Research Article

The Immediate Pulmonary Disease Pattern following Exposure to High Concentrations of Chlorine Gas

Pallavi P. Balte, 1 Kathleen A. Clark, 1 Lawrence C. Mohr, 2 Wilfried J. Karmaus, 3 David Van Sickle, 4 and Erik R. Svendsen 5

1 Arnold School of Public Health, University of South Carolina, 800 Sumter Street, Room 210, Columbia, SC 29208, USA
2 Medical University of South Carolina, 135 Cannon Street, Suite 405, P.O. Box 250838, Charleston, SC 29425, USA
3 Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, 301 Robison Hall, 3825 De Soto Avenue, Memphis, TN 38152, USA
4 Asthmapolis, 612 W. Main Street, Suite 201, Madison, WI 53703, USA
5 Department of Global Environmental Health Sciences, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA

Correspondence should be addressed to Pallavi P. Balte; balte.p@gmail.com

Received 11 September 2013; Accepted 4 November 2013

Academic Editor: Andrew Sandford

Copyright © 2013 Pallavi P. Balte et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Chlorine gas is one of the most commonly used industrial chemicals and is a potential weapon of mass destruction [1–8]. The health effects of chlorine inhalation depend on chlorine concentration and duration of exposure. If inhaled in low concentration (<50 ppm) chlorine gas is known to cause mild irritation of mucus membranes, coughing, choking, and shortness of breath [9, 10]. Exposure to high concentrations (>50 ppm) may damage the lower respiratory tract and lung parenchyma causing complications such as rapid development of interstitial pneumonia, pulmonary edema, and death due to progressive respiratory failure [9–11]. Several studies have shown decrease in lung function after acute inhalation of chlorine gas, but very few studies attempted to determine pulmonary disease pattern in these patients [11–14]. Although obstructive pulmonary disease was most commonly observed in all these studies, restrictive and mixed pulmonary disease were also seen in a few studies [12–14].

At present, 2005 ATS/ERS task force guidelines based on NHANES III data are considered the “gold standard” and are used universally to provide guidance to physicians and hospital based pulmonary function tests (PFTs) laboratories for interpreting PFTs [15]. These guidelines are based on availability of plethysmography to determine total lung capacity (TLC). On the other hand, Mannino et al. used a modification of the Global Initiative for Chronic Obstructive Lung Disease

(GOLD) criteria to determine pulmonary disease patterns in NHANES I cohort based on spirometry data alone [16].

The modified GOLD criteria [16] are a very useful tool for diagnosing and assessing the severity of COPD through simple spirometry without lung volume measurements in clinical settings [17]. However, there are no specific guidelines for diagnosing mixed pattern. The 2005 ATS/ERS guidelines [15] cannot be used with spirometry data alone due to lack of information on lung volumes.

Both ATS/ERS guidelines and modified GOLD criteria are extremely valuable to diagnose, characterize, and assess pulmonary disease in patients routinely admitted to hospitals [17–19]. These guidelines are also useful in diagnosing pulmonary disease in irritant gas exposure events with small number of people affected [20]. But in mass casualty events providing diagnostic PFTs is not possible within days of occurrence [21, 22]. In emergency situations like these where a large number of people are affected, healthcare services are more concentrated on making quick medical evaluation and providing appropriate emergent treatment. There are rarely major resources available to provide diagnostic testing like complete PFTs in such situations. Therefore, assessment of severity of pulmonary disease has to be based on available resources like spirometry. However, at present there are no known universally acceptable criteria or guidelines available that can be used to diagnose pulmonary disease during mass casualty or in situations where healthcare resources are limited due to patient surge in emergency departments. Irritant gas exposure is known to have long term sequelae, so it is also important to know different pulmonary disease patterns and the pathophysiology behind it for long term follow-up [23, 24].

The purpose of this study was to apply 2005 ATS/ERS and Mannino et al. (2003) guidelines along with our own criteria to determine pulmonary function patterns in ten patients who underwent simple spirometry following high concentration of chlorine gas inhalation after a train derailment in Graniteville, South Carolina.

2. Methods

2.1. Graniteville Train Accident. On January 6, 2005, a train derailment and tanker breach led to the largest chlorine spill in the United States history, releasing approximately 60 tons of chlorine gas in Graniteville, South Carolina. A report was published earlier describing exposure to the community, evacuation, and emergency medical response [21]. There were nine immediate fatalities and 525 emergency room visits with 71 hospitalizations initially reported. Twenty-three of these patients were intubated and placed on mechanical ventilation. The remaining 48 were admitted to acute care with various clinical manifestations attributed to high concentration of chlorine gas inhalation. All patients were admitted within the first 24 hours after exposure. The initial evaluation included physical examination, chest radiography, and arterial blood gas determinations. Spirometry was performed on ten patients. A detailed description of sociodemographic characteristics, clinical signs and symptoms, hematological and biochemical findings, radiographic findings, and treatment in all 71 patients admitted to hospital was previously published [22].

2.2. Study Population and Protocol. We conducted a case series study of the ten patients who underwent simple spirometry testing while being admitted in the hospital. The data used for this report were part of a larger public health effort directed by South Carolina Department of Health and Environmental Control (SCDHEC) which focused on recovery and mitigation of disease in the exposed Graniteville community. A retrospective chart review was conducted under the public health authority within declared emergency situations. We accessed a de-identified SCDHEC database from that public health chart review. This study was approved by both SCDHEC and University of South Carolina (USC) institutional review boards (IRB).

2.3. Criteria for Classification of Pulmonary Disease Pattern. All spirometry tests were performed within one week of admission (on an average 5th day after admission). Spirometry tests were performed according to ATS/ERS guidelines [15]. The predicted and lower limits of normal (LLN) values were calculated using NHANES III prediction equations [25]. In order to classify pulmonary disease patterns in these patients we applied two widely used criteria: 2005 ATS/ERS task force guidelines [15] which are derived from NHANES III data and require lung volume parameters and criteria used by Mannino et al. which are based on simple spirometry [16].

In our study we had simple spirometry data without any lung volume parameters on ten patients. As 2005 ATS/ERS guidelines require lung volume parameters to diagnose pulmonary disease pattern and Mannino et al. (2003) did not have any specified criteria to diagnose mixed pattern, we were unable to use these two criteria to their full extent in our study. We therefore developed criteria that facilitate diagnosis of all three pulmonary disease patterns using available spirometry data. We do not consider these criteria as guidelines to be used in mass casualty events, as these are based on data from only ten patients. We use these criteria here as only a tool to get a complete picture of pulmonary disease pattern in the patients admitted to hospital and to compare them with existing guidelines (Table 1).

2.4. Statistical Analyses. This is a descriptive epidemiological study with a small sample size. We calculated the agreement between different criteria used to classify pulmonary disease patterns. The data analysis for this paper was generated using SAS 9.2. (SAS Institute Inc., Cary, NC, USA).

3. Results

Of the ten patients we evaluated, five were admitted to the intensive care unit (ICU), and two of these required intubation and mechanical ventilation due to acute lung injury. There were nine males and one female with a mean age of 44.7 ± 16.1 years. Among the ten patients four were
Table 1: Comparison of different criteria for classification of pulmonary disease patterns.

Pulmonary disease pattern	2003 Mannino et al. guidelines [16]	2005 ATS/ERS task force guidelines [15]	Graniteville criteria
Obstructive	Mild: FEV₁/FVC ratio < 70%, FEV₁ ≥ 80% of predicted	FEV₁/FVC ratio below LLN*	FEV₁/FVC ratio ≤ 0.70 and normal, reduced, or increased FEV₁ and FVC percent predicted
	Moderate: FEV₁/FVC ratio < 70%, FEV₁ ≥ 50% but < 80% of predicted		
	Severe: FEV₁/FVC ratio < 70%, FEV₁ < 50% of predicted		
Restrictive	FEV₁/FVC ratio ≥ 70 and FVC < 80% of predicted	TLC below LLN or FEV₁/VC ratio ≥ 85 and a reduced VC	FEV₁/FVC ratio ≥ 0.75, FEV₁ and FVC < 75% of predicted
Mixed	No criteria reported	FEV₁/FVC ratio and TLC below LLN	FEV₁/FVC ratio > 0.70 and < 0.75 and both FEV₁ and FVC < 75% predicted

Vital capacity (VC) measures were unavailable, so we used FEV₁/FVC ratio instead of FEV₁/VC ratio as suggested by 2005 ATS/ERS guidelines.

* Lower limit of normal.

Table 2: Sociodemographic characteristics of patients who underwent spirometry.

Characteristic	N = 10
Age (years), mean ± S.D.	44.7 ± 16.1
Gender, n	
Male	9
Female	1
Race, n	
Caucasian	6
African American	4
Smoker, n	
Current	4
Former	1
Nonsmoker	5

current smokers, five were nonsmokers, and one was a former smoker (Table 2). Presenting symptoms specific to chlorine exposure were shortness of breath, coughing, choking, chest pain, productive cough, eye irritation, nose irritation and sore throat (Table 3). Symptoms less specific to chlorine exposure were dizziness, headache, nausea, and vomiting. On physical examination tachypnea and tachycardia were the most common findings. Other notable findings on auscultation were wheeze, crackles, and decreased breath sounds.

Mean oxygen saturation upon admission to emergency department was 81.1 ± 18.1% (Table 4). Mean white blood cell (WBC) count in all patients was 13.91 ± 3.25 × 10³ cells/µL within the first 24 hours with an elevated neutrophil count in six patients, mean 79.7 ± 4.8%. The average blood pH and PCO₂ in nine patients were 7.32 ± 0.08 and 47.42 ± 9.02 mm of Hg, respectively. Chest radiography was performed on all patients. Seven patients showed evidence of pulmonary edema and one showed increased bronchovascular markings, while two patients had a normal chest radiograph. Electrocardiography was performed on six patients and three showed nonspecific T-wave changes.

All patients received warm humidified oxygen on arrival at the emergency department along with inhaled short acting beta receptor agonists. Additionally, all patients were treated with either inhaled or oral steroids, six were treated with inhaled ipratropium bromide, and seven were treated with antibiotics. One patient also received intravenous sodium bicarbonate due to severe acid-base imbalance. The average stay in the hospital was 8.1 ± 5.4 days.

All spirometry tests were done within the first week (on an average 5th day after admission) of hospitalization after the
patient was stabilized. Mean FVC and FEV\textsubscript{1} were 2.51 ± 0.39 L and 1.84 ± 0.36 L, respectively (Table 4). Mean FEV\textsubscript{1} percent predicted was 53.4 ± 13.4%, mean FVC percent predicted was 57.2 ± 11.6%, and mean FEV\textsubscript{1}/FVC ratio was 0.76 ± 0.09.

Using 2005 ATS/ERS task force guidelines [13], we found an obstructive disease pattern in ten out of 19 patients (n = 10) and mixed (n = 2) pattern. All patients received humidified oxygen and short acting beta agonists. Treatment should have improved pulmonary function after one-week period. However, we found that all patients who underwent pulmonary function testing had abnormal lung function. As mentioned earlier, obstructive lung disease is more common after exposure to high concentration of chlorine gas [12–14]. In contradiction to other studies we found that restrictive pulmonary disease was more common than obstructive pulmonary disease. We found no past medical history for preexisting underlying lung disease during chart review. Additionally, there were no specific differences in pulmonary disease patterns among smokers and nonsmokers.

There are several limitations to our study. Firstly, our sample size was very small, too small to draw any definite conclusions. Secondly, since the data came from a retrospective review of medical charts for public health reporting purposes, the information retrieved was very limited. Thirdly, TLC measurements were not available. Finally, we also did not have baseline pulmonary function measurements for purposes, the information retrieved was very limited. Thirdly, TLC measurements were not available. Finally, we also did not have baseline pulmonary function measurements for comparison.

Several studies have examined the acute effects of high concentration of chlorine inhalation on pulmonary functions with differing results. Charan et al. studied 19 people exposed to chlorine gas in an accident in a pulp mill [14]. They found an obstructive disease pattern in ten out of 19 patients admitted within the first 24 hours. After a period of 10 days,
only seven out of ten patients showed airflow obstruction. In another study Moulick et al. studied 82 patients exposed to chlorine leaked from a storage tank at a factory in Mumbai, India [12]. The investigators found an obstructive pattern after chlorine inhalation and hydrochloric acid along with bronchospasm [30, 31]. However, our findings are consistent with Aggarwal and Agarwal [32], who studied simple spirometry (without any lung volume measurements) in 2,527 patients prospectively over a period of six months at the Postgraduate Institute of Medical Education and Research, Chandigarh, India. They compared 2005 ATS/ERS task force guidelines with 1991 ATS guidelines and reported that the 2005 ATS/ERS guidelines underestimated the frequency and severity of the restrictive disease pattern [32].

Any mass casualty disaster can overtax and paralyze the local health care system as it demands emergency medical responses on a large scale. Irritant or chemical gas exposure events are known to occur all around the world. The most notable examples are Bhopal Gas Tragedy [33, 34] and Chernobyl accident [35]. Not all healthcare institutions have infrastructure to routinely perform PFTs and if they do only few have facilities to perform a complete diagnostic workup with lung volume measurements. Most of the energy focuses on providing symptomatic relief to patients with minor symptoms and stabilization of more critical patients, thus limiting resources for providing diagnostic testing [36–38]. However, after the initial spirometry patients should be followed up with full diagnostic PFTs. Several studies have suggested that the exposure to high concentration of irritant

Table 5: Pulmonary function pattern and radiographic findings in patients who underwent spirometry.

Patient	Smoking status	Percent predicted	Hematology	Chest radiographs	Pulmonary function pattern
		FVC FEV₁ FEV₁/FVC ratio LLN FEV₁/FVC ratio Total WBC^a Neut⁺ % PE IVM ATS/ERS Task force^b Mannino et al.^c [16] Graniteville criteria^d			
1	Current	59 43 0.55 0.63 9.3 73.8 Yes Yes O Severe O O			
2	Current	40 37 0.75 0.71 14.2 Miss. Yes No U R R			
3	Current	50 58 0.79 0.67 15.2 Miss. Yes No U R R			
4	Current	45 45 0.85 0.74 19.7 Miss. Yes No R R R			
5	Nonsmoker	56 46 0.73 0.76 16 80 Yes No O R R M			
6	Nonsmoker	68 63 0.69 0.68 11 75 No No U Moderate O O			
7	Nonsmoker	71 66 0.81 0.71 12.1 86 No No U R R			
8	Nonsmoker	71 75 0.87 0.70 14.4 79.3 No Yes R R R			
9	Nonsmoker	66 64 0.78 0.71 16.9 Miss. Yes No U R R			
10	Former	46 37 0.81 0.71 10.3 84 Yes No O R R R			

^ax10³ cells/μL, neutrophils.

^bPE: pulmonary edema; IVM: increased vascular markings; Miss.: missing.

^cO: obstructive pattern; R: restrictive pattern; M: mixed pattern; U: undetermined pattern.

^dObstructive pattern: FEV₁/FVC ratio below LLN; Restrictive pattern: TLC below LLN or FEV₁/VC ratio ≥ 85% and a reduced VC; mixed: FEV₁/VC ratio and TLC below LLN.

^eObstructive pattern: mild: FEV₁/FVC ratio < 70%, FEV₁ ≥ 80% of predicted, moderate: FEV₁/FVC ratio < 70%, FEV₁ ≥ 50%–< 80% of predicted, severe: FEV₁/FVC ratio < 50%, FEV₁ < 50% of predicted; restrictive pattern: FEV₁/FVC ratio ≥ 70% and FVC < 80% of predicted.

^fObstructive pattern: FEV₁/FVC ratio ≤ 0.70 and normal, reduced, or increased FEV₁ and FVC percent predicted; restrictive pattern FEV₁/FVC ratio ≥ 0.75, FEV₁ and FVC < 75% of predicted; mixed: FEV₁/FVC ratio > 0.70 and < 0.75 FEV₁ and FVC < 75% predicted.
gas exposure may lead to long term pulmonary complications [14, 23, 39]. We are aware of the hesitancy to perform diagnostic testing immediately after an event. But serial complete PFTs can alert the physician as to the inflammatory processes that occur along with remodeling after the obstructive pattern subsides [23, 24]. Additionally, acceptable criteria should be developed to diagnose restrictive pattern through simple spirometry to aid in therapeutic recommendations.

5. Conclusions

We found reduction in lung function and predominant restrictive pulmonary pattern in our patients on simple spirometry done within the first week of admission to hospital after exposure to high concentrations of chlorine gas. This finding was in contrast to other studies done in patients exposed to chlorine gas where obstructive disease was more prominent. There is a need to develop acceptable criteria to evaluate pulmonary disease using parameters available through simple spirometry in events such as irritant gas exposure leading to mass casualty and patient surge in hospitals.

Abbreviations

ATS/ERS: American Thoracic Society/European Respiratory Society
GOLD: Global Initiative for Chronic Obstructive Lung Disease
ppm: Parts per million
NHANES: National Health and Nutrition Examination Survey
PFT: Pulmonary function testing
TLC: Total lung capacity
SCDHEC: South Carolina Department of Health and Environmental Control
USC: University of South Carolina
IRB: Institutional review board
ICU: Intensive care unit
LLN: Lower limit of normal
FEV₁: Forced expiratory volume in one second
FVC: Forced vital capacity
FEV₁/FVC: Forced expiratory volume in one second/forced vital capacity
VC: Vital capacity
SAS: Statistical Analysis Software
WBC: White blood count.

Conflict of Interests

All authors declare that they have no conflict of interests.

Acknowledgment

The authors would like to thank South Carolina Department of Health and Environmental Control for their support and help with the study.

References

[1] D. K. Horton, Z. Berkowitz, and W. E. Kaye, “The public health consequences from acute chlorine releases, 1993–2000,” Journal of Occupational and Environmental Medicine, vol. 44, no. 10, pp. 906–913, 2002.
[2] P. Z. Ruckart, W. A. Wattigney, and W. E. Kaye, “Risk factors for acute chemical releases with public health consequences: Hazardous Substances Emergency Events Surveillance in the U.S., 1996–2001,” Environmental Health: A Global Access Science Source, vol. 3, article 10, 2004.
[3] J. S. Parrish and D. A. Bradshaw, “Toxic inhalational injury: gas, vapor and vesicant exposure,” Respiratory Care Clinics of North America, vol. 10, no. 1, pp. 43–58, 2004.
[4] R. A. Greenfield, B. R. Brown, J. B. Hutchins et al., “Microbiological, biological, and chemical weapons of warfare and terrorism,” American Journal of the Medical Sciences, vol. 323, no. 6, pp. 326–340, 2002.
[5] K. P. Ernst, W. A. Wattigney, and W. E. Kaye, “Releases from improper chemical mixing, hazardous substances emergency events surveillance system, 1996–2001,” Journal of Occupational and Environmental Medicine, vol. 47, no. 3, pp. 287–293, 2005.
[6] P. C. Muskat, “Mass casualty chemical exposure and implications for respiratory failure,” Respiratory Care, vol. 53, no. 1, pp. 58–63, 2008.
[7] A. D. Laita, S. N. Xarau, and F. P. Roa, “Chemical terrorist attacks: basis for health care,” Medicina Clinica, vol. 117, no. 14, pp. 541–554, 2001.
[8] D. G. Bell, “Management of acute respiratory distress syndrome (ARDS) following chlorine exposure,” American Journal of Respiratory and Critical Care Medicine, vol. 176, p. A314, 2008.
[9] C. Winder, “The toxicology of chlorine,” Environmental Research, vol. 85, no. 2, pp. 105–114, 2001.
[10] V. Nodelman and J. S. Ultman, “Longitudinal distribution of chlorine absorption in human airways: comparison of nasal and oral quiet breathing,” Journal of Applied Physiology, vol. 86, no. 6, pp. 1984–1993, 1999.
[11] C. Gülolu, I. H. Kara, and P. G. Erten, “Acute accidental exposure to chlorine gas in the southeast of Turkey: a study of 106 cases,” Environmental Research, vol. 88, no. 2, pp. 89–93, 2002.
[12] N. D. Moulick, S. Banavali, A. D. Abhyankar et al., “Acute accidental exposure to chlorine fumes–a study of 82 cases,” The Indian Journal of Chest Diseases & Allied Sciences, vol. 34, no. 2, pp. 85–89, 1992.
[13] L. Barret and J. Faure, “Chlorine poisoning,” The Lancet, vol. 1, no. 8376, pp. 561–562, 1984.
[14] N. B. Charan, S. Lakshminarayan, G. C. Myers, and D. D. Smith, “Effects of accidental chlorine inhalation on pulmonary function,” The Western Journal of Medicine, vol. 143, no. 3, pp. 333–336, 1985.
[15] R. Pellegrino, G. Viegi, V. Brusasco et al., “Interpretative strategies for lung function tests,” European Respiratory Journal, vol. 26, no. 5, pp. 948–968, 2005.
[16] D. M. Mannino, A. S. Buist, T. L. Petty, P. L. Enright, and S. C. Redd, “Lung function and mortality in the United States: data from the First National Health and Nutrition Examination Survey follow up study,” Thorax, vol. 58, no. 5, pp. 388–393, 2003.
[17] R. Rodriguez-Roisin, J. Vestbo, S. S. Hurd et al., “Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease,” Global Initiative for Chronic Obstructive Lung Disease, 2011, http://www.goldcopd.org/.
[18] W. M. Vollmer, P. Gíslason, P. Burney et al., “Comparison of spirometry criteria for the diagnosis of COPD: results from the BOLD study,” *European Respiratory Journal*, vol. 34, no. 3, pp. 588–597, 2009.

[19] L. Jarenbäck, J. Ankerst, L. Bjermer, and E. Tufvesson, “Flow-volume parameters in COPD related to extended measurements of lung volume, diffusion, and resistance,” *Pulmonary Medicine*, vol. 2013, Article ID 782052, 10 pages, 2013.

[20] G. Bonetto, M. Corradi, S. Carraro et al., “Longitudinal monitoring of lung injury in children after acute chlorine exposure in a swimming pool,” *American Journal of Respiratory and Critical Care Medicine*, vol. 174, no. 5, pp. 545–549, 2006.

[21] M. A. Wenck, D. Van Sickle, D. Drociuk et al., “Rapid assessment of exposure to chlorine released from a train derailment and resulting health impact,” *Public Health Reports*, vol. 122, no. 6, pp. 784–792, 2007.

[22] D. Van Sickle, M. A. Wenck, A. Bellflower et al., “Acute health effects after exposure to chlorine gas released after a train derailment,” *American Journal of Emergency Medicine*, vol. 27, no. 1, pp. 1–7, 2009.

[23] T. A. Kowitz, R. C. Reba, R. T. Parker, and W. S. Spicer Jr., “Effects of chlorine gas upon respiratory function,” *Archives of Environmental Health*, vol. 14, no. 4, pp. 545–558, 1967.

[24] C. W. White and J. G. Martin, “Chlorine gas inhalation: human clinical evidence of toxicity and experience in animal models,” *Proceedings of the American Thoracic Society*, vol. 7, no. 4, pp. 257–263, 2010.

[25] D. Gautrin, L.-P. Boulet, M. Boutet et al., “Is reactive airways dysfunction syndrome a variant of occupational asthma?” *Journal of Allergy and Clinical Immunology*, vol. 93, no. 1, pp. 12–22, 1994.

[26] A. N. Aggarwal and R. Agarwal, “The new ATS/ERS guidelines for assessing the spirometric severity of restrictive lung disease differ from previous standards,” *Respirology*, vol. 12, no. 5, pp. 759–762, 2007.

[27] P. K. Mishra, R. M. Samartha, N. Pathak, S. K. Jain, S. Banerjee, and K. K. Maudar, “Bhopal gas tragedy: review of clinical and experimental findings after 25 years,” *International Journal of Occupational Medicine and Environmental Health*, vol. 22, no. 3, pp. 193–202, 2009.

[28] S. Sriramachari, “The Bhopal gas tragedy: an environmental disaster,” *Current Science*, vol. 86, no. 7, pp. 905–920, 2004.