Orthogonal Translation Enables Heterologous Ribosome Engineering in *E. coli*

Natalie S. Kolber¹, Ranan Fattal¹, Sinisa Bratulic¹, Gavriela D. Carver¹ and Ahmed H. Badran¹

¹ *Broad Institute of Harvard and MIT, Cambridge, MA, 02142*

Correspondence should be addressed to: Ahmed H. Badran: ahbadran@broadinstitute.org

TABLE OF CONTENTS

SI Figure 1	Comparison of SQ strain complementation and orthogonal translation pipelines
SI Figure 2	Benchmarking and extending the orthogonal translation reporter system
SI Figure 3	A superfolder GFP-derived leader sequence improves the function of orthogonal reporters
SI Figure 4	Divergent O-rRNA activities are not improved following intergenic sequence replacement
SI Figure 5	R-protein supplementation significantly improves *A. baumannii* O-rRNA function
SI Figure 6	Dissection of LSU r-proteins that improve *A. macleodii* O-rRNA activity
SI Figure 7	Investigation of the contributions of the identified r-proteins S20, S16, S1, and S15
SI Figure 8	*Enterococcus faecalis* 16S rRNA helices with low sequence identity to *E. coli*
SI Figure 9	Erythromycin sensitivity of wildtype and A2058U 23S rRNAs in SQ171 cells
SI Figure 10	Benchmarking the ERY-dependent orthogonal translation reporter system
SI Figure 11	Analysis of heterologous r-protein sequence similarity to *E. coli* homologs
SI Table 1	Summary of heterologous and orthogonal ribosome translation data
SI Table 2	Tabulated erythromycin IC₅₀ values for wildtype and 23S rRNA A2058U rRNAs
SI Table 3	Summary of stapled heterologous ribosome experiments
SI Table 4	Primers used in this study
SI Table 5	Reporter plasmids used in this study
SI Table 6	Species names and GTDB representative genomes used to construct phylogenetic tree
SI Table 7	Names of rRNA and r-protein expression plasmids used in this study
SI Table 8	Addgene IDs of deposited plasmids
Supplementary Figure 1 | Comparison of SQ strain complementation and orthogonal translation pipelines. a) To evaluate heterologous rRNAs (ribosomal RNAs) via SQ strain complementation, rRNA plasmids are transformed into the SQ171 strain after which it may take up to 120 hours to observe colonies. Colonies are grown up in liquid medium +/- kanamycin to evaluate for pSacB persistence, which may take up to 3 days, after which cultures are glycerol stocked. Finally, stocked strains are revived, grown overnight in liquid medium and back-diluted to initiate a growth curve. b) To evaluate heterologous rRNAs via orthogonal translation, O-rRNA plasmids are transformed alongside the reporter plasmid and plates are incubated overnight. Colonies are then picked into media and grown overnight, after which sfGFP (superfolder GFP) fluorescence is quantified. Detailed experimental conditions for both assays are described in the Methods section. h = hours.
Supplementary Figure 2 | Benchmarking and extending the orthogonal translation reporter system.

a) Induction of *E. coli* O-rRNA does not have a substantial effect on host growth rate. OD (optical density), n=5 and sfGFP (superfolder GFP), n=2. b) The O-sfGFP1 reporter used throughout this study shows robust signal-to-noise upon O-rRNA induction (n=5). c-e) Additional orthogonal reporters show dynamic ranges comparable to or exceeding that of sfGFP: covalently-linked *Photorhabdus luminescens* luxAB (xluxAB)2 (c), mTagBFP2 (d), and (e) Venus4 (n=8). f-g) Conversely, an orthogonal reporter incorporating mCherry5 showed low signal-to-noise. Replacement of successive codons at the mCherry N-terminus with their sfGFP counterparts yielded a gradual improvement in signal (f) and dynamic range (g) (n=8). h) A refactored mCherry orthogonal reporter in which the first 10 codons are replaced with the cognate sfGFP signal has improved dynamic range (n=8). Data reflect the mean and standard deviation of 2-8 biological replicates. AU = arbitrary units; aTc = anhydrotetracycline. Source data are available in the Source Data File.

[Graphs and images are not transcribed here due to the nature of the task.]
Supplementary Figure 3 | A superfolder GFP-derived leader sequence improves the function of orthogonal reporters. a) Schematic illustrating the O-RBS (orthogonal ribosome binding site), 10 amino acid sfGFP (superfolder GFP)-derived tag, and N-terminus of a fluorescent protein. When appended to the N-terminus of 15 fluorescent proteins, the tag limited reporter-dependent effects on orthogonal translation activity: b) Sirius, c) mTagBFP2, d) mCerulean, e) MiCy, f) mEmerald, g) Sapphire, h) Venus, i) mPapaya, j) mScarlet-I, k) LSS-mKate2, l) mCherry, m) Katusha-9-5, n) E2-Crimson, o) mMaroon15, p) mCarmine. Generally, addition of the leader tag led to an improvement in absolute signal (average improvement 2.7-fold) and/or dynamic range (average improvement 1.5-fold). Data reflect the mean and standard deviation of 8 biological replicates. OD = optical density; AU = arbitrary units; aTc = anhydrotetracycline. Source data are available in the Source Data File.
Supplementary Figure 4 | Divergent O-rRNA activities are not improved following intergenic sequence replacement. Comparison of O-sfGFP (orthogonal superfolder GFP) translation activity before and after intergenic sequence replacement for O-rRNAs derived from increasingly divergent microorganisms (69.8-82.3% 16S rRNA sequence identity to E. coli), showing limited improvement following intergenic sequence replacement. Data reflect the mean and standard deviation of 8 biological replicates. Comprehensive O-translation data reported in Supplementary Table 1. O-ribosome = orthogonal ribosome; wildtype O-Ec = wildtype orthogonal E. coli rRNA. Source data are available in the Source Data File.
Supplementary Figure 5 | R-protein supplementation improves *A. baumannii* **O-rRNA function.**

a) *A. baumannii* heterologous O-rRNA activity is improved following AO1 induction, yielding comparable activity levels as supplementation with all cognate SSU (small subunit) r-proteins (S1-S21; n=4). b) *A. baumannii* heterologous O-rRNA activity improvement further depends upon AO1 copy number, suggesting insufficient r-protein production at low copy numbers. Labels indicate RepA genotypes and numbers in parentheses indicate the approximate corresponding copy numbers (n=4). c) Single r-protein deletion from AO1 does not adversely affect *A. baumannii* heterologous O-rRNA activity, indicating that more than a single r-protein on this plasmid can complement O-rRNA function (n=4). d) O-sfGFP (orthogonal superfolder GFP) production using an *E. coli* O-rRNA is inversely proportional to mCherry production using *E. coli* native ribosomes, suggesting that r-protein overexpression may have pleiotropic effects on O-ribosome activity (99% CI, R² = 0.73, n=8). e) *E. coli* O-rRNA regulation using two related aTc-inducible promoters, P_{Lmto-1} and P_{letA}, highlights the improved signal and reduced variability using P_{letA}, the native promoter found in the Tn10 transposon. P_{letO-1}-dependent variability is a consequence of promoter recombination between identical TetR operators (not shown) during cell passaging (n=32). Data reflect the mean and standard deviation of 4-32 biological replicates. OD = optical density; AU = arbitrary units; O-ribosome = orthogonal ribosome; wildtype O-Ec = wildtype orthogonal *E. coli* rRNA; ATP = adenosine triphosphate; RNAP = RNA polymerase. Source data are available in the Source Data File.
Supplementary Figure 6 | Dissection of LSU r-proteins that improve *A. macleodii* O-rRNA activity. a) Single r-proteins (from AO2) expressed alongside cognate *A. macleodii* O-rRNA reveal that L19 is responsible for the observed toxicity from AO2, where removal of L19 (AO2 ΔL19) mitigates the observed growth reduction (n=7 for L25 +10 mM arabinose; otherwise n=8). b) No single r-protein from AO2 enhances *A. macleodii* O-rRNA activity. c-e) Single deletions from AO2 do not reveal any variants that differ in effect on O-rRNA activity, nor do truncation variants from the 5’ end (d) or 3’ end (e) of the artificial operon. These data collectively suggest that the observed improvement relies on the concerted action of numerous r-proteins from AO2. Data reflect the mean and standard deviation of 8 biological replicates. OD = optical density; AU = arbitrary units; O-ribosome = orthogonal ribosome; wildtype O-*Ec* = wildtype orthogonal *E. coli* rRNA. Source data are available in the Source Data File.
Supplementary Figure 7 | Investigation of the contributions of the identified r-proteins S20, S16, S1, and S15.
a) Expression of cognate r-proteins S20, S16, S1, and S15 combinations alongside numerous heterologous O-rRNAs. *A. macleodii* and *A. baumannii* cognate S20, S16, S1, and S15 limit the growth of the *E. coli* host when co-expressed, as indicated by culture density after overnight growth, whereas most other r-proteins evaluated are well tolerated. NT = not tested.
b) Both cognate r-proteins S20 and S16 are necessary for maximal sfGFP expression using O-rRNAs from more divergent microorganisms: *N. gonorrheae* (81.8% 16S rRNA sequence identity to *E. coli*), *M. ferrooxydans* (80.1%), and *C. crescentus* (79.3%). However, S20 and S16 are functionally redundant when expressed alongside more related O-rRNAs to *E. coli*. c) The combination of S20, S16, S1, and S15 is necessary for maximal activity using *V. cholerae* (90.3% 16S identity to *E. coli*) and *M. minutulum* (85.3%) O-rRNAs. For more phylogenetically distant O-rRNAs, no additional improvement is observed upon supplementation with S1 or S15 beyond the effect of S20 and S16. Data reflect the mean and standard deviation of 8 biological replicates. Comprehensive O-translation data reported in Supplementary Table 1. OD = optical density; AU = arbitrary units; O-ribosome = orthogonal ribosome; wildtype O-Ec = wildtype orthogonal *E. coli* rRNA. Source data are available in the Source Data File.
Supplementary Figure 8 | Enterococcus faecalis 16S rRNA helices with low sequence identity to E. coli. E. faecalis and E. coli rRNAs were aligned using Clustal Omega with default parameters19, and regions with low sequence identity were manually identified. Elements that were later transplanted into the E. coli 16S O-rRNA are identified in blue. h = 16S rRNA helix.
Supplementary Figure 9 | Erythromycin sensitivity of wildtype and A2058U 23S rRNAs in SQ171 cells. a-j) Erythromycin titration for SQ171 strains exclusively supported by the heterologous rRNA of interest. All strains show similar erythromycin sensitivities using wildtype rRNAs (gray, n=4 biological replicates; best fit curves generated using GraphPad Prism version 8) or using 23S rRNA A2058U mutants (blue, n=4 biological replicates). All IC50 values are reported in Supplementary Table 2. OD = optical density; AU = arbitrary units. Source data are available in the Source Data File.
Supplementary Figure 10 | Benchmarking the ERY-dependent orthogonal translation reporter system. a) Substitution of the heterologous 23S/5S rRNAs with the E. coli counterparts yielded functional orthogonal translation, suggesting that exchange may occur in cases where the cognate LSU is not produced (n=8). b) The ERY (erythromycin)-dependent reporter allows discrimination between three possible subunit assembly scenarios. When an orthogonal SSU (small subunit) assembles with a cognate LSU (large subunit), the ribosome is unable to translate the orthogonal sfGFP (superfolder GFP) reporter due to ERY-sensitivity. Alternatively, heterologous SSUs may assemble with E. coli LSUs, resulting in robust sfGFP translation in the presence of ERY. Finally, E. coli SSUs may assemble with heterologous LSUs, resulting in strain toxicity due to an inability to translate essential E. coli genes in the presence of ERY and low sfGFP signal as a result. c) Heterologous ribosomes closely related to E. coli (>99.2% 16S sequence ID) re-sensitize S4246 cells to ERY treatment due to usage of sensitive LSUs for translating host genes (n=7). d) Orthogonal translation activities for native ribosomes and ribosomes stapled to cognate LSUs vs. E. coli LSUs (n=7 for V. cholerae, E. coli LSU stapled and A. macleodii, E. coli LSU stapled; otherwise n=8). e) ERY-dependent reporter data for native ribosomes and ribosomes stapled to cognate LSUs vs. E. coli LSUs at 100 µg mL⁻¹ ERY. Data for each ribosome is normalized to its sfGFP fluorescence at 0 µg mL⁻¹ ERY (n=35 for native E. coli, n=21 for stapled E. coli; otherwise n=7). f) OD₆₀₀ for heterologous ribosomes with high 16S sequence identity to E. coli (≥99.2%) at 100 µg mL⁻¹ ERY increases after subunit
stapling, indicating a decrease in intersubunit exchange (n=5 for native constructs, n=7 for stapled constructs). Data reflect means and standard deviations of the indicated biological replicates. Comprehensive data reported in Supplementary Table 3. OD = optical density; AU = arbitrary units; wildtype O-\textit{Ec} = wildtype orthogonal \textit{E. coli} rRNA. Source data are available in the Source Data File.
Supplementary Figure 11 | Analysis of heterologous r-protein sequence similarity to *E. coli* homologs. a-m) r-protein sequence similarities to *E. coli* for species evaluated in this study. R-proteins identified as enhancing O-rRNA activity are highlighted in blue. n) Average sequence similarity to *E. coli* for species evaluated in this study which were not immediately functional in *E. coli* prior to r-protein complementation (error bars reflect standard deviations). As protein sequences were identified via BLAST
to *E. coli* sequences (see Methods), we note that in some cases multiple homologs were identified or a full complement of r-proteins was not identified (such that n=22 for S7; n=24 for S8, S15, S17, S9, S5, S11, S19; n=25 for S18; n=29 for S16; n=37 for S1; otherwise n=23.). Source data are available in the Source Data File.
Supplementary Table 1 | Summary of heterologous and orthogonal ribosome translation data. Doubling times in SQ171 cells (minutes) and orthogonal translation activity (normalized to orthogonal *E. coli*) for all heterologous ribosomes tested. nIS = native intergenic sequences; EcIS = *E. coli* intergenic sequences. NA = not applicable; NT = not tested.

Data reflect means and standard deviations of biological replicates indicated in parentheses (few replicates were sometimes obtained by SQ complementation; SDs are not reported for n<3).

Note that SQ data in the main text is generally reported as fitness (doublings/h), which is obtained from doubling time as described in the methods.
Supplementary Table 2 | Tabulated erythromycin IC$_{50}$ values for wildtype and 23S rRNA A2058U rRNAs

Data reflect means and standard deviations of 4 biological replicates. Data are plotted in Supplementary Figure 9. rRNA = ribosomal RNA; ERY = erythromycin; IC$_{50}$ = half maximal inhibitory concentration.

Organism Name	ERY IC$_{50}$ (µg/mL)	Wildtype 23S rRNA	A2058U 23S rRNA
Escherichia coli	20.8 ± 1.02	>2000	
Salmonella enterica	18.82 ± 1.02	>2000	
Citrobacter freundii	20.83 ± 1.02	>2000	
Klebsiella aerogenes	21.4 ± 1.02	>2000	
Klebsiella pneumoniae	20.17 ± 1.05	>2000	
Klebsiella oxytoca	19.66 ± 1.06	>2000	
Enterobacter cloacae	19.75 ± 1.06	>2000	
Serratia marcescens	19.96 ± 1.03	>2000	
Proteus mirabilis	20.57 ± 1.02	>2000	
Providencia stuartii	18.35 ± 1.06	>2000	
Organism Name & Bacterial Class & %16S rRNA identity & Orthogonal Translational Activity (%) & % O-ribosome Activity at 100 µg/mL ERY (0 µg/mL ERY = 100%)

Organism Name	Bacterial Class	%16S rRNA identity	Native	Cognate LSU Stapled	E. coli LSU Stapled	% O-ribosome Activity at 100 µg/mL ERY (%)		
Escherichia coli	Gammaproteobacteria	100	100	44.4 ± 2.7	NA	3.5 ± 2.7	41.3 ± 7.3	
Shigella boydii	Gammaproteobacteria	99.16	100.2 ± 3.7	33.0 ± 2.7	36.3 ± 2.8	4.8 ± 3.1	95.9 ± 1.9	47.1 ± 6.7
Shigella sonnei	Gammaproteobacteria	99.61	80.6 ± 5.2	13.8 ± 0.7	31.6 ± 4.5	4.7 ± 3.0	71.0 ± 6.0	45.2 ± 3.9
Salmonella enterica	Gammaproteobacteria	99.61	89.3 ± 4.7	31.0 ± 1.7	33.8 ± 4.3	3.5 ± 2.7	3.5 ± 2.7	41.3 ± 7.3
Serratia marcescens	Gammaproteobacteria	97.02	102.0 ± 8.0	8.6 ± 2.9	31.5 ± 2.7	15.3 ± 0.4	69.2 ± 2.6	46.3 ± 1.8
Vibrio cholerae + S20, S16, S1, S15	Gammaproteobacteria	84.3 ± 5.7	29.1 ± 1.5	77.8 ± 4.6	25.8 ± 5.0	66.5 ± 2.7	45.3 ± 6.7	
Alteromonas macTeddi + S20, S16, S1, S15	Gammaproteobacteria	85.91	109.5 ± 5.3	36.1 ± 2.7	17.3 ± 3.8	69.5 ± 5.7	99.2 ± 14.6	41.3 ± 1.7
Marinospirillum minutulum + S20, S16, S1, S15	Gammaproteobacteria	95.38	94.3 ± 4.3	27.2 ± 1.8	31.7 ± 2.1	21.2 ± 1.3	60.2 ± 1.1	44.1 ± 1.5
Alcaligenes faecalis + S20, S16, S1, S15	Betaproteobacteria	82.32	23.0 ± 1.5	7.3 ± 0.7	16.0 ± 1.9	94.5 ± 9.3	97.4 ± 6.5	79.5 ± 7.8
Burkholderia cenocepacia + S20, S16, S1, S15	Betaproteobacteria	81.45	43.0 ± 4.1	11.8 ± 0.5	26.4 ± 1.0	96.5 ± 5.6	103.2 ± 9.3	81.6 ± 3.9
Caulobacter crescentus + S20, S16, S1, S15	Alphaproteobacteria	79.31	21.0 ± 3.1	3.8 ± 2.6	5.8 ± 2.0	129.6 ± 25.5	98.0 ± 12.7	99.0 ± 3.2

Supplementary Table 3 | Summary of stapled heterologous ribosome experiments. Data reflect means and standard deviations of 7-28 biological replicates. ERY = erythromycin; rRNA = ribosomal RNA; LSU = large subunit.
Supplementary Table 4 | Primers used in this study

Instances where primers have been used are described in the Methods section. rRNA = ribosomal RNA; FWD = forward; REV = reverse.

Name	Function	Sequence
AB3441	Universal rRNA amplification primer, FWD	ACCGGCCCGCUGTCGCCAGCAGCCCAGGTAATAC
AB3442	Universal rRNA amplification primer, REV	ACGGGGTTCCGGCGCAACGCTGACGGGCACGTACAGGCCTGATACAGGCAAGGGTCACTACAGCCGAGTCAATTT
AB5708	Recombineering primer, rrlA-12058U	C*T*C*A*ATGTTCAGTGTCAAGCTATAGTAAAGGTTCACGGGGTCTT4CGTCTTTGCCGGGTACACTGATCTTCACAGCGGAGTCAAATTT
AB5710	Recombineering check primer, FWD	GAAATCTCTTGGCCGAGTCAAGTCC
AB5711	Recombineering check primer, REV	GAACATCAAAATTAGGGGTGATTC

blue = USER junction; **red** = annealing region; **=** phosphorothioate bonds; **yellow** = mutated base
Reporter Protein	λ_{Ex} (nm)	λ_{Em} (nm)	sfGFP Leader Tag
Sirius	355	424	pNK141a1
mTagBFP2	399	454	pNK133b
mcerulean	433	475	pNK141c1
MiCy	472	495	pNK141m1
mEmerald	487	509	pNK141e1
Sapphire	399	511	pNK141d1
Venus	515	530	pNK133d
mPapaya	530	550	pNK141g1
mScarlet-I	569	593	pNK141h1
LSS-mKate2	490	605	pNK141f1
mCherry	587	610	pNK133a
Katushka-9-5	588	635	pNK141f1
E2-Crimson	611	646	pNK141i1
mMaroon1	609	657	pNK141i1
mCarmine	603	675	pNK141i1
ermCL-sfGFP	485	510	N/A
sfGFP	485	510	N/A

Supplementary Table 5 | Reporter plasmids used in this study. Highlighted plasmids (blue) have been deposited in Addgene. Addgene IDs are listed in Supplementary Table 8. Plasmid Plpp5.B.GFP was kindly provided by the Jewett Lab. sfGFP = superfolder GFP; λ_{Ex} = excitation wavelength; λ_{Em} = emission wavelength.
Organism Name	NCBI TaxID	NCBI Species TaxID	NCBI Strain Identifier	Accession (GTDB Genome Representative)
Acinetobacter baumannii	575584	470	ATCC 19606	RS_GCF_002811175.1
Alcaligenes faecalis	511	511	ZD02	RS_GCF_000967305.2
Alteromonas macaoi	529120	28108	ATCC 27126	RS_GCF_000172635.2
Burkholderia cenocepacia	331272	95486	HI2424	RS_GCF_000203955.1
Bifidobacterium longum	206672	216816	NCC2705	RS_GCF_00007525.1
Bordetella pertussis	257313	520	Tohama I	RS_GCF_000195715.1
Bacillus subtilis	224308	1423	168	RS_GCF_00009045.1
Bacteroides thauataomicron	818	818	T330	RS_GCF_001314975.1
Caulobacter crescentus	569050	155892	NA1000	RS_GCF_00022005.1
Clostridium difficile	272563	1496	630	RS_GCF_00009205.1
Citrobacter freundii	546	546	CAV1321	RS_GCF_001022155.1
Desulfovibrio vulgaris	862	881	Hildenborough	RS_GCF_00019575.1
Enterobacter cloacae	716541	550	ATCC 13047	RS_GCF_00025505.1
Escherichia coli	511145	562	K-12	RS_GCF_00005645.2
Escherichia coli/Shigella Spp.	198214	623	301	RS_GCF_00006925.2
Enterococcus faecalis	226185	1351	V983	RS_GCF_00007785.1
Enterococcus faecium	333849	1352	DO	RS_GCF_000174395.2
Helicobacter pylori	210	210	KH03	RS_GCF_002832255.1
Klebsiella aerogenes	1028307	548	KCTC 2190	RS_GCF_000215745.1
Klebsiella oxytoca	571	571	CAV1015	RS_GCF_001870185.1
Klebsiella pneumoniae	1125630	573	HS11286	RS_GCF_000240185.1
Marinomonas ferrooxydans	314345	314344	PV-1	RS_GCF_000153765.1
Neisseria gonorrhoeae	242231	485	FA 1090	RS_GCF_00006845.1
Pseudomonas aeruginosa	206964	287	PAO1	RS_GCF_00006765.1
Proteus mirabilis	529507	584	H4320	RS_GCF_00006996.1
Providencia stuartii	1157951	588	MRSN 2154	RS_GCF_000259175.1
Rhodopsuedomonas palustris	316058	1076	Ha2	RS_GCF_00013365.1
Rickettsia parkeri	1100108	35792	Portsmouth	RS_GCF_000284195.1
Staphylococcus aureus	93061	1280	NCTC 8325	RS_GCF_00013425.1
Salmonella enterica	90371	28901	LT2	RS_GCF_002289225.1
Serratia marcescens	811022	615	ATCC 13880	RS_GCF_00073445.1
Vibrio cholerae	243277	666	N16961	RS_GCF_00006745.1
Veillonella parvula	479436	29466	DSM 2008	RS_GCF_00024945.1

Supplementary Table 6 | Species names and GTDB representative genomes used to construct phylogenetic tree.
Supplementary Information

Table 7 | rRNA and r-protein expression plasmids used in this study.

rRNA/r-protein combinations yielding the highest degree of activity have been deposited in Addgene and are highlighted in blue. Addgene IDs are listed in Supplementary Table 8. rRNA = ribosomal RNA; r-protein = ribosomal protein; LSU = large subunit.

Intergenic Regions	Native	E. coli	WT	Anti-B	WT	Ant B	WT	Ant-B																														
rRNA Expression Plasmids																																						
R-Protein Expression Plasmids																																						
R-Protein Operons																																						
alpha (a)																																						
beta (b)																																						
str																																						
spc																																						
S10																																						
AO1																																						
AO2																																						

Supplementary Information:
- **Table 7** lists the rRNA and r-protein expression plasmids used in the study.
- **Addgene IDs** are provided for the rRNA and r-protein combinations yielding the highest degree of activity.
- The study used multiple species including Bifidobacterium longum, Veillonella parvula, and Staphylococcus aureus among others.
- The table is structured to compare the expression across various species and conditions.
- The data is crucial for researchers in the field of ribosomal biology and the expression of ribosomal proteins.
Supplementary Table 8 | Addgene IDs of deposited plasmids.

rRNA Plasmids	Name	Addgene ID
pNK110d	156321	
pRF001d	156322	
pRF002d	156323	
pAB172a	156324	
pNK007p	156325	
pRF004d	156326	
pRF005d	156327	
pRF006d	156328	
pRF007d	156329	
pRF008d	156330	
pNK041p	156331	
pRF010d	156332	
pNK059p	156333	
pNK013p	156334	
pNK045p	156335	
pAC027	156336	
pNK053p	156337	
pAC218	156338	
pAC044	156339	
pAC037	156340	
pNK053p	156341	
pAC036	156342	
pAC030	156343	
pAC042	156344	
pAC038	156345	
pAC040	156346	
pAC039	156347	
pAC041	156348	
pRF028d	156349	
pAC019	156350	
pRF030d	156351	
pRF031d	156352	
pRF032d	156353	
pRF033d	156354	
pRF034d	156355	
pRF035d	156356	
pRF038d	156357	

R-protein Plasmids	Name	Addgene ID
pAB184a	156358	
pAB184b	156359	
pAB184c	156360	
pAB184d	156361	
pAB184e	156362	
pAB184f	156363	
pAB184g	156364	
pAB184h	156365	
pNK083b	156366	
pNK083c	156367	
pNK108b	156368	
pNK131d	156369	
pNK132d	156370	
pNK055b	156371	

Reporter Plasmids	Name	Addgene ID
pAB140j	156372	
pNK141a	156374	
pNK141b	156375	
pNK141c	156376	
pNK141d	156377	
pNK141e	156379	
pNK141f	156380	
pNK141g	156381	
pNK141h	156382	
pNK141i	156383	
pNK141j	156384	
pNK141k	156385	
pNK141l	156386	
pNK141m	156387	
pNK141n	156388	

Strains	Name	Addgene ID
S4246	156372	
SUPPLEMENTARY REFERENCES

1. Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Engineering and characterization of a superfolder green fluorescent protein. *Nat Biotechnol* **24**, 79-88 (2006).

2. Carlson JC, Badran AH, Guggiana-Nilo DA, Liu DR. Negative selection and stringency modulation in phage-assisted continuous evolution. *Nat Chem Biol* **10**, 216-222 (2014).

3. Subach OM, Cranfill PJ, Davidson MW, Verkhusha VV. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. *PLoS One* **6**, e28674 (2011).

4. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. *Nat Biotechnol* **20**, 87-90 (2002).

5. Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. *Nature Biotechnology* **22**, 1567-1572 (2004).

6. Tomosugi W, et al. An ultramarine fluorescent protein with increased photostability and pH insensitivity. *Nature Methods* **6**, 351-353 (2009).

7. Rizzo MA, Piston DW. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. *Biophys J* **88**, L14-16 (2005).

8. Karasawa S, Araki T, Nagai T, Mizuno H, Miyawaki A. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. *Biochem J* **381**, 307-312 (2004).

9. Cubitt AB, Woollenweber LA, Heim R. Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. *Methods Cell Biol* **58**, 19-30 (1999).

10. Hoi H, et al. An engineered monomeric Zoanthus sp. yellow fluorescent protein. *Chem Biol* **20**, 1296-1304 (2013).

11. Bindels DS, et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. *Nature Methods* **14**, 53-56 (2016).

12. Piatkevich KD, et al. Monomeric red fluorescent proteins with a large Stokes shift. (2010).

13. Shcherbo D, et al. Near-infrared fluorescent proteins. *Nat Methods* **7**, 827-829 (2010).

14. Strack RL, Hein B, Bhattacharyya D, Hell SW, Keenan RJ, Glick BS. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. *Biochemistry* **48**, 8279-8281 (2009).

15. Bajar BT, et al. Fluorescent indicators for simultaneous reporting of all four cell cycle phases. *Nat Methods* **13**, 993-996 (2016).

16. Fabritius A, Ng D, Kist AM, Erdogan M, Portugues R, Griesbeck O. Imaging-Based Screening Platform Assists Protein Engineering. *Cell Chem Biol* **25**, 1554-1561.e1558 (2018).

17. Peterson J, Phillips GJ. New pSC101-derivative cloning vectors with elevated copy numbers. *Plasmid* **59**, 193-201 (2008).

18. Lutz R, Bujard H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. *Nucleic Acids Res* **25**, 1203-1210 (1997).

19. Madeira F, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Res* **47**, W636-w641 (2019).