Open M2-branes with flux and the modified Basu–Harvey equation

Chong-Sun Chu and Gurdeep S Sehmbi

Centre for Particle Theory and Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK
E-mail: chong-sun.chu@durham.ac.uk and g.s.sehmbi@durham.ac.uk

Received 3 December 2010
Published 1 March 2011
Online at stacks.iop.org/JPhysA/44/135404

Abstract
The supersymmetric actions of closed multiple M2 branes with flux for the Bagger–Lambert (BL) and ABJM theories have been constructed recently by Lambert and Richmond (2009 J. High Energy Phys. JHEP10(2009)084). In this paper, we extend the construction to the case of open M2-branes with flux and derive the boundary conditions. This allows us to derive the modified Basu–Harvey equation in the presence of flux. As an example, we consider the Lorentzian BL model. A new feature of the fuzzy funnel solution describing a D2–D4 intersection is obtained as a result of the flux.

PACS numbers: 11.25.Yb, 11.25.–w, 04.65.+e, 11.25.Uv

1. Introduction
The understanding of the physics of branes in M-theory is one of the most intriguing and mysterious tasks in string/M-theory, see for example [2]. Recently, tremendous progress has been made in the description of multiple M2-branes [3–8]. A major part of the excitement is due to the employment of a novel mathematical structure, the Lie 3-algebra, in the description of the gauge symmetry of the parallel M2-branes. Although the Lie 3-algebra is not essential in the $\mathcal{N} = 6$ description of the M2-branes [7], there is evidence [9–15] that it may have a deeper connection to M-theory in general.

In a recent paper, based on the earlier works [16–19], Lambert and Richmond [1] were able to construct a coupling of closed multiple M2-branes to specific configurations of background 3-form and 6-form gauge fields of 11-dimensional supergravity. The coupling makes the essential use of the underlying 3-algebra structure. The flux configuration considered in [1] is self-dual in the space transverse to the M2-branes and gives rise to a mass term and its supersymmetrization on the worldvolume theory of the M2-branes.

In this paper, we extend the construction of [1] to the open case and derive the supersymmetric boundary conditions. As advocated in [10, 20], see also [21], the boundary
can be interpreted as an equation of motion for the boundary fields and hence, in the case of the scalar fields, can be understood as describing the non-trivial shape of the boundary of the M2-branes. In particular, for a certain specific configuration, the boundary condition describes the M2-brane ending on an M5-brane and hence can be identified with the Basu–Harvey equation [22]. We show that this continues to be the case in the presence of the flux background.

The plan of the paper is as follows. In section 2, we analyse the Bagger–Lambert (BL) action coupled to flux and obtain the supersymmetric boundary condition. The boundary condition only has a trivial solution in general. However, for specific configurations of the scalar fields we consider that the boundary condition is non-trivial. For example, one obtains a mass-deformed Basu–Harvey equation which describes a system of the M2-branes ending on an M5-brane in the presence of a background flux. The analysis of the boundary condition also asserts the absence of supersymmetric M2–M9 intersection in the presence of flux. In section 3, we perform the same analysis for the ABJM theory with flux. In section 4, we consider the flux-modified BL theory with Lorentzian 3-algebras. In the closed case, the theory is equivalent to the $\mathcal{N} = 8$ supersymmetric Yang–Mills theory, thanks to the complete decoupling of one of the scalar fields, say X^{10}, of the eight scalar fields in the BL theory. This is no longer automatic in the open case and a boundary condition has to be chosen to achieve this. The resulting theory then describes multiple D2-branes in a mixed NS–NS and R–R flux background. The system is however not supersymmetric in general since the decoupling boundary condition generally breaks the supersymmetry. We consider a particular configuration of the scalar fields and show that a supersymmetric boundary condition can be obtained. We show that this describes a system of D2-branes ending on a D4-brane in the background flux. New features of the fuzzy funnel solution are also discussed.

2. Boundary condition for the BL theory coupled to flux

2.1. $\mathcal{N} = 8$ closed M2-branes in the flux background

In this subsection, we review the construction [1] of the supersymmetric action which describes the coupling of multiple closed M2-branes to a certain configuration of a background gauge field. In the limit of large T_{M2}, the Lagrangian consists of a flux and a mass term modification to the BL Lagrangian $\mathcal{L}_{\mathcal{N}=8}$:

$$\mathcal{L} = \mathcal{L}_{\mathcal{N}=8} + \mathcal{L}_{\text{flux}} + \mathcal{L}_{\text{mass}},$$

where

$$\mathcal{L}_{\mathcal{N}=8} = -\frac{1}{2} \text{Tr} (D_\mu X^I, D_\mu X^I) + i \frac{1}{2} \text{Tr}(\bar{\Psi} \Gamma^\mu D_\mu \Psi) + i \frac{1}{4} \text{Tr}(\bar{\Psi} \Gamma_{IJJ}[X^I, X^J, \Psi])$$

$$- \frac{1}{12} \text{Tr} ([X^I, X^J, X^K], [X^I, X^J, X^K]) + \mathcal{L}_{CS},$$

$$\mathcal{L}_{\text{flux}} = c \tilde{G}_{IJKL} \text{Tr}(X^I, [X^J, X^K, X^L]),$$

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} m^2 \delta_{IJ} \text{Tr}(X^I, X^J) + b \text{Tr}(\bar{\Psi} \Gamma^{IJKL} \Psi) \tilde{G}_{IJKL}$$

and $\text{Tr}(\cdot, \cdot)$ is the metric for the Lie 3-algebra. The background gauge field has the transverse components G_{IJKL} turned on and \tilde{G}_{IJKL} is defined by

$$\tilde{G}_{IJKL} = \frac{1}{4!} \epsilon_{IJKLMNPO} G^{MNPQ},$$

and

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} m^2 \delta_{IJ} \text{Tr}(X^I, X^J) + b \text{Tr}(\bar{\Psi} \Gamma^{IJKL} \Psi) \tilde{G}_{IJKL}$$

and

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} m^2 \delta_{IJ} \text{Tr}(X^I, X^J) + b \text{Tr}(\bar{\Psi} \Gamma^{IJKL} \Psi) \tilde{G}_{IJKL}$$

and

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} m^2 \delta_{IJ} \text{Tr}(X^I, X^J) + b \text{Tr}(\bar{\Psi} \Gamma^{IJKL} \Psi) \tilde{G}_{IJKL}$$

and

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} m^2 \delta_{IJ} \text{Tr}(X^I, X^J) + b \text{Tr}(\bar{\Psi} \Gamma^{IJKL} \Psi) \tilde{G}_{IJKL}$$
where \(I, J, K, L = 3, 4, \ldots, 10 \). The supersymmetry transformation is given by \(\delta = \delta_0 + \delta' \), where \(\delta_0 \) is the supersymmetry transformation of the original \(N = 8 \) theory:

\[
\delta_0 X^I_a = i\bar{\epsilon}\Gamma^I\Psi_a,
\]

\[
\delta_0 \bar{A}^{\mu \, b}_a = i\bar{\epsilon}\Gamma^I\Gamma_\mu X^I_a \Psi_\mu f^{c b}_a,
\]

\[
\delta_0 \Psi_a = D_\mu X^I_a \Gamma^\mu\Gamma^I\epsilon - \frac{1}{6} \bar{X}_a X^I_{a c} X^K_{b c} f^{b c d}_a \Gamma^{IJK}\epsilon,
\]

and \(\delta' \) is the additional contribution to the supersymmetry transformations due to the flux

\[
\delta' X^I_a = 0,
\]

\[
\delta' \bar{A}^{\mu \, b}_a = 0,
\]

\[
\delta' \Psi_a = \omega \Gamma_{IJKL} \Gamma^M \epsilon X^M_a \tilde{G}_{IJKL}.
\]

Here, \(\Psi \) and \(\epsilon \) are 11-dimensional spinors satisfying the conditions

\[
\Gamma_{012} \Psi = -\Psi,
\]

\[
\Gamma_{012} \epsilon = \epsilon.
\]

Inclusion of the effects of the backreaction of the flux implies that \(c = 2 \) [1]. Supersymmetry requires the coefficients \(\omega \) and \(b \) to be determined by the flux term

\[
\omega = \frac{c}{8}, \quad b = -i \frac{c}{16}.
\]

Moreover, the flux \(\tilde{G}_{IJKL} \) has to be self-dual, which implies that

\[
\Gamma^{012} \tilde{\mathcal{G}} = \tilde{\mathcal{G}},
\]

where \(\tilde{\mathcal{G}} = \Gamma^{IJKL} \tilde{G}_{IJKL} \). It also needs to satisfy the condition

\[
\tilde{\mathcal{G}} \tilde{\mathcal{G}} = 8m^2(1 + \Gamma^{3456789})
\]

which implies immediately that

\[
G_{MN[IJ} G_{KL]}^{MN} = 0 \quad \text{and} \quad m^2 = \frac{c^2}{32 \cdot 4!} G^2.
\]

The self-duality condition is solved by \(\tilde{\mathcal{G}} \) of the form \(\tilde{\mathcal{G}} = d(1 + \Gamma^{012}) R \), where \(d \) is a constant coefficient and \(R \) is a sum of the products of four transverse \(\Gamma^I \)'s, \(I = 3, 4, \ldots, 10 \). Condition (16) then implies that

\[
\tilde{\mathcal{G}} = 2\mu \frac{1 + \Gamma^{012}}{2} R, \quad R^2 = 1,
\]

\[
\tilde{\mathcal{G}} = \mu \, dx^3 \wedge dx^4 \wedge dx^5 \wedge dx^6 + \text{dual},
\]

and the Lagrangian (1) reproduces precisely the deformed BL Lagrangian of [16] and [17].
2.2. Flux-modified supersymmetric boundary condition

Next, we consider the open case of the flux-modified BL theory and derive the boundary condition. Note that in the above derivation of the supersymmetric invariance of the action, boundary contributions have been dropped due to the closedness of the M2-branes. These boundary terms have to be kept carefully in the presence of a boundary. It is easy to see that these contributions arise from the fermion and scalar kinetic terms in the Lagrangian $\mathcal{L}_{N=8}$.

We have

$$\delta \mathcal{L} = \frac{i}{2} \delta_{\mu} \text{Tr}(\bar{\Psi} \Gamma^\mu \delta \Psi) - \frac{i}{2} \delta_{\mu} \text{Tr}(\delta X^I, D^\mu X^I) + \text{bulk terms},$$

(21)

where the ‘bulk terms’ denote non-total derivative terms and are precisely equal to zero when conditions (14)–(17) are satisfied. To proceed, let us consider the M2-branes to have a boundary at $\sigma_2 = 0$. We have

$$\delta \int d^3 \sigma \mathcal{L} = \frac{i}{2} \int d^2 \sigma \left(\text{Tr}(\bar{\Psi} \Gamma^2, \delta \Psi) - 2 \text{Tr}(D_2 X^I, \bar{\Psi} \Gamma I \epsilon) \right).$$

(22)

We obtain the boundary condition

$$0 = D_2 X^I \bar{\Psi} \Gamma^I \Gamma^\alpha \Gamma^\epsilon - \frac{1}{6} \{X^I, X^J, X^K \bar{\Psi} \Gamma^2 \Gamma^{IJK} \epsilon + \frac{1}{4} X^M \Psi \Gamma^2 \bar{\Psi} \Gamma M \epsilon - D_2 X^I \bar{\Psi} \Gamma^I \epsilon,$$

(23)

where $\alpha = 0, 1$ and the trace Tr is understood. This is the most general supersymmetric boundary condition one may have for a system of open M2-branes in our flux background. In general, due to the different number of Γ-matrices in each term, equation (23) generically only has a trivial solution. Non-trivial solutions can be obtained only when additional conditions are imposed on the matter fields and on the supersymmetry parameters.

Analysis of the boundary condition in the absence of flux was performed in [23], where the solutions to the boundary condition are classified according to the number of scalars obeying a Dirichlet condition (or more precisely being set equal to zero). In the following, we perform a similar analysis for the boundary condition (23) with flux and determine what $1/2$ BPS configurations are allowed as an endpoint of the system of open M2-branes. To be specific, we will consider the flux configuration (20).

2.2.1. Half Dirichlet: a flux-modified Basu–Harvey equation. This case corresponds to an ansatz where half of the scalar fields are set to zero, for example,

$$X^{3,4,5,6} = 0.$$

(24)

This means that we have reduced the SO(8) to the SO(4) R-symmetry. Let us also impose the projection condition

$$\Gamma^{01789(10)} \epsilon = \epsilon.$$

(25)

It follows immediately that

$$\Gamma^{ijk} \epsilon = \epsilon^{ijk} \Gamma^i \epsilon, \quad i, j, k, l = 7, 8, 9, 10.$$

(26)

We also have

$$\Gamma^2 \bar{\Psi} \epsilon = 2 \mu \epsilon.$$

(27)

The boundary condition (23) is then reduced to

$$0 = D_2 X^I \bar{\Psi} \Gamma^I \Gamma^\alpha \Gamma^\epsilon - \frac{1}{6} \epsilon^{ijk} \bar{\Psi} \Gamma^i \epsilon [X^i, X^j, X^K] + \frac{\mu}{2} \bar{\Psi} \Gamma^i \epsilon X^I - D_2 X^I \bar{\Psi} \Gamma^I \epsilon.$$

(28)
We note that the first term in (28) is identically zero if we also impose the condition on the fermion
\[\Gamma^{01789(10)} \Psi = -\Psi. \]
(29)
This reduction in the degrees of freedom is compatible with the 1/2 BPS nature of the projector (25). As a result, we obtain the boundary equation of motion
\[D_2 X^i = -\frac{1}{6} \epsilon^{ijkl} [X^j, X^k, X^l] + \frac{\mu}{2} X^i \]
(30)
for \(i, j, k, l = 7, 8, 9, 10 \). This is the Basu–Harvey equation modified by the flux (20).

We must now check that the boundary conditions (24), (29) and (30) are supersymmetric invariant. Indeed it is easy to verify that
\[\tilde{\delta} X^i = 0, \quad i' = 3, 4, 5, 6, \]
(31)
and
\[(1 + \Gamma^{01789(10)}) \tilde{\delta} \Psi = 0 \]
using conditions (25) and (29). As for (30), supersymmetry requires the fermionic boundary equation
\[D_2 \Psi + \frac{1}{2} \epsilon^{ijkl} \{ \Psi, X^i, X^j \} - \frac{\mu}{2} \Psi = 0. \]
(33)
Note that if instead of (25), we preserve the other half of supersymmetry,
\[\epsilon = -\epsilon, \]
(34)
then exactly the same analysis results in the other Basu–Harvey equation:
\[D_2 X^i = \frac{1}{6} \epsilon^{ijkl} [X^j, X^k, X^l] - \frac{\mu}{2} X^i. \]
(35)
This is equivalent to (30) with \(x^2 \to -x^2 \).

The modified Basu–Harvey equation can also be derived as the Bogomoln’yi bound for the system of closed M2-branes [6]. In fact, considering static solutions that depend on one coordinate \(\sigma_2 = s \), the energy can be written as
\[
E = \frac{1}{2} \int ds d\sigma_1 \left[\text{Tr} \left(\frac{dX^i}{ds} \pm \partial^s W, \frac{dX^i}{ds} \pm \partial^s W \right) \mp \text{Tr} \left(2 \partial^b W, \frac{dX^i}{ds} \right) \right],
\]
(36)
where \(W = -\frac{\lambda}{8} (X')^2 + \frac{1}{36} \epsilon^{ijkl} \text{Tr}(X', [X^i, X^k, X^j]) \) and \(\text{Tr}(T_a, T_b) = g_{ab} \) is the metric of the Lie 3-algebra. The ‘+’ choice in the first term in (36) gives the modified Basu–Harvey equation (30), while the ‘−’ choice gives the other BPS equation (35). Once again, we have seen the power of utilizing the boundary system. For other applications of using the boundary system see, for example, [10, 20, 23].

Condition (30) (or (33)) represents a non-trivial boundary condition of the system of open M2-branes. For an \(A_4 \) Lie 3-algebra, two kinds of solution were found [6]. One describes a domain wall interpolating between two vacua of the worldvolume theory, and the other is a fuzzy funnel solution that describes a system of the M2-branes ending on a single M5-brane. For a more general Lie 3-algebra, the Basu–Harvey equation (30) still admits these solutions if \(A_4 \) can be found as a subalgebra. For a Lie algebra, semisimplicity guarantees that a Lie algebra always admits an \(\mathfrak{su}(2) \) subalgebra. The question of when a Lie 3-algebra has an \(A_4 \) subalgebra is an interesting and open one [24].

5
2.2.2. No Dirichlet: the absence of a supersymmetric M9-brane. In this case, we keep all eight scalar fields and do not assume that any of them are zero. Consider imposing the projection condition

$$\Gamma^{013456789(10)} \epsilon = \epsilon,$$

(37)

which implies

$$\Gamma^2 \epsilon = \epsilon = \Gamma^{01} \epsilon.$$

(38)

Also, we impose the condition

$$\Gamma^{013456789(10)} \Psi = \Psi$$

(39)

on the fermion. The first term in (23) is again zero using these conditions. The second to the last term in (23) is a linear combination of products of three or five transverse Gamma matrices Γ^I. One can see that equation (23) contains different number of transverse Γ^I's and linear independence of them implies that

$$D_2 X^I = 0$$

(40)

and

$$X^I = 0,$$

(41)

i.e. there is no non-trivial solution.

Note that if we turn off the flux ($m = 0$), then the boundary equation (23) can be solved non-trivially with

$$D_2 X^I = 0, \quad [X^I, X^J, X^K] = 0.$$

(42)

This has been interpreted as an M9-brane occupying the directions 013456789(10) where the M2-branes end on [23].

With the flux (20) turned on, however, we only obtain the trivial solution (41). This means, in the presence of flux, the system of the M2-branes cannot end on an M9 brane supersymmetrically. This is a prediction of our open M2-branes analysis. One way to confirm its validity is to determine the supersymmetry projector of an M9-brane in the presence of flux and show that the preserved supersymmetry is incompatible with the M2-brane supersymmetry projector $\Gamma^{012} \epsilon = \epsilon$. To carry out this analysis, one needs to first construct the supergravity solution of an M9-brane with a constant flux and then determine the preserved supersymmetry as performed in [25] for the case without flux. One can also reduce the system down to ten dimensions on x^{10}. This becomes a D2–D8 intersection. The D8-brane is endowed with a worldvolume NS–NS B-field in the 78, 79 or 89 directions and the preserved supersymmetry is determined by

$$e^{-a/2} \Gamma^{013456789(10)} e^{a/2} \epsilon = \epsilon,$$

(43)

where $a = \frac{1}{2} Y_{IJ} \Gamma^I \Gamma^J \Gamma^{(10)}$ and Y is a nonlinear function of B whose explicit form can be found in [26]. What is important to us is that only the 78, 79 or 89 components are nonzero in our case. It is then clear that the supersymmetry preserved by the D8-brane is incompatible with $\Gamma^{012} \epsilon = \epsilon$ of the D2-brane. Therefore, the D2–D8 system and the M2–M9 system are not supersymmetric.

2.2.3. All Dirichlet: an M-wave. In this case, we set all the eight scalars to zero at the boundary. As a result, all the modifications due to flux vanish and the boundary conditions read identically as in the flux-less case:

$$D_2 X^I \Psi \Gamma^I \epsilon = 0.$$

(44)

This can be solved immediately if one imposes the projection conditions

$$(1 - \Gamma^2) \epsilon = 0, \quad (1 + \Gamma^2) \Psi = 0.$$

(45)

The solution has been interpreted as an M-wave where the M2-branes end on [23].
3. Boundary condition for the ABJM theory coupled to the flux

3.1. $N = 6$ closed M2-branes in the flux background

We now turn to the $N = 6$ theory with mass and flux terms given by Lambert and Richmond [1] and discuss the boundary terms and their implications. The full Lagrangian of the flux-deformed $N = 6$ theory reads

$$L = L_{N=6} + L_{\text{flux}} + L_{\text{mass}}, \quad (46)$$

where

$$L_{N=6} = - \text{Tr}(D^\mu \tilde{Z}_A, D_\mu Z^A) - i \text{Tr}(\tilde{\psi}^A, \gamma^\mu D_\mu \psi_A) - V + L_{CS}$$

$$- i \text{Tr}(\tilde{\psi}^A, [\psi_A, Z^B; \tilde{Z}_B]) + 2i \text{Tr}(\tilde{\psi}^A, [\psi_B, Z^A; \tilde{Z}_A])$$

$$+ \frac{1}{2} \epsilon_{ABCD} \text{Tr}(\tilde{\psi}^A, [Z^C, Z^D; \psi_B]) - \frac{1}{2} \epsilon^{ABCD} \text{Tr}(\tilde{Z}_D, [\psi_A, \psi_B; \tilde{Z}_C]). \quad (47)$$

$$L_{\text{CS}} = \frac{k}{4\pi} e^{\nu\lambda\kappa} \left(A_\mu \partial_\nu A_\lambda + \frac{2i}{3} A_\mu A_\nu A_\lambda - \hat{A}_\mu \partial_\nu \hat{A}_\lambda - \frac{2i}{3} \hat{A}_\mu \hat{A}_\nu \hat{A}_\lambda \right), \quad (48)$$

$$L_{\text{flux}} = \frac{c}{4} \text{Tr}(\tilde{Z}_D, [Z^A, Z^B; \tilde{Z}_C]) \tilde{G}_{AB}^{CD}, \quad (49)$$

$$L_{\text{mass}} = - m^2 \text{Tr}(Z^A, Z^A) + b \text{Tr}(\tilde{\psi}^A, \psi_F) \tilde{G}_{AE}^{EF}. \quad (50)$$

The $N = 6$ theory has a 3-algebra given by a matrix representation

$$[Z^A, Z^B, Z^C] = \frac{2\pi}{k} (Z^A \tilde{Z}_C Z^B - Z^B \tilde{Z}_C Z^A), \quad (51)$$

which is only antisymmetric in the first two indices. Here, V is defined in [8] and we also define

$$\tilde{G}_{AB}^{CD} = \frac{1}{4} \epsilon_{ABEF} \epsilon^{CDGH} G_{EF}^{GH}, \quad (52)$$

and $A, B, C, D = 1, \ldots, 4$ are the $SU(4)$ R-symmetry indices. The supersymmetry transformations of the original $N = 6$ theory is given by

$$\delta_0 Z^A = i \epsilon^{AB} \psi_B, \quad (53)$$

$$\delta_0 A_\mu = \frac{2\pi}{k} \left[Z^B \gamma^\mu \psi_A + \epsilon^{AB} \gamma^\mu \psi_B \right]. \quad (54)$$

$$\delta_0 \psi_A = \gamma^\mu \epsilon_{AB} D_\mu Z^B + N_A, \quad (55)$$

and their conjugates, where

$$N_A = \frac{2\pi}{k} \left[- \epsilon_{AB} (Z^C \tilde{Z}_C Z^B - Z^B \tilde{Z}_C Z^C) + 2 \epsilon_{CD} Z^C \tilde{Z}_A Z^D \right] \quad (56)$$

and δ' is the additional contribution to the supersymmetry transformations due to the flux:

$$\delta' Z^A = 0, \quad (57)$$

$$\delta' A_\mu = 0, \quad \delta' \hat{A}_\mu = 0, \quad (58)$$

$$\delta' \psi_A = \omega \epsilon_{DF} Z^F \tilde{G}_{AE}^{EF}. \quad (59)$$

The symmetry transformation parameter satisfies the reality condition

$$\epsilon_{FP} = \frac{1}{2} \epsilon^{1JFP} \epsilon^{1J}. \quad (60)$$
For the action to be supersymmetric, the flux needs to take the form
\[
\tilde{G}^{ABCD} = \frac{1}{2} \delta^C_B \tilde{G}^{AE} \tilde{G}^{ED} - \frac{1}{2} \delta^D_B \tilde{G}^{AE} \tilde{G}^{EC} + \frac{1}{2} \delta^D_A \tilde{G}^{BE} \tilde{G}^{EC}.
\]
where the matrix \(\tilde{G}^{ABCD} \) has to be traceless \(\tilde{G}^{ABAB} = 0 \) and squares to 1:
\[
\tilde{G}^{AE} \tilde{G}^{BF} = \frac{m^2}{\omega^2} \delta^C_A.
\]
Supersymmetry also relates the coefficients \(\omega, b, m \) to the flux term:
\[
\omega = \frac{c}{4}, \quad b = -i \frac{c}{4}, \quad m^2 = \frac{c^2}{32} - \frac{1}{4} G^2,
\]
where \(G^2 = 6G^{ABCD}G^{AB} \). As before, one finds \(c = 2 \) by a backreaction analysis.

Taking the flux
\[
\tilde{G}^{AE} \tilde{G}^{ED} = \begin{pmatrix}
\mu & 0 & 0 & 0 \\
0 & \mu & 0 & 0 \\
0 & 0 & -\mu & 0 \\
0 & 0 & 0 & -\mu
\end{pmatrix},
\]
for \(\mu = \pm 2m, m \geq 0 \), one obtains immediately the deformed theory in \([18, 19]\).

3.2. Flux-modified Basu–Harvey equation

We now proceed by finding the boundary contributions to the \(\mathcal{N} = 6 \) theory of open M2-branes probing the orbifold \(\mathbb{C}^4/\mathbb{Z}_k \). Again the contributions for the boundary come from total derivative terms in the ABJM theory; these arise from the scalar and fermionic terms once again. So we have
\[
\delta L = -2 \partial_\mu \text{Tr}(\delta \bar{Z}_A, D^\mu Z^A) - i \partial_\mu \text{Tr}(\bar{\psi}^A, \gamma^\mu \delta \psi_A) + \text{bulk terms}.
\]
Imposing the boundary condition \(\sigma_2 = 0 \) yields the boundary equations of motion:
\[
0 = -2i \text{Tr}(\bar{\psi}^B, D^\mu Z^A) - i \text{Tr}(\bar{\psi}^A, \gamma^\mu \epsilon_{AB} D^\mu Z^B)
+ \frac{2\pi}{k} (\epsilon_{AB} (Z^C \bar{Z}_C Z^B - Z^B \bar{Z}_C Z^C) + 2 \epsilon_{CD} Z^C \bar{Z}_A \bar{Z}_D) + \omega \epsilon_{DF} Z^D \tilde{G}^{AE} \tilde{G}^{ED}.
\]
Now the flux (64) can be written compactly as
\[
\tilde{G}^{AE} \tilde{G}^{ED} = \mu \delta^D_A \eta_A,
\]
where \(\eta_A \) is a sign defined as
\[
\eta_A = \begin{cases} +1 & \text{if } A = 1, 2 \\ -1 & \text{if } A = 3, 4. \end{cases}
\]
Using this in (66), we obtain the boundary equation of motion
\[
0 = \bar{\psi}^A \left[2 D^2 Z^B - \gamma^\mu \gamma^\nu D^\mu Z^B + \gamma^\mu \frac{2\pi}{k} (Z^C \bar{Z}_C Z^B - Z^B \bar{Z}_C Z^C) \\
- \frac{\mu}{2} \eta_A \gamma^2 Z^B \right] \epsilon_{AB} - \frac{4\pi}{k} \bar{\psi}^A \gamma^2 \epsilon_{AB} \bar{Z}_F \bar{Z}_F Z^B,
\]
where we have now suppressed the traces and will imply them in the natural way henceforth. This is the most general supersymmetric boundary equation of motion for open M2-branes in the \(\mathcal{N} = 6 \) theory with our specific flux configuration.
To analyse the boundary condition, it is convenient to introduce the following notation
\[A = (a, i) \]
and denote
\[Z_A = (X_a, Y_i), \quad \psi_A = (\chi_a, \xi_i), \]
where \(a = 1, 2 \) corresponds to the directions 3456 and \(i = 1, 2 \) corresponds to the directions 789(10). The supersymmetry parameter \(\epsilon_{AB} \) is in the 6-representation of \(SU(4) \), and it decomposes as \[[23] \]
\[\epsilon_{AB} = \left(\begin{array}{cc}
\epsilon_{ab} & \epsilon_{ai} \\
-\epsilon_{ai} & \epsilon_{ij} \end{array} \right). \]

Using the new notation, the boundary condition (69) splits into four equations:
\[0 = \bar{\chi}^a \epsilon_{ab} \left[2D^2 X^b - \gamma^2 \gamma^\mu D_\mu X^b + \gamma^2 \frac{2\pi}{k} \left(Z^C \tilde{Z}_C X^b - X^b \tilde{Z}_C Z^C \right) - \frac{\mu}{2} \gamma^2 X^b \right] \epsilon \\
- \frac{4\pi}{k} \epsilon_{ab} \bar{\psi}^F \gamma^2 \epsilon X^a \tilde{Z}_F X^b, \]

(71)

\[0 = \bar{\chi}^a \left[2D^2 Y^i - \gamma^2 \gamma^\mu D_\mu Y^i + \gamma^2 \frac{2\pi}{k} \left(Z^C \tilde{Z}_C Y^i - Y^i \tilde{Z}_C Z^C \right) - \frac{\mu}{2} \gamma^2 Y^i \right] \epsilon_{ai} \\
- \frac{4\pi}{k} \bar{\psi}^F \gamma^2 \epsilon_{ai} X^a \tilde{Z}_F Y^i, \]

(72)

\[0 = \bar{\xi}^i \left[2D^2 X^a - \gamma^2 \gamma^\mu D_\mu X^a + \gamma^2 \frac{2\pi}{k} \left(Z^C \tilde{Z}_C X^a - X^a \tilde{Z}_C Z^C \right) + \frac{\mu}{2} \gamma^2 X^a \right] \epsilon_{ai} \\
- \frac{4\pi}{k} \bar{\psi}^F \gamma^2 \epsilon_{ai} Y^i \tilde{Z}_F X^a, \]

(73)

\[0 = \bar{\xi}^i \epsilon_{ij} \left[2D^2 Y^j - \gamma^2 \gamma^\mu D_\mu Y^j + \gamma^2 \frac{2\pi}{k} \left(Z^C \tilde{Z}_C Y^j - Y^j \tilde{Z}_C Z^C \right) + \frac{\mu}{2} \gamma^2 Y^j \right] \bar{\epsilon} \\
- \frac{4\pi}{k} \epsilon_{ij} \bar{\psi}^F \gamma^2 \bar{\epsilon} Y^i \tilde{Z}_F Y^j. \]

(74)

Let us consider the half-Dirichlet case by setting half of the scalars zero, in particular, \(Y^i = 0 \). This condition reduces the R-symmetry from \(SU(4) \) to \(SU(2) \). We first analyse (71) and (73). It turns out that the second term \(\gamma^\mu D_\mu X^b \) in these equations vanishes for \(\mu = 0, 1 \). We will come back to this later. For the moment, assuming that this is true, and then (71) and (73) becomes
\[0 = \bar{\chi}^a \epsilon_{ab} \left[D^2 X^b + \gamma^2 \frac{2\pi}{k} \left(X^e \tilde{X}_e X^b - X^b \tilde{X}_e X^e \right) - \frac{\mu}{2} \gamma^2 X^b \right] \epsilon \\
- \frac{4\pi}{k} \epsilon_{cd} \bar{\chi}^a \gamma^2 \epsilon X^c \tilde{X}_a X^d, \]

(75)

and
\[0 = \bar{\xi}^i \epsilon_{ij} \left[D^2 X^a + \gamma^2 \frac{2\pi}{k} \left(X^e \tilde{X}_e X^a - X^a \tilde{X}_e X^e \right) + \frac{\mu}{2} \gamma^2 X^a \right] \epsilon_{ai}. \]

(76)

The two equations are not compatible with each other in general. However, it is possible to impose a suitable supersymmetry projection conditions on the spinors \(\epsilon \) and \(\epsilon_{ai} \) so that these two equations become equivalent. The needed conditions are
\[(1 + \gamma^2) \epsilon = 0 = (1 + \gamma^2) \bar{\epsilon} \]

(77)

\[(1 - \gamma^2) \epsilon_{ai} = 0, \]

(78)

or
\[(1 - \gamma^2) \bar{\epsilon} = 0 = (1 - \gamma^2) \bar{\epsilon} \]

(79)
\[(1 + \gamma^2)\epsilon_{ai} = 0.\]
\[(80)\]

As a result, (75) and (76) are identical, since
\[X^c \tilde{X}_c X^b - X^b \tilde{X}_c X^c = \epsilon^{ba} \epsilon^{cd} X^c \tilde{X}_d X^d.\]
\[(81)\]

And we obtain the modified Basu–Harvey equation with mass:
\[D_2 X^a \pm \frac{2\pi}{k} (X^c \tilde{X}_c X^a - X^a \tilde{X}_c X^c) \pm \frac{\mu}{2} X^a = 0,\]
\[(82)\]

where the + sign corresponds to choice (77) and (78) and the − sign corresponds to the choice (79)–(80). This can also be written in terms of the 3-bracket:
\[D_2 X^a \pm [X^c, X^a; \tilde{X}_c] \pm \frac{\mu}{2} X^a = 0.\]
\[(83)\]

This is the mass-deformed Basu–Harvey equation for the flux-modified ABJM theory. In the following, we consider the choice of projectors (77) and (78) and the Basu–Harvey equation
\[D_2 X^a + \frac{2\pi}{k} (X^c \tilde{X}_c X^a - X^a \tilde{X}_c X^c) + \frac{\mu}{2} X^a = 0.\]
\[(84)\]

The analysis for the other choice is exactly the same.

Next, we note that since \(\delta Y^i = i \epsilon^{ai} \chi_a + i \epsilon^{ij} \tilde{\epsilon} \xi_j\), the boundary condition \(Y^i = 0\) is supersymmetric invariant, after imposing (77) and (78), if
\[(1 + \gamma^2)\chi_a = 0,\]
\[(85)\]
\[(1 - \gamma^2)\xi_i = 0.\]
\[(86)\]

As for conditions (72) and (74), which read
\[\tilde{\chi}^a \epsilon_{ai} D_2 Y^i = 0,\]
\[(87)\]
and
\[\tilde{\xi}^i \epsilon_{ij} D_2 Y^j = 0.\]
\[(88)\]

These are satisfied immediately as a result of the projection conditions (77), (78), (85) and (86). It is also easy to see that these projection conditions are supersymmetric invariant. Moreover, supersymmetry on (82) requires the fermionic boundary equations
\[D_2 \chi_c - [\chi_c, X^a; \tilde{X}_a] + 2[X_d, X^d; \tilde{X}_c] - \frac{\mu}{2} \chi_c = 0,\]
\[(89)\]
\[D_2 \xi_j + [\xi_j, X^a; \tilde{X}_a] - \epsilon_{jk} \epsilon_{ab} [X^a, X^b; \xi_k] - \frac{\mu}{2} \xi_j = 0.\]
\[(90)\]

As for the above assumption of the vanishing of the terms of the form ‘\(\Gamma^a D_0 X^b\)’ in equations (71) and (73), one can see that it follows immediately from the projection conditions (77) and (85), and respectively (78) and (86).

The Basu–Harvey equation (84) can be readily solved by employing the ansatz
\[X^a(s) = f(s) R^a,\]
\[(91)\]
where \(s = x_2\) and \(R^a\) are the \(N \times N\) matrices satisfying the relation
\[R^c R^i_j R^a - R^a R^i_j R^c = -R^a.\]
\[(92)\]

Then, we obtain
\[f' = \frac{2\pi}{k} f^3 + \frac{\mu}{2} f = 0.\]
\[(93)\]
Equation (92) has been solved in [18] and the irreducible solution is
\[
\begin{align*}
(R_1)_{mn} &= \delta_{m,n}\sqrt{m - 1}, \\
(R_2)_{mn} &= \delta_{m-1,n}\sqrt{N - m + 1}, \quad m, n = 1, \ldots, N.
\end{align*}
\] (94)
A direct sum of such blocks is also a solution. Equation (93) is the same equation as in the \(N = 8 \) theory. This is how the domain wall solution and the M2–M5 intersection are represented in the \(N = 6 \) theory.

Finally, let us comment briefly on the no-Dirichlet and all-Dirichlet cases. For the no-Dirichlet case, we find only the trivial solution
\[
X_a = Y_i = 0
\]
in the \(N = 8 \) theory. As for the all-Dirichlet case, since the flux modifications all go away when all the scalars are set to zero at the boundary, the boundary conditions (71)–(74) reduce to exactly the same form as in the flux-less case and one obtains an M-wave [23].

4. Lorentzian 3-algebras and a reduction to D2-branes

In the original construction of the BL theory [3, 5, 6], the Lie 3-algebra \(A_4 \) was employed. The use of \(A_4 \) was motivated by the studies of Basu and Harvey [22] whose main objective was to construct a generalization of the Nahm equation for describing intersecting M-branes. The next simplest example of a Lie 3-algebra is the Lorentzian algebra. It has been shown that when one considers a Lorentzian 3-algebra, the BL Lagrangian reduces to the \(N = 8 \) SYM theory of multiple D2-branes [27–33], as opposed to the non-trivial reduction for the original BL theory [34]. In this section, we consider the Lorentzian BL theory with flux and analyse its reduction. We will also derive the supersymmetric boundary condition and obtain from it the corresponding mass-deformed Nahm equation.

The Lorentzian 3-algebra is defined by a set of generators
\[
T^a = \{ T^+, T^-, T^i \},
\]
where
\[
T^i \text{ are the generators of a Lie algebra } G \text{ with the structure constant } f^{ijk} \text{ and the Killing metric } \delta_{ij}.
\]

The 3-bracket is specified by
\[
\begin{align*}
[T^+, T^a, T^b] &= 0, \quad a = +, -, i, \\
[T^+, T^i, T^j] &= f^{ijk} T^k, \\
[T^i, T^j, T^k] &= f^{ijk} T^-.
\end{align*}
\] (95)

The invariant metric on this algebra is
\[
\begin{align*}
\text{Tr}(T^-, T^+) &= -1, \\
\text{Tr}(T^i, T^j) &= \delta^{ij}.
\end{align*}
\] (96)

Expanding all the fields with respect to the generators
\[
X^I = X^I_a T^a = X^I_+ T^- + X^I_+ T^+ + \hat{X}^I,
\]
where \(\hat{X}^I = X^I_+ T^+ \) are the modes corresponding to the Lie algebra \(G \), one obtains the action for a Lorentzian BL theory [32]:
\[
\begin{align*}
\mathcal{L}_{\text{Lorentz}} &= -\frac{1}{2} \text{Tr}(\hat{D}_\mu \hat{X}^I + B_\mu X^I_+) + \frac{1}{2} \text{Tr}(B_\mu, \hat{X}^I) + \frac{1}{2} \text{Tr}(B_\mu F_{\mu\nu}^I) \\
&\hspace{1cm} + \frac{i}{2} \text{Tr}(\hat{\Psi} \Gamma^\mu \hat{D}_\mu \hat{\Psi} - B_\mu \hat{\Psi} \psi) - \frac{i}{2} \text{Tr}(B_\mu \hat{\Psi}) - \frac{i}{2} \text{Tr}(\hat{\Psi} \Gamma^\mu \partial_\mu \hat{\Psi}) - \frac{i}{4} \text{Tr}(\hat{\Psi} \Gamma^\mu \partial_\mu \hat{\Psi}) \\
&\hspace{1cm} + \frac{i}{4} \text{Tr}(\hat{\Psi} \Gamma^\mu \partial_\mu \hat{\Psi}) - \frac{i}{4} \text{Tr}(\hat{\Psi} \Gamma^\mu \partial_\mu \hat{\Psi}) \\
&\hspace{1cm} - \frac{i}{2} \text{Tr}(\hat{\Psi} \Gamma^\mu \partial_\mu \hat{\Psi}) - \frac{i}{4} \text{Tr}(\hat{\Psi} \Gamma^\mu \partial_\mu \hat{\Psi}) - \frac{i}{4} \text{Tr}(\hat{\Psi} \Gamma^\mu \partial_\mu \hat{\Psi}) \\
&\hspace{1cm} + \frac{1}{12} \text{Tr} (X^I_+ \hat{X}^I + X^I_+ \hat{X}^I)^2.
\end{align*}
\] (100)
where \(I = 3, \ldots, 10 \). Here, \(A_\mu \) is a gauge field for the compact gauge group \(G \). The gauge field \(B_\mu \) is defined by \(B_\mu = A_\mu^{ij} f^{ijkl} T^l \) and the theory is invariant under an extra non-compact gauge symmetry associated with \(B_\mu \):

\[
\delta B_\mu = D_\mu \zeta, \quad \delta \hat{X}^I = \xi X^I, \quad \delta X^I = \text{Tr}(\zeta, \hat{X}^I),
\]

\[
\delta \hat{\Psi} = \xi \Psi_+, \quad \delta \Psi_- = \text{Tr}(\zeta, \hat{\Psi}).
\]

The supersymmetry transformations read

\[
\delta_0 X^I_- = i \bar{\epsilon} \Gamma^I \Psi_-, \quad \delta_0 X^I_+ = i \bar{\epsilon} \Gamma^I \Psi_+, \quad \delta_0 \hat{X}^I = i \bar{\epsilon} \Gamma^I \hat{\Psi},
\]

\[
\delta_0 \hat{\Psi} = D_\mu \hat{X}^I \Gamma^\mu \Gamma^I \epsilon = -\frac{1}{3} \text{Tr}(\hat{X}^I \hat{X}^J \hat{X}^K) \Gamma^{IJK} \epsilon, \quad \delta_0 \Psi_+ = \partial_\mu X^I_+ \Gamma^\mu \Gamma^I \epsilon.
\]

A special feature of the Lagrangian (100) is that the fields \(X^I_-, \Psi_- \) appear linearly. For convenience, let us collect the terms containing \(X^I_-, \Psi_- \).

\[
\mathcal{L}_{\text{gh}} = \partial_\mu X^I_- + \partial_\mu \hat{\Psi} - \bar{\epsilon}_\mu \Gamma^I \partial_\mu \Psi_+.
\]

We have called it a ghost term since \(\mathcal{L}_{\text{gh}} \) has an indefinite metric and is hence non-unitary. One can integrate out \(X^I_-, \Psi_- \) and obtain the equations of motion:

\[
\partial_\mu X^I_- = 0, \quad \Gamma^\mu \partial_\mu \Psi_+ = 0.
\]

A solution to (107) and (108) which preserves gauge symmetry and supersymmetry is given by

\[
X^I_- = v_0 \delta_{10}^I, \quad \Psi_+ = 0,
\]

where \(v_0 \in \mathbb{R} \). Substituting this into the Lagrangian (100) and integrating out the field \(B_\mu \) gives us the Lagrangian

\[
\mathcal{L} = -\frac{1}{2} (\hat{D}_\mu \hat{X}^I)^2 + i \frac{1}{2} \text{Tr}(\hat{\Psi}, \Gamma^\mu \partial_\mu \hat{\Psi}) - \frac{1}{4} v_0^2 \text{Tr}(F_{\mu \nu}, [\hat{X}^I, [\hat{X}^J, \hat{X}^K]])
\]

\[
+ \frac{i v_0}{2} \text{Tr}(\hat{\Psi} \Gamma^{(10)I} [\hat{X}^I, \hat{\Psi}]) + \partial_\mu \left(\frac{g^{\mu \nu} F_{\mu \nu} \hat{X}^{10}}{2v_0} \right),
\]

where we have kept the boundary term for later discussions. For a closed theory, the Lagrangian (111) is the maximally supersymmetric \(N = 8 \) SYM theory in \((2+1) \) dimensions. For an open theory, one will need an appropriate boundary condition in order to decouple the field \(\hat{X}^{10} \) at the boundary. Moreover, one obtains additional boundary conditions from requiring supersymmetry of the Lagrangian. For these boundary conditions to be supersymmetric, \(\epsilon \) must be further restricted. This will be the subject of section 4.2.

We remark that apart from integrating out the fields \(X^I_-, \Psi_- \), one can also keep them and perform a BRST analysis by promoting a certain global shift symmetry to a local one \([31, 32]\). The analysis for the open case can be performed similarly. In the following, we will concentrate on the ‘integrating out’ approach for our analysis.
4.1. Multiple D2-branes in a background flux

With the Lorentzian 3-algebra, the flux and the mass terms read

\[
\mathcal{L}_{\text{flux}} = 2 \tilde{G}_{IJKL} \text{Tr}(X^I, [X^J, X^K, X^L])
\]

\[
= -8 \tilde{G}_{IJKL} X^I \text{Tr}(\hat{X}^L, [\hat{X}^J, \hat{X}^K]),
\]

\begin{equation}
\tag{112}
\end{equation}

\[
\mathcal{L}_{\text{mass}} = -\frac{1}{2} m^2 \text{Tr}(X^I, X^I) - \frac{i}{8} \text{Tr}(\hat{\Psi}, \Gamma^{IJKL} \Psi) \tilde{G}_{IJKL}
\]

\[
= -\frac{1}{2} m^2 \text{Tr}(\hat{X}^I, \hat{X}^I) + m^2 X^I X^I - \frac{i}{8} \text{Tr}(\hat{\Psi}, \Gamma^{IJKL} \hat{\Psi}) \tilde{G}_{IJKL} + \frac{i}{4} \hat{\Psi}_+ \Gamma^{IJKL} \Psi_- \tilde{G}_{IJKL}.
\]

\begin{equation}
\tag{113}
\end{equation}

As an aside, we note it is easy to check that the gauge symmetry (101) extends to the flux and mass Lagrangians (112) and (113). We will take \(\mu = 2m \) in the following analysis.

Due to the presence of new terms linear in the fields \(X^I \) and \(\Psi_- \), after integrating out these fields, we obtain the modified equations of motion

\[
\partial^2 X^I_+ - m^2 X^I_+ = 0,
\]

\begin{equation}
\tag{114}
\end{equation}

\[
i \Gamma^\mu \partial_\mu \Psi_+ - \frac{i}{4} \Gamma^{IJKL} \Psi_- \tilde{G}_{IJKL} = 0.
\]

\begin{equation}
\tag{115}
\end{equation}

These are the Klein–Gordon and Dirac equations, respectively. We will next show that one is able to pick solutions to \(X^I_+ \) and \(\Psi_+ \) which preserves gauge invariance and supersymmetry.

The supersymmetry transformations remain the same as for the bosons as in (102) but the flux modifies the supersymmetry transformations for the fermions:

\[
\delta \Psi_- = (\partial_\mu X^I_+ - \text{Tr}(B_\mu, X^I)) \Gamma^\mu \Gamma^I \epsilon - \frac{1}{2} \text{Tr}(\hat{X}^I \hat{X}^J \hat{X}^K) \Gamma^{IJK} \epsilon + \frac{i}{4} \tilde{G}_\epsilon \Gamma^M \epsilon X^M,
\]

\begin{equation}
\tag{116}
\end{equation}

\[
\delta \Psi_+ = \partial_\mu X^I_+ \Gamma^\mu \Gamma^I \epsilon + \frac{i}{4} \tilde{G}_\epsilon \Gamma^M \epsilon X^M,
\]

\begin{equation}
\tag{117}
\end{equation}

\[
\delta \hat{\Psi} = \hat{D}_\mu \hat{X}^I_+ \Gamma^\mu \Gamma^I \epsilon - \frac{1}{2} X^I_+ [\hat{X}^J_+, \hat{X}^K_+] \Gamma^{IJK} \epsilon + \frac{i}{4} \tilde{G}_\epsilon \Gamma^M \epsilon \hat{X}^M.
\]

\begin{equation}
\tag{118}
\end{equation}

The simplest solution to (114) and (115) is

\[
\Psi_+ = 0,
\]

\begin{equation}
\tag{119}
\end{equation}

\[
X^I_+ = \begin{cases} v_0 e^{i \sigma_1} \delta^I_{10}, & \text{or} \\ v_0 e^{i \sigma_2} \delta^I_{10}. \end{cases}
\]

\begin{equation}
\tag{120}
\end{equation}

where \(v_0 \) is a real constant and the real part is assumed for the second solution in (120). As an illustration, we will consider below the first solution with the \(\sigma_1 \) dependence and for convenience we will denote \(v = v_0 e^{i \sigma_1} \) below. It is easy to see that solution (119) is supersymmetrically invariant. In fact, for the flux (18), we have \(\delta \Psi_+ = m v (\Gamma^{21(10)} (1 - \Gamma^2 R') \epsilon, \text{ where } R' \text{ is defined by } R' \Gamma^{10} = \Gamma^{10} R'. \) Therefore, the configuration (119) is supersymmetrically invariant for \(\epsilon \) satisfying

\[
(1 - \Gamma^2 R') \epsilon = 0.
\]

\begin{equation}
\tag{121}
\end{equation}

Since the projectors (13) and (121) commute, eight supersymmetries are preserved.
Substituting solution (119), (120) and integrating out the B_μ fields, we finally obtain

\begin{equation}
\mathcal{L} = -\frac{1}{2} (\dot{\hat{X}}^A)^2 - \frac{1}{4v^2} \text{Tr}(F_{\mu\nu}, F^{\mu\nu}) - \frac{v^2}{4} \text{Tr}([\hat{X}^A, \hat{X}^B], [\hat{X}^A, \hat{X}^B])
+ \frac{i}{2} \text{Tr}(\dot{\hat{\psi}}, \Gamma^\mu D_\mu \hat{\psi}) + \frac{i v}{2} \text{Tr}(\dot{\hat{\psi}}, \Gamma_1 \Gamma^A \hat{X}^A)
- 8v \hat{G}_{(10)ABC} \text{Tr}(\hat{X}^A, [\hat{X}^B, \hat{X}^C])
- \frac{1}{2} m^2 \text{Tr}(\hat{X}^A, \hat{X}^A)
+ \partial_\lambda \left(\frac{\epsilon_{\mu\nu\lambda}^\alpha}{2v} \text{Tr}(\hat{F}_{\mu\nu}, \hat{X}^{10}) \right) - \frac{m}{2} \partial_1 \text{Tr}(\hat{X}^{10}, \hat{X}^{10}),
\end{equation}

where the indices $A, B, C, D = 3, \ldots, 9$. In the closed case, one can drop the last two terms in (122). Since the Lambert–Richmond action is supersymmetric and solution (120) is 1/2 BPS, by construction our action (122) is supersymmetric and preserves eight supersymmetries:

\begin{equation}
\delta \hat{X}^A = i \epsilon \Gamma^A \hat{\psi},
\end{equation}

\begin{equation}
\delta \hat{\psi} = D_\mu \hat{X}^A \Gamma^\lambda \Gamma^\mu \epsilon - \frac{1}{2} \epsilon_{\mu\nu\lambda}^\alpha \Gamma^\mu \Gamma^\nu \Gamma^\lambda \epsilon - \frac{1}{2} [\hat{X}^A, \hat{X}^B] \Gamma_1 \Gamma^{AB(10)} \epsilon + \frac{1}{4} \hat{G}^{AB(10)} \Gamma^A \hat{X}^B,
\end{equation}

\begin{equation}
\delta \hat{\lambda}_\mu = \frac{i v}{2} \epsilon \Gamma^\lambda \Gamma^\mu \hat{\psi},
\end{equation}

The Lagrangian (122) can be understood as the worldvolume theory of D2-branes with a space(time)-dependent coupling $g_{YM} = v$ and coupled to NS–NS and R–R fluxes. In ten dimensions, the flux \hat{G}_{ABCD} is identified with the R–R 4-form flux of the 3-form potential C_3, and $\hat{G}_{(10)ABC}$ is identified with the NS–NS 3-form flux of the 2-form potential B_2. The term in (122) proportional to $\hat{G}_{(10)ABC}$ can be traced back as the low energy limit of Myers' action [35], together with its superpartner. The terms proportional to m^2 and \hat{G}_{ABCD} are typical of couplings to the R–R fields. Supersymmetric Yang–Mills theories with a spacetime-dependent coupling were originally constructed in [36, 37] and are known as Janus field theories. An extension to include a spacetime-dependent θ-angle for the four-dimensional supersymmetric Yang–Mills was performed in [38] as an application to study spacetime singularities using holography. Similar field theory constructions also appear in the work [39].

In the open case, one needs to impose a boundary condition to decouple the \hat{X}^{10} field at the boundary. In particular, we are interested in a supersymmetric boundary condition in this paper. This, together with the other boundary conditions that are needed to maintain supersymmetry of the system, will be discussed next.

4.2. Multiple D2-branes ending on a D4-brane

We now derive the supersymmetric boundary conditions for the flux-modified Lorentzian BL theory. Since the field X^I has been integrated out, the boundary condition (30) cannot be applied immediately and one needs to derive the boundary condition from the reduced action (122) directly.

Since rotational invariance is explicitly broken by the σ_1 dependence of the coupling, it makes a difference where the boundary is. For example, the theory with a boundary at $\sigma_1 = 0$ is not equivalent to the theory with a boundary at $\sigma_2 = 0$. In particular, to decouple the field \hat{X}^{10} at the boundary, one needs to impose the boundary condition

\begin{equation}
\text{Tr}(2\hat{F}_{00} \hat{X}^{10} + mv(\hat{X}^{10})^2) = 0, \quad \text{boundary at } \sigma_1 = 0,
\end{equation}

where
Let us first discuss the second case and assume that condition (127) is satisfied for the moment and come back to discuss whether it is supersymmetric later.

The supersymmetric variation of the Lagrangian is given by

$$\delta \mathcal{L} = \frac{i}{2} \partial_\mu \text{Tr}(\hat{\Psi} \Gamma^\mu \delta \hat{\Psi}) - \partial_\mu \text{Tr}(\delta \hat{X}^A, \hat{D}^\mu \hat{X}^A) + \text{bulk terms.}$$

(128)

Imposing the boundary condition $\sigma_2 = 0$ gives

$$\delta \int d^3 \sigma \mathcal{L} = \frac{i}{2} \int d^2 \sigma \left(\text{Tr}(\hat{\Psi} \Gamma^2 \hat{\Psi}^\dagger) - 2\text{Tr}(\delta \hat{X}^A, \hat{D}_2 \hat{X}^A) \right),$$

(129)

so we obtain the boundary equation of motion

$$\hat{D}_\mu \hat{X}^A \hat{\Psi}^\dagger \Gamma^2 \Gamma^\mu \Gamma^A \epsilon = -\frac{1}{2} \epsilon_{\mu\nu\lambda} \hat{F}^{\nu\lambda} \hat{\Psi} \Gamma^2 \Gamma^{\mu(10)} \epsilon$$

$$+ \frac{1}{4} \epsilon \Gamma^2 \hat{G} \Gamma^A \epsilon \hat{X}^A - 2 \hat{D}_2 \hat{X}^A \hat{\Psi} \Gamma^A \epsilon = 0,$$

(130)

where $\mu = 0, 1, 2$.

Let us now consider a system of D2-branes ending on a D4-brane. In general, a system of two intersecting D-branes is supersymmetric if the relative transverse space has dimension in multiples of 4. Therefore, with this anticipation, let us look for a solution to the boundary condition (130) with

$$\hat{X}^{3,4,5,6} = 0.$$

(131)

This corresponds to a D4-brane with worldvolume in the 01789 directions. The R-symmetry is reduced from $\text{SO}(7)$ to $\text{SO}(3)$. In addition to (13), we also impose the condition

$$\Gamma^{01789(10)} \epsilon = \epsilon.$$

(132)

We remark that this is not the same as the D4-brane projector in the κ-symmetric formulation of D-branes, see for example [26, 40]. The effect of a background flux is already taken into account in terms of the M2-branes description and so the D4-brane supersymmetry is represented simply by condition (132) in the M2-branes model. From the above conditions, we obtain

$$\Gamma^{(10)ij} \epsilon = -\epsilon^{ijk} \Gamma^2 \Gamma^k \epsilon,$$

(133)

$$\Gamma^2 \hat{G} \epsilon = 4m \epsilon,$$

(134)

where we have used the indices $i, j, k = 7, 8, 9$. Let us also impose the condition

$$\Gamma^{01789(10)} \hat{\Psi} = -\hat{\Psi}.$$

(135)

It follows that $\delta \hat{A}_\alpha = 0$ for $\alpha = 0, 1$ and hence \hat{F}_{01} is supersymmetric invariant. Therefore, one can impose the supersymmetric boundary condition

$$\hat{F}_{01} = 0,$$

(136)

which also implies (127).

The boundary condition (130) then simplifies to

$$\hat{D}_2 \hat{X}^i = \frac{1}{2} \epsilon \epsilon^{ijk} \hat{X}^j, \hat{X}^k + m \hat{X}^i.$$

(137)

The Nahm equation describes the profile of the D4-brane, where the D2-branes end. The fuzzy funnel solution is obtained with the ansatz

$$\hat{X}^i(\sigma_2) = f(\sigma_2) T^i,$$

(138)
where T^i obey the $SU(2)$ algebra $[T^i, T^j] = \epsilon^{ijk} T^k$ and f obeys
\[f' = v f^2 + m f. \]
(139)
This has the solution
\[f = \frac{m}{ce^{-m\sigma_2} - v}. \]
(140)
where c is a constant. The solution behaves as $f = v_0^{-1}/(x_0 - \sigma_2)$ for small m, where x_0 is a constant. This is the expected profile in the absence of the flux. In the presence of the flux, the solution describes a fuzzy sphere
\[\sum_{i=1}^{9} (\hat{X}^i)^2 = R^2, \]
(141)
whose radius $R = Cf$ depends on the Casimir C of the representation as well as f. Since v actually depends on σ_1, the fuzzy funnel has an S^2 cross section whose radius depends on both σ_1 and σ_2. This is a new feature of the flux we consider.

As before, it is straightforward to check that the boundary conditions (131), (135) and (137) are supersymmetric invariant. Finally, we comment on the other possibility of having a boundary at $\sigma_1 = 0$. Our above analysis can be performed in exactly the same way, with only a straightforward change of the index 2 to 1 in equations (129), (130), (132)–(135). However, it is easy to convince oneself that there is no way to impose a supersymmetric boundary condition such that (126) holds. This is due to the fact that \hat{X}^{10} has a non-trivial supersymmetry variation. Therefore, we conclude that with the solution $v = v_0 e^{m\sigma_1}$, the flux Lorentzian BL theory is 1/2 BPS if there is a boundary at $\sigma_2 = 0$. On the other hand, if the boundary is at $\sigma_1 = 0$, then all supersymmetries are broken.

Acknowledgments

We are grateful to James Allen and Douglas Smith for useful discussions. The work of CSC and GS is partially supported by STFC.

References

[1] Lambert N and Richmond P 2009 M2-branes and background fields J. High Energy Phys. JHEP10(2009)084 (arXiv:0908.2896 [hep-th])
[2] Berman D S 2008 M-theory branes and their interactions Phys. Rep. 456 89 (arXiv:0710.1707 [hep-th])
[3] Bagger J and Lambert N 2007 Modeling multiple M2’s Phys. Rev. D 75 045020 (arXiv:hep-th/0611108)
[4] Gustavsson A 2007 Algebraic structures on parallel M2-branes arXiv:0709.1260 [hep-th]
[5] Bagger J and Lambert N 2008 Gauge symmetry and supersymmetry of multiple M2-branes Phys. Rev. D 77 065008 (arXiv:0711.0955 [hep-th])
[6] Bagger J and Lambert N 2008 Comments on multiple M2-branes J. High Energy Phys. JHEP02(2008)105 (arXiv:0712.3738 [hep-th])
[7] Aharony O, Bergman O, Jafferis D L and Maldacena J 2008 $N = 6$ superconformal Chern–Simons–matter theories, M2-branes and their gravity duals J. High Energy Phys. JHEP10(2008)091 (arXiv:0806.1218 [hep-th])
[8] Bagger J and Lambert N 2009 Three-algebras and $N = 6$ Chern–Simons gauge theories Phys. Rev. D 79 025002 (arXiv:0807.0163 [hep-th])
[9] Chu C S, Ho P M, Matsuo Y and Shiba S 2008 Truncated Nambu–Poisson bracket and entropy formula for multiple membranes J. High Energy Phys. JHEP08(2008)076 (arXiv:0807.0812 [hep-th])
[10] Chu C S and Smith D J 2009 Towards the quantum geometry of the M5-brane in a constant C-field from multiple membranes J. High Energy Phys. JHEP04(2009)097 (arXiv:0901.1847 [hep-th])
[11] Furutani K and Tomino D 2009 Supersymmetric reduced models with a symmetry based on Filippov algebra J. High Energy Phys. JHEP05(2009)070 (arXiv:0902.2041 [hep-th])
