Asymptotic optimal location of facilities in a competition between population and industries

GIUSEPPE BUTTAZZO, FILIPPO SANTAMBROGIO AND EUGENE STEPANOV

Abstract. We consider the problem of optimally locating a given number k of points in \mathbb{R}^n for an integral cost function which takes into account two measures φ^+ and φ^-. The points represent for example new industrial facilities that have to be located, the measure φ^+ representing in this case already existing industries that want to be close to the new ones, and φ^- representing private citizens who want to stay far away. The asymptotic analysis as $k \to \infty$ is performed, providing the asymptotic density of optimal locations.

Mathematics Subject Classification (2010): 49Q20 (primary); 49Q10 (secondary).

1. Introduction

A typical problem in facility location can be mathematically described through the choice of a given number of points in a domain so as to minimize an “average distance” criterion, the average being computed with respect to a measure φ. More precisely, for every subset $\Sigma \subset \mathbb{R}^n$ define

$$F(\Sigma) := \int_{\mathbb{R}^n} \text{dist}(x, \Sigma) \, d\varphi(x),$$

where $\text{dist}(x, \Sigma) := \inf_{y \in \Sigma} d(x, y)$ is the distance between x and Σ. In this paper we study the following problem.

Problem 1.1. Find a $\Sigma = \Sigma_{opt} \subset \mathbb{R}^n$ minimizing the functional F among all sets $\Sigma \subset \mathbb{R}^n$ satisfying $\# \Sigma \leq k$. In other words, denoting by \mathcal{A}_k the set of admissible Σ, i.e.

$$\mathcal{A}_k := \{ \Sigma \subset \mathbb{R}^n : \# \Sigma \leq k \},$$

The support of the projects EVaMEF ANR-09-JCJC-0096-01 and ANR-07-BLAN-0235 OTARIE is acknowledged. The work of the third author was also financed by GNAMPA and by RFBR grant #11-01-00825. The work of the first and the third author is part of the project 2008K7Z249 “Trasporto ottimo di massa, disuguaglianze geometriche e funzionali e applicazioni”, financed by the Italian Ministry of Research.

Received March 29, 2011; accepted in revised form July 6, 2011.