Universality of non-equilibrium
dynamics of CFTs from holography

Alex Buchel1,2, Stephen R. Green1, Luis Lehner1 and Steven L. Liebling3

1 Perimeter Institute for Theoretical Physics
Waterloo, Ontario N2J 2W9, Canada

2 Department of Applied Mathematics
University of Western Ontario
London, Ontario N6A 5B7, Canada

3 Department of Physics, Long Island University
Brookville, NY 11548, U.S.A.

Abstract
Motivated by a low-energy effective description of gauge theory/string theory duality, we conjecture that the dynamics of SO(4)-invariant states in a large class of four-dimensional conformal gauge theories on S^3 with non-equal central charges $c \neq a$ are universal on time scales $t_{\text{universal}} \propto (\mathcal{E} - \mathcal{E}_{\text{vacuum}})^{-1}$, in the limit where the energy $\mathcal{E} \to \mathcal{E}_{\text{vacuum}}$. We show that low-energy excitations in $c \neq a$ CFTs do not thermalize in this limit. The holographic universality conjecture then implies that within the Einstein-scalar field system (dual to theories with $c = a$), AdS$_5$ is stable to spherically symmetric perturbations against formation of trapped surfaces within time scales $t_{\text{universal}}$.

October 20, 2014
1 Holographic universality conjecture

Over the years the holographic gauge/gravity correspondence has developed into a powerful tool to probe the physics of strongly interacting quantum systems by mapping them into problems in classical gravity [1]. The quintessential example is the correspondence between supersymmetric $\mathcal{N} = 4$ $SU(N)$ Yang-Mills theory and type IIB string theory in $AdS_5 \times S_5$. In the planar limit, $N \to \infty$ and $g_{YM}^2 \to 0$ with $g_{YM}^2 N$ kept fixed, quantum corrections on the string theory side can be neglected. Furthermore, for large 't Hooft coupling, $g_{YM}^2 N \to \infty$, the holographic dual is captured by classical Einstein gravity in a five-dimensional AdS spacetime. It is well understood that successive $\mathcal{O}((g_{YM}^2 N)^{-3/2})$ 't Hooft coupling corrections translate into higher derivative $\mathcal{O}((\alpha')^3)$ corrections, while non-planar $1/N$ corrections correspond to g_s string loop corrections.

Other examples of holographic correspondence for four-dimensional superconformal gauge theories involve $AdS_5 \times X_5$ string theory, where X_5 is a general Sasaki-Einstein manifold [2]. Once again, a Kaluza-Klein reduction on X_5 (in the planar limit and for large 't Hooft coupling) produces a sector of classical Einstein gravity in AdS_5,

$$S = \frac{1}{2\ell_p^3} \int_{M_5} d^5 \xi \sqrt{-g} \left(\frac{12}{L^2} + R + \mathcal{L}_{\text{matter}} \right),$$

where $\mathcal{L}_{\text{matter}}$ is a Lagrangian for the gravitational bulk matter sector which encodes the spectrum of operators of the dual CFT with small anomalous dimensions.

A common feature of strongly coupled gauge theories with gravity dual [1,1] is the equality between the two central charges c and a parameterizing the conformal anomaly of a four-dimensional CFT in a curved spacetime \mathcal{M}_4 [3]. More generally, the conformal anomaly takes the form

$$\langle T^\mu_\mu \rangle_{\text{CFT}} = \frac{c}{16\pi^2} I_4 - \frac{a}{16\pi^2} E_4,$$

$$E_4 = r_{\mu\nu\rho\lambda} r^{\mu\nu\rho\lambda} - 4 r_{\mu\nu} r^{\mu\nu} + r^2,$$

$$I_4 = r_{\mu\nu\rho\lambda} r^{\mu\nu\rho\lambda} - 2 r_{\mu\nu} r^{\mu\nu} + \frac{1}{3} r^2,$$

where E_4 and I_4 correspond to the four-dimensional Euler density and the square of the Weyl curvature of $\mathcal{M}_4 = \partial M_5$. However, for the action (1.1), both central charges reduce to [4]

$$c = a = \frac{\pi^2 L^3}{\ell_p^3},$$

where L is the asymptotic AdS_5 radius of curvature, and ℓ_p is a five-dimensional Planck length.
Superconformal gauge theories with $c \neq a$ can also be described in a holographic framework, by supplementing the effective action (1.1) with a five-dimensional Gauss-Bonnet (GB) term\footnote{For a recent review of Gauss-Bonnet holography and references we refer to \cite{5}.}
\[S = \frac{1}{2\ell_p^3} \int_{\mathcal{M}_5} d^5 z \sqrt{-g} \left(\frac{12}{\tilde{L}^2} + R + \mathcal{L}_{\text{matter}} \right) + \frac{\lambda_{\text{GB}}}{2} \tilde{L}^2 \left(R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \right) , \] (1.4)
with the identifications\footnote{Causality constrains $-\frac{7}{36} \leq \lambda_{\text{GB}} \leq \frac{9}{100}$ \cite{6}.}
\[c = \frac{\pi^2 \tilde{L}^3}{\ell_p^3} \left(1 - 2 \frac{\lambda_{\text{GB}}}{\beta^2} \right) , \quad a = \frac{\pi^2 \tilde{L}^3}{\ell_p^3} \left(1 - 6 \frac{\lambda_{\text{GB}}}{\beta^2} \right) , \] (1.5)
\[\tilde{L} \equiv \beta L , \quad \beta^2 \equiv \frac{1}{2} + \frac{1}{2} \sqrt{1 - 4\lambda_{\text{GB}}} . \]

The vacuum state of a dual CFT is described by the solution of the effective action (1.4) with the matter sector turned off,
\[|0\rangle \bigg|_{\text{CFT}} \iff \mathcal{L}_{\text{matter}} = 0 . \] (1.6)

The dual to the vacuum state of a CFT on a three-sphere S^3 is then global AdS_5,
\[ds^2 = \frac{L^2 \beta^2}{\cos^2 x} \left(-dt^2 + dx^2 + \sin^2 x \, d\Omega_3^2 \right) , \] (1.7)
where $d\Omega_3^2$ is the metric of S^3. Following holographic renormalization of GB gravity developed in \cite{7,5}, we find that the vacuum energy (the mass) of (1.7), or the Casimir energy from the boundary CFT perspective, is
\[\mathcal{E}_{\text{vacuum}} = \frac{3a}{4L} . \] (1.8)

The vacuum of a CFT is static. By contrast, a generic non-equilibrium state $|\xi\rangle$ of a CFT evolves with time. In a dual gravitational description this evolution corresponds to the dynamics of the coupled matter-gravity sector in (1.4), with the Dirichlet boundary conditions on the non-normalizable components of the excited bulk matter fields in $\mathcal{L}_{\text{matter}}$. Although
\[\frac{d}{dt} |\xi\rangle \neq 0 , \]

\[1 \] For a recent review of Gauss-Bonnet holography and references we refer to \cite{5}.

\[2 \] Causality constrains $-\frac{7}{36} \leq \lambda_{\text{GB}} \leq \frac{9}{100}$ \cite{6}.
the fact that a CFT represents a closed system implies that the energy of the state, \mathcal{E}_ξ, is conserved,
\[
\frac{d}{dt} \mathcal{E}_\xi = 0. \tag{1.9}
\]

We will argue in the following sections using the multiscale analysis of [10] that in the limit of small $(\mathcal{E}_\xi - \mathcal{E}_{\text{vacuum}})/\mathcal{E}_{\text{vacuum}}$, the dynamics of the bulk are well described by the leading order gravitational self-interaction of the matter up to a time $t_{\text{universal}} \propto (\mathcal{E}_\xi - \mathcal{E}_{\text{vacuum}})^{-1}$. It is therefore reasonable to assume that on this time scale, the physics of the strongly coupled dual CFT is also described by this approximation. Moreover, to leading order the gravitational self-interaction is independent of λ_{GB}. We are thus led to the following holographic universality conjecture:

Consider an $SO(4)$ invariant state $|\xi\rangle$ of a CFT. The dynamics of the CFTs are universal in the limit $(\mathcal{E}_\xi - \mathcal{E}_{\text{vacuum}})/\mathcal{E}_{\text{vacuum}} \to 0$: Apart from a simple rescaling, they are insensitive to the central charge difference $(c-a)/c$ up to time scales $t_{\text{universal}}$.

An important consequence of the above is the stability of AdS_5 on time scales $t_{\text{universal}}$:

CFTs with non-equal central charges $(c-a)/c \neq 0$, which allow for an effective holographic description (1.4), cannot thermalize unless
\[
\Delta \mathcal{E} \equiv \mathcal{E}_\xi - \mathcal{E}_{\text{vacuum}} \geq \frac{3c}{L} \left\{ \begin{array}{ll}
\frac{1-\beta^2}{2\beta^2-1}, & \text{if } \lambda_{\text{GB}} > 0, \\
(\beta^2 - 1)(2\beta^2 - 1), & \text{if } \lambda_{\text{GB}} < 0.
\end{array} \right. \tag{1.10}
\]

Thus, under the assumption of universality, spherically symmetric Einstein gravity plus matter in AdS_5, which is dual to CFTs with $c = a$, cannot thermalize within time scales of order $t_{\text{universal}}$—the instability\(^3\) (in the sense of [8]) can arise only on time scales longer than $t_{\text{universal}}$ (as indicated by the plots in [9]).

The conformal gauge theories discussed in this work are somewhat restrictive. First, they must have a holographic dual within the supergravity approximation of type IIB string theory. Second, the higher derivative gravitational corrections (required to produce the central charge difference, $c \neq a$) are assembled into the GB combination\(^4\). Finally, we impose some technical restrictions on the possible form of $\mathcal{L}_{\text{matter}}$ in (1.4). It would be interesting

\(^3\)Whether or not AdS is generically nonlinearly stable is an open question [9, 10, 11, 12, 13].

\(^4\)This is necessary to ensure that all the bulk equations of motion are of the second order.
to relax these constraints, and also to consider generalizing the discussion to holographic quantum theories with hyperscaling violation [14].

2 Evidence for the conjecture

The following assumption is vital for the holographic universality conjecture:

The leading order self-gravitational interaction of L_{matter} in (1.4) correctly captures the physics of a holographically dual CFT at low energy.

The matter sector in (1.4) represented by L_{matter} can be very complicated. Since we are interested in non-equilibrium dynamics of $SO(4)$ invariant states $|\xi\rangle$ with \mathcal{E}_ξ close to the vacuum energy, we take the approximation

$$
L_{\text{matter}} = \sum_i \left(-3\partial_\mu \phi_i \partial^\mu \phi_i - 3m_i^2 \phi_i^2 \right) + \mathcal{O}(\phi^6),
$$

(2.1)

where the summation runs over the set of bulk scalar fields $\{\phi_i\}$, dual to the spectrum of operators $\{\mathcal{O}_i\}$ of dimensions $\{\Delta_i\}$ in a boundary CFT,

$$
\Delta_i(4 - \Delta_i) = -m_i^2 L^2.
$$

(2.2)

We study the evolution of a state in a CFT, and, as a result, we impose Dirichlet boundary conditions on non-normalizable coefficients of $\{\phi_i\}$. Note that we restricted possible potential terms in (2.1), i.e., we assumed that the matter sector is well approximated by essentially free bulk scalars. Such an approximation implies that leading nonlinearities in the bulk dynamics come from the interactions through gravity (minimal coupling), rather than from non-linear interactions within the matter sector itself. Additionally, we assumed that $\Delta_i > 2$.

To proceed, we write the 5-dimensional metric describing an asymptotically AdS spacetime with $SO(4)$ symmetry in the form

$$
ds^2 = \frac{L^2 \beta^2}{\cos^2 x} \left(-A e^{-2\delta} dt^2 + \frac{dA^2}{A} + \sin^2 x d\Omega_3^2 \right),
$$

(2.3)

where $A(x, t)$ and $\delta(x, t)$ are scalar functions. We also take the scalar fields to be functions of (t, x) only: $\phi_i = \phi_i(t, x)$. With the above ansatz, we obtain

\[\text{If would be interesting to map this into corresponding restrictions for the spectrum of operators of dual CFTs.}\]

\[\text{Relaxing this constraint does not modify the main conjecture.}\]
the equations of motion,

\[0 = \Box \phi_i + \Delta_i (\Delta_i - 4) \phi_i , \]

\[A_x = \frac{1}{\cos x (\beta^2 \sin^2 x + 2 \lambda_{GB} (\cos^2 x - A))} \left(2 \sin x (\beta^2 (1 + \sin^2 x) \right) \]

\[\times (\beta^2 - A) - \beta^2 (\beta^2 - 1) \cos^2 x - 2 \lambda_{GB} A (\cos^2 x - A)) \right) \]

\[- \frac{\beta^2 \sin^3 x \cos x}{A (\beta^2 \sin^2 x + 2 \lambda_{GB} (\cos^2 x - A))} \sum_i \left(e^{2 \delta} (\partial_t \phi_i)^2 \right. \]

\[+ A^2 (\partial_x \phi_i)^2 + \frac{A}{\cos^2 x} \Delta_i (\Delta_i - 4) \phi_i^2 \), \]

\[\delta_x = - \frac{\beta^2 \sin^3 x \cos x}{A^2 (\beta^2 \sin^2 x + 2 \lambda_{GB} (\cos^2 x - A))} \sum_i \left(e^{2 \delta} (\partial_t \phi_i)^2 + A^2 (\partial_x \phi_i)^2 \right) , \]

where \(\Box \) is computed with \([2.3]\), together with one constraint equation,

\[A_t + \frac{2 \beta^2 \sin^3 x \cos x A}{\beta^2 \sin^2 x + 2 \lambda_{GB} (\cos^2 x - A)} \sum_i \partial_i \phi_i \partial_x \phi_i = 0 . \]

There is an additional second order equation, which is however redundant due to the \(SO(4) \) symmetry. Notice that the \(AdS_5 \) solution \([1.7]\) is recovered with

\[\phi_i = \delta = 0 , \quad A = 1 . \]

We are interested in smooth solutions of \([2.4]\), subject to the following boundary conditions. At the origin, regularity implies

\[\phi (t, x) = \phi_0 (t) + \mathcal{O} (x^2) , \]

\[A (t, x) = 1 + \mathcal{O} (x^2) , \]

\[\delta (t, x) = \delta_0 (t) + \mathcal{O} (x^2) . \]

At the outer boundary \(x = \pi/2 \) we introduce \(\rho \equiv \pi/2 - x \) so that

\[\phi_i (t, \rho) = \rho^\Delta \left(\phi_{\Delta_i} (t) + \mathcal{O} (\rho^2) \right) , \]

\[A (t, \rho) = 1 - M \rho^4 + \mathcal{O} (\rho^6) + \mathcal{O} (\rho^{2 \min_i (\Delta_i)}) , \]

\[\delta (t, \rho) = 0 + \mathcal{O} (\rho^{2 \min_i (\Delta_i)}) . \]

The parameter \(M \) in \([2.8]\) is related to the conserved energy \(\mathcal{E}_\xi \). Indeed, as described in \([15]\) it is convenient to introduce the mass-aspect function
\(\mathcal{M}(t, x) \) as

\[
A(t, x) = 1 - \frac{1}{2\lambda_{GB}} \left((2\lambda_{GB} - \beta^2) \sin^2 x + \left(4\lambda_{GB}(\beta^2 - 2\lambda_{GB})\mathcal{M}(t, x) \cos^4 x \right)^{1/2} \right).
\]

(2.9)

Using (2.4) we conclude that

\[
\mathcal{M}(t, x) = \frac{1}{2\beta^2 - 1} \int_0^x d\tau \tan^3 \tau \sum_i \left[e^{2\delta}(\partial_t \phi_i)^2 + A^2(\partial_x \phi_i)^2 + \frac{A}{\cos^2 x} \Delta_i(\Delta_i - 4) \phi_i^2 \right].
\]

(2.10)

Furthermore,

\[
M = \mathcal{M}(t, x) \bigg|_{x = \frac{\pi}{2}}.
\]

(2.11)

Using the machinery of holographic renormalization \[7, 5\], we compute the energy of \(|\xi\rangle\)

\[
\mathcal{E}_\xi = \frac{3c}{4L\beta} \left(\frac{\beta^2 - 6\lambda_{GB}}{\beta^2 - 2\lambda_{GB}} + 4M \right) = \frac{3c}{4L} \left(\frac{a}{c} + 4M \right).
\]

(2.12)

We will show now that to leading order in the backreaction, the dynamics of (2.4) is universal—apart from a simple rescaling, it is insensitive to \(\lambda_{GB}\). We apply the “Two Time Framework” (TTF) introduced in \[10\] to this system: some number of possibly massive scalar fields coupled to GB gravity in \(AdS_5\). We account for the backreaction by introducing a parameter \(\epsilon\) and the associated slow time

\[
\tau \equiv s_1 \epsilon^2 t.
\]

(2.13)

We expand the fields in terms of both the fast time \(t\) and slow time \(\tau\) as

\[
\begin{align*}
\phi_i &= \epsilon\left(\phi_i(1)(t, \tau, x) + s_2 \epsilon^2 \phi_i(3)(t, \tau, x) + \mathcal{O}(\epsilon^4) \right), \\
A &= 1 + s_2 \epsilon^2 A_{(2)}(t, \tau, x) + \mathcal{O}(\epsilon^4), \\
\delta &= s_2 \epsilon^2 \delta_{(2)}(t, \tau, x) + \mathcal{O}(\epsilon^4),
\end{align*}
\]

(2.14)

where \(s_i\) are \(\lambda_{GB}\)-dependent constants. From (2.4) we find

\[
\partial_t^2 \phi_{i,(1)} = \phi_{i,(1)}'' + \frac{3}{\sin x \cos x} \phi_{i,(1)'} - \frac{\Delta_i(\Delta_i - 4)}{\cos^2 x} \phi_{i,(1)} \equiv -L_i \phi_{i,(1)}.
\]

(2.15)
The operator L_i has eigenvalues $\omega_{i,j}^2 = (2j + \Delta_i)^2$ ($j = 0, 1, 2, \ldots$) and eigenvectors $e_{i,j}(x)$ (“oscillons”). Explicitly,

$$e_{i,j}(x) = d_{i,j} \cos^{\Delta_i} x \ _2F_1(-j, \Delta_i + j; 2; \sin^2 x),$$ \hspace{1cm} (2.16)

with $d_{i,j}$ the normalization constants. The oscillons form an orthonormal basis under the inner product

$$(f, g) = \int_0^{\pi/2} f(x)g(x) \tan^2 x \, dx.$$ \hspace{1cm} (2.17)

The general real solution to (2.15) is

$$\phi_{i,(1)}(t, \tau, x) = \sum_{j=0}^{\infty} (A_{i,j}(\tau)e^{-i\omega_{i,j}t} + \bar{A}_{i,j}(\tau)e^{i\omega_{i,j}t}) e_{i,j}(x),$$ \hspace{1cm} (2.18)

where $A_{i,j}(\tau)$ are arbitrary functions of τ, to be determined later.

At $O(\epsilon^2)$ the constraints (2.31) have solutions

$$A_{(2)}(x) = -\frac{1}{s_2(2\beta^2 - 1)} \cos^4 x \int_0^{\pi/2} \sum_i \left(|\partial_y \phi_{i,(1)}(y)|^2 + |\partial_t \phi_{i,(1)}(y)|^2 \right) \tan^3 y \, dy,$$

$$\delta_{(2)}(x) = \frac{1}{s_2(2\beta^2 - 1)} \int_0^{\pi/2} \sum_i \left(|\partial_y \phi_{i,(1)}(y)|^2 + |\partial_t \phi_{i,(1)}(y)|^2 \right) \sin y \cos y \, dy.$$ \hspace{1cm} (2.19)

Note that we are using the gauge with $\delta_{(2)}(\pi/2) = 0$.

Finally, at $O(\epsilon^3)$ we obtain the equations for $\phi_{i,(3)}$,

$$\partial_t^2 \phi_{i,(3)} + L_i \phi_{i,(3)} + \frac{2s_1}{s_2} \partial_t \partial_\tau \phi_{i,(1)} = S_{i,(3)}(t, \tau, x),$$ \hspace{1cm} (2.20)

where the source term is

$$S_{i,(3)} = \partial_t (A_{(2)} - \delta_{(2)}) \partial_\tau \phi_{i,(1)} - 2(A_{(2)} - \delta_{(2)}) L_i \phi_{i,(1)}$$

$$+ (A'_{(2)} - \delta'_{(2)}) \phi'_{i,(1)} + \frac{\Delta_i(\Delta_i - 4) A_{(2)}}{\cos^2 x} \phi_{i,(1)}.$$ \hspace{1cm} (2.21)

Note that by choosing

$$s_1 = s_2 = \frac{1}{2\beta^2 - 1} = \frac{1}{\sqrt{1 - 4\lambda_{GB}}},$$ \hspace{1cm} (2.22)
the dependence on λ_{GB} in TTF is completely factored out. In other words, the rescaling (2.22) identifies the TTF equations for different λ_{GB},

$$\left(\epsilon^2, \lambda_{GB}\right) \quad \Longleftrightarrow \quad \left(\epsilon_{\text{eff}}^2 = \frac{\epsilon^2}{\sqrt{1 - 4\lambda_{GB}}}, \lambda_{GB_{\text{eff}}} = 0\right).$$

The identification (2.23) is the basis for our holographic universality conjecture: since the TTF framework is valid on slow time scales, we expect universality of low-energy, non-equilibrium dynamics of dual CFTs on time scales

$$t_{\text{universal}} \propto \epsilon^{-2} \propto (E_{\xi} - E_{\text{vacuum}})^{-1}, \quad \epsilon \to 0.$$

It is important to emphasize that the the scalar field profile must be held fixed as the limit $\epsilon \to 0$ is taken. On the CFT side, this corresponds to fixing the state as the energy is taken to E_{vacuum}. Were the profile allowed to vary, then backreaction could be increased by concentrating the field energy into a small region. Indeed, consider the initial condition prepared by a marginal operator with $\Delta_i = 4$, of the form

$$\phi(1) \bigg|_{t=0} = 0,$$

$$\partial_t \phi(1) \bigg|_{t=0} = \omega_j d_j \cos^4 x \; _2F_1 (-j, 4 + j; 2; \sin^2 x)$$

$$= 4(1 + j)\sqrt{(j + 1)(j + 2)(j + 3)} \cos^4 x \; _2F_1 (-j, 4 + j; 2; \sin^2 x).$$

The mass parameter M corresponding to this profile is

$$M = \epsilon^2 \omega_j^2 = \epsilon^2 (4 + 2j)^2.$$

We can keep M fixed in the limit $\epsilon \to 0$ if we excite the oscillon with index $j \sim M^{-1} \gg 1$. Following (2.19) we estimate for $x \lesssim j^{-1}$

$$|A_{(2)}(x, t = \tau = 0)| \sim \frac{\cos^4 x}{\sin^2 x} \; x^4 \omega_j^2 d_j^2 \; \sim \frac{M}{\epsilon^2} (x \; d_j)^2 \sim \frac{Mj}{\epsilon^2} \; (xj)^2.$$

Thus, $|\epsilon^2 A_{(2)}(t, \tau = 0)|$ becomes of the same order as the leading contribution for $x \sim j^{-1}$ and the series expansion (2.14) is inconsistent. When we talk about the leading order backreaction in the limit $(E_{\xi} - E_{\text{vacuum}}) \to 0$, we always assume that $\epsilon \to 0$ with the initial profile shape kept fixed. A priori, this does not guarantee that during the evolution $|A_{(2)}(t, \tau)|$ will continue to remain bounded. We argue in the next section that if $|A_{(2)}(t, \tau)|$ is bounded initially, it must be bounded for all times.

7The fact that the λ_{GB} coupling can be scaled out from the graviton fluctuations in AdS-GB models has been observed earlier [16].
3 Universal dynamics and AdS_5 (in)stability

Consider $c \neq a$ CFTs with dual holographic descriptions ($\beta \neq 1$). Equilibrium thermal states of such models are described by the static solution

\[
A = 1 - \frac{1}{2\lambda_{GB}} \left((2\lambda_{GB} - \beta^2) \sin^2 x + \left(4\lambda_{GB}(\beta^2 - 2\lambda_{GB})M \cos^4 x + (2\lambda_{GB} - \beta^2)^2 \cos^4 x - \beta^4(1 - 4\lambda_{GB}) \cos(2x) \right)^{1/2} \right), \tag{3.1}
\]

\[
\phi_i = 0, \quad \delta = 0.
\]

It is straightforward to observe that (3.1) has a regular horizon only if

\[
M \geq \begin{cases}
\frac{1-\beta^2}{2\beta^2-1}, & \text{if } \lambda_{GB} > 0, \\
(\beta^2 - 1)(2\beta^2 - 1), & \text{if } \lambda_{GB} < 0.
\end{cases} \tag{3.2}
\]

Thus, generic non-stationary states in such CFTs cannot equilibrate in the limit $(\mathcal{E}_\xi - \mathcal{E}_{\text{vacuum}})/\mathcal{E}_{\text{vacuum}} \to 0$ [cf. eq. (1.10)].

Under the assumption of holographic universality (i.e., that the leading order self-gravity dynamics in the bulk correctly capture the behavior of the CFT for $t < t_{\text{universal}} \propto \epsilon^{-2}$), these arguments imply that Einstein gravity in AdS_5 is stable within time scales $t_{\text{universal}}$ against scalar collapse of generic initial data with amplitude $\propto \epsilon$, in the limit $\epsilon \to 0$. Indeed, since black holes cannot form for arbitrarily small ϵ in Gauss-Bonnet gravity \[17, 18\], holographic universality implies TTF solutions cannot diverge in finite time. Thus, since TTF dynamics are independent of λ_{GB}, Einstein gravity in particular is stable for $t < t_{\text{universal}}$. Of course, there is no tension with conjectures for instability of AdS \[19, 20\], since collapse can still occur over longer time scales.

4 TTF validity within fully non-linear dynamics

The holographic universality conjecture (and the supporting evidence) assumes that the leading order self-gravitation faithfully captures the dynamics of a generic state $|\xi\rangle$ in the CFT, with a holographic dual, in the limit $(\mathcal{E}_\xi - \mathcal{E}_{\text{vacuum}})/\mathcal{E}_{\text{vacuum}} \to 0$. We stress that if this is not true, not only do the higher order terms in the perturbative expansion (2.14) become important, but so do the $O(\phi^6)$ corrections to the scalar potential in (2.1).

In particular, if the higher order terms encoding the mass gap in GB gravity \[32\] are important, then the TTF equation for $A_{(2)}$ (2.19) might develop a singularity in a finite slow time $\tau \to \tau_{\text{singular}}$,

\[
\lim_{\tau \to \tau_{\text{singular}}} A_{(2)} \to -\infty. \tag{4.1}
\]
This would result in the formation of a trapped surface within time scales \(\propto \epsilon^{-2} \); earlier than the scenario described in the previous section. It would be interesting to explore this further and to connect to numerical analysis in [21, 15]. However, numerical results to date (for \(d = 4 \), see figure in [9]) indicate that \(t_{\text{collapse}} > t_{\text{universal}} \), consistent with the conjecture.

Acknowledgments

We would like to thank A. Frey and G. Kunstatter for interesting discussions and correspondence. We also thank R. Myers for valuable discussions and comments on the manuscript. This work was supported by the NSF under grant PHY-1308621 (LIU), by NASA under grant NNX13AH01G, by NSERC through a Discovery Grant (to A.B. and L.L.) and by CIFAR (to L.L.). Research at Perimeter Institute is supported through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation. Computations were performed at Sharcnet.

References

[1] J. M. Maldacena, “The large \(N \) limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].

[2] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large \(N \) field theories, string theory and gravity,” Phys. Rept. 323, 183 (2000) [arXiv:hep-th/9905111].

[3] See, for example:
N. D. Birrell and P. C. W. Davies, Quantum Fields In Curved Space, (Cambridge University Press, 1982).

[4] V. Balasubramanian and P. Kraus, “A Stress tensor for Anti-de Sitter gravity,” Commun. Math. Phys. 208, 413 (1999) [hep-th/9902121].

[5] S. Banerjee, A. Bhattacharyya, A. Kaviraj, K. Sen and A. Sinha, “Constraining gravity using entanglement in AdS/CFT,” JHEP 1405, 029 (2014) [arXiv:1401.5089 [hep-th]].

[6] A. Buchel and R. C. Myers, “Causality of Holographic Hydrodynamics,” JHEP 0908, 016 (2009) [arXiv:0906.2922 [hep-th]].

[7] J. T. Liu and W. A. Sabra, “Hamilton-Jacobi Counterterms for Einstein-Gauss-Bonnet Gravity,” Class. Quant. Grav. 27, 175014 (2010) [arXiv:0807.1256 [hep-th]].
[8] P. Bizon and A. Rostworowski, “On weakly turbulent instability of anti-de Sitter space,” Phys. Rev. Lett. 107, 031102 (2011) [arXiv:1104.3702 [gr-qc]].

[9] A. Buchel, S. L. Liebling and L. Lehner, “Boson stars in AdS spacetime,” Phys. Rev. D 87, no. 12, 123006 (2013) [arXiv:1304.4166 [gr-qc]].

[10] V. Balasubramanian, A. Buchel, S. R. Green, L. Lehner and S. L. Liebling, “Holographic Thermalization, stability of AdS, and the Fermi-Pasta-Ulam-Tsingou paradox,” Phys. Rev. Lett. 113, 071601 (2014) [arXiv:1403.6471 [hep-th]].

[11] B. Craps, O. Evnin and J. Vanhoof, “Renormalization group, secular term resummation and AdS (in)stability,” arXiv:1407.6273 [gr-qc].

[12] H. Okawa, V. Cardoso and P. Pani, “On the nonlinear instability of confined geometries,” arXiv:1409.0533 [gr-qc].

[13] F. V. Dimitrakopoulos, B. Freivogel, M. Lippert and I. S. Yang, “Instability corners in AdS space,” arXiv:1410.1880 [hep-th].

[14] X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, “Aspects of holography for theories with hyperscaling violation,” JHEP 1206, 041 (2012) [arXiv:1201.1905 [hep-th]].

[15] A. Buchel, L. Lehner and S. L. Liebling, “Scalar Collapse in AdS,” Phys. Rev. D 86, 123011 (2012) [arXiv:1210.0890 [gr-qc]].

[16] R. C. Myers and B. Robinson, “Black Holes in Quasi-topological Gravity,” JHEP 1008, 067 (2010) [arXiv:1003.5357 [gr-qc]].

[17] N. Deppe, A. Kolly, A. Frey and G. Kunstatter, “Stability of AdS in Einstein Gauss Bonnet Gravity,” arXiv:1410.1869 [hep-th].

[18] A. Buchel, S. R. Green, L. Lehner and S. L. Liebling, in preparation.

[19] M. T. Anderson, “On the uniqueness and global dynamics of AdS spacetimes,” Class. Quant. Grav. 23, 6935 (2006) [hep-th/0605293].

[20] G. Holzegel and M. Dafermos, private communication.

[21] J. Jalmuzna, A. Rostworowski and P. Bizon, “A Comment on AdS collapse of a scalar field in higher dimensions,” Phys. Rev. D 84, 085021 (2011) [arXiv:1108.4539 [gr-qc]].