Development of an interactive, web-based shared care plan to facilitate the follow-up care of colorectal cancer patients

CURRENT STATUS: POSTED

Jane Taggart
University of New South Wales

Melvin Chin
South Eastern Sydney Local Health District

Winston Liauw
South Eastern Sydney Local Health District

John Lewis

Alex Dolezal
cesphpn

John Plahn
New South Wales Ministry of Health

Mark Fort Harris m.f.harris@unsw.edu.au
Corresponding Author
ORCiD: 0000-0002-0705-8913

DOI:
10.21203/rs.2.13454/v1

SUBJECT AREAS
Health Economics & Outcomes Research Health Policy

KEYWORDS
shared care, follow-up, care plan, cancer, primary health care, internet access
Abstract

Introduction A shared model of care between cancer services and primary health care is safe and acceptable and can address the increasing demands on cancer services for long term follow-up. This paper describes the challenges developing an interactive shared care plan for colorectal cancer follow-up care.

Methods A systematic literature review identified the use, functionality, and impact of web-based shared care plans to support cancer follow-up. Workshops with key stakeholders and consultations with clinicians, consumers and information service providers were conducted to agree on a model of care and technology options to interactively share a care plan.

Results Seventeen papers reported five web-based shared care plan systems for cancer follow-up. These systems supported the creation and/or access to view or share the care plans using email or by downloading and printing a copy. The challenges we found included issues with the security, privacy and sharing of patient information between public health services and primary health care and poor integration of clinical information systems. We selected a primary care practitioners’ care planning system as it was interactive, integrated with primary care practitioner’ clinical information systems, was relatively inexpensive and addressed the sharing of clinical information with external clinicians to the public health system.

Conclusion Primary care shared care planning systems seem a suitable option for sharing clinical information between a cancer service and primary care practitioners. We plan to evaluate the feasibility and acceptability of this interactive shared care plan to support shared cancer follow-up care.

Background
An estimated 17,004 new cases of colorectal cancer were diagnosed in 2018 and in the last 30 years, the five year survival rate for colorectal cancer increased from 48% to 69% in Australia(1). Hospital based Cancer Services continue to provide long term follow-up care for an increasing number of survivors which is not sustainable.

Sharing long term follow-up care using a care plan between cancer specialists, primary care practitioners (PCP) and other care providers can help address this issue. It has been demonstrated that this model of care is safe and acceptable to patients and providers(2–7), can positively impact on patient attitudes about their health care(8) and does not have different survival outcomes from specialist care(7, 9). The majority of cancer patients have PCPs who are involved in their care but have little role in their long term cancer care and surveillance. Improving communication and support between specialists and PCPs may increase the role of PCPs in managing follow-up cancer care(10).

Information and communication systems can support a shared care model by providing care team members with access to the care plan and a vehicle for collaboration(11). A shared care plan (SCP) system needs to be interactive with multiple user access allowing team members to confirm acceptance of their roles, track that tasks are completed, notify when tasks are due and share information and results(12, 13).

We aim to pilot a follow-up shared model of care for patients who have completed colorectal cancer treatment, using a semi-integrated and collaborative platform in which patients, specialists, PCPs and other care providers interact and share an agreed care plan.

This paper explores the use of web-based SCP systems to support cancer follow-up care, identifies current technologies to share a care plan between a public cancer service and primary health care providers and the challenges getting an interactive SCP to the pilot stage.
Setting

The St George Cancer Care Centre is situated in a public hospital in the South Eastern Sydney Local Health District in the state of New South Wales, Australia. The PCPs in the area are situated within the Central and Eastern Sydney Primary Health Network boundary that has, as one of its aims, to improve the coordination of care.

There is currently no model of shared care between the cancer service and primary health care. Communication between the cancer service and PCPs is limited and usually one way. This may include a letter from the medical oncologist to the patient’s PCP that summarises the treatment the patient has received. Conversely, the specialist may receive a PCP Care Plan from the PCP to sign and provide information about the patient’s care as a requirement for the PCP to claim the item of service.

The cancer service uses a commercial oncology information system (ARIA® Oncology Information System, Varian Medical Systems, Inc.) which is not well integrated with other District information systems. Patient administrative details are held in a Patient Administration System and pathology and radiology results are captured in two other systems.

GPs use various commercial clinical information systems with the two most common systems being used by 94% of the general practices within the area in which the cancer service is located. Most PCPs are enabled to send and receive secure messages, such as sending referrals and receiving discharge summaries, letters from specialists and pathology and diagnostic results, but this is limited as many specialists and allied health clinicians do not use secure messaging.

Methods

We undertook a systematic literature review to identify the use, functionality and impact
of web-based systems to share a cancer care plan for patients who have completed treatment. We searched Medline, Scopus, Web of Science, Cochraine and CINAHL using the following search terms: “informatics” or “internet” and “care plan” and “cancer”.

Eligibility criteria included that the SCP was for follow-up cancer care and that it was partly or fully web-based. All types of research papers and perspectives were accepted. Conference abstracts and letters to editors were excluded. Papers needed to be from OECD countries and in English.

Duplicates were first removed and papers were screened by title and abstract and the full articles assessed for eligibility by a researcher (JT). All excluded papers were screened by a second researcher (MH). Data was extracted from these papers into a spreadsheet which included author, year, country, a description of the SCP, who created/completed the SCP, study type, results and impacts of the SCP.

The key stakeholders participating in the consultations and workshops included medical oncologists, cancer nurses, GPs, a consumer from the Translational Cancer Research Network, Local Health District representatives and the Primary Health Network (which has responsibility for improving access to primary health services in the district), and a state government eHealth body (eHealth NSW(15) which is responsible for leading information and communication technology policy and programs for state health services).

The two workshops and individual consultations were used to identify a shared model of follow-up cancer care, consider the options for sharing the care plan and to identify and agree on a technology solution for the pilot. Text records and transcripts of the workshops and consultations were aggregated and analysed. An ethics application was not required as this was a service improvement initiative by the South Eastern Sydney Local Health District which met the NSW Health Quality Improvement Ethical Review policy requirements (Quality Improvement and Ethical Review GL2007_20). Workshop
participants verbally consented to the workshop being recorded and were aware that their contributions would be used for the project and subsequent publications.

Results

Literature review results

Out of 225 papers, seventeen were included that identified five web-based cancer SCP. These were based in the USA (3 SCP), The Netherlands (1 SCP) and one in Sweden (1 SCP) which was under development. The Livestrong and OncoLife SCP were the same SCP which had been given different names over time. (See Figure 1 for the PRISMA search flowchart and Table 1 for a summary of the included papers).

Insert Figure 1: PRISMA search flowchart about here

The papers included feasibility and evaluation studies of the SCP technology (16–18), descriptive studies using SCP data and/or surveys/questionnaires on user satisfaction and participation (19–26), predictive modelling as to who receives a SCP(27), a review on the adherence, advantages and limitations of cancer SCP (28), a review with a focus on nursing practice(29) and a description of SCP systems that were under development at the time(30, 31).

The SCP were usually initiated by physicians/oncologists and cancer nurses. One SCP supported cancer survivors and their families and friends to create the SCP. The SCP was populated using the online responses to survey questions and clinical guidelines(16, 17, 19, 20, 22–25, 27, 29, 32, 33).

There was only one system that reported being integrated with the Electronic Medical Record (EMR) at a cancer centre. Demographics and treatment data were extracted from the EMR into the web-based platform and the final SCP downloaded back into the patient’s record in the EMR(16).
Two SCP could be shared via internet login(21, 28, 31) while all other SCPs needed to be printed or emailed as a PDF.

There were no papers reporting SCP systems that had interactive functionalities supporting collaboration and monitoring of shared care. None of the papers reported formalised models of shared care between cancer services and primary care, although 32% of the survivors who had used one model reported they were receiving follow-up care from an oncologist and a PCP(20) and survivors older than 70 years were more likely to have a primary care provider(32).

Impacts reported in the papers, included that it changed the way survivors participated in health care and improved communication with health providers(19) and it was an effective way to communicate(21).

Most survivors using one model planned to share it with their PCPs(17, 19, 22–25).

Reasons for not sharing the care plan were that their provider would not care about the plan, they did not feel the plan was relevant to the provider or that the SCP was too long or it would upset the provider(23, 25). In other studies users reported that the SCP was easy to use (17), they were satisfied with the tool(17, 19, 20, 22–24, 29) and found it useful(18). In one study, survivors who were most likely to receive a SCP were managed by a team and were over the age of 70 years at diagnosis(27).

Insert Table 1: Summary of included papers for web-based cancer shared care plans about here

Key stakeholder workshops and consultation results

The workshops and consultations identified the challenges in implementing an interactive SCP, the preferred shared model of care and technology options to support the model.

Challenges to implementing the interactive SCP were mostly governance issues including security, privacy and the sharing of patient information. There were concerns about the
security of systems not managed or controlled by the Local District Health Service and uncertainty as to whether electronic clinical information could be shared with PCPs and other external health providers under existing policies and regulations. This was a major challenge given the Local Health District would only provide access to a SCP to their own employees. Another challenge identified was the lack of incentives for PCPs to participate and engage in cancer shared care under the current fee for service payment system.

It was agreed that the model of care needed to involve PCPs as members of the cancer care team. Patients and their PCPs would be invited to participate by the cancer specialist after a patient’s acute cancer treatment was completed. Our initial thinking was that the cancer specialist would create the SCP and the cancer nurse coordinator would organise and monitor the sharing of care. PCPs would be provided with tasks to monitor reoccurrence, detect other cancers and to manage the late and long term side effects of treatment. Other tasks would address psychosocial issues, lifestyle and other preventive care needs of the patient, such as immunisations. The care team would feedback information after patient visits, indicate when tasks were completed and upload any relevant results into the care plan for the care team to view. A nurse coordinator would monitor that care was being provided and was timely. Patients would have access to their care plan to self-monitor, report on progress or add their own goals as well as to provide feedback. They could be fast tracked back to the Cancer Service and PCPs could get advice from the cancer specialist through the shared care system or by phone, dependent on urgency.

The technology options identified in the workshops had to support the model of care, the requirements of the state health system and the needs of consumers and the care team. Some of the requirements included that it be scalable to different cancer types and other
services and conditions, be consistent and compliant with state and national ehealth and privacy standards, be easy to use, integrate with clinical systems, allow multiple user access, be affordable and able to be implemented relatively quickly for the pilot. It was initially conceived that this system would be hosted and maintained by the Health District or at the state level by NSW Health. The options identified for sharing the care plan are summarised in Table 2.

Insert Table 2—The advantages and disadvantages of cancer shared care planning options about here

The first three options (My Health Record (MHR) - national electronic health record, secure messaging and HealtheNet) did not have the functionality to allow fully interactive collaboration between the specialist and primary care clinicians. The care plan could not be shared in an appropriate format in MHR. The care plan could be shared using secure messaging and HealtheNet, but there were barriers to PCPs accessing HealtheNet as access was restricted to state health employees.

The next option was an off the shelf collaborative platform. These are developed particularly for businesses to share information and collaborate. We set up a care plan in a commercially available collaborative platform as a proof of concept but were informed that patient information could not be shared using this platform due to the state health privacy and security concerns around the sharing of clinical information with external health providers. Other barriers with using this platform were difficulties with using the system, access and scalability.

Given that sharing information at the Local Health District level with external providers was a problem, we looked to the primary health care sector for off the shelf solutions. A number of PCP care planning solutions were available that were integrated with PCP information systems, supported patient and care team access and were relatively easy to
use. Eight of these systems had self-declared compliance with the Commonwealth Department of Health minimum requirements for shared care planning software as part of the Health Care Home trials (34) and two of the systems were utilized in the NSW Health Integrated Care trials with varying success. We selected a system based on a set of requirements including compliance (e.g. ISO information security management, mandatory privacy and security legislation and NSW Health standards and guidelines for information management and sharing information, current penetration test), technical requirements (e.g. integrated with PCP systems), functional requirements (e.g. notifications and alerts, supports care pathway, easy to navigate, customisable cancer care plan template), readiness and maturity of solution, scalability and costs to develop and maintain the system.

To utilize PCP care planning systems required a rethink of the care plan pathway (see Figure 2). The process would be initiated by the specialist and providing a treatment summary to the PCP and inviting them to join the shared care team. The PCP would then initiate a standard care plan (for that particular cancer type), upload patient and clinical information (including the treatment summary provided by the oncologist) and provide access rights to the cancer specialist and other providers (eg allied health). The specialist would then review and adjust the schedule of tasks, add in who was responsible and the timeframe for their completion. The PCP (with the patient) would then approve the final care plan and set up patient recall in their practice system. The PCP and oncologist and other team members would notify when their tasks were completed and share other relevant information collected during patient visits. Patients could also notify tasks they were responsible for (eg attending a physical activity program). The cancer nurse coordinator would monitor the patient visits and tasks as an additional check that shared care was being provided and to review the program.
The PCP care planning system would provide a workaround solution to the barrier of sharing clinical information from the health District to external health providers. A disadvantage was that it would not integrate with the District and cancer service information systems but could have the capacity to in the future.

Discussion

eHealth solutions can enable the coordination of care, the safe sharing of patient information, knowledge and individualised SCP.(35) However, the literature on the use of ehealth solutions in follow-up cancer care has focused on the creation of individualized SCP that are static and content based. There is a gap in the literature on the use of ehealth tools to enable models of cancer shared follow-up care by supporting communication about patient needs and goals, the sharing of clinical information, agreement on the roles and tasks of the care team and surveillance or tracking the completion of tasks.

We found challenges in sourcing an ehealth system for a pilot that was not costly, relatively easy to access and use and met our requirements. While the pilot solution does not meet all the requirements, it does integrate well with PCP clinical systems and provides a workaround for sharing clinical information between the cancer service and PCPs.

The issue of sharing information was also identified by one of the state’s Integrated Care demonstration projects which reported that service providers and patients were fearful and unwilling to share information because of privacy concerns.(35) The state health service privacy manual for health information states that health information can be disclosed as long as it is directly related to the primary purpose.(36) It could be considered that follow-up care is related to the primary purpose of cancer
treatment.
To address security we arranged for the District to undertake a compliance check of the SCP tool and obtained executive approval to use the system.
The SCP system supports PCPs to claim reimbursement through the use of MBS Items for GP Management Plans and Team Care Arrangements which may assist with PCP participation. We also believe if their patient wants to participate in shared care then PCPs may be more likely to agree, particularly if they are supported with education and ongoing communication/links with the cancer service. We want PCPs to be confident with follow-up care and feel they are part of the cancer care team and for patients to be assured that a shared care arrangement is safe.
In the long term the issue of funding SCP systems will be a challenge given that health providers participating in shared care come from a range of services and jurisdictions. Who will ultimately pay for it? The PCP care planning system we are piloting takes a percentage of each care plan MBS Item generated. We are covering the cost for this in the pilot but in the long term this would be paid by the PCP. Future iterations of the SCP systems will require funding to integrate with the Local Health District information systems and the platform could possibly be managed within the public health system. In the long term, incentives will be needed to support the uptake of ehealth systems (such as SCP) and to minimize any disproportionate costs and savings across the services(35) involved in shared care.
While the SCP system does not address all the functional requirements (such as integration with the cancer service systems) it does offer a solution. We are currently evaluating its feasibility and acceptability. Our aim is to develop a system that is scalable to other cancer types, and other Local Health District services sharing care with primary health care. Using SCP systems that integrate with PCP clinical information systems
provides a good starting point for sharing care plans and collaboration between cancer services, PCPs, patients and other care team members. This work will inform other state and national SCP strategies.

Conclusion

Cancer follow-up shared models of care require interactive SCP systems that enable collaboration, coordination and surveillance of care. General practice shared care planning systems seem a suitable option for sharing clinical information between a cancer service and PCPs. We have developed a feasible solution which of course needs further evaluation to determine its impact on work practices both in Cancer Services and primary care and its impact and outcomes for patients.

List Of Abbreviations

ISO International Organisation for Standardisation
PCP Primary care provider
SCP Shared care plan

Declarations

Ethics approval and consent to participate

Workshop participants verbally consented to the workshop being recorded and were aware that their contributions would be used for the project and subsequent publications. Ethics approval was not required as this was a service improvement initiative by the South Eastern Sydney Local Health District which met the NSW Health Quality Improvement Ethical Review policy requirements (Quality Improvement and Ethical Review GL2007_20).

Consent for publication

Not applicable

Availability of data and materials

The datasets used and/or analysed during the current study are available from the
corresponding author on reasonable request

Competing interests
“The authors declare that they have no competing interests”

Funding
Three grants have contributed to this project:

- South Eastern Sydney Local Health District, The Inspiring Ideas Challenge 2017;
- Translational Cancer Research Network Translational, Bioinformatics for the computational infrastructure 2016; and
- Cancer Institute NSW Innovations in Cancer Control, 2018.

Authors contributions
JT undertook the systematic literature review, conducted, analysed and interpreted the data from the consultations and workshops and was a major contributor in writing the manuscript.

MC was a major contributor to developing the study and participated and informed its implementation, was involved in interpreting results and contributed to writing the manuscript.

WL informed the study development and implementation, participated in the interpretation of results, contributed to the consultations and contributed to writing the manuscript.

JL informed the study from the consumers perspective, participated in the consultations and workshops and contributed to writing the manuscript.

AD informed the study from the primary health care organisation and information technology perspective, contributed to the project development and contributed to writing the manuscript.

JP informed the project from the ehealth perspective, contributed to its development, was a major contributor to the workshops and contributed to writing the manuscript.
MH was a major contributor to developing and implementing the study, conducting the systematic literature review, interpreting results and was a major contributor to writing the manuscript.

Acknowledgements

We would like to acknowledge the:

members of the project Steering Committee and all those who participated in the consultations; and the funders of this project:
South Eastern Sydney Local Health District, The Inspiring Ideas Challenge 2017;
the Translational Cancer Research Network Translational Bioinformatics for the computational infrastructure 2016; and the Cancer Institute NSW 2018.

References

1. AIHW. Colorectal and other digestive-tract cancers. Australian Institute of Health and Welfare, Canberra; 2018 12/10/2018.
2. Schütze H, Chin M, Weller D, Harris MF. Patient, general practitioner and oncologist views regarding long-term cancer shared care. Family Practice. 2017:cmx105-cmx.
3. Michael Jefford, Nicole Kinnane, Paula Howell, Linda Nolte, Spiridoula Galetakis, Gregory Bruce Mann, et al. Implementing novel models of posttreatment care for cancer survivors: Enablers, challenges and recommendations. Asia-Pacific Journal of Clinical Oncology. 2015;11(4):319–27.
4. Blaauwbroek R, Tuinier W, Meyboom-de Jong B, Kamps WA, Postma A. Shared care by paediatric oncologists and family doctors for long-term follow-up of adult childhood cancer survivors: a pilot study. The Lancet Oncology. 2008;9(3):232–8.
5. Giles C, Nehill C, Milch V, Zorbas H. Shared follow-up care for early breast cancer - results from an Australian national demonstration project. BMC Health Services Research. 2014;14(Suppl 2):P44-P.
6. Giudice MED, Grunfeld E, Harvey BJ, Piliotis E, Verma S. Primary Care Physicians’ Views
of Routine Follow-Up Care of Cancer Survivors. Journal of Clinical Oncology. 2009;27(20):3338–45.

7. Zhao Y, Brettle A, Qiu L. The Effectiveness of Shared Care in Cancer Survivors-A Systematic Review. International journal of integrated care. 2018;18(4):2-.

8. Nielsen JD, Palshof T, Mainz J, Jensen AB, Olesen F. Randomised controlled trial of a shared care programme for newly referred cancer patients: bridging the gap between general practice and hospital. Quality and Safety in Health Care. 2003;12(4):263–72.

9. Grunfeld E LM, Julian JA, et al.. Randomized Trial of Long-Term Follow-Up for Early-Stage Breast Cancer: A Comparison of Family Physician Versus Specialist Care.. Journal of Clinical Oncology. 2006;24:848–55.

10. Johnson CE, Lizama N, Garg N, Ghosh M, Emery J, Saunders C. Australian general practitioners’ preferences for managing the care of people diagnosed with cancer. Asia-Pacific Journal of Clinical Oncology. 2014;10(2):e90-e8.

11. Foy R HS, Rubenstein L, et al.. Meta-analysis: Effect of interactive communication between collaborating primary care physicians and specialists. Annals of Internal Medicine 2010;152(4):247–58.

12. Harris MF AJ, Crabtree BF, Levesque J-F, Miller WL, Gunn JM, et al.. Interprofessional teamwork innovations for primary health care practices and practitioners: evidence from a comparison of reform in three countries.. Journal of multidisciplinary healthcare 2016;9:35–46.

13. Emery JD, Shaw K, Williams B, Mazza D, Fallon-Ferguson J, Varlow M, et al. The role of primary care in early detection and follow-up of cancer. Nature Reviews Clinical Oncology. 2013;11:38.

14. Taggart J HM. Central and Eastern Sydney Primary Health Network Shared Care Planning Final Report Univeristy of NSW, Centre for Primary Health Care and Equity; 2018.
15. NSW e. http://www.ehealth.nsw.gov.au/ [25/09/2018]. Available from: http://www.ehealth.nsw.gov.au/.

16. Hill-Kayser CE, Jacobs LA, Gabriel P, Palmer SC, Hampshire MK, Vachani C, et al. Feasibility study of an electronic interface between internet-based survivorship care plans and electronic medical records. Journal of Oncology Practice. 2016;12(4):e380-e7.

17. Szalda Dava SL, Schapira Marilyn M., Jacobs Linda, Kim Esther, Vachani Carolyn, Metz James, Hill-Kayser Christine. Internet-Based Survivorship Care Plans for Adult Survivors of Childhood Cancer: A Pilot Study. Journal of Adolescent and Young Adult Oncology. 2016;5(4):351-4.

18. Tevaarwerk AJ, Wisinski KB, Buhr KA, Njiaju UO, Tun M, Donohue S, et al. Leveraging Electronic Health Record Systems to Create and Provide Electronic Cancer Survivorship Care Plans: A Pilot Study. Journal of Oncology Practice. 2014;10(3):e150-e9.

19. Hill-Kayser CE, Vachani CC, Hampshire MK, Lullo G, Jacobs LA, Metz JM. Impact of internet-based cancer survivorship care plans on health care and lifestyle behaviors. Cancer. 2013;119(21):3854-60.

20. Hill-Kayser CE, Vachani C, Hampshire MK, Jacobs LA, Metz JM. An internet tool for creation of cancer survivorship care plans for survivors and health care providers: design, implementation, use and user satisfaction. Journal of medical Internet research. 2009;11(3):e39-e.

21. Blaauwbroek R, Barf HA, Groenier KH, Kremer LC, van der Meer K, Tissing WJE, et al. Family doctor-driven follow-up for adult childhood cancer survivors supported by a web-based survivor care plan. Journal of cancer survivorship: research and practice. 2012;6(2):163-71.

22. Frick MA, Vachani CC, Hampshire MK, Bach C, Korzeniowski KA–, Metz JM, et al. Survivorship after treatment of pancreatic cancer: insights via an Internet-based
survivorship care plan tool. Journal of Gastrointestinal Oncology. 2017;8(5):890-6.

23. Frick MA, Vachani CC, Hampshire MK, Bach C, Arnold-Korzeniowski K, Metz JM, et al. Survivorship after lower gastrointestinal cancer: Patient-reported outcomes and planning for care. Cancer. 2017;123(10):1860-8.

24. Frick MA, Vachani CC, Bach C, Hampshire MK, Arnold-Korzeniowski K, Metz JM, et al. Survivorship and the chronic cancer patient: Patterns in treatment-related effects, follow-up care, and use of survivorship care plans. Cancer. 2017;123(21):4268-76.

25. Benci JL, Vachani CC, Bach C, Arnold-Korzeniowski K, Hampshire MK, Metz JM, et al. Identifying barriers to cancer survivors sharing their survivorship care plans with their healthcare provider. Journal of Cancer Survivorship. 2018;12(5):632-8.

26. Dava S, M. SM, A. JL, C. PS, Carolyn V, James M, et al. Survivorship Care Planning for Young Adults After Cancer Treatment: Understanding Care Patterns and Patient-Reported Outcomes. Journal of Adolescent and Young Adult Oncology. 2018;7(4):430-7.

27. Benci JL, Minn AJ, Vachani CC, Bach C, Arnold-Korzeniowski K, Hampshire MK, et al. Survivorship care planning in skin cancer: An unbiased statistical approach to identifying patterns of care-plan use. Cancer. 2018;124(1):183-91.

28. M. Monica Gramatges FBdN, Jason King, Marc E. Horowitz, Michael Fordis, David G. Poplack. Improving Childhood Cancer Survivor Care Through Web-Based Platforms. Oncology Journal. 2018;32(1).

29. Vachani C, Di Lullo GA, Hampshire MK, Hill-Kayser CE, Metz JM. Nursing Resources: Preparing Patients for Life After Cancer Treatment. AJN The American Journal of Nursing. 2011;111(4):51-5.

30. Westman B CB. My Cancer Care Plan as a web solution. Studies in Health Technology & Informatics. 2016;225:921-2.

31. Horowitz ME, Fordis M, Krause S, McKellar J, Poplack DG. Passport for care:
implementing the survivorship care plan. Journal of oncology practice. 2009;5(3):110-2.

32. Hill-Kayser CE, Vachani C, Hampshire MK, Di Lullo GA, Metz JM. The role of Internet-based cancer survivorship care plans in care of the elderly. Journal of Geriatric Oncology. 2010;2(1):58-63.

33. Vachani C, Hampshire MK, Hill-Kayser C, Jacobs L, Metz J. The essential role of nurses in the development and utilization of an online cancer survivorship care plan. Oncology Nursing Forum. 2009;36(3):6-.

34. Health AGDo. Health Care Homes 2018 [Available from: http://www.health.gov.au/internet/main/publishing.nsf/Content/health-care-homes.

35. Stroetmann KA. Achieving the integrated and smart health and wellbeing paradigm: A call for policy research and action on governance and business models. International Journal of Medical Informatics. 2013;82(4):e29-e37.

36. NSW Health. Privacy Manual for Health Information. 2015.

Tables

Table 1: Summary of included papers for web-based cancer shared care plans

SCP Description and functionality	Author, year, country	Who completed SCP?	How shared?
Livestrong and OncoLife. These are the same internet based SCP generators for cancer survivors publicly accessible through OncoLink and used mainly in the USA, but also in Canada, the UK, Australia and other regions. It was developed by the Abramson Cancer Centre at the University of Pennsylvania. The SCP is created based on responses by users to a survey. It includes information on surveillance, risk of long term effects, overall health (based on treatment types and guidelines) and links to resources. Users include physicians, patients and family members. Different patient and physician versions of the SCP are now generated. Initially developed in 2007.	Hill-Kayser et al, 2009, USA	Patients, health care providers and family/friends of survivors	Information not provided
	Hill-Kayser et al, 2010, USA	Patients, health care providers and family/friends of survivors	Printed or electronic PDF
	Vachani C et al, 2011, USA	Cancer survivors (58%) and health providers (33% which were mostly nurses or nurse practitioners)	Printed copy
	Hill-Kayser et al, 2013, USA	Cancer survivors	Printed copy
	Hill-Kayser et al, 2016, USA	Nurse practitioner	Printed copy
	Szalda et al,	Cancer survivors	Available
Publication	Year, Country	User Group	Description
------------	---------------	------------	-------------
Frick et al, May 2017, USA	Patients, family members or health care providers	Generates a PDF care plan	
Frick et al, 2017, USA	Patients, family members or health care providers	Generates a PDF care plan	
Frick et al, Nov 2017, USA	Patients, family members or health care providers	Generates a PDF care plan	
Szalda et al, 2018, USA	Cancer survivors (about 77%), and health care providers	Information not provided	
Benci, Minn et al, 2018, USA	Physician	Information not provided	
Benci, Vachani et al, 2018, USA	Survivors, health care providers and family/friends of survivors	Information not provided	

Childhood Cancer SCP
SCP shared via website login with adult childhood cancer survivors and family doctor. Included treatment summary, risk of long term effects, follow-up recommendations that could be printed. No personal identifiers in SCP to secure confidentiality.

Passport for Care - Web-based SCP that patients and healthcare professionals can access and view. Cancer survivor clinics enter treatment history, algorithm based on guidelines identifies potential late effects, recommended tests and frequencies and patient education information. Two versions of the care plan are created – one for clinicians and a plain language one for patients in English and Spanish. Includes treatment summary, personally tailored SCP, current and late effects and recommended follow-up testing and screening.

University of Wisconsin Cancer Summary and Care Plan - created and integrated in EHR. Included an introduction, treatment summary, follow-up plan, glossary of terms and links to resources. Patients had access to SCP using website login.

Publication	Year, Country	Role	Description
Childhood Cancer SCP			Cancer survivors and family doctors can view on website or as a printed booklet
Blauwbroek et al, 2012, The Netherlands	Oncologist		
Horowitz et al	Health care provider		When developed it will be viewed on the website
Gramatges et al, 2018, USA	Cancer survivor clinic		View on website
Tevaarwerk et al, 2014, USA	Oncologist		Initially viewed on website to track usage for the study, but then survivors and PCPs shared
Non-commercial web-based SCP in development. Will include individualised treatment and rehabilitation information, alerts, surveys and links to resources. SCP will be emailed to cancer patients and survivors.

Options	Advantages	Disadvantages
My Health Record	• Patient controlled	• Does not have care plan functionality needs work around if possible
(an online summary of an individual’s health record)	• Care team access	• Not interactive to support collaborati
	• View diagnostic and pathology results	• Not all GP practices are connected to (about 50% in area)
	• Integrated with general practice clinical information systems	• Cancer Information System not integi
		with MHR
Secure messaging	• Most GPs have secure messaging installed	• Not interactive
(Argus, HealthLink and Medical Objects are the main secure messaging systems)	• Integrated with GP clinical systems	• Version control of the care plan could problem
		• Cancer Service would need to install messaging systems to cater for the d systems in general practices that are currently not interoperable with one ;
		• Many allied health services do not ha secure messaging installed
HealtheNet	• Can upload documents from the cancer information system to HealtheNet	• Not accessible to external care provi unless they have associate status
(Secure sharing portal connecting a patient’s medical history from information systems within the NSW LHDs for clinicians within the health system to access)	• Provides access to NSW Health clinicians to view My Health Record	• Not accessible to patients
	• Functionality to send the care plan using secure messaging is possible The SCP could attach as the follow-up action plan to a discharge summary	• GPs cannot send documents back thr HealtheNet
		• Documents can only be viewed
		• Would require some technical develo to send the care plan to GPs through HealtheNet
		• Does not support collaboration
Collaborative platforms for businesses	• Supports collaboration	• Challenges around sharing clinical information with clinicians external tc Health
(Web or cloud-based systems that support the sharing of information and collaboration)	• Secure instance could be set up within the LHD firewall	• There are barriers to the use – requir to a separate system, some difficulty creating and navigating the SCP and required to set up access rights at the-patient level
		• Not scalable. Only suitable for a smal sample of patients as a Proof of Conc
PCP care planning systems	• Truly interactive and support collaboration between team members and the patient	• Not integrated with LHD information :
(Online services to manage care plans)	• Integrates with GP information systems	• Cancer staff need to interact with the plan through the web interface
	• Prompts and notifications included to assist with implementing and monitoring the SCP	• Off the shelf product does not meet a functionality requirements
	• Some of these systems are compliant with NSW and Commonwealth standards	
	• GPs can claim the MBS Item for generating or reviewing the SCP	
	• Less expensive than developing a new system	
	• Scalable to other cancers, conditions and services	

Table 2: The advantages and disadvantages of cancer shared care planning options
Figures

Figure 1

PRISMA search flowchart

Identification

Screening

Eligibility

Included

Papers identified through database search (n=225)

Papers after duplicates removed (n=173) → Excluded – Duplicates (n=52)

Papers screened (n=173) → Excluded – did not meet eligibility criteria (n=129)

Full text papers assessed for eligibility (n=44) → Excluded – did not meet eligibility criteria (n=27)

Final papers included (n=17)
Figure 2

Shared care plan pathway