Cross-Kink Wave Solutions and Semi-Inverse Variational Method for (3 + 1)-Dimensional Potential-YTSF Equation

Jalil Manafian1,*, Onur Alp İlhan2, Karmina K. Ali3 and Sizar Abid Mohammed4

1Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.
2Department of Mathematics, Faculty of Education, Erciyes University, 38039-Melikgazi-Kayseri, Turkey.
3Department of Mathematics, Faculty of Science, University of Zakho, Zakho, Iraq.
4Department of Mathematics, College of Basic Education, University of Duhok, Zakho Street 38, 1006 Al Duhok, Iraq.

Received 9 November 2019; Accepted (in revised version) 14 February 2020.

Abstract. Periodic wave solutions of (3 + 1)-dimensional potential-Yu-Toda-Sasa-Fukuyama (YTSF) equation are constructed. Using the bilinear form of this equation, we chose ansatz as a combination of rational, trigonometric and hyperbolic functions. Density graphs of certain solutions in 3D and 2D situations show different cross-kink wave-forms and new multi wave and cross-kink wave solutions. Moreover, we employ the semi-inverse variational principle (SIVP) in order to study the solitary, bright and dark soliton wave solutions of the YTSF equation.

AMS subject classifications: 35K20, 65M06, 65M12

Key words: Potential-Yu-Toda-Sasa-Fukuyama equation, Hirota bilinear operator method, semi-inverse variational principle, cross-kink wave solution, existence conditions.

1. Introduction

Many nonlinear phenomena, which play an important role in applied sciences and engineering are modeled by nonlinear partial differential equations (NPDEs). Numerous examples of such equations can be found in plasma physics, elastic media, optical fibers, fluid dynamics, quantum mechanics, chimerical physics, biotechnology, signal processing, solid state physics, and shallow water wave theory. However, their explicit analytic solutions are rarely available. Therefore, finding localized solutions and, more specifically, solitary wave solutions [1, 6, 7, 28–30, 33–36, 41, 55], lump-type solutions [5, 14–17, 19, 26–28, 32,

*Corresponding author. Email addresses: j_manafianheris@tabrizu.ac.ir (J. Manafian), oailhan@erciyes.edu.tr (O.A. İlhan), karmina.ali@uoz.edu.krd(K.K. Ali), sizar@uod.ac (S.A. Mohammed)

http://www.global-sci.org/eajam 550 ©2020 Global-Science Press
33, 37, 38, 40, 44, 45, 49], and also describing the interactions soliton-soliton, soliton-kink, kink-kink [9, 18, 46], as well as the interaction between solitary waves, lumps [47, 53] and periodic wave solutions [2, 8, 31] is an interesting problem. The approaches used in these studies include exp-function method [4, 28], homotopy perturbation technique [3], and inverse scattering method [39].

The nonlinear $(3 + 1)$-dimensional potential-Yu-Toda-Sasa-Fukuyama equation has the form

$$-4u_{xt} + u_{xxx} + 4u_x u_{xx} + 2u_x u_z + 3u_{yy} = 0. \quad (1.1)$$

It appears in fluid dynamics, plasma physics, weakly dispersive media and other physical applications. Various powerful methods for solving $(3 + 1)$-dimensional YTSF equation, such as G'/G-expansion method [43], generalized projective Riccati equation method [51], symmetry method [48], Korteweg-de Vries equation-based sub-equation method [42], extended homoclinic test technique [50], homoclinic test approach and three-wave method [13] have been considered. Applying the dependent variable transformation

$$\eta = x + \omega z, \quad u = 2(\ln f)_\eta, \quad f = f(\eta, y, t), \quad (1.2)$$

one can transform (1.1) into the nonlinear equation

$$-4u_{\eta t} + \omega u_{\eta \eta \eta} + 6\omega u_{\eta} u_{\eta \eta} + 3u_{yy} = 0,$$

and consequent application of the mapping

$$u = 2(\ln f)_\eta, \quad f = f(\eta, y, t)$$

leads to the Hirota bilinear form

$$\left(-4D_\eta D_t + \omega D_{\eta \eta}^3 + 3D_y^2 \right) f \cdot f = 0 \quad (1.3)$$

with a bilinear operator D and an unknown function $f = f(x, y, t)$, which has to be determined later on.

Suppose the Hirota derivatives for functions f and g can be written as

$$\prod_{i=1}^{3} D_{j_i}^\beta_i f \cdot g = \prod_{i=1}^{3} \left(\frac{\partial}{\partial j_i} - \frac{\partial}{\partial j_i'} \right)^{\beta_i} f(j)g(j') \bigg|_{j'=j},$$

where

$$j = (j_1, j_2, j_3) = (\eta, y, t), \quad j' = (j'_1, j'_2, j'_3) = (\eta', y', t')$$

and $\beta_1, \beta_2, \beta_3$ are arbitrary nonnegative integers. The corresponding bilinear formalism for the Eq. (1.3) is

$$-4f f_{\eta t} + 4f f_t + \omega f f_{\eta \eta \eta} - 4f f_{\eta \eta} + 3f^2 + 3f_{yy} - 3f_y^2 = 0. \quad (1.4)$$

For simplicity, we change η to x, so that the Eq. (1.4) takes the form

$$-4f f_{xt} + 4f f t + \omega f f_{xx} - 4f f_{xxx} + 3f^2 + 3f_{yy} - 3f_y^2 = 0. \quad (1.5)$$
Lump solutions and their interactions are derived from exact rational soliton solutions for nonlinear evolution equations [44], Kadomtsev-Petviashvili (KP) equation [33], reduced p-gKP and p-gbKP equations [26]. The interaction between lumps and other solitary, periodic and kink solitons for \((2 + 1)\)-dimensional breaking soliton equation is studied in [38]. The lump and interaction between different types of lumps have been worked, for example, the variable-coefficient KP equation [16], the periodic type and periodic cross-kink wave solutions [15], the \((2 + 1)\)-dimensional Sawada-Kotera equation [14], the \((2 + 1)\)-dimensional bSK equation [17, 37], the \((2 + 1)\)-dimensional generalized fifth-order KdV equation [18], the \((2 + 1)\)-dimensional Burger equation [46], the generalized \((3 + 1)\)-dimensional Shallow water-like equation [53], and the B-KP equation [28]. Numerous studies based on the Hirota bilinear operator investigate periodic solitary wave solutions of \((2 + 1)\)-dimensional extended Jimbo-Miwa equations [31], interaction between lump and other solitary, periodic and kink solitons of \((2 + 1)\)-dimensional breaking soliton equation [38], lump and interaction between various solutions of variable-coefficient Kadomtsev-Petviashvili equation [16], and periodic type and periodic cross-kink wave solutions [15]. Other types of exact solutions such as lump solutions for a combined fourth-order nonlinear PDE [21], lump and interaction solutions of linear PDEs [22], interaction solutions for lumps arising in the Hirota-Satsuma-Ito equation [23], solitonless solutions for a three-component coupled mKdV system [24], nonlocal integrable using inverse scattering transforms [25] have been also considered. On the other hand, the same quadratic function method was employed in the study of lump solutions of a generalized \((3 + 1)\)-dimensional shallow water-like equation [52] and lump and interaction solutions of \((3 + 1)\)-dimensional Jimbo-Miwa equation [54].

The aim of this work is to determine novel exact periodic solutions of the YTSF equation using the Hirota bilinear method. This paper is structured as follows. Using the Hirota bilinear method, we discuss new cross-kink waves solutions of the nonlinear YTSF equation. After that we provide graphical illustrations of solutions of the model under consideration. Finally in Section 3, the SIVP technique is applied to determine solitary, bright, dark and singular wave solutions. Our conclusions are given in Section 4.

2. Cross-Kink Wave Solutions of YTSF Equation

Taking into account three wave hypothesis [8], we are looking for cross-kink wave solutions \(u\) of the Eq. (1.2) in the form

\[
u = 2 \frac{\partial}{\partial x} \ln(f) = \frac{2}{f} \left(a_1 \Omega_1 H_1 - a_2 \Omega_2 H_2 + a_3 \Omega_3 H_4 + a_4 \Omega_4 H_6 \right), \tag{2.1}\]

where \(f = a_1 H_1 + a_2 H_2 + a_3 H_3 + a_4 H_4\) and

\[
\begin{align*}
H_1 & = \exp(\Omega_1 x + \Omega_2 y + \Omega_3 t), & H_2 & = \exp(-\Omega_1 x - \Omega_2 y - \Omega_3 t), \\
H_3 & = \sin(\Omega_4 x + \Omega_5 y + \Omega_6 t), & H_4 & = \sinh(\Omega_7 x + \Omega_8 y + \Omega_9 t), \\
H_5 & = \cos(\Omega_4 x + \Omega_5 y + \Omega_6 t), & H_6 & = \cosh(\Omega_7 x + \Omega_8 y + \Omega_9 t),
\end{align*}
\]
and $\Omega_i, i = 1, \ldots, 9, a_j, j = 1, \ldots, 4$ are parameters to be determined later on. Substituting (2.1) into the Eq. (1.5) and equating the corresponding coefficients, we obtain

\[
\begin{align*}
\omega \Omega^4_1 - 6\omega \Omega^5_2 \Omega^2_5 + \omega \Omega^1_4 + 4\Omega_4 \Omega_6 - 3\Omega^2_5 - 4\Omega_7 \Omega_9 + 3\Omega^2_8 = 0, \\
\omega \Omega^1_1 + 6\omega \Omega^5_2 \Omega^2_5 + \omega \Omega^1_4 - 4\Omega_1 \Omega_3 + 3\Omega^2_5 - 4\Omega_7 \Omega_9 + 3\Omega^2_8 = 0, \\
2\omega \Omega^1_4 \Omega_7 - 2\omega \Omega_4 \Omega_9 - 3\Omega_3 \Omega_8 + 2\Omega_5 \Omega_7 = 0, \\
2\omega \Omega^1_4 \Omega_4 - 2\omega \Omega_1 \Omega_3 - 2\Omega_1 \Omega_9 + 3\Omega_2 \Omega_9 - 2\Omega_4 \Omega_7 = 0, \\
\omega \Omega^1_1 - 6\omega \Omega^4_2 \Omega^2_5 + \omega \Omega^4_4 - 4\Omega_1 \Omega_3 + 3\Omega^2_5 + 4\Omega_4 \Omega_9 - 3\Omega^2_8 = 0, \\
2\omega \Omega^1_4 \Omega_4 - 2\omega \Omega_1 \Omega_3 - 2\Omega_1 \Omega_9 + 3\Omega_2 \Omega_9 - 2\Omega_4 \Omega_7 = 0,
\end{align*}
\]

and $a_2, a_3, a_4, \Omega_7, \Omega_8$ are arbitrary constants, $\Omega_7 \neq 0$ and $\omega < 0$.

Substituting (2.2) into (2.1) produces the following periodic-wave solutions of the Eq. (1.2)

\[
u_1 = \frac{2}{f} \left(a_3 H_5 \Omega_4 + a_4 H_6 \Omega_7 \right),
\]

(2.3)

where

\[
f = \frac{a_2^2 - a_4^2}{2a_2} H_1 + a_2 H_2 + a_3 H_3 + a_4 H_4,
\]

and

\[
\begin{align*}
H_1 &= e^{\sqrt{-\omega} \Omega^4_1 y + 3/2 \sqrt{-\omega} \Omega_5 \Omega_9}, & H_3 &= \sin \left(-\Omega_7 x - \Omega_8 y - \frac{2\omega \Omega^1_4 \Omega_4 + 3\Omega^2_8}{4\Omega_7} t \right), \\
H_2 &= e^{\sqrt{-\omega} \Omega^4_1 y - 3/2 \sqrt{-\omega} \Omega_5 \Omega_9}, & H_4 &= \sinh \left(\Omega_7 x + \Omega_8 y - \frac{2\omega \Omega^1_4 \Omega_4 - 3\Omega^2_8}{4\Omega_7} t \right).
\end{align*}
\]

The graphs presented in Fig. 1 display such periodic wave solution including 3D plot, density plot, and 2D plot with spaces arising at $x = -10$, $x = 0$, and $x = 10$.

The solutions of this system can be arranged in the following groups.

Case I.

\[
\begin{align*}
\Omega_1 &= 0, & \Omega_2 &= \sqrt{-\omega} \Omega^2_7, \\
\Omega_3 &= \frac{3}{2} \sqrt{-\omega} \Omega_7 \Omega_8, & \Omega_4 &= -\Omega_7, \\
\Omega_5 &= -\Omega_8, & \Omega_6 &= \frac{2\omega \Omega^1_4 \Omega_4 + 3\Omega^2_8}{4\Omega_7}, \\
\Omega_7 &= \frac{2\omega \Omega^1_4 \Omega_4 - 3\Omega^2_8}{4\Omega_7}, & a_1 &= \frac{a_2^2 - a_4^2}{2a_2},
\end{align*}
\]

(2.2)
Case II.

\[
\begin{align*}
\Omega_1 &= 0, \quad \Omega_2 = \sqrt{-\omega \Omega_7 \Omega_4}, \quad \Omega_3 = \frac{3}{2} \sqrt{-\omega \Omega_4 \Omega_6}, \quad \Omega_5 = \frac{\Omega_4 \Omega_6}{\Omega_7}, \\
\Omega_6 &= -\frac{(\omega \Omega_4^2 \Omega_7^2 - 3\omega \Omega_7^4 - 3\Omega_8^2)}{4\Omega_7^2}, \quad \Omega_9 = -\frac{3\omega \Omega_4^2 \Omega_7^2 - \omega \Omega_7^4 - 3\Omega_8^2}{4\Omega_7}, \\
a_1 &= \frac{(\Omega_4^2 + \Omega_7^2)(\Omega_4^2 a_3^2 - \Omega_7^2 a_4^2)}{4\Omega_7^2 \Omega_4^2 a_2},
\end{align*}
\]

and \(a_2, a_3, a_4, \Omega_4, \Omega_7, \Omega_8\) are arbitrary constants, \(\Omega_7 \neq 0\) and \(\omega < 0\). Substituting (2.4) into (2.1) produces the following periodic-wave solution of the Eq. (1.2):

\[
u_2 = \frac{2}{f} \left(a_3 H_5 \Omega_4 + a_4 H_6 \Omega_7 \right),
\]

where

\[
f = \frac{(\Omega_4^2 + \Omega_7^2)(\Omega_4^2 a_3^2 - \Omega_7^2 a_4^2)}{4\Omega_7^2 \Omega_4^2 a_2} H_1 + a_2 H_2 + a_3 H_3 + a_4 H_4,
\]
Cross-Kink Wave Solutions and Semi-Inverse Variational Method

Figure 2: Cross-kink waves (2.5), \(a_2 = 0.5, a_3 = 1.5, a_4 = 1, \Omega_4 = 1, \Omega_7 = 0.5, \Omega_8 = 0.2, \omega = -0.1, t = 10\).
(a) 3D plot. (b) Density plot. (c) 2D plot for \(x = -5\) (yellow); \(x = 0\) (orange); \(x = 5\) (purple).

and

\[
H_1 = e^{\sqrt{-\omega} \Omega_4 y + 3/2 \sqrt{-\omega} \Omega_4 \Omega_8 t}, \quad H_3 = \sin \left(\Omega_4 x + \Omega_8 y - \frac{(\omega \Omega_4^2 \Omega_7^2 - 3 \omega \Omega_4^4 - 3 \Omega_8^2) \Omega_4}{4 \Omega_7^2} t \right),
\]

\[
H_2 = e^{-\sqrt{-\omega} \Omega_4 y - 3/2 \sqrt{-\omega} \Omega_4 \Omega_8 t}, \quad H_4 = \sinh \left(\Omega_7 x + \Omega_8 y - \frac{3 \omega \Omega_4^2 \Omega_7^2 - \omega \Omega_4^4 - 3 \Omega_8^2}{4 \Omega_7} t \right).
\]

The graphs presented in Fig. 2, display such periodic wave solution including 3D plot, density plot, and 2D plot with spaces arise at \(x = -5, x = 0,\) and \(x = 5\).

Case III.

\[
\begin{align*}
\Omega_1 &= 0, & \Omega_2 &= \sqrt{-\omega} \Omega_4 \Omega_7, & \Omega_3 &= 0, \\
\Omega_5 &= 0, & \Omega_6 &= -\frac{1}{4} \Omega_4 \omega \left(\Omega_4^2 - 3 \Omega_7^2 \right), & \Omega_8 &= 0, \\
\Omega_9 &= -\frac{1}{4} \omega \Omega_7 \left(3 \Omega_4^2 - \Omega_7^2 \right), & a_2 &= 0, & a_4 &= \frac{\Omega_4 a_3}{\Omega_7}.
\end{align*}
\]
and \(a_1, a_3, \Omega_4, \Omega_7, \Omega_7 \neq 0\) with \(\omega < 0\). Substituting (2.6) into (2.1) produces the following periodic-wave solution of the Eq. (1.2)

\[
u_3 = \frac{2a_3 \cos \left((1/4)t\Omega_4 \omega \left(\Omega_4^2 - 3\Omega_7^2\right) - x \Omega_4\right)}{a_1 e^{\sqrt{-\omega} \Omega_4 t} - a_3 \sin \left((1/4)t\Omega_4 \omega \left(\Omega_4^2 - 3\Omega_7^2\right) - x \Omega_4\right) - \Phi} + \frac{2\Omega_4 a_3 \cosh \left((1/4)t\omega \Omega_7 \left(3\Omega_4^2 - \Omega_7^2\right) - x \Omega_7 t\right)}{a_1 e^{\sqrt{-\omega} \Omega_7 t} - a_3 \sin \left((1/4)t\Omega_4 \omega \left(\Omega_4^2 - 3\Omega_7^2\right) - x \Omega_4\right) - \Phi},
\]

where

\[\Phi := \frac{\Omega_4 a_3}{\Omega_7} \sinh \left(\frac{1}{4} t \omega \Omega_7 \left(3\Omega_4^2 - \Omega_7^2\right) - x \Omega_7 t\right).\]

Case IV

\[
\Omega_2 = \frac{\Omega_1^2 - \Omega_7^2}{\Omega_7}, \quad \Omega_3 = \frac{\omega \Omega_1 \left(3\Omega_1^2 a_3^2 + 3\Omega_4^2 a_4^2 - 2\Omega_1^2 \Omega_4^2 a_4^2 - 6\Omega_4^2 \Omega_7^2 a_4^2 + 3\Omega_1^2 a_3^2 + 3\Omega_4^2 a_4^2\right)}{4\Omega_4^2 a_3^2},
\]

\[
\Omega_4 = \frac{\sqrt{-\Omega_1^2 a_3^2 - \Omega_1^2 a_4^2 + \Omega_4^2 a_4^2}}{a_3}, \quad \Omega_5 = \frac{\sqrt{-\omega \left(\Omega_1^2 - \Omega_7^2\right) \left(a_3^2 + a_4^2\right)}}{a_4^2 \Omega_7},
\]

\[
\Omega_6 = \frac{\left(3\Omega_1^2 a_3^2 + 3\Omega_4^2 a_4^2 - 2\Omega_1^2 \Omega_4^2 a_4^2 - 6\Omega_4^2 \Omega_7^2 a_4^2 + 3\Omega_1^2 a_3^2 + 3\Omega_4^2 a_4^2 - \Omega_1^2 a_4^2\right) \omega}{4a_3^2 \Omega_7}
\]

\[\Omega_8 = 0, \quad a_1 = 0,
\]

\[
\Omega_9 = -\frac{\left(3\Omega_1^2 a_3^2 + 3\Omega_4^2 a_4^2 - 6\Omega_4^2 \Omega_7^2 a_4^2 - 6\Omega_1^2 \Omega_7^2 a_4^2 - \Omega_1^2 a_4^2 + 3\Omega_4^2 a_4^2\right) \omega}{4a_3^2 \Omega_7},
\]

and \(\Omega_1, \Omega_7, a_2, a_3, a_4 = a_4\) are arbitrary constants such that \(\Omega_7 \neq 0\), \(\omega < 0\) and

\[\omega \left(\Omega_1^2 a_3^2 + \Omega_1^2 a_4^2 - \Omega_7^2 a_4^2\right) > 0.\]

Substituting (2.7) into (2.1) produces the following periodic-wave solution of the Eq. (1.2)

\[
u_4 = \frac{2}{f} \left(-a_2 \Omega_1 H_2 + a_3 H_3 \Omega_4 + a_4 H_6 \Omega_7\right),
\]

where

\[f = a_2 H_2 + a_3 H_3 + a_4 H_4,
\]

and

\[
H_2 = \exp(-\Omega_1 x - \Omega_2 y - \Omega_3 t), \quad H_3 = \sin(\Omega_4 x + \Omega_5 y + \Omega_6 t),
\]

\[
H_4 = \sinh(\Omega_7 x + \Omega_9 t), \quad H_5 = \cos(\Omega_4 x + \Omega_5 y + \Omega_6 t),
\]

\[
H_6 = \cosh(\Omega_7 x + \Omega_9 t).
\]
Cross-Kink Wave Solutions and Semi-Inverse Variational Method

Figure 3: Cross-kink waves (2.8), \(a_2 = 0.5, a_3 = 1.5, a_4 = 1, \Omega_1 = 0.5, \Omega_4 = 1, \Omega_7 = 1.4, \omega = -0.1, t = 10 \).
(a) 3D plot. (b) Density plot. (c) 2D plot for \(x = -1 \) (yellow); \(x = 0 \) (orange); \(x = 1 \) (purple).

The graphs presented in Fig. 3 display such periodic wave solution including 3D plot, density plot, and 2D plot with spaces arising at \(x = -1, x = 0, \) and \(x = 1 \).

Case V.

\[
\begin{align*}
\Omega_2 &= \frac{(\Omega_1^2 - \Omega_2^2)}{a_2 \Omega_7} \sqrt{\omega (\Delta_1)}, \\
\Omega_3 &= \frac{\omega \Omega_1 (3\Omega_1^4 a_3^2 + 3\Omega_1^4 a_4^2 - 2\Omega_2^2 \Omega_7^2 a_3^2 - 6\Omega_2^2 \Omega_7^2 a_4^2 + 3\Omega_4^2 a_3^2 + 3\Omega_4^2 a_4^2)}{4\Omega_2^2 a_3^2}, \\
\Omega_4 &= \frac{\sqrt{-\Delta_1}}{a_3}, \quad \Omega_5 = \frac{\sqrt{-\omega (\Omega_1^2 - \Omega_2^2)} (a_3^2 + a_4^2) \Omega_1}{a_3^2 \Omega_7}, \\
\Omega_6 &= \frac{(3\Omega_1^4 a_3^2 + 3\Omega_1^4 a_4^2 - 2\Omega_2^2 \Omega_7^2 a_3^2 - 2\Omega_2^2 \Omega_7^2 a_4^2 + 3\Omega_4^2 a_3^2 - \Omega_4^2 a_4^2) \omega \sqrt{-\Delta_1}}{4a_3^2 \Omega_7^2}, \\
\Omega_8 &= 0, \quad \Omega_9 = -\frac{(3\Omega_1^4 a_3^2 + 3\Omega_1^4 a_4^2 - 6\Omega_2^2 \Omega_7^2 a_3^2 - 6\Omega_2^2 \Omega_7^2 a_4^2 - 3\Omega_4^2 a_3^2 + \Omega_4^2 a_4^2)}{4a_3^2 \Omega_7^2}.
\end{align*}
\]
\[a_2 = 0, \quad \Delta_1 = \Omega_1^2 a_3^2 + \Omega_1^2 a_4^2 - \Omega_7^2 a_4^2, \]
and \(a_2, a_3, a_4, \Omega_1, \Omega_7 \) are arbitrary constants, \(\Omega_7 \neq 0, \omega < 0 \) and
\[\omega (\Omega_1^2 a_3^2 + \Omega_1^2 a_4^2 - \Omega_7^2 a_4^2) > 0. \]
Substituting (2.9) into (2.1) produces the following periodic-wave solution of Eq. (1.2)
\[u_5 = \frac{2}{f} (a_1 \Omega_1 H_1 + a_3 H_3 \Omega_4 + a_4 H_6 \Omega_7), \tag{2.10} \]
where \(f = a_1 H_1 + a_3 H_3 + a_4 H_4 \) and
\[H_1 = \exp(\Omega_1 x + \Omega_2 y + \Omega_3 t), \quad H_3 = \sin(\Omega_4 x + \Omega_5 y + \Omega_6 t), \]
\[H_4 = \sinh(\Omega_7 x + \Omega_8 t), \quad H_5 = \cos(\Omega_4 x + \Omega_5 y + \Omega_6 t), \]
\[H_6 = \cosh(\Omega_7 x + \Omega_8 t). \]

Case VI.
\[\Omega_2 = \Omega_3 = \frac{\omega}{\omega_4}, \quad \Omega_5 = \frac{\sqrt{\omega} (\Omega_1^2 + \Omega_2^2)}{\Omega_7}, \quad \Omega_6 = -\frac{\omega \Omega_4 (3\Omega_1^2 \omega_4^2 + 3\Omega_1^2 \omega_4^2 + \Omega_1^2 \omega_7^2 - 3\Omega_7^2)}{4\Omega_7}, \]
\[\Omega_8 = 0, \quad \Omega_9 = -\frac{3\Omega_1^2 \omega_4^2 + 3\Omega_1^2 \omega_4^2 + \Omega_1^2 \omega_7^2 + \Omega_7^2}{4\Omega_7}, \]
\[a_1 = \frac{-\Omega_1^2 \omega_4^2 a_3^2 + \Omega_1^2 \omega_4^2 a_4^2 + \Omega_1^2 \omega_7^2 a_4^2 + \Omega_1^2 \omega_4^2 a_4^2 + \Omega_1^2 \omega_7^2 a_4^2}{4\omega \omega_4 (\Omega_1^2 + \Omega_4^2)}, \]
and \(a_2, a_3, a_4, \Omega_1, \Omega_7 \) are arbitrary constants, \(\Omega_7 \neq 0, \omega < 0 \) and
\[\omega (\Omega_1^2 a_3^2 + \Omega_1^2 a_4^2 - \Omega_7^2 a_4^2) > 0. \]
Substituting (2.11) into (2.1) produces the following periodic-wave solution of the Eq. (1.2)
\[u_6 = \frac{2}{f} (a_1 \Omega_1 H_1 - a_2 \Omega_1 H_2 + a_3 H_3 \Omega_4 + a_4 H_6 \Omega_7), \tag{2.12} \]
where \(f = a_1 H_1 + a_2 H_2 + a_3 H_3 + a_4 H_4 \) and
\[H_1 = \exp(\Omega_1 x + \Omega_2 y + \Omega_3 t), \quad H_2 = \exp(-\Omega_1 x - \Omega_2 y - \Omega_3 t), \]
\[H_3 = \sin(\Omega_4 x + \Omega_5 y + \Omega_6 t), \quad H_4 = \sinh(\Omega_7 x + \Omega_8 t), \]
\[H_5 = \cos(\Omega_4 x + \Omega_5 y + \Omega_6 t), \quad H_6 = \cosh(\Omega_7 x + \Omega_8 t). \]

The graphs presented in Fig. 4 display such periodic wave solution including 3D plot, density plot, and 2D plot with spaces arising at \(x = -1, x = 0, \) and \(x = 1. \)
Case VII.

\[
\begin{align*}
\Omega_1 &= \frac{2}{3} \sqrt{-\omega \Omega_5}, \\
\Omega_2 &= \frac{2}{3} \sqrt{-\omega \Omega_7}, \\
\Omega_3 &= \frac{27 \omega \Omega_1^2 \Omega_8 - 4 \Omega_5^2 \Omega_7^2 + 27 \Omega_8^4}{54 \sqrt{-\omega \Omega_5^2 \Omega_7^2}}, \\
\Omega_4 &= 0, \\
\Omega_5 &= \frac{2 \Omega_6 \Omega_7}{3 \Omega_8}, \\
\Omega_9 &= \frac{3 \omega \Omega_1^4 \Omega_8^2 - 4 \Omega_2^2 \Omega_5^2 + 9 \Omega_8^4}{12 \Omega_7 \Omega_8^2}, \\
a_1 &= 0, \\
a_2 = 0, \Omega_1, \Omega_7 & \text{ are arbitrary constants } \Omega_7, \Omega_8 \neq 0, \omega < 0 \text{ and } \\
9 \omega \Omega_7 \Omega_8^2 + 4 \Omega_8^2 & < 0.
\end{align*}
\]

Substituting (2.13) into (2.1) produces the following multi-wave solution of the Eq. (1.2)

\[
u = \frac{2}{f} \left(-a_2 \Omega_1 H_2 + a_3 H_5 \Omega_4 + a_4 H_6 \Omega_7\right),
\]

(2.14)
where
\[
f = a_2 H_2 + \frac{\sqrt{-9 \omega \Omega_6^4 \Omega_8^2 - 4 \Omega_6^2 a_4}}{2 \Omega_6} H_3 + a_4 H_4,
\]
and
\[
H_2 = e^l, \quad l = -\frac{2}{3} \frac{\Omega_6}{\sqrt{-\omega \Omega_8}} x - \frac{2}{3} \frac{\Omega_6}{\sqrt{-\omega \Omega_7}} y - \frac{(27 \omega \Omega_7^4 \Omega_8^2 - 4 \Omega_6^2 \Omega_7^2 + 27 \Omega_8^4) \Omega_6}{54 \sqrt{-\omega \Omega_6^4 \Omega_7^2}} t,
\]
\[
H_3 = \sin \left(\frac{2 \Omega_6 \Omega_7}{3 \Omega_8} y + \Omega_6 t \right), \quad H_5 = \cos \left(\frac{2 \Omega_6 \Omega_7}{3 \Omega_8} y + \Omega_6 t \right),
\]
\[
H_4 = \sinh \left(\Omega_7 x + \Omega_8 y + \frac{3 \omega \Omega_7 \Omega_8^2 - 4 \Omega_6 \Omega_7^2 + 9 \Omega_8^4}{12 \Omega_7 \Omega_8} t \right),
\]
\[
H_6 = \cosh \left(\Omega_7 x + \Omega_8 y + \frac{3 \omega \Omega_7 \Omega_8^2 - 4 \Omega_6 \Omega_7^2 + 9 \Omega_8^4}{12 \Omega_7 \Omega_8} t \right).
\]
The graphs presented in Fig. 5 display such cross-kink wave solution including 3D plot, density plot, and 2D plot with spaces arising at \(x = -10, x = 0, \) and \(x = 10.\)

![Image](image_url)

Figure 5: Cross-kink waves (2.14), \(a_2 = 0.5, a_4 = 0.5, \Omega_6 = 0.4, \Omega_7 = 1, \Omega_8 = -1, \omega = -0.5, t = 10.\) (a) 3D plot. (b) Density plot. (c) 2D plot for \(x = -10\) (yellow); \(x = 0\) (orange); \(x = 10\) (purple).
We obtained forty sets of solutions. The three-dimensional dynamic graphs demonstrated in Figs. 1-5 are produced with Maple software. Note that exponential, cosine and hyperbolic cosine functions interact with each other and move forward.

3. Application of SIVP

Employing the wave transformation \(\xi = k(x + ay + bz - ct) \) to Eq. (1.1) once more, we arrive at the nonlinear ordinary differential equation

\[
\left(3a^2 - 4c\right) k^2 u'' + bk^4 u''' + 6bk^3 u'u'' = 0
\]

or

\[
\left(3a^2 - 4c\right) u'' + bk^2 u''' + 6bku'u'' = 0. \tag{3.1}
\]

Taking into account the semi-inverse variational principle \([10–12]\), we multiply (3.1) by \(u'\) and integrate the result over the real line, thus obtaining the stationary integral

\[
J = \int_{-\infty}^{\infty} \left(\frac{1}{2} \left(3a^2 - 4c\right) (u')^2 + 2kbu'(u')^3 - \frac{1}{2} bk^2 (u')^2 + bk^2 u'u'' \right) d\xi.
\]

3.1. Case I

If we use the solitary wave function

\[
u(\xi) = A \text{sech}(B\xi),
\]

the stationary integral takes the for

\[
J = \frac{1}{30} A^2 B \left(-21B^2 bk^2 - 12kAb + 20a - 15c \right)
\]

SIVP notes that the soliton amplitude and its inverse width can be determined from the coupled system

\[
\frac{\partial J}{\partial A} = 0, \quad \frac{\partial J}{\partial B} = 0. \tag{3.2}
\]

This leads to the system of nonlinear algebraic

\[
\frac{1}{15} AB \left(-21B^2 bk^2 - 12kAb + 20a - 15c \right) - \frac{2}{5} A^2 B^2 k b = 0, \tag{3.3}
\]

\[
\frac{1}{30} A^2 \left(-21B^2 bk^2 - 12kAb + 20a - 15c \right) + \frac{1}{15} AB \left(-42Bk^2 - 12Abk \right) = 0, \tag{3.4}
\]

and solving it with respect to \(A\) and \(B\) gives

\[
A = \pm \frac{7(4a - 3c)}{\sqrt{-21b(4a - 3c)}}, \quad B = \pm \frac{1}{21} \frac{\sqrt{-21b(4a - 3c)}}{bk}.
\]
with the parameters satisfying the conditions
\[k \neq 0, \quad b(4a - 3c) < 0. \]

Thus the corresponding solitary wave solution obtained from SIVP has the form
\[
 u(x, y, z, t) = \pm \frac{7(4a - 3c)}{\sqrt{-21b(4a - 3c)}} \text{sech} \left[\pm \frac{1}{21} \sqrt{-21b(4a - 3c)} b (x + ay + bz - ct) \right].
\]

3.2. Case II

For the solitary wave function
\[u(\xi) = A \text{sech}^2(B\xi), \]
the stationary integral takes the form
\[
 J = -\frac{\left(240B^2bk^2 + 70kABb - 112a + 84c\right)A^2B}{105}.
\]

Since the soliton amplitude and its inverse width satisfy the Eqs. (3.2), we arrive at the system of nonlinear algebraic equations
\[
 -\frac{2}{3}A^2B^2kb - \frac{\left(480B^2bk^2 + 140kABb - 224a + 168c\right)AB}{105} = 0, \\
 -\frac{480Bbk^2 + 70Abk}{105} = \frac{\left(240B^2bk^2 + 70kABb - 112a + 84c\right)A^2}{105} = 0.
\]

Solving it with respect to \(A \) and \(B \) gives
\[
 A = \pm \frac{192a - 144c}{5\sqrt{-21b(4a - 3c)}}, \quad B = \pm \frac{1}{30} \frac{\sqrt{-21b(4a - 3c)}}{bk},
\]
with the parameters satisfying the conditions
\[k \neq 0, \quad b(4a - 3c) < 0. \]

The corresponding solitary wave solution has the form
\[
 u(x, y, z, t) = \pm \frac{192a - 144c}{5\sqrt{-21b(4a - 3c)}} \text{sech}^2 \left[\pm \frac{1}{30} \frac{\sqrt{-21b(4a - 3c)}}{b} (x + ay + bz - ct) \right].
\]
3.3. Case III

For the dark soliton wave solution

\[u(\xi) = A \tanh^2(B\xi) \]

the stationary integral takes the form

\[J = \frac{2A^2B \left(-120B^2bk^2 + 35kABb + 56a - 42c \right)}{105}. \]

Since the soliton amplitude and its inverse width satisfy the Eqs. (3.2), we arrive at the system of nonlinear algebraic equations

\[
\frac{4AB \left(-120B^2bk^2 + 35kABb + 56a - 42c \right)}{105} + \frac{2}{3}A^2B^2kb = 0, \\
\frac{2A^2 \left(-120B^2bk^2 + 35kABb + 56a - 42c \right)}{105} + \frac{2A^2B \left(-240Bbk^2 + 35Abk \right)}{105} = 0.
\]

Solving it with respect to \(A \) and \(B \) gives

\[
A = \mp \frac{192a - 144c}{5 \sqrt{-21b(4a - 3c)}}, \quad B = \pm \frac{1}{30} \frac{\sqrt{-21b(4a - 3c)}}{bk}
\]

with the parameters satisfying the conditions

\[k \neq 0, \quad b(4a - 3c) < 0. \]

Thus the corresponding dark wave solution has the form

\[u(x, y, z, t) = \mp \frac{192a - 144c}{5 \sqrt{-21b(4a - 3c)}} \tanh^2 \left[\pm \frac{1}{30} \frac{\sqrt{-21b(4a - 3c)}}{b} (x + ay + bz - ct) \right]. \]

4. Conclusion

We construct periodic wave solutions of \((3 + 1)\)-dimensional potential-Yu-Toda-Sasa-Fukuyama equation. Using the bilinear form of this equation, we chose ansatz as a combination of the exponential, sine and hyperbolic sine functions. Density graphs of certain solutions in 3D and 2D situations show different cross-kink waveforms and new multi wave and cross-kink wave solutions. Moreover, we employ SIVP in order to study the solitary, bright and dark soliton wave solutions of the YTSF equation. These results can find applications in nonlinear sciences where the \((3 + 1)\)-dimensional YTSF equation are used.

Acknowledgments

The authors are very grateful to the referees for their comments and suggestions.
References

[1] H.M. Baskonus and H. Bulut, Exponential prototype structures for (2 + 1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Waves in Random and Complex Media, 26, 201–208 (2016).

[2] Z.D. Dai, J. Liu, X.P. Zeng and Z.J. Liu, Periodic kink-wave and kinky periodic-wave solutions for the Jimbo-Miwa equation, Phys. Lett. A 372, 5984-5986 (2008).

[3] M. Dehghan and J. Manafian, The solution of the variable coefficients fourth–order parabolic partial differential equations by homotopy perturbation method, Z. Naturforschung A 64a, 420-430 (2009).

[4] M. Dehghan, J. Manafian and A. Saadatmandi, Application of the Exp-function method for solving a partial differential equation arising in biology and population genetics, Int. J. Num. Meth. Heat Fluid Flow, 21, 736-753 (2011).

[5] M.R. Foroutan, J. Manafian and A. Ranjbaran, Lump solution and its interaction to (3+1)-D potential-YTSF equation, Nonlinear Dyn. 92 (4), 2077-2092 (2018).

[6] W. Gao, H.F. Ismael, H. Bulut and H.M. Baskonus, Instability modulation for the (2 + 1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Phys. Scr. 95(3), 035207 (2020).

[7] W. Gao, H.F. Ismael, S.A. Mohammed, H.M. Baskonus and H. Bulut, Complex and real optical soliton properties of the paraxial non-linear Schrödinger equation in Kerr media with M-fractional, Front. Phys. (2019). doi.org/10.3389/fphy.2019.00197.

[8] X.G. Geng and Y.L. Ma, N-soliton solution and its wronskian form of a (3+1)-dimensional non-linear evolution equation, Phys. Lett. A 369(4), 285-289 (2007).

[9] B. He and Q. Meng, Bilinear form and new interaction solutions for the sixth-order Ramani equation, Appl. Math. Let. 98, 411-418 (2019).

[10] J.H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Modern Phys. B 20, 1141-1199 (2006).

[11] J.H. He, A modified Li-He’s variational principle for plasma, Int. J. Num. Meth. Heat Fluid Flow, (2019) DOI: 10.1108/HFF-06-2019-0523.

[12] J.H. He, Lagrange crisis and generalized variational principle for 3D unsteady flow, Int. J. Num. Meth. Heat Fluid Flow 30, 1189-1196 (2019).

[13] Y. Hu, H. Chen and Z. Dai, New kink multi-soliton solutions for the (3+1)-dimensional potential-Yu-Toda-Sasas-Fukayama equation, Appl. Math. Comput. 234, 548-556 (2014).

[14] L.L. Huang and Y. Chen, Lump solutions and interaction phenomenon for (2+1)-dimensional Sawada-Kotera equation, Commun. Theor. Phys. 67(5), 473-478 (2017).

[15] O.A. Ilhan and J. Manafian, Periodic type and periodic cross-kink wave solutions to the (2 + 1)-dimensional breaking soliton equation arising in fluid dynamics, Modern Physics Letters B, 1950277, 1-26 (2019).

[16] O.A. Ilhan, J. Manafian and M. Shahrinia, Lump wave solutions and the interaction phenomenon for a variable-coefficient Kadomtsev-Petviashvili equation, Comput. and Math. Appl. 6, 1733-1747 (2018).

[17] J.Q. Lü and S.D. Bilige, Lump solutions of a (2 + 1)-dimensional bSK equation, Nonlinear Dyn. 90, 2119-2124 (2017).

[18] J. Lü, S. Bilige and T. Chaolu, The study of lump solution and interaction phenomenon to (2+1)-dimensional generalized fifth-order KdV equation, Nonlinear Dyn. 91, 1669-1676 (2018).

[19] J. Lü, S. Bilige, X. Gao, Y. Bai and R. Zhang, Abundant lump solution and interaction phenomenon to Kadomtsev-Petviashvili-Benjamin-Bona-Mahony equation, J. Appl. Math. Phys. 6, 1733-1747 (2018).
[20] W.X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Let. A 379, 1975-1978 (2015).
[21] W.X. Ma, A search for lump solutions to a combined fourth-order nonlinear PDE in (2 + 1)-dimensions, J. Appl. Anal. Comput. 9, 1319-1332 (2019).
[22] W.X. Ma, Lump and interaction solutions to linear PDEs in (2 + 1)-dimensions, Mod. Phys. Lett. B 33, 1950457 (2019).
[23] W.X. Ma, Interaction solutions to Hirota-Satsuma-Ito equation in (2 + 1)-dimensions, Front. Math. China 14, 619-629 (2019).
[24] W.X. Ma, Long-Time asymptotics of a three-component coupled mKdV system, Math. J. 7, 573 (2019).
[25] W.X. Ma, Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations, Appl. Math. Lett. 102, 106161 (2020).
[26] W.X. Ma, Z.Y. Qin and X. Lu, Lump solutions to dimensionally reduced p-gKP and p-gbKP equations, Nonlinear Dyn. 84, 923-931 (2016).
[27] W.X. Ma, Y. Zhou and R. Dougherty, Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations, Int. J. Mod. Phys. B 30 (28n29), 1640018 (2016).
[28] W.X. Ma and Z. Zhu, Solving the (3 + 1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput. 218, 11871-11879 (2012).
[29] J. Manafian, On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, Eur. Phys. J. Plus, 130, 1-20 (2015).
[30] J. Manafian, Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan(φ/2)-expansion method, Optik, 127, 4222-4245 (2016).
[31] J. Manafian, Novel solitary wave solutions for the (3+1)-dimensional extended Jimbo-Miwa equations, Comput. Math. Appl. 76(5) 1246-1260 (2018).
[32] J. Manafian and M.F. Aghdaei, Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method, Eur. Phys. J. Plus, 131, 97 (2016).
[33] J. Manafian, M.R. Foroutan and A. Guzali, Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model, Eur. Phys. J. Plus, 132, 494 (2017).
[34] J. Manafian and S. Heidari, Periodic and singular kink solutions of the Hamiltonian amplitude equation, Advanced Math. Models Appl. 4(2), 134-149 (2019).
[35] J. Manafian and M. Lakestani, Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ/2)-expansion method, Optik, 127, 5543-5551 (2016).
[36] J. Manafian and M. Lakestani, Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics, Opt. Quant. Elec. 48, 1-32 (2016).
[37] J. Manafian and M. Lakestani, Lump-type solutions and interaction phenomenon to the bidirectional Sawada-Kotera equation, Pramana 92, 41 (2019).
[38] J. Manafian, B. Mohammadi Ivatlo and M. Abapour, Lump-type solutions and interaction phenomenon to the (2 + 1)-dimensional breaking soliton equation, Appl. Math. Comput. 13, 13-41 (2019).
[39] A. Ramani, Inverse scattering, ordinary differential equations of Painlevé type and Hirota’s bilinear formalism, Ann. New York Acad. Sci. 373, 54-67 (1981).
[40] J. Satsuma and M.J. Ablowitz, Two-dimensional lumps in nonlinear dispersive systems, J. Math. Phys. 20 (7), 1496-1503 (1979).
[41] C. T. Sindi and J. Manafian, Wave solutions for variants of the KdV-Burger and the K(n, n)-Burger equations by the generalized G'/G-expansion method, Math. Meth. Appl. Sci. 87, 1-14 (2016).
[42] L. Song and H. Zhang, A new variable coefficient Korteweg-de Vries equation-based sub-equation method and its application to the (3+1)-dimensional potential-YTSF equation, Appl. Math. Com-
put. 189, 560-566 (2007).

[43] M. Song and Y. Ge, Application of the G'/G-expansion method to (3+1)-dimensional nonlinear evolution equations, Comput. Math. Appl. 60, 1220-1227 (2010).

[44] Y.N. Tang, S.Q. Tao and Q. Guan, Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations, Comput. Math. Appl. 72, 2334-2342 (2016).

[45] C.J. Wang, Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation, Nonlinear Dyn. 84, 697-702 (2016).

[46] C.J. Wang, Z.D. Dai, and C.F. Liu, Interaction between kink solitary wave and rogue wave for (2+1)-dimensional Burgers equation, Mediterr. J. Math. 13, 1087-098 (2016).

[47] J. Wang, H.L. An and B. Li, Non-traveling lump solutions and mixed lump kink solutions to (2+1)-dimensional variable-coefficient Caudrey Dodd Gibbon Kotera Sawada equation, Modern Phys. Let. B 33, 1950262 (2019).

[48] Z. Yan, New families of nontravelling wave solutions to a new (3+1)-dimensional potential-YTSF equation, Phys. Let. A 318, 78-83 (2003).

[49] J.Y. Yang and WX. Ma, Lump solutions to the bKP equation by symbolic computation, Int. J. Modern Phys. B 30, 1640028 (2016).

[50] X. Zeng, Z. Dai and D. Li, New periodic soliton solutions for the (3+1)-dimensional potential-YTSF equation, Chaos Solitons Fract. 42, 657-661 (2009).

[51] TX. Zhang, H.N. Xuan, D.F. Zhang and C.J. Wang, Non-travelling wave solutions to a (3+1)-dimensional potential-YTSF equation and a simplified model for reacting mixtures, Chaos Solitons and Fract. 34, 1006-1013 (2007).

[52] Y. Zhang, H. Dong, X. Zhang and H. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Comput. Math. Appl. 73, 246-252 (2017).

[53] Y. Zhang, H.H. Dong, X.E. Zhang, et al., Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation, Comput. Math. Appl. 73, 246-252 (2017).

[54] Y. Zhang, S. Sun and H. Dong, Hybrid solutions of (3+1)-dimensional Jimbo-Miwa equation, Math. Problems Eng. 2017 453941, 1-15 (2017).

[55] Q. Zhou, M. Ekici, A. Sonmezoglu, J. Manafian, S. Khaleghizadeh and M. Mirzazadeh, Exact solitary wave solutions to the generalized Fisher equation, Optik, 127, 12085-12092 (2016).