Association between clinical phenotypes of dermatomyositis and polymyositis with myositis-specific antibodies and overlap systemic autoimmune diseases

Hui-Ling Chiang, PhDa, Chien-Hsueh Tung, MD, PhDa,b, Kuang-Yung Huang, MD, PhDa,b, Bao-Bao Hsu, MDa, Cheng-Han Wu, MDa, Chia-Wen Hsu, MScc, Ming-Chi Lu, MD, PhDa,b,c, Ning-Sheng Lai, MD, PhDa,b*

Abstract

The aim of this study was to evaluate the association between clinical phenotypes of dermatomyositis (DM) and polymyositis (PM) with myositis-specific antibodies (MSAs), and overlap diagnosis of systemic autoimmune diseases. This cross-sectional study was conducted on 67 patients with DM and 27 patients with PM recruited from a regional hospital in southern Taiwan. Clinical phenotypes of DM and PM were assessed and MSAs were measured using a commercial line blot assay. The association of clinical phenotypes of DM and PM with MSAs and overlap diagnosis of systemic autoimmune diseases was performed using univariate and multiple logistic regression analyses.

Clinically, patients with DM and PM and overlap diagnosis of systemic sclerosis were associated with a higher risk of interstitial lung diseases (ILDs) (odds ratio [OR] = 6.73; \(P = .048 \)), Raynaud phenomenon (OR = 7.30; \(P = .034 \)), and malignancy (OR = 350.77; \(P = .013 \)). The risk of malignancy was also associated with older age (OR = 1.31; \(P = .012 \)), and male patients were associated with a higher risk of fever. For MSAs, anti-aminoacyl-tRNA synthetase antibodies were associated with ILD, antinuclear antibody were associated with a lower risk of arthritis, anti-transcription intermediary factor 1-gamma antibodies were associated with milder symptoms of muscle weakness, anti-Ku antibodies were associated with overlap diagnosis of systemic lupus erythematosus, and anti-Ro52 antibodies were associated with the development of Raynaud phenomenon and Sjögren syndrome.

MSAs and overlap diagnosis of systemic sclerosis were significantly associated with clinical phenotypes of DM and PM. Physicians should be vigilant for malignancy in older DM and PM patients with overlap diagnosis of systemic sclerosis. The possibility of developing ILD in patients with overlap diagnosis of systemic sclerosis or serum positivity of anti-aminoacyl-tRNA synthetase antibodies should be considered.

Abbreviations: ANA = antinuclear antibody, anti-ARS = anti-aminoacyl-tRNA synthetase, CI = confidence interval, DM = dermatomyositis, ILD = interstitial lung disease, MDA = melanoma differentiation-associated protein, MSAs = myositis-specific antibodies, NXP-2 = nuclear matrix protein 2, OR = odds ratio, PM = polymyositis, SAE1 = small ubiquitin-like modifier activating enzyme 1, TIF1-\(\gamma \) = transcription intermediary factor 1-gamma.

Keywords: dermatomyositis, interstitial lung disease, malignancy, overlap syndrome, polymyositis, systemic sclerosis

Editor: Masood Sepehrimanesh.

HLC and CHT contributed equally to this work.

The study was supported by Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (DTCRD108-I-28), and Buddhist Tzu Chi Medical Foundation (TCMF-A 108–05(108), Taiwan).

The authors have no conflicts of interest to disclose.

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

a Division of Immunology, Allergy and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi, Taiwan; b School of Medicine, Tzu Chi University, Hualien City, Hualien, Taiwan; c Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chiayi, Taiwan.

* Correspondence: Ming-Chi Lu, Division of Allergy, Immunology, and Rheumatology Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation No. 2, Minsheng Road, Dalin, Chiayi 62247, Taiwan (e-mail: e360187@yahoo.com.tw).

Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and build upon the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Chiang HL, Tung CH, Huang KY, Hsu BB, Wu CH, Hsu CW, Lu MC, Lai NS. Association between clinical phenotypes of dermatomyositis and polymyositis with myositis-specific antibodies and overlap systemic autoimmune diseases. Medicine 2021;100:37(e27230).

Received: 23 December 2020 / Received in final form: 20 August 2021 / Accepted: 23 August 2021

http://dx.doi.org/10.1097/MD.00000000000027230
1. Introduction

Dermatomyositis (DM) and polymyositis (PM) are rare systemic autoimmune diseases, and the prevalence is 2.9 per 100,000 persons in Taiwan.\cite{1} DM and PM are characterized by immunemediated destruction of muscle tissue leading to varying degree of muscle weakness. DM is further associated with a characteristic rash, including heliotrope rash, Gottron purple, “V” sign or “shawl” sign. In addition, patients with DM or PM can develop particular clinical phenotypes, including interstitial lung disease (ILD), Raynaud phenomenon, arthritis, fever, calcinosis, or even malignancy leading to increased mortality.\cite{2-4} These specific phenotypes of patients with DM or PM are well-known to be associated with the presence of myositis-specific autoantibodies (MSAs).\cite{5,6} However, patients with DM or PM frequently develop other systemic autoimmune diseases, so called “overlap syndrome”, including systemic sclerosis, Sjögren syndrome, systemic lupus erythematosus, and rheumatoid arthritis.\cite{7-9}

These diseases are themselves often associated with ILD, arthritis, Raynaud phenomenon, fever, calcinosis, or increased risk of malignancy. Nevertheless, few studies have addressed the impact of the association of these systemic autoimmune diseases on the clinical manifestation of patients with DM and PM.\cite{10-14} and analyses of the effect of individual systemic autoimmune diseases were even more scarce.\cite{15,16} Therefore, the aim of this cross-sectional study was to identify the association between the overlap systemic autoimmune diseases and MSAs with different clinical phenotypes of DM and PM. In addition, this study also explored the association between overlap systemic autoimmune diseases and MSAs in these patients.

2. Methods

2.1. Ethical issues

This study was approved by the institutional review board of Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (No. B10703022) and written informed consents were obtained from all participants. The study was carried out in accordance with the Declaration of Helsinki.

2.2. Study design and study population

This was a cross-sectional study conducted at the rheumatology department of Dalin Tzu Chi Hospital, which is a referral center for rheumatic diseases in southern Taiwan, from February of 2019 to January of 2020. Patients, aged 20 years and above, were enrolled from the outpatient or inpatient department.

After evaluating by serum muscle enzymes, electromyography, magnetic resonance imaging, or muscle biopsy, the diagnosis of DM or PM was made based on Bohan and Peter\cite{17,18} criteria. Clinical phenotypes of DM or PM, including classic DM rash, prominent proximal lower limb weakness, associated fever symptom, Raynaud phenomenon, arthritis, ILD, malignancy, and calcinosis were evaluated during the enrollment. These phenotypes were comprehensively evaluated in the inpatient department with physical examination and imaging studies, including X-ray, sonography and computed tomography, tissue biopsy (if needed) by rheumatologists who had practiced for more than 10 years. Blood sample was drawn to measure MSAs using commercial Euroline Autoimmune Inflammatory Myopathies 16 Ag IgG platform tests (EUROIMMUN, Lübeck, Germany), which is a immunoblot strip coating for antigen, including Mi-2α, Mi-2β, polymyositis/systemic scleroderma-75, polymyositis/systemic scleroderma-100, Ku, Jo-1 (histidyl-tRNA synthetase), signal recognition particle, PL-7 (anti-threonyl-trNA synthetase), PL-12 (anti-αlanyl-tRNA synthetase), EJ (anti-glycy1 tRNA synthetase), OJ (anti-isoleucyl-trNA synthetase), transcription intermediary factor 1-gamma (TIF1-γ), melanoma differentiation-associated protein (MDA) 5, nuclear matrix protein 2 (NXP-2), anti-small ubiquitin-like modifier activating enzyme 1 (SAE1), and Ro52. The analysis was performed according to the manufacturer’s recommendation, and therefore borderline Euroline results were classified as negative. Positive anti-Mi2 antibodies were defined as either positive for anti-Mi-2α and Mi-2β antibodies. Positive antiaminoacyl-tRNA synthetase (anti-ARS) antibodies were defined as either positive of anti-Jo-1, PL-7, PL-12, EJ, or OJ antibodies. The overlapping diagnosis of systemic lupus erythematosus, rheumatoid arthritis, Sjögren syndrome, or systemic sclerosis was based on the corresponding classification criteria.\cite{19-23}

2.3. Statistical analysis

Results are represented as mean and standard deviation or n (%), as appropriate. Mann–Whitney U test, Fisher exact test or Pearson chi-squared test was used, as appropriate, to compare continuous or categorical variables between patients with PM and DM. Univariate logistic regression analyses were performed to obtain odds ratios (OR) and 95% confidence intervals (CI) for clinical phenotypes of DM and PM (classic DM rash, proximal lower limb weakness, fever, and Raynaud phenomenon) with positivity of MSAs, demographic data, and overlap systemic autoimmune diseases. Variables with P value <.20 were further entered into separate multiple logistic regression models to assess the corresponding independent variables associated with classic DM rash, proximal lower limb weakness, fever, and Raynaud phenomenon. A P value <.05 was considered statistically significant. All statistical analyses were conducted using IBM SPSS Statistics for Windows, Version 24.0 (IBM Corp, Armonk, NY).

3. Results

3.1. Demographic data of patients with DM and PM

A total of 67 patients with DM and 27 patients with PM were included in our study and their demographic data were shown in Table 1. The classic DM rash (77.6%) was only noted in patients with DM, and a high proportion (40.3% vs 18.5%; P = .035) of patients with DM developed ILD. Among the MSAs, anti-SAE1 was not detected in our study.

3.2. Association of clinical phenotypes of DM and PM with myositis specific autoantibodies and overlap systemic autoimmune diseases

Results of univariate logistic regression analyses of the clinical phenotypes of DM and PM, including classic DM rash, proximal lower limb weakness, fever, and Raynaud phenomenon with demographic data, overlap systemic autoimmune diseases, and MSAs are shown in Table 2. As expected, the classic DM skin was only noted in patients with DM. In addition, those who were anti-TIF1-γ-positive were less likely to develop prominent proximal lower limb weakness (OR = 0.08, 95% CI: 0.01–0.72, P < .05).

Male patients with DM and PM were associated with fever
Table 1
Demographic data of patients with dermatomyositis and polymyositis.

Variable	Dermatomyositis n = 67	Polymyositis n = 27	
	n (%)	n (%)	
	Age, yr, mean (SD)	Age, yr, mean (SD)	
Female	50 (74.6)	19 (70.4)	.673
Clinical symptoms			
Proximal lower limb weakness	42 (62.7)	17 (63.0)	.980
Fever	3 (4.5)	2 (7.4)	.447
Malignancy	5 (7.5)	2 (7.4)	.679
Classic dermatomyositis rash	52 (76.0)	0 (0.0)	<.001
Calcinecrosis	4 (6.0)	0 (0.0)	.251
Arthritis	27 (40.3)	7 (25.9)	.189
Interstitial lung diseases	27 (40.3)	5 (18.5)	.044
Raynaud phenomenon	8 (11.9)	6 (22.2)	.205
Comorbidity			
Rheumatoid arthritis	4 (6.0)	1 (3.7)	.553
Systemic lupus erythematosus	9 (13.4)	5 (18.5)	.531
Sjögren syndrome	8 (11.9)	5 (18.5)	.403
Systemic sclerosis	4 (6.0)	3 (11.1)	.321
ANA, nuclear	36 (53.7)	15 (55.6)	.872
ANA, cytoplasmic	18 (26.9)	7 (25.9)	.926
ANA, nuclear			
Anti-Ro52	25 (37.3)	8 (29.6)	.480
Anti-ARS	16 (23.9)	2 (7.4)	.055
Anti-CL	0 (0.0)	0 (0.0)	n.c.
Anti-Ej	2 (3.0)	0 (0.0)	.506
Anti-Pl-12	2 (3.0)	1 (3.7)	.643
Anti-Pl-7	2 (3.0)	0 (0.0)	.506
Anti-Jo-1	10 (14.9)	1 (3.7)	.116
Anti-ARS	2 (3.0)	3 (11.1)	.227
Anti-PM/Scl	2 (3.0)	3 (11.1)	.141
Anti-Ku	2 (3.0)	2 (7.4)	.325
Anti-SAE1	0 (0.0)	0 (0.0)	n.c.
Anti-NXP-2	2 (3.0)	0 (0.0)	.506
Anti-MDA-5	1 (1.5)	0 (0.0)	.713
Anti-TIF1-γ	7 (10.4)	0 (0.0)	.085
Anti-Mi2	2 (3.0)	0 (0.0)	.506

ANA = antinuclear antibody, MDA-5 = melanoma differentiation-associated protein 5, n.c. = not calculable, NKP-2 = nuclear matrix protein 2, PM/Scl = polymyositis/systemic sclerosis, SAE1 = small ubiquitin-like modifier activating enzyme 1, SRP = signal recognition particle, TIF1-γ = transcription intermediary factor 1-gamma.

Table 2
Univariate logistic regression analyses of demographic data, overlap systemic autoimmune diseases, and myositis-specific antibodies with classic dermatomyositis rash, proximal lower limb weakness, fever, or Raynaud phenomenon among patients with dermatomyositis and polymyositis.

Variable	Classic dermatomyositis rash	Proximal lower limb weakness	Fever	Raynaud phenomenon	
Make (reference: female)	1.30 (0.51–3.29)	1.37 (0.52–3.60)	12.95* (122.31–12.31)	P = .025	0.41 (0.09–1.99)
Age (per yr)	1.02 (0.99–1.06)	0.99 (0.96–1.02)	1.06 (0.98–1.15)	1.01 (0.97–1.05)	
Dermatomyositis (reference: polymyositis)	n.c.	0.99 (0.39–2.49)	0.59 (0.09–3.72)	0.48 (0.15–1.53)	
Overlap disease					
Rheumatoid arthritis	0.52 (0.08–3.27)	0.88 (0.14–5.57)	n.c.	n.c.	
Systemic lupus erythematosus	0.78 (0.25–2.42)	0.54 (0.17–1.69)	n.c.	0.94 (0.19–4.76)	
Sjögren syndrome	0.65 (0.20–2.11)	0.94 (0.28–3.14)	n.c.	1.91 (0.45–8.04)	
Systemic sclerosis	0.30 (0.05–1.61)	1.53 (0.28–8.33)	n.c.	5.18 (1.02–26.32) P = .047	
ANA, nuclear	1.62 (0.72–3.69)	0.57 (0.24–1.34)	1.28 (0.20–8.04)	2.38 (0.69–8.22)	
ANA, cytoplasmic	1.04 (0.41–2.61)	2.30 (0.82–6.46)	1.91 (0.30–12.18)	1.12 (0.32–3.97)	
Myositis-specific antibodies					
Anti-Ro52	1.69 (0.71–4.04)	0.71 (0.30–1.70)	1.25 (0.20–7.87)	2.93 (0.92–9.35)	
Anti-ARS	1.80 (0.61–5.29)	1.70 (0.55–5.25)	3.04 (0.47–19.72)	0.285 (0.04–2.34)	
Anti-PM/Scl	0.80 (0.15–4.16)	n.c.	4.20 (0.39–44.92)	3.17 (0.52–19.22)	
Anti-Jo-1	0.52 (0.08–3.27)	0.13 (0.01–1.25)	n.c.	n.c.	
Anti-Ku	0.26 (0.03–2.55)	1.82 (0.18–18.22)	n.c.	1.97 (0.19–20.46)	
Anti-NKP-2	0.80 (0.05–13.25)	0.59 (0.04–9.68)	n.c.	n.c.	
Anti-MDA-5	n.c.	n.c.	n.c.	n.c.	
Anti-TIF1-γ	5.35 (0.62–46.30)	0.08* (0.01–0.72)	P = .024	n.c.	
Anti-Mi2	n.c.	n.c.	n.c.	n.c.	

Values are odds ratio (95% confidence interval).

ANA = antinuclear antibody, Anti-ARS = anti-aminocyl-tRNA synthetase, MDA-5 = melanoma differentiation-associated protein 5, n.c. = not calculable, NKP-2 = nuclear matrix protein 2, PM/Scl = polymyositis/systemic sclerosis, SRP = signal recognition particle, TIF1-γ = transcription intermediary factor 1-gamma.

* P < 0.05.
(OR = 12.95, 95% CI: 1.37–122.31, P < .05). Those with an overlap diagnosis of systemic sclerosis were associated with a higher risk of developing Raynaud phenomenon (OR = 5.18, 95% CI: 1.02–26.32, P < .05).

Results of multiple logistic regression analyses are shown in Table 3. Patients with positive anti-TIF1-γ were less likely to develop prominent proximal lower limb weakness (OR = 0.09, 95% CI: 0.01–0.88, P < .05). Male patients with DM and PM were also significantly associated with fever (OR = 13.05, 95% CI: 1.16–45.90, P < .01). Those with overlap diagnosis of systemic sclerosis (OR = 7.30, 95% CI: 1.16–45.90, P < .05) or anti-Ro52-positive (OR = 3.74, 95% CI: 1.01–13.85, P < .05) were associated with a higher risk of Raynaud phenomenon.

In Table 4, univariate logistic regression analyses of the clinical phenotypes of DM and PM, including arthritis, ILD, malignancy, or calcinosis with demographic data, overlap systemic autoimmune diseases, and MSAs were performed. We found that patients with an overlap diagnosis of Sjögren syndrome were associated with a higher risk of arthritis (OR = 3.39, 95% CI: 1.01–11.36, P < .05). Those with ILD were associated with DM (OR = 2.97, 95% CI: 1.00–8.81, P < .05), positive cytoplasmic pattern in antinuclear antibody (ANA) (OR = 2.85, 95% CI: 1.11–7.34, P < .05), anti-Ro52-positive (OR = 3.26, 95% CI: 1.33–8.00,
Table 5

Multiple logistic regression analyses of demographic data, overlap systemic autoimmune diseases, and myositis-specific antibodies with arthritis, interstitial lung disease, malignancy, or calcinosis among patients with dermatomyositis and polymyositis.

Variable	Arthritis	Interstitial lung disease	Malignancy	Calcinosis
Male (reference: female)	2.98	(0.76–11.60)		
Age (per yr)	1.01	(0.98–1.05)	1.02	(0.98–1.07)
Dermatomyositis (reference: polymyositis)	2.09	(0.72–6.60)	2.83	(0.74–10.85)
Overlap disease				
Rheumatoid arthritis				
Systemic lupus erythematosus	4.81	(0.36–65.88)		
Sjögren syndrome	3.34	(0.82–13.52)	2.06	(0.36–11.74)
Systemic sclerosis				
ANA, nuclear				
ANA, cytoplasmic	0.40	(0.16–0.99)		
Myositis-specific antibodies				
Anti-Ro52				
Anti-ARS				
Anti-SC	4.90	(2.20–44.22)		
Anti-Ku				

Values are odds ratio (95% confidence interval).

P < .05.

++P < .01.

P < .05) or anti-ARS-positive (OR = 11.28, 95% CI: 3.29–38.61, P < .001). In addition, those with malignancy were associated with age (OR = 1.22, 95% CI: 1.06–1.40, P < .01) and an overlap diagnosis of systemic sclerosis (OR = 15.56, 95% CI: 2.57–94.34, P < .01). No significant risk factors were associated with malignancy.

In Table 3, results from multiple logistic regression analyses showed that positive ANA was associated with a lower risk of arthritis (OR = 0.40, 95% CI: 0.16–0.99, P < .05). The overlap diagnosis of systemic sclerosis (OR = 6.73, 95% CI: 1.02–44.38, P < .05) and positivity of anti-ARS antibodies (OR = 9.90, 95% CI: 2.21–44.22, P < .01) were associated with ILD. Age (OR = 1.31, 95% CI: 1.06–1.61, P < .05) and an overlap diagnosis of systemic sclerosis (OR = 350.77, 95% CI: 3.42–35983.20, P < .05) were associated with a high risk of malignancy. No significant risk factors were associated with malignancy.

3.3. Association of myositis specific autoantibodies with overlap diagnosis of systemic autoimmune diseases

In Table 6, we analyzed association with myositis specific autoantibodies with overlap diagnosis of systemic autoimmune diseases. We excluded anti-NXP-2, anti-MDA-5 and anti-Mi2 antibodies from analysis because they were rarely detected (n < 4) in our study. We found that that the presence of anti-Ku antibody was associated with an overlap diagnosis with systemic lupus erythematosus (OR = 21.54, 95% CI: 2.06–225.79, P < .05). The presence of anti-Ro52 was associated with an overlapping diagnosis of Sjögren syndrome (OR = 34.29, 95% CI: 4.20–279.88, P < .001).

3.4. The effect of sex on clinical phenotypes of dermatomyositis and polymyositis with myositis-specific antibodies and overlap systemic autoimmune diseases

The effect of sex on clinical phenotypes of DM and PM with MSAs and overlap systemic autoimmune diseases was shown in Table 7. In the univariate analysis, only male patients were associated with a higher risk of fever (OR = 12.95, 95% CI: 1.37–122.30, P < .05) and the association remained statistically significantly after multiple logistic regression analyses (OR = 14.88, 95% CI: 1.38–160.38, P < .05).

4. Discussion

In this study, we found that patients with DM and PM with overlap systemic autoimmune diseases, especially systemic...
sclerosis was associated with a higher risk of Raynaud phenomenon and ILD, which is consistent with results from previous studies.[12,15] These clinical phenotypes are well-documented in patients with systemic sclerosis.[23] Thus, we proposed that an overlap diagnosis of systemic sclerosis would contribute to the development of ILD and Raynaud phenomenon in patients with DM and PM. It is of interest to know whether the risk of Raynaud phenomenon and ILD would change in patients with DM and PM. It is of interest to know whether the risk of Raynaud phenomenon and ILD would change in patients with DM and PM. It is of interest to know whether the risk of Raynaud phenomenon and ILD would change in patients with DM and PM. It is of interest to know whether the risk of Raynaud phenomenon and ILD would change in patients with DM and PM. It is of interest to know whether the risk of Raynaud phenomenon and ILD would change in patients with DM and PM. It is of interest to know whether the risk of Raynaud phenomenon and ILD would change in patients with DM and PM. It is of interest to know whether the risk of Raynaud phenomenon and ILD would change in patients with DM and PM. It is of interest to know whether the risk of Raynaud phenomenon and ILD would change in patients with DM and PM. It is of interest to know whether the risk of Raynaud phenomenon and ILD would change in patients with DM and PM.

In this study, positive anti-MDA-2 antibodies were noted in just 2.1% (n = 2) and no anti-SAE1 was found, which had made it unable to show any associations with clinical phenotypes. We believed that this is due to the different environment or genotypic,[25] but we did observe a strong association between ILD and anti-ARS antibodies,[26] an association between the presence of anti-TIF1-γ antibodies and milder symptoms of muscle weakness,[27] and an association between the presence of anti-Ku antibodies and systemic lupus erythematosus,[28,29] as reported in previous studies. On the other hand, the association of fever and male patients with DM and PM, the presence of anti-Ro52 with the development of Raynaud phenomenon, and positivity of ANA with a lower risk of developing arthritis were unique findings of our study. There were inconsistent reports of ANA positivity of ANA with a lower risk of developing arthritis were unique findings of our study. There were inconsistent reports of ANA positivity of ANA with a lower risk of developing arthritis were unique findings of our study. There were inconsistent reports of ANA positivity of ANA with a lower risk of developing arthritis were unique findings of our study.
regarding the association of anti-Ku antibodies in systemic lupus erythematosus patients with DM and PM. However, due to the rare occurrence of DM and PM patients and even rarer positivity of specific MSAs and overlap diagnosis of systemic autoimmune diseases, further studies using registry samples might be needed to elucidate their relationships.

We noted 2 limitations in this study. First, our patients were recruited from the southern part of Taiwan, which might limit the generalization of our conclusion. Second, the study sample was small and only a few or even no patients were positive to several MSAs, including antinuclear recognition particle, anti-Ku, anti-NXP-2, anti-MDA-5, anti-SAE1, and anti-Mi2 antibodies. Therefore, their possible associations will need further validation. Patients with DM and PM are a group of rare diseases with diverse clinical manifestations, and we believe that these data are useful for future meta-analyses.

In conclusion, we found that DM and PM patients with overlap diagnosis of systemic sclerosis were associated with a higher risk of ILD, Raynaud phenomenon, and malignancy, particularly among older patients. Physician should be vigilant for malignancy in older DM and PM patients with overlap diagnosis of systemic sclerosis. The possibility of developing ILD in patients with overlap diagnosis of systemic sclerosis or serum positivity of anti-ARS should be considered. We also found the followings: anti-ARS antibodies were associated with ILD, ANA were associated with a lower risk of arthritis, anti-TIF1-γ antibodies were associated with milder symptoms of muscle weakness, anti-Ku antibodies were associated with overlap diagnosis of systemic lupus erythematosus, and anti-Ro52 antibodies were associated with the development of Raynaud phenomenon and Sjögren syndrome. The recognition of specific MSAs patterns and overlap diagnosis of systemic autoimmune diseases is important in the caring of patients with DM and PM.

Acknowledgments

The authors thank Dr. Malcolm Koo for assistance with preparation and statistical analysis of this manuscript.

Author contributions

Conceptualization: Hui-Ling Chiang, Chien-Hsueh Tung, Bao-Bao Hsu, Cheng-Han Wu, Ming-Chi Lu, Ning-Sheng Lai.

Data curation: Hui-Ling Chiang, Chien-Hsueh Tung, Bao-Bao Hsu, Cheng-Han Wu, Ming-Chi Lu, Ning-Sheng Lai.

Formal analysis: Chien-Hsueh Tung, Kuang-Yung Huang, Chia-Wen Hsu, Ming-Chi Lu.

Funding acquisition: Ming-Chi Lu.

Investigation: Hui-Ling Chiang, Chia-Wen Hsu, Ming-Chi Lu.

Methodology: Hui-Ling Chiang, Chia-Wen Hsu.

Resources: Ming-Chi Lu.

Software: Chia-Wen Hsu.

Supervision: Kuang-Yung Huang, Ming-Chi Lu, Ning-Sheng Lai.

Writing – original draft: Ming-Chi Lu.

Writing – review & editing: Ming-Chi Lu, Ning-Sheng Lai.

References

[1] Yu KH, See LC, Kuo CF, Chou IJ, Chou MJ. Prevalence and incidence in patients with autoimmune rheumatic diseases: a nationwide population-based study in Taiwan. Arthritis Care Res (Hoboken) 2013;65:244–50.

[2] Dalakas MC, Hohlfeld R. Polymyositis and dermamyositis. Lancet 2003;362:971–82.

[3] Dalakas MC. Inflammatory muscle diseases. N Engl J Med 2015;372:1734–47.

[4] Tripoli A, Marasco E, Cometi L, et al. One year in review 2019: idiopathic inflammatory myopathies. Clin Exp Rheumatol 2020;38:1–10.

[5] Damoiseaux J, Vulteke JB, Tseng CW, et al. Autoantibodies in idiopathic inflammatory myopathies: Clinical associations and laboratory evaluation by mono- and multispecific immunoassays. Autoimmun Rev 2019;18:293–305.

[6] McHugh NJ, Tansley SL. Autoantibodies in myositis. Nat Rev Rheumatol 2015;14:290–302.

[7] Fredi M, Cavazzana I, Franceschini F. The clinic-serological spectrum of overlap myositis. Curr Opin Rheumatol 2018;30:637–43.

[8] Lazarou IN, Guerne PA. Classification, diagnosis, and management of idiopathic inflammatory myopathies. J Rheumatol 2013;40:550–64.

[9] Iaccarino L, Gatto M, Bettio S, et al. Overlap connective tissue disease syndromes. Autoimmun Rev 2013;12:363–73.

[10] Hochberg MC, Feldman D, Stevens MB. Adult onset polymyositis/dermatomyositis: an analysis of clinical and laboratory features and survival in 76 patients with a review of the literature. Semin Arthritis Rheum 1986;15:168–78.

[11] Lilleker JB, Vencovsky J, Wang G, et al. The EuroMyositis registry: an international collaborative tool to facilitate myositis research. Ann Rheum Dis 2018;77:30–9.

[12] Niuño-Nuño L, Joven BE, Carreira PE, et al. Overlap myositis, a distinct entity beyond primary inflammatory myositis: a retrospective analysis of a large cohort from the REMICAM registry. Int J Rheum 2019;42:1393–401.

[13] Troyanov Y, Targoff IN, Tremblay JL, Goulet JR, Raymond Y, Senécal JL. Novel classification of idiopathic inflammatory myopathies based on overlap syndrome features and autoantibodies: analysis of 100 French Canadian patients. Medicine (Baltimore) 2005;84:231–49.

[14] Vâncs a A, Gergely L, Ponyi A, et al. Myositis-specific and myositis-associated antibodies in overlap myositis in comparison to primary dermatomyositis: relevance for clinical classification: retrospective study of 169 patients. Joint Bone Spine 2010;77:125–30.

[15] Aguil a LA, Lopes MR, Pretti FZ, et al. Clinical and laboratory features of overlap syndromes of idiopathic inflammatory myopathies associated with systemic lupus erythematosus, systemic sclerosis, or rheumatoid arthritis. Clin Rheumatol 2014;33:1093–8.

[16] Meyer A, Lefève G, Bierry G, et al. In antisyntetase syndrome, ACPA are associated with severe and erosive arthritis: an overlapping rheumatoid arthritis and antisyntetase syndrome. Medicine (Baltimore) 2015;94:e523.

[17] Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med 1975;292:344–7.

[18] Bohan A, Peter JB. Polymyositis and dermatomyositis (second of two parts). N Engl J Med 1975;292:403–7.

[19] Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997;40:1725.

[20] Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 2002;61:554–8.

[21] van den Hoogen F, Khanna D, Fransen J, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 2013;65:2737–47.

[22] Aletaha D, Neogi T, Silman AJ, et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 2010;69:1580–8.

[23] Denton CP, Khanna D. Systemic sclerosis. Lancet 2017;390:1685–99.

[24] Shah AA, Casciola-Rosen L, Rosen A. Review: cancer-induced autoimmunity in the rheumatic diseases. Arthritis Rheumatol 2015;67:317–26.

[25] Chen Z, Hu W, Wang Y, Guo Z, Sun L, Kuwana M. Distinct profiles of myositis-specific autoantibodies in Chinese and Japanese patients with polymyositis/dermatomyositis. Clin Rheumatol 2015;34:1627–31.
[26] Love LA, Leff RL, Fraser DD, et al. A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore) 1991;70:360–74.

[27] Satoh M, Chan JY, Ross SJ, et al. Autoantibodies to transcription intermediary factor TIF1β associated with dermatomyositis. Arthritis Res Ther 2012;14:R79.

[28] Reeves WH. Antibodies to the p70/p80 (Ku) antigens in systemic lupus erythematosus. Rheum Dis Clin North Am 1992;18:391–414.

[29] Cavazzana I, Ceribelli A, Quinzanini M, et al. Prevalence and clinical associations of anti-Ku antibodies in systemic autoimmune diseases. Lupus 2008;17:727–32.

[30] Spielmann L, Nespoli B, Séverac F, et al. Anti-Ku syndrome with elevated CK and anti-Ku syndrome with anti-dsDNA are two distinct entities with different outcomes. Ann Rheum Dis 2019;78:1101–6.

[31] Ogawa-Momohara M, Muro Y, Akiyama M. Overlap of systemic lupus erythematosus and myositis is rare in anti-Ku antibody-positive patients. Ann Rheum Dis 2019;80:e147.