Cement selection criteria for different types of intracanal posts

Safoura Ghodsi¹, Mohammad Mostafa Aghamohseni², Sarah Arzani², Sasan Rasaeipour², Mina Shekarian²

¹Dental Research Center, Dentistry Research Institute, Department of Prosthodontics, Tehran University of Medical Sciences ²Dentistry Student, Department of Prosthodontics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, ³Department of Prosthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran

ABSTRACT

Background: To consciously select an appropriate dental cement for each type of intracanal post.

Materials and Methods: An electronic search was carried out (1970 to 2020) through Medline, PubMed, Scopus, and Google Scholar. The following keywords were searched in title, abstract, or keywords with different combinations: endodontically treated tooth, root canal therapy, dental posts, post and core, prefabricated posts, custom posts, dental cement, resin cements, cement selection, cement, and adhesive resin cement.

Results: Evaluating full texts, 146 articles were selected to review the types of posts and cements, selection criteria of appropriate cement for each type of post, and compare the results obtained by different cements.

Conclusion: Dental cements affect the survival rate, durability, and success rate of postbased treatments. Considering special characteristics and application of each type of intracanal post, conscious selection of cement is an important determining factor in long-lasting success. Choosing an appropriate cement has a key role in success and durability of dowel posts-based fixed restorations.

Key Words: Dental cement, glass ionomer cements, post-core technics, zinc phosphate cement, resin cement

INTRODUCTION

One of the most prevalent methods for restoring an endodontically treated tooth (ETT) with inadequate remaining structure is to use dowel post and core complex. The concept of using a root canal to provide retention for core material was the first expressed in 1700, by Pierre Fauchard,¹² who suggested to use metallic “tenons” posts screwed into root canal.³ In 1800, several researches focused on increasing crown retention by posts application.¹¹ Posts, generally, could be classified to prefabricated or custom-made, and metallic or nonmetallic with their related subcategories. Prefabricated metallic posts, the oldest version of intracanal posts, had some limitation in esthetic zone,⁶ as well as the risk of toxicity, the possibility of corrosion, and allergic reactions;⁵,⁶ nonmetallic posts were introduced to overcome these deficiencies.⁷ However, several failures in the treatment of endodontically treated teeth in the current century⁴ put a significant question mark in front of the applications of dowel post. Some studies claimed posts could concentrate stress, and lead to root fracture.⁸‑¹¹ Other reported gingivitis,¹²,¹³ periodontal disease,¹⁴ fracture of core,¹² fracture of...
post,[12] loss of retention,[14,15] and caries[14,16] as the complications of post-based treatment, and introduced gingivitis,[12] and root fracture[15] as the most prevalent complications.

Although some treatment alternative namely “Richmond crown”[1,17] and “Endocrown” were introduced in 19th and 20th centuries, post-based restorative options are still among the most prevalent treatment options used in every day dentistry. The improvement in scientific criteria resulted in an ever-increasing introduction of different materials and methods for post fabrication to maximize the profits, and minimize the potential risks. However, long-term successful results, and predictable retention without stress concentration inside the remaining root structure mainly return to appropriate cement selection. Considering the varieties of available cements with special characteristics [Table 1], the present review focuses on comparing different types of dental cement, according to their selection and application criteria for different types of posts.

MATERIALS AND METHODS

An electronic search was carried out (1970 to 2020) through Medline, PubMed, Scopus, and Google Scholar. The following keywords were searched in title, abstract, or keywords with different combinations: ETT, root canal therapy, dental post, post and core, prefabricated post, custom post, dental cement, resin cement, cement selection, cement*, adhesive resin cement. Using reference management software (Endnote X8, Thomson Reuters), duplicated studies were eliminated, and the most relevant articles were chosen based on inclusion criteria: English articles focusing on different types of posts and dental cements, and selecting appropriate cement for each type of post. The studies addressed extra canal posts, or other characteristics of intracanal posts were excluded, as well as studies on other direct or indirect restorations.

RESULTS

The numbers of search results for the selected keywords were 1580 (PubMed), 18,000 (Google scholar) and 3105 (Scopus). After duplicate removal and title/abstract analysis, 317 studies were selected for full-text review. Finally, 146 studies met the requirement of inclusion/exclusion criteria and were included to be discussed.

Cements	Chemical content	Compressive strength (MPa)	Tensile strength (MPa)	Solubility (weight% at 24 h)	Setting time (min)	Modulus of elasticity (GPa)	Bond to tooth	Microleakage	Retention Film thickness	Bonding to tooth	Retention	Bonding to tooth	Retention
Zinc phosphate	Phosphoric acid liquid + zinc oxide and magnesium oxide powder	62-101	5-7	0.2-0.6	5-9	1-2	High	High	Moderate to very high	Low	Low	Very low	Low
Zinc polycarboxylate magnesium oxide powder	67-91	8-12	0.06-0.1	1-2	5-7	1-2	High	High	Very low	Medium	Low	Medium	High
Polyacidic acid + zinc oxide and tartaric acid	179-250	High	0.05-0.1	Moderate to very high	Low	Very low	High	Low	High to very high	Medium	High	Very low	High
Resin-modified glassionomer	Resin and GF	93-226	11.24	0.7-0.4	Low	Very low	High	Low	Low to very high	Medium	High	Medium	High
RC	Dissolved-resin + additive adhesive monomers	179-250	7-9	4-6	2.5-7.8	4-6	High	High	Very low	Medium	High	Very low	High

Table 1: Properties of different types of cement

GI: Glassionomer; RC: Resin cement
Dental cements provide retention for indirect restorations by chemical or mechanical bonding, or simply, filling the space between the restoration and tooth structure, physically. Intra canal posts provide retention for core materials; however, its own retentiveness should be passively provided by dental cements. Different dental cements are available with varieties of properties to be used:

Zinc phosphate cement (ZP), introduced in 1800s, is the oldest luting cement. Low tensile strength, high degree of solubility (0.36%), high compressive strength, and elastic modulus, low cost, and early strength are among the properties. After 1 h, ZP has the lowest PH (about 1.2) that increases to 5.5 after 24 h. In patients with acid reflux problems, and in vital teeth with low residual dentin thickness, this cement should be used carefully.

Zinc polycarboxylate cement (ZPC), introduced in 1968, was the first cement that exhibited chemical bond to tooth structure, and according to increasing pH after mixing, it was very biocompatible. However, weak bond to enamel and dentin, low compressive and tensile strength make it inappropriate for single-unit restorations or long-span fixed partial dentures.

Glass ionomer cement (GI) was introduced in 1969 under the name of aluminosilicate polyacrylic acid. Enamel and dentin adhesion, fluoride release, low bonding strength, moderate compressive strength, low tensile strength, and high solubility are among the properties. GI could be indicated in varieties of restoration namely all-metal/PFM crowns, short span fixed partial denture, alumina/zirconium-based all-ceramic restorations, and Metal post and core.

Resin-modified GI (RMGI) was introduced to overcome GI sensitivity to early moisture contamination and high solubility rate. In this combination of resin and conventional GI, adhesion to tooth structure was improved as well as compressive/tensile strength, solubility, and post-cementation sensitivity. RMGI has a wide range of applications; however, in traditional feldspathic or pressable ceramic restorations should be used with caution.

Resin cement (RC) was introduced in mid-1970s as an acid-base reaction cement. High compressive, tensile, and bonding strength, esthetics, and low solubility, candidate this cement for esthetic or compromised situations. RCs could be classified to conventional, self-etch, and self-adhesive types [Figure 1]. In conventional (total etch or etch-and-rinse) RC, etching process happens as a separate stage, and after rinsing, adhesive, or primer-adhesive is applied on tooth structure before cement application. Self-etch primer, used in self-etch RC, is a combination of acidic monomers, phosphate esters, and primer. These cements might be used in 2 or 3 steps. Self-adhesive (all-in-one) RC combined all the steps in one tube to reduce the technical sensitivity, and facilitate the process. However, the research reported lower bond strength for this type.

Appropriate cement selection calls for knowing the cements properties [Table 2], and posts requirements. For bonding a post to root canal using RC, the cement has to be bonded to dentin structure. Conventional RC reported to provide high, predictable, and durable bond strength to enamel, while bonding to dentin represents a greater challenge. Dentin is a wet organic tubular tissue that communicates with dental pulp. All RCs have been reported to cause marginal leakage when used on this dynamic structure. Micromechanical retention of RC to dentin is provided by the formation of hybrid layer between demineralized collagen fibers and cement, and also resin tags. The quality (thickness and uniformity) of hybrid layer determines the bond strength. Unlike self-etch RC, conventional RC proved to provide a thick uniform hybrid layer. On the other hand, self-etch RC penetrates deeper into the dentin compared to self-adhesive type. Morphological imaging has demonstrated a thin hybrid layer formation in self-etch RC, but no hybrid layer or resin tag in self-adhesive type.

However, there are controversial results on preferred RC for dentin bonding. Some studies indicated self-etch cement as the preferred RC for dentin bonding, while others gave more priority to self-adhesive RC. It has been reported that in the presence of smear layer, self-adhesive RC provides a weak bond with dentin, and self-etch cement is preferred under such situation to provide an acceptable bond with smear layer, improve fluid content of dentinal tubules, and reduce the amount of dentin decalcification. In spite of all of these controversies, all types of RC,
including self-adhesive types, produce adequate bonds to dentin. Bond strength of etch and rinse cements (20–35 Mpa), self-etch (10–35), and self-adhesive (20–30 Mpa) are all in acceptable clinical ranges.

The type of restoration also plays an important role. Total-etch RC is often preferred in indirect restorations especially in the presence of large areas of enamel, while self-etch adhesives are recommended for direct restorations, and predominantly on dentinal bed. According to these controversies, more clinical long-term evaluations are needed.

DISCUSSION

Selecting a proper dowel post depends on various factors namely the amount of remaining tooth structure, tooth anatomy, position, functional requirements, root length, width, and configuration, potential torquing force, dowel post design and material, bonding capability, esthetics, and restoration type.

Prefabricated posts and recommended cements

Prefabricated posts are indicated when sufficient width and length of root structure has been preserved, the

Table 2: Advantages and disadvantages of available dental cements

Cement	Advantages	Disadvantages
ZP	Nonexpensive^[37] Easy to manipulate^[37] Quick to use^[37] Relatively no technical sensitivity^[37] Reliable retention^[37] Weak enough to remove the post if necessary^[37] Easy clean-up of excess cement^[37]	Does not adhere to tooth or post^[37] Brittle^[37] Soluble in time^[37,39] Vulnerable to microleakage^[17,37-39] Does not release fluoride^[37]
GI	Adhere to dentine^[37] Release fluoride^[19,37] Nonexpensive^[37] Easy to manipulate^[37] Low film thickness^[17,37] Easily cleanable for excess cement^[37] Proper choice for patients with gastric reflux problems or want their teeth to be bleached^[37,41]	Vulnerable to dehydration and elution of calcium and aluminum ions in exposure to excess moisture^[37,38] Brittle^[37] Retention of post might be unreliable^[37]
Resin-modified GI cements	Increased retention^[19,14,37] Adherence to metallic posts and root dentin^[37] Fluoride release^[37] Easy cleanable for excess cement^[37]	More expensive than ZP or GI cements^[37] Calls for application of primer or adhesive^[37] Difficult or impossible to remove post, if required^[37]
Conventional RCs (etch and rinse)	Highest bond strengths to enamel^[42] High bond strengths to dentin^[43]	High technique sensitivity^[42,43-46] Possibility of postoperative sensitivity of tooth^[47,48] Lower bond strength to enamel compared to etch and rinse system^[37,41]
Self-etch resin cements	Higher bond strengths to dentin^[36] Easy to use and fewer steps requirement^[49] Low technical sensitivity^[20]	Lower bond strength^[35,36]
Self-adhesive resin cements	Lower technique sensitivity^[31,33] Fewer steps are required^[50-53] No pre-treatment is required^[54]	Low rigidity and visco-elasticity^[29]

ZP: Zinc phosphate; GI: Glassionomer; RCs: Resin cements
root has circular cross-sectional, and severe root canal undercuts prevent cast posts application.\[^{73}\] Metallic prefabricated posts could be routinely cemented by conventional cements.\[^{73-76}\] However, dual-cure RCs have been recommended for nonmetallic types,\[^{67,77}\] or when higher retention is desired.

A. Metallic post has been using during the past 20 years, and divides into three subgroups based on material type: titanium, stainless steel, or brass. Conventional permanent cement (ZP and GI) could be used for these posts.\[^{73}\] However, there are controversies in comparison between ZP and RC. Some studies reported better retention for RC,\[^{78}\] while the others gave more priority to ZP in these posts.\[^{74-76}\] There are other studies not recommend RC for clinical application in posts.\[^{73}\]

a. Stainless steel and brass posts are rigid and strong, and are not appropriate when minimal tooth structure remains.\[^{7}\] They might form corrosion products, and lead to root discoloration.\[^{79}\]

b. Titanium post, introduced to reduce the possibility of corrosion,\[^{7}\] has low fracture strength (that make it contraindicated in thin root canal), and close radiopacity to gutta-percha.\[^{7}\]

B. Nonmetallic posts are either made from ceramics (zirconia or alumina),\[^{80}\] or a combination of resin matrix and reinforcing fibers (carbon, glass, or quartz).\[^{81}\] They were introduced to provide more favorable esthetics,\[^{82}\] or close elastic modulus to dentine compared to metallic dowel posts\[^{81}\] to reduce the risk of root fracture and increase the survival rate.\[^{83}\]

a. Zirconia post, composed of zirconium oxide, is an all-ceramic post with high flexural strength, elastic modulus,\[^{84}\] and toughness.\[^{85-87}\] It could be indicated in esthetic area;\[^{32,88}\] however, inherent brittleness, limits its application.\[^{89}\] There is inherent deficiency in retention of these posts considering the smooth surface,\[^{78}\] and insufficient bonding to RCs.\[^{90-94}\]

However, RC provides higher bond strength compared to GI cement,\[^{95}\] and the RC with phosphate monomer content, proved to be more reliable for bonding zirconia.\[^{96}\]

b. Fiber reinforced posts show high success rate with reduced risk of root fracture by their close toughness to dentine.\[^{97}\] Self-adhesive RC has been suggested as the cement of choice for fiber posts with high bond strength.\[^{97}\]

However, other researches proved better results using etch-and-rinse dual curing adhesive system, compared to self-adhesive or self-etch RC or GI cements.\[^{98-102}\] A company have suggested dual-cure flowable hybrid composite for cementation of fiber posts.\[^{103}\]

i. Fiber reinforced resin-based composite (FRC) post reduces the risk of toxicity,\[^{31,104}\] and by their close modulus of elasticity to dentine,\[^{105-107}\] reduces the possibility of root fracture. Moreover, FRC posts can be removed easily for retreatment if necessary.\[^{88-108}\] Bonding with tooth structure causes good distribution of occlusal forces.\[^{109}\] However, FRC post has low physical strength. The most reliable cement for this group of posts is etch-and-rinse dual-cure RCs.\[^{110}\]

ii. Polyethylene fiber post (PFP), introduced as an alternative to stainless steel and zirconia posts with less micro-leakage,\[^{111}\] is made from ultrahigh molecular weight polyethylene woven fiber ribbons.\[^{112}\] Tooth structure protection, and reduced risk of root fracture have been mentioned as advantages.\[^{106}\] Eskıtaşçıoğlu et al. reported minimum stress within PFP compared to cast post and core system; and suggested these posts for restoration of apically resected teeth.\[^{113}\]

iii. Carbon fiber posts (CFP), introduced in 1998,\[^{114}\] was the first nonmetallic postintroduced. CFP consists of bundle of stretched carbon fibers embedded into an epoxy matrix.\[^{72,73,115}\]

iv. Glass fiber (GF) post is made from silicate glass (electrical, or high-strength glass), or quartz fibers,\[^{116,117}\] and different types of matrices (polymethylmethacrylate or epoxy resin).\[^{118}\] Silicate glass ceramic post has better esthetic, that could even be enhanced by using epoxy resin as matrix.\[^{118}\] Quartz (Glass) fiber post could be preferred over CFP for ease of application and removing, and clinicians preferred to use them because of their esthetic biocompatibility.\[^{119}\] Self-adhesive RCs have been recommended by some companies.\[^{120}\] One study claim that RMGI could be indicated for GF posts.\[^{17}\] Table 3 summarizes the recommendations of different companies for selecting proper type of cement for each type of posts.
Ghodsi, et al.: Cement selection in prosthodontics

Table 3: Manufacturers’ recommendations for proper type of cement in each type of post

Classification of posts	Manufacture of posts	Recommended type of cement
Metallic prefabricated		
Titanium	A-UCR-330-EX (Sweden and martina implantology)\[21\]	Self-etch RC\[122\]
	ParaPost X Posts (Coltene/Wahledent)\[22\]	Self-adhesive RC\[124,125\]
	Dentatus Classic Surtex® Posts (Dentatus)\[123\]	Self-curing GI cement\[126\]
Stainless steel	Parapost (Coltene/Wahledent)\[122\]	
Brass	Dentatus Classic Surtex® Posts (Dentatus)\[123\]	
Nonmetallic prefabricated		
Fiber reinforced posts	TENAX® Fiber Trans (Coltene/Wahledent)\[27\]	Self-adhesive RC\[103,124,127,132\]
	Para post Fiber Lux (Coltene/Wahledent)\[27\]	self-etching RCs\[122\]
	Para post Taper Lux (Coltene/Wahledent)\[27\]	Dual- and self-cure RCs\[127\]
	RelyX™ Fiber Post (3M ESPE)\[128\]	Light-curing RC\[127\]
	EZ-Fit Translucent (Essential dental system)\[129\]	
	DT Posts (VDw Dental)\[130\]	
Zirconia	Cosmopost (Vivident)\[131\]	
	Snow post (Snow post)\[123\]	
FRC	Marco-lock (RTD dental)\[133\]	
Glass- fiber	FibreKor Posts (Pentron)\[133\]	
	Lucent anchor (Dentatus)\[122\]	
Quartz fiber	Aesthetic-Plus (RTD/Bisco)\[7,133\]	
	D.T. Light-Post (RTD/Bisco)\[7,133\]	
Carbon fiber	C-Post (RTD/Bisco)\[7,133\]	

GI: Glassionomer; RCs: Resin cements

Custom posts

Custom posts are indicated when moderate-to-severe coronal structure has been lost, root canal has noncircular cross section,\[72\] the core has different angle to the post, core retention on post is compromised due to tooth size, and when multiple post and core are to be made in the same patient.\[72\] A company recommended self-adhesive RC for metallic customize posts;\[134\] however, considering the adaptation of these types of posts to the root canal, all types of cements could be used for custom posts.\[22,135\] One study found ZP and GI to be more retentive than ZPC or even RC.\[75\] Another study claimed that GI is inappropriate for casted intracanal posts considering the insufficient strength.\[136\]

A. Metallic custom post is a very strong and retentive choice especially for small tooth, as the core is an inherent part of the component. Poor esthetics, risk of corrosion and fabrication inaccuracy, and difficult retrieval could be mentioned as disadvantages.\[73\]

a. Precious alloy post contains silver, palladium, and gold,\[137\] is corrosion resistant, highly biocompatible, and suitable for hypersensitive patients.\[138\]

b. Nonprecious alloy posts include the posts fabricated from nickel–chrome, chrome-cobalt, and nonprecious gold color alloy (NPG). Nickel–chrome alloy might be electrolytically etched to enhance micro-mechanical bonding for RCs.\[139\] NPG alloy with its golden color has been introduced as an alternative for precious alloys with lower cost.\[26\] It has been claimed to have acceptable durability and thermal resistance, excellent fit, good biocompatibility, and easy adjustability, soldering, and finishing capacity.\[26\] However, it shows high corrosion susceptibility,\[25\] that might lead to significant discoloration, and potential cell toxicity.\[80\]

B. Nonmetallic all-ceramic custom post, made from high-toughness ceramic materials such as alumina or zirconia, is very biocompatible, does not exhibit galvanic corrosion, and provides significantly enhanced esthetic; but it has low fracture strength and toughness.\[80\] Dual-cure adhesive RCs have been recommended for this type of posts.\[131\] Self-curing RC and conventional cements (ZP, GI, RMGI) could also be used for ceramic custom posts.\[131\] Self-adhesive RC has been suggested for these posts; with higher bond strength compared to conventional cements.\[126,134,140\] Table 4 summarizes the characteristics of different types of post.

Cement selection criteria

Dental cement in indirect restorations could be considered as an important determining factor affects retention, stability, survival, esthetic, and also patient satisfaction. The selection of appropriate cement could even be more important in intracanal posts; as in post-based restorations, not only the durability of
Table 4: Characteristics of different types of intracanal posts

Type	Subcategory	Advantages/indications	Disadvantages/contraindications
Prefabricated	Metallic	Preservation of tooth structure[141]	Possibility of corrosive or allergic reactions[5,6]
	Titanium	Possibility of corrosive or allergic reactions[5,6]	Same radiodensity as Gutta-Percha[7]
	Stainless steel	Low fracture strength (titanium)[4,7,104,142]	Contraindicated in thin canal[7]
	Brass		
	Nonmetallic		
	Ceramic posts		
	Zirconia	High fracture toughness[76]	Weaker than metallic posts[7]
		Excellent resistance to corrosion[76]	Less conservative of tooth structure[7]
		High flexural strength[78,98]	Endanger the core retention[30,144]
		High elastic modulus[84] and toughness[85-87]	Poor resin-bonding capability[30,144]
		Good chemical stability	
		Good biocompatibility	
	Fiber reinforced	Decrease possibility of root fracture[146,147]	Very expensive[112]
	Polyethylene	Less microleakage than zirconia and stainless-steel posts[112]	
		Indicated in teeth with apical resection[146,147]	
		High elastic coefficient[146,147]	
		High resistance to stretch and distortion[147]	
	FRC	Reduced risk of toxicity[31,104]	Low physical strength[104]
		Close modulus of elasticity to dentine[105-107]	
		Can be used in esthetic zone[104]	
		Easy to remove and retreat[88,108]	
		Good bonding with tooth structure[109]	
	Glass-fiber	Better esthetic than quartz fiber posts[88]	Esthetically weaker than FRC posts[88]
	Silicate	Biocompatibility[88]	Low strength[88]
		Dentin bonding[88]	Debonding[88]
		Easy to use and manipulation[88]	Uncertain clinical performance[88]
	Quartz	Easy to remove for retreatment[88]	
		Reduce the possibility of root fractures[89,140]	
		Easy to remove[140]	
		Reduce the risk of toxicity[31]	
		High tensile strength[89]	
	Nonesthetic		
	Carbon fiber	Close modulus of elasticity to dentine[7,88,140]	Should not be used in esthetic zone[7,88,140]
		Reduce the possibility of root fractures[88,140]	
		Easy to remove[148]	
		Reduce the risk of toxicity[31]	
	Customize posts	Metallic	
	Nonprecious	High success rate[150,151]	Contraindicated in high esthetic zone[4,7]
	alloy	Good choice for misaligned, or small teeth[7]	More time and cost[7]
	Nickel-cobalt	Easy to remove[7]	Possibility of allergic reactions[5,6]
	Chrome-cobalt	Cost effect[26,152]	High corrosion reaction[26]
	NPG color alloy	High durability[26,152]	Uncertain reaction[26]
		High thermal strength[26,152]	
		Excellent fit[26,152]	
		Easy soldering[26,152]	
	Precious alloy	Biocompatibility[38]	Expensive
	Platin-palladium	Highly biocompatible[38]	
	Palladium-silver	Suitable for hypersensitive patients[39]	
	Gold	Repair option[158]	
	Nonmetallic	All ceramic	
	All ceramic	Excellent aesthetics[72]	Brittle[72]
		Excellent biocompatibility[72,80]	Not appropriate for bruxism patients[72]
		Low fracture strength and toughness[80]	Very rigid[73]
		No galvanic corrosion[80]	
		Good radiopacity[73]	

NPG: Nonprecious gold; FRC: Fiber reinforced resin-based composite
intracanal posts but also the survival and durability of restorative treatments depend on post retention. There are a wide range of prefabricated or custom posts types/materials introduced in an ever-increasing manner in the last decade. The same varieties exist in available cements, especially when it comes to resin luting cements.

Conventional or resin cements?

In general, when an intracanal post has high degrees of adaptation in the root prepared canal (custom post), or the strength of post is not affected by bonding to tooth structure (e.g., metallic post), or esthetic is not a determining factor, conventional cements namely GI and ZP might provide acceptable retention.⁸¹⁹,²⁹ RMGI could provide higher retention.⁸,¹⁵,³⁷ and ZPC cement could be indicated for situations where retrievability is predicted in dowel post-based treatments.⁷,¹⁸ These conventional well-known cements with a long history of application, are easily accessible, less expensive, and less technique sensitive that candidate them for routine dental applications.³⁷ However, there are situations where higher retention, strength, or esthetic call for the application of RCs. Considering the variety of types and characteristics of these cements, conscious selection is important to guarantee the long-lasting success.

Which type of resin cements?

Some RC proved to provide higher and more durable retention (total etch cements),⁵¹ while the others could facilitate the cement application in cementing a dowel post intra root canal (self-adhesive cements),¹⁵³ or control the acid penetration or dentin desiccation during cementing process (self-cure cements).⁵¹ Some RC provide immediate and predictable complete polymerization (light-cure RC), while the others could be used when full light penetration is not assured (dual- or self-cure RC).⁵¹ The selection between these cement types call for knowing the characteristic of different dowel posts, and clinical requirements.

The present review tried to provide a document-based information to select an appropriate cement based on dowel post material/type classifications. Long-term studies focused on the changes that occur in cement characteristics over the time, and the behavior of different cements under challenging conditions (e.g., short roots, abnormal dentin structure, excessive applied forces, or potential material deteriorations) are suggested to provide sound and reliable choice of cements for different types of dowel posts. Table 5 summarizes outcomes of studies on different cements.

Table 5: Outcome of some studies on different cements retention for post and cores

Author	Type of post	Compared cements	Conclusion
Habib et al., 2005	Custom cast posts	ZP and self-etch dual RC	ZP had higher retentive values compared to RC
Duncan and Pameijer, 1999	Parallel titanium posts	RC, ZP, GI, and RMGI	RC provided higher retention than others
Chan et al., 1993	Stainless steel para-posts	ZP, ZPC, GI, RC	Stainless steel posts cemented with RC exhibited higher resistance to dislodgement by vertical tensile forces
Cohen et al., 1999	Stainless steel posts	RC and ZP	Stainless steel dowels have been shown to be more retentive than carbon fiber posts when cemented with either RC or ZP cement
Lencioni et al., 2010	Pure titanium posts	Self-etch RC, self-adhesive RC, ZP	Posts fixed with self-adhesive RC presented superior bond strength compared to ZP and self-etch cements
Ubaldini et al., 2018	Fiber posts	Etch and rinse RC and self-etch adhesive RC	Etch and rinse RC provided higher retention for fiber posts
Radke RA, 1988	Cast gold posts	ZP, GI, ZPC	ZP and GI cements were found to be more retentive than ZPC
Sahmali et al., 2004	Ceramic posts and carbon fiber posts	Self-etch RC, RMGI, GI	Self-etch RC had significantly higher bond strength than two other cements
Hagg et al., 2002	Prefabricated post (paraposts)	Self-etch RC, ZP	Self-etch RC demonstrated higher retention than ZP
Bonfante et al., 2007	Glass fiber posts	RMGI, dual-cure RC	RC provided higher tensile bond strength for glass fiber posts
Menani et al., 2008	Cast posts (gold alloy-pure titanium)	ZP, RC	Both cements provided similar mean tensile retention
Cohen et al., 1998	Flexi-post, access post, titanium post	Composite cement, ZP, advance, duet, and GI	Composite cement provided higher retention for all types of posts
Sen et al., 2004	Prefabricated posts (ParaPost, Flexi-Post)	Etch and rinse RC, ParaPost Cement, Flexi-Flow Natural, and ZP	Flexi-post showed significantly higher retentive strengths compared to non-threaded posts
Ertugrul and Ismail, 2005	Cast metal posts	RC, ZP	RC significantly increased the dowel retention compared to ZP ZP cement provided greater tensile bond strength than RC with and without silane coating agent

ZP: Zinc phosphate; GI: Glassionomer; RC: Resin cement; RMGI: Resin-modified glass ionomer
CONCLUSION

Considering the limitation of this review, the following conclusions could be derived:
1. Conventional cements could be used safely for metallic prefabricated posts; in nonmetallic posts, or in situations with extensive coronal destruction, or higher retentive demands, dual-cure RCs have been recommended as appropriate alternative
2. Etch-and-rinse RC provides higher retention with predictable durability, but the retention provided by self-etch or self-adhesive RCs could still be acceptable in normal clinical situations
3. RCs containing functional phosphate monomer are the most appropriate adhesive cement for zirconia prefabricated or custom posts
4. Considering the perfect adaptation, all types of cements could be used for custom posts; however, conventional cements are preferred for metallic, and adhesive resin for ceramic posts.

Financial support and sponsorship
Nil.

Conflicts of interest
The authors of this manuscript declare that they have no conflicts of interest, real or perceived, financial or nonfinancial in this article.

REFERENCES

1. Al-Dhalaan R. Prosthodontic Management of Endodontically Treated Teeth; Factors Determining Post Selection, Foundation Restorations and Review of Success Failure Data. Was available on 12 May 2020 from: https://www.endoexperience.com/documents/prosthodonticmanagementofendodonticallytreatedteeth.pdf.
2. Terry DA, Swift EJ. Post-and-cores: Past to present. Dent Today 2010;29:132-5.
3. Smith CT, Schuman NJ, Wasson W. Biomechanical criteria for evaluating prefabricated post-and-core systems: A guide for the restorative dentist. Quintessence Int 1998;29:305-12.
4. Meyenberg KH, Lüthy H, Schärer P. Zirconia posts: A new all-ceramic concept for nonvital abutment teeth. J Esthet Dent 1995;7:73-80.
5. Hayashi Y, Nakamura S. Clinical application of energy dispersive x-ray microanalysis for nondestructively confirming dental metal allergens. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997;77:623-6.
6. Kedici SP, Aksüt AA, Kılıçarslan MA, Bayramoğlu G, Gökdemir K. Corrosion behaviour of dental metals and alloys in different media. J Oral Rehabil 1998;25:800-8.
7. Schwartz RS, Robbins JW. Post placement and restoration of endodontically treated teeth: A literature review. J Endod 2004;30:289-301.
8. Guzy GE, Nicholls JH. In vitro comparison of intact endodontically treated teeth with and without endo-post reinforcement. J Prosthet Dent 1979;42:39-44.
9. Trope M, Maltz DO, Tronstad L. Resistance to fracture of restored endodontically treated teeth. Endod Dent Traumatol 1985;1:108-11.
10. Morgano SM. Restoration of pulpless teeth: Application of traditional principles in present and future contexts. J Prosthet Dent 1996;75:375-80.
11. Heydecke G, Butz F, Strub JR. Fracture strength and survival rate of endodontically treated maxillary incisors with approximal cavities after restoration with different post and core systems: An in-vitro study. J Dent 2001;29:427-33.
12. Imran M, Shahid R, Hussain M, Jawaid M, Khan M. Complications after post and core treatment. Pak Oral Dent J 2015;35:546-9.
13. Jung RE, Kalkstein O, Sailer I, Roos M, Hammerle CH. A comparison of composite post buildups and cast gold post-and-core buildups for the restoration of nonvital teeth after 5 to 10 years. Int J Prosthodont 2007;20:63-9.
14. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications in fixed prosthodontics. J Prosthet Dent 2003;90:31-41.
15. Said Y, Sahib D. The Use of Post and Core in Public and Private Swedish Dental Care: A Questionnaire Study; 2018. Was available on from: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-143912. [Last accessed on 2020 May 12].
16. De Backer H, Van Maele G, De Moor N, Van den Bergh L. An up to 20-year retrospective study of 4-unit fixed dental prostheses for the replacement of 2 missing adjacent teeth. Int J Prosthodont 2008;21:259-66.
17. Smith CT, Schuman N. Prefabricated post-and-core systems: An overview. Compend Contin Educ Dent 1998;19:1013-8, 1020.
18. Yu H, Zheng M, Chen R, Cheng H. Proper selection of contemporary dental cements. Oral Health Dent Manag 2014;13:54-9.
19. Hill EE. Dental cements for definitive luting: A review and practical clinical considerations. Dent Clin North Am 2007;51:643-58, vi.
20. Craig RG. Restorative Dental Materials. 14th ed., Ch. 13. St. Louis, Missouri: Mosby; 2019. p. 282.
21. Peutzfeldt A. Compomers and glass ionomers: Bond strength to dentin and mechanical properties. Am J Dent 1996;9:259-63.
22. Rosenstiel SF, Land MF, Crispin BJ. Dental luting agents: A review of the current literature. J Prosthet Dent 1998;80:280-301.
23. Christensen GJ. Reducing the confusion about resin cements. Clin Rep 2008;1:1-3.
24. O’Brien WJ. Dental Materials and Their Selection. 4th ed., Ch. 8. Canada: Quintessence; 2002. p. 218.
25. Bagheri R. Film thickness and flow properties of resin-based cements at different temperatures. J Dent (Shiraz) 2013;14:57-63.
26. Vaidyanathan TK, Vaidyanathan J. Recent advances in the theory and mechanism of adhesive resin bonding to dentin: A critical review. J Biomed Mater Res B Appl Biomater 2009;88:558-78.
27. Ames WB. A new oxyphosphate for crown setting. Dent Cosmos 1892;34:392-3.
28. Smith DC. A new dental cement. Br Dent J 1967;123:540-1.
29. Xu X, Burgess JO. Compressive strength, fluoride release
and recharging of fluoride-releasing materials. Biomaterials 2003;24:2451-61.

30. Butz F, Lennon AM, Heydecke G, Strub JR. Survival rate and fracture strength of endodontically treated maxillary incisors with moderate defects restored with different post-and-core systems: An in vitro study. Int J Prosthodont 2001;14:58-64.

31. Bearden LJ, Cooke FW. Growth inhibition of cultured fibroblasts by cobalt and nickel. J Biomed Mater Res 1980;14:289-309.

32. Ahmad I. Ytrrium-partially stabilized zirconium dioxide posts: An approach to restoring coronally compromised nonvital teeth. Int J Periodontics Restorative Dent 1998;18:454-65.

33. De Munck J, Vargas M, Van Landuyt K, Hikita K, Lambrechts P, Van Meerbeek B. Bonding of an auto-adhesive luting material to enamel and dentin. Dent Mater 2004;20:963-71.

34. Hikita K, Van Meerbeek B, De Munck J, Ikeda T, Van Landuyt K, Maida T, et al. Bonding effectiveness of adhesive luting agents to enamel and dentin. Dent Mater 2007;23:71-80.

35. Abo-Hamar SE, Hiller KA, Jung H, Federlin M, Friedl KH, Schmalz G. Bond strength of a new universal self-adhesive resin luting cement to dentin and enamel. Clin Oral Investig 2005;9:161-7.

36. Bouillaguet S, Degrange M, Cattani M, Godin C, Meyer JM. Bonding to dentin achieved by general practitioners. Schweiz Monatsschr Zahnmed 2002;112:1006-11.

37. Bonfante G, Kaizer OB, Pegoraro LF, do Valle AL. Tensile bond strength of glass fiber posts luted with different cements. Braz Oral Res 2007;21:159-64.

38. Um CM, Oiio G. The effect of early water contact on glass-ionomer cements. Quintessence Int 1992;23:209-14.

39. White SN, Yu Z, Tom JF, Sangsurasak S. In vivo microleakage of luting cements for cast crowns. J Prosthod Dent 1994;71:333-8.

40. Yu H, Li Q, Cheng H, Wang Y. The effects of temperature and bleaching gels on the properties of tooth-colored restorative materials. J Prosthod Dent 2011;105:100-7.

41. Yu H, Buchalla W, Cheng H, Wiegand A, Attin T. Topical fluoride application is able to reduce acid susceptibility of restorative materials. Dent Mater J 2012;31:433-42.

42. Al-Assaf K, Chakmakchi M, Palaghias G, Karanika-Kouma A, Bitter K, Perdigão J, Exner M, Neumann K, Kielbassa A, Carvalho RM, Pegoraro TA, Tay FR, Pegoraro LF, Silva NR, Pashley DH. Adhesive permeability affects coupling of resin cements that utilise self-etching primers to dentine. J Dent 2004;32:55-65.

43. Simon JF, De Rijk WG. Dental cements. Inside Dent 2006;2:42-7.

44. Swift EJ Jr., Bayne SC. Shear bond strength of a new one-bottle dentin adhesive. Am J Dent 1997;10:184-8.

45. Peumans M, Kanumilli P, De Munck J, Van Landuyt K, Lambrechts P, Van Meerbeek B. Clinical effectiveness of contemporary adhesives: A systematic review of current clinical trials. Dent Mater 2005;21:864-81.

46. Perdigão J, Frankenberger R, Rosa BT, Breschi L. New trends in dentin/enamel adhesion. Am J Dent 2000;13:25D-30D.

47. Asthana G, Parmar G. Hybrid layer: Foundation of dental bonding. J Gov Dent Coll Hosp 2014;01:46-50.

48. de Oliveira Ferraz LC, Ubaldini AL, de Oliveira BM, Neto AM, Sato F, Baesso ML, et al. Analytical method to estimate resin cement diffusion into dentin. J Biomed Opt 2016;21:55003.

49. Radovic I, Monticelli F, Goracci C, Vulicevic ZR, Ferrari M. Self-adhesive resin cements: A literature review. J Adhes Dent 2008;10:251-8.

50. Vaz RR, Hipólito VD, D’Alpino PH, Goes MF. Bond strength and interfacial micromorphology of etch-and-rinse and self-adhesive resin cements to dentin. J Prosthodont 2012;21:101-11.

51. Aguiar TR, Andre CB, Arrais CA, Bedran-Russo AK, Giannini M. Micromorphology of resin-dentin interfaces using self-adhesive and conventional resin cements: A confocal laser and scanning electron microscope analysis. Int J Adh Dent 2013:38:69-74.

52. Aguiar TR, Vermelho PM, André CB, Giannini M. Interfacial ultramorphology evaluation of resin luting cements to dentin: A comparative scanning electron microscopy and transmission electron microscopy analysis. Microsc Res Tech 2013;76:1234-9.

53. Al-Assaf K, Chakmakchi M, Palaghias G, Karamika-Kouma A, Eliades G. Interfacial characteristics of adhesive luting resins and composites with dentine. Dent Mater 2007;23:829-39.

54. Bitter K, Perdigão J, Exner M, Neumann K, Kielbassa A, Sterzenbach G. Reliability of fiber post bonding to root canal dentin after simulated clinical function in vitro. Oper Dent 2012;37:397-405.

55. Ozer F, Blatz MB. Self-etch and etch-and-rinse adhesive systems in clinical dentistry. Compend Contin Educ Dent 2013;34:12-4, 16, 18.
68. Zorba YO, Erdemir A, Turkyilmaz A, Eldeniz AU. Effects of different curing units and luting agents on push-out bond strength of translucent posts. J Endod 2010;36:1521-5.

69. Radovic I, Mazzitelli C,chiefi N, Ferrari M. Evaluation of the adhesion of fiber posts cemented using different adhesive approaches. Eur J Oral Sci 2008;116:557-63.

70. Bitter K, Meyer-Lueckel H, Priehn K, Kanjiضارمجلة, JP, Neumann K, Kielbassa AM. Effects of luting agent and thermocycling on bond strengths to root canal dentine. Int Endod J 2006;39:809-18.

71. Fernandes AS, Dessai GS. Factors affecting the fracture resistance of post-core reconstructed teeth: A review. Int J Prosthodont 2001;14:355-63.

72. Dangra Z, Gandhewar M. All about dowels – A review part I. Considerations before cementation. J Clin Diagn Res 2017;11:ZG06-11.

73. Garg A, Garg N. Textbook of Endodontics. 4th ed., Ch. 27. India, New Delhi: Iajee Brothers Medical Publishers; 2018. p. 406-27.

74. Radke RA, Barkhordar RA, Podesta RE. Retention of cast endodontic posts: Comparison of cementing agents. J Prosthodont 1988;59:318-20.

75. Schwartz RS, Murchison DF, Walker WA 3rd. Effects of eugenol and noneugenol endodontic sealer cements on post retention. J Endod 1998;24:564-7.

76. Ertugrul HZ, Ismail YH. An in vitro comparison of cast metal dowel retention using various luting agents and tensile loading. J Prosthodont 2005;9:446-52.

77. PanaviaTM F2.0. Kuraray Noritake. Germany, Hattersheim; 2020. Was available on 12 January 2022 from: https://www.kuraraynoritake.eu/en/panavia-f-2-0.

78. Baba NZ, Golden G, Goodacre CJ. Nonmetallic prefabricated dowels: A review of compositions, properties, laboratory, and clinical test results. J Prosthodont 2009;18:527-36.

79. Ricketts D, Bartlett DW. Advanced Operative Dentistry: A Practical Approach. Ch. 7. Edinburgh, New York: Elsevier; 2011. p. 96. Was available on 12 January 2022 from: https://www.elsevier.com/books/advanced-operative-dentistry/9780702031267.

80. Koutayas SO, Kern M. All-ceramic posts and cores: The state of the art. Quintessence Int 1999;30:383-92.

81. Ferrari M, Vichi A, Mannocci F, Mason PN. Retrospective study of the clinical performance of fiber posts. Am J Dent 2000;13:9B-13B.

82. Bandéca MC, El-Mowafy O, Shebl A, Porto-Neto SD. Nonmetallic post-endodontic restorations: A systematic review. Int J Dent 2010;9:57-62.

83. Mannocci F, Ferrari M, Watson TF. Intermittent loading of teeth restored using quartz fiber, carbon-quartz fiber, and zirconium dioxide ceramic root canal posts. J Adhes Dent 1999;1:153-8.

84. Standlee JP, Caputo AA, Hanson EC. Retention of endodontic dowels: Effects of cement, dowel length, diameter, and design. J Prosthodont 1978;39:400-5.

85. Hulbert SF, Morrison SJ, Klawitter JJ. Tissue reaction to three ceramics of porous and non-porous structures. J Biomed Mater Res 1972;6:347-74.

86. Porter DL, Heuer AH. Mechanisms of toughening partially stabilized zirconia (PSZ). J Am Ceram Soc 1977;60:183-4.

87. Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992;68:322-6.

88. Nasser SA, Moaleem MM, Hussain AA. Tooth colored post system; review of literature. Int J Contemp Dent 2013;4:50-6.

89. Raigrodski AJ, Chiche GJ, Potikey N, Hochstedler JL, Mohamed SE, Billiot S, et al. The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: A prospective clinical pilot study. J Prosthodont 2006;96:237-44.

90. Al-harbi F, Nathanson D. In vitro assessment of retention of four esthetic dowels to resin core foundation and teeth. J Prosthodont 2003;90:547-55.

91. Perdiąo J, Geraldeli S, Lee IK. Push-out bond strengths of tooth-colored posts bonded with different adhesive systems. Am J Dent 2004;17:422-6.

92. Cohen BI, Pagnillo MK, Newman I, Musikant BL, Deutsch AS. Retention of a core material supported by three post head designs. J Prosthodont 2000;83:624-8.

93. Dietshi D, Romelli M, Goretti A. Adaptation of adhesive posts and cores to dentin after fatigue testing. Int J Prosthodont 1997;10:498-507.

94. Usumez A, Hamdemirci N, Koroglu BY, Simsek I, Parlar O, Sari T. Bond strength of resin cement to zirconia ceramic with different surface treatments. Lasers Med Sci 2013;28:259-66.

95. Marchan S, Coldero L, Whiting R, Barclay S. In vitro evaluation of the retention of zirconia-based ceramic posts luted with glass ionomer and resin cements. Braz Dent J 2005;16:213-7.

96. Subaşi MG, Inan Ö. Influence of surface treatments and resin cement selection on bonding to zirconia. Lasers Med Sci 2014;29:19-27.

97. Bergoli CD, Amaral M, Boaro LC, Braga RR, Valandro LF. Fiber post cementation strategies: Effect of mechanical cycling on push-out bond strength and cement polymerization stress. J Adhes Dent 2012;14:471-8.

98. Amaral M, Santini MF, Wandscher V, Amaral R, Valandro LF. An in vitro comparison of different cementation strategies on the pull-out strength of a glass fiber post. Oper Dent 2009;34:443-51.

99. Bitter K, Paris S, Pfieurtner C, Neumann K, Kielbassa AM. Morphological and bond strength evaluation of different resin cements to root dentin. Eur J Oral Sci 2009;117:326-33.

100. Marques de Melo R, Galhano G, Barbosa SH, Valandro LF, Pavanelli CA, Bottino MA. Effect of adhesive system type and tooth region on the bond strength to dentin. J Adhes Dent 2008;10:127-33.

101. Valandro LF, Filho OD, Valera MC, de Araujo MA. The effect of adhesive systems on the pullout strength of a fiberglass-reinforced composite post system in bovine teeth. J Adhes Dent 2005;7:331-6.

102. Wang Z, Ji Y, Zhang F. Bond strengths of an epoxy resin-based fiber post with four adhesive systems. Quintessence Int 2010;41:e173-80.

103. Catalogue of Restorative Products. RDT Dental. France; 2020. p. 12, 28. Was available on from: https://www.rtdental.com/media/files/documents/RTD-Catalog2020_DIGITAL-version.pdf. [Last accessed on 2020 May 12].

104. Cheung W. A review of the management of endodontically treated teeth. Post, core and the final restoration. J Am Dent
Assoc 2005;136:611-9.
105. Sirinmai S, Riis DN, Morgano SM. An in vitro study of the fracture resistance and the incidence of vertical root fracture of pulpless teeth restored with six post-and-core systems. J Prosthodont Dent 1999;81:262-9.
106. Newman MP, Yaman P, Dennison J, Rafter M, Billy E. Fracture resistance of endodontically treated teeth restored with composite posts. J Prosthodont Dent 2003;89:360-7.
107. Schmider M, Huy C, Ohlmann B, Gabbert O, Gilde H, Rammelsberg P. Fracture resistance of upper and lower incisors restored with glass fiber reinforced posts. J Endod 2006;32:328-30.
108. Cormier CJ, Burns DR, Moon P. In vitro comparison of the fracture resistance and failure mode of fiber, ceramic, and conventional post systems at various stages of restoration. J Prosthodont 2001;10:26-36.
109. Sorrentino R, Salameh Z, Zaron F, Tay FR, Ferrari M. Effect of post-retained composite restoration of MOD preparations on the fracture resistance of endodontically treated teeth. J Adhes Dent 2007;9:49-56.
110. Dietschi D, Duc O, Krejci I, Sadan A. Biomechanical considerations for the restoration of endodontically treated teeth: A systematic review of the literature, Part II (Evaluation of fatigue behavior, interfaces, and in vivo studies). Quintessence Int 2008;39:117-29.
111. Usumez A, Cobanka FK, Ozturk N, Eskitascioglu G, Belli S. Microleakage of endodontically treated teeth with different dowel systems. J Prosthodont Dent 2004;92:163-9.
112. Almohareb T. Sealing ability of esthetic post and core systems. J Contemp Dent Pract 2017;18:627-32.
113. Eskitascioglu G, Belli S, Kalkan M. Evaluation of two post core systems using two different methods (fracture strength test and a finite elemental stress analysis). J Endod 2002;28:629-33.
114. Zalkind M, Hochman N. Direct core buildup using a preformed crown and prefabricated zirconium oxide post. J Prosthodont 2004;92:155-62.
115. Michalakis KX, Hirayama H, Sfokos J, Sfokos K. Light transmission of posts and cores used for the anterior esthetic region. Int J Periodontics Restorative Dent 2004;24:462-9.
116. Akkayan B. An in vitro study evaluating the effect of ferrule length on fracture resistance of endodontically treated teeth restored with fiber-reinforced and zirconia dowel systems. J Prosthodont Dent 2004;92:155-62.
117. Rosato DV, Rosato DV. Reinforced Plastics Handbook. 3rd ed., Ch. 2, UK, Kidlington: Elsevier; 2004. p. 41.
118. Lamichhane A, Xu C, Zhang FQ. Dental fiber-post resin base material: A review. J Adv Prosthodont 2014;6:60-5.
119. Jain M, Vinayak V. Post-endodontic rehabilitation using glass fiber non metallic posts: A review. Indian J Stomatol 2011;2:117-9.
120. Catalogue of GC America INC. Product. Camerica. America; 2019. p. 55. Was available on 12 January 2022 from: https://www.gcamerica.com/catalog/2022/GCA_Catalog_2022.pdf.
121. Catalogue of PREMIUM. Sweden and Martina Implantology. Germany; 2007. p. 70. Was available on 12 January 2022 from: https://www.sweden-martina.com/articms/admin/reserved_area_file/129/e-imp-premium-usa%20rev.01-16%20LR.pdf.
122. Catalogue of ParaPost System. ColtèneWhaledent Inc. Switzerland/Altstätten; 2022. p. 8, 15. Was available on 12 January 2022 from: https://nam.coltene.com/pim/DOC/BRO/docbro31575a-03-19-en-parapost-x-system-brochuresenaindv1.pdf.
123. Catalogue of Dentatus Classic Surtex Dental Posts. Dentatus. Sweden; 2018. p. 1. Was available on from: https://dentatus.com/products/post-systems/surtex [Last accessed on 2022 Jan 12].
124. Panavia TM F 2.0. Kuraray Noritake. Germany, Hattersheim; 2020. Was available on 12 January 2022 from: https://www.kuraraynoritake.eu/en/panavia-f-2-0.
125. Catalogue of G-CEM™ Capsule. CG America. America; 2008. Was available on 12 January 2022 from: https://www.gcamerica.com/products/operator/G-CEM_Capsule/
126. Catalogue of Multilink Spee. Ivoclar Vivadent. Liechtenstein, Schaan. Was available on from: http://asia.ivoclarvivadent.com/en-as/all-products/products/luting-material/self-adhesive-resin-cement/multilink-speed. [Last accessed on 2020 May 12].
127. Catalogue of TENAX® Fiber Trans. ColtèneWhaledent. Switzerland, Altstätten; 2017. p. 82, 87. Was available on 12 January 2022 from: https://global.coltene.com/pim/DOC/IFU/docifu11-18-30004079d-tenax-fiber-trans-ifu-itsallaindv1.pdf.
128. Catalogue of RelyX™ Fiber Post. 3MESPE. USA; 2013. p. 3. Was available on 12 January 2022 from: https://multimedia.3m.com/nws/media/11465200/3m-relyx-fiber-post-3d-glass-fiber-post-technical-data-sheet.pdf.
129. Catalogue of EZ-Fit Translucent. Essential Dental System. New York, America. Was available on from: http://edsdental.com/ez-fit_translucent/index.htm. [Last accessed on 2020 May 12].
130. Catalogue of the VDW Endo-System. VDW-dental. Germany; 2020. p. 53. Was available on 12 January 2022 from: https://www.vwd-dental.com/fileadmin/Dokumente/Service/Informationsmaterial/Kataloge-Broschueren/VDW-Dental-Product-Catalogue-EN.pdf.
131. Catalogue of CosmoPost Instructions for Use. Ivoclar Vivadent. US; 2003. p. 6. Was available on 12 January 2022 from: https://ivodent.hu/_.docs/837_b6cd89809faeb9bd7b22ae84b8bf4070.pdf.
132. Shetty T, Bhat SG, Shetty P. Aesthetic postmaterials. J Indian Prosthodont Soc 2005;5:122-5.
133. Catalogue of PinPost. Darby Dental Supply, Penetron; 2016. p. 657. Was available on from: https://www.darbydental.com/printCatalog/657.pdf. [Last accessed on 2020 May 12].
134. Catalogue of Dual-Cure Resin Cement/Darby Dental Supply LLC/US (Jerich, NY); 2020. Was available on from: https://www.darbydental.com/categories/Cements/Permanant/Dual-Cure-Resin-Cement/9430075. [Last accessed on 2020 May 12].
135. Ladha K, Verma M. Conventional and contemporary luting cements: An overview. J Indian Prosthodont Soc 2005;5:122-5.
136. Jivraj SA, Kim TH, Donovan TE. Selection of luting agents, part 1. J Calif Dent Assoc 2006;34:149-60.
137. Rosenstiel S, Land M. Contemporary Fixed Prosthodontics. Ch. 19, Missouri, St. Louis: Mosby; 2015. p. 605, 606.
138. Catalogue of Gold Standards for Individual Requirements. Degu Dent GmbH. Germany; 2010. p. 15. Was available on
139. Isidor F, Hassna NM, Josephsen K, Kaaber S. Tensile bond strength of resin-bonded non-precious alloys with chemically and mechanically roughened surfaces. Dent Mater 1991;7:225-9.

140. Ozkurt Z, İşeri U, Kazazoğlu E. Zirconia ceramic post systems: A literature review and a case report. Dent Mater J 1998;14:23-6.

141. Vichi A, Ferrari M, Davidson CL. Influence of ceramic and cement thickness on the masking of various types of opaque posts. J Prosthet Dent 2000;83:412-7.

142. Dilmener FT, Sipahi C, Dalkiz M. Resistance of three new esthetic post-and-core systems to compressive loading. J Prosthet Dent 2006;95:130-6.

143. Hedlund SO, Johansson NG, Sjögren G. Retention of prefabricated and individually cast root canal posts in vitro. Br Dent J 2003;195:155-8.

144. Vitale MC, Caprioglio C, Martignone A, Marchesi U, Botticelli AR. Combined technique with polyethylene fibers and composite resins in restoration of traumatized anterior teeth. Dent Traumatol 2004;20:172-7.

145. Karbhari VM, Strassler H. Effect of fiber architecture on flexural characteristics and fracture of fiber-reinforced dental composites. Dent Mater 2007;23:960-8.

146. Ricketts DN, Tait CM, Higgins AJ. Post and core systems, refinements to tooth preparation and cementation. Br Dent J 2005;198:533-41.

147. de Rijk WG. Removal of fiber posts from endodontically treated teeth. Am J Dent 2000;13:19B-21B.

148. Weiné FS, Wax AH, Wenckus CS. Retrospective study of tapered, smooth post systems in place for 10 years or more. J Endod 1991;17:293-7.

149. Walton TR. An up to 15-year longitudinal study of 515 metal-ceramic FPDs: Part 2. Modes of failure and influence of various clinical characteristics. Int J Prosthodont 2003;16:177-82.

150. Gholami F, Kohani P, Aalaei S. Effect of nickel-chromium and non-precious gold color alloy cast posts on fracture resistance of endodontically treated teeth. Iran Endod J 2017;12:303-6.

151. Peggaro TA, da Silva NR, Carvalho RM. Cements for use in esthetic dentistry. Dent Clin North Am 2007;51:453-71, x.

152. Habib B, von Fraunhofer JA, Driscoll CF. Comparison of two luting agents used for the retention of cast dowel and cores. J Prosthodont 2005;14:164-9.

153. Duncan JP, Pameijer CH. Retention of parallel-sided titanium posts cemented with six luting agents: An in vitro study. J Prosthet Dent 1998;80:423-8.

154. Chan FW, Harcourt JK, Brockhurst PJ. The effect of post adaptation in the root canal on retention of posts cemented with various cements. Aust Dent J 1993;38:39-45.

155. Cohen BI, Pagnillo M, Musikant BL, Deutsch AS. Comparison of the retentive and photoelastic properties of two prefabricated endodontic post systems. J Oral Rehabil 1999;26:488-94.

156. Lencioni KA, Menani LR, Macedo AP, Ribeiro RF, de Almeida RP. Tensile bond strength of cast commercially pure titanium dowel and cores cemented with three luting agents. J Prosthodont Res 2010;54:164-7.

157. Ubaldini AL, Benetti AR, Sato F, Pascotto RC, Medina Neto A, Baesso ML, et al. Challenges in luting fibre posts: Adhesion to the post and to the dentine. Dent Mater 2018;34:1054-62.

158. Sahmali S, Demirel F, Saygili G. Comparison of in vitro tensile bond strengths of luting cements to metallic and tooth-colored posts. Int J Periodontics Restorative Dent 2004;24:256-63.

159. Hagge MS, Wong RD, Lindemuth JS. Retention strengths of five luting cements on prefabricated dowels after root canal obturation with a zinc oxide/eugenol sealer: 1. Dowel space preparation/cementation at one week after obturation. J Prosthodont 2002;11:168-75.

160. Menani LR, Ribeiro RF, Antunes RP. Tensile bond strength of cast commercially pure titanium and cast gold-alloy posts and cores cemented with two luting agents. J Prosthet Dent 2008;99:141-7.

161. Cohen BI, Pagnillo MK, Newman I, Musikant BL, Deutsch AS. Retention of three endodontic posts cemented with five dental cements. J Prosthet Dent 2002;89:116-75.

162. Menani LR, Ribeiro RF, Antunes RP. Tensile bond strength of cast commercially pure titanium and cast gold-alloy posts and cores cemented with two luting agents. J Prosthodont 2008;99:141-7.

163. Cohen BI, Pagnillo MK, Newman I, Musikant BL, Deutsch AS. Retention of three endodontic posts cemented with five dental cements. J Prosthet Dent 1998;79:520-5.

164. Sen D, Poyrazoglu E, Tunçelli B. The retentive effects of pre-fabricated posts by luting cements. J Oral Rehabil 2004;31:585-9.