Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Kerala cohort of the A1chieve study

Sreejith N. Kumar, Tom Babu1, V. M. Haridas2

Diabetes Care Centre, Trivandrum, 1Silverline Hospital, Kadavananthra, Kochi, 2Westfort Hospital, Thrissur, Kerala, India

ABSTRACT

Background: The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Kerala, India. Results: A total of 1732 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1203), insulin detemir (n = 212), insulin aspart (n = 312), basal insulin plus insulin aspart (n = 1) and other insulin combinations (n = 1). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 10.0%) and insulin user (mean HbA1c: 8.3%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: −2.4%, insulin users: −0.5%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia. Key words: A1chieve study, insulin analogues, Kerala, type 2 diabetes mellitus

INTRODUCTION

62.4 million Indians were reported to have type 2 diabetes mellitus (T2DM) putting India on the forefront of diabetic epidemic across globe.[1,2] Fear of hypoglycaemia and gain in body weight act as barriers for initiation of insulin therapy.[3] Modern insulin analogues are a convenient new approach or tool to glycaemic control, associated with low number of hypoglycaemia and favourable weight change.[4] A1chieve, a multinational, 24-week, non-interventional study, assessed the safety and effectiveness of insulin analogues in people with T2DM (n = 66,726) in routine clinical care.[5] This short communication presents the results for patients enrolled from Kerala, India.

MATERIALS AND METHODS

Please refer to editorial titled: The A1chieve study: Mapping the Ibn Battuta trail.

RESULTS

A total of 1732 patients were enrolled in the study. The patient characteristics for the entire cohort divided as insulin-naïve and insulin users is shown in the Table 1. Glycaemic control at baseline was poor in this population. The majority of patients (69.5%) started on or switched to biphasic insulin aspart. Other groups were insulin detemir (n = 212), insulin aspart (n = 312), basal insulin plus insulin aspart (n = 1) and other insulin combinations (n = 1).
After 24 weeks of treatment overall hypoglycaemic events reduced to nil for both insulin naïve (0.2 events/patient-year at baseline) and insulin user (2.0 events/patient-year at baseline) groups. The hypoglycaemia incidence in insulin naïve group at 24 weeks was lower than that observed in insulin users at baseline. SADRsincluding major hypoglycaemic events did not occur in any of the study patients. Blood pressure decreased whereas overall lipid profile and quality of life improved at week 24 in the total cohort [Table 2 and 3].

All parameters of glycaemic control improved from baseline to study end in the total cohort [Table 4].

Biphasic insulin aspart ± OGLD

Of the total cohort, 1203 patients started on biphasic insulin aspart ± OGLD, of which 1060 (88.1%) were insulin naïve and 143 (11.9%) were insulin users. After 24 weeks of starting or switching to biphasic insulin aspart, hypoglycaemic events reduced from 0.1 events/patient-year to nil in insulin naïve group and from 1.5 events/patient-year to zero events in insulin users. Body weight decreased and quality of life improved at the end of the study [Table 5 and 6].

All parameters of glycaemic control improved from baseline to study end in those who started on or were switched to biphasic insulin aspart for both insulin naïve and insulin user groups [Table 7].

Basal + insulin aspart ± OGLD

Of the total cohort, only one patient who started on basal + insulin aspart ± OGLD group was insulin naïve. After 24 weeks of starting or switching to insulin

Table 1: Overall demographic data

Parameters	Insulin naïve	Insulin users	All
Number of participants	1532	200	1732
Male N (%)	904 (59.0)	126 (63.0)	1030 (59.5)
Female N (%)	627 (41.0)	74 (37.0)	701 (40.5)
Age (years)	57.4	57	57.5
Weight (kg)	69.4	62.2	68.6
BMI (kg/m²)	25.3	23.1	25.1
Duration of DM (years)	7.1	12.0	7.7
No therapy	98		
>2 OGLD	3		
HbA₁c	10.0	8.3	9.9
FPG (mmol/L)	11.8	10.6	11.7
PPPG (mmol/L)	15.5	15.2	15.5
Macrovascular complications, N (%)	782 (51.1)	37 (18.5)	819 (47.3)
Microvascular complications, N (%)	1064 (69.5)	26 (13.0)	1090 (63.0)
Pre-study therapy, N (%)	200 (11.55)	1343 (82.79)	
No therapy	98 (5.66)		
Baseline therapy, N (%)	212 (12.24)	312 (18.01)	
Insulin detemir±OGLD	1 (0.06)		
Insulin aspart±OGLD	1203 (69.5)		
Basal insulin aspart±OGLD	1 (0.06)		
Others	3 (0.17)		
BMI: Body mass index, OGLD: Oral glucose-lowering drug, HbA₁c: Glycated hemoglobin A₁c, FPG: Fasting plasma glucose, PPPG: Postprandial plasma glucose, DM: Diabetes mellitus			

Table 2: Overall safety data

Parameter	N	Baseline	Week 24	Change from baseline
Hypoglycaemia (insulin naïve), events/patient-year	1532	0.2	0.0	−0.2
All				
Nocturnal				
Major				
Hypoglycaemia (insulin users), events/patient-year	200	2.0	0.0	−2.0
All				
Nocturnal				
Major				
Body weight, kg				
Insulin naïve	1402	69.6	69.5	−0.1
Insulin users	154	61.6	62.5	0.9
Lipids and BP (insulin naïve)				
LDL-C, mean (mmol/L), (N, % <2.5 mmol/L)	58	2.7 (27, 46.6)	2.4 (14, 46.7)	−0.3
HDL-C, mean (mmol/L), (N, % >1.0 mmol/L)	57	1.3 (52, 91.2)	1.3 (27, 90.0)	0.0
TG, mean (mmol/L), (N, % <2.3 mmol/L)	40	1.8 (36, 90.0)	1.5 (23, 100)	−0.3
SBP, mean (mmHg), (N, % <130 mmHg)	1503	160.3 (201, 13.4)	131.1 (524, 37.9)	−29.2
Lipids and BP (insulin users)				
LDL-C, mean (mmol/L), (N, % <2.5 mmol/L)	44	2.0 (20, 45.5)	2.0 (6, 66.7)	0.0
HDL-C, mean (mmol/L), (N, % >1.0 mmol/L)	44	1.3 (41, 93.2)	1.3 (9, 100)	0.0
TG, mean (mmol/L), (N, % <2.3 mmol/L)	28	1.2 (25, 89.3)	1.1 (6, 100)	−0.1
SBP, mean (mmHg), (N, % <130 mmHg)	195	133.6 (53, 27.2)	131.0 (53, 42.7)	−2.6
Quality of life, VAS scale (0-100)				
Insulin naïve	1442	48.6	72.1	23.5
Insulin users	149	57.4	72.4	15.0

BP: Blood pressure, LDL-C: Low-density lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol, TG: Triglycerides, SBP: Systolic blood pressure, VAS: Visual analogue scale
aspart, hypoglycaemic events reduced from 13.0 events/patient-year to 0.0 events/patient-year. Body weight decreased and quality of life improved after 24 weeks of treatment. All parameters of glycaemic control improved from baseline to study end in this patient.

Insulin detemir ± OGLD

Of the total cohort, 212 patients started on insulin detemir ± OGLD, of which 188 (88.7%) were insulin naïve and 24 (11.3%) were insulin users. After 24 weeks of starting or switching to insulin detemir, hypoglycaemic events reduced to nil for both insulin naïve (0.1 events/patient-year at baseline) and insulin user (3.3 events/patient-year at baseline) groups. An improvement in quality of life was observed at 24 weeks [Table 8 and 9].

All parameters of glycaemic control improved from baseline to study end in those who started on or were switched to insulin detemir ± OGLDs for both insulin-naïve and insulin user groups [Table 10].

Insulin aspart ± OGLD

Of the total cohort, 312 patients who started on insulin aspart ± OGLD, of which 279 (89.4%) were insulin naïve and 33 (10.6%) were insulin users. After 24 weeks of treatment starting or switching to insulin aspart, hypoglycaemic events reduced from 0.6 events/patient-year to 0.0 events/patient-year. Body weight decreased and quality of life improved after 24 weeks of treatment. All parameters of glycaemic control improved from baseline to study end in this patient.

Table 3: Insulin dose

Insulin dose, U/day	N	Pre-study	N	Baseline	N	Week 24
Insulin naïve	0	0.0	1060	23.5	1011	20.6
Insulin users	143	23.2	143	22.3	120	22.0

Table 4: Overall efficacy data

Parameter	N	Baseline	Week 24	Change from baseline
Glycaemic control (insulin naïve)				
HbA1c, mean (%)	1271	10.0	7.6	−2.4
FPG, mean (mmol/L)	1365	11.8	8.5	−3.3
PPPG, mean (mmol/L)	1358	15.5	12.0	−3.5
Glycaemic control (insulin users)				
HbA1c, mean (%)	110	8.3	7.8	−0.5
FPG, mean (mmol/L)	132	10.6	9.6	−1.0
PPPG, mean (mmol/L)	132	15.2	14.1	−1.1

Achievement of HbA1c <7.0% at week 24

Insulin naïve: 1432 (5.0%)

Insulin users: 147 (1.4%)

Table 7: Biphasic insulin aspart±oral glucose-lowering drug efficacy data

Parameter	N	Baseline	Week 24	Change from baseline
Glycaemic control (insulin naïve)				
HbA1c, mean (%)	886	10.0	7.6	−2.3
FPG, mean (mmol/L)	940	10.7	7.8	−2.9
PPPG, mean (mmol/L)	937	14.1	11.0	−3.0
Glycaemic control (insulin users)				
HbA1c, mean (%)	79	8.3	7.9	−0.5
FPG, mean (mmol/L)	94	10.9	9.8	−1.1
PPPG, mean (mmol/L)	94	15.2	14.0	−1.2

Table 5: Biphasic insulin aspart±oral glucose-lowering drug safety data

Parameter	N	Baseline	Week 24	Change from baseline
Hypoglycaemia, events/patient-year				
Insulin naïve	1060	0.1	0.0	−0.1
Insulin users	143	1.5	0.0	−1.5
Body weight, kg				
Insulin naïve	986	69.9	69.8	−0.2
Insulin users	108	62.4	63.3	0.9
Quality of life, VAS scale (0-100)				
Insulin naïve	995	48.2	72.2	23.9
Insulin users	100	56.9	72.4	15.6

Table 6: Insulin dose

Insulin dose, U/day	N	Pre-study	N	Baseline	N	Week 24
Insulin naïve	0	0.0	1060	23.5	1011	20.6
Insulin users	143	23.2	143	22.3	120	22.0

Table 8: Insulin detemir±oral glucose-lowering drug safety data

Parameter	N	Baseline	Week 24	Change from baseline
Hypoglycaemia, events/patient-year				
Insulin naïve	188	0.1	0.0	−0.1
Insulin users	24	3.3	0.0	−3.3
Body weight, kg				
Insulin naïve	171	69.5	69.4	0.0
Insulin users	18	63.9	65.1	1.1
Quality of life, VAS scale (0-100)				
Insulin naïve	182	49.1	71.7	22.6
Insulin users	20	57.4	73.4	16.0

Table 9: Insulin dose

Insulin dose, U/day	N	Pre-study	N	Baseline	N	Week 24
Insulin naïve	0	0.0	188	15.0	186	14.0
Insulin users	24	19.8	24	17.0	22	15.9
patient-year to nil in insulin naïve group and from 3.2 events/patient-year to zero events in insulin users. A slight decrease in body weight was noted for insulin naïve group. Quality of life improved at the end of the study [Table 11 and 12].

All parameters of glycaemic control improved from baseline to study end in those who started on or were switched to insulin aspart ± OGLDs for both insulin naïve and insulin user groups [Table 13].

CONCLUSION

Our study reports improved glycaemic control (HbA1c, FPG and PPPG) and quality of life following 24 weeks of treatment with any of the insulin analogues (Biphasic insulin aspart; basal + insulin aspart; insulin detemir; insulin aspart) with or without OGLD. Overall, a small

REFERENCES

1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-53.

2. Shetty P. Public health: India’s diabetes time bomb. Nature 2012;485:S14-6.

3. Korytkowski M. When oral agents fail: Practical barriers to starting insulin. Int J Obes Relat Metab Disord 2002;26 Suppl 3:S18-24.

4. Hirsch IB. Insulin analogues. N Engl J Med 2005;352:174-83.

5. Shah SN, Litwak L, Haddad J, Chakkarwar PN, Hajjaji I. The A1chieve study: A 60 000-person, global, prospective, observational study of basal, meal-time, and biphasic insulin analogs in daily clinical practice. Diabetes Res Clin Prat 2010;88 Suppl 1:S11-6.