Four Unrecorded *Aspergillus* Species from the Rhizosphere Soil in South Korea

Jun Won Lee\(^a\), Sung Hyun Kim\(^a\), Young-Hyun You\(^b\), Young Woon Lim\(^a\) and Myung Soo Park\(^a\)

\(^a\)School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea; \(^b\)Microorganism Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea

ABSTRACT
The genus *Aspergillus* is commonly isolated from various marine and terrestrial environments; however, only a few species have been studied in rhizosphere soil. As part of the Korean indigenous fungal excavation project, we investigated fungal diversity from rhizosphere soil, focusing on *Aspergillus* species. A total of 13 strains were isolated from the rhizosphere soil of three different plants. Based on phylogenetic analysis of \(\beta\)-tubulin and calmodulin and morphological characteristics, we identified five *Aspergillus* species. *A. calidoustus* and *A. pseudodeflectus* were commonly isolated from the rhizosphere soil. Four species were confirmed as unrecorded species in Korea: *A. calidoustus*, *A. dimorphicus*, *A. germanicus*, and *A. pseudodeflectus*. The detailed morphological descriptions of these unrecorded species are provided.

1. Introduction
Aspergillus is one of the most common fungi in various environments worldwide. *Aspergillus* is known as plant and human pathogen, mycotoxin producer, and food spoiler. However, it plays important roles in the ecological and industrial systems by producing antibiotics and organic acids, and degrading starches, celluloses, and other polysaccharides [1–5]. Morphological characters such as growth rate, color of the colony, thermostolerance, and size of conidial heads and conidia are known to be important features for initial identification of *Aspergillus* [6]. However, morphological feature is not enough to recognize species because their morphological characteristics vary by their ecological habitats [6,7]. For accurate identification of *Aspergillus*, standardized methods including morphology, molecular analysis, and extrolite profiling have been proposed. DNA markers such as the internal transcribed spacer region, calmodulin (CaM), \(\beta\)-tubulin (BenA), and the RNA polymerase II second largest subunit (RPB2) have been used in *Aspergillus* identification and phylogeny [8]. According to the current research, the genus consists of six subgenera, 27 sections, and 446 species worldwide [9]. In Korea, 69 *Aspergillus* species have been reported [10–14]. Although some species have been reported from soil in terrestrial, marine, and clinical environments [15–18], many *Aspergillus* were isolated from food fermentation such as meju and nuruk [12,19–21]. Nonetheless, study on *Aspergillus* from rhizosphere soil in Korea is limited [22].

Fungi in rhizosphere environments play an important role in plant growth and adaptation [23,24]. *Aspergillus* is one of the common fungi in rhizosphere soil [25–31]. Some *Aspergillus* are known to produce plant promoting chemicals such as gibberellic acid and indole acetic acid [27,28]. Many *Aspergillus* strains were only identified at the genus level, as previous studies mainly focused on bioactive compounds [27–30]. Therefore, the diversity of *Aspergillus* in rhizosphere soil is unclear.

This project is organized by the National Institute of Biological Resources to excavate Korean indigenous fungi from the rhizosphere soil. We explored fungal diversity from rhizosphere soil of various plants; *Aspergillus*, *Penicillium*, *Trichoderma*, and *Fusarium* were common genera. Recently, we reported on diversity of *Penicillium*, revealing eight unrecorded species in Korea [32]. The main purpose of this study was to focus on *Aspergillus* in the rhizosphere of various plants and to identify them based on BenA and CaM loci. We discovered four unrecorded species: *A. calidoustus*, *A. dimorphicus*, *A. germanicus*, and *A. pseudodeflectus*.

2. Materials and methods

2.1. Sample collections and isolation
Rhizosphere soil of three plants (*Calystegia soldanella*, *Orobanche coerulescens*, and *Sorbus commixta*)...
were collected from five sites in Korea in 2019 (Table 1). Five grams of soil for each sample was diluted tenfold in sterile water. A 100 μL of each dilute was plated on dichloran rose bengal chloramphenicol agar (DRBC; Difco, Becton Dickinson). All plates were incubated at 25 °C for 7 days. Based on morphology, Aspergillus-like strains were transferred to potato dextrose agar (PDA; Difco, Becton Dickinson) plate. Strains were stored in 20% glycerol at −80 °C at the Seoul National University Fungus Collection (SFC).

2.2. DNA extraction, amplification, and sequencing

Genomic DNA was extracted from isolated Aspergillus using a modified cetyltrimethylammonium bromide extraction protocol [33]. For the primer sets, Bt2a/Bt2b for BenA and CF1/CF4 or cmd5/cmd6 for CaM, were used [34–36]. PCR was performed in a C1000 thermal cycler (Bio-Rad, Richmond, CA, USA) with previously described methods [37]. The PCR products were purified using the ExpinTM PCR Purification Kit (GeneAll Biotechnology, Seoul, Korea), according to the guideline. DNA sequencing was performed using the PCR primers at Macrogen (Seoul, Korea), using an ABI Prism 3730 genetic analyzer (Life Technologies, Gaithersburg, MD, USA).

2.3. Phylogenetic analysis

The sequences were assembled, proofread, and aligned using MEGA7 [38] and were deposited in GenBank (accession numbers in Table 2). Hamigeria avellanea CBS 295.48 was used as the outgroup [39]. Multiple alignments were performed using the default settings of the Multiple Alignment Fast Fourier Transform (MAFFT ver. 7) [40]. Then, each sequence was manually checked and adjusted. Maximum likelihood (ML) phylogenetic tree was performed with RAxML [41] implemented on CIPRES web portal [42], using the GTR + GAMMA model of evolution with 1000 bootstrap replicates.

2.4. Morphological analysis

Morphological analysis of the four unrecorded species was performed on three different culture media using previously described methods: Czapek yeast autolysate agar (CYA); yeast extract, Difco), malt extract agar (MEA; Oxoid), and yeast extract sucrose agar (YES; yeast extract, Difco). The Methuen Handbook of Color was used for the color names and alphanumeric codes for macromorphological characteristics [43]. The microscopic observation was processed under a light microscope (Eclipse 80i, Nikon, Tokyo, Japan) using the samples grown on MEA and CYA.

3. Results

3.1. Species identification

A total of 13 Aspergillus strains were isolated from rhizosphere of three plants. Based on the combined dataset of BenA and CaM sequences, they were identified as five species in two sections with four unrecorded species in Korea (Table 1 and Figures 1 and 2). Twelve strains were included in section Usti and were identified as four species: A. calidoustus (5 strains), A. germanicus (1), A. insuetus (1), and A. pseudodefectus (5). A. calidoustus, A. germanicus, and A. pseudodefectus were unrecorded species in Korea. For section Cremei, one strain was discovered and identified as A. dimorphicus, which was unrecorded species in Korea. A. calidoustus and A. pseudodefectus were commonly isolated from the rhizosphere soil (Table 1). Aspergillus diversity was higher in rhizosphere soil of Calyptea soldanella compared to others. Although A. pseudodefectus was commonly isolated from C. soldanella and Sorbus commixta, generally, the Aspergillus diversity was found unique for each plant.

Species	Section	Strain	Location	Substrate
A. calidoustus*	Usti	SFC20191113-NB113	Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	Calystega soldanella
		SFC20191113-NB116		Cremesi
		SFC20191113-NB135		Cremesi
		SFC20191113-NB146,	Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	Cremesi
		NIBRF0000509071		Cremesi
		SFC20191113-NB197,	Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	Calystega soldanella
		NIBRF0000509286		Cremesi
A. dimorphicus	Cremei	SFC20191113-NB100,	Guryongpo-eup, Nam-gu, Pohang-si, Gyeongsangbuk-do	Orobanchae coerulescens
		NIBRF0000509072		Cremesi
A. germanicus	Usti	SFC20191113-NB098,	Guryongpo-eup, Nam-gu, Pohang-si, Gyeongsangbuk-do	Orobanchae coerulescens
		NIBRF0000509073		Cremesi
A. insuetus	Usti	SFC20191113-NB013	Guryongpo-eup, Nam-gu, Pohang-si, Gyeongsangbuk-do	Calystega soldanella
A. pseudodefectus	Usti	SFC20191113-NB114,	Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	Calystega soldanella
		NIBRF0000509074		Cremesi
		SFC20191113-NB115		Cremesi
		SFC20191113-NB136		Cremesi
		SFC20191113-NB156		Cremesi
		SFC20191113-NB199,	Heunghae-eup, Buk-gu, Pohang-si, Gyeongsangbuk-do	Calystega soldanella
		NIBRF0000509287		Cremesi

*The unrecorded Aspergillus species in Korea are represented in bold.
3.2. Taxonomy

Aspergillus calidoustus Varga, Houbraken, & Samson (2008)

Description: Colony diameter, at 25 °C for 7 days, in mm: CYA 50–51; CYA 15 °C 12–13; CYA 30 °C 60–66; CYA 37 °C 8–12; MEA 51–54; YES 50–51 (Figure 3).

Colonies on CYA, lightly sulcate, moderate to good sporulation, floccose, greenish gray (27D2) elsewhere with 1 mm white margin, exudate brownish orange (6D8) to dark brown (6F8) droplets, soluble pigment absent, reverse color olive brown (4D3) at center and light yellow (1A4) elsewhere. Colonies on MEA, lightly sulcate, moderate sporulation, velvety with floccose at center, central part

Table 2. Strains used for phylogenetic analyses in this study.

Section of Aspergillus	Species	Strain	GenBank accession no.
Cremei	A. arxii	CBS 525.83³	MN969365 MN969223
	A. brunneouniseriatus	NRRL 4273¹	EF652123 EF652138
	A. chrysogenum	NRRL 5501¹	EF652117 EF652129
	A. chrysospermus	NRRL 5084¹	EF652109 EF652136
	A. citreus	CBS 140566¹	FR757517 LF876969
	A. creeseus	NRRL 5081¹	EF652120 EF652125
	A. dimorphus	NRRL 3650¹	EF652111 EF652135
		SFC20191113-NB100	MW711172 MW711185
		CBS 1405129	MK451246 MK451317
	A. europeae	NRRL 35052	EU021672 EU021685
	A. flaschentraegeri	CBS 13439¹	LN099006 LN099007
	A. goarkiporensis	NRRL 3649¹	EF652114 EF652126
	A. infatius	CBS 892.70³	FJ510084 FJ510929
	A. itaconicus	NRRL 161¹	EF652118 EF652140
	A. koreanus	EML-GSNP1-1¹	KX216530 KX216528
	A. pulvarius	NRRL 5078¹	EF652121 EF652139
	A. stromatoides	CBS 500.65¹	FJ510384 FJ510392
	A. tordus	CBS 433.93³	FJ51001 FJ511084
	A. wentii	NRRL 375¹	EF652106 EF652131
Usti	A. asper	CBS 140842¹	KT698838 KT698839
	A. boeticus	NRRL 6250¹	HE615092 HE615117
	A. calidoustus	CBS 121601¹	FJ624456 HE615659
		SFC20191113-NB113	MW711167 MW711176
		CBS 1405113	MW711161 MW711173
		SFC20191113-NB116	MW711160 MW711175
		SFC20191113-NB1135	MW711162 MW711174
		SFC20191113-NB146	MW711163 MW711177
		SFC20191113-NB197	MW711163 MW711177
	E449/M09	HGG31688 HGG31695	
	E460	HG664949 HG664950	
	A. carlsbadensis	IBT 1449³	FJ51179 FJ51126
	A. collinsii	CBS 140843¹	KT698843 KT698844
	A. contaminans	CBS 142451¹	LT594435 LT594435
	A. deflectus	NRRL 2206¹	EF652261 EF652349
	A. elongatus	NRRL 5176¹	EF652236 EF652414
	A. germanicus	DTO 27-D9¹	FJ511772 FJ511416
		SFC20191113-NB098	MW711717 MW711784
	A. granulosus	NRRL 1932¹	EF652254 EF652342
	A. heterothallicus	NRRL 5096¹	EF652232 EF652411
	A. insuetus	NRRL 279¹	EF652281 EF652369
	A. insuetus	NRRL 5096¹	EF652232 EF652411
	A. kevei	CBS 209.92¹	EU076376 EU076385
	A. keveloides	CBS 132737¹	JN982694 JN982684
	A. lucaksiewskensis	NRRL 3491¹	EF652283 EF652371
	A. monodii	CBS 435.93³	FJ511711 FJ511422
	A. porphyrepistatus	DTO 266-D9¹	KJ755380 KJ755380
	A. pseudodefectus	ET1611	KY853415 KY853415
		NRRL 6135¹	EF652321 EF652419
		SFC20191113-NB114	MW711169 MW711178
		CBS 1405115	MW711166 MW711179
		SFC20191113-NB136	MW711168 MW711182
		SFC20191113-NB156	MW711164 MW711181
		SFC20191113-NB199	MW711165 MW711180
		AS3 15308	JN982689 JN982679
		NRRL 278	EF652280 EF652368
	A. pseudoustus	IBT 2816¹	FJ51168 FJ51126
	A. puniceus	NRRL 5077¹	EF652322 EF652410
	A. siguranus	CMV00494¹	MK451066 MK451512
	A. thesauricus	NRRL 62487¹	HE615095 HE615120
	A. turkejensis	CBS 504.65¹	FJ51191 FJ51145
	A. ustus	NRRL 275¹	EF652279 EF652367

³ indicates the ex-type strains.

Sequences produced in this study are presented in bold letters.
gray (27B1) at center and greenish gray (27E2) elsewhere with 1 mm white margin, no exudates, soluble pigment absent, reverse color olive brown (4E4) and orange yellow (4B4) elsewhere. Colonies on YES, poor sporulation, velvety, central part color white to grayish yellow (5B4) at center, grayish yellow (4B4) to white at margin, no exudates, soluble pigment yellowish gray (3B2), reverse color yellowish white (2A2). Colonies on YES, lightly sulcate, good sporulation, floccose, olive yellow (3D6) elsewhere with 1 mm white margin, no exudates, soluble pigment absent, reverse color pastel yellow (3A4).

Conidiophores biseriate with smooth-walled, sinuous, light yellow, (3.7–) 4.4 (–6.1) μm wide; vesicles mostly globose to subglobose, (8.0–) 9.9 × 10.3 (–13.4) μm; conidial heads globose to loosely radiate, phialides (3.0–) 3.6 × 9.6 (–11.5) μm; conidia subglobose to globose with rough wall, 3.5 to 4.7 μm.

Strain examined: SFC20191113-NB100

Remarks: A. dimorphicus is morphologically similar to A. wentii, it can be distinguished from A. wentii by branched conidiophore with two vesicles [45].

Aspergillus germanicus Varga, Frisvad & Samson (2011)

Description: Colony diameter, at 25°C for 7 days, in mm: CYA 40–43; CYA 15°C 13–14; CYA 30°C 47–48; CYA 37°C 8–9; MEA 40–42; YES 45–48 (Figure 3).

Colonies on CYA, poor sporulation, floccose, orange gray (6B2) to white (26C1) at center, no exudates, soluble pigment yellowish gray (3B2), reverse color brownish gray (4E4) to pale yellow at margin (3A3). Colonies on MEA, poor sporulation, velvety, white, no exudates, soluble pigment absent, reverse color orange (5A7). Colonies on YES, poor sporulation, floccose to velvety, central part color white to grayish yellow (4B4) to white at center, no exudates, soluble pigment pale yellow (3A3), reverse color grayish orange (5B4) at center and grayish yellow (3C4) and light yellow (3A5).

Conidiophores biseriate with thick, smooth-walled, brown, (3.7–) 4.7 (–5.4) μm wide; vesicles septulate, (8.5–) 10.1 × 10.3 (–12.4) μm; conidial heads loosely columnar; metulae covering the upper half to three-fourths of upper surface, (2.3–) 3.2 × 5.2 (–5.8) μm; phialides (2.3–) 2.7 × 5.0 (–6.1) μm; conidia globose with brown smooth wall, (2.8–) 3.1 to 3.4 (–3.9) μm.

Remarks: A. calidoustus is morphologically similar to A. pseudodefectus and A. ustus. A. calidoustus was able to grow at 37°C, but A. ustus was not [44]. A. calidoustus can be distinguished from A. pseudodefectus by narrow margin and moderate or good sporulation in CYA.

Aspergillus dimorphicus B.S. Mehrotra & R. Prasad (1969)
Strain examined: SFC20191113-NB098

Remarks: A. germanicus is morphologically similar to A. thesauricus, it can be distinguished from A. thesauricus by growth at 37°C, thicker conidiophore, and smaller vesicle diameter [46].

Aspergillus pseudodeflectus Samson & Mouchacca (1975)

Description: Colony diameter, at 25°C for 7 days, in mm: CYA 49–51; CYA 15°C 10–13; CYA 30°C 57–59; CYA 37°C 14–18; MEA 47–48; YES 52–54 (Figure 3).

Colonies on CYA, lightly sulcate, poor to moderate sporulation, floccose, grayish orange (5B3) at center and white elsewhere, exudates dark brown (8F4), soluble pigment pale yellow (3A3), reverse color olive (3D3) at center and light yellow (2A5) elsewhere. Colonies on MEA, moderately sulcate, poor to moderate sporulation, floccose, brownish gray (5C2) and white at margin, no exudates, soluble pigment absent, reverse color brown (6E5) and golden yellow at margin (5B7). Colonies on YES, radially sulcate and wrinkled at center, poor to moderate sporulation, floccose, yellowish gray (4B2)

Figure 2. Maximum likelihood (ML) phylogenetic tree of Aspergillus sect. Usti based on the combined data set of BenA and CaM sequences. Bootstrap values >70 are presented at the nodes. The scale bar represents the number of nucleotide substitutions per site. "T" indicates the ex-type strains. Aspergillus reported in this study are represented in bold. The unrecorded Aspergillus species are accented in color box.
and white at margin, no exudates, soluble pigment pale yellow (3A3), reverse color deep yellow (4A8).

Conidiophores biseriate with short, curved, rough-walled, brown, (3.4–) 3.9 (–4.2) μm wide; vesicles globose to clavate, (6.7–) 7.9 × 9.5 (–10.5) μm; conidial heads brown, radiate; metulae more or less cylindrical, (2.4–) 3.6 × 4.6 (–5.4) μm; phialides (2.8–) 3.4 × 6.4 (–8.1) μm; conidia globose to ellipsoidal with thick-walled, brown, rough wall, (3.3–) 3.7 to 4.5 (–5.3) μm.

Strains examined: SFC20191113-NB114, SFC20191113-NB156, and SFC20191113-NB199.

Remarks: A. pseudodeflectus is morphologically similar to A. calidoustus. A. pseudodeflectus can be distinguished from A. calidoustus by wide margin and poor sporulation in CYA.

4. Discussion

The rhizosphere soil is a complex and dynamic environment that provides a close relationship between plants and microbes. A total of 13 Aspergillus strains were isolated from rhizosphere soil of three plants and were identified as five.

Figure 3. The unrecorded Aspergillus species in Korea: A. calidoustus (SFC20191113-NB146), A. dimorphicus (SFC20191113-NB100), A. germanicus (SFC20191113-NB098) and A. pseudodeflectus (SFC20191113-NB114). (a–c) Colonies grown on Czapek yeast autolysate agar (CYA), malt extract agar (MEA), and yeast extract sucrose agar (YES) from left to right (top = obverse, bottom = reverse). (d–f): Conidiophores; (g) Conidia (scale bar = 10 μm).
species in two sections including four unrecorded species based on BnaA and CalM sequences. Although 12 species in Aspergillus section Fumigati have been reported from arable soil [17], many previous studies only focused on limited environments, such as meju and nuruk [12,19–21]. Only Aspergillus terreus has previously been reported from rhizosphere soil of paprika plants in Korea [47]. Five additional species (A. calidoustus, A. dimorphicus, A. germanicus, A. insuetus, and A. pseudodeflectus) are reported for the first time in this study, from the rhizosphere soil in Korea.

Four species were unreported in Korea: A. calidoustus, A. dimorphicus, A. germanicus, and A. pseudodeflectus. A. calidoustus is commonly found in clinical environments, indoor air, and forest soil [44,48,49]. It has been isolated from Acanthospermum austral and is known for its antifungal and cytotoxic activity [50]. In this study, A. calidoustus was isolated from the rhizosphere soil of Calystegia soldanella and Sorbus commixta. A. pseudodeflectus was previously isolated from desert soil and seaweed [51,52]. It produced pseudodeflectusin, which exhibited cytotoxic activity [51]. In this study, A. pseudodeflectus strains were isolated from rhizosphere soil of Calystegia soldanella and Sorbus commixta. The A. pseudodeflectus strains isolated from Korea exhibited faster growth on YES compared to the other reported strains [53,54]. Some fungi isolated from different environments exhibit different metabolism and growth rates due to environmental adaptation [55,56]. A. germanicus was first isolated from indoor air, but there are few reports of the species so far [57]. In this study, A. germanicus was isolated from the rhizosphere soil of Orobanche coerulescens. Our study is the first report of the species from rhizosphere soil. A. dimorphicus was isolated from garden soil, loess soil, and deep-sea sediment [58–61]. A. dimorphicus showed antitumor activities [62] and proteolytic activities [63]. A. dimorphicus strain was isolated from the rhizosphere soil of Orobanche coerulescens in this study.

Aspergillus species are well known for their potential for usage in industrial and medical compounds, but many strains remain at the genus level. Therefore, we believe that our study will provide the basis for the discovery of new compound based on accurate identification of Aspergillus. Although many Aspergillus species have been found in rhizosphere soils using the NGS method [64–66], the role of Aspergillus in rhizosphere soil is unclear. To understand the interaction between Aspergillus and plants, further studies are needed to investigate the function of Aspergillus in rhizosphere soil.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea [grant number NIBR202002104 and NIBR202102107].

ORCID

Young Woon Lim http://orcid.org/0000-0003-2864-3449

References

[1] Planchot V, Colonna P, Gallant DJ, et al. Extensive degradation of native starch granules by alpha-amylase from Aspergillus fumigatus. J Cereal Sci. 1993;21(2):163–171.
[2] Hrmová M, Bley P, Vršanská M. Cellulose-and xylan-degrading enzymes of Aspergillus terreus and Aspergillus niger. Enzyme Microb Technol. 1989;11(9):610–616.
[3] de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev. 2001;65(4):497–522.
[4] Schechtermann C, Wagner F, Fischer L. Galactosylation of antibiotics using the β-galactosidase from Aspergillus oryzae. Enzyme Microb Technol. 1997;20(8):629–634.
[5] Yang L, Liübbeck M, Liübbeck PE. Aspergillus as a versatile cell factory for organic acid production. Fungal Biol Rev. 2017;31(1):33–49.
[6] Geiser DM, Khich MA, Frisvad JC, et al. The current status of species recognition and identification in Aspergillus. Stud Mycol. 2007;59:1–10.
[7] Balajee SA, Houbreken J, Verweij PE, et al. Aspergillus species identification in the clinical setting. Stud Mycol. 2007;59:39–46.
[8] Samson RA, Visagie CM, Houbreken J, et al. Phylogenies, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014;78:141–173.
[9] Houbreken J, Kocsúb S, Visagie CM, et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiomycetes): an overview of families, genera, subgenera, sections, and species. Stud Mycol. 2020;95:5–169.
[10] Kim HJ, Kim JS, Cheon KH, et al. Species list of Aspergillus, Penicillium and Talaromyces in Korea. Based on one fungus one name system. Kor J Mycol. 2016;44(4):207–219.
[11] Oh JY, Mannaa M, Han GD, et al. First report of Aspergillus awamori as a fungal pathogen of garlic (Allium sativum L.). Crop Prot. 2016;85:65–70.
[12] Kim KM, Lim J, Lee JJ, et al. Characterization of Aspergillus soyae isolated from meju, Korean traditional fermented soybean brick. J Microbiol Biotechnol. 2017;27(2):251–261.
[13] Nguyen TT, Pangging M, Bangash NK, et al. Five new records of the family Aspergillaceae in Korea, Aspergillus europaeus, A. pragensis, A. tennesseensis, Penicillium flaviscirpens, and P. scabrosum. Mycobiology. 2020;48(2):81–94.
[14] National List of Species of Korea. 2019. National Institute of Biological Resources. [Internet] [cited 2021 Mar 5]. Available from: http://kbr.go.kr.
Aspergillus oryzae

Kim JD. Keratinolytic activity of five Aspergillus species isolated from poultry farming soil in Korea. Mycobiology. 2003;31(3):157–161.

Kim DH, Kim SH, Kim YK, et al. Reidentification of Aspergillus spp. isolated from clinical specimens of patients suspected as pulmonary aspergillosis in Korea. Korean J Med Mycol. 2009;14(3):133–144.

Hong SB, Kim DH, Park JC, et al. Isolation and identification of Aspergillus section Fumigati strains from arable soil in Korea. Mycobiology. 2010;38(1):1–6.

Lee S, Park MS, Lim YW. Diversity of marine-derived Aspergillus from tidal mudflats and sea sand in Korea. Mycobiology. 2016;44(4):237–247.

Hong SB, Lee M, Kim DH, et al. Aspergillus cibarius sp. nov., from traditional meju in Korea. J Microbiol. 2012;50(4):712–714.

Yang S, Choi SJ, Kwak J, et al. Aspergillus oryzae strains isolated from traditional Korean nuruk: fermentation properties and influence on wine quality. Food Sci Biotechnol. 2013;22(2):425–432.

Kim HR, Kim JH, Bai DH, et al. Identification and characterization of useful fungi with x-amylase activity from the Korean traditional nuruk. Mycobiology. 2011;39(4):278–282.

Hong SB, Shin HD, Hong J, et al. New taxa of Neoascortaya and Aspergillus in Aspergillus section Fumigati. Antonie Van Leeuwenhoek. 2008;93(1-2):87–98.

Coats VC, Rumpho ME. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol. 2014;5:368.

Ehrmann J, Ritz K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil. 2014;376(1-2):1–29.

Wijeratne EK, Turibyville TJ, Zhang Z, et al. Cytotoxic constituents of Aspergillus terreus from the rhizosphere of Opuntia versicolor of the Sonoran Desert. J Nat Prod. 2003;66(12):1567–1573.

Jain R, Saxena J, Sharma V. Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from rhizosphere soil of a semi-arid region. Ann Microbiol. 2012;62(2):725–735.

Islam S, Akanda AM, Sultana F, et al. Chilli rhizosphere fungus Aspergillus sp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation. Arch Phytopathol. 2014;47(10):1231–1238.

Pandya ND, Desai PV, Jadhav HP, et al. Plant growth promoting potential of Aspergillus sp. NPFE7, isolated from wheat rhizosphere in South Gujarat, India. Environ Sustain. 2018;1(3):245–252.

He W, Xu Y, Fu F, et al. Cytotoxic indolyl diketopiperazines from the Aspergillus sp. GZW/MJZ-258, endophytic with the medicinal and edible plant Garcinia multiphila. J Agric Food Chem. 2019;67(38):10660–10666.

Orfali R, Perveen S. Secondary metabolites from the Aspergillus sp. in the rhizosphere soil of Phoenix dactylifera (Palm tree). BMC Chem. 2019;13(1):1–6.

Tavakol Noorabadi M, Babaeizad V, Zare R, et al. Isolation, Molecular identification, and mycotoxin production of Aspergillus species isolated from the rhizosphere of sugarcane in the South of Iran. Toxins. 2020;12(2):122.

Park MS, Lee JW, Kim SH, et al. Penicillium from rhizosphere soil in terrestrial and coastal environments in South Korea. Mycobiology. 2020;48(6):431–442.

Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin S, Schilperoort R, editors. Plant molecular biology manual. Dordrecht: Kluwer Academic; 1994.

Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323–1330.

Hong SB, Go SJ, Shin HD, et al. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia. 2005;97(6):1316–1329.

Peterson SW, Vega FE, Posada F, et al. Penicillium coffeae, a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. feldinum, P. thiersii and P. brocace based on parsimony analysis of multilocus DNA sequences. Mycologia. 2005;97(3):659–666.

Park MS, Lee S, Oh SY, et al. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. J Microbiol. 2016;54(10):646–654.

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874.

Visagie CM, Hirooka Y, Tanney JB, et al. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol. 2014;78:63–139.

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780.

Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688–2690.

Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Paper presented at: SC10 workshop on gateway computing environments (GCE10), New Orleans, LA; 2010. p. 1–8.

Kornerup A, Wanscher JH. Methuen handbook of colour. 3rd ed. London: Methuen; 1978.

Varga J, Houbraken J, Van Der Lee HA, et al. Aspergillus calidoustus sp. nov., causative agent of human infections previously assigned to Aspergillus ustus. Eukaryot Cell. 2008;7(4):630–638.

Peterson SW. Phylogenetic analysis of Aspergillus sections Cremei and Wentii, based on ribosomal DNA sequences. Mycol Res. 1995;99(11):1349–1355.

Novakova A, Hubka V, Saiz-Jimenez C, et al. Aspergillus baeticus sp. nov. and Aspergillus the-sauricus sp. nov., two species in section Usti from Spanish caves. Int J Syst Evol Microbiol. 2012;62(Pt 11):2778–2785.

Yoo SJ, Shin DJ, Won HY, et al. Aspergillus terreus JF27 promotes the growth of tomato plants and induces resistance against Pseudomonas syringae pv. tomato. Mycobiology. 2018;46(2):147–153.
[48] Slack GJ. Identification of secondary metabolites from some Eurotium species, Aspergillus insuetus and A. calidoustus from Canadian homes. Ottawa, Canada: Carleton University; 2008.

[49] dos Reis Celestino J, de Carvalho LE, da Paz Lima M, et al. Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochem. 2014;49(4):569–575.

[50] Rodrigues de Carvalho C, Vieira MDLA, Cantrell CL, et al. Biological activities of ophiobolin K and 6-epi-ophiobolin K produced by the endophytic fungus Aspergillus calidoustus. Nat Prod Res. 2016;30(4):478–481.

[51] Samson RA, Mouchacca J. Additional notes on species of Aspergillus, Eurotium and Emericella from Egyptian desert soil. Antonie Van Leeuwenhoek. 1975;41(3):343–351.

[52] Ogawa A, Murakami C, Kamisuki S, et al. Pseudodeflectusin, a novel isochroman derivative from Aspergillus pseudoflectus a parasite of the sea weed, Sargassum fusiform, as a selective human cancer cytotoxin. Bioorg Med Chem Lett. 2004;14(13):3539–3543.

[53] Houbraken J, Due M, Varga J, et al. Polyphasic taxonomy of Aspergillus section Usti. Stud Mycol. 2011;69(1):81–97.

[54] Romero SM, Comerio RM, Barrera VA, et al. Aspergillus fuscicans (Aspergillaceae, Eurotiiales), a new species in section Usti from Argentinean semi-arid soil. Phytotaxa. 2018;343(1):67–74.

[55] Bidochka MJ, Menzies FV, Kamp AM. Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Arch Microbiol. 2002;178(6):531–537.

[56] Baakza A, Vala AK, Dave BP, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol. 2004;311(1):1–9.

[57] Mehrotra B, Prasad R. Aspergillus dimorphicus and Emericella cleisto-minuta spp. nov. from Indian soils. Trans Brit Mycol Soc. 1969;52(2):331–336.

[58] Tuthill DE, Christensen M. Aspergillus sepultus, a new species in the Aspergillus ochraceus group. Mycologia. 1986;78(3):475–477.

[59] Deshmukh SK, Prakash V, Ranjan N. Marine fungi: a source of potential anticancer compounds. Front Microbiol. 2017;8:2536.

[60] Visagie CM, Houbraken J. Updating the taxonomy of Aspergillus in South Africa. Stud Mycol. 2020;95:253–292.

[61] Xu R, Xu GM, Li XM, et al. Characterization of a newly isolated marine fungus Aspergillus dimorphicus for optimized production of the anti-tumor agent wentilactones. Mar Drugs. 2015;13(11):7040–7054.

[62] Noor SO, Al-Zahrani DA, Hussein RM, et al. Assessment of fungal diversity in soil rhizosphere associated with Rhazya stricta and some desert plants using metagenomics. Arch Microbiol. 2020;202(9):1–9.

[63] Pattnaik SS, Busi S. Rhizospheric fungi: diversity and potential biotechnological applications, in recent advancement in white biotechnology through fungi. In: Yadav A, Mishra S, Singh S, Gupta A, editors. Recent advancement in white biotechnology through fungi. Fungal biology. Cham, Switzerland: Springer; 2019. p. 63–84.

[64] Wu N, Li Z, Wu F, et al. Microenvironment and microbial community in the rhizosphere of dioecious Populus cathayana at Chaka Salt Lake. J Soils Sediments. 2019;19(6):2740–2751.