Análise dos padrões temporais do vozeamento em crianças com e sem alterações no traço de sonoridade

Temporal pattern analysis of voicing in children with and without alterations in sonority feature

Liliane Ramone
https://orcid.org/0000-0002-0368-2495

Silvana de Coelho Frota
https://orcid.org/0000-0003-3439-9681

RESUMO

Objetivo: comparar características acústicas de oclusivas em falantes do português brasileiro com e sem alterações na fala referentes ao traço de sonoridade.

Métodos: a partir de 66 crianças avaliadas foram selecionadas neste estudo 18 crianças de 9 a 12 anos distribuídas em Grupo Controle: 8 sem alterações de linguagem e Grupo Desvio: 10 com alterações na fala quanto ao traço de sonoridade. Participantes com perda auditiva, sinistros, com déficits cognitivos ou uso de medicação neurológica foram excluídos. Foram realizados audiometria tonal, o teste de fala ABFW e um Teste de produção Power Point interativo. Este teste foi elaborado pela autora para este estudo, com o objetivo de comparar os pares mínimos em palavras. Ao final, foi realizada a análise acústica no programa PRAAT. As características acústicas de oclusivas quanto à duração total e relativa do voice on set time foram comparadas nos grupos analisados por meio do teste U de Mann-Whitney com nível de significância menor que 0,05.

Resultados: foram observadas diferenças significantes na duração do voice on set time entre os dois grupos, como aumento do voice on set time absoluto no Grupo Desvio em oclusivas vozeadas e redução do voice on set time absoluto em oclusivas não vozeadas. O voice on set time relativo apresentou diferenças significantes entre os grupos apenas em oclusivas não vozeadas. Neste caso, houve redução do voice on set time relativo no Grupo Desvio em relação ao Grupo Controle.

Conclusão: falantes do português brasileiro com alteração no traço de sonoridade demonstraram padrão acústico distinto de outros falantes no que se refere ao voice on set time.

Descritores: Acústica; Fonoaudiologia; Linguagem

ABSTRACT

Purpose: to compare acoustic characteristics of stop consonants in speakers of Brazilian Portuguese with and without alterations in speech referring to voicing feature.

Methods: out of 66 children assessed, 18 were selected for this study, aged from 9 to 12 years, distributed in Control Group, 8 without language alterations, and Deviation Group, 10 children with alterations in speech, regarding sonority features. Participants with hearing loss, with cognitive deficit, left-handed ones or using neurological medication, were excluded. The following tests were performed: tonal audiometry, ABFW speech test, and a PowerPoint interactive production test, which was developed by the author for this study, with the purpose of comparing the minimal pairs in words. At the end, the acoustic analysis was conducted, by using the PRAAT program. The acoustic characteristics of stops related to total and relative duration of voice onset time were compared in the two groups and analyzed by the Mann-Whitney U test, with a significance level lower than 0.05.

Results: significant differences were observed in the duration of the voice onset time between the two groups, such as the increase in absolute voice onset time in the Deviation Group in voiced stops, and reduction in absolute onset time in voiceless stops. The relative voice onset time presented significant differences between the two groups only in voiceless stops.

Conclusion: Brazilian Portuguese speakers with alteration in their sonority feature showed an acoustic pattern different from that of other speakers, regarding the voice onset time.

Keywords: Acoustics; Speech, Language and Hearing Sciences; Language
INTRODUÇÃO

O traço do vozeamento é um traço quase universal, no entanto, com nuances entre as línguas. Pesquisas envolvendo bebês apontam a capacidade de percepção categorial de marcas do traço do vozeamento nos primeiros meses de vida. Por esta razão, o traço do vozeamento tem sido amplamente abordado em estudos sobre aquisição e desvios da linguagem. A grande questão é: por que algumas crianças não atingem o padrão correto de contraste do vozeamento após o período de aquisição da linguagem e trocam fonemas vozeados e não vozeados?

É importante destacar que as pistas ou correlatos acústicos do vozeamento variam entre as línguas. Desta forma, a percepção de um fonema não está atrelada a valores absolutos que correspondam a informações acústicas, e sim a variações em faixas de valores, ou seja, a categorias. No caso da percepção do traço do vozeamento, variações em faixas de valores de Voice onset time (VOT) promovem a distinção de fonemas /p/ e /b/, por exemplo. No contraste do vozeamento o VOT é a informação acústica mais importante para diferenciar palavras como pin/bin do inglês.

Além do VOT, a duração das oclusivas tem sido apontada como índice suplementar para distinguir o vozeamento e não vozeamento, sendo a duração das oclusivas não vozeadas maior do que das oclusivas vozeadas. No inglês, no final da sílaba, a oclusiva não vozeada é mais longa do que a correspondente vozeada. O espectro inicial do burst também é considerado pista secundária do vozeamento em labiais e coronais, sendo o burst em não-vozeadas mais longo do que em vozeadas.

No português brasileiro (PB), grande parte dos trabalhos que buscam estabelecer padrões acústicos relativos ao traço do vozeamento foram feitos com falantes adultos. A justificativa para o reduzido do número de estudos em crianças parece estar na ausência de um parâmetro de medidas do trato vocal e da região subglótica, uma vez que na criança, as estruturas envolvidas na produção sonora sofrem modificações com gradativo aumento ósseo muscular. O tamanho reduzido do trato vocal das crianças em relação ao tamanho do adulto já foi apontado como dificultador para produção do vozeamento. Alguns trabalhos sugerem a existência de padrões acústicos infantis no PB.

Considerando as características acústicas, o vozeamento pode ser uma marca na distinção de consoantes. As oclusivas vozeadas são normalmente caracterizadas pelas alterações observáveis nos formantes no início da vogal subsequente à oclusiva vozeada. Já as não vozeadas são caracterizadas por um período de aspiração anterior à vogal seguinte, denominado retardo, que pode variar entre as línguas. Desta forma, no espectrograma a aspiração é marcada pela ausência de energia do primeiro formante (F1) e pela ausência de estrías verticais regulares do vozeamento. Neste caso, após o burst há um breve intervalo até o início da vogal seguinte. A presença ou ausência da barra de vozeamento também é outra marca acústica que diferencia as oclusivas quanto ao vozeamento. Nas oclusivas vozeadas, a barra de vozeamento está visível na forma de estrías verticais na base do espectrograma e corresponde à vibração das pregas vocais.

O contraste de vozeamento do PB foi analisado em falantes com e sem alteração de fala em um trabalho no qual participaram 7 falantes com Desenvolvimento Fonológico Normal (DFN) e 11 com Desvio Fonológico (DF) caracterizado por alterações no contraste do vozeamento, com idades entre 6 e 14 anos. Quatro estudos foram desenvolvidos: a duração dos fonemas vocálicos orais que precedem fonemas vozeados e não vozeados, a duração dos fonemas fricativos em sílabas tônicas, o VOT dos fonemas plosivos e a investigação do contraste velado. Os resultados demonstraram valores discrepantes nos dois grupos estudados. A autora comprova o aumento da duração do segmento analisado no Grupo Desvio. O estudo do VOT foi realizado em contexto tônico considerando-se a variável vocal precedente. Diferenças estatísticas demonstram o aumento do VOT de oclusivas vozeadas em todos os contextos vocálicos no grupo desvio. O mesmo não ocorreu para as oclusivas não vozeadas. A autora considera que as crianças com DF se utilizam do prolongamento do VOT para diferenciar o gesto articulatório entre fonemas vozeados e não vozeados.

Outro estudo com crianças com DF com idades entre 4 - 8 anos teve como objetivo de verificar a ocorrência de dessonorização de fonemas plosivos e fricativos dentro do quadro do Desvio Fonológico. As variáveis abordadas foram: fonemas mais acometidos, gravidade do desvio e idade do acometimento. 50 prontuários de pacientes da Universidade Federal de Santa Maria foram analisados e os participantes divididos em 4 faixas etárias. Um dos critérios de inclusão era que o participante tivesse no mínimo 40% de dessonorização em ao menos um par mínimo. Os resultados confirmam a alta incidência de...
dessonorização nos Desvios Fonológicos, sendo a maior incidência em fonemas plosivos em relação aos fricativos.

As características acústicas de plosivos em crianças com Desenvolvimento Fonológico Típico e com Desvio Fonológico foram avaliadas, tendo como manifestação alterações no traço de sonoridade. Os participantes eram crianças entre 5-7 anos, sendo 11 com Desenvolvimento Fonológico Típico e 5 com Desvio Fonológico. Os resultados, assim como nos estudos anteriores, comprovaram a diferença dos padrões acústicos nos dois grupos investigados. Os resultados obtidos no grupo controle evidenciaram tanto o VOT quanto a vogal adjacente à plosiva como marcas distintivas do vozeamento e apontaram a medida do VOT em plosivas vozeadas maior do que em não vozeadas e a vogal seguinte à plosiva sonora, mais longa do que a vogal seguinte à plosiva surda. Comparando-se os grupos desvio e controle, foram evidenciados valores estatisticamente significantes nas diferenças das medidas do VOT em vozeados, assim como na medida da oclusão dos mesmos fonemas. No entanto, a mesma diferença não foi verificada quando a medida foi realizada em fonemas não vozeados. A duração da vogal e a amplitude do burst igualmente não demonstraram diferenças relevantes. Mediant e tais resultados, os autores inferiram que a duração da vogal seguinte e a amplitude do burst sejam pistas acústicas secundárias para marcar o vozeamento no segmento. Os autores também destacam as dificuldades da produção do pré-vozeamento, ou seja, do VOT negativo em fonemas vozeados e correlaciona as dificuldades à incoordenação dos gestos glóticos e supraglóticos no intervalo necessário para produzir o vozeamento.

Nota-se que a medida do VOT parece ser um dos parâmetros mais utilizados na verificação do contraste do vozeamento, seguido do contexto vocalico do segmento analisado e presença da barra de vozeamento. O VOT relativo leva em conta a taxa de elocução da sujeito, ou seja, a velocidade de fala. Partindo de padrões acústicos de crianças de 6,8,10 e 12 anos de idade, foram constatadas diferenças significativas entre medidas de VOT absoluto e relativo no mesmo sujeito. A autora observou que a taxa de elocução aumenta com a faixa etária e atribui tal constatação a maturação do sistema motor da fala.

Este estudo se propõe a comparar características acústicas de oclusivas em falantes com e sem alterações na fala referentes ao traço de sonoridade. Acredita-se que os resultados desta investigação possam contribuir com estudos relativos ao padrão de aquisição e desenvolvimento da linguagem, além de subsidiar futuras propostas terapêuticas e preventivas no tratamento de indivíduos com trocas referentes ao traço de sonoridade.

MÉTODOS

Este estudo foi realizado em parceria com os laboratórios ACESIN-Laboratório de Acesso Sintático, Laboratório de Fonética Acústica e com o Ambulatório de Exames Complementares do curso de Fonoaudiologia, todos pertencentes à Universidade Federal do Rio de Janeiro. Esta pesquisa foi apreciada e aprovada pelo Comitê de Ética em Pesquisa do Instituto de Neurologia Deolindo Couto (INDC) da Universidade Federal do Rio de Janeiro sob o número 04235312.0.0000.5261. Os participantes, assim como seus responsáveis estavam cientes e informados a respeito do procedimento da pesquisa. O consentimento foi firmado com a assinatura do Termo de Consentimento Livre e Esclarecido (TCLE). Inicialmente participaram deste estudo 66 crianças estudantes de escolas públicas do Rio de Janeiro. Os critérios de inclusão adotados foram: faixa etária de 9 a 12 anos, lateralidade -dextra, ausência de déficits cognitivos ou uso de medicação neurológica. Foram excluídos participantes sinistros, com diagnóstico de Déficit Cognitivo, com perdas auditivas e com múltiplas trocas na fala.

Primeiramente foi aplicado o teste de fala ABFW com o objetivo de eleger as crianças com e sem trocas no traço de sonoridade. Admitiu-se trocas em ao menos um par mínimo (/v/ x /f/), em qualquer direção (dessonorização ou sonorização indevida). O teste consiste na apresentação de figuras para nomeação. A partir da aplicação do teste, 23 participantes foram selecionados para a pesquisa e classificados em 2 grupos: 8 crianças sem trocas na fala - grupo controle (GC) e 15 crianças com trocas na fala referentes ao traço de sonoridade - grupo desvio (GD). As crianças foram testadas na escola de origem. Uma vez selecionados os participantes, 5 crianças foram excluídos do GD por apresentarem múltiplas trocas ou recusarem a dar continuidade à pesquisa. Sendo assim, 18 participantes foram selecionados para o estudo. Em seguida foi realizada a audiometria tonal com o objetivo de verificar a integridade do sistema auditivo periférico.

Após a seleção dos grupos, em uma sala acusticamente tratada, foi realizado o Teste de Produção
Os participantes se posicionaram a uma distância de aproximadamente 40 cm da tela do computador. As figuras foram desenhadas a partir de um quadro de palavras com 27 pares mínimos, sendo estes substantivos contendo oclusivas nas 3 posições de tonicidade (tônica, pretônica e postônica) e nos 3 pontos de articulação (bilabiais, labiodentais, velares). As figuras foram randomizadas com a ajuda do programa Random Sequence Generator gerando 7 apresentações diferentes do mesmo teste. A Figura 1 demonstra a lista de palavras utilizada neste trabalho.

Fonemas	Tônica	Pré-tônica	pós-tônica
/p/ x /b/	panda-banda	potinho-botinho	trompa-tromba
/b/ x /p/	pomba-bomba	picada-bicada	tampa-taba
/t/ x /d/	tia-dia	tintinha-dindinha	quatro-quadro
/d/ x /t/	tênis-Dênis		gato-gado
/k/ x /g/	calo-galo	coleira-goleira	vaca-vaga
/g/ x /k/	cola-gola	cordão-gordão	barriga-barriga
/f/ x /v/	faca-vaca	farinha-varinha	
/v/ x /f/	foto-voto	faqueiro-vaqueiro	
/s/ x /z/	rocinha-rosinha	preço-preso	
/z/ x /s/	cinco-zinco	doce-doze	
/x/ x /j/	xis-giz	chapinha-japinha	queixo-queijo
/j/ x /x/	chuca-juca		

Figura 1. Lista de palavras dos estímulos

Os arquivos de áudio foram gravados com extensão .band e posteriormente a palavra alvo foi recortada para inspeção do fonema e analisada no Software de análise de acústica PRAAT. As medidas da duração total e duração relativa do VOT de oclusivas vozeadas e não vozeadas foram comparadas nos grupos controle e desvio. O vozeamento foi analisado em oclusivas com diferentes pontos de articulação e tonicidade. A medida de duração do VOT seguiu a convenção de Lisker e Abramson. Desta forma, a medida do VOT das oclusivas vozeadas se deu pela medida em ms do espaço entre o final da vogal anterior (final das estrias verticais mais escuras no espectrograma) e o burst (inclusive), sendo os valores negativos. A medida do VOT das oclusivas não vozeadas foi obtida medindo-se o espaço entre o burst (inclusive) e o início da vocalização da vogal seguinte (nível do 2o formante). Neste caso, geralmente há um retardo entre o burst e o início da vocalização. Uma vez que o burst é considerado o marco zero, como consequente, os valores numéricos serão positivos.

A fim de aumentar a fidedignidade dos achados, diminuindo a influência da taxa de elocução, foram feitas medidas de duração relativa do VOT de acordo com a fórmula:

\[\text{Duração relativa} = \frac{\text{duração da oclusiva}}{\text{duração da palavra alvo}} \times 100 \]

Os dados foram analisados pelo teste U de Mann-Whitney com nível de significância de 0,05. A mediana foi utilizada como medida de comparação para análise dos dois grupos.
RESULTADOS

O teste ABFW apontou 14 participantes com trocas na fala referente ao traço de sonoridade. Desta amostra, 4 participantes foram excluídos por apresentarem outras trocas associadas. A partir daí, foram selecionados os participantes do grupo controle (sem alterações – 8 crianças) e grupo desvio (com trocas no traço de sonoridade – 10 crianças).

A duração do VOT foi comparada entre os GC e GD em oclusivas vozeadas e não vozeadas. As tabelas a seguir demonstram os valores do VOT em ms nos grupos controle e desvio. Nas oclusivas vozeadas o valor numérico é negativo, enquanto que nas oclusivas não vozeadas o valor numérico é positivo. A Tabela 1 descreve os valores de VOT das oclusivas pretônicas vozeadas e não vozeadas comparando GC e GD.

Tabela 1. Valores de Voice Onset Time (VOT) em oclusivas pretônicas vozeadas e não vozeadas em Grupo Controle e Grupo Desvio

Ponto de articulação	vozeado	não vozeado				
	OBL	OVL	MÉDIA	OBL	OVL	MÉDIA
GC	-84,9	-75,9	-80,3	14	40	24,5
GD	-125,9	-112,8	-119,5	16	30	19,5
P valor	0,034*	0,0003*	0,0003*	0,404	0,095	0,552

Legenda: GC- grupo controle; GD- grupo desvio; OBL= oclusiva bilabial; OVL- oclusiva velar; MÉDIA- média de valores entre as oclusivas; VOT em ms; p-valor significante < 0,05 (5%) Teste U de Mann- Whitney e intervalo de confiança para a mediana.

A Tabela 2 descreve os valores de VOT das oclusivas tônicas vozeadas e não vozeadas comparando GC e GD.

Tabela 2. Valores de Voice Onset Time (VOT) em oclusivas tônicas vozeadas e não vozeadas em Grupo Controle e Grupo Desvio

Ponto de articulação	vozeado	não vozeado						
	OBL	OLID	OVL	MÉDIA	OBL	OLID	OVL	MÉDIA
GC	-116,5	-105,5	-83	-104	20	24,5	45,5	26,5
GD	-144,5	-147	-111	-126	12	15,5	33,5	17,5
P valor	0,197	0,078	0,038*	0,010*	0,051	0,456	0,035*	0,036*

Legenda: GC- grupo controle; GD- grupo desvio; OBL= oclusiva bilabial; OVL- oclusiva velar; MÉDIA- média de valores entre as oclusivas; VOT em ms; p-valor significante < 0,05 (5%) Teste U de Mann- Whitney e intervalo de confiança para a mediana.

A Tabela 3 descreve os valores de VOT das oclusivas postônicas vozeadas e não vozeadas comparando GC e GD.

Tabela 3. Valores de Voice Onset Time (VOT) em oclusivas postônicas vozeadas e não vozeadas em Grupo Controle e Grupo Desvio

Ponto de articulação	vozeado	não vozeado						
	OBL	OLID	OVL	MÉDIA	OBL	OLID	OVL	MÉDIA
GC	-52	-58,5	-47	-51	16	32	36	28
GD	-54,5	-69	-69	-65,5	16	18	25,5	20
P valor	0,316	0,589	0,014*	0,033*	0,528	0,327	0,165	0,060

Legenda: GC- grupo controle; GD- grupo desvio; OBL= oclusiva bilabial; OVL- oclusiva velar; MÉDIA- média de valores entre as oclusivas; VOT em ms; p-valor significante < 0,05 (5%) Teste U de Mann- Whitney e intervalo de confiança para a mediana.
A duração relativa do VOT foi igualmente comparada nos grupos controle e desvio e os resultados se encontram nas tabelas a seguir. A Tabela 4 descreve os valores de VOT relativos das oclusivas pretônicas vozeadas e não vozeadas comparando GC e GD.

A Tabela 5 descreve os valores de VOT relativos das oclusivas tônicas vozeadas e não vozeadas comparando GC e GD.

A Tabela 6 descreve os valores de VOT relativos das oclusivas postônicas vozeadas e não vozeadas comparando GC e GD.

DISCUSSÃO

O VOT tem sido apontado como uma importante pista acústica na distintividade entre oclusivas vozeadas e não vozeadas. Tal afirmação foi demonstrada em estudos fonéticos das diversas línguas, assim como em estudos sobre aquisição da linguagem sobre bilinguismo e sobre desvios da linguagem. O presente trabalho se ocupou do estudo do VOT em oclusivas em crianças com e sem trocas na fala no traço de sonoridade. A duração absoluta do VOT foi comparada entre os GC e GD em oclusivas vozeadas e não vozeadas. A literatura aponta a relação do aumento da duração do VOT em oclusivas vozeadas e não vozeadas com indivíduos com alterações no traço de sonoridade. Neste estudo as oclusivas foram analisadas de acordo a tonicidade e o ponto de articulação. Observou-se diferenças significantes na duração do VOT entre os dois grupos.
As análises apontaram que nas oclusivas pretônicas vozeadas houve diferença significante entre todos os pontos de articulação, assim como na média do somatório dos pontos de articulação das oclusivas, na qual foi observado aumento na duração do VOT no GD em relação ao GC. (Tabela 1) Já nas oclusivas pretônicas não vozeadas não houve diferença significante entre os grupos.

Nas oclusivas tônicas vozeadas foi observada uma diferença significante entre os grupos em oclusão velar e na média do somatório dos pontos de articulação das oclusivas, com aumento de duração no GD (Tabela 2). Nas oclusivas tônicas não vozeadas, o resultado se repetiu, porém com diminuição do VOT no GD.

Analisando mais uma variável, observa-se que em oclusivas postônicas vozeadas, assim como nas tônicas, foram encontradas diferenças significativas em velares e na média do somatório dos pontos de articulação das oclusivas. (Tabela 3).

Quanto às não vozeadas, não houve diferença significante entre os grupos. Os resultados corroboram estudos quanto ao VOT de oclusivas vozeadas14,15. Os autores apontaram aumento do VOT em indivíduos com trocas no traço de sonoridade. No presente trabalho, esse aumento se deu em todos os contextos de tonicidade e na média do somatório dos pontos de articulação, com prevalência para a oclusão velar. Os resultados parecem apontar o VOT como um elemento na marca de distintividade entre fonemas vozeados e não vozeados.

É importante destacar que, no caso de indivíduos com trocas na fala envolvendo o vozeamento, parece haver uma tentativa de marcar o vozeamento, com o prolongamento do VOT. Dessa forma, pode se supor que esta pista de vozeamento possa ser utilizada na terapia fonoaudiológica para aumentar a percepção do indivíduo com desvios na linguagem. Nota-se que alguns pacientes, apesar da dessonorização na emissão do fonema, reconhecem a diferença entre [faca] x [vaca], por exemplo; enquanto outros, são incapazes de fazer tal diferença. Baseado nos achados desse estudo, acredita-se que na prática fonoauditológica os exercícios de discriminação sonora de traços supra segmentares possam estar associados ao trabalho de discriminação do traço do vozeamento. Uma sugestão seria o treinamento auditivo com exercícios de percepção e imitação de traços supra segmentares com estímulos longo-curto.

Quanto ao VOT de oclusivas não vozeadas, houve diferença significante entre os grupos apenas no contexto tônico, com diminuição do VOT no grupo desvio. Outros trabalhos15,16 não encontraram diferenças significantes nos grupos estudados, mesmo tendo analisado o mesmo contexto fonético14.

Quanto à duração relativa do VOT, não houve diferença significante entre os grupos em oclusivas vozeadas em nenhum contexto fonético. (Tabelas. 4,5 e 6). No entanto, ocorreu tendência ao aumento do valor do VOT no GD em relação ao GC. O mesmo resultado surgiu nas análises da duração absoluta do VOT e foi corroborado com outros trabalhos envolvendo a duração absoluta do VOT15,16. O VOT relativo de oclusivas vozeadas de diferentes faixas etárias (6,8,10 e 12 anos) de falantes sem alterações na fala foi comparado e os resultados apontaram diferenças significantes entre os grupos para o segmento [b] e diferenças significantes limítrofes para [g]14. Pode-se supor que a não equivalência dos resultados do presente trabalho com o citado, pode ter ocorrido pelo fato da comparação ter sido com crianças de diferentes faixas etárias, sem alterações na fala.

Já em oclusivas não vozeadas, houve diferença significante entre os grupos em todos os contextos fonéticos, sendo na média do somatório dos pontos de articulação das oclusivas tônicas e postônicas e ainda em oclusivas velares pretônicas e tônicas. Assim como no VOT absoluto de oclusivas não vozeadas, houve redução do VOT relativo do GD em relação ao GC. O VOT relativo de oclusivas não vozeadas de diferentes faixas etárias, falantes sem alterações na fala foi comparado e não foram encontrados resultados estatisticamente significantes entre as faixas etárias, exceto para o segmento [p] comparando os grupos de 6 e 8 anos ao grupo de adultos14. A autora sugere cautela na análise dos resultados, uma vez que, de forma absoluta, as oclusivas não vozeadas apresentaram diferenças estatísticas entre si. Mais uma vez, os resultados do presente trabalho não vão de encontro ao da pesquisa citada. No entanto, os mesmos reforçam os achados no VOT absoluto de oclusivas não vozeadas.

Os dados acima mencionados parecem reforçar a diferença de VOT nos grupos estudados, tanto na duração absoluta quanto na relativa, ainda que a taxa de elocução, representada pelo VOT relativo, não tenha demonstrado resultados consistentes em toda a análise.

CONCLUSÃO

Os resultados apontam para um padrão acústico específico de distintividade em crianças com alterações...
no traço de sonoridade em relação a outros falantes da língua. Os resultados de medidas de VOT absolutas se mostraram mais robustos do que do VOT relativo na comparação entre os grupos analisados.

REFERÊNCIAS

1. Saffran JR, Aslin RN, Newport EL. Statistical learning by 8-month-old infants. Science. 1996;274(5294):1926-8.
2. Eimas PD. The perception of speech in early Infancy. Scientific American. 1985;252(1):46-52.
3. Eimas PD, Siqueland E, Jusczyk P, Vigorito J. Speech perception in infants. Science.1971;171(3968):303-6.
4. Hale M, Kissock M. Perception of non-native phonological contrasts: evidence from and for featural representations. Fifteenth Manchester Phonology Meeting; 2007 May 24-26, Manchester.
5. Werker JF, Tees RC. Cross-language speech perception: evidence for perceptual reorganization during the first year of life. Infant behav dev.1984;7(1):49-63.
6. Lisker L, Abramson AS. A cross-language study of voicing in initial stops: acoustical measurements. WORD. 1964;20(3):384-422.
7. Lofredo-Bonatto MTR. Vozes infantis: a caracterização do contraste de vozeamento das consoantes plosivas no português brasileiro na fala de crianças de 3 a 12 anos [tese]. São Paulo (SP): Pontifícia Universidade Católica; 2007.
8. Fátima MD, Oliveira M, Lousada M, Jesus LMT. Análise temporal das oclusivas orais do português europeu: um estudo de caso de normalidade e perturbação fonológica. Rev. CEFAC. 2007;9(2):154-63.
9. Ladefoged P, Johnson K. A course in phonetics. Stamford: Cengage Learning; 2014.
10. Chodroff E, Wilson C. Burst spectrum as a cue for the stop voicing contrast in American English. J Acoust Soc Am. 2014;136(5):2762-72.
11. Cho T, Ladefoged P. Variation and universals in VOT: evidence from 18 languages. JP. 1999;27(2):207-29.
12. Leite AF, Silva SB, Oliveira e Britto ATB, Di Ninno CQMS. Lisp characterization of patients from the Centro Clínico de Fonoaudiologia. Rev. soc. bras. fonoaudiol. 2008;13(1):30-6.
13. Cristofolini C, Seara IC. Características acústicas de consoantes plosivas e fricativas produzidas por crianças de 6 e 12 anos: período de refinamento articulatório? Verba volant. 2012;3(1):55-71.
14. Cristofolini C. Gradiência na fala infantil: caracterização acústica de segmentos plosivos e fricativos e evidências de um período de refinamento articulatório [tese]. Florianópolis (SC): Universidade Federal de Santa Catarina; 2013.
15. Britto AT. O estudo do contraste do vozeamento em sujeitos com e sem desvio fonológico. [tese] Belo Horizonte (MG): Pontifícia Universidade Católica; 2010.
16. Mota HB, Paula A, Mezzomo CL. Mudanças fonológicas na terapia de sujeitos com desvio fonológico utilizando “contraste” e “reforço” do traço [voz]. Letras de hoje. 2008;43(3):7-14.
17. Melo RM, Mota HB, Mezzomo CL, Brasil BC, Lovatto L, Arzeno L. Parâmetros acústicos do contraste de sonoridade das plosivas no desenvolvimento fonológico típico e no desviante. Rev. soc. bras. fonoaudiol. 2012;17(3):304-12.
18. Wertzner HF. Fonologia. In: Andrade CRF (org). ABFW - Teste de linguagem infantil nas áreas de fonologia, vocabulário, fluência e pragmática. São Paulo: Pró-Fono; 2006. p.5-40.
19. Ramone L. Nativos entre nativos: especializações acústicas de falantes com trocas no traço de sonoridade [tese]. Rio de Janeiro (RJ): Universidade Federal do Rio de Janeiro; 2014.
20. Random.org. [homepage na Internet] RandomIntegerGenerator [acesso em 2013 ago 20]. Disponível em: http://www.random.org/integers/.
21. Ladefoged P, Cho T. Linking linguistic contrasts to reality: The case of VOT. UCLA: WPP. 2000:XXX(1954):212-25.
22. Cristofolini C. Trocas ortográficas: uma interpretação a partir de análise acústica [Dissertação]. Florianópolis (SC): Universidade Federal de Santa Catarina; 2008.