INEQUALITIES FOR \(\log -\)CONVEX FUNCTIONS VIA THREE TIMES DIFFERENTIABILITY

MERVE AVCI ARDIÇ, AND M. EMIN ÖZDEMIR

Abstract. In this paper, we obtain some new integral inequalities like Hermite-Hadamard type for third derivatives absolute value are \(\log -\)convex. We give some applications to quadrature formula for midpoint error estimate.

1. INTRODUCTION

We shall recall the definitions of convex functions and \(\log -\)convex functions:

Let \(I \) be an interval in \(\mathbb{R} \). Then \(f : I \to \mathbb{R} \) is said to be convex if for all on \(x, y \in I \) and all \(\alpha \in [0, 1] \),

\[
f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y)
\]

(1.1)

holds. If (1.1) is strict for all \(x \neq y \) and \(\alpha \in (0, 1) \), then \(f \) is said to be strictly convex. If the inequality in (1.1) is reversed, then \(f \) is said to be concave. If it is strict for all \(x \neq y \) and \(\alpha \in (0, 1) \), then \(f \) is said to be strictly concave.

A function is called \(\log -\)convex or multiplicatively convex on a real interval \(I = [a, b] \), if \(\log f \) is convex, or, equivalently if for all \(x, y \in I \) and all \(\alpha \in [0, 1] \),

\[
f(\alpha x + (1 - \alpha)y) \leq f(x)^\alpha + f(y)^{(1-\alpha)}
\]

(1.2)

It is said to be \(\log -\)concave if the inequality in (1.2) is reversed.

For some results for \(\log -\)convex functions see [1]-[4].

The following inequality is called Hermite-Hadamard inequality for convex functions:

Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a convex function on the interval \(I \) of real numbers and \(a, b \in I \) with \(a < b \). Then double inequality

\[
f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}
\]

holds.

The main purpose of this paper is to obtain some new integral inequalities like Hermite-Hadamard type for third derivatives absolute value are \(\log -\)convex.

In order to prove our main results for \(\log -\)convex functions we need the following Lemma from [5]:

\[\text{Key words and phrases.} \ \log -\)convex functions, Convexity, Hermite-Hadamard inequality, Hölder's integral inequality, Power-mean integral inequality.\]

\[\text{Corresponding Author.}\]
Lemma 1. Let \(f : I \subset \mathbb{R} \to \mathbb{R} \) be a three times differentiable mapping on \(I^o \) and \(a, b \in I^o \) with \(a < b \). If \(f^{(3)} \in L_1([a, b]) \), then

\[
\frac{1}{b-a} \int_a^b f(x)dx - f \left(\frac{a+b}{2} \right) - \frac{(b-a)^2}{24} f'' \left(\frac{a+b}{2} \right) = \frac{(b-a)^3}{96} \left[\int_0^1 t^3 f^{(3)} \left(\frac{t}{2} a + \frac{2-t}{2} b \right) dt - \int_0^1 t^3 f^{(3)} \left(\frac{2-t}{2} a + \frac{t}{2} b \right) dt \right].
\]

2. INEQUALITIES FOR log–CONVEX FUNCTIONS

We shall start the following result:

Theorem 1. Let \(f : I \to [0, \infty) \), be a three times differentiable mapping on \(I^o \) such that \(f''' \in L[a, b] \) where \(a, b \in I^o \) with \(a < b \). If \(|f'''| \) is log–convex on \([a, b] \), then the following inequality holds:

\[
\left| \frac{1}{b-a} \int_a^b f(x)dx - f \left(\frac{a+b}{2} \right) - \frac{(b-a)^2}{24} f'' \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left(|f'''(b)| \mu_K + |f'''(a)| \mu_M \right)
\]

where

\[
\mu_K = \frac{2K}{(ln K)^2} + \frac{48K}{(ln K)^4} + \frac{96}{(ln K)^6},
\]

\[
\mu_M = \frac{2M}{(ln M)^2} + \frac{48M}{(ln M)^4} + \frac{96}{(ln M)^6}
\]

and

\[
K = \frac{|f'''(a)|}{|f''(a)|}, \quad M = \frac{|f'''(b)|}{|f''(b)|}.
\]

Proof. From Lemma[1] property of the modulus and log–convexity of \(|f'''| \) we have

\[
\left| \frac{1}{b-a} \int_a^b f(x)dx - f \left(\frac{a+b}{2} \right) - \frac{(b-a)^2}{24} f'' \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left\{ \int_0^1 t^3 \left| f''' \left(\frac{t}{2} a + \frac{2-t}{2} b \right) \right| dt + \int_0^1 t^3 \left| f''' \left(\frac{2-t}{2} a + \frac{t}{2} b \right) \right| dt \right\}
\]

\[
\leq \frac{(b-a)^3}{96} \left\{ \int_0^1 t^3 \left| f'''(a) \right|^{\frac{1}{2}} \left| f''(b) \right|^{\frac{1}{2}} dt + \int_0^1 t^3 \left| f'''(b) \right|^{\frac{1}{2}} \left| f''(a) \right|^{\frac{1}{2}} dt \right\}
\]

\[
= \frac{(b-a)^3}{96} \left\{ |f'''(b)| \int_0^1 t^3 \left[\frac{|f''(a)|}{|f''(b)|} \right]^{\frac{1}{2}} dt + |f'''(a)| \int_0^1 t^3 \left[\frac{|f''(b)|}{|f''(a)|} \right]^{\frac{1}{2}} dt \right\}.
\]

The proof is completed by making use of the necessary computation. \(\square \)

Corollary 1. Let \(\mu_K, \mu_M, K, M \) be defined as in Theorem[1]. If we choose \(f'' \left(\frac{a+b}{2} \right) = 0 \) in Theorem[1] we obtain the following inequality

\[
\left| \frac{1}{b-a} \int_a^b f(x)dx - f \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left(|f'''(b)| \mu_K + |f'''(a)| \mu_M \right).
\]
Theorem 2. Let \(f : I \to [0, \infty) \), be a three times differentiable mapping on \(I \) such that \(f''' \in L[a, b] \) where \(a, b \in I \) with \(a < b \). If \(|f'''|^q \) is log–convex on \([a, b]\), then the following inequality holds for some fixed \(K \):

\[
\left| \frac{1}{b-a} \int_a^b f(x) \, dx - f \left(\frac{a+b}{2} \right) - \frac{(b-a)^2}{24} f'' \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left\{ \left(\int_0^1 t^{3p} \, dt \right)^{\frac{q}{p}} \left(\int_0^1 |f'''(t)|^q \, dt \right)^{\frac{1}{q}} \right\}
\]

where \(K = \frac{|f'''(a)|}{|f'''(b)|} \), \(M = \frac{|f'''(b)|}{|f'''(a)|} \) and \(\frac{1}{p} + \frac{1}{q} = 1 \).

Proof. From Lemma 1 and using the Hölder’s integral inequality, we obtain

\[
\left| \frac{1}{b-a} \int_a^b f(x) \, dx - f \left(\frac{a+b}{2} \right) - \frac{(b-a)^2}{24} f'' \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left\{ \left(\int_0^1 t^{3p} \, dt \right)^{\frac{q}{p}} \left(\int_0^1 |f'''(a)|^q \, dt \right)^{\frac{1}{q}} \right\}
\]

where \(K = \frac{|f'''(a)|}{|f'''(b)|} \), \(M = \frac{|f'''(b)|}{|f'''(a)|} \) and \(\frac{1}{p} + \frac{1}{q} = 1 \).

If we use the log-convexity of \(|f'''|^q \) above, we can write

\[
\left| \frac{1}{b-a} \int_a^b f(x) \, dx - f \left(\frac{a+b}{2} \right) - \frac{(b-a)^2}{24} f'' \left(\frac{a+b}{2} \right) \right| \leq \frac{(b-a)^3}{96} \left\{ \left(\int_0^1 t^{3p} \, dt \right)^{\frac{q}{p}} \left(\int_0^1 |f'''(a)|^q \, dt \right)^{\frac{1}{q}} \right\}
\]

where \(K = \frac{|f'''(a)|}{|f'''(b)|} \), \(M = \frac{|f'''(b)|}{|f'''(a)|} \) and \(\frac{1}{p} + \frac{1}{q} = 1 \).

The proof is completed. \(\square \)
Corollary 2. Let K and M be defined as in Theorem 2. If we choose $f'' \left(\frac{a+b}{2} \right) = 0$ in Theorem 2 we obtain the following inequality

$$
\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f \left(\frac{a+b}{2} \right) \right| \\
\leq \frac{(b-a)^{3}}{96} \left(\frac{1}{3p+1} \right)^{\frac{1}{2}} \left\{ |f'''(b)| \left(\frac{2}{q \ln K} \left[K^{\frac{q}{q}} - 1 \right] \right)^{\frac{1}{q}} + |f'''(a)| \left(\frac{2}{q \ln M} \left[M^{\frac{q}{q}} - 1 \right] \right)^{\frac{1}{q}} \right\}
$$

where $q > 1$, $\frac{1}{p} + \frac{1}{q} = 1$.

Theorem 3. Let $f : I \to [0, \infty)$, be a three times differentiable mapping on I° such that $f''' \in L[a,b]$ where $a, b \in I^{\circ}$ with $a < b$. If $|f'''|^{q}$ is log-convex on $[a, b]$, then the following inequality holds for some fixed $q \geq 1$, then the following inequality holds:

$$
\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f \left(\frac{a+b}{2} \right) \right| \\
\leq \frac{(b-a)^{3}}{96} \left(\frac{1}{4} \right)^{1-\frac{1}{q}} \left\{ |f'''(b)| \left(\mu_{K,q} \right)^{\frac{1}{q}} + |f'''(a)| \left(\mu_{M,q} \right)^{\frac{1}{q}} \right\}
$$

where

$$
\mu_{K,q} = \frac{2K^{\frac{q}{q}} + 48K^{\frac{q}{q}} (q \ln K - 6)}{(q \ln K)^{2} + \frac{96}{(q \ln K)^{2}}},
$$
$$
\mu_{M,q} = \frac{2M^{\frac{q}{q}} + 48M^{\frac{q}{q}} (q \ln M - 6)}{(q \ln M)^{2} + \frac{96}{(q \ln M)^{2}}}
$$

and

$$
K = \frac{|f'''(a)|}{|f'''(b)|} \quad M = \frac{|f'''(b)|}{|f'''(a)|}
$$

Proof. From Lemma 2 using the well-known power-mean integral inequality and log-convexity of $|f'''|^{q}$ we have

$$
\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f \left(\frac{a+b}{2} \right) \right| \\
\leq \frac{(b-a)^{3}}{96} \left\{ \left(\int_{0}^{1} t^{3} dt \right)^{1-\frac{1}{q}} \left(\int_{0}^{1} t^{3} \left| f''' \left(\frac{t}{2}a + \frac{2-t}{2}b \right) \right|^{q} dt \right)^{\frac{1}{q}} + \left(\int_{0}^{1} t^{3} dt \right)^{1-\frac{1}{q}} \left(\int_{0}^{1} t^{3} \left| f''' \left(\frac{t}{2}b + \frac{2-t}{2}a \right) \right|^{q} dt \right)^{\frac{1}{q}} \right\}
$$

$$
\leq \frac{(b-a)^{3}}{96} \left\{ \left(\int_{0}^{1} t^{3} dt \right)^{1-\frac{1}{q}} \left(\int_{0}^{1} t^{3} \left| f'''(a) \right|^{\frac{q}{2}} \left| f'''(b) \right|^{q-\frac{q}{2}} dt \right)^{\frac{1}{q}} + \left(\int_{0}^{1} t^{3} dt \right)^{1-\frac{1}{q}} \left(\int_{0}^{1} t^{3} \left| f'''(b) \right|^{\frac{q}{2}} \left| f'''(a) \right|^{q-\frac{q}{2}} dt \right)^{\frac{1}{q}} \right\}.
$$

The proof is completed by making use of the necessary computation. \square
Corollary 3. Let $\mu_{K,q}, \mu_{M,q}$, K and M be defined as in Theorem 3. If we choose $f''(\frac{a+b}{2}) = 0$ in Theorem 3, we obtain the following inequality
\[
\left| \frac{1}{b-a} \int_a^b f(x)dx - f\left(\frac{a+b}{2}\right) \right| \leq \frac{(b-a)^3}{96} \left(\frac{1}{4} \right)^{1-\frac{1}{q}} \left\{ |f'''(b)| \left(\mu_{K,q} \right)^{\frac{1}{q}} + |f'''(a)| \left(\mu_{M,q} \right)^{\frac{1}{q}} \right\}.
\]

Corollary 4. From Corollaries 3, 4, we have
\[
\left| \frac{1}{b-a} \int_a^b f(x)dx - f\left(\frac{a+b}{2}\right) \right| \leq \min \{ \chi_1, \chi_2, \chi_3 \}
\]
where
\[
\chi_1 = \frac{(b-a)^3}{96} \left\{ |f'''(b)| \frac{2K^{\frac{1}{q}}(\ln K - 6)}{(\ln K)^2} + \frac{48K^{\frac{1}{q}}(\ln K - 2)}{(\ln K)^4} + \frac{96}{(\ln K)^4} \right\},
\]
\[
\chi_2 = \frac{(b-a)^3}{96} \left(\frac{1}{3p+1} \right)^{\frac{1}{q}} \times \left\{ |f'''(b)| \left(\frac{2}{q \ln K} \left[K^{\frac{1}{q}} - 1 \right] \right)^{\frac{1}{q}} + |f'''(a)| \left(\frac{2}{q \ln M} \left[M^{\frac{1}{q}} - 1 \right] \right)^{\frac{1}{q}} \right\},
\]
\[
\chi_3 = \frac{(b-a)^3}{96} \left(\frac{1}{4} \right)^{1-\frac{1}{q}} \left\{ |f'''(b)| \frac{2K^{\frac{1}{q}}(q \ln K - 6)}{(q \ln K)^2} + \frac{48K^{\frac{1}{q}}(q \ln K - 2)}{(q \ln K)^4} + \frac{96}{(q \ln K)^4} \right\}^{\frac{1}{q}}
\]
\[
+ |f'''(a)| \left(\frac{2M^{\frac{1}{q}}(\ln M - 6)}{(\ln M)^2} + \frac{48M^{\frac{1}{q}}(\ln M - 2)}{(\ln M)^4} + \frac{96}{(\ln M)^4} \right)^{\frac{1}{q}} \}
\]
and $K = \frac{|f'''(a)|}{|f'''(b)|}$, $M = \frac{|f'''(b)|}{|f'''(a)|}$.

Remark 1. In Theorem 3 and Corollary 3, if we choose $q = 1$, we obtain Theorem 4 and Corollary 4 respectively.

3. APPLICATIONS TO MIDPOINT FORMULA

We give some error estimates to midpoint formula by using the results of Section 2.

Let d be a division $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$ of the interval $[a,b]$ and consider the formula
\[
\int_a^b f(x)dx = M(f,d) + E(f,d)
\]
where $M(f,d) = \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2} \right) (x_{i+1} - x_i)$ for the midpoint version and $E(f,d)$ denotes the associated approximation error.
Proposition 1. Let $f : I \to [0, \infty)$ be a three times differentiable mapping on I° with $a, b \in I^\circ$ such that $a < b$. If $|f'''| \geq K_1 > 0$, then for every division d of $[a, b]$, the midpoint error estimate satisfies

$$|E(f, d)| \leq \left| \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_i)^4}{96} \right| \left(|f'''(x_{i+1})| \mu_1 + |f'''(x_i)| \mu_2 \right)$$

where

$$\mu_1 = \frac{2K_1^2}{(\ln K_1)^2} + \frac{48K_1^\frac{3}{2}}{(\ln K_1)^4} + \frac{96}{(\ln K_1)^4},$$

$$\mu_2 = \frac{2M_1^2}{(\ln M_1)^2} + \frac{48M_1^\frac{3}{2}}{(\ln M_1)^4} + \frac{96}{(\ln M_1)^4},$$

and

$$K_1 = \left(x_{i+1} - x_i \right)^3 \left(\frac{f'''(x_{i+1})}{f'''(x_i)} \right), \quad M_1 = \left(\frac{f'''(x_{i+1})}{f'''(x_i)} \right).$$

Proof. By applying Corollary 1 on the subintervals $[x_i, x_{i+1}]$, $(i = 0, 1, ..., n - 1)$ of the division d, we have

$$\left| \frac{1}{x_{i+1} - x_i} \int_{x_i}^{x_{i+1}} f(x) dx - f \left(\frac{x_i + x_{i+1}}{2} \right) \right| \leq \frac{(x_{i+1} - x_i)^3}{96} \left(|f'''(x_{i+1})| \mu_1 + |f'''(x_i)| \mu_2 \right).$$

By summing over i from 0 to $n - 1$, we can write

$$\left| \int_a^b f(x) dx - M(f, d) \right| \leq \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_i)^4}{96} \left(|f'''(x_{i+1})| \mu_1 + |f'''(x_i)| \mu_2 \right).$$

which completes the proof. \hfill \Box

Proposition 2. Let $f : I \to [0, \infty)$ be a three times differentiable mapping on I° with $a, b \in I^\circ$ such that $a < b$. If $|f'''|^q \geq K_1 > 0$, then for every division d of $[a, b]$, the midpoint error estimate satisfies

$$|E(f, d)| \leq \frac{1}{3p + 1} \left(\frac{1}{3p + 1} \right)^{\frac{1}{p}} \frac{1}{96} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^4 \left(|f'''(x_{i+1})| \left(\frac{2}{q \ln K_1} \left[K_1^\frac{3}{2} - 1 \right] \right)^{\frac{1}{q}} + |f'''(x_i)| \left(\frac{2}{q \ln M_1} \left[M_1^\frac{3}{2} - 1 \right] \right)^{\frac{1}{q}} \right)$$

where $\frac{1}{p} + \frac{1}{q} = 1$ and K_1, M_1 are as defined in Proposition 1.

Proof. The proof can be maintained by using Corollary 2 like Proposition 1. \hfill \Box

Proposition 3. Let $f : I \to [0, \infty)$ be a three times differentiable mapping on I° with $a, b \in I^\circ$ such that $a < b$. If $|f'''|^q \geq K_1 > 0$, then for every division d of $[a, b]$, the midpoint error estimate satisfies

$$|E(f, d)| \leq \frac{1}{96} \left(\frac{1}{4} \right)^{\frac{1}{4}} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^4 \left(|f'''(x_{i+1})| \left(\mu_1, q \right)^{\frac{1}{4}} + |f'''(x_i)| \left(\mu_2, q \right)^{\frac{1}{4}} \right)$$
where
\[
\mu_{1,q} = \frac{2K_1^q (q \ln K_1 - 6)}{(q \ln K_1)^2} + \frac{48K_1^q (q \ln K_1 - 2)}{(q \ln K_1)^4} + \frac{96}{(q \ln K_1)^4},
\]
\[
\mu_{2,q} = \frac{2M_1^q (q \ln M_1 - 6)}{(q \ln M_1)^2} + \frac{48M_1^q (q \ln M_1 - 2)}{(q \ln M_1)^4} + \frac{96}{(q \ln M_1)^4},
\]
and \(K_1, M_1\) are as defined in Proposition \[2\].

Proof. The proof can be maintained by using Corollary ?? like Proposition \[1\].

References

[1] M. Alomari and M. Darus, On the Hadamard’s inequality for log—convex functions on the coordinates, Journal of Inequalities and Applications, Volume 2009, Article ID 283147, 13 pages.

[2] X. Zhang and W. Jiang, Some properties of log—convex function and applications for the exponential function, Computers and Mathematics with Applications 63 (2012) 1111–1116.

[3] B. G. Pachpatte, A note on integral inequalities involving two log-convex functions, Mathematical Inequalities & Applications, vol. 7, no. 4, pp. 511–515, 2004.

[4] J. Pečarić and A. U. Rehman, On logarithmic convexity for power sums and related results, Journal of Inequalities and Applications, vol. 2008, Article ID 389410, 9 pages, 2008.

[5] Y. Shuang, Y. Wang and F. Qi, Some inequalities of Hermite-Hadamard type for functions whose third derivatives are \((\alpha, m)\)—convex, J. Computational Analysis and Applications, Vol. 17, No:2, 2014.

\[\text{ADIYAMAN UNIVERSITY, FACULTY OF SCIENCE AND ARTS, DEPARTMENT OF MATHEMATICS, 02040 ADIYAMAN}\]
E-mail address: merveavci@ymail.com

E-mail address: emos@atauni.edu.tr

\[\text{ATATÜRK UNIVERSITY, K.K EDUCATION FACULTY, DEPARTMENT OF MATHEMATICS, 25240, ERZURUM}\]