Tunable electronic and magnetic phases in layered ruthenates: SrRuO$_3$-SrTiO$_3$ heterostructure upon strain

Minjae Kim,†‡ Chang-Jong Kang,†‡ Jae-Ho Han,‡ Kyoo Kim,‡ and Bongjae Kim†‡

†Korea Institute for Advanced Study, Seoul 02455, South Korea
‡Department of Physics, Chungnam National University, Daejeon 34134, South Korea

Introduction. — Various physical phenomena found in the layered ruthenates have attracted great interest from the condensed matter physics community. One of the representative materials is Sr$_2$RuO$_4$. It shows strange metallic behavior, interpreted as Hund metal phase, in high temperatures (≥ 25K) [1,2], and becomes an unconventional superconducting state in low temperatures (≤ 1.5K) [3]. In the metallic phase, it is a paramagnet with various magnetic fluctuations [4]. These magnetic fluctuations are thought to be involved as a pairing mechanism of the superconducting state [4,5], but the exact form of the order parameter is still under dispute after almost thirty years of its finding [6]. Contrastively, another representative material, Ca$_2$RuO$_4$, shows totally different physical properties despite being isovalent to Sr$_2$RuO$_4$. The ground state is a Mott insulator with a static antiferromagnetic order [11,12]. In between the two systems, Sr$_{2-x}$Ca$_x$RuO$_4$, one can find unusual structural, electric, and magnetic phases which includes heavy fermionic phases and crossover of local and itinerant magnetism [11,13,15].

One essential source for such interesting behaviors is the multi-orbital nature of the ruthenates. The orbital-selective electronic correlations and Hund interactions within t_{2g} manifold are found to be responsible for the emergent properties such as Hund metal and diverse magnetic phases in the ruthenates [1,2,4,7,11,12,14,20]. For example, in Ca$_{1.5}$Sr$_{0.5}$RuO$_4$, orbital-selective feature is well-identified both from the angle-resolved photoemission spectroscopy and various theoretical frameworks [13,21,23]. This multi-orbital nature makes ruthenates as ideal systems for studying the balance and interplay of multiple competing physical parameters, such as bandwidth, inter- and intra-orbital correlation, crystal field splitting, and spin-orbit coupling [2]. In reality, however, there are not many materials other than aforementioned ones, Sr$_2$RuO$_4$, Ca$_2$RuO$_4$, and in-between (Sr$_{2-x}$Ca$_x$RuO$_4$), to be compared with theoretical models on the t_{2g} manifold.

The recent development of the oxide heteroepitaxy has offered a controllable route to tune the physical parameters of materials. Employing ample substrates, one can delicately grow the oxides under various strains with either compressive or tensile-way, which enables the control of crystal field splitting, hopping anisotropy and strength of the correlation [24,25]. Especially, for strontium ruthenates, experimental demonstrations are readily made with single-layer ruthenates, which is achieved by sandwiching one layer of SrRuO$_3$ between SrTiO$_3$ blocks [26,27]. Previously, within the density functional theory (DFT) framework, some of the authors have demonstrated (SrRuO_3)$_1$-(SrTiO_3)$_1$ heterostructure (SRO-STO) as a possible system to study the superconductivity of Sr$_2$RuO$_4$ based on the similarity of quasi 1-dimensional xz/yz and quasi 2-dimensional xy Fermi surfaces to those from Sr$_3$Ru$_4$O$_{12}$ [28]. It is interesting to investigate whether the conclusions are valid beyond the DFT framework known as an incomplete description of many-body correlation effects. Especially for ruthenates, the inclusion of the many-body effect is crucial in describing the key electronic features such as Hund-metal, band-renormalization, and metal-insulator transition [1,11,12,15,29,31], which, in turn, will change the relative strengths of the different magnetism. Considering the prospect of heteroengineering of ruthenates, there lies a plethora of physics that is yet to be discovered through the state-of-the-art computational approaches.
In this Letter, we investigate the electronic and magnetic structures of SRO-STO within the framework of DFT plus dynamical mean-field theory (DFT+DMFT) \[32–35\] for various epitaxial strain and temperature ranges. We demonstrate that the epitaxial strains controls the orbital-selective electronic correlation and moves the system toward two distinct Mott phases, multi-orbital and orbital selective ones away from the Hund phase. Even more interesting point is that the strain can tune the strength of the different type of magnetic instabilities and lead to the stabilization of ferromagnetic (FM) or checkerboard-type antiferromagnetic (AFM) orders over spin-density wave (SDW) one. Here, for completeness, we have employed two different projector schemes are consistent (see SM \[36\]), thereby presenting the Hund metal characteristics. Especially, we note two archetypical features: (i) coherence-incoherence crossover as a function of frequency \(\omega\) in the self-energy \(\Sigma(\omega)\) (see SM \[39\]), and (ii) significant electronic correlations in the absence of the Hubbard satellite. The significant electronic correlations are clearly identified in the quasiparticle residue, \(Z = (1 - \partial \Sigma(\omega) / \partial \omega)_{\omega = -0}^{-1}\), and Ru \(xz/yz\) and \(xy\) have \(Z = 0.30\) and 0.35, respectively (see Fig. 1(c)), which are comparable to the values of Sr\(_2\)RuO\(_4\). 0.30 \((xz/yz)\) and 0.20 \((xy)\) \[38\]. We see the overall electronic features resemble those for Sr\(_2\)RuO\(_4\) despite the small differences.

Remarkably, the SRO-STO exhibits diverse electronic phases within an accessible strain range. The epitaxial strain imposes a tetragonal distortion, and the energy difference between the Ru \(xz/yz\) and \(xy\) levels varies under the strain. Figure 1(c) displays the strain-dependent quasiparticle residue \(Z\) for Ru \(xz/yz\) and \(xy\) orbitals. We note the different responses of \(Z\) upon tensile strain: decreases for \(xz/yz\) orbitals and increases for \(xy\) orbital. This orbital differentiation is clearly reflected in the orbital occupancy as shown in Fig. 1(d). For the compressive strain, the \(xy\) level moves higher in energy and approaches the \(xz/yz\) levels (see SM \[39\]). As a result, the \(xy\)-orbital occupation is reduced, and the VHS moves even closer to \(E_F\), indicating stronger FM instability. These features give rise to the reduction of the low-energy hybridization function for the \(xy\) orbital and, hence, increase the electronic correlations in the \(xy\) orbital as shown in Fig. 1(c). This can be compared to Ca\(_{1.8}\)Sr\(_2\)RuO\(_4\) \[23\], where the occupancy of the \(xy\)-orbital is close to the half-filling and have a
For Ca$_2$RuO$_4$, the FM tendency in the compressive strain is substantially enhanced and much more predominant concerning the AFM and the SDW. Hence, the static FM order is set in for the compressive SRO-STO. We have confirmed that the actual DFT+DMFT calculations converge to the FM ground state under the compressive strain. The orbital-resolved $A(\omega)$ for the FM ground state is shown in Fig. 2(d) at $T = 35$ K. The exchange splitting ($\text{Re} \Sigma_{\uparrow}(q)$-$\text{Re} \Sigma_{\downarrow}(q)$) in the Ru xy orbital (199 meV) is larger than that in the Ru xz/yz orbitals (79 meV) (see the inset of Fig. 2(d)). This confirms that the Ru xy-orbital drives the magnetic transition via the Stoner mechanism. The non-vanishing magnetic moment started to emerge around $T = 100$ K and the value progressively increases as T decreases, thereby suggesting the second-order magnetic transition. Our obtained magnetic moment is $\sim 0.35 \mu_B$, which is close to the experimental report from the ferromagnetic (Sr$_2$RuO$_4$)-(SrTiO$_3$)$_x$. The saturated moment is much smaller than the ionic value of 2 μ_B, implying the highly itinerant character of the FM.

For the tensile strain of +4%, the AFM instability strongly prevails and both the FM and the nesting-induced SDW ones are almost buried under the AFM instability as shown in Fig. 2(c). The DMFT density of states $A(\omega)$ at $\omega = 0$ (E_F) is reduced from -4% (compressive) to the 4% (tensile) strains (see SM [50]), which manifests the dwindling of the Stoner instability. This is expected considering the increased interatomic distances between Ru, which reduced the itinerancy of the system. Besides, we note the SDW Fermi surface nesting is significantly weaker under +4% strain (see SM [50]). Such a stark variation of the magnetism upon the external perturbation is very unique, especially, in the sense that the other competing magnetic instabilities except for the AFM are almost annulled. To confirm, we additionally performed the DMFT electronic structure cal-

![Figure 2. Momentum (q) dependent dynamical structure factors $S(q, \omega)$ of SRO-STO for (a) -4%, (b) 0%, and (c) +4% strain cases. Here, for $S(q, \omega)$, the $t_{2g}+e_g$ projector calculation is performed, and the data is for $\omega = 5$ meV at the temperature of 115 K. In the lower panels, we present the spin-resolved density of states for (d) FM -4% strain and (e) AFM +4% strain cases at 35 K. The inset in (d) is the blowup figure near the Fermi level.](image-url)
The half-filled (3/2 filled) insulating phase with half-filled (fully filled) order phase transition. Limiting cases are multi-orbital Mott region between AFI and PMM phases indicates asserted first-order type transition. This is totally different from the FM for the tensile strain in Fig. 1(d). On the other hand, the FM metallic phase of the tensile strain emerges with the enhancement of the local moment size develops upon decreasing the temperatures. We can compare the electronic structure and magnetism of the AFM insulator based on the first-order type transition and unattainable convergence, which is denoted as the shaded area in Fig. 3. This is very different to the compressive strain case, where the FM transition is expected to be a second-order one. The different mechanisms of magnetism can be a reason for the contrasting transition, (i) the itinerant Stoner mechanism induced FM emerges in the metallic phase and (ii) the local superexchange mechanism induced AFM emerges in the insulating phase. We note that the AFM insulating phase for the tensile strain emerges with the enhancement of the orbital polarization, having nearly integer filling of $n_{xz/yz}=1.01$ and $n_{xy}=2.00$, in comparison with the non-integer filling in the PM metallic phase of the tensile strain in Fig. 1(d). On the other hand, the FM metallic phase for the compressive strain emerges without changes of the orbital occupation in comparison with the non-integer filling for the PM metallic phase of the compressive strain in Fig. 1(d).

Conclusion.— We have investigated the strain-temperature dependent electronic and magnetic properties of the SRO-STO heterostructure system within the DFT+DMFT method. When unstrained, the system has a slightly enhanced magnetic tendency with a similar degree of electronic correlation over bulk layered counterparts. But, such a small difference enables a plethora of interesting phases when combined with the workable epitaxial strain engineering starting from the paramagnetic Hund metal phase of the unstrained system. First, by applying the compressive strain, one reaches the PM metal phase from the competition with the SDW and the AFM phases. This is very interesting because, while there are a few reports on the static magnetism upon doping or external perturbation [14, 42,44], due to the fragile nature of FM, most of them are AFM or SDW and no FM has been stabilized for layered ruthenates. Together with orbital-selective characteristic of the compressive case, this phase can offer unreported areas for further studies. Note that SrRuO$_3$ is also a FM metal, but the system is a three-dimensional one and has a much mild electronic correlation [16, 45, 46]. When the tensile strain is applied, the other magnetic instabilities are quickly muted and a checkerboard AFM phase with a strong insulating electronic structure can be obtained. This phase is similar to the one from Ca$_2$RuO$_4$. As the temperature is increased, the system goes through the first-order type transition into the PM metal phase. We expect that there exists a coexistence phase of PM metal and AFM insulator based on the first-order type transition and unattainable convergence, which is denoted as the shaded area in Fig. 3.
taxial strain. We presented the strain-temperature phase diagram of the SRO-STO system, which can access various electronic and magnetic phases observed from the diverse bulk layered system as well as the unreported magnetic and electronic phases such as FM metal with orbital-selectiveness. We expect our work can guide the future experimental and theoretical directions towards the engineering of the layered rhenates, and other correlated systems with competing physical energy scales.

ACKNOWLEDGEMENTS

The authors like to acknowledge the support from Advanced Study Group program from PCS-IBS. MK was supported by KIAS Individual Grants(CG083501). CJK was supported by the NRF grant (No. 2022R1C1C1008200) and KISTI Supercomputing Center (Project No. KSC-2021-CRE-0580). BK acknowledges support by NRF grand No. 2021R1C1C1007017, (Project No. KSC-2021-CRE-0580). CJK was supported by the NRF grant (No. 2022R1C1C1008200) and KISTI Supercomputing Center (Project No. KSC-2021-CRE-0605). JHH acknowledges financial support from the Institute for Basic Science in the Republic of Korea through the project IB5-R024-D1. KK is supported by KAERI internal R&D Program (No. 524460-22). Part of the calculation is supported by the CAC at KIAS.

* garix.minjae.kim@gmail.com These two authors contributed equally
† cjkang87@cmu.ac.kr These two authors contributed equally
‡ bongjae.kim@kunsan.ac.kr

[1] J. M. Maierle, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar, and A. Georges, Coherence-incoherence crossover and the mass-renormalization puzzles in Sr$_2$RuO$_4$. Phys. Rev. Lett. 106, 096401 (2011).
[2] A. Georges, L. d. Medici, and J. Miravle, Strong correlations from hund’s coupling, Annu. Rev. Condens. Matter Phys. 4, 137 (2013).
[3] A. Tamai, M. Zingl, E. Rozbicki, E. Cappelli, S. Riccò, A. de la Torre, S. McKeown Walker, F. Y. Bruno, P. D. C. King, W. Meevasana, M. Shi, M. Radović, N. C. Plumb, A. S. Gibbs, A. P. Mackenzie, C. Berthod, H. U. R. Strand, M. Kim, A. Georges, and F. Baumberger, High-resolution photoemission on Sr$_2$RuO$_4$: reveals correlation-enhanced effective spin-orbit coupling and dominantly local self-energies. Phys. Rev. X 9, 021048 (2019).
[4] M. Kim, J. Miravle, M. Ferrero, O. Parcollet, and A. Georges, Spin-orbit coupling and electronic correlations in Sr$_2$RuO$_4$. Phys. Rev. Lett. 120, 126401 (2018).
[5] G. Zhang, E. Gorelov, E. Savestani, and E. Pavarini, Fermi surface of Sr$_2$RuO$_4$: Spin-orbit and anisotropic coulomb interaction effects. Phys. Rev. Lett. 116, 106402 (2016).
[6] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Superconductivity in a layered perovskite without copper, Nature 372, 532 (1994).
[7] P. Steffens, Y. Silis, J. Kulda, Z. Q. Mao, Y. Maeno, I. I. Mazin, and M. Braden, Spin fluctuations in Sr$_2$RuO$_4$ from polarized neutron scattering: Implications for superconductivity, Phys. Rev. Lett. 122, 047004 (2019).
[8] I. I. Mazin and D. J. Singh, Competitions in layered rhenates: Ferromagnetism versus antiferromagnetism and triplet versus singlet pairing, Phys. Rev. Lett. 82, 4324 (1999).
[9] A. T. Rømer, A. Kreisel, M. A. Müller, P. J. Hirschfeld, I. M. Eremin, and B. M. Andersen, Theory of strain-induced magnetic order and splitting of T_c and T_{tr1}, Phys. Rev. B 102, 054506 (2020).
[10] A. P. MacKenzie, T. Scalflidi, C. W. Hicks, and Y. Maeno, Even odder after twenty-three years: the superconducting order parameter puzzle of Sr$_2$RuO$_4$, npj Quantum Mater. 2, 40 (2017).
[11] S. Nakatsuji, S.-i. Ikeda, and Y. Maeno, Ca$_2$RuO$_4$: New nont insulators of layered rhenate, J. Phys. Soc. Jpn 66, 1866 (1997).
[12] M. Braden, G. André, S. Nakatsuji, and Y. Maeno, Crystal and magnetic structure of Ca$_2$RuO$_4$: Magnetoelastic coupling and the metal-insulator transition, Phys. Rev. B 58, 847 (1998).
[13] O. Friedt, M. Braden, G. André, P. Adelmann, S. Nakatsuji, and Y. Maeno, Structural and magnetic aspects of the metal-insulator transition in Ca$_{2-x}$Sr$_x$RuO$_4$, Phys. Rev. B 63, 174432 (2001).
[14] J. P. Carlo, T. Goko, I. M. Gat-Malureanu, P. L. Russo, A. T. Savici, A. A. Aczel, G. J. MacDougall, J. A. Rodriguez, T. J. Williams, G. M. Luke, C. R. Wiebe, Y. Yoshida, S. Nakatsuji, Y. Maeno, T. Taniguchi, and Y. J. Uemura, New magnetic phase diagram of (Sr,Ca)$_2$RuO$_4$, Nat. Mater. 11, 323 (2012).
[15] M. Kim, J. Kwon, C. H. Kim, Y. Kim, D. Chung, H. Ryu, J. Jung, B. S. Kim, D. Song, J. D. Denlinger, et al., Signature of kondo hybridisation with an orbital-selective mott phase in 4d Ca$_{2-x}$Sr$_x$RuO$_4$, npj Quantum Mater. 7, 1 (2022).
[16] H. U. Strand, M. Zingl, N. Wentzell, O. Parcollet, and A. Georges, Magnetic response of Sr$_2$RuO$_4$: Quasi-local spin fluctuations due to hund’s coupling, Phys. Rev. B 100, 125120 (2019).
[17] D. Sutter, C. Fatuzzo, S. Moser, M. Kim, R. Fittipaldi, A. Vecchione, V. Granata, Y. Sassa, F. Cossalter, G. Gatti, et al., Hallmarks of hund’s coupling in the ruthenium perovskites SrRuO$_3$ and CaRuO$_3$, Phys. Rev. B 91, 195149 (2015).
[18] H. U. Strand, M. Zingl, N. Wentzell, O. Parcollet, and A. Georges, Magnetic response of Sr$_2$RuO$_4$: Quasi-local spin fluctuations due to hund’s coupling, Phys. Rev. B 100, 125120 (2019).
[19] E. Gorelov, M. Karolak, T. Wehling, F. Lecheminant, A. Pavarini, and A. Georges, Electronic correlations, magnetism, and hund’s rule coupling in the ruthenium perovskites SrRuO$_3$ and CaRuO$_3$, Phys. Rev. Lett. 110, 126403 (2013).
[20] A. Shimoyamada, K. Ishizaka, S. Tsuda, S. Nakatsuji, Y. Maeno, and S. Shin, Strong mass renormalization at a local momentum space in multiorbital Ca$_1$Sr$_x$Ru$_2$O$_4$, Phys. Rev. Lett. 102, 086401 (2009).
Observation of a novel orbital selective mott transition in Ca$_1.8$Sr$_{0.2}$RuO$_4$, Phys. Rev. Lett. 103, 097001 (2009).

[23] D. Sutter, M. Kim, C. Matt, M. Horio, R. Fittipaldi, A. Vecchione, V. Granata, K. Hauser, Y. Sassa, G. Gatti, et al., Orbital-selective breakdown of ferml liquid quasiparticles in Ca$_1.8$Sr$_{0.2}$RuO$_4$, Phys. Rev. B 99, 121115 (2019).

[24] D. G. Schom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, Strain tuning of ferroelectric thin films, Annu. Rev. Mater. Res. 37, 589 (2007).

[25] B. Kim, P. Liu, J. M. Tomczak, and C. Franchini, Strain-induced tuning of the electronic coulomb interaction in 3d transition metal oxide perovskites, Phys. Rev. B 98, 075130 (2018).

[26] F.-C. Wu, H. Song, Y. Yuan, B. Feng, Y. Ikuhara, R. Huang, P. Yu, C.-G. Duan, and Y.-H. Chu, Thickness dependence of transport behaviors in SrRuO$_3$/SrTiO$_3$ superlattices, Phys. Rev. Mater. 4, 014401 (2020).

[27] H. Boschker, T. Harada, T. Asaba, R. Ashoori, A. Boris, H. Hilgenkamp, C. Hughes, M. Holtz, L. Li, D. Muller, et al., Ferromagnetism and conductivity in atomically thin SrRuO$_3$, Phys. Rev. X 9, 011027 (2019).

[28] B. Kim, S. Khmelevskyi, C. Franchini, I. Mazin, and K. Kim, SrRuO$_3$/SrTiO$_3$ heterostructure as a possible platform for studying unconventional superconductivity in Sr$_2$RuO$_4$, Phys. Rev. B 101, 220502 (2020).

[29] S. Riccò, M. Kim, A. Tamai, S. Meckown Walker, F. Y. Bruno, I. Cuceri, E. Cappelli, C. Besnard, T. K. Kim, P. Dudin, et al., In situ strain tuning of the metal-insulator-transition of Ca$_2$Ru$_3$O$_8$ in angle-resolved photoemission experiments, Nat. Commun. 9, 1 (2018).

[30] Q. Han and A. Mills, Lattice energetics and correlation-driven metal-insulator transitions: The case of Ca$_2$Ru$_3$O$_8$, Phys. Rev. Lett. 121, 067601 (2018).

[31] X. Deng, K. M. Stadler, K. Haule, A. Weichselbaum, J. von Delft, and G. Kotliar, Signatures of mottness and hubbardness in archetypal correlated metals, Nat. Commun. 10, 1 (2019).

[32] A. Georges and G. Kotliar, Hubbard model in infinite dimensions, Phys. Rev. B 45, 6479 (1992).

[33] W. Metzner and D. Vollhardt, Correlated lattice fermions in d = 3 dimensions, Phys. Rev. Lett. 62, 324 (1989).

[34] G. Kotliar, S. Y. Savrasov, K. Haule, V. V. Oudovenko, O. Parcollet, and C. Marianetti, Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78, 865 (2006).

[35] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68, 13 (1996).

[36] See supplement materials for calculation details, comparison of two DFT-MFT methods, discussion on Hund metallicity, Fermi surfaces, frequency dependent dynamical structure factors, strain effects on the Ru-O distances and the crystal field, temperature evolution of the magnetism.

[37] H. Park, K. Haule, and G. Kotliar, Magnetic excitation spectra in BaFe$_2$As$_2$: A two-particle approach within a combination of the density functional theory and the dynamical mean-field theory method, Phys. Rev. Lett. 107, 137007 (2011).

[38] F. B. Kugler, M. Zingl, H. U. R. Strand, S.-S. B. Lee, J. von Delft, and A. Georges, Strongly correlated materials from a numerical renormalization group perspective.

[39] How the fermi-liquid state of Sr$_2$RuO$_4$ emerges, Phys. Rev. Lett. 124, 016401 (2020).

[40] Y.-T. Hsu, W. Cho, A. P. Rebola, B. Burganov, C. Adamo, K. M. Shen, D. G. Schlom, C. J. Fennie, and E.-A. Kim, Manipulating superconductivity in ruthenates through fermi surface engineering, Phys. Rev. B 94, 045118 (2016).

[41] Indeed, A(ω) for the xx/yz orbitals shows a hump at a around ω = -1.38 eV, a typical signal for Mott phase, at the binding energy of (U + J)/2 (∼1.35 eV). Note that this hump feature only for the tensile strains case [36].

[42] V. Grinenko, S. Ghosh, R. Sarkar, J.-C. Orain, A. Nikitin, M. Elender, D. Das, Z. Gugguchia, P. Brückner, M. E. Barber, et al., Split superconducting and time-reversal symmetry-breaking transitions in Sr$_2$RuO$_4$ under stress, Nat. Phys. 17, 748 (2021).

[43] M. Braden, O. Friedt, Y. Sidis, P. Bourges, M. Minakata, and Y. Maeno, Incommensurate magnetic ordering in Sr$_2$Ru$_{1-x}$Ti$_x$O$_4$, Phys. Rev. Lett. 88, 197002 (2002).

[44] B. Kim, S. Khmelevskyi, C. Franchini, and I. I. Mazin, Suppressed fluctuation as the origin of the static order in strained Sr$_2$RuO$_4$, arXiv preprint arXiv:2206.13826 (2022).

[45] M. Kim and B. I. Min, Nature of itinerant ferromagnetism of Sr$_2$RuO$_4$: A DFT+DMFT study, Phys. Rev. B 91, 205116 (2015).

[46] S. Hahn, B. Sohn, M. Kim, J. R. Kim, S. Huh, Y. Kim, W. Kyung, M. Kim, D. Kim, Y. Kim, T. W. Noh, J. H. Shim, and C. Kim, Observation of spin-dependent dual ferromagnetism in perovskite ruthenates, Phys. Rev. Lett. 127, 256401 (2021).

[47] M. Aichhorn, L. Pourkivski, P. Seth, V. Vildosola, M. Zingl, O. E. Peil, X. Deng, J. Mravlje, G. J. Kraberger, C. Martins, et al., Triqs/dfttools: A triqs application for ab initio calculations of correlated materials, Comp. Phys. Commun. 204, 200 (2016).

[48] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Messio, and P. Seth, Triqs: A toolbox for research on interacting quantum systems, Comp. Phys. Commun. 196, 398 (2015).

[49] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. Madsen, and L. D. Marks, Wien2k: An apw+lo program for calculating the properties of solids, J. Chem. Phys. 152, 074101 (2020).

[50] D. Stricker, J. Mravlje, C. Berthod, R. Fittipaldi, A. Vecchione, A. Georges, and D. van der Marel, Optical response of Sr$_2$RuO$_4$ reveals universal fermi-liquid scaling and quasiparticles beyond landau theory, Phys. Rev. Lett. 113, 087404 (2014).

[51] P. Seth, I. Krivenko, M. Ferrero, and O. Parcollet, Triqs/cythb: A continuous-time quantum monte carlo hybridisation expansion solver for quantum impurity problems, Comp. Phys. Commun. 200, 274 (2016).

[52] E. Gull, A. J. Mills, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Continuous-time monte carlo methods for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011).

[53] K. Haule, C.-H. Yee, and K. Kim, Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIn$_3$, CeCoIn$_5$, and CeRhIn$_5$, Phys. Rev.
[54] X. Deng, K. Haule, and G. Kotliar, Transport properties of metallic ruthenates: A DFT+DMFT investigation, Phys. Rev. Lett. 116, 256401 (2016).

[55] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J. Millis, Continuous-time solver for quantum impurity models, Phys. Rev. Lett. 97, 076405 (2006).

[56] K. Haule, Quantum monte carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base, Phys. Rev. B 75, 155113 (2007).

[57] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).

[58] K. Haule and G. Kotliar, Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of hund’s rule coupling, New J Phys. 11, 025021 (2009).
Supplemental Material:

Tunable electronic and magnetic phases in layered ruthenates: SrRuO$_3$-SrTiO$_3$ heterostructure upon strain

Minjae Kim1, Chang-Jong Kang2, Jae-Ho Han3, Kyoo Kim4, and Bongjae Kim5

1Korea Institute for Advanced Study, Seoul 02455, South Korea
2Department of Physics, Chungnam National University, Daejeon 34134, South Korea
3Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, South Korea
4Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
5Department of Physics, Kunsan National University, Gunsan 54150, South Korea

METHOD

In this section, we describe the detailed computational methods for our DFT+DMFT calculations on SRO-STO.

crystal structure

For the crystal structure of the SRO-STO heterostructure, we have adapted the optimized structures in the DFT framework from Ref. S28. We assumed the in-plane lattice parameter of SrTiO$_3$, 3.905 Å, as a reference for unstrained case (0%), and biaxial strain of -4% and +4% cases were considered by fixing in-plane lattice parameters. The octahedral rotation ($\sqrt{2} \times \sqrt{2}$) is allowed ($a^0a^0c^-$ Glazer tilting of octahedra) in the tetragonal unit cell. Refer to Ref. S28 for the details.

t_{2g} only projector method of DFT+DMFT

Electronic structure calculation in the DFT+DMFT framework [S34, S35] from the t_{2g} only projector method were performed using the full potential implementation in the TRIQS library [S47, S48]. The DFT part of the computations in the local density approximation were performed employing the WIEN2k package [S49]. We used 16 \times 16 \times 11 k-point mesh for the Brillouin zone integration. Wannier-like t_{2g} orbitals were constructed from the Kohn-Sham bands, which includes 6 t_{2g} bands and 7 topmost $O(2p)$ bands. Energy ranges for related Kohn-Sham bands at $k = \Gamma$ are [-2.7, 0.6] eV, [-2.5, 0.6] eV, and [-2.2, 0.6] eV, for -4%, 0%, and +4% strains, respectively. We used the full rotationally invariant Kanamori interaction with $U = 2.3$ eV and $J = 0.4$ eV. This setup successfully described the physical properties of the ruthenates in previous studies [S1, S16, S18, S23, S29, S50]. The quantum impurity problem in the DMFT was solved using the continuous-time hybridization-expansion quantum Monte Carlo impurity solver as implemented in the TRIQS library [S51, S52]. We perform the charge self-consistent DFT+DMFT computation for the PM phase for each strains with the convergence criteria of the total energy of 0.002 (Ry/formula unit). For the computation of magnetic phases, the converged charge densities from the PM calculations are fixed, and we allowed the spin symmetry breaking in the local Greens function and the self-energy of the t_{2g} orbital according to the magnetic orders. When stabilizing the magnetic ground state, we first started from the converged local Green’s function and the self-energy of the t_{2g} orbital from PM phase calculations, then we applied local magnetic field (in the order of ~ 5 meV), homogeneous one for the FM and staggered one for the AFM, to the local Hamiltonian for the initial a few DMFT iterations. We checked that stable magnetic phases in the present result are well-converged and robust for the DMFT iteration in the absence of the local magnetic field.

e_g+t_{2g} projector method of DFT+DMFT

In the Ru e_g+t_{2g} projector scheme, we performed fully charge self-consistent DFT+DMFT calculations implemented in the all-electron full-potential WIEN2k package [S49] with formalisms described in Ref. S53. We choose a wide hybridization energy window from -10 eV to 10 eV with respect to the Fermi level E_F. All the five Ru-4d (e_g+t_{2g}) orbitals are considered as correlated ones and the fully rotational invariant form is applied for a local Coulomb interaction Hamiltonian with the on-site Coulomb repulsion $U = 4.5$ eV and Hund’s coupling $J_H = 1$ eV. The Coulomb parameters U and J_H are confirmed by previous DFT+DMFT calculations on several metallic ruthenates in the e_g+t_{2g} projector method [S54]. The continuous time quantum Monte Carlo (CTQMC) [S55, S56] is adopted
Figure S1. (a), (b), and (c) show density of states from the t_{2g} only projector method for the DFT+DMFT. Strains of (a) -4%, (b) 0%, and (c) +4% are considered. PM state is forced at 35 K. (d), (e), and (f) show density of states from the $e_g + t_{2g}$ projector method for the DFT+DMFT. Strains of (d) -4%, (e) 0%, and (f) +4% are considered. PM state is forced at 115 K. The orange arrows indicate the evolution of the van-Hove singularity peak of the xy orbital. The blue arrows indicate the evolution of the hump of the xz/yz orbital near the Fermi level. The red arrow indicates the hump for the binding energy of $(U + J)/2 \sim 1.35$ eV only for the +4% strain, dominantly from xz/yz orbitals.

for a local impurity solver. We use a generalized gradient approximation (GGA) \cite{S57} for the exchange-correlation functional and subtracted the nominal double counting term. In the charge self-consistent calculations, $19 \times 19 \times 13$ k-point mesh is used for the Brillouin zone integration. For dynamical magnetic response function calculations, we computed both the one-particle Green’s function and the two-particle vertex function with formalisms described in Ref. \cite{S37} within the DFT+DMFT method.

Density of states for the correspondence of t_{2g} only projector method and $e_g + t_{2g}$ projector method

In Fig. S1, we compare the DFT+DMFT spectral functions $A(\omega)$ of the PM SRO-STO system from two different projector scheme. We confirm the overall agreement of the key features: (i) significant increase of the Ru xy-orbital peak near the Fermi level upon the compressive strain; (ii) hump features from Ru xz/yz orbitals near the Fermi level (blue arrows in Fig. S1); (iii) broad local maximum for +4% tensile strain (red arrow) at around a binding energy of $(U + J)/2 \sim 1.35$ eV as an indication of Mott regime. We assert here that the two project approaches match each other. In Fig. S2, we present the $A(\omega)$ of the xy orbital ($A_{xy}(\omega)$) near the Fermi level, in the PM SRO-STO system from the t_{2g} projector scheme. It is clearly shown that the van-Hove singularity peak moves towards the Fermi level upon the compressive strain due to the increased xy orbital energy level as shown in Table S1. The significant increase of the $A_{xy}(0)$ for the compressive strain is consistent with the density of states in the FM phase for the compressive strain in the main text, having the dominant spin splitting in the xy orbital.
Figure S2. The blowup figures for the density of states of the xy orbital ($A_{xy}(\omega)$) near the Fermi level, for -4 % (black), 0 % (red), and +4 % (blue) strains. The van-Hove singularity peaks are indicated with arrows for each strains. The result from the t_2g only projector scheme is shown.

Figure S3. Histogram of multiplets for the un-strained SRO-STO in the DFT+DMFT computation. The e_g+t_2g projector method is used. The most and the second most dominant electronic configuration for the occupancies $N = 4$ and 5 are shown. The crystal field energy level for Ru(d) orbital in the e_g+t_2g projector method is shown. P_{sum} is the probability sum of the histogram for the multiplet, considering the spin and xz/yz orbital degeneracies.

HUND METALLICITY FOR UNSTRAINED SRO-STO

In this section, we show the Hund metal characteristics of the unstrained paramagnetic SRO-STO system. Fig. S3 presents the DMFT valence histogram computed with the Ru e_g+t_2g projector scheme method. We find sizable probabilities over several different electronic configurations with $N = 4$, 5, and 6, indicating the strong charge fluctuation. Note that in a Mott system, the charge fluctuation is substantially blocked by the electronic Coulomb interaction and, therefore, certain atomic multiplet dominates the DMFT valence histogram and nearly integer occupancy is realized, which is not the case for our system.

In the $N = 4$ sector, high-spin atomic multiplets have significant probabilities, thereby presenting that the system is under the influence of strong Hund’s coupling. Besides, in the $N = 5$ sector, the most probable state is derived from adding one electron to most probable state for $N = 4$. Strong Hund’s coupling induced high-spin atomic multiplets, a typical hallmark of Hund metal [S58], can be identified here.

In Fig. S4, we compare the real part of the self-energy in the real frequency ω of unstrained SRO-STO to Sr$_2$RuO$_4$, a prototypical Hund metal [S1 S38]. One can see the Fermi-liquid-like self-energy in a narrow ω range at around the Fermi level as well as the self-energy humps at around $\omega = \pm 0.1$ eV for both systems. The quasiparticle residues Z of unstrained SRO-STO are 0.30 (xz/yz) and 0.35 (xy), which are not far from the values from Sr$_2$RuO$_4$, 0.30 (xz/yz) and 0.20 (xy).
Figure S4. Real part self-energies in the real frequency axis for SRO-STO with 0% strain and Sr$_2$RuO$_4$ at the temperature of 35 K. The left panel (a) is for the xz/yz orbital and the right panel (b) is for the xy orbital, respectively.

Figure S5. Strain dependent imaginary part self-energy in the Matsubara frequency for (a) -4%, (b) 0%, and (c) +4%. PM constraint is applied with the temperature of 35 K.

STRAIN AND ORBITAL SELECTIVE ELECTRONIC CORRELATION

In Fig. S5, we present the self-energy of xz/yz and xy orbitals of SRO-STO for different strains. Along with our quasiparticle residues Z data (see Table S1), the orbital-selective characteristics for strained cases are well-captured. For 0% strain, the xz/yz and xy orbitals have a relatively similar degree of electronic correlation and have similar quasiparticle residues Z. When the compressive strain of -4% is applied, stronger electronic correlation in the xy orbital than the xz/yz orbital can be seen and vice versa for the tensile strain cases.

FERMI SURFACE

In Fig. S6, we present the strain-dependent Fermi surfaces of SRO-STO systems both from the t_{2g} only and the $e_g + t_{2g}$ projector scheme. As with other electronic features, both methods give a reasonably consistent result. For example, there is a grim Fermi pocket at around M for 0% and -4% strains, which originates from the van-Hove singularity in the Ru xy orbital. Also, the compressive strain makes the Fermi surface nesting with $q_{SDW} \sim (0.3, 0.3)$
Table S1. Strain dependent (i) the in-plane Ru-O bond length $d_{Ru-O(x)}$, (ii) the out-of-plane Ru-O bond length $d_{Ru-O(z)}$, (iii) the local crystal field in the t_{2g} manifold ($\epsilon_{xz/yz} - \epsilon_{xy}$), (iv) the occupancy in the t_{2g} manifold (n_{xy} and $n_{xz/yz}$), and (v) the quasiparticle residue in the t_{2g} manifold (Z_{xy} and $Z_{xz/yz}$), are presented. For all computations, PM state is forced at 35 K.

Strain	$d_{Ru-O(x)}$ (Å)	$d_{Ru-O(z)}$ (Å)	$\epsilon_{xz/yz} - \epsilon_{xy}$ (eV)	n_{xy}	$n_{xz/yz}$	Z_{xy}	$Z_{xz/yz}$
-4 %	1.91	2.05	0.300	1.46	1.38	0.21	0.43
0 %	1.97	2.00	0.549	1.59	1.32	0.35	0.30
+4 %	1.97	2.05	0.592	1.70	1.20	0.37	0.11

Figure S6. Strain dependent Fermi surface for -4%, 0%, and +4%. Upper panels are for t_{2g} only projector method for the DFT+DMFT. Fermi surface nesting vector for the SDW ($q \sim (0.3,0.3)$) is denoted from yellow arrow. Lower panels are for the $e_g + t_{2g}$ projector method for the DFT+DMFT. For the t_{2g} only projector method, the PM state is forced at 35 K. For the $e_g + t_{2g}$ projector method, the PM state is forced at 115K.

Slightly stronger, while the tensile strain makes it weaker. This is consistent with our dynamical structure factor calculations in the main text. Still, we found that there are minor differences between two approaches. For example, there exist additional electron pocket, originated from Ru e_g, at Γ for five-orbital case. However, our main discussion is not affected by the minor details of the Fermi surface morphology.

Dynamical Spin Structure Factor

We show the momentum q and frequency ω-dependent dynamical spin structure factor $S(q,\omega)$ of the SRO-STO system upon strains in Fig. S7. The q dependent $S(q,\omega)$ at $\omega = 0$ meV is also plotted in Fig. S8. We can directly confirm the strongest FM instability for -4% strain, strong competition of FM, AFM, and SDW ones for unstrained one, and dominating AFM instability for 4% strain cases.
Figure S7. (a), (b), and (c) show momentum and frequency dependent dynamical spin structure factor from (a) -4% , (b) 0%, and (c) +4% strains, respectively, within $L = 0$ plane. For all computations, PM state is forced at 115 K. The $e_g + t_{2g}$ projector method is used.

TEMPERATURE DEPENDENT EVOLUTION OF MAGNETISM

Here, we compare two distinct temperature evolution of FM and AFM orders for compressive and tensile strain cases. In Fig. S9(a), we present the temperature-dependent magnetization M for the FM phase under the compressive strain of -4%. We find that the Curie temperature T_C is about 100 K with continuous evolution of the moment size, indicating the second-order type transition. The saturated magnetization (at low temperature) is around 0.35 μ_B. But for tensile strain case, the behavior is different. As shown in Fig. S9(b), for the checkerboard AFM phase of tensile case, the local magnetic moment size of 1.87 μ_B does not show temperature dependence up to the 105 K. The magnetic moment is from the nearly fully-occupied xy and half-filled xz/yz orbitals for Ru atom. For temperature above 300 K, the AFM insulating phase is unstable and the PM metallic phase is found. In between, say at intermediate temperature of 200 K, the DFT+DMFT calculations does not converge into both the AFM and the PM. This inaccessible convergence suggests a possible coexistence phase of the AFM insulator and the PM metal having the first-order type transition.

*garix.minjae.kim@gmail.com; These two authors contributed equally
cjjang87@cnu.ac.kr; These two authors contributed equally
bongjae.kim@kunsan.ac.kr

[S1] J. Mravlje, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar, and A. Georges, Coherence-incoherence crossover and the mass-renormalization puzzles in Sr$_2$RuO$_4$, Phys. Rev. Lett. 106, 096401 (2011).

[S2] A. Georges, L. d. Medici, and J. Mravlje, Strong correlations from hund’s coupling, Annu. Rev. Condens. Matter Phys. 4, 137 (2013).

[S3] A. Tamai, M. Zingl, E. Rozbicki, E. Cappelli, S. Riccò, A. de la Torre, S. McKeown Walker, F. Y. Bruno, P. D. C. King, W. Meevasana, M. Shi, M. Radović, N. C. Plumb, A. S. Gibbs, A. P. Macdonzie, C. Berthod, H. U. R. Strand, M. Kim, A. Georges, and F. Baumberger, High-resolution photoemission on Sr$_2$RuO$_4$ reveals correlation-enhanced effective spin-orbit coupling and dominantly local self-energies, Phys. Rev. X 9, 021048 (2019).

[S4] M. Kim, J. Mravlje, M. Ferrero, O. Parcollet, and A. Georges, Spin-orbit coupling and electronic correlations in Sr$_2$RuO$_4$, Phys. Rev. Lett. 120, 126401 (2018).

[S5] G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Fermi surface of Sr$_2$RuO$_4$: Spin-orbit and anisotropic coulomb interaction effects, Phys. Rev. Lett. 116, 106402 (2016).

[S6] Y. Maeno, H. Hashimoto, K. Yoshioka, Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Superconductivity in a layered perovskite without copper, Nature 372, 532 (1994).

[S7] P. Steffens, Y. Sidis, J. Kulda, Z. Q. Mao, Y. Maeno, I. I. Mazin, and M. Braden, Spin fluctuations in Sr$_2$RuO$_4$ from polarized neutron scattering: Implications for superconductivity, Phys. Rev. Lett. 122, 047004 (2019).

[S8] I. I. Mazin and D. J. Singh, Competitions in layered ruthenates: Ferromagnetism versus antiferromagnetism and triplet versus singlet pairing, Phys. Rev. Lett. 82, 4324 (1999).
Figure S8. Momentum dependent dynamical spin structure factor at $\omega = 0$ meV, within $L = 0$ plane for -4%, 0%, and +4% strains. For all computations, PM state is forced at 115 K. The $e_g + t_{2g}$ projector method is used.

[S9] A. T. Remer, A. Kreisel, M. A. Müller, P. J. Hirschfeld, I. M. Eremin, and B. M. Andersen, Theory of strain-induced magnetic order and splitting of T_c and T_{trsb} in Sr$_2$RuO$_4$, Phys. Rev. B 102, 054506 (2020).

[S10] A. P. Mackenzie, T. Scaffidi, C. W. Hicks, and Y. Maeno, Even odder after twenty-three years: the superconducting order parameter puzzle of Sr$_2$RuO$_4$, npj Quantum Mater. 2, 40 (2017).

[S11] S. Nakatsuji, S.-i. Ikeda, and Y. Maeno, Ca$_2$RuO$_4$: New mott insulators of layered rheniumate, J. Phys. Soc. Jpn 66, 1868 (1997).

[S12] M. Braden, G. André, S. Nakatsuji, and Y. Maeno, Crystal and magnetic structure of Ca$_2$RuO$_4$: Magnetoelectric coupling and the metal-insulator transition, Phys. Rev. B 58, 847 (1998).

[S13] O. Friedt, M. Braden, G. Andrê, P. Adelmann, S. Nakatsuji, and Y. Maeno, Structural and magnetic aspects of the metal-insulator transition in Ca$_{2-x}$Sr$_x$RuO$_4$, Phys. Rev. B 63, 174432 (2001).

[S14] J. P. Carlo, T. Goko, I. M. Gat-Mahureanu, P. L. Russo, A. T. Savici, A. A. Aczel, G. J. MacDougall, J. A. Rodriguez, T. J. Williams, G. M. Luke, C. R. Wiebe, Y. Yoshida, S. Nakatsuji, Y. Maeno, T. Taniguchi, and Y. J. Uemura, New magnetic phase diagram of (Sr,Ca)$_2$RuO$_4$, Nat. Mater. 11, 323 (2012).

[S15] M. Kim, J. Kwon, C. H. Kim, Y. Kim, D. Chung, H. Ryu, J. Jung, B. S. Kim, D. Song, J. D. Denlinger, et al., Signature of kondo hybridisation with an orbital-selective mott phase in 4d Ca$_{2-x}$Sr$_x$RuO$_4$, npj Quantum Mater. 7, 1 (2022).

[S16] H. T. Dang, J. Mravlje, A. Georges, and A. J. Millis, Electronic correlations, magnetism, and hund’s rule coupling in the ruthenium perovskites Sr$_2$RuO$_4$ and CaRuO$_3$, Phys. Rev. B 91, 195149 (2015).

[S17] H. U. Strand, M. Zingl, N. Wentzell, O. Parcollet, and A. Georges, Magnetic response of Sr$_2$RuO$_4$: Quasi-local spin fluctuations due to hund’s coupling, Phys. Rev. B 100, 125120 (2019).

[S18] D. Sutter, C. Fatuzzo, S. Moser, M. Kim, R. Fittipaldi, A. Vecchione, V. Granata, Y. Sassa, F. Cossalter, G. Gatti, et al., Hallmarks of hunds coupling in the mott insulator Ca$_2$RuO$_4$, Nat. Commun. 8, 1 (2017).

[S19] E. Gorelov, M. Karolak, T. Wehling, F. Lechermann, A. Lichtenstein, and E. Pavarini, Nature of the mott transition in Ca$_2$RuO$_4$, Phys. Rev. Lett. 104, 226401 (2010).

[S20] A. Liebsch and H. Ishida, Subband filling and mott transition in Ca$_{2-x}$Sr$_x$RuO$_4$, Phys. Rev. Lett. 98, 216403 (2007).

[S21] A. Shimoyama, K. Ishizaka, S. Tsuda, S. Nakatsuji, Y. Maeno, and S. Shin, Strong mass renormalization at a local momentum space in multiorbital Ca$_{1.8}$Sr$_{0.2}$RuO$_4$, Phys. Rev. Lett. 102, 086401 (2009).
Figure S9. (a) Temperature dependent evolution of the magnetic momentum per Ru(t_{2g}) for the FM in the -4% strain. (b) Temperature dependent evolution of the absolute magnetic momentum per Ru(t_{2g}) for the sublattice of the checkerboard AFM in the +4% strain. The t_{2g} only projector method for the DFT+DMFT is used. FM metal (FMM), AFM insulator (AFI), and PM metal (PMM) phases obtained from the DFT+DMFT (t_{2g} only projector method) are presented.

[S22] M. Neupane, P. Richard, Z.-H. Pan, Y.-M. Xu, R. Jin, D. Mandrus, X. Dai, Z. Fang, Z. Wang, and H. Ding, Observation of a novel orbital selective mott transition in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$, Phys. Rev. Lett. 103, 097001 (2009).

[S23] D. Sutter, M. Kim, C. Matt, M. Horio, R. Fittipaldi, A. Vecchione, V. Granata, K. Hauser, Y. Sassa, G. Gatti, et al., Orbitally selective breakdown of fermi liquid quasiparticles in Ca$_{1.8}$Sr$_{0.2}$RuO$_4$, Phys. Rev. B 99, 121115 (2019).

[S24] D. G. Schom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, Strain tuning of ferroelectric thin films, Annu. Rev. Mater. Res. 37, 589 (2007).

[S25] B. Kim, P. Liu, J. M. Tomczak, and C. Franchini, Strain-induced tuning of the electronic coulomb interaction in 3d transition metal oxide perovskites, Phys. Rev. B 98, 075130 (2018).

[S26] P.-C. Wu, H. Song, Y. Yuan, B. Feng, Y. Ikunara, R. Huang, P. Yu, C.-G. Duan, and Y.-H. Chu, Thickness dependence of transport behaviors in SrRuO$_3$/SrTiO$_3$ superlattices, Phys. Rev. Mater. 4, 014401 (2020).

[S27] H. Boschker, T. Harada, T. Asaba, R. Ashoori, A. Boris, H. Hilgenkamp, C. Hughes, M. Holtz, L. Li, D. Muller, et al., Ferromagnetism and conductivity in atomically thin SrRuO$_3$, Phys. Rev. X 9, 011027 (2019).

[S28] B. Kim, S. Khmelevskyi, C. Franchini, I. Mazin, and K. Kim, SrRuO$_3$-SrTiO$_3$ heterostructure as a possible platform for studying unconventional superconductivity in Sr$_2$RuO$_4$, Phys. Rev. B 101, 220502 (2020).

[S29] S. Ricco, M. Kim, A. Tannai, S. Mckeown Walker, F. Y. Bruno, I. Cucchi, E. Cappelli, C. Besnard, T. K. Kim, P. Dudin, et al., In situ strain tuning of the metal-insulator-transition of Ca$_2$RuO$_4$ in angle-resolved photoemission experiments, Nat. Commun. 9, 1 (2018).

[S30] Q. Han and A. Millis, Lattice energetics and correlation-driven metal-insulator transitions: The case of Ca$_2$RuO$_4$, Phys. Rev. Lett. 121, 067601 (2018).

[S31] X. Deng, K. M. Stadler, K. Haule, A. Weichselbaum, J. von Delft, and G. Kotliar, Signatures of mottness and hundness in archetypal correlated metals, Nat. Commun. 10, 1 (2019).

[S32] A. Georges and G. Kotliar, Hubbard model in infinite dimensions, Phys. Rev. B 45, 6479 (1992).

[S33] W. Metzner and D. Vollhardt, Correlated lattice fermions in d = ∞ dimensions, Phys. Rev. Lett. 62, 324 (1989).

[S34] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. Marianetti, Electronic structure calculations with dynamical mean-field theory, Rev. Mod. Phys. 78, 865 (2006).

[S35] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68, 13 (1996).

[S36] See supplement materials for calculation details, comparison of two DMFT methods, discussion on Hund metallicity, Fermi surfaces, frequency dependent dynamical structure factors, strain effects on the Ru-O distances and the crystal field, temperature evolution of the magnetism.
[S37] H. Park, K. Haule, and G. Kotliar, Magnetic excitation spectra in BaFe$_2$As$_2$: A two-particle approach within a combination of the density functional theory and the dynamical mean-field theory method, Phys. Rev. Lett. 107, 137007 (2011).

[S38] P. B. Kugler, M. Zingl, H. U. R. Strand, S.-B. Lee, J. von Delft, and A. Georges, Strongly correlated materials from a numerical renormalization group perspective: How the fermi-liquid state of Sr$_2$RuO$_4$ emerges, Phys. Rev. Lett. 124, 016401 (2020).

[S39] Y.-T. Hsu, W. Cho, A. F. Rebola, B. Burganov, C. Adamo, K. M. Shen, D. G. Schلوم, C. J. Fennie, and E.-A. Kim, Manipulating superconductivity in ruthenates through fermi surface engineering, Phys. Rev. B 94, 045118 (2016).

[S40] B. Kim, M. Kim, C.-J. Kang, J.-H. Han, and K. Kim, Competing spin-fluctuations in Sr$_2$RuO$_4$ and their tuning through epitaxial strain, arXiv preprint arXiv:2205.11711 (2022).

[S41] Indeed, A(ω) for the xz/yz orbitals shows a hump at around $\omega=-1.38$ eV, a typical signal for Mott phase, at the binding energy of $(U+J)/2$ (~1.35 eV). Note that this hump feature only for the tensile strains case [S36].

[S42] V. Grinenko, S. Ghosh, R. Sarkar, J.-C. Orain, A. Nikitin, M. Elender, D. Das, Z. Guguchia, F. Brückner, M. E. Barber, et al., Split superconducting and time-reversal symmetry-breaking transitions in Sr$_2$RuO$_4$ under stress, Nat. Phys. 17, 748 (2021).

[S43] M. Braden, O. Friedt, Y. Sidis, P. Bourges, M. Minakata, and Y. Maeno, Incommensurate magnetic ordering in Sr$_2$Ru$_{1-x}$Ti$_x$O$_4$, Phys. Rev. Lett. 88, 197002 (2002).

[S44] B. Kim, S. Khmelevskiy, C. Franchini, and I. I. Mazin, Suppressed fluctuation as the origin of the static order in strained Sr$_2$RuO$_4$, arXiv preprint arXiv:2206.13826 (2022).

[S45] M. Kim and B. I. Min, Nature of itinerant ferromagnetism of SrRuO$_3$: A DFT+DMFT study, Phys. Rev. B 91, 205116 (2015).

[S46] S. Hahn, B. Sohn, M. Kim, J. R. Kim, S. Huh, Y. Kim, W. Kyung, M. Kim, D. Kim, Y. Kim, T. W. Noh, J. H. Shin, and C. Kim, Observation of spin-dependent dual ferromagnetism in perovskite ruthenates, Phys. Rev. Lett. 127, 256401 (2021).

[S47] M. Aichhorn, L. Pourovskii, P. Seth, V. Vildosola, M. Zingl, O. E. Peil, X. Deng, J. Mravlje, G. J. Kraberger, C. Martins, et al., Triqs/dfttools: A triqs application for ab initio calculations of correlated materials, Comp. Phys. Commun. 204, 200 (2016).

[S48] O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Messio, and P. Seth, Triqs: A toolbox for research on interacting quantum systems, Comp. Phys. Commun. 196, 398 (2015).

[S49] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. Madsen, and L. D. Marks, Wien2k: An apw+ lo program for calculating the properties of solids, J. Chem. Phys. 152, 074101 (2020).

[S50] D. Stricker, J. Mravlje, C. Berthod, R. Fittipaldi, A. Vecchione, A. Georges, and D. van der Marel, Optical response of Sr$_2$RuO$_4$ reveals universal fermi-liquid scaling and quasiparticles beyond landau theory, Phys. Rev. Lett. 113, 087404 (2014).

[S51] P. Seth, I. Krivenko, M. Ferrero, and O. Parcollet, Triqs/cthyb: A continuous-time quantum monte carlo hybridisation expansion solver for quantum impurity problems, Comp. Phys. Commun. 200, 274 (2016).

[S52] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Continuous-time monte carlo methods for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011).

[S53] K. Haule, C.-H. Yee, and K. Kim, Dynamical mean-field theory within the full-potential methods: Electronic structure of CeIrIn$_5$, CeCoIn$_5$, and CeRhIn$_5$, Phys. Rev. B 81, 195107 (2010).

[S54] X. Deng, K. Haule, and G. Kotliar, Transport properties of metallic ruthenates: A DFT+DMFT investigation, Phys. Rev. Lett. 116, 256401 (2016).

[S55] P. Werner, A. Comanac, L. de’Medici, M. Troyer, and A. J. Millis, Continuous-time solver for quantum impurity models, Phys. Rev. Lett. 97, 076405 (2006).

[S56] K. Haule, Quantum monte carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base, Phys. Rev. B 75, 155113 (2007).

[S57] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).

[S58] K. Haule and G. Kotliar, Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling, New J. Phys. 11, 025021 (2009).