DNA Binding Is Not Sufficient for H-NS-mediated Repression of proU Expression*

Bart J. A. M. Jordië, Anne E. Fielder, Christopher M. Burns, Jay C.D. Hinton, Nir Dover§, David W. Ussery, and Christopher F. Higgins¶

From the Nuffield Department of Clinical Biochemistry, and Imperial Cancer Research Fund Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom

H-NS is a major component of bacterial chromatin and influences the expression of many genes. H-NS has been shown to exhibit a binding preference for certain AT-rich curved DNA elements in vitro. In this study we addressed the factors that determine the specificity of H-NS action in vitro and in vivo. In bandshift studies, H-NS showed a slight binding preference for all curved sequences tested whether GC-based or AT-based; the specific architecture of the curve also influenced H-NS binding. In filter retention assays little difference in affinity could be detected for any sequence tested, including the downstream regulatory element (DRE) a downstream curved DNA element required for H-NS to repress transcription of the Salmonella typhimurium proU operon in vivo. A Kd of 1–2 μM was estimated for binding of H-NS to each of these sequences. In vivo, the distance between the proU promoter and the DRE, their relative orientations on the face of the DNA helix, and translation of the DRE had no major effect on proU regulation. None of the synthetic curved sequences tested could functionally replace the DRE in vivo. These data show that differential binding to curved DNA cannot account for the specificity of H-NS action in vivo. Furthermore, binding of H-NS to DNA per se is insufficient to repress the proU promoter. Thus, the DRE does not simply act as an H-NS binding site but must have a more specific role in mediating H-NS regulation of proU transcription.

H-NS is a 15.6-kDa polypeptide, one of the two most abundant proteins associated with the bacterial nucleoid. H-NS has a role in chromosome organization (1, 2). Consistent with this role, H-NS compacts DNA (3, 4) and can constrain DNA supercoils in vitro (5). Plasmids isolated from hns mutants have altered levels of supercoiling (6–8), and plasmid and chromosomal DNA supercoiling is altered in hns mutants in vivo (9). In addition to its role in chromosome organization, H-NS influences the expression of several independently regulated genes, many of which are modulated in response to changing environmental conditions (2). The precise mechanism by which H-NS modulates transcription is unknown.

* This work was supported in part by the Wellcome Trust and Imperial Cancer Research Fund. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
‡ Supported by a European Union Fellowship.
¶ EMBO short term Fellow. Present address: Division of Microbial and Molecular Ecology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
§ Howard Hughes International Research Scholar. To whom correspondence should be addressed. Tel.: 44-1865-222423; Fax: 44-1865-222431.

The binding of H-NS to DNA is relatively nonspecific (3, 5, 10). This raises a paradox. How does H-NS influence transcription at only a subset of promoters? Part of the explanation may come from the observation that H-NS exhibits a binding preference for certain intrinsically curved DNA sequences in vitro (11–14) and that, at least at some promoters, curved DNA elements are required for H-NS action in vivo (13). Indeed, it may be that curved DNA sequence elements are required for the action of H-NS at all promoters (15–17). However, for the limited number of DNA curves studied, the increased preference for curved DNA, compared with nonspecific binding to generic DNA, is only a few-fold (5, 12, 13, 18). Furthermore, as curved DNA sequences are found near most promoters, including many promoters that are not responsive to H-NS (for review see Ref. 19), it is not clear how specificity is achieved. Finally, the distance between the curve and the RNA polymerase binding site can be varied up to 200 bp. Thus, it is unclear whether DNA curvature per se is the principal factor that determines H-NS action or how the interaction of H-NS and curved sequences might influence promoter function.

To address the mechanisms by which H-NS affects transcription we have used the proU promoter of Salmonella typhimurium as a model, proU encodes a transport system for the osmoregulterglycine betaine, and its expression is increased when cells are exposed to high extracellular osmolarity (20–23). proU appears to be one of the simplest H-NS-responsive promoters as no trans-acting factor, other than H-NS itself, appears to be required for its regulation. proU expression is derepressed in hns mutants (6, 7, 24), although residual osmoprotection of the regulatory element is retained (13, 25, 26). Repression of proU by H-NS requires an intrinsically curved region of DNA located around 200 bp downstream of the transcription start site, within the first structural gene of the proU operon (the downstream regulatory element, DRE) (12, 26–28). However, the binding preference of H-NS for the DRE in vitro is, at most, only a few-fold greater than for generic DNA, and the precise distance between the DRE and the proU promoter does not appear to be critical (13, 25, 26). It is not known how interaction of H-NS with the DRE might influence transcription.

In this paper, we have addressed the factors that determine the specificity of H-NS action both in vivo and in vitro. Consistent with previous reports, a binding preference for curved DNA was detected under certain conditions, although this preference was found to be limited and cannot account for the specificity of action of H-NS in vivo. Furthermore, the binding of H-NS to DNA per se is insufficient to account for the effects of H-NS on proU expression. Thus, the DRE cannot simply provide a site for H-NS binding but must serve a more specific role in H-NS-mediated gene regulation.

1 The abbreviations used are: bp, base pair(s); DRE, downstream regulatory element; PCR, polymerase chain reaction.
Plasmids Containing Curved and Noncurved DNA Inserts—To define curved and noncurved DNA fragments, complementary oligonucleotides (Table I) were annealed, ligated together, and separated by electrophoresis in a 5% NuSieve agarose gel. Ligated fragments of an approximate size (100–200 bp) were isolated from the gel using a QIAEX gel extraction kit (Qiagen). The overhanging ends of the fragments were filled in with the Klenow fragment of DNA polymerase and ligated into the EcoRV site of pBluescript I SK(−) (Stratagene). Three plasmids were generated in this manner, containing the GC curve (pAF1), GC noncurve (pAF2), and AT planar curve (pAF3). Two closely related plasmids containing the AT curve (pTP4) and AT noncurve (pTP5) have been described previously (13). A sixth plasmid (pAF6) was constructed by ligating a 217-bp fragment encompassing the S. typhimurium proU DRE (base pair +99 through +299; Ref. 30) between the NotI and SpeI sites of pBluescript I SK(−). The 200-bp fragment was generated by PCR using primers +99 (5'GGGGCGCGCATATTGGGAGAGCTCC-3') and +299 (5'GGACTATTCATCATCGGGATTAGAAGG-3') which incorporate sites for NotI and SpeI to facilitate cloning. The nature and size of the DNA inserts in these plasmids are given in Table II.

To clone these curved/noncurved sequences between the proU promoter and the lacZ reporter gene, a multiple cloning site was created in plasmid pAV399 (13). Plasmid pAV399 contains the proU promoter region (−217 through +100, where +1 is the start of the transcription (30), directing transcription of the lacZ reporter gene. A 51-bp polynucleotide was inserted into the EcoRI site between the proU promoter and lacZ reporter gene. This polynucleotide was constructed by annealing two complementary oligonucleotides, 5'AATTCATACGCGGCCGCAAGTCTA-3' and 5'AATTCGCATAGGACGACCGATC-3', which incorporate sites for NotI and SpeI to facilitate cloning. The nature and size of the DNA inserts in these plasmids are given in Table II.

Plasmids with Altered Distances between the proU Promoter and the Downstream Coding Region—Plasmid pSJ4 contains the 217-bp proU promoter fragment (bp −217 to +100) as pAV399, cloned into the EcoRI site upstream of the lacZ reporter gene. This plasmid was cloned into the pALTER vector (Promega). Using the Altered Sites in vitro mutagenesis system (Promega), unique sites for the restriction endonucleases NotI and BglII were introduced at bp +17 and +31, respectively (Fig. 1). The mutated NotI and BglII sites were excised from pAV399 and ligated back into pSJ4 using BglII and EcoRI. The sixth was a 200-bp fragment, generated by the PCR, encompassing the S. typhimurium proU DRE (bp +99 through +299) and incorporating terminal NotI and SpeI sites.

Anomalous Migration of DNA Fragments—Curved and noncurved DNA fragments were isolated by restriction enzyme digestion and gel purification. A typical bandshift reaction was carried out in a volume of 15 μl and contained 1 μg of H-NS protein, 10 ng of radiolabeled DNA, the indicated amount of competitor DNA, in buffer (10 mM Hepes, pH 7.6, 15 mM KCl, 0.1 mM EDTA). The reaction was incubated at room temperature for 30 min, and 5 μl of loading buffer (50% glycerol, 2.5% bromophenol blue) was added to the reaction. Samples were loaded onto a 5% polyacrylamide gel in TBE and electrophoresed at 8 V/cm at 5 °C for 2 h. After electrophoresis the gel was dried and radiolabeled DNA detected by autoradiography.

DNA Manipulations—Standard methods were used for gel electrophoresis and the construction of recombinant plasmids (32). Plasmid DNA was electroporated into S. typhimurium using a Gene Pulser® (Bio-Rad) according to the manufacturer's instructions. One pulse was applied, at capacitance 25 microfarads, resistance 200 Ω, and voltage 2,450 V. Electromponent S. typhimurium were prepared as described previously.
Curved DNA and H-NS Action

12085

TABLE I

Sequences of DNA oligonucleotides used in this study to generate curved and noncurved DNA fragments

Name	Motif	Sequence	Ref.
AT curve	A$_5$N$_9$	5’ GGCAAAAACG 3’	44
		3’ GTTTTGGCC 5’	
AT noncurve	A$_9$N$_{10}$	5’ CCGGAAAACGAGGC 3’	44
		3’ CCGTTTTGGCCCGG 5’	
AT planar curve	A$_5$N$_6$	5’ TCTCTAAAAATATAAAAA 3’	36
		3’ TTTTTATATATTATAAGA 5’	
GC curve	CCGG-N$_9$	5’ CTCGAGGATGCTCCGGATTGATAG 3’	34
	CCGG-N$_6$	3’ CTATCCGAGGCTATCAGGAGG 5’	
GC noncurve	None	5’ CCGATGTCACCGGCACGATGAG 3’	34
		3’ CAGTGCGTGGCGTACTCCGGTA 5’	

Note that this curve is “out of plane” with the axis of the DNA helix with the end of the fragment pointing into the plane of the page. Panel B shows the AT noncurve in which the A tracts are out of phase. This sequence has several small “snake-like” curves although, on average, the helical path is straight. Panel C shows the predicted path of the GC curve. The curvature is not predicted to be as great as for the AT curve, but it is “in plane” (i.e., the path of a longer piece of DNA would form a flat mini-circle as opposed to the superhelical path of the curve in panel A). Panel D depicts the GC noncurve, of similar base composition to the GC curve (Table I). The fragment is slightly curved, although less so than the GC curve, and is probably closest to “generic” DNA of all the fragments depicted. The AT planar curve depicted in panel E is in plane, such that a 126-bp fragment will form a flat mini-circle (36). Panel F shows the predicted curvature of the DRE. Note that the curvature of the DRE is less than that of the synthetic AT curve; the DNA is curved by roughly 60° over about 100–120 bp.

Results

Construction of Plasmids Containing Synthetic Curved and Noncurved DNA Fragments

Previous studies have shown that H-NS exhibits a binding preference for curved DNA resulting from phased A tracts. To ascertain whether H-NS recognizes DNA curvature per se or the A tracts responsible for curvature, a series of plasmids was constructed containing curved and noncurved DNA fragments (Table I). The base composition of each curved and noncurved pair was similar, but the order of the bases resulted in distinct architectures. One pair of fragments was the AT curve and AT noncurve described previously; H-NS binds to the AT curve preferentially (12, 13). A second pair of curved and noncurved fragments (the GC curve and GC noncurve) were constructed which did not contain A tracts. The GC curve contains the motif “CCGG” in phase with the pitch of the DNA helix (an average of once every 10.5 bp) and has been shown previously to be curved by anomalous electrophoretic mobility and ligation assays (33–35). The GC noncurve has a similar base composition to the GC curve (Table I). The fragment is slightly curved by roughly 60° over about 100–120 bp.

Gel Mobility—Although the DNA fragments were predicted to be either curved or noncurved, it was necessary to demonstrate this experimentally. One commonly used method for assessing DNA curvature is anomalous mobility on polyacrylamide gels (38). Fig. 3 shows the relative mobility of the five synthetic DNA fragments and the DRE. The apparent sizes of the fragments under these conditions were estimated from their mobilities with respect to molecular weight markers. The “R$_g$ values,” the ratios of the apparent sizes to the actual sizes of the fragments, were as follows: GC noncurve, 1.0; GC curve, 1.3; AT curve, 2.8; AT noncurve, 1.0; AT planar curve, 2.1, DRE, 1.2. The curvatures measured experimentally under these conditions were consistent with the computer predictions.

Binding of H-NS to Curved and Noncurved DNA Fragments by Bandshift

The relative affinity of H-NS for curved and noncurved DNA fragments was initially assessed by bandshift assays. Plasmids containing the curved and noncurved DNA fragments (pAF1–3, pAF6, pTP4–5) were digested with HaeIII, incubated with different amounts of H-NS, and electrophoresed in agarose gels. Fig. 4 shows that, in general, the larger the DNA fragment, the lower the H-NS concentration required to initiate a bandshift. This is consistent with H-NS binding nonspecifically to generic DNA. However, the fragment containing the AT planar curve was “shifted” at an approximately 5-fold lower H-NS concentration than the other fragments of similar size, demonstrating a small binding preference for this curve. In contrast, no significant preference could be detected for the nonplanar AT curve (Fig. 4). As the AT curve and AT planar curve differ in the planarity of the curve, this observation demonstrates a role for the specific architecture of the curve in determining binding preference. Importantly, in the same assay, H-NS did not show a detectable binding preference for any of the other curved or noncurved fragments, including the DRE (data not shown).

An alternative assay that was previously used to show that H-NS has a binding preference for curved compared with noncurved DNA fragments is a competition bandshift. DNA

(13). Note that using transient osmotic shock, rather than growing cells to steady state at different osmolarities, circumvents possible effects of osmolarity on plasmid copy number and on mRNA stability. For luciferase assays, NB (Difco) was used as the low osmolarity medium; for β-galactosidase assays LB with NaCl omitted was used as the low osmolarity medium. All data are the result of multiple independent determinations. For β-galactosidase assays the data are presented after correction for background expression using data obtained from an identical plasmid lacking a promoter upstream of the reporter gene (pAV250).
fragments were isolated and end-labeled with \[32\text{P}\]dATP. In each assay, one DNA fragment was radiolabeled and incubated with sufficient H-NS to form a discrete bandshifted protein-DNA complex. Excess unlabeled competitor DNA fragment was then added to 1, 10, or 100 times the mass of labeled fragment. Addition of competitor DNA reduced the amount of "band-shifted" complex that could be quantitated by densitometry. An example of such an experiment is shown in Fig. 5. When the AT curve fragment was labeled (lanes a–h), addition of 10-fold excess of the AT curve competitor fragment abolished the band-shifted complex (lane d). In contrast, 10-fold excess of the AT noncurve competitor fragment (lane g) had little effect, and 100-fold excess was required to prevent complex formation (lane h). Thus, consistent with previous data (12, 13, 18) H-NS has a greater affinity for the AT curve fragment than for the AT noncurve fragment, although the difference in affinity is less than an order of magnitude.

A similar experiment (Fig. 5) shows that H-NS has a higher affinity for the proU promoter (−217 to +100) than for the endogenous curve downstream of the chromosomal proU gene of S. typhimurium (the DRE; bp 62–182). The predicted DNA paths were calculated using the CURVATURE program (37).

![Predicted DNA paths of 120-bp synthetic DNA fragments used in this study.](image)

TABLE II

Plasmid	Vector	Insert/construction	Ref.
pBluescript	pBluescript II KS (+)	120 bp, AT curve	13
pTP4	pBluescript II KS (+)	105 bp, AT noncurve	13
pTP5	pBluescript I KS (+)	214 bp, GC noncurve	This study
pAF1	pBluescript I SK (+)	193 bp, GC curve	This study
pAF2	pBluescript I SK (+)	105 bp, AT planar curve	This study
pAF3	pBluescript II SK (+)	200 bp, DRE (+99 to +299)	This study
pAF4	pBluescript II SK (+)	proU promoter (−217 to +100)	46
pSB71	luxAB promoter cloning vector	proU promoter (−217 to +100)	46
pSJ4	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pBJ1	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pBJ2	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pBJ4	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pBJ5	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pBJ6	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAV399	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAV260	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAV290	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAV399	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAF450	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAF451	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAF452	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAF453	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAF454	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAF455	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study
pAF456	pSB71	Ncol and BglII site introduced (see Fig. 1)	This study

a See “Experimental Procedures.”

Curved DNA and H-NS Action

FIG. 2. Predicted DNA paths of 120-bp synthetic DNA fragments used in this study. The DNA sequences of the oligonucleotides used to generate each fragment are as in Table I. Panel A, AT curve; panel B, AT noncurve; panel C, GC curve; panel D, GC noncurve; panel E, AT planar curve; panel F, the endogenous curve downstream of the chromosomal proU gene of S. typhimurium (the DRE; bp 62–182). The predicted DNA paths were calculated using the CURVATURE program (37).

DNA fragments were isolated and end-labeled with [32P]dATP. In each assay, one DNA fragment was radiolabeled and incubated with sufficient H-NS to form a discrete bandshifted protein-DNA complex. Excess unlabeled competitor DNA fragment was then added to 1, 10, or 100 times the mass of labeled fragment. Addition of competitor DNA reduced the amount of “band-shifted” complex that could be quantitated by densitometry. An example of such an experiment is shown in Fig. 5. When the AT curve fragment was labeled (lanes a–h), addition of 10-fold excess of the AT curve competitor fragment abolished the band-shifted complex (lane d). In contrast, 10-fold excess of the AT noncurve competitor fragment (lane g) had little effect, and 100-fold excess was required to prevent complex formation (lane h). Thus, consistent with previous data (12, 13, 18) H-NS has a greater affinity for the AT curve fragment than for the AT noncurve fragment, although the difference in affinity is less than an order of magnitude.

A similar experiment (Fig. 5) shows that H-NS has a higher affinity for the proU promoter (−217 to +100) than for the endogenous curve downstream of the chromosomal proU gene of S. typhimurium (the DRE; bp 62–182). The predicted DNA paths were calculated using the CURVATURE program (37).
Curved DNA and H-NS Action

Fig. 4. H-NS shows binding preference for the AT planar curve. Increasing amounts of H-NS were incubated with DNA of plasmid pAF3 or pTP4 digested with HaeIII. The HaeIII fragments containing curved inserts, the AT planar curve (189 bp), and the AT curve (201 bp), are indicated by arrows. Lanes V and VI are molecular weight markers (Boehringer Mannheim). DNA was visualized by ethidium bromide staining.

Fig. 5. Relative binding affinity of H-NS for different curved and noncurved DNA fragments by competition bandshift. The relative affinity of H-NS for the AT curve, the AT noncurve, the GC curve, and the GC noncurve were compared in a competition bandshift assay. Lanes a–h, the AT curve was radiolabeled. Lane a, DNA alone; lane b, DNA with H-NS showing bandshifted complex; lanes c–e, DNA with H-NS (as for lane b) with 1, 10, and 100 × competitor AT curve added; lanes f–h, DNA with H-NS (as for lane b) with 1, 10, and 100 × competitor AT noncurve added. Lanes i–p, the GC noncurve was radiolabeled. Lane i, DNA alone; lane j, DNA with H-NS showing bandshifted complex; lanes k–m, DNA with H-NS (as for lane b) with 1, 10, and 100 × competitor GC curve added; lanes n–p, DNA with H-NS (as for lane j) with 1, 10, and 100 × GC curve competitor added.

Fig. 6. Filter retention assays. The concentration dependence of the interaction of H-NS with different radiolabeled DNA fragments was determined by filter retention. The maximum fraction of DNA bound varied experimentally from 90 to 100%. The data are expressed, for comparative purposes, as the percent of the maximal fraction bound. The values are the average of three independent experiments.

H-NS-DNA Interactions by Filter Retention

To obtain a more quantitative comparison of the apparent affinity of H-NS for the different curved and noncurved DNA fragments, we used a nitrocellulose filter retention assay. In this assay no specific binding preference for any of the DNA ligands tested was detected; all the DNA fragments were retained by H-NS to a similar extent (near 100%) and with a similar concentration dependence (Fig. 6). To confirm that the assay was measuring concentration dependence and not the stoichiometry of the H-NS-DNA interaction, we repeated the binding studies with different amounts of DNA ligand (10 and 50 ng) and obtained indistinguishable binding curves (data not shown). The apparent K_d values, assuming that the H-NS preparation was 100% active and that H-NS interacts with DNA as a monomer, were calculated by curve-fitting analysis. The apparent K_d values for the interaction of H-NS with all of the sequences were similar, although the AT planar curve bound slightly better ($K_d = 1.0 \mu M$) than the other fragments ($K_d = 1.6–2.3 \mu M$).

Thus, no significant difference in affinity of H-NS for any sequence, including the DRE, could be detected by filter retention. This is in apparent contrast to bandshift studies that showed slightly enhanced affinity for curved sequences. This difference is likely to be due to differences in the rates of association and dissociation of the protein-DNA complexes during electrophoresis which may contribute to the apparent specificity of the interaction under bandshift conditions. However, measurement of differences in the on and off rates of the H-NS-DNA complexes with curved and noncurved DNA ligands using the filter retention assay was precluded by the rapid interaction kinetics of H-NS with DNA: the complex forms and dissociates within 10 s (not shown).

The Distance between the proU Promoter and the Downstream Curve Is Unimportant in Vivo

To ascertain whether the relative efficiency with which the curved and noncurved sequences bind H-NS in vitro reflects their activity in vivo, the ability of these sequences to replace the function of the DRE in vivo was assessed. The DRE is located approximately 200 bp downstream of the proU pro-
Curved DNA and H-NS Action

Table III
Effect of insertions between the promoter and downstream curve on proU promoter activity

Plasmid	Insertion bp	Luciferase activity	
		Low	High
pBJ1	0	0.62	256.4
pBJ4	5	3.68	324.8
pBJ5	10	0.48	231.7
pBJ6	15	2.01	232.0
pBJ2	210	2.56	50.0

ProU promoter and is required for H-NS-mediated repression of transcription. Before replacing the DRE with heterologous sequences, it was necessary to ensure that the precise distance between the promoter and downstream curve is not important. Thus, defined oligonucleotides were introduced between the proU promoter and the lux reporter gene in plasmid pBJ1, increasing the distance between the proU promoter and the downstream curve by 5, 10, 15, or 210 bp (Fig. 1). proU promoter activity of each of these plasmids was monitored by measuring lux reporter gene activity in S. typhimurium strain CH1833 (Table III). Increasing the distance between the proU promoter and the downstream curve had no major effect on osmoregulation of transcription, although the 210-bp fragment did reduce the absolute magnitude of expression somewhat. As the insertion of a nonintegral number of turns of the DNA helix (5 or 15 bp) will change the “face of the helix” of the curve relative to the proU promoter, it appears that the orientation of the curve with respect to the promoter is relatively unimportant. Thus, the distance between the promoter and the DRE, and their relative orientations with respect to the face of the helix, can be varied with little effect on expression or regulation. This is consistent with other reports (26). Importantly, this result ensures that interpretation of the following in vivo experiments is not influenced by the precise position at which the curves were inserted.

Ability of Curved and Noncurved DNA Fragments to Replace DRE Function in Vivo

Plasmid pAF450 contains a segment of the proU promoter extending from –219 to +100 fused to the lacZ reporter gene. This plasmid lacks the DRE, and hence, the proU promoter is derepressed and exhibits minimal osmoregulation. Curved and noncurved DNA fragments were inserted into the polylinker between the proU promoter and the lacZ reporter gene in this plasmid (see “Experimental Procedures” and Table I). The resultant plasmids were electroporated into wild-type S. typhimurium (LT2) and β-galactosidase expression measured at low osmolarity and after osmotic upshock (0.3 M NaCl). The ratio of expression at high to low osmolarity, the induction ratio, indicates the degree of osmoregulation.

Plasmid pAV260 which contains the proU promoter region from –207 to +736, and therefore includes the DRE, served as a positive control. Promoter activity was tightly osmoregulated (induction ratio = 63.0) (Table IV). The proU promoter in plasmid pAF450, from which the DRE was deleted, was derepressed at low osmolarity such that the osmotic induction ratio was severely reduced (induction ratio = 7.3). These results with the control plasmid were as expected (13). It should be noted that, as reported previously, residual osmotic regulation was observed when the DRE was deleted showing that sequences other than the DRE play some role in regulation (13, 26, 28). Re-insertion of the DRE between the promoter and lacZ restored normal osmoregulation (pAF456; induction ratio of 71.0). Although the DRE is translated in its natural location within the first structural gene of the proU operon, in this plasmid the DRE is not translated. As normal osmoregulation was observed, this demonstrates that the influence of the DRE on proU transcription is independent of translation. In contrast to the DRE, none of the other curved or noncurved fragments, including the AT planar curve, restored osmoregulation when inserted at the same site in pAF450.

The plasmids were also introduced into the congeneric hns strain CH1838. As expected for the positive control plasmid pAV260, expression at low osmolarity was severely derepressed such that the induction ratio was reduced from 63.0 to 2.0 (Table IV). A similar derepression at low osmolarity, reducing the induction ratio (71.0 to 1.3), was seen for plasmid pAF456 into which the DRE had been reinserted. Thus, as reported previously, repression of the proU promoter at low osmolarity requires both H-NS and the DRE.

Importantly, for the plasmid with the AT planar curve inserted (pAF453), proU expression was derepressed in the hns strain compared with the hns+ strain. Thus, it appears that H-NS interacts with this curve in vivo. However, in the hns+ strain the AT planar curve did not lead to full repression, in contrast to the DRE. Thus, the binding of H-NS to the AT planar curve only partially represses transcription, whereas H-NS binding to the DRE results in full repression.

It is important to note that, in the absence of H-NS, the nature of the sequence inserted downstream of the proU promoter influenced the basal level of expression. Most notably, the DRE and AT planar curve led to maximum derepression at both low and high osmolarity (19, 280 and 18, 974 units, respectively, at low osmolarity). In contrast, the other sequences achieve a degree of repression even in the absence of H-NS. This is most obvious for the GC curve and AT curve (pAF452 and pAF454, respectively) where expression at low osmolarity in the presence of H-NS was 1226 and 2466 units, respectively, which only increased to 2114 and 2121 units in the absence of H-NS. This implies that the overall configuration of the downstream region is important for optimal transcription, irrespective of the presence or absence of H-NS.

Discussion

To understand the role of H-NS in the bacterial cell, and specifically the mechanism by which it influences transcription, it is necessary to understand how this protein interacts with DNA. It has previously been reported that, although H-NS binds nonspecifically to any DNA molecule, it has enhanced binding to intrinsically curved DNA. Furthermore, at least some of the in vivo sites of action of H-NS are curved. This led to the hypothesis that the interaction of H-NS with curved DNA is important for its mode of action. In this study we have tested this hypothesis, asking two questions: whether DNA curvature per se determines the specificity of action of H-NS, and whether the binding of H-NS to curved DNA is sufficient to account for the effects of H-NS on gene expression.

H-NS has previously been shown, by bandshift studies, to exhibit a binding preference for intrinsically curved DNA elements generated by phased A tracts (11–13). We have shown here that H-NS has a similar binding preference for non-A tract curves (GC curves). Thus DNA curvature, rather than the specific presence of A tracts, appears to be responsible for this H-NS binding preference. In addition, H-NS bound more strongly to a planar curve than to a nonplanar curve of similar base composition, showing that the specific architecture of the curve also influences H-NS binding. However, in these bandshift studies the maximum preference for any curved sequence tested, including the DRE, was only a few-fold greater than for
generic DNA. This is consistent with previous reports that H-NS shows a binding preference for curved DNA; these other studies also used similar bandshift assays, and all demonstrated less than a 10-fold preference for any curved DNA fragment compared with generic DNA (11–14, 18).

In apparent contrast to the bandshift experiments, filter retention experiments failed to reveal any major binding preference of H-NS for curved DNA or for the DRE. Although the AT planar curve did bind with slightly higher K_d than the other fragments tested, this was only by about 2-fold. The difference between bandshift and filter-retention studies probably reflects differences in on/off rates for the different sequences which during electrophoresis could influence apparent binding affinities in bandshift experiments. However, the on/off rates were too fast to permit measurement of any differences in these parameters. Despite the apparent difference in conclusions reached using the two methodologies it is more important to emphasize the similarities: in neither type of assay was more than about a 5-fold binding preference for any sequence observed. Furthermore, the binding preference for the DRE was slight and less than for the AT planar curve. Thus, it is clear that the binding preference for curved DNA, or the native DRE, cannot account for the specificity of H-NS action.

The filter retention experiments allowed the K_d of H-NS binding to DNA ligands to be estimated as 1–2 μm, assuming that the H-NS preparation was 100% active and that H-NS interacts with DNA as a monomer. As H-NS is able to form oligomers (15), the actual K_d value may be somewhat lower. Thus, the affinity of H-NS for DNA is relatively poor in comparison with classical sequence-specific regulatory proteins, although better than nonspecific binding of proteins to DNA. For example, the integration host factor interacts with its specific sites with high affinity ($K_d \sim 50$ nM) and with generic DNA with a K_d of about 20 μm (39). Instead, H-NS interacts with DNA with similar affinity to HU, the other major chromatin-associated protein in E. coli, which has a K_d for generic DNA molecules of about 1 μm (40). The low affinity of the H-NS-DNA interaction cannot be reconciled with a classical repressor-type mechanism for modulating gene expression.

At the proU promoters of E. coli and S. typhimurium, H-NS represses transcription by binding to the DRE, located some 100–200 bp downstream of the transcription start site (13, 25, 26). To determine whether H-NS binding per se is sufficient to maintain repression of the proU promoter, defined sequences were cloned between the proU promoter and a downstream reporter gene, replacing the DRE. As a control we showed that the precise distance between the proU promoter and the DRE, and their relative orientations on the face of the helix, had little effect on H-NS-mediated repression of transcription. This is consistent with previously published data (26, 28). Insertion of the DRE between the proU promoter and lacZ reporter gene restored H-NS-mediated repression at low osmolarity, as expected. However, none of the other curved or noncurved sequences tested could replace the DRE (although it should be noted that we have previously shown that a heterologous intrinsic curve from the luxAB genes can replace the DRE, 13). Even the AT planar curve, to which H-NS binds with higher affinity than it does to the DRE, could not functionally replace the DRE. Previous studies have indicated that H-NS binds to the AT planar curve in vivo (17), and in this study the effect of the AT planar curve is altered in an hns mutant implying that H-NS binds to this curve in vivo. Thus, the binding of H-NS to a downstream curved sequence per se is insufficient to repress proU transcription. This argues strongly against classical repressor-type models in which H-NS directly occludes RNA polymerase binding at the proU promoter. These findings suggest that the DRE is not simply a specific binding site for H-NS but, instead, acts as an effector site for H-NS action. One possible mechanism by which the DRE might act as an effector is by undergoing specific topological changes in response to the interaction of H-NS. This is consistent with the findings reported here that, even in the absence of H-NS, the nature of the downstream sequence influences promoter activity, with published data showing that the proU promoter is sensitive to topological changes (6, 13, 41) and with observations that H-NS influences DNA topology (5–9). The simplest model consistent with available data is that, in the absence of H-NS, the DRE allows the promoter to adopt an architecture leading to maximum promoter activity. When H-NS binds to the DRE it alters the architecture of the promoter region and, hence, represses transcription. These architectural changes could involve DNA flexibility (the proU promoter is activated by increased DNA flexibility; 41) and/or DNA looping. There is accumulating evidence that H-NS distorts DNA, although the nature of this distortion is unclear: H-NS can constrain DNA supercoils in vivo (5), it can act at a distance in vivo (13, 17, 28), and it generates DNase I-hypersensitive sites on binding (5, 13, 16).

Although proU is simpler than other H-NS-dependent promoters, in that it does not appear to require additional trans-acting factors, there is no a priori reason why similar mechanisms should not operate at many other H-NS-dependent promoters; positive regulators may alter local promoter architecture to overcome H-NS repression (42).

Most H-NS-dependent genes are regulated in response to environmental signals. DNA curvature changes significantly in response to altered environmental conditions (19), and it is tempting to postulate that, at simple promoters such as proU, the structure of the DRE itself may act as an “environmental sensor”; environmentally induced changes in DNA configura-

6 D. W. Ussery, C. F. Higgins, and A. Bolshoy, submitted for publication.
Curved DNA and H-NS Action

tion influence the action of H-NS, leading to an alteration in promoter configuration and, hence, transcription. Furthermore, as different DNA sequences respond to different environment cues (19),3 it is possible to envisage a mechanism by which H-NS can regulate specific genes in response to different environmental signals. The possibility that environmental signals may directly affect promoter architecture and hence transcription through influencing the interaction of architectural proteins with DNA, may be an important concept in understanding the environmental regulation of gene expression in bacteria.

Acknowledgments—We thank Francisco Mojica, Jean Sonnenfeld, Robert Stephen, and Stephen Gunn for helpful discussions. Tom Owen-Hughes assisted with some of the plasmid constructions and Clare Smyth and Julie Sidebotham with H-NS purification.

REFERENCES
1. Higgins, C. F., Hinton, J. C. D., Hulton, C. S. J., Owen-Hughes, T. A., Pavitt, G. D., and Seirafi, A. (1990) Mol. Microbiol. 4, 255–265
2. Ussery, D. W., Hinton, J. C. D., Jerbi, B. J. A. M., Granum, P. E., Seirafi, A., Stephen, R. J., Tupper, A. E., Berridge, G., Sidebotham, J. M., and Higgins, C. F. (1994) Biochimie (Paris) 76, 968–980
3. Spassky, A., Rimsy, S., Garreau, H., and Buc, H. (1984) Nucleic Acids Res. 12, 5321–5340
4. Spurio, R., Durrenberger, M., Falconi, M., La Teana, A., Pern, C. L., and Gualerzi, C. O. (1992) Mol. Gen. Genet. 231, 201–211
5. Tupper, A. E., Owen-Hughes, T. A., Ussery, D. W., Santos, D. S., Ferguson, D. J., Sidebotham, J. M., Hinton, J. C. D., and Higgins, C. F. (1994) EMBO J. 13, 258–268
6. Higgins, C. F., Dorman, C. J., Stirling, D. A., Waddell, L., Booth, I. R., May, G., and Bremer, E. (1998) Cell 92, 569–584
7. Hinton, J. C. D., Seirafi, A., Hinton, J. C. D., Sidebotham, J. M., Waddell, L., Pavitt, G. D., Owen-Hughes, T. A., Spassky, A., Buc, H., and Higgins, C. F. (1990) Cell 63, 631–642
8. Hinton, J. C. D., Santos, D. S., Seirafi, A., Hulton, C. S. J., Pavitt, G. D., and Higgins, C. F. (1992) Mol. Microbiol. 6, 2327–2337
9. Mojica, F. J. M., and Higgins, C. F. (1997) J. Bacteriol., in press
10. Friedreich, K., Gualerzi, C. O., Lammi, M., Losso, M. A., and Pern, C. L. (1988) FEBS Lett. 229, 197–202
11. Bracco, L., Kotlarz, D., Kolb, A., Diekmann, S., and Buc, H. (1989) EMBO J. 8, 4289–4296
12. Yamada, H., Muramatsu, S., and Mizuno, T. (1990) J. Biochem. (Tokyo) 108, 420–425
13. Owen-Hughes, T. A., Pavitt, G. D., Santos, D. S., Sidebotham, J. M., Hulton, C. S. J., Hinton, J. C. D., and Higgins, C. F. (1992) Cell 71, 235–265
14. Tippner, D., and Wagner, R. (1995) J. Biol. Chem. 270, 22243–22247
15. Falconi, M., Higgins, N., Spurio, R., Pen, C., and Gualerzi, C. O. (1993) Mol. Microbiol. 10, 273–282
16. Tippner, D., Afferbach, H., Bradaczek, C., and Wagner, R. (1994) Mol. Microbiol. 11, 589–604
17. Zuber, F., Kotlarz, D., Risisky, S., and Buc, H. (1994) Mol. Microbiol. 12, 231–240
18. Ueguchi, C., Suzuki, T., Yoshida, T., Tanaka, K.-I., and Mizuno, T. (1996) J. Mol. Biol. 263, 149–162
19. Perez-Martín, J., Rojo, F., and De Lorenzo, V. (1994) Microbiol. Rev. 58, 268–290
20. Cairey, N., Booth, I. R., and Higgins, C. F. (1985) J. Bacteriol. 164, 1224–1232
21. Dunlap, V. J., and Csonka, L. N. (1985) J. Bacteriol. 163, 296–304
22. Gowershangar, J. (1985) J. Bacteriol. 164, 434–445
23. May, G., Faatz, E., Villarejo, M., and Bremer, E. (1986) Mol. & Gen. Genet. 205, 225–233
24. May, G., Dersch, P., Haardt, M., Middendorf, A., and Bremer, E. (1990) Mol. & Gen. Genet. 224, 81–90
25. Lucht, J. M., Dersch, P., Kempf, B., and Bremer, E. (1994) J. Biol. Chem. 269, 6578–6586
26. Fletcher, S. A., and Csonka, L. N. (1995) J. Bacteriol. 177, 4508–4513
27. Dattananda, C. S., Rajkumarri, K., and Gowrishankar, J. (1991) J. Biol. Chem. 266, 7481–7490
28. Overdier, D. G., and Csonka, L. N. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 3140–3144
29. Bertani, G. (1951) J. Bacteriol. 62, 293–300
30. Stirling, D. A., Hulton, C. S. J., Waddell, L., Park, S. F., Stewart, G. S., Booth, I. R., and Higgins, C. F. (1989) Mol. Microbiol. 3, 1025–1038
31. Simons, R. W., Housman, F., and Kleckner, N. (1987) Gene (Amst.) 53, 85–96
32. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
33. McNamara, P. T., Bolehoy, A., Trifonov, E. N., and Harrington, R. E. (1990) J. Biomol. Struct. & Dyn. 8, 529–533
34. McNamara, P. T., and Harrington, R. E. (1991) J. Biol. Chem. 266, 12548–12554
35. Bolehoy, A., McNamara, P., Harrington, R. E., and Trifonov, E. N. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 2312–2316
36. Ulanovsky, L., Bedner, M., Trifonov, E. N., and Choder, M. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 862–866
37. Shipgolman, E. S., Trifonov, E. N., and Bolehoy, A. (1995) Comput. Appl. Biosci. 11, 435–440
38. Crothers, D. M., Haran, T. E., and Nadeau, J. G. (1990) J. Biol. Chem. 265, 7093–7096
39. Yang, S. W., and Nash, H. A. (1995) EMBO J. 14, 6292–6300
40. Bonney, E., Takahashi, M., Roviere-Yaniv, J. R. (1994) J. Mol. Biol. 242, 116–129
41. Jerdi, B. J. A. M., Owen-Hughes, T. A., Hulton, C. S. J., and Higgins, C. F. (1995) EMBO J. 14, 5690–5700
42. Jerdi, B. J. A. M., Dagberg, B., de Haan, L. A. M., Hamers, A. M., van der Zeijst, B. A. M., Gaarra, W., and Uhlin, B. E. (1992) EMBO J. 11, 4267–4272
43. Pavitt, G. D., and Higgins, C. F. (1993) Mol. Microbiol. 6, 685–696
44. Koo, H. S., Wu, H. M., and Crothers, D. M. (1986) Nature 320, 501–506
45. Park, S. F., Stirling, D. A., Hulton, C. S. J., Booth, I. R., Higgins, C. F., and Stewart, G. S. A. B. (1989) Mol. Microbiol. 3, 1011–1023
46. Hulton, C. S. J. (1993) Molecular Genetic Analysis of the Supercoiling Regulated proU Promoter of Salmonella typhimurium. Ph.D. thesis, St. Cross College, University of Oxford
DNA Binding Is Not Sufficient for H-NS-mediated Repression of proU Expression
Bart J. A. M. Jordi, Anne E. Fielder, Christopher M. Burns, Jay C.D. Hinton, Nir Dover,
David W. Ussery and Christopher F. Higgins

J. Biol. Chem. 1997, 272:12083-12090.
doi: 10.1074/jbc.272.18.12083

Access the most updated version of this article at http://www.jbc.org/content/272/18/12083

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 43 references, 14 of which can be accessed free at http://www.jbc.org/content/272/18/12083.full.html#ref-list-1