INTRODUCTION

Iodine is one of the most important elements that are necessary for the normal functioning of the human body. Iodine is present in the thyroid gland at 80% of the body's total content. The thyroid gland is the main storehouse for iodine, and it synthesizes the most important regulatory hormone, thyroxine (T4), and triiodothyronine (T3). These hormones affect the growth and development of the body, including the thyroid gland itself. The production of these hormones depends on the availability of iodine, particularly in the diet. A deficiency in iodine can lead to serious health problems, including the development of goiter and an increased risk of hypothyroidism.

Materials and methods: The determination of iodine was carried out using the Ecotest-120 pH meter. "Ekomi-I" was used as an ion-selective electrode. Silver chloride electrode "ESR 10101" was used as a reference electrode.

Results and Discussion: The developed procedure has a suitable level of linearity (correlation coefficient = 0.9995%), correctness (variation coefficient = 1.58%), repeatability (variation coefficient = 6.67%), and analytical area (0.03–209.4 μg/mL analyte in the test solution). The procedure allows us to determine iodine in the form of iodides with an accuracy comparable to the accuracy of neutron activation analysis and can be recommended as an alternative to titrimetric methods existing in the world-leading pharmacopoeias.

Keywords: Iodine in the iodides form, kelp thallus, pharmacopoeial analysis, validation.
implementation of this treatment type. The content of this element can be up to 5%, calculated on the dry weight of the crude herbal drug (CHD). For example, land plants absorb only 0.2–0.5 µg in terms of one gram plant mass. For this reason, kelp thallus has long been included in the State Pharmacopoeia of the Russian Federation, as well as in the British and European Pharmacopoeias as a biological source of iodine.

When developing procedures for the quantitative determination of iodine, it is desirable to know in which form it occurred in a natural object. Available literature data show that the share of iodides in kelp accounts for approximately 90% of the total iodine content; the remaining 10% are iodinated amino acids, the most are iotyrosine.

Different chemical and physicochemical methods are used to determine the iodine in the kelp thallus. So, the laboratory titrimetric method (iodometry) is used to determine the gross iodine content according to the State Pharmacopoeia of Russian Federation XIV edition (SPRF XIV), European Pharmacopoeia (EP), and British Pharmacopoeia (BP) that is insufficiently selective, especially in the case of natural objects.

It includes several stages: preliminary burning of the analyzed sample in an oxygen atmosphere, followed by absorption of the reaction products with a mixture of water and sodium hydroxide, as in the case of or by calcination in an open flame of the burner as in the case of. In some works, iodine content was determined by a gas chromatograph equipped with an electron-capture detector. The analysis can be performed by high-performance liquid chromatography after extraction of iodine compounds with ionic liquids containing a pyridinium cation.

Some attempts have been made to use atomic absorption spectrometry (AAS) to determine the total iodine content. However, the determination of this nonmetal AAS method can be determined by the AAS method only indirectly by determining the metals that form the iodine compounds with accurate stoichiometry. However, this nonmetal can be determined by the AAS method only indirectly, namely by determining metals that form compounds with iodine with exact stoichiometry. The most widely used methods in the iodine determination in natural objects are the mass spectrometry with inductively coupled plasma and the older labor-intensive Sandell–Koltgoff kinetic method. The Sandell–Koltgoff method is extremely sensitive. However, it is not highly selective. A more modern method is inductively coupled plasma mass spectrometry (ICP-MS), which has a large dynamic range (up to 5–7 orders of magnitude). Nevertheless, this method is not without significant drawbacks. It is expensive and requires the almost complete mineralization of the sample because the introduction of solutions containing a high level of organic substances into inductively coupled plasma is difficult and also addicted to significant matrix effects, which are associated with the transportation of the analyzed solution to the plasma and strong isobaric influences from the components of the matrix.

The inexpensive ionometry method is a real alternative to the Sandell–Koltgoff method and ICP-MS, as iodine is presented mainly in the iodides form in the kelp. This method provides an effective combination of the determination step with the fast, simple, and safe step of sample preparation. Unfortunately, in recent decades, the number of works devoted to the use of direct ionometry for the determination of iodine in pharmaceutical objects is very small. Perhaps it is worth mentioning the work, in which the authors developed a solid-state ion-selective electrode containing 1,3-dihexadecylimidazolium ionic liquid. According to the developers, depending on the composition of the anionic part of the ionic liquid, the electrode can be selective both with respect to thiocyanates and iodides. However, this electrode is not easily accessible and standardized, as it is not produced by modern industry. Solid-state electrodes (including chemically and mechanically stable crystalline membranes, for example, made of Ag2S) doped with AgI) are the most widely used in the analysis practice. They are rather convenient, industrially fabricated and, accordingly, standardized. Nevertheless, in pharmacognostic practice, the ionometry method is currently not widely used, despite the availability and relative cheapness of such iodide-selective electrodes and equipment in general. Until now, iodine is determined in factory laboratories using the laborious, insufficiently selective titrimetric method used in pharmacopoeias.

The purpose of this study was to develop and validate a simple, effective procedure for the quantitative determination of iodine in the form of iodide by ionometry in the kelp thallus. The developed technique can be recommended as an alternative to titrimetric methods existing in the world-leading pharmacopoeias.

Materials and Methods

Devices and materials

The determination of iodides was carried out by using the “Ecotest-120” pH meter. “Ekom-I” was used as an ion-selective electrode. Silver chloride electrode “ESR 10101” was used as a reference electrode. The background electrolyte was a 1M KNO3 solution.
Standard samples, reagents, and standard solutions

High-quality laboratory grade water (conductivity <4.3 μS·cm⁻¹ at 20°C), potassium nitrate (high-grade purity, Himmed, Russia, Moscow), potassium iodide (ISO, European Pharmacopoeia Reagent, ≥99.5%, Sigma-Aldrich, Germany, Steinheim) were used in analysis.

The background electrolyte solution was prepared as follows: 101 g (accurately weighed) of potassium nitrate was quantitatively transferred to a 1000-mL volumetric flask, 600 mL of water was added, stirred until the sample was completely dissolved, the solution volume was adjusted to the mark with the same solvent, and stirred. The initial standard solution was prepared by dissolving an exact portion of potassium iodide (16.6 g), previously dried at a temperature of 105°C–110°C to constant weight, in a 1000-mL volumetric flask; the solution volume was adjusted to the mark with water, and stirred (concentration 1–10⁻¹ mol/L [209.4 μg/mL]). The following standard solutions were prepared by sequential dilution and iodide concentrations were obtained: 1 × 10⁻⁴ mol/L (0.30 μg/mL), 1 × 10⁻³ mol/L (2.70 μg/mL), 1 × 10⁻² mol/L (23.9 μg/mL); 1 × 10⁻¹ mol/L (209.4 μg/mL), 1 × 10⁻² mol/L (309.4 μg/mL), and 1 × 10⁻¹ mol/L (0.30 μg/mL). For this purpose, 10 mL of a solution with a higher concentration was placed in a 100-mL volumetric flask; the solution volume was adjusted to the mark with water. High-quality laboratory grade water was used as a compensation solution.

Sample

The kelp thallus sample was purchased in the Moscow pharmacy network. The sample is corresponded the requirements of SPRF XIV edition.[14]

Samples’ preparation

Accurately weighed 5 g of the CHD, crushed to a 3-mm particle size, is placed in a 500-mL conical flask. 200 mL of water with a temperature of 90°C is added. The sample is incubated for 1 h at room temperature (25°C). The obtained extract is filtered through five layers of gauze into a 500-mL measuring cylinder, the CHDs are squeezed out, and the volume of the obtained extract is measured. The coefficient φ is calculated as follows: \(\phi = \frac{5 \cdot V/200 \cdot m}{V/40 \cdot m} \), where \(V \) is the extraction volume, mL and \(m \) is the kelp thallus sample weight, g.

Drawing a calibration curve

For drawing a calibration curve, standard solutions with concentrations of 1 × 10⁻⁴, 1 × 10⁻³, 1 × 10⁻², 1 × 10⁻¹, and 1 × 10⁻⁴ mol/L were used. Its preparation is described in “Standard samples, reagents, and standard solutions” section. The instrument (“Ecotest-120” pH meter) automatically recalculates the molarity (mol/L) in μg/mL when the analyte concentration is determined by the calibration curve.

Procedure

5 mL of a background electrolyte solution is added to 45 mL of standard and test solutions, as well as a comparison solution. Then the concentration of iodides in the test solution is measured according to the calibration graph.

The iodide content (X,%) is calculated by the following formula:

\[
X = \frac{(C - C_0) \times 100 \times 100}{1000000 \times 0 \times (100 - W')}
\]

\[
\phi = \frac{2 \times (C - C_0)}{0 \times (100 - W')} \times 100 \%
\]

where \(C \) is the iodide concentration in the analyzed solution, μg/mL; \(C_0 \) is the iodide concentration in the compensation solution; \(\phi \) is the CHD water absorption coefficient; \(a \) is the weight of sample, g; and \(W \) is the CHD humidity, %.

RESULTS AND DISCUSSION

Feasibility demonstration

The selectivity of industrially manufactured crystalline solid-state and selective electrodes is achieved by the vacancy charge transfer mechanism, in which vacancies are filled only with a certain mobile ion (Ag⁺), as the shape, size, and charge distribution of the vacancy correspond only to a certain mobile ion. As a result, extraneous ions (NO₃⁻, ClO₄⁻, SO₄²⁻, and many others) that do not precipitate with the Ag⁺ ion practically do not affect the potential of such an electrode; ions of other halides also do not significantly affect the determined component analytical signal due to the significant difference in the solubility products between AgI and AgBr, AgCl.

Table 1 illustrates well the foregoing. Table 1 presents approximate selectivity coefficients. They are the ratio of the solubility product of the silver salt
of the element being determined—iodine—to the solubility product of the silver salt of the interfering component X.\(^{38}\) The presented data show that the selectivity of the iodine-selective electrode with respect to the analyte in the presence of interfering ions is extremely high.

So, iodide in the form of iodide is determined 1,000,000 times more sensitive than chloride. Chloride is a matrix ion, the most widely distributed in nature, including in CHDs. Strict differentiation of cells by tissues, as in higher land plants, is absent in thallus of brown algae, although their thallus are multicellular. The result of this is a relatively uniform distribution of iodine in the thallus cells, which is confirmed by the available literature data\(^{11}\) and shown in this work using the example of studying the effect of the degree of kelp thallus crushing on I\(^–\) extraction. The data are shown in Table 2.

Table 1 shows that the crushing degree influence on the iodide extraction effectiveness in the aqueous phase is insignificant in the studied range. The results can be explained by the extreme hydrophilicity of the inorganic form I\(^–\) compared to organic biologically active compounds contained in higher plants. This makes the analyte easy to recover. In the kelp thallus chemical analysis, it is difficult to study the effect on iodide extraction of indicators such as CHD, extractant ratio, and extraction ratio due to the peculiarities of the physicochemical determination method used. With a decrease in the extractant volume, the extraction viscosity increases, which makes it difficult to establish an equilibrium membrane potential. It also influences the correct analyte determination. With extractant increasing volume, as well as dilution, the metrological characteristics of the technique significantly deteriorate. The determination error increases significantly and can exceed 10%.

Brown algae are marine phyto-organisms. When water is added to the dried CHD, the latter is intensively absorbed by the plant cells, which affects the final extraction volume. This effect must be taken into account in the iodine quantitative determination in the form of iodide in the kelp thallus using the introduction of a special coefficient. Table 3 shows the data reflecting the coefficient determination taking into of CHD water absorption coefficient (\(\varphi\)). So, the obtained data analysis shows that the coefficient \(\varphi\) is 0.798—the volume of the final extraction differs by 20% from the initial volume of the added extractant.

Linearity

The electrode potential of standard solutions was sequentially measured. The solution preparation is described in the section “Standard samples, reagents, and standard solutions.” Table 4 shows the standard electrode potential values. According to Table 4, a graph was plotted: the potential of the indicator electrode—on the \(y\)-axis; \(p\)-function for iodide ions (negative decimal logarithm from the equilibrium concentration of iodide)—on the \(x\)-axis. The graph is shown in Figure 1. The presented data show that the analytical signal is directly proportional to the analyte concentration in the entire working range of the ion-selective electrode. The correlation coefficient (\(R\)) obtained from the calibration line analysis was more
than 0.9995%. The result confirms the quantitation method linearity. The relative standard deviation (RSD) calculated at the found iodide concentration in the analyzed solution (105.6 µg/mL) was less than 5% ($n = 3, P = 0.95$).

Correctness
The procedure correctness was proved by the method of additives by adding the exact volume of the solution with the iodide concentration of 2100 µg/mL. Three parallel determinations were made for each additive, adding the initial solution to the analyzed solution, so that the final analyte concentration was in a linear concentration range [Figure 1]. The correctness index was evaluated by calculating the recovery, that is, as the ratio between the total content of the introduced I– and the initially available I– in the test solution, expressed as a percentage. The method correctness determination results are presented in Table 5. The data presented in Table 5 show that the correctness of the iodine quantitative determination in the form of iodides for the average value of each of the three determinations is in the range from 95.0% to 105.0%. Statistical characteristics calculated on the basis of recovery [Table 5] are presented in Table 6. The obtained data indicate that the analyte quantitative determination variation coefficient ($n = 9$) does not exceed 4.0% and amounts to 1.58%.

Repeatability
To determine the repeatability, the coefficient of variation was calculated according to the results of the iodine quantitative determination in the form of iodines ($n = 6$) in the test solution. Table 7 presents the

Table 5: Correctness of iodine determination in the form of iodides in kelp thallus by ionometry

The iodide content in the extract, µg/mL	Introduced, µg/mL	The calculated iodide content, µg/mL	Was found, µg/mL	Recovery, %
105.2	12.7	117.4	118.6	101.0
	12.4	117.6	118.3	100.6
	12.2	117.4	118.3	100.8
	38.8	144.0	147.6	102.5
	41.4	146.6	146.5	99.9
	43.1	148.3	147.7	99.6
	116.1	221.3	215.9	97.5
	119.2	224.4	221.1	98.5
	116.6	221.8	225.9	101.9

Table 6: Openability statistical characteristics

Statistical characteristics	Results
Lowest value, %	97.5
Highest value, %	102.5
Average value, %	100.0
Standard deviation	1.58
The standard deviation of the average result	0.53
The variation coefficient (VC), %	1.58
Confidence interval ($P = 0.95$)	1.22

Figure 1: Linear relationship between the p-function on the iodide’s equilibrium concentration and the electrode potential.
metrological results. Analysis of the data presented in Table 7 shows that the result variation coefficient of the iodine quantitative determination in the form of iodide in the kelp thallus \((n = 6)\) is 6.67%.

Analytical area of the procedure

The quantitative determination of the iodine procedure is applicable in the range of contents from 0.03 to 209.4 \(\mu\)g/mL analyte in the test solution. Correctness, linearity, and repeatability are established for interval values and values within the interval: linearity (0.03%–209.4%), correctness (0.03%–209.4%), and repeatability (approximately 0.42%). So, the given validation characteristics allow us to conclude that the developed technique can be used to determine iodine (in the form of iodides) in the kelp thallus. The data obtained using the developed methodology were in agreement with the data given in Küpper et al. \[11\]. Also, the obtained data were compared with the data obtained by the method from SPRF XIV edition. \[14\] The results are presented in Table 8. The data presented in Table 8 indicate that the developed procedure allows us to determine iodine in the form of iodides with an accuracy comparable to the accuracy of neutron activation analysis. At the same time, the result obtained using the methodology \[14\] cannot be considered satisfactory, as it turns out to be almost 2.5 times overstated due to the nonselectivity of the titrimetric method.

Conclusion

An effective procedure has been developed for the quantitative determination of iodine in the form of iodide in the kelp thallus by the ionometry method and its validation has been carried out. Linearity, correctness, and repeatability were estimated. It was shown that the procedure provides satisfactory results when the content of the analyte in the test solution is 0.03–209.4 \(\mu\)g/mL. Data comparison obtained using the developed procedure and the official method given in the State Pharmacopoeia of the Russian Federation reveals high selectivity and satisfactory accuracy (variation coefficient does not exceed 7%) of the ionometric approach. The procedure is promising for controlling the iodine content in kelp thallus in laboratory factories engaged in the production of herbal remedies as it does not require the use of expensive equipment and reagents.

The procedure can be used as an alternative procedure to existing ones. Also it can be recommended for inclusion in leading pharmacopoeias.

Acknowledgement

The publication has been prepared with the support of the “RUDN University Program 5–100.”

Financial support and sponsorship

This study was financially supported by “Russian Academic Excellence Project 5–100” (Schenov University).

Conflicts of interest

There are no conflicts of interest.

References

1. Romaris-Hortas V, Bermejo-Barrera P, Moreda-Piñeiro J, Moreda-Piñeiro A. Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. Anal Chim Acta 2012;745:24-32.
2. Haldimann M, Alt A, Blanc A, Blondeau K. Iodine content of food groups. J Food Comp Anal 2005;18:461-71.
3. Reinhardt W, Luster M, Rudorff KH, Heckmann C, Petrasch S, Lederbogen S, et al. Effect of small doses of iodine on thyroid function in patients with Hashimoto’s thyroiditis residing in an area of mild iodine deficiency. Eur J Endocrinol 1998;139:23-8.
4. Robison LM, Sylvester PW, Birkenfeld P, Lang JP, Bull RJ. Comparison of the effects of iodine and iodide on thyroid function in humans. J Toxicol Environ Health Part A 1998;55:93-106.
5. Avtyn AP, Zhavoronkov AA, Rish MA, Strochkova LS. Trace elements of a human. Moscow, Russian Federation: Medicine; 1991. p. 496.
6. Moskalev YuL. Mineral exchange. Moscow, Russian Federation: Medicine; 1985. p. 288.
7. Delange F. Iodine deficiency in Europe and its consequences: an update. Eur J Nucl Med Mol Imaging 2002;29:404-16.
8. Maiberly GF, Haxton DP, van der Haar F. Iodine deficiency: consequences and progress toward elimination. Food Nutr Bull 2003;24:91-8.
9. Walker SP, Wachs TD, Gardner JM, Lozoff B, Wasserman GA, Pollitt E, Carter JA. Child developments risk factors for adverse outcomes in developing countries. The Lancet 2007;369:145-50.
10. Erwan Gall A, Küpper FC, Kloareg B. A survey of iodine content in Laminaria digitata. Botan Marin 2004;47:30-7.
11. Küpper FC, Schweigert N, Ar Gall E, Legendre J-M, Viter H, Kloareg B. Iodine uptake in laminariae involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 1998;207:163-71.
12. Fuge R. Soils and iodine deficiency. In Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, et al., editors. Essentials of medical geology. Impacts of the natural environment on public health. London, UK: Elsevier-Academic Press; 2005. p. 417-70.
13. Yakovleva GP. A large encyclopedic dictionary of medicinal plants. St. Petersburg, Russian Federation: SpecLit; 2015. p. 759-60.
14. State pharmacopoeia of Russian Federation. 14th ed. Moscow, Russian Federation: Publishing House of the Ministry of Health of the Russian Federation; 2018;4:6181-87.
15. British Pharmacopoeia. Herbal drugs and herbal drug preparations. Kelp 2009;III:1-2.
16. European Pharmacopoeia. 6th ed. Strasbourg, France: Publisher EDQM; 2008;2:2213-4.
17. Verhaeghe EF, Fraysse A, Guerquin-Kern J-L, Wu T-D, Deves G, Mioskowski C, et al. Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggest a new mechanism for its accumulation. J Biol Inorg Chem 2008;13:257-69.
18. Tong W, Chaitoff IL. Metabolism of I131 by the marine alga, Nereocystis luetkeana. J Biol Chem 1955;215:473-84.
19. Hou X, Chai C, Qian Q, Yan X, Fan X. Determination of chemical species of iodine in some seaweeds (I). Sci Total Environ 1997;204:215-21.
20. Shah M, Wuilloud RG, Kannamkumarath SS, Caruso JA. Iodine speciation studies in commercially available seaweed by coupling different chromatographic techniques with UV and ICP-MS detection. J Anal At Spectrom 2005;20:176-82.
21. Yeh ST, Hung NH, Lin TC. Analysis of iodine content in seaweed by GC-ECD and estimation of iodine intake. J Food Drug Anal 2014;22:189-96.
22. Peng L-Q, Yu W-Y, Xu J-J, Cao J. Pyridinium ionic liquid-solid extraction of inorganic and organic iodine from Laminaria. Food Chem 2018;239:1075-84.
23. Bermejo-Barrera P, Aboal-Somoza M, Bermejo-Barrera A, Cervera ML, de la Guardia M. Microwave-assisted distillation of iodine for the indirect atomic absorption spectrometric determination of iodine in milk samples. J Anal At Spectrom 2001;16:382-9.
24. Bermejo-Barrera P, Fernandez-Sanchez LM, Aboal-Somoza M, Anllo-Sedin RM, Bermejo-Barrera A. Indirect atomic absorption spectrometry (IAAS) as a tool for the determination of iodide in infant formulas by precipitation of AgI and redissolution with cyanide. Microchem J 2001;69:205-11.
25. Moreda-Piñeiro V, Romaris-Hortas V, Bermejo-Barrera P. A review on iodine speciation for environmental, biological and nutrition fields. J Anal At Spectrom 2011;26:2107-52.
26. Bermejo-Barrera P, Aboal-Somoza M, Bermejo-Barrera A. Atomic absorption spectrometry as an alternate technique for iodine determination (1968–1998). J Anal At Spectrom. 1999;14:1009-18.
27. Tinggi U, Schoenendorfer N, Davies PSW, Scheelings P, Olszowy H. Determination of iodine in selected foods and diets by inductively coupled plasma-mass spectrometry. Pure Appl Chem 2012;84:291-9.
28. Fröfrock D, Prange A. Inductively coupled plasma-mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences a review of challenges, solutions and trends. Appl Spectrom 2012;66:843-68.
29. Dyke JV, Dasgupta PK, Kirk AB. Trace iodine quantitation in biological samples by mass spectrometric methods: the optimum internal standard. Talanta 2009;79:235-42.
30. Haldimann M, Zimmerli B, Als C, Gerber H. Direct determination of urinary iodine by inductively coupled plasma mass-spectrometry using isotope dilution with iodine-129. Clin Chem 1998;44:817-24.
31. Shelor CP, Dasgupta PK. Review of analytical methods for the quantification of iodine in complex matrices. Anal Chim Acta 2011;702:16-36.
32. Pröfrock D, Surikov AA. Inductively coupled plasma mass spectrometry. The formation of ions. Yekaterinburg, Russian Federation: Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences; 2006. p. 237.
33. Rzhevskaya AV, Shvedene NV, Pletnev IV. Anion-selective electrodes based on solidified 1,3-dihexadecyl imidazolium ionic liquids with halide and pseudohalide anions. J Electr Anal Chem 2016;783:274-9.
34. Bebeshko GI. Use of Purbe diagrams in prediction of optimum conditions of separation and determination of halogens in natural objects using ionometry. Inorg Mater 2009;45:1548-54.
35. Koryta J, Stulik K. Iontove-selektivni elektrody. Praha, Czech Republic: Academia; 1984. p. 268-72.
36. Middley D, Torrance K. Potentiometric water analysis. New York: John Wiley and Sons; 1978. p. 519.
37. Morf WE. The principles of ion-selective electrodes and of membrane transport. Budapest, Hungary: Akadémiai Kiadó; 1981. p. 280.
38. Nikolsky BP, Materova EA. Ion-selective electrodes. Leningrad, Russian Federation: Chem; 1980. p. 240-3.