Insights into the Loblolly Pine Genome: Characterization of BAC and Fosmid Sequences

Jill L. Wegrzyn1,*1, Brian Y. Lin1, Jacob J. Zieve1, William M. Dougherty2, Pedro J. Martínez-García1, Maxim Koriabine3, Ann Holtz-Morris3, Pieter de Jong3, Marc Crepeau2, Charles H. Langley2, Daniela Puiu4, Steven L. Salzberg4, David B. Neale1, Kristian A. Stevens2†

1Department of Plant Sciences, University of California Davis, Davis, California, United States of America, 2Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America, 3Children’s Hospital Oakland Research Institute, Oakland, California, United States of America, 4Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America

Abstract

Despite their prevalence and importance, the genome sequences of loblolly pine, Norway spruce, and white spruce, three ecologically and economically important conifer species, are just becoming available to the research community. Following the completion of these large assemblies, annotation efforts will be undertaken to characterize the reference sequences. Accurate annotation of these ancient genomes would be aided by a comprehensive repeat library; however, few studies have generated enough sequence to fully evaluate and catalog their non-genic content. In this paper, two sets of loblolly pine genomic sequence, 103 previously assembled BACs and 90,954 newly sequenced and assembled fosmid scaffolds, were analyzed. Together, this sequence represents 280 Mbp (roughly 1% of the loblolly pine genome) and one of the most comprehensive studies of repetitive elements and genes in a gymnosperm species. A combination of homology and de novo methodologies were applied to identify both conserved and novel repeats. Similarity analysis estimated a repetitive content of 27% that included both full and partial elements. When combined with the de novo investigation, the estimate increased to almost 86%. Over 60% of the repetitive sequence consists of full or partial LTR (long terminal repeat) retrotransposons. Through de novo approaches, 6,270 novel, full-length transposable element families and 9,415 sub-families were identified. Among those 6,270 families, 82% were annotated as single-copy. Several of the novel, high-copy families are described here, with the largest, PtPiedmont, comprising 133 full-length copies. In addition to repeats, analysis of the coding region reported 23 full-length eukaryotic orthologous proteins (KOGS) and another 29 novel or orthologous genes. These discoveries, along with other genomic resources, will be used to annotate conifer genomes and address longstanding questions about gymnosperm evolution.

Introduction

Gymnosperms have undergone 300 million years of evolution since their divergence from the ancestors of modern angiosperms, and they possess enormously complex genomes in comparison [1–3]. Increased ploidy level and individual repeats in high copy number are common in angiosperms but are rarely seen in gymnosperms [4,5]. While rapid progress has been made in characterizing the genomes of angiosperms, the same is not true for gymnosperms, in part due to an order of magnitude increase in their size and complexity. Conifers are by far the most important representatives of the gymnosperms, prevalent in a variety of ecosystems and representing 82% of terrestrial biomass [6]. Comparative studies have demonstrated that they are characterized by reduced coding region evolution, retrotransposon proliferation, highly diverged repetitive sequences, accumulation of noncoding regions, and extensive gene duplication [3,4,7,8]. Until recently, sequencing conifers has been nearly impossible due to the assembly complexity and sheer magnitude of sequence (Taxodium distichum: 9.7 Gbp, Picea abies: 19.6 Gbp, Pinus banksiana: 22.3 Gbp) [9]. Recent advances in the cost and utility of second generation, high-throughput sequencing technologies have made it possible for ten conifer reference genomes to be assembled (http://www.pinegenome.org/pinerefseq). Together, these will aid breeding efforts and illuminate mechanisms behind adaptive diversity for managing forest populations.

The largest genera in the order Coniferales, Pinus, comprises over 100 species and accounts for over 40% of global forest plantations [10]. Loblolly pine, a relatively fast-growing and economically important representative of the conifers, is a forest tree species native to the Southeastern United States. Traditional commercial markets for loblolly pine have included lumber, pulp, and paper, but more recently, it has become a major bioenergy feedstock in lignocellulosic ethanol production [11]. Recent estimates [9] place the size of the loblolly pine genome between 21 and 24 Gbp. In the context of completed genome projects, this
is approximately seven to eight times larger than the human genome, and about four times the size of the largest angiosperm for which we have a reference genome, *Hordeum vulgare* (barley) [12]. Large-scale EST discovery projects have generated significant transcriptomic resources in the absence of a reference genome, including 329,662 ESTs, 17,379 UniGenes, and over 200,000 contigs from Roche/454 sequencing [13,14]. The current genomic resources for loblolly pine include 103 Bacterial artificial chromosomes (BACs) totaling 10 Mb. BACs are the most popular genomic DNA construct and have been used extensively for genome characterization and in hierarchical sequencing projects like the human genome [15,16]. BAC libraries offer a source of large genomic inserts (up to 200 Kbp) that facilitate studies of genome content without a reference sequence [17]. They have been used in genomic studies of other gymnosperms, including *Pinus pinaster* [18], *Picea glauca* [19] and *Taxodium distichum* [20]. In addition to the BAC resource, we have generated just over 90,000 fosmid sequences totaling 265 Mb. Fosmids have been used to characterize several plant genomes, including sugar beet [21], Maire yew [22], cucumber [23], and strawberry [24]. Fosmids are less expensive to generate than BACs and have less cloning bias; their insert size can also be more narrowly controlled [25]. Like BACs, they are an ideal resource for preliminary genome characterization and for improving whole-genome shotgun assemblies.

While several categories of transposable elements (TEs) exist in plant genomes, the Class I elements known as long terminal repeat (LTR) retrotransposons are most frequently associated with genome size variation [26]. Studies across several plant species have noted that polyploidization and rapid proliferation of TEs can each lead to genome expansion [27]. Polyploid angiosperms such as *Oryza sativa*, *Vitis vinifera*, and *Hordeum vulgare* have repetitive content estimates of 35%, 41.4%, and 84% respectively [12,28–30]. The diploid genome of a wild species of rice, *Oryza australiensis*, with a repetitive content estimate of 76%, has doubled in size over the last three million years through the expansion of a select few retrotransposon families [31]. Phylogenetic inference of gymnosperm lineages provides strong evidence for a recent, large increase in genome size in pines without associated acceleration of phenotypic diversity, suggesting periods of retrotransposon expansion [32]. The repetitive content of conifers *Picea glauca*, *Pinus taeda*, and *Taxodium distichum* have been estimated, through analysis of BAC sequences, to be anywhere from 20% to 90% [7,19,20]. Characterization of *Taxus mairei* fosmid sequences yielded a repetitive content estimate of 20.8%, excluding tandem repeats [33]. As in many plant genomes, an abundance of TE families has been noted in conifers, specifically those of the Cipdia and Gypsy families [34]. A handful of these LTRs have been characterized, and their distributions suggest that conifer genomes have very diverse and abundant repetitive sequences [3,7,35]. Most of these elements, however, remain uncharacterized.

In this study, we present a comprehensive analysis of repeats in both the existing BACs [11 sequences provided by [7] and 92 sequences available in Genbank [33] and an extensive novel fosmid resource. The fosmid set is the largest genomic resource generated to date for a gymnosperm, and consists of 90,954 scaffolds assembled from fosmid pools. Interspersed and tandem repeats were detected using both homology-based searches, which identify repetitive elements based on similarity to existing elements in a repeat library, and de novo searches, which scan for repeats without prior knowledge of repeat element sequence. Of particular interest are previously undiscovered repetitive element families, which were annotated and annotated. In addition, a combination of orthologous proteins and ab initio gene prediction approaches were employed to characterize the gene space. These efforts generated a more comprehensive view of repetitive content for loblolly pine, as well as a bioinformatic framework for full genome annotation.

Materials and Methods

Fosmid DNA Prep, Library Construction, Sequencing

Genomic DNA from *Pinus taeda* genotype 20-1010 diploid needle tissue was isolated and extracted using a modified version of the method [36]. The extracted genomic DNA was then sheared to an average size of approximately 40 Kbp and size-purified by pulsed-field electrophoresis. This was followed by ligation to excess vector, pFosTH, (dephosphorylated ends) and vector packaging (extracts from mcrA, B, C strains) to create a particle library. The particle library was then titered, portioned, and converted into *E. coli* colonies. This procedure resulted in 11 pools of approximately 580+/−10% *E. coli* colonies, each colony containing a single fosmid.

The 11 harvested bacterial colony pools were then amplified in vivo. Fosmid DNA was subsequently purified and digested with the homing endonuclease PI-ScI, which has a 33 bp recognition site. With the isolated DNAs quantified by PicoGreen, the purified insert DNAs were portioned out to create an equimolar super-pool of all 11 component fosmid pools, as well as a set of three nested equimolar super-pools of 8, 4, and 2 small fosmid pools. The two smallest pools were not considered further in this analysis.

The fosmid DNA was processed into paired-end Illumina libraries for subsequent second generation sequencing. The largest super pool (of 11 pools) was converted to a long insert jumping library, and the smaller nested super pool (of 8 pools) was converted to a short insert fragment library. Standard Illumina reagents and protocols were used for library construction. Large fragments were generated with a HydroShear and small (sub-kilobase) fragments were generated with a Diagenode Bioruptor.

Paired-end libraries were subsequently sequenced on an Illumina GA2x [SCS version 2.9.35, RTA version 1.9.35]. Approximately 45 million 125 bp paired-end reads were obtained from the fragment library while 27 million 125 bp paired-end reads were obtained from the jumping library. Subsequent alignment of the reads to the *E. coli* and vector genomes was used to determine median insert size. Ungapped single seed alignment was done using Illumina’s CASAVA pipeline version 1.7.0. GERALD reported a median insert size of 3,300 bp for the jumping library with a coefficient of variation of approximately 5%. The shorter fragment library had a median insert size of 258 bp with a coefficient of variation of approximately 4%. The reported rates of the non-canonical paired-end alignment orientations were also consistent with high quality libraries.

Fosmid Assembly

Prior to assembly, the reads were processed with multiple methods designed to improve the overall assembly. The reads were quality (Q20) and adapter trimmed using the “fastq-mcf” program, part of the “caitl” [37]. Following the trimming, the reads were aligned using BWA to a contaminant database composed of pFosTH, Ecoli, chloroplast and mitochondrion sequences [39]. The mate pairs that had one or both reads aligned to this database were discarded. The fosmid pool sequences were assembled using SOAPdenovo v1.05 [39] with a k-mer size of 63. Four iterations of GapCloser (v1.12) with a SOAPdenovo rescaffolding step in the middle were used for gap closing and assembly improvement. All scaffolds of lengths >200 bp were submitted to Genbank (WGS: APFE01000000).
BAC Sequencing and Assembly

Two sets of loblolly pine BAC sequences derived from the Mississippi Genome Exploration Laboratory (MGEL) and Clemson University Genomics Institute (CUGI) libraries [35,36] were analyzed here. Ten BAC clones (Genbank Accession Nos. GU477256-GU477266) were individually Sanger sequenced and assembled with Arachne [7]. The average read depth of each BAC assembly ranged from 6x to 16x. Nine of the BAC assemblies were resolved into a single scaffold and the last resolved into two unoriented contigs. An additional set of 92 BAC clones (Genbank Accession Nos. AC241263-AC241362) from the same libraries were sequenced with 454/Roche Pyrosequencing with an average read depth of 7x.

To eliminate potential redundancy between the independently derived fosmid and BAC datasets, three fosmid scaffolds identified as exact matches (99% identity and full coverage) against the longer BAC sequences were removed. In addition, 65,675 assembled fosmid contigs with lengths <201 bp were removed from the final set.

Repeat Identification

A combined methodology of homology-based and de novo approaches was used to identify the tandem and interspersed repetitive content in the BAC and fosmid sequences (Figure 1).

Tandem Repeat Identification

Tandem Repeat Finder (TRF) v4.04 [40] was run with default parameters to identify tandem repeats in the BAC and fosmid sequence sets. Repeat units, or periods, of sizes 2 to 500 bp were considered. Mononucleotides (period size of 1) were not included due to the high likelihood of repeat collapse in the assembly process. To accurately assess the coverage of tandem repeats, we filtered overlaps by discriminating against hits with low TRF-based alignment scores. For comparison, these methods were applied to the reference genomes of Arabidopsis thaliana v1.6.7, Vitis vinifera v1.4.5, Cucumis sativus v1.2.2, and Populus trichocarpa v2.1.0, available through Phytozome [41]. In addition, BAC sequences (Table S1) from Picea glauca (white spruce) and Taxus mairei (Maire yew) were analyzed (Genbank Accession No: 262263013, 221149199; 327410373–327412295). NCBI-BLASTN v2.2.26 was run with default parameters to verify whether particular satellites were specific to Pinus taeda.

Interspersed Repeat Identification (Homology)

Censor v4.2.27 [42] was used to annotate repeats through homology. Censor utilizes NCBI-BLASTN (by default) to align queries against a database of curated repetitive elements. For this analysis, a custom plant repeat database (CPRD) was constructed using a subset of Repbase v17.07. This database is composed of plant repeats (phlep, grasrep, mcotrep, dcotrep, oryrep and athrep) as well as five TE families available in the literature and previously classified in forest trees: TPE1 from Pinus elliottii [43], PpRT1 from Pinus pinaster [44], Gymn from Pinus taeda [3], PfIFG7 from Pinus taeda [7], and Corky from Quercus suber [45]. Censor makes available three sensitivity modes (normal, rough and sensitive) along with varying BLAST parameters to balance sensitivity and speed. The normal mode (blastall -p blastn -b 10000000 -Y 10000000 -e 0.000002 -a 64 -r 3 -q 1 -y 80 -X 130 -Z 150 -W 10 J T -m 8 -i QU -d DB -F 'm D') was selected, as it yielded the same or improved alignments when compared against the sensitive mode for our datasets. Runs were performed in both redundant (a region may be annotated more than once) and non-redundant (the annotation with the highest alignment score is chosen) modes to provide a basis for species comparisons. Full-length hits and repeats that belonged to previously characterized families were identified using a modified version of the 80-80-80 standard [46].

This dictates that alignments should be >80 bp in length with at least 90% identity, and should cover 80% of the reference sequence. In this instance, percent identity was substituted with Censor’s sim metric, and is defined as: (match_count/ alignment_length – query_gap_length – subject_gap_length + gap_count).

De Novo Interspersed Repeat Identification

De novo repeat identification focuses on the discovery of repetitive sequence through self-alignment and/or pattern matchings for structural features. To implement de novo repeat identification, the BACs (103 sequences) and fosmids (90,954 sequences) were run through the REPEAT TEDenovo pipeline (v2.0) with default settings [47]. This software wraps several open-source tools to identify, characterize, and derive a consensus sequence for each element. The first stage is self-alignment (all vs all) with NCBI BLAST 2.2.25 to detect high-scoring segment pairs (HSPs) [48]. This is followed by three separate rounds of clustering with three independent algorithms for repeat identification, including Grouper [48], Recon [49] and PILER [50]. Up to three clusters for each element are aligned with the multiple sequence aligner, Map [51], to derive a consensus. A structural search is run simultaneously with LTRHarvest to identify highly divergent LTR retrotransposons [52]. The results from this secondary search are clustered with BLASTCLUST to group candidate sequences [53]. The results from both pipelines are combined, and subsequently filtered to reduce the redundancy generated from independently derived consensus sequences.

TEclassifier, a secondary REPET application, provides a first-pass annotation of the consensus sequences. This application delivers annotations by running BLASTER against four databases [47]: Repbase 17.07 (in both nucleotide and amino acid formats), a Pfam protein domain HMM database specifically formatted for REPET, a database of known genes from the host organism (for which we used 366 full-length Pinus taeda cDNAs and 945 Pinus radiata full-length cDNAs [54]), and a database of ribosomal DNA sequences from the host organism (for which we used 52 ribosomal Pinus sequences). Poly-A tails, tandem repeats, open reading frames, terminal repeats, and tRNAs are also detected at this stage. After the database searches and filters, order-level annotations are provided according to the repeat classification system [46].

To contend with false positives and partial sequences, all sequences identified by REPET were treated as repetitive element seeds. In this context, seeds are de novo consensus sequences used as a library. The seeds from both sequence sets were combined and submitted to a non-redundant Censor search in normal sensitivity mode against the BAC and fosmid references. This enabled the full-length repeats to be mapped and aligned back to the reference. Alignment statistics and positions were recorded in a local MySQL database to facilitate downstream queries. All raw full-length hits were extracted from this database, observing the modified 80-80-80 standard described above.

De Novo Interspersed Repeat Annotation

To effectively combine the homology and de novo search results, sequences corresponding to the full-length hits were extracted and compared against the homology database, CPRD. These alignments were manually classified and annotated into (Class: Order: Superfamily) based on the curated descriptions available from the database following a variation of the three-step classification procedure [46]. Combined with the 80-80-80 standard, BLASTN was used to further classify elements into families. USEARCH
Characterization of Loblolly Pine BACs and Fosmids
6.0.203 [55] followed to compare the translated de novo set with the ORFs of CPRD to classify repeats at the superfamilly level. ORFs were identified using the findorf utility in USEARCH with default recovery parameters. Finally, since REPET analyzes the structural motifs of each element through TEclassifier, the assignments provided by REPET were used to classify the repeats by Order. The high quality, novel repeats discovered were stored as a multiple sequence FASTA file, and referred to as the Pine Interspersed Element Resource (PIER).

To characterize sequences without a qualifying match against CPRD, clustering techniques were applied to form groups of unique elements. These were subsequently sorted into repeat element families through all versus all alignment. These unannotated sequences were clustered using USEARCH’s cluster_fast utility set to 80% similarity. A consensus sequence was generated for each cluster through multiple sequence alignment in MUSCLE [56] and PILER. The coverage of a family was determined by summing the number of base pairs of all full-length sequences belonging to all clusters within the family. The cluster with the most full-length sequences was selected as a representative for further analysis. Multiple sequence alignments of clusters representing high coverage families were visualized in Jalview [57], and the consensus sequence of each cluster was extracted. The consensus of each cluster was analyzed using BLASTN to target the LTR regions, and annotated using LTRdigest [58] with Pfam estimates including:
Pilar MSAT16, d_APFE01000000_90533. This novel array, a 25 bp period (TGCTTTGCTGCTTAGTCTCTCATAG) with (AT/T)n also made up a significant portion of the total element motifs, at 0.03%. AT-rich trinucleotides (ATT/AAT/ATA/TTA/TAT/TAA)n also made up a significant portion of the total microsatellites. The (AT/TA)n motif alone had made up the largest physical portion of the genome (51,997 loci, 1.56%), followed by satellites (6,482 loci, 0.96%), and microsatellites (5,143 loci, 0.09%) (Table 2). Copy number, however, was skewed towards microsatellites, with an average of 25 per array, 10 times that of either the minisatellites or satellites. Within the microsatellites, dinucleotides dominated, making up 74.5% of all the microsatellites. The (AT/T) motif alone had 1,869 arrays (38,976 copies, 47% of microsatellites), and constituted the largest physical area of the genome for microsatellite motifs, at 0.03%. AT-rich trinucleotides (ATT/AAT/ATA/TTA/TAT/TAA)n also made up a significant portion of the total microsatellites, with 3 arrays and 5,328 copies (8.72%). Interestingly, the single array with the highest copy number was a 25 bp period (TGCTTTGCTGCTTAGTCTCATAG) with 654 copies (~16 Kbp) in the fosmid contig Piaa_fosmid_dAPEF01000000_90533. This novel array, Piaa_MSAT767, had no significant similarities when compared against the nucleotide (nt) database of NCBI and Repbase. After filtering for redundancy, tandem repeats annotated 3.31% of the BACs (3.04% of the 11 Sanger sequenced BACs) and 2.59% of the fosmids. However, after removing those that overlapped with interspersed content,
these estimates were reduced to 0.93%, 0.53% and 0.54% of the BACs, fosmids and combined sets, respectively (Table 4). Among species compared, microsatellite densities, from highest to lowest, were as follows: *Populus trichocarpa*, *Vitis vinifera*, *Cucumis sativus*, *Picea glauca*, *Taxus mairei*, *Arabidopsis thaliana*, and *Pinus taeda* (Figure 2, Table S2). In comparisons with other species, the ratio of minisatel- lites to satellites was large, as expected (*Pinus taeda*: 8.1, *Arabidopsis thaliana*: 10.5, *Cucumis sativus*: 27, *Vitis vinifera*: 6.2, *Populus trichocarpa*: 17.33, *Taxus mairei*: 13.29). Minisatel- lites of 21 bp were most common, with the exception of *Picea glauca*, in which 27 bp lengths were more common. Average minisatellite lengths ranged from 66.69 bp (*Arabidopsis thaliana*) to 94.33 bp (*Picea glauca*), with *Pinus taeda* at 83.7 bp. Average satellite length varied significantly between angiosperms, from 350.55 bp (*Cucumis sativus*) to 931.28 bp (*Arabidopsis thaliana*). Among the gymnosperms, satellite lengths were similar, and averaged 419.4 bp in *Taxus mairei*, 424.5 bp in *Pinus taeda*, and 466 bp in *Picea glauca*.

Potential centromeric, telomeric, and heterochromatic repeats were identified using Censor [42], though most were spurious, with an average coverage of 28% and a maximum of 75% identity. Of these spurious matches, 247 fragments were from *Zea mays*.

Table 1. BAC and Fosmid Sequence Set Summary.

	BACs	Fosmids
Total assembled sequences	103	90,954
Total length (bp)	11,858,447	265,480,119
Average sequence length (bp)	115,130	2,918
Median sequence length (bp)	118,782	475
N50 sequence length (bp)	127,167	16,205
Shortest sequence length (bp)	1,392	201
Longest sequence length (bp)	235,088	75,791
GC Content	37.98%	38.09%
Genbank Accessions	GU477256-GU477266, AC241263-AC241362	APFE01000000

Unresolved nucleotides, ‘N’, were not counted.

Table 2. Summary of tandem repeats from BAC and fosmid sequences.

Microsatellites (2–8 bp)	Total loci	Copy number	Variants	Total length in bp (% of sequence sets)
Dinucleotide	2,967	64,740	10	126,254 (0.046%)
Trinucleotide	645	9,657.7	39	28,440 (0.010%)
Tetranucleotide	282	3,899.3	46	15,316 (0.006%)
Pentanucleotide	172	3,167.2	75	15,560 (0.006%)
Hexanucleotide	402	3,427.8	172	20,303 (0.07%)
Heptanucleotide	499	4,174	153	28,765 (0.010%)
Octanucleotide	178	920.1	135	7,184 (0.003%)
Total	**5,143**	**89,986.1**	**630**	**241,822 (0.09%)**

Minisatellites (9–100 bp)	Total loci	Copy number	Variants	Total length in bp (% of sequence sets)
9–30 bp	31,363	84,572.9	26,428	1,631,083 (0.588%)
31–50 bp	11,800	30,641.9	10,989	1,164,786 (0.420%)
51–70 bp	5,316	13,775.3	5,192	805,210 (0.290%)
71–100 bp	3,518	8,642.9	3,473	722,282 (0.260%)
Total	**51,997**	**137,633**	**46,082**	**4,323,361 (1.559%)**

Satellites (>100 bp)	Total loci	Copy number	Variants	Total length in bp (% of sequence sets)
101–200 bp	5,183	12,589.3	5,110	1,710,062 (0.617%)
201–300 bp	857	2,141.2	854	524,329 (0.189%)
301–400 bp	280	691.6	280	236,623 (0.085%)
>400 bp	162	405.9	162	179,726 (0.065%)
Total	**6,482**	**15,828**	**6,406**	**2,650,740 (0.956%)**

Grand Total | **63,622** | **243,447.1**| **53,118** | **7,215,923 (2.602%)** |

doi:10.1371/journal.pone.0072439.t001
Table 3. Most frequent periods for three categories of tandem repeats in conifer genomic sequence.

	Pinus taeda (BAC + Fosmid)	Picea glauca (BAC)	Taxus mairei (Fosmid)						
	Micro	Mini	Sat	Micro	Mini	Sat	Micro	Mini	Sat
Most frequent period	2	21	123	2	27	122	2	24	230
Cumulative length	126,254	216,194	154,835	876	843	389	1,411	587	1,598
Num. of loci	64,740	10,508	1,258	11	10	1	32	19	2
Most frequent period (%)	0.05%	0.08%	0.06%	0.33%	0.32%	0.15%	0.09%	0.04%	0.10%
Total cumulative length (bp)	241,822	4,323,361	2,650,740	925	6,603	1,864	3,024	15,875	5,871
Total (%)	0.09%	1.56%	0.96%	0.35%	2.49%	0.70%	0.19%	0.98%	0.36%

Micro – Microsatellites (2–8 bp).
Mini – Minisatellites (9–100 bp).
Sat – Satellites (>100 bp).

doi:10.1371/journal.pone.0072439.t003

Table 4. Summary of full-length repetitive content.

	BAC	Fosmid	Combined			
	Similarity	De novo	Similarity	De novo	Similarity	De novo
Class I	2.9376%	33.682%	1.3394%	21.295%	1.3879%	21.8222%
LTR retrotransposon	2.9376%	25.1368%	1.3888%	14.8972%	1.3873%	15.3333%
Gypsy	2.0772%	2.4524%	0.918%	1.1181%	0.9477%	1.175%
IFG7	0.5793%	1.1027%	0.2189%	0.3109%	0.2184%	0.3447%
Gymny	0.1541%	0.3491%	0.0897%	0.0942%	0.0924%	0.1051%
Corky	0.9716%	0.0543%	0.3894%	0.1743%	0.4143%	0.1692%
PGGYPSYX1	0.3722%	0%	0.22%	0%	0.2226%	0%
Other	0%	0.9462%	0%	0.5387%	0%	0.556%
Copia	0.8604%	1.6113%	0.4208%	0.5343%	0.4396%	0.5803%
TPE1	0.8422%	0.8066%	0.4072%	0.3699%	0.4258%	0.3885%
TY1 PE	0%	0.5255%	0%	0%	0%	0.0225%
Copia4-PTR	0%	0%	0.0073%	0.0096%	0.007%	0.0092%
Copia_ES	0%	0%	0.0002%	0%	0.0002%	0%
RT_GB	0.002%	0%	0.0003%	0%	0.0003%	0%
RT_PT	0.0162%	0%	0.0058%	0%	0.0063%	0%
Other	0%	0.2792%	0%	0.1549%	0%	0.1602%
DIRS	0%	0.2988%	0%	0.2213%	0%	0.2246%
PLE	0%	0.1665%	0%	0.1266%	0%	0.1283%
LINE	0%	1.4017%	0.0003%	0.6752%	0.0003%	0.7062%
PILN1_PT	0%	0%	0.0003%	0%	0.0003%	0%
SINE	0%	0.0162%	0%	0.0025%	0%	0.003%
Class II	0%	1.2173%	0%	0.5023%	0%	0.5328%
TIR	0%	1.0497%	0%	0.3276%	0%	0.3584%
Helitron	0%	0.0221%	0%	0.038%	0%	0.0373%
Annotated	100%	2.8383%	100%	0.9588%	1%	1.0391%
Total interspersed content	2.9376%	38.8427%	1.3394%	25.4083%	1.3879%	25.9827%
Tandem repeats*	0.9292%	0.5224%	0.5398%	0.5398%		
Total repetitive content	3.8668%	39.7719%	1.8618%	25.9307%	1.9277%	26.5225%

*TRF estimates, non-overlapping with interspersed content.
doi:10.1371/journal.pone.0072439.t004
from *Zingeria biebersteiniana*, one from *Sorghum bicolor*, and one from *Secale cereale*. The previously characterized plant telomeric repeat (TTTAGGG)_n [69] was detected a total of 237 times across 23 different arrays.

Interspersed Repeat Identification (Homology)

Homology searches against Repbase, using Censor, yielded a total of 14,470 and 175,044 hits to repeat fragments in the BACs and fosmids, respectively. A large portion of elements annotated by unfiltered Censor runs were previously characterized in *Populus trichocarpa* (15.7% of alignments), followed by *Zea mays* (13.0%), *Sorghum bicolor* (12.6%) and *Malus domestica* (9.9%) (Figure 3A). After filtering for full-length copies, 94 were identified in the BACs and 989 in the fosmids. Of these, 69.25% were previously characterized in conifers, the majority annotated as the Copia element, TPE1, originally characterized in *Pinus elliottii* (30.53%) (Figure 3B). These filtered alignments represent 2.94% of the BAC sequence and 1.34% of the fosmid sequence (Table 4). When accounting for both partial and full-length hits, 57 unique repeat families spanning 14 repeat orders aligned to the fosmid set. The BACs aligned to 28 distinct families spanning 11 orders. All of the families identified in the BACs were also present in the fosmids. Both sets contained elements from each of the two transposable element classes, Class I (retrotransposon) at 20.41% and Class II (DNA transposon) at 4.03%. The most prevalent superfamilies (Class: Order: Superfamily), based on the number of unique copies (>500 in the fosmids and BACs) from Class I, included LTRs (Gypsy and Copia), Non-LTR L1 (LINEs), other LTRs, and Caulimoviridae (an integrated virus). Among Class II, terminal inverted repeats (TIR), EnSpm, and Helitrons were present. The TIRs annotated included MuDR (0.80% of the sequence sets), hAT (0.74%), EnSpm (0.72%), Mariner/Tc1 (0.32%), and Harbinger (0.14%) (Table S5).

The estimate of partial and full-length repetitive content by homology of *Pinus taeda* is 27.50% (Table 5). The primary contributions include 6.27% Copia elements, 11.97% Gypsy elements, 3.95% DNA transposons and 0.49% LINEs (Table S5). This estimate is slightly lower than *Picea glauca* (33.24%), *Populus trichocarpa* (33.91%), and *Vitis vinifera* (42.03%) (Figure 4A). Among the full-length hits, Gypsy represented 2.54% and 1.32% of the sequence in the BACs and the fosmids, respectively. Copia represented 0.86% and 0.43% (Figure 4B). Alignments with high overall similarity and coverage (88.75% and 93.87%, respectively) to ribosomal RNA were detected in the BACs and represented 0.22% of the sequence set. Two 414 bp PILN1 LINE elements previously characterized in *Pinus thunbergii* were identified in the fosmids.

Seven conifer-specific TEs, including: IFG7-PpRT1 from *Pinus pinaster* [44], PGGYPSYX1 from *Picea glauca* [19], TPE1 from *Pinus elliottii* [43], PzIFG7 from *Pinus taeda* [7], IFG7_I from *Pinus radiata* [70], PGCOPIAX1 from *Picea glauca* [19], and RLG_Gymny_1 from *Pinus taeda* [3], along with one *Quercus suber* TE, Corky [45], were prevalent. TY1_PE from *Pinus elliottii* and RT_PT from *Pinus thunbergii* were found in the BACs and fosmids at similar
frequencies. Though not the highest in copy number, Corky annotated the largest physical portion of the BACs (almost 1%) and a significant portion of the sequence set (0.41%) (Table 4).

The fosmid scaffolds produced significant alignments with IFG7 from *Pinus radiata*. This LTR aligned 23 times with an average similarity of 88.8% and coverage of 91.5% to the internal portion,
and nine times with an average similarity of 91.4% and coverage of 99.1% to its LTRs. IFG7's complete presence was estimated at 0.58% in the BACs and 0.22% in the fosmids (Table 4). Copia4-PTR_I from *Populus trichocarpa* aligned four times to the internal portion (average similarity of 90% and coverage of 89.7%) with no full-length hits corresponding to the LTRs (Table 4). The longest alignments in both the BACs and the fosmids were to full-length, presumably autonomous, RLG_Gymny-1 elements [3]. In the BACs, three of these elements were discovered, with an average similarity of 80% and 100% coverage against the consensus. In the fosmids, there were 11 alignments, with an average similarity of 82% and 100% coverage. The Copia element, TPE1, was the highest in copy number in both sets, with 26 alignments in the BACs (average similarity 94.4%, average coverage 98.6%) and 287 in the fosmids (average similarity 94.4%, average coverage 98.6%). In addition, TPE1 was the highest in overall coverage in

Figure 4. Distribution of transposable elements from similarity search. A combination of the non-redundant CENSOR results from the BAC sequences (103) and fosmid sequences (90,954) were used to ascertain the major contributing classes of TEs. (A) Compares partial and full-length TE content by homology against other species. (B) Examines the full-length TE content in loblolly pine annotated in homology based and de novo searches. doi:10.1371/journal.pone.0072439.g004
the fosmids, with 0.4% coverage (Table 4). PGGYPSYX1 from *Picea glauca* was also discovered (Figure 3B, Table 4). Homology searches for full-length elements in the selected angiosperms (*Arabidopsis thaliana*, *Cucumber sativus*, *Populus trichocarpa*, *Vitis vinifera*) yielded less informative results.

Interspersed Repeat Identification (de novo)

The consensus sequences generated from the REPET pipeline were used as seeds to validate the repeats against the original BAC and fosmid sequences. Initial self-alignment in REPET resulted in 3,443 unfiltered hits in the BAC sequences and 1,654,975 unfiltered hits in the fosmid sequences. Clustering with Grouper, Recom, and Piler resulted in 166, 139, and 27 clusters, respectively, in the BACs and 11,405, 3,814, and 10,33 clusters, respectively, in the fosmids. Among the BACs, 1,256 high-scoring segment pairs (HSPs), representing 325 seeds, and covering 21.64% of the BAC sequence, were annotated as LTRs. In the fosmid set, 60,467 HSPs, representing 5,061 seeds covering 13.95% of the fosmid sequence, were annotated as LTRs. Combined, the LTR content spans 61,723 HSPs constructed from 5,386 seeds, and covers 19.28% of the sequence set. 1,518 HSPs covering 28.74% of the BAC sequence were built from alignments of 488 Class I seeds against BAC sequences. 70,860 HSPs covering 19.54% of fosmid sequence were built alignments of 8,097 Class I seeds against fosmid sequences. The total Class I content for both sets is 27.50%.

Table 5. Filtered (full-length) vs. Unfiltered (partial and full-length) repetitive content estimates.

	P + F (Homology)	Filtered (Homology)	P + F (de novo)	Filtered (de novo)
Class I	20.41%	1.39%	73.39%	21.82%
Class II	4.03%	0%	1.52%	0.53%
Other	3.08%	2.6%	10.91%	4.16%
Total	27.50%	3.99%	85.82%	26.51%

doi:10.1371/journal.pone.0072439.t005

The final set of non-redundant repeat seeds (12,222), with 11,631 from the fosmid set and 591 from the BAC set, returned alignments against 13,747 full-length sequences across both databases (Table S6). These sequences had an average length of 4,414 bp and represented 25.98% of the sequence. 489 of these could be classified as one of the six characterized Gypsy or Copia families IFG7, Gymny, Corky, TPE1, Copia-f-Ptr1, or TY1-PE, and represent 1.04% of the sequence set. Of the remaining 15,258 sequences, none aligned with confidence to families in CPRD. 11,119 of these sequences, however, could be classified manually at various resolutions. These repeats had an average length of 5,577 bp and represented 22.36% of the sequence set. At the Class level, 10,431 sequences, with an average length 5,803 bp, were classified as retrotransposons, while 688, with average length 2,148 bp, were classified as DNA transposons, covering 21.82% and 0.53% of the sequence set, respectively (Table S6). At the Order level, LTRs composed the bulk of the repetitive content, with 6,666 sequences representing 13.3% of the sequence set. DIRS, Penelope, and LINE elements represented a small portion of Class I elements, with coverage of the combined sequence. Within Superfamily, 617 sequences with an average length of 5,282 bp were annotated as Gypsy, and 317 sequences with an average length 5,078 bp were annotated as Copia. They represented 1.18% and 0.58% of the sequence set, respectively. Unclassified sequences composed 3.62% of the sequence sets (13.95% of the repeats), with an average length of 2,172 bp. These sequences did not align significantly against known sequences, and TEclassifier was unable to assign annotations to them.

Clustering of all unannotated sequences yielded 9,415 clusters (subfamilies), of which 7,015 were singletons, 1,357 contained two sequences, 471 contained three sequences, 195 contained four sequences, and 125 contained five sequences. The top 1% of clusters each contained at least nine full-length sequences. All versus all alignments resulted in 6,270 families. 5,155 elements were considered single-copy families, and the remaining 3,125 clusters were grouped into 1,115 families. In total, 10,057 elements were grouped into families, while 5,155 elements remained single-copy. As a result of the all versus all alignment, 559 full-length elements were grouped into the ten highest-coverage novel families, representing about 2% of the sequence (Table 6). Elements grouped into the top 100 highest coverage families (including known elements) account for about 19 Mb (Table S7), or 7% of the sequence set, while the top 400 highest families account for over 11% of the sequence set (Figure 5). Sequences annotated as members of known repeat families account for most of the largest families when compared side by side with the *de novo* families. 159 elements annotated as TPE1 comprised 0.39% of the sequence set, 162 elements aligned to IFG7 represented 0.34% of the sequence set, 78 elements aligned to Corky accounted for 0.17% of the sequence set, and 24 elements aligned to Gymny comprised 0.11% of the sequence set (Table 6).

The top ten *de novo* LTRs and top four previously characterized families (as annotated through homology searches) account for over 7 Mb of sequence, or 2.56% (Table 6). None of the novel *de novo* families annotated in this study have significant alignments, as defined by the 80-80-80 standard, against CPRD, or when compared against the other six plant genomic datasets. These ten represent six Gypsy elements, three Copia elements, and one unknown LTR. The largest family, *PtPedmont*, is an LTR retroelement that contains 133 sequences from six different clusters across almost 1 Mb of sequence (0.35%). The average sequence length of each element in the representative cluster of *PtPedmont* is 7,340 bp. This element is characterized by LTRs that...
are about 1,000 bp long, and has a primer binding site (PBS) directly adjacent to the 3' LTR. The absence of alignments in the internal region limits the possibility of assigning this element to a superfamily.

The six novel Gypsies include: PtOuachita, PtBastrop, PtOzark, PtAppalachian, PtAngelina, and PtTalladega. The second largest de novo family, PtOuachita, contains 47 sequences from 2 clusters across 577 Kbp, or 0.21%, of the sequence set. The average sequence length of PtOuachita's representative cluster is 13,058 bp. This element is characterized by LTRs that are about 1,000 bp long and alignments to RNase_H, RVT_3, rve, RVT_1, Asp_protease_2, and Retrotrans_gag protein families (Figure 6A). PtOuachita aligns spuriously to LTR retroelements found in Brachypodium distachyon, Sorghum bicolor, Physcomitrella patens, Vicia pannonica, and Arabidopsis thaliana. Translated searches yield a 1,750 bp alignment to Gypsy-2_SMo-I at 40.3% similarity. PtBastrop, with 38 sequences covering 379 Kbp (0.14%) of the sequence set, is 15,520 bp long, and is characterized by a 15 bp primer binding site, LTRs that are about 1,100 bp long, and alignments to Retrotrans_gag, Asp_protease_2, RVT_1, rve, RNase_H, and RVT_3 protein families. PtBastrop aligns trivially to LTR retroelements found in Populus trichocarpa, Vicia pannonica, and Medicago truncatula. Translat-

Figure 5. Genomic sequence represented by the highest coverage elements. Base pair coverage attributed to copies of the high coverage LTR TEs. doi:10.1371/journal.pone.0072439.g005

Repeat family	Full-Length Copies	Length (bp)	Percent of Sequence Set
TPE1	159	1,077,598	0.39%
PtPiedmont (93122)	133	969,109	0.35%
IFG7	162	956,018	0.34%
PtOuachita (B4244)	47	576,871	0.21%
Corky	78	469,286	0.17%
PtCumberland (B4704)	67	431,492	0.16%
PtBastrop (82005)	38	378,631	0.14%
PtOzark (100900)	32	378,020	0.14%
PtAppalachian (212735)	67	367,653	0.13%
PtPineywoods (B6735)	68	322,632	0.12%
PtAngelina (217426)	24	309,248	0.11%
Gymny	24	291,479	0.11%
PtConagree (B3341)	50	285,850	0.10%
PtTalladega (215311)	33	274,826	0.10%
Total	**982**	**7,088,713**	**2.56%**

Table 6. High coverage LTR families identified with the de novo methodology.

doi:10.1371/journal.pone.0072439.t006
ed searches yield a 2,750 bp alignment to Gymny at 38.7% similarity. *PtOzark* contains 32 elements and covers 370 Kbp, or 0.14% of the sequence set, and is 29,074 bp long. The majority of the sequence aligns with itself. Two 13.4 Kbp regions, which both encompass almost half of the total sequence, align to each other at over 90% identity, and contain similar LTRs. A portion of *PtOzark*’s internal sequence could be identified as a second, nested retroelement that contains LTRs of approximately 350 bp that align at 81% identity. This putative nested retroelement also contains alignments to rve, RVT_1, gag-asproteas, and Retrotrans_gag protein families. The full element is characterized by LTRs that are about 50 bp long, a 5’ 18 bp PPT, and a gag-asproteas protein family alignment in a region outside of the putative internal element (Figure S1). *PtOzark* aligns trivially to LTR elements in over ten species in CPRD. Translated searches yield a 1,450 bp alignment to Gypsy-2_BD_1 at 39% similarity. *Ptappalachian*, with 67 full-length copies covering 368 Kbp (0.13%) of the sequence set is 5,995 bp long and characterized by LTRs that are 620 bp long. It has been annotated with a 5’ 13 bp PPT, and aligns to rve, RVT_1, gag-asproteas, and Retrotrans_gag protein families. *Ptappalachian*’s consensus sequence extends beyond the 5’ LTR by 96 bp. This element aligns to a 2.2 Kbp region to the Gypsy, PGGYPSYX1 at 90.3% similarity (Figure 6B). *PtAngelina*, with 24 full-length copies covering 309 Kbp (0.11%) of the sequence set, is 15 Kbp long, and is characterized by LTRs that are about 1,020 bp long and alignments to RVT_3, RNase_H, rve, RVT_1, Asp_protease_2, and Retrotrans_gag protein families. Translated searches yield a 2,070 bp alignment to Gypsy-2_SMo-I at 39.4% similarity. *PtTalladega*, with 33 full-length copies, covering 275 Kbp (0.10%) of the sequence set, is 15,387 bp long. It is characterized by LTRs that are approximately 1,000 bp in length and alignments to RVT_3, RNase_H, rve, and RVT_1 protein families. *PtTalladega* aligns trivially to LTR retroelements found in *Oryza sativa*, *Medicago truncatula*, *Vitis vinifera*, and *Zea mays*. Translated searches yielded a 2.5 Kbp alignment to Gymny at 40.4% similarity.

Three novel elements were characterized as Copia LTRs. The third largest novel family, *PtCumberland*, with 67 sequences covering 431 Kbp (0.16%) of the sequence set, has a length of 9,092 bp. This element is characterized by LTRs that are about 1,500 bp long, an 11 bp polyuridine tract (PPT) adjacent to the 5’ LTR, and alignments to RVT_2, rve, gag_pre-integr, zf-CCHC, and UBN2 protein domains. *PtCumberland* aligns to GmCOPIA10 for 3 Kbp at 67.4% similarity. This putative nested retroelement also contains alignments to rve, RVT_1, RVT_3, gag-asproteas, and Retrotrans_gag protein families. The full element is characterized by LTRs that are 510 bp long, a 5’ 18 bp PPT, and a gag-asproteas family alignment in a region outside of the putative internal element. Translated searches yield a 2,750 bp alignment to Gymny at 38.7% similarity.

Gene Identification

Of the 438 Conserved Eukaryotic Genes considered in CEMGA, only 23 full-length (70% similarity) genes were present in the BAC and fosmid sequence sets. Transcription factors, heat shock, and ribosomal proteins were among the categories represented. The majority of these identifications were found in the fosmid sequences; just one of the 23 was identified in the BAC set. Analysis of the full set of plant orthologous proteins provided for an additional eight full-length proteins. Three of the eight were exostosin proteins thought to be involved in cell-wall synthesis. Other annotations included an aquaporin, ATP synthase, pyrophosphorylase, and two hypothetical proteins. These orthologous proteins were identified in a range of species including *Ze mays*, *Medicago truncatula*, *Glycine max*, *Oryza sativa*, *Populus trichocarpa*, and *Ricinus communis*. Augustus provided the de novo gene identifications, and a total of 21 well-supported and full-length identifications were confirmed. The combined 52 genes identified have lengths ranging from 3 Kbp to just over 8 Kbp, contributing to the annotation of 290 Kbp of sequence. The intron sizes were overall small, all less than 2 Kbp in length. The substantial annotation of genetic content given the small percentage of the genome analyzed could be reflective of the pseudogenes known to be prevalent in conifers.

Data Availability

The multi-FASTA CPRD Repbase library, as well as the library generated from this study, PIER, are available at TreeGenes [13] for download (http://dendrome.ucdavis.edu/resources/downloads.php). The annotated fosmid and BAC sequences can be viewed through GBrowse, also hosted at TreeGenes (http://dendrome.ucdavis.edu/treegenes/gbrowse/). The ten novel repeats characterized here have been submitted to Repbase. All fosmid sequences have been submitted to Genbank as WGS: APFE01000000.

Discussion

We performed an extensive characterization of repetitive elements in loblolly pine with sequence constructs representing just over 1% of the estimated 22Gbp loblolly pine genome. Our estimate of the total repetitive content comes in two flavors: an estimation that considers all partial alignments to known or de novo repetitive elements (about 86%), and an estimation that considers only elements that satisfy the 80-80-80 rule (about 27%) (Table 5). Few studies have explored repetitive content by using full-length elements to quantify the relative frequencies of different families. As in previous studies, we noted that LTRs dominated the repeat landscape, contributing to over 60% of the overall repetitive content. As seen in most plant genomes, the Gypsy and Copia LTRs were most prevalent. Our de novo investigation was able to identify a multitude of LTRs that have not been characterized in conifers and showed very little similarity to elements characterized in other species. In addition, we annotated 52 full-length genes through orthologous and de novo techniques that cover approximately 298 Kbp. Here, we discuss these novel contributions to the expansive genome.

Tandem repeats

Tandem repeats are traditionally divided into three classes: microsatellites, minisatellites, and satellites. They can arise from polymerase slippage, can serve as recombination hotspots, act as effectors of gene expression, and are linked to variation [69,71–73]. While the total tandem content for loblolly pine was estimated at 2.6%, it should be noted that the BAC sequences alone had an estimated content of 3.3%, which is much closer to the estimate of 3.4% for the *Picea glauca* BACs. The large difference between the fosmids and BACs could be explained by the different scaffold lengths, sequence types, and assembly technologies used. A subset of the *Pinus* BACs were assembled from Sanger data, which is less likely to experience the repeat collapse common in short read assemblies [74].
Microsatellites (simple sequence repeats) are characterized by a repeat unit of 1–8 bp. They are numerous in genomes and are useful as genetic markers due to their polymorphisms [75].

Loblolly pine had a low microsatellite density when compared to other species within and outside the conifer division (Table 2), a finding consistent with previous analyses [76]. For example, *Vitis*

Figure 6. Annotated high copy LTR repeat families. Multiple alignments of the top ten high coverage and novel elements were performed using MUSCLE and visualized in Jalview. The final consensus sequence was exported with substitutions resolved, annotated (LTRdigest), and visualized (AnnotationSketch). (A) Multiple sequence alignment of the 24 sequences in the representative cluster of the *PtOuachita* family. (B) Multiple sequence alignment of the 67 sequences in the representative cluster of the *PtAppalachian* family. (C) Multiple sequence alignment of the 68 sequences in the representative cluster of the *PtPineywoods* family. doi:10.1371/journal.pone.0072439.g006
Interspersed content

A typical investigation of repetitive content involves homology-based searches against a database of known repetitive elements. The primary repository for this purpose, RepBase, contains only 15 elements that have been characterized in gymnosperms. The custom database that we created, CPRD, includes another five elements from conifers described in the literature. These 19 and the full contribution of angiosperm elements in RepBase could only annotate 1.4% of the sequence set as full-length elements and represented just four of the top 14 high-coverage novel elements (Table 6). Even with partial element annotations, the total sequence attributed to tandem and interspersed repeats by homology is 28%. Based on the large genome size and knowledge of retrotransposon expansion, we expected a much higher estimate. A de novo approach was critical in describing the significant number of highly diverged retrotransposons. The REPET pipeline combines both sequence self-alignments and structural identifications to do this. The self-alignment portion uses three different local alignment/pattern detection packages (GROUPER, RECON, and PILER) as well as subsequent processes to reduce redundancy and identify a consensus sequence for each element [47]. The structural identification of LTR retrotransposons through LTRharvest is ideal for characterizing low or single-copy elements. The combination of similarity and de novo methods allowed us to identify 29% of the sequence as full-length elements and nearly 86% as full or partial. In short, we were able to apply both approaches to maximize the sensitivity and specificity needed to find and characterize diverged repeats.

The combined, full-length and partial element estimate of 86% falls just outside the range provided previously for loblolly pine (24% -80%) according to [7], who first examined ten of the 103 BAC sequences. It is comparable to the estimate in Taxodium distichum (90%), but much higher than that in Picea glauca (40%) [19,20]. While this estimate is higher than most angiosperms, a few species including Zea mays (85%) and Hordeum vulgare (84%) [12,81] are reported to have similar amounts of repetitive content. The estimate of full-length retrotransposons in the sequence sets surveyed was 22%, which represents about 87% of the full-length repetitive content. Many angiosperm species have comparable ratios for retroelements, including Sorghum bicolor (70-76%), Zea mays (88%), and Glycine max (72%) [82]. The full-length repetitive sequence captured with both similarity and de novo approaches was greater in the BAC sequences (39%) than in the fosmids (26%). In addition, both classes of TEs had over 1.5x the number of full-length identifications in the BACs when compared with the fosmids. The LTRs characterized had lengths up to 29 Kbp and could easily be missed in the smaller fosmid sequences. As mentioned previously, the Sanger sequenced BACs may also have a superior assembly in repetitive regions allowing for improved identification.

Two primary divisions exist to describe interspersed repetitive content, generally known as transposable elements. Class I retrotransposons require reverse-transcription. They can be divided into two types, based on the presence or absence of direct repeats at the ends of the element, known as long terminal repeats (LTRs). They are often characterized by their pol and gag domains, which are closely related to retroviral proteins. Class II DNA transposons are much less common, and do not require a reverse-transcription step to integrate into the genome. Instead, a transposase, an enzyme that catalyzes transposition, recognizes the terminal inverted repeats (TIRs), excises the TE, and integrates the transposon into the new acceptor site. Both Class I and Class II exhibit complex biological roles in regulation, suppression, and expression [83]. They can evolve to become fully functional genes or duplicate genes to modify regulation [84,85]. TEs are also known to insert within the sequence of another transposable element, within tandem repeats, or within genes [86–88]. In this study, the ratio of Class I to Class II elements (full-length and
Novel high coverage repeats

Among the ten high coverage novel families, six show similarity to known Gypsy elements, while three show similarity to known Copia elements. Nine of the high coverage novel families (PtConagree, PtPiedmont, PtCumberland, PtOuachita, PtBastrop, PtPinywoods, PtAngelina, PtTalladega, PtOzark) had no significant (full-length) alignments and are not found in other plant species. The exception, PtAppalachian, aligned to several sequences from other plants due to the embedded PGGYPSX1-like sequence. Interestingly, there are virtually no LTR artifacts at either end of the PGGYPSX1 insertion within PtAppalachian. Observation of the high coverage alignments (Figure 6; Figure S1) shows a substantial amount of LTR degradation in PtPiedmont, PtOuachita, PtBastrop, PtAppalachian, PtPinywoods, and PtAngelina, and each family consensus sequence lacks a detectable PBS, PPT, or both. Many sequences within each cluster are thus nonfunctional and not actively proliferating. Within the high coverage elements, a few have multiple copies of reverse transcriptase, but these copies are usually from different RT lineages. In some cases, the LTR aligns partially within the consensus sequence. More specifically, we observed that the region of conservation in the sequence may extend up to 96 bp past the aligned LTR region, as seen in PtAppalachian. Embedding of retroelements within other retroelements, especially in flanking regions, has been found in Beta vulgaris, where separate Copia and Gypsy elements inserted into an older LTR retrotransposon [93]. This is also seen in Brassica species, where nested elements were observed to share similar LTRs [94]. Nesting may have occurred here in PtOzark, as well as in PtPiedmont and PtAngelina. LTR regions delineating the insertion in PtOzark can be detected, along with many PAM alignments within the region of insertion. The fact that internal LTRs in PtOzark can be detected seems to conflict with the lack of internal LTRs in PtAppalachian. However, the LTRs aligned at only 81% identity, suggesting that significant degradation has already taken place. Furthermore, full-length copies of PtOzark are rare, so it may be a recent insertion. PtPiedmont and PtAngelina both show alignments characteristic of nesting and novel regions unique to each element. These observations, coupled with the fact that about 86% of the sequence set is comprised of low-copy repetitive elements (with individual families accounting for no more than 5% of the sequence set), suggest a complex system of LTR-element retrotransposition. The mechanisms behind the colonization and proliferation of LTRs in gymnosperms are still being elucidated, and remains an interesting topic of research for future studies.

Supporting Information

Figure S1 Annotated high copy LTR repeat families. Multiple alignments of seven high coverage and novel elements were performed using MUSCLE and visualized in Jalview. The final consensus sequence was exported with substitutions resolved, annotated (LTRDigest), and visualized (AnnotationSketch). High coverage elements include PtPiedmont, PtCumberland, PtBastrop, PtOzark, PtAngelina, PtConagree, and PtTalladega. These, in addition to PtOuachita, PtAppalachian, and PtPinywoods (Figure 6), represent the 10 high coverage, novel elements. (TIFF)

Table S1 Sequence summary for all species. (XLSX)

Table S2 Microsatellite density across all species. (XLSX)
Table S3 **Tandem repeat motifs and frequencies in Pinus taeda, Picea glauca, and Taxus mairei.** (XLSX)

Table S4 **Microsatellite sequence: Pita_MSAT.** (XLSX)

Table S5 **Partial and full-length repeats in the similarity search against the BAC sequences.** (XLSX)

Table S6 **REPET seed library composition.** Counts for each classification provided by TEclassifier were aggregated for BAC and fosmid datasets. No. HSPs is the number of high scoring hits used to construct the seeds in a particular category. Length is the total length in base pairs of all HSPs in a particular category. Percentage of sequence set is a function of Length and the length of the sequence set. Percentage of repeats is the relative ratio of the category of repeats to all repetitive content. (XLSX)

Table S7 **De novo annotation summary.** Each full-length sequence found in CENSOR was run through our annotation pipeline, Counts for each category were tracked for BAC and fosmid datasets, then combined. Length is the sum of all full-length repetitive content in a particular category. (XLSX)

Table S8 **High coverage families.** Each novel repeat family, aside from the named elements, is represented by one of its members, and each novel repeat is assigned a unique ID number. Cumulative length and Cumulative percentage of sequence sets represent the aggregation of the top X highest coverage families, with X denoted by the column No. families. (XLSX)

Table S9 **Selected Pfam profiles.** 147 profiles were queried through keywords such as “retrotransposon”. Selected profiles were used in the annotation of the top ten high coverage elements. (XLSX)

Acknowledgments

We would like to thank Hans Vasquez-Gross and John Liechty for bioinformatics support.

Author Contributions

Conceived and designed the experiments: JLW BYL JZJ WMD CHL SLS. Contributed reagents/materials/analysis tools: DBN CHL SLS PD. Performed the experiments: JLW BYL JZJ WMD KAS CHL SLS DP PD. Analyzed the data: JLW BYL JZJ WMD KAS MC AHM MK PD. Contributed reagents/materials/analysis tools: DBN. Wrote the paper: JLW BYL JZJ WMD KAS PJMG.

References

1. Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97: 4092–4097.
2. Peterson DG, Wesler SR, Paterson AH (2002) Efficient capture of unique sequences from eukaryotic genomes. Trends Genet 18: 547–550.
3. Morse A, Peterson D, Islam-Faridi M, Smith K, Magbanua Z, et al. (2009) Evolution of genome size and complexity in Picea. PLoS ONE 4: e4332.
4. Ahuja MR, Neale DB (2005) Evolution of genome size in conifers. Silvae Genetica 54: 126–137.
5. Vitte C, Benetzen JL (2006) Analysis of retrotransposon structural diversity uncovers properties and propensities in angiosperm genome evolution. Proc Natl Acad Sci USA 103: 17630–17634.
6. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12: 111–122.
7. Kovach A, Wegezyr JL, Parra G, Holt C, Bruning GE, et al. (2010) The _Pinus taeda_ genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11: 420.
8. Mackay J, Dean JFD, Pomong C, Peterson DG, Canovas FM, et al. (2012) Towards decoding the conifer _giga_ - genome. Plant Mol Biol 80: 555–569.
9. Bennett MD, Leitch IJ (2004) Plant DNA C-values database, release 3.0. [online, December 2004]. Available: http://www.kew.org/cvalues/. Accessed 2013 July 22.
10. McKean S, Mullin T, Byram T, White T (2003) Deployment of genetically improved loblolly and slash pines in the south. Journal of Forestry 101: 32–37.
11. Frederick WJ, Lien SJ, Courchene CE, DeMartini NA, Ragauskas AJ, et al. (2008) Production of ethanol from carbohydrates from loblolly pine: A technical and economic assessment. Bioresource Technol 99: 5051–5057.
12. Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, et al. (2012) Conifer DBMagic: a database housing multiple de novo transcriptome assemblies for _Pinus taeda_ and _Pinus glauca_ BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome. BMC Plant Biol 12: 106.
13. Liu W, Thummassen S, Schigel SK, Cheowartine P, Peterson DG (2011) Characterization of the genome of bald cypress. BMC Genomics 12: 553.
14. Lange C, Holtgrawe D, Schulz B, Weisshaar B, Himmelbauer H (2008) Construction and characterization of a sugar beet (_Beta vulgaris_) _f_ osmid library. Genome 51: 940–951.
15. Shizuya H, Birren B, Kim UJ, Dejong PJ, Birren B, et al. (1992) Stable Propagation of 300-Kilobase-Pair Fragments of Human DNA in Escherichia-Coli Using an F-Factor-Based Vector. Proc Natl Acad Sci USA 89: 8794–8797.
16. Lander ES, Consortium IHGS, Linton LM, Birren B, Nusbaum C, et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921.
17. Rampan PF, Leur I, Bousardon C, Bitton F, Marin-Magniette ML, et al. (2011) Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome. BMC Genomics 12: 1877–1889.
18. Bautista R, Villalobos DP, Diaz-Moreno S, Canton FR, Canovas FM, et al. (2007) Toward a _Pinus pinaster_ bacterial artificial chromosome library. Ann Forest Sci 64: 553–564.
19. Hamberger B, Hall D, Yuen M, Oddly C, Hamberger B, et al. (2009) Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveals insights into a conifer genome. BMC Plant Biol 9: 106.
20. Lai W, Thummassen S, Schigel SK, Cheowartine P, Peterson DG (2011) Characterization of the genome of bald cypress. BMC Genomics 12: 553.
21. Lange C, Holtgrawe D, Schulz B, Weisshaar B, Himmelbauer H (2008) Construction and characterization of a sugar beet (_Beta vulgaris_) _f_ osmid library. Genome 51: 940–951.
22. Hao DC, Ge G, Xiao P, Zhang Y, Yang L (2011) The First Insight into the Tissue Specific _Taus_ Transcriptome via Illumina Second Generation Sequencing. PLoS ONE 6: e21220.
23. Meyer JDF, Deleu W, Garcia-Mac J, Havery MJ (2008) Construction of a fosmid library of cucumber (_Cucumis sativus_) and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon (_Cucumis melo_). Mol Genet Genomics 279: 473–480.
24. Davis TM, Shields ME, Zhang QA, Tombolato-Terzic D, Benetzen JL, et al. (2011) An examination of targeted gene neighborhoods in strawberry. Plant Biol 10.
25. Kim UJ, Shizuya H, Dejong JF, Birren B, Simon MI (1992) Stable Propagation of Conifer _f_ osmid Human DNA Inserts in an F-Factor Based Vector. Nucleic Acids Res 20: 1083–1085.
26. Kumar A, Benetzen JL (1999) Plant retrotransposons. Annu Rev of Genet 33: 479–532.
27. Benetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15: 621–627.
28. Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, et al. (2000) Analysis of the genome sequence of the flowering plant _Arabidopsis thaliana_. Nature 408: 796–815.
29. Wicker T, Zimmermann W, Provoc H, Paterson AH, Ganal M, et al. (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley _Hv-eIF4E_ locus: recombination, rearrangements and repeats. Plant J 41: 184–194.
30. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463–465.
31. Piegu B, Guyot R, Picault N, Roulin A, Saniali A, et al. (2006) Doubling genome size without polyploidyization: Dynamics of retrotransposition-driven genomic expansions in _Oryza sativa_. PLoS Genet 2: e21220.
32. Burleigh JG, Barbazuk WB, Davis JM, Morse AM, Soltis PS (2012) Exploring Diversification and Genome Size Evolution in Extant Gymnosperm Families through Phylogenetic Synthesis. Journal of Botany 2012, Article ID 292857: 6 pages.
33. Hao D, Yang L, Xiao P (2011) The first insight into the Taxus genome via fosmid library construction and end sequencing. Mol Genet Genomics 285: 197–205.
34. L’Homme Y, Seguin A, Tremblay F (2006) Different classes of retrotransposons in coniferous spruce species. Genome 49: 1084–1089.
35. Maghanna ZV, Ozkan S, Bartlett BD, Chouvarine P, Sasaki CA, et al. (2011) Adventures in the enormous: a 1.8 million clone BAC library for the 21.7 Gb genome of lobolly pine. PLoS ONE 6: e16214.

36. Peterson D, Tomkins J, Frisch D, Wing R, Paterson A (2006) Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide. Journal of Agricultural Genetics 5: 1–100.

37. Aronesty E (2011) ea-utils: Command-line tools for processing biological sequencing data. Available: https://code.google.com/p/ea-utils/. Accessed 2013 July 22.

38. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transformer. Bioinformatics 26: 589–595.

39. Li RQ, Zhu HM, Qian WB, Fang XD, et al. (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20: 265–272.

40. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res: 27: 573–580.

41. Goodstein DM, Shu SQ, Howson R, Neuman R, Hayes RD, et al. (2012) PhytoNB: a comparative platform for green plant genomics. Nucleic Acids Res: D41178–D41186.

42. Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Replica: ReplicaSubmitter and Centorm. BMC Bioinformatics 7: 474.

43. Kamml D, Doudrlik RL, Heslop-Harrison JS, Schmidt T (1996) The genomic and physical organization of Tyl-copia-like sequences as a component of large genomes in Pinnus elitus var elitus and other gymnosperms. Proc Natl Acad Sci USA 93: 2790–2793.

44. Rocheta M, Cordeiro J, Oliveira M, Miguel C (2007) PyRT1: the first complete gypsy-like retrotransposon isolated in Pinnus pinaster. Planta: 225: 551–562.

45. Rocheta M, Carvalho L, Viegas W, Morais-Cecilio L (2012) Corky, a gypsy-like retrotransposon is differentially transcribed in Queiro surote tissues. BMC Res Notes 5: 432.

46. Wicker T, Sabot F, Hua-Van A, Benetzen JL, Capp P, et al. (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8: 97–107.

47. Burre T, Duprat E, Feuillet C, Queueneville H (2011) Considering Transposable Element Diversification in De Novo Annotation Approaches. PLoS ONE 6(1): e16526.

48. Queueneville H, Nouaud D, Anxolabehere D (2003) Detection of new transposable element families in Drosophila melanogaster and Anopheles gambiae genomes. J Mol Evol 57: S50–S59.

49. RaoZR, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12: 1269–1276.

50. Edgar RC, Myers EW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21: H152–H158.

51. Huang XQ (1994) On Global Sequence Alignment. Comput Appl Biosci 10: 573–580.

52. Ellinghaus D, Kurtz S, Willhoeft U (2008) LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9: 240.

53. Domosdiansky I (2002) Blastchat (NCBI Software Development Toolkit). 61 edition NCBI, Bethesda, MD.

54. Li XG, Wu HX, Southern SG (2011) Transcriptome profiling of wood maturation in Pinnus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation. Gene 407: 62–71.

55. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. J Mol Biol 404: D1178–D1186.

56. Wicker T, Sabot F, Hua-Van A, Benetzen JL, Capp P, et al. (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8: 97–107.

57. Burre T, Duprat E, Feuillet C, Queueneville H (2011) Considering Transposable Element Diversification in De Novo Annotation Approaches. PLoS ONE 6(1): e16526.

58. Queueneville H, Nouaud D, Anxolabehere D (2003) Detection of new transposable element families in Drosophila melanogaster and Anopheles gambiae genomes. J Mol Evol 57: S50–S59.

59. RaoZR, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12: 1269–1276.

60. Edgar RC, Myers EW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21: H152–H158.

61. Huang XQ (1994) On Global Sequence Alignment. Comput Appl Biosci 10: 573–580.

62. Peterson D, Tomkins J, Frisch D, Wing R, Paterson A (2000) Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide. Journal of Agricultural Genetics 5: 1–100.

63. Institute for Systems Biology: RepeatMasker. Avalaible: http://www.repeatmasker.org. Accessed 2013 July 22.

64. Li YC, KoseI AB, Fuliina T, Beilers A, Nevo E (2000) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11: 2453–2463.

65. Schmidt A, Doudrlik RL, Heslop-Harrison JS, Schmidt T (2000) The contribution of short repeats of low sequence complexity to large conifer genomes. Theor Genet 60: 103–110.

66. Cavagnaro PF, Senalik DA, Yang L, Simon PW, Harkins TT, et al. (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11: 569.

67. Nargarakar J, Navaz Perez-P, Pop M, Alam M, Ming R, et al. (2008) Genome-Wide Analysis of Repetitive Elements in Papaya. Theor Plant Biol 1: 191–201.

68. Smith DN, Devay ME (1994) Occurrence and inheritance of microsatellites in Pinnus radiata Genet 37: 977–983.

69. Eltik CG, Williams CG (2001) Families of clustered microsatellites in a conifer genome: Mol Genet Genomics 265: 535–542.

70. Schindale PS, Ware D, Fulton RS, Stein JC, Wei FS, et al. (2009) The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science 326: 1112–1115.

71. Cavain V, See M, Hauppropol V (2011) On the Covolution of Transposable Elements and Plant Genomes. Journal of Botany 2011, Article ID 893546, 9 pages.

72. Stolkin RK, Martinussen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8: 272–283.

73. Jurka J, Kapitonov VV, Kohany O, Jurka MV (2007) Reptitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 8: 241–264.

74. Flagel LE, Wendel JF (2009) Eugene duplication and evolutionary novelty in plants. New Phytol 185: 557–564.

75. Kowakiwa N, Ohmido N, Fuku K, Ohnubo E, Ohnubo H (2004) A new gypsy-like retrotransposon. RIRE7: preferential insertion into the tandem repeat sequence TrxD in pericentromeric heterochromatin regions of rice chromosomes. Mol Genet Genomics 265: 480–488.

76. Jiang N, Wessler SR (2001) Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13: 2553–2564.

77. Miyao A, Tanaka K, Murata K, Sawai H, Takekada S, et al. (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15: 1771–1780.

78. Frischotte C, Fritham JF (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev of Genet 41: 331–356.

79. Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin, and distribution of retrotransposons (gypsy and copia) in comifers. Mol Biol Evol 18: 1176–1186.

80. Noma K, Ohnubo E, Ohnubo H (1999) Non-LTR retroposons (LINEs), as ubiquitous components of plant genomes. Mol Genet Genomics 261: 1–12.

81. Kojevsky E, Hawkins J, Frischotte C (2012) Plant Transposable Elements: Biology and Evolution. In: Wendel JF, Greilhuber J, Delevo J, Leitch I, editors. Plant Genome Diversity Volume 1: Springer Vienna, 17–34.

82. Koykendall D, Shao J, Trimmer K (2009) A new of LTR retrotransposons adjacent the disease resistance-priming gene NPR1 in Arabidopsis thaliana. Mol Genet Genomics: Complexity, Diversity, and Dynamics. Science 326: 1112–1115.

83. Wier L, Xiao M, An Z, Ma B, S, Mason A, et al. (2012) New insights into nested long terminal repeat retrotransposons in Brassica species. Mol Plant 6: 470–482.