Some Remarks on Almost Periodic Sequences and Languages

GABRIEL ISTRATE
Faculty of Mathematics, University of Bucharest
Str. Academiei 14, Bucharest, Romania

1 Introduction

Almost periodicity has been considered in Formal Language Theory in connection with some topics in Symbolic Dynamics (see e.g. [3]). A notorious example of an almost-periodic sequence is the famous Thue-Morse sequence ([4], [7]). Almost periodicity has been considered when dealing with the decidability of monadic theories of unary functions [10]. In [7] some problems concerning this property are raised. For instance, one asks whether or not there exists some almost periodic word \(\alpha \) such that \(\text{Sub}(\alpha) \), the language of its finite factors, is context-free non-regular.

We will answer negatively (even in a stronger form) this question, as well as discussing other related topics.

2 Results

We will use Formal Language Notations from [6], [8]. By \(V^\omega \) we will denote the set of one-sided infinite words over the alphabet \(V \). \(V^{\omega^+} \) will mean its two-sided counterpart. For an infinite \(\alpha \) we denote by \(\text{Sub}(\alpha) \) the language of its finite factors. \(z < w \) will mean that \(z \) is a factor of \(w \). Note that the meaning of almost-periodicity from [10] is less restrictive than the one in [7]. It is this latter version we will deal with:

Definition 1 A sequence \(\alpha \in V^\omega \) is called almost periodic iff for any \(w < \alpha \) there exists a positive integer \(n_w \) such that any factor \(z \) of \(\alpha \) of length at least \(n_w \) has \(w \) as a factor.

Let us move this definition of almost-periodicity from infinite sequences to languages:

Definition 2 A language \(L \subset V^* \) is called

- closed iff \(L \) is closed under taking subwords.
- confluent iff for any \(x \) and \(y \) in \(L \) we may find \(z \in L \) such that \(x < z \) and \(y < z \).
- redundant iff for any \(x \) in \(L \) we may find \(n_x \geq 1 \) such that for any \(z \in L \), \(|z| \geq n_x \) implied \(x < z \).
• almost periodic iff \(L \) is closed and redundant.

Remarks

(a). If \(L \) is almost periodic then \(L \) is confluent.

(b). The following assertions are equivalent:
- \(L \) is infinite, closed and confluent.
- \(L = \text{Sub}(\alpha) \) for some \(\alpha \in V^*\omega^+ \)

(c). The following assertions are equivalent:
- \(L \) is infinite and almost periodic.
- \(L = \text{Sub}(\alpha) \) for some almost periodic \(\alpha \in V^*\omega^+ \).

(d). If \(\alpha \in V^\omega \) is almost periodic then \(\text{Sub}(\alpha) \) is almost periodic.

Justification. To prove the non-trivial part of (b), we enumerate \(L \) as \(x_0, x_1, \ldots \), and define \(y_n \in L \) by \(y_0 = x_0, y_n < y_{n+1}, x_n < x_{n+1} \) (by the confluence of \(L \)). It follows that \(y_0 < y_1 < \ldots < y_n < \ldots \). Taking the (bilateral) limit we find \(\alpha \in V^{\omega^+\omega} \) with the desired properties. Now (c) follows by combining (a) and (b).

Definition 3 A family \(\mathcal{F} \) of languages avoids almost periodicity iff any almost periodic language in \(\mathcal{F} \) is regular.

Now we may state:

Theorem 1 Let \(\mathcal{F} \) be a family of languages such that for any infinite \(L \) in \(\mathcal{F} \) one may find \(w \neq \lambda \) such that \(\{w^n | n \geq 1\} \subset \text{Sub}(L) \). Then \(\mathcal{F} \) avoids almost periodicity.

Proof. Take \(L \in \mathcal{F} \) infinite and almost periodic and consider the corresponding \(w \). As \(\lim_{n \to \infty}|w|^n = \infty \) it follows (from the definition of almost periodicity) that \(L \subset \text{Sub}(\{w^n | n \geq 1\}) \). On the other hand \(\{w^n | n \geq 1\} \subset \text{Sub}(L) \) implies \(\text{Sub}(\{w^n | n \geq 1\}) \subset \text{Sub}(\text{Sub}(L)) = \text{Sub}(L) = L \), hence \(L = \text{Sub}(\{w^n | n \geq 1\}) \) is a regular language.

Remark. Many families of languages, including \(\mathcal{L}_2 \) (the family of context-free languages), \(\mathcal{M}_f \) (the family of matrix languages of finite index [2]), \(\mathcal{SM}_2 \) (the family of simple matrix languages [2]), \(\mathcal{C}, \mathcal{G} \) (the families of external contextual and of generalized contextual languages [5]), \(\mathcal{I}, \mathcal{IS} \) (the families of internal contextual and of internal contextual with choice languages [6]) satisfy the requirements of our lemma.

Corollary 1 If \(L = \text{Sub}(\alpha) \) for some almost periodic \(\alpha \in V^\omega \) (or \(V^{\omega^+\omega} \)) and \(L \) belongs to one of the above mentioned families of languages then \(L \) is regular.

Another open problem from [7] was the existence of an algorithm deciding whether a given regular language can be written as \(L = \text{Sub}(\alpha) \) for some \(\alpha \in V^\omega \). We still cannot answer this question. However, by restricting ourselves to almost periodic sequences we get a better situation:
Corollary 2 Let \(F \) be a family of languages having the following properties:

- The finiteness problem for \(F \) is decidable.
- \(F \) constructively satisfies the (proof of) Theorem 1 (i.e. there is an algorithm which, given \(L \in F \) infinite, finds the right \(w \) and then tests whether \(L = \text{Sub}\{w^n|n \geq 1\} \)).

Then it is decidable whether \(L \in F \) can be written as \(L = \text{Sub}(\alpha) \) for some almost periodic \(\alpha \in V^\omega \).

Remark. A sufficient condition for the validity of the second condition in the previous corollary is the following:

- one can effectively construct the required \(w \);
- given \(L_1 \in F \) and \(L_2 \in L \) one can effectively check whether \(L_1 = L_2 \).

Corollary 3 The following families satisfy the hypothesis of Corollary 2 (and hence the problem whether an arbitrary language in them can be written as \(L = \text{Sub}(\alpha) \) for \(\alpha \in V^\omega \) almost periodic is decidable):

- the family of regular languages.
- the family of unambiguous context-free languages.

Proof. Both these families of languages satisfy the conditions of the previous remark (for unambiguous context-free languages one uses a result due to Semenov, see [1, 9]).

Open Problem 1 Are Semenov-type results true for the families \(M_f, SM_2 \)?

Open Problem 2 What is the decidability status of this problem for families \(M_f, SM_2, IS \)?

We could add the families \(C, G, I \) to the list from Corollary 3. However, for these families we may state a more precise result.

Theorem 2 Let \(L \) be an infinite almost-periodic language in one of the families \(C, G, I \). Then we can find \(a \in V \) such that \(L = a^* \).

Proof. We will prove our result for the family \(I \) (the other cases are analogous). Let \(L = L(V, B, C) \) be an infinite almost-periodic language in \(I \) such that \(L = \{a\}^* \) for no \(a \) in \(V \). Then \(L \) must include at least two different letters \(a \) and \(b \) (for the only infinite almost-periodic language over a one letter alphabet \(a \) is \(\{a\}^* \)). Consider \(x \), a nonvoid candidate for \(w \) (i.e. \(\{x^n|n \geq 1\} \subset \text{Sub}(L) \)). It follows that \(|x| \geq 2 \). Indeed, suppose that \(x \in V \). As \(\{x^n|n \geq 1\} \subset \text{Sub}(L) \) (from the definition of family \(I \)) it would follow that \(L = \{x\}^* \), which is not the case. As \(L \) is closed under taking subwords, \(a, b \in L \). It follows that \(a, b \in B \) (any context must increase the length by at least two: this follows the same way as \(|x| \geq 2 \)). Take \(w \in V^* \), \(w \neq \lambda \) having minimal length such that \(\{aw^n|n \geq 1\} \cup \{bw^n|n \geq 1\} \subset \text{Sub}(L) \) or \(\{aw^n|n \geq 1\} \cup \{bw^n|n \geq 1\} \subset \text{Sub}(L) \). Clearly there exists such a \(w \) (any nonvoid semicontext is a candidate for \(w \)).
Suppose we are in the first case and, moreover, w does not end in a (if not then exchange a and b). Clearly $|w| \geq 2$. As $w^n \in \text{Sub}(L)$ for any n and L is almost-periodic, from the proof of Theorem 1 it follows that $L = \text{Sub}(\{w^n; n \geq 1\})$ hence $aw \in \text{Sub}(L) = L = \text{Sub}(\{w^n; n \geq 1\})$.

As $|w| \geq 2$ and a is not the last letter in w, $aw < w^2$, hence $w^2 = zawt$ with $za \in \text{Pref}(w)$, $t \in \text{Suff}(w)$. As $|za| + |t| = |w^2| - |w| = |w|$, it follows that $w = zat$, hence $zaztt = zatzt$ so $(za)t = t(za)$. The equation $w = vu$ has as solutions the system $\{u = \beta^m, v = \beta^n | \beta \in V^*, m, n \geq 1\}$. As $t \neq \lambda$ (otherwise α would have been the last letter of w) we have $w = (za)t = \beta^k$ for some $\beta \in V^*, \beta \neq \lambda$ and $k \geq 2$. But then $\{a\beta^n | n \geq 1\} \cup \{b\beta^n | \beta \geq 1\} \subset \text{Sub}(L)$ and $|\beta| < |w|$, contradicting the minimality of w. Hence $L = \{a\}^*$. \square

Let us return to the problem of testing whether a given regular language L can be written as $L = \text{Sub}(\alpha)$ for some $\alpha \in V^\omega$. The bi-sided version of this problem seems easier to tackle. Indeed, $L = \text{Sub}(\alpha)$ for some $\alpha \in V^{\omega\omega}$ iff L is infinite, closed and confluent. Finiteness and closure are decidable for regular languages: given a regular grammar G_1, construct (effectively) a grammar G_2 for $\text{Sub}(L(G_1))$ and then test whether $L(G_1) = L(G_2)$. Let us further note that L is confluent iff $\text{Sub}(L)$ is confluent. Now it is straightforward that testing whether a given regular language can be written in the required form is algorithmically equivalent to the problem of testing confluence for regular languages.

Open Problem 3 Is confluence open for regular languages?

Note (2022): The Open Problem 3 has been solved (affirmatively) in Harju, Tero, and Lucian Ilie. "On quasi orders of words and the confluence property." Theoretical Computer Science 200.1-2 (1998): 205-224.

References

[1] D. Beauquier and M. Nivat. About rational sets of factors of a bi-infinite word. In *International Colloquium on Automata, Languages, and Programming*, pages 33–42. Springer, 1985.

[2] J. Dassow and G. Păun. *Regulated rewriting in formal language theory*, volume 18. Springer, 1989.

[3] G. Hedlund and M. Morse. Symbolic dynamics. *American Journal of Mathematics*, 60(4):815–866, 1938.

[4] K. Jacobs. Maschinenlenzuge 0-1-folgen. In *Selecta Mathematica I*, pages 1–27. Springer, 1969.

[5] S. Marcus. Contextual grammars. *Revue Roumaine Math. Pures Appl.*, 14(10):1525–1534, 1969.

[6] G. Păun. *Contextual Grammars*. Editura Academiei București (in Romanian), 1982.

[7] G. Păun and S. Marcus. Infinite (almost periodic) words, formal languages and dynamical systems. *Words and Languages Everywhere*, page 341, 2007.

[8] A. Salomaa. *Formal languages*. Academic Press Professional, Inc., 1987.
[9] A. Salomaa. Formal power series: A powerful tool for theoretical informatics. In Proceedings of the 300 years festive Congress of the Hambury Mathematical Association, pages 1033–1048, 1990.

[10] A. L. Semenov. Decidability of monadic theories. In International Symposium on Mathematical Foundations of Computer Science, pages 162–175. Springer, 1984.