The structure of the cometary globule CG 12: a high-latitude star-forming region*,**

L. K. Haikala1,2 and M. Olberg3

1 Observatory, PO Box 14, University of Helsinki, Finland
e-mail: haikala@astro.helsinki.fi
2 Swedish-ESO Submillimetre Telescope, European Southern Observatory, Casilla 19001, Santiago, Chile
3 Onsala Space Observatory, 439 00 Onsala, Sweden
e-mail: michael.olberg@chalmers.se

Received 23 March 2006 / Accepted 22 September 2006

ABSTRACT

We have investigated the structure of the high galactic-latitude cometary globule 12 (CG 12) by means of radio molecular-line observations. Detailed, high signal-to-noise ratio maps in C18O (1 − 0), C18O (2 − 1) and molecules tracing high-density gas, CS (3 − 2), DCO+ (2 − 1), and H13CO+ (1 − 0), are presented. The C18O line emission is distributed in a 10′ long North-South elongated lane with two strong maxima, CG 12-N(orth) and CG 12-S(south). In CG 12-S the high-density tracers delineate a compact core, DCO+ core, which is offset by 15′′ from the C18O maximum. The observed strong C18O emission traces either the surface of the DCO+ core or a separate, adjacent cloud component. The driving source of the collimated molecular outflow detected in 1993 is located in the DCO+ core. The C18O lines in CG 12-S have low-intensity wings possibly caused by the outflow. The emission in high-density tracers is weak in CG 12-N and especially the H13CO+, DCO+, and N2H+ lines are +0.5 km s−1 offset in velocity with respect to the C18O lines. Evidence is presented that the molecular gas is highly depleted. The observed strong C18O emission towards CG 12-N originates in the envelope of this depleted cloud component or in a separate entity seen in the same line of sight. The C18O lines in CG 12 were analysed using positive matrix factorization, PMF. The shape and the spatial distribution of the individual PMF factors fitted separately to the C18O (1 − 0) and (2 − 1) transitions were consistent with each other. The results indicate a complex velocity and line excitation structure in the cloud. Besides separate cloud velocity components the C18O line shapes and intensities are influenced by excitation temperature variations caused by e.g., the molecular outflow or by molecular depletion. Assuming a distance of 630 pc the size of the CG 12 compact head, 1.1 pc by 1.8 pc, and the C18O mass larger than 100 M⊙ are comparable to those of other nearby low/intermediate mass star formation regions.

Key words. clouds – ISM molecules – ISM: structure – radio lines – ISM: individual objects: CG 12 – ISM: individual objects: NGC 5367

1. Introduction

Herschel (1847) noted that a 10th mag. star, now known as h4636 or CoD −39° 8581, is a binary with a separation of 3′′7. In the optical, h4636 illuminates the bright reflection nebula NGC 5367. Hawarden & Brand (1976) showed that it lies in the head of an impressive cometary globule 12, CG 12, with a tail stretching about one degree to the SE. With a galactic latitude of 21° and at the distance of 630 pc estimated by Williams et al. (1977), CG 12 lies more than 200 pc above the plane. It has an associated low/intermediate mass stellar cluster that has at least 9 members (Williams et al. 1977).

The cloud’s cometary structure could be due to the passage of a supernova blast wave. Curiously, the cometary tail stretches towards the Galactic plane, which would place the putative supernova even farther away from the Galactic plane than the globule. According to Maheswar et al. (1996), the head of CG 12 is pointing towards the centre of an HI shell. Such a shell is, however, not readily evident in the whole-sky HI survey (Kalberla et al. 2005), which merges the northern...
CG 12/NGC 5367 is an intriguing object. It has the appearance of a cometary globule such as usually found on the outskirts of HII regions. The linear size of cometary globules, like those in the Gum nebula, are however much smaller (e.g., Reipurth 1983). The linear extent of CG 12, 10 pc, is four times larger than, e.g., the archetype object CG 1. A low/intermediate mass stellar cluster is associated with CG 12. Perhaps the most curious feature of CG 12 is its location over 200 pc above the Galactic plane with no sign of other nearby dark clouds or star formation. CG 12 has not attracted much interest since the identification of the stellar cluster (Williams et al. 1977) and the Hawarden & Brand (1976) cometary globule paper. Subsequent papers have either concentrated on the Herbig AeBe binary, h4636, or the cloud has been included in various surveys. The 12CO (2−1) and C18O (2−1) observations by White (1993), though detailed, cover only the very centre of the cloud. What has been missing is a detailed, but at the same time extended, study of the dense CG 12 molecular cloud in molecular transitions that are sensitive to the large-scale structure (cloud envelope) and to the detailed structure of the high-density material (cores).

In this paper we report the mapping of the head of CG 12 in the C18O (1−0) and (2−1) and in 13CO (1−0) lines. The C18O emission maxima were further mapped in DCO+(2−1), H3C18O+(1−0), and CS (2−1) and (3−2). More pointed observations with a long integration time in CO (1−0) and (2−1) (and isotopologues), CS (2−1) and (3−2), C34S (2−1), H13CO+(1−0), DCO+(2−1), and N2H+(1−0) were made towards selected positions in the cloud.

Observations, data reduction, and calibration procedures are described in Sect. 2 and the observational results in Sect. 3. The new results are compared with the optical and NIR images in Sect. 4. In Sect. 5 and Appendix A, PMF is used to analyse the C18O small-scale structure in the globule. In the discussion part in Sect. 6, the C18O column densities and the cloud mass are derived and the observational and calculated results are summarised. The conclusions are drawn in Sect. 7.

2. Observations

The observations were made during various observing runs with the Swedish-ESO-Submillimetre-Telescope, SEST, at the La Silla observatory, Chile. The SEST 3 mm dual polarization, single sideband (SSB), Schottky receiver was used for the 13CO (1−0) and CS (2−1) mapping observations. The rest of the observations were conducted with the SEST 3 and 2 mm (SESIS) and 3 and 1 mm (IRAM) dual SIS SSB receivers. The SEST high-resolution, 2000-channel acousto-optical spectrometer (bandwidth 86 MHz, channel width 43 kHz) was split into two halves to measure two receivers simultaneously. At the observed wavelengths, 3 mm, 2 mm, and 1 mm, the 43 kHz channel width corresponds to ~0.12 km s⁻¹, ~0.08 km s⁻¹, and ~0.06 km s⁻¹, respectively.

Frequency-switching observing mode was used and a second-order baseline was subtracted from the spectra after folding. Calibration was achieved by the chopper wheel method. All the line temperatures in this paper, if not especially noted, are in the units of T_A^*, i.e. corrected to outside of the atmosphere but not for beam coupling. Typical values for the effective SSB system temperatures outside the atmosphere ranged from 200 K to 350 K. Pointing was checked regularly in continuum mode towards the nearby Centaurus A galaxy and the pointing accuracy is estimated to be better than 5′.

The observed molecular transitions, their frequencies, SEST half power beam width, HPBW, and the telescope main beam efficiency, η_m, at these frequencies are given in Table 1. For the CO observations only the C18O is listed. At a distance of 630 pc the SEST HPBW at 219 GHz corresponds to 0.07 pc.

The cloud was mapped simultaneously in C18O (1−0) and C18O (2−1) transitions with a spacing of 20″ (514 positions). The map central position was 13°57′43″, −39°58′43″ (J2000), which is ~5″ and ~10″ in right ascension from the positions of the IRAS 13547−3944 source and the binary h3626, respectively. The average rms of the spectra were 0.07 K and 0.09 K for C18O (1−0) and (2−1), respectively. An approximately 8″ by 20″ area was mapped in 13CO using 40″ spacing (324 positions). The C18O maxima were mapped in CS (2−1), (3−2), DCO+(2−1), and H13CO+(1−0). Further long integration time pointed observations in CO, CS, H13CO+, DCO+, C34S, and N2H+ were made.

3. Results

The mapping of CG 12 in C18O and in molecules tracing high-density material provides a large-scale view of the cloud. High signal-to-noise spectra in selected molecular transitions were obtained by pointed observations with a long integration time. These spectra probe the cloud at different depths and densities. Combining the intensity and velocity information in the pointed spectra provides a clue to the cloud fine-scale structure.

3.1. CO

The observed distributions of C18O (1−0) and C18O (2−1) line emission towards CG12 are presented in Fig. 1 (the T_A^* dv in the velocity range ~8 km s⁻¹ to ~4 km s⁻¹) and Figs. 11 and 12 (C18O channel maps). In the figures the grey/colour scales and the contour levels are the same for the two C18O transitions. The offsets from the map centre position in arc minutes are shown on the axes of the right panel in Fig. 1.

The bulk of the molecular material traced by C18O emission is distributed in a narrow North-South oriented lane with two prominent maxima. A less intense maximum is observed to the SW. Henceforth the three intensity maxima will be referred to as CG 12-N, CG 12-S, and CG 12-SW, where CG 12-S corresponds to the C18O (2−1) maximum reported in White (1993).

The morphology of the cloud is similar in the two C18O transitions. However, there is a notable difference between the C18O maxima. The observed C18O (1−0) emission is stronger than the C18O (2−1) emission in CG 12-N and CG 12-SW, whereas in CG 12-S the opposite is the case. In CG 12-N the C18O (1−0) line remains stronger than the (2−1) line even when expressed on the main beam brightness-temperature scale.
More details can be seen in Figs. 11 and 12, which reveal that the structure of the cloud is not as simple as Fig. 1 suggests. The most noticeable features are the following: CG 12-N is elongated in the North South direction at velocities \(\leq -6.0 \) km s\(^{-1}\) and in the East West direction at velocities \(\geq -5.4 \) km s\(^{-1}\). The position of the maximum \(^{13}\text{CO} (2-1) \) emission in CG 12-S moves from below the map centre position (marked with a cross in the figure) at \(-7.0\) km s\(^{-1}\) to a position 40′ west of this position at velocity \(-5.9\) km s\(^{-1}\). An arc-like feature connects CG 12-S and CG 12-SW at velocities from \(-6.6\) km s\(^{-1}\) to \(-6.2\) km s\(^{-1}\). The arc is less pronounced in the \(^{13}\text{CO}(1-0) \) transition.

In the optically thin case the critical density of the \(^{13}\text{CO}(1-0) \) transition is \(\sim 650 \) cm\(^{-3}\) and approximately ten times this value for the \((2-1) \) transition (Rohlfs & Wilson 1999). These \(^{13}\text{CO} \) lines are therefore already excited at low densities, and their emission traces column density rather than number density. Therefore the \(^{13}\text{CO} \) intensity maxima were also mapped in the high-density tracers (critical densities larger than \(10^5 \) cm\(^{-3}\)) \(^{13}\text{C} \) (2-1), \(^{13}\text{CO}(1-0) \) and DCO\(^+\) (2-1) using 20″ spacing. A 4 by 4 point map with the same spacing was obtained for CG 12-S in the CS (3-2) line.

Contour maps of the CS (2-1), CS (3-2), \(^{13}\text{CO}^+\), and DCO\(^+\) line integral in CG 12 superposed on the \(^{13}\text{CO}(2-1) \) emission (grey scale) are shown in Fig. 4. CG 12-N was not mapped in CS (3-2). The CS (2-1) emission peaks at the position of the \(^{13}\text{CO}(2-1) \) maximum in CG 12-S. In other molecules the maximum is shifted to SE from the \(^{13}\text{CO} \) maximum. As DCO\(^+\) traces high-density gas, the CG 12-S DCO\(^+\) maximum will be referred to as the DCO\(^+\) core.
3.3. C18O and high-density tracers: pointed observations

Pointed, long-integration-time CS (2−1), (3−2), C34S(2−1), H13CO$^+$ (1−0), DCO$^+$ (2−1), and N$_2$H$^+$ (1−0) spectra in the same positions as in Fig. 3 are shown in Fig. 5. The integration time of the CS (3−2) line at position (−40′′, −20″) is only 2.5 min and is therefore noisier than the two other CS (3−2) lines. The N$_2$H$^+$ (1−0) line consists of seven hyperfine components, and only the unblended N$_2$H$^+$ (1−0) (F$_1, F = 0, 1 \rightarrow 1, 2$) component is shown in Fig. 5.

The C35S line was observed in three positions. These spectra together with the CS (2−1) and (3−2) spectra observed at the same positions are shown in Fig. 6. The N$_2$H$^+$ spectra showing all the hyperfine components in the three observed positions are shown in Fig. 7. Also the hyperfine component fits (assuming optically thin emission and one velocity component) and their residuals are shown.

3.3.1. CG 12-S

Near the centre of the DCO$^+$ core (position −20″, −20″), the H13CO$^+$, DCO$^+$ and N$_2$H$^+$ lines are nearly symmetric and centred at velocity −6.5 km s$^{-1}$. The C18O lines are skewed and the maximum intensity is redshifted from the DCO$^+$ (2−1) peak velocity. Going to the West (position −40″, −20″) the redshifted side of the C18O lines becomes more intense. Low-intensity wing-like emission is observed in the C18O and CS (2−1) lines in the direction of the DCO$^+$ core and position (0″, 0″).

The N$_2$H$^+$ line in the position (−20″, −20″), can be fit with a single velocity component centred at −6.56 km s$^{-1}$ (Fig. 7, lower panel). Due to the 0.73 km s$^{-1}$ line half width, the hyperfine components are blended and the hyperfine structure is only marginally resolved. The signal-to-noise ratio of the spectrum is not sufficient to meaningfully fit the line total optical depth, τ_{tot}. The estimated τ_{tot} upper limit in this position is 5.

3.3.2. CG 12-N

In CG 12-N (position −40″, 160″), the C18O lines are nearly symmetric but not Gaussian. The emission from the high-density tracers is weak when compared to what is observed in CG 12-S.

The C34S line was observed in two positions in CG 12-N (Fig. 6). The CS(2−1) and (3−2) line profiles in these positions are not Gaussian and may be composed of two or three components. The peak intensity of the C34S (2−1) line is redshifted with respect to the peak of the CS (3−2) line, which itself is redshifted with respect to the CS (2−1) line, which peaks approximately at the same velocity as the C18O lines.

The observed ionic lines (DCO$^+$ (2−1), H13CO$^+$ (1−0), and N$_2$H$^+$ (1−0)) are offset +0.5 km s$^{-1}$ in velocity with respect to the C18O lines and peak at a velocity where especially the C18O (2−1) line intensity is low.

The N$_2$H$^+$ (1−0) line was observed in the same two positions as C34S. In contrast to the CS lines, the observed N$_2$H$^+$ lines are identical within the noise (Fig. 7, two upper panels). The SEST beam is the same at CS (2−1) and N$_2$H$^+$ (1−0) frequencies. A hyperfine component fit to the CG 12-N N$_2$H$^+$ lines gives a 0.65 km s$^{-1}$ broad line at −5.41 km s$^{-1}$. The estimated τ_{tot} upper limit in position (−40″, −160″) is 2.

To rule out the observed intensity/velocity structure described above being due to calibration, pointing, or frequency setting problems, the observations were carefully checked by observing the C18O and the DCO$^+$, H13CO$^+$ and CS lines one after the other and making pointing checks before and after observations. Also, e.g., the line pair DCO$^+$ (2−1) and C18O (1−0) could be observed simultaneously with a dual receiver, thus excluding relative pointing errors.

4. Comparison with observations at other wavelengths

The C18O (2−1) contour map superposed on the blue SERC-J DSS image is shown in Fig. 8. The bright optical reflection nebula NGC 5367 lies in front of CG 12-S, whereas CG 12-N is in the direction of an optically heavily-obscured region that is clearly seen in the inset. A 1.2 mm source (Haikala 2007, in preparation) coincides with the position of the CG 12-N C18O maximum.

A Kβ band image (Haikala 2007, in preparation) of CG 12 is shown in Fig. 9. Superposed on the image are the contours of the 12CO (2−1) molecular-outflow line-wing emission (White 1993). In the insets, the C18O (2−1) and DCO$^+$
contour maps are superposed, together with the positional uncertainty ellipses of IRAS point sources IRAS 13546-3941 and IRAS 13547-3944. IRAS 13547-3944 does not coincide with the binary h4636. The base of the binary star emission is saturated due to the intensity scale which was chosen to emphasize the low intensity surface emission.

A cone-like nebulosity with a bright head is seen projected on the DCO⁺ core in Fig. 9. The apex of the cone is located just off the tip of the red shifted and below the end of the blue shifted, collimated CO outflow lobes of White (1993). A compact 1.2 mm source (Haikala 2007, in preparation) coincides with the DCO⁺ core. The core does not have an associated point source, but this could be due to the low spatial resolution of the IRAS satellite. A faint source would be masked by the strong nearby source IRAS 13547-3944. The NIR cone could be associated with the driving source of the outflow. The centre of the molecular outflow is offset from the position of IRAS 13547-3944 by ~20″. It is unlikely that the point source is associated with the large outflow, but it could be the driving force for the strong redshifted outflow lobe located ~1′ NW of the nominal position of the point source.

Small areas of the size of the SEST HPBW at the C¹⁸O (1−0) frequency in the centres of CG 12-N and CG 12-S have been mapped in the C¹⁸O (3−2) (Haikala et al. 2006). The HPBW of the C¹⁸O (3−2) observations is 19″, which is similar to the SEST HPBW of 24″ at the C¹⁸O (2−1) frequency. In CG 12-S, the C¹⁸O (3−2) emission has a strong maximum in the same position as the maxima in the lower C¹⁸O transitions. The line profile in position (~20″, −20″) agrees with the C¹⁸O (2−1) line (Fig. 5). The C¹⁸O (3−2) Tₘₜₚ peak line temperature in this position is, however, 10 K, which is nearly twice the C¹⁸O (2−1) Tₘₜₚ of 5.7 K. In CG 12-N (position (~40″, 160″), the C¹⁸O (3−2) line profile is similar to that of C¹⁸O (1−0), but the Tₘₜₚ peak line temperature is 3 K, which is lower than the corresponding values observed in C¹⁸O (1−0) and (2−1), which are 4.3 K and 3.8 K, respectively.

5. C¹⁸O fine-scale structure

The half widths of the observed C¹⁸O lines in CG 12 cores range from 1.0 km s⁻¹ (CG 12-S) to 1.3 km s⁻¹ (CG 12-N). The C¹⁸O channel-maps (Figs. 11 and 12) and observations of other molecules indicate that the lines consist of more than one velocity component. This division of the cloud according to its appearance in the C¹⁸O line integral maps (Fig. 1) into only three components CG 12-N, CG 12-S, and CG 12-SW is therefore too coarse. The fine structure within the individual maxima is not seen because the lines are heavily blended in velocity.

5.1. Positive matrix factorization

Positive matrix factorization (PMF) has been used by Juvela et al. (1996) and Russell et al. (2003) in the analysis of molecular line spectral maps. It assumes that the ensemble of input spectra are composed of n individual line components (factors). Unlike principal component analysis PMF assumes that the individual components are positive. This makes the interpretation of the results more straightforward than in principal component analysis where the results may contain negative components. No other assumptions are made for the shape of the factors. Each input spectrum can be reconstructed from the n PMF output factors by multiplying each factor by the weight assigned to it by PMF.
6. Discussion

The interpretation of the C18O data is not as straightforward as one would like and the possible caveats must be considered. The PMF fit to the observed C18O data is good, but which part of the cloud material do the PMF factors trace? The structure of CG 12 and the physical properties of the associated gas can be estimated if the result of the PMF analysis is considered, together with the observed emission from molecules tracing high-density material.

6.1. C18O as a tracer of molecular material

C18O emission is generally considered a good tracer of the large-scale structure of dark clouds and globules. However, C18O photodissociation in the cloud envelopes and molecular depletion in the dense and cold cloud cores may restrict the number density interval where C18O emission can be used as a direct measure of H$_2$ column density (especially if the LTE approximation is used). Unlike 13CO, the C18O molecules are not shielded against photodissociation by strong H$_2$ lines, and furthermore, the C18O self-shielding is weaker than that of 12CO. For C18O the self-shielding is most efficient for the two lowest rotational levels with the largest populations. According to Warin et al. (1996), the consequence is that the J = 1–0 transition becomes thermalized, whereas the higher transitions remain subthermally excited in the cloud envelopes. At the other extreme (pre-stellar cloud cores and protostellar envelopes), the CO molecule may vanish from the gas phase because of depletion onto dust grains. Other complications in interpreting C18O data are the possible strong gradients in the CO excitation temperature on the line of sight due to heating of the gas by newly born stars and protostellar objects. Time and temperature dependent chemistry, such as deuterium fractionation, also complicates the comparison of C18O data with that of other molecular species.

The depletion of molecules on dust grains takes place in the dense, quiescent, and cold molecular cloud cores. The CO and CS molecules are among the first to disappear from the gas phase, but nitrogen-bearing species, such as N$_2$H$^+$ and ammonia, seem to be able to resist depletion (Tafalla et al. 2002). The N$_2$H$^+$ and DCO$^+$ lines in CG 12-N peak at a velocity of 5.4 km s$^{-1}$ where the C18O line emission is weak (Sect. 3.3). It is likely that strong CO depletion has taken place in the gas traced by these two molecules in CG 12-N.

In CG 12-S the C18O maximum is spatially offset from the DCO$^+$ core. Deuterium fractionation reactions are favoured in cold gas (e.g., Herbst 1982), so the relative abundance of DCO$^+$ is enhanced in cold cloud cores. The relatively strong DCO$^+$ emission observed in CG 12-S, the DCO$^+$ core, could indicate that fractionation has indeed taken place. If the molecules in CG 12-S were heavily depleted in the cold DCO$^+$ core, one would not expect CS (3–2) or H13CO$^+$ to outline the core like they do (also DCO$^+$ will be finally depleted).

The observed 12CO (1–0) and (2–1) line temperatures in CG 12-S (Fig. 3) are high. The lines are self reversed, so the actual line peak temperatures must be even higher. This indicates that the CO excitation temperature is in excess of 30 K in the part of the cloud that is traced by the observed 12CO emission. White (1993) suggests that either H4636 or IRAS 13547-3944 is the heating source. The 12CO and 13CO optical depth is high and, unlike C18O, these CO isotopologues are likely to trace only the surface of the molecular cloud associated with CG 12. The observed C18O (3–2) T_{MB} peak temperature of 11 K.

Fig. 4. Contour maps of the observed CS (2–1), CS (3–2), H13CO$^+$ (1–0), and DCO$^+$ (2–1) distributions in CG 12 superposed on a grey-scale map of the C18O (2–1) emission. The positions observed in each molecule are indicated. The corresponding SEST beam size at the observed frequencies is indicated in the upper left corner of each panel. In the CS (2–1) and CS (3–2) maps the lowest contour value is 0.5 K km s$^{-1}$ and the increments are 0.5 K km s$^{-1}$ and 0.3 K km s$^{-1}$, respectively. In the H13CO$^+$ (1–0) and DCO$^+$ (2–1) maps, the lowest contour value and its increment are 0.15 K km s$^{-1}$. The maximum values of the CS (2–1), CS (3–2), H13CO$^+$ (1–0), and DCO$^+$ (2–1) emission are 2.2 K km s$^{-1}$, 1.3 K km s$^{-1}$, 0.58 K km s$^{-1}$, and 0.77 K km s$^{-1}$, respectively. The offset from the map zero position is shown on the axes.
in CG 12-S also points at a high C18O excitation temperature (Haikala et al. 2006). However, the observed relative C18O (2–1) and (1–0) line intensities in CG 12-S are not compatible with C18O T_{ex} values higher than 20 K.

6.2. PMF: the interpretation

One should be cautious in interpreting the PMF results. Even though the fit to the C18O (1–0) and (2–1) data is good, all the PMF factors do not necessarily describe real cloud components. The structure of the cloud can, however, be discussed with some confidence when the PMF fit results are considered with the information provided by other available molecular lines, mm-continuum, and NIR-FIR data.

6.2.1. CG 12-S

The location of the CG 12-S C18O (2–1) PMF factor maxima relative to the NIR cone (and the mm continuum source) in the centre of the DCO+ core is shown in Fig. 10. From East to West the factors are 1s, 2s, and 3s. The centres of the maxima differ in position by about one SEST beam size at 220 GHz, 24″.

The data would seem to imply that CG 12-S is fragmented into three individual cores. If this were the case, one would expect that the 2s factor would coincide with the DCO+ core because the 2s centre of line velocity is the same as that of DCO+. Even though the 3s factor is the strongest in CG 12-S, it is detected only as an asymmetry in the DCO+ and CS lines in Figs. 5 and 6. CO is ubiquitous and easily excited, so that it can be detected at much lower densities than the high-density tracers DCO+ and CS (3–2), which trace the DCO+ core. The bulk of the observed C18O emission may have its origin in that part of the cloud where the density is lower and the excitation temperature higher than in the DCO+ core.

This leads to a model where most of the observed C18O emission instead traces either the surface of the dense and cold cloud core (the DCO+ core) or a separate, adjacent cloud...
component, rather than the core itself. The observed CS (2−1) distribution, which is similar to C18O in CG 12-S (Fig. 4), is in accord with this model. Much of the observed CS (2−1) emission is known to originate in cloud envelopes and not in the dense cores. The CS (3−2) effective critical density is higher than that of CS (2−1), therefore it traces the dense gas deeper in the cloud than CS (2−1).

The possible interaction of the collimated molecular outflow detected by White (1993) with the cloud core further complicates the interpretation of the molecular line data. The centre of the outflow is located in the direction of the DCO+ core, and it is not unlikely that the outflow can produce weak C18O line wings and that it can raise the CO excitation temperature locally. Weak line wings are also observed in the CS (2−1) line in Fig. 5. It is argued that the weak C18O red and blue shifted line wing emission near the DCO+ core is produced by the interaction of the collimated molecular outflow with the parent cloud. The line wings would be described by the PMF factors 1s and 4s. For the latter factor this would consist only of the emission immediately to the west of the DCO+ core.

The CG 12-S C18O (3−2) map in Haikala et al. (2006) covers only the very centre of CG 12-S. The C18O (3−2) line peak velocity and the intensity distribution is in accordance with the elongated shape of the 3s component in Fig. 10. The maximum

\[\text{PMF produces a seemingly straightforward solution for CG 12-N. However, the available data from molecules other} \]
than C\(^{18}\)O and the 1.2 mm continuum emission deny such a simple solution. As argued in Sect. 6.1, it is likely that the cloud component traced by DCO\(^+\) and N\(_2\)H\(^+\) is heavily depleted. If this is the case, C\(^{18}\)O only probes the undepleted part of CG 12-N.

6.3. Clouds’ physical properties

A straightforward division of the CG 12 molecular cloud into three homogeneous components, CG 12-N, CG 12-S, and CG 12-SW, is not possible. The good velocity resolution and the high signal-to-noise ratio of the data allows one to divide the C\(^{18}\)O data into separate components. However, the derivation of the cloud or core physical properties calls for a detailed three-dimensional non-LTE model that accounts for both the molecular depletion, the varying density, and excitation conditions. Such a model is beyond the scope of this paper and will be left for the future. The LTE-approximation approach is used instead of a sophisticated model to make a zeroth-order estimate of the masses of the three C\(^{18}\)O maxima, CG 12-N, CG 12-S, and CG 12-SW. An average C\(^{18}\)O excitation temperature for each maximum is estimated using the observed relative C\(^{18}\)O (2–1) and (1–0) line intensities.

6.3.1. Mass and column-density estimation

The observed \(T_{mb}\) line temperatures were converted into main beam temperatures using the beam efficiencies in Table 1. The C\(^{18}\)O excitation temperatures were estimated from the C\(^{18}\)O (1–0) and (2–1) data by assuming optically thin C\(^{18}\)O emission and LTE. This assumes that the observed emission in both transitions originates in the same volume of gas at a constant excitation temperature. The observed C\(^{18}\)O line \(T_{mb}(2-1)/T_{mb}(1-0)\) ratio is 1.8 in CG 12-S, compatible with an excitation temperature near 15 K. In CG 12-N and CG 12-SW, this ratio is one or less, indicating excitation temperatures of the order of 10 K.

The masses of CG 12-N, CG 12-S, and CG 12-SW are calculated without dividing them into smaller components. The spectra between declination offsets (including the limits) −120″ and +60″ were assigned to CG 12-S. The spectra above and below these limits were assigned to CG 12-N and CG 12-SW, respectively. An average C\(^{18}\)O excitation temperature of 10 K is now assumed for CG 12-N and CG 12-SW and 15 K for CG 12-S. The adopted C\(^{18}\)O abundance is 2.0×10\(^{-7}\). This results in calculated total masses of 34, 96, and 110 \(M_{\odot}\) for CG 12-SW, CG 12-S and CG 12-N, respectively, when C\(^{18}\)O (1–0) data is used. If C\(^{18}\)O (2–1) data is used the masses are 14, 49, and 53 \(M_{\odot}\). The maximum \(T_{mb}\) line integrals can be used to estimate the \(H_2\) column densities in the corresponding beams. The calculated maximum column densities in the C\(^{18}\)O (1–0) beam are 1.3×10\(^{22}\), 1.8×10\(^{22}\), and 2.7×10\(^{22}\) cm\(^{-2}\) for CG 12-SW, CG 12-S, and CG 12-N, respectively. For the C\(^{18}\)O (2–1) beam the corresponding values are 6.4×10\(^{21}\), 1.6×10\(^{22}\), and 1.8×10\(^{22}\) cm\(^{-2}\).

The masses calculated from the C\(^{18}\)O (1–0) data are approximately twice higher than from the (2–1) data. The LTE approximation assumes that all the C\(^{18}\)O rotational states are thermalized. However, according to Warin et al. (1996) only the lowest C\(^{18}\)O rotational state is thermalized in dark clouds, and the higher states are subthermally excited. The subthermal excitation would be stronger in the relatively low-density cloud envelope than in the dense core. The subthermal level population leads to an underestimation of the cloud mass when calculated from the C\(^{18}\)O (2–1) data. This could be a partial explanation for the large discrepancy between the masses calculated using C\(^{18}\)O (1–0) and (2–1) data.

Strong C\(^{18}\)O (3–2) emission (maximum \(T_{mb}\) ~11 K) distributed in a similar way to the 3s PMF factor was detected by Haikala et al. (2006) in the centre of CG 12-S. The C\(^{18}\)O (3–2) data was modelled with a compact (60″ to 80″ diameter) and hot (80 K ≤\(T_{ex}\) ≤200 K) optically-thin clump of ~1.6 \(M_{\odot}\). The high temperature was derived from the \(T_{mb}(\text{C}\(^{18}\)O (3–2)) / T_{mb}(\text{C}\(^{18}\)O (2–1))\) ratio. However, the \(T_{mb}(\text{C}\(^{18}\)O (2–1)) / T_{mb}(\text{C}\(^{18}\)O (1–0))\) ratio for the CG 12-S PMF factor 3s is not compatible with such a high temperature. This could be due to, e.g., contribution from a subthermally excited cool cloud envelope to the C\(^{18}\)O (1–0) emission. The LTE mass calculated from the C\(^{18}\)O (2–1) 3s component within the area modelled in Haikala et al. (2006) is 4.1 \(M_{\odot}\) when a \(T_{ex}\) of 15 K is assumed. The discrepancy in the calculated excitation temperatures and masses highlights the uncertainties when LTE approximation is used and only data of the two lowest C\(^{18}\)O transitions are available. In contrast to CG 12-S, the C\(^{18}\)O \(T_{ex}\) and the LTE mass of CG 12-N correspond well to the modelled values using the three transitions (Haikala et al. 2006).

6.4. Summary

The analysis of the spectral lines presented above deliver a complicated picture of CG 12. Even though the spectral lines are relatively narrow, the analysis reveals a rich structure in line shape and velocity. Probable depletion of molecules on dust grains in CG 12-N further complicates the interpretation. The cloud parameters derived using the LTE analysis are highly uncertain. However, if the molecular-line observations are combined with the available optical, NIR, FIR, and mm continuum data, the cloud structure can be discussed with some confidence.

6.4.1. CG 12-N

CG 12-N harbours a compact, cold mm source, and the detected relatively weak molecular emission in high-density tracers is
probably associated with this source. Much of the molecular material associated with this cloud component is likely to be heavily depleted onto dust. The observed strong C18O emission towards CG 12-N therefore originates in the envelope of this depleted core or in a separate entity seen in the same line of sight. The 13CO observed in the direction of CG 12-N has line-wing emission indicating molecular outflow. It is not known if this outflow is connected to the outflow in CG 12-S or if it is local and originates in CG 12-N.

6.4.2. CG 12-S

The bulk of the observed C18O emission does not trace the gas associated with the compact cloud core detected in H13CO+, DCO+ and CS (3−2) lines. Most likely the C18O emission traces only the surface of this core. The moderate C18O line wing emission, probably due to interaction of the highly collimated molecular outflow with the surrounding gas, complicates the interpretation even further.

The molecular line data presented in this paper, combined with the molecular outflow data from White (1993), the NIR imaging, and mm dust continuum data (Haikala 2007, in preparation), shows that the outflow centre coincides with the mm continuum source and the NIR cone in the centre of the DCO+ core. The strong point source IRAS 13547−3944 is offset from the mm source and from h4636. This point source could, however, be the driving source for the strong redshifted outflow lobe north of CG 12-S.

6.4.3. CG 12-SW

CG12-SW is inconspicuous when compared to the two stronger C18O maxima. No signs of star formation have been found in its direction, and it is therefore either still in pre-star formation phase or its density-temperature structure is such that no star formation will take place. The arc-like feature that connects CG 12-S and CG 12-SW at velocities from −6.6 km s^{−1} to −6.2 km s^{−1} in Fig. 11 suggests that CG 12-SW might be related to CG 12-S.

7. Conclusions

We have performed a detailed, high signal-to-noise ratio, mm-line study of CG 12 in various molecular transitions, principally of C18O (1−0) and C18O (2−1), as well as in molecular lines probing dense material, with the following results:

1. The C18O line emission is distributed in a 10′ North-South elongated lane with two strong, compact maxima, CG 12-N and CG 12-S, and a weaker maximum, CG 12-SW.

2. High-density tracers CS (2−1), (3−2), DCO+, and H13CO+ are detected in both strong C18O maxima. Emission from these molecules is weak in CG 12-N, but in CG 12-S it defines a compact core (referred to as DCO+ core) that is spatially offset from the C18O maximum.

3. The emission from the high-density tracers in CG 12-N takes place at a velocity where emission from C18O is weak. The molecules associated with the cloud component detected in high-density tracers are likely to be heavily depleted.

4. Positive matrix factorization was applied to study the cloud C18O fine-scale structure. The observed strong C18O emission in CG 12-N (PMF factor 2n) originates in the envelope of the depleted cloud component or in a separate entity seen in the same line of sight. In CG 12-S the most intense PMF factor 3σ traces warm gas on the surface of the DCO+ core or a separate adjacent cloud component.

5. The driving source of the collimated molecular outflow detected by White (1993) lies in the DCO+ core.

6. The average C18O LTE mass is ~80 M_\odot for CG 12-N, ~70 M_\odot for CG 12-S, and ~20 M_\odot for CG 12-SW. These numbers can only be considered as a zeroth-order estimate because of the uncertainty in defining the C18O excitation temperature and possible molecular depletion in the C18O maxima.

7. If the distance to CG 12, 630 pc, is correct, the linear size and the mass of this cometary globule approaches that of a typical low-mass star-forming region like e.g. Chamaeleon I.

Acknowledgements. We thank Bo Reipurth for critically reading the manuscript and for very useful comments that helped to improve this paper. We also thank Mika Juvela and Kailevi Mattila for helpful discussions and Pentti Paatero for providing the PMF code. Data retrieved from the Canadian Astronomy Data Centre were used to produce the CO outflow contours in Fig. 9. The Canadian Astronomy Data Centre is operated by the Herzberg Institute of Astrophysics, National Research Council of Canada.

References

Arnal, E. M., Bajaja, E., Larrarte, J. J., Morras, R., & Pöppel, W. G. L. 2000, A&AS, 142, 35
Haikala, L. K., Harju, J., Mattila, K., & Toriseva, M. 2005, A&A, 431, 149
Haikala, L. K., Juvela, M., Harju, J., et al. 2006, A&A, 454, 171
Hartman, D., & Burton, W. B. 1997, Atlas of Galactic Neutral Hydrogen (Cambridge University Press)
Hawarden, T. G., & Brand, P. W. J. L. 1976, MNRAS, 175, 19P
Herbst, E. 1982, A&A, 111, 76
Herschel, J. F. W. 1847, Results of Astronomical Observations made during the years 1834, 5, 6, 7, 8 at the Cape of Good Hope (London: Smith, Elder)
Juvela, M., Lehtinen, K., & Paatero, P. 1996, MNRAS, 280, 616
Kalberla, P. M. W., Burton, W. B., Hartman, D., et al. 2005, A&A, 440, 775
Maheswar, G., Manoj, P., & Bhatt, H. C. 2004, MNRAS, 355, 1275
Odenwald, S. F. 1988, ApJ, 325, 320
Rawlings, J. M. C., Taylor, S. D., & Wijimas, D. A. 2000, MNRAS, 313, 461
Reipurth, B. 1983, A&A, 117, 183
Reipurth, B., Nyman, L.-Å., & Chini, R. 1996, A&A, 314, 258
Rohlfs, K., & Wilson, T. L. 1999, Tools of Radio Astronomy (Berlin: Springer)
Russel, D., Juvela, M., Lehtinen, K., Mattila, M., & Paatero, P. 2003, A&A, 409, 135
Tafalla, M., Myers, P. C., Caselli, P., Walshw, C. M., & Conito, C. 2002, ApJ, 569, 815
Santos, N. C., Yun, J. L., Santos, S. A., & Marreiros, R. G. 1998, AJ, 116, 1376
Warin, S., Benayoun, J. J., & Viala, Y. P. 1996, A&A, 308, 535
White, G. 1993, A&A, 274, L33
Williams, P. M., Brand, P. W. J. L., Longmore, A. J., & Hawarden, T. G. 1977, MNRAS, 181, 179
Yonekura, Y., Hayakawa, T., Mizuno, N., et al. 1999, PASJ, 51, 837
Online Material
Fig. 11. T_A^* channel map of the 13CO (1–0) emission in CG 12. The LSR velocity is indicated in the upper right corners of the panels. Each pixel corresponds to a single observed position. The highest intensity in the panels is ~ 3.0 K. The cross in the panels is located in the map’s centre position, $13^h57^m43.1^s, -39^\circ58'43.3''$ (J2000).
Fig. 12. As Fig. 11 but for the 18C1O (2–1) transition. The data shown in the figure is binned to the same channel width as the (1–0) data, 0.116 km s$^{-1}$. The colour scale is the same as in Fig. 11.
Appendix A: Positive matrix factorization analysis of CG 12

A.1. CG 12-N

The results of the PMF, assuming three factors, to observed C18O (1–0) and (2–1) data in CG 12-N are shown in Figs. A.1 and A.2. The uppermost panels show the three fitted PMF factors. The area under each factor is normalized to one. The histogram superposed on the rightmost factor in Fig A.2 indicates the velocity resolution of the input data. The intensity distribution of the PMF factors in CG 12-N is shown in the lower three panels.

The PMF reproduces the velocity structure displayed in Figs. 11 and 12 well. The fits to the C18O (1–0) and (2–1) data are independent of each other. Therefore it is encouraging that the PMF output factors for both C18O transitions are similar in velocity and in spatial distribution. Because of the unambiguity of the fits for both transitions the factors, centred at −6.6, −5.9 and −5.4 km s$^{-1}$, are referred to in the following as $1n$, $2n$, and $3n$, respectively.

The PMF factors, $1n$, $2n$, and $3n$, are distributed in a north-south oriented ridge, in a pear-shaped body and a narrow east-west ridge, respectively. The $3n$ factor lies at the velocity where the emission from the H13CO$^+$, DCO$^+$, and N$_2$H$^+$ is at its maximum. Even though this factor is not readily evident in the individual spectra, PMF finds it in both C18O transitions. Factors $2n$ and $3n$ are symmetric, but factor $1n$ has blue and redshifted wing-like emission, especially in the (1–0) transition. According to the PMF fit the high T_A^{kmol}(C18O (1−0))/T_A^{kmol}(C18O (2−1)) ratio observed in the direction of CG 12-N is due to the factor $2n$.

If the number of factors in the PMF is chosen to be four, PMF divides in essence the factor $1n$ into two, leaving the two other factors untouched. The spatial distribution of the split-up factors is similar to that of the $1n$ in the three-factor PMF. If the number of factors is increased further to five, the result is similar to that with four factors, plus a fifth factor which has nearly zero intensity, “empty” field, in the map. The three factors are therefore sufficient to produce the velocity structure evident in Fig. 11, and increasing the number of factors does not improve the fit significantly.

A.2. CG 12-S and CG 12-SW

The results of the PMF fits, assuming four factors, to both observed C18O transitions in CG 12-S are shown in Figs. A.3 and A.4. The location of the DCO$^+$ core is shown with a dashed
Fig. A.3. *Upper panel:* the basic spectral profiles calculated by the PMF in CG 12-S (four factor fit), 18O (1–0) data. *Lower panels:* the maps of the intensity of the basic factors. The factor numbers correspond to the numbers in the upper panel. The lowest contour level and increment is 0.2 K km s$^{-1}$. The dashed contour outlines the DCO$^+$ core.

Fig. A.4. As Fig. A.3 but for 18O (2–1) data.

contour in the figures. The factors, centred at -6.8, -6.4, -6.2, and -5.8 km s$^{-1}$, will be referred to as 1s to 4s, respectively.

The most redshifted factor 4s covers the very northern part of the region, and is close in velocity to the 2n factor in CG 12-N. It is natural to consider that this factor is due to emission extending from CG 12-N to CG 12-S. Also the very faint emission observed in the northern part of the field in other three factors is at least partly due to emission from CG 12-N.

The emission from the most blueshifted factor 1s is concentrated just below the (0,0) position. The 2s factor represents the arc which connects CG 12-S and CG 12-SW (Fig. 11). There is a small size, local maximum in the 18O (2–1) 2s factor north of the DCO$^+$ core. Even though this local maximum is not seen in the 18O (1–0) 2s factor, there is extended emission at its location. The southern part of the arc is more intense in the (1–0) transition than in the (2–1). The maximum of the southern extension coincides with CG 12-SW. The emission from the 3s factor peaks west of the DCO$^+$ core, and is seen in both transitions.

A.3. Individual line profiles

The PMF fits to the 18O lines in the same selected positions as in Fig. 5, are shown in Fig. A.5. The residuals obtained by subtracting the added up PMF factors from the observed lines are shown below the lines in the figure. A grey scale map of all the PMF fit residuals is shown in Fig. A.6. One should stress that, unlike a Gaussian multicomponent fit to a single spectrum, PMF fits, in this case 3 (CG 12-N) or 4 (CG 12-S) factors into all the input spectra simultaneously. Neither the shape nor the velocity of the factors is fixed in the fit. The two 18O transitions were fit separately, and PMF could have used factors differing in profile and velocity for the two transitions. The fitted PMF factors are, however, similar both in shape and velocity. The residuals shown in Figs. A.5 and A.6 are small, and demonstrate that PMF produces a good fit to the data.

The largest residual in Fig. A.5 takes place in the blue shifted side of the 18O (1–0) line in the centre of CG 12-N (position $-40\arcsec$, $160\arcsec$). This would imply that the blue shifted wing of factor 18O (1–0) 1n is too strong. A closer comparison of the input data and PMF results reveals that similar deviations take place for three other 18O (1–0) spectra around the position above. The 18O (1–0) line profiles farther away from the CG 12-N centre actually do have a more prominent blue shifted wing than the four above mentioned spectra. The large number of spectra with good fits outweighs the less optimal fit for the spectra in the centre of CG 12-N. The residuals shown in Fig. A.5 for the remaining four spectra in CG 12-S are smaller than in position ($-40\arcsec$, $160\arcsec$).
Fig. A.5. The PMF fit to the C\(^{18}\)O lines in the selected positions positions in Fig. 5. The observed C\(^{18}\)O (2\(-1\)) and (1\(-0\)) lines are plotted with a heavy histogram and line, respectively. The green and red lines show the fitted PMF C\(^{18}\)O (2\(-1\)) and (1\(-0\)) factors, respectively. The residuals of the fits are shown in the lower part of each panel.

Fig. A.6. The PMF fit residuals in the K km s\(^{-1}\) scale.