SECTION I. Theoretical research in mathematics.

SOME PROPERTIES OF THE LATTICE OF F-CLOSED RIGHT IDEALS

Abstract: Throughout this paper R is a unitary associative ring and f is an injective ring endomorphism of R. In the present article, we introduce the notion of the lattice $\text{Lat}(R,f)$ of all f-closed right ideals of R with some special operation instead of the intersection operation. The paper is devoted to the study of this lattice. In particular, we investigate the interrelationship between the lattice of all f-closed right ideals of R and the lattice of right ideals of the Cohn-Jordan extension A. We obtained some results in this direction.

In Theorem 1 we give necessary and sufficient conditions, in terms of the lattice $\text{Lat}(R,f)$, for the Cohn-Jordan extension A to be a right Artinian ring. This theorem implies in particular that A is right Artinian provided that R is right Artinian.

Theorem 2 is a structural theorem and states that a ring R with a bounded length of chains of the right f-closed ideals is embeddable in a semisimple Artinian ring. The authors’ original proof is based on the Cohn-Jordan extension. The Cohn-Jordan extensions were first introduced in [8] for the study of skew polynomial rings constructed by means of a ring endomorphism. Five open questions are formulated.

Key words: lattice, composition length, right Artinian rings

Language: English

Citation: Mushrub VA, Sukhorukova IV, Mochalina EP, Ivankova GV (2017) SOME PROPERTIES OF THE LATTICE OF F-CLOSED RIGHT IDEALS. ISIJ Theoretical & Applied Science, 07 (51): 103-106.

Introduction

Throughout this paper all rings are associative. In what follows let R be a ring and f be an injective ring endomorphism of R. Recall that David Alan Jordan introduced in [8] the construction of the smallest ring A containing R such that every endomorphism f of R to an automorphism of A (see also [2, 10]). More precisely, let $\text{Aut}(R,f)$ be a ring, containing R and \tilde{f} be an automorphism of A that extends the endomorphism f. Then the ring A together with the automorphism \tilde{f} is called the Cohn-Jordan extension of the ring R with endomorphism f, if each element a of A can be presented as $a = f^{-n}(r)$, where $r \in R$ and n is some positive integer.

Materials and Methods

Using the construction of a direct limit one can verify that this extension is unique. Let us consider a countable number of copies R_i of the ring R labeled by nonnegative integers i and natural isomorphisms $\varepsilon_i: R \rightarrow R_i$. Given a pair of indexes (m, n) with $m \leq n$, the mapping $f_{m,n}: R_m \rightarrow R_n$ is defined by $f_{m,n} = \varepsilon_n \circ f^{n-m} \circ \varepsilon_m^{-1}$. Then the equality $f_{m,n} = f_{m,k} \circ f_{k,n}$ holds for all k such that $m \leq k \leq n$. Therefore, there is a direct limit $A(R,f) = \lim_{\rightarrow}(R_m f_{m,n}: m, n \geq 0)$.

One can check that the mapping defined by $\tilde{f}: \varepsilon_i(r) \rightarrow \varepsilon_{i+n}(r)$, where $i \geq 0, r \in R$, is a correctly defined automorphism of $A(R,f)$ and the
of all elements x of closed right ideals N of the form $x^n r x^{-n}$ is a ring containing R. Furthermore, the inner automorphism $f : x^n r x^{-n} \mapsto x^{-1} r x n^{-1}$ of A is an extension of the endomorphism f. Moreover, $A = \bigcup_{n \geq 0} f^{-n}(R)$. Cohn-Jordan extensions are studied and used for different purposes in scientific papers [9, 11].

Throughout the sequel, let A together with \bar{f} denote the Cohn-Jordan extension of the ring R and its injective endomorphism f.

Definition 1. A right ideal I of R is said to be f-closed (see [3, 7]), if

$$I = \bigcup_{n=1}^{\infty} f^{-n}(f^n(I) R).$$

One can check, that a right ideal I of R is f-closed if and only if $I = I A \cap R$. It implies that any f-closed right ideal I of R has the form $I = MA \cap R$ for some available right ideal M of A. Conversely, all the right ideals of this kind are f-closed.

An ideal N of R is called an f-ideal if $f^{-1}(N) = N$ (see [1, 5]).

Let us consider the lattice $\text{Lat}(R, f)$ of all f-closed right ideals of R supplied the following operations:

1. $B \wedge C = B \cap C$;
2. $B \vee C = \bigcup_{n \geq 0} f^{-n}(f^n(B) R + f^n(C) R)$.

The result of the first operation is the largest f-closed right ideal contained in the f-closed right ideals B and C. The result of the second operation is the smallest f-closed right ideal containing both right ideals B and C.

Remark a.) If B and C are f-closed right ideals of R, then the following two equalities hold:

- $f^{-n}(f^n(B) R \cap f^n(C) R) \subseteq f^{-n}(f^n(B) R) = B$
- $f^{-n}(f^n(B) R \cap f^n(C) R) \subseteq f^{-n}(f^n(C) R) = C$.

Therefore, we need not to describe the operation $B \wedge C$ in the same way as the operation $B \vee C$, because $\bigcup_{n \geq 0} f^{-n}(f^n(B) R \cap f^n(C) R) = B \wedge C$.

b. The following relation holds:

$$B \vee C = (B A + C A) \cap R.$$

Recall that, the submodules of some right module M_R over a ring R, partially ordered by inclusion, form a modular lattice. In particular, the lattice of right ideals of some ring is a modular lattice. This means that the lattice satisfies the following condition called “Modular law”: if B, C and D are submodules of a module M over a ring R and $B \subseteq C$, then $(C \cap D) + B = C \cap (D + B)$.

Proposition 1. Let B, C and D are f-closed right ideals of R with $B \subseteq C$. Then $B \vee (C \cap D) \subseteq C \cap (B \vee D)$.

Proof. First we show that “$B \vee (C \cap D) \subseteq C \cap (B \vee D)$”.

Let $r \in B \vee (C \cap D) = (B A + (C \cap D) A) \cap R$. Then $r = \sum b_i a_i + \sum x_j a_j$, where $b_i \in B$, $x_j \in C \cap D$, a_i, $a_j \in A$. Observe, that $\sum b_i a_i \in BA \subseteq CA$ and $\sum x_j a_j \in CA$. Hence $r \in CA \cap R = C$. Since $b_i \in B$, $x_j \in D$, we have $r \in (B A + D A) \cap R = B \vee D$. Therefore, $r \in C \cap (B \vee D)$.

Next we show that “$C \cap (B \vee D) \subseteq (B A + (C \cap D) A) \cap R$”. To prove this inclusion observe that $BA \subseteq CA$ and by modular law we obtain that

$c \in (B \vee D) \cap CA \cap (B A + D A) = BA + (C \cap D) A \subseteq CA$. QED.

Corollary 1. If $B \vee (C \cap D) = (B A + (C \cap D) A) \cap R$ for all f-closed right ideals of R, then the lattice $\text{Lat}(R, f)$ of all f-closed right ideals of R is modular.

Lemma 1. If $M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_d$ is a strictly ascending chain of right ideals of A of the length d, then R must have strictly ascending chain of f-closed right ideals of length d.

Proof. Choose elements $m_i \in M_i \setminus M_{i-1}$ ($i = 1, 2, \ldots, d$). By Definition 1 $m_i \in f^{-n}(R)$ for some non-negative integers n_1, n_2, \ldots, n_d. Let n be the largest of these integer numbers. Then $b_i = f^{-n}(m_i) \in R$ for all $i = 1, 2, \ldots, d$ and right ideals $B_i = f^{-n}(M_i)$ form the strictly ascending chain $B_0 \subseteq B_1 \subseteq \cdots \subseteq B_d$. Moreover, $b_i \in B_i \cap R$ and $b_i \notin B_{i-1} \cap R$ for all $i = 1, 2, \ldots, d$. Hence the chain of f-closed right ideals of R

$$B_0 \cap R \subseteq B_1 \cap R \subseteq B_2 \cap R \subseteq \cdots \subseteq B_d \cap R$$

is strictly ascending. But this chain has length d. QED.

Lemma 2. Let $B_0 \subseteq B_1 \subseteq B_2 \subseteq \cdots \subseteq B_d$ be a strictly ascending chain of f-closed right ideals of R of length d. Then $B_0 A \subseteq B_1 A \subseteq B_2 A \subseteq \cdots \subseteq B_d A$ is a strictly ascending chain of right ideals of A of the same length d.

Proof. If the relation $B_{i-1} A = B_i A$ were satisfied at some point in the second chain, then we would have

$$B_{i-1} A \subseteq B_i A \cap R = B_i A \cap R = B_i$$

by virtue of the f-closedness of the right ideals B_{i-1} and B_i. But the last equality contradicts the condition of the lemma. QED.
Theorem 1. The following conditions (1) and (2) are equivalent:
(1) A is right Artinian;
(2) there exists a non-negative integer d such that all strictly ascending chains of f-closed right ideals of R have length at most d.

Proof. "$(1) \Rightarrow (2)$". Let A be right Artinian. Then by Hopkins–Levitki theorem A is also right Noetherian and by Jordan-Holder theorem (see [6], Theorem 4.10, P. 44) A has finite composition length d (as a right module over itself). If $\text{Lat}(R, f)$ contained a strictly ascending chain of f-closed right ideals of length more than d, then by Lemma 2 the ring A would contain a chain of right ideals of length more than d. This leads to a contradiction. Therefore, all strictly ascending chains of f-closed right ideals of R have length at most d.

"$(2) \Rightarrow (1)$". Suppose that condition (2) holds. Then Lemma 1 shows that lengths of all strictly ascending chains of right ideals of A do not exceed d. It follows that A is right Artinian of length at most d. QED.

Proposition 2. Let be an endomorphism of S and N be an F-ideal of S. Suppose that $\text{Ker} F \subseteq N$. Then $F : S \rightarrow S$ induces the endomorphism $f : S/N \rightarrow S/N$ such that $f(s + N) = F(s) + N$ for all $s \in S$. In addition, the diagram

\[
\begin{array}{ccc}
S & \xrightarrow{F^n} & S \\
\downarrow{\pi} & & \downarrow{\pi} \\
R & \xrightarrow{f^n} & R
\end{array}
\]

is commutative in the following sense:

a) $\pi \circ F^n(s) = f^n \circ \pi(s)$ for all positive integer n and all $s \in S$;

b) if Y is an ideal of S and $N \subseteq Y$, then $\pi(F^{-n}(Y)) = f^{-n}(\pi(Y))$.

Proof. a). $f^n \circ \pi(s) = f^n(s + N) = F^n(s) + N = \pi \circ F^n(s)$.

Check equality b):

$\pi(\overline{f^{-n}(Y)}) = \{x + N \in R : f(x) \in Y\} =
= \{x + N \in R : f(x + N) \in \pi(Y)\} =
= \{x + N \in R : f(x + N) \in \pi(Y)\} = f^{-n}(\pi(Y))$.

Let S be a ring and N be a prime ideal of S. QED.

Lemma 3. Let S be a ring satisfying ascending chain condition on right annihilators. Suppose that every nil-subring of R is nilpotent. Let F be an endomorphism of S with $\text{Ker} F \subseteq N$. Then $f^{-1}(N) = N$.

For a proof we refer on [2; 4].

Theorem 2. Let F be an endomorphism of S and $\text{Ker} F \subseteq N$. Suppose that d there exists a non-negative integer d such that all strictly ascending chains of F-closed right ideals of S have length at most d. Then the quotient-ring $R = S/N$ can be embedded in a product of finitely many matrix rings over division rings D_i.

Proof. The right annihilator of a set in the ring S is the intersection of S and the right annihilator of this set in the Cohn-Jordan extension $A = A(S, F)$, i.e.

\[r_S(M) = S \cap r_{A(S, F)}(M). \]

It follows that all right annihilators in the ring S are F-closed. Hence, by Theorem 1, the ring S is a subring of the right Artinian ring, and every nil subring of an Artinian ring is nilpotent. Therefore, every nil subring of S is nilpotent.

Let P be a prime radical of $A(S, F)$ and \overline{F} be an automorphism of $A(S, F)$ extending F. Then P is a nilpotent ideal and, consequently, $P \cap \overline{F}^{-n}(S) \subseteq \text{rad}(\overline{F}^{-n}(S)) = \overline{F}^{-n}(N)$.

Thus $\bigcup_{n=0}^{\infty} \overline{F}^{-n}(N)$. It implies $N \subseteq P$.

Moreover, since P is a nilpotent ideal of S, it follows that $P \cap S \subseteq N$. Therefore, $P \cap S = N$. By Proposition 2 the last equality shows that the map $s + N \rightarrow s + P$ is an embedding of the quotient-ring $R = S/N$ in the semisimple Artinian ring $A(S, F)/P$. To complete the proof of the theorem, it remains to note that the ring $A(S, F)/P$ is isomorphic to a finite direct product of complete matrix rings over the division rings by Weddeburn-Artin theorem (see [6], § 61, Theorem 5.16). QED.

Proposition 2. A right ideal L of A is essential in A if and only if for each nonzero element $r \in R$ and for every nonnegative integer n, there is a nonnegative integer m such that $f^n(r)R \cap \overline{f}^{n+m}(L) \neq 0$.

Proof. Let L be an essential right ideal of the ring A, let $0 \neq r \in R$ and let n be a nonnegative integer. Set $a = \overline{f}^{-n}(r)$. Since $aA(L) \neq 0$, there is a number $m \geq 0$ such that $a \overline{f}^{-n-m}(R) \cap L \neq 0$.

Applying the automorphism \overline{f}^{n+m} to the last inequality, the demanded inequality $f^n(r)R \cap \overline{f}^{n+m}(L) \neq 0$ follows.

Suppose now that for each nonzero element $r \in R$ and for any nonnegative integer n there is a nonnegative integer m such that $f^n(r)R \cap \overline{f}^{n+m}(L) \neq 0$. Every element $a \in A$ can be represented in the form $a = \overline{f}^{-n}(r)$ where $r \in R$ and $n \geq 0$. Applying the automorphism \overline{f}^{-n-m} to the inequality $f^n(r)R \cap \overline{f}^{n+m}(L) \neq 0$, we get that $a \overline{f}^{-n-m}(R) \cap L \neq 0$. QED.
Impact Factor:

Country	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
ICV (Poland)	6.630
PIF (India)	1.940
ESJI (KZ)	3.860
SJIF (Morocco)	2.031
РИНЦ (Russia)	0.234
ICV (Poland)	6.630
PIIF (India)	1.940
ESJI (KZ)	3.860
SJIF (Morocco)	2.031
РИНЦ (Russia)	0.234

Conclusion

Here are some problems which will probably be useful for magistrates and graduate students.

Open problems:

1. Give necessary and sufficient conditions on R and f for the lattice $\text{Lat}(R, f)$ to be modular. Give some examples demonstrating that these conditions are essential.

2. If $\text{Lat}(R, f)$ satisfies the descending chain condition, then does A need to be right Artinian?

3. Suppose that $\text{Lat}(R, f)$ contains some chain of length d, and all strictly ascending chains of f-closed right ideals of R have length at most d. Is it true that all maximal strictly ascending chains of f-closed right ideals have length d?

4. What is the relationship between the essential elements of the lattice $\text{Lat}(R, f)$ and the essential right ideals of the Cohn-Jordan extension?

5. Find a necessary and sufficient condition for the Cohn-Jordan extension $A(R, f)$ to be a right Goldie ring.

References:

1. Mushrub V.A. (1992) Endomorfizmy i radikaly kolets: Avtoref. dis. kand. fiz-mat. nauk. Moscow. — 11 p.
2. Mushrub V.A. (1992) Endomorfizmy i radikaly kolets: dis. kand. fiz-mat. nauk. Moscow. — 158 p.
3. Mushrub V.A. (2001) О размерности Голди рассширений Оре с многими переменными//Fundamental’naia i prikladnaya matematika. V. 7, №4 — pp. 1107–1121. http://mi.mathnet.ru/fpm616
4. Pchelintsev S.V., Grishin A.V., Krasilnicov A.N., Mushrub V.A. Identities of algebraic objects // research report № 97-01-00785 (Russian Foundation for Basic Research), 1997
5. Sukhorukova I., Mushrub V. (2016) The Jacobson radical and ring endomorphisms // Ural’skiy nauchnyy vestnik. V. 4. — pp. 155-164.
6. Tuganbayev A.A. (2009) Teoriya kolets. Arifmeticheskiye kol’tsa i moduli. Moscow: MCCME. – 472 pp. http://e.lanbook.com/book/9425
7. Matczuk J. S. (2007) Cohn-Jordan extensions. Communications in Algebra. V. 35, №3. — pp. 725-746. https://arxiv.org/abs/1110.1446
8. Jordan, D. A. (1982), Bijective Extensions of Injective Ring Endomorphisms. Journal of the London Mathematical Society, s2-25: pp. 435–448. doi:10.1112/jlms/s2-25.3.435
9. Mushrub V.A. (1995). Kriteriy poluprostoroly kol’tsa kosykh mnogochnen//Fundamentalnaya i prikladnaya matematika. V. 1. No 3. — P. 701.
10. Mushrub V.A. (1996). O nil’potentnosti podkolets kosykh grupпovikh kolets//Fundamentalnaya i prikladnaya matematika. V. 2. No 4. — pp. 1227. http://mi.mathnet.ru/fpm194
11. Mushrub V.A., Sukhorukova I.V., Belyayev A.A., Pavlovskiy V.V. (2016) Ob invariantnosti strogo nasledstvennykh radikalov otnositel’no endomorfizmov// Innovatsii i investitsii, № 4. — pp. 150-154