Periangular transmasseteric infraparotid approach in the treatment of condylar-base and low condylar-neck fractures

Hirjak D1, Vavro M1, Dvoranova B1, Galis B1, Simko K1, Malicek L2, Machon V3, Neff A4

Department of Oral and Maxillofacial Surgery, Comenius University, University Hospital Ruzinov, Bratislava, Slovakia. hirjak.dusan@gmail.com

ABSTRACT

AIM: Mandibular condylar fractures account for 25 to 52% of all mandibular fractures. Though current literature favors open reduction and internal fixation (ORIF) of condylar-base and low condylar-neck fractures, extraoral approaches are usually considered to be complicated by the risk of facial nerve injury and other possible complications. This study was undertaken to demonstrate that the periangular transmasseteric infraparotid surgical approach (TMIP) to condylar-base and low condylar-neck fractures provides excellent access to the bony fragments with minimal risk of complications such as facial nerve and parotid gland injury. PATIENTS: In the period from January 2010 to December 2018, 81 patients (96 fractures) with condylar-base and low condylar-neck fractures underwent ORIF via periangular transmasseteric infraparotid surgical approach. RESULTS: The results of this retrospective study showed minimal postoperative complications. The periangular transmasseteric infraparotid surgical approach allowed precise anatomic repositioning and fixation of the fragments with maximum risk of complications such as facial nerve and parotid gland injury. There were no transient or permanent facial nerve palsies, parotid gland or salivary fistulae complications during a 12-month follow-up period. CONCLUSION: The periangular infraparotid transmasseteric approach to ORIF of condylar-base and low condylar-neck fractures is an effective and safe approach allowing accurate anatomic repositioning and fixation of the fragments with minimum surgical complications (Tab. 1, Fig. 12, Ref. 21). Text in PDF www.elis.sk

KEYWORDS: condylar base, condylar neck, open reduction and internal fixation (ORIF), facial nerve injury (FNI), transient/permanent facial nerve palsy, parotid gland injury.

Introduction

Mandibular condylar fractures (MCFs) account for 25 to 52% of all mandibular fractures (1, 2, 3, 4). The management of MCFs remains controversial in the literature. Because of its less invasive nature, the conservative treatment using closed reduction was favored for decades. However, long-term complications such as malocclusion, pain, loss of vertical height and temporomandibular disorders (TMD) were often the sequelae requiring secondary surgical correction. Recently, the literature supports the view that treatment outcomes utilizing open reduction and internal fixation (ORIF) are superior to conservative treatment using closed reduction. Along with the development of improved surgical techniques and internal fixation materials, ORIF has become widely accepted and applied (1, 3, 4, 5, 6, 7). One of the most practical classification systems of MCFs was proposed by Loukota et al (2, 5, 8) and was recently modified by Neff et al (8, 9). This classification divides the fractures by landmark-based fracture line location occurring in the base, neck and head of the condylar process (2, 9).

Condylar fractures differ markedly from other mandibular fractures with respect to the anatomy of the surrounding tissues. Therefore, MCFs are more easily managed via an external approach, or intraoral endoscopically assisted approach. Extraoral approaches are complicated by the necessity to avoid facial nerve injury (FNI) which may result in transient facial nerve injury (TFNI) and/or permanent facial nerve injury (PFNI) (1, 2). Other complications that can be associated with ORIF of condylar fractures are intraoperative hemorrhage, parotid gland injury and/or postoperative infection, Frey syndrome, salivary fistula, and/or scarring (7, 10).

The International Bone Research Association (IBRA), Condylar Fracture Symposium 2012 in Marseille (8) pointed out that ORIF may by now be considered as a treatment of choice for both displaced and dislocated condylar base and condylar-neck fractures: The selection of the ideal surgical approach for condylar-base and low condylar-neck fractures, however, is still debated, with percutaneous procedures being the most preferred surgical approaches.
Thus, according to the 2012 IBRA Marseille consensus conference survey, the retromandibular followed by the high submandibular and periangular approaches were considered preferred ways of surgical access to condylar-base and condylar neck-level fractures (1, 2, 8), whereas the transoral endoscopically assisted approach, based on the authors’ experience and supported by the literature, is recommended for selected, “easy” cases such as lower condylar base fractures with lateral overlap (5, 11, 12).

According to the literature, the so called “retromandibular” (i.e., deep retroparotid, trans- and anteroparotid) and “submandibular” (i.e., Risdon approach, low and high submandibular approaches, high cervical approach) are the most frequently recommended percutaneous approaches. Basically, these surgical approaches differ because of their relationship to the parotid gland (retro- viz. subparotid, transparotid, anteroparotid and infraparotid) and the masseter muscle, using either a transmasseteric incision (antero- and transparotid) or partial dissection (retroparotid), or a full or subtotal transection of the masseteric muscle, the latter utilizing an angular/high submandibular approach which gained popularity during the last decade because of lower occurrences of both TFNI and PFNI (3, 4, 10, 12, 13, 14, 15, 16, 17, 18).

The aim of this retrospective study was to present the authors’ experience with the periangular transcutaneous (transplatysmal, infraparotid, transmasseteric) surgical approach to MCFs and to evaluate the outcomes after treatment of condylar-base (CBFs) and low condylar-neck fractures (CLNFs).

Patients and methods

Between January 2010 and December 2018, at the Department of Oral and Maxillofacial Surgery, University Hospital Ruzinov in Bratislava, 81 patients underwent ORIF of CBFs and CLNFs, utilizing the periangular infraparotid transmasseteric surgical approach. Most of the patients were operated by the first and second authors. According to the 2005 Loukota classification, 78 patients were classified as CBFs and 13 as CLNFs. Mean age was 46 years, ranging from 14 to 69 years; 24 patients were female and 57 were male. There were 66 unilateral and 15 bilateral fractures. In 51 patients, the condylar fracture was associated with other mandibular fractures. Inclusion criteria for ORIF were: 1) patients older than 12 years, 2) trauma-related malocclusion (lateral/frontal open bite), 3) displacement of the condylar fragment with ramus shortening, dislocation of the condyle out of the fossa, medially displaced con-

Age (years)	up to 15	16–25	26–35	36–45	46–55	56 –
patients	2	20	28	17	9	15

Cause of the fracture	violence	sport	work	traffic	falls
patients	21	12	7	12	29

Localization of the fracture	unilateral/bilateral fr.	single/comb. with 1 or more mand.fr.
patients	66/15	30/51

Fragments position	lateral displacement	medial condyle dislocation	medial displacement
patients	57	20	4

Type of fixation	1 straight pl.	2 straight pl.	lambda	trapezoid
patients	14	22	31	14

Tab. 1. Results of ORIF of CBFs and CNFs in details.
The position of the fragments was determined from an orthopantomogram (OPG) and/or CT scans. The type of osteosynthesis was selected according to the location of the fracture and dimensions of the fragments (Tab. 1).

Surgical procedures were performed under general anesthesia via nasotracheal intubation. A perioperative intermaxillary fixation (IMF) was applied using intermaxillary screws and wire. Active postoperative functional rehabilitation was employed using guiding elastics applied for 2–3 weeks. A liquid-to-soft diet was maintained for 6 weeks postoperatively.

Surgical technique

The periangular infraparotid transmasseteric surgical approach used in this study followed the technique described by Rasse/Eckelt (17) and Meyer/Wilk (6). After outlining the main anatomic landmarks and the fracture line, a 30–40 mm long curved skin incision was marked and made around the palpable mandibular angle (Fig. 1). Below the skin and subcutaneous tissue, the platysma muscle was identified. For better visibility, the wound can be widened by subcutaneous undermining in all directions. The masseter muscle (MM) was exposed and widely undermined superiorly and posteriorly, which allows the surgeon to visually identify the facial nerve branches (FNB). In most of cases the marginal branch traverses the lower angular border, while some thinner buccal branches run 3-5mm cranially (Fig. 2). There are cases where facial nerve branches are not visible.

The muscle dissection was made above the visible marginal nerve branch directly to the bone and the masseteric muscle was dissected upward to expose the ramus up to the fracture line (Fig. 3). It is important to release the masseter muscle from the posterior border and to perform muscle transection, i.e. allowing for a full release of the muscle from the portion which remains fixed on the mandibular angle. The fracture stumps were then identified and mobilized from the soft tissue (Fig. 4).

After gentle cranial (proximal fragment) and caudal traction (distal fragment) with retractors, the surgeon will have a good view of the fragments. After anatomic reduction, the fractured stumps were rigidly fixed using different plates (2 straight plates, lambda and trapezoid plates-TCP, chosen according to the individual fracture type) and appropriate screws (Fig. 5). In complex low-neck fractures cases, the authors will typically first fix the plate to the proximal fragment with 2 screws, then reduce the fracture. The posterior border of the ramus and the sigmoid notch are the most important landmarks for proper reduction. After checking the position of fragments in both of these areas, screws were fixed to the distal fragment. In pediatric patients and some low-neck fractures, there is very little space for 2 plates when approached via the periangular approach. In these cases, the authors prefer lambda or TCP plates (Figs 6 and 7).

![Figure 6. CT scan, coronal view of displaced and dislocated fragment.](image)

![Figure 7. Orthopantomogram after ORIF using lambda plate.](image)

![Figure 8 and 9. Facial nerve function 7 days after ORIF.](image)

![Figure 10, 11 and 12. Mandibular function 1 month after ORIF.](image)
Results

The patients were seen at follow-ups after 7 days, 1, 3, 6 and 12 months. Postoperatively, the following parameters were assessed: occlusion, maximal interincisal opening (MIO), deviation of the mandible during function, facial nerve function (FNF), occurrence of any salivary fistulae and the aesthetic result (scar) (Figs 8, 9, 10, 11 and 12).

At 3 months, postoperatively, no malocclusions were observed and the mandibular function was determined to be good (Tab. 1, postoperative MIO). There were no FNI resulting in transient and/or permanent functional impairment. No complications connected with injury to the parotid gland (Frey’s syndrome, salivary fistula, etc.) were observed. In 2 patients with single straight plates, the plates have fractured. Surgical scarring was considered acceptable in most patients. However, 2 patients, aged 14–16 years healed with wide aesthetically displeasing scars. The details of postoperative results are depicted in Table 1.

Discussion

The treatment of condylar fractures should be based on high level of evidence. The development of functionally stable fixation allows for open reduction and biomechanically stable fixation of condylar fractures without the need of postoperative MMF (6, 9, 13, 17).

In the conclusions of IBRA Condylar Fracture Osteosynthesis Symposium 2012 in Marseille, Neff et al reported it was the consensus of the attendees that ORIF may be considered as the main advantage is at the cost of a significantly higher rate of FNI as compared to the angular approach. When a transparotid dissection is performed, a deliberate identification of the facial nerve is associated with a significantly higher rate of FNI, as compared with approaches that do not dissected through parotid tissue (19, 20). Further, the use of the transparotid approach in inexperienced hands can create several serious complications such as salivary fistula (sialocele).

Guerrissi et al. (2002) and Wilson et al. (2005) (11, 20), utilizing the retromandibular and transparotid approach presented facial nerve complications up to 30 %. Li Z et al. (14) published their results after using a modified tragus edge approach (MTEA; viz. lazy-S incision) for mid-level or low condylar fractures. The occurrence of facial nerve dysfunction after MTEA as compared with retromandibular transparotid approaches was 3.4 % and 10.9 %, respectively while parotid fistula was present in 0.0 % and 6.3 %, respectively. This is basically in line with the meta-analysis by Al Moraisi et al (1, 2), who reported an average rate of TFNIs between 4.7 % (no exposure of the facial nerve) and 7.9 % (accidental exposure of the facial nerve). Al Moraisi, Ellis, Neff compared to 4.6–6.3 % for the anteroparotid approach (1, 2, 8). In striking contrast though, the rate of TFNPs for the angular approach was ≥ 0.9 %. To date, no PFNIs have been reported for the angular approach, which also applies for the anteroparotid approaches (1, 2).
The periangular skin incision is simple and can also be used in the traditional approaches associated with the high risk of PFNI. Low condylar-neck fractures is well suited as a replacement for rotid approach to the surgical management of condylar-base and approach is not well represented in the literature. From the risk condylar fractures, avoiding injury to the parotid gland, the periangular branches and the marginal mandibular branches of the facial nerve, thereby avoiding damage to that nerve.

However, it should be stressed that the high submandibular approach (i.e., the angular and periangular approach) is also potentially misleading when touted as “anteroparotid transmasseteric approach” (cf. e.g., Al Moraissi, Louvrier et al, 2018) and as such has been portrayed as potentially the safest way to approach the condylar-base and low condylar-neck fractures. The “anteroparotid transmasseteric” (i.e., utilizing full or at least subtotal section of the masseter muscle) approach should not be confused with the anteroparotid approach, which involves a limited incision into the masseteric muscle as in the transparotid approach. Therefore, to avoid confusion the transmasseteric anteroparotid approach should be more precisely termed the transmasseteric infraparotid approach (TMIP).

According to the meta-analysis by Al-Moraissi, Louvrier et al (1, 2) showing that the periangular/angular/perimandibular/high submandibular approach (viz. “transmasseteric infraparotid approach”, TMIP) is associated with lowest rate of TFNI (0–0.9 %) and permanent facial nerve injury (PFNI; 0 %) compared to other more popular approaches, the authors explained these results using the following reasoning: in most cases, direct visualization of the marginal mandibular branch of the facial nerve allows the surgeon direct visualizations of the bony fragments and orthogonal application of the plate(s) and screws, and the infraparotid approach avoids injury of the parotid gland. Further, because the TMIP approach employs the nerve-free window between the buccal branches and the marginal mandibular branches, it reduces the risk of FNI. Since the parotid capsule is not penetrated, the injury to the parotid gland is also minimized. A curved skin incision around the angle or parallel to the palpable mandibular angle as described by Meyer et al (15) shortens the distance between skin incision and bony fragments thus decreasing the traction on the associated soft tissues and creating a minimally visible periangular scar.

The extraoral, transcutaneous peri-angular approach has gained some popularity during the last decade (1, 2, 6, 7, 13, 15, 19, 20, 21). Despite the excellent results reported with regard to low incidences of FNI and injury of the parotid gland, the periangular approach is not well represented in the literature. From the risk assessment standpoint, the periangular transmasseteric infraparotid approach to the surgical management of condylar-base and low condylar-neck fractures is well suited as a replacement for the traditional approaches associated with the high risk of PFNI. The periangular skin incision is simple and can also be used in obese patients. The main advantages lie in the direct visualization of the marginal mandibular branch of the facial nerve in most cases, which is bypassed from above while avoiding traction on the nerve. The transmasseteric approach with its (sub)total transection of the masseter muscle reduces the hook traction and allows for direct visualizations of the fragments and easy placement of the plates, although the application of the screws becomes more oblique the higher the fracture is located. Furthermore, the infraparotid transmasseteric approach allows the surgeon to avoid injury of the parotid gland.

Conclusion

The results of the present retrospective study demonstrate that the periangular infraparotid transmasseteric approach is an effective and safe approach for ORIF of condylar-base and low condylar-neck fractures (1,6,7,13,19,20). As there is an abundance of confusing synonyms for this type of approach (angular, periangular, high submandibular approach), mostly referring to the skin incision variants, the authors propose replacing the potentially misleading term transmasseteric anteroparotid approach (TMAP) with transmasseteric infraparotid approach (TMIP) which describes the anatomical transection steps more precisely, thus avoiding the confusion associated with the term anteroparotid approach.

References

1. Al-Moraissi EA, Ellis E, Neff A. Does encountering the facial nerve during surgical management of mandibular condylar process fractures increase the risk of facial nerve weakness? A systematic review and meta-regression analysis. J Cranio-Maxillofac Surg 2018; 46 (8): 1223–1231.

2. Al-Moraissi EA et al. Does the surgical approach for treating mandibular condylar fractures affect the rate of seventh cranial nerve injuries? A systematic review and meta-analysis based on a new classification for surgical approaches. J Cranio-Maxillofac Surg 2018; 46 (3): 398–412.

3. Li J, Yang H, Han L. Open versus closed treatment for unilateral mandibular extra-capsular condylar fractures: a meta-analysis. J Cranio-Maxillofacial Surg 2019; 47 (7): 1110–1119.

4. Mercuri LG, Steinberg M J. Sequencing of care for multiple maxillofacial injuries. Principles of oral and maxillofacial surgery. Philadelphia: JB Lippincott Co, 1992: 615–622.

5. Eckelt U, Loukota RA. Fractures of the Mandibular Condyle-Approaches and Osteosynthesis. Eberl Medien 2017.

6. Schneider M et al. Open reduction and internal fixation versus closed treatment and mandibulomaxillary fixation of fractures of the mandibular condylar process: a randomized, prospective, multicenter study with special evaluation of fracture level. J Oral Maxillofac Surg 2008; 66 (12): 2537–2544.

7. Zrounba H et al. Epidemiology and treatment outcome of surgically treated mandibular condyle fractures. A five years retrospective study. J Cranio-Maxillofacial Surg 2014; 42 (6): 879–884.

8. Neff A et al. Position paper from the IBRA symposium on surgery of the head – the 2nd international symposium for condylar fracture osteosynthesis, Marseille, France 2012. J Cranio-Maxillofac Surg 2014; 42 (7): 1234–1249.
9. Blumer M et al. Outcome of surgically treated fractures of the condylar process by an endoscopic assisted transoral approach. J Oral Maxillofac Surg 2019; 77 (1): 133.e1–133.e9.

10. Rozeboom AVJ et al. Open treatment of condylar fractures via extraoral approaches: A review of complications. J Cranio-Maxillofac Surg 2018; 46 (8): 1232–1240.

11. Güerrissi JO. A transparotid transcutaneous approach for internal rigid fixation in condylar fractures. J Craniofac Surg 2002; 13 (4): 568–571.

12. Schoen R et al. Preliminary functional results of endoscope-assisted transoral treatment of displaced bilateral condylar mandible fractures. Internat J Oral Maxillofac Surg 2008; 37 (2): 111–116.

13. Imai T et al. Surgical approaches for condylar fractures related to facial nerve injury: deep versus superficial dissection. Internat J Oral Maxillofac Surg 2019; 48 (9): 1227–1234.

14. Li Z et al. Modified tragus edge approach for mid-level or low condylar fractures. Internat J Oral Maxillofac Surg 2016; 45 (9): 1100–1103.

15. Meyer C et al. Clinical experience with osteosynthesis of subcondylar fractures of the mandible using TCP plates. J Cranio-Maxillofac Surg 2008; 36 (5): 260–268.

16. Parihar VS et al. Retromandibular transparotid approach compared with transmasseteric anterior parotid approach for the management of fractures of the mandibular condylar process: a prospective randomised study. Brit J Oral Maxillofac Surg 2019; 57 (9): 880–885.

17. Pau M et al. Use of a modified high submandibular approach to treat condylar base fractures: experience with 44 consecutive cases treated in a single institution. J Cranio-Maxillofac Surg 2016; 44 (10): 1641–1645.

18. Rozeboom AVJ et al. Clinical outcomes in the treatment of unilateral condylar fractures: a cross-sectional study. Internat J Oral Maxillofac Surg 2018; 47 (9): 1132–1137.

19. Trost O, Trouilloud P, Malha G. Open reduction and internal fixation of low subcondylar fractures of mandible through high cervical transmasseteric anteroparotid approach. Brit J Oral Maxillofac Surg 2009; 67 (11): 2446–2451.

20. Wilson AW, Ethunandan M, Brennan PA. Transmasseteric anteroparotid approach for open reduction and internal fixation of condylar fractures. Brit J Oral Maxillofac Surg 2005; 43 (1): 57–60.

21. Boehle AP et al. Transoral vs. extraoral approach in the treatment of condylar neck fractures. J Cranio-Maxillofac Surg 2015; 43 (2): 224–231.

Received October 27, 2020.
Accepted December 5, 2020.