Nemerteans as hosts for symbionts: a review

JOHN J. MCDERMOTT

Department of Biology, Franklin and Marshall College, Lancaster, PA 17604-3003, USA

(Accepted 31 December 2005)

Abstract
Nemerteans utilize other animals as hosts in a variety of well-studied, symbiotic relationships, but relatively little is known concerning nemerteans as hosts for other organisms. Only three haplosporidians, one microsporidian, two gregarines, three ciliates, five mesozoans, one mite and one copepod have been identified to species from nemerteans, whereas 34 nemertean species (one Archinemertea, 17 Heteronemertea, 15 Hoplonemertea, one Bdellonemertea) have been recorded as hosts. The majority of recorded nemertean symbionts are endoparasitic protozoans and orthonectids. Among the Haplosporidia, there are three species of *Haplosporidium*. The hyperparasite, *Nosemoides vivieri*, from an unidentified gregarine, is the only known microsporidian associated with a nemertean. Within the phylum Apicomplexa, besides the two species of gregarines from three species of nemerteans, there are 11 other species of nemerteans with unidentified gregarines. One species of nemertean has been found with an unidentified coccidian parasite. ‘Sporozoan-like’ parasites, however, are known from three other species of nemerteans, two of which are pelagic polystiliferans. Two endosymbiotic and one ectosymbiotic species of ciliates have been identified from three species of nemerteans. At least five species of mesozoans (Orthonectida) infect nine species of nemerteans. Unidentified cestode, trematode and nematode juveniles, using nemerteans as intermediate hosts, have been recorded rarely and have not been linked to any life cycles. An ectosymbiotic mite and a copepod from two species of nemerteans are likely incidental associates. The nature of the host–symbiont relationships has been rarely reported. Castration of hosts by haplosporidians and orthonectids, and tissue damage by an unidentified coccidian and some gregarines, are known to occur. The suitability of nemerteans as hosts for parasites, hypersymbioses and approaches for future studies of parasite prevalence and host–parasite relationships are discussed.

Keywords: Apicomplexa, Ciliophora, Haplosporidia, Microsporida, Orthonectida, parasites

Introduction
Nemerteans are well-known symbionts on other organisms. For example, carcinonemertids are semiparasitic on brachyuran crabs and other crustaceans (Kuris 1993); bdellonemertes, such as *Malacobdella* spp. live in the mantle chambers of bivalve molluscs (Gibson 1967, 1968; Kozloff 1991), and several worms associate with ascidians (Gibson 1974; Egan and Anderson 1979; Egan 1984) and sea anemones (Gibson 1986). On the other hand, we
have scant knowledge of symbionts that use nemerteans as hosts. Gibson (1972) and Varndell (1980) provided brief summaries of known parasites and Lauckner (1980b) contributed an expanded review with illustrations of several species. Such symbionts are predominantly internal parasites, usually discovered in the process of examining histological sections used for specific taxonomic identifications. Major taxa to which known symbionts belong are the phyla Apicomplexa (coccidians and gregarines), Microsporida (microsporidians and haplosporidians), Ciliophora, Orthonectida, Platyhelminthes (cestodes and trematodes) and Nematoda. Nemerteans are either definitive or intermediate hosts in the life cycles of these taxa. The arthropods are also represented by a single species of ectosymbiotic arachnid (mite) and an ectosymbiotic crustacean (copepod). Very few experimental studies have been done on most of these relationships (Varndell 1980, 1981a, b; Langlet and Bierne 1989; Vernet and Fargette 1990; Haloti and Vernet 1994; Vernet and Haloti 1997), and many of the protozoan parasites have yet to be identified to species or higher taxa; most are known only incidentally from histological specimens of hosts.

I review species of nemerteans that harbour symbionts, the suitability of nemerteans as hosts, the roles of nemerteans as definitive or intermediate hosts and the effects of symbionts on their hosts. Future studies are suggested to develop a better understanding of these relationships.

General survey of relationships

Table I lists known relationships of the Nemertea with the Microsporida through the Arthropoda. While most nemertean hosts have been identified, the identities of many symbionts have not been determined. Only three haplosporidians, one microsporidian, two gregarines, five ciliates, five orthonectids, one arachnid and one copepod have been specifically identified, whereas 33 nemertean hosts have been recorded (one Archinemertea, 17 Heteronemertea, 15 Hoplonemertea, one Bdellonemertea). Twelve of the hoplonemerteans belong to the suborder Monostilifera and two to the pelagic Polystilifera (Table II). Parasitic protozoans, previously referred to the phylum Sporozoa, are now within the Apicomplexa and are the most often recorded nemertean parasites. Members of this phylum are characterized by the presence of an apical complex, with complex life cycles alternating between sexual and asexual phases, some requiring intermediate hosts; constituents of most groups are intracellular while some (e.g. gregarines) are both intracellular and extracellular. Members of the class Sporozoea, such as malarial parasites, coccidians and gregarines, are probably the most well-known.

Systematic discussion of relationships (Table I)

Haplosporida

Haplosporidians are intracellular protozoan parasites found in a variety of fresh water and marine invertebrates; some are hyperparasitic in trematodes and nematodes that use marine molluscs and decapod crustaceans as hosts (Lee et al. 2000). Their life cycles are poorly understood and their identification relies chiefly on electron microscopical analysis of the morphological characteristics of mature spores. Three species of haplosporidians have been described from nemerteans, all belonging to the genus *Haplosporidium*.

*Haplosporidium malacobdellae* parasitizes *Malacobdella grossa*, itself a symbiont from the mantle cavity of bivalve molluscs, and the free-living monostiliferan, *Amphiporus lactifloreus*. Jennings and Gibson (1968) examined 1218 specimens of *M. grossa* of which 36 (2.9%
| Symbionts (Classification) | Host nemerteans | References |
|---------------------------|-----------------|------------|
| **Phylum Haplosporidia**  |                 |            |
| **Class Haplosporea**     |                 |            |
| Haplosporidium malacobdellae | Malacobdella grossa Müller, 1776 | Jennings and Gibson (1968) |
| Jennings & Gibson, 1968 |                 |            |
| Haplosporidium malacobdellae | Amphiphorus lactiflorus (Johnston, 1928) | Varndell (1980) |
| Jennings & Gibson, 1968 |                 |            |
| Haplosporidium nemertis  | Lineus bileineatus (Renier, 1804) | Debasieux (1920) |
| Debasieux, 1920           |                 |            |
| Haplosporidium prostomae | Prostoma eilhardi (Montgomery, 1894) | Gibson and Moore (1979) |
| Gibson & Moore, 1979      |                 |            |
| **Phylum Microsporida**   |                 |            |
| Nosematoides vivieri Vinckier, Devauchelle & Prensier 1970 | Microsporidian in unidentified monocystid gregarine from gut of unspecified worm | Vinckier et al. (1970, 1971); Vinckier (1975) |
| **Phylum Apicomplexa**    |                 |            |
| **Class Conoidasida**     |                 |            |
| **Subclass Gregarinasina**|                 |            |
| Lecudina linei Vinckier 1973 | Lineus viridis (Müller, 1774) | Vinckier (1972, 1973); Arnoult and Vernet (2000) |
| Lecudina sp.              | Ramphogordius bicolor (Vernet, 1997) | Arnoult and Vernet (2000) |
| **Unidentified** |                 |            |
| Urospora nemertes Kölliker, 1845 | Basodiscus delineatus (Delle Chiaje, 1825) | Kolliker (1848); Lee et al. (2000) |
| **Unidentified** |                 |            |
| Urospora nemertes Kölliker, 1845 | Lineus ruber (Müller, 1774) | Jennings (1960) |
| **Phylum Microsporida**   |                 |            |
| Nosematoides vivieri Vinckier, Devauchelle & Prensier 1970 | Microsporidian in unidentified monocystid gregarine from gut of unspecified worm | Vinckier et al. (1970, 1971); Vinckier (1975) |
| **Unidentified** |                 |            |
| Unidentified              | Amphiphorus lactiflorus (Johnston, 1928) | McIntosh (1873–1874) |
| Unidentified              | Antiponemertes pantini (Southgate, 1954) | Moore et al. (2001) |
| Unidentified              | **Baseodiscus hembrichii** (Ehrenberg, 1831) | Punnett (1900); Gibson (1979) |
| Unidentified              | **Cricotulineus novaezealandiae** Gibson, 1984 | Gibson (1984) |
| Unidentified              | **Cyanophilalma obscura** (Schultz, 1851) | Norenburg (1986) |
| Unidentified              | **Diopsomermertes acanthocephala** Kajihara, Gibson & Mawatari, 2001 | Kajihara et al. (2001) |
| Unidentified              | Ovicides julieae Shields, 2001 | Shields (2001) |
| Unidentified              | **Paranemertes peregrina** Coe, 1901 | Roe (1971, 1976), pers. comm. (2004) |
| Unidentified              | Potamonemertes percivali Moore & Gibson, 1973 | Moore and Gibson (1973) |
| Unidentified              | Ramphogordius sanguineus Rathke, 1799 | Gontcharoff (1950) |
| **Subclass Coccidiasina** |                 |            |
| Unidentified              | Quasilineus lucidoculatus Gibson, 1990 | Gibson (1990); Canning and Gibson (1990) |
| **Sporozoan-like**        |                 |            |
| Unidentified              | Nectonemertes primitiva Brinkmann, 1917 | Brinkmann (1917) |
| Unidentified              | Parabalanenemertes fusca Brinkmann, 1917 | Brinkmann (1917) |
| Symbionts (Classification) | Host nemerteans$^1$ | References |
|----------------------------|----------------------|------------|
| Unidentified               | *Ischyronemertes albanyensis* Gibson, 1990 | Gibson (1990) |
| Phylum Ciliophora          |                      |            |
| Class Phyllopharyngea      |                      |            |
| Subclass Suctoria          |                      |            |
| *Ophryodendron prenanti*   | *Cephalothrix linearis* (Rathke, 1799) | Duboscq (1925) |
| (Duboscq, 1925)            |                      |            |
| Class Heterotrichea        |                      |            |
| Order Heterotrichida       |                      |            |
| *Orchitophrya malacobdellae* | *Malacobdella grossa* (Müller, 1776) | Jennings (1968) |
| Jennings, 1968             | *Malacobdella grossa* (Müller, 1776) | Fenchel (1965) |
| *Thigmophrya annella*, Fenchel 1965 |                      |            |
| Unidentified ‘protozoan’   | *Heteronucleus enigmaticus* Wern, 1998 | Wern (1998) |
| Phylum Orthonectida        |                      |            |
| *Intoshia linei* Giard, 1877$^5$ | *Lineus ruber* (Müller, 1774) | Giard (1877); |
|                           | *Lineus viridis* (Müller, 1774) | Nouvel (1935); |
|                           | *Raphophagous sanguineus* Rathke, 1799 | Kozloff (1992); |
|                           |                      | Vernet and Haloti (1997); |
|                           |                      | Arnoult and Vernet (2000) |
| *Intoshia linei* Giard, 1877$^5$ | *Lineus sp.* | Aleksandrov (1989); Kozloff (1992) |
| *Intoshia metchnikovi* Caullery & Mesnil, 1899 | *Tetrastemma flavidum* Ehrenberg, 1828$^6$ | Caullery and Mesnil (1899); |
|                           | *Raphophagous lacteus* Rathke, 1843 | Kozloff (1992); |
| *Rhopalura intohi* Metschinkoff, 1881$^7$ | *Tetrastemma flavidum* Ehrenberg, 1828 | Metschinkoff (1881) |
| *Rhopalura pelsonneri* Caullery & Mesnil, 1901$^7$ | *Tetrastemma verminigrum* Iwata, 1954 | Caullery (1914) |
| *Rhopalura pelsonneri var.* | *Raphophagous sanguineus* Rathke, 1799 | Caullery and Mesnil (1901) |
| *vermiculicola* Caullery, 1914$^7$ | *Tetrastemma flavidum* Ehrenberg, 1828 | Haloti and Vernet (1996) |
| *Rhopalura sanguinea* Haloti & Vernet 1996 | *Raphophagous bicolore* (Vernet, 1997) | Arnoult and Vernet (2000) |
| *Rhopalura sanguinea* Haloti & Vernet 1996 | *Amphiporus ochraceus* (Verrill, 1873) | McInerney (1956) |
| *Rhopalura sp.*             |                      |            |
| Phylum Platyhelminthes      |                      |            |
| Class Cestoda              |                      |            |
| Subclass Eucestoda         | *Cerebratulus lacteus* (Leidy, 1851) | Hunter (1950) |
| *Echeneibothisium sp.*     |                      |            |
| Class Trematoda            |                      |            |
| Unidentified metacercariae | *Amphiporus lactiflorus* (Johnston, 1828) | McIntosh (1873/1874) |
| Phylum Nematoda            |                      |            |
| Unidentified larvae        | *Geonemertes philippinensis* Gibson & Moore, 1998 | Gibson and Moore (1998) |
| Phylum Arthropoda          |                      |            |
| Subclass Arachnida         |                      |            |
| *Parhalixodes traei* Laubier, 1960 | *Cerebratulus hepaticus* Hubrecht, 1879 | Laubier (1960) |
prevalence) were infected. Examination of this large number of nemertean involved serial histological sections and fresh squashes of worm tissue. *Haplosporidium nemertis* parasitizes the heteronemertean *Lineus bilineatus*, and *Haplosporidium prostoma* lives in the tissues of the freshwater hoplonemertean *Prostoma eilhardi*. All three species of *Haplosporidium* may castrate their hosts (Debaisieux 1920; Jennings and Gibson 1968; Gibson and Moore 1979; Varndell 1980) and, at least in the case of *H. malacobdellae*, causes mortality (Jennings and Gibson 1968). Varndell (1981a, b) further demonstrated a variety of enzymes and metabolites in the life-history stages of *H. malacobdellae*.

**Microsporida**

Microsporidians are all intracellular protozoan parasites of hosts that include probably all invertebrate phyla and the five classes of vertebrates (Lee et al. 2000). Most life cycles are unknown and, like the haplosporidians, identification relies primarily on the morphology of mature spores, in this phylum, especially their elaborate internal structure. The only microsporidian associate of nemerteans is the hyperparasitic *Nosemoides vivieri* whose host is an unidentified gregarine parasitic in an unidentified nemertean (Vinckier et al. 1970, 1971; Vinckier, 1995) (Table III).

**Apicomplexa (formerly Sporozoa)**

The gregarines (subclass Gregarinasinina) are primarily parasites of invertebrates, but also occur in lower vertebrates. They are generally conspicuous in sections of the digestive tract and body cavities due to their relatively large size. They have simple or complex life cycles. Gregarines are the most common apicomplexans to occur in nemerteans and have been found in 14 species of nemerteans (seven Heteronemertea, seven Hoplonemertea). All nemertean hosts, except the terrestrial *Antiponemertes pantini* and the freshwater *Potamonemertes percivali*, have been marine. Only two species of gregarines, however, have been specifically identified. Vinckier (1972, 1973) described the new species, *Lecudina linei*, from the intestinal epithelium of the heteronemertean *Lineus viridis* (this description appeared first in 1972 as an abstract without illustrations, and later in 1973 in his doctoral
### Table II. Nemertean species known to harbour symbionts (alphabetically listed within four orders).¹

| Archinemertea       | Heteronemertea                                                                 |
|---------------------|--------------------------------------------------------------------------------|
| Cephalohrix linearis (Rathke, 1799) | Baseodiscus hemprichii (Ehrenberg, 1831) |
|                     | Baseodiscus delineatus (Delle Chiaje, 1825) |
|                     | Cephalurichus antarcticus Gibson, 1985 |
|                     | Cerebratulus hepaticus Hubrecht, 1879 |
|                     | Cerebratulus lacteus (Leidy, 1851) |
|                     | Craticulineus novaezealandiae Gibson, 1984 |
|                     | Heteronemertea enigmaticus Wern, 1998 |
|                     | Lineus bilineatus (Renier, 1804) |
|                     | Lineus bioculatus Sundberg & Gibson, 1985 |
|                     | Lineus longissimus (Gunnerus, 1770) |
|                     | Lineus ruber (Müller, 1774) |
|                     | Lineus viridis (Müller, 1774) |
|                     | Parborlasia fuequina Serna de Esteban & Moretto, 1968 |
|                     | Quasilineus lucidoculatus Gibson, 1990 |
|                     | Ramphogordius bicolor (Vernet, 1997) |
|                     | Ramphogordius lacteus Rathke, 1843 |
|                     | Ramphogordius sanguineus Rathke, 1799 |

| Hoplonemertea      | Bdellonemertea                                                                 |
|--------------------|--------------------------------------------------------------------------------|
| Amphiporus lactiflorus (Johnston, 1828) | Malacobdella grossa Müller, 1776 |
| Amphiporus ochraceus (Verrill, 1873) |                                           |
| Antiponemertes pantini (Southgate, 1954) |                                           |
| Cyanophthalma obscura (Schultz, 1851) |                                           |
| Diopsonemertes acanthocephala Kajihara, Gibson & Mawatari, 2001 |                                           |
| Geonemertes philippinensis Gibson & Moore, 1998 |                                           |
| Ischyronemertes albanyensis Gibson, 1990 |                                           |
| Nectonemertes primitiva Brinkmann, 1917² |                                           |
| Ovicides julieae Shields, 2001 |                                           |
| Parabalaenanemertes fusca Brinkmann, 1917² |                                           |
| Paranemertes peregrina Coe, 1901 |                                           |
| Potamonemertes percivali Moore & Gibson, 1973 |                                           |
| Prostoma elhardi (Montgomery, 1894) |                                           |
| Tetrastemma flavidum Ehrenberg, 1828 |                                           |
| Tetrastemma verinigrum Iwata, 1954 |                                           |

| Bdellonemertea      |                                           |
|--------------------|-------------------------------------------|
| Malacobdella grossa Müller, 1776 |                                           |

¹Classification according to Gibson (1995). ²Suborder Polystilifera; all other hoplonemerteans are Monostilifera.

### Table III. Hypersymbioses involving nemerteans.

| Primary symbiont | Hypersymbiont | Primary host | Reference |
|------------------|--------------|--------------|-----------|
| Unidentified gregarine | Nosemoides viveri | Unidentified nemertean | Vinckier et al. (1970); Vinckier (1975) |
| Ovicides julieae | Unidentified gregarine | Chlorodella nigra, C. xishaensis | Shields (2001) |
| Malacobdella grossa | Haplosporidium malacobdellae | Zirfaea crispata | Jennings and Gibson (1968) |
| Malacobdella grossa | Orchiephrya malacobdellae | Zirfaea crispata | Jennings (1968) |
| Malacobdella grossa | Thignophrya annella | Arctica islandica | Fenchel (1965) |

¹Brachyuran crabs (Xanthidae). ²Bivalvia.
dissertation). Arnoult and Vernet (2000) also reported finding this gregarine in the same host. In his study on the nutrition of Lineus ruber, Jennings (1960) noted that the intestines of ~75% of the worms examined were infected with the acephaline eugregarine Urospora nemertes (trophozoites in the lumen and intracellular stages in columnar cells). Distinct damage was caused to the epithelial cells of the hosts. Baseodiscus delineatus is also a host for U. nemertes.

Gregarines have been observed in 11 other nemerteans (seven hoplonemerteans and four heteronemerteans), but none of these parasites was identified. In three cases, authors were tentative in their characterization of the parasites as gregarines. Gibson (1979) found what appeared to be gregarines in the blood vessels and rhynchocoel fluid of Baseodiscus hemprichii, and noted that Punnett (1900) had misidentified them as nemertean ova. Cysts of an unidentified gregarine were found hyperparasitic in tissues of the egg predator Ovicides julieae, symbiotic in xanthid crabs from Australia (Shields 2001) (Table III). Roe (1976) provided prevalence data on what she considered to be (P. Roe, pers. comm. 2004) an unidentified gregarine from the hoplonemertean Paranemertes peregrina. Examination of feces for gregarine cysts in three populations of worms from Washington revealed a range in prevalence from 6.3 to 26.0%; examination of gut tissue from 17 worms showed 15 to be infected (88.2%).

Most coccidians (subclass Coccidiasina) are parasites of vertebrates. The first and only coccidian reported from a nemertean was found in the gut of two of seven specimens of Quasilineus lucidoculata examined by Gibson (1990). Canning and Gibson (1990) subsequently described and illustrated the stages in the life cycle as revealed in histological sections of the worm. Because oocysts were unsporulated, it was not possible to give a generic diagnosis of this parasite. Evidence of widespread epithelial sloughing due to development of the merozoites and sexual stages was documented.

Sporozoan-like, unidentified parasites were reported by Brinkmann (1917) from the tissues of two species of pelagic polystiliferans, Nectonemertes primitiva and Parabalaenanemertes fusca. Given the relative frequency of gregarines in the tissues of other species of nemerteans, it is likely that these were also gregarines. Recent taxonomic studies on collections of pelagic nemerteans, however, have failed to reveal infections with parasitic protozoans (Norenburg and Roe 1998a, b; Roe and Norenburg 2001; P. Roe pers. comm. 2004).

Ciliophora

Only three species of ciliates are known from the Nemertea; two of these are associated with Malacobdella grossa. The stomatous Thigmophrya annella lives within the gut of this worm as does the astomatous Orchitophrya malacobdellae. Fenchel (1965) speculated that T. annella might have evolved from a species of Thigmophrya that lived in the mantle chamber of bivalves known to harbour M. grossa. Jennings (1968) found O. malacobdellae in four of 175 worms (2.3%) examined. Duboscq (1925) described a new suctorian, Ophryodendron prenanti, from the integument of the archinemertean Cephalothrix linearis. The nature of these symbioses is unknown, but given the fact that these ciliates have not penetrated the body cavity of the host, and given their symbiotic nature in other host taxa, it seems likely that these are relatively benign associations.

Orthonectida

Orthonectids are mesozoans that parasitize the tissues and body cavities of marine invertebrates (e.g. turbellarians, nemerteans, polychaetes, bivalve mollusks, ophiuroids,
etc.). The microscopic, ciliated, dioecious adults reproduce outside of their host and ciliated larvae infect new hosts where they become amoeboid, syncytial plasmodia, reproducing asexually. Kozloff (1992, 1994), however, believes that the “plasmodium” is not a part of this life cycle, but rather hypertrophied, infected, host cells. The life cycles of the orthonectids are poorly known as are those of the other mesozoan phylum, Rhombozoa, parasitic in the excretory organs of Cephalopoda. Infections with orthonectids may cause host sterilization (Stunkard 1982). All of the species from nemerteans apparently belong to the family Rhopaluridae (Stunkard 1982), but there are still uncertainties concerning family designations (Kozloff 1992). *Intoshia linei* lives in the connective tissue and muscle layers of *Lineus ruber*, *L. viridis* and *Ramphogordius sanguineus*. *Rhopalura sanguinea* similarly infects *R. sanguineus*. These orthonectids may coexist with gregarines in the same hosts (Table I). Kozloff (1992) expressed difficulty in confirming the generic characteristics of *Rhopalura intoshi* and *R. pelseneeri* as well as *R. pelseneeri* var. *vermiculicola*. The only apparent record of orthonectids from nemerteans in North America is a species of *Rhopalura* from a single specimen of *Amphiporus ochraceus* collected by Meinkoth (1956) near Woods Hole, Massachusetts. These parasites were found inside the worm and swimming in the water of a whole-mount preparation. Additional worms (*n*=171) were without infections. Meinkoth (1956) noted that the parasites were similar to *R. metchnikovi* or *Intoshia linei*.

*Intoshia linei* is probably the best-studied species of orthonectid parasitizing nemerteans. Anatomical descriptions of adults based on light and scanning electron (SEM) microscopy were done by Kozloff (1992) and Haloti and Vernet (1993). Grafting experiments with parasitized tissues from *Lineus ruber* and *L. viridis* have been used to investigate the nemerteans’ immune responses of these hosts to *I. linei* (Langlet and Bierne 1989; Vernet and Fargette 1990; Haloti et al. 1992; Haloti and Vernet 1994). Surprisingly, successful grafts from infected *L. ruber* into nonparasitized hosts resulted in a decrease in the parasites during the first 2 months, but was followed by a rapid increase in the parasite load during the next 2 months. This indicated that the immune response to the orthonectids occurred but was not strong enough to eliminate the parasites (Langlet and Bierne 1989).

**Platyhelminthes**

From a fragmented specimen of *Cerebratulus lacteus*, collected at Beaufort, North Carolina, Hunter (1950) recovered 120 unencysted, plerocercoid larvae (order Tetraphyllidea). Characteristics of the scolices suggested that these cestodes belonged to the genus *Echeneibothrium* Van Beneden, 1850, species of which are exclusive intestinal parasites of their definitive hosts, elasmobranch fishes. As plerocercoid larvae are usually found in the tissues of teleost, cephalopod or crustacean intermediate hosts, it remains to be determined how nemerteans might be involved in tetraphyllidean life cycles (McDermott 2001).

There are a few records of trematode metacercariae occurring in nemertean tissue, but their specific identity has not been determined (McIntosh 1873/1874; Gibson 1972).

**Nematoda**

A single specimen of the terrestrial *Geonemertes philippinensis* harboured large numbers of unidentified, coiled, encapsulated nematodes in its muscles, parenchyma and intestinal epithelium (Gibson and Moore 1998). Worms were 15–16 μm in diameter and some were 180–220 μm long. These larval worms were presumably employing *G. philippinensis* as an intermediate host in an unknown life cycle.
Arthropoda

Two species of arthropod ectosymbionts have been recorded from nemerteans. Laubier (1960) described a new species of mite, *Parhalixodes travei*, from a larva and adult male collected from the body of *Cerebratulus hepaticus*. Gallien (1936) described the only known crustacean from a nemertean, the copepod *Pseudanthessius nemertophilus*, living on the body of *Lineus longissimus*. Stock (1985) later created the new genus, *Nemerthessius*, for this species. Nothing is known concerning relationships of these two symbionts with their nemertean hosts, if indeed they are any more than incidental occurrences of free-living organisms.

Major taxa unknown

At least three encysted, unknown, microscopic parasites have been reported in the tissues of heteronemerteans from the southern hemisphere. In all cases, nondescript cysts could not be identified with certainty.

General discussion and conclusions

Several questions arise concerning the meagre literature on symbionts of nemerteans: (1) what are the probabilities of finding parasites in nemerteans compared to other invertebrates? (2) How suitable are nemerteans as hosts for parasites? (3) What is the status of nemerteans as intermediate hosts in parasitic life cycles? (4) Can we learn more about the parasites of nemerteans?

Probabilities of finding parasites

The heavy mucus covering the external surfaces and the burrowing habit of many species of nemerteans makes them extremely unlikely hosts for ectosymbionts and, to date, this seems to be the case (Lauckner 1980b). In general, the same may be said for turbellarians as hosts for epibionts (Lauckner 1980a). As far as internal parasites are concerned, a few orthonecrid infections have been detected from external signs on the surface of some worms (Langlet and Bierne 1989), but the opaque and dense body of most nemerteans obscures the revelation of most internal parasites. However, parasites certainly gain access to the interior of nemerteans. Thus, the time-consuming examination of histological sections for the purpose of locating protozoan and metazoan endoparasites needs to continue, but this process certainly sets a lower limit on the number of worms that can be examined, compared to other types of hosts for which sectioning is not required. Added to this is the burden of fixation for electron microscopy or molecular analysis, and species identifications become insurmountable. However, the chance revelation of plerocercoid larvae in a fragmenting *Cerebratulus lacteus* by Hunter (1950) suggests that such observations, along with whole animal dissections, might be rewarded with the discovery of greater prevalences of encysted larval metazoans. Jennings and Gibson (1968) made squashes of fresh *Malacobdella grossa* for detecting the presence of haplosporidians, and Roe (1976) was able to detect gregarines in *Paranemertes peregrina* by examining the gut tissue. Isolating nemerteans and examining the feces for gregarine cysts (Roe 1976), or looking for emerging stages of orthonecrid parasites (Meinkoth 1956), may prove fruitful. The latter is reminiscent of the well-known parasitological technique isolating large numbers of snails in shell vials for determining the prevalence of infections with digenetic trematodes by examining those releasing cercarial larvae.
Suitability of nemerteans as hosts

Considering the method for finding endoparasites in nemerteans and the limited literature, nemerteans may not be unusual hosts for haplosporidians, microsporidians and gregarines. Three haplosporidians and the hyperparasitic microsporidian Nosemoides vivieri, from an unidentified gregarine, have been found in at least four species of nemerteans. Gregarines have been shown to parasitize at least 14 species of nemerteans (seven heteronemerteans and seven hoplonemerteans) (Table I). Hyperparasitism is most likely overlooked by those examining histological sections. Orthonectids, on the other hand, utilize nemerteans for their early development, releasing males and females to the aquatic environment; these and the infective larvae may be collected and identified through the careful culture and handling of potentially infected hosts. At least five species of orthonectids are known from nine species of nemerteans. One of these orthonectids, Intoshia linei, lacks host specificity, infecting three species of nemerteans (Table I).

Nemerteans as intermediate hosts

Some helminth parasites (platyhelminths and nematodes) use nemerteans as intermediate hosts. In light of the negligible literature on nemerteans as intermediate hosts for parasites, it is difficult to evaluate their roles in parasite life cycles. A number of conditions might be considered. Copious mucus produced by epidermal glands may present an initial barrier that must be traversed by, for example, cercariae liberated from the snail first intermediate host in trematode life cycles. Furthermore, it has been demonstrated that the mucus of nemerteans has many toxic properties (Kem 1985, 2000) that must be tolerated by potentially invasive larvae. The burrowing nature of many nemerteans presents a further problem for the establishment of infective larval stages. Turbellarians, however, have similar characteristics and are known to harbour a variety of metacercariae linked with described life cycles (Lauckner 1980a). It seems reasonable that nemerteans may eventually be found to harbour these trematodes (Lauckner 1980a). The coracidium larvae of cestodes, however, are generally ingested by arthropod or molluscan intermediate hosts. On the other hand, infective orthonectid larvae (one host cycle) penetrate, not only nemerteans, but also numerous mucus-producing turbellarians, polychaetes and molluscs that are susceptible to parasite invasion (Kozloff 1992).

For the completion of cestode or trematode life cycles, it is expected that the intermediate host falls prey to definitive or paratenic hosts. The palatability of nemerteans as prey for a variety of animals has been reviewed (McDermott 2001). While there is evidence that nemerteans are consumed by some fishes, birds and other invertebrate predators, there is no substantial evidence that they are important prey, and there is experimental evidence that nemerteans are violently rejected by some predators (Sundberg 1979; McDermott 1984, 1993; Heine et al. 1991). It appears that toxic mucus is the distasteful element.

Host resistance

Little is known concerning innate (cellular) or acquired resistance in nemerteans that might limit the establishment, growth and development of invasive larvae, but nemertean grafting studies have shed some light on resistance to orthonectids (Langlet and Bierne 1989; Haloti and Vernet 1994).
Hypersymbiosis

There are five hypersymbiotic relationships involving nemerteans (Table III), three of which involve the commensal of bivalves, *Malacobdella grossa*, host for two endosymbiotic ciliates and a haplosporidian. There is little biological information on the nature of these relationships except for the parasite *Haplosporidium malacobdellae* (Jennings and Gibson 1968).

Future studies

To learn more about the importance of nemerteans as hosts for parasites, it will be necessary to continue searching through histological sections, but we must also employ whole animal dissections to find encysted metazoans. Isolation of worms for fecal examinations and detection of liberated life history stages of parasites may be useful. Experimental exploration of the susceptibility of nemerteans to cercarial invasion or coracidial ingestion could prove enlightening and may be accomplished with relative ease as these parasitic life-history stages are readily manipulated. Experimentation on the life cycles of parasites and susceptibility of nemerteans to infections, however, requires finding populations of nemerteans with high prevalences of infections – and this is a major challenge.

Acknowledgements

I appreciate the thoughtful comments on a draft of the manuscript by J. A. Blevins, Franklin and Marshall College, R. Gibson, Liverpool John Moores University, Liverpool, UK, A. M. Kuris, University of California–Santa Barbara, P. Roe, California State University Stanislaus, Turlock, California and J. D. Shields, Virginia Institute of Marine Science, Gloucester Point, Virginia. Two anonymous reviewers provided constructive criticisms and useful ideas. The continued support provided to me by Franklin and Marshall College is gratefully acknowledged.

References

Aleksandrov KE. 1989. Morphologia polovykh osobei I plasmodia ortonekidy *Rhopalura linei* (Orthonectida, Mesozoa) [thesis]. Leningradskii Gosudarstvennyi Universitet, 49 p (from Kozloff 1992).

Arnoult F, Vernet G. 2000. Simultaneous presence of an orthonectid and a gregarine in *Lineus viridis* (Müller 1774) heteronemertean Lineidae. Paper presented at the Fifth International Conference on Nemertean Biology; 2000 June 12–16; Alcalá de Henares, Spain; abstract. p 41.

Brinkmann A. 1917. Die Pelagischen Nemertinen. Bergens Museum Skr. 3:1–194 (from Gibson 1972).

Canning EU, Gibson R. 1990. A coccidium parasitic in the heteronemertean *Quasilineus lucidoculatus*: first, record of a coccidium infection in a nemertean. In: Wells FE, Walker DI, Kirkman H, Lethbridge R, editors. Proceedings of the Third International Marine Biological Workshop: The Marine Flora and Fauna of Albany, Western Australia. Perth: Western Australia Museum, Volume 1, p 7–11.

Caullery M. 1914. *Rhopalura pelseneeri* C. et M., var. *vermiculica* var. nov., orthonectide parasite de *Tetrastemma vermiculicus*. Qtfg. Bulletin de la Société Zoologique de France 39:121–124 (from Kozloff 1992).

Caullery M, Mesnil F. 1899. Sur trois Orthonectides nouveaux, parasites des Annélides, et l’hermaphrodisme de l’une d’eux (*Stoecharthrum Giardi* n. g., n. sp.). Comptes Rendus de l’Académie des Sciences, Paris 128:457–460 (from Kozloff 1992).

Caullery M, Mesnil F. 1901. Recherches sur les Orthonectides. Archives d’Anatomie Microscopique 4:381–470 (from Kozloff 1992).

Debaisieux P. 1920. *Haplosporidium (Minchinia) chitonis* Lank., *Haplosporidium nemertis*, nov. sp., et le groupe des Haplosporidies. Cellule 30:293–311. Plates 1–52.
Duboscq O. 1925. *Ophryodendron prenanti* n. sp., parasite de *Cephalothrix linearis* Rathke. Bulletin de la Société Zoologique de France 50:398–401.

Egan EA. 1984. The seasonal reproductive cycle of the nemertean *Geonemertes australiensis* Gibson in relation to that of its ascidian host, *Pyura pachydermatina* (Herdman). Journal of Experimental Marine Biology and Ecology 76:225–246.

Egan EA, Anderson DT. 1979. The reproduction of the entozoic nemertean *Geonemertes australiensis* Gibson (Nemertea: Hoplomermelia: Monostylifera) – gonads, gametes, embryonic development and larval development. Australian Journal of Marine and Freshwater Research 30:661–681.

Fenchel T. 1965. Ciliates from Scandinavian molluscs. Ophelia 2:71–173. Plates 3.

Gallien L. 1936. *Pseudanthessius nemertophilus* nov. sp., Copepode commensal de *Lineus longissimus* Sowerby. Bulletin de la Société Zoologique de France 60:451–459 (pour l’année 1935).

Giard A. 1877. Sur les Orthonectida, classe nouvelle d’animaux parasites des Échinodermes et des Turbellariés. Comptes Rendus de l’Academie des Sciences Paris 85:812–814 (from Kozloff 1992).

Gibson R. 1967. Occurrence of the entocommensal rhynchocoelan, *Malacobdella grossa*, in the oval piddock, *Zirfaea crispata*, on the Yorkshire coast. Journal of the Marine Biological Association of the United Kingdom 47:301–317.

Gibson R. 1968. Studies on the biology of the entocommensal rhynchocoelan *Malacobdella grossa*. Journal of the Marine Biological Association of the United Kingdom 48:637–656.

Gibson R. 1972. Nemertea. London: Hutchinson University Library. 224 p.

Gibson R. 1979. Nemertea of the Great Barrier Reef. 2. Anopla Heteronemertea (Baseodiscidae). Zoological Journal of the Linnean Society 55:247–266.

Gibson R. 1979. Nemertea of the Great Barrier Reef. 2. Anopla Heteronemertea (Baseodiscidae). Zoological Journal of the Linnean Society 56:137–160.

Gibson R. 1984. *Craticulineus novaezeelandiae* gen. et sp. nov., a new lineid heteronemertean from the South Pacific (Nemertini). Zoological Journal of the Linnean Society 83:95–227.

Gibson R. 1985. Antarctic nemerteans: Heteronemertea – descriptions of new taxa, reappraisals of the systematic status of existing species and a key to the heteronemerteans recorded south of latitude 50° S. Zoological Journal of the Linnean Society 83:95–227.

Gibson R. 1986. Redescription and taxonomic reappraisal of *Nemertopsis actinophila* Burger, 1904 (Nemertae: Hoplonemertea: Monostilifera). Bulletin of Marine Science 39:42–60.

Gibson R. 1990. The macrobenthic nemertean fauna of the Albany region, Western Australia. In: Wells FE, Walker DJ, Kirkman H, Lethbridge R, editors. Proceedings of the Third International Marine Biological Workshop: The Marine Flora and Fauna of Albany, Western Australia. Perth: Western Australia Museum, Volume 1, p 89–194.

Gibson R. 1993. Nemertean genera and species of the world: an annotated checklist of original names and description citations, synonyms, current taxonomic status, habitats and recorded zoogeographic distribution. Journal of Natural History 29:271–562.

Gibson R, Moore J. 1979. *Haplosporidium prostomae* sp. nov., a new sporozoan from the freshwater hoplonemertean *Prostoma eilhardii* (Montgomery). Archiv für Protistenkunde 121:366–371.

Gibson R, Moore J. 1998. Further observations on the genus *Geonemertes*, with a description of a new species from the Philippine Islands. Hydrobiologia 365:157–171.

Gontcharoff M. 1950. Biologie de la regeneration et de la reproduction chez quelques Lineidae de France. Annales des Sciences Naturelles, Zool. Hydrobiol. 11:12:150–235.

Haloti S, Vernet G. 1993. Avance dans la connaissance des Mesozoaires. Morphologie et anatomie des adultes de *Rhopalura linei* (Orthonectides). Bulletin de la Société Zoologique de France 118:177–183.

Haloti S, Vernet G. 1994. Avance dans la connaissance des Mésozoaires. Etude de la spécificité d’*Intoshia linei* (Orthonectide) par gregge interspécifique de troncons de *Lineus* (Hétéronémertes) parasites sujets sains. Bulletin de la Société Zoologique de France 119:357–362.

Haloti S, Vernet G. 1996. *Rhopalura sanguinea* sp. nov. nouvel Orthonectide parasite de l’Hétéronémerte *Lineus sanguineus*. Bulletin de la Société Zoologique de France 121:73–75.

Haloti S, Vernet G, Birme J. 1992. Reproduction asexuée de l’endoparasite *Rhopalura linei* (Orthonectides) au cours de la contamination expérimentale de l’hôte, l’hétéronémerte *Lineus ruber*. Bulletin de la Société Zoologique de France 117:174–175.

Heine JN, McClintock JB, Slattery M, Weston J. 1991. Energetic composition, biomass, and chemical defence in the common Antarctic nemertean *Parborlasia corrugatus* McIntosh. Journal of Experimental Marine Biology and Ecology 153:15–25.

Hunter WS. 1950. The nemertean, *Cerebratulus lacteus*, as an intermediate host for cestode larvae. Journal of Parasitology 36:496.
Roe P. 1971. Life history and predator-prey interactions of the nemertean Paranemertes peregrina Coe [PhD dissertation]. University of Washington, 129 pp (from Gibson 1972).

Roe P. 1976. Life history and predator-prey interactions of the nemertean Paranemertes peregrina Coe. Biological Bulletin 150:80–106.

Roe P, Norenburg JL. 2001. Morphology and taxonomic distribution of a newly discovered feature, postero-lateral glands in pelagic nemerteans. Hydrobiologia 456:133–144.

Shields JD. 2001. Ovicides julieae n. gen., n. sp. (Nemertea: Carcinonemertidae) on xanthid crabs from the Great Barrier Reef, Australia. Journal of Crustacean Biology 21:204–312.

Stock JH. 1985. Redescription et statut générique de Pseudanthessius nemertophilus (Gallien, 1936), copépode poecilostomatoide associé a Lineus longissimus des cotes de la manche. Cahiers de Biologie Marine 26:321–329.

Stunkard HW. 1982. Mesozoa. In: Parker SP, editor. Synopsis and classification of living organisms. New York: McGraw–Hill. p 853–855.

Sundberg P. 1979. Tubulanus annulatus an aposematic nemertean? Biological Journal of the Linnean Society 12:177–179.

Sundberg P, Gibson R. 1995. The nemerteans (Nemertea) of Rottnest Island, Western Australia. Zoologica Scripta 24:101–141.

Varndell IM. 1980. The occurrence, life history and effects of Haplosporidium malacobdellae, Jennings and Gibson in a new host, the monostiliferous hoplonemertean Amphiporus lactifloreus (Johnston). Archiv für Protistenkunde 123:382–390.

Varndell IM. 1981a. A histochemical study of Haplosporidium malacobdellae, a balanosporian endoparasite of the hoplonemertean Amphiporus lactifloreus. Zeitschrift für Parasitenkunde 65:143–152.

Varndell IM. 1981b. Catechol oxidase EC-1.10.3.1 activity associated with sporogenesis in Haplosporidium malacobdellae, a balanosporian endoparasite of the hoplonemertean Amphiporus lactifloreus. Zeitschrift für Parasitenkunde 65:153–162.

Vernet G, Fargette C. 1990. Procédé expérimentalde contamination de Lineus ruber (Hétéronèmertes) par Rhopalura linei (Orthonectides). Bulletin de la Société Zoologique de France 115:218–219.

Vernet G, Haloti S. 1997. Advance dans la connaissance des mésozoaires. Etude de la spécificité d’Intoshia linei, orthonectide parasite de nèmertes lineides. Bulletin de la Société Zoologique de France 122:67–69.

Vinckier D. 1972. Sur le cycle et l’ultrastructure de la Grégarine Lecudina linei n. sp., parasite du nèmère Lineus viridis. Journal of Protozoology 19(Supplement):73–74 (Abstract).

Vinckier D. 1973. Etude des cycles et de l’ultrastructure de Lecodina linei n. sp. (grégarine parasite de nèmère) et de son parasite, la microsporidie Nosema vivieri (Vinckier, Devauchelle et Prensier). [thèse doctorat 3e cycle]. Université des Sciences et Techniques de Lille (from Vinckier 1975).

Vinckier D. 1975. Nosemoides gen. n., N. vivieri (Vinckier, Devauchelle & Prensier, 1970) comb. nov. (Microsporidie); etude de la différenciation sporoblastique et genèse des différentes structures de la spore. Journal of Protozoology 22:170–184.

Vinckier D, Devauchelle G, Prensier G. 1970. Nosema vivieri n. sp. (Microsporidiae, Nosematidae) hyperparasite d’une Grégarine vivant dans le coelome d’une Némère. Comptes Redus Hebdomadaires des Séances de la Academie des Sciences (Paris) 270:821–823.

Vinckier D, Devauchelle G, Prensier G. 1971. Étude ultrastructurale du développement de la microsporidie Nosema vivieri (V. D. et P. 1970). Protistologica 7:273–287.

Wern JO. 1998. An enigmatic heteronemertean from the Gulf of Mexico. Hydrobiologia 365:135–147.