INTERPRETATION OF STRUCTURE
IN THE DI-J/ψ SPECTRUM

Marek Karliner† and Jonathan L. Rosner‡

† School of Physics and Astronomy
Tel Aviv University, Tel Aviv 69978, Israel
‡ Enrico Fermi Institute and Department of Physics
University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA

ABSTRACT

Structure in the di-J/ψ mass spectrum observed by the LHCb experiment around 6.9 and 7.2 GeV is interpreted in terms of \(^{J^P C}=0^{++}\) resonances between a cc diquark and a \(\bar{c}\bar{c}\) antidiquark, using a recently confirmed string-junction picture to calculate tetraquark masses. The main peak around 6.9 GeV is likely dominated by the \(0^{++}(2S)\) state, a radial excitation of the cc-\(\bar{c}\bar{c}\) tetraquark, which we predict at 6.871 \(\pm\) 0.025 GeV. The dip around 6.75 GeV is ascribed to the opening of the S-wave di-\(\chi_{c0}\) channel, while the dip around 7.2 GeV could be correlated with the opening of the di-\(\eta_c(2S)\) channel. Description of the low-mass part of the di-J/ψ structure appears to require a low-mass broad resonance consistent with a predicted \(0^{++}(1S)\) state with invariant mass \(M_{\text{inv}} = 6191.5 \pm 25\text{MeV}\). Implications for \(b\bar{b}b\bar{b}\) tetraquarks are discussed.

I Introduction

The picture of hadrons as bound states of colored quarks described the observed mesons as \(q\bar{q}\) and baryons as \(qqq\) states, but also could accommodate more complicated color-singlet combinations such as \(qq\bar{q}\bar{q}\) (tetraquarks) or \(q^4\bar{q}\) (pentaquarks). Since 2003, experimental evidence has accumulated for such combinations, but it has not been clear whether they are genuine bound states with equal roles for all constituents, or loosely bound “molecules” of two mesons or a meson and a baryon, with quarks mainly belonging to one hadron or the other. There is, however, fairly robust theoretical evidence for a deeply bound genuine \(bb\bar{u}\bar{d}\) tetraquark [1, 2].

Recently the LHCb Collaboration at CERN has presented evidence for structure in the spectrum of a pair of J/ψ mesons, \(M_{\text{inv}}(\text{di-J}/\psi)\) \(\mathbb{R}\), interpreted as a narrow structure around 6.9 GeV and a broad structure just above twice the J/ψ mass. A dip in \(M_{\text{inv}}(\text{di-J}/\psi)\) around 6.75 GeV suggests interference with nonresonant behavior in a channel with the same \(^{J^P C}\). Such behavior is difficult to regard from a molecular standpoint, but is compatible with a picture of a compact \(cc\bar{c}\bar{c}\) state. Many theoretical interpretations of the LHCb data take this point of view [3] [19].

†marek@tauex.tau.ac.il
‡rosner@hep.uchicago.edu
In this paper we adopt the compact tetraquark point of view (see [20,21] for lists of related predictions) and point out a feature in the data which is characteristic of many processes. We note that the position of the dip roughly coincides with twice the mass of $\chi_c(3415)$. If the major resonant di-J/ψ activity is in the $J^{PC} = 0^{++}$ channel, a pair of $\chi_c(3415)$ charmonia can be produced in an S-wave as soon as $M_{\text{inv}}(\text{di-$J/\psi$})$ exceeds 6829 MeV. Unitarity then can induce a dip in the production channel. (See also [11].)

In Section II we recall a number of instances in which the opening of an S-wave channel induces a dip in the production channel. We apply similar methods to the S-wave process $J/\psi J/\psi \rightarrow \chi_c(3415) \chi_c(3415)$ in Section III, discuss implications for $cc\bar{c}\bar{c}$ tetraquarks in Section IV and for $bb\bar{b}\bar{b}$ tetraquarks in Section V, concluding in Section VI. An Appendix contains details of resonance fitting.

II Dips and cusps in S-wave production channels

Dips or cusps in the cross section for a number of S-wave processes occur when a new S-wave threshold is crossed. Here we review several such cases. More details and references may be found in Ref. [22].

A $\pi\pi \ I = J = 0$ amplitude at $K\bar{K}$ threshold

The rapid drop in the magnitude of the $I = 0$ S-wave $\pi\pi$ scattering amplitude near a center-of-mass energy $E_{\text{cm}} \simeq 1$ GeV is associated with the rapid passage of the elastic phase shift through 180°. (See Ref. [23] for a recent parametrization.) This behavior is correlated with the opening of the $K\bar{K}$ threshold, forcing the $I = J = 0$ $\pi\pi$ amplitude to become highly inelastic [24]. It also reflects the effect of a narrow resonance $f_0(980)$ [25] coupling to both $\pi\pi$ and $K\bar{K}$. For more details see [26,27]. A related discussion applies to the S-wave $\pi\eta$ channel near the $I = 1, J = 0$ $K\bar{K}$ threshold [28].

B Cusp in $\pi^0\pi^0$ spectrum at $\pi^+\pi^-$ threshold

The $\pi^0\pi^0$ S-wave scattering amplitude is expected to have a cusp at $\pi^+\pi^-$ threshold [29,30]. This behavior can be studied in the decay $K^+ \rightarrow \pi^+\pi^0\pi^0$, where the contribution from the $\pi^+\pi^+\pi^-$ intermediate state allows one to study the charge-exchange reaction $\pi^+\pi^- \rightarrow \pi^0\pi^0$ and thus to measure the $\pi\pi$ S-wave scattering length difference $a_0 - a_2$ [31]. The CERN NA48 Collaboration has performed such a measurement, finding results [32] in remarkable agreement with the prediction [31]. One can also study this effect in $\pi^+\pi^-$ atoms [33].

C Hadron production by e^+e^- collisions around 4.26 GeV

The value of $R \equiv \sigma(e^+e^- \rightarrow \text{hadrons})/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ drops sharply just below threshold for production of $D(1865)^0\bar{D}_1(2420)^0 + \text{c.c.}$ [34], which is the lowest-mass $c\bar{c}$ channel accessible in an S-wave from a virtual photon. If this behavior is not coincidental, the drop in R should be confined to the $c\bar{c}$ final states.
D Six-pion diffractive photoproduction

The diffractive photoproduction of $3\pi^+ 3\pi^-$ leads to a spectrum with a pronounced dip near $1.9 \text{ GeV}/c^2$ [35, 36]. This is just the threshold for production of a proton-antiproton pair in the 3S_1 channel. This dip also occurs in the $3\pi^+ 3\pi^-$ spectrum produced in radiative return in higher-energy e^+e^- collisions, i.e., in $e^+e^- \rightarrow \gamma 3\pi^+ 3\pi^-$, observed by the BaBar Collaboration at SLAC [37]. The feature can be reproduced by a 1^{--} resonance with $M = 1.91 \pm 0.01 \text{ GeV}/c^2$ and width $\Gamma = 37 \pm 13 \text{ MeV}$ interfering destructively with a broader 1^{--} resonance at lower mass [35, 36].

E Greater generality

The vanishing of an S-wave amplitude when its elastic phase shift goes through 180° is not confined to particle physics. The Ramsauer-Townsend effect represents similar behavior in atomic physics [38]. Cusps in S-wave scattering cross sections occur at thresholds for any new channels [39, 40]. Monochromatic neutrons may be produced by utilizing the vanishing absorption cross sections of neutrons of certain energies on specific nuclei [41].

F A cautionary note

Although the rapid passage of the $I = J = 0 \pi\pi$ phase shift through 180° near $K\bar{K}$ threshold can be ascribed to the nearby $f_0(980)$ resonance, one cannot conclude that similar behavior in other of the above cases (or many more examined in [22]) is due to nearby poles in the scattering amplitude [40]. As in the case of diffractive six-pion production mentioned above, unitarity alone will cause a suppression of the input channel at the expense of the newly-open channel. The ability to fit the amplitude with a resonance does not guarantee its existence.

III Dips in $M_{\text{inv}}(\text{di}J/\psi)$ at di-charmonium thresholds

In Fig. 1 we show the spectrum of $M_{\text{inv}}(\text{di}J/\psi)$ [3] together with a fit to data in the range 6.2–7.5 GeV using the sum of three Breit-Wigner resonances with masses M_i, widths Γ_i, and parameters (normalizations) η_i ($i=1,2,3$). Signal normalization, background normalization, and background shape are described by parameters C_i defined in the Appendix. The results of this fit are shown in Table 1.

The shapes of the peaks around 6.9 and 7.2 GeV suggest destructive interference between signal and background on the low-mass side of both peaks. The sudden rise following a dip is characteristic of an S-wave amplitude. Examples of this behavior were given in the previous Section. It was associated with the opening of a nearby threshold. In the case of the 6.9 GeV peak, we note that $2M(\chi_{c0}) = 6829 \text{ MeV}$, so we can ascribe the steep behavior between about 6750 and 6900 GeV as associated with opening of the di-χ_{c0} channel. The parameter $\eta_2 < 1$ indicates that the resonance with mass M_2 has a significant decay channel other than di-J/ψ.
Figure 1: Spectrum of J/ψ pairs reported by the LHCb Experiment [3], together with our best fit to data (red line), as given in Table I and described in the Appendix. The blue dashed line denotes the square of the background amplitude, Eq. (3) in the Appendix.

Table I: Parameters in best fit to data (see Appendix for definitions) with $\chi^2 = 31.072$ for 35 degrees of freedom (d.o.f.). Masses M_i and widths Γ_i are in MeV. Constants C_i describe signal normalization, background normalization, and background shape, respectively. Dimensionless parameters η_i ($\eta_1 \equiv 1$) describe relative normalizations of i-th Breit-Wigner shapes.

Peak i	$i=1$	$i=2$	$i=3$
M_i	6279.5	6851.5	7201.0
Γ_i	564.9	152.6	305.5
C_i	7.296	13.94	1.145
η_i	1.000a	0.536	0.376

a Input

If the di-χ_{c0} channel is in an S-wave, as implied by its sudden onset, the S-wave behavior in the di-J/ψ channel requires the two J/ψ mesons to be in a state of $J^{PC} = 0^{++}$. An initial state of two J/ψ mesons consists of two $c\bar{c}$ pairs, each in a 3S_1 state. A χ_{c0} is a P-wave charmonium state with the quarks’ spins coupled to 1 and spin coupled with $L = 1$ to give
Table II: Branching fractions of $\chi_{c0}(3415)$ exceeding a percent.

Mode	Percent
$2(\pi^+\pi^-)$	2.34 ± 0.18
$\pi^+\pi^-\pi^0\pi^0$	3.3 ± 0.4
$\pi^+\pi^-K^+K^-$	1.81 ± 0.14
$K^+\pi^-\bar{K}^0\pi^0 + \text{c.c.}$	2.49 ± 0.33
$3(\pi^+\pi^-)$	1.20 ± 0.18
$\gamma J/\psi$	1.40 ± 0.05

$J = 0$. The final state with two 3P_0 states in a relative S-wave can be reached from the initial state by orbital excitation of each spin-triplet state.

Detection of the presence of the two χ_{c0} states is challenging in view of the small branching fractions of χ_{c0} to observable final states. The only branching fractions of χ_{c0} that exceed a percent are given in Table II [25]. With sufficient mass resolution, one could combine the modes with all charged tracks to get an effective branching fraction of a bit above five percent. The total width of χ_{c0} is 10.8 ± 0.6 MeV. The experimental mass resolution in other LHCb analyses (see, e.g., [42, 43]) is somewhat greater, and thus dominates the sensitivity to a signal. An explicit simulation would be helpful.

Similar behavior is apparent on the low-M_{inv} shoulder of the peak at 7.2 GeV. The only nearby threshold is associated with a pair of $\eta_c(2S)$ mesons, with $2M[\eta_c(2S)] = 7275$ MeV. If this threshold plays an important role in the line shape of the peak, one should see decay products of two $\eta_c(2S)$ mesons on the high-M_{inv} side of this peak. This, of course, is even more challenging than detecting a pair of χ_{c0} mesons. (Refs. [12,13] draw attention to the slightly lower $\Xi_{cc}\Xi_{cc}$ threshold at 7242 MeV, which we shall discuss further at the end of Sec. IV.)

We initially sought evidence for a di-$\eta_c(1S)$ threshold at $2M[\eta_c(1S)] = 5968$ MeV and inserted a corresponding pole below di-J/ψ threshold into our fitting amplitude. The expectation was that this would contribute a needed enhancement of the spectrum between $M_{\text{inv}} \approx 6.2$ and 6.6 GeV. The fitting program (see Appendix A) instead preferred a much higher-mass pole, as one sees for M_1 in Table I. However, the χ^2 for the fit is a very shallow function of M_1 (and several other parameters). In particular, the parameters in Table III are consistent with the prediction [20] $M[T(\bar{c}c\bar{c}\bar{c})] = 6191.5 \pm 25$ MeV for the lightest all-charm tetraquark. We shall explore the consequences of identifying M_1 with the mass of the 1S all-charm tetraquark.

Although we do not predict a tetraquark resonance near di-$\eta_c(1S)$ threshold, it might be worth examining channels that couple to a pair of $\eta_c(1S)$ to see if they exhibit cusps in S-wave amplitudes near $M_{\text{inv}} = 5968$ MeV. Examples of such channels include $D\bar{D}$ and $D^*\bar{D}^*$ [8,14].
IV Implications for $cc\bar{c}\bar{c}$ tetraquarks

In Ref. [20], using a diquark-antidiquark picture, we predicted the ground state $T(cc\bar{c}\bar{c})$ mass to be 6191.5 ± 25 MeV. This error is taken to be twice that obtained when fitting non-exotic mesons and baryons in the string-junction picture (see also [12]), recently confirmed by the successful prediction of the mass of a $T(cs\bar{u}\bar{d})$ tetraquark [44] and which we are assuming here [20]. This would be the $0^{++}(1S)$ state of the spin-1 color antitriplet diquark and the spin-1 color triplet antidiquark. The ingredients of the prediction included a term $2S = 2(165.1)$ MeV for two QCD string junctions, $2(M_{cc}) = 2(3204.1)$ MeV for the masses of two diquarks, an interpolated binding energy of the cc diquark with the $\bar{c}\bar{c}$ antidiquark of -388.3 MeV, and a hyperfine term of -158.5 MeV. The predicted mass is just below $2M(J/\psi) = 6194$ MeV but above $2M(\eta_c(1S)) = 5968$ MeV, so strong decay to a pair of $\eta_c(1S)$ is favored. Here and subsequently we use the latest Particle Data Group masses [25].

The above discussion is based on S-wave cc diquarks in a color 3^* state, with spin 1. There should also be states involving color 6 diquarks, with spin zero. There should be an additional spinless tetraquark made of a 6 in an S-wave state with a 6*. Estimates, for example in Ref. [16], of its mass are not far from that of the $1S$ 3* \times 3 state, and the two may mix with one another.

The above estimate concerns the ground state 0^{++} mass. One estimates the ground state 2^{++} mass by noting that the hyperfine terms for a pair of spin-1 particles in states of $J = 0, 1, 2$ are in the ratio $(1/2)[J(J + 1) - 4] = -2, -1, 1$, so the hyperfine term for the lowest 2^{++} state is 79.3 MeV and the mass of the $2^{++}(1S)$ state is 6429.3 MeV, 237.8 MeV above the $0^{++}(1S)$ and well above $2M(J/\psi)$ threshold. This 2^{++} state, if present in the data, could be contributing to the low-M_{inv} dip-J/ψ signal, allowing the 0^{++} component of the peak to lie at lower mass, more consistent with prediction. A spin-parity analysis should be able to detect whether there is any 2^{++} contribution to the amplitude.

The 1S–2S splittings of the charmonium and bottomonium systems are almost the same. The spin-weighted average (1S, 2S) masses are (3068.65, 3673.95) MeV for charmonium and (9444.9, 10017.2) MeV for bottomonium, so $M(2S) - M(1S) = (605.3, 572.3)$ MeV for $(c\bar{c}, b\bar{b})$. They would be equal for a logarithmic interquark potential, providing a convenient interpolation between short-distance and long-distance QCD for these systems [45]. The cc diquark mass is intermediate between m_c and m_b: using the values from [20],

$$m_c = 1655.6 \text{ MeV} , \quad m_b = 4988.6 \text{ MeV} , \quad m_{cc} = 3204.1 \text{ MeV} ,$$

Table III: Parameters in best fit to data with $M_1 = 6191.5 \pm 25$ MeV, giving $\chi^2 = 31.712$ for 35 degrees of freedom (d.o.f.) Notation as in Table I.

Peak i	$i=1$	$i=2$	$i=3$
M_i	6212.5a	6850.7	7201.1
Γ_i	625.0	140.5	258.4
C_i	6.48	13.98	1.138
η_i	1.000b	0.573	0.397

a Constraint $M_1 = 6191.5 \pm 25$ MeV b Input
a power-law interpolation between m_c and m_b of the form $M(2S) - M(1S) = a m^p$ with $a = 882.22 m^{-0.050826}$ gives the $1S$–$2S$ splitting for a cc diquark and a $\bar{c}c$ antidiquark to be 585.3 MeV.

The hyperfine splittings $M(3S_1) - M(1S_0)$ are in the ratio $\Delta M(2S)/\Delta M(1S) = 0.430 \pm 0.005$ for $\bar{c}c$ and 0.390 ± 0.066 for $b\bar{b}$. Interpolating these central values in terms of a power law in masses we find $\Delta M(2S)/\Delta M(1S) = 0.4053$ for the bound states of the cc diquark and the $\bar{c}c$ antidiquark. This means that for the $2S$ system, we replace the $1S$ hyperfine term of -158.5 MeV by -64.2 MeV, a change of 94.3 MeV. The mass of the 0^{++} state is then $6192 + 585 + 94 = 6871$ MeV, close to the peak claimed by LHCb. (See also [9,13].) The $2^{++}(2S)$ state is then $(0.4053)(237.8) = 96$ MeV higher, at 6967 MeV. This state could also be contributing to the LHCb signal.

We have not discussed 1^{++} states of cc diquark and $\bar{c}c$ antidiquark decaying to a pair of J/ψ in an S-wave. Two identical spin-1 bosons in an S-wave are forbidden by Bose statistics to have total angular momentum $J = 1$.

The S-wave threshold amplitude amplitude for $\chi_{c0}\chi_{c0}$ production, starting at $2M(\chi_{c0}) = 6829$ MeV, thus interferes primarily with the $0^{++}(2S) J/\psi$ resonant amplitude at 6871 MeV.

The peak around 7200 MeV is in approximately the right place for a $3S$ state of $(cc)^3^+(\bar{c}\bar{c})^3$. The flavor threshold for charmonium lies just above the $2S$ level, while that for bottomonium lies just below the $4S$ level. As a system with reduced mass intermediate between that of charmonium and that of bottomonium, the $d\bar{c}J/\psi$ system can be expected to have a flavor threshold around the $3S$ level (see Fig. 1 of [50]). This estimate is based on the observation that flavor threshold in a quarkonium system always occurs at a universal length of the QCD string connecting the two heavy constituents. Indeed, the first open-flavor state in which a QCD string connecting $(cc)^3^+(\bar{c}\bar{c})^3$ breaks is that in which a light $q\bar{q}$ pair is produced, giving $\Xi_{cc}\Xi_{cc}$ with threshold 7242 MeV [12,13].

V Implications for $bb\bar{b}\bar{b}$ tetraquarks

Some attention to the question of fully heavy tetraquarks was drawn by an unpublished report by the CMS Collaboration at CERN [16] of an exotic structure in the four-lepton channel at $18.4 \pm 0.1 \pm 0.2$ GeV, an excess with a global significance of 3.6 σ. CMS reported 38 ± 7 events of $\Upsilon(1S)$ pairs produced with an integrated luminosity of 20.7 fb$^{-1}$ at $\sqrt{s} = 8$ TeV, each decaying to μ pairs [47]. There is no published confirmation of the structure, but in view of the $d\bar{c}J/\psi$ structure it is worth updating and extending the predictions of Ref. [20] for $bb\bar{b}\bar{b}$ tetraquarks.

In Ref. [20] we predicted the ground state $T(bb\bar{b}\bar{b})$ mass to be 18826 ± 25 MeV, just above $2M[\eta_b(1S)] = 18797$ MeV, so its main decay will likely be to two η_b-s. It would be the 0^{++} state of a color antitriplet spin-1 bb diquark and the corresponding antidiquark. One predicts

$$M[T(bb\bar{b}\bar{b})(0^{++})] = 2S + 2M(bb, 3^+) + B_{(bb)(\bar{b}\bar{b})} + \Delta M_{HF}$$

$$= [2(165.1) + 2(9718.9) - 855.7 - 86.7] \text{ MeV} = 18,825.6 \text{ MeV},$$

where S is the contribution of a QCD string junction, $B_{(bb)(\bar{b}\bar{b})}$ is the binding energy between the bb diquark and the $\bar{b}\bar{b}$ antidiquark, and ΔM_{HF} is the hyperfine interaction between the
Table IV: Predicted masses of lowest-lying bound states of a color-antitriplet spin-1 \(cc \) diquark and a color-triplet spin-1 \(\bar{c}\bar{c} \) antidiquark. The \(\chi_{c0}\chi_{c0} \) threshold is 6829 MeV.

\(J^{PC} \)	\(M(1S) \) (MeV)	\(M(2S) \) (MeV)
0^++	6192	6871
2^++	6429	6967

diquark and the antidiquark. An error of ±25 MeV was assigned to this prediction, which we will assume applies to the other predictions in this Section.

The hyperfine term for the 2^++ state is \((-1/2)(-86.7) = 43.4 \) MeV, so the 2^++ (1S) state is 130.1 MeV higher than the 0^++ (1S) state, or 18955.7 MeV. This lies above \(2M(\Upsilon(1S)) = 2(9460.3) = 18920.6 \) MeV so it can decay to a pair of \(\Upsilon(1S) \).

In order to estimate the 1S–2S splitting for \(T(bb\bar{b}\bar{b}) \), we use the power-law dependence of the previous Section, \(\Delta M = 882.22m^{-0.050826} \) (units in MeV) with \(m = 9718.9 \) MeV, to predict \(M(2S) - M(1S) = 553.2 \) MeV. To estimate the 2S hyperfine splitting we extrapolate the ratio \(\Delta M_{HF}(2S)/\Delta M_{HF}(1S) = 0.83232m^{-0.089428} \) to obtain \(\Delta M_{HF}(2S)/\Delta M_{HF}(1S) = 0.3671 \). The hyperfine terms for \((0^+, 2^+)(2S)\) are then \((-31.8, 15.9) \) MeV, resulting in the predictions \(M(0^+, 2^+)(2S) = (19433.6, 19481.4) \) MeV.

The radially excited \(0^+(2S) bb\bar{b}\bar{b} \) tetraquark at 19.434 ± 0.025 GeV is the bottom analogue of the \(0^+(2S) \) excited \(cc\bar{c}\bar{c} \) tetraquark at 6.871 ± 0.025 GeV, proposed here as the main component of the peak near 6.9 GeV reported by LHCb [3].

The predicted \(0^+(2S) \) mass is large enough to imply a substantial partial width into a pair of \(\Upsilon(1S) \). It lies below the \(\chi_{b0}\chi_{b0} \) threshold, which is \(2(9859.44) = 19718.9 \) MeV, so its interference with the \(0^+ \) state will depend on the width of that state and should exhibit a different pattern from the \(T(cc\bar{c}\bar{c}) \) case, where the \(\chi_{c0}\chi_{c0} \) threshold roughly coincides with the \(0^+(2S) \) resonance mass. We should also keep in mind the \(\Xi_{bb}\Xi_{bb} \) threshold at \(2(10162 ± 12) = 20324 ± 25 \) MeV, where we have used the prediction [53] \(M(\Xi_{bb}) = 10162 ± 12 \) MeV, in analogy with the \(\Xi_{cc}\Xi_{cc} \) threshold mentioned earlier.

VI Conclusions

We have interpreted the structure in the di–\(J/\psi \) mass spectrum observed by LHCb in terms of a diquark-antidiquark picture [20], with the predicted masses in Table IV. The irregular structure is seen to be due to the rapidly opening \(\chi_{c0}\chi_{c0} \) S-wave channel at 6829 MeV, interfering primarily with the \(0^+ \) 2S state. We have also updated and extended our prediction [20] for the tetraquark \(T(bb\bar{b}\bar{b}) \), with the results shown in Table V. The relative position of the \(2\chi_{b0} \) threshold with respect to the predicted \(0^+(2S) \) state is different from that in the charm case, implying a structure in invariant mass of different shape.
Table V: Predicted masses of lowest-lying bound states of a color-antitriplet spin-1 bb diquark and a color-triplet spin-1 $\bar{b}\bar{b}$ antidiquark. The $\chi_{b0}\chi_{b0}$ threshold is 19719 MeV.

J^{PC}	$M(1S)$ (MeV)	$M(2S)$ (MeV)
0$^{++}$	18826	18956
2$^{++}$	19434	19481

Acknowledgements

We thank Liupan An for discussion of the LHCb data following the LHC seminar on June 16 and for directing us to the supplemental files with numerical values and errors in Ref. [3]. We also thank Richard Lebed, Tomasz Skwarnicki, and Changzheng Yuan for useful discussions. The research of M.K. was supported in part by NSFC-ISF grant No. 3423/19.

Appendix: Details of data fitting

We assume the di-J/ψ spectrum is due to a smooth background with proper threshold behavior:

$$B(M_{inv}) = -C_2 q \exp[-M_{inv}(\text{GeV})C_3] , \quad q \equiv (M_{inv}^2/4 - [M(J/\psi)]^2)^{1/2} ,$$ \hspace{1cm} (3)

added coherently to the sum of three Breit-Wigner resonances each of the form

$$A_i = N_i/D_i , \quad N_i = C_1 \eta_i M_{inv} \Gamma_i ,$$
$$D_i = M_i^2 - M_{inv}^2 - i M_{inv} \Gamma_i , \quad (i = 1, 2, 3) ,$$ \hspace{1cm} (4)

where M_i and Γ_i are the mass and width of the ith resonance. We set $\eta_1 \equiv 1$ and absorb normalization of resonance 1 into the constant C_1. The parameters $\eta_{(2,3)}$, being less than 1, indicate that the branching fractions to di-J/ψ of resonances 2 and 3 are less than that of resonance 1. The constants C_2 and C_3 parametrize background normalization and shape, respectively. The observed number of events per 28 MeV bin is then

$$N(M_{inv}) = |T(M_{inv})|^2 , \quad T \equiv B + \sum_{i=1}^{3} A_i .$$ \hspace{1cm} (5)

The numerical data $N \pm dN$ are those in Fig. 3(a) of Ref. [3], restricted to the range $6200 \leq M_{inv} \leq 7488$ MeV (our choice of upper bound; the data are quoted up to 8000 MeV). We minimize $\chi^2 \equiv \sum_j [(N_j(\text{fit}) - N_j(\text{data})]/dN_j)^2$, the sum over 46 28-MeV-wide bins centered on from 6214 to 7474 MeV.

By comparing Tables I and III one sees that certain parameters are not well determined by the χ^2 criterion. These must thus be regarded as only representative values.
References

[1] M. Karliner and J. L. Rosner, “Discovery of doubly-charmed Ξ_{cc} baryon implies a stable (bbūd) tetraquark”, Phys. Rev. Lett. 119, 202001 (2017) [arXiv:1707.07666 [hep-ph]].

[2] E. J. Eichten and C. Quigg, “Heavy-quark symmetry implies stable heavy tetraquark mesons Q_iQ_j̅Q_k̅Q_l̅”, Phys. Rev. Lett. 119, 202002 (2017) [arXiv:1707.09575 [hep-ph]].

[3] R. Aaij et al. (LHCb Collaboration), “Observation of structure in the J/ψ-pair mass spectrum”, arXiv:2006.16957 [hep-ex]. Numerical data corresponding to the figures are available in the supplementary files at http://cds.cern.ch/record/2722544/files/.

[4] M. S. Liu, F. X. Liu, X. H. Zhong and Q. Zhao, “Full-heavy tetraquark states and their evidences in the LHCb di-J/ψ spectrum”, arXiv:2006.11952 [hep-ph].

[5] Z. G. Wang, “Tetraquark candidates in the LHCb’s di-J/ψ mass spectrum”, arXiv:2006.13028 [hep-ph].

[6] X. Jin, Y. Xue, H. Huang and J. Ping, “Full-heavy tetraquarks in constituent quark models”, arXiv:2006.13745 [hep-ph].

[7] G. Yang, J. Ping, L. He and Q. Wang, “A potential model prediction of fully-heavy tetraquarks QQ̅QQ̅ (Q = c, b)”, arXiv:2006.13756 [hep-ph].

[8] C. Becchi, A. Giachino, L. Maiani and E. Santopinto, “A study of cc̅̅̅̅ tetraquark decays in 4 muons and in D(∗)̅D(∗) at LHC”, arXiv:2006.14388 [hep-ph].

[9] Q. F. Lü, D. Y. Chen and Y. B. Dong, “Masses of fully heavy tetraquarks QQ̅QQ̅ in an extended relativized quark model”, arXiv:2006.14445 [hep-ph].

[10] H. X. Chen, W. Chen, X. Liu and S. L. Zhu, “Strong decays of fully-charm tetraquarks into di-charmonia”, arXiv:2006.16027 [hep-ph].

[11] R. M. Albuquerque, S. Narison, A. Rabemananjara, D. Rabetiarivony and G. Randriamanatrika, “Doubly-hidden scalar heavy molecules and tetraquarks states from QCD at NLO”, arXiv:2008.01569 [hep-ph].

[12] J. Sonnenschein and D. Weissman, “Deciphering the recently discovered tetraquark candidates around 6.9 GeV”, arXiv:2008.01095 [hep-ph].

[13] J. F. Giron and R. F. Lebed, “The Simple Spectrum of ccc̅̅ States in the Dynamical Diquark Model”, arXiv:2008.01631 [hep-ph].

[14] L. Maiani, “J/ψ-pair resonances by LHCb: a new revolution?”, arXiv:2008.01637 [hep-ph], and references therein.

[15] J. M. Richard, “About the J/ψ J/ψ peak of LHCb: fully-charmed tetraquark?”, arXiv:2008.01962 [hep-ph], and references therein, including J. M. Richard, A. Valcarce and J. Vijande, “Few-body quark dynamics for doubly heavy baryons and tetraquarks”, Phys. Rev. C 97, 035211 (2018) arXiv:1803.06155 [hep-ph].
[16] J. Z. Wang, D. Y. Chen, X. Liu and T. Matsuki, “Producing fully-charm structures in the J/ψ-pair invariant mass spectrum”, arXiv:2008.07430 [hep-ph].

[17] K. T. Chao and S. L. Zhu, “The possible tetraquark states $c\bar{c}c\bar{c}$ observed by the LHCb experiment”, Science Bulletin (2020), arXiv:2008.07670 [hep-ph].

[18] G. Eichmann, C. S. Fischer, W. Heupel, N. Santowsky and P. C. Wallbott, “Four-quark states from functional methods”, arXiv:2008.10240 [hep-ph].

[19] R. Maciula, W. Schäfer and A. Szczurek, “On the mechanism of $T_{4c}(6900)$ tetraquark production”, arXiv:2009.02100 [hep-ph].

[20] M. Karliner, S. Nussinov and J. L. Rosner, “$QQ\bar{Q}\bar{Q}$ states: masses, production, and decays”, Phys. Rev. D 95, 034011 (2017) arXiv:1611.00348 [hep-ph].

[21] G. Yang, J. Ping and J. Segovia, “Tetra- and penta-quark structures in the constituent quark model”, arXiv:2009.00238 [hep-ph].

[22] J. L. Rosner, “Effects of S-wave thresholds”, Phys. Rev. D 74, 076006 (2006) hep-ph/0608102.

[23] J. R. Pelaez, A. Rodas and J. Ruiz De Elvira, “Global parameterization of $\pi\pi$ scattering up to 2 GeV”, Eur. Phys. J. C 79, no. 12, 1008 (2019) arXiv:1907.13162 [hep-ph].

[24] S. M. Flatté et al., “Analysis of the observed anomaly in $\pi\pi$ S-wave scattering near $K\bar{K}$ threshold”, Phys. Lett. B 38, 232 (1972).

[25] P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics”, to be published in Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

[26] K. L. Au, D. Morgan and M. R. Pennington, “Meson Dynamics Beyond the Quark Model: A Study of Final State Interactions”, Phys. Rev. D 35, 1633 (1987).

[27] D. V. Bugg, “σ, κ, $f_0(980)$ and $a_1(980)$”, hep-ex/0510014; see also AIP Conf. Proc. 814, 78 (2006).

[28] S. M. Flatté, “Coupled-Channel Analysis of the $\pi\eta$ and $K\bar{K}$ Systems Near $K\bar{K}$ Threshold”, Phys. Lett. 63B, 224 (1976).

[29] U. G. Meißner, G. Müller and S. Steininger, “Virtual photons in SU(2) chiral perturbation theory and electromagnetic corrections to $\pi\pi$ scattering”, Phys. Lett. B 406, 154 (1997) [Erratum-ibid. B 407, 454 (1997)].

[30] U. G. Meißner, “Hadron structure in the nonperturbative regime of QCD: Isospin symmetry and its violation”, Nucl. Phys. A 629, 72C (1998).

[31] N. Cabibbo, “Determination of the $a_0 - a_2$ pion scattering length from $K^+ \to \pi^+\pi^0\pi^0$ decay”, Phys. Rev. Lett. 93, 121801 (2004); N. Cabibbo and G. Isidori, “Pion-pion scattering and the $K \to 3\pi$ decay amplitudes”, JHEP 0503, 021 (2005); G. Colangelo, J. Gasser, B. Kubis and A. Rusetsky, “Cusps in $K \to 3\pi$ decays”, Phys. Lett. B 638, 187 (2006), and references therein.
[32] J. R. Batley et al. [NA48/2 Collaboration], “Observation of a cusp-like structure in the $\pi^0\pi^0$ invariant mass distribution from $K^\pm \rightarrow \pi^\pm \pi^0\pi^0$ decay and determination of the $\pi\pi$ scattering lengths”, Phys. Lett. B 633, 173 (2006).

[33] B. Adeva et al. [DIRAC Collaboration], “First measurement of the $\pi^+\pi^-$ atom lifetime”, Phys. Lett. B 619, 50 (2005).

[34] J. Z. Bai et al. [BES Collaboration], “Measurements of the cross-section for $e^+e^- \rightarrow$ hadrons at center-of-mass energies from 2 GeV to 5 GeV”, Phys. Rev. Lett. 88, 101802 (2002).

[35] P. L. Frabetti et al. [E687 Collaboration], “Evidence for a narrow dip structure at 1.9 GeV/c^2 in $3\pi^+ 3\pi^-$ diffractive photoproduction”, Phys. Lett. B 514, 240 (2001).

[36] P. L. Frabetti et al., “On the narrow dip structure at 1.9 GeV/c^2 in diffractive photoproduction”, Phys. Lett. B 578, 290 (2004).

[37] B. Aubert et al. (BaBar Collaboration), “The $e^+e^- \rightarrow 3(\pi^+\pi^-),2(\pi^+\pi^-\pi^0)$ and $K^+K^- 2(\pi^+\pi^-)$ cross sections at center-of-mass energies from production threshold to 4.5-GeV measured with initial-state radiation,” Phys. Rev. D 73, 052003 (2006) [hep-ex/0602006].

[38] C. Ramsauer, Ann. der Physik (Leipzig) Ser. 4, 64, 513 (1921); ibid. 66, 545 (164, 451 (1921)]; J. S. Townsend and V. A. Bailey, Phil. Mag. Ser. 6, 43, 593 (1922); ibid. 44, 1033 (1922); N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd Ed., Ch. 18 (Oxford University Press, 1965). For a recent discussion see W. R. Johnson and C. Guet, Elastic scattering of electrons from Xe, Cs$^+$, and Ba$^{2+}$”, Phys. Rev. A 49, 1041 (1994).

[39] E. P. Wigner, “On the Behavior of Cross Sections Near Thresholds”, Phys. Rev. 73, 1002 (1948).

[40] D. V. Bugg, “Reinterpreting several narrow ‘resonances’ as threshold cusps”, Phys. Lett. B 598, 8 (2004).

[41] See the references quoted in P. S. Barbeau, J. I. Collar and P. M. Whaley, “Design and Characterization of a Neutron Calibration Facility for the Study of sub-keV Nuclear Recoils”, Nucl. Instrum. Meth. A 574, 385 (2007) [nucl-ex/0701011].

[42] R. Aaij et al. (LHCb Collaboration), “Measurement of Angular and CP Asymmetries in $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ and $D^0 \rightarrow K^+K^-\mu^+\mu^-$ decays”, Phys. Rev. Lett. 121, 091801 (2018) [arXiv:1806.10793 [hep-ex]].

[43] R. Aaij et al. (LHCb Collaboration), “Amplitude analysis of the $B^+ \rightarrow \pi^+\pi^-\pi^-$ decay”, Phys. Rev. D 101, 012006 (2020) [arXiv:1909.05212 [hep-ex]].

[44] M. Karliner and J. L. Rosner, “First exotic hadron with open heavy flavor: cs\bar{u}d tetraquark”, arXiv:2008.05993 [hep-ph].

[45] C. Quigg and J. L. Rosner, “Quarkonium Level Spacings”, Phys. Lett. 71B, 153 (1977).
[46] CMS Collaboration, S. Durgut for the collaboration, “Search for Exotic Mesons at CMS”, talk at the April 2018 Meeting of the American Physical Society, Columbus, Ohio, http://meetings.aps.org/Meeting/APR18/Session/U09.6.

[47] V. Khachatryan et al. (CMS Collaboration), “Observation of Υ(1S) pair production in proton-proton collisions at √s = 8 TeV”, JHEP 1705, 013 (2017) [arXiv:1610.07095 [hep-ex]].

[48] G. Aad et al. (ATLAS Collaboration), “Search for Higgs bosons decaying to aa in the μμττ final state in pp collisions at √s = 8 TeV with the ATLAS experiment,” Phys. Rev. D 92, 052002 (2015) [arXiv:1505.01609 [hep-ex]].

[49] V. Khachatryan et al. (CMS Collaboration), “Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at √s =8 TeV,” JHEP 1710, 076 (2017) [arXiv:1701.02032 [hep-ex]].

[50] C. Quigg and J. L. Rosner, “Counting Narrow Levels of Quarkonium”, Phys. Lett. 72B, 462 (1978).

[51] J. L. Rosner, “Universal spacing for heavy quarkonium dissociation”, Phys. Lett. B 385, 293 (1996) [hep-ph/9605373].

[52] J. L. Rosner, “Interpretation of an edge in proton-proton scattering”, Phys. Rev. D 90, 117902 (2014) [arXiv:1409.5813 [hep-ph]].

[53] M. Karliner and J. L. Rosner, “Baryons with two heavy quarks: Masses, production, decays, and detection”, Phys. Rev. D 90, 094007 (2014) [arXiv:1408.5877 [hep-ph]].