Irreducible quadratic polynomials and Euler’s function

Noah Lebowitz-Lockard

November 1, 2018

Abstract

Let \(P(x) \) be an irreducible quadratic polynomial in \(\mathbb{Z}[x] \). We show that for almost all \(n \), \(P(n) \) does not lie in the range of Euler’s totient function.

1 Introduction

Let \(V(x) \) be the number of \(n \leq x \) in the range of Euler’s \(\varphi \)-function. In 1929, Pillai proved that almost all numbers lie outside the range of the \(\varphi \)-function [11], namely that

\[
V(x) = O\left(\frac{x}{(\log x)^{(\log 2)/e}} \right).
\]

Multiple people ([1], [2], [3], [14], [8]) improved this bound. Ford established the order of magnitude of \(V(x) \) [5]:

\[
V(x) = \Theta \left(\frac{x}{\log x} \exp(C(\log_3 x - \log_4 x)^2 + D \log_3 x - (D + (1/2) - 2C) \log_2 x) \right),
\]

with \(C \approx 0.82 \) and \(D \approx 2.18 \).

For a given function \(f \), we define

\[
V_f(x) = \# \{ n \leq x : \exists m \text{ s.t. } \varphi(m) = f(n) \}.
\]

Pollack and Pomerance proved that almost all squares lie outside the range of the \(\varphi \)-function [13]. Specifically, for \(f(x) = x^2 \),

\[
\frac{x}{(\log x)^2(\log \log x)^2} \ll V_f(x) \ll \frac{x}{(\log x)^{0.0063}}.
\]

Let \(P(x) = ax^2 + bx + c \) be an irreducible quadratic polynomial. We show that

\[
V_P(x) = O\left(\frac{x}{(\log x)^{0.03}} \right).
\]

Hence, for almost all \(n \), \(P(n) \) lies outside the range of the totient function.

The only odd number in the range of the totient function is 1. If \(P(x) \) only takes odd values, then \(V_P(x) \) is the number of positive solutions \(n \leq x \) of \(P(n) = 1 \). In this case, \(V_P(x) \leq 2 \). We also show that if \(P(x) \) is never a multiple of 4, then \(V_P(x) \ll x/\log x \). Finally, we improve our bounds on \(V_P(x) \) assuming the abc Conjecture.
2 Outline

Suppose $P(n)$ in the range of the φ-function. Let p be the largest prime number for which there exists a number m such that $p|m$ and $\varphi(m) = P(n)$. By definition, $p - 1 | P(n)$. We write $P(n) = (p - 1)v$. We choose a number $T = o(x)$, which we will optimize later. There are three cases:

1. $p > 4ax$,
2. $T < p \leq 4ax$,
3. $p \leq T$.

For a given number k, let $\rho(k)$ be the number of solutions to the congruence $P(n) \equiv 0 \mod k$. Note that ρ is a multiplicative function. Let D be the discriminant of $P(x)$. If a prime q does not divide $2a$, then the solutions to $P(x) \equiv 0 \mod q$ are

$$x \equiv \frac{-b \pm \sqrt{D}}{2a} \mod q.$$

Hence, for a given $q \nmid 2aD$,

$$\rho(q) = \begin{cases}
2, & \text{if } \left(\frac{D}{q}\right) = 1, \\
0, & \text{if } \left(\frac{D}{q}\right) = -1.
\end{cases}$$

For all but finitely many q, $q \nmid 2aD$. By the Chebotarev Density Theorem, the primes which split in $\mathbb{Q}[\sqrt{D}]$ and the primes which are inert in $\mathbb{Q}[\sqrt{D}]$ both have density $1/2$. In other words,

$$\lim_{x \to \infty} \frac{1}{\pi(x)^\#} \left\{ q \leq x : \left(\frac{D}{q}\right) = 1 \right\} = \lim_{x \to \infty} \frac{1}{\pi(x)^\#} \left\{ q \leq x : \left(\frac{D}{q}\right) = -1 \right\} = \frac{1}{2}.$$

3 A large factor of the form $p - 1$

Let V_1 be the number of $n \leq x$ for which $p > 4ax$.

Theorem 3.1. We have

$$V_1 = O \left(\frac{x(\log \log x)^5}{(\log x)^{1-(e(\log 2)/2)}} \right).$$

Proof. We write $\varphi(m) = P(n)$ with $p|m$ for some $p > 4ax$. We first bound m. Note that $P(n) = an^2 + bn + c \leq 2an^2 \leq 2ax^2$ for x sufficiently large. By [7, Theorem 328],

$$\lim_{k \to \infty} \frac{\varphi(k) \log \log k}{k} = e^{-\gamma},$$
where γ is the Euler-Mascheroni constant. Thus, $m \ll x^2 \log \log x$.

By partial summation, the number of $m \ll x^2 \log \log x$ with a divisor of the form p^2 with $p > 4ax$ is $O(x \log \log x / \log x)$. Hence, we may assume that p^2 does not divide m. We write $m = pr$ with $p \nmid r$. So, $\varphi(m) = P(n) = (p-1)v$ with $\varphi(r) = v$. Because $p > 4ax$ and $P(n) \leq 2ax^2$, $v < x/2$ as well.

We write

$$n \equiv t_1, \ldots, t_{\rho(v)} \mod v,$$

with $0 \leq t_i < v$ for all $i \leq \rho(v)$. Fix i and let $t = t_i$. Let $n = uv + t$. We have

$$p = \frac{P(n)}{v} + 1 = \frac{P(uv + t)}{v} + 1 = \frac{a(uv + t)^2 + b(uv + t) + c}{v} + 1 = avu^2 + (2at + b)u + \left(\frac{at^2 + bt + c}{v} + 1\right).$$

So, we can recast the problem in terms of u. Given v and a, we look for the number of values of u for which the quadratic expression above is prime, then sum over all v and a. In other words, we want to bound the size of

$$M = M_{v,t} = \{u \leq x/v : R(u) \text{ is prime}\},$$

where

$$R(u) = avu^2 + (2at + b)u + \left(\frac{at^2 + bt + c}{v} + 1\right).$$

The discriminant of R is $D - 4av$. If R is reducible, then $D - 4av$ is a square. The number of v for which $D - 4av$ is non-negative is $O(1)$ for P fixed. For each value of v, the number of corresponding n is also $O(1)$ with respect to P. Because there are $O(1)$ values of n for which R is reducible, we assume that R is irreducible. Brun’s Sieve \cite{6} Theorem 2 gives us

$$\#M \ll \frac{x}{v} \prod_{\substack{q < x/v \\ \rho_R(q) \neq q}} \left(1 - \frac{\rho_R(q)}{q}\right),$$

where $\rho_R(q)$ the number of solutions to $R(u) \equiv 0 \mod q$ for a given prime q.

The number of possible n is the sum of $\#M$ over all possible v and t. In addition, v lies in the range of Euler’s function. For notational convenience, we let \sum' have the condition that $D - 4av$ is not a square. We have

$$V_1 \ll \sum'_{v < x/2} \sum_{\substack{0 \leq t < v \\ v \in \varphi(\mathbb{Z}_+)} \sum_{\substack{0 \leq t < v \\ v \in \varphi(\mathbb{Z}_+)} \prod_{\substack{2q < x/v \\ \rho_R(q) \neq q}} \left(1 - \frac{\rho_R(q)}{q}\right).$$

3
We now bound
\[
\sum'_v \sum_{x/2 < v < x/2, x \equiv 0 (v), \rho_R(v) \neq q} \frac{x}{v} \prod_{q < x/v} \left(1 - \frac{\rho_R(q)}{q} \right) \ll x \sum'_v \frac{\rho(v)}{v} \prod_{q < x/v} \left(1 - \frac{2}{q} \right).
\]

For the product, we multiply by a similar product over the \(q\) dividing \(2av(D - 4av)\) in order to make it easier to manipulate:
\[
x \sum'_v \frac{\rho(v)}{v} \prod_{q < x/v} \left(1 - \frac{2}{q} \right) \prod_{2 < q < x/v} \left(1 - \frac{2}{q} \right)^{-1}.
\]

We simplify the second product as follows:
\[
\prod_{q < x/v, q \mid \phi(D - 4av)} \left(1 - \frac{2}{q} \right)^{-1} \ll \prod_{q \mid (D - 4av)} \left(1 - \frac{1}{q} \right)^{-2} = \left(\frac{v(D - 4av)}{\phi(v|D - 4av|)} \right)^2 \ll (\log \log (v|D - 4av|))^2 \ll (\log \log v)^2.
\]

We now have
\[
V_1 \ll x \sum'_v \frac{\rho(v)(\log \log v)^2}{v} \prod_{q < x/v} \left(1 - \frac{2}{q} \right).
\]

For small \(v\) it is not difficult to show that \(D - 4av\) is a quadratic residue mod \(q\) for about half of all \(q < x/v\). Unfortunately, \(v\) may be large enough relative to \(x\) that this is not always true. We bound the product from above:
\[
\prod_{q < x/v} \left(1 - \frac{2}{q} \right) = \prod_{2q < x/v} \left(1 - \frac{1}{q} \left(1 + \left(\frac{D - 4av}{q} \right) \right) \right) \prod_{2 < q < x/v} \left(1 - \frac{1}{q} \right)^{-1} \ll \frac{|D - 4av|}{\phi(|D - 4av|)} \prod_{2q < x/v} \left(1 - \frac{1}{q} \right) \prod_{2 < q < x/v} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q} \right) \right) \ll \frac{\log \log v}{\log (x/v)} \prod_{2 < q < x/v} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q} \right) \right). \]
Therefore,

\[V_1 \ll \sum_{v < x/2}^\prime \frac{\rho(v)(\log \log v)^3}{v \log(x/v)} \prod_{2 < q < x/v} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q} \right) \right) \]

\[\ll x(\log \log x)^3 \sum_{v < x/2}^\prime \frac{\rho(v)}{v \log(x/v)} \prod_{2 < q < x/v} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q} \right) \right) . \]

We combine Lemmas 6 and 8 of [13] into one result and apply this result to the Kronecker symbol.

Lemma 3.2. For all squarefree \(d \) and \(\epsilon > 0 \),

\[\prod_{2 < q \leq y} \left(1 - \frac{1}{q} \left(\frac{d}{q} \right) \right) = O(d^\epsilon) . \]

In addition, the number of (not necessarily squarefree) \(d \leq x \) for which

\[\prod_{2 < q \leq y} \left(1 - \frac{1}{q} \left(\frac{d}{q} \right) \right) \leq (\log \log |3d|)^2 \]

does not hold for some \(y \) is \(O(x^\epsilon) \).

If \(q \nmid D - 4av \) and \(d \) is the squarefree part of \(D - 4av \), then

\[\left(\frac{D - 4av}{q} \right) = \left(\frac{d}{q} \right) . \]

When \(d \) is the squarefree part of \(D - 4av \),

\[\prod_{2 < q \leq y} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q} \right) \right) = \prod_{2 < q \leq y} \left(1 - \frac{1}{q} \left(\frac{d}{q} \right) \right) \]

\[= \prod_{2 < q \leq y, q \mid D - 4av} \left(1 - \frac{1}{q} \left(\frac{d}{q} \right) \right) ^{-1} \prod_{2 < q \leq y} \left(1 - \frac{1}{q} \left(\frac{d}{q} \right) \right) \]

\[\leq \prod_{2 < q \leq y, q \mid D - 4av} \left(1 - \frac{1}{q} \left(\frac{d}{q} \right) \right) ^{-1} \prod_{2 < q \leq y} \left(1 - \frac{1}{q} \left(\frac{d}{q} \right) \right) \]

\[= \frac{D - 4av}{\varphi(|D - 4av|)} \prod_{2 < q \leq y} \left(1 - \frac{1}{q} \left(\frac{d}{q} \right) \right) \]

\[\ll (\log \log |3(D - 4av)|) \prod_{2 < q \leq y} \left(1 - \frac{1}{q} \left(\frac{d}{q} \right) \right) . \]
For a given squarefree number d, the number of numbers $\leq x$ with squarefree part d is $O(x^{1/2})$. For all but $O(x^{(1/2)+\epsilon})$ numbers $v \leq x/2$,

$$\prod_{2 < q \leq y} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q}\right)\right) \leq (\log \log |3(D - 4av)|)^3.$$

Let $S(k)$ be the squarefree part of k. We split our sum into two parts. Suppose $S(D - 4av) \not\in D$:

$$\sum'_{v < x/2 \atop v \in \varphi(\mathbb{Z}_+)} \frac{\rho(v)}{v \log(x/v)} \prod_{2 < q < x/v} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q}\right)\right) \ll (\log \log x)^3 \sum_{v < x/2 \atop v \in \varphi(\mathbb{Z}_+)} \frac{\rho(v)}{v \log(x/v)}.$$

We bound this sum using dyadic intervals:

$$\sum_{v < x/2 \atop v \in \varphi(\mathbb{Z}_+)} \frac{\rho(v)}{v \log(x/v)} = \sum_{i \leq \log x / \log 2} \sum_{2^i < v \leq 2^{i+1}} \frac{\rho(v)}{v \log(x/v)} \ll \sum_{i \leq \log x / \log 2} \frac{2^i}{x \log(2^i)} \sum_{2^i < v \leq 2^{i+1}} \rho(v) \ll \sum_{i \leq \log x / \log 2} \frac{1}{i} \left(\frac{1}{x/2^i}\right) \sum_{v < x/2^i \atop v \in \varphi(\mathbb{Z}_+)} \rho(v).$$

We bound the sum of the $\rho(v)$ terms using Hölder’s Inequality. Let $A, B > 1$ satisfy $(1/A) + (1/B) = 1$. Recall that $V(x)$ is the number of $n \leq x$ in the range of φ. For the following equation, we use the fact that $V(x) \ll x/(\log x)^{1-\epsilon}$ for all $\epsilon > 0$. We have

$$\sum_{v < x/2^i \atop v \in \varphi(\mathbb{Z}_+)} \rho(v) \ll \left(\sum_{v < x/2^i \atop v \in \varphi(\mathbb{Z}_+)} \rho(v)^A\right)^{1/A} \left(\sum_{v < x/2^i \atop v \in \varphi(\mathbb{Z}_+)} 1^B\right)^{1/B} \ll \left(\sum_{v < x/2^i} \rho(v)^A\right)^{1/A} (V(x/2^i))^{1/B} \ll \left(\sum_{v < x/2^i} \rho(v)^A\right)^{1/A} \left(\frac{x/2^i}{(\log(x/2^i))^{1-\epsilon}}\right)^{1/B}.$$

In order to bound the sum of $\rho(v)^A$, we use the following Brun-Titchmarsh-like theorem for multiplicative functions (the $k = 1$, $y = x$ cases of [15], [12]).
Theorem 3.3. Let f be a non-negative multiplicative function satisfying the following conditions:

1. There is a positive constant A_1 such that $f(p^r) \leq A_1^r$ for all prime p and non-negative r.

2. For all $\epsilon > 0$, there is a positive constant $A_2 = A_2(\epsilon)$ for which $f(n) \leq A_2 n^\epsilon$ for all n.

(a) We have

$$\sum_{n \leq x} f(n) \ll \frac{x}{\log x} \exp \left(\sum_{p \leq x} \frac{f(p)}{p} \right).$$

(b) In addition,

$$\sum_{p \leq x} f(p-1) \ll \frac{x}{\log x} \exp \left(\sum_{p \leq x} \frac{f(p)-1}{p} \right).$$

We show that ρ satisfies the conditions of this theorem. For a given prime p, let $p^{\sigma_1} \mid D$. It is well-known (see [9, Theorem 53]) that if some coefficient of $P(x)$ is not a multiple of p, then $\rho(p^r) \leq \rho(p^{2\sigma_1+1})$. Suppose $P(x) = p^{\sigma_2}Q(x)$ where σ_2 is maximal, i.e. some coefficient of $Q(x)$ is not a multiple of p. For all $r \geq \sigma_2$, $\rho(p^r) = \rho_Q(p^{r-\sigma_2})$ because each solution to the congruence $Q(x) \equiv 0 \mod p^{r-\sigma_2}$ lifts to a solution of $P(x) \equiv 0 \mod p^r$. (If $r \leq \sigma_2$, then $\rho(p^r) = p^r \leq p^{\sigma_2}$). So,

$$\rho(p^r) = \rho_Q(p^{r-\sigma_2}) \leq \rho_Q(p^{2(\sigma_1-\sigma_2)+1})$$

because the discriminant of $Q(x)$ is $D/p^{2\sigma_2}$. For all r,

$$\rho(p^r) \leq \max(\rho_Q(p^{2(\sigma_1-2\sigma_2)+1}), p^{\sigma_2}).$$

For all but finitely many p, $\sigma_1 \leq 2$. Thus, $\rho(p^r)$ is bounded by a constant C, giving us (1). Let $\omega(n)$ be the number of distinct prime factors of n. We have

$$\rho(n) \leq C^{\omega(n)} \ll C^{\log n/\log \log n} = o(n^\epsilon)$$

for all $\epsilon > 0$, implying (2).
Therefore,

\[
\sum_{v < x^{2^i}} \rho(v)^A \ll \frac{x/2^i}{\log(x/2^i)} \exp \left(\frac{1}{\log 2} \sum_{q < x/2} \frac{\rho(q)}{q} \sum_{q' < x/2} \frac{2^A}{q} \right)
\]

\[
\ll \frac{x/2^i}{\log(x/2^i)} \exp \left(\frac{1}{\log 2} \sum_{q < x/2} \frac{2^A}{q} \right)
\]

\[
\ll \frac{x/2^i}{\log(x/2^i)} \exp(2A - \log \log(x/2^i))
\]

\[
\ll (x/2^i)(\log(x/2^i))^{2A-1}.
\]

Plugging this into our earlier inequality gives us

\[
\sum_{v < x/2^i} \rho(v) \ll \left(\frac{x}{2^i} \right) \left(\log \left(\frac{x}{2^i} \right) \right)^{2A-1} \frac{1}{\log 2} = \left(\frac{x}{2^i} \right) \left(\log \left(\frac{x}{2^i} \right) \right)^{2A-1} \frac{1}{\log 2}.
\]

The minimum value of \((2^A/(2A)) - 1\) is \((e \log 2)/2 - 1 < 0\), which occurs at \(A = 1/\log 2\). Hence,

\[
\sum_{v < x/2^i} \rho(v) \ll \frac{x/2^i}{(\log(x/2^i))^{1-((e \log 2)/2)-(1-\log 2)}};
\]

giving us

\[
\sum_{v < x/2^i} \frac{\rho(v)}{v \log(x/v)} \ll \sum_{i < \log x/\log 2} \frac{1}{i} \left(\frac{1}{x/2^i} \right) \sum_{v < x/2^i} \rho(v)
\]

\[
\ll \sum_{i < \log x/\log 2} \frac{1}{i(\log(x/2^i))^{1-((e \log 2)/2)-(1-\log 2)}}.
\]

For notational convenience, we replace \(\epsilon\) with \((1 - \log 2)\epsilon\). We may now finish off our dyadic interval. In order to bound this sum, we split it into two cases: \(i > K\) and \(i < K\),
with $K = (\log x)^{O(1)}$:
\[
\sum_{i<K} \frac{1}{i((\log(x/2^i))^{1-(e(\log 2)/2)-\epsilon}} \ll \sum_{i<K} \frac{1}{i((\log(x/2^K))^{1-(e(\log 2)/2)-\epsilon}} \ll \frac{\log K}{(\log(x/2^K))^{1-(e(\log 2)/2)-\epsilon}}.
\]
\[
\sum_{K<i<\log x/\log 2} \frac{1}{i((\log(x/2^i))^{1-(e(\log 2)/2)-\epsilon}} \ll \sum_{i<\log x/\log 2} \frac{1}{K} \ll \frac{\log x}{K}.
\]
Setting the two sums equal to each other suggests choosing $K = (\log x)^{e(\log 2)/2}$. This yields
\[
\sum_{\nu<x/2} \sum_t \#M_{\nu,t} \ll \frac{x}{(\log x)^{1-e(\log 2)/2-\epsilon}}.
\]
Suppose $S(D - 4av) \in \mathcal{D}$. Let U be a function of x chosen with $U = O(x^\epsilon)$ for all ϵ. Suppose $\nu \leq U$. We want to bound
\[
(\log \log x)^3 \sum_{\nu \leq U} \frac{\rho(\nu)}{v \log(x/v)} \prod_{q<x/v} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q}\right)\right).
\]
By Lemma 3.2, the product above is $O(v^\epsilon)$ for any $\epsilon > 0$. In addition, $\log(x/v) \gg \log x$ because $\nu \leq U$. We already established that $\rho(\nu) \ll v^\epsilon$. Putting this together, we have
\[
\sum_{\nu \leq U} \frac{\rho(\nu)}{v \log(x/v)} \prod_{q<x/v} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q}\right)\right) \ll \sum_{\nu \leq U} \frac{1}{v^{1-2\epsilon} \log x} \ll \frac{U^{2\epsilon}}{\log x}.
\]
Now, we consider the case where $S(D - 4av) \in \mathcal{D}$ and $U < \nu < x/2$. We have
\[
\sum_{U < \nu < x/2} \frac{\rho(\nu)}{v \log(x/v)} \prod_{q<x/v} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q}\right)\right) \ll \sum_{U < \nu < x/2} \frac{1}{v^{1-2\epsilon} \log(x/v)}.
\]
Because $v < x/2$, $\log(x/v) \gg 1$. At this point, we use dyadic intervals:
\[
\sum_{U < \nu < x/2} \frac{1}{v^{1-2\epsilon}} \ll \sum_i \sum_{2^i U < v < 2^{i+1} U} \sum_{S(D-4av) \in \mathcal{D}} \frac{1}{2^{i(1 - 2\epsilon)}}
\]
\[
\ll \frac{1}{U^{1-2\epsilon}} \sum_i \sum_{S(D-4av) \in \mathcal{D}} \frac{1}{2^{i(1 - 2\epsilon)}}
\]
\[
\ll \frac{1}{U^{1-2\epsilon}} \sum_i \frac{(2^i U)(1/2) + 2\epsilon}{2^{i(1 - 2\epsilon)}}
\]
\[
\ll \frac{1}{U^{(1/2) - 4\epsilon}} \sum_i \frac{1}{2^{i(1/2) - 2\epsilon}}
\]
\[
\ll \frac{1}{U^{(1/2) - 4\epsilon}}.
\]
We add our sums for $v < U$ and $v \geq U$ together:

$$
\sum'_{v<x/2} \frac{\rho(v)}{v \log(x/v)} \prod_{q<x/v} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q}\right)\right) \ll \frac{U^{2\epsilon}}{\log x} + \frac{1}{U^{(1/2) - 4\epsilon}}.
$$

We choose U so that

$$\frac{1}{\log x} = \frac{1}{U^{1/2}}.$$

Thus,

$$U = (\log x)^2$$

and

$$\sum'_{v<x/2} \frac{\rho(v)(\log \log v)^3}{v \log(x/v)} \prod_{q<x/v} \left(1 - \frac{1}{q} \left(\frac{D - 4av}{q}\right)\right) \ll \frac{1}{(\log x)^{1-4\epsilon}} + \frac{1}{(\log x)^{1-8\epsilon}} \sim \frac{1}{(\log x)^{1-8\epsilon}}.$$

We have obtained the following bound:

$$V_1 = O\left(\frac{x}{(\log x)^{1-\epsilon(log 2)/2 - \epsilon}} + \frac{x(\log \log x)^3}{(\log x)^{1-8\epsilon}}\right) = O\left(\frac{x}{(\log x)^{1-\epsilon(log 2)/2 - \epsilon}}\right).$$

\[\square\]

4 A factor of the form $p - 1$ in the interval $(T, 4ax)$

In the next two sections, we assume that $T < p \leq 4ax$. In addition, fix a number $A \in (1/2, 1)$. Let $\Omega_T(y)$ be the number of (not necessarily distinct) prime factors of y that are smaller than T. We define V_2 as the number of $n \leq x$ for which $T < p < 4ax$ and $\Omega_T(p - 1) < A \log \log T$.

Theorem 4.1. For all $A \in (1/2, 1)$, we have

$$V_2 = O\left(\frac{x}{(\log T)^{A\log A - A + 1}}\right).$$

Proof. Given p, we can bound the number of $n \leq x$ for which $p - 1$ divides $P(n)$. The number of $n \leq x$ for which $p - 1|P(n)$ is

$$\frac{x \rho(p - 1)}{p - 1} + O(\rho(p - 1)).$$

10
In order to bound the number of possible n for any given p satisfying the conditions above, we sum over all possible p. We obtain

$$V_2 \leq \sum_{T<p<4 \alpha x \atop \Omega_T(p-1)<A \log \log T} \left(\frac{x \rho(p-1)}{p-1} + O(\rho(p-1)) \right).$$

We have $\rho(p-1) < (1/(4a))x \rho(p-1)/(p-1)$. So, we only need to consider the first term of the sum in order to bound the order of magnitude:

$$V_2 \ll x \sum_{T<p<4 \alpha x \atop \Omega_T(p-1)<A \log \log T} \frac{\rho(p-1)}{p-1}.$$

Fix a constant $B < 1$. Because $\Omega_T(p-1) < A \log \log T$,

$$B^{\Omega_T(p-1)} > B^{A \log \log T} = (\log T)^A B.$$

For each prime p in our sum,

$$\frac{B^{\Omega_T(p-1)}}{(\log T)^A B} > 1.$$

Multiplying every term in our sum by this quantity will increase the sum. Hence,

$$\sum_{T<p<4 \alpha x \atop \Omega_T(p-1)<A \log \log T} \frac{\rho(p-1)}{p-1} \leq \sum_{T<p<4 \alpha x \atop \Omega_T(p-1)<A \log \log T} \frac{\rho(p-1)}{p-1} \left(\frac{B^{\Omega_T(p-1)}}{(\log T)^A B} \right) \leq \frac{1}{(\log T)^A B} \sum_{T<p<4 \alpha x} \frac{B^{\Omega_T(p-1)} \rho(p-1)}{p-1}.$$

Let $k = \log 2$. In order to evaluate this sum, we break it into dyadic intervals:

$$\sum_{T<p<4 \alpha x} \frac{B^{\Omega_T(p-1)} \rho(p-1)}{p-1} \leq \sum_{0 \leq i < k \log (4 \alpha x/T) + 1} \sum_{2^i T \leq p < 2^{i+1} T} \frac{B^{\Omega_T(p-1)} \rho(p-1)}{p-1} \ll \sum_{0 \leq i < k \log (4 \alpha x/T) + 1} \frac{1}{2^i T} \sum_{2^i T \leq p < 2^{i+1} T} B^{\Omega_T(p-1)} \rho(p-1).$$
By Theorem 3.3,

\[
\sum_{2^t \leq p < 2^{t+1}} B^{\Omega_T(p-1)} \rho(p-1) \ll \frac{2^{i+1}T}{\log(2^{i+1}T)} \exp \left(\sum_{2^t \leq p < 2^{t+1}} \frac{B^{\Omega_T(p)} \rho(p)}{p} - \sum_{p < 2^t} \frac{1}{p} \right)
\]

\[
\ll \frac{2^i T}{\log(2^i)} \exp \left(\sum_{p \mid 2^t} \frac{B}{p} + \sum_{p \leq T} \frac{2B}{p} + \sum_{T < p < 2^{t+1}} \frac{2}{p} - \sum_{p < 2^t} \frac{1}{p} \right)
\]

\[
\ll \frac{2^i T}{\log(2^i)} \exp \left(\log \log(2^{i+1}T) - \log \log(2^i T) - (1 - B) \log \log T \right)
\]

\[
\ll \frac{2^i T}{i} \exp \left(-(1 - B) \log \log T \right)
\]

\[
\sim \frac{2^i T}{i (\log T)^{1-B}}.
\]

Hence,

\[
\sum_{T < p < 4ax} \frac{B^{\Omega_T(p-1)} \rho(p-1)}{p - 1} \ll \sum_{i < k \log(4ax/T) + 1} \frac{1}{i (\log T)^{1-B}} \ll \frac{\log \log x}{(\log T)^{1-B}}.
\]

Putting all this together shows us that

\[
V_2 \ll \frac{x}{(\log T)^{A \log B - B + 1}}.
\]

We fix \(A\) and let \(B = A\) to make \(A \log B - B + 1\) as large as possible. Hence,

\[
V_2 = O \left(\frac{x}{(\log T)^{A \log A - A + 1}} \right).
\]

Note that \(A \log A - A + 1\) is positive for all \(A \in (1/2, 1)\).

5 A factor of the form \(p - 1\) in the interval \((T, 4ax) II\)

Let \(V_3\) be the number of \(n \leq x\) for which \(T < p \leq 4ax\) and \(\Omega_T(p-1) > A \log \log T\).

Theorem 5.1. We have

\[
V_3 = O \left(\frac{x}{(\log T)^{(A + (1/2)) \log(A + (1/2)) - A + (1/2)}} \right).
\]
To prove this theorem, we must show two preliminary results. Suppose \(P(n) = (p-1)(q-1)v \) with \(p, q > T \) and \(\Omega_T(p-1), \Omega_T(q-1) > A \log \log T \). Then, \(\Omega_T(P(n)) > 2A \log \log T \). We bound the number of such \(n \) with the following results.

Lemma 5.2. For all \(\epsilon > 0 \), the number of \(n \leq x \) for which \(\omega_T(P(n)) > (1 + \epsilon) \log \log T \) is

\[
O \left(\frac{x}{(\log T)^{(1+\epsilon)\log(1+\epsilon)}} \right).
\]

Proof. Fix \(z > 1 \). We bound the sum of \(z^{\omega_T(P(n))} \). Note that \(f(n) = z^{\omega_T(n)} \) is a non-negative multiplicative function. In addition, \(f(p^\ell) \) is 1 or \(z \) for all \(p \) and \(\ell \). We can also show that \(f(n) \ll n^\epsilon \) for all \(\epsilon > 0 \):

\[
f(n) = z^{\omega_T(n)} \ll z^{\log n / \log n} = n^{\log z / \log \log n} \ll n^\epsilon.
\]

By a result of Nair \[10\],

\[
\sum_{n \leq x} z^{\omega_T(P(n))} \ll x \prod_{q \leq x} \left(1 - \frac{\rho(q)}{q} \right) \exp \left(\sum_{q \leq x} \frac{z^{\omega_T(q)} \rho(q)}{q} \right).
\]

We have

\[
\sum_{n \leq x} z^{\omega_T(P(n))} \ll x \prod_{q \leq x, \left(\frac{2D}{q} \right) = 1} \left(1 - \frac{2}{q} \right) \exp \left(\sum_{q \mid 2aD} \frac{z}{q} + \sum_{q < T, \left(\frac{2}{q} \right) = 1} \frac{2z}{q} + \sum_{T < q \leq x, \left(\frac{2}{q} \right) = 1} \frac{2}{q} \right)
\ll x \left(\frac{1}{\log x} \right) \exp(\log \log x + (z - 1) \log \log T))
\ll x(\log T)^z - 1.
\]

Let \(M \) be the number of \(n \leq x \) for which \(\omega_T(P(n)) > (1 + \epsilon) \log \log T \). Then,

\[
\sum_{n \leq x} z^{\omega_T(P(n))} \geq z^{(1+\epsilon) \log \log T} M = (\log T)^{(1+\epsilon) \log z} M.
\]

Combining our two bounds gives us

\[
M \ll x(\log T)^{z-(1+\epsilon)(\log z)-1}
\]

We can choose \(z \) to minimize the exponent. At the minimum, \(z = 1 + \epsilon \), giving us

\[
M \ll \frac{x}{(\log T)^{(1+\epsilon)\log(1+\epsilon)-\epsilon}}.
\]

\(\square\)
Theorem 5.3. For all $C, \delta > 0$, the number of $n \leq x$ for which $P(n)$ has a square divisor greater than $(\log T)^C$ is

$$O\left(\frac{x}{(\log T)^{(1-\delta)C/2}}\right).$$

Proof. Suppose $r^2 | P(n)$ with $r^2 > (\log T)^C$. Assume $r^2 \leq x^{2-\epsilon}$ for a fixed $\epsilon > 0$. The number of possible $n \leq x$ is

$$\sum_{r: (\log T)^C < r^2 \leq x^{2-\epsilon}} \left(\frac{x \rho(r^2)}{r^2} + O(\rho(r^2))\right).$$

For all $\epsilon > 0$, $\rho(r^2) \ll r^\delta$. Therefore,

$$\sum_{(\log T)^C < r^2 \leq x^{2-\epsilon}} \frac{x \rho(r^2)}{r^2} \ll \sum_{r: (\log T)^C/2 < r < (\log T)^C/2} \frac{x}{r^{2-\delta}} \sim \frac{x}{(\log T)^{(1-\delta)C/2}}$$

and

$$\sum_{(\log T)^C < r^2 \leq x^{2-\epsilon}} \rho(r^2) \ll \sum_{r \leq x^{1-\epsilon/2}} r^\delta \ll x^{1+\delta-(\epsilon/2)}.$$

If $\epsilon > 2\delta$, then the second sum is smaller than a constant multiple of the first one.

We may assume that $r^2 > x^{2-\epsilon}$. If r has a divisor $d \in ((\log T)^C/2, x^{1-(\epsilon/2)}]$ then $P(n)$ has a square divisor in the range $((\log T)^C, x^{2-\epsilon}]$, which we have already discussed. Suppose otherwise. Let p be a prime factor of r. If $p \in (x^{\epsilon/2}, x^{1-(\epsilon/2)}/(\log T)^{C/2}]$, then $r/p \in ((\log T)^{C/2}, x^{1-(\epsilon/2)}]$. We may assume that if $p | r$, then $p \leq x^{\epsilon/2}$ or $p > x^{1-(\epsilon/2)}/(\log T)^{C/2}$. If every prime factor is $\leq x^{\epsilon/2}$, then r has a divisor in the range $((\log T)^{C/2}, x^{1-(\epsilon/2)}]$. Therefore, the largest prime factor of r is greater than $x^{1-(\epsilon/2)}/(\log T)^{C/2}$. There exists some prime $p > x^{1-(\epsilon/2)}/(\log T)^{C/2}$ such that $p^2 | P(n)$. The number of n with this property is

$$\sum_{x^{2-\epsilon}/(\log T)^C < p^2 \leq x^2} \left(\frac{x \rho(p^2)}{p^2} + O(\rho(p^2))\right).$$

We have already established that the first sum is sufficiently small. In addition,

$$\sum_{x^{2-\epsilon}/(\log T)^C < p^2 \leq x^2} \rho(p^2) \ll \frac{x}{\log x}.$$

\square

Corollary 5.4. For all $\epsilon < 1.75$, the number of $n \leq x$ for which $\Omega_T(P(n)) > (1+\epsilon) \log \log T$ is

$$O\left(\frac{x}{(\log T)^{(1+(\epsilon/2))\log(1+(\epsilon/2))-(\epsilon/2)}}\right).$$

Proof. Let $n \leq x$. If $\Omega_T(P(n)) > (1+\epsilon) \log \log T$, then there are two possibilities:

1. $\omega_T(P(n)) > (1 + \epsilon/2) \log \log T$,
2. \(\Omega_T(P(n)) - \omega_T(P(n)) > (\epsilon/2) \log \log T \).

By Lemma 5.2, the number of \(n \) satisfying the first condition is

\[
O \left(\frac{x}{(\log T)^{(1+\epsilon/2)\log(1+\epsilon/2)-(\epsilon/2)}} \right).
\]

Suppose \(\Omega_T(P(n)) - \omega_T(P(n)) > (\epsilon/2) \log \log T \). Then, \(P(n) \) has a square factor greater than \(2^{(\epsilon/2) \log \log T} = (\log T)^{\epsilon \log 2} \). By the previous theorem, the number of \(n \) satisfying the second condition is

\[
O \left(\frac{x}{(\log T)^{\epsilon \log 2/4}} \right).
\]

For all \(\epsilon < 1.75 \),

\[
(1 + (\epsilon/2)) \log(1 + (\epsilon/2)) - (\epsilon/2) < \epsilon \log 2/4.
\]

Therefore, the number of \(n \leq x \) for which \(\Omega_T(P(n)) > (1 + \epsilon) \log \log T \) is

\[
O \left(\frac{x}{(\log T)^{(1+\epsilon/2)\log(1+\epsilon/2)-(\epsilon/2)}} \right).
\]

\(\square \)

For the rest of the paper, we will let \(\epsilon < 1.75 \). Suppose there exist \(p, q \in (T, 4ax) \) with \(\Omega_T(p-1), \Omega_T(q-1) > A \log \log T \) and \((p-1)(q-1)|P(n) \). Then \(\Omega_T(P(n)) > 2A \log \log T > (1 + \epsilon) \log \log T \) for \(\epsilon < 2A-1 \), which we have handled with the previous theorem.

The other possibility is that \(m = pr \), where \(r \) is \(T \)-smooth and \(\Omega_T(\varphi(r)) < A \log \log T \). If \(r \) is \(T \)-smooth, then \(v = \varphi(r) \) is \(T \)-smooth as well. Therefore, \(P(n) = (p-1)v \) with \(v \) \(T \)-smooth. Hence,

\[
P(n) = (p-1)v < 4axT^{A \log \log T}.
\]

If \(T^{A \log \log T} \ll x^{1-\delta} \) for some \(\delta > 0 \), then \(P(n) = O(x^{2-\delta}) \), which would imply that \(n = O(x^{1-(\delta/2)}) \). We find a value of \(T \) for which \(T^{A \log \log T} \) is very close to \(x^{1-\delta} \). We have

\[
A \log T \log \log T = (1 - \delta) \log x.
\]

An approximate solution is

\[
T = \exp \left(\frac{1 - \delta}{A} \left(\frac{\log x}{\log \log x} \right) \right).
\]

For such \(T \) (for all \(\delta > 0 \),

\[
V_3 = O \left(\frac{x}{(\log T)^{(1+\epsilon/2)\log(1+\epsilon/2)-(\epsilon/2)}} \right) = O \left(\frac{x}{(\log T)^{(A+1/2)\log(A+1/2)-A+1/2-\delta}} \right)\).
\]

Note that \(V_1 \) is independent of \(T \), whereas \(V_1 \) and \(V_3 \) decrease as \(T \) increases. In order to let \(T \) be as large as possible, we use the formula for \(T \) above for the rest of the paper.
6 The number p is small

Suppose that if $\varphi(m) = P(n)$, then m is T-smooth. We use an argument similar to the one at the end of the previous section to show that the number of such n is negligible. By Theorem 5.3, we may assume that $\Omega_T(P(n)) < A \log \log T$. In addition, $P(n)$ is T-smooth because m is T-smooth. Hence,

$$P(n) < T^{A \log \log T} = o(x).$$

So, we may assume that $n = o(x^{1/2})$. We may ignore such n.

7 Optimizing parameters

Here are the bounds we obtained (for all $\delta > 0$):

$$V_1 = O\left(\frac{x}{(\log x)^{1-e((\log 2)/2-\delta)}}\right),$$

$$V_2 = O\left(\frac{x}{(\log T)^{A \log A - A + 1}}\right),$$

$$V_3 = O\left(\frac{x}{(\log T)^{A+(1/2) \log(A+(1/2))}}\right).$$

The previous section states that if $\varphi(m) = P(n)$, then we may assume that m is not T-smooth. Therefore, $V_P(x)$ is at most the sum of our upper bounds for V_1, V_2, and V_3.

We now optimize our bounds for V_2 and V_3. As A increases, V_2 increases and V_3 decreases. We set V_2 and V_3 approximately equal:

$$\frac{x}{(\log T)^{A \log A - A + 1}} = \frac{x}{(\log T)^{A+(1/2) \log(A+(1/2))+1}},$$

which implies that

$$A \log A - A + 1 = (A + (1/2)) \log(A + (1/2)) - A + (1/2).$$

The solution is $A \approx 0.76$. Plugging in this value shows that

$$V_2 + V_3 \ll \frac{x}{(\log T)^{0.9312-\delta}}.$$

Recall that $T = \exp(((1 - \delta)/A)(\log x / \log \log x))$. Therefore,

$$V_P(x) = O\left(\frac{x}{(\log x)^{0.9312-\delta}}\right).$$
8 Conclusion

One short proof that the range of Euler’s φ-function has density zero uses the following result of Erdős and Wagstaff [4].

Theorem 8.1. For all $\varepsilon > 0$, there exists a $T = T(\varepsilon)$ such that the upper density of numbers n for which $p - 1|n$ for some $p > T$ is less than ε.

Corollary 8.2. We have $V(x) = o(x)$.

Proof. Let $\varepsilon > 0$. Suppose $\varphi(m) = n$. There exists a T such that

$$\mathfrak{d}(\{n : \exists p > T \text{ s.t. } p - 1|n\}) < \varepsilon/2.$$

Suppose n has no such divisor $p - 1$. Then, m is T-smooth. Therefore, n is T-smooth as well. The density of T-smooth numbers is 0. For any $\varepsilon > 0$, the upper density of $\varphi(\mathbb{Z}_+) < \varepsilon$. Hence, $V(x) = o(x)$.

If we wanted to do a similar argument for polynomials in the range of the φ-function, we would need to prove the following variant of Theorem 8.1.

Conjecture 8.3. For all $\varepsilon > 0$ and all polynomials $P(x)$, there exists a $T = T(\varepsilon, P)$ such that the upper density of numbers n for which $p - 1|P(n)$ for some $p > T$ is less than ε.

Though we have already showed that $V_P(x) = o(x)$ for irreducible quadratic P, the conjecture still possesses independent interest in this case. We also ask what bounds one can obtain when P is reducible.

References

[1] P. Erdős, Some remarks on Euler’s ϕ-function and some related problems, Bull. Amer. Math. Soc. 51 (1945), 540–544.

[2] P. Erdős and R. R. Hall, On the values of Euler’s ϕ-function, Acta Arith. 22 (1973), 201–206.

[3] P. Erdős and R. R. Hall, Distinct values of Euler’s ϕ-function, Mathematika 23 (1976), 1–3.

[4] P. Erdős and S. S. Wagstaff, Jr., The fractional parts of the Bernoulli numbers, Illinois J. Math. 24:1 (1980), 104–112.

[5] K. Ford, The distribution of totients, Ramanujan J. 2 (1998), 67–151, updated version available as [arXiv:1104.3264] [math.NT].

[6] H. Halberstam and H.-E. Richert, Sieve Methods, London Mathematical Society Monographs 4, Academic Press, London, UK, 1974.
[7] G. H. Hardy and E. M. Wright, *An Introduction to the Theory of Numbers*, 6th ed., Oxford University Press, Oxford, UK, 2008.

[8] H. Maier and C. Pomerance, On the number of distinct values of Euler’s ϕ-function, Acta Arith. 49 (1988), 263–275.

[9] T. Nagell, *Introduction to Number Theory*, 2nd ed., Chelsea, New York, 1964.

[10] M. Nair, Multiplicative functions of polynomial values in short intervals, Acta Arith. 62:3 (1992), 257–269.

[11] S. S. Pillai, On some functions connected with $\phi(n)$, Bull. Amer. Math. Soc. 35 (1929), 832–836.

[12] P. Pollack, Nonnegative multiplicative functions on sifted sets, and the square roots of -1 modulo shifted primes, submitted for publication.

[13] P. Pollack and C. Pomerance, Square values of Euler’s function, Bull. London Math. Soc. 46 (2014), 403–414.

[14] C. Pomerance, On the distribution of values of Euler’s function, Acta Arith. 47 (1986), 63–70.

[15] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161–170.