P,

$$Ehr(P;z) = \frac{\sum_{\Omega \in T} B(\Omega;z) h(\Omega;z^q)}{(1-z^q)^{d+1}}.$$

Theorem 4.4. Consider a rational d-polytope P that contains an interior point $\frac{a}{\ell}$, where $a \in \mathbb{Z}^d$ and $\ell \in \mathbb{Z}_{>0}$. Fix a boundary triangulation T of P with denominator q. Then

$$h^*(P;z) = \frac{1-z^q}{1-z^d} \sum_{\Omega \in T} (B(\Omega;z) + B(\Omega';z)) h(\Omega;z^q).$$

Our second main result is a generalization of inequalities provided by Hibi [14] and Stanley [28] that are satisfied by the coefficients of the h^*-polynomial for lattice polytopes.

*Date: October 5, 2021.

1Note that the h^*-polynomial depends not only on q (though that is implicitly determined by P), but also on our choice of representing the rational function $Ehr(P;z)$, which in our form will not be in lowest terms.*
Theorem 4.8. Let P be a rational d-polytope with denominator q and let $s := \deg h^*(P; z)$. The h^*-vector $(h^*_0, \ldots, h^*_q)_{q(d+1)-1}$ of P satisfies the following inequalities:

(1) $h^*_0 + \cdots + h^*_{i+1} \geq h^*_{q(d+1)-1} + \cdots + h^*_{q(d+1)-1-i}$, $i = 0, \ldots, \left\lceil \frac{q(d+1)-1}{2} \right\rceil - 1$,

(2) $h^*_i + \cdots + h^*_{q-1} \geq h^*_0 + \cdots + h^*_i$, $i = 0, \ldots, q(d+1)-1$.

Inequality (1) is a generalization of a theorem by Hibi [14] for lattice polytopes, and (2) generalizes an inequality given by Stanley [28] for lattice polytopes, namely the case when $q = 1$. Both inequalities follow from the a/b-decomposition of the h^*-polynomial for rational polytopes given in Theorem 4.7 in Section 4, which in turn generalizes results (and uses rational analogues of techniques) by Stapledon [33]. Stapledon’s a/b-decomposition has been used by different authors to study connections to unimodality, dilated polytopes, open polytopes, order polytopes, and connections to chromatic polynomials [2, 19, 20, 23].

This paper is structured as follows. In Section 2 we provide notation and background. In Section 3 we prove Theorem 3.2 and use this to give a novel proof of Stanley’s Monotonicity Theorem. In Section 4 we prove Theorems 4.4 and 4.8. We conclude in Section 5 with some applications.

2. Set-Up and Notation

A pointed simplicial cone is a set of the form

$$K(W) = \left\{ \sum_{i=1}^{n} \lambda_i w_i : \lambda_i \geq 0 \right\},$$

where $W := \{w_1, \ldots, w_n\}$ is a set of n linearly independent vectors in \mathbb{R}^d. If we can choose $w_i \in \mathbb{Z}^d$ then $K(W)$ is a rational cone and we assume this throughout this paper. Define the open parallelepiped associated with $K(W)$ as

$$\text{Box}(W) := \left\{ \sum_{i=1}^{n} \lambda_i w_i : 0 < \lambda_i < 1 \right\}.$$

Observe that we have the natural involution $1 : \text{Box}(W) \cap \mathbb{Z}^d \to \text{Box}(W) \cap \mathbb{Z}^d$ given by

$$1 \left(\sum_i \lambda_i w_i \right) := \sum_i (1 - \lambda_i) w_i.$$

We set $\text{Box}(\{0\}) := \{0\}$.

Let $u : \mathbb{R}^d \to \mathbb{R}$ denote the projection onto the last coordinate. We then define the box polynomial as

$$B(W; z) := \sum_{v \in \text{Box}(W) \cap \mathbb{Z}^d} z^{\mu(v)}.$$

If $\text{Box}(W) \cap \mathbb{Z}^d = \emptyset$, then we set $B(W; z) = 0$. We also define $B(\emptyset; z) = 1$.

Example 2.1. Let $W = \{(1,3), (2,3)\}$. Then

$$\text{Box}(W) = \{\lambda_1 (1,3) + \lambda_2 (2,3) : 0 < \lambda_1, \lambda_2 < 1\}.$$

Thus $\text{Box}(W) \cap \mathbb{Z}^2 = \{(1,2), (2,4)\}$ and its associated box polynomial is

$$B(W; z) = z^2 + z^4.$$

Lemma 2.2. $B(W; z) = \sum_{i} z^{\mu(w_i)} B(W; \frac{1}{z})$.
We say a point is at height k if we lift the vertices into \mathbb{R}^{d+1} by appending a 1 as the last coordinate. Then

$$z\sum_{v \in \text{Box}(W) \cap \mathbb{Z}^d} z^{u(v)} = \sum_{v \in \text{Box}(W) \cap \mathbb{Z}^d} z^{u(v)} = B(W; z).$$

Next, we define the fundamental parallelepiped $\Pi(W)$ to be a half-open variant of Box (W), namely,

$$\Pi(W) := \left\{ \sum_{i=1}^{n} \lambda_i w_i : 0 \leq \lambda_i < 1 \right\}.$$

We also want to cone over a polytope P. If $P \subset \mathbb{R}^d$ is a rational polytope with vertices $v_1, \ldots, v_n \in \mathbb{Q}^d$, we lift the vertices into \mathbb{R}^{d+1} by appending a 1 as the last coordinate. Then

$$\text{cone}(P) = \left\{ \sum_{i=1}^{n} \lambda_i (v_i, 1) : \lambda_i \geq 0 \right\} \subset \mathbb{R}^{d+1}.$$

We say a point is at height k in the cone if the point lies on $\text{cone}(P) \cap \{ x : x_{d+1} = k \}$. Note that qP is embedded in $\text{cone}(P)$ as $\text{cone}(P) \cap \{ x : x_{d+1} = q \}$.

A triangulation T of a d-polytope P is a subdivision of P into simplices (of all dimensions). If all the vertices of T are rational points, define the denominator of T to be the least common multiple of all the vertex coordinate denominators of the faces of T. For each $\Delta \in T$, we define the h-polynomial of Δ with respect to T as

$$h_T(\Delta; z) := (1-z)^{d-\dim(\Delta)} \sum_{\Delta \subseteq \Phi \in T} \left(\frac{z}{1-z} \right)^{\dim(\Phi) - \dim(\Delta)},$$

where the sum is over all simplices $\Phi \in T$ containing Δ. When T is clear from context, we omit the subscript. Note that when T is a boundary triangulation of P, the definition of the h-vector will be adjusted according to dimension, that is, d should be replaced by $d-1$ in (7).

For a d-simplex Δ with denominator q, let W be the set of ray generators of $\text{cone}(\Delta)$ at height p, which are all integral. We then define the h^*-polynomial of Δ as the generating function of the last coordinate of integer points in $\Pi(W) := \Pi(\Delta)$, that is,

$$h^*(\Delta; z) = \sum_{v \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}} z^{\mu(v)}.$$

With this consideration, the Ehrhart series of Δ can be expressed as

$$\text{Ehr}(\Delta; z) = \frac{h^*(\Delta; z)}{(1-z^p)^{d+1}}.$$

We use a modified convention when Δ is a rational m-simplex of a triangulation T, where T has denominator q. In this case, it is possible that the denominator of Δ as an individual simplex might be different from q, but for coherence among all simplices in T we use q to select the height of the ray generators in Δ. Namely, we let $W = \{ (r_1, q), \ldots, (r_{m+1}, q) \}$, where the (r_i, q) are integral ray generators of $\text{cone}(\Delta)$ at height q. The corresponding h^*-polynomial of Δ is a function of q and the Ehrhart series of Δ can be expressed as

$$\text{Ehr}(\Delta; z) = \frac{h^*(\Delta; z)}{(1-z^q)^{m+1}}.$$

We may think of $h^*(\Delta; z)$ as computed via $\sum_{v \in \Pi(W) \cap \mathbb{Z}^{d+1}} z^{\mu(v)}$.

Proof. Using the involution t,

$$z\sum_{v \in \text{Box}(W) \cap \mathbb{Z}^d} z^{u(v)} = \sum_{v \in \text{Box}(W) \cap \mathbb{Z}^d} z^{u(v)} = \sum_{v \in \text{Box}(W) \cap \mathbb{Z}^d} z^{\mu(v)} = B(W; z).$$
3. RATIONAL BETKE–MCMULLEN DECOMPOSITION

3.1. Decomposition à la Betke–Mcmullen. Let P be a rational d-polytope and T a triangulation of P with denominator q. For an m-simplex $\Delta \in T$, let $W = \{ (r_1, q), \ldots, (r_m, q) \}$, where the (r_i, q) are the integral ray generators of cone (Δ) at height q as above. Further, set $B(W; z) = B(\Delta; z)$ and similarly $\text{Box}(W) = \text{Box}(\Delta)$. We emphasize that the h^*-polynomial, fundamental parallelepiped, and box polynomial of Δ depend on the denominator q of T.

A point $v \in \text{cone}(\Delta)$ can be uniquely expressed as $v = \sum_{i=1}^{m+1} \lambda_i (r_i, q)$ for $\lambda_i \geq 0$. Define

$$I(v) := \{ i \in [m+1] : \lambda_i \in \mathbb{Z} \} \quad \text{and} \quad \overline{I}(v) := [m+1] \setminus I,$$

where $[m+1] := \{1, \ldots, m+1\}$.

Lemma 3.1. Fix a triangulation T with denominator q of a rational d-polytope P and let $\Delta \in T$. Then $h^*(\Delta; z) = \sum_{\Omega \subseteq \Delta} B(\Omega; z)$.

Proof. First we show that $\Pi(\Delta) = \bigcup_{\Omega \subseteq \Delta} \text{Box}(\Omega)$. The reverse containment follows from the fact that any element in $\text{Box}(\Omega)$ is a linear combination of the ray generators of cone (Ω).

For the forward containment, if $v \in \Pi(\Delta)$, then

$$v = \sum_{i=1}^{m+1} \lambda_i (r_i, q) = \sum_{i \in \overline{I}(v)} \lambda_i (r_i, q) \in \text{Box}(\Omega),$$

for $\Omega := \text{conv} \left\{ \frac{r_i}{q} : i \in \overline{I}(v) \right\} \subseteq \Delta$. Note that v will always lie in a unique $\text{Box}(\Omega)$ because every Ω corresponds to a different subset of $[m+1]$, which also tells us that the union we desire is disjoint.

Thus $\Pi(\Delta) = \bigcup_{\Omega \subseteq \Delta} \text{Box}(\Omega)$, and so

$$h^*(\Delta; z) = \sum_{v \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}} z^{h(v)} = \sum_{\Omega \subseteq \Delta} \sum_{v \in \text{Box}(\Omega) \cap \mathbb{Z}^{d+1}} z^{h(v)} = \sum_{\Omega \subseteq \Delta} B(\Omega; z).$$

Theorem 3.2. For a triangulation T with denominator q of a rational d-polytope P,

$$\text{Ehr}(P; z) = \sum_{\Delta \in T} \frac{B(\Omega; z) h(\Omega; z^q)}{(1 - z^q)^{d+1}}.$$

Proof. We write P as the disjoint union of all open nonempty simplices in T and use Ehrhart–Macdonald reciprocity [9, 24]:

$$\text{Ehr}(P; z) = 1 + \sum_{\Delta \in T \setminus \{\emptyset\}} \text{Ehr}(\Delta^*; z) = 1 + \sum_{\Delta \in T \setminus \{\emptyset\}} (-1)^{\dim(\Delta)+1} \text{Ehr} \left(\frac{\Delta}{z} \right)$$

$$= 1 + \sum_{\Delta \in T \setminus \{\emptyset\}} (-1)^{\dim(\Delta)+1} \frac{h^* \left(\frac{\Delta}{z} \right)}{(1 - \frac{1}{z})^{\dim(\Delta)+1}} = 1 + \sum_{\Delta \in T \setminus \{\emptyset\}} \frac{(z^q)^{\dim(\Delta)+1} (1 - z^q)^{d - \dim(\Delta)} h^* \left(\frac{\Delta}{z} \right)}{(1 - z^q)^{d+1}}.$$

Note that the Ehrhart series of each Δ is being written as a rational function with denominator $(1 - z^q)^{d+1}$. Using Lemma 3.1,

$$\text{Ehr}(P; z) = 1 + \sum_{\Delta \in T \setminus \{\emptyset\}} \frac{(z^q)^{\dim(\Delta)+1} (1 - z^q)^{d - \dim(\Delta)} \sum_{\Omega \subseteq \Delta} B(\Omega; z)}{(1 - z^q)^{d+1}}$$

$$= \frac{\sum_{\Delta \in T} \left[(z^q)^{\dim(\Delta)+1} (1 - z^q)^{d - \dim(\Delta)} \sum_{\Omega \subseteq \Delta} B(\Omega; z) \right]}{(1 - z^q)^{d+1}}.$$
By Lemma 2.2,
\[h^*(P;z) = \sum_{\Delta \in T} \left[(z^d)^{\dim(\Delta)} \cdot 1 \right] \sum_{\Omega \subseteq \Delta} B(\Omega; z) \frac{1}{1 - z^d} \]
\[= \sum_{\Delta \in T} \left[(z^d)^{\dim(\Delta)} \cdot 1 \right] \sum_{\Omega \subseteq \Delta} B(\Omega; z) \frac{1}{1 - z^d} \]
\[= \sum_{\Omega \subseteq \Delta} B(\Omega; z) \frac{1}{1 - z^d} \sum_{\Delta \in T} \sum_{\Omega \subseteq \Delta} (z^d)^{\dim(\Delta) - \dim(\Omega)} B(\Omega; z) \]
\[= \sum_{\Omega \subseteq T} B(\Omega; z) (1 - z^d)^{\dim(\Omega)} \sum_{\Omega \subseteq \Delta} \left(\frac{z^d}{1 - z^d} \right)^{\dim(\Delta) - \dim(\Omega)} \]

Using the definition of the h-polynomial, the theorem follows. \qed

3.2. **Rational h^*-Monotonicity.** We now show how the following theorem follows from our rational Betke–McMullen formula.

Theorem 3.3 (Stanley Monotonicity [30]). Suppose that $P \subseteq Q$ are rational polytopes with qP and qQ integral (for minimal possible $q \in \mathbb{Z}_{>0}$). Define the h^*-polynomials via

\[\text{Ehr}(P;z) = \frac{h^*(P;z)}{(1 - z^d)^{\dim(P)+1}} \quad \text{and} \quad \text{Ehr}(Q;z) = \frac{h^*(Q;z)}{(1 - z^d)^{\dim(Q)+1}}. \]

Then $h^*_i(P;z) \leq h^*_i(Q;z)$ coefficient-wise.

In addition to Stanley’s original proof, Beck and Sottile [3] provide a proof of Theorem 3.3 using irrational decompositions of rational polyhedra. In the case of lattice polytopes, Jochemko and Sanyal [21] prove Theorem 3.3 using combinatorial positivity of translation-invariant valuations and Stapledon [32] gives a geometric interpretation of Theorem 3.3 by considering the h^*-polynomials of lattice polytopes in terms of orbifold Chow rings. The following lemma assumes familiarity with Cohen–Macaulay complexes and related theory; see [31] for definitions and further reading.

Lemma 3.4. Suppose P is a polytope and T a triangulation of P. Let $P \subseteq Q$ be a polytope and T' a triangulation of Q such that T' restricted to P is T. Further, if $\dim(P) < \dim(Q)$, assume that there exists a set of affinely independent vertices v_1, \ldots, v_n of Q outside the affine span of P such that (1) the join $T \ast \text{conv} \{v_1, \ldots, v_n\}$ is a subcomplex of T' and (2) $\dim(P \ast \text{conv} \{v_1, \ldots, v_n\}) = \dim(Q)$. For every face $\Omega \in T$, the coefficient-wise inequality $h_T(\Omega;z) \leq h_{T'}(\Omega;z)$ holds.

Proof. Suppose first that $\dim(P) = \dim(Q)$. Let T be a triangulation of P and T' a triangulation of Q such that T' restricted to P is T. Note that T and T' are geometric simplicial complexes covering P and Q, respectively. Let $\Omega \in T$. Then $\text{link}_T(\Omega)$ and $\text{link}_{T'}(\Omega)$ are either balls or spheres, hence Cohen–Macaulay. Now, consider $\mathcal{R} := \text{link}_{T'}(\Omega) - \text{link}_T(\Omega)$, which is a relative simplicial complex. By [31, Corollary 7.3(iv)] \mathcal{R} is also Cohen–Macaulay. From [31, Proposition 7.1] it follows that

\[h_{\mathcal{R}}(\emptyset;z) = h_T(\Omega;z) - h_{\Omega}(\emptyset;z) \quad \text{and} \quad h_{\mathcal{R}}(\emptyset;z), h_T(\Omega;z), h_{T'}(\Omega;z) \geq 0. \]

Rearranging, we obtain that $h_{T'}(\Omega;z) = h_{\mathcal{R}}(\emptyset;z) + h_T(\Omega;z)$, which implies that $h_T(\Omega;z) \leq h_{T'}(\Omega;z)$ Hence, for each face in T, the result follows.

Now, consider the case when $\dim(P) < \dim(Q)$. Again, let T be a triangulation of P and T' a triangulation of Q such that T' restricted to P is T, where we further assume that there exists a set of affinely independent
vertices \(v_1, \ldots, v_n \) of \(Q \) outside the affine span of \(P \) such that (1) the join \(T + \text{conv} \{ v_1, \ldots, v_n \} \) is a subcomplex of \(T' \) and (2) \(\dim(P + \text{conv} \{ v_1, \ldots, v_n \}) = \dim(Q) \). Note that the affine independence of the \(v_i \)'s implies that
\[
\dim(\text{conv} \{ P \cup v_1 \cup \cdots \cup v_k \}) = \dim(\text{conv} \{ P \cup v_1 \cup \cdots \cup v_{k-1} \}) + 1.
\]
Let \(T_k \) denote the join of \(T \) with the simplex \(\text{conv} \{ v_1, \ldots, v_k \} \). Let \(\Omega \in T_k \). Since \(\Omega \subseteq \partial T_{k+1} \) and \(\text{link}_{T_k}(\Omega) \) and \(\text{link}_{T_{k+1}}(\Omega) \) are both balls, \(\mathcal{R} := \text{link}_{T_{k+1}}(\Omega) - \text{link}_{T_k}(\Omega) \) is Cohen–Macaulay by [31, Proposition 7.3(iii)]. Thus, by a similar argument as given in the paragraph above,
\[
h_{T_k}(\Omega; z) \leq h_{T_{k+1}}(\Omega; z).
\]
Combining this with the fact that \(\dim(P + \text{conv} \{ v_1, \ldots, v_n \}) = \dim(Q) \), it follows by induction (for the first inequality) and our previous case (for the second inequality) that for \(\Omega \in T \)
\[
h_{T}(\Omega; z) \leq h_{T_{k}}(\Omega; z) \leq h_{T'}(\Omega; z).
\]

Proof of Theorem 3.3. Let \(P \) be a polytope contained in \(Q \). Let \(T \) be a triangulation of \(P \) and let \(T' \) be a triangulation of \(Q \) such that \(T' \) restricted to \(P \) is \(T \), where if \(\dim(P) < \dim(Q) \) the triangulation \(T' \) satisfies the conditions given in Lemma 3.4. (Note that such a triangulation \(T' \) can always be obtained from \(T \), e.g., by extending \(T \) using a placing triangulation.) By Theorem 3.2, \(h^*(P; z) = \sum_{\Omega \in T} B(\Omega; z) h_{T}(\Omega; z^\theta) \). Since \(P \) is contained in \(Q \),
\[
h^*(Q; z) = \sum_{\Omega \in T} B(\Omega; z) h_{T}(\Omega; z^\theta) + \sum_{\Omega \in T \setminus T} B(\Omega; z) h_{T}(\Omega; z^\theta).
\]
By Lemma 3.4, the coefficients of \(\sum_{\Omega \in T} B(\Omega; z) h_{T}(\Omega; z^\theta) \) dominate the coefficients of \(\sum_{\Omega \in T \setminus T} B(\Omega; z) h_{T}(\Omega; z^\theta) \). This further implies that the coefficients of \(h^*(Q; z) \) dominate the coefficients of \(h^*(P; z) \) since
\[
\sum_{\Omega \in T} B(\Omega; z) h_{T}(\Omega; z^\theta) \leq \sum_{\Omega \in T} B(\Omega; z) h_{T}(\Omega; z^\theta)
\]
\[
\leq \sum_{\Omega \in T} B(\Omega; z) h_{T}(\Omega; z^\theta) + \sum_{\Omega \in T \setminus T} B(\Omega; z) h_{T}(\Omega; z^\theta).
\]

4. \(h^* \)-**DECOMPOSITIONS FROM BOUNDARY TRIANGULATIONS**

4.1. **Set-up.** Throughout this section we will use the following set-up. Fix a boundary triangulation \(T \) with denominator \(q \) of a rational \(d \)-polytope \(P \). Take \(\ell \in \mathbb{Z}_{\geq 0} \), such that \(\ell P \) contains a lattice point \(a \) in its interior. Thus \((a, \ell) \in \text{cone}(P)^{\circ} \cap \mathbb{Z}^{d+1} \) is a lattice point in the interior of the cone of \(P \) at height \(\ell \), and \(\text{cone}(a, \ell) \) is the ray through the point \(a, \ell \). We cone over each \(\Delta \in T \) and define \(W = \{(r_1, q), \ldots, (r_{m+1}, q)\} \) where the \((r_i, q) \) are integral ray generators of cone \(\Delta \) at height \(q \). As before, we have the associated box polynomial \(B(W; z) = B(\Delta; z) \). Now, let \(W' = W \cup \{(a, \ell)\} \) be the set of generators from \(W \) together with \((a, \ell) \) and we set \(\text{cone}(\Delta') \) to be the cone generated by \(W' \), with associated box polynomial \(B(W'; z) = B(\Delta'; z) \).

Corollary 4.1. For each face \(\Delta \) of \(T \),
\[
B(\Delta; z) = z^{q(\dim(\Delta)+1)} B\left(\Delta; \frac{1}{z}\right)
\]
and
\[
B(\Delta'; z) = z^{q(\dim(\Delta)+1)+\ell} B\left(\Delta'; \frac{1}{z}\right).
\]

Proof. The height of \(\sum_i (r_i, q) \) is \(q \) times the number of summands, which gives us \(q(\dim(\Delta)+1) \). The first equations now follow from the involution \(\iota \) and Lemma 2.2; note that we will have to use \(W \) in the first case and \(W' \) in the second.

Observe that when \(\Delta = \emptyset \) is the empty face, \(B(\emptyset; z) = 1 \), but \(B(\emptyset'; z) = B((a, \ell); z) \). This differs from the scenario in [33] where Stapledon’s set-up determined that \(B(\emptyset'; z) = 0 \).

For a real number \(x \), define \(\lfloor x \rfloor \) to be the greatest integer less than or equal to \(x \). Additionally, define the fractional part of \(x \) to be \(\{x\} = x - \lfloor x \rfloor \).
4.2. **Boundary Triangulations.** For each $v \in \text{cone}(P)$ we associate two faces $\Delta(v)$ and $\Omega(v)$ of T, as follows. The face $\Delta(v)$ is chosen to be the minimal face of T such that $v \in \text{cone}(\Delta(v))$, and we define

$$\Omega(v) := \text{conv} \left\{ \frac{r_i}{q} : i \in I(v) \right\} \subseteq \Delta(v),$$

where $I(v)$ is defined as in (8) and the (r_i, q) are ray generators of cone $(\Delta(v))$. In an effort to make our statements and proofs less notation heavy, for the rest of this section we write $\Delta(v) = \Delta$ and $\Omega(v) = \Omega$ with the understanding that both depend on v. Furthermore, for $v = \sum_{i=1}^{m+1} \lambda_i (r_i, q) + \lambda (a, \ell)$ where $\lambda, \lambda_i \geq 0$, define

$$\{v\} := \sum_{i \in I(v)} \{\lambda_i\} (r_i, q) + \{\lambda\} (a, \ell).$$

Lemma 4.2. Given $v \in \text{cone}(P)$, construct $\Delta = \Delta(v)$ as described above, with cone (Δ) generated by $(r_1, q), \ldots, (r_{m+1}, q)$. Then v can be written uniquely as

$$\{v\} + \sum_{i \in I(v)} (r_i, q) + \sum_{i=1}^{m+1} \mu_i (r_i, q) + \mu (a, \ell),$$

where $\mu, \mu_i \in \mathbb{Z}_{\geq 0}$.

Below we will note the dependence of the unique coefficients μ_i and μ on v by writing them as $\mu_i(v)$ and $\mu(v)$.

Proof. Since v is in cone (Δ'), it can be written as a linear combination of the generators of cone (Δ) and (a, ℓ). We further express v as a sum of its integer and fractional parts.

$$v = \sum_{i=1}^{m+1} \lambda_i (r_i, q) + \bar{\lambda} (a, \ell),$$

where $\lambda_i > 0$ and $\bar{\lambda} \geq 0$

$$\begin{align*}
\text{for } \lambda_i > 0 \text{ and } \bar{\lambda} \geq 0 \\
= \sum_{i \in I(v)} \{\lambda_i\} (r_i, q) + \{\bar{\lambda}\} (a, \ell) + \sum_{i=1}^{m+1} \lambda_i (r_i, q) + \{\lambda_i\} (a, \ell) \\
= \{v\} + \sum_{i=1}^{m+1} \lambda_i (r_i, q) + \{\lambda_i\} (a, \ell).
\end{align*}$$

Note that each $\lambda_i > 0$ because of the minimality of Δ. Recall that $\Omega = \text{conv} \left\{ \frac{r_i}{q} : i \in I(v) \right\} \subseteq \Delta$. Thus

- if $\lambda \notin \mathbb{Z}$, then $\{v\} \in \text{Box}(\Omega')$,
- if $\lambda \in \mathbb{Z}$, then $\{v\} \in \text{Box}(\Omega)$.

Further observe that when λ is an integer, $\{v\}$ is an element on the boundary of cone (P).

If $i \in I(v)$, then $\lambda_i \in \mathbb{Z}$ and $[\lambda_i] = \lambda_i \geq 1$ for $i \in I(v)$. This allows us to represent v in the form

$$v = \{v\} + \sum_{i \in I(v)} (r_i, q) + \sum_{i=1}^{m+1} \mu_i (r_i, q) + \mu (a, \ell),$$

where $\mu, \mu_i \in \mathbb{Z}_{\geq 0}$. \hfill \Box

Corollary 4.3. Continuing the notation above,

$$u(v) = u(\{v\}) + q(\text{dim}(\Delta(v)) - \text{dim}(\Omega(v))) + \sum_{i=1}^{m+1} q \mu_i(v) + \mu(v) \ell.$$

Proof. This follows from considering the height contribution of each part in (9). \hfill \Box
The following theorem provides a decomposition of the h^*-polynomial of a rational polytope in terms of box and h-polynomials. It is important to note again that the h^*-polynomial depends on the denominator of the boundary triangulation.

Theorem 4.4. Consider a rational d-polytope P that contains an interior point $\frac{a}{\ell}$, where $a \in \mathbb{Z}^d$ and $\ell \in \mathbb{Z}_{>0}$. Fix a boundary triangulation T of P with denominator q. Then

$$h^*(P; z) = \frac{1 - z^q}{1 - z^d} \sum_{v \in T} (B(\Omega; z) + B(\Omega'; z)) h(\Omega; z^q).$$

Proof. By Corollary 4.3,

$$h^*(P; z) = \sum_{v \in \text{cone}(P) \cap \mathbb{Z}^{d+1}} z^{|v|}.$$

$$= \sum_{v \in \text{cone}(P) \cap \mathbb{Z}^{d+1}} z^{|v|} = \sum_{v \in \text{cone}(P) \cap \mathbb{Z}^{d+1}} \sum_{u \in \text{Box}(P) \cap \mathbb{Z}^{d+1}} z^{q(q)}$$

$$= \sum_{\Delta \in T} \sum_{\Omega \subseteq \Delta} \frac{(B(\Omega; z) + B(\Omega'; z)) z^{q(q)}}{(1 - z^q)^{q}q^{q}q^{q}} = \frac{1}{1 - z^q} \sum_{\Delta \in T} \sum_{\Omega \subseteq \Delta} (B(\Omega; z) + B(\Omega'; z)) h(\Omega; z^q).$$

Example 4.5. Following the setup in Section 4.1, consider the line segment $P = \left[\frac{1}{3}, \frac{2}{3}\right]$ and so our boundary triangulation T has denominator 3. In the cone over P, set $\{a, \ell\} = (2, 4)$. The simplices in T are the empty face \emptyset and the two vertices $\Delta_1 = 1$ and $\Delta_2 = 2$. The cones over the vertices have integral ray generators $W_1 = \{(1, 3)\}$ and $W_2 = \{(2, 3)\}$. We see that if $v \in \text{cone}(P)$ then the only options for $\Delta(v)$ to be chosen as a minimal face of T such that $v \in \text{cone}(\Delta(v))$ are again to consider \emptyset, Δ_1, and Δ_2. In this example, $\Omega(v) = \Delta(v)$. Recall that since T is a boundary triangulation of P, the definition of the h-vector (7) is adjusted according to dimension, that is, d is replaced by $d - 1$.

From Figure 1 we determine the following:

$\Omega \subseteq T$	$\dim(\Omega)$	$B(\Omega; z)$	$B(\Omega'; z)$	$h(\Omega, z^3)$
Δ_1	0	0	0	1
Δ_2	0	0	0	1
\emptyset	-1	1	z^2	$1 + z^3$

Applying Theorem 4.4, we obtain

$$h^*(P; z) = \frac{1 - z^3}{1 - z^d} (1 + z^3 + z^2 + z^5) = 1 + z^2 + z^4,$$

which agrees with the computation obtained using Normaliz [7].
4.3. **Rational Stapledon Decomposition and Inequalities.** Using Theorem 4.4, we can rewrite the h^*-polynomial of a rational polytope P as

$$h^*(P; z) = \frac{1+z+\cdots+z^{\ell-1}}{1+z+\cdots+z^{\ell-1}} \sum_{\Omega \in T} \left(B(\Omega; z) + B(\Omega'; z) \right) h(\Omega; z^\ell).$$

Next, we turn our attention to the polynomial

$$\overline{h^*}(P; z) := \left(1 + z + \cdots + z^{\ell-1} \right) h^*(P; z).$$

We know that $h^*(P; z)$ is a polynomial of degree at most $q(d+1)-1$, thus $\overline{h^*}(P; z)$ has degree at most $q(d+1)+\ell-2$. We set f to be the degree of $\overline{h^*}(P; z)$ and s to be the degree of $h^*(P; z)$. We can recover $h^*(P; z)$ from $\overline{h^*}(P; z)$ for a chosen value of ℓ; if we write

$$\overline{h^*}(P; z) = \overline{h^*_0} + \overline{h^*_1}z + \cdots + \overline{h^*_f}z^f,$$

then

$$\overline{h^*_i} = h^*_i + h^*_{i-1} + \cdots + h^*_{i-\ell+1} \quad i = 0, \ldots, f,$$

FIGURE 1. This figure shows cone (P) (in orange), P, $3P$, $(a, \ell) = (2, 4)$, Box (Δ_1) (in yellow), Box (Δ_2') (in pink).
and we set \(h_i^* = 0 \) when \(i > s \) or \(i < 0 \).

Proposition 4.6. Let \(P \) be a rational \(d \)-polytope with denominator \(q \) and Ehrhart series

\[
\text{Ehr}(P;z) = \frac{h^*(P;z)}{(1 - z^q)^{d+1}}.
\]

Then \(\deg h^*(P;z) = s \) if and only if \((q(d + 1) - s)P\) is the smallest integer dilate of \(P \) that contains an interior lattice point.

Proof. Let \(L(P;t) \) and \(L(P^*;t) \) be the Ehrhart quasipolynomials of \(P \) and the interior of \(P \), respectively. Using Ehrhart–Macdonald reciprocity \([9,24]\) we obtain

\[
\text{Ehr}(P^*;z) = \sum_{t \geq 1} L(P^*;t)z^t = (-1)^{d+1} \frac{\sum_{j=0}^s h_j^* \left(\frac{1}{z} \right)^j}{(1 - \frac{1}{z})^{d+1}} = z^{q(d+1)} \frac{\sum_{j=0}^s h_j^* z^{-j}}{(1 - z^q)^{d+1}}
\]

then we compute that

\[
\left(\sum_{j=0}^s h_j^* z^{q(d+1) - j} \right) (1 + z^q + z^{2q} + \ldots)^{d+1}.
\]

Now, note that the minimum degree term of

\[
\left(\sum_{j=0}^s h_j^* z^{q(d+1) - j} \right) (1 + z^q + z^{2q} + \ldots)^{d+1}
\]

is \(h_s^* z^{q(d+1) - s} \), which implies that the term of \(\sum_{t \geq 1} L(P^*;t)z^t \) with minimum degree is \((q(d + 1) - s)P\). Hence, the degree of \(h^*(P;z) \) is \(s \) precisely if \((q(d + 1) - s)P\) is the smallest integer dilate of \(P \) that contains an interior lattice point. \(\square \)

The following result provides a decomposition of the \(\overline{h^*} \)-polynomial which we refer to as an \(a/b \)-decomposition. It generalizes \([33, \text{Theorem 2.14}]\) to the rational case.

Theorem 4.7. Let \(P \) be a rational \(d \)-polytope with denominator \(q \), and let \(s := \deg h^*(P;z) \). Then \(\overline{h^*}(P;z) \) has a unique decomposition

\[
\overline{h^*}(P;z) = a(z) + z^\ell b(z),
\]

where \(\ell = q(d + 1) - s \) and \(a(z) \) and \(b(z) \) are polynomials with integer coefficients satisfying \(a(z) = z^{q(d+1) - 1} a \left(\frac{1}{z} \right) \) and \(b(z) = z^{q(d+1) - 1 - \ell} b \left(\frac{1}{z} \right) \). Moreover, the coefficients of \(a(z) \) and \(b(z) \) are nonnegative.

Proof. Let \(a_i \) and \(b_i \) denote the coefficients of \(z^i \) in \(a(z) \) and \(b(z) \), respectively. Set

\[
a_i + 1 = h_0^* + \cdots + h_{i+1}^* - h_{q(d+1)-1}^* - \cdots - h_{q(d+1)-1-i}^*,
\]

and

\[
b_i = -h_0^* - \cdots - h_i^* + h_{i+1}^* + \cdots + h_{n-i}^*.
\]

Using (12) and the fact that \(\ell = q(d + 1) - s \), we compute that
\[a_i + b_{i-\ell} = h_0^* + \cdots + h_i^* - h_{q(d+1)-1}^* - \cdots - h_{q(d+1)-i}^* - h_0^* - \cdots - h_{i-\ell}^* + h_s^* + \cdots + h_{s-i+\ell}^* \\
= h_{i-\ell+1}^* + \cdots + h_{i+1}^*. \]
\[a_i - a_{q(d+1)-1-i} = h_0^* + \cdots + h_i^* - h_{q(d+1)-1}^* - \cdots - h_{q(d+1)-i}^* - h_0^* - \cdots - h_{s-i-1}^* + h_0^* + \cdots + h_s^* - \cdots - h_{s-i-1}^* - h_s^* - \cdots - h_{i+1}^* \]
\[= 0, \]
\[b_i - b_{q(d+1)-1-\ell-i} = -h_0^* - \cdots - h_s^* + \cdots + h_{s-i}^* + h_0^* + \cdots + h_s^* - \cdots - h_{s-i-1}^* - h_s^* - \cdots - h_{i+1}^* \]
\[= 0, \]
for \(i = 0, \ldots, q(d+1) - 1 \). Thus, we obtain the decomposition desired. The uniqueness property follows from (13) and (14).

Let \(T \) be a regular boundary triangulation of \(P \). By Theorem 4.4 and (11), we can set
\[a(z) = (1 + z + \cdots + z^{q-1}) \sum_{\Omega \in T} B(\Omega; z) h(\Omega; z^q), \]
and
\[b(z) = z^{-\ell} (1 + z + \cdots + z^{q-1}) \sum_{\Omega \in T} B(\Omega'; z) h(\Omega; z^q), \]
so that \(\overline{h}(P; z) = a(z) + z^\ell b(z) \). By Proposition 4.6, the dilate \(kP \) contains no interior lattice points for \(k = 1, \ldots, \ell - 1 \), so if \(v \in \text{Box}(\Omega') \cap \mathbb{Z}^{d+1} \) for \(\Omega \in T \), then \(u(v) \geq \ell \). Hence, \(b(z) \) is a polynomial. We now need to verify that
\[a(z) = z^{q(d+1)-1} a \left(\frac{1}{z} \right) \quad \text{and} \quad b(z) = z^{q(d+1)-1-\ell} b \left(\frac{1}{z} \right). \]
It is a well-known property of the \(h \)-vector in (7) that \(h(\Omega; z^q) = z^{q(d-\dim(\Omega)-1)} h(\Omega; z^{-q}) \) \([11, 25, 27]\).

Using the aforementioned and Corollary 4.1, we determine that
\[z^{q(d+1)-1} a \left(\frac{1}{z} \right) = z^{q(d+1)-1} \left(1 + \frac{1}{z} + \cdots + \frac{1}{z^{q-1}} \right) \sum_{\Omega \in T} B \left(\Omega; \frac{1}{z} \right) h \left(\Omega; \frac{1}{z^q} \right) \]
\[= z^{q(d+1)-1} z^{-q} (1 + z + \cdots + z^{q-1}) \sum_{\Omega \in T} B \left(\Omega; \frac{1}{z} \right) h \left(\Omega; \frac{1}{z^q} \right) \]
\[= z^{qd} (1 + z + \cdots + z^{q-1}) \sum_{\Omega \in T} z^{-q(d-\dim(\Omega)+1)} B(\Omega, z) z^{-q(d-1-\dim(\Omega))} h(\Omega; z^q) \]
\[= (1 + z + \cdots + z^{q-1}) \sum_{\Omega \in T} B(\Omega, z) h(\Omega; z^q) = a(z) \]
and
\[z^{q(d+1)-1-\ell} b \left(\frac{1}{z} \right) = z^{q(d+1)-1-\ell} z^{-\ell} \left(1 + \frac{1}{z} + \cdots + \frac{1}{z^{q-1}} \right) \sum_{\Omega \in T} B \left(\Omega'; \frac{1}{z} \right) h \left(\Omega; \frac{1}{z^q} \right) \]
\[= z^{q(d+1)-1} z^{-q} (1 + z + \cdots + z^{q-1}) \sum_{\Omega \in T} B \left(\Omega'; \frac{1}{z} \right) h \left(\Omega; \frac{1}{z^q} \right) \]
\[= z^{qd} (1 + z + \cdots + z^{q-1}) \sum_{\Omega \in T} z^{-q(d-\dim(\Omega)+1)-\ell} B(\Omega', z) z^{-q(d-1-\dim(\Omega))} h(\Omega; z^q) \]
\[= z^{-\ell} (1 + z + \cdots + z^{q-1}) \sum_{\Omega \in T} B(\Omega', z) h(\Omega; z^q) = b(z). \]
Lastly, recall that the box polynomials and the h-polynomials have nonnegative coefficients [29], so a sum of products of box polynomials and h-polynomials will also have nonnegative coefficients. Thus, the result holds.

The next theorem follows as a corollary to Theorem 4.7 and gives inequalities satisfied by the coefficients of the h^*-polynomial for rational polytopes.

Theorem 4.8. Let P be a rational d-polytope with denominator q and let $s := \deg h^*(P; z)$. The h^*-vector $(h_0^*, \ldots, h_{q(d+1)-1}^*)$ of P satisfies the following inequalities:

\[
\begin{align*}
& h_0^* + \cdots + h_{i+1}^* \geq h_{q(d+1)-1}^* + \cdots + h_{q(d+1)-1-i}^*, & i = 0, \ldots, \left\lfloor \frac{q(d+1) - 1}{2} \right\rfloor - 1, \\
& h_i^* + \cdots + h_{q(d+1)-i}^* \geq h_0^* + \cdots + h_i^*, & i = 0, \ldots, q(d+1) - 1.
\end{align*}
\]

Proof. By (13) and (14) if follows that (17) and (18) hold if and only if $a(z)$ and $b(z)$ have nonnegative coefficients, respectively, which in turn follows from Theorem 4.7.

5. Applications

5.1. Rational Reflexive Polytopes. A lattice polytope is reflexive if its dual is also a lattice polytope. Reflexive polytopes have enjoyed a wealth of recent research activity (see, e.g., [1, 5, 6, 12, 13, 16–18, 26]), and Hibi [15] proved that a lattice polytope P is the translate of a reflexive polytope if and only if $\text{Ehr}(P, \frac{1}{b}) = (-1)^d z \text{Ehr}(P; z)$ as rational functions, that is, $h^*(z)$ is palindromic. More generally, Fiset and Kaspryzk [10, Corollary 2.2] proved that a rational polytope P whose dual is a lattice polytope has a palindromic h^*-polynomial, complementing previous results by De Negri and Hibi [8]. The following proposition provides an alternate route to Fiset and Kaspryzk’s result.

Theorem 5.1. Let P be a rational polytope containing the origin. The dual of P is a lattice polytope if and only if $\overline{h^*}(P; z) = h^*(z) = a(z)$, that is, $b(z) = 0$ in the a/b-decomposition of $\overline{h^*}(P; z)$ from Theorem 4.4.

Proof. Let P be a rational polytope containing the origin in its interior. Following Set-up 4.1, we let T be a boundary triangulation of P and we set $(a, \ell) = (0, 1)$. Recall that this implies

\[
b(z) = z^{-1}(1 + z + \cdots + z^{q-1}) \sum_{\Omega \in T} B(\Omega'; z)h(\Omega; z^q).
\]

Thus, $b(z) = 0$ if and only if $B(\Omega'; z) = 0$ for every $\Omega \in T$, which is true if and only if Box (Ω') contains no integer points for every $\Omega \in T$.

To establish the forward direction, assume that the dual of P is a lattice polytope. We want to show that $b(z) = 0$ in the a/b-decomposition of $\overline{h^*}(P; z) = h^*(P; z)$. Each $\Omega \in T$ is contained in a facet F of P. Since the dual of P is a lattice polytope, the vector normal to cone (F) is of the form $(p, 1)$, where p is the vertex of the dual of P corresponding to F. Let $(r_1, q), \ldots, (r_{m+1}, q)$ be the ray generators of Box (Ω). If $\sum_{i=1}^{m+1} \lambda_i(ri, q) \in \text{Box}(\Omega)$ for $0 < \lambda_i < 1$, then $(p, 1) \cdot (\sum_{i=1}^{m+1} \lambda_i(ri, q)) = 0$. Also, note that $(p, 1) \cdot (0, 1) = 1$, which tells us that $(0, 1)$ is at lattice distance 1 away from Box (Ω) with respect to $(p, 1)$. So, if

\[
\sum_{i=1}^{m+1} \lambda_i(ri, q) + \lambda(0, 1) \in \text{Box}(\Omega')
\]

then $(p, 1) \cdot \left[\sum_{i=1}^{m+1} \lambda_i(ri, q) + \lambda(0, 1) \right] = \lambda$, where $0 < \lambda < 1$. This implies that $\sum_{i=1}^{m+1} \lambda_i(ri, q) + \lambda(0, 1)$ is not an integer point, from which it follows that Box (Ω') contains no lattice points. Thus $B(\Omega', z) = 0$ and so $b(z) = 0$ in the a/b-decomposition of $\overline{h^*}(P; z)$. Hence, $\overline{h^*}(P; z) = h^*(P; z) = a(z)$ is palindromic.

For the backward direction, assume that $b(z) = 0$, and thus for every $\Omega \in T$, the set Box (Ω') contains no integer points. Our goal is to use this fact to show that for every facet F of P, the vertex of the dual
of P corresponding to F is a lattice point, i.e., to show that the primitive facet normal to cone (F) is given by $(p, 1)$ for some lattice point p. Let F be a facet of P, and let $\Omega = \text{conv}\{(r_1, q), \ldots, (r_{m+1}, q)\} \in T$ be a full-dimensional simplex contained in F. Since the origin lies in the interior of P, the dual of P is a rational polytope containing the origin. Further, the vector normal to cone (F) can be written in the form (p, b) with $b > 0$, where p is an integer vector that is primitive, i.e., the greatest common divisor of the entries in (p, b) equals 1. Observe that $(p, b) \cdot (0, 1) = b$. If $b = 1$, then the vertex of the dual of P corresponding to F is a lattice point, and our proof is complete.

Otherwise, suppose that $b > 1$. Since (p, b) is primitive, there exists an integer vector v such that $(p, b) \cdot v = 1$. Since $b > 1 > 0$, v is an element of the subset S strictly contained between the hyperplane H_0 spanned by cone (F) and the affine hyperplane $H_b = H_0 + (0, 1)$; we can precisely describe this subset as

$$S := \left\{ \sum_{i=1}^{m+1} \lambda_i (r_i, q) + \lambda (0, 1) : \lambda_i \in \mathbb{R} \text{ and } 0 < \lambda < 1 \right\}.$$

Since $b(z) = 0$, it follows that for each $\tau \subseteq \Omega$ the set $\text{Box}(\tau') = \text{Box}(\tau, (0, 1))$ contains no integer points. The key observation is that translates of $\bigcup_{\tau \subseteq \Omega} \text{Box}(\tau, (0, 1))$ by the integer ray generators of cone (F) cover S, though this union is not disjoint, i.e.,

$$S = \bigcup_{\mu_1, \ldots, \mu_{m+1} \in \mathbb{Z}} \left(\sum_{i=1}^{m+1} \mu_i (r_i, q) \right) + \bigcup_{\tau \subseteq \Omega} \text{Box}(\tau, (0, 1)).$$

This cover property follows from taking an arbitrary $\sum_{i=1}^{m+1} \lambda_i (r_i, q) + \lambda (0, 1) \in S$ and expressing each coefficient as a sum of an integer and fractional part. It follows that S contains no integer points, since $\bigcup_{\tau \subseteq \Omega} \text{Box}(\tau, (0, 1))$ contains no integer points. Hence, no such integer vector v exists, implying that $b = 1$. Since F was arbitrary, it follows that the dual of P is a lattice polytope. \qed

5.2. Reflexive Polytopes of Higher Index

Kasprzyk and Nill [22] introduced the following class of polytopes.

Definition 5.2. A lattice polytope P is a reflexive polytope of higher index \mathcal{L} (also known as an \mathcal{L}-reflexive polytope), for some $\mathcal{L} \in \mathbb{Z}_{>0}$, if the following conditions hold:

- P contains the origin in its interior;
- The vertices of P are primitive, i.e., the line segment joining each vertex to 0 contains no other lattice points;
- For any facet F of P the local index \mathcal{L}_F equals \mathcal{L}, i.e., the integral distance of 0 from the affine hyperplane spanned by F equals \mathcal{L}.

The 1-reflexive polytopes are the reflexive polytopes mentioned earlier in the section. Kasprzyk and Nill proved that if P is a lattice polytope with primitive vertices containing the origin in its interior then P is \mathcal{L}-reflexive if and only if $\mathcal{L}P^*$ is a lattice polytope having only primitive vertices. In this case, $\mathcal{L}P^*$ is also \mathcal{L}-reflexive.

Kasprzyk and Nill investigated \mathcal{L}-reflexive polygons. In particular, they show that there is no \mathcal{L}-reflexive polygon of even index. Furthermore, they provide a family of \mathcal{L}-reflexive polygons arising for each odd index:

$$P_{\mathcal{L}} = \text{conv}\{\pm (0, 1), \pm (2, \mathcal{L}, 2), \pm (\mathcal{L}, 1)\}.$$

We are interested in the dual of $P_{\mathcal{L}}$:

$$P_{\mathcal{L}}^* = \text{conv}\left\{ \pm \left(\frac{1}{\mathcal{L}}, 0 \right), \pm \left(\frac{2}{\mathcal{L}}, -1 \right), \pm \left(\frac{1}{\mathcal{L}}, -1 \right) \right\}.$$
Theorem

Let \mathcal{L} be odd. Our goal in the remainder of this subsection is to compute the h^*-polynomial of $P_{\mathcal{L}}^*$ using Theorem 4.4, to illustrate how this theorem can be applied. Consider the boundary as its own triangulation T (with denominator \mathcal{L}) of $P_{\mathcal{L}}^*$ and take the set of integral ray generators of cone $(P_{\mathcal{L}}^*)$ to be

$$\{\pm(1,0,\mathcal{L}), \pm(2,0,\mathcal{L}), \pm(1,\mathcal{L},\mathcal{L})\}.$$

Observe that T contains six edges, six vertices, and the empty face \emptyset. It is not difficult to see that the box polynomials of the 0-simplices are 0. For example, in order for $B(\mathcal{L})$ to contain any lattice points, $2\lambda_1$ must be an integer between 0 and 2, implying that $\lambda_1 = \frac{1}{2}$. Also, $-\mathcal{L}\lambda_1$ and $\mathcal{L}\lambda_1$ must be integers, but since $\lambda_1 = \frac{1}{2}$ and \mathcal{L} is odd, $-\mathcal{L}\lambda_1$ and $\mathcal{L}\lambda_1$ are never integers. Therefore, $\text{Box}((2,-\mathcal{L},\mathcal{L})) = \emptyset$.

Since $P_{\mathcal{L}}^*$ is a centrally symmetric hexagon, we can restrict our analysis to three of its facets: $F_1 := \text{conv} \{\pm(\frac{1}{2},-1), \pm(\frac{1}{2},1)\}$, $F_2 := \text{conv} \{\pm(\frac{1}{2},-1), \pm(\frac{1}{2},0)\}$, and $F_3 := \text{conv} \{\pm(\frac{1}{2},0), \pm(-\frac{1}{2},1)\}$. We consider each facet separately.

Case: F_1. Observe:

$$\text{Box}((F_1,\mathcal{L})) = \{\lambda_1(1,-\mathcal{L},\mathcal{L}) + \lambda_2(2,-\mathcal{L},\mathcal{L}) : 0 < \lambda_1, \lambda_2 < 1\}$$

$$= \{(\lambda_1 + 2\lambda_2, -\mathcal{L}\lambda_1 - \mathcal{L}\lambda_2, \mathcal{L}\lambda_1 + \mathcal{L}\lambda_2 : 0 < \lambda_1, \lambda_2 < 1\}.$$

Let $\mathcal{L} = 2k + 1$ for $k \in \mathbb{Z}_{\geq 0}$. We now want to determine when $(A,-B,B) \in \text{Box}((F_1,\mathcal{L}))$ is a lattice point. This reduces to solving a system of linear equations between A and B. In order for A to be an integer it must be 1 or 2. When $A = \lambda_1 + 2\lambda_2 = 1$, $B = \mathcal{L}\lambda_1 + \mathcal{L}\lambda_2$ equals $\mathcal{L} - k$, $\mathcal{L} - k + 1$, ..., $\mathcal{L} - 2$, or $\mathcal{L} - 1$ with the restriction that $0 < \lambda_1, \lambda_2 < 1$. When $A = \lambda_1 + 2\lambda_2 = 2$, $B = \mathcal{L}\lambda_1 + \mathcal{L}\lambda_2$ equals $\mathcal{L} + 1$, $\mathcal{L} + 2$, ..., $\mathcal{L} + k - 1$, or $\mathcal{L} + k$. Therefore, $\text{Box}((F_1,\mathcal{L})) \cap \mathbb{Z}^3$ contains the elements $\{(1,\mathcal{L} - k, \mathcal{L} - k), (1,k - \mathcal{L} - 1,\mathcal{L} - k + 1), (1,2,\mathcal{L},\mathcal{L} - 2), (1,\mathcal{L} - 1,\mathcal{L} - 1), (2,-\mathcal{L} - 2,\mathcal{L} + 2), (2,1-\mathcal{L} - \mathcal{L} + k + 1), (2,-\mathcal{L} - k,\mathcal{L} + k)\}$. Therefore, the box polynomial of F_1 is

$$B(F_1; z) = \sum_{i = \mathcal{L} - k}^{\mathcal{L} - 1} z^i + \sum_{i = \mathcal{L} + 1}^{\mathcal{L} + k} z^i.$$

![Figure 2. The rational hexagon $P_{\mathcal{L}}^*$.](image-url)
and conclude that for $L^1 \lambda A$ to solving a system of linear equations between L reduces to 2 obtain $\lambda (Suppose $0 = L$, Combining the above analysis with the values in Table Case: F. Observe:

$$\text{Box}(F_2, L) = \{\lambda_1 (2, -L, L) + \lambda_2 (1, 0, L) : 0 < \lambda_1, \lambda_2 < 1\}$$

$$= \{(2\lambda_1 + \lambda_2, -L \lambda_1, L \lambda_1 + L \lambda_2) : 0 < \lambda_1, \lambda_2 < 1\}.$$ Suppose (A, B, C) is an integer point in this set. Again, determining the integer points in the box reduces to solving a system of linear equations between A and C with the added condition coming from B that $\lambda_1 = \frac{1}{2}, \ldots, \frac{L-1}{2}$. It is straightforward to verify that the resulting box polynomial of F_2 is the same as F_1.

Case: F_3. Observe:

$$\text{Box}(F_3, L) = \{\lambda_1 (-1, L, L) + \lambda_2 (1, 0, L) : 0 < \lambda_1, \lambda_2 < 1\}$$

$$= \{(-\lambda_1 + \lambda_2, L \lambda_1, L \lambda_1 + L \lambda_2) : 0 < \lambda_1, \lambda_2 < 1\}.$$ Suppose (A, B, C) is an integer point in this set. For A to be an integer it must be equal to zero, so we obtain $\lambda_1 = \lambda_2$. The expression for B implies that $\lambda_2 = \frac{m}{L}$ for some integer $m \in [1, L - 1]$. Lastly, C then reduces to $2L \lambda_1 = 2m$. Therefore, we conclude $\text{Box}((F_3, L))$ contains $L - 1$ lattice points of the form $(0, m, 2m)$, one for each integer $m \in [1, L - 1]$. This implies the box polynomial of F_3 is given by

$$B(F_3; z) = \sum_{i=1}^{L-1} z^{2i}.$$ Combining the above analysis with the values in Table 5.2, we apply Theorems 4.4 and 5.1 and conclude that for $L = 2k + 1$,

$$h^*(P^*_L; z) = (1 + z + \cdots + z^L) \left(1 + 4z^L + z^{2L} + 4 \left(\sum_{i=1}^{L-1} z^i + \sum_{i=L+1}^{L+k} z^i\right) + 2 \sum_{i=1}^{L-1} z^{2i}\right).$$
ACKNOWLEDGEMENTS

This work was partially supported by NSF Graduate Research Fellowship DGE-1247392 (ARVM). ARVM thanks the Discrete Geometry group of the Mathematics Institute at FU Berlin for providing a wonderful working environment while part of this work was done. The authors would like to thank Steven Klee, José Samper, Liam Solus, and three anonymous referees for fruitful correspondence.

REFERENCES

1. Victor V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), no. 3, 493–535. MR 1269718
2. Matthias Beck, Katharina Jochemko, and Emily McCullough, h^*-polynomials of zonotopes, Trans. Amer. Math. Soc. 371 (2019), no. 3, 2021–2042. MR 3894043
3. Matthias Beck and Frank Sottile, Irrational proofs for three theorems of Stanley, European J. Combin. 28 (2007), no. 1, 403–409. MR 2261827
4. Ulrich Betke and Peter McMullen, Lattice points in lattice polytopes, Monatsh. Math. 99 (1985), no. 4, 253–265. MR 799674
5. Benjamin Braun, An Ehrhart series formula for reflexive polytopes, Electron. J. Combin. 13 (2006), no. 1, Note 15, 5. MR 2255415
6. Benjamin Braun, Robert Davis, and Liam Solus, Detecting the integer decomposition property and Ehrhart unimodality in reflexive simplices, Adv. in Appl. Math. 100 (2018), 122–142. MR 3835192
7. Winfried Bruns, Bogdan Ichim, Tim Römer, Richard Sieg, and Christof Söger, Normaliz. algorithms for rational cones and affine monoids, Available at https://www.normaliz.uni-osnabrueck.de.
8. Emanuela De Negri and Takayuki Hibi, Gorenstein algebras of Veronese type, J. Algebra 193 (1997), no. 2, 629–639. MR 1458806
9. Eugène Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris 254 (1962), 616–618. MR 0130860
10. Matthew H. J. Fiset and Alexander M. Kasprzyk, A note on palindromic δ-vectors for certain rational polytopes, Electron. J. Combin. 15 (2008), no. 1, Note 18, 4. MR 2411464
11. William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry. MR 1234037
12. Yang-Hui He, Rak-Kyeong Seong, and Shing-Tung Yau, Calabi-Yau volumes and reflexive polytopes, Comm. Math. Phys. 361 (2018), no. 1, 155–204. MR 3825939
13. Gábor Hegedűs, Akihiro Higashitani, and Alexander Kasprzyk, Ehrhart polynomial roots of reflexive polytopes, Electron. J. Combin. 26 (2019), no. 1, Paper No. 1.38, 27. MR 3934369
14. Takayuki Hibi, Some results on Ehrhart polynomials of convex polytopes, Discrete Math. 83 (1990), no. 1, 119–121. MR 1065691
15. Takayuki Hibi, Dual polytopes of rational convex polytopes, Combinatorica 12 (1992), no. 2, 237–240. MR 1179260
16. Takayuki Hibi and Akiyoshi Tsuchiya, Reflexive polytopes arising from perfect graphs, Arch. Math. (Basel) 113 (2019), no. 3, 265–272. MR 3988821
17. Takayuki Hibi, Reflexive polytopes arising from partially ordered sets and perfect graphs, J. Algebraic Combin. 49 (2019), no. 1, 69–81. MR 3903856
18. Katharina Jochemko, On the real-rootedness of the Veronese construction for rational formal power series, Int. Math. Res. Not. IMRN (2018), no. 15, 4780–4798. MR 3842377
19. Katharina Jochemko, Symmetric decompositions and the Veronese construction, 2020, preprint (arXiv:2004.05423).
20. Katharina Jochemko and Raman Sanyal, Combinatorial positivity of translation-invariantvaluations and a discrete Hadwiger theorem, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 9, 2181–2208. MR 3836844
21. Alexander M. Kasprzyk and Benjamin Nill, Reflexive polytopes of higher index and the number 12, Electron. J. Combin. 19 (2012), no. 3, Paper 9, 18. MR 2967214
22. Emerson León, Stapledon decompositions and inequalities for coefficients of chromatic polynomials, Sém. Lothar. Combin. 78B (2017), Art. 24, 12. MR 3678606
23. Ian G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971), 181–192. MR 298542
24. Peter McMullen and Geoffrey C. Shephard, Convex polytopes and the upper bound conjecture, Cambridge University Press, London-New York, 1971, Prepared in collaboration with J. E. Reeve and A. A. Ball, London Mathematical Society Lecture Note Series, 3. MR 0301635
26. Takahiro Nagaoka and Akiyoshi Tsuchiya, *Reflexive polytopes arising from edge polytopes*, Linear Algebra Appl. 557 (2018), 438–454. MR 3848281
27. Richard P. Stanley, *The number of faces of a simplicial convex polytope*, Adv. in Math. 35 (1980), no. 3, 236–238. MR 563925
28. ———, *On the Hilbert function of a graded Cohen-Macaulay domain*, J. Pure Appl. Algebra 73 (1991), no. 3, 307–314. MR 1124790
29. ———, *Subdivisions and local h-vectors*, J. Amer. Math. Soc. 5 (1992), no. 4, 805–851. MR 1157293
30. ———, *A monotonicity property of h-vectors and h^*-vectors*, European J. Combin. 14 (1993), no. 3, 251–258. MR 1215335
31. ———, *Combinatorics and commutative algebra*, second ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579
32. Alan Stapledon, *A geometric interpretation of Stanley’s monotonicity theorem*, 2008, preprint (arXiv:0807.3543).
33. Alan Stapledon, *Inequalities and Ehrhart δ-vectors*, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5615–5626. MR 2515826

DEPARTMENT OF MATHEMATICS, SAN FRANCISCO STATE UNIVERSITY & MATHEMATICISCHES INSTITUT, FREIE UNIVERSITÄT BERLIN, HTTP://MATH.SFSU.EDU/BECK/

Email address: mattbeck@sfsu.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, HTTPS://SITES.GOOGLE.COM/VIEW/BRAUNMATH/

Email address: benjamin.braun@uky.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, HTTPS://MS.UKY.EDU/~ARVI222

Email address: andres.vindas@uky.edu