Coordinating commission to hotels and online travel agencies

Chi-Jen Chen 1*

1 Department of Tourism Management, Tajen University of Technology, Taiwan. E-mail: chencj@tajen.edu.tw

*Corresponding author

Abstract
The purpose of this research is to find the optimal commission rate that the hotels pay the online travel agencies under cooperative decentralization. A Stackelberg game theory is utilized to model their decision making. The online travel agency who sets and provides a commission rate to the hotel acts as the leader; the hotel who decides the guest room rate is the follower. The results show that the optimal commission rate under cooperative decentralization is the ratio of the online travel agency unit cost to total unit cost. The sum of these two firms’ profit will equal the profits under the centralized channel. Notably, even decentralization occurs if through coordination, it can still obtain the maximum profit the same as under centralization.

Keywords: hotel, online travel agency, commission rate, channel coordination

Citation: Chen, C.-J. (2022). Coordinating commission to hotels and online travel agencies. European Journal of Tourism Research 31, 317.
Introduction

Previous studies on the interaction between hotels and online travel agencies have focused on hotel pricing strategies that are part of online distribution channels, hotel room allocation strategies, overselling strategies, dual-channel sales and demand uncertainty (Collins & Parsa, 2006; Guo & He, 2012; Kim et al., 2009; Koide & Ishii, 2005; Lai & Ng, 2005; Liao et al., 2019; Ling et al., 2014; Tso & Law, 2005). Additional research regarding the rates of commission paid by hotels to the online travel agencies assume that such commission is exogenously attributed (Guo et al., 2013; Liao et al., 2019; Liao et al., 2015). For example, Liao et al. (2015) examines the impact of different commission rates impacting online travel agency profitability. Whenever the commission rate is moderate, hotels and online travel agencies may obtain the highest profit levels. Therefore, online travel agencies and hotels can choose to negotiate an appropriate commission rate that is mutually beneficial. Although Liao et al. (2015) proves the existence of an optimal commission rate, their model considers the commission rate as an exogenous setting and substitutes different values into the profit function, which lacks generality. It should be noted that the above studies consider the commission rate to be an exogenous variable. Apart from the aforementioned literature, this paper regards the commission rate to be an endogenous variable determinant of the optimal commission rate.

Various prior studies (Guo et al., 2013; Ling et al., 2011; Ling et al., 2014) have set the hotel as the “leader” in the theoretical Stackelberg game, and online travel agency as the “follower”. The hotels represented in the literature are typically large, international hotel chains possessing greater price negotiation rights when compared to online travel agencies. However, in the current study, the research objects are mainly small-to-medium-sized hotels or B&B operations, while the objects of online travel agencies are those with stronger price negotiation power. As such, this paper sets the online travel agency as the leader and the hotel as the follower similar to Liao et al. (2019).

The purpose of this paper is to examine the optimal commission rate determined by the online travel agency and the optimal hotel room rate determined by the hotel in order to maximize profits as part of a cooperative decentralized channel. The feature of this research is that the commission rate paid by the hotel to the online travel agencies is regarded as an endogenous decision variable to be solved, and a mutually beneficial hotel room rate is able to be solved simultaneously when based on negotiation.

Methodology

Considering a hotel supply chain, this research takes one dominant online travel agency and one small or medium-sized hotel as the research objects. It is given that the hotel cooperates exclusively with a specific online travel agency and that all rooms are handled by this entity for single-channel online sales. Thus, the hotel and online travel agency cooperate under an agency model. Following a Stackelberg game sequence, the online travel agency (leader) provides the hotel (follower) with a cooperation proposal, which presents a mutually beneficial commission rate. As a follower, the hotel responds by setting a reasonable room rate. The online travel agency charges a commission fee rp at the commission rate r for each room sold. The hotel responds by choosing a room rate p to maximize its profit. It is assumed that the quantity sold by a hotel $q(p)$ is a linear function of price p:

$$q(p) = a - bp$$ \hspace{1cm} (1)$$

where a and b are both nonnegative, the scale parameter and price sensitivity coefficient of (1) respectively. Let c represent the unit cost of the entire channel, $c = ch + co$. ch is the unit production cost of hotel, co is the unit production cost of the online travel agency. Let $π_t$, $π_h$, and $π_r$ represent the profit of the online travel agency, the hotel, and the entire hotel supply chain channel respectively, $π_t = π_h + π_o$.

2
To solve the decision-making problem of the centralized hotel supply chain, first consider the sub-problems of the online travel agency and hotel, and then sum them up as an aggregate whole. The profit function of the hotel is represented by the following equation:

$$\pi_h = [(1 - r)p - c]q(p)$$

Substituting the $q(p)$ equation (1) into the profit function of the hotel, it is re-written as:

$$\pi_h = [(1 - r)p - c_h](a - bp) \quad (2)$$

The profit function of the online travel agency is expressed as follows:

$$\pi_o = (rp - c_o)(a - bp) \quad (3)$$

Summing equations (2) and (3), there is only one optimization problem of decision variable p:

$$\max_p \pi_t = \pi_h + \pi_o = (p - c)(a - bp) \quad (4)$$

Differentiating (4) with respect to p and setting to zero, the optimal hotel room rate is derived:

$$\frac{\partial \pi_t}{\partial p} = a - 2bp + bc = 0$$

The optimal room rate p^* can be obtained as:

$$p^* = \frac{a}{2b} + \frac{c}{2} \quad (5)$$

Substituting equation (5) into (4), it is possible to have the maximization profit of centralized hotel supply chain, as follows:

$$\pi_t^* = (p^* - c)(a - bp^*)$$

$$= \left(\frac{a + bc}{2b} - c\right)[(a - b\left(\frac{a + bc}{2b}\right))]$$

$$= \frac{(a - bc)^2}{4b} \quad (6)$$

Before solving the optimal commission rate and price for cooperative decentralization, it is necessary to solve them for non-cooperative decentralization. Each firm is to maximize its profit in non-cooperative decentralized scenario. The profit maximized decision of the hotel can be derived from equation (2) as follows:
The optimal room rate, denoted as \(p_d'(r) \), is a function of commission rate \(r \):

\[
p_d'(r) = \frac{a}{2b} + \frac{c_h}{2(1 - r)}
\]
(7)

Proposition 1. In non-cooperative decentralized scenario, the guest room rate of hotel is optimal and unique.

Proof. The second order partial derivative of \(\pi_h \) in (2) is shown as follows:

\[
\frac{\partial^2 \pi_h}{\partial p^2} = -2b(1 - r) < 0
\]

Therefore, \(p_u'(r) \) is optimal and unique.

Differing from the position of non-cooperative decentralization, the online travel agency can induce the hotel to set the optimum guest room rate that can maximize a channel-wide profit scheme by adopting the optimal commission rate under the cooperative decentralization. According to previous literature, maximized profit occurs at the point of centralization (Liao et al., 2019; Ling et al., 2014; Guo et al., 2013). For example, let the optimal price of non-cooperative decentralization become equal to the optimal price of centralization:

\[
p_d'(r) = p^+
\]

that is,

\[
\frac{a}{2b} + \frac{c_h}{2(1 - r)} = \frac{a}{2b} + \frac{c}{2}
\]

Solving the equation above obtains the optimal commission rate for the cooperative decentralized channel by producing:

\[
r_c^* = \frac{c_o}{c}
\]
(8)

Proposition 2. The optimal commission rate for cooperative decentralization is equal to the ratio of online travel agency cost to the total cost of the entire channel. Thus, the optimal guest room price for cooperative decentralization is equal to the optimal centralized price. Such price and commission-rate settings generate the maximized channel-wide profit in the same manner as that of centralization.

Proof

Substituting equation (8) \(r_c^* = c_o/c \) into (7), there exists:
The result is the same as that of equation (5), that is:

\[\pi_h = \left(1 - r_c^*\right)\pi^*_t \]
\[\pi_o = r_c^*\pi^*_t \]

Proof

See Appendix.

The profit of a hotel and an online travel agency under the auspices of cooperative decentralization is equal to the ratio of their respective cost to the total cost multiplied by the total profit of the centralization. Summing up (10) and (11), there is:

\[\pi_h + \pi_o = \pi^*_t \]

The above equation indicates that the sum of profit for the hotel and the online travel agency is equal to the profit of centralization. Whenever the commission rate of cooperative decentralization is equal to the ratio of the online travel agency cost to the total cost for the entire channel and the hotel room price is equal to the optimal hotel room price of centralized channel, the sum of profit for the hotel and the online travel agency equal to the profit of centralization. Therefore, the commission rate and hotel room rate are optimal.

Numerical analysis

To verify the analytic results in the current study, the parameters \(a, b, c_h, c_o \) are assumed to be 100, 0.5, 80 and 20 respectively. Substituting the above data into Equation (5), (8), (6), (2) and (3), we can obtain the optimal guest room rate 150, optimal commission rate 0.2, maximized profit of centralization 1250, hotel’s profit 1000 and OTA’s profit 250. Table 1 shows that the sum of hotel’s and OTA’s profit 1250 under cooperative decentralization, which is the same as that of centralization. The results in Therefore, The numerical results from the analytic solutions listed in Table 1 confirm the theoretical derivation of Proposition 2 and Equation (10), (11) and (12).
Table 1. Numerical results from the analytic solutions

Optimal parameter	Centralization	Cooperative decentralization
Guest room rate	150	150
Commission rate	----	0.2
Hotel’s profit	----	1000
OTA’s profit	----	250
Total profit	1250	1250

Conclusion

This study discusses a mutually beneficial commission rate coordination between hotels and online travel agencies. Differing from the previous studies (Guo et al., 2013; Liao et al., 2019; Liao et al., 2015), this paper assumes that the commission rate is not a constant, but it is to be considered as an important decision variable for the online travel agency. It derives the optimum commission rate paid by the hotelier to the online travel agency along with the corresponding optimum hotel room rate. The optimal commission rate under cooperative decentralization is the ratio of the online travel agency unit cost to unit cost of the entire channel; so, the optimal guest room rate is equal to the one under centralization.

If the hotel and the online travel agency are able to be coordinated with one another, the online travel agency will provide the optimal commission rate to the hotel and the hotel responding with the most appropriate pricing. The sum of these two firms’ profit will equal the profits under the centralized channel. Notably, even decentralization occurs if through coordination, it can still obtain the maximum profit the same as under centralization.

Appendix

Proof of Proposition 3.

Substituting (8) and (9) into (3), \(\pi_o \) is replaced by \(\pi_o^c \), there is:

\[
\pi_o^c = (r - c_o) (a - bp)
\]

\[
= \left(\frac{a c_o}{2b} - \frac{c_o}{2} \right) \left(a - b \left(\frac{a}{2b} + \frac{c}{2b} \right) \right)
\]

\[
= \left(\frac{a^2 c_o}{4bc} - \frac{ac_o}{4} + \frac{bc c_o}{4} \right)
\]

\[
= \left(\frac{a^2 c_o - 2ab c_o + b^2 c^2 c_o}{4bc} \right) = \frac{c_o (a - bc)^2}{4bc}
\]

\[
= \frac{c}{4b} \pi_t
\]

Similarly, substituting (8) and (9) into (2), \(\pi_t \) is replaced by \(\pi_t^c \), there is:

\[
\pi_t^c = [(1 - r)p - c_h] (a - bp)
\]

\[
= \left[\left(1 - \frac{c_h}{c} \right) (\frac{a}{2b} + \frac{c}{2} - c_h) \right] \left[a - b \left(\frac{a}{2b} + \frac{c}{2} \right) \right]
\]

\[
= \left[\frac{c}{2b} (\frac{a}{2b} + \frac{c}{2}) - c_h \right] \left[a - b \left(\frac{a}{2b} + \frac{c}{2} \right) \right]
\]
\[
\frac{\left(\frac{ac_h - c_o}{2bc} \right) \left(\frac{a - bc}{2}\right)}{2bc} = \frac{a^2 c_h - \frac{ac_h}{4} - \frac{ac_h}{4} + \frac{bcc_h}{4}}{4bc} = \frac{a^2 c_h - 2abc c_h + b^2 c^2 c_a}{4bc} = \frac{c_h(a - bc)^2}{4bc} \]
\[
= \frac{c_h (a - bc)^2}{c} \frac{4b}{4b} = (1 - \frac{c_o}{c}) \pi_t \\
= (1 - r) \pi_t
\]

References
Collins, M., & Parsa, H. G. (2006). Pricing strategies to maximize revenues in the lodging industry. *International Journal of Hospitality Management*, 25(1), 91-107.
Guo, X., & He, L. (2012). Tourism supply-chain coordination: the cooperation between tourism hotel and tour operator. *Tourism Economics*, 18(6), 1361-1376.
Guo, X., Ling, L., & Dong, Y. (2013). Cooperation contract in tourism supply chains: The optimal pricing strategy of hotels for cooperative third party strategic websites. *Annals of Tourism Research*, 41, 20-41.
Kim, J., Bojanic, D. C., & Warnick, R. B. (2009). Price bundling and travel product pricing practices used by online channels of distribution. *Journal of Travel Research*, 47(4), 403-412.
Koide, T., & Ishii, H. (2005). The hotel yield management with two types of room prices, overbooking and cancellations. *International Journal of Production Economics*, 93, 417-428.
Lai, K. K., & Ng, W. L. (2005). A stochastic approach to hotel revenue optimization. *Computers & Operations Research*, 32(5), 1059-1072.
Liao, P., Ye, F., & Wu, X. (2019). A comparison of the merchant and agency models in the hotel industry. *International Transactions in Operational Research*, 26, 1052-1073.
Liao, P., Ye, F., Tayi, G. K., & Zhao, X. (2015). Competition and coordination in online and offline hotel distribution channels under commission override model. *International Journal of Revenue Management*, 8(2), 193-217.
Ling, L., Guo, X., & Liang, L. (2011). Optimal pricing strategy of a small or medium-sized hotel in cooperation with a web site. *Journal of China Tourism Research*, 7(1), 20-41.
Ling, L., Guo, X., & Yang, C. (2014). Opening the online marketplace: An examination of hotel pricing and travel agency on-line distribution of rooms. *Tourism Management*, 45, 234-243.
Tso, A., & Law, R. (2005). Analyzing the online pricing practices of hotels in Hong Kong. *International Journal of Hospitality Management*, 24(2), 301-307.

Received: 08/11/2021
Accepted: 30/11/2021
Coordinating editor: Stanislav Ivanov