Outcomes to evaluate care for adults with acute dental pain and infection: a systematic narrative review

Wendy Thompson, Shaun Howe, Carole Pitkeathley, Carly Coull, L Teoh

ABSTRACT

Objective To identify outcomes reported in peer-reviewed literature for evaluating the care of adults with acute dental pain or infection.

Design Systematic narrative review.

Setting/participants Primary research studies published in peer-reviewed literature and reporting care for adults with acute dental pain or infection across healthcare settings. Reports not in English language were excluded.

Study selection Seven databases (CINAHL Plus, Dentistry and Oral Sciences Source, EMBASE, MEDLINE, PsycINFO, Scopus, Web of Science) were searched from inception to December 2020. Risk of bias assessment used the Critical Appraisal Skills Programme checklist for randomised controlled trials and Quality Assessment Tool for Studies of Diverse Design for other study types.

Outcomes Narrative synthesis included all outcomes of care for adults with acute dental pain or infection. Excluded were outcomes about pain management to facilitate treatment, prophylaxis of postsurgical pain/infection or traumatic injuries.

Results Searches identified 19,438 records, and 27 studies (dating from 1993 to 2020) were selected for inclusion. Across dental, pharmacy, hospital emergency and rural clinic settings, the studies were undertaken in high-income (n=20) and low/middle-income (n=7) countries. Two clinical outcome categories were identified: signs and symptoms of pain/infection and complications following treatment (including adverse drug reactions and reattendance for the same problem). Patient-reported outcomes included satisfaction with the care. Data collection methods included patient diaries, interviews and in-person reviews.

Discussion A heterogeneous range of study types and qualities were included: one study, published in 1947, was excluded only due to lacking outcome details. Studies from dentistry reported just clinical outcomes; across wider healthcare more outcomes were included.

Conclusions A combination of clinical and patient-reported outcomes are recommended to evaluate care for adults with acute dental pain or infection. Further research is recommended to develop core outcomes aligned with the international consensus on oral health outcomes.

INTRODUCTION

Acute dental pain has a significant impact on quality of life.\(^1\)\(^2\) Timely intervention for the relief of dental pain and infection is essential to prevent worsening of ill health and reduce the risk of potentially life-threatening complications, such as sepsis, airway occlusion or analgesic overdose.\(^3\)\(^4\) Failure of initial treatment to relieve dental pain and infection can result in patient reattending for further treatment, including to emergency medical care.\(^5\) Thus, ensuring high-quality care for people with acute dental problems is critical for both patient safety and service efficiency. Outcomes to evaluate the care provided for people with acute dental pain and/or infection are important.

Evidence-based clinical guidelines can improve the provision of quality healthcare and patient outcomes.\(^6\) Guidelines for treating acute dental pain and infection are generally based on the principle that operative dental procedures (such as removal of
a tooth or its pulp) are indicated to address the cause and prevent symptoms recurring.7 Drugs such as analgesics and antibiotics have a limited role in dentistry and should usually only be used in addition to dental procedures.8,9 Suboptimal treatment of dental pain and infection with drug prescriptions instead of dental procedures is common, including by general medical practitioners and in emergency departments.10–12 The contribution of dentistry to global efforts to tackle antibiotic resistance13 and opioid substance misuse disorder has been highlighted, with a call for the profession to improve its approach to stewardship of these drugs.7,14,15

While a plethora of drug trials for the treatment of dental pain or infection have been published, there is little research on patient outcomes following urgent dental care for acute dental pain or infection.5 A rise in the number of trials to evaluate dental antibiotic stewardship and opioid stewardship interventions is anticipated, with a focus on optimising care and judicious use of medicines for adults (where more than 90% of dental prescribing occurs).16 To evaluate the effectiveness of these sorts of interventions and to enable improvements in the quality of urgent dental care, this study aimed to identify outcomes from the peer-reviewed literature for evaluating care for adults with acute dental pain and/or infection.

Objectives
The research question was ‘What measures in the published literature have been employed to evaluate the outcome of care for adults with acute dental pain and/or infection?’

METHODS
Patient and public involvement
A coproduction team designed and delivered this systematic narrative review. Experts by experience (patients) of urgent dental care and/or complications of dental antibiotics (CC and CP) and academic dental professionals (LT, SH and WT) were involved in all stages of this study, from refining the research questions and search terms which had been drafted by WT through to disseminating the results. Through discussion between the members of the coproduction team, involvement with each step of the review was allocated according to the skills they wished to develop and the time they had available to contribute at the relevant stages. Individual contributions are indicated in the following sections.

Eligibility criteria
Primary research studies published in peer-reviewed journals were included if they reported outcomes of care for adults (aged over 18 years) treated for acute dental pain and/or infection with advice, prescriptions, or interventions (such as dental extraction). There was no restriction on the year of dissemination.

Studies which included care for children or for people with other oral or dental conditions (such as cervicofacial infections treated as hospital inpatients or postsurgical pain control) were excluded. Studies of urgent dental care for traumatic injuries were excluded as this is a markedly different population and the subject of a separate study.17 Reports which did not include the outcomes of care provided (or details of how those outcomes were measured) were also excluded, such as studies about the efficacy of local anaesthesia to facilitate the provision of dental procedures at point of care. Primary research studies not published in peer-reviewed journals (such as conference abstracts, case studies and other grey literature) were excluded as the research was seeking tried and tested outcomes for use in clinical trials. Studies not in the English language were excluded due to lack of translation facilities. Full details of the inclusion/exclusion criteria are detailed in online supplemental table 1.

Population groups identified for subgroup analysis during the synthesis phase were dental vs other health-care settings, and high-income versus low-income and middle-income countries (LMICs).

Information sources
On 29 November 2020, seven databases were searched from their earliest dates: CINAHL Plus, Dentistry and Oral Sciences Source, Ovid EMBASE, Ovid Medline, PsycINFO, Scopus and Web of Science.

Search strategy
The search strategy used to identify relevant papers from the database searches was developed in consultation with an information specialist at the University of Manchester. It consisted of ‘population’ AND ‘intervention’ terms. Population terms were: (Acute* OR Urgent OR Unscheduled* OR Emergenc*) AND (Dental* OR Odontogenic OR Dentoalveolar) AND (Pain OR Toothache OR Pulpitis OR Infection OR Swell* OR Abscess OR Pericoronitis OR Osteitis OR Socket OR Periodontitis OR Implantitis OR Ulcer* OR Stomatitis). Intervention terms were: Patient Care OR Dental Care OR Procedure OR Treat* OR Endodont* OR Exodont* OR Extract* OR Extirpat* OR Incis* OR Drain* OR Debrid* OR Irrigat* OR Prescri* OR Antibiotic* OR Antimicrob* OR Antiseptic OR Analgesi* OR Advice OR Refer*. Full details of the search terms and limits employed with each database are detailed in online supplemental table 2).

Limits included: ‘human’ as animal and laboratory studies were not eligible for the review, and ‘English language’ as justified in the ‘eligibility criteria’ section. There were no limits on the date of included studies.

Selection process
Titles and abstracts from the database searches (undertaken by WT) were transferred into Endnote V.X9 where duplicates were removed (by WT) and the title/abstracts were screened (independently by WT and SH) for potential inclusion. Full texts of all shortlisted studies were
assessed for eligibility (independently by WT and LT). Where necessary, corresponding authors were contacted to confirm whether the included population met our inclusion criteria. Disagreements at each stage of the process were resolved through discussion between the reviewers.

Data collection process

The characteristics (study type, objective and population) and outcomes, data source (patient-reported, clinician observed or administrative system) and data collection instrument were collected from each report by two reviewers (LT and SH) working independently. Disagreements at each stage of the process were resolved through discussion between the reviewers.

Data items: outcomes and other variables

All outcomes relating to the outcomes of care provided to adults with acute dental pain or infection were sought, together with details about the sources of data and timescales between urgent dental treatment received by the participants and completion of data collection. In addition, specific details about the types of studies (eg, randomised controlled trial (RCT) or questionnaire study) and population were sought, including age range of patients, type of healthcare setting (such as dental clinic or pharmacy), country in which the study took place, and whether a high-income or LMIC (based on World Bank definitions). Details about study type, patient age, healthcare setting and country for each included study are provided in table 1, details about which countries were LMICs are highlighted (in bold) in table 2. There was no restriction on time frames for the outcomes and where missing data was identified this was recorded in the results tables. Where necessary, corresponding authors were contacted to provide details relating to the data items sought (such as the age of participants).

Quality assessment

The shortlisted studies were assessed using the Critical Appraisal Skills Programme (CASP) Checklist for RCTs. For studies which used a design not valid for an RCT (as assessed via the CASP RCT checklist), the Quality Assessment Tool for Studies with Diverse Design (QATSDD) was used. Quality assessment of all studies was undertaken by WT, with 30% of studies (selected at random from across the CASP and QATSDD sets) independently assessed by CP. Discrepancies in relation to each element of the assessment framework were resolved through discussion between the assessors and, where differences were just one point, the scores were averaged.

Synthesis methods

All studies which had been selected for inclusion and which had passed the quality assessment were eligible for inclusion in synthesis. Outcome data collected were initially categorised by WT based on a framework advocated for antimicrobial stewardship interventions as the outcomes identified in this study were intended to be employed in trials of stewardship interventions. All authors of the paper discussed and agreed adjustments to the category titles, which aligned the language with that used in a recently published international consensus of oral health outcomes.

The tabular structure displays a summary of outcomes for each study, using the structure identified. Table 2 presents clinical outcomes (‘signs/symptoms of dental pain or infection’ and ‘complications or harm’) and patient-reported outcomes (‘satisfaction with the outcome of care’ and ‘other’) for each study with details of how the outcome was measured (such as numeric pain scale). Sources of data employed in each study and the timescales between treatment provided to participants and completion of data collection are presented in table 3.

RESULTS

Study selection

Of the 19,438 records identified from database searches, 27 studies were selected for inclusion (see figure 1). One study, published in 1947, was excluded as it was impossible to tell how the outcomes had been measured. Another study, which may look like it should be included was excluded as it reported secondary analysis of data collected in other studies.

Study characteristics

The included studies dated between 1993 and 2020 and encompassed a heterogeneous range of designs, from RCTs to questionnaire surveys. Most studies (n=23) took place in dental settings, one was in a hospital emergency department, another in a rural community healthcare clinic and a third was in community pharmacy; the setting for one study was unclear. The earliest 14 studies all took place in high income countries (during the period 1993–2012). Of the 13 studies which took place between 2013 and 2020, seven were based in LMICs (Brazil, Egypt, India, Tanzania and Turkey). Further characteristics of the included studies, including their objectives, are presented in table 1.

Quality assessment

Following application of the inclusion/exclusion criteria, 11 studies were quality assessed using the CASP framework for RCTs (see online supplemental table 3) and 16 using the QATSDD tool (see online supplemental table 4). Many of the studies assessed using the QATSDD criteria scored poorly, for example, due to failure to justify the sample size or provision of a rationale for the analytic method used, and few studies covered the QATSDD criterion about patients being involvement in the study design.

Results of individual studies

The outcomes recorded in each individual study are presented in table 2, including details about how they were measured. Two categories of clinical outcomes and one of patient-report outcomes were identified. Clinical
Table 1 Characteristics of included studies

Study	Study type	Objective	Population* (patient age, setting, country)
Fazakerley et al, 1993	Comparative double-blind trial.	To evaluate the efficacy of cephadrine, amoxicillin and phenoxymethylpenicillin in the treatment of dentoalveolar infections.	18–65 years. University dental clinic, UK.
Gibson et al, 1993	Prospective survey.	To investigate the success of treatment in resolving the chief complaint of pain and to determine the compliance with further dental care for the original dental problem.	18 years or older. University dental clinic, Canada.
Fouad et al, 1996	Double-blind, placebo-controlled clinical trial.	To examine the effect of penicillin on the reduction of symptoms and the course of recovery of the localized acute apical abscess after emergency endodontic treatment.	18 years or older. University dental clinic, USA.
Pennistion and Hargreaves, 1996	Prospective, randomised, double-blind, placebo-controlled clinical trial.	To compare the analgesic efficacy of ketorolac tromethamine following intraoral periapical infiltration injection or intramuscular injection of the drug.	18–65 years. University dental clinic, USA.
Adriaenssen, 1998	Open, randomised, multicentre comparative study.	Comparison of the efficacy, safety and tolerability of azithromycin and co-amoxiclav in the treatment of acute periapical abscesses.	18–75 years. Dental practices, Belgium
Doroschak et al, 1999	Randomised, double-blind, placebo-controlled study.	To determine if a combination of an Non-Steroidal Anti-Inflammatory Drug (NSAID) and an opioid provide greater pain relief than either drug alone.	18–65 years. University dental clinic, US.
Gallatin et al, 2000	Prospective, double-blind, randomised study.	To evaluate pain reduction in untreated irreversible pulpitis using an intraosseous injection of Depo-Medrol.	18 years or older. University dental clinic, USA.
Houck et al, 2000	Prospective, randomised blinded study.	To evaluate postoperative pain and swelling after performing a trephination procedure in symptomatic necrotic teeth with radiolucencies.	Adults*. University dental clinic, USA.
Nagle et al, 2000	Prospective, randomised, double-blind study.	To determine the effect of penicillin on pain in untreated teeth diagnosed with irreversible pulpitis.	Adults*. University dental clinic, USA.
Henry et al, 2001	Prospective, randomised, double-blind, placebo-controlled study.	To determine the effect of penicillin on postoperative pain and swelling in symptomatic necrotic teeth.	18 years or older. University dental clinic, USA.
Hersh et al, 2003	Randomised, double-blind, placebo-controlled clinical trial.	Efficacy and safety of a benzocaine intraoral patch in patients presenting with spontaneous toothache pain	18–65 years. University dental clinic, USA.
Runyon et al, 2004	Prospective, randomised, double-blind, placebo-controlled trial.	To determine if penicillin is necessary or beneficial in the treatment of undifferentiated dental pain without overt infection.	18 years or older. Emergency department, USA.
Campanelli et al, 2008	Clinical study.	To record the objective and subjective systemic signs of emergency patients presenting with pulp necrosis and localised acute apical abscess.	18 years or older. University dental clinic, USA.
Cohen et al, 2009	Cross-sectional survey.	The pharmacist’s role in managing toothache pain from the perspective of the patient.	21 years or older. Community pharmacy, USA.
Wilson et al, 2013	Retrospective questionnaire survey.	To record the levels of patient satisfaction with oral urgent treatment and to highlight areas for improvement in both training and service provision.	18 years or older. Rural community clinic*, Tanzania
Sethi et al, 2014	Randomised clinical trial.	To compare and evaluate the effect of an oral dose of 100mg tapentadol, 400mg etodolac or 10mg ketorolac as a pretreatment analgesic for the prevention and control of postoperative endodontic pain in patients with irreversible pulpitis.	18–60 years. Dental college clinic, India.
Pavithra et al, 2015	Randomised double blind trial.	To compare and evaluate analgesic effectiveness of ibuprofen and Aceclofenac in management of acute irreversible pulpitis.	20–50 years. Dental college clinic, India.
Buitema et al, 2016	Prospective, double-blind randomised trial.	To compare liposomal bupivacaine versus bupivacaine for pain control in untreated, symptomatic irreversible pulpitis.	18 years or older. University dental clinic, USA.

Continued
outcomes included: ‘signs and symptoms of dental pain/infection’, and ‘complications or other harm’ resulting from treatment or disease progression. Patient-reported outcomes included patient satisfaction with the outcome of care.

As also shown in table 2, various approaches were used for measuring the clinical outcomes, including unidimensional pain scales (such as a Visual Analogue Scale (VAS) or category pain scale), amount of rescue medication taken, and the presence of absence of various signs and symptoms such as swelling, trismus or fever. Complications were assessed by recording whether unplanned visits had been required or whether the patient had experienced symptoms of drug allergy or other adverse effects (such as gastrointestinal symptoms and headaches).

Details about data sources for the outcomes and duration of data collection in each study are presented in table 3. Most of the outcomes were reported by patients (n=20) through diaries, questionnaires or interviews. A minority of studies (n=7) employed clinical observations from in person monitoring or review during or after their treatment appointment. None of the studies used a combination of patient-reported and clinician observed data. No studies employed data from healthcare administrative systems. Data collection in most studies took place over less than a week (n=17). In six studies, the duration of data collection was 1 week, and two of the remaining four studies data collection completed 1 year after the participant received urgent dental treatment.

Results of syntheses

Pain was the most commonly reported sign/symptom (see table 2), including unstimulated/spontaneous pain (n=24), pain stimulated by percussion, chewing or thermal stimulus (n=7) or the need for additional pain relief through use of rescue medication (n=14). Complications or other harm related to the treatment provided included adverse outcomes (such as drug allergy or nausea) and progression of the acute dental condition requiring unplanned visits for additional treatment. Patient satisfaction was only recorded in studies in non-dental healthcare settings and only one dental study included patient-reported outcomes.

Comparing results between high-income countries and LMICs found just one difference in the outcomes reported: none of the studies undertaken in LMICs reported on swelling as a sign of infection, compared with 35% (n=7/20) of studies undertaken in high-income country settings.

Table 1

Study	Study type	Objective	Population* (patient age, setting, country)
Sebastian et al, 2016	Prospective, randomised study	To compare debridement vs no debridement on postoperative pain in emergency patients with symptomatic pulpal necrosis, and apical radiolucency.	18 years or older. University dental clinic, USA.
Santini et al, 2017	Double-blind, controlled parallel design	To compare the overall analgesic effectiveness of two combinations of opioid and non-opioid analgesics for acute periapical abscess.	Over 18 years. Dental hospital, Brazil.
Taggar et al, 2017	Randomised, double-masked, controlled parallel-group trial	To compare the analgesic effect of a single dose of ibuprofen sodium dihydrate with that of a comparable dose of ibuprofen acid in endodontic pain patients presenting with moderate to severe pain.	18–60 years. (Setting unclear), USA.
Aaron and Steier, 2018	Single-centre prospective clinical study	To determine if dentists are successful in reducing pain caused by acute apical abscess in a National Health Service emergency setting and if different treatment strategies result in different levels of pain reduction.	20–68 years. Primary care dental clinic, UK.
Beus et al, 2018	Prospective, randomised, single-blind study	To compare the postoperative course of incision and drain with drain placement versus mock incision and drainage procedure with mock drain placement after endodontic debridement in swollen emergency patients.	18 years or older. University dental clinic, USA.
Eren et al, 2018	Single-blinded, single-centre, randomised controlled trial	To evaluate three emergency procedures for their ability to alleviate pain from localised symptomatic apical periodontitis.	18–60 years. University dental clinic, Turkey.
Wolf et al, 2019	Prospective randomised study	To compare the postoperative course of incision and drain with drain placement versus mock incision and drainage procedure with mock drain placement after endodontic debridement in swollen emergency patients.	18 years or older. University dental clinic, Sweden.
Al-Rawhani et al, 2020	Randomised placebo-controlled double-blind trial	To evaluate the effect of preoperative administration of a single, oral dose of 50 mg diclofenac on postoperative pain in patients with symptomatic irreversible pulpititis.	18 years or older. University dental clinic, Egypt.
da Silva et al, 2020	Double-blind, randomised clinical trial	To compare the acetaminophen administration efficacy or its combination with codeine for pain control in acute apical abscesses cases.	18 years or older. University dental clinic, Brazil.

*Where not specified in the paper, authors were contacted to confirm participants were all aged >18 years and care was for only people with acute dental pain or infection.
Study	Measure(s)	Pain intensity – unstimulated	Pain intensity – stimulated	Pain Reduction	Rescue pain relief taken	Swelling	Other signs/symptoms	Complications or harm	Patient-reported outcomes
Fazakerley et al, 1993	VAS	Yes/no	Yes/No				Temperature, Lymphadenopathy		
Gibson et al, 1993	VAS, HP-VAS and Category Scale						Injection pain		
Fouda et al, 1996	VAS						Fever, Trismus or Swallowing difficulty		
Penniston and Hargreaves, 1996	VAS, HP-VAS and Category Scale						Allergy, GI Tract		
Adriaenssen, 1998	VAS, HP-VAS and Category Scale	Category scale	Category scale				Gingival redness, Bone loss		
Doroschak et al, 1999	VAS, HP-VAS and Category Scale	Category scale	Category scale				GI tract, Headache, Euphoria, Sedation		
Gallatin et al, 2000	Category scale								
Houck et al, 2000	Numeric scale								
Nagle et al, 2000	Numeric scale								
Henry et al, 2001	Numeric scale								
Hersh et al, 2003	VAS, HP-VAS and Category Scale	Category scale	Category scale						
Runyon et al, 2004	VAS	Yes/no						Temperature, Purulence, Trismus	
Campanelli et al, 2008	VAS							Malaise	
Cohen et al, 2009	Category scale							Category scale	
Wilson et al, 2013	Category scale							Category scale	
Sethi et al, 2014	VAS							GI Tract, Headache, Heartburn	
Table 2 Continued

Signs/symptoms of dental pain or infection	Complications or harm	Patient-reported outcomes
Pain intensity—unstimulated	Swelling	Adverse drug reaction
Pain intensity—stimulated		Unplanned visits
Pain Reduction		Satisfaction
Rescue pain relief taken		Other
Other signs/symptoms		

Pavithra et al, 2015^a	VAS	Delayed prescription	Numbness	Yes/No		
Bultema et al, 2016^b	VAS	Delayed prescription				
Sebastian et al, HP-VAS 2016^c	VAS	Yes/No	GI Tract	Dizziness	Drowsiness	Headache
Santini et al, 2017^d	VAS					
Taggar et al, 2017^e	VAS	Bite force to elicit pain				
Aaron and Steier, 2016^f	Modified pain quality assessment scale					
Beus et al, 2018^g	HP-VAS	Amount and type	Patient perception: ‘swelling becoming smaller’	Experience of bad taste or pus drainage	Patient perception: ‘feeling better’	
Eren et al, 2018^h	VAS	Yes/No on chewing and thermal stimulus	Amount			
Wolf et al, 2019ⁱ	Numeric scale	Yes/No	Opioid/Non-opioid	Antibiotics prescribed	Yes/No	
Al-Rawhani et al, 2020^j	HP-VAS	Yes/No				
da Silva et al, 2020^k	VAS	Yes/No	GI Tract	Dizziness	Drowsiness	Headache

*Study undertaken in non-dental setting.

Gl, gastrointestinal; HP-VAS, Heft Parker Visual Analogue Scale.
countries. There was also one difference found in data sources for the outcomes: none of the LMIC-based studies recorded clinician observed outcomes compared with 30% (n=6/20) of studies in high-income countries.

No differences were found in data collection periods.

DISCUSSION

A diverse range of measures were identified to assess the outcomes of care for adults presenting with acute dental pain and/or infection across a range of healthcare settings in high income and LMICs. Most were clinical outcomes, such as signs and symptoms of pain and infection and complications or other harms following treatment (such as drug allergy). Patient-reported outcomes relating to satisfaction were only used in studies from non-dental settings. The range of outcomes and data collection periods were similar between high income countries and LMICs. Just one key difference was noted in their assessment: none of the LMIC studies reported clinician-observed data. This is the first study to focus comprehensively on outcomes relating to acute dental conditions and a lack of consensus in outcomes reported across the studies was found.

Due to the heterogeneous range of studies identified for inclusion, a systematic narrative review was selected to enable synthesis of the results. This type of review is, however, more subjective, and open to potential bias than conventional systematic reviews. Core outcome sets (COS) can improve consistency in reporting and maximise the value derivable from studies. Further research

Patient reported	Clinician observed		
Patient diary	Questionnaires or interviews	In-person review	In-person monitoring
Fazakerley et al, 1993	5 days		
Gibson et al, 1993	2 days		
Fouad et al, 1996	3 days		
Penniston and Hargreaves, 1996	6 hours		
Adriaenssen, 1998	10 days		
Doroschak et al, 1999	1 day		
Gallatin et al, 2000	1 week		
Houck et al, 2000	1 week		
Nagle et al, 2000	1 week		
Henry et al, 2001	1 week		
Hersh et al, 2003	90min		
Runyon et al, 2004	1 week		
Campanelli et al, 2008	2 weeks		
Cohen et al, 2009	1 year		
Wilson et al, 2013	1 year*		
Sethi et al, 2014	1 day		
Pavithra et al, 2015	45min		
Bulterma et al, 2015	3 days		
Sebastian et al, 2016	5 days		
Santini et al 2017	3 days		
Taggar et al, 2017	1 hour		
Aaron et al, 2018	1 day		
Beus et al, 2018	4 days		
Eren et al, 2018	1 week		
Wolf et al, 2019	5 days		
Al-Rawhani et al, 2020	2 days		
da Silva et al, 2020	3 days		

*Where not specified in the paper, authors were contacted to confirm the timescales. LMICs, low-income and middle-income countries.
is indicated to develop a COS relating to the care of people presenting with acute dental pain or infection across healthcare settings internationally. Given the high rates of inappropriate antibiotic prescribing for people with acute dental conditions and the increasing recognition of the important contribution dentistry can make to global efforts to tackle antibiotic resistance, this COS will be particularly important.

Measuring what matters to patients has been recognised as central to improving patient care and service delivery, with patients needing to be involved in decisions about what to measure. For this reason, experts by experience of urgent dental care were key members of our coproduction team, including when devising the review’s search strategy. Funding to reimburse their time for participating in the length process of a systematic review was welcomed by the experts by experience.

The range of healthcare settings included in this review (dental clinics, pharmacies, hospital emergency departments and community clinics) mean the findings of this study are widely generalisable and can be easily translated to different healthcare settings around the world. Even though limited to English language, studies from a wide range of countries were included, across both high-income countries and LMICs. Six papers were excluded due to language (including 50% in Japanese) which may have introduced additional outcomes and differences in cultural practices.

Restricting this paper to published studies relating to adults from the peer-reviewed literature means that additional measures in the grey literature may have been missed as well as meaning that it fails to conform completely to the new Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines for systematic reviews which were published during the course of our study. The authors decided additional searches of the grey literature would not, however, meet the research questions or their intention to identify outcomes which had been successfully tried and tested. Studies including children were excluded from this review as the outcomes (especially patient-reported outcomes) are materially different. Further, the trials for which these outcomes will be used by the authors relate to dental antibiotic stewardship and opioid stewardship for adult patients, which is the patient group where most overprescribing of these drugs occurs.
The importance of valid, reliable and feasible measures for improving the quality of oral healthcare, including patient-reported outcomes and experience measures has been recognised. In 2020, an international consensus of patient-centred outcomes to measure adult oral health (focusing on caries and periodontal disease) was published and highlighted that multiple measures are required to capture the effect of oral health on the individual patient. Where possible, we have adopted the terminology from this adult oral health standard set of outcomes when presenting our findings, such as ‘compli- cations’ or other harm resulting from treatment or disease progression’ and ‘unplanned visits.’ However, while our findings cover some of the same territory, there are important differences in the detail especially relating to timescales. For example, there is no mention of ‘infection’ in the oral health outcomes and ‘dental pain’ covers only the frequency of pain in the last 6 months and ‘complications’ within 30 days, whereas our study found that these outcomes were measured in hours and days for people with acute dental conditions. Quality of life indicators such as the ability to eat, sleep, speak or carry out usual work activities at home and in the workplace (productivity) are outcomes from the standard oral health set which could be useful for studies of the outcome of care for people with acute dental pain and/or infection but which were not employed in any of the studies within our review.

Primary medical care and to a lesser extent primary dental care have been recent targets of global efforts to tackle antibiotic resistance through stewardship programmes by reducing unnecessary and inappropriate prescribing. A hybrid umbrella/systematic review of measures to evaluate the effectiveness of antibiotic stewardship programmes, in primary medical and dental care respectively, found similar outcomes to this present review, including drug allergy, re-consultation rates and patient satisfaction. Notably, the study about antibiotic stewardship measures found dental studies focused only on antibiotic use and the authors concluded that a range of metrics encompassing the wider measures employed in studies of medical care, including patient-reported outcomes, should also be utilised in dentistry. Our findings reiterate this idea that a diverse range of outcomes should be used to evaluate care for people with acute dental conditions. Clinical outcomes such as signs and symptoms of pain and infection, and complications (including unplanned dental visits) should be employed in future studies, together with patient-reported measures such as satisfaction with the outcome of care.

Most studies in the review used unidimensional pain scales which are recognised to work well for acute pain: VAS, Heft-Parker scale, numeric rating scale and category pain scale. Interestingly, none used the unidimensional pain scales based on images: Faces Pain Scale or Wong-Baker Faces Pain Scale. Unsurprisingly none used the McGill Pain Scale or other multidimensional scales which are recognised to be more useful for chronic than acute pain. Future research to compare the utility of pain scales based on images with the other unidimensional pain scales for use in urgent dental care settings would be useful.

Dental antibiotic and opioid prescribing are recent priorities for clinicians and policymakers around the world, with overprescribing identified as a problem driving the development and spread of antibiotic resistance and substance misuse disorder. Prescribing rates and choices varying between countries, and solutions to tackle the problem of overprescribing need to be tailored to the local context. A recent pilot trial of a clinical decision prescribing tool and targeted education to improve dental antibiotic and opioid prescribing in Australia demonstrated a 41% reduction in antibiotic usage and 59% reduction in opioids. Clinical trials of antibiotic and opioid stewardship interventions are also planned in the UK and USA. Further research to develop a set of core outcomes for studies relating to the care of adults with acute dental pain and infection would be useful in the evaluation of stewardship interventions, to enable direct comparisons between stewardship interventions internationally.

Standardising the reporting of metrics will facilitate improvements in the quality of care for people with acute dental pain and/or infection. The outcomes identified in this study (both clinical and patient reported) should form the basis on which to build international consensus on a COS as these measures will be useful in research, clinical and public health settings. Future research should be directed towards development and utilisation of this outcome set across healthcare settings where people with acute dental pain and infection present for treatment.
REFERENCES

1. Currie CC, Stone SJ, Durham J. Pain and problems: a prospective cross-sectional study of the impact of dental emergencies. J Oral Rehabil 2015;42:882–9.

2. Emmott R, Barber SK, Thompson W. Antibiotics and toothache: a social media review. Int J Pharm Pract 2021;29:210–7.

3. SDCEP. Management of acute dental problems during COVID-19 pandemic, 2020. Available: https://www.sdcep.org.uk/published-guidance/acute-dental-problems-covid-19/.

4. Robertson DP, Keys W, Rautema-Richardson R, et al. Management of severe acute dental infections. BMJ 2015;350:h1300.

5. Worsley DJ, Robinson PG, Marshman Z. Access to urgent dental care: a scoping review. Community Dent Health 2017;34:19–26.

6. Lugtenburg M, Burgers J, Westert G. Effects of evidence-based clinical practice guidelines on quality of care: a systematic review. BMJ Quality & Safety 2009;18:385–92.

7. Thompson W, Williams D, Pulcini C. The essential role of the dental team in reducing antibiotic resistance. Geneva: FDI World Dental Federation, 2020.

8. Faculty of General Dental Practitioners (FGDP) UK, Surgery FoD. Antibiotic prescribing in dentistry: good practice guidelines. 3rd ed. London, UK: Royal College of Surgeons of England, 2020.

9. Lockhart PB, Tampi MP, Abt E, et al. Evidence-based clinical practice guideline on antibiotic use for the urgent management of pulpal- and periapical-related dental pain and intraoral swelling: a report from the American dental association. J Am Dent Assoc 2019;150:e1921.

10. Bassey O, Caikar J, Hallam J, et al. Non-traumatic dental presentations at accident and emergency departments in the UK: a systematic review. Br Dent J 2020;228:171–6.

11. Cope AL, Wood F, Francis NA, et al. General practitioners’ attitudes towards the management of dental conditions and use of antibiotics in these consultations: a qualitative study. BMJ Open 2015;5:e008551.

12. Amen TB, Kim I, Peters G, et al. Emergency department visits for dental problems among adults with private dental insurance: a national observational study. Am J Emerg Med 2021;44:166–70.

13. Shah S, Wordley V, Thompson W. How did COVID-19 impact on dental antibiotic prescribing across England? Br Dent J 2020;229:601–4.

14. Suda KJ, Durkin MJ, Calip GS, et al. Comparison of opioid prescribing by dentists in the United States and England. JAMA Netw Open 2019;2:e194303–03.

15. Teoh L, Hollingworth S, Marino R, et al. Dental opioid prescribing rates after the up-scheduling of codeine in Australia. Sci Rep 2020;10:1–6.

16. Teoh L, Stewart K, Marino RJ. Improvement of dental prescribing practices using education and a prescribing tool: a pilot intervention study. Br J Clin Pharmacol 2020.

17. Kenny KP, Day PF, Sharif MO, et al. What are the important outcomes in traumatic dental injuries? an international approach to the development of a core outcome set. Dent Traumatol 2018;34:4–11.

18. World Bank. World bank country and lending groups, 2021. Available: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups.

19. Critical Appraisal Skills Programme, CASP randomised controlled trial standard checklist, 2020. Available: https://casp-uk.bcdmr.net/wp-content/uploads/2020/10/CASP_RCT_Checklist_PDF_Fillable_.Form.pdf

20. Sirrieh R, Lawton R, Gardner P, et al. Reviewing studies with diverse designs: the development and evaluation of a new tool. J Eval Clin Pract 2012;18:54–62.

21. Schwetzberger VA, van Heijl J, van Werkhoven CH, et al. The quality of studies evaluating antimicrobial stewardship interventions: a systematic review. Clin Microbiol Infect 2019;25:555–61.

22. Ni Roradin R, Glick M, Al Mashhadani SAA. Developing a standardised patient-centred outcome for adult oral health—an international, cross-disciplinary consensus. Int Dent J 2020.

23. Culhane MC. Oral penicillin in the treatment of acute mandibular pericoronitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1947;33:B505–8.

24. Nusseim JM, Reader A, Beck M. Effect of drainage upon access on postoperative endodontic pain and swelling in symptomatic necrotic teeth. J Endod 2002;28:584–8.

25. Houck V, Reader A, Beck M, et al. Effect of trephination on postoperative pain and swelling in symptomatic necrotic teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000;90:507–13.

26. Conroy M, Reader A, Beck M. Effect of penicillin on postoperative endodontic pain and swelling in symptomatic necrotic teeth. J Endod 2001;27:117–23.

27. Wilson K, Bouchiba M, Vithiani G, et al. Patient satisfaction with oral urgent treatment (out) in North West Tanzania. Br Dent J 2013;215:131–4.

28. Cohen LA, Bonito AJ, Akin DR, et al. Role of pharmacists in consulting with the underserved regarding toothache pain. J Am Pharm Assoc 2009;49:38–42.

29. Beus H, Fowler S, Drum M, et al. What is the outcome of an incision and drainage procedure in patients with pericoronitis? A prospective, randomized, single-blind study. J Endod 2018;44:193–201.

30. Kirkham JJ, Gorst S, Altman DG, et al. Core outcome set-STDAnds for reporting: the COS-STAR statement. PLoS Med 2016;13:e1002148.

31. Cope AL, Francis NA, Wood F, et al. Antibiotic prescribing in UK general dental practice: a cross-sectional study. Community Dent Oral Epidemiol 2016;44:145–53.

32. Calvert M, Kyte D, Price G, et al. Maximising the impact of patient reported outcome assessment for patients and society. BMJ 2019;364:k5267.

33. Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and examples for reporting systematic reviews. BMJ 2021;372:n180.

34. Sirintawat N, Sawang K, Chayasamut T, et al. Pain measurement in oral and maxillofacial surgery. J Dent Anesth Pain Med 2017;17:253–63.

35. Schroeder AR, Dehghan M, Newman TB, et al. Association of opioid prescriptions from dental clinicians for us adolescents and young adults with subsequent opioid use and abuse. JAMA Intern Med 2019;179:145–52.

36. Thompson W, Douglas G, Pavitt S. Factors associated with prescribing of systemic antibiotic drugs to adult patients in urgent primary health care, especially dentistry. J Antimicrob Chemother 2019.

37. Righolt AJ, Sidororenko G, Faggion CM, et al. Quality measures for dental care: a systematic review. Community Dent Oral Epidemiol 2019;47:12–23.

38. Atkins L, Chadborn T, Bondarek P, et al. Content and mechanism of action of national antimicrobial stewardship interventions on management of respiratory tract infections in primary and community care. Antibiotics 2020;9:512.

39. Löfler C, Böhmer F, Hornung A, et al. Dental care resistance prevention and antibiotic prescribing modification—cluster-randomised controlled DREAM trial. Implement Sci 2014;9:27.

40. Teoh L, Sloan AJ, McCullough MJ, et al. Measuring antibiotic stewardship programmes and initiatives: an umbrella review in primary care medicine and a systematic review of dentistry. Antibiotics 2020;9:607.

41. Teoh L. Opioid prescribing in dentistry - is there a problem? Aust Prescr 2020;43:144.

42. Thompson W, Teoh L, Hubbard CC, et al. Patterns of dental antibiotic prescribing in 2017: Australia, England, United States, and British Columbia (Canada). Infect Control Hosp Epidemiol 2021;2:1–8.

43. Goulao B, Scott C, Black I, et al. Audit and feedback with or without training in-practice targeting antibiotic prescribing (TITAP): a
study protocol of a cluster randomised trial in dental primary care. Implementation Science 2021;16:1–9.
44 Durkin M. Using implementation science and informatics to develop and pilot test antibiotic stewardship clinical decision support: NIH, 2021.
45 Williamson PR, Altman DG, Bagley H, et al. The comet Handbook: version 1.0. Trials 2017;18:1–50.
46 Fazakerley MW, McGowan P, Hardy P, et al. A comparative study of cephradine, amoxicillin and penicillin in the treatment of acute dentoalveolar infection. Br Dent J 1993;174:359–63.
47 Gibson GB, Blasberg B, Alton R. A prospective survey of hospital ambulatory dental emergencies. Part 2: follow-up to emergency treatment. Spec Care Dentist 1993;13:110–2.
48 Fouad AF, Rivera EM, Walton RE. Penicillin as a supplement in resolving the localized acute apical abscess. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;81:590–5.
49 Penniston SG, Hargreaves KM. Evaluation of periapical injection of ketorolac for management of endodontic pain. J Endod 1996;22:55–9.
50 Adriaenssen CF. Comparison of the efficacy, safety and tolerability of azithromycin and co-amoxiclav in the treatment of acute periapical abscesses. J Int Med Res 1998;26:257–65.
51 Doroshak AM, Bowles WR, Hargreaves KM. Evaluation of the combination of flurbiprofen and tramadol for management of endodontic pain. J Endod 1999;25:660–3.
52 Gallatin E, Reader A, Nist R, et al. Pain reduction in untreated irreversible pulpitis using an intraosseous injection of Depo-Medrol. J Endod 2000;26:633–8.
53 Nagle D, Reader A, Beck M, et al. Effect of systemic penicillin on pain in untreated irreversible pulpitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000;90:636–40.
54 Hersh EV, DeRossi SS, Ciarrocca KN, et al. Efficacy and tolerability of an intraoral benzocaine patch in the relief of spontaneous toothache pain. J Clin Dent 2003;14:1–6.
55 Runyon MS, Brennan MT, Batts JJ, et al. Efficacy of penicillin for dental pain without overt infection. Acad Emerg Med 2004;11:1268–71.
56 Campanelli CA, Walton RE, Williamson AE, et al. Vital signs of the emergency patient with pulpal necrosis and localized acute apical abscess. J Endod 2008;34:264–7.
57 Sethi P, Agarwal M, Chourasia HR, et al. Effect of single dose pretreatment analgesia with three different analgesics on postoperative endodontic pain: a randomized clinical trial. J Conserv Dent 2014;17:517–21.
58 Pavithra P, Dhanraj M, Sekhar P. Analgesic effectiveness of ibuprofen and Aceclofenac in the management of acute pulpitis - a randomized double blind trial. Int J Pharm Sci Rev Res 2015;35:70–4.
59 Bullena K, Fowler S, Drum M, et al. Pain reduction in untreated symptomatic irreversible pulpitis using liposomal bupivacaine (Exparel): a prospective, randomized, double-blind trial. J Endod 2016;42:1707–12.
60 Sebastian R, Drum M, Reader A, et al. What is the effect of No endodontic debridement on postoperative pain for symptomatic teeth with pulp necrosis? J Endod 2016;42:378–82.
61 Santini MF, Rosa RA, Ferreira MBC, et al. Comparison of two combinations of opioid and non-opioid analgesics for acute periradicular abscess: a randomized clinical trial. J Appl Oral Sci 2017;25:551–8.
62 Taggar T, Wu D, Khan AA. A randomized clinical trial comparing 2 ibuprofen formulations in patients with acute odontogenic pain. J Endod 2017;43:674–8.
63 Aaron S, Steier L. Efficacy of first aid treatment of acute apical abscess in an NHS emergency clinic. British Dental Journal 2018;224:523–7.
64 Eren B, Onay EO, Ungor M. Assessment of alternative emergency treatments for symptomatic irreversible pulpitis: a randomized clinical trial. Int Endod J 2018;51 Suppl 3:e227–37.
65 Wolf E, Dragojevic M, Fuhrmann M. Alleviation of acute dental pain from localised apical periodontitis: a prospective randomised study comparing two emergency treatment procedures. J Oral Rehabil 2019;46:120–6.
66 Al-Rawhani AH, Gawdat SI, Wanees Amin SA. Effect of diclofenac potassium sodium modification on Postendodontic pain in mandibular molars with symptomatic irreversible pulpitis: a randomized placebo-controlled double-blind trial. J Endod 2020;46:1023–31.
67 da Silva PB, Mendes AT, Cardoso MBF, et al. Comparison between isolated and associated with codeine acetaminophen in pain control of acute apical abscess: a randomized clinical trial. Clin Oral Investig 2021;25:875–82.