Understanding the influence of Individual’s Self-efficacy for Information Systems Security Innovation Adoption: A Systematic Literature Review

Mumtaz Abdul Hameed
Technovation Consulting and Training Private, Limited 33, Chandhani Magu Male’, Maldives
Email: mumtazabdulhameed@gmail.com

Nalin Asanka Gamagedara Arachchilage
School of Engineering and Information Technology
University of New South Wales, The Australian Defence Force Academy
Australia
Email: nalin.asanka@adfa.edu.au

Abstract

Information Systems security cannot be fully apprehended if the user lacks the required knowledge and skills to effectively apply the safeguard measures. Knowledge and skills enhance one’s self-efficacy. Individual self-efficacy is an important element in ensuring Information Systems safeguard effectiveness. In this research, we explore the role of individual’s self-efficacy for Information Systems security adoption. The study uses the method of Systematic Literature Review using 42 extant studies to evaluate individual self-efficacy for Information Systems security innovation adoption. The systematic review findings reveal the appropriateness of the existing empirical investigations on the individual self-efficacy for Information Systems security adoption. Furthermore, the review results confirmed the significance of the relationship between individual self-efficacy and Information Systems security adoption. In addition, the study validates the past administration of the research on this subject in terms of sample size, sample subject and theoretical grounds.

Keywords: Innovation Adoption Process; Information System Security; IS Security Adoption; Self-Efficacy; User Acceptance of Innovation

1. Introduction

Information Systems (IS) assets (information and computer resources) are at risk from a variety of threats, including virus, worms, Trojans, spyware, scare-ware, crime-ware, key-loggers, botnet, DDoS, browser-hijackers, pharming, phishing etc. [8]. Such attacks commonly referred to as ‘IS security threats’ mainly intended to
improperly disclose, modify or delete sensitive information and maliciously destroy and destroy computer resources [23]. New prospect the internet has presented to the users have in fact, offered criminals and individuals with a vicious mind-set to misuse IS assets aimlessly.

To thwart IS security threats and safeguard organisational IS assets in general, a combination of measures is taken such as the installation of anti-virus, anti-spyware and anti-phishing software, setting up firewalls, maintaining and restricting access controls, using intrusion detection and prevention systems and by putting in encryption and content filtering software [33, 38, 49]. These measures offer a technological or technical solution to the problem, but by no means reasonable to efficiently safeguard IS security threats completely [3, 30, 49, 50, 56, 73, 74]. So as to survive with increased threats and to effectively protect IS assets, non-technical solutions such IS security policies have likewise been employed [53]. Research has established the view that organisations and individuals who opt for technical as well as non-technical measures to protect their IS assets are more likely to attain success in safeguarding IS resources [47, 56, 65]. In IS literature an innovation is referred as an idea, a product, a process or a technology that is new to an individual or organisation [25, 27]. Hence, technical and non-technical IS security measures may collectively be referred as IS security innovations.

Although both technical and non-technical IS security measures are important, several research had pinpointed behaviour of individual user within an organization as one element of ambiguity in securing IS assets [5, 16, 56, 65]. With all the technical and non-technical IS security measures at one’s disposal, efficient use cannot be realized if the end user lacks the required knowledge and skills to adequately apply the measures. If the end-users of organisational IS does not understand the importance of IS security practices and are not eager to accept the policies, then those safeguards measures become ineffective [30]. Given that the security attacks are increasingly widespread and more organized than ever, it is important to gauge the knowledge of users to detect and prevent such attacks.

When an individual possesses the necessary knowledge about the effectiveness of a safeguard measure in providing protection from IS threats, that individual is more likely to adopt preventive behaviour or action [38, 51, 68]. Chan et al. [10] stated that acquisition of knowledge related to an IS countermeasure builds one’s self-confidence in dealing with threats. According to IS literature, computer self-efficacy is the term that relates individual’s self-confidence and ability to successfully use a computer or IS to accomplish a specific task [4, 13]. Computer self-efficacy have also been cited as essential in determining one’s intention to engage in current or future use of an IS.

Prior research on IS indicates a significant positive relationship between individual’s IS self-efficacy and the usage of ISs [60]. Also, individuals IS self-efficacy has found to be a significant determinant for IS security adoption [30, 53, 66]. Eastin and LaRose [20] state that self-efficacy overcomes the fear many novice users experience in an event of threat and enhances the ability to cope with any attack. Arachchilage and Love [4], identified self-efficacy as an important determinant of the IS security threat avoidance behaviour and a key element in ensuring safeguard effectiveness.

This research attempts to examine the role of an individual’s self-efficacy in IS security innovation adoption. To this end, the study reviewed past literature on IS security to establish the relationship between self-efficacy and IS security adoption. The research makes three main contributions to theory and practice. First, using a
review of IS security literature, the research verifies the significance of examining the effect of individual self-efficacy on IS security adoption. Secondly, the analysis carried out established the existing savvy of the role of individual self-efficacy for IS security innovation adoption. Finally, the study approves the significance of individual self-efficacy for IS security innovation adoption.

The remainder of this paper is organised as follows. The `Theoretical Background’ section illustrates the basics of self-efficacy relating to IS security. In the subsequent section ‘Research Questions’, we presented 4 research questions for the study. The ‘Research Methodology’ section, briefly discusses the method employed to examine the influence of the relationship between self-efficacy and IS security innovation adoption. In Section 5, we presented the result obtained from the data analysis. Finally, in Section 6, we discussed the finding of the study results, in addition, conclusion was also presented in Section 6.

2. Theoretical Background

The focus of IS security is to protect and safeguard organization's IS assets from vulnerabilities [1]. The main challenge for organization's IS security is to protect unauthorized access of information sources [21] and to defend computer resources against malicious attacks. As a result, organizations allocate a substantial amount of resources to safeguard their IS assets from IS security threats [23].

Various solutions have been developed in response to IS security and these solutions targets both technical and non-technical problem areas [3, 5]. With all the IS security measures at one's disposal, the efficient use cannot be realised if the end user lacks the required knowledge and skills to adequately apply the measures. Banu and Banu [8] indicated that IS security attacks over the internet are successful because of many inexperienced and unsophisticated users. Additionally, social engineering attacks are now much more concealed as such naive users are more inclined to incautiously divulge passwords and other sensitive and classified information. Lack of awareness of the users regarding the maliciousness of crimes over the internet in effect has opened a fertile ground for cyber-criminals to conduct IS security attacks. Even in the present-day, a number of users are ignorant that their personal information is actively being targeted by cyber-criminals. Given that the security attacks are increasingly widespread and more organized than ever, it is important to develop the knowledge of users to detect and prevent such attacks.

According to Rogers [51], when individuals possess the requisite knowledge about the effectiveness of mechanisms that provide protection from a threat, they are more likely to adopt that measure. In other words, a person who is knowledgeable about IS security is more likely to assess IS security risks and accordingly employs security innovations effectively to address those risks [41]. Individual's knowledge has a co-relation to one's self-efficacy to perform a behaviour [3].

Bandura [7] defined self-efficacy as the judgment of one's ability to organize and execute given types of performance. Hence, in the context of this research, self-efficacy is referred as a belief in one's ability to thwart IS security threats and one's capability to safeguard IS assets from IS security attacks. Tamjidymcholo et al. [59] noted that a high level of self-efficacy in a person will make them much more self-assured about their abilities and strengthens their motivation. Hence, when users are knowledgeable about IS security threats, they have more self-confidence to take relevant actions to thwart attack by adopting preventive behaviour.
Researchers often utilised Bandura [7]'s theory of self- efficacy to measure individual's self-confidence. The fundamental of this theory is in understanding the relationship between one's belief and one's willingness to engage in behaviours necessary to successfully accomplish a task. The theory also explains the process an individual experience as he or she encounters a new challenge together with the judgments, evaluations, and appraisals made based on the knowledge learnt [6].

3. Research Questions

This paper considered the existing IS security literature to determine the importance of individual self-efficacy for IS security innovation adoption. The analysis focused specifically on investigating, the following research questions:

RQ1: What are the demographics of the extant studies of individual self-efficacy on IS security innovation adoption including the year of study, sample groups, sample size, countries?

RQ2: What are the theoretical foundation used in the existing studies of individual self-efficacy on IS security innovation adoption?

RQ3: Is there a difference in investigating individual self-efficacy for different types of security innovations?

RQ4: What are the results of the studies that examine the relationship between individual self-efficacy and IS security innovation?

4. Research Methodology

A finding of an individual study is not sufficient to generalise on a particular issue, while to reach an overall outcome, findings of a number of independent studies on a subject can be combined [24]. A technique known as a Systematic Literature Review (SLR) may be used to identify, analyse and interpret all available evidence related to a specific research question [27]. To meet our research objectives and to address the research questions, we carried out a SLR to study the role of self- efficacy for IS security innovation adoption. SLR improves the likelihood of generating a clearer, more objective answer to the research questions. As SLRs considers study design (sampling strategy and data collection methods), data and analytical methods used, the reviews are effective at gauging the robustness of evidence. The use of SLR procedure enabled the study to obtain an overall conclusion regarding the relationships between individual self-efficacy and IS security adoption.

To ensure a thorough coverage of academic articles related to IS security adoption, we conducted an extensive literature search of IS Journals using Google Scholar and multiple large-scale and reputable digital libraries and databases including Web of Science, IEEE Xplore, Science Direct (Elsevier), ACM Digital Library, Wiley Online Library, ProQuest, EBSCO, Springer LINK and Emerald Management Xtra. These sources contain ample high-quality journal articles and conference papers. The search focused only on peer-reviewed journal and conference articles.
To determine which of the articles were really relevant to the research objectives the study established, an inclusion and exclusion conditions. The study selection criteria for the SLR were: (C1) it should be an empirical study on IS security adoption, (C2) the study should examine individual self-efficacy as a dependent variable, and finally, (C3) the study examines the relationship between individual self-efficacy and IS’ security innovation adoption.

The initial search yielded 544 citations by following inclusion and exclusion criterion C1. To accomplish the inclusion and exclusion criterion C2, the abstracts of all 544 were manually scanned to identify if the articles examine individual self-efficacy. Number of articles identified as potentially relevant were 112. By applying inclusion and exclusion criterion C3 for these 112 articles, 39 articles with 42 studies were found eligible for the SLR. The 42 studies that meet all 3 criteria examined the effect of individual self-efficacy for the adoption of IS security innovations.

5. Results

We conducted a statistical analysis using frequencies and percentages to combine and summarize the variables collected.

5.1. Distribution of Studies by Year

Table 1 shows the literature distribution by publication year of the studies. Data from the SLR shows that self-efficacy has been considered in the IS security innovation adoption literature since 2004.

Year	No. of Studies
2004	1
2005	1
2006	0
2007	3
2008	2
2009	8
2010	6
2011	2
2012	6
2013	3
2014	3
2015	0
2016	6

Table 1: Literature distribution by publication year.
The academic discussion of individual self-efficacy on IS security adoption has mostly taken place during the last 12 to 14 years. Table 1 shows that the number of articles over time has increased and during this period, the topic has increasingly attracted among the scholarly researchers. The distribution of studies by publication year suggests that examining individual self-efficacy for IS security innovation adoption is an increasingly emerging discourse. Also, SLR confirms that individual self-efficacy for IS security innovation adoption is still an active IS tract, as there were 6 articles published in the year 2016.

5.2. Distribution of Sample Groups in the studies
The result of this analysis provided some clarification to RQ1.

Subject Groups	No of Studies
Individual	18
Organisation	2
Student	18
Mixed	2
None	2

Table 2: Distribution of sample groups used in the studies.

Table 2 illustrates the number of studies that employ different sample groups in the studies to examine individual self-efficacy for IS security innovation adoption. Results suggest that the majority of studies conducted their studies by engaging individuals by adopting convenience sampling or by using student subjects. The analysis also helped explain RQ1.

5.3. Distribution of Sample size in the studies

SLR analysed sample size of the reviewed studies to further elucidate RQ1. Among the 42 studies considered in the SLR, 40 studies utilised survey methodology. In this 40 studies, a total of 13841 participants was included, with an average sample size of 346. Table 3 showed that the study employing smallest and largest sample were 77 and 988 participants, respectively. Approximately, 67% (two third) of the studies use more than 200 participants in their assessment.
Table 3: Distribution of sample size of the studies.

5.4. Distribution by countries

As a final appraisal to RQ1, we analysed the moderating effect of the country of study. Table 4 visually indicates that almost half of the studies were produced in the USA. The studies covered Asia, Europe and North America with a representation of 8 different countries.

Table 4: Distribution of country of the studies
1.1. Theories Used in the Reviewed Studies

In response to RQ2, we analysed the theoretical foundation for each reviewed literature. To examine the relationship between self-efficacy and IS security innovation adoption, reviewed studies used a number of different theories. Table 5 shows the different theoretical model exploited in the reviewed studies.

PMT is the most widely used theory to determine the relationship between self-efficacy and IS security adoption. More than half of the reviewed studies used PMT or PMT integrated with other theories. Reviewed literature suggests that apart from PMT, the Theory of Planned Behaviour (TPB), Theory of Reasoned Action (TRA) and Social Cognitive Theory (SCT) are among the most widely used theories in examining self-efficacy on IS security innovation adoption.

1.2. Types of Innovation

According to the classification of Zmud [71] we defined the type of innovation as process and product. For this study, process innovation involves establishing a new system, method or policies that changes the IS security operational processes, whereas product innovation are new products introduced to enhance IS security. Different factors determine the adoption of process and product innovation and the extent to which these factors impact on the adoption process [61].

Theories	No. of Studies
Protection Motivation Theory (PMT)	22
Theory of Planned Behaviour (TPB)	6
Theory of Reasoned Action (TRA)	5
Social Cognitive Theory (SCT)	5
Deterrence Theory (DT)	4
Technology Acceptance Model (TAM)	3
Technology Threat Avoidance Theory (TTAT)	2
Cognitive Evaluation Theory (CET)	1
Coping Theory (CT)	1
Decomposed Theory of Planned Behaviour (DTPB)	1
Extrinsic Motivational Model (EMM)	1
Health Belief Model (HBM)	1
Intrinsic Motivation Model (IMM)	1
Rational Choice Theory (RCT)	1
Social Bond Theory (SBT)	1
We differentiate the reviewed studies into two sets of process and product innovation and examine some demographics including sample size, sample groups for each group of the studies. Also, we examine if there is any difference in the application of theories for the studies that examine process and product innovations. Table 6 highlights the difference in study practices for process and product security innovations. The result of this analysis would address to RQ3. Also, it is evident from the results that most of IS security process innovation studies utilises individuals as a subject, whereas, most of IS security product innovation studies employs student participants.

Table 5: Different theories used in the studies.

Description	Process	Product
No of Studies	24	18
Total sample size	8954	4887
Sample Group		
Individual	13	5
Organisation	2	0
Student	8	10
Student	8	10
Mixed	0	2
None	1	1
Theories used		
Protection Motivation Theory (PMT)	12	10
Theory of Planned Behaviour (TPB)	4	2
Theory of Reasoned Action (TRA)	5	0
Social Cognitive Theory (SCT)	5	0
Deterrence Theory (DT)	4	0
Technology Acceptance Model (TAM)	2	1

Table 6: Distribution of studies using different security innovations.

As for the theories used for two groups of studies, process innovation studies tend to combine PMT with the theoretical basis of either TRA, SCT or Deterrence Theory (DT) compared to studies examining product innovations.

5.7. Significance
The relationship between independent and dependent variables is usually evaluated in term of ‘test of significance’, highlighting their relationship [25, 26]. ‘Test of significance’ and various other ‘effect sizes’ such as correlation co-efficient provided by quantitative studies can be aggregated to find an overall outcome [27]. Effect size when considered in terms of significance is frequently referred as weak, moderate or strong significance [24]. Hunter et al. [32] and Hameed and Counsell [25], however, suggested that aggregation of ‘test of significance’ results from different studies could produce a misleading outcome. This is because, there is no rule for determining the value of the correlation that interprets as weak, moderate or strong significance.

For the study, we extracted from the reviewed studies the correlation co-efficient values of the relationship between self-efficacy and IS security innovation adoption. We interpreted the correlation co-efficient values under a single classification to obtain the test of significance for our assessment. We adopted the correlation value referred by Hameed and Counsell [24] and Hameed and Counsell [26], which categorises: a correlation value between 0 and ±0.09 as insignificant, ±0.10 and ±0.29 as weak significance, ±0.30 and ±0.49 as moderate significance, ±0.5 and ±0.69 as strong significance, ±0.70 and ±0.89 as the very strong significance and ±0.9 and ±1.0 near perfect. Based on the above classification we coded the correlation co-efficient of individual studies and aggregated resulting tests of significance to obtain the overall assessment of the relationship between self-efficacy and IS security innovation adoption. Among the 42 studies considered in the SLR, 35 studies provided correlation co-efficient for the relationship between individual self-efficacy and IS security innovation adoption. Table 7 summarizes the results of an aggregated test of significance for the relationship between self-efficacy and the adoption of IS security innovation.

Significance	No. of Studies
Insignificant (0.00 to ±0.09)	3
Weak Significance (0.10 to ±0.29)	7
Moderate Significance (0.30 to ±0.49)	16
Strong Significance (0.50 to ±0.69)	7
Very Strong Significance (0.70 to ±0.89)	2
Perfect (0.10 to ±1.00)	0

Table 7: Aggregated test of significance for the studies.

6. Discussion and Conclusion

This SLR aimed to understand the role of individual self-efficacy on IS security innovation adoption. The results highlighted that individual self-efficacy is a significant attribute of IS security innovation adoption. The SLR results of the distribution of studies by publication year suggest that researchers have started
examining the effect of individual self-efficacy on IS security innovation adoption since 2004. This is the period where online social media and social networking became a mainstream concept with the launching of Facebook on February 2004. These social media emerge as a target for scams; exposing individual and organisational data at risk. More people put their personal information online, offering a huge opportunity for cyber criminals to exploit. Thus, IS security innovation adoption has speedily been under scrutiny since the rise of social media and researcher started examining individual self-efficacy as one of the key predictors for IS security innovation adoption.

Studies that examined the influence of individual self-efficacy for IS security innovation adoption has explored for different sample groups. The SLR findings showed that the research on the relationship between individual self-efficacy and IS security innovation adoption based their studies on convenience samples of both students and non-students. The findings indicate that approximately half of the reviewed literature used student subjects. Using student subjects for experimental research as a substitute for another group has been widely criticised for having little external validity and generalisability. The ethical concerns of student participation revolve mainly around the issue whether the participant serve with their own consent. Also, it has been argued that student samples are fundamentally biased in age, experience, and intellectual ability. However, the studies reviewed in the SLR provided no justification for their chosen subject sample nor did acknowledge any limitations for the use of a student sample. Hence, the effect of individual self-efficacy for IT security innovation adoption bears no significance for the difference in sample groups.

The results of SLR showed that the average sample size of the studies is approximately 350 participants. A study that has a sample size which is too small may have an unrealistic chance of yielding a useful information. Larger sample sizes have the obvious advantage of providing more data for researchers to work with and provide more accurate mean values and a smaller margin of error. Thus an appropriate determination of the sample size used in a study is a crucial step in the design of a study. The sample size used in the majority of the studies reviewed in the SLR deemed appropriate. This commends the soundness of the selected studies for the SLR. In addition, it provides evidence on the correctness of the results of the reviewed studies that examine the relationship between individual self-efficacy and IT security innovation adoption.

In order to identify if culture moderates the relationship between individual self-efficacy and IS security innovation adoption, we explored the distribution of country of the reviewed studies in the SLR. Deans et al. [18] states that culture influences usage of IT in different countries. In a meta-analysis of TAM, Schepers and Wetzels [52] used western and non-western as a moderating factor in the context of culture. They divide the studies conducted in Europe, North America, Australia and New Zealand as western and the rest of world as non-western. The SLR represents a diverse culture which belongs to both western and non-western groups. Hence, the SLR indicates that the overall results of existing literature that considers the influence of individual self-efficacy for IS security innovation adoption is not biased towards one particular culture.

The SLR also explored the theoretical foundation exploited in examining individual self-efficacy for IS security innovation adoption by the reviewed studies. The result of the SLR identified PMT as the principal model. In a meta-analysis study, Floyd et al. [22] described PMT as one of the most powerful explanatory theories predicting
individual intentions to adopt safeguard measures. PMT is useful in analysing and exploring recommended actions or behaviours to avert the consequences of threats such as IS security attacks. Apart from PMT, SLR identified SCT, TRA, and TPB as other models utilised in examining the effect of individual self-efficacy for IS security innovation adoption. SCT [7] posits that one’s confidence in their ability to perform it a behaviour successfully will produce positive valued outcomes. The main tenet in the TRA is that an individual’s behavioural intention in a specific context depends on attitude toward performing the target behaviour and on subjective norm. The TRA holds that the practical impact of subjective norm on the behavioural intention is that an individual may choose to perform a specific behaviour, even though it may not be favourable to him or her to do so [64]. TPB is an extension of TRA at the same time adopt the efficacy expectancies of SCT into consideration.

In this study, we identified if there is a difference in investigating individual self-efficacy for different types of security innovations. In order to analyse, we categorised IS security innovations as product and process to access the scenario. The results show that the average sample size used for IS security process innovation studies (373 participants) is higher than the product innovation studies (271 participants). One explanation is that process innovation involves replacing the entire system or work procedure, whereas product innovation does not involve change of an entire system. Also, it is evident from the results that most of IS security process innovation studies utilises individuals as subjects, whereas most of IS security product innovation studies employ students. One probable explanation could be that process innovation such IS security policies are mostly adopted in an organisational setting for which the sample subjects would most probably be non-students.

Finally, the SLR analysed the correlation co-efficient for the relationship between individual self-efficacy and IS security adoption behaviour to aggregate the tests of significance of the reviewed studies. In terms of the percentage, 92% of the studies found self-efficacy as significant (correlation value between ±0.10 to ±1.00) attribute in IS security innovation adoption. Also, approximately 71% of the studies we considered verified the association between self-efficacy and IS security adoption as moderate significance (correlation value between ±0.30 to ±0.49) or strong significance (correlation value between ±0.50 to ±0.69). Hedges and Olkin [31], Hameed and Counsell [24] and Hameed and Counsell [26] suggested that it would be within reason for a study to consider an established relationship to exist between two variables when a majority of prior studies had found statistically significant results. Hence, results of aggregated tests of significance indicate that individual self-efficacy is an important predictor of IS security innovation adoption.

This study offers several contributions to the IS security management literature. The study contributes to the field of IS security by empirically endorsing the influence of individual self-efficacy for IS security innovation adoption. Additionally, to recognise the current understanding of the subject, we gathered almost all their existing studies that examine individual’s self-efficacy for IS security innovation adoption.

The most important theoretical implication is that this study using SLR verifies the significance of self-efficacy for IS security innovation adoption. Another key implication of this study is the importance of spreading IS security knowledge among the users for safeguarding IS assets. On one hand, knowledge has a simple positive effect on self-efficacy, which affects the individual’s security behaviour. On the other hand, knowledge allows users to assess a security technology fairly and improve the
quality of decision making. IS security literature has emphasised on the need to pay attention to security education, awareness and training initiatives and interventions. Therefore, we suggest that organizations create appropriate education, training and security awareness programs that ensure employees possesses up-to-date knowledge of IS security as well as facilitate conditions that will improve their individual self-efficacy regards IS threats. This study has certain limitations. The major limitation of this analysis was the inadequacy of studies that examined individual self-efficacy on IS security innovation adoption. The result of the SLR would be more accurate and better explained if analysed with more studies.
7. References

1. Alshboul, A. 2010. “Information Systems Security Measures and Countermeasures: Protecting Organisational Assets from Malicious Attacks,” Communications of the IBIMA, pp 9p.
2. Anderson, C.L., and Agarwal, R. 2010. “Practicing Safe Computing: A Multimedia Empirical Examination of Home Computer User Security Behavioral Intentions,” MIS Quarterly (34:3), pp 613-643.
3. Arachchilage, N.A.G., and Hameed, M.A. 2017. “Integrating Self-efficacy into a Gamified Approach to Thwart Phishing Attacks,” In: The Proceedings of 5th International Conference on Cybercrime and Computer Forensics (ICCCF), arXiv:1706.07748.
4. Arachchilage, N.A.G., and Love, S. 2014. “Security Awareness of Computer Users: A Phishing Threat Avoidance Perspective,” Computers in Human Behavior (38), pp 304-312.
5. Arachchilage, N.A.G., Love, S., and Beznosov, K. (2016). “Phishing Threat Avoidance Behaviour: An Empirical Investigation,” Computers in Human Behavior (60), pp 185-197.
6. Bandura, A. 1983. “Self-efficacy Determinants of Anticipated Fears and Calamities,” Journal of Personality and Social Psychology (45), pp 464-469.
7. Bandura, A. 1977. “Self-Efficacy: The Exercise of Control,” NY: W. H. Freeman and Company.
8. Banu, M.N., and Banu, S.M. 2013. “A Comprehensive Study of Phishing Attacks,” International Journal of Computer Science and Information Technologies (4:6), pp 783-786.
9. Bulgurcu, B., Cavusoglu, H., and Benbasat, I. 2010. “Information Security Policy Compliance: An Empirical Study of Rationality-Based Beliefs and Information Security Awareness,” MIS quarterly 34(3), pp 523-555.
10. Chan M., Woon I.M.Y., and Kankanhalli A. 2005. “Perceptions of Information Security at the Workplace: Linking Information Security Climate to Compliant Behavior,” Journal of Information Privacy and Security (1:3), pp. 18-41.
11. Chenoweth, T., Minch, R. and Gattiker, T. 2009. “Application of Protection Motivation Theory to Adoption of Protective Technologies,” In: The Proceedings of the 42nd Hawaii International Conference on System Sciences.
12. Chou, H., and Chou, C. 2016. “An Analysis of Multiple Factors Relating to Teachers’ Problematic Information Security Behavior,” Computers in Human Behavior (65), pp 334-345.
13. Compeau, D.R., and Higgins, C.A. 1995. “Computer Self- efficacy: Development of a Measure and Initial Test," MIS Quarterly (19:2), pp 189–211.
14. Cox, J. 2012. “Information Systems User Security: A Structured Model of the Knowing–Doing Gap," Computers in Human Behavior (28) pp 1849-1858.
15. Crossler, R. E. 2010. “Protection Motivation Theory: Understanding Determinants to Backing up Personal Data," In: The Proceedings of the 43rd Hawaii International Conference on System Sciences.
16. Crossler, R.E., Johnston, A.C., Lowry, P.B., Hu, Q., Warkentin, M., and Baskerville, R. 2013. “Future Directions for Behavioral Information Security Research,” Computers and Security (32), pp 90–101.
17. D'Arcy J. and Hovav, A. 2004. “The Role of Individual Characteristics on the Effectiveness of IS Security Countermeasures,” In: The Proceedings of Americas Conference on Information Systems 2004. 176. http://aisel.aisnet.org/amcis2004/176
18. Deans, C.P., Karawan, K.R., Goslar, M.D., Ricks, D.A. and Toyne, B. 1991. “Identification of Key International Information Systems Issues,” Journal of High Technology Management Review (2:1), pp 57-81.
19. Dinev, T., Goo, J., Hu, Q., and Nam, K. 2009. “User Behaviour Towards Protective Information Technologies: The Role of National Cultural Differences,” Information Systems Journal (19), pp. 391–412
20. Eastin, M.S and LaRose, R. 2000. “Internet Self-Efficacy and the Psychology of the Digital Divide,” Journal of Computer- Mediated Communication (6:1).
21. Feruza, Y.S., and Kim, T. 2007, “IT Security Review: Privacy, Protection, Access Control, Assurance and System Security,” International Journal of Multimedia and Ubiquitous Engineering (2:2), pp 17-32.
22. Floyd, D.L., Prentice-Dunn, S., and Rogers, R.W. 2000. “A Meta-Analysis of Research on Protection Motivation Theory,” Journal of Applied Social Psychology (30:2), pp 106-143.
23. Hameed M.A., and Arachchilage N.A.G. (2016). “A Model for the Adoption Process of Information System Security Innovations in Organisations: A Theoretical Perspective,” In: The Proceeding of the 27th Australasian Conference on Information Systems, arxiv.org/abs/1609.07911.
24. Hameed, M.A., and Counsell, S. 2012. “Assessing the Influence of Environmental and CEO Characteristics for Adoption of Information Technology in Organizations,” Journal of Technology Management and Innovation (7:1), pp 64-84.
25. Hameed, M.A., and Counsell, S. 2014a. “Establishing Relationship between Innovation Characteristics and IT Innovation Adoption in Organisations: A Meta-analysis Approach,” International Journal of Innovation Management (18:1), p 41.
26. Hameed, M.A., and Counsell, S. 2014b. “User Acceptance Determinants of Information Technology Innovation in Organisations,” International Journal of Innovation and Technology Management (11:5), p 17.
27. Hameed, M.A., Counsell, S., and Swift, S. 2012. “A Meta- analysis of Relationships between Organisational Characteristics and IT Innovation Adoption in Organisations,” Information and Management (49:5), pp 218-232.
28. Hanus, B. and Wu, Y. A. 2016. “Impact of Users’ Security Awareness on Desktop Security Behavior: A Protection Motivation Theory Perspective,” Information Systems Management (33:1), pp 2-16.
29. Herath, T., Chen, R., Wang, J., Banjara, K., Wilbur, J., and Rao, H. R. 2014. “Security Services as Coping Mechanisms: An Investigation into User Intention to Adopt an Email Authentication Service,” Information Systems Journal (24:1), pp 61-84.
30. Hearth, T., and Rao, H.R. 2009. “Protection Motivation and Deterrence: A Framework for Security Policy Compliance in Organizations,” European Journal of Information Systems (18:2), pp. 106-125.
31. Hedges, L.V., and Olkin, I. 1985. “Statistical Methods for Meta-Analysis,” Academic Press, Orlando
32. Hunter, J.E., Schmidt F.L., and Jackson, G.B. 1982. “Meta- Analysis,” Beverly Hills, CA: Sage.
33. Ifinedo, P. 2012. “Understanding Information Systems Security Policy Compliance: An Integration of the Theory of Planned Behaviour and the Protection Motivation Theory,” Computers and Security (31), pp 83-95.
34. Ifinedo, P. 2014. “Information Systems Security Policy Compliance: An Empirical Study of the Effects of Socialisation, Influence, and Cognition,” Information and Management (51:1), pp 69-79.
35. Johnston, A.C., and Warkentin, M. 2010. “Fear Appeal and Information Security Behaviors: An Empirical Study,” MIS Quarterly (34:3), pp 549-566.
36. Lai, F., Li, D. and Hsieh, C. 2012. “Fighting Identity Theft: The Coping Perspective,” Decision Support Systems (52), pp 353-363.
37. Lee, D., Larose, R., and Rifon, N. 2008. “Keeping Our Network Safe: A Model of Online Protection Behaviour,” Behaviour and Information Technology (27:5), pp 445–454.
38. Lee, Y., and Larsen K.R. 2009. “Threat or Coping Appraisal: Determinants of SMB Executive’s Decision to Adopt Anti- malware Software,” European Journal of Information Systems (18:2), pp 177-187.
39. Lee, Y., Lee, J.Y. & Liu, Y. 2007. “Protection Motivation Theory in Information System Adoption: A Case of Anti- Plagiarism System,” In: The Proceedings of Americas Conference on Information Systems 2007. 62. http://aisel.aisnet.org/amioc2007/62
40. Liang, H., and Xue, Y. (2010). “Understanding Security Behaviors in Personal Computer Usage: A Threat Avoidance Perspective,” Journal of the Association for Information Systems (11:7), pp 394-414.
41. Lui, S.M., and Hui, W. 2011. “The Effects of Knowledge on Security Technology Adoption: Results from a Quasi- experiment,” In: The Proceedings of the 5th International Conference on New Trends in Information Science and Service Science.
42. Marette, K., Harris, R.B. and McNab, A.L. 2011. “Social Networking Websites and Posting Personal Information: An Evaluation of Protection Motivation Theory,” Transactions on Human-Computer Interaction (3:3), pp 170-189.
43. Meso, P., Ding, Y., and Xu, S. 2013. “Applying Protection Motivation Theory to Information Security Training for College Students,” Journal of Information Privacy and Security (9:1), pp 47-67.
44. Milne, G.R., Labrecque, L.I., and Cromer, C. 2009. “Toward an Understanding of the Online Consumer’s Risky Behavior and Protection Practices,” The Journal of Consumer Affairs (43:3) pp 449-473.
45. Mohamed, N., and Ahmad, I. 2012. Information Privacy Concerns, Antecedents and Privacy Measure Use in Social Networking Sites: Evidence from Malaysia,” Computers in Human Behavior (28), pp 2366–2375.
46. Ng, B.Y., Kankanhalli, A., and Xu, Y. 2009. “Studying Users' Computer Security Behavior Using the Health Belief Model,” Decision Support Systems (46:4), pp 815-825.
47. Pahnila, S., Siponen, M., and Mahmood M.A. 2007a. “Employee’s Behavior Towards IS Security Policy Compliance,” In: The Proceedings of 40th Hawaii International Conference on System Sciences, p. 1561
48. Pahnila, S., Siponen, M. and Mahmood, A. 2007b. “Which Factors Explain
Employees’ Adherence to Information Security Policies? An Empirical Study,” In: The Proceedings of Pacific Asia Conference on Information Systems 73. http://aisel.aisnet.org/pacis2007/73

49. Rhee, H., Kim, C., and Ryuc, Y. C. 2009. “Self-efficacy in Information Security: Its Influence on End Users’ Information Security Practice Behaviour,” Computers & Security (28), pp 816-826.

50. Rhodes, K. 2001. “Operations Security Awareness: The Mind has No Firewall,” Computer Security Journal (18:3), pp 27- 36.

51. Rogers, R.W. 1983. “Cognitive and Physiological Processes in Fear Appeals and Attitude Change: A Revised Theory of Protection Motivation,” In: J. Cacioppo and R. Petty (Eds.), Social Psychophysiology. New York: Guilford Press, pp 153- 176.

52. Schepers, J., and Wetzels, M. 2007. “A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects,” Information and Management (44), pp 90-103

53. Siponen, M., Mahmood, M.A., and Pahnila, S. 2014. “Employees’ Adherence to Information Security Policies: An Exploratory Feld Study,” Information & Management (51), pp 217-224.

54. Siponen, M. T., Pahnila, S., and Mahmood, A. 2007. “Employees’ Adherence to Information Security Policies: An Empirical Study,” In: The Proceedings of the International Federation for Information Processing IFIP SEC 2007 Conference 2007.

55. Son, J.Y. 2011. “Out of Fear or Desire? Toward a Better Understanding of Employees’ Motivation to Follow IS Security Policies,” Information & Management (48:7), pp 296-302.

56. Stanton, J., Stam, K., Mastrangelo, P., and Jolton, J. 2005. “Analysis of End User Security Behaviors,” Computers and Security (24:2), pp 124–133.

57. Gupta, B. B., Arachchilage, N. A., & Psannis, K. E. (2018). Defending against phishing attacks: taxonomy of methods, current issues and future directions. Telecommunication Systems, 67(2), 247-267.

58. Sun, J.C., Yu, S., Lin, S.S.J., and Tseng, S. 2016. “The Mediating Effect of Anti-phishing Self-efficacy Between College Students’ Internet Self-efficacy and Anti-phishing Behavior and Gender Difference,” Computers in Human Behavior (59), pp 249-257.

59. Tamjid, A., Baba, A. S. B., Gholipour, R. and Yamchello, H. T. 2013. “Information Security Professional Perceptions of Knowledge-Sharing Intention in Virtual Communities under Social Cognitive Theory,” In: The Proceedings of the 3rd International Conference on Research and Innovation in Information Systems – 2013.

60. Tamjid, A., Bin Baba, M.S., Tamjid, H., and Gholipour, R. 2013. “Information Security - Professional Perceptions of Knowledge-Sharing Intention under Self- efficacy, Trust, Reciprocity, and Shared-language,” Computers and Education (68), pp 223-232.

61. Torkzadeh, R., Pfughoeft, K., and Hall, L. 1999. “Computer Self-efficacy, Training Effectiveness and User Attitudes. An Empirical Study,” Behaviour and Information Technology (18:4), pp 299-309.

62. Tornatsky, L.G., and Fleischer, M. 1990. “The Process of Technological Innovation,” Lexington Books.

63. Tsai, H.Y. S., Jiang, M., Alhabash, S., LaRose, R., Rifon, N. J., and Cotten, S. R.
2016. “Understanding Online Safety Behaviors: A Protection Motivation Theory Perspective,” (59), pp 138-150.
64. Vance, A., Siponen, M., and Pahnila, S. 2012. “Motivating IS Security Compliance: Insights from Habit and Protection Motivation Theory,” Information and Management (49) pp 190-198.
65. Venkatesh, V. and Davis, F. D. 2000. “A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies,” Management Science (46:2), pp 186–204.
66. Vroom, C., and von Solms, R. 2004. “Towards Information Security Behavioural Compliance,” Computers & Security (23), pp 191-198.
67. Warkentin, M., Johnston, A.C, Shropshire, J., and Barnett, W. D. 2016. “Continuance of Protective Security Behavior: A Longitudinal Study,” Decision Support Systems (92), pp 25–35.
68. Wei, L., and Zhang, M. 2008. “The Impact of Internet Knowledge on College Students’ Intention to Continue to Use the Internet,” Information Research (13:3), p 348.
69. Woon, I., Tan, G., and Low, R. 2005. “A Protection Motivation Theory Approach to Home Wireless Security,” In: The Proceedings of International Conference on Information Systems, p 31.
70. Workman, M., Bommer, W., and Straub, D. 2008. “Security Lapses and the Omission of Information Security Measures: A Threat Control Model and Empirical Test,” Computers in Human Behavior (24), pp 2799-2816.
71. Yoon, C., Hwang, J. W., and Kim, R. (2012). “Exploring Factors that Influence Students’ Behaviors in Information Security,” Journal of Information Systems Education 23(4), pp 407-417.
72. Zmud, R. W. 1982. “Diffusion of Modern Software Practices: Influence of Centralization and Formalization,” Management Science (28:12), pp 1421–1431.
73. Arachchilage, N. A. G., & Love, S. (2013). A game design framework for avoiding phishing attacks. Computers in Human Behavior, 29(3), 706-714.
74. Arachchilage, G., & Asanka, N. (2012). Security awareness of computer users: A game based learning approach (Doctoral dissertation, Brunel University, School of Information Systems, Computing and Mathematics).
APPENDIX

SDY NAME	YER	SAM S	SAM S	CNTRY	Theories	INN TYP	COR
Herath and Rao (2009)	2009	ORG	312	USA	PMT, DT, DTPB	PRC	0.51
Ng et al. (2009)	2009	MIX	134	Singapore	HBM	PRD	0.4
Mohamed and Ahmad (2012)	2012	SDT	340	Malaysia	PMT, SCT	PRC	0.419
Son (2011)	2011	IND	602	USA	EMM, IMM	PRC	0.23
Workman et al. (2008)	2008	IND	588	USA	PMT	PRC	0.363
Rheem et al. (2009)	2009	IND	415	USA	SCT	PRC	0.342
Johnston and Warkentin (2010)	2010	MIX	215	USA	PMT	PRD	0.395
Bulgurcu et al. (2010)	2010	ORG	464	Canada	TPB, RCT	PRC	0.32
Yoon et al. (2012)	2012	SDT	202	South	PMT	PRC	0.1
Ilinedo (2012)	2012	IND	124	Canada	TPB, PMT	PRC	0.24
Ilinedo (2014)	2014	IND	124	Canada	TPB, SBT, SCT	PRC	0.24
Anderson and Agarwal (2010)	2010	IND	594	USA	PMT	PRD	0.44
Anderson and Agarwal (2010)	2010	IND	101	USA	PMT	PRD	0.38
Chou and Chen Chou (2016)	2016	IND	505	Taiwan	PMT	PRD	0.05
Warkentin et al. (2016)	2016	SDT	253	USA	PMT	PRD	0.888
Siponen et al. (2014)	2014	IND	669	Finland	TRA, CET	PRC	0.243
Tamjidyarmcholo et al. (2013)	2013	IND	138	Malaysia	TRA, SCT	PRC	0.566
Lee et al. (2008)	2008	SDT	273	USA	PMT	PRD	0.6
Vance et al. (2012)	2012	IND	210	Finland	PMT	PRC	0.47
Chan et al. (2005)	2005	IND	104	Singapore	PMT	PRD	0.4
Herath et al. (2014)	2014	SDT	134	USA	TAM, TTAT	PRD	-0.08
Maret et al. (2011)	2011	SDT	522	USA	PMT	PRD	0.51
Lui and Hui (2011)	2009	SDT	752	China	TAM	PRD	0.082
Wei and Zhang (2008)	2008	SDT	279	China	TAM	PRD	0.32
Sun et al. (2016)	2016	SDT	411	Taiwan	PMT	PRD	0.52
Sun et al. (2016)	2016	SDT	411	Taiwan	PMT	PRD	0.45
Liang and Xue (2010)	2010	SDT	152	USA	TTAT	PRD	0.283
Dinev et al. (2009)	2009	SDT	335	USA	TPB	PRD	0.39
Dinev et al. (2009)	2009	SDT	227	South	TPB	PRD	0.35
Hanus and Wu (2016)	2016	SDT	229	USA	PMT	PRC	0.65
Lai et al. (2012)	2012	SDT	117	USA	CT	PRC	-0.186
Meso et al. (2013)	2013	SDT	77	USA	PMT	PRD	0.784
Siponen et al. (2007)	2007	IND	917	Finland	PMT, DT, TRA	PRC	0.407
Tamjidyarmcholo et al. (2013)	2013	SDT	138	Malaysia	PMT	PRC	0.565
Tsai et al. (2016)	2016	IND	988	USA	PMT	PRC	0.26
Chenoweth et al. (2009)	2009	IND	204	USA	PMT	PRD	0.65
Crossler (2010)	2010	IND	112	USA	PMT	PRD	0.56
D'Arcy and Hovav (2004)	2004	NON			DT	PRD	0.26
Cox (2012)	2012	IND	106	USA	TPB	PRD	0.43
Lee et al. (2007)	2007	NON	USA	PMT	PRD	0.35	
Milne et al. (2009)	2009	IND	449	USA	PMT, SCT	PRC	0.26
Pahnila et al. (2007)	2007	IND	917	Finland	PMT, DT, TRA	PRC	0.24

[YER - Year, [SAM S - Sample Group: IND - Individual; ORG - Organisation; SDT - Student; MIX - Mixed; NON - None], [SAM S - Sample Size], [CNTRY - Country], [Theories: PMT - Protection Motivation Theory; TPB - Theory of Planned Behaviour; TRA - Theory of Reasoned Action; SCT - Social Cognitive Theory; DT - Deterrence Theory; TAM - Technology Acceptance Model; TTAT - Technology Threat Avoidance Theory; CET - Cognitive Evaluation Theory; TRA - Theory of Planned Behaviour; RCT - Rational Choice Theory], [INN TYP - Innovation Type: PRC - Process; PRD - Product], [COR - Correlation]]