Ver: View Discovery in the Wild

Yue Gong*, Zhiru Zhu*, Sainyam Galhotra, Raul Castro Fernandez
Department of Computer Science, The University of Chicago
Email: {yuegong, zhiru, sainyam, raulcf}@uchicago.edu
*Yue Gong and Zhiru Zhu contributed equally

Abstract—We present Ver1, a data discovery system that identifies project-join views over large repositories of tables that do not contain join path information, and even when input queries are inaccurate. Ver implements a reference architecture to solve both the technical (scale and search) and human (semantic ambiguity, navigating a large number of results) problems of view discovery. We demonstrate users find the view they want when using Ver with a user study and we demonstrate its performance with large-scale end-to-end experiments on real-world datasets containing tens of millions of join paths.

I. INTRODUCTION

The existence of large repositories of data such as those that originate from the combination of disparate databases [1], data lakes [2], open data portals [3], and cloud repositories [4] has the upside of offering opportunities to find valuable data for tasks such as machine learning, reporting, and data analytics. The downside is the resulting data discovery problem: identifying a combination of datasets useful for the downstream task even when these reside in different databases. For example, a machine learning engineer may need a training dataset that requires combining a table in a database with the one sitting on the enterprise data lake. Large volumes of often incomplete and noisy data without any join information, which we call pathless table collections, make solving data discovery difficult and thus hampers productivity.

There are several approaches to identify project-join views (PJ-views) over pathless table collections. Discovery systems such as Aurum [5], Goods [6], Auctus [7], Juneau [8], Josie [9], Table-Union [10], D3L [11] and libraries such as LSHEnsemble [12], and Lazo [13] help with identifying datasets that satisfy some relevance criteria whether via keywords [6] or programs [5]. Analysts can then combine the datasets to verify that it satisfies the view they need. Another approach is query-by-example (QBE) interfaces [14], [15] that lets users provide examples of the view they need. These can be adapted, with effort, to run on top of data discovery systems. Whether via keywords, programs, or QBE interfaces, the result of discovery queries over pathless table collections leads to ambiguous results that include semantically distinct results, duplicates or near-duplicates, and different versions of the data. This ambiguity further complicates identifying the right view. More generally, solving view discovery in the wild requires addressing the following challenges:

• **Challenge 1. Noisy Queries.** Users provide queries that represent their best knowledge of the data in the form of keywords, programs, and examples. User-provided input may or may not appear in the table collection and they may be noisy and incorrect.

• **Challenge 2. Noisy Join Paths.** Pathless table collections do not include join paths. Identifying true join paths automatically is impossible. We resort to identifying inclusion dependencies, a proxy to join paths, i.e., a join path implies an inclusion dependency but not the other way around.

• **Challenge 3. Large Number of Join Paths.** Large volumes of data result in a large number of join paths that require efficient data structures to represent and navigate them.

• **Challenge 4. Noisy Result Views.** A large number of join paths implies many views may satisfy a user query. Such result views will be noisy due to ambiguity in the user query and noisy join paths. Concretely, there will be duplicate result views, views that are contained within each other, others that are complementary, and others that will show contradictory values for the same key.

• **Challenge 5. Result View Navigation.** Result views will contain semantically ambiguous results, e.g., views with “work address” and “home address”. Only users know the right context so the challenge is to elicit that context and use it to choose the view they need among all result views. In this paper, we introduce a reference architecture to identify PJ-views in the wild. Discovering a PJ-view over pathless table collections requires understanding human preferences and requirements (which we refer to as a human problem) and solving a technical problem. The architecture divides the larger problem into smaller ones, each of which we tackle with a different component. Reference architectures help conceptualize problems and have been influential in advancing the field. For example, [16], [17] for relational databases and [18], [19], [20], [21] for data integration. The reference architecture we propose tackles the five challenges above. While challenges 1-3 are addressed by existing work, we introduce new techniques to address Challenge 4 and 5 in this paper, and demonstrate them as part of an implementation of the reference architecture. We make the following contributions:

- An end-to-end system, Ver, that identifies PJ-views among tens of millions of join paths. Ver implements the reference architecture for QBE-based interfaces. We choose QBE because it permits users to declare the table they would like to find, even when they do not know examples and can only provide attribute names (Section III), Ver relies on existing work [5] to address Challenges 1-3.
• A **view presentation** component that helps humans to identify a good view among many. The approach uses a novel bandit-based approach to learn user-specific discovery preferences, and it uses abduction-based reasoning to quickly narrow down the search space, reducing the number of human interactions (Section IV).

• A **view distillation** component that automatically filters out views by classifying them into 4C categories: compatible, contained, complementary, and contradictory. Besides helping with filtering, these categories produce information used by the view presentation component (Section V).

We conduct an IRB-approved user study (Institutional Review Board) [22] to validate **Ver**’s approach to the human problem. We conduct thorough experiments on queries from open data repositories that lack join paths.

II. **Definitions and Problem Statement**

\[\mathcal{R}(A_1, \ldots, A_m) \] is a relation schema over \(m \) attributes, where \(A_i \) denotes the \(i \)-th attribute. A table \(D \) comprises a schema \(\mathcal{R}(A_1, \ldots, A_m) \) and a set of tuples \(T \) where each tuple \(t \in T \) is a specific instance of the schema.

In practice, tables do not look like the ideal defined above because they may lack header information, have ambiguous names and contain dirty and noisy data. More formally:

Definition 1 (Noisy structured data): A noisy data \(D \) is characterized by an incomplete schema information \(\mathcal{R}(A_1, \ldots, A_m) \) where \(A_i = \phi \) for missing header values and tuples \(T \) such that each tuple \(t \in T \) contains at most \(m \) values.

In addition, a pathless collection may contain tables with contradictory values, e.g., two census tables with different population counts for the same states of the country. Formally, two tables \(D_i \) and \(D_j \) contradict if the tables contain different values for the same key. We discuss the detection of contradictions in Section V.

Definition 2 (Pathless table collection): A pathless table collection contains a set of noisy tables \(\mathcal{D} = \{D_1, \ldots, D_n\} \) where each \(D_i \) is a noisy table and tables \(D_i, D_j \) may contain contradictory values.

PJ-example-query. A PJ-query (hereafter called query) contains (possibly noisy) example tuples of the desired output. The examples are a proxy to user’s discovery requirements. The quality of examples depends on user’s knowledge. Given a query \(q \), there may be many tables that contain the input examples, and many combinations of these may satisfy \(q \), resulting in a large number of candidate PJ-views.

Definition 3 (Noisy query): An input query \(q \) is a noisy table consisting of \(l \) example tuples, \(\chi = \{\chi_1, \ldots, \chi_l\} \) where each \(\chi_i \) is a noisy tuple denoting example values that are expected to be present in the desired output. The different columns in the examples \(\chi \) are denoted by \(\chi_i.A_i, i \in \{1, \ldots, \tau\} \), where \(\tau \) is the number of attributes in the input query.

PJ-views are constructed by joining datasets through keys. We first define a join path and then use it to discuss the effects of noise, followed by a formal problem statement.

Definition 4 (Join path): A join path \(P \) is defined as an ordered set of noisy tables \(P = \{D_1, \ldots, D_l\} \) such that tables \(D_j \) and \(D_{j+1} \) join for all \(j < t \) via a key column \(k \in D_j, D_{j+1} \) forming a chain of join operations.
Given a set of candidate views, the DISCOVERY ENGINE identifies all join graphs that, when materialized, produce candidate PJ-views. The main goal of this component is to address the large join path space (Challenge 3). To materialize candidate PJ-views, the JOIN-GRAF SEARCH component uses a MATERIALIZER, a data processing component with the capacity to execute PJ queries.

JOIN-GRAF SEARCH returns many candidate views. Ranking the views is hard because of users’ differing search criteria. The VIEW-DISTILLATION component (line 9) summarizes the candidate views, further reducing the view search space as shown in Fig. 1.

Algorithm 1: Ver Design Overview

Line	Description
1	$\chi \leftarrow \text{VIEW-SPECIFICATION}(D)$
2	$\text{CAND} \leftarrow \emptyset$
3-7	for $\chi.A_i \in \text{COLUMNS}(\chi)$ do
4	$\text{CAND}(A_i) \leftarrow \text{COLUMN-SELECTION}(\chi.A_i, D, I)$
5	if MODE=Interactive then
6	$\text{CAND}(A_i) \leftarrow \text{Query CAND}(A_i)$
7	$\text{CAND} \leftarrow \text{CAND} \cup \text{CAND}(A_i)$
8	$V_{PJ,i} \leftarrow \text{JOIN-GRAF-SEARCH(CAND, χ)}$
9	$S \leftarrow \text{VIEW-DISTILLATION}(V_{PJ,i})$
10	if MODE=Interactive then
11	$V \leftarrow \text{VIEW-PRESENTATION}(V_{PJ,i}, S)$
12	else
13	$V \leftarrow \text{Rank } V_{PJ,i}$ based on overlap score
14	return V

VIEW DISTILLATION (TECHNICAL). This component computes categories from the candidate PJ-views that include redundancy and containment in the views, as well as opportunities for unioning views and more. Some categories can be used to distill/summarize the views (Challenge 4). Others are shared with the downstream component.

VIEW-PRESENTATION receives the distilled views. It can rank the views and return top-1 (for a full automated mode) or it can leverage the categories computed by VIEW-DISTILLATION to help users find the right data (lines 10-13).

VIEW PRESENTATION (HUMAN). VIEW-PRESENTATION uses different question interfaces to elicit information from users via data questions. The questions are designed to narrow down the space until users find the desired view (Challenge 5). The component chooses what questions to ask, sequentially, using a bandit-based approach.

Next, we present VIEW-PRESENTATION (Section IV), VIEW-DISTILLATION (Section V).

IV. VIEW PRESENTATION

Ideally, a query results in one PJ-view. In practice, ambiguity, redundancy, erroneous join paths, and large table repositories mean there may be hundreds of result views. **Ver** uses novel techniques to reduce the number of views automatically (Section V), but there is a limit to automation. Semantic ambiguity requires involving users to obtain the final view. The VIEW-PRESENTATION component analyzes the views and generates questions that, when answered, help rank and select views. For example, this component will ask a user if they want “home address” or “work address” in their output when it detects both in the views. By asking questions, users learn more about the schemas and datasets available, and thus refine their preferences and discovery needs. A key challenge is that different users may be able to respond to different questions and that their preferences evolve as they interact with the system. **Ver’s** VIEW-PRESENTATION component is based on two design principles that cater to varied user needs.

- **Mixed-Initiative Interface Design:** Lack of knowledge about available datasets inhibits users from effectively querying the identified set of views. However, users can answer questions about their desired view. Each user has a different understanding of the requirements and finds different interfaces to be more appropriate depending on that. Therefore, users may need different interface designs to answer questions. For example, some users could recognize phone number from the area code, while others might look for a pattern across values. Because different users will be able to answer different questions, **Ver** supports different question interfaces, each asking a different question type. This is motivated by previous mixed-initiative designs [23], [24]. Besides, **Ver** learns which interface to offer to a user according to their previous actions.

- **Adapt to evolving users’ knowledge:** Users’ understanding of their discovery need evolves as they interact with questions and learn about the schemas and data contained in the repository. **Ver** is designed so users can change their
mind about previously answered questions, thus using newly acquired knowledge, without forcing users to start afresh.

Question Interface. To cater to the diverse preferences of users, **Ver** considers the following collection of different interface designs.

- **Dataset interface**: This interface shows users a candidate view to check if it satisfies user’s requirements.
- **Attribute interface**: This interface shows users an attribute and asks if it should be present in the desired output.
- **Dataset Pair**: This interface shows users a pair of views and asks them to pick one. This interface is specifically designed to leverage 4C categorization of views (Section V).
- **Summary interface**: This interface summarizes a collection of views and checks if it is relevant for the desired output. We use a wordcloud to visualize the summary.

At every iteration, there are two choices to make: i) what interface design to choose (i.e., how to show the user the question); ii) what prioritization strategy to use to choose the question to show on the chosen interface. For example, if the algorithm chooses the attribute interface, then it could show an attribute similar to the input query or one that is different from others previously shown. We implement two prioritization strategies to order questions: i) distance of the question from the input query; ii) distance of dataset schema to input query. **Ver** supports other interface designs and prioritization strategies. Finally, users can always skip any question and **Ver** adapts to their responses. We discuss the relative usefulness of these interfaces in Section VI-A.

Ver’s view presentation addresses the following problem

Problem 2: Given a collection of views \(\mathbb{V} \) and access to a user who answers questions through interfaces \(\mathbb{I} \), prioritize questions to identify the desired view while minimizing the number of queries to the user.

The **VIEW-PRESENTATION** component is designed to help users interact with the collection of candidate views and effectively navigate the result views. We now present the key insights we use to solve the problem and **Ver**’s view presentation algorithm.

A. Bandit-Based View Presentation Algorithm

A key design principle of the **VIEW-PRESENTATION** component is to not prune any views unless specifically discarded by the user. Instead, the **VIEW-PRESENTATION** component ranks the views, giving users the ability to revisit their choices as their knowledge evolves. It must balance the need for asking informative questions that help narrow down views with questions that the specific user may be able to answer. Merely learning first what question interface the user prefers (exploration stage) and then asking questions based on that interface alone (exploitation stage) would be brittle to users’ changing knowledge and preferences. The algorithm is based on two insights: i) learning the best interface for a given user can be modeled as a bandit problem and; ii) the reward in the bandit problem should be based on a question’s potential to reduce the number of candidate views.

Bandit-Based approach.

A multi-arm bandit algorithm naturally models probabilistic user preferences. Each question interface is an arm, a question-answer pair is pulling an arm, and the reduction in candidate views after the answer is the reward. We design the algorithm off Exp3 [25] because i) it does not make assumptions about the reward distribution; ii) the expected reward is represented as the arm’s weights and; iii) has provable guarantees. Exp3 uses an exponential growth function to adapt weights of arms that obtain a positive reward, and all arms start with the same weight and are considered independent from each other. We improve on this behavior by leveraging knowledge of the user’s expected reward.

Question’s reward.

The reward of a question \(q \) is its expected information gain, defined as the maximum number of irrelevant views that are pruned if the user answers \(q \). Information gain becomes the reward of the bandit formulation and thus it guides the questions that **VIEW-PRESENTATION** asks users.

Algorithm 2: **VIEW-PRESENTATION**

Input: Candidate set of views \(\mathbb{X} \), Set of question interfaces \(\mathbb{I} \), Exploration factor \(\gamma \)

Output: Set of required views \(S \)

1. \(S \leftarrow \emptyset \)
2. while \(j \in \{1, 2, \ldots, T\} \) do
3. for \(I \in \mathbb{I} \) do
4. \(r(I) \leftarrow \) Estimate likelihood to answer question with interface \(I \)
5. \(\chi(I) \leftarrow \) Calculate info gain if the question using \(I \) is answered
6. \(w(I) \leftarrow r(I) \times \chi(I) \)
7. end
8. \(p(I) \leftarrow (1 - \gamma) \frac{w(I)}{\sum_{I \in \mathbb{I}} w(I)} + \gamma/|\mathbb{I}| \) \(\forall I \in \mathbb{I} \)
9. \(I_c \leftarrow \) Draw randomly according to distribution \(p \)
10. \(\text{response} \leftarrow \text{Query the user using } I_c \)
11. \(\text{if response } \neq \text{Skip} \) then
12. \(\text{reward}, S \leftarrow \text{Use user response to remove irrelevant views from } S \text{ and update ranking} \)
13. end
14. return \(S \)

Concretely, the probability of choosing an arm is as follows:

\[
p(I) = (1 - \gamma) \frac{w(I)}{\sum_{I \in \mathbb{I}} w(I)} + \gamma/\|\mathbb{I}\|
\]

where \(\mathbb{I} \) denotes the set of different question interfaces. \(\gamma \) determines the probability of exploring a random arm, while ignoring the expected reward, and \(w(I) \) denotes the estimated value of the expected information gain on question interface \(I \). Choosing \(\gamma = 1 \) is equivalent to an exploration strategy that chooses a random arm for every question while \(\gamma = 0 \) chooses an arm that relies on expected reward estimation for each question. The expected information gain \(w(I) \) of an interface \(I \) is \(r(I) \times \chi(I) \), where \(r(I) \) is the probability that a user would answer the question with interface \(I \), and \(\chi(I) \) is the maximum reduction in candidate set size if the question using \(I \) is answered. Initially, users have not answered any questions and the estimates of expected gain are not accurate. Therefore, the approach is bootstrapped with the exploration strategy until \(O(\log |\mathbb{I}|) \) questions have been asked for each interface. The
estimated user behavior is then used to transform to a bandit-based approach.

Performance Guarantees. Theoretically, using Chernoff bound [26] we can show that $O(\log |\mathbb{I}|)$ questions per interface I yield an accurate estimate of the $r(I)$ with a probability of $1 - \frac{1}{T^2}$. Using prior results on the maximum coverage problem [27], greedily choosing the question that maximizes information gain is the best approximation of the optimal strategy. Therefore, the accurate reward estimation ensures effective interaction using a multi-arm bandit approach for VIEW-PRESENTATION.

B. The View Presentation Algorithm

Algorithm 2 first initializes the candidate set of views \mathcal{S} (line 1) and iteratively queries the user until T iterations (lines 2–12). T is used to denote any stopping criterion, which could be when the user ends the session or a predefined parameter. In each iteration, the multi-arm bandit based approach estimates the expected reward of each arm to calculate the probability distribution of choosing each arm (lines 3–7). The question interface is chosen according to this distribution. After choosing the interface I_*, a question that has the maximum information gain $\chi(I)$ is shown to the user. User’s response is subsequently used to either update $r(I)$ or the candidate set of views.

Ranking Views. Given a collection of questions Q to the user, an expected utility score is calculated for each view to rank them. Mathematically, the utility score of a dataset D is a weighted sum of the view’s utility according to each question:

$$\sum_{Q_i \in Q} s_{Q_i} \times (P(D \text{ satisfies user needs} | Q_i = \checkmark) \cdot P(Q_i = \checkmark))$$

where $Q_i = \checkmark$ denotes that the question Q_i is answered correctly and s_{Q_i} is 1 if D is considered to satisfy user requirements by Q_i’s response, -1 if D is considered irrelevant by Q_i’s response and 0 otherwise. The probability $P(D)$ satisfies user needs $|Q_i = \checkmark|$ is inversely proportional to the number of views that Q_i captures and the probability that a user would answer a question is used as a proxy estimate for $P(Q_i = \checkmark)$. Note that this score is calculated only for candidate views that are not pruned by user’s responses.

V. VIEW DISTILLATION

VIEW-DISTILLATION consists of two parts: i) categorizing pairs of result views (i.e., candidate views); ii) applying a distillation strategy to reduce the number of result views.

4C Categories. Result views with the same schema are classified into the following categories:

Definition 5 (Compatible view pair): Two candidate views, V_1 and V_2, are compatible (denoted by $V_1 \equiv V_2$) if they have the same set of rows, $(V_1 \cap V_2) = V_1 = V_2$.

Definition 6 (Contained view pair): A view, V_1, contains another view, V_2, when $V_2 \subset V_1$, that is, when all rows of V_2 are contained in V_1.

A pair of views may be **Complementary or Contradictory**, based on their candidate keys:

Definition 7 (Candidate key): A candidate key, $\mathcal{K}(V)$, is a set of attributes in an output view, V, that uniquely identify each row in $R \in V$.

Now we define complementary and contradictory pairs.

Definition 8 (Complementary view pair): Two views, V_1 and V_2 are complementary if the two views have the same candidate key, $\mathcal{K}(V_1) = \mathcal{K}(V_2)$, and the views have overlapping rows $V_1 \cap V_2 > 0$ but are neither contained nor compatible.

Definition 9 (Contradictory view pair): Two views, V_1 and V_2 are contradictory if the two views have the same candidate key, $\mathcal{K}(V_1) = \mathcal{K}(V_2)$, and a key value yields different rows in V_1 and V_2.

Note. We categorize a pair of views as contradictory or complementary with respect to a candidate key. Therefore, views V_1 and V_2 may be contradictory with candidate key k_1 and complementary with key k_2. Our VIEW-DISTILLATION component exposes all candidate relationships for further downstream processing.

The first step in VIEW-DISTILLATION is to identify and label pairs of candidate views with one of the 4C categories. Then, a distillation strategy automatically prunes views based on their 4C category. Views are nodes in a graph. An edge is labeled with the category of the nodes it links. More formally:

Problem 3: Given a collection of views \mathcal{V}, identify a labelled graph G where the irrelevant views are pruned and edges that can be categorized as 4C are labelled accordingly.

Algorithm 3: View Distillation

```plaintext
Input: $\mathcal{V}$, collection of views
Output: $G$, graph with edges categorized as 4C
1. $G \leftarrow$ ADD-NODES($\mathcal{V}$), $\mathcal{V} \leftarrow$ IDENTIFY-KEYS($\mathcal{V}$)
2. $\mathcal{V} \leftarrow$ SCHEMA-BASED-BLOCKS($\mathcal{V}$)
3. FOR $V \in \mathcal{V}$ DO
   4. FOR $1 \leq i, j \leq |V|, i > j$ DO
      5. $V_1 \leftarrow$ VIEW[$i$, $V_i \leftarrow$ VIEW[$j$]]
      6. /* Iterate over the views, compare rowwise hashes $H$ /
      7. IF $\mathcal{H}(V_1) = \mathcal{H}(V_2)$ THEN
          8. $G[[V_1, V_2]] \equiv$ Complementary
          9. ELSE IF $\mathcal{H}(V_1) \subset \mathcal{H}(V_2)$ OR $\mathcal{H}(V_2) \subset \mathcal{H}(V_1)$ THEN
              10. $G[[V_1, V_2]] \equiv$ Complementary
              11. ELSE IF $\mathcal{H}(V_1) \cap \mathcal{H}(V_2) \neq \emptyset$ THEN
                  12. /* Initialize any overlapping view pair as complementary */
                  13. $G[[V_1, V_2]] \equiv$ Complementary
        END IF
   END IF
4. END FOR
14. $I \leftarrow$ INDEX($V$)
15. FOR $k \in I$ DO
   16. $C \leftarrow$ GROUP($I[k]$)
   17. /* Identify pairs in different groups */
   18. FOR $(V_1, V_2) \in C, (V_1, V_2) \notin I[k]$, $C[V_1] \neq C[V_2]$ DO
       19. $G[[V_1, V_2]] = \equiv$ Contradictory
   END FOR
END FOR
```

Ver’s VIEW-DISTILLATION implementation uses the following insights to classify views into 4C categories and construct the graph G. First, it uses the transitivity property to not compare any pair of views whose categorization can be inferred from prior comparisons. For compatibility, if $V_1 \equiv V_2$
and $V_2 \equiv V_3$, then $V_1 \equiv V_3$. And for containment, Ver maintains the largest view for categorization, i.e. if $V_1 \subseteq V_2$, then Ver distills out V_1 and keeps V_2 as V_1’s representative. Second, it partitions candidate views into `Schema-Based-Blocks`. This ensures that pairs of views are compared only if they share the same schema. Third, it hashes each view using a row-wise hash function (say H), i.e. $H(V)$ maps V to a set of values where each value corresponds to a different row. This hash map helps to efficiently find compatible and contained pairs of views. Fourth, it identifies approximate key columns [28], [29] and constructs an inverted index that maps each value in a key column to the corresponding rows and views that contain that value. This index helps to identify rows that have contradictory values and hence contradictory views.

Algorithm 3 presents the pseudocode of Ver’s `VIEW-DISTILLATION`. First, it initializes a graph G where each view is added as a node, identifies keys in each view (line 1) and partitions the collection of views V into different blocks based on their schema (line 2). These schema-based blocks are processed sequentially to populate G with 4C categories (line 3). The categorization process operates in two phases. The first phase (line 4-13) hashes all views (hash value of a view V is denoted by $H(V)$) and compares hashed values to check containment and compatibility (line 6-11). A pair of views V_i and V_j that overlap and have the same key but are not contained or compatible are marked as complementary (line 12-13). These pairs are later updated to be contradictory if the second phase identifies any contradictions. All previously described comparisons are performed on the hash of each view. The hash function maps each view to a set of values, where each value in the set corresponds to a row in the view and we employ a cache to not hash any view multiple times. The second phase constructs an inverted index over the values in the key column(s) of each view in V. This index maps each key value (say k) to a list of rows that contain the value k (denoted by $I[k]$). Ver iterates over all values of the key column and identifies contradictions among the rows that contain the value (line 16-18). Specifically, it groups all duplicate rows that contain a key value k together (line 16) and pairs of views not in the same group are labeled contradictory (line 17-18).

Distillation Strategy. Algorithm 3 merges distillation with graph construction. It applies a distillation strategy that deduces compatible views and keeps the largest contained view. Alternative strategies can be implemented based on the target use. This strategy helps reduce the search space of views that `VIEW-PRESENTATION` component needs to consider.

Complexity Analysis. A crucial step of Algorithm 3 is hashing, which requires $O(n)$ time, where n is the total number of candidate views. Other than that, Ver partitions the set of views into different schema blocks and compares views within a block. In the worst case, it may compare hashes of all pairs of non-compatible views within a block to check containment, i.e. requiring total complexity of $O(n + \alpha \Gamma^2)$, where α denotes the number of distinct schemas and Γ denotes the maximum number of distinct views sharing the same schema. However, the distillation property of keeping the largest contained view helps reduce complexity in practical scenarios (median reduction ratio of more than 18%). For contradiction and complementary categorization, calculation of key is the most time-consuming step, which requires processing all views. The subsequent steps of constructing the inverted index and processing each key value in the index are relatively efficient. Consider a key value k which is present in t different rows, out of which γ are distinct values that contradict each other. The complexity of Ver’s grouping approach to process the key k in the inverted index takes $O(t)$ running time to identify all contradictions involving k. Therefore, this step has complexity linear in the number of contradictions.

VI. EVALUATION

In this section, we answer these research questions:

- **RQ1:** Is Ver effective in navigating users to the view that satisfies their requirements? (human problem)
- **RQ2:** Is VIEW-DISTILLATION useful for reducing the view choice space and is VIEW-DISTILLATION scalable? (technical problem)
- **RQ3:** End-to-end evaluation of Ver (technical problem)
- **Qualitative Study (QS).** We discuss qualitative differences with QBE systems.

Datasets and Workload. We use three real-world large-scale datasets in the evaluation. Detailed statistics of these three datasets are shown in Table I.

Dataset	#Tables	#Columns	~# Joinable Columns	~# Total Rows	Size
ChEMBL	70	446	435	140K	6.5GB
WDC	10000	39939	11.6M	140K	45MB
Open Data	69407	2955305	28.6M	900M	119GB

TABLE I: Characteristics of Datasets

- **ChEMBL:** ChEMBL [30] is a database of bioactive molecules with drug-like properties. ChEMBL is large in terms of total data size. However, it has a relatively small number of tables and joinable columns.
- **WDC:** WDC is a subset of the web tables corpus [31] containing 10K tables crawled from the web. It has more than 10 million pairs of joinable columns.
- **Open Data** [32] This dataset consists of 69K open datasets collected from the Open Data Portal Watch [33], [34] which catalogs and monitors 262 open data portals such as NYC Open data, finances.worldbank.org, etc.

System Setup. We ran all experiments on a Ubuntu server with 500GB memory and an Intel(R) Xeon(R) CPU with 48 cores and 2.3GHz speed each. We built Ver using python3.6.

Ver uses Aurum to find join paths without using schema information. In ChemBL, we ignore the schema information to simulate pathless scenario and instead use schema to evaluate ground truth. When searching for join graphs, Ver uses default a maximum of two hops, $\rho = 2$. We set the clustering threshold θ to 1, and the expected number of output
views \(k \) to be the total number of join graphs so we materialize all join graphs generated from JOIN-GRAph-SEARCH.

A. RQ1: Is View effective in navigating users to the view that satisfies their requirements?

We conducted a within-subjects user study to answer this question. We give participants a task and expose them to two systems: VIEW-PRESENTATION as explained in this paper, and a ranking of views as produced by overlap-based ranking mechanism of FASTTopK [35]. Their goal is to identify a view that satisfies the task.

Participants. We recruited 18 students with diverse backgrounds (CS, Economics, Math) from the University. We did not record any personally identifiable information.

Study Procedure. We design the study to ensure internal validity. Each participant attends a 30-min training session to learn the interface design. During the session, we describe the study, give a tutorial on each interface, and ask participants to solve two randomly-chosen trial queries using View and FASTTopK. The goal of the trial task is to familiarize participants with the interfaces. After finishing the trial tasks, each participant solves two different queries with View and FASTTopK, respectively. The order in which the participant uses View and FASTTopK is randomized to avoid ordering and learning effects. Participants work in isolation to avoid biasing each other. After finishing the tasks, participants answer a short survey about their experience with both systems.

Task Setup. Participants are exposed to 4 (2 trial, 2 study tasks) of the 5 queries shown in Table II from WDC [31] dataset. We chose a diverse set of queries involving numerical and textual attributes that generated semantically ambiguous results.

We use two different prioritization strategies for each interface: one based on the distance of the question from the input query and other based on the distance of the datasets corresponding to the questions from the input query. We use pre-trained word2vec embeddings to calculate distance. In each interaction, the user can either skip or answer the question or explore the ranking of views to select one view. The scoring model we adopted in FASTTopK presents a ranking of views allowing the user to manually explore the options and pick the one that satisfies the input query.

Data Collection and Results. We log the interactions of each participant with the system for subsequent analysis. We measured interactions and outcomes to answer the following questions (Table III presents the study results):

Q1. Does the user find the relevant view? 16/18 participants identify the correct view with View versus only 6 when using the FASTTopK ranking. 12 participants finished the task without finding any dataset using FASTTopK versus only 1 with View. The results are statistically significant: we run Fisher’s exact test and obtain a \(p \)-value of 0.002. Due to this result, we confirm the sample size is adequate for this study.

Q2. Which system would you prefer to search datasets? 12 participants prefer searching for datasets with View and 5 prefer FASTTopK (1 participant was not sure).

Q3. If you are to forward the query and the dataset you chose using View same question for FASTTopK) to someone else. How confident are you to share the identified search result for the input query? 14 participants were confident with the result they found with View. We cannot measure confidence for FASTTopK because 12 participants did not find any view.

Q4. How difficult is to use View? and Q5. How difficult is to answer multiple choice questions with View? 14 participants deemed using View easy and intuitive and 4 disagreed. Anecdotally, some participants mentioned that questions asked by View are easy to answer and do not require in-depth analysis. Our discussion with the participants revealed that different users preferred different interface designs. For example, some students verified the attribute names before choosing a view while others verified a sample of the records.

Time taken. The median participant using View finds the view within 101 seconds (median) and with a median of 3 interactions. They take 93 seconds (median) when using FASTTopK.

B. RQ2: Does View DISTILLATION reduce the number of views and is View-DISTILLATION scalable?

We evaluate the effectiveness in reducing result views and the scalability of View-DISTILLATION.

Noisy Query Generation. Each query consists of a collection of 2-column, 3-row example values. To generate the query, we first find a PJ-query that produces a result we call the ground truth PJ-view. Columns in the ground truth PJ-view are called ground truth columns. Then, we generate the \(2 \times 3 \) input queries according to three strategies, Zero Noise, Medium Noise, and High Noise. Zero noise means we sample values from the ground truth columns. In Medium noise we sample
Q1. Does the user find a relevant view?

Ver	FAST	TopK
Found	16	0
Not Found	12	0

*Result is statistically significant with p-value of 0.002.

Q2. Which system would you prefer to search datasets?

Ver	FAST	TopK	Unsure
I2	5	1	

Q3. Confidence in the identified search result

Ver	FAST	TopK
Confident	14	6
Not Confident	4	8

Q4. How difficult is it to use Ver?

Intuitive	Not Intuitive
Easy	Difficult
I6	2

TABLE III: Summary of survey results.

Query	Noise level	Original	C1	C2	C2 worst case	C2 best case
ChEMBL Q1	Zero	38	38	38	20	20
	Med	20	18	18	8	8
	High	33	31	31	21	21
ChEMBL Q2	Zero	59	58	58	51	47
	Med	32	32	32	30	30
	High	41	38	35	32	32
ChEMBL Q3	Zero	58	33	29	23	23
	Med	44	21	17	12	14
	High	44	21	17	14	14
ChEMBL Q4	Zero	23	17	14	14	14
	Med	83	74	68	62	59
	High	83	74	68	62	59
ChEMBL Q5	Zero	24	18	15	15	15
	Med	64	57	51	46	46
WDC Q2	Zero	44	39	21	8	6
	Med	42	37	19	5	3
	High	39	34	15	6	5
WDC Q3	Zero	20	20	20	20	20
	Med	15	15	15	15	13

TABLE IV: Effect of view distillation based on 4C signals on number of view. We excluded queries that have less than 10 original number of views.

2) values from the ground truth columns and \(\frac{1}{3} \) from a noise column, which is a column with a Jaccard Containment of more than 0.8 with respect to the ground truth column. Finally, in High noise we sample \(\frac{1}{3} \) values from the ground truth column and \(\frac{1}{3} \) from the noise columns.

We generate 5 ground truth queries by sampling join graphs from the ground truth views of ChEMBL and WDC. For each ground truth query, we generate one noisy user query consisting of example values for each of the 3 noise levels. For each noisy user query, we obtain input PJ-views to VIEW-DISTILLATION by getting candidate columns via COLUMN-SELECTION component and feeding them to JOIN-GRA 续

3) Contradictory (C4): We construct contradictions from contradictory view pairs by grouping all views that share the same contradiction together. Given a contradiction, we do not have an automated way of choosing a view. However, we calculate the value of pruning by measuring the worst case and best case reduction in the candidate set size. We sort contradictions in descending order according to their degree of discrimination—the number of views that agree with one side of the contradiction. Then, we select the contradictions sequentially and consider two cases: (a) where the selection leads to the largest reduction of the views (best-case) and (b) where it leads to the least reduction of the views (worst-case).

Fig. 2 shows the number of remaining views after each step (for a maximum of 10 steps) for a selection of queries that
present discriminative and non-discriminative contradictions. As expected, when contradictions are not discriminative, the reduction is limited, such as in mid/high noise queries of ChEMBL Q4 in the worst case. However, there are cases where contradictions are quite discriminative and the signal proves effective in reducing the set size, such as in the worst case queries of WDC Q3.

Insights of C4. In ChEMBL, the output of Q4 mid/high noise queries contains many candidate PJ-views that are joined by varied join tables and keys. The contradictions in candidate views are mainly due to wrong join paths. For example, one view that is partly joined by the two tables component_sequences and component_class on the shared attribute component_id, while the other view is joined by the two tables component_sequences on attribute description and target_dictionary on attribute pref_name, when projecting the final attributes, organism and pref_name, these two views have contradictions. component_id is a better join key than description. However, as we do not know the join information of the input data, we can only perform join operations using all the attributes that are being considered as valid join keys by the discovery engine.

Moreover, since the contradictions in ChEMBL mainly arise due to different join paths, they typically do not share the same contradictions across multiple views. Each contradictory signal only contains two views. Therefore, the maximum number of views we prune at each step is 1. For WDC queries, however, we are able to prune multiple views in Q3, since the contradictory views have many shared contradictory rows, thus each contradictory signal contains many views. And since we prioritize presenting the more discriminatory contradictions first, we prune multiple views even in the worst case.

4) Scalability: In this experiment, we evaluate the scalability of VIEW-DISTILLATION using 50 randomly sampled queries from the OpenData dataset along with 3 datasets built using random samples of 25%, 50%, and 75% tables from the original\(^2\). Figure 3 shows the distribution of the number of views for each subsample (see 2nd y-axis). Note that we use boxplots to report the min, max, 25th, median, 75th, and max runtimes given the varied complexity of queries. The total runtime (y-axis) grows linearly with the number of views.

\(^2\)The subsampling was performed to ensure that all datasets present in a smaller size version are also present in the larger sample.

Concretely, and as a proxy summary statistic, we observe that Ver takes 1.16 seconds to calculate 4C categories for around 236 views (median for 25% sample size) and around 30 seconds for 6500 views (median of 100% sample size); we observe similar growth when comparing other percentiles. The algorithm’s scalability is limited by the time to read views from disk, which grows with the total amount of data. The total ‘4C Runtime’ is small in comparison.

Figure 4(a) zooms into the time taken by 4C (‘4C Runtime’ in Figure 3) to understand the impact of different parts of Algorithm 3. The schema group classification and identification of contained views are efficient and require less than 0.5 seconds. Hashing dominates runtime as it needs to hash each row in the set of candidate views. The time to find contradictory or complementary views involves two main steps: i) find candidate keys for each view, which is linear in the number of total rows; ii) find the actual contradictions based on the inverted index, which is linear in the number of contradictions. When the number of contradictions is small the time to find candidate keys dominates.

Effectiveness of View Distillation. In this experiment, we evaluated the reduction ratio (fraction of view pruned) of
merging compatible and contained views for the 100% sample size. We observed that 50% of the queries had a reduction ratio of more than 17.5%, while 25% had a reduction ratio of 63%. This demonstrates the effectiveness of VIEW-DISTRIBUTION to efficiently prune contained and compatible views.

C. End-to-End Evaluation

We first present an end-to-end experiment of Ver using different implementations of VIEW-SPECIFICATION. We then study the QBE implementation in more detail to understand the effect of different baselines for different components.

1) Alternative View Specification Implementations: In this experiment, we implement 3 view specification methods i) QBE (Ver’s default); ii) Keyword search; and iii) Attribute search. We use 10 randomly chosen queries from OpenData. Every query runs within 11 minutes (for ≈ 27K views) with QBE interface, 13 minutes (≈ 500 views) for keyword interface and 30 minutes (≈ 1000 views) for attribute interface. The views generated by keyword and attribute interfaces contain a large number of columns as compared to QBE, contributing to higher running time for these implementations. We further run VIEW-DISTRIBUTION to merge compatible and contained views, followed by VIEW-PRESENTATION with a simulated user. We simulated the user to answer questions correctly. We observe that the user identified the ground truth view in as few as 20 queries for around 500 views and less than 100 queries for 3000 views. This evaluation demonstrates the effectiveness of our VIEW-DISTRIBUTION and PRESENTATION to effectively prune the search space and help the user identify relevant views. In terms of runtime, VIEW-PRESENTATION produces questions for users in less than 10^{-3} seconds.

We now dive deeper into the QBE implementation to understand the intricacies of our implementation.

2) Runtime Comparison: In this experiment, we report the distribution of runtimes for the sample of 50 queries used to evaluate 4C’s scalability.

Figure 4 (b) shows that the total runtime is below 305.11 seconds for 50% of the queries. The bottleneck is the MATERIALIZER and the time taken to read views from the disk, which require 145 and 62 seconds for 50% of the queries, respectively. MATERIALIZER’s runtime is linear with the number of join graphs generated for a query. We use pandas library in Python to materialize the join and read the view from disk, which could be optimized by using a database.

The median runtime of COLUMN-SELECTION and JOIN-GROUP-SEARCH is less than 1 second. There are fewer than 3 outlier queries which take more than 100 seconds for COLUMN-SELECTION because these queries are too general (numerical values without semantic meaning) and the input query is present in more than 100K datasets. We do not report the time taken by VIEW-PRESENTATION as it requires human-in-the-loop. However, we observe that the median time taken to initialize the component is 73 seconds but it takes less than 0.5 millisecond per question. Low latency of asking a question helps to ensure interactive performance of Ver.

Ground Truth Hit Ratio
Zero Noise
SA
0.97

TABLE V: Ground truth hit ratio over 150 queries in input workload split by noise level in the input query (SA: Select-All, SB: Select-Best, CS: Column-Selection).

Fig. 5: #joinable groups, join graphs and views on ChEMBL

3) RQ3: Column Selection and Join Graph Search: In this section we ask: do COLUMN-SELECTION and JOIN-GROUP-SEARCH find relevant PI-views given a noisy input query over pathless table collections?

Workload: We generate noisy user queries as described in Section VI-B. We generate 5 noisy user queries consisting of example values for each ground truth view and for each of the 3 noise levels. This results in a total of 150 noisy user queries across both datasets and noise levels.

Baselines: We compare the COLUMN-SELECTION component in Ver with two other baselines:

- SELECT-ALL. This baseline (implemented from FAST-TOPK [35]) selects any column that contains at least one example from the input query.
- SELECT-BEST. This baseline selects the column that contains the highest number of examples from the input query.

After running the baselines, we feed the returned candidate columns to the JOIN-GROUP-SEARCH component that finds joingable groups of tables identified in the Join Graph Enumeration stage, identifies join graphs, and materializes them to produce the set of candidate PJ-views.

Experiment and Metrics: We obtain the output set of candidate PJ-views for each of the 150 input user queries in the workload as described in Noisy Workload Generation. We consider two metrics. First, whether the ground truth view
Fig. 6: #joinable groups, join graphs and views on WDC is part of the candidate PJ-views, i.e., the system finds the required view. In particular, we measure the Ground Truth Hit Ratio that determines the ratio of input queries for which the system finds the ground truth view. Second, we measure the size of the set of candidate PJ-views. Given two systems that find the ground truth view, we prefer the one producing the smaller set of candidate PJ-views. Smaller candidate PJ-views indicate lower runtime (as we will demonstrate later) and more importantly, facilitates the job of the VIEW-PRESENTATION stage, e.g., consider a human who needs to look at each view in the candidate set to select the right one.

Results. Table V shows the Ground Truth Hit Ratio across the 150 queries, for each baseline, and grouped by different input query noise levels in the X-axis. When there is no noise in the input query, then all baselines perform well and find the ground truth view. As the noise in the input query increases, the SELECT-BEST strategy crumbles because of its over-reliance on columns that contain all values in the input query. This demonstrates that when input queries contain noise, the SELECT-BEST strategy is inadequate.

With both SELECT-ALL and COLUMN-SELECTION consistently finding the ground truth view, the next question is at what cost. Fig. 5 and Fig. 6 show results for ChEMBL and WDC respectively. Each 3×3 grid shows the size of the set of candidate PJ-views at the top for the three noise levels. The results clearly indicate that for all queries across both datasets and noise levels, the set of the candidate PJ-views is always significantly larger in the case of SELECT-ALL than in the case of COLUMN-SELECTION. Since both baselines find the ground truth view, the smaller sets are preferred.

D. QS: Analysis of existing QBE systems

SQuID [36] does not scale to pathless table scenarios. SQuID precomputes an abduction-ready database (αDB) that requires human input to select the pairs of table key and attributes of interest from other tables. Without human input the number of combinations grows large, especially given that in pathless table collections some join path information will be wrong. Given that the size of αDB can be as large as the original table—for example, component_sequences of ChEMBL is 5.9M and results in an αDB size of 8.1M—the storage footprint would multiply. Therefore, we were only able to test SQuID on a dataset containing a handful of tables. Without a deep understanding of the input dataset—which we lack in pathless table collections—we can only provide limited information to the system to compute the αDB, thus resulting in poor query performance. A more reasonable use of SQuID is to employ it as a downstream component to Ver, where the input is a narrowed-down version of candidate PJ-views.

Duoquest [38] lets users specify a natural language query (NLQ) along an input table containing example tuples and additional information about the attributes (Table Sketch Query). It outputs candidate SQL queries ranked from highest to lowest confidence based on the user’s input queries. Navigating that ranking presents challenges to the user in pathless table scenarios because the candidate query may consist of incorrect join tables or keys due to noise in data. An additional presentation phase is necessary to navigate the user among the candidate queries. A more reasonable use of Duoquest is to employ it as an implementation of the VIEW-SPECIFICATION component, giving users alternative ways of describing their queries.

VII. RELATED WORK

We use Table VI to overview the related work.
Ver. efficiently addresses the challenges of large-scale data exploration techniques that identify join paths using techniques such as summaries [47], etc. Most discovery engines leverage key detection techniques as a building block to identify join paths [28], [29]. Complementary work to identifying join paths is on automatically detecting transformations to expand the set of joinable columns [48], [49], [50]. Any improvement to the detection of join paths can be incorporated into the reference architecture presented here. The ‘Discovery Engine’ column shows what techniques depend on existing join paths and how the navigation is done (column ‘Join Graph Search’).

View Distillation. Ranking is a well-explored topic in data management and many approaches naturally leverage this technique to sort candidate results, see column ‘View Distillation’ in the table, where Individual Signal refers to the ranking score. Orthogonally, view summarization [51], and automated data exploration techniques concentrate in sorting through data and offer an alternative way of navigating the data, like view distillation. Unlike distillation, none of these techniques leverage 4C categories.

View Presentation. There is related work on designing effective visualizations to assist users in exploring pathless data collections [32], [52], [45] and view recommendations [53], [54]. These techniques can be useful to implement the human components of Ver. Table VI summarizes some techniques.

Applying QBE to Pathless Table Collections. We present the prior QBE systems in Table VI. Other QBE techniques [37], [55], [35], [56], [15], [57], [40], [58], [59], [39], [60], [61], [62] are not a system, are not designed to handle pathless scenarios and do not focus on Challenges 4 and 5.

Supports Pathless? Existing QBE [36], [38], [35], [55], [37] and Query Reverse Engineering (QRE) systems [59], [63], [15], [57] are designed for databases with well-defined path information, i.e., primary key/foreign key relationships, and they will generate spurious results when executed over noisy join paths. Bonifati et al. [56] learns join predicates without assuming the existence of join paths. But the approach requires performing a Cartesian product on relevant tables, which introduces a scalability challenge even in moderate size databases. Other techniques that use QBE interface, either assume a different data format, such as knowledge bases [64], or consider a different view specification interface, such as exemplar queries in [65], [66], [67], [68] that define a more general notion of queries than query-by-example.

VIII. Conclusions

We presented a reference architecture for the discovery of PJ-views over pathless table collections, and a system, Ver, that addresses both technical and human problems of view discovery. Ver efficiently addresses the challenges of large-scale pathless table collections by combining different components, including VIEW-DISTILLATION and VIEW-PRESENTATION.

IX. ACKNOWLEDGEMENT

We thank the Chameleon cloud platform [69] for providing the resources necessary to conduct this research. We thank all participants of our user study and the anonymous reviewers for helping us improve the work. This work was partially supported by the NSF Convergence Accelerator (Award Number #2040718) and NSF grant #2030859.

TABLE VI: Overview of SOTA. VP = View Presentation and Data Disc. = Data Discovery. N means the system does not implement the component. Individual signals means the approach only computes a statistic over candidate views. Dependent signals consider dependence between candidate views like 4C signals.

Technique	View Specification	Column Selection	Discovery Engine	Join Graph Search	View Distillation	View Presentation	
SQuID [6]	Relational	Automatic	Y	Online	N	N	
SQL Fast PkP [35]	Relational	Automatic	Y	Online	Individual signal	N	
SQLRewrite [37]	Relational	Automatic	Y	Online	Individual signal	N	
DiaQuest [38]	Natural language	Automatic	Y	Online	Individual signal	N	
TALOS [15]	N	Automatic	Y	Online	Individual signal	N	
PALEO [79]	Ranks topics	N	Automatic	Y	Online	Individual signal	N
SQLSynthesizer [40]	Relational	Automatic	Y	Online	Individual signal	N	
RedisAI-+ [41]	N	Automatic	Y	Online	N	N	
Aurum [5]	N	N	Offline index	Online	N	N	
Jooce [39]	N	N	Offline index	Online	N	N	
TableUnion [10]	N	N	Offline index	Online	N	N	
Lazo [11]	N	N	Offline index	Online	N	N	
LSHEnsemble [12]	N	N	Offline index	Online	N	N	
PEXESO [42]	N	N	Offline index	Online	N	N	
Voyager [43]	N	N	N	N	N	Y	
SciDB [23]	N	N	N	N	N	Y	
SimSearch [44]	N	N	N	N	N	Y	
RONIN [45]	N	N	N	N	N	Y	
Var	Relational	Y	Automatic,	Interactive	N	Offline index	Online
					Depend. signal	Y	
REFERENCES

[1] A. Doan, A. Halevy, and Z. Ives, Principles of data integration. Elsevier, 2012.
[2] F. Nargasian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C. Arocena, “Data lake management: challenges and opportunities,” PVLDB, vol. 12, no. 12, pp. 1986–1989, 2019.
[3] N. Hujbooom and T. Van den Broek, “Open data: an international comparison of strategies,” European journal of ePractice, vol. 12, no. 1, pp. 4–16, 2011.
[4] M. Armbrust, A. Ghodsi, R. Xin, and M. Zaharia, “Lakehouse: A new generation of open platforms that unify data warehousing and advanced analytics.” CIDR, 2021.
[5] R. Castro Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stonebraker, “Aurum: A data discovery system.” in 2018 IEEE 34th International Conference on Data Engineering (ICDE), 2018, pp. 1001–1012.
[6] A. Halevy, F. Korn, N. F. Coy, C. Olston, N. Polyozits, S. Roy, and S. S. Raghavan, “Gordie: Querying google’s datasets,” in Proceedings of the 2016 ACM SIGMOD International Conference on Management of Data, 2016, pp. 795–806.
[7] F. Chirigati, R. Rampin, A. S. R. Santos, A. Bessa, and J. Freire, “Auctus: A dataset search engine for data augmentation,” CoRR, vol. abs/2002.05716, 2021. [Online]. Available: https://arxiv.org/abs/2002.05716
[8] Y. Zhang and Z. G. Ives, “Juneau: data lake management for jupyter,” PVLDB, vol. 12, no. 12, 2019.
[9] E. Zhu, D. Deng, F. Nargasian, and R. J. Miller, “Josie: Overlap set similarity search for finding joinable tables in data lakes,” in Proceedings of the 2019 ACM SIGMOD International Conference on Management of Data, 2019, pp. 847–864.
[10] F. Nargasian, E. Zhu, K. Pu, and R. Miller, “Table union search on open data,” PVLDB, vol. 11, pp. 813–825, 2018.
[11] A. Bogata, A. A. A. Fernandez, N. W. Paton, and N. Konstantinou, “Dataset discovery in data lakes,” in ICDE, 2020, pp. 709–720.
[12] E. Zhu, F. Nargasian, K. Q. Pu, and R. J. Miller, “Lsh ensemble: Internet-scale domain search,” PVLDB, vol. 9, no. 12, 2016.
[13] R. C. Fernandez, J. Min, D. Nova, and S. Madden, “Lazo: A cardinality-based method for coupled estimation of jaccard similarity and containment,” in 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 2019, pp. 1190–1201.
[14] M. M. Zloof, “Query by example,” in Proceedings of the May 19–22, 1975, national computer conference and exposition, 1975, pp. 431–438.
[15] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy, “Query by output,” in Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’09. New York, NY, USA: Association for Computing Machinery, 2009, p. 535–548. [Online]. Available: https://doi.org/10.1145/1559865.1559902
[16] J. M. Hellerstein, M. Stonebraker, and J. Hamilton, Architecture of a database system. Now Publishers Inc, 2007.
[17] F. Faerber, A. Kemper, P.-A. Larson, J. Levandoski, T. Neumann, A. Pavlo et al., Main memory database systems. Now Publishers, 2017.
[18] L. Seligman, P. Mork, A. Halevy, K. Smith, M. J. Carey, K. Chen, C. Wolf, J. Madhavan, A. Kannan, and D. Burdick, “Openii: an open specification system for expressive sql queries,” ser. SIGMOD ’12. New York, NY, USA: Association for Computing Machinery, 2012, pp. 1001–1239.
[19] K. Panev, N. Weisenauer, and S. Michel, “Reverse engineering top-k join queries,” in Database systems for business, Technology and Web (BTW). IEEE, 2017, pp. 121–132.
[20] W. C. Tan, M. Zhang, Z. H. Elmeleegy, and D. Srivastava, “Regal^{sup}: Reverse engineering spja queries,” PVLDB, vol. 11, no. 12, p. 1982–1985, Aug. 2018. [Online]. Available: https://doi.org/10.14778/3229863.3236240
[21] D. F. Korn, R. J. Miller, A. N. Adam, J. Mackinlay, B. Howe, and J. Heer, “Voyager 2: Augmenting visual analysis with partial view specifications,” in Proceedings of the 20th CHI Conference on Human Factors in Computing Systems, 2021, pp. 1219–1239.
[22] Y. Dong, K. Takeoka, C. Xiao, and M. Oyamada, “Efficient joinable table discovery in data lakes: A high-dimensional similarity-based approach,” 2021.
[23] W. C. Tan, M. Zhang, Z. H. Elmeleegy, and D. Srivastava, “Regal^{sup}: Reverse engineering spja queries,” PVLDB, vol. 11, no. 12, p. 1982–1985, Aug. 2018. [Online]. Available: https://doi.org/10.14778/3229863.3236240
[24] K. Wangsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. Mackinlay, B. Howe, and J. Heer, “Voyager 2: Augmenting visual analysis with partial view specifications,” in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017, pp. 2648–2659.
[25] T. Kraska, “Northstar: An interactive data science system,” PVLDB, vol. 11, no. 12, pp. 2150–2164, 2018.
[26] P. Ouallette, A. Sciortino, F. Nargasian, B. G. Bashardoost, E. Zhu, K. Q. Pu, and R. J. Miller, “Rinon: Data lake exploration,” PVLDB, vol. 14, no. 12, p. 2863–2866, jul 2021. [Online]. Available: https://doi.org/10.14778/3476311.3476364
[27] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, "An analysis of approximations for maximizing submodular set functions—i," Mathematical programming, vol. 14, no. 1, pp. 265–294, 1978.
[46] R. El Kindi, A. Bhandari, A. Fariba, B. Price, A. Vanterpool, A. Bowne, L. McEvoy, and V. Gadepally, “Examples are all you need: Iterative data discovery by example in data lakes,” 2021.

[47] A. Santos, A. Bessa, F. Chirigati, C. Musco, and J. Freire, “Correlation sketches for approximate join-correlation queries,” in Proceedings of the 2021 ACM SIGMOD International Conference on Management of Data, 2021, pp. 1531–1544.

[48] Z. Jin, Y. He, and S. Chauduri, “Auto-transform: learning-to-transform by patterns,” PVLDB, vol. 13, no. 12, pp. 2368–2381, 2020.

[49] Y. He, X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and S. Chaudhuri, “Transform-data-by-example (tde) an extensible search engine for data transformations,” VLDB, vol. 11, no. 10, pp. 1165–1177, 2018.

[50] S. Zhang and K. Balog, “Web table extraction, retrieval, and augmentation: A survey,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 11, no. 2, pp. 1–35, 2020.

[51] M. Joglekar, H. Garcia-Molina, and A. Parameswaran, “Interactive data exploration with smart drill-down,” IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 1, pp. 46–60, 2017.

[52] N. Bikakis and T. Sellis, “Exploration and visualization in the web of big linked data: A survey of the state of the art,” arXiv preprint arXiv:1601.08055, 2016.

[53] X. Zhang, X. Ge, P. K. Chrysanthis, and M. A. Sharaf, “Viewseeker: An interactive view recommendation tool.” in EDBT/ICDT Workshops, 2019.

[54] X. Zhang, “Interactive view recommendation,” in Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 2020, pp. 2849–2851.

[55] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik, “Discovering queries based on example tuples,” ser. SIGMOD ’14. Association for Computing Machinery, 2014, p. 493–504.

[56] A. Bonifati, R. Ciucanu, and S. Staworko, “Learning join queries from user examples,” ACM Trans. Database Syst., vol. 40, no. 4, Jan. 2016. [Online]. Available: https://doi.org/10.1145/2818637

[57] A. Das Sarma, A. Parameswaran, H. Garcia-Molina, and J. Widom, “Synthesizing view definitions from data,” in Proceedings of the 34th International Conference on Database Theory, ser. ICDT ’10. New York, NY, USA: Association for Computing Machinery, 2010, p. 89–103. [Online]. Available: https://doi.org/10.1145/1804669.1804683

[58] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava, “Reverse engineering complex join queries,” in Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’13. New York, NY, USA: Association for Computing Machinery, 2013, p. 809–820. [Online]. Available: https://doi.org/10.1145/2463676.24636520

[59] H. Li, C.-Y. Chan, and D. Maier, “Query from examples: An iterative, data-driven approach to query construction,” vol. 8, no. 13, p. 2158–2169, Sep. 2015. [Online]. Available: https://doi.org/10.1145/2831360.2831369

[60] C. Wang, A. Cheung, and R. Bodik, “Synthesizing highly expressive sql queries from input-output examples,” SIGPLAN Not., vol. 52, no. 6, p. 452–466, Jun. 2017. [Online]. Available: https://doi.org/10.1145/3140587.3062365

[61] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava, “Reverse engineering aggregation queries,” PVLDB, vol. 10, no. 11, p. 1394–1405, Aug. 2017. [Online]. Available: https://doi.org/10.14778/3137628.3137648

[62] D. V. Kalashnikov, L. V. Lakshmanan, and D. Srivastava, “Fastqre: Fast query reverse engineering,” ser. SIGMOD ’18. New York, NY, USA: Association for Computing Machinery, 2018, p. 337–350. [Online]. Available: https://doi.org/10.1145/3183713.3183727

[63] K. Panev, S. Michel, E. Milchevski, and K. Pal, “Exploring databases via reverse engineering ranking queries with paleo,” PVLDB, vol. 9, pp. 1525–1528, 09 2016.

[64] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Querying knowledge graphs by example entity tuples,” IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 10, pp. 2797–2811, 2015.

[65] D. Mottin, M. Lissandrini, Y. Velemeig, and T. Palpanas, “Exemplar queries: Give me an example of what you need,” PVLDB, vol. 7, no. 5, pp. 365–376, 2014.

[66] A. Bonifati, U. Comignani, E. Coquery, and R. Thion, “Interactive mapping specification with exemplar tuples,” ACM Transactions on Database Systems (TODS), vol. 44, no. 3, pp. 1–44, 2019.

[67] D. Mottin, M. Lissandrini, Y. Velemeig, and T. Palpanas, “Exploring the data wilderness through examples,” in Proceedings of the 2019 ACM SIGMOD International Conference on Management of Data, 2019, pp. 2031–2035.

[68] R. Pimpukkar and S. Sarawagi, “Answering table queries on the web using column keywords,” arXiv preprint arXiv:1207.0132, 2012.

[69] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti, A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from the chameleon testbed,” in Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20). USENIX Association, July 2020.