MULTI-BUMP SOLUTIONS FOR FRACTIONAL NIRENBERG PROBLEM

CHUNGEN LIU¹ AND QIANG REN

ABSTRACT. We consider the multi-bump solutions of the following fractional Nirenberg problem

\[(−Δ)^s u = K(x)u^{\frac{n+2s}{n−2s}}, \quad u > 0 \text{ in } \mathbb{R}^n,\]

where \(s \in (0, 1)\) and \(n > 2+2s\). If \(K\) is a periodic function in some \(k\) variables with \(1 ≤ k < \frac{n−2s}{2}\), we proved that (1.1) has multi-bump solutions with bumps clustered on some lattice points in \(\mathbb{R}^k\) via Lyapunov-Schmidt reduction. It is also established that the equation (0.1) has an infinite-many-bump solutions with bumps clustered on some lattice points in \(\mathbb{R}^n\) which is isomorphic to \(\mathbb{Z}^k_+\).

1. Introduction and main results

The classic Nirenberg problem asks that on the standard sphere \((\mathbb{S}^n, g_{\mathbb{S}^n})\) with \(n ≥ 2\), whether there exists a function \(w\) such that the scalar curvature (Gauss curvature in the dimension 2) of the conformal metric \(g = e^w g_{\mathbb{S}^n}\) equals to a prescribed function \(\tilde{K}\). This problem is equivalent to solving the following equations

\[- Δ_{g_{\mathbb{S}^n}} w + 1 = \tilde{K}e^{2w} \text{ on } \mathbb{S}^2 \quad (1.1)\]

and

\[- Δ_{g_{\mathbb{S}^n}} v + \frac{n − 2}{4(n − 1)} R_{g_{\mathbb{S}^n}} v = \frac{n − 2}{4(n − 1)} \tilde{K}v^{\frac{n+2s}{n−2s}} \text{ on } \mathbb{S}^n \text{ for } n ≥ 3, \quad (1.2)\]

where \(R_{g_{\mathbb{S}^n}} = n(n − 1)\) is the scalar curvature of \((\mathbb{S}^n, g_{\mathbb{S}^n})\) and \(v = e^{\frac{n−2w}{4}}\). The linear operators defined on left-hand side of the equation (1.1) and (1.2) are called the conformal Laplacian on \(\mathbb{S}^n\).

For any Riemannian manifold \((M, g)\), the conformal Laplacian is defined by

\[P_g^1 = −Δ_g + \frac{n−2}{4(n−1)} R_g,\]

where \(R_g\) is the scalar curvature of \((M, g)\). Let \(u > 0\) and \(h = u^{\frac{4}{n−2}}g\), the conformal Laplacian has the following conformally invariant property

\[P_g^q(uφ) = u^{\frac{n+2q}{n−2}}P_{h}^q(φ) \quad \text{for } φ \in C^\infty(M).\]

The Paneitz operator \(P_g^2\) is another interesting conformal invariant operator. It was defined in [27] by

\[P_g^2 = Δ_g^2 + div_g(\alpha_n R_g Id − b_n Ric_g)\nabla g + \frac{n−4}{2} Q_g,\]

Date: Completed: September 20, 2018.

2010 Mathematics Subject Classification. 35R11, 35B25, 35B33.

Key words and phrases. Fractional partial differential equations, Lyapunov-Schmidt reduction, critical exponents.

¹The first author is partially supported by the NSF of China (11471170).
where \(a_n = \frac{(n-2)^2+4}{2(n-1)(n-2)} \), \(b_n = -\frac{4}{n-2} \), \(\mathcal{Ric} : TM \to TM \) is a \((1,1)\)-tensor operator defined by \(\mathcal{Ric}_i^j = g^{jk} \mathcal{Ric}_{kj} \); and \(Q_g = -\frac{\frac{2}{(n-2)^2} |\mathcal{Ric}|^2 + \frac{\rho^3}{8(n-1)^2(n-2)} R^2 - \frac{1}{2(n-1)} \Delta_g R_g}{2(n-1)} \) which is called the \(Q \)-curvature of \((M, g)\).

Later on, more conformally covariant elliptic operators were found. The operator \(P^g_1 \) and \(P^g_2 \) were generalized by Graham, Jenne, Mason and Sparling in \([16]\) to a sequence of integer order conformally covariant elliptic operators \(P^g_k \) for \(k \in \mathbb{N}_+ \) if \(n \) is odd; and \(k \in \{1, \ldots, \frac{n}{2}\} \) if \(n \) is even. Furthermore, any real number order conformally covariant pseudo-differential operator was intrinsically defined by Peterson in \([28]\). Graham and Zworski in \([17]\) proved that the operators \(P^g_k \) can be considered as the residue of a meromorphic family of scattering operators \(S(s) \) at \(s = \frac{3}{2} + k \). Then a family of non-integer order conformally covariant pseudo-differential operators \(P^g_s \) \((0 < s < \frac{n}{2})\) were naturally defined. Using the localization method in \([5]\), Chang and González \([6]\) showed that for any \(s \in (0, \frac{n}{2}) \), the operator \(P^g_s \) can also be defined as a Dirichlet-to-Neumann operator of a conformally compact Einstein manifold.

The conformally covariant law for \(P^g_s \) means that for any Riemannian manifold \((M, g)\) and a conformal transformation \(h = v^{\frac{4}{n-2s}} g \), \(v > 0 \), there holds

\[
P^g_s(v \phi) = v^{\frac{n+2s}{n-2s}} P^g_s(\phi) \quad \text{for} \quad \phi \in C^\infty(M).
\]

Especially, \(P^g_s(1) \) is called the \(Q_s \) curvature or \(s \)-curvature of \((M, g)\) \((\text{see } [6] \text{ and } [18] \text{ for example}) \).

The fractional Nirenberg problem was naturally raised on \(Q_s \) curvature, it asks that on the standard sphere \(\mathbb{S}^n \), there exists a function \(v > 0 \) such that the \(Q_s \) curvature of the conformal metric \(g = v^{\frac{4}{n-2s}} g_{\mathbb{S}^n} \) equals to a prescribed function \(\tilde{K} \). It can be reduced to the existence of the solution of the following equation

\[
P^g_{2s}(v) = \tilde{K} v^{\frac{n+2s}{n-2s}}, \quad v > 0 \quad \text{on} \quad \mathbb{S}^n,
\]

where \(s \in (0,1) \), \(n > 2s \) and \(\tilde{K} \) is a given positive function.

It was shown in \([4]\) that the operator \(P^g_{2s} \) is an intertwining operator and can be expressed as

\[
P^g_{2s} = \frac{\Gamma(B + \frac{n}{2} + s)}{\Gamma(B + \frac{n}{2} - s)} \quad \text{where} \quad B = \sqrt{-\Delta_{\mathbb{S}^n} + \left(\frac{n-1}{2}\right)^2},
\]

where \(\Delta_{\mathbb{S}^n} \) is the Beltrami-Laplacian operator. What is more, \(P^g_{2s} \) is more concrete under the stereographic projection. Let

\[
F : \mathbb{R}^n \to \mathbb{S}^n \setminus \{\mathcal{N}\}, \quad x \mapsto \left(\frac{2x}{|x|^2 + 1}, \frac{|x|^2 - 1}{|x|^2 + 1}\right)
\]

be the inverse of stereographic projection, where \(\mathcal{N} \) is the north pole of \(\mathbb{S}^n \). Then it holds that

\[
P^g_{2s}(\phi) \circ F = |J_F|^{-\frac{n+2s}{2n}} (-\Delta)^s (|J_F|^{\frac{n-2s}{2n}} (\phi \circ F)),
\]

where \((-\Delta)^s\) is the fractional Laplacian defined by

\[
(-\Delta)^s \phi(x) = C(n, s) P.V. \int_{\mathbb{R}^n} \frac{\phi(x) - \phi(y)}{|x-y|^{n+2s}} dy, \quad \text{where} \quad \phi \in C^\infty(\mathbb{R}^n).
\]

If we write \(u = |J_F|^{-\frac{n+2s}{2n}} (v \circ F) \) and \(K = \tilde{K} \circ F \), the equation \((1.3)\) is transformed into

\[
(-\Delta)^s u = K(x) u^{\frac{n+2s}{n-2s}}, \quad u > 0 \quad \text{in} \quad \mathbb{R}^n,
\]
where $s \in (0, 1)$ and $n > 2s$. The existence of the solutions to the problem (1.4) has been proved under various conditions (see for example [11][12][7][9][11][18][19]). The compactness of the solutions to (1.4) was studied in [18]. Chen and Zheng [10] found a 2-peak solution when $K(x) = 1 + \varepsilon \tilde{K}(x)$ has at least two critical points and satisfies some local conditions. What is more, Liu in [25] constructed infinitely many 2-peak solutions when K has a sequence of strictly local maximum points moving to infinity. When K is a radial symmetric function, in [24] and [26] it was showed that (1.4) has infinitely many non-radial solutions.

In this paper, we continue to study the bump solutions or peak solutions of (1.4). Assume that K satisfies the following conditions

(H1) $0 < \inf_{\mathbb{R}^n} K \leq \sup_{\mathbb{R}^n} K < \infty$;
(H2) $K(x)$ is a $C^{1,1}$ function, and 1-periodic in the first k variables x_1, \cdots, x_k;
(H3) 0 is a critical point of K, and in a neighborhood of 0, there is a number $\beta \in (n - 2s, n)$ such that

$$K(x) = K(0) + \sum_{i=1}^{n} a_i |x_i|^\beta + R(x),$$

where $a_i \neq 0$ for $i = 1, \ldots, n$, $\sum_{i=1}^{n} a_i < 0$, $R(y) \in C^{[\beta]-1,1}$ and $\sum_{j=0}^{[\beta]} |\nabla^j R(y)||y|^{-\beta+j} = o(1)$ as $y \to 0$. Here $\nabla^j R(y)$ denote all of the possible derivatives of $R(y)$ of the order j.

We note that the conditions (H1)-(H3) and the condition (K) in [25] have some intersection. When K satisfies both the condition (K) in [25] and our conditions (H1)-(H3), the equation (1.4) has infinitely many 2-peak solutions according to [25].

In this paper, we will show that equation (1.4) has solutions with large number bumps and its bumps located near some lattice points in \mathbb{R}^k with $1 < k < \frac{n-2s}{2}$.

Let $Q_m := ([0, m + 1)^k \times \mathbb{O}) \cap \mathbb{Z}^n$, where $m \in \mathbb{N}_+ \cup \{\infty\}$ and \mathbb{O} is a zero vector in \mathbb{R}^{n-k}.

Theorem 1.1. Suppose $n > 2s + 2$, $m \in \mathbb{N}_+ \cup \{\infty\}$ and $1 < k < \frac{n-2s}{2}$. If K satisfies the conditions (H1)-(H3), there exists an integer $l_0 \in \mathbb{N}$, such that for any integer $l > l_0$, the equation (1.4) has a solution with its bumps clustered on IQ_m.

Notice that Q_∞ is an infinite lattice which isomorphic to \mathbb{Z}^k_\ast. So we get an infinite-many-bump solution of the equation (1.5) via Theorem 1.1.

In order to prove Theorem 1.1 we assume $K(0) = 1$ with no loss of generality. For any positive integer l, define $\lambda = l^{\frac{n-2s}{n-2s}}$. Then we have $\lambda^\beta = (\lambda l)^{n-2s}$. Using the transformation $u(x) \mapsto \lambda^{-\frac{n-2s}{2}} u(\frac{x}{\lambda})$, we can change the equation (1.4) into

$$(-\Delta)^s u = K\left(\frac{x}{\lambda}\right) u^{\frac{n+2s}{n-2s}}, \quad u > 0, \quad \text{in} \quad \mathbb{R}^n. \quad (1.5)$$

The functional corresponding to equation (1.5) is

$$I(u) = \frac{1}{2} \int_{\mathbb{R}^n} |(-\Delta)^{\frac{s}{2}} u|^2 - \frac{n - 2s}{2n} \int_{\mathbb{R}^n} K\left(\frac{x}{\lambda}\right) (u_+)^{\frac{n+2s}{2}}, \quad u \in \dot{H}^s(\mathbb{R}^n),$$

where $u_+ = \max\{u, 0\}$. The Hilbert space $\dot{H}^s(\mathbb{R}^n)$ is the completion of $C^\infty_0(\mathbb{R}^n)$ under the Gagliardao semi-norm (cf. [15] for detail)

$$[u]_{\dot{H}^s(\mathbb{R}^n)} := \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |u(x) - u(y)|^2 \frac{1}{|x - y|^{n+2s}}\right)^{\frac{1}{2}} = \left(2C(n, s) \int_{\mathbb{R}^n} |(-\Delta)^{\frac{s}{2}}|^2\right)^{\frac{1}{2}},$$
where \(C(n, s) \) is a constant depending on \(n \) and \(s \). It is well known that \(\dot{H}^s(\mathbb{R}^n) \) can be imbedded into \(L^{2^*(s)}(\mathbb{R}^n) \) and the following Hardy-Littlewood-Sobolev inequality holds
\[
S \left(\int_{\mathbb{R}^n} |u|^{2^*(s)} \right)^{2/2^*(s)} \leq \int_{\mathbb{R}^n} |(-\Delta)^{s/2} u|^2, \quad u \in C_0^\infty(\mathbb{R}^n),
\]
where \(s \in (0, 1), n > 2s \) and \(2^*(s) = \frac{2n}{n-2s} \). Lieb \cite{23} proved that the extremals corresponding to the best constant \(S \) of (1.6) are of the form
\[
U_{\xi, \Lambda, C_0} = C_0 \left(\frac{\Lambda}{1 + \Lambda^2|x - \xi|^2} \right)^{\frac{n-2s}{2}},
\]
where \(C_0, \Lambda \in \mathbb{R}_+ \) and \(\xi \in \mathbb{R}^n \).

Choosing a suitable constant \(C_0 = C_0(n, s) \), we see that the function \(U_{\xi, \Lambda} := U_{\xi, \Lambda, C_0} \) solves the equation
\[
(-\Delta)^s u = u^{\frac{n+2s}{n-2s}}, \quad u > 0 \text{ in } \mathbb{R}^n.
\]
Under some decay assumptions, \cite{8, 20, 22} proved that all the solutions of (1.7) are only of the form \(U_{\xi, \Lambda} \). Furthermore, it was proved in \cite{13} that the solution \(U_{\xi, \Lambda} \) of the equation (1.7) is nondegenerate, i.e. any bounded solution of the equation \((-\Delta)^s \phi = \frac{n+2s}{n-2s} u^{\frac{4s}{n-2s}} \phi \) is a linear combination of \(\frac{\partial U_{\xi, \Lambda}}{\partial \Lambda} \) and \(\frac{\partial U_{\xi, \Lambda}}{\partial \xi} \), \(i = 1, 2, \ldots, n \).

We will use the functions \(U_{\xi, \Lambda} \) to construct the approximate solutions of the equation (1.5). We define \(X_{l,m} = \{ \lambda l x | x \in Q_m \} \) and arrange it in any way as a sequence \(X_{l,m} = \{ X_i \}_{i=1}^{(m+1)^k} \).

Let \(P^i \in B_{\frac{1}{2}}(X_i) = \{ X \in \mathbb{R}^n | |X - X_i| < \frac{1}{2} \} \), \(\Lambda_i \in [C_1, C_2] \), for \(i = 1, 2, \ldots, (m+1)^k \), where \(C_1 \) and \(C_2 \) are some positive numbers to be defined later (see \cite{3, 0}). Let
\[
W_m(x) := \sum_{i=1}^{(m+1)^k} U_{P_i^i, \Lambda_i}(x)
\]
to be an approximate solution of the problem (1.5).

Theorem 1.2. Under the same conditions of Theorem 1.1, there exists an interger \(l > l_0 \) such that for any integer \(l > l_0 \), equation (1.5) has a \(C_2^\text{loc} \) solution \(u_m \) of the form
\[
 u_m = W_m + \phi_m,
\]
where \(m \in \mathbb{N}_+ \cup \{ \infty \} \), \(|\phi|_{L^\infty(\mathbb{R}^n)} \to 0 \) and \(\max_{i=1, \ldots, (m+1)^k} \{ |P^i - X_i^i| \} \to 0 \) as \(l \to \infty \).

As a consequence of Theorem 1.2 we have

Corollary 1.3. Under the same conditions of Theorem 1.1, the equation (1.4) has infinitely many multi-bump solutions.

Theorem 1.1 follows from Theorem 1.2. So we only need to prove Theorem 1.2. In this article we use \(l \) as the pertubation parameter and follow the methods developed in \cite{21, 29}. In the section 2 we carry out the Liapunov-Schmidt reduction. Theorem 1.2 is proved in the section 3. Some useful estimations are presented in Appendix A. The expansions of the functional \(\frac{\partial I}{\partial \Lambda_i}(W_m) \) and \(\frac{\partial I}{\partial P^i}(W_m) \) are shown in Appendix B.

In this article, \(C \) denotes a varying constant independent of \(m \).
2. Finite dimensional reduction

In this section, we will carry out the Lyapunov-Schmidt reduction in the case of $m < \infty$. We define two weighted norms

$$
\|u\|_* = \sup_{y \in \mathbb{R}^n} \left(\gamma(y) \sum_{i=1}^{(m+1)k} \frac{1}{(1 + |y - X_i|^\frac{n-2s}{2} + \tau)} \right)^{-1} |u(y)|,
$$

and

$$
\|u\|_{**} = \sup_{y \in \mathbb{R}^n} \left(\gamma(y) \sum_{i=1}^{(m+1)k} \frac{1}{(1 + |y - X_i|^\frac{n+2s}{2} + \tau)} \right)^{-1} |u(y)|,
$$

where

$$
\gamma(y) = \min \left\{ \min_{i=1, \ldots, (m+1)k} \left(\frac{1 + |y - X_i|}{\lambda} \right)^{\tau-s}, 1 \right\},
$$

and $\tau \in (k, \frac{n-2s}{2})$ is a constant.

Consider the following equation

$$
(-\Delta)^s \phi - \frac{n + 2s}{n - 2s} K \left(\frac{x}{\lambda} \right) W_{\frac{4s}{n - 2s}} \phi = g \quad \text{in} \quad \mathbb{R}^n.
$$

(2.1)

Lemma 2.1. Let ϕ be a solution of the equation (2.1), then we have the following estimate

$$
\left(\gamma(y) \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X^h|^\frac{n-2s}{2} + \tau)} \right)^{-1} |\phi(y)|
\leq C\|g\|_{**} + C\|\phi\|_* \left(\frac{1}{(\lambda l)^{\frac{4s}{n-2s}}} \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X^h|^\frac{n+2s}{2} + \theta)} \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X^h|^\frac{n-2s}{2} + \tau)} \right),
$$

(2.2)

where $\theta > 0$ is a constant and C is independent of m.

Proof. We rewrite the equation (2.1) into an integral equation

$$
\phi(y) = C_1(n, s) \int_{\mathbb{R}^n} \frac{1}{y - z}^{n-2s} \left(\frac{n + 2s}{n - 2s} K \left(\frac{z}{\lambda} \right) W_{\frac{4s}{n - 2s}}(z) \phi(z) + g(z) \right) dz,
$$

(2.3)

where the constant $C_1(n, s)$ is defined in the Green function of $(-\Delta)^s$ on \mathbb{R}^n (cf. [5]).
From Lemma A.3, we get
\[
\left| \int_{\mathbb{R}^n} \frac{1}{|y - z|^{n-2s}} K\left(\frac{z}{\lambda} \right) W_m^{4s} (z) \phi(z) dz \right| \\
\leq C\|\phi\|_s \int_{\mathbb{R}^n} \frac{1}{|y - z|^{n-2s}} W_m^{4s} (z) (\gamma (z)) \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |z - X^h|)^{\frac{n-2s}{2} + \tau}} dz \\
\leq C\|\phi\|_s \left(\gamma (y) \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2} + \tau}} + \frac{1}{(\lambda \tau)^{\frac{n-2s}{2}} \gamma (y) \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2} + \tau}}} \right). \\
\tag{2.4}
\]

For the second term on the right-hand side of (2.3), we have
\[
\int_{\mathbb{R}^n} \frac{1}{|y - z|^{n-2s}} |g(z)| dz \leq \|g\|_s \int_{\mathbb{R}^n} \frac{1}{|y - z|^{n-2s}} \gamma (z) \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |z - X^h|)^{\frac{n-2s}{2} + \tau}} dz. \\
\tag{2.5}
\]

Using Lemma A.2, we obtain
\[
\int_{\mathbb{R}^n} \frac{1}{|y - z|^{n-2s}} \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |z - X^h|)^{\frac{n-2s}{2} + \tau}} dz \leq C \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |z - X^h|)^{\frac{n-2s}{2} + \tau}}. \\
\tag{2.6}
\]

Define \(B_i := B_{r_0}(X^i) \), \(B_{i,m} := B_{r_0}(X^i) \) with \(r_0 = \max\{\frac{4s}{\tau}, 1\} \) and
\[
\Omega_i := \{z \in \mathbb{R}^n : |z - X^i| = \min_{j=1,...,(m+1)k} |z - X^j| \}.
\]

Without loss of generality, we assume \(y \in \Omega_1 \). Make use of Lemma A.3 under different cases, we have
\[
\frac{1}{\lambda^{\tau-s}} \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2}}} \leq C \left(\frac{1 + |y - X^1|}{\lambda} \right)^{\tau-s} \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2} + \tau}}. \\
\tag{2.7}
\]

Using Lemma A.2 and (2.7), we have
\[
\int_{\mathbb{R}^n} \frac{1}{|y - z|^{n-2s}} \min_{i=1,...,(m+1)k} \left\{ \left(\frac{1 + |z - X^i|}{\lambda} \right)^{\tau-s} \right\} \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |z - X^h|)^{\frac{n-2s}{2} + \tau}} dz \\
\leq C \frac{\lambda^{\tau-s}}{\lambda^{\tau-s}} \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2}}} \\
\leq C \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2}}} \\
\leq C \left(\frac{1 + |y - X^1|}{\lambda} \right)^{\tau-s} \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2} + \tau}}. \\
\tag{2.8}
\]
From the definition of $\gamma(y)$, (2.5), (2.6) and (2.8), we know
\[
\int_{\mathbb{R}^n} \frac{1}{|y-z|^{n-2s}} |g(z)| dz \leq C\|g\|_{**} \gamma(y) \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |y - X_h|)^{\frac{n-2s}{2} + \tau}}. \tag{2.9}
\]

Now (2.2) follows from (2.3), (2.4) and (2.9).

Consider the following problem
\[
\begin{cases}
(-\Delta)^{\frac{s}{2}} \phi - \frac{n+2s}{n-2s} K\left(\frac{x}{\lambda}\right) W_m^{\frac{4s}{n-2s}} \phi = g + \sum_{i=1}^{(m+1)k} \sum_{j=1}^{n+1} c_{ij}^{(m)} U_{P_i, \Lambda_i}^{\frac{4s}{n-2s}} Z_{i,j}, \\
\int_{\mathbb{R}^n} U_{P_i, \Lambda_i}^{\frac{4s}{n-2s}} Z_{i,j} \phi dx = 0, \quad \phi \in \dot{H}^s(\mathbb{R}^n), \quad i = 1, \ldots, (m+1)^k, \quad j = 1, \ldots, n+1,
\end{cases} \tag{2.10}
\]
where $Z_{i,j} = \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_j}$ for $j = 1, \ldots, n$ and $Z_{i,n+1} = \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_{n+1}}$.

Lemma 2.2. Assume ϕ solves the problem (2.10), there exists $l_0 > 0$, such that for all $l > l_0$, we have $\|\phi\|_* \leq C\|g\|_{**}$, where C is independent of m.

Proof. If this lemma is not right, then there would be sequences $\{g_l\}_{l=1}^{\infty}$ and $\{\phi_l\}_{l=1}^{\infty}$ satisfying (2.10) with $\|\phi_l\|_* = 1$ and $\|g_l\|_{**} \to 0$ as $l \to +\infty$. For notation simplicity, we suppress l in the argument below.

First, we give an estimate of the parameters $c_{ij}^{(m)}$. Multiplying (2.10) with $Z_{r,t}$ and integrating on both sides, we get
\[
-\frac{n+2s}{n-2s} \int_{\mathbb{R}^n} K\left(\frac{x}{\lambda}\right) W_m^{\frac{4s}{n-2s}} \phi Z_{r,t} dx = \int_{\mathbb{R}^n} g Z_{r,t} dx + \sum_{i=1}^{(m+1)k} \sum_{j=1}^{n+1} c_{ij}^{(m)} \int_{\mathbb{R}^n} U_{P_i, \Lambda_i}^{\frac{4s}{n-2s}} Z_{i,j} Z_{r,t} dx. \tag{2.11}
\]

For the first term on the right hand side of (2.11), using Lemma A.2 we have
\[
\left| \int_{\mathbb{R}^n} g Z_{r,t} dx \right| \leq C\|g\|_{**} \int_{\mathbb{R}^n} \frac{1}{(1 + |x - X_r|)^{n-2s}} \gamma(x) \sum_{j=1}^{(m+1)k} \frac{1}{(1 + |x - X_j|)^{\frac{n-2s}{2} + \tau}} dx
\]
\[
\leq C \frac{\|g\|_{**}}{\lambda^{r-s}} \int_{\mathbb{R}^n} \frac{1}{(1 + |x - X_r|)^{n-2s}} \sum_{j=1}^{(m+1)k} \frac{1}{(1 + |x - X_j|)^{\frac{n-2s}{2} + \tau}} dx
\]
\[
\leq C \frac{\|g\|_{**}}{\lambda^{r-s}} \left(\int_{\mathbb{R}^n} \frac{1}{(1 + |x - X_r|)^{n+\frac{\tau}{2}}} dx + \sum_{j \neq r} \frac{1}{|X_j - X_r|^\frac{\tau}{2}} \right)
\]
\[
\leq C \frac{\|g\|_{**}}{\lambda^{r-s}},
\]
where we have used the fact that
\[
\sum_{j \neq r} \frac{1}{|X_j - X_r|^\frac{\tau}{2}} \text{ converges for } \frac{n}{2} > k. \tag{2.12}
\]
Since the left hand side of the equation (2.11) is estimated in Lemma A.6, we have
\[
\sum_{i=1}^{(m+1)^k} \sum_{j=1}^{n+1} c_{ij}^{(m)} \int_{\mathbb{R}^n} \frac{4s}{n-2s} U_{p^r,\Lambda_r} Z_{i,j} Z_{r,t} dx = \frac{1}{\lambda^{s-r}} O \left(\|g\|_{**} + \frac{\|\phi\|_{*}}{\lambda^{s-r}} \right).
\]
As we know \(\int_{\mathbb{R}^n} \frac{4s}{n-2s} U_{p^r,\Lambda_r} Z_{i,j} Z_{r,t} dx = C \delta_{j,t} \) and \(\int_{\mathbb{R}^n} \frac{4s}{n-2s} U_{p^r,\Lambda_r} Z_{i,j} Z_{r,t} dx \leq \frac{C}{|X^r - X^r|^n s} \) for \(i \neq r \), we obtain
\[
\max_{i,j} \{ |c_{ij}^{(m)}| \} = \frac{1}{\lambda^{s-r}} O \left(\|g\|_{**} + \frac{\|\phi\|_{*}}{\lambda^{s-r}} \right).
\]
An argument similar to the one used in (2.7) yields
\[
\left| \sum_{i=1}^{(m+1)^k} \sum_{j=1}^{n+1} c_{ij}^{(m)} \frac{4s}{n-2s} U_{p^r,\Lambda_r} Z_{i,j} \right| \leq \frac{C}{\lambda^{s-r}} \left(\|g\|_{**} + \frac{\|\phi\|_{*}}{\lambda^{s-r}} \right) \gamma(y) \sum_{i=1}^{(m+1)^k} \frac{1}{(1 + |y - X^r|^n s + r)}.
\]
From the definition of the norm \(\| \cdot \|_{**} \), we have
\[
\| \sum_{i=1}^{(m+1)^k} \sum_{j=1}^{n+1} c_{ij}^{(m)} \frac{4s}{n-2s} U_{p^r,\Lambda_r} Z_{i,j} \|_{**} \leq C \left(\|g\|_{**} + \frac{\|\phi\|_{*}}{\lambda^{s-r}} \right).
\]
Applying Lemma 2.1 to the first equation of the system (2.10), one get
\[
\left(\gamma(y) \sum_{h} \frac{1}{(1 + |y - X^h|^n s + r)} \right)^{-1} |\phi(y)| \leq C \left(\|g\|_{**} + \| \sum_{i=1}^{(m+1)^k} \sum_{j=1}^{n+1} c_{ij}^{(m)} \frac{4s}{n-2s} U_{p^r,\Lambda_r} Z_{i,j} \|_{**} + \left(\frac{1}{\lambda} \right)^{\frac{n+2s}{n-2s}} + \frac{1}{\lambda} \right),
\]
As a result, there exist a number \(i_0 \in \mathbb{N} \) and a large constant \(R > 0 \), such that
\[
1 = \|\phi\|_{*} = \sup_{B_R(X^0)} \left(\gamma(y) \sum_{h=1}^{(m+1)^k} \frac{1}{(1 + |y - X^h|^n s + r)} \right)^{-1} |\phi(y)|.
\]
Hence there is a constant \(c_0 > 0 \) such that \(|\lambda^{s-r} \phi|_{L^\infty(B_R(X^0))} \geq c_0 \).

Applying Lemma A.3 to the equation (2.10), we know \(\lambda^{s-r} \phi \) is equi-continuous. Also \(\lambda^{s-r} |\phi(\cdot)| \) is uniformly bounded. In fact, we assume that \(y \in \Omega_1 \) with no loss of generality. From the fact (2.12), we have
\[
\lambda^{s-r} |\phi(y)| \leq \|\phi\|_{*} \sum_{h} \frac{1}{(1 + |y - X^h|^n s + r)} \leq C + \sum_{h \neq 1} \frac{1}{|X^h - X^1|^r} \leq C.
\]
Then the Arzelà-Ascoli Theorem yields that there is a function \(\tilde{\phi} \), such that \(\lambda^{r-s}\phi(\cdot + P^{\delta_0}) \) convergent to \(\tilde{\phi} \) uniformly on compact sets. Then

\[
|\tilde{\phi}|_{L^\infty(B_{R+1}(0))} \geq c_0. \tag{2.14}
\]

Using a similar argument as in [12, Lemma 7.3], we know \(\tilde{\phi} \) satisfies

\[
\begin{cases}
(-\Delta)^s\tilde{\phi} - \frac{n+2s}{n-2s}U^\frac{4s}{n-2s} \tilde{\phi} = 0, \\
\int_{\mathbb{R}^n} U_0^{\frac{4s}{n-2s}} \frac{\partial U_0}{\partial \Lambda_0} \tilde{\phi} = 0, \\
\int_{\mathbb{R}^n} U_0^{\frac{4s}{n-2s}} \frac{\partial U_0}{\partial P^j_0} \tilde{\phi} = 0, & j = 1, \ldots, n.
\end{cases}
\]

Then \(\tilde{\phi} = 0 \) by nondegeneracy, which is contradict to (2.14). Hence the solution \(\phi \) of the equation (2.10) satisfies \(\|\phi\|_* \leq C\|g\|_{**} \).

Combining Lemma 2.2, Lemma A.8 and the argument of [14, Proposition 4.1](cf. [24, Proposition 2.2]), we have

Proposition 2.3. For any \(g \) satisfying \(\|g\|_{**} < +\infty \), (2.10) has a unique solution \(\phi = L_m(g) \in \dot{H}^s(\mathbb{R}^n) \cap C^{\alpha,\alpha}(\mathbb{R}^n) \) with \(\alpha = \min\{2s,1\} \), such that \(\|L_m(g)\|_* \leq C\|g\|_{**} \). The constant \(c_{ij}^{(m)} \) satisfies \(|c_{ij}^{(m)}| \leq \frac{C_{ij}}{\lambda^{\frac{m+2s}{n-2s}}}\|g\|_{**} \).

Since we are interested in the solution of the form \(W_m + \phi_m \) of the equation (1.5), we now consider the following problem

\[
\begin{cases}
(-\Delta)^s\phi - \frac{n+2s}{n-2s}K\left(\frac{x}{\lambda}\right)W_m^{\frac{n+2s}{n-2s}} \phi = N(\phi) + l_m + \sum_{i=1}^{(m+1)} \sum_{j=1}^{n+1} c_{ij}^{(m)} U^{\frac{4s}{n-2s}}_{P^i,\Lambda_i} Z_{i,j}, \\
\int_{\mathbb{R}^n} U^{\frac{4s}{n-2s}}_{P^i,\Lambda_i} Z_{i,j} \phi dx = 0, & \phi \in \dot{H}^s(\mathbb{R}^n),
\end{cases}
\tag{2.15}
\]

where

\[
N(\phi) = K\left(\frac{x}{\lambda}\right) \left((W_m + \phi)^{\frac{n+2s}{n-2s}} - W_m^{\frac{n+2s}{n-2s}} - \frac{n+2s}{n-2s}\left(W_m^{\frac{n+2s}{n-2s}} - \phi\right) \right)
\]

and

\[
l_m = K\left(\frac{x}{\lambda}\right)W_m^{\frac{n+2s}{n-2s}} - \sum_{i=1}^{(m+1)} U^{\frac{n+2s}{n-2s}}_{P^i,\Lambda_i}.
\]

Lemma 2.4. For the terms \(N(\phi) \) and \(l_m \) defined above, we have the following estimates

\[
\|N(\phi)\|_{**} \leq C\|\phi\|_{\min\{2,2^*(s)\},}
\]

\[
\|l_m\|_{**} \leq \frac{C}{\lambda^{\frac{m+2s}{n-2s}}}. \leq \frac{C}{\lambda^{\frac{m+2s}{n-2s}}}
\]

Proof. The proof of the first estimation is rather standard(cf. [29] Lemma 2.4) for ideas). We only prove the second estimate.
Without loss of generality, we assume \(x \in \Omega \). Then

\[
l_m = K\left(\frac{x}{\lambda}\right) W_{m}^{\frac{n+2s}{n-2s}} U_{P^1,\Lambda_1}^{\frac{n+2s}{n-2s}} - \sum_{h \neq 1} U_{P^h,\Lambda_h}^{\frac{n+2s}{n-2s}}
\]

\[
= \left(K\left(\frac{x}{\lambda}\right) - 1\right) U_{P^1,\Lambda_1}^{\frac{n+2s}{n-2s}} + O\left(\sum_{h \neq 1} U_{P^h,\Lambda_h}^{\frac{n+2s}{n-2s}} \sum_{h \neq 1} U_{P^h,\Lambda_h} \right). \tag{2.16}
\]

The two error terms in (2.16) can be estimated by using Lemma A.3 under different cases.

Case 1: \(x \in \Omega_1 \cap B^c_1 \cap B_{1,m}, \) we have \(\gamma(x) = 1 \). Using Lemma A.3, we have

\[
\left(\sum_{h \neq 1} U_{P^h,\Lambda_h}^{\frac{n+2s}{n-2s}}\right) \leq \frac{C}{(\lambda l)^{\frac{n+2s}{n-2s}}} \frac{1}{(1 + |x - X^1|)^{n+2s-\frac{n+2s}{n-2s}}}
\]

\[
\leq \frac{C}{(\lambda l)^{\frac{n+2s}{n-2s}}} \frac{1}{(1 + |x - X^1|)^{\frac{n+2s}{n-2s}+\tau-k}}
\]

\[
\leq \frac{C}{(\lambda l)^{\frac{n+2s}{n-2s}}} \frac{1}{\sum_{h} (1 + |x - X^h|)^{\frac{n+2s}{n-2s}+\tau}}.
\]

Case 2: \(x \in \Omega_1 \cap B_1, \) it holds that \(|x - X^i| \geq \frac{1}{2} |X^i - X^1| \geq \frac{1}{2} \lambda l \) for \(i \neq 1 \). From Lemma A.3,

\[
\left(\sum_{h \neq 1} U_{P^h,\Lambda_h}^{\frac{n+2s}{n-2s}}\right) \leq \left\{ \begin{array}{ll}
\frac{C}{(\lambda l)^{\frac{n+2s}{n-2s}}} \sum_{h} (1 + |x - X^h|)^{\frac{n+2s}{n-2s}+\tau}, & \text{if } x \in \Omega_1 \cap B_1 \cap B^c_1(X_1),
\frac{C}{(\lambda l)^{\frac{n+2s}{n-2s}}} \sum_{h} \frac{1}{(1 + |x - X^h|)^{\tau-s} \lambda^{\tau-s}} \sum_{h} (1 + |x - X^h|)^{\frac{n+2s}{n-2s}+\tau}, & \text{if } x \in \Omega_1 \cap B_1 \cap B_1(X^1).
\end{array} \right.
\]

Case 3: \(x \in \Omega_1 \cap B^c_{1,m}, \) we can get

\[
\left(\sum_{h \neq 1} U_{P^h,\Lambda_h}^{\frac{n+2s}{n-2s}}\right) \leq \frac{C m^{\frac{n+2s}{n-2s}}}{(1 + |x - X^1|)^{n+2s}} \leq \frac{C m^{\frac{4s}{n-2s}}}{(1 + |x - X^1|)^{2s}} \leq (1 + C\left[\frac{m}{T}\right])^{k}.
\]

Following the proof of Lemma A.3, we have

\[
\sum_{h} \frac{1}{(1 + |x - X^h|)^n} \geq \frac{1}{(1 + |x - X^1|)^n} \left(1 + 2^{-k} \int_{[0,\left]\frac{m}{T}\right]^{k} \setminus [0,1]^{k}} \frac{1}{1 + \frac{\lambda l}{1 + |x - X^1|}|z|^n} dz \right)^n
\]

\[
\geq \frac{(1 + C\left[\frac{m}{T}\right])^{k}}{(1 + |x - X^1|)^n}.
\]

Since in the domain \(\Omega_1 \cap B^c_{1,m}, \) we can get \(|x - X^h| \geq \frac{1}{2} \lambda l \) for \(h = 1, \ldots, (m + 1)^{k} \), then

\[
\left(\sum_{h \neq 1} U_{P^h,\Lambda_h}^{\frac{n+2s}{n-2s}}\right) \leq \frac{C}{(\lambda l)^{2s}} \sum_{h} \frac{1}{(1 + |x - X^h|)^n} \leq \frac{C}{(\lambda l)^{\frac{n+2s}{n-2s}+\tau}} \sum_{h} \frac{1}{(1 + |x - X^h|)^{\frac{n+2s}{n-2s}+\tau}}.
\]
Combining these three cases above, we have \(\|(\sum_{h\neq 1} U_{p,\lambda_h})^{\frac{n+2s}{2}}\|_{**} \leq \frac{C}{(\lambda_1^{\frac{n+2s}{2}-\tau}}. \) By the same procedure, we can also get the estimation \(\|U_{p_1,\lambda_1}^{\frac{n+2s}{2}} \sum_{h\neq 1} U_{p_h,\lambda_h}\|_{**} \leq \frac{C}{(\lambda_1^{\frac{n+2s}{2}-\tau}}. \)

At last, we estimate the first term in (2.16).

In the case of \(|x - X^{1}| \geq \lambda \), we have \(\gamma(x) = 1. \) Then

\[
|K(\frac{x}{\lambda}) - 1| U_{p_1,\lambda_1}^{\frac{n+2s}{2}} \leq \frac{C}{(1 + |x - X^{1}|)^{n+2s}} \leq \frac{C}{\lambda^{\frac{n+2s}{2}-\tau}} \gamma(x) \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |x - X^{h}|)^{\frac{n+2s}{2} + \tau}}. \tag{2.17}
\]

In the case of \(|x - X^{1}| < \lambda \), it holds \(\frac{1+|x-X^{1}|}{\lambda} \leq C. \) The condition \((H_3) \) yields

\[
|K(\frac{x}{\lambda}) - 1| U_{p_1,\lambda_1}^{\frac{n+2s}{2}} \leq \frac{C}{\lambda^{\frac{n+2s}{2}-\tau}} \left(\frac{1+|x-X^{1}|}{\lambda}\right)^{\tau - s} \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |x - X^{h}|)^{\frac{n+2s}{2} + \tau}}.
\]

Summarizing (2.17) and (2.18), we have

\[
\| K(\frac{x}{\lambda}) - 1 \|_{**} \leq \frac{C}{\lambda^{\frac{n+2s}{2}-\tau}}.
\]

Hence this lemma follows.

Proposition 2.5. For \(\lambda \) large enough, the problem (2.15) has a unique solution \(\phi_m \in \tilde{H}^{s}(R^n) \cap C^{0,\alpha}(R^n) \) with \(\alpha = \min\{2s,1\} \), such that \(\|\phi_m\|_{*} \leq \frac{C}{\lambda^{\frac{n+2s}{2}-\tau}}. \) The constants \(c_{ij}^{(m)} \) satisfy \(|c_{ij}^{(m)}| \leq C\lambda^{-\frac{2}{2}}. \)

Proof. We define

\[
E = \left\{ \varphi \in \tilde{H}^{s}(R^n) \cap C(R^n) : \|\varphi\|_{*} \leq \frac{1}{\lambda^{\frac{n+2s}{2}-\tau-\epsilon_1}}, \int_{R^n} U_{p_1,\lambda_1}^{\frac{n+2s}{2}} Z_{i} j \varphi = 0, \quad i = 1, \ldots, (m+1)k, \right. \quad j = 1, \ldots, n+1 \left. \right\},
\]

where \(\epsilon_1 = \min\{\frac{1}{1}, \frac{2s}{n+2s}\} (\frac{n+2s}{2} - \tau) \). Notice that \((E, \|\cdot\|_{*}) \) is a metric space.

In order to use the contraction map theorem, we define \(A \varphi := L_m(N(\varphi) + l_m) \), where \(L_m \) is an operator defined in Proposition 2.3.

Firstly, we show that \(A \) maps \(E \) into itself for \(\lambda \) large. Combining Proposition 2.3 and Lemma 2.4 we have \(\forall \varphi \in E \),

\[
\|A\varphi\|_{*} \leq C(\|N(\varphi)\|_{**} + \|l_m\|_{**}) \leq C(\|\varphi\|_{*}^{\min\{2,2^*(s)\}-1} + \|l_m\|_{**}) \leq \frac{1}{\lambda^{\frac{n+2s}{2}-\tau-\epsilon_1}}.
\]

Secondly, we prove \(A \) is an contraction map for \(\lambda \) large.
Choose $\varphi_1, \varphi_2 \in E$ with $\varphi_1 \neq \varphi_2$. If $N \geq 6s$, we have
\[
|N(\varphi_1) - N(\varphi_2)| = |N'(t\varphi_1 + (1-t)\varphi_2)(\varphi_1 - \varphi_2)|
\leq C(|\varphi_1^{4s/n-2s}| + |\varphi_2^{4s/n-2s}|)(|\varphi_1 - \varphi_2|)
\leq C(||\varphi_1||_{4s/n-2s}^2 + ||\varphi_2||_{4s/n-2s}^2)||\varphi_1 - \varphi_2||_2 \left(\gamma(x) \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |x - X_h|^{n+2s + \tau})} \right)^{n+2s\over n+2s + \tau}.
\]
We remind that in the last inequality, we have used the Hölder inequality. Hence $||N(\varphi_1) - N(\varphi_2)||_2 \leq C(||\varphi_1||_{4s/n-2s}^2 + ||\varphi_2||_{4s/n-2s}^2)||\varphi_1 - \varphi_2||_2$.

In the case of $N \leq 6s$, we also have $||N(\varphi_1) - N(\varphi_2)||_2 \leq C(||\varphi_1||_{4s/n-2s}^2 + ||\varphi_2||_{4s/n-2s}^2)||\varphi_1 - \varphi_2||_2$ by a similar argument.

Then there hold
\[
||A\varphi_1 - A\varphi_2||_2 \leq C||N(\varphi_1) - N(\varphi_2)||_2 \leq C(||\varphi_1||_{4s/n-2s}^2 + ||\varphi_2||_{4s/n-2s}^2)||\varphi_1 - \varphi_2||_2.
\]

For λ large enough, we get $||A\varphi_1 - A\varphi_2||_2 \leq \frac{\lambda}{2}||\varphi_1 - \varphi_2||_2$.

3. Proof of the main theorem

Let $\Lambda := (\Lambda_1, \ldots, \Lambda_{(m+1)k}) \in \mathbb{R}^{(m+1)k}$ and $P := (P^1, \ldots, P^{(m+1)k}) \in \mathbb{R}^{n \times (m+1)k}$, in which $P^i = (P^i_1, \ldots, P^i_n) \in \mathbb{R}^n$ for $i = 1, 2, \ldots, (m+1)k$. We define $J(P, \Lambda) = I(W_m + \phi_m)$, where ϕ_m is a unique small solution obtained by Proposition 2.5. A standard argument shows that from a critical point of J, we can get a critical point of I of the form $W_m + \phi_m$ (for example, cf. [14] Lemma 6.1 for ideas).

Proposition 3.1. For λ large, we have the following expansions
\[
\frac{\partial J}{\partial P^i_j}(P, \Lambda) = -\frac{c_3 d_{ij}}{\Lambda_i^{\beta-2} \lambda^{\beta}} (P^i_j - X^j_i) + O \left(\frac{|P^i_j - X^i_j|^2}{\lambda^{\beta}} \right) + o(\lambda^{-\beta}),
\]
and
\[
\frac{\partial J}{\partial \Lambda_i}(P, \Lambda) = -\frac{c_1}{\Lambda_i^{\beta+1} \lambda^{\beta}} + \sum_{h \neq i} \frac{c_2}{\Lambda_i (\Lambda_i \Lambda_h)^{n-2s}} |X^i - X^h|^{n-2s} + O \left(\frac{|P^i - X^i|^\min\{2, \beta-1\}}{\lambda^{\beta}} \right) + o(\lambda^{-\beta}),
\]
where \(i = 1, \ldots, (m+1)^k \) and \(j = 1, \ldots, n \) and the constant \(c_1, c_2, c_3 \) are positive.

Proof. A simple calculation yields

\[
\frac{\partial J}{\partial P_j}(P, \Lambda) = \langle I'(W_m + \phi_m), \frac{\partial U_{P_j}^{P, \Lambda_i}}{\partial P_j} \rangle + \frac{\partial \phi_m}{\partial P_j}
\]

\[
= \frac{\partial I}{\partial P_j}(W_m) + \int_{\mathbb{R}^n} K(\frac{x}{\lambda})(W_m^{\frac{n+2s}{n-2s}} - W_m^{\frac{n+2s}{n-2s}}) \frac{\partial U_{P_j}^{P, \Lambda_i}}{\partial P_j} dx
\]

\[
\quad + \sum_{t=1}^{(m+1)^k} \sum_{h=1}^{n+1} c_{th} \int_{\mathbb{R}^n} U_{P_j}^{P, \Lambda_j} Z_{t,h} \frac{\partial \phi_m}{\partial P_j} dx
\]

The functional \(\frac{\partial I}{\partial P_j}(W_m) \) is expanded in the Proposition \[3.6\]. So we only need to estimate the last two terms in the equality above.

From Lemma \[A.4\] we see that for \(\lambda \) large enough, \(\{ x : W_m \leq -\phi_m \} \subset \{ x : \frac{1}{2} W_m \leq |\phi_m| \} \subset \cup_h (\Omega_h \cap B_\delta_0^c) \). Then we have

\[
\int_{\mathbb{R}^n} K(\frac{x}{\lambda})(W_m + \phi_m)^{\frac{n+2s}{n-2s}} - W_m^{\frac{n+2s}{n-2s}} \frac{\partial U_{P_j}^{P, \Lambda_i}}{\partial P_j} dx
\]

\[
= \int_{\mathbb{R}^n} K(\frac{x}{\lambda})(W_m + \phi_m)^{\frac{n+2s}{n-2s}} - W_m^{\frac{n+2s}{n-2s}} \frac{\partial U_{P_j}^{P, \Lambda_i}}{\partial P_j} dx - \int_{|\phi_m| \geq \frac{1}{2} W_m} K(\frac{x}{\lambda})(W_m + \phi_m)^{\frac{n+2s}{n-2s}} \frac{\partial U_{P_j}^{P, \Lambda_i}}{\partial P_j} dx
\]

\[
= \frac{n + 2s}{n - 2s} \int_{\mathbb{R}^n} K(\frac{x}{\lambda}) W_m^{\frac{n+2s}{n-2s}} \phi_m \frac{\partial U_{P_j}^{P, \Lambda_i}}{\partial P_j} dx + O \left(\int_{|\phi_m| \geq \frac{1}{2} W_m} |\phi_m|^{\frac{n+2s}{n-2s}} U_{P_j}^{P, \Lambda_i} dx \right)
\]

\[
+ \int_{|\phi_m| < \frac{1}{2} W_m} W_m^{\frac{n+2s}{n-2s}} \phi_m^2 \frac{\partial U_{P_j}^{P, \Lambda_i}}{\partial P_j} dx + O \left(\int_{\cup_h (\Omega_h \cap B_\delta^c)} |\phi_m|^{\frac{n+2s}{n-2s}} U_{P_j}^{P, \Lambda_i} dx \right)
\]

Using Proposition \[2.5\], Lemma \[A.6\] and Lemma \[A.7\], we have

\[
\int_{\mathbb{R}^n} K(\frac{x}{\lambda})((W_m + \phi_m)^{\frac{n+2s}{n-2s}} - W_m^{\frac{n+2s}{n-2s}}) \frac{\partial U_{P_j}^{P, \Lambda_i}}{\partial P_j} dx = O (\lambda^{-n}) = o (\lambda^{-\beta}).
\]

By using the orthogonal condition of \[2.15\] and Lemma \[A.1\], we have

\[
\sum_{t=1}^{(m+1)^k} \sum_{h=1}^{n+1} c_{th} \int_{\mathbb{R}^n} U_{P_j}^{P, \Lambda_j} Z_{t,h} \frac{\partial \phi_m}{\partial P_j} dx \leq \frac{C}{\lambda^{\frac{n}{2}}} \| \phi_m \|_2 \int_{\mathbb{R}^n} (1 + |x - X|^2)^{\frac{n+2s}{2}} \sum_{r=1}^{(m+1)^k} \frac{1}{(1 + |x - X^r|)^{\frac{n+2s}{2}}} dx \leq C \lambda^{-n}.
\]

Hence we can get \[3.1\]. The estimation \[3.2\] can be derived by the same procedure along with Proposition \[B.5\].
Proof of Theorem 1.2. From Proposition 3.1, we know that there exist bounded functions $\Xi_j = \Xi_j(P, \Lambda, \lambda)$ and $\Theta_j = \Theta_j(P, \Lambda, \lambda)$, $i = 1, \ldots, (m + 1)^k$, $j = 1, \ldots, n + 1$ satisfying $|\Xi_j| \leq C$, where C is constant independent of m and $|\Theta_j| \leq C\lambda$, where $C\lambda$ is a constant only depend on λ, and $C\lambda \to 0$ as $\lambda \to \infty$ such that
\[
\frac{\partial J}{\partial R^i_{p_j}}(P, \Lambda) = -\frac{c_3a_j}{\Lambda^{\beta-2}\lambda^\beta}(P^i_j - X^i_j) + \frac{|P^i_j - X^i_j|^2}{\lambda^\beta} \Xi_j + \lambda^{-\beta}\Theta_j,
\]
and
\[
\frac{\partial J}{\partial \Lambda_i}(P, \Lambda) = -\frac{c_1}{\Lambda_i^{\beta+1}\lambda^\beta} + \sum_{h \neq i} \frac{c_2}{\Lambda_i(\Lambda_iA_h)^{-2\beta}} |X^i - X^h|^{n-2s} = -\frac{|P^i_j - X^i_j|^{\min\{2, \beta-1\}}}{\lambda^\beta} \Xi_j^{n+1} + \lambda^{-\beta}\Theta_j^{n+1}.
\]

Remark 3.2. From Proposition 3.1, we know that there exist bounded functions $\Xi_j = \Xi_j(P, \Lambda, \lambda)$ and $\Theta_j = \Theta_j(P, \Lambda, \lambda)$, $i = 1, \ldots, (m + 1)^k$, $j = 1, \ldots, n + 1$ satisfying $|\Xi_j| \leq C$, where C is constant independent of m and $|\Theta_j| \leq C\lambda$, where $C\lambda$ is a constant only depend on λ, and $C\lambda \to 0$ as $\lambda \to \infty$ such that
\[
\frac{\partial J}{\partial R^i_{p_j}}(P, \Lambda) = -\frac{c_3a_j}{\Lambda^{\beta-2}\lambda^\beta}(P^i_j - X^i_j) + \frac{|P^i_j - X^i_j|^2}{\lambda^\beta} \Xi_j + \lambda^{-\beta}\Theta_j,
\]
and
\[
\frac{\partial J}{\partial \Lambda_i}(P, \Lambda) = -\frac{c_1}{\Lambda_i^{\beta+1}\lambda^\beta} + \sum_{h \neq i} \frac{c_2}{\Lambda_i(\Lambda_iA_h)^{-2\beta}} |X^i - X^h|^{n-2s} = -\frac{|P^i_j - X^i_j|^{\min\{2, \beta-1\}}}{\lambda^\beta} \Xi_j^{n+1} + \lambda^{-\beta}\Theta_j^{n+1}.
\]

Proof of Theorem 1.2. Firstly we look for the solution of (1.5) of the form $W_m + \phi_m$, $m < \infty$.

It is equivalent to solving the system
\[
\begin{cases}
\frac{\partial J}{\partial P^i_{p_j}}(P, \Lambda) = 0, \\
\frac{\partial J}{\partial \Lambda_i}(P, \Lambda) = 0,
\end{cases}
\]
that is
\[
\begin{cases}
\frac{c_3a_j}{\Lambda_i^{\beta-2}\lambda^\beta}(P^i_j - X^i_j) + \frac{|P^i_j - X^i_j|^2}{\lambda^\beta} \Xi_j + \lambda^{-\beta}\Theta_j, \\
-\frac{c_1}{\Lambda_i^{\beta+1}\lambda^\beta} + \sum_{h \neq i} \frac{c_2}{\Lambda_i(\Lambda_iA_h)^{-2\beta}} |X^i - X^h|^{n-2s} = -\frac{|P^i_j - X^i_j|^{\min\{2, \beta-1\}}}{\lambda^\beta} \Xi_j^{n+1} + \lambda^{-\beta}\Theta_j^{n+1}.
\end{cases}
\]

To simplify the equations (3.3), we denote $d_j = \Lambda_j^{-\frac{n-2s}{2}}$ and $A_{ih} = \left\{ \begin{array}{ll} 0, & \text{if } i = h, \\
\frac{\min\{2, \beta-1\}n-2s}{|X^i - X^h|^{n-2s}}, & \text{if } i \neq h. \end{array} \right.$

The equations (3.3) can be written as
\[
\begin{cases}
P^i_j - X^i_j = \frac{\Lambda_i^{\beta-2}\lambda}{c_3a_j} |P^i_j - X^i_j|^2 + \Lambda_i^{\beta-2}\Theta_j, \\
c_2 \sum_{h \neq i} A_{ih}d_h - c_1d_i^{\frac{2\beta}{n-2s}-1} = \Lambda_i^{\frac{n-2s}{2\beta}+1} \Xi_j^{n+1} + \Lambda_i^{\frac{n-2s}{2\beta}+1} \Theta_j^{n+1},
\end{cases}
\]
where $i = 1, 2, \ldots, (m + 1)^k$ and $j = 1, 2, \ldots, n$.

Define a function $F(z) := \frac{c_2}{2\beta} \sum_{h \neq i} A_{ih}z_h - \frac{(n-2s)c_1}{2\beta} \sum_{h} z_h^{\frac{2\beta}{n-2s}}$, where $z = (z_1, z_2, \ldots, z_{(m+1)^k}) \in \mathbb{R}^{(m+1)^k}$. Obviously, $F(z)$ has a maximum point $b = (b_1, b_2, \ldots, b_{(m+1)^k}) \in \mathbb{R}^{(m+1)^k}$. It holds that
\[
c_2 \sum_{h \neq i} A_{ih}b_h - c_1b_i^{\frac{2\beta}{n-2s}-1} = 0, \quad i = 1, \ldots, (m + 1)^k.
\]

Claim: Each component b_i of b satisfies $0 < C_1' \leq b_i \leq C_2'$ for some constant C_1' and C_2'.

Suppose that $b_1 \leq b_i \leq b_2$. Using the definition of A_{ih}, we know $\sum_{h \neq i} A_{ih}$ is bounded. From (3.5), we can get
\[
c_1b_2^{\frac{2\beta}{n-2s}-1} = c_2 \sum_{h \neq 2} A_{2ih}b_h \leq C_3b_2,
\]
which tell us \(b_2 \) is bounded from above.

Using (3.5) again, we have

\[
c_1 b_1^{-\frac{2\beta}{n-2s}} = c_2 \sum_{h \neq 1} A_{1h} b_h \geq c_2 \sum_{h \neq 1} A_{1h} b_1 \geq c_2 A_{12} b_1,
\]

which implies \(b_1 \) is bounded from below, away from zero. Hence the Claim follows.

We can choose a small \(\delta_0 > 0 \) such that \(b_2^{-\frac{2}{n-2s}} - \delta_0 > 0 \). The constant \(C_1 \) and \(C_2 \) in the introduction can be defined by

\[
C_1 = b_2^{-\frac{2}{n-2s}} - \delta_0 \quad \text{and} \quad C_2 = b_1^{-\frac{2}{n-2s}} + \delta_0.
\]

(3.6)

For any \(x = (x_1, \ldots, x_{(m+1)k}) \in \mathbb{R}^{(m+1)k} \), we denote \(\|x\|_0 = \max\{|x_j|\} \). Let \(\frac{x_{j0}}{b_{j0}} = \|x\|_0 \). From the claim above, we know \(|x_{j0}| \geq C \|x\|_0 \). Using (3.5), we have

\[
\| (D^2 F(b)x)_{j0} \| = \bigg| c_2 \sum_{h \neq 0} A_{ih} h x_h - c_1 \bigg(\frac{2\beta}{n-2s} - 1 \bigg) b_i^{-\frac{2\beta}{n-2s}} - x_{i0} \bigg| \geq c_1 \bigg(\frac{2\beta}{n-2s} - 1 \bigg) b_i^{-\frac{2\beta}{n-2s}} - 2 |x_{j0}| \geq 0.
\]

From the definition of \(\| \cdot \|_0 \), we get \(\| D^2 F(b)x \|_0 \geq C \|x\|_0 \).

Let \(\theta = (\theta_1, \ldots, \theta_{(m+1)k}) \in \mathbb{R}^{(m+1)k} \) whose component \(\theta_i := d_i - b_i, \ i = 1, \ldots, (m+1)k \). We define \(X := (X_1, \ldots, X_{(m+1)k}) \in \mathbb{R}^{n \times (m+1)k} \), in which \(X_i := (X_{i1}, \ldots, X_{ik}) \in \mathbb{R}^n \) for \(i = 1, \ldots, (m+1)k \). For any \(Y = (Y_1, \ldots, Y_{(m+1)k}) \in \mathbb{R}^{n \times (m+1)k} \), we use the notation \(\|Y\| := \max_{i=1,\ldots,(m+1)k}\{|Y_i|\} \) to denote the maximum norm.

To simplify the equations (3.4), we need to define some vector value functions below. Let \(\Xi^{(1)} := \Xi^{(1)}(P, \lambda, \lambda) \in \mathbb{R}^{n \times (m+1)k} \) and \(\Theta^{(1)} := \Theta^{(1)}(P, \lambda, \lambda) \in \mathbb{R}^{n \times (m+1)k} \) with their exponents defined by

\[
(\Xi^{(1)})^i_j = \frac{\Lambda_i^{\beta-2} \Xi_j |P^i - X_j|^2}{c_3 a_j \|P - X\|^{2}} \quad \text{and} \quad (\Theta^{(1)})^i_j = \frac{\Lambda_i^{\beta-2} \Theta_j^i}{c_3 a_j} \quad i = 1, \ldots, (m+1)k; j = 1, \ldots, n.
\]

Let \(\Xi^{(2)} := \Xi^{(2)}(P, \lambda, \lambda) \in \mathbb{R}^{(m+1)k} \), \(\Theta^{(2)} := \Theta^{(2)}(P, \lambda, \lambda) \in \mathbb{R}^{(m+1)k} \) with exponents defined by

\[
(\Xi^{(2)})^i = \Lambda_i^{\frac{n-2s}{2} + 1} \Xi_i^{|P^i - X^i|^{\min\{2, \beta-1\}}} \quad \text{and} \quad (\Theta^{(2)})^i = \Lambda_i^{\frac{n-2s}{2} + 1} \Theta_i^{|P^i - X^i|^{\min\{2, \beta-1\}}} \quad i = 1, \ldots, (m+1)k.
\]

Define \(\Pi(\theta) := (\Pi(\theta), \ldots, \Pi(\theta)^{(m+1)k}) \), where \(\Pi(\theta)^{(i)}(i = 1, \ldots, (m+1)k) \) is defined by

\[
(\Pi(\theta)^{(i)} = \int_0^1 (D^3 F(b + s \theta) \theta; (1 - s) ds = \int_0^1 c_1 \bigg(\frac{2\beta}{n-2s} - 1 \bigg) \bigg(\frac{2\beta}{n-2s} - 2 \bigg) (b_i + s \theta_i)^{\frac{2\beta}{2-s} - 3} \theta_i^2.
\]

From their definition, we know there is a constant \(C \) and a constant \(C_\lambda \) satisfying \(C_\lambda \to 0 \) as \(\lambda \to \infty \) such that \(\| \Xi^{(1)} \| \leq C, \| \Xi^{(2)} \| \leq C; \| \Theta^{(1)} \| \leq C_\lambda \) and \(\| \Theta^{(2)} \| \leq C_\lambda \).
Using these notations and Taylor expansion, we can write the equations (3.4) into another form:

\[
\begin{align*}
\{ & P - X = \|P - X\|^2 \Xi^{(1)} + \Theta^{(1)}; \\
& D^2 F(b)\theta = \|P - X\|^{\min(2, \beta - 1)} \Xi^{(2)} + \Theta^{(2)} + \Pi(\theta),
\end{align*}
\]

(3.7)

Let
\[
B = \left(\prod_{i=1}^{(m+1)k} B_{2C_\lambda}(X^i) \right) \times B_{3C_\lambda^{-1}}(0) \in \mathbb{R}^{n \times (m+1)^k} \times \mathbb{R}^{(m+1)^k}.
\]

Define a function
\[
G : B \to B
\]

\[
(P, \theta) \mapsto (X + \Xi^{(1)} \|P - X\|^2 + \Theta^{(1)}, D^2 F(b)^{-1}(\|P - X\|^{\beta - 1} \Xi^{(2)} + \Theta^{(2)} + \Pi(\theta))
\]

For each \((P, \theta) \in B\), Choose \(C_\lambda\) small enough, we have
\[
\|\Xi^{(1)} \|P - X\|^2 + \Theta^{(1)}\| \leq C(2C_\lambda)^2 + C_\lambda \leq 2C_\lambda^2,
\]

and
\[
\|D^2 F(b)^{-1}(\|P - X\|^{\min(2, \beta - 1)} \Xi^{(2)} + \Pi(\theta))\|_0 \leq C_\lambda^{-1}(CC_\lambda^{\min(2, \beta - 1)} + C_\lambda + C\theta^2) \leq 3C_\lambda^{-1} C_\lambda.
\]

Since \(C_\lambda \to 0\) as \(\lambda \to \infty\), so for \(\lambda\) large enough, we use the Brouwer fixed-point theorem to get a solution \((P^1, \ldots, P^{(m+1)^k}, \theta)\) of (3.7) in \(B\). It holds that
\[
|P^i - X^i| \leq 2C_\lambda \quad \text{and} \quad |\theta_i| = |b_i - \Lambda_i^{n^2s \alpha}| \leq 3C_\lambda^{-1} C_\lambda.
\]

Hence we find a critical point of \(I\) of the form \(u_m := W_m + \phi_m\) with \(m < \infty\).

Next, we prove \(u_m\) is a positive function. Denote \(u_m = \min\{0, u_m\}\) and \(u_m^+ = u_m - u_m^-\). Then we have
\[
\int_{\mathbb{R}^n} (-\Delta)^s u_m(x)u_m^-(x)dx = \int_{\mathbb{R}^n} K_{\lambda^2}^{x \lambda}(x)u_m^{-\frac{n+2s}{n}}(x)u_m^-(x)dx.
\]

From the definition of \((-\Delta)^s\),
\[
\int_{\mathbb{R}^n} (-\Delta)^s u_m u_m^- dx = \int_{\mathbb{R}^n} (-\Delta)^s u_m^- u_m^- dx + \int_{\mathbb{R}^n} (-\Delta)^s u_m^+ u_m^- dx
\]
\[
= \int_{\mathbb{R}^n} |(-\Delta)^{\frac{s}{2}} u_m^-|^2 dx + \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(u_m^+(x) - u_m^+(y))u_m^-(x)}{|x - y|^{n+2s}} dxdy
\]
\[
\geq \int_{\mathbb{R}^n} |(-\Delta)^{\frac{s}{2}} u_m^-|^2 dx.
\]

The Hardy-Littlewood-Sobolev inequality yields
\[
\left(\int_{\mathbb{R}^n} |u_m^ {-\frac{n}{n+2s}} dx \right)^{\frac{n+2s}{n}} \leq C \int_{\mathbb{R}^n} |(-\Delta)^{\frac{s}{2}} u_m^-|^2 dx
\]
\[
\leq C \int_{\mathbb{R}^n} K_{\lambda^2}^{x \lambda}(x)u_m^{-\frac{n+2s}{n}}(x)u_m^-(x)dx \leq C \int_{\mathbb{R}^n} u_m^{-\frac{n}{n}} dx.
\]
Suppose $u_m^- \neq 0$, we have $\int_{\mathbb{R}^n} |u_m^-|^\frac{2n}{n-2s} dx \geq C$. It is easy to get $u_m^- \leq |\phi_m|$. From this fact,

\[
\int_{\mathbb{R}^n} |u_m^-|^\frac{2n}{n-2s} dx \leq \int_{\mathbb{R}^n} |\phi_m|^\frac{2n}{n-2s} dx
\]

\[
\leq \|\phi_m\|^\frac{2n}{n-2s} \int_{\mathbb{R}^n} \left(\sum_{h=1}^{(m+1)k} \frac{1}{(1 + |x - X^h|)^\frac{n-2s}{n}} \right) dx
\]

\[
\leq \|\phi_m\|^\frac{2n}{n-2s} C(m, k) \sum_{h} \int_{\mathbb{R}^n} \frac{1}{(1 + |x - X^h|)^{n+\frac{2n}{n-2s}}} dx.
\]

So we get $C \leq \int_{\mathbb{R}^n} |u_m^-|^\frac{2n}{n-2s} dx \leq C(m, k)\|\phi_m\| \to 0$ as $\lambda \to \infty$, which is impossible. Hence $u_m \geq 0$. Suppose there is a point x_0 such that $u_m(x_0) = 0$, then

\[
0 = K^{\frac{1}{1}}(\frac{x_0}{\lambda}) u_{m, n}^\frac{n}{n-2s} (x_0) = (-\Delta)^s u_m(x_0) = P.V. \int_{\mathbb{R}^n} \frac{u_m(x_0) - u_m(y)}{|x_0 - y|^{n+2s}} dy = P.V. \int_{\mathbb{R}^n} \frac{-u_m(y)}{|x_0 - y|^{n+2s}} dy.
\]

Then $u_m \equiv 0$ which is impossible. Hence $u_m > 0$.

According to Proposition 2.5, $u_m = W_m + \phi_m \in C^{\alpha, \alpha}(\mathbb{R}^n) \cap \dot{H}^s(\mathbb{R}^n)$. Using local Schauder estimate [13 Proposition 2.11] and a bootstrap argument, we know $u_m \in C^{2, \alpha'}(\mathbb{R}^n)$, for some $\alpha' \in (0, 1)$.

What is more, $|u_m|_{L^\infty(\mathbb{R}^n)} \leq C$ with C independent of m. In fact, Choosing $x \in \Omega_1$ with no loss of generality, we have

\[
W_m(x) \leq \sum_{i=1}^{(m+1)k} \frac{C}{(1 + |x - X^i|)^{n-2s}} \leq C + \sum_{i \neq 1}^{(m+1)k} \frac{C}{|X^i - X^1|^{n-2s}} \leq C + \frac{C}{(\lambda l)^{n-2s}} \leq C,
\]

and

\[
|\phi_m| \leq \|\phi_m\| \sum_{h=1}^{(m+1)k} \frac{1}{(1 + |x - X^h|)^\frac{2n}{n-2s}} \leq \|\phi_m\| \sum_{h=1}^{\infty} \frac{1}{(1 + |x - X^h|)^\frac{2n}{n-2s}} \leq C \|\phi_m\| \leq C.
\]

Since ϕ_m satisfies the equation $(-\Delta)^s \phi_m - \frac{n+2s}{n-2s}K(x) W_m^{\frac{4s}{n-2s}} \phi_m = N(\phi_m) + l_m$, then from Lemma [18 Lemma 2.4] and Proposition 2.5, we know that for any $x, y \in \mathbb{R}^n$ with $x \neq y$, there holds

\[
\frac{|\phi_m(x) - \phi_m(y)|}{|x - y|^{\alpha}} \leq \frac{C}{\lambda^\alpha} \max\{\|\phi_m\|, \|N(\phi_m)\|, \|l_m\|\} \leq C, \text{ where } \alpha = \min\{1, 2s\}.
\]

Also from simple calculation, we get for any $x \in \mathbb{R}^n$ and $R > 0$, $\|W_m\|_{C^{0, \alpha}(B_{2R}(x))} \leq C(n, R)$, where $C(n, R)$ is a constant independent of m. Hence $\|u_m\|_{C^{0, \alpha}(B_R(x))} \leq C(n, R)$. Local Schauder estimate and a bootstrap argument yields that $\|u_m\|_{C^{2, \alpha'}(B_R(x))} \leq C(n, R)$. Thanks to Azellà-Ascoli theorem, we have u_m convergent uniformly to a $C^{2, \alpha'}_{loc}$ function $u_\infty = W_\infty + \phi_\infty$ on compact sets as $m \to \infty$. We know u_∞ satisfies $|u_\infty|_{L^\infty(\mathbb{R}^n)} \leq C$ and $|u_\infty|_{C^{2, \alpha'}(B_R(x))} \leq C(n, R)$.

We will show that u_∞ satisfies the equation (1.5). Let $v_m = u_m - u_\infty$. From above, we know v_m has the property $|v_m|_{L^\infty(\mathbb{R}^n)} \leq C; |v_m|_{C^{2}(B_1(x))} \leq C$ and $v_m \to 0$ uniformly on compact sets.
From the definition of \((-\Delta)^s\), we have for any \(x \in \mathbb{R}^n\)
\[
C(n, s)^{-1}|(-\Delta)^s v_m(x)| \leq PV \int_{\mathbb{R}^n} \frac{|v_m(x) - v_m(y)|}{|x - y|^{n+2s}} dy
\]
\[
= PV \int_{B_{\varepsilon_0}(x)} \frac{|v_m(x) - v_m(y)|}{|x - y|^{n+2s}} dy + \int_{B_R(x) \setminus B_{\varepsilon_0}(x)} \frac{|v_m(x) - v_m(y)|}{|x - y|^{n+2s}} dy
\]
\[
+ \int_{\mathbb{R}^n \setminus B_R(x)} \frac{|v_m(x) - v_m(y)|}{|x - y|^{n+2s}} dy =: T_1 + T_2 + T_3.
\]
For the term \(T_1\), we have
\[
T_1 = \frac{1}{2} PV \int_{B_{\varepsilon_0}(0)} \frac{|v_m(x + y) + v_m(x - y) - 2v_m(x)|}{|y|^{n+2s}} dy
\]
\[
\leq C|v_m|_{C^2 B_1(x)} \int_{B_{\varepsilon_0}(0)} |y|^{2-2s-n} dy \leq C|v_m|_{C^2 B_1(x)} \varepsilon_0^{2-2s} \to 0 \text{ as } \varepsilon_0 \to 0.
\]
For the third term,
\[
T_3 \leq C \int_{\mathbb{R}^n \setminus B_R(x)} \frac{1}{|x - y|^{n+2s}} = CR^{-2s} \to 0 \text{ as } R \to \infty.
\]
Then we estimate the term \(T_2\). For fixed \(R\) large enough and \(\varepsilon_0\) small enough, \(B_R(x) \setminus B_{\varepsilon_0}(x)\) is a compact set. So we have \(T_2 \to 0\) as \(m \to \infty\). Hence \((-\Delta)^s u_m(x) \to (-\Delta)^s u_\infty(x)\) as \(m \to \infty\). Therefore \(u_\infty\) satisfies equation \((1.5)\).

Proof of Corollary 1.3 Fix the constant \(m < \infty\). Using a similar argument as in [29], we can expand \(I(W_m + \phi_m)\) as
\[
I(W_m + \phi_m) = (m + 1)^k \left(\frac{s}{n} \int U_{0.1}^{0.2s} + o(1) \right), \text{ as } l \to \infty.
\]
For each \(m < \infty\), \(I(W_m + \phi_m) \to (m + 1)^k \frac{s}{n} \int U_{0.1}^{0.2s} \) as \(l \to \infty\). For any \(m_1, m_2 \in \mathbb{N}_+\) such that \(m_1 \neq m_2\), we can find two solutions \(W_{m_1} + \phi_{m_1}\) and \(W_{m_2} + \phi_{m_2}\) of \((1.5)\), such that \(I(W_{m_1} + \phi_{m_1}) \neq I(W_{m_2} + \phi_{m_2})\). Hence we can find infinitely many solutions of \((1.5)\).

Appendix A. Basic Estimates

Lemma A.1. (cf. [27,29]) For any \(x_i, x_j, y \in \mathbb{R}^n\) and constant \(\sigma \in [0, \min\{\alpha, \beta\}]\), we have
\[
\frac{1}{(1 + |y - x_i|)^\alpha (1 + |y - x_j|)^\beta} \leq \frac{2^\sigma}{(1 + |x_i - x_j|)^\sigma} \left(\frac{1}{(1 + |y - x_i|)^{\alpha + \beta - \sigma}} + \frac{1}{(1 + |y - x_j|)^{\alpha + \beta - \sigma}} \right).
\]

Lemma A.2. For any \(\sigma > 0\) with \(\sigma \neq n - 2s\), there is a constant \(C > 0\) such that
\[
\int_{\mathbb{R}^n} \frac{1}{|y - z|^{n-2s}} \frac{1}{(1 + |z|)^{2s+\sigma}} dz \leq \frac{C}{(1 + |y|)^{\min\{\sigma, n-2s\}}}.
\]
For \(\sigma = n - 2s \), there is also a constant \(C > 0 \), such that
\[
\int_{\mathbb{R}^n} \frac{1}{|y-z|^{n-2s}} \frac{1}{(1+|z|)^n} \leq C \max(1, \log |y|) / (1+|y|)^{n-2s}
\]

Proof. The proof follows from the same argument as [21] Lemma A.2. See also [29], Lemma B.2. \(\square \)

Recall that \(X^i \in X_{i,m} = \{ X^i \}_{i=1}^{(m+1)k}, B_i = B_M(X^i) \) and \(B_{i,m} = B_{\max\{m+1\}M}(X^i) \).

Lemma A.3. (cf. [21]) For any \(\theta > k \), there exists a constant \(C(\theta, k, n) > 1 \) independent of \(m \), such that if \(y \in B_i \cap \Omega_i \), there holds
\[
\frac{1}{(1+|y-X^i|)^\theta} \leq \sum_j \frac{1}{(1+|y-X^j|)^\theta} \leq \frac{C}{(1+|y-X^i|)^\theta}.
\]

If \(y \in B_i^c \cap B_{i,m} \cap \Omega_i \), there holds
\[
\frac{1}{C(1+|y-X^i|)^{\theta-k}(\lambda)^k} \leq \sum_j \frac{1}{(1+|y-X^j|)^\theta} \leq \frac{C}{(1+|y-X^i|)^{\theta-k}(\lambda)^k} \tag{A.1}
\]
and if \(y \in B_{i,m}^c \cap \Omega_i \), there holds
\[
\frac{m^k}{C(1+|y-X^i|)^\theta} \leq \sum_j \frac{1}{(1+|y-X^j|)^\theta} \leq \frac{Cm^k}{(1+|y-X^i|)^\theta} \leq \frac{C}{(1+|y-X^i|)^{\theta-k}(\lambda)^k}.
\]

Lemma A.4. Let \(n > 2s + 2 \) and \(0 < \tau < \frac{n+2s}{2} \). If \(\phi \) satisfies \(\| \phi \|_* \leq \frac{C}{\lambda^{\frac{n+2s}{2}-\tau}} \), then for any \(c > 0 \), there exists \(\lambda_0 > 0 \) such that for any \(\lambda > \lambda_0 \), there holds \(|\phi| \leq cW_m \) in \(\cup_{h}(\Omega_h \cap B_h) \).

Proof. We prove this lemma indirectly. Suppose that there exists \(c_0 > 0 \), such that for any \(\lambda_0 > 0 \), there is a \(\lambda > \lambda_0 \) and \(y \in \cup_{h}(\Omega_h \cap B_h) \) such that \(|\phi(y)| \geq c_0W_m(y) \). Then
\[
|\phi(y)| \geq C \sum_{h=1}^{(m+1)k} \frac{1}{(1+|y-X^h|)^{n-2s}} \geq C \gamma(y) \sum_{h=1}^{(m+1)k} \frac{1}{(1+|y-X^h|)^{\theta\frac{n+2s}{2}+\tau}} \frac{1}{(\lambda)^{\frac{n-2s}{2}-\tau}}
\]
If \(0 < \tau < \frac{n-2s}{2} \), we have
\[
\frac{1}{\lambda^{\frac{n-2s}{2}-\tau}} \geq \| \phi \|_* \geq \frac{C}{(\lambda)^{\frac{n-2s}{2}-\tau}},
\]
which does not hold for \(\lambda \) large enough.

If \(\frac{n-2s}{2} \leq \tau < \frac{n+2s}{2} \), we can also get
\[
\frac{1}{\lambda^{\frac{n-2s}{2}-\tau}} \geq \| \phi \|_* \geq c,
\]
which also is a contradiction for \(\lambda \) large. \(\square \)
Lemma A.5. For $n > 2s + 2$ and $1 \leq k < \frac{n - 2s}{2}$, we have
\[
\int_{\mathbb{R}^n} \frac{1}{|x - y|^{n-2s}} W_{m, \Lambda}^{4s} (y) \gamma(y) \sum_h \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2} + r}} dy \\
\leq C \left(\gamma(x) \sum_h \frac{1}{(1 + |x - X^h|)^{\frac{n-2s}{2} + r + \theta}} + \frac{1}{(\lambda)^{\frac{n-2s}{2}k}} \gamma(x) \sum_h \frac{1}{(1 + |x - X^h|)^{\frac{n-2s}{2} + r}} \right),
\]
where $\theta > 0$ is a small constant and $C > 0$ does not depend on m.

Proof. Without loss of generality, we assume $x \in \Omega_1$. We write
\[
\int_{\mathbb{R}^n} \frac{1}{|x - y|^{n-2s}} W_m^{4s} (y) \gamma(y) \sum_h \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2} + r}} dy \\
= \left(\int_{\cup_h (\Omega_h \cap B_h)} + \int_{\cup_h (\Omega_h \cap B_h^c \cap B_h, m)} + \int_{\cup_h (\Omega_h \cap B_h^c, m)} \right) \frac{1}{|x - y|^{n-2s}} W_m^{4s} (y) \\
\times \gamma(y) \sum_h \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2} + r}} dy \\
=: T_1 + T_2 + T_3.
\]
We now estimate each term T_i ($i = 1, 2, 3$).

Using Lemma [A.2] and Lemma [A.3], we have
\[
T_1 \leq C \int_{\cup_h (\Omega_h \cap B_h)} \frac{1}{|x - y|^{n-2s}} \sum_h \frac{1}{(1 + |y - X^h|)^{4s + \frac{n-2s}{2} + r}} dy \\
\leq C \sum_h \frac{1}{(1 + |x - X^h|)^{\min(4s + \frac{n-2s}{2} + r, n-2s)}} \\
= C \sum_h \frac{1}{(1 + |x - X^h|)^{\frac{n-2s}{2} + r + \theta_1}}, \quad \text{where } \theta_1 = \min\{2s, \frac{n-2s}{2} - \tau \}. \quad (A.2)
\]
Similarly, we also obtain
\[
T_1 \leq C \int_{\cup_h (\Omega_h \cap B_h)} \frac{1}{|x - y|^{n-2s}} \frac{1}{\lambda^{\tau-s}} \sum_h \frac{1}{(1 + |y - X^h|)^{\frac{n-2s}{2} + 4s}} dy \\
\leq C \frac{1}{\lambda^{\tau-s}} \sum_h \frac{1}{(1 + |x - X^h|)^{\min(\frac{n-2s}{2} + 4s, n-2s)}} \\
\leq C \frac{1}{\lambda^{\tau-s}} \sum_h \frac{1}{(1 + |x - X^h|)^{\min(n-3s+2s, \frac{n}{2} + \tau + s)}} \\
= C \frac{1}{\lambda^{\tau-s}} \sum_h \frac{1}{(1 + |x - X^h|)^{\frac{n-2s}{2} + \tau + \theta_2}}, \quad (A.3)
\]
where $\theta_2 = \min\{\frac{n-4s}{2}, 2s\}$.

Combining the estimate [A.2] and [A.3], we have
\[
T_1 \leq C \gamma(x) \sum_h \frac{1}{(1 + |x - X^h|)^{\frac{n-2s}{2} + r + \theta}},
\]
Thus, this lemma follows. By the same procedure, we have

\[
T_2 \leq \frac{C}{(\lambda) \frac{4s}{n-2s} k} \int_{\mathbb{R}^n} \frac{1}{|x-y|^{n-2s}} \sum_h \frac{1}{1 + |y - X^h|} \frac{1}{\lambda^{-2s} + 4s + \sigma + \frac{4s}{n-2s} x y dy} \\
\leq \frac{C}{(\lambda) \frac{4s}{n-2s} k} \sum_h \frac{1}{(1 + |x - X^h|) \min\{n-2s, \lambda^{-2s} + 4s + \frac{4s}{n-2s} x y dy}.
\]

and

\[
T_2 \leq \frac{C}{\lambda^{\tau-s}(\lambda) \frac{4s}{n-2s} k} \int_{\mathbb{R}^n} \frac{1}{|x-y|^{n-2s}} \sum_h \frac{1}{1 + |y - X^h|} \frac{1}{\lambda^{-2s} + 4s + \sigma + \frac{4s}{n-2s} x y dy} \\
\leq \frac{C}{\lambda^{\tau-s}(\lambda) \frac{4s}{n-2s} k} \sum_h \frac{1}{(1 + |x - X^h|) \lambda^{\tau-s} \min\{n-2s, \lambda^{-2s} + 4s + \frac{4s}{n-2s} x y dy}.
\]

Thus

\[
T_2 \leq \frac{C}{(\lambda) \frac{4s}{n-2s} k} \gamma(x) \sum_h \frac{1}{(1 + |x - X^h|) \frac{\lambda^{-2s} + 4s + \frac{4s}{n-2s} x y dy}}.
\]

By the same procedure, we have

\[
T_3 \leq \frac{C}{(\lambda) \frac{4s}{n-2s} k} \gamma(x) \sum_h \frac{1}{(1 + |x - X^h|) \frac{\lambda^{-2s} + 4s + \frac{4s}{n-2s} x y dy}}.
\]

Hence this lemma follows.

Remember \(Z_{i,j} = \frac{\partial U^{p_i, A_i}}{\partial P_j} \) for \(j = 1, 2, \ldots, n \) and \(Z_{i,n+1} = \frac{\partial U^{p_i, A_i}}{\partial A_i} \).

Lemma A.6. For \(t = 1, 2, \ldots, n + 1 \), we have

\[
\left| \int_{\mathbb{R}^n} K(x) W_{m}^{\frac{4s}{n-2s}} Z_{r,t} \phi \right| \leq \frac{C \lambda^{\tau-s}}{\lambda^{\tau-s}(\lambda)^{\frac{4s}{2n-2s}}} \left| \phi \right| \frac{\sigma + \frac{4s}{n-2s} x y dy}.
\]

Proof. In the proof of this lemma, we denote \(\hat{W}_{m,r} = \sum_{h \neq r} U^{p_h, A_h} \). It is easy to get

\[
\int_{\mathbb{R}^n} K(x) W_{m}^{\frac{4s}{n-2s}} Z_{r,t} \phi = \int_{\mathbb{R}^n} K(x) U^{\frac{4s}{n-2s}} Z_{r,t} \phi + O \left(\int_{W_{m,r} > U^{p_r, A_r}} \hat{W}_{m,r}^{\frac{4s}{n-2s}} Z_{r,t} \phi \right) (A.4)
\]

\[+ O \left(\int_{W_{m,r} \leq U^{p_r, A_r}} U^{\frac{4s}{n-2s}} \hat{W}_{m,r} \phi \right).
\]

We need to estimate each term in the equality above.
For $i \neq r$, from Lemma A.3 we have
\[
\left| \int_{\Omega \cap B_i} \hat{W}_{m,r}^{4s} Z_{r,t} \phi \right| \leq C \| \phi \|_{\lambda^{r-s}} \int_{\Omega \cap B_i} \left(\sum_{h \neq r} \frac{1}{1 + |x - X^h|^{n-2s}} \right)^{\frac{4s}{n-2s}} \frac{1}{(1 + |x - X^r|^{n-2s})} \sum_{h} \frac{1}{(1 + |x - X^h|)^{\frac{n}{2}}} \, dx
\]
\[
\leq C \| \phi \|_{\lambda^{r-s}} \int_{\Omega \cap B_i} \frac{1}{(1 + |x - X^r|^{n-2s})} \sum_{h} \frac{1}{(1 + |x - X^h|)^{\frac{n}{2} + 4s + r - \frac{4s}{n-2s}}} \, dx \leq C \frac{\| \phi \|_{\lambda^{r-s}}}{\lambda^{r-s}(X^r - X^l)^2}
\]

With the help of Lemma A.1 and Lemma A.3 we get
\[
\left| \int_{\bigcup (\Omega \cap B_k)} \hat{W}_{m,r}^{4s} Z_{r,t} \phi \right| \leq C \| \phi \|_{\lambda^{r-s}} \int_{\bigcup (\Omega \cap B_k)} \frac{1}{(1 + |x - X^r|^{n-2s})} \left(\sum_{h \neq r} \frac{1}{(1 + |x - X^h|)^{n-2s}} \right)^{\frac{4s}{n-2s}} \frac{1}{(1 + |x - X^h|)^{\frac{n}{2} + 3s + r - \frac{4s}{n-2s}}} \, dx
\]
\[
\leq C \| \phi \|_{\lambda^{r-s}} \frac{(\lambda)^{\frac{n-2s}{2} + s + r}}{\lambda^{r-s}(X^r - X^l)^2}
\]

Since in $\Omega \cap B_r$, there holds $\hat{W}_{m,r} \leq \sum_{j \neq r} \frac{C}{|X^j - X^r|^{n-2s}} \leq \frac{C}{(\lambda)^{n-2s}}$. Then if $n \geq 6s$, we have
\[
\left| \int_{\Omega \cap B_r} \hat{W}_{m,r}^{4s} Z_{r,t} \phi \right| \leq C \int_{\Omega \cap B_r} \hat{W}_{m,r}^{4s} Z_{r,t} \phi \leq C \| \phi \|_{\lambda^{r-s}} \frac{1}{\lambda^{r-s}(\lambda)^{\frac{n-2s}{2}}} \int_{\Omega \cap B_r} \frac{1}{(1 + |x - X^r|^{n-2s})} \sum_{h} \frac{1}{(1 + |x - X^h|)^{\frac{n}{2}}} \, dx
\]
\[
\leq C \| \phi \|_{\lambda^{r-s}} \frac{\lambda^{r-s}(\lambda)^{\frac{n-2s}{2}}}{\lambda^{r-s}(\lambda)^{n-2s}}
\]

And if $n < 6s$, we get $\frac{n+2s}{2} < 4s$. In this case
\[
\left| \int_{\Omega \cap B_r} \hat{W}_{m,r}^{4s} Z_{r,t} \phi \right| \leq C \| \phi \|_{\lambda^{r-s}(\lambda)^{4s}} \int_{\Omega \cap B_r} \frac{1}{(1 + |x - X^r|^{n-2s})} \sum_{h} \frac{1}{(1 + |x - X^h|)^{\frac{n}{2}}} \, dx
\]
\[
\leq C \frac{\| \phi \|_{\lambda^{r-s}(\lambda)^{\frac{n-2s}{2}}}}{\lambda^{r-s}(\lambda)^{\frac{n-2s}{2}}}
\]
From these arguments above, we arrive

\[
\left| \int_{W_{m,r} > U_{pr,Ar}} W_{m,r}^{\frac{4s}{n-2s}} Z_{r,t} \phi \right| \leq C \frac{\|\phi\|*}{\lambda^{T-s}(\lambda l)^{T}}.
\] (A.6)

By a similar procedure, we get

\[
\left| \int_{W_{m,r} \leq U_{pr,Ar}} U_{pr,Ar}^{\frac{4s}{n-2s}} W_{m,r} \phi \right| \leq C \frac{\|\phi\|*}{\lambda^{T-s}(\lambda l)^{T}}.
\] (A.7)

Now we estimate the first term on the right hand side of the equality (A.4). Since \(\phi \) satisfies the second equality in (2.10), we have

\[
\left| \int_{\mathbb{R}^n} K\left(\frac{x}{\lambda}\right) U_{pr,Ar}^{\frac{4s}{n-2s}} Z_{r,t} \phi \right| = \left| \int_{\mathbb{R}^n} \left(K\left(\frac{x}{\lambda}\right) - 1 \right) U_{pr,Ar}^{\frac{4s}{n-2s}} Z_{r,t} \phi \right|
\]

\[
\leq \frac{\|\phi\|*}{\lambda^{T-s}} \int_{\mathbb{R}^n} \left| K\left(\frac{x}{\lambda}\right) - 1 \right| U_{pr,Ar}^{\frac{4s}{n-2s}} \sum_{h \neq r} \frac{1}{1 + |x - X_h|^{\frac{n}{2}}} \, dx.
\]

On one hand, Lemma A.1 implies that

\[
\int_{\mathbb{R}^n} \left| K\left(\frac{x}{\lambda}\right) - 1 \right| U_{pr,Ar}^{\frac{4s}{n-2s}} \sum_{h \neq r} \frac{1}{1 + |x - X_h|^{\frac{n}{2}}} \, dx
\]

\[
\leq C \int_{\mathbb{R}^n} \frac{1}{(1 + |x - X_r|)^{n+2s}} \sum_{h \neq r} \frac{1}{1 + |x - X_h|^{\frac{n}{2}}} \, dx
\]

\[
\leq \frac{C}{(\lambda l)^{T}}.
\]

On the another hand, choose \(\delta \) to be a fixed constant small enough,

\[
\int_{\mathbb{R}^n} \left| K\left(\frac{x}{\lambda}\right) - 1 \right| U_{pr,Ar}^{\frac{4s}{n-2s}} \frac{1}{(1 + |x - X_r|)^{n}}\]

\[
= \int_{|x - X_r| \leq \delta \lambda} \left| K\left(\frac{x}{\lambda}\right) - 1 \right| U_{pr,Ar}^{\frac{4s}{n-2s}} \frac{1}{(1 + |x - X_r|)^{n}}
\]

\[
+ \int_{|x - X_r| > \delta \lambda} \left| K\left(\frac{x}{\lambda}\right) - 1 \right| U_{pr,Ar}^{\frac{4s}{n-2s}} \frac{1}{(1 + |x - X_r|)^{n}} =: J_1 + J_2.
\]

From the condition \((H_3)\), we have

\[
|J_1| \leq \frac{C}{\lambda^\beta} \int_{|x - X_r| \leq \delta \lambda} \frac{|x - X_r|^\beta}{(1 + |x - X_r|)^{n+2s+\frac{\beta}{2}}} \leq \begin{cases} \frac{C \log \lambda}{\lambda^{\frac{n+4s}{2}}}, & \text{if } \beta \geq \frac{n+4s}{2}, \\ \frac{C}{\lambda^\beta}, & \text{if } \beta < \frac{n+4s}{2}. \end{cases}
\]
For the term J_2, a direct calculation yields

$$J_2 = \int_{|x-X^*| > \delta \lambda} |K\left(\frac{x}{\lambda}\right) - 1| \frac{U_{Pr,L_\lambda}^{n+2s}}{(1+|x-X^*|)^{\frac{n+2s}{2}}}$$

$$\leq \int_{|x-X^*| > \delta \lambda} \frac{1}{(1+|x-X^*|)^{n+2s+\frac{n}{2}}}$$

$$\leq \frac{C}{\lambda^{n+2s}}.$$

Since $\min\{\beta, \frac{n+4s}{2}\} > \frac{n}{2} \frac{n}{n-2s}$, the definition of λ implies

$$\int_{\mathbb{R}^n} |K\left(\frac{x}{\lambda}\right) - 1| \frac{U_{Pr,L_\lambda}^{n+2s}}{(1+|x-X^*|)^{\frac{n+2s}{2}}} \leq \frac{C}{(\lambda \lambda)^{\frac{n+2s}{2}}}.$$

Hence we obtain

$$\left| \int_{\mathbb{R}^n} K\left(\frac{x}{\lambda}\right) U_{Pr,L_\lambda}^{n+2s} Z_r,t \phi \right| \leq C \frac{\|\phi\|_2}{\lambda^{n-s}(\lambda \lambda)^{\frac{n+2s}{2}}}.$$

(A.8)

Putting (A.6), (A.7) and (A.8) into (A.4), we get this lemma.

\[\square\]

Lemma A.7. It holds that

$$\int_{\bigcup_k (\Omega_k \cap B_k^i)} |\phi| \frac{n+2s}{n-2s} U_{P^i,L_i} \leq C \frac{\|\phi\|_2^{n+2s}}{(\lambda \lambda)^{n+2s}},$$

(A.9)

and

$$\left| \int_{\mathbb{R}^n} W_m^{\frac{6s-n}{n-2s}} \phi^2 U_{P^i,L_i} \right| \leq C \frac{\|\phi\|_2^2}{\lambda^{2(\tau+s)}}.$$

(A.10)

Proof. The estimate (A.9) follows by the same method as in (A.5). So we only prove the estimation (A.10).

Using the same trick as in (A.5), we have

$$\left| \int_{\bigcup_k (\Omega_k \cap B_k^i)} W_m^{\frac{6s-n}{n-2s}} \phi^2 U_{P^i,L_i} \right| \leq C \frac{\|\phi\|_2^2}{\lambda^{2(\tau+s)}}.$$

(A.11)

According to Lemma [A.3] we have for $t \neq i$,

$$\left| \int_{\Omega_t \cap B_t} W_m^{\frac{6s-n}{n-2s}} \phi^2 U_{P^i,L_i} \right| \leq C \frac{\|\phi\|_2^2}{(\lambda \lambda)^{2(\tau-s)}} \int_{\Omega_t \cap B_t} \frac{1}{(1+|x-X^i|)^{\frac{n}{n-2s}}} d\lambda.$$

If $n \geq 6s$

$$\int_{\Omega_t \cap B_t} \frac{1}{(1+|x-X^i|)^{\frac{n}{n-2s}}} d\lambda \leq \frac{(\lambda \lambda)^{n-6s} \log(\lambda)}{|X^i - X^t|^{n-2s}}.$$

If otherwise, $n < 6s$, there holds

$$\int_{\Omega_t \cap B_t} \frac{1}{(1+|x-X^i|)^{\frac{n}{n-2s}}} d\lambda \leq \frac{1}{|X^i - X^t|^{n-2s}}.$$

Hence

$$\sum_{t \neq i} \left| \int_{\Omega_t \cap B_t} W_m^{\frac{6s-n}{n-2s}} \phi^2 U_{P^i,L_i} \right| \leq C \frac{\|\phi\|_2^2}{(\lambda \lambda)^{2(\tau-s)}} C \log(\lambda) \frac{C \log(\lambda)}{\lambda^{\min\{n-2s,4s\}}}.$$

(A.12)
Using Lemma A.3, we also have

\[
\left| \int_{\Omega_i \cap B_i} W_m^{\frac{6s-n}{2s}} \phi^2 U_{P_i, \Lambda_i} \right| \leq C \left\| \phi \right\|_{\infty}^2 \int_{\Omega_i \cap B_i} \frac{1}{(1 + |y - X_i|)^{n+4s}}. \tag{A.13}
\]

So we obtain the estimate (A.10) from (A.11), (A.12) and (A.13).

Lemma A.8. If \(\phi \) is the solution of the equation

\[
(-\Delta)^s \phi(x) - \frac{n + 2s}{n - 2s} K(x) W_m^{\frac{4s}{n-2s}}(x) \phi(x) = g(x), \tag{A.14}
\]

satisfying \(\|\phi\|_\infty < +\infty \), then we have

\[
\sup_{x_1 \neq x_2} \frac{|(\lambda^\tau - s) \phi(x_1) - (\lambda^\tau - s) \phi(x_2)|}{|x_1 - x_2|^\alpha} \leq C \max\{\|\phi\|_\infty, \|g\|_\infty\},
\]

where \(\alpha = \min\{2s, 1\} \) and the constant \(C \) does not depend on \(\lambda \) and \(m \).

Proof. Since \(|(\lambda^\tau - s) \phi(x)| \leq \|\phi\|_\infty \sum_h \frac{1}{(1 + |x - X^h|)^\frac{n}{2}} \leq C \|\phi\|_\infty \), we can assume \(|x_1 - x_2| \leq \frac{1}{3} \) with no loss of generality. Using the Green function of \(-\Delta)^s\) (see [5]), we can write (A.14) into the following form

\[
\phi(x) = C \int_{\mathbb{R}^n} \frac{1}{|x - y|^{n-2s}} \left(\frac{n + 2s}{n - 2s} K\left(\frac{y}{\lambda}\right) W_m^{\frac{4s}{n-2s}}(y) \phi(y) + g(y) \right) dy,
\]

Then we get

\[
|\phi(x_1) - \phi(x_2)| \leq C \left| \int_{\mathbb{R}^n} \left(\frac{1}{|x_1 - y|^{n-2s}} - \frac{1}{|x_2 - y|^{n-2s}} \right) K\left(\frac{y}{\lambda}\right) W_m^{\frac{4s}{n-2s}}(y) \phi(y) dy \right| \\
+ C \left| \int_{\mathbb{R}^n} \left(\frac{1}{|x_1 - y|^{n-2s}} - \frac{1}{|x_2 - y|^{n-2s}} \right) g(y) dy \right| \\
=: C(H_1 + H_2).
\]
Using the definition of the norm $\| \cdot \|_*$, there hold

$$
|H_1| \leq \| \phi \|_* \left| \int_{\mathbb{R}^n} \left(\frac{1}{|x_1 - x_2 - y|^{n-2s} - \frac{1}{|y|^{n-2s}}} \right) K\left(\frac{y + x_2}{\lambda}\right) W_m^{4s}(y + x_2) \times

\times \gamma(y + x_2) \sum_h \frac{1}{(1 + |y + x_2 - X^h|)^{\frac{n-2s}{2} + \tau}} dy \right|

= \| \phi \|_* \left\{ \int_{|y| \leq 3|x_1 - x_2|} \left(\frac{1}{|x_1 - x_2 - y|^{n-2s} - \frac{1}{|y|^{n-2s}}} \right) K\left(\frac{y + x_2}{\lambda}\right) W_m^{4s}(y + x_2) \times

\times \gamma(y + x_2) \sum_h \frac{1}{(1 + |y + x_2 - X^h|)^{\frac{n-2s}{2} + \tau}} dy

+ \int_{|y| \geq 3|x_1 - x_2|} \left(\frac{1}{|x_1 - x_2 - y|^{n-2s} - \frac{1}{|y|^{n-2s}}} \right) K\left(\frac{y + x_2}{\lambda}\right) W_m^{4s}(y + x_2) \times

\times \gamma(y + x_2) \sum_h \frac{1}{(1 + |y + x_2 - X^h|)^{\frac{n-2s}{2} + \tau}} dy \right\}

=: \| \phi \|_*(K_1 + K_2).
$$

For the term K_1, we have

$$
|K_1| \leq \frac{C}{\lambda^{1-s}} \int_{|y| \leq 3|x_1 - x_2|} \frac{1}{|y|^{n-2s}} \leq \frac{C}{\lambda^{1-s}} |x_1 - x_2|^{2s}.
$$

For the term K_2, we have

$$
|K_2| \leq C|x_1 - x_2| \int_0^1 dt \int_{|y| \geq 3|x_1 - x_2|} \frac{1}{|t(x_1 - x_2) - y|^{n-2s+1}} W_m^{4s}(y + x_2) \times

\times \gamma(y + x_2) \sum_h \frac{1}{(1 + |y + x_2 - X^h|)^{\frac{n-2s}{2} + \tau}} dy

= \frac{C|x_1 - x_2|}{\lambda^{1-s}} \left(\int_{1 > |y| \geq 3|x_1 - x_2|} + \int_{|y| \geq 1} \right) \frac{1}{|t(x_1 - x_2) - y|^{n-2s+1}} W_m^{4s}(y + x_2) \times

\times \gamma(y + x_2) \sum_h \frac{1}{(1 + |y + x_2 - X^h|)^{\frac{n-2s}{2} + \tau}} dy

=: \frac{C|x_1 - x_2|}{\lambda^{1-s}} (M_1 + M_2).
$$

Since it holds that $|t(x_1 - x_2) - y| \in [2|x_1 - x_2|, \frac{4}{3})$ for $1 > |y| \geq 3|x_1 - x_2|$, we get

$$
|M_1| \leq \frac{1}{\lambda^{1-s}} \int_{2|x_1 - x_2| \leq |y| \leq \frac{4}{3}} \frac{1}{|y|^{n-2s+1}} \leq \frac{1}{\lambda^{1-s}} (C + C|x_1 - x_2|^{2s-1}).
$$
For $|y| \geq 1$, we have $\frac{2}{3} |y| \leq |t(x_1 - x_2) - y| \leq 4\frac{1}{3} |y|$. Lemma A.5 yields

\[
M_2 \leq C \int_{|y| \geq 1} \frac{1}{|y|^{n-2s+1}} W_m^{\frac{4s}{n-2s}} (y + x_2) \gamma(y + x_2) \sum_\lambda \left(\frac{1}{(1 + |y + x_2 - X^h|)^{\frac{n-s}{2}}} \right) dy \\
\leq C \int_{\mathbb{R}^n} \frac{1}{|y - x_2|^{n-2s}} W_m^{\frac{4s}{n-2s}} (y) \gamma(y) \sum_\lambda \left(\frac{1}{(1 + |y - X^h|)^{\frac{n-s}{2}}} \right) dy \\
\leq \frac{C}{\lambda^{n-s}}.
\]

Hence $|H_1| \leq \frac{C}{\lambda^{n-s}} \| \phi \| \cdot |x_1 - x_2|^\alpha$. The same procedure with the help of Lemma A.2 yields that $|H_2| \leq \frac{C}{\lambda^{n-s}} \| g \| \cdot |x_1 - x_2|^\alpha$. Then Lemma A.8 follows.

\[\square\]

Appendix B. Expansions of the functionals $\frac{\partial}{\partial \Lambda_i} I(W_m)$ and $\frac{\partial}{\partial P^i_j} I(W_m)$

In this section, we will expand the functionals $\frac{\partial}{\partial \Lambda_i} I(W_m)$ and $\frac{\partial}{\partial P^i_j} I(W_m)$. A direct computation yields

\[
\frac{\partial}{\partial \Lambda_i} I(W_m) = \int_{\mathbb{R}^n} W_m(-\Delta)^s \frac{\partial W_m}{\partial \Lambda_i} - \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) W_m^{\frac{n+2s}{n-2s}} \frac{\partial W_m}{\partial \Lambda_i} \\
= \int_{\mathbb{R}^n} \sum_{h=1}^{(m+1)\lambda} U_{P^k, \Lambda_h}^{\frac{n+2s}{n-2s}} \frac{\partial U_{P^k, \Lambda_h}}{\partial \Lambda_i} - \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) W_m^{\frac{n+2s}{n-2s}} \frac{\partial U_{P^k, \Lambda_i}}{\partial \Lambda_i}, \quad (B.1)
\]

and

\[
\frac{\partial}{\partial P^i_j} I(W_m) = \int_{\mathbb{R}^n} W_m(-\Delta)^s \frac{\partial W_m}{\partial P^i_j} - \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) W_m^{\frac{n+2s}{n-2s}} \frac{\partial W_m}{\partial P^i_j} \\
= \int_{\mathbb{R}^n} \sum_{h \neq i} U_{P^k, \Lambda_h}^{\frac{n+2s}{n-2s}} \frac{\partial U_{P^k, \Lambda_h}}{\partial P^i_j} - \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) W_m^{\frac{n+2s}{n-2s}} \frac{\partial U_{P^k, \Lambda_i}}{\partial P^i_j}. \quad (B.2)
\]

In order to get the useful expansions, we need to estimate each term on the right hand side of (B.1) and (B.2) above.

Lemma B.1. There holds

\[
\int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) W_m^{\frac{n+2s}{n-2s}} \frac{\partial U_{P^k, \Lambda_i}}{\partial \Lambda_i} = \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) \sum_{h} U_{P^k, \Lambda_h}^{\frac{n+2s}{n-2s}} \frac{\partial U_{P^k, \Lambda_i}}{\partial \Lambda_i} \\
+ \frac{n+2s}{n-2s} \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) U_{P^k, \Lambda_i}^{\frac{n+2s}{n-2s}} \sum_{h \neq i} U_{P^k, \Lambda_h} \frac{\partial U_{P^k, \Lambda_i}}{\partial \Lambda_i} + O \left((\lambda l)^{-n} \right).
\]

Proof. We estimate the integration on different region. By the same method used in (A.5), we have

\[
\int_{B_{\lambda}(h_k)} K \left(\frac{x}{\lambda} \right) W_m^{\frac{n+2s}{n-2s}} \frac{\partial U_{P^k, \Lambda_i}}{\partial \Lambda_i} = O \left((\lambda l)^{-n} \right).
\]

(B.3)
In the domain $\Omega_j \cap B_i$, where $j \neq i$, there holds $\hat{W}_{m,j}(y) \leq \sum_{h \neq j} \frac{C}{|x_j - x_h|} \leq \frac{C}{(|\lambda|)^{n-2s}} \leq CU_{p_j,\Lambda_j}$. Taylor expansion yields

$$\int_{\Omega_j \cap B_i} K\left(\frac{x}{\lambda}\right) W_{m}^{\frac{n+2s}{n-2s}} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} = \int_{\Omega_j \cap B_i} K\left(\frac{x}{\lambda}\right) U_{n-2s}^{P_i,\Lambda_j} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} + O\left(\int_{\Omega_j \cap B_i} U_{n-2s}^{P_i,\Lambda_j} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} \right).$$

For the error term, a direct computation yields

$$\int_{\Omega_j \cap B_i} U_{n-2s}^{P_i,\Lambda_j} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} = O\left(\frac{1}{(|\lambda|)^{2s}|X_i - X_j|^{n-2s}}\right).$$

Claim: For $j \neq i$, there holds

$$\int_{\Omega_j \cap B_i} K\left(\frac{x}{\lambda}\right) U_{n-2s}^{P_i,\Lambda_j} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} = \int_{\Omega_j \cap B_i} K\left(\frac{x}{\lambda}\right) U_{n-2s}^{P_i,\Lambda_j} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} + O\left(\frac{1}{(|\lambda|)^{2s}|X_i - X_j|^{n-2s}}\right). \quad (B.4)$$

From direct computation

$$\int_{\Omega_j \cap B_i} K\left(\frac{x}{\lambda}\right) U_{n-2s}^{P_i,\Lambda_j} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} = O\left(\frac{(|\lambda|)^{2s}}{|X_i - X_j|^{n+2s}}\right). \quad (B.5)$$

Using Lemma [A.1] we can obtain

$$\sum_{h \neq i,j} \int_{\Omega_h \cap B_h} K\left(\frac{x}{\lambda}\right) U_{n-2s}^{P_i,\Lambda_j} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} \leq \sum_{h \neq i,j} C \frac{1}{|X_i - X_j|^{n-2s}} \int_{\Omega_h \cap B_h} \frac{1}{(1 + |x - X^i|)^{n+2s}} \leq C \frac{(|\lambda|)^n}{|X_i - X_j|^{n-2s}} \sum_{h \neq i} \frac{1}{|X^h - X^i|^{n+2s}} \quad (B.6)$$

and

$$\int_{\cup_{h}(\Omega_h \cap B_h^i)} K\left(\frac{x}{\lambda}\right) U_{n-2s}^{P_i,\Lambda_j} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} = O\left(\frac{1}{(|\lambda|)^{2s}|X_i - X_j|^{n-2s}}\right). \quad (B.7)$$

From (B.5), (B.6) and (B.7), we know the Claim is true.

Hence for $j \neq i$,

$$\int_{\Omega_j \cap B_i} K\left(\frac{x}{\lambda}\right) W_{m}^{\frac{n+2s}{n-2s}} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} = \int_{\Omega_j \cap B_i} K\left(\frac{x}{\lambda}\right) U_{n-2s}^{P_i,\Lambda_j} \frac{\partial U_{P_i,\Lambda_i}}{\partial \Lambda_i} + O\left(\frac{1}{(|\lambda|)^{2s}|X_i - X_j|^{n-2s}}\right). \quad (B.8)$$
Now we estimate the integration on $\Omega_i \cap B_i$. By Taylor expansion,

$$
\int_{\Omega_i \cap B_i} K \left(\frac{x}{\lambda} \right) W_m^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} = \int_{\Omega_i \cap B_i} K \left(\frac{x}{\lambda} \right) U_{P_i, \Lambda_i}^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} + \sum_{h \neq i} U_{P_h, \Lambda_h} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} + O \left(\left(\frac{1}{\lambda \lambda_i} \right)^{-n} \right). \tag{B.9}
$$

Since in the domain $\Omega_i^c \cup B_i^c$, we have $|y - X^i| \geq \min \{\lambda_l, \min_{j \neq i} \frac{1}{2} |X^i - X^j| \} \geq \frac{1}{2} \lambda l$. Then

$$
\int_{\Omega_i \cap B_i} K \left(\frac{x}{\lambda} \right) U_{P_i, \Lambda_i}^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} = \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) U_{P_i, \Lambda_i}^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} + O \left(\left(\frac{1}{\lambda \lambda_i} \right)^{-n} \right). \tag{B.10}
$$

By a similar method used in the proof of (B.4), we get

$$
\int_{\Omega_i \cap B_i} K \left(\frac{x}{\lambda} \right) U_{P_i, \Lambda_i}^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} = \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) U_{P_i, \Lambda_i}^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} + O \left(\left(\frac{1}{\lambda \lambda_i} \right)^{-n} \right). \tag{B.11}
$$

Substituting (B.10) and (B.11) into (B.9), we have

$$
\int_{\Omega_i \cap B_i} K \left(\frac{x}{\lambda} \right) W_m^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} = \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) U_{P_i, \Lambda_i}^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} + O \left(\left(\frac{1}{\lambda \lambda_i} \right)^{-n} \right). \tag{B.12}
$$

Now Lemma B.1 follows from the estimate (B.3), (B.8) and (B.12).

\[\square \]

Lemma B.2. For $h \neq i$, there holds

$$
\int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) U_{P_i, \Lambda_i}^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} = \int_{\mathbb{R}^n} U_{P_i, \Lambda_i}^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} + O \left(\frac{1}{\lambda^2 \lambda_i} \right), \tag{B.13}
$$

and

$$
\frac{n+2s}{n-2s} \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) U_{P_i, \Lambda_i}^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} = \int_{\mathbb{R}^n} U_{P_i, \Lambda_i}^{n+2s \over n-2s} \frac{\partial U_{P_i, \Lambda_i}}{\partial \lambda_i} + O \left(\frac{1}{\lambda^2 \lambda_i} \right). \tag{B.14}
$$
Proof. Notice the fact
\[
\int_{\mathbb{R}^n} U_{\frac{n+2s}{2}}^{\frac{n+2s}{2s}} \frac{\partial U_{p^i}}{\partial \Lambda_i} = \int_{\mathbb{R}^n} (-\Delta)^s U_{p^i, \Lambda} \frac{\partial U_{p^i}}{\partial \Lambda_i} = \int_{\mathbb{R}^n} U_{p^i, \Lambda} (-\Delta)^s U_{p^i} \frac{\partial U_{p^i}}{\partial \Lambda_i} = \frac{n+2s}{n-2s} \int_{\mathbb{R}^n} U_{p^i, \Lambda} \frac{4s}{n} \frac{\partial U_{p^i}}{\partial \Lambda_i}.
\]
So the proof of (B.14) and (B.13) are identical. We only give a proof of (B.13).

Choose \(\delta\) to be a fixed constant some enough. Since \(n > 4s > n + 2s - \beta\), the condition \((H_3)\) implies
\[
\left| \int_{B_\delta(X^h)} |K \left(\frac{x}{\lambda} \right) - 1| U_{\frac{n+2s}{2}}^{\frac{n+2s}{2s}} \frac{\partial U_{p^i}}{\partial \Lambda_i} \right| \leq C \int_{B_\delta(X^h)} \frac{|x - X^h|^{\beta}}{\lambda^\beta} \left(\frac{1}{1 + |x - P^h|^{n+2s}} \right) \left(\frac{1}{1 + |x - P^i|^{n-2s}} \right) \leq C \lambda^{2s} |X^h - X^i|^{n-2s}.
\]
A direct calculation yields
\[
\left| \int_{B_\delta(X^i)} |K \left(\frac{x}{\lambda} \right) - 1| U_{\frac{n+2s}{2}}^{\frac{n+2s}{2s}} \frac{\partial U_{p^i}}{\partial \Lambda_i} \right| \leq \frac{C \lambda^{2s}}{|X^i - X^h|^{n+2s}} \leq \frac{C}{\lambda^{2s} |X^i - X^h|^{n-2s}}.
\]
Using Lemma \(\text{A.1}\) we have
\[
\left| \int_{B_\delta(X^h) \cap B_{\delta}(X^i)} \left| K \left(\frac{x}{\lambda} \right) - 1 \right| U_{\frac{n+2s}{2}}^{\frac{n+2s}{2s}} \frac{\partial U_{p^i}}{\partial \Lambda_i} \right| \leq C \int_{B_{\delta}(X^h) \cap B_{\delta}(X^i)} \frac{1}{|X^h - X^i|^{n-2s}} \int_{B_{\delta}(X^i)} \frac{1}{|x - X^i|^{n+2s}} \leq \frac{C}{\lambda^{2s} |X^i - X^h|^{n-2s}}.
\]
Hence (B.13) follows from (B.15), (B.16) and (B.17).

\[\Box\]

Lemma B.3. We have
\[
\int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) U_{\frac{n+2s}{2}}^{\frac{n+2s}{2s}} \frac{\partial U_{p^i}}{\partial \Lambda_i} = \frac{-n-2s \beta C_0(n,s)}{\lambda^{\beta+1} \lambda^\beta} \left(\frac{\sum a_h}{\sum a_h} \right) \int_{\mathbb{R}^n} \frac{|x_1|^\beta}{(1 + |x|^2)^n} + o \left(\frac{|P^i - X^i|^{\min(2,\beta-1)}}{\lambda^\beta} \right),
\]
and
\[
\int_{\mathbb{R}^n} K\left(\frac{x}{\chi}\right) U_{P^i, \Lambda_i}^{n+2s} \frac{\partial U_{P^i, \Lambda_i}}{\partial P^i_j} = \left(n - 2s \right) C_0(n, s)^{\frac{2a}{n-2s}} \beta \int_{\mathbb{R}^n} \frac{|x|^{\beta}}{(1 + |x|^2)^{n+1}} (P^i_j - X^i_j)
\]
\[\quad + O(\frac{|P^i_j - X^i_j|^2}{\lambda^\beta}) + o(\lambda^{-\beta}), \quad (B.19)\]

where \(i = 1, \ldots, (m + 1)^k \) and \(j = 1, \ldots, n \).

Proof. The two formulas follows from some standard calculations, see [21, Lemma A.9, Lemma A.10] for details.

Lemma B.4. For \(h \neq i \), we have
\[
\int_{\mathbb{R}^n} U_{P^h, \Lambda_h}^{n+2s} \frac{\partial U_{P^i, \Lambda_i}}{\partial \Lambda_i} = c_0 \frac{\partial \varepsilon_{ih}}{\partial \Lambda_i} + \frac{1}{\lambda^\beta} O(\frac{1}{\varepsilon_{hi}^{n-2s}} \log \varepsilon_{hi}),
\]
where \(c_0 = C_0(n, s)^{\frac{n}{n-2s}} \int_{\mathbb{R}^n} \frac{1}{(1 + |x|^2)^{n+2s}} \) and \(\varepsilon_{ih} = \left(\frac{1}{\varepsilon_{hi}^{n-2s} + \varepsilon_{i}^{n+2s}} \right) \).

Proof. The proof of this lemma is rather standard. We refer to [3] and [9] for ideas.

Proposition B.5. It holds that
\[
\frac{\partial I}{\partial \Lambda_i}(W_m) = -\frac{c_1}{\lambda^\beta + \lambda^\beta} + \sum_{h \neq i} \frac{c_2}{\Lambda_i^\beta} |X^i - X^h|^{n-2s} + O\left(\frac{|P^i_j - X^i_j|^{\min\{2, \beta - 1\}}}{\lambda^\beta} \right) + o(\lambda^{-\beta}),
\]
where \(c_1 = \frac{(n-2s)\beta C_0(n, s)^{\frac{n}{n-2s}}}{2n} > 0 \) and \(c_2 = \frac{n-2s}{2(n-2s)} C_0(n, s)^{\frac{n}{n-2s}} \int_{\mathbb{R}^n} \frac{1}{(1 + |x|^2)^{n+2s}} \).

Proof. This proposition is a consequence of Lemma B.1, B.13, B.14, B.18, Lemma B.4 and the definition of \(\lambda \). We need to remind that
\[
\frac{\partial \varepsilon_{ih}}{\partial \Lambda_i} = -\frac{n - 2s}{2\lambda^\beta |X^i - X^h|^{n-2s}} + O\left(\frac{1}{|X^i - X^h|^{n-2s+1}} \right),
\]
which is directly from \(P_h \in B_4(X^h) \) and the definition of \(\{X^h\}_{h=1}^{(m+1)^k} \).

Proposition B.6. We have
\[
\frac{\partial I}{\partial P^i_j}(W_m) = -\frac{c_3 a_j}{\Lambda_i^\beta} (P^i_j - X^i_j) + O\left(\frac{|P^i_j - X^i_j|^2}{\lambda^\beta} \right) + o(\lambda^{-\beta}),
\]
where \(c_3 = (n-2s)C_0(n, s)^{\frac{n}{n-2s}} \int_{\mathbb{R}^n} \frac{|x|^{\beta}}{(1 + |x|^2)^{n+2s}} \).

Proof. We need to estimate each term on the right hand side of the equality [B.2]. By simple calculation, we have
\[
\left| W_m^{n+2s} - U_{P^h, \Lambda_h}^{n+2s} \right| \leq \left\{ \begin{array}{ll}
\left(\sum_{h \neq i} U_{P^h, \Lambda_h}^{n+2s} \right)^{\frac{n+2s}{n-2s}}, & \text{if } U_{P^i, \Lambda_i} \leq \sum_{h \neq i} U_{P^h, \Lambda_h}, \\
U_{P^i, \Lambda_i} \left(\sum_{h \neq i} U_{P^h, \Lambda_h} \right)^{2}, & \text{otherwise.}
\end{array} \right.
\]
Then we get
\[
\int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) W_{n-2s}^{n+2s} \frac{\partial U_{P^i, \Lambda_i}}{\partial P_j^i}
= \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) U_{P^i, \Lambda_i}^{n+2s} \frac{\partial U_{P^i, \Lambda_i}}{\partial P_j^i} + \frac{n + 2s}{n - 2s} \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) \frac{U_{P^i, \Lambda_i}^{n+2s}}{P_j^i} \sum_{h \neq i} U_{P^h, \Lambda_h} \frac{\partial U_{P^h, \Lambda_h}}{\partial P_j^h}
+ O \left(\int_{\mathbb{R}^n} \left(\sum_{h \neq i} U_{P^h, \Lambda_h} \right)^{n+2s} \frac{\partial U_{P^i, \Lambda_i}}{\partial P_j^i} \right) + O \left(\int_{U_{P^i, \Lambda_i} > \sum_{h \neq i} U_{P^h, \Lambda_h}} \frac{U_{P^i, \Lambda_i}^{n+2s}}{P_j^i} \sum_{h \neq i} U_{P^h, \Lambda_h} \right) \frac{\partial U_{P^i, \Lambda_i}}{P_j^i} \right). \tag{B.20}
\]

We first estimate the error terms above. Since \(n > 2s + 2 > 4s\), we get \((n - s)\frac{n - 2s}{n + 2s} > \frac{n - 2s}{2} > k\). From Lemma A.1, we have
\[
\int_{\mathbb{R}^n} \left(\sum_{h \neq i} U_{P^h, \Lambda_h} \right)^{n+2s} \frac{\partial U_{P^i, \Lambda_i}}{\partial P_j^i} \leq C \int_{\mathbb{R}^n} \left(\sum_{h \neq i} \frac{1}{(1 + |y - X^h|)^{n-2s}} \right)^{n+2s} \frac{1}{(1 + |y - X^i|)^{n-2s+1}} \leq C \int_{\mathbb{R}^n} \left(\sum_{h \neq i} \frac{1}{(1 + |y - X^h|)^{n-2s}} \right)^{n+2s} \frac{1}{(1 + |y - X^i|)^{(n-s)^{\frac{n+2s}{n-2s}}}} \leq \left(\sum_{h \neq i} \frac{1}{X^h - X^i} \right)^{n+2s} \frac{1}{(n-s)^{\frac{n+2s}{n-2s}}} \int_{\mathbb{R}^n} \left(1 + |y - X^i| \right)^{n+2s} \leq C(\lambda)^{-(n-s)}. \tag{B.21}
\]
The similar argument yields
\[
\int_{U_{P^i, \Lambda_i} > \sum_{h \neq i} U_{P^h, \Lambda_h}} \frac{1}{n-2s} \left(\sum_{h \neq i} U_{P^h, \Lambda_h} \right)^n \frac{\partial U_{P^i, \Lambda_i}}{\partial P_j^i} \leq \int_{\mathbb{R}^n} \left(\sum_{h \neq i} U_{P^h, \Lambda_h} \right)^{n-2s} U_{P^i, \Lambda_i} \frac{\partial U_{P^i, \Lambda_i}}{\partial P_j^i} \leq C(\lambda)^{-(n-s)}. \tag{B.22}
\]
For \(h \neq i\), we see that
\[
\frac{1}{n-2s} \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) U_{P^i, \Lambda_i}^{n+2s} \frac{\partial U_{P^i, \Lambda_i}}{\partial P_j^i} = \partial \frac{\partial P_j^i}{\partial P_j^i} \int_{\mathbb{R}^n} K \left(\frac{x}{\lambda} \right) U_{P^i, \Lambda_i}^{n+2s} \frac{\partial U_{P^i, \Lambda_i}}{\partial P_j^i}
= \frac{1}{\lambda} \int_{\mathbb{R}^n} \frac{\partial K}{\partial \lambda^i} \left(\frac{x + P^i}{\lambda} \right) U_{P^i, \Lambda_i}^{n+2s} \frac{\partial U_{P^i, \Lambda_i}}{\partial P_j^i} - \int_{\mathbb{R}^n} K \left(\frac{x + P^i}{\lambda} \right) U_{P^i, \Lambda_i}^{n+2s} \frac{\partial U_{P^i, \Lambda_i}}{\partial P_j^i}
= O(\lambda^{-1} \frac{1}{|X^i - X^h|^{n-2s}}) + O(\frac{1}{|X^i - X^h|^{n-s}}). \tag{B.23}
\]
The first part of (B.2) can be estimated as
\[
\int_{\mathbb{R}^n} \sum_{h \neq i} U_{i}^{n+2s} \left| \frac{\partial U_{i}}{\partial P_{j}} \right| \leq \sum_{h \neq i} \int_{\mathbb{R}^n} \frac{C}{(1 + |x - X^{h}|)^{n+2s}} \frac{1}{(1 + |x - X^{i}|)^{n-2s+1}}
\leq \sum_{h \neq i} \frac{C}{|X^{h} - X^{i}|^{n-s}} \int_{\mathbb{R}^n} \frac{1}{(1 + |y - X^{h}|)^{n+s+1}}
\leq C(\lambda)^{-(n-s)}.
\]
(B.24)

Then the expansion of \(\frac{\partial I}{\partial P_{j}}(W_m) \) follows from (B.19), (B.20), (B.21), (B.22), (B.23) and (B.24). □

References

1. Wael Abdelhedi and Hichem Chtioui, On a Nirenberg-type problem involving the square root of the Laplacian, J. Funct. Anal. 265 (2013), no. 11, 2937–2955.
2. Wael Abdelhedi, Hichem Chtioui, and Hichem Hajaiej, A complete study of the lack of compactness and existence results of a fractional Nirenberg equation via a flatness hypothesis, I, Anal. PDE 9 (2016), no. 6, 1285–1315.
3. Abbas Bahri, Critical points at infinity in some variational problems, Pitman Research Notes in Mathematics Series, vol. 182, Longman Scientific & Technical, Harlow UK, 1989.
4. Thoams P. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347 (1995), no. 10, 3671–3742.
5. Luís Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245–1260.
6. Sun-Yung Alice Chang and María del Mar González, Fractional Laplacian in conformal geometry, Adv. Math. 226 (2011), no. 2, 1410–1432.
7. Guoyuan Chen and Youquan Zheng, A perturbation result for the \(Q_{\gamma} \) curvature problem on \(S^n \), Nonlinear Anal. 97 (2014), 4–14.
8. Wenxiong Chen, Congming Li, and Biao Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330–343.
9. Yan-Hong Chen, Chungen Liu, and Youquan Zheng, Existence results for the fractional Nirenberg problem, J. Funct. Anal. 270 (2016), no. 11, 4043–4086.
10. Yan-Hong Chen and Youquan Zheng, Peak solutions for the fractional Nirenberg problem, Nonlinear Anal. 122 (2015), 100–124.
11. Hichem Chtioui and Wael Abdelhedi, On a fractional Nirenberg problem on \(n \)-dimensional spheres: existence and multiplicity results, Bull. Sci. Math. 140 (2016), no. 6, 617–628.
12. Juan Dávila, Manuel del Pino, Serena Dipierro, and Enrico Valdinoci, Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum, Anal. PDE 8 (2015), no. 5, 1165–1235.
13. Juan Dávila, Manuel del Pino, and Yannick Sire, Nondegeneracy of the bubble in the critical case for nonlocal equations, Proc. Amer. Math. Soc. 141 (2013), no. 11, 3865–3870.
14. Manuel del Pino, Patricio Felmer, and Monica Musso, Two-bubble solutions in the super-critical Bahri-Coron’s problem, Calc. Var. Partial Differential Equations 16 (2003), no. 2, 113–145.
15. Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521–573.
16. C. Robin Graham, Ralph Jenne, Lionel J. Mason, and George A. J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. (2) 46 (1992), no. 3, 557–565.
17. C. Robin Graham and Maciej Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (2003), no. 1, 89–118.
18. Tianling Jin, Yanyan Li, and Jingang Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. 16 (2014), no. 6, 1111–1171.
19. Tianling Jin, Yanyan Li, and Jingang Xiong, On a fractional Nirenberg problem, Part II: Existence of solutions, Int. Math. Res. Not. IMRN 2015 (2015), no. 6, 1555–1589.
20. Yanyan Li, *Remark on some conformally invariant integral equations: the method of moving spheres*, J. Eur. Math. Soc. 6 (2004), no. 2, 153–180.
21. Yanyan Li, Juncheng Wei, and Haoyuan Xu, *Multi-bump solutions of $-\Delta u = K(x)u^{\frac{n+2}{n-2}}$ on lattice in \mathbb{R}^n*, to appear in J. Reine Angew. Math. [arXiv:1305.4698v2].
22. Yanyan Li and Meijun Zhu, *Uniqueness theorems through the method of moving spheres*, Duke Math. J. 80 (1995), no. 2, 383–417.
23. Elliott Lieb, *Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities*, Ann. of Math. (2) 118 (1983), no. 2, 349–374.
24. Chungen Liu and Qiang Ren, *Infinitely many non-radial solutions for fractional Nirenberg problem*, preprint, 2015.
25. Zhongyuan Liu, *Concentration of solutions for the fractional Nirenberg problem*, Commun. Pure Appl. Anal. 15 (2016), no. 2, 563–576.
26. Wei Long and Jing Yang, *Positive or sign-changing solutions for a critical semilinear nonlocal equation*, Z. Angew. Math. Phys. 67 (2016), no. 3, Art. 45, 30 pp.
27. Stephen Mark Paneitz, *A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds*, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 036, 3 pp.
28. Lawrence J. Peterson, *Conformally covariant pseudo-differential operators*, Differential Geom. Appl. 13 (2000), no. 2, 197–211.
29. Juncheng Wei and Shusen Yan, *Infinitely many solutions for the prescribed scalar curvature problem on \mathbb{S}^N*, J. Funct. Anal. 258 (2010), 3048–3081.

(Chungen Liu) School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P.R. China

E-mail address: liucg@nankai.edu.cn

(Qiang Ren) School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, P.R. China

E-mail address: tjftp@mail.nankai.edu.cn