Development and testing of the genetic algorithm to select a scenario of distributed generation power supply system

Tatyana Bugaeva 1*, Alexandr Khabarov 1, Olga Novikova 1, Uliyana Plotkina 1

1 Peter the Great St. Petersburg Polytechnic University, Politechnicheskaya st., 29, St. Petersburg, 195251, Russia

* E-mail: bugaeva@spbstu.ru

Abstract. The rapid development of small distributed energy economy requires the justification and design of methods and models for planning the development of energy systems using distributed generation sources. We have studied the possibility of using the genetic algorithm to solve the problem of selecting a scenario of distributed generation power supply system. To do this, a problem-solving mechanism was developed in the MATLAB environment based on the genetic algorithm and its program code was built. In order to test the created genetic algorithm for a hypothetical large consumer of electrical and heat power with typical load curves, an optimal scenario of a power supply system based on distributed generation was searched. The analysis of the calculation results carried out using the proposed algorithm, evaluation of the model's behavior when the initial data changes, indicate its efficiency and effectiveness.

1. Introduction

Consumers’ transition from the solely centralized power supply to the use of on-site generating plants for full or partial meeting the needs of heat and electrical power is an actively developing global trend [1–3]. One of the reasons for the increased popularity of small distributed energy is the economic benefit associated primarily with increasing the energy efficiency of facilities and the reliability of their energy supply [4, 5], and the systemic impact for the region’s energy system as a whole [6, 7].

The problem for selecting a scenario of the distributed generation (DG) power supply system is difficult due to the infinite variety of possible solutions, a number of which is provided for a large number of factors influencing the selection result [8–10]. So, for example, if the implementation of on-site generating facilities is considered to meet the need for electric and heat power with the possibility of placing one to five generating plants at five different sites, then, conventionally speaking, the problem comes down to analyzing of many thousands of scenarios. The final result depends on many factors, such as load curves, technical limits (capacity of transformers and transmission lines, equipment location, fuel supply, etc.), customer’s economic opportunities, long-term plans, etc. There are no analytical solutions of problems of this kind, and search of all possible scenarios requires an enormous amount of machine time and can only be used in practice for solving the elementary problems with a small number of possible scenarios.

Based on the previous experience, the authors study the possibility of using a genetic algorithm to optimize a distributed generation power supply mains.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
2. Problem definition
The modeling problem is to determine the optimal distribution generation mains structure (selection of a location, a number and type of DG sets) taking into account the possibility of purchasing energy from the utility company and selling excess energy to a third-party consumer under the market conditions. It is necessary to take into account the integer variables (a number of sets and their rated power row), probability of local extremes of the objective function, uneven and in many cases stepwise and intermittent changes in the system properties, a large number of different scenarios of a number, type and location of the blocks. Methods of selecting and designing power supply systems using various optimization techniques are widely described in the literature [11–14].

2.1. Objective function
As a rule, the DG implementation does not require a large scope of construction and commissioning works, therefore, investments in building of power plants and their commissioning are carried out in one year, and sometimes – in months. The generation implementation to cover own needs does not bring profit in an explicit form, and the effectiveness of such measures should be evaluated in the form of savings compared to the cost of purchasing energy from the utility company. In case the excess energy may be purchased to a third-party consumer, this should be taken into account when calculating.

As a optimality criterion, the minimum of reduced costs was adopted [15]:

\[C_{R} = \frac{1}{T} \cdot I + C_{op}, \]

where \(C_{R} \) is the total investment in the construction and commissioning of the DG facility; \(C_{op} \) are annual costs, also taking into account the sales proceeds from the electric or heat energy to a third-party consumer, and the estimated cost of purchasing the consumed energy from the utility company without using the distribution generation DG (to determine savings); \(T \) is a design service life or other estimated length of time.

2.2. Limitations
When optimizing the DG mains, taken into account the following limitations [16, 17]:
- for a number of sets on one site and final number of equipment sites, it is also necessary to ensure that these values have a non-negative value;
- for a power lines capacity determined by the long-term permissible current, therefore, when building a model, it is necessary to check the condition that the transmission is not overloaded;
- generator power can not take negative values
- equality at any time of generation and consumption power (taking into account a power received from and delivered to the mains).

3. Method
A common and extremely effective method for solving problems of optimization and modeling of complex systems is the genetic algorithm (GA). The principles laid down in the GA are simple, in many cases, they are similar to the processes occurring in populations of living beings [18, 19]. The search for a solution associates the evolution with its characteristic generation of individuals, mutations, and natural selection.

The main stages of building the genetic algorithm are described in detail in the literature and are listed below [20–22]:
- formation of a new generation;
- objective function calculation;
- sorting individuals according to their degree of fitness;
- cross operation;
- mutation;
• completion (stop) of the calculation.

Parameters of the developed GA: population size – 1000 individuals; a proportion of descendants in the population – 20%; a proportion of mutant individuals in the population – 35%; stop criterion – 4.

To build the model, the MathWorks development environment and the MATLAB programming language were chosen. This software product has a built-in function that implements a genetic algorithm, however, as part of the study, for the most complete and deep understanding of the method used, the GA was built using open code. A similar approach allowed for detailed monitoring of the calculation parameters, to perform the necessary intermediate results that are necessary for program debugging and analyzing the effectiveness and applicability of the GA method for solving the problem.

4. Calculation results

4.1. Calculation conditions

A large electrical and heat power consumer, which has the typical curve of electrical and heat loads, and is located at a some distance from large cities, was selected as a calculation example. Rates and prices for resources, equipment and fuel are determined as typical values of these indicators for the European part of Russia.

To study the possibility for using the model to solve the given task, the calculations were carried out under the following scenarios:

• “Scenario 1” – the initial data for calculations under the baseline scenario are given in Table 1-5, the scenario provides for the possibility of transferring excess heat and electrical power to third-party consumers.

• “Scenario 2” – compared to the first scenario, there is no possibility of transferring excess heat and electrical power to third-party consumers.

• “Scenario 3” — compared to the first scenario, the gas rate was increased by 20%.

Table 1. Parameters of cogenerators which are being used.

Grade	Power, kW	Price, thous. rub.	Weight, kg
Caterpillar G3512	770	27866	9166
Caterpillar G3508	510	9560	7626
Caterpillar G3412C	360	7640	6356
Caterpillar G3406	103	4120	4082

Table 2. Initial calculation parameters.

Parameters	Value	Unit of measurements
Period under review	6.5	year
Electrical efficiency of cogenerators	0.391	p.u.
Heat efficiency of cogenerators	0.447	p.u.
Rate for connection to electric mains	18.578	thous. rub./kW
Rate for mains redundancy	15.5	thous. rub./kW
Rate for power purchase	0.00353	thous. rub./kWh
Rate for power supply	0.0015	thous. rub./kWh
Natural gas price	5747	rub./thous. m³
Parameters	Value	Unit of measurements
------------------------------------	--------	----------------------
Rate for heat power purchase	1.62	thous. rub/Gcal
Rate for heat power supply	0.52	thous. rub/Gcal
Winter share in year duration	0.6	p.u.

Table 3. Maximum consumer load and maximum possible number of sets in the network nodes.

Node	Maximum electrical load kW	Maximum heat load Gkal/h	Maximum possible number of sets (a number of sites)
No. 1	630	0.62	3
No. 2	1860	0.83	3
No. 3	762	0.31	2
No. 4	926	0.41	2

Table 4. Length of communication between the network nodes, m.

Indicator	Value
Length of communications between the connection point and the first node	600
Length of communications between the connection point and the second node	400
Length of communications between the second and third nodes	400
Length of communications between the second and forth nodes	550

Table 5. Daily load curve factors.

Schedule	Electric load curve factors	Heat load curve factors
Winter-day	0.95	0.9
Winter-night	0.25	0.9
Summer-day	0.7	0.15
Summer-night	0.15	0.15

4.2. Calculation results

Basic results of calculation performed with the developed algorithm are given in Table 6.

Table 6. Calculation results.

Indicator	Scenario 1	Scenario 2	Scenario 3
Installed capacity, kW:			
Assembly No. 1	1530	1020	1020
Assembly No. 2	1530	1020	1020
Assembly No. 3	1020	1020	1020
Assembly No. 4	1020	1020	1020
Indicator	Scenario 1	Scenario 2	Scenario 3
-----------------------------------	------------------	------------------	------------------
Generator type	Caterpillar G3508	Caterpillar G3508	Caterpillar G3508
Fuel costs, thous. rub.	58761.9	31097.2	70754.4
Cash flow from the electric power purchase/sale (“+” costs, “-” revenue), thous. rub.	-37917.6	-	-24514.7
Cash flow from the heat power purchase/sale (“+” costs, “-” revenue), thous. rub.	-21181.3	3942.6	-15699.5
Given annual costs, thous. rub.	26775.9	54681.9	55598.1

The performed studies allow making a conclusion that the model adequately presents the properties of the electric power system under studying.

In the first scenario, despite the extremely low rate value for power supply to a third-party consumer, it is rational to supply an energy part to the mains, which indicates the low cost of power produced at its own power station based on gas engine generators. For comparison note that annual costs for facility power supply would be 66,212 rub, when powered from the mains as per the adopted rate. The most profitable was the use of Caterpillar G3508 generating sets with nominal capacity of 510 kW. This result is a consequence of the lowest specific investments.

The inability to transfer excess electrical and heat power energy to third-party consumers in the second scenario led to decreasing the installed capacity. The total installed capacity of the sets is 4,080 kW, which is sufficient for self-sufficiency with the peak load of 3,969 kW preset by the initial conditions. An amount of generated heat energy by means of cogeneration to cover the facility needs is not enough; in this case it is most efficient to purchase heat from the utility company.

The gas prices increase in the third scenario led to increasing in operating costs in terms of fuel costs. The scope of electrical and heat energy supplied to third-party consumers has decreased in comparison with the first scenario, which is explained by the increase in the prime cost of own production of energy resources. The construction and operation of two “additional” sets in this scenario is inexpedient.

5. Conclusion
In this study, the genetic algorithm was developed and tested to select a scenario of distributed generation power supply system. To implement the algorithm in the environment MATLAB, the program code was created. The genetic algorithm has showed extremely high efficiency in solving these problems; its flexibility and versatility make it possible to adapt the mathematical model to absolutely any design conditions. The GA is the only method for optimization of the mathematical model without any restrictions on the objective function type.

The work is the result of synthesis of knowledge in various fields of science, such as economics, energy and computer.

References
[1] Borbely A M and Kreider J F 2001 Distributed Generation the Power Paradigm of the New Millenium (Boca Raton: CRC Press)
[2] Shabunina T V, Shchelkina S P and Rodionov D G 2017 Academy of Strategic Management Journal 167176–185
[3] Bataev A V 2018 Proc. 31st Intern. Busin. Inform. Manag. Ass. 61–71
[4] Voropai N I 2005 Proc. Int. Conf: Malaya Energetika 30–42
[5] Neuschloss J and Ryapin I Yu 2012 Energy saving Journal 718–25
[6] Bartolomey P I, Panikovskaya T Yu and Chechushkov D A 2010 Proc.Symp. Russian power industry in the XXI Century 21
[7] Khabachev L D, Plotkina U I, Bugaeva T M and Yurkova A B 2017 IEEE 6th Int. Conf.: Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 188–193

[8] Malevksaia-Malevich E D, Leonov S A and Zaborovskii D 2018 Proc. 31st Int. Busin. Inform. Manag. Ass. 5620–5625

[9] Tarasenko V V 2012 Optimization of Development and Distributed Generation Power Supply System Functioning (Chelyabinsk: South Ural State University (national research university))

[10] Alarcon-Rodriguez A, Ault G and Galloway S 2010 Renewable and Sustainable Energy Reviews Journal 14 (5) 1353–1366

[11] Zeilinger A N, Khabachev L D and Lisochkina T V 1977 Economic Basis for Optimization and Designing of Power Supply Systems (Leningrad: LPI)

[12] Kuporov J J, Kudryavtseva T J and Gorovoy A A 2018 Proc. 31st Intern. Busin. Inform. Manag. Ass. 929–940

[13] Li H, Nalim R and Haldi P A 2006 Applied Thermal Engineering Journal 26 (7) 709–719

[14] Ren H and Gao W 2010 Applied Energy Journal 87 (3) 1001–1014

[15] Abusoglu A and Kanoglu M 2009 Renewable and Sustainable Energy Reviews 13 (9) 2295–2308

[16] Voropai N I et al 2015 Justification of Electrical Power Supply Systems Development: Methodology, Models, Methods, and their Application (Moscow: Nauka)

[17] Selentyeva T, Ivanova M and Kulibanova V 2018 Proc. 31st Intern. Busin. Inform. Manag. Ass. 1963–1966

[18] Henning D, Amiri S and Holmgren K 2006 European Journal of Operational Research 175 (2) 1224–1247

[19] Coello C A C 2006 IEEE Computational Intelligence Magazine 1 (1) 28–36

[20] Panchenko T V 2007 Genetic Algorithms (Astrakhan: Astrakhan University Publishing House)

[21] Chung T S, Li Y Z, Wang Z Y 2004 International Journal of Electrical Power & Energy Systems 26 (8) 655–659

[22] Konak A, Coit D W and Smith A E 2006 Reliability Engineering & System Safety 91 (9) 992–1007