Promising Indicators in Probiotic-recommendations in COVID-19 and its Accompanying Diseases

Vardan Tsaturyan1,2®, Almagul Kushugulova3, Susanna Mirzabekyan4, Ketevan Sidamonidze5, David Tsereteli6®, Tamas Torok7, Astghik Pepoyan8®

1Department of Military Therapy Yerevan State Medical University, Yerevan, Armenia; 2International Association for Human and Animals Health Improvement, Yerevan, Armenia; 3Centre for Life Science, National laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan; 4Department of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia; 5Lugar Center for Public Health Research, Tbilisi, Georgia; 6Department of Communicable Diseases, National Centre for Disease Control and Public Health, Tbilisi, Georgia; 7Lawrence Berkeley National Laboratory, Berkeley, California, United States

Abstract

Scientific data suggests the possible beneficial role of probiotics in treatments for COVID-19, but the species/strains-specificity and disease-specificity of probiotics need high attention in choosing the appropriate probiotic in diseases, in particular in the COVID-19. We hope this review will raise awareness of the COVID-19 probiotic recommendations, highlighting the latest scientific information about virus/hydrogen peroxide/probiotics and the importance of finding out of a specific “criterion” for the probiotics’ recommendation in this disease.

Introduction

Literature data indicate an association between COVID-19 severity and diabetes [1], [2]. Most COVID-19 patients are prone to impaired glucose metabolism; glycemic testing and control are important even if the patients have no pre-existing diabetes [3]. Furthermore, hypertension [1], [4], acute coronary syndrome [5], rheumatic [6], gastrointestinal [7], and neurologic features [8], [9] in SARS-CoV-2 infection have been reported. Potential associations between host blood characteristics and gut bacteria [10], [11], [12], as well as between gut microbiota and COVID-19 – accompanying diseases have been actively discussed [13]. Sever childhood respiratory illness in association with vitamin D deficiency has also been shown [14]. The clinical trials and experimental studies on COVID-19 treatments are ongoing worldwide, increasing the obtained information on infected people, blood and organ system, genomics, and metabolomics. Despite of a safe and efficacious vaccines, respiratory tract infections will remain of concern for high morbidity and mortality rates among the elderly due to low level vaccine-induced immune response [15], [16]. Recently collected data appear to confirm the possible beneficial role of probiotics in treating COVID-19 patients [17], [18]; however, there is insufficient scientific evidence specific to COVID-19. Therefore, species/strain- and disease-specificity of probiotics need more attention [19]. Probiotics may have beneficial, harmful, or neutral impact on the host. For example, in an in vivo study of their radio-protective/protective characteristics, 17 putative probiotic lactobacilli, including the strain Lactobacillus acidophilus DDS®-1 (from Lacto-G, a marketed symbiotic formulation), the commercial probiotic product Narine® (L. acidophilus INMA 9602 Er-2

Open Access Maced J Med Sci. 2022 Jan 17; 10(B):625-631.
strains 317/402), and several strains of Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus casei, Lactobacillus fermentum, Lactobacillus delbrueckii, and Lactobacillus helveticus, have shown varying impact on 4.5 Gy, whole-body X-ray irradiated rats before and after the irradiation [20]. In addition, since COVID-19 patients may rapidly “transform” their physiological state following an infection by the virus, potential probiotic-effects and the individual dietary, nutritional, medical, lifestyle, and environmental risks should be carefully investigated before any recommendation. Since it was recognized that the SARS-CoV-2 pandemic has been particularly deadly in older adults [21], [22], we hope to raise awareness about probiotics for COVID-19 patients and highlight the possible importance of hydrogen peroxide production for any probiotics recommendation in this disease.

Probiotics/Immunobiotics

Nowadays, the interaction of probiotics with the SARS-CoV-2 spike (S) proteins [22] and with the gut microbiome [23], [24], [25] is at the attention of the researchers. In general, the benefit of probiotics is determined by the complex interactions between probiotic bacteria, the host intestinal microbiota, and the gut epithelium [23], [24], [25]. Frequently, probiotic lactobacilli are able to (i) promote the expression and regulation of tight junctions and adherent junctions, resulting in the restoration of a defective epithelial barrier and (ii) interact with immune cells through pattern recognition receptors, such as Toll-like receptors, which on activation stimulate or suppress various immune responses [26], emphasizing host gut-blood [27], and gut-brain [28] linkages. Probiotic immunobiotics beneficially regulate the mucosal immune system [29] and have valuable antagonistic potential against nosocomial pathogens. Among the many proposed mechanisms by which immunobiotics mediate their effects is the modulation of the innate immune response both by anti-inflammatory [30], [31] and pro-inflammatory effects [32]. In addition, immunobiotics have been shown to enhance the adaptive immune response, for example, antibody formation [33]. Inhibition of adherence, attaching, and effacing microorganisms [34], modulation of mucosal barrier function [35], or inhibition of trophic migration [36] may also be important mechanisms, whereby immunobiotics may influence intestinal diseases [37]. There is also strong evidence that signaling molecules/determinants are preserved in immunobiotic strains [38], and certain immunogenic strains enhance immune function, especially in subjects with less than adequate immune response [39].

Human Viral Diseases, Oxidative Stress, Hydrogen Peroxide, and Probiotics

The prevalence of chronic diseases increases with age. Increased production of reactive oxygen species is involved in the pathogenesis of cardiovascular diseases, such as coronary atherosclerosis, hypertension, diabetic vascular complications, and heart failure [40]. These are also known risks for potentially worse COVID-19 outcome. The patients with severe COVID-19 history have also often been found to have elevated D-dimer, troponin, ferritin, C-reactive protein, and alanine aminotransferase [41], and circulating endothelial cell levels [42], as well as vitamin D deficiency [14]. It seems that there is a link between oxidative stress and a variety of pathological conditions, including COVID-19 [43] and its accompanying diseases, such as diabetes [44], hypertension [45], acute coronary syndrome [46], rheumatic [47], gastrointestinal [48], or neurologic features [49].

Both enzymatic and non-enzymatic pathways are involved in endogenous antioxidant defense mechanisms. The enzymes superoxide dismutase, catalase, the prosthetic group Se-containing glutathione peroxidase, and glutathione reductase are common antioxidants; important in endogenous antioxidant defense systems [44]. Iron is an essential element for virtually all cell types due to its role in energy metabolism, but free iron may induce cellular and organ damage through the free radicals [50]. Peroxidase uses various organic compounds: Polyphenols, aromatic amines, ascorbic acid, etc., to destroy hydrogen peroxide and organic peroxides (oxygen donors), and to form a high valent iron intermediate named Compound I. In erythrocytes and some other tissues, glutathione peroxidase protects membranes and hemoglobin from oxidation by peroxides. Peroxisomes, the cell organelles known as important centers in innate immune-, lipid-, inflammatory-, and redox-signaling networks [51], by regulating their number, shape, and protein content in response to changing environmental conditions [52], have the intrinsic ability to mediate and modulate H_2O_2-driven biological processes [53].

Free radicals/other reactive oxygen and nitrogen species show a double role, causing oxidative damage/tissue dysfunction and serving as molecular signals activating beneficial stress responses [54], [55]. H_2O_2 emerged as a major redox metabolite operative in redox sensing, signaling, and regulation [56]. Its action mainly depends on the cellular context, its local concentration, and the kinetics of its production and elimination [57]. Interestingly, long-lasting blood pressure lowering effects of nitrite are NO-independent and are mediated by hydrogen peroxide, persulfides, and oxidation of protein kinase G1α redox signaling [58]. Although H_2O_2 is a strong oxidizing agent, it can accumulate in cells and tissues to relatively high concentrations due to it
slow reaction kinetics with most biomolecules. The removal of excess H$_2$O$_2$ by antioxidant enzymes is therefore central in minimizing cellular damage [59].

Beside the endogenous H$_2$O$_2$ produced by immune cells to kill pathogenic microbes, to inhibit other competing bacteria, lactic acid bacteria also produce H$_2$O$_2$, using different enzymes that include pyruvate oxidase, lactate oxidase, NADH oxidase, and NADH flavin-dependent reductases [60]. There are indications that H$_2$O$_2$-producing lactobacilli in the intestine play an important role in the repair of intestinal damage [61], whereas H$_2$O$_2$-producing lactobacilli in the vagina control the growth of pathogenic bacteria and prevent tumorigenesis [62]. Unfortunately, pathogenic Streptococcus pneumonia (through SpxB) and Streptococcus pyogenes (through LacD) are also known to produce H$_2$O$_2$, possibly through the lactate oxidation pathway [63]. While the host interactions in general are unclear, it was shown that H$_2$O$_2$ released by Streptococcus pneumonia inhibits host inflammasomes and is responsible for pathogen colonization [64]. Blockage of inflammasome activation by the oral commensal H$_2$O$_2$-producing bacterium Streptococcus oralis was also reported [64].

There are numerous reports indicating the role of hydrogen peroxide in viral inactivation and in virus-host interaction. For example,

- Herpes simplex virus 1-associated catalase may protect the virus from inactivation in an oxidizing environment outside a host cell [65];
- Uncontrolled concentrations of H$_2$O$_2$ promote translation by the internal ribosome entry site element of hepatitis C virus in tissue-cultured cells through adaptation of oxidative stress in the host cell by mediating La cytoplasmic shuttling [66];

The addition of polyethylene glycol-conjugated catalase increased the specific enzyme activity, which, in turn, along with a respiratory syncytial virus (RSV) infection decreased H$_2$O$_2$ in the airways, and had an important defensive impact on RSV-induced disease/pathology. Therefore, it was concluded that the addition of catalase might represent a new pharmacological approach that should be studied in humans for the prevention and treatment of respiratory infections caused by RSV [67];

- H$_2$O$_2$-producing lactobacilli in the vagina may control genital HIV-1 shedding [68], the growth of several pathogenic bacteria, and may prevent tumorigenesis [62]. Along these ideas, Krüger and Bauer showed that the lactobacilli-origin H$_2$O$_2$ intrinsically is not likely to assist the vaginal epithelium, as it origins apoptosis both in non-transformed and in transformed cells [69]. The authors suggested that a combination of lactobacilli and peroxidase, that is, the situation actually found for tumor tissue in vivo, leads to the conversion of H$_2$O$_2$ to HOCl which does not affecting on non-malignant cells. When malignant cells, due to the abundance of extracellular peroxide anions, allow the formation of apoptosis. Subsequently, the combination of peroxide producing lactobacilli and peroxidase causes the selective elimination of malignant cells [69].

Discussion

Clinical trials and experimental studies have shown that probiotics, their components, or their sterilized variants (paraprobiotics) may be successfully used as biotherapeutic agents for the prevention and treatment of gastrointestinal diseases [70], [71], [72], [73], [74], and for resistance enhancement in case of intestinal viral infections [75], [76]. The possibility of mitigating antimicrobial resistance, which might be a result of a nosocomial, COVID-19-related infection [77], through probiotics has also been discussed in publication [78]. A study on the impact of the probiotic “Narine” (Vitamaks-E, Armenia) on the number of antibiotic resistant gut commensal Escherichia coli in familial Mediterranean fever patients, an autosomal recessive inflammatory disease [79], showed that the probiotic therapy resulted in a reduction of the relative abundance of operational taxonomic units in the genus Escherichia and the number of multi-resistant E. coli isolates [78].

Appropriate inflammasome activation and appropriate concentration of hydrogen peroxide realized by bacteria [64] are vital for the host to handle foreign pathogens and tissue damage, while aberrant inflammasome activation can cause uncontrolled tissue responses, leading to various diseases, including autoinflammatory disorders, cardiometabolic diseases, cancer, and neurodegenerative diseases [80]. In short, research data indicate the important role of hydrogen peroxide in host microbe interaction. Therefore, the assessment of blood H$_2$O$_2$, blood catalase activities, and detection of inflammasome activity present promising indicators in recommending probiotics in COVID-19 and accompanying diseases.

Conclusions

Thus, socioeconomic and biological strategies are needed to combat COVID-19 [81], [82], [83]. The production of hydrogen peroxide might be considered as one of promising indicators in probiotic-recommendation in COVID-19 and its accompanying
diseases. We hope that continuing investigations will raise awareness of potential COVID-19 probiotic recommendations, highlighting the latest scientific information about COVID-19/probiotics, and the importance of determining the specific “criteria” for the recommendation of probiotics’ use in this disease.

References

1. Hussain A, Bhowmik B, do Vale Moreira NC. COVID-19 and diabetes: Knowledge in progress. Diabetes Res Clin Pract. 2020;162:108142. https://doi.org/10.1016/j.diabres.2020.108142
PMId:32278674

2. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur Respir J. 2020;55(5):2000547. https://doi.org/10.1183/13993003.00547-2020
PMId:32217650

3. Wang S, Ma P, Zhang S, Song S, Wang Z, Ma Y, et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: A multi-centre retrospective study. Diabetologia. 2020;63(10):2102-11. https://doi.org/10.1007/s00125-020-05209-1
PMId:32647915

4. Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and COVID-19. J Am Soc Hypertens. 2020;41(19):1852-53. https://doi.org/10.1093/eurheartj/ehaa314
PMId:32574290

5. Metzler B, Siostrzonek P, Binder RK, Johannes et al. Decline of acute coronary syndrome admissions in Austria since the outbreak of COVID-19: The pandemic response causes cardiac collateral damage. Eur Heart J. 2020;41(19):1852-53. https://doi.org/10.1093/eurheartj/ehaa314
PMId:32297392

6. Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists’ perspective on coronavirus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055-62. https://doi.org/10.1007/s10067-020-05073-9
PMId:32277367

7. Tsaturyan VV, Kushugulova A, Sidamonidze K, Tsereteli D, Pepoyan AZ. Gut Microbiota Composition and Disease Severity in Patients with COVID-19: Armenian Population. Topical Issues of Biological Safety in Modern Conditions. Online Meeting, Almaty 22-23 September; 2021. p. 61. https://doi.org/10.13140/RG.2.2.2836.48642

8. Mao L, Jin H, Wang M. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-90. https://doi.org/10.1001/jamaneurol.2020.1127
PMId:32275288

9. Manji H, Carr AS, Brownlee JW, Lunn MP. Neurology in the time of Covid-19. J Neurol Neurosurg Psychiatry. 2020;91(6):568-70. https://doi.org/10.1136/jnnp-2020-332414
PMId:32312872

10. Puzniick J. Gut microbes and host physiology: What happens when you host billions of guests? Front Endocrinol (Lausanne). 2014;5:91. https://doi.org/10.3389/fendo.2014.00091
PMId:24982653

11. Pepoyan AZ, Tsaturyan VV, Badalyan M, Weeks R, Kamiya S, Chikindas ML. Blood protein polymorphisms and the gut bacteria: Impact of probiotic Lactobacillus acidophilus Namine on Salmonella carriage in Sheep. Benef Microbes. 2020;11:183-9. https://doi.org/10.3920/BM2019.0138
PMId:32028777

12. Pepoyan A, Harutyunyan N, Grigoryan A, Balayan M, Tsaturyan V, Manvelyan A, et al. Some clinical blood characteristics of patients with familial Mediterranean fever disease from an Armenian cohort. Klin Lab Diagn. 2015;60(6):46-8.

13. Kazemian N, Mahmoudi M, Halperin F, Wu JC, Paskour S. Gut microbiota and cardiovascular disease: Opportunities and challenges. Microbiome. 2020;8(1):36. https://doi.org/10.1186/s40168-020-00821
PMId:32169105

14. Rhodes JM, Subramanian S, Laird E, Griffin G, Kenny RA. Perspective: Vitamin D deficiency and COVID-19 severity plausibly linked by latitude, ethnicity, impacts on cytokines, ACE2 and thrombosis. J Intern Med. 2021 289(1):97-115. https://doi.org/10.1111/joim.13149
PMId:32613681

15. Oh SJ, Lee JK, Shin OS. Aging and the immune system: The impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw. 2019;19(6):e37. https://doi.org/10.4110/ln.2019.19.e37
PMId:31921467

16. Knoll MD, Wonodi C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet. 2020;397(10269):72-74. https://doi.org/10.1016/S0140-6736(20)32623-4
PMId:33306990

17. Baud D, Agir VD, Gibson GR, Reid G, Giannoni E. Using probiotics to flatten the Curve of coronavirus disease COVID-2019 pandemic. Front Public Health. 2020;8:186. https://doi.org/10.3389/fpubh.2020.00186

18. Villena J, Kitazawa H. The modulation of mucosal antiviral immunity by immunobiotics: Could they offer any benefit in the SARS-CoV-2 pandemic? Front Physiol. 2020;11:699. https://doi.org/10.3389/fphys.2020.00699
PMId:32670091

19. McFarland LV, Evans CT, Goldstein E. Strain-specificity and disease-specificity of probiotic efficacy: A systematic review and meta-analysis. Front Med. 2018;5:124. https://doi.org/10.3389/fmed.2018.00124
PMId:29868585

20. Pepoyan AZ, Manvelyan AM, Balayan MH, McCabe G, Tsaturyan VV, Melnikov VG, et al. The effectiveness of potential probiotics Lactobacillus rhamnosus Vahe and Lactobacillus delbrueckii IAHAHI in irradiated rats depends on the nutritional stage of the host. ProbioticsAntimicrob Proteins. 2020;12(4):1439-50. https://doi.org/10.1007/s12602-020-09662-7
PMId:32462507

21. Armitage R, Nellums LB. COVID-19 and the consequences of isolating the elderly. Lancet. 2020;5(5):e256. https://doi.org/10.1016/S0140-6736(20)30061-x
PMId:32199471

22. Tsaturyan V, Pepoyan A. Probiotics for COVID-19: Bacterocin, Host Microbe Interaction and Molecular Docking. International BioThreat Reduction Symposium (IBTRS) 28 June-2 July 2021, Kyiv, Ukraine; 2021. p. 61. https://doi.org/10.13140/RG.2.2.19134.82242

23. Pepoyan A, Balayan M, Malkasyan L, Manvelyan A, Bezhanyan T, Paronikyan R, et al. Effects of probiotic Lactobacillus acidophilus strain INMIA 9602 Er 317/402 and putative probiotic lactobacilli on DNA damages in small
intestinal of Wistar rats in vivo. Probiotics Antimicrob Proteins. 2020;11:905-9. https://doi.org/10.1007/s12602-018-9491-y

24. Kossourov A, Mussabay K, Pepoyan A, Tsatury V, Sidamonidze K, Tsereteli D, et al. Digestive system and SARS-COV-2: New era of microbiome study and gastrointestinal tract manifestations during the Covid-19 pandemic. Open Access Maced J Med Sci. 2021;9(6):676-82. https://doi.org/10.3889/oamjms.2021.7470.

25. Lewis Z, Sidamonidze K, Tsatury V, Tsereteli D, Khachidze N, Pepoyan A, et al. The fecal microbial community of breast-fed infants from Armenia and Georgia. Sci Rep. 2017;7:40932. https://doi.org/10.1038/srep40932.

26. Ussar S, Fujisaka S, Kahn C. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Molecul Metab. 2016;5:795-803. https://doi.org/10.1016/j.molmet.2016.07.004

PMid:27617202

27. Pepoyan A, Balayan M, Manvelyan A, Galstyan L, Pepoyan S, Petroyan S, et al. Probic Lactobacillus acidophilus acidophilus strain INMIA 9602 Er 317/402 administration reduces the numbers of Candida albicans and abundance of Enterobacteria in the gut microbiota of familial mediterranean fever patients. Front Immunol. 2018;9:1426. https://doi.org/10.3389/fimmu.2018.01426.

PMid:29997616

28. Clemensen C, Müller TD, Woods SC, Berthoud HR, Seeley RJ, Tschöp MH. Gut-brain cross-talk in metabolic control. Cell. 2017;168:758-74. https://doi.org/10.1016/j.cell.2017.01.025

PMid:28235194

29. Villena J, Kitazawa H. Editorial: Immunobiology interactions of beneficial microbes with the immune system. Front Immunol. 2017;8:1580. https://doi.org/10.3389/fimmu.2017.01580.

PMid:29250601

30. Imaoka A, Shima T, Kato K, Mizuno S, Uehara T, Matsumoto S, et al. Anti-inflammatory activity of probiotic Bifidobacterium: Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. World J Gastroenterol. 2008;14(16):2511-6. https://doi.org/10.3748/wjg.v14.i25.2511.

PMid:18441927

31. Cosseau C, Devine DA, Dullaghan E, Gardy JL, Chikatamarla A, Bulli G, et al. The commensal Lactobacillus plantarum inhibits the intestinal epithelial migration of neutrophils induced by enteropathogenic Escherichia coli. J Pediatr Gastroenterol Nutr. 2003;36(6):385-91. https://doi.org/10.1097/00005176-200303000-00017.

PMid:12604980

32. Pepoyan A, Trchounian A. Biophysics, molecular and cellular biology of probiotic activity by bacteria. In: Trchounian A, editors. Bacterial Membranes. Ultrastructre, Bioclectrochemistry, Bioenergetics and Biophysics. Kerala, India: Trivandrum, Signpost; 2020. p. 275-87.

33. Bu H, Wang X, Zhu Y, Williams R, Hsueh W, Zheng X, et al. Lysozyme-modified probiotic components protect rats against polymicrobial sepsis: Role of macrophages and cathelicidin-related innate immunity. J. Immunol. 2006;177:8767-76. https://doi.org/10.4049/jimmunol.177.12.8767

34. Mack D, Ahrne S, Hyde L, Wei S, Hollingsworth M, Abernathy F. Extracellular PMid:10198338

35. Mack D, Michail S, Abernathy F. Lactobacillus plantarum inhibits the intestinal epithelial migration of neutrophils induced by enteropathogenic Escherichia coli. J Pediatr Gastroenterol Nutr. 2003;36(6):385-91. https://doi.org/10.1097/00005176-200303000-00017.

PMid:12604980

36. Pepoyan A, Trchounian A. Biophysics, molecular and cellular biology of probiotic activity by bacteria. In: Trchounian A, editors. Bacterial Membranes. Ultrastructre, Bioclectrochemistry, Bioenergetics and Biophysics. Kerala, India: Trivandrum, Signpost; 2020. p. 275-87.

37. Bu H, Wang X, Zhu Y, Williams R, Hsueh W, Zheng X, et al. Lysozyme-modified probiotic components protect rats against polymicrobial sepsis: Role of macrophages and cathelicidin-related innate immunity. J. Immunol. 2006;177:8767-76. https://doi.org/10.4049/jimmunol.177.12.8767

38. Gill H, Rutherford K, Cross M, Gopal P. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr. 2001;74:833-9. https://doi.org/10.1093/ajcn/74.6.833.

PMid:11722966

39. Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575-84. https://doi.org/10.1016/j.cjca.2017.12.005

PMid:2949239

40. Sultan S, Sultan M. COVID-19 cytokine storm and novel. Med Hypotheses. 2020;144:109875. https://doi.org/10.1016/j.mehy.2020.109875.

PMid:18441927

41. Guervilly C, Burley S, Sabatier F, Cauchois RL, Lano G, Abdelli E, et al. Circulating endothelial cells as a marker of endothelial injury in severe COVID-19. J Infect Dis. 2020;222(11):1789-93. https://doi.org/10.1093/infdis/jiaa528.

PMid:32812049

42. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-72. https://doi.org/10.2147/CIA.S158513.

PMid:29731617

43. Mateou FA, Gaudin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):5-18. https://doi.org/10.12816/0003082.

PMid:22375253

44. Rodrigo R, González J, Paoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res. 2018;41(9):963-72. https://doi.org/10.1007/s10992-018-2315-9.

PMid:29731617

45. Vichova T, Motovska Z. Oxidative stress: Predictive marker for coronary artery disease. Exp Clin Cardiol. 2013;18(2):e88-91. https://doi.org/10.1093/infdis/jiaa528.

PMid:29731617

46. Tao R, Deng C, Zhang Y, Tao Y, Bai J, Wei R, et al. Oxidative stress and injury in severe COVID-19. J Infect Dis. 2020;222(11):1789-93. https://doi.org/10.1093/infdis/jiaa528.

PMid:32812049

47. Rodriguez J, Patoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res. 2011;34(4):431-40. https://doi.org/10.1038/hr.2010.264.

PMid:21228777

48. Vichova T, Motovska Z. Oxidative stress: Predictive marker for coronary artery disease. Exp Clin Cardiol. 2013;18(2):e88-91. https://doi.org/10.1093/infdis/jiaa528.

PMid:29731617

49. Quilfonez-Flores CM, González-Chávez SA, Del Río Nájera D, Pacheco-Tena C. Oxidative stress: Predictive marker for coronary artery disease. Exp Clin Cardiol. Biomed Res Int. 2016;2016:6097417. https://doi.org/10.1155/2016/6097417.

PMid:21228777
50. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164-74. PMid:24778671

51. Wang B, Apanasets O, Nordgren M, Fransen M. Dissecting peroxisome-mediated signaling pathways: A new and exciting research field. In: Broccad C, Hartig A, editors. Molecular Machines Involved in Peroxisome Biogenesis and Maintenance. 1st ed. Wien, Austria: Springer; 2014. p. 255-73.

52. Fransen M. Peroxisome dynamics: Molecular players, mechanisms, and (Dys) functions. Int Sch Res Notices. 2012;2012:714192. https://doi.org/10.5402/2012/714192

53. Lismont C, Revenco I, Fransen M. Peroxisomal hydrogen peroxide metabolism and signaling in health and disease. Int J Mol Sci. 2015;20(15):3673. https://doi.org/10.3390/ijms20153673 PMid:31357514

54. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;2016:1245049. https://doi.org/10.1155/2016/1245049 PMid:27478531

55. Di Meo S, Venditti P. Evolution of the knowledge of free radicals and other oxidants. Oxid Med Cell Longev. 2020;2020:9829176. https://doi.org/10.1155/2020/9829176 PMid:32411336

56. Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017;11:613-9. https://doi.org/10.1016/j.redox.2016.12.035 PMid:28110218

57. Feelisch M, Akaike T, Griffiths K, Ida T, Prysyazhna O, Goodwin JJ, et al. Peroxynitrite formation by lactobacilli promotes epithelial restitution during intestinal injury. J Bacteriol. 2018;186(7):2046-51. https://doi.org/10.1128/JB.186.7.2046-2051 PMid:31508868

58. Ertman S, Gekara N. Hydrogen peroxide release by bacteria suppresses inflammammasome-dependent innate immunity. Nat Commun. 2019;10(1):3493. https://doi.org/10.1038/s41467-019-11169-x PMid:31375698

59. Balkus JE, Mitchell C, Agnew K, Liu C, Fiedler T, Cohn SE, et al. Detection of hydrogen peroxide-producing Lactobacillus species in the vagina: A comparison of culture and quantitative PCR among HIV-1 seropositive women. BMC Infect Dis. 2012;12:188. https://doi.org/10.1186/1471-2334-12-188 PMid:22888380

60. Krüger H, Bauer G. Lactobacilli enhance reactive oxygen species-dependent apoptosis-inducing signaling. Redox Biol. 2017;11:715-24. https://doi.org/10.1016/j.redox.2017.01.015 PMid:28193594

61. Anser M, Ivancic T, Garofalo RP, Casola A. Increased lung catalase activity confers protection against experimental RSV infection. Sci Rep. 2020;10:3653. https://doi.org/10.1038/s41598-020-06043-2

62. Balkus JE, Mitchell C, Agnew K, Liu C, Fiedler T, Cohn SE, et al. Detection of hydrogen peroxide-producing Lactobacillus species in the vagina: A comparison of culture and quantitative PCR among HIV-1 seropositive women. BMC Infect Dis. 2012;12:188. https://doi.org/10.1186/1471-2334-12-188 PMid:22888380

63. Anser M, Ivancic T, Garofalo RP, Casola A. Increased lung catalase activity confers protection against experimental RSV infection. Sci Rep. 2020;10:3653. https://doi.org/10.1038/s41598-020-06043-2

64. Ertman S, Gekara N. Hydrogen peroxide release by bacteria suppresses inflammammasome-dependent innate immunity. Nat Commun. 2019;10(1):3493. https://doi.org/10.1038/s41467-019-11169-x PMid:31375698

65. Balkus JE, Mitchell C, Agnew K, Liu C, Fiedler T, Cohn SE, et al. Detection of hydrogen peroxide-producing Lactobacillus species in the vagina: A comparison of culture and quantitative PCR among HIV-1 seropositive women. BMC Infect Dis. 2012;12:188. https://doi.org/10.1186/1471-2334-12-188 PMid:22888380

66. Chan SW. Hydrogen peroxide induces the cytoplasmic shuttling and increases hepatitis C virus internal ribosome entry site-dependent translation. J Gen Virol. 2016;97:2301-15. https://doi.org/10.1099/jgv.0.000556 PMid:27436793

67. Ansar M, Ivancic T, Garofalo RP, Casola A. Increased lung catalase activity confers protection against experimental RSV infection. Sci Rep. 2020;10:3653. https://doi.org/10.1038/s41598-020-06043-2

68. Balkus JE, Mitchell C, Agnew K, Liu C, Fiedler T, Cohn SE, et al. Detection of hydrogen peroxide-producing Lactobacillus species in the vagina: A comparison of culture and quantitative PCR among HIV-1 seropositive women. BMC Infect Dis. 2012;12:188. https://doi.org/10.1186/1471-2334-12-188 PMid:22888380

69. Krüger H, Bauer G. Lactobacilli enhance reactive oxygen species-dependent apoptosis-inducing signaling. Redox Biol. 2017;11:715-24. https://doi.org/10.1016/j.redox.2017.01.015 PMid:28193594

70. Balayman Y, Manvelyan AM, Marutyan S, Isajanyan M, Tsaturyan V, Pepoyan A, et al. Impact of Lactobacillus acidophilus INMIA 9602 Er-2 and Escherichia coli M-17 on some clinical blood characteristics of familial Mediterranean fever disease patients from the Armenian cohort. Int J Probiotics Prebiotics. 2015;10:91-5.

71. Bagherpour G, Ghasemi H, Zand B, Zarei N, Roohvand F, Ardakani EM, et al. Oral administration of recombinant Saccharomyces boulardii expressing ovalbumin-CPE fusion protein induces antibody response in mice. Front Microbiol. 2018;9:723. https://doi.org/10.3389/fmicb.2018.00723 PMid:29706942

72. Pepoyan AZ, Balayman MH, Manvelyan AM, Mamikonyan V, Isajanyan M, Tsaturyan VV, et al. Lactobacillus acidophilus INMIA 9602 Er-2 strain 317/402 probiotic regulates growth of commensal Escherichia coli in gut microbiota of familial Mediterranean fever disease subjects. Lett Appl Microbiol. 2017;64:254-60. https://doi.org/10.1111/lam.12722 PMid:28140472

73. Pepoyan AZ, Balayman MH, Manvelyan AM, Mamikonyan V, Isajanyan M, Tsaturyan VV, et al. Lactobacillus acidophilus INMIA 9602 Er-2 strain 317/402 probiotic regulates growth of commensal Escherichia coli in gut microbiota of familial Mediterranean fever disease subjects. Lett Appl Microbiol. 2017;64:254-60. https://doi.org/10.1111/lam.12722 PMid:28140472

74. Pepoyan A, Balayman M, Marutyan A, Pepoyan S, Malikhasyan L, Bezhanyan T, et al. Radioprotective effects of lactobacilli with antagonistic activities against human pathogens. Biophys J. 2018;114:665a. https://doi.org/10.1016/j.bpj.2017.11.3586

75. Pepoyan AZ, Pepoyan ES, Galstyan L, Harutyunyan NA, Tsaturyan VV, Torok T, et al. The effect of immunobiotic/psychobiotic Lactobacillus acidophilus strain INMIA 9602 Er-2 strain 317/402 on gut microbiota and host response in familial Mediterranean fever: Gender-associated effects. Probiotics Antimicrob Prot 2021;13:1306-15. https://doi.org/10.1007/s12602-021-09779-3 PMid:34132998

76. Kanauchi O, Andoh A, AbuBakar S, Yamamoto N. Probiotics and paraprobiotics in viral infection: Clinical application and effects on the innate and acquired immune systems. Curr Pharm Des. 2018;24:710-7. https://doi.org/10.2174/138161282466180116183411
76. Eguchi K, Fujitani N, Nakagawa H, Miyazaki T. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci Rep. 2019;18:4812. https://doi.org/10.1038/s41598-019-39602-7

77. Carter B, Collins JT, Barlow-Pay F, Rickard F, Bruce E, Verduri A, et al. Nosocomial COVID-19 infection: Examining the risk of mortality. The COPE-nosocomial study (COVID in older people). J Hosp Infect. 2020;106(2):376-84. https://doi.org/10.1016/j.jhin.2020.07.013

78. Pepoyan AZ, Balayan MA, Arutyunyan NA, Grigoryan AG, Tsaturyan VV, Manvelyan AM, et al. Antibiotic resistance of Escherichia coli of the intestinal microbiota in patients with familial Mediterranean Fever Klin Med (Mosk). 2015;93:37-9. PMid:26596057

79. Touitou I, Pepoyan A. Concurrence of Crohn's and familial Mediterranean fever diseases for Armenian cohort. Inflamm Bowel Dis. 2008;14:S39. https://doi.org/10.1097/00054725-200812003-00128

80. Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020;6:36. https://doi.org/10.1038/s41421-020-0167-x

81. Telles CR, Roy A, Ajmal MR, Mustafa SK, Ahmad MA, de la Sema JM, et al. The impact of COVID-19 management policies tailored to airborne SARS-CoV-2 transmission: Policy analysis. JMIR Public Health Surveill. 2021;7(4):e20699. https://doi.org/10.2196/20699 PMid:33729168

82. Khalid MS, Aljohani MM, Alomrani NA, Oyouni AA, Alzahrani O, Ahmad OA, et al. COVID-19 and immune function “a significant” zinc. Orient J Chem 2020;36:1026-36.

83. Khalid MS, Ahmad MA, Baranova V, Deineko Z, Lyashenko V, Oyouni AA. Using wavelet analysis to assess the impact of COVID-19 on changes in the price of basic energy resources. Int J Emerg Trends Eng Res. 2020;8(7):2907-12.