Extending injury- and disease-resistant CNS phenotypes by repetitive epigenetic conditioning

Jeffrey M. Gidday
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Gidday, Jeffrey M., "Extending injury- and disease-resistant CNS phenotypes by repetitive epigenetic conditioning." Frontiers in Neurology. 6., 42. (2015).
https://digitalcommons.wustl.edu/open_access_pubs/3814

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Extending injury- and disease-resistant CNS phenotypes by repetitive epigenetic conditioning

Jeffrey M. Gidday

1 Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
2 Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
3 Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA

Significant reductions in the extent of acute injury in the CNS can be achieved by exposure to different preconditioning stimuli, but the duration of the induced protective phenotype is typically short-lasting, and thus is deemed as limiting its clinical applicability. Extending the period over which such adaptive epigenetic changes persist – in effect, expanding conditioning’s “therapeutic window” – would significantly broaden the potential applications of such a treatment approach in patients. The frequency of the conditioning stimulus may hold the key. While transient (1–3 days) protection against CNS ischemic injury is well established preclinically following a single preconditioning stimulus, repetitively presenting preconditioning stimuli extends the duration of ischemic tolerance by many weeks. Moreover, repetitive intermittent postconditioning enhances post-ischemic recovery metrics and improves long-term survival. Intermittent conditioning is also efficacious for preventing or delaying injury in preclinical models of chronic neurodegenerative disease, and for promoting long-lasting functional improvements in a number of other pathologies as well. Although the detailed mechanisms underlying these prolonged effects remain largely unstudied, accumulating empirical evidence supports the contention that most of these adaptive phenotypes are epigenetically mediated. Going forward, additional preclinical demonstrations of the ability to induce sustained beneficial phenotypes that reduce the burden of acute and chronic neurodegeneration, and experimental interrogations of the regulatory constructs responsible for these epigenetic responses, will accelerate the identification of not only efficacious but also practical, adaptive epigenetics-based treatments for individuals with neurological disease.

Keywords: stroke, neuroprotection, preconditioning, postconditioning, epigenetics, retina
increased quite significantly based on specific manipulations of the “dose” of the conditioning stimulus. Further interrogation of how best to establish protracted therapeutic windows of innate neuroprotection will provide some of the most valuable opportunities for multiplying the clinical potential of conditioning to prevent and treat both acute and chronic neurological disease.

REDEFINING STIMULUS-RESPONSE

Throughout most of its history at both the bench and in the clinic, the conditioning/tolerance field has evolved based on a fundamental, implicit definition of the very phenomenon we have come to understand: A transient, but robust, reduction in injury from acute ischemia can be realized if the tissue is preconditioned “X” hours prior to the lethal ischemic insult. For the aforementioned delayed phase of conditioning, the words “transient” and “X” in this definition have been understood to be ~8–48 h, essentially bookending the “therapeutic window” for treatment. Similarly, for postconditioning, preclinical protocols typically involve conditioning shortly after the ischemic event, as well as performing relatively early assessments of efficacy based largely on lesion quantification. Few studies have examined whether the duration of tolerance resulting from pre- or post-conditioning can be extended secondary to manipulating the “dose” of the conditioning treatment, or the related possibility that repetitive postconditioning during recovery can not only reduce injury but concomitantly enhance one or more long-term stroke recovery metrics; both of these advances would portend powerful clinical implications. In dose–response parlance, if the goal is to invoke a protracted response or prolonged period of tolerance to a given dose of conditioning, and if the given period of tolerance currently appears time-limited, then a closer examination of the conditioning dose is required to achieve this desired response. This has not really happened in any systematic sense; rather, we were quick to adopt the general assumption that the only type of tolerance is one defined by a short therapeutic window.

Every stimulus can be defined by at least three parameters: magnitude, duration, and frequency. Until the advent of postconditioning by instituting cycles of brief ischemia during early reperfusion, the vast majority of preconditioning paradigms for stroke have historically involved a single stimulus (i.e., frequency = 1) of a specific duration and magnitude that set into motion tolerance-signaling cascades; in the field of myocardial ischemia, repetitive preconditioning treatments have been explored (10), but not for the purpose of identifying a treatment that extends the duration of tolerance. Often overlooked is the fact that, like every stimulus, every response can also be defined by at least two of the same three parameters: its robustness and its duration. However, the preconditioning field settled quickly on a magnitude-focused, binary definition of tolerance as protection/no protection measured within ~24–72 h of conditioning; little attention has been focused on whether the duration of a given protective response – again, what is essentially the therapeutic window for this treatment – could be extended. The most obvious way to do so involves changes in stimulus frequency.

In fact, stimulus frequency is critical not only for determining the duration of the phenotypic change induced but also for its cumulative ability to promote an adaptive response, in contrast to the potential impotence of a single exposure or the potential injury resulting from multiple exposures combined as one or administered too closely together. Indeed, evidence emerging not only in the field of conditioning but across other dimensions of biology as well indicates that the frequency of the presented stimulus may be the key dose feature with respect to generating a beneficial, adaptive response instead of a harmful, maladaptive response (or no response at all). Exercise represents one example of benefit-inducing repetitive conditioning (11); moreover, recent clinical studies support the contention that increasing the number of short duration/low intensity bouts of exercise may provide more “advantages” to the cell, tissue, or organism than fewer exposures that are longer and/or more severe (and thus may afford no adaptive benefit or even cause injury) (12). As another example, repetitive intermittent hypoxia, initiated after incomplete spinal cord injury, promotes persistent functional recovery of respiratory and non-respiratory motor systems, as manifested by protracted improvements in gait performance in both rodents (13) and humans (14). In the field of psychology, the enhanced neuronal plasticity that promotes resilience – instead of vulnerability – to a number of different stress paradigms is becoming recognized as uniquely dependent on the frequency of exposure to the stressor (15–21). The long-term effects of intermittent fasting, and meal frequency and timing, on health and disease outcomes (22) represent additional facets of this same concept. Finally, repeated exposures to stress are also central to encoding a largely undefined but still well-recognized “resiliency” in medical, military, and law enforcement personnel and other individuals needing to perform well in adverse environments.

EXTENDING THE DURATION OF ADAPTIVE CHANGE

With respect to stimulus frequency influencing the duration of the resultant phenotype, examples can be found in the conditioning literature that either strongly hint at such a possibility or support it directly. For example, the therapeutic window for myocardial ischemic tolerance resulting from a single hypoxic challenge was extended significantly if intermittent mild hypoxia is used as the conditioning stimulus (23, 24). Similarly, long-term thalamic atrophy following transient focal stroke in mice was attenuated by an intermittent hypoxic postconditioning stimulus initiated 5 days after ictus (25). In neonatal (26) and adult rats (27), multi-day hypoxic postconditioning reduced cerebral injury when the first challenge was initiated an hour after the severe hypoxic-ischemic insult. We found that, relative to the <3-days duration of ischemic tolerance induced in the mouse neural retina by a single hypoxic preconditioning stimulus, tolerance lasting at least 4 weeks after the last hypoxic preconditioning treatment can be realized if the hypoxic preconditioning challenge is repeated six times over a 2-week period (28). A similar extension of the therapeutic window (>2 months) for protection against murine cerebral ischemia is also afforded by a 2-week intermittent hypoxia preconditioning regimen (29), but only with stochastic increases in the frequency, duration, and intensity of the hypoxic stimulus relative to that which was efficacious in protecting against retinal ischemia. This distinction, and the examples above, not only suggest that tissue-, cell, age-, and species-dependent hormetic dose–response relationships may be operative but also suggest that stimulus frequency.
is not a simple concept in and of itself, and variations in the magnitude and duration of a given intermittently presented stimulus, as well as its temporal pattern, may make the difference between efficacy, impotence, and harm. The mixed preclinical track-record reported to date, wherein some repetitive conditioning protocols promote stroke tolerance, but not necessarily long-lasting stroke tolerance (30, 31), may be a reflection of this complexity. While the concept that extended periods of tolerance resulting from repetitive conditioning can be modeled in neuronal (32) and cerebral endothelial cell (33) cultures, the ultimate identification of a safe and efficacious, intermittent stimulus-based conditioning protocol — either physiologic or pharmacologic — that provides consistent, long-lasting protection in patients will prove extremely challenging in a diverse cross-section of human patients without reliable biomarker metrics to guide dosing regimens. Clearly, at this juncture, continued work in animal models is warranted.

Despite the above caveats, because most heart attacks and strokes are unpredictable, the inherent clinical advantage of postconditioning relative to preconditioning still generates considerable translational excitement. Progress might be accelerated if postconditioning protocols move beyond cyclical interruptions of early reperfusion to assessments of the benefits accruing from more protracted, repetitive treatments, and if long-term survival rates and functional metrics of post-stroke recovery become the more standard endpoints. Indeed, in cardiac ischemia, repeated remote postconditioning improved long-term survival relative to both a single preconditioning challenge and to an even lower frequency of repetitive remote postconditioning (34). Intentionally delaying the start of the repetitive postconditioning treatment vol-

LIFESPAN EFFECTS

As alluded to above, the idea that repetitive stress conditioning can trigger and possibly maintain long-lasting phenotypic change in the CNS actually derives strong historical support from the neuropsychology and behavior fields, which provide rich examples of sustained plasticity within and across age groups, and ideal opportunities for considering stress along a negative–positive continuum, with distress anchoring one end and “eustress” anchoring the other (51). For instance, when initiated during adulthood, repeated mild stress exposures lead to persistent decreases in behavioral disorders and improvements in memory (52, 53). And
the literature is actually replete with studies documenting adaptive phenotypes persisting into adulthood as a result of intermittent, mild stress challenges only experienced by the individual during intra-uterine or post-uterine development. This concept was introduced over 60 years ago based on the serendipitous findings of Levine (34), and is somewhat akin to the immunological concept of early childhood vaccinations for conferring life-long protection against disease. As it turns out, most research over the ensuing decades has focused on documenting illness phenotypes secondary to child or adolescent stress in an attempt to understand the origins of psychiatric disease (55). Nevertheless, reflecting yet another manifestation of “the dose makes the poison” and new ways of thinking about evolutionary fitness, there are still some investigations to be found of beneficial adult phenotypes resulting from exposing the same individual, when much younger, to a given stressor and/or exposing their caregiving mothers to stress (56, 57). Hypoxia-related examples of the former include the finding that postnatal mice exposed from birth to 4 weeks of age to mild intermittent hypoxia exhibit improved spatial learning and memory during their adult life (58), and the report that brief hypoxic challenges during neonate life confer resistance to senescence and better preservation of cognitive function in aged rats (59). Resilience to stress in adult mice raised by mothers with access to postpartum exercise (60) is an example of the latter. Intermittent separations of baby monkeys from their mother may represent a form of “stress inoculation” that leads to enhanced arousal regulation and resilience of these offspring in later life (15). There is also evidence that unpredictable, stochastic stress exhibits unique age-dependent effects, promoting future resilience when experienced by juvenile animals, but not by adults (61). Given these and other provocative findings, some have even proposed – for humans – intentional exposures to intermittent eustress (like mild hypoxia) during neonatal or adolescent periods as a way to prevent or lessen future disease burden (62).

EPIGENETICS AS PRIMARY MECHANISM

The molecular basis of the many adaptive responses to repeated stress highlighted thus far is predictably complex, given the relative permanence of the resultant phenotype. Many studies have sought to characterize the beneficial phenotypes, finding evidence for increased neurogenesis (53), changes in hormonal balance (15, 18), changes in modulators of synaptic plasticity (63, 64), changes in sodium–calcium exchangers (NCX) (65), and elevated levels of HIF gene target mRNAs/proteins (52) or other survival factors (31), to name a few. While identifying these phenotypes is interesting with respect to understanding how disease resistance is ultimately manifested, it is epigenetics that deserves attention as the fundamental mechanism responsible for the long-lasting responses to reproductive conditioning stimuli, and thus the likely target of future therapeutics. In brief, epigenetics involves the regulatory processes – DNA methylation and changes in chromatin structure secondary to post-translational histone modifications – that reside “above” the level of genes and control their readout. During development, epigenetics specifies cell fate determination and perpetuation, but we now know that these same mechanisms are engaged throughout the lifespan by “experience” or “environment,” in all their different forms. Importantly, considerable evidence indicates that the changes in gene expression resulting from these stable covalent DNA modifications or epigenetic “marks” can be long-lasting, and, in some instances, endure throughout the lifetime of post-mitotic cells; some may even persist through cell division and be transmitted via the germline to future generations (see below). Thus, epigenetics is really the biochemically driven interface between nature (genes) and nurture (all manner of environmental and behavioral/psychological stresses or exposures). Proximal to this interface, so to speak, distinct features of an experience or a stressor (e.g., frequency, severity, etc.) that, as alluded to earlier we have only recently begun to dissect and define with respect to threshold and interactive effects, dynamically modify the epigenome. Moreover, epigenetic marks can accumulate over the course of multiple exposures and then act collectively to determine a new homeostatic phenotypic set-point. Distally, after encoding molecular memories of these experiences and exposures, CNS function and behavior is altered secondary to changes in gene expression, thus impacting one’s vulnerability or resilience to future stressors/disease (66). In essence, epigenetics is really the “hard-wired” evolutionary response for successful adaptation to changing natural and social environments. With the realization that phenotype is fluid, and not rigidly defined by genotype, it is not an exaggeration to claim that broadening our understanding of “neuroepigenetics” (67) and its regulation at both cellular and organismal levels holds incredible promise for reducing CNS disease burden and enhancing neurological health.

The ischemia-tolerant phenotype resulting from a pre- or post-conditioning stimulus is, by definition, an epigenetic response, but only recently have we begun to directly recognize it as such (68–70). Genomic and proteomic analyses consistently reveal that the ischemia-tolerant CNS is defined by a broad transcriptional repression (6, 68, 71) – in effect, the manifestation of an epigenetically mediated response to the conditioning stimulus. Tests of the hypothesis that members of the evolutionarily conserved polycomb protein family – known repressors of gene transcription secondary to their ability to posttranslationally modify histones and thus maintain them in an inactive state (72) – may be causal epigenetic mediators ultimately responsible for establishing this metabolically downregulated phenotype confirmed that increases in polycomb group proteins define the “traditional” ischemia-tolerant CNS (68, 73). Certainly, other transcriptional regulators of gene repression – such as repressor element-1 silencing transcription factor (REST) (74) – may also be involved in orchestrating this response. Whether polycomb and/or REST proteins and/or others participate in mediating the longer periods of injury resistance induced by repetitive pre- or post-conditioning stress paradigms has yet to be examined. Additional studies uncovering other epigenetic features of conditioning-induced tolerance have been forthcoming (75).

A rapidly evolving subfield of epigenetics extends the aforementioned phenomenon of even life-long phenotypic change within an individual to the transmission of adaptive or maladaptive phenotypes from parents to their offspring. Epigenetic inheritance, or transgenerational epigenetics, provides a mechanistic foundation for Lamark’s notion that the effects of environment and/or experience could be inherited by, and thus benefit, one’s immediate offspring – known as “soft inheritance” in Lamark’s day. This
phenomenon is not inconsistent with Darwinian evolutionary theory, given the selection pressure inherent in preserving adaptive phenotypic variation if it increases fitness when resources and/or other environmental stress levels change; but it does carry the important implication that random DNA mutations are not the sole driving force of evolution. In transgenerational epigenetics, gene expression is altered, not genetic inheritance; environment becomes heredity. At least in theory, this suggests the possibility of obtaining desired phenotypes in offspring that prevent or reduce disease burden and/or enhance vitality by therapeutically manipulating epigenetic regulatory systems in their parents. Conditioning across generations might seem at first blush to represent an implausible extension of tolerance’s therapeutic window. However, while the vast majority of preclinical studies have focused on the germline linking of adverse or dysfunctional behavioral changes in an individual to life experiences of their parents or grandparents (76–78), a small number of reports to date provide convincing examples, in mammals, of the transgenerational persistence of beneficial, epigenetically acquired phenotypes (79–82). Moreover, there is very intriguing epidemiological evidence that this occurs in humans (80, 83–85). Obviously, understanding the mechanistic basis of both potential outcomes portends huge repercussions for evolutionary biology, and will likely change the face of our understanding of the genetic basis of neurological disease.

CONCLUSION

Despite the discovery of the robustness of endogenous cytoprotection almost 25 years ago, the thousands of published preclinical successes, and even the dozens of efficacious studies in humans, the time-limited therapeutic window that has inadvertently come to define conditioning-based responses continues to constrain its acceptability as a viable therapeutic strategy, even for acute tissue injury. However, given the accumulating evidence supporting long-lasting, epigenetics-mediated changes in phenotype in the CNS and other tissues secondary to repetitive stress, perhaps it is time to shift the assumption that conditioning-induced tolerance is “transient,” reevaluate our assumptions about the defining features of tolerance, and in so doing open new doors regarding its full clinical destiny. As scientists and physicians, capturing the ability to leverage sustained, beneficial phenotypic changes capable of providing protracted periods of resilience to acute and chronic neurological injury should be our next collective goal.

ACKNOWLEDGMENTS

Studies by the author mentioned in this review were supported by: NIH EY18607, AHAFF/BrightFocus National Glaucoma Foundation, EY02687 (Department of Ophthalmology, Washington University), NIH Neuroscience Blueprint Interdisciplinary Core Grant P30 NS057105 (Washington University), the HOPE Center for Neurological Disorders (Washington University), and the Spastic Paralysis Research Foundation of the Illinois-Eastern Iowa District of Kiwanis International.

REFERENCES

1. Calabrese EJ. Hormetic mechanisms. Crit Rev Toxicol (2013) 43(7):580–606. doi:10.3109/10408444.2013.808172

2. Calabrese EJ, Bachmann KA, Bailey AJ, Bolger PM, Borak J, Cai L, et al. Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a horometric dose-response framework. Toxicol Appl Pharmacol (2007) 221(1):122–8. doi:10.1016/j.taap.2007.02.015

3. Mattson MP. Hormesis and disease resistance: activation of cellular stress response pathways. Hum Exp Toxicol (2008) 27(2):155–62. doi:10.1177/0960372707083417

4. Wiegant FA, Prins HA, Van Wijk R. Postconditioning hormesis put in perspective: an overview of experimental and clinical studies. Dose Response (2011) 9(2):209–24. doi:10.2203/dose-response.10-004.Wiegant

5. Zhoa H, Joo S, Xie W, Ji X. Using hormetic strategies to improve ischémic preconditioning and postconditioning against stroke. Int J Physiol Pathophysiol Pharmacol (2013) 5(2):61–72.

6. Stevens SL, Vartanian KB, Stenzel-Poore MP. Reprogramming the response by stroke by preconditioning. Stroke (2014) 45(8):2527–31. doi:10.1161/STROKEAHA.114.002879

7. Garcia Bonilla L, Benakou C, Moore J, Iadeola C, Anrather J. Immune mechanisms in cerebral ischemic tolerance. Front Neurosci (2014) 8:44. doi:10.3389/fnins.2014.00044

8. Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, et al. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol (2014) 114:58–83. doi:10.1016/j.pneurobio.2013.11.005

9. Durnagl U, Becker K, M ense A. Preconditioning and tolerance against cerebral ischemia: from experimental strategies to clinical use. Lancet Neuro (2009) 8(4):398–412. doi:10.1016/S1474-4422(09)70054-7

10. Shen YT, Depre C, Yan L, Park JY, Tian B, Jain K, et al. Repetitive ischemia by coronary stenosis induces a novel window of ischemic preconditioning. Circulation (2008) 118(19):1961–9. doi:10.1161/CIRCULATIONAHA.108.782820

11. Zhang F, Wu Y, Jia J. Exercise preconditioning and brain ischemic tolerance. Neuroscience (2011) 177:170–6. doi:10.1016/j.neuroscience.2011.01.018

12. Lee DC, Patel RR, Lavie CJ, Sui X, Church TS, Blair SN. Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol (2014) 64(5):472–81. doi:10.1016/j.jacc.2014.09.038

13. Loveri-Barr MR, Satriotomo I, Muir GD, Williamson JE, Hoffinan MS, Vinati S, et al. Repetitive intermittent hypoxia induces selective respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci (2012) 32(11):3591–600. doi:10.1523/JNEUROSCI.2908-11.2012

14. Hayes HB, Jayaraman A, Herrmann M, Mitchell GS, Rymer WZ, Trumbower RD. Daily intermittent hypoxia enhances walking after chronic spinal cord injury: a randomized trial. Neurology (2014) 82(2):104–13. doi:10.1212/01.WNL.0000434714.32498.43

15. Lyons DM, Parker KJ, Schatzberg AF. Animal models of early life stress: implications for understanding resilience. Dev Psychobiol (2010) 52(7):616–24. doi:10.1002/dev.20500

16. McIwen BS, Gianaros PJ. Stress- and allostatic-induced brain plasticity. Annu Rev Med (2011) 62:431–45. doi:10.1146/annurev-med-052009-100430

17. Franklin TB, Saab BJ, Mansuy IM. Neural mechanisms of stress resilience and vulnerability. Neuron (2012) 75(5):747–61. doi:10.1016/j.neuron.2012.08.016

18. Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ. Neurobiology of resilience. Nat Neurosci (2012) 15(11):1475–84. doi:10.1038/nn.3234

19. Capocci S, Berry A, Bellissario V, Vacicara D, Ortona E, Alleva E, et al. Quality and timing of stressors differentially impact on brain plasticity and neuroendocrine-immune function in mice. Neural Plast (2013) 2013:971817. doi:10.1155/2013/971817

20. Leak RK, Adaptation and sensitization to proteotoxic stress. Dose Response (2014) 12(1):24–36. doi:10.2203/dose-response.13-016.Leak

21. Pieau ML, Russo SJ. Peripheral and central mechanisms of stress resilience. Neurobiol Stress (2015) E66–79. doi:10.1016/j.ynstr.2014.09.004

22. Mattson MP, Allison DB, Fontana L, Harvie M, Longo VD, Malaize WJ, et al. Meal frequency and timing in health and disease. Adv Nutr (2015) 6(1):97–146. doi:10.1093/advance/nau004

23. Zhang Y, Zhong N, Zhu HF, Zhou ZN. [Antiarhythmnic and antioxidative effects of intermittent hypoxia exposure on rat myocardium]. Sheng Li Xue Bao (2000) 52(2):189–92.

24. Neckar J, Ostadal B, Kolar F. Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery. Physiol Res (2004) 53(6):621–8.

25. Lecomte C, Tinier E, Frevert T, Toutain J, Saulnier R, Boulouard M, et al. Delayed hypoxic preconditioning protects against cerebral ischemia in the mouse. Stroke (2009) 40(19):6288–90. doi:10.1161/STROKEAHA.109.557314
Zhan L, Li D, Liang D, Wu B, Zhu P, Wang Y, et al. Activation of Akt/FoxO and
Boussi-Gross R, Olorunfemi E, Fishlev G, Bechor Y, Volkov O, et al. Hyperoxic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology (2012) 79(18):1853–61. doi:10.1212/WNL.0b013e318271f76a
Zhu Y, Zhang L, Schmidt J, Gidday J. Glaucoma-induced degeneration of retinal ganglion cell soma and axons prevented by hypoxic preconditioning: a model of ‘glaucoma tolerance’. Mol Med (2012) 18:E97–706. doi:10.2119/molmed.2012.00050
Gidday JM, Zhang L, Chiang CW, Zhu Y. Enhanced retinal ganglion cell survival in glaucoma by hypoxic preconditioning after disease onset. Neurotherapeutics (2014). doi:10.1007/s13731-014-0330-x
Belforte N, Sande PH, de Zavalia N, Fernandez DC, Silman DM, Chiarelli MS, et al. Ischemic tolerance protects the rat retina from glaucomatous damage. PLoS One (2011) 6(8):e25763. doi:10.1371/journal.pone.0025763
Fernandez DC, Sande PH, Chiarelli MS, Aldana Marcos HJ, Rosenberg RE. Induction of ischemic tolerance protects the retina from diabetic retinopathy. Am J Pathol (2011) 178(21):5439–46. doi:10.1016/j.ajpath.2011.01.040
Manukhin EA, Goryacheva AV, Barskov IV, Vaskovor I, Guseva AA, Pishen
Kim J, Zhang L, Schmidt J, Gidday J. Glaucoma-induced degeneration of retinal ganglion cell somata and axons prevented by hypoxic preconditioning: a model of ‘glaucoma tolerance’. Mol Med (2012) 18:E97–706. doi:10.2119/molmed.2012.00050
Gidday JM, Zhang L, Chiang CW, Zhu Y. Enhanced retinal ganglion cell survival in glaucoma by hypoxic preconditioning after disease onset. Neurotherapeutics (2014). doi:10.1007/s13731-014-0330-x
Belforte N, Sande PH, de Zavalia N, Fernandez DC, Silman DM, Chiarelli MS, et al. Ischemic tolerance protects the rat retina from glaucomatous damage. PLoS One (2011) 6(8):e25763. doi:10.1371/journal.pone.0025763
Fernandez DC, Sande PH, Chiarelli MS, Aldana Marcos HJ, Rosenberg RE. Induction of ischemic tolerance protects the retina from diabetic retinopathy. Am J Pathol (2011) 178(21):5439–46. doi:10.1016/j.ajpath.2011.01.040
Manukhin EA, Goryacheva AV, Barskov IV, Vaskovor I, Guseva AA, Pishen
Kim J, Zhang L, Schmidt J, Gidday J. Glaucoma-induced degeneration of retinal ganglion cell somata and axons prevented by hypoxic preconditioning: a model of ‘glaucoma tolerance’. Mol Med (2012) 18:E97–706. doi:10.2119/molmed.2012.00050
Gidday JM, Zhang L, Chiang CW, Zhu Y. Enhanced retinal ganglion cell survival in glaucoma by hypoxic preconditioning after disease onset. Neurotherapeutics (2014). doi:10.1007/s13731-014-0330-x
Belforte N, Sande PH, de Zavalia N, Fernandez DC, Silman DM, Chiarelli MS, et al. Ischemic tolerance protects the rat retina from glaucomatous damage. PLoS One (2011) 6(8):e25763. doi:10.1371/journal.pone.0025763
and postconditioning. Adv Exp Med Biol (2013) 961:223–40. doi:10.1007/978-1-4614-4756-6_19
66. Zannas AS, West AE. Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience (2014) 264:157–70. doi:10.1016/j.neuroscience.2013.12.003
67. Sweatt JD. The emerging field of neuroepigenetics. Neuron (2013) 80(3):624–32. doi:10.1016/j.neuron.2013.10.023
68. Stowell C, Wang L, Arbogast B, Lan J-Q, Gioffi CE, Burgoyne CF, et al. Retinal proteome changes under different ischemic conditions - implication of an epigenetic regulatory mechanism. Int J Physiol Pathophysiolog Pharmacol (2010) 2(2):148–60.
69. Brand D, Ratan RR. Epigenetics and the environment: in search of the “toleroma” vital to execution of ischemic preconditioning. Transl Stroke Res (2013) 4(1):56–62. doi:10.1007/s12975-012-0235-0
70. Thompson JW, Dave KR, Young JI, Perez-Pinzon MA. Ischemic preconditioning alters the epigenetic profile of the brain from ischemic intolerance to ischemic tolerance. Neurotherapeutics (2013) 10(4):789–97. doi:10.1007/s13311-013-0202-9
71. Meller R, Simon RP. Tolerance to ischemia - an increasingly complex biology. Transl Stroke Res (2013) 4(4):40–50. doi:10.1007/s12975-012-0246-x
72. Mills AA. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer (2010) 10(10):669–82. doi:10.1038/nrc2931
73. Stapels M, Piper C, Yang T, Li M, Stowell C, Xiong Z-G, et al. Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci Signal (2010) 3(111):ra15. doi:10.1126/scisignal.2000502
74. Hwang JY, Kaneko N, Noh KM, Pontarelli F, Zukin RS. The gene silencing transcription factor REST represses miR-132 expression in hippocampal neurons destined to die. J Mol Biol (2014) 426(20):3454–66. doi:10.1016/j.jmb.2014.07.032
75. Yildirim F, Li S, Kronenberg G, Barco A, Olivares R, Benito E, et al. Histone acetylation and CREB binding protein are required for neuronal resistance against ischemic injury. PLoS One (2014) 9(4):e95465. doi:10.1371/journal.pone.0095465
76. Gluckman PD, Hanson MA, Bateson P, Pontarelli F, Zukin RS. The gene silencing transcription factor REST represses miR-132 expression in hippocampal neurons destined to die. J Mol Biol (2014) 426(20):3454–66. doi:10.1016/j.jmb.2014.07.032
77. Bohacek J, Gapp K, Saab BJ, Mansuy IM. Transgenerational epigenetic effects on brain functions. Biol Psychiatry (2013) 73(4):313–20. doi:10.1016/j.biopsych.2012.08.019
78. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell (2014) 157(1):95–109. doi:10.1016/j.cell.2014.02.045
79. Harper IV. Epigenetic inheritance and the intergenerational transfer of experience. Psychol Bull (2005) 131(3):340–60. doi:10.1037/0033-2909.131.3.340
80. Godfrey KM, Gluckman PD, Hanson MA. Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends Endocrinol Metab (2010) 21(4):199–205. doi:10.1016/j.tem.2009.12.008
81. Saab BJ, Mansuy IM. Neurobiological disease etiology and inheritance: an epigenetic perspective. J Exp Biol (2014) 217(Pt 1):94–101. doi:10.1242/jeb.089995
82. Gapp K, Soldado-Magraner S, Alvarez-Sanchez M, Bohacek J, Vernaz G, Shu H, et al. Early life stress in fathers improves behavioural flexibility in their offspring. Nat Commun (2014) 5:5466. doi:10.1038/ncomms6466
83. Kaati G, Bygren LO, Edvinsson S. Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur J Hum Genet (2002) 10(1):682–8. doi:10.1038/sj.ejhg.5200859
84. Kaati G, Bygren LO, Pembrey M, Sjostrom M. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet (2007) 15(7):784–90. doi:10.1038/sj.ejhg.5201832
85. Li Y, Saldanha SN, Tollesbo TO. Impact of epigenetic dietary compounds on transgenerational prevention of human diseases. AAPJ (2014) 16(1):27–36. doi:10.1208/s12248-013-9353-7

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 06 January 2015; accepted: 18 February 2015; published online: 02 March 2015.

Citation: Gidday JM (2015) Extending injury- and disease-resistant CNS phenotypes by repetitive epigenetic conditioning. Front. Neurosci. 6:42. doi: 10.3389/fneuro.2015.00042

This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neurology.

Copyright © 2015 Gidday. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.