Current Driven Magnetic Damping in Dipolar-Coupled Spin System

Sung Chul Lee*, Ung Hwan Pi*, Keewon Kim, Kwang Seok Kim, Jaikwang Shin & U-In Chung

Samsung Advanced Institute of Technology (SAIT), San #14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-Do 446-712, Korea.

Magnetic damping of the spin, the decay rate from the initial spin state to the final state, can be controlled by the spin transfer torque. Such an active control of damping has given birth to novel phenomena like the current-driven magnetization reversal and the steady spin precession. The spintronic devices based on such phenomena generally consist of two separate spin layers, i.e., free and pinned layers. Here we report that the dipolar coupling between the two layers, which has been considered to give only marginal effects on the current driven spin dynamics, actually has a serious impact on it. The damping of the coupled spin system was greatly enhanced at a specific field, which could not be understood if the spin dynamics in each layer was considered separately. Our results give a way to control the magnetic damping of the dipolar coupled spin system through the external magnetic field.

Results

Anomalous discontinuity in spin oscillation mode observed in magnetic tunnel junction. The sample for our study is a typical magnetoresistive tunneling junction (MTJ), which consists of the bottom layer [Si/SiO2/TiN(60)], SAF [PtMn(15)/Co90Fe10(1.5)/Ru(0.8)/Co90Fe40B20(1.5)], tunneling barrier [Mg(0.3)/MgO(0.53)], magnetic free layer [Co90Fe40B20(2.0)], and capping layer[Ta(5)/Ti(15)/Ru(15)] as shown in Fig. 1. Here the numbers in the parenthesis represent the nominal thickness in the unit of nanometer. In order to study the coupled motion between the free layer (FL) and the top pinned layer of the SAF (TPL), the thickness of the pinned layer was thin enough to be excited by the spin transfer torque. In previous studies that focus only on the dynamics of the FL spin, the thickness of the TPL was much thicker20,21 or wider22 than the FL, inhibiting the excitation of the TPL. The MTJ cell has a circular shape with a diameter of 90 nm, minimizing the in-plane shape anisotropy. The current driven spin precession yields a resistance oscillation in the circular MTJ cell, which has been measured under different external fields (\(\mu_0H\)). The polarity of \(\mu_0H\) was defined as positive when the magnetization of the FL
is antiparallel with the TPL. The current bias polarity was defined as positive when the electron moves from the TPL to the FL.

Figure 2a shows the resistance of the MTJ cell as a function of $\mu_0 H$ in the current density $J = 7.8 \times 10^6$ A/cm2. Under the negative (positive) field, the spins in the FL are parallel (antiparallel) to the spins in the TPL, yielding the lower (higher) magnetoresistance level. The current driven spin oscillation yields the resistance change in the MTJ, the microwave by which is measured through the spectrum analyzer (S.A.).

The oscillation mode of the TPL in Fig. 2c also shows similar discontinuity and frequency gap, which implies that the observed feature is independent of the current polarity. The explanation of the discontinuity and frequency gap, which is measured through the spectrum analyzer (S.A.).

The color-coded microwave power calculated on the model system by solving the LLGS equation in a small excitation limit. The azimuthal and polar angles of the magnetization in each layer have been calculated using the Landau-Lifshits-Gilbert-Slonczewski-Slonczewski (LLGS) equation given by$$\frac{dM}{dt} = -\gamma \mu_0 M \times H + \frac{\alpha}{M} \frac{dM}{dt} - \gamma \alpha \mu_0 M \times (M \times p)$$

where γ, α, and p represents the gyromagnetic ratio, the intrinsic damping constant, the amplitude of the spin-torque in the unit of magnetic field, a unit vector parallel to the electron spin polarization. In order to study the effect of the dipolar coupling between the layers, the micromagnetic calculations have been carried out on several different separations (s) between the TPL and FL from 0.8 nm to 50 nm. Although electrons cannot tunnel through the oxide barriers in case of large s value in reality, we assumed the same tunneling current could pass through the MTJ in our calculations.

The color-coded power spectrums of the MTJ cell in the current biases $J = \pm 7.8 \times 10^6$ A/cm2 and -7.8×10^6 A/cm2 are shown in Fig. 2b and 2c, respectively. In the field range $0 < \mu_0 H < \mu_0 H_{fs}$ one can observe distinctive dependence of the oscillation mode on the current bias polarity. In positive (negative) current bias, the spins in the FL (TPL) are dominantly excited, yielding a blue (red) frequency shift with the increasing field. Above the spin-flop transition $\mu_0 H > \mu_0 H_{fs}$ both the free and pinned layer show blue frequency shifts. These general features agree with the previous reports on the eigenmodes of the FL and TPL in the MTJ cell.$^{23-25}$

There are several interesting points in Fig. 2b and 2c. A discontinuity is clearly observed in the oscillation mode. In Fig. 2b, the free layer oscillation observed at low fields disappears at around $\mu_0 H = 40$ mT, and reappears at $\mu_0 H > 60$ mT. One should note that the point by point discontinuity in the field range $\mu_0 H < 30$ mT is just due to the large interval of the sampling fields in our experiment. This is different from the real discontinuity of the oscillation mode.

One can also find a gap in the oscillation frequency at around the disconnected point. The extension of the lower field mode by the Kittel formula26 does not matches well with the higher field mode. The oscillation mode of the TPL in Fig. 2c also shows similar discontinuity and frequency gap, which implies that the observed feature is independent of the current polarity. The explanation of the observed anomalous breakdown of the oscillation mode is the main subject of this article.

Micromagnetic calculation : effect of dipolar coupling on spin oscillation. The magnetization dynamics of the coupled spin layers have been calculated using the Landau-Lifshits-Gilbert-Slonczewski-Slonczewski (LLGS) equation given by

$$\frac{dM}{dt} = -\gamma \mu_0 M \times H + \frac{\alpha}{M} \frac{dM}{dt} - \gamma \alpha \mu_0 M \times (M \times p)$$

Normal modes of dipolar coupled spin oscillation. To deeply understand the coupled dynamics, we calculated the eigenmodes of the model system by solving the LLGS equation in a small excitation limit. The azimuthal and polar angles of the magnetization in each layer have been defined as ϕ_i and θ_i, respectively. Here i represents the layer number of the BPL ($i=1$), TPL ($i=2$), FL ($i=3$). The LLGS equation in Eq. 1 can be described according to the above six variables $X = (x_1, x_2, x_3, x_4, x_5, x_6) = (\phi_1, \theta_1, \phi_2, \theta_2, \phi_3, \theta_3)$ in the form $$\frac{dx_i}{dt} = f_i(x_1, x_2, x_3, x_4, x_5, x_6) i = 1 \sim 6$$

Figure 1 | Schematic diagram of the MTJ structure and measurement setup. The three ferromagnetic layers are magnetically coupled. The free layer (Co$_{20}$Fe$_{80}$B$_{20}$) is dipolar-coupled with the top pinned layer (Co$_{90}$Fe$_{10}$B$_{20}$). The top pinned layer is exchange biased antiferromagnetically with the bottom pinned layer (Co$_{90}$Fe$_{10}$) through the Ru layer, forming a synthetic antiferromagnet. For the study of coupled spin motion, the thickness of the pinned layer was thin enough to be excited by the spin transfer torque. The current driven spin oscillation yields the resistance change in the MTJ, the microwave by which is measured through the spectrum analyzer (S.A.).
A linearized form of the above equation around the stationary point \(X_0 = (x_{10}, x_{20}, x_{30}, x_{40}, x_{50}, x_{60})\) following \(F_i(X_0) = 0\) can be written as

\[
\frac{d\delta x_i}{dt} = \sum_{j=1}^{6} \frac{\partial F_i}{\partial x_j} \delta x_j \quad (3)
\]

Here \(\delta X = X - X_0(\delta x_1, \delta x_2, \delta x_3, \delta x_4, \delta x_5, \delta x_6)\) represents a small deviation from the stationary point. If the six eigenvalues and eigenvectors of the 6 \(\times\) 6 matrix \(T = T_0 = \frac{\partial F_i}{\partial x_j} \bigg|_{X_0} = 6\) are respectively \(c_k\) and \(U_k\) \((k=1 \sim 6)\), i.e.,

\[TU_k = c_k U_k\]

then \(\delta X\) in Eq. 3 can be written as

\[\delta X = \sum_{k=1}^{6} c_k \exp(c_k t) U_k\quad (4)\]

Here \(c_k\) is a numerical constant determined by the initial condition of the motion. The motion of each variable is the superposition of the six eigenmodes weighted by \(\exp(c_k t)\). The imaginary part of the eigenvalue \(\text{Im}(c_k)\) corresponds to the angular frequency of the oscillatory eigenmode, and the real part \(\text{Re}(c_k)\) reveals the decay rate of the oscillation. Negative \(\text{Re}(c_k)\) implies a mode whose oscillation decays out even though it has an initial oscillation amplitude. In the positive \(\text{Re}(c_k)\), on the other hand, the spin oscillation is feasible to be excited. In this sense, the value of \(\text{Re}(c_k)\) is the crucial factor that determines the damping rate of the spin oscillation.

The matrix \(T\) has been numerically calculated under different external fields and current biases from the LLGS equation. It gives six eigenvalues, three of which are the complex conjugates of the others. The three real and imaginary part eigenvalues \(\text{Re}(c_k)\) and \(\text{Im}(c_k)\) are depicted as a function of the external field on the positive and negative current biases of \(J = \pm 3 \times 10^7\) A/cm\(^2\) in Fig. 4a–4d. The mode 1 \((k=1)\) which has the highest frequency corresponds to the excitation of the BPL, and the mode 2 \((k=2)\) and 3 \((k=3)\) are...
respecively the optical and acoustic modes between the FL and TPL. One can note that the optical mode has the higher frequency than the acoustic mode because the optical mode has the more dipolar energy. Each mode has been identified through the corresponding eigenvector as described in the supplementary information A.

Considering that the spin oscillation is the more heavily excited in the mode where \(\text{Re}(\epsilon) \) is the larger, the eigenmode with the maximum \(\text{Re}(\epsilon) \) among the three modes corresponds to the dominant spin precession mode. The dominant precession mode is the acoustic (optical) mode at a lower (higher) field of \(\mu_s H < 30 \text{ mT} \) (\(\mu_s H > 60 \text{ mT} \)) on the case of positive current bias. On the negative current bias, it is reversed, i.e., the optical mode is dominant at the lower field and the acoustic mode is dominant at the higher field. Compared to the coupled motion of the FL and TPL, the motion of BPL is negligible. Although BPL is strongly coupled to the TPL by antiferromagnetic exchange coupling, the dipolar field is not fully compensated due to the different dynamic motions in the TPL and BPL. This reveals that the dipolar interaction should not be neglected in the dynamic case.

The eigenvalue of such a dominant precession mode under several different current densities is depicted as a function of the external field in Fig. 5. The real parts (imaginary parts) on the positive and negative current biases are shown in Fig. 5a and 5b (in Fig. 5c and 5d), respectively. The real part representing the decay rate of the oscillation becomes smaller and goes lower than zero around the field 45 mT. The imaginary part depicted in Fig. 5c and 5d shows a frequency jump exactly at the same breakdown field observed at small current densities. The reduction of \(\text{Re}(\epsilon) \) results of \(\text{Im}(\epsilon) \) as a function of external field are shown in Fig. 5a. Figure 5b shows the dependence of the frequency gap upon the s values, which was obtained from the results of \(\text{Im}(\epsilon) \).

In order to investigate the effect of the dipolar coupling strength, we estimated the \(\text{Re}(\epsilon) \) and \(\text{Im}(\epsilon) \) values of the dominant precession mode for several different \(s \) values. The results of \(\text{Re}(\epsilon) \) as a function of external field are shown in Fig. 6a. Figure 6b shows the dependence of the frequency gap upon the \(s \) values, which was obtained from the results of \(\text{Im}(\epsilon) \). The strong reduction of \(\text{Re}(\epsilon) \) around the breakdown field observed at small \(s \) becomes weaker and weaker as \(s \) increases, resulting in a negligible dip of \(\text{Re}(\epsilon) \) at \(s = 1000 \text{ nm} \). The case of \(s = 1000 \text{ nm} \) can be considered as a system where each layer is coupled to the others only through the spin transfer torque without any dipolar interactions. In this case, we could not observe any special feature on \(\text{Re}(\epsilon) \). This reveals that the anomalous magnetic damping observed around the breakdown field is strongly related to the dipolar coupling. The coupling only through the spin transfer torque cannot make such a behavior.

Recent micromagnetic calculations on a similar spin system have considered the dynamic coupling only by the spin transfer torque without any dipolar interaction\(^{16,17}\). Unlike our results, they showed several anomalous features such as the reduction of the spectral line-width and frequency jump exactly at the same breakdown field. But this behavior was observed only at a large current density \(J > 4.0 \times 10^7 \text{ A/cm}^2 \). The estimation of eigenvalues and eigenmodes assumes a spin motion with small amplitude around the stationary points. It cannot cover the dynamics of large amplitudes. In this sense, the anomalous behaviors in purely spin transfer torque coupled system must come from the nonlinear dynamics in large amplitude. In fact, we carried out micromagnetic calculation at large current density, and it showed the same behaviors as the previous reports as described in the supplementary information B. The dipolar-coupling affect the damping property even at small spin amplitudes, making the anomalous damping behavior be observed experimentally in moderate current range. In contrast, the anomalous effect by the dynamic coupling...
through the mutual spin transfer torque appears only at large spin amplitude.

Damping control through external magnetic field. According to the behavior of $\text{Re}(e)$ shown in Fig. 5a and 5b, the damping of the coupled spin oscillation can be controlled by the external magnetic field. The real time motions of the spins in the FL and TPL have been obtained from the numerical calculation of Eq. 1 under the following condition. Initially the model system was under the field of 27 mT far smaller than the breakdown point in the current bias of $J = 2.0 \times 10^7 \text{ A/cm}^2$. At the time $\tau = 0$ ns, the magnetic field suddenly jumped from 27 mT to the breakdown field. The azimuthal angle motions of the spins in the FL and TPL have been calculated in different τ values of 0.8 nm and 20 nm. Figure 7a shows the results obtained on the case of $\tau = 0$ ns. To compare the results with the eigenmodes that is valid only small spin oscillation limit, the results at a larger τ are separately depicted in Fig. 7b. Figure 7c and 7d show the results similarly obtained on the case of $\tau = 20$ nm.

As expected from the $\text{Re}(e)$ behavior shown in Fig. 5 and Fig. 6, the steady state precession below 0 ns decays out above 0 ns. Comparing the decaying region ($\tau > 0$) with the steady precession region ($\tau < 0$), one can find that the amplitude ratio between the FL and TPL is not

Figure 5 | Real and imaginary parts of the eigenvalue of the coupled spin motion in azimuthal angle on different current densities. The eigenvalues (e) and eigenvectors of the coupled spin motion in azimuthal angle have been obtained with the method described in the text. Among the eigenvalues, the eigenvalue whose real part is the largest is plotted as a function of external field in the case of $s = 0.8$ nm. (a),(b) Real part $\text{Re}(e)$ calculated on the positive and negative current biases, respectively. $\text{Re}(e)$ has a tendency to increase with the increasing current densities. However, it becomes smaller and goes below zero around 45 mT irrespective of the current densities and polarities. (c),(d) Imaginary part $\text{Im}(e)$ calculated on the positive and negative current biases, respectively. $\text{Im}(e)$ shows similar frequency gap as the experiments and micromagnetic calculations. The relative phase of the spin oscillation between the FL and TPL has been identified through the eigenvectors. The schematic diagrams of the corresponding coupled spin motion are depicted in the inset of (c) and (d).

Figure 6 | Effect of the dipolar interaction on $\text{Re}(e)$ and $\text{Im}(e)$ in dominant precession mode. (a) $\text{Re}(e)$ of the dominant precession mode depicted as a function of the external magnetic field under several different s values. The strong reduction of $\text{Re}(e)$ around the breakdown field observed at small s becomes weaker and weaker as s increases, resulting in a negligible dip of $\text{Re}(e)$ at $s = 1000$ nm. (b) Frequency gap $\Delta \nu$ obtained from $\text{Im}(e)$ difference between the acoustic and optical mode at the breakdown point depicted as a function of s.
constant but changes rather periodically. Dashed blue lines marked on the points where the ratio of TPL amplitude over the FL amplitude has a local maximum show this clearly. This beating pattern becomes even clearer when the amplitude of spin oscillation is small enough at a larger scale, as depicted in Fig. 6b and 6d. The period of beating becomes longer as the distance between the FL and TPL becomes larger as one can compare Fig. 6d with Fig. 6b. For the comparison of the beating frequency with the frequency gap of the eigenmodes, scale bars of $1/\Delta f_1$ and $1/\Delta f_2$ have been drawn in Fig. 7, which represent the inverses of the frequency gaps Δf_1 and Δf_2 obtained respectively from the $\text{Im}(\omega)$ values on the two cases $s = 0.8$ nm and 20 nm in Fig. 6b. One can find that the beating frequency identified by the dashed blue lines coincides with the frequency gap, i.e., the frequency difference between optical and acoustic mode at the breakdown field. This clearly reveals that the beating pattern comes from the interference of the two eigenmodes. Considering that the spin oscillation in the FL or TPL is expressed as a superposition of the eigenmodes, the real part eigenvalues $\text{Re}(\omega)$ of the two competing modes are comparable only at this point. Away from this field, the $\text{Im}(\omega)$ values is so large that only one eigenmode appears dominantly. The current driven active damping on one layer is reversed the energy transfer between the coupled layers affects the damping property. The current driven active damping on one layer is reversed on the other layer. If the FL is excited or anti-damped by the current bias, the TPL is the more effectively damped by the same current. Thus, the transferred energy does not fully come back to the original layer due to the intrinsic and current driven active damping of the other layer. The energy transferred from one layer with a steady state spin precession supported by the current driven active anti-damping is more heavily dissipated by the active damping on the other layer. A steady spin precession is impossible if only the energy is transferred to the other layer. This is the case observed on the breakdown field. In spintronic devices like MRAM and STNO, the spin transfer torque is considered only to excite the spin state by the active anti-damping. But this is true only when the energy exchange between the FL and TPL is negligible. At the breakdown field, the FL transfers its energy to the TPL through the dipolar coupling, and the current driven spin precession ceases to exist.

Discussion

To summarize, we observed an anomalous breakdown of the current driven spin oscillation in the two spin layers, each of which is antiferromagnetically coupled to the other by the dipolar interaction, and one of which has an additional exchange bias field. From the micromagnetic calculations, the mechanism of the enhanced damping could be understood as the energy transfer between the two layers and the spin transfer torque acting reversely on each other. This damping mechanism gives another way to control the magnetic damping. We can control the damping of the coupled system by changing the resonant frequencies of the layers, i.e., by changing the external field.

Figure 7 | Real time motion of the spins calculated in case that the field suddenly changes to the breakdown point. (a), (b) The real time motions of the spins in top pinned layer (TPL: black rectangles) and the free layer (FL: red triangles) have been calculated under the field changes described in the text on the case of $s = 0.8$ nm. To clarify the beating pattern of the spin oscillation at $\tau > 0$, dashed blue lines are marked on the points where the ratio of TPL amplitude over the FL amplitude has a local maximum. A scale bar representing the inverse of the frequency gap Δf_1 on the case $s = 0.8$ nm is drawn to be compared with the period of beating pattern. (c), (d) The results obtained similarly on the case of $s = 20$ nm. Δf_2 represent the frequency jump on the case of $s = 20$ nm.
Besides, the magnetic field acts as a gate to control the energy transfer between the two layers. When the field is away from the breakdown point, the oscillation energies in the two layers are rather isolated. But by putting the field on the breakdown point, the energy flows to the other layer.

Methods

Sample Preparations. The multilayer film has been grown in the sputtering system with the base pressure around 10^{-7} Pa and post-annealed at 275°C under a magnetic field of about 1 T for two hours in order to align the spin orientations of the pinned layers in a specific direction. The sample has been patterned into a cylindrical nanopillar structure with a diameter of 90 nm by the electron beam lithography followed by ion beam etching. Subsequently, the sample was completely covered by the thick SO$_2$ film followed by the chemical mechanical polishing (CMP) to open only the top contact area. The bottom electrode contact area was patterned through the photolithography and ion beam etching up to the bottom layer (TiN). After opening the top and bottom electrode contact through an additional photolithography, the Ti/Au electrodes have been formed through lift-off process. The bottom and top electrode have been formed in a form accessible by GSG type radio-frequency (RF) probe.

Micromagnetic calculations. In the micromagnetic calculation, we did not take into account the spin transfer torque between the TPL and BPL. For the calculation of the microwave power shown in Fig. 3, the micromagnetic calculation was integrated with a model circuit that mimics the realistic measurement circuit. The calculation was carried out with the single domain model for each layer, but no significant changes were observed from the results using multi-domain model, because the applied current density through the MTJ is low enough. The following parameters were used for the MTJ: Layer structure is PtMn layer/ BPL(1.5 nm)/ Ru(0.8 nm)/ TPL(1.5 nm)/ MgO(0.8 nm—1000 nm)/ FL(2.0 nm). The layer has a circular shape with diameter 100 nm. The material parameters are as follows. The saturation magnetization $M_s = 1,300$ emu/cc, perpendicular interface anisotropy $K_\text{int} = 1.0$ ml/m2 for FL, $M_s = 1240$ emu/cc, $K_s = 0.9$ mJ/m2 for TPL, and $M_s = 1340$ emu/cc, exchange bias field from the PtMn layer $\mu_B H_{\text{ex}} = 150$ mT were used for BPL. Interlayer exchange coupling constant between TPL and BPL is $-1.3\mu_\text{m}$, damping constant $\alpha = 0.01$, spin polarization $P = 0.4$, TMR ratio = 30%, and RA value in parallel state of 10 ohm2 mm2 were used. All parameters were chosen to mimic the experiments. In-plane external fields were applied along the easy axis with a tilt angle of 10°. Positive external fields favor the anti-parallel configuration of magnetizations. For the stochastic calculation, the Gaussian-distributed random fluctuation fields (mean = 0, standard deviation = $[2k_BT/(M_sV_M)]$, where V_M is the integration step time, V is the volume of unit cell) have been added to the effective fields of LLGS equation.

1. Krivorotov, I. N. et al. Time-Domain Measurements of Nanomagnet Dynamics Driven by Spin-Transfer Torques. Science 307, 228–231 (2005).
2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. J. Magn. Magn. Mater. 159, L1–L7 (1996).
3. Sadowski, J. C. Current-driven excitations of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).
4. Meyers, E. B. et al. Current-Induced Switching of Domains in Magnetic Multilayer Devices. Science 285, 867–870 (1999).
5. Sun, J. Z. Current-driven magnetic switching in manganese trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999).
6. Liu, Y. et al. Current-induced magnetization switching in magnetic tunnel junctions. Appl. Phys. Lett. 82, 2871–2873 (2003).
7. Katine, J. A. et al. Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).
8. Tsui, M. et al. Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406, 46–48 (2000).
9. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).
10. Rippard, W. H., Pufall, M. R. & Silva, T. J. Quantitative studies of spin-momentum-transfer-induced excitations in Co/Cu multilayer films using point-contact spectroscopy. Appl. Phys. Lett. 82, 1260–1262 (2003).

Author contributions

S.C.Lee and U.H.Pi contributed equally to this work especially on the analysis. S.C.Lee executed the micromagnetic calculation based on LLGS equation. U.H.Pi carried out the measurements and wrote the manuscript. K.Kim designed and grew the magnetic film, and K.S.Kim fabricated the device and directed the project. J.Shin and U.Chung supervised all the works.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports.

Competing financial interests: The authors declare no competing financial interests.

License: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

How to cite this article: Lee, S.C. et al. Current Driven Magnetic Damping in Dipolar-Coupled Spin System. Sci. Rep. 2, 531; DOI:10.1038/srep00531 (2012).