A STOCHASTIC MAXIMUM PRINCIPLE FOR LINEAR QUADRATIC PROBLEM WITH NONCONVEX CONTROL DOMAIN

SHAOLIN JI AND XIAOLE XUE

Zhongtai Securities Institute for Financial Studies
Shandong University
Jinan, Shandong, 250100, China

(Communicated by Qi Lü)

Abstract. This paper considers the stochastic linear quadratic optimal control problem in which the control domain is nonconvex. By the functional analysis and convex perturbation methods, we establish a novel maximum principle. The application of the proposed maximum principle is illustrated through a work-out example.

1. Introduction. The stochastic linear quadratic optimal control problems play an important role in optimal control problems. On one hand, many nonlinear control problems can be approximated by the linear quadratic control problems; on the other hand, solutions to the linear quadratic control problems show elegant properties because of their brief and beautiful structures.

A classical form of the stochastic linear quadratic optimal control problems is to minimize the quadratic cost functional

\[J(u(\cdot)) = \mathbb{E}\left\{ \frac{1}{2} \int_0^T \left[(Q(t)X(t), X(t)) + 2 \langle S(t)X(t), u(t) \rangle + \langle R(t)u(t), u(t) \rangle \right] dt + \frac{1}{2} \langle GX(T), X(T) \rangle \right\} \]

with the control \(u(\cdot) \) being a square integrable adapted process and the state being the solution to the linear stochastic differential equation

\[
\begin{cases}
dX(t) &= [A(t)X(t) + B(t)u(t) + b(t)] dt + [C(t)X(t) + D(t)u(t) + \sigma(t)] dW_t, \\
X(0) &= x, \quad t \in [0, T],
\end{cases}
\]

where \(A, B, C, D, b, \sigma \) are deterministic matrix-valued functions of suitable sizes; \(T \) is a fixed terminal time; \(W \) is a Wiener process. Under suitable conditions, the cost functional (1) and the control system (2) are well defined. This kind of stochastic linear quadratic problem was first studied by Wonham [22]. Then Bismut [4] proved an existence result for optimal control.
As one of the foundations of modern finance theory, the mean-variance portfolio issue can be translated to the stochastic linear quadratic problems. As indicated in [14], the mean-variance problem is essentially an indefinite stochastic linear quadratic problem because its running cost is identically zero. The mean-variance model was formulated as a quadratic programming problem by Markowitz in the case of a single-period investment (see [16, 17]), and the multi-period counterpart was soon considered after the pioneering work (see [9, 11, 21, 18]). By resorting to the method of dynamic programming, the mean-variance model in a continuous time setting was developed a bit later (see [10, 6, 7]). By employing the embedding technique, Zhou and Li [26] turned the continuous-time mean-variance problem into a stochastic linear quadratic problem, which could be solved by using the results in Chen, Li and Zhou [5].

Recently, Li, Zhou and Lim [14] discussed a continuous-time mean-variance problem with no-shorting constraints. By using a martingale approach, Bielecki et al. [3] investigated the problem of continuous-time mean-variance with bankruptcy prohibition. Heunis [12] carefully considered to minimize the expected value of a general quadratic loss function of the portfolio over a general setting where there is a specified convex constraint on the portfolio over the trading interval, together with a specified almost sure lower-bound on the portfolio at close of trade. Li and Xu [15] studied the continuous-time mean-variance problem with the mixed restriction of both bankruptcy prohibition and convex cone portfolio constraints. The control domains in the aforementioned literature are assumed to be convex sets or convex cones. Inspired by the above discussion, we intend to further study the stochastic linear quadratic problem with nonconvex control domain, which may be helpful to the mean-variance problems with nonconvex control domain.

In this paper, we develop a novel stochastic maximum principle to tackle the stochastic linear quadratic problem with nonconvex control domain. To begin with, based on functional analysis approach, we transform the original linear quadratic problem into a quadratic optimization problem in a Hilbert space, which consists of all square integrable control processes. Next, by introducing a parameter in the quadratic optimization problem, we turn equivalently the original problem into a concave control problem with convex control domain, which can be solved by the classical stochastic maximum principle. Then we derive a new stochastic maximum principle. It is well known that the stochastic maximum principle is of great importance in solving stochastic optimal control problems (see [8], [13], [19, 20], [23, 24]). A local form of the stochastic maximum principle for the classical stochastic recursive optimal control problem was established later in Peng [20]. By utilizing the spike variational method and the second-order adjoint equations, Peng [19] obtained a general stochastic maximum principle when the admissible control domain needs not to be convex and the diffusion coefficients contain the control variable. The achievement of the stochastic maximum principle in [19] relies heavily on the second-order adjoint equations. Compared with the classical methods dealing with the nonconvex stochastic linear quadratic problem, the approach provided in this paper has two main advantages as follows. Firstly, we need not to introduce the second-order adjoint equation, and the presented stochastic maximum principle has a concise form. Secondly, we don’t have to impose any positive definite requirement on the coefficients.

The paper is organized as follows. In section 2, we present some notations and formulate the stochastic linear quadratic problem. We formulate our stochastic
linear quadratic optimal control problem by functional analysis approach in section 3. We derive the maximum principle in section 4 and give a work-out example in section 5. In section 6 we conclude the paper.

2. Problem formulation. Throughout this paper, we denote by \mathbb{R}^n the n-dimensional vector space and $\mathbb{R}^{k \times n}$ the set of $k \times n$ matrices. Particularly, we denote by \mathbb{S}^n the set of symmetric $n \times n$ matrices. For any given Euclidean space H, we denote by $\langle \cdot, \cdot \rangle$ (resp. $| \cdot |$) the scalar product (resp. norm) of H. When $M = (m_{ij}), N = (n_{ij}) \in \mathbb{R}^{k \times n}$, we define $\langle M, N \rangle = tr\{MN^T\}$ and $|M| = \sqrt{M^TM}$, where the superscript T denotes the transpose of vectors or matrices. We say $M > 0$ (resp. ≥ 0) if $M \in \mathbb{S}^n$ is positive (resp. nonnegative) definite.

Let $W(\cdot) = (W_1(\cdot), \ldots, W_d(\cdot))^T$ be a standard d-dimensional Brownian motion defined on a complete probability space (Ω, \mathcal{F}, P). The information structure is given by a filtration $\mathbb{F} = \{\mathcal{F}_t\}_{0 \leq t \leq T}$, which is generated by $W(\cdot)$ and augmented by all the \mathcal{F}-measurable sets. Let $L^2_{\mathcal{F}_T}(\Omega; H)$ (resp. $L^\infty_{\mathcal{F}_T}(\Omega; H)$) denote the space of all \mathcal{F}_T-measurable random variable η with values in H such that

$$\mathbb{E}[|\eta|^2] < \infty \text{ (resp. } \eta \text{ is uniformly bounded);}$$

let $L^2_2(0, T; H)$ (resp. $L^\infty_2(0, T; H)$) denote the space of all \mathbb{F}-progressively measurable processes $x(\cdot)$ with values in H such that

$$\mathbb{E} \left[\int_0^T |x(t)|^2 dt \right] < \infty \text{ (resp. } \text{ess sup}_{t, \omega \in [0, T] \times \Omega} |x(t, \omega)| < \infty \).$$

To simplify the presentation, we assume the dimension of the Brownian motion $d = 1$.

For a given $x \in \mathbb{R}^n$, consider the following linear stochastic differential equation:

\[
\begin{align*}
\text{d}X(t) &= [A(t)X(t) + B(t)u(t) + b(t)] \text{d}t + [C(t)X(t) + D(t)u(t) + \sigma(t)] \text{d}W_t, \\
X(0) &= x, \quad t \in [0, T], \\
\end{align*}
\]

where A, B, C, D, b, σ are deterministic matrix-valued functions of suitable sizes. In the above equation, $u(\cdot)$ is a control process and $X(\cdot)$ is the corresponding state process. In addition, the quadratic cost functional is given by

\[
J(u(\cdot)) = \mathbb{E} \left\{ \frac{1}{2} \int_0^T \left[\langle (Q(t)X(t), X(t)) + 2 \langle S(t)X(t), u(t) \rangle + \langle R(t)u(t), u(t) \rangle \rangle \right] dt \\
+ \frac{1}{2} \langle GX(T), X(T) \rangle \right\},
\]

where $G \in \mathbb{S}^n$, Q, S and R are \mathbb{S}_-, $\mathbb{R}^{k \times n}$- and \mathbb{R}^k-valued functions, respectively.

We introduce the following assumption:

Assumption 2.1. Suppose that

\[
\begin{align*}
A, C &\in L^\infty(0, T; \mathbb{R}^{n \times n}), \quad B, D, S^T \in L^\infty(0, T; \mathbb{R}^{n \times k}); \\
Q &\in L^\infty(0, T; \mathbb{S}^n), \quad R \in L^\infty(0, T; \mathbb{S}^k), \quad G \in \mathbb{S}^n; \\
b, \sigma &\in L^2(0, T; \mathbb{R}^n).
\end{align*}
\]

Let $B := \{0, 1\}^k$, $C \subseteq \mathbb{R}^k$ be a closed and convex set, $U = C \cap B \neq \emptyset$, $e = (1, 1, \ldots, 1)^T \in \mathbb{R}^k$ and $E = \{u \in \mathbb{R}^k : 0 \leq u \leq e\}$. We set

$$U_{ad} := \{u(\cdot) \in L^2_2(0, T; \mathbb{R}^k) | u(t) \in U \text{ a.e., } a.s.\}.$$
An element of \mathcal{U}_{ad} is called an admissible control. Under Assumption 2.1, there exists a unique solution $X(\cdot) \in L^2_{\mathbb{F}}(0, T; \mathbb{R}^n)$ to (3), which is called the corresponding admissible state process. $(X(\cdot), u(\cdot))$ is called an admissible pair.

Our stochastic linear quadratic control problem is to find an admissible control $\bar{u}(\cdot)$ such that

$$J(\bar{u}(\cdot)) = \min_{u(\cdot) \in \mathcal{U}_{ad}} J(u(\cdot)).$$

(5)

3. Results of linear quadratic problem by functional analysis. Since the state equation in a stochastic linear quadratic problem is linear, by variation of constant formula, the state process can be explicitly expressed in terms of the initial state and the control. Substituting this relation into the cost functional, we obtain a functional quadratic in the state and control terms. To describe the method in detail, we first introduce the following matrix-valued process:

$$\begin{cases}
 d\Phi(t) = A(t)\Phi(t)dt + C(t)\Phi(t)dW_t, & t \geq 0, \\
 \Phi(0) = I,
\end{cases}$$

from the method of stochastic calculus, we know that $\Phi^{-1}(t)$ exists for all $t \geq 0$, and satisfies

$$\begin{cases}
 d\Phi^{-1}(t) = -\Phi^{-1}(t)[A(t) - C^2(t)]dt - \Phi^{-1}(t)C(t)dW_t, & t \geq 0, \\
 \Phi^{-1}(0) = I.
\end{cases}$$

The solution of (3) can be written as:

$$X(t) = \Phi(t)x + \Phi(t)\int_0^t \Phi^{-1}(s) [(B(s) - C(s)D(s))u(s) + b(s) - C(s)\sigma(s)] ds + \Phi(t)\int_0^t \Phi^{-1}(s)(D(s)u(s) + \sigma(s))dW_s, \quad t \in [0, T].$$

By BDG-inequality, we can get the estimate of $X(\cdot)$ as

$$\mathbb{E}\left[\sup_{s \in [0, t]} |X(s)|^2\right] \leq K \mathbb{E}\left\{|x|^2 + \int_0^t [|u(s)|^2 + |b(s)|^2 + |\sigma(s)|^2] ds\right\}, \quad \forall t \in [0, T].$$

Next, $\forall x \in \mathbb{R}^n$, $u(\cdot) \in \mathcal{U}_{ad}$, we define the following operators:

$$\begin{cases}
 (Lu(\cdot))(\cdot) := \Phi(\cdot)\left\{\int_0^t \Phi^{-1}(s)[B(s) - C(s)D(s)]u(s)ds + \int_0^t \Phi^{-1}(s)D(s)u(s)dW_s\right\}, \\
 \hat{L}u(\cdot) := (Lu(\cdot))(T), \quad \forall u(\cdot) \in \mathcal{U}_{ad}, \\
 (\Gamma x)(\cdot) := \Phi(\cdot)x, \quad \hat{\Gamma}x := (\Gamma x)(T), \quad \forall x \in \mathbb{R}^n, \\
 f(\cdot) := \Phi(\cdot)\left\{\int_0^t \Phi^{-1}(s)[b(s) - C(s)\sigma(s)]ds + \int_0^t \Phi^{-1}(s)\sigma(s)dW_s\right\}, \\
 \hat{f} := f(T).
\end{cases}$$

Then, the state equation (3) and its terminal value can be written as:

$$\begin{cases}
 X(\cdot) = (\Gamma x)(\cdot) + (Lu(\cdot))(\cdot) + f(\cdot), \\
 X(T) = \hat{\Gamma}x + \hat{L}u(\cdot) + \hat{f}.
\end{cases}$$

Our next goal is to find a representation of the cost functional (4) in terms of control. To this end, we note that the following operators are bounded linear operators

$$\begin{align*}
 L : \mathcal{U}_{ad} &\rightarrow L^2_{\mathbb{F}}(0, T; \mathbb{R}^n), & \hat{L} : \mathcal{U}_{ad} &\rightarrow L^2_{\mathbb{F}}(\Omega; \mathbb{R}^n), \\
 \Gamma : \mathbb{R}^n &\rightarrow L^2_{\mathbb{F}}(0, T; \mathbb{R}^n), & \hat{\Gamma} : \mathbb{R}^n &\rightarrow L^2_{\mathbb{F}}(\Omega; \mathbb{R}^n).
\end{align*}$$
We need to find the adjoint operators of the above bounded linear operators,
\[
\begin{align*}
L^* : L^2_x(0, T; \mathbb{R}^n) &\to U_{ad}, \\
\hat{L}^* : L^2_{x,T}(\Omega; \mathbb{R}^n) &\to U_{ad}, \\
\Gamma^* : L^2_{x}(0, T; \mathbb{R}^n) &\to \mathbb{R}^n, \\
\hat{\Gamma}^* : L^2_{x,T}(\Omega; \mathbb{R}^n) &\to \mathbb{R}^n,
\end{align*}
\]
such that:
\[
\begin{align*}
&\left\{ \begin{array}{l}
\mathbb{E} \left[\int_0^T \langle (Lu(\cdot))(t), \xi(t) \rangle \, dt \right] = \mathbb{E} \left[\int_0^T \langle u(\cdot), (L^*\xi(\cdot))(t) \rangle \, dt \right], \\
\mathbb{E} \left[\int_0^T \langle (\Gamma x)(t), \xi(t) \rangle \, dt \right] = \mathbb{E} \left[\langle x, (\Gamma^*\xi)(\cdot) \rangle \right], \\
\forall u(\cdot) \in U_{ad}, \; \xi(\cdot) \in L^2_x(0, T; \mathbb{R}^n),
\end{array} \right.
\end{align*}
\]
and
\[
\begin{align*}
&\left\{ \begin{array}{l}
\mathbb{E} \left[\langle \hat{L}u(\cdot), \eta \rangle \right] = \mathbb{E} \left[\int_0^T \langle u(t), (\hat{L}^*\eta)(t) \rangle \, dt \right], \\
\mathbb{E} \left[\langle \hat{\Gamma} x, \eta \rangle \right] = \mathbb{E} \left[\langle x, \hat{\Gamma}^*\eta \rangle \right], \\
\forall u(\cdot) \in U_{ad}, \; \eta \in L^2_{x,T}(\Omega; \mathbb{R}^n), \; x \in \mathbb{R}^n.
\end{array} \right.
\end{align*}
\]
Actually, we can define the adjoint operators through the following backward stochastic differential equation:
\[
\begin{align*}
&\begin{cases}
dp(t) = -[A(t)^\top p(t) + C(t)^\top q(t) + \xi(t)]dt + q(t)dw_t, \; t \in [0, T], \\
p(T) = \eta \in L^2_x(\Omega; \mathbb{R}^n).
\end{cases}
\end{align*}
\]
We have the following results.

Proposition 3.1. (\cite{25}) (i) For any \(\xi(\cdot) \in L^2_x(0, T; \mathbb{R}^n)\), let \((p_0(\cdot), q_0(\cdot)) \in L^2_x(0, T; \mathbb{R}^n) \times L^2_{x,T}(0, T; \mathbb{R}^n)\) be the adapted solution of (8) with \(\eta = 0\). Define
\[
\begin{align*}
&\left\{ \begin{array}{l}
(L^*\xi)(t) := B(t)^\top p_0(t) + D(t)^\top q_0(t), \; t \in [0, T], \\
\Gamma^*\xi = p_0(0).
\end{array} \right.
\end{align*}
\]
Then \(L^* : L^2_x(0, T; \mathbb{R}^n) \to U_{ad}\) and \(\Gamma^* : L^2_{x,T}(\Omega; \mathbb{R}^n) \to \mathbb{R}^n\) are bounded operators satisfying (6).

(ii) For any \(\eta \in L^2_{x,T}(\Omega; \mathbb{R}^n)\), let \((p_1(\cdot), q_1(\cdot)) \in L^2_x(0, T; \mathbb{R}^n) \times L^2_{x,T}(0, T; \mathbb{R}^n)\) be the adapted solution of (8) with \(\xi(\cdot) = 0\). Define
\[
\begin{align*}
&\left\{ \begin{array}{l}
(\hat{L}^*\eta)(t) := B(t)^\top p_1(t) + D(t)^\top q_1(t), \; t \in [0, T], \\
\hat{\Gamma}^*\eta = p_1(0).
\end{array} \right.
\end{align*}
\]
Then \(\hat{L}^* : L^2_{x,T}(\Omega; \mathbb{R}^n) \to U_{ad}\) and \(\hat{\Gamma}^* : L^2_{x,T}(\Omega; \mathbb{R}^n) \to \mathbb{R}^n\) are bounded operators satisfying (7).

Once we have the above results, we can obtain another form of the cost functional:
\[
J(u(\cdot)) = \frac{1}{2} \{ \langle Nu(\cdot), u(\cdot) \rangle + 2 \langle H(x), u(\cdot) \rangle + M(x) \},
\]
where
\[
\begin{align*}
N &= R + L^*QL + SL + L^*S^\top + \hat{L}^*GL, \\
H(x) &= (L^*Q + S)[(\Gamma x)(\cdot) + f(\cdot)] + \hat{L}^*G(\hat{\Gamma} x + \hat{f}), \\
M(x) &= \langle Q[(\Gamma x)(\cdot) + f(\cdot)], (\Gamma x)(\cdot) + f(\cdot) \rangle \\
&\quad + \langle G(\hat{\Gamma} x + \hat{f}), (\hat{\Gamma} x + \hat{f}) \rangle.
\end{align*}
\]
It is clear that \(N : U_{ad} \to U_{ad}\) is a bounded operator.
4. **Stochastic maximum principle.** Generally speaking, since the control domain of the stochastic linear quadratic problem is nonconvex, one should take the second-order adjoint process into consideration. To conveniently state this classical maximum principle, we give the following propositions, which come from [25] Chapter 3. We consider the following controlled stochastic differential equation:

\[
\begin{cases}
 dX(t) = b(t, X(t), u(t))dt + \sigma(t, X(t), u(t))dW_t, & t \in [0, T], \\
 X(0) = x,
\end{cases}
\] (11)

with the cost functional

\[
 J(u(\cdot)) = \mathbb{E} \left[\int_0^T f(t, X(t), u(t))dt + h(X(T)) \right].
\] (12)

The controller wants to find the infimum of \(J \) over admissible control set. Moreover, we introduce the following assumption as in [25].

Assumption 4.1. (i) \((U, d)\) is a separable metric space and \(T > 0 \).

(ii) The maps \(b, \sigma, f \) and \(h \) are measurable, and there exist a constant \(L > 0 \) and a modulus of continuity \(\bar{\omega} : [0, \infty) \to [0, \infty) \) such that for \(\phi(t, x, u) = b(t, x, u), \sigma(t, x, u), f(t, x, u), h(x) \), we have

\[
\begin{aligned}
 |\phi(t, x, u) - \phi(t, \hat{x}, \hat{u})| &\leq L|x - \hat{x}| + \bar{\omega}(d(u, \hat{u})), \\
 |\phi(t, 0, u)| &\leq L, \\
 |\phi_x(t, x, u) - \phi_x(t, \hat{x}, \hat{u})| &\leq \bar{\omega}(|x - \hat{x}| + d(u, \hat{u})),
\end{aligned}
\]

\(\forall t \in [0, T], x, \hat{x} \in \mathbb{R}^n, u, \hat{u} \in U \).

(iii) The maps \(b, \sigma, f \) and \(h \) are \(C^2 \) in \(x \). Moreover, there exist a constant \(L > 0 \) and a modulus of continuity \(\bar{\omega} : [0, \infty) \to [0, \infty) \) such that for \(\phi(t, x, u) = b(t, x, u), \sigma(t, x, u), f(t, x, u), h(x) \), we have

\[
\begin{aligned}
 |\phi(t, x, u) - \phi(t, \hat{x}, \hat{u})| &\leq L|x - \hat{x}| + \bar{\omega}(d(u, \hat{u})), \\
 |\phi_{xx}(t, x, u) - \phi_{xx}(t, \hat{x}, \hat{u})| &\leq \bar{\omega}(|x - \hat{x}| + d(u, \hat{u})),
\end{aligned}
\]

\(\forall t \in [0, T], x, \hat{x} \in \mathbb{R}^n, u, \hat{u} \in U \).

Let \((\bar{X}(\cdot), \bar{u}(\cdot))\) be an optimal pair of the stochastic system (11)-(12). We introduce the following first-order and second-order adjoint equation

\[
\begin{cases}
 dp(t) = -[b_x(t, \bar{X}(t), \bar{u}(t))^\top p(t) + \sigma_x(t, \bar{X}(t), \bar{u}(t))^\top q(t)]dt + q(t)dW_t, & t \in [0, T], \\
 p(T) = -h_x(\bar{X}(T)),
\end{cases}
\] (13)

\[
\begin{cases}
 dP(t) = -[b_x(t, \bar{X}(t), \bar{u}(t))^\top P(t) + P(t)b_x(t, \bar{X}(t), \bar{u}(t)) + \sigma_x(t, \bar{X}(t), \bar{u}(t))^\top P(t)\sigma_x(t, \bar{X}(t), \bar{u}(t)) + \sigma_x(t, \bar{X}(t), \bar{u}(t))^\top Q(t) + Q(t)\sigma_x(t, \bar{X}(t), \bar{u}(t)) + H_{xx}(t, \bar{X}(t), \bar{u}(t), p(t), q(t))]dt + Q(t)dW_t, \\
 P(T) = -h_{xx}(\bar{X}(T)),
\end{cases}
\] (14)

where the Hamiltonian \(H \) is defined by

\[
H(t, x, u, p, q) = \langle p, b(t, x, u) \rangle + q^\top \sigma(t, x, u) - f(t, x, u),
\]

\((t, x, u, p, q) \in [0, T] \times \mathbb{R}^n \times U \times \mathbb{R}^n \times \mathbb{R}^n \).

Proposition 4.2. (General Stochastic Maximum principle [19, 25]) Let Assumption 4.1 hold, \((\bar{X}(\cdot), \bar{u}(\cdot))\) be an optimal pair of the stochastic system (11)-(12). Then there exist pairs of processes

\[
\begin{cases}
 (p(\cdot), q(\cdot)) \in L_2^p(0, T; \mathbb{R}^n) \times L_2^p(0, T; \mathbb{R}^n), \\
 (P(\cdot), Q(\cdot)) \in L_2^p(0, T; \mathbb{S}^n) \times L_2^p(0, T; \mathbb{S}^n),
\end{cases}
\]
satisfying the first-order and second-order adjoint equations (13) and (14), respectively, such that
\[H(t, X(t), \bar{u}(t), p(t), q(t)) = H(t, \bar{X}(t), v, p(t), q(t)) \]
\[-\frac{1}{2}(\sigma(t, X(t), \bar{u}(t)) - \sigma(t, \bar{X}(t), v))\top P(t)(\sigma(t, X(t), \bar{u}(t)) - \sigma(t, \bar{X}(t), v)) \geq 0, \]
\[\forall v \in U, \text{a.e. } t \in [0, T], \mathbb{P}-\text{a.s.}. \]

It should be noted that the second-order adjoint equation have to be introduced in the above stochastic maximum principles. Different from [19] [25], the primal problem (3)-(5) will be turned into a concave problem with convex control domain in this section. And a novel stochastic maximum principle without the second-order adjoint equation will be also proposed. To proceed further, the following useful proposition is needed. The interested readers can find this in [20] and [25].

Proposition 4.3. (Stochastic Maximum principle [20, 25]) Let \(\bar{u}(\cdot) \) be an optimal control and \(\bar{X}(\cdot) \) be the corresponding trajectory. The control domain is convex and all the coefficients are \(C^1 \) in \(u \). Then there exists a pair of process \((p(\cdot), q(\cdot)) \in L^2_F(0, T; \mathbb{R}^n) \times L^2_F(0, T; \mathbb{R}^n)\) satisfies the first-order adjoint equation (13) such that
\[\langle H_u(t, \bar{X}(t), \bar{u}(t), p(t), q(t)), v - \bar{u}(t) \rangle \leq 0, \]
\[\forall v \in U, \text{a.e. } t \in [0, T], \mathbb{P}-\text{a.s.}. \]

The next theorem is one of the main results in this paper. We first transform the original linear quadratic problem into a quadratic optimization problem in a Hilbert space by functional analysis approach as shown in Section 3. Then through the introduced parameter, we can turn the original problem (3)-(5) into a concave control problem with convex control domain. Then we can apply the stochastic maximum principle in Proposition 4.3 to the transformed concave problem, and obtain the new stochastic maximum principle.

Theorem 4.4. Suppose Assumption 2.1 hold and let \((\bar{X}(\cdot), \bar{u}(\cdot))\) be an optimal pair of the stochastic linear quadratic control problem (3) – (5). Then there exists an adapted solution \((p(\cdot), q(\cdot)) \in L^2_F(0, T; \mathbb{R}^n) \times L^2_F(0, T; \mathbb{R}^n)\) to the following backward stochastic differential equation
\[\begin{cases} dp(t) = -[A(t)^\top p(t) + C(t)^\top q(t) - Q(t)\bar{X}(t) - S(t)^\top \bar{u}(t)]dt + q(t)dW_t, \\ p(T) = -G\bar{X}(T), \end{cases} \]
such that
\[\langle H^\mu(t, \bar{X}(t), \bar{u}(t), p(t), q(t)), v - \bar{u}(t) \rangle \leq 0, \]
\[\forall v \in U, \text{a.e. } t \in [0, T], \mathbb{P}-\text{a.s.}. \]

where the Hamiltonian function \(H^\mu \) is defined by
\[H^\mu(t, x, u, p, q) = \langle p, A(t)x + B(t)u + b(t) \rangle + \langle q, C(t)x + D(t)u + \sigma(t) \rangle \]
\[-\frac{1}{2} \left\{ [Q(t)x, x] + 2 \langle S(t)x - \mu I, u \rangle + \langle (R(t) + \mu I)u(t), u(t) \rangle \right\}, \]
the parameter \(\mu \) is defined as: \(-\mu \) is the largest eigenvalue of \(N \) in (10), the operator \(I \) is identity operator.

Proof. The proof is technical. We divide it into two steps to make the idea clear.

Step 1. Equivalent Formulation
As shown in section 3, we obtain a functional quadratic in the triple of the initial state, the control and the nonhomogeneous term. That is
\[J(u(\cdot)) = \frac{1}{2} \{ \langle Nu(\cdot), u(\cdot) \rangle + 2 \langle H(x), u(\cdot) \rangle + M(x) \}, \]
where

\[
\begin{align*}
N &= R + L^*QL + SL + L^*S^T + \hat{L}^* \hat{G} \hat{L}, \\
H(x) &= (L^*Q + S)(\Gamma x) + f(x) + L^*G(\hat{\Gamma} x + \hat{f}), \\
M(x) &= \langle Q(\Gamma x) + f(x), (\Gamma x) + f(x) \rangle + \langle G(\hat{\Gamma} x + \hat{f}), \hat{\Gamma} x + \hat{f} \rangle.
\end{align*}
\]

Given any real number \(\mu \in \mathbb{R} \), let \(\bar{N} = N + \mu I \) and \(\bar{H}(x) = H(x) - \frac{1}{2} \mu I \), then we can define the following stochastic linear quadratic control problem

\[
J^\mu(u(\cdot)) = \frac{1}{2} \{ \langle \bar{N} u(\cdot), u(\cdot) \rangle + 2 \langle \bar{H}(x), u(\cdot) \rangle + M(x) \}
= \frac{1}{2} \{ (N + \mu I) u(\cdot), u(\cdot) \} + 2 \langle H(x) - \frac{1}{2} \mu I, u(\cdot) \rangle + M(x)
= \mathbb{E} \left\{ \frac{1}{2} \int_0^T \left[\langle Q(t)X(t), X(t) \rangle + 2 \langle S(t)X(t) + \frac{1}{2} \mu I, u(t) \rangle \right.
ight.
+ \langle (R(t) + \mu I)u(t), u(t) \rangle dt + \frac{1}{2} \langle GX(T), X(T) \rangle \right\}.
\]

When we select \(-\mu\) as the largest eigenvalue of \(N\), the operator \(\bar{N}\) is negative semi-definite, then \(J^\mu\) is concave with respect to \(u(\cdot)\). We claim that the problem

\[
\min_{u(\cdot) \in \bar{U}_{ad}} J(u(\cdot))
\]

is equivalent (in the sense of coinciding optimal control and optimal value) to

\[
\min_{u(\cdot) \in U_{ad}} J^\mu(u(\cdot)),
\]

where \(\bar{U}_{ad}\) is defined by

\[
\bar{U}_{ad} = \{ u(\cdot) \in L^2_T(0, T; \mathbb{R}^k) | u(t) \in \bar{U} = C \cap E \quad a.e., \ a.s. \}.
\]

Note that we have defined \(E = \{ u \in \mathbb{R}^k : 0 \leq u \leq e \} \) in Section 2.

Indeed, since \(J^\mu(u(\cdot))\) is concave with respect to \(u(\cdot)\), the optimal control must attained on a vertex of \(E\). Then \(\min_{u(\cdot) \in U_{ad}} J(u(\cdot)) = \min_{u(\cdot) \in \bar{U}_{ad}} J^\mu(u(\cdot))\). If \((\bar{X}(\cdot), \bar{u}(\cdot))\) is the optimal pair of problem (16), then \(\forall u(\cdot) \in \bar{U}_{ad},\)

\[
J^\mu(u(\cdot)) = \mathbb{E} \left\{ \frac{1}{2} \int_0^T \left[\langle Q(t)X(t), X(t) \rangle + 2 \langle S(t)X(t) + \frac{1}{2} \mu I, u(t) \rangle \right.
ight.
+ \langle (R(t) + \mu I)u(t), u(t) \rangle dt + \frac{1}{2} \langle GX(T), X(T) \rangle \right\}
\geq \min_{u(\cdot) \in \bar{U}_{ad}} J^\mu(u(\cdot))
= \min_{u(\cdot) \in U_{ad}} J(u(\cdot))
= J(\bar{u}(\cdot))
= J^\mu(\bar{u}(\cdot)).
\]

Thus \(\bar{u}(\cdot)\) is the optimal control of \(J^\mu(u(\cdot))\).

On the other hand, if \((\bar{X}(\cdot), \bar{u}(\cdot))\) is the optimal pair of problem (17), then \(\forall u(\cdot) \in U_{ad},\)

\[
J(u(\cdot)) = \mathbb{E} \left\{ \frac{1}{2} \int_0^T \left[\langle Q(t)X(t), X(t) \rangle + 2 \langle S(t)X(t), u(t) \rangle + \langle R(t)u(t), u(t) \rangle dt \right. \right.
+ \left. \frac{1}{2} \langle GX(T), X(T) \rangle \right\}
\geq \min_{u(\cdot) \in U_{ad}} J(u(\cdot))
= \min_{u(\cdot) \in \bar{U}_{ad}} J^\mu(u(\cdot))
= J^\mu(\bar{u}(\cdot))
= J(\bar{u}(\cdot)).
\]
Thus \(\bar{u} \) is the optimal control of \(J(u(\cdot)) \). Therefore, the problem (16) is equivalent to the minimization of a concave quadratic function over the convex set, so we can apply the classical stochastic maximum principle as shown in Proposition 4.3, which deals with convex control domain, to the equivalent problem.

Step 2. Apply Stochastic Maximum Principle

In order to derive the maximum principle for the classical stochastic optimal control problem, one needs to obtain the variational equation of state equation. Based on the variational inequality and the introduced adjoint equation, one can get the stochastic maximum principle (see [1, 2, 20] and [25]).

In our case, we should introduce the adjoint equation as the following backward stochastic differential equation:

\[
\begin{aligned}
& \{ dp(t) = -[A(t)^\top p(t) + C(t)^\top q(t) - Q(t)\bar{X}(t) - S(t)^\top \bar{u}(t)]dt + q(t)dW_t, \\
& \quad p(T) = -GX(T). \\
& \{
\end{aligned}
\]

Moreover, the Hamiltonian function \(H^u \) is defined by

\[
H^u(t, x, u, p, q) = \langle p, A(t)x + B(t)u + b(t) \rangle + \langle q, C(t)x + D(t)u + \sigma(t) \rangle - \frac{1}{2} \{(Q(t)x, x) + 2\langle S(t)x - \frac{\mu}{2}I, u \rangle + \langle (R(t) + \mu)u, u \rangle \},
\]

then, we can obtain the following stochastic maximum principle

\[
\langle H^u(t, \bar{X}(t), \bar{u}(t), p(t), q(t)), v - \bar{u}(t) \rangle \leq 0,
\]

\[
\forall v \in \bar{U}, \text{a.e. } t \in [0, T], \mathbb{P}\text{-a.s.}.
\]

This completes the proof. \(\square \)

Remark 4.5. From the above theorem, we can get some further subtle results. We can take into account the necessary conditions for optimal control \(\bar{u}(\cdot) = 0 \) or \(\bar{u}(\cdot) = e \) in a clear way. Then from

\[
H^u(t, \bar{X}(t), \bar{u}(t), p(t), q(t)) = B(t)^\top p(t) + D(t)^\top q(t) - \frac{1}{2} [2S(t)\bar{X}(t) + 2(R(t) + \mu)\bar{u}(t) - \mu I],
\]

we get

\[
H^u(t, \bar{X}(t), \bar{u}(t), p(t), q(t)) = \begin{cases}
B(t)^\top p(t) + D(t)^\top q(t) - S(t)^\top \bar{X}(t) + \mu I \leq 0, & \text{if } \bar{u}(t) = 0; \\
B(t)^\top p(t) + D(t)^\top q(t) - R(t)e^\top - S(t)\bar{X}(t) + \mu I \geq 0, & \text{if } \bar{u}(t) = e.
\end{cases}
\]

We can compare the above results with the classical maximum principle which deals with nonconvex control domain problem as shown in Proposition 4.2. Because the control domain is nonconvex, one should introduce first-order and second-order adjoint equations as

\[
\begin{aligned}
& \{ dp(t) = -[A(t)^\top p(t) + C(t)^\top q(t) - Q(t)\bar{X}(t) - S(t)^\top \bar{u}(t)]dt + q(t)dW_t, \\
& \quad p(T) = -GX(T), \\
& \{
\end{aligned}
\]

and

\[
\begin{aligned}
& \{ dp(t) + P(t)A(t) + C(t)^\top P(t)C(t) + \Lambda(t)C(t) + C(t)^\top \Lambda(t) \\
& \quad -Q(t)]dt + \Lambda(t)dW_t, \\
& P(T) = -G.
\end{aligned}
\]

The maximum principle is

\[
H^0(t, \bar{X}(t), \bar{u}(t), p(t), q(t)) = H^0(t, \bar{X}(t), v, p(t), q(t)) - \frac{1}{2} (\bar{u}(t) - v)^\top D(t)^\top P(t)D(t)(\bar{u}(t) - v) \geq 0,
\]

\[
\forall v \in U, \text{a.e. } t \in [0, T], \mathbb{P}\text{-a.s.},
\]

where \(D(t) \) is the drift term from the backward stochastic differential equation.

Step 3. Apply Variational Principle

In order to derive the maximum principle for the classical stochastic optimal control problem, one needs to obtain the variational equation of state equation. Based on the variational inequality and the introduced adjoint equation, one can get the stochastic maximum principle (see [1, 2, 20] and [25]).
where H^0 is defined by (15) if $\mu = 0$. Moreover, for any $v \in U$, we have the following results
\[
\begin{cases}
\frac{1}{2}v^\top [R(t) - D(t)^\top P(t)D(t)]v - v^\top [B(t)^\top p(t) + D(t)^\top q(t) - S(t)\bar{X}(t)] \geq 0, & \text{if } \bar{u}(t) = 0; \\
(e - v)^\top [B(t)^\top p(t) + D(t)^\top q(t) - S(t)\bar{X}(t)] + v^\top R(t)v - e^\top R(t)e \\
- \frac{1}{2}(e - v)^\top D(t)^\top P(t)D(t)(e - v) \geq 0, & \text{if } \bar{u}(t) = e.
\end{cases}
\]
We can see that the nonconvex maximum principle is complex. However, the approach provided in this paper is relatively concise. In the next section we will give an example to show how the new maximum principle works.

5. Example. Let us consider the following controlled stochastic differential equation ($n = 1$):
\[
\begin{align*}
dX(t) &= u(t)dW_t, \quad t \in [0, 1], \\
X(0) &= 0,
\end{align*}
\]
with the control domain $U = \{0, 1\} \cap [0, 1] = \{0, 1\}$. The cost functional is defined by
\[
J(u(\cdot)) = \mathbb{E}\left\{ \int_0^1 \left[X(t)^2 - \frac{1}{2}u(t)^2 \right] dt + X(1)^2 \right\}.
\]
Substituting $X(t) = \int_0^t u(s)dW_s$ into the cost functional, we obtain the following:
\[
\begin{align*}
J(u(\cdot)) &= \mathbb{E}\left\{ \int_0^1 \left[X(t)^2 - \frac{1}{2}u(t)^2 \right] dt + X(1)^2 \right\} \\
&= \mathbb{E}\left\{ \int_0^1 \left[\left(\int_0^t u(s)dW_s \right)^2 - \frac{1}{2}u(t)^2 \right] dt + \left(\int_0^1 u(s)dW_s \right)^2 \right\} \\
&= \int_0^1 \mathbb{E}\left(\int_0^t u(s)dW_s \right)^2 dt - \frac{1}{2} \mathbb{E}\left[\int_0^1 u(t)^2 dt \right] + \mathbb{E}\left(\int_0^1 u(s)dW_s \right)^2 \\
&= \mathbb{E}\left[\int_0^1 \int_0^t u(s)^2dsdt \right] + \frac{1}{2} \mathbb{E}\left[\int_0^1 u(t)^2 dt \right] \\
&= \mathbb{E}\left[\int_0^1 \int_s^1 u(s)^2dtds \right] + \frac{1}{2} \mathbb{E}\left[\int_0^1 u(t)^2 dt \right] \\
&= \mathbb{E}\left[\int_0^1 (1 - t)u(t)^2 dt \right] + \frac{1}{2} \mathbb{E}\left[\int_0^1 u(t)^2 dt \right] \\
&= \mathbb{E}\left[\int_0^1 \frac{3}{2} - t)u(t)^2 dt \right].
\end{align*}
\]
Hence, the optimal control is $\bar{u}(\cdot) = 0$, the corresponding optimal state trajectory $\bar{X}(\cdot) = 0$. The first-order and second-order adjoint equations associated with the optimal pair are
\[
\begin{align*}
dp(t) &= q(t)dW_t, \\
p(1) &= 0, \\
dP(t) &= 2dt + Q(t)dW_t, \\
P(1) &= -2.
\end{align*}
\]
Thus, by the uniqueness of the solution to backward stochastic differential equation, we get $(p(t), q(t)) = (0, 0)$, $(P(t), Q(t)) = (2t - 4, 0)$. The corresponding Hamiltonian is
\[
H(t, \bar{X}(t), u, p(t), q(t)) = \frac{1}{2}u^2 + q(t)u = \frac{1}{2}u^2.
\]
This is a convex function in \(u \), which does not attain a maximum at \(\bar{u}(t) = 0 \) for any \(t \in [0, 1] \). But the \(H \)-function
\[
H(t, \bar{X}(t), u) := H(t, \bar{X}(t), u, p(t), q(t)) - \frac{1}{2} P(t) \bar{u}(t) + \frac{1}{2} P(t) (u - \bar{u}(t))^2 = \frac{1}{2} (2t - 3) u^2,
\]
is concave with respect to \(u \) for any \(t \in [0, 1] \), and \(\bar{u}(t) = 0 \) does maximize \(H \). Thus we see clearly how the second-order adjoint process plays a role in turning the convex function \(u \mapsto H(t, \bar{X}(t), u, p(t), q(t)) \) into the concave one \(u \mapsto H(t, \bar{X}(t), u) \).

As to the new approach which provided in this paper, in order to cope with the primal problem, we introduce a parameter \(\mu \). In this example we let \(\mu = -3 \), then
\[
J^\mu(u(\cdot)) = J(u(\cdot)) + \frac{1}{2} \langle (-3) u(\cdot), u(\cdot) \rangle - \frac{1}{2} \langle (-3) \mathbf{I}, u(\cdot) \rangle
\]
\[
= \mathbb{E} \left\{ \int_0^1 \left[X(t)^2 - \frac{1}{2} u(t)^2 - \frac{3}{2} u(t)^2 + \frac{3}{2} u(t) \right] dt + X(1)^2 \right\},
\]
with \(\bar{U} = [0, 1] \). As we have pointed out that the problem is equivalent to primal problem in the sense of coinciding optimal solutions. The adjoint equation is the same as (22), and the corresponding Hamiltonian is
\[
H^\mu(t, \bar{X}(t), u, p(t), q(t)) = 2u^2 - \frac{3}{2} u.
\]
From stochastic maximum principle in Theorem 4.4, we obtain that the following inequality holds:
\[
H^\mu_w(t, \bar{X}(t), u, p(t), q(t)) |_{u=\bar{u}(t)} \cdot (v - \bar{u}(t)) \leq 0, \quad \forall v \in [0, 1].
\]
That is
\[
\langle -\frac{3}{2}, v - \bar{u}(t) \rangle \leq 0, \quad \forall v \in [0, 1].
\]
From the stochastic maximum principle, we know that \(\bar{u}(t) = 0 \) is a candidate optimal control.

The above example shows the difference between the related results in [19, 25] and the method proposed in our paper. In this case, the control domain of primal problem is nonconvex. One needs to study both the first-order and second-order terms in the Taylor expansion of the spike variation and come up with a stochastic maximum principle. The second-order adjoint process plays a role in turning convex Hamiltonian \(H \) into concave one \(H \), as we have shown above. However, in this paper, without second-order adjoint process, we can obtain a stochastic maximum principle involving a parameter \(\mu \).

6. Conclusion. In this article, we investigate a new stochastic maximum principle to deal with the stochastic linear quadratic problem with nonconvex control domain. We turn the original problem into a concave control problem with convex control domain by employing the functional analysis approach and introducing a parameter. Then we apply the classical stochastic maximum principle to the transformed concave problem. Compared with the existing methods, the developed stochastic maximum principle is easy to check. Finally, we provide a work-out example to illustrate the effectiveness of the proposed method in this paper. Readers can have a try to solve the problem by utilizing the Hamilton-Jacobi-Bellman approach or other methods. Although considering the forward state equation, we encourage the readers to explore backward stochastic system or forward-backward stochastic system, and to obtain results that are not yet known to us.
Acknowledgments. The second author thanks Dr. Haodong Liu and Xiaomin Shi for useful discussions related to this work.

REFERENCES

[1] A. Bensoussan, Lectures on stochastic control, Nonlinear filtering and stochastic control, Springer Berlin Heidelberg, 972 (1982), 1–62.
[2] A. Bensoussan, Stochastic maximum principle for distributed parameter systems, Journal of the Franklin Institute, 315 (1983), 387–406.
[3] T. R. Bielecki, H. Jin, S. R. Pliska and X. Y. Zhou, Continuous time mean-variance portfolio selection with bankruptcy prohibition, Mathematical Finance, 15 (2005), 213–244.
[4] J. M. Bismut, Théorie probabiliste du contrôle des diffusions, Mem. Amer. Math. Soc., 167, (1976).
[5] S. Chen, X. Li and X. Y. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs, SIAM Journal on Control and Optimization, 36 (1998), 1685–1702.
[6] D. Duffie and M. O. Jackson, Optimal hedging and equilibrium in a dynamic futures market, Journal of Economic Dynamics and Control, 14 (1990), 21–36.
[7] D. Duffie and H. R. Richardson, Mean-variance hedging in continuous time, The Annals of Applied Probability, 1 (1991), 1–15.
[8] N. El Karoui, S. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Mathematical Finance, 7 (1997), 1–71.
[9] E. J. Elton and M. J. Gruber, Finance as a Dynamic Process, Englewood Cliffs, NJ: Prentice-Hall, 1975.
[10] H. Föllmer and D. Sondermann, Hedging of non-redundant contingent claims, Contributions to Mathematical Economics, North Holland. Hildebrandt and Mas-Colell, 1986, 205–223.
[11] R. R. Grauer and N. H. Hakansson, On the use of mean-variance and quadratic approximations in implementing dynamic investment strategies: A comparison of returns and investment policies, Management Science, 39 (1993), 856–871.
[12] A. J. Heunis, Quadratic minimization with portfolio and terminal wealth constraints, Annals of Finance, 11 (2015), 243–282.
[13] S. Ji and X. Y. Zhou, A maximum principle for stochastic optimal control with terminal state constraints and its applications, Communications in Information Systems, 6 (2006), 321–337.
[14] X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540–1555.
[15] X. Li and Z. Q. Xu, Continuous-time mean-variance portfolio selection with constraints on wealth and portfolio, Oper. Res. Lett., 44 (2016), 729–736.
[16] H. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77–91.
[17] H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, Cowles Foundation for Research in Economics at Yale University, Monograph 16 John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1959.
[18] M. J. Optimal, multiperiod portfolio policies, The Journal of Business, 41 (1968), 215–229.
[19] S. Peng, A general stochastic maximum principle for optimal control problems, SIAM Journal on Control and Optimization, 28 (1990), 966–979.
[20] S. Peng, Backward stochastic differential equations and applications to optimal control, Applied Mathematics and Optimization, 27 (1993), 125–144.
[21] P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming, The Review of Economics and Statistics, 1969, 239–246.
[22] W. M. Wonham, On the separation theorem of stochastic control, SIAM Journal on Control, 6 (1968), 312–326.
[23] Z. Wu, A general maximum principle for optimal control of forward-backward stochastic systems, Automatica, 49 (2013), 1473–1480.
[24] J. Yong, Optimality variational principle for controlled forward-backward stochastic differential equations with mixed initial-terminal conditions, SIAM Journal on Control and Optimization, 48 (2010), 4119–4156.
[25] J. Yong and X. Y. Zhou, Stochastic Controls: Hamilton Systems and HJB Equations, Springer, New York, 1999.
[26] X. Y. Zhou and D. Li, Explicit efficient frontier of a continuous-time mean-variance portfolio selection problem, in Control of Distributed Parameter and Stochastic Systems, Springer US, 1999, 323–330.

Received June 2017; revised June 2018.

E-mail address: jsl@sdu.edu.cn
E-mail address: xiaolexue1989@gmail.com, xuexiaole.good@163.com