Preclinical Studies for Induced Pluripotent Stem Cell-based Therapeutics*

Published, JBC Papers in Press, December 20, 2013, DOI 10.1074/jbc.R113.463737
John Harding and Oleg Mirochnitchenko
From the Division of Comparative Medicine, Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892

Induced pluripotent stem cells (iPSCs) and their differentiated derivatives can potentially be applied to cell-based therapy for human diseases. The properties of iPSCs are being studied intensively both to understand the basic biology of pluripotency and cellular differentiation and to solve problems associated with therapeutic applications. Examples of specific preclinical applications summarized briefly in this minireview include the use of iPSCs to treat diseases of the liver, nervous system, eye, and heart and metabolic conditions such as diabetes. Early stage studies illustrate the potential of iPSC-derived cells and have identified several challenges that must be addressed before moving to clinical trials. These include rigorous quality control and efficient production of required cell populations, improvement of cell survival and engraftment, and development of technologies to monitor transplanted cell behavior for extended periods of time. Problems related to immune rejection, genetic instability, and tumorigenicity must be solved. Testing the efficacy of iPSC-based therapies requires further improvement of animal models precisely recapitulating human disease conditions.

The breakthrough discovery that specific sets of transcription factors can reprogram cell fate and generate induced pluripotent stem cells (iPSCs) from various cell types has opened many new possibilities for research on cell states, differentiation, pluripotency, and general cell identity but, most importantly, has catalyzed the development of a whole new field of regenerative medicine (1). The field is still in a relatively early stage regarding a clear understanding of underlying developmental processes, cell behavior, and biological effects after cell-grafting experiments. The use of iPSCs and their products for human applications poses many new challenges from the experimental and regulatory points of view due to the unique properties of the cells and novel mechanism of their action.

Testing iPSCs in Animal Disease Models

Reprogramming of somatic cells was originally demonstrated using mouse (2) and human (3) cells. The demonstration that the same transcription factors can reprogram non-human primate (4) and rat (5) cells indicates the conserved nature of mechanisms of inducing pluripotency among mammalian species. iPSCs were also obtained from rabbits (6), dogs (7), a variety of non-human primate species (8), and more recently, domestic ungulates, such as pig, cow, sheep, goat, and horse (reviewed in Ref. 9). A better understanding of the nature of the similarities and differences between human and animal stem cells and emulation of the behavioral, cellular, and molecular manifestations seen in human disease conditions in animal models should lead to interpretable testing of efficiency and should predict major complications and off-target effects of iPSC-based therapies.

Preclinical studies should be conducted using iPSC-derived products intended for clinical use. To prevent rejection of human cells in animal models, immunosuppressed or immuno-compromised animals should be considered. Humanized animal models, particularly mice, have reached some significant milestones, allowing reconstruction of human hematopoiesis and immunity. A variety of human disease conditions have been recapitulated in humanized mice, identifying mechanisms of relapse and suggesting novel therapeutic strategies (10). Future studies should increase the predictive capabilities of these models and facilitate the creation and use of humanized models based on large animal species (11), which can more reliably inform clinical trials.

For certain applications, human cells will not survive in the animal host, the immunosuppression protocol will not allow long-term observation, or immunomodulating drugs will affect the disease phenotype. Therefore, the use of autologous and homologous animal stem cell products, particularly in early stages of development of the intervention, might be considered. Immune reactions can significantly affect therapeutic efficiency and tumor formation. Because immune system reaction is a focus of another report in this thematic minireview series, we point out briefly that different mechanisms are predominantly acting on pluripotent and differentiated cells in syngeneic, allogeneic, and xenogeneic recipients (12). The recent finding that a mouse iPSC-induced response prevented teratoma formation in syngeneic transplantation was unexpected (13). Investigators from two other laboratories did not observe differences in the efficiency of transplantation and detected no immune response to terminally differentiated cells derived from syngeneic iPSCs or embryonic stem cells (14, 15). Explanations for these discrepancies might be genetic aberrations accumulated in iPSCs or heterogeneous populations of parental cells used in the original report. Further investigations will be required because immune rejection is one of the major concerns for iPSC-mediated replacement therapy.

Below are several examples of the use of iPSC-derived cells in animal disease models, highlighting that approaches to more precisely compare phenotypes and therapeutic outcomes among species should be developed (summarized in Table 1).

Liver Diseases—Successful strategies for efficient differentiation of human and animal iPSCs to hepatocytes have been...
developed (16). In many cases, these cells are very similar to primary hepatocytes, as judged by gene expression profiles, secreted proteins, and metabolism. These cells were engrafted into several animal models and were able to mature in vivo and perform normal functions in rodents. In some cases, the cells protected the animal from liver failure (17, 18). Significantly, a point mutation in the α₁-antitrypsin gene was corrected in human iPSCs, and derived liver cells showed normal cell func-

Disease	Cell Type and Sources	Animal Disease Model	Cell Delivery	Major Results	Refs.
Liver Diseases	Human hepatocyte-like cells; iPSCs from hepatocytes, bone marrow mesenchymal stem cells and liver fibroblasts	NOD/LtSCID/IL-2Rγ⁻/⁻ mice; liver cirrhosis	Intravenous injection	Engraftment rate 9-15%; human liver proteins in blood; 89% survival after transplantation	17
	Human hepatocyte-like cells from iPSC cell line (CFB46)	NOD-SCID mice; lethal fulminant hepatic failure	Intraspinal injection	Engraftment; 71% survival after transplantation	18
	Human hepatocyte-like cells; iPSCs from dermal fibroblasts with α₁-antitrypsin deficiency	Alb uPA⁺; Rag2⁻⁻ line	Intraspinal injection	Engraftment into mouse liver; functional restoration of A1AT in patient-derived cells	19
	Mouse retinal progenitor and photoreceptor precursor cells; iPSCs from dSRed dermal fibroblasts	Rho⁺ mouse (not forming functional rod receptors)	Subretinal injection	Cells integration; functional and morphological improvement	29
	Human retinal pigment epithelial cells; iPSCs from dermal fibroblasts	SCID mouse model of retinitis pigmentosa	Subretinal injection	Cell integration; functional improvement	31
	Swine rod photoreceptor cells; fetal fibroblast-derived iPSCs	Pigs lacking rod photoreceptors	Subretinal injection	Engraftment in the outer nuclear layer	30
Diabetes	Mouse β-cells; iPSCs from dermal fibroblasts	Type 1 and Type 2 diabetic mouse models	Intraperitoneal injection	Engraftment; improvement in diabetic phenotype	41
	Monkey pancreatic progenitors; iPSCs from dermal fibroblasts	NOD-SCID mice; induced diabetic model	Kidney capsule implantation	Improvement in diabetic phenotype	42
	Mouse β-cells; iPSCs from embryonic fibroblasts or pancreas epithelial cells	Type 1 diabetic NOD/SCID mice	Kidney capsule implantation	Improvement in diabetic phenotype	45
	Canine endothelial cells; iPSCs from adult adipose stromal cells and fibroblasts	SCID mice; myocardial infarction or hind limb ischemia	Intramyocardial or intramuscular injection	Cardiac or hind-limb engraftment; improved contractility, revascularization	7
Heart Disease	Human cardiomyocytes, endothelium and smooth muscle cells; iPSCs from dermal fibroblasts	RNU-RNU rats; myocardial infarction	Injection into the heart	Human cells engrafted and retained at 10 weeks; protection trend	37
	Porcine endothelial cells; iPSCs from adipose stromal cells	NOD/SCID mice; myocardial infarction	Intramyocardial injection	Short term engraftment; functional improvement	38
	Human endothelial cells; iPSCs from cord blood cells	Landrace pigs; myocardial infarction	Intramyocardial delivery	Cells detected up to 15 weeks after transplantation	39
	Human cardiomyocytes; iPSCs from dermal fibroblasts	Minipigs; induced cardiomyopathy	Transplantation.	Improved cardiac function; cells detected up to 8 weeks	40
Neurological Diseases	Rhesus monkey dopaminergic neural progenitors; iPSCs from dermal fibroblasts	Rhesus monkey; MPTP-induced Parkinson’s disease; autologous transplantation	Cells injected into caudate nucleus, putamen and substantia nigra	Engrafted cells were identified as neurons, astrocytes and oligodendrocytes	20
	Human neuroepithelial cells and dopaminergic neurons, iPSCs from fibroblasts	Rat model of Parkinson’s disease	Transplantation into striatum	Functional recovery; 25% of animals died due to tumors	21
	Human oligodendrocyte progenitors; iPSCs from fibroblasts	Rats; lyssolecithin-induced demyelinated optic chiasm	Transplantation into chiasm	Remyelination observed; cells developed into oligodendrocytes and integrated within the chiasm	22
	Human neurospheres; iPSCs from adult fibroblasts	NOD/SCID mouse spinal cord injury	Cells transplanted into lesion epicenter	Differentiated to mature brain cells; axonal regrowth and functional improvement	23
	Human neural stem/progenitor cells; iPSCs (2014) from adult dermal fibroblasts	Marmoset spinal cord injury	Cells injected into the lesion epicenter	Differentiated to mature brain cells; axonal regrowth and functional improvement	24
	Mouse iPSCs from embryonic fibroblasts (iPS-MEF-Ng-Ng20D-17)	C57BL/6N mouse stroke model	iPSs transplanted into ipsilateral striatum and cortex	No behavioral improvement; tumor formation	25
	Human early neural progenitors; iPSCs from dermal fibroblasts	Wistar rats; stroke model	Intracerebral transplantation	Engraftment, cell differentiation; no functional improvement	26
	Human neuroepithelial progenitor cells; iPSCs from dermal fibroblasts	C57BL/6 mice and Nude rat models of stroke	Intracerebral transplantation	Significant behavioral recovery in engrafted mice; grafts survived in rats up to 4 months	27
	Human neural progenitor cells; iPSCs from dermal fibroblasts	C57BL/6 mouse stroke model	Transplantation into striatum	Engraftment; improved neurobehavioral recovery; no tumor formation	28
tion in immunodeficient \textit{Alb-uPA}^{+/-};\textit{Rag2}^{-/-};\textit{Il2rg}^{-/-} mice (19).

Neurological Diseases—Experiments in several neurodegenerative disease models have been reported using neural cells derived from iPSCs. Emborg \textit{et al.} (20) recently reported the application of neural progenitor cells derived from iPSCs in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson disease in rhesus monkeys. Progenitor cells differentiated into neurons, astrocytes, and oligodendrocytes after transplantation and persisted for at least 6 months. These autologous cells induced a minimal inflammatory response, but no functional improvement was reported due to the small size of the graft (20). Rhee \textit{et al.} (21) reported significant motor improvement using reprogrammed and differentiated human iPSCs delivered to rats with striatal lesions. Human oligodendrocyte progenitors generated from iPSCs mitigated symptoms in a rat model of lyssolecithin-induced demyelinated optic chiasm (22). Neural progenitor cells derived from murine or human iPSCs promoted functional and electrophysiological recovery after grafting into the injured spinal cord of rodents and common marmosets, respectively (23, 24). Mixed results have been obtained when either rodent or human iPSC-derived progenitor cells have been transplanted into stroke-damaged mouse or rat brains. Results ranged from tumor development and the absence of any effects on behavior to significant recovery of function, controllable cell proliferation, and formation of electrophysiolgically active synaptic connections (25–28). Among the reasons for variability are the absence of standard protocols for cell preparation and for modeling stroke and testing treatment outcomes. Additional causes of inconsistency include poor cell survival, statistically underpowered animal groups, biological variation, and measurement errors.

Degenerative Diseases of the Eye—iPSCs show promise for treating diseases caused by functional defects of the retinal pigment epithelium (RPE), such as age-related macular degeneration, gyrate atrophy, and certain forms of retinitis pigmentosa. Among the advantages for the use of stem cell therapy for these conditions are the immune-privileged character of the target tissue; requirements for limited numbers of cells; and the convenience of monitoring cell injection, potential therapeutic effects, and complications. Protocols have been developed for differentiation of human iPSCs into multipotent retinal progenitor cells and RPE. Retinal function was restored in immunocompromised rhodopsin knock-out (Rho^{-/-}) mice by injection of cells differentiated from mouse iPSCs (29). Swine photoreceptor cells differentiated from iPSCs integrated into the damaged neural retinas of pigs, although significant changes in electroretinal function were not observed, probably due to the limited number of transplanted cells (30). Injection of human RPE cells into the subretinal space of Rpe65^{+/-};Rpe65^{rd12} mice restored vision, including over the long term (31). Future studies of eye disease should develop approaches to support proper transplanted cell integration, including the use of natural and synthetic scaffolds.

Heart Disease—Development of the technologies to generate iPSCs and differentiate these cells to functional cardiomyocytes, endothelial cells, and smooth muscle cells is an exciting new development for regenerative medicine (32–35). For human cells, the low original efficiency of differentiation was improved substantially by modifications of the original procedures (36, 37). The potential use of heterogeneous cell populations was explored in rodent ischemic models (7, 37). Injection of cardiac progenitor cells derived from iPSCs into the ischemic rodent heart resulted in functional improvement, although the effect for the most part was temporary due to poor engraftment of the cells. Canine and porcine endothelial cells were generated from iPSCs and used to treat immunodeficient murine models of myocardial infarction (7, 38). Both types of cells improved cardiac contractility by releasing paracrine factors. Alternative approaches have been suggested, such as the use of several distinct heart cell types to regenerate individual components of the cardiac tissue and the use of earlier stage progenitor cells (35, 36). The physiological difference between human and mouse hearts and the dramatically different heart rates present additional problems for use of mouse models. Recently, Templin \textit{et al.} (39) reported vascular differentiation and long-term engraftment of human iPSCs in a pig model of myocardial infarction. The use of human iPSC-derived cardiomyocyte sheets on temperature-sensitive polymers has been explored in the porcine ischemic model in an attempt to improve cell survival and engraftment (40). Additional technological improvements are required to obtain long-lasting therapeutic effects.

Diabetes—Reprogramming pluripotent cells to pancreatic β-like cells from a variety of animal species and humans is a critical step in creating an alternative source of insulin-producing cells (41–43). Different stepwise protocols that mimic the process of pancreatic development have been used for reprogramming, but the efficiency of the process is still very low, even using pancreatic β-cells as iPSC precursors (44). Among challenges for differentiation of human cells is the polyhormonal state of a majority of differentiated cells. An insufficient understanding of the regulation of pancreatic development is the major reason that reliable protocols have not yet been developed. Alipio \textit{et al.} (41) reported the application of β-like cells derived from mouse iPSCs for correction of hyperglycemic phenotype in mouse models of type 1 and 2 diabetes. In another study, iPSCs were generated from mouse embryonic fibroblasts and pancreas-derived epithelial cells (45). The latter cell type differentiated more readily to insulin-producing cells. Differentiated iPSCs transplanted into streptozotocin-treated NOD/SCID mice were able to engraft and respond to glucose stimulation by the release of insulin, ameliorating hypoglycemia. Pancreatic progenitor cells also were obtained from rhesus monkey iPSCs generated from adult fibroblasts (42). Treatment of these cells with TGF-β inhibitor led to the generation of insulin-producing cells, which rescued hyperglycemia in streptozotocin-treated diabetic mice.

Challenges to Be Addressed in Preclinical Studies

There are many challenges that should be addressed during the process of cell generation and characterization in preclinical studies before clinical application of iPSC-based therapy will be possible (Fig. 1). Cellular imaging within living organisms is expected to play a significant role in evaluating the behavior of transplanted cells or their derivatives. Imaging will provide information about the precise site of cell transplantation; will
guide the accuracy of injection; and will help monitor the number of cells surviving various manipulations and long-term engraftment, cell fate, and therapeutic and off-target effects. The development of noninvasive imaging techniques with high resolution and sensitivity, including deep penetration, will allow in vivo real-time monitoring and help guide human clinical trials (46–48).

Among current concerns for the application of iPSCs are low reprogramming efficiency, the use of reprogramming factors associated with cell proliferation and tumorigenesis, their potential leaky expression, and the use of integrated viral vectors for reprogramming. Technology for the generation of iPSCs is becoming more refined in efforts to address these issues (49, 50). The number, level, timing, and relative stoichiometry of reprogramming factors affect the efficiency, quality, and properties of the iPSCs (51). Other cellular factors and specific pathway inhibitors, as well as noncoding RNA (microRNA and large intergenic non-coding RNA), can affect the process significantly and can increase the efficiency of reprogramming (52, 53). To eliminate the risk of the presence of the transgene used for reprogramming, non-integrating vectors (54), Cre/loxP and piggyBack transposon systems, recombinant proteins, and synthetic RNA-based technologies have been used (53, 55). The efficiency and consistency of these approaches must be improved. Comparison of patterns of the gene expression, epigenetic states, and pluripotent potential of iPSCs with “gold standard” embryonic stem cells from the same species showed that despite almost identical profiles and properties, certain classes of genes and epigenetic marks escape reprogramming in iPSCs (56–59). These differences can be affected significantly by the reprogramming method and by the use of chromatin-modifying drugs.

Some studies have demonstrated low survival and engraftment as well as occasional loss of cell phenotype after transplantation (60, 61). Among different reasons for such behavior is the absence of the proper environment and cell/cell and cell/extracellular matrix interactions in vivo. The use of natural or artificial scaffolds and biologically active molecules developed for tissue engineering and organ reconstruction might help to improve cell retention and survival (62–64). Preclinical studies should address critical issues regarding the ability of the transplanted cells not only to be retained in the target but also to become part of a functional tissue. Genomic mutations represent a serious risk for clinical applications. They should be detected in iPSCs, and their byproducts and mutated cells should not be used. However, it will probably not be possible to prevent all mutational changes. The task is to devise strategies to monitor and evaluate tolerable levels of genetic change and to evaluate the consequences. Numerous studies have compared mutation rates in the original somatic cells and derived iPSCs to analyze at which stage reprogramming affects genomic stability the most (65, 66). The major sources of mutations are carryover aberrations from the original cell source, mutations acquired during cell reprogramming, insertional mutagenesis due to the transgenes used for reprogramming, and passage in cell culture (67, 68). There is a certain preference for accumulation of specific chromosomal aberrations in humans and different animal species. Only certain aberrations are common. Detailed analysis of single-nucleotide changes suggested that most mutations in iPSCs occur during reprogramming and selection of rare mutants in the original cell population (69, 70). Mouse iPSCs were shown to have a significantly lower mutation rate compared with human cells (71). Therefore, there is a need for comparative analysis of cells derived from different species to design preclinical studies to predict the outcome of human trials (72–74).

Epigenomic instability of iPSCs was also reported and is another important property of these cells (75, 76). Several reports indicate the existence of residual specific epigenetic marks from the somatic cells of origin (non-complete repro-
There are significant similarities between cancer cells and iPSCs, which include certain molecular properties, the ability to self-renew, rapid unlimited proliferation, high telomerase activity, expression profiles, and epigenetic signatures (78). As one of the criteria for pluripotency, iPSCs are known to form teratomas in immunocompromised recipients after subcutaneous, intratesticular, or intramuscular injection (79,80). The teratoma-forming capability of the differentiated iPSCs derived from different adult tissues varied substantially and correlated with the number of residual pluripotent cells (81). Importantly, allogeneic transplants in the hearts of immunocompetent rats resulted in tumorigenesis as well (82). Mice generated from tetraploid complementation using iPSC lines were prone to tumorigenesis (83). The expression profiles of the human iPSC-derived differentiated cells revealed a significant overlap of these cells with human tumor cell lines regarding expression of several cancer-related genes (84,85). Because iPSCs themselves are not intended to be used for therapy, the major concern relates to the possible contamination of differentiated progenitors with mutated pluripotent cells. Extensive epigenetic modifications occurring during reprogramming and differentiation may make iPSCs more prone to causing cancer following transplantation. Development of highly sensitive methods for detection and efficient separation of undifferentiated cells will be needed (86,87). Among new methods potentially limiting the tumorigenicity of iPSCs are increasing the copy number of tumor suppressors (88) and the use of specific drugs such as metformin (89) and pluripotent cell-specific inhibitors (90).

There is currently limited information regarding the mechanisms of iPSC-mediated tumorigenesis in vivo. The risk of tumorigenesis is difficult to estimate due to the different susceptibility of animals and humans and to the immunosuppressed or deficient character of the current animal models used in conjunction with human cells. Therefore, additional studies using improved animal models and tests are required. Several new severely immunodeficient mouse and rat models have been developed that will be useful for detecting small numbers of tumorigenic cells in iPSC-derived products (91,92). Tumorigenicity tests should determine the limit of detection and sensitivity of the assay and should contain positive and negative controls. Well defined methods should be developed to reduce the tumorigenicity of transplanted cells, including complete terminal differentiation, eliminating undifferentiated cells, and blocking the expression of cancer-related genes in pluripotent cells and their derivatives. Cancer cells must be detected early after transplantation into the host and eliminated. A sensitive and facile method for tumor detection in small animals is the use of the firefly luciferase reporter construct and bioluminescence imaging (92). However, this approach is not suitable for large animal models and clinical applications. Therefore, technological advances using a combination of imaging modalities are required to provide the most accurate information.

It is important to stress that additional genomic abnormalities can occur during the differentiation of pluripotent cells to specific lineages. Even though the potential risk for tumor formation in these cells should be low, genetic changes can affect their performance and functional activities when replacing damaged tissues (76,93). An additional way to safeguard iPSC-generated cells from overproliferation or teratoma formation after transplantation is to insert inducible suicide genes that can be regulated using prodrugs (94–96).

Overview of Preclinical Testing Requirements for iPSC Products

Regulatory issues related to the use of human iPSC products are currently being evaluated by the Center for Biologics Evaluation and Research at the United States Food and Drug Administration (97). According to published requirements, evaluation of iPSC-derived products for patient treatments includes preclinical testing to examine safety, feasibility, and efficacy. Preclinical studies should be conducted and compared in healthy animals and in disease models. In accordance with Food and Drug Administration requirements, the same cells that potentially will be used in humans should be tested in animals. However, for a variety of applications, it will be reasonable at certain stages of development to test cells from the same species to provide a more compatible physiological environment. Rodents are used very successfully for studies of the basic biology of iPSCs, but they are relatively non-predictive for clinical efficacy. Larger animal species such as swine and monkeys may be preferable for stem cell-based preclinical studies due to physiological similarities to humans and longer life spans. It is desirable to develop the surgical and visualization techniques necessary for the use of stem cells in large animals. However, the use of large animals has specific issues that should be considered carefully. Relative to rodents, these include higher cost, more complex husbandry, insufficient reagents and tools, less studied disease mechanisms, less genomic information, a limited number of disease models, and less ability to modify the genome for model development.

In distinction to approved drugs, which have a certain half-life in the body, long-term integration is expected for iPSC derivatives. Cells having a different differentiation status, which can change in response to the in vivo environment, will be potentially present as well. Preclinical studies will involve evaluation of long-term safety and analysis of cell biodistribution. Currently, due to very limited data regarding the fate of transplanted cells, the risk of ectopic engraftment to non-intended locations and long-term off-site effects are uncertain. Therefore, biodistribution studies of stem cell-based products are of primary importance. Among long-term safety issues that should be addressed in preclinical experiments are genomic instability, the immune response and cell rejection, the capacity for uncontrolled proliferation and tumorigenicity, and off-target effects. Testing the feasibility and efficiency of a treatment will have, as an objective, evaluation of biological activity and several clinically relevant outcomes. Preclinical animal testing should provide information regarding biological and behavioral effects in relation to the timing of cell transplantation during the course of the particular disease; the routes for cell delivery; and frequencies, concentrations, and doses of administration. Care should be taken to understand the limitations of extrapolating results obtained in animals to clinical studies, particularly if the organ size, disease mechanism, and pathophysiology are...
MINIREVIEW: Preclinical Studies for Stem Cell-based Therapeutics

different between the animal model and humans. It is conceivable that, for certain conditions, a single satisfactory model does not exist. Therefore, the use of several models will illuminate potential limitations and enhance the ability to find alternative approaches.

The quality of the cell products, including homogeneity of the cell population, will determine in part the risk and efficacy of a given therapy. Other potentially confounding factors include cell line contaminants, risks of transmissible infections, storage capacity, and viability. iPSC products should be produced according to the protocols and procedures equivalent to Current Good Manufacturing Practice guidelines, and the final products must be characterized thoroughly.

Future Developments and Complementary Approaches

Selection of the best cell sources, further development of effective reprogramming and differentiation protocols, and demonstration of the safety and functionality of specialized cells are urgent issues to be addressed in preclinical studies. Experiments using human and animal cells as model systems will provide unique opportunities to examine a wide variety of functional properties and therapeutic effects in vivo. New strategies for the use of small molecules capable of functionally replacing reprogramming factors and generating tissue-specific precursor cells require further development. The sensitive detection and elimination of potentially tumorigenic cells and the development of appropriate immune models for xenotransplantation experiments, particularly in large animals, should permit more effective translation of experimental approaches to human procedures.

In parallel to the use of reprogrammed iPSCs, the new approach of transdifferentiation, based on the premise of converting one type of somatic cell directly into another, is also attracting considerable attention. This method potentially can significantly shorten the time for obtaining specialized cells and contribute to elimination of the risk of tumorigenesis (98, 99). This new approach requires development of protocols for large-scale production of cells. Problems associated with the lack of complete conversion of one cell type to another must also be solved.

Differentiation of patient-specific iPSCs into the cell types responsible for a given disease potentially provides new in vitro models to study disease mechanisms, test screening tools for toxicology testing, and develop therapeutic drugs to reverse disease phenotypes. Important questions that must be answered are whether cell phenotypes can be discerned within iPSC-derived cell cultures that are representative and predictive of the in vivo pathophysiology underlying the disease of interest and whether this phenotype can be altered in vitro such that a potential therapy for patients can emerge.

REFERENCES

1. Yamanaka, S. (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678–684.
2. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
3. Takahashi, K., Tanabe, K., Oghuchi, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.
4. Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K., Qu, X., Xiang, T., Lu, D., Chi, X., Gao, G., Ji, W., Ding, M., and Deng, H. (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3, 587–590.
5. Liao, J., Cui, C., Chen, S., Ren, J., Chen, J., Gao, Y., Li, H., Jia, N., Cheng, L., Xiao, H., and Xiao, L. (2009) Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4, 11–15.
6. Honda, A., Hirose, M., Hatori, M., Matoba, S., Miyoshi, H., Inoue, K., and Ogura, A. (2010) Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J. Biol. Chem. 285, 31362–31369.
7. Lee, A. S., Xu, D., Plews, J. R., Nguyen, P. K., Nag, D., Lyons, J. K., Han, L., Hu, S., Lan, F., Liu, J., Huang, M., Narsinh, K. H., Long, C. T., de Almeida, P. E., Levi, B., Kooreman, N., Bangs, C., Pacharinsak, C., Ikeno, F., Yeung, A. C., Gambhir, S. S., Robbins, R. C., Longaker, M. T., and Wu, J. C. (2011) Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J. Biol. Chem. 286, 32697–32704.
8. Wu, Y., Mishra, A., Qiu, Z., Farnsworth, S., Tardif, S. D., and Hornsby, P. J. (2012) Nonhuman primate induced pluripotent stem cells in regenerative medicine. Stem Cells Int. 2012, 767195.
9. Ezashi, T., Telugu, B. P., and Roberts, R. M. (2012) Induced pluripotent stem cells from pigs and other ungulate species: an alternative to embryonic stem cells? Reprod. Domest. Anim. 47, Suppl. 4, 92–97.
10. Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V., and Greiner, D. L. (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 12, 786–798.
11. Suzuki, S., Iwamoto, M., Saito, Y., Fuchimoto, D., Sembon, S., Suzuki, M., Mikawa, S., Hashimoto, M., Aoki, Y., Najima, Y., Takagi, S., Suzuki, N., Suzuki, E., Kubo, M., Mimuro, J., Kashiwakura, Y., Madoiwa, S., Sakata, Y., Perry, A. C., Ishikawa, F., and Onishi, A. (2012) Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10, 753–758.
12. de Almeida, P. E., Ransohoff, J. D., Nahid, A., and Wu, J. C. (2013) Immunogenicity of pluripotent stem cells and their derivatives. Circ. Res. 112, 549–561.
13. Zhao, T., Zhang, Z. N., Rong, Z., and Xu, Y. (2011) Immunogenicity of induced pluripotent stem cells. Nature 474, 212–215.
14. Guha, P., Morgan, J. W., Mostoslavsky, G., Rodrigues, N. P., and Boyd, A. S. (2013) Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 12, 407–412.
15. Araki, R., Uda, M., Hoki, Y., Sunayama, M., Nakamura, M., Ando, S., Sugiuira, M., Ideno, H., Shimada, A., Nifujii, A., and Abe, M. (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494, 100–104.
16. Hannan, N. R., Segeritz, C. P., Touboul, T., and Vallier, L. (2013) Production of hepatocyte-like cells from human pluripotent stem cells. Nat. Protoc. 8, 430–437.
17. Liu, H., Kim, Y., Sharkis, S. M., Marchionni, L., and Jang, Y. Y. (2011) In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci. Transl. Med. 3, 82ra39.
18. Chen, Y. F., Tseng, C. Y., Wang, H. W., Kuo, H. C., Yang, V. W., and Lee, O. K. (2012) Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology 55, 1193–1203.
19. Yusa, K., Rashid, S. T., Strick-Marchand, H., Varela, I., Liu, P. Q., Paschon, D. E., Miranda, E., Ordonez, A., Hanan, N. R., Rouhani, F. J., Darche, S., Alexander, G., Marciniak, S. J., Fusaki, N., Hasegawa, M. C., Di Santo, J. P., Lomas, D. A., Bradley, A., and Vallier, L. (2011) Targeted gene correction of ar-tsiprin T deficiency in induced pluripotent stem cells. Nature 478, 391–394.
20. Emborg, M. E., Liu, Y., Xi, J., Zhang, X., Yin, Y., Lu, J., Joers, V., Swanson, C., Holden, J. E., and Zhang, S. C. (2013) Induced pluripotent stem-cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep. 3, 646–650.
21. Rhee, Y. H., Ko, J. Y., Chang, M. Y., Yi, S. H., Kim, D., Kim, C. H., Shim, J. W., Jo, A. Y., Kim, B. W., Lee, H., Lee, S. H., Suh, W., Park, C. H., Koh, H. C., Lee, Y. S., Lanza, R., Kim, K. S., and Lee, S. H. (2011) Protein-based human iPSCs efficiently generate functional dopamine neurons and can
MINIREVIEW: Preclinical Studies for Stem Cell-based Therapeutics

22. Pouy, A., Satarian, L., Kiani, S., Javan, M., and Baharvand, H. (2011) Human induced pluripotent stem cell differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination. PLoS ONE 6, e27925

23. Nori, S., Okada, Y., Yasuda, A., Tsuji, O., Takahashi, Y., Kobayashi, Y., Fujiyoshi, K., Koike, M., Uchiyama, Y., Ikeda, E., Toyama, Y., Yamanaka, S., Nakamura, M., and Okano, H. (2011) Crafted human-induced pluripotent stem-cell-derived neurephores promote motor functional recovery after spinal cord injury in mice. Proc. Natl. Acad. Sci. U.S.A. 108, 16825–16830

24. Kobayashi, Y., Okada, Y., Itakura, G., Iwai, H., Nishimura, S., Yasuda, A., Nori, S., Hikishima, K., Konomi, T., Fujiyoshi, K., Tsuji, O., Toyama, Y., Yamanaka, S., Nakamura, M., and Okano, H. (2012) Pre-evaluated safe human iPS-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS ONE 7, e52787

25. Kawai, H., Yamashita, T., Ohta, Y., Deguchi, K., Nagotani, S., Zhang, X., Ikeda, Y., Matsुura, T., and Abe, K. (2010) Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J. Cereb. Blood Flow Metab. 30, 1487–1493

26. Jensen, M. B., Yan, H., Krishnaney-Davison, R., Al Sawaf, A., and Zhang, S. C. (2013) Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J. Stroke Cerebrovasc. Dis. 22, 304–308

27. Oki, K., Tatarishvili, J., Wood, J., Koch, P., Wattanaitan, S., Mine, Y., Monni, E., Tornero, D., Ahlenius, H., Ladewig, J., Brüstle, O., Lindvall, O., and Kokaia, Z. (2012) Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells 30, 1120–1133

28. Gomi, M., Takagi, Y., Morizane, A., Doi, D., Nishimura, M., Miyamoto, S., and Takahashi, J. (2012) Functional recovery of the murine brain ischemia model using human induced pluripotent stem cell-derived telencephalic progenitors. Brain Res. 1459, 52–60

29. Tucker, B. A., Park, I. H., Qi, S. D., Klassen, H. J., Jiang, C., Yao, J., Redenti, S., Daley, G. Q., and Young, M. J. (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS ONE 6, e18992

30. Zhou, L., Wang, W., Liu, Y., Fernandez de Castro, J., Ezashi, T., Telugu, B. P., Roberts, R. M., Kaplan, H. J., and Dean, D. C. (2011) Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells 29, 972–980

31. Li, Y., Tsai, Y. T., Hsu, C. W., Erol, D., Yang, Y. H., Davis, R. J., Egli, D., and Tsang, S. H. (2012) Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol. Med. 18, 1312–1319

32. Mauritz, C., Schwaneck, K., Reppel, M., Neef, S., Katsimtaki, K., Maier, L. S., Nguemo, F., Menke, S., Haustein, M., Hescheler, J., Hasenfuss, G., and Martin, U. (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118, 507–517

33. Martinez-Fernandez, A., Nelson, T. J., Yamagawa, S., Miki, K., Saito, A., Fukushima, S., Higuchi, T., Kawamura, T., Kuratani, T., Daimon, T., Shimizu, T., Okano, T., and Sawa, Y. (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126, 529–537

34. Alipio, Z., Liao, W., Roemer, E. J., Wagner, M., Linsk, L. M., Ward, D. C., and Ma, Y. (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells. Proc. Natl. Acad. Sci. U.S.A. 107, 13426–13431

35. Zhu, F. F., Zhang, P. B., Zhang, D. H., Sui, X., Yin, M., Xiang, T. T., Shi, Y., Ding, M. X., and Deng, H. (2011) Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia 54, 2325–2336

36. Nath, T., Nelson, T. J., Edukuila, R., Sakuma, T., Ohmine, S., Tonne, J. M., Yamada, S., Kudva, Y., Terzic, A., and Ikeda, Y. (2011) Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther. 18, 283–293

37. Bar-Nur, O., Russ, H. A., Efrat, S., and Benvenisty, N. (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet β cells. Cell Stem Cell 9, 17–23

38. Jeon, K. Y., Kim, H. J., Thuan, N. V., Park, S. H., Lim, Y. H., Lee, E. R., Kim, J. H., Lee, M. S., and Cho, S. G. (2012) Differentiation and transplantation of functional pancreatic β cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev. 21, 2642–2655

39. Gu, E., Chen, W. Y., Gu, J., Burridge, P., and Wu, J. C. (2012) Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics 2, 335–345

40. Ruggiero, A., Thorek, D. L., Guenoun, J., Krestin, G. P., and Bernsen, M. R. (2012) Cell tracking in cardiac repair: what to image and how to image. Eur. Radiol. 22, 189–204

41. Cai, W., Zhang, Y., and Kamp, T. J. (2011) Imaging of induced pluripotent stem cells: from cellular reprogramming to transplantation. Am. J. Nucl. Med. Mol. Imaging 1, 18–28

42. Sohn, Y. D., Han, J. W., and Yoon, Y. S. (2012) Generation of induced pluripotent stem cells from somatic cells. Prog. Mol. Biol. Transl. Sci. 111, 1–26

43. Maekawa, M., Yamaguchi, K., Ichikawa, T., Shibukawa, R., Kodanaka, I., Ichisaka, T., Kawamura, T., Kuratani, T., Daimon, T., Shimizu, T., Okano, T., and Sawa, Y. (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126, 430–439

44. Diabetic Pathology 53, 430–439

45. Carpenter, L., Carr, C., Yang, C. T., Stuckey, D. J., Clarke, K., and Watt, S. M. (2012) Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat. Stem Cells Dev. 21, 977–986

46. Gu, M., Nguyen, P. K., Lee, A. S., Xu, D., Hu, S., Plesw, J. R., Han, L., Huber, B. C., Lee, W. H., Gong, Y., de Almeida, P. E., Lyons, J., Ikeno, F., Pacharrinska, C., Connolly, A. J., Gambhir, S. S., Robbins, R. C., Longaker, M. T., and Wu, J. C. (2012) Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ. Res. 111, 882–893

47. Templin, C., Zweierditt, R., Schwener, K., Olmer, R., Gardi, J. R., Em- mert, M. Y., Müller, E., Küest, S. M., Cohrs, S., Schibli, R., Kronen, P., Hilde, M., Reinsch, A., Strunk, D., Haeverich, A., Hoesvert, S., Lüscher, T. F., Kaufmann, P. A., Landmesser, U., and Martin, U. (2012) Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression. Circulation 126, 430–439

48. Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, D. C. (2011) Imaging of induced pluripotent stem cells. Stem Cell Res. Ther. 2, 5

49. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., and Hochendler, K. (2008) Induced pluripotent stem cells generated without viral transformation. Science 322, 495–499

50. Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko,
MINIREVIEW: Prereprogrammed Studies for Stem Cell-based Therapeutics

S., Yang, E., Cha, K. Y., Lanza, R., and Kim, K. S. (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476

56. Lund, R. J., Närva, E., and Lahesmaa, R. (2012) Genetic and epigenetic stability of human pluripotent stem cells. Nat. Rev. Genet. 13, 732–744

57. Kim, K., Zhao, R., Doi, A., Ng, K., Unternaehrer, J., Cahan, P., Hsu, H., Loh, Y. H., Aryee, M. J., Lensch, M. W., Li, H., Collins, J. J., Feinberg, A. P., and Daley, G. Q. (2011) Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat. Biotechnol. 29, 1117–1119

58. Ruiz, S., Diep, D., Gore, A., Panopoulos, A. D., Montserrat, N., Plongthaisong, K., Kumar, S., Fung, H. L., Giorgioti, A., Bilic, J., Batchelder, E. M., Zaehe, H., Kan, N. G., Scholer, H. R., Mercola, M., Zhang, K., and Izpisua Belmonte, J. C. (2012) Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc. Natl. Acad. Sci. U.S.A. 109, 16196–16201

59. Nazor, K. L., Altun, G., Lynch, C., Tran, H., Harness, J. V., Slavin, I., Garti, T., Chason, J. J., Wilbert, M. L., Canto, I., Giorgetti, A., Israel, M. A., Kiskinis, E., Lee, J. H., Loh, Y. H., Manos, P. D., Montserrat, N., Panopoulos, A. D., Ruiz, S., Wilbert, M. L., Yu, J., Krick, A., Shinoka, T., and Breuer, C. K. (2012) Evaluation of the use of an induced pluripotent cell transplantation to organ engineering. Cell Transplant. 21, 951–963

60. Kuroda, T., Yasuda, S., Hirata, N., Kusakawa, S., Hirata, N., Kanda, Y., Suzuki, K., Kurokawa, T., Koyanagi, M., Tanabe, K., Ohnuki, M., Ogawa, D., Ikeda, E., Okano, H., and Yamanaka, S. (2009) Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol. 27, 743–745

61. Zhang, Y., Wang, D., Chen, M., Yang, B., Zhang, F., and Cao, K. (2011) Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart. PLoS ONE 6, e19012

62. Tong, M., Lv, Z., Liu, L., Zhu, H., Zheng, Q. Y., Zhao, X. Y., Li, W., Wu, Y. B., Zhang, J. H., Wu, H. J., Li, Z. K., Zeng, F., Wang, L., Wang, X. J., Sha, J. H., and Zhou, Q. (2011) Mice generated from tetraploid complementation competent iPSCs show similar developmental features as those from ES cells but are prone to tumorigenesis. Cell Res. 21, 1634–1637

63. Ghosh, Z., Huang, M., Hu, S., Wilson, K. D., Dey, D., and Wu, I. C. (2011) Dissecting the oncogenic and tumorigenic potential of differentiated human induced pluripotent stem cells and human embryonic stem cells. Cancer Res. 71, 5030–5039

64. Zhang, G., Shang, B., Yang, P., Cao, Z., Pan, Y., and Zhou, Q. (2012) Induced pluripotent stem cell consensus genes: implication for the risk of tumorigenesis and cancers in induced pluripotent stem cell therapy. Stem Cells Dev. 21, 955–964

65. Kuroda, T., Yasuda, S., Kasukawa, S., Hirata, N., Kanda, Y., Suzuki, K., Takahashi, K., Okita, K., Nakagawa, M., Yoyanagi, M., Tanabe, K., Ohnuki, M., Ogawa, D., Ikeda, E., Okano, H., and Yamanaka, S. (2009) Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol. 27, 743–745

66. Zhong, Y., Zhang, S., Chen, M., Yang, B., Zhang, F., and Cao, K. (2011) Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart. PLoS ONE 6, e19012

67. Tang, C., Lee, A. S., Volkmer, J. P., Sahoo, D., Nag, D., Mosley, A. R., Inlay, M. A., Ardehali, R., Chavez, S. L., Rha, P. R., Behr, B., Wu, J. C., Weissman, I. L., and Drukker, M. (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat. Biotechnol. 29, 829–834

68. Menendez, S., Camus, S., Herrera, A., Paramonov, I., Morera, L. B., Col-
lado, M., Pekarik, V., Maceda, I., Edel, M., Consiglio, A., Sanchez, A., Li, H., Serrano, M., and Belmonte, J. C. (2012) Increased dosage of tumor suppressors limits the tumorigenicity of iPS cells without affecting their pluripotency. Aging Cell 11, 41–50
89. Joven, J., Menéndez, J. A., Fernandez-Sender, L., Espinel, E., Rull, A., Beltrán-Debón, R., Rodríguez-Gallego, E., Riera-Borrull, M., Pedro-Botet, J., Alonso-Villaverde, C., Camps, J., and Aragonès, G. (2013) Metformin: a cheap and well-tolerated drug that provides benefits for viral infections. HIV Med. 14, 233–240
90. Ben-David, U., Gan, Q. F., Golan-Lev, T., Arora, P., Yanuka, O., Oren, Y. S., Leikin-Frenkel, A., Graf, M., Garippa, R., Boehringer, M., Gromo, G., and Benvenisty, N. (2013) Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 12, 167–179
91. Kuroda, T., Yasuda, S., and Sato, Y. (2013) Tumorigenicity studies for human pluripotent stem cell-derived products. Biol. Pharm. Bull. 36, 189–192
92. Mashimo, T., Takizawa, A., Kobayashi, J., Kunihiro, Y., Yoshimi, K., Ishida, S., Tanabe, K., Yanagi, A., Tachibana, A., Hirose, J., Yomoda, J., Morimoto, S., Kuramoto, T., Voigt, B., Watanabe, T., Hiai, H., Tateno, C., Komatsu, K., and Serikawa, T. (2012) Generation and characterization of severe combined immunodeficiency rats. Cell Rep. 2, 685–694
93. Varela, C., Denis, J. A., Polentes, J., Feyeux, M., Aubert, S., Champon, B., Piétu, G., Peschanski, M., and Lefort, N. (2012) Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic cells. J. Clin. Invest. 122, 569–574
94. Zhong, B., Watts, K. L., Gori, J. L., Wohlfahrt, M. E., Enssle, J., Adair, J. E., and Kiernan, H. P. (2011) Safeguarding nonhuman primate iPS cells with suicide genes. Mol. Ther. 19, 1667–1675
95. Chen, F., Cai, B., Gao, Y., Yuan, X., Cheng, F., Wang, T., Jiang, M., Zhou, Y., Lahn, B. T., Li, W., and Xiang, A. P. (2013) Suicide gene-mediated ablation of tumor-initiating mouse pluripotent stem cells. Biomaterials 34, 1701–1711
96. Cheng, F., Ke, Q., Chen, F., Cai, B., Gao, Y., Ye, C., Wang, D., Zhang, L., Lahn, B. T., Li, W., and Xiang, A. P. (2012) Protecting against wayward human induced pluripotent stem cells with a suicide gene. Biomaterials 33, 3195–3204
97. Knoepfler, P. S. (2012) Key anticipated regulatory issues for clinical use of human induced pluripotent stem cells. Regen. Med. 7, 713–720
98. Morris, S. A., and Daley, G. Q. (2013) A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res. 23, 33–48
99. Sancho-Martinez, I., Baek, S. H., and Izpisua Belmonte, J. C. (2012) Lineage conversion methodologies meet the reprogramming toolbox. Nat. Cell Biol. 14, 892–899

MINIREVIEW: Preclinical Studies for Stem Cell-based Therapeutics

FEBRUARY 21, 2014 • VOLUME 289 • NUMBER 8
JOURNAL OF BIOLOGICAL CHEMISTRY 4593