Association between NOS3 polymorphisms and osteonecrosis of the femoral head

Xiaodong Zhaoa*, Fuqiang Yanga*, Luwei Suna and Ali Zhangb

aDepartment of Orthopaedics, Weifang Traditional Chinese Hospital, Weifang, China; bDepartment of Orthopaedics, Eighty-ninth Hospital of the Chinese People’s Liberation Army, Weifang, China

\textbf{ABSTRACT}

\textbf{Purpose:} This study aimed to detect the association between nitric oxide synthase 3 (NOS3) gene polymorphisms (rs1799983 and rs3918181) and the susceptibility to osteonecrosis of the femoral head (ONFH).

\textbf{Methods:} Total 88 ONFH patients (55 non-traumatic ONFH and 33 traumatic ONFH) and 90 healthy controls were recruited in this case–control study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was adopted for genotyping NOS3 rs1799983 and rs3918181 polymorphisms. \chi^2 \text{ test was used to calculate differences in genotype and allele frequencies of NOS3 gene polymorphisms between the cases and controls. Relative risk of ONFH was represented using odds ratios (ORs) with corresponding 95\% confidence intervals (CIs).}

\textbf{Results:} The T allele of the polymorphism rs1799983 showed significantly different frequencies between ONFH patients and control groups (\(p = .046 \)) and carrying this allele significantly decreased the disease risk (OR = 0.521, 95\%CI = 0.272–0.997), especially for non-traumatic ONFH (OR = 0.408, 95\%CI = 0.179–0.929, \(p = .029 \)). But genotype frequencies of the polymorphism rs1799983 had no obvious difference between the compared two groups (\(p > .05 \) for all). There was no remarkable association between NOS3 rs3918181 polymorphism and NOFH risk (\(p > .05 \) for all).

\textbf{Conclusions:} NOS3 rs1799983 polymorphism is obviously associated with ONFH and its T allele may be a protective factor against ONFH occurrence in Chinese Han population.

\textbf{Introduction}

Osteonecrosis of the femoral head (ONFH), a common joint disease, is caused by the collapse of subchondral bones due to reduced blood supply to femoral head [1]. ONFH often occurs in individuals aged between 20 and 50 years old. This refractory diseases sees high disability rate [2]. Recent years, due to changes in lifestyle, alcoholism and wide applications of hormone drugs, the incidence of ONFH exhibits rising tendency [3]. However, the pathogenesis of ONFH has not been fully elucidated. Growing evidences have demonstrated that ONFH is a complex disease regulated by the combination of multiple factors [4], such as trauma, genetic factors [5], abuse of hormone drugs [6], and excessive drinking [7]. With advancements in molecular techniques, genetic factors have been generally accepted to play critical roles in the etiology of non-trauma ONFH [8]. A variety of genes have been confirmed to be involved in ONFH pathogenesis, such as MTHFR, CYP3A4, CYP2D6, CYP2C19, ABCB1/MDR1, and nitric oxide synthase 3 (NOS3) gene [9–12].

Endothelial nitric oxide synthase (eNOS) encoded by NOS3 gene is mainly produced by vascular endothelial cells. eNOS is responsible for the synthesis and release of nitric oxide (NO). It promotes angiectasis and inhibits platelet aggregation [13]. Polymorphisms in NOS3 gene can influence the expression and structure of the protein, thus impairing enzyme activity. The dysregulation of eNOS increases vascular tension, which damages angiogenesis ability, increases blood clots risk, and reduces bone mineral density [14]. NOS3 gene polymorphisms show close associations with several diseases caused by vascular lesions, such as acute myocardial infarction, essential hypertension, coronary heart disease and avascular necrosis of femoral head [15–18].

Given close relationship between blood supply and ONFH, we speculated that NOS3 gene polymorphisms might influence individual susceptibility to ONFH. The present study was designed to explore genetic association of NOS3 gene polymorphisms (rs1799983 and rs3918181) with ONFH risk in a Chinese Han population.

\textbf{Materials and methods}

\textbf{Study subjects}

Our study included 88 ONFH patients who were diagnosed through clinical examination and X-ray detection in
Eighty-ninth Hospital of the Chinese People’s Liberation Army. According to pathogenic factors, the patients were divided into two groups: non-traumatic ONFH (55) and traumatic ONFH (33). Non-traumatic ONFH was caused by environmental factors, such as glucocorticoid induction, chemotherapy or alcohol poisoning. The healthy individuals (90) who received health check-ups in the physical examination center of Eighty-ninth Hospital of the Chinese People’s Liberation Army were categorized into the control group. The controls had no disease or malignancy histories. All the individuals were Chinese Han population, and had no blood association with each other. This study was granted by the Ethics Committee in Eighty-ninth Hospital of the Chinese People’s Liberation Army. Besides, data collection and blood sampling were approved by all the participants, following the regulations of the ethics.

Blood DNA extraction

A total of 5 mL peripheral blood was collected for every participant, and processed with EDTA. Genome DNA was extracted from these blood specimens using DNA extraction kit (TianGen, Beijing, China) according to the manufacturer’s instructions. Then, the obtained DNA samples were stored at −20 °C fridge.

Genotyping

In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for genotyping eNOS polymorphisms. According to corresponding base sequences for NOS3 rs1799983 and rs3918181 polymorphisms in GenBank database, we employed Primer Premier 5.0 software to design PCR primers. Primer information of each polymorphism was shown in Table 1.

SNP	Primer sequence	Tm (°C)	Restriction enzyme	Restriction fragment
rs1799983	F: 5'-CATAGGCTCACCCCCAGAA-3'	60	Sdul	TT: 206 bp;
	R: 5'-AGTCATCCCTTGTGGCTC-3'			GG: 124 bp;
				GT: 206 bp;
				AA: 216 bp;
				AG: 216 bp, 150bp, 66bp
rs3918181	F: 5'-CAACAGTGAGGTAATCTCA-3'	60	Rsal	AG: 216 bp, 150bp, 66bp

Genotype analysis

Restriction enzymes were adopted to digest the obtained PCR amplification products. Total volume of digested system was 20 μL, including restriction enzyme 2 μL, PCR products 10 μL, 10× Buffer 2 μL, and ddH2O 6 μL. The digested system were blended at 37 °C with water bath overnight. Later, 4 μL digested products were detected with 2% agarose gel electrophoresis.

Statistical analysis

SPSS 18.0 statistical software was applied for data calculations. Continuous variables were expressed as x ± S. Hardy–Weinberg equilibrium (HWE) was used to check genetic equilibrium goodness for the control group. χ² test and Fisher’s exact test were taken to examine the frequencies of genotypes and alleles of NOS3 gene polymorphisms (rs1799983 and rs3918181) in the two groups. Odds ratios (ORs) with 95% confidence intervals (95%CIs) were utilized to represent relative risk of ONFH. p < .05 means statistical significance.

Results

HWE examination

Relevant result showed that for rs1799983 and rs3918181, genotype distribution in the controls were all consistent with HWE, suggesting the good representativeness of the study population.

Analysis of clinical information for the cases

As shown in Table 2, there was no significant differences in gender or age distribution between the non-traumatic ONFH patients and traumatic ONFH patients (p > .05 for both). In addition, the two groups did not show statistical differences in smoking, diabetes, coronary heart disease, thrombosis, hypertension or hyperlipidemia (p > .05 for all).

Analysis of allele frequencies of NOS3 polymorphisms

The frequency of the T allele of NOS3 rs1799983 polymorphism was apparently higher in the controls than in the cases (p = .046), indicating this allele might be correlated with decreased risk of ONFH (OR = 0.521, 95%CI = 0.272–0.997). Additionally, the frequency of the T allele was also significantly higher in controls than in non-traumatic ONFH (p = .029), but not in traumatic ONFH, which demonstrated that T
NOS3 polymorphisms and ONFH susceptibility. Similar results were observed for non-traumatic and traumatic ONFH \(p > .05 \), Table 4. When it came to genotype frequencies of the rs3918181 polymorphism, no apparent difference was detected between the two groups either \(p > .05 \), Table 4.

Discussion

ONFH is characterized by the death of osteocytes and bone marrow. This recalcitrant disease could lead to the destruction of the hip joint. The main cause of ONFH is blood supply insufficiency in local femoral head, which promotes bone tissue necrosis and eventually leads to bone cortex collapse and cartilage damage. According to its causes, ONFH could be divided into traumatic and non-traumatic sub-types. Major risk factors for ONFH include fracture, drinking and hormone application [19–22].

Until now, the replacement of artificial hip joint represents an effective way to relieve pain and improve joint functions among ONFH cases. However, artificial joint costs highly, with limited service life time [23]. ONFH has brought about serious torment and heavy financial burden to the patients. Therefore, early diagnosis and prevention are critical ways for the settlement of ONFH. However, due to unclear etiology, it is difficult to realize such operations in clinic. As we all know, not all of the individuals exposing to risk factors would eventually subject to ONFH. This phenomenon is determined by individual susceptibility which is closely related to genetic information. DNA is the basic carrier of human genetic information whose characteristics cannot be changed along with either time or space. Gene polymorphism is an important reason for differences in individual susceptibility to diseases, and single nucleotide polymorphism (SNP) stands for a most common form [24–28].

To our knowledge, NO, an important signal molecule in blood vessel, participates in the process of coagulation, fibrinolysis, revascularization and thrombosis, and plays a vital role in anti-inflammation, antioxidant and the prevention of the settlement of ONFH. However, due to unclear etiology, it is difficult to realize such operations in clinic. As we all know, not all of the individuals exposing to risk factors would eventually subject to ONFH. This phenomenon is determined by individual susceptibility which is closely related to genetic information. DNA is the basic carrier of human genetic information whose characteristics cannot be changed along with either time or space. Gene polymorphism is an important reason for differences in individual susceptibility to diseases, and single nucleotide polymorphism (SNP) stands for a most common form [24–28].
impose critical impacts on osteoarticular diseases. eNOS encoded by NOS3 gene may influence the synthesis of NO. Besides, alterations in NOS3 gene may cause cardiovascular disease and bone disease [34–36]. In human beings, NOS3 gene is located on the 7th chromosome q36 with 29 exons and 28 introns, encoding 1203 amino acids. Studies have found several SNPs in NOS3 gene, such as T-786C and A-922G in the promoter region, and Glu298Asp in exon 7 [37–39]. In this study, we analyzed the association of NOS3 gene rs1799983 and rs3918181 polymorphisms with the susceptibility to ONFH.

We found that the T allele of rs1799983 was significantly less frequent in ONFH patients than in healthy controls, suggesting the T allele might act as a protective factor against the occurrence of ONFH. Additionally, the T allele also decreased the risk of non-traumatic ONFH by 0.408 fold, but not for traumatic ONFH. Genotypes of the polymorphism rs1799983 had no significant association with the susceptibility to ONFH. Meanwhile, the genotypes and alleles of rs3918181 SNP were not related to the development of ONFH either.

Age and gender showed no obvious differences among non-traumatic and traumatic ONFH patients and healthy controls. Genotype distributions of the two SNPs did not deviate from HWE in controls. All of the results guaranteed the representativeness of the controls. However, the simple size in this study was small, and final results were not adjusted. So well-designed studies are necessary to further explore the pathogenesis of ONFH.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Mouzas OD, Zibis AH, Bonotis KS, et al. Psychological distress, personality traits and functional disability in patients with osteonecrosis of the femoral head. J Clin Med Res. 2014;6:336–344.
[2] van der Jagt D, Mokete L, Pietrzak J, et al. Osteonecrosis of the femoral head: diagnosis and classification systems. Curr Rev Musculoskel Disorder. 2013;14:264.
[3] Chamberlain JR, Schwarze U, Wang PR, et al. Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science. 2004;303:1198–1201.
[4] Choi HR, Steinberg ME, Y Cheng E. Osteonecrosis of the femoral head: diagnosis and classification systems. Curr Rev Musculoskelet Med. 2015;8:210–2.
[5] Wang L, Pan H, Zhu ZA. A genetic pedigree analysis to identify gene mutations involved in femoral head necrosis. Mol Med Report. 2014;10:1835–1838.
[6] Xue Y, Zhao ZQ, Hong D, et al. MDRI gene polymorphisms are associated with glucocorticoid-induced avascular necrosis of the femoral head in a Chinese population. Genet Test Mol Biomarker. 2014;18:196–201.
[7] Guo JL, Qu CY, Bai F, et al. [Relations between alcoholism and osteoporosis or femoral head necrosis]. Zhonghua Liu Xing Bing Xue za Zhi = Zhonghua Liuxingbingxue Zazhi. 2013;34:732–735.
[8] Gagala J, Buraczyńska M, Mazurkiewicz T, et al. Prevalence of genetic risk factors related with thrombophilia and hypofibrinolysis in patients with osteonecrosis of the femoral head in Poland. BMC Musculoskelet Disorder. 2013;14:264.
[9] Chai W, Zhang Z, Ni M, et al. Genetic association between methyl-enetraterohydrolate reductase gene polymorphism and risk of osteonecrosis of the femoral head. BioMed Res Int. 2015;2015:1.
[10] Fujikoa M, Ariai Y, Kunitabayashi M, et al. [Genetic analysis for prevention of steroid-induced osteonecrosis of the femoral head]. ClinCalc. 2007;17:894–900.
[11] Zhou Z, Hua Y, Liu J, et al. Association of ABCB1/MDR1 polymorphisms in patients with glucocorticoid-induced osteonecrosis of the femoral head: evidence for a meta-analysis. Gene. 2015;569:34–40.
[12] Wang J, Kalthor A, Lu S, et al. iNOS expression and osteocyte apoptosis in idiopathic, non-traumatic osteonecrosis. Acta Orthop. 2015;86:134–141.
[13] Zalavras C, Shah S, Birnbaum MJ, et al. Role of apoptosis in glucocorticoid-induced osteoporosis and osteonecrosis. Crit Rev Eukaryot Gene Exp. 2003;13:221–235.
[14] Albrecht EW, Stegeman CA, Heeringa P, et al. Protective role of endothelial nitric oxide synthase. J Pathol. 2003;199:8–17.
[15] Machado-Silva W, Alfinito-Kreis R, Carvalho LS, et al. Endothelial nitric oxide synthase genotypes modulate peripheral vasodilatory properties after myocardial infarction. Gene. 2015;568:165–169.
[16] Gamil S, Erdmann J, Abdalrahman IB, et al. Association of NOS3 gene polymorphisms with essential hypertension in Sudanese patients: a case control study. BMC Med Genet. 2017;18:128.
[17] Fang C, Ren X, Zhou H, et al. Effects of eNOS rs1799983 and ACE rs4646994 polymorphisms on the therapeutic efficacy of salvianolate injection in Chinese patients with coronary heart disease. Clin Exp Pharmacol Physiol. 2014;41:558–564.
[18] Zheng L, Wang W, Ni J, et al. The association of eNOS gene polymorphism with atherosclerosis of femoral head. PLoS One. 2014;9:e87583.
[19] Riley PM Jr. Morscher MA, Gothard MD Sr, et al. Earlier time to reduction did not reduce rates of femoral head osteonecrosis in pediatric hip fractures. J Orthop Trauma. 2015;29:231–238.
[20] Gani D, Zhang C. [Research progress of alcohol-induced osteonecrosis of femoral head]. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiu fu chong jian wai ke za zhi. 2015;37:365–368.
[21] Fukushima W, Yamamoto T, Takahashi S, et al. The effect of alcohol intake and the use of oral corticosteroids on the risk of idiopathic osteonecrosis of the femoral head: a case-control study in Japan. Bone Joint J. 2013;95-B:320–325.
[22] Felten R, Messer L, Moreau P, et al. Osteonecrosis of the femoral head linked to topical steroids for skin bleaching: a case report. Ann Intern Med. 2014;161:763–764.
[23] Wang C, Peng J, Lu S. Summary of the various treatments for osteonecrosis of the femoral head by mechanism: a review. Exp Therapeud Med. 2014;8:700–706.
[24] Chen Y, Zheng ZZ, Huang R, et al. PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis. Neurobiol Aging. 2013;34:1922 e1–1925.
[25] Akgul SU, Oguz FS, Čalı̇skan Y, et al. The effect of glutathion S-transferase polymorphisms and anti-GSTT1 antibodies on allograft properties after myocardial infarction. Gene. 2015;568:165–169.
[26] Sambasivan V, Murthy KJ, Reddy R, et al. P2X7 gene polymorphisms and risk assessment for pulmonary tuberculosis in Asian Indians. Disease Markers. 2010;28:43–48.
[27] Pabst S, Yenice V, Lennarz M, et al. Toll-like receptor 2 gene polymorphisms Arg677Trp and Arg753Gln in chronic obstructive pulmonary disease. Lung. 2009;187:173–188.
[28] Cui Y, Kaisaierjiang A, Cao P, et al. Association of apolipoprotein A5 genetic polymorphisms with steroid-induced osteonecrosis and osteoporosis. Crit Rev Eukaryot Gene Exp. 2003;13:221–235.
[29] Dias RG, Negrao CE, Krieger MH. Nitric oxide and the cardiovascular system: cell activation, vascular reactivity and genetic variant. Arquivos Brasileiros de Cardiologia. 2011;96:68–75.

Forstmann U. Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO
synthesis and its pharmacological reversal. Biol Chem. 2006;387:1521–1533.

[31] Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003;9:1370–1376.

[32] Samuels A, Perry MJ, Gibson RL, et al. Role of endothelial nitric oxide synthase in estrogen-induced osteogenesis. Bone. 2001;29:24–29.

[33] Lagumdzija A, Ou G, Petersson M, et al. Inhibited anabolic effect of insulin-like growth factor-I on stromal bone marrow cells in endothelial nitric oxide synthase-knockout mice. Acta Physiol Scand. 2004;182:29–35.

[34] Luo JQ, Wen JG, Zhou HH, et al. Endothelial nitric oxide synthase gene G894T polymorphism and myocardial infarction: a meta-analysis of 34 studies involving 21,068 subjects. PloS One. 2014;9:e87196.

[35] Vecoli C. Endothelial nitric oxide synthase gene polymorphisms in cardiovascular disease. Vitamins Hormones. 2014;96:387–406.

[36] Singh M, Singh P, Singh S, et al. A susceptibility haplotype within the endothelial nitric oxide synthase gene influences bone mineral density in hypertensive women. J Bone Miner Metab. 2014;32:580–587.

[37] Kim HS, Bae SC, Kim TH, et al. Endothelial nitric oxide synthase gene polymorphisms and the risk of osteonecrosis of the femoral head in systemic lupus erythematosus. Int Orthopaedics (Sicot). 2013;37:2289–2296.

[38] Turkanoglu Ozcelik A, Can Demirdogen B, Demirkaya S, et al. Importance of NOS3 genetic polymorphisms in the risk of development of ischemic stroke in the Turkish population. Genet Test Mol Biomarker. 2014;18:797–803.

[39] Ma HX, Xie ZX, Niu YH, et al. (Single nucleotide polymorphisms in NOS3 A-922G, T-786C and G894T: a correlation study of the distribution of their allelic combinations with hypertension in Chinese Han population). Yi chuan = Hereditas/Zhongguo yi chuan xue hui bian ji. 2006;28:3–10.