The Apolipoprotein E Polymorphism rs7412 Associates with Body Fatness Independently of Plasma Lipids in Middle Aged Men

M. Teresa Tejedor¹, Maria Pilar Garcia-Sobreviela², Marta Ledesma³, Jose M. Arbones-Mainar²,4*

1 Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, Zaragoza, Spain, 2 Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Translacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain, 3 Unidad de Prevención Cardiovascular, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain, 4 CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto Salud Carlos III, Madrid, Spain

Abstract

Background: The apolipoprotein E (APOE) gene is polymorphic, encoding one of 3 common alleles (ε2, ε3, ε4) produced from combinations of 2 non-synonymous SNPs (rs429358 and rs7412). APOE plays an important role controlling plasma lipids but its association with adipocyte functionality and body fatness remains to be determined.

Methods: We analyzed fasting plasma lipids and genotyped the two main APOE-SNPs (rs429358 and rs7412), both located in the fourth exon of the APOE, in 4660 Caucasian middle-aged men free of cardiovascular disease.

Results: The rs7412 SNP, which determines the APOE2 isoform, was significantly associated with Body Mass Index (BMI) and Waist Girth (WG) in a multivariate model accounting for age, smoking status and plasma lipids. BMI and WG were highest in TT homozygotes and lowest in CC homozygotes. This effect was independent of the rs429358 SNP, which failed to show any association with the BMI and WG variables. The odds ratio of being obese (BMI >30) for individuals carrying the APOE2 allele, present in 14% of the cohort and defined by the rs7412 SNP, was significant in this multivariat model, with an OR of 1.27 (95% CI: 1.01–1.59).

Conclusions: This study provides evidence of a lipid-independent association between the APOE SNP rs7412 and body fatness surrogates, BMI and WG, in a large cohort of middle-aged males.

Introduction

Obesity is a multifaceted disorder that increases the risk of developing cardiovascular disease and diabetes and is closely linked to disturbances in lipid and glucose metabolism [1]. Apolipoprotein E (APOE) binds to lipoprotein particles and mediates their catabolism, playing a crucial role in lipid regulation. The rs429358 and rs7412 single nucleotide polymorphisms (SNP) give rise to the ε2, ε3, and ε4 haplotypes of the human APOE gene.

Although mainly produced by the liver, APOE is also synthesized and secreted by adipose tissues [2]. Despite the pivotal role of APOE on lipid metabolism and adipocyte activity [3–5], genome-wide association studies (GWAS) have failed to detect an association of APOE genotype with human adiposity. (Reviewed in [6]). This is partially explained by i) the heterogeneity of the studied populations, ii) the low presence of subjects with the less common ε2 and ε4 haplotypes, and iii) the confounding impact that plasma lipids have on obesity: body fatness is positively related to circulating cholesterol and triglycerides [7] and, in turn, circulating cholesterol and triglycerides are modulated in a APOE isoform-dependent manner [8]. To overcome these caveats, we studied a large cohort of 4,660 Spanish middle-aged men free of Cardiovascular Disease to investigate whether APOE-SNPs, rs429358 and rs7412, are associated with body fatness measures, body mass index and waist girth, over and above the effect on plasma lipids.

Methods

Study participants

The Aragon Workers Health Study (AWHS) is a longitudinal study of the workers of the General Motors Spain automobile factory in Figueruelas (Zaragoza, Spain) [9]. Workers were...
excluded from the cohort if they have clinically overt CVD. The study was approved by the local Institutional Review Board (Comité Ético de Investigación Clínica de Aragón, CEICA) and participants provided written informed consent.

Anthropometry and plasma biochemistry

Height and weight were determined using a standard steel strip stadiometer (SECA-440, SEGA, Hamburg, Germany) and a digital electronic scale (SECA-778, SECA, respectively). Waist circumference was measured between iliac crest and the lower rib margin with flexible anthropometric tape (GulicK II -67019. Country Technologies, Gays Mills, WI, USA). Fasting serum triglycerides, total cholesterol and HDL-cholesterol were assayed by spectrophotometry (Chemical Analyzer ILAB 650, Instrumentation Laboratory).

Genotyping

DNA from buffy coat was isolated using the FlexiGene DNA AGF3000 kit (Qiagen, Valencia, CA, USA) on an AutoGenFlex 3000 workstation (Autogen, Holliston, MA, USA) and genotyping was carried out in the Genetics Unit-Parque Cientifico de Madrid (Madrid, Spain). Briefly, samples were spotted onto 384 plates using a Beckman BioMek 2000 automated liquid handler (Beckman High Wycombe, UK) and diluted in a mix consisting in TaqMan Genotyping MasterMix (Applied Biosystems, Foster City, California) and a mixture of pre-made TaqMan SNP genotyping assays; C_3084793_20 (rs429358) and C_904973_10 (rs7412) (Applied Biosystems). qPCR reactions were made in a HT7900 Fast Real-Time PCR System (Applied Biosystems). SDS 2.4 software (Applied Biosystems) was used for genotype calling.

Statistical analysis

SNP & Variation Suite 7 Genetic Analysis Software v7.7.8 (Golden Helix, Bozeman, MT, USA) estimated allele frequencies, assessed Hardy-Weinberg equilibrium (HWE) and calculated linkage disequilibrium. Haplotype frequencies and individual haplotypes were estimated from genotypes by means of the expectation-maximization (EM) algorithm implemented in this software. We used the General Linear Model (GLM) in IBM SPSS v.19 (SPSS, Chicago, IL, USA) to fit different models comparing BMI and WG across APOE polymorphisms.

Results

The polymorphisms rs429358 and rs7412 were genotyped in 4660 individuals of the AWHS cohort. Allele frequencies for rs429358 were 0.903 and 0.097 for T and C alleles, respectively. For rs7412, allele frequencies for C and T alleles were 0.939 and 0.061, respectively. Both SNPs showed no significant departure from Hardy-Weinberg Equilibrium (P = 0.380 and P = 0.371 for rs429358 and rs7412, respectively). Linkage disequilibrium between both SNPs was very low in these samples (r^2 = 0.006). Combinations of SNP rs7412 and rs429358 determine APOE isoforms and, although four haplotypes were possible, only three were found: ε2 (6.1%), ε3 (84.2%) and ε4 (9.7%). We also compared the single-SNP results with the standard ε2, ε3, and ε4 diplotype models. The distribution of these genotypes in the cohort population was ε3/ε3 (71.0%), ε3/ε4 (16.3%), ε2/ε3 (10.1%), ε2/ ε4 (1.2%), ε3/ε4 (0.9%), and ε2/ε2 (0.5%).

Detailed description of the AWHS cohort has been previously provided [9]. Information regarding plasma lipid biochemistry and smoking status of the participants is detailed in Table 1. In a crude regression model, higher BMI and WG were inversely associated with smoking and plasma HDL and directly correlated with circulating cholesterol, TG, being an ex-smoker and age (p < 10^-5 for all variables, in both fatness measures). A significant association was also observed between both the APOE polymorphism rs7412 as well as the rs429358 with circulating plasma cholesterol and triglycerides (Table 2).

We next explored the contribution of each SNP to body fatness beyond their effects on plasma lipids. Multiple regression analyses considering SNP rs7412 or rs429358 as independent variables and either BMI or WG as dependent variables were used. After adjustment for variables that affect body weight (i.e. smoking status, plasma lipids, and age) the rs7412 genotype was significantly associated with BMI (P = 0.018) as well as WG (P = 0.048). Thus, individuals carrying the T/T genotype displayed both higher BMI and larger WG followed by C/T and C/C (Table 3). On the contrary, the same regression model did not reveal significant associations with either BMI or WG and the rs429358 SNP. We additionally tested for an interaction (epistasis) between both SNPs and suggested that rs7412 acts independently on body fatness.

Multiple regression analyses involving classic APOE genotypes as independent variables and either BMI or WG as dependent variables revealed a significant effect of haplotypes on BMI after adjustment for age, lipids and smoking (P = 0.017) (Figure 1). *A posteriori* contrasts found a significant difference between ε2ε2 and non-ε2 carriers (ε3ε3, ε3ε4 and ε4ε4; P = 0.038, P = 0.018 and P = 0.024, respectively), with the ε2ε2 genotype associated with higher BMI. It should be noted that the ε2ε2 genotype includes the T/T genotype for rs7412, which was associated to higher BMI values, as previously stated. Using this model, the odds ratio of being obese (BMI>30) for individuals bearing a ε2 allele (13.4% of the cohort) was 1.27 (1.01–1.59, p = 0.035), when compared with those bearing no copies of this allele.

Discussion

The human APOE locus (19q13.2) encodes a polymorphic protein of 299 amino acids with three haplotypes; ε2, ε3, and ε4, produced from combinations of two rs429358 and rs7412 coding
non-synonymous SNPs. These haplotypes give rise to three homozygous (e₂e₂, e₃e₃, e₄e₄) and three heterozygous genotypes (e₂e₃, e₂e₄, e₃e₄). Several studies have supported linkage to obesity phenotypes at chromosome 19q13, where APOE gene is located. Thus, as early as 2002, a genome scan based on German families with obese children described an association between a region very close to 19q13 and obesity in children and adolescents [10]. Subsequent imprinted linkage analyses confirmed this suggestive connection between BMI and the 19q13 locus [11,12].

In agreement with our results, APOE e₂ carriers (ie, carriers of the minor allele of rs7412) were described to have higher plasma APOE concentration as compared with subjects with e₃ and e₄ genotype, being plasma APOE concentration directly correlated with BMI [13]. Likewise, the ARIC Study reported that the APOE isoforms are associated with increasing BMI in the order: e₂.e₃.e₄ [14]. However, this relation is controversial with studies showing associations of the e₂ allele with increased BMI [14–17] or the e₄ allele with decreased BMI measures [18,19], while others showed the e₄ genotype to be associated with obesity [20,21]. A recent study showed no association between APOE polymorphisms and body fat mass in obese children [22], but another study described lower BMI in 8-year-old children carrying APOE4 [23]. We hypothesize that these seemingly conflicting results could be explained by the confounding effects of plasma lipids when the relationship between APOE and adiposity is investigated. In this vein, a recent study failed to show any significant effect of the interaction between APOE genotype and BMI on blood lipid levels [24]. However, the predictive power of the regression model for LDL-C improved when gene-BMI interaction and gene-BMI interaction plus gene-nutrient interaction were added [24]. The authors reasoned that sample size of the study was relatively small (1000 individuals), perhaps affecting its ability and power to detect the effect of such interactions on lipid levels.

Table 2. Apolipoprotein E genotypes and means (SD) of circulating lipids in the Aragon Workers Health Study.

rs429358	Triglycerides (mg/dl)	Cholesterol (Total) (mg/dl)	HDL (mg/dl)
N	4650	4660	4660
T/T	147 (106.9)	211.8 (37.7)	52.6 (11)
C/C	152.9 (102.2)	216.9 (38.5)	51.6 (11)
C/C	190.3 (153)	223.8 (38.6)	49.6 (12.6)
P value*	0.009	<0.001	0.353

rs7412	Triglycerides (mg/dl)	Cholesterol (Total) (mg/dl)	HDL (mg/dl)
N	4650	4660	4660
T/T	165.9 (82.9)	178.8 (29.5)	54.8 (15.9)
C/C	164.3 (97.2)	204.3 (40.3)	52.6 (11)
C/C	146.3 (107.8)	214.41 (37.4)	52.4 (11)
P value*	0.006	<0.0001	0.288

*P-values for the difference within each SNP including age as covariate.

Table 3. Association between individual APOE SNPs, rs429358 and rs7412, with body fatness.

rs429358	BMI (kg/m²)	Waist Girth (cm)
N	4597	4569
T/T	28.47 (0.29)	98.67 (0.79)
C/T	27.89 (0.23)	97.81 (0.63)
C/C	27.29 (0.53)	96.86 (1.47)
P value	0.789	0.980

rs7412	BMI (kg/m²)	Waist Girth (cm)
N	4597	4569
T/T	29.55 (0.851)	100.59 (2.32)
C/T	28.17 (0.237)	98.46 (0.64)
C/C	27.53 (0.183)	96.99 (0.50)
P value	0.018	0.048

Means and standard error of the means (SEM) of Body Mass Index (BMI) and waist girth values, adjusted for age, smoking status and lipid values.

Figure 1. Mean adjusted BMI and standard error for five haplogenotype categories.

Table 2. Apolipoprotein E genotypes and means (SD) of circulating lipids in the Aragon Workers Health Study.

Table 3. Association between individual APOE SNPs, rs429358 and rs7412, with body fatness.
Associations between APOE isoforms and circulating lipid concentrations were described more than 30 years ago [25], and is also well known that these lipids are, in turn, associated with obesity [7]. Once lipid effects were normalized across genotypes we showed that the APOE-SNP rs7412 had a lipid-independent effect on body fatness. One may argue that controlling for lipids, which might be on a causal pathway between exposure (APOE-SNPs) and outcome (body fatness) could lead to an over-adjusted model. However, this would be the case if the only causal link between APOE and fatness was via plasma lipid modulation. In this regard, a number of biological pathways have been described in previous reports by us and others that suggest a lipid-independent role of APOE in the modulation of adipocyte function. These APOE isoform-dependent effects have been demonstrated in vitro as well as in vivo models [4,5,20,26]. It can also be argued that BMI might not completely capture obesity status and WG is a more adequate measure of abdominal fat and total fat. In this sense, the fact that APOE-effect acts not only upon BMI but WG also lends support to the existence of APOE-dependent lipid-independent mechanisms regulating adipose tissue mass and thus obesity.

Our results also support the notion that, while circulating cholesterol and TGs are determined by both APOE SNPs acting synergistically, the rs7412 SNP affects BMI and WG independently of rs429358. This is of particular interest in regards to the 12.4% of the AWHS cohort individuals in whom a single SNP synergistically, the rs7412 SNP affects BMI and WG independently. The rs7412 SNP can inform about their obesity risk.

12.4% of the AWHS cohort individuals in whom a single SNP polymorphism regulating plasma apolipoprotein E concentration. Arterioscler Thromb Vasc Biol 33:1083–9.

VolcaK KA, Bartkey RA, Hutchinson RG, Mosley TH, Heiss G, et al. (2006) Apolipoprotein E polymorphisms predict low density lipoprotein cholesterol levels and carotid artery wall thickness but not incident coronary heart disease in 12,491 ARIC study participants. Am J Epidemiol 164:342–348.

Duman BS, Ozmir M, Yilmazer S, Hatemi H (2004) Apolipoprotein E polymorphism in Turkish subjects with Type 2 diabetes mellitus: allele frequency and relation to serum lipid concentrations. Diabetes Metab 17:267–74.

Zeljko H, Skaric-Juric T, Narancic N, Tomas Z, Barec A, et al. (2011) E2 allele of the Apolipoprotein E gene polymorphism is predictive for obesity status in the European Commission. The authors thank Drs. Lance A. Johnson (Oregon Health and Science University), Nobuyo Maeda (University of North Carolina) and Ralf Köhler (Instituto Aragonés de Ciencias de la Salud) for their critical reading. We also thank the workers and medical staff, specially to Angeles Bamala and Elena Arrieta, at the GM factory in Figueruelas (Zaragoza, Spain) for their participation in this study.

Author Contributions
Conceived and designed the experiments: JMA-M MTW. Performed the experiments: MPG-S ML. Analyzed the data: JMA-M MTW. Wrote the paper: JMA-M.

References
1. Wormser D, Kaithope S, Di Angelantonio E, Wood AM, Pennells L, et al. (2011) Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 38 prospective studies. Lancet 377:1083–93.

2. Zechner R, Moser R, Newman TC, Fried SK, Bressow JF, et al. (1999) Apolipoprotein E gene expression in mouse ST3/Li adipocytes and human adipose tissue and its regulation by differentiation and lipid content. J Biol Chem 266:10381–8.

3. Huang ZH, Reardon CA, Mazzone T (2006) Endogenous ApoE expression modulates adipocyte triglyceride content and turnover. Diabetes 55:3394–3402.

4. Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N (2000) Differential modulation of diet-induced obesity and adipocyte functionality by human apolipoprotein E3 and E4 in mice. Int J Obes 32:1595–605.

5. Kuhel DG, Konaniah ES, Badger JD, McVey C, Goodin CT, et al. (2013) Apolipoprotein E2 Accenuates Postprandial Inflammation and Diet-Induced Obesity to Promote Hyperinsulinemia in Mice. Diabetes 62 (2):392–391.

6. Loos RJP (2012) Genetic determinants of common obesity and their value in prediction. Best Pract Res Clin Endocrinol Metab 26:211–26.

7. Donahue R, Orchard T, Kuller L, Drash A (1985) Lipids and lipoproteins in a young adult population: The Beaver County Lipids Study. Am J Epidemiol 120:458–467.

8. Dallongeville J, Lusier-Cacan S, Davignon J (1992) Modulation of plasma triglyceride levels by apoE phenotype: a meta-analysis. J Lipid Res 33:447–454.

9. Casasnovas JA, Alcalde V, Civera E, Guallar E, Buitià B, et al. (2012) Aragon women’s health study: design and cohort description. BMC Cardiovasc Disord 12:45.

10. Sazár K, Geller F, Rischendorff F, Reis A, Friedel S, et al. (2003) Genome Scan for Childhood and Adolescent Obesity in German Families. Pediatr 111 (5):321–327.

11. Guo Y, Shen H, Liu Y, Wang W, Xiong D, et al. (2006) Assessment of Genetic Linkage and Parent-Of-Origin Effects on Obesity. J Clin Endocrinol Metab 91 (10):4001–4005.

12. Feitosa MF, Rice T, North KE, Kraja A, Rankinen T, et al. (2006) Pleiotropic QTL on chromosome 19q13 for triglycerides and adiposity: the HERITAGE Family Study. Atherosclerosis 185:426–432.

13. Mannila MN, Mahdessian H, Franco-Cereceda A, Eggertsen G, de Faire U, et al. (2013) Identification of a functional apolipoprotein E promoter polymorphism regulating plasma apolipoprotein E concentration. Arterioscler Thromb Vasc Biol 33:1083–9.
Adiposity in 8-Year-Old Children from the Tasmanian Infant Health Survey. PLoS One 6:e26679.

24. Petkeviciene J, Smalinskiene A, Luksiene DI, Jureniene K, Ramazauskiene V, et al (2012) Associations between apolipoprotein E genotype, diet, body mass index, and serum lipids in Lithuanian adult population. PLoS One 7:e11525.

25. Utermann G, Pruijn N, Steinmetz A (1979) Polymorphism of apolipoprotein E. III. Effect of a single polymorphic gene locus on plasma lipid levels in man. Clin Genet 15:63–72.

26. Huang ZH, Maeda N, Mazzone T (2011) Expression of the human apoE2 isoform in adipocytes: altered cellular processing and impaired adipocyte lipogenesis. J Lipid Res 52 (9):1733–1741.