SCATTERING THEORY IN A WEIGHTED L^2 SPACE FOR A CLASS OF THE DEFOCUSING INHOMOGENEOUS NONLINEAR SCHröDINGER EQUATION

VAN DUONG DINH

Abstract. In this paper, we consider the inhomogeneous nonlinear Schrödinger equation (INLS), namely

$$i\partial_t u + \Delta u + \mu |x|^{-b} |u|^{\alpha} u = 0, \quad u(0) = u_0 \in H^1,$$

with $b, \alpha > 0$. We firstly recall a recent result on the local well-posedness for the (INLS) of Guzman [15], and improve this result in the two and three spatial dimensional cases. We next study the decay of global solutions for the defocusing (INLS), i.e. $\mu = -1$ when $0 < \alpha < \alpha^*$ where $\alpha^* = \frac{4 - 2b}{d}$ for $d \geq 3$, and $\alpha^* = \infty$ for $d = 1, 2$ by assuming that the initial data belongs to the weighted L^2 space $\Sigma = \{u \in H^1(\mathbb{R}^d) : |x| u \in L^2(\mathbb{R}^d)\}$. We finally combine the local theory and the decaying property to show the scattering in Σ for the defocusing (INLS) in the case $\alpha^* < \alpha < \alpha^*$, where $\alpha^* = \frac{4 - 2b}{d}$.

1. Introduction

Consider the inhomogeneous nonlinear Schrödinger equation, namely

$$\begin{cases}
i\partial_t u + \Delta u + \mu |x|^{-b} |u|^{\alpha} u = 0, \\
u(0) = u_0,
\end{cases} \quad \text{(INLS)}$$

where $u : \mathbb{R} \times \mathbb{R}^d \to \mathbb{C}, u_0 : \mathbb{R}^d \to \mathbb{C}, \mu = \pm 1$ and $\alpha, b > 0$. The terms $\mu = 1$ and $\mu = -1$ correspond to the focusing and defocusing cases respectively. The case $b = 0$ is the well-known nonlinear Schrödinger equation which has been studied extensively over the last three decades. The inhomogeneous nonlinear Schrödinger equation arises naturally in nonlinear optics for the propagation of laser beams, and it is of a form

$$i\partial_t u + \Delta u + K(x)|u|^{\alpha} u = 0. \quad \text{(1.1)}$$

The (INLS) is a particular case of (1.1) with $K(x) = |x|^{-b}$. The equation (1.1) has been attracted a lot of interest in a past several years. Bergé in [1] studied formally the stability condition for soliton solutions of (1.1). Towers-Malomed in [21] observed by means of variational approximation and direct simulations that a certain type of time-dependent nonlinear medium gives rise to completely stable beams. Merle in [17] and Raphaël-Szeftel in [18] studied the problem of existence and nonexistence of minimal mass blowup solutions for (1.1) with $k_1 < K(x) < k_2$ and $k_1, k_2 > 0$. Fibich-Wang in [10] investigated the stability of solitary waves for (1.1) with $K(x) := K(\epsilon|x|)$ where $\epsilon > 0$ is small and $K \in C^4(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$. The case $K(x) = |x|^b$ with $b > 0$ is studied by many authors (see e.g. [4, 5, 16, 25] and references therein).

2010 Mathematics Subject Classification. 35P25, 35Q55.

Key words and phrases. Inhomogeneous nonlinear Schrödinger equation; Local well-posedness; Decay solutions; Virial identity; Scattering; Weighted L^2 space.
In order to review the known results for the (INLS), we recall some facts for this equation. We firstly note that the (INLS) is invariant under the scaling,

$$u_\lambda(t, x) := \lambda^{\frac{2-b}{2}} u(\lambda^2 t, \lambda x), \quad \lambda > 0.$$

An easy computation shows

$$\|u_\lambda(0)\|_{\dot{H}^s(\mathbb{R}^d)} = \lambda^{\gamma + \frac{2-b}{2} - \frac{d}{2}} \|u_0\|_{\dot{H}^s(\mathbb{R}^d)}.$$

Thus, the critical Sobolev exponent is given by

$$\gamma_c := \frac{d}{2} - \frac{2}{\alpha}.$$

Moreover, the (INLS) has the following conserved quantities:

$$M(u(t)) := \|u(t)\|_{L^2(\mathbb{R}^d)}^2 = M(u_0), \quad (1.3)$$

$$E(u(t)) := \frac{1}{2} \|\nabla u(t)\|_{L^2(\mathbb{R}^d)}^2 - \mu G(t) = E(u_0), \quad (1.4)$$

where

$$G(t) := \frac{1}{\alpha + 2} \int |x|^{-b} |u(t, x)|^{\alpha + 2} dx. \quad (1.5)$$

The well-posedness for the (INLS) was firstly studied by Genoud-Stuart in [11, Appendix] (see also [13]). The proof is based on the abstract theory developed by Cazenave [2] which does not use Strichartz estimates. Precisely, the authors showed that the focusing (INLS) with $0 < b < \min\{2, d\}$ is well posed in $H^1(\mathbb{R}^d)$:

- locally if $0 < \alpha < \alpha^*$,
- globally for any initial data if $0 < \alpha < \alpha_*$,
- globally for small initial data if $\alpha_* \leq \alpha < \alpha^*$.

Here α_* and α^* are defined by

$$\alpha_* := \frac{4 - 2b}{d}, \quad \alpha^* := \begin{cases} \frac{4 - 2b}{d - 2} & \text{if } d \geq 3, \\ \infty & \text{if } d = 1, 2. \end{cases} \quad (1.6)$$

In the case $\alpha = \alpha_*$ (L^2-critical), Genoud in [12] showed that the focusing (INLS) with $0 < b < \min\{2, d\}$ is globally well-posed in $H^1(\mathbb{R}^d)$ assuming $u_0 \in H^1(\mathbb{R}^d)$ and

$$\|u_0\|_{L^2(\mathbb{R}^d)} < \|Q\|_{L^2(\mathbb{R}^d)},$$

where Q is the unique nonnegative, radially symmetric, decreasing solution of the ground state equation

$$\Delta Q - Q + |x|^{-b} |Q|^{\frac{4-2b}{d-2}} Q = 0. \quad (1.7)$$

Also, Combet-Genoud in [6] established the classification of minimal mass blow-up solutions for the focusing L^2-critical (INLS).

In the case $\alpha_* < \alpha < \alpha^*$, Farah in [7] showed that the focusing (INLS) with $0 < b < \min\{2, d\}$ is globally well-posed in $H^1(\mathbb{R}^d)$ assuming $u_0 \in H^1(\mathbb{R}^d)$ and

$$E(u_0)^{\gamma_c} M(u_0)^{1 - \gamma_c} < E(Q)^{\gamma_c} M(Q)^{1 - \gamma_c}, \quad (1.8)$$

$$\|\nabla u_0\|_{L^2(\mathbb{R}^d)}^{\gamma_c} \|u_0\|_{L^2(\mathbb{R}^d)}^{1 - \gamma_c} < \|\nabla Q\|_{L^2(\mathbb{R}^d)}^{\gamma_c} \|Q\|_{L^2(\mathbb{R}^d)}^{1 - \gamma_c}, \quad (1.9)$$

where Q is the unique nonnegative, radially symmetric, decreasing solution of the ground state equation

$$\Delta Q - Q + |x|^{-b} |Q|^\alpha Q = 0. \quad (1.10)$$
Note that the existence and uniqueness of nonnegative, radially symmetric, decreasing solutions to (1.7) and (1.10) were proved by Toland [23] and Yanagida [24] (see also Genoud-Stuart [11]). Their results hold under the assumption $0 < b < \min\{2,d\}$ and $0 < \alpha < \alpha^*$. Farah in [7] also proved that if $u_0 \in \Sigma$ satisfies (1.8) and
\[
\|\nabla u_0\|_{L^2(\mathbb{R}^d)}^{\gamma_o} \|u_0\|_{L^2(\mathbb{R}^d)}^{1-\gamma_o} > \|\nabla Q\|_{L^2(\mathbb{R}^d)}^{\gamma_o} \|Q\|_{L^2(\mathbb{R}^d)}^{1-\gamma_o},
\]
then the blow-up in $H^1(\mathbb{R}^d)$ must occur. Afterwards, Farah-Guzman in [8, 9] proved that the above global solution is scattering under the radial condition of the initial data.

Recently, Guzman in [15] used Strichartz estimates and the contraction mapping argument to establish the well-posedness for the (INLS) in Sobolev space. Precisely, he showed that:

- if $0 < \alpha < \alpha_*$ and $0 < b < \min\{2,d\}$, then the (INLS) is locally well-posed in $L^2(\mathbb{R}^d)$.
- if $0 < \alpha < \widetilde{\alpha}$, $0 < b < \bar{b}$ and $\max\{0,\gamma_c\} < \gamma \leq \min\{\frac{d}{2},1\}$ where
 \[
 \widetilde{\alpha} := \begin{cases} \frac{d-2b}{d-2\gamma} & \text{if } \gamma < \frac{d}{2}, \\ \infty & \text{if } \gamma = \frac{d}{2}, \end{cases} \quad \text{and} \quad \bar{b} := \begin{cases} \frac{d}{2} & \text{if } d = 1,2,3, \\ 2 & \text{if } d \geq 4, \end{cases}
 \]
 then the (INLS) is locally well-posed in $H^\gamma(\mathbb{R}^d)$.
- if $\alpha_* < \alpha < \widetilde{\alpha}$, $0 < b < \bar{b}$ and $\gamma_c < \gamma \leq \min\{\frac{d}{2},1\}$, then the (INLS) is globally well-posed in $H^\gamma(\mathbb{R}^d)$ for small initial data.

In particular, he proved the following local well-posedness in the energy space for the (INLS).

Theorem 1.1 ([15]). *Let $d \geq 2, 0 < b < \bar{b}$ and $0 < \alpha < \alpha^*$, where
 \[
 \bar{b} := \begin{cases} \frac{d}{2} & \text{if } d = 2,3, \\ 2 & \text{if } d \geq 4. \end{cases}
 \]
 Then the (INLS) is locally well-posed in $H^1(\mathbb{R}^d)$. Moreover, the solutions satisfy $u \in L^p_{loc}(\mathbb{R}, L^q(\mathbb{R}^d))$ for any Schrödinger admissible pair (p,q).***

Note that the result of Guzman [15] about the local well-posedness of (INLS) in $H^1(\mathbb{R}^d)$ is weaker than the one of Genoud-Stuart [11]. Precisely, it does not treat the case $d = 1$, and there is a restriction on the validity of b when $d = 2$ or 3. Although the result showed by Genoud-Stuart is strong, but one does not know whether the local solutions belong to $L^p_{loc}(\mathbb{R}, L^q(\mathbb{R}^d))$ for any Schrödinger admissible pair (p,q). This property plays an important role in proving the scattering for the defocusing (INLS). Our first result is the following local well-posedness in $H^1(\mathbb{R}^d)$ which improves Guzman’s result on the range of b in the two and three spatial dimensions.

Theorem 1.2. *Let
 \[
 d \geq 4, \quad 0 < b < 2, \quad 0 < \alpha < \alpha^*,
 \]
or
 \[
 d = 3, \quad 0 < b < 1, \quad 0 < \alpha < \alpha^*,
 \]
or
 \[
 d = 3, \quad 1 \leq b < \frac{3}{2}, \quad 0 < \alpha < \frac{6-4b}{2b-1},
 \]
or
 \[
 d = 2, \quad 0 < b < 1, \quad 0 < \alpha < \alpha^*.
 \]
Then the (INLS) is locally well-posed in $H^1(\mathbb{R}^d)$. Moreover, the solutions satisfy $u \in L^p_{loc}(\mathbb{R}, L^q(\mathbb{R}^d))$ for any Schrödinger admissible pair (p,q).***
We will see in Section 3 that one can not expect a similar result as in Theorem 1.1 and Theorem 1.2 holds in the one dimensional case by using Strichartz estimates. Thus the local well-posedness in the energy space for the (INLS) of Genoud-Stuart is the best known result.

The local well-posedness \(^1\) of Genoud-Stuart in \([11, 13]\) combines with the conservations of mass and energy immediately give the global well-posedness in \(H^1(\mathbb{R}^d)\) for the defocusing (INLS), i.e. \(\mu = -1\). To our knowledge, there are few results concerning long-time dynamics of the defocusing (INLS). Let us introduce the following weighted space

\[
\Sigma := H^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d, |x|^2dx) = \{u \in H^1(\mathbb{R}^d) : |x|u \in L^2(\mathbb{R}^d)\},
\]

equipped with the norm

\[
\|u\|_\Sigma := \|u\|_{H^1(\mathbb{R}^d)} + \|xu\|_{L^2(\mathbb{R}^d)},
\]

Our next result concerns with the decay of global solutions to the defocusing (INLS) by assuming the initial data in \(\Sigma\).

Theorem 1.3. Let \(0 < b < \min\{2, d\}\). Let \(u_0 \in \Sigma\) and \(u \in C(\mathbb{R}, H^1(\mathbb{R}^d))\) be the unique global solution to the defocusing (INLS). Then, the following properties hold:

1. If \(\alpha \in [\alpha_*, \alpha^*)\), then for every

\[
\begin{align*}
2 \leq q & \leq \frac{2d}{d-2} & \text{if } d \geq 3, \\
2 \leq q & < \infty & \text{if } d = 2, \\
2 \leq q & \leq \infty & \text{if } d = 1,
\end{align*}
\]

there exists \(C > 0\) such that

\[
\|u(t)\|_{L^q(\mathbb{R}^d)} \leq C|t|^{-d(\frac{1}{2} - \frac{1}{q})},
\]

for all \(t \in \mathbb{R}\setminus\{0\}\).

2. If \(\alpha \in (0, \alpha_*)\), then for every \(q\) given in (1.13), there exists \(C > 0\) such that

\[
\|u(t)\|_{L^q(\mathbb{R}^d)} \leq C|t|^{-\frac{d(2b + d\alpha)}{4} \left(\frac{1}{4} - \frac{1}{q}\right)},
\]

for all \(t \in \mathbb{R}\setminus\{0\}\).

This result extends the well-known result of the classical (i.e. \(b = 0\)) nonlinear Schrödinger equation (see e.g. [2, Theorem 7.3.1] and references cited therein).

We then use this decay and Strichartz estimates to show the scattering for global solutions to the defocusing (INLS). Due to the singularity of \(|x|^{-b}\), the scattering result does not cover the same range of exponents \(b\) and \(\alpha\) as in Theorem 1.2. Precisely, we have the following:

Theorem 1.4. Let

\[
d \geq 4, \quad 0 < b < 2, \quad \alpha_* \leq \alpha < \alpha^*,
\]

or

\[
d = 3, \quad 0 < b < 1, \quad \frac{5 - 2b}{3} < \alpha < 3 - 2b,
\]

or

\[
d = 2, \quad 0 < b < 1, \quad \alpha_* \leq \alpha < \alpha^*.
\]

Let \(u_0 \in \Sigma\) and \(u\) be the unique global solution to the defocusing (INLS). Then there exists \(u^+ \in \Sigma\) such that

\[
\lim_{t \to \pm\infty} \|u(t) - e^{it\Delta}u^+\|_{\Sigma} = 0.
\]

\(^1\)The local well-posedness in \(H^1(\mathbb{R}^d)\) of Genoud-Stuart is still valid for the defocusing case.
In this theorem, we only consider the case $\alpha \in [\alpha_*, \alpha^*)$. A similar result in the case $\alpha \in (0, \alpha^*)$ is possible, but it is complicated due to the rate of decays in (1.15). We will give some comments about this case in the end of Section 6.

This paper is organized as follows. In the next section, we introduce some notation and recall Strichartz estimates for the linear Schrödinger equation. In Section 3, we prove the local well-posedness given in Theorem 1.2. In Section 4, we derive the virial identity and show the pseudo-conformal conservation law related to the defocusing (INLS). We will give the proof of Theorem 1.3 in Section 5. Section 6 is devoted to the scattering result of Theorem 1.4.

2. Preliminaries

In the sequel, the notation $A \lesssim B$ denotes an estimate of the form $A \leq CB$ for some constant $C > 0$. The constant $C > 0$ may change from line to line.

2.1. Nonlinearity. Let $F(x, z) := |x|^{-b}f(z)$ with $b > 0$ and $f(z) := |z|^{\alpha}z$. The complex derivatives of f are

$$\partial_{\bar{z}} f(z) = \frac{\alpha + 2}{2}|z|^{\alpha}, \quad \partial_{\bar{w}} f(z) = \frac{\alpha}{2}|z|^{\alpha - 2}z^2.$$

We have for $z, w \in \mathbb{C}$,

$$f(z) - f(w) = \int_0^1 \left(\partial_{\bar{z}} f(w + \theta(z - w))(z - w) + \partial_{\bar{w}} f(w + \theta(z - w))\bar{z} - \bar{w} \right)d\theta.$$

Thus,

$$|F(x, z) - F(x, w)| \lesssim |x|^{-b}|(|z|^{\alpha} + |w|^{\alpha})|z - w|. \quad (2.1)$$

To deal with the singularity $|x|^{-b}$, we have the following remark.

Remark 2.1 ([15]). Let $B = B(0, 1) = \{x \in \mathbb{R}^d : |x| < 1\}$ and $B^c = \mathbb{R}^d \backslash B$. Then

$$|||x|^{-b}\|_{L^2_{\gamma}(B)} < \infty, \quad \text{if} \quad \frac{d}{\gamma} > b,$$

and

$$|||x|^{-b}\|_{L^2_{\gamma}(B^c)} < \infty, \quad \text{if} \quad \frac{d}{\gamma} < b.$$

2.2. Strichartz estimates. Let $I \subset \mathbb{R}$ and $p, q \in [1, \infty]$. We define the mixed norm

$$\|u\|_{L^p_{\gamma}(I,L^q)} := \left(\int_I \left(\int_{\mathbb{R}^d} |u(t,x)|^qdx \right)^{\frac{1}{q}} \right)^{\frac{1}{p}}$$

with a usual modification when either p or q are infinity. When there is no risk of confusion, we may write $L^p_{\gamma}(I,L^q)$ instead of $L^p_{\gamma}(I,L^q)$. We also use $L^p_{t,x}$ when $p = q$.

Definition 2.2. A pair (p, q) is said to be Schrödinger admissible, for short $(p, q) \in S$, if

$$(p, q) \in [2, \infty]^2, \quad (p, q, d) \neq (2, \infty, 2), \quad \frac{2}{p} + \frac{d}{q} = \frac{d}{2}.$$

We denote for any spacetime slab $I \times \mathbb{R}^d$,

$$\|u\|_{S(L^2, I)} := \sup_{(p, q) \in S} ||u||_{L^p(I,L^q)}, \quad \|v\|_{S(L^2, I)} := \inf_{(p, q) \in S} \|v\|_{L^p(I,L^q)} \quad (2.2)$$

We next recall well-known Strichartz estimates for the linear Schrödinger equation. We refer the reader to [2, 19] for more details.
Proposition 2.3. Let \(u \) be a solution to the linear Schrödinger equation, namely
\[
 u(t) = e^{it\Delta}u_0 + \int_0^t e^{i(t-s)\Delta}F(s) ds,
\]
for some data \(u_0, F \). Then,
\[
 \|u\|_{S(L^2, \mathbb{R})} \lesssim \|u_0\|_{L^2_x} + \|F\|_{S'(L^2, \mathbb{R})}. \tag{2.3}
\]

3. Local existence

In this section, we give the proof of the local well-posedness given in Theorem 1.2. To prove this result, we need the following lemmas which give some estimates of the nonlinearity.

Lemma 3.1 ([15]). Let \(d \geq 4 \) and \(0 < b < 2 \) or \(d = 3 \) and \(0 < b < 1 \). Let \(0 < \alpha < \alpha^* \) and \(I = [0, T] \). Then, there exist \(\theta_1, \theta_2 > 0 \) such that
\[
 \| \| x \|^{-b} |u|^\alpha v \|_{S'(L^2)} \lesssim (T^{\theta_1} + T^{\theta_2}) \| \nabla u \|_{S(L^2)} \| \nabla S \|_{S(L^2)} \tag{3.1}
\]
and
\[
 \| \nabla (\| x \|^{-b} |u|^\alpha u) \|_{S'(L^2)} \lesssim (T^{\theta_1} + T^{\theta_2}) \| \nabla u \|_{S(L^2)}^{\alpha + 1}. \tag{3.2}
\]

The proof of this result is given in [15, Lemma 3.4]. For reader’s convenience and later use, we give some details.

Proof of Lemma 3.1. We bound
\[
 \| \| x \|^{-b} |u|^\alpha v \|_{S'(L^2)} \leq \| \| x \|^{-b} |u|^\alpha v \|_{S'(L^2)} + \| \| x \|^{-b} |u|^\alpha v \|_{S'(L^2)} \|_{S'(L^2)} \|
\]
and
\[
 \| \nabla (\| x \|^{-b} |u|^\alpha u) \|_{S'(L^2)} \leq \| \nabla (\| x \|^{-b} |u|^\alpha u) \|_{S'(L^2)} \|_{S'(L^2)} \|
\]
provided that \((p_1, q_1) \in S\) and
\[
 \frac{1}{q_1'} = \frac{1}{\gamma_1} + \frac{1}{\gamma_1}, \quad \frac{d}{\gamma_1} > b, \quad \frac{1}{\gamma_1} = \frac{\alpha}{n_1} + \frac{1}{q_1}, \quad \frac{1}{p_1'} = \frac{\alpha}{m_1} + \frac{1}{p_1}, \quad \theta_1 = \frac{\alpha}{m_1} - \frac{\alpha}{p_1},
\]
and
\[
 q_1 < d, \quad \frac{1}{n_1} = \frac{1}{q_1} - \frac{1}{d}.
\]

Here the last condition ensures the Sobolev embedding \(\bar{W}^{1, q_1}(\mathbb{R}^d) \subset L^{n_1}(\mathbb{R}^d) \). We see that condition \(\frac{d}{\gamma_1} > b \) implies
\[
 \frac{d}{\gamma_1} = d - \frac{d(\alpha + 2)}{q_1} + \alpha > b \quad \text{or} \quad q_1 > \frac{d(\alpha + 2)}{d + \alpha - b}. \tag{3.3}
\]

Let us choose
\[
 q_1 = \frac{d(\alpha + 2)}{d + \alpha - b} + \epsilon,
\]
for some \(0 < \epsilon \ll 1 \) to be chosen later. By taking \(\epsilon > 0 \) small enough, we see that \(q_1 < d \) implies \(d > b + 2 \) which is true since we are considering \(d \geq 4, 0 < b < 2 \) or \(d = 3, 0 < b < 1 \). On the other hand, using \(0 < \alpha < \alpha^* \) and choosing \(\epsilon > 0 \) sufficiently small, we see that \(2 < q_1 < \frac{2d}{d-b} \). It remains to check \(\theta_1 > 0 \). This condition is equivalent to
\[
 \frac{\alpha}{m_1} - \frac{\alpha}{p_1} = 1 - \frac{\alpha + 2}{p_1} > 0 \quad \text{or} \quad p_1 > \alpha + 2.
\]
Let us choose the following Schrödinger admissible pair
\[
\frac{d}{q_1} = \frac{2}{p_1} < \frac{2}{\alpha + 2}.
\]

A direct computation shows
\[
d(\alpha + 2)[4 - 2b - (d - 2)\alpha] + c(d + \alpha - b)(4 - d(\alpha + 2)) > 0
\]
Since \(\alpha \in (0, \alpha^*)\), we see that \(4 - 2b - (d - 2)\alpha > 0\). Thus, by taking \(\epsilon > 0\) sufficiently small, the above inequality holds true. Therefore, we have for a sufficiently small value of \(\epsilon\),
\[
A_1 \lesssim T^{\theta_1}\|\nabla u\|_{S(L^2, I)}^\alpha\|u\|_{S(L^2, I)}.
\]

We next bound
\[
B_1 \leq \|x|^{-b}\nabla(|u|^\alpha u)\|_{S'(L^2(B), I)} + \|x|^{-b-1}|u|^\alpha u\|_{S'(L^2(B), I)} =: B_{11} + B_{12}.
\]
The term \(B_{11}\) is treated similarly as for \(A_1\) by using the fractional chain rule. We obtain
\[
B_{11} \lesssim T^{\theta_1}\|\nabla u\|_{S(L^2, I)}^{\alpha+1},
\]
provided \(\epsilon > 0\) is taken small enough. Using Remark 2.1, we estimate
\[
B_{12} \lesssim \|x|^{-b-1}|u|\|_{L^1_1(I, L^1(B))} \lesssim \|u\|_{L^1_1(I, L^1(B))} \lesssim T^{\theta_1}\|\nabla u\|_{L^1_1(I, L^1(B))}^{\alpha+1},
\]
provided that \((p_1, q_1) \in S\) and
\[
\frac{1}{q_1} = \frac{1}{\gamma_1} + \frac{d}{\gamma_1} > b + 1, \quad \frac{1}{v_1} = \frac{\alpha + 1}{n_1}, \quad \frac{1}{p_1'} = \frac{\alpha}{m_1} + \frac{1}{p_1}, \quad \theta_1 = \frac{\alpha}{m_1} - \frac{\alpha}{p_1},
\]
and
\[
q_1 < d, \quad \frac{1}{n_1} = \frac{1}{q_1} - \frac{1}{d}.
\]
We see that
\[
\frac{d}{\gamma_1} = d - \frac{d(\alpha + 2)}{q_1} + \alpha + 1 > b + 1 \quad \text{or} \quad q_1 > \frac{d(\alpha + 2)}{d + \alpha - b}.
\]
The last condition is similar to (3.3). Thus, by choosing \(q_1\) as above, we obtain for \(\epsilon > 0\) small enough,
\[
B_{12} \lesssim T^{\theta_1}\|\nabla u\|_{S(L^2, I)}^{\alpha+1}.
\]

On \(B^{\epsilon}_{12}\). Let us choose the following Schrödinger admissible pair
\[
p_2 = \frac{4(\alpha + 2)}{(d - 2)\alpha}, \quad q_2 = \frac{d(\alpha + 2)}{d + \alpha}.
\]
Let \(m_2, n_2\) be such that
\[
\frac{1}{q_2} = \frac{\alpha}{m_2} + \frac{1}{q_2}, \quad \frac{1}{p_2'} = \frac{\alpha}{m_2} + \frac{1}{p_2}.
\]
A direct computation shows
\[
\theta_2 := \frac{\alpha}{m_2} - \frac{\alpha}{p_2} = 1 - \frac{(d - 2)\alpha}{p_2} = 1 - \frac{(d - 2)\alpha}{4} > 0.
\]
Note that in our consideration, we always have \((d - 2)\alpha < 4\). Moreover, it is easy to check that
\[
\frac{1}{n_2} = \frac{1}{q_2} - \frac{1}{d}.
\]
It allows us to use the Sobolev embedding $W^{1,q_2}(\mathbb{R}^d) \subset L^{n_2}(\mathbb{R}^d)$. By Hölder inequality with (3.7),
\[
A_2 \leq \|x^{-b}|u|^αv\|_{L^{q_2}_x(I,\dot{L}^{n_2}_{n_2}'(B^c))} \lesssim \|x^{-b}\|_{L^\infty_y(B^c)}\|u|^αv\|_{L^{q_2}_x(I,\dot{L}^{n_2}_{n_2}'(B^c))} \lesssim \|u\|^αv\|_{L^{q_2}_x(I,\dot{L}^{n_2}_{n_2}'(B^c))} \lesssim T^{θ_2}\|\nabla u\|^αv\|_{L^{q_2}_x(I,\dot{L}^{n_2}_{n_2}'(B^c))}.
\]
We thus get
\[
A_2 \lesssim T^{θ_2}\|\nabla u\|^αv\|_{S(L^2,I)}\|v\|_{S(L^2,I)}.
\]
We now bound
\[
B_2 \leq \|x^{-b}\nabla (|u|^αu)\|_{S'(L^2(B^c),I)} + \|x^{-b-1}|u|^αu\|_{S'(L^2(B^c),I)} =: B_{21} + B_{22}.
\]
The term B_{21} is treated similarly by using the fractional chain rule, and we obtain
\[
B_{21} \lesssim T^{θ_2}\|\nabla u\|^αv\|_{S(L^2,I)}.
\]
Finally, we estimate
\[
B_{22} \leq \|x^{-b-1}|u|^αu\|_{L^{q_2}_x(I,\dot{L}^{n_2}_{n_2}'(B^c))} \lesssim \|x^{-b-1}\|_{L^{q_2}_x(B^c)}\|u\|^αv\|_{L^{q_2}_x(I,\dot{L}^{n_2}_{n_2}'(B^c))} \lesssim T^{θ_2}\|\nabla u\|^αv\|_{L^{q_2}_x(I,\dot{L}^{n_2}_{n_2}'(B^c))}.
\]
Note that $\frac{1}{q_2} = \frac{α + 1}{n_2} + \frac{1}{d}$. This shows that
\[
B_{22} \lesssim T^{θ_2}\|\nabla u\|^αv\|_{S(L^2,I)}.
\]
Combining (3.4), (3) and (3.5), (3.6), (3.8), (3), we complete the proof. \(\square\)

In the three dimensional case, we also have the following extension.

Lemma 3.2. Let $\mathbf{d} = 3$. Let $1 \leq b < \frac{3}{2}$ and $0 < α < \frac{6-4b}{2b-1}$ and $I = [0,T]$. Then there exists $θ_1, θ_2 > 0$ such that
\[
\begin{align*}
\|x^{-b}|u|^αv\|_{S'(L^2,I)} &\lesssim (T^{θ_1} + T^{θ_2})\|\nabla (|u|^αv)\|_{S'(L^2,I)} \|v\|_{S(L^2,I)}, \\
\|\nabla (|x^{-b}|u|^αu)\|_{S'(L^2,I)} &\lesssim (T^{θ_1} + T^{θ_2})\|\nabla (|u|^αu)\|_{S'(L^2,I)}^αv\|_{S(L^2,I)}.
\end{align*}
\]

Proof. We use the notations $A_1, A_2, B_{11}, B_{12}, B_{21}$ and B_{22} introduced in the proof of Lemma 3.1.

On B. By Hölder inequality and Remark 2.1,
\[
A_1 \leq \|x^{-b}|u|^αv\|_{L^{q_1}_t(I,\dot{L}^{n_1}_y(B))} \lesssim \|x^{-b}\|_{L^\infty_y(B)}\|u|^αv\|_{L^{q_1}_t(I,\dot{L}^{n_1}_y(B))} \lesssim \|u\|^αv\|_{L^{q_1}_t(I,\dot{L}^{n_1}_y(B))} \lesssim T^{θ_1}\|\nabla u\|^αv\|_{L^{q_1}_t(I,\dot{L}^{n_1}_y(B))}.
\]

provided that $(p_1,q_1) \in S$ and
\[
\frac{1}{q_1} = \frac{1}{γ_1} + \frac{3}{γ_1} > b, \quad \frac{1}{v_1} = \frac{α}{n_1} + \frac{1}{q_1}, \quad \frac{1}{p_1} = \frac{α}{m_1} + \frac{1}{p_1}, \quad θ_1 = \frac{γ_1 - α}{m_1 - p_1},
\]
and
\[
q_1 \geq 3, \quad n_1 \in (q_1,∞) \quad \text{or} \quad \frac{1}{n_1} = \frac{τ}{q_1}, \quad τ \in (0,1).
\]

Here the last condition ensures the Sobolev embedding $W^{1,q_1}(\mathbb{R}^3) \subset L^{n_1}(\mathbb{R}^3)$. We see that condition $\frac{α}{γ_1} > b$ implies
\[
\frac{3}{γ_1} = 3 - \frac{3(2 + ατ)}{q_1} > b \quad \text{or} \quad q_1 > \frac{3(2 + ατ)}{3 - b}.
\]
Let us choose
\[q_1 = \frac{3(2 + \alpha \tau)}{3 - b} + \epsilon, \]
for some \(0 < \epsilon \ll 1 \) to be chosen later. Since \(1 \leq b < 2, 0 < \alpha < 4 - 2b \) and \(0 < \tau < 1 \), it is obvious that \(q_1 > 3 \). Moreover, by taking \(\epsilon > 0 \) small enough, we see that \(q_1 < 6 \). In order to make \(\theta_1 > 0 \), we need
\[\theta_1 = \frac{\alpha}{m_1} - \frac{\alpha}{p_1} = 1 - \frac{\alpha + 2}{p_1} > 0 \quad \text{or} \quad \frac{2}{p_1} < \frac{2}{\alpha + 2}. \]
Since \((p_1, q_1) \) is Schrödinger admissible, it is equivalent to show
\[\frac{3}{2} - \frac{3}{q_1} < \frac{2}{\alpha + 2}. \]
It is then equivalent to
\[3 \left[8 - 4b - 2b\alpha - \alpha \tau(2 + 3\alpha) \right] - \epsilon(3 - b)(2 + 3\alpha) > 0. \]
Since \(0 < \epsilon \ll 1 \), it is enough to show \(f(\tau) := 8 - 4b - 2b\alpha - \alpha \tau(2 + 3\alpha) > 0 \). Note that \(f(0) > 0 \) provided \(0 < \alpha < \frac{4 - 2b}{b} \) and \(f(1) > 0 \) provided \(0 < \alpha < \frac{4 - 2b}{3} \). Thus, by choosing \(\tau \) close to 0, we see that \(f(\tau) > 0 \) for \(0 < \alpha < \frac{4 - 2b}{b} \). Therefore, we get
\[A_1 \lesssim T^{\theta_1} \| \langle \nabla \rangle u \|_{S(L^2, I)}^0 \| v \|_{S(L^2, I)}, \quad \text{provided } \epsilon, \tau > 0 \text{ are taken small enough and} \]
\[1 \leq b < 2, \quad 0 < \alpha < \frac{4 - 2b}{b}. \]
The term \(B_{11} \) is treated similarly as for \(A_1 \) by using the fractional chain rule. We obtain
\[B_{11} \lesssim T^{\theta_1} \| \langle \nabla \rangle u \|_{S(L^2, I)}^0 \| \nabla u \|_{S(L^2, I)}, \quad \text{provided } \epsilon, \tau > 0 \text{ is taken small enough and} \]
\[1 \leq b < 2, \quad 0 < \alpha < \frac{4 - 2b}{b}. \]
We next bound
\[B_{12} \leq \| x^{-b-1} |u|^\alpha u \|_{L_t^\theta(1, L_x^\gamma(B))} \lesssim \| x^{-b-1} \|_{L_t^\gamma(1, L_x^\gamma(B))} \| u \|_{L_t^\gamma(1, L_x^\gamma)} \]
\[\lesssim \| u \|_{L_t^{\theta_1}(1, L_x^{\gamma_1})} \| u \|_{L_t^{\theta_1}(1, L_x^{\gamma_1})} \]
\[\lesssim T^{\theta_1} \| \langle \nabla \rangle u \|_{L_t^{\theta_1}(1, L_x^{\gamma_1})}^{\alpha + 1}, \]
provided that \((p_1, q_1) \in S \) and
\[\frac{1}{q_1} = \frac{1}{\gamma_1} + \frac{1}{v_1}, \quad \frac{3}{\gamma_1} > b + 1, \quad \frac{1}{v_1} = \frac{\alpha + 1}{n_1}, \quad \frac{1}{p_1} = \frac{\alpha}{m_1} + \frac{1}{p_1}, \quad \theta_1 = \frac{\alpha}{m_1} - \frac{\alpha}{p_1}, \]
and
\[q_1 \geq 3, \quad n_1 \in (q_1, \infty) \quad \text{or} \quad \frac{1}{n_1} = \frac{\tau}{q_1}, \quad \tau \in (0, 1). \]
We see that
\[\frac{3}{\gamma_1} = 3 - \frac{3(1 + (\alpha + 1)\tau)}{q_1} > b + 1 \quad \text{or} \quad q_1 > \frac{3(1 + (\alpha + 1)\tau)}{2 - b}. \]
Let us choose
\[q_1 = \frac{3(1 + (\alpha + 1)\tau)}{2 - b} + \epsilon, \]
for some $0 < \epsilon \ll 1$ to be determined later. Since we are considering $1 \leq b < \frac{3}{2}$, by choosing τ closed to 0 and taking $\epsilon > 0$ small enough, we can check that $3 < q_1 < 6$. It remains to show $\theta_1 > 0$. As above, we need $\frac{2}{p_1} < \frac{2}{\alpha + 2}$, and it is equivalent to

$$\frac{3}{2} - \frac{3}{q_1} < \frac{2}{\alpha + 2}.$$

It is in turn equivalent to

$$3 \{6 - 4b + \alpha(1 - 2b) - (\alpha + 1)\tau(2 + 3\alpha)\} - \epsilon(2 - b)(2 + 3\alpha) > 0.$$

Since $0 < \epsilon \ll 1$, it is enough to show $g(\tau) := 6 - 4b + \alpha(1 - 2b) - (\alpha + 1)\tau(2 + 3\alpha) > 0$. Note that $g(0) > 0$ provided $0 < \alpha < \frac{6 - 4b}{2b - 1}$. Thus, by choosing τ closed to 0, we see that $g(\tau) > 0$ for $0 < \alpha < \frac{6 - 4b}{2b - 1}$. Therefore,

$$B_{12} \lesssim T^{\theta_1} \| \langle \nabla \rangle u \|_{S(L^2, I)}^{\frac{1}{2} + 1},$$

(3.13)

provided $\epsilon, \tau > 0$ are small enough and

$$1 \leq b < \frac{3}{2}, \quad 0 < \alpha < \frac{6 - 4b}{2b - 1}.$$

On B^c. Let us choose the following Schrödinger admissible pair

$$p_2 = \frac{4(\alpha + 2)}{\alpha}, \quad q_2 = \frac{3(\alpha + 2)}{3 + \alpha}.$$

Let m_2, n_2 be such that

$$\frac{1}{q_2} = \frac{\alpha}{n_2} + \frac{1}{q_2}, \quad \frac{1}{p_2} = \frac{\alpha}{m_2} + \frac{1}{p_2}.$$

(3.14)

A direct computation shows

$$\theta_2 := \frac{\alpha}{m_2} - \frac{\alpha}{p_2} = 1 - \frac{\alpha}{4} > 0.$$

Note that in our consideration $1 \leq b < \frac{3}{2}, 0 < \alpha < \frac{6 - 4b}{2b - 1}$, we always have $\alpha < 4$. Moreover, it is easy to check that

$$\frac{1}{n_2} = \frac{1}{q_2} - \frac{1}{3}.$$

It allows us to use the Sobolev embedding $W^{1,q_2}(\mathbb{R}^3) \subset L^{n_2}(\mathbb{R}^3)$. By Hölder inequality with (3.14),

$$A_2 \lesssim \| |x|^{-b}|u|^{\alpha}v \|_{L^{p_2}_{t,x}(I, L^{q_2}_{t,x}(B^c))} \lesssim \| |x|^{-b}\|_{L^p_{t,x}(B^c)} \| |u|^{\alpha}v \|_{L^{p_2}_{t,x}(I, L^{q_2}_{t,x})} \lesssim \| u \|_{L^{n_2}_{t,x}(I, L^{q_2}_{t,x})} \| v \|_{L^{p_2}_{t,x}(I, L^{q_2}_{t,x})} \lesssim T^{\theta_2} \| \langle \nabla \rangle u \|_{L^{p_2}_{t,x}(I, L^{q_2}_{t,x})} \| v \|_{L^{p_2}_{t,x}(I, L^{q_2}_{t,x})}.$$

We thus get

$$A_2 \lesssim T^{\theta_2} \| \langle \nabla \rangle u \|_{S(L^2, I)} \| v \|_{S(L^2, I)}.$$

(3.15)

The term B_{21} is treated similarly by using the fractional chain rule, and we obtain

$$B_{21} \lesssim T^{\theta_2} \| \langle \nabla \rangle u \|_{S(L^2, I)} \| \nabla u \|_{S(L^2, I)}.$$

(3.16)

Finally, we estimate

$$B_{22} \lesssim \| |x|^{-b-1}|u|^{\alpha}u \|_{L^{p_2}_{t,x}(I, L^{q_2}_{t,x}(B^c))} \lesssim \| |x|^{-b-1}\|_{L^p_{t,x}(B^c)} \| |u|^{\alpha}u \|_{L^{n_2}_{t,x}(I, L^{q_2}_{t,x})} \| u \|_{L^{p_2}_{t,x}(I, L^{q_2}_{t,x})} \lesssim T^{\theta_2} \| \langle \nabla \rangle u \|_{L^{p_2}_{t,x}(I, L^{q_2}_{t,x})} \| u \|_{S(L^2, I)}.$$

(3.17)
This implies
\[B_{22} \lesssim T^{d_2} \| \langle \nabla \rangle u \|_{S(I,L^2)}^{\alpha + 1}. \] (3.17)
Combining (3.11), (3.12), (3.13), (3.15), (3.16) and (3.17), we complete the proof. \(\square \)

Lemma 3.3. Let \(d = 2 \). Let \(0 < b < 1 \) and \(0 < \alpha < \infty \) and \(I = [0, T] \). Then there exists \(\theta_1, \theta_2 > 0 \) such that
\[
\| |x|^{-b} |u|^\alpha \|_{S(I,L^2)} \lesssim (T^{\theta_1} + T^{\theta_2}) \| \langle \nabla \rangle u \|_{S(I,L^2)} \| v \|_{S(I,L^2)},
\]
\[
\| \nabla (|x|^{-b} |u|^\alpha) \|_{S(I,L^2)} \lesssim (T^{\theta_1} + T^{\theta_2}) \| \langle \nabla \rangle u \|_{S(I,L^2)} \| v \|_{S(I,L^2)}.
\]

Remark 3.4. In [15], Guzman proved this result with \(\theta_1 = \theta_2 \) under the assumption \(0 < b < \frac{2}{3} \).
Here we extend it to \(0 < b < 1 \).

Remark 3.5. By using Strichartz estimate, we can not obtain a similar result as in Lemma 3.1, Lemma 3.2 and Lemma 3.3 for the case \(d = 1 \). The reason for this is the singularity \(|x|^{-b-1} \) on \(B \).
To bound this term in a Lebesgue space \(L^\gamma \) with \(1 \leq \gamma \leq \infty \), we need
\[\frac{d}{\gamma} > b + 1. \]
This implies that we need at least \(d > b + 1 \), which does not hold when \(d = 1 \).

Proof of Lemma 3.3. We continue to use the notations \(A_1, A_2, B_{11}, B_{12}, B_{21} \) and \(B_{22} \) introduced in the proof of Lemma 3.1.

On \(B \). By Hölder inequality and Remark 2.1,
\[
A_1 \leq \| |x|^{-b} |u|^\alpha \|_{L^{p_1}(I,L^{q_1}(B))} \lesssim \| |x|^{-b} \|_{L^{\gamma_1}(I,L^{\gamma_1}(B))} \| u \|_{L^{p_1}(I,L^{q_1}(B))} \| v \|_{L^{q_1}(I,L^{q_1})},
\]
\[
\lesssim \| u \|_{L^{\gamma_1}(I,L^{\gamma_1})} \| v \|_{L^{\gamma_1}(I,L^{\gamma_1})},
\]
\[
\lesssim \| \langle \nabla \rangle u \|_{L^{\gamma_1}(I,L^{\gamma_1})} \| v \|_{L^{\gamma_1}(I,L^{\gamma_1})},
\]
\[
\lesssim T^{\theta_1} \| \langle \nabla \rangle u \|_{L^{\gamma_1}(I,L^{\gamma_1})} \| v \|_{L^{\gamma_1}(I,L^{\gamma_1})},
\]
provided that \((p_1, q_1) \in S \) and
\[
\frac{1}{q_1} = \frac{1}{\gamma_1} + \frac{1}{v_1}, \quad \frac{2}{\gamma_1} > b, \quad \frac{1}{p_1} = \frac{\alpha}{n_1} + \frac{1}{2}, \quad \frac{1}{p_1} = \frac{\alpha}{m_1} = \theta_1,
\]
and
\[
n_1 \in (2, \infty) \quad \text{or} \quad \frac{1}{n_1} = \frac{\tau}{2}, \quad \tau \in (0, 1).
\]
The last condition allows us to use the Sobolev embedding \(W^{1,2}(\mathbb{R}^2) \subset L^{n_1}(\mathbb{R}^2) \). The condition \(\frac{2}{\gamma_1} > b \) implies
\[
\frac{2}{\gamma_1} = 1 - \frac{2}{q_1} - \alpha \tau > b \quad \text{or} \quad \frac{2}{q_1} < 1 - b - \alpha \tau.
\]
Note that since \(0 < b < 1 \), by taking \(\tau > 0 \) small enough, we see that \(1 - b - \alpha \tau > 0 \). Let us choose
\[
q_1 = \frac{2}{1 - b - \alpha \tau} + \epsilon,
\]
for some \(0 < \epsilon \ll 1 \) to be chosen later. It is obvious that \(2 < q_1 < \infty \) and \(\theta_1 > 0 \). Therefore, we obtain
\[
A_1 \lesssim T^{\theta_1} \| \langle \nabla \rangle u \|_{S(I,L^2)} \| v \|_{S(I,L^2)}. \] (3.20)
Let us choose the following Schrödinger admissible pair

\[B_{11} \lesssim T^{\theta_1} || \langle \nabla \rangle u ||_{S(L^2, I)} || \nabla u ||_{S(L^2, I)}. \]

(3.21)

We continue to bound

\[B_{12} \leq || |x|^{-b} |u|^{\alpha} ||_{L^2_t (I, L^{q_1}_x (B))} \lesssim || |x|^{-b} ||_{L^{q_1}_x (B)} || |u|^{\alpha} ||_{L^2_t (I, L^{q_1}_x)} \]

\[\lesssim || u ||_{L^{q_1}_x (I, L^{q_1}_x)} || u ||_{L^\infty (I, L^\infty_x)} \]

\[\lesssim || \langle \nabla \rangle u ||_{L^{q_1}_x (I, L^{q_1}_x)} || \langle \nabla \rangle u ||_{L^\infty (I, L^\infty_x)} \]

\[\lesssim T^{\theta_1} || \langle \nabla \rangle u ||_{S(L^2, I)} || \langle \nabla \rangle u ||_{S(L^2, I)}, \]

provided that \((p_1, q_1) \in S\) and

\[\frac{1}{q_1} = \frac{1}{\gamma_1} + \frac{1}{v_1}, \quad \frac{2}{\gamma_1} > b + 1, \quad \frac{1}{v_1} = \frac{\alpha + 1}{n_1}, \quad \frac{1}{p_1} = \frac{\alpha}{m_1} = \theta_1, \]

and

\[n_1 \in (2, \infty) \text{ or } \frac{1}{n_1} = \frac{\tau}{2}, \quad \tau \in (0, 1). \]

The condition \(\frac{2}{\gamma_1} > b + 1\) implies

\[\frac{2}{\gamma_1} = 2 - \frac{2}{q_1} - (\alpha + 1) \tau > b + 1 \text{ or } \frac{2}{q_1} < 1 - b - (\alpha + 1) \tau. \]

Since \(0 < b < 1\), by choosing \(\tau\) closed to 0, we see that \(1 - b - (\alpha + 1) \tau > 0\). Let us choose

\[q_1 = \frac{2}{1 - b - (\alpha + 1) \tau + \epsilon}, \]

for some \(0 < \epsilon \ll 1\) to be chosen later. It is obvious that \(2 < q_1 < \infty\) and \(\theta_1 > 0\). Thus, we obtain

\[B_{12} \lesssim T^{\theta_1} || \langle \nabla \rangle u ||_{S(L^2, I)}^{2+1}. \]

(3.22)

On \(B^c\) Let us choose the following Schrödinger admissible pair

\[p_2 = \frac{2(\alpha + 2)}{\alpha}, \quad q_2 = \alpha + 2. \]

It is easy to see that \(\frac{1}{q_2} = \frac{\alpha + 1}{q_2}\). By Hölder’s inequality,

\[A_2 \leq || |x|^{-b} |u|^{\alpha} ||_{L^2_t (I, L^{q_2}_x (B^c))} \lesssim || |x|^{-b} ||_{L^2_x (B^c)} || |u|^{\alpha} ||_{L^2_t (I, L^{q_2}_x)} \]

\[\lesssim || u ||_{L^\infty (I, L^{2}_x)} || u ||_{L^{2} (I, L^{q_2}_x)} \]

\[\lesssim || \langle \nabla \rangle u ||_{L^{q_2}_x (I, L^{2}_x)} || u ||_{L^{2} (I, L^{q_2}_x)} \]

\[\lesssim T^{\theta_2} || u ||_{S(L^2, I)} || u ||_{S(L^2, I)}, \]

where

\[\frac{1}{p_2} = \frac{\alpha}{m_2} + \frac{1}{p_2}, \quad \theta_2 = \frac{\alpha}{m_2} = \frac{2}{\alpha + 2} > 0. \]

We thus get

\[A_2 \lesssim T^{\theta_2} || \langle \nabla \rangle u ||_{S(L^2, I)} || v ||_{S(L^2, I)}. \]

(3.23)

By using the fractional chain rule and estimating as for \(A_2\), we get

\[B_{21} \lesssim T^{\theta_2} || \langle \nabla \rangle u ||_{S(L^2, I)} || \nabla u ||_{S(L^2, I)}. \]

(3.24)
Finally, we bound
\[B_{22} \leq \|x|^{b-1}|u|^\alpha u\|_{L^\infty_t L^2_x(I, L^\infty_x(B^2))} \lesssim \|x|^{-b-1}\|L^\infty_t L^2_x(B^2)\|\|u|^\alpha u\|_{L^\infty_t L^2_x(I, L^\infty_x)} \]
\[\lesssim \|u\|_{L^\infty_t L^2_x(I, L^\infty_x(B^2))}\|u\|_{L^\infty_t L^2_x(I, L^\infty_x)} \]
\[\lesssim \|\nabla\|_{L^\infty_t B^2_x(I, L^\infty_x)}\|u\|_{L^\infty_t L^2_x(I, L^\infty_x)} \]
\[\lesssim T^{\theta_2}\|\nabla\|_{L^\infty_t B^2_x(I, L^\infty_x)}\|u\|_{L^\infty_t L^2_x(I, L^\infty_x)}. \]

Where \(m_2, \theta_2 \) are as in term \(A_2 \). Thus, we obtain
\[B_{22} \lesssim T^{\theta_2}\|\nabla\|_{S(L^2, I)}^{\alpha+1}. \tag{3.25} \]

Collecting \((3.20), (3.21), (3.22), (3.23), (3.24)\) and \((3.25)\), we complete the proof.

We are now able to prove Theorem 1.2. From now on, we denote for any spacetime slab \(I \times \mathbb{R}^d \),
\[\|u\|_{S(I)} := \|\nabla\|_{S(L^2, I)} = \|u\|_{S(L^2, I)} + \|\nabla u\|_{S(L^2, I)}. \tag{3.26} \]

Proof of Theorem 1.2. We follow the standard argument (see e.g. [2, Chapter 4]). Let
\[X = \left\{ u \in C_t(I, H^1_x) \cap L^p_t(I, W^{1,q}_x), \forall(p,q) \in S | \|u\|_{S(I)} \leq M \right\}, \]
equipped with the distance
\[d(u, v) = \|u - v\|_{S(L^2, I)}, \]
where \(I = [0, T] \) and \(T, M > 0 \) to be chosen later. By the Duhamel formula, it suffices to prove that the functional
\[\Phi(u)(t) = e^{it\Delta}u_0 + i\mu \int_0^t e^{i(t-s)\Delta}|x|^{-b}|u(s)|^\alpha u(s)ds \]
is a contraction on \((X, d)\). By Strichartz estimates, we have
\[\|\Phi(u)\|_{S(I)} \lesssim \|u_0\|_{H^1_x} + \|x|^{-b}|u|^\alpha u\|_{S(L^2, I)} + \|\nabla(|x|^{-b}|u|^\alpha u)\|_{S(L^2, I)}, \]
\[\|\Phi(u) - \Phi(v)\|_{S(L^2, I)} \lesssim \|x|^{-b}(|u|^\alpha u - |v|^\alpha v)\|_{S(L^2, I)}. \]

Applying Lemmas 3.1, 3.2, 3.3, we get for some \(\theta_1, \theta_2 > 0 \),
\[\|\Phi(u)\|_{S(I)} \lesssim \|u_0\|_{H^1_x} + (T^{\theta_1} + T^{\theta_2}) \|u\|_{S(I)}^{\alpha+1}, \]
\[\|\Phi(u) - \Phi(v)\|_{S(L^2, I)} \lesssim (T^{\theta_1} + T^{\theta_2}) \left(\|u\|_{S(I)} + \|v\|_{S(I)} \right) \|u - v\|_{S(L^2, I)}. \]

This shows that for \(u, v \in X \), there exists \(C > 0 \) independent of \(T \) and \(u_0 \in H^1_x \) such that
\[\|\Phi(u)\|_{S(I)} \leq C \|u_0\|_{H^1_x} + C (T^{\theta_1} + T^{\theta_2}) M^{\alpha+1}, \]
\[d(\Phi(u), \Phi(v)) \leq C (T^{\theta_1} + T^{\theta_2}) M^\alpha d(u, v). \]

If we set \(M = 2C\|u_0\|_{H^1_x} \) and choose \(T > 0 \) so that
\[C (T^{\theta_1} + T^{\theta_2}) M^\alpha \leq \frac{1}{2}, \]
then \(\Phi \) is a strict contraction on \((X, d)\). The proof is complete. \(\square \)
4. PSEUDO-CONFORMAL CONSERVATION LAW

In this section, we firstly derive the virial identity and then use it to show the pseudo-conformal conservation law related to the defocusing (INLS). The proof is based on the standard technique (see e.g. [2, 19]). Given a smooth real valued function a, we define the virial potential by

$$V_a(t) := \int a(x)|u(t, x)|^2\,dx. \quad (4.1)$$

By a direct computation, we have the following result (see e.g. [20, Lemma 5.3] for the proof).

Lemma 4.1 ([20]). If u is a smooth-in-time and Schwartz-in-space solution to

$$i\partial_t u + \Delta u = N(u),$$

with $N(u)$ satisfying $\text{Im} \,(N(u)\overline{\nabla}) = 0$, then we have

$$\frac{d}{dt}V_a(t) = 2 \int_{\mathbb{R}^d} \nabla a(x) \cdot \text{Im} \,(\overline{\nabla t}(x)\nabla u(t, x))\,dx, \quad (4.2)$$

and

$$\frac{d^2}{dt^2}V_a(t) = -\int \Delta^2 a(x)|u(t, x)|^2\,dx + 4 \sum_{j=1}^{d} \int \partial^2_j a(x) \Re (\partial_j u(t, x)\partial_j \nabla(t, x))\,dx$$

$$+ 2 \int \nabla a(x) \cdot \{N(u), u\}_p(t, x)\,dx, \quad (4.3)$$

where $\{f, g\}_p := \Re (f \nabla \overline{g} - g \nabla \overline{f})$ is the momentum bracket.

Corollary 4.2. If u is a smooth-in-time and Schwartz-in-space solution to the defocusing (INLS), then we have

$$\frac{d^2}{dt^2}V_a(t) = -\int \Delta^2 a(x)|u(t, x)|^2\,dx + 4 \sum_{j=1}^{d} \int \partial^2_j a(x) \Re (\partial_j u(t, x)\partial_j \nabla(t, x))\,dx$$

$$+ \frac{2\alpha}{\alpha + 2} \int \Delta a(x)|x|^{-b}|u(t, x)|^{a+2}\,dx - \frac{4}{\alpha + 2} \int \nabla a(x) \cdot \nabla(|x|^{-b})|u(t, x)|^{a+2}\,dx. \quad (4.4)$$

Proof. Applying Lemma 4.1 with $N(u) = F(x, u) = |x|^{-b}|u|^a u$. Note that

$$\{N(u), u\}_p = -\frac{\alpha}{\alpha + 2} \nabla(|x|^{-b})|u|^{a+2} - \frac{2}{\alpha + 2} \nabla(|x|^{-b})|u|^{a+2}. \quad \square$$

We now have the following virial identity for the defocusing (INLS).

Proposition 4.3. Let $u_0 \in H^1(\mathbb{R}^d)$ be such that $|x|u_0 \in L^2(\mathbb{R}^d)$ and u the corresponding global solution to the defocusing (INLS). Then, $|x|u \in C(\mathbb{R}, L^2(\mathbb{R}^d))$. Moreover, for any $t \in \mathbb{R},$

$$\frac{d^2}{dt^2}\|xu(t)\|_{L_x^2}^2 = 16E(u_0) + 4(d\alpha + 2b - 4)G(t), \quad (4.5)$$

where G is given in (1.5).

Proof. The first claim follows from the standard approximation argument, we omit the proof and refer the reader to [2, Proposition 6.5.1] for more details. It remains to show (4.5). Applying Corollary 4.2 with $a(x) = |x|^2$, we have

$$\frac{d^2}{dt^2}V_a(t) = \frac{d^2}{dt^2}\|xu(t)\|_{L_x^2}^2 = 8\|\nabla u(t)\|_{L^2_x}^2 + 4(d\alpha + 2b)G(t)$$

$$= 16E(u(t)) + 4(d\alpha + 2b - 4)G(t).$$
The result follows by using the conservation of energy. □

An application of the virial identity is the following “pseudo-conformal conservation law” for the defocusing (INLS).

Lemma 4.4. Let \(u_0 \in H^1(\mathbb{R}^d) \) be such that \(|x|u_0 \in L^2(\mathbb{R}^d)\) and \(u \) the corresponding global solution to the defocusing (INLS). Then, for any \(t \in \mathbb{R} \),

\[
\|(x + 2it \nabla)u(t)\|_{L^2_x}^2 + 8t^2 G(t) = \|xu_0\|_{L^2_x}^2 + 4(4 - 2b - d\alpha) \int_0^t sG(s)ds. \tag{4.6}
\]

Proof. Set

\[
f(t) := \|(x + 2it \nabla)u(t)\|_{L^2_x}^2 + 8t^2 G(t).
\]

By (4.2), we see that

\[
\|(x + 2it \nabla)u(t)\|_{L^2_x}^2 = \|xu(t)\|_{L^2_x}^2 + 4t^2 \|\nabla u(t)\|_{L^2_x}^2 - 4t \int \text{Im} (\overline{u}(t)x \cdot \nabla u(t,x))dx
\]

\[
\quad = \|xu(t)\|_{L^2_x}^2 + 4t^2 \|\nabla u(t)\|_{L^2_x}^2 - t \frac{d}{dt} \|xu(t)\|_{L^2_x}^2.
\]

Thus, the conservation of energy implies

\[
f(t) = \|xu(t)\|_{L^2_x}^2 + 8t^2 E(u(t)) - t \frac{d}{dt} \|xu(t)\|_{L^2_x}^2 = \|xu(t)\|_{L^2_x}^2 + 8t^2 E(u_0) - t \frac{d}{dt} \|xu(t)\|_{L^2_x}^2.
\]

Applying (4.5), we get

\[
f'(t) = \frac{d}{dt} \|xu(t)\|_{L^2_x}^2 + 16tE(u_0) - \frac{d}{dt} \|xu(t)\|_{L^2_x}^2 - t \frac{d^2}{dt^2} \|xu(t)\|_{L^2_x}^2 = 4(4 - 2b - d\alpha)tG(t).
\]

Taking integration on \((0, t)\), we obtain (4.6). □

Remark 4.5. This result extends the pseudo-conformal conservation law for the classical (i.e. \(b = 0 \)) nonlinear Schrödinger equation (see e.g. [2, Theorem 7.2.1]). Note that (4.6) is a real conservation law only when \(\alpha = \frac{4 - 2b}{d} \).

Remark 4.6. It is easy to see that if \(t \neq 0 \), then

\[
(x + 2it \nabla)u(t, x) = 2ite^{-i|\xi|^2 t} \nabla \left(e^{-i|\xi|^2 t} u(t, x) \right), \tag{4.7}
\]

and

\[
\|(x + 2it \nabla)u(t)\|_{L^2_x}^2 = 4t^2 \left\| \nabla \left(e^{-i|\xi|^2 t} u(t, x) \right) \right\|_{L^2_x}^2.
\]

Therefore, if we set

\[
v(t, x) := e^{-i|\xi|^2 t} u(t, x), \tag{4.8}
\]

then

\[
\|(x + 2it \nabla)u(t)\|_{L^2_x}^2 = 4t^2 \|\nabla v(t)\|_{L^2_x}^2,
\]

and (4.6) becomes

\[
8t^2 E(v(t)) = \|xu_0\|_{L^2_x}^2 + 4(4 - 2b - d\alpha) \int_0^t sG(s)ds. \tag{4.9}
\]
Remark 4.7. Let $F(x, u) = |x|^{-b}|u|^{\alpha}u$. It follows from (4.7) that
\begin{equation}
|(x + 2t \nabla)F(x, u)| = 2|t| \left| \nabla \left(e^{-i \frac{k2\pi}{2}} F(x, u) \right) \right| = 2|t| \left| \nabla F(x, v) \right|,
\end{equation}
where v is given in (4.8). Using the facts $|v| = |u|$ and $2|t| ||v|| = |(x + 2t \nabla)u|$, we also have
\begin{equation}
||v||_{L^2} = ||u||_{L^2}, \quad 2|t| ||v||_{L^2} = ||(x + 2t \nabla)u||_{L^2}.
\end{equation}

5. Decay of solutions in the weighted L^2 space

In this section, we will give the proof of the decaying property given in Theorem 1.3. We follow the standard argument of Ginibre-Velo [14] (see also [2, Chapter 7]).

Proof of Theorem 1.3. We have from (4.9) that
\begin{equation}
8t^2 E(v(t)) = 8t^2 \left(\frac{1}{2} ||\nabla v(t)||_{L^2}^2 + G(t) \right) = ||xu_0||_{L^2}^2 + 4(4 - 2b - d\alpha) \int_0^t sG(s)ds,
\end{equation}
for all $t \in \mathbb{R}$, where v is defined in (4.8).

If $\alpha \in [\alpha^*, \alpha^*]$, then (5.1) implies
\begin{equation*}
4t^2 ||\nabla v(t)||_{L^2}^2 \leq ||xu_0||_{L^2}^2,
\end{equation*}
for all $t \in \mathbb{R}$. Hence, $||\nabla v(t)||_{L^2} \lesssim |t|^{-1}$ for $t \in \mathbb{R}\setminus\{0\}$. Using (4.11), Gagliardo-Nirenberg's inequality and the conservation of mass, we have
\begin{align*}
||u(t)||_{L^2} = ||v(t)||_{L^2} & \lesssim ||\nabla v(t)||_{L^2}^d \left(\frac{1}{2d} \right) ||v(t)||_{L^2}^{1-d} \left(\frac{1}{2d} \right) \\
& \lesssim |t|^{d-b} ||u_0||_{L^2}^{d-b} \lesssim |t|^{-d/b}.
\end{align*}
This proves the first claim.

We now assume $\alpha \in (0, \alpha^*)$. Let us consider only the case $t \geq 1$, the case $t < -1$ is treated similarly. By taking $t = 1$ in (5.1), we see that
\begin{equation*}
8E(v(1)) = ||xu_0||_{L^2}^2 + 4(4 - 2b - d\alpha) \int_0^1 sG(s)ds.
\end{equation*}
Thus,
\begin{equation*}
8t^2 E(v(t)) = 8E(v(1)) + 4(4 - 2b - d\alpha) \int_1^t sG(s)ds.
\end{equation*}
This implies
\begin{equation*}
g(t) := t^2 G(t) \leq E(v(1)) + \frac{4 - 2b - d\alpha}{2} \int_1^t \frac{1}{s} g(s)ds.
\end{equation*}
Applying Gronwall's inequality, we obtain
\begin{equation*}
g(t) \lesssim t^{\frac{4-2b-d\alpha}{2}}, \quad \text{hence} \quad G(t) \lesssim t^{\frac{-2b-d\alpha}{2}}.
\end{equation*}
By (5.1), we have
\begin{equation*}
4t^2 ||\nabla v(t)||_{L^2}^2 \lesssim ||xu_0||_{L^2}^2 + 4(4 - 2b - d\alpha) \int_0^t s^{\frac{4-2b-d\alpha}{2}} \lesssim 1 + t^{\frac{4-2b-d\alpha}{2}},
\end{equation*}
or
\begin{equation*}
||\nabla v(t)||_{L^2} \lesssim t^{-\frac{2b+d\alpha}{2}}.
\end{equation*}
By Gagliardo-Nirenberg’s inequality, the conservation of mass and (4.11), we obtain
\[\|u(t)\|_{L^q_x}^q = \|v(t)\|_{L^q_x}^q \lesssim \|\nabla v(t)\|_{L^q_x}^{d(\frac{1}{2} - \frac{1}{q})} \|v(t)\|_{L^q_x}^{1 - d(\frac{1}{2} - \frac{1}{q})} \]
\[\lesssim t^{-\frac{d(2b-d-1)}{4}} \|\nabla u_0\|_{L^q_x}^{1 - d(\frac{1}{2} - \frac{1}{q})} \lesssim t^{-\frac{d(2b-d-1)}{4}} (\frac{1}{2} - \frac{1}{q}). \]
This completes the proof. \qed

6. SCATTERING IN THE WEIGHTED L^2 SPACE

In this section, we will give the proof of the scattering in the weighted space \(\Sigma \) given in Theorem 1.4. To do this, we use the decay given in Theorem 1.3 to obtain global bounds on the solution. The scattering property follows easily from the standard argument. We also give some comments in the case \(\alpha \in (0, \alpha_*) \) in the end of this section.

Let us introduce the following so-called Strauss exponent
\[\alpha_0 := \frac{2 - d - 2b + \sqrt{d^2 + 12d + 4 + 4b(b - 2 - d)}}{2d}, \]
which is the positive root to the following quadratic equation
\[d\alpha^2 + (d - 2 + 2b)\alpha + 2b - 4 = 0. \]

Remark 6.1. It is easy to check that for \(0 < b < \min \{2, d\}, \)
\[\alpha_0 < \frac{4 - 2b}{d}. \]

Note that when \(b = 0, \) \(\alpha_0 \) is the classical Strauss exponent introduced in [22] (see also [3, 2]).

Let us start with the following lemmas providing some estimates on the nonlinearity.

Lemma 6.2. Let \(d \geq 4, \) \(b \in (0, 2) \) and \(\alpha \in [\alpha_*, \alpha^*]. \) Then there exist \((p_1, q_1), (p_2, q_2) \in S \)
satisfying \(2\alpha + 2 > p_1, p_2 \) and \(q_1, q_2 \in \left(\frac{2}{2d - 2}, \frac{2d}{d - 2} \right) \) such that
\[\|x|^{-b}|u|^\alpha u\|_{S'(L^2, I)} \lesssim \left(\|u\|_{L_{x}^{p_1}(I, L_{x}^{q_1})}^\alpha + \|u\|_{L_{x}^{p_2}(I, L_{x}^{q_2})}^\alpha \right) \|u\|_{S(L^2, I)}, \]
\[\|\nabla(|x|^{-b}|u|^\alpha u\|_{S'(L^2, I)} \lesssim \left(\|u\|_{L_{x}^{p_1}(I, L_{x}^{q_1})}^\alpha + \|u\|_{L_{x}^{p_2}(I, L_{x}^{q_2})}^\alpha \right) \|\nabla u\|_{S(L^2, I)}, \]
where \(m_1 = \frac{p_1}{p_1 - 2} \) and \(m_2 = \frac{p_2}{p_2 - 2}. \)

Proof. Let us bound
\[\|x|^{-b}|u|^\alpha u\|_{S'(L^2, I)} \leq \|x|^{-b}|u|^\alpha u\|_{S'(L^2(B), I)} + \|x|^{-b}|u|^\alpha u\|_{S'(L^2(B)^c, I)} =: A_1 + A_2, \]
and
\[\nabla(|x|^{-b}|u|^\alpha u\|_{S'(L^2, I)} \leq \nabla(|x|^{-b}|u|^\alpha u\|_{S'(L^2(B), I)} + \nabla(|x|^{-b}|u|^\alpha u\|_{S'(L^2(B)^c, I)} =: B_1 + B_2, \]
where
\[B_1 \leq \|x|^{-b}\nabla(|u|^\alpha u\|_{S'(L^2(B), I)} + \|x|^{-b-1}|u|^\alpha u\|_{S'(L^2(B), I)} =: B_{11} + B_{12}, \]
\[B_2 \leq \|x|^{-b}\nabla(|u|^\alpha u\|_{S'(L^2(B)^c, I)} + \|x|^{-b-1}|u|^\alpha u\|_{S'(L^2(B)^c), I} =: B_{21} + B_{22}. \]

On B. By Hölder’s inequality and Remark 2.1,
\[A_1 \leq \|x|^{-b}|u|^\alpha u\|_{L_{x}^{p_1}(I, L_{x}^{q_1})} \lesssim \|x|^{-b}\|_{L_{x}^{p_1}(I, L_{x}^{q_1})} \|u|^\alpha u\|_{L_{x}^{p_1}(I, L_{x}^{q_1})} \]
\[\lesssim \|u\|_{L_{x}^{p_1}(I, L_{x}^{q_1})}^\alpha \|u\|_{L_{x}^{p_1}(I, L_{x}^{q_1})}, \]
Note that by taking \(q \) small enough, the condition
\[
q_1 = \frac{d(\alpha + 2)}{d - b} + \epsilon,
\]
for some \(0 < \epsilon \ll 1 \) to be chosen later. Since we are considering \(d \geq 4, b \in (0, 2) \) and \(\alpha \in [\alpha_*, \alpha^*], \) it is easy to check that \(q_1 \in \left(\frac{2}{d - 2}, \frac{2d}{d - 2} \right) \) provided that \(\epsilon > 0 \) is taken small enough. We thus get
\[
A_1 \lesssim \|u\|_{L_t^\alpha(I, L_x^n)}^\alpha \|u\|_{S(L^2, I)}.
\]
(6.5)

The term \(B_{11} \) is treated similarly by using the fractional chain rule, and we have
\[
B_{11} \lesssim \|u\|_{L_t^\alpha(I, L_x^n)}^\alpha \|\nabla u\|_{S(L^2, I)}.
\]
(6.6)

We next bound
\[
B_{12} \leq \|x|^{-b-1}|u|^{\alpha} u \|_{L_t^{\alpha'}(I, L_x^{n'})} \lesssim \|x|^{-b-1} \|L_x^{n'}(B)\|_{\alpha u} \|L_t^{\alpha'}(I, L_x^{n'})\|_{\alpha u} \lesssim \|u\|_{L_t^{\alpha'}(I, L_x^{n'})} \|u\|_{L_t^{\alpha'}(I, L_x^{n'})} \lesssim \|u\|_{L_t^{\alpha'}(I, L_x^{n'})} \|\nabla u\|_{L_t^{\alpha'}(I, L_x^{n'})},
\]
provided

\[
\frac{1}{q_1} = \frac{1}{\gamma_1} + \frac{1}{\nu_1}, \quad \frac{d}{\gamma_1} > b + 1, \quad \frac{1}{\nu_1} = \frac{\alpha}{q_1}, \quad \frac{1}{p_1} = \frac{\alpha}{m_1} + \frac{1}{p_1},
\]
and

\[
q_1 < d, \quad \frac{1}{\nu_1} = \frac{1}{q_1} - \frac{1}{d}.
\]

Here the last condition allows us to use the homogeneous Sobolev embedding \(\dot{W}^{1,\alpha_1}(\mathbb{R}^{d}) \subset L^{\nu_1}(\mathbb{R}^{d}). \) Note that by taking \(\epsilon > 0 \) small enough, the condition \(q_1 < d \) implies \(\alpha < d - b - 2 \) which is true for \(d \geq 4 \) and \(\alpha \in [\alpha_*, \alpha^*]. \) We then have
\[
\frac{d}{\gamma_1} = d - \frac{d(\alpha + 2)}{q_1} + 1 > b + 1, \quad \frac{\alpha}{m_1} = 1 - \frac{2}{p_1},
\]
and therefore, by choosing \(q_1 \) as in (6.4), we obtain
\[
B_{12} \lesssim \|u\|_{L_t^\alpha(I, L_x^n)}^\alpha \|\nabla u\|_{S(L^2, I)}.
\]
(6.7)

**On \(B^*: ** By Hölder’s inequality and Remark 2.1,
\[
A_2 \leq \|x^{-b}|u|^{\alpha} u \|_{L_t^{\alpha'}(I, L_x^{n'})} \lesssim \|x|^{-b} \|L_x^{n'}(B^*)\|_{\alpha u} \|L_t^{\alpha'}(I, L_x^{n'})\|_{\alpha u} \lesssim \|u\|_{L_t^{\alpha'}(I, L_x^{n'})} \|u\|_{L_t^{\alpha'}(I, L_x^{n'})},
\]
provided that \((p_2, q_2) \in \mathbb{S} \) and
\[
\frac{1}{q_2} = \frac{1}{\gamma_2} + \frac{1}{\nu_2}, \quad \frac{d}{\gamma_2} < b, \quad \frac{1}{\nu_2} = \frac{\alpha + 1}{q_2}, \quad \frac{1}{p_2} = \frac{\alpha}{m_2} + \frac{1}{p_2}.
\]
These conditions imply
\[
\frac{d}{\gamma_2} = d - \frac{d(\alpha + 2)}{q_2} < b, \quad \frac{\alpha}{m_2} = 1 - \frac{2}{p_2}.
\]
Let us choose
\[
q_2 = \frac{d(\alpha + 2)}{d - b} - \epsilon,
\]
for some \(0 < \epsilon \ll 1\) to be chosen later. By taking \(\epsilon > 0\) small enough, we see that \(q_1 \in \left(2, \frac{2d}{d-2}\right)\).
We thus obtain
\[
A_2 \lesssim \|u\|_{L_t^{m_2}(I, L_x^{q_2}(\mathbb{R}^d))} \|u\|_{S(L^2, I)}.
\]
Similarly, by using the fractional chain rule, we have
\[
B_{21} \lesssim \|u\|_{L_t^{m_2}(I, L_x^{q_2}(\mathbb{R}^d))} \|\nabla u\|_{S(L^2, I)}.
\]
We now estimate
\[
B_{22} \leq \|\alpha^{-b-1} |u|^\alpha u\|_{L_t^{m_2}(I, L_x^{q_2}(\mathbb{R}^d))} \lesssim \|\alpha^{-b-1} |u|^\alpha u\|_{L_t^{m_2}(I, L_x^{q_2}(\mathbb{R}^d))} \lesssim \|u\|_{L_t^{m_2}(I, L_x^{q_2}(\mathbb{R}^d))} \|u\|_{L_t^{m_2}(I, L_x^{q_2}')} \lesssim \|u\|_{L_t^{m_2}(I, L_x^{q_2})} \|\nabla u\|_{L_t^{q_2}(I, L_x^{q_2})},
\]
provided that \((p_2, q_2) \in S\) and
\[
\frac{1}{q_2} = \frac{1}{\gamma_2} + \frac{1}{v_2}, \quad \frac{d}{\gamma_2} < b + 1, \quad \frac{1}{v_2} = \frac{\alpha}{q_2} + \frac{1}{n_2}, \quad \frac{1}{p_2} = \frac{\alpha}{m_2} + \frac{1}{p_2}, \quad q_2 < d, \quad \frac{1}{n_2} = \frac{1}{q_2} - \frac{1}{d}.
\]
This is then equivalent to
\[
\frac{d}{\gamma_2} = d - \frac{d(\alpha + 2)}{q_2} = 1 < b + 1, \quad \frac{\alpha}{m_2} = 1 - \frac{2}{p_2}.
\]
Thus by choosing \(q_2\) as in (6.8), we obtain
\[
B_{22} \lesssim \|u\|_{L_t^{m_2}(I, L_x^{q_2}(\mathbb{R}^d))} \|\nabla u\|_{S(L^2, I)}.
\]
Collecting (6.5), (6.9) and (6.6), (6.7), (6.10), (6.11), we obtain (6.2) and (6.3).
It remains to check that \(p_1, p_2 < 2\alpha + 2\) where \((p_1, q_1), (p_2, q_2) \in S\) with \(q_1, q_2\) as in (6.4) and (6.8) respectively. Note that \(q_1, q_2\) are almost similar up to \(\pm \epsilon\). Let us denote \((p, q) \in S\) with
\[
q = \frac{d(\alpha + 2)}{d - b} + a\epsilon, \quad a \in \{\pm 1\}.
\]
We will check that for \(\epsilon > 0\) small enough, \(p < 2\alpha + 2\) or \(\frac{d - d - \frac{d}{q} = \frac{2}{p} > \frac{1}{\alpha+1}\). By a direct computation, it is equivalent to
\[
d[\alpha^2 + (d - 2 + 2b)\alpha + 2b - 4] + a\epsilon(d - b)[d(\alpha + 1) - 2] > 0.
\]
Since \(\alpha \geq \frac{4 - 2b}{3} > \alpha_0\) (see (6.1)), we see that \(d[\alpha^2 + (d - 2 + 2b)\alpha + 2b - 4] > 0\). Therefore, the above inequality holds true by taking \(\epsilon > 0\) sufficiently small.

\textbf{Lemma 6.3.} Let \(d = 3\). Let
\[
b \in \left(0, \frac{5}{4}\right), \quad \alpha \in \left[\frac{4 - 2b}{3}, 3 - 2b\right).
\]
Then there exist \((p_1, q_1), (p_2, q_2)\) ∈ \(S\) satisfying \(2\alpha + 2 > p_1, p_2\) and \(q_1, q_2 \in (3, 6)\) such that

\[
\|x|^{-b} |u|^{\alpha} u\|_{S'(L^2, I)} \lesssim \left(\|u\|^\alpha_{L^2_t(I, L^{q_1}_x)} + \|u\|^\alpha_{L^2_t(I, L^{q_2}_x)} \right) \|u\|_{S(L^2, I)},
\]

(6.12)

\[
\|\nabla (x|^{-b} |u|^{\alpha} u)\|_{S'(L^2, I)} \lesssim \left(\|u\|^\alpha_{L^2_t(I, L^{q_1}_x)} + \|u\|^\alpha_{L^2_t(I, L^{q_2}_x)} \right) \|\nabla\| u\|_{S(L^2, I)},
\]

(6.13)

where \(m_1 = \frac{\alpha p_1}{p_1 - 2}\) and \(m_2 = \frac{\alpha p_2}{p_2 - 2}\).

Proof. We firstly note that by using the same lines as in the proof of Lemma 6.2, the following estimates

\[
\|x|^{-b} |u|^{\alpha} u\|_{S'(L^2, I)} \lesssim \left(\|u\|^\alpha_{L^2_t(I, L^{q_1}_x)} + \|u\|^\alpha_{L^2_t(I, L^{q_2}_x)} \right) \|u\|_{S(L^2, I)},
\]

(6.14)

still hold true for \(d = 3, b \in (0, 2)\) and \(\alpha \in [\alpha_*, \alpha^*]\). It remains to estimate \(\|x|^{-b-1} |u|^{\alpha} u\|_{S'(L^2, I)}\).

To do this, we divide this term into two parts on \(B\) and on \(B^c\) which are denoted by \(B_{12}\) and \(B_{22}\) respectively. By Hölder’s inequality and Remark 2.1,

\[
B_{12} \leq \|x|^{-b-1} |u|^{\alpha} u\|_{L^p_t(I, L^{q_1}_{x}(B))} \lesssim \|x|^{-b-1} \|L^q_t(I, L^{q_1}_{x})\| \|u\|_{L^p_t(I, L^{q_1}_{x})} \lesssim \|u\|_{L^m_t(I, L^{q_1}_{x})} \|\nabla\| u\|_{L^p_t(I, L^{q_1}_{x})},
\]

provided that \((p_1, q_1)\) ∈ \(S\) and

\[
\frac{1}{q_1} = \frac{1}{\gamma_1} + \frac{1}{\nu_1}, \quad \frac{d}{\gamma_1} > b + 1, \quad \frac{1}{\nu_1} = \frac{\alpha}{q_1} + \frac{1}{n_1}, \quad \frac{1}{p_1'} = \frac{\alpha}{m_1} + \frac{1}{p_1},
\]

and

\[
q_1 \geq 3, \quad n_1 \in (q_1, \infty) \quad \text{or} \quad \frac{1}{n_1} = \frac{\tau}{q_1}, \quad \tau \in (0, 1).
\]

This implies that

\[
\frac{d}{\gamma_1} = 3 \frac{3(\alpha + 1 + \tau)}{q_1} > b + 1, \quad \frac{\alpha}{m_1} = 1 - \frac{2}{p_1},
\]

Let us choose

\[
q_1 = \frac{3(\alpha + 1 + \tau)}{2 - b} + \epsilon,
\]

(6.15)

for some \(0 < \epsilon \ll 1\) to be chosen later. Since \(\alpha \geq 1 - \frac{2b}{3}\), it is obvious that \(q_1 \geq 3\). Moreover, the condition \(q_1 < 6\) implies \(\alpha + \tau < 3 - 2b\). Thus by choosing \(\tau\) closed to 0, we need \(\alpha < 3 - 2b\). Combining with \(\alpha \geq 1 - \frac{2b}{3}\), we get

\[
\frac{4 - 2b}{3} \leq \alpha < 3 - 2b, \quad 0 < b < \frac{5}{4}.
\]

(6.16)

Thus, for \(b\) and \(\alpha\) satisfying (6.16), we have

\[
B_{12} \lesssim \|u\|_{L^m_t(I, L^{q_1}_{x})} \|\nabla\| u\|_{S(L^2, I)}.
\]

Similarly, we estimate

\[
B_{22} \leq \|x|^{-b-1} |u|^{\alpha} u\|_{L^p_t(I, L^{q_2}_{x}(B^c))} \lesssim \|x|^{-b-1} \|L^q_t(I, L^{q_2}_{x})\| \|u\|_{L^p_t(I, L^{q_2}_{x})} \lesssim \|u\|_{L^m_t(I, L^{q_2}_{x})} \|\nabla\| u\|_{L^p_t(I, L^{q_2}_{x})},
\]

(6.16)
provided that \((p_2, q_2) \in S\) and
\[
\frac{1}{q_2} = \frac{1}{\gamma_2} + \frac{1}{\nu_2}, \quad \frac{d}{\gamma_2} < b + 1, \quad \frac{1}{\nu_2} = \frac{\alpha}{p_2} + \frac{1}{n_2}, \quad \frac{1}{p_2} = \frac{\alpha}{m_2} + \frac{1}{p_2},
\]
and
\[
q_2 \geq 3, \quad n_2 \in (q_2, \infty) \quad \text{or} \quad \frac{1}{n_2} = \frac{\tau}{q_2}, \quad \tau \in (0, 1).
\]
We thus get
\[
\frac{d}{\gamma_2} = 3 - \frac{3(\alpha + 1 + \tau)}{q_2} < b + 1, \quad \frac{\alpha}{m_2} = 1 - \frac{2}{p_2},
\]
Let us choose
\[
q_2 = \frac{3(\alpha + 1 + \tau)}{2 - b} - \epsilon, \quad (6.17)
\]
for some \(0 < \epsilon \ll 1\) to be chosen later. It is easy to see that \(q_2 \in (3, 6)\) for \(0 < b < \frac{5}{4}, \frac{4 - 2b}{3} \leq \alpha < 3 - 2b\) and \(\epsilon > 0\) small enough. We thus obtain
\[
B_{22} \lesssim \|u\|^q_{L^2(I, L^q_{22})} \|\langle \nabla \rangle u\|_{S(L^2, I)}.
\]
It remains to check \(p_1, p_2 < 2\alpha + 2\) for \((p_1, q_1), (p_2, q_2) \in S\) with \(q_1\) and \(q_2\) given in \((6.15)\) and \((6.17)\) respectively. Let us denote \((p, q) \in S\) with
\[
q = \frac{3(\alpha + 1 + \tau)}{2 - b} + a\epsilon, \quad a \in \{\pm 1\}.
\]
The condition \(p < 2\alpha + 2\) is equivalent to
\[
\frac{3}{2} - 3 - \frac{2}{q} > \frac{1}{\alpha + 1}.
\]
A direct computation shows
\[
3[3\alpha^2 + 2b\alpha + 2b - 3 + \tau(3\alpha + 1)] + a\epsilon(2 - b)(3\alpha + 1) > 0.
\]
By taking \(\epsilon > 0\) small enough and \(\tau\) closed to 0, it is enough to have
\[
3\alpha^2 + 2b\alpha + 2b - 3 > 0.
\]
It implies that \(\alpha > \frac{4 - 2b}{3}\). Comparing with \((6.16)\), we see that
\[
\frac{4 - 2b}{3} \leq \alpha < 3 - 2b, \quad b \in \left(0, \frac{5}{4}\right).
\]
The proof is complete. \(\square\)

We also have the following result in the same spirit with Lemma 6.3 in the two dimensional case.

Lemma 6.4. Let \(d = 2\). Let \(b \in (0, 1)\) and \(\alpha \in [\alpha_\ast, \alpha^\ast]\). Then there exist \((p_1, q_1), (p_2, q_2) \in S\) satisfying \(2\alpha + 2 > p_1, p_2\) and \(q_1, q_2 \in (2, \infty)\) such that
\[
\|u\|_{S'(L^2, I)} \lesssim \left(\|u\|^q_{L^q_{1} (I, L^q_{22})} + \|u\|^q_{L^{m_1}_{1} (I, L^{m_1}_{22})}\right) \|\nabla u\|_{S(L^2, I)},
\]
\[
\|\nabla u\|_{S'(L^2, I)} \lesssim \left(\|u\|^q_{L^q_{1} (I, L^q_{22})} + \|u\|^q_{L^{m_2}_{1} (I, L^{m_2}_{22})}\right) \|\langle \nabla \rangle u\|_{S(L^2, I)},
\]
where \(m_1 = \frac{\alpha p_1}{p_1 - 2}\) and \(m_2 = \frac{\alpha p_2}{p_2 - 2}\).
Proof. We firstly note that the following estimates

\[||x|^{-b}|u|^α u||_{S'(L^2,I)} \lesssim \left(||u||_{L^m_{v_1}(I,L^q_{v_1})}^{p_1} + ||u||_{L^m_{v_2}(I,L^q_{v_2})}^{p_2} \right) ||u||_{S(L^2,I)}, \]

\[||x|^{-b}\nabla(\langle u|α u\rangle)||_{S'(L^2,I)} \lesssim \left(||u||_{L^m_{v_1}(I,L^q_{v_1})}^{p_1} + ||u||_{L^m_{v_2}(I,L^q_{v_2})}^{p_2} \right) ||\nabla u||_{S(L^2,I)}, \]

(6.20)

still hold true for \(d = 2, b \in (0,2) \) and \(α \in [α_1, α^*) \) by using the same lines as in the proof of Lemma 6.2. It remains to estimate the term \(||x|^{-b-1}|u|^α u||_{S'(L^2,I)} \). Using the notations given in the proof of Lemma 6.2, we bound this term by \(B_{12} + B_{22} \). By Hölder’s inequality and Remark 2.1,

\[B_{12} \leq ||x|^{-b-1}|u|^α u||_{L^m_{v_1}(I,L^q_{v_1}(B))} \lesssim ||x|^{-b-1}||_{L^m_{1}(I,L^q_{1})} ||u||_{L^m_{v_1}(I,L^q_{v_1})} \]

provided that \((p_1, q_1) \in S \) and

\[\frac{1}{q_1} = \frac{1}{γ_1} + \frac{1}{v_2}, \quad \frac{2}{γ_1} > b + 1, \quad \frac{1}{v_2} = \frac{α}{q_1} + \frac{1}{n_1}, \]

and

\[q_1 \geq 2, \quad n_1 \in (q_1, \infty) \quad \text{or} \quad \frac{1}{n_1} = \frac{τ}{q_1}, \quad τ \in (0,1). \]

These conditions imply that

\[\frac{2}{γ_1} = 2 - \frac{2(γ_1 + 1 + τ)}{q_1} > b + 1, \quad \frac{α}{n_1} = 1 - \frac{2}{p_1}. \]

Let us choose

\[q_1 = \frac{2(α + 1 + τ)}{1 - b} + ε, \]

(6.21)

for some \(0 < ε \ll 1 \) to be chosen later. It is obvious that \(q_1 \in (2, \infty) \) for any \(τ \in (0,1) \). We thus obtain

\[B_{12} \lesssim ||u||_{L^m_{v_1}(I,L^q_{v_1})} ||\nabla u||_{S(L^2,I)}. \]

Similarly,

\[B_{22} \leq ||x|^{-b-1}|u|^α u||_{L^m_{v_2}(I,L^q_{v_2}(B'))} \lesssim ||x|^{-b-1}||_{L^m_{2}(I,L^q_{2})} ||u||_{L^m_{v_2}(I,L^q_{v_2})} \]

provided that

\[\frac{1}{q_2} = \frac{1}{γ_2} + \frac{1}{v_2}, \quad \frac{2}{γ_1} < b + 1, \quad \frac{1}{v_2} = \frac{α}{q_2} + \frac{1}{n_2}, \]

and

\[q_2 \geq 2, \quad n_2 \in (q_2, \infty) \quad \text{or} \quad \frac{1}{n_2} = \frac{τ}{q_2}, \quad τ \in (0,1). \]

We learn from these conditions that

\[\frac{d}{γ_2} = 2 - \frac{2(α + 1 + τ)}{q} < b + 1, \quad \frac{α}{m_2} = 1 - \frac{2}{p_2}. \]

Let us choose

\[q_2 = \frac{2(α + 1 + τ)}{1 - b} - ε, \]

(6.22)
for some $0 < \epsilon \ll 1$ small enough. By choosing $\epsilon > 0$ sufficiently small, we have $q_2 \in (2, \infty)$ for any $\tau \in (0,1)$. We get

$$B_{22} \lesssim \|u\|_{L^m_x(I, L^q_t)}^{o} \|\nabla u\|_{S(L^2, I)}.$$

To complete the proof, we need to check Proposition 6.5.

or

$$\alpha \geq 1$$

This implies τ any $\epsilon < 1$ small enough and τ closed to 0, this condition holds true provided $\alpha^2 + b\alpha + b - 1 > 0$. This implies $\alpha > 1 - b$ which is satisfied since $\alpha \in [\alpha_*, \alpha^*]$. The proof is complete. \hfill \Box

As a direct consequence of Lemmas 6.2, 6.3, 6.4, we have the following global H^1-Strichartz bound of solutions to the defocusing (INLS).

Proposition 6.5. Let

$$d \geq 4, \ b \in (0,2), \ \alpha \in [\alpha_*, \alpha^*],$$

or

$$d = 3, \ b \in \left(0, \frac{5}{4}\right), \ \alpha \in [\alpha_*, 3 - 2b],$$

or

$$d = 2, \ b \in (0,1), \ \alpha \in [\alpha_*, \alpha^*].$$

Let $u_0 \in \Sigma$ and u be the global solution to the defocusing (INLS). Then $u \in L^p(\mathbb{R}, W^{1,q}(\mathbb{R}^d))$ for any Schrödinger admissible pair (p,q).

Proof. We have from the Duhamel formula,

$$u(t) = e^{it\Delta}u_0 - i \int_0^t e^{i(t-s)\Delta} |x|^{-b} |u(s)|^\alpha u(s) ds. \hspace{1cm} (6.23)$$

Let $0 \leq T \leq t$. We apply Lemmas 6.2, 6.3, 6.4 with $I = (T, t)$ and use the conservation of mass to get

\[\|u\|_{S(I)} \leq C \|u(T)\|_{H^1_x} + C \|\nabla (|x|^{-b} |u|^{\alpha} u)\|_{S(I)} \]

\[\leq C \|u_0\|_{H^1_x} + C \left(\|u\|_{L^m_x(I, L^q_t)}^{o} + \|u\|_{L^{o,q}_x(I, L^{\infty}_t)}^{o} \right) \|u\|_{S(I)}, \]

where $(p_i, q_i) \in S$ satisfy $p_i < 2\alpha + 2, q_i \in (2, 2^*)$ and $m_i = \frac{\alpha p_i}{p_i - 2}$ for $i = 1, 2$. Here $2^* = \frac{2d}{d - 2}$ if $d \geq 3$ and $2^* = \infty$ if $d = 2$. Note that the constant C is independent of I and may change from line to line. The norm $\|u\|_{L^m_x(I, L^q_t)}^{o}$ can be written as

\[\left(\int_T^t \|u(s)\|_{L^m_x}^{m_1} ds\right)^{\frac{1}{m_1}} = \left(\int_T^t \|u(s)\|_{L^m_x}^{m_1} ds\right)^{\frac{p_1}{p_1 - 2}}. \]

By the decay of global solutions given in Theorem 1.3, we see that

\[\|u(s)\|_{L^m_x} \lesssim s^{-d\left(\frac{1}{2} - \frac{b}{\alpha}\right)} = s^{-\frac{2}{2^*} - \frac{b}{\alpha}}, \] so \[\|u(s)\|_{L^m_x}^{m_1} \lesssim s^{-\frac{2}{2^*} - \frac{b}{\alpha}}. \]

\[\text{See (3.26) for the definition of } \|u\|_{S(I)}. \]
Since \(p_i < 2\alpha + 2 \) or \(\frac{2\alpha}{p_i - 2} > 1 \), by choosing \(T > 0 \) large enough,

\[
C \left(\int_T^t \| u(s) \|_{L_{x,t}^{\frac{2\alpha}{p_i-2}}}^{\frac{2\alpha}{p_i-2}} \, ds \right)^{\frac{p_i-2}{2\alpha}} \leq \frac{1}{4}.
\]

We thus obtain

\[
\| u \|_{S(I)} \leq C + \frac{1}{2} \| u \|_{S(I)} \quad \text{or} \quad \| u \|_{S(I)} \leq 2C.
\]

Letting \(t \to +\infty \), we obtain \(\| u \|_{S((T, +\infty))} \leq 2C \). Similarly, one can prove that \(\| u \|_{S((T^*, -T))} \leq 2C \). Combining these two bounds and the local theory, we prove \(u \in L^p(\mathbb{R}, W^{1,2}(\mathbb{R}^d)) \) for any Schrödinger admissible pair \((p, q)\).

\[\square \]

Remark 6.6. Using this global \(H^1 \)-Strichartz bound, one can obtain easily (see the proof of Theorem 1.4 given below) the scattering in \(H^1 \) provided that \(u_0 \in \Sigma \). But one does not know whether the scattering states \(u_0^\pm \) belong to \(\Sigma \).

In order to show the scattering states \(u_0^\pm \in \Sigma \), we need to show the global \(L^2 \)-Strichartz bound for the weighted solutions \((x + 2it\nabla)u(t)\). To do this, we need the following estimates on the nonlinearity.

Lemma 6.7. 1. Let

\[
d = 3, \quad b \in (0, 1), \quad \alpha \in \left(\frac{5 - 2b}{3}, 3 - 2b \right).
\]

Then there exist \((p_1, q_1), (p_2, q_2) \in S\) satisfying \(\alpha + 1 > p_1, p_2 \) and \(q_1, q_2 \in (3, 6) \) such that

\[
\| |x|^{-\frac{b}{2}} \| u^n \|_{S^m_{L^2(I\times \mathbb{R})}} \lesssim \left(\| u \|_{L^m_{t}\left(I; L^{q_2}_{x}\right)}^{q_2} + \| u \|_{L^m_{t}\left(I; L^{q_1}_{x}\right)}^{q_1} \right) \| \langle \nabla \rangle u \|_{S(L^2, I)}.
\]

2. Let

\[
d = 2, \quad b \in (0, 1), \quad \alpha \in (\alpha^*, \alpha^*).
\]

Then there exist \((p_1, q_1), (p_2, q_2) \in S\) satisfying \(\alpha + 1 > p_1, p_2 \) and \(q_1, q_2 \in (2, \infty) \) such that

\[
\| |x|^{-\frac{b}{2}} \| u^n \|_{S^m_{L^2(I\times \mathbb{R})}} \lesssim \left(\| u \|_{L^m_{t}\left(I; L^{q_2}_{x}\right)}^{q_2} + \| u \|_{L^m_{t}\left(I; L^{q_1}_{x}\right)}^{q_1} \right) \| \langle \nabla \rangle u \|_{S(L^2, I)}.
\]

Proof. In the case \(d = 3 \), we use the same argument as in the proof of Lemma 6.3 with

\[
q_1 = \frac{3(\alpha + 1 + \tau)}{2 - b} + \epsilon, \quad q_2 = \frac{3(\alpha + 1 + \tau)}{2 - b} - \epsilon
\]

for some \(\epsilon > 0 \) small enough and \(\tau \) closed to 0. It remains to check \(\alpha + 1 > p_1, p_2 \) where \((p_1, q_1), (p_2, q_2) \in S\). Let us denote \((p, q) \in S\) with

\[
q = \frac{3(\alpha + 1 + \tau)}{2 - b} + a\epsilon, \quad a \in \{\pm 1\}.
\]

The condition \(p < \alpha + 1 \) is equivalent to

\[
\frac{3}{2} - \frac{3}{q} = \frac{2}{p} > \frac{2}{\alpha + 1}.
\]

An easy computation shows

\[
3[3\alpha^2 + 2(b - 1)\alpha + 2b - 5 + \tau(3\alpha - 1)] + a\epsilon(2 - b)(3\alpha - 1) > 0.
\]

By taking \(\epsilon \) and \(\tau \) small enough, it is enough to show

\[
3\alpha^2 + 2(b - 1)\alpha + 2b - 5 > 0.
\]

This implies that \(\alpha > \frac{5 - 2b}{3} \). Comparing with the assumptions \(b \in (0, \frac{2}{3}) \) and \(\alpha \in \left[\frac{4 - 2b}{3}, 3 - 2b \right] \) of Lemma 6.3, we have

\[
b \in (0, 1), \quad \alpha \in \left(\frac{5 - 2b}{3}, 3 - 2b \right).
\]
The case $d = 2$ is treated similarly. As in the proof of Lemma 6.4, we choose
\[q_1 = \frac{2(\alpha + 1 + \tau)}{1 - b} + \epsilon, \quad q_2 = \frac{2(\alpha + 1 + \tau)}{1 - b} - \epsilon, \]
for some $\epsilon, \tau > 0$ small enough. As above, let us denote $(p, q) \in S$ with
\[q = \frac{2(\alpha + 1 + \tau)}{1 - b} + a\epsilon, \quad a \in \{\pm 1\}. \]
The condition $p < \alpha + 1$ is equivalent to
\[1 - \frac{2}{q} = \frac{2}{p} > \frac{2}{\alpha + 1}. \]
An easy computation shows
\[2[\alpha^2 + (b - 1)\alpha + b - 2 + \tau(\alpha - 1)] + a\epsilon(1 - b)(\alpha - 1) > 0. \]
By taking ϵ and τ small enough, it is enough to show
\[\alpha^2 + (b - 1)\alpha + b - 2 > 0. \]
This implies that $\alpha > 1 - b$ which is always satisfied for $\alpha \in [\alpha_*, \alpha^*]$. The proof is complete. \qed

Proposition 6.8. Let d, b and α be as in Theorem 1.4. Let $u_0 \in \Sigma$ and u be the global solution to the defocusing (INLS). Set
\[w(t) := (x + 2it\nabla)u(t). \]
Then $w \in L^p(\mathbb{R}, L^q(\mathbb{R}^d))$ for every Schrödinger admissible pair (p, q).

Proof. We firstly notice that $x + 2it\nabla$ commutes with $i\partial_t + \Delta$. By Duhamel’s formula,
\[w(t) = e^{it\Delta}xu_0 - i \int_0^t e^{i(t-s)\Delta}(x + 2is\nabla)((x + 2is\nabla)(|x|^{-b}|u(s)|^\alpha u(s)))ds. \]
(6.24)
Let v be as in (4.8). By (4.10), we have
\[|(x + 2it\nabla)(|x|^{-b}|u|^\alpha v)| = 2t||\nabla(|x|^{-b}|v|^\alpha v)|, \quad |v| = |u|, \quad 2t||\nabla v| = |w|. \]

Case 1: $d \geq 4$, Strichartz estimates and Lemma 6.2 show that for any $t > 0$ and $I = (0, t)$,
\[\|w\|_{S(L^2, I)} \lesssim \|xu_0\|_{L^2_x} + \|(x + 2is\nabla)(|x|^{-b}|u|^\alpha u)\|_{S'(L^2, I)} \lesssim \|xu_0\|_{L^2_x} + \|2s|\nabla(|x|^{-b}|v|^\alpha v)\|_{S'(L^2, I)}. \]
Let $0 \leq T < t$. We bound
\[\|2s|\nabla(|x|^{-b}|v|^\alpha v)\|_{S'(L^2, I)} \leq \|2s|\nabla(|x|^{-b}|v|^\alpha v)\|_{S'(L^2, (0, T))} + \|2s|\nabla(|x|^{-b}|v|^\alpha v)\|_{S'(L^2, (T, I))} = A + B. \]
The term A is treated as follows. By Lemma 6.2 and keeping in mind that $|v| = |u|, 2s|\nabla v| = |w|$, we bound
\[A \lesssim \left(\|u\|_{L^{\infty}_{x,t}(0, T), L^\infty_x} + \|u\|_{L^\infty_{x,t}(0, T), L^p_x} \right) \|2s|\nabla v|_{S(L^2, I)} \]
\[\lesssim \left(\|u\|_{L^{\infty}_{x,t}(0, T), L^\infty_x} + \|u\|_{L^\infty_{x,t}(0, T), L^p_x} \right) \|w|_{S(L^2, I)}, \]
for some $(p_i, q_i) \in S$ satisfy $p_i < 2\alpha + 2, q_i \in (2, 2^*)$ and $m_i = \frac{\alpha p_i}{p_i - 2}$ for $i = 1, 2$. We next estimate
\[\|u\|_{L^{\infty}_{x,t}(0, T), L^\infty_x} \lesssim T^{\frac{m}{m_i}} \|u\|_{L^\infty_{x,t}(0, T), H^m_x} < \infty, \quad i = 1, 2. \]
Here the time $T > 0$ is large but fixed and $u \in L^\infty_t((0,T),H_x^1)$ by the local theory. We also have $\|w\|_{S(L^2,(0,T))} < \infty$ which is proved in the Appendix. This shows the boundedness of A. For the term B, we bound

$$B \lesssim \left(\|u\|_{L^1_t((T,\infty),L_x^1)}^{p_1} + \|u\|_{L^2_t((T,\infty),L_x^2)}^{p_2} \right) \|2s|\nabla v|\|_{S(L^2,T)}$$

for some $(p_1, q_1) \in S$ satisfy $p_i < 2\alpha + 2, q_i \in (2, 2^\star)$ and $m_i = \frac{\alpha q_i}{p_i - 2}$ for $i = 1, 2$. By the same argument as in the proof of Proposition 6.5, we see that $\|u\|_{L^{\infty}_t((T,\infty))}$ is small for $T > 0$ large enough. Therefore,

$$\|w\|_{S(L^2,T)} \leq C + \frac{1}{2} \|w\|_{S(L^2,I)} \quad \text{or} \quad \|w\|_{S(L^2,T)} \leq 2C.$$

Letting $t \to +\infty$, we prove that $\|w\|_{S(L^2,(0,+)\infty))} \leq 2C$. Similarly, one proves as well that $\|w\|_{S(L^2,(-\infty,0))} \leq 2C$. This shows $w \in L^p(\mathbb{R}, L^q(\mathbb{R}^d))$ for any Schrödinger admissible pair (p, q).

Case 2: $d = 2, 3$. We bound

$$\|w\|_{S(L^2,t)} \lesssim \|xu_0\|_{L^2} + \|(x + 2i\phi v)| |x|^{-\beta}|u|^\alpha u\|_{S'(L^2, I)}$$

$$\lesssim \|xu_0\|_{L^2} + \|2s|\nabla(x^{-\beta}|v|^\alpha v)|\|_{S'(L^2, I)}$$

$$\lesssim \|xu_0\|_{L^2} + \|2s|x|^{-\beta}|\nabla|v|^\alpha v)|\|_{S'(L^2, I)} + \|2s|x|^{-\beta-1}|v|^\alpha v|\|_{S'(L^2, I)}$$

$$\lesssim \|xu_0\|_{L^2} + A + B.$$

The term A is treated similarly as in Case 1 using (6.14), (6.20). It remains to bound the term B. By Lemma 6.7,

$$B \lesssim \left(\|s|\frac{\hat{\phi}}{s}| u\|_{L^1_t((I,\infty),L_x^1)}^{m_1} + \|s|\frac{\hat{\phi}}{s}| u\|_{L^2_t((I,\infty),L_x^2)}^{m_2} \right) \|u\|_{S(L^2,T)},$$

for some $(p_1, q_1) \in S$ satisfy $p_i < \alpha + 1, q_i \in (2, 2^\star)$ and $m_i = \frac{\alpha q_i}{p_i - 2}$ for $i = 1, 2$. We learn from Proposition 6.5 that $\|u\|_{S(L^2,t)} < \infty$. Let us bound $\|s|\frac{\hat{\phi}}{s}| u\|_{L^{\infty}_t((I,\infty),L_x^1)}$ for $i = 1, 2$. To do so, we split I into $(0,T)$ and (T, ∞). By Sobolev embedding

$$\|s|\frac{\hat{\phi}}{s}| u\|_{L^{\infty}_t((0,T),L_x^1)} \lesssim T^{1+\frac{\alpha m_1}{p_1}} \|u\|_{L^{\infty}_t((0,T),H_x^{1})} < \infty.$$

We next write

$$\|s|\frac{\hat{\phi}}{s}| u\|_{L^1_t((T,\infty),L^1_x)} = \left(\int_T^T \left| s \frac{\hat{\phi}}{s} \right|^m u(s)^{m} L_x^2 \right)^{\frac{1}{m}}.$$

By the decay of global solutions given in Theorem 1.3, we see that

$$|s|^{\frac{\alpha}{m}} \|u(s)|_{L_x^2}^{m} \lesssim |s|^{-m \alpha (\frac{d}{p_1} - \frac{1}{2})} = |s|^{-m \alpha \frac{p_1}{p_1 - 2}}.$$

Since $p_1 < \alpha + 1$ or $\frac{2\alpha - 2}{p_1 - 2} > 1$, by taking $T > 0$ sufficiently large, we see that $\|s|\frac{\hat{\phi}}{s}| u\|_{L^{\infty}_t((T,\infty),L_x^1)}$ is small. This proves that the term B is bounded for some $T > 0$ large enough. Therefore,

$$\|w\|_{S(L^2,T)} \leq C + \frac{1}{2} \|w\|_{S(L^2,I)} \quad \text{or} \quad \|w\|_{S(L^2,T)} \leq 2C.$$

By letting t tends to $+\infty$, we complete the proof. \qed

We are now able to prove Theorem 1.4. The proof follows by a standard argument (see e.g. [2] or [19]).
Proof of Theorem 1.4. Let u be the global solution to the defocusing (INLS). By the time reversal symmetry, we only consider the positive time. The Duhamel formula (6.23) implies

$$e^{-it\Delta}u(t) = u_0 - i \int_0^t e^{-is\Delta} |x|^{-b}|u(s)|^\alpha u(s)ds.$$

Let $0 < t_1 < t_2 < \infty$. By Strichartz estimates and Lemmas 6.2, 6.3, 6.4,

$$\|e^{-t\Delta}u(t_2) - e^{-t\Delta}u(t_1)\|_{L_x^p} = \left\| \int_{t_1}^{t_2} e^{-is\Delta} |x|^{-b}|u(s)|^\alpha u(s)ds \right\|_{L_x^p} \lesssim \|\|x|^{-b}|u(s)|^\alpha u(s)\|_{L_x^p} + \|\|\nabla |x|^{-b}|u(s)|^\alpha u(s)\|_{L_x^p} \lesssim \left(\|u\|_{L_t^{2m}(t_1,t_2),L_x^{2}((t_1,t_2),L_x^{2})}^p \right) \|u\|_{S(t(t_1,t_2))} \to 0,$$

where $(p, q) \in S$ satisfy $p_i < 2\alpha + 2$, $q_i \in (2, 2^*)$ and $m_i = \frac{m}{p_i - 2}$ for $i = 1, 2$. By the same argument as in Proposition 6.5 and the global bound $\|u\|_{S(R)} < \infty$, we see that

$$\left(\|u\|_{L_t^{2m}(t_1,t_2),L_x^{2}((t_1,t_2),L_x^{2})}^p \right) \|u\|_{S(t(t_1,t_2))} \to 0,$$

as $t_1, t_2 \to +\infty$. This shows that $e^{-it\Delta}u(t)$ is a Cauchy sequence in $H^1(R^d)$ as $t \to +\infty$. Therefore, there exists $u_0^\ast \in H^1(R^d)$ such that $e^{-it\Delta}u(t) \to u_0^\ast$ as $t \to +\infty$. Note that this convergence holds for d, b and α as in Proposition 6.5. We now show that this scattering state u_0^\ast belongs to Σ. To do so, we firstly observe that the operator $x + 2it\nabla$ can be written as

$$x + 2it\nabla = e^{-it\Delta}x e^{-it\Delta}.$$

Indeed, since $x + 2it\nabla$ commutes with $\partial_t + \Delta$, we see that if u is a solution to the linear Schrödinger equation, then so is $(x + 2it\nabla)u$. Thus, if we set $u(t) = e^{it\Delta} \varphi$, then

$$(x + 2it\nabla)u(t) = e^{it\Delta} x\varphi.$$

By setting $\varphi = e^{-it\Delta} \psi$, we see that

$$(x + 2it\nabla)\psi = e^{it\Delta} x e^{-it\Delta} \psi,$$

which proves (6.25). Using the Duhamel formula (6.24) and (6.25), we have

$$xe^{-it\Delta}u(t) = xu_0 - i \int_0^t e^{-is\Delta}(x + 2is\nabla)(|x|^{-b}|u(s)|^\alpha u(s))ds.$$

Case 1: $d \geq 4$. By Strichartz estimates, Lemma 6.2 and using the same argument as in Proposition 6.8, we see that

$$\|xe^{-t\Delta}u(t_2) - xe^{-t\Delta}u(t_1)\|_{L_x^2} = \left\| \int_{t_1}^{t_2} e^{-is\Delta}(x + 2is\nabla)(|x|^{-b}|u(s)|^\alpha u(s))ds \right\|_{L_x^2} \lesssim \|x + 2is\nabla\|_{L_x^p} \|u\|_{L_x^p} + \|\|\nabla (|x|^{-b}|u|)^\alpha u\|_{L_x^p} \lesssim \left(\|u\|_{L_t^{2m}(t_1,t_2),L_x^{2}((t_1,t_2),L_x^{2})}^p \right) \|w\|_{S(t(t_1,t_2))} \to 0,$$

where $(p, q) \in S$ satisfy $p_i < 2\alpha + 2$, $q_i \in (2, 2^*)$ and $m_i = \frac{m}{p_i - 2}$ for $i = 1, 2$. Arguing as in the proof of Proposition 6.8 and the global bound $\|w\|_{S(L^2, R)} < \infty$, we see that

$$\left(\|u\|_{L_t^{2m}(t_1,t_2),L_x^{2}((t_1,t_2),L_x^{2})}^p \right) \|w\|_{S(L^2, (t_1,t_2))} \to 0,$$
as \(t_1, t_2 \to +\infty \).

Case 2: \(d = 2, 3 \).

\[
\|xe^{-t_2\Delta}u(t_2) - xe^{-t_1\Delta}u(t_1)\|_{L^2_x} = \left\| \int_{t_1}^{t_2} e^{-its\Delta}(x + 2is\nabla)(|x|^{-b}|u(s)|^\alpha u(s))ds \right\|_{L^2_x}
\]
\[
\lesssim \| (x + 2is\nabla)(|x|^{-b}|u|^\alpha u) \|_{S'(L^2, (t_1, t_2))}
\]
\[
\lesssim \| 2|s|\nabla(|x|^{-b}|v|^\alpha v) \|_{S'(L^2, (t_1, t_2))}
\]
\[
\lesssim \| 2|s||x|^{-b}\nabla(|v|^\alpha v) \|_{S'(L^2, (t_1, t_2))} + \| 2|s||x|^{-b-1}|v|^\alpha v \|_{S'(L^2, (t_1, t_2))}
\]
\[
= A + B.
\]

For term \(A \), we use (6.14), (6.20) and the fact \(|v| = |u|, |2s|\nabla v = |v| \) to have
\[
A \lesssim \left(\| u \|^\alpha_{L^m_1((t_1, t_2), L^{p_1}_x)} + \| u \|^\alpha_{L^m_2((t_1, t_2), L^{p_2}_x)} \right) \| 2|s|\nabla v \|_{S'(L^2, (t_1, t_2))}
\]
\[
\lesssim \left(\| u \|^\alpha_{L^m_1((t_1, t_2), L^{p_1}_x)} + \| u \|^\alpha_{L^m_2((t_1, t_2), L^{p_2}_x)} \right) \| u \|_{S(L^2, (t_1, t_2))},
\]
(6.26)

for some \((p_i, q_i) \in S \) satisfy \(p_i < 2\alpha + 2, q_i \in (2, 2^*) \) and \(m_i = \frac{\alpha}{p_i - 2} \) for \(i = 1, 2 \). Similarly, by Lemma 6.7,
\[
B \lesssim \left(\| |s|^2 u \|^\alpha_{L^m_1((t_1, t_2), L^{p_1}_x)} + \| |s|^2 u \|^\alpha_{L^m_2((t_1, t_2), L^{p_2}_x)} \right) \| u \|_{S(L^2, (t_1, t_2))},
\]
(6.27)

for some \((p_i, q_i) \in S \) satisfy \(p_i < \alpha + 2, q_i \in (2, 2^*) \) and \(m_i = \frac{\alpha}{p_i - 2} \) for \(i = 1, 2 \). By the same argument as in Case 2 of the proof of Proposition 6.8, we see that the right hand sides of (6.26) and (6.27) tend to 0 as \(t_1, t_2 \to +\infty \).

In both cases, we show that \(xe^{-it\Delta}u(t) \) is a Cauchy consequence in \(L^2 \) as \(t \to +\infty \). We thus have \(xu_0^+ \in L^2 \) and so \(u_0^+ \in \Sigma \). Moreover,
\[
u_0^+(t) = u_0 - i \int_t^\infty e^{-is\Delta}|x|^{-b}|u(s)|^\alpha u(s)ds.
\]

By repeating the above estimates, we prove as well that
\[
\|e^{-it\Delta}u(t) - u_0^+\|_{\Sigma} \to 0,
\]
as \(t \to +\infty \). The proof is complete. \(\square \)

Remark 6.9. We end this section by giving some comments on the scattering in \(\Sigma \) for \(\alpha \in (0, \alpha_*) \). In this case, by Theorem 1.3, we have the following decay of global solutions to the defocusing (INLS)
\[
\| u(t) \|_{L^\infty_x} \lesssim |t|^{-\frac{(2b+d\alpha)}{4}} \left(\frac{\alpha}{2} - 1 \right),
\]
(6.28)

for \(q \) as in (1.13). Let us consider the easiest case \(d \geq 4 \). In order to obtain the global \(H^1 \) Strichartz bound on \(u \) and the global \(L^2 \) Strichartz bound on \(w \) (see Proposition 6.5 and Proposition 6.8), we need \(\| u \|^\alpha_{L^m_p((T, t), L^p_x)} \) to be small as \(T > 0 \) large enough, where \((p, q) \in S \) and \(m = \frac{\alpha}{p - 2} \). This norm can be written as
\[
\left(\int_T^t \| u(s) \|^m_{L^p_x} ds \right)^{\frac{1}{m}} = \left(\int_T^t \| u(s) \|^\alpha_{L^p_x} ds \right)^{\frac{p-2}{p}}.
\]
(6.29)

Using (6.28),
\[
\| u(s) \|^\alpha_{L^p_x} \lesssim s^{-\frac{\alpha(2b+d\alpha)}{2(p-2)}}.
\]
To make the right hand side of (6.29) small, we need \(\frac{\alpha(2b+d\alpha)}{4(b+d^2)} > 0 \) or equivalently \(2p < 4 + \alpha(2b+d\alpha) \) hence
\[
\frac{d}{2} - \frac{d}{q} = \frac{2}{p} > \frac{4}{4 + \alpha(2b + d\alpha)}.
\] (6.30)
Let us choose \(q \) as in the proof of Lemma 6.2, i.e.
\[
q = \frac{d(\alpha + 2)}{d-b} + a\varepsilon, \quad a \in \{\pm 1\},
\]
for some \(\varepsilon > 0 \) small enough. We see that (6.30) is equivalent to
\[
d[d^2\alpha^3 + 4bd\alpha^2 + (4d - 8 + 4b^2)\alpha + 8b - 16] + a\varepsilon(d - b)[4d - 8 + d\alpha(2b + d\alpha)] > 0.
\]
By taking \(\varepsilon > 0 \) small enough, it is enough to show
\[
f(\alpha) := d^2\alpha^3 + 4bd\alpha^2 + (4d - 8 + 4b^2)\alpha + 8b - 16 > 0.
\]
Since \(b \in (0,2) \), we see that \(f(0) = 8b - 16 < 0 \) and \(f(\alpha_*) = f(\frac{4-2b}{d}) = \frac{8(4-2b)}{d} > 0 \). Hence \(f(\alpha) = 0 \) has a solution in \((0,\alpha_*) \). Thus, the inequality \(f(\alpha) > 0 \) holds true for a sub interval of \((0,\alpha_*) \). By the same argument as for the case \(\alpha \in [\alpha_*,\alpha^*] \), we can obtain a similar scattering result in \(\Sigma \) for a certain range of \(\alpha \in (0,\alpha_*) \).

APPENDIX A. LOCAL L^2-STRICHARZT BOUND OF WEIGHTED SOLUTIONS

Lemma A.1. Let \(d, b \) and \(\alpha \) be as in Theorem 1.2. Let \(u_0 \in \Sigma \) and \(u \) be the corresponding global solutions to the defocusing (INLS). Set
\[
w(t) = (x + 2it\nabla)u(t).
\]
Then \(w \in L^p_{loc}(\mathbb{R}, L^q(\mathbb{R}^d)) \) for any Schrödinger admissible pair \((p,q) \).

Proof. We follow the argument of Tao-Visan-Zhang [20]. For simplifying the notation, we denote \(H(t) = x + 2it\nabla \). We will show that \(\|Hu\|_{S(L^2, I)} < \infty \) for any finite time interval \(I \) of \(\mathbb{R} \). By the time reversal symmetry, we may assume \(I = [0,T] \). We split \(I \) into a finite number of subintervals \(I_j = [t_j,t_{j+1}] \) such that \(|I_j| < \epsilon \) for some small constant \(\epsilon > 0 \) to be chosen later.

Case 1: \(d \geq 4, b \in (0,2) \) or \(d = 3, b \in (0,1) \) and \(\alpha \in (0,\alpha^*) \). By (6.25), we see that on each interval \(I_j \),
\[
H(t)u(t) = e^{i(t-t_j)\Delta}H(t_j)u(t_j) - i \int_{t_j}^t e^{i(t-s)\Delta}H(s)(|x|^{-b}|u(s)|^\alpha u(s))ds.
\]
Let \(v \) be as in (4.8). By Strichartz estimates and (3.2) and that \(|v(s)| = |u(s)|, 2s||\nabla v(s)| = |H(s)u(s)| \), we have
\[
\|Hu\|_{S(L^2, I_j)} \lesssim \|H(t_j)u(t_j)\|_{L^2} + \|H(s)(|x|^{-b}|u|^\alpha u)\|_{S(L^2, I_j)}
\]
\[
\lesssim \|H(t_j)u(t_j)\|_{L^2} + \|2s|\nabla (|x|^{-b}|v|^\alpha v)|\|_{S(L^2, I_j)}
\]
\[
\lesssim \|H(t_j)u(t_j)\|_{L^2} + (|I_j|^\theta_1 + |I_j|^\theta_2) \|\nabla u\|_{S(L^2, I_j)} \|2s|\nabla v\|_{S(L^2, I_j)}
\]
\[
\lesssim \|H(t_j)u(t_j)\|_{L^2} + (\theta_1 + \theta_2) \|u\|_{S(I_j)} \|Hu\|_{S(L^2, I_j)}.
\]
Since \(u \in S(\mathbb{R}) \), by choosing \(\epsilon > 0 \) small enough depending on \(T, \|u\|_{S(\mathbb{R})} \), we get
\[
\|Hu\|_{S(L^2, I_j)} \lesssim \|H(t_j)u(t_j)\|_{L^2}.
\]
By induction, we have for each \(j \),
\[
\|Hu\|_{S(L^2, I_j)} \lesssim \|H(0)u(0)\|_{L^2} = \|xu_0\|_{L^2}.
\]
Summing these estimates over all subintervals \(I_j \), we obtain
\[
\|Hu\|_{S(L^2, I)} < \infty.
\]
Case 2: $d = 3, b \in \left[1, \frac{3}{2}\right)$ and $\alpha \in \left(0, \frac{4d-b}{2d-1}\right)$ or $d = 2, b \in (0, 1)$ and $\alpha \in (0, \alpha^*)$. By Strichartz estimates, (3.10), (3.19) and keeping in mind that $|v| = |u|, 2s||\nabla v| = |Hu|$, we bound

$$
\|Hu\|_{S(L^2, I_j)} \lesssim \|H(t_j)u(t_j)\|_{L^2_x} + \|H(s)(|x|^{-b}|u|^\alpha u)\|_{S'(L^2, I_j)}
$$

$$
\lesssim \|H(t_j)u(t_j)\|_{L^2_x} + \|2s|\nabla (|x|^{-b}|v|^\alpha v)\|_{S'(L^2, I_j)}
$$

$$
\lesssim \|H(t_j)u(t_j)\|_{L^2_x} + \left(\|I_j\|^\theta_1 + \|I_j\|^\theta_2\right) \|\nabla \|u\|^\alpha_{S(L^2, I_j)}\|_{S'(L^2, I_j)}
$$

$$
+ \left(\|I_j\|^{1+\theta_1} + \|I_j\|^{1+\theta_2}\right) \|\nabla u\|^\alpha_{S(L^2, I_j)} \|Hu\|_{S(L^2, I_j)}
$$

$$
\lesssim \|H(t_j)u(t_j)\|_{L^2_x} + \left(\epsilon^{\theta_1} + \epsilon^{\theta_2}\right) \|u\|^\alpha_{S(L^2, I_j)} \|Hu\|_{S(L^2, I_j)}
$$

$$
+ \left(\epsilon^{1+\theta_1} + \epsilon^{1+\theta_2}\right) \|u\|_{S(L^2, I_j)}^{\alpha+1}.
$$

Since $\|u\|_{S(\mathbb{R})} < \infty$, by choosing $\epsilon > 0$ small enough depending on T, $\|u\|_{S(\mathbb{R})}$, we get

$$
\|Hu\|_{S(L^2, I_j)} \leq C\|H(t_j)u(t_j)\|_{L^2_x} + C,
$$

for some constant $C > 0$ independent of T. By induction, we get for each j,

$$
\|Hu\|_{S(L^2, I_j)} \leq C\|u_0\|_{L^2_x} + C.
$$

Summing over all subintervals I_j, we complete the proof. \qed

Acknowledgments

The author would like to express his deep thanks to his wife-Uyen Cong for her encouragement and support. He would like to thank his supervisor Prof. Jean-Marc Bouclet for the kind guidance and constant encouragement. He also would like to thank the reviewer for his/her helpful comments and suggestions.

References

[1] L. Bergé, Soliton stability versus collapse, Phys. Rev. E 62, No. 3 (2000), doi: 10.1103/PhysRevE.62.R3071, R3071-R3074.
[2] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10, Courant Institute of Mathematical Sciences, AMS, 2003. 2, 4, 5, 13, 14, 15, 16, 17, 26
[3] T. Cazenave, F. B. Weisler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Commun. Math. Phys. 147 (1992), 75-100.
[4] J. Chen, On a class of nonlinear inhomogeneous Schrödinger equation, J. Appl. Math. Comput. 32 (2010), 237-253.
[5] J. Chen, B. Guo, Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst. Ser. B 8, No. 2 (2007), 357-367.
[6] V. Combet, F. Genoud, Classification of minimal mass blow-up solutions for an L^2 critical inhomogeneous NLS, J. Evol. Equ. No. 2 (2016), doi: 10.1007/s00028-015-0309-z, 483-500.
[7] L. G. Farah, Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ. No. 1 (2016), doi: 10.1007/s00028-01500298-y, 193-208.
[8] L. G. Farah, C. M. Guzman, Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations 262, No. 8 (2017), doi: 10.1016/j.jde.2017.01.013, 4175-4231.
[9] L. G. Farah, C. M. Guzman, Scattering for the radial focusing INLS equation in higher dimensions, preprint arXiv:1703.10988, 2017.
[10] G. Fibich, X. P. Wang, Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Physica D 175 (2003), doi: 10.1016/S0167-2789(02)00626-7, 96-108.
[11] F. Genoud, C. A. Stuart, Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst. 21, No. 1 (2008), doi: 10.3934/dcds.2008.21.137, 137-286.
[12] F. Genoud, An inhomogeneous, L^2-critical, nonlinear Schrödinger equation, Z. Anal. Anwend. 31, No. 3 (2012), doi: 10.4171/ZAA/1460, 283-289.
[13] F. Genoud, *Théorie de bifurcation et de stabilité pour une équation de Schrödinger avec une non-linéarité compacte*, PhD Thesis No. 4233, EPFL 2008.

[14] J. Ginibre, G. Velo, *On a class of nonlinear Schrödinger equations*, J. Funct. Anal. 32 (1979), 1-71.

[15] C. M. Guzman, *On well posedness for the inhomogeneous nonlinear Schrödinger equation*, Nonlinear Anal. 37 (2017), doi: 10.1016/j.na.2017.02.018, 249-286.

[16] Y. Liu, X. P. Wang, K. Wang, *Instability of standing waves of the Schrödinger equations with inhomogeneous nonlinearity*, Trans. Amer. Math. Soc. 358, No. 5 (2006), doi: 10.1090/S0002-9947-05-03763-3, 2105-2122.

[17] F. Merle, *Nonexistence of minimal blow-up solutions of equations $iu_t = -\Delta u - k(x)|u|^{4\alpha}u$ in \mathbb{R}^N*, Ann. Inst. H. Poincaré Phys. Théor. 64, No. 1 (1996), 35-85.

[18] P. Raphael, J. Szeftel, *Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS*, J. Amer. Math. Soc. 24, No. 2 (2011), doi: 10.1090/S0894-0347-2010-00688-1, 471-546.

[19] T. Tao, *Nonlinear dispersive equations: local and global analysis*, CBMS Regional Conference Series in Mathematics 106, AMS, 2006.

[20] T. Tao, M. Visan, X. Zhang, *The nonlinear Schrödinger equation with combined power-type nonlinearities*, Comm. Partial Differential Equations 32 (2007), doi: 10.1080/0360530070158880, 1281-1343.

[21] I. Towers, B. A. Malomed, *Stable (2+1)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity*, J. Opt. Soc. Amer. B Opt. Phys. 19, No. 3 (2002), doi: 10.1364/JOSAB.19.000537, 537-543.

[22] Y. Tsutsumi, *Scattering problem for nonlinear Schrödinger equations*, Ann. Inst. Henri Poincaré, Physique Théorique 43 (1985), 312-347.

[23] J. F. Toland, *Uniqueness of positive solutions of some semilinear Sturm-Liouville problems on the half line*, Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 259-263.

[24] E. Yanagida, *Uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$ in \mathbb{R}^N*, Arch. Ration. Mech. Anal. 115 (1991), 257-274.

[25] S. Zhu, *Blow-up solutions for the inhomogeneous Schrödinger equation with L^2 supercritical nonlinearity*, J. Math. Anal. Appl. 409 (2014), doi: 10.1016/j.jmaa.2013.07.029, 760-776.