The Japanese Space Gravitational Wave Antenna; DECIGO

Seiji Kawamura1, Masaki Ando2, Takashi Nakamura3, Kimio Tsubono2, Takahiro Tanaka3, Ikoh Funaki4, Naoki Seto1, Kenji Numata7, Shuichi Sato1, Kunihito Ioka6, Nobuyuki Kanda7, Takeshi Takashima2, Kazuhiro Agatsuma2, Tomotada Akutsu6, Tomomi Akutsu2, Yuta Arase, Akito Araya7, Hideki Asada10, Yoichi Aso11, Takeshi Chiba12, Toshikazu Ebisuzaki13, Motohiro Enoki14, Yoshiharu Eriguchi15, Masa-Katsu Fujimoto1, Ryuichi Fujita16, Mitsuhiro Fukushima1, Toshifumi Futamase17, Katsuhiko Ganzu3, Tomohiro Harada18, Tatsuaki Hashimoto19, Kazuhiro Hayama19, Wataru Hikida16, Yoshiaki Himemoto30, Hisashi Hirabayashi21, Takashi Hiramatsu2, Feng-Lei Hong48, Hideyuki Horisawa23, Mizuhiko Hosokawa24, Kiyotomo Ichiki2, Takeshi Ikegami22, Kaiki T. Inoue25, Koji Ishidohiro2, Hideki Ishihara7, Takehiko Ishikawa26, Hideharu Ishizaki1, Hiroyuki Ito24, Yousuke Itoh27, Shogo Kamagasaki6, Nobuki Kawashima26, Fumiya Kawazoe28, Hiroyuki Kirihara3, Naoko Kishimoto4, Kenta Kiuchi6, Shihoko Kobayashi29, Kazunori Kohri30, Hiroyuki Koizumi5, Yasufumi Kojima31, Keiko Kokeyama28, Wataru Kokuyama2, Kei Kotake1, Yoshihide Kozai32, Hideaki Kudoh2, Hiroo Kunimori33, Hitoshi Kuninaka2, Kazuaki Kuroda24, Kei-ichi Maeda6, Hideo Matsuhara1, Yasushi Mino35, Osamu Miyakawa2, Shinji Miyokawa28, Mitsuru Musha3, Hiroyuki Morishita2, Hiroshi Motokura33, Tomoko Moriyama17, Shigenori Moriwaki36, Shinji Mukohyama2, Mitsuru Musha3, Shigeo Nagano24, Isao Naito38, Noriyasu Nakagawa2, Kouji Nakamur1, Hirohiko Nakano39, Kenichi Nakao2, Shinichi Nakasuka1, Yoshinori Nakayama40, Erina Nishida28, Kazutaka Nishiyama4, Atsushi Nishiizawa1, Yoshihito Niwa41, Masatake Ohashi34, Naoko Ohishi, Masashi Ohkawa2, Akira Okumoto1, Kouji Onozato2, Kenichi Oohara38, Norichika Sagis3, Motoyuki Saijo20, Masashi Sakagami41, Shin-ichiro Sakai2, Shihori Sakata28, Misao Sasakia4, Takehiro Satoh22, Masaru Shibata15, Hisaaki Shinokari45, Kentaro Somiya44, Hajime Sotani47, Naoshi Sugiyama28, Yudai Suwa2, Hideyuki Tagoshi2, Kakeru Takahashi2, Keitaro Takahashi44, Tadayuki Takahashi4, Hirotaka Takahashi49, Ryuichi Takahashi48, Ryutarou Takahashi1, Akiteru Takamori9, Tadashi Takeo4, Keisuke Taniguchi50, Atsushi Taruya2, Hiroyuki Tashiro3, Mitsuru Tokuda, Masao Tokunari2, Morio Toyoshima24, Shinji Tsujikawa51, Yoshiaki Tsunesada2, Ken-ichi Ueda37, Masayoshi Utashima55, Hiroshi Yamakawa1, Kazuhiro Yamamoto, Toshitaka Yamazaki, Jun'ichi Yokoyama1, Chul-Moon Yoo44, Shijun Yoshida17, Taizou Yoshino55

1 National Astronomical Observatory of Japan, Mitaka, Tokyo, 181-8588, Japan
2 The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
3 Kyoto University, Kyoto, Kyoto, 606-8502, Japan
4 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, 229-8510, Japan
5 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
6 High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
Osaka City University, Osaka, Osaka, 558-8585, Japan
Waseda University, Shinjuku, Tokyo, 169-8555, Japan
Earthquake Research Institute, The University of Tokyo, Bunkyo, Tokyo, 113-0032, Japan
Hirosaki University, Hirosaki, Aomori, 036-8560, Japan
Columbia University, New York, NY 10027, USA
Nihon University, Setagaya, Tokyo, 156-8550, Japan
RIKEN, Wako, Saitama, 351-0198, Japan
Tokyo Keizai University, Kokubunji, Tokyo, 185-8502, Japan
The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
Osaka University, Toyonaka, Osaka, 560-0043, Japan
Tohoku University, Sendai, Miyagi, 980-8578, Japan
Rikkyo University, Toshima, Tokyo, 171-8501, Japan
University of Texas, Brownsville, Texas, 78520, USA
Shibaura Institute of Technology, Saitama, Saitama, 337-8570, Japan
Space Education Center, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, 229-8510, Japan
National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8563, Japan
Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
National Institute of Information and Communications Technology, Koganei, Tokyo, 184-8795, Japan
Kinki University, Higashi-Osaka, Osaka, 577-8502, Japan
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, 305-8505, Japan
University of Wisconsin-Milwaukee, Milwaukee, WI 53201-0413, USA
Ochanomizu University, Bunkyo, Tokyo, 112-8610, Japan
Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead L41 1LD, UK
Lancaster University, LA1 4YB, UK
Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
Gunma Astronomical Observatory, Agatsuma, Gunma, 377-0702, Japan
National Institute of Information and Communications Technology, Bunkyo, Tokyo, 113-0001, Japan
Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba, 277-8582, Japan
California Institute of Technology, Pasadena, CA 91125, USA
The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan
Numakage, Saitama, Saitama, 336-0027, Japan
Rochester Institute of Technology, Rochester, NY 14623, USA
National Defense Academy, Yokosuka, Kanagawa, 239-8686, Japan
Kyoto University, Kyoto, Kyoto, 606-8501, Japan
Niigata University, Niigata, Niigata, 950-2181, Japan
University of Southampton, Southampton SO17 1BJ, UK
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
Osaka Institute of Technology, Hirakata, Osaka, 573-0196, Japan
Albert Einstein Institute, Max Planck Institute for Gravitational Physics, D-14476 Potsdam, Germany
Abstract. DEci-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry–Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre-DECIGO first and finally DECIGO in 2024.

1. Space gravitational wave antenna DECIGO
DECIGO is the future Japanese space gravitational wave antenna. It stands for DEci-hertz Interferometer Gravitational wave Observatory [1][2]. The objectives of DECIGO are to detect gravitational waves from various kinds of sources mainly between 0.1 Hz and 10 Hz and open a new window of observation for gravitational wave astronomy.

DECIGO will bridge the frequency gap between LISA [3] and terrestrial detectors such as LCGT [4]. It can play a role of follow-up for LISA by observing inspiral sources that have moved above the LISA band, and can also play a role of predictor for terrestrial detectors by observing inspiral sources that have not yet moved into the terrestrial detector band.

DECIGO can reach an extremely good sensitivity. This is because the confusion limiting noise caused by irresolvable gravitational wave signals from many compact binaries is expected to be very low above 0.1 Hz [5].

2. Pre-conceptual design of DECIGO
As shown in Fig. 1, the pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry–Perot (FP) Michelson interferometer. The arm length was chosen to be 1,000 km in order to realize a finesse of 10 with a 1 m diameter mirror and 0.5 μm laser light. The mass of the mirror is 100 kg and the laser power is 10 W. Three sets of such interferometers sharing the mirrors as arm cavities comprise one cluster of DECIGO. The constellation of DECIGO is composed of four clusters of DECIGO located separately in the heliocentric orbit with two of them nearly at the same position.

The FP configuration requires the distance between two mirrors, thus, the distance between two spacecraft to be constant during continuous operations. This makes DECIGO very different from a possible counterpart with the transponder-type detector (e.g. LISA), where the spacecraft, which are much farther apart, are freely falling according to their local gravitational field. We adopted the FP configuration because it can provide a better shot-noise-limited sensitivity than the transponder configuration due to the enhanced gravitational wave signals.
The FP configuration requires an additional system beyond that of an ordinary drag-free system. In the ordinary drag-free system, the outer spacecraft simply follows the motion of the mirror inside. However, in the FP configuration, the distance between the mirrors should be kept constant, which requires that one of the two mirrors should be controlled with the other mirror as a reference. As a result, the reference mirror dictates the motion of the other mirror by the FP interferometer control system as well as both spacecraft by the drag-free control system. It should be also noted that the FP interferometer control signals, which include gravitational wave signals, are not contaminated by the noisy drag-free control signals.

The lock acquisition of the FP arm cavity is a challenging task. In a ground-based interferometer, the relative motion of the two mirrors of a cavity is small enough to acquire lock of the cavity without much difficulty because the suspension systems of the mirrors are virtually connected to the ground at zero frequency. However, the relative motion of the two spacecraft in space is expected to be much higher. Therefore, we need an additional system that detects the relative motion of the mirrors, and gradually reduces it by actuating the mirrors. Once the relative motion of the mirrors is suppressed well enough, the lock acquisition of the FP cavity will be straightforward.

3. Sensitivity goal of DECIGO and science obtained by DECIGO

The ideal sensitivity of DECIGO is limited only by quantum noise, as shown in Fig. 2. The sensitivity is limited by the radiation pressure noise below 0.15 Hz, and it has an f^{-2} frequency dependence. The shot noise limits the sensitivity above 0.15 Hz. It is flat up to 7.5 Hz, and above 7.5 Hz it increases in proportion with frequency because of the signal cancellation in the arm cavities.

In order to realize the sensitivity goal of DECIGO, all the practical noise should be suppressed well below this level. This imposes stringent requirements for the subsystems of DECIGO. We anticipate that extremely rigorous investigations are required to attain the requirements especially in the acceleration noise and frequency noise.

Nevertheless, accomplishing the sensitivity goal of DECIGO will ensure a variety of fruitful sciences to be obtained.

(1) Characterization of dark energy

DECIGO can detect gravitational waves coming from neutron star binaries at $z=1$ for five years prior to coalescences. It is expected that within this range about 7,000 neutron star binaries will coalesce every year. Therefore, DECIGO will detect gravitational waves coming from a large number...
of neutron star binaries at the same time. By analyzing the waveforms of these gravitational wave signals precisely, it is possible to determine the acceleration of the expansion of the universe [1]. The acceleration of the expansion of the universe can be also measured by finding host galaxies of each binary and determining their red shifts optically [6]. This will lead to better characterization of dark energy.

(2) Formation mechanism of supermassive black holes in the center of galaxies

DECIGO can detect gravitational waves coming from coalescences of intermediate-mass black hole binaries with an extremely high fidelity. For example the coalescences of black hole binaries of 1,000 solar masses at z=1 give a signal to noise ratio of 6,000. This will make it possible to collect numerous data about the relationship between the mass of the black holes and the frequency of the coalescences, which will reveal the formation mechanism of supermassive black holes in the center of galaxies.

(3) Verification and characterization of inflation

DECIGO can detect stochastic background corresponding to $\Omega_{GW} = 2 \times 10^{-16}$ by correlating the data from the two clusters of DECIGO for three years. According to the standard inflation model, it is expected that we could detect gravitational waves produced at the inflation period of the universe with DECIGO. This is extremely significant because gravitational waves are the only means which make it possible to directly observe the inflation of the universe.

While the inflation background is the primary target for the correlation analysis with the two clusters, it would be important to carefully design the system so that we can disclose various aspects of stochastic gravitational wave backgrounds. One of the interesting measures from fundamental physics is the Stokes V parameter. This parameter characterizes the asymmetry of the amplitudes of the right- and left-handed waves, and it is a powerful measure to probe violation of parity symmetry that interchanges the two circular-polarization modes. By slightly adjusting the relative configuration of the two clusters, we can set sensitivity to the Stokes V parameter [7].

4. Roadmap to DECIGO

DECIGO pathfinder (DPF) and pre-DECIGO will be launched before DECIGO. DPF will test the key technologies with one spacecraft. We expect that it will be launched in 2012. Pre-DECIGO is supposed to detect gravitational waves with minimum specifications. We hope that it will be launched in 2018. Finally it is expected that DECIGO will be launched in 2024 to open a new window of observation for gravitational wave astronomy.

Acknowledgment

This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research.

References

[1] Seto N, Kawamura S and Nakamura T 2001 Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space Phys. Rev. Lett. 87221103
[2] Kawamura S et al 2006 The Japanese Space Gravitational Wave Antenna - DECIGO Class. Quantum Grav. 23 S125
[3] LISA: System and Technology Study Report, ESA document ESA-SCI (2000)
[4] Kuroda K et al 2002 Japanese large-scale interferometers Class. Quantum Grav. 19 1237
[5] Farmer A J and Phinney E S 2003 The gravitational wave background from cosmological compact binaries Mon. Not. R. Astron. Soc. 346 1197
[6] Schutz B F 1986 Determining the Hubble constant from gravitational wave observations Nature 323 310
[7] Seto N 2007 Quest for circular polarization of a gravitational wave background and orbits of laser interferometers in space Phys. Rev. D 75 061302