Phytoplasmas as Causal Agents of Celosia Disease in Israel

E. Tanne1
Department of Virology, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel

L. Kuznetsova
Virus Laboratory, The Hebrew University, Faculty of Agriculture, Rehovot 76100, Israel

J. Cohen, S. Alexandrova, and A. Gera
Department of Virology, ARO, The Volcani Center, Bet Dagan 50250, Israel

Abstract. Recently, yellows diseases have become more common in Israel, and phytoplasmas have been detected in some of these diseased crops. Commercial fields of two celosia species (Celosia plumosa L. and C. cristata L.) also have exhibited yellows symptoms and total crop failure. Typical mycoplasma-like bodies were observed in infected but not in healthy plants. The same plants were analyzed for the presence of phytoplasma by polymerase chain reaction (PCR), using the universal oligonucleotide pair r16SF2/r16SR2, followed by nested PCR using group-specific primers. Restriction analyses performed with these products indicated that two different types of phytoplasmas are infecting celosia. PCR-RFLP analysis of one type revealed a restriction pattern typical of aster yellows. Similar analysis of the second type indicated possible relatedness, though not identity, to the pattern of phytoplasmas of the Western-X group. This is, to our knowledge, the first report of phytoplasma infection in celosia.
DNA extraction. Extracts were prepared from leaves, hairy roots and main roots as described by Maixner, et al. (1995). Fresh or frozen tissue (0.5–1.0 g) was ground in 5–7 mL of extraction buffer (100 mM Tris-HCl pH 8.0, 2% cetyl trimethyl ammonium bromide (CTAB), 1.4 M NaCl, 20 mM EDTA, 0.2% β-mercaptoethanol). The slurry was incubated for 20 min at 60 °C, and centrifuged (10 min, 3200 × g). The supernatant fluid was collected and extracted with an equal volume of chloroform : isooamyl alcohol (24:1 v/v) and precipitated with 1 volume of isopropanol. Following 20 min at −20 °C, the preparation was centrifuged at 14,900 × g for 20 min. The pellet was washed twice with 70% ethanol, dried and resuspended in 50 µL distilled water.

Polymerase chain reaction (PCR). The universal phytoplasma primer pair P1/P7 (Schneider et al., 1993) amplifies a 1800 bp-long fragment that extends from the 5’ end of the 16S rDNA gene to the 5’ region of the 23S DNA. This primer pair was used for phytoplasma detection in DNA extracts of the tested plant tissues. The P1/P7 PCR product was further amplified by nested PCR with the U5/U3 primer pair (Lorenz et al., 1995). Another universal primer pair, r16SF2/r16SR2 was synthesized according to published sequences (Lee et al., 1993), and used to amplify a 1.2-kbp fragment of the conserved region of the 16S rRNA of all known phytoplasmas. In this case, the PCR was made directly with the r16SF2/r16SR2 primer pair, followed by a nested PCR with group-specific primers for AY and CX that were also-synthesized according to Lee et al. (1994) and Lee and Davis (1998). The primer pair STOL11 f2/f1, amplifying a stolbur-specific 1.7 kbp-long fragment, was synthesized according to Daire et al. (1997) and used for PCR. The DNA template in all PCR assays was 20 ng in a 30-µL assay. DNA was heated to 94 °C for 5 min, after which Taq polymerase was added, and the mixtures were subjected to 35 PCR cycles (92 °C, 30 s; 55 °C, 30 s; 72 °C, 50 s). The PCR program ended with a 7-min elongation step at 72 °C.

The DNA extracted from symptom-free plants and that extracted from greenhouse-grown plants served as negative controls in PCR. DNA extracted from periwinkles identified as carrying AY-type, CX-type and Stolbur-type phytoplasma, served as positive controls.

RFLP analysis of PCR products. The PCR products were analyzed by restriction endonuclease digestion, using MsiI, AluI, and KpnI. The DNA was digested (37 °C; 20 h) in the specific buffers corresponding to the enzymes. Fragments were separated by electrophoresis on 5% polyacrylamide gels, followed by staining with ethidium bromide as described above. The positive controls were DNA extracts from the aforementioned phytoplasma-infected periwinkle plants.

Results and Discussion

A typical infected celosia is illustrated in Fig. 1. Test plants, mechanically inoculated with sap from infected celosia, did not exhibit any symptoms related to viral infection, indicating that no mechanically transmissible virus was associated with the disease. Electron microscope observations of crude plant extracts revealed no virus or virus-like particles (not shown).

The observation of typical phytoplasma bodies in thin sections of phloem sieve tubes from infected celosia plants (Fig. 2), and their absence from the corresponding symptom-free plants, indicated that a phytoplasma could have been the causative agent of the disease. No viral particles could be detected in these thin sections, which supports the aforementioned mechanical inoculation tests in suggesting that no viral infection was involved.

Use of the universal primers P1/P7 indicated that all celosia plants showing symptoms were infected with phytoplasma, while all symptom-free plants were phytoplasma-free (data not shown). Group-specific PCR assays, using the universal 16SF2/16SR2 primer pair and followed by nested PCR with group-specific primers, indicated the involvement of AY in celosia infections in most of the infected plants (Fig. 3A). This was corroborated by restriction analysis both of the PCR product of the nested AY-specific bands (Fig. 3 B and C) and of the P1/P7 bands (data not shown). However, a few infected plants produced amplification products with the CX-specific primers. The resultant products were somewhat longer than that of the CX-positive control (Fig. 4A), and the restriction analysis indicated a pattern similar but not identical to that of the control CX band (Fig. 4B). Negative results were obtained with the Stolbur primers (data not shown). We propose a new type of phytoplasma resembling CX and the AY type of phytoplasma as the causative agents of celosia yellows disease in Israel. Double infection, in which a plant carried both phytoplasma types, was not observed.

In recent years, several types of phytoplasma have been identified in various crops,
such as grape (*Vitis vinifera* L., Tanne and Orenstein, 1997) and carrot (*Daucus carota* L., Orenstein et al., 1999) in Israel. The aster yellows type along with the Western-X and Stolbur types is the most prevalent, and mixed infections sometimes occur. Phytoplasma has been associated with disease symptoms in a few ornamental plants, such as *Anemone coronaria* L., *Eustoma russellianum* L., and *Lilium longiflorum* L. (Cohen et al., 1999), but no severe damage has been recorded.

Summary

The objective of this study was to determine the causative agent of a yellows-type disease that causes severe damage to celosia. Molecular analysis and electron microscopy demonstrated that the disease was caused by phytoplasmas. Two different types of phytoplasma could be detected in the diseased plants (but not in healthy ones), one belonging to the AY group and the other, closely related, but not identical, to the CX group. The same CX-resembling type has also been detected in carrots in Israel (Orenstein et al., 1999). The characterization of this phytoplasma and the search for the possible vector(s) are currently in progress.

Literature Cited

Ahrens, U. and E. Seemuller. 1992. Detection of DNA of plant pathogenic mycoplasmalike organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 82:828–832.

Armitage, A.M. 1986. Celosia, p. 56–65. In: A. Halevy (ed.). Handbook of flowering. CRC Press, Boca Raton, Fla.

Boudon-Padieu, E., M.T. Cousin, X. Daire, C. Hiruki, C. Kuszala, and J. Roux. 1996. Molecular and serological characterization of phytoplasma isolates inducing tomato stolbur symptoms in tomato. Intl. Org. of Mycoplasmonology Lett. 4:167–168.

Carraro, L., N. Osler, P. Loi, and E. Refatti. 1998. Transmission of European stone fruit yellows phytoplasma by *Cacopsylla pruni*. J. Plant Pathol. 80:233–239.

Cadwell, A., J. Larrue, V. Tassart, S. Grenan, and R. Boidron. 1993. Flavescence dorée on rootstock varieties: Indexing results and hot water treatment, p. 98–99. In: Proc. 11th Mtg. Intl. Council for the Study of Viruses and Virus-Like Diseases of the Grapevine. Montreux, Switzerland.

Cohen, J., E. Tanne, S. Zorael, S. Alexandrova, and A. Gera. 1999. Phytoplasma diseases in ornamental crops. Phytoparasitica 27:136–137.

Daire, X., D. Claire, W. Reinert, and E. Boudon-Padieu. 1997. Detection and differentiation of grapevine yellows phytoplasma belonging to the stolbur subgroup by PCR amplification of non-ribosomal DNA. Eur. J. Plant Pathol. 103:507–514.

Lee, I.M. and R.E. Davis. 1998. Detection and investigation of genetic relatedness among aster yellows and other mycoplasmalike organisms by using cloned DNA and RNA probes. Mol. Plant Microb. Interact. 1:303–310.

Lee, I.M., D.E. Gundersen, R.W. Hammond, and R.E. Davis. 1994. Use of mycoplasmalike organism (MLO) group-specific oligonucleotide...
primers for nested PCR assays to detect mixed infection in a single host plant. Phytopathology 84:559–566.

Lee, I.M., R.W. Hammond, R.E. Davis, and D.E. Gundersen. 1993. Universal amplification and analysis of pathogen 16sDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83:834–842.

Lorenz K.H.; B. Schneider, U. Ahrens, and E. Seemuller. 1995. Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and non-ribosomal DNA. Phytopathology 85:771–776.

Maixner, M., U. Ahrens and E. Seemuller. 1995. Detection of the German grapevine yellows (Vergilbungskrankheit) MLO in grapevine, alternative hosts and a vector by a specific PCR procedure. Eur. J. Plant Pathol. 101:241–250.

McCoy, R.E., A. Caudwell, C.G. Chang, T.A. Chen, L.N. Chiykowski, M.T. Cousin, G.T.N. Dale de Leeuw, D.A. Golino, K.J. Hacket, B.C. Kirkpatrick, R. Marvitz, H. Petzold, R.C. Shina, M. Sugui, R.F. Whitcomb, I.L. Yang, B.M. Zhu, and E. Seemuller. 1989. Mycoplasmalike organisms, p. 545–568. In: R.F. Whitcomb and J.C. Tully (eds.). The mycoplasmas. Vol. 5. Academic, New York.

Orenstein, S., A. Franck, L. Kuznetzova, I. Sela and E. Tanne. Association of phytoplasmas with a yellow disease of carrot in Israel. J. Plant Pathol. 81:193–199.

Orion, D. and A. Franck. 1990. An electron microscopy study of cell wall lysis by Meloidogyne gelatinus matrix. Rev. Nematol. 13:105–107.

Schneider, B., U. Ahrens, and B.C. Kirkpatrick. 1993. Classification of plant pathogenic mycoplasmalike organisms using restriction site analysis of PCR-amplified 16S DNA. J. Gen. Microbiol. 139:519–527.

Schvester, D., P. Carle, and G. Moutous. 1993. Transmission de la flavescence dorée de la vigne par Scaphoideus litorealis Ball (Homop. Jassidae). Ann. Epiphytol. 13:175–198.

Seemuller, E., C. Marcone, U. Lauer, A. Ragozzino, and M. Goschl. 1998. Current status of molecular classification of the phytoplasmas. J. Plant Pathol. 80:3–26.

Smart, C.D., B. Schneider, C.L. Blomquist, L.J. Guerra, N.A. Harrison, U. Ahrens, K.H. Lorenz, A. Seemuller, and B.C. Kirkpatrick. 1996. Phytoplasma-specific PCR primers based on sequences of the 16S/23S RNA spacer region. Appl. Environ. Microbiol. 62:2988–2993.

Vibio, M., A. Bertacini, I.M. Lee, R.E. Davis, and M.F. Clark 1996. Differentiation and classification of aster yellows and related European phytoplasmas. Phytopathol. Medit. 35:33–34.