Supporting Information for

Reconstructing Soma-Soma Synapse-like Vesicular Exocytosis with DNA Origami

Jiangbo Liu¹, Min Li¹*, Fan Li¹, Zhilei Ge², Qian Li², Mengmeng Liu³, Jiye Shi⁴, Lihua Wang⁴,⁵, Xiaolei Zuo¹,²*, Chunhai Fan², Xiaolei Zuo¹,²*, Chunhai Fan², Xiuhai Mao¹*

¹ Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
² School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
³ Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200127, China
⁴ Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
⁵ Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

Correspondence to: *zuoxiaolei@sjtu.edu.cn
*mlisinap@163.com
*maoxiuhai@sjtu.edu.cn

Page S1-S34
Figure S1-S20
Tables S1–S3
1. Experiment section
Reagents and solutions
Oligonucleotides modified with fluorescence were synthesized and purified with HPLC by Invitrogen (Shanghai, China), and cholesterol modified oligonucleotides were synthesized and purified with HPLC by TaKaRa (Dalian, China), and other oligonucleotides were synthesized and purified with HPLC by Sangon (Shanghai, China). M13mp18 was purchased from New England Biolabs (Ipswich, MA, US). HEPES were purchased from Sigma. All other chemicals were reagent grade and were used without further purification. No unexpected or unusually high safety hazards were encountered in this work.

The buffers used were as follows:

Tyrode solution (containing, in mM, 150 NaCl, 4 KCl, 2 CaCl2, 2 MgCl2, 10 glucose, 10 HEPES (310-315 mosm), with pH set at 7.35 with HCl and NaOH).

High K+ stimulation solution (high K+, containing, in mM, 64 NaCl, 90 KCl, 2 CaCl2, 2 MgCl2, 10 glucose, 10 HEPES (310-315 mosm), with pH set at 7.35 with HCl and NaOH) were used.

Preparation of 6-helix bundle (HB) DNA origami nanostructures (DONs)
DONs were assembled with short staple strands and scaffold strands (M13mp18 ssDNA) in 1× TAE-Mg2+ buffer by slowly cooling down from 90 °C to 20 °C. The final concentration of the scaffold strands and staple strands was 5 nM and 50 nM, respectively. To remove the extra short strands, DONs were filtered for three times with 100 kDa (MWCO) centrifuge filters.

Cell culture
PC12 cells were purchased from Shanghai Institute of Biological Sciences, were grown in RPMI 1640 medium (Invitrogen) supplemented with 10% heat inactivated FBS (Gibco), 100 units/mL penicillin (Invitrogen), 100 mg/mL streptomycin (Invitrogen), and 2 mM L-glutamine (Invitrogen) at 37 °C in humidified air containing 5% CO2.

Fluorescence labeling and imaging
PC12 cells were washed three times with 1×PBS. Next, 1 mL trypsin (Invitrogen) was added to each sample and the samples were incubated for 1 min. Then, 1 mL 1640 medium was added, and then the cell suspensions were transferred to tubes washed three times with 1×PBS. Then cells were incubated with chol-DNA for the 30 minutes at room temperature, and washed three times with 1×PBS. Then cells were hybridized with complementary fluorescence sequence or DONs added fluorescence sequence for 30 min at 4 °C, and washed three times with 1×PBS for confocal laser scanning microscopy (CLSM) and flow cytometry experiments.

Real time cellular analysis (RTCA)
PC12 cells were incubated in RTCA system (ACEA, xCELLigence RTCA DP, USA) for 5 days. Chol-DNA and DNA origami were added 45 hours after seeding cells (1.5 × 10^4 cells/well). Cell impedances were measured every 9 min.

Cell conjugation
PC12 cells were labeled with two dyes (CellTracker, Green and Deep Red, Invitrogen) respectively in 1640 medium for 30 min at 37°, and then washed three
times with 1×PBS. Next, 1 mL trypsin (Invitrogen) was added to each sample and the samples were incubated for 1 min. Then, 1 mL 1640 medium was added, and then the cell suspensions were transferred to tubes washed three times with 1×PBS. Then cells were anchored different ssDNA respectively and washed three times with 1×PBS. After cells were mixed, added DONs can conjugate two kinds of cells for 2 hours at 37℃. The conjugation cells were detected with amnis flow cytometer and CLSM.

Intercellular membrane vesicles transport

DiI, DiO (both 5 μM) cell labeling solutions (Invitrogen) were used for labeling vesicles in adherent PC12 for 2 h, and then made cell conjugation as above. The connected cells were cultured in RPMI 1640 medium for different time and imaged with CLSM. Transfer was calculated form percentage of DiO fluorescence had been transferred from the donor cell to the recipient cell. Data were analyzed using ImageJ software.

Confocal laser scanning microscopy

Images of PC12 cells were obtained at TCS SP8 confocal microscope. Alexa 647-DNAs and CellTracker Deep Red were excited with a 633 nm laser, while DiI were excited with a 561 nm laser, and DiO and CellTracker Green were excited with a 488 nm laser respectively. The imaging channels were set at 650-690, 570-620, and 500-550 nm, respectively. Bright field images were obtained after fluorescence imaging. Data were analyzed using ImageJ software.

Flow cytometry experiments

Cells were labeled fluorescence were analyzed in using an amnis flow cytometer (Merck Millipore). The cell conjugation and fluorescence labeling cells suspensions were transferred to tubes for flow cytometry test. At least 5000 cells were analyzed. Consistent gating based on cell size (forward scatter) and granularity (side scatter) were applied to select counted cells. Alexa 647-DNAs and CellTracker Deep Red were excited with a 633 nm laser, and CellTracker Green were excited with a 488 nm laser respectively.

Carbon fiber nanoelectrode (CFNE) fabrication

We obtained carbon fiber (7 μm in diameter) from Toray Industries (Japan). Borosilicate glass capillary (1.2 mm o.d., 0.69 mm i.d.) was got from Sutter Instrument (USA). Cooper wire (0.5 mm in diameter) was purchased from Sinopharm Chemical Reagent (Shanghai, China). Graphite powder conductive paint was purchased from Ted Pella (USA). Epoxyresin were purchased from Sigma.

We developed method of fabricating CFNE according to the protocol of Huang et al. Carbon fiber was cleaned in acetone, alcohol and ultrapure water firstly. Then, 37℃ thermotank was prepared for drying the carbon fiber for 3 days. The borosilicate glass capillary was pulled into two separated electrodes with a model P-2000 micropipette puller (Sutter, USA) firstly. A selected single carbon fiber was attached on the end of a copper wire with graphite powder conductive paint and then inserted into aborosilicate glass capillary carefully. To etch the CFNE, the Carbon fiber in electrode was placed on the flame of the alcohol lamp, and then the other end of the glass capillary was sealed by epoxyresin with copper wire exposed outside. As general result, our CFNE size was about 80 nm nanotip in diameter and 30 μm in
Electrochemical characterization of CFNEs

The CFNEs were tested by cyclic voltammetry (CV) in solution of 0.01 M \(K_3[Fe(CN)]_6 \) containing 0.5 M KCl. The CV was on the electrochemical workstation (CHI660A, CH Instruments, Shanghai, China), and the voltage ranged from -0.2 V to 0.5 V, and the scanning rate was 50 mV/s. The concentration of the KCl solution for the reference electrode of Ag/AgCl was 3 M. We found steady state volt-ampere characteristic curves, indicating that CFNEs were successfully constructed with diffusion-limited mass transport exhibited.

Atomic force microscope (AFM)

DONs were imaged in AFM (Vecco/Digital Instruments). For AFM imaging, 2 \(\mu L \) sample solution was deposited onto mica to adsorption for 2 min. The mica was then washed three times with Milli-Q water. Then the sample was scanned under tapping mode. Artificial soma-soma synapse of cell conjugation was imaged in AFM (Resolve-AFM, Bruker). After cultured for 8 hours, cell conjugations were scanned in medium. The applied force was precisely tuned to acquire high resolution cell images.

Scanning Electron Microscope (SEM) image

CFNEs were sputter-coated with gold. Immediately. The cultured connected cells were washed with 1×PBS three times before fixed in 2.5% of paraformaldehyde solution overnight at 4℃. Then cells were dehydrated with a series of graded ethanol solution. Then the cells were dried in hexamethyldisilazane (HMDS) and sputter-coated with gold. CFNEs and cells were imaged in SEM (JEOL, Japan).

Imaging of slipping CFNE inside soma-soma synapse-like junction

When an artificial soma-soma synapse-like junction is successfully identified under the TCS SP8 confocal microscope with 40 × oil immersion objective, the nanotip of the CFNE was firstly placed nearby the of the single junction, and then was slowly inserted into the synapse and withdrawal from synapse with a micromanipulator (Eppendorf, Germany). The micromanipulator has a two-speed joystick, moving step by step and continuously, and has a programmed Z-axis limit (about 100 nm in fine adjustment), which enables CFNE nanotip can target the small synapse-like junction. All the micrographs were acquired with high resolution (1024 × 1024 pixels).

Electrochemical characterization of CFNE inside junction

We added 0.01 M \(K_3[Fe(CN)]_6 \) containing 0.5 M KCl in the Tyrode solution to check the seal of short (2-3 \(\mu m \)) active electrode by soma membrane. We detected currents in different states with patch clamp (DL Naturegene Life Sciences, China) in voltage of -200mV vs. Ag/AgCl reference electrode.

Amperometric measurements, data acquisition and analysis

All amperometric monitoring experiments were taken artificial soma-soma synapse-like junction on an inverted microscope (Nikon) coupled with patch clamp at room temperature in Tyrode solution. Detection system placed in a Faraday cage, and all apparatuses were grounded. After a CFNE was successfully inside a synapse-like junction by a micromanipulator, the high K+ stimulation solution delivered through a manual piston pump (Cell Tram Oil, Eppendorf, Germany) at about 50 \(\mu m \) away from
the synapse by another micromanipulator. All the electrical measurements were carried out versus an Ag/AgCl reference electrode submerged in Tyrode solution in voltage-clamp mode in patch clamp. The amperometric spikes were recorded at a constant potential of 700 mV vs. Ag/AgCl reference electrode. Signals were sampled at 20 kHz, and bessel filtered was at 2.0 kHz. Amperometric data were collected during 2 min and then analyzed according to previous methods. [1] Firstly, the root-mean-square (r.m.s.) noise of the dI/dt was measured in a trace segment that did not contain peaks. Then, dI/dt was to detect simple event that were one peak with 5 time larger than the r.m.s. noise. If there was more than one peak within an event and the dI/dt of the peaks was 3 time larger than the r.m.s. noise, then the event was identified as complex event. The duration of simple event was calculated as full width at half maximum of peak. the duration of complex event was calculated as:

\[
 t_{1/2}^{\text{complex}} = [t(f_n) - t(f_1) + t_{1/2}(f_1) + t_{1/2}(f_n)]/2
\]

Where \(t(f_1) \) and \(t(f_n) \) are the times at peaks, and \(t_{1/2}(f_1) \) and \(t_{1/2}(f_n) \) are the duration of the first and the last peak. The relationship between the current peak and absolute quantity of catecholamine was calculated from Faraday law. Moreover, the spikes measured is a diffusion-controlled process and sites of exocytosis on the cell surface could lead to the measured would be expected to be spatially localized with electrode, [2] so catecholamine measurement is surmised only from the CFNEs nanotip in our research.

References:
(1). Li, Y. T.; Zhang, S. H.; Wang, L.; Xiao, R. R.; Liu, W.; Zhang, X. W.; Zhou, Z.; Amatore, C.; Huang, W. H. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew. Chem., Int. Ed. 2014, 53, 12456-12460.

(2) Jankoski, J.A.; Kennedy, R.T.; Kawagoe, K.T.; Schroeder, T.J.; Leszczyszyn, D.J.; Near, J.A.; Diliberto, JR, E.J.; Viveros, O.H. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 10754-10758.
2. Supporting Results

Figure S1. The models of linear 6 HB DONs monomer nanostructure reconstructed by Cando software.
Figure S2. AFM images of 6HB DONs monomers.
Figure S3. Length of 6HB DONs oligomers.
Figure S4. Flow cytometry of different concentration of chol-DNA anchoring on PC12 cell membrane.
Figure S5. Curvatures K of DONs (left, Data was analyzed by using ImageJ software) and great circle of spherical cells (right).
Figure S6. DONs anchoring on small circles (green) rather than great circles (blue) of spherical cells. Scale bar, 10 μm.
Figure S7. CLSM images of PC12 cell after anchoring DONs and chol-DNA at 37°C for 2 hours. Scale bars, 10 μm.
Figure S8. The effect of chol-DNA and DONs on PC12 cell proliferation was monitored by RTCA Instrument.
Figure S9. Flow cytometry of cell adhesion without DONs.
Figure S10. (a) CLSM images of cells without DONs. Scale bar, 50 μm. (b) CLSM image of cultured cells after cells mixing without DONs. Scale bar, 50 μm.
Figure S11. Flow cytometry of cell adhesion by using cholesterol anchored strands adhesion system.
Figure S12. CLSM images of cellular uptake of DiO and Dil by membrane vesicles. Scale bars, 40 μm.
Figure S13. CLSM images of membrane vesicles transport between soma-soma synapse-like junction. Scale bars, 20 μm.
Figure S14. Characterization of CFNE. (a) Scheme for the fabrication of CFNEs. (b) CV of four different CFNEs fabricated at different time in K₃[Fe(CN)₆] solution.
Figure S15. SEM image of carbon fiber, Scale bar, 10 μm.
Figure S16. The process of a CFNE sliding inside soma-soma synapse-like junction (1→2→3) and withdrawal from synapse (4→5→6). Scale bar, 20 μm.
Figure S17. CV of short CFNE in K$_3$[Fe(CN)$_6$] solution.
Figure S18. High K⁺-induced amperometric spike.
Figure S19. Example of a simple amperometric current trace and a complex amperometric current trace.
Figure S20. First derivative (dI/dt) of the current trace. (a) First derivative (dI/dt) of the amperometric spike of simple event. (b) First derivative (dI/dt) of the amperometric spike of complex event. The dotted and solid plane lines are the threshold of 3×rms noise and 5×rms noise respectively.
Table S1. Basic DNA sequences used to form 6-HB DON.

Staple strand	Sequences (5'-3')	
6HB-1	GCGCGTAGTCACCAGCATAACCATTAACCCGGAACCCAGACGGG	
6HB-2	GCGTAACGCTGTTACATTACAGTTGTCAGAGCCTTTT	
6HB-3	GACCCGGTAGTCACCAGTGGTTACATTACAGTTACAGAGCCTTTT	
6HB-4	AGCCGGCATCACCAGTGGTTACATTACAGTTACAGAGCCTTTT	
6HB-5	GAAACCCAAAACCCGTGAGATGGTTAAAAACACCACCTTTAC	
6HB-6	ACATTATAGCAAGCCTGAGTAGTTAGTGAGAGCAGAGCAGAG	
6HB-7	GAAGGGTGATCAGGTTTTGAGA	
6HB-8	AAATCGTTTACCCAGCATACGCAAGGATAAAACGTACTGAGATGAG	
6HB-9	TTAGAAGTAGCTTATACAGCTTACCTGTAACCTCAGAGAGGCC	
6HB-10	ACTAATAGCCAGCTAAAGCCTCAGAGCAGCAGATAGCTCAGAG	
6HB-11	AATTTGAGTCGGAGTTAATCATACAGGCTTCTCAGTAAGAGC	
6HB-12	TCAATCAGATAAGGTTGTCAGCATAATTCTGACAGCCATCTTTT	
6HB-13	AAATCTATCTGCAACCTGTTAGCATTACCTCTCTACCTAGAG	
6HB-14	CGCGCTTGTAGCAGAGTGTAGCTGACAGCAGGCTTCTT	
6HB-15	CCAGCAGAAGACCATCACCATTACATAACGAAAACACTCACCA	
6HB-16	GATAGCCGTGGGAAACATGTTTTAAATAAACATCTCAAATCAC	
6HB-17	GACAAATAGCGTTGTAGCTGAGCTCAGTTTACCTT	
6HB-18	TCAATATGGAACCGTCTTCTAGCTGATGAAAGTTAGTTT	
6HB-19	ATAGAAACTAAGCCAGTACGTCCTTTAATAATGATGAGGTA	
6HB-20	GTCACACCCAGTGCCAGAACCAGACCGACACCGCATGCGCA	
6HB-21	TCAATCGCCCGCCGCGCCGAAAGCTTCAAATTAAAGGTTTTATTT	
6HB-22	GCAACAGTTTCTGTCAGAAGCAGAAGCGACAGCAGTGGCA	
6HB-23	GCCTTGCATACGGAGACCATAAAATCAAAGGAGACATTACCTAGC	
6HB-24	GTAATAATGAGTGAGAATCCCATCCTCAATAATAATAC	
6HB-25	CCATCAGCTTTCCTGGATAGCCTTCAAAGAGGCCGCGCCA	
6HB-26	GTGTTTTTATCGCCGCAAGAAAGTTTGGCCAGCGATTAGCTATC	
6HB-27	AAAGGGACAGGTTGACAGACGGAGTATATCATCAGTTAAGC	
6HB-28	TCCTCTGATTCCTTACAGAGGCATAGTCATTATAATTGA	
6HB-29	GAATTATCCGGTTGAAAAGGCGCCAGACGATTAGCCGCTCAT	
6HB-30	ATTTTCGAAATAACCGAGAGATGAAAGGGAGAAAGAAAATCC	
6HB-31	ATCAGAATTTGGTTTACCTTCATGAAGAGGTTAATAATAC	
6HB-32	CGTTTTAAACAGCCACCAAAATCATACGAGTACTGAGCTTGGG	
6HB-33	ATAACGGGAGTCTCCGATAAGTGCGTGATGATGTTAGAAGAGA	
6HB-34	TAAATCAAACCGAGCTTGGCCCTGACAGAGTTCACACGCTCA	
---	---	
A	**TCGCGCATTCACAAAAATAGGGTGTATCACAATTTTTAATATTTT**	
6HB-35	**TCGCGCATTCACAAAAATAGGGTGTATCACAATTTTTAATATTTT**	
6HB-36	**GAAGATGATTGACACTCAGAACCAGCCACTACCTTTTTCATTTT**	
6HB-37	**TTTAACACTAGAGACCCCTCAATTTCTGTAAGCTCCTGGCCT**	
6HB-38	**ACATAAAAAGGCGACCAGTACACTGAGAGGCCAAGACGAGTA**	
6HB-39	**ACAGAAGTCACTAGTATTATTTCTGAAAAATAAAATTTAAACAG**	
6HB-40	**ATCGTCGAAAAATCATGTAGCATCACAACATATAATTTGACC**	
6HB-41	**ATAGCGGGTCAATAAAAGGTTTGCTACTTCTGATTTTTCAATCGTAA**	
6HB-42	**GAATTAGCCTTTTATGATGGGATTTTGATTAGATATCGGCC**	
6HB-43	**CTCCGGCATCGATAGTGGAGATAGAAGGCTGAGATCTCGGCCT**	
6HB-44	**TGGTATGACGAGAAATTCTTTTAAACGCGACCCTCTTGAGTA**	
6HB-45	**CAATAATTTGAGCCAGCCTTTTAATTGTAATTTGCTCGCTA**	
6HB-46	**AGAAATAAGGCGACAAACAAACCCTCAGGCCAGCACCAGTTGAA**	
6HB-47	**AGTATCAATCAATAAGGCTTTGCAAGGAGATACGCGACTCT**	
6HB-48	**ACGCTCAGAAAAACCCCTCACTCAGCGCAAGATAGCGCCTAG**	
6HB-49	**GATGAATTTTTGATAAGAGAAGGATTAGGTCAAACAATCAT**	
6HB-50	**AACGCCAAGCAAACCTACAGAGGCTTTGAACGCGGAAATCC**	
6HB-51	**CAAATATTTGACGACCCTTTAATGTAATTGCTTCGCTA**	
6HB-52	**AGAAATAAGGCGACAAACAAACCCTCAGGCCAGCACCAGTTGAA**	
6HB-53	**TCAAATATGCCCCGTACCCTGC**	
6HB-54	**GTCCAGACCAGAAGCCAAACCCTAAACGATACTCGTGCCGCT**	
6HB-55	**ACGCGCCAGCCCTCTCATCTTTGACCCCCAGAGGGAGGCTGC**	
6HB-56	**ACAGGAGATCGTAGGGCCGCGCGCTTTAACAGGGGCTTCCAT**	
6HB-57	**ACGATTTATAAGGCGCGCTGCAGTGTAATCTTCCCTTAAAC**	
6HB-58	**AAAACAAACTGGAACAGGCTATTACATAATATGCAGATGGCG**	
6HB-59	**CGCCAGCATGAAACCTTTACAAACAATTATCAGCTGGAG**	
6HB-60	**CTCCCTCTCAATATATCTTAAATATCTTATGTGAGGaATTAG**	
6HB-61	**CTTGATAGAGGCGAAACGTTATTAATTTACGTTAGAACCCCT**	
6HB-62	**CAAAATAGCGAACCAGCAGAAGGAGGAGGTTGTTCTCATT**	
6HB-63	**AAACCCAAACCTCAACAGGTAACTCATAATATGCGGATTGC**	
6HB-64	**AGAATTAGTACGCGTCGCTTTGACGAGCAGCTGAGAGGATAC**	
6HB-65	**CAGAGATCGTAGGGCCGCGCGCTTTAACAGGGGCTTCCAT**	
6HB-66	**ACGATTTATAAGGCGCGCTGCAGTGTAATCTTCCCTTAAAC**	
6HB-67	**CACCCAAATCATCAGCGCAGTATATTATCGCGTAATACCG**	
6HB-68	**CTCCCTCTCAATATATCTTAAATATCTTATGTGAGGaATTAG**	
6HB-69	**CTTGATAGAGGCGAAACGTTATTAATTTACGTTAGAACCCCT**	
6HB-70	CATTTTCTAGCTTAACCTTGCTGAACCTTGGGCGCTTTGGGG	
6HB-71	CAGTTTTTCAAATGCCCAGCTGAGAGCCGACAGTACATTTC	
6HB-72	TAACCGGTAAGAAATTGTTTTGATTATCTGGAGCATGAGCGG	
6HB-73	TGAACCTTTAGTTAACAGAGGTGAGGCCCGGACTCCCAA	
6HB-74	CAGTAGCCAATCGATCGCCATTTAAAAACGCCATTAAGTAC	
6HB-75	CACCGACATTGTAAGGGCTATATTGCTTGCTGGCTTTAAAT	
6HB-76	AATATTGAAATACCATCCTGAAAGCGTAATGCAAGTGAAG	
6HB-77	AGACAAAAACCCGGAAATAAAAAGGGACATACCGACGTCAAC	
6HB-78	TGTCACTATATGCCTGGATTATTTACATTTGCAGGTTTTAA	
6HB-79	CATATAAACACAGTGGCTCTACATGGAATTATCAAAAAA	
6HB-80	GTATGTATCATGTAATCCAGAAATAATATCCGCTATCTTAC	
6HB-81	ATACCCAATATATGCGTGAAGTGTTAAAGAACAGTGT	
6HB-82	AAAGTTACGACGCACAAACCTGTGGAAATTGCGTGTAACGT	
6HB-83	ACATGGCATACAGGTCTCTGTATTACAGAGCATGTTCAACC	
6HB-84	TTACGCATGTATTTATGAGGCGACACATCGCTGGCTAATAG	
6HB-85	CCAATAATCCCATCCAGGGAAACGTACGGCGCGGTTAAATAG	
6HB-86	GCCTAAAGGGCTGTCAGAGCGGAGACTACAGTGAACAC	
6HB-87	CCAAACCTTTAGGACTGTTTGGGCCAGTGCGGCGCGTTTTT	
6HB-88	GCATAGGCCGAAACACCCGAAATCGGCAAAAGCGGTCCAAGCA	
6HB-89	ACCGGAATAGGACGTAGATAGGGTTGAGTGAAGAAACCGAG	
6HB-90	TTCAGTGATTTACCTTTATTAAGAAGCAGTGGCTTGAGAAGCCT	
6HB-91	GTAGTAAACATTTTCCAGCTACTAAAC	
6HB-92	TAAGTAATTTAAATATATTTAAATGTATAAAAAGTTACAAAA	
6HB-93	CTAATTTCTACATTTGCCTGAGAAGACTTCTGCAGTAAA	
6HB-94	TTAATGTACCTATTTGCAAATTTTATGTAACCAATGAA	
6HB-95	CCCCTAGAAAACAGCCAATCAAAAATATAATACATTATAA	
6HB-96	ATAGGAAAAAGCAATTTTCTACATGAAATAGGAACACAGT	
6HB-97	CAAACTAATCCATCTCCTGGAAACACACACAGTCTGTAA	
6HB-98	TTACGCTTAAAGACGAGTTGTTGGAATGAAATGAAAC	
6HB-99	GTAATGTGTCATAGTTGAGGAGCGACAGCAGCCTAATAGT	
6HB-100	ACAGTTTACGAGTACCCAGCACGCTTTTGCTGCTTTTTAA	
6HB-101	ATTCGAGGAAAGTTGGCAAAAGCGCCATTACCGAAATGCTG	
6HB-102	AAGGGTCTAGCTCAAGGGGAGCAGGGGCTGCTTTAATGCACCTTTT	
6HB-103	TGCTTTTCTTTTGCGGAAAGGGGGATGTTGAATACGGAAATTTA	
6HB-104	GGCTGAGATTTCTACCTGAAATACCATTGAGCAAGCAGTCA	
6HB-105	TGCGCTGAGGTGAGTTTTTCCAGTTCTGGGCTTTAAATA	
6HB-106	ATATTCTGTCAAAGCAAGCTTTACCTGCCTGGGACACTGTTT	
6HB-107	TGCGGGAAGGAAGCTACCGAGCTCGAATCTACATTAAGAA	A
6HB-108	GAGGGTAATTATAGTGTGAATTTGTATTACCAGCCATTTAAC	T
6HB-109	TTTCATGCAGAATCCCGAGGCTGAAACTCAGAAGCCAGGACAG	A
6HB-110	CCACTACATTCTTAAACTACTATTACTTCTTTTAAATTC	
6HB-111	TACACTATTAAGCTCGGGAACCTGGTAAAAGATGCAGAAGGGGACG	
6HB-112	GCGCGAATTGGCAACGCAGGGAGACAGAATCCAAGAA	A
6HB-113	AAATTTGTCTTCTGTTTCTTTTTCTTTTTACACAGGAGACCAATC	
6HB-114	GGAACGAAAAAGGAATTCACCGGGCTGGGGCTGTAAGGGGTATT	
6HB-115	TGCTCAGAGGTTGAAATAATCGAGAAAAGCCACCAGAAGAAC	C
6HB-116	GTTGAGATGAAATAATGGTATTCCAGAGCAGGTTTTCGGGGAA	
6HB-117	GAATAATCTGCTCGAGTCACAGTAAAATGACCAATAGACGCTGAC	
6HB-118	ACCAGTCATTCCATTATATTATTTATCCCTAAGAAGCGAAAGGAG	
6HB-119	ATTCGAAATACAGGCTTGATTTTACCGTTCATCGGGAGGACCG	
6HB-120	ATTGTGAATAAAGGGGCTTTCAGAGGACAGGTTTTTCGCGGAAGA	
6HB-121	ATGGGCTCTCATACA	
6HB-122	CATATATAGCCCGGACAAATAAATCTCTCAGAAGTTTGAGTA	
6HB-123	AAGCCTTCGCCACCGAGGTGGAGGAGTTACTCTGTGGATT	
6HB-124	TTGTACCAGCACCACCCCGACCAGAAGCCAAAATTTTAGGGAAT	
6HB-125	CAAAAATCCATGTCACCTCAAGACCTTAAATGAGACTAACA	
6HB-126	AGAGGGTGGAACCTTCCTTGGTAACAGATTATTGTTGCAATAATG	
6HB-127	CATTAACAGCCGCCGGAACCAAGACCGCCCTTTGGTTGAAAG	
6HB-128	CGCGAGCAACGATCAGCCCCCTTTATTAGCGAATCTCTCACAACC	
6HB-129	GCAATGAGATTTCTCGTGCTGAACTCTGGAAGATGTTAAATGAA	
6HB-130	TCTGCGACAGGCGGACGACCGTAAATCTACACTTATTTACA	
6HB-131	GTGTCTATAATACACTTACAGCAGATACTGTCTAGTGAAACCA	
6HB-132	AATGCTGCAAAAGGATTEGGGGAATAGACAGGAAGAGCGAACAAG	
6HB-133	AGGTCATGAGGTGTATTATTCATTAAAGGCTTGCACTATGGAACA	
6HB-134	GGTACGGAATGACATTCAGGGAGATTGTGTAAGGGCGAAGACAAGA	
6HB-135	TTTAGGGCGTCGCGAGGAAATCATATGGGAAGAGTTGCAACA	
6HB-136	GATTAAGTCTGTCAGCAGAAAGACACCAGCCAGATTTGTCGCGC	
6HB-137	CAATATGACTCCTCGATACAGGAGGATGTAACGGTTTCAATTTCAAA	
6HB-138	GATCTACTATAATGCTCAAACAGTACACCATA	
6HB-139	CCTGACTGCAACCGGATAGAAATACATATCGCCATAGCCATT	
6HB-140	CAGAAAAAGGAAGTTGGCAGTATTAAGAATTTTGCGACTAC	
6HB-141	CATAAATGAAAGGCAGAAACCGAGGAAACGGTAAAGTTGATT	
6HB-142	TAAAATGAAACACTTTTTAAGAAAAAGTAAATCGCTAAGTCTGT	
6HB-143	GAGAGGCACAAAGAAGAAGAATGAAAATCTCTGAACTGAGA	
6HB-144	CATAACCGTGAAGAGATAACCCACAAATGTGAAAGCCGATT	
6HB-145	AACGCCAGGCCGACACTCTGAAACATTGAAGAAGCCTGCT	
6HB-146	AAAAGCCTTGAACCC	
6HB-147	GCAAGCGCCTATGTTACCTATCGAGAACAGGCGCATGAAACTG	
6HB-148	GTTTGATCACAACAAATCTATTACCAGCGAAAAATCGACCAGGC	
6HB-149	AAAAGAAGCGTATGGGCTTTATCCGGTAATTAATCAAGACAGAAG	
6HB-150	GAAACAGAAACAGTGTCCCGACTTGGGTAATTTTGCTGTC	
6HB-151	AGGGCCGATAAAGGGCTTATTTGCACATCCTGAAAGACCA	
6HB-152	GATTGTACATTGTTATGTTGCTTTGAAATATTAAAGGTTGATA	
6HB-153	GTAAAATGCGCCGATATTCTCATTTCAAGTCAGACAGGAGGAT	
6HB-154	TAAACAAATTAGAAACATCAAAGAAAAACCAACACCGGCC	
6HB-155	TCCCTGTAGATATTGAGATTACCTCTTTGACCCACCAAGCCCA	
6HB-156	CAACCCCGGAAGTTATGTGAGTGTAATAAACCCAGCAGCAT	
6HB-157	GTAATTTGATATCGTATGTTATTTCCCTTAGTTTGCCCTCATAG	
6HB-158	CCCTGCAAAAGCATCGATTAAGACGCGCTCAGCCTGAGGTT	
6HB-159	TCAGGAAACAACAGTCATAGGTCTGAGGAGTAGCCGACTTTC	
6HB-160	AGGATCGAATCTCCTGATTGCGTAGATTTTTCTGGATATAAGA	
6HB-161	GGCTGCCAGAGATAAGGGTTATATATAACTAGGAAAACGTAAGG	
6HB-162	CGCAACTCTAAACAAACGAAAAAGGACCCAGCAGCAAAAAA	
6HB-163	TTACGCCCTTTTTGATTAATTTCATCTCTTCTGAATTTAATCACGCT	
6HB-164	AGTTTGGCCCTTCTGAGCCTGTGATAAAAGGGAGGCCGATAG	
6HB-165	ACGACCGGACCAGTAAATCATATAATTACTATTACCAAAACCAGAT	
6HB-166	AGAGGATTCTGAAATAATACAAATTCTTTGAGAATAAGCGGCTTT	
6HB-167	ATAGCTGGAAAAACGGCCTTAAATTGGAACACAATAAGTCGGAA	
6HB-168	ACACAACTGGTAATATTTGAGCCGAGGCGCTCTTAAAGACTT	
6HB-169	TGCTAATACATCAATAGTGACTCCGCAAAAGCAATAACGTAATG	
6HB-170	ACTGCCCGCAAATATATAAAGGAAAGCATGTGAGAATAAAGGAA	
6HB-171	ATGTACCATTCAAACAGTACCTTTTACCGATGAAAGGGGTTT	
6HB-172	TTATGGTTATAATACCAATAGATAATAGCAGATATAACCAA	
6HB-173	TGGGCCCTTTTAGACTAATTTACGGAGCAGAAATTGAGCCTGAT	
Table S2. Sequences for conjugating DNA-functionalized cells.

Staple strand	Sequences (5’-3’)
Linker-6HB -30-A	ATTTTCAGAATAACGGACAGATGAACGGAGAAAGAAAATCCT TTTGCAGTGATGTCATAGAGCGCC
Linker-6HB -31-A	ATCAGATTTTTGTTTACTTCTCATAGAGTGCTAGTTAATAAATCTTT TTTGCAGTGATGTCATAGAGCGCC
Linker-6HB -32-A	CTTTTTAACAACCACAACCACATAACGTAACTCGGCTATTAGGAATT GTTGAGACCTTACATAGAGCGCC
Linker-6HB -33-A	ATAACGGGCAGTCTCGGATAAGTGCCGTATGTGTAACAGGAA TTTTGACAGTCTCGGATGTCATAGAGCGCC
Linker-6HB -34-A	TAAATCAAAACGGCGCTTGCCCTGACAGTCTCAACACGTCAA TTTTGACAGTCTCGGATGTCATAGAGCGCC
Linker-6HB -35-A	TCTGGCATTCACAAATAGGTGTATCACATTCTTTATTATTTTT TTTTGACAGTCTCGGATGTCATAGAGCGCC
Linker-6HB -36-A	GAAGATGATTGACACTCAAGAGACCCACGCACTCAGTTTTCTTTT TTTTGACAGTCTCGGATGTCATAGAGCGCC
Linker-6HB -37-A	TTTAACACTCGAGACAGCCCTCTTCTTCTGTAAGCTGCTGCTTT TTTTGACAGTCTCGGATGTCATAGAGCGCC
Linker-6HB -38-A	ACATAAAAGAGCCGCGACCTGACCTGACTGACGGCAACGAGAAT TTTTGACAGTCTCGGATGTCATAGAGCGCC
Linker-6HB -39-A	ACAGAAAGTCAGTGATTATTTCTGAAATACATATATAAAAATAGGTGTATCACATTCTTTATTATTTTT TTTTGACAGTCTCGGATGTCATAGAGCGCC
Linker-6HB -40-A	ATCGTCGAAATATGCATATGACATTCACACATATAATGACCT TTTTGACAGTCTCGGATGTCATAGAGCGCC
Linker-6HB -41-A	ATAGCGAGGTCATATAAGTTTTGTCGTATTTCTAATCAGTTAATT TTTTGACAGTCTCGGATGTCATAGAGCGCC
Linker-6HB -42-A	GAATTTAGGCTTTTTATGATTGGAATTGTTTGATTGACATATCGGCAATT TTTTGACAGTCTCGGATGTCATAGAGCGCC
Linker-6HB	Linker Sequence
-----------	----------------
-43-A	CTCCGGCATCGATAGTGAGAATAGAAAGAGTTGATCGCTTCTTT
-44-A	TGCAAAATACATATTTTTTCACGTGAGCAGTACAGGTGCTGTT
-45-A	CAAATATTGGACGCCACCTTTTTAAATGTATATTTGCTGCTATT
-46-A	TGGTGGCAGGCGAATAATTCCCTCCTTTTGGGATTAT
-47-A	AGAATAAAGGCGAGAAGAAGATTTGACATTGT
-48-A	AGTATCAATCAATAGGCTGAGGATATAGCAGTACGCT
-49-A	ACGCTCAAAGAAAACCTCAGCAGCGAAGGATTGACATG
-50-A	GATGAATTGGGTAAGAAGGATTAGAGTCAAAACACATTT
-51-A	AACGCGAAACGAAAACCTCAGCAGCGAAGGATTGACATG
-52-A	AATAAGAAAAAGAACCTTCATATTACAGGATTGAAACCATGCTTTT
-53-A	GTCCAGCTACTGGCTGCAAGGTGCTGCTGCT
-54-A	ACGCCAGCCCTCATTTTGAACCCCCAGAGGGAGCTGCA
-55-A	ACGCCAGCCCTCATTTTGAACCCCCAGAGGGAGCTGCA
-56-A	AATAATATAAGGACAAACGGGATTGAAACCATGCTTTT
-57-A	AATAATCTACTGACCGTGAGCTCGTCAAGAGCAACCGGCA
-58-A	AAACCAAACGTGAC ACATCATGATAGGAGAAGCTGCTGCTG
-59-A	CCAACTTTTAAGGACTGTTTGGCCGAGTGCAGCGCGGCTTTT
-60-A	GACATAGGCCAACACCCGAAATCGGCAAAAGCGGTCCAAGCA
-61-A	ACCGGATAGGACGTAGATGGGTGAGTGAGAAACCGGAG
-62-A	TTCAGTGTCTTTTATGATAGGAGTGGGACTGAGGGCTTG
-63-A	TAAATTTTTTATATATTTTATGTATGATAGGAGTGGGACTGAGGG
-64-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-65-A	TTCAGTGTCTTTTATGATAGGAGTGGGACTGAGGGCTGC
-66-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-67-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-68-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-69-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-70-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-71-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-72-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-73-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-74-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-75-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-76-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-77-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-78-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-79-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-80-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-81-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-82-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-83-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-84-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-85-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-86-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-87-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-88-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-89-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-90-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-91-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-92-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-93-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
-94-A	TTTGCTGTTTTCAGTACTAAGGGCTGC
Linker-6HB -95-B	CCCTCAGAAAAAACAGGCATCAAAAAATAAATACTAATTACATTTGCTGTTGTTGACTAAGCGTCG
------------------	--
Linker-6HB -96-B	ATAGGAAAAACATTTTTGTTATCAACATTAATAGGAGCAAACAGTTTCTAGTTTGCTGGTTGACTAAGCGTCG
Linker-6HB -97-B	CAAAATATTCATCTTCCGTGGGAACAAAACAGCTTCTGATTTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -98-B	TTAGCGTTGAAAAAGCACTTCTTCTGTTGAGACAAATATTTGAAAAACAGTTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -99-B	GTAATGGTCAATAAGTTTCTGAGGGGAGCAAGGAGCAAGGAGCTTCTGATTTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -100-B	ACGTTTTACGAGTACTCAGCCAGCTGTGCTAATGACTTTTACTTTCTGTTGTTGACTAAGCGTCG
Linker-6HB -101-B	ATTAGGAAAAGCAATTTCATCAACATTAATAGGAGCAAACAGTTTCTGATTTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -102-B	AAGGCTCTAGCTCAGGCGGTACCTGCTTAACTGACTTTTTACTTTCTGTTGTTGACTAAGCGTCG
Linker-6HB -103-B	TGCTTCTTTTGGGAAAGGGGATGTTGGAATACGAAATTTAATTTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -104-B	GGGCTGAGATATCCGATATCAGCTCAGTTAAATACTATGAGGAGCGCAGTTTCTGTTGTTGACTAAGCGTCG
Linker-6HB -105-B	TGCGCCGATTAGAGGAAGGCGCCATTTACCCAAATGCTTCTGCTTAAATATTTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -106-B	ATATCGTTTCAAGCAAGCCTTTTGCACTGCTGGCAGGACTGGTTTACTTTCTGTTGTTGACTAAGCGTCG
Linker-6HB -107-B	TGGCGGAAAGGAAGCTACGACGCTCAGCACTCTACATTAAAGCCAATTTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -108-B	GAGGGTAAATTAGTGTAATGTTGAAATGTTAATTACGCGCATTTAACCTTTTCTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -109-B	TTTTCTACGGAATCCTCGCAAGCAATTACCTGACTACACCTTTTCTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -110-B	CCACTACATTTCATTGCTAACTACATTTATTACTTTCTTTTTTTTCTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -111-B	TACACTATTTTAGACAGTGCTGGGAACACTTGTTAAAGATGCAAGTTTGGCTGTTGTTGACTAAGCGTCG
Linker-6HB -112-B	GCGCGAATTTTGCAAACGCGCGGAAAGACAGAAATCCAAGAAATTTGCTGTTGTTGACTAAGCGTCG
Linker-6HB -113-B	AAATTGTCTCGTTTTTCTTTTTTCGGACAGACCAATCTTCTGGCTGTTGTTGACTAAGCGTCG
Linker-6HB -114-B	GGAACGGAAAGGAATTTCACCAGGCTGGCGCCGCTATAAGGGTGATTTTTGGTGGTTGACTAAGCGTCG
Linker-6HB -115-B	TGCTCAGAGGGTGTAATAATCAAGAAAGCCACCAGAAAGAACATTTGCTGTTGTTGACTAAGCGTCG
For construction of DONs monomer, staple strands 6HB-5, 6HB-7, 6HB-53, 6HB-138, 6HB-146, and 6HB-151 were used, and DONs oligomer was assembled with replacing 6HB-5-poly, 6HB-7-poly, 6HB-53- poly, 6HB-138- poly, 6HB-146-poly, and 6HB-151- poly, respectively.

For cell conjugation, additional "TTTTGCAGTGAAGTACAGCGC"(5'-3') sequence was in "Linker-6HB-30-A" to "Linker-6HB-58-A" and additional "TTTTGCTGTTGTACTAACGTCG"(5'-3') sequence was in "Linker-6HB-87-B" to "Linker-6HB-115-B".

Table S3. DNA sequences for cell surface modification.

ssDNA-A	Chol-TTTTATGACTCACTGC
ssDNA-B	Chol-TTTTAGTCAACACAGC
ssDNA-M	Chol-TTTTTTTTTTTTTTTTTTTTTT
M-Alexa 647	Alexa 647-AAAAAAAAAAAAAAAAAAAAA
DONs-Alexa 647	Alexa 647-TTTTAGTCAACACAGC

The ssDNA-A and ssDNA-B were hybridized with Linker-6HB-XXX- A and B (shown in Table S2) for cell conjugation. ssDNA-M and M-Alexa 647 was used to verify chol-DNA anchoring on cell membranes. DONs-Alexa 647 was used to verify DONs anchoring on cell membranes.