COMPUTING ZETA FUNCTIONS OF CYCLIC COVERS IN LARGE CHARACTERISTIC

VISHAL ARUL, ALEX J. BEST, EDGAR COSTA, RICHARD MAGNER, AND NICHOLAS TRIANTAFILLOU

Abstract. We describe an algorithm to compute the zeta function of a cyclic cover of the projective line over a finite field of characteristic \(p \) that runs in time \(p^{1/2 + o(1)} \). We confirm its practicality and effectiveness by reporting on the performance of our SageMath implementation on a range of examples. The algorithm relies on Gonçalves’s generalization of Kedlaya’s algorithm for cyclic covers, and Harvey’s work on Kedlaya’s algorithm for large characteristic.

1. Introduction

For \(\mathcal{C} \) an algebraic curve of genus \(g \) over a finite field \(\mathbb{F}_q \) of characteristic \(p \) and cardinality \(q = p^n \), the zeta function of \(\mathcal{C} \) is defined by

\[
Z(\mathcal{C}, t) := \exp \left(\sum_{i=1}^{\infty} \frac{\# \mathcal{C}(\mathbb{F}_{q^i}) t^i}{i} \right) = \frac{L(\mathcal{C}, t)}{(1-t)(1-qt)},
\]

where \(L(\mathcal{C}, t) \in 1 + t \mathbb{Z}[t] \) is a degree \(2g \) polynomial, with reciprocal roots of complex absolute value \(q^{1/2} \), and satisfies the functional equation \(L(\mathcal{C}, t) = q^g t^{2g} L(\mathcal{C}, 1/(tq)) \).

In this paper, we address how to effectively compute \(Z(\mathcal{C}, t) \) for a cyclic cover of \(\mathbb{P}^1 \) defined by \(y^r = F(x) \), where \(F(x) \) is squarefree and \(p \) is large in comparison to \(g \), without any restrictions on \(r \) and \(\deg F \) sharing a common factor.

For curves of small genus, Schoof’s method and its variants [Sch85, Pil90, GS04, GKS11, GS12] can compute \(Z(\mathcal{C}, t) \) in time and space polynomial in \(\log q \) and exponential in the genus. However, the practicality of these methods has only been shown for genus at most 2. These are known as \(\ell \)-adic methods, as their efficiency derives from the realization of the \(\ell \)-adic cohomology of the variety via torsion points.

Alternatively, Kedlaya [Ked01] showed that \(Z(\mathcal{C}, t) \) can be determined in quasi-linear time in \(p \) for an odd hyperelliptic curve, i.e., \(r = 2 \) and \(\deg F = 2g + 1 \), by computing an approximation of the Frobenius matrix acting on \(p \)-adic cohomology (Monsky–Washnitzer cohomology). Kedlaya’s algorithm and its variants are known as \(p \)-adic methods. In [Har07], Harvey improved the time dependence in \(p \) to \(p^{1/2 + o(1)} \). In [Har14], this improvement plays a major role in Harvey’s algorithm for computing the \(p \)-local zeta functions of an odd hyperelliptic curve over \(\mathbb{Z} \) for all

The authors are grateful to the organizers of Sage Days 87, where this project began. We would also like to thank the reviewers for their many helpful comments. The second author was supported by the Simons Collaboration Grant #550023. The third author was partially supported by the Simons Collaboration Grant #550029. The fifth author was supported by the National Science Foundation Graduate Research Fellowship under Grant #1122374.

2010 Mathematics Subject Classification: 11G20 (primary) 11Y16, 11M38, 14G10 (secondary)
p up to some bound. Kedlaya’s original algorithm has been subsequently general-
ized several times, for example to superelliptic curves \([GG01]\), \(C_{a,b}\) curves \([DV06]\),
even degree hyperelliptic curves \([Har12]\), and nondegenerate curves \([CDV06]\). More
recently, Gonçalves \([Gon15]\) extended Kedlaya’s algorithm to cyclic covers of \(\mathbb{P}^1\) and
Tuitman \([Tui16, Tui17]\) to general covers. All these generalizations kept the quasi-
linear time dependence in \(p\). Minzlaff \([Min10]\) improved Gaudry–Gürel’s algorithm
for superelliptic curves by incorporating Harvey’s work, giving a \(p^{1/2+o(1)}\) time
algorithm. The algorithms described above are efficient in practice, and have been
integrated into the current versions of MAGMA \([BCP97]\) and SAGEMATH \([Sag]\).

In this paper, we build upon Gonçalves, Harvey, and Minzlaff’s work to obtain
a practical \(p^{1/2+o(1)}\) algorithm for cyclic covers of \(\mathbb{P}^1\). Theoretically, we already
knew of the existence of algorithms with such a time dependence on \(p\) (and their
average polynomial time versions) for arbitrary schemes (see \([Har15]\)). These al-
gorithms for arbitrary schemes have never been implemented, and it is unclear if
they can be made to work in practice. Our algorithm improves the dependence on
other parameters over these very general algorithms and provides a step towards
a practical average polynomial time in higher genus, analogous to the progression
from \(p^{1/2+o(1)}\) to average polynomial time for odd hyperelliptic curves by Harvey.

More recently, Tuitman \([Tui18]\) combined Harvey’s ideas with a deformation
approach to give a \(p^{1/2+o(1)}\) algorithm for computing zeta functions of generic
projective hypersurfaces of higher dimension. Tuitman’s algorithm has a similar
theoretical dependence on the degree of the curve and the degree of the field (over
\(\mathbb{F}_p\)) as our algorithm.

Throughout we will use a bit complexity model for computation and the notation
\(\tilde{O}(\cdot) = \bigcup_k O(x\log^k(x))\). Our main result is then as follows:

Theorem 1.1. Let \(C\) be a cyclic cover of \(\mathbb{P}^1\), of genus \(g\), defined by
\[
C : y^e = F(x),
\]
where \(F \in \mathbb{F}_q[x]\) is a squarefree polynomial of degree \(d\). Let \(\bar{C}\) be the curve obtained
from \(C\) by removing the \(\delta\) points at infinity and the \(d\) points on the \(x\)-axis corre-
sponding to the zeros of \(F(x)\). Let \(M_e\) be the matrix of Frobenius acting on \(B_e\),
where \(B_e\) is a basis of the Monsky–Washnitzer cohomology of \(\bar{C}\) defined in (2.6).

Let \(N \geq 1\), and assume
\[
p > d(N + \epsilon)r\quad\text{and}\quad r + d \geq 5.
\]
Then the entries of \(M\) are in \(\mathbb{Z}_q\) and we may compute \(M\) modulo \(p^N\) in time
\[
\tilde{O}(p^{1/2}N^{5/2}d^4rN^2d^4n\log p + Nn^2d^2log p)
\]
and space
\[
O((p^{1/2}N^{3/2} + rN^2)d^2n\log p),
\]
where \(\omega\) is a real number such that the matrix arithmetic operations on matrices
of size \(m \times m\) take \(\tilde{O}(m^{\omega})\) ring operations.

With the goal of computing \(Z(C, t)\) we may apply Theorem 1.1 with \(N = O(nr^d)\),
for example as in (6.1), and this gives the following result:

Theorem 1.3. In the same setup as Theorem 1.1, assume \(p > d r(\frac{1}{4}\log p + \log_4 g) + 2\).
We can compute the numerator of the zeta function of \(C\) in time
\[
\tilde{O}(p^{1/2}n^{7/2}r^{7/2}d^{5/2+\omega} + n^5 r^5 d^8 \log p)
\]
and space $O((p^{1/2} + a^{1/2}r^{3/2}d^{1/2})n^{5/2}r^{3/2}d^{7/2} \log p)$.

We also provide the following $O(\log p)$ space alternative to Theorem 1.1; see Remark 5.3 for more details.

Theorem 1.4. In the same setup as Theorem 1.1, we may may compute M modulo p^N in time $O(prd^3N^3n + n^2N\log p)$ time and space $O(rd^2Nn\log p)$.

In comparison with Minzlaff’s work, in all the theorems above we do not put any restrictions on r and $\deg(F)$ sharing a common factor. Theorem 1.4 reduces the space complexity of [Gon15, Proposition 5.1] from quasi-linear to logarithmic. Theorem 1.3 reduces both time and space complexity of [Gon15, Proposition 5.1] from quasi-linear in p to $p^{1/2+o(1)}$. Moreover, we provide a SAGEMATH implementation of our algorithm for computing zeta functions [ACMT18].

As with all adaptations of Kedlaya’s algorithm, the heart of our algorithm is a procedure for computing a p-adic approximation to the action of Frobenius on a well-chosen basis for (a slight modification of) the Monsky–Washnitzer cohomology of C. This is described in Lemma 3.1.

The remainder of the paper is organized as follows. In Section 2, we recall the relevant definitions for Monsky–Washnitzer cohomology. In Section 3, we compute a ‘sparse’ formula for the action of Frobenius on the basis B_r. The formula from Section 3 includes terms of large positive x-degree and large negative y-degree. Sections 4.1 and 4.2 show how to replace terms with cohomologous terms with x- and y-degree closer to zero by ‘horizontal’ and ‘vertical’ reductions. Section 5 collects the full algorithms, including complexity statements. We close by demonstrating the practicality of our implementation in Section 6.

2. Setup and notation

Let p be a prime and let $q = p^n$ for some $n \geq 1$. Let \mathbb{F}_q and \mathbb{F}_p be the finite fields with q elements and p elements. We write \mathbb{Q}_q for the unramified extension of degree n of \mathbb{Q}_p, and \mathbb{Z}_q for its ring of integers.

We will work under the assumption that (1.2) holds.

Let $\overline{F}(x) \in \mathbb{F}_q[x]$ be a polynomial of degree d with no multiple roots. To $\overline{F}(x)$ we can associate an r-cyclic cover of the projective line C defined by

$$C: y^r = \overline{F}(x).$$

Write $\delta := \gcd(r, d)$. Then the genus of C is $g = \frac{1}{2}((d - 1)(r - 1) - (\delta - 1))$. The curve C is naturally equipped with an automorphism of order r defined by

$$\rho_r: (x, y) \mapsto (x, \zeta_r y)$$

where ζ_r is a primitive r-th root of unity in a fixed algebraic closure of \mathbb{F}_q.

As in Kedlaya’s original algorithm [Ked01] we pick an arbitrary lift $F(x) \in \mathbb{Z}_q[x]$ of $\overline{F}(x)$, also of degree d. Let \tilde{C} be the curve obtained from C by removing the δ points at infinity and the d points on the x-axis corresponding to the zeros of $\overline{F}(x)$. Let $\overline{A} = \mathbb{F}_q[x, y, y^{-1}]/(y^r - \overline{F}(x))$ denote the coordinate ring of \tilde{C}, and write

$$A = \mathbb{Z}_q[x, y, y^{-1}]/(y^r - F(x))$$

for the lift of \overline{A} associated to $F(x)$. Let A^\dagger be the weak completion of A, i.e.,

$$A^\dagger = \mathbb{Z}_q^\dagger[[x, y, y^{-1}]]/(y^r - F(x)),$$
where \(\mathbb{Z}_p[[x, y, y^{-1}]] \) is the ring of power series whose radius of convergence is greater than one. We lift the \(p \)-power Frobenius on \(F_q \) to \(A^1 \) as follows. On \(\mathbb{Z}_q \), we take the canonical Witt vector Frobenius and set \(\sigma(x) := x^p \). We then extend \(\sigma \) to \(A^1 \) by the formula

\[
\sigma(y^j) := y^{-jp^r} \sum_{k=0}^{\infty} \frac{(-j/r)}{k} (\sigma(F(x)) - F(x))^k y^{-kp^r}.
\]

The above series converges (because \(p \) divides \(\sigma(F(x)) - F(x)^p \)) and the definitions ensure that \(\sigma \) is a semilinear (with respect to the Witt vector Frobenius) endomorphism of \(A^1 \). We extend it to differential forms by \(\sigma(fdg) := \sigma(f)d(\sigma(g)) \).

In the spirit of Kedlaya’s algorithm, we determine the zeta function of \(C \) by computing the Frobenius action on subspace of \(H^1 MW(\mathcal{C}) \) spanned by the set

\[
B_\epsilon = \left\{ x^i \frac{dx}{y^{r+t}} : i \in \{0, \ldots, d-2\}, j \in \{1, \ldots, r-1\} \right\}, \quad \text{where } \epsilon = \begin{cases} 0 & \text{if } \delta = 1 \\ 1 & \text{if } \delta > 1. \end{cases}
\]

This subspace is Frobenius stable and 0 is the only element fixed by the induced automorphism \(\rho_\epsilon \). When \(\delta > 1 \), using the basis \(B_1 \) allows us to avoid divisions by zero while reducing differentials (cf. Lemma 4.6). This is critical for generalizing Harvey’s work to this setting.

If \(\eta : \langle B_\epsilon \rangle \to H^1 MW(\mathcal{C}) \) is the projection map, then we have

\[
\langle B_\epsilon \rangle = H^1 MW(\mathcal{C}) \oplus \ker(\eta).
\]

where \(\ker(\eta) \) is a \(\delta - 1 \) dimensional vector space stable under Frobenius. Thanks to Gonçalves’s work [Gon15, Proof of Theorem 7.5], we have an explicit description for the characteristic polynomial \(U(t) := \det(t \cdot \id - \Frob_q | \ker(\eta)) \) of Frobenius acting on \(\ker(\eta) \):

\[
U(t) := \det(t \cdot \id - \Frob_q | \ker(\eta)) = \det(t \cdot \id - P) \cdot (t-1)^{-1}
\]

where the matrix \(P \) represents the permutation induced by \(q \)-th power Frobenius action on the roots of \(T^d - f_d \), where \(f_d \) is the leading term of \(\Frob(x) \). In the case that \(\Frob(x) \) is monic the expression above simplifies to \(U(t) = \prod_{i|\delta, i > 1} (t^{k_i} - 1)^{\frac{q(i)}{k_i}} \), where \(k_i \) is the order of \(q \) in \((\mathbb{Z}/i\mathbb{Z})^\times \). Thus our goal is to compute a \(p \)-adic approximation of the matrix \(M_\epsilon \), representing \(\sigma \) with respect to \(B_\epsilon \).

3. The Frobenius action on differentials

We now rewrite the Frobenius expansion of a basis element in a sparse way where the number of terms does not depend on \(p \). This is a generalization of [Har07, Proposition 4.1] and [Min10, Proposition 4.1], which is made possible due to the analysis performed by Gonçalves in [Gon15, §6].

Lemma 3.1. Let \(N > 0 \) be a positive integer, \(0 \leq i \leq d-2 \) and \(\epsilon r + 1 \leq j \leq (1 + \epsilon)r - 1 \). Suppose \(p > d(N + \epsilon)r \) and \(x^iy^{-j}dx \in B_\epsilon \). For \(0 \leq \ell < N \), write

\[
D_{j,\ell} := \sum_{k=\ell}^{N-1} (-1)^{k-\ell} \binom{-j/r}{k} \binom{k}{\ell} \quad \text{and} \quad \mu_{j,\ell,b} := pD_{j,\ell} \sigma(F)^b_\ell,
\]
where $\sigma(F)^x$ is the coefficient of $x^{p^{kb}}$ in $\sigma(F(x))^x$. The differentials $\sigma(x^iy^jdx)$ and

\begin{equation}
T_{i,j}(i,j) := \sum_{\ell=0}^{N-1} \sum_{b=0}^{d-1} \mu_{j,\ell,b} x^{p^b} y^{-\ell} d\sigma(x^iy^j)
\end{equation}

differ in cohomology by an element of $p^N \text{span}_{\mathbb{F}_q}(B_e)$.

Proof. From (2.5) we obtain

\begin{equation}
\sigma(x^iy^jdx) = \sum_{k=0}^{\infty} px^{p^{k-1}} \left(-\frac{j}{r} \right)^k (\sigma(F(x)) - F(x)^p)^k y^{-p(j+kr)} d\sigma(x^iy^j).
\end{equation}

We claim that for $k \geq N$ the reductions of U_k lie in $p^N \text{span}_{\mathbb{F}_q}(B_e)$.

To show this we start by rewriting U_k. Since p divides $\sigma(F(x)) - F(x)^p$, we have

\begin{equation}
U_k = p^{k+1} H(x) y^{-p(j+kr)} dx
\end{equation}

where $H(x) \in \mathbb{Z}_q[x]$ of degree at most $pi + p - 1 + dkr < pd(k + 1)$. Define

\begin{equation}
L = \begin{cases} p(k + 1) - 1 & \text{if } \epsilon = 0 \\ \left[\frac{p(j+kr)}{r} \right] - \epsilon & \text{if } \epsilon > 0. \end{cases}
\end{equation}

Now we will expand $H(x)$ F-adically to L terms. Taking $j' \in [1, r]$ congruent to pj (mod r), and applying the relation $F(x) = y^r$, we have

\begin{equation}
U_k = p^{k+1} \left(G(x) y^{-\epsilon r - j'} + \sum_{\ell=0}^{L} G_{\ell}(x) y^{r\ell - p(j+kr)} \right) dx,
\end{equation}

where each $G_{\ell}(x) \in \mathbb{Z}_q[x]$ has degree at most $d - 1$ and $G(x)$ has degree at most

\begin{equation}
pd(k + 1) - 1 - dL \leq \begin{cases} d - 1 & \text{if } \epsilon = 0 \\ 0 & \text{if } \epsilon > 0. \end{cases}
\end{equation}

Taking $\nu = [\log_p(p^{k+1}r - r\ell)] \leq 1 + [\log_p(k + 1 + \epsilon r)]$, Gonçalves [Gon15, Proposition 6.1] shows that the reduction of $p^\nu G_{\ell}(x) y^{r\ell - p(j+kr)} dx$ lies in $\text{span}_{\mathbb{F}_q}(B_e)$.

Similarly, [Gon15, Proposition 6.2] says that taking

\begin{equation}
\mu = [\log_p((r\deg(G) + 1) - (\epsilon r + j')d)/\delta)] \leq 1 + [\log_p(rd)],
\end{equation}

the reduction of $p^\mu G(x) y^{-\epsilon r - j'} dx$ lies in $\text{span}_{\mathbb{F}_q}(B_e)$.

Since $p > d(N + \epsilon)r$, both $\mu = 1$ and $\nu \leq 1 + k - N$, so the reductions of U_k for $k \geq N$ lie in $p^N \text{span}_{\mathbb{F}_q}(B_e)$.

The lemma follows by the rearranging the truncated series as follows:

\begin{equation}
\sum_{k=0}^{N-1} \binom{-j/r}{k} (\sigma(F(x)) - y^{pr})^k y^{-kpr} = \sum_{k=0}^{N-1} \sum_{\ell=0}^{k-\ell} \binom{-j/r}{k} \binom{k}{\ell} \sigma(F(x))^\ell y^{pr(\ell - \ell \ell \ell \ell)} y^{-krk} = \sum_{\ell=0}^{N-1} \sum_{b=0}^{dt} D_{j,\ell} \sigma(F)^{\ell} x^{pb} y^\ell,\
\end{equation}

\qed
4. Reducing differentials

The powers of x and y appearing in $T_{(i,j)}$ (as in Lemma 3.1) are much larger than those appearing in our choice of representatives for the basis B_e. We use relations (co-boundaries) coming from the differentials of functions on our curve to ‘reduce’ the terms from $T_{(i,j)}$ to linear combinations of elements of B_e. We proceed in two-stages. Horizontal reduction reduces the x-degree while leaving the y-pole order constant. Vertical reduction decreases the y-pole order without increasing the x-degree. Given a differential ω, we call the unique cohomologous differential $\omega' \in \text{span}(B_e)$ the reduction of ω. We may also abuse notation and call intermediate products of the vertical/horizontal reduction process reductions of ω.

Organizing our work carefully, we can compute the reduction of ω modulo p^N by performing intermediate steps modulo p^{N+1}.

4.1. Horizontal reductions. We follow the steps of Harvey and Minzlaff. Decompose $F(x)$ as $F(x) = fdx^d + P(x)$, where $P(x)$ has degree at most $d - 1$.

Definition 4.1. For $s \in \mathbb{Z}_{\geq -1}$ and $t \in \mathbb{Z}_{\geq 0}$ define the vector space

\[(4.2) \quad W_{s,t} = \{G(x)x^s y^{-t}dx : \deg G \leq d - 1\}\]

equipped with the standard monomial basis.

Let $M^I_H(s) : W_{s,t} \rightarrow W_{s-1,t}$ be the linear map given by the matrix

\[(4.3) \quad M^I_H(s) = \begin{pmatrix}
0 & 0 & \cdots & 0 & C^I_0(s) \\
D^I_H(s) & 0 & \cdots & 0 & C^I_1(s) \\
0 & D^I_H(s) & \cdots & 0 & C^I_2(s) \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & D^I_H(s) & C^I_{d-1}(s)
\end{pmatrix}\]

where $D^I_H(s) = (d(t-r) - rs)f_d$ and where $C^I_h(s)$ is the coefficient of x^h in the polynomial $sP(x) = rsP(x) - (t-r)xP'(x)$. Moreover, for $s_0 < s_1$ we write

\[(4.4) \quad M^I_H(s_0, s_1) := M^I_H(s_0 + 1, s_1 + 1)M^I_H(s_0 + 2, s_1 + 2) \cdots M^I_H(s_1, s_1); \quad D^I_H(s_0, s_1) := D^I_H(s_0 + 1, s_1 + 1)D^I_H(s_0 + 2, s_1 + 2) \cdots D^I_H(s_1, s_1).\]

Lemma 4.5. For $s \in \mathbb{Z}_{\geq 0}$, $t \in \mathbb{Z}_{\geq 0}$, and $\omega \in W_{s,t}$, we have $D^I_H(s)\omega \sim M^I_H(s)\omega$ in cohomology.

Proof. See [Har07, Proposition 5.4] or [Min10, Proposition 5.1]. The same algebraic manipulations hold in the cyclic cover setting, as long we do not divide by $D^I_H(s)$, as this might be zero. \[\square\]

In the case that d and r share a common factor, i.e. $\delta > 1$ and $\epsilon = 1$, then $D^I_H(s)$ might be identically zero. The next lemma ensures this cannot happen due to our choice of basis B_e.

Lemma 4.6. We have $D^I_H(s) \neq 0$, while applying horizontal reductions to $T_{(i,j)}$, for $0 \leq i \leq d - 2$ and $1 + cr \leq j \leq (1 + \epsilon)r - 1$.

Proof. By inspecting the Frobenius formula (3.3) for a fixed value of ℓ, (1) the pole order of y is $t = p(\ell + r\ell)$, where $1 + cr \leq j \leq (1 + \epsilon)r - 1$ and (2) the largest power of x is at most $p(d\ell + i + 1) - 1 \leq pd(\ell + 1) - 1$. Since the largest power of x in $W_{s,t}$ is $s + d - 1$, we need only consider the case $s + d - 1 \leq pd(\ell + 1) - 1$.

If $\delta = 1$, then $\epsilon = 0$ and $d(t-r) - rs \equiv djp \neq 0 \mod r$. \[\]
If $\delta > 1$, then $\epsilon = 1$, so $j \geq 1 + r$ and $t \geq p(1 + r(\ell + 1))$. Using $s + d < pd(\ell + 1)$,
(4.7) $d(t - r) - rs = dt - r(s + d) \geq dp(1 + r(\ell + 1)) - r(pd(\ell + 1)) = dp > 0$. \hfill \square

Corollary 4.8. In the same setting as Lemma 4.6, $D^t_H(s) \equiv 0 \pmod{p}$ if and only if $s \equiv -d \pmod{p}$.

Proof. As in Lemma 4.6, the pole order of y is $t = p(j + r\ell)$, thus
(4.9) $D^t_H(s) := (d(t - r) - rs)f_d \equiv -r(d + s)f_d \pmod{p}$.

By assumption, neither r nor f_d are divisible by p, so we only divide by p exactly when $s \equiv -d \pmod{p}$. \hfill \square

Lemma 4.10. Suppose $p > d(N + \epsilon)r$ and $s \equiv -1 \pmod{p}$. Then $D^t_H(s - (d - 1))$ is divisible by p, but it is not divisible by p^2.

Proof. As $s - (d - 1) \equiv -d \pmod{p}$, we know this denominator is divisible by p. It equals $f_d(d(t - r) - r(s - (d - 1))) = f_d(dt - rs - r)$. Since f_d is coprime to p, we analyze the piece $dt - r(s + 1)$. Inspecting the Frobenius formula (3.3) and considering that horizontal reduction decreases the exponent of x, we see
(4.11) $p - 1 \leq s \leq p(i + 1) - 1 + pd(N - 1) \quad 0 \leq i \leq d - 2$

$0 \leq t \leq jp + (N - 1)p \quad \epsilon r + 1 \leq j \leq (1 + \epsilon)r - 1$

where $\epsilon \in \{0, 1\}$. From these inequalities we obtain
(4.12) $|dt - r(s + 1)| \leq \max\{dt, r(s + 1)\} < dp(N + \epsilon)r < p^2$,

thus the denominator has p-valuation exactly 1. \hfill \square

Now we describe the horizontal reduction procedure in a fashion similar to that in Harvey’s [Har07, §7.2]. Following the notation of (3.3), let v_ℓ be a vector representing a differential form in $W_{p\ell-1,t}$ that is cohomologous to
(4.13) $\sum_{b \geq \ell}^{dk} \mu_{j,k,b-i-1}x^{p(i-1)}y^{-i}dx$, where $t = p(kr + j)$.

As in Harvey [Har07, §7.2], we say a vector is 1-correct if the first coordinate (corresponding to the highest power of x) is both 0 modulo p and correct modulo p^{N+1}, and the other coordinates are correct modulo p^N.

Given v_ℓ which is 1-correct, we show how to compute $v_{\ell-1}$ which is also 1-correct. First we get down to $W_{(\ell p - d-1),t}$ by doing the first d reductions modulo p^{N+1}, as follows:

(4.14) $v^{(1)}_\ell = v_\ell \in W_{(\ell p - d) t}$

\vdots

$v^{(d-1)}_\ell = D^t_H(\ell p - d) - 1 M^t_H(\ell p - d) v^{(d)}_\ell \in W_{(\ell p - d - 1) t}$.

Then we get down to $W_{(\ell - 1)p, t}$ via
(4.15) $v_\ell = D^t_H((\ell - 1)p, \ell p - d - 1) - 1 M^t_H((\ell - 1)p, \ell p - d - 1) v^{(d-1)}_\ell$,

and then finally
(4.16) $v_{\ell-1} = \mu_{j,\ell, (\ell-1)i-1}x^{p(i-1)-1}y^{-i}dx + D^t_H((\ell - 1)p) - 1 M^t_H((\ell - 1)p) v_\ell$.

ZETA FUNCTIONS OF CYCLIC COVERS IN LARGE CHARACTERISTIC
An analysis similar to Harvey’s [Har07, §7.2.2] shows that all coefficients of \(M_H'((\ell p - d)v_i^{(d)}) \) are divisible by \(p \) and correct modulo \(p^{N+1} \). Then, Lemma 4.10 implies that \(v_i^{(d+1)} \) is correct modulo \(p^N \). By Corollary 4.8, \(v_i' \) is correct modulo \(p^N \). Since the first row of \(M_H'((\ell - 1)p, \ell p - d - 1) \) and \(D_H'((\ell - 1)p, \ell p - d - 1) \) by \(p \)-adically interpolating the remaining values from the first \(N \) values. See [Har07, §7.2.1] and Section 5 for more details.

4.2. Vertical reductions. Vertical reduction replaces differentials with cohomologically differentials with smaller pole order in \(y \). Vertical reductions operate via a series of maps \(V \).

Definition 4.17. For \(t \in \mathbb{Z}_{\geq 0} \) and \(j \in \{1, \ldots, r - 1\} \), define the vector space
\[
V_t^j := W_{-1, rt+j} \cap W_{0, rt+j},
\]
equipped with the standard monomial basis.

Vertical reduction operates via a series of maps \(V_t^j \rightarrow V_t^{j-1} \) which are identity maps in cohomology. To define the maps, we need a lemma.

Lemma 4.19. Let \(A \in \mathbb{Z}_q[x] \) be a polynomial with \(\deg(A) < 2d - 1 \). Then, there exist unique polynomials \(R, S \in \mathbb{Z}_q[x] \) such that \(\deg(R) < d - 1, \deg(S) < d, \) and \(A(x) = R(x)F(x) + S(x)F'(x) \).

Proof. Since \(F \) is separable and \(\mathcal{F} \) is squarefree, we can find \(R_0 \) and \(S_0 \) such that \(1 = R_0 F + S_0 F' \) by the Euclidean algorithm. Then \(A = (AR_0)F + (AS_0)F' \). There is a unique \(S \) and \(T \) satisfying \(AS_0 = TF + S \) and \(\deg(S) < d \). Set \(R = AR_0 - TF' \). Since \(\deg(A) < 2d - 1 \) and \(\deg(SF') < 2d - 1 \), it follows that \(\deg(RF') < 2d - 1 \), so \(\deg(R) < d - 1 \).

Uniqueness follows immediately, since the vector spaces of polynomials of degree less than \(2d - 1 \) and of pairs of polynomials of degrees less than \(d - 1 \) and less than \(d \) both have dimension \(2d - 1 \).

We may now define the vertical reduction maps.

Definition 4.20. For each \(i \in \{0, \ldots, d - 2\} \), let \(R_i, S_i \in \mathbb{Z}_q[x] \) be the unique polynomials of \(\deg(R_i) < d - 1, \deg(S_i) < d \) such that
\[
x^i = R_i(x)F(x) + S_i(x)F'(x).
\]
Write \((rt - r + j)R_i(x) + rS_i'(x) = \gamma_{i,0} + \gamma_{i,1}x + \cdots + \gamma_{i,d-2}x^{d-2} \). Define \(M^i_V(t) \) and \(D^i_V(t) \) by
\[
M^i_V(t) := \begin{pmatrix}
\gamma_{0,0} & \gamma_{1,0} & \cdots & \gamma_{d-2,0} \\
\gamma_{0,1} & \gamma_{1,1} & \cdots & \gamma_{d-2,1} \\
\vdots & \ddots & \ddots & \vdots \\
\gamma_{0,d-2} & \gamma_{1,d-2} & \cdots & \gamma_{d-2,d-2}
\end{pmatrix},
\]
\[
D^i_V(t) := rt - r + j.
\]
Further define
\[
M^i_V(t_1, t_2) := M^i_V(t_1 + 1) \cdot M^i_V(t_1 + 2) \cdots M^i_V(t_2),
\]
\[
D^i_V(t_1, t_2) := D^i_V(t_1 + 1) \cdot D^i_V(t_1 + 2) \cdots D^i_V(t_2).
\]
Lemma 4.24. Consider $M^j_V(t)$ as a linear map from V^j_t to V^j_{t-1} with respect to their standard bases. Then, for any $\omega \in V^j_t$, \(D^j_V(t) \omega \sim M^j_V(t) \omega \) in cohomology. More generally, considering $M^j_V(t_1, t_2)$ as a linear map from $V^j_{t_1}$ to $V^j_{t_2}$ with respect to their standard bases, for any $\omega \in V^j_{t_1}$, \(D^j_V(t_1, t_2) \omega \sim M^j_V(t_1, t_2) \omega \).

Proof. For any $S(x) \in \mathbb{Q}_q[x]$, \(0 \sim d \left(\frac{-r}{rt-r+j} S(x) y^{-(rt-r+j)} \right) \)
\begin{align*}
\quad &= S(x) F'(x) y^{-(rt-r+j)} dx + \frac{-r}{rt-r+j} S'(x) y^{-(rt-r+j)} dx.
\end{align*}
So, writing $x^i = R_i(x) F(x) + S_i(x) F'(x)$ as in (4.21), we have
\begin{align*}
 x^i y^{-(rt-r+j)} dx &= R_i(x) F(x) y^{-(rt-r+j)} dx + S_i(x) F'(x) y^{-(rt-r+j)} dx \\
 &\sim R_i(x) y^{-(rt-r+j)} dx + \frac{r}{rt-r+j} S'_i(x) y^{-(rt-r+j)} dx \\
 &= \left(\frac{r(t-1)+j}{r(t-1)} \right) R_i(x) + \frac{r S'_i(x)}{r(t-1)+j} y^{-(r(t-1)+j)} dx \\
 &= (D^j_V(t_1, t_2))^{-1} \left(\gamma_{i,0} + \gamma_{i,1} x + \cdots + \gamma_{i,d-2} x^d \right) y^{-(r(t-1)+j)} dx.
\end{align*}
From this, (4.25) follows by linearity. Then (4.26) is immediate from (4.25). \(\square \)

Remark 4.28. If we could work at infinite (or even very large) precision without it costing us computation time, this would be sufficient. However, in practice (and in theory), working with fewer extra results in significant time savings. Fortunately, we will see that when p is sufficiently large, the valuations of the coefficients of $D^j_V(t_1, t_2)^{-1} M^j_V(t_1, t_2)$ are never less than -1. As a result, given any element of V^j_t, we will be able to compute a cohomologous element of V^j_0 while only losing a single digit of p-adic absolute precision.

Now, we follow Harvey’s lead and study the coefficients of the matrices $M^j_V(t_1, t_2)$ and scalars $D^j_V(t_1, t_2)$. Lemma 4.29 will be our main technical tool.

Lemma 4.29. Suppose $A \in \mathbb{Z}_q[x]$ and $B_G, G_{-t_2+1}, \ldots, G_{-t_1} \in \mathbb{Q}_q[x]$ satisfy
\begin{equation}
 A(x) y^{-rt_2-j} dx = B(x) y^{-rt_1-j} dx + d \left(\sum_{t=-t_2+1}^{-t_1} G_t(x) y^{rt-j} \right).
\end{equation}
Fix $C \in \mathbb{Z}_q$. If \(\frac{C}{rt_1+j}, \frac{C}{r(t_1+1)+j}, \ldots, \frac{C}{r(t_2-1)+j} \in \mathbb{Z}_q \) then $C \cdot B(x) \in \mathbb{Z}_q[x]$.

Remark 4.31. In our setting, $rt_1+j \leq rt_2+j < p^2$, so we may take $C = p$. Applying Lemma 4.29 with $A(x) = 1, x, \ldots, x^{d-1}$, the coefficients of $pD^j_V(t_1, t_2)^{-1} M^j_V(t_1, t_2)$ all belong to \mathbb{Z}_q.

We defer the proof of Lemma 4.29 to the end of the section, and collect the consequences needed for our main algorithm.

Lemma 4.32. If $r(t-1) \equiv -j \pmod{p}$, then $M^j_V(t)^{-1}$ is integral.
The proof is identical to the proof of Harvey’s [Har07, Lemma 7.7] after replacing each occurrence of $2g$ with $d - 1$. Indeed, the matrices are the same, up to multiplication by a unit.

Lemma 4.33. If $rt_1 \equiv -j \mod p$, then $M_Y^1(t_1, t_1 + p)$ is zero modulo p.

Proof. Here, the proof generalizes [Har07, Lemma 7.9]. By Lemma 4.29,

$$X := pD_Y^1(t_1, t_1 + p + 1) = M_Y^1(t_1, t_1 + p + 1)$$

has integral coefficients. By a computation similar to Lemma 4.10, $D_Y^1(t_1, t_1 + p + 1) = p^2 \cdot u$ for some unit $u \in \mathbb{Z}_q^\times$, since the first and last terms contribute exactly one power of p and no other terms contribute. Then,

$$M_Y^1(t_1, t_1 + p) = p^{-1}D_Y^1(t_1, t_1 + p + 1) = puXM_Y^1(t_1, t_1 + p + 1).$$

Lemma 4.32 implies $M_Y^1(t_1, t_1 + p) \equiv 0 \mod p$. \(\square\)

Lemma 4.33 implies that the matrix $Y := D_Y^1(t_1, t_1 + p)$ is integral when $rt_1 \equiv -j \mod p$. Hence the denominators of “vertically reductions” of differentials do not grow, at least if we reduce in appropriate batches of p steps. Unfortunately, we may not start with t_1 satisfying $rt_1 \equiv -j \mod p$. Reducing to this case involves dividing by p at most once. To compensate, we must compute Y to one extra digit of p-adic precision.

Having collected our results, we now prove Lemma 4.29. Much like Kedlaya’s proof of [Ked01, Lemma 2], we compare power series expansions of differentials in the uniformizer y near $(\theta_i, 0)$ for all roots θ_i of F. We give a full proof for clarity. The argument relies heavily on the following lemma:

Lemma 4.35. Let $G \in \mathbb{Q}_q[x]$ be a polynomial with $\deg(G) < d$. View G as an element of $\mathbb{Q}_q[x, y]/(y^d - F(x))$. Let $\theta_1, \ldots, \theta_d$ be the roots of F. Let $K_i \equiv \mathbb{Q}_q(y)$ be the fraction field of the completion of the local ring at $(\theta_i, 0)$. The following are equivalent:

(i) G has integral coefficients as a polynomial.

(ii) G has integral coefficients as a power series in K_i for all i.

(iii) The coefficient of y^0 of G as a power series in K_i is integral for all i.

Proof. It is trivial that (ii) implies (iii).

“(iii) implies (i)” follows immediately from the observation that the coefficient of y^0 of G as a power series in K_i is equal to $G(\theta_i)$. Since $\deg(G) < d$ and the roots of F are distinct mod p, the Lagrange interpolation formula shows that $G \in \mathbb{Z}_q[x]$. “(i) implies (ii)” follows immediately from the fact that F has distinct roots mod p, so expanding x as a power series in y in K_i never requires division by a non-unit. \(\square\)

With Lemma 4.35, the proof of Lemma 4.29 follows from the observation that the map d commutes with passage to the local ring.

Proof of Lemma 4.29. Note that for all roots θ_i of F, $F'(\theta_i) \in \mathbb{Z}_q^\times$, since ∇ is separable. Then, as power series in y (near $(\theta_i, 0)$),

$$A(x)y^{(-t_2) - j}dx = rA(x)y^{(-t_2 + 1) - j - 1}F'(x)^{-1}dy = \sum_{t = -t_2 + 1}^{\infty} a_{t, t}y^{rt - j - 1}dy,$$

$$B(x)y^{(-t_1) - j}dx = \sum_{t = -t_1 + 1}^{\infty} b_{t, t}y^{rt - j - 1}dy,$$
where the $a_{i,t}$ are integral by Lemma 4.35, but we have no bounds (yet) on the $b_{i,t}$. Then,
\[
d\left(\sum_{t=-t_2+1}^{-t_1} G_t(x)y^{rt-j}\right) = \sum_{t=-t_2+1}^{-t_1} a_{i,t}y^{rt-j-1}dy + \sum_{t=-t_1+1}^{\infty} (a_{i,t} - b_{i,t})y^{rt-j-1}dy.
\]
Integrating term by term,
\[
\sum_{t=-t_2+1}^{-t_1} G_t(x)y^{rt-j} = \sum_{t=-t_2+1}^{-t_1} a_{i,t} y^{rt-j} + \sum_{t=-t_1+1}^{\infty} a_{i,t} - b_{i,t} y^{rt-j}.
\]
In particular, if C satisfies $\frac{C}{r-t+r-j} \in \mathbb{Z}_q$, for all $t \in \{-t_2, \ldots, -t_1 - 1\}$, then the coefficients of $y^{r(-t_2+1)-j}, y^{r(-t_2+2)-j}, \ldots, y^{r(-t_1-1)-j}, y^{r(-t_1)-j}$ in all of the power series expansions at points $(\theta_t, 0)$ of $\sum_{t=-t_2+1}^{-t_1} C \cdot G_t(x)y^{rt-j}$ are integral.

In particular, $C \cdot G_{-t_2+1}$ satisfies (iii) of Lemma 4.35. Then the series expansions of $C \cdot G_{-t_2+1}(x)$ are all integral by condition (ii). Subtracting off $C \cdot G_{-t_2+1}$, we see $C \cdot G_{-t_2+2}$ satisfies (iii) of Lemma 4.35, hence condition (ii) and so on, so that all of the coefficients in all of the expansions of $\sum_{t=-t_2+1}^{-t_1} G_t(x)y^{rt-j}$ are integral. They remain integral upon differentiating.

Rearranging (4.30), the expansions of $C \cdot B(x)y^{-rt_1+j}dr$ at each $(\theta_t, 0)$ as Laurent series in $\mathbb{Q}_q((y))dy$ are integral. Replacing dy with $F'(x)y^{1-r}/rdx$ preserves integrality. A final application of Lemma 4.35 shows that $C \cdot B(x)$ is integral. \(\square\)

5. MAIN ALGORITHM

We now combine the techniques of the previous sections to compute the matrix representing the p-th power Frobenius action with respect to $\langle B_i \rangle \subset H_{1,W}(\mathcal{C})$ modulo p^N. We summarize the procedure in Algorithm 1, where we take all intervals to be discrete, i.e., intersected with \mathbb{Z}.

We now analyze the time and space complexity of Algorithm 1. First, we recall that all our underlying ring operations are done in \mathbb{Z}_q/p^N or \mathbb{Z}_q/p^{N+1}. Using bit-strings of length $O(Nn \log p)$ to represent elements of these rings, the basic ring operations (addition, multiplication, and inversion) have bit complexity $\tilde{O}(Nn \log p)$, the matrix arithmetic operations on matrices of size $m \times m$ have bit complexity $\tilde{O}(m^2Nn \log p)$, and polynomial multiplication of polynomials of degree m has bit complexity $\tilde{O}(mn \log p)$. Applying Frobenius to such an element has complexity $\tilde{O}(n \log^2 p + nN \log p)$ [Hub10, Corollary 3].

For p sufficiently large, the dominant steps are the horizontal and vertical reductions, i.e. lines 7 and 23 in Algorithm 1. In either case, we apply a modification of [BGS07, Theorem 15] to achieve the $p^{1/2+o(1)}$ time dependence.

Proposition 5.1 (Linear recurrences method, [Har07, Theorem 6.1]). Let $R = \mathbb{Z}_q/p^N$ or \mathbb{Z}_q/p^{N+1}, and $M(x) := M_0 + xM_1 \in R[x]^{m \times m}$. Let $0 \leq \alpha_1 < \beta_1 \leq \alpha_2 < \beta_2 \leq \cdots \leq \alpha_h < \beta_h \leq K$ be integers. Assume $h < \sqrt{K} < p - 1$ and write $M(\alpha, \beta) := M(\alpha + 1) \cdots M(\beta)$. Then $M(\alpha_i, \beta_i)$ for $i = 1, \ldots, h$ can be computed using $\tilde{O}(m^2 \sqrt{K})$ ring operations in space $\tilde{O}(m^2 \sqrt{K})$.

For the horizontal reductions, we apply Proposition 5.1 once for each pair $(k, j) \in [0, N - 1] \times [1 + er, (1 + e)r - 1]$ with $K = O(pN)$ and $m = O(d)$. For the vertical reductions, we apply Proposition 5.1 once for each j, again with $K = O(pN)$ and $m = O(d)$. This adds up to $\tilde{O}(p^{1/2}N^{3/2}re^2)$ ring operations in space $\tilde{O}(p^{1/2}N^{1/2}d^2)$.
\begin{algorithm}
\begin{algorithmic}
\State \textbf{for} \; \(k \in [0, N - 1], i \in [0, d - 2], j \in [1 + cr, (1 + \epsilon)r - 1], \; \ell \in [0, dk + i + 1]\) \textbf{do}
\State \(T_{(i,j),k,t} \leftarrow \mu_{j,k,\ell-1}x^{p\ell-1}y^{-p(kr+j)}\); \quad \text{\textit{// See Lemma 3.1}}
\EndState
\State \textbf{// Horizontal reductions}
\State \textbf{for} \; \(k \in [0, N - 1], j \in [1 + cr, (1 + \epsilon)r - 1]\) \textbf{do}
\State \(\ell \leftarrow \min(N - 1, dk + d - 2)\)
\State \textbf{// Horizontal reductions modulo} \(p^N\), \textbf{by linear recurrences}
\State \textbf{for} \; \(\ell \in [0, L]\) \textbf{do}
\State \(D(\ell), M(\ell) \leftarrow D_H(p\ell, p(\ell + 1) - d - 1), M_H(p\ell, p(\ell + 1) - d - 1);\)
\State \textbf{// Deduce the remaining} \(M(\ell)\) \textbf{modulo} \(p^N\), \textbf{by interpolation}
\State \textbf{for} \; \(\ell \in [L + 1, dk - d - 2]\) \textbf{do}
\State \(D(\ell), M(\ell) \leftarrow D_H(p\ell, p(\ell + 1) - d - 1), M_H(p\ell, p(\ell + 1) - d - 1);\)
\State \textbf{// Reduce} \(T_{(i,j),k}\) \textbf{horizontally}
\State \textbf{for} \; \(i \in [0, d - 2]\) \textbf{do}
\State \(v \leftarrow T_{(i,j),k,dk+i+1};\) \quad \text{\textit{//} \(v \in W_{p(dk+i+1)-1,t}\)}
\State \textbf{for} \; \(\ell = dk + i \textbf{ to } 0\) \textbf{do}
\State \textbf{for} \; \(c \in [1, d]\) \textbf{do}
\State \(v \leftarrow D_H(p(\ell + 1) - c) - 1(M_H(p(\ell + 1) - c) - v);\)
\State \textbf{for} \; \((i,j) \in [0, N - 1]\) \textbf{do}
\State \(\alpha, \beta \leftarrow |p_j/r|, p_j \textbf{ mod } r\)
\State \(\lambda, \gamma \leftarrow [(\alpha - \epsilon)/p], (\alpha - \epsilon) \textbf{ mod } r\)
\State \(\delta \leftarrow \gamma + \epsilon\)
\State \textbf{// Vertical reductions modulo} \(p^{N+1}\), \textbf{by linear recurrences}
\State \(M(0) \leftarrow D^\beta_W(\epsilon, \delta) - 1 M^\beta_W(\epsilon, \delta)\)
\State \textbf{for} \; \(\ell \in [1, \lambda + N - 1]\) \textbf{do}
\State \(M(\ell) \leftarrow D^\beta_W(\delta + p(\ell - 1), \delta + p\ell - 1) - 1 M^\beta_W(\delta + p(\ell - 1), \delta + p\ell);\)
\State \textbf{for} \; \(i \in [0, d - 2]\) \textbf{do}
\State \(v \leftarrow w_{(i,j),N-i+1}\) \quad \text{\textit{//} \(v \in V^\beta_W(p(N-i+1)+\delta}\)}
\State \textbf{for} \; \(k = N - 1 + \lambda \textbf{ to } 0\) \textbf{do}
\State \textbf{if} \; \(k \geq \lambda\) \textbf{ then}
\State \(v \leftarrow w_{(i,j),k-\lambda} + M(k)v;\)
\State \textbf{else}
\State \(v \leftarrow M(k)v;\)
\State \textbf{return} \(w_{(i,j)}\), \(i \in [0, d - 2], j \in [1 + cr, (1 + \epsilon)r - 1]\)
\end{algorithmic}
\end{algorithm}

\textbf{Algorithm 1:} Computes the matrix representing the} \(p\)-\textbf{th power Frobenius action with respect to} \(\langle B_t \rangle \subset H^1_{MW}(\hat{C})\) \textbf{modulo} \(p^N\)
Now we bound the time for the remaining steps. We will see that the number of ring operations for the remaining steps is independent of p, so that they contribute at most a $\log p$ term to the bit complexity.

To compute $\mu_{j,t,b}$ we start by replacing the coefficients of $F(x)$ by their images under σ. We then calculate all $\sigma(F)_b^k$ in $O(d^2N^2)$ ring operations. Evaluating all the binomial coefficients and finding the $D_{j,t}$ uses $O(rN^3)$ ring operations. In total, we compute all the $\mu_{j,t,b}$ in $O(rd^2N^2)$ ring operations plus $O(d)$ Frobenius substitutions.

We also use the p-adic interpolation method introduced by Harvey [Har07, §7.2.1] and attributed to Kedlaya. This allows us to reduce the number of matrix products that must be computed using the linear recurrence algorithm. The rest can then be obtained by solving a linear system involving a Vandermonde matrix. In our setting, an analogous complexity analysis holds, and the total number of ring operations required is $O(rd^3N^3)$, where the extra r factor is due to the j loop.

The matrix $M_H(s)$ is sparse; for each t, it requires $O(d)$ ring operations to compute. We need to do this $O(rN)$ times, thus the total is $O(rdN)$.

During the horizontal reduction, we do the following for each ℓ: $O(d)$ sparse vector-matrix multiplications, and one dense vector-matrix multiplication. This requires $O(d^2)$ ring operations per ℓ. Hence, lines 10-15 add up to $O(rd^2N^2)$ ring operations. The number of vector-matrix multiplications during the vertical reduction is $O(dN)$, thus negligible in comparison with the horizontal phase.

Computing all the R_i and S_i requires $O(d^2)$ total ring operations. Then for each $j \in [re + 1, (1 + e)r - 1]$, the matrix $M^i_H(t)$ can be computed in $O(d^2)$ ring operations. The total number of ring operations for these steps is $O(rd^2 + d^3)$.

The total number of operations is $O(p^{1/2}N^{3/2}rd^2 + rd^3N^3)$ plus $O(d)$ Frobenius substitutions. Converting this to bit complexity, our algorithm runs in time
\[
\tilde{O}(p^{1/2}N^{5/2}rd^2n + N^4rd^4n\log p + Ndn^2\log p).
\]

In addition to the space required by Proposition 5.1, we use $O(rd^2N)$ space for the interpolation, to store $w_{(i,j),k}$ and to do the vector-matrix multiplications. This adds up to $O((p^{1/2}N^{3/2} + rN^2)d^2n\log p)$ space, and Theorem 1.1 follows.

Remark 5.3. Under certain conditions, the time-space trade-off provided by Proposition 5.1 might not be ideal or possible. In those cases, one can instead do the reductions one step at a time with naive vector-matrix multiplications. The horizontal phase amounts to $O(prd^2N^2)$ sparse matrix-vector multiplications of size $O(d)$ in space $O(rd^2N)$. The vertical phase amounts to $O(prdN)$ dense matrix-vector multiplications of the same size, and no extra space is required. With the single exception of the $O(d)$ Frobenius substitutions, all the other steps are negligible in comparison. In terms of bit complexity, this amounts to $\tilde{O}(prd^3N^3 + n^2N\log p)$ time and $O(rd^2Nn\log p)$ space, and Theorem 1.4 follows.

6. Sample Computations

We have implemented both versions of our method using SAGEMath. However, the $p^{1/2+o(1)}$ version, i.e., Theorem 1.3 and Algorithm 1, is only implemented for the case $n = 1$, as we rely on Harvey’s implementation of Proposition 5.1 in C++. Our implementation is on track to be integrated in one of the upcoming versions SAGEMath [ACMT18]. An example session:
sage: x = PolynomialRing(GF(10007),"x").gen();
sage: CyclicCover(5, x^5 + 1).frobenius_polynomial()
x^12 + 300420147*x^8 + 30084088241167203*x^4 +
 1004207356863602508537649

Our examples were computed on one core of a desktop machine with an Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz. In all the examples, we took

\[N = \max\{\lceil \log_p(4g/i) + ni/2 \rceil : i = 1, \ldots, g\}, \]

and thus by employing Newton identities we can pinpoint the numerator of \(Z(C, t) \); see, for example, [Ked13, sl. 8]. In practice, we may even work with lower \(N \), and then hopefully verify that there is only one possible lift that satisfies the Riemann hypothesis and the functional equation in the Weil conjectures; see [Ked08].

In Table 1 we present the running times for computing \(Z(C, t) \) for three examples where \((g, d, r) = (6, 5, 15), (25, 6, 12), \) and \((45, 11, 11)\), over a range of \(p \) values. This sample of running times confirms the practicality and effectiveness of our method for a wide range of \(p \) and tuples \((d, r)\). We are not aware of any other alternative method that can handle \(p \) and \(g \) in these ranges.

\(p \)	time	\(p \)	time	\(p \)	time
\(2^{14} - 3 \)	1.21s	\(2^{22} - 3 \)	21.7s	\(2^{30} - 35 \)	5m58s
\(2^{16} - 15 \)	3.05s	\(2^{24} - 3 \)	40.9s	\(2^{32} - 5 \)	11h36s
\(2^{18} - 5 \)	5.74s	\(2^{26} - 5 \)	1m23s	\(2^{34} - 41 \)	32m59s
\(2^{20} - 3 \)	10.9s	\(2^{28} - 57 \)	2m54s	\(2^{36} - 5 \)	1h7m

(A) Genus 6 curve \(C: y^5 = x^5 - x^4 + x^3 - 2x^2 + 2x + 1 \) with \(N = 4 \)

\(p \)	time	\(p \)	time	\(p \)	time
\(2^{10} + 45 \)	4m37s	\(2^{16} - 5 \)	12m2s	\(2^{26} - 5 \)	2h38m
\(2^{12} - 3 \)	5m31s	\(2^{20} - 3 \)	21m34s	\(2^{28} - 57 \)	5h24m
\(2^{14} - 3 \)	6m20s	\(2^{22} - 3 \)	37m21s	\(2^{30} - 35 \)	12h12m
\(2^{16} - 15 \)	8m15s	\(2^{24} - 3 \)	1h13m	\(2^{32} - 5 \)	23h35m

(B) Genus 25 curve \(C: y^6 = x^{12} + 10x^11 + x^{10} + 2x^9 - x^7 - x^5 - 4x^4 + 31x \) with \(N = 13 \)

\(p \)	time	\(p \)	time	\(p \)	time
\(2^{12} - 3 \)	24m1s	\(2^{18} - 5 \)	1h2m	\(2^{24} - 3 \)	7h21m
\(2^{14} - 3 \)	29m50s	\(2^{20} - 3 \)	1h52m	\(2^{26} - 5 \)	16h24m
\(2^{16} - 15 \)	37m14s	\(2^{22} - 3 \)	3h22m	\(2^{28} - 57 \)	33h17m

(c) Genus 45, \(C: y^{11} = x^{11} + 21x^9 + 22x^8 + 12x^7 + 5x^4 + 15x^3 + 6x^2 + 99x + 11 \) with \(N = 23 \)

Table 1. Running times for three curves, for various \(p \). Each subsequent row represents a (roughly) four-fold increase in \(p \) and a doubling in the running time, confirming that our implementation has a \(p^{1/2+o(1)} \) running time.

References

[ACMT18] Vishal Arul, Edgar Costa, Richard Magner, and Nicholas Triantafillou. Hasse–Weil zeta function of a cyclic covers of \(\mathbb{P}^1 \) over finite fields. https://trac.sagemath.org/ticket/20264, 2018.
ZETA FUNCTIONS OF CYCLIC COVERS IN LARGE CHARACTERISTIC

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. *J. Symbolic Comput.*, 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).

[BGS07] Alin Bostan, Pierrick Gaudry, and Éric Schost. Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. *SIAM J. Comput.*, 36(6):1777–1806, 2007.

[CDV06] W. Castryck, J. Denef, and F. Vercauteren. Computing zeta functions of nondegenerate curves. *IMRP Int. Math. Res. Pap.*, pages Art. ID 72017, 57, 2006.

[DV06] Jan Denef and Frederik Vercauteren. Counting points on C_{ab} curves using Monsky-Washnitzer cohomology. *Finite Fields Appl.*, 12(1):78–102, 2006.

[GG01] Pierrick Gaudry and Nicolas Gürel. An extension of Kedlaya’s point-counting algorithm to superelliptic curves. In *Advances in cryptology—ASIACRYPT 2001 (Gold Coast)*, volume 2248 of *Lecture Notes in Comput. Sci.*, pages 480–494. Springer, Berlin, 2001.

[GKS11] Pierrick Gaudry, David Kohel, and Benjamin Smith. Counting points on genus 2 curves with real multiplication. In *Advances in cryptology—ASIACRYPT 2011*, volume 7073 of *Lecture Notes in Comput. Sci.*, pages 504–519. Springer, Heidelberg, 2011.

[Gon15] Cécile Gonçalves. A point counting algorithm for cyclic covers of the projective line. In *Algorithmic arithmetic, geometry, and coding theory*, volume 637 of *Contemp. Math.*, pages 145–172. Amer. Math. Soc., Providence, RI, 2015.

[GS04] Pierrick Gaudry and Éric Schost. Construction of secure random curves of genus 2 over prime fields. In *Advances in cryptology—EUROCRYPT 2004*, volume 3027 of *Lecture Notes in Comput. Sci.*, pages 239–256. Springer, Berlin, 2004.

[GS12] Pierrick Gaudry and Éric Schost. Genus 2 point counting over prime fields. *J. Symbolic Comput.*, 47(4):368–400, 2012.

[Har07] David Harvey. Kedlaya’s algorithm in larger characteristic. *Int. Math. Res. Not. IMRN*, (22):Art. ID rnm095, 29, 2007.

[Har12] Michael C. Harrison. An extension of Kedlaya’s algorithm for hyperelliptic curves. *J. Symbolic Comput.*, 47(1):89–101, 2012.

[Har14] David Harvey. Counting points on hyperelliptic curves in average polynomial time. *Ann. of Math. (2)*, 179(2):783–803, 2014.

[Har15] David Harvey. Computing zeta functions of arithmetic schemes. *Proc. Lond. Math. Soc. (3)*, 111(6):1379–1401, 2015.

[Hub10] Hendrik Hubrechts. Fast arithmetic in unramified p-adic fields. *Finite Fields and Their Applications*, 16(3):155 – 162, 2010.

[Ked01] Kiran S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. *J. Ramanujan Math. Soc.*, 16(4):323–338, 2001.

[Ked08] Kiran S. Kedlaya. Search techniques for root-unitary polynomials. In *Computational arithmetic geometry*, volume 463 of *Contemp. Math.*, pages 71–81. Amer. Math. Soc., Providence, RI, 2008.

[Ked13] Kiran S. Kedlaya. Computing zeta functions of non-degenerate toric hypersurfaces via controlled reduction.
http://kskedlaya.org/slides/oxford2013.pdf, 2013. [Accessed 25-Jan-2018].

[Min10] Moritz Minzlaff. Computing zeta functions of superelliptic curves in larger characteristic. *Math. Comput. Sci.*, 3(2):209–224, 2010.

[Pil90] J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite fields. *Math. Comp.*, 55(192):745–763, 1990.

[Sag] Sage Developers, The. *SageMath, the Sage Mathematics Software System.* http://www.sagemath.org.

[Sch85] René Schoof. Elliptic curves over finite fields and the computation of square roots mod p. *Math. Comp.*, 44(170):483–494, 1985.

[Tui16] Jan Tuitman. Counting points on curves using a map to \mathbf{P}^1. *Math. Comp.*, 85(298):961–981, 2016.

[Tui17] Jan Tuitman. Counting points on curves using a map to \mathbf{P}^1, II. *Finite Fields Appl.*, 45:301–322, 2017.

[Tui18] Jan Tuitman. Computing zeta functions of generic projective hypersurfaces in larger characteristic. *Math. Comp.*, 2018.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail address: varul@mit.edu
URL: http://math.mit.edu/~varul/

Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA

E-mail address: alex.j.best@gmail.com
URL: https://alexbest.github.io/

Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755, USA

E-mail address: edgarcosta@math.dartmouth.edu
URL: http://www.math.dartmouth.edu/~edgarcosta/

Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA

E-mail address: rmagner@bu.edu
URL: http://math.bu.edu/people/rmagner/

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail address: ngtriant@mit.edu
URL: https://math.mit.edu/~ngtriant/