Twisting Functors and Generalized Verma modules.

Ian M. Musson*
Department of Mathematical Sciences
University of Wisconsin-Milwaukee
email: musson@uwm.edu

October 26, 2017

Abstract

Let \(g \) be a reductive Lie algebra. We give a condition that ensures that the character of a generalized Verma module is well-behaved under a twisting functor. We show that a similar result holds for basic classical simple Lie superalgebras, and generalize a result from [CM16] about twisting Verma modules.

1 Introduction and Notation.

1.1 Introduction.

Let \(k \) be an algebraically closed field of characteristic zero, and \(g \) a reductive Lie algebra over \(k \). Our current understanding of the BGG category \(O \) of \(g \)-modules owes much to several well known endofunctors of the category \(O \) and its blocks see [Hum08], [Maz12]. An important class of functors are the twisting functors introduced by Arkhipov [Ark04] and studied further by Andersen in collaborations with Lauritzen [AL03], and Stroppel [AS03]. We postpone some definitions until later, but remark here that there is such a functor \(T_w \) for any Weyl group element \(w \), and for any Verma module \(M(\lambda) \), the modules \(T_w M(\lambda) \) and \(M(w \cdot \lambda) \) have the same character.

Suppose \(p \) is a parabolic subalgebra of \(g \) with Levi factor \(l \). Let \(O_l \) be the analog of the category of \(O \) for \(l \). Consider the functor \(F : O_l \rightarrow O \) defined on an object \(L \) as follows. First make \(L \) into a \(p \)-module by allowing the radical \(m^+ \) of \(p \) to act trivially and then let \(FL = \text{Ind}_p^g L \), be the induced \(g \)-module. If \(L \) is finite dimensional simple, we call \(\text{Ind}_p^g L \), a generalized Verma module. An analog of the above mentioned result on twisted Verma modules does not always hold for generalized Verma modules. However if \(w\alpha \) is a positive root of \(g \) for every positive root \(\alpha \) of \(l \), there is a suitable analog for the character of \(T_w \text{Ind}_p^g L \). The result is most clearly expressed using partition functions. Suppose that \(X \) is any set of positive

*Research partly supported by NSA Grant H98230-12-1-0249, and Simons Foundation grant 318264.
roots, and define \(p_X = \prod_{\alpha \in \Delta^+ \setminus X} (1 - e^{-\alpha})^{-1} \). Then the character of \(\mathcal{F}L = \text{Ind}_p^g L \) is given by

\[
\text{ch} \text{Ind}_p^g L = \text{ch} L p_X.
\]

Recall that the Verma module \(M(\lambda) \) with highest weight \(\lambda \) has character \(e^\lambda p \) where \(p \) is the Kostant partition function. We can think of \(p_X \) as the generating function for the number of partitions with support disjoint from \(X \). When \(X \) is empty we have \(p_X = p \). Under the above assumption on \(v \) we show that \(\text{ch} T_v \mathcal{F}L = v \cdot \text{ch} L p_{vX} \).

Furthermore the result extends easily to the case where \(g \) is a classical simple Lie superalgebra, with a simple change in the definition of \(p_X \) to accommodate odd roots. In [Mus] we showed in the contragredient case, that if \(X \) is an isotropic set of (necessarily odd) roots, and \(\lambda \in h^* \) satisfies \(\lambda([l,l] \cap h) = 0 \), then \(\text{ch} T_v \mathcal{F}L = e^{v\lambda} p_{vX} \).

1.2 Notation.

We collect the main notation that will be used in this paper. We assume that \(g \) is a reductive Lie algebra or a contragredient Lie superalgebra. Fix a Cartan subalgebra \(h \) of \(g \). Let

\[
g = n^- \oplus h \oplus n^+
\]

be a triangular decomposition of \(g \). Then let \(p \) be a parabolic subalgebra of \(g \). We assume \(b = h \oplus n^+ \subseteq p \). There are subalgebras \(m^\pm \) such that

\[
g = m^- \oplus l \oplus m^+
\]

and

\[
p = l \oplus m^+.
\]

Set \(h_l = [l,l] \cap h \). For any \(h \) stable, \(\mathbb{Z}_2 \) graded subalgebra \(c \) of \(g \), let \(\Delta^+_0(c) \) and \(\Delta^+_1(c) \) be the set of even and odd positive roots of \(c \) respectively. We define
\(\Delta^+(c) = \Delta^+_0(c) \cup \Delta^+_1(c) \), and set \(\Delta^+ = \Delta^+_0(g), \Delta^+_0 = \Delta^+_0(g), \Delta^+_1 = \Delta^+_1(g) \). Set
\[
\rho_0 = \sum_{\alpha \in \Delta^+_0} \alpha, \quad \rho_1 = \sum_{\alpha \in \Delta^+_1} \alpha
\]
and \(\rho = \rho_0 - \rho_1 \). For any root \(\alpha \), we can choose a root vector \(e_\alpha \in \mathfrak{g}^\alpha \) such that
\(\mathfrak{g}^\alpha = ke_\alpha \). For an element \(w \) of the Weyl group \(W \), set \(N(w) = \{ \alpha \in \Delta^+_0 | w\alpha < 0 \} \).
We define translated actions of the Weyl group \(W \) on \(\mathfrak{h}^* \) by
\[
w \cdot \lambda = w(\lambda + \rho) - \rho, \quad w \circ \lambda = w(\lambda + \rho_0) - \rho_0.
\]
If \(X \) is a set of positive roots, let \(X_0 \) (resp. \(X_1 \)) be the set of even (resp. odd) roots contained in \(X \). Then define
\[
\tau_X = \prod_{\alpha \in X_0} (1 - e^{-\alpha}) \text{ resp. } s_X = \prod_{\alpha \in X_1} (1 + e^{-\alpha}).
\]
Clearly for \(w \in W \),
\[
wr_X = r_wX \text{ and } ws_X = s_wX.
\]
We also set \(r = r_\emptyset \), and \(p_X = r_X/r \). Note that \(pr = 1 \). If \(X = \Delta^+(l) \), then since
\[
\text{ch } U(m^-) = \prod_{\alpha \in \Delta^+(m)} (1 - e^{-\alpha})^{-1} = p_X,
\]
we have
\[
\text{ch } \text{Ind}_\mathfrak{g}^\mathfrak{g} L = \text{ch } L \frac{r_X}{r} = \text{ch } L p_X.
\]
If \(L_\ell(\lambda) \) is one dimensional, then \(\lambda(\mathfrak{h}_l) = 0 \). Then we denote \(L \) by \(k_\lambda \), and if \(h \in \mathfrak{h}, v \in k_\lambda \), we have \(hv = \lambda(h)v \). In this case, if \(X = \Delta^+(l) \) we have
\[
\text{ch } \text{Ind}_\mathfrak{g}^\mathfrak{g} k_\lambda = e^\lambda p_X.
\]
Let \(\Lambda \) be the lattice of functions on \(\mathfrak{h}^* \) such that \((\sigma, \alpha^\vee) \in \mathbb{Z} \) for all simple roots \(\alpha \) As in [Hum72] 22.5, we use the group ring \(\mathbb{Z}[\Lambda] \) with \(\mathbb{Z} \)-basis the symbols \(e^\sigma \) with \(\sigma \in \Lambda \). The circle action of \(w \in W \) on \(\mathbb{Z}[\Lambda] \) is defined by \(w \circ e^\sigma = e^{w_0\sigma} \). (There is a similar dot action defined using \(\rho \) in place of \(\rho_0 \)). We warn the reader that the circle action is not an action by algebra automorphisms. Instead we have for \(a, b \in \mathbb{Z}[\Lambda] \),
\[
v \circ (ab) = (va)(v \circ b).
\]
With this notation, we can now state the main result on Lie algebras.

Theorem 1.1. Suppose \(\mathfrak{g} \) is reductive and set \(X = \Delta^+(l) \). If \(w \in W \) is such that \(N(w) \cap X = 0 \), the module \(T_w \text{Ind}_\mathfrak{g}^\mathfrak{g} L \) has character \((w \circ \text{ch } L)p_wX \). In particular
\[
\text{ch } T_w \text{Ind}_\mathfrak{g}^\mathfrak{g} k_\lambda = e^{w_0\lambda} p_wX.
\]
This result extends to classical simple Lie superalgebras. In particular this gives a new proof of a result of Coulembier and Mazorchuk about twisting Verma modules.

I thank Kevin Coulembier for some helpful correspondence.
2 Reductive Lie algebras.

2.1 Basics on Twisting Functors.

We assume that \(g \) is a reductive Lie algebra. For \(w \in W \), the twisting functor \(T_w \) for semisimple Lie algebras was introduced by Arkhipov \cite{Ark04} in his work on the semi-infinite BGG resolution. Twisting functors for Lie superalgebras are studied in \cite{CM16}. Until further notice, we assume that \(g \) is reductive. The twisting functor on the category \(\text{Mod-}U(g) \) of \(U(g) \)-modules is defined as follows: Let \(n_w = n^- \cap w^{-1}(n^+) \), and let \(N_w = U(n_w) \). We make \(g \) into a \(\mathbb{Z} \)-graded Lie superalgebra \(g = \bigoplus_{i \in \mathbb{Z}} g(i) \) such that \(g(0) = h \) and \(g(\pm 1) = \oplus g_{\pm \alpha} \), where the sum runs over all simple roots \(\alpha \). This grading induces a grading on \(N_w \). Let \((N_w^*)_i = \text{Hom}_k(N_w^{-i}, k) \).

Then \(N_w^* = \bigoplus_{i \in \mathbb{Z}} (N_w^*)_i \) is the graded dual of \(N_w \). Set \(U = U(g) \). Then the corresponding semi-infinite \(U \)-bimodule \(S_w \) is defined as \(S_w = U \otimes_{N_w^*} N_w^* \). For a proof that \(S_w \) is a \(U \)-bimodule see \cite{Ark04}. As a \(U \)-module we have, see \cite{AL03} 6.1,

\[
S_w \cong N_w^* \otimes_{N_w} U. \quad (2.1)
\]

The twisting functor \(T_w : \text{Mod-}U(g) \rightarrow \text{Mod-}U(g) \) corresponding to \(w \in W \) is defined by \(T_w(?) = S_w \otimes_U (?) \). The functor \(T_w \) restricts to an endofunctor on \(\mathcal{O} \).

Lemma 2.1. The functor \(T_w \) is right exact, and has left derived functors \(\mathcal{L}_i T_w \) given by

\[
\mathcal{L}_i T_w(?) = \text{Tor}_i^{N_w^*}(N_w^*, ?). \quad (2.2)
\]

Proof. This follows since by \((2.1)\),

\[
T_w(?) = S_w \otimes_U (?) = N_w^* \otimes_{N_w^*} U \otimes_U (?) = N_w^* \otimes N_w(?) \nonumber.
\]

When \(g \) is reductive and \(w = s_{\alpha} \) is a simple reflection, \(T_w \) has the following easy description. Let \(U_s \) denote the localization of \(U = U(g) \) at the negative root vector \(e_{-\alpha} \). Then \(U(s) = U_s/U \) is a \(U-U \)-bimodule, and \(T_s M \cong U(s) \otimes U M \). There is an inner automorphism \(\phi = \phi_{\alpha} \) of \(g \) such that \(\phi(g_{\beta}) = g_{s_{\alpha} \beta} \) for all roots \(\beta \), and \(\phi(h) = h \). The action of \(g \) on \(U(s) \) is twisted by \(\phi \), i.e. the action is given by \((x, u) \rightarrow \phi(x)u\).

It was shown in \cite{AL03}, Remark 6.1 ii) that

\[
T_{ws} \cong T_w T_s \text{ if } ws > w \text{ and } s \text{ is a simple reflection}. \quad (2.3)
\]

2.2 Twisting Generalized Verma Modules.

It was shown in \cite{AL03}, Proposition 6.1 ii), that for any Verma module \(M(\lambda) \) the modules \(T_w M(\lambda) \) and \(M(w \circ \lambda) \) have the same character. Equivalently by \cite{Jan79} Satz 1.11, we have in the Grothendieck group \(K(O) \) of the category \(\mathcal{O} \) that

\[
[T_w M(\lambda)] = [M(w \circ \lambda)]. \quad (2.4)
\]

Our goal is to obtain an analog of this result for generalized Verma modules \(M^X(\lambda) \).
Proposition 2.2. If \(N(w) \cap \Delta^+(l) = \emptyset \), then

(a) \(n_w \) is subalgebra of \(m^- \).

(b) If \(L \) is a \(\ell \)-module and \(M = \mathcal{F}L \), then \(\mathcal{L}_iT_wM = 0 \) for \(i > 0 \).

Proof. By definition
\[
n_w = \text{span}\{e_{-\alpha} | \alpha \in N(w)\},
\]
and
\[
m^- = \text{span}\{e_{-\alpha} | \alpha \in \Delta^+(g) \setminus \Delta^+(l)\}.
\]
Hence (a) follows from the hypothesis. With \(L \) as in (b), \(M = \text{Ind}_p^g L = U(m^-) \otimes L \) is a free \(U(m^-) \)-module. By the PBW Theorem and (a) \(U(m^-) \) is a free \(N_w = U(n_w) \)-module. Thus \(M \) is free and hence flat over \(N_w \), and (b) follows from (2.2).

Lemma 2.3. Suppose \(w \in W \) is such that \(N(w) \cap \Delta^+(l) = \emptyset \), and suppose that the sequence of \(g \)-modules
\[
0 \to Q_1 \to Q_2 \to Q_3 \to 0,
\]
is exact. Then provided that \(Q = Q_3 \) is a free (or even flat) \(N_w \)-module, the sequence
\[
0 \to T_wQ_1 \to T_wQ_2 \to T_wQ_3 \to 0,
\]
is also exact. This holds for example if \(Q \) is induced from a \(p \)-module.

Proof. The twisting functor \(T_w \) is right exact, so it suffices to show that its left derived functor \(\mathcal{L}_1T_w \) satisfies \(\mathcal{L}_1T_wQ = 0 \). This follows from Lemma 2.1.

Lemma 2.4. Suppose
\[
0 \to M_n \overset{f_{n-1}}\to M_{n-1} \to \cdots \to M_1 \overset{f_0} \to M_0 \to M \to 0,
\]
is a long exact sequence such that \(\mathcal{L}_1T_wM_j = 0 \) all \(j \) and and \(\mathcal{L}_1T_wM = 0 \). Then the sequence
\[
0 \to T_wM_n \overset{Twf_{n-1}}\to T_wM_{n-1} \to \cdots \to T_wM_1 \overset{Twf_0} \to T_wM_0 \to T_wM \to 0,
\]
is also exact.

Proof. Let \(K_i = \ker f_i \). Then from the exact sequence \(0 \to K_0 \to M_0 \to M \to 0 \), and the long exact sequence for Tor, we see that \(0 \to T_wK_0 \to T_wM_0 \to T_wM \to 0 \) is exact and \(\mathcal{L}_1T_wK_0 = 0 \). The same reasoning applied to the exact sequences \(0 \to K_i \to M_i \to K_{i-1} \to 0 \) shows that \(0 \to T_wK_i \to T_wM_i \to T_wK_{i-1} \to 0 \) is exact and \(\mathcal{L}_1T_wK_i = 0 \) for all \(i \). Assembling all the sequences involving \(T_w \) we get the result.
Let C be the full subcategory of O consisting of g-modules that have finite resolutions by (direct sums of) Verma modules, and let $C(l)$ be the analogous category of l-modules. The Verma module for l with highest weight $\lambda \in h^*$ will be denoted by $M_l(\lambda)$. It is clear that $\mathcal{F}M_l(\lambda) \cong M(\lambda)$, so the functor \mathcal{F} takes $C(l)$ to C.

Lemma 2.5. If L is a finite dimensional l-module, then $\mathcal{F}L \in C$.

Proof. Begin with the BGG-resolution of L as an l-module and apply \mathcal{F} to get a resolution of $\mathcal{F}L$. By transitivity of induction, Verma's induce to Verma's.

Lemma 2.6. Suppose $M \in C$, $w \in W$ and $\mathcal{L}_1 T_w M = 0$. Then

(a) $\text{ch } M = \sum_{\mu} b_{\mu} \text{ch } M(\mu)$ implies $\text{ch } T_w M = \sum_{\mu} b_{\mu} \text{ch } M(w \circ \mu)$.

(b) If $\text{ch } M = ap$ for $a \in Z[\Lambda]$, then $\text{ch } T_w M = (w \circ a)p$.

Proof. Suppose that

$$0 \to M_n \to M_{n-1} \to \cdots \to M_1 \to M_0 \to M \to 0,$$

is a resolution of M by direct sums of Vermas, and suppose the multiplicity of the Verma $M(\mu)$ in M_i is $a_{i,\mu}$, then clearly

$$\text{ch } M = \sum_{i=0}^{n} (-1)^i \text{ch } M_i = \sum_{i=0}^{n} (-1)^i a_{i,\mu} \text{ch } M(\mu).$$

$$= \sum_{\mu} b_{\mu} \text{ch } M(\mu),$$

where $b_{\mu} = \sum_{i=0}^{n} (-1)^i a_{i,\mu}$. Now assuming that $\mathcal{L}_1 T_w M = 0$, we have a resolution

$$0 \to T_w M_n \to T_w M_{n-1} \to \cdots \to T_w M_1 \to T_w M_0 \to T_w M \to 0,$$

and by (2.4) this implies that

$$\text{ch } T_w M = \sum_{i=0}^{n} (-1)^i a_{i,\mu} \text{ch } M(w \circ \mu).$$

This proves (a), and (b) follows since $\text{ch } M(\lambda) = e^\lambda p$. □

Proof of Theorem 1.1. If L is a finite dimensional l-module then $M = \text{Ind}_g^p L \in C$ by Lemma 2.5. Also $\mathcal{L}_1 T_w M = 0$ by Proposition 2.2. Therefore from (1.3) and Lemma 2.6 we obtain the first equality below. For the second we use (1.2) and (1.4). We obtain

$$\text{ch } T_w \text{Ind}_g^p L = \frac{w \circ (r X \text{ch } L)}{r} = p_w X w \circ \text{ch } L,$$

as claimed. □
3 Lie Superalgebras.

From now on we fix a contragredient Lie superalgebra \(\mathfrak{g} \), and apply the results of the previous Subsection to the reductive algebra \(\mathfrak{g}_0 \). In \([CM16]\) the twisting functor \(T_s \), for \(\mathfrak{g} \) is defined as follows. We assume that \(s \) is a reflection corresponding to the simple non-isotropic root \(\alpha \). Then as before denote the localization \(U(\mathfrak{g}) \) at \(e_{-\alpha} \) by \(U_s \) and set \(U(s) = U_s/U \). Since \(\phi \) is inner, it extends to \(\mathfrak{g} \) and then to \(U(\mathfrak{g}) \). Then the action of \(U \) is twisted by \(\phi \).

This definition can be extended to \(W \) because if we use (2.3) to define an action of the free group generated by symbols \(T_s \) for \(s \) a simple reflection, then the Braid relations are satisfied \([CM16]\) Lemma 5.3. Thus (2.3) yields a well-defined twisting functor (which we also denote by \(T_w \)) for all \(w \in W \). Also the restriction functor \(\text{Res}^\mathfrak{g}_{\mathfrak{g}_0} \) intertwines \(T_w \), that is we have an isomorphism of functors, see \([CM16]\) Lemma 5.1.

\[
\text{Res}^\mathfrak{g}_{\mathfrak{g}_0} \circ T_w \cong T_w \circ \text{Res}^\mathfrak{g}_{\mathfrak{g}_0}.
\]

(3.1)

There is a similar result for the induction functor \(\text{Ind}^\mathfrak{g}_{\mathfrak{g}_0} \), but we will not need it.

Lemma 3.1. Suppose \(E \) is a finite dimensional simple \(\mathfrak{l} \)-module with highest weight \(\lambda \), and make \(E \) into a \(\mathfrak{p} \)-module by allowing \(\mathfrak{m}^+ \) to act trivially.

(a) If \(M = \text{Ind}^\mathfrak{g}_{\mathfrak{g}_0} E \) there is a finite chain of \(U(\mathfrak{g}_0) \)-submodules

\[
M = M_s \supset M_{s-1} \supset \cdots \supset M_1 \supset M_0 = 0,
\]

and \(\mathfrak{l}_0 \)-modules \(E_i \) with \(M_i/M_{i-1} \cong \text{Ind}^\mathfrak{g}_{\mathfrak{p}_0} E_i \) and \(\dim E_i < \infty \) for \(1 \leq i \leq s \).

(b) We have \(\sum_{i=1}^s \dim E_i = \dim \Lambda(\mathfrak{m}^-) \otimes E \).

Proof. Let \(\Lambda(\mathfrak{m}^-) \) be the exterior algebra on \(\mathfrak{m}^- \). Then \(\mathfrak{l}_0 \) acts on \(\Lambda(\mathfrak{m}^-) \) via the adjoint action, and we have as a \(\mathfrak{l}_0 \)-module, (compare \([Mus12]\) Corollary 6.4.5),

\[
M = U(\mathfrak{g}) \otimes_{U(\mathfrak{p})} E = U(\mathfrak{m}^-) \otimes E = U(\mathfrak{m}_0^-) \otimes \Lambda(\mathfrak{m}^-) \otimes E.
\]

Note that \(N = \Lambda(\mathfrak{m}^-) \otimes E \) is an \(\mathfrak{p}_0 \)-module, and \(M = \text{Ind}^\mathfrak{g}_{\mathfrak{p}_0} N \). Write \(N \) as a direct sum of finite dimensional simple \(\mathfrak{l}_0 \)-modules. Say

\[
N = \Lambda(\mathfrak{m}^-) \otimes E = \bigoplus_{i=1}^s E_i
\]

with \(E_i \) simple. Since \(M \) is an object of \(\mathcal{O} \), \(\mathfrak{n}_0^+ \) acts nilpotently on \(M \), so some power of \(\mathfrak{m}_0^- \) in \(U(\mathfrak{m}^-) \) annihilates \(N \). To construct the chain (3.2) we construct a similar chain of \(U(\mathfrak{p}_0) \)-submodules

\(^1\)We have excluded the cases where \(\mathfrak{g} = P(n) \) or \(\mathfrak{g} = Q(n) \) for technical reasons. The main results however can be adapted to these Lie superalgebras.
\[N = N_s \supset N_{s-1} \supset \cdots \supset N_1 \supset N_0 = 0 \] \hspace{1cm} (3.4)

such that \(N_i/N_{i-1} \cong E_i \) for \(1 \leq i \leq s \). Suppose we have constructed \(N_i \) and set \(M_i = \text{Ind}_{p_0}^{g_0} N_i \) and \(N_i = (M_i + N)/M_i \). Then consider

\[\text{ann}_{\Lambda^i} m_0^+ = \{ x \in N_i | m_0^+ x = 0 \} \]

This is a nonzero \(p_0 \)-submodule of \(N_i \) killed by \(m_0^+ \). By renumbering the \(E_j \) we can assume that \(N_{i+1}/N_i \cong E_{i+1} \) is a simple submodule of \(\text{ann}_{\Lambda^i} m_0^+ \). Finally applying the induction functor \(\text{Ind}_{p_0}^{g_0} \) to the exact sequence

\[0 \rightarrow N_{i-1} \rightarrow N_i \rightarrow E_i \rightarrow 0, \]

we obtain

\[0 \rightarrow M_{i-1} \rightarrow M_i \rightarrow \text{Ind}_{p_0}^{g_0} E_i \rightarrow 0. \] \hspace{1cm} (3.5)

Hence (a) follows and (b) holds by (3.3). \(\square \)

Note that

\[\text{ch} \Lambda(m_1^-) \otimes E = s_X \text{ch} E \] \hspace{1cm} (3.6)

Theorem 3.2. Assume \(X = \Delta^+(1) \) and \(w \in W \) is such that \(N(w) \cap X = \emptyset \). Then if \(M = \text{Ind}_p^{g_0} E \), we have

\[\text{ch} T_w M = \frac{r_w X s_w X (w \circ \text{ch} E)}{r} = p_{w,X}(w \circ \text{ch} E). \] \hspace{1cm} (3.7)

Proof. By (3.1) the character of \(T_w M \) is the same as its character when regarded as a \(g_0 \)-module. By Lemma 2.3, the functor \(T_w \) is exact on the sequence (3.3), so \(T_w M_i/T_w M_{i-1} \cong T_w \text{Ind}_{p_0}^{g_0} E_i \). These remarks justify the first two equalities below. For the third we use (3.3)

\[
\begin{align*}
\text{ch} T_w M &= \sum_{i=1}^s \text{ch} T_w (M_i/M_{i-1}) \\
&= \sum_{i=1}^s \text{ch} T_w \text{Ind}_{p_0}^{g_0} E_i \\
&= \text{ch} T_w \text{Ind}_{p_0}^{g_0} (\Lambda(m_1^-) \otimes E),
\end{align*}
\]

but

\[\text{ch} \text{Ind}_{p_0}^{g_0} \Lambda(m_1^-) \otimes E = \frac{r_X s_X \text{ch} E}{r}. \] \hspace{1cm} (3.8)

Hence using Lemma 2.6, we obtain the result. \(\square \)
We specialize to the case where $E = k\lambda$ is one dimensional. To do this we need some more notation. Let Γ be the set of sums of distinct odd positive roots, and for $\gamma \in \Gamma$, let $K(\gamma)$ be the number of partitions of γ into distinct odd positive roots. By [Mus97] Lemma 2.3, W acts on Γ by

$$w \ast \gamma = \rho_1 - w(\rho_1 - \gamma)$$

for $w \in W$ and $\gamma \in \Gamma$. This action is related to those in (1.1) by

$$w \circ (\lambda - \gamma) = w \cdot \lambda - w \ast \gamma.$$

Now for $\gamma \in \Gamma$, define $K_X(\gamma)$ by

$$\prod_{\alpha \in \Delta^+_i \setminus X} (1 + e^{-\alpha}) = \sum_{\gamma \in \Gamma} K_X(\gamma)e^{-\gamma}$$

and let $\Gamma_X = \{ \gamma \in \Gamma | K_X(\gamma) > 0 \}$. We have $s_X = \sum_{\gamma \in \Gamma_X} K_X(\gamma)e^{-\gamma}$. So (3.8) yields

$$\text{ch Ind}_{\text{p}^0_\lambda(M^i)}^{\text{p}^0_\lambda} = p_{wX}e^{w\cdot \lambda}.$$

Theorem 3.3. Suppose $w \in W$ is such that $N(w) \cap \Delta^+(t) = \emptyset$. Then

$$\text{ch} T_w M^X(\lambda) = p_{wX}e^{w\cdot \lambda}.$$

First we isolate a key step in the proof.

Lemma 3.4. We have

$$\sum_{\gamma \in \Gamma_X} K_X(\gamma)e^{-w\ast \gamma} = \sum_{\gamma \in \Gamma_{wX}} K_{wX}(\gamma)e^{-\gamma}.$$

Proof. Note that

$$e^{\rho_1} \prod_{\alpha \in X} (1 + e^{-\alpha}) \sum_{\gamma \in \Gamma_X} K_X(\gamma)e^{-\gamma} = \prod_{\alpha \in \Delta^+_i} (e^{\alpha/2} + e^{-\alpha/2}),$$

and this expression is W-invariant and independent of X. Using (3.9), we apply w to (3.13) to get the first equality below, and replace X by wX for the second,

$$e^{\rho_1} \prod_{\alpha \in X} (1 + e^{-w\alpha}) \sum_{\gamma \in \Gamma_X} K_X(\gamma)e^{-w\ast \gamma} = \prod_{\alpha \in \Delta^+_i} (e^{\alpha/2} + e^{-\alpha/2})$$

$$= e^{\rho_1} \prod_{\beta \in wX} (1 + e^{-\beta}) \sum_{\gamma \in \Gamma_{wX}} K_{wX}(\gamma)e^{-\gamma}.$$

The result follows since

$$e^{\rho_1} \prod_{\alpha \in X} (1 + e^{-w\alpha}) = e^{\rho_1} \prod_{\beta \in wX} (1 + e^{-\beta}).$$

\qed
Proof of Theorem 3.3. By Lemma 2.6 applied to (3.12),

\[
\text{ch } T_w M^X(\lambda) = \text{pr}_{wX} \sum_{\gamma \in \Gamma_X} K_X(\gamma) e^{w(\lambda - \gamma)}. \tag{3.14}
\]

Using (3.10) and then Lemma 3.4, we see that \(T_w M^X(\lambda) \) has character

\[
\text{pr}_{wX} e^{w\lambda} \sum_{\gamma \in \Gamma_X} K_X(\gamma) e^{-w\gamma} = \text{pr}_{wX} e^{w\lambda} \sum_{\gamma \in \Gamma_{wX}} K_{wX}(\gamma) e^{-\gamma} = e^{w\lambda} \text{pr}_{wX}. \tag{3.15}
\]

This completes the proof.

Remarks 3.5. When \(g = \mathfrak{gl}(m, n) \) Theorem 3.3 is used in the Jantzen sum formula from [Mus]. For Verma modules i.e. the case where \(X \) is empty, the Theorem reduces to [CM16] Lemma 5.5.

References

[AL03] H. H. Andersen and N. Lauritzen, Twisted Verma modules, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 1–26. MR1985191 (2004d:17005)

[AS03] H. H. Andersen and C. Stroppel, Twisting functors on \(\mathcal{O} \), Represent. Theory 7 (2003), 681–699, DOI 10.1090/S1088-4165-03-00189-4. MR2032059

[Ark04] S. Arkhipov, Algebraic construction of contragradient quasi-Verma modules in positive characteristic, Representation theory of algebraic groups and quantum groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 27–68. MR2074588 (2005h:17027)

[CM16] K. Coulembier and V. Mazorchuk, Primitive ideals, twisting functors and star actions for classical Lie superalgebras, J. Reine Angew. Math. 718 (2016), 207–253, DOI 10.1515/crelle-2014-0079. MR3545883

[Hum72] J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York, 1972. Graduate Texts in Mathematics, Vol. 9. MR0323842 (48 #2197)

[Hum08] ________, Representations of semisimple Lie algebras in the BGG category \(\mathcal{O} \), Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR2428237

[Jan79] J. C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol. 750, Springer, Berlin, 1979 (German). MR552943 (81m:17011)

[Maz12] V. Mazorchuk, Lectures on algebraic categorification, QGM Master Class Series, European Mathematical Society (EMS), Zürich, 2012. MR2918217

[Mus97] I. M. Musson, On the center of the enveloping algebra of a classical simple Lie superalgebra, J. Algebra 193 (1997), no. 1, 75–101, DOI 10.1006/jabr.1996.7000. MR1456569 (98k:17012)

[Mus12] ________, Lie Superalgebras and Enveloping Algebras, Graduate Studies in Mathematics, vol. 131, American Mathematical Society, Providence, RI, 2012.

[Mus] ________, Šapovalov elements and the Jantzen sum formula for contragredient Lie superalgebras, in preparation.