Hyperplane arrangements, M-tame polynomials and twisted cohomology

Alexandru Dimca

1 Introduction

Let $\mathcal{A} = \{H_1, ..., H_d\}$ be an affine essential hyperplane arrangement in \mathbb{C}^{n+1}, see [OT1], [OT2] for general facts on arrangements. We set as usual $M = M(\mathcal{A}) = \mathbb{C}^{n+1} \setminus X$, X being the union of all the hyperplanes in \mathcal{A}. One of the main problems now in hyperplane arrangement theory is to study the cohomology of the complement M with coefficients in some local system L on M, see for instance the introduction and the references in [CDO] as well as [OT2]. A rank one local system L on $M(\mathcal{A})$ corresponds to a homomorphism

$$\pi_1(M(\mathcal{A})) \sim \mathbb{Z}^d \to \mathbb{C}^*$$

i.e. such a local system L is determined by a collection $\lambda(L) = (\lambda_1(L), ..., \lambda_d(L))$ of d non-zero complex numbers. Here $\lambda_j(L)$ is the monodromy of the local system L about the hyperplane H_j. We call the local system L equimonodromical if all these monodromies $\lambda_j(L)$ are the same, i.e. there is $\lambda \in \mathbb{C}^*$ such that $\lambda_j(L) = \lambda$ for all $j = 1, ..., d$. In such a situation we denote the corresponding local system by L_λ. We assume in the sequel that $\lambda_j(L) \neq 1$ for all $j = 1, ..., d$, the remaining cases being essentially reduced to this one using [Q]. Then, there are unique integers $N > 1$ and $0 < e_j < N$ for $j = 1, ..., d$ such that

$$g.c.d(e_1, ..., e_d) = 1 \quad \text{and} \quad \lambda_j(L) = \exp(2\pi i e_j/N)$$

for all $j = 1, ..., d$. We set $e = (e_1, ..., e_d)$.

For any $i = 1, ..., d$, let $\ell_i = 0$ be an equation for the hyperplane H_i and consider the product

$$f_e = \prod_{i=1,d} \ell_i^{e_i} \in \mathbb{C}[x_0, ..., x_n].$$
Let \(d_e = e_1 + \ldots + e_d \) be the degree of the polynomial \(f_e \). When \(e_j = 1 \) for all \(j \), then we simply write \(f \) for the corresponding product. Note that \(\text{deg}(f) = d \) and \(f = 0 \) is an equation for the union \(X \).

When the arrangement \(A \) is central, i.e. \(0 \in H_i \) for all \(i = 1, \ldots, d \), the above polynomial \(f \) is homogeneous and there is a lot of interest in the associated Milnor fiber

\[
F = F(A) = f^{-1}(1)
\]

and the corresponding monodromy action \(h^q : H^q(F, \mathbb{C}) \to H^q(F, \mathbb{C}) \) coming from the obvious fibration

\[
F \to M \to \mathbb{C}^*
\]

see for instance [CS]. In particular, it is known that

\[
dim H^q(M, L_\lambda) = \dim \ker (h^q - \lambda Id) + \dim \ker (h^{q-1} - \lambda Id)
\]

see for instance [DN2]. If we denote by \(M^* = M^*(A) \) the quotient \(M(A)/\mathbb{C}^* \subset \mathbb{P}^n \) and if \(\lambda^d = 1 \), then there is an induced equimonodromical local system \(L_\lambda^* \) on \(M^*(A) \) and we have

\[
dim H^q(M^*, L_\lambda^*) = \dim \ker (h^q - \lambda Id)
\]

see [CS]. When the local system \(L \) is not equimonodromical, then one still has an equality

\[
dim H^q(M^*, L) = \dim \ker (h^q - a Id) + \dim \ker (h^{q-1} - a Id)
\]

where \(a = \exp(2\pi i/N) \), \(F_e = f^{-1}_e(1) \) and \(h_e : F_e \to F_e \) is the corresponding monodromy operator, see [DN2].

When the arrangement \(A \) is not central, the usual way to study the cohomology groups \(H^*(M(A), L) \) is to identify \(A \) to a projective arrangement \(A_p \) in \(\mathbb{P}^{n+1} \) by adding the hyperplane at infinity, hence \(|A_p| = |A| + 1 = d + 1 \), and then study the Milnor fibration of the central arrangement \(B = \text{Cone}(A_p) \) in \(\mathbb{C}^{n+2} \) since \(M^*(B) = M(A) \). This approach has at least two disadvantages:

(i) we have to increase dimensions by one, e.g. if we start with a line arrangement \(A \), the Milnor fiber \(F(B) \) is a surface;

(ii) if we are interested in the special class of equimonodromical local systems \(L_\lambda \) and if \(a^{d+1} \neq 1 \), then the local system on \(M^*(B) \) naturally associated to \(L_\lambda \) on \(M(A) \), is no longer equimonodromical.
The purpose of this note is to introduce a new approach to the study of the affine arrangement \mathcal{A}, generalizing the central arrangement case and avoiding the above two problems. This approach is based on the study of the topology of the function $f : \mathbb{C}^{n+1} \to \mathbb{C}$ and of its monodromy representation, using the tools developed over the years by many authors, see for instance [B], [NZ1], [NZ2], [PZ] and the new progress on Alexander invariants in [DN2].

2 Affine arrangements and M-tame polynomials

First we recall the notion of an M-tame polynomial introduced in [NZ1] and later studied in [NZ2], [NS]. For any polynomial $g \in \mathbb{C}[x_0, \ldots, x_n]$ consider the set

$$M(g) = \{x \in \mathbb{C}^{n+1} | \text{grad}(g)(x) = c\mathfrak{x} \text{ for some } c \in \mathbb{C}\}$$

where $\text{grad}(g)(x) = (g_0(x), \ldots, g_n(x))$, with g_k the partial derivative of g with respect to x_k and \mathfrak{x} is the complex conjugate of x.

Definition 2.1 We say that the polynomial g is M-tame if for any sequence $\{z_k\} \subset M(g)$ with $\lim|z_k| = +\infty$ we have $\lim|g(z_k)| = +\infty$.

It is clear that an M-tame polynomial can have only isolated singularities (see also the proof of Corollary 2.2 below). Therefore our polynomial f associated to an affine arrangement cannot be M-tame as soon as $n > 1$ (except very special cases). Our first result says that this is not a major drawback.

Theorem 2.1 Let $\mathcal{A} = \{H_1, \ldots, H_d\}$ be an affine essential hyperplane arrangement in \mathbb{C}^{n+1} given by the equation $f = 0$. Then the following hold.

(i) For $n = 1$ the polynomial f is M-tame.

(ii) For $n > 1$ as well as for $n = 1$ and $d_e > d$, the polynomial f_e is M_0-tame in the following sense: for any sequence $\{z^k\} \subset M(f_e) \setminus X$ with $\lim|z^k| = +\infty$ we have $\lim|f_e(z^k)| = +\infty$.

Proof.

The proof of the first claim is easily reduced to the second and we leave it to the reader. The fact that for $n = 1$ the polynomial f has a good behaviour at infinity also follows from our discussion in the next section.

The proof of the second claim above is an improved version of the proof of Lemma 4 in [B]. Assume that there is a sequence of points $\{z^k\} \subset M(f_e) \setminus X$ with $\lim|z^k| = +\infty$ and $\lim|f_e(z^k)| \neq +\infty$. Then, by passing to a subsequence, we can assume that $\lim f_e(z^k) = b \in \mathbb{C}$.

Since the arrangement \mathcal{A} is essential, the set of indices j such that $\lim |\ell_j(z^k)| = +\infty$ is not empty. By renumbering the hyperplanes, we can assume that $\lim |\ell_m(z^k)| = 0$ exactly for $1 \leq m \leq q$ with $q \geq 1$ (this set is non-empty since $\lim f_m(z^k) = b$). We set

$$g = \prod_{m \leq q} \ell_m^{e_m} \quad \text{and} \quad h = \prod_{m > q} \ell_m^{e_m}.$$

By a linear unitary change of coordinates we can assume that $H_1 \cap \ldots \cap H_q : x_0 = \ldots = x_p = 0$ with $p \leq q - 1$. (The unitary requirement is essential, since the condition of M_0-tame is a condition of transversality of the fibers of f_e with respect to large spheres centered at the origin, and such spheres being invariant by unitary transformations, it follows that the condition M_0-tame is also invariant.) Then ℓ_m for $1 \leq m \leq q$ is a linear combination of x_0, \ldots, x_p and g is a homogeneous polynomial of degree $e_i = e_1 + \ldots + e_q$ in $\mathbb{C}[x_0, \ldots, x_p]$. Now write $z^k = (z^k_0, \ldots, z^k_n)$ in the above fixed coordinate system and hence $z^k_m \to 0$ for $1 \leq m \leq p$. There is an integer $K > p$ such that $|z^k_K| \to +\infty$.

Consider the obvious equality

$$\frac{\text{grad}(f_e)}{f_e} = \frac{\text{grad}(g)}{g} + \frac{\text{grad}(h)}{h}.$$

By passing to a subsequence if necessary, we can assume that $\ell_j(z^k)$ is bounded away from 0 for $j > q$. It follows that $\frac{\text{grad}(h)}{h}$ is bounded on the sequence z^k. This implies that for $i > p$, $\frac{f_{e,i}}{f_e} = \frac{h_i}{h}$ is bounded on the sequence z^k.

Consider now the equality

$$\sum_{i=0,p} f_{e,i}(z^k) \frac{z_i^k}{f_e(z^k)} = \sum_{i=0,p} g_i(z^k) \frac{z_i^k}{g(z^k)} + \sum_{i=0,p} h_i(z^k) \frac{z_i^k}{h(z^k)}.$$

By Euler formula, the first term in the right hand side is equal to $q_e > 0$, while by the above discussion the second term tends to zero. It follows that there is an integer $L \leq p$ such that $\frac{f_{e,L}(z^k)}{f_e(z^k)} \to +\infty$. Since $z^k \in M(f) \setminus X$ we have

$$|z^k_K| \frac{f_{e,L}(z^k)}{f_e(z^k)} = |z^k_L| \frac{f_{e,K}(z^k)}{f_e(z^k)}.$$

This leads to a contradiction, as the left hand side goes to infinity while the right hand side goes to zero, by the definition of K and L.

This result has the following corollaries, saying that essentially \(f_e \) behaves like an \(M \)-tame polynomial. In fact, only the high connectivity of the general fiber \(F_e \) of \(f_e \) is lost. On the other hand, the defining condition on the multi-index \(e \) implies that this general fiber \(F_e \) is connected, see [DP1], Remark (I).

Corollary 2.1 For any \(t \in \mathbb{C} \) the inclusion of the fiber \(F_t = f_e^{-1}(t) \) into the corresponding tube \(T_t = f_e^{-1}(D_t) \), with \(D_t \) a small disc in \(\mathbb{C} \) centered at \(t \), is a homotopy equivalence. In particular, both \(X = F_0 \) and \(T_0 \) have the homotopy type of a bouquet of \(n \)-dimensional spheres.

Proof. The condition of \(M \)-tame says that the fibers of \(f_e \) are transversal to large enough spheres in \(\mathbb{C}^{n+1} \) centered at the origin. The weaker condition \(M_0 \) says the same thing, if we interpret transversality to the special fiber \(X = F_0 \) in the stratified sense. So the retractions from \(T_t \) to \(F_t \) obtained in the \(M \)-tame case in [NZ1], [NZ2] by integrating vector fields exist in our case as well. The fact that \(X \) has the homotopy type of a bouquet of \(n \)-dimensional spheres is well known, see for instance [DP].

Let \(\mu(\mathcal{A}) \) denote the number of spheres in the above bouquet. This number is determined by the following result, see [Da] for a different approach.

Corollary 2.2 The function \(f_e : M(\mathcal{A}) \to \mathbb{C} \) induced by the polynomial \(f_e \) has only isolated singularities and

\[
\sum_{x \in M(\mathcal{A})} \mu(f_e, x) = \mu(\mathcal{A}) = (-1)^{n+1} \chi(M(\mathcal{A})).
\]

Proof.

If \(f_e | M(\mathcal{A}) \) would have non-isolated singularities, then we can find \(t \in \mathbb{C}^* \) and an irreducible affine algebraic variety \(Y \subset F_t \cap \text{Sing}(f_e) \) with \(\text{dim } Y > 0 \). Any sequence of points in \(Y \) tending to infinity would then contradict the \(M_0 \)-tameness of \(f_e \).

To complete the proof, we can use the standard trick used already by Broughton in [B] and deduce that \(\mathbb{C}^{n+1} \) can be obtained from \(T_0 \) by adding \((n+1) \)-cells in number equal to the above sum. Then we have just to use the obvious equalities \(\chi(X) = 1 + (-1)^n \mu(\mathcal{A}) \) and \(\chi(M(\mathcal{A})) = 1 - \chi(X) \).

The following result explains the interest of this point of view for the computation of the twisted cohomology of the complement \(M(\mathcal{A}) \) with values in a rank one local system \(L \). For basic facts on the monodromy at infinity of polynomials we refer to [DNT].
Theorem 2.2 (i) For any integer k such that $0 < k < n$, the restriction of the constructible sheaf $R^k f_\ast \mathbb{Q}$ to \mathbb{C}^* is a local system corresponding to the monodromy operator

$$M^k_e : H^k(F_e, \mathbb{Q}) \rightarrow H^k(F_e, \mathbb{Q}).$$

Here F_e is the general fiber of the polynomial f_e and M^k_e can be taken to be either the monodromy about the fiber $F_0 = X$ or, equivalently, the monodromy at infinity of the polynomial f_e.

(ii) Let F_e be the \mathbb{Z}-cyclic covering of $M(A)$ corresponding to the kernel of the morphism $f_{\ast} : \pi_1(M(A)) \rightarrow \pi_1(\mathbb{C}^*)$ and consider $H_\ast(F_e, \mathbb{Q})$ as a $\mathbb{Q}[t, t^{-1}]$-module in the usual way. Then there is an epimorphism of $\mathbb{Q}[t, t^{-1}]$-modules

$$H_\ast(F_e, \mathbb{Q}) \rightarrow H_\ast(F_e, \mathbb{Q})$$

where in the first module the multiplication by t is either the monodromy about the fiber $F_0 = X$ or the monodromy at infinity of the polynomial f.

Proof. The first claim follows from the fact that the isolated singularities of $f|_{M(A)}$ produce no changes in the topology of the fibers in dimensions $< n$. In particular, the two monodromy operators in the claim (i) above coincide.

Using the above construction of $M(A)$ starting from a punctured tube about $X = F_0$ (which can also be done starting from a punctured tube about the infinity, i.e. $f^{-1}(\mathbb{C}\setminus D_R)$, where D_R is a disc in \mathbb{C} of radius $R > 0$ centered at the origin), the proof is similar to the proofs in [DN2]. Easy examples in the case $n = 1$ (to be treated in detail in the next two sections) shows that the two monodromy operators in the claim (ii) above do not coincide in general.

Corollary 2.3 (i) For any integer k such that $0 < k < n$, one has

$$\dim H^k(M(A), L) = N(k, a) + N(k - 1, a)$$

where $N(k, a) = \dim \ker (M^k_e - a\text{Id})$ and $a = \exp(2\pi i/N)$.

(ii) $\dim H^n(M(A), L) \leq N(n, a) + N(n - 1, a)$ and $\dim H^{n+1}(M(A), L) \leq N(n, a)$.

(iii) Both claims (i) and (ii) above hold for the trivial local system \mathbb{C}_M by taking $a = 1$.

Proof. This claim follows from the fact that $M(A)$ is obtained, exactly as in the proof above, from the punctured tube $T_0^* = T_0 \setminus X$ by attaching $(n + 1)$-cells, see also [DN2]. It follows that the inclusion $T_0^* \rightarrow M(A)$ induces an isomorphism

$$H^k(M(A), L) \simeq H^k(T_0^*, L)$$
for $0 < k < n$, and hence the result is obtained exactly as the corresponding result for central arrangements mentioned in the Introduction. For $k = n$ the inequality comes from the epimorphism in Theorem 2.2, (ii). The last claim is obvious from the previous discussion. □

Remark 2.1 (i) The $\mathbb{Q}[t, t^{-1}]$-modules $H_m(F, \mathbb{Q})$ are exactly the Alexander invariants of the hypersurface X as discussed in [L], [D2], [DN2] and, in the case $n = 1$, in [K].

(ii) The M_0-tame polynomials have better topological properties than the semitame polynomials considered for instance in [PZ]. In particular, for an M_0-tame polynomial the monodromy at infinity can be realized as the monodromy à la Milnor, i.e. the total space can be chosen to be the complement of X in a very large sphere in \mathbb{C}^{n+1} centered at the origin as in the case of M-tame polynomials, see [NZ2].

(iii) It is not clear whether the monodromy operators $M^k_e : H^k(F_e) \to H^k(F)$ for $0 < k < n$ are semisimple. For $k = 1$, this is the case for the eigenvalue $\lambda = 1$, see [DS]. In the next section we also show that multiplication by t on $H^1(F, \mathbb{C})$ is semisimple when $n = 1$.

The following result describes a way to compute the zeta-function

$$Z(f_e, 0)(t) = \prod_m (\det(Id - tM^m_e))^{-1}$$

of the monodromy operator $M_{e,0}$ of the polynomial f_e about the fiber $X = F_0 = f_e^{-1}(0)$.

Theorem 2.3 The direct image functor Rf_* commutes on the constant sheaf \mathbb{C} to the vanishing cycle functor φ_f. In particular

$$Z(f_e, 0) = \prod_{S \in S} Z(f_e, x_S)^{\chi(S)}$$

where S is a constructible regular stratification of X with connected strata such that all the cohomology sheaves $H^m(\varphi_f \mathbb{C})$ are locally constant along the strata of S, x_S is an arbitrary point in the stratum S and $Z(f_e, x_S)$ is the local zeta-function of the function germ (f_e, x_S).

Proof.

Exactly as in the case of an M-tame polynomial treated in [NS], the direct image functor Rf_* commutes on the constant sheaf \mathbb{C} to the vanishing cycle functor φ_f. The formula for the zeta-function is similar to the one in the proper case obtained in [GLM] and is treated in detail for the case of tame polynomials in [D4]. □
Note that the above commutativity still holds when we replace the functor \(\varphi_f \) by the subfunctor \(\varphi_{f,\lambda} \) which takes only the vanishing cycles corresponding to a fixed eigenvalue \(\lambda \). In particular \(\varphi_{f,\lambda} \mathbb{C} = 0 \) implies \(N(k, \lambda) = 0 \) for all \(k \). This is an effective way to get vanishing (or upper bound) results for the cohomology groups \(H^*(M(\mathcal{A}), L_\varphi) \), compare to [CDO], Corollary 16. In particular, this remark combined with Corollary 2.3 yields the following.

Corollary 2.4 If \(X \) is a normal crossing divisor and \(\lambda_j(L) \neq 1 \) for all \(j = 1, ..., d \), then \(H^q(M(\mathcal{A}), L) = 0 \) for all \(q < n \).

3 Line arrangements (equimonodromical case)

In this section we assume that \(\mathcal{A} \) is an essential line arrangement in the plane \(\mathbb{C}^2 \). Let \(n_k \) be the number of \(k \)-fold intersection points in \(X \). The following formulas are easy to deduce.

\[
\chi(M(\mathcal{A})) = \mu(\mathcal{A}) = 1 - d + \sum_{m \geq 2} n_m (m - 1).
\]

\[
b_1(F) = 1 - d + \sum_{m \geq 2} n_m (m - 1)m.
\]

Indeed, the first formula follows from Corollary 2.2 and the additivity of Euler characteristic with respect to constructible partitions. The second equality comes from the relation

\[
b_1(F) = \sum_{x \in \mathbb{C}^2} \mu(f, x) = \chi(M(\mathcal{A})) + \sum_{x \in X} \mu(f, x).
\]

Assume that the \(d \) lines in \(\mathcal{A} \) have \(p \) distinct directions and let \(k_j \) be the number of lines having the \(j \)-th direction. A standard computation shows that the genus (of a smooth projective model) of the general fiber \(F \) of the defining polynomial \(f \) is given by

\[
g = \text{genus}(F) = \frac{(d - 1)(d - 2)}{2} - \sum_{j=1,p} k_j (k_j - 1) \frac{2}{2}.
\]

One can determine the resolution graph of \(f \) as defined in [ACD] in a simple way. In fact \(X \) intersects the line at infinity \(L_\infty \) in exactly \(p \) points, say \(A_1, ..., A_p \) (corresponding to the \(p \) distinct directions of lines in \(X \)). Each of these points has to be blown-up, creating thus an exceptional curve \(E_j \). The proper transform of \(X \) cuts each \(E_j \) in exactly \(k_j \) points, and
each of them has to be blown-up several times to arrive at a dicritic of degree one. Hence
the total number of dicritics is
\[\delta(f) = \sum_{j=1,p} k_j = d. \]

This gives the following.

Corollary 3.1 Let \(n(F_t) \) denote the number of irreducible components of the fiber \(F_t \). Then Kaliman’s inequality
\[\delta(f) - 1 \geq \sum_t (n(F_t) - 1) \]
is in our situation an equality. In particular, all the fibers \(F_t \) for \(t \neq 0 \) are irreducible.

It was known that this inequality is an equality when the general fiber \(F \) is a rational
curve (i.e. \(g = 0 \)), see [Ka], [ACD], but here we are not in this case in general, as can easily be verified using the above formula for the genus \(g \). One also has \(\dim \ker (M_{\infty}^1 - \text{Id}) = \delta(f) - 1 \)
for any polynomial \(f : \mathbb{C}^2 \rightarrow \mathbb{C} \), see [D3]. Therefore the equality \(\delta(f) = d \) implies that
\[\dim \ker (M_{\infty}^1 - \text{Id}) = b_1(M(\mathcal{A})) - 1. \]

By Corollary 2.3 (iii), we get the same equality when \(n > 1 \).

The multiplicity of \(f \) along the line at infinity \(L_\infty \) is \(d \), along the exceptional curve \(E_j \) is \(d - k_j \) and then decreases to one for each exceptional curve just before a dicritic. Applying A’Campo’s formula for the zeta-function as in [ACD] gives the following formula for the characteristic polynomial of the monodromy at infinity acting on \(H^1(F, \mathbb{C}) \).
\[\Delta_\infty(t) = (t-1)(t^d - 1)^{p-2} \prod_{j=1,p} (t^{d-k_j} - 1)^{k_j-1}. \]

Comparing the degree of this polynomial to the previous formula for \(b_1(F) \) we get the following relation among the numerical data associated to the line arrangement \(\mathcal{A} \).

Corollary 3.2
\[1 - d + \sum_{m \geq 2} n_m(m-1)m = (d - 1)^2 - \sum_{j=1,p} k_j(k_j - 1). \]
It is also easy to compute the characteristic polynomial of the monodromy at zero acting on $H^1(F)$. The result is the following.

$$\Delta_0(t) = (t - 1)^{\mu(A)} \prod_{m \geq 2} [(t - 1)(t^m - 1)^{m-2}]^{n_m}.$$

Moreover, in this case the multiplication by t on $H_1(F, C)$ is semisimple. Indeed, using Theorem 2.2 we see that the multiplication by t cannot have larger Jordan blocks for the eigenvalue $\lambda = 1$ since this is the case for the monodromy at infinity, see [D3] and, more generally, [DS]. But the multiplication by t cannot have larger Jordan blocks for the eigenvalue $\lambda \neq 1$ since this is the case for the monodromy at zero, all the singularities on X being weighted homogeneous. This proves the final claim in Remark 2.1 (iii).

Let Δ_f be the greatest common divisor of the polynomials Δ_0 and Δ_{∞}. Let $N_f(\lambda)$, $N_0(\lambda)$ and respectively $N_{\infty}(\lambda)$ be the multiplicity of λ as a root of the polynomial Δ_f, Δ_0 and respectively Δ_{∞}. The following result can be proved exactly as Corollary 2.3.

Corollary 3.3 For any $\lambda \in \mathbb{C}^*$, $\lambda \neq 1$, we have

$$\dim H^1(M(A), L_\lambda) \leq N_f(\lambda) = \min(N_0(\lambda), N_{\infty}(\lambda)).$$

It is interesting to compare this upper-bound to the upper-bound obtained in [CDO], Theorem 13. Since this latter result applies to equimonodromical rank one local systems on complements of projective line arrangements in \mathbb{P}^2, we have to assume that $\lambda^{d+1} = 1$ such that the local system L_λ is a equimonodromical local system on the arrangement complement $M(A_p)$ as explained in the Introduction. Under this assumption, it follows that

$$N_{\infty}(\lambda) = \sum_j (k_j - 1)$$

where the sum is over all j such that $\lambda^{k_j+1} = 1$. Since $k_j + 1$ is exactly the multiplicity of the corresponding projective arrangement A_p at the point A_j, it follows that $N_{\infty}(\lambda)$ is exactly the upper-bound obtained in [CDO], Theorem 13 for the arrangement A_p and the line at infinity L_{∞} as a chosen hyperplane.

On the other hand, it is easy to see that

$$N_0(\lambda) = \sum_m n_m (m - 2)$$

where the sum is over all $m \geq 2$ such that $\lambda^m = 1$. The interested reader will have no problem to find explicit examples of line arrangements showing that both inequalities $N_{\infty}(\lambda) > N_0(\lambda)$
and \(N_0(\lambda) > N_\infty(\lambda) \) are possible. Hence in some cases, the last corollary above gives better upper-bounds than Theorem 13 in [CDO] (for any choice of the line at infinity!). One such example (not very interesting) is \(f = xy(x+1)(y+1)(x+y+10)(x+y+11)(x-y+100)(x-y+101) \) and \(\lambda \) a cubic root of unity. Here any line in the associated projective arrangement contains at least a triple point (and hence \(N_\infty(\lambda) \geq 1 \) for any choice of the line at infinity), but \(X \) has only normal crossings and hence \(N_0(\lambda) = 0 \).

4 Line arrangements (general case)

In this section we continue to use the notation from the previous section, in particular \(X \cap L_\infty = \{A_1, ..., A_p\} \). These \(p \) line directions induce a partition \((I_1, ..., I_p)\) of the set of indices \(\{1, ..., d\} \) such that \(i \in I_j \) if and only if \(H_i \cap L_\infty = A_j \). Let \(C_t = \overline{F_t} \) be the closure in \(\mathbb{P}^2 \) of the fiber \(F_t = f_{-t}(t) \). Then \(C_t \) has exactly \(p \) singularities along the line at infinity (namely at the points \(\{A_1, ..., A_p\} \)), and an easy computation using the additivity of Milnor numbers under a blow-up, see [D1], Proposition (10.27) shows that

\[
\mu(C_t, A_j) = d_e(d_j - k_j) + d_j(k_j - 2) + 1.
\]

Here \(d_j = \sum_{i \in I_j} e_i \) and \(k_j = |I_j| \). This formula implies in the usual way the following equality

\[
b_1(F_e) = 1 + d_e(d - 1) - \sum_{j=1,p} d_j k_j.
\]

One surprising consequence of this formula when compared to Corrolary 2.2 is that for a fixed arrangement \(A \) we have \(\sup_e b_1(F_e) = \infty \), i.e. the topology of the general fiber \(F_e \) becomes more and more complicated as the multiplicities \(e \) increase.

Similar considerations as in the previous section shows that \(\delta(f_e) = d \), hence the Kaliman’s inequality is an equality in this case as well and all the fibers \(F_t = f_{-t}(t) \) are irreducible for \(t \neq 0 \). Moreover, we get the following formula for the characteristic polynomial of the monodromy operator \(M_{1,e,\infty}^1 \) at infinity of the polynomial \(f_e \).

\[
\Delta_{e,\infty}(t) = (t - 1)(t^{de} - 1)^{p-2} \prod_{j=1,p} (t^{de-d_j} - 1)^{k_j-1}.
\]

Moreover, Theorem 2.3 can be applied in this situation and yields the following formula for the characteristic polynomial of the monodromy operator \(M_{1,e,0}^1 \) about the fiber \(F_0 = X \) of the polynomial \(f_e \).

\[
\Delta_{e,0}(t) = (t - 1) \prod_{\text{lines}} (t^{e_j} - 1)^{-\chi(H_j^0)} \prod_{\text{vertices}} (t^{d(I_v)} - 1)^{|I_v|^2}
\]
where the first product is over all the lines H_j and $H_j^0 = H_j \setminus \cup_{i \neq j} H_i$, and the second product is over all the vertices v, I_v denotes the set of m such that $v \in H_m$ and $d(J) = \sum_{m \in J} e_m$.

Let us investigate the multiplicity of a root $a = \exp(2\pi i / N)$ in these two polynomials $\Delta_{e,\infty}$ and $\Delta_{e,0}$ under the assumption that $\lambda_j(L) = a^{e_j} \neq 1$ for any j. Using the above formula for $\Delta_{e,0}$ it is easy to see that this multiplicity is

$$N_0(a) = \text{mult}(a, \Delta_{e,0}) = \sum_{\text{vertices}} (|I_v| - 2)$$

where the sum is over all vertices v in \mathbb{C}^2 such that $\prod_{j \in I_v} \lambda_j(L) = 1$. In a similar way

$$N_{\infty}(a) = \text{mult}(a, \Delta_{e,\infty}) = \sum_{\text{vertices}} (|I_v| - 2)$$

where the sum is over all vertices $v \in L_{\infty}$ of the corresponding projective arrangement A_p in \mathbb{P}^2 such that $\prod_{j \in I_v} \lambda_j(L_p) = 1$, L_p being the local system L regarded as a local system on $M(A_p)$. Then we have the following result.

Corollary 4.1 With the above notation, for any rank one local system L on $M(A)$ such that $\lambda_j(L) \neq 1$ for all j one has

$$\dim H^1(M(A), L) \leq \min(N_0(a), N_{\infty}(a)).$$

The upper-bound on $\dim H^1(M(A), L)$ obtained from $N_{\infty}(a)$ can be considered as a generalization of Theorem 13 in [CDO], which applies only to equimonodromical local systems.

On the other hand, it is easy to give a sheaf theoretic proof of the above Corollary. Indeed, the setting in the proof of Theorem 13 in [CDO] gives by a slight modification the upper-bound obtained from $N_{\infty}(a)$. To get the upper-bound $N_0(a)$, it is enough to play the same game of comparing the direct image Rj_*L with the direct image with compact supports $Rj_!L$ as in [CDO], but replacing the affine space \mathbb{C}^2 by a large closed ball B centered at the origin of \mathbb{C}^2 and taking j to be the inclusion $M(A) \cap B \to B$. Indeed, it is known that the inclusion $M(A) \cap B \to M(A)$ is a homotopy equivalence, see for instance [D2] p. 26 and hence $H^1(M(A), L) \simeq H^1(M(A) \cap B, L)$. Further details will be given elsewhere.

References

[ACD] E. Artal-Bartolo, P. Cassou-Noguès, A. Dimca : Sur la topologie des polynômes complexes, Progress in Math. 162, Birhäuser 1998, pp. 317-343.
[Bo] A. Bodin: Applications of the global mu-constant theorem, preprint 2001.

[B] S.A. Broughton: Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math. 92 (1988), 217–241.

[CS] D. Cohen, A. Suciu: On Milnor fibrations of arrangements, J. London Math. Soc. 51 (1995), 105–119.

[C] D. Cohen: Triples of arrangements and local systems, math.AG/0105062.

[CDO] D. Cohen, A. Dimca and P. Orlik: Nonresonance conditions for arrangements, math.AG/0210409.

[Da] J. Damon: Critical points of affine multiforms on the complements of arrangements, Singularity Theory, ed. J. W. Bruce and D. Mond, London Math. Soc. Lect. Notes 263 (1999), CUP, 25-53.

[D1] A. Dimca: Topics on Real and Complex Singularities, Vieweg Advanced Lecture in Mathematics, Friedr. Vieweg und Sohn, Braunschweig, 1987

[D2] A. Dimca: Singularities and Topology of Hypersurfaces, Universitext, Springer, 1992.

[D3] A. Dimca: Monodromy at infinity for polynomials in two variables, Journal of Algebraic Geometry 7 (1998), 771-779.

[D4] A. Dimca: Sheaves in Topology, book in preparation.

[DPu] A. Dimca, L. Paunescu : On the connectivity of complex affine hypersurfaces II, Topology 39(2000) 1035-1043.

[DN1] A. Dimca and A. Némethi: On the monodromy of complex polynomials, Duke Math. J. 108 (2001), 199-209.

[DN2] A. Dimca, A. Némethi: Hypersurface complements, Alexander modules and monodromy, math.AG/0201291.

[DP] A. Dimca and S. Papadima: Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements, math.AT/0101240.

[DS] A. Dimca and M. Saito: Monodromy at infinity and the weights of cohomology, math.AG/0002214 (to appear in Compositio Math.)
[GLM] S. Gusein-Zade, I. Luengo and A. Melle-Hernández: Partial resolutions and the zeta-function of a singularity, Comment. Math. Helv. 72(1997), 244-256.

[Ka] S. Kaliman: Two remarks on polynomials in two variables, Pacific J. Math. 154(1992), 285-295.

[K] Viktor Kulikov: Alexander polynomials of plane algebraic curves, Russian Acad. Sci. Izvestia Math. 42(1994), pp. 67-89.

[L] A. Libgober: Homotopy groups of the complements to singular hypersurfaces, II, Ann. Math. 139 (1994), 117-144.

[NZ1] A. Némethi and A. Zaharia: On the bifurcation set of a polynomial function and Newton boundary, Publ. RIMS Kyoto Univ. 26(1990), 681-689.

[NZ2] A. Némethi and A. Zaharia: Milnor fibration at infinity, Indag. Math. 3 (1992), 323-335.

[NS] A. Némethi and C. Sabbah: Semicontinuity of the spectrum at infinity, Abh. Math. Sem. Univ. Hamburg 69(1999), 25-35.

[OT1] P. Orlik, H. Terao: Arrangements of Hyperplanes, Grundlehren Math. Wiss., vol. 300, Springer-Verlag, Berlin, 1992.

[OT2] P. Orlik, H. Terao: Arrangements and Hypergeometric Integrals, MSJ Mem., vol. 9, Math. Soc. Japan, Tokyo, 2001.

[PZ] L. Păunescu and A. Zaharia: Remarks on the Milnor fibration at infinity, Manuscripta Math. 103 (2000), 351-361.

Laboratoire d’Analyse et Géométrie,
Université Bordeaux I,
33405 Talence Cedex, FRANCE
email: dimca@math.u-bordeaux.fr