Doi, Yoshiaki; Konno, Norio; Nakamigawa, Tomoki; Sakuma, Tadashi; Segawa, Etsuo; Shinohara, Hidehiro; Tamura, Shunya; Tanaka, Yuuho; Toyota, Kosuke
On the average hitting times of the squares of cycles. (English) Discrete Appl. Math. 313, 18-28 (2022)

Summary: The exact formula for the average hitting time (HT, as an abbreviation) of simple random walks from one vertex to any other vertex on the square C_{2N}^2 of an N-vertex cycle graph C_N was given by N. Chair [J. Stat. Phys. 154, No. 4, 1177–1190 (2014; Zbl 1291.82049)]. In that paper, the author gives the expression for the even N case and the expression for the odd N case separately. In this paper, by using an elementary method different from Chair (2014), we give a much simpler single formula for the HT’s of simple random walks on C_{2N}^2. Our proof is considerably short and fully combinatorial, in particular, has no-need of any spectral graph theoretical arguments. Not only the formula itself but also intermediate results through the process of our proof describe clear relations between the HT’s of simple random walks on C_{2N}^2 and the Fibonacci numbers.

MSC:
05C81 Random walks on graphs
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
94C05 Analytic circuit theory

Keywords:
simple random walk; hitting time; square of a cycle; Fibonacci number; Kirchhoff index

Full Text: DOI

References:
[1] Chair, N., The effective resistance of the $\langle N \rangle$-cycle graph with four nearest neighbors, J. Stat. Phys., 154, 1177-1190 (2014) · Zbl 1291.82049
[2] Y. Doi, T. Miezaki, T. Nakamigawa, T. Sakuma, E. Segawa, H. Shinohara, S. Tamura, Y. Tanaka, K. Toyota, Manuscript in preparation.
[3] Jacob, S., Ein New Und Wohlgegründt Rechenbuch, Auf Den Linien Und Ziffern, Samp Der Welschen Practica ... (1571), Christian Egenolff: Christian Egenolff Frankfurt am Meyn
[4] Kirchhoff, G., Uber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird, Ann. Phy. Chem., 72, 497-508 (1847)
[5] Kesten, D. J.; Golden, B., Counting trees in a certain class of graphs, Amer. Math. Monthly, 82, 1, 40-44 (1975) · Zbl 0297.05123
[6] T. Koshy, Fibonacci and Lucas Numbers with Applications, Vol. 1, in: Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, 2018.
[7] T. Koshy, Fibonacci and Lucas Numbers with Applications, Vol. 2, in: Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, 2019.
[8] Nash-Williams, C. S. J. A., Random walk and electric currents in networks, Proc. Cambridge Phil. Soc. Math. Phys. Sci., 55, 181-194 (1959) · Zbl 0100.13602
[9] Wu, F. Y., Theory of resistor networks: the two-point resistance, J. Phys. A: Math. Gen., 37, 26, 6653-6673 (2004) · Zbl 1061.94087

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.