THE SECOND GAP ON COMPLETE SELF-SHRINKERS

QING-MING CHENG, GUOXIN WEI AND WATARU YANO

Abstract. In this paper, we study complete self-shrinkers in Euclidean space and prove that an n-dimensional complete self-shrinker in Euclidean space \mathbb{R}^{n+1} is isometric to either \mathbb{R}^n, $S^n(\sqrt{n})$, or $S^k(\sqrt{k}) \times \mathbb{R}^{n-k}$, $1 \leq k \leq n-1$, if the squared norm S of the second fundamental form, f_3 are constant and S satisfies $S < 1.83379$. We should remark that the condition of polynomial volume growth is not assumed.

1. Introduction

Let $X : M \to \mathbb{R}^{n+1}$ be a smooth n-dimensional immersed hypersurface in the $(n + 1)$-dimensional Euclidean space \mathbb{R}^{n+1}. One calls an immersed hypersurface $X : M \to \mathbb{R}^{n+1}$ a self-shrinker if it satisfies:

$$H = -X^\perp,$$

where H denotes the mean curvature vector of M, X^\perp denotes the orthogonal projection of X onto the normal bundle of M.

It is well known that Huisken [12] [13] and Colding and Minicozzi [8] have proved that if M is an n-dimensional complete embedded self-shrinker in \mathbb{R}^{n+1} with $H \geq 0$ and with polynomial volume growth, then M is isometric to either the hyperplane \mathbb{R}^n, the round sphere $S^n(\sqrt{n})$, or a cylinder $S^m(\sqrt{m}) \times \mathbb{R}^{n-m}$, $1 \leq m \leq n - 1$. For $n = 1$, see Abresch and Langer [1].

Remark 1.1. As one knows that self-shrinkers play an important role in the study of the mean curvature flow because they describe all possible blow up at a given singularity of a mean curvature flow.

On the other hand, Le and Sesum [14] and Cao and Li [2] have proved that if M is an n-dimensional complete self-shrinker with polynomial volume growth and $S \leq 1$ in Euclidean space \mathbb{R}^{n+1}, then M is isometric to either the hyperplane \mathbb{R}^n, the round sphere $S^n(\sqrt{n})$, or a cylinder $S^m(\sqrt{m}) \times \mathbb{R}^{n-m}$, $1 \leq m \leq n - 1$. Ding and Xin [9] have studied the second gap on the squared norm of the second fundamental form and they have proved that if M is an n-dimensional complete self-shrinker with polynomial volume growth in Euclidean space \mathbb{R}^{n+1}, there exists a positive number $\delta = 0.022$ such that if $1 \leq S \leq 1 + 0.022$, then $S = 1$. Furthermore, Cheng and Wei [6] have proved

2001 Mathematics Subject Classification: 53C44, 53C42.

Key words and phrases: the second fundamental form, self-shrinkers and mean curvature flow.

The first author was partially supported by JSPS Grant-in-Aid for Scientific Research (B): No.16H03937. The second author was partly supported by grant No. 11771154 of NSFC, Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2018), Guangdong Natural Science Foundation Grant No.2019A1515011451.
Theorem 1.1. Let \(X : M \to \mathbb{R}^{n+1} \) be an \(n \)-dimensional complete self-shrinker with polynomial volume growth in \(\mathbb{R}^{n+1} \). If the squared norm \(S \) of the second fundamental form is constant and satisfies
\[
S \leq 1 + \frac{3}{7},
\]
then \(X : M \to \mathbb{R}^{n+1} \) is isometric to one of the following:

1. \(\mathbb{R}^n \),
2. a cylinder \(S^k(\sqrt{k}) \times \mathbb{R}^{n-k} \),
3. the round sphere \(S^n(\sqrt{n}) \).

In [4], Cheng and Ogata have obtained the following results (cf. Ding and Xin [9]).

Theorem 1.2. Let \(X : M \to \mathbb{R}^3 \) be a 2-dimensional complete self-shrinker in \(\mathbb{R}^3 \). If the squared norm \(S \) of the second fundamental form is constant, then \(X : M \to \mathbb{R}^3 \) is isometric to one of the following:

1. \(\mathbb{R}^2 \),
2. a cylinder \(S^1(1) \times \mathbb{R} \),
3. the round sphere \(S^2(\sqrt{2}) \).

The following conjecture is known:

Conjecture. Let \(X : M \to \mathbb{R}^{n+1} \) be an \(n \)-dimensional complete self-shrinker in \(\mathbb{R}^{n+1} \). If the squared norm \(S \) of the second fundamental form is constant, then \(X : M \to \mathbb{R}^{n+1} \) is isometric to one of the following:

1. \(\mathbb{R}^n \),
2. a cylinder \(S^k(\sqrt{k}) \times \mathbb{R}^{n-k} \),
3. the round sphere \(S^n(\sqrt{n}) \).

Remark 1.2. According to the result of Cheng and Ogata [4], this conjecture has been solved for \(n = 2 \). Recently, Cheng, Li and Wei [3] have solved this conjecture for \(n = 3 \) under the condition that \(f_4 \) is constant by making use of the generalized maximum principle due to Cheng and Peng [5].

For general \(n \), since this problem is too difficult, one can consider the special case:

Problem. Let \(X : M \to \mathbb{R}^{n+1} \) be an \(n \)-dimensional complete self-shrinker in \(\mathbb{R}^{n+1} \). If the squared norm \(S \) of the second fundamental form is constant, then \(X : M \to \mathbb{R}^{n+1} \) is isometric to one of the following:

1. \(\mathbb{R}^n \),
2. a cylinder \(S^k(\sqrt{k}) \times \mathbb{R}^{n-k} \),
3. the round sphere \(S^n(\sqrt{n}) \),
4. \(S \geq 2 \).

In this paper, we prove the following:

Theorem 1.3. Let \(X : M \to \mathbb{R}^{n+1} \) be an \(n \)-dimensional complete self-shrinker in \(\mathbb{R}^{n+1} \). If the squared norm \(S \) of the second fundamental form and \(f_3 \) are constants and \(S \) satisfies
\[
S \leq 1.83379,
\]
then M is isometric to one of the following:
(1) \mathbb{R}^n,
(2) a cylinder $S^k(\sqrt{k}) \times \mathbb{R}^{n-k}$,
(3) the round sphere $S^n(\sqrt{n})$,
where $f_3 = \sum_{j=1}^n \lambda_j^3$ and λ_j’s are principal curvatures of $X : M \to \mathbb{R}^{n+1}$.

Remark 1.3. In our theorem 1.3, we do not assume that complete self-shrinkers $X : M \to \mathbb{R}^{n+1}$ have polynomial volume growth and it is known that there are many complete self-shrinkers without polynomial volume growth.

2. Preliminaries

In this section, we give some notations and formulas. Let $X : M \to \mathbb{R}^{n+1}$ be an n-dimensional self-shrinker in \mathbb{R}^{n+1}. Let $\{e_1, \ldots, e_n, e_{n+1}\}$ be a local orthonormal basis along M with dual coframe $\{\omega_1, \ldots, \omega_n, \omega_{n+1}\}$, such that $\{e_1, \ldots, e_n\}$ is a local orthonormal basis of M and e_{n+1} is normal to M. Then we have

$$\omega_{n+1} = 0, \quad \omega_{in+1} = \sum_{j=1}^n h_{ij} \omega_j, \quad h_{ij} = h_{ji},$$

where h_{ij} denotes the component of the second fundamental form of M. $H = \sum_{j=1}^n h_{jj} e_{n+1}$ is the mean curvature vector field, $|H| = \sum_{j=1}^n h_{jj}$ is the mean curvature and $II = \sum_{i,j} h_{ij} \omega_i \otimes \omega_j e_{n+1}$ is the second fundamental form of M. The Gauss equations and Codazzi equations are given by

$$R_{ijkl} = h_{ik} h_{jl} - h_{il} h_{jk}, \quad (2.1)$$

$$h_{ijk} = h_{ikj}, \quad (2.2)$$

where R_{ijkl} is the component of curvature tensor, the covariant derivative of h_{ij} is defined by

$$\sum_{k=1}^n h_{ijk} \omega_k = dh_{ij} + \sum_{k=1}^n h_{kj} \omega_{ki} + \sum_{k=1}^n h_{ik} \omega_{kj}.$$

Let $$F_i = \nabla_i F, \quad F_{ij} = \nabla_j \nabla_i F, \quad h_{ijk} = \nabla_k h_{ij}, \quad \text{and} \quad h_{ijkl} = \nabla_l \nabla_j h_{ij},$$
where ∇_j is the covariant differentiation operator, we have

$$h_{ijkl} - h_{ijlk} = \sum_{m=1}^n h_{im} R_{mjk} + \sum_{m=1}^n h_{mj} R_{mikl}.$$

The following elliptic operator \mathcal{L} is introduced by Colding and Minicozzi in [8]:

$$\mathcal{L} f = \Delta f - \langle X, \nabla f \rangle, \quad (2.4)$$

where Δ and ∇ denote the Laplacian and the gradient operator on the self-shrinker, respectively and $\langle \cdot, \cdot \rangle$ denotes the standard inner product of \mathbb{R}^{n+1}. By a direct calculation, we have

$$\mathcal{L} h_{ij} = (1 - S) h_{ij}, \quad \mathcal{L} H = H(1 - S), \quad \mathcal{L} X_i = -X_i, \quad \mathcal{L} |X|^2 = 2(n - |X|^2). \quad (2.5)$$
(2.6) \[\frac{1}{2} \mathcal{L}S = \sum_{i,j,k} h^2_{ijk} + S(1 - S). \]

If \(S \) is constant, then we obtain from (2.6)

(2.7) \[\sum_{i,j,k} h^2_{ijk} = S(S - 1), \]

hence one has either

(2.8) \[S = 0, \quad \text{or} \quad S = 1, \quad \text{or} \quad S > 1. \]

We can choose a local field of orthonormal frames on \(M^n \) such that, at the point that we consider,

\[h_{ij} = \begin{cases}
\lambda_i, & \text{if } i = j, \\
0, & \text{if } i \neq j,
\end{cases} \]

then

\[S = \sum_{i,j} h^2_{ij} = \sum_i \lambda_i^2, \]

where \(\lambda_i \) is called the principal curvature of \(M \). From (2.1) and (2.3), we get

(2.9) \[h_{ijij} - h_{jiji} = (\lambda_i - \lambda_j)\lambda_i\lambda_j. \]

By a direct calculation, we obtain

(2.10) \[\sum_{i,j,k,l} h^2_{ijkl} = S(S - 1)(S - 2) + 3(A - 2B), \]

where \(A = \sum_{i,j,k} \lambda_i^2 h^2_{ijk}, \quad B = \sum_{i,j,k} \lambda_i \lambda_j h^2_{ijk}. \)

We define two functions \(f_3 \) and \(f_4 \) as follows:

\[f_3 = \sum_{i,j,k} h_{ij} h_{jk} h_{ki} = \sum_{j=1}^n \lambda_j^3, \quad f_4 = \sum_{i,j,k,l} h_{ij} h_{jk} h_{kl} h_{li} = \sum_{j=1}^n \lambda_j^4, \]

Then, the following formulas can be found in [6]:

Lemma 2.1. Let \(X : M \to \mathbb{R}^{n+1} \) be an \(n \)-dimensional self-shrinker in \(\mathbb{R}^{n+1} \). Then

(2.11) \[\frac{1}{3} \mathcal{L}f_3 = (1 - S)f_3 + 2C, \]

(2.12) \[\frac{1}{4} \mathcal{L}f_4 = (1 - S)f_4 + (2A + B). \]

(2.13) \[A - B \leq \frac{1}{3}(\lambda_1 - \lambda_2)^2 t S^2, \]

(2.14) \[C^2 \leq \frac{1}{3}(A + 2B)t S^2, \]

where \(C = \sum_{i,j,k} \lambda_i^2 h^2_{ijk}. \)
3. Estimates for geometric invariants

In this section, we will give some estimates which are needed to prove our theorem. From now on, we denote

\[S - 1 = tS, \]

where \(t \) is a positive constant and \(t < \frac{1}{2} \) if we assume that \(S \) is constant and \(S > 1 \), then

\[(1 - t)S = 1, \quad \sum_{i,j,k} h^2_{ijk} = tS^2. \]

Defining

\[u_{ijkl} := \frac{1}{4} (h_{ijkl} + h_{jikl} + h_{klji} + h_{iijk}), \]

we have

\[\sum_{i,j,k,l} h^2_{ijkl} \geq \sum_{i,j,k,l} u^2_{ijkl} + \frac{3}{2} (Sf - f^2_3) \]

according to Gauss equations (2.1).

Let

\[(3.1) \quad Sf \equiv Sf_4 - (f_3)^2 = S \sum \lambda^4_i - \left(\sum \lambda^3_i \right)^2 = \frac{1}{2} \sum (\lambda_i - \lambda_j)^2 \lambda_i^2 \lambda_j^2. \]

Since \(S \) and \(f_3 \) are constant, we have

\[\sum \lambda_i h_{iik} = 0, \quad \sum \lambda^2_i h_{iik} = 0, \text{ for any } k \]

and

\[\sum \lambda_i h_{ijkl} = -\sum h_{ijj} h_{ijkl}, \quad \sum \lambda^2_i h_{iikl} = -2 \sum \lambda_i h_{ijk} h_{ijl}, \text{ for any } k, l. \]

Hence, one has

\[\sum_{i,j} h_{ijj} \lambda_i \lambda_j = -C, \quad \sum_{i,j} h_{ijj} \lambda^2_i \lambda_j = -2B. \]

Defining

\[a_{ij} = \sum_{i,j} h_{ij}, \]

with \(y = \frac{f_3}{S} \), we have

\[\sum_{i,j,k,l} u_{ijkl} h_{ijh_{kl}} = \sum_{i,j} \frac{1}{2} (h_{ijj} + h_{jjj}) \lambda_i \lambda_j = -C. \]

\[\sum_{i,j,k,l} u_{ijkl} a_{ij} h_{kl} = \sum_{i,j} \frac{1}{2} (h_{ijj} + h_{jjj})(\lambda^2_i - y \lambda_i) \lambda_j = -B - \frac{1}{2} A + yC. \]

Hence, because of

\[\sum_{i,j,k,l} \left\{ u_{ijkl} + \alpha (a_{ij} h_{kl} + h_{ij} a_{kl}) + \beta h_{ij} h_{kl} \right\}^2 \geq 0, \]
we obtain
\[
\sum_{i,j,k,l} u_{ijkl}^2 \geq -2\alpha \sum_{i,j,k,l} u_{ijkl}(a_{ij}h_{kl} + h_{ij}a_{kl}) - \alpha^2 \sum_{i,j,k,l} (a_{ij}h_{kl} + h_{ij}a_{kl})^2 \\
- 2\beta \sum_{i,j,k,l} u_{ijkl}h_{ij}h_{kl} - \beta^2 \sum_{i,j,k,l} (h_{ij}h_{kl})^2 - 2\alpha\beta \sum_{i,j,k,l} (a_{ij}h_{kl} + h_{ij}a_{kl})h_{ij}h_{kl} \\
= 2\alpha(2B + A - 2yC) - 2\alpha^2 Sf + 2\beta C - \beta^2 S^2 \\
\geq 2\alpha(2B + A - 2yC) - 2\alpha^2 Sf + \frac{C^2}{S^2}
\]
by taking \(\beta = \frac{C}{S^2} \). Since \(f_3 \) is constant, we have from Lemma 2.1
\[
tSf_3 = 2C
\]
and
\[
Sf = Sf_4 - f_3^2 = \frac{1}{2} \sum_{i,j} (\lambda_i - \lambda_j)^2 \lambda_i^2 \lambda_j^2
\]
(3.2)
\[
= \frac{1}{2} \sum_{i,j} (h_{ii} - h_{jj})(\lambda_i - \lambda_j)\lambda_i \lambda_j \\
= A - 2B,
\]
that is,
(3.3)
\[
Sf = Sf_4 - f_3^2 = A - 2B.
\]
From
(3.4)
\[
\sum_{i,j,k,l} h_{ijkl}^2 = S(S - 1)(S - 2) + 3(A - 2B)
\]
and
\[
\sum_{i,j,k,l} h_{ijkl}^2 = \sum_{i,j,k,l} u_{ijkl}^2 + \frac{3}{2}(Sf_4 - f_3^2),
\]
we have
(3.5)
\[
S(S - 1)(S - 2) = \sum_{i,j,k,l} u_{ijkl}^2 - \frac{3}{2}(A - 2B).
\]
Since \(S \) is constant, by making use of the generalized maximum principle due to Cheng and Peng \([5]\), we have that there exist a sequence \(\{p_k\} \) in \(M \) such that
(3.6)
\[
tSf_4 \geq 2A + B,
\]
it follows from (3.2) that
\[
tf_3^2 \geq (2 - t)A + (1 + 2t)B.
\]
Thus, for \(z \geq 0 \), from Lemma 2.1, one has
\[
C^2 \leq \frac{1}{3}(A + 2B)tS^2.
\]
\[
\sum_{i,j,k,l} u_{ijkl}^2 - \frac{3}{2} (A - 2B) \\
\geq 2\alpha(2B + A - 2yC) - 2\alpha^2 Sf + \frac{C^2}{S^2} - \frac{3}{2} (A - 2B) \\
= 2\alpha(2B + A) - (2\alpha^2 + \frac{3}{2})(A - 2B) + (-2\alpha t + (1 + z)\frac{t^2}{4})f_3^2 - \frac{C^2}{S^2} \\
\geq 2\alpha(2B + A) - (2\alpha^2 + \frac{3}{2})(A - 2B) \\
+ (-2\alpha + (1 + z)\frac{t}{4}) \{(2 - t)A + (1 + 2t)B\} - z\frac{t}{3}(A + 2B) \\
= \{2\alpha - 2\alpha^2 - \frac{3}{2} + (-2\alpha + (1 + z)\frac{t}{4})(2 - t) - z\frac{t}{3}\} A \\
+ \{4\alpha + 4\alpha^2 + 3 + (-2\alpha + (1 + z)\frac{t}{4})(1 + 2t) - z\frac{2t}{3}\} B,
\]
where \(-2\alpha + (1 + z)\frac{t}{4} \geq 0\). By taking
\[
tz = \frac{8\alpha^2 - 8t\alpha + 6 + t(t + 3)}{1 - t},
\]
we have
\[
4\alpha + 4\alpha^2 + 3 + (-2\alpha + (1 + z)\frac{t}{4})(1 + 2t) - z\frac{2t}{3} \\
= -2\alpha + 2\alpha^2 + \frac{3}{2} - (-2\alpha + (1 + z)\frac{t}{4})(2 - t) + z\frac{t}{3} \\
= 2(1 - t)\alpha + 2\alpha^2 + \frac{3}{2} - \frac{t(2 - t)}{4} + tz\frac{3t - 2}{12} \\
= 2(1 - t)\alpha + 2\alpha^2 + \frac{3}{2} - \frac{t(2 - t)}{4} + \frac{8\alpha^2 - 8t\alpha + 6 + t(t + 3) 3t - 2}{1 - t} \frac{3t - 2}{12} \\
= \frac{4\alpha^2 + 4(3 - 4t)\alpha + 3 + 2t(4t - 3)}{6(1 - t)}.
\]
We take \(\alpha\) such that
\[
4\alpha^2 + 4(3 - 4t)\alpha + 3 + 2t(4t - 3) = 0
\]
if \(t \leq \frac{9 - \sqrt{33}}{8}\). Thus, we have from (3.5), (3.7) and (3.9) that \(t \geq \frac{1}{2}\). It is impossible. Hence, we have
\[
t > \frac{9 - \sqrt{33}}{8}.
\]
In this case, taking \(\alpha = -\frac{3 - 4t}{2}\), we obtain
\[
2\alpha^2 + 2(3 - 4t)\alpha + \frac{3}{2} + t(4t - 3) = -\left(\frac{(3 - 4t)^2}{2}\right) + \frac{3}{2} + t(4t - 3) = -4t^2 + 9t - 3,
\]
\[tS^2(2t - 1)S \geq \sum_{i,j,k,l} u_{ijkl}^2 - \frac{3}{2}(A - 2B) \]
\[\geq \frac{4t^2 - 9t + 3}{3(1-t)}(A - B). \]

For any \(i, j \), we have
\[-\lambda_i \lambda_j \leq \frac{1}{4}(\lambda_i - \lambda_j)^2. \]
Hence, we get, for \(\lambda_i \lambda_j \leq 0 \) and \(\lambda_i \lambda_k \leq 0 \),
\[\|\lambda_i \lambda_j\| + \|\lambda_i \lambda_k\| \leq \|\lambda_i \lambda_j \| + \|\lambda_i \lambda_k\| \leq (Sf)^\frac{1}{4}, \]
and
\[-2\lambda_i \lambda_j \leq 2(\lambda_i \lambda_j)^\frac{1}{4} \leq 2\left(\frac{1}{4}(\lambda_i - \lambda_j)^2\lambda_i^2 \lambda_j^2\right)^\frac{1}{4} \leq 2\left(\frac{1}{4}Sf\right)^\frac{1}{4}. \]

Since
\[3(A - B) = \sum_{i,j,k} (\lambda_i^2 + \lambda_j^2 + \lambda_k^2 - \lambda_i \lambda_j - \lambda_i \lambda_k - \lambda_j \lambda_k)h_{ijk}^2 \]
\[= \sum_{i,j,k \neq i} (\lambda_i^2 + \lambda_j^2 + \lambda_k^2 - \lambda_i \lambda_j - \lambda_i \lambda_k - \lambda_j \lambda_k)h_{ijk}^2 \]
\[+ 3 \sum_{i \neq j} (\lambda_i^2 + \lambda_j^2 - 2\lambda_i \lambda_j)h_{ijj}^2, \]
we conclude from (3.12) and (3.13),
\[3(A - B) \leq \left(S + 2\left(\frac{1}{4}Sf\right)^\frac{1}{4}\right) \sum_{i,j,k} h_{ijk}^2 = \left(S + 2\left(\frac{Sf}{4}\right)^\frac{1}{4}\right) tS^2. \]

From Lemma 2.1 and (3.6), one gets
\[Sf \leq \frac{A - B}{3(1-t)}. \]
Since \(S - 1 = tS \), we infer from (3.15) and (3.16)
\[3(A - B) \leq \left(S + 2\left(\frac{A - B}{12(1-t)}\right)^\frac{1}{3}\right) tS^2. \]
If we assume that \(3(A - B) \leq a_k tS^3 \), then we obtain from (3.17) that
\[3(A - B) \leq a_{k+1} tS^3, \]
where
\[a_{k+1} = \left(1 + 2\left(\frac{a_k t}{36(1-t)}\right)^\frac{1}{3}\right). \]
Let $a_1 = 2$ and $t < 0.454682$, we get from the above equations
\begin{equation}
(3.19) \quad a_7 \leq 1.67738,
\end{equation}
then
\begin{equation}
(3.20) \quad 3(A - B) \leq 1.67738tS^3.
\end{equation}
From (3.11) and (3.20), we have
\begin{equation}
(3.21) \quad (2t - 1) \geq \frac{4t^2 - 9t + 3}{3(1 - t)} \times \frac{1.67738}{3}.
\end{equation}
Then, we get
\[(t - 0.454682)(t - 1.24897) \leq 0,
\]
it follows that $t \geq 0.454682$. It is a contradiction. Hence, we get $t \geq 0.454682$ and $S \geq 1.83379$. We complete the proof of Theorem 1.3.

References

[1] U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, J. Differential Geom., 23(1986), 175-196.

[2] H.-D. Cao and H. Li, A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calc. Var. Partial Differential Equations, 46 (2013), 879-889.

[3] Qing-Ming Cheng, Zhi Li and Guoxin Wei, Complete self-shrinkers with constant norm of the second fundamental form, to appear in Math. Z. 2021

[4] Q. -M. Cheng and S. Ogata, 2-dimensional complete self-shrinkers in \mathbb{R}^3, Math. Z., 284(2016), 537-542.

[5] Q. -M. Cheng and Y. Peng, Complete self-shrinkers of the mean curvature flow, Calc. Var. Partial Differential Equations, 52 (2015), 497-506.

[6] Q. -M. Cheng and G. Wei, A gap theorem for self-shrinkers, Trans. Amer. Math. Soc., 367 (2015), 4895-4915.

[7] X. Cheng and D. Zhou, Volume estimate about shrinkers, Proc. Amer. Math. Soc., 141 (2013), 687-696.

[8] T. H. Colding and W. P. Minicozzi II, Generic mean curvature flow I; Generic singularities, Ann. of Math., 175 (2012), 755-833.

[9] Q. Ding and Y. L. Xin, Volume growth, eigenvalue and compactness for self-shrinkers, Asian J. Math., 17 (2013), 443-456.

[10] Q. Ding and Y. L. Xin, The rigidity theorems of self shrinkers, Trans. Amer. Math. Soc., 366 (2014), 5067-5085.

[11] H. Halldorsson, Self-similar solutions to the curve shortening flow, Trans. Amer. Math. Soc., 364 (2012), 5285-5309.

[12] G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., 31 (1990), 285-299.

[13] G. Huisken, Local and global behaviour of hypersurfaces moving by mean curvature, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, (1993), 175-191.

[14] Nam Q. Le and N. Sesum, Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers, Comm. Anal. Geom., 19 (2011), 1-27.

QING-MING CHENG, DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF SCIENCES, FUKUOKA UNIVERSITY, 814-0180, FUKUOKA, JAPAN, cheng@fukuoka-u.ac.jp

GUOXIN WEI, SCHOOL OF MATHEMATICAL SCIENCES, SOUTH CHINA NORMAL UNIVERSITY, 510631, GUANGZHOU, CHINA, weiguoxin@tsinghua.org.cn
