Harnack inequalities and W-entropy formula for Witten Laplacian on Riemannian manifolds with K-super Perelman Ricci flow

Songzi Li*, Xiang-Dong Li †

December 23, 2014

Abstract. In this paper, we prove logarithmic Sobolev inequalities and Li-Yau or Hamilton type differential Harnack inequalities for the heat equation of the Witten Laplacian on Riemannian manifolds equipped with K-super Perelman Ricci flow. Moreover, we establish the W-entropy formula and prove a rigidity theorem on complete Riemannian manifolds satisfying the $CD(K, m)$ condition for $K \in \mathbb{R}$ and $m \in [n, \infty)$. Finally, we extend the W-entropy formula to time dependent Witten Laplacian on compact Riemannian manifolds with K-super Perelman Ricci flow.

Contents

1 Introduction 1
 1.1 The differential Harnack inequality 1
 1.2 The W-entropy formula 2
 1.3 The purpose of our paper 5
 1.4 Statement of main results 6

2 Log-Sobolev inequalities and Harnack inequalities for Witten Laplacian 12
 2.1 Log-Sobolev inequalities on K-super Perelman Ricci flow 12
 2.2 Hamilton’s Harnack inequality for Witten Laplacian with $CD(K, \infty)$ condition 14
 2.3 The LYH Harnack inequality for Witten Laplacian with $CD(K, m)$ condition 15
 2.4 The LYH Harnack inequality on K-super Perelman Ricci flow 19
 2.5 Second order derivative estimates 20

3 The W-entropy formula for Witten Laplacian 22
 3.1 W-entropy for Witten Laplacian with $CD(K, \infty)$ condition 22
 3.2 W-entropy for Witten Laplacian with $CD(K, m)$ condition 24
 3.3 W-entropy for Witten Laplacian on K-super Perelman Ricci flow 28

1 Introduction

1.1 The differential Harnack inequality

Differential Harnack inequality is an important tool in the study of heat equations and geometric flows on Riemannian manifolds. Let M be an n dimensional complete Riemannian manifold, u be a positive solution to the heat equation

$$\partial_t u = \Delta u.$$ (1)
In their famous paper [8], Li and Yau proved that, if $Ric \geq -K$, where $K \geq 0$ is a positive constant, then for all $\alpha > 1$,
\[
\frac{\| \nabla u \|^2}{u^2} - \alpha \frac{\partial_t u}{u} \leq \frac{n\alpha^2}{2t} + \frac{n\alpha^2 K}{\sqrt{2}(\alpha - 1)}. \tag{2}
\]
In particular, if $Ric \geq 0$, then taking $\alpha \to 1$, the Li-Yau differential Harnack inequality [8] holds
\[
\frac{\| \nabla u \|^2}{u^2} - \frac{\partial_t u}{u} \leq \frac{n}{2t}. \tag{3}
\]
In [6], Hamilton proved a dimension free Harnack inequality on compact Riemannian manifolds with Ricci curvature bounded from below. More precisely, if $Ric \geq -K$,
then, for any positive and bounded solution u to the heat equation (1), it holds
\[
\frac{\| \nabla u \|^2}{u^2} \leq \left(\frac{1}{t} + 2K \right) \log(A/u), \quad \forall x \in M, t > 0, \tag{4}
\]
where
\[
A := \sup \{ u(t, x) : x \in M, t \geq 0 \}.
\]
Indeed, the same result holds on complete Riemannian manifolds with Ricci curvature bounded from below. Under the same condition $Ric \geq -K$, Hamilton also proved the following Li-Yau type Harnack inequality for any positive solution to the heat equation (1)
\[
\frac{\| \nabla u \|^2}{u^2} - e^{2Kt} \frac{\partial_t u}{u} \leq \frac{n}{2t} e^{4Kt}. \tag{5}
\]
In particular, when $K = 0$, the above inequality reduces to the Li-Yau Harnack inequality [3] on complete Riemannian manifolds with non-negative Ricci curvature.

In this paper, we refer the inequality (1) Hamilton’s (differential) Harnack inequality, and refer the inequalities (3), (2) and (5) the Li-Yau-Hamilton (differential) Harnack inequality.

1.2 The W-entropy formula
Let M be a closed manifold. In [19], Perelman introduced the F-entropy on the space of Riemannian metrics and smooth functions as follows
\[
F(g, f) = \int_M (R + |\nabla f|^2) e^{-f} dv,
\]
where $g \in M = \{ \text{all Riemannian metrics on } M \}$, $f \in C^\infty(M)$, R denotes the scalar curvature on (M, g), and dv denotes the volume measure. Under the constraint condition that
\[
dm = e^{-f} dv
\]
is fixed, Perelman [19] proved that the gradient flow of F with respect to the standard L^2-metric on $M \times C^\infty(M)$ is given by the following modified Ricci flow for g together with the conjugate heat equation for f, i.e.,
\[
\partial_t g = -2(Ric + \nabla^2 f),
\]
\[
\partial_t f = -\Delta f - R.
\]
Moreover, Perelman [19] introduced the remarkable W-entropy as follows

$$W(g, f, \tau) = \int_M \left[\tau (R + |\nabla f|^2) + f - n \right] \frac{e^{-f}}{(4\pi \tau)^{n/2}} \, dv, \quad (6)$$

where $\tau > 0$, and $f \in C^\infty(M)$ satisfies the following condition

$$\int_M (4\pi \tau)^{-n/2} e^{-f} \, dv = 1.$$

By [19], it is known that, if $(g(t), f(t), \tau(t))$ satisfies the evolution equations

$$\partial_t g = -2Ric, \quad \partial_t f = -\Delta f + |\nabla f|^2 - R + \frac{n}{2\tau}, \quad \partial_t \tau = -1, \quad (7)$$

where the first one is Hamilton’s Ricci flow, and the second one is the corresponding conjugate heat equation, then the following Perelman entropy formula holds

$$\frac{d}{dt} W(g, f, \tau) = 2 \int_M \tau \left| \nabla^2 f - \frac{g}{2\tau} \right|^2 e^{-f} \frac{(4\pi \tau)^{n/2}}{(4\pi \tau)^{n/2}} \, dv. \quad (8)$$

This implies that the W-entropy is increasing in τ and the monotonicity is strict except that M is a shrinking Ricci soliton

$$Ric + \nabla^2 f = \frac{g}{2\tau}.$$

As an application of the above entropy formula, Perelman [19] derived the non local collapsing theorem for the Ricci flow, which plays an important rôle for ruling out cigars, the one part of the singularity classification for the final resolution of the Poincaré conjecture and geometrization conjecture.

Since Perelman’s preprint [19] was published on Arxiv in 2002, many people have studied the W-like entropy for other geometric flows on Riemannian manifolds [17, 18, 3, 15, 7]. In [17, 18], Ni studied the W-entropy for the linear heat equation on complete Riemannian manifolds. More precisely, let (M, g) be an n-dimensional complete Riemannian manifold, let

$$u = \frac{e^{-f}}{(4\pi t)^{n/2}}$$

be a positive solution to the linear heat equation

$$\partial_t u = \Delta u \quad (9)$$

with $\int_M u(x, 0) \, dv(x) = 1$. The W-entropy for the linear heat equation [19] is defined by

$$W(f, t) = \int_M \left[t |\nabla f|^2 + f - n \right] \frac{e^{-f}}{(4\pi t)^{n/2}} \, dv. \quad (10)$$

In [17], Ni proved the following entropy formula

$$\frac{dW(f, t)}{dt} = -2 \int_M \left(\left| \nabla^2 f - \frac{g}{2t} \right|^2 + Ric(\nabla f, \nabla f) \right) \frac{e^{-f}}{(4\pi t)^{n/2}} \, dv. \quad (11)$$

This yields that the W-entropy for the linear heat equation [19] is decreasing on complete Riemannian manifolds with non-negative Ricci curvature.

In [11, 13], the second author of this paper introduced the W-entropy for the heat equation associated with the Witten Laplacian and proved the monotonicity and rigidity
results on complete Riemannian manifolds with non-negative m-dimensional Bakry-Emery Ricci curvature condition. More precisely, let (M, g) be a complete Riemannian manifold, $\phi \in C^2(M)$. Let

$$L = \Delta - \nabla \phi \cdot \nabla$$

be the Witten Laplacian on (M, g) with respect to μ, where

$$d\mu = e^{-\phi} dv.$$

For any $m \in [n, \infty)$, let

$$Ric_{m,n}(L) = Ric + \nabla^2 \phi - \frac{\nabla \phi \otimes \nabla \phi}{m-n},$$

be the m-dimensional Bakry-Emery Ricci curvature of L, where $m = n$ if and only if ϕ is identically constant. Let $u = \frac{e^{-f}}{(4\pi t)^{m/2}}$ be the fundamental solution to the heat equation

$$\partial_t u = Lu.$$

Let

$$H_m(u, t) = -\int_M u \log ud\mu - \frac{m}{2} (1 + \log(4\pi t)).$$

Define the W-entropy by the Boltzmann formula

$$W_m(u, t) = \frac{d}{dt}(tH_m(u, t)).$$

Then

$$\frac{d}{dt}H_m(u, t) = -\int_M \left(L \log u + \frac{m}{2t} \right) ud\mu,$$

and

$$W_m(u, t) = \int_M \left[t|\nabla \log u|^2 + f - m \right] \frac{e^{-f}}{(4\pi t)^{m/2}} d\mu.$$

Moreover, under the condition that (M, g) is a complete Riemannian manifold with bounded geometry condition, and $\phi \in C^4(M)$ with $\nabla \phi \in C^3_b(M)$, we have\footnote{In 2006, the second author of this paper proved the W-entropy formula (16) for all positive solutions to the heat equation $\partial_t u = Lu$ on compact Riemannian manifolds with fixed metrics and potentials. See [10].}

$$\frac{dW_m(u, t)}{dt} = -2\int_M t \left(|\nabla^2 f - \frac{g}{2t}|^2 + Ric_{m,n}(L)(\nabla f, \nabla f) \right) ud\mu$$

$$- \frac{2}{m-n} \int_M t \left(\nabla \phi \cdot \nabla f + \frac{m-n}{2t} \right)^2 ud\mu.$$
Here we say that \((M,g)\) satisfies the bounded geometry condition if the Riemannian curvature tensor \(R\) and its covariant derivatives \(\nabla^k R\) are uniformly bounded on \(M, k = 1, 2, 3\). The bounded geometry condition and the assumption \(\phi \in C^4(M)\) with \(\nabla \phi \in C^3_b(M)\) are only required in order to allow us to exchange the time derivatives and the integration of \(u \log u\) on complete non-compact Riemannian manifolds.

In [14], when \(m \in \mathbb{N}\), we gave a direct proof of the \(W\)-entropy formula (13) for the Witten Laplacian by applying Ni’s \(W\)-entropy formula [10] for the usual Laplacian to \(M \times S^{m-n}\) equipped with a suitable warped product Riemannian metric, and gave a natural geometric interpretation for the third term in the \(W\)-entropy formula (16) for the Witten Laplacian. We have further proved the \(W\)-entropy formula for time dependent Witten Laplacian on Riemannian manifolds with time dependent metrics and potentials. In particular, if \(d\mu = e^{-\phi} dv\) is fixed and if

\[
\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}_{m,n}(L) \geq 0,
\]

then the \(W\)-entropy for the time dependent Witten Laplacian \(L = \Delta_{g(t)} - \nabla_{g(t)} \phi(t) \cdot \nabla_{g(t)} \) is decreasing in time. For details, see [14].

1.3 The purpose of our paper

In [9, 2, 11], the Li-Yau Harnack inequality [8] has been extended to positive solutions of the heat equation associated to the Witten Laplacian on complete Riemannian manifolds with non-negative \(m\)-dimensional Bakry-Emery Ricci curvature. More precisely, if \(\text{Ric}_{m,n}(L) \geq 0\), or equivalently, if the \(CD(0, m)\) condition holds on \((M, g, \phi)\), then

\[
L \log u + \frac{m}{2t} \geq 0. \tag{17}
\]

In [13], the Hamilton Harnack inequality has been also extended to positive and bounded solutions to the heat equation of the Witten Laplacian on complete Riemannian manifolds with the infinite dimensional Bakry-Emery Ricci curvature bounded from below, or equivalently, on \((M, g, \phi)\) with the \(CD(-K, \infty)\) condition, i.e., \(\text{Ric}(L) = \text{Ric} + \nabla^2 \phi \geq -K\), where \(K \in \mathbb{R}\) is a constant. As already mentioned here, the main ingredient in these work is the introduction of the notion of finite or infinite dimensional Bakry-Emery Ricci curvature, which plays an important role to substitute that of Ricci curvature in the study of geometric analysis for the usual Laplace-Beltrami operator on Riemannian manifolds.

On the other hand, from [12], [13] and [14], we can see that there exists an essential and deep relationship among the \(W\)-entropy for the Witten Laplacian, the Gaussian heat kernel on \(\mathbb{R}^m\) and the Li-Yau Harnack inequality (17) on complete Riemannian manifolds satisfying the \(CD(0, m)\) condition. Indeed, the \(W\)-entropy for the heat equation \(\partial_t u = L u\) is defined by the Boltzmann formula (13) together with (14), in which the quantity \(H_m(u, t) = -\int_{\mathbb{R}^m} u \log u d\mu - \frac{m}{2t} (\log(4\pi t) + 1)\) is defined as the difference between the Boltzmann-Shannon entropy \(H(u) = -\int_{\mathbb{R}^m} u \log u d\mu\) for the heat kernel measure \(u(x, t) d\mu(x)\) of the Witten Laplacian on \(M\) and the Boltzmann-Shannon entropy \(H(\overline{\pi}) = -\int_{\mathbb{R}^m} \overline{\pi} \log \overline{\pi} dx = \frac{m}{2t} (\log(4\pi t) + 1)\) of the Gaussian heat kernel measure \(\overline{\pi}(x, t) dx\) on \(\mathbb{R}^m\) with \(\overline{\pi}(x, t) = \frac{e^{-\frac{|x|^2}{2t}}}{(4\pi t)^{-m/2}}\). By (14), the time derivative of \(H_m(u, t)\) is given by the integral of the Li-Yau Harnack quantity \(L \log u + \frac{m}{2t}\) with respect to the heat kernel measure \(u(x, t) d\mu(x)\). The \(W\)-entropy formula (10) does not only imply the monotonicity of the \(W\)-entropy on complete Riemannian manifolds with the \(CD(0, m)\) condition, but also allows us to prove a rigidity theorem which characterizes the unique equilibrium state of the \(W\)-entropy on the canonical ensemble of all complete Riemannian manifolds satisfying the \(CD(0, m)\) condition. In [14], we defined the \(W\)-entropy for the heat equation of the time...
dependent Witten Laplacian by the same formulas (12) and (13), and we proved that the W-entropy introduced in this way is monotonically decreasing in time on compact Riemannian manifolds with $\frac{1}{2}\partial g + \text{Ric}_{m,n}(L) \geq 0$.

Now it is very natural to raise the problem how to define the W-entropy functional for the heat equation associated with the Witten Laplacian on complete Riemannian manifolds satisfying the $CD(K,\infty)$ condition or the $CD(K,m)$ condition for $K \in \mathbb{R}$ and $m \in [n,\infty)$, and whether we can establish the monotonicity and rigidity theorems for the W-entropy associated with the Witten Laplacian on complete Riemannian manifolds satisfying general curvature-dimension condition, and what happens on manifolds with time dependent metrics and potentials. Indeed, the second author of this paper has been asked this question for many times by many people during the past years.

The purpose of this paper is to study this problem. To do so, we first prove the log-Sobolev inequality and the reversal logarithmic Sobolev inequality, the Hamilton Harnack inequality and the Li-Yau-Hamilton Harnack inequality on Riemannian manifolds with time dependent metrics and potentials evolving along K-super Perelman Ricci flow, then we introduce the W-entropy and prove the W-entropy formula and rigidity theorem for the Witten Laplacian on complete Riemannian manifolds with fixed metrics and potentials satisfying the $CD(K,m)$ condition, for $K \in \mathbb{R}$ and $m \in [n,\infty)$. Finally, we extend our results to compact Riemannian manifolds with time dependent metrics and potentials evolving along K-super Perelman Ricci flow.

1.4 Statement of main results

To state our results, let us first introduce some notations. Let M be a complete Riemannian manifold with a fixed Riemannian metric g, $\phi \in C^2(M)$ and $d\mu = e^{-\phi}dv$, where v is the Riemannian volume measure on (M,g). The Witten Laplacian on (M,g) with respect to the weighted volume measure μ or the potential function ϕ is defined by

$$L = \Delta - \nabla \phi \cdot \nabla.$$

For all $u,v \in C^\infty_0(M)$, the following integration by parts formula holds

$$\int_M \langle \nabla u, \nabla v \rangle d\mu = -\int_M Luvd\mu = -\int_M uLvd\mu.$$

In [1], Bakry and Emery proved that for all $u \in C^\infty_0(M),

$$L|\nabla u|^2 - 2\langle \nabla u, \nabla Lu \rangle = 2|\nabla^2 u|^2 + 2\text{Ric}(L)(\nabla u, \nabla u),$$

where

$$\text{Ric}(L) = \text{Ric} + \nabla^2 \phi.$$

The formula [13] can be viewed as a natural extension of the Bochner-Weitzenböck formula. The quantity $\text{Ric}(L) = \text{Ric} + \nabla^2 \phi$, called the infinite dimensional Bakry-Emery Ricci curvature on the weighted Riemannian manifolds (M,g,ϕ). It plays as a good substitute of the Ricci curvature in many problems in comparison geometry and analysis on complete Riemannian manifolds with smooth weighted volume measures. See [1] [2] [14] [15] [16] [17] [18] and reference therein.

Following [1] [16] [9], we introduce the m-dimensional Bakry-Emery Ricci curvature on (M,g,ϕ) by

$$\text{Ric}_{m,n}(L) := \text{Ric} + \nabla^2 \phi - \frac{\nabla \phi \otimes \nabla \phi}{m-n},$$

where $m \geq n$ is a constant, and $m = n$ if and only if ϕ is a constant. When $m = \infty$, we have $\text{Ric}_{\infty,n}(L) = \text{Ric}(L)$. Following [2], we say that the Witten Laplacian L satisfies the
CD(K, ∞) condition if $\text{Ric}(L) \geq K$, and L satisfies the CD(K, m) condition if $\text{Ric}_{m,n}(L) \geq K$. Recall that, when $m \in \mathbb{N}$, the m-dimensional Bakry-Emery Ricci curvature $\text{Ric}_{m,n}(L)$ has a very natural geometric interpretation. Indeed, consider the warped product metric on $M^n \times S^{m-n}$ defined by

$$\tilde{g} = g_M \oplus e^{-\frac{2K}{m-n}} g_{S^{m-n}}.$$

where S^{m-n} is the unit sphere in \mathbb{R}^{m-n+1} with the standard metric $g_{S^{m-n}}$. By a classical result in Riemannian geometry, the quantity $\text{Ric}_{m,n}(L)$ is equal to the Ricci curvature of the above warped product metric \tilde{g} on $M^n \times S^{m-n}$ along the horizontal vector fields. See [16] [9] [21].

We now state the main results of this paper. In the first part of this paper, we prove a logarithmic Sobolev inequality and a reversal logarithmic Sobolev inequality, the Hamilton type Harnack inequality and the Li-Yau-Hamilton type Harnack inequality for the heat equation associated with the Witten Laplacian on manifolds equipped with K-super Perelman Ricci flow.

Theorem 1.1 Let M be a complete Riemannian manifold equipped with a family of time dependent metrics and C^2-potentials $(g(t), \phi(t), t \in [0, T])$ satisfying a K-super Perelman Ricci flow equation

$$\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}(L) \geq -K.$$

where $K \geq 0$ is a constant independent of $t \in [0, T]$. Let $u(\cdot, t) = P_t f$ be a positive solution to the heat equation

$$\partial_t u = Lu,$$

with the initial condition $u(\cdot, 0) = f$, where f is a measurable positive function on M, and

$$L = \Delta_{g(t)} - \nabla_{g(t)} \phi(t) \cdot \nabla_{g(t)}$$

is the time dependent Witten Laplacian on $(M, g(t), \phi(t))$. Then, the following logarithmic Sobolev inequality holds

$$P_t(f \log f) - P_t f \log P_t f \leq \frac{e^{2Kt}}{2K} - 1 \frac{1}{P_t} \left(\frac{\|\nabla f\|_2^2}{f} \right), \quad \forall t \in [0, T],$$ \hspace{1cm} (19)

and the reversal logarithmic Sobolev inequality holds

$$\frac{\|\nabla P_t f\|_2^2}{P_t f} \leq \frac{2K}{1 - e^{-2Kt}} (P_t(f \log f) - P_t f \log P_t f), \quad \forall t \in [0, T].$$ \hspace{1cm} (20)

Theorem 1.2 Let M be a complete Riemannian manifold equipped with a family of time dependent metrics and C^2-potentials $(g(t), \phi(t), t \in [0, T])$ satisfying a K-super Perelman Ricci flow equation

$$\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}(L) \geq -K.$$

where $K \geq 0$ is a constant independent of $t \in [0, T]$. Let u be a positive and bounded solution to the heat equation

$$\partial_t u = Lu,$$
where
\[L = \Delta_{g(t)} - \nabla_{g(t)} \phi(t) \cdot \nabla_{g(t)} \]
is the time dependent Witten Laplacian on \((M, g(t), \phi(t))\). Then for all \(x \in M\) and \(t > 0\),
\[\frac{|\nabla u|^2}{u^2} \leq \frac{2K}{1 - e^{-2Kt}} \log(A/u), \tag{21} \]
where
\[A := \sup\{u(t, x) : x \in M, t \geq 0\}. \]
In particular, the Hamilton differential Harnack inequality holds
\[\frac{|\nabla u|^2}{u^2} \leq \left(\frac{1}{t} + 2K \right) \log(A/u). \tag{22} \]
In the case \(K = 0\), i.e., \((M, g(t), \phi(t), t \in [0, T])\) is a complete Riemannian manifold equipped with the super Perelman Ricci flow
\[\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}(L) \geq 0, \]
we have
\[\frac{|\nabla u|^2}{u^2} \leq \frac{1}{t} \log \frac{A}{u}. \]
In particular, taking \(\phi = 0\), \(m = n\) and \(L = \Delta\), we have the Hamilton’s differential Harnack inequality on complete Riemannian manifolds with \(K\)-super Ricci flow.

Theorem 1.3 Let \(M\) be a complete Riemannian manifold equipped with a family of Riemannian metrics \((g(t), t \in [0, T])\) evolving along a \(K\)-super Ricci flow
\[\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric} \geq -K, \]
where \(K \geq 0\) be a constant independent of \(t \in [0, T]\). Let \(u\) be a positive and bounded solution to the heat equation
\[\partial_t u = \Delta u. \]
Let \(A := \sup\{u(t, x) : x \in M, t \geq 0\}\). Then for all \(x \in M\) and \(t > 0\),
\[\frac{|\nabla u|^2}{u^2} \leq \frac{2K}{1 - e^{-2Kt}} \log(A/u). \]
In particular, the Hamilton differential Harnack inequality holds
\[\frac{|\nabla u|^2}{u^2} \leq \left(\frac{1}{t} + 2K \right) \log(A/u). \]
In the case \(K = 0\), i.e., \((M, g(t), t \in [0, T])\) is a complete Riemannian manifold equipped with a super Ricci flow
\[\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric} \geq 0, \]
we have
\[\frac{|\nabla u|^2}{u^2} \leq \frac{1}{t} \log \frac{A}{u}. \tag{23} \]

\(^{2}\) In \([20]\), Qi S. Zhang proved \([23]\) for the heat equation \(\partial_t u = \Delta u\) on compact or complete Riemannian manifolds equipped with the Ricci flow \(\partial g = -2\text{Ric}\).
The following theorem extends the Li-Yau-Hamilton type Harnack inequality to positive solutions of the heat equation $\partial_t u = Lu$ on complete Riemannian manifolds with fixed metrics and potentials satisfying the $CD(-K, m)$ condition.

Theorem 1.4 Let (M, g) be a complete Riemannian manifold with a C^2-potential ϕ. Suppose that there exist some constants $m \geq n$ and $K \geq 0$ such that

$$\text{Ric}_{m,n}(L) \geq -K.$$

Let u be a positive solution of the heat equation

$$\partial_t u = Lu.$$

Then the Li-Yau-Hamilton differential Harnack inequality holds

$$\frac{\partial_t u}{u} - e^{-2Kt} \frac{\|\nabla u\|^2}{u^2} + e^{2Kt} \frac{m}{2t} \geq 0.$$

In particular, if $K = 0$, i.e., $\text{Ric}_{m,n}(L) \geq 0$, then the Li-Yau differential Harnack inequality holds

$$\frac{\partial_t u}{u} - \frac{\|\nabla u\|^2}{u^2} + \frac{m}{2t} \geq 0.$$

Theorem 1.4 can be extended to compact Riemannian manifolds with K-super Perelman Ricci flow with respect to the m-dimensional Bakry-Emery Ricci curvature $\text{Ric}_{m,n}(L)$. More precisely, we have the following

Theorem 1.5 Let $(M, g(t), \phi(t), t \in [0, T])$ be a compact Riemannian manifold with a K-super Perelman Ricci flow with respect to the m-dimensional Bakry-Emery Ricci curvature $\text{Ric}_{m,n}(L)$, i.e.,

$$\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}_{m,n}(L) \geq -K,$$

where $m \geq n$ and $K \geq 0$ are two constants. Let u be a positive solution of the heat equation

$$\partial_t u = Lu.$$

Then the Li-Yau-Hamilton differential Harnack inequality holds

$$\frac{\partial_t u}{u} - e^{-2Kt} \frac{\|\nabla u\|^2}{u^2} + e^{2Kt} \frac{m}{2t} \geq 0.$$

In the case $K = 0$, i.e., $(M, g(t), t \in [0, T])$ is a compact Riemannian manifold equipped with the super Perelman Ricci flow with respect to the m-dimensional Bakry-Emery Ricci curvature

$$\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}_{m,n}(L) \geq 0,$$

then the Li-Yau differential Harnack inequality holds

$$\frac{\partial_t u}{u} - \frac{\|\nabla u\|^2}{u^2} + \frac{m}{2t} \geq 0.$$

As the corollaries of Theorem 1.2 and Theorem 1.4 we have the following Harnack inequalities for positive solutions of the heat equation of the Witten Laplacian.
Corollary 1.6 Under the same condition as in Theorem 1.2, for any $\delta > 0$, and for all $x, y \in M$, $0 < t < T$, we have

$$u(x, t) \leq u(y, t) \frac{1}{1 + \delta} A^{\frac{m}{4}} \exp \left\{ 1 + \frac{\delta - 1}{4(1 + \delta)} \frac{2K}{1 - e^{-2Kt}} d^2(x, y) \right\}.$$

Corollary 1.7 Let M be a complete Riemannian manifold with $\text{Ric}_{m,n}(L) \geq -K$, u be a positive solution to the heat equation $\partial_t u = Lu$. Then, for all $x, y \in M$, $0 < \tau < T$, we have

$$u(x, \tau) \leq \left(\frac{T}{\tau} \right)^{m/2} u(y, T) \exp \left\{ \frac{1}{4} e^{2K\tau} |1 + 2K(T - \tau)| \frac{d^2(x, y)}{T - \tau} + \frac{m}{2} [e^{2KT} - e^{2K\tau}] \right\}.$$

In the second part of this paper, we introduce the W-entropy and prove the W-entropy formulas for the heat equation of the Witten Laplacian on complete Riemannian manifolds satisfying the $CD(K, m)$ condition, for $K \in \mathbb{R}$ and $m \in [n, \infty]$. We also prove a rigidity theorem on complete Riemannian manifolds satisfying the $CD(K, m)$ condition for $K \in \mathbb{R}$ and $m \in [n, \infty]$. These extend the W-entropy formula proved in [11][13][14] for the Witten Laplacian on complete Riemannian manifolds satisfying the $CD(0, m)$ condition, $m \in [n, \infty]$. We will also extend the W-entropy formula to time dependent Witten Laplacian on compact Riemannian manifolds with K-super Perelman Ricci flow.

Theorem 1.8 Let M be a complete Riemannian manifold with bounded geometry condition, $\phi \in C^4(M)$ with $\nabla \phi \in C^3_b(M)$. Suppose that $\text{Ric} + \nabla^2 \phi \geq K$, where $K \in \mathbb{R}$ is a constant. Let $u(\cdot, t) = P_t f$ be a positive solution to the heat equation $\partial_t u = Lu$ with $u(\cdot, 0) = f$, f is a positive and measurable function on M. Let

$$H_K(f, t) = D_K(t) \int_M (P_t(f \log f) - P_t f \log P_t f) d\mu,$$

where $D_0(t) = \frac{1}{t}$ and $D_K(t) = \frac{1}{|1 - e^{-2Kt}|}$ for $K \neq 0$. Then, for all $K \in \mathbb{R}$,

$$\frac{d}{dt} H_K(f, t) \leq 0, \quad \forall t > 0,$$

and for all $K \in \mathbb{R}$ and $t > 0$, we have

$$\frac{d^2}{dt^2} H_K(t) + 2K \coth(Kt) \frac{d}{dt} H_K(t) \leq -2D_K(t) \int_M |\nabla^2 \log P_t f|^2 P_t f d\mu.$$

Define the W-entropy by the revised Boltzmann entropy formula

$$W_K(f, t) = H_K(f, t) + \frac{\sinh(2Kt)}{2K} \frac{d}{dt} H_K(f, t).$$

Then, for all $K \in \mathbb{R}$, and for all $t > 0$, we have

$$\frac{d}{dt} W_K(f, t) = -\frac{\sinh(2Kt)}{K} D_K(t) \int_M |\nabla^2 \log P_t f|^2 P_t f d\mu$$

$$-\frac{\sinh(2Kt)}{K} D_K(t) \int_M (\text{Ric}(L) - K)(\nabla \log P_t f, \nabla \log P_t f) P_t f d\mu.$$

In particular, for all $K \in \mathbb{R}$, we have

$$\frac{d}{dt} W_K(f, t) \leq 0, \quad \forall t > 0.$$
Theorem 1.9 Let M be a complete Riemannian manifold with a fixed metric and potential (g, ϕ). Suppose that (M, g) satisfies the bounded geometry condition and $\phi \in C^4(M)$ with $\nabla \phi \in C^3_b(M)$. Let u be the heat kernel of the Witten Laplacian $L = \Delta - \nabla \phi \cdot \nabla$. Let

$$H_{m,K}(u,t) = -\int_M u \log u \, d\mu - \Phi_{m,K}(t),$$

where $\Phi_{m,K} \in C((0, \infty), \mathbb{R})$ satisfies

$$\Phi_{m,K}'(t) = \frac{m}{2t} e^{4Kt}, \quad \forall t > 0.$$

Define the W-entropy by the Boltzmann formula

$$W_{m,K}(u,t) = \frac{d}{dt} (tH_{m,K}(u,t)).$$

Then

$$\frac{d}{dt} W_{m,K}(u,t) = -2t \int_M \left[\nabla^2 \log u + \left(\frac{K}{2} + \frac{1}{2t} \right) g \right]^2 \left((\text{Ric}_m n(L) + Kg)(\nabla \log u, \nabla \log u) \right) u \, d\mu$$

$$- \frac{2t}{m-n} \int_M \left| \nabla \phi \cdot \nabla \log u - \frac{(m-n)(1 + Kt)}{2t} \right|^2 u \, d\mu$$

$$- \frac{m}{2t} \left[e^{4Kt(1 + 4Kt)} - (1 + Kt)^2 \right].$$

In particular, if $\text{Ric}_m n(L) \geq -K$, then, for all $t \geq 0$, we have

$$\frac{d}{dt} W_{m,K}(u,t) \leq -\frac{n}{2t} \left[e^{4Kt(1 + 4Kt)} - (1 + Kt)^2 \right].$$

Moreover, the equality holds at some time $t = t_0 > 0$ if and only if M is a quasi-Einstein manifold, i.e., $\text{Ric}_m n(L) = Kg$, and the potential function $f = -\log u$ satisfies the shrinking soliton equation with respect to $\text{Ric}_m n(L)$, i.e.,

$$\text{Ric}_m n(L) + 2\nabla^2 f = \frac{g}{t},$$

and moreover

$$\nabla \phi \cdot \nabla f = \frac{(m-n)(1 + Kt)}{2t}.$$

We would like to point out that, Theorem 1.8 and Theorem 1.9 are new even in the case ϕ is a constant, $m = n$ and $L = \Delta$ is the usual Laplace-Beltrami operator on complete Riemannian manifolds with Ricci curvature bounded from below by a negative constant. In this case, Theorem 1.9 can be formulated as follows.

Theorem 1.10 Let (M, g) be a complete Riemannian manifold with bounded geometry condition. Then

$$\frac{d}{dt} W_{n,K}(u,t) = -2t \int_M \left[\nabla^2 \log u + \left(\frac{K}{2} + \frac{1}{2t} \right) g \right]^2 \left((\text{Ric} + Kg)(\nabla \log u, \nabla \log u) \right) u \, d\mu$$

$$- \frac{n}{2t} \left[e^{4Kt(1 + 4Kt)} - (1 + Kt)^2 \right].$$

In particular, if $\text{Ric} \geq -K$, then, for all $t \geq 0$, we have

$$\frac{d}{dt} W_{n,K}(u,t) \leq -\frac{n}{2t} \left[e^{4Kt(1 + 4Kt)} - (1 + Kt)^2 \right].$$
Moreover, the equality holds at some time \(t = t_0 > 0 \) if and only if \(M \) is an Einstein manifold, i.e., \(\text{Ric} = -Kg \), and the potential function \(f = -\log u \) satisfies the shrinking soliton equation, i.e.,

\[
\text{Ric} + 2\nabla^2 f = \frac{g}{t}.
\]

In Subsection 3.3, we will extend Theorem 1.8 and Theorem 1.9 to time dependent Witten Laplacian on compact Riemannian manifolds with a \(K \)-super Perelman Ricci flow. For details, see Theorem 3.6 and Theorem 3.7.

The rest of this paper is organized as follows. In Subsection 2.1, we prove the logarithmic Sobolev inequality and the reversal logarithmic Sobolev inequality for the Witten Laplacian on complete Riemannian manifolds with \(K \)-super Perelman Ricci flow, i.e., Theorem 1.1. In Subsection 2.2, we prove Hamilton’s Harnack inequality for the Witten Laplacian on complete Riemannian manifolds with \(K \)-super Perelman Ricci flow, i.e., Theorem 1.2. In Subsection 2.3, we prove Theorem 1.4 and Corollary 1.7 on complete Riemannian manifolds with fixed metric and potential. In Subsection 2.3, we prove Theorem 1.4 on compact Riemannian manifolds with time dependent metrics and potentials, i.e., Theorem 2.2. In Subsection 3.1, we prove the \(W \)-entropy formula for the Witten Laplacian with \(CD(K,\infty) \) condition on complete Riemannian manifolds with fixed metric and potential, i.e., Theorem 1.8. In Subsection 3.2, we prove the \(W \)-entropy formula for the Witten Laplacian with the \(CD(K,m) \) condition on complete Riemannian manifolds with fixed metric and potential, i.e., Theorem 1.9. In Subsection 3.3, we extend Theorem 1.8 and Theorem 1.9 to time dependent Witten Laplacian on compact Riemannian manifolds with a \(K \)-super Perelman Ricci flow, see Theorem 3.6 and Theorem 3.7.

2 Log-Sobolev inequalities and Harnack inequalities for Witten Laplacian

2.1 Log-Sobolev inequalities on \(K \)-super Perelman Ricci flow

In this subsection, we modify the semigroup argument due to Bakry and Ledoux [2] to prove two logarithmic Sobolev inequalities for the time dependent Witten Laplacian on complete Riemannian manifolds with \(K \)-super Perelman Ricci flow.

Proof of Theorem 1.7 Let \(P_{s,t} \) be the heat semigroup of the time dependent Witten Laplacian on \(L^2(M,\mu) \), i.e., \(u(t,\cdot) = P_{s,t} f(\cdot) \) is the unique solution of the heat equation \(\partial_t u = Lu \) in \([s,T]\) with \(u(s,\cdot) = f \). To simplify the notation, let \(P_t = P_{0,t} \). Similarly to Bakry and Ledoux [2] (where \(g \) and \(\phi \) are time independent), we introduce

\[
h(t) = e^{2Kt} P_{T-t,T} \left(\frac{\nabla P_{T-t} f}{P_{T-t} f} \right), \quad t \in [0,T].
\]

Note that, at time \(T-t \), the generalized Bochner formula implies

\[
(\partial_t + L) \frac{\nabla u}{u} = \frac{2}{u} |\nabla^2 u - u^{-1} \nabla u \otimes \nabla u|^2 + 2u^{-1} \left(\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}(L) \right) (\nabla u, \nabla u).
\]
Similarly to the above proof of the logarithmic Sobolev inequality (25), we have

\[
\frac{\partial h}{\partial t} = 2K \phi(t) + e^{2Kt} P_{T-t,T} \left[\left(\frac{\partial}{\partial t} + L \right) \left(\frac{\nabla P_{T-t} f}{P_{T-t} f} \right) \right]
\]

\[
= 2K \phi(t) + e^{2Kt} P_{T-t,T} \left[\frac{2}{u} \nabla^2 u - u^{-1} \nabla u \otimes \nabla u \right] + 2u^{-1} \left(\frac{1}{2} \frac{\partial g}{\partial t} + Ric(L) \right) (\nabla u, \nabla u)
\]

\[
\geq 2e^{2Kt} P_{T-t,T} \left[u^{-1} \left(\frac{1}{2} \frac{\partial g}{\partial t} + Ric(L) + K \right) (\nabla u, \nabla u) \right]
\]

\[
\geq 0.
\]

Thus, \(t \to h(t) \) is increasing on \([0, T]\). This yields, for all \(t \in (0, T) \),

\[
\frac{\nabla P_T f}{P_T f} \leq e^{2Kt} P_{T-t,T} \left(\frac{\nabla P_{T-t} f}{P_{T-t} f} \right) \leq e^{2KT} P_T \left(\frac{\nabla f^2}{f} \right).
\]

Note that

\[
\frac{d}{dt} P_{T-t,T} (P_{T-t} f \log P_{T-t} f) = P_{T-t,T} ((L_{T-t} + \partial_t)(P_{T-t} f \log P_{T-t} f))
\]

\[
= P_{T-t,T} \left(\frac{\nabla P_{T-t} f^2}{P_{T-t} f} \right).
\]

Therefore

\[
P_T (f \log f) - P_T f \log P_T f = \int_0^T \frac{d}{dt} P_{T-t,T} (P_{T-t} f \log P_{T-t} f) dt
\]

\[
= \int_0^T P_{T-t,T} \left(\frac{\nabla P_{T-t} f^2}{P_{T-t} f} \right) dt
\]

\[
\leq \int_0^T e^{2K(T-t)} P_T \left(\frac{\nabla f^2}{f} \right) dt.
\]

Thus the logarithmic Sobolev inequality holds on complete Riemannian manifolds equipped with a \(K \)-super Perelman Ricci flow

\[
P_T (f \log f) - P_T f \log P_T f \leq e^{2KT} - 1 \frac{2K}{2K} P_T \left(\frac{\nabla f^2}{f} \right). \tag{25}
\]

Similarly to the above proof of the logarithmic Sobolev inequality \(25\), we have

\[
P_T (f \log f) - P_T f \log P_T f = \int_0^T \frac{d}{dt} P_{T-t,T} (P_{T-t} f \log P_{T-t} f) dt
\]

\[
= \int_0^T P_{T-t,T} \left(\frac{\nabla P_{T-t} f^2}{P_{T-t} f} \right) dt
\]

\[
\geq \int_0^T e^{-2Kt} \frac{\nabla P_T f^2}{P_T f} dt
\]

\[
= \frac{1 - e^{-2KT}}{2K} \frac{\nabla P_T f^2}{P_T f}.
\]

Thus, for all \(T > 0, f \in C_b(M) \) with \(f > 0 \), the reversal logarithmic Sobolev inequality holds

\[
\frac{\nabla P_T f^2}{P_T f} \leq \frac{2K}{1 - e^{-2KT}} (P_T (f \log f) - P_T f \log P_T f). \tag{26}
\]

This completes the proof of Theorem \(\Box\)
Remark 2.1 Similarly to the above proof of the Log-Sobolev inequalities, we can also prove the Poincaré inequality, the reversal Poincaré inequality as well as the Lévy-Gromov isoperimetric inequality on complete Riemannian manifolds equipped with K-super Perelman Ricci flow. To save the length of the paper, we will do these in a forthcoming paper.

2.2 Hamilton’s Harnack inequality for Witten Laplacian with $CD(K, \infty)$ condition

In this subsection, we prove Hamilton’s Harnack inequality for the time dependent Witten Laplacian on complete Riemannian manifolds with a K-super Perelman Ricci flow.

Proof of Theorem 1.2. We modify the method used in [13]. Let $t \in [0, T]$ and $s \in [0, T-t]$. For fixed s, replacing the initial date f in (20) by $P_{s}f$, applying the reversal logarithmic Sobolev inequality (20) to the heat semigroup $P_{s,t}+s$ on $t \in [0, T-s]$, and using the fact that $P_{s,t}+s P_{s}f = P_{t+s}f$ and $0 < P_{s}f \leq A$, we have

$$\frac{|\nabla P_{s,t+s}(P_{s}f)|^2}{P_{s,t+s}(P_{s}f)} \leq \frac{2K}{1-e^{-2Kt}} (P_{s,t+s}(P_{s}f \log A) - P_{s,t+s}(P_{s}f) \log P_{s,t+s}(P_{s}f)).$$

Thus

$$|\nabla \log P_{t+s}f|^2 \leq \frac{2K}{1-e^{-2Kt}} \log(\frac{A}{P_{t+s}f}).$$

Taking $s \to 0^+$ we derive

$$|\nabla \log P_{t}f|^2 \leq \frac{2K}{1-e^{-2Kt}} \log(\frac{A}{P_{t}f}).$$

Using $\frac{1}{1-e^{-x}} \leq 1 + \frac{1}{x}$ for $x \geq 0$, we have

$$|\nabla \log P_{t}f|^2 \leq \left(2K + \frac{1}{t}\right) \log(\frac{A}{P_{t}f}).$$

The proof of Theorem 1.2 is completed. □

Proof of Corollary 1.6. Let $I(x, t) = \log A/u(x, t)$. Then the differential Harnack inequality (21) in Theorem 1.2 implies

$$|\nabla \sqrt{I(x, t)}| = \frac{1}{2} \frac{|\nabla I(x, t)|}{\sqrt{I(x, t)}} \leq \frac{1}{2} \sqrt{\frac{2K}{1-e^{-2Kt}}}.$$

Fix $x, y \in M$ and integrate along a geodesic linking x and y, the above inequality yields

$$\sqrt{\log A/u(x, t)} \leq \sqrt{\log A/u(y, t)} + \frac{1}{2} \sqrt{\frac{2K}{1-e^{-2Kt}}} d(x, y).$$

Combining this with the elementary inequality

$$(a + b)^2 \leq (1 + \delta)a^2 + (1 + \delta^{-1})b^2,$$

we can derive the desired Harnack inequality for u. □
2.3 The LYH Harnack inequality for Witten Laplacian with $CD(K, m)$ condition

In this subsection we prove the Li-Yau-Hamilton Harnack inequality for the positive solution to the heat equation associated with the Witten Laplacian on complete Riemannian manifold with fixed metric and potential. Indeed, by the generalized Bochner-Weitzenböck formula, we have

$$ (L - \partial_t) \left| \frac{\nabla u}{u} \right|^2 = \frac{2}{u} \left| \nabla^2 u - \frac{\nabla u \otimes \nabla u}{u} \right|^2 + \frac{2}{u} \text{Ric}(L)(\nabla u, \nabla u). \tag{27} $$

Taking trace in the first quantity on the right hand side, we can derive

$$ (L - \partial_t) \left| \frac{\nabla u}{u} \right|^2 \geq \frac{2}{nu} \left| \Delta u - \left| \frac{\nabla u}{u} \right|^2 \right|^2 + \frac{2}{u} \text{Ric}(L)(\nabla u, \nabla u). \tag{28} $$

Applying the inequality

$$ (a + b)^2 \geq \frac{a^2}{1 + \alpha} - \frac{b^2}{\alpha} $$
to $a = \partial_t u - \frac{|\nabla u|^2}{u}$, $b = \nabla \phi \cdot \nabla u$, and $\alpha = \frac{m-n}{n}$, we have

$$ (L - \partial_t) \left| \frac{\nabla u}{u} \right|^2 \geq \frac{2}{mu} \left| \partial_t u - \frac{|\nabla u|^2}{u} \right|^2 + \frac{2}{u} \text{Ric}_{m,n}(L)(\nabla u, \nabla u). \tag{29} $$

Hence, under the condition $\text{Ric}_{m,n}(L) \geq -K$, it holds

$$ (L - \partial_t) \left| \frac{\nabla u}{u} \right|^2 \geq \frac{2}{mu} \left| \partial_t u - \frac{|\nabla u|^2}{u} \right|^2 - 2K \frac{|\nabla u|^2}{u}. \tag{30} $$

Let

$$ h = \frac{\partial u}{\partial t} - e^{-2Kt} \frac{|\nabla u|^2}{u} + e^{2Kt} \frac{m}{2t} u. $$

Then \(\lim_{t \to 0^+} h(t) = +\infty \), and

$$ (\partial_t - L)h \geq \frac{2}{mu} e^{-2Kt} \left| \partial_t u - \frac{|\nabla u|^2}{u} \right|^2 - e^{2Kt} \frac{m}{2t^2} u. $$

We now prove that $h \geq 0$ on $M \times \mathbb{R}^+$. In compact case, suppose that h attains its minimum at some (x_0, t_0) and $h(x_0, t_0) < 0$. Then, at (x_0, t_0), it holds

$$ \frac{\partial h}{\partial t} \leq 0, \quad \Delta h \geq 0, \quad \nabla h = 0. $$

Thus at (x_0, t_0), $(\partial_t - L)h \leq 0$. On the other hand, at this point, we have

$$ 0 \leq e^{2Kt} \frac{m}{2t} u < e^{-2Kt} \frac{|\nabla u|^2}{u} \frac{\partial u}{\partial t} \leq \frac{|\nabla u|^2}{u} \frac{\partial u}{\partial t}, $$

and hence

$$ (\partial_t - L)h > 0. $$
This finishes the proof of Theorem 1.4 in compact case.

In complete non-compact case, let \(f = \log u \), and let
\[
F = te^{-2Kt}(e^{-2Kt}|\nabla f|^2 - f_t) = te^{-4Kt}(|\nabla f|^2 - te^{-2Kt}f_t).
\]

Obviously, \(F(0, x) \equiv 0 \). We shall prove that
\[
F \leq \frac{m}{2}.
\]

By direct calculation
\[
LF = te^{-4Kt}L|\nabla f|^2 - te^{-2Kt}Lf_t,
\]
\[
\partial_t F = \partial_t(te^{-4Kt}||\nabla f|^2 - te^{-2Kt}f_t) = (1 - 4Kt)te^{-4Kt}|\nabla f|^2 + (2Kt - 1)e^{-2Kt}f_t + te^{-4Kt}\partial_t|\nabla f|^2 - te^{-2Kt}f_{tt},
\]
we have
\[
(L - \partial_t)F = te^{-4Kt}(L - \partial_t)|\nabla f|^2 - te^{-2Kt}(L - \partial_t)f_t + (4Kt - 1)e^{-4Kt}|\nabla f|^2 - (2Kt - 1)e^{-2Kt}f_t.
\]

By the generalized Bochner formula, it holds
\[
(L - \partial_t)|\nabla f|^2 = 2|\nabla^2 f|^2 + 2\text{Ric}(L)(\nabla f, \nabla f) - 4\nabla^2 f(\nabla f, \nabla f).
\]

Note that
\[
L_f = L \left(\frac{Lu}{u} \right) = \frac{L^2u}{u} - 2\langle \nabla Lu, \frac{\nabla u}{u^2} \rangle + Lu \left(- \frac{Lu}{u^2} + 2\frac{|\nabla u|^2}{u^3} \right),
\]
\[
\partial_t f_t = \partial_t \left(\frac{Lu}{u} \right) = \frac{L^2u}{u} - \frac{|Lu|^2}{u^3},
\]
which yields
\[
(L - \partial_t)f_t = \frac{2Lu|\nabla u|^2}{u^3} - 2\langle \nabla Lu, \frac{\nabla u}{u^2} \rangle
\]
\[
= -4\nabla^2 f(\nabla f, \nabla f) - 2(\nabla Lf, \nabla f).
\]

Hence
\[
(L - \partial_t)F = 2te^{-4Kt}[|\nabla^2 f|^2 + 2(e^{2Kt} - 1)|\nabla^2 f(\nabla f, \nabla f)|]
\]
\[
+ 2te^{-4Kt}\text{Ric}(L)(\nabla f, \nabla f) + 2te^{-2Kt}\langle \nabla Lf, \nabla f \rangle
\]
\[
+ (4Kt - 1)e^{-4Kt}|\nabla f|^2 - (2Kt - 1)e^{-2Kt}(Lf + |\nabla f|^2).
\]

Now
\[
F = te^{-4Kt}(|\nabla f|^2 - te^{-2Kt}f_t) = te^{-4Kt}(1 - e^{2Kt})|\nabla f|^2 - te^{-2Kt}Lf_t,
\]
\[
\langle \nabla F, \nabla f \rangle = 2te^{-4Kt}(1 - e^{2Kt})\nabla^2 f(\nabla f, \nabla f) - te^{-2Kt}\langle \nabla Lf, \nabla f \rangle.
\]

Therefore
\[
(L - \partial_t)F = 2te^{-4Kt}|\nabla^2 f|^2 - 2\langle \nabla F, \nabla f \rangle
\]
\[
+ 2te^{-4Kt}(\text{Ric}(L)(\nabla f, \nabla f) + K|\nabla f|^2) + \frac{(2Kt - 1)}{t} F.
\]
By [31], we have

$$| \nabla^2 f |^2 \geq \frac{1}{n} | \Delta f |^2 \geq \frac{1}{m} | L f |^2 - \frac{1}{m-n} \nabla \phi \otimes \nabla \phi (\nabla f, \nabla f).$$

Thus

$$(L - \partial_t) F \geq 2te^{-4Kt} \frac{|L f |^2}{m} - 2\langle \nabla F, \nabla f \rangle$$

$$+ 2te^{-4Kt} \left(R_{\text{icm}}, n \left(L \right) (\nabla f, \nabla f) + K | \nabla f |^2 \right) + \frac{(2Kt - 1)}{t} F$$

$$\geq 2te^{-4Kt} \left[\frac{2e^{-2Kt} (e^{-2Kt} - 1) | \nabla f |^2 - F |^2}{t^2 e^{-4Kt}} \right] - 2\langle \nabla F, \nabla f \rangle + \left(\frac{2Kt - 1}{t} \right) F$$

$$\geq 2\left[\frac{2e^{-2Kt} (e^{-2Kt} - 1) | \nabla f |^2 - F |^2}{mt} \right] - 2\langle \nabla F, \nabla f \rangle + \left(\frac{2Kt - 1}{t} \right) F.$$

Similarly to [34], let \(\eta \) be a \(C^2 \)-function on \([0, \infty)\) such that \(\eta = 1 \) on \([0, 1]\) and \(\eta = 0 \) on \([2, \infty)\), with \(-C_1 \eta^{1/2} (r) \leq \eta'(r) \leq 0\), and \(\eta(r) \geq C_2\), where \(C_1, C_2 > 0 \) are two constants. Let \(\rho(x) = d(o, x) \) and define \(\psi(x) = \eta(\rho(x)/R) \). Since \(\rho \) is Lipschitz on the complement of the cut locus of \(o, \psi \) is a Lipschitz function with support in \(B(o, 2R) \times [0, \infty) \). As explained in Li and Yau [43], an argument of Calabi allows us to apply the maximum principle to \(\psi F \). Let \((x_0, t_0) \in M \times [0, T]\) be a point where \(\psi F \) achieves the maximum. Then, at \((x_0, t_0)\),

$$\partial_t (\psi F) \geq 0, \quad \Delta (\psi F) \leq 0, \quad \nabla (\psi F) = 0.$$

This yields

$$(L - \partial_t) (\psi F) = \Delta (\psi F) - \nabla \phi \cdot \nabla (\psi F) - \partial_t (\psi F) \leq 0.$$

Similarly to [32], we have

$$\begin{align*}
(L - \partial_t) (\psi F) &= \psi(L - \partial_t) F + (L \psi) F + 2\nabla \psi \cdot \nabla F \\
&\geq \psi(L - \partial_t) F - A(R) F + 2\nabla \psi \cdot \nabla F \\
&\geq \psi(L - \partial_t) F - A(R) F + 2\langle \nabla \psi, \nabla (\psi F) \rangle \psi^{-1} - 2F | \nabla \psi |^2 \psi^{-1}.
\end{align*}$$

where we use

$$L \psi \geq -A(R) := -\frac{C_1}{R} (m-1) \sqrt{K} \coth(\sqrt{K} R) - \frac{C_2}{R^2},$$

and for some constant \(C_3 > 0 \)

$$\frac{| \nabla \psi |^2}{\psi} \leq \frac{C_3}{R^2}.$$

Let \(C(n, K, R) = \frac{C_3}{R} (m-1) \sqrt{K} \coth(\sqrt{K} R) + \frac{C_2 + C_3}{R^2} \). At the point \((x_0, t_0)\), we have

$$\begin{align*}
0 &\geq \psi(L - \partial_t) F - (A(R) + 2 | \nabla \psi |^2 \psi^{-1}) F \\
&\geq \psi \left[\frac{2|e^{-2Kt} (e^{-2Kt} - 1) | \nabla f |^2 - F |^2}{mt} - 2\langle \nabla F, \nabla f \rangle \right] + \left(\frac{2Kt - 1}{t} \right) F - C(n, K, R) F \\
&\geq \psi \left[\frac{2}{mt} F^2 + \frac{4e^{-2Kt} (1 - e^{-2Kt}) | \nabla f |^2}{m} F - 2F \langle \nabla \psi, \nabla f \rangle + \left(2K - \frac{1}{t} \right) \psi - C(n, K, R) \right] F \\
&\geq \frac{2}{mt} F^2 + \psi \left[\frac{4e^{-2Kt} (1 - e^{-2Kt}) | \nabla f |^2}{m} F - 2 \frac{C_2}{R} F \psi^{1/2} | \nabla f \rangle \right] + \left(2K - \frac{1}{t} \right) \psi - C(n, K, R) \right] F.
\end{align*}$$
Multiplying by \(t \) on both sides, and using the Cauchy-Schwartz inequality, we get

\[
0 = \frac{2}{m} F^2 + t F \left(\frac{4 e^{-2Kt}(1 - e^{-2Kt}) |\nabla f|^2}{m} - 2 C_2 \frac{\psi^{1/2}}{R} |\nabla f| \right) + \left((2Kt - 1) \psi - C(n, K, R)t \right) F
\]

\[
\geq \frac{2}{m} F^2 + \left(2Kt - 1 \right) \psi - C(n, K, R)t - \frac{C_2}{4e^{-2Kt}(1 - e^{-2Kt})R^2} F.
\]

Notice that the above calculation is done at the point \((x, t)\). Since \(|\psi|\) reaches its maximum at this point, we can assume that \(\psi(F(x, t_0)) > 0\). Thus

\[
0 \geq \frac{2}{m} (\psi F)^2 - \left[1 + C(n, K, R)t + \frac{C_2}{4e^{-2Kt}(1 - e^{-2Kt})R^2t} \right] (\psi F),
\]

which yields that, for any \((x, t) \in B_R \times [0, T]\),

\[
F(x, t) \leq (\psi F)(x, t_0) \leq \frac{m}{2} \left[1 + C(n, K, R)t_0 + \frac{C_2}{4e^{-2Kt_0}(1 - e^{-2Kt_0})R^2t_0} \right]
\]

\[
\leq \frac{m}{2} \left[1 + C(n, K, R)T + \frac{C_2}{4e^{-2KT}(1 - e^{-2KT})R^2T} \right].
\]

Let \(R \to \infty \), we obtain

\[
F \leq \frac{m}{2}.
\]

Proof of Corollary 1.7

The proof is as the same as the one of Corollary 2.2 in \([6]\). For the completeness we reproduce it as follows. Let \(l(x, t) = \log u(x, t)\). Then the Li-Yau-Hamilton Harnack inequality is equivalent to

\[
\frac{\partial l}{\partial t} - e^{-2Kt} |\nabla l|^2 + e^{2Kt} \frac{m}{2t} \geq 0.
\]

(31)

Let \(\gamma : [0, T] \to M\) be a geodesic with reparametrization by arc length \(s : [\tau, T] \to [0, T]\) so that \(\gamma(s(\tau)) = x\) and \(\gamma(s(T)) = y\). Let \(S(t) = \frac{d\gamma(s(t))}{dt} = \dot{\gamma}(s(t))\). Then \(|\dot{\gamma}(s(t))| = 1\). Integrating along \(\gamma(s(t))\) from \(t = \tau\) to \(t = T\), we have

\[
l(y, T) - l(x, \tau) = \int_{\tau}^{T} \left[\frac{\partial l}{\partial t} + \nabla l \cdot S \right] dt.
\]

By the Cauchy-Schwartz inequality

\[
e^{-2Kt} |\nabla l|^2 + \frac{1}{4} e^{2Kt} |S|^2 \geq \nabla l \cdot S
\]

From this and (31) we obtain

\[
l(y, T) - l(x, \tau) \geq -\frac{1}{4} \int_{\tau}^{T} e^{2Kt} |S|^2 dt - \int_{\tau}^{T} \frac{m}{2t} e^{2Kt} dt.
\]

Note that \(d(x, y) = \int_{\tau}^{T} |S| dt = \int_{\tau}^{T} ds(t)\). Choosing \(s(t) = a[e^{-2K\tau} - \lambda e^{-2Kt}], \) with

\[
a = \frac{d(x, y)}{e^{-2K\tau} - \lambda e^{-2Kt}},
\]

we have

\[
l(y, T) - l(x, \tau) \geq -\frac{1}{4} \int_{\tau}^{T} e^{2Kt} \dot{s}^2(t) dt - \int_{\tau}^{T} \frac{m}{2t} e^{2Kt} dt
\]

\[
= -\frac{Kd^2(x, y)}{2(e^{-2K\tau} - \lambda e^{-2Kt})} - \int_{\tau}^{T} \frac{m}{2t} e^{2Kt} dt.
\]
Note that \(\int_{\tau}^{T} \frac{e^{2Kt}}{t} \, dt \leq \log \left(\frac{T}{\tau} \right) + e^{2K(T-\tau)}. \) Thus

\[
\log u(y, T) - \log u(x, \tau) \geq -\frac{Kd^2(x, y)}{2(e^{-2K\tau} - e^{-2K})} - \frac{m}{2} \left[\log \left(\frac{T}{\tau} \right) + e^{2K(T-\tau)} \right].
\]

Using \(\frac{1}{1-e^{-x}} \leq \frac{1+x}{x} \), we can derive the desired estimate. \(\square \)

2.4 The LYH Harnack inequality on \(K \)-super Perelman Ricci flow

In this subsection, we prove Theorem 1.4 for the Witten Laplacian on complete Riemannian manifolds with \(K \)-super Perelman Ricci flow. More precisely, we prove the following

Theorem 2.2 Let \(M \) be a compact Riemannian manifold with a family of time dependent metrics and \(C^2 \)-potentials \((g(t), \phi(t), t \in [0, T])\). Suppose that there exist some constant \(m \geq n \) and \(K \geq 0 \), which are independent of \(t \in [0, T] \), such that

\[
\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}_{m,n}(L) \geq -K.
\]

Let \(u \) be a positive solution of the heat equation

\[
\partial_t u = Lu.
\]

Then

\[
\frac{\partial_t u}{u} - e^{-2Kt} \frac{|
abla u|^2}{u^2} + e^{2Kt} \frac{m}{2t} \geq 0.
\]

In particular, if \(K = 0 \), i.e., \(\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}_{m,n}(L) \geq 0 \), then the Li-Yau differential Harnack inequality holds

\[
\frac{\partial_t u}{u} - \frac{|
abla u|^2}{u^2} + \frac{m}{2t} \geq 0.
\]

Proof. The proof is similar to the one of Theorem 1.4. Indeed, in the case of time dependent metrics and potentials, similarly to (24), the generalized Bochner formula implies

\[
(L - \partial_t) \frac{|
abla u|^2}{u} = \frac{2}{u} \left[\nabla^2 u - \frac{\nabla u \otimes \nabla u}{u} \right]^2 + \frac{2}{u} \left(\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}(L) \right) (\nabla u, \nabla u).
\]

Taking trace in the first quantity on the right hand side, we can derive

\[
(L - \partial_t) \frac{|
abla u|^2}{u} \geq \frac{2}{nu} \left[\Delta u - \frac{|
abla u|^2}{u} \right]^2 + \frac{2}{u} \left(\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}(L) \right) (\nabla u, \nabla u).
\]

By the same argument as in the proof of (29), we have

\[
(L - \partial_t) \frac{|
abla u|^2}{u} \geq \frac{2}{nu} \left[\partial_t u - \frac{|
abla u|^2}{u} \right]^2 + \frac{2}{u} \left(\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}_{m,n}(L) \right) (\nabla u, \nabla u).
\]

Hence, under the condition \(\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}_{m,n}(L) \geq -K \), it holds

\[
(L - \partial_t) \frac{|
abla u|^2}{u} \geq \frac{2}{nu} \left[\partial_t u - \frac{|
abla u|^2}{u} \right]^2 - \frac{2K |
abla u|^2}{u}.
\]
Let
\[h = \frac{\partial u}{\partial t} - e^{-2Kt} |\nabla u|^2 u + e^{2Kt} \frac{m}{2t} u. \]

Note that \(\lim_{t \to 0^+} h(t) = +\infty \), and

\[(\partial_t - L)h \geq \frac{2}{mu} e^{-2Kt} \left| \partial_t u - \frac{|\nabla u|^2}{u} \right|^2 - e^{2Kt} \frac{m}{2t^2} u. \]

After obtaining this inequality, we can use the maximum principle, as used in [6] and Section 6 above, to prove that \(h \geq 0 \) on \(M \times \mathbb{R}^+ \).

In particular, taking \(\phi = 0 \), \(m = n \) and \(L = \Delta \), we can obtain the Li-Yau-Hamilton differential Harnack inequality on K-super Ricci flow on compact Riemannian manifolds.

Theorem 2.3 Let \(M \) be a compact Riemannian manifold equipped with a family of Riemannian metrics \((g(t), t \in [0, T]) \) evolving along the K-super Ricci flow

\[\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric} \geq -K, \]

where \(K \geq 0 \) be a constant independent of \(t \in [0, T] \). Let \(u \) be a positive solution of the heat equation

\[\partial_t u = \Delta u. \]

Then the Li-Yau-Hamilton differential Harnack inequality holds

\[\frac{\partial_t u}{u} - e^{-2Kt} \frac{|\nabla u|^2}{u^2} + e^{2Kt} \frac{n}{2t} \geq 0. \]

In the case \(K = 0 \), i.e., \((M, g(t), t \in [0, T]) \) is a compact Riemannian manifold equipped with the super Ricci flow

\[\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric} \geq 0, \]

the Li-Yau differential Harnack inequality holds

\[\frac{\partial_t u}{u} - \frac{|\nabla u|^2}{u^2} + \frac{n}{2t} \geq 0. \]

2.5 Second order derivative estimates

In [6], Hamilton also proved that, on compact Riemannian manifolds with \(\text{Ric} \geq -K \), there exists a constant \(C \) depending only on \(n \) and \(K \), such that for any positive solution of the heat equation \(\partial_t u = \Delta u \) with \(0 < u \leq A \) and \(t \in [0, 1] \), it holds

\[t\Delta u \leq Cu [1 + \log(A/u)]. \tag{36} \]

Indeed, Hamilton [6] proved the following estimate

\[\frac{\Delta u}{u} + \frac{|\nabla u|^2}{u} \leq \frac{K}{1 - e^{-Kt}} [n + \log(A/u)], \quad \forall t \geq 0. \tag{37} \]

Inspired by Hamilton’s second order estimate [37], we can prove the following
Theorem 2.4 Let $m \geq n$ and $K \geq 0$ be two constants. Let M be a complete Riemannian manifold with a C^2-potential such that the $CD(-K, m)$ condition holds, or a complete Riemannian manifold with a family of time dependent metrics and C^2-potentials $(g(t), \phi(t), t \in [0, T])$ such that

$$\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}_{m,n}(L) \geq -K.$$

Let u be a positive solution of the heat equation

$$\partial_t u = Lu$$

with $A = \sup \{u(x, t), (x, t) \in M \times [0, T]\} < \infty$. Then

$$\frac{Lu}{u} + \frac{|\nabla u|^2}{u^2} \leq \frac{K}{1 - e^{-Kt}} [m + 4 \log(A/u)] , \quad \forall \ t \in [0, T].$$ \hspace{1cm} (38)

In particular, for $t \in [0, T]$, we have

$$\frac{Lu}{u} \leq \left(K + \frac{1}{t} \right) [m + \log(A/u)].$$ \hspace{1cm} (39)

Proof. Let $\psi(t) = \frac{1 - e^{-Kt}}{K}$. Then $\psi' + K\psi = 1$. Let $h = \psi \left[Lu + \frac{|\nabla u|^2}{u} \right] - u[m + 4 \log(A/u)]$.

By (29) and (34), in both cases of Theorem 2.4, we have

$$(\partial_t - \Delta) \frac{|\nabla u|^2}{u} \leq - \frac{2m}{4t} \left| Lu - \frac{|\nabla u|^2}{u} \right|^2 + 2K \frac{|\nabla u|^2}{u},$$

which yields

$$(\partial_t - \Delta)h \leq - \frac{2\psi}{mu} \left| Lu - \frac{|\nabla u|^2}{u} \right|^2 + \psi' \left[Lu - \frac{|\nabla u|^2}{u} \right] - 2 \frac{|\nabla u|^2}{u}.$$

By analogue of Hamilton[6], we can verify that

$$\frac{\partial h}{\partial t} \leq Lh \quad \text{whenever} \quad h \geq 0.$$

Indeed, we can verify this by examining three cases:

(i) If $Lu \leq \frac{|\nabla u|^2}{u}$, then $(\partial_t - \Delta)h \leq 0$ since $\psi' \geq 0$.
(ii) If $\frac{|\nabla u|^2}{u} \leq Lu \leq 3 \frac{|\nabla u|^2}{u}$, then $(\partial_t - \Delta)h \leq 0$ since $\psi' \leq 1$.
(iii) If $3 \frac{|\nabla u|^2}{u} \leq Lu$, then whenever $h \geq 0$, we have

$$2 \left[Lu - \frac{|\nabla u|^2}{u} \right] \geq Lu + \frac{|\nabla u|^2}{u} = \frac{h}{\psi} + \frac{mu + 4u \log(A/u)}{\psi} \geq \frac{mu}{\psi},$$

which yields, since $\psi' \leq 1$, we have

$$(\partial_t - \Delta)h \leq (\psi' - 1) \left[Lu - \frac{|\nabla u|^2}{u} \right] - 2 \frac{|\nabla u|^2}{u} \leq 0.$$

Note that $h \leq 0$ at $t = 0$. By the maximum principle, we conclude that $h \leq 0$ for all $t \geq 0$. Thus

$$\frac{Lu}{u} + \frac{|\nabla u|^2}{u^2} \leq \frac{K}{1 - e^{-Kt}} [m + 4 \log(A/u)].$$

This completes the proof of Theorem 2.4. \qed
3 The W-entropy formula for Witten Laplacian

Recall that, Perelman [19] introduced the notion of the W-entropy and proved its monotonicity along the conjugate heat equation associated to the Ricci flow. In [17, 18], Ni proved the monotonicity of the W-entropy for the heat equation of the usual Laplace-Beltrami operator on complete Riemannian manifolds with non-negative Ricci curvature. In [11, 13], the second author of this paper proved the W-entropy formula and its monotonicity and rigidity theorems for the heat equation of the Witten Laplacian on complete Riemannian manifolds satisfying the $CD(0, m)$ condition and gave a probabilistic interpretation of the W-entropy for the Ricci flow. In [14], we gave a new proof of the W-entropy formula obtained in [11] for the Witten Laplacian by using Ni’s W-entropy formula [10] to the Laplace-Beltrami operator on $M \times S^{m-n}$ equipped with a suitable warped product Riemannian metric, and further proved the monotonicity of the W-entropy for the heat equation of the time dependent Witten Laplacian on compact Riemannian manifolds equipped with the super Ricci flow with respect to the m-dimensional Bakry-Emery Ricci curvature.

During the past years, many people have asked the following very natural problem to us.

Problem 3.1 How to define the W-entropy for the heat equation associated with the Witten Laplacian on complete Riemannian manifolds satisfying the $CD(K, m)$ condition for $K \in \mathbb{R}$ and $m \in [n, \infty]$? Can we establish the monotonicity and rigidity theorems for the W-entropy associated with the Witten Laplacian on complete Riemannian manifolds satisfying general curvature-dimension condition? What happens on manifolds with time dependent metrics and potentials?

In this section, we give the answer to this fundamental problem.

3.1 W-entropy for Witten Laplacian with $CD(K, \infty)$ condition

In this subsection, based on the reversal logarithmic Sobolev inequality on complete Riemannian manifolds with fixed metrics and potentials, which is due to Bakry and Ledoux [2], we introduce the W-entropy and prove the W-entropy formula for the Witten Laplacian on complete Riemannian manifolds with fixed metric and potential satisfying the $CD(K, \infty)$ condition.

Let $C_0(t) = \frac{1}{t}$, and for $K \neq 0$, $C_K(t) = \frac{e^{2Kt}}{2Kr^t}$. Let $D_0(t) = \frac{1}{t}$, $D_K(t) = \frac{1}{t^{1+\frac{1}{2Kr^t}}}$. Then $D_K'(t) = -C_K(t)D_K(t)$ for all $K \in \mathbb{R}$ and $t > 0$. We first introduce the revised Boltzmann-Shannon entropy

$$H_K(f, t) = D_K(t) \int_M (P_t(f \log f) - P_t f \log P_t f) d\mu,$$

where f is a positive and measurable function on M. Based on the gradient estimates of the positive solution to the heat equation on complete manifolds with bounded geometry condition (see [11, 13]), by direct calculation and using the integration by parts formula, we can prove

$$\frac{d}{dt} H_K(f, t) = C_K(t)D_K(t) \int_M (P_t f \log P_t f - P_t(f \log f)) d\mu + D_K(t) \int_M \frac{|\nabla P_t f|^2}{P_t f} d\mu$$

$$= D_K(t) \int_M \left[\frac{|\nabla P_t f|^2}{P_t f} + C_K(t)(P_t f \log P_t f - P_t(f \log f)) \right] d\mu. \quad (40)$$

Under the condition $\text{Ric}(L) \geq K$, by the reversal logarithmic Sobolev inequality due to Bakry and Ledoux [2], for all $t > 0$, we have

$$\frac{|\nabla P_t f|^2}{P_t f} \leq C_K(t)(P_t(f \log f) - P_t f \log P_t f). \quad (41)$$
Hence, for all $K \in \mathbb{R}$, we have
\[\frac{d}{dt} H_K(f, t) \leq 0, \quad \forall \ t > 0. \]

Taking the time derivative on the both sides of (40), we have
\[\frac{d^2}{dt^2} H_K(f, t) = -C_K(t) \frac{d}{dt} H_K(t) - 2D_K(t) \int_M |\nabla f|^2 P_t f d\mu \]
\[+ D_K(t) \left[\frac{d}{dt} \int_M |\nabla P_t f|^2 f d\mu - C_K(t) \int_M |\nabla P_t f|^2 d\mu \right] \]
\[+ D_K(t) \frac{d}{dt} C_K(t) \int_M (P_t f \log P_t f - P_t(f \log f)) d\mu. \]

By Bakry and Emery [1] and Li [11, 13], we have
\[\frac{d}{dt} \int_M \frac{|\nabla P_t f|^2}{P_t f} d\mu = -2 \int_M |\nabla^2 \log P_t f|^2 P_t f d\mu - 2 \int_M \text{Ric}(L)(\nabla \log P_t f, \nabla \log P_t f) P_t f d\mu. \]

Thus
\[\frac{d^2}{dt^2} H_K(f, t) = -C_K(t) \frac{d}{dt} H_K(t) - 2D_K(t) \int_M |\nabla^2 \log P_t f|^2 P_t f d\mu \]
\[- D_K(t) \int_M (2\text{Ric}(L) + C_K(t))(\nabla \log P_t f, \nabla \log P_t f) P_t f d\mu \]
\[+ D_K(t) \frac{d}{dt} C_K(t) \int_M (P_t f \log P_t f - P_t(f \log f)) d\mu. \]

(42)

Note that, for all $K \in \mathbb{R}$, under the condition $\text{Ric}(L) \geq K$, we have
\[2\text{Ric}(L) + C_K(t) \geq 2K + \frac{2K}{e^{2Kt} - 1} = \frac{2K}{1 - e^{-2Kt}}, \]

and
\[\frac{d}{dt} C_K(t) = \frac{d}{dt} \frac{2K}{e^{2Kt} - 1} = -\frac{2K}{1 - e^{-2Kt}} C_K(t). \]

Substituting these into (42), a simple calculation yields, for all $K \in \mathbb{R}$, and for all $t > 0,
\[\frac{d^2}{dt^2} H_K(f, t) \leq -2K \coth(Kt) \frac{d}{dt} H_K(t) - 2D_K(t) \int_M |\nabla^2 \log P_t f|^2 P_t f d\mu. \]

Indeed, from (42), we can prove
\[\frac{d^2}{dt^2} H_K(f, t) = -2K \coth(Kt) \frac{d}{dt} H_K(t) - 2D_K(t) \int_M |\nabla^2 \log P_t f|^2 P_t f d\mu \]
\[- 2D_K(t) \int_M (\text{Ric}(L) - K)(\nabla \log P_t f, \nabla \log P_t f) P_t f d\mu. \]

Let $\alpha_K : (0, \infty) \to (0, \infty)$ be a C^1-smooth function. Define the W-entropy by the revised Boltzmann entropy formula
\[W_K(f, t) := \frac{1}{\alpha_K(t)} \frac{d}{dt} (\alpha_K(t) H_K(f, t)) = H_K + \frac{\alpha_K}{\dot{\alpha}_K} \dot{H}_K. \]
Set $\beta_K = \frac{\alpha_K}{\alpha_K}$. Then
\[
\frac{d}{dt}W_K(f,t) = \beta_K(\ddot{H}_K + \frac{1 + \dot{\beta}_K}{\beta_K}H_K).
\]
Solving the ODE
\[
1 + \frac{\dot{\beta}_K}{\beta_K} = 2K \coth(Kt),
\]
we can take
\[
\beta_K(t) = \frac{\sinh(2Kt)}{2K},
\]
and hence
\[
\alpha_K(t) = K \tanh(Kt).
\]
This yields
\[
W_K(f,t) = H_K(f,t) + \frac{\sinh(2Kt)}{2K} \frac{d}{dt}H_K(f,t),
\]
and
\[
\frac{d}{dt}W_K(f,t) = -\frac{\sinh(2Kt)}{K} D_K(t) \int_M |\nabla^2 \log P_t f|^2 P_t f d\mu
- \frac{\sinh(2Kt)}{K} D_K(t) \int_M (\text{Ric}(L) - K)(\nabla \log P_t f, \nabla \log P_t f)P_t f d\mu.
\]
In particular, when $\text{Ric}(L) \geq K$, then for all $t > 0$, we have
\[
\frac{d}{dt}W_K(f,t) \leq 0.
\]
This finishes the proof of Theorem 1.8. □

3.2 W-entropy for Witten Laplacian with $CD(K, m)$ condition

In this subsection, based on Theorem 1.4, we introduce the W-entropy and prove the W-entropy formula and a rigidity theorem, i.e., Theorem 1.9, for the Witten Laplacian on complete Riemannian manifolds with fixed metrics and potentials satisfying the $CD(K, m)$ condition for $K \in \mathbb{R}$ and $m \in [n, \infty)$.

Let M be a complete Riemannian manifold with bounded geometry condition, $\phi \in C^3(M)$ be such that $\nabla \phi \in C^2_0(M)$. Following [19] [17] [11] [12] [14], we define
\[
H_{m,K}(u,t) = -\int_M u \log u d\mu - \Phi_{m,K}(t),
\]
where $\Phi_{m,K} \in C((0, \infty), \mathbb{R})$ satisfies
\[
\Phi'_{m,K}(t) = \frac{m}{2t} e^{4Kt}, \quad \forall t > 0.
\]

Proposition 3.2 Let M be a complete Riemannian manifold with bounded geometry condition, $\phi \in C^3(M)$ be such that $\nabla \phi \in C^2_0(M)$. Then, under the condition $\text{Ric}_{m,n}(L) \geq -K$, we have
\[
\frac{d}{dt}H_{K,m}(u,t) \leq 0.
\]
Proof. By the entropy dissipation formula (see [11, 13], and using \(\int_M \partial_t u d\mu = \int_M Lu d\mu = 0 \), we have

\[
\frac{d}{dt} H_{m,K}(u,t) = \int_M \left[\frac{|
abla u|^2}{u^2} - \frac{m}{2t} e^{4Kt} \right] u d\mu \tag{43}
\]

\[
= \int_M \left[\frac{|
abla u|^2}{u^2} - \frac{m}{2t} e^{4Kt} - e^{2Kt} \frac{\partial_t u}{u} \right] u d\mu. \tag{44}
\]

By the Li-Yau-Hamilton Harnack inequality in Theorem 1.4, we have

\[
\frac{d}{dt} H_{m,K}(u,t) \leq 0.
\]

Proposition 3.3 Under the same condition as in Theorem 1.9, we have

\[
\frac{d^2}{dt^2} H_{m,K}(u,t) = -2 \int_M \| \nabla^2 \log u \|^2 + \text{Ric}(L)(\nabla \log u, \nabla \log u)] u d\mu - 2 \left(\frac{2 m K}{t} - \frac{m}{2 t^2} \right) e^{4 K t}.
\]

Proof. Based on the gradient estimates of the positive solution to the heat equation on complete manifolds with bounded geometry condition (see [11, 13]), we have

\[
\frac{d}{dt} \int_M \frac{|
abla u|^2}{u} d\mu = -2 \int_M \| \nabla^2 \log u \|^2 + \text{Ric}(L)(\nabla \log u, \nabla \log u)] u d\mu.
\]

Combining this with (43), Proposition 3.3 follows. \(\square\)

Following Perelman [19], Ni [17] and [11, 12, 13, 14], we introduce the W-entropy for the heat equation (1) of the Witten Laplacian as follows

\[
W_{m,K}(u,t) = \frac{d}{dt}(t H_{m,K}(u,t)).
\]

By the entropy dissipation formula, we have

\[
W_{m,K}(u,t) = \int_M \left[t(\| \nabla \log u \|^2 - \Phi'_{m,K}(t) - \log u - \Phi_{m,K}(t)) \right] u d\mu
\]

\[
= \int_M \left[t(2L(- \log u) - \| \nabla \log u \|^2) - \log u - \Phi_{m,K}(t) - \Phi'_{m,K}(t) \right] u d\mu.
\]

We are now in a position to state the main result of this section, i.e., Theorem 1.9

Theorem 3.4 Let \(M \) be a complete Riemannian manifold, \(\phi \in C^2(M) \). Suppose that \((M, g)\) satisfies the bounded geometry condition and \(\phi \in C^4(M) \) with \(\nabla \phi \in C^3_b(M) \). Then

\[
\frac{d}{dt} W_{m,K}(u,t) = -2t \int_M \left[\| \nabla^2 \log u + \left(\frac{K}{2} + \frac{1}{2t} \right) g \|^2 + \text{Ric}_{m,n}(L) + Kg(\nabla \log u, \nabla \log u) \right] u d\mu
\]

\[
- \frac{2t}{m-n} \int_M \left| \nabla \phi \cdot \nabla \log u - \frac{(m-n)(1+Kt)}{2t} \right|^2 u d\mu
\]

\[
+ \frac{m}{2t} \left[e^{4Kt}(1 + 4Kt) - (1 + Kt)^2 \right].
\]

In particular, if \(\text{Ric}_{m,n}(L) \geq -K \), then, for all \(t \geq 0 \), we have

\[
\frac{d}{dt} W_{m,K}(u,t) \leq -\frac{m}{2t} \left[e^{4Kt}(1 + 4Kt) - (1 + Kt)^2 \right].
\]
Moreover, the equality holds at some time $t = t_0 > 0$ if and only if M is a quasi-Einstein manifold, i.e., $\text{Ric}_{m,n}(L) = -Kg$, and the potential function $f = -\log u$ satisfies the shrinking soliton equation with respect to $\text{Ric}_{m,n}(L)$, i.e.,

$$\text{Ric}_{m,n}(L) + 2\nabla^2 f = \frac{g}{t},$$

and moreover

$$\nabla \phi \cdot \nabla f = -\frac{(m - n)(1 + Kt)}{2t}.$$

Proof. By [10] and Proposition 3.3, we have

$$\frac{d}{dt} W_{m,K}(u, t) = -2t \left[\int_M \left[|\nabla^2 \log u|^2 + \text{Ric}(L)(\nabla \log u, \nabla \log u) \right] u d\mu + \left(\frac{mK}{t} - \frac{m^2}{4t^2} \right) e^{4Kt} \right]$$

$$+ 2 \int_M \left[\frac{\nabla u}{t^2} - \frac{m}{2t} e^{4Kt} \right] u d\mu.$$

Note that

$$|\nabla^2 \log u + \left(\frac{e^{2Kt}}{2t} + a(t) \right) g|^2 = |\nabla^2 \log u|^2 + 2 \left(\frac{e^{2Kt}}{2t} + a(t) \right) \Delta \log u + n \left(\frac{e^{2Kt}}{2t} + a(t) \right)^2.$$

By direct calculation, we have

$$\frac{d}{dt} W_{m,K}(u, t) = -2t \int_M \left[|\nabla^2 \log u + \left(\frac{e^{2Kt}}{2t} + a(t) \right) g|^2 u d\mu \right.$$

$$- 2t \int_M \left(\text{Ric}_{m,n}(L) + \left(2a(t) - \frac{1 - e^{2Kt}}{t} \right) g \right) (\nabla \log u, \nabla \log u) u d\mu$$

$$+ 2nt \left(\frac{e^{2Kt}}{2t} + a(t) \right)^2 - \frac{m^2 e^{4Kt}}{2t} - 2mKe^{4Kt}$$

$$+ 2(e^{2Kt} + 2t a(t)) \int_M \nabla \phi \cdot \nabla \log u u d\mu - 2t \int_M \frac{|\nabla \phi \cdot \nabla \log u|^2}{m - n} u d\mu.$$

Let $a(t)$ be chosen such that $2a(t) - \frac{1 - e^{2Kt}}{t} = K$. Then

$$\frac{d}{dt} W_{m,K}(u, t) = -2t \int_M \left[|\nabla^2 \log u + \left(\frac{K}{2} + \frac{1}{2t} \right) g|^2 + (\text{Ric}_{m,n}(L) + Kg)(\nabla \log u, \nabla \log u) \right] u d\mu$$

$$+ 2nt \left(\frac{1}{2t} + \frac{K}{2} \right)^2 - \frac{m^2 e^{4Kt}}{2t} - 2mKe^{4Kt}$$

$$+ 2(1 + Kt) \int_M \nabla \phi \cdot \nabla \log u u d\mu - 2t \int_M \frac{|\nabla \phi \cdot \nabla \log u|^2}{m - n} u d\mu.$$

Combining this with

$$\frac{1}{m - n} \int_M \left| \nabla \phi \cdot \nabla \log u - \frac{(m - n)(1 + Kt)}{2t} \right|^2 u d\mu$$

$$= \frac{(m - n)(1 + Kt)^2}{4t^2} - \frac{1 + Kt}{t} \int_M \nabla \phi \cdot \nabla \log u u d\mu + \int_M \frac{|\nabla \phi \cdot \nabla \log u|^2}{m - n} u d\mu,$$

and noting that

$$2nt \left(\frac{1}{2t} + \frac{K}{2} \right)^2 - \frac{m^2 e^{4Kt}}{2t} - 2mKe^{4Kt} + \frac{(m - n)(1 + Kt)^2}{2t}$$

$$= \frac{m}{2t} \left[(1 + Kt)^2 - e^{4Kt}(1 + 4Kt) \right],$$

and

...
we can derive the desired \(W \)-entropy formula. The rest of the proof is obvious. \(\square \)

In particular, taking \(m = n, \phi \equiv 0 \) and \(g \) is a fixed Riemannian metric, we obtain the following \(W \)-entropy formula for the heat equation of the Laplace-Beltrami operator on Riemannian manifolds, which extends Ni’s result in [17] for \(K = 0 \).

Theorem 3.5 Let \((M, g)\) be a complete Riemannian manifold with bounded geometry condition. Let \(u \) be the fundamental solution to the heat equation \(\partial_t u = \Delta u \). Then

\[
\frac{d}{dt}W_{n,K}(u, t) = -2t \int_M \left[\nabla^2 \log u + \left(\frac{K}{2} + \frac{1}{2t} \right) g \right]^2 + (Ric + Kg)(\nabla \log u, \nabla \log u) \, u d\mu \\
- \frac{n}{2t} \left[e^{4Kt} (1 + 4Kt) - (1 + Kt)^2 \right].
\]

In particular, if \(Ric \geq -K \), then, for all \(t \geq 0 \), we have

\[
\frac{d}{dt}W_{n,K}(u, t) \leq -\frac{n}{2t} \left[e^{4Kt} (1 + 4Kt) - (1 + Kt)^2 \right].
\]

Moreover, the equality holds at some time \(t = t_0 > 0 \) if and only if \(M \) is an Einstein manifold, i.e., \(Ric = -Kg \), and the potential function \(f = -\log u \) satisfies the shrinking soliton equation, i.e.,

\[Ric + 2\nabla^2 f = \frac{g}{t}. \]

To end this subsection, let us remark that in our previous paper [14] we introduced another \(W \)-entropy functional for the heat equation associated with the Witten Laplacian satisfying the \(CD(K, m) \)-condition as follows

\[
\tilde{W}_{m,K}(u) = \frac{d}{dt}(t\tilde{H}_{m,K}(u)),
\]

where

\[
\tilde{H}_{m,K}(u) = -\int_M u \log u \, d\mu - \frac{m}{2t} \left(1 + \log(4\pi t) \right) - \frac{mKt}{2} \left(1 + \frac{1}{6}Kt \right),
\]

and we proved that

\[
\frac{d}{dt}\tilde{W}_{m,K}(u) = -2t \int_M \left[\nabla^2 \log u + \left(\frac{K}{2} + \frac{1}{2t} \right) g \right]^2 + (Ric_{m,n}(L) + Kg)(\nabla \log u, \nabla \log u) \, u d\mu \\
- \frac{2t}{m-n} \int_M \left| \nabla \phi \cdot \nabla \log u - \frac{(m-n)(1+Kt)}{2t} \right|^2 \, u d\mu.
\]

Indeed, letting \(\Psi_{m,K}(t) = \Phi_{m,K}(t) - \frac{m}{2t} \left(1 + \log(4\pi t) \right) - \frac{mKt}{2} \left(1 + \frac{1}{6}Kt \right) \), we have

\[
\tilde{W}_{m,K}(u) - W_{m,K}(u) = \frac{d}{dt}(t\Psi_{m,K}(t)),
\]

and

\[
\frac{d}{dt}\left(\tilde{W}_{m,K}(u) - W_{m,K}(u) \right) = \frac{d^2}{dt^2}(t\Psi_{m,K}(t)) = \frac{m}{2t} \left[e^{4Kt} (1 + 4Kt) - (1 + Kt)^2 \right].
\]
3.3 W-entropy for Witten Laplacian on K-super Perelman Ricci flow

In this subsection, we extend the W-entropy formula to the time dependent Witten Laplacian on compact Riemannian manifolds with K-super Perelman Ricci flow.

Let $(M, g(t), \phi(t), t \in [0, T])$ be a complete Riemannian manifold with a family of time dependent metrics $g(t)$ and potentials $\phi(t)$. Let

$$L = \Delta_{g(t)} - \nabla_{g(t)} \phi(t) \cdot \nabla_{g(t)}$$

be the time dependent Witten Laplacian on $(M, g(t), \phi(t))$. Let

$$d\mu (t) = e^{-\phi(t)} d\text{vol}_{g(t)}.$$

Suppose that

$$\frac{\partial \phi}{\partial t} = \frac{1}{2} \text{Tr} \frac{\partial g}{\partial t}. \quad (45)$$

Then $\mu(t)$ is indeed independent of $t \in [0, T]$, i.e.,

$$\frac{\partial \mu(t)}{\partial t} = 0, \quad t \in [0, T].$$

We now state the main results of this subsection, which extend Theorem 1.8 and Theorem 1.9 to the time dependent Witten Laplacian on compact Riemannian manifolds with K-super Perelman Ricci flow.

Theorem 3.6 Let $(M, g(t), t \in [0, T])$ be a compact Riemannian manifold with a family of metrics $g(t)$, and $\phi \in C^{2,1}(M \times [0, T])$. Suppose that (45) holds and

$$\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}(L) \geq K,$$

where $K \in \mathbb{R}$ is a constant. Let $u(\cdot, t) = P_t f$ be a positive solution to the heat equation $\partial_t u = Lu$ with $u(\cdot, 0) = f$, f is a positive and measurable function on M. Define

$$H_K(f, t) = D_K(t) \int_M (P_t (f \log f) - P_t f \log P_t f) d\mu,$$

where $D_0(t) = \frac{1}{t}$ and $D_K(t) = \frac{1}{1 - e^{-2Kt}}$ for $K \neq 0$. Then, for all $K \in \mathbb{R}$,

$$\frac{d}{dt} H_K(f, t) \leq 0, \quad \forall t \in (0, T],$$

and for all $K \in \mathbb{R}$ and $t \in (0, T]$, we have

$$\frac{d^2}{dt^2} H_K(t) + 2K \coth(Kt) \frac{d}{dt} H_K(t) \leq -2D_K(t) \int_M |\nabla^2 \log P_t f|^2 P_t f d\mu.$$

Define the W-entropy by the revised Boltzmann entropy formula

$$W_K(f, t) = H_K(f, t) + \frac{\sinh(2Kt)}{2K} \frac{d}{dt} H_K(f, t).$$

Then, for all $K \in \mathbb{R}$, and for all $t \in (0, T]$, we have

$$\frac{d}{dt} W_K(f, t) = -\frac{\sinh(2Kt)}{K} D_K(t) \int_M |\nabla^2 \log P_t f|^2 P_t f d\mu$$

$$- \frac{\sinh(2Kt)}{K} D_K(t) \int_M \left(\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}(L) - K \right) (\nabla \log P_t f, \nabla \log P_t f) P_t f d\mu.$$
In particular, for all \(K \in \mathbb{R} \), we have
\[
\frac{d}{dt} W_K(f, t) \leq 0, \quad \forall t \in (0, T].
\]

Proof. By Li-Li [14], we have
\[
\frac{d}{dt} \int_M \frac{\nabla P_t f}{P_t f} d\mu = -2 \int_M |\nabla \log P_t f|^2 P_t f d\mu - 2 \int_M \left(\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}(L) \right) (\nabla \log P_t f, \nabla \log P_t f) P_t f d\mu.
\]

The rest of the proof is similar the one of Theorem 1.8. \(\square \)

Theorem 3.7 Let \((M, g(t), \phi(t), t \in [0, T])\) be a compact Riemannian manifold with a family of time dependent metrics and potentials \((g(t), \phi(t), t \in [0, T])\) satisfying [15]. Let \(m \geq n \) and \(K \geq 0 \) be two constants which are independent of \(t \in [0, T] \). Let \(u \) be a positive solution to the heat equation \(\partial_t u = Lu \). Let
\[
W_{m,K}(u, t) = \frac{d}{dt} (tH_{m,K}(u, t)),
\]
where
\[
H_{m,K}(u, t) = -\int_M u \log ud\mu - \Phi_{m,K}(t).
\]
Then, for all \(t \in [0, T] \), we have
\[
\frac{d}{dt} W_{m,K}(u, t) = -2t \int_M \left| \nabla \log u + \left(\frac{K}{2} + \frac{1}{2t} \right) g \right|^2 ud\mu - \frac{m}{2t} \left[e^{4Kt}(1 + 4Kt) - (1 + Kt)^2 \right] \]
\[
-2t \int_M \left(\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}_{m,n}(L) + Kg \right) (\nabla \log u, \nabla \log u) ud\mu
\]
\[
- \frac{2t}{m-n} \int_M \left| \nabla \phi \cdot \nabla \log u - \frac{(m-n)(1+Kt)}{2t} \right| ud\mu.
\]

In particular, if \((M, g(t), \phi(t), t \in [0, T])\) is a \(K \)-super Perelman Ricci flow with respect to the \(m \)-dimensional Bakry-Emery Ricci curvature \(\text{Ric}_{m,n}(L) \),
\[
\frac{1}{2} \frac{\partial g}{\partial t} + \text{Ric}_{m,n}(L) \geq -K g,
\]
we have
\[
\frac{d}{dt} W_{m,K}(u, t) \leq - \frac{m}{2t} \left[e^{4Kt}(1 + 4Kt) - (1 + Kt)^2 \right].
\]
Moreover, the equality holds at some time \(t = t_0 > 0 \) if and only if \((M, g(t), t \in [0, T])\) is a quasi-Ricci flow, i.e.,
\[
\frac{1}{2} \frac{\partial g}{\partial t} = -\text{Ric}_{m,n}(L) - Kg,
\]
\[
\frac{\partial \phi}{\partial t} = -R - \Delta \phi + \frac{|\nabla \phi|^2}{m-n} - nK,
\]
and the potential function \(f = -\log u \) satisfies
\[
2\nabla^2 f = \left(\frac{1}{t} + K \right) g,
\]
\[
\nabla \phi \cdot \nabla f = -\frac{(m-n)(1+Kt)}{2t}.
\]
Proof. The proof is similar to the one of Theorem 1.9. See [14] for the case $K = 0$. □

Acknowledgement. The second author would like to thank D. Bakry, J.-M. Bismut, D. Elworthy, M. Ledoux, N. Mok, K.-T. Sturm, A. Thalmaier and F.-Y. Wang for helpful discussions during the past years. We would like to thank Dr. Y.-Z. Wang for careful preview and useful comments on the earlier versions of this paper. Part of this work has been done when the second author visits l’Institut des Hautes Etudes Scientifiques and l’Institut des Mathématiques de Toulouse de l’Université Paul Sabatier during November-December 2014. He would like to thank Prof. D. Bakry, Prof. J-M. Bismut and all other people for making this visit possible, and to thank IHES and IMT UPS for providing very nice environment to finish this work.

References

[1] D. Bakry, M. Emery, Diffusion hypercontractives, Sém. Prob. XIX, Lect. Notes in Maths. 1123 (1985), 177-206.
[2] D. Bakry, M. Ledoux, A logarithmic Sobolev form of the Li-Yau parabolic inequality, Rev. Mat. Iberoam. 22 (2006), No. 2, 683-702.
[3] K. Ecker, A formula relating entropy monotonicity to Harnack inequalities, Comm. Anal. Geom. 15 (2007), no. 5, 1025–1061.
[4] F. Fang, X.-D. Li, Z.-L. Zhang, Two generalizations of Cheeger-Gromoll splitting theorem via Bakry-Emery Ricci curvature, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 563-573.
[5] A. Futaki, H.-Z. Li, X.-D. Li, On the first eigenvalue of the Witten Laplacian and the diameter of compact shrinking Ricci solitons, arxiv.org/abs/1111.6364v3
[6] R.S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113-126.
[7] B. Kotschwar, L. Ni, Gradient estimate for p-harmonic functions, $1/H$ flow and an entropy formula, Ann. Sci. Ec. Norm. Sup., Vol 42 (2009), no. 1, 1–36.
[8] P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta. Math. 156 (1986), 153-201.
[9] X.-D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. 84 (2005), 1295-1361.
[10] X.-D. Li, On the W-entropy formula for Witten Laplacian on Riemannian manifolds with weighted volume measure, preprint 2006, included in the Habilitation Thesis at the University Paul Sabatier, December 2007.
[11] X.-D. Li, Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature, Math. Ann. 353 (2012), 403-437.
[12] X.-D. Li, Perelman’s W-entropy for the Fokker-Planck equation over complete Riemannian manifolds, Bull. Sci. Math. 135 (2011) 871-882.
[13] X.-D. Li, Hamilton’s Harnack inequality and the W-entropy formula on complete Riemannian manifolds, arXiv:1303.1242v2
[14] S. Li, X.-D. Li, W-entropy formula for the Witten Laplacian on manifolds with time dependent metrics and potentials. [arXiv:1303.6019v2]

[15] P. Lu, L. Ni, J.-J. Vazquez, C. Villani, Local Aronson-Benilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds, Jour. Math. Pures Appl., Vol 91 (2009), no. 1, 1-19.

[16] J. Lott, Some geometric properties of the Bakry-Emery Ricci tensor. Comment. Math. Helv. 78 (2003), 865-883.

[17] L. Ni, The entropy formula for linear equation, J. Geom. Anal. 14 (1), 87-100, (2004).

[18] L. Ni, Addenda to “The entropy formula for linear equation”, J. Geom. Anal. 14 (2), 329-334, (2004).

[19] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, [http://arXiv.org/abs/maths0211159]

[20] Qi S. Zhang, Heat kernel bounds, ancient κ solutions and the Poincaré conjecture, J. Funct. Anal. 258 (2010), 1225-1246.

[21] G. Wei, W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Diff. Geom. (2009), 377-405.

Songzi Li, School of Mathematical Science, Fudan University, 220, Handan Road, Shanghai, 200432, China, and Institut de Mathématiques, Université Paul Sabatier 118, route de Narbonne, 31062, Toulouse Cedex 9, France

Xiang-Dong Li, ACADEMY OF MATHEMATICS AND SYSTEM SCIENCE, CHINESE ACADEMY OF SCIENCES, 55, ZHONGGUANCUN EAST ROAD, BEIJING, 100190, P. R. CHINA, E-mail: xdl@amt.ac.cn