Conserved domains and evolution of secreted phospholipases A$_2$

Timo J. Nevalainen1, João C. R. Cardoso2 and Pentti T. Riikonen3

1 Department of Pathology, University of Turku and Turku University Hospital, Finland
2 Comparative Molecular Endocrinology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
3 Department of Information Technology, University of Turku, Finland

Keywords
conserved domains; eukaryotes; evolution; prokaryotes; secreted PLA$_2$s

Correspondence
Timo J. Nevalainen, Department of Pathology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
Fax: +358 2 3337456
Tel: +358 2 3337500
E-mail: timneva@utu.fi

(Received 1 September 2011, revised 8 December 2011, accepted 13 December 2011)

doi:10.1111/j.1742-4658.2011.08453.x

Secreted phospholipases A$_2$ (sPLA$_2$s) are lipolytic enzymes present in organisms ranging from prokaryotes to eukaryotes but their origin and emergence are poorly understood. We identified and compared the conserved domains of 333 sPLA$_2$s and proposed a model for their evolution. The conserved domains were grouped into seven categories according to the in silico annotated conserved domain collections of ‘cd00618: PLA$_2$-like’ and ‘pfam00068: Phospholip_A2_1’. PLA$_2$s containing the conserved domain cd04706 (plant-specific PLA$_2$s) are present in bacteria and plants. Metazoan PLA$_2$s of the group (G) I/II/V/X PLA$_2$ collection exclusively contain the conserved domain cd00125. GIII PLA$_2$s of both vertebrates and invertebrates contain the conserved domain cd04704 (bee venom-like PLA$_2$), and mammalian GIII PLA$_2$s also contain the conserved domain cd04705 (similar to human GIII PLA$_2$). The sPLA$_2$s of bacteria, fungi and marine invertebrates contain the conserved domain pfam09056 (prokaryotic PLA$_2$) that is the only conserved domain identified in fungal sPLA$_2$s. Pfam06951 (GXII PLA$_2$) is present in bacteria and is widely distributed in eukaryotes. All conserved domains were present across mammalian sPLA$_2$s, with the exception of cd04706 and pfam09056. Notably, no sPLA$_2$s were found in Archaea. Phylogenetic analysis of sPLA$_2$ conserved domains reveals that two main clades, the cd- and the pfam-collection, exist, and that they have evolved via gene-duplication and gene-deletion events. These observations are consistent with the hypothesis that sPLA$_2$s in eukaryotes shared common origins with two types of bacterial sPLA$_2$s, and their persistence during evolution may be related to their role in phospholipid metabolism, which is fundamental for survival.

Introduction

Phospholipases A$_2$

Phospholipases A$_2$ (PLA$_2$s; EC 3.1.1.4) are a group of lipolytic enzymes that hydrolyze the sn-2 bond of phospholipids, such as phosphatidylethanolamine and phosphatidylcholine, resulting in the release of fatty acid and lysophospholipid. They have been isolated from organisms ranging from bacteria to mammals and are suggested to have emerged early in evolution. In general, PLA$_2$s are classified into three broad categories: Ca$^{2+}$-dependent secreted PLA$_2$s (sPLA$_2$s); Ca$^{2+}$-dependent cytosolic PLA$_2$s; and Ca$^{2+}$-independent cytosolic PLA$_2$s. Cytosolic PLA$_2$s are known to play an important role in cellular signalling and

Abbreviations
EST, expressed sequence tag; G, group; ML, maximum likelihood; NJ, neighbour-joining; OtoC, N-terminal region of otoconin; OtoN, N-terminal region of otoconin; PLA$_2$, phospholipase A$_2$; sPLA$_2$, secreted phospholipase A$_2$.
prostanoid metabolism [1,2]. Secreted PLA₂S are components of various body fluids, including blood plasma, pancreatic juice, tears, seminal fluid, and snake and other venoms, and they participate in diverse physiological and pathological functions, such as in the digestion of dietary phospholipids, in inflammatory reactions and in the defence against bacteria and other pathogens [1–7].

Secreted PLA₂S

Secreted PLA₂S are the product of distinct genes and they have been classified, according to their molecular structure, into the following groups: IA, IB, IIA, IIB, IIC, IID, IIE, III, V, IX, X, XIA, XIIA, XIIIB, XIII and XIV [1]. Evidence of structural similarity among group (GI), GII, GV and GX members was taken to suggest that they may form a distinct GI/II/V/X PLA₂ collection [8]. The GXIV PLA₂S of bacteria and fungi differ in their primary structure and folding from the other sPLA₂S [1].

Secreted PLA₂S are small-molecular-mass proteins (14-18 kDa, 120-135 amino acid residues) that require the presence of Ca²⁺ at millimolar concentrations for their catalytic activity. They share a conserved 3D structure that is stabilized by five to eight disulfide bonds. The structure of the GI, GII and GX PLA₂S consists of three α-helices, a two-stranded β-sheet (the β-wing) and a conserved Ca²⁺-binding loop [9–13]. The conserved catalytic network of GIB and GIIA PLA₂S consists of hydrogen-bonded side-chains formed by histidine, which is localized in the long α-helix1, tyrosine and aspartic acid residues, as well as the hydrophobic wall that shields it [14]. The sPLA₂S of plants have a different 3D structure. In the GXIB PLA₂ of rice (*Oryza sativa*) the β-wing is absent and the C-terminal α-helix3 has a different orientation [15]. The sPLA₂S of prokaryotes and fungi are characterized by a dominant α-helical fold [16]. The 3D structure of GIIA PLA₂ differs from that of GI/II/V/X PLA₂S but they share identical motifs [17].

Conserved domains of sPLA₂S and their evolution

Functional motifs of sPLA₂S that are well conserved include the Ca²⁺-binding and catalytic sites, and the conserved cysteine residues and disulfide bond pattern [1,2]. *In silico* database annotations identified two conserved signature patterns: the ‘PA2_HIS (PS00119, Phospholipase A₂ histidine active site [LIVMA]-C-{LIVMFYWPCST}-C-D-(GS)-(N)-x-{QS}-C’, where x represents a nonconserved amino acid, amino acids within square brackets are not allowed) that contains the histidine residue of the sPLA₂ active site, and the ‘PA2_ASP (PS00119, Phospholipase A₂ aspartic acid active site [LIVMA]C-{LIVMFYWPCST}-C-D-(GS)-(N)-x-{QS}-C’, where x represents a nonconserved amino acid, amino acids within curly brackets are not allowed) centred on the active site aspartic acid residue and localized towards the C-terminal portion of the molecule [18]. The Ca²⁺-binding motif, which, for example in mammalian GIB sPLA₂S, is Y-x-G-x-G (where x represents a nonconserved amino acid) is localized before the histidine catalytic site towards the N-terminus.

Studies of sPLA₂S have focussed mainly on eukaryotes [1–4]. However, the availability of molecular data from phylogenetically distant organisms, and the identification of new sPLA₂S, challenges the current classification system, especially when applied to invertebrate and prokaryote sPLA₂S [1,19–21]. Despite their potential evolutionary relationships [22,23], the origin and emergence of sPLA₂S is still intriguing. Although all sPLA₂S share the same catalytic mechanism involving the canonical histidine residue, there is considerable variation in their sequence identity. Based on their identity, members of the GI/II/V/X PLA₂ collection have been designated ‘conventional sPLA₂S’ and are believed to be evolutionally close, whereas GII and GXII PLA₂S are classified as ‘atypical sPLA₂S’ and are evolutionally more distant [4,8]. In bacteria and fungi there are sPLA₂S that show only limited sequence identity with other sPLA₂S [1,16], and to date the evolutionary connection between these structurally distant proteins is lacking.

The present study aimed to contribute to the understanding of the origin and evolution of sPLA₂S based upon the identification of their conserved domains in a representative collection of prokaryotes and eukaryotes. Recently, based on published data and the collection of well-annotated multiple sequence alignment models of their conserved domains, the family hierarchy of sPLA₂S was comprehensively classified in two general collections: ‘cd00618 PLA₂_like: Phospholipase A₂, a superfamily of secretory and cytosolic phospholipases A₂’ and ‘pfam00068: Phospholip_{A₂}_1, Phospholipase A₂’ [24,25]. In the present study, secreted PLA₂ protein sequences retrieved from public databases were classified according to their conserved domain structures. Their sequences were compared and specific motifs within each subfamily group were identified, and, based upon their sequence and structure similarity, a model for their origin and evolution was proposed.
Results

Repertoire of prokaryotic and eukaryotic sPLA2s

A total of 333 sPLA2 sequences from a wide range of taxa were retrieved from publicly available databases, and 358 conserved domains within the cd00618 (PLA2-like) and pfam00068 (Phospholip_A2_1) collections were identified (Tables 1 and S1). Members of the cd-collection identified are grouped into five distinct sub-families: the ‘cd04706 PLA2_plant: Plant-specific sub-family of Phospholipase A 2’; ‘cd00125 PLA2c: Phospholipase A2, a family of secretory and cytosolic enzymes’; ‘cd04707 otoconin_90: Phospholipase A2-like domains present in otoconin-90 and otoconin-95’; ‘cd04704 PLA2_bee_venom_like: A subfamily of Phospholipase A2, similar to bee venom PLA2’ and ‘cd04705 PLA2_group_III_like: A subfamily of Phospholipase A2, similar to human group III PLA2’. The pfam-collection members are subdivided into ‘pfam06951: PLA2G12, group XII secretory phospholipase A2 precursor’ and ‘pfam09056 Phospholip_A2_3: Prokaryotic phospholipase A2 domain found in PLA2s of bacteria and fungi’ [24,25, http://www.ncbi.nlm.nih.gov/cdd].

All conserved domains of sPLA2s identified are present in representatives of the Kingdom Animalia with the exception of cd04706 of the sPLA2s of bacteria and plants (Table 1). Within this Kingdom, sPLA2s containing the conserved domain cd00125 are widespread in organisms ranging from basal metazoa (Porifera, Placozoa, Cnidaria and Rotifera), protostomes (Insects, Nematodes, Molluscs and Arthropods) and early deuterostomes (Echinodermata, Cephalochordata and Tunicata) to teleosts and tetrapods (Amphibia, Aves and Mammalia). The conserved domain cd00125 is typical of GIA, IB, IIA, IIB, IIC, IID, IIE, IIF, V and X sPLA2s. The conserved domain cd04707 was found in the N- and C-terminal regions of vertebrate otoconins. The conserved domains cd04704 and cd04705 are present in metazoan GIII PLA2s, the latter domain exclusively in mammals. The sPLA2s of bacteria contain either cd04706 or pfam09056 (present in XIV PLA2s) and exceptionally pfam06951. In contrast, no sPLA2s were found in archaea. Pfam09056 is present in the sPLA2s of fungi. The majority of plant sPLA2s contained the conserved domain cd04706 (identified in XIA and XIB PLA2s). The conserved domain pfam06951 is present in the GXIIA PLA2s of unicellular and multicellular organisms, including marine algae and bacteria (Tables 1 and S1).

Conserved domain cd04706 of PLA2s of bacteria and plants

The sPLA2s of bacteria and plants share a number of conserved structural features for the histidine and aspartic acid catalytic motifs and Ca2+-binding domains (Fig. 1). The conserved domain cd04706 was identified in the sPLA2s of bacteria of the class Alphaproteobacteria of the phylum Proteobacteria and also in those of the phylum Firmicutes, which includes both Gram-negative and Gram-positive bacteria, such as the human pathogens Streptococcus pyogenes, Clostridium perfringens, Clostridium botulinum and Bacillus cereus [26] (Table S1). Secreted PLA2s containing cd04706 were also identified in numerous plants. The sPLA2s of O. sativa are well characterized and classified as GXI PLA2s [15,27]. In general, several GXI PLA2 isoforms were identified in plants, which may have resulted from gene-duplication events, for example, four GXI PLA2s were identified in O. sativa (Table S1). The GXIB PLA2 of O. sativa is a 16.6 kDa protein in which the Ca2+-binding site contains tyrosine, glycine and aspartic acid residues, and the histidine residue of the active site is centred in the catalytic site motif (Fig. 1A).

Table 1. Distribution of the conserved domains of sPLA2 in the Kingdoms of Life. +, presence; --, absence.

sPLA2 conserved domain	Group numbera	Archaea	Bacteria	Viridiplantae	Fungi	Animalia
cd00125	IA, IB, IIA, IIB, IIC, IID, IIE, IIF, V, X	--	--	--	--	+
cd04704	III	--	--	--	--	+
cd04705b	III	--	--	--	--	+
cd04706	XIA, XIB	--	+	+	--	--
cd04707	Otoconin	--	--	--	--	+
pfam06951	XIIA, XIB	--	+	+	+	+
pfam09056	XIV	--	+	--	--	+

a Group number according to the classification in Schaloske and Dennis [1]. b cd04705 is found only in mammalian GIII PLA2s.
A function instead of the more commonly occurring molecule, which probably contributes to the catalytic asparagine residue in the C-terminal portion of the amino acid sequence identity. In both proteins, there is sPLA2 contains five cysteine residues, four of which bonds, while the conserved domain of there are 12 cysteine residues that form six disulfide bonds. Among the members of the GI PLA2 collection, the catalytic histidine is centred in the active site motif and the aspartic acid residue of the active site is present in the C-terminal portion of the molecule. In the Ca$^{2+}$-binding site, Ca$^{2+}$ is bound by tyrosine and two glycines and an aspartic acid adjacent to the catalytic histidine (Fig. 2).

Homologues of GI/II/V/X PLA2 collection members are present also in invertebrate genomes, such as the sea anemone *Nematostella vectensis*, where six genes were identified (Table S1) [28]. The sPLA2 of the sea anemone *Adamsia carciopiados* (also called *Adamsia palliata*) contains the pancreatic loop characteristic of vertebrate GI PLA2s and lacks the C-terminal extension found in GII PLA2s but shares homology for both GI and GII PLA2s [19]. Comparison of the disulfide bond positions of the *A. carciopiados* sPLA2 with those of the human GI/II/V/X PLA2 collection indicates that the sea anemone sPLA2 shares five conserved disulfide bonds with the vertebrate homologues, suggesting structural, and possibly functional, conservation across the phylogenetically distant organisms of Cnidaria and Mammalia (Fig. 3).

Conserved domain cd04707 of otoconins

Otoconins containing the conserved domain cd04707 were identified in a number of vertebrates, from fish to mammals, and two conserved domains within the N-terminal (OtoN) and C-terminal (OtoC) regions of the same collection were identified within the mature protein sequence (Tables 1 and S1). The human otoconin-90 is a 53 kDa protein, and the OtoN and OtoC domains are 37% identical and structurally closely related to the members of the GI/II/V/X PLA2 collection, suggesting common ancestry (Fig. 2). The human OtoN and OtoC domains are 36% and 34% identical, respectively, when compared with GIB PLA2. Moreover, the disulfide bond patterns of human otoconin and GIB PLA2 are identical (Fig. 3). Both OtoN and OtoC domains contain a histidine residue within the conserved catalytic site. However, they are believed to be catalytically inactive as a result of mutations in the Ca$^{2+}$-binding sites (Fig. 2), leading to loss of the usual Ca$^{2+}$-binding residues in the OtoN domain, and in the OtoC domain the conserved second glycine of the mammalian GIB sPLA2s (Y-x-G-x-G) is replaced with a glutamic acid, although PLA2 activity remains to be investigated [29].

Conserved domain cd00125 of PLA2 of animals

The conserved domain cd00125 was identified in the basal invertebrates Placozoa up to mammals and was prevalent in the vertebrate GI/II/V/X PLA2 collection where the functional sites and cysteine residues are highly conserved (Fig. 2). Members of this collection share 26–50% amino acid sequence identity within the conserved domain region. Among the members of the GI/II/V/X PLA2 collection, the catalytic histidine is centred in the active site motif and

Conserved domain cd04704 of group III PLA2s

Secreted PLA2s, containing the conserved domain cd04704 (see venom-like PLAs), were identified in arthropods, reptiles and vertebrates, including humans.
The honeybee *Apis mellifica* venom GIII PL-A2 shares considerable sequence identity with the members of the GI/II/V/X PL-A2 collection (e.g. 44% identity with the human GIB PL-A2) and is related in its 3D structure and catalytic mechanism to GI and GII PL-A2s [11,17]. The backbone of the GIII PL-A2 molecule contains the conserved Ca$^{2+}$-binding loop with tryptophan, glycine and aspartic acid residues and the conserved catalytic histidine and aspartic acid residues (Fig. 4). Human GII PL-A2 is a 57 kDa protein in which cd04704 is localized in the middle part of the molecule and flanked by N- and C-terminal extensions [30]. The cd04704 of human GII PL-A2 displays features similar to the arthropod GIII PL-A2s, including the Ca$^{2+}$-binding and catalytic site residues and also the 10 conserved cysteines that form five disulfide bonds at similar locations, and shares 44% sequence identity with honeybee venom GII PL-A2.

Conserved domain cd04705 of group III PL-A2

Proteins containing the conserved domain cd04705 (similar to human group III PL-A2) were found only in mammals (Table 1). The conserved domain cd04705 is localized in the C-terminal part of the GII PL-A2 molecule and is structurally unrelated to cd04704 (Fig. 2). In contrast to cd04704, cd04705 is considered to be catalytically inactive and its function is unknown [30].

Conserved domain pfam09056 of PL-A2s of bacteria, fungi and animals

The conserved domain pfam09056 (prokaryotic PL-A2) was identified in the PL-A2s of Gram-positive and Gram-negative bacteria, protozoa, fungi and marine invertebrates of the phyla Cnidaria and Mollusca. Bacterial PL-A2s containing pfam09056 are markedly
different in their molecular structure from the bacterial sPLA2s containing cd04706. Comparison of the conserved domains of *Streptomyces violaceoruber* (pfam09056) and *S. pyogenes* (cd04706) sPLA2s indicates that they share only 8% sequence identity. The catalytic motif of the sPLA2 of the Gram-positive bacterium *S. violaceoruber* [16,31] contains the conserved histidine and aspartic acid residues (Figs 2 and 5). The conserved Ca$^{2+}$-binding domain is absent and the binding of Ca$^{2+}$ is mediated via the aspartic acid and leucine residues upstream of the catalytic site and by the aspartic acid residue adjacent to the catalytic histidine residue (Figs 2 and 5). There are four cysteines that form two putative disulfide bonds, including a bond that connects the catalytic and the Ca$^{2+}$-binding sites (Fig. 5).

In addition to bacteria, sPLA2s containing pfam09056 were also identified in both unicellular and multicellular fungi. The sPLA2 of the fungus *Tuber borchii* [32] is a 23 kDa protein that contains two conserved disulfide bonds analogous to those of the sPLA2 of *S. violaceoruber* (Fig. 5), and the two conserved domains are 42% identical.

There are pfam09056-containing sPLA2s in aquatic invertebrates of the phylum Cnidaria, including the sea anemone *N. vectensis* and the hydrozoan *Hydra magnipapillata*. Cnidarian sPLA2s have the conserved catalytic histidine and aspartic acid residues but contain more numerous cysteine residues and putative disulfide bonds than the corresponding bacterial and fungal sPLA2s (Fig. 5).

Recently, expressed sequence tags (ESTs), coding for potential sPLA2s containing pfam09056, were identified in both unicellular and multicellular fungi. The sPLA2 of the fungus *Tuber borchii* [32] is a 23 kDa protein that contains two conserved disulfide bonds analogous to those of the sPLA2 of *S. violaceoruber* (Fig. 5), and the two conserved domains are 42% identical.

There are pfam09056-containing sPLA2s in aquatic invertebrates of the phylum Cnidaria, including the sea anemone *N. vectensis* and the hydrozoan *Hydra magnipapillata*. Cnidarian sPLA2s have the conserved catalytic histidine and aspartic acid residues but contain more numerous cysteine residues and putative disulfide bonds than the corresponding bacterial and fungal sPLA2s (Fig. 5).

Recently, expressed sequence tags (ESTs), coding for potential sPLA2s containing the conserved domain pfam09056, were identified in the protist *Astrammina rara* (phylum Foraminifera) and the scallop *Mizuhopecten yessoensis* (phylum Mollusca) [33]. Previously, a related sPLA2 was isolated from the venom of another mollusc – the marine snail *Conus magus* – and classified as GIX PLA2 [34] but no conserved domain was identified for this protein in the present study, probably because of the incompleteness of its sequence. However, conserved histidine and aspartic acid active-site motifs are present in the pfam09056-containing sPLA2s of the scallop *M. yessoensis* and the sea anemone *N. vectensis* and in the GIX PLA2 of the...
Fig. 6. Consensus bootstrap phylogenetic tree of the sPLA₂ conserved domains. The tree was constructed with 53 taxa (see Table S1 for details) and is shown next to the branches, and bootstrap branches lower than 50 were collapsed. Acap_56, Aelwormyson capsulata (Fungi); Amelli_04, Apis mellifera (Insecta); Aory_2, Aspergillus oryzae (Fungi); Bbac_56, Bdellovibrio bacteriovorus (Deltaproteobacteria); Btau_05, Bos taurus (Mammalia); Cfam_05, Canis familiaris (Mammalia); Cglo_56, Chaetomiurn globosum (Fungi); Cimm_56, Coccidioides immitis (Fungi); Crei_06, Chlamydomonas reinhardtii (Viridiplantae); Dcar_05, Dianthus caryophyllus (Fungi); Dgeo_56, Deinococcus geothermalis (Deinococcum); Dmel_25, Drosophila melanogaster (Insecta); DmLIIA_51, Drosophila melanogaster (Insecta); Fspl_56, Frankia sp. (Actinobacteria); GgatoN_07, Gallus gallus (Aves); Hrun_56, Hydra magnipapillata (Cnidaria); Hsapi_05, Homo sapiens (Mammalia); HsapiN_07, Homo sapiens (Mammalia); HsapiIIA_51, Homo sapiens (Mammalia); Hsp_56, Helicosporus sp. (Fungi); HsuiII_04, Heloderma suspectum (Anquimorpha); IpacXIIA_51, Ixodes pacificus (Arachnida); IscaII_04, Ixodes scapularis (Arachnida); MdomXIIA_51, Monodelphis domestica (Mammalia); Medu_25, Mytilus edulis (Mollusca); Mext_06, Myellobacterium extorquens (Alphaproteobacteria); Mg1_56, Magnapnora grisea (Fungi); MmusIIA_25, Mus musculus (Mammalia); MmusIII_05, Mus musculus (Mammalia); MmusOtoC_07, Mus musculus (Mammalia); MmusOtoN_07, Mus musculus (Mammalia); MmusXIIA_51, Mus musculus (Mammalia); Mnd_06, Methylbacterium nodulans (Alphaproteobacteria); Mrcd_06, Methylbacterium radiotolerans (Alphaproteobacteria); Mtru_06, Medicago truncatula (Viridiplantae); Nta_02, Nicotiana tabacum (Viridiplantae); Nvec10_56, Nematostella vectensis (Cnidaria); Nvec11_56, Nematostella vectensis (Cnidaria); Nvec12_65, Nematostella vectensis (Cnidaria); Nvec13_56, Nematostella vectensis (Cnidaria); OanaI_25, Ornithorhynchus anatinus (Monotremata); OhanA_25, Ophiothelphus Hannah (Reptilia); Osat_02, Onyza sativa (Viridiplantae); Pper_04, Phlebotomus perniciosus (Insecta); Scoc_06, Streptomyces coelicolor (Actinobacteria); Sequ_06, Streptococcus equi (Firmicutes); Sfye_06, Streptomyces pyogenes (Firmicutes); Svio_06, Streptomyces violateoruber (Actinobacteria); TgXIIA_51, T. J. Nevalainen et al. (2012) 636–649 © 2011 The Authors Journal compilation © 2011 FEBS

Conserved domains of sPLA₂s

GXIIA PL₂ was first cloned from human [35]. In the present study, the conserved domain pfam06951 was identified in the GXIIA PL₂ of a large number of vertebrate and invertebrate species, including the basal metazoans N. vectensis (Cnidaria), Trichoplax adhaerens (Placozoa) and Brachionus plicatilis (Rotifera), as well as in the nonmetazoan eukaryotes (protists), such as the amoeba Naecleria gruberi (Heterolobosea), Monosiga ovata (Chonoflagellida), Euglena gracilis (Euglenozoa), Phytophthora infestans (Oomycetes), Thalassiosira pseudonana (Bacillariophyta), Capsaspora owczarzaki (Ichthyosporea), Chromera velia (Alveolata) and Thecamonas trahens (Apusozoa). Furthermore, pfam06951 was also identified in the sPLA₂s of the marine algae Micromonas (Viridiplantae) and the prokaryote Planctomycyes maris (Bacteria) (Table S1). These observations demonstrate that the conserved domain pfam06951 is widely distributed not only in the sPLA₂s of higher animals but also in the sPLA₂s of simple eukaryotes and prokaryotes. Sequence alignment of the GXIIA PL₂ conserved domains of organisms ranging from protists to mammals reveals high conservation of the Ca²⁺-binding and catalytic sites. The canonical histidine catalytic site C-C-x-x-H-x-x-C motif is highly conserved. In the aspartic acid catalytic motif, the cysteine and aspartic acid residues are also conserved, with the exception of E. gracilis (Euglenozoa), Micromonas pusilla (Viridiplantae) and P. infestans (Oomycetes), in which aspartic acid is replaced by glutamic acid and the first cysteine is absent in all the sequences (Fig. S1). Comparison of the human GXIIA PL₂ (pfam06951) with GIB PL₂ (cd00125) indicated 37% amino acid sequence identity.

Another gene product closely related to GXIIA PL₂ is GXIIB PL₂ [36]. Human GXIIB PL₂ shares 46% sequence identity with GXIIA PL₂. GXIIB PL₂ is a catalytically inactive protein as a result of the substitution of histidine with leucine in the catalytic site (Fig. 2).

Phylogenetic analysis of sPLA₂s

Phylogenetic analysis of the conserved domains of sPLA₂s, carried out with the maximum likelihood (ML) and neighbour-joining (NJ) methods, produced similar tree topologies, suggesting that the members of this protein family have a common and ancient evolutionary origin (Fig. 6). Two major sPLA₂ groups – the cd-collection (which includes the cd00125, cd04704, cd04705, cd04706 and cd04707 of unicellular and multicellular organisms) and the pfam-collection (which contains the sPLA₂s with the annotated pfam06951 and pfam09056 domains) – exist and underwent distinct trajectories during evolution.
The sPLA$_2$ forms of bacteria cluster within each PLA$_{2S}$ subgroup, suggesting that the eukaryote and prokaryote sPLA$_2$ repertoire share a PLA$_2$-like common ancestor molecule, which remains to be identified. The cd-collection contains the majority of the sPLA$_2$ sequences identified, and the clustering observed indicates that discrete relationships between the sPLA$_2$ protein groups exist (Fig. 6). Members of the cd04704 and cd04705 groups seem to have evolved separately from the other cd-collection members, such as cd00125 and cd04707, and have only been identified in animals.

Discussion

PLA$_2$ activity was first reported in canine pancreatic juice [37] and sPLA$_{2S}$ have now been isolated from a large number of snake and other venoms, and also from cells, tissues and body fluids of various unicellular and multicellular organisms [38–40]. Initially, sPLA$_{2S}$ were classified into two major groups of GI and GII PLA$_{2S}$ [41], but subsequent sequence homology and conserved disulfide bonds were observed within the other members of the GI/II/V/X PLA$_2$ col-
Conserved domains of sPLA₂s

T. J. Nevalainen et al.

lection and the related protein otoconin [42]. This classification has been expanded and refined over the past two decades as information from phylogenetically distinct organisms has accumulated at an accelerating rate [1,2,8,23]. The recent systematic identification of the conserved domains of protein molecules [24,25] allows a novel classification of the sPLA₂s (‘cd/pfam classification’) based on the identification of the conserved domains, and a meaningful phylogenetic analysis of the whole range of sPLA₂s.

The aim of the present study was to elucidate the origin and evolution of the sPLA₂s. The enormous evolutionary span between the organisms expressing sPLA₂s (ranging from prokaryotes to metazoan eukaryotes) by necessity introduces a degree of uncertainty in the comparison of protein sequences between such distant phyla. When PLA₂ sequences containing conserved domains of different groups are compared, the molecular structure of a particular PLA₂ reflects the divergent or convergent evolution of the conserved domain structure and the evolutionary history of the organism in question. In the present study, we investigated the structural variability of the conserved domains of sPLA₂s in a wide range of organisms, from bacteria to mammals. A total of 358 conserved domains were identified among 333 sPLA₂ sequences. In viruses, sPLA₂-like proteins (GXIII PLA₂) have also been reported but their molecular structure, including the conserved domain and the enzymatic activity, differ from those of sPLA₂s [43] and thus were not included in the current analysis.

Two main distinct forms of sPLA₂s were identified in bacteria: those containing cd04706 (bacteria/plant-specific subfamily of PLA₂) and those containing pfam09056 (prokaryotic/fungal PLA₂). Notably, no sPLA₂s were identified in the Archaea. A marked difference between Bacteria and Archaea is that the predominant lipid constituents of the archaean membranes are prenyl ether lipids, whereas the bacterial membranes contain acyl ester lipids [44–46]. The phospholipid metabolism of bacteria is driven by phospholipases that specifically hydrolyze the acyl ester bonds but are incapable of hydrolyzing the prenyl ether lipids. In light of this observation, it is hypothesized that the sPLA₂s of the higher organisms may have their evolutionary origin in Bacteria rather than in Archaea.

Members of the sPLA₂s are proposed to share a common ancestry and to have emerged early in evolution, and several theories based upon their sequence similarities and predicted molecular structure have suggested that they evolved rapidly. The GI and GII sPLA₂s of Elapidae and Crotalidae snake venoms, respectively, have distinct molecular structures and it has been proposed that they share a common ancestor [22]. Snake venom sPLA₂s are suggested to have evolved at an accelerated rate that has resulted in the presence of many variant PLA₂ molecules produced by the venom glands [40,47–49].

A recent example of the rapid evolution of sPLA₂ genes is the bovine GIID PLA₂. In cattle, five duplications have been identified, while a single gene copy is present in the human and rodent genomes. The bovine GIID PLA₂s are expressed in the mammary gland and up-regulated during the lactating period, and are suggested to participate in the innate immune response [50]. In human and mouse, GIIA, GIIC, GIID, GIIE, GIIF and GV PLA₂ genes are also the result of gene-duplication events within the same chromosome. In human they are localized in chromosome 1, whereas GIB and GX genes map to chromosomes 12 and 16, respectively. However, comparisons between the gene homologues in human and mouse reveal that species-specific events may occur; for example, the human GIIC PLA₂ is a pseudogene, whereas the mouse homologue encodes an enzymatically active protein [51]. Another example of the functional diversity within the members of the GI/II/V/X PLA₂ collection are the human and mouse GIIA PLA₂s, which are efficient bactericidal enzymes involved in the innate immune response, whereas the closely related digestive enzyme GIB PLA₂ is only marginally bactericidal [6,52]. For example, in vitro assays demonstrated that Gram-positive bacteria are killed by sPLA₂s and that human GIIA PLA₂ is highly potent in this respect, whereas GIB PLA₂ is of low efficacy [52].

In Cnidaria, a sister group of the vertebrate clade that diverged more than 500 million years ago [53,54], sPLA₂s have been reported that structurally resemble the vertebrate GI and GII PLA₂s [19–21,28]. Our current observations indicate that a cnidarian sPLA₂ [19] containing cd00125 has disulfide bonds at locations identical to those of the human GV PLA₂ and conserved in other members of the GI/II/V/X PLA₂ collection. Group I PLA₂s of elapid snake venoms have lost the ancestral pancreatic loop present in the cnidarian sPLA₂ and also in the mammalian GIB PLA₂. Such structural changes have resulted in the appearance of novel functions, including toxicity of the venom sPLA₂s [55]. However, the number of cysteine residues and disulfide bonds of sPLA₂s vary among closely related animals such as the sea anemones Adamsia carcinipados, Urticina crassicornis, Condylactis gigantea and N. vectensis [19–21,28,56]. The variation in the disulfide patterns and other structural features seems to preclude the
exact placement of these cnidarian sPLA₂s in the currently recognized groups of the GI/II/V/X PLA₂ collection [19–21].

In the current study, homologues of the vertebrate GXII members with highly conserved domain regions were identified for the first time in unicellular organisms, and their function in such organisms remains to be established. In human, GXIIA PLA₂ is expressed in T lymphocytes and seems to be involved in the regulation of the immune response [57]. Human GXIIB PLA₂ was recently shown to be involved in the triglyceride metabolism in the liver [58] and is proposed to activate specific receptors that remain to be identified [36].

Life as we know it can be divided into the prokaryotic (cellular organisms that lack a nucleus) Domains of Bacteria (Eubacteria) and Archaea (Archaeabacteria), and the Domain of Eukaryota (organisms consisting of nucleated cells, such as animals, plants and fungi) [44]. Prokaryotes are the oldest cellular life forms on Earth, dating back 3.5–4 billion years and predating eukaryotes by 1 billion years. The current phylogenetic analysis of the conserved domains of sPLA₂s of the representatives of the major prokaryote and eukaryote taxa supports the hypothesis that the sPLA₂s of the eukaryotes, including the Metazoa, Viridiplantae and Fungi, may have shared a common origin with their homologues in bacteria. Two sPLA₂ groups (the cd-collection and the pfam-collection) emerged early in evolution and underwent distinct evolutionary trajectories. Based upon the retrieved data and phylogenetic relatedness, a model for the evolution of the two sPLA₂ group members is proposed centred around gene-duplication and gene-deletion events (Fig. 7A,B). While the two members of the pfam-collection are present in representatives of the Eubacteria and Animalia kingdoms and maintained throughout evolution (Fig. 7B), the cd-collection members seem to have mainly emerged in the Animalia kingdom (Fig. 7A) and their expansion may be associated with the gene duplications that are proposed to have contributed to the increase in organismal complexity during eukaryote evolution [59]. The cd04706 protein members are exclusively found in Eubacteria and Plantae kingdoms and were lost from other life forms. Despite the lack of data from representatives of all clades and the failure to identify homologues it can be hypothesized that in the kingdom Animalia, sPLA₂s with the conserved domains cd00125 and cd04704 were the first members to emerge. Subsequently, several independent gene or genome-duplication events occurred and resulted in the emergence of two novel family members of vertebrate cd04704 and mammalian cd04705. The sequence similarity observed between the vertebrate sPLA₂s containing conserved domains cd04707 and cd00125 and also the mammalian cd04705 with cd04704 suggests that they have a shared common origin and that cd04707 emerged from a gene-duplication event of the cd00125-like ancestral gene at the time of vertebrate emergence and that cd04705 resulted from a later gene-duplication event of the cd04704-like ancestral gene precursor within the mammalian lineage (Fig. 7A). In contrast, only fungi, protists and aquatic invertebrates, such as those of the phyla Cnidaria and Mollusca, have acquired pfam09056-containing sPLA₂s and the homologue gene seems to have been deleted from Protostomes and Deuterostome genomes (Fig. 7B).
The present analysis is based on the highly conserved peptide motifs directly involved in the catalytic function of sPLA₂s, including the Ca²⁺-binding site and the catalytic centre. However, the functional roles of the surrounding domains are at present less well understood (e.g. the functions of the domains flanking the central catalytically active cd04704 of mammalian GIIΙ PLA₂ are unknown) [3] and their study may provide novel insight into the catalytic and noncatalytic functions of sPLA₂s. For instance, binding of sPLA₂ to specific cellular receptors is independent of their catalytic activity, and the protein domains involved in the receptor activation are not yet fully resolved [4]. Other examples are the toxicity of some snake venom PLA₂s, which does not correlate with their catalytic activity [8], and the bactericidal effects of sPLA₂ lacking catalytic activity [60].

It is concluded that the sPLA₂s of eukaryotes share their evolutionary origin with two distinct types of bacterial sPLA₂s. Their evolution and prevalence in genomes seems to be related to the functional constraints of phospholipid metabolism which is a fundamental and conserved process in organisms. Although relatively little is known about the function of prokaryotic sPLA₂s, the large number of distinct sPLA₂ isoforms in metazoans reflects the wide variation of substrate types encountered in the extracellular environment where the enzyme plays many important roles in nutrition, reproduction and immunity.

Material and methods

Database mining and data collection

Secreted PLA₂ sequences were retrieved from the publicly available protein databases of NCBI (http://www.ncbi.nlm.nih.gov) and Swiss-Prot (http://www.uniprot.org) using the Basic Local Alignment Search Tool (BLASTp) algorithm [61] and default settings. Database searches were performed using the peptide sequences of the human GIB PLA₂ (P00630), honeybee venom GIIΙ PLA₂ (P00630), human GXIIΙA PLA₂ (Q9BZM1), O. sativa GXIB PLA₂ (Q9XG81) and S. violaceoruber PLA₂ (Q6UV28). In addition, PLA₂ and PLA₂-like protein sequences were identified in the Microbial and Eukaryotic Genome database (http://www.ncbi.nlm.nih.gov/genome) following a similar strategy. Searches were also performed on nucleotide database data and covered all completed genomes in the NCBI genome database (1359 bacterial, 79 archaeal and 231 eukaryotic genomes; October 2010 release), and also available EST data using the tBLASTn and sequence matches with an e-value of < 10 were retrieved and their sequence analysed. The deduced protein sequences were obtained using the BCM Search Launcher (http://searchlauncher.bcm.tmc.edu/seq-util/Options/sixframe.html) and compared with available homologue data.

In silico sequence annotations

The conserved domains of sPLA₂ were identified using the NCBI Conserved Domains Database CDD-27036 PSSMs (http://www.ncbi.nlm.nih.gov/cdd) annotation by using the sequences identified in this study as queries. The result includes an alignment between the query and the search model consensus sequence, the expected-value for the alignment, the identity (name) of the conserved domain and the location of the conserved domain in the query sequence [25]. Histidine active-site and aspartic acid active-site protein motifs were identified based on the PROSITE database (http://au.expasy.org/prosite) pattern annotation. The localization of disulfide bonds was retrieved from the Swiss-Prot database and from published data.

Sequence comparisons and phylogenetic analysis

Pairwise and multiple protein sequence alignments were carried out using the ClustalW2 program [62] available from EBI (http://www.ebi.ac.uk/Tools/msa/clustalw2) and the default parameters. The percentage of sequence similarities (based on the observed substitutions of one amino acid for another in homologous proteins) and identities between the sPLA₂s were calculated based upon protein alignments using the GeneDoc interface (http://www.psc.edu/biomed/genedoc). Phylogenetic analysis of the conserved domain sequences of bacterial, fungal and metazoan PLA₂s was performed using 53 taxa representatives. The protein alignment produced was submitted to PROTEST analysis (http://darwin.uvigo.es/software/protest.html) to select the best model of protein evolution that fits the data set [63]. Phylogenetic analyses were conducted using the NJ [64] and ML methods, and reliability for internal branching was assessed using the bootstrap method [65]. NJ analysis was performed using MEGA4 programme [66] and the p-distance amino acid model with 1000 bootstrap replicates. All positions containing alignment gaps and missing data were eliminated (pairwise deletion option) and a total of 215 positions were analyzed in the final data set. The ML tree (PhyML, v3.0 aLRT) [67] was constructed in Phylogeny.fr web interface (http://phylogeny.lirmm.fr/phylo_cgi/index.cgi). The WAG substitution model was selected assuming an estimated proportion of invariant sites (of 0.167) and four gamma-distributed rate categories to account for rate heterogeneity across sites. The gamma shape parameter was estimated directly from the data (γ = 1.804) and analysis was performed using 100 bootstrap replicates. Graphical representation and edition of the phylogenetic tree were performed with TREEDYN (v198.3, http://www.treedyn.org).
Both methods produced similar tree topologies and the NJ bootstrap consensus tree was selected and taxa clades with support values < 50% collapsed.

Acknowledgements
The authors thank Deborah Power for critical reading of the manuscript and anonymous referees for valuable suggestions. Supported by the Research Fund of Turku University Hospital and the Portuguese National Science Foundation (FCT)/CCMAR pluriannual grant.

References
1 Schaloske RH & Dennis EA (2006) The phospholipase A2 superfamily and its numbering system. Biochim Biophys Acta 1761, 1246–1259.
2 Six DA & Dennis EA (2000) The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim Biophys Acta 1488, 1–19.
3 Murakami M, Taketomi Y, Girard C, Yamamoto K & Lambeau G (2010) Review. Emerging roles of secreted phospholipase A2 enzymes: lessons from transgenic and knockout mice. Biochimie 92, 561–582.
4 Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T & Yamamoto K (2011) Recent progress in phospholipase A2 research: from cells to animals to humans. Prog Lipid Res 50, 152–192.
5 Nevalainen TJ, Haapamäki MM & Grönnroos JM (2000) Roles of secretory phospholipases A2 in inflammatory diseases and trauma. Biochim Biophys Acta 1488, 83–90.
6 Nevalainen TJ, Graham GG & Scott KF (2008) Antibacterial actions of secreted phospholipases A2: review. Biochim Biophys Acta 1781, 1–9.
7 Birts CN, Barton CH & Wilton DC (2010) Catalytic and non-catalytic functions of human IIA phospholipase A2. Trends Biochem Sci 35, 28–35.
8 Valentin E & Lambeau G (2000) Increasing diversity of secreted phospholipases A2 and their receptors and binding proteins. Biochim Biophys Acta 1488, 59–70.
9 Dijkstra BW, Kalk KH, Hol WG & Drenth J (1981) Structure of bovine pancreatic phospholipase A2 at 1.7 A resolution. J Mol Biol 147, 97–123.
10 Brunie S, Bolin J, Gewirth D & Sigler PB (1985) The refined crystal structure of dimeric phospholipase A2 at 2.5 A. Access to a shielded catalytic center. J Biol Chem 260, 9742–9749.
11 White SP, Scott DL, Otwinowski Z, Gelb MH & Sigler PB (1990) Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science 250, 1560–1563.
12 Wery JP, Schewitz RW, Clawson DK, Bobbitt JL, Dow ER, Gamboa G, Goodson T Jr, Hermann RB, Kramer RM, McClure DB et al. (1991) Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2 A resolution. Nature 352, 79–82.
13 Steiner RA, Rozeboom HJ, de Vries A, Kalk KH, Murshudov GN, Wilson KS & Dijkstra BW (2001) X-ray structure of bovine pancreatic phospholipase A2 at atomic resolution. Acta Crystallogr D Biol Crystallogr 57, 516–526.
14 Renetseder R, Brunie S, Dijkstra BW, Drenth J & Sigler PB (1985) A comparison of the crystal structures of phospholipases A2 from bovine pancreas and Crota-
lus atrox venom. J Biol Chem 260, 11627–11634.
15 Guy J, Stähli U & Lindqvist Y (2009) Crystal structure of a class XIb phospholipase A2: rice (Oryza sativa) isoform-2 PLA2 and an octanoate complex. J Biol Chem 284, 19371–19379.
16 Matoba Y, Katsube Y & Sugiyama M (2002) The crystal structure of prokaryotic phospholipase A2. J Biol Chem 277, 20059–20069.
17 Scott DL, Otwinowski Z, Gelb MH & Sigler PB (1990) Crystal structure of bee venom phospholipase A2 in a complex with a transition-state analogue. Science 250, 1563–1566.
18 Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche B, De Castro E, Lachaize C, Langendijk-Genevaux PS & Sigrist CJA (2008) The 20 years of PROSITE. Nucleic Acid Res 36, D245–D249.
19 Talvinen KA & Nevalainen TJ (2002) Cloning of a novel phospholipase A2 from the cnidarian Adamsia carcinipodas. Comp Biochem Physiol B Biochem Mol Biol 132, 571–578.
20 Razpotnik A, Križaj I, Šribar J, Kordiš D, Maček P, Frangež R, Kem WR & Turk T (2010) A new phospholipase A2 isolated from the sea anemone Urticina crassicornis – its primary structure and phylogenetic classification. FEBS J 277, 2641–2653.
21 Romero L, Marcussi S, Marchi-Salvador DP, Silva FP Jr, Fuly AL, Stábeli RG, da Silva SL, Gonzáles J, del Monte A & Soares AM (2010) Enzymatic and structural characterization of a basic phospholipase A2 from the sea anemone Condylactis gigantea. Biochimie 92, 1063–1071.
22 Davidson FF & Dennis EA (1990) Evolutionary relationships and implications for the regulation for phospholipase A2 from snake venom to human secreted forms. J Mol Evol 31, 228–238.
23 Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269, 13057–13060.
24 Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL et al. (2008) The pfam protein families database. Nucleic Acid Res 36, D281–D288.
Conserved domains of sPLA2s

25 Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR et al. (2010) CDD: a Conserved Domain Database for the functional annotation of proteins. *Nucleic Acid Res* **39**, D225–D229.

26 Beres SB, Sylva GL, Barbian KD, Lei B, Hoff JS, Mammarella ND, Liu MY, Smooth JC, Porcella SF, Parkins LD et al. (2002) Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. *PNAS* **99**, 10078–10083.

27 Stahl U, Lee M, Sjödahl S, Archer D, Cellini F, Ek B, Iannaccone R, MacKenzie D, Semeraro L, Tramontano E et al. (1999) Plant low-molecular-weight phospholipase A2s (PLA2s) are structurally related to the animal secretory PLA2s and are present as a family of isoforms in rice (*Oryza sativa*). *Plant Mol Biol* **41**, 481–490.

28 Nevalainen TJ (2008) Phospholipase A2 in the genome of *Nematostella vectensis*. *Comp Biochem Physiol D Genom Proteom* **3**, 226–233.

29 Pote KG, Hauer CR III, Michel H, Shabanovitz J, Hunt DF & Kretsinger RH (1993) Otoconin-22, the major protein aragonitic frog otoconia, is homolog of phospholipase A2. *Biochemistry* **32**, 5017–5024.

30 Valentín E, Ghomashchi F, Gelb MH, Lazdunski M & Lambeau G (2000) Novel human secreted phospholipase A2 with homology to the group III bee venom enzyme. *J Biol Chem* **275**, 7492–7496.

31 Sugiyama M, Ohtani K, Koike T, Ishida K, Kimura H & Misaki H (2002) A novel prokaryotic phospholipase A2. Characterization, gene cloning, and solution structure. *J Biol Chem* **277**, 20051–20058.

32 Soragni E, Bolchi A, Balestri R, Gambaretto C, Percudani R, Bonfante P & Ottonello S (2001) A nutrient-regulated, dual localization phospholipase A2 in the symbiotic fungus *Tuber borchii*. *EMBO J* **20**, 5079–5090.

33 Meng X, Chang Y, Qui X & Wang X (2010) Generation and analysis of expressed sequence tags from adductor muscle of Japanese scallop *Mizuhopecten yessoensis*. *Comp Biochem Physiol Part D Genomics Proteomics* **5**, 288–294.

34 McIntosh JM, Ghomashchi F, Gelb MH, Dooley DJ, Stoehr SJ, Giordani AB, Naisbitt SR & Olivera BM (1995) Conodipine-M, a novel phospholipase A2 isolated from the venom of the marine snail *Conus magus*. *J Biol Chem* **270**, 3518–3526.

35 Gelb MH, Valentín E, Ghomashchi F, Lazdunski M & Lambeau G (2000) Cloning and recombinant expression of a structurally novel human secreted phospholipase A2. *J Biol Chem* **275**, 39823–39826.

36 Rouault M, Bollinger JG, Lazdunski M, Gelb MH & Lambeau G (2003) Novel mammalian group XII secreted phospholipase A2 lacking enzymatic activity. *Biochemistry* **42**, 11494–11503.

37 Bökay A (1877) Ueber die Verdaulichkeit des Nucleins und Lecithins. *Zschr Physiol Chem* **1**, 157–164.

38 Burke JE & Dennis EA (2009) Phospholipase A2 biochemistry. *Cardiovasc Drug Ther* **23**, 49.

39 Tan PTJ, Khan MA & Brusic V (2003) Bioinformatics for venom and toxin sciences. *Brief Bioinform* **4**, 53–62.

40 Lynch VJ (2007) Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. *BMC Evol Biol* **7**, 2.

41 Heinrikson RL, Krueger ET & Keim PS (1977) Amino acid sequence of phospholipase A2-alpha from the venom of *Crotalus adamanteus*. A new classification of phospholipases A2 based on structural determinants. *J Biol Chem* **252**, 4913–4921.

42 Wang Y, Kowalski PE, Thalman I, Ornitz DM, Mager DL & Thalmann L (1998) Otoconin-90, the mammalian otoconial matrix protein, contains two domains of homology to secretoty phospholipase A2. *Proc Natl Acad Sci USA* **95**, 15345–15350.

43 Zádori Z, Szelei J, Lacoste MC, Li Y, Gariépy S, Raymond P, Allaire M, Nabi IR & Tijssen P (2001) A viral phospholipase A2 is required for parvovirus infectivity. *Dev Cell* **1**, 291–302.

44 Woese CR, Kandler O & Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. *PNAS* **87**, 4576–4579.

45 Henni H, Shibuya K, Takahashi Y, Nakayama T & Nishino T (2004) (S)-2,3-Di-O-geranylgeranylglyceryl phosphate synthase from the thermophilic archaean *Sulfolobus solfataricus*. Molecular cloning and characterization of a membrane-intrinsic prenyltransferase involved in the biosynthesis of archaeal ether-linked membrane lipids. *J Biol Chem* **279**, 50197–50202.

46 Cavalier-Smith T (2009) Review. Predation and eukaryote cell origins: a coevolutionary perspective. *Int J Biochem Cell Biol* **41**, 307–322.

47 Nakashima K, Ogawa T, Oda N, Shimohigashi Y, Hattori M, Sakaki Y, Kihara H & Ohno M (1994) Darwinian evolution of *Trimeresurus flavoviridis* venom gland phospholipase A2 isozymes. *Pure Appl Chem* **66**, 715–720.

48 Kini RM & Chan YM (1999) Accelerated evolution and molecular surface of venom phospholipase A2 enzymes. *J Mol Evol* **48**, 125–132.

49 Fry BG (2005) From genome to “venom”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. *Genome Res* **15**, 403–420.

50 Golik M, Cohen-Zinder M, Loor JJ, Drackley JK, Band MR, Lewin HA, Weller JJ, Ron M & Seroussi E (2006) Accelerated expansion of group IID-like...
phospholipase A2 genes in Bos taurus. Genomics 87, 527–533.

51 Tischfield JA (1997) A reassessment of the low molecular weight phospholipase A2 gene family in mammals. J Biol Chem 272, 17247–17250.

52 Koduri RS, Grönnroos JO, Laine VJO, Le Calvez C, Lambeau G, Nevalainen TJ & Gelb MH (2002) Bacterial properties of human and murine groups I, II, V, X, and XII secreted phospholipases A2. J Biol Chem 277, 5849–5857.

53 Chen JY, Oliveri P, Gao F, Dornbos SQ, Li CW, Bottjer DJ & Davidson EH (2002) Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China. Dev Biol 248, 182–196.

54 Wood RA, Grotzinger JP & Dickson JA (2002) Proterozoic modular biomineralized metazoan from the Nama group, Namibia. Science 296, 2383–2386.

55 Armugam A, Gong NL, Li XJ, Siew PY, Chai SC, Nair R & Jeyaseelan K (2004) Group IB phospholipase A2 from Pseudonaja textilis. Arch Biochem Biophys 421, 10–20.

56 Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV et al. (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94.

57 Ho I, Arm JP, Bingham CO, Choi A, Austen KF & Glimcher LH (2001) A novel group of phospholipase A2s preferentially expressed in type 2 helper T cells. J Biol Chem 276, 18321–18326.

58 Guan M, Qu L, Tan W, Chen L & Wong C (2011) Hepatocyte nuclear factor-4 alpha regulates liver triglyceride metabolism in part through secreted phospholipase A2 GXIIIB. Hepatology 53, 458–466.

59 Crow KC & Wagner GP (2006) What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23, 887–892.

60 Paramo L, Lomonte B, Pizarro-Cerdà J, Bengoechea JA, Gorvel JP & Moreno P (1998) Bactericidal activity of Lys-49 and Asp-49 myotoxic phospholipase A2 from Bothrops asper snake venom: synthetic Lys49 myotoxin II-(115-129)-peptide identifies its bactericidal region. Eur J Biochem 253, 452–461.

61 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W & Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.

62 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

63 Abascal F, Zardoya R & Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105.

64 Saitou N & Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.

65 Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

66 Tamura K, Dudley J, Nei M & Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596–1599.

67 Guindon S & Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.

Supporting information

The following supplementary material is available:

Fig. S1. Alignment of the conserved domain pfam06951 sequences of 20 GXIIA PLA2s.

Table S1. Conserved domains of 333 prokaryotic and eukaryotic secreted phospholipases A2.

This supplementary material can be found in the online version of this article.

Please note: As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer-reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.