In silico studies of ASEM analogues targeting α7-nAChR and experimental verification

Yang Zhoua, Guanglin Kuangb, Junhao Lib, Christer Halldínc, Agneta Nordbergd,e, Bengt Långströmf, Yaoquan Tub, and Hans Ågrena,*

aDepartment of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

bDivision of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, S-106 91, Stockholm, Sweden. E-mail: hagren@kth.se

cKarolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, 171 76, Stockholm, Sweden

dDepartment of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Neo 141 84 Stockholm and Theme Aging Karolinska University Hospital, S-141 86, Stockholm, Sweden

eDepartment of Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden

fCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P.R. China
Figure S1. Illustration of the thermodynamic cycle, together with the perturbation pathways, used by an FEP+ calculation. The perturbation pathways are represented by arrows A and B. The difference in the binding free energy ($\Delta \Delta G$) between an ASEM analogue (ΔG_A) and ASEM (ΔG_B) is related to the free energy of transforming ASEM to its analogue in the solvent (ΔG_A) and in α_7-AChBP (ΔG_B).