Microwave fabrication of Cu$_2$ZnSnS$_4$ nanoparticle and its visible light photocatalytic properties

Zhihua Zhou†, Pingan Zhang†, Yuelai Lin, Eric Ashalley, Haining Ji, Jiang Wu, Handong Li and Zhiming Wang*

Abstract

Cu$_2$ZnSnS$_4$ nanoparticle with an average diameter of approximately 31 nm has been successfully synthesized by a time effective microwave fabrication method. The crystal structure, surface morphology, and microstructure of the Cu$_2$ZnSnS$_4$ nanoparticle were characterized. Moreover, the visible light photocatalytic ability of the Cu$_2$ZnSnS$_4$ nanoparticle toward degradation of methylene blue (MB) was also studied. About 30% of MB was degraded after 240 min irradiation when employing Cu$_2$ZnSnS$_4$ nanoparticle as a photocatalyst. However, almost all MB was decomposed after 90 min irradiation when introducing a small amount of H$_2$O$_2$ as a co-photocatalyst. The enhancement of the photocatalytic performance was attributed to the synergetic effect between the Cu$_2$ZnSnS$_4$ nanoparticle and H$_2$O$_2$. The detailed photocatalytic degradation mechanism of MB by the Cu$_2$ZnSnS$_4$ was further proposed.

Keywords: Cu$_2$ZnSnS$_4$; Microwave fabrication; Photocatalyst

Background

Organic dyes widely used in textile and plastic industries are one of the chief sources of contaminants in wastewater. They have induced serious environmental problems due to their potential toxicity to living organisms. Degradation and total removal of such contaminants are keys to ensuring a protected environment. A photocatalytic technique is considered to be a promising method for treating organic dyes in wastewater [1]. However, an obvious challenge for degradation of organic dyes is that most photocatalysts, such as TiO$_2$ or BiVO$_4$ [2,3], are only effective in the UV range. To broaden their light absorption range, various methods including dye sensitizing [4], metal doping [5] non-metal doping [6,7], and noble metal decorating [8] have been developed. However, stable and efficient dyes are rare and expensive. Moreover, dopant impurity atoms in photocatalysts often serve as recombination centers for photogenerated holes and electrons [9]. To avoid these problems, great efforts have also been put into the development of alternative undoped photocatalysts which work under visible light irradiation. Until now, many materials with attractive visible light photocatalytic performance, such as Bi$_2$TiO$_4$F$_2$ [10], Bi$_2$O$_3$ [11], AgNbO$_3$ [12], and graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite [13] have been investigated. However, the supply of rare elements of Ag, Bi, and Nb is a critical issue for widespread use. Thus, it is crucial to investigate alternative cost-effective visible-light-driven photocatalysts.

Cu$_2$ZnSnS$_4$ is a direct bandgap p-type semiconductor with a high optical absorption coefficient of about 10^6 cm$^{-1}$ [14,15]. Its elements are environmentally friendly and abundant in the earth’s crust. As its bandgap is around 1.5 eV, it can absorb most of the visible light. It has been reported that Cu$_2$ZnSnS$_4$ possesses high photocorrosion resistance in air and aqueous solution [16]. Both of these superior properties of Cu$_2$ZnSnS$_4$ enrich its potential use in solar-energy-related applications.

In this work, we have fabricated the Cu$_2$ZnSnS$_4$ nanoparticle by a facile microwave fabrication method. The advantages of this method are the following: it is economical of time and cost effective. The crystal structure and surface morphology of the prepared Cu$_2$ZnSnS$_4$ nanoparticle were characterized. Moreover, the photocatalytic performance of the Cu$_2$ZnSnS$_4$ nanoparticle toward the degradation of methylene blue (MB) under visible light irradiation was also investigated. The Cu$_2$ZnSnS$_4$ nanoparticle showed noteworthy visible light photocatalytic ability.
Methods

The Cu₂ZnSnS₄ nanoparticle was synthesized by a facile microwave fabrication method. Cu(CH₃COO)₂·H₂O, Zn (CH₃COO)₂, Sn(CH₃COO)₂, and thiocarbamide with a molar ratio of 2:1:1:4 were employed as source materials. All the reagents were analytically pure and bought from Sinopharm Chemical Reagent Co., Ltd, Shanghai, China. Typically, 1.123 g of the source materials was dissolved in 20 mL ethylene glycol solution as precursor. Then the precursor was stirred gently and heated in a microwave reactor (MCR-3, Gongyi City Yuhua Instrument Co., Ltd, Gongyi City, China) at 180°C for 10 min. After the vacuum filtration and drying process, the Cu₂ZnSnS₄ nanoparticle sample was obtained.

The crystal structure of the Cu₂ZnSnS₄ nanoparticle was investigated by X-ray diffraction (XRD; D/max-2200/PC, Rigaku, Tokyo, Japan) and Raman spectroscopy (Senterra, Bruker, Billerica, USA). The surface morphology and microstructure of the Cu₂ZnSnS₄ were measured by scanning electron microscopy (SEM; JSM 5800LV, JEOL, Tokyo, Japan) and transmission electron microscopy (TEM; JEM-2100, JEOL, Tokyo, Japan).

The photocatalytic properties of the prepared Cu₂ZnSnS₄ nanoparticle were investigated by employing MB as a model dye. The Cu₂ZnSnS₄ nanoparticle (20 mg) was dispersed in 100 mL of MB aqueous solution (10 mg/L). Prior to irradiation, the MB solution over the catalyst was gently stirred in the dark for 30 min to reach equilibrium adsorption state. Then the solution was illuminated with a 100-W xenon light source (Shanghai Yaming Lighting Co., Ltd., Shanghai, China). The concentration change of MB was monitored by measuring UV-vis absorption of the extracted MB solution at regular intervals. The characteristic peak absorbance of MB at 665 nm was used to determine its concentration. In addition, the photocatalytic properties of the Cu₂ZnSnS₄ nanoparticle with the assistance of 0.1 mL H₂O₂ (30% aqueous solution) were further investigated in the same measurement process. For comparison, a control experiment without adding Cu₂ZnSnS₄ and H₂O₂ was also carried out.

Results and discussion

The crystal structure of the prepared Cu₂ZnSnS₄ nanoparticle is shown in Figure 1. The observed diffraction peaks at 2θ = 28.48°, 32.77°, 47.38°, and 56.26° correspond to the Cu₂ZnSnS₄ crystal planes (112), (200), (220), and (312), which match well with the standard XRD data file of Cu₂ZnSnS₄ (JCPDS No. 26-0575). No other crystalline by-products were observed in the pattern, suggesting that the as-prepared sample was pure Cu₂ZnSnS₄. Additionally, the strong relative intensity of the (112) and (220) lines indicates the Cu₂ZnSnS₄ nanoparticle is preferentially oriented in the (200) and (110) directions during the growing process.

In addition, it has been reported that the spectra of Cu₂ZnSnS₄ and β-ZnS are very similar in the XRD

![Figure 1 XRD pattern for the Cu₂ZnSnS₄ nanoparticle. The peaks have been indexed to kesterite Cu₂ZnSnS₄ (JCPDS No. 26-0575).](image-url)
Raman spectroscopy analysis is a feasible method to distinguish Cu$_2$ZnSnS$_4$ from β-ZnS [18]. Therefore, we employed Raman spectroscopy to further confirm the structure of the prepared Cu$_2$ZnSnS$_4$ nanoparticle. A Raman spectrum of the prepared Cu$_2$ZnSnS$_4$ nanoparticle over the wave number range of 200 to 450 cm$^{-1}$ is shown in Figure 2. There is an intensive peak located at approximately 331 cm$^{-1}$, which suggests the existence of Cu$_2$ZnSnS$_4$ [17,19]. The characteristic peaks of β-ZnS located at 348 and 356 cm$^{-1}$ are not observed in the spectrum [20], indicating the absence of β-ZnS.

Surface morphology and microstructure of inorganic semiconductor materials are of vital importance to their optoelectronic properties. Accordingly, the surface morphology of the Cu$_2$ZnSnS$_4$ nanoparticle was studied by SEM. Figure 3a demonstrates a representative surface morphology of the Cu$_2$ZnSnS$_4$ nanoparticle. It can be seen that the Cu$_2$ZnSnS$_4$ nanoparticle possesses similar sizes in diameter and packs uniformly. The average diameter of the Cu$_2$ZnSnS$_4$ nanoparticle is approximately 31 nm calculated from randomly selected 100 nanoparticles. High-resolution transmission electron microscopy (HRTEM) was further employed to investigate the microstructure of the Cu$_2$ZnSnS$_4$ nanoparticle. Figure 3b shows a typical HRTEM image of the Cu$_2$ZnSnS$_4$ nanoparticle. The interplanar spacing of 2.7 Å corresponds to the (200) plane of kesterite Cu$_2$ZnSnS$_4$. The selected area electron diffraction (SAED) pattern shown in Figure 3c suggests the polycrystalline nature of the nanoparticle.

To evaluate the photocatalytic performance, we analyzed the decomposition of the (MB) dye in aqueous solution over the Cu$_2$ZnSnS$_4$ nanoparticle under visible light irradiation. Figure 4a presents the time-dependent absorption spectra of MB degradation over the Cu$_2$ZnSnS$_4$ nanoparticle upon visible light irradiation. The five curves in the pattern are the UV-vis spectra of MB solutions extracted at 0 min, 30 min, 60 min, 150 min, and 240 min. It can be observed that the absorbance peak at 665 nm, which is the characteristic absorption peak of MB, reduced slowly with increasing irradiation time. After 240 min, only about 30% of MB was degraded. In addition, it was difficult to further degrade MB by increasing the irradiation time. However, with the addition of 0.1 mL H$_2$O$_2$ (30% aqueous solution), as shown in Figure 4c, almost all MB was degraded after 90 min irradiation. In general, peroxymonosulfate, peroxydisulfate, and H$_2$O$_2$ are often employed to assist in evaluating the photocatalytic properties of semiconductor materials. Both peroxymonosulfate and peroxydisulfate can be driven by visible light for photochemical oxidation [21], while H$_2$O$_2$ can hardly be activated [22]. Additionally, as a typical organic pollutant, MB is stable under visible light irradiation if no photocatalysts are involved. Therefore, the degradation of MB molecules was attributed to the synergetic effect of Cu$_2$ZnSnS$_4$ nanoparticle and H$_2$O$_2$. The H$_2$O$_2$ enhanced the photocatalytic ability through an
efficient charge transfer of the photogenerated carriers from the surface of the Cu$_2$ZnSnS$_4$ nanoparticle to the MB molecule. Figure 4b,d illustrates the curves of C/C_0, where C_0 is the initial concentration of MB and C is the concentration of MB at time t. Insets in Figure 4b,d present the curve of the corresponding ln(C_0/C) versus irradiation time. No linear relationship between irradiation time and ln(C_0/C) can be observed when employing the Cu$_2$ZnSnS$_4$ as a photocatalyst solely. However, with the assistance of H$_2$O$_2$, a linear relationship between irradiation time and ln(C_0/C) is well established, suggesting that the photodegradation of MB over the Cu$_2$ZnSnS$_4$ nanoparticle and H$_2$O$_2$ proceeded through the pseudo-first-order kinetic reaction [23]. The first-order reaction rate constant k_1 was 0.04 min$^{-1}$, which is comparable to that of TiO$_2$-C hybrid aerogel photocatalysts (0.01 - 0.06 min$^{-1}$) toward the degradation of MB driven by UV light irradiation [24].

According to the experiment results and previous reports, the photocatalytic degradation mechanism by the Cu$_2$ZnSnS$_4$ nanoparticle under visible light irradiation was illustrated in Figure 5 and proposed as follows:

\[
\text{Cu}_2\text{ZnSnS}_4 \xrightarrow{\text{visible light}} \text{Cu}_2\text{ZnSnS}_4 \left(e^{-}_\text{cb} + h^+_\text{vb} \right) \tag{1}
\]

(1)

When the photogenerated carriers emigrate to the surface of the Cu$_2$ZnSnS$_4$ nanoparticle, the generated Cu$_2$ZnSnS$_4 \left(h^+_\text{vb} \right)$ provides holes, decomposing the absorbed contaminant.

Figure 4 Photocatalytic activity of the Cu$_2$ZnSnS$_4$ nanoparticle toward the photodegradation of methylene blue (MB). (a) Time-dependent UV-vis absorbance spectra of the MB solution using the prepared Cu$_2$ZnSnS$_4$ nanoparticle as a photocatalyst. (b) Curves of the degradation rate of the MB dye with the prepared Cu$_2$ZnSnS$_4$ nanoparticle (C_0 is the initial concentration of MB; C is the reaction concentration of MB at time t). The inset shows the ln(C_0/C) versus time curve of the photodegradation of MB. (c) Time-dependent UV-vis absorbance spectra of the MB solution using the prepared Cu$_2$ZnSnS$_4$ nanoparticle and 0.1 mL H$_2$O$_2$ as photocatalysts. (d) Curves of the degradation rate of the MB dye with the prepared Cu$_2$ZnSnS$_4$ nanoparticle and 0.1 mL H$_2$O$_2$ as photocatalysts. The inset presents the ln(C_0/C) versus time curve of the photodegradation of MB.
\(\text{Cu}_2\text{ZnSnS}_4 \left(h^+_\text{cb} \right) + \text{contaminant} \rightarrow \text{degraded products} \) \((2) \)

However, due to the top of the valence band of \(\text{Cu}_2\text{ZnSnS}_4 \) (+0.1 eV versus NHE) is lower than those of \(\cdot \text{OH} / \text{H}_2\text{O} \) (+2.27 eV) and \(\cdot \text{OH}/\text{OH}^- \) (+1.99 eV), the \(\text{Cu}_2\text{ZnSnS}_4 \) nanoparticle cannot further degrade the MB with increasing the irradiation time. More recently, Yu et al. [25] have reported that a noble metal such as Au or Pt can greatly improve the photocatalytic ability of the \(\text{Cu}_2\text{ZnSnS}_4 \) nanoparticle. The enhancement is attributed to surface plasmon resonance (SPR) effect, which can notably reduce the carrier recombination rate on the surface of the \(\text{Cu}_2\text{ZnSnS}_4 \) nanoparticle. In our work, with the addition of a small amount of \(\text{H}_2\text{O}_2 \), the generated \(\text{Cu}_2\text{ZnSnS}_4 \left(e^-_{\text{cb}} \right) \) can react with the added \(\text{H}_2\text{O}_2 \), generating \(\cdot \text{OH} \), and subsequently photodegrade the absorbed contaminant.

\[\text{H}_2\text{O}_2(\text{added}) + \text{Cu}_2\text{ZnSnS}_4(e^-_{\text{cb}}) \rightarrow \cdot \text{OH} + \text{OH}^- \] \((3) \)

\[\cdot \text{OH} + \text{contaminant} \rightarrow \text{degraded products} \] \((4) \)

\(\text{H}_2\text{O}_2 \), as an efficient electron scavenger and a source of \(\cdot \text{OH} \) with high oxidizing ability, was added here to assist the photodegradation of the contaminant. However, an excess amount of \(\text{H}_2\text{O}_2 \) will decrease the photocatalytic activity [26]. As shown in Equation 5, the excess \(\text{H}_2\text{O}_2 \) scavenges the beneficial \(\cdot \text{OH} \) generating a much weaker hyperoxyl radical of \(\text{HO}_2^- \).

\[\text{H}_2\text{O}_2 + \cdot \text{OH} \rightarrow \text{HO}_2^- + \text{H}_2\text{O} \] \((5) \)

Besides, the \(\text{HO}_2^- \) will further react with the remaining \(\cdot \text{OH} \) forming ineffective oxygen and water.

\[\text{HO}_2^- + \cdot \text{O} \rightarrow \text{H}_2\text{O} + \text{O}_2 \] \((6) \)

Conclusions

In summary, the \(\text{Cu}_2\text{ZnSnS}_4 \) nanoparticle was successfully synthesized by a facile microwave fabrication method. The prepared \(\text{Cu}_2\text{ZnSnS}_4 \) nanoparticle exhibited a polycrystalline structure with an average diameter of approximately 31 nm. The photocatalytic performance of the \(\text{Cu}_2\text{ZnSnS}_4 \) nanoparticle toward degradation of MB in aqueous solution was also investigated. Due to the top of the valence band of \(\text{Cu}_2\text{ZnSnS}_4 \), pure \(\text{Cu}_2\text{ZnSnS}_4 \) nanoparticle showed a poor visible light photocatalytic ability. However, when employing a small amount of \(\text{H}_2\text{O}_2 \) as electron scavenger, the photocatalytic performance was greatly enhanced. The first-order reaction rate constant \(k_1 \) toward the degradation MB reached as high as 0.04 min\(^{-1}\). The synergistic effect between the \(\text{Cu}_2\text{ZnSnS}_4 \) nanoparticle and \(\text{H}_2\text{O}_2 \) was a key to promote the photodegradation efficiency.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

ZH provided the data interpretation, and ZMW supervised the project. All authors have read and approved the final manuscript.
Acknowledgements
This work was supported by the Fundamental Research Funds for the Central Universities 26720122GYX2012042, the 973 Program (2013CB933800), and the National Natural Science Foundation of China (51272038).

Received: 22 August 2014 Accepted: 2 September 2014
Published: 9 September 2014

References
1. Liao J, Lin S, Zhang L, Pan N, Cao X, Li J: Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Appl Mater Interfaces 2011, 3:71–117.
2. Ding D, Long M, Cai W, Wu Y, Wu D, Chen C: In-situ synthesis of photocatalytic CuAlO2-Cu hybrid nanorods arrays. Chem Commun 2009, 24:3588–3590.
3. Chandrappa KG, Venkatesha TV, Shafak BH: Electrochemical generation of cubic shaped nano ZnSnO3 photocatalysts. Nano Micro Lett 2013, 5:101–110.
4. Hsiao Y-C, Wu T-F, Long M, Cai W, Wu Y, Wu D, Chen C: Electrochemical generation of cubic shaped nano ZnSnO3 photocatalysts. Nano Micro Lett 2013, 5:101–110.
5. De Trizio L, Buonsanti R, Schimpf AM, Llordes A, Gamelin DR, Simonutti R, Million DJ: Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chem Mater 2013, 25:383–390.
6. Zhang Z, Luo Z, Yang Z, Zhang S, Zhang Y, Zhou Y, Wang X, Xu X: Bandgap tuning of N-doped TiO2 photocatalysts for visible-light-driven selective oxidation of alcohols to aldehydes in water. RSC Advances 2013, 3:7215–7219.
7. Chen C, Cai W, Long M, Zhou B, Wu Y, Wu D, Feng Y: Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 2010, 46425–6432.
8. Zhang J, Chen G, Chaker M, Zhang S, Zhang Y, Zhou Y, Wang X, Xu X: Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Appl Catal B Environ 2013, 132–133:107–115.
9. Gai Y, Li J, Li S-S, Xia J-B, Wei S-H: Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys Rev Lett 2009, 102036402.
10. Jiang B, Zhang P, Zhang Y, Wu L, Li HX, Zhang DQ, Li GS: Self-assembled 3D architectures of Bi5TiO12 as a new durable visible-light photocatalyst. Nanoscale 2012, 4:455–460.
11. Sajjad S, Leehari SAK, Zhang JL: Nonstoichiometric Bi2O3: efficient visible light photocatalyst. RSC Advances 2013, 3:1363–1367.
12. Wu W, Liang S, Chen Y, Shen L, Yuan R, Wu L: Mechanism and improvement of the visible light photocatalysis of organic pollutants over microcrystalline AgNO3 prepared by a sol-gel method. Mater Res Bull 2013, 48:1618–1626.
13. Zhu MS, Chen PL, Liu MH: Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. ACS Nano 2011, 5:4529–4536.
14. Chen S, Walsh A, Gong X-G, Wei S-H: Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater 2013, 25:1522–1539.
15. Xinkun W, Wei L, Shuying C, Yunfeng L, Hongjie J: Photocatalytic properties of Cu2ZnSnS4 thin films deposited by thermal evaporation. J Semicod 2012, 33:020202.
16. Wang L, Wang W, Sun S: A simple template-free synthesis of ultrathin Cu2ZnSnS4 nanosheets for highly stable photocatalytic H2 evolution. J Mater Chem 2012, 22:6553–6555.
17. Fernandes PA, Salome PMP, da Cunha AF: Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films 2009, 517:2519–2523.
18. Fernandes PA, Salomé PMP, da Cunha AF: Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Appl Crystallogr 2011, 509:760–7606.
19. Zhou G, Sun H, Wang S, Ming Anq H, Tadé MO: Titanate supported cobalt catalysts for photochemical oxidation of phenol under visible light irradiations. Sep Purif Technol 2011, 80562–634.
20. Sun H, Liu S, Liu S, Wang S: A comparative study of reduced graphene oxide modified TiO2 and Ta2O5 in visible light photocatalytic photochemical oxidation of methylene blue. Appl Catal B Environ 2014, 146:162–168.
21. Mohamed AW, Al-Exam MM: Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfurated TiO2 (rutile) catalysts: degradation of methylene blue dye. J Mol Catal A Chem 2006, 255:53–61.
22. Zhao X, Wu L, Zhang W, Ren P: Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation. Sci Rep 2013, 3:8018.
23. Yu X, Shavel A, An X, Luo Z, Ibáñez M, Cabot A: Cu2ZnSnS4-Pt and Cu2ZnSnS4–Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation. J Am Chem Soc 2014, 136:9236–9239.
24. Shan M, Wang W, Sun S, Ren J, Zhou L, Zhang L: Efficient visible-light-induced photocatalytic degradation of contaminant by spindle-like PANI/Bi2O3. J Phys Chem C 2011, 113:20228–20233.

Cite this article as: Zhou et al.: Microwave fabrication of Cu2ZnSnS4 nanoparticle and its visible light photocatalytic properties. Nanoscale Research Letters 2014 9:477.

Submit your next manuscript at ➤ springeropen.com

Submit your manuscript to a SpringerOpen journal and benefit from:
➤ Convenient online submission
➤ Rigorous peer review
➤ Immediate publication on acceptance
➤ Open access: articles freely available online
➤ High visibility within the field
➤ Retaining the copyright to your article