Impacto dos parâmetros espinopélvicos pré-operatórios na correção de lordose segmentar após fusão intersomática lombar por via lateral de um nível

Impact of the Preoperative Spinopelvic Parameters on Segmental Lordosis Correction after One-level Lateral Lumbar Interbody Fusion

Daniel Arnoni¹ Rodrigo Amaral¹ Gabriel H. Pokorny¹ Rafael Moriguchi¹ Luiz Pimenta¹

¹Instituto de Patologia da Coluna, São Paulo, SP, Brasil

Rev Bras Ortop 2022;57(5):828–835.

Endereço para correspondência Gabriel Pokorny, BSc, Department of Biomedical, Instituto de Patologia da Coluna, São Paulo, SP, Brasil (e-mail: gh pokorny@gmail.com).

Resumo

Objetivos O presente estudo teve como objetivo avaliar se os parâmetros espinopélvicos pré-operatórios podem influenciar o ganho da lordose segmental após fusão intersomática lombar por via lateral de um nível.

Métodos Os seguintes parâmetros radiológicos foram medidos nos raios X: incidência pélvica, lordose lombar, versão pélvica, lordose L4S1, lordose segmental do nível operado, índice intraoperatório de lordose segmentar, mismatch pélvico (IP-LL), proporção de lordose distal, delta de lordose segmentar, PT > 20, inclinação sacral real e inclinação sacral ideal, e a correlação dessas variáveis com o ganho da lordose segmentar foi investigada. Posteriormente, foi realizada uma análise exploratória de cluster para identificar características comuns entre os pacientes e o ganho de lordose segmentar.

Resultados O presente estudo contou com 144 pacientes, dos quais 76% apresentaram ganho de lordose segmentar. Os parâmetros mais correlacionados com o ganho de lordose segmentar foram lordose segmentar pré-operatória (r = 0,50) e delta intraoperatório de lordose (0,51). Além disso, os pacientes dos grupos de incidência pélvica (IP) alto tiveram tendência de ganho de lordose segmental maior (p < 0,05) e redução do risco de perda de lordose segmental (chances 6.08).

Conclusão Pacientes com perfis de IP médios baixos apresentaram maiores chances de perda de lordose segmentar. No entanto, os parâmetros espinopélvicos pré-operatórios por si só não parecem desempenhar um papel significativo no destino do ganho da lordose segmentar.

Palavras-chave
► vértebras lombares
► fusão vertebral
► lordose
► pelve
Introdução

As doenças lombares degenerativas, em sua maioria, apresentam bons desfechos após tratamentos não cirúrgicos. No entanto, alguns grupos de pacientes não percebem tais benefícios, exigindo, portanto, intervenção cirúrgica. Várias técnicas podem ser aplicadas para corrigir distúrbios lombares degenerativos, sendo descompressão, artroplastia e artrodese as abordagens mais utilizadas, cada uma delas com seus prós e contras.

Entre o grupo de artrodese, temos a fusão intersomática (lateral lumbar interbody fusion [LLIF, na sigla em inglês]), uma técnica minimamente invasiva desenvolvida pelo Dr. Luiz Pimenta no final dos anos 2000 apud Ozgur et al., que permite o acesso aos discos lombares através do músculo psoas maior. O LLIF conta com sua capacidade de promover a descompressão indireta e a capacidade de manter ou corrigir parâmetros sagitais quando necessário e possui vasta literatura sobre seus benefícios clínicos e radiológicos. No entanto, a artrodese por si só não é suficiente. Se, ao realizar a técnica de fusão, o cirurgião não respeitar os parâmetros pélvicos, mesmo para condições degenerativas, ele poderá criar um desequilíbrio biomecânico na região lombar que leva à sobrecarga dos discos e das articulações facetárias, culminando na degeneração do nível adjacente e até mesmo em reoperações.

Embora a técnica LLIF seja muitas vezes considerada um dos métodos com maior capacidade de restaurar a lordose sagital, revisões recentes da literatura mostram uma extensa heterogeneidade quanto à capacidade do LLIF de restabelecer a lordose lombar, com alguns autores apontando ganhos significativos de lordose segmentar e outros apresentando pequeno a nenhum ganho em alguns casos. Diferentes propriedades e posições do dispositivo intersomático podem explicar algumas partes desta heterogeneidade.

No entanto, o impacto dos parâmetros espinopélvicos pré-operatórios dos pacientes no ganho da lordose segmentar é mal estudado na literatura. Portanto, nosso estudo teve como objetivo avaliar se os parâmetros espinopélvicos pré-operatórios podem aumentar a lordose segmentar após LLIF de um nível.

Métodos

Estudo não abrangente, não comparativo e não randomizado aprovado pela Comissão de Ética (CAAE: 28761220.2.0000.8847). O presente estudo teve como objetivo investigar a relação de alguns parâmetros espinopélvicos e outras mediadas radiológicas com a melhoria do índice da lordose segmentar de um nível em pacientes submetidos ao procedimento de LLIF. Todos os pacientes incluídos no estudo deram o seu consentimento livre e esclarecido para ter seus dados coletados e utilizados no estudo.

Critérios de inclusão

Os pacientes que receberam a cirurgia LLIF em nosso serviço fizeram raios X pré-operatórios e pós-operatórios e assinaram um termo de consentimento livre.

Critérios de exclusão

Os critérios de exclusão do presente estudo foram pacientes que receberam realinhamento da coluna anterior ou têm o ligamento longitudinal anterior (LLA) involuntariamente rompido e pacientes cujos raios X não permitem a...
visualização correta e as medições dos parâmetros espinopélvicos propostos.

Variáveis de estudo

Os seguintes parâmetros radiológicos foram medidos nos raios X: incidência pélvica, lordose lombar, versão pélvica, lordose L4S1, índice de lordose segmentar de nível e índice de lordose segmentar intraoperatória.

As seguintes variáveis continuas foram criadas utilizando os parâmetros medidos: mismatch pélvico (IP-LL), proporção de lordose distal (definida como o percentual de L4S1 na incidência pélvica), delta de lordose segmentar (definido como a diferença entre lordose segmental de índice pré-operatório de raio X em pé e o índice de lordose segmentar de nível intraoperatório). As seguintes variáveis categóricas foram derivadas dos parâmetros medidos: VP > 20, inclinação sacral real (alta, média ou baixa) e inclinação sacral ideal (alta, média ou baixa). A inclinação sacral ideal foi definida pela seguinte operação SI = (VP – 20) + IS real, quando os pacientes tinham um VP > 20°; se tivessem um VP < 20°, a IS ideal é a IS real. IS alta, média e baixa foram definidas como a Classificação de Colunas Roussouly, com valores < 335° sendo baixos, > 45° sendo altos, e valores entre eles sendo médios.13,14 O limiar de 20° para TP é derivado da classificação SRS-Schwab.15

Desfechos

O resultado primário do estudo foi testar a correlação entre parâmetros espinopélvicos e o ganho da lordose segmentar após uma cirurgia LLIF de um nível.

O objetivo secundário do estudo foi avaliar como estes parâmetros espinopélvicos poderiam influenciar a lordose segmentar após uma cirurgia LLIF de um nível.

Análise estatística

Os dados foram medidos usando o software Surgimap (Nemaris Inc., Toronto, Canadá) e compilados usando o software Microsoft Excel (Microsoft Corporation, Redmond, WA, EUA) e o software R (R Foundation, Vienna, Áustria) para a análise estatística e elaboração de gráficos. Também foram utilizados os seguintes pacotes não nativos: ggpubr, ggplot2, tyendeve, cluster e lsr.

Para a análise de distribuição amostral, aplicamos o teste de normalidade de D’Agostino. Depois desta análise, investigamos a correlação das variáveis contínuas com o ganho da lordose segmentar; utilizamos os métodos de correlação de Pearson e de Spearman para amostras distribuídas normais e não paramétricas, respectivamente, e o teste V de Cramer para correlação entre variáveis categóricas. Além disso, utilizamos o método de cluster k-mean para atribuir os pacientes do estudo a grupos por similaridade. Para avaliar o número ideal de clusters, foi escolhido o método cotovelo. O teste de soma de grau T ou o teste de Wilcoxon foram utilizados para comparar os grupos, dependendo da distribuição da amostra para variáveis contínuas, e o teste exato qui-quadrado ou de Fisher para variáveis discretas. Quando havia mais de dois grupos, foram realizados os testes Kruskal-Wallis para distribuições não paramétricas e o método de teste Dunn para comparação pós-hoc entre grupos. Significância estatística foi definida como p < 0.05.

Resultados

Características populacionais do estudo

Foram incluídos 144 pacientes no presente estudo, dos quais 75 (76%) apresentaram ganho de lordose segmentar. O ganho médio de lordose segmentar foi de 2,55° e L4L5 como o nível operado 84 (80%) cirurgias. A frequência das outras variáveis estudadas está na → Tabela 1.

Correlações entre ganhos segmentais de lordose e parâmetros estudados

Para avaliar a relação entre os parâmetros e o ganho da lordose segmentar, realizamos análises de correlação. Os autores constataram que os parâmetros mais correlacionados com o ganho de lordose segmentar foram lordose segmentar pré-operatória (∼0,50) e delta de lordose intraoperatória (0,51). A tabela de correlação completa é apresentada na → Tabela 2.

Também realizamos o teste V de Cramer para testar a associação de variáveis categóricas com o ganho ou não da lordose segmentar. O IS ideal apresentou uma correlação média com o ganho de lordose segmentar (→ Tabela 3).

Diferenças entre pacientes com e sem ganho de lordose segmentar

Apresentamos as diferenças entre os grupos na → Figura 1. Os pacientes que ganharam lordose segmentar apresentaram menor lordose segmentar pré-operatória, IP superior, TP superior e maior incompatibilidade pélvica. Estes pacientes também apresentaram aumento no nível do índice de lordose segmentar quando posicionados para a cirurgia (delta de lordose segmentar).

Identificação de agrupamentos de pacientes

Além disso, foi realizada uma análise de agrupamento para identificar se pacientes com características semelhantes poderiam estar propensos a experimentar um ganho maior de lordose do que outros pacientes. Quatro nuvens foram criadas com base no método do cotovelo (→ Figura 2). Os clusters podem ser explicados como dois grupos dentro de dois subgrupos cada.

O primeiro grupo foi composto por pacientes com baixa incidência pélvica média (47,24°) e subdividido em um cluster (3) com pacientes desalinhados (IP-LL = −20,63°; TP = 27,24°) e um cluster com pacientes alinhados (1) (IP-LL = −6,15°; TP = 11,54°) (→ Tabela 4). O segundo grupo foi composto por pacientes com alta incidência pélvica (65,68°), também dividido em um grupo (4) com parâmetros desalinhados (IP-LL = 13,06°; TP = 28,90°) e um grupo (2) com parâmetros mais alinhados (IP-LL = 0,73°; TP = 19,62°) (→ Tabela 4).

Ao comparar o ganho de lordose segmentar entre os clusters, pudemos ver que o cluster 3 apresentou significativamente mais ganho do que o outro cluster, exceto o cluster 1, na análise pós-hoc (p < 0,05) (→ Figura 3).
Tabela 1
Frequência das variáveis estudadas

Variáveis Contínuas	Frequência						
	Min	1° trimestre	Mediana	Significância	3° trimestre	Máx	Desvio-padrão
IP (°)	29,40	45,45	53,20	54,22	61,15	83,90	11,96
Lordose lombar (°)	9,30	39,17	49,90	49,17	61,15	87,00	15,98
Lordose L4S1 (°)	3,10	22,50	27,95	29,15	35,23	59,20	11,70
Inclinação sacral (°)	14,00	26,30	33,35	33,77	41,27	70,60	11,14
Inclinação pélvica (°)	0,20	12,57	20,20	20,22	26,73	44,90	10,35
Lordose segmentar pré-operatória (°)	–7,00	1,90	4,55	5,19	8,40	18,50	4,32
Lordose segmentar intraoperatória (NA = 77) (°)	0,60	3,25	5,00	5,82	8,15	11,80	3,34
Delta de lordose segmentar (NA = 77) (°)	–8,40	–3,75	–1,40	–0,02	3,40	8,80	4,71
Ganho de lordose segmentar (°)	–16,3	–0,12	2,10	2,42	6,20	12,5	5,35
Incompatibilidade pélvica (°)	–26,90	–4,25	3,75	5,05	13,77	49,40	14,42
Proporção de lordose distal lombar (%)	5,53	39,18	56,33	54,97	67,68	109,95	21,28

Variáveis Categorícas	Frequência
Inclinação pélvica > 20 sim: 39 não: 65	
Ganho de lordose segmentar? sim: 75 não: 29	
Inclinação sacral real (alta, média, baixa) Baixa: 57 Média: 33 Alta: 14	
Inclinação sacral ideal (alta, média, baixa) Baixa: 39 Média: 38 Alta: 27	
Níveis operados	T12L1: 1 L1L2: 1 L2L3: 5 L3L4: 13 L4L5: 84
Angulação da cage (NA = 34)	10: 69 12: 1

Abreviação: Máx, máximo; Mín, mínimo; NA, não disponível.
(%) Valores descritos como percentual. (°) Valor descrito como grau de paralelepípedos.

Tabela 2
Correlação entre os parâmetros estudados e a quantidade de ganho de lordose segmental

Variáveis	valor-p	Correlação
Delta da lordose segmentar	0,002	0,536
Lordose segmentar pré-operatória	0,000	–0,500
Lordose segmentar intraoperatória	0,046	–0,382
Inclinação pélvica	0,001	0,304
PI	0,001	0,282
Incompatibilidade pélvica	0,018	0,216
Proporção de lordose distal lombar	0,049	–0,163
Inclinação sacral	0,486	0,052
Lordose distal lombar	0,648	–0,029
Lordose lombar	0,946	0,010

Quanto mais verde a célula, mais positivamente correlacionada são as variáveis; o azulado das células mais negativamente correlacionadas são as variáveis.
Um teste qui-quadrado para avaliar a perda de lordose segmentar mostrou que pacientes em diferentes aglomerados apresentaram diferentes riscos de perda de lordose segmentar após o procedimento LLIF ($p = 0.02$). Para investigar melhor, os clusters foram agregados em clusters IP médio-baixos (1 e 3) e aglomerados IP elevados (2 e 4), mostrando que os pacientes nos aglomerados IP médios mais baixos são mais propensos a apresentar perda de lordose segmentar, com uma razão de chances de 6,08 (intervalo de confiança [IC] 95%: 4,93–7,23).

Discussão

A literatura sustenta que a LLIF é uma abordagem confiável para corrigir as condições degenerativas da coluna lombar de forma clínica, como a radiológica. No entanto, alguns trabalhos publicados recentemente demonstraram uma alta heterogeneidade na capacidade de lordose segmentar a partir desta técnica.

Parâmetros associados ao ganho de lordose segmentar

Conformidade com o dispositivo intersomático

Vários estudos tentaram identificar possíveis parâmetros que pudessem impactar a correção da lordose segmentar. Sembrao et al., mostraram que dispositivo intersomático com angulação (dispositivo intersomático lordótico) proporcionava melhor correção de lordose segmentar do que dispositivo intersomático não lordótico. Por outro lado, um estudo biomecânico realizado por Gambhir et al., 2019, constatou...
que, ao tratar L3-L4, o fator-chave que influenciou o ganho da lordose segmentar foi a altura da dispositivo intersomático, principalmente a altura da dispositivo intersomático posterior, e que as dispositivo intersomático com 0° proporcionavam melhor correção angular do que as lordóticas.

Posição da dispositivo intersomático
Além disso, alguns outros estudos mostraram que a posição da dispositivo intersomático pode desempenhar um papel crítico na lordose segmentar final. Park et al.12 mostraram que a dispositivo intersomático dentro do terço anterior do corpo vertebral foi a melhor posição para restaurar a lordose segmentar sem perder o potencial de descompressão indireta. Ao mesmo tempo, Kepler et al.19 mostraram que a colocação da dispositivo intersomático em uma posição mais anterior resultou em um ganho médio de 7,4°, enquanto uma posição mais posterior levou a uma redução de 1,2° (efeito cifótico) no ganho de lordose segmentar Otsuki et al.20 também analisaram a posição da dispositivo intersomático e seus impactos na correção da lordose segmental.

Mobilidade da unidade espinhal funcional
Outro parâmetro importante para o ganho da lordose segmentar é a mobilidade do nível operacional. Duas maneiras comuns de melhorar a mobilidade de um nível espinhal são as osteotomias posteriores (facetectomias ou Smith Petersen) ou liberar o ligamento longitudinal anterior.21 Embora não esteja relacionado a uma manobra técnica para aumentar a mobilidade, nosso estudo também encontra pistas de que a mobilidade da unidade espinhal funcional (UEF) pode desempenhar um papel significativo no ganho da lordose segmentar, uma vez que pacientes com maior delta de lordose segmentar (positivo) apresentaram um aumento de quantidades de ganho de lordose segmentar (p < 0,05).

Tabela 4 Valores medianos relativos aos agrupamentos de pacientes. Linhas azuis (Cluster de alto IP) Linhas cor-de-rosa (Clusters de IP médio-baixo)

Cluster	IP	Lordose lombar	Lordose distal (L4.S1)	Inclinação sacral	Inclinação pélvica	Lordose segmentar pré-operatória	Ganhos de lordose segmentar	Desequilíbrio pélvico	Proporção de lordose distal lombar
1	47,59	53,75	31,99	35,48	11,54	6,99	0,26	–6,15	69,93
2	69,20	68,47	48,04	49,58	19,62	5,94	4,00	0,73	70,14
3	46,91	26,28	15,23	19,67	27,24	4,49	1,77	20,63	33,73
4	62,17	49,10	24,89	33,26	28,90	2,43	5,52	13,06	40,83
Parâmetros espinopélvicos na correção de lordose segmentar

Arnoni et al.

Fig. 3 Violino-plot mostrando a correção da lordose segmentar entre os clusters. *p < 0,05, **p < 0,01, ***p < 0,001.

Lordose segmentar e parâmetros espinhais

Outros estudos também apontaram que um fator-chave para estimar a quantidade de ganho de lordose segmentar é a lordose segmentar pré-operatória. Em uma revisão sistemática publicada por Uribe et al.,22 os autores mostraram que a lordose segmentar pré-operatória estava inversamente associada ao aumento da lordose segmentar após o procedimento. Da mesma forma, nosso estudo mostrou que a lordose segmentar pré-operatória tinha uma correlação de −0,50 com o ganho da lordose segmentar. Além disso, os pacientes que apresentaram aumento da lordose segmentar apresentaram lordose segmentar pré-operatória significativamente menor (p < 0,001).

O nosso trabalho também mostrou que os pacientes que obtiveram ganhos de lordose segmentar apresentaram maiores valores de IP, TP e IP-LL (p < 0,01; p < 0,05; p < 0,05). Além disso, o estudo mostrou que os pacientes do cluster de valores altos de IP (> 60°) não só ganharam mais lordose como também eram menos propensos a experimentar perda de lordose segmentar (Figura 3 e Tabela 4). Outro fator interessante no nosso estudo foi que a inclinação sacral ideal tinha uma correlação de média a forte com o ganho da lordose segmentar, corroborando os resultados de que o valor do IP poderia desempenhar um papel na correção da lordose segmentar.

No entanto, os autores não encontraram nenhuma literatura correlacionando diretamente estes parâmetros espinopélvicos com o ganho de lordose segmentar. Portanto, com base em outras revisões que mostram o efeito dos parâmetros espinhais na biomecânica da coluna vertebral, os autores hipotetizam os possíveis impactos dos parâmetros espinopélvicos sobre o ganho de lordose segmentar. Como demonstrado pela literatura, pacientes com PI e IS elevados (tipo 4) têm morfologia lombar hiperestuada.23,24 Além disso, Roussouly et al.25 aventaram a hipótese de que, devido à sua conformidade mais angulada, as colunas Roussouly tipo 4 podem possuir elementos vertebrais posteriores menores quando comparadas com as do tipo 2, o que poderia tornar este tipo de paciente mais capaz de extensão posterior. Um estudo publicado recentemente relatou que pacientes assintomáticos com coluna Roussouly tipo 4 apresentaram lordose intradiscal significativamente maior do que pacientes com tipo 1, para L5-S1 e que os pacientes tipo 4 também tiveram lordose intradiscal mais significativa do que os pacientes tipo 2 em L4-L5 e L2-L3.26 Para isso, os autores acham que seria justo especular que, devido à maior quantidade de “recursos biomecânicos” que pacientes com IP elevado poderiam recrutar, este grupo de pacientes poderia mitigar alguns dos impactos tanto da lordose segmentar pré-operatória quanto dos aspectos posicionais/conformacionais da dispositivos intersomático para acomodar a unidade funcional da coluna vertebral e evitar a perda da lordose segmentar.

As limitações do presente estudo incluem o seu desenho retrospectivo e o fato de que somente os parâmetros pélvicos foram analisados, deixando fora do trabalho outros fatores importantes, como posição da dispositivos intersomático, angulação da dispositivos intersomático e forma do corpo vertebral. Outra limitação do nosso estudo é que o nível L4-L5 contabilizou mais da metade dos pacientes incluídos, impactando a generalizabilidade dos nossos achados para outros níveis de coluna. Por fim, a última limitação é filosófica: a quantidade de correção alcançada deve-se aos parâmetros espinopélvicos independentemente do cirurgião ou é um efeito alcançado pelo conhecimento prévio dos parâmetros sagitais do paciente. Trata-se de uma pergunta que pode ser respondida no futuro, combinando pacientes com diferentes tipos de colunas ou valores de IP, de conformidades e posições semelhantes da dispositivos intersomático.

Conclusão

Nosso trabalho mostra que os cirurgiões podem usar estes parâmetros espinopélvicos para planejar suas metas de opções cirúrgicas ao realizar uma LLIF de um nível, principalmente em pacientes com baixo perfil de IP, pois apresentam maiores chances de perda de lordose segmentar. O índice de lordose segmentar de nível também pode desempenhar um papel no aumento ou não da lordose segmentar após a cirurgia.

No entanto, os parâmetros espinopélvicos pré-operatórios não parecem desempenhar um papel crítico no destino do ganho de lordose segmentar, mas atuam mais como coadjuvantes em um conjunto complexo de fatores, uma vez que a maioria dos parâmetros mostrou correlação moderada a fracamente com ganho de lordose segmentar.

Suporte Financeiro

O presente estudo não recebeu nenhum apoio financeiro de fontes públicas, comerciais ou sem fins lucrativos.

Conflieto de Interesses

Os autores não têm conflito de interesses para declarar.

Referências

1 Lurie JD, Tosteson TD, Tosteson A, et al. Long-term outcomes of lumbar spinal stenosis: eight-year results of the Spine Patient Outcomes Research Trial (SPORT). Spine (Phila Pa 1976) 2015;40 (02):63–76
Roussouly P, Pinheiro-Franco JL. Biomechanical analysis of lumbar lordosis in an asymptomatic population: proposed classification. Rev Chir Orthop Repar Appar Mot 2003; 89(07):632–639

Terran J, Schwab F, Shahrey CI, et al; International Spine Study Group. The SRS-Schwab adult spinal deformity classification: assessment and clinical correlations based on a prospective operative and nonoperative cohort. Neurosurgery 2013;73(04): 559–568

Malham GM, Parker RM, Goss B, Blecher CM. Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. Eur Spine J 2015;24(Suppl 3):339–345

Sembrano JN, Horazdovsky RD, Sharma AK, Yson SC, Santos ERG, Polly DW Jr. Do Lordotic Cages Provide Better Segmental Lordosis Versus Nonlordotic Cages in Lateral Lumbar Interbody Fusion (LLIF)? Clin Spine Surg 2017;30(04):E338–E343

Gambhir S, Wang T, Pelletier MH, Walsh WR, Ball JR. How Does Cage Lordosis Influence Postoperative Segmental Lordosis in Lateral Lumbar Interbody Fusion. World Neurosurg 2019;126: e606–e611

Kepler CK, Huang RC, Sharma AK, et al. Factors influencing segmental lumbar lordosis after lateral transpsoas interbody fusion. Orthop Surg 2012;4(02):71–75

Otsuki B, Fujibayashi S, Takemoto M, et al. Analysis of the Factors Affecting Lumbar Segmental Lordosis After Lateral Lumbar Interbody Fusion. Spine 2020;45(14):E839–E846

Nakashima H, Kanemura T, Satake K, et al. Factors Affecting Postoperative Sagittal Alignment after Lateral Lumbar Interbody Fusion in Adult Spinal Deformity: Posterior Osteotomy, Anterior Longitudinal Ligament Rupture, and Endplate Injury. Asian Spine J 2019;13(05):738–745

Uribe JS, Myhre SL, Youssef JA. Preservation or Restoration of Segmental and Regional Spinal Lordosis Using Minimally Invasive Interbody Fusion Techniques in Degenerative Lumbar Conditions: A Literature Review. Spine (Phila Pa 1976) 2016;41(Suppl 8): S50–S58

Barrey C, Jund J, Noseda O, Roussouly P. Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J 2007;16(09): 1459–1467

Berthonnaud E, Dimnet J, Roussouly P, Labelle H. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. J Spinal Disord Tech 2005;18(01):40–47

Roussouly P, Pinheiro-Franco JL. Sagittal parameters of the spine: biomechanical approach. Eur Spine J 2011;20(5, Suppl 5):S78–S85

Chung NS, Lee HD, Jeon CH. Differences in lumbar segment angle among Roussouly types of global sagittal alignment in asymptomatic adult subjects. Spine Deform 2020;8(02):227–232