Vulnerability and Site Effects in Earthquake Disasters in Armenia (Colombia). II – Observed Damages and Vulnerability

by

Francisco J. Chávez-García¹, Hugo Monsalve-Jaramillo², Joaquín Vila-Ortega³

¹Professor Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510 CDMX, México paco@pumas.ingen.unam.mx

²Correspondence to: Professor Facultad de Ingeniería, Universidad del Quindío, Cra. 15 #12N, Armenia, Quindío, Colombia hugom@uniquindio.edu.co

³Professor Facultad de Ingeniería, Universidad del Quindío, Cra. 15 #12N, Armenia, Quindío, Colombia jjvilaortega@uniquindio.edu.co
Abstract

Damage in Armenia, Colombia, for the 1999 (Mw6.2) event was disproportionate. We analyse the damage report as a function of number of storeys and construction age. We recovered two vulnerability evaluations made in Armenia in 1993 and in 2004. We compare the results of the 1993 evaluation with damages observed in 1999 and show that the vulnerability evaluation made in 1993 could have predicted the relative frequency of damage observed in 1999. Our results show that vulnerability of the building stock was the major factor behind damage observed in 1999. Moreover, it showed no significant reduction between 1999 and 2004.

Key words: earthquake damage; vulnerability; construction type; construction age; building inventory.

1 Introduction

Destructive earthquakes occur relatively frequently in Colombia (the first reported event dates from 1551, Espinosa, 2003). However, the development of earthquake engineering began only relatively recently, punctuated by several major, significant events. The first building code in the country was published in 1984 (CCCSR-84, 1984), partly as a result of the heavy toll caused by the Popayán earthquake in March, 1983 (Ingeominas, 1986). Increasing building requirements have improved earthquake resistance, for example phasing out non engineered construction. The development of earthquake engineering has led to a decrease in the vulnerability of buildings in Colombia but progress has been slow, in pace with the development of building codes. In addition, as favoured construction styles evolve, additional challenges appear. For example, the cost of land pushes current housing projects consisting of tall concrete structures for which there is little experience regarding their seismic behaviour in that country, Instrumenting some of those buildings to analyze their motion during small earthquakes would provide useful data and may eventually become a necessity (e.g., Meli et al., 1998). Meanwhile, it is important to learn as much as possible from past destructive events.

Damage evaluation after large earthquakes is recognized as a primary input to understand structural response subject to dynamic excitations. It offers valuable data on the behaviour of structures to actual seismic motion. In addition to very significant efforts like GEER (Geotechnical Extreme Events Reconnaissance, 2020), local initiatives have contributed significantly to understand damage occurrence, especially in relation to site effects (e.g., Montalva et al., 2016; Fernández et al., 2019).

One seismic event that has had a long lasting impact in Colombia is the January 25, 1999, earthquake in the Quindío department, close (18 km) to the city of Armenia. This relatively small (Mw6.2), normal fault earthquake had profound economic and social consequences in the country. There was only one accelerograph in Armenia, and it recorded PGA of 518/580/448 gal in the EW/NS/Z components. Strong ground motion duration was very short (smaller than 5 s) and ground motion energy peaked at periods shorter than 0.5 s. The source of the main shock and aftershocks was studied in Monsalve-Jaramillo and Vargas-Jiménez (2002), while macroseismic observations were presented in Cardona (1999).

The city of Armenia sustained heavy damage (maximum intensity was IX in EMS-96 scale): 2000 casualties and 10,000 injuries due to the collapse of 15,000 houses, with a further 20,000 houses severely damaged (SIQ, 2002). Site effect evaluation during this event in Armenia was addressed by Chávez-García et al. (2018). Earthquake and ambient noise data were analysed with the objective of characterizing local amplification due to soft surficial layers using a variety of techniques. The results showed that, while local amplification contributed significantly to destructive ground motion, observed damage distribution in 1999 was incompatible with the rather small variations in dominant frequency and maximum amplification throughout the city.

Chávez-García et al. (2018) referred to the damage distribution observed for the 1999 earthquake but no data were analysed in that paper. In this paper, we present an analysis of damage observed during the 1999 earthquake. Earthquake damage data is analysed in relation to geology and to the site classes defined in the microzonation map of Armenia (Asociación Colombiana de Ingeniería Sísmica, 1999). In addition, the city of Armenia offers a very uncommon advantage in Latin America. Two vulnerability studies have been conducted in the city, one in 1993 and one in 2004. We compare the 1999 damage distribution to vulnerability estimated in 1993 for the small downtown district of the city where the two data sets overlap. The comparison of the two vulnerability studies, in 1993 and in 2004, allows an assessment of the changes in vulnerability in the city as a consequence of a destructive earthquake, even if the method used was different and the studied zones overlap only partially. We show that building vulnerability was the main factor behind the heavy damage toll in Armenia during the 1999 earthquake. Our results substantiate the improvement of engineering practice with time and provide evidence of the efficacy of simple methods to evaluate vulnerability. However, they also strike an alarm bell as they show that vulnerability in Armenia remains high. Our results offer an unusually complete analysis of the major factors behind seismic risk in a typical medium size city in Colombia. Seismic risk mitigation in Armenia, and in similar midsize cities in Latin America, requires an increase in the number of permanent seismic stations and support of additional efforts to improve our understanding of moderate size seismic events.
This paper will obviate a discussion of the geological setting of Armenia, as it can be found in Chávez-García et al. (2018). The coffee growing region was occupied during the second half of the 19th century. For this reason, data on historical earthquakes is scarce, even though it is located in a zone of high seismic hazard (the current Colombian building code prescribes a PGA of 0.25 g for Armenia for a return period of 475 yr). During the 20th century, about eight earthquakes occurred in the region producing intensities as large as IX (Espinosa, 2011).

Before 1960, construction in this region consisted mainly of bahareque and unreinforced masonry. In Colombia, bahareque refers to structures that use guadua (a local variety of bamboo) for the skeleton elements. Walls are made using a guadua-based mat, covered with mud mixed with dung as bonding agent. At about 1960, reinforced concrete frames began to be used but Colombia lacked a building code until 1984, although conscientious engineers followed guidelines from international codes, mostly American ones. Between 1977 and 1984 design practice for those structures shifted from the elastic method to ultimate strength design. Unfortunately, this allowed construction companies to decrease the quantity of steel reinforcement. Until 1984, no seismic provisions were considered.

A major milestone was the Popayán earthquake of March 31, 1983 (ML5.5). This small, shallow event caused major destruction in Popayán, where important Spanish heritage sites were severely damaged. Although restricted in extension, the heavy damage gave the final push for the adoption of a national building code including seismic provisions in 1984. This code had been promoted since the end of 1970’s by Asociación Colombiana de Ingeniería Sísmica (Colombian Association for Earthquake Engineering), founded on 1975. A major consequence of the 1984 code was to eliminate new construction using unreinforced masonry. This code was replaced by a new version in 1998. The effects of two events in 1995 (Feb 8, Mw6.0, Aug 19, Mw6.5) convinced engineers that lateral drift requirements in the 1984 code were too lenient and stricter requirements were incorporated.

Only a few months passed between publication of the 1998 building code and the occurrence of the 1999, Armenia, earthquake. Some of the shortcomings identified during this event were addressed in improvements to the code published in 2010; requisites for irregular buildings with weak storeys, short columns, p-Δ effects, and torsion related problems among others. Microzonation of cities with more than 100,000 people became mandatory. However, those studies are the responsibility of local authorities and are not necessarily considered a priority. In Armenia, nine years after becoming compulsory, an update of the microzonation study carried out in the wake of the 1999 earthquake is still missing. Currently, discussions for a new version of the building code centre on imposing requisites on the quality control of the materials used and ensuring the correspondence between drawings and the real structure.

3 Damage Observed in 1999

In the aftermath of the 1999 event, the Sociedad de Ingenieros del Quindío (Quindian Society of Engineers) organised teams that made a detailed evaluation of damaged structures in Armenia (SIQ, 2002). The status of a building is determined by the attributes of damage level, damage type and usage status (Tang, et al., 2020). The priority was to distinguish between those buildings that did not pose a risk to occupants from those that must be evacuated. The template used to qualify buildings allowed to grade the damage sustained by buildings and included information on year of construction, structural system, and number of storeys. SIQ (2002) classified observed damage using a colour scale:

- Grey. Very light or no damage at all.
- Green. The building can continue to be used. Although some damage is apparent in non-structural elements, it poses no risk to occupants.
- Yellow. Significant damage, to the point that partial occupancy restriction is required. The structure is not evaluated as unsafe but access to parts of it must be restricted.
- Orange. Unusable structure. Damage to the structure implies a high risk and the building cannot be occupied.
- Red. Total collapse or danger of collapse due to severe damage to the structure or its foundation.

This scale is quite standard and very similar to that proposed by the European Seismological Commission (Xin et al., 2020). For our purpose, we have simplified this scale. We use light damage to refer to structures classified in grey or green. Moderate damage in this paper is used for buildings classified as yellow. Finally, severe damage corresponds to structures classified as orange or red. The SIQ (2002) report presents an inventory of 43,023 structures classified as a function of damage sustained. From this total, data for 1,946 sites could not be used due to incomplete information that made it impossible to locate them on a map. This number suggests a lower limit for the uncertainties in our database, inevitable in any post-earthquake damage survey and which we have no means to evaluate. However, the number of samples is large enough to justify our confidence in average values. Our final database for Armenia includes 41,077 buildings. Data is available only for damaged structures and it is not possible to normalize the results relative to the number of existing buildings in the city.

Five categories were used to classify the buildings structuring type, following CCCSR-84 (1984). In order of decreasing seismic performance, the first four categories are: frame structures, confined masonry, unreinforced masonry, and bahareque structures (wooden structures are included here). The fifth category, as written in the template used by SIQ...
Earthquake damage is the result of strong ground motion and building vulnerability. Vulnerability of the building stock has always been a key factor in seismic risk evaluations (e.g., Dolce et al., 2006; Vicente et al., 2014; Fikri et al., 2019), or post-earthquake evaluations (e.g., Marotta et al., 2017). A review of current challenges has been presented in Silva et al. (2019). A major problem is the large number of buildings for which a vulnerability estimate is required in a city. When the number of structures is limited to a few hundreds, simple methods are often used, which usually consist in simple evaluations of a limited number of parameters (e.g., Fikri et al., 2019). Larger building populations have to be dealt with using probabilistic methods (e.g., Noh et al., 2017) or extremely indirect techniques (Geiß et al., 2014).

In Latin America, vulnerability studies of the building stock are not often made outside capital cities. However, in the case of Armenia, we are fortunate to have available two vulnerability studies: one performed in 1993 (López et al., 1993), six years prior to the 1999 event, and one made in 2004 (Cano-Saldana et al., 2005). Those two studies followed different procedures and the area coverage overlaps only partially (Figure 2). In this section, we will compare the results of the
242 In 1993, different sectors of the city were sampled but not all of the data were preserved. We analyse the results for the
downtown sector presented in López et al. (1993), shown in Figure 2. A census was made to count the number of structures
each type. In the downtown sector, 3,364 buildings were counted and assigned to one of three categories: bahareque
structures (908), unreinforced masonry structures (1,877), and frame structures (579). It was not possible to evaluate,
even in a simplified way, all those structures. For this reason, a small sample of 84 buildings was designed, assuming
normal distribution and choosing a 95% confidence level of the extrapolation of the results to the total population. The
84 buildings were randomly selected in the field and the vulnerability of each of them was evaluated using the procedure
described in Tassios (1989), which is very similar to that described in Inel et al. (2008) or Alam et al. (2013). Each selected
building was visited by a team of students of civil engineering and a detailed template was completed with information
on the structure. The compiled information consisted of: structuring type, relation with neighbouring structures (possible
interaction problems), year of construction, maintenance, vertical and horizontal configuration, and roofing material.
These factors were assigned numerical values and combined with arbitrary weights based on expert opinions to compute
a vulnerability index (VI) for each building. VI was made to vary between 0 and 100, where 0 corresponds to an absolutely
safe structure and 100 to a totally vulnerable structure. Finally, the vulnerability indexes determined for the sample were
extrapolated to the complete population in the downtown district.

259 Figure 6 compares the VI values determined in 1993 with damage observed during the 1999 earthquake inside the
downtown district (solid line polygon in Figure 2). Percentages for VI values were extrapolated from the numbers
determined for the 84 building sample. In this figure, we counted together moderate and severe damage, while VI was
classified in two groups: larger and smaller than 20. We observe a very good correlation between VI estimated in 1993
and damage observed during the 1999 earthquake, six years later. Thus, the approximate procedure used to estimate VI
in 1993 was effective to predict dynamic behaviour during that earthquake.

263 In addition to comparing extrapolated VI with damages for the downtown district, we may ask another question. How did
each one of the 84 buildings, whose VI was evaluated, fare during the 1999 earthquake? This question has no simple
answer due to different georeferencing systems for the two surveys (vulnerability and damage) and incomplete data. Only
28 out of the 84 could be confidently identified. The unidentified buildings could be absent from the damaged buildings
database because they suffered no damage or because their recorded location was inaccurate. Figure 7 shows a whisker
plot of the observed VI values against observed damage for the 28 buildings that could be identified in both databases.
VI values are well correlated with observed damage. Figure 7 shows that severe damage may be associated with an
average VI of 44, moderate damage with an average VI of 32, while light damage corresponds to an average VI of 16.

275 Consider finally the vulnerability study made in 2004 (Cano-Saldaña et al., 2005). The procedure used was very different
and followed that of Velásquez and Jaramillo (1993). Cano-Saldaña et al. (2005) computed expected losses for three
different events, considered to pose the largest seismic hazard for Armenia. A required input for them was an estimate of
the vulnerability for the building stock, and this is the data we recuperated from that study. Cano-Saldaña et al. (2005)
selected a sector of the downtown district that overlaps only partially with the district sampled in 1993. It is shown with
dot-dashed line in Figure 2. They tallied every building in that sector, a total of 2,525 land plots. For each one of them, a
278 template simpler than that of 1993 was completed including data on structuring type, number of storeys, roofing type,
and construction quality. The simplified nature of the template made it possible to complete it for the 2,525 land plots, in
contrast to the more detailed template used in 1993. We recuperated the 2004 building database and estimated
vulnerability using the same procedure used in 1993; i.e., assigning numerical values to each factor and combining them
with arbitrary weights based on expert opinions to compute a vulnerability index for each building in the sample. The
weights used to estimate a vulnerability index had to be modified from those used in 1993 given that less information on
each structure was available. The VI results for the 2004 study may thus have a constant bias. We could assign a
vulnerability index to 1,217 buildings, out of the 2,525 counted in 2004. The building categories that could be identify
between the two studies were bahareque, unconfined masonry and frame structures. VI values were grouped in three
categories: low (VI between 0 and 20), medium (VI between 20 and 40), and high (VI larger than 40). The results in
Figure 8 show that the relative proportions are maintained between 1993 and 2004: most buildings in that sector have still
high vulnerability in 2004 and less than 20% have low VI. Our results suggest that significant improvements in the relative
vulnerability occurred in the 11-year period between 1993 and 2004. High vulnerabilities are still predominant in
downtown Armenia, in spite of the destruction of weak buildings in the 1999 earthquake and the reinforcement carried
out during the reconstruction of the city. It may be hoped that this result will prompt local authorities to take decisive
actions to mitigate seismic risk in Armenia. A starting point could be to replicate the use of simplified procedures to
estimate vulnerability to evaluate possible changes in the 16-year period since 2004.

5 Conclusions

Colombia, and in particular the coffee growing region, has been historically affected by large earthquakes, with the 1999
event being the most recent destructive event. The consequences of that earthquake significantly changed society in
Armenia and forced important improvements in engineering practice. The large economic consequences led the
government to add a new tax to pay for reconstruction: a levy of 2% was imposed on every bank transaction in the
country. Earthquake disasters occur rarely and therefore seismic risk is seldom a priority. In Armenia region, the first two
accelerographs were installed in 1994: in the campus of Universidad del Quindío, and in Calarcá (a neighbouring town,
10 km to the SE of Armenia). To date, they continue to be the only accelerographs in operation. As mentioned above, the
mandatory microzonation study of Armenia is still due.

We have presented an analysis of observed damage and vulnerability in Armenia during the 1999 earthquake. Our results
are based on databases that had remained as unpublished reports. The severity of damage is uncorrelated either with
geology or with the zones identified in the microzonation map. Damage distribution is uncorrelated with structure height
but we do observe a decrease in the severity of damage for younger structures. The data on observed damages were
contrasted against two vulnerability evaluations, one in 1993 and one in 2004. In the 1993 study, 84 buildings were visited
and their vulnerability was evaluated using a detailed template. The comparison of the results with observed damage in
the city six year later strongly supports this method.

Our results indicate that building vulnerability was the main factor behind the large damage caused by the 1999
earthquake. The comparison between the vulnerability studies of 1993 and 2004 show no significant improvements in the
relative vulnerability in that 11-year period. Unfortunately, it is possible that the money allocated to house owners for
repairs may not have been used to that purpose. Seismic risk mitigation in Armenia, and in similar midsize cities in Latin
America, requires more decisive support to increase the number of permanent seismic stations. This is especially
important given that current practice fosters tall concrete structures f

Author Contributions: HMJ recovered the original data. FJCG, HMJ and JIVO analyzed the data. JIVO prepared the
maps and processed the statistics of the data. FJCG wrote the first draft and prepared the figures. All three authors revised
the manuscript and made final corrections.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements

We thank Sociedad de Ingenieros del Quindío and Servicio Geológico Colombiano (ancient Ingeominas) for authorization
to use the data included in the unpublished reports on damage distribution and microzonation projects carried out in
Armenia after the 1999 earthquake. Part of this research was made during a sabbatical visit of FJCG to Facultad de
Ingeniería, Universidad del Quindío. This visit was possible thanks to the support of Dirección General de Asuntos del
Personal Académico of UNAM through program PASPA. Additional support was received from project 934 supported by Vicerrectoría de Investigaciones of Universidad del Quindío, and from the Rectory of Universidad del Quindío.

References

AIS (Asociación Colombiana de Ingeniería Sísmica) (1999), “Estudio de microzonificación sísmica para orientar la
reconstrucción de Armenia-Quindío” (in Spanish).

Alam MS, Sajjad MR, Yasir Z, and Haque FMM (2013), “A statistical study on structural characteristics of RC building
stock of Dhaka City for seismic loss assessment application,” Appl Mech Mater, 330:884–888.

Cano-Saldaña L, Monsalve-Jaramillo H, Agudelo-Calvo JA, Upegui-Botero FM, and Jaramillo-Fernández JD (2005),
“Metodología para la evaluación del riesgo sísmico de pequeñas y medianas ciudades. Estudio de caso: zona centro de la
ciudad de Armenia – Colombia,” Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 5:3-
20 (in Spanish).

Cardona, OD (1999), “Terremoto de Armenia, Colombia, enero 25 de 1999,” Revista de Ingeniería Sísmica, 60:21-42 (in
Spanish).

CCCSR-84 (1984), Código colombiano de construcciones sismorresistentes 1984, Colombian Association of Earthquake
Engineering (AIS), Ministry of Public Works and Transportation, and National Bureau for Disaster Attention and
Prevention (in Spanish).

Chávez-García FJ, Monsalve-Jaramillo H, Gómez-Cano M, and Vila-Ortega JJ (2018), “Vulnerability and site effects in
earthquake disasters in Armenia (Colombia). I—Site effects,” Geosciences, 8:254.
368 Dolce M, Kappos A, Masi A, Penelis G, and Vona M (2006), “Vulnerability assessment and earthquake damage scenarios
369 of the building stock of Potenza (Southern Italy) using Italian and Greek methodologies,” Engineering Structures, 28:357-
370 371.
371 Espinosa A (2003), “Historia sísmica de Colombia 1550-1830,” Academia Colombiana de Ciencias Exactas, Físicas y
372 Naturales, Universidad del Quindio (in Spanish).
373 Espinosa A (2011), “Enciclopedia de desastres naturales históricos de Colombia,” Academia Colombiana de Ciencias
374 Exactas, Físicas y Naturales, Universidad del Quindio (in Spanish).
375 Fernández J, Pastén C, Ruiz S, and Leyton F (2019), “Damage assessment of the 2015 Mw 8.3 Illapel earthquake in the
376 North-Central Chile,” Natural Hazards, 96:269-283.
377 Fikri R, Dizhur D, and Ingham J (2019), “Typological study and statistical assessment of parameters influencing
378 earthquake vulnerability of commercial RC/CFM buildings in New Zealand,” Bull Earthquake Eng, 17:2011-2036.
379 Geiß C, Taubenböck H, Tyagunov S, Tisch A, Post J, and Lakes T (2014), “Assessment of seismic building vulnerability
380 from space,” Earthquake Spectra, 30:1553-1583.
381 Geiß C, Taubenböck H, Tyagunov S, Tisch A, Post J, and Lakes T (2015), “Assessment of seismic building vulnerability
382 from space,” Earthquake Spectra, 31:1553-1583.
383 Ingeominas (1986), El sismo de Popayán del 31 de marzo de 1983 (in Spanish).
384 Ingeominas (1999), Terremoto del Quindío (enero 25 de 1999) (in Spanish).
385 López CA, Merchan JM, and Tejada JL (1993), Evaluación del escenario de pérdidas en caso de terremoto para la ciudad
386 de Armenia, sector III centro, BE thesis, School of Engineering, Quindio University (in Spanish).
387 Marotta A, Sorrentino L, Liberatore D, and Ingham JM (2017), “Vulnerability assessment of unreinforced masonry
388 churches following the 2010–2011 Canterbury earthquake sequence,” Journal of Earthquake Engineering, 21(6): 912-
389 934.
390 Meli R, Faccioli E, Muria-Vila D, Quaas R, and Paolucci R (1998), “A study of site effects and seismic response of an
391 instrumented building in Mexico City,” Journal of Earthquake Engineering, 2(1):89-111.
392 Montalva GA, Chávez-Garcia FJ, Tassara A, and Jara Weisser DM (2016), “Site Effects and Building Damage
393 Characterization in Concepción after the Mw 8.8 Maule Earthquake,” Earthquake Spectra, 32:1469-1488.
394 Monsalve-Jaramillo H, Vargas-Jiménez CA (2002), “El sismo de Armenia, Colombia (Mw = 6.2) del 25 de enero de
395 1999. Un análisis telesísmico de ondas de cuerpo, observaciones de campo y aspectos sismotectónicos,” Rev. Geofís.,
396 57:21–57 (In Spanish).
397 Noh HY, Kiremidjian A, Ceferino L, and So E (2017), “Bayesian updating of earthquake vulnerability functions with
398 application to mortality rates,” Earthquake Spectra, 33:1173-1189.
399 Silva V, Akkar S, Baker J, Bazzurro P, Castro JM, Crowley H, Dolsek M, Galasso C, Lagomarsino S, Monteiro R, Perrone
400 D, Pitilakis K, and Vamvatsikos D (2019), “Current challenges and future trends in analytical fragility and vulnerability
401 modeling,” Earthquake Spectra, 35:1927-1952.
402 Sociedad de Ingenieros del Quindio (SIQ, 2002), Procesamiento y Análisis de los Formularios de Evaluación de Daños
403 del Sismo del 25 de Enero de 1999 en Armenia (Quindio) (in Spanish).
404 Tang, C., Tang, C., Liu, X., Cai, Y., Van Westen, C., Yang, Y., . . . Tang, C. (2020). Monitoring of the reconstruction
405 process in a high mountainous area affected by a major earthquake and subsequent hazards. Natural Hazards and Earth
406 System Sciences, 20(4), 1163-1186. doi:10.5194/nhess-20-1163-2020
407 Tassios T (1989), Evaluation of the relative seismic risk of existing buildings by means of simplified vulnerability
408 techniques. National Technical University of Athens.
Velásquez E and Jaramillo JD (1993), *Estudio de la amenaza sísmica de Medellín, in Estudio de la amenaza, zonificación, análisis y vulnerabilidad sísmica para Medellín*, Report from EAFIT University to Town Hall of Medellín, UNDP, 1-48 (in Spanish).

Vicente R, Ferreira T, and Maio R (2014), “Seismic risk at the urban scale: assessment, mapping and planning,” *Procedia Economics and Finance*, 18:71-80.

Xin, D., Edward Daniell, J., & Wenzel, F. (2020). Review article: Review of fragility analyses for major building types in china with new implications for intensity-PGA relation development. *Natural Hazards and Earth System Sciences*, 20(2), 643-672. doi:10.5194/nhess-2020-385
Figure 1 Upper left: The small rectangle shows the location of Armenia in Colombia, South America. The main figure shows the geological map of the city. The small circles indicate the location of 6,467 structures that were severely damaged during the January 25, 1999, earthquake. The thick solid line crossing the city from north to south shows the trace of Armenia fault. [Modified from Ingeominas, 1999.]
Figura 2 Contornos de la profundidad de la interfaz (en m) en la base de los depósitos de ceniza que cubren la ciudad de Armenia. Los símbolos muestran la ubicación de los 36 sondeos verticales eléctricos donde se midió la profundidad de esa interfaz. La gruesa línea sólida que cruza la ciudad de norte a sur indica el rastro de la falla de Armenia. El polígono de línea sólida dentro de la ciudad muestra la extensión del distrito del centro cubierto en el estudio de vulnerabilidad de 1993. El esquema de línea pequeña y salpicada de puntos muestra el área cubierta por el estudio de vulnerabilidad realizado en 2004. [Modificado de Ingeominas, 1999.]
Figure 3 Histograms of observed damage in Armenia for the January 25, 1999, earthquake. Each diagram corresponds to the given structuring type and shows the relative incidence of light, moderate, and severe damage as a function of the four soil types defined in the microzonation map of AIS (1999) (A, B, C, and D). The last diagram shows data for all structuring types together.
Figure 4 Histograms of observed damage in Armenia for the January 25, 1999, earthquake. Each diagram corresponds to the given structuring type and shows the relative incidence of light, moderate, and severe damage for groups of buildings of similar number of storeys. The last diagram shows data for all structuring types together.
Figure 5 Histograms of observed damage in Armenia for the January 25, 1999, earthquake. Each diagram corresponds to the given structuring type and shows the relative incidence of light, moderate, and severe damage as a function of the time period where the structure was built (before 1959, between 1960 and 1984, between 1985 and 1997, and later than 1998). The data shown corresponds to the downtown district whose outline is shown in Figure 2.
Figure 6 Comparison between vulnerability values estimated in 1993 and damages observed in 1999. This comparison was only possible for the three structuring types shown. Moderate and severe damages were counted together. Vulnerability indexes (VI) are separated in two groups, below and above a value of 20. Both damages and vulnerabilities correspond to the complete building population inside the polygon drawn with solid line in Figure 2.
Figure 7 Whisker plot comparing the vulnerability index for 28 buildings evaluated in 1993 against their actual behavior observed during the 1999 earthquake. The cross inside each symbol indicates the location of average values.
Figure 8 Comparison between percentages of buildings classified as low, medium and high vulnerability between the evaluation made in 1993 and that of 2004 in Armenia. The values for 2004 used ad-hoc weights in an effort to get a vulnerability estimate compatible with the scale used in 1993. Values for 2004 may thus have a constant bias.