SMN2 gene

survival of motor neuron 2, centromeric

Normal Function

The *SMN2* gene provides instructions for making the survival motor neuron (SMN) protein. The SMN protein is found throughout the body, with highest levels in the spinal cord. This protein is one of a group of proteins called the SMN complex, which is important for the maintenance of specialized nerve cells called motor neurons. These cells are located in the spinal cord and the part of the brain that is connected to the spinal cord (the brainstem). Motor neurons transmit signals from the brain and spinal cord that tell skeletal muscles to tense (contract), which allows the body to move.

Several different versions of the SMN protein are produced from the *SMN2* gene, but only one version (called isoform d) is full size and functional. The other versions are smaller and quickly broken down. The full-size protein made from the *SMN2* gene is identical to the protein made from a similar gene called *SMN1*; however, only 10 to 15 percent of all functional SMN protein is produced from the *SMN2* gene (the rest is produced from the *SMN1* gene). Typically, people have two copies of the *SMN1* gene and one to two copies of the *SMN2* gene in each cell. However, the number of copies of the *SMN2* gene varies, with some people having up to eight copies. The more *SMN2* gene copies a person has, the more SMN protein they produce.

In cells, the SMN complex plays an important role in processing molecules called messenger RNA (mRNA), which serve as genetic blueprints for making proteins. Messenger RNA begins as a rough draft (pre-mRNA) and goes through several processing steps to become a final, mature form. The SMN complex helps to assemble the cellular machinery needed to process pre-mRNA. The SMN complex is also important for the development of specialized outgrowths from nerve cells called dendrites and axons. Dendrites and axons are required for the transmission of impulses between neurons and from neurons to muscles.

Health Conditions Related to Genetic Changes

Spinal muscular atrophy

Extra copies of the *SMN2* gene do not cause spinal muscular atrophy, but they modify the severity of the disorder. This condition is characterized by a loss of motor neurons that leads to weakness and wasting (atrophy) in muscles used for movement (skeletal muscles) that worsens with age. Spinal muscular atrophy has a wide range of severity. There are many types of spinal muscular atrophy that differ in age of onset and level of muscle functioning; however, there is overlap among the types. All individuals with spinal muscular atrophy have mutations in both copies of the
SMN1 gene. As a result, little or no SMN protein is produced from this gene. The SMN2 gene can help replace some of the missing SMN protein. In people with spinal muscular atrophy, having multiple copies of the SMN2 gene is usually associated with less severe features of the condition that develop later in life. Affected individuals with one or two functional copies of the SMN2 gene generally have severe muscle weakness that begins at birth or in infancy. Affected individuals with four or more copies of the SMN2 gene typically have mild muscle weakness that may not become noticeable until adulthood. Other factors, many unknown, also contribute to the variable severity of spinal muscular atrophy.

Researchers suggest that a shortage of SMN protein leads to the inefficient assembly of the machinery needed to process pre-mRNA. A lack of mature mRNA and subsequently, the proteins needed for normal cell functioning, has damaging effects on motor neuron development and survival. The loss of motor neurons leads to the signs and symptoms of spinal muscular atrophy. However, it is unclear why these cells are particularly sensitive to a reduction in the amount of SMN protein. Some research findings indicate that a shortage of SMN protein impairs the formation and function of axons and dendrites, leading to the death of motor neurons. While the mechanism is not clear, it is apparent that increased SMN2 gene copy number leads to an increase in SMN protein production, which improves the function and survival of motor neurons and results in less severe disease.

Chromosomal Location

Cytogenetic Location: 5q13.2, which is the long (q) arm of chromosome 5 at position 13.2

Molecular Location: base pairs 70,049,523 to 70,077,595 on chromosome 5 (Homo sapiens Updated Annotation Release 109.20200228, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- BCD541
- C-BCD541
- centromeric SMN
• SMN_HUMAN
• SMNC

Additional Information & Resources

Educational Resources
• Madame Curie Bioscience Collection: Proteins that Help with the Formation of RNA-Protein Complexes
 https://www.ncbi.nlm.nih.gov/books/NBK6016/#A43536
• Molecular Biology of the Cell (4th edition, 2002): The Nucleus Contains a Variety of Subnuclear Structures
 https://www.ncbi.nlm.nih.gov/books/NBK26887/#A1048

Clinical Information from GeneReviews
• Spinal Muscular Atrophy
 https://www.ncbi.nlm.nih.gov/books/NBK1352

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28SMN2%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1440+days%22+AND+human%5Bmh%5D+AND+human%5Bmh%5D+AND+human%5Bmh%5D+AND+human%5Bmh%5D

Catalog of Genes and Diseases from OMIM
• SURVIVAL OF MOTOR NEURON 2
 http://omim.org/entry/601627

Research Resources
• ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=SMN2%5Bgene%5D
• HGNC Gene Symbol Report
 https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:11118
• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:6607
• NCBI Gene
 https://www.ncbi.nlm.nih.gov/gene/6607
• UniProt
 https://www.uniprot.org/uniprot/Q16637
Sources for This Summary

- Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet. 2006 Jan;78(1):63-77. Epub 2005 Nov 16.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16385450
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1380224/

- Farrar MA, Kiernan MC. The Genetics of Spinal Muscular Atrophy: Progress and Challenges. Neurotherapeutics. 2015 Apr;12(2):290-302. doi: 10.1007/s13311-014-0314-x. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25413156
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4404441/

- Fuller HR, Gillingwater TH, Wishart TM. Commonality amid diversity: Multi-study proteomic identification of conserved disease mechanisms in spinal muscular atrophy. Neuromuscul Disord. 2016 Sep;26(9):560-9. doi: 10.1016/j.nmd.2016.06.004. Epub 2016 Jun 7. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27460344

- Gubitz AK, Feng W, Dreyfuss G. The SMN complex. Exp Cell Res. 2004 May 15;296(1):51-6. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15120993

- Kolb SJ, Battle DJ, Dreyfuss G. Molecular functions of the SMN complex. J Child Neurol. 2007 Aug;22(8):990-4. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17761654

- Prior TW, Krainer AR, Hua Y, Swoboda KJ, Snyder PC, Bridgeman SJ, Burghes AH, Kissel JT. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am J Hum Genet. 2009 Sep;85(3):408-13. doi: 10.1016/j.ajhg.2009.08.002. Epub 2009 Aug 27.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19716110
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771537/

- Prior TW, Swoboda KJ, Scott HD, Hejmanowski AQ. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am J Med Genet A. 2004 Oct 15;130A(3):307-10.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15378550
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349519/

- Wirth B, Brichta L, Schrank B, Lochmüller H, Blick S, Baasner A, Heller R. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet. 2006 May;119(4):422-8. Epub 2006 Mar 1.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16508748

Reprinted from Genetics Home Reference:
https://ghr.nlm.nih.gov/gene/SMN2

Reviewed: October 2018
Published: May 26, 2020
