We prove that the distribution density of any non-constant polynomial $f(\xi_1, \xi_2, \ldots)$ of degree d in independent standard Gaussian random variables ξ (possibly, in infinitely many variables) always belongs to the Nikol’skii–Besov space $B^{1/d}(\mathbb{R}^1)$ of fractional order $1/d$ (and this order is best possible), and an analogous result holds for polynomial mappings with values in \mathbb{R}^k.

Our second main result is an upper bound on the total variation distance between two probability measures on \mathbb{R}^k via the Kantorovich distance between them and a suitable Nikol’skii–Besov norm of their difference.

As an application we consider the total variation distance between the distributions of two random k-dimensional vectors composed of polynomials of degree d in Gaussian random variables and show that this distance is estimated by a fractional power of the Kantorovich distance with an exponent depending only on d and k, but not on the number of variables of the considered polynomials.

Keywords: Distribution of a polynomial, Nikol’skii–Besov class, Hardy–Landau–Littlewood inequality, total variation norm, Kantorovich norm

AMS Subject Classification: 60E05, 60E15, 28C20, 60F99

1. Introduction

This paper is concerned with distributions of polynomials in Gaussian random variables and estimates in the total variation distance between measures with densities from fractional Nikol’skii–Besov classes.

Our first main result (presented in Section 4 and Section 5) states that the distribution of any non-constant polynomial of degree d (possibly, in infinitely many variables) with respect to a Gaussian measure always belongs to the Nikol’skii–Besov space $B^{1/d}(\mathbb{R}^1)$ (so that the order of smoothness depends only on the degree of this polynomial and this order is best possible) and that an analogous result holds for multidimensional polynomial mappings. It is well-known that a non-constant polynomial in Gaussian random variables has a distribution density, however, in many cases this density is not locally bounded (which happens already for the square of the standard Gaussian random variable), hence does not belong to an integer order Sobolev class.

The established fractional regularity is the first general result in this direction.

Our second main result gives new lower bounds for the Kantorovich distance (all definitions are given in Section 2) between probability measures on \mathbb{R}^k; these bounds can be also viewed as upper bounds for the total variation distance. Our principal new result is a fractional multidimensional analog of the classical Hardy–Landau–Littlewood inequality. We obtain an upper bound on the total variation distance between two probability measures on \mathbb{R}^k in terms of the Kantorovich distance between them and a suitable Nikol’skii–Besov norm of their difference. A particular case of our inequality is the estimate of the total variation norm via the Kantorovich norm and the BV-norm established in [10], [11]. The classical Hardy–Landau–Littlewood result

This work has been supported by the Russian Science Foundation Grant 14-11-00196 at Lomonosov Moscow State University.
There is a property (\text{1.1}) that states that \[\|f\|_1^2 \leq C\|f\|_1\|f''\|_1\]
for every integrable function \(f\) on the real line with two integrable derivatives. A multidimensional analog of this bound was obtained in [10], [11] (see also [19] and [26]) in the following form: for every \(k\), there is a number \(C(k)\) such that for every two probability measures \(\mu\) and \(\nu\) on \(\mathbb{R}^k\) with densities \(\varrho_\mu\) and \(\varrho_\nu\), belonging to the class \(BV\) of functions of bounded variation one has
\[
d_{TV}(\mu, \nu)^2 \leq C(k)d_K(\mu, \nu)\|D\varrho_\mu - D\varrho_\nu\|_{TV},
\]
where \(d_{TV}\) is the total variation distance and \(d_K\) is the Kantorovich distance (see definitions below). In the one-dimensional case, this inequality is equivalent to the Hardy–Landau–Littlewood inequality (and can be obtained from the latter by passing to smooth compactly supported functions and taking for \(f\) the difference of the distribution functions of the given measures). However, this result does not directly apply to polynomial images of Gaussian measures, our second main object. For example, the distribution density of the \(\chi^2\)-distribution with one degree of freedom is unbounded (it behaves like \(t^{-1/2}\) near zero) and does not belong to the class \(BV\). For this reason, having in mind applications to distributions of polynomials (treated in Section 4 and 5), in Section 3 we first obtain a suitable extension of (\text{11}) that involves fractional derivatives in place of gradients. Namely, given two Borel probability measures \(\nu, \sigma\) in the Nikol’skii–Besov class \(B^\alpha(\mathbb{R}^k), \alpha \in (0, 1]\), we prove that
\[
\|\sigma - \nu\|_{TV} \leq C(k, \alpha)\|\sigma - \nu\|_{B^\alpha(\mathbb{R}^d)}^{1/(1+\alpha)}d_K(\sigma, \nu)^{\alpha/(1+\alpha)}.
\]
As an application (considered in Sections 4 and 5) we give upper bounds on the total variation distance via the Kantorovich distance between the distributions of two random \(k\)-dimensional vectors whose components are polynomials of degree \(d\) in Gaussian variables. The former distance is estimated by a certain fractional power of the latter with an exponent depending only on the degree \(d\) and dimension \(k\) of the vectors, but not on the number of variables of these polynomials, which yields an immediate infinite-dimensional extension. Our bounds improve the recent results of Nourdin, Nualart and Poly [23]. This improvement is due to a new method based on the aforementioned fractional multidimensional analog of the Hardy–Landau–Littlewood inequality and also involves Nikol’skii–Besov classes. In this relation recall that Nourdin and Poly [24] Theorem 3.1] proved the following interesting fact (the concepts involved in the formulation are defined in the next section). If \(\{f_n\}\) is a sequence of polynomials of degree \(d\) on a space with a Gaussian measure \(\gamma\) such that their distributions \(\gamma \circ f_n^{-1}\) converge weakly to an absolutely continuous measure, then there is a number \(C\) such that
\[
d_{TV}(\gamma \circ f_n^{-1}, \gamma \circ f_m^{-1}) \leq Cd_{KR}(\gamma \circ f_n^{-1}, \gamma \circ f_m^{-1})^\theta, \quad \theta = \frac{1}{2d + 1},
\]
where \(d_{KR}\) is the Kantorovich–Rubinstein distance (see below; the term “Fortet–Mourier distance” used in [24] is reserved in our paper for the equivalent metric \(d_{FM}\) from the original paper [15]). The proof in [24] implies that, for any two \(\gamma\)-measurable polynomials of degree \(d\) with variances \(\sigma_f, \sigma_g\) in a given interval \((a, b)\) with \(a > 0\), there is a number \(C = C(a, b, d)\), depending only on \(a, b, d\), such that
\[
d_{TV}(\gamma \circ f^{-1}, \gamma \circ g^{-1}) \leq Cd_{KR}(\gamma \circ f^{-1}, \gamma \circ g^{-1})^{\frac{1}{2d+1}}.
\]
In the multidimensional case, it was shown in [23] that, given a sequence of \(k\)-dimensional random vectors \(f_n\) composed of \(\gamma\)-measurable polynomials of degree \(d\) such that their distributions \(\gamma \circ f_n^{-1}\) converge weakly and the expectations of the determinants of their Malliavin matrices are separated from zero, for every
\[
\theta < \frac{1}{(k+1)(4k(d-1) + 3) + 1}
\]
there exists a number C such that
\[d_{TV}(\gamma \circ f^{-1}_n, \gamma \circ f^{-1}_m) \leq C d_{KR}(\gamma \circ f^{-1}_n, \gamma \circ f^{-1}_m)^\theta. \]

Here we develop a different approach based on multidimensional analogs of the Hardy–Landau–Littlewood inequality and in Section 4 we prove an estimate with a much better rate of convergence: given $d \in \mathbb{N}$, $a, b > 0$, for each positive number
\[\theta < \frac{1}{4k(d - 1) + 1}, \]
there exists a number $C = C(d, a, b, \theta)$ such that, whenever f and g are k-dimensional polynomial mappings of degree d (in an arbitrary, possibly, infinite, number of variables) with variances of components bounded by b and the expectations of the determinants of the Malliavin matrices separated from zero by a, one has
\[d_{TV}(\gamma \circ f^{-1}, \gamma \circ g^{-1}) \leq C d_{KR}(\gamma \circ f^{-1}, \gamma \circ g^{-1})^\theta. \]

In Section 5 we consider separately the one-dimensional case and also improve the aforementioned bound from [24] from the power $\theta = (2d + 1)^{-1}$ to nearly $(2d - 1)^{-1}$, more precisely, we establish the foregoing bound with any power $\theta < 1/(2d - 1)$. Moreover, with a worse constant we obtain a bound with the power $\theta = 1/(d + 1)$, which is close to $1/d$ and the latter cannot be increased. Finally, in Section 6 we give two related estimates connected with results from [14] and [24]. The readers not interested in the infinite-dimensional case can just ignore the corresponding statements; the essence of the paper is in finite-dimensional results independent of the number of variables. We thank I. Nourdin for useful discussions.

2. Definitions and notation

The standard Gaussian measure γ_n on \mathbb{R}^n has density
\[(2\pi)^{-n/2} \exp(-|x|^2/2). \]
The image of a measure μ on a measurable space under a measurable mapping f with values in \mathbb{R}^k is denoted by the symbol $\mu \circ f^{-1}$ and defined by the formula
\[\mu \circ f^{-1}(B) = \mu(f^{-1}(B)) \quad \text{for every Borel set } B \subset \mathbb{R}^k. \]
If ξ_1, \ldots, ξ_n are independent standard Gaussian random variables, $f: \mathbb{R}^n \to \mathbb{R}^k$, then the law of $f(\xi_1, \ldots, \xi_n)$ is exactly $\gamma_n \circ f^{-1}$. If $k = 1$, then the distribution density of $\mu \circ f^{-1}$ (if exists) is the derivative of the function $t \mapsto \mu(f < t)$.

We set $\|\varphi\|_{\infty} = \sup_x |\varphi(x)|$ for any bounded function φ on any set.

The total variation distance $d_{TV}(\mu, \nu)$ between two Borel measures μ, ν on \mathbb{R}^k is generated by the norm
\[\|\sigma\|_{TV} := \sup \left\{ \int \varphi \, d\sigma, \, \varphi \in C_0^\infty(\mathbb{R}^k), \, \|\varphi\|_{\infty} \leq 1 \right\}. \]
The Kantorovich distance (or the Kantorovich–Rubinstein distance [17], [18], sometimes erroneously called the Wasserstein distance) between two Borel probability measures μ, ν on \mathbb{R}^k with finite first moments is defined by the formula
\[d_K(\mu, \nu) := \sup \left\{ \int \varphi \, d(\mu - \nu), \, \varphi \in C_0^\infty(\mathbb{R}^k), \, \|\nabla \varphi\|_{\infty} \leq 1 \right\}. \]
For measures without moments, the following Fortet–Mourier distance can be used (see [15] p. 277–279); other distances including d_K are considered there:
\[d_{FM}(\mu, \nu) := \sup \left\{ \int \varphi \, d(\mu - \nu), \, \varphi \in C_0^\infty(\mathbb{R}^k), \, \|\varphi\|_{\infty} + \|\nabla \varphi\|_{\infty} \leq 1 \right\}. \]
An equivalent distance (also called the Kantorovich–Rubinstein distance, since it is a special case of a metric used in [13, Theorem 1]) which is generated by equivalent norm is defined by

\[d_{KR}(\mu, \nu) := \sup \left\{ \int \varphi \, d(\mu - \nu), \varphi \in C_b^\infty(\mathbb{R}^k), \|\varphi\|_\infty \leq 1, \|\nabla \varphi\|_\infty \leq 1 \right\}. \]

These distances can be defined on general metric spaces where in place of \(C_b^\infty \) one takes the class of all bounded Lipschitz functions. It is clear that \(d_{KR} \leq d_K \).

Recall (see [7], [22]) that the Nikol’skii–Besov class \(B^\alpha_{1,\infty}(\mathbb{R}^k) \) of order \(\alpha \in (0, 1) \) consists of all functions \(\varphi \in L^1(\mathbb{R}^k) \) such that

\[\|\varphi(\cdot + h) - \varphi\|_{L^1} \leq C(\varphi)\|h\|^\alpha \quad \forall h \in \mathbb{R}^k \]

for some number \(C(\varphi) \); it is also denoted by \(H^\alpha_1(\mathbb{R}^k) \) in [22], by \(B^{\alpha,1,\infty}(\mathbb{R}^k) \) in [11] and by \(\Lambda^1_{\alpha,\infty} \) in [29]. This class is a particular case of the class \(H^\alpha_p(\mathbb{R}^k) \) defined similarly with the \(L^p \)-norm in place of the \(L^1 \)-norm. Throughout we use the shortened notation \(B^\alpha(\mathbb{R}^k) \). Moreover, we use the symbol \(B^1(\mathbb{R}^k) \) also for \(\alpha = 1 \), which corresponds to the class \(BV(\mathbb{R}^d) \) of functions of bounded variation (which is smaller than the usual Nikol’skii–Besov class with \(\alpha = 1 \) defined via symmetric differences \(\varphi(\cdot + h) + \varphi(\cdot - h) - 2\varphi \)). However, it will be more convenient to deal with measures possessing densities from these classic spaces rather than with functions.

Let \(\nu \) be a bounded Borel measure on \(\mathbb{R}^k \) and let \(\nu_h \) denote its shift by the vector \(h \):

\[\nu_h(A) = \nu(A - h). \]

Let \(0 < \alpha \leq 1 \). Then the class \(B^\alpha(\mathbb{R}^k) \) coincides with the class of densities of bounded Borel measures \(\nu \) on \(\mathbb{R}^k \) such that, for some number \(C_\nu \), one has

\[\|\nu - \nu_h\|_{TV} \leq C_\nu \|h\|^\alpha \quad \forall h \in \mathbb{R}^k. \]

We shall identify measures with their densities and speak of measures in the class \(B^\alpha(\mathbb{R}^k) \) in this sense.

We need the following norm on the space \(B^\alpha(\mathbb{R}^k) \):

\[\|\nu\|_{B^\alpha} := \inf \{ C : \|\nu - \nu_h\|_{TV} \leq C\|h\|^\alpha \}. \]

It is readily seen that this is indeed a norm. However, the space \(B^\alpha(\mathbb{R}^k) \) is not complete with this norm: its standard Banach norm is given by \(\|\nu\|_{TV} + \|\nu\|_{B^\alpha} \). The latter is larger than \(\|\nu\|_{B^\alpha} \) and the two norms are not equivalent: indeed, letting \(f_n(x) = 1 \) on \([-n, n]\), \(f_n(0) = 0 \) outside \([-n - 1, n + 1]\) and \(f_n(x) = n + 1 - |x| \) if \(n < |x| < n + 1 \), we have \(\|f_n\|_{L^1} \to \infty \), \(\sup_n \|f_n\|_{B^\alpha} < \infty \), where we identify \(f_n \) with the measure \(f_n \, dx \). The situation is similar with Sobolev spaces once we use only the norm of the gradient.

The following embedding holds (see [22, Section 6.3]):

\[B^\alpha(\mathbb{R}^k) \subset H^\beta_p(\mathbb{R}^k) \subset L^p(\mathbb{R}^k), \quad \beta = \kappa \alpha, \quad \kappa = 1 - \frac{k(p - 1)}{\alpha p}. \]

Hence all measures from \(B^\alpha(\mathbb{R}^k) \) have densities in \(L^p(\mathbb{R}^k) \) for all \(p < k/(k - \alpha) \). These embeddings to \(L^p \) on balls (compositions with restrictions) are compact.

For infinite-dimensional extensions of our results we recall the corresponding concepts. A probability measure defined on the Borel \(\sigma \)-field of a locally convex space \(X \) is called Radon if its value on each Borel set is the supremum of measures of compact subsets of this set. A centered Radon Gaussian measure \(\gamma \) is a Radon probability measure on \(X \) such that every continuous linear functional \(f \) on \(X \) is a centered Gaussian random variable on \((X, \gamma) \); in other words, \(\gamma \circ f^{-1} \) is either Dirac’s measure at zero or has a distribution density \((2\pi \sigma_f)^{-1/2} \exp(-x^2/(2\sigma_f)) \), where \(\sigma_f = \|f\|_{L^2(\gamma)}^2 \). On complete separable metric spaces all Borel measures are automatically Radon. Typical examples of Gaussian measures are the countable power of the standard Gaussian measure on \(\mathbb{R} \) (defined on the countable power \(\mathbb{R}^\infty \) of \(\mathbb{R} \)) and the Wiener measure (see [7] and [9] about Gaussian measures).
Let $H \subset X$ be the Cameron–Martin space of the measure γ, i.e., the space of all vectors h such that $\gamma_h \sim \gamma$. If γ is the countable power of the standard Gaussian measure on the real line, then H is the usual Hilbert space l^2 (of course, for the standard Gaussian measure on \mathbb{R}^d the Cameron–Martin space is \mathbb{R}^d itself). The Cameron–Martin space of the Wiener measure on $C[0,1]$ is the space of absolutely continuous functions on $[0,1]$ vanishing at 0 and having derivatives in $L^2[0,1]$. For a general Radon Gaussian measure the Cameron–Martin space is also a separable Hilbert space (see \[7, Theorem 3.2.7 and Proposition 2.4.6\]) with the inner product $\langle \cdot, \cdot \rangle_H$ and the norm $| \cdot |_H$ defined by

$$|h|_H = \sup \left\{ l(h) : \int_X l^2 \, d\gamma \leq 1, \ l \in X^* \right\}.$$

Let $P^d(\gamma)$ be the closure in $L^2(\gamma)$ of the linear space of all functions of the form

$$\varphi_d(l_1(x), \ldots, l_m(x)),$$

where $\varphi_d(t_1, \ldots, t_m)$ is a polynomial in m variables of degree d and l_1, \ldots, l_m are continuous linear functionals on X (m can be an arbitrary natural number). Functions from the class $P^d(\gamma)$ will be called measurable polynomials of degree d.

The Wiener chaos H_d of order d is defined as the orthogonal complement of $P^{d-1}(\gamma)$ in $P^d(\gamma)$, H_0 is the space of constants. It is well-known (see, e.g., \[7, Section 2.9\]) that $L^2(\gamma)$ is decomposed into the orthogonal sum $L^2(\gamma) = \bigoplus_{k=0}^{\infty} H_k$.

It is clear that $P^d(\gamma) = \bigoplus_{k=0}^{d} H_k$. The subspaces H_k can be also defined by means of multiple Wiener–Ito stochastic integrals. This interpretation can be found in \[25, Section 1.1.2\] or in \[7, Section 2.11\].

Let us define Sobolev derivatives and gradients of measurable polynomials. Let $\{e_n\}$ be an orthogonal basis in H. One can assume that γ is the countable power of the standard Gaussian measure on \mathbb{R} and $\{e_n\}$ is the usual basis in l^2. For any $f \in P^d(\gamma)$ and $p \geq 1$, $r \in \mathbb{N}$, one can define the Sobolev norm

$$\|f\|_{p,r} = \sum_{k=0}^{r} \left(\int \left(\sum_{i_1,\ldots,i_k} (\partial_{e_{i_1}} \ldots \partial_{e_{i_k}} f)^2 \right)^{p/2} \, d\gamma \right)^{1/p}$$

and the Sobolev gradient

$$\nabla f(x) = \sum_{k=0}^{\infty} \partial_{e_k} f(x) e_k,$$

where ∂_{e_k} is the partial derivative along the vector e_k. One can pick a version of f such that these partial derivatives exist and $\nabla f(x) \in H$. Moreover, $\|f\|_{p,r} < \infty$ for all $p, r < \infty$. The Sobolev class $W^{p,r}(\gamma)$ is the completion of $P^d(\gamma)$ with respect to the norm $\| \cdot \|_{p,r}$. This class coincides also with the completion with respect to the Sobolev norm of the space of functions of the form $f(l_1(x), \ldots, l_m(x))$, where $f \in C_0^\infty(\mathbb{R}^m)$. In the case of $X = \mathbb{R}^n$ and the standard Gaussian measure γ one has $H = X = \mathbb{R}^n$ and ∇f is the gradient of f in the usual sense.

As in the finite-dimensional case, all γ-measurable polynomials have derivatives of all orders and the following estimate (the reverse Poincaré inequality) holds true:

$$\int |\nabla f|^2 \, d\gamma \leq c(d) \int (f - m_f)^2 \, d\gamma, \quad m_f = \int f \, d\gamma.$$

(2.2)

This fact follows from the equivalence of all Sobolev norms and all L^p-norms on the space of measurable polynomials of degree d (see, e.g., Example 5.3.4 in \[7\]). This equivalence of L^p-norms gives a bound

$$\|f\|_q \leq \|f\|_p \leq C(p, q, d)\|f\|_q$$

for all measurable polynomials f of degree d and any $p > q \geq 1$.

For a detailed discussion of γ-measurable polynomials, see \[2, Section 5.10\].
We need the following inequality proved by Carbery and Wright [13] (and also by Nazarov, Sodin, Volberg [21]): there is an absolute constant c such that, for every Gaussian measure (more generally, for every convex measure) γ on \mathbb{R}^n and for every polynomial f of degree d, one has

\[(2.3) \quad \gamma(|f| \leq t) \left(\int |f| \, d\gamma \right)^{1/d} \leq c dt^{1/d}, \quad t \geq 0.\]

Generalizations to the case of s-concave measures are considered in [6]; on measurable polynomials on infinite-dimensional locally convex spaces see also [4].

We also recall the following known fact about weakly convergent sequences of distributions of γ-measurable polynomials with the same γ as above (more generally, a sequence of polynomials of degree d possessing uniformly tight distributions is bounded in all L^p, see, e.g., [8 Exercise 9.8.19]).

Lemma 2.1. Let $\{f_n\}$ be a sequence of γ-measurable polynomials of degree d. Suppose that the distributions $\mu_n = \gamma \circ f_n^{-1}$ converge weakly to a measure μ on \mathbb{R}. Then, for any $p \geq 1$, one has convergence of moments

\[
\lim_{n \to \infty} \int_{\mathbb{R}^k} |x|^p \, d\mu_n = \int_{\mathbb{R}^k} |x|^p \, d\mu.
\]

3. Fractional Hardy–Landau–Littlewood type estimates

Let us give a sufficient condition for membership in the class $B^\alpha(\mathbb{R}^k)$.

Proposition 3.1. Let $\alpha \in (0, 1]$. Let ν be a Borel measure on \mathbb{R}^k. Suppose that for every function $\varphi \in C^\infty_b(\mathbb{R}^k)$ and every unit vector $e \in \mathbb{R}^k$ one has

\[
\int_{\mathbb{R}^k} \partial_e \varphi(x) \, \nu(dx) \leq C \|\varphi\|_\infty \|\partial_e \varphi\|_\infty^{1-\alpha}.
\]

Then

\[
\|\nu_h - \nu\|_{TV} \leq 2^{1-\alpha} C |h|^\alpha \quad \forall h \in \mathbb{R}^k,
\]

that is, $\nu \in B^\alpha(\mathbb{R}^k)$ and $\|\nu\|_{B^\alpha} \leq 2^{1-\alpha} C$. In particular, the density of ν belongs to all $L^p(\mathbb{R}^k)$ with $p < k/(k - \alpha)$ according to (2.1).

Proof. Let $e = |h|^{-1} h$. It is easy to see that

\[
\|\nu_h - \nu\|_{TV} = \sup_{\varphi \in C^\infty_b(\mathbb{R}^k), \|\varphi\|_\infty \leq 1} \int_{\mathbb{R}^k} \varphi(x) (\nu_h - \nu)(dx)
\]

\[= \sup_{\varphi \in C^\infty_b(\mathbb{R}^k), \|\varphi\|_\infty \leq 1} \int_{\mathbb{R}^k} [\varphi(x + h) - \varphi(x)] \nu(dx)
\]

\[= \sup_{\varphi \in C^\infty_b(\mathbb{R}^k), \|\varphi\|_\infty \leq 1} \int_{\mathbb{R}^k} \int_0^{|h|} \partial_e \varphi(x + se) \, ds \nu(dx).
\]

Let $\varphi \in C^\infty_b(\mathbb{R}^k)$ and $\|\varphi\|_\infty \leq 1$. Consider the function

\[\Phi(x) = \int_0^{|h|} \varphi(x + se) \, ds.
\]

Note that $\sup_{x \in \mathbb{R}^k} |\Phi(x)| \leq |h|$ and

\[|\partial_e \Phi(x)| = \int_0^{|h|} |\partial_e \varphi(x + se)| \, ds = |\varphi(x + h) - \varphi(x)| \leq 2.
\]

By the assumptions of the theorem we have

\[
\int_{\mathbb{R}^k} \partial_e \Phi(x) \, \nu(dx) \leq C |h|^\alpha 2^{1-\alpha},
\]
We now estimate the remaining term in the right-hand side of (3.2):

\[(3.1) \]

\[\|\sigma - \nu\|_{TV} \leq C(k, \alpha)\|\sigma - \nu\|_{B^\alpha}^{1/(1+\alpha)} d_K(\sigma, \nu)^{\alpha/(1+\alpha)}, \]

where

\[C(k, \alpha) = 1 + \int_{\mathbb{R}^k} |x|^{\alpha} \gamma_k(dx). \]

The following result is a fractional analog of the multidimensional Hardy–Landau–Littlewood inequality established in [10] (in the case \(\alpha = 1 \)).

Theorem 3.2. Let \(\nu, \sigma \in B^\alpha(\mathbb{R}^k) \) be two Borel probability measures on \(\mathbb{R}^k \). Then

\[(3.2) \]

\[\|\sigma - \nu\|_{TV} \leq \|\sigma - \nu\|_{B^\alpha} \|\gamma_k\|_{TV} \leq \|\sigma \ast \gamma_k - \nu \ast \gamma_k\|_{TV}. \]

For any function \(\varphi \in C_0^\infty(\mathbb{R}^k) \) with \(\|\varphi\|_\infty \leq 1 \) the following equalities hold true, where all integrals in this proof are taken over \(\mathbb{R}^k \):

\[\int \varphi \, d(\sigma \ast \gamma_k - \nu \ast \gamma_k) = \int \varphi(x) \int (2\pi \varepsilon^2)^{-k/2} \exp\left(-\frac{|y - x|^2}{2\varepsilon^2}\right) (\nu - \sigma)(dy) \, dx \]

\[= \int \left(\int \varphi(x) (2\pi \varepsilon^2)^{-k/2} \exp\left(-\frac{|y - x|^2}{2\varepsilon^2}\right) (\nu - \sigma)(dy) \right) dx. \]

Let us consider the function

\[\Phi(y) := \int \varphi(x) (2\pi \varepsilon^2)^{-k/2} \exp\left(-\frac{|y - x|^2}{2\varepsilon^2}\right) \, dx. \]

We have

\[\nabla \Phi(y) = \varepsilon^{-1} \int \varphi(y + \varepsilon z) (2\pi)^{-k/2} \exp\left(-\frac{|z|^2}{2}\right) \, dz, \]

hence \(|\Phi(y)| \leq 1, |\nabla \Phi(y)| \leq \varepsilon^{-1} \). Therefore,

\[(3.3) \]

\[\|\sigma \ast \gamma_k - \nu \ast \gamma_k\|_{TV} \leq \varepsilon^{-1} d_K(\sigma, \nu), \]

We now estimate the remaining term in the right-hand side of (3.2):

\[\|\sigma - \nu - (\sigma - \nu) \ast \gamma_k\|_{TV} \]

\[= \sup_{\|\varphi\|_\infty \leq 1} \int \left((2\pi \varepsilon^2)^{-k/2} \exp\left(-\frac{|y|^2}{2\varepsilon^2}\right) \int \varphi((\sigma - \nu) - (\sigma_y - \nu_y)) (dx) \right) dy \]

\[\leq \|\sigma - \nu\|_{B^\alpha} \int (2\pi \varepsilon^2)^{-k/2} \exp\left(-\frac{|y|^2}{2\varepsilon^2}\right) |y|^\alpha \, dy \]

\[= \varepsilon^\alpha \|\sigma - \nu\|_{B^\alpha} \int |y|^\alpha \exp\left(-\frac{|y|^2}{2}\right) \, dy. \]

Hence we have

\[\|\sigma - \nu\|_{TV} \leq \varepsilon^{-1} d_K(\sigma, \nu) + \varepsilon^\alpha \|\sigma - \nu\|_{B^\alpha} \int |x|^{\alpha} \gamma_k(dx). \]

Taking \(\varepsilon = (\|\sigma - \nu\|_{K}/\|\sigma - \nu\|_{B^\alpha})^{1/(1+\alpha)} \), we obtain (3.1). \qed
Remark 3.3. (i) One can modify the previous proof to obtain the following estimate for probability measures $\nu, \sigma \in B^\alpha(\mathbb{R}^k)$ employing the Fortet–Mourier metric:

\[
\|\sigma - \nu\|_{TV} \leq C(k, \alpha)\|\sigma - \nu\|_{B^\alpha}^{1/(1+\alpha)}d_{FM}(\sigma, \nu)^{\alpha/(1+\alpha)} + d_{FM}(\sigma, \nu)
\]

\[
\leq \left(C(k, \alpha)\|\sigma - \nu\|_{B^\alpha}^{1/(1+\alpha)} + 2^{1/(1+\alpha)} \right) d_{FM}(\sigma, \nu)^{\alpha/(1+\alpha)},
\]

where $C(k, \alpha)$ is the same as above. To this end, in place of inequality \[3.3\] we write $\|\sigma * \gamma^\varepsilon_k - \nu * \gamma^\varepsilon_k\|_{TV} \leq (\varepsilon^{-1} + 1)d_{FM}(\sigma, \nu)$, and then proceed as in the proof above. The additional quantity $2^{1/(1+\alpha)}$ is not needed if we slightly decrease the power at d_{FM} as explained in (ii).

(ii) In relation to (i) we observe that the two distances d_{FM} and d_K, which in general admit only the one-sided estimate $d_{FM} \leq d_K$, are very close on the set of distributions of polynomials of degree d with variances not exceeding a fixed number b. More precisely, there is a number $L(d, b)$ such that

\[
d_K(\gamma \circ f^{-1}, \gamma \circ g^{-1}) \leq L(d, b)d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1})(\log d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1}))^{d/2} + 1).
\]

Indeed, it is known (see [7, Corollary 5.5.7]) that

\[
\gamma(x): \|f(x)| \geq t\|f\|_2 \leq c_t \exp(-rt^{2/d}), \quad r < \frac{d}{2e},
\]

where c_t depends only on r. Let φ be a 1-Lipschitz function on \mathbb{R}. We can assume that $\varphi(0) = 0$, since $\varphi(f) - \varphi(g)$ does not change if we subtract $\varphi(0)$ from φ. Considering the bounded function $\varphi_R = \max(-R, \min(R, \varphi))$, we obtain

\[
\int_{\mathbb{R}^k} [\varphi(f) - \varphi(g)] d\gamma
\]

\[
\leq (R + 1)d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1}) + \int_{\mathbb{R}^k} [\|\varphi(f) - \varphi_R(f)\| + \|\varphi(g) - \varphi_R(g)\|] d\gamma
\]

\[
\leq (R + 1)d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1}) + \int_{|f| > R} \|f\| d\gamma + \int_{|g| > R} \|g\| d\gamma
\]

\[
\leq (R + 1)d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1}) + C_1 \exp(-C_2 R^{2/d}).
\]

Now we take

\[
R = \left(\frac{|\log d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1})|}{C_2} \right)^{d/2}
\]

and immediately get the desired estimate if $d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1}) \leq 1$. Finally, we observe that if $d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1}) > 1$, then $\exp(-C_2 R^{2/d}) < d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1})$, and thus we obtain the estimate in the general case. However, we do not know whether the logarithmic factor is really needed.

Remark 3.4. Let $\nu \in B^\alpha(\mathbb{R}^k)$ be a Borel measure on \mathbb{R}^k. Then one can prove by a similar reasoning that for every Borel set A one has

\[
\nu(A) \leq C_1(k, \alpha)\|\nu\|_{B^\alpha}^{1/(\alpha+k)}\lambda_k(A)^{\alpha/(\alpha+k)},
\]

where λ_k is the standard Lebesgue measure on \mathbb{R}^k,

\[
C_1(k, \alpha) = (2\pi)^{-k/2} + (2\pi)^{-k/2}\int_{\mathbb{R}^k} \exp\left(-\frac{|y|^2}{2}\right)|y|^\alpha dy.
\]

However, the embedding theorem for Nikol’skii–Besov spaces (see \[2.1\]) gives a slightly better power: for any $r < \alpha/k$ there is $C_2(k, \alpha, r) > 0$ such that

\[
\nu(A) \leq C_2(k, \alpha, r)(\|\nu\|_{B^\alpha} + 1)\lambda_k(A)^r \quad \text{for every Borel set } A.
\]
4. Fractional smoothness of polynomial images of Gaussian measures

Let us recall that the Ornstein–Uhlenbeck operator L associated with the standard Gaussian measure γ on \mathbb{R}^n is defined by

$$L\varphi(x) = \Delta \varphi(x) - \langle x, \nabla \varphi(x) \rangle,$$

where Δ is the Laplace operator. The operator L is symmetric in $L^2(\gamma)$ (with domain $W^{2,2}(\gamma)$) and is frequently used in the integration by parts formula

$$\int_{\mathbb{R}^n} \varphi L\psi \, d\gamma = -\int_{\mathbb{R}^n} \langle \nabla \varphi, \nabla \psi \rangle \, d\gamma.$$

We employ this formula below.

Let $f: \mathbb{R}^n \to \mathbb{R}^k$ be a mapping such that its components f_1, \ldots, f_k are polynomials of degree d. Let us introduce the Malliavin matrix of f by

$$M_f(x) = (m_{i,j}(x))_{i,j \leq k}, \quad m_{i,j}(x) := \langle \nabla f_i(x), \nabla f_j(x) \rangle.$$

It is a polynomial of degree $2k(d-1)$. Let

$$A_f := (a_{i,j})_{i,j \leq k}$$

be the adjugate matrix of M_f, i.e., $a_{i,j} = M^{ji}$, where M^{ji} is the cofactor of $m_{j,i}$ in the matrix M_f. Note that $a^{i,j}$ is a polynomial of degree $k-1$ in $m_{s,t}$. Set

$$\Delta_f := \det M_f.$$

We observe that $\Delta_f \geq 0$ and

$$\Delta_f \cdot M_f^{-1} = A_f. \quad (4.1)$$

Let $\sigma^2_{f_i}$ denote the variance of the random variable f_i on (\mathbb{R}^n, γ):

$$\sigma^2_{f_i} := \int_{\mathbb{R}^n} \left(f_i - \int_{\mathbb{R}^n} f_i \, d\gamma \right)^2 \, d\gamma.$$

The first main result of this section is the following theorem which says that the distribution of a polynomial mapping f with respect to a Gaussian measure such that f is nondegenerate (in the sense that $\Delta_f > 0$ on a positive measure set, or equivalently, $\gamma_n \circ f^{-1}$ is absolutely continuous) always belongs to some Nikol’skii–Besov class whose index depends only on the maximal degree of components and the number of components, but not on the number of variables.

Theorem 4.1. Let $k, d \in \mathbb{N}$, $a > 0$, $b > 0$, $\tau > 0$. Then there exists a number $C(d, k, a, b, \tau) > 0$ such that, for every mapping $f = (f_1, \ldots, f_k): \mathbb{R}^n \to \mathbb{R}^k$, where each f_i is a polynomial of degree d and

$$\int_{\mathbb{R}^n} \Delta_f \, d\gamma_n \geq a, \quad \max_{i \leq k} \sigma_{f_i} \leq b,$$

for every function $\varphi \in C^\infty_b(\mathbb{R}^k)$ and every vector $e \in \mathbb{R}^k$ with $|e| = 1$, one has

$$\int_{\mathbb{R}^n} \partial_e \varphi(f(x)) \gamma_n(dx) \leq C(d, k, a, b, \tau) \|\varphi\|_\infty^\alpha \|\partial_e \varphi\|_\infty^{1-\alpha}, \quad \alpha = \frac{1}{4k(d-1) + \tau}.$$

Therefore, we have

$$\|\gamma_n \circ f^{-1} - (\gamma_n \circ f^{-1})_h\|_{TV} \leq C(d, k, a, b, \tau) \|h\|^\alpha,$$

equivalently,

$$\gamma_n \circ f^{-1} \in B^\alpha(\mathbb{R}^k) \quad \text{for every } \alpha < \frac{1}{4k(d-1)}.$$

In particular, the density of $\gamma_n \circ f^{-1}$ belongs to all $L^p(\mathbb{R}^k)$ with $p < k/(k-\alpha)$.
Proof. We can assume that $\|\varphi\|_{\infty} \leq 1$. If $\|\partial_{\varphi}\|_{\infty} \leq 1$, then for any $\alpha > 0$ we have (omitting indication of \mathbb{R}^n in all integrations in this proof)

$$\int \partial_{\varphi}(f(x)) \gamma_n(dx) \leq \|\partial_{\varphi}\|_{\infty} \leq \|\partial_{\varphi}\|_{\infty}^{1-\alpha}.$$

Suppose now that $\|\partial_{\varphi}\|_{\infty} \geq 1$. It can be easily verified that

$$M_f(\partial_{x_1}\varphi(f), \ldots, \partial_{x_k}\varphi(f)) = \left(\langle \nabla(\varphi \circ f), \nabla f_1 \rangle, \ldots, \langle \nabla(\varphi \circ f), \nabla f_k \rangle\right).$$

Here the left-hand side is interpreted as the standard product of a matrix and a vector (with components $\partial_{x_i}\varphi(f)$) and ∇ denotes the gradient of a function of n variables. Then by equality (4.1) we obtain

$$(\partial_{\varphi}(f)) \Delta_f = \langle v, A_f e \rangle, \quad v = \left(\langle \nabla(\varphi \circ f), \nabla f_1 \rangle, \ldots, \langle \nabla(\varphi \circ f), \nabla f_k \rangle\right).$$

Let $\epsilon \in (0, 1)$ be a fixed number that will be chosen later. The integral that we want to estimate can be written as

$$\int \partial_{\varphi}(f) d\gamma_n = \int \partial_{\varphi}(f) \frac{\Delta_f}{\Delta_f + \epsilon} d\gamma_n + \epsilon \int \frac{\partial_{\varphi}(f)}{\Delta_f + \epsilon} d\gamma_n. \tag{4.2}$$

We now estimate each term. By the reasoning above we can write

$$\int \partial_{\varphi}(f) \frac{\Delta_f}{\Delta_f + \epsilon} d\gamma_n = \int \frac{\langle \langle \nabla\varphi \circ f, \nabla f_1 \rangle, \ldots, \langle \nabla\varphi \circ f, \nabla f_k \rangle, A_f e \rangle}{\Delta_f + \epsilon} d\gamma_n.$$

Letting $h(x) = A_f(x)e$, we can integrate by parts and write the above term as

$$\int (\Delta_f + \epsilon)^{-1} \sum_{i=1}^{k} \langle \nabla\varphi \circ f, \nabla f_i \rangle h_i \ d\gamma_n$$

$$= -\sum_{i=1}^{k} \int \varphi \circ f \left(\frac{h_i L f_i}{\Delta_f + \epsilon} - \frac{h_i \langle \nabla f_i, \nabla \Delta_f \rangle}{(\Delta_f + \epsilon)^2} + \frac{\langle \nabla f_i, \nabla h_i \rangle}{\Delta_f + \epsilon} \right) \ d\gamma_n$$

$$\leq \int \left| \sum_{i=1}^{k} h_i L f_i \right| (\Delta_f + \epsilon)^{-1} \ d\gamma_n + \int \left| \sum_{i=1}^{k} h_i \langle \nabla f_i, \nabla \Delta_f \rangle \right| (\Delta_f + \epsilon)^{-2} \ d\gamma_n$$

$$+ \int \left| \sum_{i=1}^{k} \langle \nabla f_i, \nabla h_i \rangle \right| (\Delta_f + \epsilon)^{-1} \ d\gamma_n. \tag{4.3}$$

We have to estimate each of the three terms. First of all, note that Δ_f is itself a measurable polynomial of degree $2k(d-1)$. We set

$$\beta = \frac{1}{2k(d-1)}$$

and use the Carbery–Wright inequality (2.3) to obtain

$$\int (\Delta_f + \epsilon)^{-p} d\gamma_n = p \int_{0}^{\epsilon^{-1}} t^{p-1} \gamma_n((\Delta_f + \epsilon)^{-1} \geq t) \ dt$$

$$= p \int_{0}^{\infty} (s + \epsilon)^{-p-1} \gamma_n(\Delta_f \leq s) \ ds$$

$$\leq 2c pk(d-1) \left(\int \Delta_f d\gamma_n \right)^{-\beta} \int_{0}^{\infty} (s + \epsilon)^{-p-1} s^\beta \ ds$$

$$= \epsilon^{-p+\beta} 2c pk(d-1) \left(\int \Delta_f d\gamma_n \right)^{-\beta} \int_{0}^{\infty} (s + 1)^{-p-1} s^\beta \ ds. \tag{4.4}$$
Let
\[
c(p, d) := \left(2c pk(d-1) \int_0^\infty (s+1)^{-p-1}s^\beta \, ds \right)^{1/p}.
\]

Let \(\|A\|_{HS} = \left(\sum_i a_{ij}^2\right)^{1/2}\) denote the Hilbert–Schmidt norm of a matrix \(A = (a_{ij})\). Then \(\|A_f(x)\|_{HS}\) is estimated by a polynomial in the matrix elements \(m_{ij}(x)\). Hence its \(L^p\)-norms are bounded by powers of \(b\) (with some constants depending on \(d, k\) and \(p\)). Let us estimate the first term in the right-hand side of (4.3):
\[
\int \left| \sum_{i=1}^k h_iLf_i \right| (\Delta_f + \varepsilon)^{-1} \, d\gamma_n \leq \int (\Delta_f + \varepsilon)^{-1} \|A_f\|_{HS} \left(\sum_{i=1}^k |Lf_i|^2 \right)^{1/2} \, d\gamma_n
\]
\[
\leq \varepsilon^{-1} \int \|A_f\|_{HS} \left(\sum_{i=1}^k |Lf_i|^2 \right)^{1/2} \, d\gamma_n.
\]

Next we estimate the second term in the right-hand side of (4.3):
\[
\int \left| \sum_{i=1}^k h_i(\nabla f_i, \nabla \Delta_f) \right| (\Delta_f + \varepsilon)^{-2} \, d\gamma_n
\]
\[
\leq \int (\Delta_f + \varepsilon)^{-2} \|A_f\|_{HS} \left(\sum_{i=1}^k (\nabla f_i, \nabla \Delta_f)^2 \right)^{1/2} \, d\gamma_n
\]
\[
\leq \int (\Delta_f + \varepsilon)^{-2} \|A_f\|_{HS} |\nabla \Delta_f| \left(\sum_{i=1}^k |\nabla f_i|^2 \right)^{1/2} \, d\gamma_n
\]
\[
\leq \left(\int (\Delta_f + \varepsilon)^{-2} \, d\gamma_n \right)^{1/q} \left(\int \|A_f\|_{HS}^{q'} |\nabla \Delta_f|^{q'} \left(\sum_{i=1}^k |\nabla f_i|^2 \right)^{q'/2} \, d\gamma_n \right)^{1/q'}
\]
\[
\leq c(2q, d)^2 \varepsilon^{-2+\beta/q} \left(\int \Delta_f \, d\gamma_n \right)^{-\beta/q}
\]
\[
\times \left(\int \|A_f\|_{HS}^{q'} |\nabla \Delta_f|^{q'} \left(\sum_{i=1}^k |\nabla f_i|^2 \right)^{q'/2} \, d\gamma_n \right)^{1/q'},
\]

where \(q' = q/(q-1)\) appears due to Hölder’s inequality.

Finally, let us estimate the third term in the right-hand side of (4.3):
\[
\int \left| \sum_{i=1}^k (\nabla f_i, \nabla h_i) \right| (\Delta_f + \varepsilon)^{-1} \, d\gamma_n \leq \int (\Delta_f + \varepsilon)^{-1} \sum_{i=1}^k |\nabla f_i| |\nabla h_i| \, d\gamma_n
\]
\[
\leq \frac{1}{2\varepsilon} \int \sum_{i=1}^k \left(|\nabla f_i|^2 + |\nabla h_i|^2 \right) \, d\gamma_n.
\]

Since \(-2 + \beta/q < -1\) and \(\varepsilon \leq 1\), we have \(\varepsilon^{-1} \leq \varepsilon^{-2+\beta/q}\).

We now use (4.4) to estimate the second term in the right-hand side of (1.2):
\[
\int \frac{\partial_c \varphi f}{\Delta_f + \varepsilon} \, d\gamma_n \leq \|\partial_c \varphi\|_\infty c(1, d) \varepsilon^{-1+\beta} \left(\int \Delta_f \, d\gamma_n \right)^{-\beta}.
\]

Setting \(\tau = \frac{q-1}{q}\) and taking
\[
\varepsilon = \|\partial_c \varphi\|_\infty^{\omega}, \quad \omega = -\frac{1}{2 + \tau \beta} = -\frac{2k(d-1)}{4k(d-1) + \tau},
\]
we arrive at the estimate
\[
(4.5) \quad \int \partial_\nu \phi(f) d\gamma_n \leq C \|\partial_\nu \phi\|_{\infty}^{1 - \alpha}, \quad \alpha = \frac{1}{4k(d - 1) + \tau},
\]
where
\[
C = \int \|A_f\|_{HS} \left(\sum_{i=1}^{k} |L f_i|^2 \right)^{1/2} d\gamma_n
\]
\[+ c(2q,d) \left(\int \Delta f d\gamma_n \right)^{-\beta/q} \left(\int \|A_f\|_{HS} |\nabla \Delta f|^q \left(\sum_{i=1}^{k} |\nabla f_i|^2 \right)^{q/2} d\gamma_n \right)^{1/q}
\]
\[+ \frac{1}{2} \int \sum_{i=1}^{k} \left(|\nabla f_i|^2 + |\nabla h_i|^2 \right) d\gamma_n + c(1,d) \left(\int \Delta f d\gamma_n \right)^{-\beta}.
\]
Using inequality (2.2) and the equivalence of the L^p-norms of measurable polynomials of degree d we can replace this number C by a number $C(d,k,a,b,\tau)$ that depends only on d, k, a, b and τ. Recall that $\|A_f\|_{HS}$ is estimated by a polynomial in the matrix elements $m_{i,j}(x)$. Hence its L^p-norms are also bounded by powers of b. By choosing $q > 1$ sufficiently close to 1, we can make $\tau = \frac{q-1}{q}$ in (4.5) as small as we wish. It remains to take into account Proposition 3.1.

By the aforementioned compact embedding (2.1) on balls, we immediately obtain convergence of densities in $L^p(\mathbb{R}^k)$ with $p < k/(k - \alpha)$ in case of weak convergence of distributions of mappings satisfying the assumptions of Theorem 4.1 (which sharpens a result from [23]). Combining Theorem 4.1 and Theorem 3.2 we obtain the following result.

Theorem 4.2. Let $k, d \in \mathbb{N}, a > 0, b > 0, \tau > 0$. Then there is $C = C(d,k,a,b,\tau)$ such that, whenever $f = (f_1, \ldots, f_k)$ and $g = (g_1, \ldots, g_k)$ are mappings from \mathbb{R}^n to \mathbb{R}^k such that their components f_i, g_i are polynomials of degree d with
\[
\int \Delta f d\gamma_n \geq a, \quad \int \Delta g d\gamma_n \geq a, \quad \max_{i \leq k} \sigma f_i \leq b, \quad \max_{i \leq k} \sigma g_i \leq b,
\]
one has
\[
d_{TV}(\gamma_n \circ f^{-1}, \gamma_n \circ g^{-1}) \leq C d_K(\gamma_n \circ f^{-1}, \gamma_n \circ g^{-1})^\theta, \quad \theta = \frac{1}{4k(d - 1) + 1 + \tau}.
\]

Remark 4.3. Using Remark 3.3 one can replace d_K with d_{FM}, that is, under the assumptions of the theorem the following estimate is also true:
\[
d_{TV}(\gamma_n \circ f^{-1}, \gamma_n \circ g^{-1}) \leq C d_{FM}(\gamma_n \circ f^{-1}, \gamma_n \circ g^{-1})^\theta, \quad \theta = \frac{1}{4k(d - 1) + 1 + \tau}
\]
for every $\tau > 0$ and some other number $C = C(d,k,a,b,\tau)$.

We observe that the constants in Theorems 4.1 and 4.2 do not depend on the dimension n. Hence these theorems hold true when $f_i: X \to \mathbb{R}$ are γ-measurable polynomials with respect to an arbitrary centered Radon Gaussian measure γ on a locally convex space X.

Corollary 4.4. Let γ be a centered Radon Gaussian measure on a locally convex space X. Let $k, d \in \mathbb{N}, a > 0, b > 0, \tau > 0$. Then there is $C(d,k,a,b,\tau) > 0$ such that, for every mapping $f = (f_1, \ldots, f_k): X \to \mathbb{R}^k$, where each f_i is a γ-measurable polynomial of degree d and
\[
\int_{\mathbb{R}^n} \Delta f d\gamma > a, \quad \max_{i \leq k} \sigma f_i \leq b,
\]
for every function $\varphi \in C_b^\infty(\mathbb{R}^k)$ and every vector $e \in \mathbb{R}^k$ with $|e| = 1$, one has

$$
\int_X \partial_e \varphi(f(x)) \gamma(dx) \leq C(d, k, a, b, \tau)\|\varphi\|_\infty^a \|\partial_e \varphi\|_\infty^{1-a}, \quad \alpha = \frac{1}{4k(d - 1) + \tau}.
$$

Therefore, if $\Delta f > 0$ on a positive measure set, the induced measure $\gamma \circ f^{-1}$ belongs to the Nikol’skii–Besov class $B^\alpha(\mathbb{R}^k)$ with α that depends only on d and k.

Proof. By the Tsirelson isomorphism theorem (see [7, Chapter 3]), we can assume that γ is the countable power of the standard Gaussian measure on the real line (i.e., γ is defined on \mathbb{R}^∞). In that case we can approximate each polynomial f_i by the sequence of its finite-dimensional conditional expectations $f_{i,n}$ with respect to the σ-fields generated by the first n variables x_1, \ldots, x_n. Recall that

$$f_{i,n}(x_1, \ldots, x_n) = \int_X f_i(x_1, \ldots, x_n, y) \gamma(dy),$$

where we write vectors in \mathbb{R}^∞ in the form (x_1, \ldots, x_n, y), $y = (y_1, y_2, \ldots) \in \mathbb{R}^\infty$. It is well-known that each $f_{i,n}$ is a polynomial of degree d (see [7, Proposition 5.4.5 and Proposition 5.10.6]). Moreover, the polynomials $f_{i,n}$ converge to f_i almost everywhere and in all Sobolev norms (see [7, Corollary 3.5.2 and Proposition 5.4.5]). Therefore, for the corresponding mappings $f_n = (f_{1,n}, \ldots, f_{k,n})$ the integrals of Δf_n are not less than a for all n sufficiently large. In addition, $\sigma_{f_{i,n}} \leq \sigma_{f_i} \leq b$. This enables us to pass to the limit $n \to \infty$ in the inequality in Theorem [4.1].

Similarly we obtain the following result.

Corollary 4.5. Let γ be a centered Radon Gaussian measure on a locally convex space X. Let $k, d \in \mathbb{N}$, $a > 0$, $b > 0$, $\tau > 0$ be fixed. Then there exists a number $C_1 = C_1(d, k, a, b, \tau)$ such that, whenever

$$f = (f_1, \ldots, f_k) \quad \text{and} \quad g = (g_1, \ldots, g_k)$$

are mappings from X to \mathbb{R}^k such that their components f_i, g_i are γ-measurable polynomials of degree d with

$$\int \Delta_f d\gamma \geq a, \quad \int \Delta_g d\gamma \geq a, \quad \sigma_{f_i} \leq b, \quad \sigma_{g_i} \leq b, \quad i = 1, \ldots, k,$$

one has

$$d_{TV}(\gamma \circ f^{-1}, \gamma \circ g^{-1}) \leq C_1 d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1})^{1/(4k(d - 1) + 1 + \tau)}.$$

Along with Lemma [2.1] this yields the following fact.

Corollary 4.6. Let γ be a Radon Gaussian measure on a locally convex space X. Let $f_n = (f_{1,n}, \ldots, f_{k,n}) : X \to \mathbb{R}^k$ be a sequence of mappings such that each $f_{j,n}$ is a γ-measurable polynomial of degree d. Suppose that the distributions $\gamma \circ f_{n}^{-1}$ converge weakly on \mathbb{R}^k and there is $a > 0$ such that for all $n \in \mathbb{N}$

$$\int \Delta_{f_n} d\gamma > a.$$

Then these measures also converge in variation and, for every $\tau > 0$, there exists a number C_2, depending on d, k, a, τ, and a common bound for the variances of the components of f_n, such that

$$d_{TV}(\gamma \circ f_{m}^{-1}, \gamma \circ f_{n}^{-1}) \leq C_2 d_{FM}(\gamma \circ f_{m}^{-1}, \gamma \circ f_{n}^{-1})^{1/(4k(d - 1) + 1 + \tau)}.$$

This is a multidimensional generalization of [24, Theorem 3.1] and an improvement of the rate of convergence as compared to [23, Theorem 4.1].

It is worth noting that, as was shown in [23] extending a result from [20], a polynomial mapping f from an infinite-dimensional space with a Gaussian measure γ to \mathbb{R}^k has an absolutely continuous distribution precisely when Δf is not zero a.e. (equivalently, $\Delta f > 0$ on a positive...
measure set due to the 0–1 law for polynomials, see [7, Proposition 5.10.10]). Moreover, \(\gamma \circ f^{-1} \) is not absolutely continuous precisely when there is a polynomial \(Q \) on \(\mathbb{R}^k \) such that \(Q(f) \) is a constant a.e. Therefore, the assumed lower bound on the expectations of \(\Delta_f \) and \(\Delta_g \) is quite natural.

Combining Theorem 4.1 and Remark 3.4, one can obtain the following theorem, which in a sense generalizes the Carbery–Wright inequality (but the latter has been used in the proof).

Corollary 4.7. Let \(k, d \in \mathbb{N}, a > 0, b > 0, \tau > 0 \). Then there is \(C = C(d, k, a, b, \tau) \) such that

\[
\int \Delta_f d \gamma_n \geq a, \quad \max_{i \leq k} \sigma_{f_i} \leq b,
\]

then

\[
\gamma_n(f \in A) \leq C(d, k, a, b, \tau) \lambda_k(A) \theta, \quad \theta = \frac{1}{4k^2(d-1) + \tau},
\]

where \(\lambda_k \) is the standard Lebesgue measure on \(\mathbb{R}^k \).

Let us mention a result from [12] on distributions of multidimensional random vectors the components of which are general functions belonging to the Sobolev classes \(W_p^{2,2}(\gamma) \), where \(\gamma \) is a general centered Radon Gaussian measure. Suppose we are given a sequence of mappings

\[F_n = (F^1_n, \ldots, F^k_n) : X \to \mathbb{R}^k \]

such that \(F^i_n \in W^{4k,2}(\gamma) \). Let \(\mu_n = \gamma \circ F^{-1}_n \). The following theorem proved in [12] is based on a simple observation that by the compactness of the embedding of the space \(BV(U) \) of functions of bounded variation on a ball \(U \subset \mathbb{R}^k \) to the space \(L^1(U) \), every weakly convergent sequence of nonnegative measures \(\mu_n \) on \(U \) with densities bounded in the norm of \(BV(U) \) converges also in variation. In order to obtain from this convergence in variation on the whole space, it is necessary to add the uniform tightness of the measures \(\mu_n \), i.e., the condition

\[
\lim_{R \to \infty} \sup_n \mu_n(R^k \setminus U_R) = 0,
\]

where \(U_R \) is the closed ball of radius \(R \) centered at the origin. In our situation the uniform tightness follows from the estimate \(\sup_n, i \| F^i_n \|_{L^1(\gamma)} < \infty \), which gives the estimate

\[
\sup_n \int_{\mathbb{R}^k} |x| \mu_n(dx) < \infty.
\]

The assumption of the theorem is chosen in such a way that we are able to apply the indicated reasoning not to the original sequence of induced measures \(\mu_n \), but to some sequence asymptotically approximating it. For the reader’s convenience and also taking into account that the condition in [12] contains a misprint (the considered norm in Theorem 2 and Corollary 1 in [12] should be \(\| F^i_n \|_{4d,2} \), not \(\| F^i_n \|_{2d,2} \)), we include the proof that is not long. Set

\[
\delta(\varepsilon) = \sup_n \gamma(\Delta F_n \leq \varepsilon).
\]

Theorem 4.8. Suppose that

\[
\sup_n \| F^i_n \|_{4k,2} < \infty \quad \text{and} \quad \lim_{\varepsilon \to 0} \delta(\varepsilon) = 0.
\]

Then the sequence of measures \(\mu_n = \gamma \circ F^{-1}_n \) has a subsequence convergent in variation.

Proof. Let us consider the measures

\[
\nu_{n, \varepsilon} = \left(\frac{\Delta_n}{\Delta_n + \varepsilon^2} \cdot \gamma \right) \circ F^{-1}_n, \quad \Delta_n := \Delta F_n, \quad \varepsilon > 0.
\]
Let $\varphi \in C_0^\infty(\mathbb{R}^k)$. Applying (4.11) and using the notation $m^n_{i,j}$ and $a^n_{i,j}$ for the elements of M_{F_n} and A_{F_n}, respectively, we obtain
\[
\int_X \partial_x \varphi \, d\nu_{n,\varepsilon} = \int_X (\partial_x \varphi(F_n)) \frac{\Delta_n}{\Delta_n + \varepsilon^2} \, d\gamma = \int_X \sum_{j,l} \frac{a^n_{i,j}}{\Delta_n + \varepsilon^2} m^n_{j,l}(\partial_x \varphi)(F_n) \, d\gamma
\]
(4.6)

Thus, by the assumption of the theorem. Thus, φ is finite, because ψ is finite. Because $\Delta_n = \sum_{i,j} \partial_i \partial_j M_{F_n}$, we have φ is finite. Because $\varphi \in W^{p,1}(\gamma)$, where $p > 1$, and every function $g \in W^{p,1}(\gamma)$, where $p' = p/(p-1)$, one has the following integration by parts formula:
\[
\int_X \langle \nabla g, \nabla v \rangle_H \, d\gamma = -\int_X gLv \, d\gamma,
\]
where $Lv \in L^p(\gamma)$ is the extension of the Ornstein–Uhlenbeck operator to $W^{p,2}(\gamma)$. Hence for all $g \in W^{p',1}(\gamma)$ and $\psi \in W^{q,p',1}(\gamma)$ with $q > 1$, $q' = q/(q-1)$ we have (since $\psi g \in W^{p',1}(\gamma)$)
\[
\int_X \langle \nabla g, \nabla v \rangle_H \psi \, d\gamma = -\int_X [g \psi Lv + g \langle \nabla \psi, \nabla v \rangle_H] \, d\gamma.
\]

We are going to apply this formula to (4.6). The hypothesis of the theorem implies that $v = F_n^j \in W^{4k,2}(\gamma)$, $g = \varphi \circ F_n \in W^{4k,1}(\gamma)$.

To apply the integration by parts formula, we only need to ensure that
\[
\psi = \frac{a^n_{i,j}}{\Delta_n + \varepsilon^2} \in W^{s,1}(\gamma), \quad s = \frac{4k}{4k-2}.
\]
The $L^s(\gamma)$-norm of ψ is finite, since $|\psi| \leq |a^n_{i,j}|/\varepsilon^2$ and
\[
\|a^n_{i,j}\|_{L^s} \leq C \sum_{l,r \neq i,j} \|\nabla F_n^l, \nabla F_n^r\|_{L^{s(k-1)}} \, d\gamma \leq C \sum_l \|F_n^l\|_{s(2k-2),2}.
\]
The right-hand side is finite, because
\[
s \cdot (2k-2) = (4k(k-2))/(2k-1) < 4k \quad \text{and} \quad \sup_n \|F_n^l\|_{4k,2} < \infty
\]
by the assumption of the theorem. Thus, $\psi \in L^s(\gamma)$.

Next, we show that $|\nabla \psi|_H \in L^s(\gamma)$. Using the cofactor expansion for the determinant Δ_n, we see that
\[
\nabla \Delta_n = \nabla \det M_{F_n} = \sum_{i,j} \frac{\partial \det M_{F_n}}{\partial m^n_{i,j}} \nabla m^n_{i,j} = \sum_{i,j} a^n_{i,j} \nabla m^n_{i,j}
\]
and thus
\[
\nabla \psi = \sum_{i,j} \left[\frac{\nabla a^n_{i,j}}{\Delta_n + \varepsilon^2} + \frac{a^n_{i,j}}{(\Delta_n + \varepsilon^2)^2} \sum_{k,r} a^n_{k,r} \nabla m^n_{k,r} \right].
\]
Similarly to the calculations above we prove that
\[
\|\nabla a^n_{i,j}\|_{L^s} \leq C \sum_l \|F_n^l\|_{s(2k-2),2}
\]
and
\[
\|a^n_{i,j} a^n_{k,r} \nabla m^n_{k,r}\|_{L^s} \leq C \sum_l \|F_n^l\|_{s(4k-2),2} = C \sum_l \|F_n^l\|_{4k,2}.
\]
Thus, $|\nabla \psi|_H \in L^s(\gamma)$ and $\psi \in W^{s,1}(\gamma)$, as announced.
Applying the integration by parts formula to (4.6), we obtain

$$
\int_{\mathbb{R}^d} \partial x_1 \varphi \, d\nu_{n,\epsilon} = \sum_j \int_X \frac{a^n_{i,j}}{\Delta_n + \epsilon^2} \langle \nabla (\varphi \circ F_n), \nabla F_j \rangle_H \, d\gamma
$$

$$
= -\sum_j \int_X \varphi (F_n) \frac{a^n_{i,j}}{\Delta_n + \epsilon^2} LF_j \, d\gamma - \sum_j \int_X \varphi (F_n) \left\langle \nabla \frac{a^n_{i,j}}{\Delta_n + \epsilon^2}, \nabla F_j \right\rangle_H \, d\gamma.
$$

Hence the generalized partial derivatives of the measure $\nu_{n,\epsilon}$ are the measures

$$
\sum_j \left(\frac{a^n_{i,j}}{\Delta_n + \epsilon^2} LF_j + \left\langle \nabla \frac{a^n_{i,j}}{\Delta_n + \epsilon^2}, \nabla F_j \right\rangle_H \right) \gamma \circ F_n^{-1}.
$$

Therefore, the measure $\nu_{n,\epsilon}$ has a density $\varrho_{n,\epsilon}$ of class BV and its BV-norm is dominated by

$$
1 + \left\| \sum_j \left(\frac{a^n_{i,j}}{\Delta_n + \epsilon^2} LF_j + \left\langle \nabla \frac{a^n_{i,j}}{\Delta_n + \epsilon^2}, \nabla F_j \right\rangle_H \right) \right\|_{L^1(\gamma)} \leq M(\epsilon).
$$

It is known that the embedding $BV(U_R) \to L^1(U_R)$ is compact, where U_R is the ball of radius R centered at the origin in \mathbb{R}^d. Hence there exists a subsequence $\{i_n\}$ such that $\{\varrho_{i_{n,1/m}}\}$ converges in $L^1(U_m)$ for every $m \in \mathbb{N}$.

Let us estimate $\|\nu_{i,\epsilon} - \mu_i\|$ in the following way:

$$
(4.7) \quad \|\nu_{i,\epsilon} - \mu_i\| = \int \frac{\epsilon^2}{\Delta_i + \epsilon^2} \, d\gamma \leq \epsilon + \gamma (\Delta_i \leq \epsilon) \leq \epsilon + \delta(\epsilon).
$$

We observe that the family of measures $\{\nu_{i,\epsilon}\}$, where $i \geq 1$, $\epsilon > 0$, is uniformly tight. This follows by the boundedness of $\{F_n\}$ in $L^1(\gamma)$ and the Chebyshev inequality.

Let us now show that the sequence of measures μ_{i_n} is fundamental in variation. Let $\epsilon > 0$. Using the uniform tightness and (4.7) we take M such that

$$
\|\nu_{i,1/M} - \mu_i\| \leq \epsilon/5, \quad \nu_{i,\delta}(\mathbb{R}^d \setminus U_M) \leq \epsilon/5 \quad \forall \delta > 0.
$$

Next, we take N such that for all $n, m > N$ we obtain

$$
\|\varrho_{i_{n,1/M}} - \varrho_{i_{m,1/M}}\|_{L^1(U_M)} \leq \epsilon/5.
$$

Then for all $n, m > N$ we have

$$
\|\mu_{i_n} - \mu_{i_m}\| \leq \|\nu_{i_{n,1/M}} - \nu_{i_{m,1/M}}\| + \frac{2\epsilon}{5} = \|\nu_{i_{n,1/M}} - \nu_{i_{m,1/M}}\|_{L^1(\mathbb{R}^d)} + \frac{2\epsilon}{5}
$$

$$
\leq \|\varrho_{i_{n,1/M}} - \varrho_{i_{m,1/M}}\|_{L^1(U_M)} + \frac{4\epsilon}{5} \leq \epsilon,
$$

The theorem is proved.

Corollary 4.9. If a sequence $\{F^n_i\}$ is bounded in $W^{k,2}(\gamma)$ and $\delta(\epsilon) \to 0$ and the distributions of F^n_i converge weakly, then they converge in variation.

This corollary provides another proof of the already known fact that if we have $F^n_i \in P_d$ and $\|\Delta_n\|_1 \geq \beta > 0$ and the sequence of distributions of F^n_i converges weakly, then it converges in variation.

5. The one-dimensional case

In the one-dimensional case (i.e., $k = 1$) one can obtain some better estimates. They are derived from the following theorem that replaces Theorem 4.1 in this case and a similar result in Theorem 5.7 that yields an even better fractional order at the Kantorovich norm (namely, $1/(d+1)$), but at the cost of a worse constant. As above, γ_n is the standard Gaussian measure on \mathbb{R}^n.

Theorem 5.1. Let $d \in \mathbb{N}, \tau > 0$. Then there is a number $C(d, \tau) > 0$ such that, whenever $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial of degree d, for all $\varphi \in C^\infty_0(\mathbb{R}^1)$ one has

$$\int_{\mathbb{R}^n} \varphi'(f(x)) \gamma_n(dx) \leq C(d, \tau)\sigma_f^\alpha \|\varphi\|_\infty^\alpha \|\varphi\|_\infty^{1-\alpha}, \quad \alpha = \frac{1}{2d-2+\tau}. $$

Therefore, $\gamma_n \circ f^{-1}$ belongs to the Nikol'skii–Besov class $B^\alpha(\mathbb{R})$ independent of n, provided that f is not a constant.

Proof. We can assume that $\|\varphi\|_\infty \leq 1$. Fix $\varepsilon > 0$ (which will to be chosen later). The integral that we want to estimate equals (we again omit indication of \mathbb{R}^n in the integrals below)

$$\int \varphi'(f(x)) \gamma_n(dx) = \int \varphi'(f(x)) \frac{\langle \nabla f(x), \nabla f(x) \rangle}{\langle \nabla f(x), \nabla f(x) \rangle + \varepsilon} \gamma_n(dx) + \varepsilon \int \varphi'(f(x)) \frac{\varphi'(f(x))}{\langle \nabla f(x), \nabla f(x) \rangle + \varepsilon} \gamma_n(dx). $$

(5.1)

Let us estimate every term. For the first term, integrating by parts, we have

$$\int \varphi'(f) \frac{\langle \nabla f, \nabla f \rangle}{\langle \nabla f, \nabla f \rangle + \varepsilon} d\gamma_n = \int \varphi(f) \frac{L f}{\langle \nabla f, \nabla f \rangle + \varepsilon} - \frac{\langle D^2 f \cdot \nabla f, \nabla f \rangle}{(\langle \nabla f, \nabla f \rangle + \varepsilon)^2} d\gamma_n$$

$$\leq \int \frac{|L f|}{\langle \nabla f, \nabla f \rangle + \varepsilon} \gamma_n + \int \frac{\|D^2 f\|_{HS}}{\langle \nabla f, \nabla f \rangle + \varepsilon} d\gamma_n$$

$$\leq (\|L f\|_{L^q(\gamma_n)} + \|D^2 f\|_{L^q(\gamma_n)}) \left(\int (\langle \nabla f, \nabla f \rangle + \varepsilon)^{\frac{1}{q'}} d\gamma_n \right)^{1/q},$$

where $q > 1$. Set

$$\beta = \frac{1}{2(d-1)}. $$

Using inequality (2.2) and the equivalence of the Sobolev and L^p-norms of polynomials of degree d, we obtain that

$$\|L f\|_{L^q(\gamma_n)} + \|D^2 f\|_{L^q(\gamma_n)} \leq C(d, q)\sigma_f.$$

Using (4.4), we obtain that the last expression in (5.2) is not greater than

$$C(d, q)\sigma_f \varepsilon^{1+\beta/q} \left(\int (\langle \nabla f, \nabla f \rangle) d\gamma_n \right)^{-\beta/q},$$

which by the Poincaré inequality is not greater than

$$c_1(d, q)\sigma_f^{1-2\beta/q} \varepsilon^{-1+\beta/q}. $$

Now let us estimate the second term in the right-hand side of (5.1). As above, using (4.4) and the Poincaré inequality, we obtain

$$\int (\langle \nabla f, \nabla f \rangle + \varepsilon)^{-1} d\gamma_n \leq c(d)\sigma_f^{-2\beta\varepsilon^{-1+\beta}}.$$

Therefore,

$$\varepsilon \int \frac{\varphi'(f)}{\langle \nabla f, \nabla f \rangle + \varepsilon} d\gamma_n \leq \|\varphi\|_\infty c(d)\sigma_f^{-2\beta\varepsilon^{-1+\beta}} \varepsilon^\beta.$$

Let

$$\tau = \frac{q-1}{q}, \quad \varepsilon = \|\varphi\|_\infty^\omega, \quad \omega = -\frac{1}{1+\beta\tau}. $$
Then for (5.1) we have the bound
\[\int \varphi'(f(x)) \gamma_n(dx) \leq (c_1(d, q)\sigma_f^{1-2\beta/q} + c(d)\sigma_f^{-2\beta})\|\varphi'\|^1_{\infty}^{1-\alpha}, \quad \alpha = \frac{1}{2d - 2 + \tau}. \]

We now take the function \(\psi(t) = \varphi(t\sigma_f^{-1}) \). Using the above inequality for the polynomial \(f \cdot \sigma_f^{-1} \), we can write
\[\int \psi'(f(x)) \gamma_n(dx) = \sigma_f^{-1}\int \varphi'(f(x)\sigma_f^{-1}) \gamma_n(dx) \leq \sigma_f^{-1}(c_1(d, q) + c(d))\|\varphi'\|^1_{\infty}^{1-\alpha} = \sigma_f^{-\alpha}(c_1(d, q) + c(d))\|\psi'\|^1_{\infty}^{1-\alpha}. \]

Since \(\tau \) can be taken as small as we wish, the theorem is proved. \(\square \)

The last assertion about membership in Nikol’skii–Besov classes is improved below. Similarly to the multidimensional case, the following theorem is obtained on the basis of the previous theorem.

Theorem 5.2. Let \(d \in \mathbb{N}, a > 0, \tau > 0 \). Then there is a number \(C = C(d, a, \tau) > 0 \) such that, whenever \(f \) and \(g \) are real polynomials on \(\mathbb{R}^n \) of degree \(d \) with \(\sigma_f, \sigma_g \geq a \) one has
\[\|\gamma_n \circ f^{-1} - \gamma_n \circ g^{-1}\|_{\text{TV}} \leq Cd_{K}(\gamma_n \circ f^{-1}, \gamma_n \circ g^{-1})^{\theta}, \quad \theta = \frac{1}{2d - 1 + \tau}. \]

As in the multidimensional case, we obtain the following infinite-dimensional extensions.

Corollary 5.3. Let \(\gamma \) be a centered Radon Gaussian measure on a locally convex space \(X \). Let \(d \in \mathbb{N}, \tau > 0 \). Then there is a number \(C = C(d, \tau) > 0 \) such that, whenever \(f : X \to \mathbb{R} \) is a \(\gamma \)-measurable polynomial of degree \(d \), for all \(\varphi \in C_b^\infty(\mathbb{R}^1) \) one has
\[\int_X \varphi'(f(x)) \gamma(dx) \leq C(d, \tau)\sigma_f^{-\alpha}\|\varphi\|^\alpha_{\infty}\|\varphi'\|^1_{\infty}^{1-\alpha}, \quad \alpha = \frac{1}{2d - 2 + \tau}. \]

Therefore, \(\gamma \circ f^{-1} \) belongs to the Nikol’skii–Besov class \(B^\alpha(\mathbb{R}) \), provided that \(f \) is not a constant a.e.

Corollary 5.4. Let \(\gamma \) be a centered Radon Gaussian measure on a locally convex space \(X \). Let \(d \in \mathbb{N}, a > 0, \tau > 0 \). Then is a number \(C_1 = C_1(d, a, \tau) \) such that, whenever \(f \) and \(g \) are \(\gamma \)-measurable polynomials on \(X \) of degree \(d \) with \(\sigma_f, \sigma_g \geq a \) one has
\[\|\gamma \circ f^{-1} - \gamma \circ g^{-1}\|_{\text{TV}} \leq C_1d_{FM}(\gamma \circ f^{-1}, \gamma \circ g^{-1})^{1/(2d - 1 + \tau)}. \]

Corollary 5.5. Let \(\gamma \) be a Radon Gaussian measure on a locally convex space. Let \(\{f_n\} \) be a sequence of \(\gamma \)-measurable polynomials of degree \(d \). Suppose that the distributions \(\gamma \circ f_n^{-1} \) converge weakly to an absolutely continuous measure \(\nu \) on \(\mathbb{R} \). Then they also converge in variation and for every \(\tau > 0 \) there exists a number \(C_2 = C_2(d, \sigma_\nu, \tau) \) such that
\[d_{\text{TV}}(\gamma \circ f_m^{-1}, \gamma \circ f_n^{-1}) \leq C_2d_{FM}(\gamma \circ f_m^{-1}, \gamma \circ f_n^{-1})^{1/(2d - 1 + \tau)}. \]

The second result provides an estimate with a better rate of convergence than the one obtained in Theorem 3.1 in [24].

Remark 5.6. Note that in this case, unlike Corollary 4.5, there is no condition that the integrals of \(\Delta_{f_k} \) are separated from zero. In the case \(k = 1 \), due to the Poincaré inequality, this condition is replaced by \(\sigma_{f_n} \geq a > 0 \) (see Corollary 4.5 and Corollary 5.4), which is automatically satisfied for \(n \) large enough, because for the distributions of polynomials weak convergence implies convergence of all moments (see Lemma 2.1).
We now show that one can even achieve the exponent $\theta = 1/(d + 1)$, however, with a worse constant than before (depending on some special norm of the gradient). Actually, by using a different approach in the one-dimensional case, it is still possible to prove this result with the same type of constant (depending on the variance), which will be done for general convex measures in a forthcoming paper of the second author. We include a somewhat less sharp result below, because its proof is much simpler.

Let γ be a centered Radon Gaussian measure on a locally convex space X and let H be its Cameron–Martin space. For a function $f \in W^{2,1}(\gamma)$ we define $\|\nabla f\|_*$ by

$$\|\nabla f\|_*^2 := \sup_{|\epsilon| = 1} \int_X |\partial_{\epsilon} f|^2 d\gamma.$$

It is clear that $\|\nabla f\|_* > 0$ once f is not a constant and that $\|\nabla f\|_* \leq \|\nabla f\|_{H^2(\gamma)}$.

Theorem 5.7. Let γ_n be the standard Gaussian measure on \mathbb{R}^n. Then, for every $d \in \mathbb{N}$, there is a number $C(d)$ that depends only on d such that, for every polynomial f of degree d on \mathbb{R}^n and every function $\varphi \in C_b^\infty(\mathbb{R})$, we have

$$\int_{\mathbb{R}^n} \varphi'(f) d\gamma_n \leq C(d) \|\nabla f\|_*^{-1/d} \|\varphi\|_\infty^{1/d} \|\varphi'\|_\infty^{1-1/d}.$$

Therefore, $\gamma_n \circ f^{-1}$ belongs to the Nikol’skii–Besov class $B^{1/d}(\mathbb{R})$ provided that f is not a constant.

Proof. We can assume that $\|\varphi\|_\infty \leq 1$. Let $e \in \mathbb{R}^n$, $|e| = 1$. We have

$$\int \varphi'(f) d\gamma = \int \left[\frac{(\partial_{\epsilon} f)^2}{(\partial_{\epsilon} f)^2 + \epsilon} \varphi'(f) \right] d\gamma + \epsilon \int \frac{\varphi'(f)}{(\partial_{\epsilon} f)^2 + \epsilon} d\gamma.$$

Writing the first term as

$$\int \frac{(\partial_{\epsilon} f)^2}{(\partial_{\epsilon} f)^2 + \epsilon} \varphi'(f) d\gamma = \int \partial_{\epsilon}(\varphi(f)) \frac{\partial_{\epsilon} f}{(\partial_{\epsilon} f)^2 + \epsilon} d\gamma,$$

and integrating by parts in the last expression, we obtain

$$- \int \varphi(f) \left[\frac{\partial^2 f + \langle x, e \rangle \partial_{\epsilon} f}{(\partial_{\epsilon} f)^2 + \epsilon} - 2 \frac{(\partial_{\epsilon} f)^2 \partial^2 f}{((\partial_{\epsilon} f)^2 + \epsilon)^2} \right] d\gamma$$

$$\leq 3 \int \left| \frac{\partial^2 f}{(\partial_{\epsilon} f)^2 + \epsilon} \right| d\gamma + \int \left| \frac{\partial_{\epsilon} f}{(\partial_{\epsilon} f)^2 + \epsilon} \right| |\langle x, e \rangle| d\gamma$$

$$= \epsilon^{-1/2} \left(3 \int \left| \frac{\partial^2 g}{(\partial_{\epsilon} g)^2 + 1} \right| d\gamma + \int \left| \frac{\partial_{\epsilon} g}{(\partial_{\epsilon} g)^2 + 1} \right| |\langle x, e \rangle| d\gamma \right)$$

$$\leq \epsilon^{-1/2} (3d \sqrt{\pi/2} + 1),$$

where $g = f \epsilon^{-1/2}$. By using the Carbery–Wright inequality (2.3) in the same manner as in derivation of (12), we have

$$\int \frac{\varphi'(f)}{(\partial_{\epsilon} f)^2 + \epsilon} d\gamma \leq cd\|\varphi'\|_\infty \|\partial_{\epsilon} f\|_2^{-1/(d-1)} \epsilon^{-1+1/(2d-2)} \int_0^\infty (s + 1)^{-2} s^{1/(2d-2)} ds.$$

Thus,

$$\int \varphi'(f) d\gamma \leq c_1(d) \|\partial_{\epsilon} f\|_2^{-1/(d-1)} \|\varphi'\|_\infty \epsilon^{1/(2d-2)} + c_2(d) \epsilon^{-1/2}.$$

Taking $\epsilon = \|\varphi'\|_\infty^{-2+2/d}$, we obtain

$$\int \varphi'(f) d\gamma \leq (c_1(d) \|\partial_{\epsilon} f\|_2^{-1/(d-1)} + c_2(d)) \|\varphi'\|_\infty^{-1/d}.$$
Since this estimate is valid for every vector $e \in \mathbb{R}^n$ of unit length, we have

$$\int \varphi'(f) \, d\gamma \leq (c_1(d)\|\nabla f\|_{\ast}^{-1/(d-1)} + c_2(d)) \|\varphi'\|_{\infty}^{1-1/d}. $$

Applying the last estimate to the polynomial $f\|\nabla f\|_{\ast}^{-1}$, we find that

$$\int \varphi'(f\|\nabla f\|_{\ast}^{-1}) \, d\gamma \leq (c_1(d) + c_2(d)) \|\varphi'\|_{\infty}^{1-1/d}. $$

Let $\psi(t) = \varphi(t\|\nabla f\|_{\ast}^{-1})$, $C(d) = c_1(d) + c_2(d)$. Then

$$\int \psi'(f) \, d\gamma = \|\nabla f\|_{\ast}^{-1} \int \varphi'(f\|\nabla f\|_{\ast}^{-1}) \, d\gamma$$

$$\leq C(d)\|\nabla f\|_{\ast}^{-1}\|\varphi'\|_{\infty}^{1-1/d} = C(d)\|\nabla f\|_{\ast}^{-1/d}\|\psi'\|_{\infty}^{1-1/d}, $$

which proves the theorem. \hfill \Box

Corollary 5.8. Let γ be a centered Radon Gaussian measure on a locally convex space. Then, for every $d \in \mathbb{N}$, there is a number $C(d)$ that depends only on d such that, for every γ-measurable polynomial f of degree d on X and every function $\varphi \in C^\infty_b(\mathbb{R})$, we have

$$\int_X \varphi'(f) \, d\gamma \leq C(d)\|\nabla f\|_{\ast}^{-1/d}\|\varphi\|_{\infty}^{1/d}\|\varphi'\|_{\infty}^{1-1/d}. $$

Therefore, $\gamma \circ f^{-1}$ belongs to the Nikol’skii–Besov class $B^{1/d}(\mathbb{R})$ provided that f is not a constant a.e.

From the previous theorem one derives the following assertion which is an analog of Theorem 5.2 in this case.

Theorem 5.9. Let $d \in \mathbb{N}$, $a > 0$. Then there is a number $C = C(d,a)$ such that, whenever f and g are real polynomials on \mathbb{R}^n of degree d with $\|\nabla f\|_{\ast} \geq a$ and $\|\nabla g\|_{\ast} \geq a$, one has

$$\|\gamma_n \circ f^{-1} - \gamma_n \circ g^{-1}\|_{TV} \leq C d_K(\gamma_n \circ f^{-1}, \gamma_n \circ g^{-1})^\theta, \quad \theta = \frac{1}{d+1}. $$

It can be that the optimal power is $1/d$; the following simple example shows that one cannot get any better exponent (and that the order $1/d$ of the Nikol’skii–Besov class above is optimal).

Example 5.10. Let us consider the monomial x^d with even d on the real line with the standard Gaussian measure γ. Let ϱ be its distribution density. It is obvious that $\varrho(t) = 0$ if $t < 0$ and that ϱ is monotonically decreasing on $(0, +\infty)$. Let us also consider $x^d - h$, $h > 0$. The Kantorovich distance between the laws of x^d and $x^d - h$ equals h and the variation distance is given by

$$\int_{-\infty}^{+\infty} |\varrho(t-h) - \varrho(t)| \, dt = \int_0^h \varrho(t) \, dt + \int_h^{+\infty} (\varrho(t-h) - \varrho(t)) \, dt = 2\gamma(|x| \leq h^{1/d}). $$

It is readily verified that the latter expression for small h behaves like $h^{1/d}$.

Remark 5.11. It is still unknown whether the set of distributions of polynomials of a fixed degree d is closed in the weak topology (equivalently, in the metrics d_K and d_{FM}). The answer is positive for $d = 1$ (which is trivial) and for $d = 2$ (which was proved in [3] and [27]). Some asymptotic properties of polynomial distributions are discussed in [2] and [9].
6. Bounds via L^2-norms

In this section, γ is the standard Gaussian measure on \mathbb{R}^n (in this case we also use the symbol γ_n) or on \mathbb{R}^∞. The following result was announced in [14] (we present it in our terms; in [14] multiple stochastic integrals of order d are used).

Theorem A. Let $g \in \mathcal{H}_d$ and $g \neq 0$. Then there is a constant $C(d, g)$ depending only on d and g such that for every $f \in \mathcal{H}_d$ one has

$$
\|\gamma \circ f^{-1} - \gamma \circ g^{-1}\|_{TV} \leq C(d, g)\left\| f - g \right\|^1_{2d}.
$$

The announcement does not contain details of proof and also the form of dependence of $C(d, g)$ on g is not indicated. In relation to this estimate Nourdin and Poly [24] proved the following result (also presented here in our terms).

Theorem B. Let $d \in \mathbb{N}$, $a > 0$, $b > 0$. Then there exists a number $C(d, a, b) > 0$ such that for every pair of polynomials f, g of degree d with $\sigma_f \in [a, b]$ one has

$$
\|\gamma \circ f^{-1} - \gamma \circ g^{-1}\|_{TV} \leq C(d, a, b)\left\| f - g \right\|^1_{2d}.\tag{24}
$$

While the power of the L^2-norm in this theorem is twice smaller (which makes the estimate worse) than in Theorem A, Nourdin and Poly managed to clarify dependence of $C(d, g)$ on g: this constant depends only on the bounds for the variance. In this section, we first prove an intermediate result between Theorem A and Theorem B and then give its multidimensional extension. The next theorem gives an analog of the Davydov–Martynova estimate with a constant worse than in the Nourdin–Poly estimate, but with a better dependence on the L^2-norm (which differs from the announcement in [14] by only a logarithmic factor). We recall that $\| \cdot \|$ is defined by (5.3).

Theorem 6.1. There is a constant $c(d)$ depending only on d such that for every pair of polynomials f, g of degree $d > 1$ one has

$$
\|\gamma \circ f^{-1} - \gamma \circ g^{-1}\|_{TV} \leq c(d)\left(\|\nabla g\|_{*}^{-1/(d-1)} + \sigma_g + 1 \right)\left\| f - g \right\|_{2d}\left(\| f - g \|_{2}^{d/2} + 1 \right).
$$

Proof. If $\left\| f - g \right\|_{2} \geq 1/e$, then

$$
\|\gamma \circ f^{-1} - \gamma \circ g^{-1}\|_{TV} \leq 1 \leq e^{1/d}\left\| f - g \right\|_{2d}\left(\| f - g \|_{2}^{d/2} + 1 \right).
$$

Hence we can assume that $\left\| f - g \right\|_{2} \leq 1/e$. Fix a function $\varphi \in C_0^\infty(\mathbb{R})$ with $\|\varphi\|_{\infty} \leq 1$, a vector $e \in \mathbb{R}^n$ of unit length, and a number $\varepsilon \in (0, 1/e)$. Consider the function

$$
\Phi(t) = \int_{-\infty}^{t} \varphi(\tau)d\tau.
$$

Note that

$$
\partial_e(\Phi(f) - \Phi(g)) = \partial_e f \varphi(f) - \partial_e g \varphi(g) = (\varphi(f) - \varphi(g))\partial_e g + \varphi(f)(\partial_e f - \partial_e g).
$$

Thus, we have (omitting indication of limits of integration in case of \mathbb{R}^n)

$$
\int \varphi(f) - \varphi(g)d\gamma = \int \left(\varphi(f) - \varphi(g) \right) \frac{\partial_e g}{\partial_e g + \varepsilon} d\gamma + \varepsilon \int \left(\varphi(f) - \varphi(g) \right) \left(\partial_e g + \varepsilon \right)^{-1} d\gamma
$$

$$
= \int \frac{\partial_e g \partial_e \Phi(f) - \Phi(g)}{\partial_e g + \varepsilon} d\gamma - \int \frac{\varphi(f)(\partial_e f - \partial_e g)}{\partial_e g + \varepsilon} d\gamma + \varepsilon \int \left(\varphi(f) - \varphi(g) \right) \left(\partial_e g + \varepsilon \right)^{-1} d\gamma.
$$
Let us estimate each term separately. First, let us consider the last term. Using the Carbery–Wright inequality in the same manner as in derivation of (4.4) we obtain

$$\varepsilon \int (\varphi(f) - \varphi(g))((\partial_e g)^2 + \varepsilon)^{-1} d\gamma \leq 2\varepsilon \int ((\partial_e g)^2 + \varepsilon)^{-1} d\gamma \leq 2d c_1 \|\partial_e g\|_2^{1/(d-1)} \varepsilon^{1/(2d-2)} \int_0^\infty (s + 1)^{-2} s^{1/(2d-2)} ds = c_1(d) \|\partial_e g\|_2^{-1/(d-1)} \varepsilon^{1/(2d-2)}.$$

Now we estimate the second term:

$$-\int \frac{\varphi(f)(\partial_e f - \partial_e g)\partial_e g}{(\partial_e g)^2 + \varepsilon} d\gamma \leq \int \frac{|\partial_e f - \partial_e g| |\partial_e g|}{(\partial_e g)^2 + \varepsilon} d\gamma \leq 2^{-1} \varepsilon^{-1/2} \int |\partial_e f - \partial_e g| d\gamma \leq c_2(d) \varepsilon^{-1/2} \|f - g\|_2.$$

Finally, let us estimate the first term. Integrating by parts we obtain

$$\int \frac{\partial_e g\partial_e (\Phi(f) - \Phi(g))}{(\partial_e g)^2 + \varepsilon} d\gamma = \int (\Phi(f) - \Phi(g)) \left[\frac{\partial_e^2 g}{(\partial_e g)^2 + \varepsilon} - 2 \frac{(\partial_e g)^2 \bar{\partial}_e g}{((\partial_e g)^2 + \varepsilon)^2} \right] d\gamma \leq 3 \int |f - g| \frac{|\partial_e^2 g|}{(\partial_e g)^2 + \varepsilon} d\gamma + 2^{-1} \varepsilon^{-1/2} \int |f - g| |\langle x, e \rangle| d\gamma \leq 3 \int |f - g| \frac{|\partial_e^2 g|}{(\partial_e g)^2 + \varepsilon} d\gamma + 2^{-1} \varepsilon^{-1/2} \|f - g\|_2 \int \frac{|\partial_e^2 g|}{(\partial_e g)^2 + \varepsilon} d\gamma + 2^{-1} \varepsilon^{-1/2} \|f - g\|_2 \int \frac{|\partial_e^2 g|}{(\partial_e g)^2 + \varepsilon} d\gamma + 2^{-1} \varepsilon^{-1/2} \|f - g\|_2.$$

Note that writing γ as the product of γ_1 and γ_{n-1}, we have

$$\int \frac{|\partial_e^2 g|}{(\partial_e g)^2 + \varepsilon} d\gamma = \int_{(\varepsilon)} \int_{(\varepsilon)} \frac{|\partial_e^2 g|}{(\partial_e g)^2 + \varepsilon} d\gamma_1 d\gamma_{n-1} \leq (2\pi \varepsilon)^{-1/2} \int_{(\varepsilon)} \int \frac{d\tau}{\tau^2 + 1} d\gamma_{n-1}.$$

Recall (see Corollary 5.5.7)) that

$$\gamma(x: |f(x)| \geq t \|f\|_2) \leq c_r \exp(-rt^{2/d}), \quad r < \frac{d}{2\varepsilon},$$

where c_r depends only on r. Thus, for $t \geq 1$ and some $c \in (0, 1/2)$ we obtain

$$\int [\varphi(f) - \varphi(g)] d\gamma \leq c_5(d) \left(\|\partial_e g\|_2^{-1/(d-1)} \varepsilon^{1/(2d-2)} + \varepsilon^{-1} \|f - g\|_2 \sigma_g \exp(-ct^{2/d}) + t \|f - g\|_2 \varepsilon^{-1/2} \right).$$
Setting $t = (2c)^{-d/2}(\ln \varepsilon)^{d/2}$, $\varepsilon = \|f-g\|_2^{2(d-1)/d}$ (recall that $\|f-g\|_2 < 1/e$, hence $t \geq 1$), we obtain that the right-hand side is estimated by
\[
c(d) \left(\|\partial_x g\|_2^{1/(d-1)} \|f-g\|_2^{1/d} + \sigma_g \|f-g\|_2^{1/d} + \ln \|f-g\|_2^{d/2} \right)
\leq c(d) \left(\|\partial_x g\|_2^{1/(d-1)} + \sigma_g + 1 \right) \ln \|f-g\|_2^{d/2} \|f-g\|_2^{1/d}.
\]
Now taking inf over e and sup over φ we obtain the desired estimate.

Our next theorem is a multidimensional analog of Theorem A. We need a lemma.

Lemma 6.2. Let A and B be a pair of square $k \times k$-matrices. Then
\[
|\det A - \det B| \leq \|A - B\|_{HS}(\|A\|_{HS}^2 + \|B\|_{HS}^2)^{(k-1)/2}.
\]

Proof. Let a_i and b_i, $i = 1, \ldots, k$, be the columns of the matrices A and B, respectively. The determinant of the matrix A is a multilinear function in a_1, \ldots, a_k. We denote this function by $\Delta(a_1, \ldots, a_k)$. We have
\[
|\det A - \det B| = |\Delta(a_1, \ldots, a_k) - \Delta(b_1, \ldots, b_k)|
\leq \sum_{i=1}^{k} |\Delta(b_1, \ldots, b_{i-1}, a_i, \ldots, a_k) - \Delta(b_1, \ldots, b_i, a_{i+1}, \ldots, a_k)|
\]
\[
= \sum_{i=1}^{k} |\Delta(b_1, \ldots, b_{i-1}, a_i - b_i, a_{i+1}, \ldots, a_k)| \leq \sum_{i=1}^{k} |a_i - b_i| \|a_i - b_i| a_{i+1} \ldots a_k| \leq \left(\sum_{i=1}^{k} |a_i - b_i|^2 \right)^{1/2} \left(\sum_{i=1}^{k} (|a_i|^2 + |b_i|^2) \right)^{(k-1)/2}
\]
\[
= \|A - B\|_{HS}(\|A\|_{HS}^2 + \|B\|_{HS}^2)^{(k-1)/2}.
\]
The lemma is proved.

Theorem 6.3. Let $k, d \in \mathbb{N}$, $a > 0$, $b > 0$, $\tau > 0$. Then there exists a number $C(d, k, a, b, \tau) > 0$ such that, for every pair of mappings $f = (f_1, \ldots, f_k)$ and $g = (g_1, \ldots, g_k): \mathbb{R}^n \to \mathbb{R}^k$, where all f_i, g_i are polynomials of degree d and
\[
\int_{\mathbb{R}^n} \Delta_f d\gamma \geq a, \quad \max_{1 \leq i \leq k} \sigma_{f_i} \leq b,
\]
one has
\[
(6.1) \quad \|\gamma \circ f^{-1} - \gamma \circ g^{-1}\|_{TV} \leq C(d, k, a, b, \tau) \|f-g\|_2, \quad \theta = \frac{1}{4k(d-1) + \tau}.
\]

Proof. Fix $\varphi \in C_0^\infty(\mathbb{R}^k)$ with $\|\varphi\|_\infty \leq 1$. Let $f^i = (g_1, \ldots, g_i, f_{i+1}, \ldots, f_k)$, $f^0 = f$, $f^k = g$. Consider the function
\[
\Phi_i(y_1, \ldots, y_k) = \int_{-\infty}^{y_i} \varphi(y_1, \ldots, y_{i-1}, t, y_{i+1}, \ldots, y_k) dt.
\]
Note that for each i we have
\[
\nabla(\Phi_i(f^{i-1})) - \nabla(\Phi_i(f^i)) = \sum_{j=1}^{k} (\partial_{y_j} \Phi_i(f^{i-1}) \nabla f_j^{i-1} - \partial_{y_j} \Phi_i(f^i) \nabla f_j^i),
\]
which can be written as
\[
\sum_{j=1}^{k} \left(\partial_{y_j} \Phi_i(f^{i-1}) - \partial_{y_j} \Phi_i(f^i) \right) \nabla f_j^{i-1} + \partial_{y_i} \Phi_i(f^i)(\nabla f_i^{i-1} - \nabla f_i^i)
\]
\[
= \sum_{j=1}^{k} \left(\partial_{y_j} \Phi_i(f^{i-1}) - \partial_{y_j} \Phi_i(f^i) \right) \nabla f_j^{i-1} + \varphi(f^i)(\nabla f_i - \nabla g_i).
\]

Thus,
\[
\left((\nabla \Phi_i(f^{i-1}) - \nabla \Phi_i(f^i), \nabla f_j^{i-1}) \right)_{m=1}^{k}
\]
\[
= M_{f,1} \left(\partial_{y_j} \Phi_i(f^{i-1}) - \partial_{y_j} \Phi_i(f^i) \right)_{j=1}^{k} + \varphi(f^i)\left(\nabla f_i - \nabla g_i, \nabla f_j^{i-1} \right)_{m=1}^{k}.
\]

Recall that \(\Delta_f \cdot M_f^{-1} = A_f \) (see (4.1)). Hence, denoting the elements of the matrix \(A_j^k \) by \(a_{j,i} \), we obtain
\[
\left(\begin{array}{c}
(\Delta f^{i-1})(\varphi(f^{i-1}) - \varphi(f^i)) = \Delta f^{i-1}(\partial_{y_i} \Phi_i(f^{i-1}) - \partial_{y_i} \Phi_i(f^i)) \\
= \sum_{j=1}^{k} \left(\nabla \Phi_i(f^{i-1}) - \nabla \Phi_i(f^i), \nabla f_j^{i-1} \right) a_{j,i}^{i-1} - \varphi(f^i) \sum_{j=1}^{k} \left(\nabla f_i - \nabla g_i, \nabla f_j^{i-1} \right) a_{j,i}^{i-1}.
\end{array} \right)
\]

Next we observe that
\[
\left(\int [\varphi(f) - \varphi(g)]d\gamma \right)
\]
\[
= \sum_{i=1}^{k} \int \frac{\Delta f^{i-1}(\varphi(f^{i-1}) - \varphi(f^i))}{\Delta_f + \varepsilon} d\gamma + \sum_{i=1}^{k} \int \frac{(\Delta f^{i-1} - \Delta f^{i})\varphi(f^i)}{\Delta_f + \varepsilon} d\gamma
\]
\[
+ \int \frac{(\Delta g - \Delta_f)\varphi(g)}{\Delta_f + \varepsilon} d\gamma + \int \varepsilon(\varphi(f) - \varphi(g))(\Delta_f + \varepsilon)^{-1}d\gamma.
\]

Let us estimate each term separately. Let
\[
\beta = (2k(d-1))^{-1}.
\]

Recall (see (4.4)) that
\[
\int (\Delta_f + \varepsilon)^{-p} d\gamma \leq c(p, d)^p \varepsilon^{-p+\beta} \left(\int \Delta_f d\gamma \right)^{-\beta}.
\]

Using this inequality, we estimate the last term in the right-hand side of (6.3):
\[
\int \varepsilon(\varphi(f) - \varphi(g))(\Delta_f + \varepsilon)^{-1}d\gamma \leq 2c(1, d)\varepsilon^\beta \left(\int \Delta_f d\gamma \right)^{-\beta}.
\]

The second and the third term in (6.3) can be estimated as follows. By Lemma 6.2 we have
\[
|\Delta_g - \Delta_f| \leq \left(\|M_f\|^2_{HS} + \|M_g\|^2_{HS} \right)^{(k-1)/2} \|M_f - M_g\|_{HS}
\]
\[
\leq \sqrt{2} \left(\sum_{i=1}^{k} (|\nabla f_i|^2 + |\nabla g_i|^2) \right)^{k-1/2} \left(\sum_{i=1}^{k} (|\nabla f_i - \nabla g_i|^2) \right)^{1/2},
\]
where we used the estimates \(\|M_f\|_{HS}^2 = \sum_{i,j} (\nabla f_i, \nabla f_j)^2 \leq \left(\sum_i |\nabla f_i|^2 \right)^2\) and

\[
\|M_f - M_g\|_{HS}^2 = \sum_{i,j} \left((\nabla f_i, \nabla f_j) - (\nabla g_i, \nabla g_j) \right)^2 \\
\leq 2 \sum_{i,j} \left[(\nabla f_i, \nabla f_j)^2 + (\nabla f_i, \nabla g_j)^2 \right] \\
\leq 2 \sum_{i,j} \left(|\nabla f_i|^2 |\nabla f_j - \nabla g_j|^2 + |\nabla f_i - \nabla g_i|^2 |\nabla g_j|^2 \right) \\
= 2 \sum_i |\nabla f_i - \nabla g_i|^2 \sum_i (|\nabla f_i|^2 + |\nabla g_i|^2).
\]

Similarly,

\[
|\Delta_{f^{i-1}} - \Delta f^i| \leq 2^k \left(\sum_{i=1}^k (|\nabla f_i|^2 + |\nabla g_i|^2) \right)^{k-1/2} \left(\sum_{i=1}^k |\nabla f_i - \nabla g_i|^2 \right)^{1/2}.
\]

Using these estimates we obtain

\[
\int \frac{(\Delta_{f^{i-1}} - \Delta f^i)\varphi(f)}{\Delta f + \varepsilon} d\gamma \leq \int \frac{|\Delta_{f^{i-1}} - \Delta f^i|}{\Delta f + \varepsilon} d\gamma \\
\leq 2^k \int \left(\sum_{i=1}^k (|\nabla f_i|^2 + |\nabla g_i|^2) \right)^{k-1/2} \left(\sum_{i=1}^k |\nabla f_i - \nabla g_i|^2 \right)^{1/2} (\Delta f + \varepsilon)^{-1} d\gamma \\
\leq C(k, d) \left(\sum_{i=1}^k (\sigma^2_{f_i} + \sigma^2_{g_i}) \right)^{k-1/2} \|f - g\|_{2\varepsilon^{-1}}.
\]

Similarly,

\[
\int \frac{(\Delta_{g} - \Delta f)\varphi(g)}{\Delta f + \varepsilon} d\gamma \leq C(k, d) \left(\sum_{i=1}^k (\sigma^2_{f_i} + \sigma^2_{g_i}) \right)^{k-1/2} \|f - g\|_{2\varepsilon^{-1}}.
\]

Let us now consider the first term in the right-hand side of (6.3). By (6.2) we have

\[
(6.4) \quad \int \frac{\Delta_{f^{i-1}}(\varphi(f^{i-1}) - \varphi(f^i))}{\Delta f + \varepsilon} d\gamma \\
= \int (\Delta f + \varepsilon)^{-1} \sum_{j=1}^k \langle \nabla \Phi_i(f^{i-1}) - \nabla \Phi_i(f^i), \nabla f_j^{i-1} \rangle a_{j,i}^{f_{i-1}} d\gamma \\
- \int \varphi(f^i)(\Delta f + \varepsilon)^{-1} \sum_{j=1}^k \langle \nabla f_i - \nabla g_i, \nabla f_j^{i-1} \rangle a_{j,i}^{f_{i-1}} d\gamma.
\]
The second term in (6.4) can be estimated in the following way:

\[
\int \varphi(f^i)(\Delta_f + \varepsilon)^{-1} \langle \nabla f_i - \nabla g_i, \nabla f^{-1} \rangle a_{j,i}^{j,i} d\gamma
\leq \int (\Delta_f + \varepsilon)^{-1} |\nabla f_i - \nabla g_i| |\nabla f^{-1} i| |a_{j,i}^{j,i}| d\gamma
\leq \varepsilon^{-1}(k-1)^2! \left(\sum_{i=1}^{k} (|\nabla f_i|^2 + |\nabla g_i|^2) \right)^{k-1/2} \left(\sum_{i=1}^{k} |\nabla f_i - \nabla g_i|^2 \right)^{1/2} d\gamma
\leq C(k, d) \varepsilon^{-1} \left(\sum_{i=1}^{k} (\sigma_{f_i}^2 + \sigma_{g_i}^2) \right)^{-1/2} \|f - g\|_2.
\]

Finally, let us consider the first term in (6.4). Fix \(p > 1 \). Integrating by parts we have

\[
\int (\Delta_f + \varepsilon)^{-1} (\nabla \Phi_i(f^{-1}) - \nabla \Phi_i(f^i), \nabla f^{-1} i) a_{j,i}^{j,i} d\gamma = - \int (\Phi_i(f^{-1}) - \Phi_i(f^i))
\times \left(\frac{a_{j,i}^{j,i} L f^{-1}_j}{\Delta_f + \varepsilon} - \frac{a_{j,i}^{j,i} \nabla (\nabla f^{-1} i, \nabla \Delta_f)}{(\Delta_f + \varepsilon)^2} + \frac{\langle \nabla f^{-1} i, \nabla a_{j,i}^{j,i} \rangle}{\Delta_f + \varepsilon} \right) d\gamma
\leq \int |f_i - g_i| \left(\frac{|a_{j,i}^{j,i} L f^{-1}_j|}{\Delta_f + \varepsilon} + \frac{|a_{j,i}^{j,i} \nabla (\nabla f^{-1} i, \nabla \Delta_f)|}{(\Delta_f + \varepsilon)^2} + \frac{|\langle \nabla f^{-1} i, \nabla a_{j,i}^{j,i} \rangle|}{\Delta_f + \varepsilon} \right) d\gamma,
\]

which is estimated by

\[
\varepsilon^{-1} \|f - g\|_2 \left(\|a_{j,i}^{j,i} L f^{-1}_j\|_2 + \|\nabla (\nabla f^{-1} i, \nabla a_{j,i}^{j,i})\|_2 \right)
+ C(p, k, d) \|f - g\|_2 \|a_{j,i}^{j,i} \nabla (\nabla f^{-1} i, \nabla \Delta_f)\|_2 \|\Delta_f + \varepsilon\|_p^{-2}
\leq C(k, d) \varepsilon^{-1} \left(\sum_{i=1}^{k} (\sigma_{f_i}^2 + \sigma_{g_i}^2) \right)^{k-1/2} \|f - g\|_2
+ C'(p, k, d) \|f - g\|_2 \left(\sum_{i=1}^{k} (\sigma_{f_i}^2 + \sigma_{g_i}^2) \right)^{2k-1/2} \varepsilon^{-2+\beta/p} \left(\varepsilon \Delta_f d\gamma \right)^{-\beta/p}.
\]

Now the left-hand side of (6.3) can be estimated by

\[
C_2(p, k, d) \left(\varepsilon^\beta \left(\int \Delta_f d\gamma \right)^{-\beta} + \left(\sum_{i=1}^{k} (\sigma_{f_i}^2 + \sigma_{g_i}^2) \right)^{k-1/2} \|f - g\|_2 \varepsilon^{-1}
+ \|f - g\|_2 \left(\sum_{i=1}^{k} (\sigma_{f_i}^2 + \sigma_{g_i}^2) \right)^{2k-1/2} \varepsilon^{-2+\beta/p} \left(\int \Delta_f d\gamma \right)^{-\beta/p} \right).
\]

If \(\|f - g\|_2 \geq 1 \), the desired estimate (6.1) is trivial. Assume that \(\|f - g\|_2 \leq 1 \). Whenever \(\varepsilon \leq 1 \) we have \(\varepsilon^{-1} \leq \varepsilon^{-2+\beta/p} \). Let \(\tau = (p - 1)/p \). Setting \(\varepsilon = \|f - g\|^\alpha \) with \(\alpha = (2 + \beta \tau)^{-1} \), we have

\[
\|\gamma \circ f^{-1} - \gamma \circ g^{-1}\|_{TV} \leq C_2(p, k, d) R(f, g) \|f - g\|_{\theta}, \quad \theta = \frac{1}{4k(d-1) + \tau},
\]
where
\[R(f, g) = \left(\int \Delta_f d\gamma \right)^{-\beta} + \left(\sum_{i=1}^{k} \left(\sigma_{f_i}^2 + \sigma_{g_i}^2 \right) \right)^{k-1/2} \]
\[+ \left(\sum_{i=1}^{k} \left(\sigma_{f_i}^2 + \sigma_{g_i}^2 \right) \right)^{2k-1/2} \left(\int \Delta_f d\gamma \right)^{-\beta/p}. \]

Since \(|\sigma_{f_i} - \sigma_{g_i}| \leq 2\|f - g\|_2 \leq 2\), the desired estimate is proved. \qed

Remark 6.4. Theorem 4.2 yields an analog of estimate (6.1) with the power of the \(L^2\)-norm equal to \(1/(4k(d-1) + 1 + \tau)\). Hence Theorem 6.3 provides a better rate of convergence.

References

1. R.A. Adams, J.J. Fournier, Sobolev spaces, Academic Press, New York, 2003.
2. B.V. Agafontsev, V.I. Bogachev, *Asymptotic properties of polynomials in Gaussian random variables*, Dokl. Ross. Akad. Nauk 429 (2009), no. 1, 151–154 (Russian). English transl.: Dokl. Math. 80 (2009), no. 3, 806–809.
3. M.A. Arcones, *The class of Gaussian chaos of order two is closed by taking limits in distribution*, Advances in stochastic inequalities. AMS special session on Stochastic inequalities and their applications, Georgia Institute of Technology, Atlanta, Georgia, USA, October 17–19, 1997, ed. Th.P. Hill et al., Contemp. Math. 234, Amer. Math. Soc., Providence, Rhode Island, 1999, pp. 13–19.
4. L.M. Arutyunyan, E.D. Kosov, *Estimates for integral norms of polynomials on spaces with convex measures*, Mat. Sb. 206 (2015), no. 8, 3–22 (Russian). English transl.: Sbornik: Mathematics 206 (2015), no. 8, 1030–1048.
5. O.V. Besov, V.P. Il’in, S.M. Nikol’skii, Integral representations of functions and imbedding theorems, V. I, II, Winston & Sons, Washington; Halsted Press, New York – Toronto – London, 1978, 1979.
6. Bobkov S.G., Nazarov F.L., *Sharp dilation-type inequalities with a fixed parameter of convexity*, J. Math. Sci. (New York) 152 (2008), no. 6, 826–839.
7. V.I. Bogachev, Gaussian measures, Amer. Math. Soc., Providence, Rhode Island, 1998.
8. V.I. Bogachev, Differentiable measures and the Malliavin calculus, Amer. Math. Soc., Providence, Rhode Island, 2010.
9. V.I. Bogachev, *Gaussian measures on infinite-dimensional spaces*, Real and Stochastic Analysis. Current trends, ed. M.M. Rao, World Sci., Singapore, 2014, pp. 1–83.
10. V.I. Bogachev, A.V. Shaposhnikov, *Lower bounds for the Kantorovich distance*, Dokl. Ross. Akad. Nauk 460 (2015), no. 6, 631–633 (Russian). English transl.: Doklady Mathematics 91 (2015), no. 1, 91–93.
11. V.I. Bogachev, F.-Y. Wang, A.V. Shaposhnikov, *Estimates of the Kantorovich norm on manifolds*, Dokl. Ross. Akad. Nauk. 463 (2015), no. 6, 633–638 (Russian). English transl.: Doklady Mathematics, 92 (2015), no. 1, 494–499.
12. V.I. Bogachev, G.I. Zelenov, *On convergence in variation of weakly convergent multidimensional distributions*, Dokl. Ross. Akad. Nauk. 461 (2015), no. 1, 14–17 (Russian). English transl.: Doklady Mathematics, 91 (2015), no. 2, 138–141.
13. A. Carbery, J. Wright, *Distributional and \(L^q\) norm inequalities for polynomials over convex bodies in \(\mathbb{R}^n\)*, Math. Research Lett. 8 (2001), no. 3, 233–248.
14. Y.A. Davydov, G.V. Martynova, *Limit behavior of multiple stochastic integral*, Statistics and Control of Random Processes, Nauka, Moscow, 1987, pp. 55–57 (Russian).
15. R. Fortet, E. Mourier, *Convergence de la répartition empirique vers la répartition théorique*, Ann. Sci. École Norm. Sup. 70 (1953), no. 3, 267–285.
16. G.H. Hardy, E. Landau, J.E. Littlewood, *Some inequalities satisfied by the integrals or derivatives of real or analytic functions*, Math. Z. 39 (1935), no. 1, 677–695.
17. L.V. Kantorovitch, *On the translocation of masses*, Dokl. Akad. Nauk SSSR 37 (1942), no. 7–8, 227–229 (Russian). English transl.: C. R. (Doklady) Acad. Sci. USSR 37 (1942), no. 7–8, 199–201.
18. L.V. Kantorovich, G.Sh. Rubinstein, *On a space of completely additive functions*, Vestnik Leningrad. Univ. 7 (1958), no. 2, 52–59 (Russian).
19. R.V. Kohn, F. Otto, *Upper bounds on coarsening rates*, Comm. Math. Phys. 229 (2002), no. 3, 375–395.
20. S. Kusuoka, *On the absolute continuity of the law of a system of multiple Wiener integral*, J. Fac. Sci. Univ. Tokyo, sec. 1A 30 (1983), no. 1, 191–198.
21. F. Nazarov, M. Sodin, A. Volberg, *The geometric Kannan–Lovasz–Simonovits lemma, dimension-free estimates for the distribution of the values of polynomials, and the distribution of the zeros of random analytic functions*, St. Petersburg Math. J. 14 (2003), no. 2, 351–366.

22. S.M. Nikol’skiǐ, *Approximation of functions of several variables and imbedding theorems*, Springer-Verlag, New York – Heidelberg, 1975.

23. I. Nourdin, D. Nualart, G. Poly, *Absolute continuity and convergence of densities for random vectors on Wiener chaos*, Electron. J. Probab 18 (2013), no. 22, 1–19.

24. I. Nourdin, G. Poly, *Convergence in total variation on Wiener chaos*, Stochastic Process. Appl. 123 (2013), no. 2, 651–674.

25. D. Nualart, *The Malliavin calculus and related topics*, 2nd ed., Springer-Verlag, Berlin, 2006.

26. C. Seis, *Maximal mixing by incompressible fluid flows*, Nonlinearity 26 (2013), no. 12, 3279–3289.

27. B.A. Sevastyanov, *A class of limit distributions for quadratic forms of normal stochastic variables*, Teor. Veroyatn. Primen. 6 (1961), 368–372 (Russian). English transl.: Theory Probab. Appl. 6 (1961), 337–340.

28. I. Shigekawa, *Stochastic analysis*, Amer. Math. Soc., Providence, Rhode Island, 2004.

29. E. Stein, *Singular integrals and differentiability properties of functions*, Princeton University Press, Princeton, 1970.

National Research University Higher School of Economics, Moscow, Russia
E-mail address: vibogach@mail.ru

Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
E-mail address: ked_2006@mail.ru

Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
E-mail address: zelenovyur@gmail.com