New method and uncertainty estimation for plate dimensions and surface measurements

Salah H. R. Ali1 and Jariya Buajarern2

1Engineering and Surface Metrology Dept, Precision Engineering Division, National Institute for Standards (NIS), PO Box 136, Giza (12211), Egypt
2Dimensional Metrology Department, National Institute of Metrology (NIMT), 3/4-5 Moo 3, Klong 5, Klong Luang, Pathumthani 12120, Thailand

1E-mail: SalahAli20@yahoo.com; Mobile: 00201120121545
2E-mail: jariya@nimt.or.th

Abstract. Dimensional and surface quality for tile plate manufacturing control is facing difficult engineering challenges. One of these challenges being that plates in large-scale mass production contain geometrically uneven surfaces. There is a traditional measurement method used to assess the tile plate dimensions and surface quality based on standard specifications: ISO-10545-2: 1995, EOS-3168-2: 2007 and TIS 2398-2:2008. A new measurement method of the dimensions and surface quality for ceramic oblong large-scale tile plate has been developed compared to the traditional method. The strategy of the proposed method is based on CMM straightness measurement strategy instead of the centre point in the traditional method. Expanded uncertainties budgets in the measurements of each method have been estimated in detail. The capability of accurate estimations of real actual results of centre of curvature (CC), centre of edge (CE), warpage (W) and edge crack defects parameters has been achieved according to standards. Moreover, the obtained results showed not only a more accurate method but also improved the quality of tile plate products significantly.

Keywords: CMM, straightness, tile plate, dimensions and surface quality; uncertainty.

1. Introduction
Advanced metrology techniques are became used in various fields of science and production engineering applications. There are two new basic approaches, the contact techniques and noncontact measuring techniques. These techniques include scanning electron microscopy (SEM), transmutation electron microscopy (TEM), computed tomography (CT), interferometric method and coordinate measuring machines (CMM) use in dimensional metrology [1]. Coordinate dimensional metrology is the key to global quality assurance systems of industrial engineering products. Quality control measurements performed to ensure quality of hard industrial products like ceramic tile plates help detection of some defected products due to various technical and human reasons [2]. Ceramic tile plates are subject to international and national standards assessed tests such as colour analysis, surface abrasion resistance, thermal expansion, moisture expansion, friction coefficient and wear, breaking

1 To whom any correspondence should be addressed.
strength; dimensions and surface quality to reveal the durability defect. Furthermore, dimensional and surface quality verification is the main standard test and also the purpose of this investigation. However, the amazing progress in the production technology has allowed a significant decrease of the deviation in the dimensional and surface quality. Accordingly, the measurement methods of dimension and geometrical surface of products should be reviewed using advanced measurement technique such as CMM. It is a custom measurement tool using a point laser for almost plane surfaces of objects [3]. Therefore, there is limited number of studies in this area. While, some publications are carried out using image processing, vision inspection system, morphological techniques and texture analysis [4-9]. Quality inspection of ceramic tile using statistical techniques and neural networks approach is also studied [10]. Most previous research work have been done to assess surface functionalization of industrial ceramic tile plates as surface micromechanical an microstructural using SEM and TEM micrographs to improve the properties of scratch and wear resistance [11-13]. Assessing the environmental impact on production of ceramic tile is also studied [13-14]. While, the American National Institute of Standards and Technology (NIST) developed a sustainability resource guide that compiled the information on the environmental impact of various products, including ceramic tiles [15]. On the other hand, the ability to measure precisely and consistently is of fundamental importance in modern technology. The reliability and safety of new devices and systems are the basis of equal global manufacturing requirements. It must be noted that the detection of defect in dimensions and surface quality is an important area of tiles inspection include measurements, calculation and characterization that are often not available in factories. The dimensions and surface quality test of the ceramic tiles represented in the curvatures of the diagonals, edges, warpages and cracks are essential components of the inspection and evaluation in order to achieve the main purposes such as safe surface use [16-19]. One of the most important functions of the NMI’s, the dissemination of the reliable reference data set which can be used as a guide for evaluating the measurement skill and reliability of test results in industry as well as in commercial production and design process. Thus, geometrical form measurements such as straightness form of products surfaces are basic requirements in dimensional metrology for precise manufacturing engineering. The main of this work is to introduce a new developed measurement method, assist and compare the validity of two different methods (traditional and developed) based on fast tactile 2D metrology. The new measurement method is developed to support the quality assurance in the manufacturing of tiles. Moreover, the possibilities of accurate inspection system to reveal four major problems namely, centre of curvature (CC), centre of edge (CE), warpage (W) parameters and edge crack defects have become assure achieved. The budgets of expanded uncertainty with the measurement results of each method have been estimated accurately. The capability of dimensions and surface quality measurement of tiles has been discussed in details as well. Thus, the proposed measurement method could be able to assist the tiles of different scales to produce not only better accurate method compared to other methods [6-9] but also permit improved manufacturing quality of ceramic tile products.

2. CMM Accuracy Verification
Stationary CMM in the engineering dimensional metrology laboratory is fixed and verified by the manufacture (ZEISS Co., Germany). CMM machine consists essentially of a probe supported on X, Y, and Z coordinates and capable to determine spatial coordinates on a workpiece surface [20]. The procedures for measurement using CMM includes: verification of the probing system, defining datum(s) on the tiles surfaces, performing measurement(s), computing the required relative dimensions from measurements made previously and assessing the tiles performance with the specifications. Intermediate verification guarantee by measuring standards reference sphere and comparing the measured value with the specified measurement uncertainty. The environmental conditions of testing room have been adjusted in the range of standard specifications [20]. Laboratory room temperature was set at 20±1 °C and relative humidity at 50±3%, which are suitable for the
CMM operation. Table 1 comprises the specifications of the CMM machine set-up and strategy of measurements.

CMM strategy parameters	Specifications
Master probe radius	3.9996 mm
Reference sphere radius	14.9942 mm with $S = 0.0001$ mm
Used long probe radius	4.0000 mm with $S = 0.0002$ mm
Machine travelling speed	20 mm/s
Probe scanning speed	2 mm/s
STR scanning points	step width = 3 mm
Fitting technique	LSQ

The maximum permissible error (MPE_E) of CMM machine can be moderated according to the ISO 10360-4 using the following equation, where L is the measured length in mm [21].

$$MPE_E = \pm [0.9 \mu m + (L / 350)] \mu m$$

3. Traditional measurement method

The traditional method has standard procedure steps using dial gauges in the tile measurement. While, in this research will apply the standard procedures using CMM as alternative technique to avoid the manual errors and increase the speed in measurements. The curvatures of the diagonal, edge, and warpage for the ceramic tiles are measured using suitable measurement strategy of CMM based on the ISO: 10545-2: 1995 [16], EOS: 3168-2: 2007 [17] and TIS 2398-2: 2008 [19]. This traditional method is designed as explained in Fig. 1.

Figure 1. The position schematic of the centre points Δs, Δc; Δw and 3 points plane.

D is the length of diagonal for oblong tile. L is the length of the edge for oblong tile. ΔC is the measured vertical difference distance between the centre point of diagonal “D” to the plane of tile. ΔS is the measured vertical difference distance between the centre point of edge “L” to the plane of tile. ΔW is the measured vertical difference distance between the centre point of warpage to the plane of tile. CC is the departure of the centre of one edge of a tile from the plane in which three of the four corner lie. EC is the departure of the centre of a tile from the plane in which three of the four corners lie. W is the departure of the fourth corner of the tile from the plane in which the other corner lie. As shown in Fig. 1, the plane presented in green colour is defined by measuring three points from the four points of the tile surface.
3.1. Experimental results of traditional method
The CMM machine can identify and measure the appropriate plane for three corners and the centre point for each of the diagonal, edge and warpage are identified as obtainable in the ISO-10545-2, 1995 [16] and EOS-3168-2, 2007 [17]. It is then potential to deduce the values of each of ΔC, ΔS and ΔW. Then, can specifying the maximum and average values of measurements for all specimens as illustrated in Tables 2-4.

3.1.1. The first specimen
The measurement results of the traditional method are scheduled in Table 2 in addition to measure the values of both diagonal length “D” and edge length “L” of tiles subject of the study in order to calculate the values of CC, EC and W. The results of length measurements for both D and L are 615.2523 mm and 525.9162 mm respectively. The collection of chosen data can use for the construction of database at NIS and NMIT considering the budget to the industry and available data sources can chosen for building local dataset.

Test no.	Measured values	Specific calculated parameters, %				
	ΔC, mm	ΔS, mm	ΔW, mm	CC=ΔC/D	EC=ΔS/L	W=ΔW/D
1	0.6244	0.6447	0.0012	0.11	0.13	0.05
2	0.6254	0.6462	0.0030			
3	0.6262	0.6463	0.0024			
4	0.6257	0.6467	0.0022			
5	0.6262	0.6473	0.0027			
Average	0.6252	0.6464	0.0023			
Maximum	0.6262	0.6473	0.0030			

3.1.2. The second specimen
The results of measurements of the second specimen using traditional method are scheduled in Table 3. The measured values for both D and L lengths are of 614.1352 mm and 525.2716 mm respectively.

Test no.	Measured values	Specific calculated parameters, %				
	ΔC, mm	ΔS, mm	ΔW, mm	CC=ΔC/D	EC=ΔS/L	W=ΔW/D
1	0.8716	0.6038	0.0390	0.15	0.12	0.007
2	0.8787	0.6116	0.0381			
3	0.8684	0.6010	0.0257			
4	0.8694	0.6017	0.0261			
5	0.8696	0.6017	0.0259			
Average	0.8715	0.6040	0.0310			
Maximum	0.8787	0.6116	0.0390			

3.1.3. The third specimen
The measurement results of this specimen using traditional method are tabulated in Table 4. The results for both D and L lengths measurements are of 613.4891 mm and 524.4620 mm respectively for the third sample. This assessment depends on the estimation of the percentage resulting from dividing ΔC, ΔS and ΔW on the length for each of the D or L to give relative specific values for each: CC, EC and W parameters as recorded above in the results. The results predicted that there is relatively little variation between their values for all measured specimens. Thus, in these cases the
specimens have technical acceptance in term of dimensions and surface quality using the traditional method.

3.2. Estimation of uncertainty budget

The uncertainties associated with the measurements results are estimated according to GUM [22]. The statistical analyses of type A uncertainty of centre point’s measurements for the diagonal, edges, and width warpages of the tiles specimens are calculated according to the standard traditional method, the results are presented in Table 5. Where \(S_D \) is the experimental standard deviation of five repeated measurements, and \(u_c \) is the combined uncertainty due to measurement repeatability \((u_c = S_D / \sqrt{n}) \), where \(n \) is the number of repeated tests for each target measurement [23].

The type B uncertainty consists of the accuracy of CMM results, MPE, MPE\(_P\) of machine and speed of scanning probe respectively. The expanded uncertainty is \(U_{exp} = k.u_c \) [23], where \(k \) is the coverage factor, which equals to 2 corresponding to 95% confidence level in accordance with the ISO guide to the expression of uncertainty in measurements [23]. Table 6 illustrates the budget of estimated values of the expanded uncertainties for measurements in details. The measurement uncertainties of the first, second and third specimens are 0.98, 3.20 and 3.80\(\mu m \) respectively.

Table 4. The classification results of tile third specimen

Test no.	\(\Delta C \), mm	\(\Delta S \), mm	\(\Delta W \), mm
1	0.6608	0.5723	0.0031
2	0.6511	0.5608	0.0220
3	0.6522	0.5600	0.0225
4	0.6529	0.5606	0.0213
5	0.6529	0.5605	0.0218
Average	0.6540	0.5628	0.0181
Maximum	0.6608	0.5723	0.0225

Table 5. The statistical results of tiles specimens

Specimen	Values	\(\Delta C \), mm	\(\Delta S \), mm	\(\Delta W \), mm
First	\(S_D \)	0.0007	0.0011	0.0007
	\(u_c \)	0.0003	0.0005	0.0003
Second	\(S_D \)	0.0042	0.0044	0.0069
	\(u_c \)	0.0019	0.0020	0.0031
Third	\(S_D \)	0.0030	0.0053	0.0084
	\(u_c \)	0.0017	0.0024	0.0038

Test Specimen	Sources of uncertainty	Uncertainty, \(u_c \), \(\mu m \)	Assumed distribution	Standard uncertainty, \(\mu m \)	\(C \)				
	\(\Delta C \)	\(\Delta S \)	\(\Delta W \)		\(\Delta C \)	\(\Delta S \)	\(\Delta W \)		
First	Repeatability	0.3	0.5	0.3	Normal	0.15	0.25	0.15	1
	Resolution	0.05			Rectangular	0.029			
	MPE	0.9+(L/350)			Normal\((based\ on\ k=3) \)	0.30			
	MPE\(_P\)	0.5			Rectangular	0.29			
Combined Standards Uncertainty, $u_c = \pm 0.49 \ \mu m$
Expanded Uncertainty $U_{exp} = \pm 0.98 \ \mu m$

	Repeatability	Resolution	MPE	MPEp	Combined Standards Uncertainty, $u_c = \pm 1.6 \ \mu m$	Expanded Uncertainty $U_{exp} = \pm 3.20 \ \mu m$
Second	1.9	0.05	0.9+ (L/350)	0.5		
	2.0		Normal	Rectangular	0.029	1
	3.1					
	Normal	0.95	1.0	1.55	1	
Third	1.7	0.05	0.9+ (L/350)	0.5		
	2.4		Normal	Rectangular	0.029	1
	3.8					
	Normal	0.85	1.20	1.90	1	

where u_c is the repeatability in measurement and C is the sensitivity of measurements.

4. New Measurement Method
The new method adopted to select the actual highest values of ΔC, ΔS and ΔW using straightness (STR) form measurements of all diagonals, edges and widths lengths, so that we can verify the credibility and accuracy of the result performance. The proposed measurement method has been designed in more details as shown in Fig. 2.

Figure 2. The positions of STR measurement for D, D_1, L, L_1, M; M_1 and 3 points plane

Where, D and D_1 are the diagonals of oblong tile. L and L_1 are the two length edges of oblong tile. M and M_1 are the two widths of oblong tile. ΔC is the achieve value of maximum centre curvature of oblong tile. ΔS is the achieved value of maximum edge curvature of oblong tile. ΔW is the achieve value of maximum warpage of oblong tile. Calculated value of CC parameter represents the maximum curvature expressed as a percentage of the length of diagonal “D” of tile. EC parameter indicates the maximum edge curvature expressed as a percentage of the edge length “L” of oblong tile. While the W parameter represents the maximum warpage expressed as a percentage of the length of diagonal “D” for oblong tile.
4.1. Experimental results of new measurement method

It is possible to identify and measure the appropriate plane of three points using CMM machine made as indicated in ISO 10545-2. However, the new here is that there was potential to the replacement of the selected point for each of the diagonal, edge and warpage by measuring the straightness forms of each of the diagonal, edge and width for warpage extension lines as presented in Figs 3-5. It is then possible to obtain the actual values of ΔC, ΔS and ΔW. The maximum and the average values of straightness measurement for each specimen are presented in Tables 7-9.

4.1.1. The first specimen

Figure 3 shows the sample behaviour of straightness profiles of one from five measured results along the length of the diagonals D and D_1, length of the edges L and L_1; length of the width M and M_1 of the first ceramic tiles specimen. The results of new measurement method showed that the maximum values for the STR is not at the centre as shown in Fig. 3. While the total results of the first specimen using new measurement method are presented in Table 7 in order to calculate the relative specific values of CC, EC and W parameters.

Figure 3. Sample result of STR for D&D_1, L&L_1; M&M_1 lines for tile first specimen using new method
Table 7. The classification results of tile first specimen using new measurement method in mm

Test no.	Measured values of ΔC	Measured values of ΔS	Measured values of ΔW
	@ D @ D1 @ L @ L1 @ M @ M1		
1	0.7321 0.8357 0.7713 0.8275 0.2141 0.3453		
2	0.7318 0.8359 0.7715 0.8272 0.2140 0.3456		
3	0.7322 0.8361 0.7715 0.8270 0.2139 0.3458		
4	0.7319 0.8359 0.7714 0.8267 0.2138 0.3462		
5	0.7320 0.8356 0.7706 0.8261 0.2137 0.3461		
Average	0.7320 0.8358 0.7713 0.8269 0.2139 0.3458		
Maximum	0.8361 0.8275 0.3462		

Specific calculated parameters, %

CC=ΔC/D	EC=ΔS/L	W=ΔW/D
0.14	0.16	0.06

4.1.2. The second specimen

Fig. 4 shows the behaviour of straightness form samples of the measured result along the length of the diagonals D and D1, length of the edges L and L1; length of the width M and M1 of this specimen from ceramic tiles. The sample profiles show that the maximum values of the STR form are normally not in the middle of lines. While, the total result of the second specimen using the new measurement method that presented in Table 8 including the calculated percentage specific values of parameters CC, EC and W.

![Graph showing STR profiles of different lines](image)

Figure 4. Result of STR form for D&D1, L&L1; M&M1 lines of second specimen in the new method
Table 8. The classification results of tile second sample using new measurement method in mm

Test no.	Measured values of ΔC	Measured values of ΔS	Measured values of ΔW			
	@ D	@ D₁	@ L	@ L₁	@ M	@ M₁
1	0.7814	0.8375	0.6773	0.9625	0.1453	0.2481
2	0.7812	0.8377	0.6767	0.9625	0.1451	0.2478
3	0.7812	0.8377	0.6771	0.9626	0.1454	0.2480
4	0.7808	0.8377	0.6772	0.9623	0.1453	0.2478
5	0.7805	0.8374	0.6768	0.9625	0.1453	0.2477
Average	0.7810	0.8376	0.6770	0.9625	0.1453	0.2479
Maximum	0.8377	0.9626				0.2481

Specific calculated parameters, %

CC = ΔC/D	EC = ΔS/L	W = ΔW/D
0.14	0.18	0.04

4.1.3. The third specimen

Figure 5 represents straightness profiles of the measured results along the length of the diagonals D and D₁, length of the edges L and L₁; length of the width M and M₁ of this specimen from ceramic tiles. The results of the new measurement method show that the maximum values for the STR form are not in the centre of the line. The results of the third specimen using the new measurement method are presented in Table 9 to be used for calculation the relative specific values of CC, EC and W parameters.

Figure 5. Result of STR form for D&D₁, L&L₁; M&M₁ lines for third specimen using new method
Test no.	Measured values of ΔC, mm	Measured values of ΔS, mm	Measured values of ΔW, mm
	@ D	@ D_1	@ L
1	0.7413	0.6448	0.6227
2	0.7403	0.6450	0.6224
3	0.7399	0.6445	0.6212
4	0.7400	0.6448	0.6212
5	0.7392	0.6449	0.6208
Average	0.7401	0.6448	0.6217
Maximum	0.7413	0.6896	

Specific calculated parameters, %

- $CC = \frac{\Delta C}{D}$
- $EC = \frac{\Delta S}{L}$
- $W = \frac{\Delta W}{D}$

- 0.12
- 0.13
- 0.03

It has become clear that the rate ΔC, ΔS and ΔW to the length of D or L that gives a final relative percentage for CC, EC and W parameters are more accurate than those obtained from the traditional method. While the performance of characterization of results indicate that there is also relatively little variation between these values, but in all cases, the tile specimens are technically acceptable in terms of dimensions and surface quality using the new method. Moreover, the straightness measurement apriores continuous clear lines without cut, this ensures that there is no edge crack defects in measured tiles, Figs 3-5. These confirm can not be achieved when using conventional measurement method without using the new method.

4.2. Uncertainty budget of the new method

The statistical analyses part of uncertainty (type A) of centre point’s measurements for the diagonal, edges, and width warpages of the tiles specimens are evaluated and presented in Table 10. Table 11 gives the estimated values of the expanded uncertainties of the proposed method. The estimated values of expanded uncertainty (U_{exp}) of first, second and third measured samples using the new method are 0.86, 0.86 and 0.92 μm respectively.

Table 10. The statistical results of tiles specimens using new method

Specimen	Values	ΔC, mm	ΔS, mm	ΔW, mm
First	S_D	0.0002	0.0005	0.0004
	u_c	0.0001	0.0002	0.0002
Second	S_D	0.0004	0.0001	0.0001
	u_c	0.0002	0.0001	0.00005
Third	S_D	0.0008	0.0008	0.0001
	u_c	0.0003	0.0004	0.0001
Table 11. Estimation of uncertainty budget in straightness deviation for tiles measurement

Test Specimen	Sources of Uncertainty	Uncertainty, u_c	Assumed Distribution	Standard Uncertainty, $u_{C, \mu}$	ΔC, μm	ΔS, μm	ΔW, μm
First	Repeatability	0.10 0.20 0.20	Normal	0.05 0.10 0.10 1			
	Resolution	0.05	Rectangular	0.029			
	MPE	$0.9 + (L/350)$	Normal (based on $k=3$)	0.30			
	MPEP	0.5	Rectangular	0.29			
	Combined Standards Uncertainty, $u_c = \pm 0.43 \mu m$						
	Expanded Uncertainty $U_{exp} = \pm 0.86 \mu m$						
Second	Repeatability	0.20 0.10 0.05	Normal	0.10 0.05 0.03 1			
	Resolution	0.05	Rectangular	0.029			
	MPE	$0.9 + (L/350)$	Normal (based on $k=3$)	0.30			
	MPEP	0.5	Rectangular	0.29			
	Combined Standards Uncertainty, $u_c = \pm 0.43 \mu m$						
	Expanded Uncertainty $U_{exp} = \pm 0.86 \mu m$						
Third	Repeatability	0.30 0.40 0.10	Normal	0.15 0.20 0.05 1			
	Resolution	0.05	Rectangular	0.029			
	MPE	$0.9 + (L/350)$	Normal (based on $k=3$)	0.30			
	MPEP	0.5	Rectangular	0.29			
	Combined Standards Uncertainty, $u_c = \pm 0.46 \mu m$						
	Expanded Uncertainty $U_{exp} = \pm 0.92 \mu m$						

5. Comparison between traditional and new methods

Despite the success of the acceptance for tile specimens after the implementation traditional and proposed methods, but it still shows that there is clear difference in the values of the results of the specific parameters CC, EC and W. This is because the amount of difference of the measured ΔW parameter was very large, it reaches a value more than ten times, while the achieved different in the measured values of the ΔC and ΔS parameters was up to 10% in the new method compared to the old method. Therefore, the values of the ratios CC and EC and W parameters in the new measurement method has achieved a significant increase than the traditional method in measurement. Fig. 6 clearly shows that the maximum value of ΔS is equal to 0.6116 mm using the traditional method rather than the value of 0.9626 mm using the new method. Thus, the new measurement method showed the largest real value to the highest point and this was not achievable when using the old method. This means, applying the new method using straightness measurements, the actual characteristics of surface can be known.

Figure 6. Measurement results of a) traditional method; b) new obtained method
Figure 7 indicates the deviation range in the percentage values of specific parameters between traditional and new measurement methods. It was found that the average percentage values of CC, EC and W parameters are the biggest when we use the new measurement method. This positive difference resulted due to the used proposed method in measuring values of ΔC, ΔS and ΔW and able to reflect the accurately status of ceramic tile surfaces. In additions to the ability of the proposed method is more accurate than the traditional one and the reason is due to the reach of the highest point on the lengths of diagonal, edge and warpage after the use of more precise measurements. Moreover, it can clear that the CMM machine has highly proved in the measurement of oblong large-scale ceramic tiles than the vision inspection methods [6-9].

![Figure 7](image.png)

Figure 7. Results of important specific parameters using traditional method and new method

On the other hand, using analytical comparison between the new and traditional measurement methods in terms of average values of the parameters and the uncertainty associated with measuring the repeated five times of three samples of tiles, it can be seen some observations. It was found that the accuracy of the new measurement method to old method up to more than 12% in the measurements of first tile sample, up to more than 73% in the second tile and up to about 76% in the measurements of the third tile respectively. The observed maximum value of expanded uncertainty of the traditional method was larger 4 times than the value derived using the new measurement method, Fig. 8. This means that the value of the associated uncertainty in the results of the new measurement method outweighs the traditional way in all circumstances.

![Figure 8](image.png)

Figure 8. Expanded uncertainty for traditional and new obtained methods
Eventually, the estimation of specific parameters in this work reflects confidence in the high credibility of the new measurement method as shown obviously in Figs 7 and 8. Thus, it can say that the method of new measurement is a closer to reality and very much more accurate than the traditional measurement method. In addition, a comparison to illustrate the extent of this improvement in the accuracy of measurement using the new method compared to the traditional way for each tile separately. Moreover, the new measurement method are able to prove the capability of computer numerical control devices as a high efficacy of coordinate measuring machines for evaluation the tile dimensions and surface quality with high accuracy.

6. Concussion
This paper contains analyses and discusses comparison between the traditional method (ISO-10545-2:1995, EOS-3168-2:2007 and TIS 2398-2:2008) and the proposed measurement method that are accepted for quantifying dimensions and surface quality of large-scale ceramic tiles. A number of experimental measurements have been carried out using new strategically method on CMM. The discussions highlighted many differences in the measured values obtained by the two measurement methods. This is very important considering that the suggested measurement method is suitable for use to define the maximum centre curvature (CC), the maximum edge curvature (EC), the maximum warpage (W) and the edge crack defects specifications. Based on the experimental measurements, a relationship between the parameters obtained by the CC, EC and W has been achieved. The presented results can be useful to define the changes in the dimensions and surface of large-scale ceramic tiles specifications. This is due to the confirmed of a new measurement test method as follows:

1- The capability of the new method in the straightness form quality of large-scale ceramic tiles, CC, CE, W and crack defect can be characterized in high accuracy. The actual values of tile dimensions and surface can be measured.
2- Not always the maximum curvature point is at the centre of diagonal, edge or width length as defined in the traditional method.
3- The CMM machine has excellent capability to measure the dimensions and surface quality of tiles with more creditability and better accuracy than the vision inspection methods.
4- The new method procedure is suitable for ceramic, porcelain or any type of tiles and plates measurement.
5- The measurement uncertainty estimated proved the accuracy and preciseness of the proposed measurement method compared to traditional method.

Consequently, the proposed method has excellent capability to assist any scale of tiles and plates, not only has better accuracy and precision, but also permit improvement of the plate quality productions.

7. References
[1] Salah H.R. Ali, 2012. Advanced Nanomeasuring Techniques for Surface Characterization. Int. Scholarly Research Network, ISRN Optics Journal, Vol. 2012, pp. 1-23, Article ID 859353.
[2] H. Elbehery, A. Hefnawy and M. Elewa, 2005. Surface Defects Detection for Ceramic Tiles using Image Processing and Morphological Techniques, World Academy of Science, Engineering and Technology
[3] G. Salemi, V. Achilli, M. Ferrarese and G Boatto, 2008. High Resolution Morphometric Reconstruction of Multimaterial Tiles of an Ancient Mosaic, The Int. Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part b5, pp.303-307.
[4] L. Blunt and L. T. Brown, 2005. Surface Texture Analysis of Ceramic Tiles Treated with Anti-Slip, Report Ref: CPT 220305.
[5] M. Mansoory, H. Tajik, G. Mohamadi, and M. Pashna, Dec. 2008. Edge Defect Detection in Ceramic Tile Based on Boundary Analysis using Fuzzy Thresholding and Radon Transform, Int. Symposium in Signal Processing and Information Technology (ISSPIT), IEEE, pp.58-62.
[6] Zeljko Hocenski, K. Sobol and R. Mijakovi, 2010. LED Panel Illumination Design of a Control System for Visual Inspection of Ceramic Tiles, Int. Symposium in Industrial Electronics (ISIE), IEEE, pp.1663-1667.

[7] J. He, L. Shi, J. Xiao, J. Cheng and Y. Zhu, 2010. Size Detection of Firebricks based on Machine Vision Technology, Int. Conference on Measuring Technology and Mechatronics Automation (ICMTMA), pp.394-397.

[8] Ehsan Golkar, Ahmed Patel, Leila Yazdi and Anton Satria Prabuwono, 2011. Ceramic Tile Border Defect Detection Algorithms in Automated Visual Inspection System, Journal of American Science, Vol.7 (6), pp.542-550.

[9] H. M. Elbehiery, A. A. Hefnawy and M. T. Elewa, 2005. Visual Inspection for Fired Ceramic Tile’s Surface Defects using Wavelet Analysis, Int. Journal on Graphics, Vision, and Image Processing (GVIP), ICGST, pp.67-74.

[10] Zeljko Hocenski and Emmanuel Karlo Nyarko, 2002. Ceramic Tiles Quality Inspection using Statistical Methods and Neural Networks Approach, The World Scientific and Eng. Academy and Society, (WSEAS), pp. 921-926.

[11] Federica Bondioli, Tiziano Manfredini, Michele Giorgi and Graziano Vignali, January 2010. Functionalization of ceramic tile surface by soluble salts addition: Part I. Titanium and silver addition, Journal of the European Ceramic Society, Vol. 30, Issue 1, pp. 11-16.

[12] Federica Bondioli, Martina Dinelli, Roberto Giovanardi and Michele Giorgi, July 2010. Functionalization of ceramic tile surface by soluble salts addition: Part II. Titanium and silver addition, Journal of the European Ceramic Society, Vol. 30, Issue 9, pp. 1873-1878.

[13] Teresa P. Silva, Maria-Ondina Figueiredo, Maria-Alexandra Barreiros and Maria-Isabel Prudêncio, 2013. Decorative 18th Century Blue-and-White Portuguese Tile Panels: A Type-Case of Environmental Degradation, Hindawi Publishing Corporation, Journal of Materials, Volume 2013, Article ID 972018, pp.1-6.

[14] Nachawit Tikul and Panya Srichandr, 2010. Assessing the environmental impact of ceramic tile production in Thailand, Journal of the Ceramic Society of Japan, Vol.10, pp. 887-894.

[15] Mary A. Curran, Jonathan G. Overly, P. Hofstetter, R. Muller and Barbara C. Lippiatt, 2002. Building for Environmental and Economic Sustainability Peer Review Report. National Institute of Standards and Technology (NIST), NISTIR 6865, BEES 2.0, USA.

[16] ISO-10545, Part 2: 1995. Determination of Dimensions and Surface Qualities of Ceramic Tile.

[17] EOS-3168, Part 2: 2007. Determination of Dimensions and Surface Qualities of Ceramic Tiles, Egyptian Organization of Standards and Quality.

[18] ASTM-C485: 2009. Standard Test Method for Measuring Warpage of Ceramic Tile.

[19] TIS 2398, Part 2: 2008. Determination of Dimensions and Surface Qualities of Ceramic Tiles, Thai Industrial Standards Institute, Thailand.

[20] David Flack, July 2001, UK. Measurement Good Practice Guide No. 42, CMM Verification, National Physical Laboratory, ISSN: 1368-6550.

[21] ISO-10360, Part 4: 2000. Geometrical Product Specifications (GPS) - Acceptance and Reverification Tests for Coordinate Measuring Machines (CMM), CMMs used is Scanning Measuring Mode.

[22] ISO/IEC-98, Part 3, 2008. Uncertainty of measurement -- Part 3: Guide to the expression of uncertainty in measurement (GUM:1995).

[23] Keith Birch, March 2003. Measurement Good Practice No. 36: Estimating Uncertainties in Testing, an Intermediate Guide to Estimating and Reporting Uncertainty of Measurement in Testing, British Measurement and Testing Association, NPL, UK.