A Completely Monotonic Function
Used in an Inequality of Alzer

Christian Berg and Henrik L. Pedersen

(Communicated by Matti Vuorinen)

Abstract. The function
\[G(x) = \left(1 - \frac{\ln(x)}{\ln(1 + x)} \right) x \ln(x) \]
has been considered by Alzer and by Qi and Guo. We prove that \(G' \) is completely monotonic by finding an integral representation of the holomorphic extension of \(G \) to the cut plane. A main difficulty is caused by the fact that \(G' \) is not a Stieltjes transform.

Keywords. Completely monotonic function, Stieltjes transform.

2000 MSC. Primary 33B99; Secondary 30E20.

1. Introduction and results

In a recent paper [1], Alzer proved a number of inequalities involving the volume of the unit ball in \(\mathbb{R}^n \),

\[\Omega_n = \frac{\pi^{n/2}}{\Gamma(1 + \frac{n}{2})}, \quad n = 1, 2, \ldots. \]

That paper contains many references to earlier results about \(\Omega_n \). We mention in particular that Anderson and Qiu [2] proved that the sequence \(f(n) = \Omega_n^{1/(n \ln n)} \), \(n \geq 2 \), is strictly decreasing and converges to \(e^{-1/2} \). It is therefore of interest to study the function

\[f(x) = \left(\frac{\pi^{x/2}}{\Gamma(1 + \frac{x}{2})} \right)^{1/(x \ln x)}, \]
and in [10] the authors have given an integral representation of $\ln f(x+1)$, $x > 0$ by considering its holomorphic extension (denoted by $\log f(z+1)$) to the cut plane $A = \mathbb{C} \setminus (-\infty, 0]$. From this representation it has been possible to deduce that $f(n+2)$ is a Hausdorff moment sequence, in particular decreasing and convex.

The papers [2, 3] have also been an inspiration for several papers about the functions

$$F_a(x) = \frac{\ln \Gamma(x+1)}{x \ln(ax)}, \quad x > 0, \ a > 0, \quad (3)$$

see [1, 4, 8, 9, 10, 11, 12, 13]. In particular, [10] contains an integral representation of the meromorphic extension of F_a to A. From this representation it is possible to deduce that F_a is a Pick function if and only if $a \geq 1$. The relation between F_a and f is given by

$$\log f(z+1) = \frac{\ln \sqrt{\pi}}{\text{Log}(z+1)} - \frac{1}{2} \, F_2 \left(\frac{z+1}{2} \right),$$

where $\text{Log} z = \ln |z| + i \text{Arg} z$ is the principal logarithm in A and $-\pi < \text{Arg} z < \pi$ for $z \in A$.

Alzer found the best constants a^*, b^* such that for all $n \geq 2$

$$\exp \left(\frac{a^*}{n (\log n)^2} \right) \leq \frac{f(n)}{f(n+1)} < \exp \left(\frac{b^*}{n (\log n)^2} \right). \quad (4)$$

In the proof of this result Alzer considered the function

$$G(x) = \left(1 - \frac{\ln(x)}{\ln(1+x)} \right) x \ln(x), \quad (5)$$

and in [1, Lem. 2.3] it was proved that $2/3 < G(x) < 1$ for $x \geq 3$. Qi and Guo observed in [13] that G is strictly increasing on $(0, \infty)$ with $G((0, \infty)) = (-\infty, 1)$ and that $G(3) > 2/3$, which gave another proof of the inequality $2/3 < G(x) < 1$. Furthermore, in [13, Rem. 4] it was conjectured that

$$(-1)^{k-1} G^{(k)}(x) > 0 \quad \text{for} \ x > 0, \ k = 1, 2, \ldots, \quad (6)$$

or equivalently that G' is a completely monotonic function.

The main goal of this paper is to prove this conjecture. We do this by considering G as a holomorphic function in the cut plane A. We put

$$G(z) = \left(1 - \frac{\text{Log}(z)}{\text{Log}(1+z)} \right) z \text{Log}(z), \quad (7)$$

for $z \in A$. Using the same Cauchy integral formula technique as in [10], we shall establish the following theorem.
Theorem 1. The function G from (7) has the representation

$$(8) \quad G(z) = 1 - \int_{0}^{\infty} \frac{\rho(t)}{z + t} \, dt, \quad z \in \mathcal{A},$$

where

$$(9) \quad \rho(t) = \begin{cases}
-\frac{t \ln(\frac{1-t}{t^2})}{\ln(1-t)}, & \text{if } 0 < t < 1, \\
-\frac{t(\ln(\frac{1}{t})^2}{(\ln(t-1))^2 + \pi^2}, & \text{if } 1 < t < \infty.
\end{cases}$$

Notice that $\rho(1^{-}) = \rho(1^{+}) = -1$ so that ρ is continuous on the positive half-line. It is decreasing from ∞ to -1 on the interval $(0,1)$ with $\rho'(1^{-}) = -1$, and increasing from -1 to 0 on the interval $(1,\infty)$ with $\rho'(1^{+}) = \infty$. We have $\rho((\sqrt{5} - 1)/2) = 0$. Notice also that ρ is integrable over $(0,\infty)$ because of the asymptotics

$$\rho(t) \sim -2 \ln t \quad \text{for } t \to 0^+, \quad \rho(t) \sim -\frac{1}{t(\ln t)^2} \quad \text{for } t \to \infty.$$

The graph of ρ is shown in Figure 1.

Since ρ assumes positive and negative values, G as well as $1 - G$ are not Stieltjes transforms. Nevertheless $1 - G$ turns out to be completely monotonic, because it is the Laplace transform of a positive function, as described in the following theorem. In particular, G' is completely monotonic so (6) holds. For properties about completely monotonic functions and Stieltjes transforms we refer to [7, 16].
Theorem 2. For Re $z > 0$ the function $1 - G$ has the representation

$$1 - G(z) = \int_0^\infty e^{-zs} \varphi(s) \, ds,$$

where

$$\varphi(s) = \int_0^\infty e^{-st} \rho(t) \, dt > 0 \quad \text{for } s \geq 0.$$

Remark 1. The relations (10) and (11) yield that $1 - G(z)$ is an iterated Laplace transform, i.e.

$$1 - G(z) = \mathcal{L}(\mathcal{L}(\rho))(z).$$

This is a special case of a general result in [15]. The key assertion in Theorem 2 is the positivity of φ.

The graph of φ is given in Figure 2.

![Figure 2. The graph of φ](image)

The function φ given in (11) is continuous and bounded on $[0, \infty)$, but it is not integrable because $1 - G(x) \to \infty$ for $x \to 0^+$.

Setting $z = a + it$ in (10) with $a > 0$ we get the following result.

Corollary 3.

(i) For each $a > 0$

$$1 - G(a + it) = \int_0^\infty e^{-its} e^{-as} \varphi(s) \, ds, \quad t \in \mathbb{R},$$
is an analytic positive definite function of t, and it is the Fourier transform of
\begin{equation}
\phi(s)1_{[0,\infty)}(s).
\end{equation}
(ii) $t \mapsto G(a+it) - G(a)$ is a continuous negative definite function of t for each $a > 0$. In particular
\begin{equation}
\Re G(a + it) \geq G(a), \quad a > 0, \ t \in \mathbb{R}.
\end{equation}
(iii) $t \mapsto G(a+it)$ is a continuous negative definite function of t for $a \geq 1$.

Concerning continuous positive and negative definite functions we refer to e.g. [7].

Letting $a \to 0^+$ in (12), we formally get that $1 - G(it)$ is the Fourier transform of $\phi(s)1_{[0,\infty)}(s)$. This is true in the L^2-sense because of Plancherel’s Theorem. In fact, we have

Proposition 4. The function ϕ in (11) is square integrable and
\begin{equation}
\lim_{a \to 0^+} \int_{-\infty}^{\infty} |1 - G(a+it)|^2 \frac{dt}{2\pi} = \int_{-\infty}^{\infty} |1 - G(it)|^2 \frac{dt}{2\pi} = \int_{0}^{\infty} \phi^2(s) ds.
\end{equation}

The function G is one-to-one when considered on the positive real line. It is shown below that G is conformal when defined in a sector containing the positive real line. We put
\[S(a, b) = \{ z \neq 0 : a < \Arg z < b \}. \]

Proposition 5. The function G: $S(-\pi/3, \pi/3) \to \mathbb{C}$ is a conformal mapping.

Based on computer experiments it seems that G is conformal in the right half plane, but we have not been able to verify this. On the other hand, G: $\mathcal{A} \to \mathbb{C}$ is not conformal.

2. Proof of the properties of G

In the first lemma the behaviour of G close to zero and infinity is investigated.

Lemma 6. We have

(i) There exist constants $A, B > 0$ such that
\[|G(z)| \leq A |\Log z| + B |\Log z|^2 \quad \text{for } z \in \mathcal{A}, |z| \leq \frac{1}{2}, \]

(ii) $zG(z) \to 0$ for $z = \varepsilon e^{i\theta}$, $\varepsilon \to 0$, uniformly for $-\pi < \theta < \pi$.

(iii) There exists a constant $C > 0$ such that
\[|1 - G(z)| \leq \frac{C}{|z|} \quad \text{for } z \in \mathcal{A}, |z| \geq \varepsilon, \]

(iv) $G(z) \to 1$ for $z = Re^{i\theta}$, $R \to \infty$, uniformly for $-\pi < \theta < \pi$.

Proof. We have for $z \in \mathcal{A}$

$$G(z) = \frac{z}{\Log(1 + z)} \left(\Log(1 + z) \Log z - (\Log z)^2 \right),$$

hence for $|z| \leq 1/2$

$$|G(z)| \leq \max_{|z| \leq 1/2} \left| \frac{z}{\Log(1 + z)} \right| \left(|\Log z| \max_{|z| \leq 1/2} |\Log(1 + z)| + |\Log z|^2 \right),$$

which shows (i).

(ii) follows from (i) since $z(\Log z)^n \rightarrow 0$ for $n \geq 1$ and $|z| = \varepsilon \rightarrow 0$.

To see (iii), we note that the power series (in $1/z$)

$$\Log\left(1 + \frac{1}{z}\right) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{nz^n}, \quad |z| > 1$$

yields

$$\Log\left(1 + \frac{1}{z}\right) \leq \sum_{n=1}^{\infty} \frac{1}{|z|^n} = \frac{1}{|z| - 1} \leq \frac{1}{e - 1}, \quad |z| \geq e.$$

The power series also yields

$$z \Log\left(1 + \frac{1}{z}\right) = 1 + \frac{\alpha(z)}{z}, \quad |\alpha(z)| \leq \frac{e}{2(e - 1)}, \quad |z| \geq e.$$

Note also that $|\Log z| \geq 1$ for $z \in \mathcal{A}, |z| \geq e$.

Writing

$$\frac{\Log z}{\Log(1 + z)} = 1 + \beta(z) \Log\left(1 + \frac{1}{z}\right),$$

with

$$\beta(z) = \frac{-1}{\Log(1 + z)}$$

we find for $z \in \mathcal{A}, |z| \geq e$,

$$|\beta(z)| = \frac{1}{|\Log(1 + z)|} \leq \frac{1}{\ln|1 + z|} \leq \frac{1}{\ln(|z| - 1)} \leq \frac{1}{\ln(e - 1)}.$$

Finally, since

$$G(z) = \left(z \Log\left(1 + \frac{1}{z}\right) \right) \frac{\Log z}{\Log(1 + z)} = \left(1 + \frac{\alpha(z)}{z} \right) \left(1 + \beta(z) \Log\left(1 + \frac{1}{z}\right) \right),$$

we see that

$$z(G(z) - 1) = \alpha(z) + \beta(z)z \Log\left(1 + \frac{1}{z}\right) + \alpha(z)\beta(z) \Log\left(1 + \frac{1}{z}\right),$$

which by (17) and (18) is bounded by some constant $C > 0$ for $|z| \geq e$, showing (iii). Property (iv) follows immediately from (iii).
Proof of Theorem 1. For fixed \(z \in \mathcal{A} \) choose \(\varepsilon, R \) with \(0 < \varepsilon < |z| < R \) and consider the positively oriented contour \(\gamma(\varepsilon, R) \) in \(\mathcal{A} \) consisting of the half-circle \(z = \varepsilon e^{i\theta}, \theta \in [-\pi/2, \pi/2] \) and the half-lines \(z = x \pm i\varepsilon, x \leq 0 \) until they cut the circle \(|z| = R \), which closes the contour at the points \(-R(\varepsilon) \pm i\varepsilon \), where \(0 < R(\varepsilon) \to R \) for \(\varepsilon \to 0 \). (See Figure 3.)

![Figure 3. The contour \(\gamma(\varepsilon, R) \).](image)

By Cauchy’s Integral Theorem we have

\[
G(z) = \frac{1}{2\pi i} \int_{\gamma(\varepsilon, R)} \frac{G(w)}{w - z} \, dw.
\]

Letting \(\varepsilon \) tend to zero, the contribution corresponding to the half-circle with radius \(\varepsilon \) tends to 0 by (ii) of Lemma 6.

Concerning the boundary behaviour of \(G \) on the negative real line we obtain

\[
G(t + i0) := \lim_{\varepsilon \to 0^+} G(t + i\varepsilon) = \begin{cases}
1 - \frac{\ln(-t) + i\pi}{\ln |1 + t| + i\pi} t(\ln(-t) + i\pi), & \text{if } t < -1 \\
1 - \frac{\ln(-t) + i\pi}{\ln(1 + t)} t(\ln(-t) + i\pi), & \text{if } -1 < t < 0.
\end{cases}
\]
Note that $G(t + i0)$ is continuous at $t = -1$ with value $-i\pi$. Using that $G(\pi) = \overline{G(\pi)}$, (19) yields
\begin{equation}
G(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{G(Re^{i\theta})}{Re^{i\theta} - z} Re^{i\theta} d\theta + \frac{1}{\pi} \int_{-R}^{R} \frac{\text{Im} G(t + i0)}{t - z} dt.
\end{equation}
In the last integral we replace t by $-t$ and use that $(-1/\pi) \text{Im} G(-t + i0) = -\rho(t)$. Letting $R \to \infty$ and using (iv) of Lemma 6, we finally get (8).

\textbf{Remark 2.} Feng Qi has kindly informed us about the following elementary proof of the observation that $1 - G$ is not a Stieltjes function. In fact, if it were, then also $h(x) = 1/(x(1 - G(x))$ would be a Stieltjes transform by the Stieltjes-Reuter-Itô Theorem, cf. [14, 5] or [6, p. 25]. In particular, h would be decreasing, which is contradicted by the simple fact that $1 = h(1) < h(2) = 1.02 \ldots$.

\textbf{Proof of Theorem 2.} The formulas (10) and (11) follow immediately from Theorem 1 and it remains to prove that φ is positive. Let $t_0 = (\sqrt{5} - 1)/2$. Then $\rho(t) > 0$ for $0 < t < t_0$ and $\rho(t) < 0$ for $t_0 < t < \infty$ and hence
\begin{equation}
A = \int_0^{t_0} \rho(t) \, dt > 0, \quad B = \int_{t_0}^{\infty} \rho(t) \, dt < 0.
\end{equation}
Using this notation we get
\[
\varphi(s) = \int_0^{t_0} e^{-st} \rho(t) \, dt + \int_{t_0}^{\infty} e^{-st} \rho(t) \, dt
\geq \int_0^{t_0} e^{-st_0} \rho(t) \, dt + \int_{t_0}^{\infty} e^{-st_0} \rho(t) \, dt = (A + B) e^{-st_0}.
\]
In the following lemma it is established that $A + B > 0$, and hence $\varphi(s) > 0$ for all $s \geq 0$.

\textbf{Lemma 7.}
\[
\int_0^{\infty} \rho(t) \, dt > 0.
\]

\textbf{Proof.} We first establish
\begin{equation}
\int_0^{1} \rho(t) \, dt > \frac{\pi^2}{6} - \frac{1}{2}.
\end{equation}
Since
\[
\sum_{n=0}^{\infty} t^n \int_0^{1} \binom{x}{n} dx = \int_0^{1} (1 + t)^x dx = \left[\frac{(1 + t)^x}{\ln(1 + t)} \right]_0^1 = \frac{t}{\ln(1 + t)}
\]
we obtain the power series expansion
\begin{equation}
\frac{t}{\ln(1 + t)} = 1 + \sum_{n=1}^{\infty} b_n t^n, \quad |t| < 1, \quad b_n = \int_0^{1} \binom{x}{n} dx.
\end{equation}
The numbers \(b_n \) are sometimes called Cauchy numbers. Note that for \(n \geq 1 \)
\begin{equation}
0 < (-1)^{n-1}b_n = \int_0^1 \frac{x(1-x)\cdots(n-1-x)}{n!} \, dx \leq \frac{1}{n} \int_0^1 x \, dx = \frac{1}{2n}.
\end{equation}

By (23) we get
\begin{align*}
\int_0^1 \rho(t) \, dt &= -\frac{1}{2} - 2 \int_0^1 \ln t \, dt + 2 \sum_{n=1}^\infty (-1)^{n-1}b_n \int_0^1 t^n \ln t \, dt \\
&= \frac{3}{2} - 2 \sum_{n=1}^\infty (-1)^{n-1} \frac{b_n}{(n+1)^2}
\end{align*}
and hence using (24)
\begin{align*}
\int_0^1 \rho(t) \, dt &> \frac{3}{2} - \sum_{n=1}^\infty \frac{1}{n(n+1)^2} = \frac{3}{2} - \sum_{n=1}^\infty \frac{1}{n+1} \left(\frac{1}{n} - \frac{1}{n+1} \right) \\
&= \frac{1}{2} + \sum_{n=1}^\infty \frac{1}{(n+1)^2} = \frac{\pi^2}{6} - \frac{1}{2}.
\end{align*}

We next show that
\begin{equation}
(25) \quad \int_1^2 \rho(t) \, dt > -\frac{1}{12} - \frac{2(1 + \ln 2) \ln 2}{\pi^2},
\end{equation}
by using the rough estimate
\begin{align*}
\int_1^2 \rho(t) \, dt &> -\frac{1}{\pi^2} \int_1^2 t \left(\ln \left(1 - \frac{1}{t} \right) \right)^2 \, dt \\
\int_1^2 t \left(\ln \left(1 - \frac{1}{t} \right) \right)^2 \, dt &= \int_1^2 \left(t(\ln(t-1))^2 + t(\ln t)^2 - 2t \ln(t-1) \ln t \right) \, dt.
\end{align*}

The integral of the first two terms can be calculated because
\begin{equation*}
\int t(\ln t)^2 \, dt = \frac{t^2}{2} \left((\ln t)^2 - \ln t + \frac{1}{2} \right),
\end{equation*}
and for the integral of the third term we have
\begin{align*}
2 \int t \ln(t-1) \ln t \, dt &= \left(t^2 \ln t - \frac{1}{2}t^2 + \frac{1}{2} \right) \ln(t-1) - \frac{1}{2}t^2 \ln t + \frac{1}{2}t^2 \\
&\quad - t \ln t + \frac{3}{2} t + \text{dilog}(t),
\end{align*}
where
\begin{equation*}
\text{dilog}(t) = \int_1^t \frac{\ln x}{1-x} \, dx.
\end{equation*}
Since
\[
dilog(2) = -\int_0^1 \frac{\ln(1+u)}{u} \, du = -\sum_{n=0}^{\infty} \int_0^1 (-1)^n \frac{u^n}{n+1} \, du = -\frac{\pi^2}{12},
\]
this leads to the expression in (25).

We finally show
\[
(26) \quad \int_2^\infty \rho(t) \, dt > -\frac{1}{2}.
\]

Squaring the power series for \(\ln(1-u)\) yields
\[
(27) \quad (\ln(1-u))^2 = u^2 \sum_{n=0}^{\infty} c_n u^n, \quad |u| < 1; \quad c_n = \sum_{k=0}^{n} \frac{1}{(k+1)(n+1-k)}.
\]

The relation \(0 < c_n \leq 1\) for all \(n\) is proved in Lemma 8 below. Therefore, and using (27) with \(u = 1/t\) it follows that
\[
\int_2^\infty \rho(t) \, dt = -\int_2^\infty \sum_{n=0}^{\infty} \frac{c_n}{t^{n+1}} \left(\frac{\ln(t-1)^2 + \pi^2}{\ln(t-1)^2 + \pi^2}\right) \, dt
\]
\[
= -\int_2^\infty \left(\frac{1}{t^{n+1}}\right) \left(\frac{\ln(t-1)^2 + \pi^2}{\ln(t-1)^2 + \pi^2}\right) \, dt
\]
\[
= -\int_2^\infty \left(\frac{(t-1)(\ln(t-1)^2 + \pi^2)}{1 + x^2}\right) \, dt
\]
\[
= -\frac{1}{\pi} \int_0^\infty \frac{dx}{1 + x^2} = -\frac{1}{2}.
\]

Combining (22), (25) and (26) we get
\[
\int_0^\infty \rho(t) \, dt > \frac{\pi^2}{6} - \frac{1}{2} - \frac{1}{12} - \frac{2(1 + \ln 2) \ln 2}{\pi^2} - \frac{1}{2} \approx 0.3238 > 0
\]

and the lemma is proved.

\[\Box\]

Remark 3. A numerical computation yields
\[\varphi(0) = \int_0^\infty \rho(t) \, dt \approx 0.5192.\]

Lemma 8. The numbers
\[c_n = \sum_{k=0}^{n} \frac{1}{(k+1)(n+1-k)}, \quad n \geq 0,
\]
can be written in the form
\[c_n = \frac{2H_{n+1}}{n+2},\]
where \(H_n = \sum_{k=1}^{n} \frac{1}{k} \) is the \(n \)th harmonic number. Moreover,
\[
c_{n-1} - c_n = \frac{2(H_n - 1)}{(n + 1)(n + 2)} \geq 0,
\]
whence \(1 = c_0 > c_1 > c_2 > c_3 \ldots \).

Proof. The expression for \(c_n \) follows from the relation
\[
\frac{1}{(k+1)(n+1-k)} = \frac{1}{n+2} \left(\frac{1}{k+1} + \frac{1}{n+1-k} \right).
\]
Using that expression we find
\[
c_{n-1} - c_n = \frac{2}{(n+1)(n+2)} ((n+2)H_n - (n+1)H_{n+1})
\]
\[
= \frac{2(H_n - 1)}{(n+1)(n+2)}
\]
which proves the lemma.

Proof of Corollary 3. It is well-known that if \(F(t) \) is a continuous positive definite function on \(\mathbb{R} \), then \(F(0) - F(t) \) is continuous and negative definite, and a continuous negative definite function \(H(t) \) satisfies \(\text{Re } H(t) \geq H(0) \geq 0 \), see [7]. Therefore (ii) follows from (i), and (iii) follows from (ii) because \(G(a) \geq 0 \) for \(a \geq 1 \).

Proof of Proposition 4. By (i) and (iii) of Lemma 6 it is clear that
\[
\int_{-\infty}^{\infty} |1 - G(it)|^2 \frac{dt}{2\pi} < \infty
\]
and that dominated convergence can be applied to obtain the first equality in (15). By Plancherel’s Theorem \(1-G(it) \) must be the Fourier transform of a square integrable function, which is the \(L^2 \)-limit of (13), hence equal to \(\varphi(s)1_{[0,\infty)}(s) \).

Before proving Proposition 5 we give Lemma 9.

Lemma 9. For \(z \in S(0, \pi/3) \) we have \(\text{Im } G'(z) < 0 \).

Proof. From the relation (8) it follows that
\[
\text{Im } G'(re^{i\theta}) = -2r \sin \theta \int_{0}^{\infty} \frac{r \cos \theta + t}{((r \cos \theta + t)^2 + (r \sin \theta)^2)^2} \rho(t) \, dt.
\]
We claim that for fixed \(r > 0 \) and \(\theta \in [0, \pi/3] \) the function
\[
k(t) = \frac{r \cos \theta + t}{((r \cos \theta + t)^2 + (r \sin \theta)^2)^2}
\]
is decreasing. Indeed,
\[
k'(t) = \frac{(r \sin \theta)^2 - 3(r \cos \theta + t)^2}{((r \cos \theta + t)^2 + (r \sin \theta)^2)^3}
\]
and the numerator is negative for all \(t > 0 \) because
\[
\sin^2 \theta \leq 3 \cos^2 \theta \quad \text{for } \theta \in \left[0, \frac{\pi}{3}\right].
\]
This implies
\[
\int_0^\infty \frac{r \cos \theta + t}{(r \cos \theta + t)^2 + (r \sin \theta)^2}^2 \rho(t) \, dt = \int_0^{t_0} k(t) \rho(t) \, dt + \int_{t_0}^\infty k(t) \rho(t) \, dt
\]
\[
\geq k(t_0) \left(\int_0^{t_0} \rho(t) \, dt + \int_{t_0}^\infty \rho(t) \, dt \right),
\]
where \(t_0 = (\sqrt{5} - 1)/2 \). From Lemma 7 it follows that the integral above is positive. From (28) we now obtain that
\[
\text{Im} G'(r e^{i\theta}) = -2r \sin \theta \int_0^\infty \frac{r \cos \theta + t}{(r \cos \theta + t)^2 + (r \sin \theta)^2}^2 \rho(t) \, dt < 0.
\]
This proves the lemma.

Proof of Proposition 5. From (8) it follows that
\[
\text{Im} G(x + iy) = y \int_0^\infty \frac{\rho(t)}{(x + t)^2 + y^2} \, dt.
\]
Here \(t \mapsto 1/((x + t)^2 + y^2) \) is a decreasing function of \(t \) and it follows as in Lemma 9 that \(\text{Im} G(x + iy) > 0 \) for \(x > 0 \) and \(y > 0 \) and also \(\text{Im} G(x + iy) < 0 \) for \(x > 0 \) and \(y < 0 \). Hence it is enough to show that \(G \) is one-to-one in the sector \(S(0, \pi/3) \).

For \(z_1 \) and \(z_2 \) belonging to the sector \(S(0, \pi/3) \) we have
\[
G(z_2) - G(z_1) = \int_{\gamma(z_1,z_2)} G'(w) \, dw,
\]
where \(\gamma(z_1,z_2) \) is the straight line segment from \(z_1 \) to \(z_2 \). Thus
\[
G(z_2) - G(z_1) = (z_2 - z_1) \int_0^1 G'(z_1 + t(z_2 - z_1)) \, dt \neq 0,
\]
when \(z_1 \neq z_2 \) since \(\text{Im} G'(w) < 0 \) for \(w \in S(0, \pi/3) \) by Lemma 9. This shows that \(G \) is one-to-one in \(S(0, \pi/3) \).

References

1. H. Alzer, Inequalities for the volume of the unit ball in \(\mathbb{R}^n \), II, *Mediterr. J. Math.* 5 (2008), 395–413.
2. G. D. Anderson and S.-L. Qiu, A monotonicity property of the gamma function, *Proc. Amer. Math. Soc.* 125 (1997), 3355–3362.
3. G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Special functions of quasiconformal theory, *Expo. Math.* 7 (1989), 97–136.
4. N. Batir, On some properties of the gamma function, *Expo. Math.* 26 (2008), 187–196; doi:10.1016/j.exmath.2007.10.001.
5. C. Berg, Quelques remarques sur le cône de Stieltjes, in: Séminaire de Théorie du potentiel, Paris n.5., Lecture Notes in Mathematics 814, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
6. ______, Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity, in: J. Mateu and E. Porcu, Positive Definite Functions: From Schoenberg to Space-Time Challenges, Department of Mathematics, Universitat Jaume I, Castelló de la Plana, 2008.
7. C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer, Berlin-Heidelberg-New York, 1975.
8. C. Berg and H. L. Pedersen, A completely monotone function related to the Gamma function, J. Comput. Appl. Math. 133 (2001), 219–230.
9. ______, Pick functions related to the gamma function, Rocky Mount. J. Math. 32 (2002), 507–525.
10. ______, A one parameter family of Pick functions defined by the Gamma function and related to the volume of the unit ball in n-space, Proc. Amer. Math. Soc. 139 no. 6 (2011), 2121–2132.
11. A. Elbert and A. Laforgia, On some properties of the Gamma function, Proc. Amer. Math. Soc. 128 (2000), 2667–2673.
12. C. Mortici, Monotonicity properties of the volume of the unit ball in \(\mathbb{R}^n \), Optim. Lett. (2010), 457–464; DOI 10.1007/s11590-009-0173-2.
13. F. Qi, B.-N. Guo, Monotonicity and logarithmic convexity relating to the volume of the unit ball, arXiv:0902.2509v1[math.CA].
14. G. E. H. Reuter, Über eine Volterrasche Integralgleichung mit totalmonotonem Kern, Arch. Math. 7 (1956), 59–66.
15. D. V. Widder, The Stieltjes transform, Trans. Amer. Math. Soc. 43 (1938), 7–60.
16. ______, The Laplace Transform, Princeton University Press, Princeton, 1941.

Christian Berg
 ADDRESS: University of Copenhagen, Institute of Mathematical Sciences, Universitetsparken 5, DK-2100 København Ø, Denmark.

Henrik L. Pedersen
 E-MAIL: henrikp@life.ku.dk
 ADDRESS: University of Copenhagen, Department of Basic Sciences and Environment, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.