Neuroinflammation in perioperative neurocognitive disorders: From bench to the bedside

Yang Liu | Huiqun Fu | Tianlong Wang

Abstract
The perioperative neurocognitive disorders (PNDs) are one of the most common complications in elderly patients characterized by various forms of cognitive decline after anesthesia and surgery. Although the etiology for PNDs remained unclear, neuroinflammation has been characterized as one of the major causes, especially in the elderly patients. The activation of glial cells including microglia and astrocytes plays a significant role in the inflammatory responses in central nerve system (CNS). Although carefully designed, clinical studies on PNDs showed controversial results. Meanwhile, preclinical studies provided evidence from various levels, including behavior performance, protein levels, and gene expression. In this review, we summarize high-quality studies and recent advances from both clinical and preclinical studies and provide a broad view from the onset of PNDs to its potential therapeutic targets. Future studies are needed to investigate the signaling pathways in PNDs for prevention and treatment, as well as the relationship of PNDs and future neurocognitive dysfunction.

KEYWORDS
astrocyte, cognitive impairment, microglia, neuroinflammation, perioperative neurocognitive disorders

1 | INTRODUCTION
Throughout the ages, general anesthesia has been recognized as an "instantly reversible condition" that leaves no sequelae after emergence, despite remarkable alterations in consciousness and similarly dramatic changes in other organ systems. However, increasing amount of evidence has shown that general anesthesia is not simply an "instantly reversible condition," but has acute, even long-lasting influence on central nerve system (CNS). Coexisting with general anesthesia, orthopedic or cardiac surgeries often lead to acute or long-term cognitive decline after surgical procedures. These phenomena urge anesthetists to pay close attention to neurocognitive outcome in clinical practice.

Traditionally, all forms of cognitive impairments after anesthesia and surgery were termed postoperative cognitive dysfunction (POCD), which was recently recommended to change into perioperative neurocognitive disorder (PND). Depending on the time of onset, PNDs can be classified into neurocognitive disorder (occurring before anesthesia and surgery), postoperative delirium (POD, delirium occurring within hours to days after surgery), delayed neurocognitive recovery (occurring up to 30 days after anesthesia and surgery), and postoperative neurocognitive disorder (POND, occurring within weeks to months after anesthesia and surgery). This classification aligns well with the phenotypically similar diseases defined in the Diagnostic and Statistical Manual of Mental Disorders, version 5 (DSM-5) and International Classification of Disease-10...
In order to distinguish PNDs and traditional dementia (such as Alzheimer’s disease), the use of DSM-5 is also needed. Since the definition for cognitive impairment after anesthesia and surgery has changed over the past several years and different cognitive evaluation tests were used in different studies (eg, whether the learning effect was corrected, and which neuropsychological test was used);1,12 the exact rate of PNDs remain unclear. Nevertheless, consensus is made that newly diagnosed cognitive dysfunction after anesthesia and surgery may increase the risk of future brain dysfunction, including dementia, Alzheimer’s disease (AD), and long-term cognitive decline, making PNDs a highly concerning condition, especially in the elderly population. In this way, the PNDs in this review is also focused postoperatively.

Neuroinflammation caused by anesthesia exposure and surgery has been characterized as a major contributor to cognitive decline in PNDs. Recent studies reported that systemic stressors and other inflammatory cytokines broke down the blood brain barrier (BBB) and further resulted in neuroinflammation. Preclinical experiments claimed that the neuroinflammation triggered by peripheral inflammatory cytokines/stressors is the major cause of clinical symptoms. Previous studies found that surgical trauma-induced systemic inflammation may cause neuroinflammation through damage-associated molecular patterns (DAMPs), complement cascade and coagulation cascade, all of which could further induce glial activation in the CNS. Inflammatory responses triggered by surgery and anesthesia broke down the blood brain barrier (BBB) and cause further neuroinflammation. The process of which started the inflammatory response in CNS. In elderly patients, the progressive loss of hippocampal BBB integrity has already been proved in individuals without evident cognitive impairments. Preclinical experiment (LPS stimulation) showed that the microglia and astrocyte activation and inflammatory cytokines expression caused long-lasting cognitive impairment in rodent animals. Meanwhile, the anesthetic agents also induced significant microglia/astrocyte activation directly in CNS. After the microglia and astrocyte activation, both types of the glia secreted inflammatory cytokines including interleukin (IL)-1β, tumor necrosis factor (TNF) α, and other cognitive-related cytokines, in the progress of neuroinflammation, causing impaired synaptic plasticity, which further induced cognitive dysfunction.

Most of clinical studies focused on the POD, delayed neurocognitive recovery, and POND (based on the new definition according to the time of onset). Carefully designed clinical studies proved that intraoperative anesthesia depth monitoring, dexmedetomidine infusion, intravenous anesthesia (as compared with inhalational anesthesia), and multi-modal analgesia are effective to reduce the incidence of PNDs. Other approaches such as management of intraoperative body temperature and blood pressure may also help (Table 1). However, clinical study results differ from one another. For example, some studies showed that intraoperative blood pressure, dexmedetomidine, and anesthesia method may not be as effective in reducing the incidence of PNDs as expected (Table 1). The reasons for these discrepancies may be the followings: (1) the mechanisms for PNDs may vary from case to case, although they share similar clinical symptoms. Variations in the time-frame of inflammatory cytokines after abdominal and cardiac surgeries have been observed in preclinical studies; (2) the definition for postoperative cognitive decline has been changing over the past years, making it hard to evaluate the a certain factor across multiple studies.

As for the different anesthesia methods, several studies demonstrated that combined anesthesia (eg, combined general anesthesia and epidural anesthesia) or regional anesthesia had lower incidence of PNDs as compared with general anesthesia alone. However, there are also studies claiming no significant difference in PND rates between regional and general anesthesia. The contradictory findings in clinical practice pointed out that the mechanism for PNDs may vary, suggesting that mechanistic studies are obviously warranted.

While clinical studies reported controversial results, most of the preclinical experiments claimed that the neuroinflammation triggered by peripheral inflammatory cytokines/stressors is the major cause of clinical symptoms. Previous studies found that surgical trauma-induced systemic inflammation may cause neuroinflammation through damage-associated molecular patterns (DAMPs), complement cascade and coagulation cascade, all of which could further induce glial activation in the CNS. Inflammatory responses triggered by surgery and anesthesia broke down the blood brain barrier (BBB) and cause further neuroinflammation. The process of which started the inflammatory response in CNS. In elderly patients, the progressive loss of hippocampal BBB integrity has already been proved in individuals without evident cognitive impairments. Preclinical experiment (LPS stimulation) showed that the microglia and astrocyte activation and inflammatory cytokines expression caused long-lasting cognitive impairment in rodent animals. Meanwhile, the anesthetic agents also induced significant microglia/astrocyte activation directly in CNS. After the microglia and astrocyte activation, both types of the glia secreted inflammatory cytokines including interleukin (IL)-1β, tumor necrosis factor (TNF) α, and other cognitive-related cytokines, in the progress of neuroinflammation, causing impaired synaptic plasticity, which further induced cognitive dysfunction.

Although there are various studies demonstrating the crosstalk between microglia and astrocyte, even the neurons in cognitive dysfunction, only few studies focused on the effect of PNDs. In this case, the effect of the glia response behind the PNDs pathologic process should be further studied to investigate the mechanism behind the clinical symptoms.

3 | GLIAL ACTIVATION: THE SOURCE OF NEUROINFLAMMATION AND THE TARGET OF CLINICAL TRANSLATION

Although details remain unclear, increasing body of evidence supports the idea that both the microglia and astrocytes, and their...
References	Type of study	Method	Type of PNDs	Main findings	Conclusions
MacKenzie et al (2018)	Meta-analysis	Anesthesia depth	POD	POD (38.0% reduction)	Electroencephalogram-guided anesthesia is associated with decreased POD
Bocskai et al (2020)	Meta-analysis	Anesthesia depth	POD	POD (6.7% reduction)	BIS-guided anesthesia reduced rate of POD at 1 day and PND at 12 weeks after anesthesia and surgery
Yang et al (2021)	RCT	Anesthesia depth	POD	MoCA score (average 1.24 higher, first 7 days)	Multi-modal brain monitoring improves postoperative neurocognition.
Zhao et al (2020)	RCT	Dexmedetomidine	POD	POD (decreased on day 1–3, p < 0.05)	Intraoperative use of dexmedetomidine significantly attenuated the rate of POD and delayed neurocognitive recovery
Su, et al, 2016	RCT	Dexmedetomidine	POD	POD (14.0% reduction, first 7 days)	Use of dexmedetomidine decreases the incidence of POD in ICU in patients >65 yrs undergoing non-cardiac surgery.
Deiner et al (2017)	RCT	Dexmedetomidine	POD	POD (increased for 0.8%, p > 0.94)	Use of dexmedetomidine cannot prevent POD from happening.
Zhang et al (2018)	RCT	Intravenous anesthesia	Delayed Neurocognitive Recovery	Delayed neurocognitive recovery (8.4% reduction, first 7 days)	Propofol reduced the rate of delayed neurocognitive recovery as compared with sevoflurane.
Konishi et al (2018)	RCT	Intravenous anesthesia	Delayed Neurocognitive Recovery	Delayed neurocognitive recovery (p = 0.26)	No difference was found between propofol and sevoflurane for inducing cognitive impairment
Sun et al (2019)	Meta-analysis	Intravenous anesthesia	POD	MMSE score (significantly lower in patients using propofol until 7 days)	Propofol had great adverse effect as compared with sevoflurane.
Kristek et al (2019)	RCT	Multi-modal analgesia	POD	POD (22.0% reduction, first 72 hours)	Multi-modal analgesia significantly reduced the rate of POD.
Subramaniam et al (2019)	RCT	Multi-modal analgesia	POD	POD length (1 day reduced, first 48 hours)	Acetaminophen reduced the length of POD in elderly patients
Mu et al (2017)	RCT	Multi-modal analgesia	POD	POD (4.8% reduction, first 5 days)	Multi-dose of parecoxib supplemented to intravenous morphine decreased the rate of POD without increasing side effects.
Rudiger et al (2016)	Observational	Temperature	POD	Hypothermia (34.5°C vs. 35.1°C)	Low body temperature is one of the major risks for POD in ICU.
Wagner et al (2021)	Retrospective Exploratory	Temperature	POD	Hypothermia ($\chi^2 = 54.94, df = 4$)	A significant relationship was found between hypothermia and POD.
Maheshwari et al (2020)	Observational	Blood Pressure	POD	Hypotension ($p = 0.009, 95\% CI: 1.03–1.20$)	Intraoperative hypotension is moderately associated with POD within 5 days after surgery.
Feng, et al (2020)	Meta-analysis	Blood Pressure	POD	Hypotension ($p = 0.10$ for POD; $p = 0.37$ for POCD)	No significant correlations between intraoperative hypotension and POD / PND.

Note: The type of PNDs were adjusted according to the latest diagnostic criteria.
Abbreviations: ICU, intensive care unit; MoCA, Montreal Cognitive Assessment; POD, postoperative delirium; POND, postoperative neurocognitive disorder; RCT, randomized controlled trial.
interactions, contribute to the neuroinflammatory processes. Long-term activation of microglia and astrocytes result in long-term synaptic inhibition and cognitive dysfunction, inflammatory responses in the hippocampus, and eventually neurodegenerative diseases.

3.1 | Microglia activation

Microglia, one of the major resident cells in CNS (accounting for about 5–10% of the total cells in human and mice), are traditionally considered the major source of neuroinflammatory response. They have long been believed to be CNS-resident phagocytes to remove excessive debris functionally. In recent years, by means of sequencing technologies and other advancing methods, it was revealed that microglia are not just passive bystanders of CNS pathologies, but also determinants of diseases.

Anesthesia and surgery-induced microglial activation has been demonstrated to cause cognitive dysfunction (Figure 1A). Preclinical study has shown that the TLR/GSK-3β/PI3K/AKT signaling pathway reduced the activation of the nuclear factor-kappa B (NF-κB) signaling pathway in microglia, decreased the M1 type (classical activation) and increased the M2 type (alternating activation) transformation in a PND model of tibial fracture surgery. In another PND model upon exposure of inhalational anesthesia (3% sevoflurane) in pregnant rats, the NF-κB signaling pathway played a significant role in microglia activation, which further induced the upregulation of inflammatory cytokines (IL-1β, IL-6, and TNFα) and cognitive dysfunction in the descendent pups. The Torem 2, which is mostly seen in activated microglia in AD patients, was also overexpressed in PND preclinical models. Both preclinical (mice with liver lobe resection) and clinical studies (hip-fracture patients) proved significant changes in Torem 2 associated with cognitive impairment. The microglial CX3CL1/CX3CR1 is another overactivated pathway in AD patients, which affects the clearance of Aβ deposits. Although rarely reported in clinical studies, activation of the microglial CX3CL1/CX3CR1 signaling pathway has been observed in preclinical PND model after tibial fracture. These results suggested that PNDs and neurodegenerative diseases may share similar pathways. Interestingly, aside from directly activated by stress stimulators, the microglia can also be activated indirectly by astrocytes via the CCL2-CCR2 signaling pathway. In the tibial fracture PND model, the upregulation of astrocyte-derived CCL2 induced the overexpression of microglial CCR2, while blockade of CCR2 by RS504393 attenuated microglial inflammatory responses and improved cognitive function.

Meanwhile, perioperative events including hypoxia (STAT1 protein activation drives M1 activation), cerebral ischemia (CysLT2-ERK1/2 pathway mediates M1 polarization), hemorrhage (activating the PKA/CREB signaling pathway may promote M2 polarization; IL-15 mediates the crosstalk of astrocyte and microglia in disease development; using EPZ6438 attenuates neuroinflammation by H3k27me3/SCOS3/TRAF6/NF-κB signaling pathway after hemorrhage), Aβ accumulation (promotes M1 polarization), autoimmune inflammatory disease (P2×R signaling pathway favored the microglia phagocytosis), and oxidative stress (reducing oxidative stress also attenuates M1 polarization) may also cause microglial activation. However, one should note that not all of these signaling pathways contributes to cognitive impairment.

3.2 | Astrocyte activation

Being one of the most abundant glia cells in the CNS (comprising for at least 50% of the brain and spinal cells by number in human and mice), the major function of the astrocyte is believed to participate the BBB maintenance, modulating synaptic plasticity, as well as neuronal survival and differentiation. However, astrocytes can also be activated by microglia by the complement cascade (C5, C3 and C1q) and further cause neurotoxicity. Thus, the astrocyte activation should also be considered as a significant contributor for neuroinflammation.

Abnormal astrogliosis has been shown to result in PNDs (Figure 1B). The NF-κB pathway activation triggered by LPS injection or sevoflurane exposure may induce astrocyte activation and cognitive dysfunction in preclinical PND models, while administration of pyrrolidine dithiocarbamate (PDTC), an NF-κB signaling pathway blocker, can improve cognitive behavioral performance. The PI3K-AKT signaling pathway may also contribute to astrocytes activation in PNDs. Preclinical study showed that activating the PI3K-AKT signaling pathway led to significant complement cascade activation and transformation of astrocytes. A further study using primary astrocyte culture demonstrated that the STAT3 protein was also involved after the AKT activation. What is more, the CCL2/CCR2 signaling pathway astrocytes engaged has been proved to increase L-1p and TNFα secretion in hippocampal CA1 region and in PND rats after tibial fracture surgery. Oxidative scavenger edaravone or adrenocorticotropin have been reported to attenuate cognitive dysfunction and reduce inflammatory cytokines levels (IL-1β, IL-6, IL-18 and TNFα), suggesting that oxidative stress is essential in neuroinflammation. The mechanisms might involve the AMPK/GSK-3β signaling pathway.

Aside from surgical trauma, perioperative events may also cause abnormal astrogliosis. However, these events are not always related to cognitive dysfunction. Perioperative ischemic/reperfusion events (activated by JAK/STAT3 signaling pathway and other inflammatory cytokines including IL-6 while modulating by complement activation) and postoperative pain (mainly by NF-κB, JAK/STAT3, and CXCL13-CXCR5 signaling pathway) may also cause microglial activation. However, astrocytes also exert a protective effect on cognitive function. Recent study on astrocyte transcriptome sequencing
analysis demonstrated that the human astrocytes could promote neuronal survival in vitro. In aged rats undergone abdominal surgery, mesencephalic astrocyte-derived neurotrophic factor (MANF) was upregulated after surgery, and recombinant human MANF reversed POD-like behaviors. This finding may provide new therapeutic targets for PNDs. One should be aware that the astrocyte activation is largely dependent on microglia. The crosstalk between astrocytes and microglia is critical.

3.3 | Effects of activated microglia and astrocytes on neuronal dysfunction

Large amount of evidence demonstrated that astrocytes release neuroactive substances with a variety of effects on synaptic activity (Figure 1C). Astrocytes regulate neuronal synaptic plasticity by controlling Ca^{2+} flow and reducing astrocytic Ca^{2+} signaling alters the microcircuits and induces repetitive behavior. Dopamine in the synaptic cleft could increase astrocytic Ca^{2+} and suppress excitatory postsynaptic currents in mice, which is regulated by Ca^{2+} signaling manifested astrocyte activation. The astrocytes also express and release several neural factors that affect neuronal functional status. For example, absence of astrocytic neuroligin 2 expression resulted in the loss of cortical excitatory synapse formation, which may further cause cognitive dysfunction. In contrast, astrocytic connexin 30 may shorten the critical period for visual plasticity in mice during development. In addition, evidence exists demonstrating neuronal apoptosis induced by astrocytes.

Interestingly, the astrocytes have also been found to respond to neurotransmitters including glutamate, adenosine triphosphate (ATP), acetylcholine, γ-aminobutyric acid (GABA), etc., in response to neuron dysfunction. For example, in N-methyl-D-aspartic acid (NMDA)-induced excitotoxicity model, the astrocytes can sense neuronal activity and protects neurons from excessive oxidation injury in by consuming incoming neuronal-derived fatty acids.

On the contrary, the generation of neurotoxic astrocytes could be induced by activated microglia (Figure 1C). Non-activated microglia cultures can hardly induce neurotoxic astrocyte formation, even in the presence of LPS. Microglia also play a significant role in neuronal dysfunction. In mice with cognitive decline and hippocampal synaptic loss, the microglia were shown to activate the complement pathway (mainly C3a). In tibial fracture, cognitive dysfunction was accompanied by microglia activation and significantly increased secretion of TNFα and IL-6. Meanwhile, colony stimulating factor 1 receptor (CSF1R) expression in microglia was upregulated in PND mice (confirmed by impaired performance in Morris water maze) after tibial fracture surgery. As expected, inhibiting CSF1R in aged mice can improve cognitive function. Whether activated microglia are a double-edged sword in neuronal dysfunction needs further investigations.

4 | CLINICAL BIOMARKERS: IS THERE ANYTHING WE CAN DO TO PREDICT PNDs FROM THE VERY BEGINNING?

Since PNDs are hard to cure, biomarkers would be of great use for preventive purposes. Recent studies reported several available biomarkers, which can be divided into the following three categories: trauma/surgery-induced inflammatory markers, neurodegeneration disease-related biomarkers, and neuroimaging markers (Table 2).

Commonly used inflammatory cytokines include IL-β, IL-6, C-reaction protein (CRP), TNFα, etc. Although these inflammatory cytokines have been proved to change significantly in preclinical and clinical settings, their specificity are rather low. For example, increased expression of peripheral IL-β is also associated with other conditions such as kidney disease and autoimmunity. In this case, postoperative elevation of IL-β should not be simply interpreted as a cognitive impairment predictor. Another example is that the increased expression of CRP inhibits lysis by recruiting factor H and activate complement C3b on damaged cells. However, the C3b is known for activating microglia, which may further induce PNDs. These results suggested that there is no single inflammatory cytokine that could accurate predict PNDs. Further investigations should focus on which combination of cytokine biomarkers would provide best sensitivity and specificity.

The cerebrospinal fluid (CSF) and serum/plasma biomarkers are largely used in neurodegenerative diseases. The rationale for utilizing these biomarkers is that the PNDs and neurodegenerative diseases share similar clinical symptoms, and that PND patients have higher risks for future neurodegenerative disorders. The S100β protein, tau protein, and Trem2 are all well-established CSF biomarkers in AD development. Recent studies found that both CSF and serum S100β levels were significantly higher in patients developed into PNDs as compared to those who did not. The CSF Trem2 is another promising biomarker for predicting neurodegenerative diseases. Both clinical and preclinical studies provided evidence for Trem2 in PNDs. Another observational study found that the change from preoperative to postoperative plasma tau protein level
is associated with POD incidence and severity. A clinical difficulty in anesthesia is that the CSF is hard to obtain, limiting the use of CSF specimen. Meanwhile, whether the expressions of these proteins are responsible for inducing PNDs need further investigation, since a causal relationship between these proteins with PNDs after surgery and anesthesia has not been confirmed yet.

Advances in imaging technology have greatly broadened our scope in studying brain function. The positive emission tomography (PET) examination has been used to evaluate neuroinflammation for years. The resting-state functional magnetic resonance imaging (rs-MRI) is a recently developed non-invasive method to study brain functions. Human brain functions as networks, and large amount of studies from recent years have elucidated various changes in functional connectivity (FC), amplitude of low frequency fluctuations (ALFF) and topology structures in patients with cognitive impairment. Recent studies aimed to utilize rs-MRI to analyze cognitive function after surgery. However, concerns are raised since the results are not replicable in different

Reference	Biomarker	Type	Sample	Evidence	Main findings
Quan et al (2019)	IL-1β	Inflammatory	Plasma	Clinical	Lower IL-1β is followed by better cognitive function 7 days after anesthesia
Chen et al (2019)	IL-6	Inflammatory	Serum	Clinical	Patients developed into delirium had significant higher level of IL-6 at 6, 12 and 18 hours after surgery
Quan et al (2019)	CRP	Inflammatory	Plasma	Clinical	Lower CRP is followed by better cognitive function 7 days after anesthesia
Zhu et al (2020)	TNFα	Inflammatory	Plasma	Clinical	Higher level of TNFα is followed with lower MMSE score
Hov et al (2017)	S100β	Neurodegenerative	CSF	Clinical	In patients without preoperative delirium, higher S100β was observed in those develop into POD
Hassan et al (2020)	S100β	Neurodegenerative	Serum	Clinical	Patients without neuroprotective management had higher level of S100β followed with poorer cognitive performance 7 days after surgery.
Ballweg et al (2021)	Tau	Neurodegenerative	Plasma	Clinical	Plasma tau was significantly associated with delirium severity (p = 0.026) 1 day after surgery
Henjum et al (2018)	Trem2	Neurodegenerative	CSF	Clinical	Delirium was associated with higher levels of TREM2 in patients without pre-existing dementia (p = 0.046)
Jiang et al (2018)	Trem2	Neurodegenerative	Hippocampus	Preclinical	The expression of Trem2 gene was down regulated after surgical trauma on day 3, 7 and 14 followed with behavioral changes in Morris Water Maze
Passamonti et al (2019)	FC	Neuroimaging	Rs-fMRI data	Clinical	Neuroinflammation in AD induced abnormal FC
Franzmeier et al (2019)	FC	Neuroimaging	Rs-fMRI data	Clinical	FC from rs-fMRI between any given region of interest (ROI) pair was associated with higher covariance in tau-PET binding in the same ROIs
Mu et al (2020)	ALFF	Neuroimaging	Rs-fMRI data	Clinical	AD patients without depression had higher increased ALFF on bilateral superior frontal gyrus, left middle frontal gyrus and left frontal gyrus
Zhuang et al (2020)	ALFF	Neuroimaging	Rs-fMRI data	Clinical	MCI patients with aggregation vascular risk factors had different ALFF as compared with those without the risks.
Parisot, et al (2018)	Topology structure	Neuroimaging	Rs-fMRI data	Clinical	The topology structures are different in AD and ASD patients

Note: AD, Alzheimer’s disease; ALFF, amplitude of low frequency fluctuations; ASD, autism spectrum disorder; CRP, C-reactive protein; CSF, cerebral spinal fluid; FC, functional connectivity; IL, interleukin; PET, positron emission tomography; rs-fMRI, resting-state functional magnetic resonance imaging; TNF, tumor necrosis factor; Trem, triggering receptor expressed on myeloid cell.
studies, and different post-processing methods may result in different MRI analyzing results. Whether the rs-fMRI or PET can be used for predicting PNDs still need further investigation.

5 | POTENTIAL THERAPEUTIC STRATEGIES: IF WE CAN CURE OR PREVENT THE PNDs FROM ITS HAPPENING?

Although preclinical experiments pointed out several pathways that may be beneficial for clinical therapy, we must keep in mind that they are mainly used for preventing PNDs instead of curing the PNDs. As a result, the best PND management strategy is prevention from disease happening, through intraoperative anesthe sia management for example, rather than treatment after disease onset.

5.1 | Ulinastatin

Targeting NF-κB signaling pathway is the closest to clinical practice since there are drugs available. Ulinastatin is a hydrolase protein inhibitor obtained from human urine. The ulinastatin was initially used for acute pancreatitis while has recently been used for intraoperative anti-inflammatory management in elderly patients. Clinical data have shown that adding ulinastatin to aged patients is effective to improve mini-mental state examination (MMSE) score after spinal surgery. In a meta-analysis enrolling 10 high-quality studies, ulinastatin treatment led to lower levels of inflammatory cytokines after surgery. Preclinical experiments confirmed that its anti-inflammatory mechanisms involve blockade of the NF-κB signaling pathway. Notably, some studies have reported a tendency of decreased mortality in patients following ulinastatin treatment. Whether the treatment may also reduce the mortality in patients with PNDs still need further validation.

5.2 | Dexmedetomidine

Dexmedetomidine is a highly selective alpha-2 (α2) adrenoceptor agonist with sedative, analgesic, anxiolytic, sympatholytic, and opioid-sparing properties. Using dexmedetomidine has been proved to be able to reduce the rate of PNDs both after surgery and in the ICU. Evidence from preclinical experiment found the protective effect may be the α2 receptor agonist activation. Meanwhile, after giving the dexmedetomidine, the NF-κB signaling pathway activation was also decreased. These results also suggested that the dexmedetomidine attenuated the inflammatory responses and improved cognitive function by reducing the activation of NF-κB signaling pathway. However, most of the studies mainly focused on POD, the long-term effect of dexmedetomidine on cognitive function still lacks enough evidence. Meanwhile, some of the studies draw contradictory results. Notably, some studies have reported a long-term effect of dexmedetomidine on cognitive impairment. However, most of the studies mainly focused on long-term mortality in elderly patients. Thus, the effect of using dexmedetomidine still need further investigations.

5.3 | Parecoxib sodium

Parecoxib sodium, a selective cyclooxygenase-2 (COX-2) inhibitor, is one of the most widely used non-steroid anti-inflammatory drugs (NSAIDs) in clinical practice. Recent studies have shown that parecoxib sodium resulted in decreased rate of PNDs, possibly through its inhibiting the COX-2 activity. However, there are several concerns regarding the use of parecoxib sodium in preventing/treating PNDs: (1) most of the studies focused on POD or delayed neurocognitive recovery. Its long-term effect in cognitive impairment is unknown; (2) parecoxib sodium is not the only drug used in most studies. This may lead to confounding results. Whether parecoxib sodium is effective for preserving long-term cognitive function after surgery and surgery needs further investigations.

6 | CX3CL1/CX3CR1 AND TREM 2 GENE EXPRESSION

Although evidence from clinical practice is lacking, preclinical experiment in aged rats suggested that blocking CX3CL1/CX3CR1 signaling with neutralizing antibody reduced inflammatory cytokine secretion and hippocampal astrocyte activation, and improved behavioral performances. As for microglial Trem2, preclinical experiments found overexpression of Trem2 could downregulate inflammatory cytokines secretion and improve behavioral performances in rats after surgery. Meanwhile, clinical data also suggested that CSF Trem2 levels are highly associated with post-surgery delirium in patients without pre-existing dementia. However, direct evidence proving that regulating CX3CL1/CX3CR1 and Trem2 expression can improve cognitive function after surgery is still lacking.

Although advances from both clinical practice and life science pointed out the potential causes and therapeutic targets for PNDs, it is still a major challenge for anesthesia practice. It is under debate whether the PNDs are highly related to cognitive impairment and other type of neurodegenerative disease later in life. Thanks to the sequencing method, the ACE gene missense mutation was found to be responsible for an early-onset, rapid progressing dementia. This finding highlighted the significance of gene-sequencing method to studying PND mechanisms. Meanwhile, it also pointed out a novel direction for mechanistic studies, aside from traditional approaches such as taking blood samples and doing neuropsychological assessment. Another study found that the activation of PKC signaling pathway enhanced the treatment effect in refractory depression, implying there might be different signaling pathways in different types of PNDs.
Aside from neurodegenerative disease, neurovascular disease may also cause cognitive dysfunction. For example, clinical practice shown that management of stroke risk factors may also reduce later dementia.\(^{147}\) Another evidence is that elderly patients with NOTCH3 cysteine altering variants have higher risks of both stroke and cognitive impairment.\(^{148}\) Meanwhile, brain dysfunction such as delirium can also be found in patients with stroke history.\(^{149}\) These findings implying potential directions for PND studies.

Although signaling pathways responsible for PND still need further investigation, signaling pathways relating to other neuropsychological diseases are highly valuable to refer to in PND studies. Since preclinical experiments showed that the mechanisms of PNDs may be similar to those of neurocognitive disorders,\(^{150}\) and PND patients share similar clinical symptoms with neurodegenerative disorders and neurovascular disorders in some extent, studies on the latter would reveal new directions for PND studies both preclinically and clinically.

Since the PNDs are hard to cure by far, future studies should focus on its etiology and risk factors to reduce its incidence. Meanwhile, preclinical experiments should focus on the long-term activation of astrocytes and crosstalk among microglia, astrocytes and neurons. We believe that effort from both clinical and preclinical studies will finally benefit patient care.

ACKNOWLEDGMENTS

The authors may express their special thankfulness to Dr. Jian Ren from Department of Neurosurgery, Xuanwu Hospital Capital Medical University and Dr. Yu Zhang from Department of Urology, Peking University Third Hospital for their generous help on illustrations. The authors may also express their thankfulness to Prof. Yong He from Beijing Normal University for developing the Brain Network Viewer software (http://www.nitrc.org/projects/bnv/), which helped us to make the graphical abstract.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

Yang Liu: writing the manuscript; Huiqun Fu: illustration drawing; Tianlong Wang: reviewing manuscript.

DATA AVAILABILITY STATEMENT

This is a review article and all the references have been published online.

ORCID

Tianlong Wang https://orcid.org/0000-0001-6291-2505

REFERENCES

1. Saxena S, Uchida Y, Maze M. Restoring order to postoperative neurocognitive disorders. *JAMA Neurol*. 2018;75:535-536.

2. Turan A, Duncan A, Leung S, et al. Dexametomidine for reduction of atrial fibrillation and delirium after cardiac surgery (DECADE): a randomised placebo-controlled trial. *Lancet (London, England)*. 2020;396:177-185.

3. Zhang D, Su X, Meng Z, et al. Impact of dexmedetomidine on long-term outcomes after noncardiac surgery in elderly: 3-year follow-up of a randomized controlled trial. *Ann Surg*. 2019;270:356-363.

4. Evered LA, Silbert BS. Postoperative cognitive dysfunction and noncardiac surgery. *Anesth Analg*. 2018;127:496-505.

5. Kotekar N, Shenkar A, Nagaraj R. Postoperative cognitive dysfunction – current preventive strategies. *Clin Interv Aging*. 2018;13:2267-2273.

6. Eckenhoff RG, Maze M, Xie Z, et al. Perioperative neurocognitive disorder: state of the preclinical science. *Anesthesiology*. 2020;132:55-68.

7. Evered L, Silbert B, Knopman DS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. *Br J Anaesth*. 2018;121:1005-1012.

8. International statistical classification of diseases and related health problems. 10th Rev. World Health Organisation 2016.

9. Association AP. Diagnostic and statistical manual of mental disorders (5th ed). American Psychiatric Association; 2013.

10. Needham MJ, Webb CE, Bryden DC. Postoperative cognitive dysfunction and dementia: what we need to know and do. *Br J Anaesth*. 2017;119:i115-i125.

11. Daiello LA, Racine AM, Yun Gou R, et al. Postoperative delirium and postoperative cognitive dysfunction: overlap and divergence. *Anesthesiology*. 2019;131:477-491.

12. Snyder B, Simone SM, Giovannetti T, Floyd TF. Cerebral hypoxia: its role in age-related chronic and acute cognitive dysfunction. *Anesth Analg*. 2021;132:1502-1513.

13. Wang P, Velagapudi R, Kong C, et al. Neurovascular and immune mechanisms that regulate postoperative delirium superimposed on dementia. *Alzheimers Dement*. 2020;16:734-749.

14. Fong TG, Vasunilashorn SM, Gou Y, et al. Association of CSF Alzheimer’s disease biomarkers with postoperative delirium in older adults. *Alzheimers Dement (N Y)*. 2021;7:e12125.

15. Berger M, Oyyemni D, Olurinse MO, et al. The INTUIT study: investigating neuroinflammation underlying postoperative cognitive dysfunction. *J Am Geriatr Soc*. 2019;67:794-798.

16. Racine AM, Tourotoglou A, Abrantes T, et al. Older patients with Alzheimer’s Disease-related cortical atrophy who develop post-operative delirium may be at increased risk of long-term cognitive decline after surgery. *J Alzheimers Dis*. 2020;75:187-199.

17. Subramaniyan S, Terrano N. Neuroinflammation and perioperative neurocognitive disorders. *Anesth Analg*. 2019;128:781-788.

18. Yang T, Velagapudi R, Terrano N. Neuroinflammation after surgery: from mechanisms to therapeutic targets. *Nat Immunol*. 2020;21:1319-1326.

19. Guan HL, Liu H, Hu XY, et al. Urinary albumin creatinine ratio associated with postoperative delirium in elderly patients undergoing elective non-cardiac surgery: a prospective observational study-[published online ahead of print, 2021 Aug 20]. *CNS Neurosci Ther*. 2021:1-10. doi:10.1111/cns.13717

20. Liu Y, Fu H, Wu Y, et al. Elamipretide (SS-31) improves functional connectivity in hippocampus and other related regions following prolonged neuroinflammation induced by lipopolysaccharide in aged rats. *Front Aging Neurosci*. 2021;13:600484.

21. Raz L, Knoefel J, Bhaskar K. The neuropathology and cerebrovascular mechanisms of dementia. *J Cereb Blood Flow Metab*. 2016;36:172-186.

22. Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. *J Cereb Blood Flow Metab*. 2020;40:56-524.

23. Kan M, Yang T, Fu H, et al. Pyrroline dithiocarbamate prevents neuroinflammation and cognitive dysfunction after endotoxemia in rats. *Front Aging Neurosci*. 2016;8:175.

24. Zhang M, Zhang Y, Fu H, Zhang Q, Wang T. Ulinastatin may significantly improve postoperative cognitive function of elderly...
patients undergoing spinal surgery by reducing the translocation of lipopolysaccharide and systemic inflammation. Front Pharmacol. 2018;9:1007.

25. Kristek G, Rados I, Kristek D, et al. Influence of postoperative angesia on systemic inflammatory response and postoperative cognitive dysfunction after femoral fractures surgery: a randomized controlled trial. Reg Anesth Pain Med. 2019;44:59-68.

26. Huang H, Tanner J, Parvataneni H, et al. Impact of total knee arthroplasty with general anesthesia on brain networks: cognitive efficiency and ventricular volume predict functional connectivity decline in older adults. J Alzheimers Dis. 2018;62:319-333.

27. MacKenzie KK, Britts- Spells AM, Sands LP, Leung JM. Processed electroencephalogram monitoring and postoperative delirium: a systematic review and meta-analysis. Anesthesiology. 2018;129:417-427.

28. Bocskai T, Kovacs M, Szakacs Z, et al. Is the bispectral index monitoring protective against postoperative cognitive decline? A systematic review with meta-analysis. PLoS One. 2020;15:e0229018.

29. Yang S, Xiao W, Wu H, et al. Management based on multimodal brain monitoring may improve functional connectivity and postoperative neurocognition in elderly patients undergoing spinal surgery. Front Aging Neurosci. 2021;13:705287.

30. Zhao W, Hu Y, Chen H, et al. The effect and optimal dosage of dexmedetomidine plus sufentanil for postoperative analgesia in elderly patients with postoperative delirium and early postoperative cognitive dysfunction: a single-center, prospective, randomized, double-blind, controlled trial. Front Neurosci. 2020;14:549516.

31. Su X, Meng Z, Wu X, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet. 2016;388:1893-1902.

32. Zhang Y, Shan G, Zhang Y, et al. Propofol compared with sevoflurane general anaesthesia is associated with decreased delayed neurocognitive recovery in older adults. Br J Anaesth. 2018;121:595-604.

33. Subramaniam B, Shankar P, Shaefi S, et al. Effect of intravenous acetaminophen vs placebo combined with propofo or dexmedetomidine on postoperative delirium among older patients following cardiac surgery: the DEXACET randomized clinical trial. JAMA. 2019;321:686-696.

34. Mu D, Zhang D, Wang D, et al. Parecoxib supplementation to morphine analgesia decreases incidence of delirium in elderly patients after hip or knee replacement surgery: a randomized controlled trial. Anesth Analg. 2017;124:1992-2000.

35. Wagner D, Hooper V, Bankeris K, Johnson A. The relationship of postoperative delirium and unplanned perioperative hyperthermia in surgical patients. J Perianesth Nurs. 2021;36:41-46.

36. Rudiger A, Beggeda H, Babic D, et al. Intra-operative events during cardiac surgery are risk factors for the development of delirium in the ICU. Crit Care. 2016;20:264.

37. Maheshwari K, Ahuja S, Khanna AK, et al. Association between perioperative hypotension and delirium in postoperative critically ill patients: a retrospective cohort analysis. Anesth Analg. 2020;130:636-643.

38. Feng X, Hu J, Hua F, Zhang J, Zhang L, Xu G. The correlation of intra-operative hypotension and postoperative cognitive impairment: a meta-analysis of randomized controlled trials. BMC Anesthesiol. 2020;20:193.

39. Deiner S, Luo X, Lin HM, et al. Intraoperative infusion of dexmedetomidine for prevention of postoperative delirium and cognitive dysfunction in elderly patients undergoing major elective noncardiac surgery: a randomized clinical trial. JAMA Surg. 2017;152:e171505.

40. Konishi Y, Evered LA, Scott DA, Silbert BS. Postoperative cognitive dysfunction after sevoflurane or propofol general anaesthesia in combination with spinal anaesthesia for hip arthroplasty. Anaesth Intensive Care. 2018;46:596-600.

41. Sun H, Zhang G, Ai B, et al. A systematic review: comparative analysis of the effects of propofol and sevoflurane on postoperative cognitive function in elderly patients with lung cancer. BMC Cancer. 2019;19:1248.

42. Hovens IB, van Leeuwen BL, Mariani MA, Kraneveld AD, Schoemaker RG. Postoperative cognitive dysfunction and neuroinflammation; cardiac surgery and abdominal surgery are not the same. Brain Behav Immun. 2016;54:178-193.

43. Li Y, Li H, Li H, et al. Delirium in older patients after combined epidural-general anaesthesia or general anaesthesia for major surgery: a randomized trial. Anesthesiology. 2021;135:218-232.

44. Jiang P, Li M, Mao AQ, Liu Q, Zhang Y. Effects of general anaesthesia combined with epidural anaesthesia on cognitive dysfunction and inflammatory markers of patients after surgery for esophageal cancer: a randomised controlled trial. J Coll Physicians Surg Pak. 2021;31:885-890.

45. Ehsani R, Djalali Motlagh S, Zaman B, Sehat Kashani S, Ghoraty MR. Effect of general versus spinal anaesthesia on postoperative delirium and early cognitive dysfunction in elderly patients. Anesth Pain Med. 2020;10:e101815.

46. Sprung J, Schulte PJ, Knopman DS, et al. Cognitive function after surgery with regional or general anesthesia: a population-based study. Alzheimers Dement. 2019;15:1243-1252.

47. Unneby A, Svensson PO, Gustafson PY, Lindgren AB, Bergstrom U, Olofsson PB. Complications with focus on delirium during hospital stay related to femoral nerve block compared to conventional pain management among patients with hip fracture – a randomised controlled trial. Injury. 2020;51:1634-1641.

48. Shen Z, Xu H, Song W, et al. Galectin-1 ameliorates perioperative neurocognitive disorders in aged mice. CNS Neurosci Ther. 2021;27:842-856.

49. Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85:296-302.

50. Kong J, Du Z, Dong L. Pinitol prevents lipopolysaccharide (LPS)-induced inflammatory responses in BV2 microglia mediated by TREM2. Neurotox Res. 2020;38:96-104.

51. Dong P, Zhao J, Li N, et al. Sevoflurane exaggerates cognitive decline in a rat model of chronic intermittent hypoxia by aggravating microglia-mediated neuroinflammation via downregulation of PPAR-gamma in the hippocampus. Behav Brain Res. 2018;347:325-331.

52. Wang W, Lu R, Feng D, Zhang H. Sevoflurane inhibits glutamate-aspartate transporter and glial fibrillary acidic protein expression in hippocampal astrocytes of neonatal rats through the janus kinase (JAK)/signal transducer and activator of transcription (JAK/STAT) pathway. Anesth Analg. 2016;123:93-102.

53. Li Y, Zhu Z, Huang T, et al. The peripheral immune response after stroke- a double edge sword for blood-brain barrier integrity. CNS Neurosci Ther. 2018;24:1115-1128.

54. Xiao J, Xiong B, Zhang W, et al. PGE2-EP3 signaling exacerbates cognitive dysfunction after sevoflurane or propofol general anaesthesia in combination with spinal anaesthesia for hip arthroplasty. Anaesth Intensive Care. 2018;46:596-600.

55. Jha MK, Jo M, Kim J- H, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist. 2018;25:227-240.

56. Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in ischemic stroke: a double edge sword for blood-brain barrier integrity. CNS Neurosci Ther. 2018;24:915-929.

57. Wei Y, Chen T, Bosco DB, et al. The complement C3–C3aR pathway mediates microglia-astrocyte interaction following status epilepticus. Glia. 2021;69:1155-1169.
58. Johnson ECB, Dammer EB, Duong DM, et al. Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med. 2020;26:769-780.

59. Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in Parkinson's disease. Neurobiol Dis. 2020;144:105028.

60. Subramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 2019;94:112-120.

61. Kluge MG, Abdelhoseini M, Zalewska K, et al. Spatiotemporal analysis of impaired microglia process movement at sites of secondary neurodegeneration post-stroke. J Cereb Blood Flow Metab. 2019;39:2456-2470.

62. Jin X, Liu M, Zhang D, et al. Baicalin mitigates cognitive impairment following intracerebral hemorrhage. J Neuroinflammation. 2021;18:46.

63. Li J, Shi C, Ding Z, Jin W. Glycogen synthase kinase 3beta promotes postoperative cognitive dysfunction by inducing the M1 polarization and migration of microglia. Mediators Inflamm. 2020;2020:7860829.

64. Zhu Y, Wang Y, Yao R, et al. Enhanced neuroinflammation mediated by DNA methylation of the glucocorticoid receptor triggers cognitive dysfunction after sevoflurane anesthesia in adult rats subjected to maternal separation during the neonatal period. J Neuroinflammation. 2017;14:6.

65. Griciuc A, Patel S, Federico AN, et al. TREM2 acts downstream of NLRP3 inflamasomes and TLR4/NF-kappaB signaling pathway. CNS Neurosci Ther. 2019;25:575-590.

66. Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type drives M1 microglia activation and neuroinflammation under hypoxic stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3beta signaling. J Neuroinflammation. 2019;16:83.

67. Jiang Y, Li Z, Ma H, et al. Upregulation of TREM2 ameliorates neuroinflammation in neurodegenerative diseases. Neurobiol Dis. 2018;109:105-114.

68. Henjum K, Quist-Paulsen E, Zetterberg H, Blennow K, Nilsson L. CSF biomarkers Abeta42, t-tau and p-tau. J Cereb Blood Flow Metab. 2018;38:1398-1411.

69. Lozoya E, Wang Y, Yao R, et al. Enhanced neuroinflammation mediated by DNA methylation of the glucocorticoid receptor triggers cognitive dysfunction after sevoflurane anesthesia in adult rats subjected to maternal separation during the neonatal period. J Neuroinflammation. 2021;18:93.

70. Xu J, Dong H, Qian Q, et al. Astrocyte-derived CCL2 participates in surgery-induced cognitive dysfunction and neuroinflammation via evoking microglia activation. Behav Brain Res. 2017;332:145-153.

71. Butturini E, Boriero D, Carcereri de Prati A, Mariotto S. STAT1 receptor-2 activation in intracerebral hemorrhage. J Cereb Blood Flow Metab. 2021;41:486-501.

72. Luo Y, Fang Y, Kang R, et al. Inhibition of EZH2 (enhancer of zeste homolog 2) attenuates neuroinflammation via H3k27me3/SOC3/TRA6/NF-kappaB (trimethylation of histone 3 lysine 27/suppressor of cytokine signaling 3/tumor necrosis factor receptor family 6/nuclear factor-kappaB) in a rat model of subarachnoid hemorrhage. Stroke. 2020;51:3320-3331.

73. Wang H, Peng G, Wang B, et al. IL-1R(-/-) alleviates cognitive deficits through microglial M2 polarization in AD mice. Brain Res Bull. 2020;157:10-17.

74. Zhao Y, Gan Y, Xu G, Yin G, Liu D. MSCs-derived exosomes attenuate acute brain injury and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflamasomes and TLR4/NF-kappaB signaling pathway. CNS Neurosci Ther. 2019;25:575-590.

75. Jin X, Liu M, Zhang D, et al. Baicalin mitigates cognitive impairment following intracerebral hemorrhage. J Neuroinflammation. 2020;26:769-780.
95. Zhang Y, Sloan SA, Clarke LE, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89:37-53.

96. Liu J, Shen Q, Zhang H, et al. The potential protective effect of mesencephalic astrocyte-derived neurotrophic factor on post-operative delirium via inhibiting inflammation and microglia activation. J Inflamm. Res. 2021;14:2781-2791.

97. Stobart JL, Ferrari KD, Barrett MJ, et al. Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons. Neuron. 2018;98:726-735.e4.

98. Yu X, Taylor AMW, Nagai J, et al. Reducing astrocyte calcium signaling in vivo alters striatocircuit microcircuits and causes repetitive behavior. Neuron. 2018;99(1170–1187):e9.

99. Corkrum M, Covelo A, Lines J, et al. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron. 2020;105(1036–1047):e5.

100. Stogsdill JA, Ramirez J, Liu D, et al. Astrocytic neuroinflammation underlies astrocyte morphogenesis and synaptogenesis. Nature. 2017;551:192-197.

101. Ribot J, Breton R, Calvo CF, et al. Astrocytes close the mouse critical period for visual plasticity. Science. 2021;373:77-81.

102. Barbar L, Jain T, Zimmer M, et al. CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes. Neuron. 2020;107:436-453.e12.

103. Gruol DL, Huitron-Resendiz S, Roberts AJ. Altered brain activity during withdrawal from chronic alcohol is associated with changes in IL-6 signal transduction and GABAAergic mechanisms in transgenic mice with increased astrocyte expression of IL-6. Neuropharmacology. 2018;138:32-46.

104. Hatakeyama N, Unekawa M, Murata J, et al. Differential pial and periventricular astrocyte-derived neurotrophic factor on postnatal and functional and reactive human iPSC-derived astrocytes. Neuron. 2020;107:436-453.e12.

105. Hoonk Y, Sloan SA, Clarke LE, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89:37-53.

106. Mold C, Kingzette M, Gewurz H. C-reactive protein inhibits pneumococcal activation of the alternative pathway by increasing the interaction between factor H and C3b. J Immunol. 1984;133:882-885.

107. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21:1359-1369.

108. Vasek MJ, Garber C, Dorsey D, et al. A complement-microglial axis in the nucleus accumbens requires astrocyte activity. Neuron. 2018;99(1170–1187):e9.

109. Hov KR, Bolstad N, Iland AV, et al. Cerebrospinal fluid S100B and Alzheimer’s disease biomarkers in hip fracture patients with delirium. Dement Geriatr Cogn Dis Extra. 2017;7:374-385.

110. Hassan WF, Tawfik MH, Nabil TM, Abd Elkareem RM. Could intraoperative magnesium sulphate protect against postoperative cognitive dysfunction? Minerva Anestesiol. 2020;86:808-815.

111. Willis EF, MacDonald KPA, Nguyen QH, et al. Repopulating microglia in transgenic mice with increased astrocyte expression of IL-6 signal transduction and GABAergic mechanisms in transgenic mice with increased astrocyte expression of IL-6. Neuropharmacology. 2018;138:32-46.

112. Quan C, Chen J, Luo Y, et al. BIS-guided deep anesthesia decreases functional and reactive human iPSC-derived astrocytes. Neuron. 2020;105(1036–1047):e5.

113. Franzmeier N, Suarez-Calvet M, Frontzekowski L, et al. Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration. Mol Neurodegener. 2020;15:57.

114. Ballweg T, White M, Parker M, et al. Association between plasma tau and postoperative delirium incidence and severity: a prospective observational study. Br J Anaesth. 2021;126:458–466.

115. Hutton HL, Ooi JD, Holdsworth SR, Kitching AR. The NLRP3 inflammasome in kidney disease and autoimmunity. Lancet Neurol. 2020;19:940-950.

116. Yuan D, Liu Z, Kaindl J, et al. Activation of the alpha2B adrenoceptor by the sedative sympatholytic dexmedetomidine. Nat Chem Biol. 2020;16:507-512.
137. Duan X, Coburn M, Rossaint R, Sanders RD, Waesberghe JV, Kowark A. Efficacy of perioperative dexmedetomidine on postoperative delirium: systematic review and meta-analysis with trial sequential analysis of randomised controlled trials. *Br J Anaesth*. 2018;121:384-397.

138. Li R, Lai IK, Pan JZ, Zhang P, Maze M. Dexmedetomidine exerts an anti-inflammatory effect via alpha2 adrenoceptors to prevent lipopolysaccharide-induced cognitive decline in mice. *Anesthesiology*. 2020;133:393-407.

139. Zhang X, Yan F, Feng J, et al. Dexmedetomidine inhibits inflammatory reaction in the hippocampus of septic rats by suppressing NF-kappaB pathway. *PLoS One*. 2018;13:e0196897.

140. Zhai Y, Zhu Y, Liu J, et al. Dexmedetomidine post-conditioning alleviates cerebral ischemia-reperfusion injury in rats by inhibiting high mobility group protein B1 group (HMGB1)/toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-kappaB) signaling pathway. *Med Sci Monit*. 2020;26:e918617.

141. Hughes CG, Boncyk CS, Culley DJ, et al. American society for enhanced recovery and perioperative quality initiative joint consensus statement on postoperative delirium prevention. *Anesth Analg*. 2020;130:1572-1590.

142. Huang JM, Lv ZT, Zhang B, Jiang WX, Nie MB. Intravenous parcoxisb for early postoperative cognitive dysfunction in elderly patients: evidence from a meta-analysis. *Expert Rev Clin Pharmacol*. 2020;13:451-460.

143. Tufvesson-Alm M, Schwieler L, Schwarz R, Goiny M, Erhardt S, Engberg G. Importance of kynurenine 3-monooxygenase for spontaneous firing and pharmacological responses of midbrain dopamine neurons: relevance for schizophrenia. *Neuropsychopharmacology*. 2018;138:130-139.

144. Li Z, Cao X, Ma H, et al. Surgical trauma exacerbates cognitive deficits and neuroinflammation in aged rats: the role of CX3CL1-CX3CR1 signaling. *J Neuropathol Exp Neurol*. 2018;77:736-746.

145. Ni J, Xiao S, Li X, Sun L. ACE gene missense mutation in a case with early-onset, rapid progressing dementia. *Gen Psychiatr*. 2019;32:e100028.

146. Guo X, Mao R, Cui L, et al. PAID study design on the role of PKC activation in immune/inflammation-related depression: a randomised placebo-controlled trial protocol. *Gen Psychiatr*. 2021;34:e100440.

147. Corraini P, Henderson VW, Ording AG, Pedersen L, Horvath-Puho E, Sorensen HT. Long-term risk of dementia among survivors of ischemic or hemorrhagic stroke. *Stroke*. 2017;48:180-186.

148. Hack RJ, Rutten JW, Person TN, et al. Cysteine-altering NOTCH3 variants are a risk factor for stroke in the elderly population. *Stroke*. 2020;51:3562-3569.

149. Shaw R, Drozdowska B, Taylor-Rowan M, et al. Delirium in an acute stroke setting, occurrence, and risk factors. *Stroke*. 2019;50:3265-3268.

150. Evered L, Silbert B, Scott DA, Ames D, Maruff P, Blennow K. Cerebrospinal fluid biomarker for Alzheimer disease predicts postoperative cognitive dysfunction. *Anesthesiology*. 2016;124:353-361.

How to cite this article: Liu Y, Fu H, Wang T. Neuroinflammation in perioperative neurocognitive disorders: From bench to the bedside. *CNS Neurosci Ther*. 2022;28:484–496. doi:10.1111/cns.13794