High-Performance a-InGaZnO Thin-Film Transistors with Extremely Low Thermal Budget by Using a Hydrogen-Rich Al₂O₃ Dielectric

Yan Shao, Xiaohan Wu, Mei-Na Zhang, Wen-Jun Liu and Shi-Jin Ding *

Abstract

Electrical characteristics of amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) are compared by using O₂ plasma-enhanced atomic layer deposition Al₂O₃ dielectrics at different temperatures. High-performance a-IGZO TFTs are demonstrated successfully with an Al₂O₃ dielectric deposited at room temperature, which exhibit a high field-effect mobility of 19.5 cm² V⁻¹ s⁻¹, a small subthreshold swing of 160 mV/dec, a low threshold voltage of 0.1 V, a large on/off current ratio of 4.5 × 10⁸, and superior negative and positive gate bias stabilities. This is attributed to the hydrogen-rich Al₂O₃ dielectric deposited at room temperature in comparison with higher deposition temperatures, thus efficiently passivating the interfacial states of a-IGZO/Al₂O₃ and the oxygen vacancies and improving conductivity of the a-IGZO channel by generating additional electrons because of enhanced hydrogen doping during sputtering of IGZO. Such an extremely low thermal budget for high-performance a-IGZO TFTs is very attractive for flexible electronic application.

Keywords: Amorphous In-Ga-Zn-O, Thin-film transistor, Room temperature, Atomic layer deposition, Hydrogen-rich Al₂O₃

Background

Amorphous In-Ga-Zn-O (a-IGZO)-based thin film transistors (TFTs) have attracted much attention in the past decade due to their high mobility, good uniformity, high visible light transparency, and low process temperature [1–3]. These merits make it a promising candidate for the application of next-generation electronics, such as transparent display, flexible devices, or wearable electronics. In particular, for the applications of flexible electronics, TFTs are generally fabricated on low thermally stable polymer substrates. Thus, it is necessary to reduce the thermal budget of a-IGZO TFT fabrication. For this purpose, many researchers have focus on a-IGZO TFTs with room temperature fabricated gate insulators, such as sputtering [4–6], solution process [7–9], e-beam evaporation [10], and anodization [11]. However, these dielectric films often suffer from high density of traps and strong dielectric/a-IGZO interfacial scattering, resulting in limited field-effect mobility, a large subthreshold swing, and a small on/off current ratio [4–11].

On the other hand, atomic layer deposition (ALD) is a promising technique, which can provide high-quality films, precise control of film thickness, good uniformity over a large area, and low process temperature [12–14]. Zheng et al. [15] reported that the a-IGZO TFT with ALD SiO₂ dielectric exhibited excellent electrical performance without the need of post-annealing. However, a high substrate temperature of 250 °C is required for the ALD of SiO₂ films [15], which is higher than glass transition temperatures of most flexible plastic substrates. Interestingly, it is reported that ALD of Al₂O₃ films can be realized even at room temperature (RT) [16, 17]; meanwhile, the Al₂O₃ film deposited at RT contains a large amount of hydrogen (H) impurities [17]. However, to the best of our knowledge, the abovementioned H-rich Al₂O₃ film has never been utilized as a gate insulator in a-IGZO TFT. Therefore, it is desirable to explore the a-IGZO TFT with a RT ALD Al₂O₃ gate insulator.
In this letter, high-performance a-IGZO TFT was successfully fabricated with a room temperature deposited Al₂O₃ gate dielectric. By comparing the characteristics of the a-IGZO TFTs with various Al₂O₃ gate insulators deposited at different temperatures, the underlying mechanism was addressed.

Methods

Highly doped p-type silicon wafers (< 0.0015 Ω cm) were cleaned by standard RCA processes and served as gate electrodes. Forty-nanometer Al₂O₃ films were deposited in a commercial ALD system (Picsun Ltd.) using trimethylaluminum (TMA) and O₂ plasma as a precursor and reactant, respectively. One growth cycle consisted of 0.1 s TMA pulse, 10 s N₂ purge, 8 s O₂ plasma pulse, and 10 s N₂ purge. The TMA was maintained at 18 °C for a stable vapor pressure and dose, and the O₂ gas flow rate was fixed at 150 sccm with a plasma generator power of 2500 W. Subsequently, 40-nm a-IGZO films were deposited by RF sputtering using an IGZO ceramic target with an atomic ratio of In:Ga:Zn:O = 1:1:1:4. During sputtering, working pressure and Ar and O₂ gas flow rates were fixed at 0.88 Pa and 48 and 2 sccm, respectively. The active region was formed by photolithography and wet etching. After that, source/drain electrodes of 30-nm Ti/70-nm Au bilayers were prepared by electron beam evaporation and a lift-off method. No further annealing processes were applied on these devices.

The electrical properties of a-IGZO TFTs were characterized using a semiconductor device analyzer (Agilent Tech B1500A) in a dark box at room temperature. The device stabilities were measured under positive and negative gate bias stresses, respectively. The depth profiles of elements and chemical composition were measured by secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS), respectively.

Results and Discussion

Figure 1a compares the dielectric constants of the Al₂O₃ films deposited at different temperatures as a function of frequency (i.e., from 10 Hz to 10⁵ Hz). As the deposition temperature increases from 100 to 150 °C, the film shows a gradual decrease in dielectric constant. A similar trend was also reported in previous literatures for the deposition temperature changing from RT to 150 °C [18, 19]. This is because the RT Al₂O₃ film contains the highest concentration of hydrogen (H) in the form of OH groups. Thus, the corresponding dielectric constant is enhanced due to a rotation of more OH groups in an electric field [20]. In terms of the measurement frequency of 10 Hz, the extracted dielectric constants for the RT, 100 °C, and 150 °C Al₂O₃ films are equal to 8.6, 7.9, and 7.4, respectively, which are used for the extraction of the field-effect mobility (μFE) and interfacial trap density (Dit) of the

![Fig. 1 Electrical properties of Al₂O₃ films deposited at different temperatures. a Dielectric constant versus frequency. b Leakage current density versus electric field](image-url)
fabricated TFT device. Figure 1b shows the leakage current characteristics of different Al$_2$O$_3$ films. It is found that the RT Al$_2$O$_3$ film exhibits a small leakage current density of 2.38×10^{-8} A/cm2 at 2 MV/cm and a breakdown electric field of 5.3 MV/cm. In addition, the breakdown electric field increases gradually with increasing deposition temperature from 100 to 150 °C.

Figure 2 shows the typical transfer curves of the a-IGZO TFTs with different Al$_2$O$_3$ gate insulators. The RT Al$_2$O$_3$ TFT exhibits the best performance, such as high μ_{FE} of 19.5 cm2 V$^{-1}$ s$^{-1}$, a small subthreshold swing (SS) of 160 mV/dec, a small threshold voltage (V_T) of 0.1 V, and a large on/off current ratio ($I_{on/off}$) of 4.5×10^8. However, the a-IGZO TFTs with Al$_2$O$_3$ gate insulators deposited at both 100 and 150 °C show a much

![Figure 2 Transfer curves of the a-IGZO TFTs with ALD Al$_2$O$_3$ gate insulators deposited at different temperatures together with the extracted device parameters](image)

![Figure 3 VT shift as a function of bias stress time under NGBS = -10 V and PGBS = 10 V for the TFTs with Al$_2$O$_3$ insulators deposited at different temperatures](image)
poorer performance, i.e., reduced on-currents (10^{-7} and 3×10^{-9} A) and degraded SS. The D_{it} at the interface of Al$_2$O$_3$/a-IGZO can be calculated based on the following equation [21]:

$$D_{it} = \left(\frac{SS \times \frac{1}{kT/q} - 1}{q^2} \right) \frac{C_{ox}}{C_{ox}}$$

where e, k, T, and q represent the Euler’s number, Boltzmann constant, absolute temperature, and unit electron charge, respectively. C_{ox} is the gate dielectric capacitance per unit area. For the RT Al$_2$O$_3$ TFT, the D_{it} is equal to $1.1 \times 10^{12} \text{eV}^{-1} \text{cm}^{-2}$, which is over one or two times lower than those for the TFTs with the Al$_2$O$_3$ gate insulators deposited at 100 and 150 °C.

The gate bias stabilities of the devices were further measured by applying negative and positive voltages. Figure 3 shows the V_T shift as a function of bias stress time for different TFTs. In terms of negative gate bias stress (NGBS), the RT Al$_2$O$_3$ TFT exhibits a negligible V_T shift of -0.04 V after being stressed at -10 V for 40 min. However, higher-temperature Al$_2$O$_3$ gate insulators generate larger V_T shifts especially for 150 °C. Such a high NGBS stability for RT Al$_2$O$_3$ should be attributed to a low concentration of oxygen vacancies (V_O) in the a-IGZO channel [22]. With respect to positive gate bias stress (PGBS), the RT Al$_2$O$_3$ TFT shows a V_T shift of 1.47 V, which is much smaller than those (8.8 V and 12.1 V) for the 100 and 150 °C Al$_2$O$_3$ TFTs. Moreover, the influence of storage time on the device performance was investigated, as shown in Fig. 4. Although no passivation layer is covered on the back channel, the device still maintains an excellent performance after being kept in a cabinet (20% RH) for 60 days at 30 °C; meanwhile, no significant variations in μ_{FE} and SS are observed. This indicates the RT Al$_2$O$_3$ TFTs without any passivation layer have good storage-time-dependent stability in the current ambience.

Table 1 compares the performance of our RT Al$_2$O$_3$ TFT with other reports. It is found that our device exhibits a zero-near V_T, smaller SS, and larger $I_{on/off}$ in the case of comparable mobility [4, 23]. Although using a Ta$_2$O$_5$ gate insulator can obtain higher mobility of $6.15 \text{cm}^2 \text{V}^{-1} \text{s}^{-1}$, both SS and $I_{on/off}$ deteriorate remarkably [10]. In a word, our RT Al$_2$O$_3$ TFT possesses a superior comprehensive performance in comparison with the 100 and 150 °C Al$_2$O$_3$ TFTs. Since all processing steps are identical except the deposition step of Al$_2$O$_3$, such significant differences in electrical performance should originate from the Al$_2$O$_3$ gate insulators.

To understand the underlying mechanism, the depth profiles of the elements in the a-IGZO/Al$_2$O$_3$ stacked films were analyzed by SMIS. Figure 5a shows the dependence of H concentration on depth in the stacks of IGZO/Al$_2$O$_3$, where the Al$_2$O$_3$ films were deposited at RT and 150 °C, respectively. For comparison, an IGZO film deposited on a bare Si substrate was also analyzed. The IGZO film deposited on bare Si contains an H concentration of $3 \times 10^{21} \text{cm}^{-3}$, which originates from the residual gas in sputtering system and absorbed H$_2$/H$_2$O.
molecules on the Si surface. Both IGZO films deposited on the Al₂O₃ films contain higher H concentrations than that on the bare Si substrate. This indicates that the increased H concentrations should come from the release of H impurities in the underlying Al₂O₃ films during sputtering of IGZO. Moreover, it is observed that the H concentration in the IGZO film atop the RT Al₂O₃ film is higher than that on the 150 °C one in the interface-near region, which can provide more efficient passivation of interfacial states. This thus improves the SS and PGBS stability of the RT Al₂O₃ TFT by reducing interfacial carrier trapping. Additionally, the O 1s XPS spectra of the a-IGZO films near the interface of IGZO/Al₂O₃ were analyzed, as shown in Fig. 5b. The fitted peaks are located at 530.2 ± 0.1 eV, 530.9 ± 0.1 eV, and 531.6 ± 0.1 eV, corresponding to O²⁻ ions bound with metal (O1), VO (O2), and OH groups (O3), respectively [13, 24]. The percentage of O2 is 26.3% in the a-IGZO layer atop the bare Si; however, it decreases to 12.3% and 6.8% for the 150 °C and RT Al₂O₃ underlying films, respectively. This indicates that more VO in the IGZO channel can be effectively passivated by additional H impurities originating from the underlying Al₂O₃ films, especially for the RT Al₂O₃ film with a higher H concentration. It is reported that when V₀ and H are present in the a-IGZO film, they can combine to form a stable state in which H is trapped at V₀ (V₀H), and the resulting V₀H is a shallow-level donor [25–27]. Thus, enhanced H doping into the IGZO channel atop the RT Al₂O₃ improves the channel conductivity by providing additional electrons. Furthermore, the small Vₜ shift under the NGBS for the RT Al₂O₃ TFT can also be attributed to the effective H passivation of V₀ [28]. As reported in literatures, the instability of TFT under NGBS originates from ionization of neutral V₀ (V₀ → V₀²⁺+2e⁻) [17, 29]. Moreover, the O3 percentage of the a-IGZO film on the RT Al₂O₃ is 6.9%, which is higher than those on the 150 °C Al₂O₃ (5.3%) and the bare Si (4.6%), respectively. The OH group could originate from the reaction O²⁻ + H → OH⁻ + e⁻ during deposition of IGZO films [30]. Thus, the enhanced H doping into the IGZO channel atop the RT Al₂O₃ film generates more OH groups and also contributes to improve the channel conductivity.

Conclusions

A high-performance a-IGZO TFT was fabricated successfully under the extremely low thermal budget of RT using an H-rich Al₂O₃ gate dielectric prepared by O₂ plasma-enhanced ALD. This is ascribed to the fact that the Al₂O₃ dielectric deposited at RT contains more hydrogen impurities than those deposited at higher temperatures. Thus, the released H impurities during sputtering of IGZO generated more electrons, and efficiently passivated the interfacial states of a-IGZO/Al₂O₃ and the V₀ in the a-IGZO channel.

Abbreviations

a-IGZO: Amorphous In-Ga-Zn-O; ALD: Atomic layer deposition; Dᵢ: Interfacial trap density; H: Hydrogen; Iᵣ∕ᵢₒ: On/off current ratio; NGBS: Negative gate bias stress; PGBS: Positive gate bias stress; RT: Room temperature; SIMS: Secondary ion mass spectrometry; SS: Subthreshold swing; TFT: Thin-film transistor; V₀: Oxygen vacancy; V₀H: Hydrogen trapped at oxygen vacancy; Vₜ: Threshold voltage; XPS: X-ray photoelectron spectroscopy; μFE: Field-effect mobility

Acknowledgements

There is no acknowledgement.

Funding

This work was supported by the National Natural Science Foundation of China (61874029, 61474027, 51603151), and the National Key Technologies R&D Program of China (2015ZX02102-003).

Availability of Data and Materials

All datasets are presented in the main paper and freely available to any scientist wishing to use them for non-commercial purposes, without breaching participant confidentiality.
Authors’ Contributions
YS and MNZ carried out the main part of the fabrication and analytical works. YS, XW, and SJD participated in the sequence alignment and drafted the manuscript. SJD and WJL conceived the study and participated in its design. All authors read and approved the final manuscript.

Competing Interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 December 2018 Accepted: 26 March 2019
Published online: 02 April 2019

References
1. Nomura K, Ohta H, Takagi A et al. (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492
2. Park JS, Maeng WJ, Kim HS et al. (2011) Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520:1679–1692
3. Zan HW, Yeh CC, Meng HF et al. (2012) Achieving high field-effect mobility in amorphous indium–gallium–zinc oxide by capping a strong reduction layer. Adv Mater 24:3509–3514
4. Zheng Z, Zeng Y, Yao R et al. (2017) All-sputtered, flexible, bottom-gate IGZO/Al2O3 bilayer thin film transistors on PEN fabricated by a fully room temperature process. J Mater Chem C 5:7043–7050
5. Huang XD, Ma Y, Song JQ, Lai PT (2016) High-performance amorphous InGaZnO thin-film transistor with Zr/AlOx gate dielectric fabricated at room temperature. J Disp Technol 12:152–157
6. Nag M, Bhoolokam A, Steudel S et al. (2015) Impact of the low temperature gate dielectrics on device performance and bias-stress stabilities of a-IGZO thin-film transistors. ECS J Solid State Sci 5:99–N102
7. Hsu CC, Chu MW, Sun JK, Chou HT (2016) Low temperature fabrication of an amorphous InGaZnO thin-film transistor with a sol-gel SiO2 gate dielectric. J Disp Technol 12:1043–1050
8. Seul HJ, Kim HG, Park MY, Jeong JK (2016) A solution-processed silicon oxide gate dielectric prepared at a low temperature via ultraviolet irradiation for metal oxide transistors. J Mater Chem C 4:10486–10493
9. Jo JW, Kim YH, Park J et al. (2017) Ultraviolet-temperature solution-processed aluminum oxide dielectrics via local structure control of nanoclusters. ACS Appl Mater Interfaces 9:35114–35124
10. Chiu CJ, Chang SP, Chang SI (2010) High-performance a-IGZO thin-film transistor using Ta2O3 gate dielectric. IEEE Electron Device Lett 31:1245–1247
11. Shao Y, Xiao X, He X et al. (2015) Low voltage a-InGaZnO thin-film transistors with anodized thin HfO2 gate dielectric. IEEE Electron Device Lett 36:573–575
12. Ok KC, Park SH, Hwang CS et al. (2014) The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl Phys Lett 104:063508
13. Sheng J, Han J, Choi W, Park J, Park JS (2017) Performance and stability enhancement of in–Sn–Zn–O TFTs using SiO2 gate dielectrics grown by low temperature atomic layer deposition. ACS Appl Mater Interfaces 9:42928–42934
14. Levy DH, Nelson SF (2011) Thin-film electronics by atomic layer deposition. J Vac Sci Technol A 30:0118501
15. Zheng LL, Ma Q, Wang YH et al. (2016) High-performance unannealed a-InGaZnO TFT with an atomic-layer-deposited SiO2 insulator. IEEE Electron Device Lett 37:743–746
16. Groner MD, Fabreguette HF, Elam JW, George SM (2003) Low-temperature Al2O3 atomic layer deposition. Chem Mater 16:639–645
17. Potts SE, Keunig W, Langeries E et al. (2010) Low temperature plasma-enhanced atomic layer deposition of metal oxide thin films. J Electrochem Soc 157:F66–F74
18. Kim SK, Lee SW, Hwang CS et al. (2005) Low temperature (<100°C) deposition of aluminum oxide thin films by ALD with O3 as oxidant. J Electrochem Soc 153:F69–F76
19. Niskanen A, Arstila K, Ritala M, Leskelä M (2005) Low-temperature deposition of aluminum oxide by radical enhanced atomic layer deposition. J Electrochem Soc 152:F90–F93
20. Pethrick RA, Hayward D, Jeffry K, Affosssman S, Wilford P (1996) Investigation of the hydration and dehydration of aluminium oxide-hydroxide using high frequency dielectric measurements between 300 kHz–3 GHz. J Mater Sci 31:2623–2629
21. Schroder DK (2005) Semiconductor material and device characterization, 3rd edn. Wiley, Hoboken
22. Moon YK, Lee S, Kim DH et al. (2009) Application of DC magnetron sputtering to deposition of InGaZnO films for thin film transistor devices. Jpn J Appl Phys 48:031301
23. Ning H, Zeng Y, Kuang Y et al. (2017) Room-temperature fabrication of high-performance amorphous In–Ga–Zn–O/Al2O3 thin-film transistors on Ultrasmooth and clear nanopaper. ACS Appl Mater Interfaces 9:27792–27800
24. Tsao SW, Chang TC, Huang SY et al. (2010) Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors. Solid State Electron 54:1497–1499
25. Nakashima M, Oota M, Ishihara M et al. (2014) Origin of major donor states in In-Ga-Zn oxide. J Appl Phys 116:213703
26. Xu L, Chen Q, Liao L et al. (2016) Rational hydrogenation for enhanced mobility and high reliability on ZnO-based thin film transistors: from simulation to experiment. ACS Appl Mater Interfaces 8:5408–5415
27. Chen C, Chang KC, Chagavar E, Kanikji J (2011) Crystalline In–Ga–Zn–O density of states and energy band structure calculation using density function theory. Jpn J Appl Phys 50:991102
28. Chen C, Yang BR, Li G et al. (2019) Analysis of ultrahigh apparent mobility in oxide field-effect transistors. Adv Sci 1:1801189
29. Kim Y, Kim S, Kim W et al. (2012) Amorphous InGaZnO thin film transistors—PART II: modeling and simulation of negative bias illumination stress-induced instability. IEEE Trans Electron Devices 59:2699–2706
30. Bang J, Matsuishi S, Hosono H (2017) Hydrogen anion and subgap states in amorphous In–Ga–Zn–O thin films for TFT applications. Appl Phys Lett 110:232105
31. Xiao X, Zhang L, Shao Y et al. (2017) Room-temperature-processed flexible amorphous InGaZnO thin film transistor. ACS Appl Mater Interfaces 10:57850–57857
32. Lim W, Jang JH, Kim SH et al. (2008) High performance indium gallium zinc oxide thin film transistors fabricated on polyethylene terephthalate substrates. Appl Phys Lett 93:082102

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com