Neuroimaging Markers of Chronic Eye Diseases and Their Application Values

Chen-Yu Yu†, Rong Huang†, Shi-Qi Li† and Yi Shao*

Department of Ophthalmology, Jiangxi Province Ocular Disease Clinical Research Center, The First Affiliated Hospital of Nanchang University, Nanchang, China

In recent years, the impact of various chronic eye diseases on quality of life has become increasingly apparent. Therefore, it is particularly important to control the progress of chronic diseases at an early stage. Many studies have used neuroimaging methods to explore the effects of chronic eye diseases on the brain, and to identify changes in brain function that may act as markers for early diagnosis and treatment. This article reviews the clinical application of different techniques of functional magnetic resonance imaging in chronic eye diseases.

Keywords: magnetic resonance imaging, chronic eye diseases, markers, neurology, application

APPLICATION OF ALFF IN CHRONIC EYE DISEASES

As a resting-state functional magnetic resonance imaging (MRI) analysis tool, the amplitude of low-frequency fluctuation (ALFF) has high accuracy and repeatability and does not require definition of regions of interest (ROI) in advance. By calculating the root mean square of the blood oxygen level dependent (BOLD) signal power spectrum at low frequencies (0.01HZ−0.08HZ), the neuronal activity in different brain regions is expressed and is an indicator of spontaneous neuronal activity (1). The value of ALFF technology in detecting brain neuron activity has been confirmed in previous experiments (2). Changes in ALFF value reflect disease progression, in part and are widely used in the diagnosis and monitoring of eye diseases. ALFF markers for chronic eye disease are shown in Table 1, where the middle frontal gyrus (MFG) features prominently. However, changes in ALFF values at the MFG have implications that vary with disease. For example, in patients with monocular blindness (5) and neovascular glaucoma (10), ALFF changes at the MFG are related to visual perception impairment or compensation, while similar changes in diabetic vitreous hemorrhage (9) indicate visual motor disorder, and in strabismic amblyopia (7), diabetic retinopathy and nephropathy (8) they may indicate a tendency toward anxiety and depression.

APPLICATION OF DC IN CHRONIC EYE DISEASES

Voxel-wise degree centrality (DC) is another commonly used technique in resting state functional MRI technology. It assesses functional connectivity within the brain by measuring the topological structure of brain functional connectors at voxel level, and provides the correlation between different nodes and the importance of each node in the network structure (11). The degree of direct functional connection between two nodes can be expressed by DC values. A high DC value indicates a higher degree of direct connection between the node and other nodes. A change in DC values indicates a change in connectivity between the node and the network and clearly shows the state of each node (12). This method can be used to find any changes in brain functional connectivity in
chronic ocular disease, and the change may be an important marker for disease detection. Chronic diseases and their corresponding DC value markers are shown in Table 2.

APPLICATION OF REHO IN CHRONIC EYE DISEASES

Regional homogeneity (ReHo) is a widely used analytical method in resting state MRI, and plays an important role in exploring changes in local synchronization of voxels in brain regions (16). The analysis of ReHo is based on the measurement of voxels, and is used to measure the synchronization of adjacent regions based on the similarity between the time series of a given voxel and its nearest adjacent time series (calculated by the Kendall consistency coefficient of BOLD time series) (17). The coherence and centrality of regional brain activity are closely related to the ReHo values. ReHo is usually calculated in the low frequency range (0.01Hz–0.1Hz). Like ALFF, ReHo does not need a priori definition of ROI and can provide information about the activity of the whole brain. ReHo has been widely used in various studies to explore the local synchronization of spontaneous fMRI signals. In addition, the ReHo method is used in many studies of chronic eye diseases. Altered ReHo values can be used as a marker to monitor progress of various diseases, as shown by Table 3. ReHo measures at the inferior temporal gyrus (ITG) and the right cuneus (RC) are common markers for chronic eye disease. The significantly increased ReHo values of the ITG in concomitant exotropia (23) and monocular blindness (20) indicated the compensatory mechanism of visual function. In monocular blindness, the ReHo values of RC decrease significantly, indicating the interruption of synchronous neural activity. The RC also showed a decreased ReHo value in diabetic retinopathy (22), reflecting vision-related dysfunction in this area. In patients with anisometropic amblyopia (18), a clear increase in RC was related to the compensatory mechanism of eye movement.

APPLICATION OF FC IN CHRONIC EYE DISEASES

Functional connectivity (FC) is a seed-based or ROI-based functional connection, in which areas functionally related to activities in the seed area may be found (24). In seed-based analysis, cross-correlation is calculated between the time series of a selected brain region. Functional connections may be considered as brain areas which have been activated similarly, indicating that they have a similar role in brain functional activity. Physiologically, the relevant brain regions may not be directly connected by nerve fibers, but the connectivity matrix shows connection strength and range including indirect connections. Flexibility and sensitivity of this technique have resulted in it being widely used in the study of various brain functional diseases (25). The FC value indicates the intensity of activity and may be used to mark changes in brain functional activity caused by disease.

Application of the FC method as a marker in brain functional activity of chronic ophthalmopathy is shown in Table 4.

APPLICATION OF VBM IN CHRONIC EYE DISEASES

Voxel-based morphometry (VBM) is an MRI whole-brain analysis technique for measuring density and volume changes of gray and white matter at the voxel level, and is used to enhance understanding of the anatomical structure of the brain (30). In contrast with some other resting MRI techniques, VBM has no preset region of interest, it detects changes in neural activity across all parts of the brain, and is an objective measure so is minimally influenced by subjective factors. The VBM approach filters the white and gray matter areas with statistically significant activity by comparing the processed MRI images (31), and can
be used to detect pathological changes of brain function caused by disease. Changes of this kind have been found to accompany progression of many ophthalmic diseases, as shown in Table 5.

APPLICATION OF VMHC IN CHRONIC EYE DISEASES

Voxel-mirrored homotopic connectivity (VMHC) is a new resting-state FC analysis method to measure the functional connection between hemispheres (36). This method can detect abnormal functional activity in local brain areas and changes of functional connection and synchronization of neural activity between corresponding regions in bilateral cerebral hemispheres at rest, which shows that the degree of separation of cerebral hemispheres is its outstanding advantage. The normal human brain generally has the characteristic of high synchronization of spontaneous nerve activity in homotopic regions between hemispheres. Many studies have confirmed that this characteristic may be generally destroyed in patients with chronic eye diseases, suggesting that hemorrhagic dysfunction

TABLE 2 Application of DC in chronic eye diseases.

Disease	Year	Increased DC values	Decreased DC values
Comitant exotropia strabismus (13)	2018	RSTG, BAC, LIP	RCP, RIFG, RMFG, RSM/PST
Diabetic nephotrophy and retinopathy (14)	2019	BP	RITG, LSG
Monocular blindness (15)	2019	LTG, BMFG	BC/V1/V2

TABLE 3 Application of ReHo in chronic eye diseases.

Disease	Year	Increased ReHo values	Decreased ReHo values
Anisometropic amblyopia (16)	2012	RINS/PUT, LSTG, LpcGSP, LFG, RMFG	LC, LMPC, LIFG, LCG
Comitant strabismus (19)	2016	RITG/RCAL, RLG, BCG	–
Monocular blindness (20)	2017	RTG, RMFG, RLG, RC, RAC	LFG
Strabismus and amblyopia (21)	2019	LLG, RMFG/RPG, BAC, LMOG, BPG	LFG
Diabetic retinopathy (22)	2019	RCP, LCP, RAC, RC, BP	LMBG
Comitant exotropia (23)	2019	RV2	LBA47

TABLE 4 Application of FC in chronic eye diseases.

Disease	Year	Increased FC values	Decreased FC values
Anisometropic amblyopia (26)	2013	Lpost, LPL/MFG	BC, BIP, LAL, LMF/PLG
Comitant exotropia (27)	2018	–	RMOG, LPMG/RPG, RPL/PBG
Comitant strabismus (28)	2019	PPV/C, BA19, BA6	–
Neovascular Glaucoma (29)	2020	BMFG	LPL, BC
Strabismus (30)	2021	BC, BC/RPL, LIOG, ROG	LPG, BPL/PBG

TABLE 5 Application of VBM in chronic eye diseases.

Disease	Year	Altered WMV values	Altered GMV values
Adult strabismus (32)	2004	–	OEF, PEF, PEF, SFT, PFC, SR
Amblyopia (33)	2005	–	C/PC, PMPQ, LPG, VTC
Comitant strabismus (34)	2017	LMTG, RMTG, RP, RPL/RC	LMTG/LPG, LPG, LPC, LC, LPC
Monocular blindness (35)	2019	–	RSM, RL, LI, RAC, LMOG, RPL

LpostG, left postcentral gyrus; LPL/MFG, left paracentral lobule and the middle frontal gyrus; BC, bilateral cerebellum; BIP/LAL, bilateral inferior parietal lobe and the angular lobe; LMF/PLG, left middle frontal gyrus and the premotor gyrus; LLG/RPL, left lingual gyrus/cerebellum posterior lobe; RMOG, right middle occipital gyrus; LPMG, left primary visual cortex; BA, Brodmann area.
plays an important role in brain dysfunction in patients with chronic eye diseases. Using VMHC, this loss of synchrony has been demonstrated in patients with diseases of this kind, as shown in Table 6.

APPLICATION OF OTHER TECHNIQUES IN CHRONIC EYE DISEASES

The fractional amplitude of low-frequency fluctuation (fALFF) provides a measure of inherent spontaneous brain activity (41). Measurement of fALFF values need to be carried out within a specified frequency range, and spontaneous brain activity can be expressed by the measurement of cerebral blood flow at the amplitude of low frequency oscillation (0.01–0.08 Hz) (42). The FALFF technique has the advantages of high sensitivity and specificity and is non-invasive, so it is widely used in brain functional activity imaging. Diffusion tensor imaging (DTI) is a widely used MRI method, which describes the diffusion direction of water as average diffusion coefficient (MD; diffusion within voxels) and fractional anisotropy (FA) (43). The overall extent of water diffusion may also be displayed. On the basis of eigenvalues ($\lambda_1, \lambda_2, \lambda_3$) of diffusion tensor, scalar values ranging from 0 to 1 can be obtained. These are the FA values, which measure the overall directionality of water diffusion and the complexity of cytoskeleton structure, of great significance to the movement of water inside and outside of cells (44). Changes in direction of water diffusion help understand the pathologic changes of myelin and other related brain tissues. On this basis, some studies have explored the application of DTI in eye diseases, and the value of DTI can show the changes of connectivity in the brain network and the state changes of each node, so as to show the correlation of each network structure (45, 46). In summary, each magnetic resonance imaging technique has its own characteristics. To summarize the above, both ALFF and fALFF show regional differences in the brain, with high accuracy and repeatability, and do not need to pre-define regions of interest (ROI) (1). While fALFF makes improvements in noise reduction on the basis of ALFF (47), it is more sensitive to showing the changes of connectivity in the brain network structure and the state changes of each node, so as to show the correlation of each network structure (11, 12). Both ReHo and FC can show the temporal distribution of voxels in brain functional regions (17, 25). ReHo focuses on describing the consistency within regions, while FC focuses on describing the synchronization between regions, but neither of them directly describes the intensity of brain activity in a certain region, that is, activity detection cannot be carried out. VMHC, as a new static FC analysis method, is more sensitive to the changes of functional synchronization between the two hemispheres of the brain (36). VBM focuses on exploring the changes of brain anatomy (51); DTI has irreplaceable advantages in understanding the complex cytoskeleton structure and other fine structures of the brain (43).

TABLE 6 | Application of VMHC in chronic eye diseases.

Disease	Year	Increased VMHC values	Decreased VMHC values
Early blindness (37)	2017		PVC, VAC, SAC
Monocular blindness (38)	2018	L, LMFG	LC/C/LG, RC/C/LG, RP/MC/PS, RSPL
Comitant exotropia (39)	2018	STG, MFG	PreG, IPL, SPL
Diabetic retinopathy and nephropathy (40)	2020		BMGT, BMOG, BMFG

LC/C/LG, left cuneus/calcarine/lingual gyrus; L, left insula; LMFG, left middle frontal gyrus; RC/C/LG, right cuneus/calcarine/lingual gyrus; RPMC/PS, right primary motor cortex (M1)/primary somatosensory cortex (SI); RSPL, right superior parietal lobe; BMFG, bilateral medial frontal gyrus; STG, superior temporal gyrus; PreG, precentral gyrus; IPL, inferior parietal lobule; SPL, superior parietal lobule; BMOG, bilateral middle occipital gyrus; BMGT, bilateral medial frontal gyrus; PVC, primary visual cortex; VAC, visual association cortex; SAC, somatosensory association cortex.

TABLE 7 | Application of other techniques in chronic eye diseases.

Disease	Year	fALFF	
		Increased fALFF values	Decreased fALFF values
Monocular blindness (45)	2020	LP, RPI, LPI	LAC
Neovascular glaucoma (46)	2021	LP	RRO, LAC, RC
Disease	Year	fALFF	
		Increased DTI values	Decreased DTI values
Amblyopia (47)	2013	PC	
Comitant strabismus (48)	2016	LSTG	BMFG, RGP/B, BP
Disease	Year	fALFF	
		Increased ASL values	Decreased ASL values
Comitant exophoria (49)	2018	RHP, BMFG/ACC, LIFG, RIFG, LSFG, BMCC, RMFG, RPL	

LP, left precuneus; RPI, right inferior parietal lobes; LPI, left inferior parietal lobes; LAC, left anterior cingulate; RRO, right rolandic operculum; RC, right caudate; LSTG, left superior temporal gyrus; BMFG, bilateral medial frontal gyrus; RGP/B, right globus pallidus/branestem; BP, bilateral precuneus; RHP, right parahippocampal; ACC, anterior cingulate cortex; LIFG, left inferior frontal gyrus; RIFG, right inferior frontal gyrus; LSFG, left superior frontal gyrus; BMCC, bilateral medial cingulate cortex; RPL, right paracentral lobule; PC, prechiasmatic region.
ASL can track the changes of local blood flow in eye diseases and improve the accuracy of diagnosis. In recent years, MRI has been increasingly widely used to explore disease-related changes in brain activity and functional connections. It provides a useful imaging index for understanding the mechanism and monitoring the progress of pathological changes in disease. Its role as a disease marker has been confirmed in many studies. Most chronic eye diseases are characterized by occult and chronic progression, which easily leads to missed diagnosis and misdiagnosis. Using MRI, changes in spontaneous brain activity which occur with eye diseases may be detected at an early stage and monitored, and then accurately locate the brain region where lesions occur, and combine clinical symptoms based on the consistent physiological functions of different brain regions to improve the accuracy of diagnosis, aiding both early diagnosis and treatment of chronic eye diseases. However, the application of magnetic resonance imaging as a marker in chronic eye diseases has some limitations, since physiological and hardware-related factors may affect the experimental results. In addition, due to overlapping functions of different brain regions, it may not be possible to accurately locate the affected areas of the diseased brain. Despite these limitations, MRI technology has great potential and scope to provide indicators of onset and progression of chronic eye diseases. With the continuous progress of technology, MRI technology will usher in a broader range of applications, increasing the scope for exploration of chronic eye diseases.

AUTHOR CONTRIBUTIONS

C-YY was responsible for the writing of the manuscript. RH was responsible for data analysis and the later submission. SQ-L was responsible for collecting and screening the data. YS was responsible for the revision of the paper. All authors contributed to the article and approved the submitted version.

FUNDING

The Central Government Guides Local Science and Technology Development Foundation (2021ZDG02003); Key Research Foundation of Jiangxi Province (No: 20181BBG70004); Excellent Talents Development Project of Jiangxi Province (20192BCBL23020); Natural Science Foundation of Jiangxi Province (20181BAB205034); Grassroots Health Appropriate Technology Spark Promotion Plan Project of Jiangxi Province (No: 20188003); Health Development Planning Commission Science Foundation of Jiangxi Province (No: 20201032); Health Development Planning Commission Science TCM Foundation of Jiangxi Province (No: 2018A060).

REFERENCES

1. Zuo XN, Di Martino A, Kelly C, Shohzad ZE, Gee DG, Klein DF, et al. The oscillating brain: complex and reliable. *Neuroimage*. (2010) 49:1432–45. doi: 10.1016/j.neuroimage.2009.09.037
2. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. *Nature*. (2001) 412:150–7. doi: 10.1038/35084005
3. Huang X, Zhou FQ, Hu YX, Xu XX, Zhou X, Zhong YL, et al. Altered spontaneous brain activity pattern in patients with high myopia using amplitude of low-frequency fluctuation: a resting-state fMRI study. *Neuropsychiatr Dis Treat*. (2016) 12:2949–56. doi: 10.2147/NDT.S118326
4. Wang ZL, Zou L, Lu ZW, Xie XQ, Jia ZZ, Pan CJ, et al. Abnormal spontaneous brain activity in type 2 diabetic retinopathy revealed by amplitude of low-frequency fluctuations: a resting-state fMRI study. *Clin Radiol*. (2017) 72:40.e1–7. doi: 10.1016/j.crad.2016.11.012
5. Li Q, Huang X, Ye L, Wei R, Zhang Y, Zhong YL, et al. Altered spontaneous brain activity pattern in patients with late monocular blindness in middle-age using amplitude of low-frequency fluctuation: a resting-state functional MRI study. *Clin Interv Aging*. (2016) 11:1773–80. doi: 10.2147/CIJ.S117292
6. Tan G, Huang X, Zhang Y, Wu AH, Zhong YL, Wu K, et al. A functional MRI study of altered spontaneous brain activity pattern in patients with congenital comitant strabismus using amplitude of low-frequency fluctuation. *Neuropsychiatr Dis Treat*. (2016) 12:1243–50. doi: 10.2147/NDT.S104756
7. Min YL, Su T, Shu YQ, Liu WF, Chen LL, Shi WQ, et al. Altered spontaneous brain activity patterns in strabismus with amblyopia patients using amplitude of low-frequency fluctuation: a resting-state fMRI study. *Neuropsychiatr Dis Treat*. (2018) 14:2351–9. doi: 10.2147/NDT.S171462
8. Wang Y, Shao Y, Shi WQ, Jiang L, Wang XY, Zhu PW, et al. The predictive potential of altered spontaneous brain activity patterns in diabetic retinopathy and nephropathy. *EPMA J*. (2019) 10:249–59. doi: 10.1007/s13167-019-00171-4
9. Shi WQ, Tang LY, Lin Q, Li B, Jiang N, Zhu PW, et al. Altered spontaneous brain activity patterns in diabetic patients with vitreous hemorrhage using amplitude of low-frequency fluctuation: a restingstate fMRI study. *Mol Med Rep*. (2020) 22:22291–9. doi: 10.3892/mmr.2020.11294
10. Peng ZY, Liu YX, Li B, Ge QM, Liang RB, Li QY, et al. Altered spontaneous brain activity patterns in patients with neovascular glaucoma using amplitude of low-frequency fluctuations: a functional magnetic resonance imaging study. *Brain Behav*. (2021) 1:e02018. doi: 10.1002/brb3.2018
11. Wu GR, Stramaglia S, Chen H, Liao W, Marinazzo D. Mapping the voxel-wise effective connectome in resting state fMRI. *PLoS ONE*. (2013) 8:e73670. doi: 10.1371/journal.pone.0073670
12. Xu QH, Li QY, Yu K, Ge QM, Shi WQ, Li B, et al. Altered brain network centrality in patients with diabetic optic neuropathy: a resting-state fmri study. *Endocr Pract*. (2020). doi: 10.4158/EP-2020-0045
13. Tan G, Dan ZR, Zhang Y, Huang X, Zhong YL, Ye LH, et al. Altered brain network centrality in patients with adult comitant exotropia strabismus: A resting-state fMRI study. *J Int Med Res*. (2018) 46:392–402. doi: 10.1177/03000605177715340
14. Wang Y, Jiang L, Wang XY, Chen W, Shao Y, Chen QK, et al. Evidence of altered brain network centrality in patients with diabetic nephropathy and retinopathy: an fMRI study using a voxel-wise degree centrality approach. *Ther Adv Endocrinol Metab*. (2019) 10:2042018819865723. doi: 10.1177/2042018819865723
15. Huang X, Li HJ, Peng DC, Ye L, Yang QC, Zhong YL, et al. Altered brain network centrality in patients with late monocular blindness: a resting-state fMRI study. *Arch Med Sci*. (2019) 15:1301–7. doi: 10.5114/ams.2019.87133
16. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. *Neuroimage*. (2004) 22:394–400. doi: 10.1016/j.neuroimage.2003.12.030
17. Tononi G, McIntosh AR, Russell DP, Edelman GM. Functional clustering: identifying strongly interactive brain regions in neuroimaging data. *Neuroimage*. (1998) 7:133–49. doi: 10.1006/nimg.1997.0313
18. Lin X, Ding K, Liu Y, Yan X, Song S, Jiang T. Altered spontaneous activity in anisometric amblyopia subjects: revealed by resting-state fMRI. *PLoS ONE*. (2012) 7:e43373. doi: 10.1371/journal.pone.0043373
19. Huang X, Li SH, Zhou FQ, Zhang Y, Zhong YL, Cai FQ, et al. Altered intrinsic regional spontaneous activity in patients with comitant strabismus: a resting-state functional MRI study. *Neuropsychiatr Dis Treat*. (2016) 12:1303–8. doi: 10.2147/NDT.S105478
26. Ding K, Liu Y, Yan X, Lin X, Jiang T. Altered functional connectiv-ity of the primary visual cortex in patients with retinal vein occlusion: a resting-state fMRI study. *Quant Imaging Med Surg.* (2020) 10:958–69. doi: 10.21037/qims.2020.03.24

27. Shi WQ, He Y, Li QH, Tang LY, Li B, Lin Q, et al. Altered intrinsic functional connectivity of the primary visual cortex in patients with comitant strabismus: a resting-state fMRI study. *Acta Radiol.* (2021) 10:265–33. doi: 10.1177/0284185120983978

28. Ouyang J, Yang L, Huang X, Zhong YL, Hu PH, Zhang Y, et al. Neuroimaging markers of chronic eye diseases. *Current Eye Research.* (2019) 44:1386–92. doi: 10.1080/02713683.2019.1639767

29. Malldján IA, Davenport EM, Whitlow CT. Graph theoretical analysis of resting-state MEG data: Identifying interhemispheric connectivity and the default mode. *NeuroImage.* (2014) 96:88–94. doi: 10.1016/j.neuroimage.2014.03.065

30. Su T, Yuan Q, Liao XL, Shi WQ, Zhou ZX, Lin Q, et al. Altered intrinsic functional connectivity of the primary visual cortex in patients with retinal vein occlusion: a resting-state fMRI study. *Quant Imaging Med Surg.* (2020) 10:958–69. doi: 10.21037/qims.2020.03.24

31. Ding K, Liu Y, Yan X, Lin X, Jiang T. Altered functional connectivity of the primary visual cortex in subjects with amblyopia. *Neural Plast.* (2013) 2013:612086. doi: 10.1153/2013.612086

32. Zhu PW, Huang X, Ye L, Jiang N, Zhong YL, Yuan Q, et al. Altered intrinsic functional connectivity of the primary visual cortex in young patients with comitant exotropia: a resting state fMRI study. *Int J Ophthalmal.* (2018) 11:668–73.

33. Yan X, Wang Y, Xu L, Liu Y, Song S, Ding K, et al. Altered functional connectivity of the primary visual cortex in adult comitant strabismus: a resting-state functional MRI study. *Curr Eye Res.* (2019) 44:316–23. doi: 10.1080/02713683.2018.1540642

34. Wu YY, Wang SE, Zhu PW, Yuan Q, Shi WQ, Lin Q, et al. Altered intrinsic functional connectivity of the primary visual cortex in patients with neovascular glaucoma: a resting-state functional magnetic resonance imaging study. *Neuropsychiatr Dis Treat.* (2020) 16:25–33. doi: 10.2147/NPT.S228606

35. Yu K, Lin Q, Ge QM Yu CY, Li QY, Pan YC, et al. Measuring functional connectivity in patients with strabismus using stationary functional magnetic resonance imaging: a resting-state network study. *Acta Radiol.* (2021) 10:284185120983978. doi: 10.1177/0284185120983978

36. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. *Neuroimage.* (2000) 11:805–21. doi: 10.1006/nimg.2000.0582

37. Shao Y, Bao J, Huang X, Zhou FQ, Ye L, Min YL, et al. Comparative study of interhemispheric functional connectivity in left eye monocular blindness versus right eye monocular blindness: a resting-state functional MRI study. *Oncotarget.* (2018) 9:14285–95. doi: 10.18632/oncotarget.24487

38. Zuo XN, Kelly C, Di Martino A, Mennes M, Margulies DS, Bandu R, et al. Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. *J Neurosci.* (2010) 30:15034–43. doi: 10.1523/JNEUROSCI.2612-10.2010

39. Hou F, Liu X, Zhou Z, Zhou J, Li H. Reduction of interhemispheric functional brain connectivity in early blindness: a resting-state fMRI study. *Biomed Res Int.* (2017) 2017:6756927. doi: 10.1155/2017/6756927

40. Shao Y, Bao J, Huang X, Zhou FQ, Ye L, Min YL, et al. Comparative study of interhemispheric functional connectivity in left eye monocular blindness versus right eye monocular blindness: a resting-state functional MRI study. *Oncotarget.* (2018) 9:14285–95. doi: 10.18632/oncotarget.24487

41. Guo Z, Liu X, Li J, Wei F, Hou H, Chen X, et al. Fractional amplitude of low-frequency fluctuations disrupted in Alzheimer’s disease with depression. *Clin Neurophysiol.* (2017) 128:1344–9. doi: 10.1016/j.clinph.2017.05.003

42. Hou F, Liu X, Zhou Z, Zhou J, Li H. Reduction of interhemispheric functional connectivity in early blindness: a resting-state fMRI study. *Endocr Pract.* (2020) 26:929–8. doi: 10.1016/j.endopr.2019.05.003

43. Guo Z, Liu X, Li J, Wei F, Hou H, Chen X, et al. Fractional amplitude of low-frequency fluctuations in patients with monocular blindness: a functional magnetic resonance imaging (fMRI) study. *Med Sci Monit.* (2020) 26:e926224. doi: 10.12659/MSM.926224

44. Zhang YQ, Peng MY, Wu SN, Yu CY, Chen SY, Tan SW, et al. Fractional amplitude of low-frequency fluctuation in patients with neovascular glaucoma: a resting-state functional magnetic resonance imaging study. *Quant Imaging Med Surg.* (2021) 10:855. doi: 10.21037/qims-20-855

45. Huisum S, Altintas Ö, Anik Y, Kaya A, Altintas L, Inan N, et al. Anterior visual pathways in amblyopia: quantitative assessment with diffusion tensor imaging. *J Pediatr Ophthalmol Strabismus.* (2013) 50:369–74. doi: 10.3928/01913913-20131105-04

46. Huang X, Li HJ, Zhang Y, Deng DC, Hu PH, Zhong YL, et al. Microstructural changes of the whole brain in patients with comitant strabismus—evidence from a diffusion tensor imaging study. *Neuropsychiatr Dis Treat.* (2016) 12:2007–14. doi: 10.2147/NPT.S108834

47. Huang X, Zhou S, Su T, Ye L, Zhu PW, Shi WQ, et al. Resting cerebral blood flow alterations specific to the comitant exophoria patients revealed by arterial spin labeling perfusion magnetic resonance imaging. *Microvasc Res.* (2018) 120:67–73. doi: 10.1016/j.mvr.2018.06.007

48. Wallis I, Ellis L, Suh K, Pfenninger KH, et al. Immunolocalization of a neuronal growth-dependent membrane glycoprotein. *J Cell Biol.* (1985) 101:1990–8. doi: 10.1083/jcb.101.5.1990

49. Palaniyappan L, Maanay N, Bergman H, Davenport C, Adams CE, Soares-Weiser K. Voxel-based morphometry for separation of schizophrenia from other types of psychosis in first episode psychosis. *Cochrane Database Syst Rev.* (2015) 8:CD011021. doi: 10.1002/14651858.CD011021.pub2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.