LOW MACH NUMBER LIMIT OF THE FULL COMPRESSIBLE HALL-MHD SYSTEM

Jishan Fan
Department of Applied Mathematics
Nanjing Forestry University, Nanjing 210037, China

Fucai Li
Department of Mathematics, Nanjing University
Nanjing 210093, China

Gen Nakamura
Department of Mathematics, Hokkaido University
Sapporo, 060-0810, Japan

Abstract. In this paper we study the low Mach number limit of the full compressible Hall-magnetohydrodynamic (Hall-MHD) system in T^3. We prove that, as the Mach number tends to zero, the strong solution of the full compressible Hall-MHD system converges to that of the incompressible Hall-MHD system.

1. Introduction. In this paper we consider the low Mach number limit of the following full compressible Hall-magnetohydrodynamic (Hall-MHD) system ([24]):

$$
\partial_t \rho + \text{div} (\rho u) = 0,
$$

$$
\partial_t (\rho u) + \text{div} (\rho u \otimes u) + \frac{1}{\epsilon^2} \nabla \rho - \mu \Delta u - (\lambda + \mu) \nabla \text{div} u = \text{rot} b \times b,
$$

$$
\partial_t (\rho e) + \text{div} (\rho e u) - \text{div} (\kappa \nabla T) + p \text{div} u = \epsilon^2 \left(\frac{\mu}{2} |\nabla u + \nabla u^t|^2 + \lambda (\text{div} u)^2 + |\text{rot} b|^2 \right),
$$

$$
\partial_t b + \text{rot} (b \times u) + \text{rot} \left(\frac{\text{rot} b \times b}{\rho} \right) = \Delta b,
$$

$$
\text{div} b = 0.
$$

Here ρ, u, p, e, T and b denote the density, velocity, pressure, internal energy, temperature, and magnetic field, respectively. The physical constants μ and λ are the shear viscosity and bulk viscosity of the flow and satisfy $\mu > 0$ and $\lambda + \frac{2}{3} \mu \geq 0$. $\kappa > 0$ is the heat conductivity. $\epsilon > 0$ is the (scaled) Mach number. ∇u^t is the

2000 Mathematics Subject Classification. Primary: 76W05; Secondary: 35Q80, 70S15, 35Q60.

Key words and phrases. Full compressible Hall-MHD system, incompressible Hall-MHD system, low Mach number limit.

F. Li is the corresponding author.
transpose of the ∇u. For simplicity, we shall consider the case that the fluid is a polytropic ideal gas, that is

$$e := C_V T, \quad p := R \rho T$$

with $C_V > 0$ and $R > 0$ being the specific heat at constant volume and the generic gas constant, respectively.

The applications of the Hall-MHD system cover a very wide range of physical objects, for example, magnetic reconnection in space plasmas, star formation, neutron stars, and geo-dynamo, see [22, 23, 25]. Due to its physical importance and mathematical interest, there are a lot of results on the Hall-MHD system. For the incompressible Hall-MHD system, for example, the regularity criteria of the solutions were obtained in [6, 11, 12, 15, 26], and the global existence of small solution and global weak solutions were given in [3–5]. For the isentropic compressible Hall-MHD system, the local existence of strong solutions, global existence of small solutions were first obtained in [9] and the low Mach number limit problem was discussed in [21, 27]. Very recently, the local well-posedness and a blow-up criterion of strong solutions to the 3D compressible full Hall-MHD system (1)-(5) with positive density was obtained in [10].

When the Hall effect term $\text{rot} \left(\frac{\text{rot} b \times b}{\rho} \right)$ is neglected, the system (1)-(5) reduces to the well-known full compressible MHD system, which has received many studies [2, 8, 13, 14, 16, 17, 19]. The local strong solution was obtained by Fan-Yu [13]. The global weak solutions was obtained by Fan-Yu [14], Ducomet-Feireisl [8] and Hu-Wang [16] respectively. The low Mach number limit problem was studied by Jiang-Ju-Li [18] in \mathbb{T}^3 for well-prepared initial data, Jiang-Ju-Li-Xin [19] in \mathbb{R}^3 for ill-prepared initial data, and Cui-Ou-Ren [2] in a bounded domain for well-prepared initial data.

In this paper we study the low Mach number limit to the full Hall-MHD system (1)-(5) with well-prepared initial data in \mathbb{T}^3. In the following, we introduce the new unknowns σ and θ with $\rho := 1 + \epsilon \sigma, \quad T := 1 + \epsilon \theta$.

Then the system (1)-(5) can be rewritten as

$$\begin{align*}
\partial_t \sigma + \text{div} (\sigma u) + \frac{1}{\epsilon} \text{div} u &= 0, \\
\rho \partial_t u + \rho u \cdot \nabla u + \frac{R}{\epsilon} (\nabla \sigma + \nabla \theta) + R \nabla \sigma (\sigma \theta)
- \lambda \Delta u - (\lambda + \mu) \nabla \text{div} u &= \text{rot} b \times b, \\
C_V \rho (\partial_t \theta + u \cdot \nabla \theta) + R (\rho \theta + \sigma) \text{div} u + \frac{R}{\epsilon} \text{div} u - \kappa \Delta \theta
&= \epsilon \left(\frac{\mu}{2} |\nabla u + \nabla u^t|^2 + \lambda (\text{div} u)^2 + |\text{rot} b|^2 \right), \\
\partial_t b + \text{rot} (b \times u) + \text{rot} \left(\frac{\text{rot} b \times b}{\rho} \right) &= \Delta b, \quad \text{div} b = 0.
\end{align*}$$

We impose the initial conditions to the system (8)-(11) as

$$(\sigma, u, \theta, b)(\cdot, 0) = (\sigma_0, u_0, \theta_0, b_0) \quad \text{in} \quad \mathbb{T}^3. \quad (12)$$

A local existence result for (8)-(12) in the following sense can be shown in a similar way to that in [28]. Thus we omit the details of the proof.
Proposition 1.1 (Local existence). Let $\epsilon \in (0, 1)$. Suppose that the initial data $(\sigma_0, u_0, \theta_0, b_0)$ satisfy that $1 + \epsilon \sigma_0^m > m > 0$ for some positive constant m, and

$$
\tilde{c}_t^k \sigma^e(0), \tilde{c}_t^k u^e(0), \tilde{c}_t^k \theta^e(0), \tilde{c}_t^k b^e(0) \in H^{2-k} (\mathbb{T}^3), \quad k = 0, 1, 2.
$$

Then there exists a positive constant $T^e > 0$ such that the problem (8)-(12) has a unique solution $(\sigma^e, u^e, \theta^e, b^e)$ satisfying that $1 + \epsilon \sigma^e > 0$ in $\mathbb{T}^3 \times (0, T^e)$, and for $k = 0, 1, 2$,

$$
\tilde{c}_t^k \sigma^e \in C([0, T^e]; H^{2-k}), \tilde{c}_t^k u^e, \tilde{c}_t^k \theta^e, \tilde{c}_t^k b^e \in C([0, T^e]; H^{2-k}) \cap L^2(0, T^e; H^{3-k}).
$$

Remark 1.1. To simplify the statement, we have used $\tilde{\partial}_i u(0)$ to signify the quantity $\tilde{\partial}_i u(0)$ obtained through equation (9), and $\tilde{\partial}_t^2 u(0)$ is given recursively by $\tilde{\partial}_i^2 (9)$ in the same manner. Similarly, we can define $\tilde{\partial}_i \sigma(0), \tilde{\partial}_i b(0), \tilde{\partial}_i \theta(0), \tilde{\partial}_i^2 \sigma(0), \tilde{\partial}_i^2 b(0)$ and $\tilde{\partial}_i^2 \theta(0)$.

Denote

$$
\|u\|_{k,j} := \sum_{i=0}^j \|\tilde{\partial}_i^k u(0)\|_{H^{k-i}(\mathbb{T}^3)}, \quad \|u\|_{k,j}(0) := \sum_{i=0}^j \|\tilde{\partial}_i^k u(0)\|_{H^{k-i}(\mathbb{T}^3)}.
$$

The main result of this paper is stated as follows, which shows the uniform estimates of strong solutions to (8)-(12), and the corresponding low Mach number limit.

Theorem 1.2. Let $(\sigma^e, u^e, \theta^e, b^e)$ be the unique solution obtained in Proposition 1.1. Assume further that the initial data $(\sigma_0^e, u_0^e, \theta_0^e, b_0^e)$ satisfy

$$
\|(\sigma^e, u^e, \theta^e, b^e)\|_{2,2}(0) + \|(1 + \epsilon \sigma_0^e)^{-1}\|_{L^\infty} \leq D_0.
$$

Then there exist positive constants T_0 and D such that $(\sigma^e, u^e, \theta^e, b^e)$ satisfy the uniform estimates:

$$
\sup_{0 \leq t \leq T_0} \left(\|(\sigma^e, u^e, \theta^e, b^e)\|_{2,2} + \|(1 + \epsilon \sigma^e)^{-1}\|_{L^\infty} \right) (t) + \left(\int_0^{T_0} \|(u^e, \theta^e, b^e)\|_{3,2}^2 \, dt \right)^{1/2} \leq D,
$$

with D_0, T_0 and D independent of $\epsilon > 0$. (7) and (14) imply $\rho^e \to 1$ and $T^e \to 1$ in certain Sobolev space as $\epsilon \to 0$. Furthermore, $(\sigma^e, u^e, \theta^e, b^e)$ converge to (σ, u, θ, b) in certain Sobolev space as $\epsilon \to 0$, and there exists a function $\pi(x, t)$ such that (u, b, π) in $C([0, T_0; H^2])$ solves the following problem of the incompressible Hall-MHD equations:

$$
\begin{align*}
\tilde{\partial}_t u + u \cdot \nabla u + \nabla \pi - \mu \Delta u &= \text{rot } b \times b, \quad \text{div } u = 0, \\
\tilde{\partial}_t b + \text{rot } (b \times u) + \text{rot } (\text{rot } b \times b) &= \Delta b, \quad \text{div } b = 0,
\end{align*}
$$

(15) $(u, b)(\cdot, 0) = (u_0, b_0)$ in \mathbb{T}^3,

where u_0, b_0 are the weak limits of u^e_0 and b^e_0, respectively, in H^2 with $\text{div } u_0 = \text{div } b_0 = 0$ in \mathbb{T}^3.

We will denote

$$
M^e(t) := \sup_{0 \leq s \leq t} \left(\|(\sigma^e, u^e, \theta^e, b^e)(s)\|_{2,2} + \|(1 + \epsilon \sigma^e)^{-1}(s)\|_{L^\infty} \right)
$$

$$
+ \left(\int_0^t \|(u^e, \theta^e, b^e)\|_{3,2}^2 \, ds \right)^{1/2},
$$

$$
M^e_0 := M^e(t = 0).
$$
Similarly to those in [1, 7, 20], it suffices to show the following theorem to get the uniform estimates in (14). We will give the details on the proof of Theorem 1.3 in section 3 based on Theorem 1.2.

Theorem 1.3. Let T^* be the maximal time of existence for the problem (8)-(12) given in Proposition 1.1. Then for any $t \in [0, T^*)$, we have
\[
M^*(t) \leq C_0(M_0^*) \exp[t^\frac{1}{2}C(M^*(t))],
\]
for some given nondecreasing continuous functions $C_0(\cdot)$ and $C(\cdot)$.

The novelty of our paper lies in that the system has the Hall term with strong nonlinearity and therefore the difference between our paper and the references [2, 7, 19, 20] is that we will bound some new terms I_i ($i = 1, \cdots, 6$) coming from the Hall term.

However, the only different term between our system and that in [2] is the Hall term. On the other hand, we will only use the formulation of $M^*(t)$, which is same as that in [2] in our estimates. For example, we mainly use $\sup_{0 \leq s \leq t} \|b'(s)\|_{L^2} \leq M^*(t)$ and \(\left(\int_0^t \|b'(s)\|_{L^2}^2 ds\right)^{\frac{1}{2}} \leq M^*(t)\). Thus we can use the very similar method as that in [2] to show some estimates (17), (18), (19), (22), (25), (26), (28), (30), (34), (35), (36) and (37) and we omit the details below.

2. **Proof of Theorem 1.3.** This section is devoted to the proof of Theorem 1.3, we only need to show the inequality (16). We shall use some ideas developed in [2, 7, 19, 20], say, we will use $\omega := \text{rot } u$ and $J := \text{rot } b$ to show a priori estimates.

Below we shall drop the super script “c” of $\rho^c, \sigma^c, \upsilon^c, \theta^c$, etc. for the sake of simplicity; moreover, we write $M^*(t)$ and $M^*(0)$ as M and M_0, respectively. Since the physical constants κ, ν, ν', and R do not bring any essential difficulties in our arguments, we shall take $\kappa = C_V = R = 1$ for presentation simplicity.

First, by taking the same calculations as that in [2], we get
\[
\left(\|\rho\|_{L^2}^2 + \|\rho^{-}\|_{L^\infty}\right)(t) \leq C_0(M_0) \exp(\sqrt{t}C(M)),
\]
\[
\|\sigma, u, \theta, b(t)\|_{L^2}^2 + \|u, \theta, b\|_{L^2(0, t; H^1)}^2 \leq C_0(M_0) \exp(\sqrt{t}C(M)),
\]
\[
\|\nabla \sigma, u, \nabla \theta(t)\|_{L^2}^2 + \|\nabla u, \Delta \theta\|_{L^2(0, t; L^2)}^2 \leq C_0(M_0) \exp(\sqrt{t}C(M)).
\]

Next, we estimate $\text{rot } (u, \text{rot } b)$. We have

Lemma 2.1. For any $0 \leq t \leq \min\{T^*, 1\}$, we have
\[
\|\text{rot } u, \text{rot } b(t)\|_{L^2}^2 + \|\text{rot } u, \text{rot } b\|_{L^2(0, t; L^2)}^2 \leq C_0(M_0) \exp(\sqrt{t}C(M)).
\]

Proof. Let $\omega := \text{rot } u$ and $J := \text{rot } b$. Applying rot to (9), we see that
\[
\rho(\partial_t \omega + u \cdot \nabla \omega) - \mu \Delta \omega = K + b \cdot \nabla J - J \cdot \nabla b,
\]
where $K := -(\partial_j \rho \partial_i u_i - \partial_i \rho \partial_j u_j) - [\partial_j (\rho u_k) \partial_k u_i - \partial_i (\rho u_k) \partial_k u_j]$.

Testing (21) by ω and carrying same computations as that in [2], we find that
\[
\|\sqrt{\omega} \omega(t)\|_{L^2}^2 + \|\text{rot } \omega\|_{L^2(0, t; L^2)}^2 \leq C_0(M_0) \exp(\sqrt{t}C(M)).
\]

Applying rot to (11), we infer that
\[
\partial_t J - \Delta J + \text{rot } (b \times u) + \text{rot }^2 \left(\frac{\text{rot } b \times b}{\rho}\right) = 0.
\]
Lemma 2.2. For any J, we deduce that
\[
\frac{1}{2}\|J(t)\|_{L^2}^2 + \|\nabla J\|_{L^2(0,t;L^2)}^2 \\
\leq C_0(M_0) + \left|\int_0^t \left[\text{rot} (b \times u) + \text{rot} \left(\frac{\text{rot} b \times b}{\rho} \right) \right] \text{rot} J \, dx \, dt \right| \\
\leq C_0(M_0) + C \int_0^t \left(\|b\|_{L^2} \|u\|_{H^1} + \|u\|_{L^2} \|b\|_{H^1} + \|b\|_{L^2} \|b\|_{H^2} \\
+ \|\nabla b\|_{L^4}^2 + \|\nabla \rho\|_{L^6} \|\text{rot} b\|_{L^6} \|b\|_{L^6} \right) \|\text{rot} J\|_{L^2} \, dt \\
\leq C_0(M_0) + tC(M).
\]
(24)

From (22) and (24), we get (20). \hfill \Box

By taking the very similar calculations to that that in [2], we obtain
\[
\|(\partial_t \sigma, \partial_t u, \partial_t b, \partial_t \theta)(t)\|_{L^2}^2 + \|(\text{rot} \partial_t u, \text{div} \partial_t u, \text{rot} \partial_t b, \nabla \partial_t \theta)\|_{L^2(0,t;L^2)}^2 \\
\leq C_0(M_0) \exp(\sqrt{t}C(M)),
\]
(25)

\[
\|(\nabla \text{div} u, \nabla^2 \theta)(t)\|_{L^2}^2 + \|(\nabla \partial_t \sigma, \nabla \partial_t \theta)\|_{L^2(0,t;L^2)}^2 \\
\leq C_0(M_0) \exp(\sqrt{t}C(M)).
\]
(26)

Lemma 2.2. For any $0 \leq t \leq \min\{T^*, 1\}$, we have
\[
\|(\text{rot} \omega, \text{rot} J)(t)\|_{L^2}^2 + \|(\Delta \omega, \Delta J)\|_{L^2(0,t;L^2)}^2 \\
\leq C_0(M_0) \exp(t^{\frac{1}{4}}C(M)).
\]
(27)

Proof. Testing (21) by $\Delta \omega$, then by calculating as that in [2], one has
\[
\|\sqrt{\rho} \omega\|_{L^2}^2(t) + \|\Delta \omega\|_{L^2(0,t;L^2)}^2 \leq C_0(M_0) + \sqrt{t}C(M).
\]
(28)

Testing (23) by ΔJ, we have
\[
\frac{1}{2}\|\text{rot} J(t)\|_{L^2}^2 + \|\Delta J\|_{L^2(0,t;L^2)}^2 \leq C_0(M_0) + \left|\int_0^t \left[\text{rot}^2 (b \times u) \Delta J \, dx \, dt \right] \right| \\
\leq C_0(M_0) + I_1 + I_2.
\]
(29)

We bound I_1 and I_2 as follows.

\[
I_1 \leq C \int_0^t \|b\|_{H^2} \|u\|_{H^2} \|\Delta J\|_{L^2} \, dx \, dt \leq \sqrt{t}C(M),
\]

\[
I_2 = \left|\int_0^t \int \frac{\text{rot} b \times b}{\rho} \Delta^2 \text{rot} b \, dx \, dt \right| \\
= \left|\int_0^t \int \Delta \left(\frac{\text{rot} b \times b}{\rho} \right) \Delta \text{rot} b \, dx \, dt \right| \\
\leq C \int_0^t \left(\|\nabla \text{rot} b\|_{L^2} \left\| \frac{b}{\rho} \right\|_{L^6} + \|\text{rot} b\|_{L^6} \left\| \frac{b}{\rho} \right\|_{L^2} \right) \|\nabla^3 b\|_{L^2} \, dx \, dt \\
\leq C \int_0^t \left(\|\nabla^2 b\|_{L^3} \left\| \frac{b}{\rho} \right\|_{L^6} + \|\text{rot} b\|_{L^6} \left\| \frac{b}{\rho} \right\|_{L^2} \right) \|\nabla^3 b\|_{L^2} \, dx \, dt \\
\leq C(M) \int_0^t \left(\|\nabla^2 b\|_{L^3} + \|\text{rot} b\|_{L^6} \right) \|\nabla^3 b\|_{L^2} \, dx \, dt
\]
We bound

By the same calculations as that in [2], we have

\[\int_0^t \| \text{rot } \hat{\partial}_t \omega \|_{H^1} ds \leq C_0(M_0) \exp(\sqrt{t} C(M)). \tag{30} \]

Lemma 2.3. For any \(0 \leq t \leq \min\{T^*, 1\} \), we have

\[\| (\hat{\partial}_t \omega, \hat{\partial}_t J)(t) \|_{L^2}^2 + \| (\text{rot } \hat{\partial}_t \omega, \text{rot } \hat{\partial}_t J) \|_{L^2(0,t;L^2)}^2 \leq C_0(M_0) \exp(\sqrt{t} C(M)). \tag{31} \]

Proof. Applying \(\hat{\partial}_t \) to (21), testing by \(\hat{\partial}_t \omega \), doing as that in [2], one has

\[\frac{1}{2} \left\| \hat{\partial}_t J(t) \right\|_{L^2}^2 + \left\| \nabla \hat{\partial}_t J \right\|_{L^2(0,t;L^2)}^2 \leq C_0(M_0) + \left| \int_0^t \int \hat{\partial}_t \text{rot} (b \cdot \nabla u - u \cdot \nabla b - \nabla \text{div} u) \cdot \hat{\partial}_t J dx ds \right| + \left| \int_0^t \int \text{rot} ^2 \hat{\partial}_t \left(\frac{\text{rot } b \times b}{\rho} \right) \text{rot } \hat{\partial}_t b dx ds \right| \]

\[= C_0(M_0) + I_3 + I_4. \tag{33} \]

We bound \(I_3 \) and \(I_4 \) as follows.

\[I_3 = \left| \int_0^t \int \hat{\partial}_t \text{rot} (b \cdot \nabla u - u \cdot \nabla b - \nabla \text{div} u) \cdot \hat{\partial}_t J dx ds \right| \leq C \sqrt{t} \| \hat{\partial}_t b \|_{L^\infty(0,t;H^1)} \left(\| \hat{\partial}_t b \|_{L^2(0,t;H^2)} \| u \|_{L^\infty(0,t;H^2)} + \| b \|_{L^\infty(0,t;H^2)} \| \hat{\partial}_t u \|_{L^2(0,t;H^2)} \right) \leq \sqrt{t} C(M), \]

\[I_4 = \left| \int_0^t \int \text{rot} ^2 \hat{\partial}_t \left(\frac{\text{rot } b \times b}{\rho} \right) \text{rot } \hat{\partial}_t b dx ds \right| = \left| \int_0^t \int \hat{\partial}_t \left(\frac{\text{rot } b \times b}{\rho} \right) \delta \hat{\partial}_t b dx ds \right| \leq \sum_i \int \int \hat{\partial}_t \text{rot} b \times b \cdot \hat{\partial}_t \hat{\partial}_t b dx ds \]

\[\leq C \int_0^t \left(\| \nabla \hat{\partial}_t b \|_{L^2} + \| \nabla^2 b \|_{L^2} + \| \nabla \rho (|b| |\nabla \hat{\partial}_t b| + |\nabla b|) \|_{L^2} \right) \]

\[\leq C \int_0^t \left(\| \nabla \hat{\partial}_t b \|_{L^2} + \| \nabla^2 b \|_{L^2} + \| \nabla \rho (|b| |\nabla \hat{\partial}_t b| + |\nabla b|) \|_{L^2} \right) \]

\[\leq C \left(\| \nabla b \|_{L^\infty} + \| \nabla \hat{\partial}_t b \|_{L^2} \right) \]

\[\leq C(M) \int_0^t (\| \nabla b \|_{L^\infty} + \| b \|_{L^2} + \| \nabla \hat{\partial}_t b \|_{L^2} + 1) \| \nabla \hat{\partial}_t b \|_{L^2} ds \]
\[\leq C(M) \int_0^t \left(\| \Delta b \|_{L^2}^2 + \| \nabla \partial_i b \|_{L^2}^2 + \| \nabla \partial_i J \|_{L^2}^2 + 1 \right) \left \| \nabla \partial_i J \right \|_{L^2} ds \]

\[\leq C(M) \int_0^t \left(\| b \|_{H^3}^2 + \| \nabla \partial_i J \|_{L^2}^2 + 1 \right) \left \| \nabla \partial_i J \right \|_{L^2} ds \]

\[\leq \frac{1}{2} \left \| \nabla \partial_i J \right \|_{L^2(0,t;L^2)}^2 + \sqrt{t} C(M). \]

We point out the cancellation of the triple product like

\[\int \left(\partial_i \partial_i (\mathbf{rot} b) \times \frac{b}{\rho} \right) - \partial_i \partial_i (\mathbf{rot} b) \leq 0 \]

has been used in \(I_4 \) and a similar idea will also be used in \(I_6 \) below. Inserting the above estimates into \((33)\) and using \((32)\) lead to \((31)\).

By taking the same calculations as that in [2], we arrive at

\[\| (\nabla \partial_i \sigma, \mathbf{div} \partial_i u, \nabla \partial_i \theta)(t) \|_{L^2}^2 + \| (\nabla \mathbf{div} \partial_i u, \partial_i \theta) \|_{L^2(0,t;L^2)}^2 \leq C_0(M_0) \exp(t \frac{1}{2} C(M)), \]

\[\| \nabla^2 \theta(t) \|_{L^2}^2 + \| \nabla^2 \mathbf{div} u \|_{L^2(0,t;L^2)}^2 \leq C_0(M_0) \exp(\sqrt{t} C(M)), \]

\[\| \Delta \theta \|_{L^2(0,t;H^1)} \leq C_0(M_0) \exp(t \frac{1}{2} C(M)), \]

\[\| (\partial_i^2 \sigma, \partial_i^2 u, \partial_i^2 \theta)(t) \|_{L^2}^2 + \| (\partial_i^2 u, \partial_i^2 \theta) \|_{L^2(0,t;H^1)}^2 \leq C_0(M_0) \exp(t \frac{1}{2} C(M)). \]

Finally, we estimate \(\partial_i^2 b \) in order to close the energy estimate.

Lemma 2.4. For any \(0 \leq t \leq \min\{ T^*, 1 \} \), we have

\[\| \partial_i^2 b(t) \|_{L^2}^2 + \| \partial_i^2 u \|_{L^2(0,t;H^1)}^2 \leq C_0(M_0) \exp(\sqrt{t} C(M)). \]

Proof. Applying \(\partial_i^2 b \) to \((11)\), testing by \(\partial_i^2 b \), we reach

\[\frac{1}{2} \left \| \partial_i^2 b(t) \right \|_{L^2}^2 + \left \| \partial_i^2 b \right \|_{L^2(0,t;H^1)}^2 \leq C_0(M_0) + \left | \int_0^t \int \partial_i^2 \mathbf{rot} \partial_i^2 (b \times u) dx ds \right | + \left | \int_0^t \int \partial_i^2 b \mathbf{rot} \partial_i^2 \left (\frac{\mathbf{rot} b \times b}{\rho} \right) dx ds \right | \]

\[= C_0(M_0) + I_5 + I_6. \]

We bound \(I_5 \) and \(I_6 \) as follows.

\[I_5 = \left | \int_0^t \int \partial_i^2 \mathbf{rot} \partial_i^2 (b \times u) dx ds \right | \]

\[= \left | \int_0^t \int \partial_i^2 \mathbf{rot} b \partial_i^2 (b \times u) dx ds \right | \]

\[\leq \int_0^t \| \partial_i^2 \mathbf{rot} b \|_{L^2} \left (\| b \|_{L^\infty} \| \partial_i^2 b \|_{L^2} + \| \partial_i b \|_{L^\infty} \| \partial_i u \|_{L^\infty} + \| b \|_{L^\infty} \| \partial_i^2 u \|_{L^2} \right) dx ds \]

\[\leq C(M) \int_0^t \| \partial_i^2 b \|_{L^2} ds \]

\[\leq \sqrt{t} C(M), \]

\[I_6 = \left | \int_0^t \int \partial_i^2 \mathbf{rot} \partial_i^2 \left (\frac{\mathbf{rot} b \times b}{\rho} \right) dx ds \right | \]
for 0 \leq t \leq \min\{T^*, T_1\}, we have (16), where $M_0^{\epsilon} \leq D_0$ for $0 < \epsilon \leq 1$. In the sequence, we choose $D > C_0(D_0)$ and next $T_1 \leq 1$ such that

$$C_0(D_0) \exp(T_1^{\frac{1}{2}}C(D)) < D. \tag{40}$$

Let $t < \min\{T^*, T_1\}$. By combining the inequalities (16) and (40) with the assumption $M^*(0) = M_0^{\epsilon}$, we have that $M^*(t) \neq D$. Besides, we can assume without restriction that $D_0 \leq D$, so that $M^*(0) \leq D$. Since the function $M^*(t)$ is continuous, we obtain

$$M^*(t) \leq D \quad \text{for} \quad t < \min\{T^*, T_1\} \quad \text{and} \quad 0 < \epsilon \leq 1. \tag{41}$$

Then $T^* > T_1$ for $0 < \epsilon \leq 1$. Otherwise, by using the uniform estimates in (41) and applying Proposition 1.1 repeatedly, one can extend the time interval of existence to $[0, T_1]$, which contradicts to the maximality of T^*. Therefore, $M^*(t) \leq D$ for any $t \in [0, T_1]$ where T_1 is independent of $0 < \epsilon \leq 1$. Clearly, the conclusion is also true for $T^* = \infty$ by applying the same argument. This completes the proof.

Acknowledgements. The authors are indebted to the referee for some useful suggestions. Fan is partially supported by NSFC (No. 11171154). Li is supported partially by NSFC (Grant No. 11671193) and PAPD.
REFERENCES

[1] T. Alazard, Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180 (2006), 1–73.
[2] W. Cui, Y. Ou and D. Ren, Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains, J. Math. Anal. Appl., 427 (2015), 263–288.
[3] D. Chae and M. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations, J. Differential Equations, 255 (2013), 3971–3982.
[4] D. Chae, P. Degond and J.-L. Liu, Well-posedness for Hall-magnetohydrodynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 555–565.
[5] D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics, J. Differential Equations, 256 (2014), 3835–3858.
[6] M. Dai, Regularity criterion for the 3D Hall-magneto-hydrodynamics, J. Differential Equations, 261 (2016), 573–591.
[7] C. Dou, S. Jiang and Y. Ou, Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, J. Differential Equations, 258 (2015), 379–398.
[8] B. Durocet and E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 266 (2006), 595–629.
[9] J. Fan, A. Alsaedi, T. Hayat, G. Nakamura and Y. Zhou, On strong solutions to the compressible Hall-magnetohydrodynamic system, Nonlinear Anal. Real World Appl., 22 (2015), 423–434.
[10] J. Fan, B. Ahmad, T. Hayat and Y. Zhou, On well-posedness and blow-up for the full compressible Hall-MHD system, Nonlinear Anal. Real World Appl., 31 (2016), 569–579.
[11] J. Fan, Y. Gukuoto, G. Nakamura and Y. Zhou, Regularity criteria for the incompressible Hall-MHD system, ZAMM Z. Angew. Math. Mech., 95 (2015), 1156–1160.
[12] J. Fan, F. Li and G. Nakamura, Regularity criteria for the incompressible Hall-magnetohydrodynamic equations, Nonlinear Anal., 109 (2014), 173–179.
[13] J. Fan and W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392–409.
[14] J. Fan and W. Yu, Global variational solution to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637–3660.
[15] M. Fei and Z. Xiang, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics with horizontal dissipation, J. Math. Phys., 56 (2015), 051504, 13 pp.
[16] X. Hu and D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255–284.
[17] X.-P. Hu and D.-H. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Raton. Mech. Anal., 197 (2010), 203–238.
[18] S. Jiang, Q. Ju and F. Li, Low Mach number limit of the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25 (2012), 1351–1365.
[19] S. Jiang, Q. Ju, F. Li and Z. Xin, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384–420.
[20] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, Arch. Raton. Mech. Anal., 158 (2001), 61–90.
[21] Y. Mu, Zero Mach number limit of the compressible Hall-magnetohydrodynamic equations, Z. Angew. Math. Phys., 67 (2016), Art. 1, 13 pp.
[22] J. M. Polygianakis and X. Moussas, A review of magneto-vorticity induction in Hall-MHD plasmas, Plasma Phys. Control. Fusion, 43 (2001), 195–221.
[23] D. Shaikh and P. K. Shukla, 3D simulations of fluctuation spectra in the Hall-MHD plasma, Phys. Rev. Lett., 102 (2009), 045004, 4pp.
[24] D. Shaikh and G. P. Zank, Spectral features of solar wind turbulent plasma, Monthly Notices of the Royal Astronomical Society, 400 (2009), 1881–1891.
[25] S. Servidio, A. P. Carbonova, A. Primavera, P. Veltria and K. Stasiwicz, Compressible turbulence in Hall magnetohydrodynamics, Planet. Space Sci., 55 (2007), 2239–2243.
[26] R. Wan and Y. Zhou, On global existence, energy decay and blow-up criteria for the Hall-MHD system, J. Differential Equations, 259 (2015), 5982–6008.
[27] X. Yang, Low Mach number limit of the compressible Hall-magnetohydrodynamic system,
Nonlinear Anal. Real World Appl., 25 (2015), 118–126.
[28] W. M. Zajaczkowski, On nonstationary motion of a compressible barotropic viscous fluid with
boundary slip condition, J. Appl. Anal., 4 (1998), 167–204.

Received October 2016; revised April 2017.

E-mail address: fanjian@njfu.edu.cn
E-mail address: fli@nju.edu.cn
E-mail address: nakamuragenn@gmail.com