Abstract β₂-Glycoprotein I (β₂-GPI) is a major antigen for anticardiolipin antibodies (aCL, Abs) present in patients with antiphospholipid syndrome. We recently reported that β₂-GPI specifically binds to oxidized LDL (oxLDL) and that the β₂-GPI’s major ligand, oxLig-1 is 7-ketocholesteryl-9-carboxynonanoate (Kobayashi, K., E. Matsuura, Q. P. Liu, J. Furukawa, K. Kaihara, J. Inagaki, T. Atsumi, N. Sakairi, T. Yasuda, D. R. Voelker, and T. Koike. 2001. A specific oxLDL binding to macrophages was significantly increased depending on the ligand’s concentration, in the presence of acetone, which share features of oxLig-1 and 7-ketocholesterol. In the negative ion mode, ions at m/z 627, 625, and 243 were observed. oxLig-2 was most likely 7-ketocholesteryl-12-carboxy (keto) dodecanoate. These ligands were recognized by β₂-GPI. Liposomen binding to macrophages was significantly increased depending on the ligand’s concentration, in the presence of β₂-GPI and an anti-β₂-GPI Ab. Synthesized variant, 7-ketocholesteryl-13-carboxytridecanoate (13-COOH-7KC), also showed a significant interaction with β₂-GPI and anti-β₂-GPI binding. A positive ion mass spectrum of a β₂-GPI’s major ligand, oxLig-1 is 7-ketocholesteryl-2-carboxyl variants of 7-ketocholesteryl esters were critical for β₂-GPI binding. A positive ion mass spectrum of a novel ligand, designated oxLig-2, showed fragmented ions at m/z 383 and 441 in the presence of acetone, which share features of oxLig-1 and 7-ketocholesterol. In the negative ion mode, ions at m/z 627, 625, and 243 were observed. oxLig-2 was most likely 7-ketocholesteryl-12-carboxy (keto) dodecanoate. These ligands were recognized by β₂-GPI. Liposomen binding to macrophages was significantly increased depending on the ligand’s concentration, in the presence of β₂-GPI and an anti-β₂-GPI Ab. Synthesized variant, 7-ketocholesteryl-13-carboxytridecanoate (13-COOH-7KC), also showed a significant interaction with β₂-GPI and a similar binding profile with macrophages. Methylation of the carboxyl function diminished all of the specific ligand interactions with β₂-GPI. Thus, ox-carboxyl variants of 7-ketocholesterol esters can mediate anti-β₂-GPI Ab-dependent uptake of oxLDL by macrophages, and autoimmune atherogenesis linked to β₂-GPI interaction with oxLDL.—Liu, Q., K. Kobayashi, J. Furukawa, J. Inagaki, N. Sakairi, A. Iwado, T. Yasuda, T. Koike, D. R. Voelker, and E. Matsuura. 2002. Carboxyl variants of 7-ketocholesterol esters are ligands for β₂-glycoprotein I and mediate antibody-dependent uptake of oxidized LDL by macrophages. J. Lipid Res. 43: 1486–1495.

ω-Carboxyl variants of 7-ketocholestereryl esters are ligands for β₂-glycoprotein I and mediate antibody-dependent uptake of oxidized LDL by macrophages.

Qingping Liu,1,* Kazuko Kobayashi, * Jun-ichi Furukawa, † Junko Inagaki,* Nobuo Sakairi, ‡ Akimasa Iwado,§ Tatsuji Yasuda,* Takao Koike,** Dennis R. Voelker,† and Eiji Matsuura2,*

Department of Cell Chemistry,* Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan; Division of Bioscience,† Graduate School of Environment Earth Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Natural Science and Technology,§ Okayama University, Okayama 700-8530, Japan; Department of Medicine II,** Hokkaido University Graduate School of Medicine, Sapporo 060-8686, Japan; and Program in Cell Biology,† Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206.

Abstract β₂-Glycoprotein I (β₂-GPI) is a major antigen for anticardiolipin antibodies (aCL, Abs) present in patients with antiphospholipid syndrome. We recently reported that β₂-GPI specifically binds to oxidized LDL (oxLDL) and that the β₂-GPI’s major ligand, oxLig-1 is 7-ketocholesteryl-9-carboxynonanoate (Kobayashi, K., E. Matsuura, Q. P. Liu, J. Furukawa, K. Kaihara, J. Inagaki, T. Atsumi, N. Sakairi, T. Yasuda, D. R. Voelker, and T. Koike. 2001. A specific oxLDL binding to macrophages was significantly increased depending on the ligand’s concentration, in the presence of acetone, which share features of oxLig-1 and 7-ketocholesterol. In the negative ion mode, ions at m/z 627, 625, and 243 were observed. oxLig-2 was most likely 7-ketocholesteryl-12-carboxy (keto) dodecanoate. These ligands were recognized by β₂-GPI. Liposomen binding to macrophages was significantly increased depending on the ligand’s concentration, in the presence of β₂-GPI and an anti-β₂-GPI Ab. Synthesized variant, 7-ketocholesteryl-13-carboxytridecanoate (13-COOH-7KC), also showed a significant interaction with β₂-GPI and a similar binding profile with macrophages. Methylation of the carboxyl function diminished all of the specific ligand interactions with β₂-GPI. Thus, ox-carboxyl variants of 7-ketocholesterol esters can mediate anti-β₂-GPI Ab-dependent uptake of oxLDL by macrophages, and autoimmune atherogenesis linked to β₂-GPI interaction with oxLDL.—Liu, Q., K. Kobayashi, J. Furukawa, J. Inagaki, N. Sakairi, A. Iwado, T. Yasuda, T. Koike, D. R. Voelker, and E. Matsuura. 2002. Carboxyl variants of 7-ketocholesterol esters are ligands for β₂-glycoprotein I and mediate antibody-dependent uptake of oxidized LDL by macrophages. J. Lipid Res. 43: 1486–1495.

Supplementary key words antiphospholipid syndrome • atherosclerosis • autoantibody • β₂-glycoprotein I • oxidized LDL • α-oxidation

The autoimmune disorder, antiphospholipid syndrome (APS), is characterized by the presence of a group of heterogeneous antiphospholipid antibodies (aPL Abs), such as anticardiolipin Abs (aCL) and lupus anticoagulants (LA), in blood, and by occurrence of thromboembolic complications in the arterial and/or venous vasculatures of the patients (1, 2). In 1990, three groups of investigators independently reported that a plasma/serum cofactor complexed with negatively charged phospholipids (PLs), such as cardiolipin, is an antigenic target for aCL (3–5). It is now widely accepted that β₂-glycoprotein I (β₂-GPI) is the major antigen for aCL. However, the mechanisms for interaction between β₂-GPI and anti-β₂-GPI Abs are still uncertain. Two currently proposed mechanisms are: i) Binding of β₂-GPI to PL induces a conformational change in the β₂-GPI molecule, thus exposing a cryptic epitope on the protein for the auto-Ab binding, and/or, ii) β₂-GPI binding to anionic PL increases the local concentration of β₂-GPI, thus promoting an increase in intrinsic affinity and Ab binding to the protein (6–14).

β₂-GPI is a 50 kDa protein present in plasma at approximately 200 μg/ml. It binds to negatively charged molecules, including PLs (15), heparin (16), and plasma membranes of activated platelets, and apoptotic cells on which phosphatidylserine (PS) is exposed (17, 18).

Abbreviations: Ab, antibody; APS, antiphospholipid syndrome; β₂-GPI, β₂-glycoprotein I; oxLDL, oxidized LDL; PL, phospholipid; oxLig-1, 7-ketocholesteryl-9-carboxynonanoate; 13-COOH-7KC, 7-ketocholesteryl-13-carboxytridecanoate.

1 Q. Liu and K. Kobayashi contributed equally to this work.
2 To whom correspondence should be addressed.
e-mail: eijimatu@md.okayama-u.ac.jp

Manuscript received 5 February 2002 and in revised form 21 May 2002.
DOI 10.1194/jlr.M20063-JLR200

This article is available online at http://www.jlr.org
member of the short consensus repeats of the complement control protein superfamily, and its fifth domain has a PL binding region. The X-ray crystal analyses (19) showed that the PL binding is provided by a patch consisting of 14 residues of positively charged amino acids and by a flexible loop of S_111-K_117 in domain V. Recent analysis with domain V’s mutant proteins demonstrated interactions of the flexible loop with hydrophobic ligands (20, 21). However, the full details of the structure of in vivo lipid ligands participating in the β_γ-GPI binding remains unclear.

β_γ-GPI affects not only multiple PL-dependent coagulation pathways but also lipoprotein metabolism (22–24). The oxidation of LDL has been proposed to play a central role in the early phase of atherosclerotic plaque formation, such as the transformation of monocyte-derived macrophages to foam cells (25–30). Accumulating evidence has suggested that the interaction between aPL and malondialdehyde-modified LDL (MDA-LDL) may be important in relation to the pathogenesis of atherosclerosis and/or atherothrombosis in APS patients (31–33). In 1997, we first reported that β_γ-GPI bound directly to oxidized LDL (oxLDL), and that the complex of oxLDL and β_γ-GPI was subsequently recognized by anti-β_γ-GPI autoAbs and taken up by macrophages (34). It was further reported that lipid ligands derived from oxLDL were specific for β_γ-GPI. The major ligand for β_γ-GPI, oxLig-1, was originally reported as 7-ketocholesteryl-9-carboxynonanoate (35). The formal IUPAC name for this compound is 9-oxo-9-(7-ketocholest-5-en-3β,7-one) nonanoic acid.

In the present report, we now demonstrate that oxLDL recognition by β_γ-GPI and an anti-β_γ-GPI Ab is provided by an ω-carboxyl function introduced by oxidation of an unsaturated acyl chain of cholesteryl esters.

MATERIALS AND METHODS

Chemicals

1-α-Dipalmitoylphosphatidylserine (DPPS), 7-ketocholesterol (5-cholen-3β-ol-7-one), cholesterol linoleate (5-cholen-3β-ol-3-linoleate), polyinosinic acid [poly(I)], polycytidylic acid [poly(C)], sulfatide, sodium taurocholate, ascorbic acid, sodium dithionite, tetramethylbenzidine (TMB), 3-nitrotyrosine, phospholipase A$_2$, diacylglycerol acyltransferase, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC), and L-glutathione were purchased from Sigma Chemical Co. (St. Louis, MO); dioleoylphosphatidylcholine (DOPC) from Avanti Polar Lipids Inc. (Alabaster, AL); 1,2-dipalmitoyl-1-[N-methyl-3H]choline, 1,2-dipalmitoyl (1H-DPPC) (80 Ci/mmol) from Amersham-Pharmacia Biotech (Uppsala, Sweden). All other chemicals were from commercial sources and of reagent-grade quality.

Preparation of human β_γ-GPI

β_γ-GPI was purified from normal human plasma as described (36) with slight modification. Pooled plasma from healthy subjects was subsequently chromatographed on a heparin-Sepharose column, on a DEAE-cellulose column, and on an anti-β_γ-GPI affinity column. To remove any contamination by IgGs, the β_γ-GPI-rich fraction was further passed through a protein A-Sepharose column. The final β_γ-GPI fraction was delipidated by extensive washing with n-butanol.

Monoclonal antibodies

The monoclonal anti-human β_γ-GPI Ab, Col-22 (IgG1,κ), was established from BALB/c mice immunized with human β_γ-GPI (8). A mouse monoclonal anti-β_γ-GPI auto-Ab, WB-CAL-1 (IgG2a, κ), was derived from an (NZW×BXSB) F1 mouse (37). A human monoclonal anti-β_γ-GPI auto-Ab, EY2C9 (IgM), was established from peripheral blood lymphocytes from an APS patient (38).

Isolation and oxidation of LDL

LDL (d = 1.019–1.063 g/ml) was isolated by preparative ultracentrifugation from fresh normal human plasma, as described (39). The LDL was adjusted to 100 μg/ml and oxidized with 5 μM CuSO4 in PBS for 8 h at 37°C. To terminate the oxidation, 1 mM EDTA was added and dialyzed extensively against PBS containing 1 mM EDTA. The degree of oxidation was estimated as thiobarbituric acid reactive substance (TBARS) value (40) and as migration in agarose electrophoresis.

Lipid extraction and preparative TLC

The lipids from native and oxLDL were isolated, according to the method of Folch, et al. (41). Briefly, lipids were extracted with chloroform-methanol (2:1, v/v) and dried by evaporation. The extracted lipids were spotted on a TLC silica gel 60 plate (2 mm thickness, Merck, Darmstadt, Germany) and developed in chloroform-methanol-30% ammonia-water (120:80:10.5, v/v/v, solvent A). Two individual lipid bands, Band-1 and Band-2, containing ligands reactive with β_γ-GPI (detected by the ligand blot analysis, as described below), were identified and scraped.

Ligand blot analysis on a TLC plate

For analytical TLC ligand blot, lipids were spotted on a Polygram silica gel G plate (Machery-Nagel, Duren, Germany) and developed in solvent A or in chloroform-methanol (8:1, v/v, solvent B). Ligand blot analysis was performed, as described previously (35). Briefly, after drying and blocking with PBS containing 1% BSA, the plate was simultaneously incubated with β_γ-GPI and an anti-β_γ-GPI Ab (WB-CAL-1 or EY2C9) for 1 h. In case of Col-22 Ab, β_γ-GPI and the Ab were subsequently incubated for 1 h each. Horseradish peroxidase (HRP)-labeled anti-mouse IgG or HRP-labeled anti-human IgM was then incubated for 1 h. In each step, a plate was extensively washed with PBS. The color was developed with H$_2$O$_2$ and 4-methoxy-1-naphtol (Aldrich, Milwaukee, WI). On control TLC plates, ligands were separated and stained with I$_2$ vapor or with a spray of molybdenum blue.

HPLC

The β_γ-GPI-specific ligand, oxLig-2, was purified from the ligand-enriched fraction by a reversed-phase HPLC on a Sephasil Peptide C18 column (4.6 mm × 250 mm; Amersham-Pharmacia Biotech). The scraped band, Band-2, was eluted using a linear gradient of 50–100% solvent C (acetonitrile-isopropanol, 30:70, v/v) against solvent D (water containing 0.2% acetic acid), over 15 min, then 100% solvent C for the following 15 min, at a flow rate of 0.5 ml/min, and absorbance was monitored at 210 nm and 234 nm. The eluate was fractioned every 2 min (1 ml/tube). Each fraction was spotted on a TLC plate and subjected to ligand blot analysis with β_γ-GPI and EY2C9 Ab.

Synthesis of oxLig-1

To a solution of 7-ketocholesterol (5-cholen-3β-ol-7-one, 50.1 mg, 0.13 mmol) and azelaic acid (70.6 mg, 0.38 mmol) in acetone (4 ml) was added 1-ethyl-3-(5-dimethylaminopropyl) carbodiimide hydrochloride (WSC; 95.8 mg, 0.50 mmol) and 4-(dimethylamino)pyridine (DMAP; 0.5 ml). The mixture was stirred at room temperature for 2 days, concentrated, and extracted with chloroform. The extract was successively washed with 2 M hydrochloric acid and brine, dried over anhydrous magnesium sulfate, and evaporated. The residue was subjected to column chromatography on silica gel using toluene-
ethyl acetate (3:1, v/v) to give synthesized oxLig-1 (36.0 mg, 50.4% yield). 1H-NMR and 13C-NMR spectra were obtained at 300 MHz and 75 MHz, respectively, by an ASX-300 spectrometer (Bruker, Billerica, MA). The field desorption (FD) mass spectrum of synthesized oxLig-1 was recorded on a JMS-SX102A spectrometer (JEOL, Tokyo, Japan). 1H-NMR (300.1 MHz, CDCl$_3$): 6H = 5.71 (s, 1H, H-6), 4.78–4.69 (m, 1H, H-3); 13C-NMR (75.5 MHz, CDCl$_3$): 202.5, 179.7, 173.4, 164.5, 127.1, 72.4, 55.2, 50.4, 50.2, 45.8, 45.5, 39.9, 38.7, 36.6, 36.1, 29.2, 28.9, 28.4, 25.3, 25.0, 24.2, 23.2, 23.0, 19.3, 17.7, 12.4; m/z (FD-MS): 571 [(M+)$^+$, $C_{36}H_{59}O_5$ requires 571].

Synthesis of 7-ketocholesteryl-13-carboxytridecanoate

To a solution of 7-ketocholesterol (50.1 mg, 0.13 mmol) and tridecanedioic acid (brassylic acid; 61.8 mg, 0.25 mmol) in acetone (4 ml) was added WSC (95.8 mg, 0.50 mmol) and DMAP (30.5 mg, 0.25 mmol). The mixture was stirred at room temperature for 2 days, concentrated, and extracted with chloroform. The extract was successively washed with 2 M hydrochloric acid, aqueous saturated sodium hydrogencarbonate, and brine, dried over anhydrous magnesium sulfate, and evaporated. The residue was subjected to column chromatography on silica gel using toluene-ethyl acetate (3:1,
v/v) to give the product (44 mg, 56.0% yield). NMR spectra and FD mass spectra were measured as described above. 1H-NMR (300.1 MHz, CDCl₃): δ = 5.69 (s, 1H, H-6), 4.80-4.67 (m, 1H, H-3); 13C-NMR (75.5 MHz, CDCl₃): δ = 202.2, 179.6, 173.1, 164.7, 126.9, 72.3, 55.3, 50.5, 50.1, 45.3, 43.5, 40.6, 39.2, 38.6, 36.5, 36.0, 29.1, 28.8, 28.3, 25.2, 24.9, 24.1, 23.1, 22.9, 19.2, 17.6, 12.3; m/z (FD-MS): 627 [(M+H)+, C₄₀H₆₇O₅ requires 627].

Liquid chromatography equipped mass spectrometry

Mass spectra of β₂-GPI-specific ligands, synthesized oxLig-1, ox-Lig-2 purified from Band-2, and synthesized 7-ketocholesteryl-13-carboxytridecanoate 13-COOH-7KC, were obtained by a liquid chromatography equipped mass spectrometry (LC/MS)-2010 spectrometer (Shimadzu Corp., Kyoto, Japan), equipped with a Shim-pack FC-ODS column (4.6 mm × 30 mm). The column was developed with a linear gradient of 50–100% solvent D (30% acetone in methanol) against water. Positive and negative ionization mass signals were detected in the mass range of 50–750, as ions generated during atmospheric pressure chemical ionization (APCI).

Methylation of lipid ligands

1-Methyl-3-nitro-1-nitrosomethylguanidine (0.20 g) was added to a mixture of 2 M sodium hydroxide (10 ml) and diethyl ether (10 ml) in an ice bath. The mixture was shaken several minutes and the pale yellow ethereal solution separated was used for methylation. The diazomethane solution (2 ml) was added drop-wise to a solution of lipid ligand (1.0 mg) in diethyl ether (1 ml) at 0°C. Each mixture was stored in refrigerator overnight. TLC of the mixture showed complete disappearance of the starting materials. The solvent was removed by blowing air to give the methyl ester as a white amorphous powder.

ELISA for anti-β₂-GPI Ab binding

Anti-β₂-GPI Ab binding was performed as described (35). Briefly, the lipid ligand (50 μg/ml, 50 μl/well) was adsorbed by evaporation on a plain polystyrene plate (Immulon 1B, Dynex Technologies Inc., Chantilly, VA) and the plate was then blocked with 1% BSA. A monoclonal anti-β₂-GPI Ab (WB-CAL-1, or EY2C9, 1.0 μg/ml, 100 μl/well) was incubated in PBS containing 0.3% BSA with β₂-GPI and the Ab were subsequently incubated for each 1 h. Ab binding was probed using HRP-labeled anti-mouse IgG or anti-human IgM. The color was developed with H₂O₂ and o-phenylenediamine and absorbance was measured at 490 nm. Between each step, extensive washing was performed using PBS containing 0.05% Tween 20.

Preparation of liposomes

Liposomes were prepared as described (42), with the following lipid compositions. Lipid molar ratios of 0, 10, 25, 30, and 50% ligand-containing liposomes were made with DOPC-ligand-[³H]DPPC (80 Ci/mmol). The amount of [³H]DPPC was 0.225%. The ligand component was varied to be either cholesteryl linoleate, DPPS, oxLig-1, oxLig-2, methylated oxLig-2 (Me-oxLig-2), 13-COOH-7KC, or methylated 13-COOH-7KC (Me-13-COOH-7KC).

Cell culture and liposome binding assay

A monolayer culture of mouse macrophage-like cell line, J774A.1 (Riken Cell Bank, Tsukuba, Japan), was used for liposome binding experiments. The cells were maintained in RPMI-1640 medium supplemented with 10% FBS. The cells were plated (1 ml/well) into a 12-well culture plate with RPMI 1640 at
8 × 10^5 cells/ml and incubated for 24 h at 37°C. The medium was replaced with Celglosser-P medium (Sumitomo Pharmaceutical Co., Tokyo, Japan). After 2 h preincubation at 37°C, 50 μl of liposomes (50 nmol lipid/well) with or without β₂-GPI (200 μg/ml) and WB-CAL-1 (100 μg/ml) were added to each well, and the cells were then incubated at 4°C for 2 h. The wells were washed with chilled PBS, and the cells were lysed with 1 ml of 0.1 N NaOH. An aliquot was taken to determine cellular proteins and radioactivity associated with the cells. Protein concentration was determined using the BCA protein assay reagent (Pierce Chemical Co., Rockford, IL).

RESULTS

Detection of β₂-GPI-specific ligands

We first detected extracted lipids from native and Cu²⁺-oxidized LDL preparations, by different staining procedures applied to TLC plates, developed in solvent A (Fig. 1A, B). With the I₂ vapor and the molybdenum blue spray, the major change observed due to the Cu²⁺-oxidation was a small increase in lysophosphatidylcholine (lysoPC). To define the ligands targeted by β₂-GPI and an anti-β₂-GPI auto-Ab (i.e., WB-CAL-1 or EY2C9), ligand blot analysis was performed on the TLC plate. Two major bands and a diffuse lipid band were stained with β₂-GPI and either anti-β₂-GPI auto-Abs. The reactive lipids migrated at similar Rf positions to those of cardiolipin and glycolipids, such as galactosylceramide (Gal-Cer) and glucosylceramide (Glu-Cer). The bands detected by ligand blot were not stained with molybdenum blue spray, indicating that they are not phospholipid (Fig. 1A, B). β₂-GPI ligand-enriched lipids (i.e., Band-1 and -2, indicated by arrows in Fig. 1B) were scraped from the TLC plate (in solvent A) and were subjected to another TLC development in solvent B and subsequent ligand blot with β₂-GPI and EY2C9 (Fig. 1C). The ligand corresponding to the upper band (Band-1) has already been reported to contain oxLig-1 (35). The lower band (Band-2) was further purified by reversed-phase HPLC.
Purification and characterization of a novel ligand, oxLig-2

The HPLC yielded a novel ligand, we named oxLig-2, from the scraped Band-2 (Fig. 2A, B). A peak that revealed binding specific for β2-GPI and EY2C9 was eluted at approximately 26.7 min (equivalent to 13.4 ml of elution volume). To confirm the purity of oxLig-2 (fraction #14), the fraction was re-chromatographed under the same HPLC conditions (Fig. 2C, D) and subjected to the analysis by LC/MS.

A positive ionization mass spectrum of oxLig-2 showed three signals at m/z 383, 441, and 627 (Fig. 3). These two smaller peaks, at m/z 383 (corresponding to 7-ketocholesterol) and 441 [corresponding to 7-ketocholesterol (+acetone)], were identical to those from oxLig-1 and 13-COOH-7KC (Fig. 3A, C, E). The signals at m/z 571, 627, and 627 were detected as a mother ion, [M+H]+, in the positive mass spectra of oxLig-1, oxLig-2, and 13-COOH-7KC, respectively (Fig. 3A, C, E). In contrast, the signals at m/z 509, 625, and 625 were detected as a mother ion, [M-H]−, in the negative mass spectra of oxLig-1, oxLig-2, and 13-COOH-7KC, respectively (Fig. 3B, D, F). In analysis of oxLig-2, another signal at m/z 627 was also detected as a mother ion of dihydroyloxLig-2 (Fig. 3D). In the negative mode, the signals at m/z 187, 243, and 243 were further observed as a daughter ion, [D-H]−, of oxLig-1, oxLig-2, and 13-COOH-7KC, respectively (Fig. 3B, D, F, and Fig. 4).

The Rf position of oxLig-2 was lower than those of the related α-carboxyl derivatives, i.e., oxLig-1 and 13-COOH-7KC, in TLC-ligand blot in either solvent A or B (Fig. 1 and Fig. 5), consistent with the deduced difference in polarity. After methylation with diazomethane, the bands corresponding to oxLig-1, oxLig-2, and 13-COOH-7KC (i.e., Me-oxLig-1, Me-oxLig-2, and Me-13-COOH-7KC, respectively) shifted to higher Rf positions than those of the untreated ligands in TLC analysis in solvent B (Fig. 5A). The peak of oxLig-2 appeared earlier (26.7 min) than those of oxLig-1 (27.3 min) and 13-COOH-7KC (28.9 min) when analyzed by the reversed phase HPLC. Further, peaks of Me-oxLig-1 (29.6 min), Me-oxLig-2 (27.1 min), and 13-COOH-7KC (30.0 min) appeared later than those of untreated ligands, respectively. Interestingly, methylation completely diminished both ligand-interactions with β2-GPI and an anti-β2-GPI Ab (either Cof-22 and EY2C9) in the TLC-ligand blot (Fig. 5B, C).

In ELISA for anti-β2-GPI Abs using a ligand-coated plate, significant binding of anti-β2-GPI auto-Abs (WB-CAL-1 and EY2C9) was observed to solid phase oxLig-1, oxLig-2, and 13-COOH-7KC, but not solid phase Me-oxLig-1, Me-oxLig-2, and Me-13-COOH-7KC. Identical re-

TABLE 1. Binding of β2-GPI and anti-β2-GPI Abs to non-treated or methylated ligands in ELISA

Soluble Phase Ligand	β2-GPI Binding (Cof-22 Binding)	WB-CAL-1 Binding	EY2C9 Binding			
	Non-Treated	Methylated	Non-Treated	Methylated	Non-Treated	Methylated
Chol-linolate	0.029 ± 0.004	N.T.	0.016 ± 0.007	N.T.	0.058 ± 0.015	N.T.
oxLig-1	1.936 ± 0.033	0.056 ± 0.004	0.958 ± 0.054	0.080 ± 0.020	1.947 ± 0.042	0.066 ± 0.020
oxLig-2	1.697 ± 0.057	0.082 ± 0.008	0.862 ± 0.179	0.107 ± 0.025	1.738 ± 0.008	0.057 ± 0.011
13-COOH	1.645 ± 0.064	0.122 ± 0.037	0.370 ± 0.066	0.067 ± 0.004	0.742 ± 0.021	0.105 ± 0.009

Anti-β2-GPI Abs were incubated in a non-treated or methylated ligand-coated well in the presence (15 μg/ml) of β2-GPI. Numbers indicate Ab binding (absorbance at 490 nm), the mean ± SD of triplicate samples. No Ab binding was detected to solid phase cholesterol or 7-ketocholesterol in the ELISA. Chol-linolate, cholesteryl linolate; N.T., not tested.
results were obtained with Cof-22, a mouse monoclonal anti-
β₂-GPI Ab obtained from a human β₂-GPI-immunized mouse (Table 1). All three Abs failed to bind to solid phase cholesterol, 7-ketocholesterol, and cholesteryl linoleate. From all of these results and the previously reported observations (43), the most likely structure of oxLig-2 was concluded to be that of 7-ketocholesteryl-12-carboxy (keto)-dodecanoate, one of the oxidized products derived from cholesteryl linoleate (Fig. 4). However, the exact location of the ketone-group was not assigned.

Liposome binding to macrophages

Direct binding of liposomes containing oxLig-1, oxLig-2, or 13-COOH-7KC to mouse macrophages, i.e., J774A.1 cells, was compared with that of liposomes containing DPPS. DPPS-containing liposomes showed binding dependent upon the concentration of DPPS. In contrast, the liposomes containing oxLig-1, oxLig-2, or 13-COOH-7KC displayed relatively weak or negligible binding to the cells (Fig. 6A). Further, we have done inhibition experiments to see whether scavenger receptor(s) is involved in the binding of liposomes containing β₂-GPI ligands. As shown in Fig. 6B and Table 2, binding of oxLig-1-liposomes to macrophages was inhibited by the addition of poly(I) or fucoidan but not by poly(C). Similar results were obtained with DPPS-liposomes. In contrast, the binding of oxLig-2 or 13-COOH-liposomes was not affected even by the addition of poly(I) or poly(C). These results indicate that the scavenger receptor(s) may primarily be involved in binding of liposomes containing DPPS to macrophages but may only be weakly involved in those with β₂-GPI ligand-containing liposomes. Conversely, the uptake of oxLig-1, oxLig-2, and 13-COOH-7KC-containing liposomes by J774A.1 cells was significantly enhanced in the presence of both β₂-GPI and an anti-β₂-GPI Ab (WB-CAL-1), as compared with control binding of cholesteryl linoleate-liposomes (Fig. 7A–D). In contrast, binding of liposomes was almost completely eradicated by methylation of oxLig-1, oxLig-2, or 13-COOH-7KC (Fig. 7C, D). The β₂-GPI and anti-β₂-GPI Ab-mediated binding of ligand-containing liposomes was not affected either by poly(I) or poly(C).

DISCUSSION

We previously reported that the major lipid ligand, oxLig-1, specific for β₂-GPI and anti-β₂-GPI auto-Ab de-

TABLE 2. Effect of scavenger receptor’s inhibitors on direct or β₂-GPI/antibody-mediated binding of ligand-containing liposomes to macrophages

Ligand	Control (w/o) Binding	w/poly(I) Binding	w/poly(C) Binding		
		%	%		
(A) Direct binding	oxLig-1	0.107 ± 0.007	0.073 ± 0.015 (68.8)	0.123 ± 0.014 (115)	N.S.
	oxLig-2	0.076 ± 0.012	0.079 ± 0.016 (104)	0.078 ± 0.010 (105)	N.S.
	C13-COOH-7KC	0.100 ± 0.005	0.085 ± 0.017 (85.0)	0.119 ± 0.012 (119)	N.S.
(B) β₂-GPI/antibody-mediated binding	oxLig-1	4.08 ± 0.57	4.02 ± 0.23 (98.5)	4.04 ± 0.30 (99.0)	N.S.
	oxLig-2	1.98 ± 0.19	2.34 ± 0.20 (118)	2.53 ± 0.45 (128)	N.S.
	C13-COOH-7KC	0.761 ± 0.11	0.912 ± 0.30 (120)	0.797 ± 0.18 (105)	N.S.

poly(I), polyinosinic acid; poly(C), polycytidylic acid; P, Student’s t-test; N.S., not significant.

J774A.1 cells were incubated with ligand-containing liposomes, β₂-GPI, and WB-CAL-1 in the presence (100 μg/ml) or absence of poly(I) or poly(C). Numbers indicate Ab binding (absorbance at 490 nm), the mean ± SD of triplicate samples.
triplicate samples. Some was also compared. Data are indicated as the mean ± SD oftriplicate samples. In panels B, C, and D, binding of methylated ligand-lipo-

Fig. 7. β2-GPI and anti-β2-GPI Ab-dependent binding of ligand-containing liposomes to macrophase. A monolayer of J774A.1 cells was incubated for 2 h at 4°C with Celgloser-P medium containing 3H-labeled liposomes containing 30 mol% ligand (50 nmol lipid/well) in the presence (closed square) or absence (open square) of β2-GPI (200 μg/ml) and WB-CAL-1 (100 μg/ml). A: Cholesteryl linoleate-containing liposome; B: oxLig-1-containing liposomes; C: oxLig-2-containing liposomes; D: 13-COOH-7KC-containing liposomes. In panels B, C, and D, binding of methylated ligand-lipo-
somes was also compared. Data are indicated as the mean ± SD oftriplicate samples.

rived from the lipid oxidation of LDL (35), is oxLig-1 (Fig. 4). In the present study, we isolated another ligand (oxLig-2), which we characterized to be keto-dodecanoate. Deri-
vatization of such ligands now demonstrate that an ω-carboxy-

properties of oxLDL extracted from atherosclerotic lesions (28).

The Cu2+-dependent oxidative products include cho-

Fig. 7. β2-GPI and anti-β2-GPI Ab-dependent binding of ligand-containing liposomes to macrophase. A monolayer of J774A.1 cells was incubated for 2 h at 4°C with Celgloser-P medium containing 3H-labeled liposomes containing 30 mol% ligand (50 nmol lipid/well) in the presence (closed square) or absence (open square) of β2-GPI (200 μg/ml) and WB-CAL-1 (100 μg/ml). A: Cholesteryl linoleate-containing liposome; B: oxLig-1-containing liposomes; C: oxLig-2-containing liposomes; D: 13-COOH-7KC-containing liposomes. In panels B, C, and D, binding of methylated ligand-liposomes was also compared. Data are indicated as the mean ± SD of triplicate samples.

rived from the lipid oxidation of LDL (35), is oxLig-1 (Fig. 4). In the present study, we isolated another ligand (oxLig-2), which we characterized to be keto-dodecanoate. Deriva-
tization of such ligands now demonstrate that an ω-carboxy-

Fig. 7. β2-GPI and anti-β2-GPI Ab-dependent binding of ligand-containing liposomes to macrophase. A monolayer of J774A.1 cells was incubated for 2 h at 4°C with Celgloser-P medium containing 3H-labeled liposomes containing 30 mol% ligand (50 nmol lipid/well) in the presence (closed square) or absence (open square) of β2-GPI (200 μg/ml) and WB-CAL-1 (100 μg/ml). A: Cholesteryl linoleate-containing liposome; B: oxLig-1-containing liposomes; C: oxLig-2-containing liposomes; D: 13-COOH-7KC-containing liposomes. In panels B, C, and D, binding of methylated ligand-liposomes was also compared. Data are indicated as the mean ± SD oftriplicate samples.

rived from the lipid oxidation of LDL (35), is oxLig-1 (Fig. 4). In the present study, we isolated another ligand (oxLig-2), which we characterized to be keto-dodecanoate. Derivatization of such ligands now demonstrate that an ω-carboxyl function introduced by Cu2+-oxidation is critical for an interaction with β2-GPI and its ligands. Foam cell formation is regarded as the hallmark of early atherogenesis, and LDL is the major source of the lipid deposited in foam cells (26). Native LDL, under normal physiological conditions, cannot induce foam cell formation. The binding of modified LDL to scavenger receptors and possibly other cell surface sites on macrophages leads to unregulated cholesterol accumulation and the formation of foam cells with development of atherosclerotic lesions (44, 45).

Although the nature of the agents responsible for LDL oxidation in vivo is unknown, several candidates have been proposed (46–49). LDL oxidized with Cu2+ ion in vitro exhibits the physicochemical and immunological
of liposomes containing oxLig-1, oxLig-2, and 13-COOH-7K to the macrophages (Fig. 7). Further, polyclonal did not have any inhibitory effect on the binding of ligand-containing liposomes in the presence of β2-GPI and an anti-β2-GPI Ab. These results suggest that β2-GPI and anti-β2-GPI Ab mediated uptake of oxLDL occurs through Fcy receptor on macrophages but not via scavenger receptor(s) (61–64).

In the present study, we demonstrate that oxidized cholesterol esters, especially those with 7-ketocholesterol and a ω-carboxyl function in the acyl chain are ligands for β2-GPI and anti-β2-GPI auto-Ab. Such auto-Ab are found in APS patients and in an animal model, the WF B1 mouse. Furthermore, one major class of biochemically oxidized compounds derived from plasma LDL consists of ω-carboxylated oxysterols such as oxLig-1 and oxLig-2. Although 13-COOH-7K is an artificially synthesized compound, it also showed significant binding to β2-GPI as well as oxLig-1 and -2.

Most recently, we observed that high levels of circulating immune complexes containing oxLDL, β2-GPI, and anti-β2-GPI auto-Ab in the blood stream, were associated with development of arterial thrombosis in APS patients (unpublished observations). Thus, ω-carboxylation of oxysterol esters to form the autoantigenic complex of β2-GPI bound to oxLDL may have patho-physiologically (etiologically) important roles, especially in development of APS and atherosclerosis.14

This work was supported in part by a grant for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan and by grants from the Ministry of Health and Welfare of Japan.

REFERENCES

1. Hughes, G. R. V., E. N. Harris, and A. E. Gharavi. 1986. The antiphospholipid syndrome. J. Rheumatol. 13: 486–489.
2. Harris, E. N., A. E. Gharavi, M. L. Boey, B. M. Patel, C. G. Mackworth-Young, S. Loizou, and G. R. V. Hughes. 1983. Antiphospholipid antibodies: detection by radioimmunoassay and association with thrombosis in systemic lupus erythematosus. Lancet. 2: 1211–1214.
3. McNeil, H. P. R., J. Simpson, C. N. Chesterman, and S. A. Krilis. 1990. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: β2-glycoprotein I (apolipoprotein H). Proc. Natl. Acad. Sci. USA. 87: 4120–4124.
4. Galli, M., P. Comfurius, C. Maassen, H. C. Hemker, M. H. De Baets, P. J. C. Van Breda-Vriesman, T. Barbui, R. F. A. Zwaal, and E. M. Bevers. 1999. Antiphospholipid antibodies (ACA) directed not to carboxyl but to a plasma protein cofactor. Lancet. 353: 1544–1547.
5. Matsuura, Y., I. Igarashi, M. Fujimoto, K. Ichikawa, and T. Koike. 1990. Antiphospholipid cofactor(s) and differential diagnosis of autoimmune disease. Lancet. 336: 177–178.
6. Matsuura, E., Y. Igarashi, T. Yasuda, D. A. Triplet, and T. Koike. 1994. Antiphospholipid antibodies recognize β2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J. Exp. Med. 179: 457–462.
7. Koike, T., A. Tsutsumi, K. Ichikawa, and E. Matsuura. 1995. Antigenic specificity of the “antiphospholipid” antibodies. Blood. 85: 2277–2288.
8. Igarashi, M., E. Matsuura, Y. Igarashi, H. Nagae, K. Ichikawa, D. A. Triplet, and T. Koike. 1996. Human β2-glycoprotein I as an antiphospholipid cofactor determined using deleted mutants expressed by a baculovirus system. Blood. 87: 3262–3270.
9. Chamley, L. W., A. M. Duncaif, B. Konarkowska, M. D. Mitchell, and P. M. Johnson. 1999. Conformationally altered β2-glycoprotein I is the antigen for antiphospholipid autoantibodies. Clin. Exp. Immunol. 115: 571–576.
10. Wang, S. X., Y. T. Sun, and S. F. Sui. 2000. Membrane-induced conformational change in human apolipoprotein H. Biochem. J. 348: 103–106.
11. Roubey, R. A. S., R. A. Eisenberg, M. F. Harper, and J. B. Winfield. 1995. Antiphospholipid” autoantibodies recognize β2-glycoprotein I structure in the absence of phospholipid. Importance of Ag density and bivalent binding. J. Immunol. 154: 954–960.
12. Toczniak, A., L. Spatola, E. Prati, F. Allegri, P. Ferrari, R. Cattaneo, P. Meroni, and G. Balerstitieri. 1996. The anti-β2-glycoprotein I activity in human anti-phospholipid syndrome sera is due to monoreactive low-affinity autoantibodies directed to epitopes located on native β2-glycoprotein I and preserved during species’ evolution. J. Immunol. 157: 5732–5738.
13. Sheng, Y., D. A. Kandiah, and S. A. Krilis. 1998. Anti-β2-glycoprotein I autoantibodies from patients with the “antiphospholipid” syndrome bind to β2-glycoprotein I with low affinity: dimerization of β2-glycoprotein I induces a significant increase in anti-β2-glycoprotein I antibody affinity. J. Immunol. 161: 2038–2043.
14. Lutters, B. C. H., J. C. M. Meijers, R. H. W. M. Derksen, and J. Armstrong. 2001. Dimers of β2-glycoprotein I mimic the in vitro effects of β2-glycoprotein I and β2-glycoprotein I antibody complexes. J. Biol. Chem. 276: 3060–3067.
15. Wurm, H. 1984. β2-glycoprotein-I (apolipoprotein H) interactions with phospholipid vesicles. Int. J. Biochem. 16: 511–515.
16. Polz, E. 1988. Isolation of a Specific Lipid-Binding Protein from Human Serum By Affinity Chromatography Using Heparin-Sepharose. In: Progress in Biological Fluids. H. Peeters, Editor. Pergamon Press, Oxford. 817–820.
17. Vazquez-Mellado, J. L., L. Llorente, Y. Richaud-Patin, and D. Alarcón-Segovia. 1994. Exposure of anionic phospholipids upon platelet activation permits binding of β2-glycoprotein I and through it that of IgG anti-phospholipid antibodies. Studies in platelets from patients with antiphospholipid syndrome and normal subjects. J. Autoimmun. 7: 335–348.
18. Price, B. E., J. Rauch, M. A. Shia, M. T. Walsh, W. Lieberthal, H. M. Gilligan, T. O’Laughlin, J. S. Koh, and J. S. Levine. 1996. Anti-phospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a β2-glycoprotein-I dependent manner. J. Immunol. 157: 2901–2908.
19. Bouma, B., P. G. de Groot, J. M. H. van den Elsen, R. B. G. Ravelli, A. Schouten, M. J. A. Simmelink, R. H. W. M. Derksen, J. Kroon, and P. Gros. 1999. Adhesion mechanism of human β2-glycoprotein I to phospholipids based on its crystal structure. EMBO J. 18: 5166–5174.
20. Hoshino, M., Y. Hagihara, I. Nishi, T. Yamazaki, H. Kato, and Y. Goto. 2000. Identification of the phospholipid-binding site of human β2-glycoprotein I domain V by heteronuclear magnetic resonance. J. Mol. Biol. 304: 927–939.
21. Hong, D. P., Y. Hagihara, H. Kato, and Y. Goto. 2001. Flexible loop of β2-glycoprotein I domain V specifically interacts with hydrophobic ligands. Biochemistry. 40: 8097–8100.
22. Nakaya, Y., E. J. Schaefer, and H. B. Brewer, Jr. 1980. Activation of human post heparin lipoprotein lipase by apolipoprotein H (β2-glycoprotein I). Biochem. Biophys. Res. Commun. 95: 1168–1172.
23. Polz, E., and G. M. Kostner. 1979. The binding of β2-glycoprotein-I to human serum lipoproteins. Distribution among density fractions. FEBS Lett. 102: 183–186.
24. Polz, E., and G. M. Kostner. 1979. Binding of β2-glycoprotein-I to intimalipid: determination of the dissociation constant. Biochem. Biophys. Res. Commun. 90: 1305–1312.
25. Ross, R. 1986. The pathogenesis of atherosclerosis-an update. N. Engl. J. Med. 314: 488–500.
26. Ross, R. 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 362: 801–809.
27. Palinski, W., M. E. Rosenfeld, S. Yli-Herttuala, G. C. Gurtner, S. S. Socher, S. W. Butler, S. Parthasarathy, T. E. Carew, D. Steinberg, and J. L. Witztum. 1989. Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl. Acad. Sci. USA. 86: 1572–1576.
28. Yli-Herttuala, S., W. Palinski, M. E. Rosenfeld, S. Parthasarathy, T. E. Carew, S. Butler, J. L. Witztum, and D. Steinberg. 1989. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J. Clin. Invest. 84: 1086–1095.
