GSK-3β Inhibition Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via Down-Regulation of IL-6

Bailong Li, Chaoxiong Zhang, Feng He, Wen Liu, Yanyong Yang, Hu Liu, Xin Liu, Jie Wang, Lin Zhang, Bo Deng, Fu Gao, Jianguo Cui, Cong Liu, Jianming Cai

Abstract

Background: Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain undefined. Lipopolysaccharides (LPS), the ligands of Toll-like receptor 4 (TLR4), could elicit strong immune responses. Glycogen synthase kinase-3β (GSK-3β) promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation.

Methods: WT or IL-6−/− mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA.

Results: SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6−/− mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice.

Conclusions: Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.
Introduction

Exposure of high dose ionizing radiation is dangerous and lethal [1, 2]. Radiation exposure leads injuries of hematopoietic system (HP) and gastrointestinal tract (GI). Elucidation of the mechanism of radiation injuries can propel the progress in radiation injuries medical aids and bio-defense applications [3-6]. However, signal pathway involved in the radiation biology reaction still remains unclear.

Glycogen synthase kinase-3β (GSK-3β) is now recognized as a key component of a large number of cellular processes and diseases [7, 8]. Several mechanisms play roles in controlling the actions of GSK-3β, including phosphorylation, protein complex formation, and subcellular distribution [9-11]. Dysregulation of GSK-3β is linked to several prevalent pathological conditions, such as diabetes, insulin resistance, and Alzheimer’s disease [12]. GSK-3β promotes the production of inflammatory factors and cell migration, which together make GSK-3β a powerful regulator of inflammation, thus GSK-3β inhibition provides protection against inflammation in animal models [13]. The involvement of GSK-3β and inflammation in these diseases are highlighted [14], however the roles of GSK-3β in radiation biology process and biodefense applications have not yet fully investigated.

Toll-like receptors (TLRs) are not only the detector of organisms ranging from bacteria to fungi, protozoa, and viruses, but also play important roles in many biological process [15-18]. LPS triggers sever immunological reactions resulting septic shock and death [19]. The mechanism of LPS action is indirect, mediated primarily through cytokines such as interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) secreted by activated macrophages in spleen, liver and other sites [20].

In this study, we used glycogen synthase kinase inhibitor, 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763), to investigate the roles of GSK-3β in LPS shock and ionizing radiation, and found that in the two scenarios, GSK-3β may play different roles.

Materials and Methods

Reagents

3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763), a GSK-3β inhibitor, was purchased from merck Millipore. LPS from Escherichia coli was purchased from Sigma (St. Louis, Mo), and LPS was re-purified as previous described [21]. Re-purified LPS was dissolved in pyrogen-free PBS (Baisai, Shanghai, China) [5]. DMEM and Fetal Calf Serum were from PAA, Austria [5].

Breeding and treatment of Mice

Adult WT mice and IL-6^{−/−} (C57BL/6 mice, 6 weeks, 20g) were obtained from the Model Animal Research Centre of Nanjing University (Nanjing, China) as described previously [4, 5]. Mice were pretreated with or without 10μM SB216763 (Sigma-Aldrich, Taufkirchen, Germany) by intraperitoneal injection [13]. Controls were incubated with 0.2% dimethyl sulfoxide and/or 15mM NaCl. 24 h later, these mice received two treatments: total-body irradiation (5, 7, 9Gy) (TBI) and LPS [5]. LPS was injected at a gradient different (200μg/mice, 500μg/mice, 1000μg/mice). Control mice were treated with pyrogen-free PBS. Here we got four different treated mice mice pretreated with SB216763, then treated with LPS (SB216763, LPS); mice only treated with LPS (PBS, LPS); mice treated with SB216763 and radiation (SB216763, TBI); mice only treated radiation (PBS, TBI). The following experiments were all base on the four types mice. Mice only treated with PBS were used as blank control. Then these mice were routinely cared and observed daily. All mice were housed in a Specific Pathogen-Free (SPF) facility for all experiments [4, 5, 22-24]. All animal experiments were undertaken in accordance with the National Institute of Health “Guide for the Care and Use of Laboratory Animals” (NIH Publication No. 85-23, National Academy Press, Washington, DC, revised 1996), with the approval of the Laboratory Animal Center of the Second Military Medical University, Shanghai [5].
Radiation

60Co-gamma rays in radiation center (Faculty of Naval Medicine, Second Military Medical University, China) were used for the radiation purpose [4, 5, 23, 25, 26]. Mice and cells (with or without SB216763 pretreatment) were exposed to different doses of radiation, depending upon the requirement of the present study [4, 6, 23, 24, 27].

Survival assays

After the experiment treatment, mice returned to the animal facility and routinely cared after treatments. Survival was checked daily for 30 days [5, 26].

Cell viability analyses and apoptosis rate detection

L929 cell line was obtained from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (Shanghai, China). Cells were cultured in 6-well plates at 37 °C in a humidified atmosphere of 5% CO$_2$ with DMEM and 1640 Medium (PAA, Austria) containing 10% fetal calf serum (PAA, Austria) [6]. Exponentially growing cells were used for experiments. Cells were seeded in 96-well plates and pretreated with or without SB216763, 24h later, were irradiated or added LPS separately. Then, cells were further cultured for 48h. Cell viability was determined by WST assay using a Cell Counting Kit (Dojindo) [3]. Cells were prepared and labeled with Annexin V-FITC and propidium iodide (PI) (provided by BIPEC), following the manufacturer’s instructions as previously described [12].

Statistical analysis

Comparisons between experimental groups and relevant controls (but not survival curves) were performed using a Student’s t-test [5, 23, 26]. Differences in survival of the various groups of mice were assessed using Kaplan-Meier plus Cox Regression Analysis with the SPSS (Statistical Program for Social Sciences) software [4, 5, 22, 26]. The SPSS software generated a P value and Chi-Square value for each analysis; P< 0.05 was considered a statistically significant difference.

Results

SB216763 decreased LPS induced mice mortalities but increased radiation induced mice mortalities

Mice were pretreated with SB216763 then received LPS or total-body irradiation treatment and were monitored daily. After 30 days, we drew the survivorship curves. We found that all survivorship curves showed go-down trend. Higher concentration of injected LPS and dose of radiation leaded higher mortalities. Interestingly, SB216763 pushed the two similar curves to two different directions. In all different LPS dose (1000μg, 500μg, 200μg/mice), mice pretreated with SB216763, in the equal time point, comparing with mice only treated with LPS, showed higher survival rate (Fig. 1A). But on the contrary, mice pretreated with SB216763, exposed to 5, 7 and 9 Gy radiation, have lower survival rate, comparing with mice only treated with total-body irradiation (Fig. 1B).

So, these data above showed that that GSK-3β inhibition regulated LPS and radiation induced death, and attenuated LPS induced death but aggravated radiation induced death.

SB216763 decreased LPS induced cells death but increased radiation induced cells death

To confirm whether SB216763 has different effects on LPS and radiation induced death \textit{in vitro}, L929 cells were pretreated with or without SB216763 for 24h, and then treated with LPS or radiation. Cell viability and apoptosis were assayed. \textit{In vitro} results were similar with \textit{in vivo} results. SB216763 reduced the effect of LPS inducing L929 cells to death, and aggravated death induced by radiation (Fig. 2A, B). Next, we tried to confirm whether LPS and radiation can induce cell apoptosis with or without SB216763. Cells apoptosis were analyzed by FACS after exposure to 0.1μg/ml LPS or 5 Gy. We found that both induced cells apoptosis, but SB216763 reduced the effect of LPS, SB216763 together with radiation
resulted in more cell apoptosis (Fig. 2C, D). The similar results were obtained by using T cells (data not shown).

So, both in vivo and in vitro results indicated that GSK-3β played different roles in the death or apoptosis induced by LPS or radiation.

SB216763 reduced IL-6, but not TNF-α levels in vivo

What is the cellular mechanism involved in the process? Certainly, LPS could lead to lethal immunological response, and total-body irradiation is poisonous to cells in vivo, especially proliferating cells. However, which pro-inflammatory factors were involved in the death caused by LPS or radiation were not clearly. 24 h after LPS or radiation treatment, we euthanized the survival mice for measuring IL-6 and TNF-α in serum and found that LPS and radiation both caused the high level of IL-6 and TNF-α in serum (Fig. 3A, B, C, D). For SB216763 pretreated mice, the alteration of these two cytokine was different. SB216763 suppressed both the up-regulation of IL-6 caused by LPS and radiation (Fig. 3A, C). For mice treated with radiation, SB216763 showed more effect, almost reducing the level of IL-6 down to control level. The TNF-α induced by LPS and radiation seemed having no relationship with GSK-3β, the alteration caused by SB216763 showed no significant statistical difference.

It seemed that IL-6 induced by LPS and radiation could be suppressed by SB216763. So, is IL-6 the factor involved in the process related with GSK-3β?
IL-6−/− mice resisted to LPS induced death while increased more radiation induced mortalities

We tried to confirm the role of IL-6 involved in LPS and radiation by using IL-6 knock-out mice (IL-6−/−mice). IL-6−/−mice and WT mice were treated with LPS and radiation. All mice were monitored daily. After 30days, we drew the survivorship curves. In Fig. 4A, survival rate curve illustrated a significant increase in response to LPS treatment in IL-6−/− mice. In contrast, survival rate was decreased in IL-6−/−mice when they were treated with 7Gy comparing with IL-6−/−/WT mice (Fig. 4B). IL-6−/− mice exhibited the similar role of SB216763 in response to LPS or radiation.

So, these results supported our central hypothesis that SB216763 attenuated LPS induced mice or cell death but aggravates radiation induced mice or cell death both via reducing IL-6.

Discussion

To our best knowledge, it is the first time to prove that SB216763, an inhibitor of glycogen synthase kinase-3β, could attenuate LPS-induced death but aggravate radiation-induced death.
induced death both in vivo and in vitro. knock out IL-6 also attenuated LPS-induced death but aggravated radiation-induced death. Interestingly, SB216763 suppressed both IL-6 induced by LPS or radiation. Thus, we guessed that inhibition of GSK-3β attenuated LPS-induced death but aggravated radiation-induced death via IL-6.

It is interesting to found that glycogen synthase kinase-3β played different roles in LPS and radiation biology process. Comparing with radiation stimulation, LPS stimulation is
simple and well-studied [13, 19]. LPS is an extracellular signal, it does not alter or destroy intracellular material directly, but acts as a trigger initializing a cascaded reaction [19, 20]. In this study, It is the overreaction immune responses induced by LPS kill treated mice. Inhibition the expression of IL-6 attenuated LPS-induced death. The activation of TLRs stimulated immune cells and caused the secretion of cytokines and chemokines such as IL-6 and TNF-α to modulate innate and acquired immune response [13-15]. The most important signal pathways provoked by TLRs are the transcription factor NF-κB and mitogen-activated protein kinases (MAPKs) pathway, which regulate the expression of many immune and inflammatory genes [28]. We also proved that mice deficient in TLR4 were more susceptible to radiation, and Myd88, not TRIF, may be the critical adaptor in TLR4 induced radiation resistance [5].

GSK-3β plays a key role in numerous cell signaling pathways including inflammation. Many of the GSK-3β targets are components of the transcriptional machinery, especially transcription factors such as CREB [29], NF-κB or c-myc [30]. GSK-3β is a crucial regulator of innate inflammatory processes, it promotes TLR-induced production of pro-inflammatory IL-6 and TNF-α at least in part by promoting NF-κB activity in monocytes [8]. Inhibition of GSK-3β suppressed the expression of NF-κB mediated pro-inflammatory genes in LPS-stimulated macrophages such as NOX, IL-6 [13]. Our results further showed that SB216763 inhibited the activation of GSK-3β, thus attenuated the expression of NF-κB mediated pro-inflammatory cytokines IL-6, not TNF-α.

Recent concerns for the accidental or deliberate exposure of the general population to radiation due to terrorism have resulted in studies of agents to mitigate or treat the symptoms of radiation exposure. Various radioprotective strategies have been explored including compounds that scavenge free radical and modulate the DNA repair process, or growth factors and cytokines that function through receptor mediated mechanisms [6, 31, 32].

The toxicity of ionizing radiation is associated with massive apoptosis in radiosensitive organs [5, 33]. GSK-3β is a key regulator of radiation-induced apoptosis, and small molecule inhibitors of GSK-3β could protect irritated hippocampal neurons from apoptosis and improve cognitive performances in irradiated mice [34]. Meanwhile, another study reported that the small molecule inhibitors of GSK-3β prevented radiation-induced death in mouse intestine by reducing apoptosis of the epithelial cells of the crypts and dramatically increase animal survival [21]. Since our results have shown that GSK-3β inhibitor elicited protective role in LPS induced death, we explored the possibility of developing small molecule inhibitors of GSK-3β as radiation protectors against tissue injury. In our study, we found that inhibition GSK-3β did not serve as radiation-protectors, which was inconsistent with previous reports. Perhaps this outcome was dependent on cell types and other experimental conditions. On the contrary, we found inhibition of GSK-3β caused higher mortalities in mice treated with radiation and IL-6 was involved in the mechanism. Does IL-6 have a role of radiation protection? What is the relationship between inflammation and radiation exposure? A better understanding of the molecular, cellular and physiological mechanisms related to the effects of GSK-3β on TLR and radiation requires further studies.

Conflict of Interest

The authors have declared that no competing interests exist.

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Grants No. 31070762 & 31100605).
Li et al.: Inhibition of GSK-3β Aggravates Radiation-Induced Death via IL-6

References

1. Abbott A: Radiation risks: Raiders of the lost archive. Nature 2012;485:162-163.
2. Brumfiel G: Fallout forensics hike radiation toll. Nature 2011;478:435-436.
3. Lin J, Liu C, Gao F, Mitchel RE, Zhao L, Yang Y, Lei J, Cai J: Mir-200c enhances radiosensitivity of human breast cancer cells. J Cell Biochem 2013;114:606-615.
4. Liu C, Gao F, Li B, Mitchel RE, Liu X, Lin J, Zhao L, Cai J: Trf4 knockout protects mice from radiation-induced thymic lymphoma by downregulation of Il6 and mir-21. Leukemia 2011;25:1516-1519.
5. Liu C, Zhang C, Mitchel RE, Cui J, Lin J, Yang Y, Liu X, Cai J: A critical role of toll-like receptor 4 (tlr4) and its' in vivo ligands in basal radio-resistance. Cell Death Dis 2013;4:e649.
6. Yang Y, Gao F, Zhang H, Hunag Y, Zhang P, Liu C, Li B, Cai J: Molecular hydrogen protects human lymphocyte ahl-1 cells against c heavy ion radiation. Int J Radiat Biol 2013, epub ahead of print.
7. Wang Z, Smith RS, Murphy M, Piloto O, Somervaille TC, Cleary ML: Glycogen synthase kinase 3 in ml leukemia maintenance and targeted therapy. Nature 2008;455:1205-1209.
8. Hoefflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR: Requirement for glycogen synthase kinase-3beta in cell survival and nf-kappab activation. Nature 2000;406:86-90.
9. Taelman VE, Dobrovolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD, De Robertis EM: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 2010;143:1136-1148.
10. Price MA, Kalderon D: Proteolysis of the hedgehog signaling effector cubitus interruptus requires phosphorylation by glycogen synthase kinase 3 and casein kinase 1. Cell 2002;108:823-835.
11. Harwood AJ, Plyte SE, Woodgett J, Strutt H, Kay RR: Glycogen synthase kinase 3 regulates cell fate in dictyostelium. Cell 1995;80:139-148.
12. Jope RS, Johnson GV: The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 2004;29:95-102.
13. Martin M, Rehani K, Jope RS, Michalek SM: Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 2005;6:777-784.
14. Jope RS, Yuskaitis CJ, Beurel E: Glycogen synthase kinase-3 (gsk3): Inflammation, diseases, and therapeutics. Neurochem Res 2007;32:577-595.
15. Uematsu S, Akira S: Toll-like receptors and innate immunity. J Mol Med (Berl) 2006;84:712-725.
16. Ben-Ari Z, Avlas O, Fallach R, Schmilovitz-Weiss H, Chepurko Y, Pappo O, Hochhauser E: Ischemia and reperfusion liver injury is reduced in the absence of toll-like receptor 4. Cell Physiol Biochem 2012;30:489-498.
17. Liu N, Liu J, Ji Y, Lu P: Toll-like receptor 4 signaling mediates inflammatory activation induced by c-reactive protein in vascular smooth muscle cells. Cell Physiol Biochem 2010;25:467-476.
18. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K: Role of the toll-like receptor 4 in neuroinflammation in alzheimer’s disease. Cell Physiol Biochem 2007;20:947-956.
19. Barton GM, Medzhitov R: Toll-like receptor signaling pathways. Science 2003;300:1524-1525.
20. Lapara NJ, 3rd, Kelly BL: Suppression of lps-induced inflammatory responses in macrophages infected with leishmania. J Inflamm (Lond) 2010;7:8.
21. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R: Control of translation and mrna degradation by mirnas and sirmas. Genes Dev 2006;20:515-524.
22. Zhang C, Lin J, Cui J, Li B, Liu C, Wang J, Gao F, Cai J: Radioprotection of bone marrow hematopoiesis by cpg-oligodeoxynucleotides administered to mice after total-body irradiation. J Radiat Res 2011;52:828-833.
23. Liu C, Li B, Cheng Y, Liu J, Hao J, Zhang S, Mitchel RE, Sun D, Ni J, Zhao L, Gao F, Cai J: Mir-21 plays an important role in radiation induced carcinogenesis in balb/c mice by directly targeting the tumor suppressor gene big-h3. Int J Biol Sci 2011;7:347-363.
24. Zhao L, Zhou C, Zhang J, Gao F, Li B, Chuai Y, Liu C, Cai J: Hydrogen protects mice from radiation induced thymic lymphoma in balb/c mice. Int J Biol Sci 2011;7:297-300.
25. Yang Y, Li B, Liu C, Chuai Y, Lei J, Gao F, Cui J, Sun D, Cheng Y, Zhou C, Cai J: Hydrogen-rich saline protects immunocytes from radiation-induced apoptosis. Med Sci Monit 2012;18:BR144-148.
26. Cui J, Yang Y, Cheng Y, Gao F, Liu C, Zhou C, Li B, Cai J: Protective effects of carboxyfullerene in irradiated cells and balb/c mice. Free Radic Res 2013;47:301-308.
Yang Y, Cui J, Gao F, Li B, Liu C, Zhang P, Huang Y, Liu W, Liu H, Cai J: Whole body irradiation induces cutaneous dendritic cells depletion via nf-kappab activation. Cell Physiol Biochem 2013;32:200-209.

Okahara H, Yagita H, Miyake K, Okumura K: Involvement of very late activation antigen 4 (vla-4) and vascular cell adhesion molecule 1 (vcam-1) in tumor necrosis factor alpha enhancement of experimental metastasis. Cancer Res 1994;54:3233-3236.

Tullai JW, Chen J, Schaffer ME, Kamenetsky E, Kasif S, Cooper GM: Glycogen synthase kinase-3 represses cyclic amp response element-binding protein (creb)-targeted immediate early genes in quiescent cells. J Biol Chem 2007;282:9482-9491.

Vincent T, Kukalev A, Andang M, Pettersson R, Percipalle P: The glycogen synthase kinase (gsk) 3beta represses rna polymerase i transcription. Oncogene 2008;27:5254-5259.

Qian L, Shen J, Chuai Y, Cai J: Hydrogen as a new class of radioprotective agent. Int J Biol Sci 2013;9:887-894.

Mei K, Zhao S, Qian L, Li B, Ni J, Cai J: Hydrogen protects rats from dermatitis caused by local radiation. J Dermatolog Treat 2013, epub ahead of print.

Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, Kurnasov OV, Fort FL, Osterman AL, Didonato JA, Feinstei nE, Gudkov AV: An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008;320:226-230.

Thotala DK, Hallahan DE, Yazlovitskaya EM: Inhibition of glycogen synthase kinase 3 beta attenuates neurocognitive dysfunction resulting from cranial irradiation. Cancer Res 2008;68:5859-5868.