ON UNIMODULAR MULTILINEAR FORMS WITH SMALL NORMS ON SEQUENCE SPACES

DANIEL PELLEGRINO, DIANA SERRANO-RODRÍGUEZ, AND JANIELY SILVA

Abstract. The Kahane–Salem–Zygmund inequality is a probabilistic result that guarantees the existence of special matrices with entries 1 and −1 generating unimodular m-linear forms $A_{m,n} : \ell_{p_1}^n \times \cdots \times \ell_{p_m}^n \to \mathbb{R}$ (or \mathbb{C}) with relatively small norms. The optimal asymptotic estimates for the smallest possible norms of $A_{m,n}$ when $\{p_1, \ldots, p_m\} \subset [2, \infty]$ and when $\{p_1, \ldots, p_m\} \subset [1, 2)$ are well-known and in this paper we obtain the optimal asymptotic estimates for the remaining case: $\{p_1, \ldots, p_m\}$ intercepts both $[2, \infty]$ and $[1, 2)$. In particular we prove that a conjecture posed by Albuquerque and Rezende is false and, using a special type of matrices that dates back to the works of Toeplitz, we also answer a problem posed by the same authors.

1. Introduction

Let \mathbb{K} be the real or complex scalar field. The Kahane–Salem–Zygmund inequality (see [3, 4]) asserts that for positive integers m, n and $p_1, \ldots, p_m \in [2, \infty]$, there exist a universal constant C (depending only on m), a choice of signs 1 and -1, and an m-linear form $A_{m,n} : \ell_{p_1}^n \times \cdots \times \ell_{p_m}^n \to \mathbb{K}$ of the type

$$A_{m,n}(z^{(1)}, \ldots, z^{(m)}) = \sum_{j_1, \ldots, j_m=1}^n \pm z_{j_1}^{(1)} \cdots z_{j_m}^{(m)},$$

such that

$$\|A_{m,n}\| \leq C n^{\frac{m+1}{2} - \frac{1}{p_1} - \cdots - \frac{1}{p_m}}.$$

An interpolation argument shows that if $p_1, \ldots, p_m \in [1, 2]$, there is a universal constant C (depending only on m), and an m-linear form as above such that

$$\|A_{m,n}\| \leq C n^{1 - \frac{1}{\max\{p_1, \ldots, p_m\}}}.$$

The above estimate appears is essence in Bayart’s paper [2]. Both the multilinear and polynomial versions of the Kahane–Salem–Zygmund inequalities play a fundamental role in modern Analysis (see, for instance, [3, 5, 9] and the references therein). However, to the best of the authors’ knowledge, despite the existence of more involved abstract generalizations of the Kahane–Salem–Zygmund inequality (see [8]), the best estimate (i.e., the smallest possible exponent for n) for the general case ($p_1, \ldots, p_m \in [1, \infty]$) of sequence spaces is still unknown. Recently, Albuquerque and Rezende (11) have proved that, for $p_1, \ldots, p_m \in [1, \infty]$, there is a universal constant C (depending only in m) and an m-linear form as above satisfying

$$\|A_{m,n}\| \leq C n^{1 - \frac{1}{\max\{p_1, \ldots, p_m\}} - \frac{1}{\gamma}},$$

with

$$\gamma := \min\{2, \max\{p_k : p_k \leq 2\}\}.$$
Note that this last estimate encompasses the previous ones. In this note we obtain the optimal solution to the general case:

Theorem 1.1. Let m, n be positive integers and $p_1, \ldots, p_m \in [1, \infty]$. Then there exist a universal constant C (depending only on m), a choice of signs 1 and -1 and an m-linear form $A_{m,n} : \ell_{p_1}^n \times \cdots \times \ell_{p_m}^n \to K$ of the type

$$A_{m,n}(z^{(1)}, \ldots, z^{(m)}) = \sum_{j_1, \ldots, j_m = 1}^n \pm z_{j_1}^{(1)} \cdots z_{j_m}^{(m)},$$

such that

$$\|A_{m,n}\| \leq C n^{\min\left\{ \max\{2, p_k^*\} \right\}^{1} + \sum_{k=1}^m \max\left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}},$$

where p_k^* is the conjugate of p_k. Moreover, the exponent $\min\left\{ \max\{2, p_k^*\} \right\}^{1} + \sum_{k=1}^m \max\left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}$ is optimal.

2. The proof

We begin by recalling the following estimate obtained by Albuquerque and Rezende:

Theorem 2.1. (see [1]) Let m, n_1, \ldots, n_m be positive integers and $p_1, \ldots, p_m \in [1, \infty]$. Then there exist a constant C (depending only on m), a choice of signs 1 and -1, and an m-linear form $A : \ell_{p_1}^{n_1} \times \cdots \times \ell_{p_m}^{n_m} \to K$ of the form

$$A(z^1, \ldots, z^m) = \sum_{j_1 = 1}^{n_1} \cdots \sum_{j_m = 1}^{n_m} \pm z_{j_1}^{j_1} \cdots z_{j_m}^{j_m},$$

such that

$$\|A\| \leq C \left(\sum_{k=1}^m n_k \right)^{1 - \frac{1}{2}} \prod_{k=1}^m n_k^{\max\left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}},$$

with $\gamma := \min\{2, \max\{p_k : p_k \leq 2\}\}$.

2.1. **Proof of the inequality** [1]. We shall prove [1] following the more general environment of the above result. We will show that for positive integers m, n_1, \ldots, n_m and $p_1, \ldots, p_m \in [1, \infty]$, there is a universal constant (depending only on m), and a m-linear form $A : \ell_{p_1}^{n_1} \times \cdots \times \ell_{p_m}^{n_m} \to K$ of the form

$$A(z^1, \ldots, z^m) = \sum_{j_1 = 1}^{n_1} \cdots \sum_{j_m = 1}^{n_m} \pm z_{j_1}^{j_1} \cdots z_{j_m}^{j_m},$$

such that

$$\|A\| \leq C \left(\sum_{k=1}^m n_k \right)^{1 - \frac{1}{2}} \prod_{k=1}^m n_k^{\max\left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}},$$

with

$$\rho := \min_{k} \left\{ \max\{2, p_k^*\} \right\}.$$

If $p_k \geq 2$, for all $k = 1, \ldots, m$, our estimate coincides with the ones of Theorem 2.1. The same happens when $p_k < 2$ for all $k = 1, \ldots, m.$
Finally, let us suppose (with no loss of generality) that $1 \leq d < m$, and $p_k \geq 2$, for all $k = 1, \ldots, d$ and $p_k < 2$ for $k = d+1, \ldots, m$. Theorem 2.1 guarantees the existence of an m-linear form $A : \ell_{p_1}^{n_1} \times \cdots \times \ell_{p_d}^{n_d} \times \ell_2^{n_{d+1}} \times \cdots \times \ell_{p_m}^{n_m} \to \mathbb{K}$ such that

$$
\|A\|_{L\left(\ell_{p_1}^{n_1} \times \cdots \times \ell_{p_d}^{n_d} \times \ell_2^{n_{d+1}} \times \cdots \times \ell_{p_m}^{n_m}; \mathbb{K}\right)} \leq C \left(\sum_{k=1}^{m} n_k\right)^{\frac{1}{2} \prod_{k=1}^{m} n_k} \max\left\{\frac{1}{2} - \frac{1}{p_k}, 0\right\}.
$$

On the other hand, for each $k \notin \{1, \ldots, d\}$, by the monotonicity of the ℓ_p norms, the restriction of this form to $\ell_{p_1}^{n_1} \times \cdots \times \ell_{p_d}^{n_d} \times \ell_2^{d+1} \times \cdots \times \ell_{p_m}^{n_m}$ has norm

$$
\|A\|_{L\left(\ell_{p_1}^{n_1} \times \cdots \times \ell_{p_d}^{n_d} \times \ell_2^{d+1} \times \cdots \times \ell_{p_m}^{n_m}; \mathbb{K}\right)} \leq \|A\|_{L\left(\ell_{p_1}^{n_1} \times \cdots \times \ell_{p_d}^{n_d} \times \ell_2^{n_{d+1}} \times \cdots \times \ell_{p_m}^{n_m}; \mathbb{K}\right)} \leq C \left(\sum_{k=1}^{m} n_k\right)^{\frac{1}{2} \prod_{k=1}^{m} n_k} \max\left\{\frac{1}{2} - \frac{1}{p_k}, 0\right\}.
$$

Note that in this case

$$
\rho := \min_k \{\max\{2, p_k\}\} = 2.
$$

Considering $n_1 = \cdots = n_m = n$ we obtain the proof of (1).

2.2. Proof of the optimality. The optimality of the case $p_k \geq 2$ for all $k \in \{1, \ldots, m\}$ is well-known (it is a consequence of the Hardy–Littlewood inequalities) and the constant involved does not depend on p_1, \ldots, p_m.

More precisely, for all unimodular forms we have

$$
\|A\| \geq \frac{1}{(\sqrt{2})^{m-1} n^{\frac{1}{2} \left(\frac{1}{2} - \frac{1}{p_1}\right) + \cdots + \left(\frac{1}{2} - \frac{1}{p_m}\right)}}.
$$

It remains only to prove the optimality of the exponents in the case in which at least one of the p_k is smaller than 2. We shall split the proof in three cases:

- First case: $p_k < 2$, for all $k = 1, \ldots, m$.
- Second case: $p_k \geq 2$ for only one $k \in \{1, \ldots, m\}$.
- Third case: the complement of the previous cases.

The optimality of the first case seems to be folklore, but for the sake of completeness we shall provide a proof. In the first case the exponent of n is

$$
\frac{1}{\rho} = \min_k \{\max\{2, p_k\}\} = \frac{p_j - 1}{p_j},
$$

where

$$
p_j := \max_k p_k.
$$

There is no loss of generality in supposing $j = m$. In the second case (we can also suppose $k = m$), the exponent of n is also $\frac{p_m}{p_m-1}$. For all m-linear forms $A : \ell_{p_1}^{n_1} \times \cdots \times \ell_{p_m}^{n_m} \to \mathbb{K}$, we have

$$
\sup_{j_1, \ldots, j_m-1} \left(\sum_{j_m=1}^{n} |A(e_{j_1}, \ldots, e_{j_m})|^{p_m-1}_{p_m} \right)^{\frac{p_m-1}{p_m}} \leq \|A\| \sup_{\varphi \in B_{\ell_{p_m}^{n_m}}} \left(\sum_{j_m=1}^{n} |\varphi(e_{j_m})|^{p_m-1}_{p_m} \right)^{\frac{p_m-1}{p_m}} \leq \|A\|.
$$

Thus, for all unimodular m-linear forms $A : \ell_{p_1}^{n_1} \times \cdots \times \ell_{p_m}^{n_m} \to \mathbb{K}$, we have

$$
\|A\| \geq n^{\frac{p_m-1}{p_m}},
$$

and this guarantees the optimality of the exponent for the first and second cases.
It remains to prove the m-linear case when at least two $p_i \in [2, \infty]$ and at the same time at least one $p_i \in [1, 2)$.

We shall proceed by induction on m. The case of bilinear forms is completed by the previous steps. So, let us suppose that the result is valid for $(m-1)$-linear forms and let us prove for m-linear forms. So, our induction hypothesis is that for all $p_i \in [1, \infty]$ and $i = 1, \ldots, m-1$ we have (for all unimodular forms $A : \ell^m_{p_1} \times \cdots \times \ell^m_{p_{m-1}} \to \mathbb{K}$)

$$
\|A\| \geq D_{m-1} n_{\min} \left\{ \max \{2, p_k^* \} \right\}^{\sum_{k=1}^{m-1} \max \left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}} + \sum_{k=1}^{m-1} \max \left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}
$$

and we want to prove that (for all unimodular forms $A : \ell^m_{p_1} \times \cdots \times \ell^m_{p_m} \to \mathbb{K}$) we have

$$
\|A\| \geq D_{m-1} n_{\min} \left\{ \max \{2, p_k^* \} \right\}^{\sum_{k=1}^{m} \max \left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}}.
$$

Recalling that it just remains to prove the case when at least two $p_i \in [2, \infty]$ and at the same time at least one $p_i \in [1, 2)$, we have

$$
\rho = \min_k \{ \max \{2, p_k^* \} \} = 2.
$$

So, we shall prove that for all unimodular m-linear forms $A : \ell^m_{p_1} \times \cdots \times \ell^m_{p_m} \to \mathbb{K}$ (at least two $p_i \in [2, \infty]$ and at the same time at least one $p_i \in [1, 2)$) we have

$$
\|A\| \geq D_m n_{\min}^{\frac{1}{2} + \sum_{k=1}^{m} \max \left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}}.
$$

We can suppose that $p_m \in [1, 2)$. In this case, for any unimodular m-linear form $A : \ell^m_{p_1} \times \cdots \times \ell^m_{p_m} \to \mathbb{K}$ we have, by the Induction Hypothesis,

$$
\|A\| \geq \sup \left\{ \left\| A \left(x^{(1)}_{j_1}, \ldots, x^{(m-1)}_{j_{m-1}}, (1, 0, \ldots, 0) \right) \right\| : \sum_{j_k=1}^{\infty} \| x^{(k)}_{j_k} \|^{p_k} \leq 1 \text{ for all } 1 \leq k \leq m-1 \right\}
$$

$$
\geq D_{m-1} n_{\min}^{\frac{1}{2} + \sum_{k=1}^{m-1} \max \left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}}
$$

$$
= D_{m-1} n_{\min}^{\frac{1}{2} + \sum_{k=1}^{m} \max \left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}}.
$$

3. The Conjecture of Albuquerque–Rezende is False

The following conjecture was proposed by Albuquerque and Rezende (see [1, Conjecture 3.3]):

Conjecture 3.1. Let $p_1, \ldots, p_m \in [1, \infty]$. There exist $B_m, C_m > 0$ (depending only on m) such that

$$
(4) \quad B_m \leq \inf \left(\frac{\|A\|}{\left(\sum_{k=1}^{m} \frac{1}{n_k} \right)^{\frac{1}{2}} \cdot \prod_{k=1}^{m} n_k^{\max \left\{ \frac{1}{2} - \frac{1}{p_k}, 0 \right\}}} \right) \leq C_m,
$$

with $\gamma := \min \{ 2, \max \{ p_k : p_k \leq 2 \} \}$, and the infimum is calculated over all unimodular m-linear forms $A : \ell^m_{p_1} \times \cdots \times \ell^m_{p_m} \to \mathbb{K}$ and the exponents involved are sharp.

Note that the estimate (3) shows that the conjecture is false. In fact, for the sake of illustration, let us choose $m = 3$, $p_1 = 3/2$ and $p_2 = p_3 = 3$. By (3) there is a universal constant C such that for all n_1, n_2, n_3 there exist a unimodular trilinear form $A : \ell^{n_1}_{p_1} \times \ell^{n_2}_{p_2} \times \ell^{n_3}_{p_3} \to \mathbb{K}$ satisfying

$$
\|A\| \leq C \left(n_1 + n_2 + n_3 \right)^{1/2} \left(n_2 \right)^{1/3} \left(n_3 \right)^{1/6}.
$$
Thus, if (1) was valid, we would have

$$0 < 2 \left(\frac{n_1 + n_2 + n_3}{n_1 + n_2 + n_3} \right)^{1/2} \frac{n_1}{n_1 + n_2 + n_3}^{1/6}$$

for all n_1, n_2, n_3, and this is impossible.

We end this paper by answering a problem posed in [1] for complex-valued versions of the Kahane–Salem–Zygmund inequality. More precisely, in [1, Problem 3.6] the authors ask about the constants involved in complex-valued versions of the Kahane–Salem–Zygmund inequality, i.e., when the coefficients 1 and -1 are replaced by complex numbers with modulo 1. We shall show that in the bilinear case the former constant can be replaced by 1.

Let $p_1, p_2 \geq 2$ and n such that $n = \max\{n_1, n_2\}$. Borrowing ideas that date back to Toeplitz [10] and Littlewood [7] (see also [6, page 609]), we consider a $n \times n$ matrix (a_{ij}) defined by

$$a_{ij} = e^{2\pi i \frac{ij}{n}}.$$

Note that

$$\sum_{t=1}^{n} a_{rt} a_{st} = n\delta_{rs}.$$

Define $A : \ell_{p_1}^{n_1} \times \ell_{p_2}^{n_2} \to \mathbb{C}$ by

$$A(x^{(1)}, x^{(2)}) = \sum_{i_1, i_2=1}^{n} a_{i_1 i_2} x^{(1)}_{i_1} x^{(2)}_{i_2}.$$

Let $x^{(1)} \in B_{\ell_{p_1}^{n_1}}$ and $x^{(2)} \in B_{\ell_{p_2}^{n_2}}$, where $B_{\ell_{p_1}^{n_1}}$ and $B_{\ell_{p_2}^{n_2}}$ are the closed unit balls of $\ell_{p_1}^{n_1}$ and $\ell_{p_2}^{n_2}$, respectively. Then, completing with zeros, if necessary, consider $y^{(1)} = (x^{(1)}_1, \ldots, x^{(1)}_{n_1}, 0, \ldots, 0)$ and $y^{(1)} = (x^{(2)}_1, \ldots, x^{(2)}_{n_2}, 0, \ldots, 0)$ in $B_{\ell_{p_1}^{n_1}}$ and $B_{\ell_{p_2}^{n_2}}$. Using the Hölder inequality, we have

$$|A(x^{(1)}, x^{(2)})| \leq \sum_{i_2=1}^{n_2} \left| \sum_{i_1=1}^{n} a_{i_1 i_2} y^{(1)}_{i_1} \right| |y^{(2)}_{i_2}|$$

$$\leq \left(\sum_{i_2=1}^{n_2} |y^{(2)}_{i_2}|^2 \right)^{1/2} \left(\sum_{i_2=1}^{n_2} \left| \sum_{i_1=1}^{n} a_{i_1 i_2} y^{(1)}_{i_1} \right|^2 \right)^{1/2}$$

$$= \left(\sum_{i_2=1}^{n_2} |x^{(2)}_{i_2}|^2 \right)^{1/2} \left(\sum_{i_2=1}^{n_2} \left| \sum_{i_1=1}^{n} a_{i_1 i_2} y^{(1)}_{i_1} \right|^2 \right)^{1/2}$$

$$\leq \left(\sum_{i_2=1}^{n_2} |1|^{2/2} \left(\sum_{i_2=1}^{n_2} |x^{(2)}_{i_2}|^{p_2} \right)^{1/p_2} \left(\sum_{i_2=1}^{n_2} \left| \sum_{i_1=1}^{n} a_{i_1 i_2} y^{(1)}_{i_1} \right|^2 \right)^{1/2} \right)^{1/2}$$

$$\leq \frac{n_2^{1/(2-p)}}{p_2} \left(\sum_{i_2=1}^{n_2} \left| \sum_{i_1=1}^{n} a_{i_1 i_2} y^{(1)}_{i_1} \right|^2 \right)^{1/2}.$$
Since
\[
\left(\sum_{i_2=1}^{n} \sum_{i_1=1}^{n} a_{i_1i_2} y_{i_1}^{(1)} \right)^{\frac{1}{2}} = \left(\sum_{i_2=1}^{n} \sum_{i_1=1}^{n} y_{i_1}^{(1)} y_{j_1}^{(1)} a_{i_1i_2} a_{j_1j_2} \right)^{\frac{1}{2}} = \left(\sum_{i_2=1}^{n} y_{i_1}^{(1)} y_{j_1}^{(1)} \sum_{i_1=1}^{n} a_{i_1i_2} a_{j_1j_2} \right)^{\frac{1}{2}},
\]
we have
\[
\left| A \left(x^{(1)}, x^{(2)} \right) \right| \leq n_2^{\frac{1}{2}} \left(\sum_{i_1=1}^{n} y_{i_1}^{(1)} n a_{i_1i_1} \right)^{\frac{1}{2}} \leq n_1^{\frac{1}{2}} n_2^{\frac{1}{2}} \left(\sum_{i_1=1}^{n} y_{i_1}^{(1)} \right)^{\frac{1}{2}} \cdot \left(\sum_{i_1=1}^{n} x_{i_1}^{(1)} \right)^{\frac{1}{2}} \leq n_1^{\frac{1}{2}} n_2^{\frac{1}{2}} \left(\sum_{i_1=1}^{n} x_{i_1}^{(1)} \right)^{\frac{1}{2}} \leq n_1^{\frac{1}{2}} n_2^{\frac{1}{2}} \left(\sum_{i_1=1}^{n} a_{i_1i_1} \right)^{\frac{1}{2}}.
\]
Thus
\[
\| A \| \leq n_1^{\frac{1}{2}} n_2^{\frac{1}{2}} \left(\sum_{i_1=1}^{n} a_{i_1i_1} \right)^{\frac{1}{2}} \leq n_1^{\frac{1}{2}} n_2^{\frac{1}{2}} \left(\sum_{i_1=1}^{n} y_{i_1}^{(1)} n a_{i_1i_1} \right)^{\frac{1}{2}} \leq n_1^{\frac{1}{2}} n_2^{\frac{1}{2}} \left(\sum_{i_1=1}^{n} x_{i_1}^{(1)} \right)^{\frac{1}{2}} \leq n_1^{\frac{1}{2}} n_2^{\frac{1}{2}} \left(\sum_{i_1=1}^{n} x_{i_1}^{(1)} \right)^{\frac{1}{2}} \leq n_1^{\frac{1}{2}} n_2^{\frac{1}{2}} \left(\sum_{i_1=1}^{n} a_{i_1i_1} \right)^{\frac{1}{2}}.
\]
In [1] it is proved that
\[
\inf \left(\sum_{i_1=1}^{n} a_{i_1i_1} \right)^{\frac{1}{2}} \leq 8 \sqrt{2} \ln 9 \approx 16.8.
\]
For the complex case, our result shows that
\[
\inf \left(\sum_{i_1=1}^{n} a_{i_1i_1} \right)^{\frac{1}{2}} \leq \inf \left(\sum_{i_1=1}^{n} a_{i_1i_1} \right)^{\frac{1}{2}} \leq 1.
\]
The constant 1 that we have just obtained is optimal in a certain sense: if we fix, for instance, \(n_1 = 1 \), then it is simple to see that the infimum on the right-hand-side is precisely 1.

References

[1] N. Albuquerque, L. Rezende, Asymptotic estimates for unimodular multilinear forms with small norms on sequence spaces, to appear in Bull. Braz. Math. Soc.
[2] F. Bayart, Maximum modulus of random polynomials. Q. J. Math. 63 (2012), no. 1, 21–39.
[3] F. Bayart, D. Pellegrino, J.B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to \(\sqrt{\log n} / n \). Adv. Math. 264 (2014), 726–746.
[4] H.P. Boas, Majorant series. Several complex variables (Seoul, 1998). J. Korean Math. Soc. 37 (2000), no. 2, 321–337.
[5] H.P. Boas, D. Khavinson, Bohr’s power series theorem in several variables. Proc. Amer. Math. Soc. 125 (1997), no. 10, 2975–2979.
[6] H. F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. 32 (1931), 600–622.

[7] J.E. Littlewood, On bounded bilinear forms in an infinite number of variables, Q J Math, Volume os-1, Issue 1, (1930), 164–174.

[8] M. Mastyło, R. Szwedek, Kahane-Salem-Zygmund polynomial inequalities via Rademacher processes. J. Funct. Anal. 272 (2017), no. 11, 4483–4512.

[9] J. Santos, T. Velanga, On the Bohnenblust-Hille inequality for multilinear forms. Results Math. 72 (2017), no. 1-2, 239–244.

[10] O. Toeplitz, Uber eine bei den Dirichletschen Reihen auftretende Aufgabe aus der Theorie der Potenzreihen von unendlich vielen Veränderlichen, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 417–432 (1913).

Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900 - João Pessoa, Brazil.
E-mail address: pellegrino@pq.cnpq.br and dmpellegrino@gmail.com

Departamento de Matemáticas, Universidad Nacional de Colombia, 111321 - Bogotá, Colombia
E-mail address: dmserrano0@gmail.com and diserranor@unal.edu.co

Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900 - João Pessoa, Brazil.
E-mail address: janielymrsilva@gmail.com