The Association Between the Use of Antiarrhythmic Drugs in Non-Valvular Atrial Fibrillation and Patient Prognosis Using Data from the China Atrial Fibrillation (China-AF) Registry

Xiao-Xia Hou, Xin Du, Danni Zheng, Yan-Ming Li, Liu He, Xin-Xu Li, Jian-Zeng Dong

Background: Results of the landmark Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) trial comparing rhythm control and rate control strategies has led to dramatic changes in the pharmacological management of non-valvular atrial fibrillation (NVAF) patients. We sought to investigate the effect of antiarrhythmic drugs (AADs) on the clinical outcomes of NVAF patients using “real-world” data from China.

Material/Methods: We evaluated the association between AAD usage and clinical outcomes using clinical data of 8161 NVAF patients who were AAD-naive before enrollment in the China Atrial Fibrillation Registry, recruited between August 2011 and February 2017. The primary outcome was all-cause mortality.

Results: Compared with 6167 patients who never used any AADs, 1994 patients in the AAD group had lower incidence (per 100 person-years) of all-cause mortality (1.44 versus 3.91), cardiovascular death (0.45 versus 2.31), ischemic stroke (1.36 versus 2.03), and cardiovascular hospitalization (9.83 versus 10.22) over a mean follow-up duration of 316.7±90.4 days. After adjusting for potential confounders, AAD usage was associated with a lower risk of all-cause mortality [hazard ratio (HR): 0.50, 95% confidence interval (CI): 0.31–0.81] and decreased risk of cardiovascular death (HR: 0.30, 95% CI: 0.13–0.68). Subgroup analysis revealed AAD was associated with higher risk of cardiovascular hospitalization among female patients.

Conclusions: AAD usage was associated with lower risk of 1-year all-cause mortality and cardiovascular death in “real-world” patients with NVAF.

MeSH Keywords: Anti-Arrhythmia Agents • Atrial Fibrillation • Prognosis

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/916855
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, carrying a substantially increased risk of morbidity and mortality. AF negatively impacts quality of life of patients and imposes significant burden on health care systems around the world [1–4]. Antiarrhythmic drugs (AADs) are traditionally regarded as a cornerstone for AF management to restore and maintain sinus rhythm. However, the landmark Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) study [5] and other subsequent randomized controlled trials [6–12] reported no survival advantage of rhythm-control strategy over rate-control drugs. Contrastingly, recent systematic reviews suggested rhythm control may be beneficial for a subgroup of younger and healthier patients [13,14]. Moreover, registry studies also demonstrated insignificant [15,16] or significant [17] improvements in overall mortality for rhythm control strategy in comparison to rate control strategy. Due to uncertainties relating to the safety and efficacy of AADs, clinicians may avoid prescribing AAD for high risk patients according to the AF guidelines [3,4,18] or use medicines like sotalol [19,20], which have reported adverse survival effect, in their practice. An “up-to-date” investigation of the effects of AAD on clinical outcomes of AF patients using current “real-world” data is important in the context of significant changes in the selection of patients and AAD agents. As such, our study aimed to evaluate the association between AAD usage and patient prognosis using data from the China Atrial Fibrillation registry (China-AF) study.

Material and Methods

Study population

The rationale and design of the China-AF study have been described previously [21,22]. In brief, the China-AF study is a prospective, multicenter, hospital-based ongoing registry study. Between August 2011 and February 2017, 20 666 patients were enrolled from 31 tertiary and non-tertiary hospitals located in Beijing. The Human Research Ethics Committee at Beijing Anzhen Hospital approved this study and the ethics review boards at individual participating hospitals approved their participation. Written informed consent was obtained from each patient.

Patients with non-valvular atrial fibrillation (NVAF) were identified from the China-AF study database. For the present analyses, we excluded patients less than 18 years of age (n=1), those with valvular AF (n=579), those who had less than 6 months’ follow-up (n=634) or lacked follow-up data (n=757), those who had prior AAD usage before registry enrollment (n=7340), and those with catheter ablation or surgical ablation (n=3078) during the index hospitalization. Patients who received ablation therapy during follow-up were censored at the time of ablation except for the 116 excluded patients as the duration period between their registry enrollment and ablation was less than 6 months.

There were 1994 patients who received either class I (propafenone, moricizine, mexiletine) or class III (amiodarone, sotalol) AAD upon registry enrollment and during follow-up and who were classified into the AAD group, and were censored at the time of discontinuation of AAD usage during the follow-up period according to the “as treated” definition of exposure. Within the AAD group, 689 patients (34.5%) received amiodarone therapy. Propafenone and sotalol were used in 458 patients (23.0%) and 93 patients (4.7%) respectively. The remaining 754 patients (37.8%) received other antiarrhythmic agents (such as moricizine), switched between different AADs, or had a combination of AADs. Patients who did not use any of the aforementioned AADs were classified into the non-AAD group (Figure 1), and they were censored at 1-year after registry enrollment.

Data collection

Upon patient enrollment, data on sociodemographic characteristics (age, gender, education status, and medical insurance coverage), medical history including established coronary artery disease (CAD), diabetes mellitus, hypertension, hyperlipidemia, chronic heart failure (CHF), major bleeding, previous stroke/transient ischemic attack (TIA)/peripheral thromboembolism (TE), liver function, renal function (presented as estimated glomerular filtration rate, eGFR), AF type (new-onset, paroxysmal or persistent) and time of AF diagnosis, medication history, as well as the patient treatment site were collected. We used multiple imputation to fill in the missing values. Patients were followed up at 3 months, 6 months, and every 6 months thereafter by trained staff at the outpatient clinics or through telephone interview. Data on heart rhythm, medical therapies, cardioversion, and outcomes including all-cause death, cardiovascular death, nonfatal strokes, and hospitalizations were recorded.

Established CAD was defined as having any history of myocardial infarction, percutaneous coronary intervention, or coronary artery bypass grafting. Abnormal liver function was defined as having serum level of aspartate aminotransferase or alanine aminotransferase >120 U/L and total bilirubin >34.2 μmol/L. Estimated glomerular filtration rate (eGFR) was calculated using the abbreviated equation from the Modification of Diet in Renal Disease study [23]. Definitions of ischemic stroke and cardiovascular hospitalization (CVH) were adopted from the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards report [24].
Survival effect of AAD on atrial fibrillation
© Med Sci Monit, 2019; 25: 4856-4868

Hou X.-X. et al.: Survival effect of AAD on atrial fibrillation
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]

CLINICAL RESEARCH

Study outcomes
The primary outcome of the study was all-cause mortality and the secondary outcomes were cardiovascular death, ischemic stroke, and CVH separately. Outcomes occurring prior to AAD usage were not considered events of interest. We also evaluated the rate of sinus rhythm maintenance at the penultimate follow-up.

Statistical analysis
Descriptive data were presented as mean ± standard deviation (SD) for continuous data or number (percentage) for categorical data. Baseline characteristics and clinical outcomes were compared between AAD group and non-AAD group using the Student’s t-test (for continuous variables) or the chi-square test (for categorical variables).

Rates of primary and secondary outcomes occurrence during follow-up were depicted in Kaplan-Meier plots and compared using the log-rank test. Cox proportional hazards regression model were used to evaluate the hazard ratios (HRs) and their 95% confidence intervals (CIs) of AAD usage with each outcome. Before modeling, we removed the survival person-time between registry entry and the first prescription of AAD during follow-up to minimize the immortal time bias [25]. Multivariate models were adjusted for potential confounders including baseline age, sex, education status (high school completion), health insurance coverage (partial or complete health insurance coverage), body mass index (BMI), smoking and drinking status (current smoking and current drinking), history of established CAD, diabetes mellitus, hypertension, hyperlipidemia, CHF, previous bleeding, stroke/TIA/TE, abnormal liver function, eGFR <60 mL/min/1.73 m², AF type (persistent AF) and diagnosis of AF ≥12 months, and hospital level (tertiary hospital). We also included oral anticoagulant (OAC) usage and hospitalization history at the penultimate follow-up as time-dependent covariates in the multivariable models. Subgroups analysis was conducted to explore the differential effects of AAD use on the risk of clinical outcomes by age (<75 years versus ≥75 years), sex, previous CAD, CHF, AF type (paroxysmal versus persistent) and time since AF diagnosis (<12 versus ≥12 months). Rate of sinus rhythm maintenance was evaluated by chi-square test. For the sensitivity analyses, we prolonged observation period up to 2 years after registry enrollment.

All statistical tests were 2-tailed and P value <0.05 was considered statistically significant. All analyses were conducted by an external contract research organization, using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA).

Results
Baseline characteristics
Among 8161 patients with NVAF included in the present study, 1994 individuals (24.4%) received AADs therapy. Table 1 shows that patients treated with AAD were younger (mean age 66.9 versus 68.6 years old), more frequently completed high school education, had fewer comorbidities such as CAD, diabetes mellitus, hypertension, CHF, prior bleeding and stroke, and were more likely to be treated in tertiary hospitals. The proportion of persistent AF was much lower among users of AADs, who were also less likely to be taking concomitant OAC. The β-blockers usage in the AAD group and non-AAD group was 51.9% and 57.2%, and the usage of digoxin was 7.2% and 14.1% in each group, respectively (Table 1). Cardioversion was conducted in 1.7% of AAD group patients and in 0.8% of non-AAD group patients. During follow-up, cardioversion was applied in 0.2% of all patients.

Clinical outcomes
The event-free-survival curves are shown in Figure 2. Compared with the non-AAD group, patients in the AAD group had lower incidence (per 100 person-years) of all-cause mortality (1.44 versus 3.91), cardiovascular death (0.45 versus 2.31), ischemic stroke (1.36 versus 2.03), and CVH (9.83 versus 10.22) over a mean follow-up duration of 316.7±90.4 days. After adjusting for potential baseline confounders and time-dependent covariates including OAC usage and treatment site at the penultimate follow-up, the AAD group patients were at significantly lower risk of all-cause mortality and lower risk of cardiovascular mortality [adjusted HR: 0.50 (0.31–0.81) and adjusted HR: 0.30 (0.13–0.68), respectively, Table 2]. There was no relationship between AAD usage and risk of ischemic stroke and CVH (both P values ≥0.176; Table 2, Supplementary Table 1).
Table 1. Baseline patient characteristics by antiarrhythmic drug usage.

Patient characteristics*	Overall (N=8161)	AAD group (N=1994)	non-AAD group (N=6167)	P value	
Demographics					
Age, mean (SD), years	68.2 (11.8)	66.9 (11.5)	68.6 (11.9)	<0.001	
Male		4737 (58.0)	1112 (55.8)	3625 (58.8)	0.018
High school completion	2054 (28.0)	596 (33.4)	1458 (26.3)	<0.001	
Partial or complete health insurance coverage	7524 (92.3)	1839 (92.3)	5685 (92.2)	0.967	
BMI, mean (SD), kg/m^2	25.4 (3.7)	25.4 (3.7)	25.4 (3.7)	0.962	
Current smoking	1253 (15.5)	296 (14.9)	957 (15.7)	0.414	
Current drinking	1493 (18.5)	354 (17.9)	1139 (18.7)	0.428	
Medical history					
Established CAD**	1320 (16.2)	294 (14.8)	1026 (16.7)	0.045	
DM	2255 (27.6)	496 (24.9)	1759 (28.5)	0.002	
Hypertension	5673 (69.5)	1347 (64.7)	4326 (70.2)	0.026	
Hyperlipidemia	3591 (44.0)	891 (44.7)	2700 (43.8)	0.505	
CHF	1898 (23.3)	296 (14.8)	1602 (26.0)	<0.001	
Previous bleeding	412 (5.1)	71 (3.6)	341 (5.5)	0.001	
Previous stroke/TIA/TE	1610 (19.7)	302 (15.2)	1308 (21.2)	<0.001	
Abnormal liver function*	260 (4.5)	50 (3.7)	210 (4.8)	0.092	
OAC usage	1652 (20.3)	280 (14.1)	1372 (22.3)	<0.001	
eGFR, mean (SD), mL/min/1.73 m^2##	102.7 (32.8)	105.1 (31.2)	102.0 (33.2)	0.003	
AF type					
New-onset AF	944 (11.6)	263 (13.2)	681 (11.1)	0.010	
Paroxysmal AF	3547 (41.5)	1157 (58.1)	2390 (38.8)	<0.001	
Persistent AF	3655 (44.9)	573 (28.8)	3082 (50.1)	<0.001	
Diagnosis of AF ≥12 months	4284 (52.5)	1008 (50.6)	3276 (53.1)	0.046	
Rate-lowering drugs					
β blockers	4561 (55.9)	1035 (51.9)	3526 (57.2)	<0.001	
Non-dihydropyridine Calcium-channel antagonists	553 (6.8)	139 (7.0)	414 (6.7)	0.691	
Digoxin	1014 (12.4)	143 (7.2)	871 (14.1)	<0.001	
Tertiary hospital admission	6381 (78.2)	1632 (81.9)	4749 (77.0)	<0.001	
Inpatients	3078 (37.7)	697 (35.0)	2381 (38.7)	0.003	
Follow-up duration, mean (SD), d	316.7 (90.4)	242.0 (112.5)	340.8 (65.8)	<0.001	

AAD – antiarrhythmic drug; AF – atrial fibrillation; BMI – body mass index; CAD – coronary artery disease; CHF – chronic heart failure; DM – diabetes mellitus; eGFR – estimated glomerular filtration rate; OAC – oral anticoagulants; SD – standard deviation; TE – thromboembolism; TIA – transient ischemic attack. * Continuous variables were presented as mean (SD) and categorical variables were presented as number (percent); ** Established CAD includes myocardial infarction, percutaneous coronary intervention and coronary artery bypass grafting; * Liver function was obtained in 5780 patients (1362 in the AAD group and 4418 in the non-AAD group). Abnormal liver function was defined as serum level of aspartate aminotransferase or alanine aminotransferase >120 U/L, and total bilirubin >34.2 μmol/L; ** eGFR was obtained in 5731 patients (1342 in the AAD group and 4389 in the non-AAD group). eGFR (mL/min/1.73 m²)=186×(SCR [μmol/L]×0.0113)^-1.154×age^-0.203×0.742 (if female).
Table 2. Association between AAD usage and patient outcomes at 1 year.

	AAD (N=1994)	Non-AAD (N=6167)	Unadjusted	Adjusted*				
	Events	Rate**	Events	Rate	HR (95%CI)	P Value	HR (95%CI)	P Value
All-cause mortality	19.00	1.44	225.00	3.91	0.41 (0.26–0.66)	<0.011	0.50 (0.31–0.81)	0.005
Cardiovascular death	6.00	0.45	133.00	2.31	0.22 (0.10–0.50)	<0.011	0.30 (0.13–0.68)	0.004
Ischemic stroke	18.00	1.36	116.00	2.03	0.73 (0.44–1.20)	0.207	0.70 (0.42–1.17)	0.176
CVH	129.00	8.93	570.00	10.22	1.09 (0.90–1.32)	0.373	0.97 (0.80–1.19)	0.787

AAD – antiarrhythmic drug; CI – confidence interval; CVH – cardiovascular hospitalization; HR – hazard ratio. * Adjusted results are from Cox proportional hazards regression models. Multivariable models were adjusted for: age, sex, education status (school completion), insurance coverage (partial or complete health insurance coverage), body mass index, smoking and drinking status (current smoking and current drinking), history of established coronary artery disease, diabetes mellitus, hypertension, hyperlipidemia, chronic heart failure, previous bleeding, stroke/transient ischemic attack/thromboembolism, abnormal liver function, estimated glomerular filtration rate <60 mL/min/1.73 m², atrial fibrillation type (persistent atrial fibrillation) and time since atrial fibrillation was diagnosed (≥12 months), hospital level (tertiary hospital) as well as oral anticoagulant use and treatment site (inpatients) at the penultimate follow-up; ** Incidence rate presents the number of events per 100 person-years follow-up; Hazard ratio (HR) for AAD relative to non-AAD usage.
Sensitivity analyses with prolonged observation period showed borderline significant association between AAD usage and overall mortality and cardiovascular death, although AAD was associated with more CVH (Supplementary Table 2). We found higher risk of CVH among female users of AAD, however, there was no evidence of heterogeneity in the effect of AAD use for other outcomes (Figure 3A–3D).

The prevalence of sinus rhythm was 41.6% at the penultimate follow-up, higher in the AAD group than the non-AAD group (46.3% versus 40.1%, P<0.001, Supplementary Table 3).
Discussion

Results of the pivotal AFFIRM trial [5] led to guideline changes and a shift towards rate control strategy in AF patients during the past couple of decades [26]. Our present investigation using contemporary real-world data from the China-AF registry showed an association between AAD usage and lower 1-year overall mortality and cardiovascular death in NVAF patients using an “as treated” exposure definition. We observed no relationship between AAD usage and risk of ischemic stroke or CVH at 1 year. Sensitivity analyses with longer follow-up period showed a trend towards lower overall mortality associated with AAD usage.

The present finding of an association between AAD usage and lower overall mortality in AF patients contrasts with the results of the landmark AFFIRM trial, which may be attributed to a few important reasons. Firstly, the effectiveness and safety profile of AADs vary with the type and extent of concomitant cardiovascular diseases, and younger and healthier patients might benefit preferentially from rhythm control [13,14]. The China-AF study patients on AAD therapy were younger (66.9 years old versus 69.7 years old) and had lower proportion of patients with established CAD (14.8% versus 27.6%) and CHF (14.8% versus 22.8%) in comparison with the AFFIRM cohort [5]. Moreover, our study also had fewer number of patients with new-onset AF (with worse prognosis than those with paroxysmal and persistent AF [27]) than the AFFIRM trial (13.2% versus 35.3%). Secondly, there were variations in the medication usage between our study and the AFFIRM trial. Sotalol [19] and digoxin [28,29] both with increased risk of mortality, were significantly less often used by patients in the China-AF study than the AFFIRM trial (4.7% versus 41.4% and 7.2% versus 32.9%, respectively). The present finding of survival benefit associated with AAD usage corroborates results of prior observational studies. The Quebec study [17] reported that rhythm control was associated with lower mortality after 5 years of AAD initiation [HR 0.77 (0.62–0.95)] and the ORBIT-AF Registry [15] reported borderline survival benefit for patients with rhythm control [HR 0.87 (0.72–1.04)], who had higher rate of comorbid CAD (33.5%) and heart failure (26.1%).

Relating to the secondary outcomes, an earlier observational study had reported a non-significant trend of lower rate of cardiovascular deaths associated with rhythm control [30], whilst the ORBIT-AF Registry [15] showed no significant association between AAD usage and cardiovascular death. The number of cardiovascular deaths in the present study was relatively low, therefore the association between AAD usage and cardiovascular deaths should be interpreted cautiously. Our finding of a lack of relationship between AAD and ischemic stroke is similar to prior results from clinical trials [5,7,11] and the ORBIT-AF registry study [15]. Our study showed that AAD usage was not associated with CVH in the 1-year follow-up period, however, the association became significant when the follow-up period of non-AAD was prolonged to 2 years or more in the sensitivity analyses, similar to results of a previous trial [31] and registries [15,30].

Strengths and limitations

We restricted our sample to AF without reversible causes, included patients who were AAD-naïve prior to registry enrollment, eliminated underlying immortal time bias, adjusted for potential baseline confounders and time-dependent covariates such as OAC use and patient treatment site during follow-up. However, there might still be residual confounding. Also, as our study was observational in nature, a causal relationship between AAD usage and lower risk of overall mortality or AAD usage and cardiovascular death should not be inferred. Effects of individual AADs on the clinical outcome of NVAF patients were not evaluated because of the relatively small sample size. Compared to the western populations, the rates of OACs usage for stroke prevention had been lower among the Chinese NVAF patients [22,32,33]. Fortunately, an improvement was observed in recent years in China-AF study [22]. As cardioversion was rarely used, we did not adjust for its effect when we evaluated the association between AAD usage and the prognostic outcome of NVAF patients. Moreover, we did not account for the severity of AF symptoms in our analyses which could also affect patient outcomes. AF can be regarded as a continuous quantitative entity by considering AF burden [34,35] rather than a binary condition (presence or absence of AF) and higher AF burden is associated with higher risk of stroke and mortality, however, this was not investigated in the current study. Finally, our study was conducted primarily in Chinese patients who resided in Beijing; therefore, the results may not be generalizable to other populations.

Conclusions

Our study showed that AAD usage was associated with lower risk of 1-year all-cause mortality and cardiovascular death compared with non-AAD strategy in AF patients. An up-to-date randomized trial to compare rhythm control and rate control strategy in AF patients is warranted.

Acknowledgements

This study was based in part on data from the Chinese Atrial Fibrillation Registry (China-AF). We would like to thank the China-AF Investigators for assistance in the data collection. Dr J-Z. Dong received honoraria from Johnson & Johnson for giving lectures. Dr X. Du received honoraria from Bayer for giving lectures.
Statement

The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or production of manuscript.

Supplementary Tables

Supplementary Table 1. Univariate and multivariate regression of effects of AADs on 1-year outcomes of patients with NVAF.

Characteristics*	N	All-cause mortality (N=244)	Cardiovascular death (N=139)				
		n/N (%)	Unadjusted HR	Adjusted HR	n/N (%)	Unadjusted HR	Adjusted HR
			(95% CI)	P value		(95% CI)	P value
Age, mean (SD),	7702	75.8±10.4	1.08 (1.06–1.09) <0.001	1.04 (1.02–1.06) <0.001	76.1±9.7	1.08 (1.06–1.1) <0.001	1.04 (1.02–1.06) <0.001
years		(244)			(139)		
Men	8161	144/4737	1.04 (0.81–1.34) 0.770	1.25 (0.94–1.67) 0.125	85/4737	1.14 (0.81–1.6) 0.465	1.05 (1.06–2.26) 0.022
Completed high	7335	38/2054	0.58 (0.41–0.82) 0.002	0.77 (0.53–1.12) 0.172	19/2054	0.48 (0.29–0.78) 0.003	0.70 (0.4–1.2) 0.193
school		(1.85)			(0.93)		
Partially or	8156	226/7524	1.05 (0.65–1.7) 0.837	0.89 (0.55–1.46) 0.656	126/7524	0.81 (0.46–1.44) 0.477	0.63 (0.35–1.14) 0.128
complete health		(3)			(1.67)		
insurance		coverage					
BMI, mean (SD),	7080	23.7±3.7	0.87 (0.84–0.91) <0.001	0.92 (0.89–0.96) <0.001	23.5±3.6	0.86 (0.82–0.91) <0.001	0.90 (0.86–0.95) <0.001
kg/m²		(202)			(115)		
Current smoking	8090	39/1253	1.08 (0.77–1.53) 0.651	1.41 (0.94–2.1) 0.096	22/1253	1.08 (0.68–1.7) 0.754	1.41 (0.83–2.38) 0.202
Current drinking	8083	31/1493	0.68 (0.46–0.99) 0.042	0.84 (0.54–1.31) 0.445	14/1493	0.52 (0.3–0.91) 0.021	0.58 (0.31–1.11) 0.102
Established CAD**	8155	61/1320	1.70 (1.27–2.27) <0.001	1.19 (0.88–1.61) 0.261	43/1320	2.29 (1.6–3.27) <0.001	1.55 (1.07–2.26) 0.022
DM	8157	88/2255	1.44 (1.11–1.87) 0.006	1.12 (0.85–1.47) 0.418	54/2255	1.62 (1.15–2.28) 0.006	1.14 (0.8–1.64) 0.463
Hypertension	8157	178/5673	1.15 (0.87–1.52) 0.336	0.75 (0.56–1.02) 0.069	106/5673	1.37 (0.93–2.02) 0.117	0.86 (0.57–1.31) 0.486
Hyperlipidemia	3591	87/3591	0.71 (0.54–0.92) 0.009	0.71 (0.54–0.93) 0.014	56/3591	0.86 (0.61–1.21) 0.381	0.84 (0.59–1.2) 0.334
CHF	8158	142/1898	4.38 (3.39–5.64) <0.001	1.84 (1.38–2.45) <0.001	92/1898	6.14 (4.32–8.73) <0.001	2.33 (1.57–3.46) <0.001
Cardiovascular death (N=139)

Characteristics*	N	All-cause mortality (N=244)	Cardiovascular death (N=139)			
		Unadjusted HR (95% CI) P value	Adjusted HR* (95% CI) P value	n/N (%)	Unadjusted HR (95% CI) P value	Adjusted HR* (95% CI) P value
Previous bleeding	8154	20/412 (4.85) 1.65 (1.05–2.61) <0.001	1.05 (0.69–1.69) <0.001	12/412 (2.91) 1.75 (0.97–3.16) <0.001	1.60 (0.95–2.66) <0.001	
Previous stroke /TIA/TE	8155	85/1676 (5.07) 2.05 (1.57–2.66) <0.001	1.33 (1.01–1.75) 0.044	55/1676 (3.28) 2.50 (1.78–3.52) <0.001	1.51 (1.06–2.15)	
Abnormal liver function*	5780	28/260 (10.77) 3.48 (2.34–5.18) <0.001	2.54 (1.69–3.8) <0.001	18/260 (6.92) 3.94 (2.39–6.5) <0.001	2.93 (1.73–4.96) <0.001	
eGFR <60 ml/min/1.73 m²*	5721	45/408 (11.03) 3.61 (2.59–5.02) <0.001	2.04 (1.41–2.93) <0.001	28/408 (6.86) 3.85 (2.53–5.87) <0.001	1.98 (1.25–3.14) <0.001	
Persistent AF	8161	131/3655 (3.58) 1.32 (1.03–1.7) 0.030	1.16 (0.88–1.53) 0.288	80/3655 (2.19) 1.55 (1.1–2.16) 0.011	1.19 (0.82–1.72) 0.368	
Diagnosis of AF ≥12 months	8161	139/4284 (3.24) 1.16 (0.91–1.52) 0.207	1.00 (0.81–1.39) 0.692	86/4284 (2.01) 1.44 (1.02–2.03) 0.036	1.24 (0.86–1.8) 0.255	
Tertiary hospital	8161	120/6381 (1.88) 0.28 (0.22–0.36) <0.001	0.59 (0.44–0.78) <0.001	60/6381 (0.94) 0.22 (0.16–0.31) <0.001	0.48 (0.33–0.69) <0.001	
OAC at penultimate follow-up	8161	35/2513 (1.39) 0.36 (0.25–0.51) <0.001	0.48 (0.33–0.71) <0.001	23/2513 (0.92) 0.43 (0.27–0.67) <0.001	0.65 (0.4–1.05) 0.077	
Inpatients at penultimate follow-up	8160	97/1068 (9.08) 6.32 (4.89–8.18) <0.001	4.52 (3.44–5.93) <0.001	55/1068 (5.15) 6.31 (4.48–8.87) <0.001	4.08 (2.85–5.85) <0.001	
AAD	8161	19/1994 (0.95) 0.41 (0.26–0.66) <0.001	0.50 (0.31–0.81) <0.001	6/1994 (0.3) 0.22 (0.1–0.5) <0.001	0.30 (0.13–0.68) <0.001	

Ischemic stroke (N=134)

Characteristics*	N	Ischemic stroke (N=134)	CVH (N=669)		
		Unadjusted HR (95% CI) P value	Adjusted HR* (95% CI) P value		
Age, mean (SD), years	8161	74.1±9.1 (134) 1.05 (1.04–1.07) <0.001	1.03 (1.01–1.05) 0.005	72.1±10.4 (699) 1.03 (1.03–1.04) <0.001	1.01 (1–1.01) 0.098
Men	7335	71/4737 (1.5) 0.81 (0.58–1.14) 0.229	0.91 (0.62–1.32) 0.606	392/4737 (8.28) 0.92 (0.79–1.07) 0.289	1.12 (0.95–1.33) 0.169
Completed high school	8156	31/2054 (1.51) 0.91 (0.6–1.37) 0.642	0.99 (0.64–1.53) 0.971	118/2054 (5.74) 0.64 (0.53–0.79) <0.001	0.82 (0.65–1.02) 0.079
Partially or complete health insurance coverage	7080	122/7524 (1.62) 0.85 (0.47–1.54) 0.594	0.71 (0.39–1.3) 0.267	656/7524 (8.72) 1.29 (0.95–1.76) 0.049	1.05 (0.77–1.44) 0.479

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Characteristics*	N	BMI, mean (SD), kg/m²	Ischemic stroke (N=134)	CVH (N=699)						
	n/N (%)	n/N (%)	Unadjusted HR (95% CI)	Adjusted HR* (95% CI)	P value	P value	n/N (%)	Unadjusted HR (95% CI)	Adjusted HR* (95% CI)	P value
Current smoking	12/1253 (0.96)	0.55 (0.3–0.99)	0.86 (0.37–1.4)	88/1253 (7.02)	0.80 (0.64–1)	0.39 (0.72–1.2)				
Current drinking	18/1493 (1.21)	0.70 (0.43–1.16)	1.22 (0.68–2.18)	95/1493 (6.36)	0.71 (0.57–0.88)	0.88 (0.69–1.14)				
Established CAD**	25/1320 (1.89)	1.18 (0.76–1.81)	0.88 (0.56–1.37)	170/1320 (12.88)	1.68 (1.41–2)	<0.001 (0.98–1.4)				
DM	45/2255 (2)	1.30 (0.91–1.85)	1.01 (0.69–1.47)	257/2255 (11.4)	1.51 (1.29–1.76)	<0.001 (0.92–1.26)				
Hypertension	114/5673 (2.01)	2.45 (1.52–3.93)	<0.001 (1.18–3.2)	568/5673 (10.01)	1.90 (1.57–2.29)	<0.001 (1.17–1.76)				
Hyperlipidemia	57/3591 (1.59)	0.94 (0.67–1.32)	0.88 (0.62–1.26)	327/3591 (9.11)	1.12 (0.97–1.3)	<0.001 (0.84–1.14)				
CHF	48/1898 (2.53)	1.77 (1.24–2.52)	1.16 (0.78–1.72)	314/1898 (16.54)	2.69 (2.32–3.13)	<0.001 (1.48–2.08)				
Previous bleeding	11/412 (2.67)	1.67 (0.9–3.1)	1.16 (0.62–2.18)	47/412 (11.4)	1.36 (1.01–1.83)	<0.001 (0.79–1.45)				
Previous stroke /TIA/TE	61/1610 (3.79)	3.40 (2.42–4.78)	2.54 (1.78–3.63)	214/1610 (13.29)	1.82 (1.55–2.14)	<0.001 (1.09–1.52)				
Abnormal liver function*	7/260 (2.69)	1.86 (0.86–4.02)	2.03 (0.95–4.33)	38/260 (14.62)	1.71 (1.23–2.38)	<0.001 (1.16–2.17)				
eGFR <60 ml/min/1.73 m²	7/408 (1.72)	1.05 (0.49–2.27)	0.52 (0.22–1.25)	79/408 (19.36)	2.30 (1.81–2.92)	<0.001 (1.13–1.85)				
Persistent AF	63/3655 (1.72)	1.02 (0.73–1.43)	0.85 (0.59–1.23)	341/3655 (9.33)	1.09 (0.94–1.27)	<0.001 (0.77–1.07)				
Diagnosis of AF ≥12 months	5731	1.55 (1.09–2.2)	1.44 (1–2.09)	425/4284 (9.92)	1.39 (1.2–1.62)	<0.001 (1.15–1.58)				
Tertiary hospital	96/6381 (1.5)	0.72 (0.5–1.05)	1.19 (0.79–1.8)	446/6381 (6.99)	0.49 (0.42–0.58)	<0.001 (0.63–0.9)				
OAC at penultimate follow-up	35/2504 (1.4)	0.76 (0.52–1.12)	0.70 (0.47–1.06)	192/2469 (7.8)	0.02 (0.07–0.97)	<0.001 (0.77–1.09)				

*HR: Hazard Ratio, CI: Confidence Interval

**CAD: Coronary Artery Disease, DM: Diabetes Mellitus, CHF: Congestive Heart Failure, OAC: Oral Anticoagulant
Characteristics*	N	Inpatients at penultimate follow-up	AAD	Ischemic stroke (N=134)	CVH (N=699)
	n/N (%)	Unadjusted HR (95% CI)	Adjusted HRa (95% CI)	n/N (%)	Unadjusted HR (95% CI)
Inpatients at penultimate follow-up	8161	43/1057 (4.07)	4.53 (3.14–6.52)	3.78 (2.59–5.53)	243/940 (25.85)
AAD	8161	18/1994 (0.9)	0.73 (0.44–1.2)	0.70 (0.42–1.17)	129/1994 (6.47)

AAD – antiarrhythmic drug; AF – atrial fibrillation; BMI – body mass index; CA – coronary artery disease; CHF – chronic heart failure; CI – confidence interval; CVH – cardiovascular hospitalization; DM – diabetes mellitus; eGFR – estimated glomerular filtration rate; HR – hazard ratio; NVAF – nonvalvular atrial fibrillation; OAC – oral anticoagulants; SD – standard deviation; TE – thromboembolism; TIA – transient ischemic attack. * Continuous variables were presented as mean (SD) and categorical variables were presented as number (percent); ** Established CAD includes myocardial infarction, percutaneous coronary intervention, and coronary artery bypass grafting; ^ Liver function was obtained in 5780 patients (1362 in the AAD group and 4418 in the non-AAD group). Abnormal liver function was defined as serum level of aspartate aminotransferase or alanine aminotransferase >120 U/L, and total bilirubin >34.2 μmol/L; # eGFR was obtained in 5731 patients (1342 in the AAD group and 4389 in the non-AAD group). eGFR (mL/min/1.73 m²) = 186×(SCr [μmol/L]×0.0113)–1.154×age–0.203×0.742 (if female); & Multivariable models were adjusted for: age, sex, education status (high school completion), insurance coverage (partial or complete health insurance coverage), body mass index, smoking and drinking status (current smoking and current drinking), history of established coronary artery disease, diabetes mellitus, hypertension, hyperlipidemia, chronic heart failure, previous bleeding, stroke/transient ischemic attack/thromboembolism, abnormal liver function, estimated glomerular filtration rate <60 mL/min/1.73 m², atrial fibrillation type (persistent atrial fibrillation) and time since atrial fibrillation was diagnosed (≥12 months), hospital level (tertiary hospital) as well as oral anticoagulant use and treatment site (inpatients) at the penultimate follow-up.

Supplementary Table 2. Association between AAD usage and patient outcomes at 2 years.

Characteristics*	AAD (N=1994)	Non-AAD (N=6167)	Unadjusted results	Adjusted resultsa				
	Events	Rate**	Events	Rate	HR* (95% CI)	P value	HR (95% CI)	P value
All-cause mortality	37	2.09	422	4.14	0.56 (0.40–0.79)	0.001	0.75 (0.53–1.06)	0.103
Cardiovascular death	17	0.96	229	2.25	0.47 (0.29–0.77)	0.000	0.68 (0.45–1.03)	0.093
Ischemic stroke	26	1.47	183	1.82	0.83 (0.55–1.25)	0.366	0.84 (0.55–1.29)	0.424
CVH	181	10.51	878	9.28	1.21 (1.03–1.42)	0.023	1.21 (1.02–1.43)	0.029

AAD – antiarrhythmic drug; CI – confidence interval; CVH – cardiovascular hospitalization; HR – hazard ratio. * Adjusted results are from Cox proportional hazards regression models. Multivariable models were adjusted for: age, sex, education status (high school completion), insurance coverage (partial or complete health insurance coverage), body mass index, smoking and drinking status (current smoking and current drinking), history of established coronary artery disease, diabetes mellitus, hypertension, hyperlipidemia, chronic heart failure, previous bleeding, stroke/transient ischemic attack/thromboembolism, abnormal liver function, estimated glomerular filtration rate <60 mL/min/1.73 m², atrial fibrillation type (persistent atrial fibrillation) and time since atrial fibrillation was diagnosed (≥12 months), hospital level (tertiary hospital) as well as oral anticoagulant use and treatment site (inpatients) at the penultimate follow-up; ** Incidence rate presents the number of events per 100 subjects-years follow-up; & Hazard ratio (HR) is for AAD relative to non-AAD.
Supplementary Table 3. Sinus rhythm profile at penultimate follow-up.

Characteristics	Overall (N=8161)	AAD group (N=1994)	Non-AAD group (N=6167)	P value
Sinus rhythm	3398/8161 (41.6)	923/1994 (46.3)	2475/6167 (40.1)	<0.001
Age (years)				
<65	1283/2809 (45.7)	364/763 (47.7)	919/2046 (44.9)	0.187
≥65	2119/5352 (39.6)	531/1231 (43.1)	1588/4121 (38.5)	0.004
Sex				
Male	1979/4737 (41.8)	518/1112 (46.6)	1461/3625 (40.3)	<0.001
Female	1423/3424 (41.6)	377/882 (42.7)	1046/2542 (41.2)	0.408
Established CAD				
Yes	550/1320 (41.7)	147/294 (50.0)	403/1026 (39.3)	0.001
No	2849/6835 (41.7)	748/1699 (44.0)	2101/5136 (40.9)	0.024
CHF				
Yes	717/1898 (37.8)	109/296 (36.8)	608/1602 (38.0)	0.713
No	2683/6260 (42.9)	786/1698 (46.3)	1897/4562 (41.6)	<0.001
First diagnosis of AF				
<12 months	1832/3877 (47.3)	486/986 (49.3)	1346/2891 (46.6)	0.138
≥12 months	1570/4284 (36.6)	409/1008 (40.6)	1161/3276 (35.4)	0.003

AAD – antiarrhythmic drug; AF – atrial fibrillation; CAD – coronary artery disease; CHF – chronic heart failure.

References:

1. Miyasaka Y, Barnes ME, Petersen RC et al: Risk of dementia in stroke-free patients diagnosed with atrial fibrillation: data from a community-based cohort. Eur Heart J, 2007; 28(16): 1962–67
2. Chugh SS, Haxhoailer R, Narayanan K et al: Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 study. Circulation, 2014; 129(8): 837–47
3. Kirchhof P, Benussi S, Kotecha D et al: 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J, 2016; 37(38): 2893–962
4. January CT, Wann LS, Alpert JS et al: 2014 AHA/ACC/HRS Guideline for the management of atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol, 2014; 64(21): e1–e76
5. Purmah Y, Proietti M, Laroche C et al: Rate control strategies in atrial fibrillation: An updated comprehensive review and meta-analysis. Pacing Clin Electrophysiol, 2016; 20(2): 243–52
6. Gillinov AM, Bagiella E, Moskowitz AI et al: Rate control versus rhythm control for atrial fibrillation after cardiac surgery. N Engl J Med, 2016; 374(20): 1911–21
7. Chatterjee S, Sardar P, Lichtstein E et al: Pharmacologic rate versus rhythm control strategies in atrial fibrillation: An updated comprehensive review and meta-analysis. Pacing Clin Electrophysiol, 2013; 36(1): 122–33
8. Chen S, Dong Y, Fan J, Yin Y: Rate vs. rhythm control in patients with atrial fibrillation – an updated meta-analysis of 10 randomized controlled trials. Int J Cardiol, 2011; 153(1): 96–98
9. Noheria A, Shrader P, Piccini JP et al: Rhythm control versus rate control and clinical outcomes in patients with atrial fibrillation. JACC: Clinical Electrophysiology, 2016; 2(2): 221–29
10. Yildiz A, Yigit Z, Okcun B et al: Comparison of rate and rhythm control in hypertension patients with atrial fibrillation. Circ J, 2008; 72(5): 705–8
11. Roy D, Talajic M, Nattel S et al: Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med, 2008; 358(25): 2667–77
12. Divakar AQ, Bagiella E, Moskowitz AI et al: Rate control versus rhythm control for atrial fibrillation after cardiac surgery. N Engl J Med, 2016; 374(20): 1911–21
13. Chatterjee S, Sardar P, Lichtstein E et al: Pharmacologic rate versus rhythm control strategies in atrial fibrillation: An updated comprehensive review and meta-analysis. Pacing Clin Electrophysiol, 2013; 36(1): 122–33
14. Chen S, Dong Y, Fan J, Yin Y: Rate vs. rhythm control in patients with atrial fibrillation – an updated meta-analysis of 10 randomized controlled trials. Int J Cardiol, 2011; 153(1): 96–98
15. Noheria A, Shrader P, Piccini JP et al: Rhythm control versus rate control and clinical outcomes in patients with atrial fibrillation. JACC: Clinical Electrophysiology, 2016; 2(2): 221–29
16. Purmah Y, Proietti M, Laroche C et al: Rate vs. rhythm control and adverse outcomes among European patients with atrial fibrillation. Europace, 2018; 20(2): 243–52
17. Ionescu-Ittu R, Abrahamowicz M, Jackevicius CA et al: Comparative effectiveness of rhythm control vs. rate control drug treatment effect on mortality in patients with atrial fibrillation. Arch Intern Med, 2012; 172(13): 997–1004
18. Camm AJ, Kirchhof P, Lip GY et al: Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Europace, 2010; 12(10): 1360–420
19. Dan GA, Martinez-Rubio A, Agewall S et al: Antiarrhythmic drugs-clinical use and clinical decision making: A consensus document from the European Heart Rhythm Association (EHRA) and European Society of Cardiology (ESC) Working Group on Cardiovascular Pharmacology, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS) and International Society of Cardiovascular Pharmacotherapy (ISCP). Europace, 2018; 20(5): 731–32

20. Lafuente-Lafuente C, Valembois L, Bergmann JF, Belmin J: Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. Cochrane Database Syst Rev, 2015; (3): CD005049

21. Du X, Ma C, Wu J et al: Rationale and design of the Chinese Atrial Fibrillation Registry Study. BMC Cardiovasc Disord, 2016; 16: 130

22. Chang SS, Dong IZ, Ma CS et al: Current status and time trends of oral anti-coagulation use among Chinese patients with nonvalvular atrial fibrillation: The Chinese Atrial Fibrillation Registry Study. Stroke, 2016; 47(7): 1803–10

23. Levey AS, Bosch JP, Lewis JB et al: A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of diet in Renal Disease Study Group. Ann Intern Med, 1999; 130(6): 461–70

24. Hicks KA, Tcheng JE, Bozkurt B et al: 2014 ACC/AHA Key Data elements and definitions for cardiovascular endpoint events in clinical trials: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Cardiovascular Endpoints Data Standards). J Am Coll Cardiol, 2015; 66(4): 403–69

25. Sussa S: Immortal time bias in pharmaco-epidemiology. Am J Epidemiol, 2008; 167(4): 492–99

26. Snow V, Weiss KB, LeFevre M et al: Management of newly detected atrial fibrillation: A clinical practice guideline from the American Academy of Family Physicians and the American College of Physicians. Ann Intern Med, 2003; 139(12): 1009–17

27. Nieuwlaat R, Prins MH, Le Heuzey JY et al: Prognosis, disease progression, and treatment of atrial fibrillation patients during 1 year: Follow-up of the Euro Heart Survey on Atrial Fibrillation. Eur Heart J, 2008; 29(9): 1181–89

28. Chao TF, Liu CI, Tuan TC et al: Rate-control treatment and mortality in atrial fibrillation. Circulation, 2015; 132(17): 1604–12

29. Washam JB, Stevens SR, Lokhnygina Y et al: Digoxin use in patients with atrial fibrillation and adverse cardiovascular outcomes: A retrospective analysis of the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF). Lancet, 2015; 385(9985): 2363–70

30. Camm AJ, Breithardt G, Crijns H et al: Real-life observations of clinical outcomes with rhythm- and rate-control therapies for atrial fibrillation. J Am Coll Cardiol, 2011; 58(5): 493–501

31. Saksena S, Sise A, Wadlo AL et al: Cardiovascular outcomes in the AFFIRM Trial (Atrial Fibrillation Follow-Up Investigation of Rhythm Management). J Am Coll Cardiol, 2011; 58(19): 1975–85

32. Oldgren J, Healey JS, Ezekowitz M et al: Variations in cause and management of atrial fibrillation in a prospective registry of 15 400 emergency department patients in 46 countries: The RE-LY Atrial Fibrillation Registry. Circulation, 2014; 129(15): 1568–76

33. Hu D, Sun Y: Epidemiology, risk factors for stroke, and management of atrial fibrillation in China. J Am Coll Cardiol, 2008; 52(10): 865–68

34. Go AS, Reynolds K, Yang J et al: Association of burden of atrial fibrillation with risk of ischemic stroke in adults with paroxysmal atrial fibrillation: The KP-RHYTHM Study. JAMA Cardiol, 2018; 3(7): 601–8

35. Chen LY, Chung MK, Allen LA et al: Atrial fibrillation burden: Moving beyond atrial fibrillation as a binary entity: A scientific statement from the American Heart Association. Circulation, 2018; 137(20): e623–44