Defying the Rally During COVID-19 Pandemic: A Regression Discontinuity Approach

Enrijeta Shino, University of North Florida
Michael Binder, University of North Florida

Objective. Do people set aside their partisan differences and rally around elected officials during a pandemic? President Trump’s delegation of responsibility to the states during the COVID-19 pandemic placed governors on the frontlines of the battle; some have shined and garnered positive national attention, others have wilted under the pressure of the national spotlight. Methods. We use regression discontinuity design and exploit a discontinuity in the state’s political events to assess the support of a governor’s response to the pandemic. Results. Using survey data from Florida’s registered voters, we find that Governor DeSantis’s approval dropped by 7 percentage points following his “Safer at Home” order press conference on April 1. Conclusion. Our results suggest that under certain circumstances partisanship can blunt a “rally around the flag” effect. This finding provides context to understanding when and under which circumstances elected officials can expect increases (or decreases) in public support.

In times of crisis, the American public sets aside its differences and rallyies around its leader (Mueller, 1970, 1973; Lee, 1977; Kernell, 1978; MacKuen, 1983; Kam and Ramos, 2008). Kam and Ramos (2008) argue that there are two phases of the rally. The first phase is rally formation, caused by patriotism, and the second phase is rally depression, which occurs when the “political entrepreneurs make partisan identities more salient” (Kam and Ramos, 2008:619). However, Brewer and Brown (1998:581) argue that when a superior category such as the nation-state becomes salient, “group members are more likely to think of themselves as one unit” rather than two separate groups. For the public to think as “one unit,” regardless of party affiliation, people have to agree or hold consistent perceptions of what is at stake during the crisis. All of these often depend on the interaction of the event, political elites, and the media (Groeling and Baum, 2008).

Amid the outbreak of the COVID-19 pandemic, President Trump has continually shifted responsibility toward the states, and governors in particular (Blake, 2020). As a result, governors have emerged as the main political leaders making decisions to protect the citizens and fight the virus. Therefore, the media and public attention have shifted from the president toward governors across the country, praising or holding them accountable for their decisions (Scher, 2020). This has mutated the traditional “rally around the flag” effect. Throughout March 2020, governors across the United States began canceling events with more than 500 people, closing theme parks, shifting schools to online learning as the pandemic escalated, and “stay-at-home” orders were finally issued in a desperate attempt to ensure social distancing and slow the spread of the virus. However, the timing of when these orders were issued varied by state. Governors of large states such as California and...
New York announced their “stay-at-home” orders on March 19 and 20, while Florida’s governor waited until Surgeon General Adams urged all states to follow suit (Daugherty, 2020). On April 1, 2020 at 12:00 pm, DeSantis announced the issuing of Executive Order 20-19 “Safer at Home.” We use this event in Florida politics to analyze how the public reacted to the preventative measures taken by the governor.

Using an original survey of Florida registered voters, the main question we address in this study is how the Florida governor’s announcement of the “Safer at Home” order affected his public support. Did Floridians set aside their partisan views and rally around the governor during the pandemic? We employ regression discontinuity design to compare the public’s support of how the Florida governor managed the pandemic before and after the press conference. We find that, even in times of unprecedented crisis, partisanship affects people’s perceptions of whether the pandemic is more of an economic or public health threat to our society. Most importantly, we find that support for the governor dropped by 7 percentage points after his announcement. This effect is primarily driven by a decrease in Democratic support.

Survey Design and Florida Context

For this study, we conducted an email survey of registered Florida voters. The data collection began on March 31 and ended on Saturday, April 4, 2020. It was administered via Qualtrics and had a 1.1 percent response rate. The sample frame comprises 3,244 registered Florida voters, 18 years of age or older. The email addresses used for this survey were obtained from the Florida Division of Elections’ February update and were selected using probability sampling among registered voters in the Florida voter file. The margin of sampling error for the total sample is ±1.7 percentage points. Variables such as partisan registration, sex, race, and age come from the voter file list. To ensure a representative sample of registered voters, the 10 Florida designated market areas were stratified. Quotas were placed on each of these stratified areas to ensure a proportionate number of completed surveys from across the state. Due to the unique population of Miami-Dade County, it was separated to create an 11th strata from the 10 designated media markets.

Since the beginning of his term in January 2019, Florida Governor Ron DeSantis has had a high approval rating among both Republicans and Democrats in the state; in March 2019, October 2019, and even February 2020, DeSantis’s job approval was a double-digit net positive among Democrats. Unlike other U.S. governors, whose approval ratings have increased during the COVID-19 pandemic, DeSantis’s approval rating dropped by 7 points (Mehta, 2020). In an effort to take both health preventative measures and continue to keep the economy open, Governor DeSantis’s strategy of handling the pandemic has been criticized as slow and confusing (Rohrer, 2020). Pictures of Florida’s crowded beaches with Spring Breakers had deadly consequences and garnered national ridicule (Schorsch, 2020; Mazzei and Robles, 2020), escalating Floridians’ anxiety of a severe virus outbreak in the state. “Nearly 2,000 Florida healthcare professionals signed an open letter to DeSantis pleading with him to take more aggressive actions to hinder the spread of the virus, including enacting a statewide shelter-in-place order” (Allyn, 2020). DeSantis had also been criticized for lacking an original strategy for Florida while being labeled “a ‘mini-Trump’ governor who borrowed the president’s playbook” (Luscombe, 2020). This media coverage and elite discourse likely played into DeSantis’s divergent approval ratings.

Given that there is variation across different subgroups of the public on how they react to elected officials, often dependent on their level of economic, political, and personal considerations (Sniderman, Brody, and Tetlock, 1991; Krause, 1997; Baum and Kernell,
TABLE 1
COVID-19 Perceptions by Party

	Democrat	Republican	No Party Affiliate
Observations		Observations	Observations
Percentage		Percentage	Percentage
Economic threat	200	533	284
Public health threat	981	582	625

NOTE: Weighted descriptive statistics with column percentages.

TABLE 2
COVID-19 Perceptions and Governor Support by Party

	Democrat	Republican	No Party Affiliate
Observations		Observations	Observations
Percentage		Percentage	Percentage
Governor support			
(economic threat)	90	420	159
(health threat)	248	411	264

NOTE: Weighted descriptive statistics with column percentages.

2001; Baum, 2002), we analyze the heterogeneity of the rally around the flag effect across different subgroups of the constituency. In Table 1, we show whether Democrats and Republicans hold similar perceptions of COVID-19. Referring to Table 1, we find that 83 percent of Democrats consider COVID-19 to be a greater public health impact than economic threat compared to 52.2 percent of the Republicans. Apparently, partisanship is affecting the public’s perceptions of COVID-19 as these numbers show that respondents are aligning their perceptions with their respective party’s rhetoric. Does partisanship affect their support for the governor’s job in handling the virus? Table 2 shows support among a majority of Republicans regardless of whether they consider COVID-19 to be a greater economic or public health threat. For example, 82.8 percent of Republicans who consider the virus to be an economic threat support the governor’s handling of the COVID-19 pandemic compared to 73.5 percent of the those who think it is more of a public health risk. Conversely, 49.5 percent of Democrats who think that the virus is more of an economic threat support the governor’s handling of it, compared to only 26.4 percent of those who think it is a greater public health risk. Clearly, partisanship has impacted the assessment of the governor’s job in this circumstance. Did the press conference and DeSantis’s “Safer at Home” order affect the governor’s support? To answer this question, our identification strategy utilizes a sharp regression discontinuity design, as explained below.

Identification Strategy: Regression Discontinuity Design

We use a quasi-experimental regression discontinuity design to test how the approval of the governor’s response to COVID-19 discretely changed following the “Safer at Home” executive order. Let each voter i in our random sample be characterized by a vector
\((y_i, w_i, d_i)\), where the scalar \(y_i\) denotes the governor’s support, the vector \(w_i\) captures individual-level characteristics, \(d_i = 1[x_i > 0]\), our treatment variable, is an indicator function equal to 1 if the bracketed logical condition holds, and 0 otherwise, and \(x_i\) is our forcing variable. The forcing variable runs from \(-25\) to \(65\) hours, where \(0\) (cutoff point) denotes the time when the governor held the “Safer at Home” order press conference, April 1, 2020 at 12:00 pm. The regression discontinuity approach assigns observations to the treatment and control groups based on a discrete threshold of our continuous forcing variable \(x_i\). That is, we assign observations to the treatment group if \(x_i > 0\) and to the control group if \(x_i < 0\).

The main identification assumption required for the regression discontinuity design is that the conditional expectation functions of the potential outcomes are continuous on the support of the running variable \(x_i\).\(^1\) Hence we can test the approval of the governor’s response to COVID-19 by the value of the discontinuity of the expected value of the response at \(x_i = 0\) (Angrist and Pischke, 2008). We specify the parametric model at the individual level, estimating the local average treatment effect as follows:

\[
y_i = \psi_0 + \psi_1 x_i + \tau d_i + \psi_2 (x_i \times d_i) + w_i' \gamma + \nu_i,
\]

where \(\tau\) is our parameter of interest that captures the approval of the governor’s response to COVID-19. We also estimate a more flexible local regression model:

\[
y_i = \psi_0 + f(x_i) + \tau d_i + w_i' \gamma + \eta_i,
\]

where \(f\) is a function of \(x_i\), and we model \(f\) using a second- and third-order degree polynomials.

Analysis

In Figure 1, we plot Floridians’ support for the governor before and after the press conference. The cutoff is the time of the press conference, April 1, 2020 at 12:00 pm. As shown in Figure 1, Floridians who responded to our survey before the governor’s press conference to address the “Safer at Home” measure showed greater support for the governor compared to their counterparts who completed the survey after the state address. To be more concrete, the support for the governor after the press conference dropped by 7 percentage points among all respondents. Figure 1 provides a general overview of the governor’s support among all respondents but it does not highlight how partisanship is affecting this relationship.

To understand which subgroup of Floridians is responsible for this shift in the governor’s support, we replicate Figure 1 using split-sample analysis by party affiliation. Referring to Figure 2(a), we find that Republicans, as expected, had a high support rate for the governor before the press conference, about 80 percent, and after the press conference it marginally dropped to 74 percent. A similar pattern is observed with no party affiliates in Figure 2(b). As shown in Figure 2(b), no party affiliates’ support for the governor before the conference was about 54 percent and after the conference it dropped to about 47 percent. It should be highlighted that the decrease in the governor’s support after the press conference is

\(^1\)We conducted a thorough analysis: (i) plotted the response against the forcing variable where we found evidence of a jump in the conditional mean of the response, (ii) for each individual covariate we found no discontinuity at the cutoff point, and (iii) we tested the null hypothesis of continuity of the forcing variable using the McCrary (2008) test and found no evidence of discontinuity in the forcing variable at the cutoff point.
not statistically significant for either Republicans or no party affiliates compared to their respective preconference support levels. The slight decline in the governor’s support, in Figures 2(a) and 2(b), bounced back up to its preannouncement levels several hours after the event.

Completely different support patterns are observed for Democrats in our sample. As shown in Figure 2(c), Democrats’ support for the governor was significantly lower compared to that of Republicans and no party affiliates. Democratic support for the governor seemed to have had an increasing pattern prior to the announcement and was followed by a drastic drop right after; Figure 2(c). Referring to Figure 2(c), Democratic support for the governor dropped immediately after the press conference and stayed stagnant for the next 65 hours postannouncement.

In Table 3, we show the marginal effect for support for the governor by party affiliation. All estimates shown in Panel A are estimated controlling for the respondent’s age, race, gender, income, education, virus perceptions, risk of contracting the virus, financial concerns, and county fixed effects,2 while in Panel B, we replicate the same models without county fixed effects to see how much of the effect is driven by county differences.3 As shown in Table 3, Democrats’ support declined by 9 percentage points after the press conference on April 1. To ensure that the effects we find are not due to nonlinearity in the

2See Appendix A for full tables.

3In Appendix B, we replicated our models without county fixed effects.
FIGURE 2
Governor Support Before and After the Announcement, by Party

Note: The dashed line is the cutoff point at the time when the governor held the press conference, April 1, 2020, at 12:00 pm. Each graph shows the split-sample description of the data patterns.

As shown in Table 3, the Republican decline in support for the governor is not statistically significant. In addition, the drop in support among no party affiliates appears to be statistically significant, but the effect goes away when we run sensitivity checks for nonlinearity. Our results are consistent when we replicate our analysis without controlling for county fixed effects, as shown in Table 3, Panel B.

See Appendix C for question wording and variable information.
Defying the Rally During COVID-19 Pandemic

TABLE 3
Marginal Effects for Governor Support

	Democrat $\beta(SE)$	Republican $\beta(SE)$	No Party Affiliate $\beta(SE)$
Panel A			
Postannouncement	-0.090^{**}	-0.028	-0.128^*
	(0.045)	(0.056)	(0.073)
Panel B			
Postannouncement	-0.100^*	-0.056	-0.143^*
	(0.044)	(0.054)	(0.070)
Controls	✓	✓	✓
Observations	1,313	889	671

Note: The dependent variable is coded 1 if the respondent supported the governor’s response to COVID-19, and 0 if he or she did not. Control variables include respondent’s age, race, gender, income, education, virus perceptions, risk of contracting the virus, and financial concerns. In Panel A, we show marginal effects with county fixed effects for Model (1) in Tables A1–A3. In Panel B, we show marginal effects without fixed effects for Model (1) in Tables B1–B3; **∗∗ ∗** $p < 0.01$; **∗ ∗** $p < 0.05$; **∗ $p < 0.1$.

Discussion

To sum up, we find that people are still using their party identification lenses to view the world and form political expectations during the COVID-19 pandemic. Florida Democrats did not rally and their support for the governor dropped after the “Safer at Home” announcement. Apparently, the media and elite discourse (Zaller, 1992; Groeling and Baum, 2008) blunted DeSantis’s potential job approval gains. The fact that Democratic governors such as Andrew Cuomo of New York and Gavin Newsom of California reacted faster, and the fact that the timing of the “Safer at Home” announcement coincided with the White House’s marching orders, likely increased the partisan division between Democrats and Republicans in the state. Overall, 70 percent (2,264 respondents) of our respondents considered COVID-19 to be a greater public health issue than economic threat and 43 percent of respondents thought the state government’s actions had not gone far enough to help fight the pandemic. Leading up to the issuance of the “Safer at Home” announcement, there was uncertainty about how best to handle this novel pandemic; it is likely that Floridians were holding out hope that a shelter-in-place order was not necessary. However, as soon as DeSantis finally issued the order, Democrats blamed the governor for delaying the response to put in place preventative measures to protect public health. The decision to prioritize the economy over health and delaying the “Safer at Home” order likely hurt Governor DeSantis’s support most among Democrats.

Moreover, Baker and Oneal (2001:682) argue that “what appears to matter most in regard to the size of the rally effect is not the nature of the dispute itself but how effectively the White House manages the presentation of the dispute through presidential statements, prominent media coverage, and the garnering bipartisan support.” Even though Florida was not hit as hard from the virus, Governor DeSantis’s handling of the situation has been heavily criticized. “DeSantis’ bizarre decision to don just one glove during a recent briefing, drawing ridicule from the Internet at large questioning whether he understood how to properly use protective gear” (Schorsch, 2020). Hindering the public’s perceptions of DeSantis’s efforts also included banning reporters from the governor’s briefings, inaccurate reporting of COVID-19 cases, and a reliance on a very partisan president’s statements. This combination of actions, elite criticism, and media coverage has led to a stark partisan divide and blunted positive reviews that typically accompany statewide or national emergencies.
Appendix A: Full Models with County Fixed Effects

TABLE A1
Democrats’ Governor Approval Before and After COVID-19 Announcement

DV: Governor Job Approval Addressing the Pandemic	(1)	(2)	(3)	(4)
Intercept	0.696***	0.806***	0.797***	0.785***
Postannouncement	0.011	0.0001	0.0001	0.0001
Time (hours)	0.001	0.0001	0.0001	0.0001
Age 25–34	0.001	0.0001	0.0001	0.0001
Age 35–44	0.001	0.0001	0.0001	0.0001
Age 45–54	0.001	0.0001	0.0001	0.0001
Age 55–64	0.001	0.0001	0.0001	0.0001
Age 65+	0.001	0.0001	0.0001	0.0001
Black	0.209***	0.207***	0.207***	0.207***
Hispanic	0.069*	0.068*	0.069*	0.068*
Race other	0.019	0.018	0.018	0.018
Female	0.041	0.040	0.040	0.040
Public health concern	-0.204***	-0.205***	-0.206***	-0.206***
COVID-19 at risk	-0.045	-0.043	-0.042	-0.043
Income 50–75k	0.036	0.036	0.036	0.036
Income 75–100k	0.004	-0.003	-0.004	-0.003
Income 100+k	-0.011	-0.012	-0.012	-0.011
Some college	-0.153*	-0.155*	-0.156*	-0.156*
College degree	-0.148*	-0.151*	-0.152*	-0.152*
Graduate degree	-0.218***	-0.219***	-0.219***	-0.220***
Finance concerns	-0.037	-0.037	-0.038	-0.038

Postannouncement × One degree polynomial of hours
Postannouncement × Two degrees polynomial of hours
Postannouncement × Three degrees polynomial of hours
County fixed-effects

| Observations | 1,313 | 1,313 | 1,313 | 1,313 |

Note: Cell entries are split-sample local linear regression estimates for Democrats with robust standard errors clustered by county in parentheses. The dependent variable is coded 1 if the respondent supported the governor’s response to COVID-19, and 0 if he or she did not. Control variables include respondent’s age, race, gender, income, education, virus perceptions, risk of contracting the virus, and financial concerns. Models (2)–(4) are sensitivity checks for any possible nonlinearity in the data; ***p < 0.01 **p < 0.05 *p < 0.1.
TABLE A2
Republicans’ Governor Approval Before and After COVID-19 Announcement

DV: Governor Job Approval Addressing the Pandemic	(1)	(2)	(3)	(4)
(Intercept)	0.631***	0.605**	0.596**	0.598**
Postannouncement	(0.181)	(0.200)	(0.193)	(0.189)
Time (hours)	0.001	-0.001	-0.001	-0.000
Age 25–34	0.018	0.016	0.014	0.014
Age 35–44	0.005	0.004	0.004	0.003
Age 45–54	0.160	0.159	0.158	0.157
Age 55–64	0.218*	0.217*	0.217*	0.217*
Age 65+	0.247**	0.247**	0.247**	0.248**
Black	-0.262*	-0.258*	-0.257*	-0.257*
Hispanic	-0.063	-0.063	-0.063	-0.063
Race other	0.089	0.089	0.089	0.089
Female	0.003	0.003	0.003	0.003
Public health concern	-0.142***	-0.142***	-0.142***	-0.142***
COVID-19 at risk	0.048	0.048	0.047	0.047
Income 50–75k	0.003	0.002	0.002	0.002
Income 75–100k	0.046	0.046	0.046	0.046
Income 100+k	-0.018	-0.018	-0.019	-0.019
Some college	-0.113	-0.113	-0.114*	-0.114*
College degree	-0.038	-0.039	-0.040	-0.041
Graduate degree	-0.105	-0.106	-0.107	-0.107
Finance concerns	-0.026	-0.027	-0.026	-0.026
Postannouncement × One degree polynomial of hours	✓		✓	✓
Postannouncement × Two degrees polynomial of hours		✓		✓
Postannouncement × Three degrees polynomial of hours	✓	✓	✓	✓
County fixed-effects		✓	✓	✓
Observations	889	889	889	889

NOTE: Cell entries are split-sample local linear regression estimates for Republicans with robust standard errors clustered by county in parentheses. The dependent variable is coded 1 if the respondent supported the governor’s response to COVID-19 and 0 if he or she did not. Control variables include respondent’s age, race, gender, income, education, virus perceptions, risk of contracting the virus, and financial concerns. Models (2)–(4) are sensitivity checks for any possible nonlinearity in the data; ***p < 0.01 **p < 0.05 *p < 0.1.
TABLE A3

No Party Affiliates’ Governor Approval Before and After COVID-19 Announcement

DV: Governor Job Approval Addressing the Pandemic	(1)	(2)	(3)	(4)
(Intercept)	0.545*	0.441	0.468	0.468
Postannouncement	-0.128*	-0.028	-0.067	-0.060
Time (hours)	0.000	-0.004	0.002	0.001
Age 25–34	-0.118	-0.118	-0.118	-0.118
Age 35–44	-0.043	-0.042	-0.041	-0.040
Age 45–54	-0.044	-0.045	-0.045	-0.044
Age 55–64	0.098	0.098	0.099	0.100
Age 65+	0.204*	0.207*	0.207*	0.209*
Black	-0.032	-0.030	-0.028	-0.027
Hispanic	0.016	0.017	0.018	0.019
Race other	0.106	0.109	0.112	0.113
Female	0.070	0.070	0.070	0.070
Public health concern	-0.281***	-0.281***	-0.281***	-0.282***
COVID-19 at risk	-0.042	-0.040	-0.040	-0.040
Income 50–75k	-0.011	-0.013	-0.013	-0.014
Income 75–100k	0.069	0.070	0.071	0.070
Income 100+	0.007	0.007	0.008	0.008
Some college	-0.015	-0.018	-0.020	-0.020
College degree	-0.105	-0.106	-0.108	-0.108
Graduate degree	-0.094	-0.095	-0.097	-0.097
Finance concerns	-0.029	-0.028	-0.027	-0.027
Postannouncement × One degree polynomial of hours	✓			
Postannouncement × Two degrees polynomial of hours		✓		
Postannouncement × Three degrees polynomial of hours			✓	
County fixed-effects	✓	✓	✓	✓
Observations	671	671	671	671

NOTE: Cell entries are split-sample local linear regression estimates for no party affiliates with robust standard errors clustered by county in parentheses. The dependent variable is coded 1 if the respondent supported the governor’s response to COVID-19, and 0 if he or she did not. Control variables include respondent’s age, race, gender, income, education, virus perceptions, risk of contracting the virus, and financial concerns. Models (2)–(4) are sensitivity checks for any possible nonlinearity in the data; ***p < 0.01 **p < 0.05 *p < 0.1.
###Appendix B: Full Models Without County Fixed Effects

####TABLE B1
Democrats’ Governor Approval Before and After COVID-19 Announcement

DV: Governor Job Approval Addressing the Pandemic	(Intercept)	Post announcement	Time (hours)	Age 25–34	Age 35–44	Age 45–54	Age 55–64	Age 65+	Black	Hispanic	Race other	Female	Public health concern	COVID-19 at risk	Income 50–75k	Income 75–100k	Income 100+k	Some college	College degree	Graduate degree	Finance concerns	Postannouncement × One degree polynomial of hours	Postannouncement × Two degrees polynomial of hours	Postannouncement × Three degrees polynomial of hours
(Intercept)	0.623***	−0.100*	0.001	−0.111*	0.017	−0.013	0.044	0.066	0.209***	0.082**	0.047*	0.210***	−0.043	0.033	0.033	−0.007	−0.015	−0.132*	−0.135*	−0.207**	−0.043	✓	✓	✓
	(0.090)	(0.044)	(0.001)	(0.056)	(0.055)	(0.056)	(0.054)	(0.053)	(0.039)	(0.031)	(0.050)	(0.024)	(0.031)	(0.027)	(0.035)	(0.036)	(0.033)	(0.066)	(0.064)	(0.065)	(0.031)	✓	✓	✓
(2)	0.720***	−0.191*	0.005	−0.111*	0.018	−0.013	0.043	0.066	0.208***	0.082**	0.047*	0.211***	−0.041	−0.033	0.033	−0.007	−0.016	−0.134*	−0.137*	−0.208**	−0.043	✓	✓	✓
(3)	0.705***	−0.173*	0.000	−0.111*	0.018	−0.012	0.043	0.066	0.208***	0.082**	0.047*	0.211***	−0.041	−0.031	0.034	−0.006	−0.016	−0.134*	−0.137*	−0.208**	−0.043	✓	✓	✓
(4)	0.695***	−0.159*	0.000	−0.110*	0.018	−0.011	0.043	0.066	0.208***	0.081**	0.046*	0.211***	−0.041	−0.031	0.034	−0.006	−0.016	−0.134*	−0.138*	−0.209**	−0.043	✓	✓	✓

Observations: 1,313

NOTE: Cell entries are split-sample local linear regression estimates for Democrats with robust standard errors clustered by county in parentheses. The dependent variable is coded 1 if the respondent supported the governor’s response to COVID-19, and 0 if he or she did not. Control variables include respondent’s age, race, gender, income, education, virus perceptions, risk of contracting the virus, and financial concerns. Models (2)–(4) are sensitivity checks for any possible nonlinearity in the data; ***p < 0.01 **p < 0.05 *p < 0.1.
TABLE B2

Republicans’ Governor Approval Before and After COVID-19 Announcement

DV: Governor Job Approval Addressing the Pandemic	(1)	(2)	(3)	(4)
(Intercept)	0.821***	0.789***	0.775***	0.781***
Postannouncement	-0.056	-0.023	0.012	0.001
Time (hours)	0.001	-0.000	-0.001	-0.000
Age 25–34	-0.026	-0.027	-0.029	-0.029
Age 35–44	-0.010	-0.012	-0.011	-0.011
Age 45–54	0.130	0.128	0.128	0.128
Age 55–64	0.188*	0.187*	0.188*	0.188*
Age 65+	0.200*	0.199*	0.201*	0.201*
Black	-0.256*	-0.252*	-0.251*	-0.251*
Hispanic	-0.037	-0.037	-0.038	-0.038
Race other	0.080	0.079	0.079	0.079
Female	-0.012	-0.012	-0.013	-0.012
Public health concern	-0.148***	-0.149***	-0.148***	-0.149***
COVID-19 at risk	0.048	0.048	0.047*	0.047
Income 50–75k	-0.010	-0.010	-0.011	-0.011
Income 75–100k	0.043	0.043	0.043	0.043
Income 100+k	-0.034	-0.034	-0.035	-0.035
Some college	-0.101	-0.102	-0.104	-0.104
College degree	-0.051	-0.053	-0.054	-0.054
Graduate degree	-0.113*	-0.114*	-0.115*	-0.115*
Finance concerns	-0.020	-0.020	-0.019	-0.019
Postannouncement × One degree polynomial of hours	✓	✓	✓	✓
Postannouncement × Two degrees polynomial of hours	✓	✓	✓	✓
Postannouncement × Three degrees polynomial of hours	✓	✓	✓	✓
Observations	889	889	889	889

Note: Cell entries are split-sample local linear regression estimates for Republicans with robust standard errors clustered by county in parentheses. The dependent variable is coded 1 if the respondent supported the governor’s response to COVID-19, and 0 if he or she did not. Control variables include respondent’s age, race, gender, income, education, virus perceptions, risk of contracting the virus, and financial concerns. Models (2)–(4) are sensitivity checks for any possible nonlinearity in the data; ***p < 0.01 **p < 0.05 *p < 0.1.
TABLE B3

No Party Affiliates’ Governor Approval Before and After COVID-19 Announcement

DV: Governor Job Approval Addressing the Pandemic	(1)	(2)	(3)	(4)
(Intercept)	0.799***	0.773***	0.782***	0.775***
Postannouncement	(0.126)	(0.185)	(0.162)	(0.151)
Time (hours)	(0.070)	(0.150)	(0.143)	(0.121)
Age 25–34	(0.001)	(0.006)	(0.006)	(0.004)
Age 35–44	(0.091)	(0.091)	(0.091)	(0.091)
Age 45–54	(0.092)	(0.092)	(0.092)	(0.092)
Age 55–64	(0.092)	(0.092)	(0.092)	(0.092)
Age 65+	(0.094)	(0.094)	(0.094)	(0.094)
Black	(0.077)	(0.077)	(0.077)	(0.077)
Hispanic	(0.046)	(0.046)	(0.046)	(0.046)
Race other	(0.070)	(0.070)	(0.071)	(0.071)
Female	(0.038)	(0.038)	(0.038)	(0.038)
Public health concern	(0.042)	(0.042)	(0.042)	(0.042)
COVID-19 at risk	(0.042)	(0.042)	(0.042)	(0.042)
Income 50–75k	(0.057)	(0.057)	(0.057)	(0.057)
Income 75–100k	(0.060)	(0.060)	(0.060)	(0.060)
Income 100+k	(0.052)	(0.052)	(0.052)	(0.052)
Some college	(0.084)	(0.084)	(0.084)	(0.084)
College degree	(0.082)	(0.082)	(0.082)	(0.082)
Graduate degree	(0.084)	(0.084)	(0.084)	(0.084)
Finance concerns	(0.053)	(0.053)	(0.053)	(0.053)

Postannounced × One degree polynomial of hours	✓			
Postannounced × Two degrees polynomial of hours	✓			
Postannounced × Three degrees polynomial of hours		✓		

Observations 671 671 671 671

Note: Cell entries are split-sample local linear regression estimates for no party affiliates with robust standard errors clustered by county in parentheses. The dependent variable is coded 1 if the respondent supported the governor’s response to COVID-19, and 0 if he or she did not. Control variables include respondent’s age, race, gender, income, education, virus perceptions, risk of contracting the virus, and financial concerns. Models (2)–(4) are sensitivity checks for any possible nonlinearity in the data. ***p < 0.01; **p < 0.05; *p < 0.1.
Appendix C: Survey Questions

1. There has been a lot of talk lately about the new coronavirus (COVID-19) and the national emergency. I’d like you to tell me whether you approve or disapprove of the job Governor Ron DeSantis is doing to address the pandemic.
 • Strongly approve
 • Somewhat approve
 • Somewhat disapprove
 • Strongly disapprove
 • Don’t know

2. How concerned are you personally about contracting the coronavirus (COVID-19)?
 • Very concerned
 • Somewhat concerned
 • Not Very concerned
 • Not at all concerned

3. Are you, or is someone in your household, considered higher risk for developing severe illness from coronavirus (COVID-19)?
 • Yes, I am higher risk
 • Yes, someone in my household is higher risk
 • Yes, both myself and someone in my household are higher risk
 • No, nobody in my household is higher risk

4. How concerned are you about the impact of coronavirus (COVID-19) on your personal finances?
 • Very concerned
 • Somewhat concerned
 • Not too concerned
 • Not at all concerned

5. Which is a bigger concern for you, the public health effects or the economic impact of the coronavirus (COVID-19)?
 • Public health effects
 • Economic effects

6. What is the highest grade in school or year of college you have completed?
 • Less than high school diploma
 • High school graduate
 • Some college
 • College graduate
 • Postgraduate

7. What is your annual household income?
 • Less than $25,000
 • $25,000 to $50,000
 • $50,000 to $75,000
 • $75,000 to $100,000
 • Above $100,000

Variable Information.

• **Dependent variable**: Coded 1 if respondent approved of the job Governor Ron DeSantis is doing to address the pandemic, and 0 if disapproved.
• **Independent variables**:
Coronavirus perceptions is coded 1 if the respondent thinks it will have a higher impact on the public health, and 0 if it will have a higher impact on the economy.

Risk of contracting the virus is coded 1 if the respondent and someone in his or her household is at higher risk of contracting the virus, and 0 if nobody in the household is at higher risk.

Financial concerns is coded 1 if the respondent is concerned about personal finances, and 0 otherwise.

Education is coded 0 if the respondent has a high school or lower degree, 1 some college degree, 2 college degree, and 3 a graduate degree.

Household income is coded 0 if the respondent’s household income is up to $50,000, 1 if the income varies from $50,000 to $75,000, 2 if the income varies from $75,000 to $100,000, and 3 if it is higher than $100,000.

Party of registration is coded 0 for Democrats, 1 for Republicans, and 3 for no party affiliates.

Race is coded 1 for whites, 2 for blacks, 3 for Hispanics, and 4 other race.

Age is coded 1 for 18–24 years, 2 for 25–34 years, 3 for 35–44 years, 4 for 45–54 years, 5 for 55–64 years, and 6 for 65 years or older.

Gender is coded 0 for male and 1 for female.

REFERENCES

Allyn, Bobby. 2020. *Fact Check: Trump Praises Florida Governor Despite Criticism of Coronavirus Response*. Available at ⟨https://www.npr.org/sections/coronavirus-live-updates/2020/03/31/824905343/fact-check-trump-praises-florida-governor-despite-criticism-of-coronavirus-respo⟩.

Angrist, Joshua D., and Jörn-Steffen Pischke. 2008. *Mostly Harmless Econometrics: An Empiricist’s Companion*. Princeton, NJ: Princeton University Press.

Baker, William D., and John R. Oneal. 2001. “Patriotism or Opinion Leadership? The Nature and Origins of the ‘Rally’Round the Flag Effect.” *Journal of Conflict Resolution* 45(5):661–87.

Baum, Matthew A. 2002. “The Constituent Foundations of the Rally-Round-the-Flag Phenomenon.” *International Studies Quarterly* 46(2):263–98.

Baum, Matthew A., and Samuel Kernell. 2001. “Economic Class and Popular Support for Franklin Roosevelt in War and Peace.” *Public Opinion Quarterly* 65(2):198–229.

Blake, Aaron. 2020. *Trump Blames Hospitals for Masks and Ventilator Shortages*. Available at ⟨https://www.washingtonpost.com/politics/2020/03/29/trump-bizarrely-blames-hospitals-mask-ventilator-shortages/⟩.

Brewer, Marilynn B., and Rupert J. Brown. 1998. “Intergroup Relations.” Pp. 554–94 in Daniel T. Gilbert, Susan T. Fiske, and Gardner Lindzey, eds., *The Handbook of Social Psychology*. New York: McGraw-Hill.

Brody, Richard. 1991. *Assessing the President: The Media, Elite Opinion, and Public Support*. Palo Alto, CA: Stanford University Press.

Daugherty, Alex. 2020. *As DeSantis Defers to White House on Stay-Home Order, a Top U.S. Official Urges One*. Available at ⟨https://www.miamiherald.com/news/coronavirus/article241676796.html⟩.

Groeling, Tim, and Matthew A. Baum. 2008. “Crossing the Water’s Edge: Elite Rhetoric, Media Coverage, and the Rally-Round-the-Flag Phenomenon.” *Journal of Politics* 70(4):1065–85.

Kam, Cindy D., and Jennifer M. Ramos. 2008. “Joining and Leaving the Rally: Understanding the Surge and Decline in Presidential Approval Following 9/11.” *Public Opinion Quarterly* 72(4):619–50.

Kernell, Samuel. 1978. “Explaining Presidential Popularity: How Ad Hoc Theorizing, Misplaced Emphasis, and Insufficient Care in Measuring One’s Variables Refuted Common Sense and Led Conventional Wisdom Down the Path of Anomalies.” *American Political Science Review* 72(2):506–22.

Krause, George A. 1997. “Voters, Information Heterogeneity, and the Dynamics of Aggregate Economic Expectations.” *American Journal of Political Science* 41(4):1170–1200.
Lee, Jong R. 1977. “Rallying Around the Flag: Foreign Policy Events and Presidential Popularity.” *Presidential Studies Quarterly* 7(4):252–56.

Luscombe, Richard. 2020. *Florida’s Slow Response: A ‘Mini-Trump’ Governor Who Borrowed the President’s Playbook*. Available at ⟨https://www.theguardian.com/us-news/2020/apr/05/floridas-slow-response-how-the-sunshine-state-got-it-so-wrong⟩.

MacKuen, Michael B. 1983. “Political Drama, Economic Conditions, and the Dynamics of Presidential Popularity.” *American Journal of Political Science* 27(2):165–92.

Mazzie, Patricia, and Frances Robles. 2020. “The Costly Toll of Not Shutting Down Spring Break Earlier.” Available at ⟨https://www.nytimes.com/2020/04/11/us/florida-spring-break-coronavirus.html⟩.

McCrary, Justin. 2008. “Manipulation of the Running Variable in the Regression Discontinuity Design: A Density Test.” *Journal of Econometrics* 142(2):698–714.

Mehta, Dhrumil. 2020. *Most Americans Like How Their Governor is Handling the Coronavirus Outbreak*. Available at ⟨https://fivethirtyeight.com/features/most-americans-like-how-their-governor-is-handling-the-coronavirus-outbreak/⟩.

Mueller, John E. 1970. “Presidential Popularity from Truman to Johnson I.” *American Political Science Review* 64(1):18–34.

Mueller, John E. 1973. *War, Presidents, and Public Opinion*. Hoboken, NJ: John Wiley & Sons.

Rohrer, Gray. 2020. *Crowded Beaches, Confusion Amid Coronavirus Orders as DeSantis Won’t Mandate Statewide Lockdown*. Available at ⟨https://www.orlandosentinel.com/coronavirus/os-ne-coronavirus-desantis-orders-20200330-rzvyfz56wbdscxnpa547dq4ma-story.html⟩.

Scher, Bill. 2020. *Coronavirus vs. Governors: Ranking the Best and Worst State Leaders*. Available at ⟨https://www.politico.com/news/magazine/2020/04/01/coronavirus-state-governors-best-worst-covid-19-159945⟩.

Schorsch, Peter. 2020. *How Ron DeSantis Is Winning the Pandemic Battle, but Losing the Perception War*. Available at ⟨https://floridapolitics.com/archives/327910-how-ron-desantis-is-winning-the-pandemic-battle-but-losing-the-communications-war⟩.

Sniderman, Paul M., Richard A. Brody, and Phillip E. Tetlock. 1991. *Reasoning and Choice: Explorations in Political Psychology*. Cambridge, MA: Cambridge University Press.

Zaller, John R. 1992. *The Nature and Origins of Mass Opinion*. Cambridge, MA: Cambridge University Press.