Bipartite theory of irredundant set

V. SWAMINATHAN
S. N. COLLEGE, INDIA

and

Y. B. VENKATAKRISHNAN
SASTRA UNIVERSITY, INDIA

Received : June 2010. Accepted : December 2010

Abstract

The bipartite version of irredundant set, edge-vertex irredundant set and vertex-edge irredundant set are introduced. Using the bipartite theory of graph, \(IR_{ve}(G) + \gamma(G) \leq |V| \) and \(\gamma_{ve}(G) + IR(G) \leq |V| \) are proved.

AMS classification : 05C69

Keywords : Bipartite graph, \(X \)-irredundant set, Hyper \(Y \)-irredundant set, edge-vertex and vertex-edge irredundant sets.
1. Introduction

All graphs considered here are simple and undirected. [4,5] suggests that given any problem, say P, on an arbitrary graph \(G \), there is very likely a corresponding problem Q on a bipartite graph \(G' \), such that a solution for Q provides a solution for P. The bipartite theory of graphs was introduced in [4] and a parameter called \(X \)-domination number of a bipartite graph was defined. Let \(G = (X, Y, E) \) be a bipartite graph with \(|X| = p \) and \(|Y| = q \). Two vertices \(u \) and \(v \) in \(X \) are \(X \)-adjacent if they have a common adjacent vertex \(y \in Y \). Let \(y \in X \) and \(\Delta_Y = \max\{|N_Y(u) : y \in X\} \) where the \(X \)-neighbor set \(N_Y(u) \) is defined as \(N_Y(u) = \{v \in X : u \text{ and } v \text{ are } X \text{-adjacent}\} \).

A subset \(X \subseteq X \) is an \(X \)-dominating set [4] if every \(x \in X - D \) is \(X \)-adjacent to some vertex in \(D \). The minimum cardinality of a \(X \)-dominating set is called \(X \)-domination number and is denoted by \(\gamma_X(G) \).

We say a vertex \(x \in X \) hyper \(Y \)-dominates \(y \in Y \) if \(y \in N(x) \) or \(y \in N(N_Y(x)) \). A subset \(S \subseteq X \) is a hyper \(Y \)-dominating set [6] if every \(y \in Y \) is hyper \(Y \)-dominated by a vertex of \(S \). The minimum cardinality of a hyper \(Y \)-dominating set is called hyper \(Y \)-domination number and is denoted as \(\gamma_{hY}(G) \).

Given an arbitrary graph \(G = (V, E) \), a vertex \(u \in V(G) \) ve-dominates an edge \(vw \in E(G) \) if (a) \(u = v \) or \(u = w \) (\(u \) incident to \(vw \)) or (b) \(uv \) or \(uw \) is an edge in \(G \). A subset \(S \subseteq V(G) \) is a vertex-edge dominating set [3] if for all edges \(e \in E(G) \), there exists a vertex \(v \in S \) such that \(v \) dominates \(e \). The minimum cardinality of a ve-dominating set of \(G \) is called the vertex-edge domination number and is denoted as \(\gamma_{ve}(G) \).

An edge \(e = uv \in E(G) \) ev-dominates a vertex \(w \in V(G) \) if (i) \(u = w \) or \(v = w \) (\(w \) is incident to \(e \)) or (ii) \(uw \) or \(vw \) is an edge in \(G \). \((w \) is adjacent to \(u \) or \(v \)). A set \(S \subseteq E(G) \) is an edge-vertex dominating set [3] if for all vertices \(v \in V(G) \), there exists an edge \(e \in S \) such that \(e \) dominates \(v \). The minimum cardinality of a ev-dominating set of \(G \) is called the edge-vertex domination number and is denoted as \(\gamma_{ev}(G) \).

Observation: 1. Let \(G \) be an arbitrary graph. A vertex \(u \in V(G) \) ve-dominates the edge \(e \in E(G) \) if and only if the edge \(e \) ev-dominates the vertex \(u \in V(G) \).
2. Bipartite Construction

The bipartite graph $VE(G)$ constructed from an arbitrary graph $G = (V, E)$ is defined as in [4]. $VE(G) = (V, E, F)$ is defined by the edges $F = \{(u, e) : e = (u, v) \in E\}$. $VE(G) \cong S(G)$, where $S(G)$ denotes the subdivision graph of G.

The bipartite graph $EV(G)$ [4] constructed from an arbitrary graph $G = (V, E)$ is defined as $EV(G) = (E, V, J)$ where $J = \{(e, u)(e, v) : e = (u, v) \in E\}$.

A set $S \subseteq V$ of vertices in a graph $G = (V, E)$ is called a dominating set [2] if every $v \in V$ is either an element of S or is adjacent to an element of S. The minimum cardinality of a dominating set of a graph G is called the domination number and is denoted by $\gamma(G)$.

A set $F \subseteq E(G)$ of edges in a graph $G = (V, E)$ is called an edge dominating set [2] if every $e \in E(G)$ is either an element of F or is adjacent to an element of $E - F$. The minimum cardinality of an edge dominating set of a graph G is called the edge domination number and is denoted by $\gamma_1(G)$.

Theorem 2.1 [4] For any graph G,
(a) $\gamma_X(VE(G)) = \gamma(G)$
(b) $\gamma_X(EV(G)) = \gamma_1(G)$.

Theorem 2.2 [6] For any graph G,
(a) $\gamma_{hY}(VE(G)) = \gamma_{ve}(G)$
(b) $\gamma_{hY}(EV(G)) = \gamma_{ev}(G)$.

3. Irredundant sets

3.1. Vertex-edge irredundant set

A vertex $v \in S \subseteq V(G)$ has a private edge $e = uw \in E(G)$ (with respect to a set S), if: 1. v is incident to e or v is adjacent to either u or w, and 2. for every vertices $x \in S - \{v\}$, x is not incident to e and x is not adjacent to either u or w.

A set S is a vertex-edge irredundant set [3] (simply a ve-irredundant set) if every vertex $v \in S$ has a private edge. The vertex-edge irredundance of a graph G is the cardinality of a maximal ve-irredundant set with minimum number of vertices and is denoted by $ir_{ve}(G)$. The upper vertex-edge irredundance number of a graph G is the cardinality of a maximum
A ve-irredundant set of vertices and is denoted by $IR_{ve}(G)$.

Theorem: 3.1.1 [3] Every minimal ve-dominating set is a maximal ve-irredundant set.

3.2. Edge-vertex irredundant set

An edge $e = uv \in F \subseteq E(G)$ has a private vertex $w \in V(G)$ (with respect to a set F), if: 1. e is incident to w, and 2. for all edges $f = xy \in F - \{e\}$, f is not incident to w and neither x nor y is adjacent to w.

A set F is an edge-vertex irredundant set [3] (simply a ev-irredundant set) if every edge $e \in F$ has a private vertex. The edge-vertex irredundance of a graph G is the cardinality of a maximal ev-irredundant set with minimum number of vertices and is denoted by $ir_{ev}(G)$. The upper edge-vertex irredundance number of a graph G is the cardinality of a maximum ev-irredundant set of vertices and is denoted by $IR_{ev}(G)$.

Theorem 3.2.1:[3] Every minimal ev-dominating set of G is a maximal ev-irredundant set.

3.3. Hyper Y− Irredundant set

Let $G = (X,Y,E)$ be a bipartite graph. Let $S \subseteq X$. A vertex $x \in S$ has a private hyper Y−neighbor $y \in Y$ if 1. x is adjacent to y or $y \in N(N_Y(x))$ and 2. for all vertices $x_1 \in S - \{x\}$, x_1 is not adjacent to y and $y \notin N(N_Y(x_1))$.

A set S is hyper Y−irredundant set if every $v \in S$ has a private hyper Y−neighbor. The hyper Y−irredundance number of a graph G is the minimum cardinality of a maximal hyper Y−irredundant set of vertices and is denoted by $ir_{HY}(G)$. The upper hyper Y−irredundance number of a graph G is the maximum cardinality of a maximal hyper Y−irredundant set of vertices and is denoted by $IR_{HY}(G)$.

Theorem: 3.3.1 A hyper Y−dominating set S is a minimal hyper Y−dominating set if and only if it is hyper Y−dominating set and hyper Y−irredundant set.
Proof: Let \(S \) be a hyper \(Y \)-dominating set. Then \(S \) is a minimal hyper \(Y \)-dominating set if and only if \(\forall u \in S, \exists y \in Y \) which is not hyper \(Y \)-dominated by \(S - \{u\} \). Equivalently, \(S \) is a minimal hyper \(Y \)-dominating set if and only if \(\forall u \in S, u \) has at least one private hyper \(Y \)-neighbour. Thus \(S \) is minimal hyper \(Y \)-dominating set if and only if it is hyper \(Y \)-irredundant set.

Conversely, let \(S \) be both hyper \(Y \)-dominating and hyper \(Y \)-irredundant.

Claim: \(S \) is a minimal hyper \(Y \)-dominating set.

If \(S \) is not minimal hyper \(Y \)-dominating set, there exists \(v \in S \) for which \(S - \{v\} \) is hyper \(Y \)-dominating. Since \(S \) is hyper \(Y \)-irredundant, \(v \) has a private hyper \(Y \)-neighbor of \(u \). By definition \(u \) is not hyper \(Y \)-adjacent to any vertex in \(S - \{v\} \). That is, \(S - \{v\} \) is not hyper \(Y \)-dominating set, a contradiction. Hence, \(S \) is a minimal hyper \(Y \)-dominating set.

Theorem: 3.3.2 Every minimal hyper \(Y \)-dominating set is a maximal hyper \(Y \)-irredundant set.

Proof: Every minimal hyper \(Y \)-dominating set \(S \) is hyper \(Y \)-irredundant set.

Claim: \(S \) is a maximal hyper \(Y \)-irredundant set.

Suppose \(S \) is not maximal hyper \(Y \)-irredundant set. Then there exists a vertex \(u \in X - S \) for which \(S \cup \{u\} \) is hyper \(Y \)-irredundant. There exists at least one vertex \(y \in Y \) which is a private hyper \(Y \)-neighbor of \(u \) with respect to \(S \cup \{u\} \). That is no vertex in \(S \) is hyper \(Y \)-adjacent to \(y \). Hence, \(S \) is not a hyper \(Y \)-dominating set, a contradiction. Hence, \(S \) is a maximal hyper \(Y \)-irredundant set.

Theorem: 3.3.3 For any graph \(G \),

\[
\text{ir}_{hY}(VE(G)) = \text{ir}_{ev}(G)
\]

\[
\text{ir}_{hY}(EV(G)) = \text{ir}_{ev}(G).
\]

Proof: Let \(S \) be a \(\text{ir}_{hY} \)-set of \(VE(G) = (X,Y,E) \). Every \(x \in S \) has a private hyper \(Y \)-neighbor \(y \in Y \). \(x \) is adjacent to \(y \) or \(y \in N(N_Y(x)) \) and for all vertices \(x_1 \in S - \{x\}, x_1 \) is not adjacent to \(y \) and \(y \notin N(N_Y(x_1)) \). In graph \(G \), \(x \in S \subseteq V \) is incident with \(y \in E \) or \(x \) is adjacent to either \(u \) or \(v \) where \(y = uv \) and for every \(x_1 \in S - \{x\}, y \in E \) is not incident with
x_1 and x_1 is not adjacent to either u or v. S is a vertex edge irredundant set.

$$ir_{ve}(G) \leq |S| = ir_{hY}(VE(G)),$$

Let U be a ir_{ve}-set of G. Every vertex $v \in S$ has a private edge $e = uw$ with respect to U. Equivalently, v is incident with e or v is adjacent to either u or w and for every $x \in U - \{v\}$, x is not incident with e and x is not adjacent to either u or w. In $VE(G)$, every $v \in S$ has private hyper $Y-$neighbor e. Therefore, $U \subseteq X$ is a hyper $Y-$irredundant set of $VE(G)$. Hence, $ir_{hY}(VE(G)) \leq |U| = ir_{ve}(G)$.

Similarly (b) can be proved.

3.4. X-Irredundant set

Let $G = (X,Y,E)$ be a bipartite graph. Let $S \subseteq X$. Let $u \in S$. A vertex v is a private X-neighbor of u with respect to S if u is the only point of S, X-adjacent to v.

A set S is X-irredundant set if every $u \in S$ has a private X-neighbor. The X-irredundance number of a graph G is the cardinality of a maximal X-irredundant set of vertices with minimum cardinality and is denoted by $ir_X(G)$. The upper X-irredundance number of a graph G is the cardinality of a X-irredundant set of vertices with maximum cardinality and is denoted by $IR_X(G)$.

Theorem 3.4.1 A X-dominating set S is a minimal X-dominating set if and only if it is X-dominating and X-irredundant.

Proof: Let S be a X-dominating set. Then S is a minimal X-dominating set if and only if for every $u \in S$ there exists $v \in X - (S - \{u\})$ which is not X-dominated by $S - \{u\}$. Equivalently, S is a minimal X-dominating set if and only if $\forall u \in S$, u has at least one private X-neighbor with respect to S. Thus S is minimal X-dominating set if and only if it is X-irredundant.

Conversely, Let S is both X-dominating and X-irredundant.

Claim: S is a minimal X-dominating set.

If S is not a minimal X-dominating set, then there exists $v \in S$ for which $S - \{v\}$ is X-dominating. Since S is X-irredundant, v has a private X-neighbor of with respect to S say u (u may be equal to v). By definition, u is not X-adjacent to any vertex in $S - \{v\}$. Therefore, $S - \{v\}$ is not a X-dominating set, a contradiction. Hence, S is a minimal X-dominating set.
Theorem: 3.4.2 Every minimal X-dominating set is a maximal X-irredundant set.

Proof: Every minimal X-dominating set S is X-irredundant.

Claim: S is a maximal X-irredundant set.

Suppose S is not a maximal X-irredundant set. Then there exists a vertex $u \in X - S$ for which $S \cup \{u\}$ is X-irredundant. Therefore, there exists at least one vertex x which is a private X-neighbor of u with respect to S. Hence, no vertex in S is X-adjacent to x. Thus S is not X-dominating set, a contradiction. Hence, S is maximal X-irredundant set.

A vertex v is a private neighbor of a vertex u in a set $S \subseteq V(G)$ with respect to S if $N[v] \cap S = \{u\}$. The private neighbor set of u is defined as $pn[u,S] = \{v : N[v] \cap S = \{u\}\}$. A set S is called irredundant set [2] if for every vertex $u \in S$, $pn[u,S] \neq \emptyset$. The irredundance number of a graph G is the cardinality of a maximal irredundant set with minimum number of vertices and is denoted by $ir(G)$. The upper irredundance number of a graph G is the cardinality of a maximum irredundant set of vertices and is denoted by $IR(G)$.

Theorem: 3.4.3 For any graph G,
(a) $ir_X(VE(G)) = ir(G)$
(b) $ir_X(EV(G)) = ir^1(G)$

Proof: Let S be a ir_X set of $VE(G) = (X,Y,E^1)$. Every v has a private X-neighbor u. Equivalently, v is X-adjacent to u and no other vertex in S is X-adjacent to u. In G, $v \in S$ is the only vertex adjacent to u and no other vertex in S is adjacent to u. Therefore, S is an irredundant set of G.

$ir(G) \leq |S| = ir_X(VE(G))$.

Let U be an $ir-$ set of G. For every vertex $v \in U$, $pn[v,U] \neq \emptyset$. Every vertex $v \in U$ has at least one private neighbor with respect to u. In $VE(G)$, that is every vertex $v \in U$ has at least one private X-neighbor. Therefore, U is an X-irredundant set. Hence, $ir_X(VE(G)) \leq |U| = ir(G)$. Hence, $ir_X(VE(G)) = ir(G)$.
(b) Let S be an ir_X set of $EV(G) = (X,Y,E^1)$. Every e has a private X-neighbor f. Equivalently, e is X-adjacent to f and no other vertex in S is X-adjacent to f. In G, $e \in S$ is the only edge adjacent to f and no other edge in S is adjacent to f. Therefore, S is an edge irredundant set of G. Hence, $ir^1(G) \leq |S| = ir_X(EV(G))$.

Let U be a ir^1- set of G. For every edge $e \in U$, $pn[e,U] \neq \phi$. Hence, every edge $e \in U$ has at least one private neighbor. That is, in $EV(G)$, every vertex $e \in U$ has at least one private X-neighbor. Therefore, U is an X-irredundant set in $EV(G)$. Thus, $ir_X(EV(G)) \leq |U| = ir^1(G)$. Hence, $ir_X(EV(G)) = ir^1(G)$.

4. Main Result

For any graph G, $IR_{rev}(G) + \gamma(G) \leq |V|$ and $\gamma_{rev}(G) + IR(G) \leq |V|$ are proved using bipartite theory of graphs, which are open problem in [3].

Theorem 4.1 Let $G = (X,Y,E)$ be a bipartite graph with $N_Y(x) \neq \phi$ for every $x \in X$. Then $IR_{hY}(G) + \gamma_X(G) \leq |X|$.

Proof: Let S be a IR_{hY} set of G. Then, S is a maximal hyper Y-irredundant set. Therefore, S is a hyper Y-irredundant set. That is every $x \in S$ has a private hyper Y-neighbor $y \in Y$. Then x is adjacent to y or $y \in N(N_Y(x))$ and for all vertices $x_1 \in S - \{x\}$, x_1 is not adjacent to y and $y \notin N(N_Y(x))$.

Case (i): x is adjacent with y.

Since $N_Y(v) \neq \phi$, x has X-neighbours. Let z be any X-neighbour of x. Suppose $z \in S$. Then z is not adjacent to y and $y \notin N(N_Y(z))$. But $y \in N(Y(x))$, since x is a X-neighbour of z, a contradiction. Therefore, any X-neighbour of x is in $X - S$.

Case (ii): $y \in N(N_Y(x))$.

Vertices in $N(y)$ are in $X - S$. Then $N(y) \subseteq X - S$. Other wise, we get a contradiction to $y \in Y$ is a private hyper Y-neighbour of $x \in S$. Hence, for every $x \in S$ there exists $x_1 \in X - S$ such that x and x_1 are X-adjacent. That is, $X - S$ is a X-dominating set. Therefore, $\gamma_X(G) \leq |X - S| = |X| - IR_{hY}(G)$. Hence, $IR_{hY}(G) + \gamma_X(G) \leq |X|$.
Corollary: 4.2 For any graph G,
(a) $IR_{ve}(G) + \gamma(G) \leq |V|$

(b) $IR_{ev}(G) + \gamma_1(G) \leq |E|.$

Theorem: 4.3 Let $G = (X, Y, E)$ be a bipartite graph with $N_Y(x) \neq \phi$ for every $x \in X$ then $IR_X(G) + \gamma_{hY}(G) \leq |X|.$

Proof: Let S be a IR_X set of G. Every element $x \in S$ has a private X-neighbor. Consider the set $X - S$. Since $X - S$ is a X-dominating set elements of Y are either adjacent to $X - S$ or adjacent to vertices which are X-adjacent to elements of $X - S$. Therefore, $X - S$ is a hyper Y-dominating set. Therefore, $\gamma_{hY} \leq |X - S| = |X| - IR_X$. Hence, $IR_X + \gamma_{hY} \leq |X|.$

Corollary: 4.4 For any graph G,
(a) $\gamma_{ve}(G) + IR(G) \leq |V|$

(b) $\gamma_{ev}(G) + IR^1(G) \leq |E|.$

Acknowledgement: We are thankful to the anonymous referee for helpful suggestions, which led to substantial improvement in the paper.

References

[1] Bondy J. A., Murthy U. S. R., Graph theory with applications, London Macmillan (1976).
[2] Haynes T. W., Hedetniemi. S. T. and Slater P. J., Fundamentals of Domination in graphs, Marcel Dekker, New York, (1998).
[3] Jason Robert Lewis, Vertex-edge and edge-vertex parameters in graphs, (Ph. D Thesis), Clemson University, August 2007.
[4] Stephen Hedetniemi, Renu Laskar, A Bipartite theory of graphs I, Congressus Numerantium, Volume 55; pp. 5–14, December 1986.
[5] Stephen Hedetniemi, Renu Laskar, A Bipartite theory of graphs II, Congressus Numerantium, Volume 64; pp. 137-146, November 1988.
[6] Swaminathan V. and Venkatakrishnan Y. B., *Hyper \(Y \)-domination in Bipartite graphs*, International Mathematical Forum, Volume 4, No. 20, pp. 953-958, (2009).

V. Swaminathan
Research Coordinator,
Ramanujan Research Centre,
S. N. College,
Madurai,
India
e-mail : sulanesri@yahoo.com

and

Y. B. Venkatakrishnan
Department of Mathematics,
SASTRA University,
Tanjore,
India
e-mail : venkataksh2@maths.sastra.edu