Developing a Virtual Reality Environment in Petrous Bone Surgery: A State-of-the-Art Review

*Alan Jackson, †N. W. John, *N. A. Thacker, ‡R. T. Ramsden, §J. E. Gillespie,
∥E. Gobbetti, ∥∥G. Zanetti, ¶R. Stone, #A. D. Linney, **G. H. Alusi,
††S. S. Franceschini, ‡‡A. Schwerdtner, and §§A. Emmen

*Imaging Science and Biomedical Engineering, The Medical School, University of Manchester, Manchester, England, U.K.; †Manchester Visualisation Center, Manchester Computing, University of Manchester, Manchester, England, U.K.; ‡Department of Otolaryngology, Central Manchester Healthcare Trust, Manchester, England, U.K.; §Department of Diagnostic Radiology, Central Manchester Healthcare Trust, Manchester, England, U.K.; ∥Centre for Advanced Studies, Research and Development in Sardinia, Sardinia, Italy; ∥∥Virtual Presence, Sale, England, U.K., and Department of Virtual Reality Studies, Department of Surgery, and North of England Wolfson Centre for Minimally Invasive Therapy, Manchester Royal Infirmary, Manchester, England, U.K.; #Departments of Medical Physics and Bioengineering and Otolaryngology, University College London, London, England, U.K.; **Department of Otolaryngology, University College London, London, England, U.K.; ††Department of Otolaryngology, University Hospital of Pisa, Pisa, Italy; ‡‡Department of Computer Science, Dresden University of Technology, Dresden, Germany; and §§Genias Benelux, Almere, The Netherlands.

The increasing power of computers has led to the development of sophisticated systems that aim to immerse the user in a virtual environment. The benefits of this approach to the training of physicians and surgeons are immediately apparent. Unfortunately, the implementation of virtual reality (VR) surgical simulators has been restricted by both cost and technical limitations. The few successful systems use standardized scenarios, often derived from typical clinical data, to allow the rehearsal of procedures. In reality, we would choose a system that allows us not only to practice typical cases but also to enter our own patient data and use them to define the virtual environment. In effect, we want to rewrite the scenario every time we use the environment and to ensure that its behavior exactly duplicates the behavior of the real tissue. If this can be achieved, then VR systems can be used not only to train surgeons but also to rehearse individual procedures wherein variations in anatomy or pathology present specific surgical problems.

The European Union has recently funded a multinational 3-year project, Integrated Environment for Rehearsal and Planning of Surgical Interventions (IERAPSI), to produce a VR system for surgical training and for rehearsing individual procedures (1). Building the IERAPSI system will bring together a wide range of experts and combine the latest technologies to produce a true, patient-specific VR surgical simulator for petrous/temporal bone procedures. This article presents a review of the state of the art technologies currently available to construct a system of this type and an overview of the functionality and specifications such a system requires.

BASIS OF VIRTUAL REALITY ENVIRONMENTS

Virtual reality represents computer interface technology that is designed to leverage our natural human capabilities. Today’s familiar interfaces—the keyboard, mouse, monitor, and graphical user interface—force us to adapt to working within tight, unnatural, two-dimensional constraints. The VR technologies, however, let users interact with real-time three-dimensional (3-D) graphics, supplemented with other sensory interfaces (sound, touch, even smell) in a more intuitive, natural manner. Virtual reality encourages viewers to be participants immersed in the data, rather than passive observers watching from a distance, by using a combination of specialized computer peripherals to allow adequate interaction by the user. The familiar view of VR is of users equipped with head-mounted displays and instrumented clothing, such as gloves and whole-body suits. However, the cost, reliability, and health and safety issues associated with this form of immersive VR have led to diminished interest, with more basic head-mounted and spectacle-mounted personal information displays dominating the market. Desktop implementations (using standard computer screens), together with conventional or stereo-
otic image projection systems, have become popular in recent years. Higher-end visualization techniques, such as the CAVE (small rooms defined by large video projection walls) and dome-based or wraparound imaging systems, are very impressive. However, in the medical world, they tend to be restricted to wealthy foundation or governmental research laboratories.

The most important change has been the arrival of low-cost, industry-standard multimedia computers and high-performance graphics hardware. Coupled with this, the spread of accessible VR modeling and run-time software, together with low-cost and free resources from the Web, is beginning to make VR much more accessible to the nonspecialist user or developer than was the case just 2 years ago. Consequently, it is believed that practical VR-based applications will soon become commonplace in the hospital (1).

The development of a VR system to simulate petrous bone surgical procedures must involve the user in the loop of a real-time simulation mimicking a realistic synthetic operating environment. Ideally, the system should take as input anatomic reconstructions produced from standard medical imaging modalities and construct patient-specific virtual anatomic models that can be both autonomous and responsive to the user’s actions. Data are beginning to emerge that demonstrate the positive impact of this type of training experience when measured in the surgical environment (2,3).

Mastoidectomy, cochlear implantation, and cerebellar pontine angle tumor surgery are prototypical examples of surgical procedures that require a high level of dexterity, experience, and knowledge. They also represent a range of surgical complexity and are thus good targets for the development of specialized surgical simulators of direct interest to ear, nose, and throat (ENT) specialists. Such simulators must provide high-fidelity visual simulation together with accurate haptic feedback that simulates interactions between surgical instruments and tissues. These tissues must be modeled to provide a realistic sensory response that reflects individual tissue properties and reactions (1).

ERGONOMIC CONSIDERATIONS IN THE DESIGN OF VIRTUAL REALITY SYSTEMS

The value of VR systems in training depends on their ability to transfer specific decision-making and physical skills to the operator. In practice, this may be optimally achieved by simplified systems that model the ergonomic features of surgical tasks rather than providing an exact VR replica of the surgical environment. The VR community is increasingly adopting this approach and measuring transfer of training and improved performance in the real world, using objective techniques to measure the success of training.

The identification of the essential ergonomic components involved in a complex task such as petrous bone surgery requires a detailed task analysis. Without this step, there is a risk that any VR system will fail to record or measure those elements of human skill that it was initially intended to target. The task analysis should form an early and central component of any project that involves a major human-centered component. This has recently been recognized by publication of the International Standard ISO 13407, *Human-centered Design Processes for Interactive Systems* (1).

The task analysis can be complex. For the IERAPSI project, for instance, the initial task analysis involved a review of existing documentation describing operative procedures, detailed interviews with experienced operators, and review of existing training aids, including cadaveric temporal bone drilling, synthetic bone dissection exercises, and CD-ROM training systems. After that, a detailed review was performed of video recordings from mastoidectomy, cochlear implantation, and acoustic neuroma resections (both translabyrinthine and middle fossa approaches). In the final stage, the ergonomist observed procedures being performed in the operating room to test and refine the task analysis.

CONSTRUCTING THE VIRTUAL REALITY ENVIRONMENT

To design a system that is capable of producing VR environments for surgical simulation in individual patients, we must develop methods to rapidly model the anatomy and pathologic changes based on the patient’s imaging investigations. We can use data from any imaging system that produces 3-D data sets and can combine information from several modalities that contain complementary data. To investigate the petrous bone, computed tomography (CT) and magnetic resonance imaging (MRI) are most commonly used. Computed tomography provides high spatial resolution bone images, whereas MRI provides images of soft tissues. In practice, there is often a need to combine these images, and there may, in the future, be a requirement to include images from other 3-D imaging modalities, such as single photon emission computed tomography and positron emission tomography.

The process of defining a VR environment from these imaging data is a major challenge. For clinical use, the procedure must be rapid and automatic. The process can be subdivided into three separate stages: 1) spatial coregistration of data from multiple modalities, 2) identification of tissue types (segmentation), and 3) definition of tissue boundaries for the VR environment.

Spatial Co-registration

To use data from multiple modalities, we must first coregister the data into a common Cartesian reference framework so that the same point in images of each modality represents a single point in the patient. Spatial coregistration of 3-D medical image volumes is now a well-established and widely used technique in both research and clinical practice (1–11).

The process requires two steps. First, the translations and rotations required to match the images are derived.
identification of surfaces (13). The use of probability maps in tissue segmentation allows us to develop algorithms using strict statistical approach to the segmentation task and to identify edges between tissues, which will lie at the point where each tissue probability is equal to 50%. This is used as the basis for many visualization techniques that require the precise location of the edges between tissue types. The process of identifying the distribution of different tissue types within the data set is known as tissue segmentation. In practice, the development of automated algorithms for tissue segmentation is complex, and many approaches have been described. Most of them use image intensity information from single or multiple images to identify which tissue type each voxel represents. At the simplest level, a tissue might be identified in an image if it had a distinctive range of image intensities. If this range of image intensities were constant and showed no overlap with the intensities of other tissues, then any voxel within this range could be confidently classified as belonging to this tissue (a process known as windowing or thresholding). In practice, this idealized situation does not occur, several tissues will commonly display similar ranges of image intensity, these ranges may vary within the data set because of the heterogeneity of the imaging process (noise), and a single voxel will commonly contain multiple tissue types (partial volume averaging). Many simple segmentation techniques are designed to label each voxel as belonging to a single tissue type and ignore the fact that most voxels around a tissue boundary will contain mixtures of tissues. This problem of boundary pixels containing multiple tissues, all of which contribute to the image intensity, is known as partial volume averaging. A more logical approach is to calculate the probability that each voxel conforms to each particular tissue type, which allows an estimation of the partial volume effect. The use of techniques to produce probability maps effectively transforms any set of imaging data into a series of probability images, each representing a separate tissue. In a series of probability maps, each voxel would have a separate value for each map, corresponding to the proportion of the voxel filled by that specific tissue type. The use of probability maps in tissue segmentation allows us to develop algorithms using strict statistical approaches to the segmentation task and to identify edges between tissues, which will lie at the point where each tissue probability is equal to 50%. This is used as the basis for many visualization techniques that require the identification of surfaces (13).

Several algorithmic approaches can be used to derive probability maps from original imaging data. In MRI and CT data, the gray levels in an image can be assumed to be formed by a linear process. This means that the contribution to the intensity in any pixel is simply proportional to the relative fractions of each tissue within the voxel (14). On this basis, the probability that any voxel contains a particular tissue type can be calculated by use of simple linear algebra, using data from n – 1 images (where n is the number of tissues to be identified). This approach will deliver unbiased estimates of tissue proportion (15,16). However, it can deliver correct estimates only for the tissues within the model, meaning it cannot deal with unexpected (or pathologic) behavior. From a medical standpoint, this is equivalent to saying that it can deal only with normal tissues.

A more generic and useful approach is to develop a probability model for each tissue component in the data, which also accounts for partial volume effects. The various parameters in the density model must be determined by use of an optimization algorithm to minimize the difference between the model and the data. The simplex algorithm (17) and expectation maximization (18) are appropriate. Estimation of relative tissue probabilities can then be made by the direct use of Bayes theory. This probability labeling technique will work with multiple tissues on a single image, provided that the gray level distributions do not overlap significantly (Fig. 1). Overlapping tissues can be eliminated by the use of multiple images, because ambiguous regions in the data can be separated with additional information. However, this does involve a slightly more complicated analysis to determine all the parameters in the multidimensional model (Fig. 2). This technique can be extended to deal with pathologic (unmodeled) tissues by allowing an additional category for infrequently occurring data (19). Variations in the probability distribution of individual tissues, which might result from heterogeneity of the image acquisition process, must also be considered. In MRI in particular, where marked heterogeneity in signal intensity occurs across the acquisition field, these can be corrected, with consequent improvement in the accuracy of tissue segmentation, by automated correction of the imaging data for heterogeneity before analysis (20). Figure 3 illustrates the strategic considerations required to select the appropriate tissue segmentation strategy that will be most effective on any particular set of image data.

In practice, the implications of these theoretical considerations are straightforward. The use of simple segmentation techniques such as thresholding, which classify each voxel as belonging to a particular tissue, will work only if the signal intensities of the tissue to be segmented are unique. This explains the common use of thresholding methods to identify bone from CT images, where the massive radiographic attenuation of bone results in a relatively clear distinction between bone and other tissues. Where tissue intensities are similar or overlap, which is common in MRI data, thresholding techniques will not work. In these data sets, segmentation is
best performed by use of statistical models of normal tissue that will attribute the probability of a voxel containing a particular tissue. This statistical approach has two other advantages: it allows the use of information from multiple images (e.g., CT and MRI), which improves the confidence with which the segmentation can be made, and it allows the estimation of the fraction of each voxel that is filled by a particular tissue (i.e., it deals with the problem of partial volume averaging).

When these statistical approaches are used, the accuracy of tissue segmentation is very high, and manual intervention is rarely required. The main problems lie in the classification of tissues with pathologic changes, such as a partially cystic and partially necrotic tumor, where the statistical characteristics of the tissue vary considerably. In these cases, a simple segmentation based on signal intensity will not work perfectly. However, the use of anatomic information about how close similarly classified pixels lie to one another, combined with the statistical information, provides a powerful solution to this problem because it uses the assumption that voxels of particular tissue types are likely to be connected. The combination of statistical segmentation and these connectivity algorithms means that the accuracy of automated tissue identification is high, and manual intervention will seldom if ever be needed.

FIG. 1. A. T1-weighted MRI scan demonstrating a 1-cm acoustic neuroma in the right cerebellopontine angle. B. Probability map showing the results of a tissue segmentation on this single image. White, probability of 1 that the image is acoustic neuromas; black, probability of zero. C. Intensity distribution of the pixels within the red sample area shown in A. The pixel intensities are shown in red and the fitted probability function in blue. The central peak (blue arrow) corresponds to pixels of brain tissue, and the upper peak (red arrow) to pixels of enhancing tissue. Calculating the probability that they belong to the distribution of enhancing tissues derives the probability map in B, which clearly identifies the tumor but also identifies a small blood vessel to the left of the mass, which is also enhancing.

FIG. 2. A through D. Large left-sided acoustic neuroma on four different magnetic resonance sequences. A. T1-weighted with contrast. B. T2-weighted. C. T1-weighted inversion recovery. D. Time of flight magnetic resonance angiogram showing areas of blood flow. E. Plot of the signal intensity of the pixels in these images in a multispectral space that optimizes the separation between the individual tissues. In the multispectral scattergram, colors represent tumor (purple), cerebrospinal fluid (brown), bone (yellow), fat (orange), gray matter (blue), white matter (red), and peripheral soft tissues (green).
Physical modeling

If a VR system is to accurately mimic the tactile (haptic) and auditory responses to specific actions, then the VR environment must be equipped with a spatial physical model of the relevant characteristics of each of the tissues within it. Physical modeling is a computationally expensive approach to VR, but in this specific field of application it is essential, because it is the only practical way to accommodate the arbitrary positioning in the area affected by the operation of the surgical tools and the use of realistic anatomic models derived from patient images. The computational costs of physical modeling are partially mitigated by the fact that the surgical procedures mentioned are constrained by a restrictive field of view and by limited haptic interaction between the surgeon and the patient. The most relevant physical processes that should be addressed are 1) collision detection, 2) bone dissection, and 3) interaction with soft tissues.

Fast and accurate collision detection between models is a fundamental problem in computer-simulated surgical environments. In the context of physically based simulation, the output of a collision detection algorithm is used to impose nonpenetration constraints and to compute reaction forces between surgical instruments and tissues and between tissues themselves (e.g., between tumor, bone, and drill during the excision of a cerebellopontine angle tumor).

Bone is hard and has a stress-strain relationship similar to that of many engineering materials. Hence, as discussed in Fung (21), stress analysis in bone can be made in a way similar to the usual engineering structural analysis. Simulation of the drilling of the temporal bone involves first the detection of collisions of the drill burr with the bone surface, then, depending on the type and location of the contact, a prediction of the amount of bone to be removed and of the forces that should be returned to the hand of the user via the haptic feedback device. Given the particular nature of the process simulated, the natural way to model the temporal bone anatomy is by a finite element volumetric approach. This means that a mathematical model is calculated using known data about the tissue (bone), including its hardness, rigidity, and resistance to drilling, and is used to calculate the responses to an intervention such as drilling by applying the model to each small component (finite element) of the bone involved in the interaction and its immediate neighbors. The geometric model can be directly derived from patient CT data (22). The general problem of accurately modeling the dynamics of a deformable object (such as soft tissue) undergoing large deformations is complex, and the standard technique used in computational science (finite elements modeling) is computationally very demanding (23). The complexity increases even further when it is required to model actions, such as cuts, that can change the topology and physical properties of the body itself.

WORKING IN THE VIRTUAL ENVIRONMENT

Our sense of physical reality is a construction derived from the symbolic, geometric, and dynamic information directly presented to our senses and from prior knowledge (24). The techniques and devices used to return sensory information are thus as important as the simulation methods used. In petrous bone procedures, the most critical aspect is the quality of haptic feedback from surgical instruments and visual feedback from the operating microscope.

Visual feedback

Because the human body is a 3-D volume, the issue of computer-generated 3-D volumes representing the human body is integral to the application of visualization (and VR) in medicine. Without the use of stereo displays, the main problem in volume visualization is how to render sampled volumetric information onto a two-dimensional screen. Early algorithms of volume visualization use the additive projection, which computes an image by averaging the voxel intensities along parallel rays from the rotated volume to the image plane (Fig. 4). This simulates a radiographic image and does not provide information about depth relationships (25). Another method is source-attenuation reprojection, also referred to as opacity, allowing object obscuration (26). The improvements in available computing power have allowed the implementation of more complex and more appropriate methods for the visualization of 3-D objects, including surface rendering and volume visualization.
The segmentation of anatomic structures described above produces 3-D maps of probability. Each voxel in these maps describes the probability that the voxel represents the tissue in question. The boundaries of this object can be easily extracted and represented by a series of geometric primitives (i.e., triangles) derived from the volumetric data. The shape, position, and size of these primitives can be calculated by a variety of techniques. These techniques use various approaches to connect points in the 3-D space with the same value (contour tracing), which generates a series of primitive shapes, which form a surface (surface extraction). The derived surfaces represent a plane in the 3-D model on which all points have the same probability value, and are called isosurfaces. In medical image data, these are usually selected to correspond to the surfaces of anatomic structures or to surfaces of equal functional activity. The surface abstraction may go only as far as deriving a family of polygons to represent an isosurface—for example, by the application of the marching cubes algorithm, which calculates a series of primitives for each voxel based on the values within the voxel and its immediate neighbors (Fig. 5) (12). The advantage of the method is that an extracted polygonal surface may be displayed at interactive rates on a modern personal computer. An alternative that requires less preprocessing is to use a solution that does not explicitly derive geometric surface primitives, such as that used by Tan et al. in their transputer-based medical workstation (27).

Another method commonly used for the visualization of 3-D medical image data is known as volume rendering (28,29). This visualization technique works by projecting imaginary rays through the data volume onto a viewing plane with a value related to the physical property represented in the voxel array. For example, a volume of CT data containing bone with a high x-ray absorption coefficient might be projected with a high value. Generally, a volume-rendered image has a different appearance from that of a surface-rendered image in that anatomic structures are presented as having some degree of transparency (Fig. 6). For some clinical procedures such as image-guided biopsy or transcutaneous thermal ablation, transparency may greatly enhance depth perception and thus increase the accuracy of the procedure. The transparency offered by volume rendering also enables the placement of surgical instruments within 3-D structures with great accuracy (30). Until recently, volume rendering was considered to be inherently slow because of the large voxel data sets that had to be processed for each new view of the anatomy. However, the development of new ideas and algorithms for volume rendering using texture mapping hardware architectures has removed this obstacle (31).

Presentation of the rendered images

Visual simulations achieve the illusion of animation by the rapid successive presentation of a sequence of static images. The critical fusion frequency is the rate above which humans are unable to distinguish between successive visual stimuli. This frequency is proportional to the luminance and the size of the area covered on the retina (32,33). Typical values for average scenes are between 5 and 60 Hz. The method chosen for the presentation of the rendered images depends on the application. Stereoscopic presentations require the rendering of two images with a disparity corresponding to the binocular disparity that would be expected for viewing the object at a chosen distance in real life. The single perceptually fused image has the appearance of a real 3-D object. This kind of presentation is suitable for the use of VR and augmented reality in clinical applications. Stereoscopic images may also be similarly delivered to each

FIG. 4. Maximum intensity projection (additive projection technique) of a T2-weighted image of the inner ear.

FIG. 5. A, B. Three-dimensional isosurface renderings of the data set shown in Figure 4. B is rendered at a higher isosurface level than A, showing the effect of changing the isosurface in a single data set. C. rendering of the scala tympani from a patient being assessed for cochlear implantation. Note the proximal obstruction of the scala tympani.

FIG. 6. Volume rendering of the data set shown in Figure 4. A. Rendering without transparency. B. Effect of increasing transparency on the rendering.
eye by display on small liquid crystal display arrays placed close to the eyes in a head-mounted display (Fig. 7).

Some methods of image presentation project separate images via liquid crystal display arrays or video systems into either eye of the observer to simulate binocular parallax so that the visualized data seems to be floating in the viewing space. In this form it is amenable to direct 3-D physical measurement (34–38). An important aspect of this kind of display is that the viewer is unencumbered (e.g. by a head-mounted display) and does not have to adopt a tiring posture.

Many attempts have been made to get stereoscopic projection without the need for additional glasses by the use of devices called autostereoscopic displays. These systems also display separate images to either eye to simulate binocular parallax but present these images by the use of technical approaches that allow the user complete freedom (39). To achieve this, these systems commonly require mechanisms to monitor head position and eye movement. The Dresden 3-D Display, used in the IERAPSI project (Fig. 8), features several properties not found in other autostereoscopic displays. All components—head tracking, eye position finder, and appropriate adjustment of the visualization display—are integrated into the Dresden 3-D Display. The combination of binocular stereoscopy and head tracking effectively constitutes a 3-D television display.

Haptic feedback

Haptic feedback systems are designed to provide touch and proprioceptive information. Not only do haptic devices provide this information to the user, but most sense physical input from the user to guide actions within the VR environment as well. The primary input/output variables for the haptic sense are displacements and forces. To manipulate an object, move it, rotate it, or pinch it, the haptic system must issue motor action commands that exert forces on the object. These forces are highly dependent on the type of grasping that is used.

Spatiotemporal realism

The preceding discussion has emphasized that a VR simulator for petrous bone surgery is required to offer multiple synchronized input/output modalities and that for each of these modalities timing constraints have to be met in order for applications to be usable. Moreover, varying the delays in the various output devices makes proper synchronization even more difficult (40). Human beings are very sensitive to these problems. Because the various components of a petrous bone simulator have to receive input and produce output at considerably variable rates, it is expected that accurate simulators will require improvements in computing performance that can be achieved only by the use of parallel processing techniques to meet the timing constraints imposed by the task. The recent improvement and proliferation of high-performance multiprocessor personal computers and high-speed network interfaces make this solution practically viable for a large community of users.

Currently available systems

Training aids are available for otolaryngology, and some use of VR for this purpose has already been reported (see below). Widely used are the Pettigrew Plastic.
Temporal Bone series (Fig. 10). With the Pettigrew models, the complete temporal bone, for example, can be fully dissected with standard surgical equipment, with an effect similar to that achieved during cadaveric exercises. The Pettigrew bones incorporate clever canal modeling techniques and innovative use of material. The trainee is required to perform a mastoidectomy and then continue to expose and identify such features as the horizontal and vertical portions of the facial nerve, the ossicles, the round window niches, the lateral semicircular canal, and so on. Food dye has been added to create bleeding effects during irrigation.

A multimedia solution is the Temporal Bone Dissector compact disc, published by Mosby (Fig. 11) (41). It was developed with a combination of Macromedia animation and QuickTime movies and provides good introductory material. However, it does not provide a virtual training environment.

Among the earliest reports on the clinical use of 3-D data visualization were applications in craniofacial surgery. The CT data were ideal for imaging bone and had an acceptable spatial resolution. Craniofacial surgery also requires careful preoperative planning because the effect of surgery will be both functional and aesthetic. It was possible to use the relatively slow computers available at the time because most procedures are not urgent (42). Later, surgical simulation systems (43) and interactive workstations (44,45) were developed with functions that specifically addressed the problems of simulating, rehearsing, and planning craniofacial surgery interactively (46). The most recent systems use physical models of tissue behavior to provide accurate predictions of postsurgical facial appearance (47). Clinical assessments have demonstrated the superiority of computer-based visualization over other methods in craniofacial and orthopedic diagnosis, and the application of these methods to craniofacial surgery has now been thoroughly validated (48).

For ENT surgery, an endoscopic sinus-surgery simulator has been developed by the Ohio Supercomputer Center and Ohio State University Hospital (49). This simulator provides intuitive interaction with complex volume data and haptic (force) feedback sensation (Fig. 12). A laboratory at the University of Washington subsequently carried out a joint project to construct and evaluate a VR-based simulator for training physicians in endoscopic sinus surgery. This project used the endoscopic sinus-surgery simulator as its starting point. The results of the validation concluded that the simulator did provide a valid and useful implementation of many endoscopic sinus surgery tasks but that it needs to be carefully integrated into the training curriculum for optimum benefits (50).

The Ohio Supercomputer Center has also been involved in more recent work with the Children’s Hospital in Columbus, Ohio, to develop a virtual temporal bone dissection simulator. A virtual workbench has also been used to develop a system for planning base of the skull surgery, and a commercial product, the Virtual Intracranial Visualization and Navigation (VIVIAN), is available. This work has been carried out at the Kent Ridge Digital Laboratories in Singapore.

Harada et al. (51) produced volume visualizations of the temporal bone from histologic slices and have also proposed their use for surgical training.

A group at Guy’s Hospital London is developing an operating room microscope system for neurologic and ENT procedures. Features from preoperative radiologic images are accurately overlaid in stereo in the optical path of a surgical microscope. That system is already adequate for several procedures and has been used in the operating room. That group is also working on extending its system to deal with soft tissue deformation (52). The University of Illinois Chicago VRMedLab networked facility (Fig. 13) (53) is designed to provide an educational resource to otolaryngologic surgeons, enabling them to visualize bone-encased structures within the temporal bone using interactive 3-D visualization technologies. Digital sections of the human ear and temporal bone (prepared from actual glass slide specimens) make up the VR model, supplemented with special sculptures and converted CT records of objects too small to reconstruct from the physical samples (e.g. ossicles). This VR system has not been designed to replace the cadaveric drill-

![FIG. 9. The PHANToM force feedback arm used in the Integrated Environment for Rehearsal and Planning of Surgical Interventions system. The PHANToM system is capable of 6 degrees of freedom position input and 3 degrees of freedom force output, allowing simulation of a full range of instrument movement and the provision of force feedback to simulate resistance and vibration.](image1)

![FIG. 10. The Pettigrew Plastic Temporal Bone series for rehearsing petrous bone drilling.](image2)
ing experience but does seem to provide users with an improved mental model of regional anatomy. A group at the Institute of Otolaryngology in London has reported several to determine the accuracy and precision that may be achieved in an operating microscope augmented reality environment. Various procedures used in surgery were carried out in this environment. An autostereoscopic system was used for 3-D image presentation. The accuracy and precision achieved demonstrated that the use of augmented reality is entirely feasible for skull base surgery (54).

SUMMARY

The technical limitations restricting the production of VR surgical simulators have largely been surmounted. Improved imaging devices can produce data of adequately high spatial resolution and signal-to-noise ratio to provide a basis for modeling of the virtual environ-

![FIG. 11. Excerpts from the Mosby multimedia Temporal Bone Dissector compact disc.](image1)

![FIG. 12. Endoscopic sinus surgery simulator developed by the Ohio Supercomputer Center and Ohio State University Hospital (55). This simulator provides intuitive interaction with complex volume data and haptic (force) feedback sensation.](image2)
ment. Coregistration of data sets and the automated segmentation of anatomic structures are made possible by improvements in algorithmic approaches and computing power. Physical modeling, at least of rigid structures, is becoming increasingly sophisticated, and the improvements in visual and haptic feedback systems allow true continuous motion to a human. The combination of these technologies will be challenging but offers every promise of a routine clinically usable surgical simulator for use in hospital settings.

REFERENCES

1. IERAPSI: An Integrated Environment for Rehearsing and Planning Surgical Interventions (web site). Available at: http://www.boise.com/vmwc/projects/ierapsi/articles/ierapsiHome.html. Accessed November 30, 2001.

2. Soferman Z, Blythe D, John NW. Advanced graphics behind medical virtual reality: Evolution of algorithms, hardware, and software interfaces. Proc IEEE 1998;86:531–54.

3. Johnston R, Bhoynul S, Way L, et al. Assessing a virtual reality surgical skills simulator. Stud Health Technol Inform 1996;29:608–17.

4. O’Toole R, Player R, Krummel T, et al. Assessing skill and learning in surgeons and medical students using a force feedback surgical simulator. Lect Notes Comput Sci 1998;1496:899.

5. Satava RM. Virtual reality surgical simulator: The first steps. In: Proceedings of the Third Annual Conference on Virtual Reality, Westport, CT: Mecklermedia Corp., 1995;103–7.

6. International Standard Organisation. ISO 13407, Human-centered Design Processes for Interactive Systems. 1999.

7. Woods RP, Grafton ST, Watson JD, et al. Automated image registration: II—Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 1998;22:153–65.

8. Woods RP, Grafton ST, Holmes CJ, et al. Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 1998;22:139–52.

9. Fotherfor MA, Pennock FM, Cowan FM, et al. Detection of subtle changes in the brains of infants and children via subvoxel registration and subtraction of serial MR images. AJNR Am J Neuroradiol 1997;18:829–35.

10. Curati WL, Williams EI, Oatridge A, et al. Use of subvoxel registration and subtraction to improve demonstration of contrast enhancement in MRI of the brain. Neuroradiology 1996;38:717–23.

11. Hajnal JV, Saeed N, Soar EI, et al. A registration and interpolation procedure for subvoxel matching of serially acquired MR images. J Comput Assist Tomogr 1995;19:289–96.

12. West J, Fitzpatrick JM, Wang MY, et al. Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 1997;21:554–66.

13. Lorensen WE, Cline HE. Marching cubes: A high resolution 3-D surface construction algorithm. SIGGRAPH ‘87. ACM Comput Graphics 1987;21:163–9.

14. Webb S, ed. The Physics of Medical Imaging. Philadelphia: Hilger, 1988.

15. Rusinek H, de Leon MJ, George AE, et al. Alzheimer disease: Measuring loss of cerebral gray matter with MR imaging. Radiology 1991;178:109–14.

16. Thacker NA, Jackson A, Zhu XP, et al. Accuracy of tissue volume estimation in NMR images. In: Proceedings Medical Image Understanding and Analysis 1998;137–40. Available at: http://www.roots.ox.ac.uk/~mvl/miu98/proceedings.html. Accessed November 30, 2001.

17. Press WH, Flannery BP, Teukolsky SA, et al. Numerical Recipes in C: The Art of Scientific Computing. 2nd ed. Cambridge, UK: Cambridge University Press, 1992.

18. Wells WM, Grimson EL, Kikinis R, et al. Adaptive segmentation of MRI data. IEEE Trans Med Imaging 1996;15:429–42.

19. Fukunaga K. Introduction to Statistical Pattern Recognition. 2nd ed. San Diego, CA: Academic Press, 1990.

20. Vokurka EA, Thacker NA, Jackson A. A fast model independent method for automatic correction of intensity nonuniformity in MRI data. J Magn Reson Imaging 1999;10:550–62.

21. Fung YC. Biomechanics: Mechanical Properties of Living Tissues. 2nd ed. New York: Springer-Verlag, 1993.

22. Wiet G, Bryan J, Sessanna D, et al. Virtual temporal bone dissection simulation. In: Westwood JD, Hoffman HM, Mogel GT, eds. Medicine Meets Virtual Reality 2000: Envisioning Healing—Interactive Technology and the Patient-Practitioner Dialogue, Vol. 70. Amsterdam: IOS Press, 2000.

23. Kardestuncer H, Norrie DH, Brezzi, et al. eds. Finite Element Handbook. New York: McGraw-Hill, 1987.

24. Debonne G, Desbrun M, Barr A, et al. Interactive multiresolution animation of deformable models. In: Computer Animation and Simulation ’99: Proceedings of the 10th Eurographics Workshop on Computer Animation and Simulation, Milan, Italy, September 1999. Aire-la-Ville, Switzerland: Eurographics Association, 1999;78–81.

25. Hochne KH, Delapaz RL, Bernstein R, et al. Combined surface display and reformatting for the three-dimensional analysis of tomographic data. Invest Radiol 1987;22:658–64.

26. Jaffey SM, Dutta K. Digital perspective correction for cylindrical holographic stereogram. Proc SPIE 1982;367.

27. Tan AC, Richards R, Linney AD. The MGI workstation: an interactive system for 3-D medical graphics applications. In: Lemark H, Rhodes ML, Jaffe et al., eds. CAR ’91 Computer Assisted Radiology. Berlin: Springer-Verlag, 1991;705–10.

28. Levoy M. Display of surfaces from volume data. IEEE Comput Graphics Applications 1988;May:29–37.

29. Drenh RA, Carpenter L, Hanrahan P. Volume rendering. Proceedings of SIGGRAPH ’88. Comput Graphics 1988;22:65–74.

30. Jolesz FA, Kikinis R. Intraoperative imaging revolutionizes therapy. Diagn Imaging (San Franc) 1995;17:62–8.

31. Cabral B, Cam N, Foran J. Accelerated volume rendering and...
tomographic reconstruction using texture mapping hardware. In: *Proceedings of the 1994 ACM/IEEE Symposium on Volume Visualization*. Los Alamitos, CA: IEEE Computer Society Press, 1994:91–7.

32. Davson H. *Physiology of the Eye*. 5th ed. New York: Pergamon Press, 1990.

33. Landis C. Determinants of the critical flicker-fusion threshold. *Physiol Rev* 1954;34:259–86.

34. Ezra D. Look, no glasses. *IEEE Rev* 1996;(Sept):187–9.

35. Iwata F. 3-D video system using grating images. *J Comput Aided Surg* 1995;1:85–6.

36. Hattori T. Spatial-multiplexing stereoscopic liquid crystal TV. *J Comput Aided Surg* 1995;1:91–2.

37. Kameyama K, Ohtomi K, Iseki H, et al. Volume scanning display and its medical applications. *J Comput Aided Surg* 1995;1:89–90.

38. Gautsch TL, Johnson EE, Seeger LL. True three dimensional stereographic display of 3-D reconstructed CT scans of the pelvis and acetabulum. *Clin Orthop* 1994;305:138–51.

39. Muller-Richter UD, Malig HJ, Schwerdtner A, et al. Three-dimensional analysis of measurements of the Heidelberg Retina Tomograph. *Graefes Arch Clin Exp Ophthalmol* 2000;228:746–51.

40. Wlöka M. Interacting with virtual reality. In: *Rix J, Haas S, Teixeira J, eds. International Federation for Information Processing: Vol. 31. Virtual Environments and Product Development Processes*. Boston: Kluwer Academic Publishers, 1995:265–281.

41. Blevins NH, Jackler RK, Gralapp C. *Temporal Bone Dissector: The Interactive Otology Reference* (CD-ROM). St. Louis: Mosby, 1998.

42. Vannier MW, Marsh JL, Warren JO. Three dimensional computer graphics for craniofacial surgical planning and evaluation. *Comput Graphics* 1983;17:263–73.

43. Cutting C, Bookstein FL, Grayson B, et al. Three-dimensional computer-assisted design of craniofacial surgical procedures: Optimization and interaction with cephalometric and CT-based models. *Plast Reconstr Surg* 1986;77:877–87.

44. Fujioka M, Yokoi S, Yasuda T, et al. Computer-aided interactive surgical simulation for craniofacial anomalies based on 3-D surface reconstruction CT images. *Radiat Med* 1988;6:204–12.

45. Moss JP, Grindrod SR, Linney AD, et al. A computer system for the interactive planning and prediction of maxillofacial surgery. *Am J Orthod Dentofacial Orthop* 1988;94:469–75.

46. Fright WR, Linney AD. Registration of three dimensional head surfaces using multiple landmarks. *IEEE Trans Med Imag* 1993;12:515–20.

47. Keeve E, Girod S, Girod B. Computer-aided craniofacial surgery. *Comput Aid Surg* 1996;3:66–70.

48. Patel VV, Vannier MW, Marsh JL. Assessing craniofacial surgical simulation. *IEEE Comput Graphics Applications* 1996;16:46–54.

49. Edmond CV, et al. Simulation for ENT endoscopic surgical training. In: *Proceedings Medicine Meets Virtual Reality 5*, San Diego, CA, U.S.A., January 1997.

50. Węgorst S, et al. Validation of the Madigan ESS simulator. In: *Proceedings Medicine Meets Virtual Reality 6*, San Diego, CA, U.S.A., January 1998.

51. Harada T, Ishii S, Tayama N. Three-dimensional reconstruction of the temporal bone from histologic sections. *Arch Otolaryngol Head Neck Surg* 1988;114:1139–42.

52. Edwards PJ, et al. Stereo augmented reality in the surgical microscope. In: *Proceedings Medicine Meets Virtual Reality 6*, San Francisco, CA, U.S.A., January 1999.

53. Virtual Reality in Medicine Lab Research (VRMedLab). The Virtual Temporal Bone (web site). Available at: http://www.bvis.uic.edu/vrml/Research/TemporalBone/researchTB.htm. Accessed November 30, 2001.

54. Chios P, Tan AC, Linney AD, et al. The potential use of an autostereoscopic 3-D display in microsurgery. In: Taylor C, Colchester A, eds. *Medical Image Computing and Computer-assisted Intervention: MICCAI ’99—Second International Conference*. Cambridge, UK, September 19–22, 1999 *Proceedings*. New York: Springer, 1999:998–1009.

55. Edmond CV Jr, Heskamp D, Sluis D, et al. ENT endoscopic surgical training simulator. In: *Proceedings Medicine Meets Virtual Reality 5*, San Diego, CA, U.S.A., January 1997;518–28.