Abstract. The present paper deals with unification of the multiple twisted Euler and Genocchi numbers and polynomials associated with p-adic q-integral on \mathbb{Z}_p at $q = -1$. Some earlier results of Ozden’s papers in terms of unification of the multiple twisted Euler and Genocchi numbers and polynomials associated with p-adic q-integral on \mathbb{Z}_p at $q = -1$ can be deduced. We apply the method of generating function and p-adic q-integral representation on \mathbb{Z}_p, which are exploited to derive further classes of Euler polynomials and Genocchi polynomials. To be more precise we summarize our results as follows, we obtain some relations between H.Ozden’s generating function and fermionic p-adic q-integral on \mathbb{Z}_p at $q = -1$. Furthermore we derive Witt’s type formula for the unification of twisted Euler and Genocchi polynomials. Also we derive distribution formula (Multiplication Theorem) for multiple twisted Euler and Genocchi numbers and polynomials associated with p-adic q-integral on \mathbb{Z}_p at $q = -1$ which yields a deeper insight into the effectiveness of this type of generalizations. Furthermore we define unification of multiple twisted zeta function and we obtain an interpolation formula between unification of multiple twisted zeta function and unification of the multiple twisted Euler and Genocchi numbers at negative integer. Our new generating function possess a number of interesting properties which we state in this paper.

1. Introduction, Definitions and Notations

Bernoulli numbers introduced by Jacques Bernoulli (1654-1705), in the second part of his treatise published in 1713, Ars conjectandi, at the time, Bernoulli numbers were used for writing the infinite series expansions of hyperbolic and trigonometric functions. Van den berg was the first to discuss finding recurrence formulae for the Bernoulli numbers with arbitrary sized gaps (1881). Ramanujan showed how gaps of size 7 could be found, and explicitly wrote out the recursion for gaps, of size 6. Lehmer in 1934 extended these methods to Euler numbers, Genocchi numbers, and Lucas numbers (1934), and calculated the 196-th Bernoulli numbers. The study of generalized Bernoulli, Euler and Genocchi numbers and polynomials and their combinatorial relations has received much attention [20], [21], [22]-[25], [26], [27], [28], [29], [30]. Generalized Bernoulli polynomials, generalized Euler polynomials and generalized Genocchi numbers and polynomials are the signs of very strong bond between elementary number theory, complex analytic number theory, Homotopy theory (stable Homotopy groups of spheres), differential topology (differential structures on spheres), theory of modular forms (Eisenstein series), p-adic
analytic number theory (p-adic L-functions), quantum physics (quantum Groups).

p-adic numbers were invented by Kurt Hensel around the end of the nineteenth century. In spite of their being already one hundred years old, these numbers are still today enveloped in an aura of mystery within the scientific community. The p-adic integral was used in mathematical physics, for instance, the functional equation of the q-zeta function, q-stirling numbers and q-Mahler theory of integration with respect to the ring \mathbb{Z}_p, together with Iwasawa’s p-adic q-L functions. Also the p-adic interpolation functions of the Bernoulli and Euler polynomials have been treated by Tsumura [31] and Young [32]. Professor T.Kim [3]-[17] also studied on p-adic interpolation functions of these numbers and polynomials. In [33], Carlitz originally constructed q-Bernoulli numbers and polynomials. These numbers and polynomials are studied by many authors (see cf. [3]-[19], [34], [35], [38]). In the last decade, a surprising number of papers appeared proposing new generalizations of the Bernoulli, Euler and Genocchi polynomials to real and complex variables. In [3]-[13], Kim studied some families of multiple Bernoulli, Euler and Genocchi numbers and polynomials. By using the fermionic p-adic invariant integral on \mathbb{Z}_p, he constructed p-adic Bernoulli, Euler and Genocchi numbers and polynomials of higher order. A unification (and generalization) of Bernoulli polynomials and Euler polynomials with a, b and c parameters first was introduced and investigated by Q.-M.Luo [22], [23], [24], [25]. After he with H.M.Srivastava defined unification (and generalization) of Apostol type Bernoulli polynomials with a, b and c parameters of higher order [25]. After Hacer Ozden et al [35], unified and extended the generating functions of the generalized Bernoulli polynomials, the generalized Euler polynomials and the generalized Genocchi polynomials associated with the positive real parameters a and b and the complex parameter. Also they by applying the Mellin transformation to the generating function of the unification of Bernoulli, Euler and Genocchi polynomials, constructed a unification of the zeta functions. Actually their definition provides a generalization and unification of the Bernoulli, Euler and Genocchi polynomials and also of the Apostol–Bernoulli, Apostol–Euler and Apostol–Genocchi polynomials, which were considered in many earlier investigations by (among others) Srivastava et al. [31], [10], [11], Karande [12]. Also they by using a Dirichlet character defined unification of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials and numbers. T. Kim in [13], constructed Apostol-Euler numbers and polynomials by using fermionic expression of p-adic q-integral at $q = -1$. In this paper by his method we derive several properties for unification of the multiple twisted Euler and Genocchi numbers and polynomials.

Let p be a fixed odd prime number. Throughout this paper we use the following notations, by \mathbb{Z}_p denotes the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_p denotes the field of p-adic rational numbers, and \mathbb{C} denotes the completion of algebraic closure of \mathbb{Q}_p. Let \mathbb{N} be the set of natural numbers and $\mathbb{N}^* = \mathbb{N} \cup \{0\}$. The p-adic absolute value is defined by $|p|_p = \frac{1}{p}$. In this paper we assume $|q - 1|_p < 1$ as an indeterminate. $[x]_q$ is a q-extension of x which is defined by $[x]_q = \frac{1 - q^x}{1 - q}$, we note that $\lim_{q \to 1} [x]_q = x$.

We say that f is a uniformly differentiable function at a point $a \in \mathbb{Z}_p$, if the difference quotient

$$F_f (x, y) = \frac{f (x) - f (y)}{x - y}$$
A UNIFICATION OF MULTIPLE TWISTED EULER AND GENOCCHI POLYNOMIALS

has a limit \(f'(a) \) as \((x, y) \rightarrow (a, a)\) and denote this by \(f \in UD(\mathbb{Z}_p)\).

Let \(UD(\mathbb{Z}_p) \) be the set of uniformly differentiable function on \(\mathbb{Z}_p \). For \(f \in UD(\mathbb{Z}_p) \), let us begin with the expressions

\[
\frac{1}{[p^N]} \sum_{0 \leq x < p^N} f(x) q^x = \sum_{0 \leq x < p^N} f(x) \mu_q(x + p^N \mathbb{Z}_p),
\]

represents \(p \)-adic \(q \)-analogue of Riemann sums for \(f \). The integral of \(f \) on \(\mathbb{Z}_p \) will be defined as the limit \((N \rightarrow \infty)\) of these sums, when it exists. The \(p \)-adic \(q \)-integral of function \(f \in UD(\mathbb{Z}_p) \) is defined by Kim

\[
I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_q(x) = \lim_{N \rightarrow \infty} \frac{1}{[p^N]} \sum_{x=0}^{p^N-1} f(x) q^x.
\]

The bosonic integral is considered by Kim as the bosonic limit \(q \rightarrow 1 \), \(I_1(f) = \lim_{q \rightarrow 1} I_q(f) \). Similarly, the fermionic \(p \)-adic integral on \(\mathbb{Z}_p \) is considered by Kim as follows:

\[
I_{-q}(f) = \lim_{q \rightarrow -q} I_q(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x).
\]

Assume that \(q \rightarrow 1 \), then we have fermionic \(p \)-adic fermionic integral on \(\mathbb{Z}_p \) as follows

\[
I_{-1}(f) = \lim_{q \rightarrow -1} I_q(f) = \lim_{N \rightarrow \infty} \sum_{x=0}^{p^N-1} f(x) (-1)^x.
\]

If we take \(f_1(x) = f(x + 1) \) in (1.2), then we have

\[
I_{-1}(f_1) + I_{-1}(f) = 2f(0).
\]

Let \(p \) be a fixed prime. For a fixed positive integer \(d \) with \((p, d) = 1\), we set

\[
X = X_d = \lim_{N \rightarrow \infty} \mathbb{Z}/dp^N \mathbb{Z},
X_1 = \mathbb{Z}_p,
X^* = \bigcup_{0 < a < dp \atop (a, p) = 1} a + dp\mathbb{Z}_p
\]

and

\[
a + dp^N \mathbb{Z}_p = \{ x \in X \mid x \equiv a \pmod{dp^N} \},
\]

where \(a \in \mathbb{Z} \) satisfies the condition \(0 \leq a < dp^N \).

Definition 1. (see, cf. [36]) A unification \(y_{n, \beta}(x : k, a, b) \) of the Bernoulli, Euler and Genochhi polynomials is given by the following generating function:

\[
F_{a,b}(x; t; k, \beta) = \frac{2}{\beta^k e^t - a^k} e^{xt} = \sum_{n=0}^{\infty} y_{n, \beta}(x : k, a, b) \frac{t^n}{n!} \left(\left| t + \log \left(\frac{\beta}{a} \right) \right| < 2\pi; \; x \in \mathbb{R} \right)
\]

\[
(k \in \mathbb{N}^*; a, b \in \mathbb{R}^+; \beta \in \mathbb{C}),
\]

where as usual \(\mathbb{R}^+ \), and \(\mathbb{C} \) denote the sets of positive real numbers and complex numbers, respectively, \(\mathbb{R} \) being the set of real numbers.
Observe that, if we put \(x = 0 \) in the generating function (1.3), then we obtain the corresponding unification of the generating functions of Bernoulli, Euler and Genocchi numbers. Then we have

\[
y_{n,\beta} (0: k, a, b) = y_{n,\beta} (k, a, b).
\]

We are now ready to give relationship between the Ozden’s generating function and the fermionic \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) at \(q = -1 \) with the following theorem:

Theorem 1. The following relationship holds:

\[
a^{-b} \left(\frac{t}{2} \right)^k \int_{\mathbb{Z}_p} (-1)^{x+1} \left(\frac{\beta}{a} \right)^{bx} e^{tx} d\mu_{-1} (x) = \sum_{n=0}^{\infty} y_{n,\beta} (k, a, b) \frac{t^n}{n!}.
\]

Proof. We set

\[
(1.5)
a^{-b} \left(\frac{t}{2} \right)^k \int_{\mathbb{Z}_p} (-1)^{x+1} \left(\frac{\beta}{a} \right)^{bx} e^{tx} d\mu_{-1} (x) = \sum_{n=0}^{\infty} y_{n,\beta} (k, a, b) \frac{t^n}{n!}.
\]

By using (1.6) and binomial theorem, we express the following relation

\[
\text{the corresponding unification of the generating functions of Bernoulli, Euler and Genocchi numbers.}
\]

Then we have

\[
\text{We set}
\]

\[
\text{We set}
\]

Observe that, if we put \(x = 0 \) in the generating function (1.3), then we obtain the corresponding unification of the generating functions of Bernoulli, Euler and Genocchi numbers. Then we have

\[
y_{n,\beta} (0: k, a, b) = y_{n,\beta} (k, a, b).
\]

We are now ready to give relationship between the Ozden’s generating function and the fermionic \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) at \(q = -1 \) with the following theorem:

Theorem 2. Then the following identity holds:

\[
\int_{\mathbb{Z}_p} (-1)^{x+1} \left(\frac{\beta}{a} \right)^{bx} x^{n-k} d\mu_{-1} (x) = 2^k a^b \frac{(n-k)!}{n!} y_{n,\beta} (k, a, b).
\]

Proof. From (1.5) and by using the taylor expansion of \(e^{tx} \), we readily see that,

\[
\sum_{n=0}^{\infty} \frac{2^{-k} a^{-b} \int_{\mathbb{Z}_p} (-1)^{x+1} \left(\frac{\beta}{a} \right)^{bx} x^n d\mu_{-1} (x)}{n!} = \sum_{n=0}^{\infty} \frac{y_{n,\beta} (k, a, b)}{n!} \frac{t^n}{n!}.
\]

By comparing coefficients of \(t^n \) in the both sides of the above equation, we arrive at the desired result.

Similarly, we obtain the following theorem for a unification of the Euler and Genocchi polynomials as follows:

Theorem 3. Then the following identity holds:

\[
(1.6) \int_{\mathbb{Z}_p} (-1)^{y+1} \left(\frac{\beta}{a} \right)^{by} (x+y)^n d\mu_{-1} (y) = 2^k a^b \frac{n!}{(n+k)!} y_{n+k,\beta} (x: k, a, b).
\]

From the binomial theorem in (1.6), we possess the following theorem:

Theorem 4. The following relation holds:

\[
\frac{y_{n+k,\beta} (x: k, a, b)}{(n+k)!} = \sum_{m=0}^{n} \binom{n}{m} y_{m+k,\beta} (k, a, b) \frac{n!}{(n+k)!} y_{n+k,\beta} (x: k, a, b).
\]

Proof. By using (1.6) and binomial theorem, we express the following relation

\[
\sum_{m=0}^{n} \binom{n}{m} \left(\int_{\mathbb{Z}_p} (-1)^{y+1} \left(\frac{\beta}{a} \right)^{by} y^m d\mu_{-1} (y) \right) = 2^k a^b \frac{n!}{(n+k)!} y_{n+k,\beta} (x: k, a, b)
\]
By using p-adic q-integral on \mathbb{Z}_p at $q = -1$, we arrive at the desired proof of the theorem. □

Now, we consider symmetric properties of this type of polynomials as follows:

Theorem 5. The following relation holds:
\[
y_{n,\beta}^{-1} (1 - x : k, a^{-1}, b) = (-1)^{k+n+1} \beta^h a^b y_{n,\beta} (x : k, a, b).
\]

Proof. We set $x \to 1 - x$, $\beta \to \beta^{-1}$ and $a \to a^{-1}$ into (1.6), that is
\[
\int_{\mathbb{Z}_p} (-1)^{y+1} \left(\frac{\beta^{-1}}{a^{-1}} \right)^{by} (1 - x + y)^n d\mu_{-1} (y)
= (-1)^n \int_{\mathbb{Z}_p} (-1)^{y+1} \left(\frac{\beta}{a} \right)^{-by} (x + y)^n d\mu_{-1} (y)
= (-1)^{k+n+1} \beta^h a^b y_{n,\beta} (x : k, a, b)
\]
Thus, we complete proof of the theorem. □

Ozden has obtained distribution formula for $y_{n,\beta} (x : k, a, b)$. We will also obtain distribution formula by using p-adic q-integral on \mathbb{Z}_p at $q = -1$.

Theorem 6. The following identity holds:
\[
y_{n,\beta} (x : k, a, b) = a^{(d-1)n-k} \sum_{j=0}^{d-1} \left(\frac{\beta}{a} \right)^{bj} y_{n,\beta} \left(\frac{x + j}{d} : k, a^d, b \right).
\]

Proof. By using definition of the p-adic integral on \mathbb{Z}_p, we compute
\[
2^k a^b \frac{n!}{(n+k)!} y_{n+k,\beta} (x : k, a, b) = \int_{\mathbb{Z}_p} (-1)^{y+1} \left(\frac{\beta}{a} \right)^{by} (x + y)^n d\mu_{-1} (y)
= \lim_{N \to \infty} \sum_{y=0}^{dp^{N-1} - 1} (-1)^{y+1} \left(\frac{\beta}{a} \right)^{by} (x + y)^n (-1)^y
= d^n \sum_{j=0}^{d-1} \left(\frac{\beta}{a} \right)^{bj} \int_{\mathbb{Z}_p} (-1)^{y+1} \left(\frac{\beta}{a^d} \right)^{by} \left(\frac{x + j}{d} + y \right)^n d\mu_{-1} (y)
= d^n \sum_{j=0}^{d-1} \left(\frac{\beta}{a} \right)^{bj} 2^k a^{db} \frac{n!}{(n+k)!} y_{n+k,\beta} \left(\frac{x + j}{d} : k, a^d, b \right)
\]
Substituting n by $n - k$, we will be completed the proof of theorem. □

Remark 1. This distribution for $y_{n,\beta} (x : k, a, b)$ is also introduced by Ozden cf.[36].

Definition 2. (see, for detail [35].) Let χ be a Dirichlet character with conductor $d \in \mathbb{N}$. The generating functions of the generalized Bernoulli, Euler and Genocchi
polynomials with parameters a, b, β and k have been defined by Ozden, Simsek and Srivastava as follows:

\[(1.7) F_{\chi, \beta}(t, k, a, b) \]

\[= 2 \left(\frac{t}{2} \right)^k \sum_{j=1}^{d} \frac{\chi(j) \left(\frac{\beta}{a} \right)^j}{\beta^d e^{\beta t} - a^d} \]

\[= \sum_{n=0}^{\infty} y_{n, \chi, \beta}(x : k, a, b) \frac{t^n}{n!}, \quad \left(t + b \log \left(\frac{\beta}{a} \right) \right) < 2\pi; \quad d, k \in \mathbb{N}; \quad a, b \in \mathbb{R}^+; \quad \beta \in \mathbb{C} \]

By using p-adic integral on \mathbb{Z}_p, we can obtain (1.7) with the following theorem:

Theorem 7. Let χ be a Dirichlet’s character with conductor $d \in \mathbb{N}$. Then the following relation holds

\[(1.8) \]

\[a^{b(1-d)} \left(\frac{t}{2} \right)^k \int_{\mathbb{Z}_p} \chi(x) (-1)^{x+1} \left(\frac{\beta}{a} \right)^x e^{tx} d\mu_{-1}(x) = 2^{1-k} \sum_{j=1}^{d} \frac{\chi(j) \left(\frac{\beta}{a} \right)^j}{\beta^d e^{\beta t} - a^d} \]

Proof. From the definition of p-adic q-integral on \mathbb{Z}_p at $q = -1$, we compute

\[= a^{b(1-d)} \left(\frac{t}{2} \right)^k \lim_{N \to \infty} \sum_{x=0}^{d p^N-1} \chi(x) (-1)^{x+1} \left(\frac{\beta}{a} \right)^x e^{tx} (-1)^x \]

\[= \sum_{j=1}^{d} \chi(j) \left(\frac{\beta}{a} \right)^j e^{tj} \left(\frac{1}{\beta^d e^{\beta t} - a^d} \right) \sum_{x=0}^{p^N-1} (-1)^{x+1} \left(\frac{\beta^d}{a^d} \right)^x e^{tx} (-1)^x \]

\[= 2^{1-k} \sum_{j=1}^{d} \frac{\chi(j) \left(\frac{\beta}{a} \right)^j}{\beta^d e^{\beta t} - a^d} e^{tj} \]

Thus, we arrive at the desired result. \(\square\)

By expression of (1.8), we get the following equation

\[(1.9) \]

\[a^{b(1-d)} \left(\frac{t}{2} \right)^k \int_{\mathbb{Z}_p} \chi(x) (-1)^{x+1} \left(\frac{\beta}{a} \right)^x e^{tx} d\mu_{-1}(x) = \sum_{n=0}^{\infty} y_{n, \chi, \beta}(x : k, a, b) \frac{t^n}{n!} \]

We are now ready to give distribution formula for generalized Euler and Genocchi polynomials by using p-adic q-integral on \mathbb{Z}_p at $q = -1$ by means of theorem.

Theorem 8. For any $n, k, d \in \mathbb{N}$, $a, b \in \mathbb{R}^+$; $\beta \in \mathbb{C}$, we have

\[y_{n, \chi, \beta}(x : k, a, b) = a^{n-k} \sum_{j=0}^{d-1} \frac{\chi(j) \left(\frac{\beta}{a} \right)^j}{\beta^d e^{\beta t} - a^d} y_{n, \beta^d, a^d, b} \left(\frac{x+j}{d} : k, a^d, b \right) \]
Proof. By expression of (1.9), we compute as follows:

\[
\sum_{n=0}^{\infty} y_{n, \chi, \beta} (x : k, a, b) \frac{t^n}{n!} = a^{b(1-d)} \left(\frac{t}{2} \right)^k \int_{\mathbb{Z}_p} \chi(y) (-1)^{y+1} \left(\frac{y}{a} \right)^b e^{t(x+y)} d\mu_{-1}(y)
\]

\[
= a^{b(1-d)} \left(\frac{t}{2} \right)^k \lim_{N \to \infty} \sum_{y=0}^{dp^n-1} \chi(y) (-1)^{y+1} \left(\frac{y}{a} \right)^b e^{t(x+y)} (-1)^y
\]

\[
= \frac{1}{d^k} \sum_{j=0}^{d-1} \chi(j) \left(\frac{\beta}{a} \right)^b \left[\left(\frac{1}{a^b d^k} \right) \left(\frac{dt}{2} \right)^k \lim_{N \to \infty} \sum_{y=0}^{dp^n-1} (-1)^{y+1} \left(\frac{\beta d}{a^d} \right)^b e^{t(x+y)} d\mu_{-1}(y) \right]
\]

\[
= \frac{1}{d^k} \sum_{j=0}^{d-1} \chi(j) \left(\frac{\beta}{a} \right)^b \left[\sum_{n=0}^{\infty} d^n y_{n, \beta^d} \left(\frac{x+j}{d} : k, a^d, b \right) \frac{t^n}{n!} \right]
\]

\[
= \sum_{n=0}^{\infty} \left(d^{n-k} \sum_{j=0}^{d-1} \chi(j) \left(\frac{\beta}{a} \right)^b y_{n, \beta^d} \left(\frac{x+j}{d} : k, a^d, b \right) \right) \frac{t^n}{n!}.
\]

So, we complete the proof of theorem.

\[\square\]

2. New properties on the unification of multiple twisted Euler and Genocchi polynomials

In this section, we introduce a unification of the twisted Euler and Genocchi polynomials. We assume that \(q \in \mathbb{C}_p \) with \(|1-q|_p < 1 \). For \(n \in \mathbb{N} \), by the definition of the \(p \)-adic integral on \(\mathbb{Z}_p \), we have

\[
(2.1) \quad I_{-1} (f_n) + (-1)^n I_{-1} (f) = 2 \sum_{x=0}^{n-1} f(x) (-1)^{n-1-x}
\]

where \(f_n(x) = f(x+n) \).

Let \(T_p = \bigcup_{n \geq 1} C_{p^n} = \lim_{n \to \infty} C_{p^n} = C_{p^\infty} \) be the locally constant space, where \(C_{p^n} = \{ w \mid w^{p^n} = 1 \} \) is the cyclic group of order \(p^n \). For \(w \in T_p \), we denote the locally constant function by

\[
(2.2) \quad \phi_w : \mathbb{Z}_p \to \mathbb{C}_p, \ x \to w^x,
\]

If we set \(f(x) = \phi_w(x) a^{-b} \left(\frac{t}{2} \right)^k (-1)^{x+1} \left(\frac{\beta}{a} \right)^b e^{tx} \), then we have

\[
(2.3) \quad a^{-b} \left(\frac{t}{2} \right)^k \int_{\mathbb{Z}_p} \phi_w(x) (-1)^{x+1} \left(\frac{\beta}{a} \right)^b e^{tx} d\mu_{-1}(x) = 2 \left(\frac{t}{2} \right)^k \frac{1}{w \beta^b e^t - a^b}
\]
We now define unification of twisted Euler and Genocchi polynomials as follows:

\[
\frac{2^k}{n!} \int_0^\infty \frac{e^{-t} a^t b^t}{t^n} dt = \sum_{n=0}^{\infty} y_n, w, (k, a, b) \frac{t^n}{n!},
\]

We note that by substituting \(w = 1\), we obtain Ozden’s generating function (1.4).

From (2.2) and (2.3), we obtain Witt’s type formula for a unification of twisted Euler and Genocchi polynomials as follows:

\[
(2.4) \quad a^{-b} b^{-k} \int_{\mathbb{Z}_p} \phi_w(x) (-1)^{x_1+\ldots+x_h} (\frac{\beta}{a})^{b(x_1+\ldots+x_h)} x_n d\mu_{-1}(x) = \frac{y_{n+k, w, \beta} (k, a, b)}{k! \binom{n+k}{k}}
\]

for each \(w \in T_p\) and \(n \in \mathbb{N}\).

We now establish Witt’s type formula for the unification of multiple twisted Euler and Genocchi polynomials by the following theorem.

Definition 3. Let be \(w \in T_p, n, h, k \in \mathbb{N}, a, b \in \mathbb{R^+}; \beta \in \mathbb{C}\), we define

\[
(2.5) \quad a^{-b} b^{-k} \int_{\mathbb{Z}_p} \ldots \int_{\mathbb{Z}_p} \phi_w(x_1+\ldots+x_h) (-1)^{x_1+\ldots+x_h} (\frac{\beta}{a})^{b(x_1+\ldots+x_h)} x_n d\mu_{-1}(x_1) \ldots d\mu_{-1}(x_h) = \frac{y_{n+k, w, \beta} (k, a, b)}{(kh)! \binom{n+k}{kh}}.
\]

Remark 2. Taking \(h = 1\) into (2.3), we get the unification of the twisted Euler and Genocchi polynomials \(y_{n, w, \beta} (k, a, b)\).

Remark 3. By substituting \(h = 1\) and \(w = 1\), we obtain a special case of the unification of Euler and Genocchi polynomials \(y_{n, \beta} (k, a, b)\).

Theorem 9. For any \(w \in T_p, n, h, k \in \mathbb{N}, a, b \in \mathbb{R^+}; \beta \in \mathbb{C}\),

\[
\frac{y_{n+k, w, \beta} (k, a, b)}{(kh)! \binom{n+k}{kh}} = \sum_{l_1+\ldots+l_h = n} \frac{n!}{l_1! \ldots l_h!} \prod_{i=1}^{h} \frac{y_{l_i+k, w, \beta} (k, a, b)}{(kh)! \binom{l_i+k}{kh}}
\]

Proof. By using definition of the multiple twisted a unification of Euler and Genocchi numbers and polynomials, and, definition of \((x_1 + x_2 + \ldots + x_h)^n = \sum_{l_1+\ldots+l_h = n} \frac{n!}{l_1! \ldots l_h!} x_1^{l_1} x_2^{l_2} \ldots x_h^{l_h}, \)
we see that,

\[
\begin{align*}
& a^{-hb2^{-kh}} \sum_{l_1, \ldots, l_k \geq 0} \frac{n!}{l_1! \cdots l_k!} \left(a^{-b2^{-k}} \int_{Z_p} \ldots \int_{Z_p} \phi_w \left(x_1 + \ldots + x_h \right) \left(-1 \right)^{x_1 + \ldots + x_n + h} \left(\frac{\beta}{a} \right)^{b(x_1 + \ldots + x_h)} \right) \\
& \times \left(x + x_1 + \ldots + x_h \right)^n \mu_{-1} (x_1) \ldots \mu_{-1} (x_h) \\
& = \sum_{l_1, \ldots, l_k = n} \frac{n!}{l_1! \cdots l_k!} \prod_{j=1}^{k} \frac{y_{l_j + kh, w, \beta}^{(k)} (k, a, b)}{(kh)! \left(\binom{n}{l_j + kh} \right)} \\
& \times \left(a^{-b2^{-k}} \int_{Z_p} \ldots \int_{Z_p} \phi_w \left(x_1 + \ldots + x_h \right) \left(-1 \right)^{x_1 + \ldots + x_n + h} \left(\frac{\beta}{a} \right)^{b(x_1 + \ldots + x_h)} \right) \\
& \times \left(x + x_1 + \ldots + x_h \right)^n \mu_{-1} (x_1) \ldots \mu_{-1} (x_h)
\end{align*}
\]

Thus, we arrive at the desired result. \(\square\)

From these formulas, we can define the unification of the twisted Euler and Genocchi polynomials as follows:

\[
(2.6) \quad \left(\frac{2}{w^\beta e^x - \alpha^k} \right)^h e^{xt} = \sum_{n=0}^{\infty} y_{n, w, \beta}^{(h)} (x : k, a, b) \frac{t^n}{n!},
\]

So from above, we get the Witt’s type formula for \(y_{n, w, \beta}^{(h)} (x : k, a, b)\) as follows.

Theorem 10. For any \(w \in T, n, h, k \in \mathbb{N} \setminus 0, a, b \in \mathbb{R}^+; \beta \in \mathbb{C}\), we get

\[
(2.7) \quad y_{n + kh, w, \beta}^{(h)} (x : k, a, b) = \frac{y_{n + kh, w, \beta}^{(h)} (x : k, a, b)}{(kh)! \left(\binom{n}{kh} \right)}
\]

Note that

\[
(2.8) \quad (x + x_1 + x_2 + \ldots + x_h)^n = \sum_{l_1, \ldots, l_h = n} \frac{n!}{l_1! \cdots l_h!} x_1^{l_1} x_2^{l_2} \cdots (x + x_h)^{l_h}
\]

We obtain the sum of powers of consecutive a unification of multiple twisted Euler and Genocchi polynomials as follows:

Theorem 11. For any \(w \in T, n, h, k \in \mathbb{N} \setminus 0, a, b \in \mathbb{R}^+; \beta \in \mathbb{C}\), we get

\[
\frac{y_{n + kh, w, \beta}^{(h)} (x : k, a, b)}{(kh)! \left(\binom{n}{kh} \right)} = \sum_{l_1, \ldots, l_h = n} \frac{n!}{l_1! \cdots l_h!} \frac{y_{l_1 + kh, w, \beta}^{(h)} (x : k, a, b)}{(kh)! \left(\binom{l_1 + kh}{kh} \right)} \prod_{j=1}^{h-1} \frac{y_{l_j + kh, w, \beta}^{(h)} (k, a, b)}{(kh)! \left(\binom{l_j + kh}{kh} \right)}.
\]
Proof. By (2.7) and (2.8), we see that,

\[
\sum_{l_1+...+l_h=0}^{n} \frac{n!}{l_1!...l_h!} \left(a^{-b} \right)^{l_1} \left(b \right)^{l_2} ... \left(h \right)^{l_h} \frac{1}{k} \frac{1}{(a)} \frac{1}{(b)} \frac{1}{(c)} \frac{1}{(d)} ... \frac{1}{(n)} \frac{1}{(n+1)} \frac{1}{(n+2)} ... \frac{1}{(n+k)} \frac{1}{(n+k+1)} \frac{1}{(n+k+2)} ... \frac{1}{(n+k+n)}
\]

So, we complete the proof of the theorem. □

3. A unification of multiple twisted Zeta functions

Our goal in this section is to establish a unification of multiple twisted zeta functions which interpolates of a unification of multiple twisted Euler and Genocchi polynomials at negative integers. For \(q \in \mathbb{C}, |q| < 1 \) and \(w \in T_p \), a unification of multiple twisted Euler and Genocchi polynomials are considered as follows:

\[
(3.1) \quad \left(\frac{2 \left(\frac{1}{2} \right)^k}{w^b e^t - a^b} \right)^h = \sum_{n=0}^{\infty} y_{n,w,\beta}(k, a, b) \frac{t^n}{n!}, \quad t + \log \left(\frac{w}{a} \right) < 2\pi.
\]

By (3.1), we easily see that,

\[
\sum_{n=0}^{\infty} y_{n,w,\beta}(k, a, b) \frac{t^n}{n!} = 2^h \left(\frac{t}{2} \right)^{kh} \left(\frac{1}{w^b e^t - a^b} \right)^h ... \left(\frac{1}{w^b e^t - a^b} \right)^h \\
= 2^h \left(\frac{t}{2} \right)^{kh} (-1)^h \sum_{n_1=0}^{\infty} w^{n_1} \left(\frac{\beta}{a} \right)^{bn_1} e^{n_1 t} \sum_{n_2=0}^{\infty} w^{n_2} \left(\frac{\beta}{a} \right)^{bn_2} e^{n_2 t} \sum_{n_3=0}^{\infty} w^{n_3} \left(\frac{\beta}{a} \right)^{bn_3} e^{n_3 t} \sum_{n_k=0}^{\infty} w^{n_k} \left(\frac{\beta}{a} \right)^{bn_h} e^{n_k t}
\]

By using the Taylor expansion of \(e^{(n_1+...+n_k)t} \) and by comparing the coefficients of \(t^n \) in the both side of the above equation, we obtain that

\[
(3.2) \quad \frac{y_{n+kh,w,\beta}(k, a, b)}{(kh)! \binom{n+kh}{kh}} = 2^{h(1-k)} (-1)^h \sum_{n_1+...+n_k=0}^{\infty} \phi_{w}(n_1+...+n_k) \left(\frac{\beta}{a} \right)^{b(n_1+...+n_k)} (n_1+...+n_k)^n
\]
From (3.2), we can define a unification of multiple twisted zeta functions as follows:

\[\zeta^{(h)}_{\beta,w}(s : k, a, b) = 2^{h(1-k)} (-1)^h \sum_{n_1, \ldots, n_h=0 \atop n_1 + \ldots + n_h \neq 0} \phi_w(n_1 + \ldots + n_h) \left(\frac{\beta}{a} \right)^{h(n_1 + \ldots + n_h)} \frac{(n_1 + \ldots + n_h)^s}{(n_1 + \ldots + n_h)^s} \]

for all \(s \in \mathbb{C} \). We also obtain the following theorem in which a unification of multiple twisted zeta functions interpolate a unification of multiple twisted Euler and Genocchi polynomials at negative integer.

Theorem 12. For any \(w \in T_p, n, h, k \in \mathbb{N}, a, b \in \mathbb{R}^+, \beta \in \mathbb{C} \), we obtain

\[\zeta^{(h)}_{\beta,w}(-n : k, a, b) = \frac{y^{(h)}_{n+kh,w,\beta}(k,a,b)}{(kh)! \left(\frac{n+kh}{kh} \right)} \]

REFERENCES

[1] Araci, S., Erdal, D., and Seo, J-J., A study on the fermionic \(p \)-adic \(q \)-integral representation on \(\mathbb{Z}_p \) associated with weighted \(q \)-Bernstein and \(q \)-Genocchi polynomials, Abstract and Applied Analysis, Volume 2011, Article ID 649248, 10 pages, doi:10.1155/2011/649248.

[2] Araci, S., Seo, J-J., and Erdal, D., New construction weighted \((h, q)\)-Genocchi numbers and polynomials related to Zeta type functions, Discrete Dynamics in Nature and Society, Volume 2011, Article ID 487490, 7 pages, doi:10.1155/2011/487490.

[3] Kim, T., On the \(q \)-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 336 (2007) 1458-1465.

[4] Kim, T., On the multiple \(q \)-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008) 481-486. [arXiv:0801.0978v1] [math.NT]

[5] Kim, T., A Note on the \(q \)-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications 2007 (2007) doi:10.1155/2007/71452. Article ID 71452, 8 pages.

[6] Kim, T., \(q \)-Volkenborn integration, Russ. J. Math. Phys. 9(2002), 288-299.

[7] Kim, T., An invariant \(p \)-adic \(q \)-integrals on \(\mathbb{Z}_p \), Applied Mathematics Letters, vol. 21, pp. 105-108, 2008.

[8] Kim, T., \(q \)-Euler numbers and polynomials associated with \(p \)-adic \(q \)-integrals, J. Nonlinear Math. Phys., 14 (2007), no. 1, 15–27.

[9] Kim, T., New approach to \(q \)-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no. 2, 218–225.

[10] Kim, T., Some identities on the \(q \)-Euler polynomials of higher order and \(q \)-Stirling numbers by the fermionic \(p \)-adic integral on \(\mathbb{Z}_p \), Russ. J. Math. Phys., 16 (2009), no. 4, 484–491.

[11] Kim, T. and Rim, S.-H., On the twisted \(q \)-Euler numbers and polynomials associated with basic \(q \)-\(l \)-functions, Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 738–744, 2007.

[12] Kim, T., On \(p \)-adic \(q \)-\(l \)-functions and sums of powers, J. Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.07.071.

[13] Kim, T., On the analogs of Euler numbers and polynomials associated with \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) at \(q = -1 \) , J. Math. Anal. Appl. 331 (2) (2007) 779-792.

[14] Kim, T., On \(p \)-adic interpolating function for \(q \)-Euler numbers and its derivatives, J. Math. Anal. Appl. 333 (1) (2008) 598-608.

[15] Kim, T., \(q \)-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15 (1) (2008) 51-57.

[16] Kim, T., Euler numbers and polynomials associated with zeta functions, Abstr. Appl. Anal. (2008) Art. ID 581582, 11 pp.

[17] Kim, T., Analytic continuation of multiple \(q \)-zeta functions and their values at negative integers, Russ. J. Math. Phys. 11 (1) (2004) 71-76.

[18] Jang, L-C., and Kim, T., \(q \)-Genocchi numbers and polynomials associated with fermionic \(p \)-adic invariant integrals on \(\mathbb{Z}_p \), Abstr. Appl. Anal. (2008) Art. ID 232187, 8 pp.
[19] Park, Kyung Ho., On Interpolation Functions of the Generalized Twisted \((h, q)\)-Euler Polynomials, Journal of Inequalities and Applications., Volume 2009, Article ID 946569, 17 pages

[20] B. N. Oue and F. Qi, Generalization of Bernoulli polynomials, Interna. J. math. ed. sci. tech., 33(2002), No. 3, 428-431

[21] M. S. Kim and T. Kim, An explicit formula on the generalized Bernoulli number with order \(n\), Indian J. pure Appl. Math., 31(2000), 1455-1466

[22] Qiu-Ming Luo, F. Qi and L. Debnath, Generalization of Euler numbers and polynomials, Int. J. Math. Math. SCI, 3893-3901, 2003.

[23] Qiu-Ming Luo, Bani Guo, Feng Qi and Lokenath Debnath, Generalizations of Bernoulli numbers and polynomials, International Journal of Mathematics and Mathematical Sciences, 59(2003), 3769-3776.

[24] Qiu-Ming Luo, Feng Qi and Lokenath Debnath, Generalizations of Euler numbers and polynomials, International Journal of Mathematics and Mathematical Sciences, 61(2003), 3893-3901.

[25] Qiu-Ming Luo, H.M. Srivastava, Some generalizations of the Apostol–Genocchi polynomials and the Stirling numbers of the second kind, Applied Mathematics and Computation 217 (2011) 5702–5728.

[26] G. D. Liu, Generating functions and generalized Euler numbers, Proc. Japan Acad. Ser. A Math. Sci., 84(2008), 29-34.

[27] C. Frappier, Representation formulas for entire functions of exponential type and Generalized Bernoulli polynomials, J. Austral. Math. Soc. Ser., 64(1998), No. 3, 307-316.

[28] Jolany, H., and Darafsheh, M. R., Some another remarks on the generalization of Bernoulli and Euler numbers, Scientia Magna, Vol. 5 (2009), No. 3, 118-129.

[29] Jolany, H., Alikelaye, R. Eizadi., and Mohamad, S-H., Some results on the generalization of Bernoulli, Euler and Genocchi polynomials, Acta Universitatis Apulensis, No. 27 (2011), 299-306.

[30] Vandiver, H-S., On Generalizations of the Numbers of Bernoulli and Euler, Vol. 23, No. 10 (1937), 555-559.

[31] Tsumura, H., On a \(p\)-adic interpolation of the generalized Euler numbers and it applications, Tokyo J. Math. 10 (2) (1987) 281-293.

[32] Young, P., Congruences for Bernoulli, Euler, and Stirling numbers, J. Number Theory 78 (1999) 204-227.

[33] Carlitz, L., \(q\)-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc. 76 (1954) 332-370.

[34] Ozden, H., and Simsek, Y., A new extension of \(q\)-Euler numbers and polynomials related to their interpolation functions, Appl. Math. Lett. 21 (2008) 934-939.

[35] Ozden, H., Simsek, Y., Srivastava, H-M., A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials, Computers and Mathematics with Applications 60 (2010) 2779-2787.

[36] Ozden, H., Unification of generating function of the Bernoulli, Euler and Genocchi numbers and polynomials, in: Proceedings of the International Conference on Numerical Analysis and Applied Mathematics, Amer. Inst. Phys. Conf. Proc. (2010).

[37] Shiratani, K., and Yamamoto, S., On a \(p\)-adic interpolation function for the Euler numbers and its derivatives, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1) (1985) 113-125.

[38] Srivastava, H-M., Kim, T., and Simsek, Y., \(q\)-Bernoulli numbers and polynomials associated with multiple \(q\)-zeta functions and basic \(L\)-series, Russ. J. Math. Phys. 12 (2005) 241-268.

[39] Srivastava, H-M., Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc. 129 (2000) 77–84.

[40] Srivastava, H-M., Garg, M., and Choudhary, S., A new generalization of the Bernoulli and Euler related polynomials, Russian J. Math. Phys. 17 (2010) 251–261.

[41] Srivastava, H-M., and Pinté, Á., Remarks on some relationships between the Bernoulli and Euler polynomials, Appl. Math. Lett. 17 (2004) 375–380.

[42] Karande, B-K., and Thakare, N-K., On the unification of Bernoulli and Euler polynomials, Indian J. Pure Appl. Math. 6 (1975) 98–107.
UNIVERSITY OF GAZIANTEP, FACULTY OF SCIENCE AND ARTS, DEPARTMENT OF MATHEMATICS,
27310 GAZIANTEP, TURKEY
E-mail address: mtsrk@hotmail.com

UNIVERSITY OF GAZIANTEP, FACULTY OF SCIENCE AND ARTS, DEPARTMENT OF MATHEMATICS,
27310 GAZIANTEP, TURKEY
E-mail address: acikgoz@gantep.edu.tr

DIVISION OF GENERAL EDUCATION-MATHEMATICS, KWANGWOON UNIVERSITY, SEOUL 139-171,
REPUBLIC OF KOREA
E-mail address: sagamath@yahoo.co.kr

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE, UNIVERSITY OF TEHRAN, IRAN
E-mail address: hassan.jolany@khayam.ut.ac.ir