THE MODULI SPACE OF SHEAVES AND THE GENERALIZATION OF MACMAHON’S FORMULA

A. BURYAK

Abstract. Recently M. Vuletic found a two-parameter generalization of the MacMahon’s formula. In this note we show that certain ingredients of her formula have a clear interpretation in terms of the geometry of the moduli space of sheaves on the projective plane.

1. Introduction

A plane partition is a Young diagram filled with positive integers that form nonincreasing rows and columns. For a plane partition \(\pi \) one defines the weight \(|\pi| \) to be the sum of all entries. Denote by \(\mathcal{P} \) the set of all plane partitions.

A generating function for the number of plane partitions is given by the famous MacMahon’s formula (see e.g. [9]):

\[
\sum_{\pi \in \mathcal{P}} s^{\pi} = \prod_{n=1}^{\infty} \frac{1}{(1 - s^n)^n}.
\]

There are several generalizations of MacMahon’s formula, see e.g. [4, 10]. In this paper we investigate the generalization of M. Vuletic from [10]. For each plane partition \(\pi \) she defined a rational function \(F_\pi(q, t) \) and proved that

\[
\sum_{\pi \in \mathcal{P}} F_\pi(q, t) s^{\pi} = \prod_{n=1}^{\infty} \prod_{k=0}^{\infty} \left(\frac{1 - ts^n q^k}{1 - s^n q^k} \right)^n.
\]

Her proof was inspired by [8] and [11].

Let \(\mathcal{M}_{r,n} \) be the framed moduli space of torsion free sheaves on \(\mathbb{P}^2 \) with rank \(r \) and \(c_2 = n \). This is a smooth irreducible quasi-projective variety of dimension \(2rn \). In the case \(r = 1 \) it is isomorphic to the Hilbert scheme of \(n \) points on the plane. The moduli space \(\mathcal{M}_{r,n} \) has a simple quiver description and we recall it in Section 2.1. There is a natural action of the two-dimensional torus \(T = (\mathbb{C}^*)^2 \) on \(\mathcal{M}_{r,n} \). We refer the reader to the book [5] for a more detailed discussion of the moduli space \(\mathcal{M}_{r,n} \).

The author is partially supported by the grants RFBR-10-01-00678, NSh-8462.2010.1, the Vidi grant of NWO and by the Moebius Contest Foundation for Young Scientists.

1
We denote by $K_0(\nu_C)$ the Grothendieck ring of complex quasi-projective varieties.

In this note we show that the coefficients $F_{\pi}(q, 0)$ give the formulas for the classes in $K_0(\nu_C)$ of the irreducible components of the fixed point set $\mathcal{M}_{r,n}^T$.

We also show how to use the T-action on $\mathcal{M}_{r,n}$ to get a combinatorial identity, which is close to (1).

We refer the reader to [3] for results about the Hilbert scheme of n points on the plane close to this work.

1.1. Definition of $F_{\pi}(q, t)$. For nonnegative integers n and m let

$$f(n, m) = \begin{cases} \prod_{i=0}^{n-1} \frac{1-q^i t^{m+1}}{1-q^{i+1} t^m}, & n \geq 1, \\ 1, & n = 0. \end{cases}$$

Let $\pi \in \mathcal{P}$ be a plane partition and let (i, j) be a box in its support (where the entries are nonzero). Let λ, μ and ν be the ordinary partitions defined by

$$\lambda = (\pi_{i,j}, \pi_{i+1,j+1}, \ldots),$$
$$\mu = (\pi_{i+1,j}, \pi_{i+2,j+1}, \ldots),$$
$$\nu = (\pi_{i,j+1}, \pi_{i+1,j+2}, \ldots).$$

For a box (i, j) of π let

$$F_{\pi}(i, j)(q, t) = \prod_{m=0}^{\infty} \frac{f(\lambda_1 - \mu_{m+1}, m) f(\lambda_1 - \nu_{m+1}, m)}{f(\lambda_1 - \lambda_{m+1}, m) f(\lambda_1 - \lambda_{m+2}, m)}.$$

An example is on Figure 1.

1.2. Grothendieck ring of quasi-projective varieties. Here we recall a definition of the Grothendieck ring $K_0(\nu_C)$ of complex quasi-projective varieties. It is an abelian group generated by the classes $[X]$ of all complex quasi-projective varieties X modulo the relations:

(1) if varieties X and Y are isomorphic, then $[X] = [Y]$;
(2) if Y is a Zariski closed subvariety of X, then $[X] = [Y] + [X \setminus Y]$.

\[
\begin{array}{cccc}
1 & & & \\
3 & 2 & 1 & \\
3 & 2 & 2 & \\
4 & 4 & 3 & 1 & 1 \\
\end{array}
\]

\[
F_{\pi}(0, 0)(q, t) = \frac{1-q^2}{1-qt}, \quad \frac{1-q^3}{1-q^2 t^2}, \quad \frac{1-q^4 t^3}{1-q^3 t^2}
\]

\textbf{Figure 1.}

For a plane partition π the rational function $F_{\pi}(q, t)$ is defined by

$$F_{\pi}(q, t) = \prod_{(i, j) \in \pi} F_{\pi}(i, j)(q, t).$$

\[\]
1.3. **Moduli space of sheaves on \(\mathbb{P}^2 \).** In this section we show a geometric meaning of the functions \(F_\nu(q,0) \).

The moduli space \(\mathcal{M}_{r,n} \) is defined by

\[
\mathcal{M}_{r,n} = \left\{ (E, \Phi) \mid E: \text{a torsion free sheaf on } \mathbb{P}^2 \right. \\
\left. \text{rank}(E) = r, \text{deg}(E) = n \right\}/ \text{isomorphism},
\]

where \(l_\infty = \{[0 : z_1 : z_2] \in \mathbb{P}^2 \} \subset \mathbb{P}^2 \) is the line at infinity.

The torus \(T = (\mathbb{C}^*)^2 \) acts on \(\mathbb{C}^2 \) by scaling the coordinates, \((t_1, t_2)(x, y) = (t_1x, t_2y)\). This action lifts to the \(T \)-action on the moduli space \(\mathcal{M}_{r,n} \).

We will prove that the irreducible components of the variety \(\mathcal{M}_{r,n} \) are enumerated by plane partitions \(\pi \) such that \(|\pi| = n\) and \(\pi_{0,0} \leq r \). We denote by \(\mathcal{M}_{r,n}^T(\pi) \) the corresponding irreducible components. We use the notation \([N]!_q = \prod_{i=1}^{N} (1 - q^i) \). We will prove the following statement.

Theorem 1.1. Let \(\pi \) be a plane partition such that \(|\pi| = n\) and \(\pi_{0,0} \leq r \), then

\[
\left[\mathcal{M}_{r,n}^T(\pi) \right] = \frac{[r]!_L}{[r - \pi_{0,0}]!_L} \prod_{i,j \geq 0} \frac{[\pi_{i,j} - \pi_{i+1,j+1}]!_L}{[\pi_{i,j} - \pi_{i+1,j}]!_L [\pi_{i,j} - \pi_{i,j+1}]!_L}.
\]

Consider the map \(\psi: \mathcal{M}_{r,n} \to \mathcal{M}_{r+1,n} \) defined by \(E \mapsto E \oplus \mathcal{O}_{\mathbb{P}^2} \), where \(E \) is a sheaf. The map \(\psi \) is an embedding of \(\mathcal{M}_{r,n} \) into \(\mathcal{M}_{r+1,n} \).

This embedding induces an embedding of \(\mathcal{M}_{r,n}^T(\pi) \) into \(\mathcal{M}_{r+1,n}^T(\pi) \). We denote by \(\mathcal{M}_{\infty,n}^T(\pi) \) the limit space. The space \(\mathcal{M}_{\infty,n}^T(\pi) \) has infinite dimension, but using a generalization of the ring \(K_0(\mathcal{O}_C) \) the class \([\mathcal{M}_{\infty,n}^T(\pi)] \) can be defined. The class \([\mathcal{M}_{\infty,n}^T(\pi)] \) is an infinite series in \(L \) equal to \(\lim_{r \to \infty} [\mathcal{M}_{r,n}^T(\pi)] \). From Theorem 1.1 it follows that

\[
[\mathcal{M}_{\infty,n}^T(\pi)] = \prod_{i,j \geq 0} \frac{[\pi_{i,j} - \pi_{i+1,j+1}]!_L}{[\pi_{i,j} - \pi_{i+1,j}]!_L [\pi_{i,j} - \pi_{i,j+1}]!_L}.
\]

The following statement shows a geometric interpretation of the series \(F_\nu(q,0) \).

Theorem 1.2. \(F_\nu(L,0) = [\mathcal{M}_{\infty,n}^T(\pi)] \).

Proof. Direct computation. \(\square \)

Using the result of M. Vuletic we obtain the following corollary.

Corollary 1.3.

\[
\sum_{n \geq 0} [\mathcal{M}_{\infty,n}^T] t^n = \prod_{i,j \geq 0, j \geq 1} \frac{1}{(1 - L^i t^j)^j}.
\]
1.4. Combinatorial identity. Here we give an application of Theorem 1.1. In Section 3 we use the T-action on $\mathcal{M}_{r,n}$ to get a decomposition of $\mathcal{M}_{r,n}$ into locally closed subvarieties. These subvarieties are locally trivial bundles over the varieties $\mathcal{M}_{r,n}^T(\pi)$. Then Theorem 1.1 can be applied to obtain the following statement.

Theorem 1.4.

$$\sum_{\pi \in \mathcal{P}} t^{|\pi|} \frac{[r]!}{[r-n,0]^!} q^{|\chi(\pi)|} F(\pi,0) = \prod_{n \geq 1} \frac{1}{1-q^{n+1}}$$

where $\chi(\pi) = \sum_{i,j \geq 0} \pi_{i,j} (\pi_{i,j} - \pi_{i,j+1})$. In particular

$$\sum_{\pi \in \mathcal{P}} t^{|\pi|} q^{|\chi(\pi)|} F_{\pi}(q,0) = \prod_{m,n \geq 1} \frac{1}{1-q^{m+n}}.$$

1.5. Organization of the paper. In Section 2 we recall the quiver description of the moduli space $\mathcal{M}_{r,n}$. Then we use it to describe the irreducible components of the variety $\mathcal{M}_{r,n}^T$. Finally, we prove Theorem 1.1. Section 3 contains the proof of Theorem 1.4.

1.6. Acknowledgments. The author is grateful to S. M. Gusein-Zade and B. L. Feigin for suggesting the area of research. The author is grateful to S. Shadrin for useful discussions.

2. Moduli space of sheaves on \mathbb{P}^2

2.1. Quiver description of $\mathcal{M}_{r,n}$. The variety $\mathcal{M}_{r,n}$ has the following quiver description (see e.g. [5]).

$$\mathcal{M}_{r,n} \cong \left\{ (B_1, B_2, i, j) \left| \begin{array}{c} 1) B_1, B_2] + i j = 0 \\ 2) (\text{stability}) \quad \text{There is no subspace} \\ S \subseteq \mathbb{C}^n \text{ such that } B_\alpha(S) \subseteq S (\alpha = 1, 2) \\ \text{and } \text{im}(i) \subseteq S \end{array} \right. \right\} / GL_n(\mathbb{C}),$$

where $B_1, B_2 \in \text{End}(\mathbb{C}^n), i \in \text{Hom}(\mathbb{C}^r, \mathbb{C}^n)$ and $j \in \text{Hom}(\mathbb{C}^n, \mathbb{C}^r)$ with the action given by

$$g \cdot (B_1, B_2, i, j) = (gB_1g^{-1}, gB_2g^{-1}, gi, gj^{-1})$$

for $g \in GL_n(\mathbb{C})$.

In the quiver description the map $\psi: \mathcal{M}_{r,n} \to \mathcal{M}_{r+1,n}$ is induced by the coordinate embedding of \mathbb{C}^r into \mathbb{C}^{r+1}.

2.2. Irreducible components of $\mathcal{M}_{r,n}^T$. In terms of Section 2.1 the T-action on $\mathcal{M}_{r,n}$ is given by (see e.g. [6])

$$(t_1, t_2) \cdot [(B_1, B_2, i, j)] = [(t_1B_1, t_2B_2, i, t_1t_2j)].$$

By definition, $[(B_1, B_2, i, j)] \in \mathcal{M}_{r,n}$ is a fixed point if and only if there exists a homomorphism $\lambda: T \to GL_n(\mathbb{C})$ satisfying the following
We see that the numbers \(\dim \mathcal{M} \) conditions:
\[
\begin{align*}
 t_1 B_1 &= \lambda(t)^{-1} B_1 \lambda(t), \\
 t_2 B_2 &= \lambda(t)^{-1} B_2 \lambda(t), \\
 i &= \lambda(t)^{-1} i, \\
 t_1 t_2 j &= j \lambda(t).
\end{align*}
\]
(2)

Suppose that \([(B_1, B_2, i, j)]\) is a fixed point. Then we have the weight decomposition of \(\mathbb{C}^n \) with respect to \(\lambda(t) \), i.e. \(\mathbb{C}^n = \bigoplus_{k,l} V_{k,l} \), where \(V_{k,l} = \{ v \in \mathbb{C}^n | \lambda(t) \cdot v = t_1^k t_2^l v \} \). From the conditions (2) it follows that the only components of \(B_1, B_2, i \) and \(j \) which might survive are
\[
\begin{align*}
 B_1 &: V_{k,l} \rightarrow V_{k-1,l}, \\
 B_2 &: V_{k,l} \rightarrow V_{k,l-1}, \\
 i &: \mathbb{C}^r \rightarrow V_{0,0}, \\
 j &: V_{1,1} \rightarrow \mathbb{C}^r.
\end{align*}
\]

From the stability condition it follows that
\[
\begin{align*}
 V_{k,l} &= 0, \text{ if } k > 0 \text{ or } l > 0, \\
 j &= 0, \\
 \dim V_{0,0} &\leq r, \\
 \dim V_{k,l} &\geq \dim V_{k-1,l}, \\
 \dim V_{k,l} &\geq \dim V_{k,l-1}.
\end{align*}
\]

We see that the numbers \((\dim V_{k-1,l})_{k,l \geq 0} \) form a plane partition.

Let \((\pi_{i,j})_{i,j \geq 0} \) be a plane partition such that \(|\pi| = n \) and \(\pi_{0,0} \leq r \). Let \(\mathcal{M}_{r,n}^T(\pi) \) be the subset of points from \(\mathcal{M}_{r,n}^T \) such that \(\dim V_{k-1,l} = \pi_{k,l} \). It is easy to see that \(\mathcal{M}_{r,n}^T(\pi) \) is a closed subvariety of \(\mathcal{M}_{r,n}^T \) and
\[
\mathcal{M}_{r,n}^T = \bigoplus_{\pi \in \mathcal{P}} \mathcal{M}_{r,n}^T(\pi).
\]

We see that the variety \(\mathcal{M}_{r,n}^T(\pi) \) has the following quiver description. Let \(V_{-k,-l} = \mathbb{C}^{\pi_{k,l}} \). Then
\[
\mathcal{M}_{r,n}^T(\pi) \cong \left\{ \left. (B_1,k,l \geq 0, (B_2,k,l)_{k,l \geq 0}, i) \right| \begin{aligned}
 &1) B_{1,k,l+1} B_{2,k,l} = B_{2,k+1,l} B_{1,k,l}, \\
 &2) B_{1,k,l}, B_{2,k,l}, i \text{ are surjective} \end{aligned} \right\} / \prod_{k,l} GL_{\pi_{k,l}},
\]
where \(B_{1,k,l} \in Hom(V_{-k,-l}, V_{-k-1,l}), B_{2,k,l} \in Hom(V_{-k,-l}, V_{-k-1,l-1}) \) and \(i \in Hom(\mathbb{C}^r, V_{0,0}) \) (see Figure 2).

From Theorem 1.1 it follows that the class of \(\mathcal{M}_{r,n}^T(\pi) \) is a polynomial in \(\mathbb{L} \). The coefficient of \(\mathbb{L}^i \) in this polynomial is equal to the \(2i \)-th Betti number of \(\mathcal{M}_{r,n}^T(\pi) \). By Theorem 1.1 the coefficient of \(\mathbb{L}^0 \) is equal to 1, hence the variety \(\mathcal{M}_{r,n}^T(\pi) \) is irreducible.
Let and that the variety \(\varphi \) be the Grassmanian of \(1 \leq i \leq k-1 \), where \(h_i \in Hom(\mathbb{C}^{\mu_i}, \mathbb{C}^{\nu_i+1}) \) are surjective homomorphisms. We consider the variety \(N_{\mu,\nu,h} \) defined by

\[
N_{\mu,\nu,h} = \left\{ (f_i)_{1 \leq i \leq k-1}, (g_i)_{1 \leq i \leq k} \mid \prod_{i=1}^{k-1} (f_i)_{1 \leq i \leq k} \right\},
\]

where \(f_i \in Hom(\mathbb{C}^{\mu_i}, \mathbb{C}^{\mu_{i+1}}) \) and \(g_i \in Hom(\mathbb{C}^{\nu_i}, \mathbb{C}^{\nu_i}) \). It is easy to see that the variety \(N_{\mu,\nu,h} \) is smooth.

Lemma 2.1.

\[
[N_{\mu,\nu,h}] = \frac{[\mu_1]! L[GL_{\mu_1}]}{[\nu_1]! [\mu_1 - \nu_1]! L \prod_{i=1}^{k-1} [\mu_i - \nu_{i+1}]!} \frac{[\mu_i]! L[GL_{\mu_{i+1}}]}{[\nu_i]! [\mu_i - \nu_{i+1}]! L \prod_{i=1}^{k-1} [\mu_i - \nu_{i+1}]!}
\]

Proof. The proof is by induction on \(k \). Suppose \(k = 1 \), then \(N_{\mu,\nu,h} \) is the variety of \(\mu_1 \times \nu_1 \)-matrices of the maximal rank. The class of this variety is equal to \(\frac{[\mu_1]! L[GL_{\mu_1}]}{[\nu_1]! [\mu_1 - \nu_1]! L} \).

Suppose \(k \geq 2 \). Obviously, we have \(Ker(f_{k-1}) \subset Ker(h_{k-1}g_{k-1}) \).

Let \(Gr_M(V) \) be the Grassmanian of \(M \)-dimensional vector subspaces in a vector space \(V \). Let \(h' = (h_1, h_2, \ldots, h_{k-2}), \mu' = (\mu_1, \mu_2, \ldots, \mu_{k-1}) \) and \(\nu' = (\nu_1, \nu_2, \ldots, \nu_{k-1}) \). Let

\[
N'_{\mu',\nu',h'} = \left\{ (f', g') \mid (f', g') \in N_{\mu',\nu',h'}, v \in Gr_{\mu_{k-1} - \mu_k}(Ker(h_{k-1}g_{k-1})) \right\}.
\]

We define the map \(\phi: N_{\mu,\nu,h} \to N'_{\mu',\nu',h'} \) by the following formula

\[
((f_i)_{1 \leq i \leq k-1}, (g_i)_{1 \leq i \leq k}) \mapsto ((f_i)_{1 \leq i \leq k-2}, (g_i)_{1 \leq i \leq k-1}, Ker(f_{k-1})).
\]

It is easy to see that the map \(\phi \) is a locally trivial bundle with the variety \(GL_{\mu_k} \) as the fiber. Therefore, we have

\[
[N_{\mu,\nu,h}] = [N'_{\mu',\nu',h'} \cdot GL_{\mu_k}] = [N'_{\mu',\nu',h'}] [Gr_{\mu_{k-1} - \mu_k}(\mathbb{C}^{\mu_{k-1} - \nu_k})] [GL_{\mu_k}] =
\]

\[
= [N'_{\mu',\nu',h'}] \frac{[\mu_{k-1} - \nu_k]! L [GL_{\mu_k}]}{[\mu_{k-1} - \mu_k]! [\mu_k - \nu_k]! L}.
\]

Figure 2. The quivers description of \(M_{r,n}^T(\pi) \)
By the induction hypothesis this is equal to the right-hand side of (3). \(\square\)

It is easy to see that the varieties \(N_{\mu,\nu,h}\) are isomorphic for different choices of the maps \(h_i\). Let

\[
N(\pi) = \left\{ ((B_{1,i,j})_{i,j\geq 0}, (B_{2,i,j})_{i,j\geq 0}) \mid \begin{array}{l}
1)B_{1,i,j+1}B_{2,i,j} = B_{2,i,j+1}B_{1,i,j}\\
2)B_{2,i,j} \text{ are surjective}
\end{array} \right\},
\]

where \(B_{1,i,j} \in \text{Hom}(V_{i-j,j}, V_{i+1-j,j})\), \(B_{2,i,j} \in \text{Hom}(V_{i-j,j}, V_{i-1-j,j})\).

Theorem 1.1 is equivalent to the following equation

\[
(4) \quad [N(\pi)] = \frac{[\pi_{0,0}]!_L}{[GL_{\pi_{0,0}}]} \prod_{i,j \geq 0} \frac{[\pi_{i,j} - \pi_{i+1,j+1}]!_L [GL_{\pi_{i,j}}]}{[\pi_{i,j} - \pi_{i+1,j}]!_L [\pi_{i,j} - \pi_{i,j+1}]!_L}.
\]

Let \(l\) be the number of rows in the support of \(\pi\). The proof of (4) is by induction on \(l\). Suppose \(l = 0\), then (4) is obvious. Suppose \(l \geq 1\). Let \(\tilde{\pi}\) be the plane partition defined by \(\tilde{\pi}_{i,j} = \pi_{i,j+1}\). Consider a point \(((B_{1,i,j}), (B_{2,i,j})) \in N(\tilde{\pi})\). If we forget the maps \(B_{1,i,0}\) and \(B_{2,i,0}\), then we obtain a point from \(N(\tilde{\pi})\). This defines the map \(\rho: N(\tilde{\pi}) \to N(\pi)\). It is easy to see that the map \(\rho\) is a locally trivial bundle. The fiber over a point \(((B_{1,i,j}), (B_{2,i,j})) \in N(\tilde{\pi})\) is the variety \(N_{\mu,\nu,h}\), where \(\mu_i = \pi_{i,0}, \nu_i = \pi_{i,1}\) and \(h_i = B_{1,i,0}\). Using the induction hypothesis and Lemma 2.1, we get

\[
[N(\pi)] = \left(\frac{[\pi_{0,1}]!_L}{[GL_{\pi_{0,1}}]} \prod_{i,j \geq 1} \frac{[\pi_{i,j} - \pi_{i+1,j+1}]!_L [GL_{\pi_{i,j}}]}{[\pi_{i,j} - \pi_{i+1,j}]!_L [\pi_{i,j} - \pi_{i,j+1}]!_L} \right) \times
\]

\[
\times \frac{[\pi_{0,0}]!_L [GL_{\pi_{0,1}}]}{[\pi_{0,1}]!_L [\pi_{0,0} - \pi_{0,1}]!_L} \prod_{i \geq 0} \frac{[\pi_{i,0} - \pi_{i+1,0}]!_L [GL_{\pi_{i+1,0}}]}{[\pi_{i,0} - \pi_{i+1,1}]!_L [\pi_{i+1,0} - \pi_{i+1,1}]!_L} =
\]

\[
= \frac{[\pi_{0,0}]!_L}{[GL_{\pi_{0,0}}]} \prod_{i,j \geq 0} \frac{[\pi_{i,j} - \pi_{i+1,j+1}]!_L [GL_{\pi_{i,j}}]}{[\pi_{i,j} - \pi_{i+1,j}]!_L [\pi_{i,j} - \pi_{i,j+1}]!_L}.
\]

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.4

Let \(T_{a,b} = \{(t^a, t^b) \in T | t \in \mathbb{C}^*\}\), be a one dimensional subtorus of \(T\). Consider the \(T_{1,\alpha}\)-action on \(\mathcal{M}_{r,n}\), where \(\alpha\) is a positive integer. Suppose \(\alpha\) is big enough. Then the set of fixed points of the \(T_{1,\alpha}\)-action coincides with the set of fixed points of the \(T\)-action on \(\mathcal{M}_{r,n}\). We define the map \(\rho: \mathcal{M}_{r,n} \to \mathcal{M}_{r,n}^T\) by the following formula \(\rho(p) = \lim_{t \to 0} t \cdot p\), where \(p \in \mathcal{M}_{r,n}\) and \(t \in T_{1,\alpha}\). Therefore, we have

\[
\mathcal{M}_{r,n} = \bigsqcup_{\pi_0,0 \leq r} \rho^{-1}(\mathcal{M}_{r,n}^T(\pi)).
\]

From [1, 2] it follows that \(\rho^{-1}(\mathcal{M}_{r,n}^T(\pi))\) is a locally closed subvariety such that the map \(\rho^{-1}: (\mathcal{M}_{r,n}^T(\pi)) \to \mathcal{M}_{r,n}^T(\pi)\) is a locally trivial bundle.
with an affine space as the fiber. We denote by $d^+_{i, \alpha}(\pi)$ the dimension of the fiber. Therefore, we have

$$[\mathcal{M}_{r,n}] = \sum_{\pi \in P_{\pi_{0,0} \leq r}} [\mathcal{M}^T_{r,n}(\pi)] \mathcal{L}^{d^+_{i, \alpha}(\pi)}.$$ \hspace{1cm} (5)

Let us prove that

$$d^+_{i, \alpha}(\pi) = rn + \sum_{i,j \geq 0} \pi_{i,j}(\pi_{i,j} - \pi_{i,j+1}).$$ \hspace{1cm} (6)

The T-action on $\mathcal{M}_{r,n}$ is the part of the action of the $(r + 2)$-dimensional torus $T \times (\mathbb{C}^*)^r$. In terms of Section 2.1 this action is given by (see e.g. [6])

$$(t_1, t_2, e_1, e_2, \ldots, e_r) \cdot [(B_1, B_2, i, j)] = [(t_1 B_1, t_2 B_2, i e^{-1}, t_1 t_2 e j)],$$

where $e = \text{diag}(e_1, e_2, \ldots, e_r)$ is the diagonal $r \times r$-matrix.

The set of fixed points of the $T \times (\mathbb{C}^*)^r$-action is finite and is parametrized by the set of r-tuples $D = (D_1, D_2, \ldots, D_r)$ of Young diagrams D_i, such that $\sum_{i=1}^r |D_i| = n$ (see e.g. [3]). It is easy to see that the fixed point corresponding to an r-tuple D belongs to $\mathcal{M}^T_{r,n}(\pi)$, where $\pi_{i,j} = |\{\alpha \mid (i, j) \in D \alpha\}|$.

For a Young diagram Y let

$$r_l(Y) = |\{(i, j) \in D \mid j = l\}|,$$
$$c_l(Y) = |\{(i, j) \in D \mid i = l\}|.$$

For a point $s = (i, j) \in \mathbb{Z}_{\geq 0}^2$ let

$$l_Y(s) = r_j(Y) - i - 1,$$
$$a_Y(s) = c_i(Y) - j - 1,$$

see Figure 3. Note that $l_Y(s)$ and $a_Y(s)$ are negative if $s \notin Y$.

![Figure 3](image)

Let p be the fixed point of the $T \times (\mathbb{C}^*)^r$-action corresponding to an r-tuple D. Let $R(T \times (\mathbb{C}^*)^r) = \mathbb{Z}[t_1, t_2, e_1, e_2, \ldots, e_r]$ be the representation ring of $T \times (\mathbb{C}^*)^r$. Then the weight decomposition of $T_p(\mathcal{M}_{r,n})$ is given
by (see e.g. [6])

\[T_p(\mathcal{M}_{r,n}) = \sum_{i,j=1}^{r} e_{j} e_{i}^{-1} \left(\sum_{s \in D_i} l_{1}^{-l_{D_i}(s)} l_{2}^{a_{D_i}(s)+1} + \sum_{s \in D_j} l_{1}^{l_{D_j}(s)+1} l_{2}^{-a_{D_j}(s)} \right). \]

Let \(p \) be an arbitrary fixed point of the \(T \times (\mathbb{C}^*)^r \)-action on \(\mathcal{M}^T_{r,n}(\pi) \).

Let \(D \) be the corresponding \(r \)-tuple of Young diagrams. From (7) it follows that

\[
d_{i,a}(\pi) = \sum_{i,j=1}^{r} \left(|\{ s \in D_i | \alpha(a_{D_i}(s) + 1) - l_{D_j}(s) > 0 \}| + |\{ s \in D_j | - \alpha a_{D_j}(s) + l_{D_i}(s) + 1 > 0 \}| \right).
\]

Since \(\alpha \) is big, the right-hand side is equal to

\[
n + \sum_{i,j=1}^{r} |\{ s \in D_j | a_{D_j}(s) = 0, s \in D_i \}| = rn + \sum_{i,j \geq 0} \pi_{i,j}(\pi_{i,j} - \pi_{i,j+1}).
\]

Thus, we have proved (5).

It is well known that

\[
\sum_{n \geq 0} [\mathcal{M}_{r,n}] t^n = \prod_{m=1}^{r} \prod_{n \geq 1} \frac{1}{1 - L^{r_m + m} t^n},
\]

see e.g. [7]. If we combine Theorem 1.1 and the equations (5), (6) and (8), we obtain the proof of Theorem 1.4.

References

[1] A. Bialynicki-Birula. Some theorems on actions of algebraic groups. Ann. of Math. (2) 98 (1973), 480-497.
[2] A. Bialynicki-Birula. Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 24 (1976), no. 9, 667-674.
[3] A. Buryak. The classes of the quasihomogeneous Hilbert schemes of points on the plane. ArXiv:1011.4459.
[4] M. Ciucu. Plane partitions I: A generalization of MacMahons formula. Memoirs of Amer. Math. Soc. 178 (2005), no. 839, 107-144.
[5] H. Nakajima. Lectures on Hilbert schemes of points on surfaces. AMS, Providence, RI, 1999.
[6] H. Nakajima, K. Yoshioka. Instanton counting on blowup. I. 4-dimensional pure gauge theory. Invent. Math. 162 (2005), no. 2, 313-355.
[7] H. Nakajima, K. Yoshioka. Lectures on instanton counting. Algebraic structures and moduli spaces, 31-101, CRM Proc. Lecture Notes, 38, Amer. Math. Soc., Providence, RI, 2004.
[8] A. Okounkov, N. Reshetikhin. Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Amer.Math. Soc. 16 (2003), no. 3, 581-603.
[9] R. Stanley. Enumerative combinatorics. Cambridge University Press, Cambridge, 1999.
[10] M. Vuletic. A generalization of MacMahon’s formula. Trans. Amer. Math. Soc. 361 (2009), no. 5, 2789-2804.
[11] M. Vuletic. The Shifted Schur Process and Asymptotics of Large Random Strict Plane Partitions. Int. Math. Res. Notices (2007), Vol. 2007, 53 pages.

Faculty of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia and
Department of Mathematics, University of Amsterdam, P. O. Box 94248, 1090 GE Amsterdam, The Netherlands
E-mail address: buryaksh@mail.ru, a.y.buryak@uva.nl