Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription, and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases.

Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the clinical phenotype of some mental disorders (Bigos et al., 2010). Moreover, point mutations in calcium, sodium, and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium, and potassium channels in BPD, schizophrenia, and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.

Keywords: ion channels, bipolar disorders, schizophrenia, autism, ion channels blockers, ion channel openers

INTRODUCTION

Important advances have been made in the diagnosis and treatment of psychiatric disorders. A growing body of data, indeed, supports the view that these disorders arise through the interplay of genetic (Askland et al., 2012; Devlin and Scherer, 2012; Mulle, 2012; Sullivan et al., 2012) and environmental risk factors (Askland et al., 2012; Devlin and Scherer, 2012; Mulle, 2012; Sullivan et al., 2012) and result from structural and functional impairments in various brain regions such as thalamus, amygdala, mid-brain, and the prefrontal cortex (Gargus, 2006; Siquiniati et al., 2010; O’Donnell, 2012; O’Roak et al., 2012; Price and Drevets, 2012; Stachowiak et al., 2013). Moreover, specific pattern of brain activity have been correlated to the clinical phenotype of some mental disorders (Bigos et al., 2010).

Voltage-gated ion channels and inward rectifier potassium channels are widely and selectively distributed in the brain, both in neurons and astrocytes, often forming macromolecular complexes with associated proteins or auxiliary subunits within distinct subcellular compartments. The alternating activation of different ionic currents sets the resting membrane potential, generates the action potential, and regulates the neuronal firing frequency and neurotransmitter release, thus providing neuronal cells with the genetic risk for bipolar disorders (BPDs) or schizophrenia. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the clinical phenotype of some mental disorders (Bigos et al., 2010).

Voltage-gated ion channels and inward rectifier potassium channels are widely and selectively distributed in the brain, both in neurons and astrocytes, often forming macromolecular complexes with associated proteins or auxiliary subunits within distinct subcellular compartments. The alternating activation of different ionic currents sets the resting membrane potential, generates the action potential, and regulates the neuronal firing frequency and neurotransmitter release, thus providing neuronal cells with the genetic risk for bipolar disorders (BPDs) or schizophrenia. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the clinical phenotype of some mental disorders (Bigos et al., 2010).
Table 1 | Ion channels involved in main neuropsychiatric disorders.

Ion channel type/disease	Gene	Protein	Chromosome	Pharmacological perspectives	Reference
Calcium					
Autism spectrum disorders, schizophrenia, autism spectrum disorders, Timothy syndrome	CACNA1C	Cav1.2 α subunit	12p13.3	Cav channel blockers (verapamil, nicardipine) as antipsychotics; α2β4 ligands (pregabalin) as antidepressants	Gargus (2009), International Schizophrenia Consortium (2009), Liao and Soong (2010), Lee et al. (2012), Valente et al. (2012)
	CACNG2,4,5	Calcium channel γ subunits	22q13.1, 17q24		Wilson et al. (2006), Curtis et al. (2011)
	CACNA2D4	Calcium channel α subunit	12p13.3		Van Den Bosch et al. (2012)
Sodium					
Autism spectrum disorders, epilepsy, Dravet syndrome	SCN1A	Nav1.1 α subunit	2q24.3	Nav channel blockers (lamotrigine, phenytoin, carbamazepine) as mood stabilizers and antidepressants; antidepressants (fluoxetine, sertraline) block Nav channels	Aldana and Sitges (2012), Bender et al. (2012), O’Roak et al. (2012), Sanders et al. (2012), Perucca and Mula (2013)
	SCN2A	Nav1.2 α subunit	2p24.3		Chen et al. (2010), Bartnik et al. (2011), Psychiatric GWAS Consortium Bipolar Disorder Working Group (2011), Sanders et al. (2012), Davidson et al. (2008), Chen et al. (2010)
	SCN3A	Nav1.3 α subunit	2p24		
Potassium					
Autism spectrum disorders, schizophrenia, autism spectrum disorders, autoimmune neuropsychiatric disorder	KCN1A	Kv1.1	12p13.32	Kv1.1 "disinactivators" as potential anticonvulsants and in neuropathic pain	Lu et al. (2008), Illes et al. (2011), Somers et al. (2011)
	KCNQ3	Kv7.3	8p24	KCNQ openers (retigabine) as anticonvulsant and antipsychotic drugs; KCNQ inhibitors (linopirdine) for learning disabilities	Zhang et al. (2010a), Psychiatric GWAS Consortium Bipolar Disorder Working Group (2011), Kristensen et al. (2012)
	KCNH2	HERG,1, Kv11.1	7p26.1	Selective serotonin reuptake inhibitors (fluoxetine, eslicarbazepine and tricyclic antidepressants (mirtazapine) block Kv channels	Arai et al. (2010), Yemada et al. (2012), Ohno et al. (2007), Sala-Redanal et al. (2010), Williams et al. (2010), Sicca et al. (2011)
	KCNH3	Kir3.1	2q4.1		
	KCNH10	Kir4.1	1q23.2		
	KCNQ8/KCNQ11	Kir6.1/Kir6.2	12p11.23/11p15.1	KATP openers (diazoxide, 5ipitalm) as antipsychotics	Sun et al. (2010), Mele et al. (2012)
	KCNQ9	SKCa3 (SK3)	1q21.3	SK3 openers for learning difficulties and schizophrenia	Gargus (2008), Grube et al. (2011)
	KCNMA1	KCa1.1	10q22.3		Laumonnier et al. (2006)
	KCNK9	TASK3	8p24.3		Barel et al. (2008)
Voltage-gated channels (Cav channels) mediate calcium entry into a wide variety of electrically excitable cells, including cardiac and skeletal muscle cells, neurons, endocrine and sensory cells, thereby controlling numerous physiological processes. Ten genes named CACNA1A-1S encode the pore-channel single subunit that generate the L-type (Cav1), the neuronal P/Q-, N-, and R-types (Cav2), and the T-type (Cav3). Cav1 and Cav2 subunits are high voltage-activated channels, which also include regulatory subunits α, β, δ, and γ. Among calcium channels, L-type Cav1.2 channel is widely distributed in the brain and is one of the most promising ion channel disease candidate gene (hERG), eag, and Ca2+–activated K+ channels; (2) inward rectifiers (Kir) containing only two transmembrane regions and a single pore; and (3) two-pore tandem K+ channels containing four transmembrane segments with two pores (Maljevic and Lerche, 2012). Among neuronal Kv channels, the low voltage-activated Kv1.1 and Kv1.2 are expressed mainly in the cerebellum, hippocampus, and thalamus. These channels, located in the axons of neurons, do not affect the first action potential but increase the action potential threshold and guarantee the correct propagation of electrical signals (Jan and Jan, 2012). Kv1.1 co-assembles with Kv1.4 at the hippocampal mossy fiber boutons, where they mediate neuronal activity-dependent processes involved in synaptic plasticity (Imbriani et al., 2007). The KCNQ2–5 channels are expressed in different combinations in neurons. They mediate the M-currents inhibited by acetylcholine (ACh) through the muscarinic receptors involved in the ACh-dependent post synaptic depolarization. M-current plays a critical role in thalamic sensory pathways in attention, perception, and memory. It remains one of the most promising ion channel disease candidate gene and it maps to a locus on chromosome 6q14, a region repeatedly suggested containing an attention-deficit/hyperactivity disorder (ADHD) locus, a schizophrenia locus, and bipolar disease susceptibility alleles (Gargus, 2006). HERG channels form a particular subfamily of voltage-gated potassium channels known as H or Kv11. HERG1 (also referred as KCNH2 or Kv11.1) plays an important role in the repolarization of the cellular membrane potential of excitable cells, as cardiac, neuronal, and smooth muscle cells (Maljevic and Lerche, 2012).

Since the cloning of the first inward rectifiers, new members of this family have been identified, including the Kir1.1–2 (KCNJ10,15), Kir3.1 (KCNJ6), the G protein-coupled (GIRK) Kir3.1–4 (KCNJ6,5,9,3), and the ATP-sensitive (KATP) Kir6.1–2 (KCNJ10,15).
pyruvate kinase (PK), to form macromolecular complexes that belong to ATP-binding cassette protein superfamily. KA TP units and of regulatory sulfonylurea receptor (SUR) subunits are octameric complexes of the pore-forming Kir6.1–2 subunits and of regulatory sulfonylurea receptor (SUR) subunits belonging to ATP-binding cassette protein superfamily. KA TP channels couple metabolism to the electrical activity of the cells. Indeed, several studies have shown that they can be associated with glycolytic proteins including pumps and enzymes such as pyruvate kinase (PK), to form macromolecular complexes that

NEUROPSYCHIATRIC DISORDERS ASSOCIATED TO ION CHANNELS DYSFUNCTIONS

BIPOLAR DISORDER

Bipolar disorder is a common, chronic and recurring medical disorder characterized by episodes of mania, that is extremely elevated mood, increased in motor activity, racing thought patterns, impaired judgment, decreased sleep and somet ime psychosis, and depression (O’f ford, 2012). The prevalence of the disease is around 1% of the population, though, due to the problem of misdiagnostic, the prevalence may be higher (O’f o rdf or, 2012). Increasing evidence suggests that BPD stems from structural and functional impairments in various brain regions, mainly in corticolumbic structures linked with disrupted emotional and executive functioning (Co us ins and Grunze, 2012; Price and Drevets, 2012). In addition, mood disorders, particularly BPD, are associated with a disruption in mechanisms and factors that govern cell survival and neural plasticity (Rogowski and Louch er, 2004). Several research groups have performed independent GWAS of BPD supporting the view that ion channels dysfunctions may also contribute to the genetic etiology of this disease.

Calcium channels involvement

The strong association of calcium channels to BPD came out from the analysis of published GWAS data, concluding that the Cav1.2 gene is the most relevant susceptibility locus associated with BPD. Indeed, distinct studies, including the Wellcome Trust Case Control Consortium, STEP-UCL, STEP-BD, and ED-DUB-STEP2, identified one single-nucleotide polymorphism (SNP), rs1086737, located in the third intron of the Cav1.2 gene (Ferreira et al., 2008; Sidar et al., 2008; Liao and Soong, 2010; Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011). Furthermore, BPD was also associated with SNP rs10994336 in ankyrin 3 gene (ANK3). Ferreira et al., (2008) which encodes a family of proteins that was thought to be involved in the assembly of Nav channels and proper functioning at the nodes of Ranvier (Poliak and Peles, 2003). One related study by Curtis et al. (2011) also identified a SNP, rs17649223, between the CACNG5 and CACNG4 genes in patients with BPD. These latter genes code for two γ subunits of neuronal Cav channel. In addition, Wilson et al. (2016) screened the postmortem brain DNA of 35 BPD cases and reported DNA copy number variations (CNV) in several loci including GluK7 (encoding a kainate receptor subunit), AKAP5 (encoding a member of the A kinase anch or protein), and CACNG2 (encoding a Cav channel γ subunit). In another study, a total of 709 bipolar patients, 645 patients with schizophrenia, 189 patients with schizo affective disorder, and 1,470 control individuals were screened using the multiplex ampiclon quantification method. A rare, partial deletion of 35.7 kb was found in CACNA2D4 (encoding the Cav channel α2δ2 subunit), in two unrelated late onset bipolar patients and in one control individual (Van Den Bossche et al., 2012). The functional correlation of these genetic variants to the pathogenesis of BPD is largely unknown; some hypotheses can be made, though. First, CACNA1C and ANK3 genes are involved in glutamatergic signaling which is integral to normal neuronal function (Wilson et al., 2006) and was previously found to play a role in BPD etiology (Liao and Soong, 2010). Second, the most effective drug to treat BPD, lithium, was reported to down-regulate both ANK3 and Cav1.2 channel in the mouse brain (Lee et al., 2012). Third, the gamma subunits stabilize the calcium channel in an inactivated state and regulate the trafficking and gating properties of AMPA-selective glutamate receptors. Finally, the α2δ2 subunit encoded by CACNA2D4 associates with the Cav1.2 α subunit and doubles calcium influx. The CACNA1C gene is also localized in proximity of the CACNA2D4 gene on chromosome 12, as both genes are only 135 kb apart. An attempt to give functional relevance to genetic data and to shed light into neural mechanisms of genetic risk was proposed by Bigos et al. (2010). They used functional MRI to find a correlation between the occurrence of CACNA1C SNPs and specific patterns of brain activity characteristic of patients affected by mental illness (Bigos et al., 2010). Indeed, they found that healthy individuals carrying the SNP rs1086737 showed increased hippocampal activity in response to emotional stimuli, a pattern that has been associated with the risk for BPD; the same individuals also showed increased prefrontal activity during working memory tasks, a clinical feature typical of schizophrenia. Moreover, this study demonstrated that the functional mechanism of genetic risk appears to relate at least in part to regulation of gene expression. Indeed, carriers of the risk SNP had increased levels of CACNA1C mRNA in the human dorsolateral prefrontal cortex measured from postmortem brain samples. Calcium channels are involved in various aspects of neuronal maturity during development and throughout adulthood (Gargus, 2009; Liao and Soong, 2010); therefore alterations in gene expression may also affect the functional activity of brain circuits implicated in both mental conditions. This study also suggests that it may be worth considering genotype or brain imaging based phenotypes as individual predictors of response to psychiatric agents in clinical trials (Liao and Soong, 2010).

Potassium channels involvement

Potassium channels have been proposed to play a role in mechanisms of neural plasticity which are altered in various psychiatric disorders, especially in hippocampus (Addlak, 2006; Fontan-Lozano et al., 2011; Shah et al., 2011; Kristens et al., 2012). Multiple linkage and association studies have suggested
chromosome 8q24 as a promising candidate region for BPD (Park et al., 2004; Zandi et al., 2008). Zhang et al. (2010a) performed a detailed association analysis on 2,756 SNP markers in the chromosome 8q24 region of 3,512 individuals from 737 families. Their results showed suggestive evidence of association of BPD with loci near KCNQ3 gene, encoding the voltage-gated potassium channel K v7.3. Kosychynyk et al. (2012), instead, excluded the involvement of KIR4.2 in anxiety or depression by analyzing the neurological functions of KCN11 knock-out mice on a battery of behaviors including those related to anxiety and depression, and on plasticity-related learning tasks.

Schizophrenia

Schizophrenia is a serious mental disorder affecting around 1% of the general population worldwide (Askland et al., 2012; Mullé, 2012; Sullivan et al., 2012). Symptoms of schizophrenia include dysfunction of executive functioning (symptoms of cognitive disorganization), social responsiveness (negative symptoms, or asociality), and sensory-perceptual integration (classical positive symptoms, including hallucinations and delusions; Askland et al., 2012). Several lines of evidence increasingly suggest that schizophrenia is a disorder of brain development and plasticity, where the activity and excitability of hippocampus, substantia nigra, ventral tegmental area, and prefrontal cortex are strongly altered (Eischhammer et al., 2004; Osley et al., 2004; O'Donell, 2012; Silveria et al., 2012; Stachowiak et al., 2013). GABA and glutamate neurotransmission emerged as critical elements in schizophrenia pathophysiology (Coyte et al., 2012; Seihadi et al., 2013), and one hypothesis proposes dysruption of cortical interneurons as final common pathway by which several different etiological factors can yield the symptoms characteristic of this disease (Nakazawa et al., 2012; O'Donell, 2012). Genetic linkage and association studies have recently begun to identify strong candidate risk genes for schizophrenia, including some ion channels genes (Askland et al., 2012; Lee et al., 2012; Mullé, 2012; Owen, 2012; Vukadinovic and Rosenzweig, 2012).

Calcium channels involvement

Next to BPD, the rs1006737 SNP in CNN1 has been found to be a susceptible SNP in schizophrenia in separate studies, though with less statistical power compared to BPD, suggesting possible overlap of genetic risk for both diseases (Moskvina et al., 2009; Green et al., 2010; Sullivan et al., 2012).

Potassium channels involvement

Potassium channels are widely distributed in the CNS and thought to have a role in modulating electrical excitability in neurons, regulating action potential duration and neurotransmitter release. Therefore, it is no surprise that some potassium channel genes have been considered candidate for susceptibility to schizophrenia.

KCNQ3, encoding the small conductance calcium-activated potassium channel SK3, is located at 1q21, a region reproducibly and strongly implicated in schizophrenia. Several lines of neuroanatomical, physiological, and pharmacological evidence suggested that SK3 channels may constitute a pharmacological target to improve cognition in schizophrenia and other conditions with cognitive impairment (Gargus, 2006). In man, SK3 is expressed most abundantly in the ventral medial area, in the substantia nigra, the subthalamic nuclei, hippocampus, and amygdala (Dror et al., 1999). This distribution is consistent with expression in the dopaminergic neurons that contribute to the nigrostriatal and mesolimbic pathways, that are implicated in schizophrenia. Moreover, this brain network abundantly expresses the D 2 dopamine receptor, the molecular target of typical and atypical antipsychotic drugs. SK channels are the major determinant of the afterhyperpolarization phase (AHP) of the action potential, which regulates the spontaneous frequency and precision of mid-brain dopaminergic neurons. Pharmacological blockade of SK channel enhances bursting activity of these neurons in vivo and increases dopamine release. Thus, alterations in the SK3 channels might significantly affect monoaminergic neuron excitability, producing excess dopamine release, a process long implicated in schizophrenia (Gargus, 2006).

An association between the polymorphic CAG repeat length in the N-terminal coding region of KCN3 and schizophrenia has also been questioned, but most results remain quite equivocal. Gruhe et al. (2011) recently showed that the CAG repeat does not influence susceptibility to schizophrenia but modify its phenotype. Using the Göttingen Research Association for Schizophrenia (GRAS) data collection of patients with schizophrenia, these authors performed a phenotype-based genetic association study of KCN3. They show that long CAG repeats reduce SK3 channel function in HEK 293 cells and, in schizophrenic samples, are specifically associated with enhanced cognitive performance (Gruhe et al., 2011). However, interplay of multiple causative factors, perhaps thousands of potential combinations of genes/genetic markers, and an array of different environmental risks, might contribute to the development of a schizophrenic phenotype.

Transgenic mice provided valuable tools to unravel the specific involvement of SK3 channels in synaptic plasticity. Indeed, in the doxycycline-induced conditional SK3-deficient mice some aspects of working/short-term memory are disrupted. In addition, these cognitive deficits in mice are paralleled by reduced brain-derived neurotrophic factor (BDNF) mRNA expression, in the dentate gyrus and CA3 area of the hippocampus, which is also a marker of depression. Hence, the biological substrate for the cognitive impairments in SK3 knock-out mice could conceivably entail reduced trophic support of the hippocampus (Jacobsen et al., 2009).

The association of HERG1 gene with schizophrenia stems from the observation that an adverse effect of antipsychotic agents is the acquired long QT (LQT) syndrome, which results from the block of the HERG1 channel. Huffaker et al. (2009) studied two family-based cohorts and three case–control cohorts of European ancestry and reported HERG1 as a previously undescribed potential susceptibility gene for schizophrenia. The risk alleles predicted increased expression of a brain-selective isoform, KCNH2–3.1 (or Kv11.1–3.1; Huffaker et al., 2009). Atalar et al. (2010) genotyped four SNPs in 7q36.1 region (two SNPs, rs1805123 and rs1805779, located on HERG1, and two SNPs, rs855684 and rs956642, at the 3′-downstream intergenic region) and then performed SNP and
Autism spectrum disorders are characterized by the concomitant significantly lower dorsolateral prefrontal cortex of postmortem brains from patients bidirectionally to cognitive function (Miyake et al., 2009). Interestingly, the functional characterization of the schizophrenia-associated HERG1 isoform KCNJ2–3.1 revealed altered gating kinetics and lower current accumulation which will result in longer lasting trains of action potentials. Increased expression of these channels in the brain of schizophrenia patients might therefore contribute to disorganize neuronal firing (Heide et al., 2012). In addition, the genetic variation associated with KCNJ2–3.1 expression was reported to influence the therapeutic effects of antipsychotic drugs (Apud et al., 2012).

An animal model which lacks the KCNH3 channel has been generated. It clarified the critical involvement of this channel in cognitive function. Indeed, KCNH knock-out mice displayed enhanced performance in behavioral tasks related to working memory, spatial reference memory, and attention compared to their wild-type littermates (Miyake et al., 2009). In addition, these mice had neither the seizures nor the motor dysfunction that are often observed in other potassium channel-deficient animals. Conversely, the overexpression of KCNJ3 in the forebrain caused impaired performance in cognitive tasks. The results indicate that KCNH3 represent a K+ channel that contributes preferentially and bidirectionally to cognitive function (Miyake et al., 2009). Interestingly, cognitive deficits in schizophrenia have received increasing attention, as they are a core feature of the disease and perhaps the strongest predictor of outcome (O’Donnell, 2012). Therefore, SK3 and KCNH3 knock-out mice may likely help unraveling the contribution of dysfunction in executive functioning in the etiopathology of schizophrenia.

Yamada et al. (2012) recently identified a SNP (rs3106653) in the KCNJ3 gene as a result of a GWAS of schizophrenia in the Japanese and Chinese population. KCNJ3, also termed GBRK1 or Kir6.1, is a member of the G protein activated inwardly rectifying K+ channel group. The analysis of transcript levels in the dorsolateral prefrontal cortex of postmortem brains from patients with schizophrenia and BD and from healthy controls, revealed significantly lower KCNJ3 expression in patients compared with controls. These data suggest that this gene is genetically associated with schizophrenia in Asian populations and a more comprehensive analysis extended to other populations will be required (Yamada et al., 2012).

AUTISM SPECTRUM DISORDERS

Autism spectrum disorders are characterized by the concomitant occurrence of impaired social interaction, restricted, perseverative and stereotypical behavior, and abnormal communication skills (Fritag et al., 2010; Devlin and Scherer, 2012). These disorders affect about 1 in 110 individuals, with onset before the age of 3 years (Devlin and Scherer, 2012). The etiology remains largely unknown, in large part because most cases of ASD arise from a mixture of multiple environmental and genetic influences, making it difficult to forge causal links to behavior (Fritag et al., 2010; Carter and Scherer, 2013). Moreover, the extreme locus heterogeneity underlying ASD renders the identification of causative or risk associated genes quite difficult, necessitating the analysis of very large cohorts for validation (O’Roak et al., 2012; Sanders et al., 2012; Carter and Scherer, 2013). Among the genes associated with ASD, most are involved in synaptic plasticity and synaptogenesis, such as neuroligin, neurexin, SHANK, methyl-CpG-binding protein 2 (MeCP2), cyclin-dependent kinase-like 5 (CDKL5), and reelin genes (Fritag et al., 2010; Sullivan et al., 2012; Carter and Scherer, 2013). Therefore, a developmental deregulation of neuronal networks due to postnatal events, compromising cell differentiation, synaptic formation, and plasticity has been suggested to trigger and/or exacerbate autistic behavior in humans (Nica et al., 2011; Bender et al., 2012; Ebert and Greenberg, 2013). In addition, none of these identified genetic variants are associated solely with ASD; they are rather also implicated in intellectual disability, epilepsy, and other psychiatric conditions, suggesting shared biologic pathways (Carter and Scherer, 2013). This is also the case of some neuronal ion channels implicated in the pathogenesis of autism in association with other clinical features (Nica et al., 2011; O’Roak et al., 2012; Sanders et al., 2012).

Here we focus on TS, a form of ASD associated with mutations in a neuronal calcium channel, and Dravet syndrome (DS), which is caused by mutations in neuronal sodium channels and presents a typical epileptic phenotype of infancy; we also report clinical cases with the epilepsy/autism phenotype in which mutations in an inward rectifier potassium channel have been found. Finally, we included psychiatric disorders, caused by antibodies directed against potassium channel complexes.

Calcium channels involvement

The CACNA1C gene, is the only gene known to be associated with TS, which is therefore considered a monogenic neurodevelopmental disorder (Paşca et al., 2011). This is a complex disorder that affects multiple organs, characterized by autistic traits and also LQT syndrome, webbed fingers and toes, dysmorphic facial features, and immunodeficiency (Gargus, 2009). It is a rare childhood disease with less than 20 TS patients identified to date worldwide and an average survival of 2–3 years, the major cause of death being cardiac ventricular fibrillation (Gargus, 2009; Bidaud and Lory, 2011). In 2004, Splawski et al. (2004) described two mutations, G406R and G402S in the alternative splice exon 8 of Cav1.2 linked to TS. This exon is expressed mainly in brain and heart. The functional characterization of these mutations in heterologous expression systems revealed a gain of channel function, significantly due to loss of voltage-dependent inactivation. This resulted in heightened calcium influx, which may be a contributing factor to the multisystem defects in vivo (Liao and Soong, 2010). Indeed, a sustained entry of calcium into the cardiac myocytes due to impaired inactivation of Cav1.2 channels increases the duration of the action potential, and explains the prolonged QT interval (Bidaud and Lory, 2011). Interestingly, in brain, this channel mediates a variety of neuronal calcium-dependent processes and regulates calcium influx related to dendritic cells (Gargus, 2006; Catarral, 2011).

Important results about Cav1.2 channel function and abnormalities came from studies on genetically engineered animal
models that showed that Cav1.2 channel plays important roles in remote spatial memories and fear memory extinction (Bader et al., 2011). The mouse model of TS bears the G406R mutation in the CACNA1C gene (Bader et al., 2011). While homozygous and heterozygous mice are not viable, heterozygous TS2 mice, that are allowed to keep an inverted neomycin cassette, survive through adulthood because the mutation-bearing channel is expressed at lower level. These animals exhibit distinct traits strikingly reminiscent of the entire core triad of ASD: impaired social interaction, impaired vocalization, and restricted and repetitive perseverative behavior (Bader et al., 2011). To date, no pre-clinical study has been performed on these animals but it would be of interest to determine whether the various reported behaviors can be modified by L-type channel blockers, either by early intervention or acute treatment.

A fascinating study on patients affected by TS has recently been reported, which supports the hypothesis that ASD arise from defects in connectivity between cortical areas (Geschwind and Levitt, 2007) and suggests the contribution of increased catecholamine synthesis in the pathophysiology of ASD. Indeed, Pasca et al. (2011) demonstrated that neurons from induced pluripotent stem cells derived from individuals with TS have defects in calcium signaling and activity-dependent gene expression. They also show abnormalities in cell differentiation, including decreased expression of genes that are expressed in lower cortical layers and in callosal projection neurons. In addition, these neurons show abnormal amount of tyrosine hydroxylase and increased production of norepinephrine and dopamine. These findings provide strong evidence that Cav1.2 regulates the differentiation of cortical neurons in humans and that gain of function TS mutations could likely impact neuron development and/or excitability, thus contributing to the presentation of the autistic traits (Pasca et al., 2011). Besides TS, there is no clear evidence to date for a direct link between CACNA1C and autism. However, GWAS suggest a possible role of SNPs within calcium channels genes in ASD (Liao and Soong, 2010). One SNP, rs10848653, is located in CACNA1I, two others, rs198538 and rs198545, in CACNA1G, and a fourth, rs5750860, located in CACNA1J, that encode T-type calcium channels (Strom et al., 2010; Lu et al., 2012).

Sodium channels involvement

Various clinical studies assessed the involvement of Nav channels genes in psychiatric developmental diseases including ASD. Early genome-wide scan studies for autism susceptibility genes showed a potential susceptibility region on locus 2q (Philippe et al., 1999; International Molecular Genetic Study of Autism Consortium [IMGSAC], 2001; Weiss et al., 2003) that includes SCN1A, SCN2A, and SCN3A genes. These results have been confirmed by other laboratories more recently. Indeed, Chen et al. (2010) reported a 2.8-Mb de novo cryptic deletion on chromosome 2q24-2q43 detected by array-CGH (comparative genomic hybridization), involving nine genes including SCN2A and SCN3A in a patient with autistic features, developmental delay, language impairment, mental retardation, and dysmorphologic features. These findings suggested that deletion of SCN2A and SCN3A might be responsible for the autistic features (Chen et al., 2010). Moreover, a de novo missense mutation in SCN1A (P1894L), has been identified by using a molecular inversion probe technology in 2,500 individuals, including 1,703 ASD probands and 744 controls. The missense variant is located at a highly conserved position in SCN1A and is predicted to be functionally deleterious. The proband is severely affected, with evidence of early onset, possible regression, language delay, epilepsy, and mild intellectual disability (O’Roak et al., 2011, 2012). In a similar study, Sanders et al. (2012) identified, using whole-exome sequencing of 928 individuals, two probands each carrying two independent non-sense variants disrupting the SCN2A gene.

Interestingly, several case reports indicate that the SCN1A, SCN2A, and SCN3A genes are usually associated to epilepsy complicated by neurobehavioral comorbidities, which include cognitive impairment, psychiatric disorders, and social problems. Indeed, Pescucci et al. (2003) reported a 10.4-Mb deletion of 2q24-3q11.1 spanning a cluster of sodium channel genes including SCN1A, SCN2A, SCN2B, SCN9A, and SCN7A in a 4-year-old girl with seizures, postnatal growth retardation, microcephaly, facial dysmorphism, developmental delay, stereotypic and repetitive hand movements, and sleep disturbances. Davidson et al. (2008) described large deletions involving the entire 1.4-Mb sodium channel cluster on chromosome 2q24-3 in patients with seizures, growth and mental retardation, dysmorphic features, and microcephaly. An attempt of genotype-phenotype correlation comes from Bartnik et al. (2011) who proposed that missense mutations of SCN2A are responsible for isolated epilepsy, whereas inactivating loss of function mutations or deletion CNVs causative haploinsufficiency of SCN2A, can be responsible for a more severe phenotype presenting psychiatric abnormalities, in addition to epilepsy. By using a clinical exon-targeted array-CGH, these authors have identified a de novo 112-kb deletion in chromosome 2q24 including portions of the SCN2A and SCN3A genes in a 23-year-old female with a history of infantile seizure, mental retardation, anxiety disorders, and neurobehavioral and psychiatric abnormalities. The deletion removes exons 1–2 of SCN2A and the non-coding exon 1a of SCN3A. Although only the non-coding exon 1a of SCN1A was deleted in this patient, it cannot be excluded that the function of SCN3A is also disrupted because of the deletion of the promoter or transcription binding sites (Bartnik et al., 2011).

One of the most relevant examples of comorbidity of epilepsy and psychiatric disorders linked to sodium channel dysfunction is DS. DS, also termed severe myoclonic epilepsy in infancy (SMEI), is a childhood epilepsy disorder associated with devastating effects on cognitive and behavioral development, persisting in adulthood (Bender et al., 2012). While early-life seizures are perhaps the most striking feature of DS, psychomotor, visuospatial, and language development are also impaired, and social development is severely affected, with patients displaying recalcitrance, mood instability, affective indifference, or autistic behaviors. Intellectual disability is reported in the majority of cases (Bender et al., 2012). Mutations, deletion, and duplication CNVs of SCN1A, ranging in size from a single exon to extending beyond SCN1A, have been described in patients with DS. Approximately 80% of patients with DS carry loss of function mutations in SCN1A (Cattaneo et al., 2010; Escayg and Goldin, 2010).
Given that Nav channels are critical for action potential generation and propagation in neurons, it is predictable that mutations in sodium channel might be detrimental to the normal functioning of the nervous system. Whereas it is easier to find a causative association between sodium channels dysfunctions and epileptic attacks, the neural mechanisms responsible for autism spectrum phenotypes, DS and other abnormal neurodevelopmental traits, are less straightforward. In this regard, studies on animal models have helped research in the field by providing important insight into the cellular and neural network mechanisms by which SCN1A mutations may cause neural defects (Yu et al., 2006; Han et al., 2012; Ito et al., 2013).

One major result obtained from in vitro studies is the contribution of GABAergic interneurons network to the pathophysiology of DS. Indeed, SCN1A has been reported mainly in these GABAergic fast-spiking cells in the neocortex and hippocampus, clustered in the proximal portion of the axon initial segment, precisely a region that is critical for the initiation and generation of action potentials (Lorincz and Nusser, 2008). Consistently with Nav1.1 expression, it has been shown that loss of function SCN1A mutations associated to epileptic disorders cause functional impairments in GABAergic interneurons, reducing GABA release and leading to a loss of appropriate inhibition in related neuronal networks (Bender et al., 2012). This will create an imbalance between excitation and inhibition in the brain, generating seizures (Catterall et al., 2010). In addition to epilepsy, impairments in GABAergic interneurons may also likely contribute to the cognitive symptoms observed in patients (Bender et al., 2012). Indeed, these fast-spiking cells are critical for the synchronization and spatiotemporal patterning of neural activity which is essential for the strengthening of cognitive processes (Fuchs et al., 2007; Murray et al., 2011). These observations have been confirmed in a conditional Scn1a+/- mouse with specific Nav1.1 reduction in GABAergic forebrain interneurons. This mouse represents a clear example of comorbidity of epilepsy and autism. It develops seizures and multiple ASD behavioral phenotypes including hyperactivity, stereotyped behaviors, social interaction deficits, and impaired context-dependent spatial memory. Importantly, these psychiatric symptoms resulted in a consequence of impaired GABAergic neurotransmission and not of neuronal damage from recurrent seizures (Han et al., 2012), as traditionally believed (Hermann et al., 2008). Indeed, there is a growing body of evidence that other factors are involved in the occurrence of epilepsy comorbidities (Hermann et al., 2008). In agreement with decreased GABAergic tone, treatment of conditional Scn1a+/- mouse with low-dose clonazepam, a positive allosteric modulator of GABAA receptors, completely rescued the abnormal social behaviors and deficits in fear memory in this mouse model of DS (Han et al., 2012). These results indicate that low-dose benzodiazepine treatment could be a potential therapeutic approach to improve social and cognitive deficits in DS patients.

In vitro studies also helped to clarify the cellular and physiological changes in the brain during development, which is of particular relevance to understand the role of SCN1A mutations in ASD. Indeed, the developmental origin of several neuropsychiatric disorders is now generally accepted (Bender et al., 2012; Piper et al., 2012). It is noteworthy that early postnatal development in rodents is highly dependent on changes in Nav brain expression. Nav1.1 expression increases during development reaching a peak during the first 4 weeks of life, while Nav1.2 and Nav1.3 amounts decrease during the second week of life (Bech et al., 1989). Consistently, in humans, Nav1.1 expression in the hippocampus and cortex increases during early development, peaking around 7–9 months of age (Wang et al., 2011). In mice, the Nav1.1 increase parallels both the neurophysiologic growth of fast-spiking interneurons and the development of spatial cognition. Together, the timing of the above developmental changes makes this period especially susceptible to functional defects affecting neural network activity. Indeed, during this period, mice with complete or partial Scn1a deletion show reduced survival, increased propensity to spontaneous or hyperthermia-induced seizures and slowed cognitive development (Yu et al., 2006; Oakley et al., 2009; Bender et al., 2012; Ito et al., 2013). Moreover, the observation that interneurons of Scn1a knock-out mice fail to develop a narrow action potential width characteristic of mature cells, suggests that Scn1a expression is important for the conversion from slow to fast-spiking cells (Yu et al., 2006). Therefore, although the effects of SCN1A mutations on brain firing and information processing have not yet been directly tested, a consistent hypothesis is that the defect in interneurons functioning during development may consistently recapitulate autistic behaviors and cognitive decline in addition to epileptic seizures.

Potassium channels involvement

There are also case reports of involvement of various types of potassium channels in ASD. A case study reported a decrease in Ca2+-activated K+ channel (BKCa) activity due to a disruption of the BKCa gene (KCNMA1) in one subject with ASD (Lau-monnier et al., 2006). A recent linkage analysis study on a large Finnish pedigree proposed KCNJ10, coding for the Kir4.1 potassium channel, as a candidate gene for ASD (Kilpiinen et al., 2009). Recently, Sicca et al. (2011) described two heterozygous KCNJ10 mutations (R18Q and V48M) in three children from two unrelated families with ASD, seizures, and intellectual disability. This study indicated that the molecular mechanism contributing to the disorder relates to an increase in either surface-expression or conductance of the Kir4.1 channel expressed in a heterologous expression system (Sicca et al., 2011; Figure 1). In the brain, Kir4.1 channels are expressed primarily in oligodendrocytes and in astrocytes surrounding synapses and blood vessels, mainly in the cortex, thalamus, hippocampus, and brainstem (Hibino et al., 2010). Here, these channels control the resting membrane potential of astrocytes and are believed to maintain the extracellular ionic and osmotic environment by promoting K+ transport from regions of high [K+]o, which results from synaptic excitation, to those of low [K+]o. This polarized transport of K+ in astrocytes, referred to as "spatial buffering of K+", is essential for normal neuronal activity, excitability, and synaptic functions (Chever et al., 2010). Dysfunction in the astrocyte-dependent K+ buffering has been suggested as a common mechanism contributing to seizures as well as to ASD behavioral traits, by altering neuronal excitability and synaptic function, and may represent a new target for therapeutic approaches (Sicca et al., 2011). Fifty to seventy percent of autistic children show some degree of intellectual disability...
Imbrici et al. Ion channels and mental illness

FIGURE 1 | (A) Kir4.1 channels localize on brain astrocytes both at perisynaptic and at perivascular processes and control spatial K^{+} buffering. (B) Upper panel: Pedigrees of two families harboring novel mutations in KCNJ10 associated to autism/epilepsy phenotypes. Squares are males and circles females; solid black symbols represent affected children; slashes denote deceased individual. Lower panel: Schematic representation of the human Kir4.1 subunit with the two variants, R18Q and V84M. (C) Sample current families recorded from Xenopus oocytes expressing equal amounts of Kir4.1 WT (C), R18Q (D), or V84M (E) mRNA. Notice that mutant channels show increased current amplitudes compared to wild-type. Horizontal dashed lines indicate 0 current level. The pulse protocol is shown as inset in (C). From Sicca et al. (2011).

(Matson and Shoemaker, 2009). Both cognitive and autistic features could be tied to postnatal developmental brain injury (Hong et al., 2003) and Kir4.1 channel activity shows a profound developmental regulation, which correlates with both cell differentiation and the developmental regulation of extracellular K^{+} dynamics (MacFurlane and Sontheimer, 2000; Neusch et al., 2001). Therefore, early abnormal functioning of mutant Kir4.1 channels may impact the correct brain development, contributing to intellectual and psychiatric signs. Moreover, astrocyte-released neuroactive substances govern several functions including neuronal excitability, excitatory and inhibitory synaptic transmission, and plasticity (Yang et al., 2003; Zhang et al., 2003; Pascual et al., 2005) as well as synaptogenesis and neuronal wiring (Colluzio-Castro and Nieto-Sampedro, 2001; Ullian et al., 2004) which will be compromised by Kir4.1 mutations (Sicca et al., 2011). Therefore, even though a direct causative link has still to be ascertained, different hypotheses related to potassium homeostasis, cell differentiation, and synaptic plasticity have been evoked to correlate Kir4.1 mutations to epilepsy and ASD. Several lines of evidence from animal models of ASD come in support of the clinical studies. Interestingly, an up-regulation of Kir4.1 has been found in locus coeruleus neurons of an animal model of Rett syndrome, the MECP2-null mice (Zhang et al., 2010b). Here, Kir4.1 overexpression might impair noradrenergic modulation, leading to the autistic behaviors seen in Rett syndrome (Zhang et al., 2010b).

Interestingly, another disorder with molecular and clinical features different from the above described cases, has been associated to Kir4.1 mutations. Indeed, independent clinical studies unraveled the involvement of Kir4.1 in EAST/SeSAME syndrome, that presents with a unique set of symptoms including epilepsy, ataxia, mental retardation, hearing loss, and electrolyte imbalance related to renal salt loss (Bockenhauer et al., 2009; Scholl et al., 2009; Williams et al., 2010). Genetic screening revealed that EAST/SeSAME patients are homozygous or compound heterozygous for novel missense mutations in KCNJ10 or present a deletion of the C-terminal half of the protein Kir4.1 (Williams et al., 2010). These studies showed that each of these mutations compromises the function of both homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels and that Kir4.1 function is always reduced by distinct mechanisms (Sala-Rabanal et al., 2010).
A group of neuropsychiatric disorders affecting both adults and children are caused by auto antibodies targeting macromolecular complexes containing a potassium channel (Irani and Vincent, 2011; Kayer and Dalmau, 2011). The antibodies are directed against the Kv1 voltage-gated potassium channels (VGKCs) and associated proteins including leucine-rich glioma-inactivated 1 protein (LGIC) and contactin-associated protein 2 (Caspr2). Therefore, they are better termed “VGKC complex” antibodies (Kayer and Dalmau, 2011; Lin et al., 2012). The psychiatric symptoms present in patients with VGKC autoimmunity include panic attacks, obsesive-compulsive behaviours, and cognitive alterations (Irani and Vincent, 2011; Somers et al., 2011).

Limbic encephalitis, a prototypic autoimmune neuropsychiatric disorder, is recognized by neurologists and psychiatrists by its subacute onset and rapid progression of cognitive, mood, and behavioral symptoms (Kitten et al., 2011; Somers et al., 2011). Classically, symptoms evolve over days to weeks and include psychiatric manifestations as diverse as irritability, depression, hallucinations, and personality disturbances, with neurocognitive changes in the form of short-term memory loss, sleep disturbances, and seizures (Kayer and Dalmau, 2011). Somers et al. (2011) described the neuropsychiatric spectrum of Kv channel complex autoimmunity among 67 seropositive patients and found a significant correlation between severe neuropsychiatric presentations (such as confusion, memory impairment, personality change, depression, anxiety, visual hallucinations, delusions, and sleep disorders) and higher autoantibody values. Of 15 who received immunotherapy, 67% improved. Improvements were most evident in patients treated early, which emphasizes the need for early diagnosis and immunotherapy initiation (Somers et al., 2011).

Some cases of fever-induced refractory epileptic encephalopathy in school-age children (FIRES) may have an immunological basis (Haberlandt et al., 2011; Saleman et al., 2011). This is a clinically recognized epileptic encephalopathy of unknown etiology in which onset of epilepsy is accompanied by a dramatic cognitive decline, behavioral difficulties, and, in some cases, the evolution of neurological signs. Elingsworth et al. (2011) described a case of FIRES in a 4-year-old boy with significant attention, memory, and word-finding difficulties, which was associated with elevated Kv channel complex antibodies and a significant clinical and immunological response to immunomodulation.

Studies from genetically modified mouse models (Smart et al., 1998) and from disease causing mutations in heterologous expression systems (D’Adamo et al., 1999; Imbrici et al., 2011) contributed to unravel the functional role of Kv1 channels in the brain and the consequences of an altered activity on the brain areas where they are expressed. Loss of function mutations in Kv1.1 channels cause attacks of motor incoordination due to altered GABAergic neurotransmission at the cerebellar basket cell-Purkinje cell synapse (D’Adamo et al., 1999). Some individuals bearing Kv1.1 mutations also experience epilepsy and cognitive decline which may result from altered glutamate neurotransmission at the hippocampal CA3 region, as a consequence of impaired Kv1.4–1.1/Kv1.1 channel inactivation (Geiger and Jonas, 2000; Imbrici et al., 2006). Consistently, purified immunoglobulin G from one individual with limbic encephalitis reduced VGKC function at mossy fiber-CA3 pyramidal cell synapses and increased cell excitability. Moreover, α-dendrotoxin, a selective Kv1.1, 1.2, and 1.6 subunit antagonist of VGKC, mimicked the limbic encephalitis immunoglobulin G-mediated effects (Ialc et al., 2011). These studies support the role of Kv1.1 channels in brain disorders and the contribution of hippocampal impairment to the genesis of epilepsy and cognitive defects.

Among the autoimmune neuropsychiatric disorders involving potassium channels, the Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcal Infection (PANDAS) presents neuromuscular symptoms, relapsing-remitting tics, and obsessive-compulsive signs, together with group A β-hemolytic streptococcal infection, and is associated with an increased risk of neuropsychiatric symptoms in children (Kaye et al., 2003). This condition is associated with a recent or distant streptococcal infection and a history of school-age psychopathology. The core symptoms of PANDAS include physical symptoms such as post-streptococcal myalgia, arthralgia, and headache, as well as psychiatric symptoms such as depression, anxiety, and obsessions.
IgG, IgM, and IgA. The presence of AutoAbs in patients with psychiatric illness is not specific to a certain psychiatric diagnosis. However, the pattern of AutoAbs can vary across different psychiatric disorders. For example, schizophrenia is characterized by the presence of anti-NMDA receptor AutoAbs, whereas major depressive disorder and bipolar disorder are associated with anti-D2 receptor AutoAbs. These findings suggest that the presence of AutoAbs in psychiatric disorders may have diagnostic and therapeutic implications.

CALCULUS CHANNELS AS PATHOLOGICAL TARGETS IN NEUROPSYCHIATRIC DISORDERS

Given the pivotal role played by ion channels in psychiatric disorders, the identification of novel pharmacological targets for therapeutic intervention is essential. In recent years, the field of ion channel pharmacology has advanced significantly, with the development of novel molecules acting as selective ion channel blockers and openers.
be adjuvant in diseases presenting with cognitive symptoms of hippocampal origin (Lu et al., 2008).

Promising therapeutic interventions target SK channels due to their wide distribution in the CNS and contribution to neuronal excitability. SK channels activation has been proposed in several disorders involving loss of synaptic plasticity, including loss of memory and learning disabilities, where physiological neurotransmission needs to be restored (Gargus, 2006). Modulation of SK channels has been suggested as a novel protective strategy in neurological disorders where neuronal cell death and neuroinflammatory processes are prominent, included schizophrenia (Dolga and Culmsee, 2012). Genetic and physiological data support the role of SK channels in the neuropathology of this disease. Among SK channels, the SK3 isoform, controls pacemaker frequency and precision in dopaminergic neurons and seem to play a role in dopamine release in mid-brain pathways. Therefore, this physiological function of SK channels could be explored and SK openers proposed as a novel pharmacological strategy in addition to classic antipsychotic drugs. Interestingly, the role of SK channels in controlling the pacemaker activity of neurons has been exploited in episodic ataxia type 2, a neurological disease caused by loss of function mutations in P/Q type calcium channels. Non-selective SK channels activation with 1-EBIO or chlorzoxazone repaired the precision of Purkinje cell pacemaker and ameliorated the cerebellar signs in a mouse model of episodic ataxia. Indeed, a reduced activation of SK channels, due to decreased calcium entry into Purkinje cells, has been shown to contribute to the disease (Walter et al., 2006; Avitia and Khedrakhah, 2010).

KCNQ/Kv7 potassium channels, the molecular counterpart of brain M-current, have also received considerable interest by pharmaceutical market over the past decade. These channels limit repetitive firing and cause spike-frequency adaptation (Rogawski, 2000), modulate synaptic plasticity and are inhibited by ACh through the muscarinic receptors. Early studies with M-current inhibitors like linopirdine demonstrated improvements in learning and memory performance in animals (Fontana et al., 1994). A recent study with XE991, a second-generation M-current blocker, in healthy mice has shown that the improvement in cognitive abilities may be achieved by altering basal hippocampal synaptic activity and by decreasing the levels of KCNQ/Kv7.3 protein, a pivotal subunit for the M-current. Furthermore, XE991 can revert both the cognitive impairment associated with acetylcholine depletion, and the neurodegeneration induced by kainic acid (Fontana-Loreano et al., 2011). Consequently, inhibition of the hippocampal M-current has been proposed as a general strategy to enhance cognitive performance in healthy and aging individuals, as well as in those with neurodegenerative diseases (Briani et al., 1995; Jentsch, 2000). However, clinical efficacy studies investigating improvement of cognitive function have not yet been reported.

At the same time, a number of pharmaceutical companies are involved in the development of KCNQ channel activators to treat neurological diseases. The first agent proven to enhance M-current activity was retigabine. When examined to treat neurological diseases. The first agent proven to enhance M-current activity was retigabine. When examined in vivo, retigabine exhibited anticonvulsant activity in a broad range of seizure models and was successful in a number of clinical trials in humans. After retigabine, others Kv7.2/Kv7.3 activators such as ICA-27243 and ICA-105665 have been developed as anticonvulsant. Several findings support the use of these compounds also for the treatment of neuropsychiatric disorders. Kv7 channel activation strongly suppresses dopaminergic activity and it is well known that altered function of the dopaminergic system is associated with neuropsychiatric disorders (Hansen et al., 2008; Cousins et al., 2009; Gomul et al., 2009). Moreover, both selective and non-selective Kv7.2/7.3 activators exhibit efficacy in animal models of anxiety, mania, BPD, AD, and schizophrenia (Hansen et al., 2008). Indeed, pharmacological stimulation of heteromeric Kv7.2/Kv7.3 channels showed promising results in an amphetamine and chlorzoxazone induced hyperactivity model of mania (Redrobe and Nielsen, 2009). In addition, neuroimaging studies in bipolar patients with mania revealed alterations in metabolic activity in corticolimbic areas and demonstrated that Kv7 channel activation with retigabine and ICA-27243 reduces baseline cerebral glucose metabolic activity (Kristensen et al., 2012). These two Kv7 channel openers dose-dependently increased GSK3β in the prefrontal cortex and hippocampus, regions implicated in the emotional and cognitive aspects of mental illness. The association of GSK3β with Kv7 channel function is relevant, as GWAS have identified polymorphisms implicating GSK3β signaling cascades in BPD (Baum et al., 2008). Moreover, researchers at Lundbeck demonstrated, in a conditioned avoidance response paradigm model of antipsychotic activity, that retigabine could inhibit avoidance responses, an effect blocked by the Kv7 inhibitor XE-991184. Retigabine was also able to inhibit hyperlocomotor responses in phencyclidine-sensitized animals, which is often considered as a disease model for schizophrenia (Scotty et al., 2009). Interestingly, retigabine has recently been approved for adjunctive therapy in partial-onset seizures (French et al., 2011), and because bipolar patients often experience therapeutic benefit from treatment with anticonvulsant drugs (Altamura et al., 2012), this also implies that Kv7 channel openers may also prove to have clinical utility in the treatment of BPDs. Therefore, these experimental and pre-clinical data support the hypothesis that positive modulation of Kv7 channel function restores several key signaling pathways in psychosis similarly to standard drugs, like lithium and valproate, and emphasizes the potential benefit of Kv7 channel openers in the treatment of these diseases.

Kv11.1 (HERG) plays a crucial role in cardiac repolarization, especially in the later phases of the action potential due to its unique kinetics. As it is a promiscuous channel and binds to a structurally diverse set of small molecules, many drugs have been removed from the market or terminated during clinical development because of cardiac side effects. It is now common practice to assess the HERG blocking liability of compounds before they are taken to the clinic. In the last few years several HERG activators were developed and were considered potential therapeutics for antiarrhythmia (Wulff et al., 2009). As example, the small compound NS1643 has been shown to activate native and heterologously expressed Ko11.1, Ko11.2, and Ko11.3 channels (Bilet and Bauer, 2012; Bagal et al., 2012). Besides its relevance in cardiac physiology, relative overexpression of a primate-specific, brain isoform of Ko11.1 (KCNH2–3.1), which...
lacks an N-terminal domain crucial for slow deactivation and therefore induces high-frequency, non-adaptive firing patterns in cultured cortical neurons, has recently been linked to an increased risk of schizophrenia (Huffaker et al., 2009). The authors of this study speculate that isoform-specific inhibitors might be useful for the treatment of schizophrenia. Alternatively, selective Kv11.1 channel activators could compensate for the reduced expression of the full-length isoform. The physiological role of the different Kv11 channels in the CNS is still under investigation and at present, it is unclear whether Kv11 channels are suited as pharmacological target to influence neuronal excitability in vivo. Nevertheless, drugs specifically affecting a given Kv11 subunit would probably diminish the unwanted side effects either in the heart or in the brain.

Kv4.1 channel plays a critical role in K⁺ homeostasis in the human CNS and mutations in this channel type gives rise to adverse phenotypes with loss and gain of function. No selective Kv4 modulators have thus far been disclosed. However, investiga-
tors studying antidepressant drug modulation of glial cell function have demonstrated that many of these drugs inhibit Kv4 with relatively low affinity. Indeed, selective serotonin reuptake inhibitors (SSRIs), fluoxetine and escitalopram, and tricyclic antidepressants, nortriptyline, are known to block inward rectifier potassium channels. Interestingly, Ohno et al. (2007) found that SSRIs preferentially inhibit Kv4.1 channel rather than Kv1.1 and Kv2.1. The common structure–activity relationship between channel families suggests a common Kv channel antidepressant binding site. Two amino acids, Thr128 and Glu138, on the transmembrane domain 2 of Kv4.1 are critical for the drug inhibition of the current by fluoxetine and nortriptyline (Furutani et al., 2009). Intrigu-
ingly, some serotonin reuptake inhibitors, are used for the clinical management of repetitive and challenging behaviors in children with autism (Blenner et al., 2011) and an up-regulation of Kv4.1 channels has been recently associated to the presentation of autism (Stica et al., 2011). This may suggest that astroglial Kv currents might be involved in their pharmacologi-
cal action. At the same time, it is also formally possible that Kv4 channel activators may promote glial cell K⁺ uptake and thereby exhibit some antiepileptic activity required in SESAME/EA syndrome.

Also GIRK channels are inhibited by tricyclic antidepressants and this effect may contribute to some of the therapeutic effects and to the adverse effects, especially seizures and atrial arrhythmias in overdose, observed in clinical practice (Kobayashi et al., 2004). Interestingly, neuronal GIRK channels are indirect target of antipsychotic drugs, being one of the main effectors of serotonergic and glutamatergic neuroreceptors activation (Fribourg et al., 2011).

The drug discovery of novel antipsychotic drugs, has recently also demonstrated the role of neuronal and astrocytic KATP channel as interesting therapeutic target, in addition to D2 and 5-HT2A neuroreceptors. Indeed, these channels are expressed in the neural circuits that are implicated in the pathophysiology of schizophrenia and are modulated by dopamine receptors (Lus et al., 1995). Moreover, diazoxide, an ATP-sensitive potassium channel opener, has been tried in the clinic as an adjunctive treat-
ment with haloperidol. It potentiated the effects of haloperidol on the positive and general psychopathological symptoms of schizophrenia. A novel brain KATP channel opener, iptakalim, has been proposed by Sun et al. (2010) as a novel antipsychotic molecule. They showed that in association with clozapine in rats, iptakalim reduced amphetamine- and phencyclidine-induced hyperlocomotion, disrupted selectively conditioned avoidance responding and increased c-fos expression in the medial prefrontal cortex, nucleus accumbens, and lateral septal nucleus (Sun et al., 2010). This supports a role of KATP in the treatment of schizophrenia.

Activators of K2P channels are anticipated to have a therapeu-
tic potential to treat neurological and cardiac diseases. Currently, there are relatively few compound classes that have been shown to selectively modulate the different subsets of this class of potassium channels (Bagal et al., 2013).

SODIUM CHANNELS PHARMACOLOGY

A variety of approved drugs are modulators of neuronal sodium channels for the treatment of clinical conditions associated with abnormal cell excitability, namely neuropathic pain and epilepsy (Mantegazza et al., 2010). Some non-selective sodium channel blockers, besides acting as antiepileptic drugs, can also be mood stabilizers and antidepressants. Lamotrigine, a known sodium channel blocker, has been shown to prevent with great efficacy episodes of depression, through a positive effect on corticolim-
bic network which is disrupted in BPD. In healthy volunteers, this drug has shown a specific facilitatory effect on the prefrontal cortex while, in vitro, it enhanced the power of gamma frequency network oscillations induced by kainic acid in the rat hippocampus (Lange et al., 2009). Lamotrigine has indirect antidepressant effects by acting at Nav channels to stabilize neuronal membranes and glutamate release. Interestingly, this drug is also effective for the treatment of Lennox–Gastaut syndrome, a rare and intractable form of childhood epilepsy associated with learning difficulties. Phenytoin is an established antiepileptic drug with a robust capac-
ity to bind to and prolong the inactivation of mammalian, Nav channels. Small randomized studies suggest that phenytoin may be useful in the treatment of BPD (acute therapy for manic episodes and maintenance treatment), major depressive disorder, and impulsive aggression (Perucca and Mula, 2013). A prototypi-
cal sodium channel-blocking antiepileptic drug, carbamazepine is approved by the Food and Drug Administration for the treatment of acute manic and mixed episodes of BPD. This drug appears to be effective for maintenance treatment of BPD, although to a lesser extent compared with lithium; it may also be effective in unipolar depression, whereas its utility in schizophrenia is still uncertain (Perucca and Mula, 2013). These effects, however, cannot be explained solely on the basis of the known sodium channel block of each anticonvulsant, and other mechanisms or targets are likely to be implicated. Indeed, lamotrigine also acts on other molecular targets, such as the hyperpolarization-gated catonic current in dendrites of pyramidal neurons, N- and P-type Cav channels in cortical neurons and neocortical potassium currents (Ejikkelkamp et al., 2012).

Interestingly, typical antidepressant drugs have gained atten-
tion for their ability to block sodium channel. Importantly, among the pathophysiological mechanisms of mood disorders,
Voltage-gated ion channels, as the main determinants of intrin-

1. ASDs (Gargus, 2009; Liao and Soong, 2010; Mele et al., 2012). Antibodies against K_v1.1 channels have been found
deafness, and renal dysfunctions (Sala-Rabanal et al., 2010; Sicca
(Bender et al., 2012; Sanders et al., 2012). Kir4.1 is involved
responsible of several childhood neuropsychiatric disturbances
Lory, 2011) and genetic variants in brain sodium channels are
suggest that ion channels genetic variants are potential mecha-
for pharmacological intervention. The reported research studies
acquired diseases and thus, they are particularly appealing targets
compounds able to selectively increase Nav1.1 expression levels
would probably be even more efficacious in these cases, but little
has been done to develop drugs with this mechanism of action
(Bagaj et al., 2013).

CONCLUSION
Voltage-gated ion channels, as the main determinants of intrin-

1. ASDs (Gargus, 2009; Liao and Soong, 2010; Mele et al., 2012; Sanders et al., 2011; Aalandon et al., 2012; O’Roak et al., 2012). The wide distribution of ion channels in brain and specifi-
cally, their localization in hippocampus, prefrontal cortex, and
amygdala, brain areas which are disrupted in major psychi-
atic disorders, further support the association between these
proteins and mental illness (Gargus, 2006; Aldana and Siges, 2012; Bender et al., 2012). Indeed, the calcium channel Cav1.2 has been strongly associated to the susceptibility to BPD and schizophrenia, and
ASDs (Gargus, 2006). Mutations in CAV1.2 are the sole cause of TS (Bendes and Lory, 2011) and genetic variants in brain sodium channels are
responsible of several childhood neuropsychiatric disturbances
(Bender et al., 2012; Sanders et al., 2012). Kir4.1 is involved
in developmental syndromes with epilepsy, mental retardations,
deafness, and renal dysfunctions (Sala-Rabanal et al., 2010; Sicca
et al., 2011). Antibodies against Kv1.1 channels have been found
in patients with psychiatric symptoms (Illingworth et al., 2011;
Somers et al., 2011).

As commonly observed for other genetic diseases, neuropsychi-
1. ASDs in particular, present extreme genetic heterogeneity, involving hundreds of genes, necessitating the analysis of very large cohorts of patients and robust statistical methodologies for validating results (Sanders et al., 2012). The scenario is further complicated by the fact that de novo mutations, may also contribute substantially to the genetic etiology of ASD and schizophrenia (Mulle, 2012; O’Roak et al., 2012). Together
with the poor number of patients sometimes available for studies, these factors make the genetic and clinical diagnosis often quite
difficult.

As clear from the reports here summarized, in the majority of clinical cases, ion channel variants are generally identified in indi-
viduals expressing neurologic or other syndromic features as well
as psychiatric features (e.g., epilepsy and psychiatric symptoms).
Epilepsy is very common among clinical findings, usually associ-
ated to autistic traits, major psychosis, and intellectual disability.
The overlapping etiopathology between epilepsy and psychiatric
illness has been discussed in the text for DS, where epilepsy occurs
together with autistic behaviors, but can be likely extended to
similar diseases, such as those caused by other ion and neuro-
transmitter operated channels (Derry et al., 2008; Liao et al., 2011;
Sicca et al., 2011). Relevant information about the etiopathology of
DS comes from studies on animal models which selectively
lack the Nav1.1 gene in cortical GABAergic interneurons (Han
et al., 2012). Animal studies have revealed that loss of Nav1.1
function causes impaired firing of GABAergic interneurons rel-
ative to pyramidal cells. Actually, the most supported hypothesis
is that dysfunction of GABAergic interneurons may account both
for recurrent seizures and for cognitive defects/autistic behaviors.
Indeed, GABAergic neurons serve a complex role in normal brain functions: beyond balancing excitation with inhibition, they are pivotal for the temporal coordination of neural activity subserv-
ing cognitive functions (Fuchs et al., 2007; Bender et al., 2012).
Therefore, the cognitive impairment is likely not only attributable
to brain injury due to severe and recurrent seizure, but also to an
anomalous functioning of cortical interneurons. Examples may
include alterations in theta and gamma oscillations, and loss of
coordinating of pyramidal cell ensembles involved in information
processing (Bender et al., 2012). A new literature is now under
way, linking cognitive abnormalities in different diseases directly
to indices of structural, functional, metabolic, and other neu-
robiological markers of cerebral integrity, independent of their
association with clinical epilepsy features (Herrmann et al., 2008).
In addition and no less important, the biological maturity of
interneurons parallels Nav1.1 expression increase during develop-
ment, indicating the importance of this (and others) ion channel
for setting brain networks during growth. This can be also the
case for Kir4.1 mutations in children affected by epilepsy and
ASD. An abnormal functioning of the astrocyte-neuron synapse
during development can account for the overlapping phenotype
observed in these patients (Sicca et al., 2011). As well, alteration
of cortical interneurons activity during development supports
one current pathophysiologic view of schizophrenia (O’Donnell,
2012). This finding holds up the assumption that the disruption of
a specific brain circuitry due to ion channels defects (but also due to other causes) during development may account for the psychiatric disease susceptibility or progression. Indeed, dysregulation of activity-dependent signaling pathways controlling synaptic function and allowing neuronal circuits to respond dynamically to experience, may have a key role in the etiology of ASD (Ebert and Greenberg, 2013).

Further studies are necessary to fully characterize the exact composition of ion channels complexes as well as their specific cellular localization and function in the brain. Of particular interest are transgenic technologies that allowed the engineering of mouse models mimicking different kinds of monogenic heritable forms of psychiatric disorders. These transgenic models provide excellent opportunities to explore cellular and molecular mechanisms underlying mental illness pathology and to test novel therapeutic intervention.

Indeed, the involvement of ion channels in mental illness represents an attractive alternative for the pharmacological drug discovery, committed to overcome the limits of common neuropsychiatric drugs such as the adverse effects and limited responsiveness. The recent advent of high-throughput electrophysiology, as well as the emerging structural information of ion channel proteins, helps pharmaceutical research at identifying selective ion channel modulators with therapeutic potential in neuropsychiatric syndromes. As discussed in this review, the pharmacological profile of classic calcium channel blockers in psychiatric disorders has still to be ascertained (Casamassima et al., 2010); instead calcium channel modulators targeting the

REFERENCES

Aldana, B. I., and Sitges, M. (2012). Serotonin inhibits pre-synaptic Na+ channel-mediated responses in hippocampus-hippocampus-isolated nerve endings. J. Neurochem. 121, 197–209.

Alhassan, C., Littli, L., Dohrta, C., Benatti, B., Arieli, C., and Dib-Ochoh, B. (2011). Mice stabilizers for patients with bipolar disorder: the state of the art. Expert Rev. Neurother. 11, 85–89.

Amitri, K., and Khoddadi, K. (2010). KCa channels as therapeutic targets in episodic ataxia type-2. J. Neurosci. 30, 213, 401–417.

Apud, J. A., Zhang, F., Doroz, H., Bigos, K. L., and Weinberger, D. R. (2012). Genetic variation in KCNQ2 associated with expression in the brain of a unique MBGQ isoform modulates treatment response in patients with schizophrenia. Am. J. Psychiatry 169, 729–738.

Ashland, K. (2008). Toward a basal model of “neural” affective disorders: further exploration of genetic, molecular and cellular substrates. J. Affect. Disord. 94, 55–66.

Ashland, K., Bead, C., O’Connell, C., and Moore, J. H. (2012). Ion channels and schizophrenia: a gene-set-based analytic approach to GWAS data for biological hypothesis testing. Hum. Genet. 131, 275–291.

Aylward, F. C., Cline, N., Ohno, E., Touboura, D., Osbuk, U., et al. (2011). Two four-marker haplotypes on 7q26.1 region indicate a novel channel gene BHERG1 (KCNQ2, K11.1) is related to schizophrenia in mouse control study. Brain Funct. 5, 27.

Barlow, A. F., Fanti, M., Roma, L. H., Cunha, J. M., Chalupa, L., et al. (2011). Mouse model of Timothy syndrome recapitulates triad of autistic traits. J. Med. Genet. 48, 505–612.

Bard, O., Shackle, S. A., Offe, R., Cohen, A., Zhang, F. L., Leventer, R., et al. (2010). Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNE3. Am. J. Hum. Genet. 83, 193–199.

Barthel, M., Chan-Beaupre, A., Xiu, Z., Chiang, S. W., and Stankiewicz, P. (2011). Disruption of the SCN2A and SCN3A genes in a patient with mental retardation, neurobehavioral and psychiatric abnormalities, and a history of infantile seizures. Clin. Genet. 80, 191–195.

Baum, A. E., Malua, N., Cabano, M., Cardona, I., Correa, W., Klemens, B., et al. (2008). A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol. Psychiatry 13, 197–207.

Bbeck, S., Noda, M., Libbott, H., and Numan, S. (1989). Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J. 8, 3613–3619.

Benedetti, A. C., More, R. P., Scott, R. C., Habman, G. L., and Lende, Santini, P. P. (2012). SCN1A mutations in Dravet syndrome impact of interneuronal dysfunction on neuronal networks and cognitive outcome. Epilepsia 53, 177–188.

Benes, F. M. (2012). Nicotinic receptors and functional regulation of GABAa cell microcircuits in bipolar disorder and schizophrenia. Handb. Exp. Pharmacol. 213, 401–417.

Bulka, J., and Lory, P. (2011). Hallmarks of the channelopathies associated with L-type calcium channel: a focus on the Timothy mutations in CACNA1C channels. Biochires 95, 2080–2086.

Begon, K. E., Matrawy, S. S., Callcott, J. H., Sreen, R. V., Vahala, R., Kelafrica, B., et al. (2010). Genetic variation in CACNA1C affects brain circuitry related to mental illness. Arch. Gen. Psychiatry 67, 939–945.

Bale, T., and Baur, C. R. (2012). Effects of the small molecule HERG activator NS5143 on Kv11.3 channels. PLoS ONE 7:e50886. doi: 10.1371/jour- nal.pone.0050886.

Beevers, R., Skirlea, A., and Augustin, M. (2011). Diagnosis and management of autism in childhood. JMM 345, e2338.

Bedenhoar, D., Fankher, S., Francois, H. C., Bandulik, S., Zalek, A. A., Rechold, M., et al. (2009). Epilepsy, ataxia, sensomotorial deafness, tubulopathy, and KCNQ10 mutations. N Engl. J. Med. 360, 1960–1970.

Briani, C., Caron, P., Buckley, M. J., Armser, S. P., and Dicker, M. W. (1993). Linopirdine (DuP996) effect of the small molecule HERG activator NS5143 on Kv11.3 channels. PLoS ONE 7:e50886. doi: 10.1371/journal.pone.0050886.

Briani, C., Lory, P. (2011). Hallmarks of the channelopathies associated with L-type calcium channel: a focus on the Timothy mutations in CACNA1C channels. Biochires 95, 2080–2086.
gene expression profiling shows that microRNA expression patterns are consistently altered in bipolar disorder.

Cousins, D. A., and Grunze, H. (2013). Autism spectrum disorder in the genetics clinic. Clin Genet 85, 399–407.

Casamassima, F., Hay, A. C., Benedetti, A., Lattanzi, L., Casanova, G. B., and Periti, B. H. (2010). T-type calcium channels and psychiatric disorders: a brief review. Ann J Med Genet B Neuropsychiatr Genet 153B, 1373–1390.

Cattrell, W. A. (2011). Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3, a004974.

Cattrell, W. A. (2012). Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 596, 2577–2589.

Cattrell, W. A., Kalme, F., and Oakley, J. C. (2013). Nict. 1 channels and epilepsy. J Physiol 588, 1849–1859.

Choi, O., Lawson, M., Ziku, W., Brevol, J. L., and Shevchenko, R. S. (2017). ATP-sensitive K+ channels regulate the release of GABA in the hypothalamic hypophysial system during hypoglycemia. Diabetes 66, 1120–1126.

Chen, C. P., Lin, S. P., Chern, S. R., Chen, M., Kimhi, R., Swartz, M., Barak, Y., et al. (1999). Mutations in the KCNMA1 gene associated with episodic ataxia type-2 in Ashkenazi Jews, expression in neurons. J Neurosci 19, 1689–1697.

Cousins, D. A., Butts, K., and Young, A. (2012). Voltage-gated potassium channels and psychiatric disorders: a comprehensive review of previously published cases. Epilepsy Res 91, 69–79.

Derry, C. P., Heron, S. E., Phillips, F., Duketis, E., and Waltes, R. (2010). The bipolar disorder risk gene CLCN2: mouse models and implications for treatment. Curr Pharm Des 16, 2139–2155.

Dubovsky, S. L., Buzan, R., Thomas, M., Kavaler, C., and Callaway, C. M. (2001). Nicardipine improves the antipsychotic action of ECT but does not improve cognition. J ECT 17, 3–10.

Ebert, D. H., and Greenberg, M. E. (2013). Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493, 537–37.

Eijkelkamp, N., Linley, J. E., Baker, M. D., Mnott, M. S., Roman Cregg, R., Wielandhaus, B., et al. (2012). Neurological perspectives on voltage-gated sodium channels. J Molec 135, 2505–2612.

Ed-Mallakh, B. S., and Huff, M. O. (2011). Mood stabilizers and iron regulation. Herl. Psychiat 9, 25–32.

Eyre, A., and Goldshl, A. L. (2010). Sodium channel SCN9A and epilepsy: mutations and mechanisms. Epilepsy 51, 1650–1658.

Farber, N. B., Jiang, X. P., Heindel, C., and Naiman, B. (2002). Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent MGMT-mediated tumor growth in vivo. J Neurosci 20, 3846–3850.

Free, J. M., Benarroch, E. E., and Zilberberg, N. (2001). The glycine receptor, glycinergic afferents: cellular and molecular organization. Rev Neurosci 12, 189–187.

Cousins, D. A., and Grunze, H. (2011). Voltage-gated potassium channels and psychiatric disorders: a comprehensive review of previously published cases. Epilepsy Res 91, 69–79.

Clüss, B., and Scherz, S. W. (2012). Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 22, 228–229.

Chen, C. P., Lin, S. P., Chern, S. R., Chen, M., Kimhi, R., Swartz, M., Barak, Y., et al. (1999). Mutations in the KCNMA1 gene associated with episodic ataxia type-2 in Ashkenazi Jews, expression in neurons. J Neurosci 19, 1689–1697.

Duketis, E., and Waltes, R. (2010). Deletion of the SCN1A gene by microdeletion and associated with schizophrenia and bipolar disorder. Curr Pharm Des 16, 2139–2155.
illike at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Mol Psychiatry 15, 1056–1062.

Gude, S., Gorden, M. F., Adamiec, B., Pardis, L. A., Martini, S., Mahn, D., et al. (2011). A CAG repeat polymorphism of KCNQ1 predicts IK channel function and cognitive perfor-

mance in schizophrenia. JMO Biol Med 30, 509–319.

Halsband, E., Baci, T., Ehlers, A., Huhmann, H., Kluge, K., Kralk-

enau, R., et al. (2011). Limbic encephalitis in childhood and adoles-

cents. Acta Neurol Scand 96, 186–191.

Han, S. T., Tai, C., Watanabe, R. B., Yu, H., Cho, K. S., Pettit, G. B., et al. (2012). Antiepileptic behaviour in Scn1a−/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385–390.

Hammen, H. H., Worss, O., Nurvin, V., Jentsch, T. J., Amari, S., and Mikulek, J. D. (2008). IK channel interaction with dopaminergic and serotonergic neurotransmission in the CNS. J Physiol 586, 1823–

1832.

Heide, J., Mann, S. A., and Vanden-Huffaker, S. J., Chen, J., Nicodemus, K. W., et al. (2009). A primate-specific, in reduced current accumulation

in the CNS. J Physiol 586, 1823–1832.

Imbrici et al. Ion channels and mental illness

Imbrici, P., D’Adamo, M. C., Gian-

namo, A., and Piu, M. (2007). Episodic ataxia type 1 mutation

FNCH4 alters Zn2+–induced modulation of the human K+ channel K(v)1.4-K(v)1.1. Am J Physiol Cell Physiol 292, C794–C807.

Imbrici, P., D’Adamo, M. C., Geontou, A., Bucinaru, A., and Piu, M. (2011). Episodic ataxia type 1 mutations affect fast inactivation of K+ channels by a reduction in either sub-

surface surface expression or affinity for inactivation domain. Am J Physiol Cell Physiol 300, C3144–C3152.

Imbrici, P., D’Adamo, M. C., Kallmann, D. M., and Piu, M. (2009). Episodic ataxia type 1 mutations in the KCNQ1 gene impair the fast inactivation properties of the human potas-

sium channels K(v)1.4-K(v)1.1. Biochim Biophys Acta 1787, 307–315.

International Molecular Genetic Study of Autism Consortium (iMGSC). (2011). A genome-wide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. J Am Med Genet 69, 570–581.

International Schizophrenia Con-

sortium. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752.

Islam, M., and Vincin, A. (2011). Allosteric modulation of neuronal potassium channels: new avenues, challenging questions. Curr Opin Pharmacol 11, 449–458.

Ito, S., Ojikura, T., Yamada, K., Miyamoto, H., Hensch, T. K., and Poretz, M. (2013). Meissner with Nrat1 haploinsufficiency, a model for DiGeorge syndrome, exhibits lowered sociability and learning impairment. Neurosci Lett 529, 29–40.

Jacobsen, J. P., Ralbovsky, J. P., Harm but, H., Boutilier, P. S., Bond, C. T., Adkison, J. P., et al. (2008). Selective cognitive deficits and reduced hippocampal

brain-derived neurotrophic factor

(BNDF) expression in small-conductance calcium-activated K+ channel deficient mice. Neuroscience 163, 75–81.

Jim, L. Y., and Jan, E. N. (2012). Voltage-

gated potassium channel function and the diversity of electrical signalling. J Physiol 590, 2951–2999.

Jin, D. C. (2012). Glycine trans-

port inhibitors in the treatment of schizophrenia. Neth J Exp Pharma-

col 213, 367–399.

Jongsma, T. J. (2010). Neuronal KCNQ potassium channel: physiology and role in disease. Nat Rev Neurosci 1, 21–30.

Kang, D., Han, J., Talley, E. M., Barlow, D. A., and Kim, D. (2004). Functional expression of TASK-1/TASK-3 homotetramers in cere-

bellar granule cells. J Physiol 554, 68–77.

Karmy, J. W., Katsourke, L., Mcferr, K. S., Peck, J., Zabrocki, J. B., Lomboy, P. L., et al. (2010). Identification of pyramidal kinase as an antigen associated with Tourette syndrome. J Neuroimmunol 181, 165–176.

Kassamali, S., D’Assenza, L., D’akon, T. M., Van Herwegen, J., Xu, F., Rodic, M., et al. (2012). Genetic and environmental vulnerabil-

ities in children with neurodevelop-

mental disorders. Proc Natl Acad Sci USA 14, 109.

Kehoe, M. S., and Dalalas, J. (2011). The emerging link between automo-

nous diseases and neurodegenerative disease. J Neuroinflammation 16, 1622–1629.

Koo, K. W., Woon, P. S., Tao, Y. Y., and Sim, K. (2012). Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychiatric: what have we learnt? Neurosci Biobehav Rev 36, 506–571.

Koo, S., DoVier, S. J., Jadaan-Khatrkar, S., Suri, U., and Hu, J. (2011). A small homogenous microdeletion of 15p15.5 including the CHRNA7 gene in a girl with a spectrum of severe neurodevelopmental features. Am J Med Genet A 155A, 2799–2800.

Koo, L., and Song, T. W. (2010). CaV2.1 channelopathies: from abnormalities to autoimmune encephalitis, bipolar disorder, and immunodeficiency. Pfluegers Arch 460, 355–370.

Kim, J., Jin, K. L., Hsia, S. H., Wang, H. S., Chiu, C. H., and Chinese Study Group. (2012). VGKC complex antibodies in pedi-

atric autoimmune encephalitis: a study and literature review. Brain Dev doi: 10.1007/s40060-012-0182-0 [Epub ahead of print].

Kim, E. J., Goel, G. J., and Froelich, J. J. (1999). Multiple calcium- and voltage-gated potassium channels: a novel subtype modulated by dopamine. Mol Pharmacol 46, 907–913.

Loree, A., and Nastov, Z. (2010). Cell-body-dependent molecular com-

position of the axon initial segment. J Neurosci 30, 14372–14380.

Lau, A. T. X., Diaz, J., Martinnez-Agosto, J. A., and Caster, R. M. (2012). Sup-

port for calcium-gene calcium defects in autism spectrum disorders. Mol Autism 3, 18.

Liu, Q., Pourch, J., Jow, F., Mon-

ahan, M. M., Mandura, G., Ziang,
Miyake, A., Takahashi, S., Nakamura, Mitchell, K. J., and Porteous, D. J. (2011). The genetics of schizophrenia. Mol. Psychiatry 16, 1091–1099.

Milton, S. L., and Lutz, P. L. (2005). Amino-4-(fluorobenzylamino)-2H-benzimidazol-3(4H)-one, a KCNQ potassium channel opener, via modulation of mesolimbic dopaminergic transmission. J. Pharmacol. Exp. Ther. 316, 239–247.

Morgan, P. S., Palermo, P. E., Ressler, K. J., and Porteous, D. J. (2012). Characterization of pharmacological effects of a KCNQ potassium channel opener in the rodent model of mania. J. Pharmacol. Exp. Ther. 342, 393–402.

Morgan, P. S., Palermo, P. E., Ressler, K. J., and Porteous, D. J. (2012). Characterization of pharmacological effects of a KCNQ potassium channel opener in the rodent model of mania. J. Pharmacol. Exp. Ther. 342, 393–402.

Murray, A. J., Sauer, E. F., Riedel, G., Murray, A. J., Sauer, E. F., Riedel, G., et al. (2011). Parvalbumin-positive CA1 interneurons are required for spatial memory but not for reference memory. Nat. Neurosci. 14, 297–299.

Mizukami, K., Ito, S., Kato, Y., Nakamura, K., et al. (2012). Goldfish interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62, 1574–1585.

Novelli, C., Benczeit, N., Jacob, R. E., Leavesley, H., and Catterall, W. A. (2008). Temperature- and age-dependent seizure activity in a mouse model of severe myoclonic epilepsy in infancy. Proc. Natl Acad. Sci. U. S. A. 105, 3984–3989.

O’Donnell, P. (2012). Cortical interneurons, immune factors and oxidative stress as early targets for schizophrenia. Eur. J. Neurosci. 35, 1866–1879.

O’Donnell, P. (2012). Cortical interneurons, immune factors and oxidative stress as early targets for schizophrenia. Eur. J. Neurosci. 35, 1866–1879.

Ohno, Y., Hibino, H., Lossin, C., Kubota, A., and Kuroda, Y. (2007). Inhibition of Kir1.1 and Kir1.2 channels by selective serotonin reuptake inhibitors. Brain Res. 1178, 44–51.

O’Roak, B. J., Deriziotis, P., Lee, C., Gaffney, T., et al. (2012). Sporadic autism exomes reveal a new susceptibility locus near ODZ4. Am. J. Hum. Genet. 90, 588–593.

Offord, J. (2012). Genetic approaches to understanding bipolar disorder. Pharmacol. Ther. 137, 133–149.

Okabayashi, K., Morita, I., Fujita, T., Ochiai, A., and Kaneko, K. (2003). Loss of Kir1.1 channel subunit is crucial for olfactory dendrite development in vivo. Mol. Cell. Neurosci. 21, 5429–5439.

Okazaki, J., Kuhne, F., Yu, E. H., Scheuer, T., and Catterall, W. A. (2003). Temperature- and age-dependent seizure activity in a mouse model of severe myoclonic epilepsy in infancy. Proc. Natl Acad. Sci. U. S. A. 100, 3984–3989.

O’Donnell, P. (2012). Cortical interneurons, immune factors and oxidative stress as early targets for schizophrenia. Eur. J. Neurosci. 35, 1866–1879.

Offord, J. (2012). Genetic approaches to understanding bipolar disorder. Pharmacol. Ther. 137, 133–149.
Stachowiak, M. K., Kucinski, A., Curl, S. P., Strom, S. P., Stone, J. L., Ten Bosch, S., Soundarapandian, M. M., Wu, D., Somers, K. J., Lennon, V. A., Rundell, Z. L., et al. (2013). Genomic hypothesis and therapeutic perspectives. Front. Behav. Neurosci. 7, 25.

Snider, L. A., and Swedo, S. E. (2001). Schizophrenia: a neurodevelopmental disorder – integrative genomic hypothesis and therapeutic perspectives. J. Neuropathol. Exp. Neurol. 60, 975–982.

Sullivan, P. F., Daly, M. J., and O’Donovan, M. (2012). Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551.

Sung, T., Zhao, C., Hu, G., and Li, M. (2010). Ippalur, J. T., Alviña, K., Womack, M. D., Walter, J. T., Decher, N., Kumar, P., Bloise, R., Itoh, M., Shi, X., Hwang, S. K., et al. (2011). The developmental changes of Na(v)1.1 and Na(v)1.2 expression in the human hippocampus and temporal lobe. Brain Res. 1390, 61–70.

Stone, J. L., et al. (2013). Association study on 8q24 in bipolar disorder. Am J Med Genet B Neuropsychiatr. Genet. 167B, 465–475.

Streptococcal ‘complex’ movement disorders: unusual concurrence of psychogenic and organic symptoms. J. Neurol. Sci. 159B, 465–475.

Suhr, P. F., Daly, M. J., and O’Donovan, M. (2012). Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551.

Sun, T., Shen, W., Wu, C., et al. (2003). Contribution of voltage-gated calcium channels to hippocampal neurogenesis. Nat. Neurosci. 6, 960–968.

Sullivan, P. F., Daly, M. J., and O’Donovan, M. (2012). Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551.

Sun, T., Zhao, C., Hu, G., and Li, M. (2010). Ippalur, J. T., Alviña, K., Womack, M. D., Walter, J. T., Decher, N., Kumar, P., Bloise, R., Itoh, M., Shi, X., Hwang, S. K., et al. (2011). The developmental changes of Na(v)1.1 and Na(v)1.2 expression in the human hippocampus and temporal lobe. Brain Res. 1390, 61–70.

Stone, J. L., et al. (2013). Association study on 8q24 in bipolar disorder. Am J Med Genet B Neuropsychiatr. Genet. 167B, 465–475.

Streptococcal ‘complex’ movement disorders: unusual concurrence of psychogenic and organic symptoms. J. Neurol. Sci. 159B, 465–475.

Suhr, P. F., Daly, M. J., and O’Donovan, M. (2012). Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat. Rev. Genet. 13, 537–551.

Sun, T., Zhao, C., Hu, G., and Li, M. (2010). Ippalur, J. T., Alviña, K., Womack, M. D., Walter, J. T., Decher, N., Kumar, P., Bloise, R., Itoh, M., Shi, X., Hwang, S. K., et al. (2011). The developmental changes of Na(v)1.1 and Na(v)1.2 expression in the human hippocampus and temporal lobe. Brain Res. 1390, 61–70.

Stone, J. L., et al. (2013). Association study on 8q24 in bipolar disorder. Am J Med Genet B Neuropsychiatr. Genet. 167B, 465–475.

Streptococcal ‘complex’ movement disorders: unusual concurrence of psychogenic and organic symptoms. J. Neurol. Sci. 159B, 465–475.