Aloe barbadensis Miller leaf exudate is a potential treatment for bovine mastitis [version 1; peer review: 1 approved, 1 not approved]

Samira de Aquino Leite Fiordalisi¹, Luciana Aparecida Honorato², Shirley Kuhnen³

¹Programa de Pós-Graduação em Agroecossistemas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88034-000, Brazil
²Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88034-000, Brazil
³Laboratório de Morfofisiologia e Bioquímica Animal - LABIMA, Departamento de Zootecnia e Desenvolvimento Rural, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, 88034-000, Brazil

Abstract

Background: Aloe barbadensis Miller is a well-known phytotherapeutic, and parts of its leaves are used for a wide range of medicinal purposes. This study seeks to assess the in vitro antimicrobial and cytotoxic effects of leaf exudate (LE) from A. barbadensis leaves against Staphylococcus aureus and MAC-T bovine mammary epithelial cells.

Methods: Seasonal LE samples were collected, and the effect on total phenolic and aloin contents was determined. Antimicrobial activity of LE was evaluated using the broth microdilution method, and toxicity to MAC-T cells was determined by MTT assay.

Results: Samples collected during different seasons of the year showed a seasonal effect on the chemical profile of LE (P<0.05). However, despite these chemical variations, we found no differences in antimicrobial activity against S. aureus. For all studied samples, the minimum inhibitory concentration (MIC) was 1,000 µg/ml. Furthermore, we found an elevated cytotoxic effect of LE on MAC-T cells with a significant reduction in cellular viability at 7.8 µg/ml (P<0.05) and an IC50 of 91.89 µg/ml.

Conclusions: Despite the antimicrobial effects of LE, the high toxicity for MAC-T cells suggests that it is unsuitable for intramammary use, but does have potential as a topical antimicrobial.

Keywords
phytotherapy, Staphylococcus aureus, MAC-T cells
Introduction
Bovine mastitis, which is characterized by inflammation of the mammary gland, is the most frequent infection found in dairy herds worldwide. The treatment recommended for mastitis is the administration of intramammary antimicrobials. However, control of infections caused by *Staphylococcus aureus*, the principal etiological agent of bovine mastitis, is very difficult. In addition to inactivating several antimicrobials, this microorganism can also survive in the intracellular environment after phagocytosis. As a consequence, the cure rate of mastitis caused by *S. aureus* is low, with a high incidence of recurrence. As such, interest in the search for methods of control and prevention has increased, including the identification of new antimicrobials.

In vitro methods are still commonly used to study bovine mastitis, but **in vitro** models have been recommended. Based on **in vitro** models, studies have produced a wide range of results, from identifying the prevalence of etiological agents of mastitis to evaluating the direct effects of products on the susceptibility of studied microorganisms. Among these, **in vitro** tests on antimicrobials are some of the most widely used. **In vitro** studies with bovine mammary gland explants or mammary epithelial cells (MEC) are commonly used to assess the different functions of mammary glands, such as the response to initial infection. Recently, primary cultures of mammary explants and MECs were also suggested as adequate models in the search for new therapeutic agents. In the case of mastitis, such **in vitro** methods can help evaluate the toxicity of antimicrobials, enabling the determination of safe doses and minimizing the potential risks during **in vivo** validation.

Aloe vera (*Aloe barbadensis* Miller) is a plant widely used and recognized for its antimicrobial, anti-inflammatory, wound-healing, antitumor, and antioxidant pharmacological properties. Yet, until now, few studies have reported on its potential as a treatment for bovine mastitis. Most research on the pharmacological potential of *Aloe vera* has studied the mucilaginous gel, commonly known as aloe vera gel, that is rich in complex carbohydrates, particularly acemannans. However, along with the gel, a yellow exudate with a strong odor and bitter taste, known as leaf exudate (LE), can also be extracted from the leaves. Its release occurs as soon as the leaves are cut and it can be found within the phloem vessels. Despite being composed of large amounts of 1,8-dihydroxyanthraquinone derivatives and their glycosides, the industry that uses aloe vera gel as a raw material considers LE a residue. Among the anthraquinones found in LE, the major compounds are a mixture of two readily oxidizable diastereomers, aloin A and aloin B, which are sometimes undesirable because of their toxic and cathartic potential. However, these compounds may be of therapeutic interest in the control of antimicrobial and tumor cell proliferation.

Thus, the current study seeks to investigate the potential of LE from Aloe vera leaves in the control of bovine mastitis through **in vitro** models that evaluate the antimicrobial effects against *S. aureus* and cytotoxicity to MAC-T cells.

Methods
Sampling and extraction of leaf exudate
A total of 30 plant samples were collected from 3-year-old *Aloe vera* (*Aloe barbadensis*) at random from a commercial grower (Naturama Sucois Integrals do Brasil Ltda®; Paulo Lopes, SC, Brazil) in March, June, September and December of 2015, and one leaf was taken from the mid-position of each plant. Thus, 30 leaves in total were collected for each month, representing each season. Leaves were cut at the base and maintained vertically for 3 h in a beaker to collect the LE at room temperature. Subsequently, the LE was lyophilized and stored at -20°C. LEs of six plants were combined for a total of five repetitions for each season of the year.

Chemical profile of leaf exudate
Total phenolics. The total phenolic content was determined using the colorimetric method of Folin-Ciocalteau and an external standard curve of gallic acid (10–100 μg/ml) (*r*² = 0.9822). The results were expressed in μg of gallic acid equivalents (GAE)/mg of extract (μg of GAE/mg). All tests were performed in triplicate.

Aloin. The aloin content in LE was obtained on an UHPLC Thermo Scientific UltiMate 3000 RS Dual System (Thermo Fisher Scientific, San Jose, CA), using a Thermo Scientific C18 reverse-phase column (4.6 x 250 mm; 5 μm; 120Å (Acclaim®) at 40°C, operating at 240, 260, 280 and 320 nm. The mobile phase was eluted at 1 ml/min flow rate, using a methanol/water (70/30, v/v) mixture. The identification of aloin was based on a comparison of the chromatographic profile and retention time with the commercial standard (Sigma-Aldrich, St. Louis, MO, USA/ B6906). After the addition of the standard, samples were co-chromatographed to confirm identification of the compound. Aloin content was determined through an external standard curve of barbaloin (*r*² = 0.9822) and the result expressed in μg of aloin per mg of the sample (μg/mg).

Antimicrobial activity
Antimicrobial activity was evaluated using a broth microdilution method according to the Clinical and Laboratory Standards Institute Manual. We tested six different concentrations of LE (4000 to 125 μg/ml) against the standard strain of *S. aureus* ATCC 25923 (Collection of Reference Microorganisms on Health Surveillance, Fundação Oswaldo Cruz, Fiocruz, Brazil) and seven strains of mastitic milk isolates. Milk samples from cows were submitted to the California Mastitis Test (CMT). CMT-positive milk samples were plated on blood agar supplemented with 5% sterile ovine blood and incubated for 24–48h at 37°C. Gram-positive, catalase-positive, and rabbit plasma coagulase-positive samples were biochemically confirmed as *Staphylococcus aureus*. Each strain was considered one repetition of the experiment with five replicates/repetition. As such, we conducted eight repetitions for each LE sample.

The minimum inhibitory concentration (MIC) was determined through visual analysis of turbidity after 24 hours of incubation on plates at 37°C in addition to spectrophotometric reading at...
600 nm to determine the percentage of inhibition of bacterial growth, using a previously described method7.

Because LE is an exudate with a yellow color that easily oxidizes to a dark coloration4, we confirmed the MIC through a colorimetric method. We added 50 μl of resazurin dye (100 μg/ml, Sigma-Aldrich, St. Louis, MO, USA) to each well after reading the plates by spectrophotometer (600 nm). The plates were left to incubate at 37°C for an additional 30 minutes8.

Cytoxicity of leaf exudate to MAC-T cells

Mammary epithelial cells of the MAC-T (Mammary Alveolar Cells-T) lineage were maintained in culture, as indicated by the supplier (Banco de Células do Rio de Janeiro, Brazil). Briefly, MAC-T cells were cultivated in Dulbecco's Modified Eagle's Medium (DMEM) and supplemented with 100 U/ml of penicillin, 100 μg/ml of streptomycin, 20% (V/V) heat-inactivated fetal bovine serum (FBS, Gibco, CA, USA), 4 mM L-glutamine (Synth), 4.5 g/L glucose (Sigma-Aldrich, St. Louis, MO, USA), 1 mM of sodium pyruvate (Sigma-Aldrich, St. Louis, MO, USA), 1.5 g/L sodium bicarbonate (VetecTM Sigma-Aldrich, St. Louis, MO, USA), 5 μg/ml insulin (Sigma-Aldrich, St. Louis, MO, USA), and 1 μg/ml hydrocortisone (Sigma–Aldrich, St. Louis, MO, USA) at 37°C and 5% CO\textsubscript{2} in a humidified incubator. We changed the medium every 48 h. After reaching confluence, the cells were treated with 0.25% trypsin with 1 mM EDTA (Gibco, CA, USA) to prepare the cellular suspension (105 cells/ml). The suspension was transferred to a 96-well microplate (100 μl/well), followed by incubation (24 h) in culture conditions for adherence. Subsequently, varying concentrations (2000, 1000, 500, 250, 125, 62.5, 31.3, 15.6, 7.8 and 3.9 μg/ml) of LE from the summer samples were added for 24 h, and cytotoxicity was determined based on the MTT method (Sigma-Aldrich, St. Louis, MO, USA)9. The formed formazan was dissolved with dimethyl sulfoxide (DMSO) to give a purple color with characteristic absorption at 540 nm. Intensity of purple color is directly proportional to the cell number, thus indicating cell viability. The experiments were performed in triplicate.

Statistical analysis

Data were expressed as the mean ± standard deviation (SD), of at least three independent experiments. We analyzed the data using analysis of variance with a Tukey adjustment (GraphPad Prism 5.0). We considered the effects statistically significant for P<0.05. The inhibitory concentrations capable of reducing cellular viability by 50% (IC\textsubscript{50}) were calculated using a nonlinear regression of data obtained from the cellular viability tests with GraphPad Prism 5.0 software. The average accumulated precipitation (mm) in the study region was calculated using available data10.

Results and discussion

Leaf exudate chemical profile

The total phenolic and aloin content of LE from the aloe vera leaves varied based on the season during which the samples were collected. The highest levels were found in the samples taken during the summer and the lowest levels from the spring samples (P<0.05). The accumulation of total phenolics in the summer LE seems to be associated with the climatic conditions during the collection period (Figure 1a, b). Precipitation indices were lower during the summer months (January to March)39 (Figure 1a), possibly causing hydric stress in the plants. In the spring, the lower total phenolic content of LE coincides with a period of greatest precipitation that year. Aloe is a plant comprised of 96% water; thus, its chemical composition is heavily influenced by precipitation levels39, as well as other factors, such as the period of flowering39.

The husk of Aloe leaves has greater levels of total phenolics compared to the leaf interior and internal parenchyma. In the literature, these values range from 12.06 to 20.86 μg GAE/mg leaf, depending on the species11. Among the various phenolic compounds in the leaves of Aloe, anthraquinones are noteworthy, particularly aloin. Anthraquinones are free in phloem vessels directly below the leaf epidermis, and aloin, in particular, is distributed throughout the plant as part of its defense mechanism12. In the present study, we found the highest levels of aloin in the summer samples and the lowest in the spring samples (Figure 1 b, c). These results are correlated with the total phenolic content found in the studied samples (Figure 1). Previous studies have also suggested the effect of seasonality on aloin content, and its synthesis is strongly influenced by precipitation levels. Dry periods have been correlated with greater content of aloin in the analysis of aloe vera leaves13,14,12. However, other factors can influence aloin content of aloe vera leaves, including cultivation conditions, age, and plant health13. For example, higher levels of barbaloin, isobarbaloin, and aloin in Aloe sp. plants were found during periods of the year with higher temperatures13.

Antimicrobial activity

Despite significant differences in the levels of total phenolics and aloin in the LE samples (Figure 1b, c), these levels did not influence antimicrobial activity against S. aureus. For all LE samples, the MIC was 1,000 μg/ml, as confirmed by resazurin oxidation. The lowest tested concentration of 500 μg/ml was incapable of reducing bacterial growth to values greater than 80%. The effect of other concentrations between 500 and 1,000 μg/ml was not included in the study (Figure 2).

The effectiveness of LE from aloe vera leaves as an antimicrobial agent has been demonstrated for a wide variety of Gram-positive and Gram-negative bacteria, including S. aureus and others14,15. In the literature, the MIC of aloe vera extracts against S. aureus varies. Previous studies have shown lower (195 μg/ml), similar (1560 μg/ml), and higher (5,000 μg/ml) MIC values compared to those in the present study16-38. This variation may be related to diverse factors, such as the Aloe species studied, the part of the aloe leaf used in the tests, and the type of extraction and resuspension vehicle used. In the current study, the LE samples were collected directly from the cut leaf without any type of posterior extraction of the compounds of interest. Some solvents are capable of extracting certain compounds that may possess greater antimicrobial activity than others15; however, resuspension in water may be the easiest way to use aloe vera leaf subproducts, making it accessible, even to the producer.
An interesting aspect to consider in the present study is that the concentration of total phenolics and aloin in the LE samples does not seem to affect antimicrobial activity. By contrast, the antimicrobial and anti-inflammatory activity of aloe vera LE has been associated with the concentration of phenolic and aloin compounds, suggesting that older leaves have higher levels of these compounds, and as such, have greater biological activity and defense against microorganisms and herbivores.

For Fabry et al., the potentially useful activity defined for crude plant extracts with organic solvents is considered good when MIC values are <8000 μg/ml, while Gibbons suggests that phytochemical isolates must have MIC values <1,000 μg/ml. As such, the antimicrobial action of the LE samples in the present study can be considered good, even though neither extraction nor isolation of the principal components took place.

Cytotoxicity of leaf exudate
The LE showed high toxicity to MAC-T lineage cells, causing significant reduction in cellular viability at concentrations greater than 7.8 μg/ml (Figure 3). At higher concentrations, such as 500 μg/ml, the reduction in the percentage of viable cells was greater than 80%. The IC₅₀ was 91.89 μg/ml. It is worth noting that the MIC of *S. aureus* growth was 1,000 μg/ml (Figure 2), a concentration that had a strong effect on the viability of mammary epithelial cells (Figure 3). This result is significant because it suggests that caution must be exercised when considering the intramammary use of LE in order to avoid inflammation, owing to the death of epithelial cells.

In an *in vivo* situation, the administration of a toxic product to bovine mammary glands can result in the development of inflammation, which is more severe than that caused by the

Figure 1. Seasonal differences in rainfall, phenolic content and aloin content.

(A) Average accumulated precipitation (mm) in the study region (Paulo Lopes, SC, Brazil) during 2015; Source: INMET. (B) Total phenolic content (μg GAE/mg) of Aloe vera leaf LE from different seasons of the year (average of five repetitions ±SD) (P<0.05). (C) Average content (μg/mg) of aloin (average of three independent injections ± SD) in samples of LE collected from Aloe vera leaves during different seasons of the year. Data points with the same letter above them are not significantly different from each other (P<0.05 indicates a significant difference).
infection of pathogens. In these cases, the attempt to combat inflammation leads to the formation of connective tissue at the affected site, which can diminish the alveolar area responsible for the synthesis of milk and, consequently, reduce milk production. In more severe cases, the loss of complete mammary glandular function, or even death of the animal, can occur.

The MAC-T cellular lineage is an established model that has been frequently used in the investigation of mammary glandular functions and mediators of inflammatory processes.

Nonetheless, studies reporting on the effects of Aloe sp. extract, or fractions on this type of cell, are scarce. The toxic effects of aloe vera LE on other types of cells are discussed in the literature and have been associated with the presence of aloin and aloe emodin. These anthraquinones induce the apoptosis of cells caused by a reduction in the proportion of cells in the mitotic phase. Another hypothesis is that disruptions to the cell cycle and cellular differentiation, stimulation of the immune system, and antioxidant activity also have an anti-proliferative effect.
While the results found for MAC-T cells show that aloe vera LE has a high toxic potential for bovine mammary glands, the topical use of this product on the external area of the udder, for example pre- and post-dipping, or on instruments used during the management of milking, can be recommended. In this case, its potential as a disinfectant should be investigated.

Furthermore, it is important to highlight that the compounds present in the Aloe vera LE liquid oxidize easily in the presence of light, oxygen, and at room temperature. As such, very high concentrations are required in order to achieve antimicrobial efficacy against Staphylococcus aureus, concentrations that would be toxic to mammary epithelial cells. Thus, we suggest the standardization of a methodology that can preserve and conserve these oxidative compounds, such as nanoencapsulation, which can maintain the desired antimicrobial activity and diminish the toxic effects.

Data availability
Dataset 1. Raw data concerning the phytochemical characteristics of leaf exudate and its antimicrobial/cytotoxicity activity. DOI: https://doi.org/10.5256/f1000research.15671.d213901

Conclusion
Although seasonality interferes with the chemical composition of aloe vera LE, the seasonal samples we evaluated did not differ in relation to antimicrobial activity with a MIC of 1,000 μg/ml found for all samples. At this concentration, aloe vera LE shows strong toxic effects on bovine mammary epithelial cells of the MAC-T lineage. Despite the demonstrated antimicrobial activity of aloe vera LE, we suggest caution in recommending its intramammary use to treat bovine mastitis; instead, the topical use of this product on an external area, such as the udder, may be both efficacious and safe.

References

1. Bradley A: Bovine mastitis: an evolving disease. Vet J. 2002; 164(2): 116–128. Pubmed Abstract | Publisher Full Text
2. Watts J: Etiological agents of bovine mastitis. Vet Microbiol. 1988; 16(1): 41–66. Pubmed Abstract | Publisher Full Text
3. Anderson KL, Aitzagirgel RD: Detection and Causes of Bovine Mastitis with Emphasis on Staphylococcus aureus. Encyclopedia of Agriculture and Food Systems. Elsevier Ltd.; 2014; 2: 435–440. Pubmed Abstract | Publisher Full Text
4. Mushtaq S, Shah AM, Shah A, et al.: Bovine mastitis: An appraisal of its alternative herbal cure. Microb Pathog. 2018; 114: 357–361. Pubmed Abstract | Publisher Full Text
5. Fiordalisi SAL, Honorato LA, Liko MR, et al.: The effects of Brazilian propolis on etiological agents of mastitis and the viability of bovine mammary gland explants. J Dairy Sci. 2016; 99(3): 2308–2318. Pubmed Abstract | Publisher Full Text
6. Barlow J: Mastitis therapy and antimicrobial susceptibility: a multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle. J Mammary Gland Biol Neoplasia. 2011; 16(4): 383–407. Pubmed Abstract | Publisher Full Text
7. Collado R, Prenafeta A, Gonzalez-Gonzalez L, et al.: Probing vaccine antigens against bovine mastitis caused by Staphylococcus uberis. Vaccine. 2016; 34(33): 3848–3854. Pubmed Abstract | Publisher Full Text
8. Basso KM, Bracarense APFFL: Explantes teciduais: Um modelo redescoberto na experimentação animal. Semin Agrar. 2013; 34(6Sup2): 3951-3958. Publisher Full Text
9. De Medeiros ES, Veiga M, Wilton J, et al.: Avaliação in vitro da eficácia de desinfetantes comerciais utilizados no pré e pós-dipping frente amostras de Staphylococcus spp. isoladas de mastite bovina. Pesq Vet Bras. 2009; 29(1): 71–75. Publisher Full Text
10. Diaz MAN, Rossi CC, Mendonçal VR, et al.: Screening of medicinal plants for antibacterial activities on Staphylococcus aureus strains isolated from bovine mastitis. Rev Bras Farmacogn. 2010; 20(5): 724–728. Pubmed Abstract | Publisher Full Text
11. Rabot A, Wellitz C, Meyer HH, et al.: Use and relevance of a bovine mammary gland explant model to study infection responses in bovine mammary tissue. J Dairy Res. 2007; 74(1): 93–99. Pubmed Abstract | Publisher Full Text
12. Boudjellal N, Chan-Tang HS, Zhao X: Bovine interleukin-1 expression by cultured mammary epithelial cells (MAC-T) and its involvement in the release of MAC-T derived interleukin-8. Comp Biochem Physiol A Mol Integr Physiol. 2000; 127(2): 191–199. Pubmed Abstract | Publisher Full Text
13. Wang K, Jin XL, Liu J, et al.: Potential of dietary propolis in protecting bovine mammary epithelial cells against mastitis pathogens using in vitro models. J Nutr Intermed Metab. 2016; 4: 39. Pubmed Abstract | Publisher Full Text
14. Lucini L, Pellizzoni M, Pellegrino R, et al.: Phytochemical constituents and antibacterial activity of aloe vera LE shows strong toxic effects on bovine mammary epithelial cells of the MAC-T lineage. Despite the demonstrated antimicrobial activity of. DOI: https://doi.org/10.5256/f1000research.15671.d213901

Competing interests
No competing interests were disclosed.

Grant information
This work was supported by the CNPq (National Council on Scientific and Technological Development; Brasilia, Brazil) (403415/2013-6, Edital 39/2013).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

http://dx.doi.org/10.5256/f1000research.15671.d213901
Liliana Cardemil
Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile

Carlos Salinas
Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile

The work is interesting since the infection of bovine mammary epithelial cells by Staphylococcus aureus is a problem in cattle farming.

However, the study they performed is incomplete. I do not understand, why the investigators did not try the Aloin that they purified to determine the inhibition of bacterial growth and the degree of toxicity on mammary cells with this compound as they did with the total leaf exudate? The leaf exudate has too many compounds. Not only phenols, the exudate may have amino acids, anthraquinones, chlorophyll, and other pigments, etc. At least testing the Aloin then you could know if this compound has an antibacterial effect by itself and/or, causes the toxicity of mammary epithelial cells. If the results are positive for Aloin as antimicrobial without causing toxicity they will know that Aloin can be used for the mastitis treatment. If not, they will know that the leaf exudate has to be free of Aloin to treat the mastitis.

The literature of the manuscript is missing important new and relevant literature on the uses of Aloe barbadensis Miller as a prebiotic and inhibitor of colon cancer development.

In my opinion the need to perform the analyses considering the aloin. In my opinion, the manuscript should be approved after the authors complete these analyses.

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Prebiotic molecules from Aloe vera

We confirm that we have read this submission and believe that we have an appropriate level of expertise to state that we do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Reader Comment 22 Oct 2018
Shirley Kuhnen,

- We chose not to include a control with Aloin in the study. We acknowledge that there are many works involving the purification of compounds from natural products in the field of Pharmacology. However, our objective was to test a complex matrix for its use (in natura) by organic or agroecological small producers of milk. There are several studies in the literature with complex matrices derived from medicinal plants that do not include a control as mentioned by the reviewer. The use of a complex matrix has some advantages, among them the lesser emergence of resistance among microorganisms. We also point out that there are no methodological errors in the study such as the lack of the controls required by the CSLI Guidelines and Standards. Therefore, the lack of a control with Aloin does not invalidate the results obtained in the present study and the work should not be rejected for this reason.
- The literature suggested doesn't fit in our paper because it's related to polysaccharides' biological effects.
- The assay was performed according to CSLI Guidelines and Standards. This does not require control with isolated compounds. However, to cater to the suggestion, we added in the text that this may be a line of future research.

Competing Interests: I have no competing interests.

Reviewer Report 14 September 2018
https://doi.org/10.5256/f1000research.17100.r37692
Gaspar Diaz-Muñoz
Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Brazil

I read with interest the manuscript entitled: “Aloe barbadensis Miller leaf exudate is a potential treatment for bovine mastitis”. The manuscript is very interesting. In general, I found clearly written and only a few typos and errors were found as listed in the attached file that already were corrected.

I did not understand why in the discussion of antimicrobial activity, the authors cited only the results of concentrations between 500 and 1000 μg/mL. In the methodology cited, the use of six concentrations between 500 and 4000 μg/mL.

I think the authors should consider the possibility of Aloe exudate being toxic to epithelial cells as it showed toxicity to the MAC T cells. I suggest making a cytotoxicity test for this cell before suggesting this exudate as a disinfectant.

Overall, I believe that this otherwise very good manuscript could benefit of a minor revision before indexing in F1000Research. I have attached a commented copy of the manuscript for the authors to consider in the revision.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.
Six concentrations of leaf exudate were tested. However, under 500 ug/mL, the reduction of microbial growth was lower than 70%, varying between seasons. The statement was modified.

Thank you very much. You are correct. This information was included in the text. The statements were modified.

Thank you very much. The suggestions were included in the new version.

Competing Interests: I have no competing interests.