Ocena ultrasonograficzna guzów tkanek miękkich ręki

Ultrasound of soft tissue masses of the hand

James Teh

Radiology Department, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
Adres do korespondencji: Dr James Teh, Consultant Musculoskeletal Radiologist, Radiology Department, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Trust, Windmill Road, Headington, Oxford, OX3 7LD, e-mail: james.teh@ouh.nhs.uk, tel.: +44 1865 738200, fax: +44 1865 738199

Słowa kluczowe
ultrasonografia, obrazowanie techniką rezonansu magnetycznego, ręka, nadgarstek, guz, zmiana, ganglion, guz olbrzymiokomórkowy, pseudoguzy

Key words
ultrasound, magnetic resonance imaging, hand, wrist, tumor, mass, ganglion, giant cell tumor, pseudomasses

Streszczenie
Większość guzów tkanek miękkich ręki ma łagodny charakter. Do najczęstszyszych należą gangliony oraz guzy olbrzymiokomórkowe pochewki ścięgnistej. Zmiany złośliwe występują rzadko. W wielu przypadkach ustalenie rozpoznania jest możliwe w badaniach obrazowych na podstawie oceny lokalizacji i morfologii zmian oraz stosunków anatomicznych w obrębie ręki. Rezonans magnetyczny jest doskonałą metodą oceny guzów tkanek miękkich dzięki możliwości wieloplanszowych obrazowania oraz określenia charakteru tkanek. Ultrasonografia stanowi uzupełnienie badania techniką rezonansu magnetycznego. Często jest badaniem pierwszego wyboru z uwagi na niższy koszt i większą dostępność w porównaniu z rezonansem magnetycznym. Pozwala na wiarygodne odróżnienie przestrzeni płynowych od zmian litych oraz na ocenę unaczynienia zmian. Niniejszy artykuł przedstawia obrazy ultrasonograficzne najczęstszych zmian guzowatych tkanek miękkich ręki w korelacji z obrazami rezonansu magnetycznego.

Abstract
Most soft tissue mass lesions of the hand are benign. Ganglia are the commonest lesions encountered, followed by giant cell tumors of the tendon sheath. Malignant tumors are rare. Often a specific diagnosis can be achieved on imaging by considering the location and anatomical relations of the lesion within the hand or wrist, and assessing its morphology. Magnetic resonance imaging is an excellent modality for evaluating soft tissue tumors with its multiplanar capability and ability to characterize tissue. Ultrasound plays a complementary role to MRI. It is often the initial modality used for assessing masses as it is cheap and available, and allows reliable differentiation of cystic from solid lesions, along with a real time assessment of vascularity. This review describes the US appearances of the most frequently encountered soft tissue masses of the wrist and hand, correlating the findings with MRI where appropriate.
Wstęp

Większość guzów tkanek miękkich ręki (która obejmuje także struktury anatomiczne, jak nadgarstek, śródręczce i palce) ma charakter łagodny1,2. W praktyce najczęściej rozpoznawane są ganglony, następnie inne łagodne zmiany guzowate, w tym: guzy ołbrzymiokomórkowe pochewki ścigniętej (giants cell tumors of the tendon sheath, GCTTS), tłusczaki, choroba Dupuytrena, guzy osłonek nerwowych, klębczaki, naczyńki/malformacje naczyniowe i patologie błony maziowej. Guzy złośliwe, takie jak mięsaki, występują rzadko.

W wielu przypadkach ustalenie rozpoznania jest możliwe na podstawie oceny lokalizacji zmian i ich stosunku do otaczających prawidłowych struktur ręki oraz ich kształtu i morfologii2–5. Zdjecia radiologiczne (RTG) i tomografia komputerowa (TK) uwiadczniają zwapnienia i pozwalają na ocenę sąsiadujących struktur kostnych, ale nie dają możliwości oceny tkanek miękkich. Obrazowanie techniką rezonansu magnetycznego (MR) jest doskonałą metodą oceny guzów tkanek miękkich ręki dzięki możliwości wieloplaszczyznowego obrazowania oraz określenia charakteru tkanek. Badanie ultrasonograficzne (USG) stanowi uzupełnienie MR, niemniej z uwagi na niższą cenę i większą dostępność niż MR jest często badaniem pierwszego rzutu. Pozwala na wiarygodne odróżnienie torbieli od zmian litych6,7, a także na ocenę unaczynienia guzów w czasie rzeczywistym. Ponadto USG ułatwia monitorowanie biopsji oraz aspiracji zmian płynowych.

Niniejszy artykuł przedstawia obrazy USG najczęściej zjawisk guzowatych tkanek miękkich ręki i nadgarstka w zestawieniu z obrazami MR.

Technika badania USG

Optymalną głowicą do oceny powierzchownych struktur dłoni jest wysokoczęstotliwościowa głowica liniowa (10–20 MHz). Aby uzyskać dostęp do niektórych okolic, takich jak przeczenie międzypalcowe, trzeba użyć niewielkiej głowicy w kształcie stopy lub kija hokejowego (footprint probe, hockey stick probe). Pomocna może być również żelowa podkładka pod głowicę, poprawiająca jakość obrazowanych struktur oraz czułość badań dopplerowskich. Ocena dynamiczna z wykorzystaniem czynnych i biernych ruchów palców umożliwia zróżnicowanie niektórych patologii. Podatność zmiany na ucisk głowicą może pozwolić ocenić jej zawartość oraz stwierdzić, czy ma ona torbielowaty charakter.

Introduction

Most soft tissue mass lesions of the hand (anatomically made up of the wrist, metacarpus, and fingers) have a benign etiology1,2. In practice, ganglion cysts are the commonest lesions encountered. Benign solid masses include giant cell tumors of the tendon sheath, lipomas, Dupuytren’s contractures, nerve sheath tumors, glomus tumors, hemangioma/vascular malformations and synovial pathology. Malignant tumors such as soft tissue sarcomas are rare.

In many cases a specific diagnosis can be achieved by considering the location and anatomical relations of the lesion within the hand or wrist, its configuration and its morphology2–5. Plain films and computed tomography (CT) may detect calcification and allow assessment of adjacent bony structures but otherwise do not offer much in the way of soft tissue characterization. Magnetic resonance imaging (MRI) is an excellent technique for evaluating soft tissue masses in the hand and wrist with its multiplanar capability and ability to characterize soft tissue components. Ultrasound (US) plays a complementary role to MRI.

It is often the first imaging modality used, as it is readily available and cheap. US is extremely useful in localizing lesions and determining if the lesion is cystic or solid6,7. It also allows real time assessment of tumor vascularity. Furthermore US facilitates guided biopsy or aspiration of lesions.

This review describes the US appearances of the most frequently encountered soft tissue masses of the wrist and hand, correlating the findings with MRI where appropriate.

Ultrasound technique

Ideally a high frequency linear array probe (10–20 MHz) should be used to evaluate the superficial structures of the hand and wrist. A small footprint probe or hockey stick probe may be required to access certain areas such as the web space between the fingers. A jelly stand-off may be useful to improve visualization of structures, and increase the sensitivity of Doppler evaluation. Dynamic evaluation using active and passive mobilization of the fingers can help accentuate pathology and determine the nature of lesions. Furthermore, the compressibility of a lesion may allow assessment of its consistency and determine if it is cystic.

The use of extended field of view (EFOV) imaging allows for better image presentation and may
Dzięki obrazowaniu metodą rozszerzonego pola widzenia (extended field of view, EFOV) można uzyskać lepszy obraz, w tym zmiany na tle otaczających ją struktur.

Badanie dopplerowskie jest integralną częścią badania USG guzów tkanek miękkich(9). Brak cech unaczynienia w obrębie hipoechochogenicznej zmiany potwierdza jej torbielowaty charakter. Obecność przepływu w obrębie guzka świadczy o jego litej budowie. Z kolei malformacje naczyniowe mogą się cechować powolnym napływem krwi po zwolnieniu ucisku.

Zastosowanie mikropęcherzyków środków kontrastowych w uwidocznieniu wolnych przepływów krwi w naczyniach o małej średnicy, ułatwiając rozpoznanie nowo powstałych naczyń w przebiegu stanów zapalnych lub w obrębie guzów(9). Tego rodzaju badania nie są jednak wykonywane w codziennej praktyce.

Ganglion

Gangliony są najczęstszą przyczyną wyczuwalnych zgrubień w okolicy ręki – stanowią prawie 60% przypadków zmian guzowatych w tej lokalizacji(2). Zwykle występują u młodych kobiet, niemniej mogą pojawić się w każdym wieku. Choć etiologia ganglionów nie jest do końca znana, u 10% pacjentów w przeszłości notowano urazy. Z histologicznego punktu widzenia ganglion jest zamkniętą przestrzenią płynową posiadającą cienką torebkę z tkanki łącznej, bez obecności wyściółki maziowej. Zazwyczaj jest ściśle związany z jamą stawu, pochewką ścięgnistą lub więządem. Z kolei torbiel okołostawowa stanowi przepuklinę torebki stawowej wyścieloną błoną maziową, co odróżnia ją od ganglionów. Ponieważ na ogół w badaniach obrazowych zróżnicowanie tych dwóch zmian nie jest możliwe, określa się ganglion, torbiel galaretowa oraz torbiel okołostawowa używając zamiennie.

W badaniu USG proste gangliony prezentują się jako dobrze odgraniczone zmiany bezczechowe o cienkich ścianach, ze wzmocnieniem akustycznym za tylną ścianą(10). Często w ich świetle widoczne są cienkie przegrody. Mogą być jedno- lub wielokomorowe, mieć kształt okrągły lub polikluczniczy. Z reguły są położone w sąsiedztwie ścięgien lub pochewek ścięgnistych i w badaniu można uwidocznić ich cienkie szopy, łączące je z tymi strukturami, co jest szczególnie istotne przed planowanym zabiegiem operacyjnym. W badaniu dopplerowskim zwykle nie stwierdza się cech wzmóconego unaczynienia.

Improve delineation of the lesion in relation to its surrounding structures.

The use of Doppler ultrasound is integral to the evaluation of soft tissue masses(9). The lack of color flow within a hypoechoic lesion can help confirm the cystic nature of a lesion. The presence of flow within a lesion on the other hand confirms that it is solid. Vascular malformations may show slow vascular filling with compression and release.

The use of microbubble contrast agents can improve detection of low-volume blood flow in smaller vessels, thereby facilitating detection of angiogenetic vessels in inflammatory conditions or tumors(9), however this is not usually required in routine practice.

Ganglion

Ganglia are the most common cause for a palpable mass in the wrist and hand, accounting for up to 60% of cases(2). The typical patient is a young woman but any age group may be affected. The etiology of ganglia is unclear but a history of trauma is present in around 10% of patients. On histology, a ganglion has a thin connective tissue capsule but no true synovial lining. There is usually a close relationship to a joint, tendon sheath or ligament. A synovial cyst, on the other hand, represents a herniation of synovial membrane through the joint capsule and therefore has a true synovial lining and is histologically distinct from ganglia. On imaging it is often impossible to differentiate between these two entities and the terms ganglion, ganglion cyst and synovial cyst are therefore often used interchangeably.

On ultrasound simple ganglia appear as well circumscribed, thin walled, anechoic masses with posterior acoustic enhancement(10). Thin internal septations are often visible, appearing as fine linear internal echoes. They may be unilocular or multilocular, and may have a rounded or lobular appearance. The ganglion/cyst usually lies adjacent to a joint or tendon sheath. A thin stalk may be visible, and is an important feature to describe, particularly if surgery is contemplated, as this may be the clue to the exact origin of the ganglion. On Doppler interrogation there is no internal flow. Occasionally, vessels are seen within the wall or in the surrounding soft tissues.

In one study most ganglia were found to be complex rather than simple on sonography(10). Complex ganglia are larger than simple ganglia and usually have well-defined margins, thick walls, locules, and...
Jedynie czasami można zaobserwować naczynia w obrębie ścian ganglionu i w przylegających tkankach miękkich.

W jednym z badań wykazano, że w USG gangliony częściej występują jako struktury wielokomorowe\(^\text{[10]}\). Są wówczas większe od tzw. prostych (jednokomorowych) i zazwyczaj dobrze odgraniczone, mają grube ściany, widoczne komory i wykazują wzmocnienia akustyczne. Ganglion niskociśnieniowy lub po zabiegu ewakuacji jego zawartości płynnej może być trudny do odróżnienia od obszaru miejscowego pogrubienia błony maziowej.

W badaniu MR gangliony ukazują się jako obszary płynowe sąsiadujące ze stawem lub pochewką ścięgnistą, jedno- lub wielokomorowe, okrągłe lub policykliczne. Małe zmiany mogą imitować niewielki wysięk w stawie – o ganglionie należy myśleć, gdy wysięk ten będzie widoczny jedynie lokalnie, zaś w pozostałych częściach stawu albo go nie będzie, albo wystąpi w śladowych ilościach. Gangliony przeźrocznie mają niski sygnał w obrazach T1-zależnych i wysoki w obrazach T2-zależnych, niemniej wysoka zawartość białka lub krwotoczącą mogą sprawić, że ich sygnał ulegnie podwysięknieniu do iso- lub hiperintensywnego w obrazie T1-zależnym. Po dojrzewaniu podanym środka kontrastowego można zauważyć łagodne wzmocnienie torebki lub przegród.

W obrębie ręki gangliony pojawiają się w czterech okolicach\(^\text{[11]}\):

1. Dorsum of the wrist (around 60%). These typically originate from the scapholunate joint or ligament. On imaging a small synovial stalk frequently extends through the fibers of the scapholunate ligament and disconnects through overlying structures to lie superficially. If the ganglion lies deep to the extensor tendons it may not be clinically palpable and is considered an “occult ganglion” (fig. 1).

2. Volar aspect of the wrist (20%). These usually arise from the radioscapoid, scaphotrapezial, pisiform-triquetral or metacarpotrapezial joint. They often extend around the flexor carpi radialis tendon and lie adjacent to radial artery,
1. Po stronie grzbietowej nadgarstka (około 60%). Często wywodzą się ze stawu lub wiązadła łódeczkowato-księżycowatego. W badaniach obrazowych widoczna jest wąska maziowa szypuła, która poprzez włókna więzadła łódeczkowato-księżycowatego przeciska się do tkank powierzchownych. Jeśli ganglion jest położony głęboko pod ściegami prostowników, może nie być wyczuwalny w badaniu palpcy- nym; jest wtedy określany mianem ganglionu ukrytego (ryc. 1).

2. Po stronie dłoniowej nadgarstka (około 20%). Ganglioni w tej części nadgarstka zwykle wywo- dzą się ze stawu promieniowo-łódeczkowatego, łódeczkowato-czworobocznego, gwóchowato -trójkątniego lub śródręczno-czworobocznego. Często przylegają do ściegien zginacza promieniowego nadgarstka w sąsiedztwie tętnicy promieniowej, niekiedy ją modelując. Ganglioni położone po stronie łokciowej nadgarstka na ogół współistnieją z uszkodzeniem kompleksu chrząstki trójkątnej (ryc. 2, 3).

3. Na poziomie pochewek ściegnowych zginaczy palców (10%). Nazywa się je również torbielami galaretowatymi troczków. Zazwyczaj pojawiają się na wysokości stawu śródręczno-paliczkowego i są związane z troczkiem A1. Lokalizują się powierzchnie w stosunku do tego troczka, a w badaniu dynamicznym pozostają nieruchomo w stosunku do ściegien zginaczy (ryc. 4).

4. Po stronie grzbietowej stawu międzypaliczkowego dalszego, pomiędzy paznokciem a stawem międzypaliczkowym dalszym (10%). Ganglioni te, zwyczajowo zwane torbielami śluzowymi, są związane z chorobą zwyrodnieniową stawów. Mogą być bolesne, powodować zniekształcenie paznokci, może im towarzyszyć wysięk w stawie (ryc. 5).

Guz olbrzymiokomórkowy pochewki ściegnowej

Po raz pierwszy barwnikowe kosmcko-guzkowe zapalenie blony maziowej stawów (pigmented villonodular synovitis, PVNS) opisał Chassaignac w 1852 roku, jako zmianę guzkową blony maziowej pochewki ściegienia zginaczy palców rąk[12]. Światowa Organizacja Zdrowia wyróżnia dwie postacie PVNS – guza olbrzymiokomórkowego pochewek ściegnowych (GCTTS), czasami nazywanego ogniskowym PVNS, oraz postać rozlaną guza olbrzymiokomórkowego w przebiegu rozlanej stawowej postaci PVNS. Postać ogniskowa, zarówno stawowa, jak i pozastawowa, stanowi 77% przypadków (przy czym guz olbrzymiokomórkowy pochewki ściegnowej jest postacią

Giant cell tumor of the tendon sheath

The first description of pigmented villonodular synovitis (PVNS) was by Chassaignac in 1852, who described a nodular lesion of the synovial membrane that affected the flexor tendons of the fingers[12]. The World Health Organization nomenclature describes two forms of PVNS – the giant cell tumor of the tendon sheath (GCTTS), sometimes also referred to as focal PVNS, and diffuse type giant cell tumor for the diffuse intra-articular form of PVNS. Localized disease, whether extra-articular or intra-articular, comprises 77% of cases (with the tenosynovial form being the most common), compared with diffuse intra-articular involvement, which accounts for 23% (a 3.3:1 ratio)[12].
Ryc. 4. Ganglion troczka zginacza A1. Obraz rozszerzonego pola widzenia (EFOV). Ganglion związany z troczkiem A1 zlokalizowany po stronie dłoniowej na wysokości stawu śródręczno-palczkowego (MCPJ)

Fig. 4. A1 pulley ganglion. Extended field of view image showing volar ganglion related to A1 pulley at the level of the metacarpophalangeal joint (MCPJ)

Ryc. 5. Torbiel śluzowa. Ganglion (strzałki) wychodzący ze stawu międzypalczkowego dalszego (DIPJ), w którym stwierdzone są zmiany zwyrodnieniowe

Fig. 5. Mucous cyst. Ganglion (arrow) arising from a degenerate distal interphalangeal joint (DIPJ)

Ryc. 6. Guz olbrzymiokomórkowy pochewki ścięginnistej (GCTTS). Widoczna zmiana hipoechogeniczna (groty) związana z pochewką ścięgnistą zginacza palca serdecznego

Fig. 6. Giant cell tumors of the tendon sheath (GCTTS). Hypoechoic mass (arrowheads) intimately related to the ring finger flexor tendon sheath

Ryc. 7. Ten sam pacjent co na ryc. 6. Obraz T2-zależny z saturacją tłuszczu, w płaszczyźnie osiowej. Widoczna zmiana o niskim sygnale (strzałka) związana z pochewką ścięgnistą zginacza palca serdecznego

Fig. 7. Same patient as fig. 6. Axial T2 fat-saturated image showing a low T2 signal mass (arrow) related to the ring finger flexor tendon sheath

GCTTS is the second commonest mass in the hand and wrist following ganglia. The etiology of GCTTS has been variously attributed to a synovial inflammatory process, recurrent hemorrhage, repetitive trauma or a disorder of lipid metabolism\(^\text{(12)}\). However, consistent cytogenetic abnormalities and its potential for autonomous growth and malignant transformation suggest that the disease should be considered a neoplastic process. There is a slight female predominance. These lesions usually affect the volar aspect of the first three digits\(^\text{(13)}\), much less commonly affecting the wrist.

On ultrasound GCTTS appears as a hypoechoic mass, which is often lobulated, with well-demarcated margins\(^\text{(13)}\). Its intimate relation to a tendon sheath or joint capsule, and its creeping extension along the length of the tendon, as well as circumferential involvement, should strongly suggest the diagnosis.
bezpoczątkowy związek guza z pochwą ścięgnistą lub torebką stawową. Guz rozpościera się wzdłuż długiej osi ścięgnia lub je otacza. W badaniu dynamicznym GCTTS nie porusza się wraz ze ścięgnem, gdyż wyra-sta z pochewki, a nie ze ścięgnia. W badaniu doppler-owskim obserwuje się zwykle jego wzmożone una-czynienie (ryc. 6).

Rezonans potwierdza obecność dobrze odgrani-czącej zmiany przylegającej do ścięgnia lub otaczają-cej ścięgnie. W obrazie T1-zależnym zmiana jest hipointensywna, jak mięsień szkieletowy. W obra-zie T2-zależnym ma typowy niski sygnał ze względu na przewlekłe krwawienie i odkładanie się zębów hemosyderyny (ryc. 7). W sekwencji echa gradientowa obecność hemosyderyny może powodować powstanie artefaktu, tzw. kwitnienia (blooming arte-fact). Cecha ta zawsze pozwala na postawienie dia-gnozy, a MR uznaje za metode badania z wyboru. Po dożylnym podaniu środka kontrastowego zmiana ulega wzmocnieniu.

Włókniakowatość

Włókniakowatość to termin odnoszący się do grupy łagodnych zmian o charakterze rozrostowym zawie-rających miofibroblasty, które mogą mieć miejscowo złośliwy charakter. Charakteryzuje je naciekający typ wzrostu, stąd często w badaniach obrazowych są mylone z guzami złośliwymi. Zmiany powierzchniowe manifestują się jako choroba Dupuytrena, podczas gdy guziki położone głębiej określane są jako włókniakowatość głęboka (deep musculoaponeurotic fibromatosis). Istnieje związek z włókniakowatością podeszwy i chorobą Peyroniego.

On dynamic examination the GCTTS does not move with the tendon as it arises from the sheath rather than the tendon itself. On Doppler imaging there is usually increased vascularity (fig. 6).

MRI also shows a well-defined mass adjacent to, or enveloping a tendon. Characteristically the lesion is hypointense on T1-weighted images, similar to skeletal muscle. On T2-weighted images there is typically low signal due to chronic hemorrhage with hemosiderin deposition (fig. 7). Blooming artefact may occur on gradient echo sequences due to hemosiderin. This feature usually allows a confident diagnosis, and MRI is therefore considered the imaging investigation of choice. Enhancement may be seen with intravenous gadolinium.

Fibromatosis

Fibromatosis refers to a group of benign proliferative lesions comprised of myofibroblasts which can be locally aggressive. They are characterized by infiltrative growth, and are often mistaken for a malignant lesion on imaging. Superficial lesions manifest as Dupuytren’s contracture, whereas deeper lesions are referred to as deep musculoaponeurotic fibromatosis. There is an association with plantar fibromatosis and Peyronie’s disease.

Dupuytren’s contracture

Proliferation of fibrous tissue within the palmar aponeurosis of the hand results in Dupuytren’s contracture(14). The typical patient is an elderly man. Most
Przykurcz Dupuytrena
Proliferacja tkanki włóknistej w obrębie rozciągana dłoniowego prowadzi do przykurczu Dupuytrena\(^{(14)}\). Choroba zazwyczaj występuje u starszych mężczyzn, najczęściej w zakresie 3. i 4. promieni. Początkowo wyczuwalne są podskórne guzki po stronie dłoniowej ręki na poziomie dalszej bruzdy, które ulegają progresji do pasm, podłużnych zgrubień, a następnie charakterystycznego przykurczu zgięciowego w wyniku ich włóknistych połączeń z pochwą ścięgnistą\(^{(15)}\). W badaniu USG prawidłowe rozciągane dłoniowe stanowią cienką echogeniczną warstwę zlokalizowaną nad ścięgnami zginaczy. W przebiegu choroby pojawiają się charakterystyczne hipoechochogeniczne pasma przylegające do ścięgip zginaczy oraz do głębokich warstw skóry właściwej. Wcześnie zmiany guzkowe są hipoechochogeniczne w stosunku do ścięgien i zwykle mają wzmózione unaczynienie, natomiast dojrzałe guzki są bardziej hiperechochogeniczne i nie wykazują cech unaczynienia. W późniejszych stadiach choroby tkanka włóknista, bliznowata może prowadzić do zamknięcia światła tętnicy (ryc. 8).

W badaniu MR widoczne są guzki lub pasma odchodzące od rozciągana dłoniowego, dystalnie i powierzchniowo, równolegle do ścięgien zginaczy. W obrazie T2-zależnym zmiany z dużą ilością komórek na ogół wykazują wyższy sygnał niż bogate w kolagen, które w obrazach T2-zależnych mają niski sygnał\(^{(14)}\) (ryc. 9).

Włókniakowatość głęboka (deep musculoaponeurotic fibromatosis)

Włókniakowatość głęboka rzadko występuje na ręce. Jest stwierdzana pomiędzy 10. a 40. rokiem życia, również często u kobiet i mężczyzn. Zazwyczaj zmiany są pojedyncze. Mogą powodować nadżerki w przylegającej kości, widoczne na zdjęciach RTG. W badaniu USG zmiany są słabo odgraniczone i wykazują naciekający charakter wzrostu. W badaniu dopplerowskim obserwuje się wzmózione unaczynienie. Sygnał w badaniu MR może być zróżnicowany w zależności od liczby komórek i zawartości kolagenu\(^{(16)}\).

Włókniak pochwek ścięgnistej

Włókniak pochwek ścięgnistej jest rzadkim, łagodnym guzem, często mylonym z GCTTS. W badaniu USG manifestuje się jako zmiana hipoechochogeniczna, dobrze odgraniczona, przylegająca do pochwki ścięgnistej, zwykle związana z troczkiem zginaczy.

commonly the 3\(^{\text{rd}}\) and 4\(^{\text{th}}\) rays are involved. Patients present with subcutaneous nodules on the palmar surface of the distal crease of the hand which progresses to cords and bands and finally the characteristic flexion contracture secondary to fibrous attachments to the underlying tendon sheath\(^{(15)}\). On ultrasound the superficial palmar aponeurosis appears as a thin echogenic lamellar structure overlaying the flexor tendons. The presence of hypoechoic bands adhering to the margin of the flexor tendons and deep surface of the dermis is characteristic of the disease. Early nodules are hypoechoic in relation to tendons and typically demonstrate increased vascularity whereas older nodules are more hyperechoic, without vascularity. Arterial encasement by fibrous or scar tissue may be seen in late disease (fig. 8).

On MRI focal nodules or cords may be seen arising from the palmar aponeurosis extending distally and superficially parallel to the flexor tendons. Lesions with high cellularity are typically of higher signal on T2-weighted images than those with a large collagenous component, which tend to be low signal on T2-weighted images\(^{(14)}\) (fig. 9).

Deep musculoaponeurotic fibromatosis

Deep musculoaponeurotic fibromatosis is rare in the hand but typically occurs between the ages of 10–40 years, with equal sex predominance. Usually the lesions are solitary. Plain films may show bone erosion. On ultrasound the lesions usually have poorly defined margins and appear infiltrative. There may be increased vascularity on Doppler. On MRI the signal characteristics can be variable depending on the degree of cellularity and collagen content\(^{(16)}\).

Fibroma of the tendon sheath

A fibroma of the tendon sheath is a rare benign tumor, which may easily be confused with GCTTS. On ultrasound the lesion appears as a hypoechoic well-defined mass attached to the tendon sheath, often in relation to an annular pulley. The MRI appearance is variable but usually the presence of fibrous tissue results in low signal on both T1- and T2-weighted images, similar to GCTTS\(^{(17)}\) (fig. 10).

Lipoma

Simple benign lipomas are the commonest soft tissue tumor, but they are infrequent in the hand\(^{(18)}\).
Ultrasound of soft tissue masses of the hand

The lesions are composed of mature adipose tissue, which may occur in a subcutaneous or deep location, presenting as a slow growing painless mass. Typically, they occur at the thenar or hypothenar eminence. The majority of lesions measure less than 5 cm\(^{19}\). Compression of neighboring structures such as nerves and vessels may occur if the lipoma occurs in a confined space such as the carpal tunnel or Guyon’s canal. Rarely lipomas can occur with a tendon sheath.

On ultrasound lipomas are well-demarcated lesions that are classically described as hyperechoic and homogeneous. They may however be hypoechoic or isoechoic\(^ {20}\). Superficial lipomas may be difficult to visualize, as they may blend in with the adjacent fat (fig. 11). On MRI they demonstrate fat signal with homogeneous high signal on T1-weighted and low signal on STIR or T2 fat-saturated images\(^ {21}\) (fig. 12). Septations may be seen with benign lipomas, but nodules or solid components indicate an atypical lipoma or liposarcoma. With intramuscular lipomas fatty tissue infiltrates between muscle fibers.

Tłuszczak

Proste, łagodne tłuszczaki należą do najczęstszych guzów tkanek miękkich, jednak rzadko występują na ręce\(^ {18}\). Zmiany te są zbudowane z dojrzałej tkanki tłuszczowej; to wolno rosnące, niebolesne guzki. Mogą być zlokalizowane podskórnie lub w głębszych warstwach skóry. Zwykle pojawiają się na wysokości klębu kciuka lub klębiku. Większość z nich nie przekracza 5 cm\(^ {19}\). W przypadku lokalizacji w wąskiej przestrzeni, jak np. w kanale nadgarstka lub Guyona, mogą powodować ucisk sąsiadujących struktur – nerwów i naczyń. Rzadziej tłuszczaki są umiejscowione w pochwice ścięgnistej.

W badaniu USG tłuszczaki jawią się jako zmiany dobrze odgraniczone, typowo o wysokiej i jednorodnej echogeniczności. Bywają też hipo- lub

Obraz MR jest zróżnicowany, ale przeważnie, z uwagi na obecność tkanki tłóknistej, guz ma niski sygnał w obrazach T1- i T2-zależnych, a więc podobnie jak GCTTS\(^ {17}\) (ryc. 10).

"Ryc. 10. Włókniak więźadła obrączkowatego. Niewielka, nieumyślona zmiana (groty) wychodząca z troczka A2"

"Fig. 10. Annular pulley fibroma. Small avascular hypoechoic mass (arrowheads) arising from the A2 pulley"

"Ryc. 11. Łagodne tłuszczaki. Poprzeczny przekrój USG izoechogenicznej zmiany na ręce o jednorodnej echogeniczności"

"Fig. 11. Benign lipomas. Transverse ultrasound showing an isoechoic uniform mass in the palm"
Fibrolipomatosus hamartoma

A hamartoma is a benign focal malformation that resembles a neoplasm in the tissue of its origin. It is comprised of tissue elements normally found at that site, but which are growing in a disorganized mass. The fibrolipomatosus hamartoma is composed of hypertrophic mature fat and fibroblasts in the epineurium\(^\text{22}\). It typically presents in young adulthood with a slow growing mass on the volar aspect of the wrist and may be associated with macrodactyly, a condition known as macrodystrophia lipomatosas. There is a marked predilection for the median nerve with up to 85% occurring at this location. Patients may complain of pain or paresthesia. The US and MRI appearances are pathognomonic with longitudinally orientated cylindrical structures representing...
Naczyniak/malformacje naczyniowe

Według klasyfikacji anomalii naczyniowych Mullikena i Glowacki naczyniak charakteryzuje się przyspieszonym procesem odnawiania się komórek śródblonka, tucznych, fibroblastów i makrofagów(23). Zazwyczaj nie jest widoczny od urodzenia (mimo że występuje postać wrodzoną) – manifestuje się w pierwszych kilku tygodniach życia jako zmiana niepodająca się uciskowi. Do 6–10. miesiąca od urodzenia intensywnie się powiększa, po czym zaczyna zanikać. W 70% przypadków zanika przed ukończeniem 7. roku życia, a całkowicie – do 12. roku życia. W badaniu MR, w obrazach T1- i T2-zależnych widoczne są kręte obszary ubytoku sygnału związane z obecnością przepływu, ulegające jednorodnemu wzmocnieniu po podaniu gadolinu. W okresie zaniku naczyniaka jego rozmiary zmniejszają się – zastępuje go tkanka tłuszczowa, równocześnie obserwuje się zanik obszarów braku sygnału wynikających pierwotnie z szybkiego przepływu oraz brak wzmocnienia.

Malformacje naczyniowe nie są prawdziwymi nowotworami, ale wadliwym procesem morfogenezy tkanki naczyniowej z zachowanym prawidłowym odnawianiem się komórek. Zmiany te rosną razem z dzieckiem(23). Mogą się nagle powiększać, w wyniku krotwotku, zakażenia lub wpływów hormonów w okresie dojrzewania. Choć są obecne od razu po urodzeniu, mogą uwidocznić się dopiero w wieku młodzieńczym lub w okresie wczesnej dojrzałości.

Ze względu na rodzaj zajętego naczynia malformacje naczyniowe można podzielić na kilka typów: włosowate, zyline, tętnicze oraz limfatyczne. W badaniu USG mają zróżnicowany wygląd. Często są dobrze odgraniczonymi, podatnymi na ucisk, litymi, hiperchogenicznymi lub hipochogenicznymi zmianami, zawierającymi kręte torbielowate obszary, które reprezentują rozszerzone naczynia. Najogólniej rzecz

trzyczowej (macrodystrophia lipomatosa). Zmiana wykazuje predykcję do nerwu pośrodkowego – 85% przypadków choroby dotyczy tego nerwu. Pacjenci mogą skarżyć się na ból lub parastezje. Obraz USG i MR jest patognomoniczny i przedstawia podłużną, cylindryczną strukturę zawierającą pęczki nerwowe, które w płaszczynie czołowej wyglądają jak nitki makaronu spaghetti, a w projekcji osiowej przypominaają wąsik kabla elektrycznego(22). Pęczki nerwowe otaczają tkankę tłuszczową. W badaniu MR widoczne są obszary wysokiego i niskiego sygnału w obrazach T1- i T2-zależnych, co odzwierciedla włóknisto-tłuszczową budowę guza (ryc. 13, 14).

Hemangioma/vascular malformations

According to Mulliken and Golwacki’s classification of vascular anomalies, a hemangioma is a tumor characterized by increased cell turnover of endothelium, mast cells, fibroblasts and macrophages(23). Hemangiomas are usually not present at birth (although congenital hemangiomas may occur) but become apparent in the first few weeks of life as a firm non-compressible mass, after which there is a proliferative phase with rapid growth followed 6–10 months later by an involuting phase. In 70% there is resolution by 7 years and the remainder continue to diminish until the age of 12 years. On MRI, serpentine vascular flow voids may be evident on both T1 and T2 sequences and there is uniform enhancement with intravenous gadolinium. With involution there is decrease in size of the mass with replacement by variable and increasing amounts of fat, loss of the high flow signal voids and absence of enhancement.

Vascular malformations are not true neoplasms but are errors of vascular morphogenesis with a normal rate of endothelial turnover, and hence grow commensurately with the child(23). Occasionally they can suddenly enlarge due to hemorrhage, infection or hormonal influence at puberty. They are present at birth although they may not become apparent until adolescence or early adulthood.

The lesions can be subdivided according to vessel type into the following groups: capillary, venous, arterial and lymphatic. On US, these lesions have a variable appearance, but often are well-defined, compressible, solid, echogenic or hypoechoic masses with cystic serpiginous areas representing dilated vessels. Broadly speaking lesions can be subdivided into low flow (capillary, venous, lymphatic or a combination) or high flow (arteriovenous)(24).

Capillary malformations are the equivalent of the port wine stain, and usually occur superficially. A clinical diagnosis may be made in most instances. On imaging skin thickening is seen with no demonstrable vascular channels.
Venous malformations are simple malformations comprised of dilated slow flowing vascular spaces and channels forming a venous network, with no solid tissue component apart from septations. On ultrasound venous malformations appear as hypoechoic or heterogeneous lesions in 80% of cases. Anechoic channels can be visualized in less than 50% of cases. Sometimes, thickening of the subcutaneous tissues without a solid mass or discernible vascular channels is the only feature. Hyperechoic foci may be present indicating the presence of phleboliths. Doppler US demonstrates monophasic, low-velocity flow. In 20% of lesions, no flow is demonstrated (figs. 15–17). They appear on MRI as septated high signal soft tissue masses on T2-weighted images with no evidence of high flow velocity signal voids. On T1-weighted images they are isointense to muscle. The presence of phleboliths results in foci of signal void. Gradient echo imaging is useful to document slow flow and exclude the presence of any high flow. With contrast, there is uniform or inhomogeneous enhancement of the vascular spaces.

Lymphatic malformations consist of multiple lymphatic fluid containing spaces with intervening septa. On MRI they are comprised of septated cysts of variable size. Fluid-fluid levels may be seen. Stranding of the adjacent subcutaneous tissue may be seen due to associated lymphatic obstruction and may simulate cellulitis.
Malformacje limfatyczne to przestrzenie wypełnione płynem limfatycznym, poprzedzielane przegrodami. W badaniu MR uwidocznią się jako nieрегулярne zmiany wielokomorowe. W ich świetle mogą być widoczne poziome płyny. Ze względu na towarzyszącą niedrożność naczyń limfatycznych czasem dochodzi do włóknienia przylegającej tkanki podskórnej, imitującego zapalenie tkanki łącznej(25).

Malformacje tętniczo-żylne (arteriovenous malformations, AVMs) są zmianami wykazującymi silne unaczynienie oraz obecność nieprawidłowych połączeń tętniczo-żylnych. Posiadają centralne gniazda (malformation nidus), których nie obserwuje się w przetokach tętniczo-żylnych. W badaniu USG obraz przedstawia poszerzone naczynia, które w badaniu dopplerowskim wykazują cechy przyspieszonego przepływu. W badaniu MR malformacje te ujawniają się jako poszerzone naczynia, bez elementów tkanki litej, w sekwencji SE pozbawione sygnału, w sekwencji GE o wysokim sygnale przepływu. W celu dokumentowania obecności unaczynienia tętniczego stosuje się technikę artrografii MR. Innymi cechami tych malformacji są pogrubienie skóry z równoczesnym występowaniem zalogów tłuszczu, a także obrzęk w otoczeniu zmiany(25) (ryc. 18, 19).

Arteriovenous malformations (AVMs) are high flow vascular malformations with abnormal connections between arteries and veins. AVMs have an intervening central nidus whereas arteriovenous fistulae do not. US shows enlarged vessels with high flow on Doppler. On MRI they appear as enlarged vascular channels without a discrete soft tissue mass which on spin echo imaging appear as signal voids with corresponding bright signal on flow-enhanced GE sequences. MR arthrography can be used to delineate the arterial supply. Skin thickening and fat deposition may be seen in association as well as perilesional edema(25) (figs. 18, 19).
Tętniaki rzekome to workowate uwypuklenia światła naczynia, których ścianę stanowią otaczające tkanki. Powstają w następstwie uszkodzenia (urazu lub nakłucia) lub wady ściany tętnicy, gdy krew wypływająca z naczynia pod ciśnieniem rozwarstwia tkanki otaczające uszkodzone naczynie. Prawidłowy tętnik jest miejscowym rozszerzeniem światła tętnicy, stąd jego ścianą zawiera wszystkie warstwy ściany naczynia. W USG widoczna jest torbiel zlokalizowana obok tętnicy, z cechami szybkiego przepływu w badaniu dopplerowskim (rcy. 20).

Łagodne guzy z osłonek nerwów obwodowych

Łagodne guzy z osłonek nerwów obwodowych (benign peripheral nerve sheath tumors, PNST) można podzielić na nerwiaki osłonkowe (schwannomas) oraz włókniakonerwiaki (neurofibromas). Nerwiaki osłonkowe powstają z komórek Schwanna otaczających nerwy, natomiast włókniakonerwiaki – z centralnych włókien nerwowych[26]. Są stosunkowo częstymi zmianami rąk. Z reguły nerwiaki osłonkowe dotyczą nerwów większych i głębiej położonych (w szczególności nerwu łokciowego), a włókniakonerwiaki rozwijają się w obrębie mniejszych nerwów skórnnych. PNST występują między 20. a 30. rokiem życia jako niewielkie, pojedyncze i wolno rosnące zmiany. Większość z nich nie ma związku z neurofibromatozą[18].

Charakterystyczną cechą nerwiakowłókniaków w badaniach obrazowych jest ich wrzecionowaty kształt i objaw tzw. dural tail sign, przedstawiający nerw wchodzący i wychodzący ze zmiany[26]. Cechę tę łatwo zaobserwować w przypadku dużych nerwów lub głęboko położonych. W przypadku PNST nerwu powierzchownego o malej średnicy obraz ten może

Pseudoaneurysms, also known as false aneurysms, are perfused sacs that form outside the arterial wall, and are contained by the surrounding tissues. It arises from damage or a defect of the arterial wall so typically follows trauma or arterial puncture. Under the influence of sustained arterial pressure, blood dissects into the tissues around the damaged artery. A true aneurysm on the other hand is a localized dilatation of an artery including all the layers of the vessel wall. On ultrasound there is a cystic mass arising adjacent to an artery, with high flow on Doppler (fig. 20).

Benign peripheral nerve sheath tumors

Benign peripheral nerve sheath tumors (PNST) have classically been divided into schwannomas and neurofibromas. Schwannomas arise from the Schwann cells surrounding the nerve whereas neurofibromas arise from the central nerve fascicles[26]. They are relatively common masses of the hand and wrist. In general, schwannomas tend to arise from deeper and larger nerves (in particular the ulnar nerve) whereas neurofibromas tend to involve the smaller cutaneous nerves. PNST present in adulthood, usually between the ages of 20 to 30, and are small, solitary and slow growing. The vast majority of these are not associated with neurofibromatosis[18].

The characteristic imaging feature of neurogenic tumors is of a fusiform mass with a “dural tail”, representing the entering and exiting nerve[26]. This may be clearly visualized when the nerve is large or deep, but with superficial small PNST this feature may not be seen (fig. 21). Schwannomas tend to lie eccentrically in relation to the nerve which may allow its
być niewidoczny (ryc. 21). Z kolei nerwiaki osłonkowe są zlokalizowane niewspółśrodowko w stosunku do nerwu, co pozwala na ich różnicowanie z włókniakonerwiakami. Ponadto nerwiaki osłonkowe są z reguły bardziej niejednorodne ze względu na obecność torbieli, martwicy oraz ognisk krwotocznycych (ryc. 22, 23).

Co więcej, wokół PNST można zaobserwować „obwódkę tłuszczową” (split fat sign), widoczną dzięki temu, że pęczek nerwowy jest otoczony przez tkankę tłuszczową, którą zachowują guzy wywodzące się z tej lokalizacji[22,27].

Echogeniczność guzów neurogennych jest różna, zaś echostruktura często niejednorodna. Niekiedy obserwuje się objaw tarczy strzelniczej (target sign), ze środowko położonym obszarem o obniżonej echo-
genicznosci odpowiadającym włókniakowatości, otoczymy tkanką słuzową[27]. Każdy pień nerwowy jest otoczony warstwą tkanki łącznej lub nanerwem. Z kolei pęczki nerwowe otacza onerwie. Budowę pęczkową nerwów dobrze widać w badaniach obrazowych, szczególnie w przypadku pni dużych nerwów. Taki obraz jest również stwierdzany w przypadku PNST – obejmuje liczne pierścieniowato, struktury odpowiadające pęczkom nerwowym[26].

W badaniach USG i MR u pacjentów z objawami neuropatii w przebiegu PNST obserwuje się cechy odniesienia mięśni, w tym ich postępujący zanik. Obraz USG pokazuje wówczas wzmożoną echogeniczność mięśni. W badaniu MR zanik tłuszczowy mięśni najlepiej widać w obrazach T1-zależnych, przy czym konieczne jest ocena porównawcza z kończyną kontralateralną.

Cechy sugerujące charakter złośliwy zmiany w badaniu USG i MR to jej znaczne wymiary (powyżej 5 cm), cechy nacieku na otaczające tkanki, niejednorodna struktura oraz szybki wzrost[26,27].

Kłębczak

Chociaż cialka kłębkowate odpowiedzialne za termoregulację są obecne w skórze właściwej całego ciała, szczególnie liczne występują w palach dłoni i stóp. Kłębczaki to niewielkie hamartomy ciałek kłębkowatych, stanowią około 5% guzów tkanek miękkich rękii[28]. Z punktu widzenia histologicznego składają się z jednorodnych, okrągłych komórek, dobrze odgraniczonych, o okrągłych jądrach i bladej eoziomoczonowej cytoplazmie. Najczęściej są zlokalizowane na koniuszkach palców: na opusze lub pod differentiation from a neurofibroma. Furthermore, schwannomas are also usually more heterogeneous because of the presence of cysts, necrosis, and hemorrhage (figs. 22, 23).

The “split fat” sign may be seen around PNST, and occurs because the nerve bundle is surrounded by fat, so masses arising from this location maintain a rim of fat around them[27].

The echogenicity of neurogenic tumors is fairly non-specific, and lesions may appear heterogeneous. A target sign with a central area of low echogenicity corresponds to central fibromatosis and surrounding myxomatosis tissue[27]. A layer of connective tissue or epineurium surrounds each nerve trunk. Bundles of nerve fibers in turn are surrounded by perineurium. This gross appearance can be recognized on imaging particularly in large nerve trunks, which has been described as the fascicular appearance. This sign can also be seen in PNST and manifests as multiple small ring like structures corresponding to the fascicular bundles within the nerve[26].

Muscle denervation and subsequent atrophy may be appreciated on MRI or US in patients with neuropathy due to PNST. On US there is increased echogenicity of the muscle. Fatty infiltration is best shown on T1-weighted images and may require the contra lateral side for comparison.

Features suggestive of malignancy on MRI and US include large size (greater than 5 cm), infiltrative margins, marked heterogeneity and rapid growth[26,27].
pażnikiem. Występują typowo w 4. lub 5. dekadzie życia jako niezwykle bolesne guzki – można precyzyjnie wskazać miejsce bólu, który zastrzega się przy zmianie temperatury. Patognomoniczne dla klębczaka jest niwelowanie bólu po zażuciu. Występują również jako niezwykle bolesne guzki – možesz je wyraźnie wskazać. Niewielki, unaczyniony guzek w obrazie T1 -zalewia się jak zmiennie high signal, w obrazie T2 -zalewia się jak zmiennie low signal. Lesions as small as 2 mm may be detected with MRI. On X-ray, smooth extrinsic bone erosions adjacent to the lesion may be seen with chronic large lesions. On ultrasound glomus tumors appear as small well-circumscribed hypoechoic masses with increased vascularity. Often the appearance is of an AV malformation on Doppler. Bone erosion may be evident. The patient is usually able to localize the position of the tumor accurately due to pinpoint tenderness (fig. 24).

Lesions as small as 2 mm may be detected with MRI. They are usually of low or intermediate signal on T1-weighted images and homogenous signal high on T2-weighted images. They enhance uniformly following gadolinium.

Malignant masses

Malignant soft tissue tumors of the hand are uncommon\(^1\),\(^2\),\(^5\). The lesions most often encountered are undifferentiated pleomorphic sarcoma (previously called malignant fibrous histiocytoma) in the older population, synovial sarcoma, rhabdomyosarcoma, malignant nerve sheath tumors, liposarcomas and extraskeletal chondrosarcomas\(^18\). Because of non-specific morphological features, these tumors can be confused with benign lesions such as aggressive fibromatosi or ganglion cysts, particularly when they are small. The possibility of a malignant lesion needs to be considered when the mass does not have an unequivocal benign diagnosis on imaging\(^29\).

The imaging features that should raise the possibility of malignancy are a rapidly growing, large lesion with poorly defined margins.
Język: polski

Należy rozważyć w przypadku, gdy w badaniu obrazowym zmiana nie ma jednoznacznych cech wskazujących na jej lagodny charakter[25].

Szybki wzrost zmiany, jej duże wymiary oraz zatarte granice powinny nasuwać podejrzenie złośliwego charakteru.

Badacze podejmowali próby różnicowania zmian lagodnych i złośliwych w badaniu dopplerowskim, między innymi na podstawie analizy spektrum przepływu[8,30]. Naczynia guzów złośliwych mają kręty przebieg, a ich ścianą jest pozbawiona warstwy mięśniowej. W badaniu dopplerowskim można wykazać cechy niedrożności naczyń, zwężenia, obecność przecieków tętniczo-żylnych, pętli[31]. Ponieważ z reguły budowa naczyń w obrębie zmian łagodnych jest dość prosta, analiza morfologii naczyń guza wydaje się bardziej wiarygodna od parametrów ilościowych, takich jak prędkość przepływu czy wskaźnik oporu. W praktyce należy jednak zachowywać ostrożność w ustalaniu rozpoznania, gdyż nie wszystkie złośliwe guzy tkanki miękkich mają naczyńia o chaotycznej budowie. Ponadto niektóre zmiany martwicze oraz nowotwory o niskim stopniu złośliwości mogą nie wykazywać cech obecności neoangiogenezy, dlatego brak sygnału przepływu niekoniecznie będzie świadczyć o łagodnym charakterze (ryc. 25, 26).

W badaniu MR guzy złośliwe tkanki miękkich mają niejednorodną strukturę w obrazach T2-zależnych, zawierają obszary martwicze, a po podaniu kontrastu ulegają nieregularnemu wzmacnieniu. Często wyniki badań obrazowych są nieswoiste i w celu ustalenia rozpoznania należy wykonać biopsję.

Using a combination of Doppler imaging with spectral wave analysis, researchers have attempted to differentiate benign from malignant lesions[8,30]. Malignant tumors have vessels with an irregular margin and lack a muscle layer. On Doppler imaging, these vessels may show an anarchic pattern, with occlusions, stenoses, arteriovenous shunts, and loops[31]. Benign tumors usually have a simple branching vascular morphology. The morphologic analysis of tumor vessels appears to be more reliable than quantitative parameters such as flow velocities or resistive indices. In practice, a cautious approach should be taken as not all malignant soft-tissue tumors have an anarchic pattern. Furthermore some necrotic lesions and low-grade neoplasms may not demonstrate neovascularity and therefore the absence of flow does not necessarily indicate benignity (figs. 25, 26).

On MRI of malignant tumors there may be inhomogeneity on T2-weighted images, irregular enhancement following intravenous contrast and the presence of necrosis. Often the imaging findings are non-specific and biopsy is required to provide a histological diagnosis.

Pseudomasses

Synovial pathology

Synovial hyperplasia, tenosynovitis and crystal arthropathies can present as a focal masses around joints and tendons. This may occur as an isolated abnormality or in the setting of a known systemic disease, particularly rheumatoid arthritis. Ultrasound
Pseudoguzy

Patologie błony maziowej

Patologie błony maziowej jam stawów i pochewek ścięgnistych oraz artropatie związane z odkładaniem krystalsłów mogą manifestować się jako zmiany ogniskowe jam stawów i ścięgien, występować jako zmiany izolowane lub w przebiegu choroby układowej, w szczególności reumatoidalnego zapalenia stawów. W diagnostyce pomocne są zarówno badanie USG, jak i MR. Ultrasonografia ma przewagę w ocenie unaczynienia zmian w czasie rzeczywistym oraz w uwidocznianiu zwapnień (ryc. 27, 28).

Anomalie mięśniowe

Nieprawidłowości mięśni ręki występują dość często(32). Chociaż na ogóln nie manifestują się klinicznie, mogą powodować ucisk na sąsiadujące struktury lub prezentować się jako zmiany guzkowe. Zdarza się, że and MRI are both useful for defining the extent of disease. Ultrasound has the advantage of assessing vascularity in real time, and is superior at delineating associated calcification (figs. 27, 28).

Anomalous muscles

Anomalous muscles of the wrist and hand are common(32). Although they are usually clinically silent, they may cause compressive symptoms or appear mass-like. Often lesions are not recognized on imaging, as the echotexture is identical to normal muscle. The sonographer therefore requires a thorough knowledge of anatomy and normal variation. The accessory abductor digiti minimi muscle is present in up to 24% of all wrists(32). A fusiform mass is present with the echotexture of muscle lateral and anterior to the pisiform bone at the level of the origin of
są niewidoczne w badaniach obrazowych – ich echostruktura jest identyczna jak otaczających zdrożnych mięśni – dlatego ultrasonografista powinien posiadać gruntowną wiedzę dotyczącą prawidłowej anatomicznej oraz możliwych wariantów anatomicznych. Na przykład u 24% populacji występuje dodatkowy mięsień odwodziciela palca małego. W tym przypadku widoczna jest wrzecionowata zmiana o echostrukturze mięśnia, leżąca z boku i do przodu od kości grzbietowej na wysokości miejsca, od którego odchodzi mięsień odwodziciela palca małego. Może powodować ucisk nerwu lokciowego w obrębie kanału Guyoáy(33) (ryc. 29). Kolejnym przykładem jest mięsień prostownik krótki palców, mylony z ganglionem zlokalizowanym po stronie grzbietowej. Występuje u 3% populacji. Odchodnie od nasydy dalszej kości promieniowej i przyczepia się do palca wskazującego. Brzusiec mięśnia jest widoczny przyśrodkowo do ścięgnia palca wskazującego, dystalnie względem nadgarstka lub na jego wysokości. Inny przykład stanowi miękchenie glistowane, które mogą rozpoczynać się w obrębie kanału nadgarstka, prowadząc do objawów zespołu cieni outel kanału nadgarstka, co zdarza się u 22% populacji(32).

Infekcje tkanki miękkiej

Infekcje tkanki miękkich z tworzeniem ropni mogą imitować guzy tkanki miękkich. Pilna diagnostyka obrazowa ułatwia ustalenie wczesnego rozpoznania i sposobu leczenia, zmniejszając ryzyko wystąpienia powikłań. Badanie USG pomaga określić zakres zarażonych tkank (czy jednocześnie występuje zapalenie pochewki ściegnień bądź zapalenie okostnej, co może wskazywać na zapalenie kości i szpiku). Badanie ultrasonograficzne jest również nieocenione w monitorowaniu aspiracji treści płynnej lub biopsji zmian zapalnych.

W przypadku zapalenia tkanki łącznej w badaniu USG stwierdza się pogrubienie skóry oraz obrzęk tkanki podskórnej. Można także zaoferować: wzmiotzone unaczynienie, zatarcie granicy tkank, niewielkie przestrzenie płynowe wzdłuż przegród międzyzystatywnych oraz hiperechogeniczne zraziki tkanki tłuszczowej(34). Proste przestrzenie płynowe oraz ropne wykazują niską echoegenicznosc przy zwiększonym przewodzeniu ultradźwięków. Z kolei złożone przestrzenie mogą wykazywać mieszcaną echoegenicznosc i być otoczone grubą hiperechogeniczną i przekrwiowaną ścianą. Dynamiczny ucisk zmiany może powodować ruch jej zawartości. Ropowica ukazuje się jako lita zmiana zapalna, źle odgrani,

**Ryc. 30. Ropię i ropowica po stronie grzbietowej nadgarstka. Wi
doczy niewielki bezchocie ropień z zapaleniem, wzmożonym unaczynieniem otaczającego tkank miękkich**

**Fig. 30. Abscess and phlegmon on dorsum of wrist. A small an-
echoic abscess is present with marked surrounding soft tissue inflammation with increased vascularity**

the abductor digiti minimi muscle. This may result in compression of the ulnar nerve in Guyon’s canal(33) (fig. 29). The extensor digitorum brevis manus muscle may be mistaken for a dorsal ganglion and occurs in up to 3% of the population. The muscle arises from the distal radius and inserts on the index finger. The muscle belly is seen medial to the tendon of the index finger at or distal to the level of the carpus. Lumbrical muscles may arise within the carpal tunnel causing carpal tunnel syndrome and may be seen in up to 22% of individuals(32).

Soft tissue infection

A soft tissue infection with abscess formation may mimic a soft tissue mass. A prompt imaging evaluation of soft tissue infection will facilitate early diagnosis and treatment, and thus decrease the risk of complications. US can help delinate the extent of involvement and determine if there is associated tenosynovitis or periostitis, which may indicate osteomyelitis. US also has an invaluable role in allowing guided aspiration or biopsy of inflammatory collections.

With cellulitis US may demonstrate skin thickening with subcutaneous edema. Hypervascularity, indistinct tissue planes, and small linear fluid collections tracking along interlobular septa and encircling hyperechoic fat lobules may also be seen(34). Simple collections or abscesses are of low echogenicity with increased through transmission. Complex collections may show mixed echogenicity, and may be
surrounded by a thick hyperechoic and hyperemic wall. Dynamic compression may demonstrate swirling of the contents. A phlegmon is a solid inflammatory mass, which may have a poorly defined margins and mixed echogenicity with increased vascularity (fig. 30).

Retained foreign bodies from penetrating trauma may give rise to pain and swelling. Often foreign bodies are undetectable on plain radiographs, particularly if they are organic material, such as wood. On ultrasound foreign bodies are easily detectable and appear as hyperechoic fragments, which may demonstrate posterior acoustic shadowing. Superadded infection may result in a phlegmon or abscess. Foreign body granulomas appear as a hypechoic mass surrounding the foreign body (fig. 31).

Konflikt interesów

Author does not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.

References

1. Johnson J, Kilgore E, Newmeyer W: Tumorous lesions of the hand. J Hand Surg Am 1985; 10: 284-286.
2. Capelastegui A, Astigarraga E, Fernandez-Canton G, Saralegui I, Larrea JA, Merino A: Masses and pseudomasses of the hand and wrist: MR findings in 134 cases. Skeletal Radiol 1999; 28: 498-507.
3. Miller TT, Potter HG, McCormack RR Jr: Benign soft tissue masses of the hand and wrist: MR imaging and clinical applications. Skeletal Radiol 2009.
4. Binkovitz LA, Berquist TH, McLeod RA: Masses of the hand and wrist: detection and characterization with MR imaging. AJR Am J Roentgenol 1990; 154: 323–326.
5. Teh J, Whiteley G: MRI of soft tissue masses of the hand and wrist: a statistical model for ultrasound diagnosis of soft-tissue tumours in the hand and forearm. Acta Radiol 1997; 38: 355–358.
6. Teh J, Whiteley G: MRI of soft tissue masses of the hand and wrist. Br J Radiol 2007; 80: 47-63.
7. Teh J, Whiteley G: MRI of soft tissue masses of the hand and wrist. Br J Radiol 2007; 80: 47-63.
8. Teh J: Applications of Doppler imaging in the musculoskeletal system. Curr Probl Diagn Radiol 2006; 35: 22-34.
9. Klauser AS, Peetrons P: Developments in musculoskeletal ultrasound and clinical applications. Skeletal Radiol 2009.
10. Teefey SA, Dahiya N, Middleton WD, Gelberman RH, Boyer MI: Ganglia of the hand and wrist: a sonographic analysis. AJR Am J Roentgenol 2008; 191: 716–720.
11. Thornburn LE: Ganglions of the hand and wrist. J Am Acad Orthop Surg 1999; 7: 231–238.
12. Murphy MD, Rhee JH, Lewis RB, Fanburg-Smith JC, Flemming DJ, Walker EA: Pigmented villonodular synovitis: radiologic-pathologic correlation. Radiographics 2008; 28: 1493–1518.
13. Middleton WD, Patel V, Teefey SA, Boyer MI: Giant cell tumors of the tendon sheath: analysis of sonographic findings. AJR Am J Roentgenol 2004; 183: 337–339.
14. Yacoe ME, Bergman AG, Ladd AL, Hellman BH: Dupuytren’s contracture: MR imaging findings and correlation between MR signal intensity and cellularity of lesions. AJR Am J Roentgenol 1993; 160: 813–817.

Piśmiennictwo

1. Teefey SA, Middleton WD, Boyer MI: Sonography of the hand and wrist. Semin Ultrasound CT MR 2000; 21: 192–204.
2. Teefey SA, Dahiya N, Middleton WD, Gelberman RH, Boyer MI: Ganglia of the hand and wrist: a sonographic analysis. AJR Am J Roentgenol 2008; 191: 716–720.
3. Thornburg LE: Ganglions of the hand and wrist. J Am Acad Orthop Surg 1999; 7: 231–238.
4. Yacoe ME, Bergman AG, Ladd AL, Hellman BH: Dupuytren’s contracture: MR imaging findings and correlation between MR signal intensity and cellularity of lesions. AJR Am J Roentgenol 1993; 160: 813–817.
15. Créteur V, Madani A, Gosset N: [Ultrasound imaging of Dupuytren’s contracture]. J Radiol 2010; 91: 687–691.

16. Quinn SF, Erickson SJ, Dee PM, Walling A, Hackbarth DA, Knudson GJ et al.: MR imaging in fibromatosis: results in 26 patients with pathologic correlation. AJR Am J Roentgenol 1991; 156: 539–542.

17. Horcajadas AB, Lafuente JL, de la Cruz Burgos R, Muñiz SH, Roca SA, Ortega SG et al.: Ultrasound and MR findings in tumor and tumor-like lesions of the fingers. Eur Radiol 2003; 13: 672–685.

18. Kransdorf MJ: Benign soft-tissue tumors in a large referral population: distribution of specific diagnoses by age, sex, and location. AJR Am J Roentgenol 1995; 164: 395–402.

19. Kransdorf MJ, Murphey MD: MR imaging of musculoskeletal tumors of the hand and wrist. Magn Reson Imaging Clin N Am 1995; 3: 327–344.

20. Inampudi P, Jacobson JA, Fessell DP, Carlos RC, Patel SV, Delaney-Sathy L et al.: Soft-tissue lipomas: accuracy of sonography in diagnosis with pathologic correlation. Radiology 2004; 233: 763–767.

21. Laorr A, Greenspan A: Hand lipomas: detection and characterization by magnetic resonance imaging. Can Assoc Radiol J 1993; 44: 14–18.

22. Maron EM, Helms CA: Fibrolipomatous hamartoma: pathognomonic on MR imaging. Skeletal Radiol 1999; 28: 260–264.

23. Mulliken JB, Glowacki J: Classification of pediatric vascular lesions. Plast Reconstr Surg 1982; 70: 120–121.

24. Fishman SJ, Mulliken JB: Hemangiomas and vascular malformations of infancy and childhood. Pediatr Clin North Am 1993; 40: 1177–1200.

25. Robertson RL, Robson CD, Barnes PD, Burrows PE: Head and neck vascular anomalies of childhood. Neuroimaging Clin N Am 1999; 9: 115–132.

26. Murphey MD, Smith WS, Smith SE, Kransdorf MJ, Temple HT: From the archives of the AFIP. Imaging of musculoskeletal neurogenic tumors: radiologic-pathologic correlation. Radiographics 1999; 19: 1253–1280.

27. Abreu E, Aubert S, Wavreille G, Gheno R, Canella C, Cotten A: Peripheral tumor and tumor-like neurogenic lesions. Eur J Radiol 2011.

28. Glazebrook KN, Laundre BJ, Schiefer TK, Inwards CY: Imaging features of glomus tumors. Skeletal Radiol 2011; 40: 855–862.

29. Nakajima H, Matsushita K, Shimizu H, Isomi T, Nakano Y, Saito M et al.: Synovial sarcoma of the hand. Skeletal Radiol 1997; 26: 674–676.

30. Widmann G, Riedl A, Schoepf D, Glodny B, Peer S, Gruber H: State-of-the-art HR-US imaging findings of the most frequent musculoskeletal soft-tissue tumors. Skeletal Radiol 2009; 38: 637–649.

31. Griffith JF, Chan DP, Kumta SM, Chow LT, Ahuja AF: Does Doppler analysis of musculoskeletal soft-tissue tumours help predict tumour malignancy? Clin Radiol 2004; 59: 369–375.

32. Timins ME: Muscular anatomic variants of the wrist and hand: findings on MR imaging. AJR Am J Roentgenol 1999; 172: 1397–1401.

33. Harvie P, Patel N, Ostlere SJ: Prevalence and epidemiological variation of anomalous muscles at Guyon’s canal. J Hand Surg Br 2004; 29: 26–29.

34. Chau CL, Griffith JF: Musculoskeletal infections: ultrasound appearances. Clin Radiol 2005; 60: 149–159.