Supplementary Materials

RIsearch: Fast RNA-RNA Interaction Search using a Simplified Nearest-Neighbor Energy Model

Anne Wenzel, Erdinç Akbaşlı and Jan Gorodkin

August 10, 2012

1 The RIsearch scoring scheme

![Figure 1: The scoring matrix. Free energy contributions in kcal/mol are derived from Turner’s nearest neighbor parameters \[1\], and multiplied by -100 to build the score. This has the advantage that we get integers and can maximize over all possible local ‘alignments’. Letters in the first column denote consecutive nucleotides in the query sequence (5’ to 3’). Letters in the first row refer to the target sequence (3’ to 5’). Reading example: The energy contribution of stacking a CG pair onto an AU pair (-2.2 kcal/mol) can be found in the row ‘AC’ and column ‘UC’, resulting in 220. ∞ prevents alignments ending with a mismatch, it is set to -2000 in the implementation. * denotes cases that the algorithm itself forbids, such as having a gap in one sequence followed by a gap in the other (insertion after deletion). It is set to an arbitrary value, as it is never read.](image-url)
Table 1: Possibilities and limitations of the scoring scheme. The table shows the free energies in kcal/mol as computed by different methods for the specified duplexes. Example duplexes with corresponding energies had to be extended with generic WC-helices to be predicted by the different tools. Upper part of table: Tools based on Turner 1999 parameters, lower part: tools based on 2004 parameter set. The top rows ('TurnerNNDBxx') should be considered as reference, methods deviate from this because of rounding and because some of the more complex rules are not implemented in the algorithms. (*) The same predictions as given by RNAduplex, were also reported by RNAcofold, BINDIGO (web server only), and PairFold (web server). Apparently, RNAhybrid does not apply the intermolecular initiation energy that is typically given with +4.1 kcal/mol, thus yielding much lower energies.

The interaction in the first column is a self-complementary duplex, but none of the methods seems to implement the suggested symmetry correction. The third duplex shows the stack of GU followed by UG in two different contexts, stabilizing and destabilizing. As we only look at one previous position we cannot incorporate these scores. Similarly, look-up tables for the 2×2 internal loop in duplex number six are not used by RIsearch.

Duplex	TurnerNNDB99	RNAduplex*	RNAplex	RNAhybrid [2]	RIsearch t99	TurnerNNDB04	DuplexFold [3]	RIsearch t04
5’AGCGCU 3’UCGCGA	-7.94	-8.30	-8.30	-13.40	-8.41	-7.94	-8.30	-8.41
5’GCACG 3’CGUGC	-7.64	-8.00	-8.00	-10.10	-6.01	-7.64	-8.00	-6.01
5’GGUCGUGU 3’CUGGUGCG	-7.52	-5.80	-5.80	-6.30	-1.16	-7.52	-5.80	-1.16
5’GGCCGUC 3’CCG-CAG	-7.52	-10.50	-10.50	-9.90	-4.81	-7.52	-10.50	-4.81
5’GCGAACUGCACG 3’CGCU---CGUGC	-7.52	-4.20	-4.20	-15.10	-10.56	-7.52	-4.20	-10.56
5’CAGACG 3’GUAGGC	-7.52	-15.10	-15.10	-11.00	-0.20	-7.52	-15.10	-0.20
5’GCGAACUGCACG 3’CGCU---CGUGC	-7.52	-11.00	-11.00	-10.60	-6.84	-7.52	-11.00	-6.84

Figure 2: Accuracy on simulated data (next page). Variations of Figure 3 from the main paper for sequences of different length and GC-content. The Pearson product-moment correlation coefficient r and Spearman’s rank correlation coefficient ρ are given in panel (b).
Figure 2: Caption on previous page.
2 Speed and memory benchmarks

2.1 RIssearch vs. RNAplex simple form

All measurements in this section were done with the GNU time command. Run times are given in seconds, the total amount of CPU time spent in user and kernel mode (%U + %S). For memory consumption we report the maximum resident set size (RSS) in Kilobytes (%M). There is a known bug in time, so this value is four times too large. However, the relative memory reduction is not affected. Values given in the following tables are what is reported by time without correction.

For RNAplex we specified parameter \(-f 2\), so it uses the simple energy model in the backtracking as well, instead of the full energy model. For both tools, RIssearch and RNAplex, we set the per-nucleotide penalty to 0.3 kcal/mol. All other parameters were left at their default values.

machine	RNAplex time	RNAplex mem	RIssearch time	RIssearch mem	comparison time	comparison mem
laptop	24.55	5600	8.81	2288	2.79	2.45
server	12.64	5744	5.28	2448	2.39	2.35

Table 2: Comparison of runtime and memory requirements. Here we just repeated the ‘Single Sequence Runtime benchmark’ as given in the Supplementary Material to [7]. Query a set of 19 bacterial sRNAs (average length 131nt) in 100 target sequences of length 1200nt. time is runtime in seconds, mem is max RSS [kB], both as reported by time (U+S / M). For ‘comparison’ it is the speedup, respectively the memory reduction achieved by RIssearch in comparison to RNAplex. RIssearch was compiled with the default \(-O3\); RNAplex was compiled with default parameters. Additionally, RNAplex was compiled specifying \(-O3\), but performance did not improve. The laptop used has an Intel® Core™2 Duo CPU P8700 with 2.53 GHz, the server a Intel® Xeon® CPU X5570 with 2.93 GHz.

#query	RNAplex	RIssearch	speedup
1	17201.00	94.91	181.23
5	18547.07	472.18	39.28
100	39988.77	9093.04	4.40
500	130301.59	45598.25	2.86
1223	288182.65	112141.20	2.57

Table 3: Runtime on large genomic sequence. The complete human chromosome 1 without any filtering (249,250,621 nt) was used as target. The first column shows the number of miRNA sequences in the query set, up to 1223 which comprises all human mature miRNAs in miRBase 16. The second and third column give the runtime in seconds, the relative speedup of RIssearch is given in the last column. Memory consumption was reduced by a factor of 1.44 in all cases. From the data it seems that RNAplex uses much more time for the initialization. If cleaned for that, simply by subtracting the runtimes for a single microRNA, the speedup ranges between 2.4 and 3.6. Both tools compiled with \(-O3\) optimization.
seq lengths[nt]	RNAplex	RIsearch	comparison				
	query	target		time	mem	time	mem
10	1E+3	0.00	0.00	2304	NaN	2.40	
10	1E+4	0.00	0.00	2624	NaN	2.23	
10	1E+5	0.04	0.01	6176	4.00	1.71	
10	1E+6	0.68	0.18	37952	3.78	1.49	
10	1E+7	29.77	1.89	354336	15.75	1.45	
10	1E+8	2870.63	19.16	3518416	149.82	1.44	
25	1E+3	0.00	0.00	2304	NaN	2.22	
25	1E+4	0.01	0.00	2640	NaN	2.22	
25	1E+5	0.11	0.04	6176	2.75	1.70	
25	1E+6	1.36	0.44	37936	3.09	1.49	
25	1E+7	36.70	4.50	354336	8.16	1.45	
25	1E+8	2843.67	45.35	3518432	62.70	1.44	
25	1E+9	274312.68	437.99	35159040	626.30	1.44	
100	1E+3	0.00	0.00	2384	NaN	2.36	
100	1E+4	0.04	0.01	2672	4.00	2.21	
100	1E+5	0.41	0.17	6160	2.41	1.71	
100	1E+6	4.41	1.73	37952	2.55	1.49	
100	1E+7	67.41	17.47	354352	3.86	1.45	
100	1E+8	3158.54	176.02	3518416	17.94	1.44	
100	1E+9	274929.19	1693.63	35159040	162.33	1.44	
1000	1E+3	0.04	0.01	2480	4.00	2.35	
1000	1E+4	0.41	0.17	2800	2.41	2.19	
1000	1E+5	4.07	1.70	6176	2.39	1.71	
1000	1E+6	40.93	17.06	37952	2.40	1.49	
1000	1E+7	444.54	170.71	354336	2.60	1.45	
1000	1E+8	7330.30	1671.38	3518416	4.39	1.44	
1000	1E+9	320057.08	16612.16	35159040	19.27	1.44	

Table 4: Speed and memory benchmark on randomly generated sequences of different lengths. Columns 1 and 2 give the length (in nucleotides) of the query and target sequences respectively. Columns 3 and 4 list time \((user + system)\) in seconds and memory requirements (maximum RSS [kB]), both as reported by the \texttt{time} command for RNAplex. Columns 5 and 6 show the same for RIsearch. Columns 7 and 8 show the improvement of RIsearch over RNAplex. RIsearch is at least 2.39 times as fast in all measurable cases.

Here, RNAplex performed better with the default compiler flags again, i.e., not specifying \texttt{-O 3}.

2.2 Using accessibility information

In order to run RNAplex -a, accessibility profiles need to be computed with RNAplfold. As memory requirements for the larger chromosomes exceeded our resources, we used human chromosome 21 here (the smallest one). With the recommended settings, RNAplfold runs more than 26 hours and uses more than 24 GiB to compute the accessibility profiles. The subsequent run of RNAplex in its current implementation also is more resource-demanding when making use of this information in comparison to the simple version. Screening this target with 5 miRNAs as query (as in Supplementary Table 3) takes:

	time (minutes)	mem (GiB)
RNAplex -a (with accessibility)	27.1	8.1
RNAplex -c 30 (w/o accessibility)	13.6	0.6
RIsearch -d 30	1.7	0.4
3 Performance on known bacterial sRNA interactions		
sRNA-mRNA	Sensitivity	PPV
---	---	---
	plex-a	plex-c
GcvB-gltI*	0.923	0.846
GcvB-argT*	0.875	1.000
GcvB-dppA	1.000	0.941
GcvB-livJ	0.955	1.000
GcvB-livK*	1.000	1.000
GcvB-oppA	1.000	1.000
GcvB-STM4351	0.889	1.000
MicA-lamB	1.000	1.000
MicA-ompA	1.000	0.938
DsrA-rpoS*	0.571	0.778
RprA-rpoS	0.316	0.733
IstR-tisA*	1.000	1.000
MicC-ompC	0.727	0.727
MicF-ompF	0.800	0.800
RyhB-sdhD	0.588	0.754
RyhB-sodB	1.000	1.000
SgrS-ptsG	0.739	0.739

sRNA-mRNA	SF, −subopt	SF, +subopt	LF, −subopt	LF, +subopt												
GcvB-argT*	0.787	0.639	0.655	0.656	0.736	0.599	0.581	0.641	0.734	0.603	0.597	0.639	0.748	0.611	0.607	0.644
GcvB-dppA	0.846	0.917	0.906	0.919	0.785	0.821	0.873	0.898	0.787	0.840	0.866	0.891	0.801	0.854	0.877	0.899

Table 5: Prediction accuracy. Sensitivity (also recall or true positive rate (TPR)), positive predictive value (PPV) or precision, F-measure, and MCC (harmonic and geometric mean of the first two) were calculated for the set of 17 experimentally verified sRNA-mRNA interactions. Averages are given in the last four lines. We tested RNAplex using precomputed accessibility profiles (plex-a), as well as the basic version (plex-c) with per-nucleotide penalty \(-c 30\). RIs99 and RIs04 stand for RIsearch using 1999 and 2004 parameter set, respectively, also with per-nucleotide penalty of 30 (\(= 0.3\) kcal/mol). Numbers shown in gray italics refer to interactions that have not been found as the single best-scoring, but only when taking into account suboptimal solutions. For interactions marked with an asterisk (*), we have extracted a longer and a shorter version from the literature. For example, [8] identified residues that were protected in \textit{in vitro} footprinting experiments and extended the target sites by biocomputational predictions. For this table we used the shorter forms (SF, with boundaries as given in Main Table 1). When instead using the longer forms (LF, maximum numbers of pairs shown in the original papers), we get the average measures as reported in the last two lines. When excluding suboptimal solutions (−subopt), RNAplex with accessibility misses only one interaction, while the other methods miss five each. When the top prediction does not share a base pair with the experimentally verified location, they contribute with 0 to the average. In all these cases it is enough to look at the three best suboptimal solutions in order to find one that overlaps the verified location. When allowing these suboptimal solutions (+subopt), the values as printed in gray italics contribute to the average.
4 Identifying human miRNA targets on chromosome-scale

4.1 Ranking known targets
interaction pair	chromosome	mRNA name	miRNA name	GUUGle	GUUGle*	TargetScanS	miRanda	GUUGle* ∩	Rank product	Relative hit score
AGTR1	miR-155	3+	97,261,371	13.25	113,671	14.37	180,386	8	570,135	4.59 5.66
BCL2	miR-16	18−	39,669,911	18.48	718	18.90	3,843	10	15,346	6.17 2.15
SLC7A1	miR-122	13−	49,987,579	22.88	125	23.80	290	9	233,723	22.48 20.62
TPP3	miR-16	16−	39,076,387	19.41	584	20.80	1,505	7	295,580	3.81 3.81
CLOCK	miR-141	4−	92,263,291	14.93	211	19.20	33,745	9	189,863	16.40 14.60
CXCL12	miR-23a	10−	67,660,041	18.01	12,188	19.80	12,591	8	345,446	16.40 14.60
CYP1B1	miR-127b	2−	123,169,357	26.94	27	28.20	32	12	8,253	16.40 14.60
E2F3	miR-34a	6+	85,195,913	18.53	45,062	17.20	226,049	9	219,194	16.40 14.60
EZH2	miR-101	7−	77,667,101	15.45	3,659	16.90	7,342	9	69,204	16.40 14.60
PARP8	miR-145	5−	88,834,294	20.01	28,064	21.80	32,349	10	52,652	16.40 14.60
FSTL1	miR-206	3−	97,261,371	15.08	67,128	18.40	31,741	8	345,446	16.40 14.60
GJA1	miR-1	6+	85,195,913	12.49	237,213	15.03	180,291	8	1,087,518	16.40 14.60
HAND2	miR-1	4−	85,263,291	12.14	29,151	12.20	106,885	8	868,628	16.40 14.60
HOXA1	miR-10a	7−	77,667,101	12.29	162,987	15.93	75,673	8	285,837	16.40 14.60
KIT	miR-221	4−	92,263,291	14.95	3,659	16.90	7,342	9	667,674	16.40 14.60
KIT	miR-222	4−	92,263,291	15.20	134,277	15.25	301,413	7	725,891	16.40 14.60
KRAS	let-7a	12−	63,199,786	14.71	46,793	16.30	59,593	7	1,815,721	16.40 14.60
LIN28A	let-7b	1+	111,179,527	25.61	444	27.00	670	14	8,845	16.40 14.60
MAPK14	miR-24	6+	85,195,913	27.07	154	27.10	653	10	290,052	16.40 14.60
MYCN	miR-101	2+	123,169,357	13.25	58,119	13.85	90,266	9	111,230	16.40 14.60
NRAS	let-7a	1−	111,179,527	13.20	216,020	17.70	50,049	9	1,812,612	16.40 14.60
PTEN	miR-19a	10+	67,660,041	16.38	1,769	17.70	3,779	10	11,427	16.40 14.60
ARHGAP32	miR-132	11−	64,323,812	18.11	11,583	18.80	38,484	10	52,347	16.40 14.60
SMC1A	let-7e	X−	53,731,681	21.33	1,629	22.20	3,416	12	33,335	16.40 14.60
TMSB4X	miR-1	X+	53,731,681	16.00	925	16.90	2,168	10	171,143	16.40 14.60
TPM1	miR-21	15+	41,621,622	13.28	30,154	15.60	29,478	9	50,347	16.40 14.60

Table 6: The table shows the interacting gene and miRNA, with chromosome information for target site location (name, strand, and the number of bases that have been masked). For each tool, we report a threshold (thr) found by looking for the highest scoring hit that overlaps a verified interaction site of this mRNA-miRNA pair. For RISearch and RNAplex this threshold is the ΔG, for GUUGle the match length, for TargetScanS the context+ score, for miRanda again the energy. As count we report the number of hits (of the given miRNA within this chromosome, direction) that fulfill this threshold, i.e., all predictions that score at least as good as the best verified interaction for that pair. GUUGle* uses only the seed of the miRNA as query (nt 1–8) instead of the whole mature miRNA (in GUUGle). For RISearch and RNAplex we additionally intersected the hits with those from GUUGle* and present the counts in the last two columns (number of predictions that overlap complete GUUGle seed matches and fulfill the energy threshold as applied for RISearch and RNAplex respectively). NF stands for ‘not found’. We use two different methods to evaluate performance and give the results in the last two rows where the best result is highlighted in bold.
4.2 Efficacy of RIsearch as filter

interaction pair	mRNA	TargetScanS	miRanda						
		unfiltered	G*	RIs	G*RIs	unfiltered	G*	RIs	G*RIs
		G*∩RIs							
AGTR1	miR-155	13,575	0.00%	57.51%	57.67%	16,753	18.24%	49.41%	58.82%
BCL2	miR-16	6,212	0.00%	16.85%	17.06%	7,147	9.49%	20.99%	27.12%
SLC7A1	miR-122	4,752	0.00%	5.35%	5.89%	6,139	9.09%	7.31%	17.66%
TPPP3	miR-16	7,384	0.00%	15.28%	15.59%	7,599	8.19%	17.70%	23.41%
CLOCK	miR-141	15,922	0.00%	47.46%	47.61%	14,890	18.66%	38.72%	50.64%
CXCL12	miR-23a	14,275	28.13%	56.39%	64.57%	11,865	8.42%	41.93%	47.91%
CYP1B1	miR-27b	23,204	0.00%	23.59%	23.83%				
E2F3	miR-34a	10,783	0.00%	1.28%	2.14%	12,938	9.90%	4.04%	15.82%
EZH2	miR-101	8,447	0.00%	68.06%	68.08%	6,139	9.09%	7.31%	17.66%
PARP8	miR-145	15,476	11.45%	25.85%	35.67%	15,476	11.45%	25.85%	35.67%
FSTL1	miR-206	15,069	0.00%	25.78%	25.99%	19,702	9.00%	30.56%	38.80%
GJA1	miR-1	12,865	0.00%	67.40%	67.44%	18,334	9.64%	60.36%	65.04%
GJA1	miR-206	12,865	0.00%	67.40%	67.44%	18,334	9.64%	60.36%	65.04%
HAND2	miR-1	13,614	0.00%	65.60%	65.65%	11,865	8.42%	41.93%	47.91%
HOXA1	miR-10a	7,548	0.00%	10.57%	10.73%	20,788	10.03%	9.04%	18.30%
KIT	miR-221	9,406	35.73%	22.02%	44.78%	11,952	21.81%	16.60%	31.41%
KIT	miR-222	9,406	35.73%	29.13%	51.57%	7,777	10.17%	28.79%	35.64%
KRAS	let-7a	NF	NF	NF	NF	20,788	10.03%	9.04%	18.30%
LIN28A	let-7b	11,539	0.00%	7.04%	8.28%	11,080	8.03%	7.58%	16.25%
MAPK14	miR-24	10,229	0.00%	2.38%	2.39%	11,080	8.03%	7.58%	16.25%
MYCN	miR-101	13,408	0.00%	67.62%	67.70%	10,340	14.72%	34.61%	45.34%
NRSAS	let-7a	11,446	0.00%	13.68%	13.91%	20,290	9.23%	13.03%	21.45%
PTEN	miR-19a	8,299	0.00%	54.40%	54.58%	10,680	19.58%	56.77%	65.38%
ARHGAP32	miR-132	7,378	0.00%	50.76%	50.95%	6,139	9.09%	7.31%	17.66%
SMG1A	let-7e	6,288	0.00%	9.27%	9.83%	11,564	10.78%	12.92%	23.74%
TMSB4X	miR-1	9,227	0.00%	67.42%	67.49%	12,742	10.38%	60.57%	65.24%
TPM1	miR-21	3,968	0.00%	70.14%	70.21%	12,692	12.38%	27.40%	36.60%

G full	Average	10,684	3.98%	35.25%	37.62%	12,692	12.38%	27.40%	36.60%
		3.98%	36.93%	2.56%	29.83%				

Table 7: RIsearch as pre-filter. For each of the interactions, we report the unfiltered number of predictions made by TargetScanS and miRanda, together with the relative reduction achieved by different (combination of) tools. G*: GUUGle* as described in previous table; RI: RIsearch with a threshold of -11 kcal/mol; G∩RI: combination of both. Interactions that are denoted as not found (NF), have been found by the filter, but not by the respective method. Results are summarized as their averages below. The last row shows the according averages, when using GUUGle instead of GUUGle*.

These results show that GUUGle can hardly reduce TargetScanS candidates. This is because TargetScanS uses an even stricter seed requirement, all candidates identified by TargetScanS are also found by GUUGle. The only exception is the “7mer-la” criterion, an exact match to positions 2–7 of the mature miRNA (the seed) followed by an ‘A’. In these cases, a perfect complementary stretch of six nucleotides is sufficient to be considered as candidate for TargetScanS. There are only three interactions where GUUGle in fact reduces the number of candidates.

For miRanda the trend is not as strong, but also here we see that RIsearch alone achieves a bigger candidate reduction than GUUGle alone. As both tools filter out different candidates, their combined effect is strongest.
The reductions that can be achieved by RIssearch as a pre-filter differ widely (see Suppl. Table e.g. for TargetScanS relative reduction varies between 1% and 70%). Part of the explanation is the difference in GC-content of the mature miRNA sequences. The higher the GC-content, the more likely are low binding energies. With the conservative threshold of -11 kcal/mol, the list of candidates can not be reduced substantially in those cases. One could address this, by choosing a stricter cut-off for miRNAs with a potentially stronger interaction.

This relation can be seen in the figure to the right. The Pearson correlation coefficient r between the GC-content and the reduction in miRanda hits is -0.6595 (p-value: 0.00046) and for TargetScanS -0.6996 (p-value: 9.953e-5).

Figure 3: Effect of GC-content of the miRNA sequence on relative reduction achieved.

References

[1] D. H. Mathews, M. D. Disney, J. L. Childs, S. J. Schroeder, M. Zuker, and D. H. Turner, “Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure,” Proc Natl Acad Sci U S A, vol. 101, pp. 7287–7292, May 2004.

[2] M. Rehmsmeier, P. Steffen, M. Höchsmann, and R. Giegerich, “Fast and effective prediction of microRNA/target duplexes,” RNA, vol. 10, no. 10, pp. 1507–17, 2004.

[3] J. S. Reuter and D. H. Mathews, “RNAstructure: software for RNA secondary structure prediction and analysis,” BMC Bioinformatics, vol. 11, p. 129, 2010.

[4] S. H. Bernhart, H. Tafer, U. Mückstein, C. Flamm, P. F. Stadler, and I. L. Hofacker, “Partition function and base pairing probabilities of RNA heterodimers,” Algorithms Mol Biol, vol. 1, no. 1, p. 3, 2006.

[5] N. O. Hodas and D. P. Aalberts, “Efficient computation of optimal oligo-RNA binding,” Nucleic Acids Res, vol. 32, no. 22, pp. 6636–6642, 2004.

[6] M. Andronescu, R. Aguirre-Hernández, A. Condon, and H. H. Hoos, “RNAsoft: A suite of RNA secondary structure prediction and design software tools,” Nucleic Acids Res, vol. 31, pp. 3416–3422, Jul 2003.

[7] H. Tafer, F. Amman, F. Egggenhofer, P. F. Stadler, and I. L. Hofacker, “Fast accessibility-based prediction of RNA–RNA interactions,” Bioinformatics, vol. 27, no. 14, pp. 1934–1940, 2011.

[8] C. M. Sharma, F. Darfeuille, T. H. Plantinga, and J. Vogel, “A small RNA regulates multiple ABC transporter miRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites,” Genes Dev, vol. 21, pp. 2804–2817, Nov 2007.