サルモネラとマクロファージの相互作用
—サルモネラ病原性関連因子SEp22とマクロファージの産生する活性酸素分子種の役割—

天野富美夫†

Interaction of Salmonella with Macrophages
—Critical Roles of Salmonella SEp22, a Pathogenicity-related Protein, and Macrophage Reactive-Oxygen Intermediate Species (ROIs) on the Infection and Survival of Salmonella—

Fumio Amano†

Laboratory of Self-defense and Regulation, Osaka University of Pharmaceutical Sciences; 4–20–1 Nasahara, Takatsuki, Osaka 569–1094, Japan.

(Received November 5, 2018)

Salmonella is a Gram-negative [Gram (−)] bacteria, distributed widely in such natural environments as soil, dust, or river water, causing food poisoning as well as oral infections such as Typhi or Paratyphi. Salmonella is highly tissue invasive, easily spreading throughout the whole body after initial growth in the phagocytic vesicles of macrophages as an intra-cellular parasite. Because there remain many unknown elements in the Salmonella-macrophage interaction, I started my study by focusing on the molecules and mechanisms underlying the interaction; for example, how Salmonella escapes natural biodefense systems armed by macrophages, and how macrophages surround and inactivate Salmonella. In addition, I developed insight into Salmonella survival in the face of both environmental stresses and immunological stresses, including attacks from macrophages, based on the idea that “pathogenicity” is not limited simply to an attack, but to both the attack and defense against hazards. In this study, I found a novel pathogenicity-related protein of Salmonella, SEp22, an iron-chelating protein of MW 18.7 kDa, to cope with reactive-oxygen intermediates (ROIs) generated by activated macrophages pre-treated with lipopolysaccharides (LPS), one of the major components of Salmonella outer membrane. We also showed that Salmonella attacks macrophages by a novel mechanism through the induction of apoptosis with large amounts of LPS and protein synthesis inhibition, in addition to the well-known mechanisms of type-three secretion system (TTSS)-induced cell damage, including InvA, an attacking, virulent factor of Salmonella. We showed that macrophages could escape from this type of cell death by LPS-induced macrophage activation and LPS-tolerance.

Key words — Salmonella; macrophage; activation; apoptosis; SEp22; reactive oxygen intermediate species

はじめに—マクロファージの食作用を介した感染防御，自然免疫

多細胞生物の生体防御系には，「病原体等の異物を包み込んで取り込み，体の中に拡散させずに殺菌・消化等の処理を行い，無毒化する」という，自然免疫系が備わっている。これは抗原特異的な反応を主体とする獲得免疫系とは異なり，食作用によっ
天野富美夫
1974年東大薬学部微生物薬品化学研究室で水野傅一教授指導の下、大学院を通じて好中球の貪食作用（Phagosome-Lysosomeの形成機構）を研究。1980年学位取得後、国立予研化學部赤松穣部門長の下、LPSによる細胞障害性の誘導、増殖性サルモネラの病原性等、マクロファージとサルモネラの相互作用を明らかにする研究を開始した。

実験材料と実験系の構築：研究目的に相応しい実験材料と実験系」を選び、作製する

本研究では、感染実験に用いる材料を選別するため、マクロファージとサルモネラについてそれぞれ感染抵抗性と感染感受性、病原性と非病原性を検討した。Fig. 2に示すように、両者の相互作用には、相手側からの攻撃に対する抵抗性（＝防御）と相手側に対する攻撃性・病原性（＝攻撃）という、相反する2つの方向性からとらえる必要がある。すなわち、一方相手側からの攻撃を排除する防御機構を備えていれば、見かけ上、「感受性」はなくなり「抵抗性」があらわれる。したがって、ここでは攻撃因子と防御因子の両者を同時に考慮する必要がある。その際に、種々の攻撃因子の中で（最も）効果的に相手を攻撃して機能障害又は生残性の破壊をするものは何か、を理解し、それを反映する実験系を構築する必要がある。

マクロファージ細胞株由来LPS耐性変異株の分離：感染抵抗性因子の研究

マクロファージの活性化に関する研究から、LPSはマクロファージ活性化物質の中でも最も活性の強い生物活性物質（biological response modifiers；BRM）の一つで、活性の中心はlipid Aの1,4′-diphosphateとO-acyl基に存在することを示した。
A model of interaction of Salmonella with macrophages is shown. Macrophages play important roles in host-defense mechanisms, including anti-microbial activities in bacterial infection. Salmonella is known to persist and grow in macrophages, then macrophages die through apoptosis, which has been reported by the action of the type III secretion system (TTSS) of virulent Salmonella. In contrast, macrophages become activated by the action of lipopolysaccharides (LPS) of Gram (-) bacteria, including Salmonella, and the activated macrophages are armed with a series of bactericidal effector molecules, such as those with elevated activities of phagocytosis and lysosomal enzymes, generating systems of reactive oxygen intermediates (ROIs) and so on. During our study, we added two findings to this model. One is the finding of SEp22, an 18.7 kDa protein of a pathogenicity-related factor of Salmonella with iron-chelating activity, induced by H2O2, one of the ROIs generated by the activated macrophages. The other is the LPS-induced macrophage apoptosis that occurs during Salmonella infection to non-activated macrophages. (Color figure can be accessed in the online version.)
の変異株を樹立したことによって、従来はエンドトキシン（LPS）低応答性マウスとして知られたC3H/HeJマウス（その後の研究でLPS受容体のTLR4に異常があることが明らかになった）由来的マクロファージを用いて細菌感染実験を行うことができなかった実験材料に関する条件が大きく改善され、マクロファージの細胞内生菌に対する排除機構とその奏功分子（ROIs）に関する研究を推進することができた。

病原性のサルモネラ菌株から、病原因子関連因子、SEp22の発見と分離同定

次に、マクロファージに感染するサルモネラの病原性に関する研究を紹介する。

1990年代半ばから、わが国のサルモネラ食中毒の件数・患者数が急激に増加し、その背景として、英国から輸入したニワトリのヒナを汚染した新たな種類のサルモネラ（Salmonella Enteritidis; SE）の蔓延があることが分かった。そこで、広島県に住む株シーエーエフラボラトリーズの協力の下、養鶏場で分離されたSEの菌株を分与して頂き、病原性株と非病原性株を選別した。その当時、サルモネラの病原性に関与する遺伝子として、III型分泌装置（type III secretion system; TTSS）を構成する成分の遺伝子が報告されていた。

14,15）とくに、サルモネラの病原性遺伝子群（SPI-1）によって発現されるinvAなどの重要性が報告され、これらはサルモネラ感染において宿主細胞に対して発現される「攻撃性」の病原因子であるため、invA（－）の菌株は非病原性株として選別した。研究の開始に当たり、ヒトに食中毒を起こす主要なサルモネラとして、TTSS以外の病原性関連因子が存在する可能性を考え、SEのinvA（＋）の菌株の病原性発現に焦点を当て、養鶏場からの分離株に検討を加えた。分与された100株余のSE菌株のうち、複数の養鶏場の鶏や壁板などの異なる環境から分離された30株を選び、LB培地中で一晩培養して静止期の菌体を回収した。PBS（－）で洗浄後、破菌して菌体抽出物を回収し、SDS-PAGEによって分離した後、Coomassie Brilliant Blue（CBB）染色を行った。その結果、分子量15-40 kDa付近のタンパク質の染色パターンが大きく二分され、この領域に強い染色像のある群（A）とないと群（B）が存在することが分かった。そこで、これらうち8株を選択し、1群10匹のBALB/cマウスに1×10⁶ CFU及び1×10⁶ CFU/_mouseでそれぞれ経口感染させて3週間、経過観察し、致死毒性を調べた。その結果、（A）の3株でinvA（＋）の菌株には病原性があり、（B）の4株には病原性がなかった。さらに、（A）であってもinvA（－）の1株には病原性がなく、対照として用いた、サルモネラ食中毒による下痢患者から分離した臨床分離株1株は、（A）と同様の染色パターンとinvA（＋）を示し、マウスに病原性を示した（Table 1）。16）

そこで、（A）に特有と思われる分子量15-40 kDa付近のタンパク質を分離・精製することにした。病原性を示した菌株の1つ、SEC15-1をLB培地で培養して破菌し、菌体抽出液を50%硫安で処理して遠心後、上清に回収した。次にこの上清をイオン交換カラム（DE52）にかけ、10 mM Tris-HCl buffer, pH 7.4に透析して透析したところ、細かな結晶性の沈殿が析出したため、遠心によって回収した。得られた沈殿をSDS-PAGEによって解析した結果、この沈殿はほぼ単一のタンパク質からなり、上記の（A）の群の菌株に固有の22 kDaのバンドに対応した。そこで、この沈殿を再び50%硫安を加えて溶解し、透析して析出させて遠心し沈殿への回収を繰り返し精製度を高めた後、N末端アミノ酸配列の解析を行った（Fig. 3a）。その結果を基にサルモネラの遺伝子を解析した結果、このタンパク質が、栄養飢餓状態に陥った大腸菌で誘導されることがKolterらによって見い出されたDNA-binding protein from starved cells（Dps）16）とほぼ同一の、サルモネラDps（167アミノ酸、分子量18.7 kDa）であることが分かった。17）Dpsは酸化ストレスによって誘導され、とくにH2O2により強く誘導を受けることが示された18）が、われわれの研究室でもH2O2によるSEp22の誘導を実験によって確認した。19）また、大腸菌と異なり、栄養飢餓ではなくLB培地のような栄養培地中で強く発現され、H2O2によるSEp22/Dpsの誘導にも栄養因子は強く関与することを示した。その反面、静止期の菌体の中で最大5%近くまで大量に誘導されたSEp22は、低密度の菌を新鮮なLB培地中で再培養して増殖させると速やかに分解して菌体内から消失した。このタンパク質分解調節機構についてはの研究から、セリンプロテアーゼの関与とエネルギー代謝との関連が示唆された。19）なお、（B）の群のサルモネラの
Table 1. Properties of Salmonella Enteritidis Environmental Isolates, Including the Expression of SEp22 and invA, Pathogenicity in Mice, and Resistance to H2O2 and to the Drying Protocol

Clone	SEp22	invA	Pathogenicity	H2O2-resist	Dry-resist
SECl±4-1	±	+	-	-	±
SECl±7-1	#	+	+	+	#
SECl±14-1	±	+	-	-	±
SECl±15-1	#	+	+	+	#
SECl±16-1	±	+	-	-	±
SECl±23-1	#	+	+	+	#
SECl±26-1	#	-	-	nd	nd
SECl±28-1	-	+	-	-	-
SECl±40$	#	+	+	+	#

$ A clinical isolate from a patient with sporadic diarrhea. The other bacterial clones in this table are environmental isolates from poultry farms in Japan. a SEp22 was determined by SDS-PAGE/Western blotting. b invA was determined by RT-PCR. c Pathogenicity of the bacteria was estimated by lethality after oral administration of 1 × 10⁸ CFU of each bacterial clone to BALB/c mice. d H₂O₂-resistance was assayed by the colony-formation of each bacterium after exposure to 0.1–10 mM H₂O₂. e Dry-resistance was assayed by the drying protocol. In this table, the extent of each phenotype is relatively expressed as negative (-), sometimes positive (+), positive (+), strongly positive (++), and very strongly positive (+++). "nd" means "not determined".

Fig. 3a. Amino Acid Sequence of SEp22

SEp22 was purified from a pathogenic strain of Salmonella Enteritidis, SECl±15-1, and the sequence of N-terminal 22 amino acids was determined, followed by cloning of the SEp22 gene, including full length coding of nucleotide sequences corresponding to 167 amino acids.

Fig. 3b. Crystal Structure of SEp22

Dimeric (a) and dodecameric (b) structures of SEp22 are shown. (Color figure can be accessed in the online version.)

環境抵抗性と病原性

1999年にサルモネラの病原性関連因子としてSEp22を見い出したことによって、私は「環境微生物と病原微生物の接点について」22に関する考察
を深める上で大きな転機を迎えた。それまで、サルモネラの環境中での分布とマクロファージ細胞内での増殖について、「微生物増殖の『場』」としての共通点を考え、自然環境から受けるストレスと、われわれの生体内の免疫系から受けるストレスを、「微生物」としての共通点を考え、①自然環境から受けるストレスと、われわれの生体内の免疫系から受けるストレスを、「微生物」の側から受けるか否か（permissive or non-permissive?）（Fig. 2）という観点からは同列に考えてもよいのではないか、と漠然と考えてきたが、実際に、何を基にそれを示せばよいのか、具体的な分子とその作用機構に関して、不明のままであった。

SEp22が養鶏場のサルモネラ分離株の「病原性に関連する因子」（＝マウスに対する病原性、食細胞が産生するH2O2抵抗性）として姿を現したことから、SEp22には「サルモネラの環境微生物としての生残に関する性質」が、あるのだろうか、と考えた。そのような折に、サルモネラは環境中で乾燥に強い、という性質に着目し、乾燥耐性を評価する実験系を構築することにした。実験室に設置した简单的乾燥装置を用い、さらに、50 mLのコニカルチューブのキャップに0.45 μmの滅菌フィルターを装着した容器を乾燥用の対象に用いることによって、短時間で定量的にサルモネラの乾燥耐性を調べることが可能になった。その結果、サルモネラの乾燥耐性には、SEp22の発現株と非発現株で大きな違いがあること（Table 1）、また、乾燥前の菌を分散させておく培地の栄養成分によって影響を受けることが明らかになった。さらに、この「病原性」が「サルモネラの宿主細胞に対する攻撃性ではなく、宿主免疫系からの攻撃に抵抗する防御因子としての性質」によるものである（Fig. 2）ことを示唆した。

サルモネラの多彩な存在様式と感染性・環境抵抗性

サルモネラの感染実験においては、多くの場合、対数増殖期の菌を使用する。それは、病原性が菌の増殖期に関係するためである。しかし、（自然）環境中におけるサルモネラは増殖期になく、静止期か、あるいはそれよりもさらに生物活性の低いviable but non-culturale（VBNC：生きているが培養できない）状態にあると考えられている。た、サルモネラは、単独で浮遊あるいはなんらかの基質表面に付着している状態、あるいは結合体となってバイオフィルムを形成した集塊状（Fig. 2）など、多彩な存在状態をとることができる。従来の医科細菌学的な研究では、多くの増殖期の細菌を用いて感染実験を行ってきたのに対し、微生物生態学的な研究では、増殖状態にとどまらず存在状態そのものを研究対象にしてきた。これらの点を考慮して、活性酸素（ROS）や栄養状態の急激な変化などのストレスに曝したサルモネラを用いて、環境における生存性（環境抵抗性）と病原性（免疫抵抗性）に関する研究を開始した。

その結果、対数増殖期の病原性サルモネラを用いて、短時間で再現性よくVBNC状態に誘導してコロニー形成能（CFU）を1/1000～1/10000にまで低下させる評価実験系を確立した。さらに、VBNC状態になったサルモネラを再活性化して増殖可能な状態にまで復帰する実験系を構築し、その過程をピルビン酸が非常に強く亢進することを明らかにした。また、上記の乾燥耐性の評価系において、乾燥ストレスもまたサルモネラにVBNC状態を誘導することを示唆した。

なお、VBNC状態のサルモネラの病原性に関しては、これをマウスの腹腔に感染させると、対数増殖期の細菌に比べて潜伏期間は長かったが、最終的にはすべてのマウスを死亡させた。これらの結果から、試験管内という微小環境中において、VBNC状態で著しく低下した増殖性は、マウス腹腔内という免疫系に監視される体内環境中においては、VBNCから復帰して最終的な病原性を元の対数増殖期とほぼ同等まで戻すことを示唆する。現在、対数増殖期のサルモネラに比べ、VBNC状態のバイオフィルム形成するサルモネラの病原性や薬剤耐性に関する研究は非常に少なく、定量的な評価が難しい。しかし、環境中でもわれわれの体内でも、Fig. 2に示すような、サルモネラとマクロファージが1対1で直接相互作用する場面はごく限られていた。一般的ではない。今後は、VBNC状態やバイオフィルム形成時など、サルモネラの多彩な存在様式における感染性や環境抵抗性を評価する実験系の確立が望まれる。

マクロファージに対する細胞死の誘導

Figure 1で示したように、マウス腹腔由来の常在細胞マクロファージに対する細胞死の誘導が観察された。
Fig. 4. Cell Death of the LPS-treated Macrophages through or Not through Macrophage Activation

Resting macrophages are readily activated by LPS and become activated macrophages, which exhibit a variety of characteristic phenotypes, including the secretion of inflammatory cytokines, such as IL-1 and TNF-α, and the generation of prostaglandins (PGx), superoxide anions (O$_2^-$), and nitric oxide (NO). These cytokines and/or chemical mediators are sometimes cytotoxic to the macrophages themselves, resulting in macrophage cell death through LPS-induced activation. On the other hand, in the presence of cycloheximide (CHX), LPS induces rapid cytotoxic changes to the macrophages without macrophage activation. The pathways of this cell death include apoptotic changes, such as caspase 3 activation, as well as DNA cleavage. It must also be noted that *Salmonella* infection induces a similar apoptotic process in macrophages through the exposure of LPS from the bacterial outer membrane, together with the rapid and severe inhibition of protein synthesis upon infection. (Color figure can be accessed in the online version.)

性マクロファージは、活性化マクロファージの発現する機能の多くを持たないが、サルモネラ感染によって短時間で細胞障害性が誘導された [Figs. 1 (c)–1 (e)]。サルモネラはマクロファージへの感染においても細胞にLPSを曝露するが、加熱処理したサルモネラではこの細胞障害性を示さず活性化マクロファージを誘導した [Fig. 1 (f)] ことから、サルモネラ感染によるマクロファージ活性化の誘導には、サルモネラが生きていることが必要であることが示唆された。このような短時間でのマクロファージ活性化を起こさずに誘導される細胞障害性を研究する中で、新たに、タンパク質合成阻害剤のシクロヘキシミド（cycloheximide; CHX）をLPSとともに添加すると、マクロファージ系細胞株J774.1/JA-4細胞が2時間以内に細胞死を起こすことを見い出した。35) この細胞死はアポトーシスを介して起こるため、LPSの生物活性と相関している。36–38) LPSの生物活性と相関しており、39) LPS処理したマクロファージにCHXを添加する時間が60分を経過した後では誘導されなくなること、36,37) が明らかになった。また、LPS低応答性マウスのC3H/HeJ由来の腹腔常在性マクロファージ、40) 及びJA-4細胞由来のLPS耐性変異株のLPS1916細胞では細胞障害性が起こらず、38) 1-10 ng/mLの低濃度のLPSを前処理したマクロファージでは100 ng/mL LPSとCHXを添加しても細胞死が誘導されない。36,37) LPSトランスが観察されたことから、この現象は、LPSによるマクロファージ活性化と同じシグナル伝達経路を介して起こることが示唆された。この経路が、CHXの添加によってあるタンパク質の生合成が阻害されるために誘導され、アポトーシスが誘導されるのではないかと考えた（Fig. 4）。

そこで、LPSによるマクロファージ活性化シグナル伝達経路をCHX添加と非添加で詳細に検討した結果、CHXを添加するとp38 mitogen-activated protein kinase（p38MAPK）のリン酸化が起きた後脱リン酸化されずにpp38MAPKが持続してマクロファージの核内に残ることが明らかとなった。また、CHXではなく、p38MAPKの阻害剤、SB202190がLPSと同時に添加したマクロファージも、持続的なリン酸化pp38MAPK（pp38MAPK）
Involvement of Sustained Phosphorylation of p38 MAPK in the Induction of Apoptosis of LPS-treated Macrophages with the Simultaneous Addition of Triptolide or CHX, or by Salmonella Infection

The mechanisms underlying the induction of apoptotic cell death of LPS-treated macrophages have been suggested to involve the sustained phosphorylation of p38 MAPK; LPS rapidly induces MKK3/6 activation, resulting in the phosphorylation of p38; and pp38 is translocated into the nuclei. MKP-1, but not PP2A, is also induced transcriptionally by LPS signaling, then it exerts the dephosphorylation of pp38 into p38 by its protein phosphatase activity. This transcriptional induction of MKP-1 mRNA is strongly inhibited by triptolide, a Chinese botanical medicine from Tripterygium wilfordii Hook F. The turnover of MKP-1 protein is rather rapid, thus CHX decreases the MKP-1 level by inhibiting protein synthesis. Salmonella infection spreads large amounts of LPS from the bacterial outer membrane to macrophages, and also rapidly reduces the protein synthesis of the macrophages, resulting in effects on the cells similar to the exposure of LPS and CHX. However, the pathways for apoptosis induction in these cells remain unclear. (Color figure can be accessed in the online version.)
Table 2. Isolation of Macrophage Mutants Resistant to LPS-induced Cytotoxicity in the Presence or Absence of Cycloheximide (CHX)

Cell line	Clone	Isolation	Resistance	TNF-α release	O2⁻ production	NO production	Surface CD14/Inside CD14 maturation	Surface TLR4/Inside Myd88	Remarks
Wild type	JA-4	N/A	<1 ng/mL	≤1 ng/mL	≤10 ng/mL	(-)	(+)/(-)/impaired	(+)/(+)/impaired	
Mutants									
LPS1916	(a)	1 mg/mL	<10 ng/mL	(-)	(-)	(+)/(+)/impaired	(+)/(+)/impaired	(+)/(+)/impaired	
	(b)	1 mg/mL	≤100 ng/mL	(-)	(-)	(+)/(-)/impaired	(+)/(+)/impaired	(+)/(+)/impaired	
LCR-1	(b)	1 mg/mL	≤100 ng/mL	(-)	(-)	(+)/(-)/impaired	(+)/(+)/impaired	(+)/(+)/impaired	
LCR-3	(b)	1 mg/mL	≤100 ng/mL	(-)	(-)	(+)/(-)/impaired	(+)/(+)/impaired	(+)/(+)/impaired	
LCR-4	(b)	1 mg/mL	≤100 ng/mL	(-)	(-)	(nd)/(nd)/impaired	(nd)/(nd)/impaired	(nd)/(nd)/impaired	
LCR-10	(b)	1 mg/mL	≤100 ng/mL	(-)	(-)	(nd)/(nd)/impaired	(nd)/(nd)/impaired	(nd)/(nd)/impaired	
LCR-11	(b)	1 mg/mL	≤100 ng/mL	(-)	(-)	(nd)/(nd)/impaired	(nd)/(nd)/impaired	(nd)/(nd)/impaired	

*Mutants were isolated after treatment with either 100 µg/mL LPS alone (a) or 100 ng/mL LPS + 10 µg/mL CHX (b). *The wild and mutant cells were incubated with 1–1000 ng/mL LPS in the presence or absence of 10 µg/mL CHX at 37°C for 4 h, and the values show the threshold for the significant increase of lactate dehydrogenase (LDH) release from the cells. *The wild and mutant cells were incubated with 1–1000 ng/mL LPS alone at 37°C for 4 h, and the values show the threshold for the significant release of TNF-α from the cells to the control without LPS. *O2⁻ production was assayed by cytochrome c-reducing activity in the presence of 8 µM phorbol 12-myristate 13-acetate (PMMA) in the presence or absence of superoxide dismutase (SOD). *NO production was assayed with Griess Romijin reagent for NO₂ in the culture supernatants. *The wild and mutant cells were reacted with an anti-CD14 antibody, followed by flow-cytometry analysis of the cell surface and/or intracellular CD14 molecules. For estimation of CD14 processing and maturation through glycosylation, cell extracts were subjected to Western blotting analysis of CD14 molecule size variations.

Fig. 6. Induction of SEp22 by Internal and Environmental Stresses in Salmonella

SEp22 is induced by internal stresses such as growth arrest and respiration, as well as cell division (the lower half of the figure). However, it is more rapidly and extensively induced by environmental stresses such as ROSs, UV, desiccation, and by immune system stresses, especially through attack by activated macrophages. Because of its iron-chelating and DNA-binding activities, SEp22 protects Salmonella from hazardous attack by OH radicals toward DNA and/or membrane lipids, leading Salmonella to survive and to grow under such difficult, life-threatening conditions. (Color figure can be accessed in the online version.)
の中で、LPSが重要な役割を演じていることを示した。また、新たな病原性関連因子として、サルモネラのSEp22を見つけ出した。そして、SEp22が、周辺の環境によっても菌の内部の状態によっても誘導され、菌の生残、増殖と宿主に対する病原性（宿主への攻撃因子ではなく宿主からの攻撃に対する防御因子として）に関与することを示すことができた（Fig. 6）。

また、マクロファージとサルモネラの相互作用の研究材料として、LPS耐性変異株のLPS1916細胞、LPS+CHXで誘導される細胞死に耐性のLCR変異株を樹立して解析を進めた。サルモネラ以外のレジオネラやリステリアの感染実験において、これらマクロファージ変異株を利用することの有用性を示すことができたが、さらに他の実験系への応用と発展をさせることができると思われる。今後、本研究で得られた知見と、菌株及び細胞株等の材料を利用して頂けるのであれば幸いである。

謝辞　本稿でご紹介した私の研究は、国立感染症研究所細胞化学部に在籍中に開始し、大阪薬科大学においてさらに発展させたものである。この間、文部省科学研究費、文部科学省私立大学戦略的研究基盤形成支援事業（ハイテクリサーチセンター研究費）、厚生科学研究費等の研究支援を頂くとともに、様々な大学・研究所の非常に多くの研究者、大学の学生、大学院生並びに教員、助教授、教授、業界関係者等の皆様にご協力を顶いた。とくに、国立感染症研究所の元所長・病理部長の倉田毅先生、細菌学研究室の中村明子室長、中村玲子室長、倉文明室長、泉福英臣室長、獣医科学部の井上智室長、森石恆司主任研究員、齋藤典子電子顕微鏡室技官、国立医薬品食品衛生研究所食品衛生微生物の五十君静信部長、山崎学研究員、東京農工大学農学部の片山葉子教授、大阪薬科大学病態生化学研究室の藤森功教授、生体防御学研究室の中池敦資助教、博士研究員の唐橋久恵、豊村隆男、並びに本稿に関与する研究課題で博士の学位を取得した、寺井志織、南（中村）徳子、玉木（藤原）理衣、森重雄太、小濱清子の各位には、とくに深く感謝する。その他、若い研究者が本稿の研究に魅せられて取組み、修士課程修了あるいは薬学部を卒業する中で、多くの貴重な研究成果を報告してくれた。これらの方々の協力があって初めて、この総説を書くことができる点に到達したことに、改めて心より感謝したい。また、貴重なサルモネラの菌株の分与と解析を快く行って下さった、（株）シーエーエフラボラトリーズの太田博昭社長と江川智哉研究員に感謝するとともに、実験室の新しい試みに対して常に助言と最適な装置・器具に関する情報を与えて下さった（株）豊島製作所の豊島伸之氏に感謝する。最後に、研究の魅力と大切さ、基盤となる哲学を教えて下さり、研究の過程では常に叱咤激励をして導いて下さった、故水野傅一東京大学薬学部名誉教授に深謝いたします。

利益相反　天野富美夫（アスビオファーマ株式会社、王子製紙株式会社、カゴメ株式会社、クラシエホームプロダクツ株式会社、サントリーウェルネス株式会社、第一三共株式会社、六甲バター株式会社、塩野香料株式会社、株式会社JIMRO、株式会社大塚製薬工場、及び株式会社東洋発酵、からの奨学寄附金を受領。公益財団法人とくしま産業振興機構、アスビオファーマ株式会社、及び国立医薬品食品衛生研究所、からの受託研究資金を受領）

REFERENCES
1) Amano F., “Kankyou to Biseibutsu no Sougosayou, Biseibutsukansen to Shokusaibou no Kinou,” Japan Scientific Societies Press, Tokyo, 1998, pp. 149-163.
2) Amano F., Konishi Y., Kurata T., Nakamura A., Bacterial Adherence Biofilm, 12, 20-25 (1998).
3) Nishijima M., Amano F., Akamatsu Y., J. Immunol., 59, 2166-2174 (1991).
4) Noda T., Amano F., J. Biochem. (Tokyo), 136 4122-4127 (1986).
9) Noda T., Amano F., *Biol. Pharm. Bull.*, 21, 673–677 (1998).
10) Kura F., Suzuki K., Watanabe H., Akamatsu Y., Amano F., *Infect. Immun.*, 62, 5419–5423 (1994).
11) Inoue S., Itagaki S.-I., Amano F., *Infect. Immun.*, 63, 1876–1886 (1995).
12) Morishige K., Koura M., Amano F., *FEMS Immunol. Med. Microbiol.*, 16, 213–222 (1996).
13) Amano F., Nakamura A., Kurata T., *Bacterial Adherence Biofilm*, 11, 8–13 (1997).
14) Lundberg U., Vinatzer U., Berdnik D., von Gabain A., Baccarinii M., *J. Bacteriol.*, 181, 3433–3437 (1999).
15) Hueck C. J., *Microbiol. Mol. Biol. Rev.*, 62, 379–433 (1998).
16) Almirón M., Link A. J., Furlong D., Kolter R., *Genes Dev.*, 6, 2646–2654 (1992).
17) Terai S., Yamasaki M., Igiuni S., Amano F., *Biosci. Microflora*, 24, 113–118 (2005).
18) Zeth K., Offermann S., Essen L. O., Oesterhelt D., *Proc. Natl. Acad. Sci. USA*, 101, 13780–13785 (2004).
19) Terai S., Yasuda M., Amano F., *Microbes Environ.*, 21, 36–43 (2006).
20) Halsey T. A., Vazquez-Torres A., Gravdahl D. J., Fang F. C., Libby S. J., *Infect. Immun.*, 72, 1155–1158 (2004).
21) Miyamoto T., Asahina Y., Miyazaki S., Shimizu H., Ohto U., Noguchi S., Satow Y., *Acta Crystallogr. Sect. F, Struct. Biol. Cryst. Commun.*, 67, 17–22 (2011).
22) Amano F., “Kankyou to Biseibutsu no Sougosayou, Kankyoubiseibutsu to Byougenbiseibutsu no Setten nitsuite,” Japan Scientific Societies Press, Tokyo, 1998, pp. 3–9.
23) Ekawa T., Terai S., Amano F., Hanatani Y., Ohta H., *J. Poultry Sci.*, 46, 370–376 (2009).
24) Tamura A., Yamasaki M., Okutani A., Igimi S., Saito N., Ekawa T., Ohta H., Katayama Y., Amano F., *Microbes Environ.*, 24, 121–127 (2009).
25) Tamura A., Nishio E., Fujimori K., Igimi S., Amano F., *Biosci. Microflora*, 28, 81–88 (2009).
26) Amano F., *J. Vet. Med.*, 60, 589–590 (2007).
27) Amano F., *J. Health Sci.*, 57, 1–14 (2011).
28) Amano F., *Microbes Environ.*, 14, 107–121 (1999).
29) Amano F., “Salmonella ga Keiseisuru Biofilm no Kouzou: Biofilm Seigyo ni Muketa Kouzou to Keiseikatei,” CMC Pulldishing Co., Ltd., Tokyo, 2017, pp. 26–35.
30) Amano F., *Rinshou to Biseibutsu*, 45, 19–24 (2018).
31) Morishige Y., Fujimori K., Amano F., *Microbes Environ.*, 28, 180–186 (2013).
32) Morishige Y., Tanda M., Fujimori K., Mino Y., Amano F., *Biol. Pharm. Bull.*, 37, 1617–1625 (2014).
33) Amano F., “Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria, Differential resuscitative effects of pyruvate and its analogs on VBNC (viable but nonculturable) Salmonella,” Wiley-Blackwell Publishers, Inc., Hoboken, 2016, pp. 1338–1345.
34) Morishige Y., Fujimori K., Amano F., *Biol. Pharm. Bull.*, 38, 1255–1264 (2015).
35) Amano F. Karahashi H., *J. Endotoxin Res.*, 3, 415–423 (1996).
36) Karahashi H., Amano F., *Exp. Cell Res.*, 241, 373–383 (1998).
37) Karahashi H., Amano F., *J. Leukocyte Biol.*, 66, 689–696 (1999).
38) Karahashi H., Amano F., *Biol. Pharm. Bull.*, 23, 140–144 (2000).
39) Karahashi H. Amano F., *Biol. Pharm. Bull.*, 21, 1102–1105 (1998).
40) Karahashi H., Amano F., *J. Endotoxin Res.*, 6, 33–39 (2000).
41) Karahashi H., Amano F., *Biol. Pharm. Bull.*, 26, 1249–1259 (2003).
42) Kohama K., Koike A., Amano F., *Intl. Biol. Rev.*, 1, 2 (2017).
43) Amano F., Tsukabe S., Teshima R., Waku K., Kohama K., *Adv. Biosci. Biotechnol.*, 3, 770–781 (2012).
44) Shinobu N., Iwamura T., Yoneyama M., Yamaguchi K., Suhara W., Fukuhara Y., Amano F., Fujita T., *FEBS Lett.*, 517, 251–256 (2002).
45) Kohama K., Koike A., Amano F., *J. Cytokine Biol.*, 2, 117 (2017).