INTEGRATED INTO THE DEVELOPMENT OF CHROMOSOME STRUCTURE

Meiosis, a specific type of cell division generating gametes with half DNA complements of progenitor cells, is essential for successful sexual reproduction. During meiosis, DNA is replicated only once but is followed by two successive rounds of chromosome segregation. Homologous chromosomes (homologs) are segregated during meiosis I and sister chromatids (sisters) are segregated during meiosis II.

Meiotic homologous recombination, a crucial feature of meiosis, is initiated from DNA double-strand breaks (DSBs) catalyzed by SPO11 (SPO11) transestersase.1–5 After SPO11-oligo complexes are removed, the DSB ends are further resected by exonuclease to yield long 3’ single-stranded tails (ssDNA). With the help of Recombinase A (Rec A) related strand-exchange proteins, Disrupted Meiotic cDNA 1 (DMC1) and RADiation sensitive 51 (RAD51), the ssDNA tails search for and invade intact homologous duplexes to form displacement loops (D-loops).6 Among a large number of DSBs, only a small subset (approximately 10% in mice) is repaired as crossovers (COs), with the reciprocal exchange of chromosome arms flanking the break site. However, the majority of DSBs are repaired as noncrossovers (NCOs) without the exchange of flanking arms (Figure 1a).2

Homologous recombination occurs in meiotic chromosomes. The meiotic chromosome is proposed to be organized as a linear array of loops, and the base of these loops plus a large number of proteins compose the chromosome axis (Figure 1b and 1c).7 The density of loops along a chromosome axis is highly conserved among various organisms (approximately 20 loops per micron of axis).8 Therefore, loop size is negatively correlated with axis length.9,9

The process of homologous recombination is accompanied by elaborate meiotic chromosome dynamics and tightly integrated into meiotic chromosome structure.3,4,10–13 At the DNA level, DSB sites are mapped to sequences located in chromatin loops. However, cytologically, recombination complexes are observed on axes that are DSB cold spots.16–20 This paradox is resolved by the proposed tethered loop-axis complex (TLAC; Figure 1d).16,17,21 In this model, SPO11 complexes located on chromatin loops are recruited to axes and activated to generate DSBs. After resection, one end of a DSB is released to search for its homologous template (Figure 1d). In most organisms, most of the DSB-mediated interhomolog interactions seem to be responsible for homolog alignment. However, homolog synapsis mediated by the synaptonemal complex (SC) initiates only...
Figure 1: Meiotic recombination is integrated into the development of chromosome structure. (a) Meiotic recombination. Usually, many DSBs occur in a nucleus. But, only a few of them are repaired as COs (with interference) and the majority are repaired as NCOs. (b) An electron microscopy picture to show pachytene chromosomes of the moth *Hyalophora columbia*. The copyright license of reproducing this picture was received from the publisher Elsevier. (c) Cartoon for meiotic chromosome organization. (d) The tethered loop-axis complex brings DNA from loops to axes to generate DSBs and one DSB end is released to search for and bring its homolog into proximity. DSB: double-strand breaks; CO: crossover; NCO: noncrossover.

CO PATTERNS AND THE UNDERLYING LOGIC

Besides exchanging genetic information, COs also have a specific role in ensuring faithful homolog segregation at anaphase I, through physically connecting homologs together in combination with sister chromatid cohesion (Figure 2a and 2b). COs are cytologically visualized as chiasmata after SC disassembly (Figure 2a and 2b). COs can also be observed as late/large (recombination) nodules at pachytene under electron microscopy, marked by specific recombination protein foci including MutL homolog 1/3 (MLH1/3), ZIPper 3 (Zip3), or Homo sapiens Enhancer of Invasion 10 (HEI10) in diverse organisms, and defined by genetic or DNA polymorphism analysis from progeny.

CO patterns (the number and distribution of chiasmata/COs) are tightly controlled (Figure 2a and 2b). Aberrant CO patterns usually result in chromosome segregation errors and thus aneuploidy, which is the leading cause of infertility, abortion, and congenital birth defects in humans. The tight control of CO patterns is exhibited as three major features: obligatory CO, CO interference, and CO homeostasis.

1. In most organisms, each nucleus usually has only a small number of COs. If they are randomly distributed among chromosomes, a large number of chromosomes would not get any CO. For example, each mouse spermatocyte has approximately 23 COs on 19 autosomes. If COs are randomly distributed among chromosomes with CO numbers proportional to axis lengths, at least one chromosome in each nucleus will fail to get even one CO (from 10 000 simulations). As expected, the longest chromosome, chromosome 2, has the lowest probability of absence of COs (approximately 16%), and the shortest chromosome, chromosome 19, has the highest probability of absence of COs (approximately 50%). However, given its essential role for accurate chromosome segregation, each pair of homologs acquires at least one CO, which is traditionally referred to as the obligatory CO. As a result, the frequency of CO absence from chromosomes is maintained at a very low level (usually <2%, except for human females at approximately 10%).

2. Not only the numbers but also the positions of COs on chromosomes are not random. When two or more COs are present on a pair of homologs, these COs tend to be farther away from each other rather than appearing to be randomly placed.
This phenomenon, known as CO interference, was noted more than 100 years ago, and reflects the existence of a CO generating an interference signal to inhibit the occurrence of other COs nearby. Therefore, CO interference restricts the maximal number of COs on each pair of homologs, usually only 1–3 in most organisms. Studies have shown that CO interference spreads along chromosomes with micron of axis as a metric. Consistently, various studies suggest that intact chromosome axes are required for proper CO interference. However, the mechanism of CO interference is unknown.

Among several models proposed to explain CO interference, the “fill-in-the-holes” model (also known as beam-film or stress model) has been widely accepted to explain the basic logic of CO patterning (Figure 2c). In this model, CO precursors, an array of DSB-mediated interhomolog interactions, are distributed along chromosomes. Among them, the most sensitive precursor is first designated to become a CO (i.e., CO designation), and simultaneously, the interference signal from this designation site propagates along the chromosome axis in both directions to inhibit further CO designations in nearby regions. The distance over which the interference signal spreads is the “interference distance,” measured as physical axis length (micron). The strength of interference dissipates with increasing distance. If a subsequent CO designation occurs, it will tend to occur far away from the existing designation sites to “fill in the holes.” Finally, multiple CO designation sites and thus COs tend to be evenly spaced along a chromosome.

The other two features of CO patterns, the obligatory CO and CO homeostasis, can be easily integrated into this logic and understood as described below. At least one CO is required for faithful chromosome segregation, and this can be ensured by a highly efficient CO designation process, which is probably regulated evolutionarily. The existence of the CO interference signal creates an inhibition zone, where other CO precursors are inhibited regardless of the increased or decreased number of precursors in that zone (Figure 2d). Therefore, the numbers of CO designations and corresponding COs are maintained at a relatively stable level, and are less affected by altered precursor numbers. Moreover, stronger CO interference results in fewer COs and stronger CO homeostasis (Figure 2d and 2e).

It is worth noting that studies based on different criteria suggest that there are two types of COs, interference-dependent and -independent COs. In most organisms, a majority of COs are sensitive and subject to CO interference, and require 2MM (including at least Zip1-3, Meiotic recombination 3 (Mer3), and MutS homolog 4/5 (MSH4/5) in budding yeast) group proteins. In both mouse and human, this type of CO accounts for 90%–95% of total COs and can be marked by MLH1 foci at pachytene. For the other 5%–10%, a minority of COs are insensitive to CO interference and require MMS and UV Sensitive 81 (MUS81) and MutS homolog 4 (MMS4)/Essential Meiotic structure-specific Endonuclease 1 (EME1), which is thought to arise in a different manner from the majority of COs. However, MUS81-/- mutant mouse shows an upregulated number of MLH1 foci and the normal number of chiasmata. Using combined fluorescence and electron microscopy, a study in tomato revealed interference between the two types of COs. Therefore, these studies suggest an interaction between the two types of COs. Further investigation is necessary to elucidate the mechanistic relationship.

MEASUREMENTS OF PHENOMENOLOGICAL AND MECHANISTIC CO INTERFERENCE

CO interference is originally described as the occurrence of one CO that interferes with the occurrence of another CO nearby on the same pair of homologs. CO interference is traditionally measured using the coefficient of coincidence (CoC) method. For any two intervals, the frequency of CO occurrence in each interval can be calculated, and the expected frequency of CO coincidence in both intervals can be obtained by multiplying the frequencies of CO occurrence in the two intervals, while the observed frequency of CO coincidence in both intervals can be calculated from experimental data. CoC is defined as the ratio of the frequency of observed double COs to the frequency of expected double COs (observed/expected). A more rigorous way to measure CO interference is a CoC curve analysis when multiple CO intervals are available. For this purpose, CoC values are calculated from all pairs of intervals and plotted as a function of inter-interval distance (Figure 2f). Generally, the CoC value is very small at the short inter-interval distance, reflecting strong interference, and CoC increases to approximately 1 with increasing inter-interval distance, reflecting no interference. At a particular inter-interval distance (i.e., the average distance between adjacent COs), a hump with CoC value much larger than 1 is often seen, especially for genetically short chromosomes, reflecting evenly spaced COs (Figure 2f). Therefore, the CoC (curve) method integrates both the distance and the “evenness” information.

Because COs tend to be evenly distributed along chromosomes due to CO interference, a gamma distribution, which fits the frequency distribution of inter-adjacent CO distances, has often been applied to measure the strength of CO interference. A higher value shape parameter (γ) indicates more evenly spaced COs, and thus stronger CO interference. However, the gamma shape parameter only reflects the “evenness” regardless of the absolute distance.

The term “interference” only describes the phenomenon. Both CoC (curve) analysis and gamma distribution methods measure the “phenomenon” but do not reveal the essence or the mechanism of CO interference, for example, the interference signal. Alterations in CoC or gamma shape parameter can result from an altered patterning process other than mechanistic interference, especially factors acting before interference imposition, such as the number of precursors. Additionally, gamma distribution but not CoC can also be affected by alterations after interference spreading, for example, CO maturation inefficiency.

To distinguish the effects of different factors on observed phenomenological interference, a mathematical simulation approach based on the “fill-in-the-holes” model was developed. According to the CO patterning logic described above, the following four sets of parameters are required for this simulation: (1) the array of CO precursors; (2) the strength of CO designation and the response of precursors to CO designation; (3) the strength of CO interference; that is, the distance over which interference spreads; and (4) CO maturation efficiency, that is, the probability of a designated CO becoming a real CO. This mathematic simulation approach can quantitatively mimic the CO patterning process and is very useful to differentiate how different factors alter CO interference. This simulation method has very accurately captured observed CO patterns in several investigated organisms, including budding yeast, Sordaria, Arabidopsis, maize.
human, and mouse. Moreover, it helps in identifying the first CO interference regulatory pathway, discovering human female-specific CO maturation inefficiency, clarifying the per-nucleus CO co-variation resulting from the co-variation of chromosome axis lengths, and explaining CO pattern differences between the two sexes and between long and short chromosomes.

CO FREQUENCY IS MAINLY REGULATED BY CHROMOSOME AXIS LENGTH

Although the positions of COs are stochastic on a given chromosome, COs preferentially occur in some chromosome regions (CO hotspots) and are rare in other regions, such as the pericentromeric and rDNA regions. The existence of DSBs is the prerequisite for the occurrence of COs; however, the probability of a DSB becoming a CO varies significantly from locus to locus. This may be regulated at the stages of partner choice (interhomolog vs intersister), CO/NCO differentiation, or CO maturation. Differences in partner choice of DSB repair have been observed in *Schizosaccharomyces pombe*; both DSB formation near centromeres and its repair by homologs are inhibited in a distance-dependent manner; there are different CO/NCO ratios at different loci in mouse meiosis and a reduced CO/NCO ratio near telomeres in budding yeast. Therefore, local chromosome structures influence the occurrence of COs, and CO hot spots do not always overlap with DSB hot spots. Regardless of the local regulation of CO formation, it has long been known that there is a strong positive correlation between chromosome axis length and CO number under diverse conditions:

1. In one nucleus, usually a chromosome with more DNA content tends to have a longer axis and more COs. However, when two chromosomes have very similar DNA content, one chromosome axis can be longer than the other one. In this case, the chromosome with the longer axis also has more COs. Therefore, it is the axis length but not DNA content correlates with CO number. Consistent with this, the number of COs correlates with axis length better than with DNA content. For example, in mouse spermatocyte, \(r = 0.96 \) between CO number and axis length; however, \(r = 0.86 \) between CO number and DNA content (Figure 3a and 3b).

2. Among different nuclei, both chromosome axis lengths and the numbers of COs can vary significantly, and nuclei with longer chromosome axis tend to have more COs. Moreover, our recent studies have found that the numbers of COs co-vary among chromosomes at a per-nucleus basis, which results from co-variation of chromosome axis lengths (Figure 3c and 3d).

3. In many organisms, CO frequencies are different between males and females, and the sex with longer chromosome axis also has more COs. For example, human females have 2-fold longer chromosome axes compared to human males, and have approximately 1.6-fold more COs as revealed by various measurements. Similarly, in mouse and zebrafish meiosis, females have approximately 20% longer chromosome axes and also approximately 20% more COs than males. However, in some other organisms including *Arabidopsis* and maize, males have longer meiotic chromosome axes and thus more COs. In some organisms, chromosome axes are formed before DSB formation and thus before the recombination process.

4. For the same species, different genetic backgrounds may show different CO frequencies. Among CAST/EiJ, C3H/HeJ, and C57BL/6J mice, C57BL/6J spermatocytes have the longest chromosome axes and also the highest number of COs. However, CAST/EiJ spermatocytes have the shortest chromosome axes and also the lowest number of COs.

5. Several mutants are found to have altered chromosome axis lengths in diverse organisms, and these mutants also have correspondingly altered CO numbers. For example, studies from diverse organisms show that mutants of cohesin and related factors have decreased meiotic chromosome axis lengths and reduced COs. However, mutants, such as *Hr6b* mouse spermatocytes, have longer axes and more COs.

The above evidence suggests that CO number and meiotic chromosome axis length are tightly linked. Moreover, alterations in chromosome axis length and corresponding alterations in DSBs or DSB-mediated interhomolog interactions are also observed, between males and females in both human and mouse, and among mice in different genetic backgrounds. These results suggest that it is axis length that determines the number of COs but not the other way around, which is also supported by the following evidence. (1) Absence of or alterations in DSBs and/or DSB-mediated interhomolog interactions do not have an obvious effect on chromosome axis length in various organisms including mouse. In some organisms, chromosome axes are formed before DSB formation and thus before the recombination process.
(2) CO formation has little effect on overall chromosome axis length alteration. For example, studies on Caenorhabditis elegans and Sordaria show that the occurrence of a CO (designation) only locally alters chromosome axis length/structure; however, this change is subtle in terms of the overall axis length.52,104

UNIQUE CO PATTERNS ON SHORT CHROMOSOMES

During meiosis, short chromosomes behave differently from long chromosomes in several aspects. In budding yeast, short chromosomes complete homolog pairing late.106 However, in other organisms, short chromosomes seem to complete homolog pairing earlier than long chromosomes.107 Structurally, short chromosomes are organized with a longer axis and smaller loops than the genomic average as observed in budding yeast.33,79 In both budding yeast and mouse, short chromosomes tend to have higher DSB density, which is attributed to multiple effects including early DNA replication, centromere and telomere effects, and an “intrinsic boost.”71,80,109,110

A special case is mammal XY chromosomes with a pretty short homologous region (pseudoautosomal region [PAR]), where DSb formation mediated by Spo11a and homolog pairing are late relative to autosomes. Although PAR is very short (<1 Mb in mouse), it is organized with an extremely long axis and small loops (approximately 1 \mu m of axis per Mb compared with approximately 0.1 \mu m of axis per Mb for autosomes), and obtains 10- to 20-fold higher DSB density than the genomic average.111–114

Studies on meiotic recombination have revealed that short chromosomes have different CO configurations in various organisms including human and mouse (Figure 4).9,37,83,115 (1) A high frequency of short chromosomes does not have the obligatory CO. (2) Short chromosomes tend to have higher CO density (CO number per micron of chromosome axis), which is usually interpreted as the obligatory CO effect. The higher DSB density on short chromosomes may also make a small, but not a large, contribution given the existence of CO homeostasis.33,79 (3) COs tend to be located more distally and the average inter-adjacent-CO distance takes up a larger proportion of the chromosome axis. However, the absolute distance between adjacent COs is shorter.9,37,83,115 (4) The distribution of inter-CO distances tends to be more even as indicated by a bigger gamma shape parameter. Sometimes, this is interpreted as short chromosomes having higher CO interference; however, this is not true.115,116 At least some of these features (e.g., chromosomes without COs) contribute to the observed high frequency of chromosome mis-segregation.9,12,33 However, it is unclear whether these special CO configurations are just because short chromosomes have short axes or because they have other special features.

Analysis of CO interference in diverse organisms based on gamma distribution and related methods raises the question of whether short chromosomes have stronger CO interference.63,115–120 Gamma distribution is used for the analysis of distances between events along an infinite axis. However, a chromosome axis is finite and only chromosomes with two or more COs are included in this analysis, which introduces bias and results in inappropriately fitted gamma distributions, especially for short chromosomes.52,63 This is illustrated by a set of “artificial” data generated by the beam-film application using the same set of parameters except for different chromosome axis lengths (Figure 4a–4f). To resolve the above problem, a modified gamma distribution analysis has also been applied. In this analysis, all chromosomes, including chromosomes with only one or zero CO, and also the distances from chromosome ends to the nearest CO, are included. However, this modified gamma distribution analysis only partially improves the fitting (Figure 4e, solid bars from gamma distribution vs dashed bars from modified gamma distribution). The CoC analyses show that all these chromosomes have the same CO interference, and CoC curves of shorter chromosomes increase rapidly (Figure 4f). The CoC analysis of male mouse MLH1 data also shows that all chromosomes have the same CO interference, which is further confirmed by beam-film simulations (Figure 4g and 4h, dashed vs solid lines). Therefore, it seems like short chromosomes have the same CO interference as long chromosomes. Similarly, CoC analyses in human and mouse also show that both males and females have the same/similar CO interference, although females have longer axis and thus more COs than males (Figure 4g).5,9,119,121 The same CO interference in both sexes is also confirmed in Arabidopsis, in which male meiosis has longer axes and more COs.9,20

CO PATTERNS AND THE HIGH FREQUENCY OF HUMAN ANEUPLOIDIES

The frequency of human embryo aneuploidy increases with increasing maternal age, and for women close to their end of the reproductive lifespan, the frequency of embryo aneuploidy can even reach 50% or more, which is known as the “maternal age effect.”111,122–125 Compared with other organisms, even in young women, the frequency of embryo aneuploidy is still very high (approximately 10%).35,123–124 A recent study reveals that human female-specific CO maturation inefficiency underlies the high aneuploidy frequency.7 In addition, several other age-related CO alterations in humans are noted.

Maternal age effect

Maternal age effect is proposed to be mainly caused by age-dependent loss of sister chromatid cohesion.35,126–131 Sister cohesion is mainly mediated by the cohesin complex, which is loaded before or during DNA replication and not replenished.132,133 Therefore, gradual deterioration of cohesion over time results in loss of sister cohesion. First, decreased pericentromeric cohesion impairs the function of centromeres and directly results in chromosome segregation errors. Second, decreased arm cohesion between two adjacent COs and/or between the distal CO and chromosome end weakens the function of the chiasma in connecting homologs.85

Besides sister cohesion, many other factors including the states of kinetochore, spindle, checkpoint, environment, and recurrence of DNA damage also have important contributions to chromosome mis-segregation and thus maternal age effect.134–140

CO maturation inefficiency in human oocytes

The maternal age effect is an important factor for human embryo aneuploidy. However, even in young women, the frequency of aneuploidy is still approximately 10%.35,122 Most aneuploidy (approximately 90%) results from oocyte meiosis errors, especially homologous chromosome mis-segregation during meioisis I.13 A recent study comparing meiotic recombination between human males and females, reveals that human females have CO maturation inefficiency, which leads to a fraction of CO designations failing to become mature COs (Figure 5).3,13

CO maturation inefficiency significantly alters CO patterns to give rise to a high frequency of chromosomes with error-prone CO configurations (Figure 5).11,85 First, CO maturation inefficiency decreases the number of COs on all chromosomes, probably in proportion to the chromosome axis length (Figure 5a and 5b). Second, CO maturation inefficiency has more severe effects on short chromosomes than on long chromosomes, by generating high levels of chromosomes with error-prone CO configurations, for example,
without the obligatory CO, or with distal-only or proximal-only COs (Figure 5). Aberrant COs cause improper tensions at metaphase I, which leads to homolog segregation errors and thus aneuploidy. Third, different from human males, the completion of meiotic recombination and CO maturation inefficiency occur in the human female fetal stage and before the maternal age effect occurs. Therefore, CO maturation inefficiency is a major basis for human female aneuploidy. With increasing age, the maternal age effect interacts with aberrant COs caused by CO maturation inefficiency, to significantly elevate the frequency of chromosome mis-segregation and thus aneuploidy.

Other age-related alterations in CO and aneuploidy frequency

Several other age-related alterations in COs and human aneuploidy have also been recognized but less studied.

1. Younger parents tend to produce a higher frequency of aneuploid embryos.\(^\text{35,123,124,141,142}\) However, the reason is not known. Cole and colleagues have found that compared to adult males, juvenile males tend to have longer meiotic chromosome axes, less proportionally elevated CO number, and thus decreased CO density (CO number per micron of axis).\(^\text{142}\) This similarity between juvenile males and adult females (compared with adult
meiotic chromosome shapes’ crossover patterns

S Wang et al

CONCLUSION

Crossover recombination is essential for meiosis, which not only ensures faithful chromosome segregation but also promotes the genetic diversity of progenies for evolutionary adaption. The process of crossover recombination is tightly integrated into the meiotic chromosome structure, which is essential in regulating crossover patterns. Chromosomes with aberrant crossover configuration are subject to mis-segregation, which is the primary cause of aneuploidy and thus infertility, abortion, stillbirth, and congenital birth defects in humans. Therefore, crossover recombination remains at the forefront of biological and reproductive medicine research and attracts the interest of different research fields. Although significant advances have been made in recent years, many outstanding questions need to be further investigated. For example, identifying the CO interference signal and how it is regulated; how and when CO/NCO differentiation is determined, and what factors are involved; how meiotic chromosome loop/axis forms; and how CO maturation inefficiency is regulated and identifying its evolutionary advantages.

AUTHOR CONTRIBUTIONS

SXW and LRZ drew figures and wrote the draft. All authors discussed and edited the manuscript. All authors read and approved the final manuscript.

Figure 5: Crossover maturation inefficiency generates aberrant crossover configurations, especially on short chromosomes. (a) Cartoon to show the effects of crossover maturation inefficiency. (b) Crossover maturation inefficiency decreases crossover number. (c and d) Crossover maturation inefficiency does not affect crossover interference as revealed by (c) CoC and (d) gamma distribution analysis. Maturation efficiency, M = 0.4 (green), 0.75 (red), or 1 (black). Crossover maturation inefficiency does not alter (e) relative crossover density distribution for chromosome with only one crossover designation, or (f) overall crossover density distribution. (g) Crossover density distribution of chromosomes with one crossover altered by crossover maturation inefficiency. Data used from simulations: CO designation driving force, S_{max} = 3.8; clamped left and right ends, $cL = cR = 1.1$; the evenness level of precursors along chromosomes, $E = 0.6$; precursor distribution among chromosomes, $B = 0.6$; precursor number, $N = 7$; interference distance, $L = 0.43$; $M = 0.4, 0.75$ or 1 as indicated.

2. Compared with the dramatic effect of maternal age, a mild paternal age effect is also observed in some studies. Although analysis of parent-child pairs does not detect increased CO frequency in old fathers, studies in old mice detect a small increase in CO frequency and SC/axis length. Increased meiotic errors with increasing paternal age are also observed in old mice, but these aberrant nuclei are probably eliminated and thus do not give rise to sperm. It is unknown whether this also exists in men, and examination of CO frequency in spermatocytes of old men will provide valuable information.

3. Several studies have shown that older women tend to have higher CO frequency than young women. This is sometimes explained as old mothers tend to have more interference-insensitive COs based on two-pathway gamma model analysis. However, CO recombination is completed at the meiotic pachytene stage during the human female fetal stage and it is less likely that additional COs occur during the long arrest period (dictyate). Moreover, CO frequency is maintained constantly in oocytes at different ages of mothers. A more reasonable explanation is that oocytes with more COs have a higher probability to keep at least one chiasma (the loss of sister cohesion results in chiasma loss), and thus a higher probability to have euploid eggs and children. These nuclei have more COs likely because they have either relatively longer axes or more sensitive precursors.

AUTHOR CONTRIBUTIONS

SXW and LRZ drew figures and wrote the draft. All authors discussed and edited the manuscript. All authors read and approved the final manuscript.
Sex specific requires properly assembled. Probing meiotic recombination and
2019; 20: 11–6.
29. Luo S, Zong C, Fan W, Yang M, Li J, et al. Probing meiotic recombination and
30. Jones GH. The control of chiasma distribution. Symp Soc Exp Biol 1984; 38:
31. Gray S, Cohen PE. Control of meiotic crossovers: from double-strand break formation
to designation. Ann Rev Genet 2016; 50: 175–210.
32. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights
into an age-old problem. Nat Rev Genet 2012; 13: 493–504.
33. Ottolini CS, Newnham L, Capalbo A, Nabesuma H, Askan D, et al. Genome-wide
maps of recombination and chromosome segregation in human oocytes and embryos
show selection for maternal recombination rates. Nat Genet 2015; 47: 727–35.
34. Froenicke L, Anderson LK, Wienberg J, Ashley T. Male mouse recombination maps for
each autosome identified by chromosome painting. Am J Hum Genet 2002; 71:
35. Sturtevant AH. The behavior of the chromosomes as studied through linkage. Z Indukt
Abstamm u VererbLehre 1915; 13: 234–87.
36. Muller HJ. The mechanism of crossing over. Am Nat 1916; 50: 193–434.
37. Ruiz-Herrera A, Zavodova M, Fernandez J, Sebhastova H, Capuila L, et al. Recombination
correlates with synaptonemal complex length and chromatin loop size in
bovids-insights into mammalian meiotic chromosome organization. Chromosoma
2017; 126: 615–31.
38. Stapley J, Feulner PG, Johnston SE, Santine AW, Smadja CM. Variation in
recombination frequency and distribution across eukaryotes: patterns and processes.
Philas Trans R Soc Lond B Biol Sci 2017; 372: 20160455.
39. Martini C, Diaz RL, Hunter N, Keeney S. Crossover homeostasis in yeast meiosis.
Genes Dev 2006; 20: 126: 285–95.
40. Zhang L, Wang S, Yin S, Hong S, Kim KP, et al. Topoisomerases II mediates meiotic
crossover interference. Nature 2014; 511: 551–6.
41. Cole F, Kauppi L, Lange J, Roig I, Wang R, et al. Homeostatic control of recombination
is implemented progressively in mouse meiosis. Nat Cell Biol 2012; 14: 424–30.
42. Rosu S, Libuda DE, Villeneuve AM. Robust crossover assurance and regulated
interhomolog access maintain meiotic crossovers number. Science 2011; 334:
1286–9.
43. Yokoi R, Zawadzki KA, Nabeshima K, Drake M, Arur S, et al. COSA-1 reveals robust
homeostasis and separable licensing and reinforcement steps governing meiotic
crossovers. Cell 2012; 149: 75–87.
44. Globus ST, Keeney S. The joy of six: how to control your crossovers. Cell 2012;
45. 119: 2–12.
46. Drouaud J, Dietrich AJ, Hco C, Stamatopoulos K,宅uma AK, et al. Small RNAs
repress maternal recombination to maintain meiotic homeostasis. Cell 2013;
151: 1664–75.
47. Nabeshima K, Villeneuve AM, Hillers AJ. Chromosome-wide control of meiotic crossingover in C.
egens. Curr Biol 2003; 13: 1641–7.
48. Nabeshima K, Villeneuve AM, Hillers AJ. Meiotic chromosome-wide regulation of meiotic
recombination in Caenorhabditis elegans requires proper assembly of chromosome axes. Genetics
2004; 168: 1275–92.
49. Libuda DE, Uzawa S, Meyer BJ, Villeneuve AM. Meiotic chromosome structures
constrain and respond to designation of crossover sites. Nature 2013; 502: 703–6.
50. de Boer E, Dietrich AJ, Hsco C, Stamatopoulos K,宅uma AK, et al. Small RNAs
repress maternal recombination to maintain meiotic homeostasis. Cell 2013;
151: 1664–75.
51. Fowler KR, Hypa RW, Cromie GA, Smith GR. Physical basis for long-distance
communication across meiotic chromosomes. Proc Natl Acad Sci U S A 2018;
115: E9333–42.
52. Zickler D, Kleckner N. A few of our favorite things: pairing, the bouquet, crossover
interference and homeostasis in a single process. Cell 2013; 50: 126: 245–6.
53. Zhang L, Liang Z, Hutchinson J, Kleckner N, Crossover patterning by the beam-film
model: analysis and implications. PLoS Genet 2014; 10: e1004042.
54. Gray S, Cohen PE. Control of meiotic crossovers: from double-strand break formation
to designation. Ann Rev Genet 2016; 50: 175–210.
55. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights
into an age-old problem. Nat Rev Genet 2012; 13: 493–504.
56. Ottolini CS, Newnham L, Capalbo A, Nabesna H, Askan D, et al. Genome-wide
maps of recombination and chromosome segregation in human oocytes and embryos
show selection for maternal recombination rates. Nat Genet 2015; 47: 727–35.
57. Froenicke L, Anderson LK, Wienberg J, Ashley T. Male mouse recombination maps for
each autosome identified by chromosome painting. Am J Hum Genet 2002; 71:
35. Sturtevant AH. The behavior of the chromosomes as studied through linkage. Z Indukt
Abstamm u VererbLehre 1915; 13: 234–87.
36. Muller HJ. The mechanism of crossing over. Am Nat 1916; 50: 193–434.
37. Ruiz-Herrera A, Zavodova M, Fernandez J, Sebhastova H, Capuila L, et al. Recombination
correlates with synaptonemal complex length and chromatin loop size in
bovids-insights into mammalian meiotic chromosome organization. Chromosoma
2017; 126: 615–31.
38. Stapley J, Feulner PG, Johnston SE, Santine AW, Smadja CM. Variation in
recombination frequency and distribution across eukaryotes: patterns and processes.
Philas Trans R Soc Lond B Biol Sci 2017; 372: 20160455.
39. Martini C, Diaz RL, Hunter N, Keeney S. Crossover homeostasis in yeast meiosis.
Genes Dev 2006; 20: 126: 285–95.
40. Zhang L, Wang S, Yin S, Hong S, Kim KP, et al. Topoisomerases II mediates meiotic
crossover interference. Nature 2014; 511: 551–6.
41. Cole F, Kauppi L, Lange J, Roig I, Wang R, et al. Homeostatic control of recombination
is implemented progressively in mouse meiosis. Nat Cell Biol 2012; 14: 424–30.
42. Rosu S, Libuda DE, Villeneuve AM. Robust crossover assurance and regulated
interhomolog access maintain meiotic crossovers number. Science 2011; 334:
1286–9.
43. Yokoi R, Zawadzki KA, Nabeshima K, Drake M, Arur S, et al. COSA-1 reveals robust
homeostasis and separable licensing and reinforcement steps governing meiotic
crossovers. Cell 2012; 149: 75–87.
44. Globus ST, Keeney S. The joy of six: how to control your crossovers. Cell 2012;
45. 119: 2–12.
46. Drouaud J, Dietrich AJ, Hco C, Stamatopoulos K,宅uma AK, et al. Small RNAs
repress maternal recombination to maintain meiotic homeostasis. Cell 2013;
151: 1664–75.
47. Nabeshima K, Villeneuve AM, Hillers AJ. Chromosome-wide control of meiotic crossingover in C.
egens. Curr Biol 2003; 13: 1641–7.
48. Nabeshima K, Villeneuve AM, Hillers AJ. Meiotic chromosome-wide regulation of meiotic
recombination in Caenorhabditis elegans requires proper assembly of chromosome axes. Genetics
2004; 168: 1275–92.
49. Libuda DE, Uzawa S, Meyer BJ, Villeneuve AM. Meiotic chromosome structures
constrain and respond to designation of crossover sites. Nature 2013; 502: 703–6.
50. de Boer E, Dietrich AJ, Hsco C, Stamatopoulos K,宅uma AK, et al. Small RNAs
repress maternal recombination to maintain meiotic homeostasis. Cell 2013;
151: 1664–75.
51. Fowler KR, Hypa RW, Cromie GA, Smith GR. Physical basis for long-distance
communication across meiotic chromosomes. Proc Natl Acad Sci U S A 2018;
115: E9333–42.
52. Zickler D, Kleckner N. A few of our favorite things: pairing, the bouquet, crossover
interference and homeostasis in a single process. Cell 2013; 50: 126: 245–6.
Meiotic chromosome shapes’ crossover patterns
S Wang et al

570

Holloway JK, Booth J, Edelmann W, McGowan CH, Cohen PE. MUS81 generates a subset of MLH1-MLH3-independent crossovers in mammalian meiosis. PLoS Genet 2008; 4: e1000186.

Lloyd A, Jenzen-Jones S, Modelling sex-specific crossover patterning in Arabidopsis. Genetics 2019; 211: 847–59.

de Boer E, Smits P, van der Meer J, Smeets J, Heuvelmans H, Heusinger J. Two levels of interference in mouse meiotic recombination. Proc Natl Acad Sci U S A 2006; 103: 9607–12.

de Boer E, Lhuissier FG, Heyting C. Cytological analysis of interference in mouse meiosis. Biochem Biophys Res Commun 2008; 375: 355–82.

Housworth EA, Stahl FW. Is there variation in crossover interference levels among chromosomes from human males? Genetics 2009; 183: 403–5.

Luo C, Li X, Zhang Q, Yan J. Single gametophyte sequencing reveals that crossover events differ between sexes in maize. Nat Commun 2019; 10: 785.

Gerton JL, DeRisi J, Shoaff S, Lichtenberg J, Brown PD, et al. Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2000; 97: 11383–91.

Talbert PB, Henikoff S. Centromeres convert but don’t cross. PLoS Biol 2010; 8: e1000326.

Chen SY, Tsubouchi T, Rockmill B, Sandler J, Richards D, et al. Global analysis of the meiotic crossover landscape. Dev Cell 2008; 15: 401–15.

Hallidson VS, Palsson G, Stefansson OA, Blanshard R, Capalbo A, et al. Characterizing mutagenic effects of recombination through a sequence-level genetic map. Science 2019; 363: eaau1043.

Chen Y, Luu R, Bong B, Zheng Y, Lin Z, et al. Refined spatial temporal epigenomic profiling reveals intrinsic connection between PRDM9-mediated H3K4me3 and the fate of double-stranded break ends. Curr Opin Cell Biol 2020; 320: 256–68.

Cole F, Keeney S, Jasin M. Comprehensive, fine-scale dissection of homologous recombination outcomes at a hot spot in mouse meiosis. PLoS Genet 2015; 11: 970:277–303.

de Boer E, Jasim M, Keeney S. Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice. Genes Dev 2019; 23; 1721–33.

Medhi D, Steinhoff AS, Lichten M. Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis. Elife 2016; 5: e19669.

Shodhan A, Medhi D, Lichten M. Noncanonical contributions of Mut1 to VDE-initiated crossovers during Saccharomyces cerevisiae meiosis. G3 (Bethesda) 2019; 9: 1647–54.

Huang T, Yuan S, Gao L, Li M, Yu X, et al. The histone modification reader ZCWPW1 links histone methylation to PRDM9-induced double strand break repair. Elife 2020; 9: e53459.

Hyppa RW, Smith GR. Crossover invariance determined by partner choice for meiotic DNA break repair. Cell 2010; 140: 242–53.

Vincenten N, Kuhl LM, Lam I, Oke A, Kerr AR, et al. Pds5 proteins regulate the length of axial elements and telomere integrity during male mouse meiosis. Mol Cell Biol 2003; 23: 1151–62.

Serrentino ME, Chaplais E, Sommermeyer V, Borde V, et al. The spatial regulation of meiotic recombination hotspots: are all DSB hotspots crossover hotspots? Exp Cell Res 2012; 318: 1147–52.

Schipani A, Talevka B, Borde V, et al. The histone modification reader ZCWPW1 regulates spatiotemporal patterning of meiotic recombination initiation and ensures chromosome compaction during meiotic prophase in fission yeast. J Cell Biol 2006; 174: 499–508.

Ding DQ, Sakurai N, Katou Y, Itoh T, Shiraigke H, et al. Meiotic cohesins modulate chromosome compartment during meiotic prophase in fission yeast. J Cell Biol 2006; 174: 499–508.

Ding DQ, Matsuda A, Okamasa K, Nagahama Y, Haraguchi T, et al. Meiotic cohesin-mediated chromosomal crossover structure is essential for homologous chromosome pairing in Schizosaccharomyces pombe. Chromosome Biology 2016; 125: 205–14.

Jin H, Guacci V, Yu HG. Psds is required for homologue pairing and inhibits synthesis of sister chromatids during meiosis. J Cell Biol 2009; 186: 713–25.

Viera A, Berenguer I, Ruiz-Torres M, Gomez R, Guajardo A, et al. PDS5 proteins regulate the length of axial elements and telomere integrity during male mouse meiosis. EMBO Rep 2020; 21: e49273.

Hong S, Joo JH, Yun H, Kleckner N, Kim KP. Recruitment of Rec8, Psds and Rad61/Wap1 to meiotic homolog pairing, recombination, axis formation and S-phase. Nucleic Acids Res 2019; 47: 11691–708.

Baarends WM, Wassenaar E, Hoogerbrugge JW, van Cappellen G, Roest HP, et al. Loss of HR6B ubiquitin-conjugating activity results in damaged synaptonemal complex structure and increased crossing-over frequency during the male meiotic prophase. Mol Cell Biol 2003; 23: 1151–62.

Storlazzi A, Tessé S, Gargano S, James F, Kleckner N, et al. Meiotic double-strand breaks at the interface of homologous chromosome pairing, chromosome remodeling, and reductive division. Genes Dev 2003; 17: 2675–87.

Tessé S, Bourbon HM, Debuchy R, Budin K, Dubois E, et al. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction. Genes Dev 2017; 31: 1880–93.

Lee CY, Conrad MN, Dresser ME. Meiotic chromosome pairing is promoted by telomere-teleomere chromosome movements independent of bouquet formation. PLoS Genet 2015; 11: e1005379.

Cherkin A, Snowdon A, Cherkin JG, Keeney S, et al. Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 2011; 331: 916–20.

Kauri L, Barchi M, Baudat F, Romanenko PJ, Keeney S, et al. The histone modification reader ZCWPW1 regulates spatiotemporal patterning of meiotic recombination initiation and ensures recombination between X and Y chromosomes. Development 2019; 146: 9595–603.

Boekhout M, Karasu ME, Wang J, Acquaviva L, Pratto F, et al. Persistent DNA-break potential near telomeres increases initiation of meiotic recombination on short chromosomes. Nat Commun 2019; 10: 970.

Kauppi L, Barchi M, Baudat F, Romanenko PJ, Keeney S, et al. The histone modification reader ZCWPW1 regulates spatiotemporal patterning of meiotic recombination initiation and ensures recombination between X and Y chromosomes. Development 2019; 146: 9595–603.

Lian J, Yin Y, Oliver-Bonet M, Liehr T, Ko E, et al. Pds5 proteins regulate the length of axial elements and telomere integrity during male mouse meiosis. Mol Cell Biol 2003; 23: 1151–62.

Subramanian W, Zhu X, Markowitz TE, Vale-Silva LA, San-Segundo PA, et al. Persistent DNA-break potential near telomeres increases initiation of meiotic recombination on short chromosomes. Nat Commun 2019; 10: 970.

Cherkin A, Snowdon A, Cherkin JG, Keeney S, et al. Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 2011; 331: 916–20.

Kauri L, Jasim M, Keeney S. The tricky path to recombining X and chromosomes in meiosis. Ann N Y Acad Sci 2012; 1267: 18–23.

Boekhout M, Karasu ME, Wang J, Acquaviva L, Pratto F, et al. REC114 partner ANKRD31 regulates spatiotemporal patterning of meiotic recombination initiation and ensures recombination between X and Y chromosomes. Dev Cell 2019; 40: 1069–85.

Lian J, Yin Y, Oliver-Bonet M, Liehr T, Ko E, et al. Martin RH. Variation in crossover interference levels on individual chromosomes from human males. Hum Mol Genet 2001; 10: 1523–30.

Borodin PM, Karamysheva TV, Belongova NM, Torgasheva AA, Rubtsov NB, et al. Recombination map of the common shrew, Sorex araneus (Eulipotyphla, Mammalia). Genetics 2008; 178: 621–32.

Barchi M, Roig I, Di Giacomo M, de Rooij DG, Keeney S, et al. ATM promotes the obligate XY crossover and both crossover control and chromosome axis integrity on autosomes. PLoS Genet 2008; 4: e100076.
errors in human eggs shape natural fertility over reproductive life span.

Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A, Steriltrophectoderm biopsies evaluated with comprehensive chromosomal screening.

Geldhof A, Mackay DJ, Cheong Y, Verpoest W. Genetic diagnosis of subfertility: the impact of meiosis and maternal effects. J Med Genet 2019; 56: 215–22.

Capalbo A, Hoffmann ER, Cimadomo D, Ubaldi FM, Rienzi L. Human female meiosis revised: new insights into the mechanisms of chromosome segregation and aneuploidies from advanced genomics and time-lapse imaging. Hum Reprod Update 2017; 23: 706–22.

Lu YQ, He XC, Zheng P. Decrease in expression of maternal effect gene mater is associated with maternal ageing in mice. Mol Hum Reprod 2016; 22: 252–60.

Rémillard-Labrosse G, Dean NL, Allais A, Mihajlovic AI, Jin SG, et al. Human oocytes harboring damaged DNA can complete meiosis I. Fertil Steril 2020; 113:1080–9.e2.

Steiner B, Masood R, Ruffbach K, Niedrist D, Kundert G, et al. An unexpected finding: younger fathers have a higher risk for offspring with chromosomal aneuploidies. Eur J Hum Genet 2015; 23: 466–72.

Zelazowski MJ, Sandoval M, Paniker L, Hamilton HM, Han J, et al. Age-dependent alterations in meiotic recombination cause chromosome segregation errors in spermatocytes. Cell 2017; 171: 601–14.

Wang Z, Shen B, Jiang J, Li J, Ma L. Effect of sex, age and genetics on crossover interference in cattle. Science 2016; 352: 1395–8.

Cheng JM, Liu YX. Age-related loss of cohesion: causes and effects. Int J Mol Sci 2017; 18: 1578.

Coop G, Wen X, Ober C, Pritchard JK, Przeworski M. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 2008; 319: 1395–8.

Moens PB, Pearlman RE. Chromatin organization at meiosis. Bioessays 1988; 9: 151–3.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

©The Author(s)(2021)