The iron K line profile of IRAS 18325–5926

A. P. Lobban* and S. Vaughan

University of Leicester, X-Ray and Observational Astronomy Group, Department of Physics and Astronomy, Leicester, Leicestershire LE1 7RH, UK

Accepted 2014 January 2. Received 2014 January 2; in original form 2013 September 9

ABSTRACT

IRAS 18325–5926 is an X-ray bright, Compton-thin, type 2 Seyfert galaxy and it was the first Seyfert 2 in which the presence of a broad Fe Kα emission line was claimed. However, although the structure of the Fe line appears broad, there is tentative evidence that it may comprise multiple lines. Nevertheless, previous analyses have only consisted of fitting stand-alone broad components to the Fe K band. Here, we have analysed all available X-ray CCD data from Suzaku, XMM–Newton and ASCA to fully investigate the nature of the emission complex by testing broad-band physical models and alternative hypotheses. We find that both a model consisting of broad, blurred reflection from an ionized accretion disc and a model consisting of cold, neutral reflection plus narrow emission lines from highly ionized photoionized gas (log ξ ~ 3.5) offer statistically comparable fits to the data although the true reality of the Fe line cannot currently be determined with existing data. However, it is hoped that better quality data and improved photon statistics in the Fe K band will allow a more robust distinction between models to be made.

Key words: accretion, accretion discs – atomic processes – X-rays: galaxies.

1 INTRODUCTION

The X-ray spectra of active galactic nuclei (AGN) are routinely observed to contain complex spectral features arising from both reprocessing and absorption of the primary continuum emission. These features are often important diagnostics of the physical processes occurring within the immediate vicinity of an accreting supermassive black hole. Of particular interest is fluorescent line emission from near-neutral Fe Kα at ~6.4 keV which appears to be a ubiquitous feature in type 1 Seyfert galaxies and is most likely produced via ‘reflection’ from cold (near-neutral), optically thick material such as the accretion disc and/or putative obscuring torus when illuminated by the central source (e.g. Nandra & Pounds 1994; Bianchi et al. 2009; Shu, Yaqoob & Wang 2010a, 2011; Patrick et al. 2012). In many type 1 AGN, the existence of a broadened Fe Kα line has been claimed (e.g. Nandra et al. 2007) with the observed broadening and associated strong red wing attributed to strong gravitational redshift a few \(r_g \) from the black hole (e.g. Fabian et al. 1989).

To date, broad Fe Kα emission lines have been detected in only a handful of obscured AGN; e.g. NGC 2992 (Shu et al. 2010b) and NGC 5506 (Guainazzi et al. 2010), both of which are type 1.8–1.9 Seyfert galaxies. Additionally, similar features have been detected in the type 2 Seyfert MCG–5–23–16 (Dewangan, Griffiths & Schurch 2003) and IRAS 00521−5130, the latter of which is the first and only type 2 Seyfert galaxy in which the claim of the detection of black hole spin has been made (Tan et al. 2012). The difficulty in detecting such broad features in type 2 AGN most likely arises from the presence of large absorbing columns in the line of sight.

The very first type 2 Seyfert galaxy in which a broad, skewed Fe Kα line (\(\sigma \sim 0.5 \text{ keV} \)) was detected is IRAS 18325–5926 (Iwasawa et al. 1996) with a measured equivalent width as large as EW ~ 600 eV. Through observations with ASCA and Chandra the line has been observed to peak at ~6.7–6.9 keV (EW = 200–600 eV). When coupled with the weak Compton-reflection hump \(\gtrsim 10 \text{ keV} \), this suggests an origin in a highly ionized accretion disc where the emission is dominated by Fe XXV with the observed broadening perhaps arising from Compton scattering and/or strong Dopplergravitational effects due to its high inclination to the line of sight and proximity to the black hole. Strong emission from Fe XXV has been thought to be uncommon in Seyfert galaxies and may have significant implications for the thermal structure of the disc (Nayakshin, Kazanas & Kallman 2000). Alternatively, highly ionized Fe lines may possibly originate in distant photoionized gas, far from the disc (see Bianchi & Matt 2002). Sources in which highly ionized Fe lines have been detected include Mrk 205 (Reeves et al. 2001), Mrk 766 (Miller et al. 2006) and NGC 7213 (Bianchi et al. 2008; Lobban et al. 2010). The LINER (low-ionization nuclear emission-line region galaxy) M81 also displays two distinct emission lines from highly ionized Fe at ~6.7 keV (Fe XXV) and ~6.96 keV (Fe XXVI) in addition to the near-neutral Fe Kα core at ~6.4 keV (Page et al. 2004). Furthermore, more recent results with Suzaku suggest that such highly ionized features may be more common in AGN than previously thought with Patrick et al. (2012) detecting narrow emission features from Fe XXV and Fe XXVI in 52 and 39 per cent, respectively, of a sample of 46 nearby
type 1 Seyferts. Nevertheless, the detections of several of these lines in the same object are rare.

IRAS 18325−5926 is an X-ray-bright ($F_{2-10} \sim 1–3 \times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$). Compton-thin type 2 Seyfert galaxy (de Grijp et al. 1985) at $z = 0.01982$ (Iwasawa et al. 1995) with an X-ray luminosity of $L_{2-10} \sim 10^{43}$ erg s$^{-1}$ (Iwasawa et al. 2004). It displays peculiar spectral features which are unusual for type 2 Seyferts, namely a broad wing to the optical Hα line (full width at half-maximum ~ 3400 km s$^{-1}$) plus relatively strong low-ionization lines such as [O i] $\lambda 6300$ and [N i] $\lambda 5199$ (Carter 1984) and a moderately low absorption column of $N_H \sim 10^{22}$ cm$^{-2}$. The source also displays rapid X-ray variability (on occasion varying in flux by a factor of 2 on 10^2–10^4 s time-scales; Iwasawa et al. 1995), and the overall X-ray properties >2 keV are generally more akin to type 1 Seyferts. The similarities between the X-ray and optical extinction led Iwasawa et al. (1995) to suggest that the nucleus of IRAS 18325−5926 may be obscured globally as opposed to just by an optically thick torus, as usually envisaged in the standard unification scheme for AGN (Antonucci 1993).

Here we investigate the nature of the Fe-line profile in IRAS 18325−5926 by analysing all available CCD data. We primarily focus on a 78 ks observation with Suzaku (Mitsuda et al. 2007), the highest signal-to-noise (S/N) view of the Fe line of this object to date. Additionally, including data acquired with Suzaku’s hard X-ray detector (HXD) extends the observable bandpass up to ~ 70 keV allowing robust constraints on the continuum to be made while simultaneously allowing for the presence of any hard excess to be tested for, which is important in defining the strength of any Compton-reflection component in this source. In Section 3.4, we also consider data acquired from previous observations with XMM–Newton and ASCA. As type 2 Seyferts may offer alternative insights into the nature of broad Fe lines, the true reality of such components should be assessed. Therefore, our primary goal is to study the Fe line in the context of physical broad-band spectral models and test alternative hypotheses.

2 DATA ANALYSIS AND REDUCTION

2.1 Suzaku data reduction

IRAS 18325−5926 was observed by Suzaku on 2007-10-26 for a duration of ~ 170 ks (sequence number: 702118010). Here we discuss data acquired with the three operable X-ray imaging spectrometer (XIS; Koyama et al. 2007) CCDs and the positive intrinsic negative (PIN) diodes of the HXD (Takahashi et al. 2007). There appears to be no other bright/contaminating sources within the XIS extraction region or the field of view (FOV) of the PIN. Event files from version 2.3.12.15 of the Suzaku pipeline processing were used and all data were reduced using HEASOFT version 6.13 and Suzaku CALDB (calibration database) version 20130110.

2.1.1 XIS data reduction

All XIS data were screened within XSELECT using standard selection criteria to exclude periods when the spacecraft passed through the South Atlantic Anomaly (SAA) plus the following 436 s of such a passage. Data acquired with Earth elevation angles (ELV) $\leq 5^\circ$ and Earth day-time elevation angles (DYE_ELV) $\leq 20^\circ$ were also excluded. Only good events with grades 0, 2, 3, 4 and 6 were used while hot and flickering pixels were removed from the XIS images using the CLEAN/SIS script. Time intervals affected by telemetry saturation were also removed.

Figure 1. Upper panel: the FI-XIS background-subtracted light curve of IRAS 18325−5926 in 5760 s orbital bins from 0.5−10 keV. The vertical dashed line shows where the observation is split into high- and low-flux segments (see Section 3.3). Lower panel: the XMM–Newton MOS background-subtracted light curve in 100 s bins from 0.5−10 keV. The short gaps arise from filtering out large background flares.

Source spectra from the XIS CCDs were extracted from circular regions of 3 arcmin radius centred on the source. Background spectra were extracted from same-size regions but offset from the source region while avoiding the calibration sources on the corners of the CCD chips. The data were acquired in the on-axis HXD-nominal pointing position. XIS RMFs (response matrix files) and ARFs (ancillary response files) were generated using the XISRMFGEN and XISIMARFGEN FTOOLS, respectively, including correction for the hydrocarbon contamination on the optical blocking filter (Ishisaki et al. 2007). A net XIS source exposure of 78 ks was obtained for each of the three operable XIS chips.

The two front-illuminated XIS chips (XIS 0 and 3, hereafter FI XIS2) were found to produce consistent spectra and so were combined to maximize S/N using the MATHIA, ADDRMF and ADDARF FTOOLS. The net source count rate for the two combined FI XIS CCDs was 1.062 counts s$^{-1}$ in the 0.5−10 keV energy range with the background rate ~ 2 per cent of the source rate. This count rate corresponds to an observed flux of $F_{0.5-10} = 2.98 \times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$ ($F_{2-10} = 2.48 \times 10^{-11}$ erg cm$^{-2}$ s$^{-1}$)νll^3 and a luminosity of $L_{0.5-10} = 2.7 \times 10^{43}$ erg s$^{-1}$ ($L_{2-10} = 2.2 \times 10^{43}$ erg s$^{-1}$) assuming a distance of ~ 86 Mpc for this source.

Fig. 1 (upper panel) shows the 0.5−10 keV Suzaku FI-XIS light curve. From a visual inspection it can be seen that the XIS count rate varies by a factor of 2 throughout the course of the observation.\footnote{Note that XIS 1 is back-illuminated and hereafter referred to as the BI XIS.}

Figure 1 (upper panel) shows the 0.5−10 keV Suzaku FI-XIS light curve. From a visual inspection it can be seen that the XIS count rate varies by a factor of 2 throughout the course of the observation.\footnote{Fluxes were derived from, and found to be consistent between, the best-fitting broad-band models described in Sections 3.2.1 and 3.2.2.}

\footnote{We note that the HXD-PIN light curve shows little evidence of any substantial short-term variability in the hard X-ray band.}
2.1.2 HXD data reduction

As the brightness of IRAS 18325–5926 is below the detection threshold of the HXD GSO (gadolinium silicate) instrument, we used data from the HXD PIN only which provides useful data over the 15–70 keV energy range. The source spectrum was extracted from a cleaned HXD-PIN events file and screened to exclude periods in which the spacecraft passed through the SAA plus the 180 s before and the 500 s after such a passage. Data were also included with a cut-off rigidity < 6 GeV/c and ELV < 5°. The instrumental background spectrum was generated from a ‘tuned’ time-dependent model provided by the HXD instrument team (Fukazawa et al. 2009). Both the source and background spectra were made with identical good time intervals (GTIs), and the source exposure was corrected for the detector dead time (∼6.7 per cent) using the HXD-DTCOR script (version 2007 May). A detailed description of the PIN detector dead time is given in Kokubun et al. (2007). After dead time correction, the net exposure time of the PIN source spectrum was 69 ks. Note that the background spectral model was generated with 10 times the actual background count rate in order to minimize the photon noise on the background; this has been accounted for by increasing the effective exposure time of the background spectra by a factor of 10. The HXD response file dated 2008-01-29 (epoch 4; HXD-nominal position) was used for all spectral fits involving the PIN.

To account for the cosmic X-ray background (CXB; Boldt 1987; Gruber et al. 1999), a background spectrum was simulated which was generated from a model of the form \(9.0 \times 10^{-8} (E/3 \text{keV})^{0.29} \exp(-E/40 \text{keV}) \text{ erg cm}^{-2} \text{ s}^{-1} \text{ keV}^{-1}\). This was normalized to the FOV of the HXD-PIN instrument using a flat-field response and combined with the instrumental background file to produce a total background file. The effective flux of the CXB component is \(F_{15-50} = 7.8 \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}\) which corresponds to a count rate of ∼0.017 counts s\(^{-1}\). The net flux of IRAS 18325–5926 measured by the HXD over the same band is \(1.74 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}\) and so the CXB component represents ∼45 per cent of the net source flux measured by the HXD PIN.

Note that there may be some uncertainty in the absolute flux level of the CXB component measured between missions; for instance, Churazov et al. (2007) find the CXB normalization from INTEGRAL to be about 10 per cent higher than that measured by Gruber et al. (1999) from the HEAO-1 data. However, a factor of ±10 per cent uncertainty in the CXB normalization would result in a ±4.5 per cent uncertainty in the HXD flux for IRAS 18325–5926, which is well within the statistical uncertainty of the HXD-PIN observations. After background subtraction (including both the instrumental and CXB components), the resulting net PIN source count rate from 15–50 keV is 0.043 ± 0.003 counts s\(^{-1}\) corresponding to a 15–50 keV flux of \(1.74 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}\). Note that the total background count rate is ∼0.340 counts s\(^{-1}\) from 15–50 keV with a typical 1σ systematic uncertainty of ±1.3 per cent.

2.2 XMM–Newton data reduction

IRAS 18325–5926 was observed with XMM–Newton on 2001-03-05 (ObsID: 0022940101) and 2001-03-06 (ObsID: 0022940201). The EPIC (European Photon Imaging Camera) cameras were operated in small-window mode using the medium filter. However, due to technical problems, no useful data products were acquired with the EPIC-pn camera during either observation. Nevertheless, the two EPIC-MOS (metal oxide semi-conductor) cameras were operated successfully. Version 13.0 of the Scientific Analysis Software (SAS) package was used for data reduction. To correct for background flaring, data were filtered according to GTIs created by applying threshold count levels of ≤0.3 and ≤0.2 counts s\(^{-1}\) to the high-energy (>10 keV) MOS light curves for the first and second observations, respectively.

To minimize background contribution, spectra were extracted from 20 arcsec circular regions centred on the source. Background spectra were extracted from much larger circular uniform regions away from both the central source and other nearby background sources. The data were filtered for good X-ray events using the standard ‘FLAG==0’ and ‘PATTERN ≤ 12’ criteria. This resulted in exposure times of 50 and 49 ks for the first and second observations, respectively. The averaged net source count rate for the two combined observations was 0.922 counts s\(^{-1}\) per MOS camera from 0.5–10 keV with the background rate <1 per cent of the source rate. This count rate corresponds to an observed flux of \(F_{0.5-10} = 1.74 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}\) (\(F_{2-10} = 1.47 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}\)).

As the two EPIC-MOS observations considered here are contiguous, both spectra from the MOS 1 camera were summed together, as were both spectra from the MOS 2 camera. The two spectra were then fitted simultaneously, allowing the relative normalizations to go free. Allowing other model parameters to go free between the two spectra always results in best-fitting parameters which are consistent to within 1 per cent. We note that for plotting purposes, the spectra from both MOS cameras are combined to increase clarity.

The EPIC-MOS light curve is shown in Fig. 1.

2.3 ASCA data reduction

IRAS 18325–5926 was observed by ASCA on 1993-09-11 and 1997-03-27. The data have been described and analysed previously by Iwasawa et al. (1995, 1996, 2004). Here we briefly reanalyse data from the longer, more recent observation from 1997. The ASCA spectra were acquired directly from the Tartarus\(^5\) data base (Turner et al. 2001) with respective net exposure times for the solid-state imaging spectrometers (SIS) and gas imaging spectrometers (GIS) of 172 and 163 ks, respectively. The averaged 0.5–10 keV net source count rate was 0.363 counts s\(^{-1}\) for the two SIS instruments and 0.302 counts s\(^{-1}\) for the two GIS instruments with an observed flux of \(F_{0.5-10} = 2.18 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}\) (\(F_{2-10} = 1.86 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}\)). We note that all four spectra were fitted simultaneously but with an additional constant term in the model allowing the spectra to renormalize.

3 SPECTRAL ANALYSIS

The XSPEC v12.8.0 software package (Arnaud 1996) was used for spectral analysis of the background-subtracted spectra. Data from 0.7–10 keV were considered for use in both the FI-XIS and BI-XIS Suzaku spectral fits although the 1.7–2.1 keV band was ignored due to uncertainties in calibration associated with the instrumental Si K edge.\(^6\) In all fits, the cross-normalization between the HXD-PIN and XIS detectors was accounted for by the addition of a fixed constant multiplicative component at a value of 1.18 for the HXD-nominal pointing position, a value derived using Suzaku observations of the Crab (Ishida, Suzuki & Someya 2007).\(^7\) The relative normalization between the FI-XIS and BI-XIS spectra was allowed to vary, but

\(^5\) http://heasarc.gsfc.nasa.gov/FTP/asca/data/tartarus/
\(^6\) http://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/sical.html
\(^7\) ftp://legacy.gsfc.nasa.gov/suzaku/doc/xrt/suzakumemo-2007-11.pdf
best-fitting values were always within 1 per cent of each other. The same was done for the two XMM–Newton MOS cameras. In all fits, the Galactic column density ($N_H^{\text{Gal}} = 6.47 \times 10^{20} \text{ cm}^{-2}$) was also included (Dickey & Lockman 1990; Kalberla et al. 2005) with the ‘Tuebingen–Boulder’ (TBABS) code of Wilms, Allen & McCray (2000). Note that all fit parameters are given in the rest frame of the galaxy. A value for the Hubble constant of $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$ was assumed and abundances are those of Wilms et al. (2000) unless otherwise stated.

We begin by considering time-averaged Suzaku spectra. The XIS source spectra were binned to include >25 counts per bin, thus enabling the use of χ^2 minimization. The HXD-PIN data were binned such that each bin has a detection significance of $\geq 5 \sigma$. Confidence intervals are quoted to 90 per cent confidence for one parameter of interest (i.e. $\Delta \chi^2 = 2.706$) unless otherwise stated.

3.1 The X-ray continuum

Fig. 2 (upper panel) shows the broad-band 0.7–50 keV ‘fluxed’ Suzaku X-ray spectrum (see Nowak 2005 and Vaughan et al. 2011 of IRAS 18325–5926. The observed counts spectrum has been previously published by Tripathi et al. (2013). The most visually apparent feature is a significant column of absorbing material at energies $\lesssim 2$ keV. Fitting the continuum with a simple model consisting of a power law with a photon index of $\Gamma = 2.2$ modified by absorption from neutral material with a column density of the order of $N_H \sim 10^{22} \text{ cm}^{-2}$ [χ^2/d.o.f. (degrees of freedom) = 1723/1430] using the TBABS code reveals further spectral complexity, as shown in Fig. 2 (middle panel). In particular, excess flux from 6–7 keV is indicative of K-shell emission from Fe (also see Fig. 3; upper panel) and a soft excess can be seen at energies $\lesssim 1$ keV. Interestingly, the HXD-PIN data do not appear as a strong excess above the XIS data suggesting that any hard excess in this source may be relatively weak.

A model of the form $\text{TBABS}^{\text{Gal}} \times (\text{TBABS} \times \text{PL}_{\text{intrinsic}} + \text{PEXMON}) + \text{PL}_{\text{scattered}}$ was applied to these data to include some of the fundamental components that one may expect in the X-ray spectrum of a Seyfert 2 (Fig. 2; lower panel). The PEXMON model of Nandra et al. (2007) is an additive component self-consistently incorporating the Compton-reflected continuum from a neutral slab combined with emission from Fe Kα, Fe Kβ, Ni Kα and the Fe Kα Compton shoulder. Its purpose was to account for any hard excess of emission at energies > 10 keV due to Compton scattering of intrinsic continuum photons while simultaneously modelling a narrow core...
of emission due to Fe Kα fluorescence at \~6.4 keV (see Fig. 3; lower panel). The photon index was tied to that of the primary power-law continuum (Γ = 2.19 ± 0.02) and the abundances were fixed to solar values\(^8\) (Anders & Grevesse 1989). The inclination angle, \(θ_{\text{obs}}\), was fixed at 60°, and allowing this parameter to vary does not improve the fit. The cut-off energy of the power law was also fixed at a high value of 1000 keV, i.e. consistent with no cut-off in the observed bandpass. Again, there is no requirement for this parameter to vary in the model fit. The magnitude of the reflection scaling factor, \(R\), is found to be \(R = 0.36^{+0.11}_{-0.10}\), where a value of \(R = 1\) corresponds to reflection from a semi-infinite slab subtending 2π sr to the central source of X-rays.\(^9\) The fit statistic achieved with the inclusion of the \textsc{pexmon} component is better by Δ\(χ^2\) = 41 (for one additional free parameter) when compared to the fit without it.

As noted by Tripathi et al. (2013), the shape of the soft excess appears to be continuum dominated as opposed to arising from a series of narrow emission lines due to atomic transitions. Consequently, the shape of the soft excess is largely reproduced by the secondary (‘scattered’) power-law component whose photon index is tied to that of the intrinsic power law (Γ = 2.19 ± 0.02) but with their respective normalizations free to vary. This is consistent with the findings of Tripathi et al. (2013). Such a component could be representative of continuum emission that has been electron scattered into the line of sight around an absorbing structure such as the torus. The ratio of the normalizations of the power-law components then provides the ratio of scattered to primary flux which is \~0.02, again consistent with Tripathi et al. (2013). We note that there is no significant improvement to the fit upon allowing the photon index to vary between the two power-law components.

Further inspection of the soft-band residuals revealed a dip in the XIS spectrum at \~1.3 keV (see Fig. 2; middle and lower panels). Modelling this feature with a Gaussian with a negative normalization improves the fit by Δ\(χ^2\) = 22 and has best-fitting values of \(E_x = 1.33 ± 0.02\) keV and \(σ < 50\) keV with an equivalent width, \(EW = 10 ± 4\) eV. This absorption feature most likely corresponds to the 1s–2p transition from Mg \(\text{XII}\) (rest-frame energy = 1.35 keV) and its blueshift would imply an origin in outflowing material with \(v_{\text{out}} < 9000\) km s\(^{-1}\). The same feature was detected by Mocz et al. (2011) in the \textit{Chandra} MEG (medium energy grating) spectrum and the best-fitting parameters are consistent.\(^{10}\)

This simple model reproduces the general shape of the broadband continuum well and results in a fit statistic of \(χ^2/d.o.f. = 1564/1425\) where the bulk of the residuals are dominated by the Fe K band with excess emission apparent at \~6.6–6.9 keV (Fig. 3; lower panel).

3.1.1 Application of the \textsc{mytorus} model

We also attempted to model the continuum with the \textsc{mytorus}\(^{11}\) model of Murphy & Yaqoob (2009). The advantage of this model is that it accounts for both the absorption from cold material and the Compton-scattered ‘reflected’ continuum in a self-consistent fashion and is valid in both Compton-thin and Compton-thick cases by providing continuous coverage between the two regimes. As such, this is an ideal model to test with type 2 AGN such as IRAS 18325–5926.

The \textsc{mytorus} model assumes a toroidal geometry and comprises three components: the zeroth-order continuum (i.e. the directly transmitted component through the obscuring medium), the Compton-scattered continuum and fluorescent emission lines including Fe Kα, Fe Kβ and the associated Compton shoulder. We replaced the \textsc{pexmon} component (from the model described in Section 3.1) with the \textsc{mytorus} components such that the broad-band model took the form: \textsc{phabs\(\text{Gal}\) × ([\textsc{pl춰mric} \times \textsc{mytorus}]) + [\text{constant} \times \textsc{mytorus}] + [\text{constant} \times \textsc{myt}\(\beta\)] + \textsc{gauseds} + \textsc{plscattered}). Here, \textsc{myt}\(\alpha\), \textsc{myt}\(\beta\) and \textsc{myt}\(\gamma\) represent the zeroth-order continuum, the scattered continuum and the fluorescent line emission, respectively. Note also that the \textsc{phabs\(\text{Gal}\)} component has been replaced with the \textsc{phabs\(\text{Gal}\)} component to allow for consistency with the abundances assumed by the \textsc{mytorus} model (Anders & Grevesse 1989). \textsc{gauseds} is used to account for the Mg\(\alpha\) xi absorption line mentioned above.

The photon index and normalization of the \textsc{mytorus} model were tied to that of the power-law continuum, \(z\) was fixed at the redshift of the source and the inclination angle and column density were tied between the various \textsc{mytorus} components. This results in a fit statistic of \(χ^2/d.o.f. = 1574/1427\) with best-fitting values for the column density and inclination angle of \(N_H = 4.3^{+0.3}_{-0.1} \times 10^{22}\) cm\(^{-2}\) and \(θ_{\text{obs}} = 63^{+2}_{-1}\) deg. The parameters of the two power-law components remain unchanged with respect to the \textsc{pexmon} model described above. However, this model underpredicts the amount of Fe emission at 6.4 keV. Allowing the relative normalizations of the \textsc{mytorus} components to vary significantly improves the fit. By tying together the constants in front of the \textsc{myt}\(\alpha\) and \textsc{myt}\(\gamma\) components and allowing them to go free results in a much improved fit with \(χ^2/d.o.f. = 1535/1426\) with a best-fitting value for the free constant of \(4.8^{+0.7}_{-1.0}\). This adequately models the Fe-line peak at 6.4 keV and is an improvement over the \textsc{pexmon} model described in Section 3.1 primarily due to a better fit of the HXD-PIN data >10 keV. Allowing the relative normalizations to vary may account for time delays between the scattered and zeroth-order continua and could be representative of geometries, covering factors or elemental abundances which deviate from the model assumptions. We note that an equally good fit can be obtained by instead allowing the column density along the line of sight to be independent of that producing the scattered continuum. In this instance, the line-of-sight column density becomes \(N_H = 3.8^{+0.6}_{-0.5} \times 10^{22}\) cm\(^{-2}\) whereas the column density of the scattering medium (which is tied to that of the material producing the fluorescent line emission) increases to \(N_H = 2.5^{+1.3}_{-0.8} \times 10^{23}\) cm\(^{-2}\). This may be consistent with a scenario whereby our sightline grazes the edge of the torus (\(θ_{\text{obs}} \sim 60°\)) while the bulk of the scattered continuum arises from denser clumps of material out of the line of sight.

\(^8\) Allowing the abundance of Fe (\(A_{\text{Fe}}\)) to vary relative to other elements does improve the fit (Δ\(χ^2 = 10\)); however, no tight constraint can be obtained on this parameter (i.e. \(A_{\text{Fe}} = 4.7^{+0.3}_{-0.9}\)).

\(^9\) We note that the reflection scaling factor drops to \(R = 0.1g^{+0.08}_{-0.11}\) when \(A_{\text{Fe}}\) is allowed to vary.

\(^{10}\) Mocz et al. (2011) also find evidence for strong absorption features from Mg\(\text{Xi}\) (1s–3p), Mg\(\text{XII}\), Si\(\text{XIII}\) and Si\(\text{XIV}\) although there is no requirement for these features to be modelled in the \textit{Suzaku} XIS spectrum. This may be due to the superior spectral resolution afforded by the \textit{Chandra} gratings. Nevertheless, the upper limits on the equivalent widths of the Mg\(\text{Xi}\) and Mg\(\text{XII}\) lines in the \textit{Suzaku} spectrum (<7 and <8 eV, respectively) remain consistent with the values obtained from the \textit{Chandra} gratings. However, it should be noted that the transitions from Si fall inside the 1.7–2.1 keV band that has been ignored in the XIS spectra and so their presence cannot be reliably tested for.

\(^{11}\) http://www.mytorus.com/
3.2 The Fe-line complex

Fig. 3 shows the residuals once the peak at \sim6.4 keV has been accounted for with neutral reflection. Several authors have attempted to model the Fe K emission from previous observations with a broad component (e.g. Iwasawa et al. 1996, 2004; Tripathi et al. 2013) assumed to originate in the accretion disc near the black hole. However, only simple Gaussian and relativistic disc-line profiles (e.g. Fabian et al. 1989; Laor 1991) have been used to parametrize the Suzaku Fe-line profile to date. Additionally, Fukazawa et al. (2011) analysed a sample of 88 Seyfert galaxies observed with Suzaku and accounted for the Fe K emission profile of IRAS 18325$-$5926 with two narrow Gaussians peaking at 6.4 and 6.7 keV with respective equivalent widths of 38 ± 11 and 23 ± 5 eV. Here we take a broadband approach to the Suzaku data to fit more physical models while also testing alternatives.

3.2.1 Broad Fe-line model

Iwasawa et al. (2004) suggested that the Fe K features could result from reflection off an ionized accretion disc. A simple parametrization of the Fe K emission profile with a single broad Gaussian yields a best-fitting value for the centroid energy of $E_c = 6.60 \pm 0.07$ keV, consistent with an origin in ionized material while the best-fitting value for the intrinsic width is found to be $\sigma = 330^{+90}_{-60}$ eV and the equivalent width is found to be $EW = 170 \pm 40$ eV. Some authors have also previously attempted to fit the profile with the DISKLINE component of Fabian et al. (1989) (e.g. Iwasawa et al. 2004; Tripathi et al. 2013). The variable parameters of the DISKLINE model are the centroid energy, the inner and outer radii of emission in units of r_g, the inclination angle of the source to the observer’s sightline, θ, the emissivity index, q, which defines the radial dependence of emissivity across the disc (r^{-q}) and the integrated intensity of the line. Parametrizing the Fe K profile this way requires a best-fitting rest-frame value for the centroid energy of $E_c = 6.6^{+0.04}_{-0.05}$ keV, again consistent with ionized Fe, with a measured equivalent width of $EW = 190^{+110}_{-50}$ eV (line flux, $F = 4.2_{-0.7}^{+1.1} \times 10^{-5}$ photons cm$^{-2}$ s$^{-1}$). An upper limit on the inner radius of emission is found to be $r_{\text{in}} < 80 r_g$ although the outer radius is unconstrained and so fixed at a high value of $r_{\text{out}} = 500 r_g$. Additionally, the emissivity index and inclination angle are constrained to be $q = 1.6^{+0.7}_{-0.6}$ and $\theta = 44^{+20}_{-10}$ deg. The fit statistic achieved with this fit is $\chi^2 / \text{d.o.f.} = 281 / 223$ from 5.5–7.5 keV.

Here, to take a self-consistent broadband approach, the model described in Section 3.1 was taken and, in addition to the PEXMON component which models the narrow core of Fe Kα emission from distant material at \sim6.4 keV plus (weak) hard excess, the remaining, broader residuals were modelled with a relativistically blurred reflection model computed using the REFLIONX code of Ross & Fabian (2005) convolved with the RDBLUR code. RDBLUR is a convolution kernel based on the DISKLINE model of Fabian et al. (1989) taking into account relativistic effects from an accretion disc around a Schwarzschild black hole. The REFLIONX code is designed to model the emergent spectrum when a power law irradiates a photoionized, optically thick slab of gas. The model assumes a high-energy exponential cut-off, $E_{\text{cut}} = 500$ keV, and uses the abundances of Anders & Ebihara (1982). The advantage of the REFLIONX model is that it self-consistently models both the reflected continuum and line emission for many of the most important astrophysically abundant ions.

The model parameters are the photon index (Γ) of the illuminating power law, which was tied to the photon index of the primary power-law continuum, the redshift (z), which was fixed at the redshift of the source, the abundance of Fe relative to the solar value (which was fixed at the solar value), the normalization of the reflected spectrum and the ionization parameter, which is defined as $\xi = L_{\text{ion}} / n R^2$ and has units of erg cm s$^{-1}$ where L_{ion} is the ionizing luminosity from 1–1000 Rydberg in units of erg s$^{-1}$, n is the gas density in cm$^{-3}$ and R is the radius of the absorbing/emitting material from the central source of X-ray in units of cm. The variable parameters of the RDBLUR code are based on those found in the DISKLINE model described above, i.e. $r_{\text{in}}, r_{\text{out}}, \theta$ and q. Allowing the parameters of RDBLUR to vary, we find that the data are unable to meaningfully constrain them in the broad-band model. Therefore, the inner and outer radii of emission were fixed at r_{in} and $500 r_g$, respectively; the inclination angle was fixed at 60° (consistent with the PEXMON component) and the emissivity index was fixed at $q = 2$.

The best-fitting value of the ionization parameter of the reflector is $\xi = 1.0^{+0.1}_{-0.1} \times 10^7$ erg cm s$^{-1}$, consistent with emission from an ionized disc. The best-fitting value of the reflection scaling factor of the PEXMON component then becomes $R = 0.15^{+0.11}_{-0.07}$. These values are summarized in Table 1. Finally, we note that further inspection of the residuals in the Fe K band reveals an absorption trough >7 keV. A sweep across the 7–8 keV band with the EDGE model within XSPEC results in best-fitting parameters for the energy of $E_{\text{edge}} = 7.16^{+0.10}_{-0.05}$ keV (consistent with Fukazawa et al. 2011) and the optical depth of $\tau = 0.13 \pm 0.04$. This improves the fit statistic by $\Delta \chi^2 = 26$.

The inclusion of these components results in an overall fit statistic of $\chi^2 / \text{d.o.f.} = 1513 / 1421$. We note that in addition to the standard fit statistic quoted over the full 0.7–50 keV band, we also quote the fit statistic achieved just in the 5.5–7.5 keV band which is $\chi^2 / \text{d.o.f.} = 291 / 223$. This is to avoid the statistic being dominated by the continuum fit and instead focuses solely on the residuals in the Fe K band. This fit to the data is shown in Fig. 4.

3.2.2 Modelling with narrow Fe lines

As an alternative to reflection from the inner accretion disc, the emission profile may be modelled with individual peaks at \sim6.4, \sim6.7 and \sim6.9 keV. To test the plausibility of this model, the PEXMON and RDBLUR REFLIONX components were removed and three narrow Gaussians were added to model the three peaks. The most significant peak can be fitted with a Gaussian with a best-fitting (rest-frame) centroid energy, $E_c = 6.41 \pm 0.03$ keV, and is found to be intrinsically narrow with $\sigma < 0.13$ keV. It has a line flux of $F_{\text{line}} = 1.6^{+0.6}_{-0.4} \times 10^{-5}$ photons cm$^{-2}$ s$^{-1}$ and an equivalent width of $EW = 57^{+36}_{-26}$ eV. Modelling this feature improves the fit by $\Delta \chi^2 = 60$ and would most likely correspond to Kα emission from near-neutral Fe (i.e. Fe XV–XVI).

The second and third peaks were both fixed to be intrinsically narrow ($\sigma = 10$ eV). The second peak has a best-fitting centroid energy of $E_c = 6.72 \pm 0.04$ keV and a line flux of $F_{\text{line}} = 9.9^{+3.9}_{-2.9} \times 10^{-6}$ photons cm$^{-2}$ s$^{-1}$. It has an equivalent with of $EW = 38^{+19}_{-13}$ eV and is significant with $\Delta \chi^2 = 26$. The third peak requires a best-fitting centroid energy of $E_c = 6.94^{+0.04}_{-0.05}$ keV and a line flux of $F_{\text{line}} = 7.6^{+2.5}_{-2.2} \times 10^{-6}$ photons cm$^{-2}$ s$^{-1}$. It has an equivalent with of $EW = 33^{+12}_{-7}$ eV and improves the fit by $\Delta \chi^2 = 19$. The two peaks may correspond to emission from the 1s–2p resonance transition of Fe XXV (rest-frame energy: 6.70 keV, although possibly blended with additional unresolved peaks arising from the Fe XXV intercombination and forbidden lines) and blended emission from the Fe XXVI Lyα doublet (rest-frame energies: 6.95 and 6.97 keV),
respectively. Fig. 5 shows this fit to the FI-XIS spectrum which corresponds to a fit statistic of χ^2/d.o.f. $= 273/221$ from 5.5–7.5 keV (a slight improvement over the corresponding DISKLINE parameterization in Section 3.2.1). In addition, two-parameter joint-confidence contours were created for the three lines showing line energy versus line flux. This produced three sets of closed contours across the Fe K band generated at 68, 90, 99 and 99.9 per cent confidence. These are shown in Fig. 6 and suggest that three significantly detected narrow lines may be a feasible description of the Suzaku XIS data.

A more physically motivated approach was made by modelling the peaks bluewards of 6.4 keV with a model comprising the emission from optically thin, photoionized gas computed using XSTAR (see Kallman et al. 2004). The PEXMON component was re-included which models the peak at \sim6.4 keV. The XSTAR code calculates the physical conditions assuming a slab of photoionized gas illuminated by a central point source of ionizing radiation and is

Table 1: The best-fitting parameters of the various models applied to the Fe K band described in Sections 3.2.1 and 3.2.2. A covering fraction of f$_{cov}$ = 1 is assumed for the XSTAR emission grid. All $\Delta \chi^2$ values correspond to the change in the fit statistic upon removal of the component from the overall model.

Model component	Parameter	Value	$\Delta \chi^2$	χ^2/d.o.f. (0.7–50 keV)	χ^2/d.o.f. (5.5–7.5 keV)
Power law$_{in}$	Γ	2.19$^{+0.02}_{-0.02}$	1564/1425	310/227	
	Norm	1.32$^{+0.04}_{-0.04} \times 10^{-2}$			
Power law$_{out}$	Γ	2.19$^{+0.02}_{-0.02}$	106		
	Norm	2.63$^{+0.39}_{-0.39} \times 10^{-4}$			
TBABSb	N_H	1.60$^{+0.04}_{-0.04} \times 10^{22}$			
PEXMONc	R	0.36$^{+0.11}_{-0.10}$	41		
PEXMONc	R	0.15$^{+0.11}_{-0.12}$	1513/1421	291/223	
$R_{BLUR} \times$REFLIONXd	ξ	1 000$^{+1}_{-500}$	13		
	Norm	1.68$^{+0.10}_{-0.10} \times 10^{-8}$			
EDGHEe	E_c	7.16$^{+0.11}_{-0.05}$	26		
	τ	0.13$^{+0.04}_{-0.04}$	1508/1421	282/223	
PEXMONf	R	0.35$^{+0.10}_{-0.11}$	21		
XSTARf	N_H	>5.8$ \times 10^{23}$			
	$\log \xi$	3.47$^{+0.02}_{-0.04}$			
EDGHEf	E_c	7.49$^{+0.14}_{-0.29}$	22		
	τ	0.13$^{+0.05}_{-0.05}$			

a Γ, photon index; normalization in units of photons cm$^{-2}$ s$^{-1}$.

b N_H, column density in units of cm$^{-2}$.

c R, reflection scaling fraction; unitless.

d ξ, ionization parameter in units of erg cm s$^{-1}$; normalization in units of photons cm$^{-2}$ s$^{-1}$.

e E_c, centroid energy in units of keV; τ, optical depth.

f N_H, column density in units of cm$^{-2}$; ξ, ionization parameter in units of erg cm s$^{-1}$.
largely parametrized by its column density, \(N_H \), and ionization parameter, \(\xi \).

We assume a turbulence velocity of \(v_{\text{turb}} = 200 \text{ km s}^{-1} \) and an ionizing continuum taking the form of a power law with \(\Gamma = 2.2 \) (a typical value for this source). The ionizing luminosity was assumed to be \(L_{\text{ion}} = 3 \times 10^{35} \text{ erg s}^{-1} \) and is calculated by extrapolating the continuum model from 1 to 1000 Rydberg. Fixing the xSTAR zone at the redshift of the source, it has a best-fitting ionization parameter of \(\log \xi \sim 3.5 \) and contributes emission lines at \(\sim 6.7 \) and \(\sim 6.95 \text{ keV} \) due to Fe xxv and Fe xxvi Ly\(\alpha \), respectively. However, in the case of an emission grid there is a strong degree of degeneracy between its column density and normalization. For a uniform, Compton-thin shell, the normalization of the emission component is defined within xSTAR as

\[
k = f_{\text{cov}} \frac{L_{\text{ion}}}{D^2}.
\]

where \(f_{\text{cov}} \) is the covering fraction of the material, \(L_{\text{ion}} \) is the ionizing luminosity in units of \(10^{35} \text{ erg s}^{-1} \) and \(D \) is the distance to the source in kpc. Physically, the xSTAR normalization is proportional to the product of the observed X-ray flux and the covering fraction of the photoionized gas. Assuming \(f_{\text{cov}} = 1 \), the normalization can then be calculated to be \(k = 4 \times 10^{33} \text{ erg s}^{-1} \text{ kpc}^{-2} \) for the case of IRAS 18325–5926. Fixing the normalization of the xSTAR zone to this value in the model and re-fitting then provides a lower limit on the column density assuming a fully covering spherical shell of gas. In this case, the 90 percent confidence lower limit is \(N_H > 5.8 \times 10^{23} \text{ cm}^{-2} \). Note that the column density drops to \(N_H > 4.2 \times 10^{23} \text{ cm}^{-2} \) if \(\xi \) (and hence the outflow velocity, \(v_{\text{out}} \)) is allowed to vary. The confidence range on \(\xi \) provides a 90 percent confidence interval for \(v_{\text{out}} \) of 100–3400 km s\(^{-1}\) and corresponds to \(\Delta \chi^2 \sim 3 \) between being free and frozen at 0.

Finally, as in Section 3.2.1, a sweep across the 7–8 keV band with the EDGE model results in best-fitting parameters for the energy of \(E_{\text{edge}} = 7.49^{+0.14}_{-0.29} \text{ keV} \) and the optical depth of \(\tau = 0.13 \pm 0.05 \) (\(\Delta \chi^2 \sim 22 \)). This model results in a fit statistic to \(\chi^2/\text{d.o.f.} = 1508/1421 \) by accounting for some of the residuals bluewards of 6.4 keV. This is a slight improvement over the ionized reflection model described above and is shown in Fig. 7. However, the xSTAR component still leaves some excess emission unmodelled, particularly around 6.7–6.9 keV where the residuals do not quite match the Fe xxv and Fe xxvi peaks in the xSTAR emission grid (see Fig. 8).\(^{12}\)

The fit statistic achieved over the 5.5–7.5 keV band is \(\chi^2/\text{d.o.f.} = 282/223 \) (see Table 1).

\(^{12}\) We note that accounting for the peaks bluewards of 6.4 keV with an alternative photoionized emission grid of higher turbulence velocity \(v_{\text{turb}} = 1000–3000 \text{ km s}^{-1} \) does not significantly improve the fit (\(\Delta \chi^2 = 1 \)), requiring higher best-fitting values for the ionization parameter and column density of \(\log \xi \sim 4 \) and \(N_H \sim 10^{24} \text{ cm}^{-2} \) to match the observed equivalent widths.
3.3 X-ray spectral variability

The XIS light curve displayed in Fig. 1 shows that IRAS 18325–5926 displays significant X-ray variability at energies <10 keV on time-scales of tens of ks. In an attempt to quantify this, high- and low-flux FI-XIS spectra were created by using only the counts from the first and second halves of the observation, respectively (i.e. splitting after the 13th bin in Fig. 1). The same time selection was also applied to the HXD data to generate high- and low-flux PIN spectra. IRAS 18325–5926 is less variable in the HXD-PIN band and results in 15–50 keV count rates of 0.042 ± 0.004 and 0.034 ± 0.003 counts s^{-1} for the high- and low-flux segments, respectively. The ‘fluxed’ high- and low-flux broad-band X-ray spectra are shown in Fig. 9 (upper panel).

The Fe K band residuals to a simple absorbed power-law continuum fitted between 2.5–5.5 and 7.5–10 keV are shown in Fig. 9 (middle panel). Fitting the Fe K band with the models described in Sections 3.2.1 and 3.2.2 results in fits that are consistent with those reported in Table 1.

The high- and low-flux broad-band spectra were fitted with the models described in Sections 3.2.1 and 3.2.2. Consistent with Tripathi et al. (2013), we find that simply allowing the normalization of the primary (intrinsic) power-law component to vary while keeping all other free parameters tied together between the two data sets accounts for the majority of the observed spectral variability well. The normalization varies by a factor of ~1.5 while the ratio of scattered to intrinsic flux varies in the range ~0.014–0.023. The resultant fit statistic (in the case of the model described in Section 3.2.2) from 0.7–50 keV is χ^2/d.o.f. = 2061/1925 (χ^2/d.o.f. = 1312/1300 from 2.5–50 keV). We note that the fit statistic can be improved further ($\Delta \chi^2 \approx 10$) by also allowing the normalization of the scattered power-law component to vary with respect to the models described in Sections 3.2.1 and 3.2.2. This then results in the ratio of scattered to intrinsic flux remaining at a constant value of ~0.02. However, a changing flux of the presumably distant, scattered emission component would be difficult to explain on such a short time-scale and, additionally, an identical improvement can be found to the fit by allowing the photon index of the power law to vary ($\Delta \Gamma = 0.04$) with no requirement for both Γ and the normalization of the scattered power law to simultaneously vary.

We have also examined and fitted the difference and ratio spectra (e.g. Fabian & Vaughan 2003) to search for indications of more complex spectral variability. The results were consistent with those described above. Difference spectra were created by subtracting the low-flux source and background spectra from their respective high-flux spectra, propagating the errors during each mathematical operation. If the Fe K emission component does arise from the inner regions of an ionized accretion disc, the broad component of emission may be expected to vary in phase with the continuum. Consequently, one may anticipate some of the broad emission to show up in the difference spectrum since any constant components should have been subtracted away. Using a DISKLINE component (Fabian et al. 1989) to fit the broad Fe line in the difference spectrum (Fig. 9; upper panel), we found that this component is not required by the data and gave an upper limit on the flux of 8.4×10^{-6} photons cm$^{-2}$ s$^{-1}$, which is <20 per cent of the line flux in the time-averaged spectrum. By contrast, the 2–10 keV flux changes by ~50 per cent. Likewise the flux from 7–10 keV (the important energy band for driving Fe K fluorescence) also changes by ~50 per cent.

Ratio spectra were created by dividing the background-subtracted high-flux spectrum by the background-subtracted low-flux spec-

trum, having applied identical binning criteria. The high/low-ratio spectrum (Fig. 9; lower panel) is observed to be generally flat with a uniform difference in the count rate of a factor of ~1.5. Again, this is consistent with a scenario in which the variability can be largely explained in terms of a single component varying in normalization.

3.4 Previous observations

3.4.1 XMM–Newton

The shape of the 2001 broad-band XMM–Newton MOS continuum can be largely reproduced by the model described in Section 3.1...
but with a higher ratio of scattered to primary continuum flux of \(\sim 0.03 \), consistent with Tripathi et al. (2013). The photon index of the primary continuum is harder than that in the Suzaku spectrum (\(\Gamma = 1.94 \pm 0.02 \) versus \(\Gamma = 2.19 \pm 0.02 \)) while the source flux is nearly a factor of 2 lower suggestive of steeper-brighter continuum behaviour. Consistent with Tripathi et al. (2013), the normalization of the scattered power law varies by \(\sim 50 \) per cent, indicating that the scattered component may respond to the primary continuum on long time-scales.

In the soft X-ray band, several dips can also be observed in the MOS spectrum, none of which has been reported before in analyses of these XMM–Newton data. If associated with narrow absorption lines, the most notable of these features occur at the following rest-frame energies (when modelled with Gaussians with \(\sigma = 0 \) eV): \(E_\alpha = 0.97 \pm 0.01 \) keV (EW = 15 \(\pm 3 \) eV; \(\Delta \chi^2 = 40 \)); \(E_\beta = 1.07^{+0.01}_{-0.02} \) keV (EW = 8 \(\pm 4 \) eV; \(\Delta \chi^2 = 18 \)); \(E_\gamma = 1.21 \pm 0.02 \) keV (EW = 6 \(\pm 3 \) eV; \(\Delta \chi^2 = 14 \)) and \(E_\delta = 1.34^{+0.01}_{-0.02} \) keV (EW = 10 \(\pm 2 \) eV; \(\Delta \chi^2 = 47 \)). We are only able to confidently identify the feature at 1.34 keV which is most likely due to Mg xi, consistent with the Suzaku XIS (Section 3.1) and Chandra HETG (High Energy Transmission Grating) spectra (Mocz et al. 2011). The feature at 0.97 keV lies close to the expected energy of the Ne\(\alpha \) Ly\(\alpha \) transition (1.02 keV) but may also be blended with various inner-shell transitions from Fe XVII. Finally, the lines at 1.07 and 1.20 keV may also be associated with Ne with the features arising from the Ne\(\alpha \) 1s–3p transition (1.07 keV) and the Ne\(\times \) Ly\(\beta \) transition (1.21 keV), respectively.

Two additional narrow features are also seen as dips at observed energies of \(E_\alpha = 0.58^{+0.02}_{-0.01} \) keV (EW = 30 \(\pm 6 \) eV; \(\Delta \chi^2 = 10 \)) and \(E_\beta = 1.84 \pm 0.02 \) keV (EW = 11 \(\pm 2 \) eV; \(\Delta \chi^2 = 26 \)). The former roughly coincides with the O i edge in the EPIC-MOS detectors at 0.54 keV where the calibration due to the filter transmission may have degraded by up to \(\geq 10 \) per cent in the case of the MOS 1 camera.13 Interestingly, this feature is only apparent in the MOS 2 camera. As such, and in the absence of any useful RGS (reflection grating spectrometer) data, we cannot say with confidence whether this feature is real or if its origin lies in the instrumental response. Regarding the latter feature, its observed energy coincides with that of the Si K edge at 1.84 keV and so likewise we are unable to confidently assess the reality of the feature.

Fig. 10 shows the combined XMM–Newton MOS spectrum as a ratio to an absorbed power-law continuum overlaid on the combined Suzaku FI-XIS spectrum in the Fe K band. The Fe-line complex is largely visually consistent between the two observations despite them being made six years apart. However, one difference is that, unlike the XIS spectrum, the MOS profile has no obvious peak at 6.4 keV, instead peaking at \(\sim 6.5 \) keV. Consequently, a neutral reflection component, such as PEXMON, slightly overpredicts the flux at 6.4 keV. Including an XSTAR photoionization emission component, as in Section 3.2.2, to model the higher energy peaks results in best-fitting values consistent with those reported in Table 1 (\(\log \xi = 3.57^{+0.28}_{-0.10} \times (10^{-10} N_{\text{H}} > 3.2 \times 10^{31} \text{ cm}^{-2}) \)). However, similar to the XIS spectrum, the photoionization grid leaves some excess emission at \(\sim 6.5 \) and \(\sim 6.8 \) keV unmodelled. Again, increasing the turbulence velocity of the emission component does not significantly improve the fit. The MOS spectrum also reveals the presence of an absorption trough peaking at \(\sim 8.5 \) keV; an absorption edge at \(E_{\text{edge}} = 7.77^{+0.37}_{-0.21} \) keV with an optical depth of \(\tau = 0.19 \pm 0.06 \) can account for this well, improving the fit by \(\Delta \chi^2 = 30 \). This is consistent with the Suzaku XIS spectrum (Section 3.2.2). The resultant fit statistic over the 0.2–10 keV energy range for this model is \(\chi^2 / \text{d.o.f.} = 2401/2355 \) (\(\chi^2 / \text{d.o.f.} = 346/303 \) from 5.5–7.5 keV).

A better fit can be obtained using the blurred reflection model described in Section 3.2.1 (i.e. REFLION convolved with RDBLUR). This requires the reflector to be ionized with \(\xi = 800^{+650}_{-200}\) erg cm s\(^{-1}\) with an inclination angle of \(\theta_{\text{obs}} = 31^{+16}_{-8}\) deg. However, the emissivity index and inner radius again remain unconstrained and so are fixed at \(q = 2 \) and \(r_m = 6 \text{ r}_y \), respectively. We note that the PEXMON neutral reflection component does not significantly improve the fit (\(R = 0.16^{+0.15}_{-0.12} \)). However, by including a narrow (\(\sigma = 10 \) eV) Gaussian fixed at 6.4 keV, the constraint on the flux of the near-neutral narrow core is \(F_{\text{Ko}} = 4.0^{+2.0}_{-1.8} \times 10^{-6} \) photons cm\(^{-2}\) s\(^{-1}\) which is consistent within the uncertainties with the flux of the same component in the equivalent Suzaku model (\(F_{\text{Ko}} = 7.4^{+3.2}_{-3.1} \times 10^{-6} \) photons cm\(^{-2}\) s\(^{-1}\)). This model results in a fit statistic of \(\chi^2 / \text{d.o.f.} = 2395/2354 \) (\(\chi^2 / \text{d.o.f.} = 341/302 \) from 5.5–7.5 keV). The best-fitting parameters are summarized in Table 2.

3.4.2 ASCA

Similar to the XMM–Newton MOS spectra, the Suzaku model described in Section 3.1 provides a reasonable description of the shape of the broad-band properties of the ASCA spectrum with a ratio of scattered to primary continuum flux of \(\sim 0.02 \), consistent with the Suzaku data. The flux of the source falls in between the Suzaku and XMM–Newton observations and, likewise, so does the photon index of the power-law continuum (\(\Gamma = 2.05 \pm 0.03 \); compare with Section 3.4.1).

Attempting to account for the Fe K band emission with photoionized gas (as in Section 3.2.2) returns best-fitting values consistent with those obtained with Suzaku and XMM–Newton but with larger uncertainties (\(\log \xi = 3.64^{+0.32}_{-0.22} \times (10^{-10} N_{\text{H}} > 1.6 \times 10^{23}) \)). The reflection scaling factor of the PEXMON component becomes \(R = 0.42^{+0.13}_{-0.18} \) consistent with Suzaku. The XSTAR grid improves the fit by \(\Delta \chi^2 = 9 \) and results in a broad-band fit statistic from 0.7–10 keV of \(\chi^2 / \text{d.o.f.} = 502/464 \) (\(\chi^2 / \text{d.o.f.} = 291/260 \) from 2.5–10 keV and \(\chi^2 / \text{d.o.f.} = 86/61 \) from 5.5–7.5 keV).

13 http://xmm2.esac.esa.int/external/xmm_sw_cal/calib/rel_notes/XMM-CCF-REL-273

14 Note that performing the same test with the ‘narrow’ XSTAR model also shows that the flux of the narrow Fe Ka core is consistent between Suzaku and XMM–Newton within the uncertainties: \(F_{\text{Ka}} = 1.2 \pm 0.3 \times 10^{-5} \) (Suzaku) and \(F_{\text{Ka}} = 7.3^{+3.1}_{-2.3} \times 10^{-6} \) photons cm\(^{-2}\) s\(^{-1}\) (XMM–Newton).
The best-fitting parameters of the various models applied to the XMM–Newton and ASCA data sets described in Sections 3.4.1 and 3.4.2. A covering fraction of $f_{\text{cov}} = 1$ is assumed for the XSTAR emission grid.

Model component	Parameter	Value \pm d.o.f.	XMM–Newton MOS χ^2/d.o.f. (0.2–10 keV)	ASCA χ^2/d.o.f. (0.7–10 keV)
Power law$_{\text{int}}$	Γ	1.94$^{+0.02}_{-0.02}$	2454/2359	542/468
	Norm	$5.31^{+0.12}_{-0.17} \times 10^{-3}$	370/307	103/65
Power law$_{\text{scan}}$	Γ	1.94$^{+0.02}_{-0.02}$	7.87$^{+0.30}_{-0.28} \times 10^{-3}$	2.05$^{+0.03}_{-0.03}$
	Norm	$1.41^{+0.06}_{-0.05} \times 10^{-4}$	2.05$^{+0.03}_{-0.03}$	1.80$^{+0.35}_{-0.35} \times 10^{-4}$
TBABS	N_H	$1.25^{+0.03}_{-0.03} \times 10^{22}$	1.68$^{+0.05}_{-0.05} \times 10^{22}$	0.56$^{+0.16}_{-0.17}$
PEXMON	R	0.39$^{+0.10}_{-0.11}$	2395/2354	496/464
	ξ	800^{+800}_{-500}	341/302	77/61
	θ_{obs}	31^{+16}_{-8}	$>2 \times 10^{3}$	60
EDGE	E_c	$7.85^{+0.27}_{-0.26}$	8.54$^{+0.59}_{-0.43}$	0.15$^{+0.13}_{-0.11}$
	τ	$0.19^{+0.07}_{-0.06}$	0.15$^{+0.13}_{-0.11}$	0.11
PEXMON	R	$0.34^{+0.11}_{-0.10}$	2401/2355	502/464
	ξ	$3.57^{+0.28}_{-0.10}$	$0.42^{+0.15}_{-0.15}$	86/61
XSTAR	N_H	$>3.2 \times 10^{23}$	$>1.6 \times 10^{23}$	6.7–6.8
	log ξ	$3.57^{+0.28}_{-0.10}$	$>1.6 \times 10^{23}$	3.64$^{+0.77}_{-1.07}$
	E_c	$7.77^{+0.27}_{-0.21}$	0.22	0.26
	τ	$0.19^{+0.06}_{-0.05}$	0.32$^{+0.11}_{-0.13}$	0.26

a Γ, photon index; normalization in units of photons cm$^{-2}$ s$^{-1}$.
b N_H, column density in units of cm$^{-2}$.
c R, reflection scaling fraction; unitless.
d ξ, ionization parameter in units of erg cm s$^{-1}$; θ_{obs}, inclination angle in units of degrees; normalization in units of photons cm$^{-2}$ s$^{-1}$.
e E_c, centroid energy in units of keV; τ, optical depth.
f N_H, column density in units of cm$^{-2}$; ξ, ionization parameter in units of erg cm s$^{-1}$.

Like with Suzaku and XMM–Newton, attempting to model the ASCA spectra instead with a blurred reflection component (Section 3.2.1) again requires an origin in an ionized disc with $\xi > 2 \times 10^6$ erg cm s$^{-1}$. However, the model is not well constrained, requiring parameters to be fixed at $f_{\text{in}} = 6r_g$, $q = 2$ and inclination angle $\theta_{\text{obs}} = 60^\circ$. As in Section 3.4.1, the PEXMON component does not formally improve the fit ($R < 0.40$) but a better overall fit can be obtained with this blurred reflection model with χ^2/d.o.f. = 496/464 (χ^2/d.o.f. = 282/260 from 2.5–10 keV and χ^2/d.o.f. = 77/61 from 5.5–7 keV; see Table 2). However, like with Suzaku and XMM–Newton, none of the models appears to offer a complete description of the emission complex.

4 DISCUSSION AND CONCLUSIONS

In this paper, we have examined the Suzaku XIS+HXD, XMM–Newton EPIC-MOS and ASCA SIS+GIS data of IRAS 18325–5926. These are the highest S/N CCD-resolution X-ray spectra of this Seyfert 2 galaxy. We find that the broad-band properties are largely consistent with those reported by previous authors with the X-ray spectrum dominated by a primary power-law continuum ($\Gamma \sim 2.2$) modified by a moderate column of cold absorbing gas ($N_H \sim 10^{22}$ cm$^{-2}$). A weak component of scattered emission is apparent in the soft X-ray band most likely arising in distant material. We also find a complex Fe-line emission profile; the residuals against a simple continuum model appear broad but show tentative evidence of comprising multiple lines. In particular, the structure of the emission profile in the highest resolution data (i.e. the Suzaku XIS data) appears to display peaks arising at ~6.4–6.5, ~6.7–6.8 and ~6.9 keV. Previous studies of this source have concentrated on fitting stand-alone broad components to the Fe line but here we explore a wider range of models and more physical broad-band models are tested.

In Sections 3.2–3.4, we fit the data using a range of models that explore different origins for the Fe K emission features. None of the models provides a particularly good fit from 5.5–7.5 keV. The Suzaku XIS spectrum appears to be better fitted by three narrow emission lines (neutral reflection plus photoionized gas) whereas a blurred ionized reflector offers a better fit to the XMM–Newton MOS spectrum, largely on the grounds that the 6.4 keV peak in the XIS spectrum (associated with neutral reflection) is weaker in the EPIC-MOS data with additional residuals at ~6.5 keV. The physical validity of each model is discussed below.

In Section 3.2.1, the Suzaku spectrum was fitted with a broad-band reflection model whereby the REFLECT code of Ross & Fabian (2005) was convolved with the RDLBLUR kernel to produce a blurred reflection spectrum. Assuming this model, the best-fitting parameters suggest an origin in an ionized accretion disc for the Fe-line complex, a scenario which may be supported by the evidence for a weak absorption edge > 7.11 keV. Furthermore, the weak Compton-reflection hump observed in the broad-band Suzaku XIS+HXD spectrum suggests that it is unlikely that the Fe-line profile is dominated by reflection from cold, neutral material. Such an origin in ionized material for the Fe line was favoured by several previous authors (e.g. Iwasawa et al. 1996, 2004; Moczi et al. 2011). If such a scenario were true, it may be conceivable that we are afforded a view of the nuclear region in what is otherwise a type 2 system due to either a global covering of patchy gas (e.g. Iwasawa et al. 1995).
or a unique viewing angle to the source whereby our sightline just grazes the putative molecular torus (e.g. Mocz et al. 2011).

The data appear unable to precisely constrain the innermost radius of emission; however, the degree of blurring required to broaden the Fe K emission features appears consistent with an origin $\sim 6r_g$ from the black hole (i.e. the innermost stable circular orbit in the case of a Schwarzschild geometry). Should the bulk of the emission originate from close to the black hole, one may reasonably expect the Fe K emission profile to vary in phase with the illuminating continuum. The Fe K emission profile was shown to remain largely constant in flux despite changes in the 7–10 keV continuum flux of ~ 50 per cent (see Section 3.3 and Fig. 9; middle panel). We note that Fe-line reverberation is a hotly debated topic (e.g. Reynolds et al. 1999; Ballantyne, Turner & Young 2005; Fabian et al. 2009), and the detailed physics of the disc reprocessing may result in a more complex connection between the observed line and continuum fluxes.

An alternative model was outlined in Section 3.2.2 whereby the Fe-line profile was instead explained in terms of a neutral reflector peaking at ~ 6.4 keV15 plus additional narrow, ionized emission lines peaking at 6.72 and 6.94 keV. The peak at 6.4 keV is statistically required in the Suzaku spectrum and its flux is consistent within the uncertainties between observations. When the absorber and reflector are self-consistently modelled with the MYTORUS model (Section 3.1.1), the flux at 6.4 keV is slightly underpredicted unless the normalizations of the emission components are allowed to be larger than that of the absorber. Such a scenario could arise if Fe is mildly overabundant with respect to solar values or if there is an additional source of near-neutral Fe emission. Alternatively, the column density of the scattering/line-producing material may be higher than that of the line-of-sight absorber. This could be consistent with a picture where our sightline grazes lower column material at the edge of the torus while the majority of the scattered emission originates from higher density clumps away from our line of sight.

The highly ionized lines at ~ 6.7 and ~ 6.95 keV may then originate in photoionized gas. Accounting for their presence with XSTAR offers a slight improvement over the ionized reflection model when fitted to the broad-band Suzaku spectrum and requires the gas to be highly ionized ($\log \xi \sim 3.5$) with the narrow lines arising from the 1s–2p resonance transition from Fe XXV and the Lyα transition from Fe XXVI. Their equivalent widths are found to be $EW = 38_{-13}^{+18}$ and $= 33_{-15}^{+15}$ eV, respectively. Bianchi & Matt (2002) calculate the predicted equivalent widths of Fe XXV and Fe XXVI emission lines from photoionized, optically thin gas against the total continuum. For the case where $\log \xi \sim 3.5$ and $\Gamma \sim 2.2$ (consistent with the best-fitting values observed here), the predicted equivalent widths of the Fe XXV and Fe XXVI emission lines are ~ 40–50 and ~ 15 eV, respectively. As such, our observed Fe XXVI equivalent width is consistent with the predictions of Bianchi & Matt (2002) while the Fe XXVI equivalent width may be consistent within the 90 per cent uncertainties. The calculations of Bianchi & Matt (2002) assume a column density of $N_{\rm H} = 10^{23}$ cm$^{-2}$ and so, assuming that the predicted equivalent width peaks higher as $N_{\rm H}$ increases, a more consistent equivalent width from Fe XXVI emission might be expected for the slightly higher column density required here.

15 We note that Mocz et al. (2011) perform a test for the presence of a narrow core of emission from Fe and state that the presence of one is not required; however, this may be due to the lower photon statistics in their Chandra HETG spectrum. Indeed, there are > 20 times fewer counts in the Chandra HEG spectrum compared with the combined FI-XIS Suzaku spectrum.

When the model is also applied to the ASCA and XMM–Newton MOS spectra, the best-fitting values are found to be consistent despite the observations taking place over an ~ 10 yr period. This may suggest an origin in distant material. One possible origin for such emission could be related to the scattering medium modelled in Section 3.1. The nature of such a component was investigated by Tripathi et al. (2013), who find that the scatterer must be distant ($3 \times 10^{15} < R < 3 \times 10^{17}$ cm) and consist of highly ionized ($\xi > 10^3$ erg cm s$^{-1}$), high-column-density (a few 10^{25} cm$^{-2}$) gas. Such values are compatible with the best-fitting values derived from our fits with a photoionized emitter and so it may be conceivable that the distant scattering medium may also produce narrow emission lines from Fe XXVI–XXVII. In this scenario, the central X-ray source is surrounded by near-neutral material that both absorbs (along the line of sight) the primary X-ray emission and reflects/fluoresces (mostly from material out of the line of sight). Extending beyond this is lower density photoionized gas that produces a soft continuum by electron scattering back into our line of sight some small fraction of the otherwise absorbed direct continuum plus emission lines and radiation continua from highly ionized species (e.g. Fe XXV and Fe XXVI; see Kinkhabwala et al. 2002 for an illustration and further discussion). We do note that the strength of the scattered emission component varies by ~ 50 per cent between the XMM–Newton and Suzaku observations (see Section 3.4.1). As such, it may be reasonable to suspect that the highly ionized Fe complex may also be variable, although such variations do not appear to be observed between the observations. Finally, we also find that, when modelling with XSTAR, the centroid energies of the lines at ~ 6.7 and ~ 6.95 keV do not quite match the energies of the peaks in the XIS spectrum leaving some residuals unmodelled. An increased turbulence velocity does not significantly improve the fit although a slight improvement can be achieved by allowing for a small velocity shift along the line of sight; however, this would require the emission to be slightly redshifted. It therefore may be conceivable that a broader component of Fe emission from an accretion disc is contributing to the overall Fe-line profile and could be responsible for the unmodelled residuals which remain once the narrow features have been modelled.

A final additional source of emitting material may also be related to the outflowing wind detected by Mocz et al. (2011) in the Chandra HETG spectrum. Such scenarios have previously been suggested for sources such as the Seyfert 2 NGC 1068 where the radial ionic column densities of the soft X-ray emission features were found to be similar to those found in Seyfert 1 warm absorbers (Kinkhabwala et al. 2002). However, the primary absorber detected by Mocz et al. (2011) is found to have a column density, $N_{\rm H} \sim 10^{23}$ cm$^{-2}$, and an ionization parameter, $\log \xi \sim 2$ (with a possible second higher ionization absorber; $\log \xi \sim 2.3$–2.6), and so this medium is unlikely to be responsible for producing photoionized emission from highly ionized Fe.

To summarize, IRAS 18325–5926 is an interesting type 2 AGN displaying good evidence for a broad emission component in the Fe K band which may imply a unique viewing angle to the source, perhaps just grazing the edge of the torus. As such features are rare in type 2 AGN, it is important to assess its true reality. The best-quality data obtained to date also reveal a peak at 6.4 keV which is required when modelling the Suzaku spectrum and is consistent within the uncertainties between observations. As such, it may be conceivable that emission from both the inner regions of an ionized accretion disc and from distant, cold material may be contributing to the complex structure of the Fe K profile. However, no model currently offers a complete description of the spectrum since the current data are not of sufficient quality to robustly distinguish between
models. Consequently, better photon statistics (i.e. with the XMM–Newton EPIC-pn camera) and/or higher resolution spectra (e.g. with the microcalorimeter on board the upcoming Astro-H mission) are required to disentangle these components and precisely determine the nature of this intriguing Fe-line profile.

ACKNOWLEDGEMENTS

This research has made use of the NASA Astronomical Data System (ADS), the NASA Extragalactic Database (NED) and data obtained from the Suzaku satellite, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA). This paper is also based on observations obtained with XMM–Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). Additionally, this research has made use of the Tartarus (Version 3.1) data base, created by Paul O’Neill and Kirpal Nandra at Imperial College London and Jane Turner at NASA/GSFC. Tartarus is supported by funding from PPARC, and NASA grants NAG5-7385 and NAG5-7067. AL would like to acknowledge support from the UK STFC research council. We also wish to thank our anonymous referee for a careful and thorough review of the draft.

REFERENCES

Anders E., Ebihara M., 1982. Geochim. Cosmochim. Acta, 46, 2363
Anders E., Grevesse N., 1989. Geochim. Cosmochim. Acta, 53, 197
Antonucci R., 1993. ARA&A, 31, 473
Arnaud K. A., 1996, in Jacoby G. H., Barnes J., eds, ASP Conf. Ser. Vol. 101, Astronomical Data Analysis Software and Systems V. Astron. Soc. Pac., San Francisco, p. 17
Ballantyne D. R., Turner N. J., Young A. J. 2005. ApJ, 619, 1028
Bianchi S., Matt G., 2002. A&A, 387, 76
Bianchi S., La Franca F., Matt G., Guainazzi M., Jiménez-Bailón E., Longinotti A. L., Nicoletta M., Pentericci L., 2008. MNRAS, 389, 52
Bianchi S., Guainazzi M., Matt G., Fonseca Bonilla N., Ponti G., 2009. A&A, 495, 421
Boldt E., 1987. Phys. Rep., 146, 215
Carter D., 1984. Astron. Express, 1, 61
Churazov E. et al., 2007. A&A, 495, 421
Dickey J. M., Lockman F. J., 1990. ARA&A, 28, 215
de Grijp M. H. K., Miley G. K., Lub J., de Jong T., 1985. Nature, 314, 240
Dewangan G. C., Griffiths R. E., Schurch N. J., 2003. ApJ, 592, 52
Dickey J. M., Lockman F. J., 1990. ARA&A, 28, 215
Fabian A. C., Vaughan S., 2003. MNRAS, 341, 496
Fabian A. C., Rees M. J., Stella L., White N. E., 1989. MNRAS, 238, 729
Fabian A. C. et al., 2009. Nature, 459, 540
Fukazawa Y. et al., 2009. PASJ, 61, 17
Fukazawa Y. et al., 2011. ApJ, 727, 19
Gruber D. E., Matteson J. L., Peterson L. E., Jung G. V., 1999. ApJ, 520, 124
Guainazzi M., Bianchi S., Matt G., Dadina M., Kaastra J., Malzac J., Risaliti G., 2010. MNRAS, 406, 2013

Ishida M., Suzuki K., Someya K., 2007, PJX-ISAS-SUZAKU-MEMO-2007-11, 1
Ishisaki Y. et al., 2007. PASJ, 59, 113
Iwasawa K., Kunieda H., Tawara Y., Awaki H., Koyama K., Murayama T., Taniguchi Y., 1995. AJ, 110, 551
Iwasawa K., Fabian A. C., Mushotzky R. F., Brandt W. N., Awaki H., Kunieda H., 1996. MNRAS, 279, 837
Iwasawa K., Lee J. C., Young A. J., Reynolds C. S., Fabian A. C., 2004. MNRAS, 347, 411
Kalberla P. M. W., Burton W. B., Hartmann D., Arnal E. M., Bajaja E., Morras R., Pöppel W. G. L., 2005. A&A, 440, 775
Kallman T. R., Palmeri P., Bautista M. A., Mendoza C., Krolik J. H., 2004. ApJS, 155, 675
Kinkhabwala A. et al., 2002, ApJ, 575, 732
Kokubun M. et al., 2007. PASJ, 59, 53
Koyama K. et al., 2007. PASJ, 59, 23
Laor A., 1991. ApJ, 376, 90
Lobban A. P., Reeves J. N., Porquet D., Braito V., Markowitz A., Miller L., Turner T. J., 2010. MNRAS, 408, 551
Miller L., Turner T. J., Reeves J. N., George I. M., Porquet D., Nandra K., Dovciak M., 2006. A&A, 453, 13
Mitsuda K. et al., 2007. PASJ, 59, 1
Mocz P., Lee J. C., Iwasawa K., Canizares C. R., 2011. ApJ, 729, 30
Murphy K., Yaoqiao T., 2009, MNRAS, 397, 1549
Nandra K., Pounds K. A., 1994. MNRAS, 268, 405
Nandra K., O’Neill P. M., George I. M., Reeves J. N., 2007. MNRAS, 382, 194
Nayakshin S., Kazanas D., Kallman T. R., 2000. ApJ, 537, 833
Nowak M., 2005. Ap&SS, 300, 159
Page M., Soria R., Zane S., Wu K., Starling R. L. C., 2004. A&A, 422, 77
Patrick A. R., Reeves J. N., Porquet D., Markowitz A. G., Braito V., Lobban A. P., 2012. MNRAS, 426, 2522
Reeves J. N., Turner M. J. L., Pounds K. A., O’Brien P. T., Boller Th., Ferrando P., Kendziora E., Vercellone S., 2001. A&A, 365, 134
Reynolds C. S., Young A. J., Begelman M. C., Fabian A. C., 1999. ApJ, 514, 164
Ross R. R., Fabian A. C., 2005, 538, 211
Shu X. W., Yaoqiao T., Wang J. X., 2010a. ApJS, 187, 581
Shu X. W., Yaoqiao T., Murphy K. D., Braito V., Wang J. X., Zheng W., 2010b. ApJ, 713, 1256
Shu X. W., Yaoqiao T., Wang J. X., 2011. ApJ, 738, 147
Takahashi T. et al., 2007. PASJ, 59, 35
Tan Y., Wang J. X., Shu X. W., Zhou Y., 2012. ApJ, 747, 11
Tripathi S., Misra R., Dewangan G. C., Cheeran J., Abraham S., White N. E., 1999. ApJ, 514, 164
Turner T. J., 2010. MNRAS, 408, 551
Vaughan S., Uttley P., Pounds K. A., Nandra K., Strohmayer T. E., 2011. ApJ, 738, 147
Vaughan S., Turner T. J., Reeves J. N., George I. M., Porquet D., Nandra K., Dovciak M., 2006. A&A, 453, 13
Vignali C., 2004. ApJ, 600, 104
Wang J. X., Tripathi S., Misra R., Dewangan G. C., Cheeran J., Abraham S., Philip N. S., 2013. ApJ, 773, 130
Weiss A., 1995. MNRAS, 279, 837
Wisotzki L., 2003. Ap&SS, 292, 141
Xue H. B., 2014. ApJ, 785, 148
Yaqoob T., Murphy K., 2009. MNRAS, 397, 1549

This paper has been typeset from a T\TeX/\LaTeX\ file prepared by the author.