Impact of hospitalists on the efficiency of inpatient care and patient satisfaction: a systematic review and meta-analysis

Sohail Abdul Salim*, Ahmed Elmaraezy b,c,d, Amaleswari Pamarthy a, Charat Thongprayoon e, Wisit Cheungpasitporn c and Venkataraman Palabindala f

*Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA; b Global Clinical Scholars Research Training (GCSRT) Program, Harvard Medical School, Boston, MA, USA; c Faculty of Medicine, Al-Azhar University, Cairo, Egypt; d Al-Razi Medical Research Academy, Cairo, Egypt; e Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA; f Division of Hospital Medicine, University of Mississippi Medical Center, Jackson, MS, USA

ABSTRACT

Background: Over the past 20 years, hospitalists have assumed a greater portion of healthcare service for hospitalized patients. This was mainly due to reducing the length of stay (LOS) and hospital costs shown by many studies. In contrast, other studies suggested increased cost and resources utilization associated with hospitalist-run care models.

Aim: We aimed to provide class 1 evidence regarding the effect of hospitalist-run care models on the efficiency of care and patient satisfaction.

Design: Meta-analysis.

Methods: Four electronic medical databases were searched to retrieve all relevant studies. Two authors screened titles and abstracts of search results for eligibility according to predefined criteria. Initially eligible studies were screened for full text inclusion. Included studies were reviewed for data on LOS, hospital cost, readmission, mortality, and patient satisfaction. Available data were abstracted and analyzed using Comprehensive Meta-Analysis.

Results: Sixty-one studies were included for analysis. The overall effect size favored hospitalist-run care models in terms of LOS (MD = −0.67 day, 95% CI [−0.78, −0.56], p < 0.001). There was no significant difference in terms of hospital cost (MD = $92.1, 95% CI [−910.4, 1094.6], p = 0.86) whereas patient satisfaction was similar or even better in hospitalist compared to non-hospitalist (NH) service.

Conclusion: Our analysis showed that hospitalist care is associated with decreased LOS and increased patient satisfaction compared to NH. This indicates an increase in the efficiency of care that does not come at the expense of care quality.

1. Introduction

Hospital medicine is one of the fastest growing medical specialties in the USA [1,2]. A major cause of this growth has been empirical evidence that hospitalists provide more efficient, less costly inpatient care with equal or higher quality [3]. Several studies have investigated the impact of hospitalists on the efficiency and quality of patients' care. Results from these studies have been conflicting; with many of them suggesting shorter hospital stay and reduced cost for patients cared for by hospitalists [3–9]. However, other investigators failed to recognize significant advantages from implementing hospitalist care models compared to traditional care by non-hospitalists (NH) [10,11].

Given the non-conclusive results from different hospitalist programs in various clinical settings regarding the effect of hospitalist-based care model on the length of stay (LOS) and hospital costs, Rachoin et al. published a meta-analysis in 2012 to summarize the conflicting evidence [12]. However, they used a limited search strategy that was restricted to only one database so it is possible that potentially eligible articles might be missed. Authors reported data for LOS and hospital costs only. To further, several studies that compared hospitalist and NH care models have been published thereafter [13–16] adding more to the farrago of existing literature.

This prompted us to a comprehensive systematic review and meta-analysis to generate clear-cut evidence regarding the impact of hospitalists on LOS, costs, in-hospital mortality, readmission within 30 days, and patient satisfaction.

2. Experimental section

We followed the recommendation of the Preferred Reporting Items for Systematic Review and Meta-
analysis (PRISMA) statement [17] during the preparation of this manuscript (Supplementary file 1). Moreover, all steps were done according to Cochrane handbook of systematic reviews of interventions [18].

2.1. Data sources and searches
We searched Medline via PubMed, the Cochrane Central Register of Controlled Clinical Trials (CENTRAL), Scopus, and ISI web of knowledge. A combination of these keywords was tailored for each database: ('hospitalists' OR 'hospitalist system' OR 'non-hospitalists') AND ('length of hospital stay' OR 'length of stay' OR 'cost' OR 'Hospital Costs' OR 'economics' OR 'outcomes' OR 'outcome' OR 'mortality' OR 'death' OR 'readmission' OR 'satisfaction'). Results were imported to the reference manager Endnote X7 for screening.

2.2. Inclusion and exclusion criteria
Studies were included if they used experimental (randomized clinical trial) or observational, retrospective or follow-up designs that compared hospitalists to non-hospitalists in terms of LOS, costs, in-hospital mortality, readmission within 30 days, or patient satisfaction. Pre-post designs were also included. We excluded review articles, editorials, case series and case reports. The corresponding authors of studies that did not report enough data were contacted for providing the missing data. Otherwise, studies with no sufficient data for meta-analysis were included for narrative review.

2.3. Study selection
Two authors independently reviewed the titles and abstracts of the retrieved articles against our inclusion and exclusion criteria. Initially eligible articles were considered for a second round of full-text screening. Conflicts were resolved by consensus and discussion with a third senior reviewer.

2.4. Data extraction
Data were extracted to a standard excel sheet that was designed specifically for this study. The following data were extracted from each study whenever available: (1) Demographics and baseline characteristics of the study’s participants; (2) Summary of the study design, setting, year, timeline, and type of the hospitalist and comparison groups; (3) the studied outcomes including LOS, hospital costs, mortality or readmission, and patients’ satisfaction. We extracted mean and standard deviation (SD) [or median, range/inter quartile range (IQR) or median and confidence interval (CI)] and number per group for numerical data, whereas number of events and total number of participants were extracted for dichotomous and categorical variables. Data were abstracted and reviewed twice for integrity and validity.

2.5. Data synthesis and analysis
Numerical data were pooled as mean and CI, and dichotomous data were pooled as odds ratio (OR) and CI. Whenever median and range/IQR were reported, we used equations of Cochrane handbook and Wan et al. [19] to get the approximate mean and SD. Due to substantial variation in studies design and setting, the Der-Simonian random effects model was adopted for all analyses. We performed sensitivity analysis to explore the effect of omitting single studies on the overall effect size. Also, cumulative meta-analysis was conducted to display the trend of LOS and cost over time. Our study was eligible for such analysis due to the high number of included studies that allows for clear display of trends. This analysis helps direct health care policy makers by showing how hospitalists’ efficiency rise or decline over time. Breakpoints were selected when there was a major change in the mean difference between the hospitalist and non-hospitalist group (shift from significant difference to no difference or vice versa). Heterogeneity was quantified and assessed using the I-square test. P value< 0.05 was considered statistically significant.

3. Results
3.1. Search results and characteristics of the included studies
Database searching retrieved 2,195 results that were abstracted to 1,291 unique records after automatic duplicate removal by Endnote software. Titles and abstracts were reviewed against our eligibility criteria, and 87 articles were found initially eligible for our review. Further screening of the full-text articles resulted in 61 finally included studies [3–8,10,11,13–16,20–68]; of them 47 were eligible for meta-analysis and 14 articles were narratively summarized (Figure 1. PRISMA Flow Diagram). Twenty-six studies were rejected during full text screening because they did not meet our eligibility criteria; 12 were single arm studies, 3 were expert opinions, 7 editorials, and 4 were book chapters. Characteristics of the included studies are summarized in Table 1.
3.2. Outcomes

3.2.1. Hospital length of stay (LOS)
Data of hospital LOS in the hospitalist and NH groups were provided by 46 studies that enrolled 563,268 patients. Significant heterogeneity was identified among these studies ($I^2 = 92\%$, $p < 0.001$), hence the random effects model was employed. Overall mean difference favored the hospitalist versus non-hospitalist healthcare models in terms of LOS (MD = −0.67 day, 95% CI [−0.78, −0.56], $p < 0.001$; Figure 2). This effect size persisted on a leave-one-out sensitivity analysis that was performed to explore the effect of single studies on the overall effect estimate (Figure A1). Interestingly, cumulative meta-analysis showed decreasing trend of the MD in LOS between the hospitalist and NH groups. From 1998 to 2003, there was a cumulative MD of 2.4 days to 1 day that declined to less than 1 day (0.95 to 0.67) afterwards (Figure A2). Egger’s regression test showed evidence of publication bias towards studies that favored the hospitalist group ($p = 0.01$).

3.2.2. Costs
Twenty-four studies (227,372 participants) reported data on the hospital costs for hospitalist- and NH-based service. Data from these studies were substantially heterogenous ($I^2 = 99\%$, $p < 0.001$) and the random effects model was used for meta-analysis. The pooled analysis showed no significant difference in the cost of health care provided by hospitalists and NH (MD = $92.1, 95\%$ CI [−910.4, 1094.6], $p = 0.86$; Figure 3). This result held true on sensitivity analysis by removing each study data at a time (Figure A3). Cumulative analysis showed that till 2008, the cost of service was markedly decreased with hospitalists compared to NH. After 2008, there was no significant difference between hospitalist and NH groups (Figure A4). There was no dissemination bias as indicated by Egger’s regression test ($p = 0.79$).

3.2.3. 30-day readmission or in-hospital mortality
Data from 39 heterogeneous studies ($I^2 = 80\%, p < 0.001$) that included 375,570 participants contributed to the calculation of the summary effect estimate for readmission/mortality. Under the random effects model, the overall odds ratio showed marginal superiority of hospitalist over NH in terms of readmission/mortality (OR = 0.95, 95% CI [0.89 to 1], $p = 0.06$; Figure 4). However, this effect was sensitive to the removal of single studies in sensitivity analysis, taking the effect size towards significant superiority of hospitalist over NH (Figure A5).

3.2.4. Patients’ satisfaction
Out of the included studies, six investigated patients’ satisfaction with the healthcare service provided in both hospitalist- and non-hospitalist- based settings. The Press-Ganey survey was used in three of these studies. Pooled analysis of the commonly reported items of the Press-Ganey survey showed no significant difference in friendliness/courtesy of physician ($p = 0.15$), how well physician kept the patient informed ($p = 0.13$), skill of physician ($p = 0.2$), and time spent with his patient ($p = 0.08$). Physician’s concern for patients’ questions and worries ($p = 0.01$) and the overall score ($p < 0.001$) tended to favor the hospitalist over NH service (Figure 5).
Author	Year	Setting	Patients	Timeline	Comparison Group
Hackner	2000	Cedars-Sinai Medical Center in Los Angeles (A university-affiliated, community medical center)	Patients from the emergency department and from private offices or from the hospital clinic population who were admitted directly to the hospital wards	12 months	Variety of private practitioners
Auerbach	2002	Mount Zion Hospital, a 280-bed community-based teaching hospital affiliated with University of California, San Francisco	Patients 18 years of age or older	24 months	Community-based physicians
Aplin	2014	Urban, academic, 600-bed teaching hospital in Camden, New Jersey	Patients discharged from medical–surgical units.	24 months	Medical-surgical
Burke	2013	Denver VA Medical Center	General inpatients	7 years	Urgent care physician
Chadaga	2012	Academic hospital in Denver, Colorado	General inpatients	NA	Hospitalists
Chavey	2014	US teaching hospitals	Adult non-pregnancy-related inpatients	9 years	Family physician
Chin	2014	Academic medical center	Internal medicine patients	4 years	Academic preceptors
Ding	2014	General internal medicine department of an Acute-care hospital in Singapore	Seniors aged 80 years and older with specific Focus on 2 subgroups with premorbid functional impairment and acute geriatric syndromes	3 years	Other internists
Douglas	2012	Tertiary care academic medical center	Neurologic inpatients	48 months	Neuro-hospitalist
Shu	2011	National Taiwan University Hospital (NTUH), a Tertiary-care referral center in northern Taiwan	General inpatients	2 months	Internist
Duplantier	2016	Single teaching institution	Joint Arthroplasty Patients	4 years	Non-hospitalist
Desai	2014	University of Chicago Medical Center	Chronic Liver Disease	6 years	Conventional
Everett	2011	Large, urban, Not-for-profit community teaching hospital in Florida.	Cardiovascular diseases	5 years	Cardiologist
1					
Everett	2011	Large, urban, Not-for-profit community teaching hospital in Florida.	Cardiovascular diseases	5 years	Internist
Fulton	2011	NA	General inpatients	NA	Non-hospitalist
Goldie	2012	Tertiary care hospital	Coronary artery bypass/valvular surgery	9 months	ACNs
Gonzalo	2015	Penn State Hershey Medical Center, central Pennsylvania.	Internal medicine patients	3 years	Pre-hospitalist
Lee	2011	Singapore General Hospital.	General inpatients	1 year	Specialists-based model
Hollier	2015	Tertiary hospital	RSWS (Asthma, cellulitis inpatients)	2 years	RSWS
Howrey	2011	5% Medicare sample USA	Stroke	4 years	Non-hospitalist care
Huddleston	2004	Academic medical center	Orthopedic	NA	Standard orthopedic
Iannuzzi	2015	Health institution.	Internal medicine inpatients	3 years	Midlevel practitioner
Iberti	2016	Urban tertiary care hospital in New York City.	Vascular surgery	2 years	Hospitalists
Kociol	2013	Data from the Get With the Guidelines-Heart Failure registry	Heart failure inpatients	3 years	Low hospitalist use
Koo	2015	a tertiary cancer center in New York	Oncology unit patients	5 months	Oncologist-led
Kuo	2011	Hospital care of Medicare patients	General inpatients	5 years	PCP
Okere	2016	Two medical units of a community Teaching hospital.	General inpatients	14 months	Post-PhC model
Author	Year	Setting	Patients	Timeline	Comparison Group
--------------	------	--	---------------------------	----------	-----------------------------------
Singh	2011	Urban Academic medical center in the Midwestern USA	General inpatients	12 months	Traditional Resident-Based Model
Tadros	2015	Urban tertiary care hospital and medical school, Metropolitan New York	High-risk surgical patients	12 months	Vascular surgeons
Tadros	2016	Urban tertiary care hospital and medical school, Metropolitan New York	High-risk surgical patients	10 months	Vascular surgeons
Wise	2011	Urban academic community hospital affiliated with a major regional academic university	Medical ICU patients	12 months	Intensivist-led team
Diamond	1998	CTH, Northeast US	General inpatients	12 months	PCP
Craig	1999	Kaiser Permanente, CA	General inpatients	36 months	Internist
Davis	2000	Tertiary care center, Rural health care system, MI	General inpatients	12 months	Internist
Rifkin	2002	Tertiary care center, NY	CAP	12 months	PCP
Tingle	2001	CTH, TX	General inpatients	15 months	FMT
Meltzer	2002	Academic center, Chicago	General inpatients	24 months	NH
Scheuer	2005	All SC hospitals	Pneumonia	12 months	NH
Phy	2005	Academic medical center, MN	Hip fracture	24 months	NH
Rifkin	2007	CTH	Pneumonia	5 months	NH
Southern	2007	Teaching hospital, NY	General inpatients	24 months	NH
Lindenauer	2007	45 Hospitals across US	General inpatients	33 months	NH
Carek	2008	CTH	General inpatients	12 months	1. Private
					2. FMT
Vasiévičius	2008	6 Academic medical centers	CHF	24 months	NH teaching
Roy	2008	CTH, FL	General inpatients	12 months	NH teaching
Dynan	2009	Academic medical center, OH	General inpatients	12 months	NH teaching
Go	2010	6 Academic medical centers	NA	24 months	NH

Note: CAP: community-acquired pneumonia; CHF: congestive heart failure; CTH: Community Teaching Hospital; FMT: family medicine teaching; GI: gastrointestinal; LOS: length of stay; NH: non-hospitalist; PCP: primary care physician; RSW5: resident shift work schedule; HMS: hospitalist-led model system; ACNPs: Acute Care Nurse Practitioners.
The remaining three studies used self-designed questionnaires and Picker-Commonwealth patient satisfaction survey. Data provided by these studies showed no difference between hospitalist- and NH-treated cohorts in terms of physician ability to keep the patient and family informed \((p = 0.67)\), physician courtesy and friendliness \((p = 0.87)\), skill of the physician \((p = 0.22)\), physician and staff ability to work together \((p = 0.30)\), or likelihood of recommending the hospital \((p = 0.13)\). Overall patient satisfaction

Figure 2. Forest plot of LOS in hospitalist- and non-hospitalist-based care models.

Figure 3. Forest plot of cost of service in Hospitalist- and Non-hospitalist-based care models.
was not different according to the results of the Picker-Commonwealth survey (p = 0.2).

3.2.5. Studies with incomplete published data
In 12 out of the 14 studies that reported incomplete data, LOS was shorter for the hospitalist service. Hospital cost was lower for the hospitalist model in seven studies, similar in six, and higher in one study.

4. Discussion
Our analysis showed that hospitalists reduce LOS, readmissions and in-hospital mortality. The overall summary estimate showed marginally significant result that was sensitive to the effect of few singles studies which removal draw the results towards favoring the hospitalist model. Hospitalists increased the efficiency of
inpatient care without compromising the quality of service. Inversely, patients’ satisfaction was similar or even higher in patients cared for by hospitalists compared to NH. On the other hand, there was no difference in terms of hospital cost between hospitalist and NH services. Beyond these benefits, there is compelling evidence that hospitalists promoted clinical care development and integration [56,69,70]. Particularly, they supported the development of patient safety guidelines [71] and became more efficient in teaching [72]. Rifkin et al. reported that hospitalists are more likely to comply with national guidelines of care in pneumonia patients [56]. Another report by Hauer et al. showed that trainee satisfaction was higher in the case of hospitalist than non-hospitalist teachers [72]. In our meta-analysis of published studies to date, we found a significantly shorter LOS among hospitalists compared with NHs, which persisted on leave out one sensitivity analysis even though cumulative meta-analysis showed decreasing trend of the MD in LOS between the hospitalist and NH groups from 2.4 days in 1998 to 0.67 in 2016.

Our results describe for the first time interesting trends displayed by cumulative meta-analysis. Cumulative analysis for the cost of service over years revealed an interesting movement towards equality of cost in both groups. From the inception of studies that evaluated the hospitalist-based healthcare service till 2008, the cost of service was significantly decreased with hospitalists compared to the NH groups. After 2008, there was no significant difference between hospitalist and NH groups. Since last 10 years there is an increasing role of hospitalists been primary attending in higher risk patients with higher comorbidities including intensive care units (Due to the concept of Open ICU getting more popular with Intensivist and surgeons taking the role of consultants) which might explain change to overall cost after 2008.

The declined mean difference in hospital charges overtime might be attributed to the increased average case mix index (CMI) [73]. Despite being originally created for calculating hospital costs, CMI has been recently used as an indicator of disease severity and the large volume of comorbidities being treated. Tadros et al. argued that the increased cost of hospitalization is expected because of the increased resources required to treat patients with higher CMI [73,74].

Continuity of care for hospitalized patients was documented to be associated with favorable outcomes such as lower risk of hospitalization, fewer emergency department visits, and higher patient satisfaction [75–77]. In this regard, Turner and colleagues studied the effect of discontinuity of hospitalist care on costs and readmission. They showed that hospital physician discontinuity was associated modest rise in hospital charges [78]. On the contrary Hansen et al did a retrospective observational study, which concluded that hospitalist physician continuity does not appear to be associated with the incidence of adverse events [79]. From the conflicting studies we are unable to draw conclusions regarding whether continuity of care explained the declining mean differences in cost or LOS. Perhaps, team dynamics and intra-hospitalist variability should be indubitably researched.

Cross-Sectional study done by Kripalani et al from Emory university showed that hospitalists are considered highly effective educators by trainees in setting of academic center and were more effective than subspecialists [80]. There has been an increase in academic hospitalists serving as teaching faculty in academic centers. Chung et al studied the effectiveness of academic Hospitalists on clinical education and concurred not only more resident satisfaction among residents rotating under hospitalist teaching service but also cultivate awareness of cost effectiveness and systems-based improvements in the field of inpatient medicine [81]. As inpatient leaders hospitalists collaborate well with emergency physicians in discharging patients, which meet observation criteria but could be well managed as outpatient. Hospitalists are also used to managing complex patients themselves, minimizing use of subspecialists like nephrology and infectious diseases. Hospitalists are well aligned with health care system and collaborate well with primary care providers, case managers and other subspecialists decreasing length of stay and improving resource utilization and decreasing readmissions [82,83]. Most hospitalists are acquiesced taking care of immediate high acuity inpatient issues in hospital, often deescalate treatment at the earliest, delegating non-emergent tests to primary care and subspecialists to be done as outpatient and been physically onsite coordinating care in a timely manner all factors leads to fewer resources utilized [32,36]. Primary providers can focus their practice more on outpatient care avoiding complexities of hospital based medicine and the physical need to be in the hospital to dealing with inpatient emergencies.

Data from randomized controlled trials (RCTs) are scarce on the discussion of hospitalist care model. The majority of the included studies were retrospective with the exception of few RCTs that included small number of participants [35,42]. The findings of an RCT conducted by Huddleston et al is consistent with the results of the present study in terms of LOS and hospital charges [42]. However, another RCT with small sample size showed no difference in LOS and readmission rate [35].

Future studies should adopt a randomized prospective design to explore the effect of potential confounders that have not been controlled for so far. Moreover, data are still not available to answer the question raised by Rachion et al. [12] in 2012 regarding the time of LOS and cost reduction after implementation of a hospitalist program. Therefore,
further study of the issue in longitudinal studies with extended follow-up periods would be of interest.

This study has some limitations. First, we could not assess the risk of bias in the included studies due to heterogenous study design adopted in different settings. In addition, evidence from meta-analysis of RCTs was lacking due to the paucity of randomized data identified in the literature.

5. Conclusion

To recapitulate, the introduction of hospitalists to inpatient service translates to changes in LOS and readmission rates. Hospitalist model was beneficial in the reduction of LOS and in-hospital mortality/30-day readmission rates, yet not in the containment of hospital costs. We acquiesce that there has been an increase in academic hospitalists over time and the role they undertake in furthering medical education. Many questions still remain unanswered regarding post-discharge short term mortality (90 Day Mortality) for inpatients comparing programs using hospitalists or NH which needs further investigation.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Ahmed Elmaraezy http://orcid.org/0000-0003-3621-6578
Charat Thongprayoon http://orcid.org/0000-0002-8313-3604
Wisit Cheungpasitporn http://orcid.org/0000-0001-9954-9711

References

[1] Kuo Y-F, Sharma G, Freeman JL, et al. Growth in the care of older patients by hospitalists in the USA. N Engl J Med. 2009;360(11):1102–1112.
[2] Meltzer DO, Chung JW. US trends in hospitalization and generalist physician workforce and the emergence of hospitalists. J Gen Intern Med. 2010;25(5):453–459.
[3] Lindenauer PK, Rothberg MB, Pekow PS, et al. Outcomes of care by hospitalists, general internists, and family physicians. N Engl J Med. 2007;357(25):2589–2600.
[4] Southern WN, Berger MA, Bellin EY, et al. Hospitalist care and length of stay in patients requiring complex discharge planning and close clinical monitoring. Arch Intern Med. 2007;167(17):1869–1874.
[5] Roy A, Heckman MG, Roy V, editors. Associations between the hospitalist model of care and quality-of-care-related outcomes in patients undergoing hip fracture surgery. In Mayo Clinic Proceedings 2006 Jan 1 (Vol. 81, No. 1, pp. 28-31). Elsevier.
[6] Myers JS, Bellini LM, Rohrbach J, et al. Improving resource utilization in a teaching hospital: development of a nonteaching service for chest pain admissions. Acad Med. 2006;81(5):432–435.
[7] Halasyamani LK, Valenstein PN, Friedlander MP, et al. A comparison of two hospitalist models with traditional care in a community teaching hospital. Am J Med. 2005;118(5):536–543.
[8] Kaboli PJ, Barnett MJ, Rosenthal GE. Associations with reduced length of stay and costs on an academic hospitalist service. Am J Manag Care. 2004;10(8):561–568.
[9] Coffman J, Rundall TG. The impact of hospitalists on the cost and quality of inpatient care in the USA: a research synthesis. Med Care Res Rev. 2005;62(4):379–406.
[10] Everett G, Uddin N, Rudloff B. Comparison of hospital costs and length of stay for community internists, hospitalists, and academicians. J Gen Intern Med. 2007;22(5):662–667.
[11] Dynan L, Stein R, David G, et al. Determinants of hospitalist efficiency: a qualitative and quantitative study. Med Care Res Rev. 2009;66(6):682–702.
[12] Rachoin J-S, Skaf J, Cerceo E, et al. The impact of hospitalists on length of stay and costs: systematic review and meta-analysis. Am J Manag Care. 2012;18(1):e23–e30.
[13] Gonzalo JD, Kuperman EF, Chuang CH, et al. Impact of an overnight internal medicine academic hospitalist program on patient outcomes. J Gen Intern Med. 2015;30(12):1795–1802.
[14] Chavey WE, Medvedev S, Hohmann S, et al. The status of adult inpatient care by family physicians at US academic medical centers and affiliated teaching hospitals 2003 to 2012: the impact of the hospitalist movement. Fam Med. 2014;46(2):94–99.
[15] Burke RE, Whitfield E, Prochazka AV. Effect of a hospitalist-run postdischarge clinic on outcomes. J Hosp Med. 2014;9(1):7–12.
[16] Aplin KS, Coutinho McAllister S, Kupersmith E, et al. Caring for patients in a hospitalist-run clinical decision unit is associated with decreased length of stay without increasing revisit rates. J Hosp Med. 2014;9(6):391–395.
[17] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–341.
[18] Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions. Hoboken, NJ: John Wiley & Sons; 2011.
[19] Wan X, Wang W, Liu J, et al. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135.
[20] Thakkar R, Wright SM, Alguire P, et al. Procedures performed by hospitalist and non-hospitalist general internists. J en Intern Med. 2010;25(5):448–452.
[21] Auerbach AD, Wachter RM, Katz P, et al. Implementation of a voluntary hospitalist service at a community teaching hospital: improved clinical efficiency and patient outcomes. Ann Intern Med. 2002;137(11):859–865.
[22] Carek PJ, Boggan H, Mainous A, et al. Inpatient care in a community hospital: comparing length of stay and costs among teaching, hospitalist, and community services. Family Medicine-Kansas City-. 2008;40(2):119.
[23] Chadaga SR, Shockley L, Keniston A, et al. Hospitalist-led medicine emergency department team: associations with throughput, timeliness of patient care, and satisfaction. J Hosp Med. 2012;7(7):562–566.
S. A. SALIM ET AL.

[24] Chin DL, Wilson MH, Bang H, et al. Comparing patient outcomes of academician-preceptors, hospitalist-preceptors, and hospitalists on internal medicine services in an academic medical center. J Gen Intern Med. 2014;29(12):1672–1678.

[25] Craig DE, Hartla B, Likosky WH, et al. Implementation of a hospitalist system in a large health maintenance organization: the Kaiser Permanente experience. Ann Intern Med. 1999;130(4, Part 2):355–359.

[26] Davis KM, Koch KE, Harvey JK, et al. Effects of hospitalists on cost, outcomes, and patient satisfaction in a rural health system. Am J Med. 2000;108(8):621–626.

[27] Desai AP, Satoskar R, Appannagari A, et al. Co-management between hospitalist and hepatologist improves the quality of care of inpatients with chronic liver disease. J Clin Gastroenterol. 2014;48(4):e30–e6.

[28] Diamond HS, Goldberg E, Janosky JE. The effect of full-time faculty hospitalists on the efficiency of care at a community teaching hospital. Ann Intern Med. 1998;129(3):197–203.

[29] Ding YY, Sun Y, Tay JC, et al. Short-term outcomes of hospitalists in patients with chronic liver disease. J Clin Gastroenterol. 2000;30(3):240–244.

[30] Duplantier NL, Briski DC, Luce LT, et al. The effects of a hospitalist comanagement model for joint arthroplasty patients in a teaching facility. J Arthroplasty. 2016;31(3):567–572.

[31] Everett G, Uddin N. Should a cardiologist be the principal attending physician or the consultant to a hospitalist or general internist for cardiovascular disease admissions? Am Heart Hosp J. 2010;9(2):81–86.

[32] Everett GD, Anton MP, Jackson BK, et al. Comparison of hospital costs and length of stay associated with general internists and hospitalist physicians at a community hospital. Am J Manag Care. 2004;10(9):626–630.

[33] Fulton BR, Drevs KE, Ayala LJ, et al. Patient satisfaction with hospitalists: facility-level analyses. Am J Med Qual. 2011;26(2):95–102.

[34] Go JT, Vaughan-Sarrazin M, Auerbach A, et al. Do hospitalists affect clinical outcomes and efficiency for patients with acute upper gastrointestinal hemorrhage (UGIH)? J Hosp Med. 2010;5(3):133–139.

[35] Goldie CL, Prodan-Bhalla N, Mackay M. Nurse practitioners in postoperative cardiac surgery: are they effective? Can J Cardiovasc Nurs. 2012;22:4.

[36] Gregory D, Baigelman W, Wilson IB. Hospital Economics of the Hospitalist. Health Serv Res. 2003;38(3):905–918.

[37] Hackner D, Tu G, Braunstein GD, et al. The value of a hospitalist service: efficient care for the aging population? Chest J. 2001;119(2):580–589.

[38] Halpert AP, Pearson SD, LeWine HE, et al. The impact of an inpatient physician program on quality, utilization, and satisfaction. Am J Manag Care. 2000;6(5):549–555.

[39] Hock Lee K, Yang Y, Soong Yang K, et al. Bringing generalists into the hospital: outcomes of a family medicine hospitalist model in Singapore. J Hosp Med. 2011;6(3):115–121.

[40] Hollier JM, Wilson SD. No variation in patient care outcomes after implementation of resident shift work duty hour limitations and a hospitalist model system. Am J Med Qual. 2017;32(1):27–33.

[41] Howrey BT, Kuo Y-F, Goodwin JS. Association of care by hospitalists on discharge destination and 30-day outcomes after acute ischemic stroke. Med Care. 2011;49(8):701.

[42] Huddleston JM, Long KH, Naessens JM, et al. Medical and surgical comanagement after elective hip and knee arthroplasty randomized, controlled trial. Ann Intern Med. 2004;141(1):28–38.

[43] Iannuzzi MC, Iannuzzi JC, Holsbey A, et al. Comparing hospitalist-resident to hospitalist-midlevel practitioner team performance on length of stay and direct patient care cost. J Grad Med Educ. 2015;7(1):65–69.

[44] Iberti CT, Briones A, Gabriel E, et al. Hospitalist-vascular surgery comanagement: effects on complications and mortality. Hosp Pract (1995). 2016;44(5):233–236.

[45] Kociol RD, Hammill BG, Fonarow GC, et al. Associations between use of the hospitalist model and quality of care and outcomes of older patients hospitalized for heart failure. JACC Heart Fail. 2013;1(5):445–453.

[46] Koo DJ, Goring TN, Saltz LB, et al. Hospitalists on an inpatient tertiary care oncology teaching service. J Oncol Pract. 2015;11(2):e114–e119.

[47] Kulaga ME, Charney P, O’mahony SP, et al. The positive impact of initiation of hospitalist clinician educators. J Gen Intern Med. 2004;19(4):293–301.

[48] Kuo Y-F, Goodwin JS. Association of hospitalist care with medical utilization after discharge: evidence of cost shift from a cohort study. Ann Intern Med. 2011;155(3):152–159.

[49] Lindenauer PK, Chehabeddine R, Pekow P, et al. Quality of care for patients hospitalized with heart failure: assessing the impact of hospitalists. Arch Intern Med. 2002;162(11):1251–1256.

[50] Lucas BP, Candotti C, Margeta B, et al. Hand-carried echocardiography by hospitalists: a randomized trial. Am J Med. 2011;124(9):766–774.

[51] Meltzer D, Manning WG, Morrison J, et al. Effects of physician experience on costs and outcomes on an academic general medicine service: results of a trial of hospitalists. Ann Intern Med. 2002;137(11):866–874.

[52] Molinari C, Short R. Effects of an HMO hospitalist program on inpatient utilization. Am J Manag Care. 2001;7(11):1051–1060.

[53] Okere AN, Renier CM, Willemstein M. Comparison of a pharmacist-hospitalist collaborative model of inpatient care with multidisciplinary rounds in achieving quality measures. Am J Health Syst Pharm. 2016;73:4.

[54] Palacio C, Alexandraki I, House J, et al. A comparative study of unscheduled hospital readmissions in a resident-staffed teaching service and a hospitalist-based service. South Med J. 2009;102(2):145–149.

[55] Phy MP, Vanness DJ, Melton LJ, et al. Effects of a hospitalist model on elderly patients with hip fracture. Arch Internal Med. 2005;165(7):796–801.

[56] Riekin WD, Burger A, Holmboe ES, et al. Comparison of hospitalists and nonhospitalists regarding core measures of pneumonia care. Am J Manag Care. 2007;13(3):129.

[57] Riekin WD, Conner D, Silver A, et al. Comparison of processes and outcomes of pneumonia care between hospitalists and community-based primary care physicians. Mayo Clin Proc. 2002;77(10):1053–1058.

[58] Riekin WD, Holmboe E, Scherer H, et al. Comparison of hospitalists and nonhospitalists in inpatient length of
stay adjusting for patient and physician characteristics. J Gen Intern Med. 2004;19(11):1127–1132.

[59] Roy CL, Liang CL, Lund M, et al. Implementation of a physician assistant/hospitalist service in an academic medical center: impact on efficiency and patient outcomes. J Hosp Med. 2008;3(5):361–368.

[60] Roytman MM, Thomas SM, Jiang CS. Comparison of practice patterns of hospitalists and community physicians in the care of patients with congestive heart failure. J Hosp Med. 2008;3(1):35–41.

[61] Scheurer DB, Miller JG, Blair DI, et al. Hospitalists and improved cost savings in patients with bacterial pneumonia at a state level. South Med J. 2005;98(6):607–611.

[62] Shu CC, Lin JW, Lin YF, et al. Evaluating the performance of a hospitalist system in Taiwan: a pioneer study for nationwide health insurance in Asia. J Hosp Med. 2011;6(7):378–382.

[63] Singh S, Fletcher KE, Schapira MM, et al. A comparison of outcomes of general medical inpatient care provided by a hospitalist-physician assistant model vs a traditional resident-based model. J Hosp Med. 2011;6(3):122–130.

[64] Smith PC, Westfall JM, Nicholas RA. Primary care family physicians and 2 hospitalist models: comparison of outcomes, processes, and costs. J Fam Pract. 2002;51(12):1021–1027.

[65] Tadros RO, Faries PL, Malik R, et al. The effect of a hospitalist comanagement service on vascular surgery inpatients. J Vasc Surg. 2015;61(6):1550–1555.

[66] Tingle LE, Lambert CT. Comparison of a family practice teaching service and a hospitalist model: costs, charges, length of stay, and mortality. Family Medicine-Kansas City-. 2001;33(7):511–515.

[67] Vasilevsks IE, Meltzer D, Schnipper J, et al. Quality of care for decompensated heart failure: comparable performance between academic hospitalists and non-hospitalists. J Gen Intern Med. 2008;23(9):1399–1406.

[68] Wise KR, Akopov VA, Williams BR Jr., et al. Hospitalists and intensivists in the medical ICU: a prospective observational study comparing mortality and length of stay between two staffing models. J Hosp Med. 2012;7(3):183–189.

[69] Pressel DM, Rappaport DI, RN C-B NW, et al. Nurses’ assessment of pediatric physicians: are hospitalists different? J Healthc Manag. 2008;53(1):14.

[70] Meltzer D. Hospitalists and the doctor-patient relationship. J Leg Stud. 2001;30(S2):589–606.

[71] Pham HH, Devers KJ, Kuo S, et al. Health care market trends and the evolution of hospitalist use and roles. J Gen Intern Med. 2005;20(2):101–107.

[72] Hauer KE, Wachter RM, McCulloch CE, et al. Effects of hospitalist attending physicians on trainee satisfaction with teaching and with internal medicine rotations. Arch Intern Med. 2004;164(17):1866–1871.

[73] Tadros RO, Taddur ML, Faries PL, et al. Vascular surgeon-hospitalist comanagement improves in-hospital mortality at the expense of increased in-hospital cost. J Vasc Surg. 2017;65(3):819–825.

[74] Mendez CM, Harrington DW, Christenson P, et al. Impact of hospital variables on case mix index as a marker of disease severity. Popul Health Manag. 2014;17(1):28–34.

[75] Saultz JW, Albedaiwi W. Interpersonal continuity of care and patient satisfaction: a critical review. Anna Family Med. 2004;2(5):445–451.

[76] Saultz JW, Lochner J. Interpersonal continuity of care and care outcomes: a critical review. Anna Family Med. 2005;3(2):159–166.

[77] Van Walraven C, Oake N, Jennings A, et al. The association between continuity of care and outcomes: a systematic and critical review. J Eval Clin Pract. 2010;16(5):947–956.

[78] Turner J, Hansen L, Hinami K, et al. The impact of hospitalist discontinuity on hospital cost, readmissions, and patient satisfaction. J Gen Intern Med. 2014;29(7):1004–1008.

[79] O’leary KJ, Turner J, Christensen N, et al. The effect of hospitalist discontinuity on adverse events. J Hosp Med. 2015;10(3):147–151.

[80] Kripalani S, Pope AC, Rask K, et al. Hospitalists as teachers. J Gen Intern Med. 2004;19(1):8–15.

[81] Chung P, Morrison J, Jin L, et al. Resident satisfaction on an academic hospitalist service: time to teach. Am J Med. 2002;112(7):597–601.

[82] Jungerwirth R, Wheeler SB, Paul JE. Association of hospitalist presence and hospital-level outcome measures among medicare patients. J Hosp Med. 2014;9(1):1–6.

[83] Palabindala V, Abdul Salim S. Era of hospitalists. J Community Hosp Intern Med Perspect. 2018;8(1):16–20.
Study name	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value
Diamond 1998	0.054	0.003	-0.740	-0.529	-11.765	0.000
Craig 1999	0.057	0.003	-0.793	-0.571	-12.029	0.000
Davis 2000	0.057	0.003	-0.769	-0.543	-11.901	0.000
Hackner 2001	0.056	0.003	-0.711	-0.552	-11.655	0.000
Tingle 2001	0.056	0.003	-0.770	-0.552	-11.872	0.000
Auerbach 2002	0.056	0.003	-0.792	-0.572	-12.106	0.000
Metli 2003	0.056	0.003	-0.795	-0.574	-12.185	0.000
Riffon 2002	0.056	0.003	-0.773	-0.554	-11.893	0.000
Gregory 2003	0.055	0.003	-0.764	-0.567	-11.815	0.000
Huddleston 2004	0.056	0.003	-0.768	-0.567	-12.017	0.000
Halayemam 2008	0.056	0.003	-0.775	-0.556	-11.872	0.000
Pfy 2005	0.055	0.003	-0.772	-0.553	-11.948	0.000
Scheurer 2005	0.056	0.003	-0.798	-0.578	-12.251	0.000
Lindemauer 2007	0.058	0.003	-0.802	-0.574	-11.837	0.000
Riffon 2007	0.056	0.003	-0.781	-0.563	-12.092	0.000
Southern 2007	0.056	0.003	-0.775	-0.556	-11.874	0.000
Vasilevskis 2008	0.046	0.003	-0.813	-0.576	-11.501	0.000
Carek 2008	0.056	0.003	-0.792	-0.572	-12.125	0.000
Roy 2009	0.056	0.003	-0.798	-0.578	-12.263	0.000
Dynan 2009	0.056	0.003	-0.792	-0.570	-12.056	0.000
Parkin 2009	0.056	0.003	-0.779	-0.559	-11.921	0.000
Go 2010	0.056	0.003	-0.788	-0.569	-12.130	0.000
Shu 2011	0.055	0.003	-0.761	-0.547	-11.933	0.000
Lee 2011	0.056	0.003	-0.773	-0.555	-11.900	0.000
Hoarey 2011	0.057	0.003	-0.796	-0.573	-12.056	0.000
Kuo 2011	0.058	0.003	-0.793	-0.569	-11.690	0.000
Singh 2011	0.057	0.003	-0.800	-0.578	-12.190	0.000
Wise 2011 (1)	0.055	0.003	-0.772	-0.555	-11.989	0.000
Wise 2011 (2)	0.056	0.003	-0.782	-0.564	-12.098	0.000
Wise 2011 (3)	0.055	0.003	-0.778	-0.560	-12.076	0.000
Chortiga 2012	0.056	0.003	-0.799	-0.580	-12.383	0.000
Douglass 2013	0.055	0.003	-0.763	-0.564	-11.930	0.000
Galles 2013	0.055	0.003	-0.781	-0.564	-12.126	0.000
Burke 2013	0.055	0.003	-0.768	-0.551	-11.909	0.000
Kacir 2013	0.057	0.003	-0.796	-0.572	-11.964	0.000
Agire 2014	0.062	0.004	-0.820	-0.576	-11.209	0.000
Chany 2014	0.056	0.003	-0.771	-0.552	-11.855	0.000
Chen 2014	0.056	0.003	-0.800	-0.579	-12.224	0.000
Ding 2014	0.056	0.003	-0.787	-0.562	-12.178	0.000
Desj 2014	0.056	0.003	-0.778	-0.561	-12.104	0.000
Gonzalo 2015	0.055	0.003	-0.799	-0.582	-12.475	0.000
Holler 2015	0.055	0.003	-0.771	-0.555	-12.030	0.000
Iannuzzi 2015	0.065	0.004	-0.775	-0.555	-11.887	0.000
Iberti 2015	0.056	0.003	-0.792	-0.570	-12.056	0.000
Duptil 2016	0.052	0.003	-0.746	-0.544	-12.482	0.000
Ikewa 2016	0.056	0.003	-0.771	-0.552	-11.855	0.000
Okewa 2016	0.056	0.003	-0.780	-0.562	-12.041	0.000
Aplin 2014	0.057	0.003	-0.761	-0.554	-12.041	0.000

Figure A1. Forest plot of sensitivity analysis of LOS in Hospitalist- and Non-hospitalist-based care models.
Cumulative difference in means (95% CI)

Diamond 1998 -2.420 0.281 0.079 -2.970 -1.870 -8.827 0.000
Craig 1999 -1.383 1.010 1.202 -3.372 0.586 -1.379 0.168
Davis 2000 -1.382 0.558 0.311 -2.478 -0.289 -4.278 0.13
Hacker 2001 -1.268 0.351 0.123 -1.956 -0.579 -3.610 0.000
Tingle 2001 -1.265 0.303 0.092 -1.860 -0.671 -4.179 0.000
Aurbach 2002 -1.101 0.260 0.068 -1.611 -0.590 -4.227 0.000
Medearis 2002 -0.967 0.236 0.056 -1.429 -0.955 -4.103 0.000
Riloff 2002 -0.981 0.216 0.047 -1.404 -0.558 -4.543 0.000
Gregory 2003 -0.104 0.200 0.040 -1.407 -0.622 -0.070 0.000
Hudilkeson 2004 0.905 0.179 0.032 -1.307 -0.607 -0.356 0.000
Halayesman 2008 9.43 0.155 0.024 -1.247 -0.640 -0.096 0.000
Phy 2005 -0.965 0.154 0.024 -1.287 -0.683 -0.389 0.000
Scheurer 2006 0.913 0.152 0.023 -1.211 -0.615 -0.008 0.000
Lindemann 2007 0.844 0.131 0.017 -1.111 -0.597 -0.521 0.000
Riloff 2007 -0.850 0.129 0.017 -1.103 -0.597 -0.993 0.000
Southem 2007 -0.852 0.122 0.015 -1.091 -0.612 -0.979 0.000
Veselaskova 2008 -0.790 0.095 0.009 -0.975 -0.604 -0.336 0.000
Cane 2008 -0.759 0.091 0.008 -0.937 -0.581 -0.364 0.000
Roy 2008 -0.716 0.088 0.008 -0.891 -0.546 -0.179 0.000
Dyvan 2009 -0.697 0.063 0.007 -0.861 -0.534 -0.353 0.000
Pelecas 2009 0.702 0.091 0.017 -0.562 -0.541 -0.469 0.000
Go 2010 -0.689 0.080 0.006 -0.845 -0.533 -0.866 0.000
Shu 2011 -0.729 0.083 0.007 -0.891 -0.566 -0.785 0.000
Lee 2011 -0.742 0.082 0.007 -0.903 -0.592 -0.906 0.000
Hoonen 2011 0.715 0.077 0.006 -0.866 -0.564 -0.284 0.000
Kuro 2011 -0.689 0.069 0.005 -0.834 -0.564 -10.119 0.000
Singh 2011 -0.672 0.067 0.004 -0.803 -0.540 -10.017 0.000
Wise 2011 -1.185 0.086 0.017 -1.611 -1.307 -0.322 0.000
Wise 2011 (2) -0.684 0.067 0.004 -0.815 -0.533 -10.213 0.000
Wise 2011 (3) -0.648 0.066 0.004 -0.783 -0.537 -10.272 0.000
Chicage 2012 -0.662 0.066 0.004 -0.792 -0.539 -10.007 0.000
Douglas 2012 -0.689 0.067 0.004 -0.819 -0.558 -10.340 0.000
Gaal 2012 -0.688 0.067 0.004 -0.819 -0.558 -10.341 0.000
Burke 2013 -0.706 0.068 0.006 -0.879 -0.567 -10.583 0.000
Kocic 2013 -0.809 0.066 0.004 -1.056 -0.593 -10.620 0.000
Apik 2014 -0.651 0.055 0.003 -0.759 -0.543 -11.880 0.000
Chassy 2014 -0.667 0.055 0.003 -0.774 -0.559 -12.173 0.000
Chic 2014 -0.646 0.054 0.003 -0.751 -0.541 -12.047 0.000
Ding 2014 -0.640 0.053 0.003 -0.743 -0.534 -12.002 0.000
Dase 2014 -0.643 0.053 0.003 -0.748 -0.539 -12.019 0.000
Gonzal 2015 -0.823 0.054 0.003 -1.028 -0.618 -11.834 0.000
Huller 2015 -0.833 0.054 0.003 -1.034 -0.621 -11.717 0.000
Iannuzzi 2015 -0.642 0.054 0.003 -0.747 -0.537 -11.985 0.000
Koc 2015 -0.636 0.053 0.003 -0.746 -0.534 -12.017 0.000
Taloo 2015 -0.630 0.052 0.003 -0.752 -0.528 -12.113 0.000
Doupertler 2016 -0.660 0.056 0.003 -0.770 -0.550 -11.763 0.000
Baer 2016 -0.671 0.056 0.003 -0.786 -0.562 -12.041 0.000
Olke 2016 -0.672 0.055 0.003 -0.781 -0.564 -12.131 0.000
-0.672 0.055 0.003 -0.781 -0.564 -12.131 0.000

Figure A2. Forest plot of cumulative LOS in Hospitalist- and Non-hospitalist-based care models.

Figure A3. Forest plot of cost of service in Hospitalist- and Non-hospitalist-based care models.
Study name	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value
Diamond 1998	-1017.000	264.658	-1653.113	-497.887	-3.840	0.000
Davis 2000	-756.823	226.294	-1000.350	-513.295	-3.344	0.001
Hackner 2001	-867.128	102.948	-1008.903	-605.352	-7.840	0.000
Tingle 2001	-899.083	91.199	-840.494	-857.677	-8.879	0.000
Auerbach 2002	-826.899	83.551	-826.656	-694.143	-9.313	0.000
Meitzler 2002	-764.359	79.639	-801.040	-405.968	-9.067	0.000
Riffkin 2002	-736.787	67.647	-801.040	-405.968	-9.067	0.000
Gregory 2003	-690.831	65.310	-840.494	-511.040	-9.313	0.000
Huddekton 2004	-870.956	63.312	-1000.350	-605.352	-7.840	0.000
Halseymami 2005	-566.216	135.014	-830.839	-301.593	-4.194	0.000
Meltzer 2006	-766.589	79.639	-801.040	-405.968	-9.067	0.000
Vasilevski 2008	-641.290	65.310	-840.494	-511.040	-9.313	0.000
Carek 2008	-562.899	83.551	-810.011	-551.650	-9.131	0.000
Roy 2008	-762.899	83.551	-810.011	-551.650	-9.131	0.000
Meltzer 2006	-764.359	79.639	-801.040	-405.968	-9.067	0.000

Figure A4. Forest plot of cumulative cost in Hospitalist- and Non-hospitalist-based care models.

Study name	Statistics with study removed	Odds ratio (95% CI) with study removed	
Lower limit	Upper limit	Z-Value	p-Value
Everett 2011	0.952 0.898 1.009 -1.671 0.095		
Kuo 2011	0.940 0.885 0.988 -2.037 0.042		
Apin 2014	0.947 0.893 1.005 -1.802 0.072		
Burk 2013	0.936 0.883 0.991 -2.262 0.024		
Chad 2014	0.945 0.886 1.008 -1.707 0.088		
Chiu 2014	0.949 0.894 1.008 -1.700 0.089		
Ding 2014	0.944 0.890 1.001 -1.924 0.054		
Douglas 2012	0.949 0.896 1.006 -1.759 0.079		
Shu 2011	0.942 0.889 0.999 -1.984 0.047		
Duplantier 2016	0.950 0.897 1.007 -1.722 0.085		
Dozell 2014	0.946 0.893 1.003 -1.874 0.061		
Gold 2012	0.946 0.893 1.003 -1.868 0.062		
Gonzalo 2015	0.942 0.888 1.000 -1.956 0.050		
Lee 2014	0.948 0.894 1.005 -1.784 0.074		
Hsuy 2015	0.939 0.885 0.997 -2.070 0.038		
Iannuzzi 2015	0.941 0.886 0.998 -2.018 0.044		
Isb 2016	0.944 0.890 1.002 -1.895 0.058		
Kociol 2013	0.944 0.888 1.000 -1.858 0.063		
koo 2015	0.947 0.894 1.004 -1.810 0.070		
okere 2016	0.946 0.893 1.003 -1.848 0.065		
singh 2016	0.947 0.892 1.005 -1.781 0.075		
Tadros 2015	0.945 0.892 1.003 -1.872 0.061		
Auerbach 2002	0.954 0.900 1.011 -1.577 0.115		
Davis 2000	0.948 0.894 1.005 -1.795 0.073		

Figure A5. Forest plot of readmission/mortality in Hospitalist- and Non-hospitalist-based care models.