Metal-induced bacterial interactions promote diversity in river-sediment microbiomes

CURRENT STATUS: POSTED

Valentine Cyriaque
Universite de Mons
valentine.cyriaque@umons.ac.be
Corresponding Author
ORCiD: https://orcid.org/0000-0002-2254-2690

Augustin Géron
Universite de Mons

Gabriel Billon
Universite de Lille

Joseph Nesme
Kobenhavns Universitet

David C. Gillan
Universite de Mons

Søren J. Sørensen
Kobenhavns Universitet

Ruddy Wattiez
Universite de Mons

DOI:
10.21203/rs.2.18209/v1

SUBJECT AREAS
General Microbiology Marine and Freshwater Ecology

KEYWORDS
river sediment microbiome, community assembly, metal, diversity, facilitator bacteria
Abstract

Background Anthropogenic metal contamination results in long-term environmental selective pressure with unclear impacts on bacterial communities, key players in ecosystem functioning. Since metal contamination poses serious toxicity and bioaccumulation issues, assessing their impact on environmental microbiomes is important to respond to current environmental and health issues. Despite elevated metal concentrations, river sedimentary microbiome near the MetalEurop foundry (France) show unexpected higher diversity compared to upstream control site. In this work, a follow-up of the microbial community assembly during a metal contamination event was performed in microcosms with periodic renewal of the supernatant river water.

Results Sediments of the control site were gradually exposed to a mixture of metals (Cd, Cu, Pb and Zn), in order to reach similar concentrations to MetalEurop sediments. Illumina sequencing analysis of 16S rRNA gene amplicons was performed. Metal resistance genes czc A and pbr A, as well as IncP plasmid content were assessed by quantitative PCR. The outcomes of this study support previous in-situ observations showing that metals act as community assembly managers, increasing diversity.

Conclusion This work revealed progressive adaptation of the sediment microbiome through the selection of different metal-resistance mechanisms and cross-species interactions involving public good providing bacteria co-occurring with the rest of the community.

Background

Bacteria are key players in ecosystems as they are involved in all biogeochemical cycles [1]. In river ecosystems, bacteria are generally very active and intensively colonize muddy sediments [2, 3]. The river microbial network is established as a directional linear branched structure shaped by the riverine flow that accelerates the dispersal of microorganisms from upstream [4], enriching the downstream sediments [4–8]. The branched structure of the river ecosystem brings bacteria from surrounding lands, including urban and industrial areas, wastewater treatment plants (WWTPs) and agricultural sources that also supply soluble components [7]. As metals react with particles (oxides, clays, organic matter and sulfides) through adsorption and (co)precipitation, sediments are an efficient sink for inorganic pollutants such as metals [7, 9, 10].
The use of metals in anthropogenic activities increased their dissemination in the environment [11, 12], including in river ecosystems [13]. While some metals are essential nutrients, all have harmful toxic effects at high concentrations. Among prokaryotes, the most widespread metal resistance systems found in *in-situ* bacterial communities are in the periplasm or anchored in the cytoplasmic membrane [14], and are largely represented by efflux pumps. In addition to the direct effects of metal contamination on biological systems, metal-induced stresses co-select for antibiotic resistance mechanisms, for example by co-selection of mechanisms involved in efflux systems [15–18].

Furthermore, public good providing bacteria were shown to provide interspecific benefits in a complex community [19]. These bacteria, also called *facilitators*, detoxify sediments (e.g. via metal precipitation and sequestration) and provide safe micro-niches for metal-sensitive bacteria (e.g. biofilm formation) [20]. Metal contamination was found to maintain [1, 21], decrease [22] or increase microbiome richness and evenness [7]. These contrasting observations might be linked to both the site properties (e.g., initial composition of the microbiome, the nature of contaminants, exposure times or local geo-physicochemical parameters).

The Deûle River (Northern France) flows next to the former foundry MetalEurop where sediments are up to 30-fold more contaminated with metals than an upstream control site (the Sensée canal, Félin) [1]. Interestingly, MetalEurop sediments exhibited a highly diverse microbiome compared to the control site [1, 7]. Jacquiod and colleagues suggested that metals may play a key role in the assembly of *in-situ* microbial communities through the coalescence (*i.e.* the gathering of microbiomes from different ecosystems [23]) of indigenous bacteria and bacteria from different upstream environmental sources (*e.g.* WWTPs or agricultural sources). Authors suggested that metals increased diversity by (i) preventing the development of metal-sensitive opportunists and (ii) selecting metal-resistant bacteria providing public-goods for the rest of the community. In addition, Horizontal Gene Transfer (HGT) has been suggested to be involved in metal-resistance gene dispersal in the community [7]. If plasmids present in the environment, especially IncP plasmids, have been shown to carry metal resistance genes [24, 25], the impact of metals on their persistence and dispersion in the environment is not clear.
In the present study, we incubated control sediments in microcosm for more than 6 months, some of the microcosms being exposed to metals that gradually reached those found in nearby contaminated site MetalEurop: Cd (~ 40 mg/kg), Cu (~100 mg/kg), Pb (~900 mg/kg) and Zn (~3000 mg/kg)[1, 7].

The overlaying water was renewed periodically with fresh river water to induce community coalescence phenomenon such as observed at natural conditions [6, 7]. We performed a follow-up of the taxonomic and functional evolution of river sedimentary microbiomes from the Sensée canal (Férin, France) in the presence of metal concentrations. The community assemblage in sediment was monitored over time using 16S rRNA gene amplicon sequencing and quantitative PCR to follow the metal resistance genes czcA and pbrA, encoding metal efflux pumps, but also, the evolution of the IncP plasmid family.

Results

The α-diversity of river-like metal-impacted microcosms remains high over time.

Species richness and Shannon’s diversity index decreased slowly during the 6.5 months of incubation (Figure 1). Both indices were significantly higher in the control microcosms than in the metal-treated microcosms after 15 days of incubation. Richness fluctuated at the same level in all microcosms, while after 3.5 months, Shannon index was significantly higher in the metal-treated microcosms than in the controls (Figure 1).

Community succession in control and metal-impacted microcosms

PERMANOVA revealed significant changes in β-diversity over time (Table S3). Time, metals and the interaction of both significantly affected the sediment microbial structure. Phylogenetic indices changed over time in both control and metal-treated microcosms: (i) At the start of the experiment, NRI index of the metal-treated microcosms increased and then fluctuated around 0. In control microcosms NRI index immediately decreased and reached a value of ~2.20 after 4.5 months but came back to initial values after 6.5 months (Figure 2A); (ii) β-NRI fluctuated around 0 in the metal-treated microcosms and got close to 2 in control microcosms before coming back to initial values.
(Figure 2B); (iii) NTI was high (>2) and relatively stable over time in both conditions (Figure 2C) and; (iv) β-NTI index started at –1 at the beginning of the experiment and progressively increased to over 0 after 3.5 months (Figure 2D).

Before the first 3.5 months, there were no significant differences in phyla abundance between control and metal-treated microcosms (Table S4). From 3.5 months, significant differences were observed for several phyla, including α-Proteobacteria, β-Proteobacteria, Cyanobacteria and δ-Proteobacteria, Firmicutes, Euryarchaeota, Chloroflexi or Saccharibacteria. In the control microcosms, Cyanobacteria, Euryarchaeota and Saccharibacteria were found to be enriched.

A total of 600 OTUs responded significantly to metal stress ($p < 0.05$) and were classified into 5 TRGs (Figure S1) depending on their abundance in control and metal-treated microcosms over time. TRGs were validated with Monte Carlo simulation (Figure S2). The TRG “A” contained OTUs that were abundant in the control and rare in the metal-treated microcosms (Figures S3 & 3). The four TRGs “B” (Groups B1–B4) contained OTUs that were more abundant in the metal-treated microcosms and rare in the controls. Group B1 contained OTUs showing an increased proportion just after the metal addition (i.e., at 0.5 and 1.5 months; Figures S3 & 3). The OTUs in Groups B2 and B3 showed high proportions successively in the middle of the incubation period, and the OTUs in Group B4 showed high proportions at the end of the experiment (Figures S3 and 3).

At the order level, a peak of methanogenic archaea was observed after 2.5 months in the control microcosms (Methanosarcinales) and in smaller proportion, after 4.5 months (Methanomicrobia and Methanomassillicoccus), in the metal-treated microcosms. Bacteria related to Candidatus Saccharibacteria clearly proliferated in the control microcosms but were almost absent in the metal-treated microcosms (Figure 3). Firmicutes were found in all B groups and were mainly represented by Clostridiales (B1 (Clostridium and Desulfosporinus), B2, B4 (Ruminococcaceae)), Negativicutes (B2 and B4; Veillonellaceae) and Severomanales (B3, B4). Within α-Proteobacteria, Rhodospirillales (Roseomonas) was detected in group B1, Sphingomonadales, Rhizobiales and Rhodobacterales appeared in the group B2 and Caulobacterales (Brevundimonas) arrived lately in group B4. Among β-proteobacteria, Burkohideriales (Aquabacterium, Simplicispira), Rhodocyclales (Dechloromonas,
Zoogloea) and Methylphilales were observed in group B1 and Rhodocycales in the group B3. Legionellales (Legionella) from γ-proteobacteria was found in group B1. Sulphate Reducing Bacteria (SRB) from δ-Proteobacteria (Desulfobulbus, Desulfovibrio, Geobacter) were detected in group B3 and Anaerolineales (Chloroflexi, Leptolinea, Longilinea, Anaerolinea) were found in groups B3 and B4 (Figure 3). Finally, Terrimonas (Sphingobacteriales, Bacteroidetes), Prosthecobacter (Verrucomicrobiales, Verrucomicrobia) and Geothrix (Holophagales, Acidobacteria) were found in groups B1, B2 and B3 respectively.

Dynamic interaction network reveals links between keystone species and facilitator bacteria.

The eLSA approach was used to identify simultaneous and delayed OTU occurrences within the microbiome. The clustering coefficients (i.e. degree to which nodes grouped together) were 0.23 and 0.28 and the average number of neighbors was 2.9 and 8.3 for the control and the metal-treated microcosms respectively. In control microcosms, 3 keystone OTUs (i.e. OTU 356 (Hyphomicrobiaceae), OTU 308 (Chromatiales) and OTU 358 (Verrucomicrobia from Subdivision 3)) were found to be highly connected with the rest of the community (Figure S4A). In metal-treated microcosms, OTU 339 (Xanthobacter), OTU 46 (unclassified -Proteobacterium), OTU 207 (Verrucomicrobia from Subdivision 3) and OTUs 90 and 131 (unclassified bacteria, TRG B4) (Figure S4B), were identified as keystone OTUs (Figure 4). Keystone OTUs displayed negative interactions with Nitrospira in all microcosms and with Ignavibacteriaceae in metal-impacted microcosms. In addition, Xanthobacter and OTU 131 negatively interacted with OTU 276 (Rhodocycales), OUT 288 (Caldilinea), OUT 3738 (Bacteroidales) and OTU 93 (Ignavibacterium) (TRG A) (Figure S4B). Positive interactions were observed between keystone OTUs and facilitators bacteria. Interactions were found between (i) keystone OTU 131 and OTUs 4886, 4189 (Zoogloea) and 111 (Dechloromonas, TRG B1), (ii) keystone OTU 46 and OTU 9 (Zoogloea), (iii) keystone OTU 207 and OTU 107 (Dechloromonas) and (iv) keystone OTUs 339 & 131 and OTU 64 (Desulfosporinus). Anaerolineaceae (TRG B3) was also found to positively interact with the rest of the community (Figure 4A and S4B), including OTU 266 (Methanobacterium), OTU 533 (Methanolina) and members of - , -Proteobacteria and Bacteroidetes.
In addition, other SRBs such as OTU 27 (*Desulfobulbus*), OTU 122 (*Desulfovibrio*) and OTU 55 (*Geobacter, TRG B1*) co-occurred or were preceded by most keystone OTUs and Anaerolineaceae (Figure 4A). Finally, OTU169 (*Veillonellaceae, TRG B4*) was linked with OTU 90 (*Anaerolineaceae, TRG B4*), OTU 207 (*Verrucomicrobia*) and *Xanthobacter* as well as other bacteria from B4 TRG (i.e. OTU 130, *Rhizobacter*), to B1 TRG (i.e. OTU 278, *Terrimonas*) and TRG unclassified bacteria (Figure 4B).

IncP plasmids and metal-resistant genes content assessed by Q-PCR

Metals induced IncP plasmid copy depletion over the 2.5 first months, while enrichment was observed in control microcosms. Thereafter, relative abundance stabilized until the end of the experiment in both conditions (Figure 5). No significant differences were observed in czcA relative abundance in both conditions, excepted after 4.5 months, where it significantly increased in the metal-treated microcosms (Figure 5). The pbrA level was always significantly higher in the metal-treated microcosms than in the control microcosms (Figure 5).

Discussion

The community diversity in metal-impacted river-like microcosms

Metals affected the community structure after 15 days of exposure by causing a significant decrease of alpha-diversity indices. However, after 3.5 months, this trend was reversed, confirming previous in-situ observations [7]. Interestingly, in a preliminary similar experiment, where sterilized water renewal was used, Shannon index in metal-contaminated microcosms remained lower than in control condition (Figure S5). In the present research, the evolution of phylogenetic indices over time was assessed assuming that: (i) overdispersion (decreased NRI or NTI [26]) would result from diversification of the community in line with the community coalescence process (i.e., the constant arrival of new bacteria by water renewal) and (ii) increased relatedness (increased NRI or NTI [26]) would result from environmental filtering (i.e., killing or inhibition of some bacteria by metals). In control microcosms, the NRI index decreased under the threshold value (-2), highlighting a phylogenetic overdispersion of the community. This may be explained by a community coalescence
process with novel bacteria introduced during water renewal. In metal-treated microcosms and at the very start of the experiment, NRI was found to increase, showing initial environmental filtering most likely for metal-tolerant bacteria, but stabilized around 0 in the following months. Despite metals inhibited overdispersion, the coalescence process may indeed avoid strong environmental filtering. In both control and metal-treated microcosms, β-NTI was first negative but increased over 0 after 3.5 months showing no metal impact in the selection of the nearest phylogenetic neighbors. These results highlighted that the periodic arrival of new bacteria in a metal-contaminated environment helped the microbiome to persist, leading to a fast resilience and an unexpectedly high diversity.

Mechanisms of resilience in metal-impacted microbiome

Previous studies suggested (i) broad-host-range plasmids [7, 27][1, 7], and (ii) bacterial cooperation via facilitator bacteria [7], to play an important role in the resilience observed in long-term stressed communities, such as those in metal-impacted river sediments. Broad host range plasmids of the IncP family have been found in areas contaminated with manure, wastewater of industrial origin or river sediments and often carry catabolic, antibiotic- and metal-resistance genes [28, 29]. In addition, IncP plasmids were shown to be enriched in metal contaminated MetalEurop sediments, suggesting their role in the long-term resilience of the community [27]. In the present study, IncP plasmid copy depletion in metal-treated microcosms may be explained by the cumulative costs of metal-stress metabolic response, plasmid maintenance, expression and conjugation [27].

Evidences of facilitator bacteria were found in groups of OTUs that responded similarly to the experimental conditions over time (TRGs). Metals were shown to prevent the development of opportunistic anaerobic, acetolactic methanogens Euryarchaeota (mainly the genus *Methanotrix*), known for their metal sensitivity [30] (TRG A). Such growth limitations were previously observed *in-situ* [7]. In addition, metals progressively favored the development of metal-resistant facilitator bacteria that precipitate metals or form large biofilms in the sedimentary structure (B TRGs). For example, in TRG B1 and 3, members of *Zoogloea* and *Dechloromonas* were previously found to be highly represented in copper-contaminated activated sludges [31]. *Zoogloea* has been
reported for its propensity to produce massive EPS matrices [32] and to accumulate metal ions [33]. Legionella is known for its ability to form biofilms [34], and Brevundimonas has been associated with lead removal in wastewater treatment plants [35]. Anaerolineaceae are known for cadmium removal [36]. Several SRBs such as Desulfosporinus, Desulfovibrio, and Desulfobulbus, are known to proliferate in the presence of metals because they produce hydrogen sulfide that may precipitate with metallic ions [30]. Moreover, Clostridium seems to be a key player in this process by starting sulfate reduction and raising the pH of the environment in a context of metal contamination [37]. Most of the genera that were selected by metals (B TRGs), including those providing public goods, display species that were observed in wastewater treatment plants (WWTP) or in microbial communities in manure. For instance, Zoogloea, Dechloromonas, Terrimonas, and Prosthecobacter were all found in activated sludge [31, 38–40], as well as Roseomonas [41, 42], Simplicispira [43], and Geothrix [44]. Zoogloea, Aquabacterium [45], Legionella, Dechloromonas, Clostridium and Methyloversatilis have been found in WWTP [45–47]. Metals selected for exogenous bacteria arriving from upstream sediment and lands that potentially obtain their metal resistance through anthropologically impacted environments [48]. The resilience of the community would then have occurred through the early selection for metal-resistant bacteria, providing common protection for the rest of the microbial community such as EPS formation or metal detoxification allowing cooperation and reducing the metallic stress; rather than the use of broad-host-range IncP plasmids. This is supported by the Q-PCR results. While the amount of the broadly distributed czcA gene was poorly affected by the experimental conditions, the pbrA gene, present within a narrower range of bacteria, was found to be enriched in metal conditions. In the TRG B1 and B4 groups, many Flavobacteriaceae and Brevundimonas species were observed and were previously found to influence Pb motility [35, 49].

Microbial interaction: Linking bacteria acting in the public good with the rest of the community

To assess the influence of bacteria acting as facilitator for the resilience of sedimentary microbiomes, we employed eLSA statistics pinpoint Hyphomicrobiaceae (Rhizobiales) as a keystone OTU that preceded or co-occurred with many other members of the microbiome. In the metal-contaminated
microcosms, this OTU was replaced by another *Rhizobiales, Xanthobacter* of which several strains are known to have an increased capacity to deal with metals [50]. The central position of a *Hyphomicrobiaceae* and *Xanthobacter* OTUs in the microbiome may be explained by their capacity to fix nitrogen, which may benefit the rest of the community [51]. The subdivision 3 of *Verrucomicrobia*, previously identified in fresh-water sediments [52], was also found to be a key player of both control and experimental communities. In metal-contaminated sediments, *Xanthobacter, Verrucomicrobia* subdivision 3 member and other unidentified key OTUs displayed many links with public-good providing bacteria such as *Zoogloea, Dechloromonas* or SRBs. The latter facilitators may then be crucial for reducing the environmental pressure operated by metals for the keystone species of the community. In addition, Anaerolineaceae (TRG B3, *Chloroflexi*), which was previously shown to be a key component of metal contaminated communities and was suggested to impact metal solubility [36], displayed a positive local similarity index with all phyla represented in the network revealing its importance for the rest of the microbial community. Anaerolineaceae co-occurred with, *Methanobacterium* (OTU 266) and *Methanolinea* (OTU 533), which are hydrogenotrophic methanogens Euryarchaeota. This interaction may then be highly beneficial for this group that was negatively impacted by metals from the beginning of the contamination. Finally, the interactions between OTU169 (TRG B4), member of Veillonellaceae, with the rest of the community, highlighted the risk of dispersion of antibiotic resistance genes as suggested *in-situ* [7] that might be co-selected with metal-resistance genes [53]. Indeed, *Veillonellaceae* are marker of fecal contamination and known to carry lots of antibiotic resistance genes [54], such as identified in *Clostridia* [10], or Anaerolineaceae found in WWTP [39].

Conclusion

The present microcosm experiment highlighted the presence of potential facilitator bacteria such as *Zoogloea, Dechloromonas, Anaerolineaceae* or SRBs and supported that the coalescing of indigenous and upstream bacteria favors the resilience of metal-impacted sedimentary microbiomes, confirming *in-situ* observations. Facilitator bacteria then may play a key role by providing safe micro-niches for key OTUs such as *Rhizobiales* and *Verrucomicrobia*, keystone organisms in the studied river-sediment
microbiomes. Among them, *Anaerolineaceae* were crucial for a large fraction the metal-stressed microbial community.

Materials And Methods

Sampling methods and microcosm maintenance

Sediments were sampled in the Senséecanal (Férin, France, 50°18'39.0″N—03°05'05.4″E) on the fifth of December 2016 using a plexiglass core sampler (Ø = 7 cm) to avoid the mixing of sediment layers. Thirty sediment cores were collected, and the top first 1.5 cm were retrieved, homogenized and stored on ice during transport. Freshwater was sampled and stored at 4°C. On the sampling day, eight polypropylene microcosms (750 cm³) were filled with 120 mL of sediment and 500 mL of freshwater. Every day, 450 cm³ of the water column of each microcosm were replaced by water sampled in the river monthly, stored and oxygenized at 4°C with no sterilization step. During the first eight weeks of maintenance, a mixture of metals (ZnCl₂, CuCl₂(2H₂O), PbCl₂ and CdCl₂(1/2H₂O)) was gradually added to four metal-treated microcosms at a rate of 20 mL every four days. Final metal concentrations are displayed in table S1. The pH remained stable over the course of the experiment (ca. pH 8.0).

Microcosms were maintained in an air-conditioned room (23°C) over 6.5 months. The sediments were sampled for DNA extraction after two weeks (T0.5) and every month thereafter (T1.5, T2.5, T3.5, T4.5, T5.5 and T6.5).

Total and bioavailable metal content in sediments

For total metal quantification, 200 mg of dried and sieved (<63 μm) sediments were digested with concentrated hydrofluoric acid (Prolabo, Normapur) at 120°C for 48 h followed by aqua regia mineralization (hydrochloric + nitric acids, 2:1 v:v) at 120°C for 24 h. The total metal concentrations (Al, Fe, Cd, Cu, Pb, and Zn) were determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES; Varian, Vista Pro, axial view) according to the concentration range [55].

A proxy of the bioavailable metals (Al, Fe, Cd, Cu, Pb, and Zn) fraction in the sediments was determined by a soft acid attack: 1 g of dried sediment was mixed with 20 mL of HCl solution (1 M) and agitated for 24 h. The samples were filtered with a cellulose acetate membrane (0.45 μm). The metal concentrations were measured using ICP-AES [55] and are shown in Supplemental Table S1.
High-throughput 16S rRNA gene sequencing

Sequencing libraries were prepared using a dual-PCR setup, targeting variable regions V3 and V4 of the 16S rRNA gene, approx. 460bp. In the first step primers Uni341F (5’-CCTAYGGGRBGCASCAG–3’) and Uni806R (5’-GGACTACNGGGGTATCTAAT–3’) originally published by Yu et al. [56] and modified as described in Sundberg et al. [57] were used. In a second PCR reaction step the primers additionally included Illumina specific sequencing adapters and a unique combination of index for each sample [7, 22]. First PCR reaction used Phusion® High-Fidelity DNA Polymerase (Thermo scientific, Carlsbad, CA, USA) with an initial denaturation step at 98 °C for 30 s, followed by 35 amplification cycles consisting of denaturation at 98 °C for 10 s followed by 30 s at 61 °C and 15s at 72 °C and final extension of 7 min at 72 °C. Second PCR reaction used PCRBIO HiFi Polymerase (PCR Biosystems Ltd, UK) with an initial denaturation step at 95 °C for 1 min, followed by 15 amplification cycles consisting of denaturation at 95 °C for 15 s followed by 15 s at 56 °C and 30 at 72 °. After each PCR reaction, amplicon products less than 200 bp were purified using HighPrep™ PCR Clean-up System magnetic beads (MagBio, MD, USA) according to the manufacturer’s instructions. The samples were adjusted to equimolar concentrations using SequalPrep Normalization Plate 96-well kit (Thermo Fisher Scientific). A final library pool was made using 5µL of each individual normalized sample library, concentrated using DNA Clean™ and Concentrator 5 kit (Zymo Research, Irvine, CA, USA) in a final volume of 10µL. Finally, the pooled libraries were adjusted to 4nM and sequenced using MiSeq v2 reagents kit (500 cycles) using 2 × 250 bp paired-end mode on an Illumina MiSeq platform (Illumina, San Diego, CA, USA) according to the manufacturer’s instructions. The amplicon sequences were analyzed with the QIIME pipeline (https://github.com/maasha/qiime pipe) as previously described [22]. The MiSeq Controller Software was used to perform the sequence demultiplexing and sequencing adapters and primers were trimmed using cutadapt v1.18 [58] and any pairs were any of two primers couldn’t be found were discarded. Trimmed reads were then processed using a custom BioDSL pipeline (http://maasha.github.io/BioDSL/). Specifically, paired-end reads were merged using merge_pair_seq, assembled pairs with a total length shorter than 300 bp or an average Phred score quality lower than Q25 were discarded. Clean reads were clustered in OTU using a 97% sequence similarity threshold
using cluster_otus and USEARCH v7.0.1090 [59] and chimeric OTUs removed using UCHIME [60]. Each OTU cluster was annotated using mothur classify.seq() [61], an implementation of the RDP Classifier (method = wang) [62] against the Ribosomal Database Project Trainset 16 database [63]. Representative OTU sequence were aligned against a reference alignment using mothur and an approximate maximum likelihood phylogenetic tree was built using FastTree [64]. Samples (4 biological replicates x 2 technical replicates) with less than 3 000 OTU read counts were not included, as they do not provide enough coverage for further diversity analysis [65]. Information regarding the sequence counts for each sample is shown in Supporting Table S2.

Measuring the diversity through time

Alpha-diversity estimates based on OTUs richness and the Shannon’s diversity index were assessed using a rarefied dataset (R-package “Vegan” in RGui software [66]) containing 5150 sequences using the Past3 software [67]. The beta-diversity (a measure of species turnover over time) was estimated. For this, a PERMANOVA test was performed using the R-package “Vegan” with a log_{10}(1+x)-transformed database (as OTU abundance variation was higher than 1 000-fold) with 10 000 permutations (Table S3). Differences in phyla between the control and metal-treated microcosms were assessed according to an FDR-corrected p-value inferred from a t-test (R-package “Vegan”), and the different classes of Proteobacteria as well as the new order of β-Protobacteria were considered separately (Table S4). The evolution of phylogenetic relatedness in the control and metal-treated microcosms was then assessed between the in-situ profile and at each time point for both conditions using the phylogenetic tree obtained from OTU cluster representative sequence reads with the R-package “ape”. MPD quantifies the mean relatedness in a group of OTUs by considering all possible pairs of OTUs. MNTD quantifies the mean relatedness by considering only the nearest phylogenetic neighbors. We calculated the weighted net relatedness index (NRI) and the nearest taxon index (NTI), which assess the number of standard deviations when comparing the mean pairwise distance (MPD) or the mean nearest taxon distance (MNTD), respectively, to the corresponding null distribution with 1 000 randomizations, 95% confidence interval, p < 0.05 [68, 69] for each time point. An NRI or NTI value >2 indicates that the coexisting taxa are significantly closely related, while
an NRI or NTI <-2 indicates significant phylogenetic overdispersion [70]. The metrics were calculated with the R-package “Picante” [71]. The between-community version of NRI (βNRI) and NTI (βNTI), βNTI [70], were determined (weighted, with 1 000 randomizations, R-package “MicEco” [72]) comparing each time point to time 0. A βNTI value >2 indicates a greater dispersion than expected by chance, while a βNTI <-2 indicates a static community. Intermediate values indicate that changes appear to be due to stochastic events [70].

Identification and validation of the time response groups
The 16S rRNA gene amplicon dataset was divided by time point, and the OTU profiles obtained after 0.5, 2.5, 3.5 and 6.5 months were assessed separately. The OTUs that responded significantly to metal stress were assessed using a negative binomial distribution and a generalized linear model, which were corrected with 1 000 resampling iterations of the residual variance (nbGLM, p < 0.05) [7]. The 600 selected OTUs were plotted in a generalized heatmap, and the Treatment Response Groups (TRG) were defined with a hierarchical cluster dendrogram (Euclidian distance and average clustering, R-package “gplots” [73]). The statistical validity of the obtained TRGs was tested against the null model by a Monte Carlo simulation including all OTUs [7, 22].

Dynamic interaction network
The 16S rRNA gene amplicon dataset was then used to infer interaction networks between OTUs using an Extended Local Similarity Analysis (eLSA) [74]. The eLSA approach was applied using 1 technical replicate by biological replicate, to the most abundant OTUs in the 16S rRNA library with the eLSA implementation as previously described [75], using the following parameters: “lsa_compute data.txt result.txt -s 8 -r4 -perm -x 1000 -d 4” [76–78]. The minimum LSA index was set at 0.8, and the p-value threshold was set at 0.05. The network visualization and analysis was performed with Cytoscape 3.6.1 [79] using an organic-type layout and analyzed with the NetworkAnalyzer tool.

Functional and plasmid-associated gene content assessment by quantitative PCR.
The abundance of the metal resistance genes czcA and pbrA and the origin of transfer (oriT) of broad
host range IncP plasmids were assessed by quantitative PCR. The primers used for the PCR amplification of \textit{czcA} and \textit{oriT} were retrieved from the literature (Roosa et al., 2014, Götz et al., 1996) (Table S5). The primers for the PCR amplification of \textit{pbrA} were designed for this study. For \textit{pbrA}, the genetic sequences of \textit{Cupriavidus metallidurans} CH34, \textit{Klebsiella pneumonia} and \textit{Enterobacter cloacae} were aligned using the ClustalX. The best consensus sequences were used as templates for the design of degenerated primers. The physicochemical properties of each pair of primers were compared using the ThermoFisher Scientific Multiple Primer Analyzer tool [80]. The best candidates were selected (Table S5). The specificity of the primers was tested using BLAST (NCBI) and classical PCR of pure \textit{Cupriavidus metallidurans} CH34 and \textit{Pseudomonas putida} KT2440 cultures. For quantitative PCR (Q-PCR), the DNA samples were purified using a QIAquick® PCR Purification (QIAGEN) kit to eliminate potential PCR inhibitors. A StepOnePlus Real-Time PCR System (Thermo Fisher Scientific) was used for the quantification of \textit{oriT} in IncP, \textit{czcA} and \textit{pbrA}. The relative concentrations of these genes were calculated as the ratio of the expression of the target gene and that of the reference 16S rRNA gene using the universal primers 518R (5’- ATTACCGCGGCTGCTGG –3’) and 341F (5’- CCTACGGAGGCGAGCAG –3’). The results are presented as a double ratio of the expression of the target gene (IncP \textit{oriT}, \textit{czcA} or \textit{pbrA}) and the reference gene (16S rRNA) at a given time in comparison with the expression at T0. The ratios were calculated according to equation (1) [81]

\[
\text{Ratio} = \frac{(E_{\text{target}})_{\Delta CP \text{ target} \ (T0-Tx)}}{(E_{\text{ref}})_{\Delta CP \text{ ref} \ (T0-Tx)}}
\]

where \(E\) is the PCR efficiency calculated according to Ramakers et al., 2003, and CP is the point at which the amplification curve crosses the threshold.

Duplicate PCRs were performed for each DNA sample and target gene combination using SYBR™ Green master mix (Applied Biosystems™). Each replicate consisted of serial dilutions (0.5, 0.25, 0.125 and 0.0625 ng/µL for \textit{oriT} and \textit{pbrA} and 1, 0.7, 0.5, 0.25 ng/µL for \textit{czcA}). After an initial denaturation step at 94°C for 10 min, 40 cycles of 15 seconds at 95°C, 30 seconds at 60°C and 30 seconds at 72°C were performed followed by a final denaturation step (60 to 90°C, +0.3°C/min).
List Of Abbreviations

eLSA: extended Local Similarity Analysis; ICP-AES: inductively coupled plasma atomic emission spectroscopy; HGT: Horizontal Gene Transfer; nbGLM: negative binomial Generalized Linear Model;

NRI: Net Relatedness Index; NTI: Nearest Taxon Index; SRB: Sulfate Reducing Bacteria; TRG: Treatment Response Group; WWTP: WasteWater Treatment Plant.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and material

Supplemental information is available as Supporting Table file and Supporting Figure file.

Unassembled raw amplicon data were deposited at the Sequence Read Archive public repository (SRA, https://www.ncbi.nlm.nih.gov/sra) under the accession number PRJNA574447 (https://www.ncbi.nlm.nih.gov/sra/PRJNA574447).

Competing interests

The authors declare no conflicts of interest.

Funding

This research was funded by the Fund for Scientific Research (F. R.S-FNRS) FRFC 7050357, PF014F828/A09016F and T.0127.14 (Belgium) and the Pole d’ Attraction Interuniversitaire (PAI) n° P7/25.

Authors’ contributions

V. C., A. G., R. W. designed research; V. C., A. G., G. B., J. N. performed research; V. C., A. G., G. B., J. N. analyzed data; and V. C., A. G., G. B., D.C. G., J. N., S. J. S., R. W. wrote the paper.

Acknowledgements

Authors wish to express a deep gratitude to Nicolas Decruyenaere for its help with computing.

References

1. Gillan DC, Roosa S, Kunath B, Billon G, Wattiez R. The long-term adaptation of
bacterial communities in metal-contaminated sediments: A metaproteogenomic study. Environ Microbiol 2015; 17: 1991-2005.

2. Araya R, Tani K, Takagi T, Yamaguchi N, Nasu M. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol Ecol 2003; 43: 111-119.

3. Besemer K. Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment. Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment. 2016. Caister Academic Press, Norfolk, UK.

4. Brown BL, Swan CM, Auerbach DA, Campbell Grant EH, Hitt NP, Maloney KO, et al. Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J North Am Benthol Soc 2011; 30: 310-327.

5. De Oliveira LFV, Margis R. The source of the river as a nursery for microbial diversity. PLoS One 2015; 10: 1-11.

6. Mansour I, Heppell CM, Ryo M, Rillig MC. Application of the Microbial Community Coalescence Concept to Riverine Networks. Biol Rev 2018; 93: 1832-1845.

7. Jacquiod S, Cyriaque V, Riber L, Al-soud WA, Gillan DC, Wattiez R, et al. Long-term industrial metal contamination unexpectedly shaped diversity and activity response of sediment microbiome. J Hazard Mater 2018; 344: 299-307.

8. Wang L, Zhang J, Li H, Yang H, Peng C, Peng Z, et al. Shift in the microbial community composition of surface water and sediment along an urban river. Sci Total Environ 2018; 627: 600-612.

9. Marti E, Jofre J, Balcazar JL. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant. PLoS
10. Jacquiod S, Brejnrod A, Morberg SM, Abu Al-Soud W, Sørensen SJ, Riber L. Deciphering conjugative plasmid permissiveness in wastewater microbiomes. Mol Ecol 2017; 26: 3556–3571.

11. Sherameti I. Heavy Metal Contamination of Soils. 2015. Springer International Publishing.

12. Oves M, Mabood Hussain F. Antibiotics and Heavy Metal Resistance Emergence in Water Borne Bacteria. J Investig Genomics 2016; 3: 3-5.

13. Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, et al. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 2006; 8: 1510-1514.

14. Gillan DC. Metal resistance systems in cultivated bacteria: Are they found in complex communities? Curr Opin Biotechnol 2016; 38: 123-130.

15. Baker-Austin C, Wright MS, Stepanauskas R, McArthur J V. Co-selection of antibiotic and metal resistance. Trends Microbiol 2006; 14: 176-182.

16. Martinez JL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc R Soc B Biol Sci 2009; 276: 2521-2530.

17. Seiler C, Berendonk TU. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 2012; 3: 1-10.

18. Perry JA, Wright GD. The antibiotic resistance ‘mobilome’: Searching for the link between environment and clinic. Front Microbiol 2013; 4: 1-7.

19. O’Brien S, Hesse E, Luján A, Hodgson DJ, Gardner A, Buckling A. No effect of intraspecific relatedness on public goods cooperation in a complex community. Evolution (N Y) 2018; 72: 1165-1173.
20. Smith P, Schuster M. Public goods and cheating in microbes. Curr Biol 2019; 29: R442–R447.

21. Berg J, Brandt KK, Al-Soud WA, Holm PE, Hansen LH, Sørensen SJ, et al. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term cu exposure. Appl Environ Microbiol 2012; 78: 7438–7446.

22. Nunes I, Jacquiod S, Brejnrod A, Holm PE, Johansen A, Brandt KK, et al. Coping with copper: Legacy effect of copper on potential activity of soil bacteria following a century of exposure. FEMS Microbiol Ecol 2016; 92: 1-12.

23. Rillig MC, Antonovics J, Caruso T, Lehmann A, Powell JR, Veresoglou SD, et al. Interchange of entire communities: Microbial community coalescence. Trends Ecol Evol 2015; 30: 470-476.

24. Smalla K, Haines AS, Jones K, Krögerrecklenfort E, Heuer H, Schloter M, et al. Increased abundance of IncP-1β plasmids and mercury resistance genes in mercury-polluted river sediments: First discovery of IncP-1β plasmids with a complex mer transposon as the sole accessory element. Appl Environ Microbiol 2006; 72: 7253–7259.

25. Grohmann E. Horizontal Gene Transfer Between Bacteria Under Natural Conditions. In: Ahmad I, Ahmad F, Pichtel J (eds). Microbes and Microbial Technology: Agricultural and Environmental Applications. 2011. pp 163-187.

26. Swenson NG. Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS One 2009; 4: e4390.

27. Cyriaque V, Jacquiod S, Riber L, Abu Al-soud W, Gillan DC, Sørensen SJ, et al. Selection and propagation of IncP conjugative plasmids following long-term anthropogenic metal pollution in river sediments. J Hazard Mater 2020; 382: 121173.

28. Popowska M, Krawczyk-Balska A. Broad-host-range IncP-1 plasmids and their
resistance potential. Front Microbiol 2013; 4: 1-8.

29. Jechalke S, Dealtry S, Smalla K, Heuer H. Quantification of IncP-1 plasmid prevalence in environmental: Samples. Appl Environ Microbiol 2013; 79: 1410-1413.

30. Paulo LM, Stams AJM, Sousa DZ. Methanogens, sulphate and heavy metals: a complex system. Rev Environ Sci Biotechnol 2015; 14: 537-553.

31. Ouyang F, Ji M, Zhai H, Dong Z, Ye L. Dynamics of the diversity and structure of the overall and nitrifying microbial community in activated sludge along gradient copper exposures. Appl Microbiol Biotechnol 2016; 100: 6881-6892.

32. Dugan P. The Genus Zoogloea. In: Stoner D, Pickrum H (eds). The Prokaryotes. 1981. pp 960–970.

33. Norberg AB, Persson H. Accumulation of heavy-metal ions by Zoogloea ramigera. Biotechnol Bioeng 1984; 26: 239-246.

34. Mampel J, Spirig T, Weber SS, Janus AJ, Molin S, Hilbi H. Planktonic Replication Is Essential for Biofilm Formation by Legionella pneumophila in a Complex Medium under Static and Dynamic Flow Conditions Planktonic Replication Is Essential for Biofilm Formation by Legionella pneumophila in a Complex Medium under. Society 2006; 72: 2885–2895.

35. Resmi G, Thampi SG, Chandrakaran S. Brevundimonas vesicularis:A novel bio-sorbent for removal of lead from wastewater. Int J Environ Res 2010; 4: 281–288.

36. Meng D, Li J, Liu T, Liu Y, Yan M, Hu J, et al. Effects of redox potential on soil cadmium solubility: Insight into microbial community. J Environ Sci (China) 2018; 75: 224-232.

37. Alexandrino M, Costa R, Canário AVM, Costa MC. Clostridia initiate heavy metal bioremoval in mixed sulfidogenic cultures. Environ Sci Technol 2014; 48: 3378-3385.

38. Zhang T, Shao MF, Ye L. 454 Pyrosequencing reveals bacterial diversity of activated
sludge from 14 sewage treatment plants. ISME J 2012; 6: 1137-1147.

39. Wang X, Hu M, Xia Y, Wen X, Ding K. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 2012; 78: 7042-7047.

40. Lee J, Park B, Woo SG, Lee J, Park J. Prosthecobacter algaе sp. nov., isolated from activated sludge using algal metabolites. Int J Syst Evol Microbiol 2014; 64: 663-667.

41. Chu CW, Chen Q, Wang CH, Wang HM, Sun ZG, He Q, et al. Roseomonas chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 2016; 109: 611-618.

42. Jiang X, Ma M, Li J, Lu A, Zhong Z. Bacterial Diversity of Active Sludge in Wastewater Treatment Plant. Earth Sci Front 2008; 15: 163-168.

43. Lu S, Ryu SH, Chung BS, Chung YR, Park W, Jeon CO. Simplicispira limi sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2007; 57: 31-34.

44. Paiva MC, Ávila MP, Reis MP, Costa PS, Nardi RMD, Nascimento AMA. The microbiota and abundance of the class 1 integron-integrase gene in tropical sewage treatment plant influent and activated sludge. PLoS One 2015; 10: 1-12.

45. Cydzik-Kwiatkowska A, Zielińska M. Bacterial communities in full-scale wastewater treatment systems. World J Microbiol Biotechnol 2016; 32: 1-8.

46. Jacquiod S, Brejnrod A, Morberg SM, Al-Soud WA, Sorensen SJ, Riber L. Deciphering conjugative plasmid permissiveness dynamics in wastewater microbiomes. Mol Ecol 2017; 1-16.

47. Morico K, Moor B, Novotny J. Electronics and Metal Finishing and Processing. Water Environ Res 2009; 81: 1642-1653.

48. Gupta SK, Shin H, Han D, Hur H-G, Unno T. Metagenomic analysis reveals the
prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment. J Microbiol 2018; 56: 408-415.

49. Fonti V, Beolchini F, Rocchetti L, Dell’Anno A. Bioremediation of contaminated marine sediments can enhance metal mobility due to changes of bacterial diversity. Water Res 2015; 68: 637-650.

50. Cubillas C, Miranda-Sánchez F, González-Sánchez A, Elizalde JP, Vinuesa P, Brom S, et al. A comprehensive phylogenetic analysis of copper transporting P1BATPases from bacteria of the Rhizobiales order uncovers multiplicity, diversity and novel taxonomic subtypes. Microbiologyopen 2017; 6: 1-13.

51. Teng Y, Wang X, Li L, Li Z, Luo Y. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 2015; 6: 1-11.

52. He S, Stevens SLR, Chan L-K, Bertilsson S, Glavina del Rio T, Tringe SG, et al. Ecophysiology of Freshwater Verrucomicrobia Inferred from. mSphere 2017; 2: e00277-17.

53. Pal C, Asiani K, Arya S, Rensing C, Stekel DJ, Larsson DGJ, et al. Metal Resistance and Its Association With Antibiotic Resistance, 1st ed. Advances in Microbial Physiology. 2017. Elsevier Ltd.

54. Marchandin H, Jumas-Bilak E. Family Veillonellaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Firmicutes and Tenericutes. 2014. Springer-Verlag, Berlin, pp 1-567.

55. Roosa S, Prygiel E, Lesven L, Wattiez R, Gillan D, Ferrari BJD, et al. On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach. Environ Sci Pollut Res 2016; 23: 10679-10692.

56. Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction.
57. Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, et al. Pyrosequencing Analyses of Bacterial and Archaeal Richness in 21 Full-Scale Biogas Digesters. FEMS Microbiol Ecol 2013; 85: 612–626.

58. Martin M. The relationship between organizational culture and knowledge management, & their simultaneous effects on customer relation management. Adv Environ Biol 2013; 7: 2803–2809.

59. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26: 2460–2461.

60. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011; 27: 2194–2200.

61. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75: 7537–7541.

62. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73: 5261–5267.

63. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42: 633–642.

64. Price MN, Dehal PS, Arkin AP. FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5: e9490.

65. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.
66. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-6. 2019.

67. Hammer Ø, Harper DAT a. T, Ryan PD. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol Electron 2001; 4(1): 1-9.

68. Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol 2015; 6: 1-15.

69. Webb CO, Ackerly DD, Kembel SW. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 2008; 24: 2098-2100.

70. Stegen JC, Lin X, Konopka AE, Fredrickson JK. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 2012; 6: 1653-1664.

71. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010; 26: 1463-1464.

72. Russel J. Russel88/MicEco v0.9.2. 2018.

73. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. Package ‘gplots’: Various R programming tools for plotting data. R Package version 2170 2016; 1-68.

74. Xia LC, Ai D, Cram J, Fuhrman JA, Sun F. Efficient statistical significance approximation for local similarity analysis of high-throughput time series data. Bioinformatics 2013; 29: 230-237.

75. Wang H, Wei Z, Mei L, Gu J, Yin S, Faust K, et al. Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol Biochem 2017; 105: 227-235.
76. Durno WE, Hanson NW, Konwar KM, Hallam SJ. Expanding the boundaries of local similarity analysis. BMC Genomics 2013; 14: 1-14.

77. Ruan Q, Dutta D, Schwalbach MS, Steele JA, Fuhrman JA, Sun F. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 2006; 22: 2532-2538.

78. Eiler A, Heinrich F, Bertilsson S. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 2012; 6: 330-342.

79. Shannon P, Markiel A, Owen Ozier 2, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 2498-2504.

80. Breslauer KJ, Frank R, Blocker H, Marky LA. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci 1986; 83: 3746-3750.

81. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: 16-21.

Figures
α-diversity (OTU richness and Shannon indexes ± SEM) obtained from 16S rRNA gene amplicon sequencing carried out from Férin sediment on the day of sampling (in-situ) and from control and metal-treated microcosm sediments (n=4). *: p-value<0.05; **: p-value<0.01; ***: p-value<0.001.
Changes in the NRI (net relatedness index, A), β-NRI (B), NTI (nearest taxon index, C) and β-NTI (D), over time determined from 16S rRNA gene amplicon sequencing carried out on DNA extracted from Félin in-situ sediment on the day of sampling (in-situ) and from control and metal-treated microcosm sediments using weighted OTU representation and 1 000 randomizations (n=4).
Relative Abundances (percentage of read counts) composing TRGs and their corresponding taxonomical families. OTUs significantly responding to metal contamination over time were highlighted using a nbGLM (p<0.05) and TRGs were identified by displaying those OTUs in a heatmap (Supplemental figure S1).
Network clusters gathering OTUs of interest extracted from global network (Supplemental Figure 5) built using most significant extended local similarity scores (LS>0.8, p-value < 0.05, n=4). Green lines represent positive association of OTUs, and red lines represent negative associations. Directed edge represents a local similarity with a time delay, representing succession of OTUs. Cluster A represents privileged interactions between (i) Anaerolineaceae and (ii) key OTUs 90, 131,46,339 (Xanthobacter) and 207 (Verrucomicrobia, subdivision3); (iii) SRBs (Desulfobulbus (OTU 27), Desulfovibrio (OTU 122) and Geobacter (OUT 55)), (iv) Zoogloea (OTUs 4189 and 4886) and Dechloromonas (OTUs 107 and 111), and (v) methanogen Euryarchaeota (Methanobacterium (OTU 266) and Methanolinea (OTU 533)). Cluster B represents privileged interactions between the VeillonellaceaeOTU 169 and other members of the community.
Figure 5

Changes in the relative amounts of czcA (A), pbrA (B) and IncP oriT (C) gene sequences
((EincP)ΔCt target (T0 – Tx) / (E16S rRNA)ΔCt 16S rRNA (T0 – Tx)) in each condition (±SEM)
(Metal vs Control). The significance was calculated with a paired t-test. Different letters indicate significant differences (p-value <0.01) between the two groups.