Fault Type Classification of 150 kV Transmission Line using Wavelet Multi-Resolution Analysis Method

Novizon¹, Nurfi Syahri¹, Silvia Wulandari¹, Tesya Uldira Septiyeni¹ and Rahadian Asneli Putri¹

¹Department of Electrical Engineering, Engineering Faculty of Universitas Andalas, Padang 25163, Indonesia

INTRODUCTION

The human population is increasing day by day. Therefore, the need for energy in daily life is also increasing. Electricity is one of the basic needs for the survival of every human being which causes the demand for electrical energy to increase. The increasing demand for electrical energy requires more generation and distribution of electricity. In general, the electric power system is divided into four parts, namely, generation, transmission, distribution and load. Of all these, the transmission and distribution system plays a major role and it is like the heart of the entire power system. However, frequent disturbances also occur in the transmission and distribution system, this will jeopardize of the overall power system security.

The transmission system consists of two types, namely overhead and underground cables. The overhead line is more widely used than the underground cable because it has several advantages. The air transmission line (overhead) will be affected by atmospheric conditions which cause the possibility of more disturbances [1]. Faults in overhead lines are classified into two types, namely open conductor faults (series) and short circuit faults (shunts). Series faults are also classified into two types, namely one-conductor open fault and two-conductor open fault.

The most common disturbance in the transmission line is short circuit (shunt) which is classified into two types, namely asymmetrical and three phase symmetrical faults, the most dangerous fault. Asymmetrical faults are phase to ground, phase to phase, and two phases to ground. The most common faults that occur in transmission line are phase to ground fault. The fault analysis can be divided into three parts, namely the faults detection, the classification of the fault and the fault location.

The analysis of fault type classification is an important part in the fault analysis [2]. There are several methods to determine the type of fault. These methods include the wavelet method [3,4,5], artificial neural networks [6,7,8], fuzzy logic [9,10,11], wavelet-neural network [12], wavelet-fuzzy [13], and neuro-fuzzy [14,15]. The kind of wavelet method is used to identification of fault types in this study, namely the wavelet multi-resolution analysis method. The multi-resolution analysis is a function to analyze signals at different frequencies with different resolutions [19,20,21]. In this research, fault classification is determined using multy resolution analysis. The 150 kV transmission line is used in this work. Phase to ground fault, two phase faults, three

https://doi.org/10.25077/njeet.v1i2.15

Attribution-NonCommercial 4.0 International. Some rights reserved
The data used in this research is transmission line data from the Maninjau Hydroelectric Power Plant (PLT) to Palu. The data can be seen in Table 1 and the single line of transmission system can be seen in Fig. 5.

Table 1. Transmission line data

No.	Specification	Data
1	System Voltage	151 kV
2	Nominal Current	645 A
3	Line Length	90.7 km
4	Conductor Type	HAWK
5	Conductor Cross Area	240 mm²
6	Nominal Voltage	240 V/km
7	Average Power	2.15 MW
8	Impedance	1.793 Ω/km
9	Negative Sequence	0.117 Ω/km

The single line of transmission electrical system of West Sumatera can be seen in Fig. 2.

The fault type classification algorithm can be proposed based on the Multi-resolution Analysis (MRA) [25]. The MRA is one of the best tools for analyzing signals at different frequencies with different resolutions [24]. Mathematically, the wavelet energy can be expressed as Eq. 3 and Eq. 4.

\[
E_m = \sum_{i=1}^{M} |\psi_m^i(t)|^2
\]

\[
E_t = \sum_{i=1}^{N} |\phi_t^i(t)|^2
\]

The fault type classification algorithm can be proposed based on the Multi-resolution wavelet transform at different levels. According to Parseval's theorem, the total energy of the transient signal can be decomposed at different resolutions at the high frequencies of a signal. As good frequency and poor time resolution at the low frequencies. Therefore, the MRA is designed to provide good time and poor frequency resolution at the low frequencies and good frequency and poor time resolution at the high frequencies as well.

The fault classification algorithm can be proposed based on the Multi-resolution wavelet transform at different levels. According to the multi-resolution theorem, the energy of the transient signal can be decomposed at different levels [24]. Mathematically, the wavelet energy can be expressed as Eq. 5.

\[
E_m = \sum_{i=1}^{M} |\psi_m^i(t)|^2
\]

\[
E_t = \sum_{i=1}^{N} |\phi_t^i(t)|^2
\]

Finally, waveform decomposition at the desired level is obtained by repeating the same process. The complete detail and approximation coefficients are obtained at level 1 (D1 and A1). The approximation coefficient is as Eq. (2).

\[
\psi_m(t) = \sum_{n=-\infty}^{\infty} c_m n \phi_{m,n}(t)
\]

\[
\phi_t(t) = \sum_{n=-\infty}^{\infty} d_t n \psi_{t,n}(t)
\]

The mother wavelet in that equation become as Eq. (2).

\[
\psi_m(t) = \sqrt{\frac{a_0}{b_0}} \psi_m \left(\frac{t-b_0}{a_0} \right)
\]

\[
\phi_t(t) = \sqrt{\frac{a_0}{b_0}} \phi_t \left(\frac{t-b_0}{a_0} \right)
\]

The mother wavelet in that equation become as Eq. (2).

\[
\psi_m(t) = \sqrt{\frac{a_0}{b_0}} \psi_m \left(\frac{t-b_0}{a_0} \right)
\]

\[
\phi_t(t) = \sqrt{\frac{a_0}{b_0}} \phi_t \left(\frac{t-b_0}{a_0} \right)
\]

The multi-resolution analysis method is used to classify the types of disturbances that occur in the transmission line by comparing the average value of the approximation coefficients of each phase [27]. The approximation coefficient is obtained along the decomposition process or signal line. Mathematically, to determine the average value of the approximation coefficient, the approximation coefficient is as Eq. (2).

\[
\frac{m_{av}}{n} = \frac{m_{av}}{n} = \frac{m_{av}}{n} = \frac{m_{av}}{n}
\]

\[
\frac{M_{av}}{n} = \sum_{n=1}^{N} \frac{m_{av}}{n}
\]

The mother wavelet in that equation become as Eq. (2).
METHOD

The method to classify the types of fault using wavelet multi-resolution analysis can be explained using flowchart. Fig. 3 explains the steps of fault classifying type using wavelet multi-resolution analysis. Fault is classified into five types of fault, they are phase to ground fault, two phase fault, two phase ground fault, three phase symmetrical fault and lightning fault [29]. All fault types are analyzed using MRA method based on approximation value comes from wavelet analysis.

RESULTS AND DISCUSSION

The phase fault ground fault is modeled in ATP software with a distance of fault is 45.5 km from bus 1 that is Power Plant Maninjau.

The bus 1 is position where the measurement point is used. The fault impedance is 1 ohm. The complete model for phase to ground fault in Sumbar transmission line can be seen in Fig. 4.
ACKNOWLEDGMENTS

The authors would like to thank to Dean of Engineering Faculty, Universitas Andalas for supporting and financial aid with contract no.284/UN.16.09.D/PL/2021

REFERENCES

[1]. T, W, Ross and H, Bell, "Recent developments in the protection of three-phase transmission lines and feeders,” Journal of the Institution of Electrical Engineers, vol, 68, pp, 801-823,

[2]. A, Girgis and M, B, Johns, "A Hybrid Expert System for Faulted Section Identification, Fault Type Classification and Selection of Fault Location Algorithms,” IEEE Power Engineering Review, vol, 9, pp, 56-57, 1989.

[3]. O, A, S, Youssef, "Fault classification based on wavelet transforms,” in 2001 IEEE/PES Transmission and Distribution Conference and Exposition, Developing New Perspectives (Cat, No,01CH37294), 2001, pp, 531-536

Table 2 shows that the classification results for 1-phase ground faults with faults in phases A, B and C for fault distance 45.5 km meet the classification requirements according to the multi-resolution analysis method. From the results of this classification, it can be said that for phase to ground with distance variations, the percentage of success is 100%.

CONCLUSIONS

All model components that is used in the simulation of this study have been successfully build and work well according to research needs. From the analysis of the simulation results and calculations, based on the wavelet multi-resolution analysis method is used in classifying the type of faults, the average value of the approximation coefficient is obtained. This approximation coefficient is used as parameter by MRA to classify the type fault. All types of faults which is analyzed in this study met the classification requirements using the MRA method. In other words, the simulation of the classification of the type of fault met 100% successfully.

Table 2. Results of Fault Type in Phases AB, Phases BC and Phases AC with Various Distance

Fault Impedance	Fault Distance	Fault Type	MA1	MB1	MC1	MRA Criterion	Analysis	Fault Classification
1 Ω	45.5km	AG	-	-	-	[MA1]≈[MB1]	agree	Phase to ground fault
		BG	9566	18734	9492	[MB1]≈[MC1]	agree	Phase to ground fault
		CG	7402	7475	17076	[MA1]≈[MC1]	agree	Phase to ground fault
10 Ω		AG	-	-	13419	[MA1]≈[MC1]	agree	Phase to ground fault
		BG	6361	11930	6287	[MB1]≈[MC1]	agree	Phase to ground fault
		CG	7192	7266	16437	[MA1]≈[MC1]	agree	Phase to ground fault
20 Ω		AG	-	-	10910	[MA1]≈[MC1]	agree	Phase to ground fault
		BG	4124	7290	4050	[MB1]≈[MC1]	agree	Phase to ground fault
		CG	6712	6786	15195	[MA1]≈[MB1]	agree	Phase to ground fault

Table 2 shows that the classification results for 1-phase ground faults with faults in phases A, B and C for fault distance 45.5 km meet the classification requirements according to the multi-resolution analysis method. From the results of this classification, it can be said that for phase to ground with distance variations, the percentage of success is 100%.

CONCLUSIONS

All model components that is used in the simulation of this study have been successfully build and work well according to research needs. From the analysis of the simulation results and calculations, based on the wavelet multi-resolution analysis method is used in classifying the type of faults, the average value of the approximation coefficient is obtained. This approximation coefficient is used as parameter by MRA to classify the type fault. All types of faults which is analyzed in this study met the classification requirements using the MRA method. In other words, the simulation of the classification of the type of fault met 100% successfully.

ACKNOWLEDGMENTS

The authors would like to thank to Dean of Engineering Faculty, Universitas Andalas for supporting and financial aid with contract no.284/UN.16.09.D/PL/2021
[7]. Faisal, W., Wahyudi, and Iwa Gartiwa M.K. "Economic and Financial Analysis of Cofiring the Coal Fired Steam Power Plant Capacity 660 MW with Biomass (Sawdust)”, Andalas Journal of Electrical and Electronic Engineering Technology (AJEEET), vol.01, no.01, pp 27-30, ISSN 2777-0079, 2021

[8]. R. N. Mahanty and P. B. Gupta. "Application of RBF neural network to fault classification and location in transmission lines,” Generation, Transmission and Distribution, IEE Proceedings-2, vol. 151, pp. 201-212, 04/02 2004.

[9]. S. Seyedtabaii, “Improvement in the performance of neural network-based power transmission line fault classifiers,” Generation, Transmission & Distribution, IET, vol. 6, pp. 731-737, 08/01 2012.

[10]. Z. He, S. Lin, Y. Deng, X. Li, and Q. Qian, "A rough membership neural network approach for fault classification in transmission lines,” International Journal of Electrical Power & Energy Systems, vol. 61, pp. 429-439, 2014.

[11]. O. Youssef, "A novel fuzzy-logic-based phase selection technique for power system relaying,” Electric Power Systems Research, vol. 68, pp. 175-184, 03/01 2004, 83

[12]. S. R. Samantaray, "A systematic fuzzy rule based approach for fault classification in transmission lines,” Applied Soft Computing, vol. 13, pp. 928-938, 2013/02/01/ 2013,

[13]. P. Avagaddi, B. Edward, C. Roy, G. Divyansh, and A. Kumar, "Classification of Faults in Power Transmission Lines using Fuzzy-Logic Technique,” Indian Journal of Science and Technology, vol. 8, 11/11 2015.,

[14]. K. M. Silva, B. A, Souza, and N. S, D. Brito, "Fault detection and classification in transmission lines based on wavelet transform and ANN,” IEEE Transactions on Power Delivery, vol. 21, pp. 2058-2063, 2006.

[15]. O. A. S. Youssef, "Combined fuzzy-logic wavelet-based fault classification technique for power system relaying,” IEEE Transactions on Power Delivery, vol. 19, pp. 582-589, 2004

[16]. H. Wang and W. Keerthipala, "Fuzzy-neuro approach to fault classification for transmission line protection,” IEEE Transactions on Power Delivery, vol. 13, pp. 1093-1104, 1998.

[17]. S. Vasilic and M. Kezunovic, "Fuzzy ART neural network algorithm for classifying the power system faults,” IEEE Transactions on Power Delivery, vol. 20, pp. 1306-1314, 2005.

[18]. M. Chanaka, K. Shanthi, and R. Perera, "Modeling of power transmission lines for lightning back flashover analysis (A case study: 220kV Biyagama-Kotmale transmission line),” 2011 6th International Conference on Industrial and Information Systems, pp. 386-391, 2011.

[19]. D. Caukler, H. Ahmad, Z. Abdul-Malek, and S. Yusof, "Lightning overvoltages on an overhead transmission line during backflashover and shielding failure,” 45th International Universities Power Engineering Conference UPEC2010, pp. 1-6, 2010.

[20]. W. Zhang, M. He, J. Ren, Y. Wen, Z. Zhang, Z. Pu, et al., "SLG(Single-Line-to-Ground) Fault Location in NUGS(Neutral Un-effectively Grounded System),” MATEC Web of Conferences, vol. 160, p. 01009 01/01 2018.

[21]. Adrianti, Asharry, E, and N. Muhammad, "Distribution Line Protection Scheme for Network with Distributed Generation”, Jurnal Teknik Elektro, vol.10, No 2: July 2021.

[22]. A. R. Adly, S. Abdel Aleem, M. Elsadd, and Z. Ali, "Wavelet Packet Transform Applied to a Series Compensated Line: A Novel Scheme for Fault Identification,” Measurement, 02/01 2020

[23]. X. Tang, Z. Zhang, Q. Huang, and Y. Gong, "Fault Location and Fault Type Recognition of Power System Based on Wavelet Transform,” in 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), 2019, pp. 689-692, 2019

[24]. P. Chiradeja and C, Pothisam, "Identification of the fault location for three-terminal transmission lines using discrete wavelet transforms,” in 2009 Transmission & Distribution Conference & Exposition: Asia and Pacific, 2009, pp. 1-4.

[25]. W. Fluty and Y. Liao, "Electric Transmission Fault Location Techniques Using Traveling Wave Method and Discrete Wavelet Transform,” in 2020 Clemson University Power Systems Conference (PSC), 2020, pp. 1-8.

[26]. C. N. Obiozor and M. N, Sadiku, "Consideration of power in a lossless transmission line,” in Proceedings of SOUTHEASTCON ‘96, 1996, pp. 626-629

[27]. I. Omerhodzic, S. Avdakovic, A. Nuhanovic, and K. Dzidzarevic, "Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier,” ArXiv, vol, abs/1307,7897, 2013.

[28]. Y. Zheng, Y. Xu, and Z. Xiao, "A traveling wave fault location system based on wavelet transformation,” in 2019 IEEE Green Energy and Smart Systems Conference (IGESSC), 2019, pp. 1-6.

[29]. L. V. Bewley, "Traveling Waves on Transmission Systems,” Transactions of the American Institute of Electrical Engineers, vol. 50, pp. 532-550,1931.