EFFECT OF TEMPERATURE, PRESSURE, AND FRACTION OF NANOPARTICLES ON CHANGES IN THE THERMAL CONDUCTIVITY OF COLLOID NANOFLOIDS

T R Tilloeva¹, M M Safarov¹, M A Zaripova¹
¹Tajik technical university after named by academic M.C.Osimi, Dushanbe, Tajikistan

Abstract. The paper presents the results of studies on the thermal diffusivity of colloidal nanofluids depending on the change in one of the state parameters (pressure). Studies were carried out both with a change in the pressure of the experiment, and with a change in the nanometric size of silver particles in a liquid. Based on the results obtained, the corresponding empirical equations were derived and a proper comparative analysis was performed by comparing the experimental and calculated data on thermal diffusivity. The suitability of the derived equations is evidenced by the satisfactory agreement between the obtained data and the calculated ones within 1.79% at α=0.95.

1. Introduction
Colloidal systems refer to dispersed systems in which one substance in the form of various particle sizes is evenly distributed in another substance. The dispersed system consists of a dispersed phase (finely divided substance) and a dispersed medium (homogeneous substance), in which the dispersed phase is distributed. Dispersed systems include ordinary and colloidal solutions, as well as suspensions and emulsions, which, in turn, differ from each other in particle size or degree of dispersion. Disperse systems are classified according to their state of aggregation, according to particle size, according to the nature of the dispersed phase and medium. According to the degree of dispersion, they mainly distinguish between coarse and colloidal systems, the first of which include particles of the dispersed phase with a size of 10^{-7}m, and the second particles of the dispersed phase with a size of 10^{-7}m - 10^{-9}m [6]. In this work, we studied a colloidal aqueous solution of nanosilver with different particle diameters from 2 to 10 nm. The work is devoted to the experimental study of the thermal diffusivity of a given substance depending on the change in the pressure of the experiment.

2. Experimental section
In recent years, to study the process of heat transfer, more and more people resort to the laser pulse method (Parker method [1]), which is based on the absorption of an energy pulse in a thin layer of the surface of the substance under study and fixing the temperature change of its opposite surface over time [2,3]. The values obtained using this method make it possible to calculate such thermophysical characteristics as heat conductivity, specific heat capacity, thermal conductivity of a wide range of materials in the form of solids, powders, liquids, pastelike substances, fibrous materials, films [4].
Table 1. Experimental values of thermal diffusivity (ν.10^{-7}, m^{2}/s) of a colloidal aqueous solution of nanosilver with a concentration of nanometalic particles of 0.05% depending on the particle diameter and pressure at room temperature [5].

d, nm	P, MPa	0.101	0.108	0.114	0.121	0.128	0.135	0.141
2		1.372	1.449	1.511	1.57	1.661	1.732	1.772
5		1.245	1.282	1.317	1.331	1.443	1.553	1.583
10		0.964	0.994	1.029	1.059	1.056	1.135	1.176

According to the values given in Table 1, it can be seen that with an increase in pressure from 0.101 MPa to 0.141 MPa, the thermal conductivity of the studied samples increases by ~20-29%, and as the diameter of silver nanoparticles increases at a pressure of 0.141 MPa with a concentration of 0.05% thermal conductivity decreases by ~33.6%. This can be explained by the fact that, like thermal conductivity, temperature conductivity depends on the intermolecular forces of interaction and the distance between these particles, through which the transfer of thermal energy is actually carried out, and since thermal diffusivity characterizes the rate of propagation of thermal energy, these factors have a significant impact on this parameter.

In the sample we are studying, particles of a liquid and particles of a solid body uniformly distributed in it interact. Due to the fact that small particles have a larger specific surface, compared to a solution of the same concentration, but a large size of silver nanoparticles, the contact surface with liquid particles increases accordingly, and the rate of thermal energy transfer also increases [5].

3. Conclusion
After performing the appropriate processing of the experimental data obtained by using the law of the corresponding states and thermodynamic similarity, we obtained an empirical equation in the form.

\[
\alpha = 0.8152 \left(\frac{P}{P^*}\right) + 0.2307 \cdot [-0.0545 \cdot 10^{-7} d + 1.61 \cdot 10^{-7}], \text{m}^2/\text{s}
\]

Using the proposed equation (at n=0.05% and d=2÷10 nm), it is possible to calculate the thermal diffusivity of the investigated colloidal aqueous solutions of nanosilver depending on the change in the experimental pressure in the range (0.101-0.141) MPa at room temperature with an error of 1.79%.

Low-temperature plasma can be used for the synthesis of various nanostructures and is well suited for the modification of various surfaces. This is shown in many works [7-27].

References
[1] Kuznetsov, G.V. On the conditions for the application of impulse methods determination of thermophysical characteristics of structural materials / V.G. Kuznetsov, M.D. Katz // Bulletin of the Tomsk Polytechnic University - 2008. V. 312. No. 4. P.10-13.
[2] Miroshnichenko, V.I. Experimental setup with pulsed laser heating to study the thermal conductivity and heat capacity of solids at high temperatures/V.I. Miroshnichenko, V.V.Makhrov, M.V. Rebrov//Thesis document. 9th Thermophysical Conference of the CIS. Makhachkala, 1992. P. 22-23.
[3] Shashkov, A.G. Methods for determining thermal conductivity and temperature conductivity./A.G.Shashkov,G.M.Volokhov, T.N. Abramenko/M.: Energy, 1973. -335p.
[4] Klyuev, V.V. Unbrakable control. / V.V.Klyuev // Handbook M: Mashinostroenie 2004.-679 p.
[5] Tilloeva, T.R. Thermophysical and thermodynamic properties of a colloidal aqueous solution of nanosilver depending on temperature and pressure. /Tahmina Rustamovna Tilloeva// Diss. can. technical sciences - Kazan, 2016, 164p.
[6] Zimon, A.D. Colloidal chemistry./A.D. Zimon //M.: Agar, 2003. - 320 p.
[7] Saifutdinov, A. I., & Sofronitskii, A. O. (2021). Numerical Study of Breakdown and Formation Dynamics of Arc Discharge Plasma Parameters at Ultrahigh Pressures. High Energy Chemistry, 55(3), 228-232.DOI: 10.1134/S0018143921030115
[8] Shemakhin, A. Y., Zheltukhin, V. S., Shemakhin, E. Y., Terentev, T. N., & Sofronitsky, A. O. (2020, July). Experimental installation to study the RF plasma flow at low pressures with experiment data synchronization. In Journal of Physics: Conference Series (Vol. 1588, No. 1, p. 012018). IOP Publishing. DOI: 10.1088/1742-6596/1588/1/012018
[9] Saifutdinova, A. A., Sofronitskiy, A. O., Timerkaev, B. A., & Saifutdinov, A. I. (2020). Plasma-Chemical Decomposition of Hydrocarbons on the Basis of the Micro-Arc Discharge with Disc Electrodes Rotating in the Bulk of Raw Materials. Russian Physics Journal, 62(11), 2132-2136.DOI: 10.1007/s11182-020-01957-0
[10] Fairushin, I. I., Saifutdinov, A. I., & Sofronitskiy, A. O. (2020). Numerical and Experimental Studies of the Synthesis of Copper Nanoparticles in a High-Pressure Discharge. High Energy Chemistry, 54(2), 150-153. DOI: 10.1134/S0018143920020071
[11] Asadullin, T. Y., Galeev, I. G., Sofronitskiy, A. O., & Gizeev, M. M. (2019, November). Acoustic impact on electric discharge parameters during sterilization of freeze-dried products. In Journal of Physics: Conference Series (Vol. 1370, No. 1, p. 012016). IOP Publishing. DOI: 10.1088/1742-6596/1370/1/012016
[12] Fairushin, I. I., Saifutdinov, A. I., Sofronitskiy, A. O., Timerkaev, B. A., & Dautov, G. Y. (2019, October). Development of plasma reactor design for synthesis of copper nanoparticles using multi-scale simulation. In Journal of Physics: Conference Series (Vol. 1328, No. 1, p. 012088). IOP Publishing. DOI: 10.1088/1742-6596/1328/1/012088
[13] Asadullin, T. Y., Galeev, I. G., & Sofronitskiy, A. O. (2019, October). The application of pulsed discharge for sterilization of freeze-dried product. In Journal of Physics: Conference Series (Vol. 1328, No. 1, p. 012071). IOP Publishing. DOI: 10.1088/1742-6596/1328/1/012071
[14] Timerkaev, B. A., Ganieva, G. R., Kaleeva, A. A., Israfilov, Z. K., & Sofronitskii, A. O. (2019). Growing of carbon nanotubes from hydrocarbons in an arc plasma. Journal of Engineering Physics and Thermophysics, 92(5), 1248-1252. DOI: 10.1007/s10891-019-02040-3
[15] Dautov, G. Y., Kashapov, N. F., Dautov, I. G., & Sofronitskiy, A. O. (2018, July). Research of the influence of the geometry of the discharge chamber on the characteristics of the arc plasmotron. In Journal of Physics: Conference Series (Vol. 1058, No. 1). IOP Publishing. DOI: 10.1088/1742-6596/1058/1/012035
[16] Timerkaev, B. A., Andreeva, A. A., & Sofronitskii, A. O. (2017, November). Discharge creeping along the surface in the process for producing nanomaterials. In Journal of Physics: Conference Series (Vol. 927, No. 1, p. 012068). IOP Publishing. DOI: 10.1088/1742-6596/927/1/012068
[17] Sadikov, K. G., Sofronitskiy, A. O., & Larionov, V. M. (2017, November). The effect of electrically conductive additives on the plasma pyrolysis of heavy hydrocarbons. In Journal of Physics: Conference Series (Vol. 927, No. 1, p. 012046). IOP Publishing. DOI: 10.1088/1742-6596/927/1/012046
[18] Timerkaev, B. A., Andreeva, A. A., & Sofronitskiy, A. O. (2017). Discharge creeping along the surface in the process of cleaning and strengthening of the materials surface. In Journal of Physics: Conference Series (Vol. 789, No. 1). IOP Publishing. DOI: 10.1088/1742-6596/789/1/012063
[19] Sadikov, K. G., Sofronitskiy, A. O., & Dautov, I. G. (2017). Functional plasma sprayed coatings on magnesium ceramic substrates. In Journal of Physics: Conference Series (Vol. 789, No. 1, p. 012043). IOP Publishing. DOI: 10.1088/1742-6596/789/1/012043
[20] Timerkaev, B. A., Sofronitskiy, A. O., & Andreeva, A. A. (2016). Carbon nanotubes formation in the decomposition of heavy hydrocarbons creeping along the surface of the glow discharge. In Journal of Physics: Conference Series (Vol. 669, No. 1, p. 012062). IOP Publishing. DOI: 10.1088/1742-6596/669/1/012062

[21] Timerkaev, B. A., & Shamsutdinov, R. S. (2020, July). The Influence of Supersonic Gas Stream on Spatial Structure of Glow Discharge. In Journal of Physics: Conference Series (Vol. 1588, No. 1, p. 012061). IOP Publishing. DOI 10.1088/1742-6596/1588/1/012061

[22] Galeev I G, Asadullin T Y 2017 Improving of stability of the volumetric glow discharge in the gas flow J. of Phys. Conf. Ser. 789(1) 012012

[23] Asadullin T Y, Galeev I G 2017 Combined method of stabilization of the glow discharge in gas flow J. of Phys. Conf. Ser. 927(1) 012003

[24] Galeev I G, Asadullin T Ya 2016 Obtaining fullerene-containing soot during combustion of gaseous hydrocarbons in an external electric field J. of Phys. Conf. Ser. 669 012016

[25] Galeev I G, Asadullin T Y 2016 Enhancing of the glow discharge stability in chamber with cathode sections coated by a discontinuous dielectric coating J. of Phys. Conf. Ser. 669(1) 012015

[26] Shakirov A S, Galeev I G and Asadullin T Ya 2020 Features of formation of fullerene-containing soot during combustion gaseous and liquid hydrocarbons J. of Phys. Conf. Ser. 1588(1) 012013

[27] Shamsutdinov, R. S., & Timerkaev, B. A. (2021, April). The influence of a supersonic flow of gas at glow discharge. In Journal of Physics: Conference Series (Vol. 1870, No. 1, p. 012019). IOP Publishing. DOI 10.1088/1742-6596/1870/1/012019.