Prospective functional classification of all possible missense variants in PPARγ

Amit R Majithia1–4, Ben Tsuda1,14, Maura Agostini5,14, Keerthana Gnanapradeepan1,14, Robert Rice1, Gina Peloso1,6, Kashyap A Patel7, Xiaolan Zhang1, Marjoleine F Broekema8, Nick Patterson1, Marc Duby1, Ted Sharpe1, Eric Kalkhoven8, Evan D Rosen4,9, Inês Barroso5, Sian Ellard7,10, UK Monogenic Diabetes Consortium11, Sekar Kathiresan13,4,12, Myocardial Infarction Genetics Consortium11, Stephen O’Rahilly5, UK Congenital Lipodystrophy Consortium11, Krishna Chatterjee5, Jose C Florez1–4, Tarjei Mikkelsen1,13, David B Savage5,15 & David Altshuler1–4,13,15

Clinical exome sequencing routinely identifies missense variants in disease-related genes, but functional characterization is rarely undertaken, leading to diagnostic uncertainty1,2. For example, mutations in PPARγ cause Mendelian lipodystrophy3,4 and increase risk of type 2 diabetes (T2D)5. Although approximately 1 in 500 people harbor missense variants in PPARγ, most are of unknown consequence. To prospectively characterize PPARγ variants, we used highly parallel oligonucleotide synthesis to construct a library encoding all 9,959 possible single–amino acid substitutions. We developed a pooled functional assay in human macrophages, experimentally evaluated all protein variants, and used the experimental data to train a variant classifier by supervised machine learning. When applied to 55 new missense variants identified in population-based and clinical sequencing, the classifier annotated 6 variants as pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis and prospective experimental characterization can support immediate diagnostic interpretation of newly discovered missense variants in disease-related genes.

A major challenge in clinical exome sequencing is determining the pathogenicity of missense variants incidentally found in genes previously implicated in a severe genetic disease1,2,6. Every exome contains ~200 missense variants that have never before been seen7. Few of these are in fact pathogenic, but functional testing is too slow and resource intensive to be deployed at scale, leading to many variants of uncertain significance (VUS)8. The lack of functional data and failure to explicitly incorporate information about ascertainment and prevalence can lead both to misdiagnosis6,9 (if a benign variant is presumed pathogenic) and overestimation of penetrance (if modestly functional variants are systematically excluded from disease databases).

Peroxisome proliferator–activated receptor γ (PPARγ) exemplifies the challenge of classifying newly identified variants even in a well-studied disease-implicated gene. Rare mutations in PPARγ cause familial partial lipodystrophy 3 (FPLD3)3,4, and a common missense variant, p.Pro12Ala, along with linked noncoding variants, associates with risk of T2D10,11. The molecular functions of PPARγ are well characterized12,13, including its role as the target of antidiabetic thiazolidinedione medications. Approximately 0.2% of the general population carries a rare missense variant in PPARγ, but only 20% of these variants are functionally relevant and associated with metabolic disease7.

To enable functional interpretation of PPARγ variants identified in exome sequencing, we constructed a cDNA library consisting of all possible amino acid substitutions in the protein (Fig. 1a and Supplementary Fig. 1). Based on the observation that primary monocytes isolated from the blood of patients with FPLD3 exhibit a blunted PPARγ response when stimulated with agonists ex vivo13, the construct library was introduced into human macrophages edited to lack the endogenous PPARγ gene (Supplementary Fig. 2). After stimulation with PPARγ agonists, cells were sorted by FACS according

1Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. 2Diabetes Research Center, Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. 3Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA. 4University of Cambridge Metabolic Research Laboratories, Wellcome Trust–Medical Research Council Institute of Metabolic Science, Cambridge, UK. 5Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA. 6Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK. 7Molecular Cancer Research and Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands. 8Division of Endocrinology and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA. 9Department of Molecular Genetics, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, UK. 10A list of members and affiliations appears in the Supplementary Note. 11Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. 12Present addresses: 1OX Genomics, Inc., Pleasanton, California, USA (T.M.) and Vertex Pharmaceuticals, Boston, Massachusetts, USA (D.A.). 13These authors contributed equally to this work. 14These authors jointly directed this work. Correspondence should be addressed to A.R.M. (amajithia@mgh.harvard.edu).

Received 11 March; accepted 23 September; published online 17 October 2016; doi:10.1038/ng.3700
to the level of expression of CD36, a canonical target of PPARγ in multiple tissues14,15 (Fig. 1a). The sorted CD36− and CD36+ cell populations were sequenced to determine the distribution of each PPARγ variant in relation to CD36 activity.

‘Function scores’ were generated for each amino acid substitution at each site in PPARγ (Figs. 1b and 2a, and Online Methods) by partitioning variants into those present in the CD36− and CD36+ FACS populations. Over 99% of all possible amino acid substitutions in the protein were covered. Of the 20 possible amino acids at each site, a change to proline was most likely to reduce function and a change to cysteine was best tolerated, consistent with the known conformational effects of amino acid side chains on protein structure.16 Each of the 505 amino acid positions in PPARγ was assigned a ‘tolerance score’ by combining the function scores for the 19 alternative amino acids at that position (Fig. 1b). Tolerance scores were overlaid on the known crystal structure of PPARγ (Fig. 2b)17, demonstrating that amino acid positions that are intolerant of substitution cluster at residues that contact DNA, co-activating proteins, and ligands (rosiglitazone) (Figs. 1b and 2b).

We next examined function scores derived from the CD36 macrophage assay for mutations previously reported in patients with lipodystrophy and/or insulin resistance and known to diminish PPARγ activity (Fig. 2a). These pathogenic variants (Fig. 2a,c) clustered in the PPARγ ligand-binding and DNA-binding domains6,18 and had function scores demonstrating enrichment in the bin corresponding to ‘low’ CD36 activity. In contrast, higher-frequency variants, including the common p.Pro12Ala variant, had function scores demonstrating enrichment in the bin corresponding to ‘high’ CD36 activity (Fig. 2c and Supplementary Table 1). The distributions of function scores for the pathogenic and common variants were significantly different (P < 6 × 10−7, Kolmogorov–Smirnov test).

We used linear discriminant analysis (LDA) to combine the function scores for each of the 9,595 variants across multiple agonist conditions (Fig. 2c) into a classifier that maximized discrimination between the set of lipodystrophy-associated variants and the set of high-frequency variants. The classifier emits the likelihood of each variant being drawn from either of these two classes (pathogenic or benign) and can be expressed as a continuous integrated function score (IFS) (Fig. 2c).

As stated above and described in the Online Methods, the classifier was trained on pathogenic variants obtained from the published literature and benign variants from population-based sequencing19. To evaluate the performance of the model on independent data, we turned to new variants obtained in population-based exome sequencing of PPARγ in patients referred to specialty clinics for possible lipodystrophy and early-onset diabetes. Specifically, we tested the predictions of functionality emitted by the classifier using standard assays and correlation with clinical phenotypes.

The classifier was applied to data from exome sequencing of 22,106 cases and controls selected for study of early-onset myocardial infarction (MIGEN)20. In total, 57 missense variants in PPARγ were observed with minor allele frequency (MAF) less than 0.1%. Of these, 74% (n = 42/57) were new and thus had not previously been functionally characterized (Supplementary Table 1). To calculate a posterior probability of pathogenicity relevant to the clinical context in which the carriers were identified, we combined the IFS values for these variants with the estimated prevalence of FPLD3 in the general population (1:100,000 to 1:1,000,000)18. One variant, p.Arg194Gln, was estimated to be pathogenic with high posterior odds (benign: pathogenic) of 1:10,000. The individual who was heterozygous for p.Arg194Gln carried a diagnosis of T2D and had fasting triglyceride levels in the 99th percentile (Supplementary Table 2). As described below, p.Arg194Gln was independently identified in a separate individual referred for clinical features of lipodystrophy (Fig. 3 and Supplementary Table 3) who similarly manifested T2D and severe hypertriglyceridemia. Moreover, the p.Arg194Gln variant abolished PPARγ transactivation activity in standard assays (Fig. 3c). The combination of clinical and functional data indicates that p.Arg194Gln is likely pathogenic and that the individual from MIGEN may have undiagnosed FPLD3.

We next applied the classifier to variants ascertained from 335 patients referred to UK centers specializing in monogenic forms of diabetes and/or insulin resistance. We identified 13 individuals as carrying new missense variants in PPARγ (Supplementary Tables 2 and 3), of whom 77% (10/13) had clinical features suggestive of...
lipodystrophy and associated metabolic derangement, including severe insulin resistance, non-alcoholic fatty liver, dyslipidemia, and low serum adiponectin levels (Supplementary Table 3). The IFS values for these 13 variants were lower than those found in the population-based cohort (P = 0.005, Student's t test) (Fig. 3a). For each variant, the posterior probability of pathogenicity was calculated by combining the IFS for that variant and the prevalence of FPLD3 in patients ascertained in these specialty clinics (~1:7, as estimated from Cambridge national lipodystrophy clinic records).

We found three variants (p.Glu54Gln, p.Asp92Asn, and p.Asp230Asn) in patients without clinical features of lipodystrophy who had been referred for sequencing on the basis of suspected monogenic diabetes. Despite having a higher prior probability because of their ascertainment in specialty clinics, these three variants were classified as benign with high confidence (posterior odds (benign: pathogenic) = 200:1) (Supplementary Table 2). Moreover, when tested individually in standard PPARγ reporter assays, the corresponding mutants showed function indistinguishable from that of wild-type PPARγ (Fig. 3c). Thus, the rate of benign variant identification in individuals ascertained in specialty clinics (~1:110, n = 335) was similar to the rate of benign variants identified in the MIGEN cohort (~1:200, n = 22,106).

Three variants (p.Met31Leu, p.Arg308Pro, and p.Arg385Gln) classified as benign with high confidence were found in individuals with clinical features of partial lipodystrophy. The p.Met31Leu variant was found in a female proband with features of lipodystrophy and metabolic derangement (Supplementary Table 3); critically, her daughter had a very similar fat distribution and metabolic phenotype.
but did not carry the p.Met31Leu variant. Thus, in this case, the phenotype did not segregate with genotype at PPARG. An individual with partial lipodystrophy carried a p.Arg385Gln variant, which was independently identified in a woman from the population-based cohort who had not developed T2D by age 61 years (Supplementary Table 2). When tested in PPARY reporter assays, corresponding mutants retained reporter activity, albeit their activity was subtly diminished under some conditions (Fig. 3). The combination of functional testing, clinical data, segregation, and epidemiological analysis suggests that p.Met31Leu, p.Arg308Pro, and p.Arg385Gln are likely incidental findings, although it is not possible to rule out the possibility that they act as partial risk factors for metabolic phenotypes.

Six variants (p.Arg194Gln, p.Ala417Val, p.Arg212Trp, p.Pro387Ser, p.Met203Ile, and p.Thr356Arg) were found in patients with lipodystrophy and classified as pathogenic with high probability (posterior odds (benign:pathogenic) = 1:25,000). Five of the six were confirmed to result in defective protein in classical transactivation assays. The exception was p.Arg212Trp, for which the corresponding mutant protein had normal transactivation function when tested using a synthetic PPARY response element (PPRE). However, Arg212Trp showed less activity than wild-type PPARY in a reporter assay with an endogenous promoter (Fig. 4a) and reduced in vitro binding to three PPREs (Fig. 4b). The Arg212 side chain forms multiple hydrogen-bond contacts in the minor groove of DNA (Fig. 4c), outside the main PPRE binding motif. These data indicate that p.Arg212Trp is likely a pathogenic variant despite it not resulting in decreased activity in the traditional functional assay using a synthetic promoter.

Finally, p.Thr468Lys, found in a single patient with partial lipodystrophy, was classified by IFS as pathogenic with low confidence (posterior odds (benign:pathogenic) = 2:3); its score fell in the overlapping tails of the distributions for benign and lipodystrophy-associated variants. In PPARY reporter assays, this variant resulted in severely decreased function (Fig. 3), supporting the view that p.Thr468Lys is likely a pathogenic variant.

We previously reported that rare missense variants in PPARG that impair function in a single-variant adipocytokine differentiation assay confer increased risk of T2D in the general population2. We reexamined this relationship using functional annotation emitted by the classifier (that is, IFS values) for the original sample of 118 PPARG variant carriers ascertained from 19,752 T2D cases and controls (Fig. 5a). We observed a long tail of variants with low IFS in T2D cases but not controls (P = 0.024, two-sample Kolmogorov–Smirnov test). We quantified this inverse relationship between IFS and T2D case status (logistic regression β = −0.49 ± 0.15 (standard error), P = 0.002). The odds ratio for T2D in carriers of variants with the lowest tertile of IFS values (as compared to carriers of variants with IFS values in the highest tertile) was 6.5 (95% confidence interval (CI) = 1.9–41), consistent with our previously published estimate2. The odds ratio for the middle versus highest tertile of IFS values was 2.0 (95% CI = 1.3–3.1), suggesting that PPARY variants with even moderately reduced IFS confer a modest increase in T2D risk. By contrast, a conventional predictor of mutation deleteriousness (CONDEL score21) failed to distinguish between likely pathogenic and benign variants (P > 0.1, two-sample Kolmogorov–Smirnov test; Fig. 5b), misclassifying many likely benign variants as pathogenic (Fig. 5c).

These data show that it is possible to experimentally characterize all possible missense variants in a mammalian gene and use the information to guide interpretation of variants of uncertain significance, a concept that has previously been applied to single protein domains22,23. Testing variants prospectively (that is, before their discovery in patients) overcomes barriers of time and scalability that have thus far made it impractical to incorporate experimental data into routine clinical variant interpretation. Furthermore, by simultaneously and consistently evaluating all variants in a single experiment, more valid comparisons can be made across variants as compared to data on different variants generated in different laboratories at different times.

The PPARG classifier annotated as benign nearly all variants (56/57) incidentally identified in a study of myocardial infarction. The one variant classified as pathogenic with high confidence (and confirmed by single-variant laboratory experiments) was observed in an individual with hypertriglyceridemia and T2D and was independently observed in a patient with lipodystrophy, likely indicating FPLD3 (ref. 24). In 12 of 13 cases referred for suspected lipodystrophy or monogenic diabetes and carrying a PPARG variant, the classifier provided immediate, high-confidence information regarding the likelihood of a functional defect and a molecular diagnosis of FPLD3. In only a single case (p.Thr468Lys) did the classifier not provide a high-confidence estimate and low-throughput laboratory assays fail to corroborate the pooled assay data13.

Systematic variant construction, pooled experimental characterization in relevant assays, and statistical integration with epidemiological data offers a generalizable approach to enable genome interpretation.
Figure 5 Relationship of PPARγ function to T2D risk in the general population. (a) Missense PPARγ variants identified from 19,752 sequenced T2D cases and controls plotted according to IFS from the PPARγ classification table alongside the IFS distributions of known benign and lipodystrophy-associated variants. Each point represents a missense variant; point size corresponds to the number of individuals carrying that variant. Among the 118 individuals carrying missense PPARγ variants, T2D cases contained a long tail of missense variants resulting in low function, which was notably absent from the distribution of variants observed in T2D controls (P = 0.024, two-sample Kolmogorov–Smirnov test). (b) When variants from the same 118 individuals were plotted according to computational prediction of deleteriousness (CONDEL score), no difference in the distribution of functional variants is seen between T2D cases and controls (P > 0.1, two-sample Kolmogorov–Smirnov test). (c) Scatterplot of computational prediction score versus IFS for PPARγ missense variants from T2D cases and controls.

at clinically important genes, reducing overdiagnosis and diagnostic uncertainty. Fully realizing such comprehensive approaches will require a complementary array of methods. The PPARγ construct library is easily shared so that others can generate and contribute function scores in other assays, but as a transgene library it is not ideally suited for detecting the functional effects of coding variation on splicing efficiency. Given the limitations on the library and because CD36 expression is unlikely to report on all the functions of PPARγ, we have made the PPARγ classifier available as a web application (MITER; see URLs) that can be updated as new genetic and functional data become available. Broadening this approach to other genes and diseases will require cellular assays that are disease relevant, robust, and scalable, and will also depend on the availability of training sets of pathogenic and benign variants. Such assays and variants exist for a number of genes implicated in Mendelian disease, making it possible to apply a similar approach to help interpret variants of uncertain significance for many other clinical situations.

METHODS

Methods and any associated references are available in the online version of the paper.

ACKNOWLEDGMENTS

This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (1K08DK102877-01, to A.R.M.; 1R01DK097768-01, to D.A.), NIH/Harvard Catalyst (1KL2TR001100-01, to A.R.M.), the Broad Institute (SPARC award, to A.R.M. and T.M.), and the Wellcome Trust (095564, to K.C.; 107064, to D.B.S.).

We thank J. Doench, C. Zhu, D. O’Connell, G. Cowley, M. Sullender, D. MacArthur, E. Minkel, B. Bulik-Sullivan, and J. Avruch for helpful discussions, laboratory assistance, and manuscript review.

This paper is dedicated to the memory of Promila Nandi (30 April 1933–27 December 2013).

AUTHOR CONTRIBUTIONS

A.R.M., T.M., and D.A. designed the study. A.R.M., B.T., M.A., and E.D.R., and J.C.F. revised the manuscript. A.R.M. and D.A. wrote the manuscript. D.B.S., S.O’R., K.C., and N.P. analyzed the data with help from B.T., T.S., G.P., K.A.P., M.D., and K.G. performed experiments with help from R.R., X.Z., M.F.B., and E.K. A.R.M., T.M., and D.A. designed the study. A.R.M., B.T., M.A., and E.D.R. revised the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/index.html.

1. Majewski, J., Schwartzzuber, J., Lalonde, E., Montpetit, A. & Babado, N. What can exome sequencing do for you? J. Med. Genet. 48, 580–589 (2011).
2. Gahl, W.A. et al. The National Institutes of Health Undiagnosed Diseases Program: insights into rare diseases. Genet. Med. 14, 51–59 (2012).
3. Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).
4. Jenina, E.H., Gurnell, M. & Kalkhoven, E. Functional implications of genetic variation in human PPARγ. Trends Endocrinol. Metab. 20, 380–387 (2009).
5. Majthia, A.R. et al. Rare variants in PPARγ with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc. Natl. Acad. Sci. USA 111, 13127–13132 (2014).
6. Flannick, J. et al. Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat. Genet. 45, 1380–1385 (2013).
7. Tennessen, J.A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012).
8. McLaughlin, H.M. et al. A systematic approach to the reporting of medically relevant findings from whole genome sequencing. BMC Med. Genet. 15, 134 (2014).
9. Manrai, A.K. et al. Genetic misdiagnoses and the potential for health disparities. N. Engl. J. Med. 375, 655–665 (2016).
10. Altshuler, D. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 26, 76–80 (2000).
11. Claussnitzer, M. et al. Leveraging cross-species transcription factor binding site patterns: from diabetes risk loci to disease mechanisms. Cell 156, 343–358 (2014).
12. Tontonoz, P. & Spiegelman, B.M. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem. 77, 289–312 (2008).
13. Agostini, M. et al. Non-DNA binding, dominant-negative, human PPARγ mutations cause lipodystrophic insulin resistance. Cell Metab. 4, 303–311 (2006).
14. Yu, S. et al. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression. J. Biol. Chem. 278, 498–505 (2003).
15. Tontonoz, P., Nagy, L., Alvarez, J.G., Thomazy, V.A. & Evans, R.M. PPARγ promotes monocye/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241–252 (1998).
16. Barnes, M.R. & Gray, I.C. Bioinformatics for Geneticists (Wiley, 2003).
17. Chandra, V. et al. Structure of the intact PPAR-Γ-RXR-α nuclear receptor complex on DNA. Nature 456, 350–356 (2008).
18. Garg, A. Acquired and inherited lipodystrophies. N. Engl. J. Med. 350, 1220–1234 (2004).
19. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
20. Myocardial Infarction Genetics Consortium Investigators. et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease. N. Engl. J. Med. 371, 2072–2082 (2014).
21. González-Pérez, A. & López-Bigas, N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am. J. Hum. Genet. 88, 440–449 (2011).
22. Fowler, D.M. et al. High-resolution mapping of protein sequence-function relationships. Nat. Methods 7, 741–746 (2010).
23. Starita, L.M. et al. Massively parallel functional analysis of BRCA1 RING domain variants. Genetics 200, 413–422 (2015).
24. Demir, T. et al. Familial partial lipodystrophy linked to a novel peroxisome proliferator activator receptor-γ (PPARG) mutation, H449L: a comparison of people with this mutation and those with classic codon 482 Lamin A/C (LMNA) mutations. Diabet. Med. 33, 1445–1450 (2016).
25. Findlay, G.M., Boyle, E.A., Hause, R.J., Klein, J.C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123 (2014).
26. Fowler, D.M. & Fields, S. Deep mutational scanning: a new style of protein science. Nat. Methods 11, 801–807 (2014).
Deletion of endogenous PPAR in THP-1 monocytes using CRISPR/Cas9.

The endonuclease Cas9 and sgRNAs targeting exon 6 of PPAR and exon 8 of a control gene, PHACTR1, were introduced into THP-1 cells by lentiviral transduction (Supplementary Table 4). To quantify modification of the endogenous gene, genomic DNA was extracted at multiple time points, amplified by PCR around the PPAR sgRNA target site and Sanger sequenced (Supplementary Table 4). Cutting efficiency was determined using the TIDE web tool for decomposition analysis of the sequencing traces. Twenty-one days after transduction of CRISPR/Cas9 with PPAR or control sgRNAs, cells were tested for PPAR expression by gene (FABP4) and protein (CD36) expression to validate lack of functional endogenous PPAR. THP-1 cells treated with PPAR-targeting sgRNA and control sgRNA were stimulated with 1 µM rosiglitazone in THP-1 growth medium (RPMI-1640 supplemented with 10% FBS and 1% penicillin-streptomycin) for 72 h. mRNA was then extracted and quantified for FABP4 gene expression (nanoString Technologies). For CD36 protein expression, THP-1 cells were stimulated with 50 ng/ml phorbol ester (PMA) and 1 µM rosiglitazone in growth medium for 72 h. Cells were then detached from the plate, washed and stained with a monoclonal antibody to CD36 according to the manufacturer’s protocol (Miltenyi, 130-100-149) and subjected to flow cytometry.

Simultaneous testing of 9,595 PPAR variants in experimental assays.

The PPAR construct library was introduced into a human monocytic cell line (THP-1; obtained from the Broad Institute and tested negative for mycoplasma; see URLs) engineered through CRISPR/Cas9 to lack endogenous PPAR (Supplementary Fig. 2) by pooled infection. While isoform 1 of PPAR is dominantly expressed in monocytes and macrophages, we expressed isoform 2, which is identical in sequence but encodes a protein with an additional 28 N-terminal amino acids. Both isoforms demonstrated identical ligand-dependent activity. Pooled virus was diluted such that the multiplicity of infection (number of viral particles per cell) was 0.3 so that each monocyte would receive zero or a single PPAR variant. Uninfected cells were eliminated by selection with 2 µg/ml puromycin. Expression of the PPAR transgene was controlled by a doxycycline-inducible promoter. At least 1 x 10^6 cells were infected to ensure that each PPAR variant was independently represented in 1,000 monocytes. The resulting polyclonal population of THP-1 monocytes containing the PPAR variant library was stimulated for 72 h with (i) 50 µM PMA to induce differentiation into macrophages; (ii) 1 µg/ml doxycycline to induce expression of PPAR constructs; and (iii) a low or high dose (based on ranges used in previous studies[13]) of thiazolidinedione (rosiglitazone; 0.1–1 µM) or proposed natural ligand[15] (prostaglandin J2; 0.1–10 µM) to stimulate PPAR activity. The population of stimulated THP-1 macrophages was immunostained for CD36 (Miltenyi, 130-095-472), a cell surface protein that is a direct transcriptional target of PPAR[15]. Using FACs, stained cells were grouped into two activity bins separated by at least five- to tenfold difference in expression of CD36 and selected to encompass equal numbers of cells (Supplementary Fig. 3). For each stimulation condition, at least three replicates were generated, each with at least 5 x 10^6 cells sorted. To again identify and quantify the PPAR variants in the bins with high and low CD36, genomic DNA was extracted from the cells in each bin and the integrated proviral PPAR transgene was amplified by PCR and shotgun sequenced (Nextera, Illumina). Raw sequencing reads were aligned to the reference PPAR cDNA sequence (Supplementary Table 4), and the number of occurrences of each amino acid at each position along the coding region was counted and tabulated with a custom aligner. To minimize erroneous mutation calls, only codons that matched designed mutations and consisted of high-quality base calls (Phred score >30) were tabulated. Over 99% of the designed amino acid substitutions were observed at least 50 times for a given experimental condition (Supplementary Fig. 1). A raw function score was calculated on the basis of the ratio of observed frequencies of each mutant amino acid in the two CD36 activity bins (Fig. 1).

Calculation of raw function score.

Control experiments showed that variants deleterious to PPAR function were enriched in the fraction with low CD36 and benign variants were enriched in the fraction with high CD36. We constructed a likelihood function based on the log odds of an amino acid variant being in the fraction with high or low CD36. The log odds for each amino acid variant was estimated by maximizing a likelihood function based on the observed counts of each amino acid variant in the fractions with high and low CD36 as well as the total read depth at that amino acid position. Data were combined across experimental replicates after determining replicate variability (Supplementary Fig. 4). To avoid spuriously high or low log-odds estimates for any given variant, we constrained the log-odds estimate with a Gaussian prior whose parameters were estimated from data combined across all variants (see the Supplementary Note for detailed specification of the analytical methods used).

Construction of a PPAR classifier by supervised machine learning.

To predict the likelihood of new variants being benign or pathogenic, we developed a classifier based on raw function scores obtained across various experimental conditions. The synthesis of multiple experimental conditions was intended to span a greater range of possible activities of PPAR than would be queried using a single condition. Specifically, we used LDA (MASS package in R 3.0) to train the classifier, adopting a two-class model. The model incorporates as parameters (i) raw function scores for each PPAR variant as measured across the four experimental conditions (rosiglitazone and prostaglandin J2 at high and low doses) and (ii) mutation tolerance scores calculated for each position in PPAR as measured across the four experimental conditions (Fig. 1b). Potential classifiers were systematically constructed on linear combinations of four of these eight parameters, with a requirement that one parameter be included from each experimental condition. Classifier models were built for each of the 16 possible combinations of 4 parameters using a training set of pathogenic and benign PPAR variants (Supplementary Table 1). Pathogenic variants used to train the classifier were selected on the basis of (i) segregation with FPLD3 and (ii) previous demonstration of loss of function in cellular
assays. Benign variants used to train the classifier were selected from among variants identified in 60,706 aggregated exome sequences19 at an allele frequency rendering them very unlikely to be causal for FPLD3 under a dominant model of inheritance and a prevalence estimate ranging from 1:100,000 to 1:1,000,000 ($P < 0.05$, one-tailed binomial probability, $n = 121,412$ chromosomes; $P = 1 \times 10^{-5}$) (Supplementary Table 1). The performance of these 16 models was compared using a leave-one-out cross-validation (LOOCV) protocol with each model scored by its aggregate ability to correctly classify the ‘left-out’ variant over all the cycles of LOOCV. The highest scoring model consisted of raw function scores for each possible variant obtained from three conditions (1 μM rosiglitazone, 0.1 μM rosiglitazone, 10 μM prostaglandin) and mutation tolerance scores for each position in PPARG obtained under treatment with 0.1 μM prostaglandin. This model was fit to the full training data set for prospective evaluation of new PPARG variants. The weighted sum of the four parameters in the final model, as fit by the LDA algorithm, is denoted as the IFS (Fig. 2c and Supplementary Fig. 5) and represents an aggregate measure of variant function over the four experimental conditions.

For clinical prediction, the IFS was expressed as the odds (benign: pathogenic), which when multiplied by the estimated prior odds of FPLD3 based on the clinical situation (prevalence) yielded an estimated probability of pathogenicity. Because the final model was trained on the full set of available pathogenic and benign variants, its performance next required prospective evaluation on a completely independent set of variants. These variants were obtained from the population and clinic data described below and were evaluated as described in Figure 3.

Missense PPARG variants identified in population-based exomes and clinically referred individuals. The study was conducted in accordance with the Declaration of Helsinki, and approved by research ethics committees; written informed consent was obtained from all participants.

Missense PPARG variants were extracted from 22,106 exomes (8,400 with early-onset coronary artery disease and 12,804 controls) sequenced by the Myocardial Genetics Consortium (MIGEN) as described elsewhere20. Study participants were ascertained from the following studies: ATVB, DHM, DUKE, JHS, ESP-EOMI, MedStar, OHS, PennCath, PROCARDIS, PROMIS, and REGICOR. Participants were of European ancestry ($n = 12,849; 58$%), Asian ancestry ($n = 6,823; 31$%), African ancestry ($n = 2,399; 11$%), and ‘other or unknown’ self-reported ancestry ($n = 34; 0.2$%). Twenty-two percent ($n = 4,258$) reported a diagnosis of T2D.

Patients were referred to one of two UK centers (Cambridge or Exeter; see URLs) that specialize in syndromes of severe insulin resistance and/or monogenic forms of diabetes. In clinically suspected FPLD3 cases, mutations in PPARG were identified in genomic DNA extracted from peripheral blood leukocytes using PPARG amplification and sequencing. In patients for whom FPLD3 was not the primary clinical diagnosis, PPARG was sequenced as part of a targeted next-generation panel of 29 genes30 selected to improve diagnostic yield for suspected monogenic diabetes. Variants were confirmed in index patients and, where possible, family members. In all instances, the nomenclature used for missense variants is for isoform 2 of PPARG (transcript NM\textunderscore 015869.4; protein NP\textunderscore 0569532).

Individual testing of PPARG variant function by transcriptional activity. The new variants identified in patients with suspected familial lipodystrophy or diabetes were characterized using a well-established PPAR\textgamma reporter containing three copies in tandem of the PPRE from ACOX1 (5’\textunderscore GACCAGGACAAAAGGTCAACGTT\textunderscore 3’) upstream of the thymidine kinase (TK) promoter and luciferase. In brief, 293EBNA cells, cultured in DMEM supplemented with 10% FCS, were transfected with Lipofectamine 2000 in 24-well plates and assayed for luciferase and β-galactosidase activity as described previously31 following 36 h of incubation with or without ligand.

27. Melnikov, A., Rogov, P., Wang, L., G nirke, A. & Mikkelsen, T.S. Comprehensive mutational scanning of a kinase in vivo reveals substrate-dependent fitness landscapes. *Nucleic Acids Res.* 42, e112 (2014).
28. Brinkman, E.K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. *Nucleic Acids Res.* 42, e168 (2014).
29. Forman, B.M. et al. 15-deoxy-\textgamma\textunderscore12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR\textgamma. *Cell* 83, 803–812 (1995).
30. Ellard, S. et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. *Diabetologia* 56, 1958–1963 (2013).