Interaction of Mason-Pfizer monkey virus matrix protein with plasma membrane

Jan Prchal¹, Tomáš Kroupa¹-², Tomáš Ruml² and Richard Hrabal¹ *

¹ Laboratory of NMR Spectroscopy, Institute of Chemical Technology, Prague, Czech Republic
² Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Czech Republic

Budding is the final step of the late phase of retroviral life cycle. It begins with the interaction of Gag precursor with plasma membrane (PM) through its N-terminal domain, the matrix protein (MA). However, single genera of Retroviridae family differ in the way how they interact with PM. While in case of Lentiviruses (e.g., human immunodeficiency virus) the structural polyprotein precursor Gag interacts with cellular membrane prior to the assembly, Betaretroviruses (Mason-Pfizer monkey virus (M-PMV)) first assemble their virus-like particles (VLPs) in the pericentriolar region of the infected cell and therefore, already assembled particles interact with the membrane. Although both these types of retroviruses use similar mechanism of the interaction of Gag with the membrane, the difference in the site of assembly leads to some differences in the mechanism of the interaction. Here we describe the interaction of M-PMV MA with PM with emphasis on the structural aspects of the interaction with single phospholipids.

Keywords: Retrovirus, Mason-Pfizer monkey virus, matrix protein, phospholipids, interaction, plasma membrane
and causes myristoyl to be released from the protein and ready for binding. The interaction of HIV-1 MA with PI(4,5)P2 composed of shorter fatty-acid chains (4 and 8 carbons in length), was experimentally proved as suitable for solution nuclear magnetic resonance (NMR) measurements because these soluble PI(4,5)P2 bind in a cleft between the second and fifth helix. The binding has also been confirmed for phosphatidylinositol phosphates (PIPs) containing natural fatty-acid residues (C18 and C20) either by interaction of MA with artificial liposomes mimicking PM or by blocking PI(4,5)P2 synthesis leading to the HIV-1 virus particles to be unable to assemble on PM (Chukkapalli et al., 2008).

The interaction of PIP was also proved for other retroviruses: HIV-2, moloney murine leukemia virus (MoMuLV) and equine infectious anemia virus (EIAV). HIV-2 MA interacts with PIP in a similar way as HIV-1 MA, but it was reported that the interaction with neither C4 nor C8 PI(4,5)P2 leads to the release of the myristate (Saad et al., 2008). The authors concluded that the reason was a weaker affinity of PI(4,5)P2 to the HIV-2 MA and further speculated that the rationale behind this phenomenon might be that HIV-2 is less infectious than HIV-1. Both HIV-1 and HIV-2 show stronger preference for PI(4,5)P2 compared to the other, differently phosphorylated PIPs. EIAV MA is naturally non-myristoylated, so its interaction is fully dependent on the interaction of basic amino-acid residues with membrane phospholipids (Chen et al., 2008). Chen has reported that PI(4,5)P2 specifically interacts with EIAV MA and also induces its oligomerization, which promotes the assembly of virus particle. MoMuLV MA also interacts with PIPs, but without any discrimination of PI(4,5)P2. However, in the presence of phosphatidylerine, it exhibits stronger and more specific interaction over other differently phosphorylated PIPs (Hamard-Peron et al., 2010). Similar behavior, i.e., preferential and stronger binding of a chosen phosphoinositide in the presence of other phospholipids, mostly in the form of micelles was also described for proteins bearing pleckstrin homology domain (Sugiki et al., 2012). An important role of different phospholipids for the interaction of HIV-1 MA with the PM has been proposed recently by Vlach and Saad (2013). They found that phosphatidylerine, phosphatidylcholine, and phosphatidylethanolamine bound to HIV-1 MA, however, to a different binding site than PI(4,5)P2 and that the interaction was weaker. The authors concluded that this interaction further stabilizes the binding of MA to the membrane.

The first evidence of the interaction of M-PMV MA with PI(4,5)P2 was reported by Stansell et al. (2007). She observed that depletion of PI(4,5)P2 from PM by overexpression of active form of PI-5-phosphatase IV led to 90% decrease of particles release from M-PMV infected cells. Direct evidence of the interaction of M-PMV MA with PI(4,5)P2 was then confirmed by Prchal et al. (2012).

Similarly to HIV-1 and HIV-2 MAs, the interaction of M-PMV MA with PI(4,5)P2 was studied using NMR spectroscopy and soluble forms of PI(4,5)P2 with 4 and 8 carbon fatty-acids. While dibutanol PI(4,5)P2 did not interact, dioctanoyl PI(4,5)P2 interacted specifically with Kd of about 100 μM, which is a comparable affinity as that of the interaction of HIV-1 MA with C8-PI(4,5)P2 (Saad et al., 2006). Similarly as for HIV-2, the interaction did not trigger the myristoyl switch.

The M-PMV MA molecule contains one PIP binding site located between the first, second and fourth helices (Figure 1). Comparison of the structures of the myristoylated and non-myristoylated M-PMV MAs showed that this binding site is present only on the surface of the myristoylated protein. Due to a slightly different orientation of the helices in the structure of the non-myristoylated MA, the proper binding pocket is inaccessible for PIP.

The PIP binding site follows the canonical shape of epitopes for binding phosphoinositides, i.e., it is composed of a hydrophobic pocket formed by all four helices and a patch of basic residues on the surface (Roth, 2004). This pocket is connected with the cavity where the myristoyl is sequestered. One of PIP’s fatty-acid chains is buried inside this hydrophobic pocket while the phosphates interact with positively charged amino acids forming the basic patch. The structure has been solved only for the complex of MA with C8-PIP, so it might be expected that one of the naturally long PIP’s fatty-acid chains will somehow interfere with the myristoyl which might lead to its exposure from the cavity. The PI(4,5)P2 molecule is sequestered deeper in the protein core, compared to HIV-1 MA, where PI(4,5)P2 remains on the surface of MA (Figure 2). The surface part of the interaction site is formed mainly by lysines and arginines from the loop between the first and second helices and terminal parts of the first, second and fourth helices. The electrostatic interaction between positively charged lysine residues (K16, K25, K27, K33, and K74) and negatively charged inositol phosphate groups is important for the interaction of M-PMV MA with the membrane, as it was proven by mutation studies (Stansell et al., 2007). Stansell found that mutations of basic residues in the proximity of PIP binding site influenced both the transport of immature viral particles and their binding to PM. Virus-like particles (VLPs) bearing mutations K16A or K20A budded into intracellular vesicles. This may indicate that the mutations disrupted the recognition
of the target membrane, likely by changing the affinity of MA for differently phosphorylated PIPs than PI(4,5)P₂. VLPs bearing R10A, R22A, K27A, K33A, or K39A mutations were accumulated near the PM, indicating that the mutations prevented the interaction of MA with PI(4,5)P₂, or other phospholipids in the membrane. The mutation K25A disrupted some early stages of VLP transport, since they were randomly distributed in the cytoplasm.

Accumulation of VLPs near PM can also be caused by mutations of non-basic amino-acid residues in M-PMV MA. Double mutations T41I/T78I, Y11F/Y28F, and Y28F/Y67F blocked the release of VLPs from the host cell, while single mutations only slowed down the release of VLPs, but failed to fully arrest it (except of T41I mutation, that showed wt-like virus release; Rhee and Hunter, 1991; Stansell et al., 2004). Since all these mutations introduce more hydrophobic amino acids, Stansell speculated that they created a pocket capable of stronger hydrophobic interactions of mutated residues with the myristoyl and thus block its release from the protein core and therefore, prevents the interaction with PM.

In summary, the MA interaction with the PM is an essential step of retroviral life cycle that allows virus release. A firm contact of Gag with the PM is mediated by the bimpartite signal, where the key player is the interaction of MA with PI(4,5)P₂. This ensures the selectivity for the PM over the membranes of cellular organelles.

ACKNOWLEDGMENT
Financial support from the Czech Ministry of Education (grant LH12011) is highly appreciated.

REFERENCES
Bryant, M., and Ratner, L. (1990). Myristoylation-dependent replication and assembly of human immunodeficiency virus-1. Proc. Natl. Acad. Sci. U.S.A. 87, 523–527. doi: 10.1073/pnas.87.2.523
Chen, K., Bachtair, I., Pszczech, G., Bouamr, F., Carter, C., and Tjandra, N. (2008). Solution NMR characterizations of oligomerization and dynamics of equine infectious anemia virus matrix protein and its interaction with PIP2. Biochemistry 47, 1928–1937. doi: 10.1021/bi701984h
Chopra, H. C., and Mason, M. M. (1970). A new virus in a spontaneous mammary tumor of a rhesus monkey. Cancer Res. 30, 2081–2086.

Chukkapalli, V., Hogue, J. B., Boyko, V., Hu, W. S., and Ono, A. (2008). Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient Gag membrane binding. J. Virol. 82, 2405–2417. doi: 10.1128/JVI.01614-07
Freed, E. O. (1998). HIV-1 Gag proteins: diverse functions in the virus life cycle. Virology 251, 1–15. doi: 10.1006/viro.1998.9398
Hamard-Peron, E., Juillard, F., Saad, J. S., Roy, C., Roingeard, P., Summers, M. F., et al. (2010). Targeting of murine leukemia virus Gag to the plasma membrane is mediated by PI(4,5)P-2/PS and a polybasic region in the matrix. J. Virol. 84, 503–515. doi: 10.1128/JVI.01134-09
Hunter, E. (1994). Macromolecular interactions in the assembly of hiv and other retroviruses. Semin. Virol. 5, 71–83. doi: 10.1006/svim.1994.1008
Montiel, N. A. (2010). An updated review of simian Betaretrovirus (SRV) in macaque hosts. J. Med. Primatol. 39, 303–314. doi: 10.1111/j.1600-0684.2010.00412.x
Peitzschi, R. M., and McLaughlin, S. (1993). Binding of acylated peptides and fatty-acids to phospholipid-vesicles - pertinence to myristoylated proteins. Biochemistry 32, 10436–10443. doi: 10.1021/bi00090a020
Prchal, J., Srub, P., Hunter, E., Rumí, T., and Hrabal, R. (2012). The structure of myristoylated Mason-Pfizer monkey virus matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in its membrane binding. J. Mol. Biol. 423, 427–438. doi: 10.1016/j.jmb.2012.07.021
Rhee, S. S., and Hunter, E. (1991). Amino acid substitutions within the matrix protein of type D retroviruses affect assembly, transport and membrane association of a capsid. EMBO J. 10, 535–546.
Roth, M. G. (2004). Phosphoinositides in constitutive membrane traffic. Physiol. Rev. 84, 699–730. doi: 10.1152/physrev.00033.2003
Saad, J. S., Ablan, S. D., Ghanam, R. H., Kim, A., Andrews, K., Nagashima, K., et al. (2008). Structure of the myristoylated human immunodeficiency virus type 2 matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in membrane targeting. J. Mol. Biol. 382, 434–447. doi: 10.1016/j.jmb.2008.07.027
Saad, J. S., Miller, J., Tai, J., Kim, A., Ghanam, R. H., and Summers, M. F. (2006). Structural basis for targeting hiv-1 Gag proteins to the plasma membrane
for virus assembly. *Proc. Natl. Acad. Sci. U.S.A.* 103, 11364–11369. doi: 10.1073/pnas.0602818103

Stansell, E., Apkarian, R., Haubova, S., Diehl, W. E., Tytler, E. M., and Hunter, E. (2007). Basic residues in the Mason-Pfizer monkey virus gag matrix domain regulate intracellular trafficking and capsid-membrane interactions. *J. Virol.* 81, 8977–8988. doi: 10.1128/JVI.00657-07

Stansell, E., Tytler, E., Walter, M. R., and Hunter, E. (2004). An early stage of Mason-Pfizer monkey virus budding is regulated by the hydrophobicity of the gag matrix domain core. *J. Virol.* 78, 5023–5031. doi: 10.1128/JVI.78.10.5023-5031.2004

Sugiki, T., Takeuchi, K., Yamaji, T., Takano, T., Tokunaga, Y., Kumagai, K., et al. (2012). Structural basis for the golgi association by the pleckstrin homology domain of the ceramide trafficking protein (CERT). *J. Biol. Chem.* 287, 33706–33718. doi: 10.1074/jbc.M112.367730

Tang, C., Loeliger, E., Luncsford, P., Kinde, I., Beckett, D., and Summers, M. F. (2004). Entropic switch regulates myristate exposure in the HIV-1 matrix protein. *Proc. Natl. Acad. Sci. U.S.A.* 101, 517–522. doi: 10.1073/pnas.0305665101

Vlach, J., Lipov, J., Rumlova, M., Veverka, V., Lang, J., Srb, P., et al. (2008). D-retrovirus morphogenetic switch driven by the targeting signal accessibility to Tctex-1 of dynein. *Proc. Natl. Acad. Sci. U.S.A.* 105, 10565–10570. doi: 10.1073/pnas.0801765105

Vlach, J., and Saad, J. S. (2013). Trio engagement via plasma membrane phospholipids and the myristoyl moiety governs HIV-1 matrix binding to bilayers. *Proc. Natl. Acad. Sci. U.S.A.* 110, 3525–3530. doi: 10.1073/pnas.1216655110

Zhou, W., Parent, L. J., Wills, J. W., and Resh, M. D. (1994). Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. *J. Virol.* 68, 2556–2569.

Zhou, W., and Resh, M. D. (1996). Differential membrane binding of the human immunodeficiency virus type 1 matrix protein. *J. Virol.* 70, 8540–8548.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.