Proposed Subgroups of Spiroplasmas of High Guanine Plus Cytosine Content, Group IV

RANDOLPH E. McCOY, Ph.D.

University of Florida Agricultural Research and Education Center, Fort Lauderdale, Florida

Received January 4, 1983

The plant surface and insect-inhabiting spiroplasmas of group IV, unlike other spiroplasmas, have not been demonstrated to utilize arginine. They require cholesterol for growth, produce spots and films on some media, and do not hydrolize arbutin. Electrophoretic and serological comparisons of strains from North America and Europe indicate the existence of strain differences within group IV. This study provides evidence for the existence of three discrete subgroups, group IV-(1) represented by temperate American strains, group IV-(2) represented by subtropical American strain PPS1, and group IV-(3) represented by Mediterranean and French strains.

INTRODUCTION

The first report of the isolation of spiroplasmas from flower surfaces by Davis [1] indicated the existence of two new serogroups. Among these organisms isolated from Maryland flowers, strain 23-6 ultimately represented *Spiroplasma floricola* Davis (group III'), and isolate SR3 represented spiroplasma group IV. Subsequent spiroplasma isolations from flowers in Florida [5], France and Corsica [2], California [6], and Nebraska [7] also yielded group IV spiroplasmas. Additionally, group IV strains were isolated from honeybees in California [6], Morocco [2], and France [8], and from a froghopper in Corsica [2].

Group IV spiroplasmas were demonstrated to cause the May disease of honeybee in France by Mouches et al. [8]. These workers isolated strains B31 and B39 from diseased honeybees and demonstrated these strains to multiply in the hemocoel and hemolymph of honeybees infected by injection or ingestion. Infected bees were lethargic, developed a swollen abdomen, and exhibited an increased mortality rate.

Mc Coy et al. [9] and Dowell et al. [10] demonstrated flower strains SR3 and PPS1 to be pathogenic to larvae of the greater wax moth. Both strains developed to titers of 10^8 cells per ml of hemolymph within 24 hours of injection of this insect. Most larvae died before pupation. These investigators also found strains SR3 and PPS1 to be pathogenic to larvae of the cabbage looper [unpublished].

Several group IV strains have been shown to be sensitive to tetracycline antibiotics [11,12]. Tetracycline fed to infected insects prevented pathogenicity to both wax moths [10] and honeybees [8]. Penicillin had no effect on pathogenicity in either insect.

593

1Group designation in this paper follows that proposed by Junca et al. [2] as amended by Whitcomb et al. [3]. Group IV spiroplasmas were classified as serogroup III in the proposal of Davis et al. [4].

Florida Agricultural Experiment Station Journal Series Paper No. 4405.

Address reprint requests to: Randolph E. McCoy, Ph.D., University of Florida AREC, 3205 SW College Avenue, Fort Lauderdale, FL 33314

Copyright © 1983 by The Yale Journal of Biology and Medicine, Inc.

All rights of reproduction in any form reserved.
Characterization of group IV isolates and strains [13,12,14] indicates them to multiply to 10^8 cells per ml in broth media in one to three days at 30–37°C. Colonies of group IV strains are difficult to see on agar media. They appear as diffuse, foggy spots of 1–4 mm diameter when observed by darkfield illumination. Group IV strains require cholesterol, ferment sugars, and do not appear to hydrolyze arginine or urea. Comparisons of protein bands of certain group IV strains by polyacrylamide gel electrophoresis were made by McCoy et al. [12] and Mouches et al. [8,15]. Characterization of DNA has revealed a guanine + cytosine (G + C) content of 29–31 mol. % for group IV strains [13,16,12]. This G + C value is higher than that of other flower/insect-inhabiting spiroplasmas but is similar to that of the tick spiroplasmas of group V. DNA homology studies have demonstrated group IV isolates to be distinct from other spiroplasma groups [13,16,17]; however, no DNA-DNA hybridizations have been made among group IV members.

MATERIALS AND METHODS

Growth Studies

Ten cloned strains from group IV were compared (Table 1). Arginine metabolism was evaluated by inoculating representative strains into MC broth [5] supplemented with 0, 0.25, 0.5, and 1.0 percent arginine in microtiter plates and observing the pH shift. Digitonin inhibition was determined according to the method of Freundt et al. [18]. Arbutin hydrolysis was evaluated as described by Ernő and Stipkovits [19]. Evaluations of film and spot production were made on media used for the digitonin and arbutin tests.

Strain	Source	Group	Proposed Subgroup	Digitonin\(^*\) Inhibition	Arginine Hydrolysis	Arbutin Hydrolysis	MC Medium	B_{ar} Medium
SR3	flowers, Connecticut	IV	(1)	9	−	−	−	+
SR9	flowers, Connecticut	IV	(1)	11	−	−	−	+
13-4	honeybee, Maryland	IV	(1)	7	−	−	+	
CTDF	flowers, Maryland	IV	(1)	12	−	−	+	
W13	flowers, Colorado	IV	(1)	12	−	−	+	
PPS1	flowers, Florida	IV	(2)	10	−	−	−	+
F1	flowers, France	IV	(3)	13	−	−	−	+
F2	flowers, France	IV	(3)	9	−	−	+	
F25	flowers, Corsica	IV	(3)	14	−	−	+	
B31	honeybee, France	IV	(3)	7	−	−	+	
G9	flowers, Florida	I-2	nd\(^a\)	+	−	−	nd	
AS576	honeybee, Georgia	I-2	nd\(^a\)	+	nd	−	nd	
15-1	flowers, Maryland	III	6	nd	+	−	−	
PT2	flowers, Maryland	III	7	nd	−	−	+	

\(^*\)Radial inhibition zone, mm at 10^5 dilution of inoculum

\(^a\)nd = Not done
One-dimensional slab polyacrylamide gel electrophoresis (PAGE) was performed in a manner similar to the procedure described by Daniels et al. [20]. Whole cell proteins were solubilized in 16 percent glycerol-3 percent sodium dodecyl sulfate-0.17 percent dithiothreitol, diluted in gel buffer, and electrophoresed on 10 percent acrylamide gels at a constant 100 volts, current ca. 160 mA. Gels were stained with Biorad silver stain (Biorad, Inc., Richmond, CA).

Serological Tests

Sera specific to spiroplasma strains F1, SR3, and PPS1 were prepared using rabbits as described in Dowell et al. [10]. Sera prepared in rabbits for strains W13 and B31 were provided by R.F. Whitcomb, Beltsville, MD. All antigens were grown in 10 ml MC medium, divided into 10 × 1 ml portions and frozen at −40°C. A fresh tube was used for antigen titration and for each test. Growth inhibition (GI) tests were performed on MC agar using the running drop technique [21] at culture dilutions of 10⁴, 10⁵, and 10⁶ [22]. Deformation (DF) was carried out using MC broth in microtiter plates with 3 × dilutions of antiserum as described by Williamson et al. [23]. The DF titer is the antiserum dilution at which 50 percent of the helical spiroplasma cells become deformed. ELISA was performed basically as described by Dowell et al. [10]. Gamma-globulin coating concentrations were 4 µg/protein/ml (BioRad Assay). Enzyme-labeled G-globulin concentrations were adjusted to give a maximum color (OD 3 at 405 nm) in ½ to 2½ hrs at 37°C in preliminary tests. Sample concentrations were 5 µg protein/ml. Homologous reactions included 2 × dilutions of sample protein from 5 µg/ml to 0.156 µg/ml.

RESULTS

None of the ten group IV strains utilized arginine in these tests (Table 1). All were sensitive to digitonin, did not hydrolyze arbutin, but did produce spots and films on the arbutin test medium, but not on MC medium. Colonies of all ten strains were diffuse to granular, and satellite colonies were present.

PAGE analysis of cell proteins (Fig. 1) revealed strong similarities within the three French isolates F1, F2, and B31. Strong relationships exemplified by similar banding

FIG. 1. Polyacrylamide gel electrophoresis patterns of cell protein extracts of group IV spiroplasmas. Biorad silver stain. 1, low molecular weight standards; 2, isolate F2; 3, isolate F1; 4, isolate B31; 5, isolate AS576; 6, isolate 13-4; 7, isolate W13; 8, isolate SR9; 9, isolate SR3; 10, isolate PPS1.
patterns also existed among the temperate American isolates from Maryland, Connecticut, and Colorado. Isolate PPS1, while similar, had banding patterns distinct from the French and temperate American groups. The two group IV honeybee strains B31 and W13 were quite distinct from the group I-(2) honeybee strain AS576.

All group IV strains were inhibited by group IV antisera in GI tests (Table 2). Group III spiroplasmas did not react to group IV antisera in GI or ELISA tests. Spiroplasma deformation titers suggested the existence of clusters of strains within group IV (Table 3). Strain PPS1 had a strong homologous reaction only, whereas F1 antiserum reacted strongly against F1, F2, and F25 antigens, thus indicating a high degree of relatedness. SR3 antiserum reacted strongly against SR2, CTDF, and 13-4, while W13 antiserum crossed strongly with CTDF, indicating some relationship to the SR3 subgroup. B31 antiserum had a moderate homologous reaction and reacted similarly with F1 and F25 antigens, indicating a possible relationship. The B31 antiserum also crossed equally with PPS1 antigen, although the reciprocal reaction showed no evidence of relationship.

Table 2
Growth Inhibition Response to Indicated Antisera at 10^6 Antigen Dilution
(Radial zone of inhibition, mm)

Antigen	Group*	SR3	W13	PPS1	F1	B31
SR3	IV (1)	2.9	2.8	2.4	2.8	2.3
SR9	IV (1)	3.4	6.2	3.8	4.8	3.9
13-4	IV (1)	3.6	3.4	3.5	3.1	3.1
CTDF	IV (1)	4.6	6.2	3.9	4.0	3.6
W13	IV (1)	6.5	8.7	5.1	7.5	8.3
PPS1	IV (2)	5.2	7.4	7.3	4.4	6.0
F1	IV (3)	3.3	6.0	3.1	8.3	5.6
F2	IV (3)	2.7	4.4	2.3	4.4	4.2
F25	IV (3)	5.3	4.3	4.0	7.0	7.2
B31	IV (3)	0.9	2.4	1.4	1.9	3.3
15-1	III	0	0	0	0	0
PT2	III	0	0	0	0	0

*Proposed subgroups in parentheses

Table 3
Deformation Titers of Group IV Spiroplasmas

Antigen	Group*	SR3	W13	PPS1	F1	B31
SR3	IV (1)	1,458	1,458	162	486	486
SR9	IV (1)	486	4,374	162	18	162
13-4	IV (1)	1,458	4,374	162	162	162
CTDF	IV (1)	4,374	39,366	486	54	486
W13	IV (1)	162	4,374	54	162	162
PPS1	IV (2)	162	4,374	39,366	162	1,458
F1	IV (3)	54	162	54	13,122	1,458
F2	IV (3)	162	1,458	54	4,374	486
F25	IV (3)	54	486	54	4,374	1,458
B31	IV (3)	162	162	54	486	1,458

*Proposed subgroups in parentheses
TABLE 4
Relative Activity* of Group IV Spiroplasmas to Alkaline Phosphatase-Conjugated Antisera in ELISA

Antigen	Groupa	SR3	W13	PPSI	F1
SR3	IV (1)	1.00	0.25	0.04	0.23
SR9	IV (1)	0.52	0.28	0.07	0.09
13-4	IV (1)	0.72	0.57	0.18	0.13
CTDF	IV (1)	0.66	0.62	0.17	0.12
W13	IV (1)	0.20	1.00	0.04	0.21
PPS1	IV (2)	0.08	0.10	1.00	0.09
F1	IV (3)	0.24	0.07	0.04	1.00
F2	IV (3)	0.24	0.08	0.04	0.95
F25	IV (3)	0.27	0.08	0.04	1.00
15-1	III	0.07	0.03	0.03	0.06
PT2	III	0.07	0.03	0.03	0.05
Control		0.03	0.03	0.03	0.03

* A_{405} of test sample divided by A_{405} of homologous reaction. A_{405} of homologous reactions were >2.0. Each reading is the mean value from eight replicate wells in two microtiter plates.

aProposed subgroups in parentheses

In ELISA (Table 4), F1 antiserum reacted very strongly with F1, F2, and F25 antigens. PPS1 had a strong homologous reaction only, and SR3, SR9, 13-4, CTDF, and W13 showed evidence of relationship through significant heterologous crosses to SR3 and W13 antisera.

DISCUSSION

PAGE, ELISA, and deformation assays indicate the existence of three clusters or subgroups within the group IV spiroplasmas. These proposed subgroups are: group IV-(1), the SR3 subgroup consisting of flower and honeybee isolates from Maryland, Connecticut, and Colorado; group IV-(2), represented solely by flower isolate PPS1 from Florida; and group IV-(3), consisting of flower and honeybee isolates from France and Corsica. The French honeybee isolate, B31, appears to fall into group IV-(3) from PAGE and DF results; however, the B31 antiserum reacted poorly in the DF test. The B31 antiserum was not received in time to include it in the ELISA tests which appeared to be more definitive in distinguishing subgroups in these tests. It is suggested that nucleic acid hybridization studies be undertaken to more fully define the apparent subgroupings within the group IV spiroplasmas.

REFERENCES

1. Davis RE: Spiroplasma associated with flowers of the tulip tree. Can J Microbiol 24:954–959, 1978
2. Junca P, Saillard C, Tully J, et al: Characterization of spiroplasmas isolés d’ insectes et de fleurs de France continentale, de Corse et du Maroc. Proposition pour une classification des spiroplasmes. C R Acad Sci Paris, Ser D 290:1209–1212, 1980
3. Whitcomb RF, Tully JG, Clark TB, et al: Revised serological classification of spiroplasmas, new provisional groups, and recommendations for serotyping of isolates. Curr Microbiol 7:291–296, 1982
4. Davis RE, Lee IM, Basciano LK: Spiroplasma: serological grouping of strains associated with plants and insects. Can J Microbiol 25:861–866, 1979
5. McCoy RE, Williams DS, Thomas DL: Isolation of mycoplasmas from flowers. Natl Sci Council (Taiwan) Symp Ser No 1:75-80, 1979
6. Raju BC, Nyland G, Meikle T, et al: Helical motile mycoplasmas associated with flowers and honeybees in California. Can J Microbiol 27:249–253, 1981
7. Whitcomb RF, Tully JG, Rose DL, et al: Wall-less prokaryotes from fall flowers in central United
8. Mouches C, Bove JM, Albisetti J, et al: A spiroplasma of serogroup IV causes a May-disease-like disorder of honeybees in southwestern France. Microbial Ecol, in press
9. McCoy RE, Davis MJ, Dowell RV: In vivo cultivation of spiroplasmas in larvae of the greater wax moth. Phytopathology 71:408–411, 1981
10. Dowell RV, Basham HG, McCoy RE: Effect of five spiroplasmas on growth and mortality of Galleria mellonella (Lepidoptera: Pyralidae) larvae. J Invertebr Pathol 37:231–235, 1981
11. Davis RE: Antibiotic sensitivities in vitro of diverse spiroplasma strains associated with plants and insects. Appl Environ Microbiol 41:329–333, 1981
12. McCoy RE, Basham HG, Davis RE: Powder puff spiroplasma: a new epiphytic mycoplasma. Microbial Ecol 8:169–180, 1982
13. Lee IM, Davis RE: DNA homology among diverse spiroplasma strains representing several serogroups. Can J Microbiol 26:1356–1363, 1980
14. Tully J, Rose DL, Garcia-Jurado O, et al: Serological analysis of a new group of spiroplasmas. Curr Microbiol 3:369–372, 1980
15. Mouches C, Menara A, Tully JG, et al: Polyacrylamide gel analysis of spiroplasma proteins and its contribution to the taxonomy of spiroplasmas. Revs Inf Dis 4 (suppl):5141–5147, 1982
16. Bove JM, Saillard C, Junca P, et al: Guanosine plus cytosine content, hybridization percentages and ECORI restriction enzyme profiles of spiroplasma DNA. Revs Inf Dis 4 (suppl):5129–5136, 1982
17. Davis RE, Lee IM: Spiroplasmas: comparative properties and emerging taxonomic concepts. Revs Inf Dis 4 (suppl):5122–5128, 1982
18. Freundt EA, Andrees BE, Ernø H, et al: The sensitivities of Mycoplasmatales to sodium polyanetholsulfonate and digitonin. Zbl Bakt., Abt I Orig A225:104–112, 1973
19. Ernø H, Stipkovits L: Bovine mycoplasmas: cultural and biochemical studies, III. Acta Vet Scand 14:450–463, 1973
20. Daniels MJ, Archer DB, Stephens MA, et al: Comparison of spiroplasmas by polyacrylamide gel electrophoresis of cell proteins. Curr Microbiol 4:377–380, 1980
21. Black FT: Modifications of the growth inhibition test and its application to human T-mycoplasmas. Appl Microbiol 25:528–533, 1973
22. Whitcomb RF, Tully JG, McCawley P, et al: Application of the growth inhibition test to spiroplasma taxonomy. Intl J Syst Bacteriol 32:387–394, 1982
23. Williamson DL, Whitcomb RF, Tully JG: The spiroplasma deformation test, a new serological method. Curr Microbiol 1:203–207, 1978