Equally spaced collinear points in Euclidean Ramsey theory

Andrii Arman\(^*\) Sergei Tsaturian\(^†\)

11 May 2017

Abstract

It is proved that for \(k \geq 4 \), if the points of \(k \)-dimensional Euclidean space are coloured in red and blue, then there are either two red points distance one apart or \(k+3 \) blue collinear points with distance one between any two consecutive points. This result is new for \(4 \leq k \leq 10 \).

1 Introduction

Let \(\mathbb{E}^k \) be the \(k \)-dimensional Euclidean space and let \(\ell_i \) denote the configuration of \(i \) collinear points with distance 1 between any two consecutive points. Say that two geometric configurations are congruent iff there exists an isometry (distance preserving bijection) between them. For \(d \in \mathbb{Z}^+ \), and geometric configurations \(F_1, F_2 \), let the notation \(\mathbb{E}^d \to (F_1, F_2) \) mean that for any red-blue coloring of \(\mathbb{E}^d \), either the red points contain a congruent copy of \(F_1 \), or the blue points contain a congruent copy of \(F_2 \).

It was asked by Erdős et al. \[5\] if \(\mathbb{E}^3 \to (\ell_2, \ell_5) \) or even if \(\mathbb{E}^2 \to (\ell_2, \ell_5) \). The result of Iván \[8\] implies the positive answer to the first question. Arman and Tsaturian \[1\] presented a simple proof of \(\mathbb{E}^3 \to (\ell_2, \ell_5) \) and proved a stronger result, namely that \(\mathbb{E}^3 \to (\ell_2, \ell_6) \). Tsaturian \[9\] proved that \(\mathbb{E}^2 \to (\ell_2, \ell_5) \).

Denote by \(m(k) \) the maximal number such that \(\mathbb{E}^k \to (\ell_2, \ell_{m(k)}) \), if it exists. Erdős and Graham \[3\] claimed that \(m(2) \) exists. The existence of \(m(k) \) for all \(k \) follows from a recent result by Conlon and Fox \[2\], who proved that

\[
(1 + o(1))1.2^k < m(k) < 10^{5k}.
\]

In this short note, it is proved that for all \(k \geq 4 \), \(m(k) \geq k + 3 \), which is better bound for small values of \(k \), i.e. \(k \leq 10 \). The techniques used here are not applicable when \(k \leq 3 \), so this note does not imply \(\mathbb{E}^2 \to (\ell_2, \ell_5) \) or \(\mathbb{E}^3 \to (\ell_2, \ell_6) \).

For a detailed overview of other results in Euclidean Ramsey theory, see Erdős et al. \[4\] \[5\] \[6\] and Graham’s survey \[7\].

\(^*\)University of Manitoba, \texttt{armana@myumanitoba.ca}

\(^†\)University of Manitoba, \texttt{tsaturis@cc.umanitoba.ca}
2 Main result

Theorem 2.1. For an integer \(k \geq 4 \), \(\mathbb{E}^k \to (\ell_2, \ell_{k+3}) \).

The following notation and preliminary lemmas are needed to prove Theorem 2.1. Denote by \(\Delta^k \) any set of \(k + 1 \) points in \(\mathbb{E}^k \) such that distance between any two points in \(\Delta^k \) is equal to one. In other words, \(\Delta^k \) is a vertex set of a unit regular \(k \)-dimensional simplex in \(\mathbb{E}^k \).

Lemma 2.2. Let \(k \geq 4 \) and let the Euclidean space \(\mathbb{E}^{k-1} \) be coloured in red and blue so that there are no two red points distance 1 apart. Let \(S^{k-2} \) be a \((k-2)\)-dimensional sphere of radius \(\frac{\sqrt{2}}{2} \) with the centre at point \(O \). Then there is a copy of \(\Delta^{k-2} \subset S^{k-2} \) all points of which are blue.

Proof. Assume the contrary, namely that there is no blue \(\Delta^{k-2} \subset S^{k-2} \). Since all points in \(\Delta^{k-2} \) are distance one to each other, it is equivalent to assume that any \(\Delta^{k-2} \subset S^{k-2} \) contains exactly one red point. The following claim is the main part of the proof.

Claim. There is an angle \(\theta > 0 \), such that if \(A \) is red point on \(S^{k-2} \) and \(B \) is antipodal point to \(A \), then all points \(C \) on \(S^{k-2} \), such that \(\angle COB = \theta \), are red.

Proof of the Claim. Let \(A \) and \(B \) be antipodal points on \(S^{k-2} \) and let \(A \) be red. Let \(X \) be the set of points in \(S^{k-2} \) that are at distance 1 to \(A \). Then \(X \) is a \((k-3)\)-dimensional sphere with radius \(\frac{\sqrt{2}}{2} \). Let \(A_1, A_2, \ldots, A_{k-2} \in X \) be such that \(\{A, A_1, A_2, \ldots, A_{k-2}\} \) is a copy of \(\Delta^{k-2} \). Since any simplex \(\Delta^{k-2} \) contains exactly one red point and point \(A \) is red, all points \(A_1, A_2, \ldots, A_{k-2} \) are blue.

Let \(A_{k-1} \) be the point symmetric to \(A \) through the hyperplane \(\pi \) spanned by points \(A_1, A_2, \ldots, A_{k-2}, O \). The point \(A_{k-1} \) belongs to \(S^{k-2} \) and is red, since \(\{A_1, A_2, \ldots, A_{k-1}\} \) is a copy of \(\Delta^{k-2} \). Let \(\theta = \angle A_{k-1}OB \), then \(\theta > 0 \), because \(\pi \) does not contain \(X \). When the points \(A_1, A_2, \ldots, A_{k-2} \) are rotated in \(S^{k-2} \), the point \(A_{k-1} \) spans the set of all points \(C \in S^{k-2} \), such that \(\angle COB = \theta \). This concludes the proof of the claim.

Let \(A \) be a red point on \(S^{k-2} \) and let \(B \) be the antipodal point to \(A \) on \(S^{k-2} \).

Let \(S_A^{k-3} \subset S^{k-2} \) be the set of all points \(C \), such that \(\angle COB = \theta \). By the Claim, all points of \(S_A^{k-3} \) are red. For a point \(C \in S_A^{k-3} \) let \(C_1 \) be the antipodal point on \(S^{k-2} \). Let \(S_C^{k-3} \subset S^{k-2} \) be the set of points \(D \), such that \(\angle DOC = \theta \). By the Claim, the set \(S_C^{k-3} \) contains only red points. For a positive angle \(\phi \), define a "hypercap" \(HC_A(2\phi) = \{D \in S^{k-2} : \angle DOA \leq \phi\} \). When \(C \) is rotated in \(S_A^{k-3} \), red hyper-circles \(S_C^{k-3} \) span the red hypercap \(HC_A(2\theta) \).

The argument in last paragraph shows that if \(A \) is a red point, then \(HC_A(2\theta) \) is red. By reapplying this statement to any point in \(HC_A(2\theta) \), it can be proved that the set \(HC_A(4\theta) \) is red, the set \(HC_A(8\theta) \) is red, and eventually the whole sphere \(S^{k-2} \) is red. Hence, \(S^{k-2} \) contains two red points distance 1 apart, which contradicts the assumption that \(S^{k-2} \) does not contain a blue \(\Delta^{k-2} \).

For a positive integer \(n \), denote by \([n]\) the set of all positive integers \(i \leq n \).
Lemma 2.3. Let \mathbb{E}^k be coloured in red and blue so that there is no red ℓ_2. If there exists an integer d, $2 \leq d \leq k+1$, and two red points distance d apart, then there exists a blue ℓ_{k+3}.

Proof. Let A_0 and A_d be two red points distance d apart. Assume that $A_0 = (\frac{1}{2},0,\cdots,0)$ and $A_d = (d + \frac{1}{2},0\cdots,0)$.

For $0 \leq j \leq k + 2$ define

$$S^{k-2}_j = \{(j, x_2, \ldots, x_k) : x_2^2 + \cdots + x_k^2 = \frac{3}{4}\}.$$

Note that S^{k-2}_0 and S^{k-2}_1 contain only blue points, since any point in S^{k-2}_0 or S^{k-2}_1 is distance one to A_0. For the same reason, sets S^{k-2}_d and S^{k-2}_{d+1} contain only blue points. Let $i \in [k + 2]$ be a number not equal to $1, d$ or $d + 1$. By Lemma 2.2 applied to the hyperspace $x_1 = i$ and S^{k-2}_i, there is a blue $\Delta^{k-2} \subset S^{k-2}_i$. Let $\Delta^{k-2} = \{A_i^1, A_i^2, \ldots, A_i^{k-1}\}$. For all $0 \leq j \leq k + 2$ and $s \in [k - 1]$, define

$$A_s^j = A_s^i + (j - i, 0, 0, \cdots, 0).$$

Let $C = [k + 2]\{d, d+1, i\}$. For each $j \in C$, the set $\{A_s^1, \ldots, A_s^{k-1}\}$ is a copy of Δ^{k-2}, and therefore contains at most one red point. Since there are $k - 2$ possible choices for $j \in C$ and there are $k - 1$ possible choices for $s \in [k - 1]$, there is an $s \in [k - 1]$, such that for all $j \in C$, point A_s^j is blue. Hence, points $A_0^j, A_1^j, \ldots, A_{k+2}^j$ are all blue and form a blue ℓ_{k+3}. \qed

Proof of Theorem 2.1. Assume the contrary, that there is a colouring of \mathbb{E}^k in red and blue, such that there is neither red ℓ_2, nor blue ℓ_{k+3}.

According to Lemma 2.3 there are no two red points distance $1, 2, \cdots, k+1$ apart. Let A be a red point. Then for all $j \in [k+1]$, the sphere

$$S^{k-1}(j) = \{X \in \mathbb{E}^k : |XA| = j\}$$

contains only blue points. Let $S^{k-1}(k+2) = \{X \in \mathbb{E}^k : |XA| = k + 2\}$ and $S^{k-1}(k+3) = \{X \in \mathbb{E}^k : |XA| = k + 3\}$. There are two cases to consider.

If $S^{k-1}(k+2)$ contains only blue points, let P_1 and P_2 be two points on $S^{k-1}(k+2)$, such that $|P_1P_2| = \frac{k+2}{2}$. If $S^{k-1}(k+2)$ contains a red point B, let P_1 and P_2 be two points on $S^{k-1}(k+2)$, such that $|P_1P_2| = \frac{k+2}{4}$ and $|BP_1| = |BP_2| = 1$. In any case, both P_1 and P_2 are blue.

Let the lines AP_1 and AP_2 intersect hypersphere $S^{k-1}(k+3)$ at points Q_1 and Q_2 respectively. Then, $|Q_1Q_2| = 1$, so one of the points, say, Q_1, is blue. For all $j \in [k+3]$ the line AQ_1 intersects the sphere S^{k-1}_j at a blue point, so the points of intersections form a blue ℓ_{k+3}. \qed

3 Concluding remarks

The result of Conlon and Fox [2] (as well as the result of this note) implies that for any k, there is n such that $\mathbb{E}^n \rightarrow (\ell_2, \ell_k)$. One of the results of Erdős
et al. [4] implies that for all \(n \), \(\mathbb{E}^n \not\rightarrow (\ell_6, \ell_6) \). This motivates the following question: what is the minimal \(s \) such that there exists \(k \) such that for all \(n \), \(\mathbb{E}^n \not\rightarrow (\ell_s, \ell_k) \)? We conjecture that \(s = 3 \):

Conjecture 1. There is an integer \(k \), such that for every integer \(n \)

\[\mathbb{E}^n \not\rightarrow (\ell_3, \ell_k) \]

During the preparation of this note, the paper of Conlon and Fox [2] appeared, where the authors made a similar conjecture.

4 Acknowledgments

We would like to thank David Gunderson for valuable comments.

References

[1] A. Arman and S. Tsaturian, *A result in asymmetric Euclidean Ramsey theory*, preprint available at https://arxiv.org/abs/1702.04799, accessed 9 May 2017.

[2] D. Conlon and J. Fox, *Lines in Euclidean Ramsey theory*, preprint available at https://arxiv.org/abs/1705.02166, accessed 9 May 2017.

[3] P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory: van der Waerden’s theorem and related topics, *Enseign. Math. (2)* **25** (1979), 325–344.

[4] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. I, *J. Combin. Theory Ser. A* **14** (1973), 341–363.

[5] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. II, *Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday)*, Vol. I, North-Holland, Amsterdam, 1975, pp. 529–557. Colloq. Math. Soc. János Bolyai, Vol. 10.

[6] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. III, *Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday)*, Vol. I, North-Holland, Amsterdam, 1975, pp. 559–583. Colloq. Math. Soc. János Bolyai, Vol. 10.

[7] R. L. Graham, Euclidean Ramsey theory, in *Handbook of discrete and computational geometry* (J. E. Goodman and J. O’Rourke, Eds.), 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2004.

[8] L. Iván, *Monochromatic point sets in the plane and in the space*, 1979. Masters Thesis, University of Szeged, Bolyai Institute (in Hungarian).

[9] S. Tsaturian, *A Euclidean Ramsey result in the plane*, preprint available at https://arxiv.org/abs/1703.10723, accessed 9 May 2017.