An original Method for the Synthesis and the Study of Its Biological Activity of Natural Lembehyne B Aromatic Analogs †

Alexey A. Makarov *, Elina Kh. Makarova, Lilya U. Dzhemileva and Usein M. Dzhemilev

Institute of Petrochemistry, Catalysis of Russian Academy of Sciences, 141 Prospekt Oktyabrya, 450075 Ufa, Russia

* Correspondence: makarovalexink@gmail.com; Tel.: +7-9677468315
† Presented at the 25th International Electronic Conference on Synthetic Organic Chemistry, Online, 1–30 November 2021; Available online: https://ecsoc-25.sciforum.net/

Abstract: In the development of earlier initiated studies on the synthesis of natural and synthetic neuritogenic alkynols, lembehynes A–C, which, simultaneously, exhibit high antitumor activity, we have developed a method for the synthesis of an analogue of natural lembehyne B containing a phenyl radical in its structure. It has been shown that the synthesized aromatic analogue of lembehyne B exhibits higher antitumor activity in vitro to a number of tumor cell lines (Jurkat, K562, U937).

Keywords: 1,2-dienes; cross-cyclemagnesiation; lembehyne B

1. Introduction

Lembehynes are a unique class of natural compounds that exhibit a wide range of biological activities: neuritogenic, antitumor, antibacterial properties [1–10].

Earlier, we reported on the complete synthesis of natural lembehyne B, as well as the preparation of synthetic derivatives of lembehyne B, containing a 1,3-diynie fragment in their structure. The synthesized lembehynes showed cytotoxicity towards tumor cells of the Jurkat, U937, K562, HeLa and Hek293 lines. and neuritogenic activity on Neuro 2A mouse neuroblastoma cells [11,12].

It is known that π-π-stacking interaction of aromatic radicals, biologically active compounds, with nitrogenous bases of DNA or RNA of tumor cells, can lead to disruption of the processes of transcription and replication, leading to apoptosis [13,14].

Based on the results obtained earlier, we have synthesized a number of aromatic derivatives of lembehyne B using terminal allenes at the key stage of the catalytic cross-cyclemagnesiation reaction (Dzhemilev reaction) [14–25].

2. Results and discussion

Cross-cyclemagnesiation reactions of 1,2-dienes containing aromatic radicals 2a–c and tetrahydropyran esters of 13,14-pentadecadienol 3 using EtMgBr in the presence of metallic Mg and a Cp₂TiCl₂ catalyst (10 mol%), through the stage of formation of magnesiumcyclopentanes 4a–c, the hydrolysis of which gave tetrahydropyran ethers 13Z,17Z-dienes 5a–c in 79–82% yields. Successive reactions of removal of tetrahydropyranyl protection and oxidation of unsaturated alcohols 6a–c using Dess–Martin periodinan led to 13Z,17Z-diene aldehydes 7a–c in ~ 78–82% yields. As a result of the reaction of pre-synthesized lithium (trimethylsilyl)acetylenide with aldehydes 7a–c and removal of the trimethylsilyl protection with TBAF, racemic lembehyne B 1a–c derivatives were formed in ~ 80–84% yields. (Scheme 1)
Scheme 1. Synthesis of aromatic derivatives of lembehyne B.

For the synthesized compounds, the in vitro antitumor activity was assessed on Jurkat, K562, HL-60, U937 cell lines and fibroblasts, including the determination of IC50 using flow cytometry and multiplex analysis.

3. Conclusions

An effective method was developed for the preparation of aromatic derivatives of lembehyne B, using at the key stage of synthesis the reaction of catalytic cross-cyclomagnesi nation of terminal 1,2-dienes (Dzhemilev reaction), and their antitumor activity was also studied using modern methods of flow cytometry and multiplex analysis.

4. Experimental Part

Commercially available reagents (Sigma-Aldrich and Acros) were used. Reactions with organomagnesium compounds were carried out under dried argon atmosphere. 1,2-dienes was prepared according to the known procedure. Reaction products were analyzed on a Carlo Erba chromatograph (a Hewlett Packard Ultra-1 glass capillary column, 25 m × 0.2 mm, flame ionization detector, operating temperature 50–170 °C, carrier gas helium). TLC was performed on Silufol UV-254 plates. Elemental composition of compounds was determined using a Carlo Erba-1106 instrument. Mass spectra were obtained using a Bruker MALDI-TOF/TOF Autoflex III instrument. 1H and 13C NMR spectra were recorded on a Bruker Avance 400 spectrometer (100.62 MHz for 13C and 400.13 MHz for 1H).

Cross-cyclomagnesi nation of 1,2-diene (2a-c) and 2-(pentadeca-13,14-dien-1-yloxy)tetrahydro-2H-pyran (3) with EtMgBr in the presence of Mg metal and Cp₂TiCl₂ catalyst was carried out according known procedure [11]. 2-(((13Z,17Z)-19-phenylnonadeca-13,17-dien-1-yloxy)tetrahydro-2H-pyran (5a). Yield 79%. Rf = 0.45. 1H NMR (400 MHz, CDCl₃): δ = 1.34–1.93 (28H, m, C₇H₇), 2.03–2.29 (8H, m, CH₂), 3.40–3.96 (4H, m, C₃H₃O), 4.64 (1H, t, J = 6 Hz, C₄H₄O), 5.42–5.68 (2H, m, CH=), 7.21–7.45 (5H, m, CH=). 13C NMR (100.62 MHz, CDCl₃): δ = 19.71, 25.63, 26.26, 27.36, 27.40, 27.53, 29.41–29.86, 30.84, 33.61, 62.17, 67.65, 98.76, 125.85, 128.36, 128.39, 128.49, 128.49, 130.26, 130.60, 131.08. MS (MALDI-TOF), m/z: 440 [M]+. C₃₀H₄₈O₂: Found (%): C, 81.61; H, 10.89. Calc. for C₃₀H₄₈O₂ (%): C, 81.76 H, 10.97. 2-(((13Z,17Z)-20-phenyllicososa-13,17-dien-1-yloxy)tetrahydro-2H-pyran (5b). Yield 78%. Rf = 0.44. 1H NMR (400 MHz, CDCl₃): δ = 1.30–1.93 (30H, m, C₇H₇), 2.00–2.29 (8H, m, CH₂), 3.41–3.96 (4H, m, C₃H₃O), 4.63 (1H, t, J = 6 Hz, CH=O), 5.42–5.68 (2H, m, CH=), 7.21–7.45 (5H, m, CH=). 13C NMR (100.62 MHz, CDCl₃): δ = 19.70, 25.66, 26.26,
26.90, 27.36, 27.41, 27.53, 29.41–29.86, 30.84, 33.61, 62.17, 67.65, 98.76, 125.85, 128.36, 128.39, 128.49, 128.94, 130.26, 130.61, 141.08. MS (MALDI-TOF), m/z: 454 [M]+. C27H32O5. Found (%): C, 81.84; H, 11.10. Calc. for C27H33O5 (%): C, 81.88 H, 11.08. 2-((13Z,17Z)-21-phenylhexenoic-13,17-dien-1-yl)oxytetrahydro-2H-pyran (5c). Yield 82%. Rf = 0.46. 1H NMR (400 MHz, CDCl3): δ: 1.34–1.90 (32H, m, CH2), 2.03–2.29 (8H, m, CH2), 3.40–3.96 (4H, m, CH2–O), 4.64 (1H, t, J = 6 Hz, CH2–O), 5.42–5.68 (2H, m, CH=), 7.21–7.44 (5H, m, CH3). 13C NMR (100.62 MHz, CDCl3): δ: 25.78, 27.32, 27.49, 29.36–29.77, 32.80, 33.57, 63.05, 125.85, 128.37, 128.40, 128.45, 128.94, 130.30, 130.66, 141.15. MS (MALDI-TOF), m/z: 356 [M]+. C28H34O4. Found (%): C, 84.13; H, 11.22. Calc. for C28H33O4 (%): C, 84.20; H, 11.30. (13Z,17Z)-20-phenylhexenoic-13,17-dien-1-ol (6b). Yield 79%. Rf = 0.42 (hexane/EtOAc–5:1). 1H NMR (400 MHz, CDCl3): δ: 1.30–1.69 (24H, m, CH2), 1.94–2.28 (6H, m, =CH-CH2), 3.66 (2H, t, J = 6 Hz, CH2-CH=O), 5.39–5.65 (4H, m, =CH2), 7.20–7.34 (5H, m, CH3). 13C NMR (100.62 MHz, CDCl3): δ: 25.78, 27.32, 27.49, 29.36–29.77, 32.80, 33.57, 63.05, 125.85, 128.37, 128.40, 128.45, 128.94, 130.30, 130.66, 141.15. MS (MALDI-TOF), m/z: 370 [M]+. C29H36O4. Found (%): C, 84.22; H, 11.44. Calc. for C29H35O4 (%): C, 84.26; H, 11.42. (13Z,17Z)-20-phenylhexenoic-13,17-dien-1-ol (6c). Yield 77%. Rf = 0.42 (hexane/EtOAc–5:1). 1H NMR (400 MHz, CDCl3): δ: 1.30–1.69 (26H, m, CH2), 1.94–2.28 (6H, m, =CH-CH2), 3.66 (2H, t, J = 6 Hz, CH2-CH=O), 5.39–5.65 (4H, m, =CH2), 7.20–7.34 (5H, m, CH3). 13C NMR (100.62 MHz, CDCl3): δ: 25.78, 27.32, 27.49, 29.36–29.77, 32.80, 33.57, 63.05, 125.85, 128.37, 128.40, 128.45, 128.94, 130.30, 130.66, 141.15. MS (MALDI-TOF), m/z: 370 [M]+. C29H36O4. Found (%): C, 84.33; H, 11.50. Calc. for C29H35O4 (%): C, 84.31; H, 11.53.

The oxidation of the alcohol (6a-c) was carried out with Dess-Martin periodinane was carried out according known procedure [27]. (13Z,17Z)-19-phenylnonadeca-13,17-dien-1 (7a). Yield 82%. 1H NMR (400 MHz, CDCl3): δ: 0.88–1.69 (18H, m, CH2), 2.00–2.28 (6H, m, =CH-CH2), 2.43 (2H, dt, O=CH-CH2), 3.43 (2H, d, Ph-CH2), 5.31–5.63 (4H, m, =CH2), 7.19–7.33 (5H, m, CH=), 9.78 (1H, t, J = 6 Hz, O=CH). 13C NMR (100.62 MHz, CDCl3): δ: 22.11, 27.31, 27.34, 27.48, 29.19–29.76, 33.57, 43.93, 125.85, 128.37, 128.40, 128.45, 128.95, 130.29, 130.62, 141.14, 202.93. MS (MALDI-TOF), m/z: 354 [M]+. C28H34O5. Found (%): C, 84.53; H, 10.71. Calc. for C28H33O5 (%): C, 84.68; H, 10.80. (13Z,17Z)-20-phenylhexenoic-13,17-dien-1-ol (7b). Yield 78%. Rf = 0.42 (hexane/EtOAc–5:1). 1H NMR (400 MHz, CDCl3): δ: 1.30–1.69 (24H, m, CH2), 1.94–2.28 (6H, m, =CH-CH2), 3.66 (2H, t, J = 6 Hz, CH2-CH=O), 5.39–5.65 (4H, m, =CH2), 7.20–7.34 (5H, m, CH3). 13C NMR (100.62 MHz, CDCl3): δ: 25.78, 27.32, 27.49, 29.36–29.77, 32.80, 33.57, 63.05, 125.85, 128.37, 128.40, 128.45, 128.94, 130.30, 130.66, 141.15. MS (MALDI-TOF), m/z: 370 [M]+. C29H36O5. Found (%): C, 84.32; H, 11.50. Calc. for C29H35O5 (%): C, 84.31; H, 11.53.

Procedure for preparation of alkyne (8a-c) was carried out according known procedure [11]. (15Z,19Z)-21-phenyl-1-(trimethylsilyl)hexenoic-15,19-dien-1-yn-3-ol (8a). Yield 90%. 1H NMR (400 MHz, CDCl3): δ: 0.22 (9H, s, CH3), 1.31–1.75 (22H, m, CH2), 1.98–2.27
(6H, m, =CH-CH=), 3.45 (2H, d, Ph-CH=), 4.38 (1H, t, j = 5.0 Гц), 5.38–5.66 (2H, m, =CH), 7.20–7.34 (5H, m, CH=). 13С NMR (100.62 MHz, CDCl3) δ: -0.06, 25.15, 27.33, 27.35, 27.49, 29.27–29.78, 33.58, 37.73, 62.90, 89.23, 107.07, 125.86, 128.38, 128.42, 128.46, 128.95, 130.30, 130.65, 141.14. MS (MALDI-TOF), m/z: 453[M]+: C6H5O3Si. Found (%): C, 79.46; H, 10.54. Calc. for C6H5O3Si (%): C, 79.57; H, 10.68. 

(15Z,19Z)-22-phenyl-1-(trimethylsilyl)docosa-15,19-dien-1-yn-3-ol (8b). Yield 91%. 1H NMR (400 MHz, CDCl3) δ: 0.22 (6H, s, CH3), 1.31–1.75 (24H, m, CH2), 1.98–2.27 (6H, m, =CH-CH=), 3.45 (2H, d, Ph-CH=), 4.38 (1H, t, j = 5.0 Гц), 5.38–5.66 (2H, m, =CH), 7.20–7.34 (5H, m, CH=). 13С NMR (100.62 MHz, CDCl3) δ: -0.06, 25.15, 27.33, 27.35, 27.49, 29.27–29.78, 33.58, 37.73, 62.90, 89.23, 107.07, 125.86, 128.38, 128.42, 128.46, 128.95, 130.30, 130.65, 141.14. MS (MALDI-TOF), m/z: 466[M]+: C6H5O3Si. Found (%): C, 79.77; H, 10.81. Calc. for C6H5O3Si (%): C, 79.76; H, 10.80. 

(15Z,19Z)-23-phenyl-1-(trimethylsilyl)tricosa-15,19-dien-1-yn-3-ol (8c). Yield 91%. 1H NMR (400 MHz, CDCl3) δ: 0.22 (9H, s, CH3), 1.31–1.75 (26H, m, CH2), 1.98–2.27 (6H, m, =CH-CH=), 3.45 (2H, d, Ph-CH=), 4.38 (1H, t, j = 5.0 Гц), 5.38–5.66 (2H, m, =CH), 7.20–7.34 (5H, m, CH=). 13С NMR (100.62 MHz, CDCl3) δ: 25.04, 27.32, 27.34, 27.48, 29.27–29.77, 33.57, 37.68, 62.36, 72.84, 85.07, 125.85, 128.37, 128.41, 128.45, 128.95, 130.30, 130.65, 141.16. MS (MALDI-TOF), m/z: 380 [M]+: C6H5O4Si. Found (%): C, 85.11; H, 10.63. Calc. for C6H5O4Si (%): C, 85.20; H, 10.59. 

Procedure for preparation of alkyne (1a-c) was carried out according known procedure [11]. (15Z,19Z)-21-phenylhenicosa-15,19-dien-1-yn-3-ol (1a). Yield 80%. 1H NMR (400 MHz, CDCl3) δ: 1.30–1.78 (24H, m, CH2), 1.92–2.26 (8H, m, =CH-CH=), 2.48 (1H, d, CH), 3.43 (2H, d, Ph-CH=), 4.39 (1H, t, j = 5.0 Гц), 5.38–5.63 (2H, m, =CH), 7.18–7.33 (5H, m, CH=). 13С NMR (100.62 MHz, CDCl3) δ: 25.04, 27.32, 27.34, 27.48, 29.27–29.77, 33.57, 37.68, 62.36, 72.84, 85.07, 125.85, 128.37, 128.41, 128.45, 128.95, 130.31, 130.65, 141.16. MS (MALDI-TOF), m/z: 396 [M]+: C6H5O4. Found (%): C, 84.77; H, 11.13. Calc. for C6H5O4 (%): C, 84.79; H, 11.18. 

(15Z,19Z)-22-phenyldocosa-15,19-dien-1-yn-3-ol (1b). Yield 82%. 1H NMR (400 MHz, CDCl3) δ: 1.30–1.78 (24H, m, CH2), 1.92–2.26 (8H, m, =CH-CH=), 2.48 (1H, d, CH), 3.43 (2H, d, Ph-CH=), 4.39 (1H, t, j = 5.0 Гц), 5.38–5.63 (2H, m, =CH), 7.18–7.33 (5H, m, CH=). 13С NMR (100.62 MHz, CDCl3) δ: 25.04, 27.32, 27.34, 27.48, 29.27–29.77, 33.57, 37.68, 62.36, 72.84, 85.07, 125.85, 128.37, 128.41, 128.45, 128.95, 130.31, 130.65, 141.16. MS (MALDI-TOF), m/z: 396 [M]+: C6H5O4. Found (%): C, 84.77; H, 11.13. Calc. for C6H5O4 (%): C, 84.79; H, 11.18. 

(15Z,19Z)-23-phenyltricosa-15,19-dien-1-yn-3-ol (1c). Yield 84%. 1H NMR (400 MHz, CDCl3) δ: 1.30–1.78 (20H, m, CH2), 1.92–2.26 (8H, m, =CH-CH=), 2.48 (1H, d, CH), 3.43 (2H, d, Ph-CH=), 4.39 (1H, t, j = 5.0 Гц), 5.38–5.63 (2H, m, =CH), 7.18–7.33 (5H, m, CH=). 13С NMR (100.62 MHz, CDCl3) δ: 25.04, 27.32, 27.34, 27.48, 29.27–29.77, 33.57, 37.68, 62.36, 72.84, 85.07, 125.85, 128.37, 128.41, 128.45, 128.95, 130.31, 130.65, 141.16. MS (MALDI-TOF), m/z: 410 [M]+: C6H5O5. Found (%): C, 84.78; H, 11.25. Calc. for C6H5O5 (%): C, 84.81; H, 11.29. 

Author Contributions: Conceptualization, U.M.D. and L.U.D.; methodology, A.A.M.; validation, E.K.M., resources, E.K.M.; data curation, U.M.D.; writing—original draft preparation, E.K.M., A.A.M.; writing—review and editing, U.M.D. and L.U.D.; visualization, E.K.M.; supervision, U.M.D.; project administration, A.A.M.; funding acquisition, A.A.M. All authors have read and agreed to the published version of the manuscript. 

Funding: The work was financially supported by grant of Russian Foundation for Basic Research (19-03-00603). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Acknowledgments: The authors would like to acknowledge Ministry of Science and Higher Education of the Russian Federation for partial financial support. The work was partially done within approved plans for research projects at the IPC RAS State Registration No. AAAA-A19-119022290008-6 (2019-2021) and AAAA-A19-119022290007-9 (2019–2021).
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Aoki, S.; Matsuki, K.; Wei, H.; Murakami, N.; Kobayashi, M. Structure–activity relationship of nitroergit spongeean acetylene alcohols, lembehynes. Tetrahedron 2002, 58, 5417–5422. https://doi.org/10.1016/s0040-4020(02)00519-7.

2. Siddiqi, A.; Dembitsky, V. Acetylenic Anticancer Agents. Anti-Cancer Agents Med. Chem. 2008, 8, 132–170. https://doi.org/10.2174/187152080783497073.

3. Zhou, Z.-F.; Menna, M.; Cai, Y.-S.; Guo, Y.-W. Polyacetylenes of marine origin: Chemistry and bioactivity. Chem. Rev. 2015, 115, 1543–1596.

4. Fusetani, N.; Li, H.Y.; Tamura, K.; Matsunaga, S. Antibacterial Secondary Metabolites from the Sponge Clathria sp. Tetrahedron 1993, 49, 1203–1210.

5. Nuzzo, G.; Ciavatta, M.L.; Villani, G.; Manzo, E.; Zanfardino, A.; Gavagnin, M. Fulvynes, antimicrobial polyoxygenated acetylenes from the Mediterranean sponge Halichondria panicea. Tetrahedron 2012, 68, 754–760. https://doi.org/10.1016/j.tet.2011.10.068.

6. Shin, J.; Lee, Y.; Cho, K.W.; Cho, G-R.; Paul, V.J. Osirisynes A–F, highly oxygenated polyacetylenes from the sponge Halichondria okanawa. Tetrahedron 1998, 54, 8711–8720. https://doi.org/10.1016/s0040-4020(98)00480-3.

7. Watanabe, K.; Tsuda, Y.; Yamane, Y.; Takahashi, H.; Iguchi, K.; Naoki, H.; Fujita, T.; Van Soest, R.W. Strongylodiols A, B and C, new cytotoxic acetylenic alcohols isolated from the Okinawan marine sponge of the genus Strongylocophora as each enantimeric mixture with a different ratio. Tetrahedron Lett. 2000, 41, 9271–9276. https://doi.org/10.1016/s0040-4020(00)01692-0.

8. Ohta, S.; Okada, H.; Kobayashi, H.; Oclarit, J.M.; Ikegami, S. Clathrynamides A, B, and C: Novel amides from a marine sponge Clathria sp. That inhibit cell division of fertilized starfish eggs. Tetrahedron Lett. 1993, 34, 5935–5938. https://doi.org/10.1016/s0040-4020(00)7818-4.

9. Listunov, D.; Maraval, V.; Chauvin, R.; Genisson, Y. Chiral alkynylcarbinols from marine sponges: Asymmetric synthesis and biological relevance. Nat. Prod. Rep. 2015, 32, 49–75.

10. Dzhemileva, L.; Makarov, A.A.; Andreev, E.N.; Makarova, E.K.; Khalilov, L.M.; Dzhemilev, U.M. Novel 1,3-Diyinoic Derivatives of Natural Lembheyne B: Stereoselective Synthesis, Anticancer, and Neurolipotropic Activity. ACS Omega 2020, 5, 1974–1981. https://doi.org/10.1021/acsomega.9b03826.

11. Dzhemileva, L.U.; D’yakonov, V.A.; Makarov, A.A.; Andreev, E.N.; Yunusbaeva, M.M.; Dzhemilev, U.M. The first total synthesis of the marine acetylenic alcohol, lembyne B – A selective inducer of early apoptosis in leukemia cancer cells. Org. Biomol. Chem. 2016, 15, 470–476. https://doi.org/10.1039/c6ob02346k.

12. Toupkanloo, H.A.; Rahmani, Z. An in-depth study on noncovalent stacking interactions between DNA bases and aromatic drug fragments using DFT method and AIM analysis: Conformers, binding energies, and charge transfer. Appl. Biol. Chem. 2018, 61, 209–226. https://doi.org/10.1007/s13765-018-0348-6.

13. Yang, D.; Gao, S.; Fang, Y.; Lin, X.; Jin, Y.; Wang, X.; Ke, L.; Shi, K. The π–π stacking-guided supramolecular self-assembly of nanomedicine for effective delivery of antiepileptic drugs. Nanomedicine 2018, 13, 3159–3177. https://doi.org/10.2217/nmm-2018-0288.

14. D’yakonov, V.A.; Makarov, A.A.; Ibragimov, A.G.; Khalilov, L.M.; Dzhemilev, U.M. Novel Mg-organic reagents in or-ganic synthesis.Cp2TiCl2 catalized intermolecular cyclomagnesiation of cyclic and acyclic 1,2-dienes using Grignard reagents. Tetrahedron 2008, 64, 10188–10194.

15. Aoki, S.; Matsuki, K.; Wei, H.; Murakami, N.; Kobayashi, M. Novel Organomagnesium Reagents in Synthesis. Catalytic cyclomagnesiation of allenes in the synthesis of N-O, and Si-substituted 1Z,5Z-dienes. Tetrahedron 2013, 69, 8516–8526.

16. Aoki, S.; Matsuki, K.; Wei, H.; Murakami, N.; Kobayashi, M. Catalytic cross cyclomagnesiation of 1,2-dienes using Grignard Reagents Catalyzed by Cp2TiCl2. Russ. J. Org. Chem. 2012, 48, 357–361.

17. Aoki, S.; Matsuki, K.; Wei, H.; Murakami, N.; Kobayashi, M. Catalytic cross cyclomagnesiation of 1,2-dienes in the presence of Cp2TiCl2. Russ. Chem. Bull. Int. Ed. 2012, 10, 1928–1934.

18. Aoki, S.; Matsuki, K.; Wei, H.; Murakami, N.; Kobayashi, M. Novel organomagnesium reagents in synthesis. Catalytic cyclomagnesiation of alkenes in the synthesis of N-, O-, and Si-substituted 1Z,5Z-dienes. Tetrahedron 2013, 69, 8516–8526.

19. Aoki, S.; Matsuki, K.; Wei, H.; Murakami, N.; Kobayashi, M. Catalytic cross cyclomagnesiation of 1,2-dienes in the synthesis of Z,Z-dienealcohols and Z,S,9-dienealcohols. Mol. Complex. Mod. Chem. 2014, 92, 2135–2140.

20. Aoki, S.; Matsuki, K.; Wei, H.; Murakami, N.; Kobayashi, M. Catalytic cross cyclomagnesiation of 1,2-dienes in the synthesis of Z,Z-dienealcohols and Z,S,9-dienealcohols. Russ. Chem. Bull. Int. Ed. 2015, 9, 2135–2140.

21. Aoki, S.; Islamov, I.I.; Makarov, A.A.; Dzhemilev, U.M. Ti-catalyzed cross-cyclomagnesiation of 1,2-dienes in the stereoselective synthesis of insect pheromones. Tetrahedron Lett. 2017, 58, 1755–1757. https://doi.org/10.1016/j.tetlet.2017.03.061.

22. Aoki, S.; Tuktarova, R.A.; Dzhemilev, U. Ti-Catalyzed Cross-Cyclomagnesiation of 1,2-Dienes in the Total Z,Z,Z-Stereoselective Synthesis of Natural Acetogenin–Chatenaytrienn. ACS Omega 2019, 4, 14085–14091. https://doi.org/10.1021/acsomega.9b01951.

23. D’yakonov, V.A.; Makarov, A.A.; Zmutka, V.; Dzhemileva, L.U.; Andreev, E.N.; Dzhemilev, U.M. The first total synthesis of lembehyne B. Mendeleev Commun. 2017, 27, 122–124. https://doi.org/10.1016/j.mencom.2017.03.004.

24. D’yakonov, V.A.; Makarov, A.A.; Dzhemileva, L.U.; Andreev, E.N.; Dzhemilev, U. Total Synthesis of Neurolipotropic Alkynes: Lembehyne B and Key Intermediate of Lembehyne A. ChemistrySelect 2017, 2, 1211–1213. https://doi.org/10.1002/slct.201601988.
24. Dzhemileva, L.; Makarov, A.A.; Andreev, E.N.; Makarova, E.K.; Yunusbaeva, M.M.; D’Yakonov, V.A.; Dzhemilev, U.M. New 1,3-Diynoic Derivatives of Natural Lembehyne B: Stereoselective Synthesis, Anticancer, and Neuritogenic Activity. *ACS Omega* 2020, 5, 1974–1981. https://doi.org/10.1021/acsomega.9b03826.

25. Dzhemileva, L.; D’Yakonov, V.A.; Makarov, A.A.; Makarova, E.K.; Andreev, E.N.; Dzhemilev, U.M. Total Synthesis of Natural Lembehyne C and Investigation of Its Cytotoxic Properties. *J. Nat. Prod.* 2020, 83, 2399–2409. https://doi.org/10.1021/acs.jnatprod.0c00261.

26. Meyer, S.D.; Schreiber, S.L. Acceleration of the Dess-Martin Oxidation by Water. *J. Org. Chem.* 1994, 59, 7549–7552. https://doi.org/10.1021/jo00103a067.

27. Midland, M.M.; Tramontano, A.; Kazubski, A.; Graham, R.S.; Tsai, D.J.S.; Cardin, D.B. Asymmetric reductions of propargyl ketones. An effective approach to the synthesis of optically active compounds. *Tetrahedron* 1984, 40, 1371–1380.