Initiation of prostate cancer in mice by Tp53^{R270H}: evidence for an alternative molecular progression

Ruth L. Vinall1,2,3, Jane Q. Chen4, Neil E. Hubbard4, Shola S. Sulaimon4, Michael M. Shen5, Ralph W. DeVere White2,3 and Alexander D. Borowsky3,4,6,*

SUMMARY

Tp53 mutations are common in human prostate cancer (CaP), occurring with a frequency of ~30% and ~70% in localized and metastatic disease, respectively. In vitro studies have determined several common mutations of Tp53 that have specific gain-of-function properties in addition to loss of function, including the ability to promote castration-resistant (CR) growth of CaP cells in some contexts. To date, a lack of suitable mouse models has prohibited investigation of the role played by Tp53 mutations in mediating CaP progression in vivo. Here, we describe the effects of conditional expression of a mutant Tp53 (Tp53^{R270H}), equivalent to the human hotspot mutant R273H in the prostate epithelium of mice. Heterozygous $\text{Tp53}^{R270H/+}$ Nkx3.1-Cre mice were bred onto an FVB/N background via speed congenesis to produce strain FVB.129S4(Trp53tm3Tyj)/FVB.129S(Nkx3-1tm3(cre)Mms/wt) and littermate genotype negative control mice. These mutant mice had significantly increased incidences of prostate intraepithelial neoplasia (PIN) lesions, and these appeared earlier, compared with the Nkx3.1 haploinsufficient (Nkx3.1-Cre het) littermate mice, which did not express the Tp53 mutation. PIN lesions in these mice showed consistent progression and some developed into invasive adenocarcinoma with a high grade, sarcomatoid or epithelial-mesenchymal transition (EMT) phenotype. PIN lesions were similar to those seen in PTEN conditional knockout mice, with evidence of AKT activation concomitant with neoplastic proliferation. However, the invasive tumor phenotype is rarely seen in previously described mouse models of prostatic neoplasia. These data indicate that the Tp53^{R270H} mutation plays a role in CaP initiation. This finding has not previously been reported. Further characterization of this model, particularly in a setting of androgen deprivation, should allow further insight into the mechanisms by which the Tp53^{R270H} mutation mediates CaP progression.

INTRODUCTION

Prostate cancer (CaP) is the leading cancer diagnosis in men in the United States, with new cases for 2012 estimated at 241,740 and over 28,000 estimated annual deaths from the disease (http://www.cancer.gov/cancertopics/types/prostate). Clinical cures are achieved in approximately 80% of patients presenting with localized disease; however, once metastasis occurs, response to second-line therapy, usually treatment with an androgen receptor agonist such as bicalutamide, is only 25%, with the response duration lasting for only a few months. Although multiple studies have documented a link between mutations in Tp53 and disease progression in individuals with CaP, the exact mechanism by which these Tp53 mutations, in particular gain-of-function (GOF) Tp53 mutations, mediate disease progression remains to be fully elucidated (Tomkova et al., 2008).

Tp53-null mice do not develop prostatic intraepithelial neoplasia (PIN) or CaP; however, acceleration and advancement of tumorigenesis is observed in Tp53-null compound models (combining additional oncogenic genetic manipulations), supporting the current dogma that mutations in Tp53 drive late-stage CaP progression (Navone et al., 1993). Somewhat surprisingly, very few genetically engineered mouse models (GEM) that address the contribution of mutant Tp53 to CaP progression exist. Transgenic mice expressing Tp53^{R270H} (equivalent to the human hotspot mutant R273H) under control of the probasin promoter did develop PIN at 1 year of age, but targeted ‘knock in’ of Tp53^{R270H} did not result in any observed prostate pathology (Elgavish et al., 2004; Olive et al., 2004).

Owing to the high frequency with which Tp53 is mutated in human CaP, we aimed to develop and characterize GEM with prostate-specific expression of mutant Tp53. Our mouse model challenges the current dogma that mutation in Tp53 is only important in promoting disease progression in late-stage CaP by demonstrating that Tp53 can act as an initiating factor. Here we describe the generation and characterization of the $\text{Tp53}^{R270H/+}$ Nkx3.1-Cre mouse model. This model, which has been bred onto a fully congenic FVB/NJ strain background, conditionally expresses the R270H Tp53 GOF mutation in the prostate epithelium of mice, resulting in the development of both PIN and CaP lesions.

RESULTS

Validation, congenesis and characterization of $\text{Tp53}^{R270H/+}$ Nkx3.1-Cre mice

Fig. 1A shows a schematic representation of the targeting vector and the floxed allele following excision of the STOP cassette by
DMM

Disease Models & Mechanisms

RESEARCH ARTICLE

Prostate-specific expression of the Tp53 mutant initiates early PIN lesions in Nkx3.1-Cre heterozygous mice

Heterozygous Tp53\(^{R270H/+}\) Nkx3.1-Cre mice with prostate-specific expression of the Tp53\(^{R270H/+}\) mutation \((n=16)\) had a high incidence of atypia or PIN grade 1 (PIN 1) with progression to PIN 2 and PIN 3 as described (Park et al., 2002), which, in homozygous Tp53\(^{R270H/+}\) Nkx3.1-Cre\(^{-/-}\) mice, could be observed as early as 5 weeks of age (Fig. 1D, Fig. 2F) and, in heterozygous Tp53\(^{R270H/+}\) Nkx3.1-Cre\(^{-/-}\) mice, was seen by 6 months of age. Most lesions were in the dorsolateral prostate and coagulating gland and less so in the ventral prostate. No changes were observed in the seminal vesicles or the periurethral glands.

Nkx3.1 haploinsufficient littermate mice (Nkx3.1-Cre\(^{-/-}\); n=6) that did not express the Tp53 mutation did not develop PIN grade 2 or higher but did have some focal atypia after 12 months of age (Fig. 2A-C). Tp53 mutant mice (Tp53\(^{R270H/+}\) Nkx3.1-Cre\(^{-/-}\)) younger than 6 months did not have PIN lesions of grade 2 or higher (Fig. 3A,B) but some had focal atypia seen as enlarged and hyperchromatic nuclei in small clusters with loss of cell polarity and foci of PIN grade 1, although the distinction of focal atypia and PIN 1 was subjective. Mice with homozygous Tp53\(^{R270H/+}\) Nkx3.1-Cre\(^{-/-}\) had PIN 2 lesions as early as 4 months of age (Fig. 1D) and animals with PIN lesions of higher grades almost always had areas of lower grades of PIN as well.

In one mouse, there was a single lobe/gland that demonstrated grades 1-4 of PIN (Fig. 3B). Qualitatively, Ki67 staining confirmed higher proliferation in the PIN lesions, with 40% of PIN lesion cells being positive for Ki67 (data not shown). Non-atypical adjacent or control prostate had less than 1% Ki67 positivity. The combined data infer that the p53 mutation initiates PIN lesions that the Tp53 mutant is clonal. Future studies will focus on elucidating why this is. Rare non-atypical nuclei also had p53 positivity, but diffuse stabilization of p53 in all or most prostate epithelial cells was not seen. Androgen receptor (AR) expression was present throughout the prostate epithelium and included areas of CaP and PIN (Fig. 4). The intensity of the AR expression was decreased in many of the PIN lesions, and was undetectable in some (Fig. 2F). AR expression was present throughout the prostate epithelium and included areas of CaP and PIN (Fig. 4). The intensity of the AR expression was decreased in many of the PIN lesions, and was undetectable in some (Fig. 2F). Levels of phosphorylated AKT (pAKT) were elevated in PIN lesions, indicating possible direct activation of the AKT pathway by expression of the Tp53\(^{R270H/+}\) allele (Fig. 2F, Fig. 3B, lower right panel). In careful analyses of the earliest lesions (as illustrated in Fig. 2D-F), p53 mutation, as

Microdissection followed by RNA extraction, reverse-transcriptase PCR (RT-PCR) and sequencing confirmed the expression of the Tp53\(^{R270H/+}\) mutation in PIN lesions (Fig. 1C).

Determination of Tp53 stabilization and expression of AR and pAKT in PIN lesions

Immunohistochemical analysis determined that Tp53 is stabilized in a variable percent of cells (ranging from 10-70%) in the PIN lesions, indicating that mutant p53 is expressed by these cells (Fig. 3B, lower left panel). Occasional atypical cells with p53 stabilization, as determined by immunohistochemistry (IHC) detection, were seen in areas not recognized as PIN on hematoxylin and eosin (H&E) stains, probably representing small neoplastic initiation foci. These data indicate that the expression of the Tp53\(^{R270H/+}\) mutant is clonal. Future studies will focus on elucidating why this is. Rare non-atypical nuclei also had p53 positivity, but diffuse stabilization of p53 in all or most prostate epithelial cells was not seen. Androgen receptor (AR) expression was present throughout the prostate epithelium and included areas of CaP and PIN (Fig. 4A, Fig. 5B,C) and PIN (Fig. 5A). The intensity of the AR expression was decreased in many of the PIN lesions, and was undetectable in some (Fig. 2G, Fig. 5A). Levels of phosphorylated AKT (pAKT) were elevated in PIN lesions, indicating possible direct activation of the AKT pathway by expression of the Tp53\(^{R270H/+}\) allele. (Fig. 2F, Fig. 3B, lower right panel). In careful analyses of the earliest lesions (as illustrated in Fig. 2D-F), p53 mutation, as

...
detected by IHC positivity, consistent with protein stabilization, seemed to precede AKT activation/phosphorylation, and AR expression was maintained in early lesions. Reduced AR expression was seen later in more well developed PIN lesions (Fig. 2I).

Prostate-specific expression of the Tp53 mutant can mediate progression to CaP

Heterozygous Tp53R270H/+ Nkx3.1-Cre mice developed invasive CaP by 30 weeks of age, with incomplete penetrance. Although the observed PIN lesions were typical of GEM prostate models, including the PTEN conditional models, the invasive tumor phenotype was not (Fig. 4).

The invasive CaP showed a distinct sarcomatoid or epithelial-mesenchymal transition (EMT) phenotype. A similar EMT phenotype has been observed with an inducible FGFR1 mouse model; however, the involvement of p53 in that model was not reported (Acevedo et al., 2007). Tumor cells were highly atypical, and mitoses were numerous. Invasive tumor grew in solid nests and sheets, with only focal evidence of glandular or microacinar differentiation. Gleason grade for such a tumor in the human prostate would be high, numerical pattern ‘5’ or a score of ‘5+5’. Cells comprising the tumor were both epithelioid and spindled, and invaded around normal glands. IHC of the CaP lesions showed p53 hyperphosphorylation, and these foci seem to give rise to the larger PIN lesions with progression to invasive carcinomas. This alternative progression model (Fig. 6) therefore challenges the conventional concept that loss of Tp53 function is exclusively a late event in CaP progression and that alterations in the PTEN-AKT pathway occur prior to Tp53 mutation (Gonzalgo and Isaacs, 2003; Shen and Abate-Shen, 2010). The data suggest that Tp53 mutation can be an initiating event in prostate neoplasia, and suggest that early Tp53 mutation might be associated with progression towards higher grade carcinomas with tumor virulence features including EMT.

High Tp53 mutation frequencies have indeed been detected in metastatic and CR CaP, with 52-89% of tumors expressing Tp53 protein by IHC (Olivier et al., 2009). However, in support of our finding, our group and others have documented the occurrence of Tp53 mutations in ~30% of localized human CaP (Chi et al., 1994; Heidenberg et al., 1995; Hughes et al., 1995; Bauer et al., 1996; Moul et al., 1996; Prendergast et al., 1996; Byrne et al., 1997; Meyers et al., 1998; Schlechte et al., 1998; Shi et al., 2002; Downing et al., 2003). The difference in rates of Tp53 mutation reported by these studies is likely to be due in part to the different methodologies used to assess the presence of p53 mutations (for a review, see Robles and Harris, 2010). The presence of Tp53 mutations has also been documented in human PIN lesions (Downing et al., 2001).

Although the role of mutant Tp53 in promoting the initiation of CaP remains controversial, mutant Tp53 has been shown to
p53 mutation initiates PIN facilitation in other cancer types, for example breast, lung and esophageal cancers (Olivier et al., 2009). Several models have been proposed for defining how Tp53 mutations infer oncogenicity (Soussi, 2007). Current data suggest that genomic instability is the most likely mechanism of action that mediates initiation of Tp53R270H-driven breast carcinomas (Wijnhoven et al., 2005), whereas GOF activity is important in the initiation of Tp53R270H-driven lung carcinomas (Olive et al., 2004). Further analysis and manipulation of our Tp53R270H/+ Nkx3.1-Cre model will allow for elucidation of the mechanism(s) by which Tp53R270H drives initiation and progression of CaP.

Similar to Tp53 mutation, inactivation of PTEN is also a frequent occurrence in individuals with CaP (Shen and Abate-Shen, 2010). Increased AKT activity suggests that PTEN inactivation might occur in our model, although PTEN status remains to be determined. The current dogma is that p53 acts as a ‘failsafe’ protein after loss of PTEN function. Although it is well known that combined inactivation of PTEN and Tp53 in compound models of CaP greatly accelerates tumor development (Jeet et al., 2010), in terms of disease progression the importance of whether p53 or PTEN loss of function occurs first remains to be determined.

It should be noted that, although Nkx3.1-null mice do not develop PIN until 1-2 years of age, it is possible that Nkx3.1 haploinsufficiency is required for the phenotype observed in our Tp53R270H/+ Nkx3.1-Cre model. Further analysis and manipulation of our Tp53R270H/+ Nkx3.1-Cre model will allow for elucidation of the mechanism(s) by which Tp53R270H drives initiation and progression of CaP.

Fig. 3. Distribution of PIN lesion grade among Tp53R270H/+ Nkx3.1-Cre mice. The scatterplot represents the highest grade lesion for a particular mouse (A), though often areas of lower grade were also seen (B). The horizontal line within each grade represents the mean age. Grading was performed as described previously (Park et al., 2002). Phenotypically, PIN lesions in Tp53R270H/+ Nkx3.1-Cre mice are similar to those seen in PTEN conditional knockout mice (B, upper right panel and lower 2 panels). Immunohistochemical analysis determined that p53 is stabilized in 10-70% of the cells within PIN lesions (B, lower left), further validating the expression of the p53 R270H mutation in these lesions. Levels of pAKT were elevated in almost all PIN lesions (B, lower right panel).

Fig. 4. Immunophenotyping of invasive carcinoma reveals an EMT phenotype and AKT ‘de-addiction’. IHC (markers indicated lower right of each panel) on the same area (near-serial sections) of the periphery of an invasive tumor with an adjacent duct (bottom and lower left of each panel). This reveals strong AR expression in the duct, and weaker and lower percentage AR expression in the tumor cell nuclei (A). Focal pAKT is seen in the in situ atypia (B), corresponding to Tp53 stabilization/mutation (D). The tumor co-expresses vimentin (C) and luminal CK8/18 (E), and loses expression of pAKT (B). Although AKT activation is likely to be a driver of the PIN lesions, the invasive tumor seems to be independent of AKT (is ‘de-addicted’). The in situ areas are vimentin negative and cytokeratin positive (C,E). The tumor is negative for neuroendocrine differentiation as detected by a negative synaptophysin (F); inset is from the same tissue section showing a neural ganglion as internal positive control.
METHODS

Generation of conditionally inactive mutant Tp53 mice

Mice containing a Cre-activatable Tp53^R270H^ knock-in allele were obtained from the Tyler Jacks Lab (Olive et al., 2004). The loxP-flanked conditional STOP cassette (Tuveson et al., 2004) was cloned into the XhoI site in intron 1 of the murine Tp53 locus. The R270H missense mutation was generated as described previously (de Vries et al., 2002). In our colony, the presence of the loxP–STOP-cassette–loxP (LSL) cassette in intron 1 of Tp53 genomic DNA is detected using the following primers to generate a wild-type band of 170 bp and a mutant band of 270 bp: wt F- 5’-TTACACATCCAGCCTCTGTGG-3’; mutant F- 5’-AGCTAG-CCACCAGCCACTGGTGAAGTCTGCA-3’; R- 3’-CTTGGA-GACATAGCCACTG-3’. To determine the presence of the recombined alleles of mutant Tp53, genomic DNA was amplified using the following primers flanking the integration site of the remaining loxP site in Tp53 intron 1: F- 5’-AGCCTGCC- TAGCTTCCCTAGG-3’; R- 5’-CTTGGAGACATAGCCACTG-3’. The Tp53^R270H^ (amino acid 270 in mice Tp53 corresponds to 273 in human Tp53) mutant has a wild-type Tp53 conformation but is defective in DNA binding, because R270H is in the DNA-binding domain of Tp53. The Nkx3.1-Cre mouse is a knock-out/knock-in mouse in which the Nkx3.1 coding region is replaced with the Cre recombinase coding sequence to result in prostate-specific expression of Cre, but also an Nkx3.1-null allele (Lin et al., 2007; Thomsen et al., 2008). The presence of wild-type

Fig. 5. Heterogeneity of staining for AR in a PIN lesion and invasive carcinoma. In some PIN lesions (A), AR staining of the nuclei has become faint or is even lost (arrowheads) compared with nuclei of normal prostate epithelium (arrows). In invasive carcinoma, progressive loss of AR is seen with areas of strong nuclear staining in less than 50% of tumor cells (B), weak nuclear staining in less than 20% of cells (C; arrowheads) and areas of negative nuclear AR staining (D).

Fig. 6. Schematic diagram of alternative molecular progression in prostate cancer compared with conventional model. CA, carcinoma; PIA, proliferative inflammatory atrophy.
p53 mutation initiates PIN

TRANSLATIONAL IMPACT

Clinical issue
Tp53 mutations are common in prostate cancer (CaP), occurring with a frequency of ~30% in localized disease and ~70% in metastatic disease. Although multiple studies have documented a link between mutations in Tp53 and disease progression in individuals with CaP, Tp53 mutation is generally believed to be a late event in tumor evolution. In mouse models of germline Tp53 mutations, prostatic intraepithelial neoplasia (PIN) is not reported; however, because sarcomas and lymphomas develop rapidly and frequently in these mice, it has been unclear whether Tp53 mutations simply do not have time to impact the prostate. Here, the authors sought to address this issue by engineering mice carrying a prostate-conditional Tp53 knock-in mutation. They chose to model the Tp53R270H mutation (which is directly analogous to the common human ‘hotspot’ mutation Tp53R270H) because it is frequency observed in human CaP, and because it is associated with an androgen-insensitive gain of function.

Results
Heterozygous Tp53R270H/Nkx3.1-Cre mice with prostate-specific expression of the Tp53R270H mutation were generated and bred onto a fully congenic FVB/NJ background. The effect of prostate-specific expression of the Tp53R270H mutation on disease progression was characterized over a 16-month period. Compared with Nkx3.1 haplinsufficient mice (Nkx3.1-Cre), which did not express the Tp53 mutation, Tp53R270H/Nkx3.1-Cre littermate mice had a significantly increased incidence of PIN lesions and these appeared at earlier time points. PIN lesions showed consistent progression and invasive carcinoma with a high-grade sarcomatoid or epithelial-mesenchymal transition phenotype. These PIN lesions were similar to those observed in PTEN conditional knockout mice, with evidence of AKT activation concomitant with neoplastic proliferation.

Implications and future directions
These data demonstrate that the Tp53R270H mutation plays a role in the initiation and development of CaP in mice. In the late stages of progression, the mutation can confer an aggressive cancer phenotype. Interestingly, however, the engineered mutation also seems to contribute to initiation of early PIN lesions in the prostate. This has not been previously reported; even in studies in which the identical knock-in mutation was expressed in all tissues, prostates were found to be normal. Future studies will focus on determining how the Tp53R270H mutation impacts the effectiveness of agents frequently used to treat patients with CaP; particularly androgen ablation and radiation therapy.

Conogenesis to an FVB/NJ strain background
Mixed strain background (C57Bl6/129svi) mice bearing the Nkx3.1-Cre knock-in allele and mice bearing the Flox-STOP R270H Tp53 conditional allele were bred with wild-type FVB/NJ mice (Jackson Laboratory, Bar Harbor, ME), screened for target allele positivity by tail DNA PCR (as above), and then ‘best males’ for speed congenesis were selected by medium density SNP analysis (Illumina, San Diego, CA) in the UC Davis Mouse Biology Program. Five generations of speed selected backcrossing were performed after two initial generations of non-speed backcross to FVB/NJ.

Microdissection, PCR and sequencing
RNA isolated from microdissected PIN lesion was amplified with the following primers to validate expression of Tp53R270H mRNA: Forward primer 5'-TCTGCGGGGACAGCTTTTGG-3', Reverse primer 5'-GAAATCGGCTCATCAAGTG-3'. PCR products were purified using Takara recochips (Clontech, Madison, WI) and sequenced in both directions at the UC Davis Department of Biological Sciences DNA sequencing core facility.

Histopathology and immunohistochemistry
Standard histopathology and IHC was performed as described previously (Park et al., 2002). The presence and number of PIN lesions was assessed by pathological analysis of H&E-stained sections. PIN lesion grades for GEM are described elsewhere (Park et al., 2002). Primary antibodies used were anti-Ki67 Ab-4 (1:500; Neomarker, Fremont, CA), anti-p-AKT (1:2000; Cell Signaling, Danvers, MA), anti-CK8/18 (1:2000; Fitzgerald, Acton, MA), anti-AR (Millipore, Billerica, MA), anti-vimentin (Epitomics, Burlingame, CA), anti-p53 (Santa Cruz Biotech, Santa Cruz, CA) and anti-synaptophysin (Invitrogen, Carlsbad, CA).

ACKNOWLEDGEMENTS
We wish to thank Tyler Jacks, Kenneth Olive and David Tuveson for providing us with the mice containing a Cre-activatable Tp53R270H knock-in allele, and Katie Bell for histotechnology. We also thank Brandon Willis for medium density SNP analysis used in the speed congenesis.

COMPETING INTERESTS
The authors declare that they do not have any competing or financial interests.

AUTHOR CONTRIBUTIONS
A.D.B. and R.W.D.W. conceived the idea for the mouse model, S.S.S., M.M.S. and A.D.B. generated the mouse model, R.L.V. and J.O.C. characterized the mouse model, J.O.C. genotyped the mice and dissected the tissues, and R.L.V., N.E.H. and A.D.B. prepared the manuscript.

FUNDING
This work was supported by the National Institutes of Health, including the National Cancer Institute [U01 CA141582 (to A.D.B.); 1PO1CA154293-01A1 (to M.M.S.); 3P0CA093373–0953 (to R.W.D.W.); and the National Center for Research Resources (K26 RR20437 (to A.D.B.))], and by a grant from the University of California Davis, School of Medicine, Department of Pathology, Advisory Research Committee (to A.D.B.).

REFERENCES
Acedo, V. D., Gangula, R. D., Freeman, K. W., Li, R., Zhang, Y., Wang, F., Ayala, G. E., Peterson, L. E., Ittmann, M. and Spencer, D. M. (2007). Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell 12, 559-571.
Bauer, J. J., Sesterhenn, I. A., Mostofi, F. K., McLeod, D. G., Srivastava, S. and Moul, J. W. (1996). Elevated levels of apoptosis regulator proteins p53 and bcl-2 are independent prognostic biomarkers in surgically treated clinically localized prostate cancer. J. Urol. 156, 1511-1516.
Bhatia-Gaur, R., Donjacour, A. A., Scialdone, P. J., Liu, S., Desai, N., Young, P., Norton, C. R., Gridley, T., Cardiff, R. D., Cunha, G. R. et al. (1999). Roles for Nkx3.1 in prostate development and cancer. Genes Dev. 13, 966-977.
Byrne, R. L., Horne, C. H., Robinson, M. C., Autzen, P., Apakama, L., Bishop, R. I., Neal, D. E. and Hamdy, F. C. (1997). The expression of waf-1, p53 and bcl-2 in prostatic adenocarcinoma. Br. J. Urol. 79, 190-195.
Chi, S. G., deVere White, R. W., Meyers, F. J., Siders, D. B., Lee, F. and Gumerlock, P. H. (1994). p53 in prostate cancer: frequent expressed transition mutations. J. Natl. Cancer Inst. 86, 926-933.
Chiaverotti, T., Couto, S. S., Donjacour, A., Mao, J. H., Nagase, H., Cardiff, R. D., Cunha, G. R. and Balmain, A. (2008). Dissociation of epithelial and neuroendocrine...
carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am. J. Pathol. 172, 236-246.

de Vries, A., Flores, E. R., Miranda, B., Hsieh, H. M., van Oostrom, C. T., Sage, J. and Jacks, T. (2002). Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc. Natl. Acad. Sci. USA 99, 2948-2953.

Downing, S. R., Jackson, P. and Russell, P. J. (2001). Mutations within the tumour suppressor gene p53 are not confined to a late event in prostate cancer progression. A review of the evidence. Urol. Oncol. 6, 103-110.

Downing, S. R., Russell, P. J. and Jackson, P. (2003). Alterations of p53 are common in early stage prostate cancer. Can. J. Urol. 10, 1924-1933.

Elavish, A., Wood, P. A., Pinkert, C. A., Eltoum, I. E., Cartee, T., Wilbanks, J., Heidenberg, H. B., Sesterhenn, I. A., Gaddipati, J. P., Weghorst, C. M., Buzard, G. S., Jeet, V., Russell, P. J. and Khatri, A. (2003). Molecular pathways to prostate cancer.

Gonzalgo, M. L. and Isaacs, W. B. (2002). Targeted point mutations of p53 lead to dominant-negative suppressor gene p53 are not confined to a late event in prostate cancer progression.

Jacks, T. (2002). Targeted point mutations of p53 lead to dominant-negative suppression.

Mentor-Marcel, R., Tian, L. and Scroggins, S. E. (2003). Androgen-independent prostate cancer.

Moul, J. W. and Srivastava, S. (2010). Molecular genetics of prostate cancer: new perspectives & challenges.

Shen, M. M. and Abate-Shen, C. (2010). Molecular genetics of prostate cancer: new perspectives & challenges.

Tuveson, D. A., Yu, M., Ohtsuka, Y., Nisihara, H., Nasuhara, Y., Kamachi-Hirai, T., Munakata, M., Ohtsuka, Y., Nisihara, H., Nasuhara, Y., Kamachi-Satoh, A., Tosaka-Akiya, H., Homma, Y. and Kawakami, Y. (2002). Expression and alteration of ras and p53 proteins in patients with lung carcinoma accompanied by idiopathic pulmonary fibrosis. Cancer 95, 624-633.

Thomsen, M. K., Butler, C. M., Shen, M. M. and Swain, A. (2008). Sox9 is required for prostate development. Dev. Biol. 316, 302-311.

Tomkova, K., Tomka, M. and Zajac, V. (2008). Contribution of p53, p63, and p73 to the developmental diseases and cancer. Neoplasma 55, 177-181.

Tuveson, D. A., Shaw, A. T., Willis, N. A., Silver, D. P., Jackson, E. L., Chang, S., Mercer, K. L., Grochow, R., Hock, H., Crowley, D. et al. (2004). Endogenous oncogenic human K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375-387.

Vinnai, T., Tepper, C. G., Deitch, A. D., Rudolph, B. D., Ditscherlein, G. and Loening, S. A. (2003). p53 tumour suppressor gene mutations in benign prostatic hyperplasia and prostate cancer. Eur. Urol. 43, 433-440.

Robles, A. I. and Harris, C. C. (2010). Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb. Perspect. Biol. 2, a001016.

Schielle, H., Lenk, S. V., Loning, T., Schnorr, D., Rudolph, B. D., Ditscherlein, G. and Loening, S. A. (1998). p53 tumour suppressor gene mutations in benign prostatic hyperplasia and prostate cancer.

Olive, K. P., Tuveson, D. A., Ruhe, Z. C., Yin, B., Willis, N. A., Bronson, R. T., Crowley, D. and Jacks, T. (2004). Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847-860.

Olivier, M., Petitjean, A., Marcel, V., Petre, A., Mounawar, M., Plymoth, A., de Fromontel, C. C. and Hainaut, P. (2009). Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther. 16, 1-12.

Park, J. H., Walls, J. E., Galvez, J. J., Kim, M., Abate-Shen, C., Shen, M. M. and Cardiff, R. D. (2002). Prostatic intraepithelial neoplasia in genetically engineered mice. Am. J. Pathol. 161, 727-735.

Prendergast, N. J., Atkin, L. R., Schatte, E. C., Paulson, D. F. and Walther, P. J. (1996). p53 immunohistochemical and genetic alterations are associated at high incidence with post-irradiated locally persistent prostate carcinoma. J. Urol. 155, 1685-1692.

Robles, A. I. and Harris, C. C. (2010). Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb. Perspect. Biol. 2, a001016.