On a Spector ultrapower of the Solovay model*

Vladimir Kanovei† Michiel van Lambalgen‡

January 2, 2018

Abstract

We prove that a Spector–like ultrapower extension \(N \) of a countable Solovay model \(M \) (where all sets of reals are Lebesgue measurable) is equal to the set of all sets constructible from reals in a generic extension \(M[\alpha] \) where \(\alpha \) is a random real over \(M \). The proof involves an almost everywhere uniformization theorem in the Solovay model.

*Research supported by the Netherlands Organization for Scientific Research NWO under grant PGS 22 262
†Moscow Transport Engineering Institute, kanovei@sci.math.msu.su
‡University of Amsterdam, michiell@fwi.uva.nl
Introduction

Let \(\mathcal{U} \) be an ultrafilter in a transitive model \(\mathcal{M} \) of \(\text{ZF} \). Assume that an ultrapower of \(\mathcal{M} \) via \(\mathcal{U} \) is to be defined. The first problem we meet is that \(\mathcal{U} \) may not be an ultrafilter in the universe because not all subsets of the index set belong to \(\mathcal{M} \).

We can, of course, extend \(\mathcal{U} \) to a true ultrafilter, say \(\mathcal{U}' \), but this may cause additional trouble. Indeed, if \(\mathcal{U} \) is a special ultrafilter in \(\mathcal{M} \) certain properties of which were expected to be exploit, then most probably these properties do not transfer to \(\mathcal{U}' \); assume for instance that \(\mathcal{U} \) is countably complete in \(\mathcal{M} \) and \(\mathcal{M} \) itself is countable. Therefore, it is better to keep \(\mathcal{U} \) rather than any of its extensions in the universe, as the ultrafilter.

If \(\mathcal{M} \) models \(\text{ZFC} \), the problem can be solved by taking the inner ultrapower. In other words, we consider only those functions \(f : I \rightarrow \mathcal{M} \) (where \(I \in \mathcal{M} \) is the carrier of \(\mathcal{U} \)) which belong to \(\mathcal{M} \) rather than all functions \(f \in \mathcal{M}^I \), to define the ultrapower. This version, however, depends on the axiom of choice in \(\mathcal{M} \); otherwise the proofs of the basic facts about ultrapowers (e. g. Los’ theorem) will not work.

The “choiceless” case can be handled by a sophisticated construction of Spectr [1991], which is based on ideas from both forcing and the ultrapower technique. As presented in Kanovei and van Lambalgen [1994], this construction proceeds as follows. One has to add to the family of functions \(\mathcal{F}_0 = \mathcal{M}^I \cap \mathcal{M} \) a number of new functions \(f \in \mathcal{M}^I \), \(f \notin \mathcal{M} \), which are intended to be choice functions whenever we need such in the ultrapower construction.

In this paper, we consider a very interesting choiceless case: \(\mathcal{M} \) is a Solovay model of \(\text{ZF} \) plus the principle of dependent choice, in which all sets of reals are Lebesgue measurable, and the ultrafilter \(\mathcal{L} \) on the set \(I \) of Vitali degrees of reals in \(\mathcal{M} \), generated by sets of positive measure.
1 On a.e. uniformization in the Solovay model

In this section, we recall the uniformization properties in a Solovay model. Thus let \mathcal{M} be a countable transitive Solovay model for Dependent Choices plus “all sets are Lebesgue measurable”, as it is defined in SOLOVAY [1970], – the ground model. The following known properties of such a model will be of particular interest below.

Property 1 [True in \mathcal{M}]
$V = \mathbb{L}(\text{reals})$; in particular every set is real-ordinal-definable. □

To state the second property, we need to introduce some notation.

Let $N = \omega^\omega$ denote the Baire space, the elements of which will be referred to as real numbers or reals.

Let P be a set of pairs such that $\text{dom } P \subseteq N$ (for instance, $P \subseteq N^2$). We say that a function f defined on N uniformizes P a.e. (almost everywhere) iff the set

$$\{ \alpha \in \text{dom } P : \langle \alpha, f(\alpha) \rangle \notin P \}$$

has null measure. For example if the projection $\text{dom } P$ is a set of null measure in N then any f uniformizes a.e. P, but this case is not interesting. The interesting case is the case when $\text{dom } P$ is a set of full measure, and then f a.e. uniformizes P iff for almost all α, $\langle \alpha, f(\alpha) \rangle \in P$. □

Property 2 [True in \mathcal{M}]
Any set $P \in \mathcal{M}$, $P \subseteq N^2$, can be uniformized a.e. by a Borel function. (This implies the Lebesgue measurability of all sets of reals, which is known to be true in \mathcal{M} independently.) □

This property can be expanded (with the loss of the condition that f is Borel) on the sets P which do not necessarily satisfy $\text{dom } P \subseteq N$.

Theorem 3 In \mathcal{M}, any set P with $\text{dom } P \subseteq \mathcal{M}$ admits an a.e. uniformisation.

Proof Let P be an arbitrary set of pairs such that $\text{dom } P \subseteq N$ in \mathcal{M}. Property [1] implies the existence of a function $D : (\text{Ord } \cap \mathcal{M}) \times (N \cap \mathcal{M})$ onto \mathcal{M} which is ε-definable in \mathcal{M}.

We argue in \mathcal{M}. Let, for $\alpha \in N$, $\xi(\alpha)$ denote the least ordinal ξ such that

$$\exists \gamma \in N \ [\langle \alpha, D(\xi, \gamma) \rangle \in P] .$$

(It follows from the choice of D that $\xi(\alpha)$ is well defined for all $\alpha \in N$.) It remains to apply Property [2] to the set $P' = \{ \langle \alpha, \gamma \rangle \in N^2 : \langle \alpha, D(\xi(\alpha), \gamma) \rangle \in P \}$.
The functions to get the Spector ultrapower

We use a certain ultrafilter over the set of Vitali degrees of reals in \mathcal{M}, the initial Solovay model, to define the ultrapower.

Let, for $\alpha, \alpha' \in \mathbb{N}$, $\alpha \text{ vit} \alpha'$ if and only if $\exists m \forall k \geq m (\alpha(k) = \alpha'(k))$, (the Vitali equivalence).

- For $\alpha \in \mathbb{N}$, we set $\alpha = \{\alpha' : \alpha' \text{ vit} \alpha\}$, the Vitali degree of α.

- $\mathbb{N} = \{\alpha : \alpha \in \mathbb{N}\}$; i, j denote elements of \mathbb{N}.

As a rule, we shall use underlined characters $\underline{f}, \underline{F}, \ldots$ to denote functions defined on \mathbb{N}, while functions defined on \mathbb{N} itself will be denoted in the usual manner.

Define, in \mathcal{M}, an ultrafilter \mathcal{U} over \mathbb{N} by: $X \subseteq \mathbb{N}$ belongs to \mathcal{U} iff the set $X = \{\alpha \in \mathbb{N} : \alpha \in X\}$ has full Lebesgue measure. It is known (see e.g. van Lambalgen [1992], Theorem 2.3) that the measurability hypothesis implies that \mathcal{U} is κ-complete in \mathcal{M} for all cardinals κ in \mathcal{M}.

One cannot hope to define a good \mathcal{U}-ultrapower of \mathcal{M} using only functions from $\mathcal{F}_0 = \{f \in \mathcal{M} : \text{dom } f = \mathbb{N}\}$ as the base for the ultrapower. Indeed consider the identity function $i \in \mathcal{M}$ defined by $i(i) = i$ for all $i \in \mathbb{N}$. Then $i(i)$ is nonempty for all $i \in \mathbb{N}$ in \mathcal{M}, therefore to keep the usual properties of ultrapowers we need a function $\underline{f} \in \mathcal{F}_0$ such that $\underline{f}(i) \in i$ for almost all $i \in \mathbb{N}$, but Vitali showed that such a choice function yields a nonmeasurable set.

Thus at least we have to add to \mathcal{F}_0 a new function \underline{f}, not an element of \mathcal{M}, which satisfies $\underline{f}(i) \in i$ for almost all $i \in \mathbb{N}$. Actually it seems likely that we have to add a lot of new functions, to handle similar situations, including those functions the existence of which is somehow implied by the already added functions. A general way how to do this, extracted from the exposition in Spector [1991], was presented in Kanovei and van Lambalgen [1994]. However in the case of the Solovay model the a.e. uniformization theorem (Theorem 3) allows to add essentially a single new function, corresponding to the i-case considered above.

The generic choice function for the identity

Here we introduce a function τ defined on $\mathbb{N} \cap \mathcal{M}$ and satisfying $\tau(i) \in i$ for all $i \in \mathbb{N} \cap \mathcal{M}$. τ will be generic over \mathcal{M} for a suitable notion of forcing.

The notion of forcing is introduced as follows. In \mathcal{M}, let \mathbb{P} be the set of all functions p defined on \mathbb{N} and satisfying $p(i) \subseteq i$ and $p(i) \neq \emptyset$ for all i. (For example $i \in \mathbb{P}$.) We order \mathbb{P} so that p is stronger than q iff $p(i) \subseteq q(i)$ for all i. If $G \subseteq \mathbb{P}$ is \mathbb{P}-generic over \mathcal{M}, G defines a function τ by

$$\tau(i) = \text{the single element of } \bigcap_{p \in G} p(i)$$

1Or, equivalently, the collection of all sets $X \subseteq \mathbb{N}$ which have a nonempty intersection with every Vitali degree. Perhaps this forcing is of separate interest.
for all $i \in \mathbb{N} \cap M$. Functions r defined this way will be called \(P\)-generic over M. Let us fix such a function r for the remainder of this paper.

The set of functions used to define the ultrapower

We let F be the set of all superpositions $f \circ r$ where r is the generic function fixed above while $f \in M$ is an arbitrary function defined on $N \cap M$. Notice that in particular any function $f \in M$ defined on $N \cap M$ is in F: take $f(\alpha) = f(r(\alpha))$.

To see that F can be used successfully as the base of an ultrapower of M, we have to check three fundamental conditions formulated in Kanovei and van Lambalgen [1994].

Proposition 4 [Measurability] Assume that $E \in M$ and $f_1, ..., f_n \in F$. Then the set $\{i \in N \cap M : E(f_1(i), ..., f_n(i))\}$ belongs to M.

Proof By the definition of F, it suffices to prove that $\{i : r(i) \in E\} \in M$ for any set $E \in M$, $E \subseteq N$. By the genericity of r, it remains then to prove the following in M: for any $p \in \mathbb{P}$ and any set $E \subseteq N$, there exists a stronger condition q such that, for any i, either $q(i) \subseteq E$ or $q(i) \cap E = \emptyset$. But this is obvious. \square

Corollary 5 Assume that $V \in M$, $V \subseteq N$ is a set of null measure in M. Then, for L-almost all i, we have $r(i) \notin V$.

Proof By the proposition, the set $I = \{i : r(i) \in V\}$ belongs to M. Suppose that, on the contrary, $I \in L$. Then $A = \{\alpha : r(\alpha) \in I\}$ is a set of full measure. On the other hand, since $r(i) \in i$, we have $A \subseteq \bigcup_{\beta \in V} \beta$, where the right-hand side is a set of full measure because V is such a set, contradiction. \square

Proposition 6 [Choice] Let $f_1, ..., f_n \in F$ and $W \in M$. There exists a function $f_1 \in F$ such that, for L-almost all $i \in N \cap M$, it is true in M that

$$\exists x W(f_1(i), ..., f_n(i), x) \rightarrow W(f_1(i), ..., f_n(i), f(i)).$$

Proof This can be reduced to the following: given $W \in M$, there exists a function $f_1 \in F$ such that, for L-almost all $i \in N \cap M$,

$$\exists x W(r(i), x) \rightarrow W(r(i), f(i))$$

in M.

2To make things clear, $f \circ r(i) = f(r(i))$ for all i.

5
We argue in \mathcal{M}. Choose $p \in \mathbb{P}$, and let $p'(i) = \{ \beta \in p(i) : \exists x W(\beta, x) \}$, and $X = \{ i : p'(i) \neq \emptyset \}$. If $X \notin \mathcal{L}$, then an arbitrary f defined on \mathbb{N} will satisfy $(*),$ therefore it is assumed that $X \in \mathcal{L}$. Let

$$q(i) = \begin{cases} p'(i) & \text{iff } i \in X \\ p(i) & \text{otherwise} \end{cases}$$

for all $i \in \mathbb{N}$; then $q \in \mathbb{P}$ is stronger than p. Therefore, since r is generic, one may assume that $r(i) \in q(i)$ for all i.

Furthermore, DC in the Solovay model \mathcal{M} implies that for every $i \in X$ the following is true: there exists a function ϕ defined on $q(i)$ and such that $W(\beta, \phi(\beta))$ for every $\beta \in q(i)$. Theorem 3 provides a function Φ such that for almost all α the following is true: the value $\Phi(\alpha, \beta)$ is defined and satisfies $W(\beta, \Phi(\alpha, \beta))$ for all $\beta \in q(\alpha)$. Then, by Corollary 3, we have

$$\text{for all } \beta \in q(r(i)), \ W(\beta, \Phi(r(i), \beta))$$

for almost all i. However, $r(i) = i$ for all i. Applying the assumption that $r(i) \in q(i)$ for all i, we obtain $W(r(i), \Phi(r(i), r(i)))$ for almost all i. Finally the function $f(i) = \Phi(r(i), r(i))$ is in \mathcal{F} by definition. \hfill \square

Proposition 7 [Regularity] For any $f \in \mathcal{F}$ there exists an ordinal $\xi \in \mathcal{M}$ such that for \mathcal{L}-almost all i, if $f(i)$ is an ordinal then $f(i) = \xi$.

Proof To prove this statement, assume that $f = f \circ r$ where $f \in \mathcal{M}$ is a function defined on \mathbb{N} in \mathcal{M}.

We argue in \mathcal{M}. Consider an arbitrary $p \in \mathbb{P}$. We define a stronger condition p' as follows. Let $i \in \mathbb{N}$. If there does not exist $\beta \in p(i)$ such that $f(\beta)$ is an ordinal, we put $p'(i) = p(i)$ and $\xi(i) = 0$. Otherwise, let $\xi(i) = \xi$ be the least ordinal such that $f(\beta) = \xi$ for some $\beta \in p(i)$. We set $p'(i) = \{ \beta \in p(i) : f(\beta) = \xi(i) \}$.

Notice that $\xi(i)$ is an ordinal for all $i \in \mathbb{N}$. Therefore, since the ultrafilter \mathcal{L} is κ-complete in \mathcal{M} for all κ, there exists a single ordinal $\xi \in \mathcal{M}$ such that $\xi(i) = \xi$ for almost all i.

By genericity, we may assume that actually $r(i) \in p'(i)$ for all $i \in \mathbb{N} \cap \mathcal{M}$. Then ξ is as required. \hfill \square

The ultrapower

Let $\mathcal{M} = \text{Ult}_\mathcal{L} \mathcal{F}$ be the ultrapower. Thus we define:

- $f \approx g$ iff $\{ i : f(i) = g(i) \} \in \mathcal{L}$ for $f, g \in \mathcal{F}$;
- $[f] = \{ g : g \approx f \}$ (the \mathcal{L}-degree of f);
• \([f] \in^* [g] \text{ iff } \{i : f(i) \in g(i)\} \in \mathcal{L}\);

• \(\mathfrak{N} = \{[f] : f \in \mathcal{F}\}\), equipped with the above defined membership \(\in^*\).

Theorem 8 \(\mathfrak{N}\) is an elementary extension of \(\mathfrak{M}\) via the embedding which associates
\(x^* = [\mathfrak{N} \times \{x\}]\) with any \(x \in \mathfrak{M}\). Moreover \(\mathfrak{N}\) is wellfounded and the ordinals in \(\mathfrak{M}\) are isomorphic to the \(\mathfrak{M}\)-ordinals via the mentioned embedding.

Proof See Kanovei and van Lambalgen [1994].

Comment. Propositions \([\text{ }]\) and \([\text{ }]\) are used to prove the Loś theorem and the property of elementary embedding. Proposition \([\text{ }]\) is used to prove the wellfoundedness part of the theorem.

3 The nature of the ultrapower

Theorem 8 allows to collapse \(\mathfrak{N}\) down to a transitive model \(\hat{\mathfrak{N}}\); actually \(\hat{\mathfrak{N}} = \{\hat{X} : X \in \mathfrak{N}\}\) where
\(\hat{X} = \{\hat{Y} : Y \in \mathfrak{N} \text{ and } Y^* \in X\}\).

The content of this section will be to investigate the relations between \(\mathfrak{M}\), the initial model, and \(\hat{\mathfrak{N}}\), the (transitive form of its) Spector ultrapower. In particular it is interesting how the superposition of the “asterisk” and “hat” transforms embeds \(\mathfrak{M}\) into \(\hat{\mathfrak{N}}\).

Lemma 9 \(x \mapsto \hat{x}^*\) is an elementary embedding \(\mathfrak{M}\) into \(\hat{\mathfrak{N}}\), equal to identity on ordinals and sets of ordinals (in particular on reals).

Proof Follows from what is said above.

Thus \(\hat{\mathfrak{N}}\) contains all reals in \(\mathfrak{M}\). We now show that \(\hat{\mathfrak{N}}\) also contains some new reals. We recall that \(r \in \mathcal{F}\) is a function satisfying \(r(i) \in i\) for all \(i \in \mathfrak{N} \cap \mathfrak{M}\).

Let \(a = [\hat{r}]\). Notice that by Loś \([r]\) is a real in \(\mathfrak{N}\), therefore \(a\) is a real in \(\hat{\mathfrak{N}}\).

Lemma 10 \(a\) is random over \(\mathfrak{M}\).

Proof Let \(B \subseteq \mathfrak{N}\) be a Borel set of null measure coded in \(\mathfrak{M}\); we prove that \(a \notin B\). Being of measure 0 is an absolute notion for Borel sets, therefore \(B \cap \mathfrak{M}\) is a null set in \(\mathfrak{M}\) as well. Corollary \([\text{ }]\) implies that for \(\mathcal{L}\)-almost all \(i\), we have \(r(i) \notin B\). By Loś, \(\neg ([r] \in^* B^*)\) in \(\mathfrak{N}\). Then \(a \notin B^*\) in \(\hat{\mathfrak{N}}\). However, by the absoluteness of the Borel coding, \(B^* = B \cap \mathfrak{N}\), as required.

Thus \(\hat{\mathfrak{N}}\) contains a new real number \(a\). It so happens that this \(a\) generates all reals in \(\hat{\mathfrak{N}}\).
Lemma 11 The reals of \(\hat{\mathcal{N}} \) are exactly the reals of \(\mathcal{M}[a] \).

Proof It follows from the known properties of random extensions that every real in \(\mathcal{M}[a] \) can be obtained as \(F(a) \) where \(F \) is a Borel function coded in \(\mathcal{M} \). Since \(a \) and all reals in \(\mathcal{M} \) belong to \(\hat{\mathcal{N}} \), we have the inclusion \(\supseteq \) in the lemma.

To prove the opposite inclusion let \(\beta \in \hat{\mathcal{N}} \cap N \). Then by definition \(\beta = \hat{[F]} \), where \(F \in \mathcal{F} \). In turn \(F = f \circ \tau \), where \(f \in \mathcal{M} \) is a function defined on \(N \cap \mathcal{M} \). We may assume that in \(\mathcal{M} \) \(f \) maps reals into reals. Then, first, by Property \(\overline{2} \), \(f \) is a.e. equal in \(\mathcal{M} \) to a Borel function \(g = B_{\gamma} \) where \(\gamma \in N \cap \mathcal{M} \) and \(B_{\gamma} \) denotes, in the usual manner, the Borel subset (of \(N^2 \) in this case) coded by \(\gamma \). Corollary \(\overline{3} \) shows that we have \(F(i) = B_{\gamma} (\tau(i)) \) for \(\mathcal{L} \)-almost all \(i \). In other words, \(F(i) = B_{\gamma^*(i)} (\tau(i)) \) for \(\mathcal{L} \)-almost all \(i \). By Loś, this implies \([F] = B_{\gamma^*} ([\tau]) \) in \(\mathcal{N} \), therefore \(\beta = B_{\gamma} (a) \) in \(\hat{\mathcal{N}} \). By the absoluteness of Borel coding, we have \(\beta \in L[\gamma, a] \), therefore \(\beta \in \mathcal{M}[a] \).

We finally can state and prove the principal result.

Theorem 12 \(\hat{\mathcal{N}} \subseteq \mathcal{M}[a] \) and \(\hat{\mathcal{N}} \) coincides with \(L^{\mathcal{M}[a]}(\text{reals}) \), the smallest subclass of \(\mathcal{M}[a] \) containing all ordinals and all reals of \(\mathcal{M}[a] \) and satisfying all the axioms of ZF.

Proof Very elementary. Since \(\mathcal{V} = L(\text{reals}) \) is true in \(\mathcal{M} \), the initial Solovay model, this must be true in \(\hat{\mathcal{N}} \) as well. The previous lemma completes the proof.

Corollary 13 The set \(N \cap \mathcal{M} \) of all “old” reals does not belong to \(\hat{\mathcal{N}} \).

Proof The set in question is known to be non–measurable in the random extension \(\mathcal{M}[a] \); thus it would be non–measurable in \(\hat{\mathcal{N}} \) as well. However \(\hat{\mathcal{N}} \) is an elementary extension of \(\mathcal{M} \), hence it is true in \(\hat{\mathcal{N}} \) that all sets are measurable.

References

1. V. Kanovei and M. van Lambalgen [1994] Another construction of choiceless ultrapower. University of Amsterdam, Preprint X–94–02, May 1994.

2. M. van Lambalgen [1994] Independence, randomness, and the axiom of choice. J. Symbolic Logic, 1992, 57, 1274 – 1304.

3. R. M. Solovay [1970] A model of set theory in which every set of reals is Lebesgue measurable. Ann. of Math., 1970, 92, 1 – 56.

4. M. Spector [1991] Extended ultrapowers and the Vopenka – Hrbáček theorem without choice. J. Symbolic Logic, 1991, 56, 592 – 607.