Albedo of the Soil Cover as a Factor of the Temporal Dynamics of Readily Available Soil Moisture in the Technosols of the Nikopol Manganese Ore Basin

Y. I. Gritsan1, O. M. Kunah2, M. P. Fedushko3, A. V. Babchenko4, V. O. Sirovatko5, O. V. Zhukov2, 3, V. I. Kotsun1
1Dnipro State Agrarian and Economic University, Dnipro, Ukraine
2Oles Gonchar Dnipro National University, Dnipro, Ukraine
3Bogdan Khmelnitsky Melitopol State Pedagogical University, Melitopol, Ukraine
4Ukrainian State University of Chemical Technology, Dnipro, Ukraine
5Dnipro Branch of State Institute of Ukrainian Soil Protection, Doslidne, Dnipro region, Ukraine

Abstract. The simulation of moisture content in Nikopol manganese ore basin technosols was performed using the Penman-Monteith approach and evaluate the role of the dependence of soils surface albedo from the humidity in the intensity of evapotranspiration. The soil lithogenic soils on loess-like loam and pedozem were chosen as the objects of the investigation. The research was conducted during 2012–2014 years at the investigation station of the remediation within Nikopol manganese ore basin (city Pokrov, Ukraine). The evapotranspiration from the soil surface was calculated by means of Penman-Monteith equation. Root zone moisture depletion is evaluated as the difference between soil water content at field capacity (pF = 2.3) and actual soil water content. The Ks value which is a water stress factor equals 1.0 as long as soil water content is higher than readily available water. If soil water content is lower than readily available water, Ks decreases linearly from one to zero according to total available soil water consumed. The soil water balance is performed in ISAREG with a daily time. The evaluation of readily available water content was carried out based on Penman-Monteith model taking into account meteorological data, technosols water-physical properties and the dependence of soil surface albedo on soil humidity. The color of the surface of the soil-lithogenic soil on the loess-like loam varies from yellow-red (10YR 6/5) in the dry condition to yellow gray (10YR 5/3) in the wet condition. Albedo of this soil depended on the humidity varies in the range 0.17–0.31. The surface color of the pedozem varies from very dark gray (10YR 3/1) in wet condition to light-gray (2.5YR 6/2) in the dry condition. Albedo of this soil depended on the humidity varies in the range 0.10–0.31. There is a linear relationship between the moisture content in the soil and albedo of the soil surface. Albedo changes along with the humidity are most significant in the soil-lithogenic soils on loess-like loams. This is confirmed by the greatest regression coefficient. Albedo changes along with the moisture content are least significant in the pedozem. The distributions of this index for different technosols are characterized by a high level of similarity of shape due to the fact that the overall climate factors are crucial in shaping the dynamics of moisture. The distributions can be most good represented as a complex mixture of normal distributions.

Keywords: reclamation, water regime, technosols, albedo, evapotranspiration, Penman-Monteith equitation.

Introduction

The hydrological budget is driven principally by precipitation and evapotranspiration (Rahgozar et al., 2012). These two climate elements largely determine the amount of moisture available for plant use or, in arid and semiarid regions, the magnitude of water deficiency (Toy, 1979). The difference in transpiration water rate of soil may be induced by the ground biomass and vegetation coverage which are different in soils with different organic layer thickness (Tromp-van Meerveld & McDonnell, 2006). Evapotranspiration is the key element of land water balance structure (Hlaváčiková & Novák, 2013). The transpiration water rate variation considerably effects on the spatial distribution of soil moisture (Detto et al., 2006). In semiarid regions evapotranspiration is the leading loss term of the root zone water budget (Reynolds et al., 2000; Williams & Albertson, 2004). Mining and open-cast mining cause drastic disturbances to the natural environment (Frouz, 2018). Reclamation can restore soil quality after mining over time aiming at the restoration of a stable and productive ecosystem (Shrestha & Lal, 2011). The development of a water regime of the post-mining sites can be divided into two parts: the development of soil, which stores water in the ecosystem, and the development of vegetation, which is an important consumer of water (Frouz, 2018). The land surface albedo, evapotranspiration, and surface roughness are the key factors of physical land-atmosphere interaction (Bonan, 2008).

Various modelling approaches were used for estimation of evapotranspiration at regional scales (Ray & Dadhwal, 2001; Consoli et al., 2006; Tasumi & Allen, 2007). There are direct and
Y. I. Gritsan, O. M. Kunah, M. P. Fedushko, A. V. Babchenko, V. O. Sirovatko, O.V. Zhukov

Albedo of the soil cover as a factor of the temporal dynamics of readily available soil moisture in the technosols of the Nikopol manganese ore basin

indirect methods for evapotranspiration estimation (Chasnyk et al., 2006). Indirect methods include those based on the concept of actual evapotranspiration versus potential evapotranspiration and utilize meteorological data (Sharma, 1985). At the field scale a model for determining wheat basal crop coefficients from observations of the normalized difference vegetation index (NDVI) were developed (Hansaker et al., 2005). The daily evapotranspiration was computed from instantaneous latent heat flux estimates derived from digital airborne multispectral remote sensing imagery (Chavez et al., 2008). The FAO Penman-Monteith reference evapotranspiration equation is basic tools to calculate evapotranspiration from meteorological data (Penman, 1948; Allen et al., 1998). The Penman-Monteith equation has been revealed to be reliable in a wide range of environments (Hess, 1996). Its computation requires weather data on maximum and minimum temperature, solar radiation, relative humidity and wind speed at 2 m height. This approach was tested and validated (Pereira et al., 2003; Popova et al., 2006; Jabloun & Sahli, 2008). The first step of actual evapotranspiration estimation includes the calculating potential evapotranspiration from meteorological data based on the aerodynamic theory and energy balance (Penman, 1948; Monteith, 1965). The potential evapotranspiration is then used to estimate actual evapotranspiration after application a soil water reduction factor, which is based on available or extractable soil water (Slabbers, 1980). Reference crop evapotranspiration is the evapotranspiration from a crop with specific characteristics. FAO-56 method sets the specific characteristics of a reference crop with certain height (0.12 m), surface resistance (70 s m⁻¹) and albedo (0.23) and then determines the reference evapotranspiration using the Penman-Monteith Equation (Allen et al., 1998). The albedo was shown to be able to considerably affect on the evapotranspiration rate (Seginer, 1969). Albedo is a leading factor in terms of climate impact (Zeng & Yoon, 2009). The effect of albedo on potential evapotranspiration varies with the season. Albedo having its greatest influence in the summer month (Jackson, 1967). Soil colour was detected to change after reclamation (Singh et al., 2015).

Artificial soils formed in the process of reclamation are classified as technosols. These manufactured soils have specific physical and chemical characteristics along with potential toxicity problems (Leguédois et al., 2016). Technosols were shown to perform ecosystem services such as water regulation (Huot et al., 2015). The research on physical properties of soil plays a significant role for the evaluation of reclamation success (Dexter, 2004). Soil thickness, texture, bulk density, porosity, pH (Klimkina et al., 2018), soil mass water content, soil mechanical impedance (Zhukov, 2015; Zhukov & Zadorozhnaya, 2016), soil grain content, and soil electrical conductivity (Zhukov et al., 2016b) are the important indicators for assessing the physical properties of reconstructed soils (Arshad & Martin, 2002; Maslikova et al., 2016; Zhukov et al., 2016a; Zhukov & Zadorozhnaya, 2016). Reclamation enhances soil quality by improving physical and chemical properties, which helps in restoration of mine soils (Shrestha & Lal, 2008; Zhukov et al., 2016c). The considerable changes of the soil bulk density, soil porosity, and soil mass water content were revealed to be changed after a long time of vegetation restoration (Cao et al., 2015; Malisev et al., 2017; Zhukov et al., 2019). After rehabilitation period the content of water available for plants was found to be favourable in reclaimed soils but less beneficial conditions of the soil were associated with air and water permeability (Kofodziej et al., 2016; Shcherbyna et al., 2017; Zhukov & Maslikova, 2018). Saturated hydraulic conductivity was found to increase in agricultural reclamation as a result tillage and alfalfa growing (Krümmelebin et al., 2010; Krümmelebin & Raab, 2012). Water holding capacity was near to the reference sites after 25 years of reclamation (Scherbina et al., 2014; Singh et al., 2015; Potapenko et al., 2019).

The aim of the study is to perform a simulation of moisture content in Nikopol manganese ore basin technosols using the Penman-Monteith approach and evaluate the role of the dependence of soils surface albedo from the humidity in the intensity of evapotranspiration.

Materials and methods

The research was conducted during 2012–2014 years at the investigation station of the remediation within Nikopol manganese ore basin (city Pokrov, Ukraine). The experimental area for the study of optimal modes of agricultural reclamation was created 1968–1970 years. The soil lithogenic soils on loess-like loam and pedozems were chosen as the objects of the investigation. Technosols are characterized by the following water-physical properties (the amount of moisture in the soil layer thickness of 1 m). Sod-lithogenic soils on the loess-like loam: field capacity – 320.55 mm, available soil moisture – 190.15 mm, maximum hygroscopic moisture – 97.33 mm, permanent wilting point – 130.40 mm. Pedozems: field capacity – 311.35 mm, available soil moisture – 196.36 mm, maximum hygroscopic moisture – 85.86 mm, permanent wilting point – 114.99 mm (Zhukov et al., 2017a, 2017b). The presented hydrological constants were used in further calculations.

The evapotranspiration from the soil surface was calculated by means of Penman-Monteith equation (Monteith, 1965):

\[
Ew = \frac{0.408 \Delta (Rn - G) + 7 \gamma (T_d - T_a) \frac{\varepsilon_d - \varepsilon_a}{(1 + 0.34 \varepsilon_d)} + 273 \gamma}{\Delta + (1 + 0.34 \varepsilon_d)},
\]

where \(Ew\) is reference evapotranspiration rate, mm d⁻¹; \(Rn\) – net radiation flux (MJ m⁻²d⁻¹); \(G\) – sensible heat flux into the soil (MJ m⁻²d⁻¹); \(T_d\) – mean air temperature, °C; \(u_1\) – wind speed (m s⁻¹) at 2 m above the ground; \(\varepsilon_d\) is saturated vapour pressure at temperature \(T_d\), °C; \(\Delta\) is the slope of the vapour pressure curve; \(\gamma\) is the psychrometric constant (kPa °C⁻¹); \(\varepsilon_d\) – is saturated vapour pressure deficit.

Actual evapotranspiration may be calculated as follows:

\[
E_w = K_e E_{w0},
\]

where \(K_e\) – water stress factor.

Root zone moisture depletion is evaluated as the difference between soil water content at field capacity (pF = 2.3) and actual soil water content. The \(K_e\) value, which is a water stress factor equals 1.0 as long as soil water content is higher than readily available water (a fraction of the total available water). If soil water content is less than readily available water (RAW), \(K_e\) decreases linearly from one to zero according to total available soil water consumed.

The following equation for calculating the daily net radiation was applied (Allen et al., 1994a, 1994b):

\[
R_n = (1 - a) R_{si} - (a_c \frac{R_{ai}}{R_{si}} + b_c)(a_1 + b_1 e^{b_2}) \sigma \left(\frac{T_d^4 + T_a^4}{2} \right),
\]

where \(\sigma\) is the Stefan-Boltzmann constant \((\sigma = 4.903 \times 10^{-8} \text{ W m}^{-2} \text{K}^{-4})\); \(T_d\) and \(T_a\) represent the maximum and minimum air temperatures (°C) in one day, respectively; \(a\) and \(b\) are the cloud factors, equal to 1.35 and –0.35, respectively; \(a_c\) and \(b_c\) are the emissivity factors, equal to 0.35 and –0.14, respectively (Evett et al., 2011); \(a\) is the soil surface albedo depending on the soil water content, color and texture as well as the organic matter content and surface roughness. \(R_{si}, R_{ai}\) is the relative short-wave radiation, which is used to express the cloudiness of the atmosphere. When the sky is cloudy, its value is smaller. It varies in the range from 0.33 (dense cloud cover) to 1 (clear sky) (Allen et al., 1998).
The solar radiation in case of clear sky, R_{sa}, is expressed as:

$$R_{sa} = \frac{24(60)}{\pi} G_{s} d_{s} (\cos \theta \cos \delta \sin \omega_{s} + \omega_{s} \sin \theta \sin \delta),$$

where:

$$d_{s} = 1 + 0.33 \cos \left(\frac{2\pi f}{365} \right),$$

and

$$\omega_{s} = \cos^{-1} \left(-\tan \delta \tan \theta \right),$$

where the term $24(60)/\pi$ is the inverse angle of rotation in daily; G_{s} is the solar constant (-0.08202 MJ m$^{-2}$ min$^{-1}$); d_{s} is the relative distance between the Earth and the sun; m; J is the day of year; ω_{s} is the sunset time angle (rad), the angle from solar noon to sunset; θ is the latitude; and δ is the solar declination.

The relationship between the $0.3–2.8$ mm soil albedo and the Munsell color value component has the form (Post et al., 2000):

$$Y = -0.11 + 0.07 X,$$

where Y – albedo; X – Munsell color value component.

The soil water balance is performed in ISAREG (Teixeira & Pereira, 1992) with a daily time step as:

$$SW_{i} = SW_{i-1} + P_{i} + I_{i} + G_{i} - E_{i} - D_{i},$$

where SW_{i}, and SW_{i-1} are respectively the soil water storage (mm) in the soil layer zone at the end of day i and of the previous day, i–1; P_{i} is the precipitation; I_{i} is the net irrigation depth; G_{i} is the capillary rise; E_{i} is the actual evapotranspiration, and D_{i} is the deep percolation out of the root zone, all referring to day i. All units but for SW_{i} are in mm d$^{-1}$. I_{i}, G_{i}, and D_{i} were neglected in this application.

Readily available water was found as:

$$RAW_{i} = SW_{i} - PWP,$$

where RAW_{i} – readily available water, mm; SW_{i} is the soil water storage, mm; PWP – permanent wilting point, mm.

Statistical calculation were made using software Statistica (version 8, StatSoft, USA).

Results

Precipitation falls very unevenly in time on the investigated area. In 2013, the duration of rainy period was 259 days in 2014 – 264 days, in 2015 – 261 days. The maximum daily rainfall varies within 18–49 mm. The highest amount of precipitation fell in the year 2015 (506.8 mm), and the lowest – in 2014 (328.9 mm). In 2013 fell to 345.6 mm. The intensity of the rainfall varies throughout the year. The highest rainfall usually occurs in June and the lowest – in August (Fig. 1). There are significant interannual differences in the intensity of rainfall. Minimum total annual precipitation in 2014 was due to a decrease in atypical rainfall in late winter and early winter. Maximum annual rainfall in 2015 was caused by intense rainfall both in the spring and in mid-summer and late autumn.

The average annual temperature is 11.14 ± 0.30 ºC and is not statistically significant different between years during the study period ($F = 0.19; p = 0.82$). The temperature range is from -23.4 to +37.8 ºC during the study period (Fig. 2). Minimum temperatures occur in January or February, and the maximum temperatures – in July or August. The largest temperature fluctuations occur in the winter or spring. Autumn period is usually marked by the sharp fall of temperatures.

The winds blow predominantly from the east and north direction (in 2013), from the east and northeast direction (in 2014) or from the north and northeast direction (in 2015) (Fig. 3). The average wind speed is statistically significantly different from year to year ($F = 8.72; p < 0.001$). The highest wind speed was observed in 2013, and the lowest – in the 2015 (Fig. 4). The wind speed local maximum was observed in March and autumn. The wind speed local minimum occurs in late summer. From the patterns indicated there are significant deviations from year to year. Thus, in 2014 the maximum wind speed was observed in January. In 2013 there was a minimum wind speed in June, after which there was a monotonic trend of increasing wind speed.

The average atmospheric humidity is statistically significantly varies from year to year ($F = 7.67; p < 0.001$). The highest humidity was found in 2013, differences in minimum level of humidity in 2014 and 2015 were not significant (Fig. 5). From the beginning of year, there was a monotonic decrease in humidity until August, when there was a minimum of this indicator. The growth of humidity was de-

Fig. 1. Total monthly precipitation during 2013–2015. The abscissa axis is the order of months, the ordinate axis is a monthly precipitation, mm

Fig. 2. Dynamics of daily mean temperature. The abscissa axis is the order of the day this year, the ordinate axis is daily mean temperature, ºC
Albedo of the soil cover as a factor of the temporal dynamics of readily available soil moisture in the technosols of the Nikopol manganese ore basin

The atmospheric humidity is dependent on the other climatic indicators that can be described using regression dependence, which is able to explain 46% of the variability in this parameter ($F = 233.6; p < 0.001$, all predictors in model are statistically significant at $p < 0.001$):

$$Y = 529.8 \pm 51.1 + 1.04 \pm 0.11 R - 1.16 \pm 0.04 Temp - 2.51 \pm 0.28 W - 0.43 \pm 0.05 Pr,$$

where Y – atmospheric humidity; R – precipitation; $Temp$ – temperature; W – wind speed; Pr – atmospheric pressure.

The mean atmospheric pressure is statistically significantly varies from year to year ($F = 60.22; p < 0.001$). The lowest atmospheric pressure was observed in 2015 (Fig. 6). The difference between 2013 and 2014 was not statistically significant. The most value of the atmospheric pressure is typical of early winter, and then in spring pressure was quite sharply reduced. In May, there was usually minimum of the atmospheric pressure, followed by a gradual increase it, which takes a sharp character from the middle of autumn.

The technosols color properties and its surface albedo vary depending on the moisture content. The surface color of the pedozem varies from very dark gray (10YR 3/1) in wet condition to light-gray (2.5YR 6/2) in the dry condition (Table 1). Albedo of this soil depended on the humidity varies in the range 0.10–0.31.

The color of the surface of the sod-lithogenic soil on the loess-like loam varies from yellow (2.5Y 4/2) in wet condition to yellow-red (10YR 6/5) in the dry condition. Albedo of this soil depended on the humidity varies in the range 0.17–0.31.

There is a linear relationship between the moisture content in the soil and albedo of the soil surface (Fig. 7). Albedo changes along with the humidity are most significant in the sod-lithogenic soils on loess-like loams. This is confirmed by the greatest regression coefficient. Accordingly, albedo changes along with the moisture content are least significant in the pedozem.

The evaluation of readily available water content was carried out based on Penman-Monteith model taking into account meteorological data, technosols water-physical properties and the dependence of soil surface albedo on soil humidity. The distribution of this index for different technosols are characterized by a high level of similarity of shape due to the fact that the overall climate factors are crucial in shaping the dynamics of moisture (Fig. 8).

The distributions are asymmetric, which is also confirmed by the skewness coefficients that are statistically significantly different.
Table 1. The variability of the albedo and surface color characteristics of the technosols depending on water content

Water content, mm in 1 meter soil layer	Mansell color properties	Albedo*		
	Hue	Value	Chroma	
	Pedozem			
85.9	2.5YR	6.00	2	0.31
111.9	2.5YR	5.80	2	0.30
137.9	2.5YR	5.40	2	0.27
163.9	2.5YR	5.00	2	0.24
189.9	2.5YR	4.80	2	0.23
207.3	5YR	4.40	2	0.20
233.3	5YR	4.00	2	0.17
259.3	5YR	3.50	1	0.14
285.3	10YR	3.20	1	0.11
311.4	10YR	3.00	1	0.10
Sod-lithogenic soil on the loess-like loam				
97.0	10YR	6.00	5	0.31
122.8	10YR	5.80	5	0.30
148.7	10YR	5.40	5	0.27
174.5	10YR	5.20	4	0.25
200.4	2.5Y	5.00	4	0.24
217.6	2.5Y	4.80	4	0.23
243.5	2.5Y	4.50	3	0.21
269.3	2.5Y	4.30	3	0.19
295.2	2.5Y	4.10	3	0.18
321.0	2.5Y	4.00	2	0.17

Note: * – estimation on the basis of the equitation $Y = -0.11 + 0.07X$, where Y – albedo; X – Munsell color value component (Post et al., 2000).

Fig. 7. The dependence of soil surface albedo on soil water content:
A – pedozems; B – sod-lithogenic soils on loess-like loams

Fig. 8. Histograms of the readily available water distributions.
Axis abscissa – the moisture content, mm:
A – pedozems; B – sod-lithogenic soils on loess-like loams

rent from zero (Table 2). The distributions can be most good represented as a complex mixture of normal distributions. A mixture of three normal distribution is the best model for the distribution of readily available water in sod-lithogenic soils on the loess-like loam (Kolmogorov-Smirnov statistic $d = 0.03; p = 0.25$). The first mixture component holds 0.24 of the total variation (mean = 23.0; $\sigma = 15.6$), the second component – 0.47 of the total variation (mean = 70.4; $\sigma = 16.0$), the third – 0.29 of the total variation.
Table 2. Descriptive statistics of the readily available water content

Soil*	Mean±st.error, mm	Minimum, mm	Maximum, mm	Skewness±st.error	Kurtosis±st.error
	2013				
LL	99.44±3.30	1.31	191.12	0.30±0.13	-1.29±0.25
PZ	103.37±3.33	5.08	196.47	0.31±0.13	-1.29±0.25
	2014				
LL	49.14±1.34	-7.48	94.27	-0.60±0.13	-0.77±0.25
PZ	52.96±1.33	-3.47	98.26	-0.60±0.13	-0.77±0.25
	2015				
LL	105.14±2.53	22.11	191.12	-0.25±0.13	-1.21±0.25
PZ	108.03±2.55	24.98	196.47	-0.24±0.13	-1.20±0.25
	Total				
LL	84.57±1.64	-7.48	191.12	0.53±0.07	-0.74±0.15
PZ	88.12±1.65	-3.47	196.47	0.55±0.07	-0.71±0.15

(mean = 159.1; σ = 25.1). Thus, readily available water in sod-lithogenic soils on the loess-like loam is on three levels and most often this level is 70.4 mm (Fig. 9). High levels of moisture occurs in the winter-spring period, when the rate of precipitation generally prevailing rate of evaporation of water in the summer or during intensive downpours. In 2014 water supplies were on average and very low level due to the fact that in winter, water supplies were not renewed due to low rainfall. Also this year there was intensive rainfall in early summer, which tends to compensate intense evaporation during this period. The readily available water content decreased below a critical level (permanent wilting point) only in 2014.

For podozems the available for plants moisture distribution is best can be presented as a mixture of two normal distributions (Kolmogorov-Smirnov statistics d = 0.045; p = 0.15). The first part embraces 0.73 of the total variations (mean = 60.3; σ = 29.5), the second – 0.27 of the total variations (mean = 166.6; σ = 24.5). The relatively high levels of water reserves is characteristic for winter and spring periods. They tend to expand as a result of the high rainfall in early summer. The recharge was sufficient in 2013 and 2015, respectively, whereas in 2014 in the summer there was a drought. The drought lasted 9 days.

Discussion

Obviously, the meteorological conditions are most important factors that determine the dynamics of moisture content in all soil, including artificial. The water regime features of technosols depend on their water-physical properties and characteristics of the soil contact surface with the environment. Vegetation, color and character of the soil surface greatly affect the intensity of energy and material exchange with the soil environment. The technosols are young soils, which have a large variability in surface color. This feature leads to a significant variation of technosols surface albedo. The relationship between albedo and moisture creates the preconditions for the formation of the negative feedback mechanism of communication between the humidity and the evapotranspiration intensity. Reducing the water content in the soil leads to reduction of evaporation due to increased albedo. It should be noted that over the soil forming process the color differences between technosols will decrease due to the accumulation of organic matter that provides soils black or gray. But the accumulation of organic matter improves the technosols water-physical properties enabling better use of the climate potential.

The dynamics of the soil moisture content can be modeled by the balance of precipitation and evapotranspiration intensity in condition of the non-washing water regime of soil. The routine meteorological data can be used to simulate the balance of water and evapotranspiration (Allen et al., 1998). Besides climatic regimes the water-physical properties of the particular soil type play a key role in water dynamics. Albedo of a soil surface is particularly important. In this regard the technosols as young soil-like bodies are characterized by considerable color diversity. Albedo essentially depends on the color of the soil surface (Post et al., 2000). The color of the upper soil layers is depended on organic matter content which gives it colors from gray to black. The technosols organic matter content is low in the early stages of development (Zhukov et al.,...
2017a; Komlyk & Brygadyrenko, 2019), so technosols encompass a diverse range of colors. The pedozem is most similar to natural analogues in structure and color of the surface and is characterized by the lowest albedo. The technosols that manufactured on the gray-green clay have the highest albedo value. It should be noted albedo of the soil cover as a factor of the temporal dynamics of readily available soil moisture in the technosols of the Nikopol manganese ore basin is dependent on the moisture content: wet soils are characterized by the lowest albedo. The technosols that manufactured on the gray-green clay have the highest albedo value. It should be noted albedo of the surface soil.

The general trend of the readily available soil moisture variation is very similar for all studied technosols. The differences relate to quantitative characteristics, which are caused by the water-physical properties. The field capacity is attributable mainly to the soil aggregate structure (Frouz, 2018). The investigated soils are clay or loam, which have a high ability to aggregate formation. The low humus content makes aggregates to be water unstable (Frouz & Kuráž, 2014). Organic matter can improve bulk density of the technosols, its aeration and water retention/infiltration (Sanborn et al., 2004), aggregation and structure (Larney & Angers, 2012). In loess used for reclamation CaCO3 as cementing agent dominates soil aggregation (Pihlap et al., 2019). Also salinity processes in technosols do not contribute to the formation water stable aggregate structure (Klimkina et al., 2018). However, all technosols studied have the high rates of capacity, which determines the range readily available soil moisture. The permanent wilting point is a function of soil granulometric composition (Bradshaw, 1997) and, in condition of salinity, this parameter is affected on the content of soluble salts (Shrestha & Lal, 2011). Clay and loamy particle size generates high values of permanent wilting point.

This study examined the year with relatively high precipitation (2015), during which rain fell almost a half times more than in the rest of the studied years. The years 2013 and 2014 are characterized by similar precipitation values. But the peculiarities of the readily available soil moisture dynamics in the years are significantly different, due to the different patterns of rainfall during the year. In 2015 the duration of summer, when precipitation falls was significantly extended, resulting generated optimal conditions for the plants growing. In the 2013 summer peak rainfall was not long, but it was enough to compensate for the intense summer evaporation. The rainfall deficit in the winter 2013–2014 years do not made it possible to create the necessary supply of moisture before the growing season. Almost until the middle of summer moisture level in the soil was constant, but in late summer fell sharply. This is even despite the fact that during April–June precipitation in 2014 was at even slightly higher than in 2013. The specify of albedo dynamics depending on moisture content and technosols water-physical properties create the preconditions for the formation of water regime stability. The stability of the water regime allows for sufficient available for plants moisture within a significant range of vegetation. Even crops most sensitive to water shortages with long vegetation period can finish life cycle on technosols included in structure and color of the surface and is characterized by the lowest albedo. The technosols that manufactured on the gray-green clay, including by increasing the albedo of the surface soil. A common feature of global warming is the increase in precipitation and change it time patterns. As shown by the results of our research, reducing the norms of precipitation in winter period significantly affects the mode of moisture during the growing season. On the other hand, favorable moisture reserves in the Spring does not guarantee an optimal water regime during growing season, which is possible only in conditions of high levels of rainfall in early summer, but the latter is a random event and cannot be accurately estimated. With this in mind, the following practical recommendations can be made. First, water supplies monitoring before the start of the growing season can provide valuable information necessary for the selection of crops for cultivation in the current year. Secondly, the results indicate the urgency of measures to save the winter rainfall on the fields. Thirdly, it is the use of mulch to conserve moisture, including by increasing the albedo of the surface soil.

Conclusion

The natural soils tend to have varying degrees humus top layer. Organic matter provides soils gray or black. The technosols are characterized by a much greater variety of surface colors. This diversity is increased in the moisture gradient conditions. Changing moisture content significantly affects the technosols color properties. A color affects the albedo. In the arid conditions the moisture acts as a strong limiting factor, because the slightest differences in the moisture content dynamics are reflected in the significant environmental impacts. The simulation showed that the overall trend variability of moisture content in technosols is determined by weather conditions flow. Technosols features are depended on water-physical properties and albedo connection with soil moisture content.

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.

Allen, R. G., Smith, M., Perrier, A., & Pereira, L. S. (1994a). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 1–34.

Allen, R. G., Smith, M., Perrier, A., & Pereira, L. S. (1994b). An update for the definition of reference evapotranspiration. ICID Bulletin, 43(2), 35–92.

Arshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems & Environment, 88(2), 153–160. doi: 10.1016/S0167-8809(01)00252-3

Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449. doi: 10.1126/science.1155121

Bradshaw, A. (1997). Restoration of mined lands – Using natural processes. Ecological Engineering, 8(4), 255–269. doi: 10.1016/S0925-8574(97)00022-0

Cao, Y. G., Wang, J. M., Bai, Z. K., Zhou, W., Zhao, Z. Q., Ding, X., & Li, Y. (2015). Differentiation and mechanisms on physical properties of reconstructed soils on open-cast mine dump of loess area. Environmental Earth Sciences, 74(8), 6367–6380. doi: 10.1007/s12665-015-4607-0

Chanasyk, D. S., Mapfumo, E. & Chaikowsky, C. L. A. (2006). Estimating actual evapotranspiration using water budget and soil water reduction methods. Canadian Journal of Soil Science, 86(4), 757–766. doi: 10.4141/S05-063

Chavez, J., Neale, C. M. U., Prueger, J. H., & Kustas, W. P. (2008). Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values. Irrigation Science, 27(1), 67–81. doi: 10.1007/s00271-008-0122-3

Consoli, S., D’Urso, G., & Toscano, A. (2006). Remote sensing to estimate ET-fluxes and the performance of an irrigation district in southern Italy. Agricultural Water Management, 81, 295–314. doi: 10.1016/j.agwat.2005.04.008

Detto, M., Montaldo, N., Albertson, J. D., Mancini, M., & Katul, G. (2006). Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resources Research, 42(8), 1–16. doi: 10.1029/2005WR004623

Dexter, A. R. (2004). Soil physical quality Part I Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120, 201–214. doi: 10.1016/j.geoderma.2003.09.004
Shrestha, R. K., & Lal, R. (2008). Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio. Plant Soil, 306, 249–260. doi: 10.1007/s11104-008-9578-4
Shrestha, R. K., & Lal, R. (2011). Changes in physical and chemical properties of soil after surface mining and reclamaiton. Geoderma, 161, 168–176. doi: 10.1016/j.geoderma.2010.12.015
Singh, P., Ram, S., & Ghosh, A. K. (2015). Changes in physical properties of mine soils brought about by planting trees. Ecology, Environment and Conservation Paper, 21, AS187–AS193.
Slabbers, P. J. (1980). Practical prediction of actual evapotranspiration. Irrigation Science, 1(3), 185–196. doi: 10.1007/BF00270883
Tasumi, M. & Allen, R. G. (2007). Satellite-based ET mapping to assess variation in ET with timing of crop development. Agricultural Water Management, 88(1), 54–62. doi: 10.1016/j.agwat.2006.08.010
Teixeira, J. L. & Pereira, L. S. (1992). ISAREG, an irrigation scheduling model. ICIID Bulletin, 41(2), 29–48.
Toy, T. J. (1979). Potential evapotranspiration and surfacemine rehabilitation in the Powder River Basin, Wyoming and Montana. Journal of Range Management, 32(4), 312–317. doi: 10.2307/3897839
Tromp-van Meerveld, H. J., & McDonnell, J. J. (2006). On the interrelations between topography, soil depth, soil moisture, transpiration rates and species distribution at the hill slope scale. Advances in Water Resources, 29, 293–310. doi: 10.1016/j.advwatres.2005.02.016
Williams, C. A., & Albertson, J. D. (2004). Soil moisture controls on canopy-scale water and carbon fluxes in an African savanna. Water Resources Research, 40(9), W09302, doi: 10.1029/2004WR003208
Zeng, N., & Yoon, J. (2009). Expansion of the world’s deserts due to vegetation-albedo feedback under global warming. Geophysical Research Letters, 36, L17401. doi: 10.1029/2009GL039699
Zhukov, O. V., Zadorozhnaya, G. O., Maslikova, K. P., Andrusyevych, K. V., & Lyadskaya, I. V. (2017a). Tehnosols Ecology: monograph. Zhurufond, Dnipro.
Zhukov, A., & Zadorozhnaya, G. (2016). Spatial heterogeneity of mechanical impedance of a typical chernozem: the ecological approach. Ekológia (Bratislava), 35, 263–278. doi: 10.1515/eko-2016-0021
Zhukov, A. V., Kunah, O. N., Novikova, V. A., & Ganzha, D. S. (2016a). Phytoindication estimation of soil mesopedobionts communities catena and their ecomorphic organization. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 91–117. doi: 10.15421/201676
Zhukov, A. V., Sirovatko, V. O., & Ponomarenko, N. O. (2017b). Spatial dynamic of the agriculture fields towards their shape and size. Ukrainian Journal of Ecology, 7(3), 14–31. doi: 10.15421/2017_45
Zhukov, O. V., Kovalenko, D. V., Kramarenko, S. S., & Kramarenko, A. S. (2019). Analysis of the spatial distribution of the ecological niche of the land snail Brephulopsis cylindrica (Stylommatophora, Enidae) in technosols. Biosystems Diversity, 27(1), 62–68. doi: 10.15421/011910
Zhukov, O. V., & Maslikova, K. P. (2018). The dependence of the technosols models functional properties from the primary stratigraphy designs. Journal of Geology, Geography and Geocology, 27(2), 399–407. doi: 10.15421/111864
Zhukov, O. V (2015). Influence of usual and dual wheels on soil penetration resistance: the GIS-approach. Biological Bulletin of Bogdan Chhmelnitskiy Melitopol State Pedagogical University, 3, 73–100. doi: 10.7905/bbmspu.v5i3.988
Zhukov, O. V., Kunah, O. M., Taran, V. O., & Lebedinska, M. M. (2016b). Spatial variability of soils electrical conductivity within arena of the river dnepr valley (territory of the natural reserve “Dniprovsko–Orilsky”). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(2), 129–157 (in Ukranian). doi: 10.15421/201646
Zhukov, O. V., Kunah, O. N., & Novikova, V. A. (2016c). The functional organisation of the mesopedobionts community of sod pinewood soils on arena of the river Dnepr. Visnyk of Dnipropetrovsk University. Biology, ecology, 24(1), 26–39. doi: 10.15421/011604

Zhukov, O. V., Gritsan, O. M., Kunah, M. P., Babchenko, V. O., Sirovatko, O. V., & Fedushko, M. P. (2016). Albedo of the soil cover as a factor of the temporal dynamics of readily available soil moisture in the technosols of the Nikopol manganese ore basin.