Lignolytic Enzymes of a Mushroom Stereum ostrea Isolated from Wood Logs

K. Praveen,1 B. Viswanath,2 K. Y. Usha,1 H. Pallavi,1 G. Venkata Subba Reddy,1 M. Naveen,3 and B. Rajasekhar Reddy1

1Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, Andhra Pradesh, India
2Department of Environmental Science, Global College of Engineering and Technology, Kadapa 516162, Andhra Pradesh, India
3Department of Botany, Sri Krishnadevaraya University, Anantapur 515055, Andhra Pradesh, India

Correspondence should be addressed to B. Rajasekhar Reddy, rajasekharb64@gmail.com

Received 7 April 2011; Revised 22 July 2011; Accepted 22 July 2011

Academic Editor: J. Guisan

Copyright © 2011 K. Praveen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Production of lignolytic enzymes by the mushroom fungus Stereum ostrea in liquid medium under conditions of vegetative growth was examined for 10 days in comparison to the reference culture Phanerochaete chrysosporium. Though growth and secretion of extracellular protein by Stereum ostrea were comparable to those of Phanerochaete chrysosporium, yields of laccase enzyme by Stereum ostrea were higher than laccase titres of Phanerochaete chrysosporium by more than 2 folds on the peak production time interval (IVth day of incubation). Stereum ostrea yielded titres of 25 units of laccase/ml as against 8.9 units of laccase/ml on the IVth day of incubation. Stereum ostrea also exhibited activities of other lignolytic enzymes, lignin peroxidase (LiP) and manganese peroxidase (MnP), higher than the reference culture. Growth of Stereum ostrea on the medium in the presence of Remazol orange 16 resulted in the decolourisation of dye, confirming the presence of lignolytic enzymes. Stereum ostrea appears to be a promising culture with complete lignolytic system.

1. Introduction

Lignin is the second most abundant aromatic polymer in nature with three-dimensional structure composed of phenyl propanoid units linked through several carbon-carbon and ether bonds [1, 2]. Such complex structure of lignin is designed in plant cell wall to protect plant cells from microbial attack [3]. Degradation of recalcitrant lignin requires an oxidative process mediated by lignolytic enzymes. Lignolytic enzymes include laccase (EC 1.10.3.2), lignin peroxidases (LiP) (EC 1.11.1.4), manganese peroxidases (MnP) (EC 1.11.1.3), and versatile peroxidases and are secreted by white rot fungi [4, 5]. A few of them, in particular, Phanerochaete chrysosporium and Trametes versicolor, have been the focus of intensive research and a greater understanding of physiology biochemical and molecular biology of lignolytic enzymes in the above organisms have been gained [6]. Activities of lignolytic enzymes appear only in the culture medium after attainment of peak growth with exhaustion of nutrients—C, N, and S in respect of Phanerochaete chrysosporium and Trametes versicolor [7]. Production of lignolytic enzymes in these organisms is enhanced by inducers [8]. Lignolytic enzymes in other organisms, Cereporiopsis subvermispora, Trametes trogii and Panus tigrinus, are constitutive and produced even under conditions of nitrogen sufficiency [9–11]. Profiles of enzymes of lignolytic system depend on growth conditions and vary from one organism to another. Peroxidases are dominant in lignolytic system in respect of Phanerochaete chrysosporium, where laccase is a major component in lignolytic system of Ganoderma adspersum [6, 12, 13]. In view of broader specificity and oxidation of wider range of xenobiotic compounds including chlorinated phenolics, synthetic dyes, pesticides, and polycyclic aromatic hydrocarbons, lignolytic enzymes offer advantages for biotechnological applications. Although the majority of earlier studies have been on lignin-degrading enzymes of organisms, Phanerochaete chrysosporium, Pleurotus ostreatus and Trametes versicolor, there has been a growing interest in studying lignolytic enzymes of wider array of white-rot fungi from the standpoint of comparative biology but also with expectation of finding better lignin degrading system.
Activity of laccase enzyme was detected in the culture filtrate of *Stereum ostrea* [14]. In that direction, the present investigation has been undertaken to study lignolytic enzymes of a mushroom, *Stereum ostrea* in comparison to the reference culture *Phanerochaete chrysosporium*.

2. Materials and Methods

Stereum ostrea was kindly supplied by Professor M. A. Singaracharya, Department of Microbiology, Kakatiya University, Andhra Pradesh, India, and was isolated from wood logs. The reference culture, *Phanerochaete chrysosporium* was obtained from IMTECH, India. Both the cultures were maintained on Koroljova-Skorobogat’ko medium [15] because of good growth [14]. Sterile Koroljova-Skorobogat’ko medium was dispensed into sterile 250 mL Erlenmeyer flasks at a rate of 50 mL of medium per flask. The flasks were inoculated with homogenized mycelial suspension and incubated in an orbital shaker (Orbitek, Chennai, India) at 30°C and speed of 200 rpm. The flasks with growing cultures of *Stereum ostrea* and *Phanerochaete chrysosporium* were withdrawn at different time intervals during the course of the experiment for processing. The entire culture medium in flasks was used for processing in the same manner as mentioned earlier [14]. The fungal cultures were aseptically filtered through preweighed Whatman no 1 filter paper to separate mycelial mat and the culture filtrate. The filter paper along with mycelial mat was dried at 70°C in an oven until constant weight. Difference between the weight of the filter paper having mycelial mat and weight of only filter paper represented biomass of fungal mat. Fungal growth was expressed in terms of mg/flask. pH of the culture filtrate was measured. Content of extracellular protein in culture filtrates of both fungi was estimated according to Lowry et al. [16].

2.1. Enzyme Assay. Activities of lignolytic enzymes in the cultural filtrate of both fungal cultures were estimated following the standard protocols. Laccase activity was assayed using 10 mM guaiacol in 100 mM acetate buffer (pH 5.0) containing 10% (V/V) acetone. The change in absorbance of the reaction mixture containing guaiacol was monitored at 470 nm ($\varepsilon = 6740 \text{ M}^{-1} \text{ cm}^{-1}$) for five minutes of incubation [17]. Laccase activity was expressed in International Units (IU), where one unit corresponded to the amount of enzyme that oxidized one micromole of guaiacol per minute. Lignin peroxidase activity was determined by oxidation of veratryl alcohol at 310 nm ($\varepsilon = 9,300 \text{ M}^{-1} \text{ cm}^{-1}$) [18]. The reaction mixture was composed of 0.5 mL culture filtrate, 0.4 mM H$_2$O$_2$ and 50 mM tartaric acid (pH 2.5) and 2 mM veratryl alcohol. The enzyme activity was expressed in IU, where one unit of LiP corresponded to the amount of enzyme that oxidized one micromole of veratryl alcohol per min. MnP activity was determined by oxidation of phenol red at 610 nm [19]. The assay mixture included 0.5 mL culture filtrate, 0.25 M sodium lactate (pH 4.5), 0.5% bovine albumin, 200 mM MnSO$_4$, 2.0 mM H$_2$O$_2$ (prepared in 0.2 mM sodium succinate buffer pH 4.5) and 0.1% phenol red. The changes in the absorbance of reaction mixture was monitored at 610 nm ($\varepsilon = 22,000 \text{ M}^{-1} \text{ cm}^{-1}$) for 5 min. MnP activity was expressed in IU, where one unit of MnP was defined as the amount of enzyme that oxidized one micromole of phenol red per min.

2.2. Decolourisation of Dye. Another experiment was conducted by growing both fungal cultures in the same liquid medium in the presence of dye Remazol orange 16 ($\lambda_{\text{max}} = 530 \text{ nm}$) at concentration within a range of 0.02 to 0.10% in 250 mL Erlenmeyer flasks in the same manner as mentioned earlier. Medium without dye and inoculum and dye-amended medium without inoculum were maintained as controls. At regular intervals flasks were withdrawn for processing for determination of decolourisation of dye in addition to parameters mentioned in the previous experiment. Absorbance of colour of dye in the uninoculated medium amended with dye was measured against uninoculated medium without dye at 530 nm at any given time interval and is treated as absorbance of control. Absorbance of dye in the culture filtrate derived from the growth of fungi was measured against uninoculated medium without dye at 530 nm at the respective time interval and was considered as observed absorbance. Decolourisation was expressed as activity (%)

\[
\% \text{ Decolourisation} = \frac{\text{Control absorbance} - \text{observed absorbance}}{\text{Control absorbance}} \times 100
\]

3. Results and Discussion

Biomass of cultures of *Stereum ostrea* and *Phanerochaete chrysosporium* upon growth in liquid medium under shaking conditions was determined and is presented in (Figure 1). Growth of both cultures was initially slow for 4 days and then picked up and remained steady from 8th day of incubation. *Stereum ostrea* produced maximum biomass of 1.89 g/flask on the 10th day of incubation as against 1.78 g/flask in respect of *P. chrysosporium*.

The secretion of extracellular protein into liquid medium under shaking conditions for 10 days was measured (Figure 2). The secretion of extracellular protein by both fungal cultures increased with increase in incubation time and reached maximum on 6th day of incubation and there onwards dropped. *Stereum ostrea* secreted maximum protein content of 750 μg/mL into medium as against 770 μg/mL by *P. chrysosporium* on 6th day of incubation.

Wood-rot fungi are a large group of microorganisms with a potential to metabolise lignin by action of three major groups of enzymes: Lignin peroxidase, Mn peroxidase, and Laccase outside cell. Our knowledge in the understanding of nutritional requirements for growth of the organisms, *Phanerochaete chrysosporium*, and *Trametes versicolor*, *Pleurotus ostrea*, *Trametes trogii*, has been improving with continuous efforts of probing. There are many wood-rot organisms which have not been explored. The present study
examined the growth of an unexplored wood-rot fungus, *Stereum ostrea*, in comparison to the model lignolytic culture *P. chrysosporium*. Both the test organism and the model culture grew well on Koroljova liquid medium used in this study under shaking and noninducing conditions as reflected by large biomass of both cultures and high protein secretion.

Both cultures exhibited laccase activity when grown on medium under noninducing conditions (Figure 3). Unlike extracellular protein secretion, laccase production by both cultures peaked on 4th day of incubation and thereonwards declined. *Stereum ostrea* gave titres of laccase 3 times higher than *P. chrysosporium*. Maximum yields of laccase to the tune of 25 Units/ml by *S. ostrea* was recorded as against only 9.0 units/mL by *P. chrysosporium*. Maximum activities of LiP were recorded in respect of *P. chrysosporium* (60 Units/lit) on 6th day of incubation, and there was recovery in pH of the culture medium towards the end of the experiment. Drop in pH of culture medium was not regulated. Decrease in pH of culture medium was sharper in respect of *P. chrysosporium* and fell below 4 on the 4th day of incubation.

Another experiment was conducted with the selected fungal cultures in liquid Koroljova medium to find out whether other lignolytic enzymes lignin peroxidase and manganese peroxidase are present in lignolytic system of *S. ostrea*. LiP activity was detected in the culture filtrate of *S. ostrea* and *P. chrysosporium* throughout the incubation period (Table 1). There was an increase in activity of LiP up to 6th day of incubation followed by declining trend. Maximum activities of LiP recorded in respect of *S. ostrea* and *P. chrysosporium* on 6th day of incubation were 0.516 and 0.472 U/mL, respectively. *Stereum ostrea* displayed activity of even LiP on higher side than *P. chrysosporium*.
Enzyme Research

Like LiP, Mn peroxidase of both cultures followed the similar trend during the course of incubation (Table 2). Both cultures secreted MnP into broth throughout the incubation period. But maximum activities of MnP in both cultures was observed on 6th day of incubation. S. ostrea exhibited MnP activity two folds higher than P. chrysosporium. S. ostrea yielded titres of 0.590 U/mL of MnP as against titres of 0.272 U/mL by P. chrysosporium on 6th day of incubation.

Table 2: Manganese peroxidase activity of the fungal cultures.

Incubation Period (days)	Manganese peroxidase activity (U/mL) of	
	S. ostrea	P. chrysosporium
II	0.164	0.036
IV	0.292	0.220
VI	0.590	0.272
VIII	0.328	0.200
X	0.200	0.144

Breakdown of lignin is mediated by action of the enzymes lignin peroxidase, and manganese peroxidase apart from laccase. Titres of both LiP and MnP yielded by both cultures under noninducing conditions were low when compared to laccase by the same cultures and did not exceed one Unit/ml. However, these yields of lignolytic peroxidases by S. ostrea in the present study were considerable in comparison to other organisms including P. chrysosporium on different growth media under different conditions. Growth of P. chrysosporium in submerged fermentation generated MnP and LiP with specific activity of 144 and 14 U/mg, respectively [26]. Yields of lignolytic peroxidase enzymes in majority of studies with different strains of P. chrysosporium in liquid medium occurred within a range of 0.07–0.8 U/mL [12, 27–30]. Growth of other organisms—Trametes versicolor [23, 31], hyperlignolytic fungus IZU-154 [32], the strain K1 isolated from polyphenol polluted site [33], Nematoloma forwardii [34], and Pleurotus pulmonarius [35] in solid state fermentation/submerged fermentation produced lignolytic peroxidases at low levels. However, two organisms Phellinus robustus [13] and Schizophyllum commune [27], with high production of MnP in liquid medium to the extent of 10 and 580 U/mL, respectively were spotted in the literature. Differences in titres of enzyme yielded by organisms in different studies may be due to differential inherent capacity of organisms to synthesize lignolytic enzymes, growth conditions, nutritional requirements and inducer. Organism like P. chrysosporium produced higher yields of lignolytic enzymes under conditions of starvation for nitrogen and carbon [36, 37], whereas in other cases—Panus tigrinus lignolytic enzymes were generated under even conditions of nitrogen sufficiency. The presence of inducers veratryl alcohol induced 2-fold increase in yields of lignolytic enzymes by P. chrysosporium [37]. Yields of lignolytic enzymes by S. ostrea in the present study were determined only under noninducing conditions. Exposure of S. ostrea to inducer may further improve yields of lignolytic enzymes. Laccase appears to be a dominant component in lignolytic enzymes of S. ostrea under growth conditions employed in the present study. Similar observation of dominance of laccase in lignolytic system of Ganoderma adspersm was made [13]. In contrast, lignolytic peroxidases are major component of lignolytic system of P. chrysosporium Schizophyllum commune [27].

Textile dye Remazol orange-16, has undergone decolorisation even at the highest concentration (0.10%) in both grown cultures (Table 3). Decolourisation of dye by both cultures followed the pattern of growth. Decolourisation was initially slow later picked up and reached maximum on VI day of incubation in both cultures but values were lower side in case of Phanerochaete chrysosporium.

Maximum decolourisation of dye by Stereum ostrea at 3 different concentrations—0.01, 0.05, and 0.10% was found to be 84.42, 81.27, and 70.85%, respectively, where as the corresponding figures in respect of Phanerochaete chrysosporium was 77.66, 66.74, and 65.47 at the 6th day of incubation.

Decolourisation of dye by Remazol orange-16 in the present study by both cultures indicates indirect evidence for presence of lignolytic enzymes in the culture filtrates of both cultures used in the present study. Activities of lignolytic enzymes Lcc, MnP, and LiP in the culture filtrate of both fungal cultures grown on the medium in the presence of Remazol orange-16 at regular intervals were measured. As activities of these enzymes in the culture filtrate, derived from growth of fungi in the medium amended with dye, followed the similar trend to those of the same enzymes in the culture filtrate of the same cultures grown in the medium without dye, the results are not represented here. Colour changes of dyes may also occur due to sensitivity of dyes to pH changes that took place in medium upon growth of fungal cultures. It was tested whether Remazol orange-16 undergoes change in colour in a medium with pH up to 3.
The possibility of decolourisation due to pH changes was ruled out because of stability of colour of Remazol orange-16 under low pH. Generally, decolourisation of dyes is probably due to physical adsorption of dye to mycelial mat or participation of lignolytic enzymes or combination of both. Appearance of colour on mycelial mat followed by loss of colour from mycelial mat was an observation made in the present study and supports involvement of lignolytic enzyme in decolourisation of dye. Similarly, a clearance of purple colour around fungal growth on agar medium with poly-R Assay was considered as a positive result for production of lignolytic enzymes and was used for screening basidiomycetes for the presence of lignolytic enzymes [35]. Decolourisation of dyes was also demonstrated even with purified lignolytic enzyme Laccase [14]. For this simple reason, protocols with use of dyes as possible substrate for lignolytic enzymes have been developed and permit rapid assay of lignolytic enzymes [8, 38].

4. Conclusions

The following conclusions can be drawn from the results of the present study. The white-rot fungus *S. ostrea* produces a complete lignolytic system Lcc, LiP, and MnP under conditions of vegetative growth. Lcc appears to be a dominant component in the lignolytic system of *S. ostrea*. For production of lignolytic enzymes, *Stereum ostrea* culture is more promising and potential culture than the reference culture *Phanerochaete chrysosporium*.

References

[1] A. Gnanamani, M. Jayaprakashvel, M. Arulmani, and B. Sadulla, “Effect of inducers and culturing processes on laccase synthesis in *Phanerochaete chrysosporium* NCIM 1197 and the constitutive expression of laccase isozymes,” *Enzyme and Microbial Technology*, vol. 38, no. 7, pp. 1017–1021, 2006.

[2] W. S. D. Wong, “Structure and action mechanism of lignolytic enzymes,” *Applied Biochemistry and Biotechnology*, vol. 157, no. 2, pp. 174–209, 2008.

[3] T. Higuchi, “Lignin biochemistry: biosynthesis and biodegradation,” *Wood Science and Technology*, vol. 24, no. 1, pp. 23–63, 1990.

[4] T. K. Kirk and R. L. Farrell, “Enzymatic "combustion": the microbial degradation of lignin,” *Annual Review of Microbiology*, vol. 41, pp. 465–505, 1987.

[5] A. Hatakka, “Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation,” *FEMS Microbiology Reviews*, vol. 13, no. 2-3, pp. 125–135, 1994.

[6] D. Singh and S. Chen, “The white-rot fungus *Phanerochaete chrysosporium*: conditions for the production of lignin-degrading enzymes,” *Applied Microbiology and Biotechnology*, vol. 81, no. 3, pp. 399–417, 2008.

[7] N. Das, S. Sengupta, and M. Mukherjee, “Importance of laccase in vegetative growth of *Pleurotus florida*,” *Applied and Environmental Microbiology*, vol. 63, no. 10, pp. 4120–4122, 1997.

[8] J. K. Glenn and M. H. Gold, “Decolorization of several polymeric dyes by the lignin-degrading basidiomycete *Phanerochaete chrysosporium*,” *Applied and Environmental Microbiology*, vol. 45, no. 6, pp. 1741–1747, 1983.

[9] B. D. Faison and T. K. Kirk, “Factors involved in the regulation of a ligninase activity in *Phanerochaete chrysosporium*,” *Applied and Environmental Microbiology*, vol. 52, pp. 251–254, 1985.

[10] L. Levin, F. Forchiassin, and A. M. Ramos, “Copper induction of lignin-modifying enzymes in the white-rot fungus *Trametes trogii*,” *Mycologia*, vol. 94, no. 3, pp. 377–383, 2002.

[11] D. Quaratino, F. Federici, M. Petruccioli, M. Fenice, and A. D’Annibale, “Production, purification and partial characterisation of a novel laccase from the white-rot fungus *Panus tigrinus* CBS 577.79,” *Antonie van Leeuwenhoek*, vol. 91, no. 1, pp. 57–69, 2007.

[12] J. J. Bono, P. Goulas, J. F. Boe, N. Portet, and J. L. Seris, “Effect of Mn(II) on reactions catalyzed by lignin peroxidase from *Phanerochaete chrysosporium*,” *European Journal of Biochemistry*, vol. 192, no. 1, pp. 189–193, 1990.

[13] G. Songulashvili, V. Elisashvili, S. Wasser, E. Nevo, and Y. Hadar, “Laccase and manganese peroxidase activities of *Phellinus robustus* and *Ganoderma adspersum* grown on food industry wastes in submerged fermentation,” *Biotechnology Letters*, vol. 28, no. 18, pp. 1425–1429, 2006.

[14] B. Viswanath, M. S. Chandra, K. P. Kumar, and B. R. Reddy, “Production and purification of laccase from *Stereum ostrea* and its ability to decolorize textile dyes,” *DBPMB*, vol. 2, pp. 19–25, 2008.

[15] O. V. Koroljova-Skorobogat’ko, E. V. Stepanova, V. P. GavriloVA et al., “Purification and characterization of the constitutive form of laccase from the basidiomycete *Coriolus hirsutus* and effect of inducers on laccase synthesis,” *Biotechnology and Applied Biochemistry*, vol. 28, no. 1, pp. 47–54, 1998.

[16] G. M. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” *Journal of Biological Chemistry*, vol. 193, no. 1, pp. 265–275, 1951.

[17] P. J. Collins and A. D. W. Dobson, “Regulation of laccase gene transcription in *Trametes versicolor*,” *Applied and Environmental Microbiology*, vol. 63, no. 9, pp. 3444–3450, 1997.
A. N. Kapich, B. A. Prior, A. Botha, S. Galkin, T. Lundell, P. Baldrian and J. ˇSnajdr, “Production of ligninolytic enzymes

S. Camarero, B. B ¨ockle, M. S. Martinez, an d A .T .M a r t´ıne z, “Optim i z at i on o f

A. M. Cancel, A. B. Orth, and M. Tien, “Lignin and ve

S. R. Couto, A. Rodr ´ıguez, R. R. M. Paterson, N. Lima, and J. P .M .C o l l, J .M .F e r n a n d e z - A b a l o s , J .R .V i l l a n u e v a , R .

T. Alc ´antara, J. G ´omez, M. Pazos, and M. Á. Sanrom ´an, “Manganese-mediated lignin degradation by

A. M. Pedroza, R. Mosqueda, N. Alonso-Vante, and R. Rodríguez-Vázquez, “Sequential treatment via Trametes versicolor and UV/TiO2/RuXSe y to reduce contaminants in waste water resulting from the bleaching process during paper pul
donation of the ligninolytic system of

Phanerochaete chrysospori um,” Applied and Environmental Microbiology, vol. 59, no. 9, pp. 2909–2913, 1993.

P. M. Coll, J. M. Fernandez-Abalos, J. R. Villanueva, R. Santamaría, and P. Perez, “Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971),” Applied and Environmental Microbiology, vol. 59, no. 8, pp. 2607–2613, 1993.

S. R. Couto, A. Rodríguez, R. R. M. Paterson, N. Lima, and J. A. Teixeira, “Laccase activity from the fungus Trametes hirsuta using an air-lift bioreactor,” Letters in Applied Microbiology, vol. 42, no. 6, pp. 612–616, 2006.

P. Baldrian and J. Šnajdr, “Production of ligninolytic enzymes by litter-decomposing fungi and their ability to decolorize synthetic dyes,” Enzyme and Microbial Technology, vol. 39, no. 5, pp. 1023–1029, 2006.

T. Alcántara, J. Gómez, M. Pazos, and M. A. Sanromán, “Enhanced production of laccase in Coriolopsis rigida grown on barley bran in flask or expanded-bed bioreactor,” World Journal of Microbiology and Biotechnology, vol. 23, no. 8, pp. 1189–1194, 2007.

B. Viswanath, M. S. Chandra, K. P. Kumar, H. Pallavi, and B. R. Reddy, “Fungal Laccases and their biotechnological applications with special reference to bioremediation,” DBBPMB, vol. 2, pp. 1–13, 2008.

P. Bonnarme and T. W. Jeffries, “Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi,” Applied and Environmental Microbiology, vol. 56, no. 1, pp. 210–217, 1990.

H. N. Bhatti, N. Akram, and M. Asgher, “Optimization of culture conditions for enhanced decolorization of cibacron red FN-2BL by Schizophyllum commune IBL-6,” Applied Biochemistry and Biotechnology, vol. 149, no. 3, pp. 255–264, 2008.

S. Camarero, B. Böckle, M. S. Martinez, and A. T. Martinez, “Manganese-mediated lignin degradation by Pleurotus pulmonarius,” Applied and Environmental Microbiology, vol. 62, no. 3, pp. 1070–1072, 1996.

A. N. Kapich, B. A. Prior, A. Botha, S. Galkin, T. Lundell, and A. Hatakka, “Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446,” Enzyme and Microbial Technology, vol. 34, no. 2, pp. 187–195, 2004.

Z. Keran, D. Friesem, and Y. Hadar, “Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium,” Applied and Environmental Microbiology, vol. 58, no. 4, pp. 1121–1127, 1992.

A. M. Pedrroza, R. Mosqueda, N. Alonso-Vante, and R. Rodríguez-Vázquez, “Sequential treatment via Trametes versicolor and UV/TiO2/RuXSe y to reduce contaminants in waste water resulting from the bleaching process during paper pul
tion during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardi,” Applied and Environmental Microbiology, vol. 65, no. 5, pp. 1864–1870, 1999.

K. Boominathan and C. A. Reddy, “cAMP-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5586–5590, 1992.

T. K. Kirk, S. Croan, M. Tien, K. E. Murtagh, and R. I. Farrell, “Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain,” Enzyme and Microbial Technology, vol. 8, no. 1, pp. 27–32, 1986.

M. S. A. Leisola, B. Kozulic, F. Meussdoerffer, and A. Fiechter, “Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium,” Journal of Biological Chemistry, vol. 262, no. 1, pp. 419–424, 1987.

F. S. Archibald, “A new assay for lignin-type peroxidases employing the dye Azure B,” Applied and Environmental Microbiology, vol. 58, no. 9, pp. 3110–3116, 1992.