Biosurfactant Production by *Cunninghamella phaeosphora* UCP 1303 Using Controlled Temperature Through of Arduino

Amanda B. Lins¹, Ana P. Bione¹, Tainã C.S. Fonseca¹, Thaís C. Silva², Paulo H. da Silva², Kyriale V. Morant³, Rosileide F.S. Andrade⁴ and Galba M. Campos-Takaki⁵*

¹Enviromental Process Development, Catholic University of Pernambuco, 50.050-900 Recife, PE, Brazil
²Chemical Engineering, Catholic University of Pernambuco, 50.050-900 Recife, PE, Brazil
³Chemical Engineering, São Paulo University (USP), 05508-900 São Paulo, SP, Brazil
⁴National Postdoctoral Program (PNPD-CAPES) - Postgraduate Programm in Development of Environmental Processes, Catholic University of Pernambuco, Recife, PE, Brazil
⁵Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco, 50.050-590 Recife, PE, Brazil

*Corresponding author

The objective of this study was to investigate the ability of *Cunninghamella phaeosphora* UCP 1303 to produce biosurfactant converting soybean oil and corn liqueur, using temperature monitoring through the Arduino and DS18B20 waterproof temperature sensor. Initially, a 10⁷ cells/mL suspension was inoculated and incubated under 150 rpm shaking at 25, 28 and 35°C during 96 h. Surface and interfacial tensions were determined by the Du Nouyri method and also the emulsification index and the dispersion test in water. The results demonstrated unprecedented use of Arduino in fermentation temperature control, with temperatures of 25°C and 35°C showing a surface tension reduction of 70 mN/m to 36.1 mN/m and 70 mN/m for 37.1 mN/m respectively. Fermentation temperature at 28°C presented the best results for reducing surface tension (70 mN/m to 28.1 mN/m) and interfacial tension (2.2 mN/m) with high potential of motor oil emulsion Burned (E₂₄ = 100%) and excellent dispersant properties (28.26 cm²) of motor oil burnt in water. The results showed that *C. phaeosphora* produced biosurfactant in low cost medium using agroindustrial residues; in addition, the excellent properties of the biosurfactant suggest its potential of application in the bioremediation of sites polluted by hydrophobic compounds.

Keywords

Soybean oil, Corn steep liqueur, Agroindustrial wastes, Arduino, DS18B20 sensor.

Introduction

Biosurfactants, also known as microbial surfactants, are amphipathic molecules having a hydrophobic (non-polar) and other polar hydrophilic region. Used mainly in the cleaning products industries, such as soaps and detergents, petroleum, cosmetics and hygiene products (Nitschke and Pastore, 2002). Due to its structure, surfactants have several properties, such as reduction of surface and interfacial tension, high emulsifying capacity, dispersant among others. However, because they originate from...
petroleum, they have high toxicity. In this context, the biosurfactants have the same properties, are non-toxic and are produced by microorganisms (bacteria, yeasts and filamentous fungi, these being less exploited), from renewable substrates (Barros et al., 2008; Colla et al., 2012).

Cunninghamella is filamentous fungus that is being used for the production of biosurfactants because it has the ability to metabolize xenobiotic compounds; in response to these, the hydrolases enzymes are excreted. This capability reflects its potential in processes of biodegradation, bioremediation and biotransformation (Eustáquio et al., 2003)

The biosurfactants can be used in the bioremediation, being used in the degradation of hydrocarbons in water through its capacity of emulsion and dispersion in biodegradation of pesticides, to emulsify and increase the solubility of hydrophobic contaminants in soil and water (Nitscheke and Pastore, 2002), in the removal of heavy metals such as uranium, cadmium and lead (Mulligan et al., 2001).

The objective of this study was to produce biosurfactant through *Cunninghamella phaeosphora* UCP 1303 converting agroindustrial wastes (soybean oil and corn liquer) digitally monitoring the temperature by the Arduino.

Materials and Methods

Microorganism and Maintenance media

Filamentous fungi was used *Cunninghamella phaeosphora* (UCP1303), isolated from the Caatinga of the State of Pernambuco and deposited in the Collection of Cultures UCP (Catholic University of Pernambuco). The strain was maintained in Potato Dextrose Agar medium at 5°C.

Biosurfactant production medium

The production medium used consisted of a base of salts (NH₄NO₃ - 0,1g; KH₂PO₄ - 0,02g; MgSO₄.7H₂O - 0,02g and glutamic acid – 1g) supplemented with 6% (v/v) of cornflower (CSL) and 2,5% (v/v) of post-fry soybean oil (SHOW), optimized through factorial planning DCCR 2² by Lins et al., (2016).

Substrates for the means of production

The post-fry soybean oil (SWO) yielded by the informal trade and maize (CSL) residue obtained from corn processing yielded by Corn Products Brasil, both locate in the state of Pernambuco, were used as substrates in the medium for the production of biosurfactant.

Production of biosurfactant

Inoculum

The spores of *C. phaeosphora* were collected and counted in a Neubauer chamber for a suspension of 10⁷. Subsequently, 2 ml of the spore suspension was transferred to the surface of the Sabouraud medium in the Petri dishes, kept at 28°C for 24h, and then 10 discs were cut and transferred to Erlenmayer flasks containing the production medium, incubated at 150 rpm, temperatures of 25°C, 28°C and 35°C for 96h.

Temperature and pH determination

The temperature was determined by the DS18B20 sensor with the aid of Arduino Uno every 10 min. In the fermentation with temperature at 25°C the power supply was a 5 V charger and a microSD card was used to store the data and in the fermentation with temperature at 35°C was used a computer with power supply and storage. Two libraries were added to the Arduino software, One
Wire and Dallas Temperature. These two libraries worked together to extract the data from the DS18B20 waterproof temperature sensor. The DS18B20 sensor can perform temperature readings in a range from -50°C to 125°C with an accuracy up to ± 0.5°C and send the information to the microcontroller using only one wire. Each sensor has a physical address (identified by the OneWire library), so it was possible to place several sensors on a single bus, using a single microcontroller port (Thomsen, 2015). The pH adjustment to 5.5 was determined by potentiometry.

Separation of metabolic fluid

After the incubation time, the vials were withdrawn from orbital shaking. The metabolic liquid was separated from the biomass through 120 mesh nylon filtration. Samples were centrifuged at 4000 rpm at 10°C for 15 min and the cell free supernatant was stored for future analyzes.

Biosurfactant potential evaluation tests

Determination of surface and interfacial tension

The monitoring of the biosurfactant production in the metabolic liquid was performed by measuring the surface and interfacial tension in the Du Nuoy ring method using the automated tensiometer, according to the methodology of Kuykina et al., (2001). The interfacial tension was evaluated after the addition of n-hexadecane in the supernatant according to Darvishi et al., (2011).

Emulsification Index (IE)

In the test tubes, 1mL of the cell free metabolic liquid and 1mL of the different oils were added: vegetal (Oil of Mamona and Maize Oil) and two oils derived from petroleum (Diesel Oil and Burnt Engine Oil). The tubes were vortexed for 2 min at full speed and allowed to stand for 24 hours according to Cooper and Goldenberg (1987). The percentage emulsification was determined from Equation 1 below.

\[E = \frac{\text{height of the emulsified layer (cm)}}{\text{total height of the liquid (cm)}} \times 100 \]

Equation 1

Absorption capacity of biosurfactant

The dispersion capacity of motor burned oil in water by the biosurfactant was investigated. To this end, 20mL of distilled water was contaminated with 0.5mL of burned engine oil and 1mL of cell-free metabolic fluid was added. The diameter of the free zone formed after the addition of the biosurfactant-containing metabolic liquid to indicate the ability to disperse hydrophobic substrates was calculated as an oil displacement area (ODA) according to Morikawa et al., (1993) using equation 2 according to Manocha et al., (1980).

\[\text{ODA} = \frac{22 \times (\text{radius})^2}{7} \text{ cm}^2 \]

Equation 2

Results and Discussion

Influence of temperature on the production of biosurfactant using Arduino

The schedules used by the software with the hardware of the Arduino were efficient, being possible to verify more precisely the temperatures of the shaker in the production of the biosurfactant. No significant temperature variations were observed in the biosurfactant production with a temperature of 25°C, varying the average hourly temperatures between 25.46°C and 25.75°C, as shown in Figure 1. However, in fermentation with a temperature of 35°C, occurred significant and distant variations of
the determined temperature, the average temperatures varied between 35.98 and 39.71°C (Figure 2), reaching peaks of 40°C.

Production of biosurfactant by *Cunninghamella phaeosphora* in medium containing corncine and soybean oil after frying

According to the results obtained for the production of biosurfactant, in the medium constituted by 2.5% of oil and 6% of corncine, in the condition of fermentation at 28°C there was the maximum reduction of the surface tension of 70 to 28.1 mN and interfacial from 40 to 2.2 mN / m (Table 1). The biosurfactant produced by *C. phaeosphora* by fermentation at 28°C showed excellent results compared to the surface tension obtained by the biosurfactant synthesized by *Cunninghamella elegans* that was 28.2 mN / m (SOUZA, 2015).

Emulsifying property

Some biosurfactants have the ability to form and stabilize emulsions. In addition, biosurfactants with emulsifying properties are those capable of forming emulsions with percentages above 50% (Willumsen and Karlson, 1996). In this context, the biosurfactant produced by *C. phaeosphora* in the fermentation condition at 28°C was able to form a stable emulsion, with IE₂₄ of 93.62% using as the hydrophobic substrate the motor burned oil (Figure 3).

The biosurfactants obtained in the fermentations at 25°C and 35°C presented satisfactory indices, 51.9157% and 54.708%, 53.448%, respectively.

Dispersibility of engine oil burned by the biosurfactant produced by *Cunninghamella phaeosphora*

The biosurfactant of *C. phaeosphora* produced in the fermentation condition at 28°C dispersed 28.26 cm² of the burned motor oil (Figure 4), presenting a similar result to Silva *et al.*, (2014) which reached a maximum dispersion index of 37.36 cm², considering that *Cunninghamella echinulata* was used in the production of the biosurfactant and both occupied the entire region of the plaque.

Fig.1 Variation of the means of the fermentation temperatures of the biosurfactant production process at 25°C
Fig. 2 Variation of the means of fermentation temperatures of the biosurfactant production process at 35°C

![Graph showing variation of fermentation temperatures over time](image)

Fig. 3 Determination of the emulsification index (IE$_{24}$) in the metabolic liquid of *C. phaeosphora* using different hydrophobic substrates

![Bar chart showing emulsification index at different temperatures](image)
Fig. 4 Determination of ODA in the metabolic liquid of *C. phaeosphora* using different hydrophobic substrates

![Graph showing ODA determination](image)

Table. 1 Produção de biossurfactante por *Cunninghamella phaeosphora* UCP 1303 determinada através das médias das tensões superficiais no líquido metabólico, após as 96 horas de cultivo

Conditions	Average surface tension (mN/m)	Mean of interfacial tension (mN/m)
25 °C	36.1	21.4
28 °C	28.1	2.2
35 °C	37.1	14.9

At the end, the ability of the microorganism *Cunninghamella phaeosphora* to metabolize the SWO and CSL substrates of the low cost production medium with the production of biosurfactant (extracellular compound) was verified. It was also possible to evaluate that 28 °C was the best fermentation temperature for the production of biosurfactant. This biosurfactant that was produced by *C. phaeosphora* demonstrated potential of use in industrial applications and bioremediation of petroleum products.

The unprecedented use of programming and arduino in temperature monitoring has been shown to be effective throughout the biosurfactant production process. The DS18B20 waterproof temperature sensor did not interfere with the process and did not contaminate the microbial cultures.

Finally, the results obtained in this study are promising, their applicability is diverse, either in the use of a system of accurate temperature monitoring, cheap and that does not interfere in the system, or in environmental treatments of ecosystems contaminated with oils, or in industrial processes with the production and commercialization of a natural biosurfactant.

Conflict of Interest

The authors confirm that this article content has no conflict of interest.
Acknowledgments

The authors wish to thank the Brazilian Research Council (CNPq), Brazil, the Coordination for Improvement of Higher Level Education (CAPES), Brazil and the Foundation for Support of Science and Technology of the State of Pernambuco - FACEPE, Brazil. Special thanks are given to Catholic University of Pernambuco for making facilities and infrastructure available for the conduct of this research.

References

Alexandre, V. M. F., Castro, T. M. S., Machado, J., Santiago, V., de Cerqueira, A. C. F. P., Freire, D. and Cammarota, M. 2015. Minimização de resíduos sólidos por adição de biossorvente em sistema de lodos ativados tratando efluente de refinaria de petróleo. Blucher Chemical Engineering Proceedings. 1(2): 7530-7537.

Barros, F. F. C., Quadros, C. P. and Pastore, G. M. 2008. Propriedades emulsificantes e estabilidade do biossorvente produzido por Bacillus subtilis em manipueira. Ciência e Tecnologia de Alimentos, 28(4): 979-985.

Campos, J. M., Stamford, T.L.M. and Sarubbo, L. A. 2015. Utilização de biossorvente como substituto aos emulsificantes sintéticos em maioneses. Blucher Chemical Engineering Proceedings. 1(2): 4948-4955.

Colla, L. M., Hemkemeier, M. and Gil, A. S. L. 2012. Biossorção de cádmio e produção de biossorventes por fungos filamentosos em fermentação submersa. Revista CIATEC – UPF. 4, 1-10.

Cooper, D. G., Goldenberg, B. G. 1987. Surface-Active Agents from two Bacillus Species. Applied and Enviromental Microbiology. 53(2): 224-229.

Darvishi, P., Ayatollahia, S., Mowlaa, D. and Niazi, A. 2011. Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Journal Colloids and Surfaces B: Biointerfaces. 84, 292–300.

Eustáquio, W. V., Soares, M. R., HIPÓLITO, A. S., Medeiros, E. V., Silva, G. M. C. and Maracaja, P. B. 2003. Caracterização bioquímica e enzimática de Cunninghamella isoladas de manguezel. Revista de biologia e ciências da terra. 3(2).
correlation with virulence of different strains. J. Gen. Microbiol. 177, 147-154.
Morikawa, M. Daido, H., Takao, T. et al., 1993. A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. Journal of Bacteriology. 175(20): 6459-6466.
Mulligan, C. N. 2005. Environmental applications for biosurfactants. Environmental pollution. 133, 183-198.
Nitschke, M. and Pastore, G. M. 2002. Biosurfactantes: propriedades e aplicações. Química Nova. 25(5): 772-776.
Schenberg, A. C. G. 2010. Biotecnologia e desenvolvimento sustentável. Dossiê Biotecnologia. 24(70).
Soares, A. K. S. N., Souza, R. R. 2016. Utilização de biosurfactante no escoamento de petróleo em campo maduro. Scientia Plena. 12(5).
Souza, D. G. 2015. Produção de quitina, quitosana e biosurfactante por Cunninghamella elegans UCP/WFCC 0542 em meio suplementado com resíduos agroindustriais. MSc. Dissertation, Catholic University of Pernambuco, Recife, Brazil.
Thomsen, A. 2016. Medindo temperatura debaixo d’água com DS18B20.
Velloso, F. Informática: Conceitos Básicos-9ª Edição. Elsevier Brasil, 2014.
Willumsen, Pia A., Karlson, Ulrich. 1996. Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation. 7(5): 415-423.

How to cite this article:

Amanda B. Lins, Ana P. Bione, Tainã C.S. Fonseca, Thaís C. Silva, Paulo H. da Silva, Kyriale V. Morant, Rosileide F.S. Andrade and Galba M. Campos-Takaki. 2017. Biosurfactant Production by Cunninghamella phaeosphora UCP 1303 Using Controlled Temperature Through of Arduino. Int.J.Curr.Microbiol.App.Sci. 6(12): 2708-2715. doi: https://doi.org/10.20546/ijcmas.2017.612.314