Acanthamoeba polyphaga-Enhanced Growth of Mycobacterium smegmatis

Otmane Lamrabet, Felix Mba Medie, Michel Drancourt

Unité de Recherche sur les Maladies Infectieuses et tropicales Emergentes, UMR CNRS 6236 IRD 3R198, IFR48, Méditerranée Infection, Aix-Marseille Université, Marseille, France

Abstract

Background: Mycobacterium smegmatis is a rapidly-growing mycobacterium causing rare opportunistic infections in human patients. It is present in soil and water environments where free-living amoeba also reside, but data regarding M. smegmatis-amoeba relationships have been contradictory in mycobacteria destruction to mycobacteria survival.

Methodology/Principal Findings: Using optic and electron microscopy and culture-based microbial enumeration we investigated the ability of M. smegmatis mc² 155, M. smegmatis ATCC 19420¹ and M. smegmatis ATCC 27204 organisms to survive into Acanthamoeba polyphaga trophozoites and cysts. We observed that M. smegmatis mycobacteria penetrated and survived in A. polyphaga trophozoites over five-day co-culture resulting in amoeba lysis and the release of viable M. smegmatis mycobacteria without amoebal cyst formation. We further observed that amoeba-co-culture, and lysed amoeba and supernatant and pellet, significantly increased five-day growth of the three tested M. smegmatis strains, including a four-fold increase in intra-amoebal growth.

Conclusions/Significance: Amoeba co-culture increases the growth of M. smegmatis resulting in amoeba killing by replicating M. smegmatis mycobacteria. This amoeba-M. smegmatis co-culture system illustrates an unusual paradigm in the mycobacteria-amoeba interactions as mycobacteria have been mainly regarded as amoeba-resistant organisms. Using these model organisms, this co-culture system could be used as a simple and rapid model to probe mycobacterial factors implicated in the intracellular growth of mycobacteria.

Introduction

Mycobacteria are mycolic-acid containing, high GC% bacterial organisms belonging to the phylum Actinobacteria. They are recovered from soil and fresh water environments where free-living amoeba (FLA) are also living [1,2,3]. Co-isolation of mycobacteria and FLA collected from such environmental sources has been reported [4,5]. Several experiments further demonstrated the ability of most environmental mycobacteria to survive in the amoebal trophozoites and to further reside into the amoebal cysts [6,7,8]. We recently showed that this holds true also for some of the Mycobacterium tuberculosis complex mycobacteria [9]. FLA have been therefore regarded as “Trojan horses” for such amoeba-resistant mycobacteria. Indeed, intra-amoebal survival has been demonstrated for 37 different Mycobacterium species and intra-amoebal surviving became a dogma for amoeba-mycobacteria interactions except for Mycobacterium bovis BCG which is killed by the FLA Acanthamoeba castellanii [8] and Mycobacterium canettii which bypasses amoebal encystment [9].

Amoeba-resistant mycobacteria include both slow-growing mycobacteria, i.e. mycobacteria sub-culturing over more than seven days and fast-growing mycobacteria which produce visible colonies in less than seven days [10]. Whereas fast-growing mycobacteria are comprised of both harmless organisms and opportunistic pathogens, slow-growing mycobacteria are comprised of some of the most successful bacterial human pathogens such as M. tuberculosis complex organisms causing tuberculosis [11], Mycobacterium leprae causing leprosy [12] and Mycobacterium ulcerans causing the Buruli ulcer [13]. Although several experimental studies have demonstrated the interactions of slow-growing mycobacteria, such as Mycobacterium avium complex members, with amoebae [6,8,9,14], the interactions of fast-growing mycobacteria with amoebae remain poorly understood [14,15,16]. For example, conflicting results have been published regarding Mycobacterium smegmatis, ranging from its survival in the amoeba [15,16] to its destruction by amoebae [14,17].

M. smegmatis is the prototypical species of the so-called M. smegmatis group, which also contains Mycobacterium wolinskyi and Mycobacterium goodii [18]. Organisms of this group have seldom been associated with human infection, including orthopedic device infection and bacteremia [19,20]. In the present work, we utilized M. smegmatis as a model organism to study the interactions of fast-growing mycobacteria with Acanthamoeba polyphaga which, together with Acanthamoeba castellanii, is one of two FLA routinely used to probe bacteria-FLA interactions [21] at large and more specifically mycobacteria-FLA interactions [22].
Materials and Methods

Mycobacterium strains

M. smegmatis mc² 155 (ATCC 700084; a gift from Stéphane Canaan, Laboratoire d’Enzymologie Interfaciale et Physiologie de la Lipolyse CNRS UPR 9025, Marseille, France), *M. smegmatis* ATCC 19420 T and *M. smegmatis* ATCC 27204 purchased from German collection of microorganisms and cell cultures (DSMZ, Braunschweig, Germany) were used in this study. *M. smegmatis* organisms were cultured in Middlebrook 7H9 liquid medium (Sigma-Aldrich Logistic Gmbh, Lyon, France) and sub-cultured in Middlebrook and Cohn 7H10 agar (Becton Dickinson, Le Pont de Clai, France) at 37°C. Under these culture conditions, the three *M. smegmatis* strains yielded smooth colonies within three days.

Microscopic detection of *A. polyphaga* infected with mycobacteria

A. polyphaga Linc-AP1 strain (a gift from T. J. Rowbotham, Public Health Laboratory, Leeds, United Kingdom) was grown at 28°C for 4 days in 150-cm² culture flasks (Corning, New York, USA) containing 30 mL of peptone-yeast extract-glucose (PYG) broth. When average amoeba concentration reached 5 x 10⁴ cells/mL, amoebae were centrifuged at 500 g for 10 min and the pellet was suspended in PAS. This inoculum was strongly vortexed to minimize mycobacterial clumping and the inoculum was determined by optic microscopy counting after Ziehl-Neelsen staining. Also, the presence of viable mycobacteria was verified by light microscopic examination of Ziehl-Neelsen smears. After 3 days, the number of cysts and trophozoites at different time points was determined by microscopic observation.

Moreover, the cysts corresponding to the time point 0 were then centrifuged at 1,000 g for 10 min and washed three times with PAS before using it for electron microscopic observation. Experiments were done in triplicate.

Culture of *M. smegmatis* with amoeba debris

A. polyphaga and *M. smegmatis* were prepared as described before. After washing with PAS, 10 mL of *A. polyphaga* cells suspension (~5 x 10⁶ amoeba/mL) were lysed (1 min at liquid nitrogen and 1 min at 37°C for three times) and centrifuged at 800 g for 10 min. 10⁶ mycobacteria/mL was separately incubated with amoeba lysis pellet and supernatant for 5 days at 32°C. *M. smegmatis* were observed in the culture at each time point by Ziehl-Neelsen staining.

Encystment of infected amoeba

Fifty milliliters of a 48-hour amoebal co-culture (concentration, 5 x 10⁵ amoebal cells/mL of PAS) were put in a 175-cm³ culture flask (Corning) and infected with 5 mL (concentration, 10⁷ mycobacteria cells/mL of PAS) of *M. smegmatis* suspension in PAS for 6 hours (time point, 0). The co-culture was washed twice with PAS to remove any remaining extracellular or adherent mycobacteria and it was incubated in 50 mL PAS for 5 days. In parallel, at different time points after infection (each 24 hours), ten milliliters of co-culture was taken, the supernatant was discarded and the amoebal monolayer was rinsed twice with encystment buffer (0.1 M KCl, 0.02 M Tris, 8 mM MgSO₄, 0.4 mM CaCl₂, 1 mM NaHCO₃) before being incubated (at 32°C for 3 days) in fresh encystment buffer (0.1 M KCl, 0.02 M Tris, 8 mM MgSO₄, 0.4 mM CaCl₂, 1 mM NaHCO₃). As control, *A. polyphaga* was cultured in encystment buffer. The process of encystment was verified by light microscopic examination of Ziehl-Neelsen smears. After 3 days, the number of cysts and trophozoites at different time points was determined by microscopic observation.

Moreover, the cysts corresponding to the time point 0 were then centrifuged at 1,000 g for 10 min and washed three times with PAS before using it for electron microscopic observation. Experiments were done in triplicate.

![Figure 1. Amoeba increases the growth of *M. smegmatis*.](https://www.plosone.org/content/files/published-short-id/6df6f53c/9f9b/409d/0029833.g001)

Plays for PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e29833

Figure 1. Amoeba increases the growth of *M. smegmatis*.

Counting of amoeba alive with and without *M. smegmatis* mc² 155 (A), *M. smegmatis* ATCC 19420 T (B) and *M. smegmatis* ATCC 27204 (C) in PAS. Asterix represent significant variation (p≤0.05). Each bar represents the mean of triplicate wells, and the standard errors are represented by error bars.

doi:10.1371/journal.pone.0029833.g001
Figure 2. Growth of *M. smegmatis* within *A. polyphaga* trophozoites. *M. smegmatis* co-cultures with free-living amoeba *A. polyphaga* (gray bar) and alone in PAS medium (white bar) and in 7H9 complete medium (black bar). Three *M. smegmatis* organisms were tested: (A) *M. smegmatis* mc² 155, (B) *M. smegmatis* ATCC 19420T and (C) *M. smegmatis* ATCC 27204. Each bar represents the mean of triplicate wells, and the standard errors are represented by error bars. doi:10.1371/journal.pone.0029833.g002

Figure 3. *M. smegmatis* is internalized into amoeba. Transmission electron-microscopy observation of *M. smegmatis* mc² 155 (►) co-cultivated with *A. polyphaga* trophozoites at (A) 0 hour, (B) 48 hours, (C) 72 hours and (D) 120 hours ▲: mitochondria. Scale bar: 2 μm (A, B, C) and 5 μm (D). doi:10.1371/journal.pone.0029833.g003
Neelsen staining. As controls, *M. smegmatis* were cultured in PAS. Experiments were done in triplicate.

Ultrastructural study

Amoebal cysts and monolayers inoculated with mycobacteria were washed twice with sterile PAS to eliminate non-ingested mycobacteria. Samples were fixed in 2% glutaraldehyde and 0.1 M cacodylate buffer overnight, then in 2% glutaraldehyde and 0.33% acroleine in 0.07 M cacodylate buffer for one hour. After washing in 0.2 M cacodylate buffer, the preparation was post-fixed in 1% osmium tetroxide in 0.1 M potassium ferricyanide for one hour and dehydrated in an ascending

Figure 4. Growth of *M. smegmatis* in the presence of amoeba lysis. Three *M. smegmatis* organisms were tested: (A) *M. smegmatis* mc² 155, (B) *M. smegmatis* ATCC 19420 T and (C) *M. smegmatis* ATCC 27204. *M. smegmatis* strains cultured with amoeba lysis pellet (white bar) and supernatant (black bar). PAS medium was used as negative control (gray bar). Each bar represents the mean of triplicate wells, and the standard errors are represented by error bars. doi:10.1371/journal.pone.0029833.g004

Figure 5. Transmission electron-microscopy observation of *A. polyphaga* cysts. (A) The mature form of cyst. *M. smegmatis* mc² 155 (►) exit from *A. polyphaga* pre-cyst (B) and present in the outside of pre-cyst (C). n: nucleus, m: mitochondria. Scale bar: 5 µm (A, C) and 2 µm (B). doi:10.1371/journal.pone.0029833.g005
series of ethanol concentrations, up to 100% ethanol. The samples were then successively incubated (for 45 min) in a 3:1, 2:2, 1:3 (vol/vol) ethanol-Epon suspension, then in 100% Epon overnight with continuous shaking. Samples were embedded in an Epon 812 resin (Fluka, St Quentin Fallavier, France) and then incubated for three days at 60°C. Ultrathin sections (70 nm) were cut from the blocks using an ultracut microtome (Reichert-Leica, Marseille, France) before being deposited on Formvar-coated copper grids (Sigma-Aldrich). Ultrathin sections were stained for 10 min with 5% uranyl acetate and lead citrate before being examined using a transmission electron microscope (Morgani 268D; Philips, Eindhoven, Netherlands).

Results

M. smegmatis - *A. polyphaga* trophozoites co-culture

We first observed that the number of both non-infected and infected *A. polyphaga* trophozoites incubated into PAS at 32°C decreased over the time with the number of infected-amoeba decreasing significantly more than the number of non-infected amoeba (p < 0.05) at day four of co-culture for *M. smegmatis* ATCC 27204 and at day five of co-culture for *M. smegmatis* mc2 155 and *M. smegmatis* ATCC 19420T, in triplicate experiment (Figure 1). In parallel, we observed that the three tested *M. smegmatis* strains survived but did not multiply over five-day incubation in PAS at 32°C (Figure 2). At six-hour incubation, *M. smegmatis* mc2 155-*A. polyphaga* co-culture yielded 72% infected amoeba presenting at least one vacuole containing mycobacteria (Figure 3). Such vacuoles were surrounded by several mitochondria and displayed morphological features consistent with mycobacterial division, i.e. two organisms tightly attached by one extremity into a single vacuole (Figure 3). For the three tested *M. smegmatis* strains, quantification of colony forming units (CFU) co-cultured with amoeba indicated a significant increase (p < 0.05) in the number of mycobacteria organisms starting at day 2 (Figure 2). To understand whether this significant increase in the growth of *M. smegmatis* co-cultured with *A. polyphaga* necessitated viable amoeba, we further cultured each one of the three tested *M. smegmatis* strains in PAS enriched in an amoeba lysis pellet (ALP) or an amoeba lysis supernatant (ALS). Regardless of the *M. smegmatis* strain, we observed that growth of *M. smegmatis* organisms was significantly increased (p < 0.05) by the addition of ALP or the addition of ALS to the PAS (Figure 4).

Interaction of *M. smegmatis* mc2 155 with *A. polyphaga* cysts

We further infected *A. polyphaga* trophozoites with *M. smegmatis* mc2 155 organisms for 6 hours, and then incubated in encystment buffer for 3 days noted as days 0–3. A sample was then taken every 24 hours and microscopic examination disclosed cystic formation in 43% of *M. smegmatis*-infected amoebae at day 0 (6 hours of infection); 38% at day 1; 19% at day 2 and 8% at day 3. Non-infected, negative control amoeba yielded 46% encystment at day 0; 52% at day 1; 71% at day 2 and 78% at day 3. This difference in the percentage of encysted amoeba was statistically significant from day 0 to day 3 in triplicate experiment (p < 0.05). Electron microscopy further identified mature cysts by the presence of condensation of indistinct components implicated in the metabolism and replication in the middle of this form (Figure 5A), and pre-cysts identified by the presence of the nucleus and mitochondria scattered into the cytoplasm (Figure 5B). Careful electron microscopy observation of 500 cysts formed at day 3 failed to reveal any *M. smegmatis* organisms into *A. polyphaga* cysts (Figure 5C). In one case only the *M. smegmatis* organism was observed to have moved from the endocyst of a pre-cyst present in the earlier phase of encystation after three-day encystement (Figure 5B). Experimental encystment of *A. polyphaga* co-culture yielded no intracystic mycobacteria after a three-day encystement.
Discussion

The data presented in this study were interpreted as authentic because negative controls remained negative in each experimental step. In this work, two model organisms have been used in order to set-up a standardized co-culture system. Moreover, similar results were obtained when testing three different strains of *M. smegmatis*, including one type strain as well as *M. smegmatis mc² 155* (ATCC 700084). Indeed, *M. smegmatis mc² 155* strain, the only *M. smegmatis* strain with available genome sequence, has particular parietal features which may not be found in other *M. smegmatis* strains. This could have biased results. We herein show that this was not the case. Moreover, *M. smegmatis mc² 155* has known genetics and it has been previously used in 37/46 (80%) studies dealing with *M. smegmatis* – macrophage/amoeba interactions (Table S1). In addition, *M. smegmatis mc² 155* is commonly used as a model strain for the cloning genes from harmful mycobacteria [17]. Likewise, *A. polyphaga* has been extensively used for studying amoeba-mycobacteria interactions [6]. The co-culture system herein reported is therefore a standardized system which could be

Bacterial species	Growing mycobacteria	Described interaction with protozoa	References
Mycobacterium abscessus	✓	IC survival and multiplication (Ap)	[23]
Mycobacterium avium	✓	IC multiplication (Ac), IK survival (Ap)	[14]
Mycobacterium avium subsp. avium	✓	IC multiplication (Ap), IK survival (Ap)	[6,7]
Mycobacterium avium subsp. paratuberculosis	✓	IC multiplication (Ap), IK survival (Ap)	[31]
Mycobacterium aurum	✓	IC multiplication (Ap), IK survival (Ap)	[6]
Mycobacterium bohemicum	✓	IC and IK survival (Ap)	[6]
Mycobacterium bovis	✓	IC survival (Ac)	[8]
Mycobacterium bovis BCG	✓	No survival (Ac)	[8]
Mycobacterium chelonae	✓	IC and IK survival (Ap)	[23]
Mycobacterium fortuitum subsp. fortuitum	✓	IC multiplication (Ac)	[15]
Mycobacterium fortuitum	✓	IC multiplication (Ac), IC and IK survival (Ap)	[6]
Mycobacterium gastrae	✓	IC and IK survival (Ap)	[6]
Mycobacterium goodii	✓	IC and IK survival (Ap)	[6]
Mycobacterium gordoniae	✓	IC and IK survival (Ap)	[6]
Mycobacterium gilvum	✓	?	-
Mycobacterium immunogenum	✓	IC and IK survival (Ap)	[6]
Mycobacterium intracellularare	✓	IC and IK survival (Ap)	[6]
Mycobacterium kansasii	✓	IC multiplication (Ac), IC and IK survival (Ap)	[6,32]
Mycobacterium lentiflavum	✓	IC and IK survival (Ap)	[6]
Mycobacterium leprae	✓	IC survival (*A. culbertsoni*)	[12,16]
Mycobacterium mageritense	✓	IC and IK survival (Ap)	[6]
Mycobacterium malmoense	✓	IC and IK survival (Ap)	[6]
Mycobacterium marinum	✓	IC multiplication (Ac), IC and IK survival (Ap)	[6,33]
Mycobacterium massiliense	✓	IC and IK survival (Ap)	[18]
Mycobacterium mucogenicum	✓	IC and IK survival (Ap)	[6]
Mycobacterium peregrinum	✓	IC and IK survival (Ap)	[6]
Mycobacterium phlei	✓	IC and IK survival (Ac)	[15]
Mycobacterium porcinum	✓	IC and IK survival (Ap)	[6]
Mycobacterium septicum	✓	IC and IK survival (Ap)	[6]
Mycobacterium scrofulaceum	✓	IC multiplication (Tp), IK survival (Tp)	[34]
Mycobacterium simiae	✓	IC and IK survival (Ap), IC survival (Ac)	[6,15]
Mycobacterium smegmatis	✓	IC survival and multiplication (Ap)	Present work
Mycobacterium szulgai	✓	IC and IK survival (Ap)	[6]
Mycobacterium tuberculosis	✓	IC survival (Ap)	[9]
Mycobacterium terrae	✓	IC and IK survival (Ap)	[6]
Mycobacterium tusciae	✓	IC and IK survival (Ap)	[6]
Mycobacterium ulcerans	✓	IC survival (Ac, Ap)	[15,35]
Mycobacterium xenopi	✓	IC multiplication (Ac), IK survival (Ap)	[9,26]

IC, intracellular; IK, intracyst; Ap, *Acanthamoeba polyphaga*; Ac, *Acanthamoeba castellanii*; Tp, *Tetrahymena pyriformis*.

doi:10.1371/journal.pone.0029833.t001
reproduced in other laboratories. We observed that *M. smegmatis* organisms readily penetrated into *A. polyphaga* trophozoites, a reproducible result obtained by using a low (1:10) multiplicity of infection (MOI). We further observed that such intra-amoebal mycobacteria survived into *A. polyphaga* trophozoites, a fact documented by microscopic observations. Previously published data regarding the *M. smegmatis*-amoeba relationships have been conflicting: some studies reported that *M. smegmatis* survived within *A. castellanii* [15,16], whereas other studies found the opposite [14,17]. These discrepancies may be explained by the fact that a 30-minute amoeba-*M. smegmatis* co-culture used in some studies may be insufficient for the mycobacteria to penetrate into the amoeba. Thus, our data expand the previous demonstration of intra-amoebal surviving of *M. smegmatis* in amoeba *A. castellanii* to another species of amoeba, *A. polyphaga*.

We further observed that *M. smegmatis* organisms multiply within amoeba during the time of the experiment and that *M. smegmatis* lysed the amoeba at the 4–5 days p.i. peak of its intra-amoebal growth. Amoebal lysis has been previously reported for the rapidly growing *Mycobacterium chelonae*, *Mycobacterium abscessus*, *Mycobacterium monacense* and *Mycobacterium neoaurum* [23]. Also, 63 of 454 non-mycobacterial strains isolated from water yielded complete and rapid lysis of amoebae [23]. These bacteria were organisms closely related to *Clostridium haemolyticum*, *Methylbacterium sp.*, *Pseudomonas aeruginosa* and *Bradyrhizobium japonicum* [24,25].

Interestingly, we further observed that pelleted debris of lysed amoeba and the supernatant of such lysed amoeba also significantly enhanced the growth *M. smegmatis* mycobacteria, regardless of the strain under study. This observation reminds recent observations made when co-culturing *Salmonella enterica* Typhi with *A. castellanii* [21] and suggests that amoeba contain one or several currently uncharacterized growth-promoting factors or nutrients for *M. smegmatis*. Determining such factors was beyond the scope of present study, but further culture-based experiments incorporating fractions of amoeba supernatant are warranted to precise the nature of these factors.

We further observed that *M. smegmatis* moved out of the *A. polyphaga* pre-cyst before its maturation; this observation extended previous data found for other rapidly growing mycobacteria such as *Mycobacterium septicum* [6]. This observation contrasts with previous observations that slowly growing mycobacteria survived within the amoebal exocyst [26]. It was observed that 92% of *M. avium*-infected trophozoites evolved into mature cysts whereas we observed that only 8% of *M. smegmatis*-infected trophozoites produced mature cysts at the same time [26]. Accordingly, forced encystment of *M. smegmatis*-infected *A. polyphaga* amoeba yielded no mycobacteria in the cysts. Taken together, these data suggest that fast-growing mycobacteria rapidly escape the encystment to infect new amoebal trophozoites. Interestingly, we recently observed that *M. canetti* was the only tested *M. tuberculosis* complex member to by-pass the *A. polyphaga* encystment [9]. Exactly as for *M. smegmatis*, *M. canetti* also massively invaded the amoeba host [9].

Previously published findings [15,16] coordinated with herein presented results, suggest that rapidly growing mycobacteria should be regarded as amoeba-killing mycobacteria contrary to slowly growing mycobacteria (Figure 6). Indeed, most previous experimental studies of amoeba-mycobacteria interactions focused on slowly growing mycobacteria (Table 1). It has been observed that these species, such as *M. bovis* [8], *M. tuberculosis* [9], *M. leprae* [12,27], *Mycobacterium xenopi* [26] and members of the *M. avium* complex [7,14], can survive and/or multiply within trophozoites. We previously proposed that amoeba are a training field for macrophage resistance of mycobacteria [28]. Several studies used amoeba to investigate the phagocytosis and intracellular survival mechanisms of pathogens including *Legionella pneumophila* [29], *Terina pseudotuberculosis* [23] and *P. aeruginosa* [30]. *M. smegmatis* has been used to develop genetic engineering of mycobacteria and the *M. smegmatis*-amoeba co-culture developed here could therefore be used as a simple and rapid first-line system to scan mycobacterial factors implicated in the intracellular growth of mycobacteria.

In conclusion, the spectrum of interactions between amoeba and environmental mycobacteria may be wider than previously appreciated. It includes mycobacteria such as *M. lepra* surviving in amoeba [12,27], mycobacteria such as *M. avium* and *M. tuberculosis* multiplying in amoeba as opportunistic organisms [9,7,14] and mycobacteria such as *M. chelonae* [23] and *M. smegmatis* killing the amoeba (Figure 6).

Supporting Information

Table S1 The *M. smegmatis* strain used in 46 published studies on *M. smegmatis* – macrophage/amoeba interactions.

N.B.
The authors acknowledge Audrey Borg, Audrey Averna and Bernad Campagna for their help with the electron microscopy observations.
Author Contributions
Conceived and designed the experiments: MD. Performed the experiments: OL, FMM. Analyzed the data: OL, MD. Contributed reagents/materials/analysis tools: MD. Wrote the paper: OL, MD.

References

1. Narang R, Narang P, Mendiratta DK (2009) Isolation and identification of nontuberculous mycobacteria from water and soil in central India. Indian J Med Microbiol 27: 247–250.
2. Thomas V, Herrera-Rimann K, Blane DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72: 2428–2438.
3. Thomas V, Loret JF, Jouset M, Greub G (2008) Biodiversity of amoebae and amoeba-resisting bacteria in a drinking water treatment plant. Environ Microbiol 10: 2728–2745.
4. Greub G, La Scola B, Raoult D (2004) Amoeba-resisting bacteria isolated from human nasal swabs by amoebal coculture. Emerg Infect Dis 10: 470–477.
5. Thomas V, McDonnell G (2007) Relationship between mycobacteria and amoebae: ecological and epidemiological concerns. Lett Appl Microbiol 45: 349–357.
6. Adelkambi T, Ben Salah S, Khilal M, Raoult D, Drancourt M (2006) Survival of environmental mycobacteria in *Acanthamoeba polyphaga*. Appl Environ Microbiol 72: 5974–5981.
7. Ben Salah I, Drancourt M (2010) Surviving within the amoebal exocyst: the *Mycobacterium avium* complex paradigm. BMC Microbiology 10: 10: 99.
8. Taylor SJ, Ahonen LJ, de Leij FA, Dale JW (2003) Infection of *Acanthamoeba castellanii* with *Mycobacterium bovis* and *M. bovis* BCG and survival of *M. bovis* within the amoeba. Appl Environ Microbiol 69: 4316–4319.
9. Mita Medle F, Ben Salah I, Henriat B, Raoult R, Drancourt M (2011) *Mycobacterium tuberculosis* complex mycobacteria as amoeba-resistant organisms. PLoS One 6: e20499.
10. Murray P, Baron E, Jorgensen J, Landry M, Pfeller M (2007) Manual of Clinical Microbiology, 9th Edition. Washington DC: ASM Press. 2 p.
11. Hagedorn M, Rohde KH, Russell DG, Seldati T (2009) Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 323: 1729–1733.
12. Lahiri R, Kralahouli JL (2008). The role of free-living pathogenic amoeba in the transmission of leprosy: a proof of principle. Leprosy Rev 79: 401–409.
13. Silva MT, Portela F, Pedrosa J (2009) Pathogenetic mechanisms of the intracellular parasite *Mycobacterium ulcerans* leading to Buruli ulcer. Lancet Infect Dis 9: 699–710.
14. Cirillo JD, Falkow S, Tompkins LS, Bermudez LE (1997) Interaction of *Mycobacterium avium* with environmental amoebae enhances virulence. Infect Immun 65: 3759–3767.
15. Krishna Prasad BN, Gupta SK (1978) Preliminary report on the engulfment and retention of mycobacteria by trophozoites of axenically grown *Acanthamoeba castellanii* Douglas, 1930. Current Science 47: 245–247.

16. Tennant K, Bermudez LE (2006) *Mycobacterium avium* genes upregulated upon infection of *Acanthamoeba castellanii* demonstrate a common response to the intracellular environment. Curr Microbiol 52: 128–133.

17. Sharbati-Tehrani S, Stephan J, Holland G, Appel B, Niedersweis M, et al. (2005) Form limit the intracellular persistence of *Mycobacterium smegmatis*. Microbiology 151: 2401–2410.

18. Adekambi T, Drancourt M (2004) Dissection of phylogenetic relationships among 19 rapidly growing *Mycobacterium* species by 16S rRNA, *hsp65*, *sodA*, *recA* and *rpoB* gene sequencing. Int J Syst Evol Microbiol 54: 2099–2105.

19. Chen YC, Jou R, Huang WL, Huang ST, Liu KC, et al. (2008) Bacteremia caused by *Salmonella enterica* serovar typhi in the presence of *Acanthamoeba castellanii*. Appl Environ Microbiol 74: 7640–7646.

20. Thomas V, McDonnell G, Denyer SP, Maillard JY (2009) Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 34: 231–259.

21. Paguerri I, Raoult D, La Scalla A (2008) Isolation and identification of amoeba-resisting bacteria from water in human environment by using an *Acanthamoeba polyphaga* co-culture procedure. Environ Microbiol 10: 1135–1144.

22. Imbert G, Secca Y, La Scalla B (2005) *Methylabacterium* sp. bacteremia due to a contaminated endoscope. J Hosp Infect 61: 260–270.

23. La Scalla B, Boyadjiev I, Greub G, Khamis A, Martin C, et al. (2003) Amoeba-resisting bacteria and ventilator-associated pneumonia. Emerg Infect Dis 9: 815–821.

24. Drancourt M, Adekambi T, Raoult D (2007) Interactions between *Mycobacterium xenopi*, amoeba and human cells. J Hosp Infect 65: 138–142.

25. Jadin J (1975) Amibes Limax vecteurs possibles de *Mycobacte´ries* et de *M. leprae*. Acta Leprol 39: 57–67.

26. Ben Salah I, Ghais E, Drancourt M (2009) Free-living amoeba, a training field for macrophage resistance of mycobacteria. Clin Microbiol Infect 15: 894–905.

27. Steinert M (2011) Pathogen-host interactions in *Dictyostelium*, *Legionella*, *Mycobacterium* and other pathogens. Semin Cell Dev Biol 22: 70–76.

28. Michel R, Burchardt H, Begrmann H (1995) *Acanthamoeba*, naturally intracellularly infected with *Pseudomonas aeruginosa*, after their isolation from a microbiologically contaminated drinking water system in a hospital. Zentralbl Hyg Umweltmed 196: 532–544.

29. Mura M, Bull TJ, Evans H, Sidib-Boundeine K, McMinn L, et al. (2006) Replication and long-term persistence of bovine and human strains of *Mycobacterium avium* subsp. *paratuberculosis* within *Acanthamoeba polyphaga*. Appl Environ Microbiol 72: 854–859.

30. Goy G, Thomas V, Rimann K, Jaton K, Prod’hom G, et al. (2007) The Neff strain of *Acanthamoeba castellanii*, a tool for testing the virulence of *Mycobacterium kansaii*. Res Microbiol 158: 393–397.

31. Solomon JM, Leung GS, Isberg RR (2003) Intracellular replication of *Mycobacterium marinum* within *Dictyostelium discoideum*: efficient replication in the absence of host coronin. Infect Immun 71: 3576–3586.

32. Stahl C, Kubetzko S, Kaps I, Seeber S, Egelhardt H, et al. (2001) MspA provides the main hydrophilic pathway through the cell wall of *Mycobacterium smegmatis*. Mol Microbiol 40: 451–461.