Plasmacytoid Dendritic Cells Are Crucial in *Bifidobacterium adolescentis*-Mediated Inhibition of *Yersinia enterocolitica* Infection

Alexandra Wittmann¹,², Ingo B. Autenrieth¹,², Julia-Stefanie Frick¹,²⁰

¹ Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany, ² German Centre for Infection Research, University of Tübingen, Tübingen, Germany

Abstract

In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic *Enterobacteriaceae*. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic *Bifidobacterium adolescentis* is protective during intestinal *Yersinia enterocolitica* infection. Female C57BL/6 mice were fed with *B. adolescentis*, infected with *Yersinia enterocolitica*, or *B. adolescentis* fed and subsequently infected with *Yersinia enterocolitica*. *B. adolescentis* fed and *Yersinia* infected mice were protected from *Yersinia* infection as indicated by a significantly reduced weight loss and splenic *Yersinia* load when compared to *Yersinia* infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting *B. adolescentis* fed, *Yersinia* infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The *B. adolescentis*-mediated protection from *Yersinia* dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal *Yersinia* infection. We suggest that feeding of *B. adolescentis* modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the *B. adolescentis*-mediated protection from *Yersinia enterocolitica* infection.

Introduction

Infection with *Yersinia enterocolitica* e.g. by ingestion of contaminated food or drinking water can cause severe diarrhea, enterocolitis, and mesenteric lymphadenitis [1,2]. *Yersinia enterocolitica* is a facultative anaerobic, pleomorphic, gram-negative rod that belongs to the family of *Enterobacteriaceae* and its enteropathogenicity is associated with the presence of a 70-kb virulence plasmid (pYV) that encodes a type three secretion system, translocated effector proteins, and the trimeric autotransporter *Yersinia* adhesin A (YadA) [3,4].

Several studies demonstrate that the host’s intestinal microbiota is crucial in defining the host’s susceptibility towards intestinal infections. This is demonstrated by the significant influence of antibiotic treatment on the composition of the intestinal microbiota, in both, human subjects [5,6,7,8] and mice [9,10] where increased susceptibility towards enteropathogenic bacteria was shown [11,12]. The intestinal microbiota is thought to shape the innate immune system in different ways. It was demonstrated that antibiotic treatment of mice and subsequent alterations of the intestinal microbiota notably down-regulate the expression of Reg3γ, a secreted C-type lectin which kills gram-positive bacteria including e.g. antibiotic-resistant bacteria such as vancomycin resistant *Enterococcus* (VRE) [13]. The secretion of Reg3γ could be restored via stimulation of intestinal TLR4 thereby boosting the innate immune resistance of antibiotic-treated mice against infections with VRE [13]. In addition, antibiotic-induced disruption of the intestinal microbiota enhances the susceptibility of human hosts to infections with non-typhoidal *Salmonella* [14], and is a prerequisite for infection of mice with *Salmonella typhimurium* [15,16].

Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a beneficial effect on the health of the host [17]. E.g., *Lactobacillus rhamnosus* GG, *Bifidobacterium bifidum*, *Streptococcus thermophilus* and *Saccharomyces boulardii* revealed a beneficial effect on children with rotavirus infections [18,19,20]. Furthermore, several studies summarized by Nomoto et al. report a decrease in the incidence of antibiotic-induced diarrhea by administration of *Saccharomyces boulardii*, *Lactobacillus rhamnosus* GG, *Bifidobacterium longum* and *Enterococcus faecium* [21].

Dendritic cells (DCs) are essential initiators of immunity and link innate to adaptive antimicrobial immune responses [22]. In order to fulfill these tasks, first DC need to sample intestinal antigens. These are acquired by DC either in Peyer’s patches, where M cells deliver luminal content by transcytosis [23,24], or DC can sample actively by extending dendrites into the lumen...
without disrupting epithelial tight junctions due to the expression of CX-CR1 [25]. However, this subset of DC was demonstrated to be non-migratory whereas CD103-expressing intestinal DC migrate to the mesenteric lymph nodes in a big way after antigen acquisition, for which they rely on other cell types [26]. In the intestine conventional DC (cDC) are made up by these two subsets which both can additionally express CD11b [26] and occur in the lamina propria but occur mainly in the intraepithelial compartment [26]. In response to TLR9 and TLR7 signalling pDCs produce high amounts of type I IFNs [26]. In addition, pDCs are thought to be of key importance for the regulation of tolerance and are considered to be inducers of regulatory T cells [30,31,32].

In previous work we identified a probiotic B. adolescentis strain that attenuated the course of Y. enterocolitica infection in mice by reducing clinical symptoms, dissemination of Yersinia, and Y. enterocolitica-induced mucosal inflammation [33]. In this study we demonstrate that feeding of viable B. adolescentis was associated with an increased number of PDCA-1-positive pDCs in the intestine and an attenuated course of Y. enterocolitica infection as indicated by reduced clinical symptoms and reduced dissemination of Yersinia.

Materials and Methods

Mice

6–10 weeks old female C57BL/6 mice were purchased from Harlan Laboratories, after transfer mice were housed under specific pathogen free conditions in isolated ventilated cages. Animal experiments were reviewed and approved by an appropriate institutional review committee (Genehmigung H2/05 Regierungspresidium Tübingen).

Cultivation of B. adolescentis and Oral Yersinia Infection of Mice

For feeding experiments, Bifidobacterium adolescentis Reuter 1963 (ATCC 15705) was anaerobically incubated in soy broth containing beef liver at 37°C for 48 h, then transferred into Bifidobacteria medium (formula according to M58-medium Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures) and cultivated under same conditions for additional 48 h. Bacteria were twice washed in phosphate buffered saline (PBS) (PAA) and thereafter resuspended in aseptic drinking water. 48 h prior to B. adolescentis feeding mice obtained drinking water containing streptomycin (20 g/l Sigma). Mice were intragastrically infected with 5 x 10^8 plasmid harboring Yersinia enterocolitica WA-314 serotype O8 [34] as previously described [33]. Body weight development of mice was monitored daily, four days post infection mice were sacrificed by carbon dioxide asphyxiation, and subsequently the complete intestine, Peyer’s patches, and spleens were scaled. Tissue samples, Peyer’s patches, and spleens were homogenized by extruding through 40 μm cell strainer (BD Falcon). After, complete samples were resuspended in aseptic PBS, serial diluted until a factor of 10^-7, plated on CIN plates (Oxoid), and incubated for 48 h at 27°C. CFU were calculated per gram samples. The detection limit of CFU of Yersinia was 10.

Isolation of Lamina Propria and Intraepithelial Leukocytes

After removal of the complete intestine, Peyer’s patches were absceded, the gut was opened longitudinally, and flushed thoroughly with phosphate buffered saline (Gibco) containing fetal calf serum (1 w/v; Sigma) (PBS/FCS). Intestinal epithelial cells were separated from the lamina propria by incubation in 1 mM dithiothreitol (DTT; AppliChem) and 1 mM ethylenediaminetetraacetic acid (EDTA) containing PBS under slow rotations. The soluble epithelial fraction was washed in PBS/FCS. Remaining intestinal tissue was washed in PBS/FCS, cut thoroughly, subsequently transferred into digestion solution (VLE RPMI 1640, Biochrom; 200 U/ml collagenase, Sigma; 5 U/ml DNase, Roche; 50 μM β-mercaptoethanol, AppliChem; 5% FCS, Sigma; 2 mM glutamine, 2500 U/ml penicillin, 2000 μg/ml streptomycin, GIBCO) and incubated for 60 min under slow rotations. Lamina propria – and epithelial cell suspensions were centrifuged, resuspended in 40% Easycoll (Biochrom) dilution, cautiously layered on 70% Easycoll dilution, and then centrifuged. Leukocytes were extracted from the interlayer and washed.

Flow Cytometry Analysis of Lamina Propria and Intraepithelial Leukocytes

Isolated lamina propria (lp) and intraepithelial (ie) leukocytes were incubated in FC Receptor Block (Fcy III/II receptor; clone 2.4G2). Surface markers were stained with antibody concentrations of 1 μl per 1 x 10^6 cells for 25 min at 4°C and subsequently washed in PBS/FCS. Applied antibodies were Fluorescein-isothiocyanate (FITC) labeled anti-mouse CD3ε clone 145-2C11, anti-mouse CD19 clone 1D3, anti-mouse CD49b/Pan-NK clone DX5, peridinin-chlorophyll-protein complex (PerCP) labeled anti-mouse CD4 clone RM4-5, allophycocyanin (APC) labeled anti-mouse CD11b clone M1/70, CD45RB2 clone RA3-6B2, and biotinylated anti-mouse CD11c clone HEL3 (BD Bioscience), and phycoerythrin (PE) labeled anti-mouse PDCA-1 clone JF05-1C2.4.1 (Miltenyi Biotec). Specimens containing biotinylated antibodies were thereafter incubated with 1 μl of second step fluorescence conjugate (Streptavidin-PercP; BD Biosciences) for 15 min at 4°C. Next cells were washed in PBS/FCS and then resuspended in PBS/FCS containing 1.5% paraformaldehyde. For intracellular staining cells were incubated in Cytofix/Cytoperm™ (BD Bioscience) for 20 min at 4°C then washed in permeabilizing wash buffer (PWB)/PBS, 0.1% saponin (Sigma) and 3% FCS. Thereafter permeabilized cells were stained with 0.5 μl PE labeled anti-mouse FoxP3 clone FJK-16s antibody per 1 x 10^6 cells for 20 min at 4°C in PWB. Afterwards cells were first washed in PWB, then in PBS/FCS, and finally resuspended in PBS/FCS containing 1.5% paraformaldehyde. Specimens were measured on a FACSCalibur™ or LSRFortessa (BD Bioscience) using BD CellQuest Pro™ or BD FACSDIVA™ software, respectively. Data were analyzed with WinMDI Software Version 2.8 (Joe Trotter) or FlowJo 7.6.4 (TreeStar Inc.). Forward and Side Scatter were used to exclude dead cells, cell debris and cell aggregates of analysis. DCS were analyzed by electronically gating on Lin^- (CD3ε, CD19, DX5) negative and CD11c-positive
(CD11c⁺) cells, as indicated in respective figures. For analyses of FoxP3 expression lamina propria leukocytes were gated on CD3e and CD4-expressing T cells, as indicated.

Plasmacytoid Dendritic Cell Depletion

Mice were *B. adolescentis* fed and *Yersinia* infected as earlier described. In addition, mice were 1.5 days prior to and 0.5 days post *Yersinia* application intravenously injected with 150 µg of functional grade pure anti-mouse PDCA-1 antibody clone JF50-1C2.4.1 (Miltenyi Biotec) or functional grade purified Rat IgG2b isotype control (eBioscience).

Statistics

Statistical significances were calculated using unpaired t-test, when variances were statistically significantly different unpaired t-test with Welch’s correction was used instead. For experiments with more than two investigated groups statistical significances were calculated using One-way analysis of variance followed by Tukey’s Multiple Comparison Test. P values smaller than 0.05 were considered significant.

Results

The Bifidobacterium adolescentis-Mediated Protection from Yersinia enterocolitica Infection is Associated with an Increased Proportion of PDCA-1-Positive pDCs

First we analyzed the effect of *B. adolescentis* feeding on the intestinal mucosal immune system, in particular on the composition of intraepithelial (ie) DC and the lamina propria (lp) DC subpopulations and the course of *Yersinia enterocolitica* infection. Therefore female C57BL/6 mice were fed with (i) PBS as mock treatment, (ii) B. adolescentis, (iii) infected with 5x10⁶ CFU *Yersinia enterocolitica* (Y) or (iv) fed with *B. adolescentis* and subsequently infected with *Yersinia enterocolitica* (BY). BY mice (3.2% ± 7%) were significantly protected in terms of weight loss as compared to Y mice (−9.3% ± 3.4%; p = 0.022) (Fig. 1A). Determination of CFU of *Yersinia* in the Peyer’s patches revealed no differences between BY (log₁₀ 3.7 ± 1.8) and Y (log₁₀ 3.4 ± 1.8) mice (Fig. 1B). However, the BY mice were protected from dissemination of *Yersinia* during infection as indicated by the significantly reduced CFU of *Yersinia* in the spleens of *B. adolescentis* fed Y. enterocolitica infected mice (log₁₀ 0.5 ± 1.6) when compared to Y mice (log₁₀ 2.5 ± 2.5; p = 0.0036) (Fig. 1C). We were able to exclude that feeding of *B. adolescentis* reduced the number of intestinal enteropathogenic *Yersinia* in the BY mice, since BY (log₁₀ 6.5 ± 0.9) and Y mice (log₁₀ 6.2 ± 0.8) harbored comparable counts of *Yersinia* in the intestine (Fig. 1D).

These results are in line with previous results of our group demonstrating protective effects of *B. adolescentis* in both, inflammatory as well as infectious intestinal diseases [33].

Analysis of ieDC frequency in the intestine of differently treated mice, exhibited a significant increase in the percentage of ieDCs in Y mice (1.8% ± 0.3%) as compared to remaining groups (M (0.9% ± 0.1%) p < 0.001, B (0.7% ± 0.2%) p < 0.001, BY (0.6% ± 0.1%) p < 0.001) (Fig. 2A, Table 1). This finding was confirmed by total numbers of dendritic cells which were present in different groups (M 1.9x10⁶ ± 1.3x10⁵ p < 0.001, B 3.0x10⁶ ± 0.8x10⁵ p < 0.001, Y 5.7x10⁶ ± 0.9x10⁵, BY 1.9x10⁶ ± 1.3x10⁵ p < 0.001) (Table 1).

Next the ieDC subset composition of mice with or without *B. adolescentis* feeding and with or without *Yersinia* infection, respectively, was investigated. Since great parts of intestinal conventional (c) DC, positive for either CXCR1 or CD103, express CD11b [26] we used for the sake of convenience this marker to determine cDC. Results demonstrated that feeding of *B. adolescentis* led to a significantly reduced percentage of CD11c⁺CD11b⁺ cDCs in both B and BY mice (M (31.9% ± 11.2%) vs. B (19.3% ± 5.8%) p < 0.05, Y (34.7% ± 2.9%) vs. BY (22.7% ± 2.1%) p < 0.05, BY vs. Y p < 0.01).

No significant differences in the percentage frequency of CD11c⁺CD11b⁺ cDCs of Y mice were observed as compared to M mice (Fig. 2B). However, analysis of total numbers indicated a significant increase of CD11c⁺CD11b⁺ cDCs only in Y mice (19.9 ± 10⁵ ± 10⁵) as compared to all other groups (M (6.1x10⁵ ± 5.6x10⁵) p < 0.05, B (5.9x10⁵ ± 1.2x10⁵) p < 0.05, BY (4.4x10⁵ ± 3.5x10⁵) p < 0.01) (Table 1). The differences between absolute numbers of CD11c⁺CD11b⁺ cDCs between M mice and Y mice might be caused by an increased influx of CD11c⁺ leukocytes to the *Yersinia* infected intestine (Table 1).

Analysis concentrating on the percentage of CD11c⁺B220⁺PDCA-1⁺ expressing plasmacytoid (p)DCs demonstrated, however, that feeding of *B. adolescentis* resulted in a significantly increased percentage of pDCs in both B mice and BY mice (M (9.2% ± 1.2%) vs. B (25.7% ± 4.8%) p < 0.001, Y (8.3% ± 2.5%) vs. BY (18.2% ± 3.4%) p < 0.05, B vs. Y p < 0.001) (Fig. 2B). The total number of pDCs was significantly increased in BY mice (7.6 ± 2.4x10⁵) but not in the other groups (M (1.7 ± 0.5x10⁵) p < 0.01, Y (4.8 ± 3.7x10⁵), BY (3.5 ± 3.3x10⁵) p < 0.05).

The percentage frequency of pDC in BY mice might lead to the conclusion that BY mice need to have higher absolute cell counts as Y mice do. However, due to the fact that Y mice have in general a high absolute number of dendritic cells these mice even have with a low percentage frequency of pDC a high absolute frequency. Nevertheless, in Y mice the ratio between pDC and cDC is shifted in favor of cDC whereas in BY mice it is more balanced (Fig. 2).

The analysis of the ipDCs gave comparable results: a significant decrease of CD11c⁺CD11b⁺ ipDCs (M (70% ± 5.1%) vs. B (58.6% ± 8.2%) p < 0.05, Y (70.7% ± 3.8%) vs. BY (57.6% ± 9.3%) p < 0.05, M vs. BY p < 0.05, B vs. Y p < 0.05) and a significant increase in CD11c⁺B220⁺ and CD11c⁺PDCA-1⁺ plasmacytoid (p) DCs in *B. adolescentis* fed mice regardless of additional infection with *Yersinia* or not (CD11c⁺ B220⁺: M (6.8% ± 1.3%) vs. B (16.8% ± 1.4%) p < 0.001, Y (6.7% ± 2%) vs. BY (17.2% ± 5.2%) p < 0.001, M vs. BY p < 0.001, B vs. Y p < 0.001; CD11c⁺PDCA-1⁺: M (2.9% ± 0.7%) vs. B (9.3% ± 2.1%) p < 0.001, Y (2.9% ± 1.5%) vs. BY (6.7% ± 1.4%) p < 0.001, M vs. BY p < 0.001, B vs. Y p < 0.001, BY vs. M p < 0.001) (Fig. S1, Table S1, Table S2). To exclude that the enhanced frequency of pDCs in BY mice was due to streptomycin treatment prior to *B. adolescentis* administration C57BL/6 mice were treated with streptomycin (S) only and the frequency of intraepithelial pDCs was analyzed. Application of streptomycin did not result in an increase frequency of pDCs (M (8.1% ± 2.9%, 1.1x10⁴ ± 6x10³); S (9.5% ± 3.6%, 1.2x10⁵ ± 0.5x10⁵), therefore we can exclude the influence of streptomycin treatment or streptomycin caused alterations of the intestinal microbiota on the recruitment or onsite development of pDCs (Fig. 3A, Table 2).

In order to demonstrate that the increased frequency of intraepithelial pDCs in B and BY mice is a result of *B. adolescentis* feeding, mice were either fed with *B. adolescentis* for 6 days or not and subsequently treated with vancomycin and metronidazole for 2 days. After 5 weeks the frequency of intraepithelial pDCs was determined. The antibiotics-induced reduction of *B. adolescentis* in the intestine resulted in comparable numbers of pDCs in antibiotic treated mock (28.4% ± 10.9%, 16.8x10⁵ ± 1.3x10⁵) as well as *B. adolescentis* fed and antibiotic treated mice (25.1% ± 7%, 9.3x10⁵ ± 3.1x10⁵). However, it remains elusive whether this is...
B. adolescentis -Mediated Protection is Associated with an Increase in FoxP3+ Regulatory T Cells

Plasmacytoid DCs are described to induce both protective adaptive immunity as well as immune tolerance, depending on their localization and state of activation [22]. Moreover, this subset is associated with the induction of FoxP3+CD4+CD25+expressing regulatory T cells (Treg cells) [35] therefore we next analyzed the frequency of CD3e+CD4+ cells and of FoxP3+CD4+Treg cells.

Independent of treatment, mice exhibited no differences in the percentage and absolute number of CD4+ T cells (M (3.5%±0.3%, 1.3×10^5±0.7×10^5), B (3.1%±0.1%, 1×10^5±0.4×10^5), Y (4.4%±1.5%, 0.9×10^5±0.5×10^5)), BY (3.9%±1.5%, 0.9×10^5±0.4×10^5) (Fig. 5A, Table 4). In contrast, we observed significant differences in the frequency of FoxP3+CD4+ T_{reg} cells. Feeding of B. adolescentis resulted in a significant increase in FoxP3+CD4+ T_{reg} cell percentages (M (1.7%±0.8%) vs. B (4.8%±1) p<0.05, Y (0.8%±0.3%) vs. BY (4.8%±2.5%) p<0.001, M vs. BY P<0.05, B vs. Y p<0.001) and absolute numbers (M (2.2×10^3±0.9×10^3), B (4.9×10^3±1.3×10^3) p<0.01, Y (0.7×10^3±0.4×10^3) vs. BY (4.2×10^3±1.3×10^3) p<0.001, M vs. BY p<0.05, B vs. Y p<0.001) in mice. Furthermore, not even additional infection with Yersinia influenced this fact (Fig. 5B, Table 4). In line with the control experiments for pDCs, treatment of mice with streptomycin (S) had no impact on the frequency of FoxP3+T cells (M (1.2%±1.1%, 8.7×10^1±6.5×10^1), S (0.5%±0.9%, 0.7×10^1±0.1×10^1) (Fig. 3B, Table 2). However, depletion of B. adolescentis resulted in significantly different percentage and cell count frequency of T_{reg} cells (M +antibiotics (1.5%±0.6%) vs. B +antibiotics (0.5%±0.6%) p = 0.00361; M +antibiotics (3.4×10^3±2.5×10^3) vs. B +antibiotics (3.4×10^3±0.3×10^3) p = 0.0494) (Fig. 4B, Table 3).

From the above results, we conclude that feeding of B. adolescentis might promote development of T_{reg} cells.

Figure 1. B. adolescentis Feeding Prevents From Weight Loss and Dissemination of Yersinia to the Spleen. (A) Graph represents percent modulation of initial body weight over four days of Yersinia infected mice (Y, black line and squares) and B. adolescentis fed and Yersinia infected mice (BY, gray line and diamonds). Colony forming units (CFU) of Yersinia in log_{10} per gram Peyer’s patches (PP) (B), spleen (C), or feces (D) of Yersinia infected mice (Y) and B. adolescentis fed and Yersinia infected mice (BY). Data represent mean and SEM of at least 8 mice.

doi:10.1371/journal.pone.0071338.g001
Plasmacytoid DCs are Crucial for Inhibition of *Y. enterocolitica* Dissemination

In order to examine the inhibitory function of *B. adolescentis*-induced CD11c^{hi}B220⁺PDCA-1⁺ plasmacytoid (p) DCs on *Y. enterocolitica* dissemination we performed pDC depletion experiments. Therefore we injected *B. adolescentis* fed C57BL/6 mice with anti-mouse PDCA-1 antibody or respective isotype control prior to and during *Yersinia* infection. Successful depletion of pDCs by anti-mouse PDCA-1 antibody injections was verified using flow cytometry analyses. In order to determine pDCs, lymphocytes were stained with anti-mouse B220 antibody. Injections of the isotype control had no effect on the proportion of B220⁺pDCs (13.1%±1.2%, 1.1±0.5x10³) and resulted in same levels as in untreated *B. adolescentis* fed mice (16.8%±1.4%) (Fig. S1). *B. adolescentis* fed pDC-depleted mice, however, showed a significantly reduced frequency of B220⁺pDCs (8.3%±2.5%, p=0.0134, 0.5±0.2x10³).

Table 1. Cell Counts of Total Intraepithelial DCs, Conventional, and Plasmacytoid DCs.

Colonization	CD11c⁺ cells	Conventional DC	Plasmacytoid DC
	cell count x10³	cell count x10³	cell count x10³
M	1.9±1.3	6.1±5.6	1.7±0.5
B	3.0±0.8	5.9±1.2	7.7±2.4^c
Y	5.7±0.9^a	19.9±10^b	4.8±2.7
BY	1.9±1.3	4.4±3.5	3.5±3

Numbers indicate mean cell counts ± SD of untreated mock (M), *B. adolescentis* fed (B), *Yersinia* infected (Y), as well as *B. adolescentis* fed and *Yersinia* infected mice (BY) mice. ^aM vs. Y p<0.001, B vs. Y p<0.01; BY vs. Y p<0.001; ^bM vs. Y p<0.05, B vs. Y p<0.05, BY vs. Y p<0.001; ^cMock vs. B p<0.01, and B vs. BY p<0.05. Data represent five mice per group.

doi:10.1371/journal.pone.0071338.t001

Plasmacytoid DCs are Crucial for Inhibition of *Y. enterocolitica* Dissemination

In order to examine the inhibitory function of *B. adolescentis*-induced CD11c^{hi}B220⁺PDCA-1⁺ plasmacytoid (p) DCs on *Y. enterocolitica* dissemination we performed pDC depletion experiments. Therefore we injected *B. adolescentis* fed C57BL/6 mice with anti-mouse PDCA-1 antibody or respective isotype control prior to and during *Yersinia* infection.

Successful depletion of pDCs by anti-mouse PDCA-1 antibody injections was verified using flow cytometry analyses. In order to determine pDCs, lymphocytes were stained with anti-mouse B220 antibody. Injections of the isotype control had no effect on the proportion of B220⁺pDCs (13.1%±1.2%, 1.1±0.5x10³) (Fig. 6A, Table 5) and resulted in same levels as in untreated *B. adolescentis* fed mice (16.8%±1.4%) (Fig. S1). *B. adolescentis* fed pDC-depleted mice, however, showed a significantly reduced frequency of B220⁺pDCs (8.3%±2.5%, p=0.0134, 0.5±0.2x10³).
Figure 3. Streptomyein Treatment does Neither Induce Intracellular pDCs nor Lamina Propria T_{reg} Cells. Mean percentage ± SD of (A) intraepithelial B220+/PDCA-1+ plasmacytoid DCs and (B) lamina propria FoxP3+ expressing regulatory T cells (solid black line) and fluorescence minus one control (gray filled histograms) of untreated mock (M) and streptomycin (S) treated mice. Intraepithelial plasmacytoid cells and lamina propria CD4+T cells were gated as indicated in Fig. 2 and Fig. 5, respectively. Data represent at least four mice per group.

doi:10.1371/journal.pone.0071338.g003

(Fig. 6A, Table 5), which was comparable to untreated mock mice (6.8%±1.3%) (Fig. 5A). Interestingly, we demonstrated that only injections of the anti-mouse PDCA-1 antibody abrogated B. adolescentis-mediated prevention of Yersinia dissemination whereas the isotype control failed. This fact is indicated by a significantly increased splenic Yersinia load of anti-mouse PDCA-1 antibody injected B. adolescentis-fed mice (CFU log_{10} 6.8±2.2) when compared to isotype control injected B. adolescentis-fed mice (CFU log_{10} 2.4±2.4, p = 0.0373) (Fig. 6B).

Based on the presented results we hypothesize that feeding of B. adolescentis might lead, by a yet unknown mechanism, to recruitment or increased onsite development of pDCs, which might promote development of regulatory T cells. We suggest that this immune response favors intestinal homeostasis rather than inflammation, strengthens the intestinal barrier and thereby contributes to inhibition of Yersinia enterocolitica dissemination.

Discussion

Commensals are thought to modulate the susceptibility of the host towards intestinal infections. We recently showed that commensal B. adolescentis protects mice from Yersinia enterocolitica infection [33]. In line with these results the present study demonstrates that B. adolescentis-mediated protection is associated with increased frequency of T_{reg} cells and pDCs. This DC subset seems to be crucial for protection since depletion of pDCs abrogated protection.

The intestinal microbiota exerts a variety of functions thereby strengthen the host resistance against intestinal infections. The high bacterial density and diversity in the mammalian intestine contributes to the prevention from infections with opportunistic and strict pathogens. This mechanism is known as colonization resistance and disturbances of microbial composition leads to an increased susceptibility to e.g. enteric infections [36] or Clostridium difficile. [37]. However, in this study colonization resistance seems not to be the underlying mechanism of B. adolescentis-mediated protection since Yersinia loads in Peyer’s patches (PP) and fecal samples were comparable between groups.

In addition, the metabolism of the host depends on the microbiota to degrade otherwise indigestible nutritional carbohydrates which results in the release of short chain fatty acids providing an additional energy source. [38]. Metabolic byproducts fulfill additional tasks indicated by the fact that released short chain fatty acids attenuate intestinal inflammation [39] and protect from enteropathogenic infection [40] in mice.

Moreover, commensals are important to maintain and increase the hosts intestinal epithelial barrier function which helps to defend invasive pathogens. In intestinal epithelial cells (IEC) the recognition of commensal components and metabolites can result in the induction of tight junctions [41,42], cell growth [43], as well as mucus production [44,45]. Furthermore, the presence of commensals leads to secretion of antimicrobial compounds by IEC [46] enhancing the intestinal innate immune response to pathogens [13,47]. In addition to the host, bacteria secrete

Table 2. Cell Counts of Intraepithelial Plasmacytoid DCs, and Lamina Propria FoxP3+ T_{reg} Cells.

Treatment	Plasmacytoid DC (cell count x 10^4)	CD4+ FoxP3+ (cell count x 10^4)
M	1.1±0.6	8.7±6.5
S	1.2±0.5	0.7±0.1

Numbers indicate mean cell counts±SD of untreated mock (M) and streptomycin (S) treated mice. Data represent at least four mice per group.

doi:10.1371/journal.pone.0071338.t002
antimicrobial compounds themselves, termed bacteriocins, are able to change the microbial composition [48]. The presence of B. adolescentis might protect from Yersiniosis owing to an increase in epithelial barrier function either by direct interactions with IEC or by alterations of the microbiota composition.

The host’s resistance to pathogens relies on a fully functional gastrointestinal immune system, which develops from an immature state only after microbiota acquisition [49]. Moreover, the microbiota complexity directly influences intestinal dendritic cell subset composition. A less diverse microbiota resulted in reduced frequency of plasmacytoid dendritic cells in lymphoid tissues [50] and administration of the probiotic preparation VSL#3 decreased the pDC content in the lamina propria of mice. Our results additionally prove the influence of the microbiota diversity on DC composition since B. adolescentis feeding was associated with an increase in pDCs. These findings suggest that bacterial compounds might directly induce on-site development or the recruitment of plasmacytoid DCs into the intestinal compartment. The rise in pDCs might depend on invariant NKT (iNKT) cells since a recent study demonstrated that iNKT cells are responsible for the recruitment of pDCs to the pancreas during lymphocytic choriomeningitis virus infection [51]. In this study the release of glycolipids by B. adolescentis might result in the activation of iNKT cells which in turn may initiate the recruitment of pDCs to the intestine. The crucial function of pDCs is demonstrated by abolished B. adolescentis-mediated protection during Yersiniosis after depletion of pDCs. Depending on location the secretion of type I interferons (IFN) by pDCs can differ, since murine splenic pDCs secret high amounts of IFN-α upon TLR9 ligand stimulation whereas pDCs of PP don’t. In addition, treatment of splenic pDCs with IL-10, prostaglandine E2, and TGF-β, present at mucosal sites, prevents IFN induction, indicating that the mucosal microenvironment might condition pDCs for poor Type I IFN production [52]. In contrast, peripheral blood pDCs of IBDD patients are impaired to secret IFN-α and simultaneously secret increased amounts of pro-inflammatory cytokines after TLR9 ligand challenge [30]. Moreover, IBDD patients exhibit an increased frequency of pDCs in the intestinal mucosa when compared to controls [30]. A rise in pDC frequency may be supposed to attenuate inflammation which might be insufficient owing to reduced IFN-α secretion. In line with this is the fact that type I interferons secreted by DCs ameliorate DSS-induced colonic injury and inflammation in mice [53] and that ifnar−/− deficient mice are more susceptible to DSS [53,54]. However, IFN-β seems not to be protective in general since administration of IFN-β producing Lactobacilli to mice exacerbates DSS-induced disease [54]. In addition, it might result the B. adolescentis-mediated increase in pDCs in a decreased migration rate of CD103-positive DC to the mesenteric lymph nodes due to a reduced expression of Type I interferons secreted by DCs ameliorate DSS-induced colonic injury and inflammation in mice [53] and that ifnar−/− deficient mice are more susceptible to DSS [53,54]. However, IFN-β seems not to be protective in general since administration of IFN-β producing Lactobacilli to mice exacerbates DSS-induced disease [54]. In addition, it might result the B. adolescentis-mediated increase in pDCs in a decreased migration rate of CD103-positive DC to the mesenteric lymph nodes due to a reduced expression of IFN-β.

Table 3. Cell Counts of Intraepithelial Plasmacytoid DCs, and Lamina Propria FoxP3+ Treg Cells.

Treatment	Plasmacytoid DC	CD4+ FoxP3’ cells
	cell count ×10^3	cell count ×10^3
M + antibiotics	16.8±1.3	3.4±2.5*
B + antibiotics	9.3±3.1	0.3±0.3

Numbers indicate mean cell counts ± SD of vancomycin and metronidazole treated mock (M) and B. adolescentis (B) fed mice. Data represent five mice per group. * p = 0.00494.

doi:10.1371/journal.pone.0071338.t003

Figure 5. B. adolescentis feeding increases Frequencies of Lamina Propria Treg Cells Independent from State of Inflammation. Mean percentage ± SD of lamina propria (A) CD3+CD4+ T cells and (B) FoxP3-expressing regulatory CD3+CD4+ T cells (solid black line) and fluorescence minus one control (gray filled histograms) of mock (M), B. adolescentis fed (B), Yersinia infected (Y), as well as B. adolescentis fed and Yersinia infected mice (BY) mice. Cells were gated as indicated. Data represent at least five mice per group.

doi:10.1371/journal.pone.0071338.g005

Table 4. Counts of Lamina Propria CD4+ T cells and FoxP3+ Regulatory T Cells.

Colonization	CD3+CD4+ cells	CD4+ FoxP3+ cells
M	1.3±0.7	2.2±0.9*
B	1±0.4	4.9±1.3
Y	0.9±0.5	0.7±0.4*
BY	0.9±0.4	4.2±1.3

Numbers indicate mean cell counts ± SD of untreated mock (M), B. adolescentis fed (B), Yersinia infected (Y), as well as B. adolescentis fed and Yersinia infected mice (BY) mice. * M vs. B p<0.01, M vs. BY p<0.05, B vs. Y p<0.001, BY vs. Y p<0.001. Data represent at least five mice per group.

doi:10.1371/journal.pone.0071338.t004
Prevention of Yersinia demonstrated for human [35] and murine cells [57]. Constitutively

anti-mouse PDCA-1 (n = 5) or respective isotype control (n = 3).

B. adolescentis of Y. enterocolitica Y. might prevent the transport of migration rate to the mesenteric lymph nodes. This in turn might result in a lower expression of CCR7 and a decreased

pDCs might secret IFN-γ-induced CCR7. Since, in vitro stimulated bone marrow-derived DC exhibited a reduced expression of CCR7 after stimulation with cytokines when IFN-γ was present [55], CD103-expressing DC were shown to be responsible for the transport of living Salmonella typhimurium cells to the mesenteric lymph nodes in a CCR7 dependent manner [26]. Moreover, a recent publication demonstrated that CD103-positive DC are able to sample, in addition to CX3CR1 expressing DC, luminal Salmonella typhimurium cells by the production of transepithelial dendrites [56]. In this study Y. enterocolitica might also be transported by CD103-expressing DC to the mesenteric lymph nodes. Therefore CD103-expressing pDCs might secret IFN-γ which act on CD103-expressing cells resulting in a lower expression of CCR7 and a decreased migration rate to the mesenteric lymph nodes. This in turn might prevent the transport of Y. enterocolitica to the mesenteric lymph nodes.

The potential of pDCs to induce regulatory T (Treg) cells was demonstrated for human [35] and murine cells [57]. Constitutively present Treg are essential for the maintenance of intestinal homeostasis and to control inflammation [58]. Especially during inflammation the immunosuppressive function of Treg is crucial since a great deal of intestinal pathology originates not from the infection, instead is owing to an overwhelming immune response [59]. In addition, Treg cells are of importance since inflammation enhances the ability of enteric pathogens to establish infection [60]. Moreover, human IL-10 prevented pathology in H. pylori infected il-10-deficient mice and is accompanied by an increase in Treg cells [61]. In contrast, during H. pylori infection Treg cells can be of disadvantage since H. pylori manipulates DCs to become tolerant resulting in the induction of regulatory T cells which dampen the immune response and therefore enable long-lasting gastric colonization [62]. Furthermore, Treg cells are important in parasitic infections given that Toxoplasma gondii infection-induced pathology [63] and Schistosoma mansoni-caused colonic granulomatous [64] pathology are attenuated by Treg cells. B. adolescentis feeding-induced Treg cells might dampen intestinal inflammation resulting in unfavorable environmental conditions for Y. enterocolitica to establish a systemic infection. Yersinia pseudotuberculosis was demonstrated to disseminate directly from the intestinal lumen to the spleen and not to travel via PP and mesenteric lymph nodes [65]. In this study reduced inflammation caused by Treg cells might maintain intestinal barrier integrity and therefore prevent Y. enterocolitica dissemination.

Whether B. adolescentis directly interacts with the host mucosal immune system, or whether an indirect effect of B. adolescentis reduces the host susceptibility towards Yersinia infection by e.g. alteration of the microbiota remains to be elucidated.

Our data provide evidence that commensal B. adolescentis increases the frequency of pDC and Treg cells and that this might be essential for host resistance to intestinal infection.

Supporting Information

Figure S1 B. adolescentis Feeding Results in Increased Plasmacytoid DC Frequency. (A) Lamina propria dendritic cells (pDCs) were analyzed by gating on Intraepithelial dendritic cells (ieDC) were analyzed by gating on lineage negative (CD3ε, CD19, DX5) and CD11c-intermediate cells, as demonstrated in exemplarily depicted dot plots (A) Mean percentage ± SD of B220⁺ lamina propria plasmacytoid DCs (solid black line) and fluorescence minus one control (gray filled histograms) (B) and splenic CFU of Yersinia in log₁₀ per gram of B. adolescentis fed and Yersinia infected mice, either injected with anti-mouse PDCA-1 (n = 5) or respective isotype control (n = 3). a p = 0.0072. doi:10.1371/journal.pone.0071338.t005

Injected antibody	CD11c⁺ cells	B220⁺ cells	
	% leukocytes	cell count x 10⁶	cell count x 10³
Isotype			
	1.1±0.1a	8.1±3.7	1.1±0.5
α-PDCA-1	0.6±0.2	6.2±2.7	0.5±0.2

Numbers indicate mean percentages ± SD and mean cell counts ± SD of B. adolescentis fed and Yersinia infected mice, either injected with anti-mouse PDCA-1 (n = 5) or respective isotype control (n = 3). a p = 0.0072.

doi:10.1371/journal.pone.0071338.t005

CCR7. Since, in vitro stimulated bone marrow-derived DC exhibited a reduced expression of CCR7 after stimulation with cytokines when IFN-γ was present [55], CD103-expressing DC were shown to be responsible for the transport of living Salmonella typhimurium cells to the mesenteric lymph nodes in a CCR7 dependent manner [26]. Moreover, a recent publication demonstrated that CD103-positive DC are able to sample, in addition to CX3CR1 expressing DC, luminal Salmonella typhimurium cells by the production of transepithelial dendrites [56]. In this study Y. enterocolitica might also be transported by CD103-expressing DC to the mesenteric lymph nodes. Therefore CD103-expressing pDCs might secret IFN-γ which act on CD103-expressing cells resulting in a lower expression of CCR7 and a decreased migration rate to the mesenteric lymph nodes. This in turn might prevent the transport of Y. enterocolitica to the mesenteric lymph nodes.

The potential of pDCs to induce regulatory T (Treg) cells was demonstrated for human [35] and murine cells [57]. Constitutively present Treg are essential for the maintenance of intestinal homeostasis and to control inflammation [58]. Especially during inflammation the immunosuppressive function of Treg is crucial since a great deal of intestinal pathology originates not from the infection, instead is owing to an overwhelming immune response [59]. In addition, Treg cells are of importance since inflammation enhances the ability of enteric pathogens to establish infection [60]. Moreover, human IL-10 prevented pathology in H. pylori infected il-10-deficient mice and is accompanied by an increase in Treg cells [61]. In contrast, during H. pylori infection Treg cells can be of disadvantage since H. pylori manipulates DCs to become tolerant resulting in the induction of regulatory T cells which dampen the immune response and therefore enable long-lasting gastric colonization [62]. Furthermore, Treg cells are important in parasitic infections given that Toxoplasma gondii infection-induced pathology [63] and Schistosoma mansoni-caused colonic granulomatous [64] pathology are attenuated by Treg cells. B. adolescentis feeding-induced Treg cells might dampen intestinal inflammation resulting in unfavorable environmental conditions for Y. enterocolitica to establish a systemic infection. Yersinia pseudotuberculosis was demonstrated to disseminate directly from the intestinal lumen to the spleen and not to travel via PP and mesenteric lymph nodes [65]. In this study reduced inflammation caused by Treg cells might maintain intestinal barrier integrity and therefore prevent Y. enterocolitica dissemination.

Whether B. adolescentis directly interacts with the host mucosal immune system, or whether an indirect effect of B. adolescentis reduces the host susceptibility towards Yersinia infection by e.g. alteration of the microbiota remains to be elucidated.

Our data provide evidence that commensal B. adolescentis increases the frequency of pDC and Treg cells and that this might be essential for host resistance to intestinal infection.
by gating on Intraepithelial dendritic cells (iDC) were analyzed by gating on lineage negative (CD3ε, CD19, DX5) and CD11c+–positive cells, as demonstrated in exemplarily depicted dot plots. Graph represents mean percentage ± SEM of CD11c+– lamina propria leukocytes of untreated mock (M, dark gray bar), B. adolescentis fed (B, white bar), Yersinia infected (Y, black bar), as well as B. adolescentis fed and Yersinia infected mice (BY, gray bar). Histograms represent mean percentage ± SD of (D) B220– and (E) PDCA-1–expressing plasmacytoid iDCs of mock (M), B. adolescentis fed (B), Yersinia infected (Y), as well as B. adolescentis fed and Yersinia infected mice (BY) (solid black line) and respective fluorescence minus one control (gray filled histogram). Data represent at least five mice per group.

(EPS)

Table S1 Cell Counts of Total Lamina Propria DCs and cDCs (CD11b+CD11c–).

Group	Cell Count
Mock	
B	
Y	
BY	

(DOC)

Table S2 Cell Counts of Total Lamina Propria CD11c+– cDCs and pDCs (CD11b+CD11c–B220+ or mPDCA1+).

Group	Cell Count
Mock	
B	
Y	
BY	

(DOC)

Acknowledgments
We thank Frauke Effinger for technical assistance.

Author Contributions
Conceived and designed the experiments: AW IBA JSF. Performed the experiments: AW. Analyzed the data: AW JSF. Contributed reagents/materials/analysis tools: IBA JSF. Wrote the paper: AW JSF.

References
1. Bottone EJ (1999) Yersinia enterocolitica: overview and epidemiologic correlates. Microbes Infect 1: 325–333.
2. Cover TL, Aber RC (1989) Yersinia enterocolitica. NEnMed 321: 16–24.
3. Cornelis GR (1994) Yersinia pathogenicity factors. CurrTopMicrobiolImmunol 192: 243–263.
4. Schindler MK, Schutz MS, Muñehlenkamp MC, Roosijarkers SH, Hallstrom T, et al. (2012) Yersinia enterocolitica YadA mediates complement evasion by recruitment and inactivation of C3 products. J Immunol 189: 4900–4908.
5. De La Crocheterie MF, Durand T, Lalande V, Petit JC, Potel G, et al. (2008) Effect of antibiotic therapy on human fecal microbiota and the relation to the development of Clostridium difficile. MicrobEcol 56: 395–402.
6. Dehlström L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoSBiol 6: e280.
7. Jernberg C, Lofmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISMEJ 1: 56–66.
8. Lofmark S, Jernberg C, Jansson JK, Edlund C (2006) Clinically-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. PLoSPathogens 3: 1160–1167.
9. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, et al. (2009) Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. HL117: 4437–4442.
10. Matsa BM, CastellBana A, Thomson AW (2010) Tolerogenic plasmacytoid dendritic cell. Eur J Immunol 40: 2667–2676.
11. Frapin V, Fink K, Kahl F, Nimiec MJ, Qattada M, et al. (2007) Identification of commensal bacterial strains modulating Yersinia and DSS-induced inflammatory responses: implications for the development of probiotics. Inflamm Cell Biol.
12. Autenrieth IB, Muehl E, Bohn E, Kaufmann SH, Heesemann J (1994) Immune response of mice to Yersinia enterocolitica in susceptible BALB/c and resistant C57BL/6 mice: an essential role for gamma interferon. Infect Immun 62: 2590–2599.
13. Hadeiba H, Sato T, Habtezion A, Oderup C, Pan J, et al. (2008) CCR9 expression defines tolerogenic plasmacytoid dendritic cell that suppress acute graft-versus-host disease. Nature immunology 9: 1253–1260.
14. Schirmer I, Tam NM, Jobova M, Robertson MI, Li Y, et al. (2008) Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infection and immunity 76: 4726–4736.
15. Lawley TD, Clare S, Walker AW, Staehes MD, Connor TR, et al. (2012) Targeted restoration of the intestinal microbiota of mice with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Path 8: e1002956.
16. Cummings JH, Ponzare EW, Branch WJ, Naylor CP, Macfarlane GT (1997) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 42: 1221–1227.
17. Maslowski KM, Vieira AT, Ng A, Kranich J, Siervo F, et al. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461: 1282–1286.
18. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, et al. (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469: 543–547.
19. Bansal T, Alaniz CR, Wood TK, Jayaraman A (2010) The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates inflammation. Proceedings of the National Academy of Sciences of the United States of America 107: 229–233.
20. Cario E, Gerken G, Podolsky DK (2004) Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127: 224–238.
43. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, et al. (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132: 562–575.

44. Kim Y, Kim SH, Whang KY, Kim YJ, Oh S (2008) Inhibition of Escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. Journal of microbiology and biotechnology 18: 1278–1285.

45. Ofte JM, Podolsky DK (2004) Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. American journal of physiology Gastrointestinal and liver physiology 286: G613–626.

46. Wehkamp J, Harder J, Wehkamp K, Wehkamp-von MB, Schlee M, et al. (2004) NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. InfectImmun 72: 5750–5758.

47. Kinnebrew MA, Cotter PD, Hogan A, O'Sullivan O, Joyce A, et al. (2012) Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36: 276–287.

48. Murphy EF, Cotter PD, Hogan A, O'Sullivan O, Joyce A, et al. (2013) Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 62: 220–226.

49. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: 107–118.

50. Fujiwara D, Wei B, Presley LL, Brewer S, McPherson M, et al. (2008) Systemic control of plasmacytoid dendritic cells by CD68+ T cells and commensal microbiota. Journal of immunology 180: 5043–5052.

51. Diana J, Grisceri T, Lauraye S, Beaudoin L, Autrusseau E, et al. (2009) NKT cell-plasmacytoid dendritic cell cooperation via OX40 controls viral infection in a tissue-specific manner. Immunity 30: 289–299.

52. Contractor N, Louten J, Kim L, Biron CA, Kelsall BL (2007) Cutting edge: Peyer's patch plasmacytoid dendritic cells (pDCs) produce low levels of type I interferons: possible role for IL-10, TGFbeta, and prostaglandin E2 in conditioning a unique mucosal pDC phenotype. Journal of immunology 179: 2690–2694.

53. Katahara K, Lee J, Rachmilewitz D, Li G, Eckmann L, et al. (2005) Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. JClinInvest 115: 695–702.

54. McFarland AP, Sazan R, Wasage S, Addison A, Ramakrishnan K, et al. (2011) Localized delivery of interferon-beta by Lactobacillus exacerbates experimental colitis. PLoS one 6: e16967.

55. Yen JH, Kong W, Ganea D (2010) IFN-beta inhibits dendritic cell migration through STAT1-mediated transcriptional suppression of CCR7 and matrix metalloproteinase 9. Journal of immunology 184: 3478–3486.

56. Farache J, Koren I, Mlo I, Gurevich I, Kim KW, et al. (2013) Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38: 581–595.

57. Io T, Yang M, Wang YH, Lande R, Gregorio J, et al. (2007) Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. JExpMed 204: 105–115.

58. Izcue A, Coombes JR, Powrie F (2009) Regulatory lymphocytes and intestinal inflammation. Annual review of immunology 27: 313–338.

59. Belkaid Y, Tarbell K (2009) Regulatory T cells in the control of host-microorganism interactions (*). Annual review of immunology 27: 551–589.

60. Turner JD, Jenkins GR, Hogg KG, Ayseley SA, Paveley RA, et al. (2011) CD4+CD25+ regulatory cells contribute to the regulation of colonic Th2 granulomatous pathology caused by schistosome infection. PLoS neglected tropical diseases 5: e1263.

61. Barnes PD, Bergman MA, Messas J, Isberg RR (2006) Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. JExpMed 203: 1581–1601.