Proposal of framework to managing the automotive product development process

Guilherme Canuto da Silva and Paulo Carlos Kaminski

Cogent Engineering (2017), 4: 1317318
Proposal of framework to managing the automotive product development process

Guilherme Canuto da Silva* and Paulo Carlos Kaminski

Abstract: This paper aims to propose a framework to managing the automotive product development process. The framework, named as Automotive-PDP, was developed through a bibliographical survey and through a study of three global automakers from Asia, Europe and America. In order to verify the Automotive-PDP acceptance, interviews involving 75 professionals from automakers, auto parts and automotive design companies were performed. The goal of these interviews was to verify the practice use of the framework (Automotive-PDP) in the automotive sector. The framework development is presented and the findings from interviews are showed. Afterwards, the paper is finished with the relevant conclusions.

Keywords: auto parts; automotive design companies; automotive-PDP; automotive sector; automakers; framework; product development process (PDP)

ABOUT THE AUTHORS
Guilherme Canuto da Silva is Mechanical Engineer. He holds a Master (2008) and PhD (2013) degrees in Mechanical Engineering from Escola Politécnica da Universidade de São Paulo. He also developed part of his doctorate at Technical University of Darmstadt (2012) with fellowship from German Academic Exchange Service. Currently he is an Assistant Professor at Universidade Federal do ABC (UFABC), teaching in the Engineering Management course and in Engineering of Instrumentation, Automation and Robotic course. His interests in research are: CAD/CAE systems, manufacturing design and artificial intelligence applied in manufacturing systems.

Paulo Carlos Kaminski is graduated in Naval Engineering (1986) and Business Administration (1990), and was a post-doctoral researcher at the Technical University of Darmstadt with fellowship from the Alexander von Humboldt foundation (1993–1994). Since 2009, he is a Full Professor of the Mechanical Engineering Department from Escola Politécnica da Universidade de São Paulo. He has experience in research and teaching in the Mechanical field, acting on the following topics: product engineering, design methodology, continuing education and internationalization of engineering.

PUBLIC INTEREST STATEMENT
The automotive product and process development is composed by activities involving many departments and people from carmakers, auto parts and design companies. This process is internal and exclusive for each carmaker. Despite the current literature bringing some approaches regarding the automotive development, usually only an introduction or some ideas are provided. In this work, we propose a complete framework to managing the automotive product development process (Automotive-PDP). This include: a reference model structured in three main parts and dozens of phases, a hundred and six activities and a functional matrix that shows the relationships between departments, people involved, technical and managerial gates that occurs during the automotive development. In order to verify the proposal acceptance, seventy-five professionals from carmakers, auto parts and automotive design companies were interviewed. A theoretical background is developed, the framework is proposed and results from interviews are presented. The author's expectation is that the framework can assist both professionals and academia to better understand this complex and challenge engineering activity.
1. Introduction
This paper aims to propose a framework for the automotive product development process, named Automotive-PDP.

Although Advanced Product Quality Planning can be considered as a reference model related to the automotive sector, its focus is on the quality strategies and control plans in different time points of the product and process development, in addition to meeting the customers’ expectation (Stamatis, 1998). Therefore, it is not a specific framework for the automotive product and process development.

Another approach about this subject can be found in the book “Automotive development processes: processes for successful customer oriented vehicle development”. It is a reference regarding to the automotive development process; however, as reported by the author “is more a personal report than a manual for the development of vehicles” (Weber, 2009). The author adds describing that “compared to other publications about development automotive, the approach followed in this book reflects more the consumers’ point of view rather than the engineers” (Weber, 2009).

Other researches in relation to different frameworks of Product development process (PDP) show that such models have generic approaches, instead of specific, about the development of the automotive product (Sharafi, Wolfenstetter, Wolf, & Krcmar, 2010).

Thus, the need for this work is based on the lack of a detailed framework for the automotive PDP. This subject is important, and the framework proposed in this work can contribute to a better understanding of such activity.

1.1. Methodology
The methodology shown in Table 1 was used in order to develop the proposed framework.

The following sections describe the theoretical background and the study of automakers’ practices. Subsequently, the framework is developed and presented. Interviews findings are presented and the paper ends with the pertinent conclusions.

Step	Goal	Used means
Theoretical background development	Check approaches presented by the authors regarding to the PDP concepts	Bibliographical and documental research
Analysis of automakers' automotive-PDP	Analyze three real models existing in global automakers, with different cultures	Bibliographical survey, field study regarding to the current practices
Key features for the framework development	Identify concepts, structures and activities	Bibliographical and documental research
	Identify characteristics to manage the automotive development process	Field study regarding to the current practices and personal consultations
Framework development (Automotive-PDP)	Develop the Automotive PDP from the key features identified. Obtain practical contributions from professionals and experts in the automotive sector regarding to the Automotive PDP proposed, in order to detail and improve the framework	Consideration, analysis, discussion and proposal
	Assess the practice of a set of activities proposed in the Automotive PDP in automakers, auto parts and automotive design companies	Questionnaire
Findings	Organize, present and discuss the data obtained from interviews	Data evaluation
2. Theoretical background

PDP is a set of activities, involved in a complex network, used by a company in order to conceive, design and commercialize a product, adding value as information is created, and eliminating risks during the development process. Therefore, many of these activities are more intellectual and organizational than physical (Browning, Deyst, Eppinger, & Whitney, 2002; Jun & Suh, 2008; Ulrich & Eppinger, 2012).

Companies must strengthen its focus on innovation that more attractive products, ones that satisfy user’s requirements needs and desires, reach the marketplace earlier than competitors’ products, before new, better technology is available and before the market changes (Welo, 2011).

Interaction is a crucial characteristic of PDP. Through interactions, design problems are solved, difficulties involved are converged into solutions, and design incompatibilities are fixed (Browning et al., 2002; Cho & Eppinger, 2005; Martínez Leon, Farris, & Letens, 2013).

Management portfolio is another strategic and important aspect of PDP. Management portfolio is a dynamic process of decision-making where new projects are prioritized, existing projects can be speeded up or even cancelled, and the resources are allocated according to the needs (Cooper & Edgett, 1999; Martinsuo, 2013; Meskendahl, 2010).

In addition, PDP must be strongly market-oriented, addressing the concern about the development of a product that delivers unique advantages to the customer, along with meeting deadlines and costs that constitute value.

Quality policies must be developed in order to meet or exceed users’ expectations (Cooper, 1983; Durmuşoğlu & Barczak, 2011; Möller, 2006; Schmidt, 1997; Stamatis, 1998).

Product development is not only a design, marketing or manufacturing problem. It is a cross-functional effort, and almost all company functions participate on it. In addition, product development is not just an intra-firm activity (Majava, Haapasalo, Belt, & Mottonen, 2013).

2.1. PDP approaches

Regarding the PDP approaches Evans (1959) presented a design spiral concept. The product and process are detailed in each spiral spin until converge to detailed and final design approval. Latter, Kaminski (2000) presented a similar approach including activities related to cycle of production and consumption, reuse and recycling.

Another approach to PDP is named by Suh (2001) as axiomatic design. In this approach, the design is structured in domains. These domains include the customer’s domain, the functional domain, the physical domain and the process domain.

Despite the approaches proposed by Evans (1959), Kaminski (2000) and Suh (2001) works very well, the approach generally found in PDP literature presents macro-phases and phases, instead of a spiral concept or axiomatic concept (Asimow, 1962; Clark & Fujimoto, 1991; Clark & Wheelwright, 1993; Dieter & Schmidt, 2008; Rozenfeld et al., 2006; Ulrich & Eppinger, 2012; VDI 2221, 1993).

In this approach the PDP evolution occurs in each phase, delivering results from many tasks that support the entire forward process, until the launch production and product market.

To monitor and control the evolution of tasks during the PDP, gates are established in order to verify the deliverables. For these activities the stage gate concept are applied (Cooper, 1990).

Lean production is another very important concept, and it is presented in almost all PDP literature. Lean is beyond of production activities and its principles can be applied in whole PDP, from design to
production, passing through simple to complex activities (Holweg, 2007; Khan et al., 2013; León & Farris, 2011; Liker, Sobek, Ward, & Cristiano, 1996; Morgan & Liker, 2006; Shingo & Dillon, 1989; Vamsi, Jasti, & Kodali, 2015; Welo, 2011; Womack, Jones, & Roos, 1990).

The use of virtual and physical prototypes in the automobile's development is also required, as it reduces uncertainties and helps in the conservation of product information flow during the whole PDP (Clark & Wheelwright, 1993; Silva & Kaminski, 2016; Ulrich & Eppinger, 2012).

Under the perspective that products development is a deliberated business process, involving a large amount of decisions (Krishnan & Ulrich, 2001), it is important that the Automotive-PDP has a structure allowing the identification, through its macro-phases, of main departments and personnel in charge involved in decision-making.

Specific concepts regarding the automotive product design and automobile's development phases (press shop, body shop, painting, final assembly and final tests) can be found in Omar (2011), Weber (2009) and Hirz, Dietrich, Gfrerrer, and Lang (2013).

Main approaches used to develop the Automotive PDP are showed in Table 2.

Main author(s) and year	Title	PDP approaches
Evans (1959)	Basic design concepts	Design spiral
Asimow (1962)	Introduction to design	Production and consumption cycle
Cooper (1986)	Winning at new products	Stage gate concept
Womack et al. (1990)	The machine that changed the world: the story of lean production	Lean production concepts
Clark and Fujimoto (1991)	Product development performance: strategy, organization and management in the world auto industry	Development of funnel concept
Clark and Wheelwright (1993)	Managing new product and process development	Development of funnel concept
VDI 2221 (1993)	Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte	Guidelines
Krishnan and Ulrich (2001)	Product development decisions: a review of the literature	Perspectives (marketing, organizations, engineering design and operations management)
Suh (2001)	Axiomatic design	Axiomatic design concept. Domains and subdomains
Rozenfeld et al. (2006)	Gestão do processo de desenvolvimento do produto	General reference model and product life cycle management (PLM)
Dieter and Schmidt (2008)	Engineering design	Stage gate concept
Weber (2009)	Automotive development processes	Customer oriented
Omar (2011)	The automotive car body manufacturing systems and processes	Automotive manufacturing design. Detailed phases and activities
Ulrich and Eppinger (2012)	Product design and development	Prototypes concept
Hirz et al. (2013)	Integrated computer-aided design in automotive development. Development processes, geometric fundamentals, methods of CAQ, knowledge-based engineering data management	Automotive product design and data management. Focus on Computer-Aided Design (CAD)
Silva and Kaminski (2016)	Selection of virtual and physical prototypes in the product development process	Guidelines to select virtual and physical prototypes in PDP
3. Automakers selection

Global vehicle production was observed in order to select three examples of automotive PDP. Table 3 shows the distribution of vehicle production by continent (ANFAVEA, 2016).

In Table 3, it is possible to determine the three continents with the greatest vehicle production: Asia (50.4%), Europe (26.4%) and America (22.2%).

For the automotive sector, these three continents represent three different markets. Aiming to verify and analyze the automotive PDP in these three markets, an automaker from each continent was selected: for Asia, Toyota; for Europe, Volkswagen (VW) and for America, General Motors (GM). In order to present the three examples, a bibliographical survey, pertinent documents and interviews with heads of departments, senior engineers and experts coming from these automakers also were done. Information from the examples was classified as: product development concepts; characteristic phases, and main practiced activities. This information will also aid in the creation of the Automotive-PDP proposed in Section 4. Table 4 shows the approach used in the automotive PDP examples.

3.1. Discussion regarding automakers examples

In summary, automotive PDP starts with a strategy for the product that is intended to be developed. Following the design of the strategy comes positioning the product next to the competing products and then the creation of some alternatives for the product development. These alternatives will form the organization’s product portfolio.

Once the portfolio is established, one or more products are selected for development and a process of transformation of qualitative information (desires) into quantitative data (measurable technical information) starts. The product is then developed, as well as the means and plans required to the production.

Development structures of the theoretical framework and the three automotive PDP examples present a similar organization.

Asian configuration shows a difference in itself, i.e. in terms of subsystems and not in terms of macro-phases. However, people, tools and technology subsystems can be understood as the human and technological resources required to the process subsystem. This system presents a structure similar to the theoretical background and to the other examples of automotive PDP. In summary, both in the theoretical background and in the examples of automotive PDP, the structures are initially strategic, latter strategic and technical, and finally are technical and for operational.

Development phases of theoretical background and the three examples of PDP are the discrete elements within the macro-phases. Therefore, this set of discrete elements has specific characteristics that together should characterize the macro-phase and its purpose. The phases in the theoretical background are a summary of the presented models. However, since these are generic models of PDP, they also tend to be generic and comprehensive, in order to offer a holistic view of the process.
Table 4. Approach for the three examples of automotive PDP

Automaker	References	PDP approach
Asia	Shingo and Dillon (1989), Liker et al. (1996), Amasaka (2002), Morgan and Liker (2006), Jayaram, Das, and Nicolae (2010)	Product development concept: concept development; style development; design in CAD systems; prototypes’ manufacturing; tooling construction; product launch; follow-up of the product quality Development systems: process subsystem; people subsystem and tools and technology subsystem. Interdependent and interrelated subsystems. Focus on establishing the value defined by the customer during the whole automobile’s development process. Several phases Main activities: create processes and meet objectives preserving the value defined by the customer during the whole product development process. Standardize as many activities as possible regarding its way of completion. Discuss learned lessons. Carry out daily meetings for continuous improvement of the processes, activities and documents, among other components of the product development process
Europe	Silva (2008), VDA (2011), Interviews with professionals (2012), Form (2010), apud Silva (2013)	Product development concept: product planning; style concepts; model of digital data control; first virtual prototype; physical prototypes; tests and validations; preparation for serial production; pre-series of production and product launch in the market. Supply of car dealers and market review Development phases: three mains macro-phases classified as: concept development; series development and series preparation and support to production. Interdependent and interrelated macro-phases. Focus on product development from the definition of one out of two style models presented. Several phases Main activities: position the product. Create the style model and develop the virtual concept of the product. Develop the virtual concept, develop prototypes, and perform tests and validations. Develop means for the automobile’s production. Train collaborators. Perform final tests, process adjustments and start the pilot production. Launch the automobile in the market. Collect market information for future programs
America	Guiguer Filho (2005), Interviews with professionals (2012), Teske (2016), Donndelinger (2016)	Product development concept: global product development; product planning; program classification; preparation of strategic planning; decision of strategic planning; style development; product and process development; tests and validations of the product and the process; automobiles from pilot production and start of the automobile’s production Development phases: three mains macro-phases classified as: development of product portfolio plan; automobile’s advanced development and global process of automobile development. Interdependent and interrelated macro-phases. Focused on the product development to the definition of one out of three to nine style models presented. Several phases Main activities: define the products portfolio, study the market and competitors. Validate the program to be developed. Develop the automobile’s style. Approve the style and develop the product. Develop the manufacturing process. Test and validate the product and the process. Start the pilot production. Launch the product in the market

4. Framework proposal: Automotive PDP

Table 5 shows the key features, main references and approaches used in the framework development.

Figure 1 shows the framework representation. The three macro-phases (product strategy, product and process development and production and continuous improvement) are represented in the upper part of the figure. Phases are represented below the macro-phases and are progressively depicted. Outer arrows represent the interaction among the macro-phases.
Table 5. Key features references and approaches used in the framework development

Key features	References	Approach	Framework (automotive PDP)
Concept	Evans (1959), Clark and Fujimoto (1991), VDI 2221 (1993), Krishnan and Ulrich (2001), Rozenfeld et al. (2006)	Sequential and interactive processes	Mnemonic representation (Figure 1): the outer arrows represent the macro-phases interactions. The inner arrows represent the phases and activities interactions
Structure	Womack et al. (1990), VDI 2221 (1993), Liker et al. (1996), Rozenfeld et al. (2006), Morgan and Liker (2006), Guiguer Filho (2005), Weber (2009), Omar (2011), Interviews with professionals (2012), Hirz et al. (2013), Form (2010) apud Silva (2013), Silva and Kaminski (2016)	Macro-phases and phases	Three macro-phases: (1) product strategy; (2) product and process development; (3) production and continuous improvement
Activities	VDI 2221 (1993), Liker et al. (1996), Guiguer Filho (2005), Morgan and Liker (2006), Weber (2009), Omar (2011), Interviews with professionals (2012), Hirz et al. (2013), Form (2010) apud Silva (2013)	Strategic, technical and managerial activities	Strategic, technical and managerial activities
Management characteristics	Cooper (1986), Dieter and Schmidt (2008)	Technical gates	Five managerial gates and eighteen technical gates
		Managerial gates	6 gates for the product strategy

![Figure 1. Automotive-PDP framework.](image)

Caption:
- Market study (MS)
- Product positioning (PP)
- Market monitoring (MM)
- Product launch (PL)
- Concept development (CD)
- Concept design (SD)
- Planning and preparation of the production system (PP)
- Marketing and sales (MD)
- Modules development (MD)
- Tests and final validation (TF)
- Process technology and automation (TA)
- Process technology and automation (PR)
- Process technology and automation (S)
- Process technology and automation (P)
- Process technology and automation (T)
- Process technology and automation (R)
- Technical review (TR)
Inner arrows represent the interaction among the phases and the convergence to the set of alternatives found. Management gates (Roman numerals) and technical gates (Arabic numerals) are represented in the lower line and are increasingly numbered. Management gates occur in determined time points of the process of macro-phases and or phases. Technical gates occur in different time points of the Automotive-PDP.

In the macro-phase of product strategy, the technical gates occur in the end of the phases. In the macro-phase of product and process development, the technical gates occur both in the end of the phases and in the beginning of them. This variation occurs mainly in phases close to the macro-phase of production and continuous improvement. In the macro-phase of production and continuous improvement, the technical gates occur, mainly, in the beginning of the phases. A generic scale is depicted in the lower line representing the management and technical gates, indicating weeks, months and years.

The macro-phase of product strategy is characterized by the start of the automobile development and consists of the following phases: market study (MS); product positioning (PP), market monitoring (MM) and product launch (PL).

In the macro-phase of product and process development there is the development of the product and means required for its production. Product development occurs in parallel to the process development. The phases of product development are: concept development (CD); style development (SD); modules development (MD); tests and final validation (TV). Phases of process development are: process concept (PC); infrastructure (IE); planning and preparation of the production (PP); concept of the production system (PS); process technology and automation (TA); tests of the facilities (TF); logistics concept (LC); dimensioning and allocation of resources (DR); pre-series production (PS) and start of serial production (SP).

In the macro-phase of production and continuous improvement there is the follow-up of the production and the identification of possible improvements in the product and in the manufacturing process. Monitoring of the product quality occurs through quality indicators. Phases of this macro-phase are: process stability (ST); series stability (SS); cycle time reduction (CR); redimensioning and allocation of resources (RR); series discontinuation (SD) and technical review (TR).

When the development process of a new automobile is started, the guide report for new products is reviewed concomitantly to the phase of market study (MS). This new information set will provide the initial support to the people involved in the development of the new automobile.

The activities in the macro-phases of product strategy, product and process development, and production and continuous improvement are shown in Tables A1, A2 and A3 of the Appendix 1. Decisions that occur in the technical and management gates are demonstrated in Table A4 of the Appendix 1.

5. Interviews
Interviews were performed to verify the acceptability and practical use of the Automotive-PDP. The interviews were structured as: definition and elaboration of the data collection instrument; samples selection; data collection; organization of data collected and presentation and discussion of the results.
5.1. Data collection

The data collection was done personally and directly with the responders involved. The instrument used for the data collection was a questionnaire. Activities described in the questionnaire were obtained from Automotive-PDP's activities in Tables A1, A2 and A3 of the Appendix 1. The questionnaire was structured in sections, according to the macro-phases, phases and activities of the Automotive PDP. For each one of Automotive-PDP's activities two questions (Q1) and (Q2) were made.

Question (Q1) consisted of identifying the practice of the activity in the company where the responder worked. Question (Q1) was: “Is it your company’s practice?”. The responder had to choose as answer only one out of three possible alternatives: “Yes”, “No” or “Unknown”.

Question (Q2) consisted in evaluate, according to the responder’s opinion, the importance of the activity. Question (Q2) was: “How important is the activity?”, considering its cost/benefit. The responder had to choose as answer only one out of five possible alternatives: “1”, “2”, “3”, “4” and “5”. The alternatives were based on a Likert scale. For grades between 1 and 2, the responder considered the importance of the activity practiced as slightly important. For grade 3, as neutral importance, and for grades between and 5, as very important.

To the Automotive PDP can be considered acceptable, the authors have determined that the percentage averages of “yes” answers from the question (Q1) was equal to or greater than 60%.

For the question (Q2), the weighted global average of “Yes” answers (WY) was equal to or greater than 3.5 on a Likert scale.

In order to identify the lack of possible non-contained activities in the Automotive-PDP, complementary questions were inserted into the end of each section (macro-phase). The complementary question was: “Have you identified the lack of any activity in the macro-phase?”. At the end of each section of the questionnaire a field was available, for the responder to describe in his/her own words the activity he/she suggested.

5.2. Responders selection and data collection

Heads of departments, senior engineers and experts working in automakers, auto parts, automotive design, and other correlated companies constituted the responders selected. There were men and women, i.e. gender difference had no relevance for the interview. Age of the responders was also not considered. From this definition, a total of 75 responders were interviewed. Table 6 shows the data collection, according to the respondent’s subgroup.

Subgroups	Qty
Automakers	36
Auto parts	29
Design	5
Others	5
6. Evaluation criteria

Identifying the valid questionnaires was required in order to organize the data. Two criterias for identification of non-valid questionnaires were established: large part of the questionnaire with no answers (more than 30% of the answers), and responders not belonging to the determined subgroup. After setting the criteria, the questionnaires evaluation was performed. From a total of 75 questionnaires, 59 questionnaires were considered valid for the research. The total of the answers were then grouped, according to the alternatives from questions (Q1) and (Q2) chosen by the responders.

In the examples 1 and 2 are described the concept for the grouping and the answers distribution for the questions (Q1) and (Q2) respectively.

Example 1: for the activity (Ia) contained in phase 1 (market study), the 59 answers were grouped and distributed between the alternatives of the question 1 (Q1) “Yes”, “No” and “Unknown”. The results were: 56 answers for the alternative “Yes”, zero answers for the alternative “No”, and 3 answers for the alternative “Unknown”. For this example, there were no Blank answers.

Example 2: for the activity (Ia) contained in phase 1 (market study), the 59 answers were grouped and distributed between the alternatives of the question 2 (Q2) “1”, “2”, “3”, “4” and “5”. The results were: zero answers for the alternative “3”, 12 answers for the alternative “4”, and 47 answers for the alternative “5”. For this example, there were no Blank answers.

Table 7 shows a global view for the organization and distribution of the answers according to examples 1 and 2, for the activity (Ia) contained in phase 1: market study.

In the distribution showed in Table 7, only the total of answers between the alternatives for questions (Q1) and (Q2) are visualized. This distribution does not allow identifying, for a specific alternative from Q1, which was the option chosen by the responders, from the alternatives chosen for Q2.

Based on this situation, a new grouping was done. In this new grouping the grade chosen by the responders was considered, according to the alternatives chosen. In example 3 the concepts of this new grouping and the distribution of the answers for Q1 and Q2 are described.

Example 3: for the activity (Ia) contained in phase 1 (market study), from a total of 56 answers “Yes”, 10 answers had grade “4”, an 46 answers had grade “5”. For the activity (Ia) the was no answers “No”. For the answers “Unknown”, from a total of 3 answers, 2 answers had grade “4” and one answer had grade “5”. For example 3 there were no Blank answers.

Table 7. Global results for examples 1 and 2

nº	A	Macro-phase of product strategy	Is it your company’s practice?	How important is the activity?								
			Means	Means								
			Y	N	UN	B	1	2	3	4	5	B
3	Ia	Check the behavior of the trens for automobile sales market in the next months and years	56	0	3	0	0	0	0	12	47	0
Table 8 shows the answers distribution according to example 3.

Therefore, to the question (Q1), the results obtained for each alternative were converted to percentages (%). To the question (Q2), the results obtained for each alternative were organized and distributed into weighted averages.

Equation (1) shows the calculation for weighted averages.

\[
W = \frac{\sum_{i=1}^{5} q_i \times n_i}{\sum_{i=1}^{5} q_i}
\]

(1)

W is the weighted average of the grades, \(q_i\) is the number of questionnaires for a determined grade \(n_i\), and \(n_i\) is the grades selected by the responders, with \(i\) from 1 up to 5.

Table 9 shows an example of the results distribution, according to the percentages and weighted averages, for phase 1 activity (Ia): market study (MS).

In order to obtain a global view of the results from the whole Automotive-PDP, weighted averages of activities belonging to a determined phase of the model were added, and an average was calculated, providing a global view of the means for each phase of the model.

Same procedure was adopted for the results obtained with the phases of a determined macro-phase, thus providing a global view of the means for each macro-phase of the model. Finally, the procedure described was also applied to the macro-phases of the model, providing a global view of the means for the whole Automotive-PDP.

n°	A	Phase 1: market study	Yes	No	Unknown	Blank
3	Ia	Check the behavior of the trends for automobile sales market in the next months and years	0	0	10	46
			0	0	0	0
			0	0	0	0
			0	0	0	0
			0	0	0	0

Table 9. Distribution of percentages and W of the results for phase 1 activity: market study (MS)

n°	A	Macro-phase of product strategy	Is it your company’s practice?	How important is the activity?							
			Percentage	Means							
			Y (%)	N (%)	UN (%)	B (%)	WG	WY	WN	WUN	WB
3	Ia	Check the behavior of the trends for automobile sales market in the next months and years	95	0	5	0	4.8	4.8	0.0	4.3	0.0

Notes: W: Weighted average of the grades; G: global; Y: Yes; N: No; UN: Unknown; B: Blank.
6.1. Findings

Results are presented and discussed in a sequence starting with global results for the whole Automotive-PDP, then, with results from the macro-phases and at last from the phases of the framework.

From the analysis of results from Table 10, it can be concluded that from a total of 100% of the valid responders, 76% confirmed that, in their companies, there is the practice of a large part of the activities contained in the Automotive-PDP, and they consider the practice of these activities as important or very important.

For the 24% who answered there is no practice or unknown whether the practice of the activities occurs or not in their companies, global grades were neutral (3.0), trending to important, since the grades are between 3.3 and 3.5.

Table 11 shows the global results for the macro-phases and for the technical and management gates of Automotive-PDP.

Table 11 showed that the results obtained with the macro-phases confirmed, with averages greater than 70%, the practice of the activities in the companies contained in the subgroups automaker, auto parts and design.

About the technical and management gates, results showed little variation between them. The variation was 1% for “Yes”, 3% for “No”, and 4% for “Unknown”. The greatest results were attributed to the management gates.

Table 10. Global results obtained for automotive-PDP
Is it your company’s practice?
How important is the activity?
Percentage
Y (%)
W
Global means of the model
76

Table 11. Global results for the macro-phases and technical and management gates of Automotive-PDP
Macro-phases
Is it your company’s practice?
How important is the activity?
Percentage
Y (%)
WG
Product strategy
84
4.4
Macro-phase of product and process development
81
4.4
Macro-phase of production and continuous improve-
ment
72
4.3
Technical gates (TG)
70
4.1
Management gates (MG)
71
4.2

Notes: W: Weighted average of the grades; G: global; Y: Yes; N: No; UN: Unknown; B: Blank.
Phases of macro-phase of product strategy were used as example of the results obtained for all the phases contained in the macro-phases of Automotive-PDP. Table 12 shows the results for this macro-phase.

The phase of MS presented the largest result for “Yes” answers (94%), compared to the other results obtained for the whole model.

For “Unknown” answers, this phase obtained a global average of the grades equal to 4.4. The phase of market monitoring (MM) obtained a percentage equal to 17% for “Unknown” answers, this being the largest value between “Unknown” answers, compared to the other phases of macro-phase of product strategy. All results obtained for “Yes” answers of this macro-phase obtained percentages greater than 70%. Analogously, all global averages of the grades obtained were greater than 4.0. Therefore, this macro-phase obtained significant results for both questions (Q1) and (Q2), i.e.: the occurrence of the practice of a large part of the activities contained in the phases, and the importance of the practice of these activities in the companies of the subgroups researched.

Following the analysis of all answers obtained in the field research, it was observed that only one (1) of the activities receiving “Yes” answers obtained a grade lower than 4.0. It was the activity (XVIId), number 74, with grade equal to 3.5.

By observing the general averages of each activity, only six activities were identified as having general grades lower than 4.0. Table 13 shows the activities identified.

Macro-phase of product strategy	Is it your company’s practice?	How important is the activity?	Percentage	Means					
	Percentage								
	Y (%)	N (%)	UN (%)	B (%)	WG	WY	WN	WUN	WB
Market study (MS)	94	2	4	0	4.6	4.7	1.0	4.4	0.0
Product positioning (PP)	89	2	8	1	4.4	4.4	1.7	3.6	1.3
Market monitoring (MM)	75	8	17	0	4.3	4.4	3.4	4.1	0.0
Product launch (PL)	76	16	8	0	4.2	4.4	3.6	2.7	0.0

Notes: W: Weighted average of the grades; G: global; Y: Yes; N: No; UN: Unknown; B: Blank.

Table 13. Activities with general averages lower than 4.0

nº	A	Macro-phase of product strategy	Is it your company’s practice?	How important is the activity?	Summary	Means					
11	IVa	Distribute the product in car dealers to be commercialized before the launch	22	27	10	0	3.4	4.4	2.4	3.0	0.0
47	XIIa	Perform/execute the simulation of facilities and machines in the workstations using improvised materials, or using other resources available in the company	26	16	16	1	3.7	4.0	3.4	3.2	0.0
74	XVIId	Plan and dimension the workmanship required to protect the company’s assets	34	9	16	0	3.5	3.5	2.9	4.1	0.0
77	XVIIg	Plan and train all workmanship not directly involved with the automobile manufacturing process	31	14	13	1	3.8	4.0	3.3	3.8	5.0
104	XXVIIIb	Freeze and do not change the results determined in technical decisions	35	11	13	0	3.8	4.1	2.8	3.4	0.0
106	XXIXb	Freeze and do not change the results determined in strategic decisions	33	15	11	0	3.9	4.2	3.4	3.3	0.0

Notes: W: Weighted average of the grades; G: global; Y: Yes; N: No; UN: Unknown; B: Blank.
The italic values indicates the general grades lower than 4.0.
6.1.1. Complementary activities
For the complementary questions of the questionnaire, the responders suggested some activities, also supplementing them with its practice or non-practice, as the importance in practicing or not practicing. Using the analysis of the suggested complementary activity and the identification of its correlation with the activity (ies) of the questionnaire, an analysis of the complementary activities, with no correlation with any activity proposed in the Automotive-PDP, was performed.

The process was repeated for the other complementary activities suggested by the responders for the macro-phases of product and process development and production and continuous improvement. Complementary activities identified as valid for incorporation were inserted in the Automotive-PDP and are identified in Tables A1 and A2 of the Appendix 1 with the symbol (*).

Except the activity (XVIIId), the other activities of this group had global averages for “Yes” answers equal or greater than 4.0.

7. Conclusions
Developing serial products in a structured and concurrent form among automakers, auto parts and automotive design companies is a great challenge.

In this work, we propose a complete framework to managing the automotive product development process (Automotive PDP). The main advantage of this framework is to access a generic automotive reference model that contains a complete set to manage this process. This include: a reference model structured in three main parts and dozens of phases, a hundred of activities and a functional matrix that shows the relationships between departments, people involved, technical and managerial gates that occurs during the automotive development.

The expected results are: a larger interaction among the professionals involved, work standardization, reduction time in function of a defined and known development system, and therefore reduction wastes. A consequent reduction in costs and investments by the organizations can also be expected. In this context, the proposed Automotive-PDP can contribute to the automotive sector.

For the automotive PDP acceptance, global averages of the model showed that 76% of responders replied “Yes” for the practice of the activities suggested in the Automotive-PDP, and only 10% answered “No” practice.

The other 14% replied “Unknown”, i.e. took no position in certain answers. Except the six activities identified and shown in Table 10, all remaining activities of the proposed model obtained general averages of the grades equal or greater than 4.0. i.e. the activities were considered as important or very important by the responders.

Not restricted to the activities proposed in the model, a survey was performed during the research, where the responders were able to suggest complementary activities to the model. These activities were analyzed and incorporated, according to criteria demonstrated during the presentation and discussion of the results.

Based on the global and specific results it can be concluded that the proposed Automotive-PDP presents a significant acceptance with the practices performed in the automakers, auto parts, and automotive design companies. Therefore, it demonstrates its importance for the sector. In addition, it can be concluded that the proposed model also presents a significant compliance to the theoretical background, and the three examples of automotive PDP shown, since the framework proposed was also grounded on them.
Automotive-PDP is expected to be used, among other applications, as a guide for professionals in the automotive sector and for researchers, in the development and helping in the activities pertinent to the automotive products development process.

For future researches is recommended to evaluate the use of the Automotive-PDP considering the next industrial revolution scenario (Industry 4.0). This can start new researches and bring updates to include in the framework, such as: Cyber-Physical Systems (CPS), Internet of Things (IoT), Vertical and Horizontal integrations and Big Data analysis and evaluation.

Funding
The researchers thank CNPq (National Council for Scientific and Technological Development) for the financial support [grant number 141913/2010-0].

Author details
Guilherme Canuto da Silva¹
E-mail: guilherme.canuto@ufabc.edu.br
Paulo Carlos Kaminski²
E-mail: pckamins@usp.br
¹ Center of Engineering, Modeling and Applied Social Sciences, Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Santo André 09210-580, Brazil.
² Department of Mechanical Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Melio Moraes, 2231, São Paulo 05508-030, Brazil.

Citation information
Cite this article as: Proposal of framework to managing the automotive product development process, Guilherme Canuto da Silva & Paulo Carlos Kaminski, Cogent Engineering (2017), 4: 1317318.

Cover image
Source: Authors.

References
Amasaka, K. (2002). "New JIT": A new management technology principle at Toyota. International Journal of Production Economics, 80, 135–144. http://dx.doi.org/10.1016/S0925-5273(02)00313-4 ANFAVEA. (2016). Brazilian automotive industry yearbook 2016 (p. 154). São Paulo: Brazilian Automotive Industry Association.
Asimow, M. (1962). Introduction to design. Upper Saddle River, NJ: Prentice-Hall.
Browning, T. R., Deyst, J. J., Eppinger, S. D., & Whitney, D. E. (2002). Adding value in product development by creating information and reducing risk. IEEE Transactions on Engineering Management, 49, 443–458. doi:10.1109/TEM.2002.806710
Chao, S.-H., & Eppinger, S. D. (2005). A simulation-based process model for managing complex design projects. IEEE Transactions on Engineering Management, 52, 316–328. doi:10.1109/TEM.2005.850722
Clark, K. B., & Fujimoto, T. (1991). Product development performance: Strategy, organization, and management in the world auto industry. Brighton, MA: Harvard Business School Press.
Clark, K. B., & Wheelwright, S. C. (1993). Managing new product and process development: Text and cases. New York, NY: Free Press.
Cooper, R. G. (1983). A process model for industrial new product development. IEEE Transactions on Engineering Management, 2–11. doi:10.1109/TEM.1983.6448637
Cooper, R. G. (1986). Winning at new products. Boston, MA: Addison-Wesley.
Cooper, R. G. (1990). Stage-gate systems: A new tool for managing new products. Business Horizons, 33, 44–54. doi:10.1016/0007-6813(90)90040-1
Cooper, R. G., & Edgett, S. J. (1999). Product development for the service sector: Lessons from market leaders. New York, NY: Basic Books.
Dieter, G., & Schmidt, L. C. (2008). Engineering design, engineering series. New York, NY: McGraw-Hill.
Donndeling, J. A. (2016). Information flow and decision-making in advanced vehicle development. Retrieved 23, 2016, from http://www.mne.psu.edu/simpson/courses/me546/lectures/me579.coffee.gm.slides.pdf
Durmuşoğlu, S. S., & Barczak, G. (2011). The use of information technology tools in new product development phases: Analysis of effects on new product innovativeness, quality, and market performance. Industrial Marketing Management, 40, 121–130. doi:10.1016/j.indmarman.2010.08.009
Evans, J. H. (1959). Basic design concepts. Naval Engineers Journal, 71, 671–678.
Guiguer Filho, D. (2005). Co-desenvolvimento de produto – um estudo na indústria automotiva (master dissertation). Escola Politécnica, Universidade de São Paulo, São Paulo.
Hirz, M., Dietrich, W., Gferrer, A., & Lang, J. (2013). Integrated computer-aided design in automotive development. development processes, geometric fundamentals, methods of CAD, knowledge-based engineering data management. Berlin: Springer Berlin Heidelberg. doi:10.1007/978-3-642-11940-8
Holweg, M. (2007). The genealogy of lean production. Journal of Operations Management, 25, 420–437. doi:10.1016/j.jom.2006.04.001
Jayaram, J., Das, A., & Nicolae, M. (2010). Looking beyond the obvious: Unraveling the Toyota production system. International Journal of Production Economics, 118, 280–291. http://dx.doi.org/10.1016/j.ijpe.2010.07.024
Jun, H. B., & Suh, H. W. (2008). A modeling framework for product development process considering its characteristics. IEEE Transactions on Engineering Management, 55, 103–119. http://dx.doi.org/10.1109/TEM.2007.912808
Kaminski, P. C. (2000). Desenvolvendo produtos com planejamento, criatividade e qualidade. Rio de Janeiro: Livros Técnicos e Científicos Editora S.A.
Khan, M. S., Al-Ashaab, A., Shehab, E., Hacque, B., Ewers, P., Sorli, M., & Sopelana, A. (2013). Towards lean production and process development. International Journal of Computer Integrated Manufacturing, 26, 1105–1116. http://dx.doi.org/10.1080/0951192X.2011.608723
Krishnan, V., & Ulrich, K. T. (2001). Product development decisions: A review of the literature. Management Science, 47, 1–21. http://dx.doi.org/10.1287/mnsc.47.1.1.10668
León, H. C. M., & Farris, J. A. (2011). Lean product development research: Current state and future directions. Engineering Management Journal, 23, 29–51. doi:10.1007/s00339-008-0114-3
Liker, J. K., Sobek, D. K., Ward, A. C., & Cristiano, J. J. (1996). Involving suppliers in product development in the United States and Japan: Evidence for set-based concurrent engineering. IEEE Transactions on Engineering Management, 43, 165–178. doi:10.1109/17.509982
Martinez Leon, H. C., Farris, J. A., & Letens, G. (2013). Improving front-loading. IEEE Transactions on Engineering Management, 60, 552–565. doi:http://dx.doi.org/10.1109/TEM.2012.2228205

Martinsuo, M. (2013). Project portfolio management in practice and in context. International Journal of Project Management, 31, 794–803. doi:10.1016/j.iprom.2012.10.013

Meskendahl, S. (2010). The influence of business strategy on project portfolio management and its success—A conceptual framework. International Journal of Project Management, 28, 807–817. doi:10.1016/j.iprom.2010.06.007

Möller, K. (2006). Role of competences in creating customer value: A value-creation logic approach. Industrial Marketing Management, 35, 913–924. doi:10.1016/j.indmarman.2006.04.005

Morgan, J. M., & Liker, J. K. (2006). The Toyota product development system: Integrating people, process and technology. Journal of Product Innovation Management, 24, 400. doi:10.1111/j.1540-5885.2007.00250_1.x

Omar, M. A. (2011). Advanced quality planning: A commonsense guide to AQP and APQP. New York, NY: Productivity Press.

Teske, L. (2016). Motion. In Virtual development process. Retrieved 21, 2016, from http://homepages.laas.fr/nic/MOVIE/Workshop/Slides/Lothar.Teske.pdf

Vamsi, N., Jasti, K., & Kodali, R. (2015). Lean production: Literature review and trends. International Journal of Production Research, 53, 867–885. doi:10.1080/00207543.2014.937508

Weber, J. (2009). Das gemeinsame Qualitätsmanagement in der Lieferkette. Berlin: Verband der Automobilindustrie.

WDA. (2011). Das gemeinsame Qualitätsmanagement in der Lieferkette. Berlin: Verband der Automobilindustrie.

VDM 2221. (1993). VDI 2221—Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte, Systematic approach to the development and design of technical systems and products. Verein Deutscher Ingenieure, Düsseldorf. doi:10.1007/BF097811307415324.004

Weber, J. (2009). Automotive development processes: Processes for successful customer oriented vehicle development. Berlin: Springer Berlin Heidelberg.

Welo, T. (2011). On the application of lean principles in Product Development: A commentary on models and practices. International Journal of Product Development, 13, 516. doi:10.1504/IJPD.2011.042027

Womack, J. P., Jones, D. T., & Roos, D. (1990). The machine that changed the world: The story of lean production, world. New York, NY: Free Press. doi:10.1006/0024-6301(92)90400-V
Appendix 1

Table A1

nº	A	Macro-phase of product strategy (main activities)
3	Ia	Check the behavior of the trends for automobile sales market in the next months and years
4	Ib	Analyze and investigate the products from competing companies in the market
5	Ic	Perform survey of the clients’ satisfaction
6	IIa	Clearly define the type of product to be developed by the company, before the start of product development
7	IIb	Characterize the type of product to be developed by the company as a competitor compared to the other products investigated in the market
		Estimate costs (*)
		Determine total costs for the development of the vehicle and manufacturing processes (*)
8	IIc	Positionate the product in a determined market segment, group of products or line of existing products
9	IIIa	Follow up the changes that might happen in the market during the development of the new product
		Perform researches and allow appraisers (potential purchasers) to drive vehicles from the same segment (‘)
		Perform tests for client’s perception (‘)
10	IIIb	Identify changes in the clients’ preference and change/modify the design of product under development in the company in order to meet the clients’ expectations
		Define strategies to expedite the launch of the vehicle (‘)
11	IVa	Distribute the product in car dealers to be commercialized before the launch
12	IVb	Monitor clients’ satisfaction after the purchase of the new product
13	IVc	Transform the information from the purchasing market into new requirements for adequation of the product being manufactured
14	IVd	Transform the information from the purchasing market into new requirements for the development of future products

Notes: nº: number; A: activity; (‘): complementary activities.

Table A2

nº	A	Macro-phase of product and process development (main activities)
15	VIa	Obtain engineering requirements from the clients’ desires
16	VIb	Obtain engineering requirements from the company’s goal
17	VIc	Transform the qualitative information, obtained from the clients, in quantitative engineering information
18	VId	Use new technologies in the new product design
19	Vie	Develop new technologies for the new product
20	VIa	Design the external shape of the automobile
21	VIb	Design the internal area of the automobile
22	VIc	Virtually design the parts/components of the automobile
23	VIIa	Virtually design and simulate the chassis of the automobile
24	VIIb	Virtually design and simulate the platform of the automobile
25	VIIc	Virtually design and simulate the body of the automobile
26	VIId	Virtually design and simulate the internal finishing of the automobile
27	VIIe	Virtually design and simulate the external finishing of the automobile
28	VIIf	Virtually design and simulate the engine of the automobile
29	VIIg	Virtually design and simulate the on-board electronics of the automobile
30	VIIh	Create virtual prototypes of the parts/components of the automobile

Notes: nº: number; A: activity; (‘): complementary activities.
n°	A	Macro-phase of product and process development (main activities)
31	VIIIi	Build physical prototypes of the parts/components of the automobile
32	IXa	Test the parts/components of the automobile, in its final development status
33	IXb	Validate the parts/components of the automobile, in its final development status
34	IXc	Characterize the end of the automobile design development, by a framework in the development process
		Certificate the product (vehicle) with the authorities (*)
35	Xa	Design the automobile manufacturing processes concomitantly to the automobile design development
36	Xb	Design and dimension machines and equipments, including robots, for stamping sheet parts of the automobile
37	Xc	Design and dimension machines and equipments, including robots, for manufacturing the body of the automobile
38	Xd	Design and dimension machines and equipments, including robots, for painting the body of the automobile
39	Xe	Design and dimension machines and equipments, including robots, for the final assembly of the automobile
40	Xf	Design and dimension process areas, including the creation of layouts, for manufacturing processes of the automobile
41	Xg	Design and dimension the resources required for the maintenance of machines and equipments for manufacturing the automobile
		Calculate and determine the consumption of non-productive materials (*)
42	Xla	Plan and implement/adequate the civil infrastructure of the company
43	Xlb	Plan and implement/adequate the electrical infrastructure of the company
44	Xlc	Plan and implement/adequate the mechanical infrastructure of the company
45	Xld	Plan and implement environmental policies specific for each manufacturing process
46	Xle	Plan and implement global environmental policies in the company
47	XIIa	Perform/execute the simulation of facilities and machines in the workstations using improvised materials, or using other resources available in the company
48	XIIb	Perform/execute a physical idealization of the workstations, to simulate the production operations
49	XIIc	Physically check the workstations, even before completing the facilities, to check future working conditions for the operators
50	XIIId	Perform a physical check, before the final installation, of machines and equipments for manufacturing processes, to assure that the design of the workstation meets the needs of the operators
51	XIIla	Develop the principles required for the conduction of manufacturing activities of the automobile
52	XIIlb	Develop procedures to determine and standardize the methods and ways of performing the activities of producing the automobile
53	XIIlc	Develop and determine the systems of control and visual management of the manufacturing areas
54	XIIId	Determine and establish countermeasures to identify and track defects that might be generated during the production of the automobile
55	XIVa	Consolidate the concepts established for the manufacturing processes of the automobile
56	XIVb	Virtually simulate the manufacturing processes of the automobile
57	XIVc	Physically simulate the manufacturing processes of the automobile
58	XIVd	Finish the physical facilities required to manufacture the automobile
59	XIVe	Automate the manufacturing processes of the automobile
60	Xva	Test the equipments and other means to produce the automobile
61	Xvb	Produce small batches of subsets of the automobile, to test the manual manufacturing stations

(Continued)
n°	A	Macro-phase of product and process development (main activities)
62 | XVc | Produce small batches of subsets of the automobile, to test the automatic manufacturing stations
63 | XvId | Produce complete automobiles, to test the manufacturing processes of the automobile
64 | XvIe | Train operators during the tests of the manufacturing processes of the automobile
65 | XvIf | Predetermine the indicators and goals, during the test of the manufacturing processes of the automobile
66 | XvIg | Characterize the end of tests in the manufacture processes of the automobile, by using a framework in the development process
67 | XVIa | Determine the systems of receipt, storage and distribution of the materials in the company
68 | XVIb | Determine the amount of workmanship required for the systems of receipt, storage and distribution of the materials in the company
69 | XVIc | Dimension areas for: materials movements, produced automobiles and remaining inputs required to manufacture the automobile
70 | XVIId | Determine the development of a parts supplier park
71 | XVIId | Calculate and determine the amount of workmanship required to perform the operations of manufacturing the automobile
72 | XVIId | Calculate and determine the amount of workmanship required to perform the maintenance operations of the equipments and facilities for manufacturing processes of the automobile
73 | XVIId | Calculate and determine the amount of workmanship required to perform the operations of monitoring the product quality
74 | XVIId | Plan and dimension the workmanship required to protect the company’s assets
75 | XVIId | Plan and dimension the workmanship required to the company’s fire brigade
76 | XVIId | Plan and train all the workmanship involved with the manufacturing process of the automobile
77 | XVIId | Plan and train all the workmanship not directly involved with the manufacturing process of the automobile
78 | XVIIIa | Produce a small batch of automobiles for final validation of the facilities of the manufacturing processes of the automobile
79 | XIXa | Characterize the start of the serial production of automobiles, by using a framework in the development process
80 | XIXb | Program a gradual increase in the amounts of automobiles to be produced

Notes: n°: number; A: activity; (*): complementary activities.

Table A3 (Continued)

n°	A	Macro-phase of production and continuous improvement (main activities)
81 | XXIa | Check the stability of manufacturing processes
82 | XXIb | Compare the design requirements to the automobiles being produced
83 | XXIc | Identify opportunities of optimization and communication of manual operations of the manufacturing processes of the automobile
84 | XXId | Identify opportunities of optimization and communication of automatic operations of the manufacturing processes of the automobile
85 | XXIe | Determine a maintenance plan for the machines and other equipments used for manufacturing automobiles
86 | XXIIa | Prove the dimensional repeatability of the automobile according to tolerances determined in the product design
87 | XXIIb | Check the dimensional repeatability of the product
88 | XXIIIa | Identify restrictions (bottlenecks) in the automatic manufacturing processes
89 | XXIIIb | Propose and implement improvements to optimize the manufacturing automatic processes
90 | XXIVa | Check the practice/skill developed by the operators after the start of serial production
91 | XXIVb | Optimize the available workmanship in function of the operators’ skill

(Continued)
Table A3 (Continued)

n°	A	Macro-phase of production and continuous improvement (main activities)
92	XXIVc	Communize activities originally performed in different workstations
93	XXVa	Characterize the serial production of automobiles, by using a framework in the development process
94	XXVb	Authorize the serial production (mass production) of automobiles
95	XXVc	Produce automobiles according to the variations of increase or fall in the sales in the market
96	XXVIa	Discontinue the serial production of automobiles
97	XXVIb	Determine the time required to end the serial production of automobiles
98	XXVIIa	Consolidate the information generated during the period of production of the automobile
99	XXVIIb	Perform practices as learned lessons, based on information generated during the period of production of the automobile
100	XXVIIc	Evaluate facilities and machines of the manufacturing processes, to identify the need or not for purchase/adequation of the facilities, for manufacturing new automobile models
101	XXVIIId	Collect information with the operators working directly in the manufacture of the automobile, for guidance to future processes of products development
102	XXVIIe	Create a documentation from the information obtained during the period of production of the automobile
103	XXVIIIa	Make technical decisions at known and pre-determined time points, during the process of products development in the company where you work
104	XXVIIIb	Freeze and do not change the results determined in technical decisions
105	XXIXa	Make strategic decisions at known and pre-determined time points, during the process of products development in the company where you work
106	XXIXb	Freeze and do not change the results determined in strategic decisions

Notes: n°: number; A: activity.
Macro-phase	Gates	Departments	Involved	Main decisions
Product strategy				
I	X	X X X X X X X X	X	X X
1	X	X X X X X X X		Development of a new automobile
II	X X X X X X X X	X	X	
III	X X X X X X X X	X	X	
Product and process development				
4	X X	X X X X X X X X X		Approval of the concept of production system. Release of workmanship and financial resources
5	X X X X X X X		Approval of chassis, platform, car body, internal and external finishing, engine and on-board electronics modules	
6		X X X X X X X X		Approval of process concept. Approval of logistics concept. Release of workmanship and financial resources

(Continued)
Macro-phase	Gates	Departments	Involved	Main decisions
MG TG FN HR MS PE EE CE PE BE FE TV PT IE RD LG EP PS BS PA FA PR VP DR FM SP EN AN SL TC OP				
7	X X X X X X X X	X X X X X X	● X X X X	End of tests and validations of the product
8	X X X X X X X X	X X X X X X	● X X X	Approval of dimensioning of the workmanship required for production and maintenance of subprocesses
9	X X X X X X X X	X X X X X X	● X X X X	Approval of process layout. Approval of results from simulations of the subprocesses
10	X X	X X	● X X	End of civil, electrical, mechanical and environmental infrastructures
11	X X X X X X X X X	X X	● X X	Start of pre-series of the automobile
12	X X X X X X X X	X X	● X X	Approval of the process facilities. Definition of indicators of the process and quality for the automobile
13	X X X X X X X X	X X	● X X	Start of serial production of the automobile
IV	X	X X X X X X	● X X	Launch the product in the market
14	X X X X X	X	● X X	Confirmation of process stability

(Continued)
Table A4 (Continued)

Characteristics of the management and technical frameworks in the process of automotive products development

Macro-phase	Gates	Departments	Involved	Main decisions								
Production and continuous improvement	MG											
	TG											
	FN											
	HR											
	MS											
	PE											
	EE											
	CE											
	PE											
	BE											
	FE											
	TV											
	PT											
	IE											
	RD											
	LG											
	EP											
	PS											
	BS											
	PA											
	FA											
	PR											
	VP											
	DR											
	FM											
	SP											
	EN											
	AN											
	SL											
	TC											
	OP											
15	X	X	X	X	X	●	X	X	X	X	Confirmation of series stability	
16	X	X	X	X	X	X	●	X	X	X	X	Start of reduction of cycle times in automatic and manual workstations
17	X	X	X	X	X	X	●	X	X	X	X	Redimensioning the equipments and workmanship of the production
V	X	X	X	X	X	X	●	X	X	X	X	Discontinuation of the series and retirement planning of the product from the market
18	X	X	X	X	X	X	X	X	X	X	X	Technical review of the product, process and production. Elaboration of the guide report for future products

Notes: MG: management gates; TG: technical gates; PR: president; VP: vice-president; DR: directors; FM: functional manager; SP: supervisors; EN: engineers; AN: analysts; SL: sector leaders; TC: technicians; OP: operators; FN: finances; HR: human resources; MS: market and sales analysis; PE: powertrain engineering; EE: electrical engineering; CE: chassis engineering; PE: platform engineering; BE: body shop engineering; FE: finishing engineering; TV: tests and validations; PT: process technology; IE: infrastructure; RD: resources dimensioning; LG: logistics; EP: environmental processes; PS: press shop; BS: body shop; PA: paint shop; FA: final assembly; X: participation; ●: in charge of the decision.
