Citation: Starowicz, M.; Granvogl, M.
Effect of Wort Boiling on Volatiles Formation and Sensory Properties of Mead. *Molecules* 2022, 27, 710. https://doi.org/10.3390/molecules27030710 https://www.mdpi.com/journal/molecules

Abstract: Mead is an alcoholic beverage based on bee honey, which can be prepared in different variations such as modified honey-water compositions, the addition of spices, and the use of different yeast strains. Moreover, the technological process of mead production such as the step of wort preparation (with or without boiling of wort before fermentation) can be modified. All these factors might have a significant impact on the formation of aroma-active compounds, and therefore, sensory acceptance by consumers. High vacuum distillation, using the so-called solvent assisted flavor evaporation (SAFE) technique, or headspace-solid phase microextraction (HS-SPME) were applied for the isolation of the odorants. A sensory profile was used to monitor the changes in the aroma of the mead samples. Twenty-eight aroma-active compounds were detected during aroma extract dilution analysis (AEDA) based on gas chromatography-olfactometry (GC-O) and were finally identified by gas chromatography-mass spectrometry (GC-MS) using authentic reference compounds, including methyl propanoate, methyl 3-(methylthio)propanoate, and methional, all of them were identified for the first time in mead. Compounds with high flavor dilution (FD) factors were quantitated via stable isotope dilution analysis (SIDA) and revealed ethyl acetate (16.4 mg/L) to be the most abundant volatile compound, increasing to 57 mg/L after wort boiling, followed by ethyl hexanoate (both 1.2 mg/L). Furthermore, key aroma compounds were esters such as ethyl hexanoate, ethyl octanoate, and ethyl 3-methylbutanoate. The sensory panel evaluated ethanolic, honey-like, clove-like, sweet, and fruity notes as the main aroma descriptors of mead. The significant change in sensory evaluation was noted in the sweet odor of the heat-treated mead.

Keywords: mead; alcoholic beverages; Maillard reaction; wort boiling; aroma compounds; sensory profile

1. Introduction

Mead is an alcoholic beverage with an alcohol content between 8 and 18%vol. It is traditionally produced in countries of Middle-Eastern Europe and is available in many variations. Due to various possible additives such as fruit juices, spices, and herbs used during mead production, different mead types known as *pyments*, *cysers*, *melomels*, and *metheglin* exist [1]. In Poland, mead is divided into groups by taking into consideration the ratio of honey to water, such as: ‘czwórnik’ (1:3, v:v; honey to water), ‘trójnik’ (1:2), ‘dwójniak’ (1:1), and ‘półtorak’ (1:0.5) [2–4]. Therefore, the classification of mead ranges from the noblest quality with the highest amount of honey and the longest fermentation time (‘półtorak’) to mead with lower quality, consisting of only one part of honey to three parts of water (‘czwórnik’). Of course, this fact is directly reflected by the respective price of the final product. Mead is produced by few breweries, and it is also a popular product among home manufacturers. The process starts with the dilution of honey with an appropriate volume of water, followed by the fermentation of the wort with *Saccharomyces cerevisiae* [5]. Finally,
Molecules 2022, 27, 710

2. Results and Discussion

2.1. Identification of Aroma-Active Compounds in Mead

cAEDA, based on GC-O, was applied to characterize the main differences in the aroma profiles of mead with and without wort boiling. Therefore, the odorants were identified according to their odor quality and intensity, retention indices on two columns of different polarities (DB-FFAP and DB-5), and mass spectra in the EI and CI mode in comparison to...
authentic reference compounds. The obtained odor qualities detected at the sniffing port during AEDA were compared to the data available in an in-house database containing over 1000 odorants. Some of the odorants found have previously been reported in mead and other fermented alcoholic beverages [13,14,20]; however, some of the aroma compounds detected in the present study were found for the first time in mead, e.g., methyl propanoate, methyl 3-(methylthio)propanoate, and methional (Figure 1).

![Aroma compounds determined for the first time in mead using GC-O technique: (a) methyl propanoate, (b) methyl 3-(methylthio)propanoate, and (e) methional.](image)

Altogether, 28 aroma-active regions were determined in the flavor dilution (FD) factor range between 32 and 2048 (Table 1). In ‘T’ mead, the highest FD factor of 1024 was determined for 1 with a fruity and blueberry-like aroma and 22 with a clove-like aroma, followed by 5 (fruity, pineapple-like), 7 (fruity, green), 19 (flowery, honey-like), and 27 (beeswax-like, honey-like) (all FD factor of 512) and 23 (seasoning-like, spicy) and 24 (peach-like) (both FD factor of 256). In ‘TS’ mead, the highest FD factor of 2048 was analyzed for 5 (fruity, pineapple-like) and 22 (clove-like), followed by 19 (flowery, honey-like), 27 (beeswax-like, honey-like) (both FD factor of 1024), 1 (fruity, blueberry-like), 7 (fruity, green), 28 (vanilla-like, sweet) (all FD factor of 512), and 13 (etherical) (FD factor of 256).

Aside from some similarities in the analyzed samples, such as the determination of compounds 3 (banana-like, fruity), 9 (cooked potato-like), and 16 (sweaty), many more differences were identified. Compounds 6 (citrus-like, green), 11 (cheese-like, sweaty), 15 (fruity, honey-like), 18 (coconut-like), and 25 (wax-like) were only detected in ‘T’, whereas compounds 8 (vapor-like), 12 (popcorn-like, roasty), 17 (cinnamon-like, fruity), and 21 (carrot-like, musty) were only determined in ‘TS’. Further, 5 (fruity, pineapple-like), 10 (cabbage-like, earthy), 13 (etherical), 14 (aniseed-like, hay-like, fishy), 19 (flowery, honey-like), 20 (caramel-like, sweet), 22 (clove-like), 26 (woodruff-like, almond paste-like), 27 (beeswax-like, honey-like), and 28 (vanilla-like, sweet) were found with higher FD factors in ‘TS’ compared to ‘T’. Otherwise, compounds 1 (fruity, blueberry-like), 23 (seasoning-like, spicy), and 24 (peach-like) were present with higher FD factors in ‘T’ than in ‘TS’.

The results obtained for ‘T’ mead were in agreement with a study performed by Pino and Fajardo [13], who reported FD values of 1024 for ethyl 3-methylbutanoate and 512 for ethyl hexanoate. According to Pereira et al. [21], ethyl acetate, hexanoic acid, and octanoic acid led to an off-flavor in mead. Hexanoic acid was identified both in ‘T’ and ‘TS’ samples; moreover, its FD factor was the same. While wort boiling did not influence the occurrence of hexanoic acid, octanoic acid with its characteristic carrot-like and musty smell only appeared in ‘TS’ mead. Likewise, acetic acid, 2-acetylpyrazine, and ethyl 3-phenylpropionate were only detected in ‘TS’. Acetic acid can be formed from ethanol during the fermentation process, but it can also derive from honey [22]. The appearance of 2-acetylpyrazine in ‘TS’ could be defined as a marker for heat treatment of mead wort. This pyrazine with a characteristic popcorn-like and roasty odor note is a Maillard-reaction product and is formed in foods treated at temperatures >100 °C [23]. The FD factor of methyl 3-(methylthio)propanoate with an unpleasant cabbage-like and earthy odor also increased after wort boiling. Moreover, esters such as ethyl hexanoate, diethyl succinate, and ethyl 3-phenylpropionate were also previously determined in cherry wines [24].
Table 1. Volatile compounds identified in mead ‘trójniak’ (T) and ‘trójniak sycony’ (TS) during aroma extraction dilution analysis.

No.	Compound 2	Odor Quality 3	RIs 4	FD Factors 5		
DB-FFAP	DB-5	T	TS			
1	ethyl 3-methylbutanoate	fruity, blueberry-like	1013	775	1024	512
2	2-methyl-1-propanol	malty	1101	640	842	64
3	3-methylbutyl acetate	banana-like, fruity	1170	878	702	512
4	1,8-cineole	eucalyptus-like	1193	1036	32	32
5	ethyl hexanoate	fruity, pineapple-like	1207	739	512	2048
6	octanal	citrus-like, green	1280	1003	32	nd 6
7	ethyl octanoate	fruity, green	1425	1200	512	512
8	acetic acid	vinegar-like	1443	612	nd 6	32
9	methional	cooked potato-like	1448	905	64	64
10	methyl 3-(methylthio)propanoate	cabbage-like, earthy	1517	1034	<32	32
11	methyl propionate	cheese-like, sweaty 7	1558	789	32	nd 6
12	2-acetylpyrazine	popcorn-like, roasty	1609	1024	nd 6	64
13	diethyl succinate	ethereal 7	1665	996	32	256
14	3-methylnonane-2,4-dione	aniseed-like, hay-like, fishy	1708	1251	<32	128
15	pentyl acetate	fruity, honey-like 7	1814	1256	128	nd 6
16	hexanoic acid	sweaty	1836	1018	32	32
17	ethyl 3-phenylpropanoate	cinnamon-like, fruity	1867	1418	nd 6	32
18	trans-3-keto-2-methyl-4-phenyl-2-butanone	coconut-like	1876	1303	128	nd 6
19	2-phenylethanol	flowery, honey-like	1905	1160	512	1024
20	4-hydroxy-2,5-dimethyl-3(2H)-furanone (2H-furanone 8)	caramel-like, sweet	2030	1071	<32	64
21	octanoic acid	carrot-like, musty	2052	1279	nd 6	32
22	4-allyl-2-methoxyphenol	clove-like	2164	1359	1024	2048
23	2-(2H)-furanone (sotolon)	seasoning-like, spicy	2195	1108	256	32
24	γ-decalactone	peach-like	2249	1680	256	32
25	dodecanic acid	wax-like	2455	2169	128	nd 6
26	coumarin	woodruff-like, almond	2461	1442	<32	64
27	phenylactic acid	beeswax-like, honey-like	2555	1261	512	1024
28	vanillin	vanilla-like, sweet	2569	1406	<32	512

1 Odorants were consecutively numbered according to their retention indices on DB-FFAP capillary column. 2 Odorants were identified by comparing their odor qualities and intensities, retention indices on capillary columns DB-FFAP and DB-5, and mass spectra (EI and CI mode) to data of authentic reference compounds. 3 Odor quality perceived at the sniffing port during GC-O. 4 Retention indices, calculated from the retention time of the compound and the retention times of adjacent n-alkanes by linear interpolation. 5 Flavor dilution factor: highest dilution of the concentrated SAFE distillate in which the odorant was detected during GC-O (DB-FFAP capillary column) for the last time. 6 Not detected. 7 Odor quality according to database from www.pherobase.com (accessed on 9 February 2021) [25].

2.2. Quantitation of Odorants via HS-SPME-HRGC-MS Using SIDA and Calculation of Their OAVs

The HS-SPME-HRGC-MS method allows for the analysis of volatile compounds in food samples [26], especially by the use of stable isotope dilution assays (SIDAs). Therefore, this method was applied to ‘T’ and ‘TS’ samples to quantitate the most important aroma-active compounds by integrating the signals of selected ions of each analyte and the corresponding stable isotopically labeled internal standard in combination with the respective response factor, which are presented in Table 2.

Previous studies characterized the volatile components of mead and determined the most abundant volatile alcohols, esters, carbonyls, phenols, fatty acids, and terpenes [11–14,27,28]. As a result, alcohols were quantitatively demonstrated to be the largest group of volatile compounds in mead, while esters were the second largest group [27,28]. In this study, ethyl acetate showed by far the highest concentration in ‘T’, followed by ethyl hexanoate, 1-pentanol, 2-phenylethanol, phenylactic acid, 2-methyl-1-propanol, and ethyl decanoate. Lower amounts were found for esters like diethyl succinate, ethyl octanoate, and ethyl 3-methylbutanoate as well as for 4-allyl-2-methoxyphenol and 1,8-cineole (Table 3).
Table 2. Selected ions (m/z) of analytes and stable isotopically labeled internal standards and response factors (Rf) used in stable isotope dilution assays (SIDAs).

Compound	Isotope Label	Ions (m/z) 1	Rf 2
4-allyl-2-methoxyphenol 3	[2H2]	165	167
1,8-cineol	[2H4]	155	158
diethyl succinate	[2H3]	175	178
ethyl acetate	[2H3]	89	92
ethyl decanoate	[2H8]	201	204
ethyl hexanoate	[2H11]	145	148
ethyl 3-methylbutanoate	[2H13]	131	140
ethyl octanoate	[2H11]	173	176
2-methyl-1-propanol	[2H14]	75	78
1-pentanol		89	89
phenylacetic acid	[13C2]	137	139
2-phenylethanol	[2H13]	105	110

1 Ions used for quantitation in chemical ionization mode. 2 Response factors determined by analyzing defined mixtures of unlabeled analyte and corresponding stable isotopically labeled internal standard. 3 4- Allyl-2-methoxyphenol was quantitated using [2H2]-2-methoxy-4-(1-propenyl)phenol as the internal standard. 4 1-Pentanol was quantitated using [2H3]-2-methylbutanal as the internal standard.

Table 3. Concentrations of aroma-active compounds of mead ‘trojniak’ (T) and ‘trojniak sycony’ (TS) determined by SIDAs via HS-SPME-HRGC-MS analysis.

Compound	Concentrations 1 [µg L⁻¹]	T	TS
ethyl acetate		16,400 b	57,000 a
ethyl hexanoate		1220 a	1230 a
1-pentanol		980 a	966 a
2-phenylethanol		820 a	551 b
phenylacetic acid		748 a	770 a
2-methyl-1-propanol		695 b	1050 a
ethyl decanoate		610 a	612 a
diethyl succinate		539 a	536 a
ethyl octanoate		405 a	408 a
4-allyl-2-methoxyphenol		300 b	560 a
ethyl 3-methylbutanoate		250 a	160 b
1,8-cineol		90.2 b	150 a
Total		23,007	63,958

1 Mean values of triplicates with standard deviations ≤ 10%. a,b Mean values with different letters in the same row are statistically different (p < 0.05; Tukey’s test).

Additionally, in ‘TS’, ethyl acetate was determined with the highest concentration (3.5-times higher than in ‘T’), followed by ethyl hexanoate, 2-methyl-1-propanol, 1-pentanol, and phenylacetic acid. Moreover, the total amount of aroma compounds determined in ‘TS’ was almost three times higher compared to that determined in ‘T’ (63.96 and 23.01 mg L⁻¹, respectively). This finding was in agreement with a study performed by Wintersteen et al. [14], who found that the total amount of volatiles in buckwheat mead was significantly higher in the high heat product. Significant differences in compound concentrations between ‘T’ and ‘TS’ samples were found for ethyl acetate, 4-allyl-2-methoxyphenol, 1,8-cineol, ethyl 3-methylbutanoate, 2-methyl-1-propanol, and 2-phenylethanol. The difference in concentrations of 4-allyl-2-methoxyphenol and 1,8-cineol, also known as eugenol and eucalyptol, could be explained by different amounts of spices added during mead preparation.

While 3.5- and 1.5-times higher amounts of ethyl acetate and 2-methyl-1-propanol were analyzed in ‘TS’, 1.5-times higher concentrations of ethyl 3-methylbutanoate and 2-phenylethanol were found in ‘T’. Šmogrovicová et al. [27] found that ethyl acetate was the main component of mead volatiles. The concentration of ethyl acetate in ‘T’ was similar to the amounts of ethyl acetate found in South African mead, whereas the concentration in ‘TS’ was in the range reported in Slovak ones. Moreover, almost 85% and 94%, respectively, of the overall concentration of aroma-active compounds in ‘T’ and ‘TS’ samples consisted...
of esters. Many of these esters had high OAVs (Table 4), which means that they have a high impact on the overall aroma of mead and positively influence mead acceptance [12].

Table 4. Odor thresholds (OTs) and odor activity values (OAVs) of important aroma-active compounds of mead ‘trójniak’ (T) and ‘trójniak sycony’ (TS).

Compound	OT 2 [µg L$^{-1}$]	OAVs 1	
ethyl hexanoate	4	305	306
ethyl octanoate	1.6	253	255
ethyl 3-methylbutanoate	1.6	156	100
1,8-cineol	3.2	28	46
2-methyl-1-propanol	50	14	21
4-allyl-2-methoxyphenol	50	6	11
ethyl decanoate	244	3	3
ethyl acetate	7500	2	8
phenylacetic acid	6100	<1	<1
2-phenylethanol	7500	<1	<1
1-pentanol	30000	<1	<1
diethyl succinate	300000	<1	<1

1 Odor activity value was calculated as the ratio of the concentration (cf. Table 3) to the respective orthonasal odor threshold. 2 Orthonasal odor threshold was previously reported in ethanol/water (9/91, v/v) [14].

The calculation of OAVs indicated ethyl hexanoate, ethyl octanoate, ethyl 3-methylbutanoate, and 1,8-cineol to have the highest OAVs in mead (Table 4). Further odorants with OAVs > 1 include 2-methyl-1-propanol, 4-allyl-2-methoxyphenol, ethyl acetate, and ethyl decanoate. In contrast, for diethyl succinate, 1-pentanol, phenylacetic acid, and 2-phenylethanol OAVs < 1 were calculated. Wintersteen et al. [14] noted that 2-phenylethanol was the key aroma compound in mead made from buckwheat honey, while a wide range of esters was also identified, revealing high OAVs. In the actual study, esters such as ethyl hexanoate, ethyl octanoate, and ethyl 3-methylbutanoate were found to be the dominant ones but not 2-phenylethanol with an OAV < 1 in both samples.

2.3. Aroma Profiles of Mead ‘Trójniak’ (T) and ‘Trójniak Sycony’ (TS)

The sensory characteristic is an important criterion for product acceptability by consumers. Until now, only few studies reported on the sensory evaluation of various types of mead with regard to different honey type [11], fining agents [4], pollen addition [29], fruit/herbal additives [30], or mead fermented at different temperatures and with nutrition addition [31]. In each study, a sensory analysis of mead distinguished the samples due to differences in the additives used. However, only Kime et al. [32] evaluated the sensory profile of mead after wort boiling. Therefore, an aroma profile analysis (APA) was performed in this study to evaluate the overall aroma of mead ‘trójniak’ (T) and ‘trójniak sycony’ (TS) using the following aroma descriptors: ethanolic, honey-like, clove-like, sweet, and fruity. The ‘T’ and ‘TS’ aroma was described mostly as ethanolic (2.0) and honey-like (2.0; associated with phenylacetic acid) (Figure 2). These aroma attributes were in agreement with previous studies conducted by Li and Sun [11] and Twilley et al. [31], who used fruity, floral, honey-like, alcoholic, vegetal, and chemical as odor descriptors for different types of mead. Li and Sun [11] noted that the honey type can significantly influence the aroma of mead. According to their study, mead manufactured from linden honey had a higher aroma quality and intensity in comparison to mead made of multiflorous honey. Samples of ‘T’ and ‘TS’ were also characterized as clove-like (2.0; 4-allyl-2-methoxyphenol) and sweet (1.0–1.5). Thereby, the sweet aroma was scored higher in ‘T’ (1.5) in comparison to ‘TS’ (1.0). A decrease in the sweetness note can be crucial because it plays an important role in consumer’s acceptance of mead [15]. Pereira et al. [33] reported that sweeter mead...
received higher scores during consumer tests. The appearance of a sweet aroma might be linked to the addition of some spices with a sweet note (e.g., vanilla-like, cinnamon-like). The aroma was also defined as fruity in both ‘T’ and ‘TS’ on the same level (0.5). The fruity aroma of ‘T’ and ‘TS’ was scored lower than in the study performed by Li and Sun [11] and also than in case of rum studied by Franitza et al. [20]. However, as mentioned by Li and Sun [11], the intensities of specific odors strictly depend on the type of yeast used during mead preparation, and the time of wort boiling plays an important role as well. In the present study, no off-flavor compounds that could be linked to long heat treatment with characteristic rubbery and resin-like smell [5] were formed in ‘T’ and ‘TS’.

Figure 2. Aroma profiles of mead T (solid, dark grey line) and TS (broken, light grey line).

3. Materials and Methods

3.1. Chemicals

The following compounds, used as authentic reference compounds for GC-O and HS-SPME-HRGC-MS, were commercially available: acetic acid, 2-acetylpyrazine, 4-allyl-2-methoxyphenol, 1,8-cineol, coumarin, γ-decalactone, dodecanoic acid, ethyl acetate, ethyl decanoate, ethyl hexanoate, ethyl-3-methylbutanoate, ethyl octanoate, ethyl-3-phenylpropanoate, hexanoic acid, 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (furaneol®), 3-methylbutyl acetate, methyl 3-(methylthio)propanoate, methyl propanoate, 2-methyl-1-propanol, 3-(methylthio)propionaldehyde (methional), octanal, octanoic acid, 1-pentanol, pentyl acetate, phenylacetic acid, 2-phenylethanol, and trans-whisky lactone (Sigma-Aldrich Chemie, Taufkirchen, Germany), diethyl succinate (Supelco, Bellefonte, PA, USA), 3-methylnonane-2,4-dione (Chemos, Regenstauf, Germany), and 4-hydroxy-3-methoxybenzaldehyde (vanillin) (Merck, Darmstadt, Germany).

The following stable isotopically labeled internal standards were commercially available: [13C2]-1,8-cineol, [13C2]-diethyl succinate, [13C2]-ethyl acetate, [13C2]-ethyl decanoate, [13C2]-ethyl hexanoate, [13C2]-ethyl 3-methylbutanoate, [13C2]-ethyl octanoate, [13C2]-2-methoxy-4-(1-propenyl)phenol, [13C2]-2-methylbutanal, [13C2]-2-methyl-1-propanol, [13C2]-phenylacetic acid, and [13C2]-2-phenylethanol (Sigma-Aldrich Chemie).

Liquid nitrogen was obtained from Linde (Munich, Germany). Diethyl ether and n-pentane (Merck) were freshly distilled prior to use, and hydrochloric acid and sodium carbonate were purchased from Merck. All chemicals were at least of analytical grade.

3.2. Preparation of Mead Samples

The experimental material included ‘trójniak’ type of mead (1:3, v/v, honey to water), with wort boiling ‘trójniak sycony’ (TS) and without wort boiling ‘trójniak’ (T). Mead samples were purchased from a local brewer from the south of Poland. According to the producer’s instructions, the mead was prepared using mulflorous honey and *Saccharomyces cerevisiae* yeasts (SafSpirit HG-1, Fermentis Lesaffre for Beverages). During the
fermentation process, the pH value of mead wort was controlled, and a pH value around 5.0 was determined as the final one. About 30 L of each model mead were prepared, and in a final step filtered to achieve clarified liquids that were bottled. Samples were stored at 4 °C in the dark until analysis.

3.3. Isolation of the Volatiles and Their Analysis by Gas Chromatography-Olfactometry/Flame Ionization Detection (GC-O/FID)

Mead (100 mL) was extracted with diethyl ether (3 × 100 mL) by vigorous shaking at room temperature. The combined organic phases were washed with an aqueous NaCl solution (1 mol/L; 3 × 300 mL), which was previously described as a method to remove most of the ethanol by Franitza et al. [20]. To separate the volatile fraction from non-volatiles, a high vacuum distillation using the solvent assisted flavor evaporation (SAFE) technique was applied [34]. The distillate obtained was concentrated using a Vigreux column (50 cm × 1 cm i.d.) to ~4.5 mL, followed by microdistillation to a final volume of ~200 µL.

For GC-O/FID, a TRACE GC 2000 (ThermoQuest, Egelsbach, Germany) equipped either with a DB-FFAP capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness) or with a DB-5 capillary column (30 m × 0.32 mm i.d., 0.25 µm film thickness; both J&W Scientific, Agilent Technologies, Waldbronn, Germany) was used. Aliquots of the samples (1 µL) were applied by the cold on-column technique. The oven temperature started at 40 °C, held for 2 min, then raised at a rate of 6 °C/min to 230 °C, and again held for 5 min. Helium was used as the carrier gas with a flow rate of 2.0 mL/min. At the end of the column, the effluent was split 1:1 by a Y-type quick-seal glass splitter (Chrompack, Frankfurt, Germany) and one part was directed to an FID held at 250 °C, and the second one to a sniffing port held at 230 °C. Linear retention indices (RIs) were calculated for each compound using a mixture of n-alkanes (C₆-C₂₆ for DB-FFAP and C₆-C₁₈ for DB-5, respectively).

3.4. High-Resolution Gas Chromatography-Mass Spectrometry (HRGC-MS)

HRGC-MS was performed by a Hewlett-Packard gas chromatograph 5890 series II (Agilent Technologies) coupled to a Finnigan sector field mass spectrometer type MAT 95S (Bremen, Germany). The same DB-FFAP and DB-5 capillary columns mentioned above were used for this measurement. Mass spectra were generated both in electron ionization (EI) mode at 70 eV and in chemical ionization (CI) mode at 115 eV using isobutane as reagent gas.

3.5. Determination of Mead Volatiles by Headspace-Solid Phase Microextraction-High-Resolution Gas Chromatography-Mass Spectrometry (HS-SPME-HRGC-MS)

The volatile compounds were isolated by HS-SPME and analyzed by a Varian 3800 gas chromatograph (Darmstadt) equipped with a DB-FFAP capillary column (30 m × 0.25 mm i.d., 0.25 µm film thickness; J&W Scientific) coupled to an ion trap mass spectrometer Saturn 2000 (Varian) running in CI mode at 70 eV, with methanol as the reagent gas. Sample injections were performed by a CombiPAL autosampler (CTC Analytics, Zwingen, Switzerland) and a CAR/PDMS fiber (Supelco) was used for all experiments. The SPME conditions were applied according to a description of Senn et al. [35] with minor modifications. Therefore, sampling was performed for 30 min at 40 °C, and NaCl (1 g) was added to mead (5 mL) and weighed into gas-tight sample vials (20 mL). All analyses were performed in triplicates.

3.6. Descriptive Sensory Analysis of Mead Samples—Aroma Profile Analysis (APA)

For APA, the intensities of five selected odor descriptors (ethanolic (represented by an aqueous ethanolic solution), fruity (ethyl hexanoate), clove-like (4-allyl-2-methoxyphenol), sweet (vanillin), and honey-like (phenylacetic acid)) were rated on a seven-point linear scale from 0 to 3 by steps of 0.5 (from 0 = not perceivable to 3 = strongly perceivable). APA was performed according to Zhai and Granvogl [36]. The panel consisted of 15 experienced assessors, who participated in weekly training for the recognition and description of aroma
attributes. The samples were presented in covered odorless Teflon® vessels in a sensory room equipped with individual booths at 21 °C.

3.7. Statistical Analysis

The data are presented as mean values of triplicates and corresponding standard deviations. The differences between the samples were analyzed by a one-way ANOVA with Tukey’s multiple comparison test ($p < 0.05$) using STATISTICA 13.1 (StatSoft Inc., Tulsa, OK, USA).

4. Conclusions

By applying the molecular sensory science concept to two different types of mead (with and without wort boiling), 28 aroma-active compounds were identified. After quantitation via SIDAs using HS-SPME-HRGC-MS, ethyl acetate, ethyl hexanoate, 1-pentanol, 2-phenylethanol, phenylacetic acid, and 2-methyl-1-propanol were identified as most abundant volatiles in mead. However, by considering the orthonasal odor thresholds and subsequent OAV calculation, the esters ethyl hexanoate, ethyl octanoate, and ethyl 3-methylbutanoate, all with fruity odor notes, were proven to be the most important aroma-active compounds in both mead samples. Moreover, results obtained by AEDA might suggest 2-acetylpyrazine as a characteristic volatile mead compound formed during wort boiling. The relationship between overall mead volatile composition and sensory evaluation should be further investigated to verify the key volatiles by means of omission or recombination experiments. Finally, the controlled boiling of wort for mead production can lead to products with high aroma quality.

Author Contributions: Conceptualization, M.S. and M.G.; methodology, M.S.; formal analysis, M.S. and M.G.; investigation, M.S.; resources, M.G.; data curation, M.S. and M.G.; writing—original draft preparation, M.S. and M.G.; writing—review and editing, M.G.; visualization, M.S.; supervision, M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by KNOW Consortium “Healthy Animal—Safe Food”, MS&HE Decision No. 05-1/KNOW2/2015.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: We thank Sabrina Brendel and Anja Neugebauer for their support in GC-O analysis.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the corresponding author.

References

1. McConnell, D.S.; Schramm, K.D. Mead success: Ingredients, processes and techniques. Zygmurgy 1995, 4, 33–39.
2. Ministry of Agriculture and Rural Development. Dz.U.2013.633 (22 May 2013). Rozporządzenie w Sprawie Rodzajów Fermentowanych Napojów Winiarskich Oraz Szczegółowych Wymagań Organoleptycznych, Fizycznych i Chemicznych, Jakie powinny Spełniać te Napoje. Available online: https://www.prawo.pl/akty/dz-u-2013-633,17997396.html (accessed on 2 September 2021). (In Polish).
3. Socha, R.; Pajak, P.; Fortuna, T.; Buksa, K. Phenolic profile and antioxidant activity of polish meads. Int. J. Food Prop. 2015, 18, 2713–2725. [CrossRef]
4. Pascoal, A.; Oliveira, J.M.; Pereira, A.P.; Féas, X.; Anjos, O.; Estevinho, L.M. Influence of fining agents on the sensorial characteristics and volatile composition of mead. J. Inst. Brew. 2017, 123, 562–571. [CrossRef]
5. Gupta, J.K.; Sharma, R. Production technology and quality characteristics of mead and fruity-honey wines: A review. Nat. Prod. Rad. 2009, 8, 345–355. [CrossRef]
6. Mendes-Ferreira, A.; Cosme, F.; Barbosa, C.; Falco, V.; Inês, A.; Mendes-Faia, A. Optimization of honey-must preparation and alcoholic fermentation by Saccharomyces cerevisiae for mead production. Int. J. Food Microbiol. 2010, 144, 193–198. [CrossRef]
7. Olaniran, A.; Hiralal, L.; Mokoeana, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production, regulation and control. *J. Inst. Brew.* 2017, 123, 13–23. [CrossRef]
8. Frantitz, L.; Granvogl, M.; Schieberle, P. Influence of the production process on the key aroma compounds of rum: From molasses to the spirit. *J. Agric. Food Chem.* 2016, 64, 9041–9053. [CrossRef] [PubMed]
9. Zierer, B.; Schieberle, P.; Granvogl, M. Aroma-active compounds in Bartlett pears and their changes during the manufacturing process of Bartlett pear brandy. *J. Agric. Food Chem.* 2016, 64, 9515–9522. [CrossRef] [PubMed]
10. Vidrih, R.; Hribar, J. Studies on the sensory properties of mead and the formation of aroma compounds related to the type of honey. *Acta Alim.* 2007, 36, 151–162. [CrossRef]
11. Li, R.; Sun, Y. Effects of honey variety and non-*Saccharomyces cerevisiae* on the flavor volatiles of mead. *J. Am. Soc. Brew. Chem.* 2019, 77, 40–53. [CrossRef]
12. Sroka, P.; Tuszyński, T. Changes in organic acid contents during mead wort fermentation. *Food Chem.* 2005, 70, C119–C126. [CrossRef]
13. Pino, J.A.; Fajardo, M. Volatile composition and key flavor compounds of spirits from unifloral honeys. *Int. J. Food Sci. Technol.* 2011, 46, 994–1000. [CrossRef]
14. Wintersteen, C.L.; Andrae, L.M.; Engeseth, N.J. Effect of heat treatment on antioxidant capacity and flavor volatiles of mead. *J. Food Sci.* 2005, 70, C119–C126. [CrossRef]
15. Gomes, T.; Dias, T.; Cadavez, V.; Verdial, J.; Morais, J.; Ramalhosa, E.; Estevinho, L.M. Influence of sweetness and ethanol content on mead acceptability. *Pol. J. Food Nutr. Sci.* 2015, 65, 137–142. [CrossRef]
16. Czabaj, S.; Kawa-Rygielska, J.; Kucharska, A.Z.; Kliks, J. Effects of mead wort heat treatment on the mead fermentation process and antioxidant activity. *Molecules* 2017, 22, 803. [CrossRef] [PubMed]
17. Kahoun, D.; Rezková, S.; Královský, J. Effect of heat treatment and storage conditions on mead composition. *Food Chem.* 2017, 219, 357–363. [CrossRef]
18. Bednarek, M.; Szwengel, A. Distinguishing between saturated and unsaturated meads based on their chemical characteristics. *LWT-Food Sci. Technol.* 2020, 153, 109962. [CrossRef]
19. Starowicz, M.; Granvogl, M. An overview of mead production and the physicochemical, toxicological, and sensory characteristics of mead with a special emphasis on flavor. *Trends Food Sci. Technol.* 2020, 106, 402–416. [CrossRef]
20. Frantitz, L.; Granvogl, M.; Schieberle, P. Characterization of the key aroma compounds in two commercial rums by means of the sensomics approach. *J. Agric. Food Chem.* 2016, 64, 637–645. [CrossRef]
21. Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Mead production: Effect of nitrogen supplementation on growth, fermentation profile and aroma formation by yeasts in mead fermentation. *J. Inst. Brew.* 2015, 121, 122–126. [CrossRef]
22. Plutowska, B.; Chmiel, T.; Dymerski, T.; Wardencki, W. A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. *Food Chem.* 2011, 126, 1288–1298. [CrossRef]
23. Müller, R.; Rappert, S. Pyrazines: Occurrence, formation and biodegradation. *Appl. Microbiol. Biotecnol.* 2010, 85, 1315–1320. [CrossRef] [PubMed]
24. Niu, Y.; Wand, P.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, R. Evaluation of the perceptual interaction among ester aroma compounds in cherry wines by GC-MS, GC-O, odor threshold and sensory analysis: An insight at the molecular level. *Food Chem.* 2021, 283, 1–11. [CrossRef]
25. Available online: www.pherobase.com (accessed on 2 September 2021).
26. Jelen, H.H.; Majcher, M.; Dziedas, M. Microextraction techniques in the analysis of food flavor compounds: A review. *Anal. Chim. Acta* 2012, 738, 13–26. [CrossRef] [PubMed]
27. Šmogrovicová, D.; Nádasky, P.; Tandlich, R.; Wilhelmi, B.S.; Cambray, G. Analytical and aroma profiles of Slovak and South African meads. *Czech J. Food Sci.* 2012, 30, 241–246. [CrossRef]
28. Chen, C.-H.; Wu, Y.-L.; Lo, D.; Wu, M.C. Physicochemical property changes during the fermentation of logan (*Dimocarpus longan*) mead and its aroma composition using multiple yeast inoculations. *J. Inst. Brew.* 2013, 119, 303–308. [CrossRef]
29. Roldán, A.; van Muiswinkel, G.C.J.; Lasanta, C.; Palacios, V.; Caro, I. Influence of pollen addition on mead elaboration: Physicochemical and sensory characteristics. *Food Chem.* 2011, 126, 574–582. [CrossRef]
30. Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Szatkowska, K. Fruit and herbal meads—chemical composition and antioxidant properties. *Food Chem.* 2019, 283, 19–27. [CrossRef]
31. Twilley, J.; Jutzi, C.; Tomasino, E. Influence of fermentation temperature and nutrient addition on chemical and sensory characteristics of traditional honey wine. *Ann. Food Prod. Process.* 2018, 3, 1022–1031.
32. Kime, R.W.; McLellan, M.R.; Lee, C.Y. An improved method of mead production. *Am. Bee J.* 1991, 131, 394–395.
33. Pereira, A.P.; Mendes-Ferreira, A.; Dias, L.G.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Volatile composition and sensory properties of mead. *Microorganisms* 2019, 7, 404. [CrossRef] [PubMed]
34. Engel, W.; Bähr, W.; Schieberle, P. Solvent assisted flavour evaporation—A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. *Eur. Food Res. Technol.* 1999, 209, 237–241. [CrossRef]
35. Senn, K.; Cantu, A.; Heymann, H. Characterizing the chemical and sensory profiles of traditional American meads. *J. Food Sci.* **2021**, *86*, 1048–1057. [CrossRef] [PubMed]

36. Zhai, X.; Granvogl, M. Key odor-active compounds in raw green and red *Toona sinensis* (A. Juss.) Roem. and their changes during blanching. *J. Agric. Food Chem.* **2020**, *68*, 7169–7183. [CrossRef] [PubMed]