Hypertension as a Risk Factor for Contrast-Associated Acute Kidney Injury: A Meta-Analysis Including 2,830,338 Patients

Zhabin Luna,b,c Ziling Maid Liwei Liua,e Guanzhong Chena,d Huanqiang Lia
Ming Yinga Bo Wanga Shiquan Chena Yongquan Yanga Jin Liua
Jiyan Chena,e,f Jianfeng Yeb,c Yong Liua,e,f

aDepartment of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; bThe First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China; cDepartment of Cardiology, Dongguan TCM Hospital, Dongguan, China; dGuangdong Provincial People’s Hospital, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; eThe Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; fGuangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China

Keywords
Hypertension · Contrast-associated acute kidney injury · Meta-analysis · Adjusted odds ratio

Abstract
Objective: Previous studies have shown that the relationship between hypertension (HT) and contrast-associated acute kidney injury (CA-AKI) is not clear. We apply a systematic review and meta-analysis to assess the association between HT and CA-AKI.

Methods: We searched for articles on the study of risk factors for CA-AKI in the Embase, Medline, and Cochrane Database of Systematic Reviews (by March 25, 2021). Two authors independently performed quality assessment and extracted data such as the studies’ clinical setting, the definition of CA-AKI, and the number of patients. The CA-AKI was defined as a serum creatinine (Scr) increase \(\geq 50\% \) or \(\geq 0.3 \) mg/dL from baseline within 72 h. We used fixed or random models to pool adjusted OR (aOR) by STATA.

Results: A total of 45 studies (2,830,338 patients) were identified, and the average incidence of CA-AKI was 6.48\%. There was an increased risk of CA-AKI associated with HT (aOR: 1.378, 95\% CI: 1.211–1.567, \(I^2 = 67.9\% \)). In CA-AKI with a Scr increase \(\geq 50\% \) or \(\geq 0.3 \) mg/dL from baseline within 72 h, an increased risk of CA-AKI was associated with HT (aOR: 1.414, 95\% CI: 1.152–1.736, \(I^2 = 0\% \)). In CA-AKI with a Scr increase \(\geq 50\% \) or \(\geq 0.3 \) mg/dL from baseline within 7 days, HT increases the risk of CA-AKI (aOR: 1.317, 95\% CI: 1.049–1.654, \(I^2 = 51.5\% \)).

Conclusion: Our meta-analysis confirmed that HT is an independent risk factor for CA-AKI and can be used to identify risk stratification. Physicians should pay more attention toward prevention and treatment of patients with HT in clinical practice.

© 2021 The Author(s)
Published by S. Karger AG, Basel

Z.L., Z.M., L.L., and G.C. contributed equally to this work.

Correspondence to:
Jianfeng Ye, yipjf@hotmail.com
Yong Liu, liuyong@gdph.org.cn
Introduction

As a common complication after coronary angiography, contrast-associated acute kidney injury (CA-AKI) had become one of the three major in-hospital AKI, and it would bring adverse prognosis [1–5]. Therefore, early prevention of CA-AKI is very necessary. Hypertension (HT) was used as a powerful predictor in high-performance predictive models, and it had been confirmed in previous studies that HT can increase the risk of CA-AKI [6–9]. However, in an article exploring the relationship between left ventricular ejection fraction and CA-AKI in patients with heart failure, it was found that the association between HT and CA-AKI was not significant [10]. At the same time, Sun, Barbieri, and Chong et al. [11–13] observed that HT was not an independent risk factor for CA-AKI.

Hence, the relationship between HT and CA-AKI was still controversial. For the first time, we systematically evaluated the relationship between HT and CA-AKI through this meta-analysis.

Methods

Search Strategy

We mainly conducted a search on the Ovid Medline, Embase, and Cochrane system review databases, limited to English language articles published up to March 25, 2021. Search terms were related to “risk factor,” “contrast,” and “acute kidney injury.” When we found other keywords during an electronic search, we modified the search strategy to upgrade the terms and record them (details in online suppl. Items 13; for all online suppl. material, see www.karger.com/doi/10.1159/000517560). The flowchart of the study selection is detailed in Figure 1 (PROSPERO register number: CRD42019121534). The study is reported according to the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guideline [14].

Selection Criteria

Two authors (Z.B.L. and Z.L.M.) independently screened the articles by reading the title and abstract, and then the full texts of studies found potentially eligible were obtained and further assessed for final inclusion. When encountering a dispute, the decision is made by a third assessor (Y.L. and J.F.Y.). We considered the observational studies that reported the odds ratio between CA-AKI and HT in the multivariate analysis. The longitudinal studies about CA-AKI incidence that include the risk factor of CA-AKI are also selected. If multiple studies are from the same cohort or most of the population is repeated, then we will choose the article that contains most of the people. We excluded animal studies, randomized control trials, case reports, review, meta-analysis, letter, notes, guidelines, non-English kinds of literature, and not risk factors for CA-AKI that only included prevalence. All writers are well-trained to perform systematic reviews and meta-analysis.

Quality Assessment

Those included study quality assessment was based on the Newcastle-Ottawa Scale (NOS), performed by 2 independent authors (Z.B.L. and M.Z.L.), and the debate was resolved by a third researcher (J.F.Y.). The Newcastle-Ottawa Scale determines the quality of an article by rating the article’s participant selection, compatibility, and outcomes/exposures. The score used for the NOS defined “low-quality studies” as those with scores of 1–3, “moderate-quality studies” as those with scores of 4–6 and “high-quality studies” as 7–9.

Data Extraction from the Selected Articles

Two authors (Z.B.L. and M.Z.L.) analyzed each article and extracted detailed information of each article: country, region, year, study characteristics, patient population, the number of CA-AKI, adjustment rate and adjusted odds ratio (aOR). Cross-check was performed to ensure the data are correct. Disagreements were settled by discussion between the reviewers and judges. In our analysis, there are 3 definitions of CA-AKI. (1) CA-AKI\(^1\) was defined as an absolute increase in SCr ≥0.5 mg/dL or an increase ≥25% from baseline within 72 h. (2) CA-AKI\(^2\) was defined as an absolute increase of ≥0.3 mg/dL or a relative increase of ≥50% in SCr from baseline values within 72 h. (3) CA-AKI\(^3\) was defined as an absolute increase of ≥0.3 mg/dL or a relative increase of ≥50% in SCr from baseline values within 7 days.

Data Analysis

Analyses were performed using Stata version 12.0 (STATA, College Station, TX, USA) and R software (version 3.6.1; R Core Team, Vienna, Austria). Heterogeneity was calculated by the \(\chi^2 \) test considering the \(I^2 \) index to classify the degree of heterogeneity within those studies. When the heterogeneity was calculated (\(I^2 ≥ 50\% \)), we used a random-effects model. Otherwise, the fixed-effects model was used if homogeneity was present (\(I^2 ≤ 50\% \)). According to the procedure, studies’ clinical setting, and definition of CA-AKI, we completed subgroup analysis. We did sensitivity analysis by leaving one out to identify the source of heterogeneity. The pooled aOR from cohort studies was calculated with the 95% confidence interval. Additionally, publication bias was tested by both Begg’s and Egger’s tests. Publication bias was considered significant when \(p < 0.05 \).

Results

Study Selection and Study Characteristics

After deleting duplicate articles, the initial search results left 23,782 articles. A total of 2,442 articles met the search criteria, and we read the full texts to determine whether they should be included in our meta-analysis. Through deep reading, we finally selected 45 articles discussing the relationship between HT and CA-AKI, which included 2,830,338 patients (Fig. 1) [5, 6, 9–13, 15–51]. Table 1 summarized the characteristics of the 45 studies, and the overall average incidence of CA-AKI was 6.48% (\(n = 183,395 \)).
According to the definitions of CA-AKI in these studies, there are 33 studies defined by CA-AKIA, 8 studies defined by CA-AKIB, and 12 defined by CA-AKIC. In the PCI subgroup analysis, we included 22 studies. In acute coronary syndrome (ACS), acute myocardial infarction (AMI), and ST-segment myocardial infarction (STEMI) subgroup analysis, 15 studies, 12 studies, and 7 studies were included respectively.

Quality Assessment

The articles included in our research were all high-quality articles, of which 32 articles were judged as 9 points, 15 articles as 8 points, and the rest as 7 points. Detailed scores for each article with regard to the selection, compatibility, and outcome can be seen in online suppl. Table 1.

HT and CA-AKI

We performed a meta-analysis based on aOR from the original study and confirmed that HT was associated with an increased risk of CA-AKIA (aOR: 1.378, 95% CI: 1.211–1.567). A similar relationship was also found in CA-AKIB (aOR: 1.414, 95% CI: 1.152–1.736) and CA-AKIC (aOR: 1.317, 95% CI: 1.049–1.654) (Table 2; Fig. 2).

According to the CA-AKIA standard, we observed that HT increases the risk of CA-AKI (aOR: 1.403, 95% CI: 1.182–1.666) in patients undergoing PCI (Table 2; Fig. 3). In ACS patients, we found that HT is an independent risk factor for CA-AKI (aOR: 1.328, 95% CI: 1.077–1.637), the similar results were observed in patients with AMI (aOR: 1.325, 95% CI: 1.017–1.727) and STEMI (aOR: 1.374, 95% CI: 1.010–1.869) (Table 2;
Cohort studies	Country/ study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)
Kaya et al. [15]	Turkey, 2015–2018	Emergent PCI	Retrospective	963	128	NR	Defined as previously described and distinguished as grade 0 (Scr increase <25% above baseline and <0.5 mg/dL above baseline), grade 1 (Scr increase ≥25% above baseline and <0.5 mg/dL above baseline), or grade 2 (Scr increase ≥0.5 mg/dL above baseline) within 48 h	Age, DM, CM volume, Renal function, Sex, HT, Heart rate, LVEF, The thrombolysis in myocardial infarction risk index, TIMI flow, Syntax score	0.888 (0.553–1.426)
Amiri et al. [1]	Iran, 2007–2010	Elective CAG or PCI	Prospective	255	69	NR	Defined as an absolute or relative increase in Scr to ≥0.5 mg/dL (44 μmol/L) or ≥25% above baseline within 48 h after angiography, respectively	Age, CM volume, Renal function, Male sex, CrCl, HT, Triglycerides, Statins, I-dose/CrCl	1.84 (0.67–5.08)
Kurtul et al. [17]	Turkey, 2011–2014	Emergent PCI	Prospective	478	63	HT was defined as repeated systemic blood pressure measurements exceeding 140/90 mm Hg or treatment with any antihypertensive drugs for a known diagnosis of HT	Defined as a ≥0.5 mg/dL and/or a ≥25% increase in Scr within 48–72 h post-PCI	Age, DM, Renal function, HT, Current smoker, Left ventricular ejection fraction, Hemoglobin, White blood cell count, High sensitivity C-reactive protein, Neutrophil-to-lymphocyte ratio, Number of diseased vessels	1.464 (0.628–3.412)
Tang et al. [18]	China, 2017–2018	Emergent PCI	Prospective	240	29	History of HT	Defined as an increase in Scr of more than 25% or 44.2 mmol/L–1.48 to 7.2 h after contrast medium administration without evidence of other causes	Age, DM, Renal function, Hypertension, Uric acid, Glucose, Cyt c	2.544 (0.866–7.361)
Cohort studies	Country/study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)
----------------	----------------------	-----------	-------------	-------------	------------------	---------------	------------------	-----------------	--------------------------
Kocas et al. [19]	Turkey, 2011–2014	Emergent PCI	Prospective	488	80	NR	Defined as an increase in Scr level by 0.5 mg/dL or 25% over the baseline value within 72 h after contrast agent administration	Age, DM, Renal function, HT, Platelet-to-lymphocyte ratio, ST-segment depression on ECG	1.47 (0.79–2.75)
Zahler et al. [20]	Israel, 2007–2017	Emergent PCI	Retrospective	801	64	NR	Defined as an increase in Scr ≥0.3 mg/dL within 48 h of admission or an increase in Scr ≥1.5 times baseline, which was known or presumed to have occurred within the prior 7 days	Age, DM, Renal function, CRP, LVEF, HT, Hemoglobin, Family history of CAD, Gender, Multivessel CAD, White blood cells, Smoking	1.98 (0.99–3.92)
Souza et al. [21]	Brazil, 2007–2010	Elective CAG	Prospective	125	22	HT was defined as systemic blood pressure measurements exceeding 140/90 mm Hg	Defined as an increase in Scr concentration of 0.3 mg/dL over baseline 48 h after the infusion of contrast media in patients who did not develop AKI to advanced stages	Age, DM, HT, Smoking	0.94 (0.33–2.66)
Chong et al. [13]	Singapore, 2011–2013	CAG or percutaneous coronary intervention	Retrospective	3,037	245	NR	Defined as ≥25% or ≥0.5 mg/dL increase from baseline Scr within 48 h after PCI	Age, Hypotension, CHF, Anemia, DM, Renal function, Gender, HT, Anemia, BP, Creatinine kinase, LVEF, Baseline GFR, Indication for PCI STEMI, UA/NSTEMI No MI, IDDM, NIDDM, No diabetes	1.55 (0.95–2.52)
Table 1 (continued)

Cohort studies	Country/study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)	
Nikolsky et al. [22]	USA, 6-year period	Percutaneous coronary intervention	Retrospective	6,773	942	NR	Defined as increase of ≥25% or ≥0.5 mg/dL in SCr at 48 h post-percutaneous coronary intervention	Hypotension, IABP, DM, CM volume, Renal function, Baseline hematocrit, HT, Ejection fraction, Peripheral arterial disease	CKD: 1.80 (1.20–2.72), Non-CKD: 1.41 (1.12–1.79)	
Cicek and Yildirim [23]	Turkey, UK	Emergent PCI	Retrospective	2,972	693	HT was defined as receiving antihypertensive treatment or a systolic blood pressure ≥140 mm Hg or a diastolic blood pressure ≥90 mm Hg	Defined as 25% or higher elevation in the basal creatinine value or 0.5 mg/dL or higher elevation in the creatinine concentration for 72 h after the procedure	Age, Gender, HT, Peak CK-MB, Killip class, CHA2DS2-VASc score	1.500 (1.265–1.780)	
Dangas et al. [24]	USA, 2004–2005	Percutaneous coronary intervention	Prospective	7,230	1,069	History of hypertension	Defined as an increase of >25% and/or ≥0.5 mg/dL in procedure SCr at 48 h after the procedure	Age, Hypotension, IABP, DM, Renal function, Contrast volume/body surface area ratio, Baseline hematocrit, Pulmonary edema on presentation, Left ventricular ejection fraction, History of HT, Ioxaglate (ionic low-osmolar contrast)	CKD: 1.61 (1.10–2.35), Non-CKD: 1.39 (1.12–1.72)	
Ando et al. [25]	Italy, 2008–2011	Percutaneous coronary intervention	Retrospective	481	25	NR	Defined as an absolute increase in SCr ≥0.5 mg/dL or an increase ≥25% from baseline within 72 h	Age, IABP, DM, Renal function, EF, Post-procedural TIMI flow, Cigarette smoking, HT, LDL-cholesterol, Hemoglobin, Troponin, Heart rate, Killip class	1.36 (0.26–7.03)	
Cohort studies	Country/study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)	
----------------	----------------------	-----------	--------------	-------------	------------------	---------------	-------------------	------------------	---------------------------	
Ucar et al. [26]	Turkey, 2013–2013	Percutaneous coronary intervention	Retrospective	440	78	History of HT	Defined as an increase of 25% in SCr concentrations from baseline within 72 h following primary angioplasty	Age, DM, CM volume, Renal function, HT, Augmentation index, Pulse wave velocity, SYNTAX score, Hemoglobin	0.906 (0.432–1.900)	
Nough et al. [27]	Iran, 2011–2013	CAG or percutaneous coronary intervention	Retrospective	250	32	History of HT	Defined by an increase in creatinine of >0.5 mg/dL or 25% of the initial value within 48 h after contrast agent administration	Age, Anemia, DM, CM volume, Renal function, Gender, HT, Myocardial infarction, Left ventricular ejection fraction, Nephrotoxic drug use, Type of contrast medium	2.789 (1.236–2.878)	
Celik et al. [28]	Turkey, 2004–2005	CAG or percutaneous coronary intervention	Retrospective	710	75	HT was defined as systemic blood pressure measurements exceeding 140/90 mm Hg on 2 different occasions or treatment with antihypertensive drugs for a diagnosed HT	Defined as an increase of at least 0.5 mg/dL or at least 25% in the SCr level within 72 h following PCI	Age, DM, Renal function, Sex, HT, Current smoker, Left ventricular ejection fraction, Hemoglobin, White blood cell count, High-sensitivity C-reactive	1.078 (0.546–2.217)	
Wi et al. [29]	Korea, 2005–2009	Percutaneous coronary intervention	Prospective	1,041	148	NR	Defined as >25% or >0.5 mg/dL increase in SCr level within 48 h after administration of contrast medium when no other major kidney insult was identified	HT, CIN risk group	2.21 (1.23–3.99)	
Table 1 (continued)	Cohort studies	Country/ study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)
---------------------	----------------	----------------------	-----------	-------------	-------------	-----------------	---------------	------------------	------------------	---------------------------
Kato et al. [30]	Japan, 2005–2005	Elective CAG or PCI	Prospective	87	18	HT was defined as systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg or under medication	Defined as an increase of more than 25% from the baseline value of SCr, or an absolute increase of at least 0.5 mg/dL (44.2 μmol/L) within 48 h after the administration of contrast medium	Age Renal function HT Old myocardial infarction Cystatin C LVEF Ca-channel blocker Diuretics	4.211 (0.712–24.918)	
Tanaga et al. [31]	Japan, 2005–2006	CAG or percutaneous coronary intervention	Prospective	300	18	NR	Defined as a SCr increase of 25% and/or 0.5 mg/dL over 48 h after exposure to the contrast medium	DM CM volume Renal function Cystatin C Emergency PCI HT Dyslipidemia	1.33 (0.85–2.16)	
Wang et al. [10]	China, 2009–2013	CAG or percutaneous coronary intervention	Prospective	1,647	225	NR	Defined as an absolute increase of ≥0.5 mg/dL or a relative increase of ≥25% from baseline SCr within 48–72 h after contrast medium exposure	Age Hypotension IABP CHF DM CM Volume Renal Function HFrEF versus HFpEF HFmrEF versus HFpEF HT Prior MI Emergency PCI Stains Diuretics	1.20 (0.86–1.65)	
Sun et al. [32]	China, 2011–2013	CAG or percutaneous coronary intervention	Retrospective	751	106	NR	Defined as an absolute increase of SCr of more than or equal to 0.3 mg/dL or increase to more than or equal to 150% from baseline within any 48 h during hospital days	Age Anemia Renal Function GDF-15 RCA HT Neutrophil ratio	1.767 (1.022–3.054)	
Cohort studies	Country/study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)	
-----------------	----------------------	-----------	--------------	-------------	------------------	--------------	------------------	-------------------	-----------------------------	
Barbieri et al. [12]	Italy, 2007–2013	CAG	Prospective	2,851	359	HT was defined as systolic pressure >140 mm Hg and/or diastolic pressure >90 mm Hg or if the individual was taking antihypertensive medications	Defined as an absolute 0.5 mg/dL or a relative 25% increase in creatinine level 24–48 h after the procedure	Age CHF CM volume Renal function HT Previous MI Previous CABG Indication for angiography, Mehran score Platelets count White blood cells Red blood cells Hemoglobin Total cholesterol HDL cholesterol, Triglycerides LDL cholesterol ACE inhibitors Angiotensin receptor blockers Clopidogrel ASA, Diuretics PTCA Indication for angiography, Mehran score Platelets count White blood cells Red blood cells Hemoglobin Total cholesterol HDL cholesterol, Triglycerides LDL cholesterol ACE inhibitors Angiotensin receptor blockers Clopidogrel ASA, Diuretics PTCA	1.02 (0.71–1.45)	
Gohbar et al. [33]	Japan, 2010–2016	Emergent PCI	Retrospective	273	35	NR	Defined as an increase of 0.5 mg/dL in SCr or a 25% increase from baseline between 48 and 72 h after contrast medium exposure	Age CM volume Renal function Reperfusion time HT Peak CK-MB hs-CRP on admission Acidosis Male BMI Glucose level on admission LVEF Mehran risk score	3.168 (1.292–7.772)	
Table 1 (continued)

Cohort studies	Country/study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)
Celik [34]	Turkey, UK	Emergent PCI	Retrospective	597	78	NR	Defined as an absolute 0.3 mg/dL increase in SCr compared with baseline levels within 48 h after the procedure	Age, DM, CM volume, Renal function, EF, Multivessel disease, Post-PCI TIMI, CV-e-GFR, HT	1.078 (0.546–2.127)
Chou et al. [6]	Taiwan, China, 2011–2013	Elective PCI	Retrospective	539	55	NR	Defined as the elevation of SCr ≥0.5 mg/dL or ≥25% in baseline SCr within 48 h after PCI	Age, CHF, DM, Renal function, HTN, Stroke, CHADS2 score, R2CHADS2 score	1.05 (0.58–1.91)
Sigirci et al. [35]	Turkey, 2015–2017	Emergent PCI	Retrospective	883	126	HT was defined as systolic blood pressure >140/90 mm Hg at least 2 times or history antihypertensive medications	Defined as an increase in SCr level of 0.5 mg/dL or 25% above baseline within 72 h after contrast administration	Age, DM, CM volume, Renal function, Sex, High TB, LVEF, HT, Hemoglobin	1.65 (1.05–2.52)
Cohort studies	Country/study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)
-----------------	----------------------	----------------------------------	--------------	-------------	------------------	---	--	------------------	-----------------------------
Saito et al. [36]	Japan, 2011–2013	Percutaneous coronary intervention	Prospective	906	45	NR	Defined as increase in SCr ≥0.5 mg/dL or ≥25% from baseline between 48 and 72 h after exposure to contrast	Age CHF DM CM volume Age Male BMI HT Dyslipidemia STEMI/ NSTEMI HbA1c RBC Hb Proteinuria BUN Emergency procedure PCI Contrast volume/eGFR, Hydration statin Ca antagonist ACEI ARB α-blocker β-blocker Diuretic	1.38 (0.39–6.66)
Pérez-Topete et al. [7]	Russia, 2004–2005	Percutaneous coronary intervention	Retrospective	70	10	NR	Defined as the impairment of renal function and is measured as either a 25% increase in SCr from baseline or 0.5 mg/dL increase in absolute value, within 48–72 h of intravenous contrast administration	Age Hypotension IABP CHF Anemia DM CM volume HT Cardiopathy Obesity Nephroprotection Urgency procedure Procedure duration	6.71 (0.83–54.48)
Cohort studies	Country/ study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)
----------------	-----------------------	-----------	--------------	-------------	------------------	--------------	------------------	--------------------	-----------------------------
Lele et al. [38]	India, 2011–2013	CAG or percutaneous coronary intervention	Prospective	806	55	NR	Defined as an absolute elevation in SCr of ≥0.5 mg/dL from baseline within the first 48 h after contrast exposure	Age, CHF, DM, CM volume, Renal function, Gender, HT, ST elevation MI, Ejection fraction, Baseline CI, Change in CI	0.884 (0.487–1.605)
Takahashi et al. [39]	USA, 1996–2009	Others	Retrospective	437	26	NR	Define as stage 1 PC-AKI as an absolute SCr increase ≥0.3 mg/dL or a relative increase in SCr ≥50% within 48 h of intervention	DM, CM volume, Renal function, Female sex, Proteinuria, Statin medication, antihypertensive, Medication ACEI/ARB, calcium channel blocker, Prehydration, Total iodine mass, Stent diameter, Bilateral intervention, current smoker, Coronary artery disease, HT, Hyperlipidemia	0.99 (0.05–21.57)
Kanic [40]	Slovenia, 2011–2016	Percutaneous coronary intervention	Retrospective	3,842	327	NR	AKI was defined as an increase in SCr after PCI of ≥0.3 mg/dL (26.5 μmol/L) in the first 48 h after PCI	Age, CHF, DM, CM volume, Renal function, Bleeding, Contrast volume/GFR ratio, HT	1.36 (1.04–1.78)
Cohort studies	Country/study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)
----------------	----------------------	-----------	-------------	-------------	------------------	--------------	------------------	-------------------	---------------------------
Sun et al. [11]	China, 2005–2006	Emergent PCI	Retrospective	5,719	252	NR	Defined as ≥25% relative increase or ≥0.5 mg/dL, absolute increase in SCr level above baseline within 72 h of contrast exposure, in the absence of an alternative explanation	Age, DM, Renal function, HT, Serum glucose, hsCRP, NLR, Hemoglobin, PLR	0.942 (0.632–1.225)
Velibey et al. [41]	Turkey, 2005–2006	Emergent PCI	Retrospective	2,563	164	HT defined as a previous diagnosis of HT, previous use of antihypertensive medications, or a systolic pressure 140 mm Hg and/or a diastolic pressure 90 mm Hg on at least 2 separate measurements during hospitalization	Defined as ≥25% relative increase or ≥0.5 mg/dL, absolute increase in SCr above baseline within 72 h after PCI	Age, Anemia, DM, CM volume, Renal function, Male, ACEI/ARB, HT, LVEF, PLR	1.846 (1.290–2.693)
Hu et al. [42]	China, 2010–2012	CAG	Prospective	71	22	NR	Defined as an absolute increase of 0.3 mg/dL or a relative increase of 50% in SCr from baseline values within 48 h	Age, DM, Renal function, Male sex, Body mass index, HT, Cerebrovascular diseases, Atrial fibrillation, EF, Hemoglobin, Concomitant TVR/TVP, CPB time, One-stage procedure	2.746 (0.381–19.787)
Gao et al. [9]	China, 2005–2010	CAG or percutaneous coronary intervention	Retrospective	2,764	127	HT defined according to systolic/diastolic blood pressure 140/90 mm Hg or patients had a history of HT and current use of any antihypertensive medication	Defined as an increase in SCr level 44.2 mmol/L or 25% and simultaneously beyond the upper limit of normal value within 72 h following the intravascular administration of contrast media	Age, IABP, CHF, CM volume, Renal function, HT, Acute myocardial infarction	2.02 (1.26–3.24)
Table 1 (continued)

Cohort studies	Country/study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)
Chen et al. [43]	China, 2014–2016	Primary PCI and elective PCI	Retrospective	7,471	1212	NR	CIN was defined as an increase in SCR by 0.5 mg/dL or 25% within 72 h of PCI	Age, Sex, Killip class, HT, Type of PCI, Chronic heart failure, Chronic kidney failure, Smoking, OMI, Post-PCI, Post-CABG, Diabetes mellitus, Family history of CHD, Hyperlipidemia	0.84 (0.739–0.955)
Qin et al. [44]	China, 2017–2019	CAG	Prospective	928	197	NR	CI-AKI was diagnosed as increased Scr level by ≥ 26.5 mmol/L (0.3 mg/dL) or by at least 50% compared to baseline values within 1 week after administration of the contrast agent	Sex, Age, BMI, HT, SBP, DBP, Hydration, eGFR, FBG, HbA1c, Triglyceride, TC, HDL-c, LDL-c, TyG	0.54 (0.251–1.365)
Prasad et al. [45]	USA, 2012–2017	CAG or percutaneous coronary intervention	Retrospective	17,548	7	NR	CI-AKI was diagnosed as increased Scr level by ≥ 26.5 mmol/L (0.3 mg/dL) or by at least 50% compared to baseline values within 1 week after administration of the contrast agent	Time by year, Age, Sex, Race, Health insurance status, Type of index visit, Admission type, Type of procedure, HT, Hypotension, Anemia, Chronic kidney disease, Diabetes, Mean CCI & SD, Hospital size, Teaching status, Population served, Hospital region	1.03 (1.00–1.05)
Cohort studies	Country/study period	Procedure	Study design	Cohort size	Number of CA-AKI	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)	
----------------	----------------------	-----------	--------------	-------------	------------------	-------------------	------------------	------------------------	
Zuo et al. [46]	China 2015–2018	Percutaneous coronary intervention	Prospective	252	55	NR	CIN was defined as an elevation in baseline SCr level ≥25% or an absolute elevation ≥44.2 μmol/L within 48–72 h after PCI	Age, HT, MAGE, LVEF, Albumin, Uric acid, BUN, Creatinine, eGFR	0.4 (0.198–0.805)
Wang [47]	China 2017–2019	Percutaneous coronary intervention	Retrospective	291	43	NR	PC-AKI was defined as an increase in SCr³ 0.3 mg/dL (³26.5 μmol/L), or ³1.5 times baseline within 48–72 h after PCI.	HT, Diabetes, Hemoglobin, FAR, eGFR, LVEF	4.75 (1.04–21.59)
Yoo [48]	Korea 2011–2016	Endovascular Treatment	Retrospective	601	59	NR	Patients were considered to have AKI if they had an increment in SCr of 0.3 mg/dL within 48 h or an increment in SCr 1.5 times that recorded at baseline within 7 days	Age, Sex, HT, Diabetes mellitus, Statin medication prior to admission, Baseline renal function, CTA before EVT, Contrast dose, NIHSS score on admission, Unsuccessful reperfusion	1.974 (0.978–4.201)
Table 1 (continued)

Cohort studies	Country/study period	Procedure	Procedure Type	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)
Zorlu and Koseoglu [49]	USA 2018-2019	CAG	Retrospective	564	62	HT was defined as repeated blood pressure measurements >140/90 mm Hg or usage of antihypertensive drugs	Contrast-induced nephropathy was defined as a rise of SCR of 0.5 mg/dL or a 25% relative rise from baseline at 4872 h following the PCI.	Glucose, Creatinine, Hemoglobin, Platelet count, Mean platelet volume, Lymphocyte count, GFR, PLR, NLR, MPVLR, Age, Sex, HT, Diabetes mellitus, Smoker, Left ventricular ejection fraction, Total amount of contrast media, Multivessel disease, Chronic total occlusion, Stent diameter, Total length of stent, Total time of procedure	1.12 (0.94–1.316)	
Wang, et al. [50]	China 2017-2018	Percutaneous coronary intervention	Prospective	220	16	NR	Contrast-induced acute kidney injury defined as an absolute increase in SCR by 0.5 mg/dL (44.2 mmol/L) or a relative increase of 25% from the baseline value within 72 h after exposure to contrast medium	MI, LVEF<45%, Contrast volume, ACEI/ARB, Diuretics, HT, Diabetes, Statins, Age, Hydration amount, Probucol	2.475 (0.784–7.851)	
Ozan Tanık [51]	Turkey 2017-2018	Percutaneous coronary intervention	Retrospective	2,400	148	HT was defined as a previous diagnosis of hypertension, a previous use of antihypertensive medications, or a systolic pressure exceeding 140 mm Hg and/or a diastolic pressure of over 90 mm Hg on at least 2 separate measurements during hospitalization	CI-AKI was described as a higher than 25% relative increase or a higher than 0.5 mg/dL absolute increase in SCR above baseline within 72 h after primary PCI.	Gender, Basal creatinine, HT, Diabetes mellitus, CRF, NLR ≥5, Anemia	1.67 (1.14–2.46)	
Cohort studies	Country/study period	Procedure	Study design	Cohort size	Number of CA-AKI	HT definition	CA-AKI definition	Factor adjustment	Adjusted odds ratio (95% CI)	
----------------	----------------------	------------	--------------	-------------	-----------------	---------------	-------------------	-------------------	-------------------	
Izkhakov [52]	Israel 2014–2017	Percutaneous coronary intervention	Retrospective	723	64 NR	AKI was determined using the kidney Disease: Improving Global outcomes criteria and defined as a sCr rise >0.3 mg/dL within 48 h of contrast exposure compared with admission sCr	HbA1c, Age, Male sex, HT, CKD, Dyslipidemia	1.52 (0.78–2.93)		
Butt et al. [53]	USA 2011–2015	Percutaneous coronary intervention	Retrospective	1,577	213 NR	CIN was defined as an increased SCr level by ≥ 0.5 mg/dL, or ≥25%, over the baseline value within 72 h after contrast agent administration	STEMI, GFR, LVEF, Anemia, NLR >2.6, PLR >128, CHF admission, Shock at admission, Cardiac arrest at admission, DM, HTN, Age, Tachycardia, Use of IABP	2.149 (1.32–3.496)		

CA-AKI, contrast-associated acute kidney injury; NR, not reported; PCI, percutaneous coronary intervention; CAG, coronary angiography; SCr, serum creatinine; CKD, chronic kidney disease; BMI, body mass index; DM, diabetes mellitus; CM, contrast media; LVEF, left ventricular ejection fraction; CrCl, creatinine clearance; Cyc-c, cystatin C; ECG, electrocardiogram; CAD, coronary artery disease; CHF, chronic heart failure; BP, blood pressure; GFR, glomerular filtration rate; STEMI, ST-segment elevation myocardial infarction; UA, unstable angina; NSTEMI, non-ST-segment elevation myocardial infarction; IABP, intra-aortic balloon pump; CK-MB, creatine kinase-MB; HFpEF, heart failure preserve ejection fraction; HFrEF, heart failure reduce ejection fraction; HfMR EF, heart failure with mid-range ejection fraction; GDF-15, growth differentiation factor-15; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; LDL-C, low-density lipoprotein-C; HDL-C, high-density lipoprotein; FAR, fibrinogen-to-albumin ratio; PLR, platelet-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; IDDM, insulin-dependent diabetes mellitus; NIDDM, noninsulin-dependent diabetes mellitus; HT, hypertension.
Fig. 2. Forest plot of the association between HT and risk of CA-AKI. HT, hypertension. A CA-AKIA, CA-AKIB was defined as an absolute increase in SCR \geq0.5 mg/dL or an increase \geq25% from baseline within 72 h. B CA-AKIB, CA-AKIB was defined as an absolute increase of \geq0.3 mg/dL or a relative increase of \geq50% in SCR from baseline values within 72 h. C CA-AKIC, CA-AKIC was defined as an absolute increase of \geq0.3 mg/dL or a relative increase of \geq50% in SCR from baseline values within 72 h. SCr, serum creatinine.

Fig. 3. Forest plot of the association between HT and risk of CA-AKIA in patients with PCI. CA-AKIA was defined as an absolute increase in SCr \geq0.5 mg/dL or an increase \geq25% from baseline within 72 h. HT, hypertension; SCr, serum creatinine.
Fig. 4. Forest plot of the association between HT and risk of CA-AKI A in patients with clinical setting. CA-AKI A was defined as an absolute increase in SCR ≥0.5 mg/dL or an increase ≥25% from baseline within 72 h. A The patients with ACS. B The patients with AMI. C The patients with STEMI. ACS, acute coronary syndrome; AMI, acute myocardial infarction; STEMI, ST-segment myocardial infarction; HT, hypertension; SCR, serum creatinine.

Fig. 5. Forest plot of the association between HT and risk of CA-AKI A with the sample size of ≥500. CA-AKI A was defined as an absolute increase in SCR ≥0.5 mg/dL or an increase ≥25% from baseline within 72 h. HT, hypertension; SCR, serum creatinine.
When we included studies with a sample size of ≥500 into the analysis, we found that there is still a significant correlation between HT and CA-AKI (aOR: 1.341, 95% CI: 1.170–1.537) (Table 2; Fig. 5).

Sensitivity Analysis and Publication Bias

In the process of exploring heterogeneity in the meta-analysis, the heterogeneity was 67.9%, 0%, and 51.5% in 3 definitions of CA-AKI, so we kept all the articles. No publication bias was found in CA-AKI A (Begg’s test: \(p = 0.513 \) and Egger’s test: \(p = 0.006 \)), CA-AKI B (Begg’s test: \(p = 0.711 \) and Egger’s test: \(p = 0.445 \)), and CA-AKI C (Begg’s test: \(p = 0.631 \) and Egger’s test: \(p = 0.027 \)), and the funnel plot is shown in online suppl. Figure 1.

Discussion

This is the first meta-analysis of HT as a risk factor for CA-AKI, and we found that HT is an independent risk factor of CA-AKI A (aOR: 1.378, 95% CI: 1.211–1.567). At the same time, we got similar results for CA-AKI B (aOR: 1.414, 95% CI: 1.152–1.736) and CA-AKI C (aOR: 1.317, 95% CI: 1.049–1.654), which further confirmed our analysis.

In our study, the average incidence rate was 6.48%, similar to that reported by Chalikias [52]. When we pooled aOR from 45 articles, we found that an increased risk of CA-AKI associated with HT (aOR: 1.341, 95% CI: 1.170–1.537). This is similar to the view reported in a recent article about CA-AKI published by Kanic et al. [40].

The reason may be that most of the patients undergoing percutaneous coronary intervention included in our meta-analysis, which is very similar to Kanic’s study. In a meta-analysis that evaluated the risk of AKI after cardiovascular surgery, HT was also an important preoperative factor [53]. However, the OR was slightly higher than that in ours because the definition of AKI in their article used the RIFLE criteria. In addition, we have observed similar results in ACS, AMI, and other patients, which further confirms our view. We also increased the credibility of our results by analyzing different definitions of CA-AKI.

At present, few studies have clearly explained the mechanism that HT increases the risk of CA-AKI. The major mechanism may be that hemodynamic perturbations damage renal arterioles and glomeruli, thereby reducing the tolerance of the kidney to nephrotoxic drugs and increasing the risk of CA-AKI. At the same time, vasoactive substances such as endothelin, nitric oxide, and prostaglandins also participate in the mechanism [54–56].

Our research confirms that HT can increase the risk of CA-AKI, which means the use of antihypertensive drugs before surgery can reduce the risk of CA-AKI. Recently, Nguyen et al. [57] found that the use of ACEI/ARB in STEMI patients can effectively reduce the occurrence of CA-AKI. However, some studies have observed that the relationship between the use of ACEI/ARB and CA-AKI is still unclear [12, 58]. Even some studies found that using ACEI/ARB can increase the risk of CA-AKI [41, 59]. A large meta-analysis was still needed to resolve...
this contradiction. Liu et al. [60] found that early β-blocker administration is associated with a reduced risk of contrast-induced acute kidney injury in patients with AMI. Although diuretics can lower blood pressure, Shiba et al. [61] found that diuretics can increase the risk of acute kidney injury, which may be related to renal microcirculation and perfusion disorders. The relationship between calcium channel blockers and CA-AKI was still unclear, and a large cohort study is needed to confirm in the future [62, 63]. These studies showed that the preoperative use of antihypertensive drugs may not be effective in reducing the risk of CA-AKI. So we should take active preventive measures recommended by the current guidelines for patients with HT to reduce the occurrence of CA-AKI.

Our research had several limitations. First, the data of this study came from a systematic database that studying the risk factors of CA-AKI. It does not originate from the initial search for articles that study the relationship between HT and CA-AKI. However, the heterogeneity of our research was low, which makes our results have more credibility. Second, the definitions of CA-AKI are various. We cannot complete the subgroup analysis of CA-AKI under multiple different definitions, which may reduce the generality of our results. But we have also completed the subgroup analysis of 2 common definitions and found consistency with the main analysis. Third, due to the limitation of the design and the number of studies included, we cannot evaluate the relationship between HT and CA-AKI in different disease states. But we also confirmed that HT is an independent risk factor of CA-AKI in the high-risk group of CA-AKI (ACS, AMI, and STEMI). Future research is still needed to clarify the relationship between HT and diabetes in more disease states (diabetes, chronic kidney disease, and heart failure).

Conclusion

In our meta-analysis, we found that HT is an independent risk factor for CA-AKI. In clinical practice, we should pay more attention to patients with HT and take active preventive measures.

Statement of Ethics

This meta-analysis was approved by the Ethics Committee of Guangdong Provincial People’s Hospital. The work was conducted in accordance with the Declaration of Helsinki.

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

The study is supported by the National Natural Science Foundation of China (Grant Nos. 81670339 and 81970311), the Beijing Lisheng Cardiovascular Pilot Foundation (Grant No. LHJJ201612127), and the Science and Technology Planning Project of Guangdong Province (Grant No. 2014B070706010), the Science and Technology Planning Project of Guangzhou (Grant No. 201704020124), Guangdong Provincial Fund for Clinical Medications (2019ZH01), high-level talent team-building project (Y012018085), and Dengfeng Project in Guangdong Province (DFJH201919 and DFJH2020026).

Author Contributions

Conception and design of the meta-analysis: J.C., J.Y., and Y.L. Performance of the meta-analysis: Z.L., J.Y., and Y.L. Quality assessment of the meta-analysis: Z.L., Z.M., L.L., G.C., H.L., M.Y., B.W., and Y.Y. Analysis of study data: Z.L., Z.M., S.C., and JL. Writing of the paper: Z.L., Z.M., L.L., and G.C. All authors have read and approved the final version of the manuscript.

References

1. Deek H, Newton P, Sheerin N, Noureddine S, Davidson PM. Contrast media induced nephropathy: a literature review of the available evidence and recommendations for practice. *Aust Crit Care*. 2014;27(4):166–71.
2. Allen DW, Ma B, Leung KC, Graham MM, Pannu N, Traboulsi M, et al. Risk prediction models for contrast-induced acute kidney injury accompanying cardiac catheterization: systematic review and meta-analysis. *Can J Cardiol*. 2017;33(6):724–36.
3. Mehran R, Dangas GD, Weisbord SD. Contrast-associated acute kidney injury. *N Engl J Med*. 2019;380(22):2146–55.
4. Watabe H, Sato A, Hoshi T, Takeyasu N, Abe D, Akiyama D, et al. Association of contrast-induced acute kidney injury with long-term cardiovascular events in acute coronary syndrome patients with chronic kidney disease undergoing emergent percutaneous coronary intervention. *Int J Cardiol*. 2014;174(1):57–63.
5. Yang Y, George KC, Luo R, Cheng Y, Shang W, Ge S, et al. Contrast-induced acute kidney injury and adverse clinical outcomes risk in acute coronary syndrome patients undergoing percutaneous coronary intervention: a meta-analysis. *BMC Nephrol*. 2018;19(1):374.
6. Chou RH, Huang PH, Hsu CY, Leu HB, Huang SS, Huang CC, et al. CHADS2 score predicts risk of contrast-induced nephropathy in stable coronary artery disease patients undergoing percutaneous coronary interventions. *J Formos Med Assoc*. 2016;115(7):501–9.
7. Brown JR, MacKenzie TA, Maddox TM, Fly J, Tsai TT, Plomondon ME, et al. Acute kidney injury risk prediction in patients undergoing coronary angiography in a national veterans health administration cohort with external validation. *J Am Heart Assoc*. 2015;4(12):e002136.
A Meta-Analysis of Contrast-Associated Acute Kidney Injury and Hypertension

8 Inohara T, Kohsaka S, Abe T, Miyata H, Numasawa Y, Ueda I, et al. Development and validation of a pre-percutaneous coronary intervention risk model of contrast-induced acute kidney injury with an integer scoring system. Am J Cardiol. 2015;115(12):1636–42.

9 Gao YM, Li DL, Cheng H, Chen YP. Derivation and validation of a risk score for contrast-induced nephropathy after cardiac catheterization in Chinese patients. Clin Exp Nephrol. 2014;18(6):892–8.

10 Wang X, Li HN, Bei WJ, Guo XS, Chen SQ, Islam SMS, et al. Association of left ventricular ejection fraction with contrast-induced nephropathy and mortality following coronary angiography or intervention in patients with heart failure. Ther Clin Risk Manag. 2017;13:887–95.

11 Sun XP, Li J, Zhu WW, Li DB, Chen H, Li HW, et al. Platelet to lymphocyte ratio predicts contrast-induced nephropathy in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Angiology. 2018;69(1):71–8.

12 Barbieri L, Verdoia M, Nardin M, Marino P, Suryapranata H, De Luca G. Gender difference in the risk of contrast-induced nephropathy in patients undergoing coronary angiography or percutaneous coronary intervention. Angiology. 2017;68(6):542–6.

13 Chong E, Poh KK, Liang S, Soon CY, Tan HC. Comparison of risks and clinical predictors of contrast-induced nephropathy in patients undergoing emergency versus nonemergency percutaneous coronary interventions. J Interv Cardiol. 2010;23(5):451–9.

14 Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analyses of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.

15 Kaya A, Karataş A, Kaya Y, Düüroglu H, Dereli S, Bayramoğlu A. A new and simple risk predictor of contrast-induced nephropathy in patients undergoing primary percutaneous coronary intervention: TIMI risk index. Cardiol Res Pract. 2018;2018:5908215.

16 Amirii A, Ghanavati R, Riahi Beni H, Sezavar SH, Sheykhtavan M, Arab M. Metabolic Syndrome and the iodine-dose/creatinine clearance ratio as determinants of contrast-induced acute kidney injury. Cardiorenal Med. 2018;8(3):217–27.

17 Kurtul A, Yarlıoğlu M, Duran M, Murat SN. Association of neutrophil-to-lymphocyte ratio with contrast-induced nephropathy in patients with Non-ST-elevation acute coronary syndrome treated with percutaneous coronary intervention. Heart Lung Circ. 2016;25(7):683–90.

18 Tang C, Hou J, Yan G, Qiao Y, Wang D, Zhu B, et al. Effects of serum cytomegoc on contrast-induced nephropathy in patients with ST-elevation myocardial infarction undergoing percutaneous coronary intervention. Biomed Res Int. 2019;2019:9357203.

19 Kocaç Y, Yıldız A, Abacı O, Karaca OS, Firdın N, Dalığe T, et al. Platelet-to-lymphocyte ratio predicts contrast-induced nephropathy in patients with Non-ST-segment elevation acute coronary syndrome. Angiology. 2015;66(10):964–8.

20 Zalher D, Rozenfeld KL, Stein M, Milwidsky A, Bélinger S, Banai S, et al. C-reactive protein velocity and the risk of acute kidney injury among ST elevation myocardial infarction patients undergoing primary percutaneous intervention. Nephrol. 2019;32(3):437–43.

21 Souza DF, Reis SS, Boltsel PM, Ferreira-Filho SR. Relative and absolute changes in urinary neutrophil gelatinase-associated lipocalin and correlation with small increases in serum creatinine levels after coronary angiography: an observational study. Nepron. 2015;129(2):84–90.

22 Nikolsky E, Mehran R, Lasic Z, Mintz GS, Lansky AJ, Yeh VJ, et al. Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions. Kidney Int. 2005;67(7):706–13.

23 Ciccek G, Yıldırım E. CHA2DS2-VASc score predicts contrast-induced nephropathy in patients with Non-ST-segment elevation myocardial infarction, who have undergone primary percutaneous coronary intervention. Kardiol Pol. 2018;76(1):91–8.

24 Dangas G, Iakovou I, Nikolsky E, Aymong ED, Mintz GS, Kipshidze NN, et al. Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am J Cardiol. 2005;95(13):1:13–9.

25 Ando G, Morabito G, de Gregorio C, Trio O, Saporito F, Oroto G. Age, glomerular filtration rate, ejection fraction, and the AGEF score predict contrast-induced nephropathy in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Catheter Cardiovasc Interv. 2013;82(6):878–85.

26 Ucar H, Gür M, Yıldırım A, Böreçtı A, Gözuçkaya MY, Seker T, et al. Increased aortic stiffness predicts contrast-induced nephropathy in patients with stable coronary artery disease undergoing percutaneous coronary intervention. Angiology. 2014;65(9):806–11.

27 Noughb F, Ghotbi F, Soltani M, Nejafí F, Falahzadeh H, Fazel H, et al. Incidence and main determinants of contrast-induced nephropathy following coronary angiography or subsequent balloon angioplasty. Cardiorenal Med. 2013;3(2):128–35.

28 Celik IE, Kurtul A, Duran M, Yarıoğlu M, Elik D, Kilic A, et al. Elevated serum fibrinogen levels and risk of contrast-induced acute kidney injury in patients undergoing a percutaneous coronary intervention for the treatment of acute coronary syndrome. Coron Artery Dis. 2016;27(1):13–8.

29 W1, Xu YG, Shin DH, Kim JS, Kim BK, Choi D, et al. Prediction of contrast-induced nephropathy with persistent renal dysfunction and adverse long-term outcomes in patients with acute myocardial infarction using the mehran risk score. Clin Cardiol. 2013;36(1):46–53.

30 Kato K, Sato N, Yamamoto T, Iwasaki YK, Tanaka K, Mizio N, Kishkawa Y, et al. Pericoronary coronary intervention causes increase of serum cystatin C concentration even in the patients with a low risk of contrast-induced nephropathy. Cardiovasc Inter Ther. 2012;27(3):168–73.

31 Sun L, Zhou X, Jiang J, Zang X, Chen X, Li H, et al. Growth differentiation factor-15 levels and the risk of contrast induced acute kidney injury in acute myocardial infarction patients treated invasively: a propensity-score match analysis. PLoS One. 2018;13(3):e0191452.

32 Taksman A, Mehta RL. Contrast-induced acute kidney injury: diagnosis and management. Am J Med. 2013;126(5):744–51.

33 Tóthbáthi E, Kallmez DE, Fleming CJ, McDonald RJ, Mckusick MA, Bjarnason I, et al. Predictors and outcomes of postcontrast acute kidney injury after endovascular renal artery intervention. J Vasc Interv Radiol. 2017;28(12):687–92.

34 Kanci V, Kompara G, Šuran D, Tapajner A, Naji FH, Sinkovic A. Acute kidney injury in patients with myocardial infarction undergoing percutaneous coronary intervention using radial versus femoral access. BMC Nephrol. 2019;20(1):28.
Hu Y, Li Z, Chen J, Shen C, Song Y, Zhong Q. Risk factors for acute kidney injury in patients undergoing same admission coronary angiography and valve replacement. J Card Surg. 2013;28(6):627–31.

Chen H, Yu X, Ma L. Risk factors of contrast-induced nephropathy in patients with STEMI and pump failure undergoing percutaneous coronary intervention. Exp Ther Med. 2021; 21(2):140.

Qin Y, Tang H, Yan G, Wang D, Qiao Y, Luo E, et al. A high triglyceride-glucose index is associated with contrast-induced acute kidney injury in Chinese patients with type 2 diabetes mellitus. Front Endocrinol. 2020;11:522883.

Prasad A, Rosenthal NA, Kartashov A, Knish K, Dreyfus J. Contemporary trend of acute kidney injury incidence and incremental costs among US patients undergoing percutaneous coronary procedures. Catheter Cardiovasc Interv. 2020;96(6):1184–97.

Zuo P, Li Y, Zuo Z, Wang X, Ma G. Glycemic variability as predictor of contrast-induced nephropathy in diabetic patients with acute myocardial infarction undergoing percutaneous coronary intervention. Ann Transl Med. 2020;8(22):1505.

Wang C, Li G, Liang X, Qin C, Luo Q, Song R, et al. Predictive value of fibrinogen-to-albumin ratio for post-contrast acute kidney injury in patients undergoing elective percutaneous coronary intervention. Med Sci Monit. 2020;26:e924498.

Yoo J, Hong JH, Lee SJ, Kim YW, Hong JM, Kim CH, et al. Acute kidney injury after endovascular treatment in patients with acute ischemic stroke. J Clin Med. 2020;9(3):1471.