SUPPLEMENTARY MATERIAL

Cytotoxicity of an Unprecedented Brominated Oleanolide and a New Furoceramide from the Cameroonian Spice, *Echinops giganteus*.

Louis P. Sandjoa,*, Victor Kueteb,c, Xavier S. Noundoud, Herve M. P. Poumalea, and Thomas Efferthc,*

aDepartment of Pharmaceutical Sciences, CCS –Universidade Federal de Santa Catarina, Trindade, 88040-900 - Florianopolis, SC, Brazil.

bDepartment of Biochemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon

cDepartment of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany

dDepartment of Chemical Technology, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa

* Authors for correspondence

Dr. Louis P. Sandjo E-mail: p.l.sandjo@ufsc.br

Prof. Thomas Efferth Phone: +49-6131-3925751; Fax: +49-6131-39-23752; E-mail: efferth@uni-mainz.de

Abstract

A preliminary study on *Echinops giganteus* (Asteraceae) showed that the methanolic extract has interesting cytotoxicities against a panel of cancer cell lines. From this extract, a lignan, a flavonoid and a polyacetylenic thiophene identified were 3 folds less cytotoxic than the extract. In the search of the metabolites responsible for the bioactivity, a new harvested *E. giganteus* was subjected to a phytochemical study using chromatographic methods. In the course of the work, two new compounds: a brominated oleanolide (1) and a tetrahydrofurano-ceramide (2) were obtained along with \(\beta\)-amyrin acetate (3), 2-(penta-1,3-diynyl)-5-(4-hydroxybut-1-ynyl)-thiophene (4), 2-(penta-1,3-diynyl)-5-(3,4-dihydroxybut-1-ynyl)-thiophene (5) and 4-hydroxy-2,6-di-(3′,4′-dimethoxyphenyl)-3,7-dioxabicyclo-(3.3.0)octane (6). Their structures were determined on the basis of NMR spectroscopy and mass spectrometry data in conjunction with those reported in the literature. The cytotoxicity of 1, 2, and 5 was evaluated by employing resazurin assay against a panel of cancer cell lines with \(IC_{50}\) values in range 6.12±0.46 - 46.96±3.61 \(\mu\)M.

\textbf{Keywords:} Asteraceae; *Echinops giganteus*; brominated triterpene; furoceramide; cytotoxicity
Figure S1 Mass spectrum of compound 1

Figure S2 1H NMR spectrum of compound 1
Figure S3 13C NMR spectrum of compound 1

Figure S4 COSY spectrum of compound 1
Figure S5 HSQC spectrum of compound 1

Figure S6 HMBC spectrum of compound 1
Figure S7 NOESY spectrum of compound 1
Figure S8 1H NMR spectrum of compound 2

Figure S9 13C NMR spectrum of compound 2
Figure S10 COSY spectrum of compound 2

Figure S11 HSQC spectrum of compound 2
Figure S12 HMBC spectrum of compound 2

Figure S13 NOESY spectrum of compound 2
Figure S14 COSY, HMBC and NOESY correlations of compound 1

Figure S15 COSY, HMBC and NOESY correlations of compound 2

Figure S16 Position of the double bond in compound 2
Figure S17 Proposal of the biosynthetic pathway of compound 1 (Thimmappa et al., 2014)
Figure S18 ESI Tandem MS spectrum of compound 2, m/z 678.6 [M+H]^+
Figure S19 Fragmentation pattern of compound 2 (part 1)
Figure S20 Fragmentation pattern of compound 2 (part 2)
Reference

Thimmappa R, Geisler K, Louveau T, O’Maille P, Osbourn A. 2014. Triterpene Biosynthesis in Plants. Annu. Rev. Plant Biol. 65:225–257