Agree to Disagree: Diversity through Disagreement for Better Transferability

Guiv Farmanfarmaian
Mentor: Frédéric Berdoz
Seminar in Deep Neural Networks
19.03.2024, ETH Zurich
Motivation – Shortcomings of DNN

• Out of Distribution (OOD) setting: training and test data differ

From Beery et al. [2]
Motivation – Spurious vs Transferable Features

- Spurious Features (Correlation without Causation): Grass, mountains
- Transferable Features (Causation): Eyes, Ears, Body

From Beery et al. [2]
Shortcut Learning – Simplicity Bias

Learns Colors not Shape
Motivation - Objectives

Main Objectives

Avoid Shortcut Learning
- Generalize to OOD Distributions

Improve Uncertainty Estimation
Previous Work - Ensembles

• Solutions to increase diversity of ensemble:
 1. Train on different subsets of dataset
 2. Add orthogonality constraints on predictor’s gradient

From Breiman [3]
From Ross et al. [4]
Previous Work – OOD Generalization

Methods to Increase Generalization
Robust Learning
• Set of plausible test distributions U
• Minimize over worst distribution in U
Invariant Learning
• Define a set of Environments
• Output Indistinguishable among them
Previous Work – Weakness of Invariant Learning

• Invariance $\not\Rightarrow$ Correctness

From Pagliardini et al. [1]
Previous Work – OOD generalization

Spurious Feature (i.e. Color) fully predictive
Previous work – Uncertainty Estimation

• Monte-Carlo Dropout, Bayesian Neural Networks, etc. improve uncertainty estimation

• Problem: Fail on OOD samples away from decision boundary

From van Amersfoort et al. [5]
From Liu et al. [6]
Previous work – Seminal Work (1)

Simplicity Bias
Teney et al. (2021)
• Gradient orthogonality constraints at an intermediary level
• Problem: Reliance on pre-trained encoder; Large # of models needed

From Teney et al. [7]
Previous work – Seminal Work (2)

OOD generalization
Lee et al. (2022)

- Use mutual information
- Problem: don’t investigate uncertainty estimation; MI on entire dataset is costly

From Lee et al. [8]
Agree to Disagree – Diversity-By-disAgreement Training (D-BAT)

Core Idea

“Diverse hypotheses should agree on the source distribution D while disagreeing on the OOD distribution D_{ood}”

From Pagliardini et al. [1]
D-BAT Intuition – Maximize Disagreement on White Space

Training Data

Model 1

Model 2

Ensemble

Code from Pagliardini et al. [1]
D-BAT - Metrics

\(\mathcal{X} \) input space \quad h : \mathcal{X} \to \mathcal{Y} \) labelling function

\(\mathcal{Y} \) output space \quad (\mathcal{D}, h) \) domain

\(\mathcal{D} \) distribution over \(\mathcal{X} \) \quad L : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+ \) loss function

Expected Loss

\[
\mathcal{L}_\mathcal{D}(h_1, h_2) = \mathbb{E}_{x \sim \mathcal{D}} [L(h_1(x), h_2(x))]
\]
D-BAT – OOD Generalization

(\mathcal{D}_t, h_t) training domain
$(\mathcal{D}_{ood}, h_{ood})$ unlabelled OOD domain

\mathcal{H} set of all labelling functions
$\mathcal{H}_t^* := \arg\min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}_t}(h, h_t)$
$\mathcal{H}_{ood}^* := \arg\min_{h \in \mathcal{H}} \mathcal{L}_{\mathcal{D}_{ood}}(h, h_{ood})$

Key Assumption

$\mathcal{H}_t^* \cap \mathcal{H}_{ood}^* \neq \emptyset$
D-BAT - Objective

No OOD labels ⇒ Minimize a proxy

$$\mathcal{L}_{D_{ood}}(h_1, h_{ood}) = \max_{h_2 \in H_t^* \cap H_{ood}^*} \mathcal{L}_{D_{ood}}(h_1, h_2) \leq \max_{h_2 \in H_t^*} \mathcal{L}_{D_{ood}}(h_1, h_2) \approx \mathcal{L}_{D_{ood}}(h_1, h_{D-BAT})$$

Objective

$$h_{D-BAT} \in \min_{h_2 \in H} \left[\mathcal{L}_{D_t}(h_2, h_t) + \alpha \mathcal{A}_{D_{ood}}(h_1, h_2) \right]$$
D-BAT Algorithm for 2 predictors

1. Train h_1 by minimizing the training data loss
2. Train h_2 by also considering the agreement with h_1 on the OOD data

$$h_2^* \in \arg\min_{h_2 \in \mathcal{H}} \frac{1}{N} \left(\sum_{(x,y) \in \mathcal{D}} \mathcal{L}(h_2(x), y) + \alpha \sum_{\tilde{x} \in \mathcal{D}_{ood}} A_{\tilde{x}}(h_1, h_2) \right)$$
D-BAT – Ensemble of predictors

Inspired by Pagliardini et al. [1]
D-BAT Theorem: Assumptions

Color, Shape and Label Combinations

Training Data D

- **A**
- **B**

Probability 1/2

Uniform OOD Distribution D_{ood}

- **A**, **B**, **A**, **B**, **A**, **B**

Probability 1/8
D-BAT Theorem: Assumptions

Training Data D

Model 1: Learns Colors to Predict Labels

P(Label = ‘A’ | Color = Blue) = 1
P(Label = ‘A’ | Color = Red) = 0
D-BAT Theorem: Predict Labels

Training Data D

Model 1: Learns Colors
Model 2: Learns Shapes

P(Label = ‘A’ | Shape = ■) = 1
P(Label = ‘A’ | Shape = ●) = 0
Assumptions for D-BAT

• Existence of a transferable function: \(h^* \in \mathcal{H}_t^* \cap \mathcal{H}_{ood}^* \)

• Counterfactual correlations essential for OOD distribution

OOD data
Colored MNIST Dataset
Experimental Results: Performance Comparison

Camelyon17 dataset

From Pagliardini et al. [1]
Experimental Results - Uncertainty Estimation

CIFAR-10 Dataset
3 Models with Similar Performance ->
D-BAT Better at Uncertainty Estimation on OOD samples

From Pagliardini et al. [1]
Experimental Results - Key Takeaways

D-BAT Achievements

Better Generalization:	Improves Uncertainty Estimation
• On Natural Domains	
• With Ensemble	
• When OOD test data (i.e. new domains)	
Personal Opinion

• Approach beautifully self-evident
• Training ensemble of models computationally expensive
• No control over OOD distribution -> hard to know whether features have counterfactual correlations
Questions / Your Opinions
Sources

[1]: Pagliardini, M., Jaggi, M., Fleuret, F., and Karimireddy, S. P. Agree to disagree: Diversity through disagreement for better transferability. arXiv preprint arXiv:2202.04414, 2022.

[2]: Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In ECCV (16), volume 11220 of Lecture Notes in Computer Science, pp. 472–489. Springer, 2018.

[3]: Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, 1996.

[4]: Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In ECCV (16), volume 11220 of Lecture Notes in Computer Science, pp. 472–489. Springer, 2018.

[5]: Joost van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a single deep deterministic neural network. In ICML, volume 119 of Proceedings of Machine Learning Research, pp. 9690–9700. PMLR, 2020.

[6]: Yehao Liu, Matteo Pagliardini, Tatjana Chavdarova, and Sebastian U. Stich. The peril of popular deep learning uncertainty estimation methods. 2021b.

[7]: Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton van den Hengel. Evading the simplicity bias: Training a diverse set of models discovers solutions with superior OOD generalization. CoRR, abs/2105.05612, 2021.

[8]: Yoonho Lee, Huaxiu Yao, and Chelsea Finn. Diversify and disambiguate: Learning from underspecified data. CoRR, abs/2202.03418, 2022.
Appendix: Experimental Results – Artificial Datasets

From Pagliardini et al. [1]

Dataset \mathcal{D}	Single Model	
	ERM	D-BAT
C-MNIST	12.3 ± 0.7	90.2 ± 3.7
M/F-D	52.9 ± 0.1	94.8 ± 0.3
M/C-D	50.0 ± 0.0	73.3 ± 1.2

Case where OOD data = test data
Appendix: Experimental Results – Natural Datasets (1)

| Dataset \mathcal{D} | Single Model | | | Ensemble | | |
|------------------------|--------------|-------------|--------------|--------------|-------------|
| | ERM | D-BAT | ERM | D-BAT |
| Waterbirds | 86.0 ± 0.5 | **88.7 ± 0.2** | 85.8 ± 0.4 | **87.5 ± 0.0** |
| Office-Home | **50.4 ± 1.0** | **51.1 ± 0.7** | 52.0 ± 0.5 | **52.7 ± 0.2** |
| Camelyon17 | 80.3 ± 0.4 | **93.1 ± 0.3** | 80.9 ± 1.5 | **91.9 ± 0.4** |

Case where OOD data = test data

From Pagliardini et al. [1]
Appendix: Experimental Results – Natural Datasets (2)

Case where OOD data ≠ test data	\(D_{ood} \neq \text{test data} \)			
	Single Model	Ensemble		
	ERM	D-BAT	ERM	D-BAT
Office-Home	51.7 ± 0.6	51.7 ± 0.3	53.9 ± 0.4	54.5 ± 0.5
Camelyon17	80.3 ± 0.4	88.8 ± 1.4	80.9 ± 1.5	85.9 ± 0.9

Case where OOD data ≠ test data

From Pagliardini et al. [1]
Appendix: Experimental Results – Ensemble on Natural Datasets

Waterbirds Dataset

Office-Home Dataset

From Pagliardini et al. [1]
Appendix: Choice of the Hyperparameter α