On the State and Importance of Reproducible Experimental Research in Parallel Computing

Sascha Hunold, Jesper Larsson Träff
Vienna University of Technology
Faculty of Informatics, Institute of Informations Systems
Research Group Parallel Computing
Favoritenstrasse 16/184-5, 1040 Vienna, Austria
Email: {hunold,traff}@par.tuwien.ac.at

Abstract

Computer science is also an experimental science. This is particularly the case for parallel computing, which is in a total state of flux, and where experiments are necessary to substantiate, complement, and challenge theoretical modeling and analysis. Here, experimental work is as important as are advances in theory, that are indeed often driven by the experimental findings. In parallel computing, scientific contributions presented in research articles are therefore often based on experimental data, with a substantial part devoted to presenting and discussing the experimental findings. As in all of experimental science, experiments must be presented in a way that makes reproduction by other researchers possible, in principle. Despite appearance to the contrary, we contend that reproducibility plays a small role, and is typically not achieved. As can be found, articles often do not have a sufficiently detailed description of their experiments, and do not make available the software used to obtain the claimed results. As a consequence, parallel computational results are most often impossible to reproduce, often questionable, and therefore of little or no scientific value. We believe that the description of how to reproduce findings should play an important part in every serious, experiment-based parallel computing research article.

We aim to initiate a discussion of the reproducibility issue in parallel computing, and elaborate on the importance of reproducible research for (1) better and sounder technical/scientific papers, (2) a sounder and more efficient review process and (3) more effective collective work. This paper expresses our current view on the subject and should be read as a position statement for discussion and future work. We do not consider the related (but no less important) issue of the quality of the experimental design.

1 Introduction

Even more so than for sequential computing systems, current parallel architectures, their programming models and languages, and corresponding software stacks are so diverse and so complex to model that theoretical analysis of algorithms and applications needs to be complemented by experimental evaluation and feedback. Research in parallel computing therefore relies heavily on computational experiments as a driving force towards understanding new systems, algorithms and applications. In some respects, the role of experiments in parallel computing falls in the tradition of the evolving fields of “experimental algorithmics” and “algorithm engineering” [25, 31], but have a much wider scope by spanning a deep and difficult to control software stack, complex applications, and underlying hardware in a constant state of flux. With experimental results being so crucial it is of importance to ask and to clarify whether the reported experiments really support the wide-ranging conclusions drawn from the presented results (and if not, what other
purpose the extensive experimentation then serves). This question has many interrelated facets, among which are:

- experimental strategy and methodology: is the experiment sound and well designed?
- presentation and persuasion: are the results properly and extensively reported, including statistics, positive and negative results, sufficient parametric variation and coverage?
- correctness: are the results, tools and programs correct?
- trust: are the experiments trustworthy? Can they be backed up by more extensive data if so desired?
- reproducibility: are the results and outcomes reproducible, at least in principle, by other, independent researchers?

The issue of trustworthiness is the one we will mostly consider here, and argue that by paying more attention to the issue of reproducibility, the trustworthiness of experimental work in parallel computing can (and must) be improved such that the outcome of experimental papers can serve their intended purpose of reference and/or stepping stones for further research. This issue is currently receiving much attention in other (natural) sciences, that in turn rely heavily on computational experiments, but these discussions are conspicuously absent in parallel computing. This is of course ironic and unfortunate, insofar as so many other sciences rely on solid, well-understood and trustworthy parallel and high-performance computing environments: systems, run-time environments, numerical and non-numerical libraries, simulation systems, etc.

With this paper we aim to start a discussion of the need for reproducible research. We intend to back up this discussion with a more thorough analysis of the state of affairs in our field in order to corroborate the sometimes blunt claims that will be made in the following. The paper is structured as follows. Section 2 expands on the trustworthiness issue (in parallel computing). Section 3 summarizes articles that address the necessity for reproducible experiments in other sciences that rely heavily on computational experiments. Section 4 briefly overviews some attempts and solutions for reproducibility and provenance. Section 5 describe some of the particularities of experiment-based research in parallel computing. We then highlight the challenges for reproducible research by looking specifically to the field of parallel computing in Section 6. In Section 7 we discuss own experience in a case study to obtain reproducibility in research on distributed scheduling algorithms. Section 8 summarizes and outlines short term approaches.

2 Trustworthiness in Computational Research Papers

In typical parallel computing research papers, scientists mostly report on performance improvements (whether in time or other objective) that originate from differential observations made in their local environments. In computational science, and more broadly in computationally supported science, the focus is on the achieved results, and less on the computational resources invested to achieve those results. In both cases, however, the reader has to trust the authors that

1. the (parallel) program (more broadly: the computational tool or system) under consideration was bug-free,

2. the experimental design was carefully chosen,
3. the data were properly gathered and processed, and that
4. the final figures were generated using correct statistical analysis.

These four requirements of trust are not only important to later readers (the assumption is that any parallel computing paper is intended to be read!); but also to the reviewers, who are the first to attempt to objectively evaluate the experimental results and the conclusions drawn from these. An obvious (we believe) main problem here is that many articles that contain computational results pay little attention to a sufficiently detailed description of their experiments. Indeed, the reader is often left with an impression that the presentation of experimental results is just an undesired necessity to “prove” that a proposed method works such that a success story can be told. However, if researchers really want to explore the subject further and possibly reimplement certain aspects of the given paper, they discover a lack of experimental details. As a result, one cannot extend on this research subject, compare to alternative approaches, or simply verify the findings independently, which is of crucial importance for any claimed, new results of consequence.

A computational experiment can be seen as a chain of interdependent actions to be performed. These actions form an “experimental workflow”, which usually consists of three components:

1. a problem instance creator (e.g., a workload generator),
2. an implementation of the algorithm that solves the given problem (the actual program/experimental environment to study a phenomenon), and
3. a data analysis component (e.g., in the simplest case a script that plots experimental data).

In our experience, many articles in parallel computing only provide fractions of component (1), a vague description of (2) and a few graphs that originated from component (3), but which itself is unavailable. Thus, if scientists want to extend on published works, they will need to fill in many blanks of the article. Even if they contact the original authors, they often experience that authors do not remember the implementation details correctly (for all three components), or even worse, that the implementations and experimental data are no longer available. Researchers will therefore have to do the time-consuming job of reimplementing the experiment as it might have been originally intended. This not only slows down the individual research progress but also the scientific progress in this domain in general.

3 The Need for Reproducible Research

A surprisingly large amount of research work on the subject of reproducible research exists, many of which point to the absence of reproducibility in computational sciences, e.g., life sciences.

Casadevall and Fang, although from the field of Microbiology, characterize the reproducibility problem as follows: “There may be no more important issue for authors and reviewers than the question of reproducibility, a bedrock principle in the conduct and validation of experimental science” [6]. Both authors point out that for articles being acceptable in natural sciences “the Materials and Methods section should include sufficient technical information to allow the experiments to be repeated” [6].

Roger D. Peng examined the state of reproducibility in computational science and defined the spectrum of reproducibility which spans from “full replication of a study” to “no replication” [28]. He concluded that “addressing this problem will require either changing the behavior
of the software systems themselves or getting researchers to use other software systems that are more amenable to reproducibility. Neither is likely to happen quickly; old habits die hard [...]. He also believes that “the biggest barrier to reproducible research is the lack of a deeply ingrained culture that simply requires reproducibility for all scientific claims” [28].

Victoria Stodden summarizes the problem as follows: “It is impossible to believe most of the computational results presented at conferences and in published papers today. Even mature branches of science, despite all their efforts, suffer severely from the problem of errors in final published conclusions. Traditional scientific publication is incapable of finding and rooting out errors in scientific computation, and standards of verifiability must be developed” [36]. She concludes that “making both the data and code underlying scientific findings conveniently available in such a way that permits reproducibility is of urgent priority for the credibility of the research” [36].

A recent editorial in Nature Methods addresses the problem by imposing new, stricter reporting standards, especially stating that “Nature Methods will be requesting more information about the custom software used to implement the methods we publish” [13], challenging current habits in (parallel) computing.

To overcome the credibility problem, Jill P. Mesirov proposed a system for ensuring reproducibility, which consists of two components: (1) “a Reproducible Research Environment (RRE) for doing the computational work” and (2) “a Reproducible Research Publisher (RRP), which is a document-preparation system, such as standard word-processing software, that provides an easy link to the RRE” [26]. She concludes that “we need simple, intuitive ways to both capture and embed our computational work directly into our papers. The value of such tools goes beyond mere documentation. They will encourage the next generation of scientists to become ‘active’ consumers of scientific publications—not just looking at the figures and tables, but running computational experiments to probe the results as they read the paper” [26].

In 2009, Fomel and Claerbout edited a special issue of the IEEE Computing in Science and Engineering journal, discussing the problems of lack of reproducibility in computation-based sciences, and proposing methods and tools to overcome some of the problems [11, 15, 29]. This special has contributions by Roger Peng, Randall LeVeque, Victoria Stodden, and David Donoho, and the editorial ends by asking: “Before you publish your next paper, please ask yourself a question: Have I done enough to allow the readers of my paper to verify and reproduce my computational experiments? Your solution to reproducibility might differ from the those described in this issue, but only with a joint effort can we change the standards by which computational results are rendered scientific.”

A well-argued, dissenting opinion on the need for and feasibility of reproducible research was recently offered by Drummond [12]. He addresses the arguments for reproducibility raised by the Yale Law School Roundtable [37]. Drummond believes that people have “different views of what replicability means” [12]. He distinguishes between three concepts:

1. reproducibility: experiment duplication as far as possible,

2. statistical replicability: replicating the experimental results, which could have been produced by chance due to limited sample size,

3. scientific replicability: focusing on replicating the result rather than the experiment.

He states that “only Scientific Replicability has any real claim to be a gold standard” [12]. Drummond argues that submission of data and code, which is targeted by the reproducibility movement, would be counterproductive. He claims that “many papers are uncited and others have only a few citations” and so “the majority of code would not be used” [12]. Drummond also states that reviewers already have a high workload and it will be a burden to them to look
into data and code. He also believes that we should not enforce a single scientific method as a single such method does not exist (cf. Feyerabend [14]). In addition, the problem of scientific misconduct is discussed, which is often taken as motivation for requesting reproducible research. Drummond notes that scientific misconduct has always been part of science and concludes that “[i]f we were somewhat more skeptical about the results of scientific experiments, cases of misconduct would probably have much less of an impact” [12].

4 Reproducible Experiments in Practice

After motivating why reproducible experiments are needed in computational sciences, we summarize some recent efforts for obtaining reproducibility.

In 2005, Simmhan et al. published a survey on the state of data provenance in e-Science. Their primary goal was to “create a taxonomy of data provenance characteristics” [35]. This study mainly focused on data provenance systems that use workflows to model scientific processes. In their taxonomy of provenance, replication (reproduction) of an experiment is only one of several possible applications of provenance. Other uses are for example data quality, attribution (copyright/ownership) or information (context for interpretation of data). This survey compares available workflow systems made to support computations in natural and life sciences, e.g., physics, astronomy, chemical sciences, earth sciences, or biology. We note here that computer science was not mentioned as a possible application domain, although one might say that capturing data from mostly deterministic sources such as computers should be easier than collecting data about mice and chimpanzees.

In 2011, Gavish and Donoho published an article that introduced verifiable computational research. This form of research is based on the combination of three concepts: “verifiable computational result (VCR), VCR repository and Verifiable Result Identifier (VRI)” [16]. The VCR represents “a computational result (e.g., table, figure, chart, dataset), together with the metadata describing in detail the computations that created it” [16]. The VCR repository archives computational results and should be accessible as Web-service. The VRI can be a URL (web address) that “universally and permanently identifies a repository” [16]. The problem of long-term re-executability of experiments is also discussed and in this context the authors state that “re-execution requires that the computing environment originally used still be available and licensed on the repository”, which is ”a tremendous difficulty for perpetuating publications” [16]. For these reasons, they deduce that “readable source code, its dependencies, and the actual runtime values of input and output parameters [...] functions are what we really need in order to understand how computational results were generated” [16].

Goble et al. suggested that scientists should exchange so-called “research objects” rather than traditional articles. A “research object bundles a workflow, together with provenance traces […], operational semantics, […] version history, author attributions, citation credit, license etc.” [17]. The article summarizes possible benefits and drawbacks for scientists that choose to share or not to share data and source code. They note that “open science and open data are still movements in their infancy” and “that the real obstacles are social” [17]. The article concludes that “the whole scientific community—from the lab to the publisher and policy makers—needs to rethink and re-implement its value systems for scholarship, data, methods and software” [17].

DeRoure et al. introduced the myExperiment website1 that scientists can use to share methods and processes [9]. Their approach uses scientific workflows and focuses on “multiple disciplines (biology, chemistry, social science, music, astronomy)” [9]. It is striking that computer

\footnote{http://www.myexperiment.org/}
science in general (and parallel computing in particular) is again missing in this list.

As already mentioned, several workflow engines exist, but seem to be primarily developed to support scientific processes in life and biosciences, e.g., Taverna [21] or Kepler [1].

VisTrails is a provenance software for “data exploration and visualization through workflows” [34]. It is able to “track changes made to workflows by maintaining a detailed record of all the steps followed in the exploration” [34]. The ALPS project\(^2\) is an early adopter of VisTrails. ALPS is a collaborative project, in which researchers from different laboratories contribute time and code. The website states that the main goal of ALPS is to “increase software reuse in the physics community.”\(^3\) The article by Bauer et al. introduces the different components of ALPS, one of them is the ALPS VisTrails package [4]. We point out that every figure in the article by Bauer et al. has a link to the corresponding VisTrails workflow. Thus, these workflows can be imported into VisTrails and used to recreate the figures shown in the article. The reader has now the opportunity to modify the way the data is processed or to change the view on the data, e.g., select a different scale of axes. With such approach the reader can actively verify and evaluate data produced by others.

Another attempt to provide provenance and reproducibility is the tool Sumatra [8]. It is layered on top of version control systems such as Git or Mercurial and keeps track of computational experiments\(^4\). In particular, it records (1) the code, (2) the parameter files, and (3) the platform used in the experiment. Scientists can tag an experiment with information why it was conducted and what the outcome was. Sumatra is platform-independent (written in Python) and supports the concurrent execution of different jobs using MPI (the Message Passing Interface) [27].

The Org-mode within the Emacs editor helps to accomplish reproducible research [32, 33]. Besides the note taking capabilities, Org-mode supports literate programming. The user can embed source code (e.g., in C, Python, R, ..) into the org document. When an org document is exported, each source code block is evaluated. The result of such code block evaluation can be a table or figure, which is inserted into the final document (e.g., a \LaTeX\ or HTML document). Org-mode allows to define variables and to pass values between code blocks. The literate programming features of Org-mode are similar to the functionality of Sweave. Sweave allows researchers to embed R code into \LaTeX\ documents [24].

The publishing company Elsevier launched the Executable Paper Grand Challenge\(^5\) in 2011. The winning Collage system has been used exemplary for special issues of Elsevier journals. Elsevier’s Collage system is comparable to Org-mode as it allows to embed code blocks and data items into an executable paper.

In his dissertation Guo addresses the problem of reducing the complexity of research programming that often stems from the programmers’ burden of dealing with data management and provenance issues [18]. He presents several software tools to facilitate the day-by-day routines of a scientific programmer such as data cleaning, data analysis, or experiment deployment and management.

5 The State of Experiments in Parallel Computing

Towards providing tools in the form of algorithms, languages, libraries and systems for scientific and other applications to use, and towards understanding these algorithms, languages, libraries and systems themselves, parallel computing very often relies on experimental results. A typical,
experimental parallel computing paper describes an algorithm or system, makes claims that it
improves in all or certain aspects over a previous algorithm or system, not rarely one’s own,
and purports to show this by a number of experiments. If carefully implemented, the claims
may indeed count as at least well supported, and the reader will believe and be able to build
on the results so established.

On closer look, this ideal, template setup is, however, often problematic. Due to “space
limitations”, the algorithm—especially if part of a larger, complex application or system—may
not be described in enough detail to allow reimplementiation, neither for rechecking the claims
nor for using the result. This would not be a problem if the actual program would be available,
or at least enough supplementary material to facilitate reimplementiation without difficulty.
We contend that this is rarely the case, and will later (not this paper) support the claim by
examining a selection of recent (and past) parallel processing conferences and journals. In
the cases where the actual implementation as a program is not available for inspection, the
next issue is whether the program is indeed correct (bug-free) as claimed. Related to this
is the case where the algorithm/program is only applicable to special cases of inputs (the
notorious powers-of-two); such restrictions in generality are rarely stated, but do limit claims
of universality: an implementation that actually does work (correctly) in all intended cases
may well be less impressive (in terms of speed, overhead, scalability, energy consumption, or
whatever metric is used in the evaluation) than the limited implementation that has actually
(perhaps inadvertently) been used. But the case remains: without a precise description and
perhaps access to at least parts of the actual code, it is not possible for the reader to judge.

Parallel systems are more complex than “traditional”, sequential computing systems in
at least one extra dimension: many, sometimes very many, processors or cores with complex
interconnections via shared-memory resources or communication networks. This is in addi-
tion to the complexities of modern processors, where the utilization of the memory system
(cache-hierarchy) and instruction set can make a gigantic impact on the performance (whether
measured as time or energy or something else). Thus, to judge and reproduce a given result,
these system parameters have to be stated very carefully. Also compiler versions and settings
can make huge differences. There is in the parallel computing field a positive tendency towards
reporting some of these factors and parameters, but whether this information is sufficient for
evaluating scientific results should be examined by some case studies.

A particular problem in parallel and high-performance computing is the ephemeral, unique
and even exclusive character of the systems, e.g., many (most) systems on the TOP500 have
restricted access and have a limited lifespan. Therefore, the possibility to test and measure a
piece of software (an algorithm, a library, an application) is for most researchers a once-in-a-
lifetime opportunity. This is a fact that should be taken into account when judging the character
of results on such systems.

Other problems with experiments in parallel computing, especially for large-scale systems,
are the effects of operating system “noise”, interference from network and file-systems, other
users, etc., that are very difficult to control and often ignored (sometimes out of ignorance), but
may heavily distort or bias results. Again, more attention to reproducibility would automatically
lead to more concern with these issues.

Tools like libraries (MPI) and compilers (OpenMP) are sometimes used to gather timing
and other results. It is assumed, but most often not questioned that such performance results
are accurate and reproducible. Recent experience (with OpenMP) has shown that this is not
the case: the built-in timing facility, omp_gettime(), can be heavily dependent on the number
of started threads, in a counter-intuitive way; also timing results showed higher variation than
naively expected. Solid experimental work must be aware of such features. An issue here is that

http://www.top500.org
the OpenMP standard (and similar standards) does not prescribe any specific behavior that an implementation must fulfill.

Experimental parallel computing research, when focussed on algorithms and applications, is often concerned with showing relative improvements and scalability. A standard measure is the “speed-up” achieved relative to some baseline [30]. Without explicitly stating what this baseline is (and sometimes a discussion of whether the baseline is meaningful would also seem in order), the results can be grossly misleading and, indeed, not reproducible. Often such statements are missing, inadvertently or by intent. These problems are known and have been discussed [2, 3, 20]. Bad experimental practice also in not infrequent cases lead to censoring of results to highlight only the good things.

In order to address these issue raised in this section, we will now look at potential challenges that we face when attempting to improve reproducibility in parallel computing.

6 Challenges for Parallel Computing Research

Comparing algorithms or scientific approaches via experiments or simulations is standard practice in parallel computing. For example, every article of Issue No. 1, 2013 in Volume 24 of the IEEE Transactions on Parallel and Distributed Systems (TPDS) justifies the scientific contribution through experiments or simulations. Unfortunately, the current standard for publishing articles has shortcomings if a reader wants to reproduce the results. An obvious problem is that the source code is usually not part of an article. In fact, only a small number of articles contain a link to the source code. In the particular case of the mentioned issue of TPDS, we could only find one paper containing a link to the corresponding source code. Naturally, a single issue of a specific journal is not representative for the entire domain of parallel computing. However, we contend that it supports our statement that reproducibility is an issue that should not be overlooked.

The question is then how to approach the problem. Answering this question will not be easy as there are technical, social, and political constraints and implications. Nevertheless, in this paper we would like to name goals to improve reproducibility in parallel computing.

6.1 A Clear Objective for Reproducibility

First, we need to clarify which level of reproducibility we expect or is possible in our context. Drummond points out that there is no consensus on what reproducibility of an experiment means.

In the context of parallel computing we are mostly interested in what Drummond called “scientific replicability”. So, we would like to reproduce and verify the scientific outcome presented in articles rather than reproducing the exact same numbers of a previous experiment. Nonetheless, numerical reproducibility as considered by Demmel and Nguyen [10] is equally important for large-scale experiments and might become a prerequisite for obtaining scientific replicability in our context.

As previously mentioned, “scientific replicability” is especially important in parallel computing where certain experiments require specific hardware to be conducted. For example, only few scientists have the opportunity to execute a parallel algorithm on a large number of processors on the latest supercomputer from the TOP500 list. Yet, scientists should have the possibility to conduct similar experiments at smaller scale to verify findings, to analyze the source code if needed, or to access experimental data used in articles.

\[^{7}\text{TPDS was chosen since it is a well established and highly respected journal in the domain. The issue was selected as it was the latest issue as of the time of working on the present article.}\]
6.2 Verifying the Reproducibility Problem

As we now know what we are expecting when we demand reproducible results in parallel computing, we should evaluate the state of reproducibility in this domain. We need an unbiased, scientifically sound survey whether experimental results in parallel computing are reproducible to our standards or not. Surely, from our experience we know that reproducing experimental results is hard and often impossible. However, a personal feeling cannot replace a clean, objective, scientific study. In discussions with other researchers in our field we noticed that the problem of experimental reproducibility in parallel computing is not always a major concern. We have often heard from others (cf. also Drummond) that research that is not reproducible will eventually vanish and its lasting significance will be low. Thus, according to this opinion, enforcing stricter rules such as providing data and source code will only put a burden on reviewers. This argument coincided with Drummond’s statements in [12]. The problem with this argumentation is that it takes time to invalidate findings, most often several weeks of work of PhD students to figure out that something is not quite right.

The basic problem of today’s science world is the paper pressure on researchers—“we need to publish something”. This is a global phenomenon. Productivity of researchers is hardly measurable in a single index, yet, universities, various rankings, politics, etc. are desperate to compare the scientific impact. Thus, conferences and journals experience a flood of research articles claiming all sorts of advances. We argue that the number of articles submitted for revision could significantly be reduced if we increase the standards for reproducibility. Nonetheless, we agree with Drummond that no specific “method of science” should be enforced. So, researchers must have the freedom to submit research articles in whatever flavor. However, publishing computational results without any form of verifiability should count as unacceptable.

6.3 Stricter Publishing Rules

A first step would be if editors would enforce authors to release all experimental details as supplementary material, although the burden will be high compared with the status quo. This could also be extended beyond publishing a regular journal articles, i.e., also peer-reviewed conferences could apply such best practices. The ACM Journal on Experimental Algorithmics is one journal that tries to encourage authors to make their programs and testbeds available. The editors of the journal state that “[c]ommunication among researchers in this area must include more than a summary of results or a discussion of methods; the actual programs and data used are of critical importance”.

These stricter publishing rules should be applied to all research articles that claim scientific contributions based on experimental data. A main issue to consider here is where to draw the line between theory and (experimental) practice. Of course, there are also legal restrictions for researchers to release certain data. Such issues need to be taken into account when implementing new publishing guidelines. In the end, we need to ask ourselves how valuable research papers are that claim scientific improvements from experimental data gathered using proprietary, undisclosed software and hardware.

We additionally contend that the review process in general needs to improve, especially for experimental results. The reviewer has to take the presented results at face value. Rarely, an effort is made to check the results, and as we have explained, this often not possible. Very often, submitted papers in (experimental) parallel computing compare experimental results based on a shaky statistical analysis. We often see the mean of absolute run-times of some algorithms, without having any information about the number of trials or the dispersion of

\[http://www.jea.acm.org/about.html \]
values. Reviewers in our domain barely verify whether the results are statistically significant. In addition, since the experimental data is not available as part of supplemental data, research papers can hide important problems or increase certain effects almost arbitrarily [3, 19]. Best practices are known for years [22, 23] and should therefore be enforced.

6.4 Improving Software Tools

There are also some technical means that might help towards making computational results reproducible, in particular better software tools.

Computer science, especially parallel computing, has different requirements than most other computational sciences. Here we are often concerned with finding the best algorithm to solve a given problem. We use metrics like GFLOP/s or speed-up that are based on the actual run-time of a program. Thus, we are interested in measuring the absolute run-time of an experiment. This is in contrast to other computational sciences, e.g., computational biology or chemistry, where researchers are mostly interested in the result of a computation rather than the execution time.

We believe that computer science research misses tools that support scientists in obtaining reproducible results and that introduce only little noise into the experiment (as we measure execution time). For a wider adoption in computer science research, GUI-driven workflow engines seem to be less suited. These tools are often too heavyweight and may slow down the actual program execution.

It could also be the case that most building blocks for a reproducibility framework have already been developed, e.g., Git, Python, Sumatra, Org-mode, make, cmake, autotools, etc. However, we lack expertise how to combine them properly to achieve reproducibility.

What we are missing is a better understanding what we need to record, at which experimental detail, and how to do that efficiently. Peng introduced the “Reproducibility Spectrum” that ranges from not reproducible (having only the publication) to full replication of experiments [28]. As said before, we are mostly interested in scientific replication. Yet, how many experimental details are needed to achieve this goal is an open question, which we are going to address in future research.

7 Reproducibility Test Case — Distributed Scheduling

We would like to share our experiences that we have made while trying to achieve reproducibility in our own work. The original research question was how to maximize the steady-state task throughput (in operations per second) on a computational grid. We developed a fully distributed algorithm that schedules Bag-of-Tasks applications onto a computer grid [5]. We developed a simulator on top of SimGrid [7] to evaluate whether our algorithm converges. In order to share code and experimental data with other researchers (and reviewers), we created a webpage providing the source code of the simulator and the R code used to analyze the data; this website also provides additional information such as visualizations. In order to evaluate our scheduling algorithm through simulation in many different test cases, we ran a large number of experiments (parameter-sweep). Altogether, answering the research question whether our fully distributed scheduling algorithm optimizes the total throughout required thousands of such simulations.

A computational experiment often consists of a loosely coupled sequence of commands that one needs to execute. The term “loosely” is important here as it distinguishes them from

9 Graphical User Interface
10 http://mescal.imag.fr/membres/arnaud.legrand/distla_2012/
reproducible experiments, for which dependencies are explicitly stated. From experience we know that these loosely coupled experiments occur frequently in our domain. For a single researcher, this style of experimentation works well in the beginning of a project, but gets troublesome later, especially if she (or he) wants to collaborate with other researchers. Typical questions that will arise—and arose for us—are for example: (1) How did I/you call this script? (2) Which file do I/you need to edit to set up a path or parameter? (3) Which version of software 'X' have I/you used in the original analysis? Thus, it happens frequently that one cannot reproduce her (or his) own work.

Figure 1 (left) shows the right sequence of our scripts to execute a batch of simulations. Each script takes a long list of parameters that define a particular simulation run, e.g., the number of computer nodes, the number of applications, the computational amount of each task, etc. The right-hand side of Figure 1 depicts the call graph to setup and to execute a single experiment. Now, having structured the scripts nicely for the present publication, the order of steps to conduct the simulation study seems obvious. Before, we had a situation where all scripts were placed in one directory. In such case, it was not obvious for another person to figure out the correct order to call the scripts. To help others (and primarily ourselves) to rerun our (own) experiments, we wanted to capture our experimental process in a workflow. VisTrails seemed to be a good starting point as most of our scripts were written in Python, which is the language of VisTrails. The resulting VisTrails workflow is shown in Figure 2.

The main advantage of the new VisTrails workflow was that the time to setup a simulation run on a colleague’s machine could be significantly reduced. In addition, merging single scripts into one larger workflow also removed redundancy as each workflow module was now accessing shared parameters. VisTrails made it easy to generate parameter combinations as it provides modules to manipulate parameters, e.g., applying a cross product or filtering elements (see Figure 2). Yet, the VisTrails approach also entailed disadvantages for us. As we were relatively new to VisTrails (but not new to Python), it took us surprisingly long to obtain the final workflow of the experiment. Connecting workflow nodes was error prone as all modules are written in Python and linking incompatible variables could only be caught at runtime due to the dynamically typed programming language. Further, the workflow approach makes debugging and writing single modules harder. A programmer usually builds a workflow by adding modules sequentially from top to bottom. Thus, adding a buggy module will be caught only when the module is executed, and this module often happens to be the last one in the graph. VisTrails tracks changes to the workflow but does not monitor external code changes. We wrapped most

11 A module is a workflow node.
of our existing script in VisTrails modules to make them available for the workflow engine. So, changes to our source code were not recorded by VisTrails, and we had to use an external version control system (Git). At the time of working with VisTrails, it supported the parallel execution of workflows on workflow level, i.e., one could execute several workflows concurrently. A more fine-grained parallel execution (e.g., a parallel implementation of a “Map” node) would be needed to speed up the execution of a single workflow.

The VisTrails approach entailed another disadvantage. In our original experimental procedure (without workflow engine), we ran batches of simulation experiments on Grid’5000 to reduce the time to complete the study. Developing VisTrails modules that connect to Grid’5000 via SSH, submit jobs, and monitor the job execution would have required additional programming effort. Moreover, such VisTrails workflow would be too specific to our environment and hardly executable on another machine that has no access to Grid’5000. Hence, we decided to limited the executability of our VisTrails workflow to the user’s machine.

12 We note that not the particular software VisTrails entailed disadvantages for us, but rather the concept of having a centralized workflow engine.

13 https://www.grid5000.fr
The portability of the VisTrails workflow was another problem as VisTrails only eases the execution of scripts. It does not simplify the necessary software configuration, i.e., most of our Perl or Python scripts call other programs such as time, awk, R, or DSDP5. In addition, our simulator needs to be compiled with a specific version of the SimGrid library. To overcome these problems, we created a Virtual Machine (VM) using VirtualBox14 and installed a GNU Debian Linux (Wheezy) with all required packages (Python, gcc, Perl, DSDP5, gnuplot, SimGrid, etc.). Now, our workflow became executable by others; users could simply start the VM and either run VisTrails or our original scripts. To reduce the simulation time, we installed a simple job manager to take advantage of all processor available to the virtual machine by spawning as many simulation processes as there are cores. Clearly, the disadvantage is now that a researcher has to download the virtual machine image (which can be large depending on the case study). Currently, it seems unpractical to provide a VM machine as supplementary material of research articles. In addition, a virtual machine image might not be startable in five years from now. Yet, we believe that this might not be our biggest concern as the computing world is so rapidly changing that experimental results could be obsolete in five years, in contrast to theoretical findings.

In summary, we could improve the reproducibility of our experiments thanks to VisTrails. However, several issues have to be addressed in future work. First, we have no evidence whether our work is truly reproducible by others or not; this could only be evaluated by a third party. Second, certain technical issues have to be solved, e.g., is it really necessary to create a virtual machine? Third, in the presented case study the execution time was not of primary interest for the experiment. As performance measurements are of major concern in our research domain, we will need to investigate such experiments. Nonetheless, we have learned that reaching for reproducibility is a time-consuming process, which requires high dedication and stamina.

8 Conclusions

We have aimed to initiate a discussion of the state and the importance reproducibility in parallel computing. The aim is to examine standards for good, trustworthy, and ultimately enlightening and useful experimental work in this field of computer science. We contend that more attention to doing and reporting research that is, in principle, reproducible by other researcher will improve the quality of the experimental research conducted. We have discussed some tools and approaches that might help in this direction, and reported on our own attempt to make our research reproducible. Much further work is required, and we will extend this study and explore other tools. We also intend to conduct a broader study and analysis of current experimental practices in parallel computing.

References

[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler: An Extensible System for Design and Execution of Scientific Workflows. In Proceedings of the 16th International Conference on Scientific and Statistical Database Management, pages 423–424. IEEE, 2004.

[2] D. H. Bailey. Misleading Performance Reporting in the Supercomputing Field. Scientific Programming, 1(2):141–151, 1992.

14\url{https://www.virtualbox.org/}
[3] D. H. Bailey. Misleading Performance Claims in Parallel Computations. In Proceedings of the 46th Design Automation Conference (DAC 2009), pages 528–533, 2009.

[4] B. Bauer et al. The ALPS project release 2.0: open source software for strongly correlated systems. Journal of Statistical Mechanics: Theory and Experiment, 2011(05):P05001, 2011.

[5] R. Bertin, S. Hunold, A. Legrand, and C. Touati. From Flow Control in Multi-path Networks to Multiple Bag-of-tasks Application Scheduling on Grids. Technical Report RR-7745, INRIA, Sept. 2011.

[6] A. Casadevall and F. C. Fang. Reproducible Science. Infection and Immunity, 78(12):4972–4975, Nov. 2010.

[7] H. Casanova, A. Legrand, and M. Quinson. SimGrid: A Generic Framework for Large-Scale Distributed Experiments. In Proceedings of the 10th EUROS/UKSim International Conference on Computer Modelling and Simulation, pages 126–131, 2008.

[8] A. Davison. Automated Capture of Experiment Context for Easier Reproducibility in Computational Research. Computing in Science & Engineering, 14(4):48–56, 2012.

[9] D. De Roure et al. Towards Open Science:: The myExperiment approach. Concurrency Computation: Practice and Experience, 22(17):2335–2353, Dec. 2010.

[10] J. Demmel and H. D. Nguyen. Numerical Reproducibility and Accuracy at ExaScale. In IEEE Symposium on Computer Arithmetic, pages 235–237, 2013.

[11] D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, and V. Stodden. Reproducible research in computational harmonic analysis. IEEE Computing in Science and Engineering (CSE), 11(1):8–18, 2009.

[12] C. Drummond. Reproducible Research: a Dissenting Opinion, 2012. http://cogprints.org/8675/.

[13] Editorial. Enhancing reproducibility. Nature Methods, 10:367, 2013.

[14] P. Feyerabend. Against Method. Verso Books, 4th edition, 2010.

[15] S. Fomel and J. F. Claerbout. Guest editors’ introduction: Reproducible research. IEEE Computing in Science and Engineering (CSE), 11(1):5–7, 2009.

[16] M. Gavish and D. Donoho. A Universal Identifier for Computational Results. Procedia Computer Science, 4:637–647, Jan. 2011.

[17] C. Goble, D. De Roure, and S. Bechhofer. Accelerating Scientists' Knowledge Turns. In Proceedings of IC3K, pages 1–23, May 2012.

[18] P. J. Guo. Software tools to facilitate research programming. PhD thesis, Stanford University, 2012.

[19] G. Hager. Fooling the masses. http://blogs.fau.de/hager/category/fooling-the-masses/.

[20] G. Hager and G. Wellein. Introduction to High Performance Computing for Scientists and Engineers. CRC Press, 2011.
[21] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn. Taverna: a tool for building and running workflows of services. *Nucleic Acids Research*, 34(Web Server):W729–W732, July 2006.

[22] R. Jain. *The Art of Computer Systems Performance Analysis - Techniques for Experimental Design, Measurement, Simulation, and Modeling*. Wiley, 1991.

[23] J.-Y. Le Boudec. *Performance Evaluation of Computer and Communication Systems*. EPFL Press, Lausanne, Switzerland, 2010.

[24] F. Leisch. Sweave: Dynamic generation of statistical reports using literate data analysis. In W. Härdle and B. Rönz, editors, *Compstat 2002 — Proceedings in Computational Statistics*, pages 575–580. Physica Verlag, Heidelberg, 2002. ISBN 3-7908-1517-9.

[25] C. C. McGeoch. *A Guide to Experimental Algorithmics*. Cambridge University Press, 2012.

[26] J. P. Mesirov. Accessible Reproducible Research. *Science*, 327(5964):415–416, Jan. 2010.

[27] MPI Forum. *MPI: A Message-Passing Interface Standard. Version 3.0*, September 21st 2012. www.mpi-forum.org.

[28] R. D. Peng. Reproducible Research in Computational Science. *Science*, 334(6060):1226–1227, Dec. 2011.

[29] R. D. Peng and S. P. Eckel. Distributed Reproducible Research Using Cached Computations. *IEEE Computing in Science and Engineering (CSE)*, 11(1):28–34, 2009.

[30] T. Rauber and G. Rünger. *Parallel Programming for Multicore and Cluster Systems*. Springer-Verlag, 2010.

[31] P. Sanders. Algorithm Engineering - An Attempt at a Definition. In *Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday*, volume 5760 of *Lecture Notes in Computer Science*, pages 321–340, 2009.

[32] E. Schulte and D. Davison. Active Documents with Org-Mode. *Computing in Science and Engineering*, 13(3):66–73, 2011.

[33] E. Schulte, D. Davison, T. Dye, and C. Dominik. A Multi-Language Computing Environment for Literate Programming and Reproducible Research. *Journal of Statistical Software*, 46(3):1–24, 2012.

[34] C. T. Silva, J. Freire, and S. P. Callahan. Provenance for Visualizations: Reproducibility and Beyond. *Computing in Science & Engineering*, 9(5):82–88, 2007.

[35] Y. L. Simmhan, B. Plale, and D. Gannon. A Survey of Data Provenance in e-Science. *ACM Sigmod Record*, 34(3):31–36, 2005.

[36] V. Stodden. Trust Your Science? Open Your Data and Code. *Amstat News*, 409:21–22, July 2011.

[37] Yale Law School Roundtable on Data and Code Sharing. Reproducible research: Addressing the need for data and code sharing in computational science. *Computing in Science and Engineering*, 12:8–13, 2010.