ABSTRACT

Stem cell therapy is the use of stem cells to treat or prevent disease or condition. Stem cell therapy is emerging as a potent new way to treat disease and injury with wide range medical benefits. Research is underway to develop various sources for stem cells and to apply stem cell treatment for neurodegenerative diseases and conditions diabetes, heart diseases and other conditions. However, stem cells therapy produce many ethical and scientific questions that are to be solved. Nevertheless, stem cells therapy, a preamble to research of cell based therapeutics, will one day restore the functionality of the formerly unabled people, is yet to be unveiled.

Keywords: SC- stem cell, MSCs- multi potent mesenchymal stromal cells, ES cells- embryonic stem cells, HIV -human immunodeficiency virus type-1.
INTRODUCTION

Stem cell therapy is the use of stem cells to treat or prevent a disease or a condition. Stem cell therapy has become controversial following development such as ability of scientists to isolate and culture embryonic cells, to create stem cells using somatic cell nuclear transfer and their use of techniques to create induced pluripotent stem cells. Stem cells are distinctive and versatile type of cells that can divide indefinitely and have unique capacity to renew themselves and to give rise to specialized cell types. Researchers, for years have looked for a way to use stem cells to replace damaged cells. Thus, human stem cells hold the promise to repair and replace cells that were once destroyed or diseased and also help the disabled to be abled again.

History

The history of stem cells had a benign, embryonic beginning in the 1800’s with the discovery that some cells could generate other cells. In early 1900’s the first real stem cells were discovered. It was seen that some cells generated blood cells. The term ‘STEM CELLS’ was proposed by Russian histologist Alexander Maxsimov in 1908. Bone marrow transplant between two siblings successfully treated SCID in 1968. James Thomson and co-workers derived the first human embryonic stem cell line at university of Wisconsin in 1998. More recently, in 2005, scientists at Kingston University in England were purported to have found another category of stem cells. These were named cord blood embryonic-like stem cells, which originate in umbilical cord blood. Korean researcher Hwang Woo-Suk (2004–2005) claimed to have created several human embryonic stem cell lines from unfertilized human oocytes.

Stem cells:

A stem cell is a cell that has the ability to divide (self-replicate) for indefinite periods often throughout the life of the organism. Under the right conditions, or given the right signals, stem cells have the potential to develop into mature cells that have characteristic shapes and specialized functions, such as heart cells, skin cells, or nerve cells.
A stem cell is a non-specialized, generic cell which can make exact copies of itself indefinitely and can differentiate and produce specialized cells for the various tissues of the body. Stem cells are cells found in most, if not all, multi-cellular organisms. They are characterized by self-renewal and potency i.e. the ability to renew themselves through mitotic cell division and differentiating into a diverse range of specialized cell types. They are vital to the development, growth, maintenance, and repair of our brains, bones, muscles, nerves, blood, skin, and other organs.

CLASSIFICATION OF STEM CELLS ON BASIS OF SOURCE:

1) Embryonal stem cell
2) Adult stem cell

Figure 1: stem cell as a pluripotent cell

Figure 2: sources of stem cells
EMBRYONIC STEM CELLS
They are derived from embryos (blastocyst) that develop from eggs that have been fertilized in vitro—in an in vitro fertilization clinic—and then donated for research purposes with informed consent of the donors15,16.
Embryonic stem cells are self-replicating pluripotent cells that are potentially immortal17. They are derived from embryos at a developmental stage before the time of implantation would normally occur in the uterus13. The embryos from which human embryonic stem cells are derived are typically four or five days old and are a hollow microscopic ball of cells called the blastocyst8.

ADULT STEM CELLS
Adult stem cells are undifferentiated totipotent or multipotent cells, found throughout the body after embryonic development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. (Fig.-4). The primary roles of adult stem cells in a living organism are to maintain and repair the tissue in which they are found. Unlike embryonic stem cells, which are defined by their origin (the inner cell mass of the blastocyst), the origin of adult stem cells in some mature tissues is still under investigation3.

![Figure 3: General hierarchy for the stem cell niche](image-url)
Figure 4: Sources of adult stem cells

Adult stem cells have been identified in many organs and tissues, including brain, bone marrow, peripheral blood, blood vessels, skeletal muscle, skin, teeth, heart, gut, liver, ovarian epithelium, and testis. They are thought to reside in a specific area of each tissue called a “stem cell niche”. In many tissues, current evidence suggests that some types of stem cells are pericytes, cells that compose the outermost layer of small blood vessels. Stem cells may remain quiescent (non-dividing) for long periods of time until they are activated by a normal need for more cells to maintain tissues, or by disease or tissue injury.

CLASSIFICATION OF STEM CELLS ON THE BASIS OF POTENCY

Stem cells can be classified by the extent to which they can differentiate into different cell types. These four main classifications are totipotent, pluripotent, multipotent, or unipotent.

Totipotent

The ability to differentiate into all possible cell types. Examples are the zygote formed at egg fertilization and the first few cells that result from the division of the zygote.

Pluripotent

The ability to differentiate into almost all cell types. Examples include embryonic stem cells and cells that are derived from the mesoderm, endoderm, and ectoderm germ layers that are formed in the beginning stages of embryonic stem cell differentiation. Scientists have engineered these induced pluripotent stem cells (iPS cells) by manipulating the expression of certain genes - 'reprogramming' somatic cells back to a pluripotent state.

Multipotent

The ability to differentiate into a closely related family of cells. Examples include hematopoietic (adult) stem cells that can become red and white blood cells or platelets.

Oligopotent
The ability to differentiate into a few cells. Examples include (adult) lymphoid or myeloid stem cells.

Unipotent
The ability to only produce cells of their own type, but have the property of self-renewal required to be labeled a stem cell. Examples include (adult) muscle stem cells.

PROPERTIES OF STEM CELL
1. They are unspecialized,
2. They are capable of continuous self-renewal,
3. They can give rise to specialized cell types20,21.
4. Stem cells can divide either symmetrically (allowing the increase of stem cell number) or asymmetrically. Asymmetric divisions keep the number of stem cells unaltered and are responsible for the generation of cells with different properties.
These cells can either multiply (progenitors or transit amplifying cells) or be committed to terminal differentiation. Progenitors and transit amplifying cells have a limited lifespan and therefore can only

![Figure 3: Process of Stem Cell Division](image)

(A: Stem cell; B: Progenitor cell; C: Differentiated cell .1: Symmetric division-give rise to two stem cells; 2: Asymmetric division- forms one stem and one progenitor cell ; 3:Progenitor division: gives rise to progenitor cells ; 4:Terminal differentiation)
Reconstitute a tissue for a short period of time when transplanted. In contrast, stem cells are self-renewing and thus can generate any tissue for a lifetime. This is a key property for a successful therapy and use in Regenerative medicine. Fig.no. 5 shows the process of stem cell division and differentiation where A is the Stem cell, B is the Progenitor cell and C is the Differentiated cell. First symmetric division gives rise to two stem cells, second asymmetric division forms one stem and one progenitor cell, third progenitor division gives rise to progenitor cells while the fourth is the terminal differentiation\(^2\).

Adult stem cells are believed to reside in a specific area of each tissue, i.e., a “stem cell niche”. Many types of adult stem cells reside in several mesenchymal tissues, and these cells are collectively referred to as mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs)\(^2\).

APPLICATIONS OF STEM CELLS RECENT & FUTURE:

Knowledge about stem cell science and their potential applications has been accumulating for more than 30 years. Limited types of stem cell therapies are already in use.

The most well-known therapy is the stem cell transplant (a form of a bone marrow transplant) for cancer patients. But it has been only recently that scientists have understood stem cells well enough to consider the possibilities of growing them outside the body for long periods of time. Today stem cells have found applications in varying area of Medicine ranging from therapeutics to replacement of lost tissues\(^2\).

1. SKIN REPLACEMENT

The knowledge of stem cells has made it possible for scientists to grow skin from a patient’s plucked hair. Skin (keratinocyte) stem cells reside in the hair follicle and can be removed when a hair is plucked\(^2\). These cells can be cultured to form an epidermal equivalent of the patients own skin and provides tissue for an autologous graft, by passing the problem of rejection.

2. BRAIN CELL TRANSPLANTATION

Stem cells can provide dopamine – a chemical lacking in victims of Parkinson’s disease. It involves the loss of cells which produce the neurotransmitter dopamine. The first double-blind study of fetal cell transplants for Parkinson’s disease reported survival and release of dopamine from the transplanted cells and a functional improvement of clinical symptoms\(^2\). However, some patients developed side effects, which suggested that there was an over sensitization to or too much dopamine. Although the unwanted side effects were not anticipated, the success of the experiment at the cellular level is significant.

3. STEM CELLS AND DIABETES
For decades, diabetes researchers have been searching for ways to replace the insulin-producing cells of the pancreas that are destroyed by a patient’s own immune system. Recently, hope for a permanent cure of diabetes has appeared, namely, the transplantation of islets isolated from donor pancreata into the livers of diabetic patients. Some promising results have already been obtained with embryonic stem cells (ES cells) of both rodent and human origin. However, the potential use of ES cells for the treatment of diseases in humans is be clouded in controversy because of the ethical issues. In theory, embryonic stem cells could be cultivated and coaxed into developing into the insulin-producing islet cells of the pancreas. It is concluded that stem cells offer the greatest potential for the development of an abundant source of pancreatic islets, although specific obstacles must be overcome before this can become a reality.

4. STEM CELL THERAPY FOR HIV

The hematopoietic stem cell has long been hypothesized to be a target of human immunodeficiency virus type-1 (HIV) infection that limits the potential for compensatory immune cell production. Data have recently emerged documenting stem cell dysfunction in HIV disease and indicating that immune recovery from potent antiretroviral therapy is partly driven by new T-cell generation. Effects of HIV on stem cell physiology, however, appear to be indirect, as stem cells are highly resistant to HIV infection. Despite the presence of surface receptors for HIV, the hematopoietic stem cell is not infectible with HIV and can serve as a resource for cellular therapies for AIDS.

5. TREATMENT OF HEART DISEASE

A few small studies have also been carried out in humans, usually in patients who are undergoing open-heart surgery. Several of these have demonstrated that stem cells that are injected into the circulation or directly into the injured heart tissue appear to improve cardiac function and/or induce the formation of new capillaries. The mechanism for this repair remains controversial, and the stem cells likely regenerate heart tissue through several pathways. However, the stem cell populations that have been tested in these experiments vary widely, as do the conditions of their purification and application. Although much more research is needed to assess the safety and improve the efficacy of this approach, these preliminary clinical experiments show how stem cells may one day be used to repair damaged heart tissue, thereby reducing the burden of cardiovascular disease.

CONCLUSION:

We conclude that ongoing research on stem cell therapies gives hope to patients who would normally not receive treatment to cure their disease. The stem cell data presented raise the hope that important
medical progress can be made in several fields: neuro-degenerative diseases, those linked to cellular deficit, some aspects of aging linked to cellular degeneration.

A silhouette of the potential use of stem cells for the treatment of human disease is now perceptible. Documentation of complete history of the cells, and their characterization, for use in therapy is essential to safeguard against potential risks of biological therapy. This is particularly important when human Embryonic/somatic Stem Cells are used for this purpose. The field of medicine caters to wide range of diseases, disorders and congenital defects along with cases of trauma which may result in single or multi-organ failures.

Current alternative approaches to treatment of these diseases and defects incorporate the use of stem cells from the patient himself. More recently use of stem cells have been found to be useful in the research area allowing the scientists to develop models for studying human biology, pathology and genetics.

The coming years will undoubtedly user in new developments and technologies that would translate the envisioned therapeutic potential of stem cells to bedside medicine for patients suffering from devastating and debilitating diseases.

REFERENCES:

1. Mahla R.S. et al., Stem Cells Applications in Regenerative Medicine and Disease Therapeutics, open access article International Journal of Cell Biology, March 2016,1- 24.
2. Marina E. Emborg et al., Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain, open access Cell Reports 3, March, 2013, 646–650.
3. MP King N, Perrin J. Ethical issues in stem cell research and therapy. Stem Cell Res Ther 2014; 5: 85-91.
4. Fadel HE et al., Developments in stem cell research and therapeutic cloning: Islamic ethical positions, a review. Bioethics 2012; 26: 128-135.
5. Sachin Kumar et al., Stem cells: A new paradigm, Indian Journal of Human Genetics, Volume 12 Issue 1, April 2006, 4-10.
6. K. Kalra et al., Stem Cell: Basics, Classification and Applications, American Journal of Phytomedicine and Clinical Therapeutics, 2,7,2014,919-930.
7. Wikipedia. com
8. Dr. Fikriye POLAT, Fen Eğitiminde Biyolojide Özel Konular, 2017, ISBN 978-605-318-959-6,
9. J.A Thomson, E.J. Eldor, S.S Shapiro, M.A Waknitz, J.J Swiergiel, V.S Marshall, J.M Jones, "Embryonic stem cell lines derived from human blastocysts". *Science*, 1998, 282 (5391): 1145–7.

10. K. Takahashi, S. Yamanaka, "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors". *Cell*, 2006, 126 (4): 663–76

11. Chandross KJ, Mezey E. Plasticity of adult bone marrow stem cells. Mattson MP and Van Zant G editors. JAI Press: Greenwich, CT; 2001

12. Slack JM. Stem cells in epithelial tissues. *Science* 2000;287: 1431-3.

13. S. Avasthi, R. N. Srivastava, A. Singh and M. Srivastava “Stem cells: Past, Present, Future—a review article”, *Internet J. Med. Update*, 2008, 3(1):22-30.

14. Tahmineh Farajkhoda, An overview on ethical considerations in stem cell research in Iran and ethical recommendations: A review, *Int J Reprod Bio Med*, Vol. 15. , February 2017, 67-74.

15. Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI. Embryonic stem cells express neuronal properties. Dev Biol 1995;168:342-57

16. Odorico JS et al., Multilineage differentiation from human embryonic stem cell lines. Stem Cells 2001;19:193-204.

17. M. K. Jeffrey et al., stem cells An Interactive Qualifying Project Report, Submitted to the Faculty of Worcester polytechnic institute In partial fulfillment of the requirements for the Degree of Bachelor of Science, 2006.

18. Ainul Fatihah Muhammad Alimin et al, ethical issues related to adult stem cells sources from the islamic perspective, centre of quranic research (CQR), SBN 978-967-0882-07-9; july 2016,129-143.

19. Becker, A.J. at al., “Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells”, 1963 Nature 197 (4866): 452–4.

20. Dias TP, Machado Maria Aparecida Andrade Moreira, Thiemy SV, Eduardo N J. Pulp tissue from primary teeth: new source of stem cells. J. Appl. Oral Sci 2011; 19:189-94.

21. Torrisi CP. Embryonic vs. Adult: The History and Future of the Stem Cell Debate J. Health & Biomedical L 2007;111: 143-62.

22. Bluteau G, Luder HU, De Bari C, Mitsiadis T A. Stem cells for tooth engineering. Eur cell Mater 2008; 16:1-9.

23. Ariff Bongso et al, stem cells to the clinic: major challenges, journal of cellular biochemistry 105:november 2008, 1352–1360
24. C. Jahoda. And A. Reynolds, “Skin stem cells—a hairy issue.” *Nature Medicine* 6, 2000, 1095-1097.
25. C.R. Freed et al., transplantation of embryonic dopamine neurons for severe parkinson’s disease *The New England Journal of Medicine*, Vol. 344, March, 2001, 710-719.
26. Winfield, S. Culver, J.Q. Trojanowski, D. Eidelberg and S. Fahn, “Transplantation of embryonic dopamine neurons for severe parkinson’s disease” *New England J. of Med.*, 344, 2000, 710-719.
27. Yamada S, Terada K, Ueno Y, Sugiyama T, Seno M, Kojima I., Differentiation of adult hepatic stem-like cells into pancreatic endocrine cells. Cell Transplant 2005;14:647-53.
28. Casu A, Trucco M, Pietropaolo M., A look to the future: prediction, prevention and cure including islet transplantation and stem cell therapy. Pediatr Clin North Am 2005;52:1779-804.
29. Street CN, Rajotte RV, Korbutt GS., Stem cells: a promising source of pancreatic islets for transplantation in type 1 diabetes, *Curr Top Dev Biol* 2003;58:111-36.
30. Islet Cell Transplant for Type 1 Diabetes Successful Across Multiple Centers. American Diabetes Association June 6, 2004., 64th Annual Scientific Sessions.
31. Monogr. Stem cell and HIV infection. *J Natl Cancer Inst* 2000;28:24-9.
32. Luke Bogdanovich, stem cells and society Project report, August 2012, 1-61.
33. Carolina coelho serra a legalidade da utilização de embriões in vitro, vol.5, 2012, 22-24. de Miguel-Beriaín et al., The ethics of stem cells revisited. *Adv Drug Deliv Rev* 2015; 82: 176-180.
34. J. Lu, X. Zhong, H. Liu et al., “Generation of serotonin neurons from human pluripotent stem cells,” *Nature Biotechnology*, vol. 34, no. 1, pp. 89–94, 2016.
35. Wilson, L. Ying, M. Liesa et al., “Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells,” *Stem Cell Reports*, vol. 4, no. 5, pp. 873–885, 2015.
36. S. E. Howden, J. P. Maufort, B. M. Duffin, A. G. Elefanty, E. G. Stanley, and J. A. Thomson, “Simultaneous reprogramming and gene correction of patient fibroblasts,” *Stem Cell Reports*, vol. 5, no. 6, pp. 1109–1118, 2015
37. S. G. Brown, R. J. Harman, and L. L. Black, “Adipose-derived stem cell therapy for severe muscle tears in working German shepherds: two case reports,” *Stem Cell Discovery*, vol. 2, no. 2, pp. 41–44, 2012.
38. J. A. Thomson, “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998.

39. S. E. Berry, “Concise review: mesoangioblast and mesenchymal stem cell therapy for muscular dystrophy: progress, challenges, and future directions,” Stem Cells Translational Medicine, vol. 4, no. 1, pp. 91–98, 2015.

40. Ribitsch, J. Burk, U. Delling et al., “Basic science and clinical application of stem cells in veterinary medicine,” Advances in Biochemical Engineering/Biotechnology, vol. 123, pp. 219–263, 2010.

41. G. Colasante, G. Lignani, A. Rubio et al., “Rapid conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming,” Cell Stem Cell, vol. 17, no. 6, pp. 719–734, 2015.

42. M.-Y. Chang, T.-T. Huang, C.-H. Chen, B. Cheng, S.-M. Hwang, and P. C. H. Hsieh, “Injection of human cord blood cells with hyaluronan improves postinfarction cardiac repair in pigs,” Stem Cells Translational Medicine, vol. 5, no. 1, pp. 56–66, 2016.

43. H. Benchetrit, S. Herman, N. Van Wietmarschen et al., “Extensive nuclear reprogramming underlies lineage conversion into functional trophoblast stem-like cells,” Cell Stem Cell, vol. 17, no. 5, pp. 543–556, 2015.

44. Martin G (1981). “Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells”. Proc Natl Acad Sci USA 78 (12): 7634–8

45. Werbowetski-Ogilvie TE, Bosse M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, Wynder T, Smith MJ, Dingwall S, Carter T, et al(2009).

46. Characterization of human embryonic stem cells with features of neoplastic progression. Nature Biotechnology 27:91-97.

47. Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW (1957). Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257:491-496.

48. Good RA (2002). Cellular immunology in a historical perspective. Immunol Rev 85:136-58.

49. Hans R. Schöler (2007). “The Potential of Stem Cells: An Inventory”. In Nikolaus Knoepffler, Dagmar Schipanski, and Stefan Lorenz

50. Sorgner et al., Human biotechnology as Social Challenge. Ashgate Publishing, Ltd. p. 28. ISBN 9780754657552.
AJPTR is

- Peer-reviewed
- Bimonthly
- Rapid publication

Submit your manuscript at: editor@ajptr.com