Health-Related Quality of Life in Patients With Different Diseases Measured With the EQ-5D-5L: A Systematic Review

Ting Zhou 1, Haijing Guan 2, Luying Wang 1, Yao Zhang 1, Mingjun Rui 1 and Aixia Ma 1*

1 School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China, 2 China Center for Health Economic Research, Peking University, Beijing, China

Background: The EQ-5D-5L is a generic preference-based questionnaire developed by the EuroQol Group to measure health-related quality of life (HRQoL) in 2005. Since its development, it has been increasingly applied in populations with various diseases and has been found to have good reliability and sensitivity. This study aimed to summarize the health utility elicited from EQ-5D-5L for patients with different diseases in cross-sectional studies worldwide.

Methods: Web of Science, MEDLINE, EMBASE, and the Cochrane Library were searched from January 1, 2012, to October 31, 2019. Cross-sectional studies reporting utility values measured with the EQ-5D-5L in patients with any specific disease were eligible. The language was limited to English. Reference lists of the retrieved studies were manually searched to identify more studies that met the inclusion criteria. Methodological quality was assessed with the Agency for Health Research and Quality (AHRQ) checklist. In addition, meta-analyses were performed for utility values of any specific disease reported in three or more studies.

Results: In total, 9,400 records were identified, and 98 studies met the inclusion criteria. In the included studies, 50 different diseases and 98,085 patients were analyzed. Thirty-five studies involving seven different diseases were included in meta-analyses. The health utility ranged from 0.31 to 0.99 for diabetes mellitus [meta-analysis random-effect model (REM): 0.83 (95% CI = 0.77–0.90); fixed-effect model (FEM): 0.93 (95% CI = 0.93–0.93)]; from 0.62 to 0.90 for neoplasms [REM: 0.75 (95% CI = 0.68–0.82); FEM: 0.80 (95% CI = 0.78–0.81)]; from 0.56 to 0.85 for cardiovascular disease [REM: 0.77 (95% CI = 0.75–0.79); FEM: 0.76 (95% CI = 0.75–0.76)]; from 0.31 to 0.78 for multiple sclerosis [REM: 0.56 (95% CI = 0.47–0.66); FEM: 0.67 (95% CI = 0.66–0.68)]; from 0.68 to 0.79 for chronic obstructive pulmonary disease [REM: 0.75 (95% CI = 0.71–0.80); FEM: 0.76 (95% CI = 0.75–0.77)]; from 0.65 to 0.90 for HIV infection [REM: 0.84 (95% CI = 0.80–0.88); FEM: 0.81 (95% CI = 0.80–0.82)]; from 0.37 to 0.89 for chronic kidney disease [REM: 0.70 (95% CI = 0.48–0.92); FEM: 0.76 (95% CI = 0.74–0.78)].
Background

As a quantitative indicator of health-related quality of life (HRQoL), the health utility reflects people's preference for a given health state. The health utility is measured on a scale from zero to one, where zero represents death and one represents full health (1). The worse the perception of the health status is, the lower the utility value. It can be a negative value when a health state is perceived as being worse than death. There are several preference-based measurement tools for health utility, such as the EuroQol 5 dimensions (EQ-5D) family of instruments (2), the Short Form-6 Dimensions (SF-6D) (3), and the Health Utilities Index (HUI) (4). Health utility can be used as quality-of-life weight to calculate QALYs in cost-utility analysis (CUA). Thus, health utility plays an important role not only in the measurement of HRQoL but also in health economics evaluations (5, 6).

The EQ-5D, developed by the European Quality of Life Group (EuroQol Group), is currently one of the most widely used questionnaires in HRQoL research (7). The original version of the EQ-5D was introduced in 1990 and contains five dimensions: Mobility, Self-Care, Usual Activities, Pain/Discomfort, and Anxiety/Depression (2). For each dimension, there were three levels to describe the severity, namely, have no problems, have some problems, and have extreme problems, which could describe 243 different health states (2). However, there may be some issues when using the EQ-5D-3L to detect small changes in mild conditions, and the EQ-5D-3L had obvious ceiling effects (8). Therefore, in 2005, the EuroQol Group developed a new version of the EQ-5D based on the same five dimensions but with five rather than three severity levels (EQ-5D-5L); this instrument could detect 3,125 unique health states (8). Published studies have shown that compared with the EQ-5D-3L, the EQ-5D-5L was significantly more sensitive, with reduced ceiling effects (9, 10).

To derive health utility from the responses on the EQ-5D instruments, country-specific value sets need to be estimated (11). Since 2016, more than 20 countries and regions have published standard EQ-5D-5L value sets (Europe: 9; Asia: 9; Americas: 3; Africa: 1) (12). In 2012, before any standard EQ-5D-5L value set was established, van Hout et al. (13) developed a crosswalk project to map the EQ-5D-5L to the EQ-5D-3L, enabling researchers to obtain a crosswalk value set for the EQ-5D-5L based on published EQ-5D-3L standard value sets. Besides that, the psychometric properties of the EQ-5D-5L have been validated in both general and disease populations (12).

Conclusions: EQ-5D-5L is one of the most widely used preference-based measures of HRQoL in patients with different diseases worldwide. The variation of utility values for the same disease was influenced by the characteristics of patients, the living environment, and the EQ-5D-5L value set.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42020158694.

Keywords: HRQoL, health utility, EQ-5D-5L, disease, EuroQol

Method

Search Strategy and Study Inclusion Criteria

This systematic review and meta-analysis was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (16). The protocol was registered on PROSPERO with ID CRD42020158694 (https://www.crd.york.ac.uk/PROSPERO/). Literature searches were conducted in Medline via Ovid, Embase via Ovid, The Cochrane Library, and Web of Science from January 2012 to October 2019 with combinations of the following search terms: "quality of life," “QoL,” “HRQoL,” “HRQL,” “EQ-5D,” “EQ-5D-5L,” “five level,” “EuroQol,” “five dimensions,” “randomized controlled trial,” “RCT,” and “diseases” (details in Supplementary Table 1).

According to the selection criteria, all studies were original cross-sectional studies reporting EQ-5D-5L utilities for any specific disease with or without comorbidities and using country-specific value sets or the crosswalk method (mapping from EQ-5D-3L). Due to the lack of EQ-5D-5L standard value sets in many countries, the crosswalk method is the most important value set to calculate utility measured by EQ-5D-5L. In addition, the crosswalk method is recommended by the National Institute for Health and Care Excellence (NICE) to perform CUA when EQ-5D-5L is used to measure health outcomes in England. Therefore, it is useful and necessary to include these articles in this review. Studies reported that multiple utility values using value sets from different countries in the same published article were also included. The language of publication was limited to English. This review excluded reviews, protocols, or abstracts;
studies focused on the general population; longitudinal studies or effects evaluation studies of different interventions; studies that reported only synthetic utilities of multiple diseases, non-EQ-5D-5L utilities, or no utilities; and studies unrelated to HRQoL.

Data Collection and Quality Assessment
After removing duplicates, title and abstract screening was conducted by two authors independently. Following the application of the selection criteria, all eligible studies with full-texts were read, and the relevant references were checked manually. Two researchers independently collected the data using a predesigned data extraction table, including author, publication year, country or region, sample size, disease type, mean age, health utility, EQ-5D VAS score, proportions with problems in the five dimensions, value set, and administration method (i.e., face-to-face, telephone survey). When there was any discrepancy between the two researchers, it was resolved by discussion.

Quality assessment was conducted with the 11-item cross-sectional research checklist developed by the Agency for Healthcare Research and Quality (AHRQ) (17). According to the description in the study and the AHRQ checklist, the reviewer selects one of three options (“Yes,” “No,” and “Unclear”) for each item. “Yes” was assigned one point, while “No” or “Unclear” was assigned zero points. The quality level of each study was determined by summing all the item scores. For each assessed study, 0–3 points indicated low quality, 4–7 points indicated moderate quality, and 8–11 points indicated high quality.

Statistical Analysis
This review involved the analysis of the range of mean health utility values of the overall sample (or subgroups when there is no overall utility value reported) among different studies and value sets used in each study for a specific disease with or without comorbidities. In addition, this study reports the ranges in mean EQ-VAS scores and responses on each dimension of the EQ-5D-5L.

Meta-analysis was performed to synthesize utility data when three or more studies reported utility values and standard error/deviation for a specific disease. For any study that reported multiple utility values for the same sample using different EQ-5D-5L value sets, the average value or the utility calculated by using a local country-specific value set was applied in meta-analysis. Heterogeneity was assessed with the I^2 statistic. Random-effect (DerSimonian–Laird estimator method) and fixed-effect (inverse variance method) models were both used to calculate the pooled utility for a specific disease. Sensitivity analysis was conducted by removing EQ-5D-5L utility values derived from crosswalk value sets. All analyses were performed with R (version 4.0.5).

RESULTS
A total of 9,500 articles were identified from the four databases, and four additional studies were obtained from the manual search. After eliminating duplicates, 6,409 documents were screened to assess eligibility, of which 98 articles (15, 16, 18–113) were finally included in qualitative analyses and 35 studies were included in meta-analyses (Figure 1). Those 98 articles involved 98,085 patients. The included studies were published between January 2006 and March 2018 (Table 1). Except for three studies (29, 39, 79) that only included male patients and one study (96) that only included female patients, the rest of the studies included patients of both sexes. Twenty studies did not report the mode of administration. Of the remaining 78 studies, 47.4% involved the face-to-face administration of the survey, 47.4% involved self-administered surveys, and 5.2% involved telephone surveys. The AHRQ checklist scores ranged from four to nine points, the median was six points, and the mode was five points (details in Supplementary Table 2). There were no low-quality studies; 87 studies and 11 studies were of moderate and high quality, respectively. The data about the distributions of EQ-5D-5L are summarized in Supplementary Table 3.

In this review, health utility values derived from the EQ-5D-5L were reported for 50 different diseases. Among these, diabetes mellitus, neoplasms, multiple sclerosis, cardiovascular disease, chronic obstructive pneumonia disease (COPD), human immunodeficiency virus (HIV) infection, chronic kidney disease, and fracture were reported in three or more studies and meta-analyses were performed for these diseases (fracture was not included in meta-analysis, because only two of the studies reported standard error/deviation). The sensitivity analysis results (remove all the utility values derived from the crosswalk value set) are presented in Supplementary Figure 1.

Diabetes Mellitus
For patients with diabetes mellitus (Table 2), 12 studies reported health utility values ranging from 0.31 to 0.99 (14, 15, 18–27). The Chinese standard EQ-5D-5L value set (18) and Crosswalk UK value set (24) were used to derive the utility values in the studies that reported the highest value and lowest value, respectively. The former focused on diabetes patients without diabetic retinopathy with a mean disease duration of 10.3 years and a mean age of 67.9 years (18), while the latter involved patients with severe comorbidities on hemodialysis, with a mean age of 60.3 years (24). Additionally, Lamu et al. (19) used eight country value sets (England, the Netherlands, Spain, Canada, Uruguay, China, Japan, and Korea) to analyze 924 diabetic patients from six countries. The results showed that the utility value calculated with the Uruguay value set was the highest at 0.880, while the lowest, 0.735, was derived with the value set from the Netherlands. The EQ-5D VAS scores were reported to range from 50.9 to 72.6 in six studies (14, 20, 22–25). Among the five dimensions of the EQ-5D-5L, pain/discomfort was the dimension with the most reported problems. The prevalence of diabetes comorbidities ranged from 55 to 100%, which was one of the most important factors negatively affecting the HRQoL of patients.

The meta-analytic utility estimate of diabetes mellitus was 0.83 (95% confidence interval (CI) = 0.77–0.90, heterogeneity $I^2 = 100\%$, $P = 0.00$) using the random-effect model, and it was 0.93
(95% CI = 0.93–0.93) using the fixed-effect model. The results are presented in Figure 2A.

Neoplasms
Seven studies reported health utility values for cancer patients ranging from 0.62 to 0.90 (26, 28–33). The highest utility value was in early-stage prostate cancer patients using the crosswalk UK value set (29), while the lowest value was in colorectal cancer patients, 49.7% of whom had stage III–IV disease, applying the China value set (28). The EQ-5D VAS scores ranged from 56.2 to 77.5 in two studies (30, 32). The decrease in health utility in cancer patients was mainly due to problems related to the pain/discomfort dimension of the EQ-5D-5L. As the cancer progressed, the health utility value decreased.

The pooled utility value of cancer patients was 0.75 (95% CI = 0.68–0.82, heterogeneity $I^2 = 96\%$, $P < 0.01$) using the random-effect model, and it was 0.80 (95% CI = 0.78–0.81) using the fixed-effect model (Figure 2B).

Multiple Sclerosis
The health utility ranged from 0.31 to 0.78 for multiple sclerosis patients in six studies (34–39). The upper and lower utility values were generated with the crosswalk France value set (35) and the crosswalk UK value set (39), respectively. The study with the highest value (39) reported a shorter disease duration (9 vs. 15 years) than the study with the lowest utility value (35). In addition, the former had a higher proportion of relapsing–remitting multiple sclerosis patients than the latter (71.5 vs. 52.8%). EQ-5D VAS scores ranged from 58.3 to 78.0 in five studies (35–39). Pain/discomfort and usual activities were the dimensions with the most reported problems among multiple sclerosis patients.
TABLE 1 | Basic characteristics of the included studies.

Author year	Country/region	Survey time	Sample size	Male (%)	Diseases	Age (SD)	AHQR scores
Natasya et al. 2018	Indonesia	October to December 2017	108	31.5	Diabetes mellitus (type 2)	-	5
Sothornwit et al. 2018	Thailand	January 2014 to September 2016	254	47.0	Diabetes mellitus	63.2 (12.1)	6
Pan et al. 2018	China	2015	722	43.1	Diabetes without diabetic retinopathy	67.9 (8.2)	5
Lamu et al. 2018	Australia, Canada, Germany, Norway, UK and USA	2012	924	58.7	Diabetes	55.9 (12.6)	7
Adibe et al. 2018	Nigeria	-	147	44.9	Diabetes mellitus (type 2)	-	5
Arifin et al. 2019	Indonesia	November 2015 to October 2017	907	57.0	Diabetes mellitus (type 2)	59.3 (9.7)	6
Schmitt et al. 2018	Germany	September 2015 to August 2016	606	45.2	Diabetes mellitus	50 (15)	7
Collado et al. 2015	Spain	July 2011 to June 2012	1,857	45.3	Diabetes mellitus	≥18	6
Khatib et al. 2018	Palestine	November 2016 to June 2017	141	52.5	Diabetes mellitus (type 2)	60.3	8
Zyoud et al. 2015	Palestine	June 2013 to October 2013	385	44.9	Diabetes mellitus (type 2)	59.3 (11.2)	5
Xu et al. 2017	China	July to December 2014	1,721	-	Heart disease	≥18	5
			4,528	-	Hypertension	≥18	5
			2,326	-	Diabetes	≥18	5
			267	-	Cancer	≥18	5
Pan et al. 2016	China	March 2014 to June 2014	289	30.5	Diabetes mellitus (type 2)	64.9 (9.1)	7
Huang et al. 2018	China	December 2016 to April 2017	300	65.0	Colorectal cancer	59	7
Gavin et al. 2016	Republic of Ireland	2012	1,431	100.0	Prostate cancer early stage	64.9 (7.6)	7
	Northern Ireland	2012	407	100.0	Prostate cancer late stage	64.9 (7.6)	7
			269	100.0	Prostate cancer early stage	64.9 (7.6)	7
			282	100.0	Prostate cancer late stage	64.9 (7.6)	7
Lloyd et al. 2015	UK	-	50	100.0	Prostate cancer asymptomatic/mildly symptomatic	71.8 (8.8)	5
			50	100.0	Prostate cancer currently receiving chemotherapy	69.8 (11.9)	5
			12	100.0	Prostate cancer symptomatic before chemotherapy	59.9 (15.2)	5
			46	100.0	Prostate cancer post chemotherapy	68.4 (8.24)	5
Philipp-Dormston et al. 2018	Germany	October 2015 to February 2016	869	61.3	Actinic keratosis	74	8
			578	61.3	Basal cell carcinoma	74	8
			204	61.3	Squamous cell carcinoma	74	8
Noel et al. 2015	Canada	August 2014 to October 2014	100	75.0	Squamous cell carcinoma	61	5
Mastboom et al. 2018	Netherlands	December 2016 to May 2017	69	20.3	Localized tenosynovial giant cell tumor	41	6
			230	22.2	Diffuse tenosynovial giant cell tumor	41	6

(Continued)
TABLE 1 | Continued

Author year	Country/region	Survey time	Sample size	Male (%)	Diseases	Age (SD)	AHQR scores
Zhang et al. 2017 (34)	Australia	2015	231	36.8	Progressive-onset multiple sclerosis	61.8 (9.6)	7
Alqahtani et al. 2017 (35)	Saudi Arabia	June 2016 to April 2017	1,514	18.4	Relapse-onset multiple sclerosis	53.5 (11.0)	7
Fogarty et al. 2012 (36)	Ireland	-	214	33.6	Multiple sclerosis	47.6 (12.8)	6
Carney et al. 2018 (37)	Ireland	Spring of 2015	541	28.7	Multiple sclerosis	47	7
Nohara et al. 2017 (38)	Japan	2016	96	38.5	Multiple sclerosis	47.4 (14.2)	7
Barin et al. 2018 (39)	Switzerland	June 2016 to September 2017	855	27.3	Multiple sclerosis	48.0 (8.8)	8
Buanes et al. 2015 (40)	Norway	October 2012	30	80.0	Cardiac arrest	62	5
Berg et al. 2017 (41)	Denmark	April 2013 to April 2014	7,179	73	Ischemic heart disease	65.5 (9.5)	9
			4,322	65	Arrhythmia	63.6 (9)	
			987	73	Heart failure	65.4 (9)	
			115	47	Congestive heart disease	43.9 (9)	
			204	75	Infectious heart disease	59.4 (9)	
			975	66	Heart valve disease	71.2 (9)	
			136	74	Heart transplant	51.2 (9)	
			321	61	Other diagnoses of heart disease	61.4 (9)	
			2,473	53	Observation for heart disease	61.5 (9)	
Squire et al. 2017 (42)	UK	January to May 2015	191	73.0	Heart failure	70 (6)	6
Meroño et al. 2017 (43)	Spain	November 2012 to October 2015	139	66.0	Iron deficiency in acute coronary syndrome	67 (15)	9
Tran et al. 2018 (44)	Vietnam	July to December 2016	105	83.0	Acute coronary syndrome non-iron deficiency	61 (12)	
Wang et al. 2018 (45)	China	-	600	41.5	Cardiovascular disease	57.2 (9)	5
De Smedt et al. 2016 (46)	24 European countries	2012 to 2013	7,449	76.1	Stable coronary disease	64 (9)	5
Garcia-Gordillo et al. 2017 (47)	Spain	July 2011 and June 2012	1,130	48.7	COPD	15-102 (5)	5
Igarashi et al. 2018 (48)	Japan	-	71	84.5	COPD age < 65 years	60.5 (5.3)	6
Lin et al. 2014 (49)	USA	2006 to 2010	151	95.4	COPD age ≥ 65 years	75.2 (5.8)	
Nolan et al. 2016 (50)	UK	April 2012 to October 2014	670	58.0	COPD	68.5 (10.4)	6
Keaei et al. 2016 (51)	Colombia	May to June 2014	616	59.7	COPD	70.4 (9.3)	8
Dang et al. 2018 (52)	Vietnam	January to August 2013	138	77.5	HIV/AIDS	46.4 (11.4)	7
Tran et al. 2012 (53)	Vietnam	2012	138	58.7	HIV-positive	35.5 (6.9)	7
Van Duin et al. 2017 (54)	Columbia	-	1,016	63.8	HIV	35.4 (7.0)	6
Yang et al. 2015 (55)	Singapore	June 2012 to May 2013	100	77.0	HIV with comorbidities	48.0 (11.2)	5
Hiragi et al. 2019 (56)	Japan	July 2015 to March 2017	83	21.1	HIV without comorbidities	42.2 (11.1)	6
			150	51.3	End-stage renal disease	60.1 (11.6)	6
			67	62.7	Chronic kidney disease (TR)	49.8 (13.1)	4
			65	53.8	Chronic kidney disease (TRC)	49.4 (11.6)	
Author year	Country/region	Survey time	Sample size	Male (%)	Diseases	Age (SD)	AHQR scores
-------------	----------------	-------------	-------------	----------	----------	----------	-------------
Zyoud et al. 2016 (57)	Palestine	June 2014 to January 2015	267	52.1	End-stage renal disease	53.3 (16.2)	8
Al-Jabi et al. 2015 (59)	Palestine	July 2012 and October 2012	410	48.0	Hypertension	58.4 (10.7)	8
van der Linde et al. 2017 (60)	Netherlands	January 2006 to December 2014	101	77.2	Midshaft clavicular fractures	44.5 (13.6)	7
Larsen et al. 2015 (61)	Denmark	Autumn 2013 to spring 2014	48	77.1	Femoral shaft fracture	38.0 (19.4)	6
Kim et al. 2018 (62)	Korea	August 2014 to February 2017	59	11.9	Osteoporotic vertebral compression fracture	73.5 (8.5)	6
Chevreul et al. 2016 (63)	France	September 2012 to May 2013	38	45.0	Prader–Willi syndrome	17.4 (12.2)	4
López-Bastida et al. 2016 (64)	Spain	September 2011 to April 2013	26	-	Prader–Willi syndrome	13.7 (8.5)	5
Vaizey et al. 2014 (65)	UK	October 2011 to March 2012	100	55.0	Ulcerative colitis remission	47.5	5
Gibson et al. 2014 (66)	Australia	July to October 2011	94	47.4	Ulcerative colitis mild	48	
			42	40.5	Ulcerative colitis moderate/severe	40.5	
			29	47.4	Ulcerative colitis remission	47.8 (12.7)	5
			52	47.4	Ulcerative colitis moderate/severe	47.8 (12.7)	
Yfantopoulos et al. 2017 (67)	Greece	December 2012 to March 2013	396	60.1	Psoriasis	52.0 (16.5)	5
Zhao et al. 2017 (68)	China	May 2014 to February 2015	350	69.7	Psoriasis	39	7
Choi et al. 2018 (69)	Korea	January to December 2017	105	76.0	Ankylosing spondylitis	39	5
Chiovchanwisawaki et al. 2019 (70)	Thailand	May 2012 to March 2016	119	61.3	Ankylosing spondylitis	40.4 (11.6)	5
Alvarado-Bolaños et al. 2015 (71)	Mexico	-	585	54.4	Parkinson's disease	62.9 (12.3)	4
García-Gordillo et al. 2014 (72)	Spain	May 1 to July 15, 2012	133	71.4	Parkinson's disease	64.3 (9.7)	6
Lee et al. 2015 (73)	South Korea	July to December 2013	625	32.5	Overactive bladder	63.5 (12.0)	6
Lloyd et al. 2017 (74)	UK	2014	249	54.6	Idiopathic overactive bladder	57.3/58.1	6
Nordenfelt et al. 2017 (75)	Sweden	May and October 2016	64	40.6	Hereditary angioedema	51	6
Nordenfelt et al. 2014 (76)	Sweden	June 2011	103	47.6	Hereditary angioedema	41/44	4
Whitehurst et al. 2016 (77)	Canada	March to June 2013	364	62.9	Spinal cord injury	50.4 (13.2)	8
Engel et al. 2018 (78)	Canada	March to June 2013	364	62.9	Spinal cord injury	50.4 (13.2)	3
Buckner et al. 2017 (79)	USA	September to November 2015	299	71.0	Hemophilia B	29	5
Kempston et al. 2018 (80)	USA	October 2013 to October 2014	381	100.0	Hemophilia	34	7
Arraras et al. 2018 (81)	Spain	May 2015 to June 2016	61	66.0	Schizophrenia and schizoaffective disorder	37.9 (10.5)	7

(Continued)
Author year, Country/region	Survey time	Sample size	Male (%)	Diseases	Age (SD)	AHQR scores
Kitic et al. 2018 (81) Serbia	-	153	54.9	Schizophrenia	50.8 (10.1)	4
Tennvall et al. 2015 (82) Denmark	May to June in 2012	312	51.9	Actinic keratosis	71 (11.0)	7
Gray et al. 2018 (83) Australia, Canada, Germany, Norway, the United Kingdom, and the United States	2012	852	37.7	Asthma	43.0 (15.0)	4
Hernandez et al. 2018 (84) French	-	222	38.7	Asthma	30.3 (6.7)	8
Wong et al. 2018 (85) UK	March 2014 to January 2017	990	19.7	Autoimmune hepatitis	58	7
Cook et al. 2019 (86) Canada, Germany, UK, and USA	-	166	49.4	Non-alcoholic steatohepatitis	52.0 (11.8)	5
van Dongen-Leunis et al. 2016 (87) Netherlands	2012	111	52.3	Acute leukemia	51.0 (13.4)	6
Hendriksz et al. 2014 (88) Brazil, Colombia, Germany, Spain, Turkey, UK	June 2012 to April 2013	25	-	Morquio A syndrome adults	<18	5
Andersson et al. 2016 (89) France, Germany, Spain, USA	February to May 2013	1,104	59.1	Nocturia	65.1	8
Mealy et al. 2019 (90) USA	October 6, 2014	21	90.5	Neuromyelitis optica spectrum disorder	42.8 (10.6)	5
Nikphorou et al. 2018 (91) Multinational	-	3,370	66.0	Spondyloarthritis	42.9 (13.7)	5
Van Assche et al. 2016 (92) 11 European countries	-	250	58.8	Ulcerative colitis	46.6 (16.3)	6
Mijnarends et al. 2016 (93) Dutch	May 2013 to February 2014	53	52.8	Sarcopenia	80.4 (7.1)	7
Tran et al. 2018 (94) Vietnam	September to November 2017	223	51.1	Dengue fever	31.6 (12.4)	7
Chevreul et al. 2015 (95) France	September 2012 to May 2013	82	42.7	Cystic fibrosis	28.6 (8.1)	5
Collado-Mateo et al. 2017 (96) Spain	October 2014 to October 2015	192	0.0	Fibromyalgia	53.8 (10.0)	5
Chevreul et al. 2015 (97) France	September 2012 to May 2013	95	87.4	Fragile X syndrome	19.4 (13.1)	5
Juul-Kristensen et al. 2017 (98) Denmark	January to June 2015	300	24.3	Generalized joint hypermobility	48	6
Bewick et al. 2018 (99) UK	January 2013 to January 2014	52	51.0	Rhinosinusitis	55	6
Forestier-Zhang et al. 2016 (100) UK	September 2014 to March 2016	43	23.0	Osteogenesis imperfecta	40.4 (14.4)	6
Katchamart et al. 2019 (101) Thailand	September 2016 to March 2018	464	31.0	Fibrous dysplasia	44.3 (14.5)	5
Román Ivorra et al. 2019 (102) Spain	October 2015 to March 2016	190	14.9	X-Linked hypophosphatemia	46.3 (16.3)	5
Aguirre et al. 2016 (103) UK	-	272	39.0	Dementia	82.6 (8.1)	5

(Continued)
The meta-analytic utility estimate of multiple sclerosis patients was 0.56 (95% CI = 0.47–0.66, heterogeneity $I^2 = 99\%$, $P < 0.01$) using the random-effect model, and it was 0.67 (95% CI = 0.66–0.68) using the fixed-effect model (Figure 2C).

Cardiovascular Disease

For cardiovascular disease patients, the health utility values ranged from 0.56 to 0.85 in eight studies (26, 40–46). The lowest value was derived from the Chinese value set (45), while the study with the highest value did not report the value set used (40). In the study with the highest utility value (40), all patients were evaluated 4 years after cardiac arrest, and the proportion of men was 80%. In the study with the lowest value, the patients had atrial fibrillation; 43% of them were men, and 23% had diabetes mellitus (45). Berg et al. (41) compared utility values among nine subgroups of patients with different cardiovascular diseases. Among these subgroups, heart transplant patients had the highest value, which was 0.82, while arrhythmia patients had the lowest value, which was 0.70. The EQ-5D VAS scores ranged from 61.4 to 77.8 in six studies (26, 40–44). Anxiety/depression and pain/discomfort were the dimensions with the most reported problems among cardiovascular disease patients.

The pooled utility value of cardiovascular disease patients was 0.77 (95% CI = 0.75–0.79, heterogeneity $I^2 = 99\%$, $P < 0.01$) using the random-effect model, and it was 0.76 (95% CI = 0.75–0.76) using the fixed-effect model (Figure 2D).

COPD

For patients with COPD, the health utility values ranged from 0.68 to 0.79 in four studies (47–50). The crosswalk US value set and UK standard EQ-5D-5L value set were used in the studies that reported the highest utility value (49) and the lowest value (50), respectively. The mean age of COPD patients in the study reporting the lowest utility was 70.4 years, and the mean predicted forced expiratory volume in 1 s (FEV1) was 49.8% (50). Meanwhile, the patients in the study with the highest value had a younger mean age (68.5 years old) and a better predicted FEV1 (49). The EQ-5D VAS scores ranged from 60.5 to 70.6 in four studies (47–50). Mobility was the dimension with the most problems affecting the HRQoL of COPD patients based on EQ-5D-5L. In addition, as the predicted FEV1 decreased, the health utility value in COPD patients decreased.

The synthesized utility value of COPD patients was 0.75 (95% CI = 0.71–0.80, heterogeneity $I^2 = 96\%$, $P < 0.01$) using the random-effect model, and it was 0.76 (95% CI = 0.75–0.77) using the fixed-effect model (Figure 2E).

HIV Infection

The health utility values of patients infected with HIV ranged from 0.65 to 0.90 in four studies (51–54), and both extreme values were derived with a crosswalk value set [Thailand (53) and Spain (54)]. The study (54) with the highest utility value involved patients in relatively good condition and without any comorbidities, while the study (53), with the lowest value focused...
Diseases	Health Utility	VAS scores	Have any problem in 5 dimensions (%)	Administration
Diabetes mellitus				
Natasya et al. 2018 (14)	Diabetes mellitus (type 2)	0.74 0.23	Indonesia 65.5 16.0	-
Sothornwit et al. 2018 (15)	Diabetes mellitus	0.80 0.25	Thailand 44.4 16.6	-
Pan et al. 2018 (18)	Diabetes without diabetic retinopathy	0.99 0.05	China 7.1 1.1	-
Diabetes with unilateral retinopathy	0.97 0.08	China	12.5 5.4	-
Diabetes with bilateral retinopathy	0.97 0.15	China	7.8 3.9	-
Lamu et al. 2018 (19)	Diabetes mellitus	0.79 0.22	England 72.6 10.5	-
Diabetes mellitus	0.74 0.26	Dutch	37.0 12.0	-
Diabetes mellitus	0.76 0.21	Spain	66.0 20.0	-
Diabetes mellitus	0.78 0.19	Canada	61.1 20.5	-
Diabetes mellitus	0.88 0.14	Uruguay	63.7 19.2	-
Diabetes mellitus	0.76 0.25	China	60.4 19.2	-
Diabetes mellitus	0.77 0.19	Japan	60.4 19.2	-
Diabetes mellitus	0.78 0.17	Korea	60.4 19.2	-
Adibe et al. 2018 (20)	Diabetes mellitus (type 2)	0.72 0.13	- 72.6 10.5	-
Arifn et al. 2019 (21)	Diabetes mellitus (type 2)	0.77 -	Indonesia 37.0 12.0	-
Schmitt et al. 2018 (22)	Diabetes mellitus	0.80 0.20	Crosswalk (Germany) 66.0 20.0	-
Collado et al. 2015 (23)	Diabetes mellitus	0.74 0.32	Crosswalk (Spain) 61.1 20.5	-
Khatib et al. 2018 (24)	Diabetes mellitus (type 2)	0.31 -	Crosswalk (UK) 50.9 22.4	-
Zyoud et al. 2015 (25)	Diabetes mellitus (type 2)	0.70 0.20	- 63.7 19.2	-
Xu et al. 2017 (26)	Diabetes mellitus	0.84 0.23	Hong Kong	-
Pan et al. 2016 (27)	Diabetes mellitus (type 2)	0.88 0.14	Crosswalk (China)	-
Neoplasms				
Huang et al. 2018 (28)	Colorectal cancer	0.62 0.37	China 46.3 49.0	-
Gavin et al. 2016 (29)	Prostate cancer late stage (RoI)	0.80 -	Crosswalk (UK)	-
Prostate cancer late stage (NI)	0.70 -	Crosswalk (UK)	-	
Prostate cancer early stage (RoI)	0.90 -	Crosswalk (UK)	-	
Prostate cancer early stage (NI)	0.80 -	Crosswalk (UK)	-	
Lloyd et al. 2015 (30)	Prostate cancer asymptomatic/mildly symptomatic	0.83 0.13	Crosswalk 77.5 12.6	-
Diseases	Health Utility	VAS scores	Have any problem in 5 dimensions (%)	Administration
--	---	---------------------	---------------------------------------	----------------
Prostate cancer currently receiving chemotherapy	0.69 (±0.22) Crosswalk-Delta1	67.4 (±14.3)	-	Self-administered
Prostate cancer symptomatic before chemotherapy	0.63 (±0.17) Crosswalk-Delta1	56.2 (±16.7)	-	Self-administered
Prostate cancer post chemotherapy	0.70 (±0.18) Crosswalk-Delta1	66.0 (±17.9)	-	Self-administered
Basal cell carcinoma	0.87* (±) Dutch	-	-	-
Squamous cell carcinoma	0.84 (±) Dutch	-	-	-
Squamous cell carcinoma	0.82 (±0.18)	76.0 (±19.0)	-	-
Diffuse tenosynovial giant cell tumor	0.72 (±) Crosswalk-US	-	-	Self-administered
Localized tenosynovial giant cell tumor	0.76 (±) Crosswalk-US	-	-	Self-administered
Cancer	0.84 (±0.22) Hong Kong	-	-	Telephone survey
Relapse-onset multiple sclerosis	0.73 (±0.22)	-	-	Self-administered
Progressive-onset multiple sclerosis	0.54 (±0.27)	-	-	Self-administered
Multiple sclerosis	0.31 (±0.51) Crosswalk-Delta1	73.9 (±23.4)	72.9 (±60.3)	Face-to-face
Multiple sclerosis	0.59 (±0.33) Crosswalk-Delta1	65.0 (±22.4)	70.1 (±36.2)	Face-to-face
Multiple sclerosis	0.59 (±0.29) Crosswalk-Delta1	63.3 (±21.7)	-	Self-administered
Multiple sclerosis	0.68 (±0.19)	58.3 (±27.0)	-	Self-administered
Multiple sclerosis	0.78 (±) Crosswalk-Delta1	78.0 (±)	-	Face-to-face
Cardiac arrest	0.85 (±)	70.6 (±)	-	Self-completed
Ischemic heart disease	0.76 (±0.16) Crosswalk-Delta1	68.6 (±19.7)	-	Self-administered
Arrhythmia	0.70 (±0.16) Crosswalk-Delta1	72.2 (±19.6)	-	Self-administered
Heart failure	0.73 (±0.16) Crosswalk-Delta1	61.4 (±19.5)	-	Self-administered
Congenital heart disease	0.77 (±0.16) Crosswalk-Delta1	69.9 (±19.7)	-	Self-administered
Infectious heart disease	0.73 (±0.16) Crosswalk-Delta1	68.4 (±19.6)	-	Self-administered
Heart valve disease	0.74 (±0.16) Crosswalk-Delta1	66.1 (±19.7)	-	Self-administered
Heart transplant	0.82 (±0.16) Crosswalk-Delta1	76.0 (±19.6)	-	Self-administered
Other diagnoses of heart disease	0.73 (±0.16) Crosswalk-Delta1	65.3 (±19.5)	-	Self-administered
Observation for heart disease	0.76 (±0.16) Crosswalk-Delta1	70.5 (±19.6)	-	Self-administered

(Continued)
TABLE 2 | Continued

Diseases	Health Utility	VAS scores	Have any problem in 5 dimensions (%)	Administration									
	Mean	SD	Value set	Mean	SD	MO	SC	UA	PA	AD			
Squire et al. 2017 (42) Heart failure	0.60	0.25	UK	63.0	20.0	-	-	-	-	Self-administered			
Merono et al. 2017 (43) Iron deficiency in acute coronary syndrome	0.76	0.25	-	66.0	16.0	52.0	20.0	49.0	50.0	61.0	Self-administered		
Acute coronary syndrome non-iron deficiency	0.84	0.16	-	72.0	17.0	29.0	12.0	33.0	49.0	52.0	Self-administered		
Tran et al. 2018 (44) Cardiovascular disease	0.82	0.21	Crosswalk	77.8	13.6	24.8	19.8	22.7	38.8	35.2	Face-to-face		
Wang et al. 2018 (45) Atrial fibrillation	0.56	-	China	-	-	-	-	-	-	-	Face-to-face		
Xu et al. 2017 (26) Heart disease	0.84	0.24	Hong Kong	-	-	-	-	-	-	-	-	Telephone survey	
De Smedt et al. 2016 (46) Stable coronary disease	0.78	0.20	Crosswalk	67.1	21.4	-	-	-	-	-	-	-	
COPD	0.74	0.31	Crosswalk	60.5	21.9	45.4	22.2	37.5	57.1	34.9	Face-to-face		
Garcia-Gordillo et al. 2017 (47) COPD	0.74	0.31	Crosswalk	60.5	21.9	45.4	22.2	37.5	57.1	34.9	Face-to-face		
Igarashi et al. 2018 (48) COPD age ≥ 65 years	0.77	0.18	Japan	69.2	18.7	56.3	26.5	46.7	37.7	35.1	Self-administered		
COPD age < 65 years	0.79	0.22	Japan	70.5	23.8	43.7	23.9	43.7	30.0	38.6	Self-administered		
Lin et al. 2014 (49) COPD	0.79	0.15	Crosswalk	70.6	19.6	63.6	19.5	54.8	61.9	36.3	-		
Nolan et al. 2016 (50) COPD	0.68	0.24	UK	61.0	20.6	-	-	-	-	-	-		
HIV infection													
Keaei et al. 2016 (51) HIV/AIDS	0.85	0.21	Crosswalk	84.4	14.3	18.8	8.7	15.9	38.4	40.6	Face-to-face		
Dang et al. 2018 (52) HIV-positive	0.80	0.20	-	68.8	17.3	20.5	9.7	16.6	37.7	44.9	Face-to-face		
Tran et al. 2012 (53) HIV	0.65	-	Crosswalk	70.3	-	45.1	20.2	35.4	58.2	72.5	Face-to-face		
Van Duin et al. 2017 (54) HIV with comorbidities	0.84	0.22	Crosswalk	84.4	16.1	-	-	-	-	-	Face-to-face		
HIV without comorbidities	0.90	0.19	Crosswalk	88.6	10.4	-	-	-	-	-	Face-to-face		
Chronic kidney disease													
Yang et al. 2015 (55) End-stage renal disease	0.68	0.36	Crosswalk	-	-	-	-	-	-	-	Face-to-face		
Hiragi et al. 2019 (56) Chronic kidney disease (TRC)	0.89	0.15	Japan	-	-	-	-	-	-	-	Face-to-face		
Chronic kidney disease (TR)	0.85	0.18	Japan	-	-	-	-	-	-	-	Face-to-face		
Zyoud et al. 2016 (57) End-stage renal disease	0.37	0.44	Crosswalk	59.4	45.4	27.3	54.7	37.5	25.5	35.2	Face-to-face		
Hypertension													
Al-Jabi et al. 2015 (58) Hypertension	0.80	0.16	Crosswalk	74.1	15.6	-	-	-	-	-	Face-to-face		
Xu et al. 2017 (26) Hypertension	0.85	0.22	Hong Kong	-	-	-	-	-	-	-	Telephone survey		

(Continued)
Diseases	Health Utility	VAS scores	Have any problem in 5 dimensions (%)	Administration						
	Mean	SD	Value set³	Mean	SD	MO	SC	UA	PA	AD
Fractures										
Van der Linde et al. 2017	0.88	0.14	-	77.2	26.8	-	-	-	-	-
(55) Midshaft clavicular fractures										
Larsen et al. 2015 (60)	0.80	-	Crosswalk (Denmark)	80.3	-	-	-	-	-	-
Femoral shaft fracture										
Kim et al. 2018 (61)	0.56	0.24	-	-	-	-	-	-	-	-
Osteoporotic vertebral compression fracture										
Prader–Willi syndrome										
Chevreul et al. 2016 (62)	0.44	0.33	Crosswalk⁵	59.5	17.7	-	-	-	-	-
Prader–Willi syndrome (UK)	0.48	0.22	-	56.9	19.7	-	-	-	-	-
Prader–Willi syndrome (Sweden)	0.63	0.10	-	51.3	10.3	-	-	-	-	-
Prader–Willi syndrome (Spain)	0.60	0.78	-	62.6	20.5	-	-	-	-	-
Prader–Willi syndrome (Italy)	0.40	0.29	-	56.2	19.7	-	-	-	-	-
Prader–Willi syndrome (Germany)	0.81	0.14	-	60.7	26.4	-	-	-	-	-
Prader–Willi syndrome (France)	0.41	0.34	-	56.5	17.7	-	-	-	-	-
Ulcerative colitis										
Vaizey et al. 2014 (64)	0.86	0.15	Crosswalk⁵	-	-	-	-	-	-	-
Ulcerative colitis remission										
Gibson et al. 2014 (65)	0.81	0.18	-	-	-	-	-	-	-	-
Ulcerative colitis remission										
Vaizey et al. 2014 (64)	0.66	0.24	Crosswalk⁵	-	-	-	-	-	-	-
Ulcerative colitis moderate/severe										
Gibson et al. 2014 (65)	0.68	0.19	-	-	-	-	-	-	-	-
Ulcerative colitis moderate/severe										
Vaizey et al. 2014 (64)	0.77	0.11	Crosswalk⁵	-	-	-	-	-	-	-
Ulcerative colitis mild										
Gibson et al. 2014 (65)	0.78	0.18	-	-	-	-	-	-	-	-
Psoriasis										
Yiantopoulos et al. 2017 (66)	0.74	0.23	Crosswalk⁵	74.7	18.1	18.4	9.8	15.7	33.6	78.0
Psoriasis										
Zhao et al. 2017 (67)	0.90	0.10	China	72.7	15.7	-	-	-	-	-
Psoriasis										
Psoriasis	0.86	0.10	Japan	72.7	15.7	-	-	-	-	-
Psoriasis	0.90	0.09	UK	72.7	15.7	-	-	-	-	-
Ankylosing spondylitis										
Choi et al. 2018 (65)	0.69[*]	-	Japan	-	-	-	-	-	-	-
Ankylosing spondylitis										
Chiowchanwisawakit et al. 2019 (69)	0.75	0.20	Thailand	68.8	18.8	77.3	37.0	68.9	93.3	54.6
Ankylosing spondylitis										
Actinic keratitis										
Tennvall et al. 2015 (82)	0.88	0.14	Crosswalk (Denmark)	79.3	18.9	21.0	7.0	18.0	39.0	22.0
Actinic keratitis										
Philipp-Dormston et al. 2018 (81)	0.89[*]	-	Dutch	-	-	-	-	-	-	-
TABLE 2 | Continued

Diseases	Health Utility	VAS scores	Have any problem in 5 dimensions (%)	Administration
	Mean SD Value set[※]	Mean SD MO SC UA PA AD		
		(US) (Spain) (UK) (US) (Spain)		
Parkinson's disease				
Alvarado-Bolaños et al. 2015	Parkinson's disease 0.71 0.20	73.8 18.7		Self-administered
Garcia-Gordillo et al. 2014	Parkinson's disease 0.59 0.26	57.6 19.7 75.9 60.2 75.9 75.9 66.2	-	Self-administered
Overactive bladder	Lee et al. 2015 0.79 0.20	- 73.8 18.7 - - - - - - - Self-administered		
	Lloyd et al. 2017 0.73 0.26	68.2 21.6 - - - - - - - - - - - Face-to-face		
Hereditary angioedema	Nordenfelt et al. 2017 0.84	- - - - - - - - - - - - - - - Self-administered		
	Nordenfelt et al. 2014 0.83	- - - - - - - - - - - - - - - Self-administered		
Spinal cord injury	Whitehurst et al. 2016 0.49	- - 97.0 67.0 80.0 93.0 57.0 47.0	- - - - - - - - - - - - - Self-administered	
	Engel et al. 2018 0.49	- - 97.0 67.0 80.0 93.0 57.0 47.0	- - - - - - - - - - - - - Self-administered	
Schizophrenia	Arraras et al. 2018 0.80	- - - - - - - - - - - - - - - Self-administered		
	Kittic et al. 2018 0.86	- - - - - - - - - - - - - - - Self-administered		
Hemophilia	Buckner et al. 2017 0.67	- - 54.4 50.0 13.8 - - - - - - - Self-administered		
	Kempston et al. 2018 0.77	- - 65.6 61.4 18.9 53.2 76.1 43.4	- - - - - - - - - - - - - Self-administered	
Asthma	Gray et al. 2018 0.84	- - 54.4 61.4 18.9 53.2 76.1 43.4	- - - - - - - - - - - - - Self-administered	
	Hernandez et al. 2018 0.83	- - 77.3 76.1 76.1 76.1 76.1 76.1	- - - - - - - - - - - - - Self-administered	
Hepatitis	Wong et al. 2018 0.89*	- - 80.0 54.4 54.4 54.4 54.4 54.4	- - - - - - - - - - - - - Self-administered	
	Cook et al. 2019 0.81	- - 67.2 18.9 18.9 18.9 18.9 18.9	- - - - - - - - - - - - - Self-administered	
Other diseases	van Dongen-Leunis et al. 2016	- - 54.4 54.4 54.4 54.4 54.4 54.4	- - - - - - - - - - - - - Self-administered	
	Acute leukemia 0.81 0.22	- - 67.2 18.9 18.9 18.9 18.9 18.9	- - - - - - - - - - - - - Self-administered	
	Acute leukemia 0.85 0.18	- - 67.2 18.9 18.9 18.9 18.9 18.9	- - - - - - - - - - - - - Self-administered	
	Hendriksz et al. 2014 0.66	- - 54.4 54.4 54.4 54.4 54.4 54.4	- - - - - - - - - - - - - Self-administered	

(Continued)
Diseases	Health Utility	VAS scores	Have any problem in 5 dimensions (%)	Administration	
	Mean SD Value set	Mean SD MO SC UA PA AD			
MAS use wheelchair when needed	0.58 - -	- - - - - - - - - - -	- - - - - - - - - - -	Self-administered	
(adult)					
MAS don’t need wheelchair (children)	0.63 - -	- - - - - - - - - - -	- - - - - - - - - - -	Self-administered	
MAS don’t need wheelchair (adult)	0.85 - -	- - - - - - - - - - -	- - - - - - - - - - -	Self-administered	
MAS always use wheelchair (children)	-1.18 - -	- - - - - - - - - - -	- - - - - - - - - - -	Self-administered	
MAS use wheelchair (adult)	0.06 - -	- - - - - - - - - - -	- - - - - - - - - - -	Self-administered	
Andersson et al. 2016 (89)					
Nocturia	0.78 - UK	- - - - - - - - - - -	- - - - - - - - - - -	Self-administered	
Mealey et al. 2019 (90)					
Neuromyelitis optica spectrum disorder	0.74 0.16 Crosswalk	- -	66.7 33.3 61.9 76.2 71.4	Face-to-face.	
Nikiphorou et al. 2018 (91)					
Spondyloarthritis	0.60 0.30	- - - - - - - - - - -	- - - - - - - - - - -	-	
van Assche et al. 2016 (92)					
Ulcerative colitis	0.77 0.19	- - 70.5 19.1	- - - - - - - - - - -	-	
Mijarends et al. 2016 (93)					
Sarcopenia	0.78 0.19 Crosswalk	72.0 16.0	- - - - - - - - - - -	Face-to-face	
Tran et al. 2018 (94)					
Dengue fever	0.66 0.24 Crosswalk	-	62.3 71.8 64.6 32.3 64.1	Face-to-face	
Chevreul et al. 2015 (95)					
Cystic fibrosis	0.67 0.25 Crosswalk	66.6 20.0	- - - - - - - - - - -	Self-administered	
Collado-Mateo et al. 2017 (96)					
Fibromyalgia	0.49 0.26 Crosswalk	-	- - - - - - - - - - -	Face-to-face	
Chevreul et al. 2015 (97)					
Fragile X syndrome	0.49 0.24 Crosswalk	70.0	- - - - - - - - - - -	Self-administered	
Juul-Kristensen et al. 2017 (98)					
Generalized joint hypermobility	0.82* -	Crosswalk	81.0	- - - - - - - - - - -	Self-administered
Bewick et al. 2018 (99)					
Rhinosinusitis	0.75 0.23 UK	73.4 30.8 9.6 39.5 67.3 42.3	Face-to-face		
Forestier-Zhang et al. 2016 (100)					
Fibrous dysplasia	0.66 0.29 UK	64.1 57.0 38.0 67.0 98.0 62.0	Self-administered		
X-linked hypophosphatemia	0.65 0.29 UK	60.8 87.0 50.0 75.0 92.0 58.0	Self-administered		
Osteogenesis imperfecta	0.66 0.28 UK	69.4 81.0 39.0 65.0 93.0 60.0	Self-administered		
Katchamart et al. 2019 (101)					
Rheumatoid arthritis	0.87 0.13	-	79.4 17.0 51.5 16.8 35.3 70.5 38.8	-	
Román Ivoral et al. 2019 (102)					
Systemic lupus erythematosus	0.74 0.25	-	65.7 23.5	- - - - - - - - - - -	Face-to-face
Aguirre et al. 2016 (103)					
Dementia	0.78 0.23	-	64.1 20.5	- - - - - - - - - - -	-
Wong et al. 2017 (104)					
Adolescent idiopathic scoliosis	0.93 0.11 Crosswalk	-	- - - - - - - - - - -	Self-administered	
Christensen et al. 2016 (105)					
Opioid-induced constipation	0.59 0.27	-	60.7 22.6	- - - - - - - - - - -	Self-administered
Vo et al. 2018 (106)					
Migraine	0.68 - -	- - - - - - - - - - -	- - - - - - - - - - -	Self-administered	
Voormolen et al. 2019 (107)					
Post-concussion syndrome	0.81 0.23 Dutch	74.7 19.6	- - - - - - - - - - -	Self-administered	
Lim et al. 2017 (108)					
Stoma	0.80 0.16 Crosswalk	76.0 8.7	- - - - - - - - - - -	-	
Villoro et al. 2016 (109)					
Chronic depression	0.74 0.28 Spain	-	30.1 13.3 28.6 57.4 73.5	Face-to-face	

(Continued)
The pooled utility value of patients infected with HIV was 0.84 (95% CI = 0.80–0.88, heterogeneity $I^2 = 83\%$, $P < 0.01$) using the random-effect model, and it was 0.81 (95% CI = 0.80–0.82) using the fixed-effect model (Figure 2F).

Chronic Kidney Disease

For chronic kidney disease patients, the health utility values ranged from 0.37 to 0.89 in three studies (55–57). The Japan value set and crosswalk UK value set were used to calculate the highest utility value (56) and the lowest value (57), respectively. The mean age of chronic kidney disease patients in the study reporting the highest value was 49.8 years old, and all of them had received kidney transplants (56), while those in the study reporting the lowest value were 59.4 years old, and 33.7% of them had been on dialysis for 4 years or longer (57). One study (57) reported that the EQ-5D VAS score was 59.4. Among the five dimensions, self-care was the dimension with the most reported problems among chronic kidney disease patients. The meta-analytic utility estimate of chronic kidney disease was 0.70 (95% CI = 0.48–0.92, heterogeneity $I^2 = 99\%$, $P < 0.01$) using the random-effect model, and it was 0.76 (95% CI = 0.74–0.78) using the fixed-effect model (Figure 2G).

Fracture

The health utility values of patients with fractures ranged from 0.56 to 0.88 in the three studies (59–61). However, neither of the studies that reported the maximum and minimum values described the value sets used (59, 61). The patients in the study reporting the highest value (59) had midshaft clavicular fractures and a much younger mean age (44.5 vs. 73.5 years old) than the osteoporotic vertebral compression fracture patients in the study reporting the lowest value (61). Two studies reported EQ-5D VAS scores of 80.3 (60) and 77.2 (59). No information was available for the dimensions that contributed the most to the HRQoL of fracture patients.

Other Diseases

For Prader–Willi syndrome, hypertension, ulcerative colitis, ankylosing spondylitis, psoriasis, actinic keratosis, Parkinson’s disease, overactive bladder, hereditary angioedema, spinal cord injury, schizophrenia, hemophilia, asthma, and hepatitis, only two studies reported the health utility values for patients with each disease. For the remaining 29 diseases (87–113), the HRQoL and utility values were only reported by one study each. Patients with adolescent idiopathic scoliosis had the highest utility value of 0.93 (104), while children with Morquio A syndrome, who must use wheelchairs, had the lowest value of −0.18 (88).

Furthermore, two studies compared utility values calculated with different country-specific value sets in the same sample (67, 87). For patients with psoriasis living in central South China (67), value sets for Japan, China, and the UK were used separately on patients who had symptomatic HIV infections. The EQ-5D VAS scores ranged from 68.8 to 88.6 in four studies (51–54). The decrease in utility in HIV-infected patients was mainly due to problems related to the anxiety/depression dimension of the EQ-5D-5L.
FIGURE 2 | Continued
FIGURE 2 (A) Forest plot of the health utility of patients with diabetes mellitus. (B) Forest plot of the health utility of patients with neoplasms. (C) Forest plot of the health utility of patients with multiple sclerosis. (D) Forest plot of the health utility of patients with cardiovascular diseases. (E) Forest plot of the health utility of patients with chronic obstructive pulmonary disease. (F) Forest plot of the health utility of patients with human immunodeficiency virus infection. (G) Forest plot of the health utility of patients with chronic kidney disease.
to obtain the EQ-5D-5L utility values, and the results were 0.86, 0.90, and 0.90, respectively. van Dongen-Leunis et al. (87) used two EQ-5D-5L country-specific value sets to calculate the health utility of acute leukemia patients, and the value derived from the Dutch value set (0.81) was lower than that derived from the UK value set (0.85). The rest of the studies all used a single value set. Compared with other dimensions, pain/discomfort was the dimension with the most problems reported by patients in most of the studies.

DISCUSSION

In this study, we reviewed the health utility values in patients with different diseases according to the EQ-5D-5L in cross-sectional surveys. We found that the EQ-5D-5L has been widely applied in populations with specific diseases, including various chronic non-communicable diseases, such as diabetes mellitus, neoplasms, multiple sclerosis, and cardiovascular disease, and infectious diseases, such as HIV and Dengue fever. The health utility values for a specific disease measured by the EQ-5D-5L differed based on patient characteristics, survey location, the use of country-specific value sets, and other factors. Meta-analyses were performed to synthesized utility data of any specific disease reported in three or more studies.

Health utility measures the preference of people for a given health state and reflects their status with regard to quality of life (1). Sex is one of the factors that affect health utilities (47). There are differences in the perception of health status between males and females, and in most of the included studies that reported sex-specific utilities, men had better HRQoL as measured by the EQ-5D-5L than women. For instance, the utility value was 0.80 for men with COPD and 0.69 for women with COPD, and the proportion of men who reported having problems on all five dimensions was lower than the proportion of women (47). In addition, health utility values decreased as the age of patients increased due to the deterioration of physical function and reduced disease tolerance. Among patients with COPD, for example, the utility value for patients under 65 years of age (0.77) was lower than that for patients who were 65 years old and older (0.79) (48).

In general, the severity of disease is reflected by the magnitude of the health utility value. The variation in values measured by EQ-5D-5L for the same disease under different conditions reflects its discriminative ability. As the disease progresses, the utility value decreases. Alvarado-Bolaños et al. (70) used Hoehn and Yahr staging to categorize Parkinson's disease patients into groups with mild, moderate, and severe disease, and the utility values were 0.77, 0.65, and 0.47, respectively. In addition, the number of comorbidities and the different types of comorbidities substantially affect the HRQoL of patients. Patients who have comorbidities usually report a lower utility value than those without comorbidities. Van Duin et al. (54) reported that the utility value was 0.90 in patients with HIV infections who did not have any comorbidities; however, it was reduced to 0.84 when patients had comorbid diseases. In Al-Jabi's study (58), for hypertension patients with one, two, and three or more comorbidities, the utility values were 0.81, 0.73, and 0.66, respectively.

Various living environments result in different lifestyles, which may influence HRQoL and health utility. Zyoud et al. (57) reported that among patients with end-stage renal disease in Palestine, those living in villages had a higher mean utility value than those living in cities (0.44 vs. 0.29). In another study (44), among patients with cardiovascular disease, the utility value was a little bit higher for those living in urban Vietnam than those in rural areas (0.82 vs. 0.81).

To calculate health utility, the target patients’ responses to the EQ-5D-5L and a country-specific value set are needed. The health preferences of patients living in different countries are affected by their social environment, living standards, and health system. Therefore, the EQ-5D-5L value sets based on residents' preferences for health states vary across countries or regions. Different results can be observed in the same sample when various country value sets are used to calculate health utility values. In the same sample of patients with acute leukemia, van Dongen-Leunis et al. (87) reported that the value obtained with the Dutch value set was higher than that obtained with the UK value set. In countries where the EQ-5D-5L utility value set has been estimated, it is more appropriate to use the local value set. Before any standard country-specific EQ-5D-5L value set was published, the crosswalk method developed by van Hout et al. (13) in 2012 was an alternative means of calculating health utility measured by EQ-5D-5L. For cost-utility analyses performed in England, the NICE recommends the use of the crosswalk method to obtain EQ-5D-5L utility values and calculate quality-adjusted life-years (QALYs) because there are some concerns about the current standard value set published by Devlin et al. (114). In this review, a crosswalk value set was used in half of the studies to calculate utility values due to the lack of a local standard EQ-5D-5L value set when the survey was conducted. Therefore, the crosswalk value set is still important for researchers to calculate health utility.

The heterogeneity of health utility derived from different studies for any specific disease is significant. Although, this may lead to some issues of the direct comparison among these studies, the trend of variation and the influence factors of health utility can be observed. In addition, to perform CUA, different sources of health utilities are needed to be identified and applied in the model (1). The summarization and review of health utility for different diseases are helpful and useful.

There are some limitations of this study. Among the 50 different diseases analyzed in this review, nearly half of them were only discussed in one study each. The included studies were limited to those published in English. In addition, some of the studies did not describe the value set used. This review focused on health utility measured by the EQ-5D-5L in cross-sectional studies, and the comparison of different utility-based instruments (i.e., SF-6D, HUI) in populations with specific diseases needs further exploration.

A deeper understanding of the HRQoL and health utility of patients with different diseases facilitates the provision of a more appropriate range of services for disease management and treatment. In addition, health utility is used for HRQoL weighting when calculating QALYs. QALY is used as the outcome measure in CUA and plays an important role in health technology assessments (12). The summarization of health utility...
reviewed the title/abstract independently. TZ and LW performed the original study review. TZ, HG, and YZ extracted and analyzed the data from included studies. TZ and MR assessed the methodological quality with AHRQ checklist. TZ and YZ contributed to the writing of the manuscript. All the authors approved the final version of this systematic review.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpubh.2021.675523/full#supplementary-material

REFERENCES

1. Brazier J, Ara R, Azzabi I, Busschbach J, Chevrou-Sévérac H, Crawford B, et al. Identification, review, and use of health state utilities in cost-effectiveness models: an ISPOR good practices for outcomes research task force report. Value Health. (2019) 22:267–75. doi: 10.1016/j.jval.2019.01.004

2. Rabin R, de Charro F. EQ-5D: a measure of health status from the EuroQol Group. Ann Med. (2001) 33:337–43. doi: 10.3109/0785390109002087

3. Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health from the SF-36. J Health Econ. (2002) 21:271–92. doi: 10.1016/S0167-6296(01)00130-8

4. Horsman J, Furlong W, Feeny D, Torrance G. The Health Utilities Index (HUI): concepts, measurement properties and applications. Health Qual Life Outcomes. (2003) 1:54. doi: 10.1186/1477-7525-1-54

5. Ara R, Wailoo A. Using health state utility values in models exploring the cost-effectiveness of health technologies. Value Health. (2012) 15:971–74. doi: 10.1016/j.jval.2012.05.003

6. Wolowicz SE, Briggs A, Belotzeroff V, Clarke P, Doward L, Goeree R, et al. Estimating health-state utility for economic models in clinical studies: an ISPOR good research practices task force report. Value Health. (2016) 19:704–19. doi: 10.1016/j.jval.2016.06.001

7. Wisloff T, Hagen G, Hamidi V, Movik E, Klemp M, Olsen JA. Estimating QALY gains in applied studies: a review of cost-utility analyses published in 2010. Pharmacoeconomics. (2012) 34:367–75. doi: 10.1007/s40273-014-0136-z

8. Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. (2011) 20:1727–36. doi: 10.1007/s11136-011-9903-x

9. Kam SH, Kim HJ, Lee SI, Jo MW. Comparing the psychometric properties of the EQ-5D-3L and EQ-5D-5L in cancer patients in Korea. Qual Life Res. (2012) 21:1065–73. doi: 10.1007/s11136-011-0018-1

10. Scalone L, Ciampichini R, Fagiuoli S, Gardini I, Fusco F, Gaeta L, et al. Comparing the performance of the standard EQ-5D-3L with the new version EQ-5D-5L in patients with chronic hepatic diseases. Qual Life Res. (2013) 22:1707–6. doi: 10.1007/s11136-012-0318-0

11. EuroQol Research Foundation. EQ-5D-5L User Guide. (2019). Available online at: https://euroqol.org/publications/user-guides (accessed January 01, 2021).

12. EuroQol Group. EQ-5D-5L Valuation: Standard Value Sets. Available online at: https://euroqol.org/eq-5d-instruments/eq-5d-5l-about/valuation-standard-value-sets/ (accessed January 03, 2021).

13. van Hout B, Janssen MF, Feng YS, Kohlmann T, Busschbach J, Golicik D, et al. Interim scoring for the EQ-5D-5L: mapping the EQ-5D-5L to EQ-5D-3L value sets. Value Health. (2012) 15:708–15. doi: 10.1016/j.jval.2012.02.008

14. Natasya A, Andrajati R, Sauriasari R. Cross-sectional study of association between glycemic control and quality of life among diabetic patients. Int J Pharmaceut. (2018) 10:92–6. doi: 10.22159/ijp.2018.v10i1.19

15. Sothornwit J, Sriscawasd G, Suwannakin A, Siwiwitkanom A. Decreased health-related quality of life in patients with diabetic foot problems. Diabetes Metab Syndr Obes. (2018) 11:35–43. doi: 10.2147/DMSO.S154304

16. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. (2009) 6:e1000097. doi: 10.1371/journal.pmed.1000097

17. AHRQ. Methods guide for effectiveness and comparative effectiveness reviews. In: Methods Guide for Effectiveness and Comparative Effectiveness Reviews. (2008). Available online at: https://effectivehealthcare.ahrq.gov/products/cer-methods-guide/overview/ (accessed February 02, 2021).

18. Pan CW, Wang S, Wang P, Xu CL, Song E. Diabetic retinopathy and health-related quality of life among Chinese with known type 2 diabetes mellitus. Qual Life Res. (2018) 27:2087–93. doi: 10.1007/s11136-018-1876-6

19. Lamu AN, Chen G, Gams-Klaussen T, Olsen JA. Do country-specific preference weights matter in the choice of mapping algorithms? The case of mapping the Diabetes-39 onto eight country-specific EQ-5D-5L value sets. Qual Life Res. (2018) 27:1801–14. doi: 10.1007/s11136-018-1840-5

20. Adibe MO, Asonike C, Ndoka SO, Isah A. Evaluation of health status of type 2 diabetes outpatients receiving care in a tertiary hospital in Nigeria. Pharmacoecon Open. (2018) 2:337–45. doi: 10.1016/j.s1669-017-0056-x

21. Arifin B, Idrus LR, van Asselt ADI, Purba FD, Perwitasari DA, Thobari JA, et al. Health-related quality of life in Indonesian type 2 diabetes mellitus outpatients measured with the Bahasa version of EQ-5D. Qual Life Res. (2019) 28:1179–90. doi: 10.1007/s11136-019-02105-z

22. Schmitt A, Reimer A, Kulzer B, Icks A, Paust R, Roever KM, et al. Measurement of psychological adjustment to diabetes with the diabetes acceptance scale. J Diabetes Complications. (2018) 32:384–92. doi: 10.1016/j.jdiacomp.2018.01.005

23. Collado Mateo D, Garcia Gordillo MA, Oliveras PR, Aduan JI. Normal values of EQ-5D-5L for diabetes patients from Spain. Nutr Hosp. (2015) 32:1595–602. doi: 10.3305/nh.2015.32.4.9605

24. Khatib ST, Hemadneh MK, Hasen MK, Khazneh E, Zyoud SH. Quality of life in hemodialysis diabetic patients: a multicenter cross-sectional study from Palestine. BMC Nephrol. (2018) 19:49. doi: 10.1186/s12882-018-0849-x

25. Zyoud SH, Al-Jabi SW, Sweileh WM, Arandi DA, Dabeek SA, Esawi HH, et al. Relationship of treatment satisfaction to health-related quality of life among Palestinian patients with type 2 diabetes mellitus: findings from a cross-sectional study. J Clin Transl Endocrinol. (2015) 2:66–71. doi: 10.1016/j.jcte.2015.03.002

26. Xu RH, Cheung AWL, Wong ELY. The relationship between shared decision-making and health-related quality of life among patients in Hong Kong SAR, China. Int J Qual Health Care. (2017) 29:534–40. doi: 10.1093/intqhc/mzx067

27. Pan CW, Sun HP, Zhou HJ, Ma Q, Xu Y, Luo N, et al. Valuing health-related quality of life in type 2 diabetes patients in China. Med Decis Making. (2016) 36:234–41. doi: 10.1177/0272989X15606903
Economic burden and health-related quality of life associated with Prader-Willi syndrome in France. *J Intellect Disabil Res.* (2016) 60:879–90. doi: 10.1111/jidr.12288

López-Bastida J, Linerová R, Oliva-Moreno J, Posada-de-la-Paz M, Serrano-Aguilar P, Kanavos P, et al. Social/economic costs and health-related quality of life in patients with Prader-Willi syndrome in Europe. *Eur J Health Econ.* (2017) 17(Suppl 1):99–108. doi: 10.1007/s10061-016-0788-z

Vaizey CJ, Gibson PR, Black CM, Nicholls RJ, Weston AR, Gaya DR, et al. Disease status, patient quality of life and healthcare utilisation cost for ulcerative colitis in the UK: an observational study. *Frontline Gastroenterol.* (2014) 5:183–9. doi: 10.1113/fgastro-2013-100409

Gibson PR, Vaizey C, Black CM, Nicholls R, Weston AR, Bampton P, et al. Relationship between disease severity and quality of life and assessment of health care utilization and cost for ulcerative colitis in Australia: a cross-sectional, observational study. *J Crohns Colitis.* (2014) 8:598–606. doi: 10.1016/j.crohns.2013.11.017

Yantopoulos J, Chantzaras A, Kontodimas S. Assessment of the psychometric properties of the EQ-5D-3L and EQ-5D-5L instruments in psoriasis. *Arch Dermatol Res.* (2017) 309:357–70. doi: 10.1007/s00403-017-1743-2

Zhao Y, Li SP, Liu L, Zhang JL, Chen G. Does the choice of tariff matter?: a comparison of EQ-5D-3L utility scores using Chinese, UK, and Japanese tariffs on patients with psoriasis vulgaris in Central South China. *Medicine.* (2017) 96:e7840. doi: 10.1097/MD.0000000000007840

Choi JH, Lee SH, Kim HR, Lee KA. Association of neuropsychiatric-like pain characteristics with clinical and radiographic features in patients with ankylosing spondylitis. *Clin Rheumatol.* (2018) 37:3077–86. doi: 10.1007/s10067-018-1425-x

Chiochwanisawikpat P, Thawerarthathkul P, Wattanamongkolisal L, Sirinonprasert V, Koolvisoot A, Muangchan C, et al. Relationship between health-related quality of life and patient acceptable symptom state with disease activity and functional status in patients with ankylosing spondylitis in Thailand. *J Clin Rheumatol.* (2019) 25:16–23. doi: 10.1097/RHU.0000000000000750

Alvarado-Bolaños A, Cervantes-Arriaga A, Rodriguez-Violante M, Llorens-Arenas R, Calderón-Fajardo H, Millán-Cepeda R, et al. Convergent validation of EQ-5D-5L in patients with Parkinson’s disease. *J Neurol Sci.* (2015) 358:53–7. doi: 10.1016/j.jns.2015.08.010

García-Gordillo M, del Pozo-Cruz B, Adsuar JC, Sánchez-Martínez FI, García-Gómez-Gómez S, García-Gómez-Gómez S, et al. Convergent validation of EQ-5D-5L and EQ-5D-3L instruments in a Spanish Parkinson’s disease population sample. *Qual Life Res.* (2014) 23:1315–26. doi: 10.1007/s11136-013-1056-9

Lee KS, Choo MS, Seo JT, Oh SJ, Kim HG, Ng K, et al. Impact of overactive bladder on quality of life and resource use: results from Korean Burrden of disease and patient-reported outcomes in patients with Morquio A syndrome: results from an international patient-reported outcomes survey. *Health Qual Life Outcomes.* (2015) 13:89. doi: 10.1186/s12955-015-0295-4

van Dongen-Leunis A, Redekop WK, Uyl-de Groot CA. Which questionnaire should be used to measure quality-of-life in patients with acute leukaemia? An evaluation of the validity and interpretability of the EQ-5D-5L and preference-based questionnaires derived from the EORTC QLQ-C30. *Value Health.* (2016) 19:834–43. doi: 10.1016/j.jval.2016.05.008

Abellán-Perpiñán JM. Validation and comparison of 15-D and EQ-5D-5L for patients with moderate to severe ulcerative colitis in the last 12 months - a MultiCenter European cohort study. *Dig Liver Dis.* (2016) 48:592–600. doi: 10.1016/j.dld.2016.01.011

Mijnarends DM, Schols JMGA, Halfens RJG, Meijers J, Luiking YC, Verlaan MT, et al. Burden of disease and patient-reported outcomes in patients with moderate to severe ulcerative colitis in the last 12 months - a MultiCenter European cohort study. *Dig Liver Dis.* (2016) 48:592–600. doi: 10.1016/j.dld.2016.01.011

Mijnarends DM, Schols JMGA, Halfens RJG, Meijers J, Luiking YC, Verlaan MT, et al. Burden of disease and patient-reported outcomes in patients with moderate to severe ulcerative colitis in the last 12 months - a MultiCenter European cohort study. *Dig Liver Dis.* (2016) 48:592–600. doi: 10.1016/j.dld.2016.01.011

Mijnarends DM, Schols JMGA, Halfens RJG, Meijers J, Luiking YC, Verlaan MT, et al. Burden of disease and patient-reported outcomes in patients with moderate to severe ulcerative colitis in the last 12 months - a MultiCenter European cohort study. *Dig Liver Dis.* (2016) 48:592–600. doi: 10.1016/j.dld.2016.01.011

Mijnarends DM, Schols JMGA, Halfens RJG, Meijers J, Luiking YC, Verlaan MT, et al. Burden of disease and patient-reported outcomes in patients with moderate to severe ulcerative colitis in the last 12 months - a MultiCenter European cohort study. *Dig Liver Dis.* (2016) 48:592–600. doi: 10.1016/j.dld.2016.01.011

Mijnarends DM, Schols JMGA, Halfens RJG, Meijers J, Luiking YC, Verlaan MT, et al. Burden of disease and patient-reported outcomes in patients with moderate to severe ulcerative colitis in the last 12 months - a MultiCenter European cohort study. *Dig Liver Dis.* (2016) 48:592–600. doi: 10.1016/j.dld.2016.01.011

Mijnarends DM, Schols JMGA, Halfens RJG, Meijers J, Luiking YC, Verlaan MT, et al. Burden of disease and patient-reported outcomes in patients with moderate to severe ulcerative colitis in the last 12 months - a MultiCenter European cohort study. *Dig Liver Dis.* (2016) 48:592–600. doi: 10.1016/j.dld.2016.01.011

Mijnarends DM, Schols JMGA, Halfens RJG, Meijers J, Luiking YC, Verlaan MT, et al. Burden of disease and patient-reported outcomes in patients with moderate to severe ulcerative colitis in the last 12 months - a MultiCenter European cohort study. *Dig Liver Dis.* (2016) 48:592–600. doi: 10.1016/j.dld.2016.01.011
of patients in the dengue fever outbreak in Hanoi in 2017. *Int J Environ Res Public Health.* (2018) 15:1174. doi: 10.3390/ijerph15061174

95. Chevreul K, Berg Brigham K, Michel M, Rault G, BURQOL-RD Research Network. Costs and health-related quality of life of patients with cystic fibrosis and their carers in France. *J Cyst Fibros.* (2015) 14:384–91. doi: 10.1016/j.jcf.2014.11.006

96. Collado-Mateo D, Chen G, García-Gordillo MA, Izzi A, Aduan JC, Olayvaes PR, et al. Fibromyalgia and quality of life: mapping the revised fibromyalgia impact questionnaire to the preference-based instruments. *Health Qual Life Outcomes.* (2017) 15:114. doi: 10.1186/s12955-017-0690-0

97. Chevreul K, Berg Brigham K, Brunn M, des Portes V, BURQOL-RD Research Network. Fragile X syndrome: economic burden and health-related quality of life of patients and caregivers in France. *J Intellige Disabil Res.* (2015) 59:1108–20. doi: 10.1111/jir.12215

98. Juel-Kristensen B, Østengaard L, Hansen S, Boyle E, Junge T, Hestbaek L. Generalised joint hypermobility and shoulder joint hypermobility, - risk of upper body musculoskeletal symptoms and reduced quality of life in the general population. *BMC Musculoskelet Disord.* (2017) 18:226. doi: 10.1186/s12891-017-1595-0

99. Bewick J, Morris S, Hopkins C, Erskine S, Philpott CM. Health utility in patients with adolescent idiopathic scoliosis. *PLoS ONE.* (2016) 11:e015437. doi: 10.1371/journal.pone.015437

100. Forestier-Zhang L, Watts L, Turner A, Teare H, Kaye J, Barrett J, et al. Mapping the SRS-22r questionnaire onto the EQ-5D-5L utility score in patients with adolescent idiopathic scoliosis. *Brain Inj.* (2019) 33:1073–86. doi: 10.1080/02699052.2019.1607557

101. Lim SH, He HG, Chan SWC. Psychometric properties of the Chinese version of the acceptance of Chronic Health Conditions (Stoma) Scale for patients with stoma. *Cancer Nurs.* (2017) 40:E42–9. doi: 10.1097/NCC.0000000000000441

102. Villoro R, Merino M, Hidalgo-Vega A. Quality of life and use of health care resources among patients with chronic depression. *Patient Relat Outcome Meas.* (2016) 7:145–55. doi: 10.2147/PROM.S101595

103. Vermaire JH, van Houtem CM, Ross JN, Schuller AA. The burden of disease at dementia: generic and disease-specific quality of life in patients with and without extreme levels of dementia. *Eur J Oral Sci.* (2016) 124:454–58. doi: 10.1111/eos.12290

104. Lane TRA, Varatharajan L, Fiorentino F, Shepherd AC, Zimmo L, Gehel MS, et al. Truncal varicose vein diameter and patient-reported outcome measures. *Br J Surg.* (2016) 104:1648–55. doi: 10.1002/bjs.10598

105. Rencz F, Lakatos PL, Gulácsi L, Brodzusy V, Kürzi Z, Lovas S, et al. Validity of the EQ-5D-3L and EQ-5D-3L in patients with Crohn’s disease. *Qual Life Res.* (2019) 28:141–52. doi: 10.1007/s11136-018-2003-4

106. Chevreul K, Brigham KB, Gandré C, Mouthon L, BURQOL-RD Research Network. The economic burden and health-related quality of life associated with systemic sclerosis in France. *Scand J Rheumatol.* (2015) 44:38–46. doi: 10.3109/03009742.2014.976653

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhou, Guan, Wang, Zhang, Rai and Ma. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.