Deficiency and Inadequacy of Vitamin E in the Maternal-Infant Group

Jeane Medeiros1, Roberto Dimenstein2, and Karla Ribeiro3

1Center for Health Sciences, Federal University of Rio Grande do Norte, Brazil
2Department of Nutrition, Federal University of Rio Grande do Norte, Brazil
3Department of Biochemistry, Federal University of Rio Grande do Norte, Brazil

Submission: September 26, 2017; **Published**: December 07, 2017

Corresponding author: Jeane Medeiros, Center for Health Sciences Federal University of Rio Grande do Norte (UFRN), Brazil, Email: jeanefpires@hotmail.com

Abstract

Preterm newborns are more susceptible to vitamin E deficiency when compared to full-term infants. In adults this deficiency is rare and usually only appears when symptoms are severe. Thus, the preterm is more exposed to erythrocyte hemolysis and other problems due to vitamin E deficiency, such as hemolytic anemia, retinopathy, intracranial hemorrhage, bronchopulmonary dysplasia and increased mortality. Catch up the need for daily consumption of this vitamin is difficult for the maternal infant group, and research on the subject is necessary to implement strategies to combat this deficiency. Therefore, to reduce problems arising from the deficiency of this vitamin it is important to prevent from a proper diet and supplementation.

Keywords: Preterm newborn; Alpha-tocopherol; Maternal nutrition

Introduction

Vitamin E deficiency is rarely found in adults, and its symptoms are more frequent in children due to low body reserves and intense growth and development, which leads to a faster onset of the reflex of the deficiency [1].

Preterm and intrauterine growth restricting newborns may present low levels of alpha-tocopherol [2-4]. During delivery and soon after birth, fetal tissues are subjected to oxidative damage caused by increased free radical formation, as the neonate changes to a hyperoxide environment compared to the uterus [5].

These damages can also occur by the reduction of the antioxidant capacity of the newborn, either by the reduced activity of the antioxidant enzyme complex or by a low concentration of non-enzymatic antioxidants, such as vitamin E [6-7]. This reduction of vitamin E may occur more easily in preterms, as a consequence of the placental transfer occurring more intensely at the end of gestation, besides the immaturity of the lipid metabolism [8-9].

Thus, the preterm neonate may be more exposed to erythrocyte hemolysis and other problems due to vitamin E deficiency (VED), such as hemolytic anemia, retinopathy, intracranial hemorrhage, bronchopulmonary dysplasia, and increased mortality. This VED has also been associated with impairments in the development of the central nervous system in childhood and changes in the pre-pubertal antioxidant defense system, which justifies the importance of knowing the prevalence of VED in this group [10-15].

For this mini review articles were searched in periodicals appended using the key words tocopherol, newborn, maternal infant and the like.

Discussion

The proportion of low levels of alpha-tocopherol in the neonate can reach 80% of cases in preterm, being less frequent in those born after 37 gestational weeks. It should be pointed out that this investigation of VED in the term neonate is still precarious and studies of the influence of gestational age at birth on alpha-tocopherol concentration are controversial. Some authors did not find differences and others observed higher values in the preterm or term [15,16-19].

Another point to be highlighted is the lack of information on the recovery of nutritional status in vitamin E from preterm or term infants during lactation, particularly those on breastfeeding. Research has been conducted with preterm infants from the time of delivery until the hospital discharge period, in situations of other types of diets associated with vitamin E supplementation, without comparing the results with the comparative group term [15,20-24].
Considering this scenario, in view of prematurity being a determinant factor for SVD, the health implications of the neonate and the beneficial effects of an adequate nutritional status of the vitamin in the child’s cognitive development [25], it is necessary to monitor/investigate the alpha-tocopherol levels of the infant during lactation to ensure the nutritional surveillance of this group and to strengthen the fight against VED. In adults, VED is only observed in cases of fat malabsorption, genetic defects in alpha-TTP expression or prolonged insufficient consumption of the vitamin [26-27]. The clinical features are mainly anemia and progressive neurological disorder with spinocerebellar ataxia, due to alterations in sensory and motor nerves caused by lipid peroxidation of membranes [28].

Although deficiency is little found in adults, it is important to consider the assessment of this status in women of reproductive age, since circulating levels of alpha-tocopherol at the end of gestation or postpartum have been positively associated with concentration in the neonate [29-30].

The proportion of VED in adult women in the immediate postpartum ranges from 0% to 16% [31-33], and it was seen that women assisted in public health care for childbirth are more likely to present VED [32].

Maternal serum alpha-tocopherol has been associated with the level of prematurity, newborn weight and maternal age [29,34-36]. It seems that even in situations of low vitamin consumption serum levels remain increased at the end of gestation, protecting the circulating lipids from oxidation [37].

The SVD in women during lactation is also not known. Lammi-Keef et al. [38] found a reduction in serum alpha-tocopherol at this stage [38] and the prevalence of VED reached 70% in infants in South Africa [39].

It is a fact that the consumption of the vitamin in this period does not reach the nutritional requirement, being an average food intake of 6-10mg/day by nursing mothers in Spain [40-41], 6.7mg/day in Iceland [42], 8-9mg/day in Poland [43] and 9.8mg/day in the United States [44], but the relationship diet and nutritional status in vitamin E in lactation remains indefinite.

There is a discussion on how to combat SVD particularly in critical situations such as premature and low birth weight. Pharmacological doses of vitamin E may be expected to prevent or limit retinopathy of prematurity, haemorrhage, hemolytic anemia among other consequences of the deficiency. However, excessive doses can result in serious side effects [2] and smaller amounts cannot maintain adequate levels of alpha-tocopherol in the neonate [20].

The establishment of exclusive breastfeeding, especially in the first days of life, can be considered as a strategy for the prevention of vitamin E deficiency, since milk secreted up to the 4th day postpartum (colostrum) is particularly rich in alpha-tocopherol, and its intake provides recommended concentrations of the vitamin for the child, being essential for the formation of reserves and prevention of the deficiency [45-48].

References
1. Traber MG (2014) Vitamin E inadequacy in humans: causes and consequences. Adv Nutr 5: 503-514.
2. Brion LP, Bell EF, Raghuveer TS (2003) Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev 4: CD003665.
3. Ochoa JJ, Ramirez-Tortosa MC, Quiles JL, Palomino N, Robles R, et al. (2003) Oxidative stress in erythrocytes from premature and full-term infants during their first 72 h of life. Free Radic Res 3: 317-322.
4. Fares S, Feki M, Khouaja-Mokrani C, Sethom MM, Jelnoun S, et al. (2014) Nutritional practice effectiveness to achieve adequate plasma vitamin A, E and D during the early postnatal life in Tunisian very low birth weight infants. J Matern Fetal Neonatal Med 10: 1-5.
5. Woods JR Jr, Cavanaugh JL, Norkus EP, Plessinger MA, Miller RK (2002) The effect of labor on maternal and fetal vitamins C and E. Am J Obstet Gynecol 187(5): 1179-1183.
6. Chai M, Barker G, Menon R, Lappas M (2012) Increased oxidative stress in human fetal membranes overlaying the cervix from term non-labouring and post labour deliveries. Placenta 33(8): 604-610.
7. Negi R, Pande D, Kumar A, Khanna RS, Khanna HD (2012) In-vivo oxidative DNA damage and lipid peroxidation as a biomarker of oxidative stress in preterm low-birthweight infants. J Trop Pediatr 58(4): 326-328.
8. Debier C, Larondelle Y (2005) Vitamins A and E: metabolism, roles and transfer to offspring. Br J Nutr 93(2): 153-174.
9. Debier C (2007) Vitamin E during pre-and postnatal periods. Vitam Horm 76: 357-373.
10. Bell EF (1987) History of vitamin E in infant nutrition. Am J Clin Nutr 46(1 Suppl): 183-186.
11. Gutter GR, Raynor WJ, Farrell PM (1984) A evaluation of vitamin E status in premature infants. Am J Clin Nutr 40(5): 1078-1089.
12. Kitajima H, Kanazawa T, Mori R, Hirano S, Ogihara T, et al. (2015) Long-term alpha-tocopherol supplements may improve mental development in extremely low birth weight infants. Acta Paediatr 104(2): e62-e69.
13. Ortiz-Espejo M, Gil-Campos M, Mesa MD, Garcia-Rodriguez CE, Muñoz-Villanueva MC, et al. (2014) Alterations in the antioxidant defense system in prepubertal children with a history of extra uterine growth restriction. Eur J Nutr 53(2): 607-615.
14. Trindade CE, Rugolo LMSS (2013) Selenium and Vitamin A and E in the nutrition of very low-birthweight preterm infants. J Neonatal Biol 2(3): 1-7.
15. Fares S, Sethom MM, Khouaja-Mokrani C, Jelnoun S, Feki M, et al. (2013) Vitamin A, E, and D Deficiencies in Tunisian Very Low Birth Weight Neonates: Prevalence and Risk Factors. Pediatrics and Neonatology 55(3): 196-201.
16. Galnieri A, Périquet B, Lambert W, Garcia J, Assouline C, et al. (2005) Reference range for micronutrients and nutritional marker proteins in cord blood of neonates appropriated for gestational ages. Early Hum Dev 81(7): 583-593.
17. MJ González-Corbeila, MC López-Salater, AI Castellate-Bargallo, C Campoy-Valgoso, M Rivero-Ugell (1998) Plasma and erythrocyte alpha-tocopherol and plasma retinol concentrations in term infants

How to cite this article: Jeane M, Roberto D, Karla R. Deficiency and Inadequacy of Vitamin E in the Maternal-Infant Group. Nutri Food Sci Int J. 2017; 4(2): 555631. DOI: 10.19080/NFSIJ.2017.04.555631.
fed formula enriched with long-chain polyunsaturated fatty acids. Eur J Clin Nutr 52(11): 813-818.

18. Joshi SR, Mehendale SS, Dongad KD, Kilari AS, Yavdar RR et al. (2008) High Maternal Plasma Antioxidant Concentrations Associated with Preterm Delivery. Ann Nutr Metab 53(3): 276-282.

19. Weber D, Stuetz W, Bernhard W, Franz A, Raith M (2014) Oxidative stress markers and micronutrients in maternal and cord blood in relation to neonatal outcome. Eur J Clin Nutr 68(2): 215-222.

20. Bell EE, Hansen NL, Brion JP, Ehrenkranz RA, Kennedy KA, et al. (2013) Serum tocopherol levels in very preterm infants after a single dose of vitamin E at birth. Pediatrics 132(6): e626-e6163.

21. Henriksen C, Helland IB, Rømmestad A, Grønn M, Iversen PO, et al. (2006) Fat-soluble vitamins in breast-fed preterm and term infants. Eur J Clin Nutr 60(6): 756-762.

22. Koletzko B, Sauweral U, Neicher U, Saule H, Wawatschek S, et al. (2003) Fatty acid profiles, antioxidant status, and growth of preterm infants fed diets without or with long-chain polyunsaturated fatty acids: A randomized clinical trial. Eur J Nutr 42(5): 243-253.

23. Salle B (2007) Est-l'illégitime d'administerdes vitamines liposolubles (A, D, E) chez l'adulte pendant 6 mois? Archives de Pédiatrie, 14(12): 1408-1412.

24. Turgut M, Basaran O, Gekmen M, Kantas F, Kurt A, et al. (2004) Oxidant and antioxidant levels in preterm newborns with idiopathic hyperbilirubinaemia. J Paediatr Child Health 40(11): 653-657.

25. Chen K, Zhang X, Wei XP, Qu P, Liu YX, et al. (2009) Antioxidant vitamin status during pregnancy in relation to cognitive development in the first two years of life. Early Hum Dev 85(7): 421-427.

26. Institute of medicine (2000) Dietary reference intakes for vitamin E. Washington, USA.

27. Niki E, Traber MG (2012) A history of vitamin E. Ann Nutr Metab 61(3): 207-212.

28. El-Euch-Fayache G, Boulhal Y, Amouri R, Feki M, Hentati F (2014) Molecular, clinical and peripheral neuropathy study of Tunisian patients with ataxia with vitamin E deficiency. Brain 137(Pt 2): 402-410.

29. Masters ET, Jedrychowski W, Schleicher RL, Tsai WY, Tu YH, et al. (2007) Relation between prenatal lipid-soluble micronutrient status, environmental pollutant exposure, and birth outcomes. Am J Clin Nutr 86(4): 1139-1145.

30. da Silva Ribeiro KD, Lima MS, Medeiros JF, de Sousa Reboças A, Dantas RC, et al. (2016) Association between maternal vitamin E status and alpha-tocopherol levels in newborn cord blood. Matern Child Nutr 12(4): 801-807.

31. Garcia L, Ribeiro K, Araújo K, Pires J, Azevedo G, et al. (2010) Alpha-tocopherol concentration in the colostrum of nursing women supplemented with retinyl palmitate and alpha-tocopherol. J Hum Nutr Diet. 23(5): 529-534.

32. Cristiane SSG, Larissa QL, Gabrielle MA, Priscila NC, Janaina OA, et al. (2014) Comparison between the alpha-tocopherol serum concentration of assisted mothers in public and private maternity hospitals in the Northeast of Brazil. Rev Bras Ginecol Obstet 36(8): 3720-376.

33. de Lira LQ, Lima MS, de Medeiros JM, da Silva IF, Dimentein R (2013) Correlation of vitamin A nutritional status on alpha-tocopherol in the colostrum of lactating women. Maternal & Child Nutrition 9(1): 3-14.

34. de Azeredo VB, Trugo NM (2008) Retinol, carotenoids, and tocopherols in the milk of lactating adolescents and relationships with plasma concentrations. Nutrition 24(2): 133-139.

35. Medeiros JF, da Silva Ribeiro Rodrigues KD, Lima MS, da Silva AL, de Queiroz JL, et al. (2016) Alpha-tocopherol concentration in colostrum and serum of women with premature labor. J Pediatr Gastroenterol Nutr 62(2): 348-352.

36. Ortega-Senovilla H, Alvino G, Taricco E, CETIN I, Herrera E (2009) Enhanced circulating retinol and non-esterified fatty acids in pregnancies complicated with intrauterine growth restriction. Clin Sci (Lond) 118(5): 351-358.

37. Schulpis KH, Michalakakou K, Gavili S, Karikas GA, Lazaropoulou C, et al. (2004) Maternal-neonatal retinol and alpha-tocopherol serum concentrations in Greeks and Albanians. Acta Paediatrica 93(8): 1075-1080.

38. Lammi-Keefe CJ, Jonas CR, Ferris AM, Capaccioni CM (1995) Vitamin E in plasma and milk of lactating women with insulin-dependent diabetes mellitus. J Pediatr Gastroenterol Nutr 20(3): 305-309.

39. Papaconstantinou PC, Rollins NC, Chantry CJ, Bennish ML, Brown KH (2007) Micronutrient status during lactation in HIV-infected and HIV-uninfected South African women during the first 6 months after delivery. Am J Clin Nutr 85(1): 182-192.

40. Ortega RM, Lopez-Sobaler AM, Martinez RM, Andrepis P, Quintas ME (1998) Influence of smoking on vitamin E status during the third trimester of pregnancy and on breast-milk tocopherol concentrations in Spanish women. Am J Clin Nutr 60(3): 662-667.

41. Quiles JL, Ochoa J, Ramirez-Tortosa MC, Linde J, Bompadre S, et al. (2006) Coenzyme Q concentration and total antioxidant capacity of human milk at different stages of lactation in mothers of preterm and full-term infants. Free Radic Res 40(2): 199-206.

42. Olszottor AS, Wagner KH, Thordsdottir I, Elmadfa I (2001) Fat-soluble vitamins in the maternal diet, influence of cod liver oil supplementation and impact of the maternal diet on human milk composition. Ann Nutr Metab 45(5): 265-272.

43. Martyssiak-zurowska, D, Szlagats-sidorkiewicz, A, Zagierski M (2013) Concentrations of alpha- and gamma-tocopherols in human breast milk during the first months of lactation and in infant formulas. Matern Child Nutr 9(4): 473-482.

44. Aubuchon-Endsley NL, Kennedy TS, Gilchrist M, Thomas DG, Grant S (2015) Relationships among socioeconomic status, dietary intake, and stress in breastfeeding women. J Acad Nutr Diet 115(6): 939-946.

45. Clemente, HÅ, et al. (2014) Vitamin E in maternal serum and colostrum and the nutritional requirement of the infant. Modern Pediatrics 1: 75-80.

46. Garcia LRS, da Silva Ribeiro KD, Katherine FA, Gabrielle MMA, JF Pires, et al. (2009) Levels of alpha-tocopherol in the serum and breast milk of puerperal patients attended at a public maternity hospital in Natal, Rio Grande do Norte. Rev Bras Med Matern Infant 9(4): 423-428.

47. Szlagats-sidorkiewicz A, Zagierski M, Jankowska A, Łuczak G, Macur A, et al. (2012) Longitudinal study of vitamins A, E and lipid oxidative damage in human milk throughout lactation. Early Hum Dev 88(6): 421-424.

48. Tijerina-sáenz A, Inmis SM, Kitts DD (2009) Antioxidant capacity of human milk and its association with vitamins A and E and fatty acid composition. Acta Paediatrica 98(11): 1793-1798.
