Depolarization signatures map gold nanorods within biological tissue

Norman Lippok1,2, Martin Villiger1,2, Alexandre Albanese3,4, Elco F. J. Meijer1,5, Kwanghun Chung4,6,7,8, Timothy P. Padera1,5, Sangeeta N. Bhatia3,4,9 and Brett E. Bouma1,2,4*©

Owing to their electromagnetic properties, tunability and biocompatibility, gold nanorods are being investigated as multifunctional probes for a range of biomedical applications. However, detection beyond the reach of traditional fluorescence and two-photon approaches and quantitation of their concentration in biological tissue remain challenging tasks in microscopy. Here, we show how the size and aspect ratio that impart gold nanorods with their plasmonic properties also make them a source of entropy. We report on how depolarization can be exploited as a strategy to visualize gold nanorod diffusion and distribution in biologically relevant scenarios ex vivo, in vitro and in vivo. We identify a deterministic relation between depolarization and nanoparticle concentration. As a result, some of the most stringent experimental conditions can be relaxed, and susceptibility to artefacts is reduced, enabling microscopic and macroscopic applications.

Gold nanorods (GNRs) have demonstrated broad capabilities in science and medicine1–15. Their ability to confine resonant photons with rapid dephasing yields optical properties for applications as molecular rulers11–13, single-molecule detection14,15 and multifunctional probes for photoactivated drug delivery and cell injury in cancer therapy3–5. Two-photon processes6–10 and dark-field microscopy16,17 allow single GNR detection, while nanoparticle distances less than 70 nm have been monitored based on frequency shifts from plasmon coupling effects11. Such imaging methods redefine our understanding on a nanoscopic scale but the quantitation and comprehensive visualization of GNR distribution in biological samples, 3D tissues and in vivo remain challenging. Visualizing GNRs without the stringent requirement of thin and transparent samples or limitations from high photon densities and small fields of view would help to facilitate their diagnostic and therapeutic uses.

Owing to GNRs having a high aspect ratio and a size much smaller than optical wavelengths, they permit electrons to move and oscillate more readily in response to incident radiation along their longitudinal axis. The resulting differential scattering cross-section makes each GNR an effective diattenuator (Fig. 1a). Numerical analysis of scattering by single GNRs confirms a strongly polarization-dependent scattering cross-section in the vicinity of their longitudinal resonance wavelength (Supplementary Fig. 1a). Further experimental validation reports a high diattenuation coefficient of 0.75 near the longitudinal resonance of 10 × 81-nm-sized GNRs (Supplementary Fig. 1b). Uncontrolled and randomly oriented GNRs thus introduce a stochastic variation of states within an ensemble of particles, making GNRs a source of entropy and decoherence. Generally, these are unwanted complications in the context of coherent imaging, and significant effort has sought to reduce their impact18,19. Interestingly, probing polarization entropy provides information about a system that can be described by classical depolarization20.

Depolarization of light by anisotropic nanoparticles has been investigated in detail21–24 but without exploring its use as a definitive GNR signature. Depolarization is an instantaneous process, allows fast acquisition and is not hindered by photobleaching, quenching or autofluorescence. Measuring depolarization does not require a pulsed laser or additional light sources, and photon densities within safety limits of the human eye are sufficient. Depolarization from GNRs is readily tunable to longer wavelengths (beyond fluorescence and two-photon wavelengths), where scattering is significantly reduced and penetration depth enhanced.

Multiple scattering is a competing source of decoherence. To selectively detect GNR depolarization, we employed coherently gated detection to filter ballistic photons from a multiply scattered background25–27 (see Methods). Coherent systems detect the coherent superposition of the scattering contributions, always resulting in pure states ρ = |Ψ⟩⟨Ψ|. We probed the entropy of states from an ensemble (incoherent sum) of pure states of spatially varying coherence volumes (voxels), effectively rendering the imaging system partially coherent. The result is a mixed state, formally described by a density operator ρ = ∑ p i |Ψ i⟩⟨Ψ i|, where p i is the occurrence of each pure state. This complex Hermitian matrix is equivalent to the coherency matrix and connects GNR entropy with depolarization by the eigenvalues of ρ (Supplementary Information). Figure 1b illustrates polarization entropy and provides an example of the signature obtained from GNRs. Figure 1c displays coherently detected pure states, ρ, and reconstructed mixed states, ρ, for GNRs (green) and a non-depolarizing target (purple).

Experimental observations emphasize a strong dependency of depolarization, Δ, on the input state (Fig. 2a). Whereas Δ remains equally low for all linear states (blue points), it increases dramatically...
High GNR entropy offers a signature to identify nanoparticle location. A probing linear state results in high depolarization from superficial GNRs, but low depolarization from the GNRs behind the wave-plate, which rotates the polarization state of the probing light (EPR in Fig. 2b and see Methods). Many biological tissues exhibit birefringence, including muscle, collagen and myelin, emphasizing the need for a definitive measure of depolarization, independent of the probing state. With an incident set of orthogonal states it is possible to retrospectively synthesize an optimum state and find maximum depolarization from GNRs (JVS in Fig. 2b and see Methods). The solution is expected to correspond to circular polarization behind the wave-plate, and accordingly compromises the depolarization of the superficial GNRs. To obtain definitive depolarization from GNRs, irrespective of birefringence and probing state, we extended the density matrix formalism and constructed the Müller matrix corresponding to the mixed states ρ. We used polar decomposition and eigenvalue decomposition to extract the principal depolarization factors and found the optimum state corresponding to strongest GNR depolarization independent of sample location (Supplementary Information). Indeed, this approach yields maximized and equal (that is, definitive) depolarization from GNRs at the front and back interface of the wave-plate (PD in Fig. 2b).

In Fig. 3 we present numerical simulations of mixed states computed from coherent particle backscatter signals, confirming the dependency of depolarization on input states and that maximum depolarization is found in the case of circular polarization (ΔV, Fig. 3a). Depolarization quickly increases with diattenuation (Fig. 3a) and plateaus for approximately two independently oriented particles per coherence volume (N_D) (Fig. 3b). Importantly, the presence of polarization-maintaining scatterers (having density N_D) results in a more traceable mapping of depolarization to GNR concentration.

In practice, GNR aggregation may impair independent nanoparticle orientation. Although GNR aggregation alters depolarization properties, experiments confirmed that significant aggregation still provides a clear depolarization signal (Supplementary Fig. 3). This during propagation inside the sample would result in a bias and underestimation of depolarization.

This is illustrated in Fig. 2b with a birefringent target consisting of GNR solution in front of and behind a wave-plate. Using a circular probing state results in high depolarization from superficial GNRs, but low depolarization from the GNRs behind the wave-plate, which rotates the polarization state of the probing light (EPR in Fig. 2b and see Methods). Many biological tissues exhibit birefringence, including muscle, collagen and myelin, emphasizing the need for a definitive measure of depolarization, independent of the probing state. With an incident set of orthogonal states it is possible to retrospectively synthesize an optimum state and find maximum depolarization from GNRs (JVS in Fig. 2b and see Methods). The solution is expected to correspond to circular polarization behind the wave-plate, and accordingly compromises the depolarization of the superficial GNRs. To obtain definitive depolarization from GNRs, irrespective of birefringence and probing state, we extended the density matrix formalism and constructed the Müller matrix corresponding to the mixed states ρ. We used polar decomposition and eigenvalue decomposition to extract the principal depolarization factors and found the optimum state corresponding to strongest GNR depolarization independent of sample location (Supplementary Information). Indeed, this approach yields maximized and equal (that is, definitive) depolarization from GNRs at the front and back interface of the wave-plate (PD in Fig. 2b).

In Fig. 3 we present numerical simulations of mixed states computed from coherent particle backscatter signals, confirming the dependency of depolarization on input states and that maximum depolarization is found in the case of circular polarization (ΔV, Fig. 3a). Depolarization quickly increases with diattenuation (Fig. 3a) and plateaus for approximately two independently oriented particles per coherence volume (N_D) (Fig. 3b). Importantly, the presence of polarization-maintaining scatterers (having density N_D) results in a more traceable mapping of depolarization to GNR concentration.

In practice, GNR aggregation may impair independent nanoparticle orientation. Although GNR aggregation alters depolarization properties, experiments confirmed that significant aggregation still provides a clear depolarization signal (Supplementary Fig. 3). This
suggestions that depolarization, which depends on the GNR differential cross-section, may be more robust to GNR aggregation than techniques that rely on a specific surface plasmon resonance.

To demonstrate the benefit of definitive depolarization as a GNR signature we conducted a series of clinically and biologically relevant experiments. Techniques that quantify diffusion can give valuable insight into the viscoelastic properties of a medium. Figure 4a shows the mixing of nonpolar bonding intralipid (left) and polar bonding phosphate-buffered saline solution with GNRs (right) in a capillary. Depolarization clearly details intermediate stages of mixing that are indistinguishable by scatting intensity. Figure 4b utilizes collagen gel as a model for GNR transport in 3D biological environments. Depolarization reveals GNR gradients in real time as they passively diffuse into the collagen over time. In another experiment, we evaluated definitive depolarization of GNRs in cerebral organoids, which simulate microanatomy and create cellular models of human disease.15 Depolarization from GNRs, passivated with polyethylene glycol (PEG–GNR) to ensure biocompatibility, reveals region-specific PEG–GNR accumulation that highlights tissue microarchitecture. Figure 4c displays distinct regions of increased PEG–GNR penetration, pointing to low cell density, that surround a denser core (white asterisk). Definitive depolarization from GNRs offers a promising tool to visualize heterogeneity and density of micromorphology, and may offer a new avenue to optimize the organoid growing process and subsequent application of refractive-index matching and tissue clearing19 (Fig. 4c).

To validate depolarization from GNRs under more realistic biological conditions, we imaged passive accumulation of GNRs in the lymphatics of the hind limb of mice in vivo. Without exogenous contrast, assessment of lymphatic vessels has proved extremely challenging using intensity as lymph yields signals near the noise floor of the instrument. Careful alignment reveals the lymph vessel as a region void of appreciable signal (Fig. 5a). A magnified view emphasizes the vessel (red triangle) and vessel valves (green triangles). The depolarization signature clearly outlines the lymphatic vasculature after GNR injection into the foot improving their visualization (Fig. 5b, c). Imaging lymphatic vessels and lymph nodes in vivo using antibody-conjugated GNRs may
enable new studies of disease progression. Figure 5c shows projections over all depths, presenting morphological and functional details of entire volumes. Angiography confirms the location of the lymphatics (Angio in Fig. 5c), albeit being sensitive to motion, it also highlights blood vessels (Supplementary Fig. 9). Moreover, the GNR uptake in inguinal lymph nodes was investigated (Supplementary Fig. 10). Sentinel lymph nodes are the first draining nodes that are reached by metastatic cancer cells. An exogenous depolarization signature from cancer cell conjugated GNRs could generate new multifunctional probes and may delineate morphological structures that are not recognizable with intrinsic backscattering. Indeed, GNR imaging in inguinal lymph nodes demonstrated depolarizing areas in the subcapsular sinus, 72 h post-injection.

When GNRs are injected into biological tissue, susceptibility to polarization-maintaining scattering becomes relevant. Non-depolarized scattering prevents an early saturation of the depolarization. Hence, GNRs can enter a spheroid and accumulate in the interstitial spaces. Entering a spheroid and accumulating in the interstitial spaces.

The lymph vessel (red triangle) and vessel valves (green triangles) are highlighted in the magnified view. a, Mouse lymphatic vessel after injecting 10 μl of 36 nM PEG–GNRs into the foot. Imaging was performed 2 min post-injection. b, Depth-resolved views (x–y and y–z) showing intensity (Int) and depolarization (Dep). The lymphatic vessel is outlined in the depolarization view. c, Volumetric projections (x–y) over all depths showing intensity, depolarization >0.3 (Dep thr), intensity overlaid with depth-encoded depolarization (Dep dpt) and angiography (Angio). Depth-encoded depolarization (Dep dpt) displays superficial regions as bright blue and deeper regions of depolarization as dark blue. Depth span, 1.2 mm. Angiography is displayed for comparison. The angiogram (Angio) contrasts moving scatterers (flow) from a static background. Superficial vessels are presented in yellow and deeper vessels are presented in red. Depth span, 1.5 mm. Scale bars, 500 μm (a, b), 1 mm (c). Colour bar represents depolarization, 0–1 (b, c). (See Supplementary Movie 3.)

The lymph vessel (red triangle) and vessel valves (green triangles) are highlighted in the magnified view. a, Mouse lymphatic vessel after injecting 10 μl of 36 nM PEG–GNRs into the foot. Imaging was performed 2 min post-injection. b, Depth-resolved views (x–y and y–z) showing intensity (Int) and depolarization (Dep). The lymphatic vessel is outlined in the depolarization view. c, Volumetric projections (x–y) over all depths showing intensity, depolarization >0.3 (Dep thr), intensity overlaid with depth-encoded depolarization (Dep dpt) and angiography (Angio). Depth-encoded depolarization (Dep dpt) displays superficial regions as bright blue and deeper regions of depolarization as dark blue. Depth span, 1.2 mm. Angiography is displayed for comparison. The angiogram (Angio) contrasts moving scatterers (flow) from a static background. Superficial vessels are presented in yellow and deeper vessels are presented in red. Depth span, 1.5 mm. Scale bars, 500 μm (a, b), 1 mm (c). Colour bar represents depolarization, 0–1 (b, c). (See Supplementary Movie 3.)

Figure 6 | GNR penetration and concentration in metastatic spheroids in vitro. a, Experimental depolarization (top) and normalized backscattering intensity (bottom) for various GNR mixtures. The dependency of depolarization on GNR concentration increases with increasing non-depolarizing scattering (intralipid, IL). The depolarization measurements are fitted using the analytical model (Supplementary Section IV). b, Reconstructed GNR concentration for different set concentrations using the analytical approach, taking into account depolarizing and backscattering intensity (that is, depolarizing and non-depolarizing scatterers) (Supplementary Section IV), c, 3D intensity image of cancer cell spheroids of a MDA-MB-435 (MDA) cancer cell line. d, Schematic of 10 × 80 nm PEG–GNRs entering a spheroid and accumulating in the interstitial spaces. e, Control measurement showing the intensity overlaid with reconstructed GNR concentration of cancer cell spheroids in a 3D (top) and depth-resolved (x–z; bottom) view. The inset displays depolarization. f, 3D (top) and depth-resolved (x–z; bottom) views showing the reconstructed GNR concentration after 12 h of incubation with 1 nM PEG–GNRs. Owing to their size, GNR penetration is limited and mostly unnoticeable, presenting a mean concentration of 2.4 × 10^{10} GNRs ml^{-1} (40 pM) in the penetrated regions. Colour bar represents depolarization, 0–1 (e, inset) and GNR concentration, 9 × 10^{11}–6 × 10^{13} GNRs ml^{-1} (15–100 pM) (e, f; main images). Scale bars, 250 μm (e), 500 μm (e, f).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
dependency between depolarization and GNR concentration (Fig. 3b). This is confirmed experimentally by utilizing GNRs mixed with non-perturbing scatterers, that is, intralipid (Fig. 6a). Depolarization decreases and intensity increases with growing polarization-maintaining scattering. The contribution of the GNR backscattering to total intensity becomes negligible with increasing intralipid concentration. However, the combined effect of polarization-maintaining scattering and GNRs renders the system sensitive to low GNR concentrations that would fail to generate sufficient backscatter intensity otherwise (green curve). We identified an analytic model that explains the observed depolarization dependency on both depolarizing and polarization-maintaining scattering and that enabled us to recover GNR concentration (Fig. 6b and Supplementary Information).

We compared the depolarization measurements with two-photon luminescence (TPL) microscopy and confocal detection of fluorescently labelled GNRs for a wide range of GNR concentrations (Supplementary Fig. 4a,b). The detection dynamic range and detection limit of depolarization are comparable with those of fluorescence and TPL, albeit without being subject to experimental inaccuracies in the preparation of fluorescently labelled GNRs or photobleaching. We determined qualitative and quantitative detection limits of 2.4 × 10^7 GNRs ml\(^{-1}\) (4 pm) and 9 × 10^6 GNRs ml\(^{-1}\) (15 pm), respectively. Furthermore, fluorescent GNRs were added to parafomaldehyde (PFA)-fixed cerebral organoids, demonstrating enhanced imaging depth and imaging speed for a coherently gated depolarization signature compared with confocal fluorescence detection (Supplementary Fig. 4c–g). Because the fluorescence and TPL signals are directly proportional to concentration (GNRs, fluorophores) and excitation power, they are affected by scattering and absorption. Thus, fluorescence and TPL signals exponentially decrease with depth, even if the GNR concentration remains constant. Unlike fluorescence and TPL, depolarization provides a metric that is largely independent of optical power, attenuation and hence depth (Supplementary Fig. 5).

We applied the analytical approach in vitro to investigate PEG-GNR penetration and concentration in cancer cell spheroids. Spheroids are routinely used to screen the transport and biological interactions of nanomaterials in 3D cellular environments (Fig. 6c–f). PEG-GNR accumulation occurred predominantly at the spheroid surface with localized permeable regions showing an average concentration of 2.4 × 10^10 GNRs ml\(^{-1}\) (40 pm). Penetration and concentration inside spheroids was limited, consistent with previous findings demonstrating the restricted penetration of nanoparticles >70 nm in MDA-MB-435 cell spheroids and tumours.31

Diattenuating GNRs are a source of entropy, a phenomenon that we exploit as an imaging signature. A key to our approach is describing the statistics of pure states from spatially varying coherence volumes by the density matrix of a mixed state and using polar decomposition of corresponding Müller matrices for an unambiguous (definitive) measurement of depolarization. Our findings provide experimental evidence of definitive depolarization as a contrast mechanism to visualize GNR distribution, diffusion and concentration in biological specimens and in vivo. GNR depolarization offers comprehensive imaging over large fields of view and at imaging depths up to 2 mm, exceeding the limitations of conventional fluorescence and TPL microscopy. This offers new avenues for GNRs as carriers or therapeutic agents. Antibody-conjugated GNRs could serve as imaging labels for coherently imaging with molecular specificity. Unlike confocal or two-photon microscopy, coherent imaging can be readily implemented into minimally invasive, flexible catheters. This extends GNR depolarization to tubular and deeper-lying organs, offering new opportunities for imaging the urinary and gastrointestinal tracts, the lungs, or the vasculature in vivo.23,24 In cerebral organoids, the GNR depolarization signature probably reflects growth and reorganization of different cell types. Visualizing heterogeneity in cancer cell spheroids may ultimately correlate with clonal outgrowths. The ability to observe the subcapsular sinus, for example, has strong research and clinical importance as it is the most likely location where the earliest manifestations of metastatic carcinoma in a lymph node might be found, as well as the site of arrival of antigens critical to stimulating immune responses.

Methods

Methods and any associated references are available in the online version of the paper.

Received 12 January 2017; accepted 29 June 2017; published online 31 July 2017; corrected online 16 August 2017

References

1. Yu, Y., Chang, S., Lee, C. & Wang, C. R. C. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661–6664 (1997).
2. Huang, X. H., Neretina, S. & El-Sayed, M. A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 21, 4880–4910 (2009).
3. Mieszawska, A. J., Mulder, W. J. M., Fayad, Z. A. & Cormode, D. P. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol. Pharm. 10, 831–847 (2013).
4. Pisuswan, D., Valenzuela, S. M., Cortie, M. B. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24, 62–67 (2006).
5. Maltzahn, G. et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69, 3892–3900 (2009).
6. Lin, K. Y. et al. Gold nanorod photothermal therapy in a genetically engineered mouse model of soft tissue sarcoma. Nano Lett. 1, 277–287 (2010).
7. Bagley, A. F., Hill, S., Rogers, G. S. & Bhatia, S. N. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 7, 8089–8097 (2013).
8. Dickerson, E. B. et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269, 57–66 (2008).
9. Wang, H. et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl Acad. Sci. USA 102, 15752–15756 (2005).
10. Bouhelier, A. et al. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys. Rev. Lett. 95, 267405 (2005).
11. Soennichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–750 (2005).
12. Jain, P. K., Eustis, S. & El-Sayed, M. A. Plasmonic coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 110, 18243–18253 (2006).
13. Jain, P., Huang, W. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon runker equation. Nano Lett. 7, 2080–2088 (2007).
14. Nie, S. & Emory, S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).
15. Quian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).
16. Sönntichsen, C., Franzl, T., Willk, T., von Plessen, G. & Feldmann, J. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).
17. Murphy, C. J. et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008).
18. Eisbitt, S. & Lenzel imaging of magnetic nanostructures by X-ray spectroholography. Nature 432, 885–888 (2004).
19. Thubault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).
20. Goodman, J. W. Statistical Optics (Wiley, 2000).
21. Mishchenko, M. I. & Hovenier, J. W. Depolarization of light backscattered by randomly oriented nonspherical particles. Opt. Lett. 20, 1356–1358 (1995).
22. Khlętsov, N. G., Melnikov, A. G., Bogatyrev, V. A., Alikseysa, A. V. & Khlętsov, B. N. Depolarization of light scattered by gold nanoparticles and nanorods. Opt. Spectrosc. 100, 448–455 (2006).
23. Khlętsov, B., Kanaadeev, V. & Khlętsov, N. Tunable depolarized light scattering from gold and silver nanorods. Phys. Chem. Chem. Phys. 12, 3210–3218 (2010).
24. Swami, M. K. et al. Effect of gold nanoparticles on depolarization characteristics of intralipid tissue phantom. Appl. Opt. Lett. 38, 2855–2857 (2013).
25. Eickhoff, W. & Ulrich, R. Optical frequency domain reflectometry in single-mode fiber. Appl. Phys. Lett. 39, 693–695 (1981).
Acknowledgements
This work was supported in part by National Institutes of Health (NIH) grant P41EB-015903, Koch Institute Support Grant P30-CA14051 from the National Cancer Institute (Swanson Biotechnology Center), and a Core Center Grant P30-ES002109 from the National Institute of Environmental Health Sciences. S.N.B. is a Howard Hughes Medical Institute Investigator. A.A. was supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research. T.P.P. was supported by NIH R01CA214913 and NIH R01HL128168. K.C. was supported by Burroughs Wellcome Fund Career Awards at the Scientific Interface, the Searle Scholars Program, Packard award in Science and Engineering, NARSAD Young Investigator Award, and NCSOFT Cultural Foundation.

Author contributions
M.V. initiated the project. N.L., M.V., A.A., S.N.B. and B.E.B. conceived and designed the overall study. N.L. conceived, designed and performed experiments, analysed the data, carried out numerical simulations, identified the analytical model and wrote the first draft of the manuscript. N.L. and M.V. developed the simulations and built the experimental set-up. A.A. conceived the in vitro experiments, prepared the spheroids, organoids, nanoparticle aggregates and fluorescent labelled and PEGylated the nanoparticles. E.F.J.M. performed the lymph surgeries. N.L. and E.F.J.M. took the in vivo measurements. K.C. provided guidance on the in vitro organoid experiments. T.P.P. supervised the in vivo mouse experiments. S.N.B. oversaw the nanoparticle PEGylation and in vitro spheroid experiments. B.E.B. provided guidance and supervised the overall project. N.L., M.V. and B.E.B. wrote the final manuscript with contributions from all authors.

Additional information
Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Correspondence and requests for materials should be addressed to B.E.B.

Competing financial interests
The authors declare no competing financial interests.
Methods

Experimental set-up. The experimental set-up is illustrated in Supplementary Fig. 7. Optical frequency domain imaging (OFDI), also known as coherent optical frequency-domain reflectometry (C-OFDR) in fibre optics, utilizes a custom-built frequency-swept external cavity laser in a Littman from the multiplexing unit to the coupler to the object, bandwidth). The matrices range depending on the optical path difference of a scatterer, centred about propagation of states from the frequency multiplexing unit to the object and output is. Moreover, the linearly independent illumination states (linear basis) cast the Jones using acousto-optic modulators. This resulted in a heterodyne measurement at two beat frequencies (, MHz, MHz) carrying the weakly backscattered signal for the two incident principle states. The depth information had a frequency range depending on the optical path difference of a scatterer, centred about . The output was projected on two orthogonal polarization channels. Using the relative phase, enabled retrieval of the Jones vector corresponding to the scattering field. Moreover, the linearly independent illumination states (linear basis) cast the Jones matrix for all depths from a single wavelength sweep. A depth-resolved cross-sectional image was acquired in 20 ms, while a volumetric measurement took 20 s. The lateral resolution was 22 μm and the axial resolution was 6 μm in tissue. The propagation of states from the frequency multiplexing unit to the object and output is described by , where is the identity matrix corresponding to the linearly polarized basis of two orthogonal states. is a fibre transformation matrix from the multiplexing unit to the fibre coupler, is the Jones matrix from the fibre coupler to the output transformation through an object to a depth and describes a transformation from the fibre coupler to the output. The columns of the measurement matrix yield two pure states, . Single-mode fibre was assumed free of diattenuation and polarization mode dispersion (<0.5 radians across the 20 THz bandwidth). The matrices , and thus describe general unitary transformations without polarizing or depolarizing behaviour and any statistical variation of pure states in is solely caused by . For a detailed description of definitive depolarization measurements see Supplementary Information.

Diattenuation measurements. Diattenuation and diattenuation variance were calculated from the eigenvalues, , of the diagonalized measurement matrix . The eigenvalues are described as , where is the number of time-varying intensity measurements, .

Retardation measurements. The local Jones matrix was obtained from two cumulative Jones matrices separated by a depth increment , with , where is the transformation through depth increment . The matrix transformation governed by is thus . This is a similarity transformation.

Numerical simulation of depolarization from nanorods. Our experimental observations of diattenuation-mediated decoherence from nanoparticles were modelled with a uniform distribution of random scatterers in the frequency domain. An ensemble of scatterers was given a diattenuation coefficient, , at uniformly distributed, linear diattenuation axes. The model was proposed with a linearly polarized basis as was the case in our experimental configuration. The simulation takes into account a vertical cross-section, ignoring the second lateral dimension. The simulated sample, covering an ensemble of distributed diattenuating scatterers, spanned 380 μm in the lateral and axial directions, with a resolution of 8 μm in both dimensions after two-dimensional Fourier transform.

The first term on the right-hand side of equation (1) represents an ensemble of ND, non-diattenuating scatterers and the second term represents ND, diattenuating scatterers, all uniformly distributed in spatial frequency (lateral location) and frequency (lateral location) at a wavelength of 1.3 μm. The fringe modulation frequency of an optical path length 2λ, allows a wavevector . For convenience, the unit for the number of particles was normalized to source coherence length, . is a rotation matrix considering a diattenuation axis orientation and is the identity matrix representing a linearly polarized basis of two incident states. The model assumes a constant average scattering cross-section for the diattenuating, ND, and non-diattenuating, ND, particles equally. The columns of the output of equation (1) yield two pure states, , that have some probability distribution for diattenuating scatterers and are deterministic for non-diattenuating scatterers. Diattenuation and diattenuation variance was extracted from the eigenvalues, , of the diagonalizable output matrix in equation as . Mixed states were described as a distribution of pure states from either , or , where the expected depolarization was obtained from the eigenvalues of the density operator . Alternatively, depolarization was calculated in Supplementary Fig. 7. Moreover, the Jones matrix given by the output of equation (1) can be represented by a Müller–Jones matrix. Similar to the coherency matrix that conveniently describes an ensemble of pure states, a statistical ensemble of spatially varying Müller–Jones matrices leads to a general Müller matrix. It is used to calculate depolarization power, , as an unambiguous measure of depolarization for comparison. Please refer to the Supplementary Information for more details.

Eigepolarization referencing (EPR). A circular state at the object is desirable as it yields highest polarization entropy from GNRs. After propagation in a single-mode fibre, the polarization state at the fibre output (at the object) is unknown due to fibre birefringence. The polarization state can be referenced remotely to the eigenvectors (eigenpolarization) of a birefringent medium. The concept of EPR is shown in Supplementary Fig. 7. Before illuminating the object, a small portion of the radiation was used as a reference frame for convenience. A general form of an optimum polarization state can be written as , where .

Junction vector synthesis (JVS). The experimental configuration provided two polarization states orthogonal in Jones space (,). This offered a set of linearly independent basis vectors that uniquely expressed other states as a linear combination in the vector space. We applied this property to numerically express an optimized state at the object, for example, horizontal , vertical , and circular polarization (,) and used the orientation of as a reference frame for convenience. A general form of an optimum state can be written as , where is a scaling factor and .

Nanorod preparation. We used GNRs with a surface plasmon resonance at 1,200 nm (A12-10-1200) or 1,064 nm (A12-10-1064) (Nanopartz Inc.). The GNRs had a aspect ratio and were coated with a semi-covalent bond and covered the GNR surface with a self-assembled monolayer. The prepared solutions were cooled to room temperature, centrifuged and washed semi-covalent bond and covered the GNR surface with a self-assembled monolayer. The prepared solutions were cooled to room temperature, centrifuged and washed three times to remove unbound PEG. PEG-coated GNRs were resuspended in phosphate-buffered saline (PBS) then added to appropriate cell culture medium during experiments with collagen, spheroids and organoids. PEG–GNRs were resuspended in PBS for dilution. PEG is transparent at a wavelength of 1.3 μm and showed no depolarization or scattering. The measured GNR depolarization was the same for CTAB–GNRs (Supplementary Fig. 6b; aspect ratio 8.1) and PEG–GNRs (Supplementary Fig. 3d, CTL), indicating that neither CTAB nor PEG in phosphate-buffered saline (PBS) then added to appropriate cell culture medium during experiments with collagen, spheroids and organoids. PEG–GNRs were resuspended in PBS for dilution. PEG is transparent at a wavelength of 1.3 μm and showed no depolarization or scattering. The measured GNR depolarization was the same for CTAB–GNRs (Supplementary Fig. 6b; aspect ratio 8.1) and PEG–GNRs (Supplementary Fig. 3d, CTL), indicating that neither CTAB nor PEG influence depolarization. GNRs with size 10 × 81 nm were used for all experiments for lymph node experiments that used 10 × 67 nm GNRs.

Gold nanorod aggregates. GNR aggregates were generated by the addition of NaCl to thrice-washed GNRs. At high enough concentrations, Cl- anions can neutralize positive charges of remaining CTAB on the GNR surface. Van der Waals attractive forces causes GNR aggregation over time. After exposure to 1 M NaCl for 15 min, methyl-terminated SH–PEG-5k was added to stabilize aggregates at an excess of 20 molecules per nm². Samples were then analysed by spectrometry or microscopy.

Supplementary Information.
Fluorescent gold nanorods. GNRs were washed by centrifugation (5,000g for 15 min) in wash buffer (0.01% sodium citrate + 0.05% Tween-20) and then functionalized with a molar excess of thiolated PEG molecules (20 per nm²). For fluorescent GNRs, we used a proportion of 85% methyl-terminated SH-PEG-5k and 15% amine-terminated SH-PEG-5k. GNRs were incubated with PEG in wash buffer at room temperature overnight, then washed three times at 10,000g for 10 min. Fluorescent GNRs were then resuspended in 200 mM sodium bicarbonate buffer (pH 8.3) and reacted with an excess of amine-reactive AlexaFluor594-NHS ester (10,000 fluorophores per nm²). Fluorescent GNRs were washed three times by centrifugation and resuspended in a final volume of PBS. (Supplementary Information).

Spheroid preparation. Spheroids were prepared using the MDA-MB-435 cancer metastatic cell line. Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal-bovine serum (FBS) and penicillin-streptomycin (Life Technologies). Cells were grown in monolayers and collected by exposure to 0.05% trypsin solution (Life Technologies). Round-bottom, 96-well plates were coated with a solution of 2.5% poly 2-hydroxyethyl methacrylate (Sigma) in 95% ethanol for 24 h at 37 °C. Ten thousand cells were seeded in each well and plates were coated with a solution of 2.5% poly 2-hydroxyethyl methacrylate (Sigma) in 95% ethanol for 24 h at 37 °C. Ten thousand cells were seeded in each well and centrifuged at 500g for 10 min. The cells formed a pellet at the bottom of the round-bottom wells and were left to grow for 3–7 days. During this culture period, the cells produced some extracellular matrix and formed cell–cell interactions leading to the formation of 3D spheroids with a diameter of approximately 300 µm. The cell spheroids were collected, left to settle at the bottom of a conical plastic tube and centrifuged at 1,000g for 10 min. The cells formed a pellet at the bottom of the round-bottom wells and were left to grow for 3–7 days. During this culture period, the cells produced some extracellular matrix and formed cell–cell interactions leading to the formation of 3D spheroids with a diameter of approximately 300 µm. The cell spheroids were collected, left to settle at the bottom of a conical plastic tube and centrifuged at 1,000g for 10 min. The cells formed a pellet at the bottom of the round-bottom wells and were left to grow for 3–7 days. During this culture period, the cells produced some extracellular matrix and formed cell–cell interactions leading to the formation of 3D spheroids with a diameter of approximately 300 µm. The cell spheroids were collected, left to settle at the bottom of a conical plastic tube and centrifuged at 1,000g for 10 min. The cells formed a pellet at the bottom of the round-bottom wells and were left to grow for 3–7 days. During this culture period, the cells produced some extracellular matrix and formed cell–cell interactions leading to the formation of 3D spheroids with a diameter of approximately 300 µm. The cell spheroids were collected, left to settle at the bottom of a conical plastic tube and centrifuged at 1,000g for 10 min.

Organoid preparation. Cerebral organoids were made from stem cells following a previously described protocol. Organoids were cultured for 50 days then fixed in 4% PFA overnight at 4 °C, washed with PBS three times and then exposed to PEG–GNR for 1 h. Organoids were incubated with 18 nM PEG–GNRs for 1 h prior to imaging.

Animal preparation. Experiments were conducted in the hind limb of 10-week-old C3H male mice (26–36 g). Mice were anesthetized with ketamine/xylazine 10 mg/1 mg per kg body weight and the surgical procedure was performed according to ref. 36. Tissue was hydrated using physiological saline. Mice were euthanized at the conclusion of the experiments. Ten microliters of 36 nM PEG–GNRs were injected into the foot and in vivo imaging of lymph vessels was performed approximately 2 min post-injection. For the lymph node experiments, 15 µl of 35 nM PEG–GNRs were injected into the foot. The same GNR volume and GNR concentration was injected into the foot close to the same location after 24 and 48 h. Imaging of excised lymph nodes was performed 72 h after the first injection. The animal protocol was reviewed and approved by the Institutional Animal Care and Use Committee of the Massachusetts General Hospital.

Fluorescence and confocal detection. Fluorescently labelled GNRs were detected using an inverted confocal microscope (Olympus FV1000). AlexaFluor594 was excited at a wavelength of 559 nm and an incident power of 4.5 mW through a 10× (0.4 NA) objective lens. A 40× (0.8 NA) objective lens with 13 mW incident power was also used for comparison. Tissue imaging was performed using the 10× lens. Fluorescence emission was detected using a 180 µm pinhole and photomultiplier tube after bandpass filtering from 590 to 630 nm to reject the excitation light. (Supplementary Information)

Two-photon luminescence detection. Two-photon luminescence was detected from GNRs with a surface plasmon resonance at 1,060 nm and a size of 10 × 67 nm. A pulsed laser (Ti:sapphire, MaiTai HP DeepSee-OL, Spectral physics) with a pulse width of <100 fs and a repetition rate of 80 MHz, at a wavelength of 1,000 nm was used. The samples were illuminated through a water immersion lens of 40× (0.8 NA) in an inverted microscope setting with an average power of 125 W peak power, 0.01 nJ energy). The two-photon luminescent signal was bandpass filtered from 630 to 700 nm to reject the excitation light and detected by a photomultiplier tube. (Supplementary Information).

Data availability. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References
34. Vakoc, B. J. et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009).
35. Lippok, N., Villiger, M., Jun, C. & Bouma, B. E. Single input state, single-mode fiber-based polarization-sensitive optical frequency domain imaging by eigenpolarization referencing. Opt. Lett. 40, 2025–2028 (2015).
36. Liao, S. et al. Impaired lymphatic contraction associated with immunosuppression. Proc. Natl Acad. Sci. USA 108, 18784–18789 (2011).
In the version of this Article originally published online, in the inset of Fig. 2a, the small, thick black lines on the Q and U axes were not in the correct orientation. The inset has now been updated in all versions of the Article.