Shape derivative of the energy functional for the bending of elastic plates with thin defects

V V Shcherbakov1,2
1 Lavrentyev Institute of Hydrodynamics, 630090 Novosibirsk, Russia
2 Novosibirsk State University, 630090 Novosibirsk, Russia
E-mail: victor@hydro.nsc.ru

Abstract. The paper deals with an equilibrium problem for a homogeneous isotropic elastic plate with a thin rigid inclusion and interfacial crack. We provide an explicit formula for the first shape derivative of the energy functional in the direction of a given vector field by means of a volume integral. For specific examples of the vector field, we derive some representations of the formula in terms of path-independent contour integrals.

1. Setting of the problem
Let \(\Omega \subset \mathbb{R}^2 \) be a bounded domain with boundary \(\partial \Omega \) of the class \(C^{1,1} \) and let \(\gamma \) be a smooth curve without self-intersections. We assume that \(\gamma \) can be extended to a closed curve \(\Sigma \) of the class \(C^{1,1} \) without self-intersections so that \(\Omega \) is divided into two subdomains \(\Omega_1 \) and \(\Omega_2 \). The boundary of \(\Omega_1 \) is \(\Sigma \), and the boundary of \(\Omega_2 \) is \(\Sigma \cup \partial \Omega \). The outward pointing unit normals to \(\Sigma \) and \(\partial \Omega \) are denoted by \(\nu = (\nu_1, \nu_2) \) and \(n = (n_1, n_2) \), respectively. Also, we put \(\Omega_\gamma = \Omega \setminus \gamma \) and assume that the domain \(\Omega \) can be divided into two subdomains \(\Omega_3 \) and \(\Omega_4 \) with Lipschitz boundaries such that \(\gamma \subset \partial \Omega_3 \cap \partial \Omega_4 \) and \(H^1(\partial \Omega_i \cap \partial \Omega) > 0 \), \(i = 3, 4 \), where \(H^1 \) denotes the one-dimensional Hausdorff measure. The last condition guarantees that Friedrichs–Poincaré’s inequality is satisfied in the non-Lipschitz domain \(\Omega_\gamma \). The geometrical setup is shown in Figure 1.

The domain \(\Omega_\gamma \) is occupied by the middle plane of a homogeneous isotropic elastic plate, and the curve \(\gamma \) corresponds to a thin rigid inclusion. To describe the vertical deflection of the thin rigid inclusion, we introduce the space of rigid displacements

\[
L(\gamma) = \{ l(x) = a_0 + a_1 x_1 + a_2 x_2 \mid a_i \in \mathbb{R}, \ i = 0, 1, 2, \ x \in \gamma \}.
\]

In conformity with positive and negative directions of the normal \(\nu \), there are positive crack face \(\gamma^+ \) and negative crack face \(\gamma^- \), and \(v^\pm \) are the traces of a function \(v \) on \(\gamma^\pm \). The inclusion \(\gamma \) is delaminated on \(\gamma^+ \) so that there is a crack on the interface between two media.

We are now in a position to formulate the equilibrium problem (see [1, 2]). For a given
external force $f \in C^1(\Omega)$, we want to find two functions w and $l_0 \in L(\gamma)$ satisfying

$$D\Delta^2 w = f \quad \text{in} \quad \Omega_\gamma,$$

$$w = \frac{\partial w}{\partial n} = 0 \quad \text{on} \quad \partial \Omega,$$

$$m^-_\nu = 0, \quad w^- = l_0 \quad \text{on} \quad \gamma,$$

$$m^+_\nu = t^\nu_\nu = 0 \quad \text{on} \quad \gamma,$$

$$\int_{\gamma^-} t^-_\nu \bar{w} \, ds_x = 0 \quad \forall \bar{w} \in K^0.$$

Here the set K^0 of admissible displacements is

$$K^0 = \{ w \in H^2_{\partial \Omega}(\Omega_\gamma) \mid w|_{\gamma^-} \in L(\gamma) \},$$

where the Sobolev space $H^2_{\partial \Omega}(\Omega_\gamma)$ is defined as

$$H^2_{\partial \Omega}(\Omega_\gamma) = \{ w \in H^2(\Omega_\gamma) \mid w = \partial w/\partial n = 0 \text{ on} \partial \Omega \}.$$

The bending moment m_ν and transverse force t_ν are given by the relations

$$m_\nu = D \left(\kappa \Delta w + (1 - \kappa) \frac{\partial^2 w}{\partial \nu^2} \right),$$

$$t_\nu = D \frac{\partial}{\partial \nu} \left(\Delta w + (1 - \kappa) \frac{\partial^2 w}{\partial \tau^2} \right), \quad \tau = (\tau_1, \tau_2) = (-\nu_2, \nu_1),$$

where D is the flexural rigidity and κ is the Poisson ratio, $0 < \kappa < 1/2$.

Equation (1) is a equilibrium equation, the boundary conditions (2) correspond to the clamped outer edge of the plate. The nonlocal boundary conditions (5) ensure the vanishing of the resultant force and moment along γ^-. The boundary-value problem (1)–(5) admits a variational statement. Indeed, let us define the bilinear form

$$B(u, v) = D \left(u_{11}v_{1,11} + u_{22}v_{2,22} + \kappa u_{11}v_{22} + \kappa u_{22}v_{11} + 2(1 - \kappa)u_{12}v_{12} \right).$$
Subscripts following a comma represent differentiation, so that, for example, \(u_{ij} = \partial^2 u / \partial x_i \partial x_j \). Then problem (1)–(5) corresponds to minimization of the energy functional

\[
\Pi(\Omega; w) = \frac{1}{2} \int_{\Omega} B(w, w) \, dx - \int_{\Omega} f \, w \, dx
\]

over the subspace \(K^0 \) and can be written in the form of the weak Euler–Lagrange equation

\[
w \in K^0, \quad \int_{\Omega} B(w, \bar{w}) \, dx - \int_{\Omega} f \, \bar{w} \, dx = 0 \quad \forall \bar{w} \in K^0.
\]

Since the functional \(\Pi \) is coercive and weakly lower semicontinuous over the set \(K^0 \), equation (6) has a (unique) solution.

2. Shape derivative of the energy functional

We next turn our attention to the first shape derivative of the energy functional in the direction of a given vector field. We apply the technique of shape sensitivity analysis in order to demonstrate that this derivative is well defined and derive an explicit representation to it.

For a small non-negative parameter \(\delta \), let us consider a one-parameter family of perturbations of the initial domain \(\Omega \), which is governed by a transformation \(T_\delta \). To be specific, we make use of the transformation in the form

\[
T_\delta(x) = x + \delta V(x),
\]

where \(V(x) = (V_1(x), V_2(x)) \) and \(V \) has class \(W^{2,\infty}(\mathbb{R}^2)^2 \), or, in coordinate form,

\[
y_1 = x_1 + \delta V_1(x), \quad y_2 = x_2 + \delta V_2(x), \quad x = (x_1, x_2) \in \Omega.
\]

Transformation (7) defines the perturbed domain \(T_\delta(\Omega) \) and the perturbed rigid inclusion \(\gamma_\delta = T_\delta(\gamma) \) for each fixed \(\delta \). For simplicity, we assume that the vector field \(V \) has the compact support in \(\Omega \). In this case, the outward pointing unit normal \(n \) of the domain \(\Omega \) transforms to the outward unit normal \(n_\delta \) of the domain \(T_\delta(\Omega) \). We define the perturbed domain with the thin rigid inclusion as \(\Omega_\gamma = T_\delta(\Omega) \setminus \gamma_\delta \). We assume that for each \(\delta \) the domain \(\Omega_\gamma \) satisfies the last condition from the first paragraph of Section 1.

The set of admissible displacements associated with the perturbed problem is

\[
K^\delta = \left\{ w \in H^2_{\partial \Omega}(\Omega) \mid w|_{\gamma_\delta} \in L(\gamma_\delta) \right\}.
\]

As before, there exists a unique solution of the weak Euler–Lagrange equation

\[
w^\delta \in K^\delta, \quad \int_{\Omega_\gamma} B(w^\delta, \bar{w}) \, dx - \int_{\Omega_\delta} f \, \bar{w} \, dx = 0 \quad \forall \bar{w} \in K^\delta.
\]

For the solution \(w^\delta \) of equation (8), we can find the potential deformation energy

\[
\Pi(\Omega_\gamma; w^\delta) = \frac{1}{2} \int_{\Omega_\gamma} B(w^\delta, w^\delta) \, dy - \int_{\Omega_\delta} f w^\delta \, dy.
\]

With these preliminaries, we introduce the first shape derivative of the energy functional in the direction of the vector field \(V \) as

\[
D_{V} \Pi(\Omega; w) = \lim_{\delta \downarrow 0} \frac{\Pi(\Omega_\gamma; w^\delta) - \Pi(\Omega; w)}{\delta}.
\]
The question now is whether (9) is well defined and whether there exist simple formulae to calculate it. The first main result of our study is the following theorem.

Theorem 1. The first shape derivative of the energy functional in the direction of the vector field V exists and equals

$$
\mathcal{D}_V \Pi(\Omega_\gamma; w) = \int_{\Omega_\gamma} \left(\frac{1}{2} B(w, w) \text{div} V + B(w, \widetilde{V}) - 2D \left(V_{1,1} w_{11}^2 + \kappa w_{11} w_{22} \text{div} V \right)
+ (1 - \kappa) w_{12}^2 \text{div} V + V_{2,2}^2 + (V_{1,2} + V_{2,1}) w_{12} (w_{11} + w_{22}) \right)
- D((w_{11} + \kappa w_{22}))(V_{1,1} w_{11} + V_{2,1} w_{22})
+ (\kappa w_{11} + w_{22})(V_{1,2} w_{11} + V_{2,2} w_{12}) + 2(1 - \kappa)(V_{1,12} w_{11} + V_{2,12} w_{12}) \right) dx
- \int_{\Omega_\gamma} \left(\text{div}(fV) + f\widetilde{V} \right) dx,
$$

(10)

where the vector field \widetilde{V} is such that $\widetilde{V}(x) = a_0^0 V_1(x) + a_0^0 V_2(x)$, and the constants a_0^0 and a_0^0 correspond to the function l_0.

Remark. The first shape derivative of the energy functional in the direction of the vector field V is independent of the particular choice of the coordinate transformation T_3 in the following sense. If two vector fields V_1 and V_2 are such that the corresponding coordinate transformations T_3^1 and T_3^2 map the initial domain Ω_γ into the same perturbed domain Ω_δ for each δ, then $\mathcal{D}_{V_1} \Pi(\Omega_\gamma; w) = \mathcal{D}_{V_2} \Pi(\Omega_\gamma; w)$. This easily follows from the definition of the shape derivative and the uniqueness of the weak solution $w_\delta \in K^\delta$.

Let us mention the main ingredients in the proof of Theorem 1. Following ideas of [3], we calculate limit (9) by transforming the integrals expressions defined in the perturbed domain Ω_δ back to the initial domain Ω_γ. The transformation $T_3 : \Omega_\gamma \to \Omega_\delta$ induces an isomorphism between the spaces $H^2_{\partial\Omega}(\Omega_\delta)$ and $H^2_{\partial\Omega}(\Omega_\gamma)$ in the following way:

$$
T_3 : H^2_{\partial\Omega}(\Omega_\delta) \to H^2_{\partial\Omega}(\Omega_\gamma) : w \mapsto w \circ T_3.
$$

The lack of the one-to-one correspondence between the sets of admissible displacements K^δ and K^0 under the mapping T_3 is the main obstacle in the proof of the theorem. To overcome this difficulty, we denote by K_δ the image of the admissible set K^δ under the mapping T_3.

Straightforward calculations yield that

$$
K_\delta = \{ w \in H^2_{\partial\Omega}(\Omega_\gamma) \mid w_\gamma^- \in L_\delta(\gamma) \},
$$

where

$$
L_\delta(\gamma) = \{ l(x) = a_0 + a_1 x_1 + a_2 x_2 + a_3 \delta V_1(x) + a_4 \delta V_2(x) \mid a_i \in \mathbb{R}, i = 0, 1, 2, \; x \in \gamma \}.
$$

Hence, T_3 is also an isomorphism between the sets K^δ and K_δ. Denote by $w_\delta(x)$ the image of $w^\delta(y)$ under the mapping T_3. The next lemmata play a key role in the derivation of the explicit formula for (9).

Lemma 1. Let $w \in K^0$ be the solution of problem (6). Then there exist functions w^1_δ and w^2_δ satisfying the inclusions

$$
w + \delta w^1_\delta \in K_\delta, \quad w_\delta - \delta w^2_\delta \in K^0
$$

and uniform in δ estimates

$$
\|w^i_\delta\|_{H^2_{\partial\Omega}(\Omega_\gamma)} \leq c, \quad i = 1, 2.
$$

(11)
We mention that the functions \(w_\delta^1 \) and \(w_\delta^2 \) can be defined explicitly by the relations

\[
w_\delta^1 = a_1^\delta V_1 + a_2^\delta V_2, \quad w_\delta^2 = a_1^\delta V_1 + a_2^\delta V_2.
\]

Using Lemma 1, we establish that \(w_\delta \) is Hölder continuous with exponent 1/2.

Lemma 2. There exists a positive constant \(c \) such that

\[
\|w_\delta - w\|_{H^2_0(\Omega_\gamma)} \leq c\sqrt{\delta}.
\]

Corollary. \(w_\delta^2 \rightarrow \tilde{V} \) strongly in \(H^2_{\partial \Omega}(\Omega_\gamma) \) as \(\delta \downarrow 0 \).

We next apply transformation (7) to the integrals involved in \(\Pi(\Omega_\delta; \tilde{w}) \) to obtain a functional \(\Pi(\Omega_\delta; \tilde{w}_\delta) \) that defines over the space \(H^2_{\partial \Omega}(\Omega_\gamma) \) and admits the following asymptotic expansion as \(\delta \downarrow 0 \):

\[
\Pi(\Omega_\gamma; \tilde{w}_\delta) = \Pi(\Omega_\gamma; \tilde{w}) + \delta \mathcal{D}_V \Pi(\Omega_\gamma; \tilde{w}_\delta) + o(\delta),
\]

with the form \(\mathcal{D}_V \Pi(\Omega_\gamma; \tilde{w}_\delta) \) from (10).

Since the mapping \(T_\delta \) is an isomorphism between the sets \(K^\delta \) and \(K_\delta \), it follows that

\[
\frac{\Pi(\Omega_\gamma; \tilde{w}) - \Pi(\Omega_\gamma; w)}{\delta} = \frac{\Pi(\Omega_\gamma; \tilde{w}_\delta) - \Pi(\Omega_\gamma; w)}{\delta}.
\]

Taking into account that \(w \) is a minimizer of \(\Pi(\Omega_\delta, \cdot) \) over the set \(K^\delta \) and \(w_\delta \) is a minimizer of \(\Pi(\Omega_\delta, \cdot) \) over the set \(K_\delta \), we invoke Lemma 1, for each \(\delta > 0 \), to deduce the following chain of inequalities:

\[
\frac{\Pi(\Omega_\gamma; \tilde{w}_\delta) - \Pi(\Omega_\gamma; \tilde{w})}{\delta} = \frac{\Pi(\Omega_\gamma; \tilde{w} - \delta w_\delta^2) - \Pi(\Omega_\gamma; \tilde{w})}{\delta} \leq \frac{\Pi(\Omega_\gamma; \tilde{w} + \delta w_\delta^1) - \Pi(\Omega_\gamma; \tilde{w})}{\delta}.
\]

Applying Lemma 2 and its Corollary, we have no difficulty in calculating the limits as \(\delta \downarrow 0 \) of the right-hand and left-hand sides in (12) and checking that they are finite, coincide with each other, and equal to \(\mathcal{D}_V \Pi(\Omega_\gamma; \tilde{w}_\delta) \) from (10). This completes the sketch of the proof of Theorem 1.

We conclude this section by mentioning the recent papers [4, 5, 6, 7], where a similar scheme for deriving of explicit formulae to the first shape derivative of the energy functional in the direction of a given vector field can be found for elastic models (2D elasticity and Timoshenko plates) with embedded rigid and semirigid inclusions and interfacial cracks.

3. Path-independent integrals

Our intention next is to consider specific examples of the vector field \(V \) that lead us to path-independent energy integrals via transformations of formula (10). To do this, it is necessary to have more information on the regularity of the transverse deflection \(w \) in comparison with the variational one. We next assume that the thin rigid inclusion \(\gamma \) is rectilinear, i.e., it lies in the line \(x\nu = a, a = \text{const} \), with the tips \(C_1 \) and \(C_2 \). In this case, the standard regularity theory for uniformly elliptic differential operators shows that the solution \(w \) of problem (6) possess \(H^4 \)-regularity up to the faces \(\gamma^+ \) and \(\gamma^- \) except the thin inclusion tips \(C_1 \) and \(C_2 \).

In all cases below, we choose neighborhoods \(S \) and \(S_1 \) with Lipschitz boundaries \(\partial S \) and \(\partial S_1 \). We also assume that the boundaries of the domains \((S_1 \setminus S) \cap \Omega_\gamma \) also satisfy the Lipschitz condition and \(f \equiv 0 \) in \(S \cap \Omega_\gamma \). Finally, denote by \(q = (q_1, q_2) \) the outward normal vector to \(\partial S \).

We first investigate the case when an integration path surrounds the whole rigid inclusion \(\gamma \). Let the support of a smooth function \(\eta \) lies in a small neighborhood \(S_1 \) of \(\gamma \) and \(\eta = 1 \)
in a neighborhood \(S \) of \(\gamma \), \(S \subset S_1 \). Given a vector \(p = (p_1, p_2) \), we consider the coordinate transformation (7) in the form

\[
y_1 = x_1 + \delta p_1 \eta(x_1, x_2), \quad y_2 = x_2 + \delta p_2 \eta(x_1, x_2),
\]

(13)

where \((x_1, x_2) \in \Omega_\gamma \) and \((y_1, y_2) \in \Omega_{\gamma_b} \). Transformation (13) corresponds to a translation of the thin rigid inclusion along the vector \(p \), and the vector field \(V \) is determined by the formula \(V = pq \).

Next we substitute the vector field \(V \) into (10) and integrate by parts there. Taking into account (1)–(5), we obtain the contour integral

\[
I_{pq} = D \int_{\partial S} \left(\frac{1}{2} (p_2q_2 - p_1q_1) (w_{11}^2 - w_{22}^2) - (1 - \kappa) w_{12}^2 pq - w_{12} (p_2q_1 M_1(w) + p_1q_2 M_2(w)) \right)
\]

\[
- (M_{1,1}(w) q_1 + M_{2,2}(w) q_2) \left(\frac{\partial w}{\partial p} + a_1^0 p_1 + a_2^0 p_2 \right)
\]

\[
+ 2 (1 - \kappa) \left(w_{112} \left(p_1 w_{1,1} - \frac{a_1^0 p_1 + a_2^0 p_2}{2} \right) q_2 + w_{122} \left(p_2 w_{1,2} - \frac{a_1^0 p_1 + a_2^0 p_2}{2} \right) q_1 \right) \right) \, dx,
\]

where

\[
M_1(w) = w_{11} + \kappa w_{22}, \quad M_2(w) = \kappa w_{11} + w_{22}.
\]

It is immediate from the construction that \(I_{pq} \) is a path-independent integral, i.e., it has the same value for all closed smooth curve surrounding the thin rigid inclusion \(\gamma \).

The next step is to discuss a situation when the integration path surrounds only the thin inclusion tip. Let the support of a smooth function \(\theta \) lies in a small neighborhood \(S_1 \) of thin inclusion tip \(C_1 \) and \(\theta = 1 \) in a neighborhood \(S \) of \(C_1, S \subset S_1 \). We consider the coordinate transformation (7) in the form

\[
y_1 = x_1 + \delta_1 \tau \theta(x_1, x_2), \quad y_2 = x_2 + \delta_2 \tau \theta(x_1, x_2),
\]

(14)

where \((x_1, x_2) \in \Omega_\gamma \) and \((y_1, y_2) \in \Omega_{\gamma_b} \). Transformation (14) corresponds to a local translation of the thin rigid inclusion along the vector \(\tau \), which is tangential to \(\gamma \), and the vector field \(V \) is determined by the formula \(V = \tau \theta \). Substituting the vector field \(V \) into (10) and integrating by parts there, we obtain the path-independent integral

\[
I_{\tau \theta} = D \int_{\partial S} \left(\frac{1}{2} (\tau_2 q_2 - \tau_1 q_1) (w_{11}^2 - w_{22}^2) - (1 - \kappa) w_{12}^2 \tau q - w_{12} (\tau_2 q_1 M_1(w) + \tau_1 q_2 M_2(w)) \right)
\]

\[
- (M_{1,1}(w) q_1 + M_{2,2}(w) q_2) \left(\frac{\partial w}{\partial \tau} + a_1^0 \tau_1 + a_2^0 \tau_2 \right)
\]

\[
+ 2 (1 - \kappa) \left(w_{112} \left(\tau_1 w_{1,1} - \frac{a_1^0 \tau_1 + a_2^0 \tau_2}{2} \right) q_2 + w_{122} \left(\tau_2 w_{1,2} - \frac{a_1^0 \tau_1 + a_2^0 \tau_2}{2} \right) q_1 \right) \right) \, dx.
\]

(15)

The path-independent integral (15) is an analogue of the well-known Eshelby–Cherepanov–Rice \(J \)-integral from fracture mechanics.

Acknowledgments

The work was supported by the Council on Grants of the President of the Russian Federation (grant No. MK-5173.2016.1) and by the Russian Foundation for Basic Research (grant No. 16-01-00610).
References
[1] Khludnev A M 2010 J. Appl. Industr. Math. 5 582–94
[2] Khludnev A M 2012 Europ. J. Mech. A-Solid 32 69–75
[3] Rudoy E M 2004 Sib. Math. J. 45 388–97
[4] Itou H, Khludnev A M, Rudoy E M and Tani A 2012 Z. Angew. Math. Mech. 92 716–30
[5] Lazarev N P 2015 Z. Angew. Math. Phys. 66 2025–40
[6] Rudoy E M 2015 Z. Angew. Math. Phys. 66 1923–37
[7] Shcherbakov V 2017 Z. Angew. Math. Phys. 68 26