Weyl and Dirac semimetals with \mathbb{Z}_2 topological charge

Takahiro Morimoto1 and Akira Furusaki1,2

1Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
2RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, 351-0198, Japan

(Dated: April 1, 2014)

We study stability of gap-closing (Weyl or Dirac) points in the three-dimensional Brillouin zone of semimetals using Clifford algebras and their representation theory. We show that a pair of Weyl points with \mathbb{Z}_2 topological charge are stable in a semimetal with time-reversal and reflection symmetries when the square of the product of the two symmetry transformations equals minus identity. We present toy models of \mathbb{Z}_2 Weyl semimetals which have surface modes forming helical Fermi arcs. We also show that Dirac points with \mathbb{Z}_2 topological charge are stable in a semimetal with time-reversal, reflection, and SU(2) spin rotation symmetries when the square of the product of time-reversal and inversion equals plus identity. Furthermore, we briefly discuss topological stability of point nodes in superconductors using Clifford algebras.

I. INTRODUCTION

Weyl semimetals$^{1-10}$ are a three-dimensional (3D) analog of graphene, having gapless low-energy excitations of Weyl fermions. The low-energy effective Hamiltonian near a Weyl point has the form

$$H_0 = k_x \sigma_x + k_y \sigma_y + k_z \sigma_z,$$

where the Fermi velocity is set to unity and the wave number k is measured from the Weyl point. Since all three Pauli matrices $\sigma_\alpha (\alpha = x, y, z)$ are exhausted as the kinetic terms in the low-energy Hamiltonian, the Weyl fermions are massless and stable against perturbations. The stability of Weyl points has topological origin. For a fixed value of $k_z (\neq 0)$ at which the energy band structure is gapped, the Chern number $\nu(k_z)$ can be defined on the two-dimensional (2D) k_x-k_y plane. As k_z is varied, $\nu(k_z)$ remains constant as long as the gap is nonvanishing, and $\nu(k_z)$ can change only when the 2D k_x-k_y plane crosses a Weyl point. We can thus assign to each Weyl point an integer (\mathbb{Z}) topological charge which is equal to the change in $\nu(k_z)$ across the topological phase transition at the Weyl point. The well-defined topological charge makes Weyl points stable. A nontrivial value of the Chern number $\nu(k_z)$ also guarantees that there exist chiral surface states which form a Fermi arc connecting projections of two Weyl points with opposite charges on the surface Brillouin zone. However, the topological stability of Weyl points is lost when both time-reversal and inversion symmetries are present in the material, because the combination of the two symmetries constrains two Weyl points with opposite Chern numbers to merge, thereby making the total topological charge to vanish.1,3,6

A natural question we may ask is whether there are \mathbb{Z}_2 analogs of Weyl semimetals, in a similar way to the way we have 2D \mathbb{Z}_2 topological insulators11,12 as opposed to integer quantum Hall systems characterized by a Chern number.13 In this paper, we propose two kinds of \mathbb{Z}_2 semimetals which are topologically stable in the presence of time-reversal symmetry and additional spatial symmetry. First, we show that semimetals with a pair of Weyl points characterized by \mathbb{Z}_2 topological charge are stable in the presence of both time-reversal symmetry and (a kind of) reflection symmetry which we define later. In this semimetal, which we dub \mathbb{Z}_2 Weyl semimetal, we can define a \mathbb{Z}_2 topological number for any 2D cut of the Brillouin zone which is parallel to reflection plane and away from Weyl points. Helical edge modes exist on the 2D cut with a nontrivial \mathbb{Z}_2 topological number, and a 2D surface perpendicular to the reflection plane has helical Fermi arcs in the surface Brillouin zone. Second, we show that Dirac semimetals having stable Dirac points with \mathbb{Z}_2 topological charge are possible in materials with SU(2) spin rotation, time-reversal, and inversion symmetries. We shall call this class of semimetals \mathbb{Z}_2 Dirac semimetals. In Table I, we summarize topological charges of gap-closing points in semimetals under given symmetries. The type of topological charges depends on squares of symmetry operators, or equivalently commutation/anticommutation relations between symmetry operators. For example, \mathbb{Z}_2 Weyl semimetals with time-reversal and “reflection” symmetries are stabilized under reflection symmetry R_1 that squares to $+1$ and commutes with time-reversal symmetry T ($T^2 = -1$). Since natural reflection symmetry for spin-$\frac{1}{2}$ particles squares to -1 and commutes with T, the reflection symmetry required for \mathbb{Z}_2 Weyl semimetals is a special reflection symmetry, which corresponds to combination of natural reflection symmetry and π rotation in the spin space.

We note that \mathbb{Z}_2 Weyl/Dirac semimetals are different from Dirac semimetals in which Dirac points located at high symmetry points in the Brillouin zone are protected by crystalline symmetries$^{14-17}$ and which are recently reported$^{18-20}$ to be realized in Cd$_3$As$_2$ and Na$_3$Bi. In contrast to these Dirac semimetals with nontrivial crystalline symmetries, \mathbb{Z}_2 Weyl (Dirac) semimetals that we propose in this paper have Weyl (Dirac) points with \mathbb{Z}_2 topological charge which are stabilized by the interplay of time-reversal symmetry and reflection (inversion) symmetry.

The plan of this paper is as follows. In Sec. II we introduce \mathbb{Z}_2 Weyl semimetals under both time-reversal and reflection symmetries. We present several toy mod-
TABLE I. Topological charges that are assigned to gap-closing points in the three-dimensional Brillouin zone under various symmetry constraints. We assume that the gap closing does not take place at time-reversal invariant momenta. As the symmetries that semimetals have, we consider time-reversal symmetry T, reflection symmetry R, and inversion symmetry P. In cases where there are multiple symmetries, the type of topological charge depends on the sign of squares of the combined symmetry operator. The reflection R that gives $(TR)^2 = -1$ actually means combination of reflection and π rotation in spin space for spin-$\frac{1}{2}$ electrons. The case where $(TP)^2 = +1$ can be realized in semimetals with time-reversal, inversion, and SU(2) spin rotation symmetries; see Sec. IID.

Symmetries	Charges
no symmetry	\mathbb{Z}
T	\mathbb{Z}
P	\mathbb{Z}
T and R: $(TR)^2 = +1$	0
T and R: $(TR)^2 = -1$	\mathbb{Z}_2
T and P: $(TP)^2 = -1$	0
T and P: $(TP)^2 = +1$	\mathbb{Z}_2

Bloch Hamiltonian satisfy the relations

$$TH(-k_x, -k_y, -k_z)T^{-1} = H(k_x, k_y, k_z), \quad (2a)$$
$$R_zH(k_x, k_y, -k_z)R_z^{-1} = H(k_x, k_y, k_z). \quad (2b)$$

Suppose that a Weyl point is located at $k = (k_0^x, k_0^y, 0)$, which is neither a high-symmetry point nor a time-reversal invariant momentum. The time-reversal and reflection symmetries imply that there are three other associated Weyl points: $k = (-k_0^x, -k_0^y, 0)$, $(k_0^x, 0, -k_0^z)$, and $(-k_0^x, 0, k_0^z)$. Operations of T and R_z are not closed at a single Weyl point, but couple Weyl points (valleys). Incidentally, if two Weyl points $(k_0^x, 0, k_0^z)$ and $(-k_0^x, 0, k_0^z)$ happen to be identical modulo reciprocal lattice vectors, then the pair of Weyl points are combined to form a Dirac point. We will consider such a case in the next section.

Let us assume that the low-energy effective Hamiltonian have translation symmetry and vanishing inter-valley coupling.\(^{1,23}\) For the low-energy Hamiltonian of a pair of Weyl points (or a single Dirac point) on the $k_z = k_0^z$ plane, T and R_z are not symmetry operations, but the product R_zT is. We thus define the combined symmetry operator

$$\overline{T} = R_zT, \quad (3)$$

which is an antiunitary operator satisfying

$$\overline{T}H(-k_x, -k_y, k_z)\overline{T}^{-1} = H(k_x, k_y, k_z). \quad (4)$$

The \overline{T} operator relates a pair of Weyl points at, e.g., $k = (k_0^x, 0, k_0^z)$ and $(-k_0^x, 0, k_0^z)$.

We now assume that

$$\overline{T}^2 = -1. \quad (5)$$

As we show below, Eq. (5) is the essential condition for the existence of \mathbb{Z}_2 Weyl semimetals. Some comments on reflection (mirror) symmetry are in order here. For materials with spin-orbit coupling, time-reversal transformation takes the form $T = i\sigma_yK$, where K is complex conjugation operator. Reflection with respect to a mirror plane ($z = 0$, say) involves π rotation of spin and is given by $R = i\sigma_z$, which leads to $T^2 = +1$. However, we can consider cases when we can define reflection without the π spin rotation, which will realize $T^2 = -1$. Some model Hamiltonians with $T^2 = -1$ will be discussed in the next section.

For each fixed value of k_z, Eqs. (4) and (5) imply that $H(k_x, k_y, k_z)$ can be regarded as a Hamiltonian that is invariant under \overline{T} in the 2D Brillouin zone (k_x, k_y). This means that H is effectively a 2D Hamiltonian of class AII in the Altland-Zirnbauer classification of free-fermion Hamiltonians.\(^{24}\) Consequently, for any 2D plane of fixed k_z on which $H(k_x, k_y, k_z)$ is gapped, we can define the \mathbb{Z}_2 topological index $\nu_2(k_z)$, in the same way as in the Z_2-valued Weyl semimetals and show their energy spectra.

In Sec. III we study stability of Weyl/Dirac points for various cases. We show that a pair of Weyl points are stable and have \mathbb{Z}_2 topological charge under both time-reversal and reflection symmetries. We further show that a Dirac point with \mathbb{Z}_2 topological charge is stabilized under SU(2) spin, time-reversal, and inversion symmetries. The stability of point nodes with \mathbb{Z}_2 topological charge is also discussed. We study the stability of these gap-closing points by examining whether the low-energy Dirac Hamiltonian can admit a Dirac mass term under given symmetry constraints. This task is accomplished by making use of Clifford algebras and their representation theory.\(^{21,22}\) In Appendix we explain the basic idea of this approach and its application to Dirac Hamiltonians in all the ten Altland-Zirnbauer symmetry classes.

II. \mathbb{Z}_2 WEYL SEMIMETALS

A. Time-reversal and reflection symmetries

In this section we discuss Weyl semimetals with both time-reversal symmetry and reflection symmetry. Time-reversal symmetry is represented by an anti-unitary operator, while reflection symmetry is represented by a unitary operator R_z with a mirror plane perpendicular to the z direction. Under these symmetries, three-dimensional
2D \(\mathbb{Z}_2 \) topological insulators:\[12,25\]

\[
(-1)^{\nu_2(k_z)} = \prod_{(k_x, k_y)\in \text{TRIM}_2} \frac{\text{Pf}[w(k_x, k_y; k_z)]}{\text{det}[w(k_x, k_y; k_z)]}
\]

with

\[
\psi_{ij}(k_x, k_y; k_z) = \langle \psi_i(-k_x, -k_y, k_z)|\mathbf{T}|\psi_j(k_x, k_y, k_z)\rangle,
\]

where TRIM\(_2\) denotes momenta which are invariant under the action of time-reversal transformation on the 2D plane of constant \(k_z \), and \(|\psi_i(k_x, k_y, k_z)\rangle \) is a wave function of the ith valence band defined smoothly over the whole plane of \((k_x, k_y) \). The \(\mathbb{Z}_2 \) topological index \(\nu_2(k_z) \) can change only when \(k_z \) is on the plane containing a pair of Weyl points. We then assign a \(\mathbb{Z}_2 \) topological charge, which is equal to this change in \(\nu_2(k_z) \), to the pair of Weyl points. Suppose that a \(k_x-k_y \) plane between two pairs of Weyl points has \(\nu_2(k_z) = 1 \), as shown in Fig. 1. In this case the surface Brillouin zone \((k_y, k_z) \) of a (100) surface has a pair of Fermi arcs (helical Fermi arcs) coming from helical surface states whose existence is guaranteed by \(\nu_2(k_z) = 1 \), as schematically shown in Fig. 1. The helical Fermi arcs connect Weyl points projected onto the surface Brillouin zone.

These features clearly indicate that \(\mathbb{Z}_2 \) Weyl semimetals are time-reversal invariant \(\mathbb{Z}_2 \) versions of conventional Weyl semimetals in which Weyl points have integer topological charges and a Fermi arc is formed by chiral surface states.

Finally, we emphasize that the topological stability of a pair of Weyl points on a 2D plane of constant \(k_z \) come from the assumed conditions of the \(R_z T \) symmetry, Eqs. (4) and (5). In fact, two Weyl points forming a \(T \)-invariant pair in a \(\mathbb{Z}_2 \) Weyl semimetal are a source and a drain of Berry curvature and can be assigned integer topological charges of opposite signs. Since a pair of Weyl points are charge neutral as a whole, they can merge and pair-annihilate in general. However, with the conditions in Eqs. (4) and (5), a \(\mathbb{Z}_2 \) topological charge is given to a pair of Weyl points as a whole, which prohibits pair-annihilation even when they merge at a TRIM\(_2\).

B. Examples

In this section we present four tight-binding models of \(\mathbb{Z}_2 \) Weyl semimetals. In these models the condition of Eq. (5) is implemented by \(T = R_z T \) with

\[
T^2 = -1, \quad R_z^2 = 1, \quad [T, R_z] = 0.
\]

In all the following models we set Fermi velocity to be 1.

The first example is a 3D variant of the Bernevig-Hughes-Zhang (BHZ) model and is given by the Bloch Hamiltonian

\[
H_1 = \tau_x (\sigma_z \sin k_y + v) + \tau_y \sin k_x + \tau_z (M - \cos k_x - \cos k_y - \cos k_z).
\]

Here \(\sigma_\alpha \) and \(\tau_\alpha \) are Pauli matrices corresponding to spin and orbital degrees of freedom. For \(v = 0 \) and fixed \(k_z \), \(H_1 \) has the same form as the BHZ model, and indeed \(H_1 \) is obtained by stacking the 2D BHZ model along the \(z \) direction. The Hamiltonian satisfies the symmetry relations of Eqs. (2) with

\[
T = i \sigma_y K, \quad R_z = 1.
\]

When \(v = 0 \) and \(M = 2 \), we have two Dirac points at

\[
k = (0, 0, \pm \pi/2)
\]

in the Brillouin zone \(-\pi \leq k_\alpha \leq \pi\). The \(\mathbb{Z}_2 \) topological number \(\nu_2(k_z) \) is obtained as a function of \(k_z \) from Bloch wave functions of \(H_1 \):

\[
\nu_2(k_z) = \begin{cases}
0, & -\pi \leq k_z < -\pi/2, \\
1, & -\pi/2 < k_z < \pi/2, \\
0, & \pi/2 < k_z \leq \pi.
\end{cases}
\]

The two Dirac points separate the regions of different values of \(\nu_2(k_z) \). When the parameter \(v \) is finite, each
Dirac point splits into two Weyl points which are on the same k_z plane (that is slightly shifted from $k_z = \pm \pi/2$) and are related to each other by \tilde{T}.

The second example is a stacked Kane-Mele model defined on the stacked layers of the honeycomb lattice. The Hamiltonian for an electron with spin s and wave number k_z along the stacking direction is given by

$$ H_2 = t \sum_{\langle i,j \rangle} c_{i}^\dagger c_{j} + i(\lambda_{SO} + \lambda_{SO}' \cos k_z) \sum_{\langle i,j \rangle} \nu_{ij} c_{i}^\dagger s_z c_{j} + i\lambda_R \sum_{\langle i,j \rangle} c_{i}^\dagger (s \times d_{ij})_z c_{j} + \lambda_v \sum_{i} \xi_{ij} c_{i}^\dagger c_{i}, $$

where we have followed the standard notation used in the Kane-Mele model.\(^{11,12}\) The first term is a nearest-neighbor hopping term on the honeycomb lattice, where $c_{j} = (c_{j, \uparrow}, c_{j, \downarrow}, c_{j})$ annihilates an electron on site j. The second term is a spin-dependent second-neighbor hopping term with $\nu_{ij} = (2/\sqrt{3})(d_{1} \times d_{2})_z = \pm 1$, where d_{1} and d_{2} are unit vectors along the two bonds which an electron traverses when going from site j to i. We have included a small spin-dependent hopping between the interlayer coupling is present only in this form. The third term is a nearest-neighbor Rashba term defined for the cubic lattice with a (100) surface. The stacked Kane-Mele model H_2 is solved for a lattice obtained by stacking (in the z direction) layers of the honeycomb lattice with a zigzag edge running along the y direction.

In solving these models numerically, we have assumed periodic boundary conditions in the y and z directions and open boundary conditions in the x direction (i.e., vanishing matrix elements for hopping out of the surface).

In Fig. 2, the energy bands are plotted as functions of k_y for fixed values of k_z, $k_z = 0.3\pi, 0.5\pi, 0.7\pi$. In the figures solid black lines are bulk bands and blue dots are surface states localized near one surface perpendicular to the x axis (surface states localized near other surfaces are not shown in the figures). Figure 2 clearly shows that, at $k_z = 0.3\pi$, the \mathbb{Z}_2 Weyl semimetals have helical modes while the Weyl semimetal has a chiral mode. These modes form Fermi arcs in the surface Brillouin zone. As k_z is increased, the band gap closes at $k_z = 0.5\pi$ in Fig. 2(c)-(e) [$k_z \approx 0.5\pi$ in Fig. 2(a), (b)]. When the band gap reopens ($k_z > 0.5\pi$), surface modes connecting the upper and lower bands disappear, as seen in the figures for $k_z = 0.7\pi$.

We note that the Hamiltonian H_3 in Eq. (14) has additional particle-hole symmetry $C = \sigma_z \tau_z K$ and unitary symmetry $U = \sigma_z \tau_x$. Indeed, if we exchange τ_x and τ_z in Eq. (14), H_3 becomes Bogoliubov-de Gennes Hamiltonian of the planar state of a p-wave superconductor, which has time-reversal, particle-hole, and $U(1)$ spin rotation symmetries (S_z conservation).\(^{27,28}\) The planar state also has point nodes and surface modes counter-propagating for opposite spins, but it is characterized by an integer topological number rather than a \mathbb{Z}_2 topological number.\(^{28}\) In the basis where U is diagonalized, we can define a Chern number for each spin sector for a fixed value of k_z. In this sense the planar state is considered as two copies of the 3He-A phase\(^ {10}\) which has a chiral surface mode and a Fermi arc. However, in our example of \mathbb{Z}_2 Weyl semimetal of Eq. (14), we can break the particle-hole symmetry and the unitary symmetry by adding perturbations which keep the time-reversal and reflection symmetries intact (such as $\sigma_y \tau_y$, $\sigma_z \tau_y$, and $\tau_x \tau_z$ sin k_z).

The breaking of the two symmetries does not affect the \mathbb{Z}_2 topological index in Eq. (6). Therefore the essential symmetry for stabilizing \mathbb{Z}_2 Weyl semimetals is the product symmetry \tilde{T} with $\tilde{T}^2 = -1$. The realization of this symmetry is not limited to the one we discussed above, Eq. (8). For example, another way to realize the com-
FIG. 2. Band structures of tight-binding models for \mathbb{Z}_2 Weyl semimetals (a)-(d) and a Weyl semimetal (e): (a) stacked BHZ model H_1 [Eq. (9) with $v = 0.5$], (b) stacked Kane-Mele model H_2 [Eq. (13) with $(t, \lambda_{SO}, \lambda_{SO}', \lambda_R, \lambda_v) = (1, 0.06, 0.03, 0.05, 0.3)$], (c) H_3 [Eq. (14)], (d) H_4 [Eq. (15)], (e) Weyl semimetal H_5 [Eq. (16)]. These models have two-dimensional (100) surface which is perpendicular to the x direction; the 2D surface of the stacked Kane-Mele model (b) is coupled zigzag edges running along the y direction. Periodic boundary conditions are assumed in the y and z directions. Band structures are shown as functions of k_y for fixed $k_z = 0.3\pi, 0.5\pi, 0.7\pi$. Black lines are bulk bands while blue dots are surface modes localized at the (100) surface. Surface states of other surfaces are not shown. The upper and lower bands of the models (c)-(e) touch when $k_z = \pi/2$.
bined symmetry \(T^2 = -1 \) would be
\[
T^2 = +1, \quad R_z^2 = 1, \quad \{T, R_z\} = 0. \tag{17}
\]

III. STABILITY ANALYSIS OF WEYL AND DIRAC POINTS USING CLIFFORD ALGEBRAS

In this section we discuss stability of gap-closing (Weyl or Dirac) points in semimetals without/with time-reversal symmetry and other symmetries and determine the type of topological charge attached to gap-closing points. The stability of Fermi points has been studied by applying K-theory.\(^{29-31}\) Here we study the stability of Weyl/Dirac points by examining whether the effective theory for excitations near a gap-closing point can have a Dirac mass term compatible with symmetry constraints. For this purpose, we use representation theory of Clifford algebras and K-theory.\(^{21,22}\) In Appendix we explain this approach (i.e., existence of a Dirac mass term) and apply to all the ten Altland-Zirnbauer symmetry classes.\(^{24}\) By applying the approach to the cases with spatial symmetries, we can systematically study types of topological charges that emerge under a given set of symmetries as listed in Table 1.

A. Weyl semimetal

As is well known, a Weyl point is stable and has an integer topological charge in three dimensions, when low-energy effective theory of the Weyl point has no symmetry.\(^{1-3,5,10}\) We will derive this known fact using representation theory of complex Clifford algebras, as a prelude to the stability analysis under time-reversal symmetry which we will present in the following subsections.

A complex Clifford algebra \(Cl_q \) is a complex algebra generated by \(q \) generators \((e_1, \ldots, e_q) \) satisfying
\[
\{e_i, e_j\} = 2\delta_{i,j}, \tag{18}
\]
with Kronecker’s \(\delta_{i,j} \). In this paper we use the notation
\[
Cl_q = \{e_1, \ldots, e_q\} \tag{19}
\]

represent the whole complex algebra \(Cl_q \) generated from the \(q \) generators \((e_1, \ldots, e_q) \).

As an effective Hamiltonian for low-energy excitations around a Weyl point, we consider a three-dimensional Dirac (Weyl) Hamiltonian
\[
H_{\text{eff}} = k_x \gamma_x + k_y \gamma_y + k_z \gamma_z + m \gamma_0, \tag{20}
\]
where \(\gamma_j \) (\(j = 0, x, y, z \)) are gamma matrices satisfying the anticommutation relations \(\{\gamma_j, \gamma_l\} = 2\delta_{j,l} \). We assume that \((k_x, k_y, k_z) \) are momenta measured from the Weyl point and that the Weyl point is not located at a high symmetric point. We have included a Dirac mass term \(m \gamma_0 \) in Eq. (20) which would gap out the Weyl point. We will examine whether such a mass term is allowed when kinetic terms are given. If it is not allowed, then the Weyl point is stable against (translation-invariant) perturbations.

The Hamiltonian of a single Weyl point (20) has no symmetry and is classified as a member of class A. In this case a complex Clifford algebra is generated by the gamma matrices in the Dirac Hamiltonian as
\[
Cl_4 = \{\gamma_x, \gamma_y, \gamma_z, \gamma_0\}. \tag{21}
\]

The answer to the question as to whether a mass term \(\gamma_0 \) is allowed is obtained by studying topological classification of a generator (say, \(\gamma_z \)) of the Clifford algebra without \(\gamma_0 \),
\[
Cl_3 = \{\gamma_x, \gamma_y, \gamma_z\}. \tag{22}
\]

This is because topologically trivial classification of \(\gamma_z \) implies existence of another gamma matrix (i.e., \(\gamma_0 \)) which anticommutes with the three generators (\(\gamma_x, \gamma_y, \gamma_z \)), while topologically nontrivial classification of \(\gamma_z \) implies absence of \(\gamma_0 \); see Appendix.

We thus consider the following extension problem of Clifford algebra,
\[
Cl_2 = \{\gamma_x, \gamma_y\} \to Cl_3 = \{\gamma_x, \gamma_y, \gamma_z\}. \tag{23}
\]

We first fix a matrix representation (of sufficiently large dimensions) of the original algebra \(Cl_2 \) and ask how many distinct classes of matrix representations we have for the added generator (\(\gamma_z \)) in the extended algebra \(Cl_3 \). It is known from K theory that all the possible matrix representations form a symmetric space, i.e., classifying space.\(^{21}\) The classifying space for the extension problem (23) is known to be \(C_0 = \cup_{m \in \mathbb{Z}} U(2n)/[U(n+m) \times U(n-m)] \) with a sufficiently large integer \(n \), i.e., a union of complex Grassmanians; see, for more details, Refs. 21 and 22. Its zero-th homotopy group,
\[
\pi_0(C_0) = \mathbb{Z}, \tag{24}
\]
indicates that the space of all possible representations of \(\gamma_z \) consists of disconnected parts, which can be labelled with an integer topological index. The nontrivial topology of the space of \(\gamma_z \) also means that a Dirac mass term is not allowed in the minimal Dirac Hamiltonian (20). Hence a Weyl point is stable against (spatially uniform) perturbations. The integer topological index corresponds to the Chern number of a 2D subsystem with fixed \(k_z \) in which \(k_z \gamma_z \) behaves as a mass term (the sign of \(k_z \) is related to the Chern number). With \(k_z \) taken as a tuning parameter in the effective Hamiltonian, the Weyl point can be viewed as a quantum phase transition point of the 2D subsystem and is characterized by a \(\mathbb{Z} \) charge which is equal to the change in the Chern number.

An example of Weyl points is point nodes at the north and south poles \(k = (0, 0, \pm k_F) \) on the Fermi surface in the superfluid \(^3\)He-A phase. The two point nodes are a famous realization of Weyl points described by an effective
2 by 2 Hamiltonian. Stability of point nodes in 3He-A phase which has particle-hole symmetry is understood using Clifford algebras as follows. The particle-hole symmetry is described by an anti-unitary operator \(C = \tau_x K \), where \(\tau_x \) is a Pauli matrix acting on the particle-hole space. However, action of \(C \) connects two point nodes at \(\mathbf{k} = (0, 0, \pm k_F) \) and is not closed for a single point node (Weyl point). Hence the Bogoliubov-de Gennes Hamiltonian for a single point node has no symmetry and is classified into class A. Thus the stability of Weyl point nodes is shown in the same manner as described above.

We note that topological characterization of defect zero modes in superconductors may change under the presence of spatial symmetries, in a similar way to our discussion on Weyl/Dirac semimetals in the following sections. For example, stability analysis of line nodes in superconductors was recently extended to include inversion symmetry or reflection symmetry and applied to odd-parity superconductors in Ref. 36. Stability of point nodes is studied for superconductors with reflection symmetry\(^\text{37,38}\) and with reflection and inversion symmetries.\(^\text{39}\) Two nontrivial examples of point nodes in topological superconductors will be discussed in Sec. III E.

\[\text{B. Time-reversal and reflection symmetries: } \mathbb{Z}_2 \text{ Weyl semimetal} \]

In this section we show stability of Weyl points with a \(\mathbb{Z}_2 \) charge under time-reversal and reflection symmetries using Clifford algebras. As we discussed in Sec. IIA, in the presence of the two symmetries, we have a quartet of Weyl points at \(\mathbf{k} = (k_x^0, k_y^0, k_z^0), (-k_x^0, -k_y^0, k_z^0), (k_x^0, k_y^0, -k_z^0), \) and \((-k_x^0, -k_y^0, -k_z^0)\). Since a pair of Weyl points \((k_x^0, k_y^0, k_z^0)\) and \((-k_x^0, -k_y^0, -k_z^0)\) are related by the combined symmetry \(\bar{T} = R_z T \), we treat them together as a single Dirac point and set \(k_x^0 = k_y^0 = 0 \) to simplify notation. Incidentally, this also accounts for the special case where \((k_x^0, k_y^0) \in \text{TRIM}_2\), as in the case shown in Fig. 2(c).

As an effective Hamiltonian for low-energy excitations around the Dirac point, we consider a three-dimensional Dirac Hamiltonian

\[\tilde{H}_{\text{eff}} = k_x \gamma_x + k_y \gamma_y + (k_z - k_z^0) \gamma_z + m \gamma_0, \]

where \(\gamma_j (j = 0, x, y, z) \) are gamma matrices satisfying the anticommutation relations \(\{ \gamma_j, \gamma_l \} = 2 \delta_{jl} \). We assume that the Dirac point \((0, 0, k_z^0)\) and its time-reversal partner \(\mathbf{k} = (0, 0, -k_z^0) \) are distinct points in the Brillouin zone. In the following discussions we consider only low-energy excitations around the Dirac point at \(\mathbf{k} = (0, 0, k_z^0) \), because we are concerned with the stability of individual Dirac points against translation-invariant perturbations. As an example of such a perturbation, we have included a Dirac mass term \(m \gamma_0 \) in Eq. (25) which would gap out the Dirac point. We will examine whether this mass term is compatible with the assumed symmetries. If it is not compatible, then the Dirac point is stable against (translation-invariant) perturbations.

Since \(T \) or \(R_z \) alone is not a symmetry of the effective Hamiltonian \(\tilde{H}_{\text{eff}} \), the only symmetry operator for \(\tilde{H}_{\text{eff}} \) is the product \(T = R_z T \), which is assumed to satisfy \(T^2 = -1 \). Whether or not a Dirac mass term can exist under this symmetry is systematically studied using Clifford algebras below.\(^\text{21,22,40}\) From Eq. (4) we find that the \(T \) symmetry and gamma matrices satisfy the following algebraic relations:

\[\{ \gamma_x, T \} = \{ \gamma_y, T \} = 0, \]

\[[\gamma_z, T] = [\gamma_0, T] = 0. \] (26a)

We treat the symmetry operator \(T \) and the gamma matrices \(\gamma_j \) on equal footing in real Clifford algebras. A real Clifford algebra \(Cl_{p,q} \) is a real algebra generated by \(p + q \) generators \((e_1, \ldots, e_{p+q})\) satisfying

\[\{ e_j, e_i \} = 0 \quad (j \neq i), \]

\[e_j^2 = \begin{cases} -1, & 1 \leq j \leq p, \\ +1, & p + 1 \leq j \leq p + q. \end{cases} \] (27a)

In this paper we use the notation

\[Cl_{p,q} = \{ e_1, \ldots, e_p; e_{p+1}, \ldots, e_{p+q} \} \] (28)

to represent the whole real algebra \(Cl_{p,q} \) generated from the \(p + q \) generators \((e_1, \ldots, e_{p+q})\). To incorporate the antiunitary nature of the \(T \) operator in real algebras, we introduce an operator \(J \) which plays a role of the imaginary unit \(i \) and anticommutes with \(T \),

\[J^2 = -1, \quad \{ T, J \} = 0. \] (29)

The gamma matrices commute with \(J \), \([\gamma_j, J] = 0 \).

Using the symmetry relations in Eqs. (26) and (29), we define the real Clifford algebra generated from gamma matrices and the symmetry operator as

\[Cl_{0,4} \otimes Cl_{0,2} = \{ : \gamma_x, \gamma_y, \gamma_z, \gamma_0 \} \otimes \{ : \gamma_x \gamma_y \bar{T}, J \gamma_x \gamma_y \bar{T} \}. \] (30)

From the argument explained in Appendix, the question as to whether a mass term \(\gamma_0 \) is allowed under given symmetry is answered by considering the classification problem of a generator of the same type as \(\gamma_0 \) (e.g., \(\gamma_z \)) for the Clifford algebra without \(\gamma_0 \),

\[Cl_{0,3} \otimes Cl_{0,2} = \{ : \gamma_x, \gamma_y, \gamma_z \} \otimes \{ : \gamma_x \gamma_y \bar{T}, J \gamma_x \gamma_y \bar{T} \}. \] (31)

As in the discussion in Sec. III A, if the space of matrix representations of \(\gamma_z \) is topologically trivial, then there is another gamma matrix that can be used as \(\gamma_0 \). On the other hand, if it is topologically nontrivial, then there is no such gamma matrix, hence no \(\gamma_0 \).
Now we consider the extension problem of Clifford algebra

\[\text{Cl}_{0,2} \otimes \text{Cl}_{0,2} \to \text{Cl}_{0,3} \otimes \text{Cl}_{0,2}. \]

(32)

We fix a matrix representation (in sufficiently large dimensions) of \(\text{Cl}_{0,2} \otimes \text{Cl}_{0,2} \) and ask how many possible matrix representations we have for \(\gamma_z \) in \(\text{Cl}_{0,3} \otimes \text{Cl}_{0,2} \). It turns out\(^1\) that the space of representations for \(\gamma_z \) is given by the classifying space \(R_2 = O(2n)/U(n) \), where \(n \) is a sufficiently large integer and \(2n \) is the dimension of representation.\(^{21,22}\) Its zero-th homotopy group is known to be

\[\pi_0(R_2) = \mathbb{Z}_2. \]

(33)

This indicates that there is no mass term in the minimal (4 by 4) Dirac Hamiltonian (or two 2 by 2 Weyl Hamiltonians), while we can always find a mass term to gap out the Dirac point if we double the minimal model. This is preciously the \(\mathbb{Z}_2 \) semimetal protected by time-reversal and reflection symmetries with \(\mathcal{PT} \) reversal operator and inversion symmetry. We assume that the time-reversal and inversion symmetries known from Refs. 1–3 is understood as the possible existence of a Dirac mass term.

As discussed in Refs. 1–3, gap-closing points in a semimetal are fragile when Hamiltonian is invariant under both time-reversal \(T \) and inversion \(P \). Here we derive this known result using real Clifford algebras.

We consider a gap-closing (Weyl or Dirac) point at a generic \(\mathbf{k} \) point (not at one of time-reversal invariant momenta) in the Brillouin zone. Separate operation of either time-reversal \(T \) or inversion \(P \) maps a Weyl/Dirac point at \(\mathbf{k} = \mathbf{k}_0 \) to another Weyl/Dirac point at \(\mathbf{k} = -\mathbf{k}_0 \). While neither time-reversal \(T \) nor inversion \(P \) is a closed operation by itself, the combination of the two operations \(\mathcal{PT} \) leaves the effective Hamiltonian of a single Weyl/Dirac point at \(\mathbf{k} = \mathbf{k}_0 \) invariant,

\[\mathcal{PT}H_{\text{eff}}(k_x, k_y, k_z)(\mathcal{PT})^{-1} = H_{\text{eff}}(k_x, k_y, k_z). \]

(34)

Substituting the Dirac Hamiltonian (25) into the above equation, we obtain symmetry relations obeyed by the gamma matrices,

\[[\gamma_x, \mathcal{PT}] = [\gamma_y, \mathcal{PT}] = [\gamma_z, \mathcal{PT}] = [\gamma_0, \mathcal{PT}] = 0. \]

(35)

Let us consider semimetals with strong spin-orbit coupling and inversion symmetry. We assume that the time-reversal operator \(T \) and inversion operator \(P \) satisfy the following relations:

\[T^2 = -1, \quad P^2 = 1, \quad [T, P] = 0, \]

(36)

t thereby the combined operator \(\mathcal{PT} \) satisfying

\[(\mathcal{PT})^2 = -1. \]

(37)

We define a real Clifford algebra generated from \(\mathcal{PT} \) and gamma matrices,

\[\text{Cl}_{0,4} \otimes \text{Cl}_{2,0} = \{ \gamma_x, \gamma_y, \gamma_z, \gamma_0 \} \otimes \{ \mathcal{PT}, J\mathcal{PT}; \}. \]

(38)

The existence/absence of the Dirac mass \(m \gamma_0 \) can be judged by considering the following extension problem:

\[\{ \gamma_x, \gamma_y \} \otimes \{ \mathcal{PT}, J\mathcal{PT}; \} \to \{ \gamma_x, \gamma_y, \gamma_z \} \otimes \{ \mathcal{PT}, J\mathcal{PT}; \}, \]

(39)

i.e.,

\[\text{Cl}_{0,2} \otimes \text{Cl}_{2,0} \to \text{Cl}_{0,3} \otimes \text{Cl}_{2,0}, \]

(40)

which is equivalent to \(\text{Cl}_{0,6} \to \text{Cl}_{0,7}. \(^{42}\) The classifying space for this extension problem is given by \(R_6 = Sp(n)/U(n) \), with a sufficiently large integer \(n \).\(^{21,22}\) Since the space of possible representations for \(\gamma_z \) is singly connected \(\pi_0(R_6) = 0 \), one can always find more than one gamma matrices which can be used as \(\gamma_z \) and \(\gamma_0 \). This means that a Dirac mass term always exists so that Weyl/Dirac points can be gapped. Hence the instability of Weyl/Dirac points under both time-reversal \((T^2 = -1) \) and inversion symmetries known from Refs. 1–3 is understood as the possible existence of a Dirac mass term.

Let us illustrate the instability of a Dirac point with an example. Suppose that we have a pair of Dirac points, \(\mathbf{k} = (k_x^0, k_y^0, k_z^0) \) and \((-k_x^0, -k_y^0, -k_z^0) \), which are related by \(T \) and \(P \). The low-energy effective Hamiltonians for the Dirac points are written as

\[H_+ = \sigma_x \tau_y (k_x - k_x^0) + \sigma_y \tau_y (k_y - k_y^0) + \sigma_z \tau_y (k_z - k_z^0), \]

(41a)

\[H_- = -\sigma_x \tau_y (k_x + k_x^0) - \sigma_y \tau_y (k_y + k_y^0) - \sigma_z \tau_y (k_z + k_z^0), \]

(41b)

where \(\sigma \) and \(\tau \) are Pauli matrices representing, e.g., spin and orbital degrees of freedom. With time-reversal and inversion symmetries given by

\[T = i \sigma_y \mathcal{K}, \quad P = 1, \]

(42)

the effective Hamiltonians are transformed as

\[TH_\pm (k_x, k_y, k_z) T^{-1} = H_\pm (k_x, k_y, k_z), \]

(43a)

\[PH_\pm (k_x, k_y, k_z) P^{-1} = H_\pm (k_x, k_y, k_z), \]

(43b)

and both \(H_+ \) and \(H_- \) are invariant under the combined transformation,

\[\mathcal{PT} = i \sigma_y \mathcal{K}. \]

(44)

Obviously we can add to \(H_\pm \) mass terms

\[m_x \tau_x, \quad m_z \tau_z, \]

(45)

which are invariant under \(\mathcal{PT} \) and gap out Dirac cones. Therefore Dirac points are fragile and generally gapped, in agreement with the general argument based on Clifford algebras.
D. Time-reversal, inversion, and SU(2) spin rotation symmetries: Z_2 Dirac semimetal

Let us discuss stability of a Dirac point in the presence of time-reversal, inversion, and SU(2) spin rotation symmetries. We will demonstrate that the additional SU(2) spin rotation symmetry completely changes the conclusion of Sec. IIIIC. With the SU(2) symmetry, we can separate the spin sector and consider an effective Hamiltonian for spinless fermions. We thus assume to have symmetry operators satisfying the following relations:

$$ T^2 = +1, \quad P^2 = 1, \quad [T, P] = 0. \quad (46) $$

The first equation implies that the system is in class AI. The combined symmetry operator satisfies

$$ (PT)^2 = +1, \quad (47) $$

which should be contrasted with Eq. (37). As we have discussed in Sec. IIIIC, we have a pair of Dirac points,

$$ k = (k_x^0, k_y^0, k_z^0) \quad \text{and} \quad (-k_x^0, -k_y^0, -k_z^0), $$

which are related by time-reversal or inversion. The effective Hamiltonian of a Dirac point is invariant under PT. We assume symmetry operators and gamma matrices reads

$$ Cl_{0,4} \otimes Cl_{0,2} = \{ \gamma_x, \gamma_y, \gamma_z, \gamma_0 \} \otimes \{ PT, JPT \}. \quad (48) $$

We can find whether or not a Dirac mass term can exist in the low-energy effective Hamiltonian of the Dirac point by considering the following extension problem:

$$ \{ \gamma_x, \gamma_y \} \otimes \{ PT, JPT \} \rightarrow \{ \gamma_x, \gamma_y, \gamma_z \} \otimes \{ PT, JPT \}, \quad (49) $$

$$ Cl_{0,2} \otimes Cl_{0,2} \rightarrow Cl_{0,3} \otimes Cl_{0,2}, \quad (50) $$

which is equivalent to $Cl_{0,2} \rightarrow Cl_{0,3}$. The classifying space of this extension problem is given by $R_2 = O(2n)/U(n)$, and its zeroth homotopy group $\pi_0(R_2) = Z_2$. The nontrivial topology of the classifying space indicates that a Dirac mass term is absent in a minimal Dirac Hamiltonian, i.e., the massless Dirac Hamiltonian of the least dimensions (4 by 4 matrix) cannot be gapped out by a Dirac mass term. However, we can always find a mass term which can be added to two copies of minimal models.

If we take

$$ T = \tau_z K, \quad P = \tau_x, \quad PT = K, \quad (51) $$

an example of the Hamiltonian around a Dirac point can be written as

$$ \tilde{H}_+ = \sigma_x \tau_z (k_x - k_x^0) + \sigma_z \tau_y (k_y - k_y^0) + \tau_x (k_z - k_z^0). \quad (52) $$

Here Pauli matrices σ_a, τ_b are assumed to span the basis of four orbitals of spinless fermions. We cannot find any mass term gapping out the Dirac cone in this 4 by 4 Hamiltonian with preserving PT symmetry. Thus the gapless Dirac cone is stable when $(PT)^2 = +1$. However, if we double the system by tensoring \tilde{H}_+ with a unit 2 by 2 matrix λ_0 as $\tilde{H}_+ \otimes \lambda_0$, we can gap out the doubled Dirac cone by adding mass terms

$$ \sigma_y \tau_z \lambda_y, \quad \tau_y \lambda_y, \quad (53) $$

where λ_x and λ_y are members of another set of Pauli matrices $\lambda_a \ (\alpha = x, y, z)$. Therefore a Dirac point of a minimal (4 by 4) Hamiltonian is stable while a doubled Dirac point of a 8 by 8 Hamiltonian is unstable, which indicates that Dirac points are characterized by a Z_2 charge.

A lattice regularization of the Dirac Hamiltonian \tilde{H}_+ and its time-reversal partner is given by

$$ H = \sigma_x \tau_z \sin k_x + \sigma_y \tau_y \sin k_y + \tau_x (\cos k_x + \cos k_y + \cos k_z - M), \quad (54) $$

with symmetry operators

$$ T = \tau_x K, \quad P = \tau_x. \quad (55) $$

We have two Dirac points at $(0,0, \pm \pi/2)$ when $M = 2$. These Dirac points are stable. We note, however, that Dirac points with a nontrivial Z_2 charge do not yield helical Fermi arcs, because the presence of a surface inevitably breaks inversion symmetry. The bulk-edge correspondence does not hold with inversion symmetry.

E. Z_2 Weyl nodes and Z_2 Dirac nodes in superconductors

In this section we briefly discuss point nodes in superconductors that are protected by Z_2 topological charge. Topological stability of nodes in superconductors with reflection and inversion symmetries has recently been studied in Ref. 36. Here we focus on two examples that are not discussed in Ref. 36, i.e., Z_2 Weyl nodes and Z_2 Dirac nodes which are superconductor analogs of Z_2 Weyl and Dirac semimetals.

Z_2 Weyl nodes are stable in the presence of time-reversal symmetry T, particle-hole symmetry C, and reflection symmetry R_z with respect to the z direction. For a point node at a general k point, relevant symmetries are $\tilde{T} = TR_z$ and $\tilde{C} = CR_z$. We assume symmetry operators satisfy

$$ \tilde{T}^2 = -1, \quad \tilde{C}^2 = +1. \quad (56) $$

This can be realized in a class DIII superconductor with “reflection” symmetry R_z, in which symmetry operators satisfy the relations

$$ T^2 = -1, \quad C^2 = +1, \quad R_z^2 = -1, \quad [T, R_z] = [C, R_z] = 0. \quad (57) $$
Again, R_z is a special reflection symmetry that squares to $+1$, e.g., a combination of reflection and π rotation in spin space as we discussed for Z_2 Weyl semimetals. Since symmetries impose constraints on Hamiltonian

$$\tilde{T}H(-k_x, -k_y, k_z)\tilde{T}^{-1} = H(k_x, k_y, k_z), \quad (58a)$$

$$\tilde{C}H(-k_x, -k_y, k_z)\tilde{C}^{-1} = -H(k_x, k_y, k_z), \quad (58b)$$

the Hamiltonian $H(k_x, k_y, k_z)$ of fixed k_z can be regarded as describing a 2D topological superconductor in class DIII, which is characterized by a Z_2 topological number when quasiparticle spectra at fixed k_z are fully gapped. Suppose that the gap closes at some particular points in the 3D Brillouin zone; these points correspond to Z_2 topological phase transitions of the fictitious 2D superconductor. Such gap closing points are stable and assigned a Z_2 topological charge. We call them Z_2 Weyl nodes. Stability of Z_2 Weyl nodes is understood in terms of Clifford algebra as follows. We have Clifford algebra for massive Dirac Hamiltonian with symmetry constraints in Eq. (58) as

$$Cl_{2,5} = \{J_\gamma x, J_\gamma y, \; \tilde{C}, \; J\tilde{C}, \; T\tilde{C}, \; \gamma_z, \gamma_0\}. \quad (59)$$

Following the same arguments in the previous subsections and in Appendix, we determine the existence/absence of a Dirac mass term γ_0 by considering the extension problem

$$Cl_{2,3} \rightarrow Cl_{2,4}. \quad (60a)$$

Since the classifying space for this is known to be $R_1 = O(n)$, the topological charge of a point node is given by

$$\pi_0(R_1) = Z_2, \quad (60b)$$

which reproduces the result of discussions above.

Next, we discuss Z_2 Dirac nodes that are stable under time-reversal symmetry T, particle-hole symmetry C, inversion symmetry P, and SU(2) spin rotation symmetry. We consider superconductors in class CI, which is the symmetry class of time-reversal symmetric superconductors with spin SU(2), 24,43 and impose additional inversion symmetry. The three symmetry operators are assumed to satisfy

$$T^2 = +1, \quad C^2 = -1, \quad P^2 = +1 \quad (61a)$$

and

$$[T, C] = [T, P] = [C, P] = 0, \quad (61b)$$

where we have assumed even-parity paring for commutation of C and P. Relevant symmetries for a point node are $T = TP$ and $C = CP$, satisfying

$$\tilde{T}H(k_x, k_y, k_z)\tilde{T}^{-1} = H(k_x, k_y, k_z), \quad (62a)$$

$$\tilde{C}H(k_x, k_y, k_z)\tilde{C}^{-1} = -H(k_x, k_y, k_z), \quad (62b)$$

$$\tilde{T}^2 = +1, \quad \tilde{C}^2 = -1. \quad (62c)$$

Let us verify that a point node is stable and has Z_2 topological charge in terms of Clifford algebra. The Clifford algebra for massive Dirac Hamiltonian with symmetry operations \tilde{T} and \tilde{C} is given by

$$Cl_{2,5} = \{\tilde{C}, \; J\tilde{C}; \; J\tilde{T}\tilde{C}, \; \gamma_z, \gamma_0\}. \quad (63)$$

Then, the existence condition of Dirac mass term γ_0 and topological charge of a point node are found from the following extension problem

$$Cl_{2,3} \rightarrow Cl_{2,4}, \quad \pi_0(R_1) = Z_2. \quad (64)$$

We thus conclude that point nodes in class CI superconductors with inversion symmetry are characterized by Z_2 topological charge.

Low-energy effective Hamiltonians around Z_2 Weyl nodes and Z_2 Dirac nodes are given by 4 by 4 Bogoliubov-de Gennes (BdG) Hamiltonians. An example of BdG Hamiltonian around a Z_2 Weyl node on the $k_z = k_0$ plane is given by

$$H = k_x\sigma_z\tau_x + k_y\tau_y + (k_z - k_0^0)\tau_z, \quad (65a)$$

with the relevant symmetry operators [Eq. (58)]

$$\tilde{T} = i\sigma_y\mathcal{K}, \quad \tilde{C} = \tau_z\mathcal{K}, \quad (65b)$$

where σ_α and τ_α are Pauli matrices representing spin and particle-hole degrees of freedom. An example of BdG Hamiltonian around a Z_2 Dirac node at $\mathbf{k} = (k_0^x, k_0^y, k_0^z)$ is given by

$$H = (k_x - k_0^x)\sigma_x\tau_x + (k_y - k_0^y)\sigma_z\tau_x + (k_z - k_0^z)\tau_z, \quad (66a)$$

with the symmetry operators [Eq. (62)]

$$\tilde{T} = \mathcal{K}, \quad \tilde{C} = i\tau_y\mathcal{K} \quad (66b)$$

where σ_α and τ_α are Pauli matrices representing, e.g., orbital and particle-hole degrees of freedom.

From the analogy to Z_2 Weyl and Dirac semimetals, we expect the following features for point nodes with Z_2 topological charge: Z_2 Weyl nodes appear as a pair of Weyl nodes connected by \tilde{T}, and their projections onto the surface Brillouin zone are end points of helical Fermi arcs. A Z_2 Dirac node is not split into a pair of Weyl nodes, and helical Fermi arcs do not appear in the surface Brillouin zone because the required inversion symmetry is broken by the presence of a surface.

IV. DISCUSSIONS

In this paper we have proposed Weyl/Dirac semimetals which are characterized with Z_2 topological charges and protected by combination of time-reversal symmetry and additional spatial symmetry: (a) Z_2 Weyl semimetals protected by time-reversal and "reflection" symmetries
and (b) Z_2 Dirac semimetals protected by time-reversal, inversion, and SU(2) spin rotation symmetries. The Z_2 Weyl semimetals have helical Fermi arcs. These surface states should contribute to conductivity of 2e^2k_0^2/\pi h, where 2k_0^2 is the separation between two Weyl points in the k_z direction (perpendicular to the mirror plane) in the Brillouin zone.

Here we briefly comment on the stability of Weyl/Dirac points against disorder. What we have shown in Sec. III using Clifford algebras is that Weyl/Dirac points are stable against translation-invariant perturbations that preserve time-reversal and additional spatial symmetries. However, disorder is neither translation-invariant nor preserves the additional spatial symmetry. Furthermore, disorder can introduce inter-valley scattering which can gap out Weyl/Dirac points connected by the scattering. Nevertheless, we suspect that helical surface states of Z_2 Weyl semimetals have some degree of stability if random potentials are slowly varying in space and a valley mixing is negligible, as we argue below.

Z_2 Weyl semimetals have helical Fermi arcs connecting projections of Weyl points onto its surface Brillouin zone. This is analogous to chiral Fermi arcs in Weyl semimetals. The chiral surface states of Weyl semimetals are stable against disorder because of their chiral nature. On the other hand, in Z_2 Weyl semimetals, random potentials can induce scattering among helical surface modes of different k_z and gap them out. However, if we regard a Z_2 Weyl semimetal as layers of two-dimensional Z_2 topological insulators labelled by k_z stacked in momentum space (−k_0^2 < k_z < +k_0^2), we can draw analogy to a weak topological insulator which is layers of two-dimensional Z_2 topological insulators stacked in real space. As the surface states of weak topological insulators are stable against disorder as long as it is spatially uniform on average, we may expect similar stability against disorder for helical surface modes of Z_2 Weyl semimetals. Moreover, weak antilocalization effects would drive the surface to be metallic.

Acknowledgments

This work was supported in part by Grants-in-Aid from the Japan Society for Promotion of Science (Grants No. 24840047 and No. 24540338) and by the RIKEN iTHESS Project.

Appendix: Existence condition of Dirac mass term

Considering the extension problem of Clifford algebras, we can tell whether we can add a Dirac mass term to a given massless Dirac Hamiltonian under symmetry constraints. In this Appendix we discuss existence conditions of Dirac mass for ten Altland-Zirnbauer symmetry classes. This is based on the following idea:

- In the classification scheme with Clifford algebras, the existence condition of a particular generator e_i (Dirac mass term) is equivalent to classification of another generator of the same type in Clifford algebra in which e_i is removed.

First, let us briefly review classification of massive Dirac Hamiltonians using Clifford algebras (for details, see Ref. 22). Table II summarizes the result of classification for a massive Dirac Hamiltonian in d dimensions,

$$H = \sum_{i=1}^{d} k_i \gamma_i + m \gamma_0,$$

(A.1)

where γ_j (j = 0, 1, ..., d) are gamma matrices. H belongs to one of the Altland-Zirnbauer symmetry class which is specified by presence or absence of three generic symmetries: time-reversal symmetry T, particle-hole symmetry C, and chiral symmetry Γ. A set of gamma matrices (γ_j) and symmetry operators (Γ in class AIII; T and/or C and imaginary unit J in real classes) form Clifford algebra as shown in Table II. By examining the extension problem with respect to Dirac mass term, we can obtain classifying space V which is a space of all possible Dirac mass terms under symmetry constraints. Then the topological classification is found from its zeroth homotopy group $\pi_0(V)$ (the last column in Table II lists $\pi_0(V)$ for 0-dimensional systems).

The type of topological indices $(Z, Z_2, 0)$ characterizing massive Dirac Hamiltonians determines whether we have a unique Dirac mass γ_0 or we have multiple Dirac masses that anticommute with each other, as we explain below. That is, topology of classifying space can be used to understand uniqueness/multiplicity of Dirac mass term. When the Dirac Hamiltonian H has only a single Dirac mass term $m \gamma_0$ which is allowed by assumed symmetry constraints of the symmetry class, the ground state of H for $m > 0$ and that for $m < 0$ are topologically distinct, because they cannot be connected without closing the bulk gap m. This corresponds to the case when the zeroth homotopy group of the classifying space V is non-trivial, i.e., Z or Z_2. The difference between Z and Z_2 manifests itself if we double the system, $H \otimes \sigma_0$, where σ_0 is a 2 x 2 identity matrix. For the Z_2 case, we can find an extra mass term $m' \gamma_0'$ that anticommutes with $H \otimes \sigma_0$ (note that $m' \gamma_0'$ is included in H). Then the ground states of $H \otimes \sigma_0$ with different signs of the mass m are no longer topologically distinct, since we can adiabatically deform the Dirac mass term as $m' \gamma_0 \otimes \sigma_0 \cos \theta + m' \gamma_0' \sin \theta$ (0 ≤ θ ≤ π). On the other hand, when the zeroth homotopy of the classifying space V is Z, we cannot find any extra mass term that anticommutes with $H \otimes \sigma_0$, because two copies of topologically non-trivial systems add up and the states with different signs of the mass m are still distinct. When H has more than one Dirac mass terms, the gapped ground states of H can be adiabatically connected without closing energy gap. For example, if H has two Dirac mass terms, $m' \gamma_0 = m_1 \gamma_{0,1} + m_2 \gamma_{0,2}$ with $\{ \gamma_{0,1}, \gamma_{0,2} \} = 0$, then the ground states of H with
that anticommutes with the generators

\[m\gamma_0 = +m\gamma_{0,1} \text{ and } m\gamma_0 = -m\gamma_{0,1} \text{ are not topologically distinct, where we can connect them by the homotopy} \]

\[
\gamma_0(\theta) = \cos \theta \gamma_{0,1} + \sin \theta \gamma_{0,2}, \quad (0 \leq \theta \leq \pi).
\]

(A.2)

In this case the classification of the symmetry class is trivial, \(\pi_0(V) = 0 \).

Now let us turn to the existence condition of Dirac mass term \(\gamma_0 \) for given kinetic gamma matrices and symmetry constraints. Suppose that the extension problem with respect to the mass term \(\gamma_0 \) of the Dirac Hamiltonian [Eq. (A.1)] has the form

\[
\text{Cl}_{p,q} = \{e_1, \ldots, e_p; e_{p+1}, \ldots, e_{p+q}\} \rightarrow \text{Cl}_{p,q+1} = \{e_1, \ldots, e_p; e_{p+1}, \ldots, e_{p+q}, \gamma_0\}. \tag{A.3}
\]

the relevant classifying space is \(R_{q,p} \). (This example corresponds to symmetry classes with particle-hole symmetry; see Table II.) The existence of \(\gamma_0 \) is then determined by the extension problem with one less generator,

\[
\text{Cl}_{p,q-1} = \{e_1, \ldots, e_p; e_{p+1}, \ldots, e_{p+q-1}\} \rightarrow \text{Cl}_{p,q} = \{e_1, \ldots, e_p; e_{p+1}, \ldots, e_{p+q-1}, \gamma_0\}. \tag{A.4}
\]

If we denote the classifying space for this extension problem by \(V \), then \(\tilde{V} = R_{q,p-1} \). Notice the change in the index of the classifying space by \(-1\). As we have seen, topology of the classifying space \(R_{q,p-1} \) for the extension problem of the generator \(e_{p+q} \) tells us whether \(e_{p+q} \) is unique or not, i.e., whether there exists an extra operator \(\tilde{e}_{p+q} \) that is the same type as \(e_{p+q} \) and anticommutes with \(e_{p+q} \). Since the extra operator \(\tilde{e}_{p+q} \) can be adopted as a Dirac mass term \(\gamma_0 \), uniqueness/multiplicity of the operator \(e_{p+q} \) corresponds exactly to absence/presence of the Dirac mass term \(\gamma_0 \) as follows.

If \(\pi_0(\tilde{V}) = \mathbb{Z} \), we cannot find any extra operator that anticommutes with the generators \(e_1, \ldots, e_{p+q} \) and squares to \(+1\); hence \(\gamma_0 \) does not exist. If \(\pi_0(\tilde{V}) = \mathbb{Z}_2 \), the existence of \(\gamma_0 \) depends on the size of the Dirac Hamiltonian that we consider. When a minimal Dirac Hamiltonian under given symmetry constraints has the matrix form of dimension \(n \), the dimension of general Dirac Hamiltonians with the same symmetries is given by \(kn \), where \(k \) is an integer. A mass term \(\gamma_0 \) can be present in Dirac Hamiltonians of \(k \) even, while it cannot be present in Dirac Hamiltonians of \(k \) odd. Finally, if \(\pi_0(\tilde{V}) = 0 \), we can always find an extra generator, i.e., \(\gamma_0 \) exists.

We can repeat the same discussion for class AI and All. For these classes the extension problem with respect to \(J_\gamma \) is of the form \(\text{Cl}_{p,q} \rightarrow \text{Cl}_{p+1,q} \), whose classifying space is \(V = R_{q+1,-2} \) (see Table II). The extension problem with one less generator similar to Eq. (A.4) is \(\text{Cl}_{p-1,q} \rightarrow \text{Cl}_{p,q} \), for which the classifying space is \(\tilde{V} = R_{q-1,0} \) (note the change in the index by \(-1\)). The existence of \(\gamma_0 \) is judged from \(\pi_0(\tilde{V}) \).

Finally, the existence condition of \(\gamma_0 \) for complex classes A and All is obtained by replacing real Clifford algebras in Eq. (A.4) with complex algebras, i.e., \(\text{Cl}_{q-1} \rightarrow \text{Cl}_q \), where \(q = d \) for class A and \(q = d + 1 \) for class All.

In summary, when the classifying space for Eq. (A.3) is \(V = R_q \) (\(C_q \)), the classifying space for Eq. (A.4) is given by \(\tilde{V} = R_{q-1} \) (\(C_{q-1} \)). Depending on the topology of \(\tilde{V} \), we have the following three cases regarding the existence of a Dirac mass term \(\gamma_0 \) in Dirac Hamiltonian of \(kn \) dimensions, where \(n \) is the minimal size of Dirac Hamiltonians in a given set of symmetry constraints:

- \(\pi_0(\tilde{V}) = \mathbb{Z} \): No Dirac mass term \(\gamma_0 \) exists for any integer \(k \).
- \(\pi_0(\tilde{V}) = \mathbb{Z}_2 \): No Dirac mass term \(\gamma_0 \) exists for odd \(k \), while \(\gamma_0 \) can exist for even \(k \).

Table II. Ten Altland-Zirnbauer symmetry classes and their topological classification

Class	\(T \)	\(C \)	\(\Gamma \)	Clifford algebra	extension	\(V \)	\(\pi_0(V) \)
A	0	0	0	\(Cl_{d+1} = \{\gamma_0, \gamma_1, \ldots, \gamma_d\} \)	\(Cl_d \rightarrow Cl_{d+1} \)	\(\text{C}_{0,d} \)	\(\mathbb{Z} \)
AII	0	0	1	\(Cl_{d+2} = \{\gamma_0, \gamma_1, \ldots, \gamma_d\} \)	\(Cl_{d+1} \rightarrow Cl_{d+2} \)	\(\text{C}_{1,d} \)	\(\mathbb{Z} \)
AI	+1	0	0	\(Cl_{d+2} = \{J_\gamma, T, TJ, \gamma_1, \ldots, \gamma_d\} \)	\(Cl_{d+2} \rightarrow Cl_{d+2} \)	\(\text{R}_{0,d} \)	\(\mathbb{Z} \)
BDI	+1	+1	1	\(Cl_{d+1,3} = \{J_\gamma_1, \ldots, J_\gamma_d, TCJ; C, CJ, \gamma_0\} \)	\(Cl_{d+1,2} \rightarrow Cl_{d+1,3} \)	\(\text{R}_{1-d} \)	\(\mathbb{Z}_2 \)
D	0	+1	0	\(Cl_{d,3} = \{J_\gamma_1, \ldots, J_\gamma_d; C, CJ, \gamma_0\} \)	\(Cl_{d,2} \rightarrow Cl_{d,3} \)	\(\text{R}_{2-d} \)	\(\mathbb{Z}_2 \)
DIII	-1	+1	1	\(Cl_{d,4} = \{J_\gamma_1, \ldots, J_\gamma_d; C, CJ, TCJ, \gamma_0\} \)	\(Cl_{d,3} \rightarrow Cl_{d,4} \)	\(\text{R}_{3-d} \)	\(\mathbb{Z} \)
AI	-1	0	0	\(Cl_{d,3} = \{J_\gamma_0, T, TJ, \gamma_1, \ldots, \gamma_d\} \)	\(Cl_{d,2} \rightarrow Cl_{d,3} \)	\(\text{R}_{4-d} \)	\(\mathbb{Z} \)
C	0	-1	0	\(Cl_{d+2,1} = \{J_\gamma_1, \ldots, J_\gamma_d; C, CJ, \gamma_0\} \)	\(Cl_{d+2,0} \rightarrow Cl_{d+2,1} \)	\(\text{R}_{6-d} \)	\(\mathbb{Z} \)
CI	+1	-1	1	\(Cl_{d+2,2} = \{J_\gamma_1, \ldots, J_\gamma_d; C, CJ, TCJ, \gamma_0\} \)	\(Cl_{d+2,1} \rightarrow Cl_{d+2,2} \)	\(\text{R}_{7-d} \)	\(\mathbb{Z} \)
\[\pi_0(\tilde{V}) = 0: \] At least one Dirac mass term \(\gamma_0 \) can be found for any \(k \).

We note that, for each symmetry class, the existence condition of a Dirac mass term in \(d \)-dimensional Dirac Hamiltonian is directly related to the classification of topological insulators/superconductors in the same symmetry class in \(d + 1 \) dimensions. This can be seen by noticing that the change in the index \(q \) of the classifying space \(R_q \) by \(-1\) (\(C_2 \) by \(-1 = +1 \mod 2\)) is equivalent to increasing the space dimension \(d \) by \(+1\) in Table II. For example, if a \(d \)-dimensional system is a boundary of a topological insulator/superconductor in \(d + 1 \) dimensions, then the nontrivial boundary states cannot be gapped. Naturally, this indicates that there is no Dirac mass term for the gapless Dirac fermions on the \(d \)-dimensional surface of a \((d + 1)\)-dimensional topological insulator/superconductor.

We also note that the existence condition of Dirac mass terms discussed in this Appendix gives a topological charge of gap-closing points located at time-reversal invariant momenta in the ten Altland-Zirnbauer symmetry classes. However, when gap-closing points are not located on time-reversal invariant momenta, their topological charge is related to the existence condition of a complex class (A or AIII), because time-reversal and particle-hole symmetries are not symmetries of a Dirac Hamiltonian for a single gap-closing point.

1. S. Murakami, New J. Phys. 9, 356 (2007).
2. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011).
3. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).
4. A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).
5. K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84, 075129 (2011).
6. G. B. Halász and L. Balents, Phys. Rev. B 85, 035103 (2012).
7. A. A. Zyuzin, S. Wu, and A. A. Burkov, Phys. Rev. B 85, 165110 (2012).
8. C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Phys. Rev. Lett. 108, 266802 (2012).
9. D. Bulmash, C.-X. Liu, and X.-L. Qi, Phys. Rev. B 89, 081106 (2014).
10. G. E. Volovik, The Universe in a Helium Droplet (Oxford, 2003).
11. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
12. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
13. D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
14. S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Phys. Rev. Lett. 108, 044005 (2012).
15. Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).
16. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013).
17. J. A. Steinberg, S. M. Young, S. Zaheer, C. L. Kane, E. J. Mele, and A. M. Rappe, Phys. Rev. Lett. 112, 036403 (2014).
18. M. Neupane, S. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, arXiv:1309.7892 [cond-mat.mes-hall].
19. S. Borisenko, Q. Gibson, D. Evtsushinsky, V. Zabolotnyy, B. Buchner, and R. J. Cava, arXiv:1309.7978 [cond-mat.mes-hall].
20. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Science 343, 864 (2014).
21. A. Kitaev, AIP Conf. Proc. 1343, 22 (2009).
22. T. Morimoto and A. Furusaki, Phys. Rev. B 88, 125129 (2013).
23. Without these assumptions, gap-closing (Dirac or Weyl) points can be always gapped out by inter-valley scattering.
24. A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
25. L. Fu and C. L. Kane, Phys. Rev. B 74, 195312 (2006).
26. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
27. D. Vollhardt and P. Wölfle, The superfluid phases of helium 3 (Taylor and Francis, 1990).
28. Y. Makhlin, M. Silaev, and G. E. Volovik, arXiv:1312.2677 [cond-mat.other].
29. P. Hořava, Phys. Rev. Lett. 95, 016405 (2005).
30. Y. X. Zhao and Z. D. Wang, Phys. Rev. Lett. 110, 240404 (2013).
31. K. Shiozaki and M. Sato, arXiv:1403.3331 [cond-mat.mes-hall].
32. M. A. Silaev and G. E. Volovik, Phys. Rev. B 86, 214511 (2012).
33. M. Sato, Phys. Rev. B 73, 214502 (2006).
34. B. Béri, Phys. Rev. B 81, 134515 (2010).
35. A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504 (2011).
36. S. Kobayashi, K. Shiozaki, Y. Tanaka, and M. Sato, arXiv:1403.6253 [cond-mat.supr-con].
37. F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 111, 056403 (2013).
38. H. Yao and S. Ryu, Phys. Rev. B 88, 064507 (2013).
39. S. A. Yang, H. Pan, and F. Zhang, arXiv:1402.7070 [cond-mat.supr-con].
40. T. Morimoto and A. Furusaki, Phys. Rev. B 89, 035117 (2014).
41. The extension problem in Eq. (32) is reduced to \(C_{0,2} \rightarrow C_{0,3} \), because \(C_{0,2} \) is isomorphic to the group of real 2 by 2 matrices and can be discarded in this case.
42. We consider the tensor product of \(C_{0,2} \) and each side of Eq. (40) and make use of the relations \(CH_{p,q} \otimes C_{2,0} \simeq C_{q+p,0} \) and \(CH_{p,q} \otimes C_{0,2} \simeq CL_{p,p+2} \). The tensor product
with $Cl_{0,2} \simeq \mathbb{R}(2)$ does not change the extension problem.

43 T. Senthil, M. P. A. Fisher, L. Balents, and C. Nayak, Phys. Rev. Lett. 81, 4704 (1998).

44 Z. Ringel, Y. E. Kraus, and A. Stern, Phys. Rev. B 86, 045102 (2012).

45 R. S. K. Mong, J. H. Bardarson, and J. E. Moore, Phys. Rev. Lett. 108, 076804 (2012).

46 H. Obuse, S. Ryu, A. Furusaki, and C. Mudry, arXiv:1310.1534 [cond-mat.mes-hall] (to appear in Phys. Rev. B).