Beltrami equations with coefficient
in the fractional Sobolev space $W^{\theta, \frac{2}{\theta}}$

Antonio L. Baisón, Albert Clop and Joan Orobitg.

Abstract
In this paper, we look at quasiconformal solutions $\phi : \mathbb{C} \to \mathbb{C}$ of Beltrami equations
$$\partial \bar{z} \phi(z) = \mu(z) \partial_z \phi(z),$$
where $\mu \in L^\infty(\mathbb{C})$ is compactly supported on \mathbb{D}, $\|\mu\|_\infty < 1$ and belongs to the fractional Sobolev space $W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$. Our main result states that
$$\log \partial_z \phi \in W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$$
whenever $\alpha > \frac{1}{2}$. Our method relies on an n-dimensional result, which asserts the compactness of the commutator
$[b, (-\Delta)^{\beta}] : L^{n/(n-\beta)}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$
between the fractional laplacian $(-\Delta)^{\beta}$ and any symbol $b \in W^{\beta, n}(\mathbb{R}^n)$, provided that $1 < p < \frac{n}{\beta}$.

1 Introduction

A Beltrami coefficient is a function $\mu \in L^\infty(\mathbb{C})$ with $\|\mu\|_\infty < 1$. By the well-known Measurable Riemann Mapping Theorem, to every compactly supported Beltrami coefficient μ one can associate a unique homeomorphism $\phi : \mathbb{C} \to \mathbb{C}$ in the local Sobolev class $W^{1,2}_{loc}$ such that the Beltrami equation
$$\partial \bar{z} \phi(z) = \mu(z) \partial_z \phi(z)$$
holds for almost every $z \in \mathbb{C}$, and at the same time, $|\phi(z) - z| \to 0$ as $|z| \to \infty$. One usually calls ϕ the principal solution, and it is known to be a K-quasiconformal map with $K = \frac{1 + \|\mu\|_\infty}{1 - \|\mu\|_\infty}$, since
$$|\partial \bar{z} \phi(z)| \leq \frac{K - 1}{K + 1} |\partial_z \phi(z)|$$
at almost every $z \in \mathbb{C}$.

2010 Mathematics Subject Classification. 30C62, 35J46, 42B20, 42B37

Key words and phrases. Quasiconformal mapping, Beltrami equation, Fractional Sobolev spaces, Beltrami operators.
Recent works have shown an interest in describing the Sobolev smoothness of ϕ in terms of that of μ. As noticed already at [5], remarkable differences are appreciated under the assumption $\mu \in W^{\alpha-p}$, depending on if $\alpha p < 2$, $\alpha p = 2$ or $\alpha p > 2$. In this paper, we focus our attention on the case $\alpha p = 2$.

It was proven at [5] that if $\mu \in W^{1,2}$ then ϕ belongs to the local Sobolev space $W^{2,2-\epsilon}_{loc}$ for each $\epsilon > 0$ (and further one cannot take $\epsilon = 0$ in general). The proof was based on the elementary fact that

$$\mu \in W^{1,2} \quad \Rightarrow \quad \log(\partial_z \phi) \in W^{1,2}. \quad (1)$$

In particular, $\log \partial_z \phi$ enjoys a slightly better degree of smoothness than $\partial_z \phi$ itself. It is a remarkable fact that this better regularity cannot be deduced only from the fact that $\partial_z \phi \in W^{1,2-\epsilon}_{loc}$ for every $\epsilon > 0$. Somehow, this means that $\log \partial_z \phi$ contains more information than $\partial_z \phi$.

Similar phenomenon had been observed much earlier in the work of Hamilton [6], where it is shown that

$$\mu \in VMO \quad \Rightarrow \quad \log(\partial_z \phi) \in VMO. \quad (2)$$

Again, the VMO smoothness of $\log(\partial_z \phi)$ cannot be completely transferred to $\partial_z \phi$ itself. Indeed, the example $\phi(z) = z (\log |z| - 1)$, in a neighbourhood of the origin, has VMO Beltrami coefficient (at least locally) but clearly $D\phi \notin VMO$.

The VMO setting is interesting in our context since it can be seen as the limiting space of $W^{\alpha,2}$. Certainly, the complex method of interpolation shows that

$$[VMO, W^{1,2}]_\alpha = W^{\alpha, \frac{2}{\alpha}}, \quad 0 < \alpha < 1$$

(see for instance [12]). Thus, it is natural to ask if a counterpart to implication (1) holds in $W^{\alpha, \frac{2}{\alpha}}$. In the present paper, we prove the following theorem.

Theorem 1. Let $\alpha \in (\frac{1}{2}, 1)$. Let μ be a Beltrami coefficient with compact support and such that $\mu \in W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$. Let ϕ be the principal solution to the \mathbb{C}-linear Beltrami equation

$$\partial_{\overline{z}} \phi = \mu \partial_z \phi.$$

Then, $\log (\partial \phi) \in W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$.

The proof of Theorem 1 is based on two facts. The first one is the following a priori estimate for linear Beltrami equations with coefficients belonging to $W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$.
Theorem 2. Let $\alpha \in (0,1)$ and $1 < p < \frac{2}{\alpha}$. Let μ, ν be a pair of Beltrami coefficients with compact support, such that $||\mu|| + ||\nu||_{\infty} \leq k < 1$ and $\mu, \nu \in W^{\alpha,2}(\mathbb{C})$. For every $g \in W^{\alpha,p}(\mathbb{C})$ the equation
\[\partial_z f - \mu \partial_z f - \nu \overline{\partial_z f} = g \]
admits a solution f with $Df \in W^{\alpha,p}(\mathbb{C})$, unique modulo constants, and such that the estimate
\[||Df||_{W^{\alpha,p}(\mathbb{C})} \leq C ||g||_{W^{\alpha,p}(\mathbb{C})} \]
holds for a constant C depending only on $k, ||\mu||_{W^{\alpha,2}(\mathbb{C})}$ and $||\nu||_{W^{\alpha,2}(\mathbb{C})}$.

Theorem 2 is sharp, in the sense that one cannot take $p = \frac{2}{\alpha}$. Thus, Theorem 1 shows that $\log \partial_z \phi$ enjoys better regularity than $\partial_z \phi$ itself.

The study of logarithms of derivatives of quasiconformal maps goes back to the work of Reimann [11], where it was shown that the real-valued logarithm $\log |\partial_z \phi| \in BMO$ whenever $||\mu||_{\infty} < 1$. References involving the complex logarithm $\log \partial_z \phi$ also lead to [1]. More recently, in [3] the authors obtained sharp bounds for the BMO norm of $\log \partial_z \phi$ also with the only assumption $||\mu||_{\infty} < 1$.

The second main ingredient in the proof of Theorem 1 is a compactness result for commutators of pointwise multipliers and the fractional laplacian, which holds in higher dimensions and has independent interest. In order to state it, given a measurable function $u : \mathbb{R}^n \to \mathbb{R}$ we denote
\[D^\beta u(x) := \lim_{\epsilon \to 0} C_{n,\beta} \int_{|x-y|>\epsilon} \frac{u(x) - u(y)}{|x-y|^{n+\beta}} \, dy. \tag{3} \]
This is a principal value representation of the fractional laplacian $(-\Delta)^{\frac{\beta}{2}}$, whose symbol at the Fourier side is
\[\widehat{D^\beta u}(\xi) = (-\Delta)^{\frac{\beta}{2}} \hat{u}(\xi) = |\xi|^{\beta} \hat{u}(\xi). \]
The operator D^β can also be seen as the formal inverse of I_β, the classical Riesz potential of order β, which can be represented as
\[\widehat{I_\beta u}(\xi) = |\xi|^{-\beta} \hat{u}(\xi). \]
With this notation, a function u belongs to $W^{\beta,p}$, $1 < p < \infty$, if and only if u and $D^\beta u$ belong to L^p, with the corresponding equivalent norm. Analogously, $u \in W^{\beta,p}$ if and only if $D^\beta u \in L^p$.

Let us remind that if T and S are two operators, one usually calls $[T,S] = T \circ S - S \circ T$ the commutator of T and S.

3
Theorem 3. Let $\beta \in (0,1)$ and $b \in W^{\beta, \frac{2}{\beta}}(\mathbb{R}^n)$. Then, the commutator

$$[b, D^\beta] : L^{\frac{n}{n-\beta p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$$

is bounded and compact whenever $1 < p < \frac{n}{\beta}$.

The boundedness of the commutator can be seen as a consequence of fractional versions of the Leibnitz rule. For the compactness, the Fréchet-Kolmogorov characterization of compact subsets of L^p is combined with the cancellation properties of the kernel of the commutator. Also, in the proof of Theorem 1 one uses Theorem 3 with $\beta = 1 - \alpha$. This explains the restriction $\alpha > \frac{1}{2}$ in Theorem 1, as what one really uses is that $\mu \in W^{1-\alpha, \frac{2}{1-\alpha}}(\mathbb{C})$. Note that this space contains $W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$ if and only if $\alpha > \frac{1}{2}$.

A detailed proof of Theorem 3 is provided at Section 2. In Section 3, we find a priori estimates for generalized Beltrami equations with coefficients in $W^{\theta, \frac{2}{\theta}}$, and prove Theorem 1 and Theorem 2.

Acknowledgements. The three authors are partially supported by the projects 2014SGR75 (Generalitat de Catalunya), MTM2013-44699-P (Ministerio de Economía y Competitividad) and Marie Curie Initial Training Network MAnET (FP7-607647). A. Clop is also supported by the Programa Ramón y Cajal.

2 Proof of Theorem 3

The proof of Theorem 3 we present here is based on classical ideas, see for instance [10]. We will need the following auxiliary result about the Leibnitz rule for fractional derivatives.

Proposition 4. (Kenig-Ponce-Vega’s Inequality [8])

Let $\beta \in (0,1)$ and $1 < p < \frac{n}{\beta}$. Then the inequality

$$\|D^\beta (f g) - f D^\beta g\|_p \leq C \|D^\beta f\|_{\frac{p}{\beta}} \|g\|_{\frac{n}{n-\beta p}}.$$

holds whenever $f, g \in C^\infty_c(\mathbb{R}^n)$.

With this result at hand, we immediately get that the commutator

$$[b, D^\beta] : L^{\frac{n}{n-\beta p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$$

admits a unique bounded extension. Remarkably,

$$\|[b, D^\beta]\|_{L^{\frac{n}{n-\beta p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)} \leq C \|b\|_{W^{\beta, \frac{2}{\beta}}(\mathbb{R}^n)}.$$
As a consequence, if \(b_n \in C_c^\infty(\mathbb{R}^n) \) is such that
\[
\lim_{n \to \infty} \| b_n - b \|_{W^{\beta, \frac{n}{\alpha}}(\mathbb{R}^n)} = 0
\]
then
\[
\lim_{n \to \infty} \| [b_n, D^\beta] - [b, D^\beta] \|_{L^{\frac{n}{\alpha-p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)} = 0
\]
Thus, we are reduced to prove Theorem 3 with the extra assumption \(b \in C_c^\infty(\mathbb{R}^n) \). To this end, we observe that the commutator \(C_b = [b, D^\beta] \) can be represented as an integral operator
\[
C_b f(x) = b(x) \text{ P.V.} \int K(x, y) (f(x) - f(y)) \, dy - \text{P.V.} \int K(x, y) (f(x) b(x) - b(y) f(y)) \, dy
= \text{P.V.} \int K(x, y) (b(y) - b(x)) f(y) \, dy
= \int K(x, y) f(y) \, dy
\]
where
\[
K(x, y) = C_{n, \beta} \frac{(b(y) - b(x))}{|y - x|^{n+\beta}}
\]
and the principal value has been removed from the last integral because the smoothness of \(b \) ensures that \(x \mapsto K(x, y) \) is integrable. For \(C_b \) to be compact, we need to prove that the image under \(C_b \) of the unit ball of \(L^{\frac{n}{\alpha-p}}(\mathbb{R}^n) \) is compact in \(L^p(\mathbb{R}^n) \). To this end, we denote
\[
\mathcal{F} = \{ C_b f : \| f \|_{L^{\frac{n}{\alpha-p}}(\mathbb{R}^n)} \leq 1 \}.
\]
The classical Fréchet-Kolmogorov’s Theorem asserts that \(\mathcal{F} \) is relatively compact if and only if the following conditions hold:

(i) \(\mathcal{F} \) is uniformly bounded, i.e. \(\sup_{\psi \in \mathcal{F}} \| \psi \|_{L^p(\mathbb{R}^n)} < \infty \).

(ii) \(\mathcal{F} \) vanishes uniformly at \(\infty \), i.e. \(\sup_{\psi \in \mathcal{F}} \| \psi \chi_{|x| > R} \|_{L^p(\mathbb{R}^n)} \to 0 \) as \(R \to \infty \).

(iii) \(\mathcal{F} \) is uniformly equicontinuous, i.e. \(\sup_{\psi \in \mathcal{F}} \| \psi(\cdot + h) - \psi(\cdot) \|_{L^p(\mathbb{R}^n)} \to 0 \) as \(|h| \to 0 \).

In our particular case, every element \(\psi \in \mathcal{F} \) has the form \(\psi = C_b f \) with \(\| f \|_{L^{\frac{n}{\alpha-p}}(\mathbb{R}^n)} \leq 1 \). Thus (i) follows automatically from the boundedness of \([b, D^\beta] : L^{\frac{n}{\alpha-p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n) \).

To prove (ii), let \(R_0 > 0 \) be such that \(\text{supp}(b) \subset B(0, R_0) \). At points \(x \) with \(|x| > 3R_0 \) we have
\[
|C_b f(x)| \leq \int \frac{|f(y) b(y)|}{|x - y|^{n+\beta}} \, dy \leq C \| b \|_{\infty} \int_{B(0, R_0)} \frac{|f(y)|}{|x|^{n+\beta}} \, dy \leq C \| b \|_{\infty} \frac{|x|^{\frac{n+\beta}{n}}}{|x|^{n+\beta}} \| f \|_q R_0^{\frac{n+\beta}{n}}.
\]
Thus, if $R > 3R_0$ then
\[
\int_{|x| > R} |C_b f(x)|^p \, dx \leq C_R \|b\|_{\mathcal{P}_n} \|f\|_{\mathcal{P}_{\frac{n-p}{n-p}}} \int_{|x| > R} |x|^{-p(n+\beta)} \, dx \to 0 \quad \text{as } R \to \infty
\]
as needed.

For the proof of (iii), we could proceed as usually, which means to regularize the kernel K in the diagonal \(\{x = y\} \). Then we would prove the compactness of this regularization and finally the limit of compact operators would give us the result. However, a more direct approach is available, since $\|K(x, \cdot)\|_{L^1(\mathbb{R}^n)}$ is uniformly bounded.

Lemma 5. One has
\[
\lim_{h \to 0} \sup_{f \neq 0} \frac{\|C_b f(\cdot + h) - C_b f(\cdot)\|_{L^q(\mathbb{R}^n)}}{\|f\|_{L^q(\mathbb{R}^n)}} = 0
\]
whenever $1 \leq q \leq \infty$.

Proof. We start by observing that
\[
\|K(x, \cdot)\|_{L^1(\mathbb{R}^n)} = \int_{|x-y| \leq 1} |K(x, y)| \, dy + \int_{|x-y| > 1} |K(x, y)| \, dy
\leq C \|\nabla b\|_\infty \int_{|x-y| \leq 1} |x-y|^{-n-\beta+1} \, dy + C \|b\|_\infty \int_{|x-y| > 1} |x-y|^{-n-\beta} \, dy
\leq C \left(\frac{\|\nabla b\|_\infty}{1 - \beta} + \frac{\|b\|_\infty}{\beta} \right) := A
\]
As a consequence, the behavior of $C_b f$ is like the convolution of the function f with a L^1-kernel. In particular, by Jensen’s inequality one gets
\[
\|C_b f\|_q \leq A \|f\|_q, \quad 1 \leq q \leq \infty,
\]
so that $C_b : L^q(\mathbb{R}^n) \to L^q(\mathbb{R}^n), 1 \leq q \leq \infty$.

Towards (5), we need to estimate the translates of C_b. Clearly,
\[
\|C_b f(\cdot + h) - C_b f(\cdot)\|_q \leq \int \left(\int |f(y)(K(x + h, y) - K(x, y))\, dy \right)^q \, dx
\leq \left(\int |f(y)|^q |K(x + h, y) - K(x, y)| \, dy \right)^{\frac{q}{q-1}} \left(\int |K(x + h, y) - K(x, y)| \, dy \right)^{\frac{q-1}{q}} \, dx
\leq (2A)^{q-1} \left(\int |K(x + h, y) - K(x, y)| \, dx \right) \|f(y)\|^q \, dy
\leq (2A)^{q-1} B(h) \int |f(y)|^q \, dy
\]
where \(B(h) = \sup_y \| \mathcal{K}(\cdot, h, y) - \mathcal{K}(\cdot, y) \|_{L^1(\mathbb{R}^n)} \). In order to find estimates for \(B(h) \), we choose an arbitrary \(\rho > 0 \) and write

\[
\int |\mathcal{K}(x+h, y) - \mathcal{K}(x, y)| \, dx = \int_{|x-y| \leq \rho} \cdots + \int_{|x-y| > \rho} \cdots =: I + II.
\]

The integrability of \(\mathcal{K} \) gives that \(I \) is small if \(\rho \) is small enough. Indeed,

\[
\int_{|x-y| \leq \rho} |\mathcal{K}(x, y)| \, dx \leq \| \nabla b \|_{\infty} \int_{|x-y| \leq \rho} |x-y|^{-n-\beta+1} \, dx = C \frac{\| \nabla b \|_{\infty}}{1-\beta} \rho^{1-\beta}.
\]

Moreover, if \(x \in B(y, \rho) \) then \(x+h \in B(y, \rho + |h|) \) so that

\[
\int_{|x-y| \leq \rho} |\mathcal{K}(x+h, y) - \mathcal{K}(x, y)| \, dx \leq \int_{|x-(y-h)| \leq 2\rho} |\mathcal{K}(x+h, y)| \, dx \leq C \frac{\| \nabla b \|_{\infty}}{1-\beta} (\rho + |h|)^{1-\beta}.
\]

Therefore, there exists \(\rho_0 > 0 \) such that if \(\rho < \rho_0 \) and \(|h| < \rho_0/2 \) then \(I \leq \varepsilon/((2A)^{\eta-1}) \). Let us then fix \(\rho = \rho_0/2 \), and take care of \(II \). Note that, since \(|h| < \rho_0/2 \) and \(|x-y| > \rho \), we have

\[
|\mathcal{K}(x+h, y) - \mathcal{K}(x, y)| = \left(b(y) - b(x+h) \right) \left(\frac{1}{|x+h-y|^{n+\beta}} + \frac{1}{|x-y|^{n+\beta}} \right) \beta/\rho_0 + \| \nabla b \|_{\infty} |h|/|x-y|^{n+\beta}.
\]

Then, since we fixed \(\rho = \rho_0/2 \),

\[
II \leq C \frac{\| \nabla b \|_{\infty}}{\beta} \int_{|x-y| > \rho} \frac{dx}{|x-y|^{n+1+\beta}} + C \frac{\| \nabla b \|_{\infty}}{\beta} \int_{|x-y| > \rho} \frac{dx}{|x-y|^{n+\beta}}
\]

\[
\leq C \frac{\| \nabla b \|_{\infty}}{\beta} \left(\frac{\| b \|_{\infty}}{\rho_0^{1+\beta}} + \frac{\| \nabla b \|_{\infty}}{\rho_0^\beta} \right).
\]

Thus, by taking \(|h| \) sufficiently small, we see that \(II \leq \varepsilon/((2A)^{\eta-1}) \). Hence \(B(h) \to 0 \) as \(|h| \to 0 \), and thus (5) follows.

With the above Lemma, the proof of (iii) is almost immediate. Indeed, by (4) we see that

\[
\| C_b f(\cdot + h) - C_b f(\cdot) \|_p^p = \int_{|x| \leq R} |C_b f(x+h) - C_b f(x)|^p \, dx
\]

\[
\quad + \int_{|x| > R} |C_b f(x+h) - C_b f(x)|^p \, dx
\]

\[
\leq \| C_b f(\cdot + h) - C_b f(\cdot) \|_p^p \frac{1}{R^{\beta p}} \frac{1}{R^{\beta p}}
\]

\[
\quad + C_R \frac{\| b \|_{t, \infty} \| f \|_p^p \frac{1}{R^{\beta p}}}{R^{\beta p}} \int_{|x| > R} |x|^{-p(n+\beta)} \, dx.
\]

at least for \(R > 3R_0 \). In particular, the last term is small if \(R \) is large enough. But for this particular \(R \), and using (5), the penultimate term is also small if \(|h| \) is small. Therefore (iii) follows. Theorem 3 is proved.
3 Beltrami operators in fractional Sobolev spaces

The regularity theory for Beltrami equations relies on the behavior of the Beurling operator, which is formally defined as a principal value operator,

$$\mathcal{B}f(z) = -\frac{1}{\pi} \text{p.v.} \int_C f(z-w) \frac{1}{w^2} dA(w).$$

This operator intertwines the ∂_z and $\partial_{\overline{z}}$ derivatives. More precisely, its Fourier representation

$$\hat{\mathcal{B}}f(\xi) = \frac{\overline{\xi}}{\xi} \hat{f}(\xi).$$

makes it clear that $\mathcal{B}(\partial_{\overline{z}} f) = \partial_z f$, at least when f is smooth and compactly supported.

Furthermore, \mathcal{B} is an isometry on $L^2(\mathbb{C})$, and as a Calderón-Zygmund operator, it can be boundedly extended to $L^p(\mathbb{C})$ whenever $1 < p < \infty$.

Before proving Theorem 1, we first state and prove the following fact about generalized Beltrami equations. Let us recall that $\overline{\mathcal{B}}$ denotes the composition of \mathcal{B} with the complex conjugation operator, that is, $\overline{\mathcal{B}}(f) = \overline{\mathcal{B}(f)}$.

Proposition 6. Let $\alpha \in (0, 1)$. Let $\mu, \nu \in W^{\alpha, 2}(\mathbb{C})$ be compactly supported Beltrami coefficients, with $\|\mu\| + \|\nu\|_{\infty} \leq k < 1$. Then the generalized Beltrami operators

$$\text{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}} : \dot{W}^{\alpha,p}(\mathbb{C}) \to \dot{W}^{\alpha,p}(\mathbb{C})$$

are bounded and boundedly invertible if $1 < p < \frac{2}{\alpha}$.

Proof. The operators $\text{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}$ are clearly bounded in $\dot{W}^{\alpha,p}(\mathbb{C})$, since \mathcal{B} preserves $\dot{W}^{\alpha,p}(\mathbb{C})$ (recall that we are assuming $1 < p < \frac{2}{\alpha}$) and also because if $\mu \in \mathcal{L}^\infty(\mathbb{C}) \cap W^{\alpha, 2}(\mathbb{C})$ then μ is a pointwise multiplier of $\dot{W}^{\alpha,p}(\mathbb{C})$ (similarly for ν). This fact follows directly working on the expression (3) for D^α or see [13, p. 250]. Also, the operator $\text{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}$ is clearly injective in $\dot{W}^{\alpha,p}(\mathbb{C})$, as its kernel is a subset of $L^{2^{\alpha, 2}}(\mathbb{C})$ were we already know it is injective (see [7] for a proof in the \mathbb{C}-linear setting, and [9] or also [4] for a proof in the general case). Thus, in order to get the surjectivity (and finish the proof by the Open Mapping Theorem) we will prove that $\text{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}$ is a Fredholm operator on $\dot{W}^{\alpha,p}(\mathbb{C})$ with index 0. To do this, it is sufficient if we prove that

$$D^\alpha(\text{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}})I_\alpha : L^p(\mathbb{C}) \to L^p(\mathbb{C})$$

is a Fredholm operator of index 0, since both properties stay invariant under the topological isomorphisms

$$D^\alpha : \dot{W}^{\alpha,p}(\mathbb{C}) \to L^p(\mathbb{C}),$$

$$I_\alpha : L^p(\mathbb{C}) \to \dot{W}^{\alpha,p}(\mathbb{C}).$$
But this follows easily. Indeed,
\[
D^\alpha (\text{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}) I_\alpha = \text{Id} - D^\alpha (\mu \mathcal{B} + \nu \overline{\mathcal{B}}) I_\alpha \\
= \text{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}} - [D^\alpha, \mu] \mathcal{B} I_\alpha - [D^\alpha, \nu] \overline{\mathcal{B}} I_\alpha
\]

Above, \(\text{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}} \) is invertible in \(L^p(\mathbb{C}) \) by [7]. Also, \([D^\alpha, \mu] \mathcal{B} I_\alpha \) is the composition of the bounded operators \(I_\alpha : L^p(\mathbb{C}) \to L^{\frac{2p}{\alpha-p}}(\mathbb{C}) \) and \(\mathcal{B} : L^{\frac{2p}{\alpha-p}}(\mathbb{C}) \to L^{\frac{2p}{\alpha-p}}(\mathbb{C}) \) with the operator \([D^\alpha, \mu] : L^{\frac{2p}{\alpha-p}}(\mathbb{C}) \to L^p(\mathbb{C}) \), which is compact by Theorem 3. Hence \([D^\alpha, \mu] \mathcal{B} I_\alpha : L^p(\mathbb{C}) \to L^p(\mathbb{C}) \) is compact, and the same happens to \([D^\alpha, \nu] \overline{\mathcal{B}} I_\alpha \). Thus the term on the right hand side is the sum of an invertible operator with two compact operators. Hence it is a Fredholm operator. The claim follows. \(\square \)

We are now ready to prove Theorem 2.

Proof of Theorem 2. By simplicity, we assume that \(\nu = 0 \). Otherwise, the proof follows similarly. First of all, let us observe that if \(g \in \dot{W}^{\alpha,p}(\mathbb{C}) \) and \(\alpha p < 2 \) then automatically \(g \in L^{\frac{2p}{\alpha-p}}(\mathbb{C}) \) by the Sobolev embedding. On the other hand, and since \(W^{\alpha,\frac{2}{p}}(\mathbb{C}) \subset VMO \), we know from [7] that a solution \(f \in \dot{W}^{1,\frac{2p}{\alpha-p}}(\mathbb{C}) \) exists, and moreover
\[
\|Df\|_{L^{\frac{2p}{\alpha-p}}(\mathbb{C})} \leq C \|g\|_{L^{\frac{2p}{\alpha-p}}(\mathbb{C})} \leq C \|g\|_{\dot{W}^{\alpha,p}(\mathbb{C})}.
\]

Our goal consists of replacing the term on the left hand side by \(\|Df\|_{\dot{W}^{\alpha,p}(\mathbb{C})} \).

To do this, we first note that \(\partial_z f = \mathcal{B}(\partial_z f) \), since \(f \in \dot{W}^{1,\frac{2p}{\alpha-p}} \). Thus (??) is equivalent to
\[
(\text{Id} - \mu \mathcal{B})(\partial_z f) = g
\]

Now, from Proposition 6 and our assumption \(g \in \dot{W}^{\alpha,p}(\mathbb{C}) \), we also know that there is a unique \(F \in \dot{W}^{\alpha,p}(\mathbb{C}) \) such that
\[
(\text{Id} - \mu \mathcal{B})F = g \tag{7}
\]

for which we know the estimate \(\|F\|_{\dot{W}^{\alpha,p}(\mathbb{C})} \leq C \|g\|_{\dot{W}^{\alpha,p}(\mathbb{C})} \) holds. Of course, by the Sobolev embedding, \(F \in L^{\frac{2p}{\alpha-p}}(\mathbb{C}) \). From the invertibility of \(\text{Id} - \mu \mathcal{B} \) on \(L^{\frac{2p}{\alpha-p}}(\mathbb{C}) \), we immediately get that \(F = \partial_z f \) almost everywhere, and therefore \(\partial_z f \in \dot{W}^{\alpha,p}(\mathbb{C}) \). Proving that \(\partial_z f \in \dot{W}^{\alpha,p}(\mathbb{C}) \) is very easy, as we already knew that \(f \in \dot{W}^{1,\frac{2p}{\alpha-p}}(\mathbb{C}) \) and so we can be sure that \(\partial_z f = \mathcal{B}(\partial_z f) \). Thus, \(Df \in \dot{W}^{\alpha,p}(\mathbb{C}) \) and certainly
\[
\|Df\|_{\dot{W}^{\alpha,p}(\mathbb{C})} \leq C \|F\|_{\dot{W}^{\alpha,p}(\mathbb{C})} \leq C \|g\|_{\dot{W}^{\alpha,p}(\mathbb{C})}
\]
as desired. \(\square \)
Towards the proof of Theorem 1, we denote by $C(h)$ the solid Cauchy transform,
\[C(h)(z) = \frac{1}{\pi} \int_{\mathbb{C}} h(z - w) \frac{1}{w} \, dA(w). \] (8)
This operator appears naturally as a formal inverse to the ∂_z derivative, that is, the formula
\[\partial_z C(h) = h \] holds if $h \in L^p(\mathbb{C})$ and $1 < p < \infty$. Another important feature about the Cauchy transform is that $\partial C = B$. The Cauchy and Beurling transforms allow for a nice representation of the principal solution ϕ of the Beltrami equation $\partial_z \phi = \mu \partial_z \phi$,
\[\phi(z) = z + C(h)(z), \]
see for instance [2, p. 165]. In this representation, h is a solution to the integral equation
\[(\text{Id} - \mu B)(h) = \mu. \]
As a consequence, the invertibility of the Beltrami operators $\text{Id} - \mu B$ also plays a central role in determining the smoothness of ϕ. In particular, by applying Proposition 6 with $\mu \in W^{\alpha, \frac{2}{\alpha}}$, we see that $Dh \in W^{\alpha, p}$ provided that $p < \frac{2}{\alpha}$, whence $D\phi \in W^{\alpha, p}_{\text{loc}}$. As a consequence, by Stoilow’s Factorization Theorem (e.g., [2, section 5.5]), the same conclusion holds for any quasiregular solution f of $\partial_z f - \mu \partial_z f = 0$. However, this is not enough for Theorem 1, which we prove now.

Proof of Theorem 1. We will first prove that if $\mu \in W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$ is a compactly supported Beltrami coefficient and $\alpha > \frac{1}{2}$ (this is the point where we use that restriction) the operator
\[T_\mu := I_{1-\alpha}(\text{Id} - \mu B)D^{1-\alpha} : L^2(\mathbb{C}) \to L^2(\mathbb{C}) \]
is continuously invertible, with lower bounds depending only on $\|\mu\|_{L^\infty(\mathbb{C})}$ and $\|\mu\|_{W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})}$. To do this, we proceed as usually,
\[T_\mu = I_{1-\alpha}(\text{Id} - \mu B)D^{1-\alpha} = \text{Id} - I_{1-\alpha}\mu BD^{1-\alpha} = \text{Id} - \mu B + I_{1-\alpha}[D^{1-\alpha}, \mu]B. \]
Here, the term $\text{Id} - \mu B$ is bounded and continuously invertible in $L^{\frac{2}{\alpha}}(\mathbb{C})$ by [7]. Concerning the second term on the right hand side, from $\mu \in W^{\alpha, \frac{2}{\alpha}}(\mathbb{C}) \cap L^\infty(\mathbb{C})$ and $\frac{1}{2} < \alpha$ we easily get that $\mu \in W^{1-\alpha, \frac{2}{\alpha}}(\mathbb{C})$. Thus we are legitimate to use Theorem 3 with $\beta = 1 - \alpha$ and $p = \frac{2}{\alpha}$ and get that $[\mu, D^{1-\alpha}]$ is a compact operator from $L^{\frac{2}{\alpha}}(\mathbb{C})$ into $L^2(\mathbb{C})$. As a consequence, we obtain that T_μ is a Fredholm operator from $L^{\frac{2}{\alpha}}(\mathbb{C})$ into itself, which clearly has index 0. So the desired lower bounds will be automatic if we see that it is injective.

10
Let $F \in L^\frac{2}{\alpha}$ such that $T_\mu(F) = 0$. We want to show that $F = 0$. First, if $F \in \dot{W}^{1-\alpha,2}(\mathbb{C})$ then the result follows easily. Indeed, we can then write $F := I_{1-\alpha}f$ for some $f \in L^2$ and write the equation in terms of f. We get $I_{1-\alpha}(\mathrm{Id} - \mu \mathcal{B})f = 0$. From the classical L^2 theory, we have that $f = 0$ and hence $F = 0$. For a general $F \in L^\frac{2}{\alpha}$ satisfying $T_\mu(F) = 0$ we will prove that necessarily $F \in \dot{W}^{1-\alpha,2}(\mathbb{C})$, and therefore $F = 0$. To do this, again we decompose T_μ in terms of the commutator,

$$(\mathrm{Id} - \mu \mathcal{B})F = I_{1-\alpha}[\mu, D^{1-\alpha}]BF.$$

Then by Theorem 3 the term on the right hand side above belongs to $\dot{W}^{1-\alpha,2}(\mathbb{C})$, because $F \in L^\frac{2}{\alpha}(\mathbb{C})$. Using again that $\alpha > \frac{1}{2}$ one has $\mu \in W^{1-\alpha,\frac{2}{\alpha}}(\mathbb{C})$, and therefore we can use Proposition 6 to get that $\mathrm{Id} - \mu \mathcal{B} : \dot{W}^{1-\alpha,2}(\mathbb{C}) \to \dot{W}^{1-\alpha,2}(\mathbb{C})$ is continuously invertible. Hence

$$F = (\mathrm{Id} - \mu \mathcal{B})^{-1}I_{1-\alpha}[\mu, D^{1-\alpha}]BF$$

belongs to $\dot{W}^{1-\alpha,2}(\mathbb{C})$. The claim follows.

We now finish the proof. Given $\mu \in W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$, we approximate it by $\mu_n \in C^\infty_c(\mathbb{C})$ in the $W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$ topology, in such a way that $\|\mu_n\|_{L^\infty(\mathbb{C})} \leq \|\mu\|_{L^\infty(\mathbb{C})}$. Then every μ_n admits a principal quasiconformal map ϕ_n, for which the function $g_n = \log \partial_z \phi_n$ is well defined and solves

$$\partial_\bar{z} g_n - \mu_n \partial_z g_n = \partial_z \mu_n.$$

Therefore

$$(\mathrm{Id} - \mu_n \mathcal{B})\partial_\bar{z} g_n = \partial_z \mu_n.$$

We use the Fourier representation of the classical Riesz transforms in \mathbb{R}^2,

$$\widehat{\mathcal{R}_j u}(\xi) = -i \frac{\xi_j}{|\xi|} \hat{u}(\xi) \quad j = 1, 2$$

to represent

$$\partial_\bar{z} g = -\pi D^{1-\alpha}(\mathcal{R}_1 + i\mathcal{R}_2)(D^\alpha g)$$
$$\partial_z g = -\pi D^{1-\alpha}(\mathcal{R}_1 - i\mathcal{R}_2)(D^\alpha g).$$

As a consequence, we obtain

$$(\mathrm{Id} - \mu_n \mathcal{B})D^{1-\alpha}(\mathcal{R}_1 + i\mathcal{R}_2)(D^\alpha g_n) = D^{1-\alpha}(\mathcal{R}_1 - i\mathcal{R}_2)(D^\alpha \mu_n),$$

and therefore

$$T_{\mu_n}(\mathcal{R}_1 + i\mathcal{R}_2)(D^\alpha g_n) = (\mathcal{R}_1 - i\mathcal{R}_2)(D^\alpha \mu_n).$$

We recall that both $\mathcal{R}_1 + i\mathcal{R}_2$ and $\mathcal{R}_1 - i\mathcal{R}_2$ are bounded and continuously invertible operators in $L^p(\mathbb{C})$, $1 < p < \infty$. Moreover, we have just seen that T_{μ_n} is boundedly invertible in $L^\frac{2}{\alpha}(\mathbb{C})$.

11
with bounds depending only on $\|\mu_n\|_{L^\infty(C)}$ and $\|\mu_n\|_{W^{\alpha, 2}(C)}$. However, each $\|\mu_n\|_\infty$ (and respectively $\|\mu_n\|_{W^{\alpha, 2}(C)}$) is bounded by a constant multiple of $\|\mu\|_\infty$ (respectively $\|\mu\|_{W^{\alpha, 2}(C)}$).

Hence
\[
\|g_n\|_{\dot{W}^{\alpha, 2}(C)} = \|D^\alpha g_n\|_{L^2(C)} \leq C(\alpha) \|(R_1 + iR_2)D^\alpha g_n\|_{L^2(C)} \\
\leq C \left(\alpha, \|\mu\|_{L^\infty(C)}, \|\mu\|_{W^{\alpha, 2}(C)} \right) \|T_{\mu_n}(R_1 + iR_2)(D^\alpha g_n)\|_{L^2(C)} \\
\leq C \left(\alpha, \|\mu\|_{L^\infty(C)}, \|\mu\|_{W^{\alpha, 2}(C)} \right) \|(R_1 - iR_2)D^\alpha \mu_n\|_{L^2(C)} \\
\leq C \left(\alpha, \|\mu\|_{L^\infty(C)}, \|\mu\|_{W^{\alpha, 2}(C)} \right).
\]

It then follows that g_n is a bounded sequence in $\dot{W}^{\alpha, 2}(C)$. By the Banach-Alaoglu theorem there exists $h \in \dot{W}^{\alpha, 2}(C)$ such that
\[
\lim_{n \to \infty} \langle g_n, \varphi \rangle = \langle h, \varphi \rangle
\]
for each $\varphi \in W^{-\alpha, \frac{2}{2-\alpha}}(C)$. Remarkably, by the weak lower semicontinuity of the norm,
\[
\|h\|_{\dot{W}^{\alpha, 2}(C)} = \|D^\alpha h\|_{L^2(C)} \leq \liminf_{n \to \infty} \|D^\alpha g_n\|_{L^2(C)} \leq C \left(\alpha, \|\mu\|_{L^\infty(C)}, \|\mu\|_{W^{\alpha, 2}(C)} \right).
\]

Incidentally, we already knew from the classical theory that ϕ_n converges in $W^{1,p}_{loc}(C)$ to the principal quasiconformal map ϕ associated to μ. In particular, modulo subsequences, $\partial_z \phi_n$ converges to $\partial_z \phi$ almost everywhere. But then g_n converges almost everywhere to $\log(\partial_z \phi)$. It then follows that $\log(\partial_z \phi) = h$ and so we deduce that $\log(\partial_z \phi)$ belongs to $\dot{W}^{\alpha, 2}(C)$, with the same bound than h. The theorem follows.

\[
\square
\]

References

[1] L. Ahlfors, *Lectures on quasiconformal mappings*. Second ed., University Lecture Series, 38, American Mathematical Society, Providence, RI, 2006.

[2] K. Astala, T. Iwaniec and G. Martin, *Elliptic Equations and Quasiconformal Mappings in the Plane*, Princeton Mathematical Series, vol. 47, Princeton University Press, 2009.

[3] K. Astala, T. Iwaniec, I. Prause, E. Saksman, *Bilipschitz and quasiconformal rotation, stretching and multifractal spectra*, Publ. Math de l’IHS. September 2014.

[4] A. Clop, V. Cruz, *Weighted estimates for Beltrami equations*, Ann. Acad. Sci. Fenn. Math. **38** (2013), no. 1, 91?113.
[5] A. Clop, D. Faraco, J. Mateu, J. Orobitg, and X. Zhong, Beltrami equations with coefficient in the Sobolev Space $W^{1,p}$, Publ. Mat. 53 (2009), 197-230.

[6] D. H. Hamilton BMO and Teichmüller space, Ann. Acad. Sci. Fenn. Ser. A I Math. 13, no. 2 (1989), 213–224.

[7] T. Iwaniec, L^p-theory of quasiregular mappings, Quasiconformal space mappings, volume 1508 of Lecture Notes in Math., pp 39–64. Springer, Berlin, 1992.

[8] C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de-Vries equation via the contraction principle, Comm. Pure App. Math. (1993), 46, no. 4, 527–620.

[9] A. Koski, Singular integrals and Beltrami type operators in the plane and beyond. Master Thesis, Department of Mathematics, University of Helsinki, 2011.

[10] S.G.Krantz, Song-Ying Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications, II, J. Math. Anal. Appl. 258 (2001), no. 2, 642–657.

[11] H. M. Reimann Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv. 49 (1974), 260-276.

[12] H.M. Reimann and T. Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Mathematic. 1975.

[13] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications, 3. Walter de Gruyter & Co., Berlin, 1996.

A. L. Baisón, A. Clop, J. Orobitg
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193-Bellaterra (Catalonia)