Joint universality of the Riemann zeta-function and Lerch zeta-functions

Antanas Laurinčikasa, Renata Macaitienėb,c,1

aFaculty of Mathematics and Informatics, Vilnius University
Naugarduko str. 24, LT-03225 Vilnius, Lithuania
antanas.laurincikas@mif.vu.lt

bFaculty of Mathematics and Informatics, Šiauliai University
P. Višinskio str. 19, LT-77156 Šiauliai, Lithuania
renata.macaitiene@mi.su.lt

cFaculty of Business and Technologies, Šiauliai State College
Aušros ave. 40, LT-76241 Šiauliai, Lithuania

Received: 7 September 2012 / Revised: 27 March 2013 / Published online: 18 June 2013

Abstract. In the paper, we prove a joint universality theorem for the Riemann zeta-function and a collection of Lerch zeta-functions with parameters algebraically independent over the field of rational numbers.

Keywords: Lerch zeta-function, Riemann zeta-function, limit theorem, universality.

1 Introduction

Let \(\lambda \in \mathbb{R} \) and \(0 < \alpha \leq 1 \), be fixed parameters. The Lerch zeta-function \(L(\lambda, \alpha, s) \), \(s = \sigma + it \), is defined, for \(\sigma > 1 \), by

\[
L(\lambda, \alpha, s) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda m}}{(m + \alpha)^s}.
\]

For \(\lambda \in \mathbb{Z} \), the function \(L(\lambda, \alpha, s) \) reduces to the Hurwitz zeta-function \(\zeta(s, \alpha) \) which is a meromorphic function with a unique simple pole at the point \(s = 1 \) with residue 1. If \(\lambda \notin \mathbb{Z} \), then the Lerch zeta-function has analytic continuation to an entire function. In view of the periodicity of \(e^{2\pi i \lambda m} \), we can suppose that \(0 < \lambda \leq 1 \).

It is well known that the Lerch zeta-function \(L(\lambda, \alpha, s) \) with transcendental parameter \(\alpha \) is universal (see [1], also [2]). Let \(D = \{ s \in \mathbb{C} : 1/2 < \sigma < 1 \} \). Denote by \(K \) the class of compact subsets of the strip \(D \) with connected complements, and, for \(K \in K \), denote by \(H(K) \) the set of continuous functions on \(K \) which are analytic in the interior of \(K \).

1The author is supported by the European Community’s Seventh Framework Programme FP7/2007-2013, project INTEGER (grant No. 266638).
Moreover, we use the notation $\text{meas}\{A\}$ for the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Then the universality of $L(\lambda, \alpha, s)$ is contained in the following theorem.

Theorem 1. Suppose that α is transcendental. Let $K \in \mathcal{K}$ and $f(s) \in H(K)$. Then, for every $\epsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \text{meas}\{\tau \in [0, T]: \sup_{s \in K} |L(\lambda, \alpha, s + i\tau) - f(s)| < \epsilon\} > 0.$$

Thus, the universality of $L(\lambda, \alpha, s)$ means that the shifts $L(\lambda, \alpha, s + i\tau)$ approximate with a given accuracy a wide class of analytic functions.

The functions $\zeta(s, \alpha)$, $\alpha \neq 1, 1/2$, and $L(\lambda, \alpha, s)$ with rational λ are also universal in the above sense with rational parameter α. The case of $\zeta(s, \alpha)$ has been examined in [3]. The universality of $L(\lambda, \alpha, s)$ follows from its expression by a linear combination of Hurwitz zeta-functions.

Also, in [4–6] and [7], the joint universality of Lerch zeta-functions has been considered. We state a general result from [7].

Theorem 2. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over the field of rational numbers \mathbb{Q}. For $j = 1, \ldots, r$, let $\lambda_j \in (0, 1)$, $K_j \in \mathcal{K}$, and $f_j(s) \in H(K_j)$. Then, for every $\epsilon > 0$,

$$\liminf_{T \to \infty} \frac{1}{T} \text{meas}\{\tau \in [0, T]: \sup_{1 \leq j \leq r} \sup_{s \in K_j} |L(\lambda_j, \alpha_j, s + i\tau) - f_j(s)| < \epsilon\} > 0.$$

We note that the algebraic independence of the numbers $\alpha_1, \ldots, \alpha_r$ can be replaced by a more general hypothesis that the set

$$L(\alpha_1, \ldots, \alpha_r) = \{\log(m + \alpha_j): m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, j = 1, \ldots, r\}$$

is linearly independent over \mathbb{Q}. In the case $\lambda_j \in \mathbb{Z}$, $j = 1, \ldots, r$, this was done in [8].

In [9], a joint universality theorem for the Riemann zeta-function $\zeta(s)$ and periodic Hurwitz zeta-functions has been obtained. Let $\mathfrak{A} = \{a_m: m \in \mathbb{N}_0\}$ be a periodic sequence of complex numbers with minimal period $k \in \mathbb{N}$. We remind that the periodic Hurwitz zeta-function $\zeta(s, \alpha; \mathfrak{A})$ with parameter α, $0 < \alpha \leq 1$, is defined, for $\sigma > 1$, by the Dirichlet series

$$\zeta(s, \alpha; \mathfrak{A}) = \sum_{m=0}^{\infty} \frac{a_m}{(m + \alpha)^s},$$

and is meromorphically continued to the whole complex plane with a unique possible pole at the point $s = 1$ with residue

$$\alpha \overset{\text{def}}{=} \frac{1}{k} \sum_{m=0}^{k-1} a_m.$$

If $\alpha = 0$, then $\zeta(s, \alpha; \mathfrak{A})$ is an entire function.
For \(j = 1, \ldots, r \), let \(l_j \in \mathbb{N} \). In [9], the joint universality for the functions
\[
\zeta(s), \zeta(s, \alpha_1; \mathfrak{A}_{1}), \ldots, \zeta(s, \alpha_1; \mathfrak{A}_{l_1}), \ldots, \zeta(s, \alpha_r; \mathfrak{A}_{1}), \ldots, \zeta(s, \alpha_r; \mathfrak{A}_{l_r})
\]
(1)
has been proved. Here a collection of periodic sequences \(\mathfrak{A}_{jl} \), \(\mathfrak{A}_{jl} = \{a_{mjl}: m \in \mathbb{N}_0\} \), with minimal period \(k_{jl} \in \mathbb{N} \), \(l = 1, \ldots, l_j \), corresponds the parameter \(\alpha_j \), \(0 < \alpha_j \leq 1 \), \(j = 1, \ldots, r \). For \(K \in \mathcal{K} \), denote by \(H_0(K) \) the class of continuous non-vanishing functions on \(K \) which are analytic in the interior of \(K \). Let \(k_j \) be the least common multiple of the periods \(k_{j1}, \ldots, k_{jl} \), and
\[
A_j = \begin{pmatrix}
a_{1j1} & a_{1j2} & \ldots & a_{1jl_j} \\
a_{2j1} & a_{2j2} & \ldots & a_{2jl_j} \\
\vdots & \vdots & \ddots & \vdots \\
a_{kj1} & a_{kj2} & \ldots & a_{kj_lj}
\end{pmatrix}, \quad j = 1, \ldots, r.
\]

Then the main result of [9] is of the form.

Theorem 3. Suppose that the numbers \(\alpha_1, \ldots, \alpha_r \) are algebraically independent over \(\mathbb{Q} \), and that \(\text{rank}(A_j) = l_j \), \(j = 1, \ldots, r \). For \(j = 1, \ldots, r \) and \(l = 1, \ldots, l_j \), let \(k_{jl} \in \mathcal{K} \) and \(f_{jl} \in H(K_{jl}) \). Moreover, let \(K \in \mathcal{K} \) and \(f(s) \in H_0(K) \). Then, for every \(\epsilon > 0 \),
\[
\liminf_{T \to \infty} \frac{1}{T} \text{meas}\left\{ r \in [0; T]: \sup_{1 \leq j \leq r} \sup_{1 \leq l \leq l_j} \sup_{s \in K_{jl}} \left| \zeta(s + \imath r, \alpha_j; \mathfrak{A}_{jl}) - f_{jl}(s) \right| < \epsilon, \right. \sup_{s \in K} \left| \zeta(s + \imath r) - f(s) \right| < \epsilon \right\} > 0.
\]

We call the approximation property of the functions (1) in Theorem 3 a mixed joint universality because the function \(\zeta(s) \) and the functions \(\zeta(s, \alpha_j; \mathfrak{A}_{jl}) \) are of different types: the function \(\zeta(s) \) has Euler product, while the functions \(\zeta(s, \alpha_j; \mathfrak{A}_{jl}) \) with transcendental \(\alpha_j \) do not have Euler product over primes. This is reflected in the approximated functions: the function \(f(s) \) must be non-vanishing on \(K \), while the functions \(f_{jl} \) are arbitrary continuous functions on \(K_{jl} \).

The first mixed joint universality theorem has been obtained by Mishou [10] for the Riemann zeta-function and Hurwitz zeta-function \(\zeta(s, \alpha) \) with transcendental parameter \(\alpha \). This result in [11] has been generalized for a periodic zeta-function and a periodic Hurwitz zeta-function. In [12], the latter mixed joint universality theorem has been extended for several periodic zeta-functions and periodic Hurwitz zeta-functions.

Universality theorems for zeta-functions have a series of interesting applications. From them, for example, various denseness results of Bohr’s type for values of zeta-functions follow. The universality implies the functional independence of zeta-functions. This property of zeta-functions is applied to the zero-distribution of those zeta-functions. In [13], the universality has been applied to the famous class number problem. Universality theorems find applications even in solving some problems of physics [14]. For the above mentioned and other facts related to universality and references, we refer to [2, 15–20].
Thus, the universality of zeta-functions is a very interesting and useful property which motivates to continue investigations in the field.

The aim of this paper is to replace the zeta-functions $\zeta(s,\alpha_j;A_{jl})$ with periodic coefficients in Theorem 3 by Lerch zeta-functions $L(\lambda_j,\alpha_j,s)$ with arbitrary $\lambda_j \in (0,1]$ whose coefficients, in general, are not periodic. This is the novelty of the paper.

Theorem 4. Suppose that the numbers α_1,\ldots,α_r are algebraically independent over \mathbb{Q}. For $j = 1,\ldots,r$, let $\lambda_j \in (0,1]$, $K_j \in K$ and $f_j \in H(K_j)$. Moreover, let $K \in K$ and $f(s) \in H_0(K)$. Then, for every $\epsilon > 0$,

$$\lim inf_{T \to \infty} \frac{1}{T} \text{meas}\left\{ \tau \in [0;T]; \sup_{1 \leq j \leq r} \sup_{s \in K_j} |L(\lambda_j,\alpha_j,s+i\tau) - f_j(s)| < \epsilon, \sup_{s \in K} |\zeta(s+i\tau) - f(s)| < \epsilon \right\} > 0.$$

We note that the linear independence of the set $L(\alpha_1,\ldots,\alpha_r)$ is not sufficient for the proof of Theorem 4 because we need the linear independence of the set $L := \{(\log p; p \in \mathcal{P}), L(\alpha_1,\ldots,\alpha_r)\}$, where \mathcal{P} is the set of all prime numbers. This set consists of logarithms of all prime numbers and of all logarithms $\log(m+\alpha_j)$, $m \in \mathbb{N}$, $j = 1,\ldots,r$. Really, L is a multiset. For example, if L has two identical elements, then it is linearly dependent over \mathbb{Q}. The proof of Theorem 4 is based on a joint limit theorem on weakly convergent probability measures in the space of analytic functions.

2 Joint limit theorem

Denote by $\mathcal{B}(S)$ the σ-field of Borel sets of the space S, and by γ the unit circle on the complex plane. Define

$$\hat{\Omega} = \prod_p \gamma_p \quad \text{and} \quad \Omega = \prod_{m=0}^{\infty} \gamma_m,$$

where $\gamma_p = \gamma$ for all $p \in \mathcal{P}$, and $\gamma_m = \gamma$ for all $m \in \mathbb{N}_0$. By the Tikhonov theorem, with the product topology and pointwise multiplication the tori $\hat{\Omega}$ and Ω are compact topological Abelian groups. Moreover, let

$$\Omega = \Omega_1 \times \cdots \times \Omega_r,$$

where $\Omega_j = \Omega$ for all $j = 1,\ldots,r$. Then Ω again is a compact topological Abelian group. This gives the probability spaces $(\hat{\Omega},\mathcal{B}(\hat{\Omega}),\hat{m_H})$, $(\Omega_j,\mathcal{B}(\Omega_j),m_{jH})$ and $(\Omega,\mathcal{B}(\Omega),m_H)$, where $\hat{m_H}$, m_{jH} and m_H are the probability Haar measures on $(\hat{\Omega},\mathcal{B}(\hat{\Omega}))$, $(\Omega_j,\mathcal{B}(\Omega_j))$ and $(\Omega,\mathcal{B}(\Omega))$, respectively, $j = 1,\ldots,r$. We note that the
measure m_H is the product of the measures $m_{H_1}, m_{H_2}, \ldots, m_{H_r}$. Denote by $\hat{\omega}(p)$ the projection of $\hat{\omega}$ to γ_p, $p \in P$, and by $\omega_j(m)$ the projection of ω_j to γ_m, $m \in N_0$. For brevity, we set $\alpha = (\alpha_1, \ldots, \alpha_r)$, $\lambda = (\lambda_1, \ldots, \lambda_r)$ and $\omega = (\omega, \omega_1, \ldots, \omega_r) \in \Omega$.

Let $H(D)$ be the space of analytic functions on D endowed with the topology of uniform convergence on compacta, and let $r_1 = r + 1$. On the probability space $(\Omega, B(\Omega), m_H)$, define the $H^{r_1}(D)$-valued random element $\zeta(s, \alpha, \lambda, \omega)$ by the formula

$$\zeta(s, \alpha, \lambda, \omega) = \left(\zeta(s, \hat{\omega}), L(\lambda_1, \alpha_1, s, \omega_1), \ldots, L(\lambda_r, \alpha_r, s, \omega_r) \right),$$

where

$$\zeta(s, \hat{\omega}) = \prod_p \left(1 - \frac{\hat{\omega}(p)}{p^s} \right)^{-1}$$

and

$$L(\lambda_j, \alpha_j, s, \omega_j) = \sum_{m=0}^{\infty} \frac{e^{2\pi i \lambda_j m} \omega_j(m)}{(m + \alpha_j)^s}, \quad j = 1, \ldots, r.$$

Let P_{ζ} stand for the distribution of the random element $\zeta(s, \alpha, \lambda, \omega)$, i.e., P_{ζ} is the probability measure on $(H^{r_1}(D), B(H^{r_1}(D)))$ given by

$$P_{\zeta}(A) = m_H(\omega \in \Omega : \zeta(s, \alpha, \lambda, \omega) \in A).$$

We set

$$\zeta(s, \alpha, \lambda) = \left(\zeta(s), L(\lambda_1, \alpha_1, s), \ldots, L(\lambda_r, \alpha_r, s) \right).$$

Now we state a limit theorem on the space $(H^{r_1}(D), B(H^{r_1}(D)))$.

Theorem 5. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q}, and $\lambda_j \in (0, 1]$, $j = 1, \ldots, r$. Then

$$P_{\zeta}(A) \overset{\text{def}}{=} \frac{1}{T} \text{meas}\{ \tau \in [0, T] : \zeta(s + i\tau, \alpha, \lambda) \in A \}, \quad A \in B(H^{r_1}(D)),$$

converges weakly to the measure P_{ζ} as $T \to \infty$.

We divide the proof of Theorem 5 into lemmas. The first lemma is a limit theorem on the torus Ω. For $A \in B(\Omega)$, define

$$Q(A) = \frac{1}{T} \text{meas}\{ ((p^{-i\tau} : p \in P), (m + \alpha_j)^{-i\tau} : m \in N_0, j = 1, \ldots, r) \in A \}. $$

Lemma 1. Suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q}. Then Q_T converges weakly to the Haar measure m_H as $T \to \infty$.

Proof. The proof of the lemma is given in [9, Lemma 1].
Joint universality of the Riemann zeta-function and Lerch zeta-functions

Let \(\sigma_1 > 1/2 \) be a fixed number, and

\[
\nu_n(m) = \exp \left\{ -\left(\frac{m}{n} \right)^{\sigma_1} \right\}, \quad m, n \in \mathbb{N},
\]

\[
\nu_n(m, \alpha) = \exp \left\{ -\left(\frac{m + \alpha}{n + \alpha} \right)^{\sigma_1} \right\}, \quad m \in \mathbb{N}_0, \quad n \in \mathbb{N}.
\]

Define the series

\[
\zeta_n(s) = \sum_{m=1}^{\infty} \frac{\nu_n(m)}{m^s},
\]

and

\[
L_n(\lambda, \alpha, s) = \sum_{m=0}^{\infty} \frac{\nu_n(m, \alpha)}{(m + \alpha)^s}, \quad j = 1, \ldots, r,
\]

and, for \(\omega \in \Omega \),

\[
\zeta_n(s, \hat{\omega}) = \sum_{m=1}^{\infty} \frac{\hat{\omega}(m)\nu_n(m)}{m^s},
\]

\[
L_n(\lambda, \alpha, \omega, s) = \sum_{m=0}^{\infty} \frac{\nu_n(m, \alpha)}{(m + \alpha)^s}, \quad j = 1, \ldots, r.
\]

It is known, see, for example, [2, 16], that all above series converge absolutely for \(\sigma > 1/2 \). Let

\[
\zeta_n(s, \alpha, \lambda) = \left(\zeta_n(s), L_n(\lambda_1, \alpha_1, s), \ldots, L_n(\lambda_r, \alpha_r, s) \right)
\]

and

\[
\zeta_n(s, \alpha, \lambda, \omega) = \left(\zeta_n(s, \hat{\omega}), L_n(\lambda_1, \alpha_1, \omega_1, s), \ldots, L_n(\lambda_r, \alpha_r, \omega_r, s) \right).
\]

Lemma 2. Suppose that the numbers \(\alpha_1, \ldots, \alpha_r \) are algebraically independent over \(\mathbb{Q} \), and \(\omega \in \Omega \). Then

\[
\frac{1}{T} \operatorname{meas}\left\{ \tau \in [0, T]: \zeta_n(s + i\tau, \alpha, \lambda) \in A \right\}, \quad A \in \mathcal{B}(H^1(D)),
\]

and

\[
\frac{1}{T} \operatorname{meas}\left\{ \tau \in [0, T]: \zeta_n(s + i\tau, \alpha, \lambda, \omega) \in A \right\}, \quad A \in \mathcal{B}(H^1(D))
\]

converges weakly to the same probability measure \(P_n \) on \((H^1(D), \mathcal{B}(H^1(D)))\) as \(T \to \infty \).

Proof. The proof uses Lemma 1 and does not depend on the coefficients of the functions \(L_n(\lambda_j, \alpha_j, s), j = 1, \ldots, r \). Therefore, it coincides with the proof of [9, Lemma 2]. \(\square \)
Now we define a metric on $H^r_1(D)$ which induces the topology of uniform convergence on compacta. For $g_1, g_2 \in H(D)$, we define
\[
\rho(g_1, g_2) = \sum_{m=1}^{\infty} 2^{-m} \sup_{s \in K_m} |g_1(s) - g_2(s)| / \left(1 + \sup_{s \in K_m} |g_1(s) - g_2(s)|\right),
\]
where $\{K_m: m \in \mathbb{N}\}$ is a sequence of compact subsets of the strip D such that
\[
D = \bigcup_{m=1}^{\infty} K_m,
\]
$K_m \subset K_{m+1}$ for all $m \in \mathbb{N}$, and, if $K \subset D$ is a compact set, then $K \subset K_m$ for some $m \in \mathbb{N}$. The existence of the sequence $\{K_m\}$ follows from a general theorem, see, for example, [21], however, in the case of the region D, it is easily seen that we can take closed rectangles. Clearly, ρ is a metric on $H(D)$ inducing its topology. For $g_j = (g_{j1}, g_{j2}, \ldots, g_{jr}) \in H^r_1(D)$, $j = 1, 2$, we put
\[
\rho(g_1, g_2) = \max\left(\rho(g_1, g_2), \max_{1 \leq j \leq r} \rho(g_{1j}, g_{2j})\right).
\]
Then we have that ρ is a desired metric on $H^r_1(D)$. Using this metric, we approximate $\zeta(s, \alpha, \lambda)$ and $\zeta(s, \alpha, \lambda, \omega)$ by $\zeta_n(s, \alpha, \lambda)$ and $\zeta_n(s, \alpha, \lambda, \omega)$, respectively.

Lemma 3. We have
\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho(\zeta(s + it, \alpha, \lambda), \zeta_n(s + it, \alpha, \lambda)) \, dt = 0.
\]
Moreover, suppose that the numbers $\alpha_1, \ldots, \alpha_r$ are algebraically independent over \mathbb{Q}. Then, for almost all $\omega \in \Omega$,
\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho(\zeta(s + it, \alpha, \lambda, \omega), \zeta_n(s + it, \alpha, \lambda, \omega)) \, dt = 0.
\]
Proof. In [16], it is proved that
\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho(\zeta(s + it), \zeta_n(s + it)) \, dt = 0,
\]
and, for almost all $\omega \in \hat{\Omega}$
\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho(\zeta(s + it, \omega), \zeta_n(s + it, \omega)) \, dt = 0.
\]
Since the numbers \(\alpha_1, \ldots, \alpha_r \) are algebraically independent over \(\mathbb{Q} \), each number \(\alpha_j \) is transcendental. Therefore, in [2], it was obtained that, for \(j = 1, \ldots, r \),

\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho(L(\lambda_j, \alpha_j, s + i\tau), L_n(\lambda_j, \alpha_j, s + i\tau)) \, d\tau = 0,
\]

and, for almost all \(\omega_j \in \Omega_j \),

\[
\lim_{n \to \infty} \limsup_{T \to \infty} \frac{1}{T} \int_0^T \rho(L(\lambda_j, \alpha_j, \omega_j, s + i\tau), L_n(\lambda_j, \alpha_j, \omega_j, s + i\tau)) \, d\tau = 0.
\]

All these equalities together with the definition of the metric \(\rho \) prove the lemma.

Lemma 4. Suppose that the numbers \(\alpha_1, \ldots, \alpha_r \) are algebraically independent over \(\mathbb{Q} \). Then \(P_T \) and \(\hat{P}_T \) both converge weakly for almost all \(\omega \in \Omega \) to the same probability measure \(P \) on \((H^\infty(D), \mathcal{B}(H^\infty(D)))\) as \(T \to \infty \).

Proof. We give a shortened proof because we apply similar arguments as in [9]. Let \(\theta \) be a random variable defined on a certain probability space \((\Omega_0, \mathcal{A}, P)\) and uniformly distributed on \([0, 1]\). Let

\[
X_{T,n}(s) = \zeta_n(s + \theta T, \alpha, \lambda).
\]

Then Lemma 2 implies that, for every \(\epsilon > 0 \),

\[
\lim_{n \to \infty} \limsup_{T \to \infty} P_n(\rho(X_T(s), X_{T,n}(s)) \geq \epsilon) = 0.
\]

This, (2), (3) and Theorem 4.2 of [22] show that

\[
X_T \xrightarrow{D} P,
\]

and this is equivalent to the weak convergence of \(P_T \) to \(P \) as \(T \to \infty \).
Repeating the above arguments for the random elements
\[
\hat{X}_{T,n}(s) = \zeta_n(s + i\theta T, \alpha, \lambda, \omega)
\]
and
\[
\hat{X}_T(s) = \zeta(s + i\theta T, \alpha, \lambda, \omega),
\]
and using Lemmas 2 and 3, we find that the measure \(\hat{P}_T\) also converges weakly to \(P\) as \(T \to \infty\) for almost all \(\omega \in \Omega\).

Proof of Theorem 5. In virtue of Lemma 4, it suffices to check that the measure \(P\) in Lemma 4 coincides with \(P_{\zeta}\).

Let, for \(\tau \in \mathbb{R}\),
\[
a_\tau = (\{p^{-i\tau}: p \in \mathcal{P}\}, \{(m + \alpha_j)^{-i\tau}: m \in \mathbb{N}_0, j = 1, \ldots, r\}),
\]
and
\[
\Phi_\tau(\omega) = a_\tau \omega, \quad \omega \in \Omega.
\]
Then \(\{\Phi_\tau: \tau \in \mathbb{R}\}\) is an ergodic group of measurable measure preserving transformations on \(\Omega\) (see [12]).

Let \(\xi\) be a random variable on \((\Omega, \mathcal{B}(\Omega), m_H)\) given by
\[
\xi(\omega) = \begin{cases}
1 & \text{if } \zeta(s, \alpha, \lambda, \omega) \in A, \\
0 & \text{if } \zeta(s, \alpha, \lambda, \omega) \notin A,
\end{cases}
\]
where \(A\) is a fixed continuity set of the measure \(P\).

By Lemma 4, for almost all \(\omega \in \Omega\),
\[
\lim_{T \to \infty} \frac{1}{T} \text{meas}\{\tau \in [0, T]: \zeta(s + i\tau, \alpha, \lambda, \omega) \in A\} = P(A). \tag{4}
\]
The ergodicity of the group \(\{\Phi_\tau: \tau \in \mathbb{R}\}\) implies that of the process \(\xi(\Phi_\tau(\omega))\). Therefore, the classical Birkhoff–Khintchine theorem shows that, for almost all \(\omega \in \Omega\),
\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T \xi(\Phi_\tau(\omega)) \, d\tau = E\xi, \tag{5}
\]
where \(E\xi\) denotes the expectation of \(\xi\). The definitions of \(\xi\) and of \(\Phi_\tau\) give the equalities
\[
E\xi = \int_{\Omega} \xi \, dm_H = m_H(\omega \in \Omega: \zeta(s, \alpha, \lambda, \omega) \in A) = P_{\zeta}(A), \tag{6}
\]
\[
\frac{1}{T} \int_0^T \xi(\Phi_\tau(\omega)) \, d\tau = \frac{1}{T} \text{meas}\{\tau \in [0, T]: \zeta(s + i\tau, \alpha, \lambda, \omega) \in A\}.
\]
Thus, by (5) and (6),
\[
\lim_{T \to \infty} \frac{1}{T} \text{meas } \{ \tau \in [0, T] : \zeta(s + i\tau, \alpha, \lambda, \omega) \in A \} = P_\zeta(A).
\]
This and (4) show that \(P(A) = P_\zeta(A) \) for all continuity sets of \(P \). Hence, \(P = P_\zeta \). The theorem is proved.

3 Support

A proof of Theorem 4 is based on Theorem 5 and the support of the limit measure \(P_\zeta \) in it. We remind that the support of \(P_\zeta \) is a minimal closed set \(S_{P_\zeta} \subset H^r(D) \) such that \(P_\zeta(S_{P_\zeta}) = 1 \). The set \(S_{P_\zeta} \) consists of all elements \(g \in H^r(D) \) such that, for every open neighbourhood \(G \) of \(g \), the inequality \(P_\zeta(G) > 0 \) is satisfied.

Define
\[
S = \{ g \in H(D) : g(s) \neq 0 \text{ or } g(s) \equiv 0 \}.
\]

Theorem 6. The support of the measure \(P_\zeta \) is the set \(S = S \times H^r(D) \).

Proof. We write
\[
H^r(D) = H(D) \times H(D) \times \cdots \times H(D).
\]
The space \(H(D) \) is separable, therefore, it follows from [22] that
\[
B(H^r(D)) = B(H(D)) \times B(H(D)) \times \cdots \times B(H(D)).
\]
Thus, it suffices to consider the measure \(P_\zeta \) on the sets of the form
\[
B = A \times A_1 \times \cdots \times A_r, \quad A, A_j \in B(H(D)), \quad j = 1, \ldots, r.
\]
Since the measure \(m_H \) is the product of the measures \(\hat{m}_H, m_{1H}, \ldots, m_{rH} \), the definition of \(P_\zeta \) gives the equality
\[
P_\zeta(B) = m_H(A \times A_1 \times \cdots \times A_r) = \hat{m}_H(A)m_{1H}(A_1) \cdots m_{rH}(A_r).
\] (7)

In [16], it is proved that the support of the random element \(\zeta(s, \hat{\omega}) \) is the set \(S \). The algebraic independence of the numbers \(\alpha_1, \ldots, \alpha_r \) implies their transcendence. Therefore, by [2] the support the random element \(L(\lambda_j, \alpha_j, s, \omega_j) \) is the space \(H(D) \), \(j = 1, \ldots, r \).

On the other hand, the distribution \(P_\zeta \) of \(\zeta(s, \hat{\omega}) \) is
\[
P_\zeta(A) = \hat{m}_H(\omega \in \hat{\Omega} : \zeta(s, \omega) \in A), \quad A \in B(H(D)),
\]
and the distribution \(P_{L_j} \) of \(L(\lambda_j, \alpha_j, s, \omega_j) \), \(j = 1, \ldots, r \), is
\[
P_{L_j}(A_j) = m_{jH}(\omega_j \in \Omega_j : L(\lambda_j, \alpha_j, s, \omega_j) \in A_j), \quad A_j \in B(H(D)).
\]
In view of (7),

\[P_\zeta(B) = P_\zeta(A) P_{L_1}(A_1) \cdots P_{L_r}(A_r). \]

Hence, obviously, \(P_\zeta(S) = 1 \). Moreover, if \(A \in \mathcal{B}(H(D)) \) with \(A \not\subseteq S \), or \(A_j \in \mathcal{B}(H(D)) \), for some \(j \), then, in view of the minimality of \(S \) and \(H(D) \) for \(P_\zeta(A) \) and \(P_{L_j}(A_j) \), respectively, we have that \(P_\zeta(A) < 1 \) or \(P_{L_j}(A_j) < 1 \). Thus, then \(P_\zeta(B) < 1 \). Hence, the minimality of \(S \) follows. \(\Box \)

4 Universality theorem

In this section, we will prove Theorem 4. Its proof is based on Theorems 5 and 6 as well as on the Mergelyan theorem on the approximation of analytic functions by polynomials. We state this theorem as the next lemma.

Lemma 5. Let \(K \subset \mathbb{C} \) be a compact set with connected complement, and \(f(s) \) be a continuous function on \(K \) which is analytic in the interior of \(K \). Then, for every \(\epsilon > 0 \), there exists a polynomial \(p(s) \) such that

\[\sup_{s \in K} |f(s) - p(s)| < \epsilon. \]

Proof. The proof of the lemma can be found in [23], see also [24]. \(\Box \)

Proof of Theorem 4. By Lemma 5, there exists a polynomial \(p(s) \) such that

\[\sup_{s \in K} |f(s) - p(s)| < \frac{\epsilon}{4}. \] (8)

Since \(f(s) \neq 0 \) on \(K \), \(p(s) \neq 0 \) on \(K \) as well provided \(\epsilon \) is small enough. Thus, we can define on \(K \) a continuous branch of \(\log p(s) \) which will be analytic in the interior of \(K \). Applying Lemma 5 once more, we obtain that there exists a polynomial \(q(s) \) such that

\[\sup_{s \in K} |p(s) - e^{q(s)}| < \frac{\epsilon}{4}. \]

This together with (8) shows that

\[\sup_{s \in K} |f(s) - e^{q(s)}| < \frac{\epsilon}{2}. \] (9)

Again, by Lemma 5, there exist polynomials \(p_j(s) \) such that

\[\sup_{1 \leq j \leq r} \sup_{s \in K_j} |f_j(s) - p_j(s)| < \frac{\epsilon}{2}. \] (10)

Define

\[G = \left\{ (g, g_1, \ldots, g_r) \in H^r(D) : \sup_{s \in K} |g(s) - e^{q(s)}| < \frac{\epsilon}{2}, \right. \]

\[\left. \sup_{1 \leq j \leq r} \sup_{s \in K_j} |g_j(s) - p_j(s)| < \frac{\epsilon}{2} \right\}. \]
Then G is an open set, and, in view of Theorem 6, \(e^{q(s)} \) is an element of the support of the measure \(\mathcal{P}_{\zeta} \). Therefore, an equivalent of the weak convergence of probability measures in terms of open sets, see Theorem 2.1 of [22], together with Theorem 5 and properties of the support give the inequality
\[
\liminf_{T \to \infty} \frac{1}{T} \text{meas}\{ \tau \in [0, T] : \zeta(s + i\tau, \alpha, \lambda) \in G \} \geq \mathcal{P}_{\zeta}(G) > 0.
\]

Hence, by the definition of G, we find that
\[
\liminf_{T \to \infty} \frac{1}{T} \text{meas}\left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau) - e^{q(s)}| < \frac{\epsilon}{2}, \sup_{1 \leq j \leq r} \sup_{s \in K_j} |L(\lambda_j, \alpha_j, s + i\tau) - p_j(s)| < \frac{\epsilon}{2} \right\} > 0. \tag{11}
\]

Inequalities (9) and (10) show that
\[
\left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau) - e^{q(s)}| < \frac{\epsilon}{2}, \sup_{1 \leq j \leq r} \sup_{s \in K_j} |L(\lambda_j, \alpha_j, s + i\tau) - p_j(s)| < \frac{\epsilon}{2} \right\} \subset \left\{ \tau \in [0, T] : \sup_{s \in K} |\zeta(s + i\tau) - f(s)| < \epsilon, \sup_{1 \leq j \leq r} \sup_{s \in K_j} |L(\lambda_j, \alpha_j, s + i\tau) - f_j(s)| < \epsilon \right\}.
\]

Combining this with (11) gives the assertion of the theorem.

Acknowledgment. The authors thank the anonymous referees for remarks and suggestions.

References

1. A. Laurinčikas, The universality of the Lerch zeta-function, *Liet. Matem. Rink.*, 37(3):365–375, 1997 (in Russian); *Lith. Math. J.*, 37(3):275–280, 1997.
2. A. Laurinčikas, R. Garunkštis, *The Lerch Zeta-Function*, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
3. S.M. Gonek, *Analytic Properties of Zeta and L-Functions*, PhD Thesis, University of Michigan, 1979.
4. A. Laurinčikas, On the joint universality of Lerch zeta-functions, *Mat. Zametki*, 88(3):428–437, 2010 (in Russian); *Math. Notes*, 88(3):386–394, 2010.
5. A. Laurinčikas, K. Matsumoto, The joint universality and the functional independence for Lerch zeta-functions, *Nagoya Math. J.*, 157:211–227, 2000.

Nonlinear Anal. Model. Control, 2013, Vol. 18, No. 3, 314–326
6. A. Laurinčikas, K. Matsumoto, Joint value distribution theorems on Lerch zeta-functions. III, in: A. Laurinčikas et al. (Eds.), Analytic and Probabilistic Methods in Number Theory. Proceedings of fourth conference in honour of J. Kubilius, Palanga, Lithuania, 2006, TEV, Vilnius, 2007, pp. 87–98.

7. T. Nakamura, The existence and the non-existence of joint t-universality for Lerch zeta-functions, *J. Number Theory*, 125(2):424–441, 2007.

8. A. Laurinčikas, The joint universality of Hurwitz zeta-functions, *Šiauliai Math. Semin.*, 3(11):169–187, 2008.

9. J. Genys, R. Macaitienė, S. Račkauskienė, D. Šiaučiūnas, A mixed joint universality theorem for zeta-functions, *Math. Model. Anal.*, 15(4):431–446, 2010.

10. H. Mishou, The joint value-distribution of the Riemann zeta function and Hurwitz zeta functions, *Lith. Math. J.*, 47(1):32–47, 2007.

11. R. Kačinskaitė, A. Laurinčikas, The joint distribution of periodic zeta-functions, *Stud. Sci. Math. Hung.*, 48(2):257–279, 2011.

12. A. Laurinčikas, Joint universality of zeta-functions with periodic coefficients, *Izv. Ross. Akad. Nauk., Ser. Mat.*, 74(3):79–102, 2010 (in Russian); *Izv. Math.*, 74(3):515–539, 2010.

13. H. Mishou, H. Nagoshi, Functional distribution of $L(s, \chi_d)$ with real characters and denseness of quadratic class numbers, *Trans. Am. Math. Soc.*, 358(10):4343–4366, 2006.

14. K.M. Bitar, N.N. Khuri, H.C. Ren, Path integrals and Voronin’s theorem on the universality of the Riemann zeta function, *Ann. Phys.*, 211:172–196, 1991.

15. B. Bagchi, *The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series*, PhD Thesis, Indian Statistical Institute, Calcutta, 1981.

16. A. Laurinčikas, *Limit Theorems for the Riemann Zeta-Function*, Kluwer Academic Publishers, Dordrecht, Boston, London, 1996.

17. A. Laurinčikas, The universality of zeta-functions, *Acta Appl. Math.*, 78(1–3):251–271, 2003.

18. K. Matsumoto, Probabilistic value-distribution theory of zeta-functions, *Sugaku*, 53:279–296, 2001 (in Japanese); *Sugaku Expo.*, 17:51–71, 2004.

19. K. Matsumoto, Some problems on mean values and the universality of zeta and multiple zeta-functions, in: A. Dubickas et al. (Eds.), Analytic and Probabilistic Methods in Number Theory. Proceedings of third conference in honour of J. Kubilius, Palanga, Lithuania, 2001, TEV, Vilnius, 2002, pp. 195–199.

20. J. Steuding, *Value-Distribution of L-Functions*, Lect. Notes Math., Vol. 1877, Springer-Verlag, Berlin, Heidelberg, 2007.

21. J.B. Conway, *Functions of One Complex Variable*, Springer-Verlag, New York, 1973.

22. P. Billingsley, *Convergence of Probability Measures*, Wiley, New York, 1968; Willey-Interscience, 1999 (2nd edition).

23. S. N. Mergelyan, Uniform approximations to functions of complex variable, *Uspekhi Mat. Nauk*, 7:31–122, 1952 (in Russian).

24. J.L. Walsh, *Interpolation and Approximation by Rational Functions in the Complex Domain*, Colloq. Publ., Am. Math. Soc., Vol. 20, 1960.