A NOTE ON COMMUTING REFLECTION FUNCTORS FOR CALABI-YAU D-FOLDS

ANTONY MACIOCIA

Abstract. We study sets of commuting reflection functors in the derived category of sheaves on Calabi-Yau varieties. We show that such a collection is determined by a set of mutually orthogonal spherical objects. We also show that when the spherical objects are locally-free sheaves then the kernel of the composite transform parametrizes properly torsion-free with zero-dimensional singularity sets and conversely that such a kernel gives rise to a collection of mutually orthogonal spherical vector bundles. We do this using a more detailed analysis of the reason why spherical twists give equivalences.

Introduction

A spherical object e in an exact linear triangulated category $(T, [-])$ is one such that $\dim \text{Hom}(e, e[i]) = \dim H^i(S^d, \mathbb{R})$, the Betti numbers of a d-dimensional sphere for some fixed d. This concept is especially useful when $T = D^b(X)$ for some d-dimensional Calabi-Yau variety X or when T is a d-Calabi-Yau category. This is because such objects have, in a suitable sense, the fewest possible derived self-maps. There has been a great deal of interest in them in recent years as they hold the key to understanding the categorical structure of T and its automorphism group $\text{Aut}(T)$. For example, it is conjectured that they give rise to a generating set for $\text{Aut}(T)$ in the case when $T = D(X)$, of a K3 surface. The spherical objects also play a central role in our understanding of Bridgeland stability conditions for some surfaces (see [3]) essentially because of the central role they play in the derived category of the surface. It is likely that they will play a similarly crucial role in our understanding of stability conditions for higher dimensional Calabi-Yau varieties.

In an important paper, [7], Seidel and Thomas show that certain series of spherical objects give rise to actions of the braid group on the derived category. This is done by associating an equivalence Φ_a of the derived category to each spherical object a (known as a spherical twist). In the K-theory of the derived category, these are reflections and so they are sometimes called reflection functors. It was observed in that paper that when two spherical objects a and b are completely orthogonal (in other words, $\text{Hom}(a, b[i]) = 0$ for all integers i) then the associated spherical twists commute. This is because $\Phi_a \circ \Phi_b \cong \Phi_{\Phi_b(a)} \circ \Phi_b$ (see [7, Lemma 2.11]) and $\Phi_b(a) \cong a$ as can be checked by direct and easy computation (see [7, Proposition 2.12]). Our first result in this note is to show that the converse also holds: if two spherical twists commute then either they are equal or the associated spherical objects are (completely) orthogonal.

Date: May 2, 2014.
We then turn our attention to the special case where the spherical objects are actually vector bundles. This is an important class of examples. The associated spherical twists have Fourier-Mukai kernel given by a sheaf parametrizing properly-torsion free sheaves whose singularity set is a single point of X. Our second main result is to show that this also has a converse: if Φ is an exact equivalence of the derived categories of Calabi-Yau d-folds such that its Fourier-Mukai kernel is a sheaf parametrizing properly-torsion free sheaves whose singularity set is zero dimensional then it must be a composite of commuting spherical twists. The difficulty in this is to show that the double dual of the kernel (which must be locally-free by assumption) can be reduced essentially to a sum of (completely) orthogonal spherical bundles. To establish this we need to generalise the computations of Ext groups given by Mukai ([5]) and which are so crucial in describing stability conditions for surfaces.

1. Fourier-Mukai Transforms

In this paper we shall take a Fourier-Mukai transform (or FM transform for short) to be an equivalence of categories of the (bounded) derived category of sheaves $D(X)$ and $D(Y)$ on a smooth (complex) projective varieties X and Y given by correspondences of the form $\Phi_F : E \mapsto R\gamma_s(x^*E \otimes F)$, where F is a sheaf on $X \times Y$ called the kernel of the transform. These are discussed in [4] and [1].

Recall that we say that a family of sheaves M is strongly simple if it consists of simple sheaves and if $\text{Ext}^i(E, E') = 0$ for all i and $E \neq E'$ in M. (see [2]):

Theorem 1.1 (Bridgeland). The kernel F gives rise to a FM transform if and only if the restrictions F to X form a strongly simple family and $F_x \otimes K_X \cong F_x$ for all F_x in the family, where K_X is the canonical bundles of X.

The last condition is vacuous for Calabi-Yau d-folds. The theorem gives us an easy way to recognise when a family of sheaves gives rise to an FM transform.

We aim to study a special class of Fourier-Mukai Transforms which arise from so called spherical bundles. These were first studied by Mukai ([5]) in the case where X is a K3 surface.

Notation: we let $E^\vee = R\text{Hom}(E, \mathcal{O}_X)$ denote the derived dual of an object E of $D(X)$.

2. Commuting Spherical Objects

Throughout this section we assume that X is a smooth Calabi-Yau variety of dimension d.

Definition 2.1. An object E of $D(X)$ is exceptional if $\text{Ext}^i(E, E)$ is a small as possible (the precise definition depends on X but we will not need to be very definite in what follows). We say that E is spherical if $\text{dim Ext}^i(E, E) = 1$ for $i = 1$ or $i = d$ and is zero otherwise. We say that E is rigid if just $\text{Ext}^1(E, E) = 0$.

Note that a simple rigid sheaf on a Calabi-Yau 2 or 3-fold is automatically exceptional and spherical by Serre duality. To any vector bundle E we can associate a canonical (surjective) map $E \otimes \text{Hom}(E, \mathcal{O}_x) \to \mathcal{O}_x$ given by evaluation. We shall denote the domain
of such maps by E_H for short and the kernel by E_x. This extends to a map for any object E of $D(X)$. We shall denote a choice of cone on such a map by E_x. Then when E is a bundle, $E_x = F_x[1]$.

In a groundbreaking paper by Seidel and Thomas [7] it is shown (in somewhat greater generality) that when E is a spherical object in $D(X)$, the family of F_x give rise to a Fourier-Mukai transform $D(X) \to D(X)$, denoted Φ_E or, more usually, T_E (the spherical twist associated to E). The kernel of the transform is given by the shift by -1 of the cone on the canonical map $R\text{Hom}(\pi_1^* E, \pi_2^* E) \to O_\Delta$ given by adjunction from the composite map

$$\pi_2^* E \xrightarrow{\pi_2^* E \otimes \rho} \pi_2^* E \otimes O_\Delta \sim \pi_2^* E \otimes O_\Delta$$

where $\pi_i : X \times X \to X$ are the two projection maps and $\rho : O_{X \times X} \to O_\Delta$ is the canonical restriction map. We shall denote the functor $R\text{Hom}(\pi_1^* (E \otimes -), \pi_2^* E)$ by Ψ_E. So for all $G \in D(X)$ we have a triangle

$$\Phi_E(G) \to \Psi_E(G) \to G$$

which is natural in G (rather unusually for triangles of functors). Their proof that these do give Fourier-Mukai transforms is fairly direct although a somewhat more elegant proof was later given by Ploog ([8]) using a clever choice of spanning class (see [4] for further details). In this paper, we shall give yet another less elegant but more elementary proof in the spirit of Mukai’s original paper ([5]).

The main point of the [7] paper was to show that certain families of spherical objects give rise to a representation of the Braid group on the derived category. As a corollary of the key computational result they also show that if E and F are two spherical objects such that $\text{Hom}(E, F[i]) = 0$ for all i then their FM transforms commute. We can generalise this a little as follows.

Definition 2.2. We call a finite collection $E_i, 1 \leq i \leq n$ of objects of $D(X)$ strongly spherical if

$$\dim \text{Hom}(E_i, E_j[k]) = \begin{cases} 1 & \text{if } i = j \text{ and } (k = 0 \text{ or } k = d) \\ 0 & \text{otherwise} \end{cases}$$

In other words, each of the numbers $\dim \text{Hom}(E_i, E_j[k])$ are as small as possible.

Then for a strongly spherical collection $\Gamma = \{E_i\}_{i=1}^n$ we have a finite cone (in the sense of limits) $E_i \boxtimes E_i' \to O_\Delta$. This has a limit (up to shift) constructed explicitly as the cone on $\bigoplus_{i=1}^n E_i \boxtimes E_i' \to O_\Delta$. Denote the limit by $E_{1,2,...,n}$ and its associated integral transform by Φ_Γ. Then the following is an easy exercise

Proposition 2.3 ([7]). For any strongly spherical collection Γ of objects on a Calabi-Yau d-fold, $\Phi_\Gamma = \Phi_{E_1} \circ \Phi_{E_2} \circ \cdots \circ \Phi_{E_n}$

In fact, there is a converse:
Theorem 2.4. Suppose E and F are two spherical objects in $D(X)$ such that Φ_E and Φ_F are distinct. Then $\Phi_E \circ \Phi_F \cong \Phi_F \circ \Phi_E$ implies that $F \in E^\perp$.

Before proving this we prove a technical lemma first proposed by David Ploog in his thesis ([6 Question 1.23]). We let $\langle E \rangle$ denote the smallest triangulated category containing E in $D(X)$. This means that each object has a filtration whose factors are all shifts of isomorphic copies of E.

Lemma 2.5. Suppose E is a spherical object of $D(X)$ and $d = \dim X \geq 2$. Then, for any object $G \in D(X)$, $\Phi_E(G) = G[-d]$ if and only if $G \in \langle E \rangle$.

Proof. Recall that $G \in E^\perp$ if and only if $\Phi_E(G) = G$ (see [6, Lemma 1.22]). The reverse implication of our lemma was also proved in [6, Lemma 1.22]. So suppose $\Phi_E(G) = G[-d]$. Define

$$d_E(G) = \sum_{i=-\infty}^{\infty} \dim \text{Hom}(E, G[i]).$$

We induct on $d_E(G)$. If $d_E(G) = 0$ then $G \in E^\perp$ and so $\Phi_E(G) = G$ and hence $G = 0$. If $d_E(G) = 1$ (wlog $\text{Hom}(E, G) \neq 0$) then $G[-d]$ fits in a triangle

$$G[-d] \xrightarrow{f} E \xrightarrow{f} G,$$

where the unique maps (up to scale) are Serre dual to each other. But then $f \circ f^\vee : G[-d] \to G$ must be Serre dual to the identity $G \to G$ and so cannot vanish. But $f \circ f^\vee = 0$ as the composite of two consecutive maps of a triangle must always vanish. The contradiction shows that $d_E(G)$ cannot equal 1. Now assume that for all $n < d_E(G)$ we know that if $d_E(G') = n$ and $\Phi_E(G') = G'[−d]$ then $G' \in \langle E \rangle$. Pick any $f \in \bigoplus \text{Hom}(E, G[i])$ and again without loss of generality assume $i = 0$. Let C be a cone on $f : E \to G$. Then $\Phi_E(C) = C[−d]$ because $\Phi_E(f) = f[−d]$. But we also have that $d_E(C) = d_E(G) − 2$ by applying $\text{Hom}(E, −)$ to the triangle defining C and because $\dim X > 1$. Then by induction $d_E(G)$ must be even and $C \in \langle E \rangle$. Hence, $G \in \langle E \rangle$ as it is an extension of C by E. □

Remark 2.6. We can extract a bit more from the proof by observing that it shows that if $G \in \langle E \rangle$ has $d_E(G) = 2$ then $G \cong E[i]$ for some integer i. In fact, we can go further to observe that $d_E(G)/2$ is the length of a filtration of $G \in \langle E \rangle$ with factors given by shifts of E (always under the assumption that $d > 1$). It follows that the length of such a filtration is well defined as a function of G.

We shall use this in the following way: if $F \in \langle E \rangle$ is spherical then applying $F[i] \to$ to the triangle $F[-d] \to \Psi_E(F) \to F$ implies that $d_E(F) = 2$ and so $F \cong E[i]$ for some integer i.

Lemma 2.7. Suppose E and F are two spherical objects such that Φ_E and Φ_F commute. Then $G \in \langle E \rangle$ if and only if $\Phi_F(G) \in \langle E \rangle$.

Proof. For any $G \in \langle E \rangle$ we have

$$\Phi_E(\Phi_F(G)) \cong \Phi_F(\Phi_E(G)) \cong \Phi_F(G[−d]).$$
So $\Phi_F(G) \in \langle E \rangle$ by Lemma 2.5. Applying this to $G = \Phi_F^{-1}(G')$ gives us the converse as well. □

Proof of Theorem 2.4. Assume that that Φ_E and Φ_F commute and suppose that E and F are not orthogonal. Then $\Phi_E(F) \in \langle F' \rangle$ by Lemma 2.7. But $\Phi_E(F)$ is spherical and so by the remark above, $\Phi_E(F) = F[i]$ for some i. By assumption, we have a non-zero map $E \to F$ (replacing F by a suitable shift if necessary). Applying the composite functor $\Phi_E^n[i + d]$, for any positive integer n to this gives a non-zero map $E \to F[n(i + d)]$. But $D(X)$ has bounded cohomology and exts and so $i = -d$.

So $\Phi_E(F) \in \langle E \rangle$ by Lemma 2.5 again. Then $F \in \langle E \rangle$ by Lemma 2.7. By the remark, $F = E[i]$ for some i and that implies that $\Phi_E = \Phi_F$ contradicting our assumption. □

3. Spherical Bundles

We shall now restrict our attention to the case of spherical bundles on complex Calabi-Yau d-folds. We shall see that this case can be tackled more directly in the spirit of Mukai’s paper.

We first assume that E is a simple rigid bundle and consider the double exact complex associated to the bi-functor $\text{Ext}^*(-, -)$ applied to the short exact sequence

$$0 \to E_x \to E_H \to O_x \to 0.$$

Using the fact that $\text{Ext}^i(E_H, O_x) = 0$ for all $i > 0$ and $\text{Ext}^i(O_x, E_H)$ vanishes for all $i < d$, we have $\dim \text{Ext}^1(O_x, F) = 1$, $\dim \text{Ext}^1(F, O_x) = \text{rk}(E)^2 - 1 + d$, $\dim \text{Hom}(F, E_H) = \dim \text{Hom}(E_H, E_H) = \text{rk}(E)^2$ and, crucially, $\text{Ext}^1(F, E_H) = 0$ (using the fact that $d > 2$ for this: the case $d = 2$ is much simpler and is left to the reader). From this we have

$$\dim \text{Ext}^1(F, F) = d - 1 + \dim \text{Hom}(F, F)$$

Since $\text{Ext}^1(E_H, O_x) = 0$, we have that the map

$$\text{Ext}^2(O_x, F) \to \text{Ext}^2(E, F)$$

vanishes and so $\text{Ext}^2(F, F) \to \text{Ext}^2(O_x, F)$ surjects. The map

$$\text{Hom}(F, F) \to \text{Ext}^1(O_x, F) \cong \mathbb{C}$$

is the boundary map and must be non-zero as the identity map is contained in the domain. Hence, this map also surjects. We can conclude

$$\dim \text{Hom}(F, F) = \dim \text{Hom}(E_H, F) + 1$$

The following result is a stronger version of [5], Prop 3.9.

Lemma 3.1. The map $\text{Hom}(E_H, E_H) \to \text{Hom}(E_H, O_x)$ injects

1 The reader is urged to write a large part of this double complex out on a large piece of paper before proceeding!
Proof. Consider a map \(f : E_H \to E_H \). If we fix a basis for \(\text{Hom}(E, \mathcal{O}_x) \), then \(f \) is given by an \(r \times r \) matrix with scalar entries (since \(E \) is simple). The image of \(f \) is given by a subspace \(V \) of \(\text{Hom}(E, \mathcal{O}_x) \) and \(f \) is zero if and only if this subspace is zero. But if it is not zero then the image of \(E \otimes V \) in \(\mathcal{O}_x \) is non-zero and so the image of \(f \) in \(\text{Hom}(E_H, \mathcal{O}_x) \) is also non-zero.

We deduce that \(\text{Hom}(E_H, F) = 0 \) and hence \(\dim \text{Hom}(F, F) = 1 \). Now we can conclude that \(\dim \text{Ext}^1(F, F) = d \).

Next we consider two distinct points \(x \) and \(y \) of \(X \) and the two associated kernels \(F_x \) and \(F_y \). Since \(\text{Ext}^i(\mathcal{O}_x, \mathcal{O}_y) = 0 \) for all \(i \) and \(F_y \) is locally-free away from \(x \) we can conclude from the double exact sequence associated to the two sequences for \(F_x \) and \(F_y \), that \(\text{Hom}(F_x, F_y) \cong \text{Hom}(E_H, F_y) = 0 \) and \(\text{Ext}^1(F_x, F_y) \cong \text{Ext}^1(E_H, F_y) \) which is also zero.

The following generalises Corollary 2.12 of [5].

Proposition 3.2. If \(E \) is a simple rigid vector bundle and \(d > 3 \) then there are natural isomorphisms

\[
\text{Ext}^i(F_x, F_y) \cong \text{Ext}^i(\mathcal{O}_x, \mathcal{O}_y) \oplus \text{Ext}^i(E_H, E_H)
\]

for all \(x, y \in X \) (not necessarily distinct) and \(1 < i < d - 1 \).

Proof. The proof uses the double exact sequence we considered above. Start at \(i = 2 \) and observe that \(\text{Ext}^n(E_H, F_y) \cong \text{Ext}^n(E_H, E_H) \) for \(1 \leq n < d \) (the case \(n = 1 \) follows because \(E \) is rigid) and there is a natural injection of \(\text{Ext}^n(E_H, E_H) \) into \(\text{Ext}^n(F_x, E_H) \). We also have \(\text{Ext}^n(F_x, \mathcal{O}_y) \cong \text{Ext}^{n+1}(\mathcal{O}_x, \mathcal{O}_y) \) and so the map \(g : \text{Ext}^n(F_x, E_H) \to \text{Ext}^n(F_x, \mathcal{O}_y) \) is given by the composite

\[
\text{Ext}^n(F_x, E_H) \to \text{Ext}^{n+1}(\mathcal{O}_x, E_H) \to \text{Ext}^{n+1}(\mathcal{O}_x, \mathcal{O}_y) \to \text{Ext}^n(F_x, E_H),
\]

But \(\text{Ext}^{n+1}(\mathcal{O}_x, E_H) = 0 \) and so the composite vanishes for \(n = 1, \ldots, d - 1 \). Moreover, the surjection \(\text{Ext}^n(F_x, F_y) \to \text{Ext}^n(F_x, E_H) \) splits naturally since the image is

\[
\text{Ext}^n(E_H, E_H) \cong \text{Ext}^n(E_H, F_y)
\]

and the image of this in \(\text{Ext}^n(F_x, F_y) \to \text{Ext}^n(E_H, E_H) \) is the identity. \(\square \)

This shows that \(\{ F_y \} \) is a strongly simple family. Using Theorem 2.1, we have an alternative proof of

Theorem 3.3 ([7], [6]). If \(E \) is a spherical bundle on a Calabi-Yau \(d \)-fold \(X \) then the moduli space of sheaves \(\{ F_x \} \) constructed above is naturally isomorphic to \(X \) and gives rise to a non-trivial Fourier-Mukai transform \(D(X) \to D(X) \).

4. Recovering the Strongly Spherical Collection

We shall now consider the reverse process: given a Fourier-Mukai transform determined by a family of non-locally-free torsion-free sheaves \(\{ F_y \} \) with dimension 0 singularity sets, can we find a strongly spherical collection of bundles \(\Gamma = \{ E_i \}_{i=0}^n \) such that \(F_x \) is the kernel of the canonical map \(\bigoplus_{i=0}^n E_i \otimes \text{Hom}(E_i, \mathcal{O}_x) \to \mathcal{O}_x \)? We shall see that this is indeed possible. The first observation we need to make is that the parameter space \(\{ F_y \} \) is
naturally (isomorphic to) X. This is immediate since the map $F_y \to F_y^{**}$ has quotient \mathcal{O}_T and we see that the parameter space Y sits inside a space of kernels $F_y^{**} \to \mathcal{O}_T$ as T varies in $\text{Hilb}^{[T]}(X)$. Since the moduli space must be complete we see that the map $Y \to X$ given by the singularity of F_y is an isomorphism. We also see that $F_y^{**} = F_y^{**}$ for any pair y and y'. We shall write F for F_y^{**}. Since F is locally-free away from x and from y we see that F is locally-free over the whole of X. Without loss of generality we assume in what follows that the isomorphism $Y \cong X$ is the identity.

Using the double exact sequence from the previous section we can immediately conclude that $\dim \text{Hom}(F, F) = \text{rk}(F)$ and $\text{Hom}(F, F) \cong \text{Hom}(F, \mathcal{O}_x)$, for any $x \in X$. We can also conclude that $\text{Ext}^i(F, F) = 0$ for $i = 1, \ldots, d-1$. If $\text{rk}(F) = 1$ then F must be exceptional.

Assume now that $\text{rk}(F) > 1$. We observe also that the kernels of a suitable family of maps $\lambda_x : F \to \mathcal{O}_x$, as x varies, generate the family $\{F_x\}$. Since $\dim \text{Hom}(F, F) > 1$ we can find an endomorphism of F which has rank less than r and so we have a sheaf P which factors such an endomorphism. We can assume P is reflexive by factoring the torsion out of $F/P = Q$, say. We now consider the double exact sequences associated to pairs of short exact sequences taken from

$$
0 \to F_x \to F \to \mathcal{O}_x \to 0,
$$

$$
0 \to P \to F \to Q \to 0
$$

and

$$
0 \to K \to F \to P \to 0.
$$

From these it follows that $\text{Hom}(P, F_x) = 0$ and $\text{Hom}(Q, F_x) = 0$. It follows from this that $\text{Ext}^1(Q, F_x) = 0$ and, crucially, $\text{Hom}(Q, F) = \text{Hom}(Q, \mathcal{O}_x)$ and $\text{Hom}(P, F) = \text{Hom}(P, \mathcal{O}_x)$. These imply that both P and Q are locally-free.

We now appeal to the following useful technical result (true in much greater generality for suitable objects in any noetherian abelian category).

Lemma 4.1. If E is a torsion-free sheaf which is not simple then there exists a simple sheaf G (not necessarily unique) and an injection $\alpha : G \to E$ and a surjection $\beta : E \to G$ such that either $\beta \alpha$ is zero or the identity. Moreover, if $G \to E$ is any non-zero map then it must inject.

Proof. Since E is not simple, we can consider the set of sheaves G which factor non-isomorphisms $E \to E$. Such a sheaf G is automatically torsion-free and gives rise to maps α and β. The set is partially ordered by compositions $E \to G \to G' \to E$. Since $r(G') < r(G)$ (otherwise the kernel of $G \to G'$ would be a torsion sheaf), we can pick (using Zorn’s Lemma) a minimal element with respect to this order. Call it G. Then G is simple since otherwise we could factor a map $G \to G$ via G' which would be strictly smaller than G in the order. Now the composite $\beta \alpha$ is either zero or a multiple of the identity (in which case we replace β with a suitable multiple).

The last statement follows because if such a map is not injective then the image would be strictly smaller in the order. \qed

7
Applying this to our current situation we may assume P is simple and is minimal with respect to the ordering of the proof above. Moreover, any (non-zero) map $P \to F$ must inject.

We now repeat this construction in a family. Suppose, as in the previous section, that E is the universal sheaf corresponding to the family $\{F_y\}$ and consider $S = E^{**}/E$. Since, F_y is singular only at y we have that $S|_{X \times \{y\}} = \mathcal{O}_y$ and so (wlog) S is supported on the diagonal $\Delta \subset X \times X$ and is locally-free there. If we twist by $\pi_2^*(\pi_2^*S)^*$ then we may assume without further loss of generality that $S = \mathcal{O}_\Delta$.

Observe that E^{**} is flat over both projections and has the property that $E^{**}|_{X \times \{y\}} = F$ for all $y \in X$ and so is locally-free. Observe we have a diagram of natural transformations of functors

$$\Phi_E \longrightarrow \Phi_{E^{**}} \longrightarrow \text{Id}$$

This diagram has the property that for any object $G \in D(X)$ there is a distinguished triangle

$$(2) \quad \Phi_E G \longrightarrow \Phi_{E^{**}} G \longrightarrow G.$$

which is natural in G. Since $\Phi_E F = F[-d]$ we see that $F \to \Phi_E F[1]$ is zero and so $\Phi_{E^{**}}(F^*) \cong F^* \oplus F^*[-d]$. Hence, $E^{**}|_{\{x\} \times X} \cong F^*$.

Lemma 4.2. In the given situation, $\Phi_E^{**}(P^*) \cong P^*$.

Proof. By the semi-continuity of direct images $\Phi_E^{**}(P^*)$ is locally-free of rank $r(P)$. We also have $\text{Hom}(P, F_y) = 0 = \text{Ext}^1(P, F_y)$ and so $\Phi_E^{**}(P^*) = 0 = \Phi_E^{1}(P^*)$. The the cohomology of the triangle (2) provides the required isomorphism. \[\square\]

If we use the Leray-Serre spectral sequence for π_2 we see that

$$H^0((P^* \boxtimes P) \otimes E^{**}) \cong H^0(R^0\pi_2^*(\pi_1^* P^* \otimes E^{**}) \otimes P)$$

$$\cong H^0(R^0\Phi_{E^{**}}(P^*) \otimes P)$$

$$\cong H^0(P^* \otimes P).$$

So we have natural isomorphisms $H^0((P^* \boxtimes P) \otimes E) \cong \text{Hom}(P^*, P^*) \cong \mathbb{C}\langle \text{id} \rangle$ and dually we also have $H^0((P \boxtimes P^*) \otimes E) \cong \text{Hom}(P^*, P^*)$. We can conclude that there are unique maps (up to scalars) $\alpha : P \boxtimes P^* \to E$ and $\beta : E \to P \boxtimes P^*$. If we apply $R^0\pi_2^*(P^* \boxtimes P) \otimes (-)$ to these maps we obtain the maps α' and $\beta' : P^* \otimes P \to P^* \otimes P$. But $\alpha'|_O$ has image O and β' is non-zero on this copy of O (corresponding to the identity element in $P^* \otimes P$). Hence, $\beta' \cdot \alpha'$ is not zero and so $\beta' \cdot \alpha$ is also not zero. But P is simple and thus $P \boxtimes P^*$ is also simple (using the Leray-Serre spectral sequence again). Consequently, $\beta \cdot \alpha$ is the identity map. This implies that $E^{**} = (P \boxtimes P^*) \oplus Q$ for some vector bundle Q. It also follows that P is spherical as it is a direct summand of F.

But now, Q enjoys the same properties as E^{**} and again we can choose a simple P' such that $Q = (P' \boxtimes P') \oplus Q'$. Repeating, we have $E^{**} = \bigoplus_{i=1}^n E_i$, where $E_i \cong P_i \boxtimes P_i^*$ and P_i are spherical bundles. Observe that the uniqueness of α and β imply that $\text{Ext}^k(P_i, P_j) = 0$ for all k and $i \neq j$.

We have thus proved:
Theorem 4.3. Let X and Y be (smooth) Calabi-Yau d-folds. If $F \rightarrow X \times Y$ is a family of properly torsion-free sheaves over X parametrized by Y with 0-dimensional singularity sets and Φ_F is a Fourier-Mukai Transform then

1. there is an isomorphism $\phi : Y \rightarrow X$ and
2. there exists a unique strongly spherical collection of bundles $\Gamma = \{P_i\}_{i=0}^n$ on X such that $(1 \times \phi)^* \Phi_\Gamma = \Phi_F$.

In the case of a K3 surface, if $\text{Pic} X = \mathbb{Z}\langle h \rangle$ then strongly spherical collections can only have cardinality 1. This can be easily seen from the numerical invariants of such a collection. In that case, we recover Yoshioka's result (8) that a family of properly torsion-free sheaves giving rise to an FM transform arise from a spherical object. But in general, this will not be the case. For example, if L is a line bundle on a K3 surface whose sheaf cohomology vanishes in every degree then $\{\mathcal{O}_X, L\}$ is a strongly spherical collection.

Acknowledgements

The author would like to thank Will Donovan for useful comments and Tom Bridgeland and Richard Thomas for several helpful suggestions on an early draft of the paper.

References

1. Claudio Bartocci, Ugo Bruzzo, and Daniel Hernández Ruipérez, Fourier-Mukai and Nahm transforms in geometry and mathematical physics, Progress in Mathematics, vol. 276, Birkhäuser Boston Inc., Boston, MA, 2009. MR 2511017
2. Tom Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc. 31 (1999), no. 1, 25–34. MR 1651025 (99k:18014)
3. , Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), no. 2, 241–291. MR 2376815 (2009b:14030)
4. D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2006. MR 2244106 (2007f:14013)
5. S. Mukai, On the moduli space of bundles on K3 surfaces. i, Vector Bundles on Algebraic Varieties (Bombay, 1984), vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341–413. MR 893604 (88i:14036)
6. David Ploog, Groups of autoequivalences of derived categories of smooth projective varieties, Ph.D. thesis, Berlin, January 2005.
7. Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37–108. MR 1831820 (2002e:14030)
8. Kōta Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), no. 4, 817–884. MR 1872531 (2002k:14020)

Department of Mathematics and Statistics, The University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK.
E-mail address: A.Maciocia@ed.ac.uk