The legume family contains over 19,500 species in ca. 765 genera, 36 tribes, and 6 currently recognized subfamilies worldwide, making it the third largest angiosperm family in terms of species diversity [Lewis et al. 2005; LPWG (Legume Phylogeny Working Group) 2013, 2017]. Ranging in size from tiny annual herbs to giant long-lived trees, Leguminosae are often ecologically dominant across the tropical and temperate biomes (Lewis et al. 2005; LPWG 2017). Many legume species are economically important, providing highly nutritious plant proteins for both humans and livestock (Duranti 2006; Voisin et al. 2014). Additionally, ca. 88% of legume species have the ability to establish associations with nitrogen-fixing bacteria via root nodules and hence are important for sustainable agriculture and ecosystem function (Graham and Vance 2003; LPWG 2013; Sprent et al. 2017). Previous deep-leaf phylogenetic studies mainly on a few of plastid loci (e.g., Wojciechowski et al. 2004; Lavin et al. 2005; McMahon and Sanderson 2006; Bruneau et al. 2008; LPWG 2013) have greatly clarified phylogenetic relationships of legumes. However, relationships among subfamilies and some major clades at the tribal level, particularly within Caesalpinioideae and Papilionoideae, have been difficult to resolve despite over two decades of research (LPWG 2013), with different plastid loci sometimes yielding incongruent, albeit weakly supported, topologies (Wojciechowski et al. 2004; Cardoso et al. 2012; LPWG 2013; LPWG 2017).

Phylogenomic approaches have been applied to tackle difficult relationships in diverse groups of organisms (e.g., Rokas et al. 2003; Jian et al. 2008; Jarvis et al. 2014). In plants, an increasing number of studies have found conflicting phylogenetic signal among nuclear loci (e.g., Wickett et al. 2014; Smith et al. 2015; Parks et al. 2018; Walker et al. 2018a), with this conflict attributed mainly to biological factors such as hybridization, incomplete lineage sorting, hidden paralogy, and horizontal gene transfer (Gallier 2008). However, increasing attention is being paid to the role of other factors—such as uninformative genes
and stochasticity, outlier genes, and systematic error—
in generating conflict in phylogenomic analyses (e.g.,
Brown and Thomson 2017; Shen et al. 2017; Walker et al. 2018b). In legumes, a recent phylogenomic study of
nuclear transcriptomic data and plastid genomes
provided new insights into subfamilial relationships and
early legume diversification, highlighting in particular
the prevalence of uninformative loci across both the
nuclear and plastid genomes and conflict at the
family’s deepest nodes (Koenen et al. 2020). While
nuclear conflict was thoroughly investigated by
Koenen et al. (2020), conflict within the plastome was not
fully explored. Plastome-scale data sets have been
widely regarded as useful for resolving enigmatic and
recalcitrant relationships (e.g., Xi et al. 2012; Coremykin
et al. 2015; Zhang et al. 2017), in part because the
plastome has long been considered to comprise a
single evolutionary unit (Birky 1995; Vogl et al. 2003),
meaning that genes can be concatenated in order to
amplify phylogenetic signal. However, other recent
studies have documented considerable conflict within
the plastome (e.g., Goncalves et al. 2019; Walker et al.
2019), suggesting that the operational assumption that
the plastome represents a single evolutionary unit
should be, if not abandoned, at least more thoroughly
examined.

There are multiple factors that could potentially
produce conflict in plastid phylogenies. Stochastic
inversions in fragments with low information content (due
to short gene lengths or few variable sites) seem to be
primary among them, but strongly supported conflicting
genes/signals have been observed (Walker et al. 2019),
warranting attention on other potential (biological)
sources including selection and the possibility of
‘chimeric’ plastomes, that is, those harboring genes
with distinct evolutionary histories. The potential for
biparental inheritance has been documented in many
angiosperm species (e.g., Corriveau and Coleman
1968; Zhang et al. 2003). Additionally, heteroplasmy
(the presence of distinct plastomes within a single
organism) has been directly documented in diverse
plant species (reviewed by Ramsey and Mandel 2019).
Heteroplasmy might in rare cases result in heteroplastic
recombination (Sullivan et al. 2017; Sancho et al.
2018), thus creating chimeric plastomes with potentially
conflicting evolutionary histories. Sharing of genes
among the plastid, nuclear, and mitochondrrial genomes
constitutes another (seemingly rare) source of gene
conflict in plastid phylogenomics (e.g., Straub et al.
2013; Smith 2014). Among non-parasitic angiosperms,
the legume family has one of the most complex
histories of plastome evolution (e.g., Palmer and
Thompson 1982; Palmer et al. 1987; Jansen et al. 2008;
Lei et al. 2016), including major clades diagnosed by
losses or expansions of the Inverted Repeat (IR)
region, as well as an array of gene losses and
inversions across the family’s phylogeny (Wang et al.
2018). In light of this complex history, conflicting
phylogenetic signals in legume plastomes deserve close
attention.

Using an extensive sampling of newly generated
plastomes, our study aims to resolve many of the most
problematic nodes of Leguminosae phylogeny while
exploring the distribution of phylogenetic signal and
conflict across plastome-inferred phylogenies in the
context of the family’s complex history of plastome
evolution. We estimated legume relationships using
plastomes of 187 species from 35 tribes and all
subfamilies, representing almost all major lineages
within the family (LPWG 2017). We applied multiple
strategies to minimize systematic errors, including
removal of ambiguously aligned regions, saturated
loci, and loci with low average bootstrap support, as
well as recently developed methods for characterizing
genomic conflict and evaluating phylogenetic signal
within genomic data sets. Leguminosae represent an
excellent system to explore the extent and impact of
conflict on plastid phylogenomics, a topic that is only
now being rigorously examined (e.g., Walker et al.
2019). We outline the significance of our results for
understanding legume evolution and for guiding future
phylogenomic studies employing the plastome.

MATERIALS AND METHODS

Plastome Sampling, Sequencing, Assembly, and Annotation

We sequenced plastomes for 151 species and
downloaded those of 36 additional species from NCBI
(https://www.ncbi.nlm.nih.gov); collectively these
species represent 35 of the 36 tribes (Lewis et al. 2005)
and major lineages of all six newly defined subfamilies
(LPWG 2017) of Leguminosae, as well as eight
outgroup taxa (Supplementary Table S1 available on
Dryad at https://doi.org/10.5061/dryad.1vhmgqpb).
Illumina sequencing of long-range PCR products
or genomic DNA was undertaken. Plastomes were
de novo assembled using SPAdes or GetOrganelle
(Camacho et al. 2009; Bankevich et al. 2012; Langmead
and Salzberg 2012; Wick et al. 2015; Jin et al. 2019)
for total DNA reads or using CLC Genomics Workbench
(CLC Bio) for long-range PCR reads. Details of
plastome assembly and annotation are available in the
Supplementary Materials and Methods available on
Dryad.

Sequence Alignment and Cleanup, Data Set Generation, and
Phylogenetic Analysis

We developed new custom python scripts
(https://github.com/Kinggerm/PersonalUtilities/)
to automatically extract all annotated regions from
plastomes and to rapidly concatenate the alignments of
separate loci. Each locus was individually aligned using
MAFFT (Katoh and Standley 2013). After excluding
loci of low quality or with fewer than four species, we
obtained three basic data sets: the PC (coding regions),
PN (noncoding regions), and PCN (the concatenated
PC and PN) data sets. Three strategies were then
applied to reduce systematic error from the three basic data sets: pruning the ambiguously aligned regions, excluding loci with low levels of substitutional saturation (Supplementary Table S2, Fig. S1 available on Dryad), and excluding loci with low average ultrafast bootstrap (UFBoot) support (i.e., <70% and 80%). These strategies resulted in an additional 23 modified data sets; thus, including the original three data sets, 26 data sets were used in subsequent analyses.

We generated phylogenetic trees for each of the 26 concatenated data matrices (Supplementary Table S3 available on Dryad) as well as for individual genes and spacers using IQ-TREE (Nguyen et al. 2015; Chernomor et al. 2016; Hoang et al. 2018). Following these analyses, four data sets (PN-GB-strict, PCN-GB-strict, PN-slope2, and PCN-GB-slope2; GB stands for the program Gblocks, which was used to remove ambiguously aligned regions; see Supplementary Methods available on Dryad for more detailed description of these data sets) were excluded from subsequent analyses. PN-GB-strict was excluded due to its support for an outlier topology. As a result, we excluded PCN-GB-strict, as it includes the PN-GB-strict data set. PN-slope2 was excluded due to insufficient taxon sampling. Similarly, PCN-GB-slope2 was excluded due to its inclusion of the problematic PN-slope2. Thus, moving forward, 22 data sets were subjected to further analysis.

Quantification of Phylogenetic Signal for Alternative Tree Topologies

Following the methods of Smith et al. (2011), Shen et al. (2017) and Walker et al. (2018b), we evaluated phylogenetic signal within three sets of conflicting topologies. For the first set of conflicting topologies, concerning the root of Leguminosae, we compared signal for three alternative resolutions (i.e., the percentage of loci supporting each topology) across each of the 22 generated data sets. For these three topologies, we also calculated the gene-wise log-likelihood support (GLS), the site-wise log-likelihood scores (SLS), the summed difference in SLS (ΔSLS) and in GLS (ΔGLS) among the alternative hypotheses in each conflicting topology for each of the 22 data sets (Supplementary Fig. S2 available on Dryad). To reduce the conflict at the root of Leguminosae, we then removed and binned the loci supporting alternative topologies in the three main data sets (PC, PN, and PCN), and identified and removed outlier loci in these data sets assuming that for each data set the average ΔSLS of a locus follows a Gaussian-like distribution. (Supplementary Fig. S3 available on Dryad). This resulted in six additional reduced data sets (bringing the total number of data sets to 28). We reconstructed the phylogenetic trees for these six data sets and recalculated phylogenetic signal to compare the effect of the abovementioned two removals. We also applied these phylogenetic signal analyses for two alternative positions of *Pteroygus* (Supplementary Fig. S4b available on Dryad) in the PC, PN, and PCN data sets (see Supplementary Methods available on Dryad for more details).

Test of Topological Concordance

We estimated topological concordance among phylogenetic trees by all-to-all Robinson–Foulds distance using IQ-TREE and Principal Coordinates Analysis (PCoA) clustering in R (R Development Core Team 2015), and Robinson–Foulds symmetric differences and the UPGMA clustering method using TreeSpace (Jombart et al. 2017).

We quantified conflict and concordance among the 28 data set trees using the bipartition method of PhyParts (Smith et al. 2015, Supplementary Fig. S5 available on Dryad), using an iterative approach to identify the topology most concordant with all data sets (see Supplementary Methods available on Dryad for more details). We also assessed conflicts among gene trees by mapping 226 rooted gene trees constructed by RAxML (Stamatakis 2014) against the PCN (the tree with the highest concordance with the other data set trees, Supplementary Fig. S6 available on Dryad). Finally, because recent studies have recommended the use of coalescent methods for analyzing plastid loci (e.g., Gonçalves et al. 2019), we used ASTRAL (Zhang et al. 2018) to infer species tree using the 226 locus trees from RAxML. We ran two default analyses in which i) all bipartitions were included and ii) bipartitions with <10% bootstrap support were collapsed prior to the analyses, as recommended in (Zhang et al., 2017). Additional details of the methods are available in the Supplementary Materials and Methods available on Dryad.

RESULTS AND DISCUSSION

New Insights into Deep Phylogenetic Relationships of Leguminosae

Using an increased sampling of species and methods for dissecting signal and conflict among loci, our plastid phylogenomic study has resolved with strong support many recalcitrant deep relationships within Leguminosae (detailed statistics of the assembled plastome sequences are provided in Supplementary Table S1 available on Dryad, and the characteristics of all 32 modified data sets, including the four excluded data sets, are provided in Table 1; additional details about the S1 coding loci, the 14S noncoding loci, and the 32 data sets are found in Dryad https://doi.org/10.5061/dryad.1vhmgbpb). all phylogenetic trees are found in Supplementary file S1 available on Dryad). With the exclusion of data sets that produced an outlier tree topology (Supplementary Figs. S7 and S8 available on Dryad), contained insufficient parsimony-informative sites, and/or had limited taxon sampling (Table 1), the
remaining 28 data sets produced largely congruent topologies with respect to major legume relationships regardless of the properties (coding or noncoding) of the data set and the various strategies for removing sites, loci, or outlier loci. The PCN tree from the iterative topological concordance analyses was the most concordant summary of the 28 data sets analyzed, and iterative topological concordance analyses was the most supported in all analyses, as recently reported by (LPWG 2017) based on matK and 81 plastid coding genes. This relationship was also recovered in the analyses of Koenen et al. (2020), except that Dupaquetioideae was not sampled in their nuclear data set. However, the relationships among DDCP, Cercidoideae, and Detarioideae remained unresolved in our analyses, with all three possible relationships supported by different data sets in our analyses. The topology of (Cercidoideae, (Detarioideae, DDCP)) was strongly supported in the PC-GB-default data set (UFBoot ≥ 94%) and the PCN-GB-default data set (UFBoot ≥ 93%), consistent with previous studies based on a few plastid loci (e.g., Doyle et al. 2000; Bruneau et al. 2001; Kajita et al. 2003) as well as the plastome analyses of Koenen et al. (2020). The topology of (Detarioideae, (Cercidoideae, DDCP)) was supported by the multiple PC and PCN data sets (see Supplementary Methods available on Dryad); this relationship was also weakly supported in the study of Bruneau et al. (2008). The topology of ((Cercidoideae, Detarioideae), DDCP) was strongly supported by most PN-derived data sets with UFBoot > 90% (Supplementary Table S4 available on Dryad); the same topology was reconstructed based on 101 single-copy nuclear genes (Bootstrap Support = 61%; Cannon et al. 2015), while the nuclear analyses of Koenen et al. (2020) recovered Cercidoideae + Detarioideae as sister to DDCP. The ASTRAL analyses were largely consistent with results from the concatenation analyses. Like the concatenation analyses, the ASTRAL results showed poor resolution at the root node, with Cercidoideae + Detarioideae sister to the rest of the family (with low support) when all bipartitions were included (Supplementary Fig. S10 available on Dryad), and with Detarioideae sister to the rest of the family when branches with <10% bootstrap support were collapsed (Supplementary Fig. S11 available on Dryad). The difficulty in confidently resolving these deepest relationships of Leguminosae has been attributed to rapid diversification of these lineages (Lavin et al. 2005; Koenen et al. 2020) and ancient polyploidization (Cannon et al. 2015).

Given the inability of both nuclear (Koenen et al. 2020) and plastid (this study) genomic data sets to fully resolve the legume root, it seems possible that this represents a hard polytomy, with a more-or-less simultaneous origin of major legume lineages. Future studies might explore the implications of a hard polytomy for understanding early morphological and genomic diversification in this important family.

In contrast to these problematic deep relationships, our analyses significantly clarified relationships within the Leguminosae subfamilies (Fig. 1 and Supplementary Fig. S5 and Table S4 available on Dryad). Within Caesalpinioideae, the two clades of the Umtiza grade ([((Acrocarpus, Acrocarpus, Ceratonia) and (Umtiza, Geldidia, Gymnocladus)]) were subsequent sisters to remaining members of the subfamily in all data sets except the PC-GB-default data set. A robustly supported Cassia clade was resolved as sister to the remaining Caesalpinioideae, which is divided into two clades (see Supplementary Results available on Dryad). Within Papilionoideae,
FIGURE 1. Cladogram (left) and phylogram (right) of the maximum-likelihood tree of Leguminosae derived from the plastid phylogenomic analysis of a concatenated data set including 81 coding and 145 noncoding loci (PCN data set). Relationships inconsistent with the other inferred trees (Supplementary Table S4 and File S1 available on Dryad) are indicated. Nodal support values for the PC/PN/PCN data sets (see text for data set composition) are from IQ-TREE ultrafast bootstrapping analyses. Only support values >100% UFBoot are shown. Hyphens (-) identify splits not supported by the PC or PN data sets. Thick solid lines indicate internodes that were congruently and robustly supported by different data sets. Thin solid lines indicate internodes that were robustly supported by partial data sets without significant conflicts in other data sets. Dashed lines indicate internodes that were robustly supported by partial data sets but had alternative topologies in other data sets. The tree shown is the same as the PCN tree in Supplementary File S1 available on Dryad, with the outgroup taxa removed. Images of representative species from clades across the family from top to bottom are: Colophospermum mopane (Benth.) Leanard (from https://www.dreamstime.com), Amherstia nobilis Wall. (photo courtesy: Dr. K. Karthikeyan, https://doi.org/10.13140/rg.2.1.3932.3287), Cercis silicicrustam L. (photographer: Phil Bendle, http://khanoc1.plymouth.peoplenetworks.info), Tylocaea fregilennis (Schweinf.) Torre & Hill: (https://upload.wikimedia.org), Dupanquela ochloba Ball. (photographer: M. de la Estrella), Patalotyphis labichoides R. Br. (http://www.bkaussi.de), Bulganaria madagascariensis (Desv.) J.H.Kirkbr. & Wiersema (photographer: M. Seleck, http://copperflowers.org), Clitoria ternata L. (photographer: F. Guadagni, http://erleogna.myphotos.cc), Lathyrus latifolius L. (photographer: B. Tanneberger, https://www.flickr.com), Senna pendula H.S. Irwin & Barneby (photographer: L. P. Queiroz), Delonix regia (Hook.) Raf. (http://www.peakpx.com), Vachellia farnesiana (L.) Wight & Arn. (photographer: T. M. Perez, https://twitter.com), Dichrostachys cinerea (L.) Wright & Arn. (https://poosim.com).
study strongly supported the Swartzioideae clade, the ADA clade (comprising the tribes Amburaneae, Dipertygaeae, and Anglylocalyceae; Cardoso et al., 2012, 2013), and the Cladonostaceae clade as successive sisters to the 50-kb inversion clade (Fig. 1), whereas previous studies recovered, with weak support, an ADA and Swartzioideae clade as the first diverging lineage (Wojciechowski et al. 2004) or the ADA clade and the Swartzioideae clade as successive sisters to remaining papilionoids (Cardoso et al. 2012, 2013). Within subfamily Detarioideae (e.g., Bruneau et al. 2001, 2008; de la Estrella et al. 2017, 2018), we recovered the six tribes recognized by de la Estrella et al. (2018) with strong support and we were able to resolve the previously problematic relationships amongst these tribes (see Supplementary Results available on Dryad). Within subfamily Cercidoideae, Cercis and Adenolobus were robustly supported as successively sister to the remaining lineages, which is consistent with the results from Bruneau et al. (2008) and Sinou et al. (2009, 2020), and Bauhinia s.l. was resolved into two strongly supported clades (Fig. 1; see Supplementary Results available on Dryad). The placement of Griffonia was unresolved in past analyses, and in our analyses, it was strongly supported as either sister to the two Bauhinia s.l. clades (by all PC data sets and some PCN data sets) or as sister to Bauhinia s.l. I (i.e., the Phanero clade of Sinou et al. 2020) (by all PN data sets and some PCN data sets; Fig. 1 and Supplementary Table S4 available on Dryad).

Conflicting Phylogenetic Signals in the Plastome

Although our plastid analyses largely resolved recalcitrant relationships across Leguminosae phylogeny, we identified multiple instances of strongly supported conflict among plastid loci and among sequence types (coding vs. non-coding) at several long-controversial nodes in the family (e.g., the root of legumes and the positions of the genera Griffonia and Pterogyne). Strategies to reduce systematic error (including the removal of outlier genes, saturated nucleotide positions, and poorly supported genes; see Supplementary Materials available on Dryad for more details) were effective for resolving many previously contentious relationships, but not for the root of legumes and the positions of the genera Griffonia and Pterogyne, for example, where conflict/concordance analysis of the gene trees (Supplementary Fig. S6 available on Dryad) revealed considerable strongly supported gene tree conflict. Concerning the root of legumes, subsets of genes supported three main alternative resolutions (Fig. 2, Supplementary Table S5 available on Dryad). The alternative positions of Griffonia and Pterogyne seemed to be largely driven by distinct phylogenetic signal in the coding versus non-coding regions of the plastome (Supplementary Fig. S4 available on Dryad). It is possible that placements of these genera in PN data sets are driven by sequence saturation, as we inferred many of the PN regions to exhibit significant signatures of saturation (in contrast to the PC regions; Supplementary Tables S2 and S6 available on Dryad).

Both of these genera are relatively phylogenetically isolated (i.e., on long branches) and thus would be susceptible to misplacement with extensive homoplasy (due to long-branch attraction). The topology for the legume root predominantly favored in our analyses (i.e., that shown in Fig. 1) differs from the plastid results of Koenen et al. (2020), who recovered Cercidoideae as sister to the rest of the family with moderate support. However, their plastid analyses were based entirely on plastome analyses of the coding regions. Walker et al. (2019) found that, even across the phylogenetic breadth of angiosperms, the coding regions of the plastome did not show significant signs of saturation, and consequently, nucleotides proved much more informative relative to the remaining strongly supported conflict at ∼32% of nodes and strongly supported gene tree concordance at many others (Supplementary Fig. S6 available on Dryad). Stochasticity (stemming from rapid radiations and limited phylogenetic signal/information) and systematic error likely explain much of the observed conflict, and our efforts to reduce systematic error did indeed alleviate some of the observed conflict (Supplementary Fig. S6 available on Dryad). Nevertheless, other biological sources, such as heteroplasmic recombination, deserve consideration in light of the remaining strongly supported conflict. Potential for heteroplasm (based on pollen screenings) was documented in 19/61 legume species examined (Corriveau and Coleman 1988; Zhang et al. 2003), and heteroplasm has been directly documented in four legume genera: Astragalus (Lei et al. 2016), Cicir (Kumari et al. 2011), Medicago (Johnson and Palmer 1989; Lee et al. 1988), and Lens (Rajora and Mahon 1995). Plastid recombination is generally regarded as rare (Birky 1995), but several recent studies have highlighted potential cases of heteroplasmic recombination (Sullivan et al. 2017; Sancho et al. 2018), and this phenomenon has been documented in the laboratory (Medgyesy et al. 1985). We hesitate to attribute any of our observed conflict to
FIGURE 2. The distribution of phylogenetic signal for three alternative topological hypotheses at the root of Leguminosae. a) (upper left) The three alternative topological hypotheses; (bottom left), ΔGLS proportion of loci supporting each of three alternative hypotheses across 22 data sets; (right) the summed ΔGLS values for each data set; b) the distribution of the ΔGLS values for three basic data sets (the PC, PN, and PCN data sets) and the derived data sets (details in Supplementary Methods available on Dryad) including (1) inconsistent loci removed and (2) outlier loci removed. The pies indicate the ΔGLS proportion supported by each alternative topology, and collectively show the signal distribution before and after removal of the inconsistent and outlier loci.
such causes, as explicit documentation of heteroplasmic recombination is a challenging task, beyond the scope of this study. Nevertheless, it is possible that the observed conflicts relate to the complex history of plastome structural evolution in legumes (e.g., Palmer and Thompson 1982; Palmer et al. 1987; Jansen et al. 2008; Lei et al. 2016; Wang et al. 2018), a topic that clearly deserves further attention in future studies. The results presented here, characterizing conflict across Leguminosae phylogeny, provide a critical roadmap for future investigations of plastome conflict and evolution across the family.

SUPPLEMENTARY MATERIAL
Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.tvhmqgqp.

ACKNOWLEDGMENTS
We thank Prof. M. van der Bank (The African Centre for DNA Barcoding, South Africa), Mr. S.M. Omosowon (Imperial College London, United Kingdom), Mr. N. Zamora (Museo Nacional de Costa Rica, Costa Rica), Dr. J. Cai, Mr. C. Liu, Mr. Y.-J. Guo, Mr. J.-D Ya and Dr. T. Zhang (Kunming Institute of Botany, Chinese Academy of Sciences, China), Royal Botanic Garden Edinburgh (United Kingdom), Royal Botanic Gardens Kew (United Kingdom), Institute of Botany (Chinese Academy of Sciences, China), Royal Museum national d’Histoire naturelle (France), Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, China for assistance in sample acquisitions. We are grateful to Dr. X.-X. Shen from Zhejiang University, China and Prof. T.H. Struck from University of Oslo, Norway for helpful discussions of our results. We sincerely thank Prof. S.A. Smith at the University of Michigan, USA and anonymous reviewers for helping to review the manuscript. All experiments for this study were facilitated by the Germplasm Bank of Wild Species at the Kunming Institute of Botany, Chinese Academy of Sciences. The use of DNA from Brazilian species is authorized by SISGEN No. R79ED6F.

REFERENCES
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455–477.

Birky C.W. 1995. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc. Natl. Acad. Sci. USA 92:11331–11338.

Brown J.M., Thomson R.C. 2017. Bayes factors unmask highly variable information content, bias, and extreme influence in phylogenomic analyses. Syst. Biol. 4.517–530.

Bruneau A., Forest F., Herendeen P.S., Kitätgaard B.B., Lewis G.P. 2001. Phylogenetic relationships in the Caesalpinioideae (Leguminosae) as inferred from chloroplast trnl.intron sequences. Syst. Bot. 26:487–514.

Bruneau A., Mercure M., Lewis G.P., Herendeen P.S. 2008. Phylogenetic patterns and diversification in the caesalpinoid legumes. Botany 86:697–718.

Camacho C., Lassmann T., Birney E., Durbin R., Eddy S.R., Krzywinski M., Li H., Larkin M.A., Marshall B., McLandress K., Madden T.L., Salmela L., Schöpfer F., Stokes J., Subbiah M., Tomlinson P., Trinick T., Urban N., Wettenhall D., Ye J., Zhang G., Zhang L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.

Cannon S.B., McKain M.R., Harkess A., Nelson M.N., Dash S., Deyholos M.K., Peng Y., Joyce B., Stewart Jr C.N., Rolf M., Kitchan T., Tan X., Chen C., Zhang Y., Carpenter E., Wong G.K., Doyle J.J., Loebens-Mack J. 2015. Multiple polyphyletic events in the early radiation of nodulating and nonnodulating legumes. Mol. Biol. Evol. 32:193–210.

Cardoso D., de Queiroz L.P., Pennington R.T., Lima H.C., Ponty E., Wojciechowski M.F., Lavin M. 2012. Revisiting the phylogeny of papilionoid legumes: new insights from comprehensively sampled early-branching lineages. Am. J. Bot. 99:1995–2013.

Cardoso D., Pennington R.T., de Queiroz L.P., Boatwright J.S., Van Wyk B.E., Wojciechowski M.F., Lavin M. 2013. Reconstructing the deep-branching relationships of the papilionoid legumes. S. Afr. J. Bot. 89:58–75.

Chencharova O., von Haeseler A., Minh B.Q. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65:997–1008.

Corriveau J.L., Coleman A.W. 1988. A rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am. J. Bot. 75:1443–1458.

Doyle J.J., Chappill J.A., Bailey C.D., Kajita T. 2000. Towards reliable DNA methods for PCR-based analysis of plant genetic resources. In: Herendeen P.S., Bruneau A., editors. Advances in legume systematics, Part 9. Richmond: Royal Botanic Gardens, Kew. p. 1–20.

Duranti M. 2006. Grain legume proteins and nutraceutical properties. Fitoterapia 77:67–82.

de la Estrella M., Forest F., Wieringa J.J., Fougere-Danacedan M., Bruneau A. 2017. Insights on the evolutionary origin of Detarioideae, a clade of ecologically dominant tropical African trees. New Phytol. 214:1722–1735.

de la Estrella M., Forest F., Kitätgard B., Lewis G.P., Mackinder B.A., de Queiroz L.P., Wieringa J.J., Bruneau A. 2018. A new phylogeny-based tribal classification of subfamily Detarioideae, an early branching clade of florally diverse tropical arborescent legumes. Sci. Rep. 8:6884.

Galtier N, Daubin V. 2008. Dealing with incongruence in phylogenomic analyses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363:4023–4029.

Gonzalez D.J.P., Simpson B.B., Ortiz E.M., Shimizu G.H., Jansen R.K. 2019. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol. Phylogenet. Evol. 138:219–232.
Goremykin V.V., Nikiforova S.V., Cavalieri D., Pindo M., Lockhart P. 2015. The root of flowering plants and total evidence. Syst. Biol. 64:497–501.

Graham PH, Vance C.P. 2003. Legumes: importance and constraints to greater use. Plant Physiol. 131:872–877.

Hoang D.T., Lavin M., Herendeen P.S., Wojciechowski M.F. 2005. Evolutionary lineages during the Tertiary. Syst. Biol. 54:575–594.

Langmead B., Salzberg S.L. 2012. Fast gapped-read alignment with Bowe r. Nat. Methods 9:357–359.

Lavin M., Herendeen PS, Wozjechowski M.F. 2005. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Cretaceous. Syst. Biol. 54:595–594.

Lee D.J., Blake TK, Smith S.E. 1988. Biparental inheritance of chloroplast DNA and the existence of heteroplasmic cells in alfalfa. Theor. Appl. Genet. 76:545–549.

Lei W., Ni D., Wang Y., Shao J., Wang X., Deng W., Chen H., Liu C. 2018. Bisexual and heteromorphic variations, gene losses and inversions in the chloroplast genome of Astragalus membranaceus. Sci. Rep. 6:21669.

Lewis G.P., Schrite B., Mackinder B., Lock M. 2005. Legumes of the World. Richmond: Royal Botanic Gardens, Kew.

LPWG (Legume Phylogeny Working Group). 2013. Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon 62:217–248.

LPWG (Legume Phylogeny Working Group). 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66:44–77.

McMahon M., Malth S.M. 2006. Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes. Syst. Biol. 55:818–836.

Medgyessy I., Fejes E., Maliga P. 1985. Interspecific chloroplast DNA recombination in a Nicotiana somatic hybrid. Proc. Natl. Acad. Sci. USA 82:6961–6964.

Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32:268–274.

Palmer J.D., Thompson W.F. 1982. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29:537–550.

Palmer J.D., Ostrov B., Aldrich J., Thompson W.F. 1987. Chloroplast DNA evolution among legumes: loss of an inverted repeat occurred prior to other sequence rearrangements. Curt. Genet. 11:275–286.

Parks M.B., Wickett N.J., Alwerson A.J. 2018. Signal, uncertainty, and conflict in phylogenomic data for a diverse lineage of microbial Eukaryotes (Diatoms, Bacillariophyta). Mol. Biol. Evol. 35:80–93.

P Development Core Team 2013. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.

Rapos O.P., Mahon D.J. 1995. Paternal plastid DNA can be inherited in lentil. Theor. Appl. Genet. 90:607–610.

Ramsey A., Mandel J.R. 2019. When one genome is not enough: organellar heteroplasm in plants. Ann. Plant Rev. 11:275–286.

Sancho R., Cantalapiedra C.P., López-Alvarez D., Gordon S.P., Vogel S.Y., Faircloth B.C., Nabholz B., Howard J.T., Suh A., Weber J., Timme L., Smith D.R. 2014. Mitochondrion-to-plastid DNA transfer: it happens. Proc. Natl. Acad. Sci. USA 111:13850–13855.

Shapiro B., Scharfe C. 2001. A fast and versatile toolkit for accurate de novo genome analyses resolve early branches in the tree of life of modern Eukaryotes (Diatoms, Bacillariophyta). Mol. Biol. Evol. 18:1631–1644.

Sinou C., Cardinal-McT eague W., Bruneau A. 2020. Testing generic and phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 20:364–367.

Smith D.R. 2014. Mitochondrion-to-plastid DNA transfer: it happens. Proc. Natl. Acad. Sci. USA 111:13850–13855.

Sommerfeldt E.L., Warnow T., Jun W., Gilbert M.T.P., Zhang G. 2014. Whole-genome analyses resolve early branches in the tree of life of modern legumes. Nature 511:275–286.

Straub S.C.K., Cronn R.C., Edwards C., Fishbein M., Liston A. 2013. Phylogenetic history of legumes: a phylogeny based on the plastid rbcL region. Mol. Biol. Evol. 30:772–780.

Sunderland R., Cantiapaliedra C.P., López-Alvarez D., Gordon S.P., Vogel S.Y. 2014. Mitochondrion-to-plastid DNA transfer: it happens. Proc. Natl. Acad. Sci. USA 111:13850–13855.

Palmer J.D., Thompson W.F. 1982. Chloroplast DNA rearrangements occurred prior to other sequence rearrangements. Curr. Genet. 11:275–286.

Palmer J.D., Thompson W.F. 1982. Chloroplast DNA rearrangements occurred prior to other sequence rearrangements. Curr. Genet. 11:275–286.
reticulate evolution in Picea (Pinaceae). Mol. Biol. Evol. 34:1689–1701.
Vogl C., Badger J., Kuarney P., Li M., Clegg M., Jiang T. 2003. Probabilistic analysis indicates discordant gene trees in chloroplast evolution. J. Mol. Evol. 56:330–340.
Voisin A.S., Guoqun J., Huyghes C., Jeffroy M.H., Magrini M.B., Meynard J.M., Mougèl C., Fellner S., Pilze E. 2014. Legumes for feed, food, biomaterials and bioenergy in Europe: a review. Agron. Sustain. Dev. 34:361–380.
Walker J.F., Yang Y., Feng T., Timoneda A., Mikenas J., Hutchison V., Edwards C., Wang N., Ahtiwaal S., Olivieri J., Walker-Hale N., Majure L.C., Puente R., Kaderojf G., Lauterbach M., Eggli U., Flores-Olvera H., Ochoterena H., Brockington S.F., Moore M.J., Smith S.A. 2018b. From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. Am. J. Bot. 105:446–462.
Walker J.F., Brown J.W., Smith S.A. 2018b. Analyzing contentious relationships and outlier genes in phylogenomics. Syst. Biol. 67:916–924.
Walker J.F., Walker-Hale N., Vargas O.M., Larson D.A., Stull W.G. 2019. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 7:e7747.
Wang Y.-H., Wicke S., Wang H., Jin J.-J., Chen S.-Y., Zhang S.-D., Li D.-Z., Yi T.-S. 2018. Plastid genome evolution in the early-diverging legume subfamily Cercidoideae (Fabaceae). Front. Plant Sci. 9:138.
Wick R.R., Schultz M.B., Zobel J., Holt K.E. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350–3352.
Wickett N.J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N., Ayyampalayam S., Barker M.S., Burleigh J.G., Gitzendanner M.A., Ruhfel B.R., Wurdack K.J., Endress P.K., Matthews M.L., Stevens P.F., Mathews S. 2012. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc. Natl. Acad. Sci. USA 109:17519–17524.
Zhang Q., Liu Y., Sodmergen. 2003. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol. 44:941–951.
Zhang C., Rabiee M., Sayyari E., Mirarab S. 2018. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19: 153.