Theoretical Distribution of the Ammonia Binding Energy at Interstellar Icy Grains: A New Computational Framework

Lorenzo Tinacci, Aurèle Germain, Stefano Pantaleone, Stefano Ferrero, Cecilia Ceccarelli, and Piero Ugliengo*

ABSTRACT: The binding energies (BE) of molecules on the interstellar grains are crucial in the chemical evolution of the interstellar medium (ISM). Both temperature-programmed desorption (TPD) laboratory experiments and quantum chemistry computations have often provided, so far, only single values of the BE for each molecule. This is a severe limitation, as the ices enveloping the grain mantles are structurally amorphous, giving rise to a manifold of possible adsorption sites, each with different BEs. However, the amorphous ice nature prevents the knowledge of structural details, hindering the development of a common accepted atomistic icy model. In this work, we propose a computational framework that closely mimics the formation of the interstellar grain mantle through a water by water accretion. On that grain, an unbiased random (but well reproducible) positioning of the studied molecule is then carried out. Here we present the test case of NH$_3$, a ubiquitous species in the molecular ISM. We provide the BE distribution computed by a hierarchy approach, using the semiempirical xTB-GFN2 as a low-level method to describe the whole icy cluster in combination with the B97D3 DFT functional as a high-level method on the local zone of the NH$_3$ interaction. The final ZPE-corrected BE is computed at the ONIOM(DLPNO-CCSD(T)//B97D3:xTB-GFN2) level, ensuring the best cost/accuracy ratio. The main peak of the predicted NH$_3$ BE distribution is in agreement with experimental TPD and computed data in the literature. A second broad peak at very low BE values is also present, which has never been detected before. It may provide the solution to a longstanding puzzle about the presence of gaseous NH$_3$ also observed in cold ISM objects.

KEYWORDS: amorphous water ice, xTB-GFN2, ONIOM, DLPNO, B97D3, NH$_3$ adsorption, NH$_3$ binding energy

INTRODUCTION

Interstellar dust grains in cold (~10 K) molecular clouds are made up of sub-micrometer-sized refractory cores (mainly silicates and carbonaceous material), on top of which water molecules are formed in situ through reactions involving hydrogen and oxygen. Eventually, this process leads to the accretion of a thick (made up of more than 100 layers: e.g. Taquet et al.) amorphous icy mantle. At the same time, other atoms and molecules formed in the gas phase can condense and be adsorbed onto the grain mantle, where they may diffuse and react on the icy surface, enriching the chemical composition of the grain mantle.

The vast majority of the species frozen or trapped on the grain mantles are only observable when they are released into the gas phase either in warm (~100 K) regions, such as hot cores/corinos via thermal desorption, or in shocked regions, via sputtering of the mantles. All of the processes mentioned above, adsorption and diffusion as well as desorption, are governed by a key parameter, the so-called binding energy (BE): namely, the strength of a species to remain glued to the surface. Since BE has an exponential dependence on the expressions of astrochemical models that describe the above processes, its estimation with a good level of accuracy is crucial for our knowledge of chemical evolution of whatever species. This fundamental piece of information can be obtained via either theoretical or experimental approaches.

Usually, estimates of PES via theoretical methods involve computations using a molecular mechanics force-field approach and/or rigorous quantum mechanical methods. In both cases, an atomistic model of the icy grain is needed and the BE is computed via a supermolecular approach: namely, computing the difference between the energy of the adsorbate interacting with the icy grain and the energies of the free adsorbate plus the
original icy grain. Despite this simple definition, the final BE value can be affected by many factors, from both modeling and methodological points of view. To start with, the computerized icy model is usually ill-defined, as the structure of the interstellar ice is poorly known. Therefore, a variety of models to simulate the ice-species adsorption has been proposed in the literature, from just a single water molecule up to periodic models of either crystalline or amorphous water ice.

Due to the difficulty of simulating the icy grain accretion by in situ water formation, all of the models so far have been constructed by assembling a variety of already formed water molecules interacting through hydrogen bonds. This may have serious consequences on the final ice structure, as the fraction of water formation energy transferred to the grain can affect its final structural features much more than the mere hydrogen-bond interaction between the water molecules. In addition, it has been shown theoretically and experimentally that any species does not have a single BE on amorphous water surfaces (AWS) but rather a distribution of BEs, which depends on the species and the surface.

Therefore, the icy grains should be large and varied enough to allow to reconstruct the BE distribution of a species and not just a value. To overcome the aforementioned problems, we have recently proposed an automatic and unbiased approach to construct water-ice clusters and obtain the binding energy distribution of any species (see Methodology for further details).

In addition to the icy model definition, the second important issue to compute the BE is the adopted level of theory, which always represents a compromise between the computational accuracy and the computational cost (method and system size).

Methods based on molecular mechanics may reach some accuracy when they are designed to treat very specific cases but fail for cases outside their specific parametrization. Alternatively, methods based on the best level of quantum chemistry, such as the gold standard CCSD(T), ensure a well-balanced treatment of all the relevant interactions responsible for the adsorption on the icy grain surface, irrespective of the considered adsorbate molecule. However, the computational time required by CCSD(T) grows too steeply to be applicable to large icy grains.

Here, we propose a new method that optimizes the computation accuracy on very large icy grain models. Specifically, we implemented an automatic procedure that is based on the ACO-FROST code, recently developed by our group, to construct a large (≥1000 water molecules) icy grain. Briefly, only a selected portion of the icy grain, where the adsorption takes place, is treated at a very high level of theory, while the whole cluster is treated at a lower level. This procedure itself is not completely new, as it has been already adopted in the field of surface science adsorption and for some ice models. In a recent work, we adopted a similar scheme to improve the BEs computed for a set of molecules on periodic ice models (both crystalline and amorphous) reaching CCSD(T)-quality results. Similarly, Dulfit et al. adopted a QM/MM approach using for the QM method the DLPNO-CCSD(T) technique, a very accurate and computationally feasible version of the CCSD(T) standard based on localized orbitals and the PM6 semiempirical method for the rest of the system.

Our newly proposed procedure, described in this work, possesses the following novelties with respect to the above works:

(i) an unbiased procedure to generate a large variety of adsorbed structures, not dependent on the nature of the adsorbate molecule and the size of the icy cluster, which allows computation of a BE distribution of the considered species
(ii) the low-level theory adopted to treat the whole icy cluster on the basis of the accurate semiempirical tight-binding xTB-GFN2 method, very recently developed by Grimme’s group
(iii) the high-level theory adopted to describe the ice around the adsorbing site on the basis of the DLPNO-CCSD(T) method with a selection of large Gaussian basis sets

In addition, the procedure is carried out automatically by a package of Python scripts, which allow the construction, submission, and data extraction of the needed calculations.

The BE values resulting from the above approach should in principle be comparable to experimental derivations of BEs. However, this is not straightforward for the following reasons. Binding energies are usually experimentally derived via the so-called temperature-programmed desorption (TPD) method. Strictly speaking, this method provides the desorption activation energy (DAE), which is often interpreted as BE. In practice, the DAE is derived indirectly from the TPD peaks through Redhead method or more sophisticated numerical techniques. In most TPD experiments, a water-ice surface hosts a monolayer of the adsorbate and, therefore, the BE also depends on the surface coverage. This renders the comparison between DAE and the computed BE to be actually not straightforward. For example, ice restructuring processes may affect the final DAE, making it different form the BE. Also, sometimes TPD experiments only provide desorption temperature peaks T_{des} without any numerical estimate of the DAE. For instance, Collings et al. computed the BE of a species X as BE(X) = [T_{des}(X)/T_{des}(H_2O)] × BE(H_2O), in which T_{des}(X) is the desorption temperature of the species X in contrast with that of water, T_{des}(H_2O), by assuming BE(H_2O) = 4800 K (∼40 kJ/mol). For the above reasons, a one by one comparison between experiment and modeling should be carried out with extreme care, particularly when a BE distribution is computed, as in the present work.

For our first application of the new method presented here, we chose the ammonia molecule, because it is a thoroughly studied and important species in the molecular ISM. It is the first detected interstellar polyatomic molecule and one of the most observed, ubiquitous, and studied. It is found in a gaseous form toward the Galactic Center warm molecular clouds and cores, diffuse clouds, massive hot cores, molecular outflows, solar-type protostars, cold molecular clouds, prestellar cores, and protoplanetary disks. Ammonia is also observed to be quite abundant in the icy mantles that envelope the interstellar dust grains in cold regions. Obviously, whether ammonia is in either gaseous or solid forms is governed by its BE. Along the same vein, understanding the ammonia chemistry requires a good knowledge of the ammonia BE and, more specifically, its BE distribution, which is the focus of this work.

METHODOLOGY

Icy Grain Model and NH₃ Binding Site Sampling

The water-ice grain model used throughout this work, the binding energy sampling procedure, and the preliminary BE optimized structures were taken from a previous work by our group, which is summarized in this section.

Water-Ice Grain Model. In order to build up the grain model, a bottom-up approach was followed: i.e., by random successive aggregations of water molecules. A geometry optimization was...
performed at each addition of a water molecule, followed by a short molecular dynamics (MD) run at 10 K every 10 added H$_2$O molecules, to mimic the induced thermal motion due to the partially transferred energy of water formation19 occurring in the real grain but not taken into account here (vide supra).

As was already discussed in the Introduction, our grain model includes 200 water molecules, large enough to allow for a proper sampling of many adsorbing sites in comparison to previously adopted models. The grain construction was performed with a mixed semiempirical and molecular-mechanics level using the xTB (v.6.3.3)48 code (GFN234 and the force field GFN-FF methods25) developed by Grimme’s group at the University of Bonn.

Binding Energy Sampling Site Procedure. The NH$_3$ binding site sampling was done by placing a grid consisting of 12 vertexes (forming an icoshedron), which were tightened for a total of 162 vertexes uniformly spread around the grain.50 The grid points were projected closer to the grain surface, and each point was substituted by a randomly oriented ammonia molecule with respect to the direction vector joining the N atom and the grain center of mass. The projection gives a distance between 2.5 and 3 Å from the grain, used to locate NH$_3$ (Figure 1).

Preliminary Geometry Optimization. After the NH$_3$ sampling, a preliminary geometry optimization via xTB-GFN234,48 was performed. Two subsequent geometry optimizations were carried out in which (i) only the NH$_3$ molecule was set free to relax on the grain, while all the water molecules were kept fixed at the optimized free grain positions, and (ii) the atomic positions of NH$_3$ and the water molecules included within a cutoff distance of 5 Å from the NH$_3$ were relaxed, while the remaining water molecules were kept fixed. This choice enforces the structural rigidity experienced by the water molecules in a real (and much larger) icy grain. During the second task, we found cases where the number of mobile water molecules changed during the optimization procedure, due to the rearrangements of both the NH$_3$ and the water molecules within the selected zone. In these cases, the described cycle was repeated by again selecting a new mobile zone and reoptimizing the structure until no changes in the number of water molecules occurred.

Computational Methods. After a preliminary geometry optimization with the xTB (v.6.3.3)48 computational program, the refined binding energy distribution of ammonia on the amorphous ice model was obtained by combing the tools implemented in three codes: xTB (v.6.3.3), Gaussian (v.16, Revision B.01),51 and ORCA (v.4.2.1).52 We relied on the multilevel ONIOM53 (DFT:xtB-GFN2) approach as implemented in the Gaussian program to obtained accurate optimized geometries. As the GFN234 method has not yet been implemented in the Gaussian program, xTB (v.6.3.3)48 was as an external program to work on the low-level zone of the ONIOM method. Finally, the energies of the high-level zone were refined with ORCA (v.4.2.1)52 at the DLPNO-CCSD(T)54 level of theory. Rendering of molecular images has been obtained via VMD software,55 while the graphics elaboration and plots were obtained via the TikZ and PGFPlots LATEX packages.

ONIOM Method. The ONIOM (“our own N-layered integrated molecular orbital and molecular mechanics”) method56 is a hybrid approach that enables different ab initio, semiempirical, or classical mechanics based methods to be combined to different parts of a system to give a reliable harmonic frequencies, geometry and energy at a reduced computational cost. All of the calculations were performed with the two-layer ONIOM(QM:SQM) method. To be specific: the zone in which the quantum-mechanical method (QM) is used (also called the Model zone) consists of NH$_3$ and neighboring water molecules within 5 Å from NH$_3$, while the whole system (Real zone) is treated at the semiempirical quantum mechanical (SQM) level. The total energy (E), gradient vector (\mathbf{G}) and Hessian matrix (\mathbf{H}) for the ONIOM(QM:SQM) two-layer set up are, therefore

\begin{equation}
E = E(R:SQM) + E(M:QM) - E(M:SQM) \tag{1a}
\end{equation}

\begin{equation}
\mathbf{G} = \mathbf{G}(R:SQM) \times \mathbf{J}_{M:R} + \mathbf{G}(M:QM) \times \mathbf{J}_{M:R} - \mathbf{G}(M:SQM) \times \mathbf{J}_{M:R} \tag{1b}
\end{equation}

\begin{equation}
\mathbf{H} = \mathbf{H}(R:SQM) \times \mathbf{J}_{M:R} + \mathbf{J}_{M:R}^T \times \mathbf{G}(M:QM) \times \mathbf{J}_{M:R} - \mathbf{J}_{M:R}^T \times \mathbf{G}(M:SQM) \times \mathbf{J}_{M:R} \tag{1c}
\end{equation}

where $\mathbf{J}_{M:R}$ is the Jacobian matrix between the Model (M) and the Real (R) nuclei.

The binding energy (BE, positive for a bounded system), is defined as the opposite of the interaction energy, the last quantity being the difference between the energy of the complex between the grain and the adsorbate (E) and the sum of the energies of the isolated adsorbate (E_{ads}) and the isolated grain (E_{grn}). The equation adopted for the calculation of the ONIOM BEs, after eq 1a, is
BE = −ΔE

\[E_{\text{ads}}^{\text{iso}}(\text{QM}) + E_{\text{grn}}^{\text{iso}}(\text{QM}:\text{SQM}) - E_{\text{c}}(\text{QM}:\text{SQM}) \]

where the energies of the isolated systems are referred to the specified level at which geometry are also optimized. BE can be decomposed in the pure electronic interaction (BE_e) corrected for the basis set superposition error (BSSE) and the deformation energy (δE_def) contributions.

\[\text{BE_e} = E_{\text{ads}}^{\text{iso}}(\text{grn}) + E_{\text{grn}}^{\text{iso}}(\text{ads}) - E_{\text{c}}(\text{QM}) \]

where \(E_{\text{ads}}^{\text{iso}}(\text{grn}) \) and \(E_{\text{grn}}^{\text{iso}}(\text{ads}) \) are the energies of the isolated adsorbate and the surface, respectively. Obviously, as BSSE is already taken into account by the definition in the GFN2 method, eq 3 only applies to the QM methods (vide infra) on the model zone.

The δE_def value is given by

\[\delta E_{\text{def}} = \frac{(E_{\text{ads}}^{\text{iso}} - E_{\text{ads}}^{\text{iso}})}{\delta E_{\text{ads}}^{\text{iso}}} + \frac{(E_{\text{grn}}^{\text{iso}} - E_{\text{grn}}^{\text{iso}})}{\delta E_{\text{grn}}^{\text{iso}}} \]

where δE_ads and δE_grn are the deformation energy of the adsorbate and the surface, respectively. δE_def is for the large majority of the cases a positive quantity; the exceptions will be discussed in a dedicated section.

Moreover, vibrational frequencies were computed on the model zone to obtain the zero-point energies (ZPE), from which the ΔZPE resulted as

\[\Delta \text{ZPE} = \text{ZPE}_e - \text{ZPE}_{\text{ads}}^{\text{iso}} - \text{ZPE}_{\text{grn}}^{\text{iso}} \]

When all the aforementioned contributions are included, eq 2 becomes

\[\text{BH(0)} = \text{BE_e} - (\delta E_{\text{def}} + \delta E_{\text{ads}}^{\text{iso}} + \delta E_{\text{grn}}^{\text{iso}}) - \Delta \text{ZPE} \]

In our ONIOM setup, the low-level layer was treated with the xTB-GFN2 semiempirical quantum mechanical (SQM) method, working as an external program with Gaussian16. The default xTB-GFN2 parameters were used for the SCF. On the high-level layer two different methods were used in order to compute subsequent tasks:

- Geometry optimization and frequency calculations: the B97D357,58 functional, as implemented in Gaussian16, with the aug-cc-pVTZ basis set59 and the default setup for geometry optimization, SCF, and integral grid density.
- Final energy refinement: DLPNO–CCSD(T) method,32,54 as implemented in ORCA, with aug-cc-pVTZ as the primary basis set, while aug-cc-pVTZ/C60 is used as the auxiliary basis set for the resolution of the identity (RI) approximation in electron repulsion integrals. All these calculations were carried out with a tight-PNO set up and the default settings for the SCF.

During the ONIOM geometry optimization all atoms outside the model zone were kept fixed; only mechanical embedding and no microiterations were used. In the frequency calculations (calculated in the harmonic approximation), only the normal modes related to the nuclei inside the Model zone were taken into account, keeping all the other nuclei fixed (Figure 2).

The treatment of the isolated icy surface required extra care, as the Model zone may change during the search for the optimum structure when the grain is adsorbing the NH\textsubscript{3} molecule. Therefore, to ensure a proper coherence we used in this section as Model zone for evaluating the energy \(E_{\text{grn}}^{\text{iso}} \) of the free grain, the very last set of water molecules defined in the cyclic procedure described above, on an otherwise unique and fixed reference geometry of the free cluster.

Model Zone Setup. The definition of the Model zone, which is the core of any ONIOM-based procedure, implies not only a proper choice of the level of theory but also the number of atoms to be included in the QM description.

Geometry Optimization Constraints. We adopted the same strategy for the ONIOM calculation used for the optimizations performed with the GFN234 level. However, since the method to treat the Model zone is computationally demanding, a less tight criterion on the optimization convergence was used: when the number of water molecules of the Model zone changes by \(\geq |2| \) units, we run further geometry optimizations with the redefined Model zone, until the above condition is satisfied.

Model Zone Size Benchmark. The Model zone defined within 5 Å from the NH\textsubscript{3} relies on a tradeoff between two main requirements: (i) including all of the local NH\textsubscript{3}–H\textsubscript{2}O interactions and (ii) saving computational resources.

In order to understand the influence of the Model zone size on the BE, a benchmark was performed by taking the single-point energy evaluation of eight different optimized cases with the standard Model zone definition (5 Å) and expanding its size from 5 Å up to 8.5 Å (which corresponds to including up to 21–34 water molecules) while the geometry of the whole system was kept fixed.

Single-point energy calculations were carried out at the same level of theory described in the previous section: i.e.,
ONIOM(B97D3/aug-cc-pVTZ:xTB-GFN2). Figure 3 shows, for all but two samples, a change in the BE value well within 5 kJ/mol and a rather flat variation in the BE values. The two exceptions are at the limit of the threshold of 5 kJ/mol (i.e., within the chemical accuracy limit).

Model Zone Method Benchmark. The pure GGA B97D3 functional\(^{57,58}\) used to deal with the Model zone is well adapted to deal with noncovalent interactions such as those responsible for the grain cohesion and the NH\(_3\) BEs.\(^{57}\) To assess the B97D3 performance for the present case, we compared, for one selected NH\(_3\)/grain case, structures and BEs (corrected for BSSE) with (i) the B2PLYPD3 double-hybrid functional with empirical dispersion corrections,\(^{61}\) (ii) the B3LYP\(^{62,63}\) functional with the D3 version of Grimme’s dispersion with the Becke–Johnson damping function,\(^{58}\) and (iii) the Minnesota double-exchange M06-2X functional,\(^{66}\) coupled with the aug-cc-pVTZ\(^{59}\) basis set. DFT BEs were then refined at the DLPNO-CCSD(T)/aug-cc-pVTZ and aug-cc-pVTZ(C) tight-PNO level (all the values were corrected for the BSSE) computed at each DFT optimized geometry. The results are presented in Figure 4. Among all adopted functionals, B97D3 is the one with the closest BE value with respect to the reference DLPNO-CCSD(T) value.

We also calculated the BE with the gold standard CCSD(T)/aug-cc-pVTZ on the same ONIOM(B97D3:xTB-GFN2) sample used in the previous test. The BE relative errors of B97D3 and DLPNO-CCSD(T) with respect to CCSD(T) are 0.9 and −0.7 kJ/mol, respectively. These results validate the performance of both B97D3\(^{57}\) and DLPNO-CCSD(T).\(^{65,66}\)

Adsorption Site Redundancy Reduction. During the geometry optimization different NH\(_3\) starting points may end up in the same minimum of the potential energy surface (PES), due to the complexity of the PES and the relatively weak interaction energy. For instance, many identical structures are at the limit of the threshold of 5 kJ/mol. Therefore, this redundancy in the adsorption sites was reduced by comparing the RMSD and \(\Delta\)BE values between all considered structures and discarding the cases for which RMSD \(\leq 1\) Å and \(|\Delta\)BE\(| \leq 1\) kJ/mol. After cleaning, a total of 77 unique structures from the total 162 starting points were analyzed.

Machine Learning Binding Energy Classification. Once the BE distribution, without site redundancy, was obtained, a clustering procedure was performed to analyze the data. Cluster analysis, or clustering, is an unsupervised machine-learning technique that involves the grouping of data points. This grouping is done in such a way that the members of the same cluster can be considered “similar” in some way (e.g., through metrics such as the L\(^2\) distance). In our case we exploited hierarchical agglomerative clustering (HAC), where a hierarchy of clusters is built with a bottom-up approach: each observation starts in its own cluster, and pairs of clusters are merged as one moves up the hierarchy. Sets of observations are linked via the so-called linkage criterion. The algorithm will merge the pairs of cluster that minimize this criterion. In our study we used the Scikit-Learn implementation of HAC,\(^{67}\) using the minimum-distance linking criterion (namely “single”), specifying an a priori number of clusters of 2 (i.e., the number of clusters that we want to find). Finally, we scaled every feature to [0,1] in order to obtain the scaled invariance.

RESULTS AND DISCUSSION

NH\(_3\) usually behaves as a strong hydrogen bond acceptor, due to the negative electrostatic potential in the nitrogen lone pair region, while being a very weak hydrogen bond donor. For instance, the NH\(_3\) crystal structure\(^{58}\) shows only very weak hydrogen bonds between the NH\(_3\) molecules, the N···H distance being as great as 2.35 Å. Indeed, our results basically show NH\(_3\) acting as a strong H-bond acceptor of the dangling hydrogens of the icy grain and a weak H-bonding donor toward the water oxygen dangling atoms. After the harmonic frequency analysis, 16 samples show only one imaginary frequency in the \([−50,−8]\) cm\(^{-1}\) wavenumber range. Since the imaginary frequencies fall at very low wavenumbers and do not reflect nuclear motion of the NH\(_3\) position, we also kept these structures to improve the statistics of the BE distribution, as their very low values do not alter the final BH(0) values.

NH\(_3\) Desorption Rate Prefactor. In the desorption process, the desorption rate can be expressed as \(k_{\text{des}} = \nu(T)e^{-(\Delta\)BE/\(k_{\text{B}}T)}\), where \(\nu(T)\) is a pre-exponential factor that takes into account entropic effects, while the enthalpic contribution is inside the exponential part. In order to give reliable data to be used in astrochemical models and/or to have a connection with experiments, a pre-exponential factor must be provided together with the BE. Usually, depending on the substrate and adsorbate, a value between 10\(^{12}\) and 10\(^{13}\) s\(^{-1}\) is assumed in experiments or as a first approximation in modeling.
studies, as reported by Hasegawa and Herbst (see e.g. the discussion in Minissale et al.70). We prefer to adopt the transition state theory within the immobile adsorbate approximation70,71 to estimate the prefactor

\[\nu(T) = \frac{k_B T}{\hbar} \left(\frac{2\pi m k_B T}{\hbar^2} \right) A \sqrt{\frac{E}{k_B T}} \left(8\pi^2 k_B T \right)^{3/2} \frac{\hbar^3}{\sqrt{\hbar J_I J_F}} \]

(7)

where \(k_B \) is the Boltzmann constant, \(m \) is the mass of the molecule, \(\hbar \) is the Planck constant, \(A \) is the surface area per adsorbed molecule usually assumed to be \(10^{13} \, \text{N}_A / \text{Å}^2 \), \(I_i \) is the i-esimal adsorbate principal moment of inertia, and \(\sigma \) is the symmetry adsorbate rotation factor. For \(\text{NH}_3 \), the principal moments of inertia are 2.76, 1.71, and 1.71 amu \(\times \text{Å}^2 \), \(\sigma = 3 \), and \(m = 17 \) amu. When these values and a desorption peak at \(T_{\text{des}} = 100 \) K are used, the pre-exponential factor is \(1.94 \times 10^{15} \, \text{s}^{-1} \).70

This value is recommended in association with the BE values computed with quantum mechanical approaches similar to those described in the present work.

BE Evaluation: Calorimetric versus TPD Reference. In the BE calculations, the definition of the “free” grain structure, from which the \(E_{\text{grn}}^{\text{on}} \) value is computed, is crucial and may differ depending on what process one is simulating, while that for the \(\text{NH}_3 / \text{grain} \) adduct \((E_{\text{grn}}^{\text{off}}) \) is unambiguous. Usually, in dealing with adsorption on extended surfaces of metal or oxide materials, the reference structure is the bare isolated surface, fully optimized at the given level. In such cases, the forces keeping the metal atoms or the ions in place are much stronger than the BE with the adsorbate and, therefore, the whole structure is little affected by the interaction. In the present case, the icy grain is held by forces of the very same nature as those occurring between the adsorbate and the water molecules within the grain. Therefore, it may happen that, during the geometry optimization of the adsorbate/grain complex, the grain structure will be altered in such a way that the deformation energy \(\Delta E_{\text{grn}}^{\text{ref}} \) becomes negative: i.e., the “deformed grain” is more stable than the isolated starting grain. In other words, the geometry relaxation induced by the adsorbate brings the icy cluster in a new local minimum, slightly deeper than the initial minimum. This only happens in a few cases, especially when the Model zone is redefined due to large movements associated with the \(\text{NH}_3 \) molecule. To solve this ambiguity in the definition of the deformation energy, we chose, as a starting structure for the isolated cluster to be optimized, the structure resulting after the interaction of \(\text{NH}_3 \). In this way, \(\Delta E_{\text{grn}}^{\text{ref}} \) will always be positive. We defined two of these approaches by considering different reference pristine grain geometries, as “calorimetric” (original initial grain geometry) and “TPD” (reference grain geometry after adsorption), respectively. The BE distributions from the two approaches will be presented and discussed in the following.

In the calorimetric approach, as in microcalorimetric measurements, it is assumed that the reference system is a clean unperturbed surface and that the heat of adsorption occurs when the adsorbate arrives on the surface from the gas phase. In the temperature-programmed desorption (TPD), the molecule is first adsorbed on the surface and then the temperature is raised up to the point at which the adsorbate leaves the surface. Clearly, when the surface is made by water ice, what is left after desorption cannot be considered equivalent to an unperturbed pristine icy surface, as in the calorimetric approach. These two approaches may lead to different BE values, as shown in Figure 5, which correlates the deformation energy \(E_{\text{grn}}^{\text{calorimetric}} \) contribution to the BE computed with both the TPD and calorimetric approaches.

The purely electronic \(E_{\text{el}} \) (which is free from the deformation energy) is also shown as a reference color bar. As expected, the two approaches lead to the same results for most cases. Nevertheless, there are some exceptions, such as some samples with low deformation energy values, in which the surface restructuring leads to a negative deformation energy in the calorimetric approach. The other two outliers \((E_{\text{grn}}^{\text{calorimetric}}) \approx 25 \) and 60 kJ/mol are due to the formation/breaking of some H bonds at the interface between high- and low-level zones, thus implying a redefinition of the Model zone itself and, therefore, the displacements of many water molecules. In the following, we only refer to the TPD method to compute the final BE distribution.

Binding Energy Distribution. New BE Distribution versus Previous Values. The final BH(0) values (see eq 6) have been organized in a bin width distribution following the Freedman–Diaconis estimator,72 as shown in Figure 6. Due to the large number of different adsorbing sites the distribution is asymmetric, with a data dispersion ranging from 12.7 to 50.6 kJ/mol and a mean and mode (the most frequent values) of 31.1 and 33.5 kJ/mol, respectively. A fine analysis of the data shows that the deformation energy is the main source of data dispersion. The ZPE plays a minor role in the BH(0), its contribution being on the order of 10% on the total BH(0). The ZPE correction decreases the BE value by about 10 kJ/mol. A value of \(\sim 45.7 \) kJ/mol is reported in the astrochemistry databases, which is in the same range, or higher, with respect to the BE values for water self-adsorption.14,15

A comparison with computed literature BE values by Ferrero et al.,16 computed on a periodic crystalline proton-ordered ice slab model (51.8 kJ/mol) and on an amorphous water slab model (35.9–62.8 kJ/mol), is shown in Figure 6. In that work, the sampling of binding sites on the amorphous slab included just seven cases and all the interactions found displayed \(\text{NH}_3 \) as an acceptor of at least one hydrogen bond. In the work by Dollot et al.,31 a procedure similar to the present one (ONIOM(CBS/DLPNO-CCSD(T)):PM6) // ONIOM(ωB97X-D/6-31G**;PM6)) was adopted to compute a ZPE-corrected BE. BE values of 35.9 ± 11.6 kJ/mol have been computed, in good agreement with our values of 31.1 ± 8.6 kJ/mol, despite the fact that a very different methodology was adopted to build up the underneath ice.

Clustering Analysis. On the final data set of 77 BEs, a machine-learning (ML)-based procedure was used in order to
correlate BH(0) with other energetic and geometrical parameters:
- the minimum H-bond distance, \(\min(N \cdots H(\cdots OH)) \)
- the H-bond angle \(N \cdots H \cdots O(H) \) referenced to the \(\min(N \cdots H(\cdots OH)) \) H bond
- the deformation energy \(\delta E_{\text{def}} \)
- the pure electronic BEe

The correlation plots are shown in Figure 7.

The plot of both \(N \cdots H(\cdots OH) \) and \(N \cdots H \cdots O(H) \) revealed a rather clean clustering, in which at high BH(0) values correspond to H-bond lengths well below 2 Å (NH₃ as H-bond acceptor), while at low BH(0) values H-bond distances were over 2.5 Å (NH₃ as H-bond donor). This correlates also with the \(N \cdots H \cdots O(H) \) angle, moving from values close to linearity for high BH(0) values to random values from linearity for the low-BH(0) range. Less trivial is the correlation between BH(0) and its different energy components. About the deformation energy \(\delta E_{\text{def}} \) a number of points are almost aligned as a baseline in the 0−10 kJ/mol range, while in the region of intermediate BH(0) values the plots are quite spread out. The same erratic trend is observed in the correlation with BEe, revealing that the vast majority of cases exhibits a final BH(0) value that is a compromise of a large geometry deformation energy compensated by a large electronic binding energy. The few cases at very high BH(0) characterized by small \(\delta E_{\text{def}} \) values are due to favorable adsorption sites, already suitable to host the NH₃ molecule and, therefore, not requiring a large structural deformation.

The geometrical clustering analysis applied to the binding energy distribution shown in Figure 6 is reported in Figure 8. The two clusters rely, as expected from chemical knowledge, on the two possible H bonds that the ammonia can form with water: the stronger \(N \cdots H(\cdots OH) \) and the weaker \(N \cdots H \cdots O(H_2) \), where the ammonia is respectively a H-bond acceptor and a H-bond donor. In light of these results, the asymmetric shape of the

Figure 6. BSSE-corrected BH(0) distribution at the DLPNO-CCSD(T)/aug-cc-pVTZ level and ZPE calculated at the ONIOM(B97D3/aug-cc-pVTZ:xtB-GFN2) level.

Figure 7. Correlation plots between BH(0) and the feature vectors used in the ML clustering. BH(0), BEe and \(\delta E_{\text{def}} \) are given in units of kJ/mol. Distances are given in Å and angles in degrees. All BH(0) and BEe values are BSSE-corrected.
distribution at low BH(0) is due to the cluster distribution related to the H-bonds in which ammonia is the proton donor.

Moreover, as shown in Figure 8, the two histogram clusters were fitted with a non-normalized Maxwell–Boltzmann distribution function \(f_{\text{MB}}(x, \sigma, \mu) \):
al.23 derived a BE of about 4000 K for a low surface coverage (≤ 0.5) and of about 3000 K for a full coverage (see Figure 9 of ref 23). However, this last value is almost the same as that derived by the TPD experiments of NH$_3$ adsorbed on a gold surface,74,75 suggesting that a sizable fraction of BE is due to the lateral interactions between NH$_3$ within the adsorbed multilayers and not to the interaction with the ice surface. Moreover the 3000 K BE value (computed with a pre-exponential factor of 10^{-12} s$^{-1}$) becomes 3754 K, with a pre-exponential factor of 1.94×10^{15} s$^{-1}$, indeed larger than our lower-end BE value. Therefore, in both the experimental works presented, the low end of the ammonia BE that we computed was not detected. One possibility is that, under low NH$_3$ coverage, NH$_3$ exhibiting very weak BE values (such as that corresponding to our lowest BEs) will easily diffuse to empty sites characterized by higher BE values, instead of being entirely desorbed. This process is only effective at moderate NH$_3$ coverage, where sites with high BE values are still available for occupation. This indeed happens in the TPD experiment, in which the thermal heating brings an oversampling of sites at high BE values.70 While a detailed astrochemical modeling that may better elucidate this point is postponed to a dedicated work, this discussion also highlights how critical the comparison can be between experimental data extracted from the TPD and the computed data through quantum mechanical calculations if the pre-exponential factor is not treated on the same foot and similar NH$_3$ surface coverages are considered.

\textbf{xTB-GFN2 Validation.} In our recent works,24,76,77 we adopted xTB-GFN2 as the low-level semiempirical method. The ONIOM procedure requires, to be robust, a low level of theory giving structures and energies not too far from the high-level theory. Here, we compare the xTB-GFN2 BH(0) values computed as a single-point xTB-GFN2 energy evaluation on the ONIOM optimized geometries with the more accurate ONIOM structures, computed at the DLPNO-CCSD(T) level. Figure 10 shows the excellent performances of xTB-GFN2, considering its very low computational cost, also in comparison with B97D3, which gives results in better agreement with the DLPNO-CCSD(T) data. xTB-GFN2 BH(0) values are, instead, systematically underestimated with respect to the reference. The worse GFN2 correlation may be due to the geometric distortion in the Model zone, since it is evaluated at the B97D3 level.

\textbf{Astrochemical Implications on NH$_3$ BE Distribution.} As mentioned in the Introduction, NH$_3$ is ubiquitous in the molecular ISM and can be either gaseous or iced. Also, NH$_3$ can be formed both in the gas phase from molecular nitrogen78 and on the grain surfaces by hydrogenation of atomic nitrogen,79 as shown in Figure 11.
The crucial parameter that governs whether NH₃ is in the gaseous or solid form is its BE. The fact that the NH₃ BE is not a single value but a distribution that covers a relatively large range of energies, from 1800 to 6000 K (15–50 kJ/mol), can have an important effect (see e.g. Grassi et al.⁴⁰).

While gaseous ammonia in warm (≥100 K) regions does not present any particular puzzle, its presence in cold objects might. The most extreme example is the gaseous ammonia observed in prestellar objects. In L1544, a very well studied prestellar core, the dust temperature at the center of the condensation is only 7 K⁸₁ and ammonia should be completely frozen onto the grain mantles.⁸⁻¹⁰³ In contrast, ammonia, observed to be gaseous.⁴⁵ Various reasons have been proposed, mainly that ammonia is desorbed from the grain mantles because of the chemical energy released by its formation, which is believed to be due to the hydrogenation of N (see e.g. Sipilä et al.⁸⁴). These authors found that slightly less than 1% of the ammonia formed on the grain icy surfaces could be necessary to reproduce the observed values. However, these authors also modeled the possibility that the ammonia BE is smaller than the standard high value and considered the cases with BEs equal to 1000 and 3000 K (8 and 25 kJ/mol), respectively. As expected, an ammonia BE equal to 1000 K would result in an overly large gaseous ammonia abundance with respect to the observed value. However, if one considers the BE distribution of Figure 8, about 3% of the frozen ammonia would have a BE equal to 1800 K (15 kJ/mol) so that, very likely, the predictions would be in agreement with the observations.

- SUMMARY AND CONCLUSIONS

In this paper we provide a new framework to compute the binding energy (BE) distribution of any relevant interstellar species adsorbed at the surface of an icy grain mantles, in a reproducible and user-friendly automated way. Two main parameters are controlled by the user: the ONIOM high-level zone size, which should be large enough to account for all the H-bond interactions with the ice, and the DFT method for geometry optimization (and subsequent frequency analysis). The framework can be divided into four subsequent blocks:

1. building up of the grain model and choice of the species to be absorbed
2. sampling of all possible binding sites on the icy grain model by an automatic unbiased procedure and geometry optimization with a low level of theory (xTB-GFN2)
3. geometry optimization and zero-point energy correction using the ONIOM method (B97D3-xTB-GFN2)
4. final ONIOM single-point (SP) energy refinement with a higher level of theory (DLPNO-CCSD(T)/B97D3-xTB-GFN2)

The first two tasks are encoded in the ACO-FROST program²⁴ (see also Icy Grain Model and NH₃ Binding Site Sampling subsection). An extensive benchmark applied to the ammonia case is reported in Methodology, where we demonstrate the performance of the chosen methodology, highlighting its excellent compromise between accuracy and computational cost. Moreover, we also demonstrated in a dedicated section that the same distribution calculated at the full xTB-GFN2 level is similar to that at the ONIOM(DLPNO-CCSD(T)/B97D3-xTB-GFN2) level, which confirms the robustness of GFN2 despite the fact that its cost is orders of magnitude smaller than those of DFT and DLPNO-CCSD(T).

We highlight a particular aspect that needs to be treated with particular care: the reference of the bare water grain. This attention is due to the cooperativity and mobility of the H-bond network that, when the bare grain is optimized after removing the adsorbate, can lead to strong rearrangements which may result in a negative deformation energy (which is almost always a positive quantity). For this reason, we propose and compare two different references for the bare icy surface, which somehow mimic the two experimental techniques used to study such a phenomenon: TPD (each reference is obtained after adsorption, i.e. the NH₂ and the bare grain structure reoptimized) and calorimetry (the reference is the starting optimized bare grain, before site sampling).

The final ZPE- and BSSE-corrected BE distribution (BH(0)) for ammonia shows, as expected from our 77 unbiased samples, all the possible interactions of NH₃ with a water surface, acting as a H-bond donor and/or acceptor. This variety of BE is made possible by the large number of chemically different binding sites that the built icy grain model presents (not only in terms of dangling species but also from a morphological point of view of the global structure). Using an unsupervised machine-learning clustering technique, we correlate the structures and their BH(0). The two clusters found with the ML algorithm can be approximated by two Maxwell–Boltzmann distribution functions. The first peak at around 34 kJ/mol (or ~4000 K) and the second peak at ~15 kJ/mol (or ~1800 K). As expected, the asymmetrical shape at low BH(0) is due to ammonia acting as a H-bond donor, while at high BH(0) we found ammonia acting as both donor and acceptor from a variety of ice dangling hydrogen atoms whose propensity to make H-bonds is modulated by the cooperativity of the H-bond network within the grain. The first peak of the NH₃ BH(0) distribution matches very well with the data in the literature, from both experimental and theoretical works. In contrast, we show for the first time the presence of a second peak at lower BH(0). We discuss how this second peak may explain the longstanding puzzle of the presence of ammonia in cold and dense ISM.

In summary, the major novelty of our work is the development of a framework with a general applicability to simulate all statistically meaningful binding sites of a species adsorbed on an icy surface, with high accuracy at reasonable computational cost.

It allows producing realistic BE distributions of interstellar molecules, which is a breakthrough with important implications in astrochemistry. Our results point toward a more complex scenario about BEs than it has been thought in the past, as BE in astrochemical models are very often assumed to have a single or very few values, which is an oversimplification of the reality.

Finally, the presence of a low BE definitively has an important effect on our understanding of the chemical evolution of the molecular ISM.

Online Database. To easily handle the large data set of BE samples (atomic coordinates and BH(0) values), we developed and made publicly available a Web site⁸⁵ based on the molecule hyperactive JSmol plugin (Jmol: an open-source Java viewer for chemical structures in 3D). The extended electronic version of the calculated results, the 77 optimized structures at the ONIOM(B97D3/aug-cc-pVTZ:xTB-GFN2) level, are available at https://tinaccil.github.io/Jmol_BE_NH3_visualization/.
ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsearthspacechem.2c00040.

Dataframe.csv presenting all the binding energy (BE) information for each sample, where all the values are referenced to the TPD approach (see the discussion in the paper), all the of computed structures (.xyz files) at the ONIOM(B97D3/aucc-pVTZ:xTB-GFN2) level, in the structures folder, with the complex structures (grain_molX.xyz) and the Model zone (CP_grain_molX.xyz), the number inside (X), and the file name referenced to the sample (“n_sample”, in the Dataframe), bare grain and ammonia (bare_grain.xyz and nh3.xyz), optimized respectively at xTB-GFN2 and B97D3/aucc-pVTZ, input examples for all of the programs in the example_input folder, and the script to interface (i.e., xtb-Gaussian.sh) xtb to Gaussian16 (ZIP)

AUTHOR INFORMATION

Corresponding Author

Piero Ugliengo – Dipartimento di Chimica, Università degli Studi di Torino, 10125 Torino, Italy; orcid.org/0000-0001-8886-9832; Email: piero.ugliengo@unito.it

Authors

Lorenzo Tinacci – Dipartimento di Chimica,Università degli Studi di Torino, 10125 Torino, Italy; Institut de Planétologie et d’Astrophysique de Grenoble (IPAG),38000 Grenoble, France; orcid.org/0000-0001-9909-9570

Aurele Germain – Dipartimento di Chimica, Università degli Studi di Torino, 10125 Torino, Italy; orcid.org/0000-0001-7856-0516

Stefano Pantaleone – Dipartimento di Chimica, Università degli Studi di Torino, 10125 Torino, Italy; Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy; orcid.org/0000-0002-2457-1065

Stefano Ferrero – Departament de Quimica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain

Cecilia Ceccarelli – Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), 38000 Grenoble, France; orcid.org/0000-0001-9664-6292

Complete contact information is available at: https://pubs.acs.org/10.1021/acsearthspacechem.2c00040

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This project has received funding within the European Union’s Horizon 2020 research and innovation programme from the European Research Council (ERC) for the project “The Dawn of Organic Chemistry” (DOC), grant agreement no. 741802, and from the Marie Skłodowska-Curie for the project “Astro-Chemical Origins” (ACO), grant agreement no. 811312. S.P. and P.U. acknowledge the Italian Space Agency for cofunding the Life in Space Project (ASI N. 2019-3-U.O.). Support from the Italian MUR (PRIN 2020, Astrochemistry beyond the second period elements, Prot. 2020AFB3FX) is gratefully acknowledged. CINES-OCCIGEN HPC is kindly acknowledged for the generous allowance of supercomputing time through the A006081079Y project. L.T. is grateful to Giovanni Bindi for insightful discussions on ML classification and to J.L., L.M., Pt.F., and finally the LATEX community for insights on TikZ and PGFPLOTS packages. Finally, we wish to acknowledge extremely useful discussions with Prof. Gretobe.

REFERENCES

(1) Tielen, A.; Hagen, W. Model calculations of the molecular composition of interstellar grain mantles. Astron. Astrophys. 1982, 114, 245–260.
(2) Molpeceres, G.; Rimola, A.; Ceccarelli, C.; Kästner, J.; Ugliengo, P.; Maté, B. Silicatemediated interstellar water formation: A theoretical study. Monthly notices of the Royal Astronomical Society 2019, 482, 5389–5400.
(3) Duleiu, F.; Amiaud, L.; Congiu, E.; Fillion, J.-H.; Matar, E.; Momeni, A.; Pirronello, V.; Lemaire, J. Experimental evidence for water formation on interstellar dust grains by hydrogen and oxygen atoms. Atmospheric & Environmental 2010, 512, A30.
(4) Jing, D.; He, J.; Brucatu, J.; De Sio, A.; Tozzetti, L.; Vidali, G. On water formation in the interstellar medium: Laboratory study of the O + D reaction on surfaces. Astrophysical Journal Letters 2011, 741, L9.
(5) Oba, Y.; Watanabe, N.; Hama, T.; Kuwahata, K.; Hidaka, H.; Kouchi, A. Water formation through a quantum tunneling surface reaction, OH* H2 at 10 K. Astrophysical Journal 2012, 749, 67.
(6) Taquet, V.; Ceccarelli, C.; Kahane, C. Multilayer modeling of porous grain surface chemistry-I. The GRAINOBLE model. Astronomy & Astrophysics 2012, 538, A42.
(7) Blake, G. A.; Sutton, E.; Masson, C.; Phillips, T. Molecular abundances in OMC-1: The chemical composition of interstellar molecular clouds and the influence of massive star formation. Astrophys. J. Suppl. 2017, 225, 621–645.
(8) Charnley, S.; Tielen, A.; Millar, T. On the molecular complexity of the hot cores in Orion A-Grain surface chemistry as ‘The last refuge of the scoundrel’. Astrophysical Journal 1992, 399, L71–L74.
(9) Ceccarelli, C.; Loinard, L.; Castets, A.; Tielen, A.; Caux, E. The hot core of the solartype protostar IRAS 16293−2422: H2CO emission. Astron. Astrophys. 2000, 357, L9–L12.
(10) Bachiller, R.; Martin-Pintado, J.; Fuente, A. High-velocity hot ammonia in bipolar outflows. Astrophysical Journal 1993, 417, L45.
(11) Flower, D. R.; Forêts, G. P. d. Grain-mantle erosion in magnetohydrodynamic shocks. Mon. Not. R. Astron. Soc. 1994, 268, 724–732.
(12) Lefloch, B.; Ceccarelli, C.; Codella, C.; Favre, C.; Podio, L.; Vastel, C.; Viti, S.; Bachiller, R. L1157-B1, a factory of complex organic molecules in a solar-type starforming region. Monthly Notices of the Royal Astronomical Society: Letters 2017, 469, L73–L77.
(13) Penteado, E.; Walsh, C.; Cuppen, H. Sensitivity analysis of grain surface chemistry to binding energies of ice species. Astrophysical Journal 2017, 844, 71.
(14) Wakelam, V.; Loison, J.-C.; Mereu, R.; Raud, M. Binding energies: New values and impact on the efficiency of chemical desorption. Molecular Astrophysics 2017, 6, 22–35.
(15) Das, A.; Sil, M.; Gorai, P.; Chakrabarti, S. K.; Loison, J.-C. An Approach to Estimate the Binding Energy of Interstellar Species. Astrophysical Journal Supplement Series 2018, 237, 9.
(16) Ferrero, S.; Zamirri, L.; Ceccarelli, C.; Wittel, A.; Rimola, A.; Ugliengo, P. Binding Energies of Interstellar Molecules on Crystalline and Amorphous Models of Water Ice by Ab Initio Calculations. Astrophysical Journal 2020, 904, 11.
(17) Shimoniishi, T.; Nakatani, N.; Furuya, K.; Hama, T. Adsorption energies of carbon, nitrogen, and oxygen atoms on the low-temperature amorphous water ice: A systematic estimation from quantum chemistry calculations. Astrophysical Journal 2018, 855, 27.
(18) Rimola, A.; Skouteris, D.; Balucani, N.; Ceccarelli, C.; Enrique-Romero, J.; Taquet, V.; Ugliengo, P. Can formamide be formed on interstellar ice? An atomistic perspective. ACS Earth and Space Chemistry 2018, 2, 720–734.
(19) Pantaleone, S.; Enrique-Romero, J.; Ceccarelli, C.; Ferrero, S.; Balucani, N.; Rimola, A.; Ugliengo, P. H. Formation on Interstellar Grains and the Fate of Reaction Energy. *Astrophysical Journal* **2021**, 917, 49.

(20) Amiaud, L.; Fillion, J.; Bauche, S.; Dulieu, F.; Momeni, A.; Lemaire, J. Interaction of D_2 with H_2O amorphous ice studied by temperature-programmed desorption experiments. *J. Chem. Phys.* **2006**, *124*, 094702.

(21) Bovolenta, G.; Bovino, S.; Vörhinger-Martinez, E.; Saez, D. A.; Grassi, T.; Vogt-Geisse, S. High level ab initio binding energy distribution of molecules on interstellar ices: Hydrogen urydine. *Molecular Astrophysics* **2020**, *21*, 100095.

(22) Molpeceres, G.; Zaverkin, V.; Kästner, J. Neural-network assisted study of nuclear atom dynamics on amorphous solid water - I. Adsorption and desorption. *Monthly notices of the Royal Astronomical Society* **2020**, *499*, 1373–1384.

(23) He, J.; Acharya, K.; Vidali, G. Binding energy of molecules on water ice: Laboratory measurements and modeling. *Astrophysical Journal* **2016**, *825*, S9.

(24) Germain, A.; Tinacci, L.; Pantaleone, S.; Ceccarelli, C.; Ugliengo, P. Computer Generated Realistic Interstellar Icy Grain Models: Physico-chemical Properties and Interaction with NH3. *ACS Earth & Space Chemistry* **2020**, *6*, 1286–1298.

(25) Watts, J. D.; Gauss, J.; Bartlett, R. J. Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree-Fock and other general single determinant reference functions. Energies and analytical gradients. *J. Chem. Phys.* **1993**, *98*, 8718–8733.

(26) Sauer, J. Ab Initio Calculations for Molecule-Surface Interactions with Chemical Accuracy. *Acc. Chem. Res.* **2019**, *52*, 3502–3510.

(27) Song, L.; Kästner, J. Formation of the prebiotic molecule NH_2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations. *Phys. Chem. Chem. Phys.* **2016**, *18*, 29278–29285.

(28) Molpeceres, G.; Kästner, J. Adsorption of H_2 on amorphous solid water studied with molecular dynamics simulations. *Phys. Chem. Chem. Phys.* **2020**, *22*, 7552–7563.

(29) Sameera, W.; Senevirathne, B.; Andersson, S.; Maseras, F.; Nyman, G. ONIOM (QM: AMOEBA09) Study on binding energies and binding preference of OH, HCO, and CH_3 radicals on hexagonal water ice (h). *J. Phys. Chem. C* **2017**, *121*, 15223–15232.

(30) Sameera, W.; Senevirathne, B.; Andersson, S.; Al-Lbadi, M.; Hidaka, H.; Kouchi, A.; Nyman, G.; Waterane, N. CH$_3$O Radical Binding on Hexagonal Water Ice and Amorphous Solid Water. *J. Phys. Chem. A* **2021**, *125*, 387–393.

(31) Duflot, D.; Toubin, C.; Monnerville, M. Theoretical Determination of Binding Energies of Small Molecules on Interstellar Ice Surfaces. *Frontiers in Astronomy and Space Sciences* **2021**, *8*, 24.

(32) Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. Sparse maps—a systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. *J. Chem. Phys.* **2016**, *144*, 024109.

(33) Rezac, J.; Fanfjlik, J.; Salahub, D.; Hobza, P. Semiempirical quantum chemical PM6 method augmented by dispersion and H-bonding correction terms reliably describes various types of noncovalent complexes. *J. Chem. Theory Comput.* **2009**, *5*, 1749–1760.

(34) Bannwarth, C.; Ehlermann, S.; Grimme, S. GFN2-xTB: An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. *J. Chem. Theory Comput.* **2019**, *15*, 1652–1671.

(35) Redhead, P. A. Thermal desorption of gases. *Vacuum* **1962**, *12*, 203–211.

(36) King, D. A. Thermal desorption from metal surfaces: A review. *Surf. Sci.* **1975**, *47*, 384–402.

(37) Collings, M. P.; Anderson, M. A.; Chen, R.; Dever, J. W.; Viti, S.; Williams, D. A.; McCoustra, M. R. A laboratory survey of the thermal desorption of astrophysically relevant molecules. *Mon. Not. R. Astron. Soc.* **2004**, *354*, 1133–1140.
(60) Weigend, F.; Köhn, A.; Hättig, C. Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 2002, 116, 3175−3183.

(61) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

(62) Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372−1377.

(63) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785.

(64) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215−241.

(65) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139, 134101.

(66) Kruse, H.; Mldak, A.; Gkionis, K.; Hansen, A.; Grimme, S.; Sponer, J. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. J. Chem. Theory Comput. 2015, 11, 4972−4991.

(67) Pedregosa, F.; et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 2011, 12, 2825−2830.

(68) Hewat, A. W.; Riekel, C. The crystal structure of deuterammonia between 2 and 180 K by neutron powder profile refinement. Acta Crystallogr., Sect. A 1979, 35, 569−571.

(69) Hasegawa, T. I.; Herbst, E. Three-Phase chemical models of dense interstellar clouds- Gas dust particle mantles and dust particle surfaces. Mon. Not. R. Astron. Soc. 1993, 263, 589.

(70) Minissale, M.; Aikawa, Y.; Bergin, E.; Bertin, M.; Brown, W. A.; Cazaux, S.; Charnley, S. B.; Couteuns, A.; Cuppen, H. M.; Guzman, V. Thermal Desorption of Interstellar Ices: A Review on the Controlling Parameters and Their Implications from Snowlines to Chemical Complexity. ACS Earth and Space Chemistry 2022, 6, 597.

(71) Taït, S. L.; Dohnalé, Z.; Campbell, C. T.; Kay, B. D. n-alkanes on MgO (100). II. Chain length dependence of kinetic desorption parameters for small n-alkanes. J. Chem. Phys. 2005, 122, 164708.

(72) Freedman, D.; Diaconis, P. On the histogram as a density estimator: L2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 1981, 57, 453−476.

(73) McElroy, D.; Walsh, C.; Markwick, A.; Cordiner, M.; Smith, K.; Millar, T. The UMIST database for astrochemistry. Astronomy & Astrophysics 2013, 550, A36.

(74) Kruzkiewicz, F.; Vitorino, J.; Congiu, E.; Theulé, P.; Duleiu, F. Ammonia snow lines and ammonium salts desorption. Astronomy & Astrophysics 2021, 652, A29.

(75) Martin-Doménech, R.; Caro, G. M.; Bueno, J.; Goesmann, F. Thermal desorption of circumstellar and cometary ice analogs. Astronomy & Astrophysics 2014, 564, A8.

(76) Germain, A.; Corno, M.; Ugliengo, P. Computing Binding Energies of Interstellar Molecules by Semiempirical Quantum Methods: Comparison Between DFT and GFN2 on Crystalline Ice. Computational Science and Its Applications - ICCSA 2021. 2021; pp 632−645.

(77) Germain, A.; Ugliengo, P. Modeling interstellar amorphous solid water grains by tightbinding based methods: comparison between GFN-XTB and CCSD (T) results for water clusters. International Conference on Computational Science and Its Applications. 2020; pp 745−753.

(78) Le Gal, R.; Hily-Blant, P.; Faure, A.; Pineau des Forêts, G.; Rist, C.; Maret, S. Interstellar chemistry of nitrogen hydrides in dark clouds. Astronomy & Astrophysics 2014, 562, A83.

(79) Jonusas, M.; Leroux, K.; Krim, L. N + H surface reaction under interstellar conditions: Does the NH/NH2/NH3 distribution depend on N/H ratio? J. Mol. Struct. 2020, 1220, 128736.