Maximum Likelihood method for ultrahigh energy cosmic ray cross correlations with astrophysical sources

R. JANSSON, G. R. FARRAR.
Center for Cosmology and Particle Physics, and Department of Physics
New York University, NY, NY 10003, USA
rj486@nyu.edu

Abstract: We extend the Maximum Likelihood method used by HiRes to study cross correlations between a catalog of candidate astrophysical sources and Ultrahigh Energy Cosmic Rays (UHECRs), to allow for differing source luminosities. Our approach permits individual sources to be ranked according to their likelihood of having emitted the correlated UHECRs. We test both old and new method by simulations for various scenarios. We conclude that there are 9 true correlation between HiRes UHECRs and known BLLacs, with a 6×10^{-5} probability of such a correlation arising by chance.

Introduction

Hints of excess correlations have been reported between ultrahigh energy cosmic rays (UHECRs) and BLLacs [4, 2, 1] and between UHECRs and x-ray clusters [3]. The analyses in refs. [4, 2, 3] present the number of correlated events as a function of angular separation between UHECR and source, and give the associated “chance probability” of finding a correlation at the observed level as a function of angular separation, in a large number of simulations with no correlations.

In order to incorporate the experimental resolution on an event-by-event basis, ref. [1] proposed a Maximum Likelihood-type procedure and applied it to studying correlations between UHECRs and BLLacs. This procedure (denoted the HiRes procedure, below) is motivated under the unphysical assumption that every candidate BLLac source has the same apparent luminosity. Even if BLLacs were standard candles with respect to UHECR emission, the BLLacs in the catalog have a large range of distances which would imply an even larger range of apparent luminosities, so one does not want to rely on such an assumption.

In the present paper we introduce a ML prescription which avoids the assumption of equal apparent source luminosity and allows the potential sources to be ranked according to the probability that they have emitted the correlated UHECRs. We test and compare both methods with simulations. We find that the HiRes method gives the correct total number of correlated events even when the sources do not have equal apparent luminosities, as long as the numbers of events are sufficiently low and the candidate sources are not too dense or clustered themselves. In general, our new method performs better in these more challenging cases, but very occasionally can be “tricked” by some special configuration. We apply the new procedure to BLLacs.

Maximum Likelihood methods for the cross-correlation problem

In the HiRes Maximum Likelihood method [1] the aim is to find, among N cosmic ray events, the correct number of events, n, that are truly correlated with some sources, of which the total number is M. Hence, there will be $N - n$ background events whose arrival directions are given by a probability density $R(x)$, which is simply the detector exposure to the sky as a function of angular position, x. For a true event with arrival direction s, the observed arrival direction is displaced from s according to a probability distribution $Q_i(x, s)$. For the analysis given in [1], Q_i is taken to be a $2d$
symmetric Gaussian of width equal to the resolution σ_i, of the ith event. (Note that, throughout, the parameter σ we quote appearing in a 2d Gaussian is related to σ_{68}, the radius containing 68% of the cases by $\sigma_{68} = 1.51\sigma$.)

The probability density of observing the ith event in direction x_i is

$$P_i(x_i) = \frac{n \sum_j^M Q(x_i, s_j)R(s_j)}{N \sum_{k=1}^M R(s_k)} + \frac{N - n}{N} R(x_i),$$

and the likelihood for a set of N events is defined to be $L(n) = \prod_{i=1}^N P_i(x_i)$, which is maximized when n is the true number of correlated events. Since L is a very small number, which depends on the number of events, it is more useful to divide L by the likelihood of the null hypothesis, i.e., $n = 0$, to form the likelihood ratio $R(n) = L(n)/L(0)$. The logarithm of this ratio is then maximized to obtain the number of correlated events, n.

To generalize this method to allow for sources with differing luminosities we assign a number of correlations, n_j, separately for each source, with $n = \sum_{j=1}^M n_j$. The probability density generalizes to

$$P_i(x_i) = \frac{\sum_{j=1}^M n_j Q(x_i, s_j)R(s_j)}{N \bar{R}_s} + \frac{N - \sum_{j=1}^M n_j}{N} R(x_i),$$

where $\bar{R}_s = \sum_{j=1}^M R(s_j)/M$. Maximizing $\ln R$ gives the set \{n_j\} of M numbers, containing the individual apparent source luminosities. We also get the set \{$\ln R_i\$} of N numbers, providing information about how strongly correlated the individual cosmic ray events are to the catalog of sources.

A crucial difference of the generalized method compared to the HiRes method is that $n_{tot} = \sum_{j=1}^M n_j$ gives an estimate of all correlations, i.e., both true and random correlations, whereas the HiRes method yields only an estimate of the number of true correlations. A crude estimate of the number of true correlations for the new method is $n_{tot} - \bar{n}_{rand}$, where \bar{n}_{rand} is the average number of correlations obtained when cosmic rays are uncorrelated to the data set of potential sources.

A better measure of n_{true} is summarized by the following equations, where the superscript in parentheses labels the “order” of refinement, giving successively better approximations to n_{true}:

$$n^{(0)} = n_{tot} = \sum_{j=1}^M n_j$$

$$n^{(1)} = \bar{f}^{-1}(n^{(0)} - \bar{n}_{rand}(N))$$

$$n^{(2)} = \bar{f}^{-1}(n^{(0)} - \bar{n}_{rand}(N - n^{(1)})),$$

where $\bar{n}_{rand}(N)$ is the average total number of correlations found with N randomly generated events, and where \bar{f} is the average fraction of true events that are recovered as correlated. This fraction will typically be slightly smaller than unity since under the assumption that true correlations are separated according to a Gaussian distribution, some events are separated too far from their sources to be accepted as correlated events. We measure \bar{f} by simulations.

Testing with simulations

In vetting the two methods with simulations, we test their ability to correctly reproduce the number
of true correlations on mock data sets. This allows
us to explore the effect of large event and source
densities, the effect of anisotropy in the source dis-
tribution, and the consequences of having incorrect
event resolutions.

We begin by testing the ability to reproduce the
number of true correlations in the simplest case of
dilute, random sources. A first simulation is done
using half the sky, uniform detector exposure \(R(x) \),
156 randomly distributed sources and 271 cosmic
rays (the numbers relevant to the BLLac studies of
[2] and [1]). Ten of the cosmic rays are Gaussianly
aligned (a cosmic ray paired to a source, with angu-
lar separation according to the probability density
\(Q \), taken to be a 2d Gaussian of width \(\sigma \)), for var-
ious event resolutions. A second simulation uses
the actual BLLac source positions; these are more
clustered than the random case. As shown in figure
1, both methods reproduce well on average the cor-
rect number of correlations, with similar error bars
(which include 90% of the 10k realizations). As \(\sigma \)
increases, the dispersion in the number of found
correlations increases rapidly.

For samples with very large numbers of events and
of potential sources, we expect the generalized ML
method to perform worse than the HiRes method,
because \(n^{(2)} \) is obtained by taking the difference
of two very large numbers, \(n^{(0)} \) and \(\bar{n}_{rand} \). More-
over, as the source density becomes very large it
comes impossible to reliably distinguish the
“contributing” sources. The total number of true
correlations becomes the only interesting quantity
to calculate. Thus, only the HiRes method should
be used for the case of very high event densities.
However, the HiRes method also deteriorates at
high densities, as shown in figure 2.

If the resolution of cosmic ray events are consist-
tently over- or underestimated in a given data set, the
extracted correlations will be incorrect. To test
the sensitivity of the two methods to this problem
we repeat the first type of simulations, but rescale
the event resolution when aligning a cosmic ray to
a source. In figure 3 the average number of found
correlations for the two methods are plotted as a
function of the amount by which \(\sigma \) is rescaled. The
new method is far less sensitive to incorrectly esti-
mated resolution than is the HiRes method.

Significant spatial correlations within the data set
of potential sources may skew the found number of
UHECR correlations. In figure 4 we show the
results of a simulation with clustering of poten-
tial sources introduced by hand. The figure shows
the mean for 10k realization of 271 cosmic ray
events with \(\sigma = 0.4 \), and two different scenar-
ios for the correlation with source clustering, for
156 candidate sources. In both cases, candidate
sources and CRs are distributed over one hemi-
sphere; ten clusters of candidate sources are ran-
domly distributed on the sky, each consisting of ten
individual candidate sources distributed around the
cluster center according to a 2d Gaussian of width
\(d \) degrees. The remaining 56 candidate sources
are placed at random in the hemisphere. In the
first case, a randomly picked candidate source in
each cluster has one cosmic ray event Gaussianly
aligned to it and the remaining 261 cosmic rays
are placed at random. In the second case, ten CRs
are Gaussianly aligned with ten of the randomly placed source candidates and the remaining CRs are placed at random. As figure 4 demonstrates, the HiRes method significantly overestimates the true number of correlations if the sources are in clustered regions and underestimates it when the candidate sources show significant clustering but the UHECRs do not come from the clustered regions. By contrast the new method performs well in this test.

Application to BL Lac objects

The binned analysis performed in [2] on the sample of 156 BL Lac objects with optical magnitude $m < 18$ from the Veron 10th Catalog [5] and the 271 HiRes events with $E > 10^{19} \text{eV}$ showed a correlation at the 10^{-3} level. This was subsequently corroborated using the HiRes method [1], with $n = 8.0$ found correlations; the fraction of Monte Carlo runs with greater likelihood than the real data, was found to be 2×10^{-4}. Using the generalized ML method we find the number of correlations to be $n^{(2)} = 9.2$, with $F = 6 \times 10^{-5}$. As shown in figure 1, the HiRes method underestimates the correct number of correlations by 0.7 on average in these conditions. However, the difference in these results is consistent with the dispersion in simulations. For a list of the BL Lacs correlated to UHECRs and further analysis, see forthcoming paper.

Conclusions

We have introduced a generalization of the HiRes Maximum Likelihood method, which allows the most likely sources of individual events to be identified and ranked. Using simulations we have tested the two Maximum Likelihood methods and find that they complement each other well: the HiRes method allows a fast way to estimate the number of true correlated events, while the new method gives the quality of correlation between individual sources and cosmic rays rather than just the total number of correlated events. Furthermore, the new method is less sensitive to the validity of the estimated angular resolution, and is better when candidate sources are clustered (as BL Lacs are). We conclude that both methods should be used; if they disagree markedly on the total number of correlations the data sets may be aberrant. Applying the new method to the case of BL Lacs, confirms an excess of correlations between HiRes cosmic rays with $E > 10^{19} \text{eV}$ [1] and BL Lacs of the Veron 10th catalog. The excess obtained is slightly larger (9.2 rather than 8.0 events) than with the HiRes method, but the two values are compatible within the range of variation found in simulations.

Acknowledgements

We thank S. Westerhoff and C. Finley for information and discussions. This research has been supported in part by NSF-PHY-0401232.

References

[1] R. U. Abbasi et al. *Astrophys. J.*, 636:680–684, 2006.
[2] Dmitry S. Gorbunov et al. *JETP Lett.*, 80:145–148, 2004.
[3] E. Pierpaoli and G. R. Farrar. *astro-ph/0507679*, 2005.
[4] P. G. Tinyakov and I. I. Tkachev. *JETP Lett.*, 74:445–448, 2001.
[5] M.-P. Veron-Cetty and P. Veron. *A&A*, 374:92, 2001.