Soil Application of Zeolite Affects Inorganic Nitrogen, Water Soluble and Exchangeable Potassium

Ch. Ravali a#*, K. Jeevan Rao b†, T. Anjaiah a‡ and K. Suresh c¥

a Department of Soil Science and Agricultural Chemistry, College of Agriculture, Rajendranagar, PJTSAU, Hyderabad, 500030, India.
b PJTSAU, Hyderabad, India.
c Department of Agronomy, College of Agriculture, Rajendranagar, PJTSAU, Hyderabad, 500030, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJECC/2021/v11i1130541

Editor(s):
(1) Dr. Hani Rezgallah Al-Hamed Al-Amoush, Al Al-Bayt University, Jordan.

Reviewers:
(1) Lev Leybovych, Admiral Makarov National University of Shipbuilding, Ukraine.
(2) Le Ngoc Long, Vietnam National University Ho Chi Minh, Vietnam.

Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: https://www.sdiarticle5.com/review-history/77039

Received 12 September 2021
Accepted 25 November 2021
Published 30 November 2021

ABSTRACT

An incubation study was conducted at college of agriculture, rajendranagar, PJTSAU to evaluate the influence of zeolite application on inorganic nitrogen, water soluble and exchangeable potassium in soil. Clinoptilolite Zeolite was fully mixed with soil (7.5 t ha\(^{-1}\)) at the start of the experiment. Nitrogen was applied to soil through urea (200 kg ha\(^{-1}\)). The experiment was conducted for 35 days and soil was analyzed for inorganic nitrogen, water soluble and exchangeable potassium at weekly intervals i.e., 1, 7, 14, 21, 28, 35 days of incubation. The results indicated that the treatment with zeolite application showed significantly higher ammoniacal nitrogen from day 1 (136.54 mg kg\(^{-1}\)) to day 35 (38.71 mg kg\(^{-1}\)) as well as nitrate nitrogen (day 1 – 59.13 mg kg\(^{-1}\); day 35 – 130.13 mg kg\(^{-1}\)). Similarly water soluble (day 1 – 92.21 kg ha\(^{-1}\); day 35 – 103.13 kg ha\(^{-1}\) and

#M.Sc scholar
†Director (International Programmes) (Retd.)
‡Associate Professor
¥Professor
*Corresponding author: E-mail: ravalireddy96@gmail.com;
exchangeable potassium (day 1 – 363.69 kg ha⁻¹; day 35 – 393.94 kg ha⁻¹) was also significantly higher in zeolite applied treatments. Thus, mixing of zeolite into soil improves inorganic nitrogen through reducing leaching losses and also improves water soluble and exchangeable potassium.

Keywords: Zeolite; Inorganic nitrogen; water soluble K; exchangeable K; incubation.

1. **INTRODUCTION**

Nitrogenous fertilizers are often overused by farmers in intensive crop production, with large variation in application rates. Though affected by the green revolution, most farmers still believe that more fertilizer and higher grain yield are synonymous. High off-farm incomes and relatively low retail prices for nitrogenous fertilizers have also encouraged farmers to continuously increase their application of nitrogenous fertilizers. In typical farm practices, fertilizer applications are often based on experience rather than real-time nutrient requirements of crops and/or site-specific knowledge of soil nutrient status.

Zeolites were first introduced by a Swedish mineralogist, A.F. Cronstedt in the year 1756, with the discovery of the mineral Stilbite [1]. By heating with a blowpipe flames this mineral lost water. He called this mineral “zeolite” from the Greek ‘zeo’, to boil and ‘ lithos’, stone. Since their discovery, zeolites are one of the most abundant minerals on earth which have been recognized as a separate group of minerals. Zeolites are aluminosilicate minerals which have a molecular sieve action due to their open channel network and are composed of tetrahedral linked with oxygen, sharing the negative charge created by the presence of AlO₂⁻ which is balanced by cations that neutralize the charge deficiency. These cations include: the alkaline (Na⁺, K⁺, Rb⁺, Cs⁺), the alkaline earth (Mg²⁺, Ca²⁺) cations, NH₄⁺, H₂O⁻, TMA⁺ (Tetra methyl ammonium) and other nitrogen containing organic cation and the rare earth and noble metal ions [2].

Clinoptilolite zeolite, which maximizes N use efficiency and water use efficiency, may decrease environmental degradation through the use of balanced fertilizers in agriculture [3]. Slow release of N fertilizers can be produced by amending N fertilizers, such as urea with clinoptilolite zeolite [4]. The mechanism for slow release of K may be similar to the reactions shown for PO₃⁻ and NH₄⁺. This is possible because of the sequestering effect of the exchanger of clinoptilolite zeolite [5,6].

Amendment of clinoptilolite zeolite to sandy soils has been reported to lower nitrogen concentration in the leachate and to increase moisture and nutrients in the soil due to increased soil surface area and cation-exchange capacity [7]. So, in order to improve nitrogen uptake in maize, zeolite can be used along with inorganic fertilizers.

Clinoptilolite promote better plant growth by improving the value of fertilizers due to its relatively high adsorption rate, cation exchange, catalysis and dehydration capacities. It has a very high CEC (from 100 to 230 cmol (p+)kg⁻¹). Therefore, its application to the soil increases the CEC of soils 2-3 times greater than other types of minerals found in soils. The mix of zeolite (Z) and nitrogen (N) has been investigated to enhance soil fertility and improve crop production.

Clinoptilolite zeolite is a hydrated aluminosilicate of alkali and alkaline earth metals consist of infinite three-dimensional crystal structure, a polyhedral shape, and a great open cavity [8]. Clinoptilolite zeolite is widely used in cultivating different crops such as cereals, forage, vegetables, vine and fruit crops due to their exceptionally high ion-exchange capacity [9].

2. **MATERIALS AND METHODS**

An incubation study was conducted at college of agriculture, Rajendranagar, PJTSAU to evaluate the influence of zeolite application on inorganic nitrogen, water soluble and exchangeable potassium in soil. The red soil required for the experiment was collected from B-Block of Student farm, College of Agriculture, Rajendranagar. The clods in the soil were broken down and the soil was sieved through 2 mm sieve. After sieving, the soil was mixed with zeolite as per the treatments (7.5 t ha⁻¹) at the start of experiment and the soil was transferred to trays @ 1 kg soil per tray. Urea was applied as per the treatments (200 kg ha⁻¹) by dissolving in distilled water. The soil was maintained at field capacity throughout the incubation period by regularly adding distilled water. Incubation was
Table 1. Initial soil properties

S.No.	Property	Values	S.No.	Property	Values
1.	Soil type	Red soil	11.	Available K (kg ha\(^{-1}\))	380
2.	Sand (%)	87.36	12.	CEC (cmol(p+ kg\(^{-1}\))	13.02
3.	Silt (%)	4.40	13.	Exchangeable Ca\(^{2+}\) (cmol kg\(^{-1}\))	1.45
4.	Clay (%)	8.24	14.	Exchangeable Mg\(^{2+}\) (cmol kg\(^{-1}\))	0.82
5.	Soil Texture	Loamy sand	15.	Exchangeable Na\(^+\) (cmol kg\(^{-1}\))	0.22
6.	pH	7.08	16.	Bulk Density (Mg m\(^{-3}\))	1.18
7.	EC (dS m\(^{-1}\))	0.45	17.	Water Holding Capacity (%)	28
8.	Organic Carbon (%)	0.57			
9.	Available N (kg ha\(^{-1}\))	177			
10.	Available P (kg ha\(^{-1}\))	15			

carried out for 5 weeks at room temperature. Sampling is done at weekly intervals and was analyzed for ammoniacal nitrogen, nitrate nitrogen, water soluble potassium and exchangeable potassium. Initial soil properties of the soil were analyzed (Table 1).

Table 2. Properties of zeolite used in the study

S.No.	Property	Values
1.	Moisture at 105°C (%)	0-10
2.	Water Absorption (%)	90-100
3.	Bulk Density (Mg m\(^{-3}\))	0.35-0.45
4.	pH	8.0-9.0
5.	EC (dS m\(^{-1}\))	5.5
6.	CEC (cmol (p+ kg\(^{-1}\))	130-135
7.	Silica (SiO\(_2\)) (%)	78-82
8.	Alumina (Al\(_2\)O\(_3\)) (%)	6-8

2.1 Treatment Details

T1: Only soil (control); T2: Soil + Nitrogen; T3: Soil + Phosphorous + Potassium; T4: Soil + Nitrogen + Phosphorous + Potassium + Zeolite. Commercial grade Urea (46% N), Single Super Phosphate (16% P\(_2\)O\(_5\)), Muriate of Potash (60% K\(_2\)O) were used as the source of N, P, K respectively.

2.1.1 Ammoniacal nitrogen

Ten grams of soil was shaken with 100 ml of 2 M KCl for an hour and filtered. Then the filtrate was steam distilled in presence of 0.2 g MgO. The distillate was collected in 2 % boric acid containing mixed indicator was titrated with standard Sulphuric acid (0.02 N) as described by Bremner [10] and expressed in mg kg\(^{-1}\).

2.1.2 Nitrate nitrogen

After the distillation of ammoniacal nitrogen, immediately 0.2 g Devarda’s alloy was added and distillation was done to obtain NO\(_3^-\) - N. The distillate was collected in 2 % boric acid containing mixed indicator was titrated with standard Sulphuric acid (0.02 N) as described by Bremner [10] and expressed in mg kg\(^{-1}\).

2.1.3 Water soluble K

The water soluble K in soil was extracted using soil and distilled water in the ratio of 1:5 and filtered. The extracted potassium was determined by flame photometer (Elico CL 378).

2.1.4 Exchangeable K

The exchangeable potassium in soil was extracted using neutral normal ammonium acetate and the extracted potassium was determined by flame photometer (Elico CL 378) as described by Jackson [11] and expressed as kg ha\(^{-1}\).

3. RESULTS AND DISCUSSION

3.1 Ammoniacal Nitrogen

The ammoniacal nitrogen increased from day 1 to day 7 (Table 3 and Fig. 1) and later there was a decrease in ammoniacal nitrogen up to day 35. On day 1, the ammoniacal nitrogen was highest in SNZPK treatment (136.54 mg kg\(^{-1}\)) followed by SN (61.41 mg kg\(^{-1}\)). Lowest ammoniacal nitrogen was recorded in the control (only soil – 30.08 mg kg\(^{-1}\)). On day 7, the ammoniacal nitrogen was highest in SNZPK treatment (155.20 mg kg\(^{-1}\)) followed by SN (74.08 mg kg\(^{-1}\)), while the lowest was in control (41.75 mg kg\(^{-1}\)). Similar trend was observed on day 14, 21, 28 and 35 where the significantly higher ammoniacal nitrogen was recorded in SNZPK treatment (107.03, 70.34, 66.56, 38.71 mg kg\(^{-1}\) respectively) and control treatment recorded lower ammoniacal nitrogen among all the treatments on day 14, 21, 28, 35.
Among all the treatments, the treatment where zeolite is mixed with soil showed significantly higher ammoniacal nitrogen than other treatments. A short time after zeolite application, the ammoniacal nitrogen content was reduced due to NH\textsubscript{4}+ fixation by zeolite, but later on opposite was true. The increase in NH\textsubscript{4}+ - N in the treatment with zeolite application could have been caused by sorption in the zeolite lattice and release of adsorbed nitrogen from the zeolite crystal lattice. Increasing zeolite application rate irrespective of method of application had increased NH\textsubscript{4}+ - N [12]. Similar results were obtained by Torma et al. [13] who found that, at the end of the field experiment, treatments with zeolite showed 24 % - 59 % higher ammoniacal nitrogen than control. There was decrease in NH\textsubscript{4}-N upto day 35 this is because most of the NH\textsubscript{4}+ - N adsorbed onto zeolite inner channels was likely released and nitrified, a mechanism suggested by Perrin et al. [14].

3.2 Nitrate Nitrogen

Nitrate nitrogen showed an increasing trend from day 1 to day 35 (Table 4 and Fig. 2) in the treatment with zeolite. On day 1, the NO\textsubscript{3}-N was significantly higher in SNZPK (59.13 mg kg-1), followed by SN (53.22 mg kg-1), while the lowest NO\textsubscript{3}-N was recorded in control (35.27 mg kg-1). Similar trend was noticed on day 7 where SNZPK treatment recorded significantly higher NO\textsubscript{3}-N (81.78 mg kg-1) among all the treatments and the lowest NO\textsubscript{3}-N was recorded in control (27.24 mg kg-1). SNZPK treatment showed significantly higher NO\textsubscript{3}-N on day 14, 21, 28 and 35 among all the treatments which was 93.45, 101.91, 111.66, 130.13 mg kg-1 respectively, while the control treatment recorded lowest NO\textsubscript{3}-N on day 14, 21, 28 and 35 (23.48, 19.36, 17.91 and 20.36 mg kg-1 respectively). The higher NO\textsubscript{3}-N in zeolite treatment among all the treatments may be due to the presence of zeolite in the soil which inhibits nitrification process to a certain extent, so that nitrate leaching into deeper soil horizons is not so intensive. These results were comparable to the results obtained by Lija et al. [15], who found that treatment with compound fertilizer combined with zeolite showed highest NO\textsubscript{3}-N while in compared to all other treatments. Mixing of an acid soil with clinoptilolite zeolite under waterlogged conditions significantly increased NO\textsubscript{3} [16].
Table 3. Effect of addition of zeolite to soil on release of NH$_4^+$-N (mg kg$^{-1}$)

	Day 1	Day 7	Day 14	Day 21	Day 28	Day 35
Only soil (control)	30.08	41.75	14.96	9.42	5.638	2.858
SN	61.41	74.08	46.29	25.23	21.448	9.988
SPK	51.83	64.50	37.31	13.77	9.988	5.148
SNZPK	136.54	155.20	107.03	70.34	66.560	38.710
C.D.	1.38	1.47	0.72	0.67	0.667	0.667
SE(m)	0.46	0.49	0.24	0.22	0.221	0.221

Table 4. Effect of addition of zeolite to soil on release of NO$_3$-N (mg kg$^{-1}$)

	Day 1	Day 7	Day 14	Day 21	Day 28	Day 35
Only soil (control)	35.27	27.24	23.48	19.36	17.91	20.36
SN	53.22	63.53	75.89	55.36	46.77	41.10
SPK	45.79	31.20	24.40	22.90	21.72	24.17
SNZPK	59.13	81.78	93.45	101.91	111.66	130.13
C.D.	0.58	0.55	0.55	0.88	0.55	0.55
SE(m)	0.19	0.18	0.18	0.29	0.18	0.18

Fig. 2. Effect of addition of zeolite to soil on release of NO$_3$-N (mg kg$^{-1}$)

3.3 Exchangeable and Water Soluble K

The exchangeable K was significantly higher in SNZPK (363.69 kg ha$^{-1}$) on day 1 (Table 5), followed by SPK (351 kg ha$^{-1}$) and the lowest exchangeable K was observed in control treatment (307.28 kg ha$^{-1}$). After day 1, there was decrease in the exchangeable K up to day 7 in SNZPK treatment (336.18 kg ha$^{-1}$). On day 7, SPK treatment had recorded significantly higher exchangeable K (357.98 kg ha$^{-1}$) and the lowest was observed in control (311.85 kg ha$^{-1}$). On day 14, exchangeable K was significantly higher in SNZPK (365.78 kg ha$^{-1}$), followed by SPK (361.70 kg ha$^{-1}$) and the lowest was observed in control (301.49 kg ha$^{-1}$). Similar trend was observed on day 21, 28 and 35 where SNZPK showed significantly higher exchangeable K (376.04, 384.50, and 393.94 kg ha$^{-1}$ respectively) and the lowest was observed in control (296.83, 289.42, 283.78 kg ha$^{-1}$ respectively).

Water soluble K increased from day 1 to day 7 (Table 6). Later there was a slight decrease in water soluble K content up to day 35 in SPK and SNZPK treatments. In control and SN treatments, there was decrease in the water soluble K from day 1 to day 35. On day 1,
the water soluble K was significantly higher in SN (96.67 kg ha\(^{-1}\)), followed by SNZPK (92.21 kg ha\(^{-1}\)) and the lowest was observed in control (84.15 kg ha\(^{-1}\)). On day 7, SNZPK treatment had recorded significantly higher water soluble K (126.06 kg ha\(^{-1}\)) and the lowest was observed in control (77.13 kg ha\(^{-1}\)). On day 14, water soluble K was significantly higher in SNZPK (119.12 kg ha\(^{-1}\)), followed by SPK (106.68 kg ha\(^{-1}\)) and the lowest was observed in control (67.10 kg ha\(^{-1}\)).

Similar trend was observed on day 21, 28 and 35 where SNZPK showed significantly higher water soluble K (111.53, 108.02, 103.13 kg ha\(^{-1}\) respectively) and the lowest was observed in control (54.00, 51.49, 42.82 kg ha\(^{-1}\) respectively).

From day 1 to day 7 there was decrease in exchangeable K due to adsorption by zeolite. Later there was higher exchangeable K in zeolite applied treatment due to release of K from zeolite. Addition of zeolite showed higher amounts of exchangeable K in the soil. This is because zeolite has the potential to absorb K\(^+\) from chemical fertilizers, hence reducing K leaching. The water soluble K increased immediately after application of K fertilizer in SPK and SNZPK treatments and later there was a decrease. But in zeolite applied treatment there was higher water soluble K compared to all other treatments. These results were in accordance with the findings of Kavoosi [17] and Caballero et al. [18] who observed that increasing the zeolite dosage increased available K in the soil.

4. CONCLUSION

Our study aimed to evaluate the effect of zeolite application to soil on inorganic nitrogen and water soluble and exchangeable K. It was concluded that in zeolite applied treatment, a short term decline in NH\(_4\)-N was observed due to adsorption on zeolite lattice, but however later the zeolite applied treatment showed highest NH\(_4\)-N and NO\(_3\)-N among all the treatments. Zeolite also tends to absorb K from commercial fertilizers which will be released later on, preventing leaching losses and increasing K availability. Thus we can conclude that application of zeolite to soil reduced leaching losses and improved availability of N and K in soil.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Nguyen ML, Tanner CC. Ammonium removal from wastewater using natural New Zealand zeolites. New Zealand Journal of Agricultural Research. 1998; 41:427-46.
2. Gruener JE, Ming DW, Henderson KE. Common ion effects in zeoponic substrates: Wheat plant growth experiment. Microporous and Mesoporous Materials. 2003;61:223-30.
3. Ramesh K, Reddy DD. Zeolite and their potential uses in agriculture. In: D. L. Sparks (Eds), Advances in Agronomy, 2011;113. Indian Institute of soil Science, India.

4. Omar L, Ahmed OH, Nik Muhamad AM. Reducing ammonia loss from urea and improving soil exchangeable ammonium and available nitrate in non waterlogged soil through mixing zeolite and sago (Metroxylon sagu) wastewater. International Journal of Physical Sciences. 2011;6(4):866-870.

5. Payra P, Dutta PK. Handbook of zeolite science and technology. Ohio, USA; 2003.

6. Lai TM, Eberlm DD. Controlled and renewable release of phosphorus in soils from mixtures of phosphate rock and NH$_4^+$ exchanged clinoptilolite: Zeolite. U.S. Geological Survey, Water Resources Division, Colorado, USA. 1986;6(2):129-132.

7. He ZL, Calvert DV, Alva AK, Li YC, Banks DJ. Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant and Soil. 2002;247:253-260.

8. Dakovic A, Kragovic M, Rottinghaus GE, Sekulic Z. Influence of natural zeolitic tuff and organozeolites surface charge on sorption of ionizable fumonisin B1. Colloids and surfaces B: Biointerfaces. 2007;76(1):272-278.

9. Butorac A, Mesic M, Filipan T, Butorac J. The influence of special natural amendments based on zeolite tuff and different lime materials on some soil chemical properties. Rostlinna Vyroba. 2002;48(3):133-139.

10. Bremner JM. Inorganic forms of nitrogen. In: Methods of Soil Analysis, (Part – 2 (ed.) C A Black et al.) American Society of Agronomy, Madison, Wisconsin. 1965;9:1179-1237.

11. Jackson ML. Soil chemical analysis. Prentice Hall of India, Pvt. Ltd. New Delhi. 1973;498.

12. Ippolito JA, Tarkalson DD, Lehrsch GA. Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth. Soil Science. 2011;176(3).

13. Torma S, Vilcek, J, Adamisi, P, Huttmanova E, Hronec O. Influence of natural zeolite on nitrogen dynamics in soil. Turkish Journal of Agriculture and Forestry. 2014;38:739-744.

14. Perrin TS, Boettinger JL, Drost DT, Norton JM. Decreasing nitrogen leaching from sandy soil with ammonium-loaded clinoptilolite. J. Environ. Qual. 1998;27:656Y663.

15. Lija M, Ahmed OH, Kasim S. Maize (Zea mays L.) nutrient use efficiency as affected by formulated fertilizer with Clinoptilolite Zeolite. Emirates Journal of Food Agriculture. 2014;26(3):284-292.

16. Palanivel P, Ahmed OH, Susilawati K, Majid NMA. Mitigating ammonia volatilization from urea in waterlogged condition using Cinoptilolite zeolite. International Journal of Agriculture & Biology. 2015;17(1):1560–8530.

17. Kavoosi M. Effects of Zeolite application on rice yield, nitrogen recovery and nitrogen use efficiency. Communications in Soil Science and Plant Analysis. 2007;38:1-2:69-76.

18. Caballero RP, Gil J, Benitez C, Gonzalez, JL. The effect of adding Zeolite to soils in order to improve the N-K nutrition of Olive trees, preliminary results. American Journal of Agricultural and Biological Sciences. 2008;2(1):321-324.