Supplementary Table 2. Relative binding energies (in kcal/mol) for G protein binding to US28 Toledo variants bound different chemokines and gp120.

Variant	CX3CL1 ΔΔG	CCL2 ΔΔG	CCL3 ΔΔG	CCL4 ΔΔG	CCL5 ΔΔG	CCL13 ΔΔG	gp120 Indonesian ΔΔG	gp120 Australian ΔΔG
D15E	0	0	0	0	0	0	0	0
E18L	0	0	0	0	0	0	0	0
A19D	0	0	0	0	0	0	0	0
T21A	0	0	0	0	0	0	0	0
F25L	0	0	0	0	0	0	-0.01	0
Y40N	-0.07	-0.19	-0.04	-0.16	-0.08	-0.14	-0.03	0
G50C	-0.13	-0.14	-0.02	+7.98	+1.05	+0.03	-0.16	+0.23
N170D	0	0	0	0	0	0	0	0
R267K	0	+0.01	0	0	0	-0.01	0	0
US28 Toledo 4XT1_A	1	MTPTTTTAELTEFDYDEAATPCVFTDVNLQSKPVTFLFGSIG						
---------------------	-----	---						
	15	~~~~~~~~~~~~~~~~~~~~DYDEDATPCVFTDVNLQSKPVTFLFGSIG						
		**** **						
US28 Toledo 4XT1_A	51	NFLVIFTITWRRRIQCSGDVVFYINLAAADLLFVCCTPLWMQYLLDHNSLA						
	51	NFLVIFTITWRRRIQCSGDVVFYINLAAADLLFVCCTPLWMQYLLD~~~						

US28 Toledo 4XT1_A	101	SVPCTLLTACFYVAMFASLCFITEIALDRYYAIVYMRYRPVKQACLFSIF						
	101	SVPCTLLTACFYVAMFASLCFITEIALDRYYAIVYMRYRPVKQACLFSIF						

US28 Toledo 4XT1_A	151	WWIFAVIIAIPHFMVVTKKNQCMTDYDYLEVSYPILIINVELMLGAFLVIP						
	151	WWIFAVIIAIPHFMVVTKKNQCMTDYDYLEVSYPILIINVELMLGAFLVIP						

US28 Toledo 4XT1_A	201	LSVISYCYYRISRIVAQSRSRHGRIVRVLIAVVLFIIFWLPYHLLTLFV						
	201	LSVISYCYYRISRIVAQSRSRHGRIVRVLIAVVLFIIFWLPYHLLTLFV						

US28 Toledo 4XT1_A	251	DTLKLKLISSCEFERSLKRALILTSEAFCHCCLNHLYFVGTFKFRQ						
	251	DTLKLKLISSCEFERSLKRALILTSEAFCHCCLNHLYFVGTFKFRQ						

US28 Toledo 4XT1_A	301	ELHCLLAEFQRFLFSDVSWYHSMFSRSSRSPRRETSSDTLSDEVCRVS						
	301	ELHCLLAEFR~~~~~~~~~~~~~~~~~~~~~~~~~ ***						

US28 Toledo 4XT1_A	361	QIIP						
		~~~~						
## Supplementary Table 4. Sequence alignment for CCL2.

CCL2	1DOK_A	4XT1_B
1	MKVSAALLCLLLLIAATFIPQGLAQPDAINAPVTCCYNTKISVQRLAS	~~~~~~~~MKVSAALLCLLLLIAATFIPQGLAQPDAINAPVTCCYNTKISVQRLAS
23	~~~~~~~~MQPDAINAPVTCCYNTKISVQRLAS	XHHGTVKCAITCSKMTS~KIPVALLIH
25	~~~~~~~~XHHGTVKCAITCSKMTS~KIPVALLIH	**: ****: *:*:*:*:******

*The regions highlighting are the regions of the respective templates used to model the bound chemokine. Sequence identity/similarity is indicated between the chemokine and the region highlighted. X in the 4XT1_B sequence is pyroglutamic acid.*

## Supplementary Table 5. Sequence alignment for CCL3.

CCL3	3FPU_B	4XT1_B
1	MQVSTAALAVLLCTMALCNQFSASLAADTPAC~~~CFSYTSRQIPQNF	~~~~~~~~MQVSTAALAVLLCTMALCNQFSASLAADTPAC~~~CFSYTSRQIPQNF
24	~~~~~~~~CFSYTSRQIPQNF	~~~~~~~~XHHGTVKCAITCSKMTS~KIPVALLIH
25	~~~~~~~~XHHGTVKCAITCSKMTS~KIPVALLIH	**: ****: *:*:*:*:******

*The regions highlighting are the regions of the respective templates used to model the bound chemokine. Sequence identity/similarity is indicated between the chemokine and the region highlighted. X in the 4XT1_B sequence is pyroglutamic acid.*

## Supplementary Table 6. Sequence alignment for CCL4.

CCL4	3TN2_A	4XT1_B
1	MKLCVTVLSLMLVAAFCSPALSMGPMSDPPTACCFSYTAKLPRNFVVD	~~~~~~~~APMGSDPATACCFSYTAKLPRNFVVD
24	~~~~~~~~APMGSDPATACCFSYTAKLPRNFVVD	XHHGTVKCAITCSKMTS~KIFVALLIH
25	~~~~~~~~XHHGTVKCAITCSKMTS~KIFVALLIH	**: ****: *:*:*:*:******

*The regions highlighting are the regions of the respective templates used to model the bound chemokine. Sequence identity/similarity is indicated between the chemokine and the region highlighted. X in the 4XT1_B sequence is pyroglutamic acid.*
### Supplementary Table 7. Sequence alignment for CCL5.\(^a\)

	1	MKVSAAALAVILIATALCAPASASPYSSDTTPCCFAYIARPLPRAHIKEY
5COY_A	27	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4XT1_B	25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~XHHGVTCAITCSKMTSK~1PVALLIHY

\(^a\)The regions highlighting are the regions of the respective templates used to model the bound chemokine. Sequence identity/similarity is indicated between the chemokine and the region highlighted. X in the 4XT1_B sequence is pyroglutamic acid.

### Supplementary Table 8. Sequence alignment for CCL13.\(^a\)

	1	MKVSAVLLCLLLMTAAFNPGQAQPDALNVSTCCFTSSKISLQRLKS
2RA4_B	26	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4XT1_B	25	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~XHHGVTCAITCSKMTSK~1PVALLIHY

\(^a\)The regions highlighting are the regions of the respective templates used to model the bound chemokine. Sequence identity/similarity is indicated between the chemokine and the region highlighted. X in the 4XT1_B sequence is pyroglutamic acid.
### Supplementary Table 9. Sequence alignment for US28 Toledo modelled for gp120 binding.a

US28 Toledo	1	MTTTTTAELTTEFDYDEAATPCVTDVLNQSKPVTFLFLYGVFLFGSIG																								
6MEO_B	1	MDYQVSSPIXDIX~~~YTSEPQCQINVKQIAARLLLPPLYSLVIFGFVGF																								
4XT1_A	15	~~~~DYDEATPCVTDVLNQSKPVTFLFLYGVFLFGSIG	*	::	*	**	*	**	*	:	::	**	:	:	**	:	:	**	:	:	**					
US28 Toledo	51	NFLVIFITITWRRRISGQVDVVFINLAAADLFLVCTPLWMLQYLLDDHNSLA																								
6MEO_B	51	NFLVILINCKRLKSMTDIYLLNLAISDLFFLLTVPFWAHYYAAQWDFG																								
4XT1_A	48	***	:	:	**	**	:	:	**	:	:	**	:	**	**	:	:	**	:	**	:	:	**	:	:	**
US28 Toledo	101	SVPCTLLACFYMAMFASLCFTFEIADRYYAIY~~~MRYRPVQAACL																								
6MEO_B	101	NFLVIFTI																								
4XT1_A	101	NFLVIFAIIAIPHMVVTKDND~~~QCMTDYDEYPSYIIILN~VE																								
US28 Toledo	147	FSIFWIFIAIIAIPFMVVTKKN~~~QCMTDYDYLEVPSYIIILN~VE																								
6MEO_B	148	TSVTWVVAVFAVFSRSTSQKEGLHYTCSHPSYQQFWKPNFQTLK																								
4XT1_A	147	FSIFWIFIAIIAIPHMVVTKDN~~~QCMTDYDEYPSYIIILN~VE																								
US28 Toledo	192	LMLGAFLPVLPLSVPISYCQYRISRIAVSQS~RHKGRIIVRVLAVVVLVFIIF																								
6MEO_B	192	IVIILVLPLVMVICSGIKCLMLR<=RCKRHRKAVRLIFTMIVYLF																								
4XT1_A	192	LMLGAFLPVLPLSVPISYCQYRISRIAVSQS~RHKGRIIVRVLAVVVLVFIIF																								
US28 Toledo	241	WLPYHTLTFDTVTLKLLLKWISSSCEFERSKRALILTESLAFCHCLNPLL																								
6MEO_B	248	WAPYNIVLHTNFQEFGLNN~CSSNRLQAMQVTETLMTHCCINPIL																								
4XT1_A	241	WLPYHTLTFDTVTLKLLLKWISSSCEFERSKRALILTESLAFCHCLNPLL																								
US28 Toledo	291	YVFVTGKFRQELHCLLAEFRLRSDRDVSYSFDSRFRSRRSRRSRSRRRTSSD																								
6MEO_B	297	YAVFVGKFRQNLVVFQ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																								
4XT1_A	291	YVFVTGKFRQELHCLLAEPR	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																							
US28 Toledo	341	TLSDEVCRVSQIIP																								
6MEO_B	~~~~~~~~~~~~~~~~~~																									
4XT1_A	~~~~~~~~~~~~~~~~~~																									

aThe regions highlighting are the regions of the respective templates used to model the gp120-bound conformation of US28 Toledo. Sequence identity/similarity is indicated between the receptor and the region highlighted. X in the 6MEO_B sequence indicates an unknown residue.
**Supplementary Table 10. Sequence alignment for gp120 Indonesian.**

gp120_ID	6MEO_G	Sequence_alignment
1	MRVKKTQMNWLSWKGTLILGVMCANSNWLVTIVYGVPVWKEATT	1-29
51	LFCSADAKAHEVHNWATHACVPTQNLPLKNVTENFNWMKNNPM	30-50
101	EQMHEDVISLWQTHKLPCVKLPCVTLNCTNACLTVNDFSDTNEPT	51-100
151	ESTTRNNTETDEVKCNFTFVTTELTDMTKQVHALFYKLDIVQINDRSVN	101-150
201	NNSSSGKYMVCNTSVIKQACPQKSIDIPHIPHYCAPAYAILKCKDKKF	151-200
251	NGIGPCNNVSVQCTHGIRPVVSTQPLLNLGSLAEELIIRSINITNNAK	201-250
301	IIVHLNKSEISCHARYKNTRTSTHMVPGRTRFRTGIGDIKAHCEIN	251-300
351	GTTWINETLEQVKWLYQFPKPIIFQPQPGGDPEITMHHFNCQGEFF	301-350
401	YCNTTDLFNNNRTDG~~~VKLPCKIKFVPNKTIIFQPQPHAGDPEITMHHFNCQGEFF	351-400
448	CTSNITGIILTRDGATNTRNETSSNTEIFRPQGEDMDRDNWRELK	401-440
498	YKVVQIEPLGIAPTRAKR	441-490

*Note: The sequences are aligned with a focus on highlighting conserved and variable regions.*
**Supplementary Table 11. Sequence alignment for gp120 Australian.**

gp120 AU 6MEO_G	1	MRVKEKYQHLWRGWGRTMLLGMICSAEKLLWVTVYGVFPWKEATT
gp120 AU 6MEO_G	29	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~DNLWTVTVYGVFPWKEATT
gp120 AU 6MEO_G	51	TLFCSADAKAYDTEVHNWATHACVPTDPNQFQEVVLNVNVTENFNWMKKNDM
gp120 AU 6MEO_G	49	TLFCSADAKAYDTEVHNWATHACVPTDPNQFQEVVLNVNVTENFNWMKKNDM
gp120 AU 6MEO_G	101	VEQMHEDIISLWDQSLKPCVKLPTLCVSLKCTDLKNDTNNSGSMIME
gp120 AU 6MEO_G	99	VEQMHEDIISLWDQSLKPCVKLPTLCVTINCDN~~~~~~~~~~~~~~~
gp120 AU 6MEO_G	151	KGEIKNCFSNSISIRGKVQKEYAFFYKLDIIPIDNTDSYKLTSCNTSV
gp120 AU 6MEO_G	187	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~TSYRLTSCNTSV
gp120 AU 6MEO_G	201	ITQACPQVSFEPHIPHIYCAPAGFAILKCNKTFNGTGCTNVVSTVQCTHG
gp120 AU 6MEO_G	199	ITQACPQVSFEPHIPHIYCTPAGAILKCNKTFNGTGCTNVVSTVQCTHG
gp120 AU 6MEO_G	251	IRPVVSTQLLNGSLAEVEEVRSVFNSTDNAKTIIVQLNTSVEINCTRPN
gp120 AU 6MEO_G	249	IKPVVSTQLLNGSLAEEDIVSERSENLNTNNAKTTIVQLKDPVINTCRPN
gp120 AU 6MEO_G	301	NNTRKRIRIQRPGPAVFVTIG~KIGNMRQAHCNISRASKWNNLTKAQASKL
gp120 AU 6MEO_G	299	NNTRKSIHIGPGR~~AFYATGDIIGDIRQAHCNLSRAQWNDTSLKIVTLK
gp120 AU 6MEO_G	350	REQFQSKNTIIFFKQSGGDPEITVHSNCGEFFYNSTQFLNSTWFNST
gp120 AU 6MEO_G	347	REQF~ENKTIKFQPSGGDPEITFHSNCGEFFYNCTQLNFLSTWNTNT
gp120 AU 6MEO_G	400	WSTEBSNNTGDSDIITLPCRIKIQIINWQKVGKAMYAPPISGQIRCSSNI
gp120 AU 6MEO_G	396	~~~~~~~~~~~~~EDITLPCRIKIQVNLWQEVKVGKAMYAPPINKIKCSSNI
gp120 AU 6MEO_G	450	TGLLITRDGGNSN~NSEEIFRPGGDMRDNWRSELYKVKVIEPLGVAP
gp120 AU 6MEO_G	435	TGLLITRDGGNNTTEIFRPGGDMRDNWRSELYKVKVRIEPLG~~
gp120 AU 6MEO_G	499	TKAKR
gp120 AU 6MEO_G	499	~~~~