Clinical data analysis of telmisartan for hypertension management in Indian population

A Prem Kumar1, Anirudra Ghorai2, Vasudev Kriplani3, Rabindra Kumar Dash4, J Aravinda5, Paramesh Shamanna6, TK Sabee7, Abdul Hannan8, Mahesh Abhyankar9 & Santosh Revankar9

1DiaPlus Clinic, Krishnammal Nagar, Fairlands, Salem, Tamilnadu- 636016, India; 2Divine nursing home, Taljuli Dr. Dandapat Complex, Kharagpur, West Bengal - 721301, India; 3Kriplani nursing Home, E-Ward, Tarabai Park, Kolhapur, Maharashtra - 416003, India; 4Gupta Diagnostic and Research Centre, Deulasahi, Bhanpur, Baripada, Odisha - 757001, India; 5Dr. Aravind's Diabetes Center, No. 14 & 15, 7th Main, 3rd Block, 4th Stage, Basaveshwar Nagar, Bengaluru, Karnataka-560079, India; 6Bangalore Diabetes Centre, No. 426, 4th Cross Rd, HBR Layout 2nd Block, Stage 1, Kalyan Nagar, Bengaluru, Karnataka 560043, India; 7Diacare, 2nd Floor, Chamber Plaza, Thayatheru Rd, Thayatheru, Thana, Kannur, Kerala-670002, India; 8Dr. Harshulay's Cardiac Rehabilitation Centre, 233/234, Bellasis Road, Junction, Naggada, Mumbai - 400008, India; 9USV Private Limited, BSD Marg, Station Road, Deonar, Govandi East, Mumbai, Maharashtra - 400088, India. Corresponding author: Dr. Mahesh Abhyankar - Email: dr.mabhyankar@gmail.com; Tel: +91-98670 05903; Dr Mahesh Abhyankar - drmaheshabhyankar@usv.in; Dr Santosh Revankar - santosh.revankar@usv.in

Received May 9, 2021; Revised June 23, 2021; Accepted June 23, 2021, Published June 30, 2021

DOI: 10.6026/97320630017646

Declaration on Publishing Ethics:

The author’s state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

Author responsibility:

The authors are responsible for the content of this article. The editorial and the publisher have taken reasonable steps to check the content of the article in accordance to publishing ethics with adequate peer reviews deposited at PUBLONS.

Declaration on official E-mail:

The corresponding author declares that official e-mail from their institution is not available for all authors.

Abstract:

It is of interest to evaluate the clinical characteristics, treatment patterns, clinical effectiveness, and safety of telmisartan as a monotherapy or as part of combination therapy in Indian adults (>18 years old) with hypertension. All patients were receiving telmisartan as monotherapy, or as a combination therapy for hypertension management. Demographics, risk factors, existing comorbidity, and ongoing medical therapies were retrieved from the patients' medical records. A total of 8607 patients with hypertension (median age, 51.0 years) were part of the study. The gender distribution suggested, 5534(64.3%) patients were male, and 3073 (35.7%) were female patients. The excess salt intake (39.0%) was the most common risk factor according to the results. The analysis revealed telmisartan dual therapy (57.9%) as the most prescribed therapy, followed by monotherapy (32.5%), and triple therapy (9.6%). Further, telmisartan 40mg (21.3%) and telmisartan 40mg plus amlodipine 5mg (17.6%) were the most commonly prescribed therapies. The data suggested that only 17.2% of patients required dose titration. The mean systolic blood pressure (SBP) and diastolic blood pressure (DBP) (mmHg) were significantly decreased with monotherapy (mean change: 19.8 [15.1] mmHg and 8.8[8.2] mmHg), dual therapy (mean change: 23.7 [16.6] mmHg and 10.3[8.5] mmHg), and triple therapy (mean change: 28.6 [19.0] mmHg and 12.1[10.8] mmHg) after the treatment (P<0.001). A total of 98.4% of the patients were compliant, and 97.6% achieved the target blood pressure goal with telmisartan-based therapy. There were 157 adverse events reported altogether. The Physicians’ global evaluation of efficacy and tolerability showed the majority of the patients receiving telmisartan-based therapy on a good to excellent scale. Telmisartan used as a monotherapeutic agent or as a part of combination therapy was successful and effective in reducing blood pressure and achieving the blood pressure target. Irrespective of the patient’s age, duration, and stages of hypertension, the study resulted in a good to excellent scale in efficacy and tolerability in the Indian patients having hypertension.

Keywords: Hypertension, Telmisartan, Blood pressure, therapeutic compliance, combinatorial therapy.
Background: Hypertension is one of the leading causes of the increasing global deaths due to cardiovascular diseases (CVDs) and chronic kidney diseases (CKDs) [1]. 230 million adults are suffering from hypertension in India [2]. Study reports suggest that more than half of hypertension patients have uncontrolled blood pressure (BP) in India [3-4]. An increased prevalence of high blood pressure in young Indian adults has become a serious health concern [2-5]. Indian patients should be educated about the benefits of lifestyle modification, treatment, and compliance, which may help in achieving the targeted blood pressure control in the population [6]. Dual-drug combination treatment initiation, preferably in a single pill for stage II hypertension is also recommended [6-8]. ARBs as anti-hypertensive agents are the most common component of dual and triple therapies in India [2, 9, 10]. Most physicians prefer telmisartan, an ARB, because of its continual effectiveness, morning BP surge control, and prevention of microalbuminuria, nephropathy, cardiovascular morbidity, and mortality [2]. Therefore, it is of critical importance to conduct clinical data analysis of telmisartan for hypertension management in the Indian population.

Methods
Study design and ethical approval
This study was a retrospective, multicentre, observational, and real-world study conducted at 331 sites across Indian healthcare centers. Patients having medical records with diagnosed hypertension, and who were receiving telmisartan as monotherapy and/or combination therapy for hypertension were included. The study was approved by the Independent Ethics Committee (IEC), Clinicom, Bangalore. The study procedure was in accordance with the principles of the Declaration of Helsinki, the International Conference on Harmonization Good Clinical Practices (ICH GCPs), and the applicable legislation on non-interventional studies.

Study population
Patients of either sex, aged above 18 years, diagnosed with hypertension as per the American College of Cardiology (ACC) or American Heart Association (AHA) criteria (ACC/AHA guidelines 2017), and receiving treatment for hypertension with telmisartan monotherapy and/or combination therapy, were included in this study. According to the ACC/AHA criteria, normal BP is defined as <120/<80 mmHg, elevated BP as 120-129/<80 mmHg, hypertension stage 1 as 130-139/80-89 mmHg, and hypertension stage 2 as ≥140/90 mmHg [11]. Investigators’ discretion and the decision were considered for excluding the patients having incomplete data or any specific unsuitable conditions.

Data collection
The data was collected from the existing case record forms that included demographic data, lifestyle associated information, family history, treatment history, and therapy details. The demographic data was having information on age, gender, height, and weight. The lifestyle-related information included physical activity, smoking history, and alcohol consumption. The family history of hypertension, dyslipidemia, diabetes mellitus, stage or grade of hypertension, and duration of hypertension was recorded. The hypertension treatment history and current telmisartan therapy, dosage, and duration of telmisartan as monotherapy and/or combination therapy were also accounted for. Other crucial information, such as the current status of hypertension (controlled/uncontrolled) and any adverse events related to telmisartan, were included in the study.

Statistical analysis: Data were analyzed using Statistical Package for The Social Sciences (SPSS) software (version 23.0). Demographic characteristics included median and interquartile range (IQR) for the continuous variables and frequency and percentages for the categorical variables. A comparison of qualitative variables between the groups was done using the chi-square test, and the Mann-Whitney U test was used for the quantitative variables. A paired sample t-test was used for comparing the pre-and post-treatment systolic BP (SBP) and diastolic BP (DBP). A P-value less than 0.05 were considered statistically significant.

Results: Patient distribution:
A total of 8607 patients with hypertension were enrolled. The median age of the patients was 51.0 years. The number of male patients (64.3%) was higher than the number of female patients (35.7%). The majority of the patients (51.7%) were from urban locations. A total of 64.4% of the patients were diagnosed with stage II hypertension, and the remaining patients (35.6%) having stage I hypertension. The median systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 155.0 mmHg and 94.0 mmHg, respectively (Table 1).

Risk factors assessment:
It was observed that excess salt intake (39.0%) was the most common risk factor among the overall population. Other important risk factors were smoking (33.7%), obesity (32.9%), family history of hypertension (29.8%), sedentary lifestyle (28.6%), emotional stress (20.7%), tobacco consumption (17.3%) and excess alcohol intake (16.5%) (Figure 1).

Table 1: Patient demographics observations

Parameters	Number of patients (N=8607)
Age (years)	51.0 (44.0-60.0)
Sex, n (%)	Male: 5537 (64.3) Female: 3070 (35.7)
Height (cm), [n=8238]	163.0 (157.0-169.0)
Weight (kg), [n=8485]	70.0 (62.0-79.0)
Blood pressure before initiation of treatment	SBP (mmHg): 155.0 (148.0-165.0) DBP (mmHg): 94.0 (90.0-100.0)
Location, n (%) [n=8606]	Urban: 4454 (51.7) Semi-urban: 2306 (26.8) Rural: 1590 (18.4) Semi-rural: 256 (3.0)
Stage of hypertension, n (%) [n=8601]	Stage I: 3176 (36.8) Stage II: 4118 (48.0) Stage III: 1307 (15.2)
change of 8.8 (2.2) mm Hg (P<0.001) was observed for monotherapy, 10.3 (8.5) mm Hg (P<0.001) for dual therapy, and 12.1 (10.8) mm Hg (P<0.001) for the triple therapy (Figure 3).

Further analysis revealed that the median SBP and DBP increased significantly with the growing age (P<0.001). In the elderly patient population (>60 years), stage II hypertension was common. An abundance of Stage I hypertension was observed in the young and adult (>18-<45 years) patient group (P<0.001). Significant dosage up-titration was recorded compared to the dosage down-titration in the patients receiving mono, dual or triple therapy (P<0.001). Physician’s global evaluation of efficacy and tolerability showed the majority of the patients receiving either monotherapy (98.5% and 91.4%), dual therapy (98.7% and 95.1%), or triple therapy (98.3% and 97.3%), reported having a good to excellent scale evaluation (Table 4).

Discussion:
Hypertension is a growing serious health problem in India causing a significant burden on the existing health care system. Indians are prone to hypertension and related complications due to the early onset of hypertension, multiple CVD risk factors, lifestyle problems, lack of awareness on health, treatment, and BP control [6]. Telmisartan supports a long duration of blood pressure control, possesses high lipophilicity that enhances tissue penetration, intracellular absorption, and bioavailability, and may provide vascular protection. Telmisartan is shown to provide optimal cardioprotection along with a good tolerance profile [12]. This real-world study documented the clinical characteristics, and treatment patterns of telmisartan. This study included dosage types and the use of telmisartan as an important drug for monotherapy and combination therapy in adult patients having hypertension. The patients were considered from 331 clinical study centers across India. Moreover, this study also evaluated the clinical effectiveness and safety of telmisartan use for monotherapy and combination therapy for hypertensive patients. The most commonly used dosage in monotherapy was telmisartan 40 mg, and in the dual therapy, it was telmisartan 40 mg and amlopidine 5 mg. Many reports suggested the combination of telmisartan 40 mg and amlopidine 5 mg as efficacious, especially for patients who failed to respond adequately to monotherapy. In patients with uncontrolled hypertension receiving monotherapy of amlopidine 5 mg, the fixed-dose combination of telmisartan 40 mg and amlopidine 5 mg was effective. These dose combinations significantly reduced the mean BP assessed for 24-hour, however, the administration time of the drug combination did not influence the BP reduction outcome [13]. Similarly, telmisartan 40 mg has been widely effective in patients with mild to moderate hypertension [14]. Other studies conducted on Indian hypertension patients demonstrated that telmisartan 40mg significantly reduced the SBP and DBP along with favorable effects on blood glucose, lipids, and heart rate [15, 16]. The selection of mono or combination therapy was done based on the individual demographic, anthropometric characteristics, concomitant cardiovascular risk factors, asymptomatic organ damage, BP target, and other clinical conditions [17]. Often, antihypertensive drugs may require dose titration to achieve the desired BP-lowering effect while maintaining tolerability. Failure of specific antihypertensive medication dose in achieving desired BP-lowering effect may require up-titration of the dose to improve BP control [18]. In the current study, very few patients required dosage titration compared to their respective initial telmisartan-based therapeutic dose. In this study, about 22.4% of the patients were treated with other antihypertensive drugs before the telmisartan-based therapy. No prior antihypertensive drugs were used for 77.6% of the patients. Reports suggest that irrespective of

Therapeutic evaluation of Telmisartan:
The monotherapy and combination therapy of telmisartan was received by 32.5% and 67.5% of the patients, respectively. In combination therapy, dual therapy was the most commonly prescribed therapy (85.8%), whereas triple therapy was prescribed for 14.2% of the patients only. The 65.5% of patients having monotherapy were prescribed telmisartan 40 mg dose. Other patients undergoing monotherapy, were on telmisartan 80 mg (20.1%) and telmisartan 20 mg (14.4%). In combination therapy, the majority of the patients were prescribed telmisartan and amlopidine (39.1%). This was followed by other combinations such as telmisartan and chlorthalidone (25%), telmisartan and hydrochlorothiazide (18.7%), and telmisartan, and metoprolol succinate (17.2%). The most common treatment regime of the dual combination therapy was telmisartan 40 mg and amlopidine 5 mg dose (30.5%). Triple combination therapy was prescribed for 823 patients. The most commonly prescribed triple-drug combination therapy was telmisartan 40 mg, amlopidine 5 mg, and hydrochlorothiazide 12.5 mg (79.3%) (Table 2).

Treatment duration, dose titration, and prior therapy:
The median duration of the treatment was 12.0 months. The dose titration was done only for 1479 patients (17.2%). The majority of the patients (81.3%) had dosage up-titration and 18.1% of the patients had dosage down-titration during the treatment. Before the telmisartan-based therapy, a total of 22.4% of the patients were treated with other antihypertensives.

Telmisartan therapy outcome:
Analysis of the patient compliance suggested that a total of 98.4% of patients were compliant, and 97.6% of patients achieved the target BP goal with telmisartan-based therapy (Figure 2). On the other hand, a total of 157 patients reported adverse events. The results further suggest that the mean SBP significantly decreased after the monotherapy, dual therapy, and triple therapy of telmisartan. The mean (SD) change of 19.9 (15.1) mm Hg (P<0.001) observed for the monotherapy, 23.7 (16.6) mm Hg (P<0.001) for dual therapy, and 28.6 (19.0) mm Hg (P<0.001) for triple therapy. Similarly, the mean DBP was also found to significantly decreased post-treatment evaluations. The DBP mean (SD)
the earlier treatment status, telmisartan-based therapies were efficacious for BP reduction in hypertension patients [19, 20]. In
this study, 98.4% of the patients were compliant with the telmisartan-based regimen demonstrating the efficacy of
telmisartan as a mono therapeutic agent or as a part of combination therapy in controlling hypertension. The results
were in accordance with the reported study suggesting that >97% of the study population attained the targeted BP using mono and
combination therapy of this drug. Further, the compliance rate was also found consistent with another report [21]. The
tolerability of telmisartan was reported acceptable in the earlier global and Indian studies [16, 22]. The present study also has
acceptable tolerability, and only 1.8% of the patients experienced some minor adverse events during the monotherapy and
combination therapy. The applied physicians’ global evaluation of efficacy and tolerability suggested the majority of the patients
reported the results within the good to excellent scale. Evaluation of the SBP and DBP reduction suggested, that the better BP
reduction was achieved using the triple therapy, followed by dual and monotherapy of telmisartan. Overall, all types of
therapies adopted using the telmisartan were efficacious. An earlier report suggested that the combination therapy demonstrated better outcomes for achieving optimal BP control in the study population [18]. Another report conducted as a
prospective, open-label, non-comparative, post-marketing surveillance analysis, suggested the dual combination therapy of
telmisartan and hydrochlorothiazide/amlopidine was effective in SBP and DBP reduction significantly for Indian hypertension
patients [23].

We have noted that the key risk factors for hypertension were excess salt intake, smoking, obesity, family history of
hypertension, sedentary lifestyle, emotional stress, tobacco chewing, and excess alcohol intake. These findings were in
agreement with the previous Indian studies. According to the National Family Health Survey (NFHS) 2015-16, increasing age,
obesity, overweight, male gender, urban lifestyle, and alcohol consumption were the crucial independent risk factors for Indian
adults with hypertension [24]. Similarly, increasing age, parental history of hypertension, tobacco use, physical inactivity, high
estimated per capita salt consumption, and BMI 22.7 kg/m² were found as the risk factors of hypertension in a community-
based, cross-sectional study conducted in central India [25]. In

Parameters	Number of patients (N=8607)
Dose titration to the initial therapy, [n=1479]	
Up-titration	1210 (81.3)
Down-titration	269 (18.1)
Patient being treated with other antihypertensive before initiation of telmisartan-based therapy	1934 (22.4)

Table 3: Patients treatment-related observation
Parameters

Dose titration to the initial therapy, [n=1479]
Up-titration
Down-titration
Patient being treated with other antihypertensive before initiation of telmisartan-based therapy

Table 2: Antihypertensive treatment patterns in the study population

Treatment pattern for hypertension	Grand Total [N=8607]	N (%) between groups	N (%) within the overall population
Telmisartan monotherapy	2795 (32.5)	2795 (32.5)	
Telmisartan 40 mg	1830 (65.5)	1830 (65.5)	
Telmisartan 80 mg	562 (20.1)	562 (20.1)	
Telmisartan 20 mg	403 (14.4)	403 (14.4)	
Telmisartan dual therapy	4967 (57.9)	4967 (57.9)	
Telmisartan 40 mg + Amlodipine 5 mg	1519 (30.5)	1519 (30.5)	
Telmisartan 40 mg + Hydrochlorothiazide 12.5 mg	752 (15.1)	752 (15.1)	
Telmisartan 40 mg + Chlortalidone 0.5 mg	380 (7.6)	380 (7.6)	
Telmisartan 40 mg + Chlortalidone 1.0 mg	609 (12.2)	609 (12.2)	
Telmisartan 40 mg + Metoprolol succinate 25 mg	399 (8.0)	399 (8.0)	
Telmisartan 40 mg + Metoprolol succinate 50 mg	459 (9.2)	459 (9.2)	
Telmisartan 80 mg + Amlodipine 5 mg	429 (8.6)	429 (8.6)	
Telmisartan 80 mg + Hydrochlorothiazide 12.5 mg	179 (3.6)	179 (3.6)	
Telmisartan 80 mg + Chlortalidone 12.5 mg	261 (5.2)	261 (5.2)	
Telmisartan triple therapy	823 (9.6)	823 (9.6)	
Telmisartan 40 mg + Amlodipine 5 mg + Hydrochlorothiazide 12.5 mg	653 (79.3)	653 (79.3)	
Telmisartan 80 mg + Amlodipine 5 mg + Hydrochlorothiazide 12.5 mg	170 (20.7)	170 (20.7)	

Data are shown as n (%). N=8607 unless otherwise specified.

Table 3: Patients treatment-related observation

Parameters	Number of patients (N=8607)
Dose titration to the initial therapy, [n=1479]	
Up-titration	1210 (81.3)
Down-titration	269 (18.1)
Patient being treated with other antihypertensive before initiation of telmisartan-based therapy	1934 (22.4)

Data are shown as n (%). N=8607 unless otherwise specified.
Table 4: Therapy wise demographic and treatment-related observation

Parameters	Group I (Monotherapy) (N=2559)	Group II (Dual therapy) (N=5129)	Group III (Triple therapy) (N=919)	P-value
Age (years), median (IQR)	48.0 (40.0-57.0)	52.0 (45.0-60.0)	54.0 (48.0-62.0)	<0.001^b
Sex, n (%)				
Male	1553 (60.7)	3373 (65.8)	611 (66.5)	<0.001^a
Female	1006 (39.3)	1756 (34.2)	308 (33.5)	
Stage of hypertension				
Stage I	1389 (54.3)	1473 (28.7)	197 (21.5)	<0.001^b
Stage II	1170 (45.7)	3652 (71.3)	720 (78.5)	
Dose of titration				<0.001^c
Up-titration	286 (70.1)	756 (86.1)	168 (87.0)	
Down-titration	122 (29.9)	122 (13.9)	25 (13.0)	
Adverse events reported	74 (2.9)	70 (1.4)	13 (1.4)	<0.001^d
Physician global evaluation of efficacy				
Very good	1123 (43.9)	1958 (38.2)	282 (30.7)	<0.001^a
Excellent	916 (35.8)	1797 (35.0)	319 (34.7)	
Good	482 (18.8)	1310 (25.5)	302 (32.9)	
Average/ Fair	38 (1.5)	64 (1.3)	16 (1.7)	
Physician global evaluation of tolerability				<0.001^a
Very good	1045 (40.8)	1970 (38.4)	302 (32.9)	<0.001^a
Excellent	747 (29.2)	1599 (31.2)	295 (32.1)	
Good	548 (21.4)	1310 (25.5)	297 (32.3)	
Average/ Fair	219 (8.6)	250 (4.9)	25 (2.7)	

Data are shown as n (%) unless otherwise specified. *N=2559; **N=5129; ***N=919, unless otherwise specified.
BP, blood pressure; FD, fixed-dose combination; IQR, interquartile range.
^a group I vs II; ^b group I vs III; ^c group II vs III.

Figure 3: Mean (SD) change in A) SBP and B) DBP level from pre to post-treatment. Data shown as mean change (SD); P-value

Conclusion:
Analysis of 8607 hypertension patients suggested that telmisartan is efficacious and tolerable for BP control when used as part of monotherapy and in combination therapy for Indian patients. This is effective irrespective of age, duration, and stages of hypertension; the therapies were tolerable by the study population with few minor adverse events.

Acknowledgments:
We acknowledge Ms. Farida Hussain, Mr. Sagar Patil, Mr. Ajit Verghese and Ms. Annusan Renji from USV Pvt Ltd for their assistance in carrying out the project. Ms. Snehal Khanelkar from Sagarona Medical Communications LLP (Mumbai) helped with medical writing. We acknowledge BioQuest Solutions Private Limited for their services in the conduction of the real-world study. Dr. Amit Kumar Banerjee is acknowledged for medical writing assistance. This project was funded by USV Pvt Ltd.

Contributors in the clinical study:

Dr. A K Gupta, Dr. A Muthukumaran, Dr. A Panneerselvam, Dr. A Sethuramashankaran, Dr. A Shanmugam, Dr. Abhay Raut, Dr. Ajay Gupta, Dr. Ajay Kadusskar, Dr. Ajay Patwari, Dr. Akhilesh Kumar Patel, Dr. Alok Joshi, Dr. Alok Kumar Gupta, Dr. Amit Kumar Mondal, Dr. Anil Kumar Reddy, Dr. Animesh Maiti, Dr. Anirban Biswas, Dr. Anish Ahammed, Dr. Anoop Kumar Srivastava, Dr. Anshul Sehgal, Dr. Archan Garg, Dr. Arjun Baidya, Dr. Arun Anand, Dr. Arun Karthik, Dr. Ashish Gautam, Dr. Ashok Krishna Bhuyan, Dr. Ashok Kumar, Dr. Ashok Verma, Dr. Ashwani Kalra, Dr. Asish Kumar Basu, Dr. Atul Luthra, Dr. B Bosco, Dr. B Duragaprasad, Dr. B Harish Darla, Dr. B K Kakad, Dr. B S Narendra, Dr. B Surerend Reddy, Dr. B V G Giridhar, Dr. Baburajendra Naik, Dr. Bharath R, Dr. Binay Prasad, Dr. Biplob Bandhopadhyaya, Dr. Biswanath Biswas, Dr. C Ananthakrishnan, Dr. C Jagadeesh, Dr. C R Anand Moses, Dr. C Rao, Dr. Chanchal Das, Dr. D M Mahesh, Dr. D Rajitha Reddy, Dr. D Ramesh, Dr. Debasish Giri, Dr. Deepak Agarwal, Dr. Deepak Gargi Pande, Dr. Deepak Varshney, Dr. Dharmesh Jain, Dr. Dibakar Biswas, Dr. Dileep Kumar Kandaswaran, Dr. Dinesh Kansal, Dr. Dipti Gupta, Dr. Durga Kumar Srivastava, Dr. E
There are no conflicts of interest.

Conflict of interest

There are no conflicts of interest.
Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.
