Lumbar Disc Herniation in Tae Kwon Do Athletic Child

Sung Hoon Kim, M.D., Ph.D.,1 Hyeun Sung Kim, M.D., Ph.D.,2 Seok Won Kim, M.D., Ph.D.1

Department of Neurosurgery,1 College of Medicine, Chosun University, Gwangju, Korea
Department of Rehabilitation,2 Wonju College of Medicine, Yonsei University, Wonju, Korea
Department of Neurosurgery,3 Heori Sarang Hospital, Daejeon, Korea

INTRODUCTION

Lumbar disc herniations are rare in children and adolescents. Although the true incidence is not known, the incidence of lumbar disc herniation in children and adolescents has been reported to be less than 2.9%2. Moreover, there have been only six cases of lumbar disc herniation in children younger than 10 years of age reported in the English literature1,10-14. The clinical presentation and etiology of lumbar disc herniation in children may be different from adults. Traumatic or sports related injury constitutes the main causes of disc herniation; this is different from the adult where degenerative changes are the dominant etiology. Here, a 7-year-old Tae Kwon Do (Korean martial art) athletic child with a lumbar disc herniation is reported. The clinical features, differential diagnosis, and the importance of conservative treatment in children are discussed with a review of the literature.

CASE REPORT

A 7-year-old boy, with blue belt in Tae Kwon Do, present-
degrees. The patient was transferred to the rehabilitation department for more aggressive therapy. Intermittent lumbar traction and side posture lumbar spinal manipulation therapy were added to the regimen two times per week. At the end of two months, the child was able to touch his ankles with the tip of his fingers. The left SLRT was positive at 70 degrees. Suspension manual therapy (SMT) and exercises two times per week for the next four weeks were continued. At the end of three months, the patient was nearly recovered and could start slight running. At this time, the left SLR showed no restriction. At the six months follow up, he was pain free with no restriction of the left leg. However, discontinuation of Tae Kwon Do was recommended due to the burden to his lumbar spine.

DISCUSSION

The incidence of lumbar disc herniation in adolescents and children is very low; it accounts for 0.5% to 3.8% of cases with herniated discs in a large series. Moreover, the occurrence of lumbar disc herniation in patients less than 10 years of age is extremely rare. There have been only six case reports in the English literature of patients younger than 10 years of age (Table 1). The clinical presentation of lumbar disc herniation is not always the same for young children and adults. Children with lumbar disc herniation may have no apparent radiating leg pain or signs of neurological deficits. This may contribute to the delay of the diagnosis in children. The rate of trauma is increased among adolescents and children. Sports related activity and obesity have also been etiologic factors for lumbar disc herniation in adolescents and children. In the present case, the precipitating factor was the flying hooking kick without warm-up. This kick includes jumping from a standing position, 90 degrees rotation of the trunk in the air and execution of the kick at the highest point of the jump. This causes rotation and flexion of the lumbar spine. The annulus fibrosis of the lumbar spine is most vulnerable during rotation and flexion. The other contributing factor might have been the landing from the jump, which results in compressive forces acting on the intervertebral disc. In this case, the combination of these forces probably caused the lumbar disc herniation and a history of repetitive trauma was likely the cause of the degenerative changes at multiple levels of the spine. The important disorders to rule out are apophyseal ring fractures, infections and tumors of the spine causing a

![Fig. 1. Simple radiographs showed the decreased lumbar lordosis as a result of muscular spasm and the antalgic posture of the patient.](image)

![Fig. 2. Magnetic resonance images of the patient. A: T2 sagittal magnetic resonance image reveals severe degenerative change at L2-L3, L3-L4, and L4-L5 levels and disc protrusion at L3-L4 level. B and C: T1 and T2 axial magnetic resonance images show left posterolateral disc protrusion at L3-L4 level.](image)

Table 1. Previously reported cases of lumbar disc herniation in children younger than 9 years old

Reference number	Age/Sex	Trauma or sports injury	Level	Operation	Follow up	Result
1	1/M	Fall from the standing position	L5-S1	Yes	3 months	Good
10	3.8/M	Arising from seat	L4-L5	Yes	2 weeks	Good
11	9/F	No	L4-L5	Yes	6 years	Good
12	9/M	Sports	L4-L5	Yes	1 year	Good
13	6/M	Car accident	L5-S1	Yes	3 months	Good
14	2.5/M	Fall from cradle	L4-L5	Yes	7 years	Good
Present case	7/M	Sports	L3-L4	No	6 months	Good
CONCLUSION

The possibility of lumbar disc herniation and degenerative changes related to sports injuries should be kept in mind in even a young child. Conservative treatment is a reasonable treatment option in young children with no significant neurological deficits.

References

1. Benifla M, Melamed I, Barrely R, Aloussin A, Shelef I: Unilateral partial hemilaminectomy for disc removal in a 1-year-old child. J Neurosurg Pediatr 2: 133-135, 2008
2. Bradford DS, Garcia A: Lumbar intervertebral disk herniations in children and adolescents. Orthop Clin North Am 2: 583-592, 1971
3. Bulos S: Herniated intervertebral lumbar disc in the teenager. J Bone Joint Surg Br 55: 273-278, 1973
4. Bunnell WP: Back pain in children. Orthop Clin North Am 13: 587-604, 1982
5. DeOrio JK, Bianco AJ Jr: Lumbar disc excision in children and adolescents. J Bone Joint Surg Am 64: 991-996, 1982
6. Ghabrial YA, Tarrant MJ: Adolescent lumbar disc prolapsed. Acta Orthop Scand 60: 174-176, 1989
7. Ginsburg GM, Bassett GS: Back pain in children and adolescents: Evaluation and differential diagnosis. J Am Acad Orthop Surg 5: 67-78, 1997
8. Hession EF, and Donald GD: Treatment of multiple lumbar disc herniation in an adolescent athlete utilizing flexion distraction and rotational manipulation. JMPT 16: 185-192, 1993
9. Ishihara H, Matsui H, Hirano N, Tsuji H: Lumbar intervertebral disc herniation in children less than 16 years of age. Long-term follow-up study of surgically managed cases. Spine (Phila Pa 1976) 5: 443-451, 1980
10. King AB: Surgical removal of a ruptured intervertebral disc in early childhood. J Pediatr 55: 57-62, 1959
11. Kurihara A, Kataoka O: Lumbar disc herniation in children and adolescents. A review of 70 operated cases and their minimum 5-year follow-up studies. Spine (Phila Pa 1976) 5: 443-451, 1980
12. MacGee EE: Protruded lumbar disc in a 9-year-old boy. J Pediatr 73: 418-419, 1968
13. Martinez-Lage JF, Fernández Cornejo V, López F, Pozo M: Lumbar disc herniation in early childhood: case report and literature review. Childs Nerv Syst 19: 258-260, 2003
14. Revuelta R, De Juambelz PP, Fernandez B, Flores JA: Lumbar disc herniation in a 27-month-old child. Case report. J Neurosurg 1 Suppl 92: 98-100, 2000
15. Tibbles AC, Cote P, Cassidy JD, Donat J: Adolescent apophyseal ring fracture simulating lumbar disc herniation: a case report. J Can Chiropr Assoc 36: 11-16, 1992