ABSTRACT. Modern biology requires modern genetic concepts equally valid for all discovered mechanisms of inheritance, either “canonical” (mediated by DNA sequences) or epigenetic. Applying basic genetic terms such as “gene” and “allele” to protein hereditary factors is one of the necessary steps toward these concepts. The basic idea that different variants of the same prion protein can be considered as alleles has been previously proposed by Chernoff and Tuite. In this paper, the notion of prion allele is further developed. We propose the idea that any prion allele is a bimodular hereditary system that depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). Alteration of any of these 2 determinants may lead to establishment of a new prion allele. The bimodularity principle is valid not only for hereditary prions; it seems to be universal for any epigenetic hereditary factor.

KEYWORDS. amyloid, conformational template, epigenetic inheritance, prion, prion strain, prion variant, the bimodularity principle

INTRODUCTION

All fundamental genetic terms (gene, allele, genotype, mutation, recombination, etc.) were introduced just to describe genetic phenomenology and initially lacked any relation to certain types of biomolecules. After the genetic role of DNA had been demonstrated,1,2 it has
been strongly believed that all hereditary factors were represented by DNA, and that DNA sequencing was enough to unravel the origin of any hereditary differences in any species. As a result, all genetic terms became associated with specific processes affecting DNA sequences. Discovery of epigenetic, especially protein, inheritance opened a new era in biology and raised a lot of problems in genetic concepts. The fundamental genetic terms became fuzzy and thus called for reconsideration (for a review see refs. 3-5). Modern biology requires modern genetic concepts valid for all discovered mechanisms of inheritance, either “canonical” (mediated by DNA sequences) or epigenetic. One of the most intriguing epigenetic phenomena is protein inheritance, the field of genetics where hereditary factors are represented by proteins.

Currently, the scope of phenomena related to protein inheritance includes positive feedback by means of transcription factors,6-9 cortical inheritance,10 centriole inheritance,11 and hereditary prions.12,13 The latter are of special interest, because different variants (strains) of some hereditary prions have been disclosed (for a review see refs.14-17). Each of these variants is a discrete hereditary factor and should be described in basic terms of general genetics; so, it is not surprising that prions are sometimes viewed as “protein genes.”18-20 Moreover, prionization, as well as prion curing, are considered as “protein mutations,” and different variants (native and amyloid) of the same prion protein are called alleles.21 In a recent issue of Seminars in Cell and Developmental Biology, different variants (native and amyloid) of the same prion protein were called alleles, and conversion of the [prion−] state to the [PRION+] state was designated as “protein paramutation.”22 The term “paramutation” is used when one allele is epigenetically converted after its presence in a heterozygote with another allele. Thus, the process of applying basic genetic terms for protein hereditary factors has begun, and it is one of the key conditions necessary for the establishment of modern genetic concepts. Along the same lines of reasoning, we will consider different variants of the same hereditary prion as prion alleles. Current data concerning hereditary prion alleles are very complex and strongly need generalization. The aim of this paper is not to scrutinize the details, but to review the basic principles underlying hereditary prion alleles.

Molecular Basics of Hereditary Prions

The term “prion” was introduced to designate a small proteinaceous infectious particle produced by the PrP protein in mammals.23,24 Prion infectivity is based on prion self-perpetuation via changing the native protein isoform into the prion one, and newly appearing prion particles can be transmitted from one organism to another.25 Taking into account the fact that in animals prions form only in somatic tissues, which do not transfer their properties to the descendants originating from the generative cells, prions had been considered as infectious agents only until 1994. Later, discovery of prions in some fungi substantially changed the initial paradigm: fungal prions are usually heritable as well.26 In this review we will focus exactly on hereditary prions.

Currently, at least 4 molecular mechanisms underlying hereditary prion phenomenon are known: switch from native to amyloid conformation, positive feedback through protein phosphorylation by the MAPK-cascade, reproducible alterations in quaternary protein structure, and positive feedback through alterations in primary protein structure (Table 1). The first one has been extensively reviewed elsewhere (for a review see refs. 13,27-29), and therefore will be mentioned here just briefly.

Switch from Native to Amyloid Conformation

The term “amyloids” means non-covalent protein aggregates that (i) form unbranched fibrils, (ii) possess cross-β-structures, and (iii) have a core region extremely resistant to hydrogen/deuterium exchange, proteases, and chemical denaturation.30 All the above mentioned amyloid properties have been proven for several hereditary prions, at least in vitro.
TABLE 1. Molecular mechanisms underlying formation and reproduction of hereditary prions.

Mechanism	Prion	Protein determinant	Phenotypic effect	Organism	Refs.
Switch from native to amyloid conformation	[URE3]	Ure2	Alteration of nitrogen metabolism	*S. cerevisiae*	26
	[PSI']	Sup35	Nonsense suppression	*S. cerevisiae*	26,48
[Het-s]	Het-s		Heterokaryon incompatibility in fuses with Het-S mycelium	*P. anserina*	103
[PIN']	Rnq1		Induction of [PSI'] de novo formation	*S. cerevisiae*	73
[SWI']	Swi1		Alteration of carbon metabolism	*S. cerevisiae*	104
[MOD']	Mod5		Drug resistance and cell survival under environmental stress	*S. cerevisiae*	38
Positive feedback through protein phosphorylation	C	PaMpk1 cascade	Crippled growth	*P. anserina*	53
Reproducible alterations in protein quaternary structure	[GAR']	Pma1 and Std1	Heritable switch in carbon source utilization	*S. cerevisiae*	57
Positive feedback through alteration in protein primary structure	[β']	PrB1	Constant activity of protease B	*S. cerevisiae*	59
Amyloid prion aggregates are self-perpetuating because they induce conformational switch of a certain protein from its native to amyloid isoform, thus templating their own reproduction. Different amyloid templates can be produced on the base of the same native isoform (for a review see ref. 13). This phenomenon is in good agreement with the fact that the same amyloid prion exists in multiple alleles differing from each other in their manifestation.14-17

Heredity of amyloid prions is based on 3 processes (Fig. 1). The first is prion reproduction: a monomeric native protein interacts with a preexisting aggregate, changes its own conformation and incorporates into the amyloid fibril. As a result, the fibril elongates. The second process is prion multiplication: the growing fibril is cleaved into fragments, producing aggregate seeds called propagons.40 In most cases, cellular chaperone machinery performs this function; for instance, in the Saccharomyces yeast, the major role belongs to Hsp104 (for a review see ref.13). The third process is prion inheritance. It is based on prion seed transmission from a cell to its progeny during cell division, mating, or hyphae conjugation.

Infectivity of fungal amyloid prions is typically provided by propagon transmission through cytoduction or local anastomoses. Moreover, it can be modeled using protein transformation with *in vitro* obtained prion aggregates or cellular lysates from a [PRION+] strain.41-43 Recently, it has been also proposed that propagons can be transmitted from cell to cell by extracellular vesicles.44

The most extensively studied amyloid hereditary prion is [PSI+], an aggregated form of Sup35p in *Saccharomyces cerevisiae*.14 In its native conformation, this protein is soluble and functions as a component of the translational termination machinery.45,46 Under some rare events with frequency about 10^{-7} per cell,47 it switches to atypically stable conformation, and the altered molecules are incorporated in the amyloid (for a review see ref. 39). When such aggregate interacts with the native Sup35 molecules, it converts them to the prion isoform too, and thus reproduces. Multiplication of this prion depends on Hsp104, which cleaves aggregates.39 [PSI+] is effectively transmissible through cytoduction, and is stably heritable both

FIGURE 1. Main processes underlying heredity of amyloid prions. Mother cell and developing bud are separated by dashed line.
mitotically and meiotically. It decreases the efficiency of translation termination and behaves as a non-Mendelian nonsense suppressor. Multiple \([PSI^+]\) alleles distinct in their suppressor efficiency, mitotic and meiotic stability, the proportion of aggregated Sup35p, the number of aggregates per cell, and some other features are described (for a review see refs. 14,15,17,40,49,50). Formation, heritability and elimination of \([PSI^+]\) depend on various genetic and environmental factors thoroughly discussed in prion literature (for a review see refs. 13,27-29).

About a dozen of other amyloid hereditary prions are known in yeasts and \textit{Podospora anserina}. The amyloid domains in these prions are non-homologous, and even distinct in their physical characteristics: some of them are N/Q rich, but others are not (for a review see refs. 12,13,18), so, the details of amyloid prionization seem to be specific in each case. Amyloid prions have been also described in mammals (for a review see ref. 51), but here they are only infectious, not heritable.

Positive Feedback Through Protein Phosphorylation by the MAPK-Cascade

This mechanism has been described in the filamentous fungus \textit{Podospora anserina}. The MAPK-cascade is a regulatory phosphorylation system typical for all eukaryotes and comprising 3 sequentially functioning protein kinases: MAPKKK, MAPKK and MAPK, where MAPK is phosphorylated by MAPKK which in turn is a target for MAPKKK (for a review see ref. 54). \textit{P. anserina} possesses 3 autonomous MAPK pathways: PaMpk1, PaMpk2 and PaMpk3. Activation of the PaMpk1 pathway results in crippled growth, i.e. in formation of poorly growing female-sterile pigmented flat mycelium. This phenotype is infectious, and its molecular basic is designated as the \(C\) prion. \textit{PaMpk1} is normally activated during stationary phase and ceases after return to growth; such activation is infectious through local anastomoses for normal recipient strains, but is not heritable within the initial mycelium. However, when this pathway is occasionally triggered during the growth phase, it undergoes self-activation (molecules in the ON state activate those in the OFF state) and appears to be both infectious and mitotically heritable (Fig. 2A). So, at least 2 different forms of \(C\) are currently known: one is both infectious and mitotically heritable, and the other is only infectious.

It is unclear which element of the \(PaMpk1\) pathway directly corresponds to \(C\). \(C\) manifestation requires all 3 genes of the pathway (\textit{PaASK1}, \textit{PaMKK1}, and \textit{PaMPK1}) and can be induced in the normally growing mycelium when any of them is overexpressed. So, it is possible that \(C\) is determined by the state of the \(PaMpk1\) pathway as a whole, and not by the state of a certain protein kinase.

\(C\) inheritance in the growing mycelium requires not only the \(PaMpk1\) pathway, but also increased translational accuracy and some genes encoding NADPH oxidases. Moreover, \(C\) can be cured by various stresses, including heat, UV light, some antibiotics, and high concentrations of sucrose. The exact mechanisms of these effects are still obscure, but the appearance and the dissipation of \(C\) are undoubtedly under complex genetic, developmental and environmental control. The difference between \(C\) produced during the growing and the stationary phases is of special interest: the first is both infectious and heritable, while the second is only infectious.

Up to date, \(C\) remains the only known example of heritable unit caused by post-translational protein modification. However, since protein-based inheritance has been discovered just recently, other examples are possible. Theoretically, they can be determined by various types of protein modification, not only phosphorylation.

Reproducible Alterations in Quaternary Protein Structure

The unique example of this mechanism known so far has been described in the \textit{Saccharomyces} yeast. It involves the complex of 2 non-homologous proteins: Pma1, an essential highly abundant P-type ATPase, and Std1, a
component of the Snf3/Rgt2 regulatory pathway. Normally, Pma1 is associated mostly with the Std1 paralog Mth1. When Pma1 preferable interaction occasionally shifts from Mth1 to Std1, an abnormal protein complex designated as prion $[\text{GAR}^+]$ forms and reproduces (Fig. 2B).57 Recently, it has been shown that $[\text{GAR}^+]$ is also induced by the presence of unknown bacterial chemical factors.58 In the $[\text{GAR}^+]$ cells, glucose repression is modified: these cells can grow in glycerol in presence of non-metabolizable glucose analog, glucosamine.57 This phenotype is transmissible via cytoduction, and is steadily inherited both mitotically and meiotically. $[\text{GAR}^+]$ formation is enhanced under STD1 or PMA1 overexpression, while MTH1 overexpression leads to the opposite effect. After $[\text{GAR}^+]$ is established, it can be reversibly cured by transient lack of Hsp70 proteins Ssa1 and Ssa2. Moreover, $[\text{GAR}^+]$ is totally cured when both STD1 and the N-terminus of PMA1 are deleted, but it reproduces in case only one of them is absent.57 Thus, the exact molecular mechanism of $[\text{GAR}^+]$ manifestation is unknown to date.

Positive Feedback Through Alterations in Primary Protein Structure

In all above mechanisms, the differences between the native and prion states do not affect primary protein structure. $[\beta^+]$, a self-activating form of yeast protease B, is the unique example of the opposite situation.59 Protease B (PrB) is derived from a large catalytically inactive zymogene encoded by the PRB1 gene and undergoes several steps of maturation.60 At final steps, the zymogene is truncated by protease A (PrA) and then by PrB itself: the mature molecules truncate the
immature ones, thus producing a positive feedback loop.61

The effectiveness of this loop depends on several genetic and environmental factors. On YPAD medium, PrB self-activation is PrA-dependent.62 As a result, deletion of \textit{PEP4} (the gene coding for PrA) leads to gradual decrease and eventual loss of active PrB; however, this loss is delayed, and the residual PrB activity lasts at least for 20 mitotic divisions. This effect is called “phenotypic lag.”63 On YPG medium, PrB is autonomous and does not require PrA activity; so, the cells display steady PrB self-activation even when \textit{PEP4} is deleted. When such cells are transferred to YPAD, they eventually lose active PrB and fail to restore it after return to YPG (strictly speaking, the restoration is possible, but it requires \textit{PRB1} overexpression). Thus, when \textit{PRB1} is normally expressed, 2 kinds of cells having exactly the same DNA background and differing only in their PrB state can be obtained on YPG medium: PrB positive ([\(\beta^+\)]) and PrB negative ([\(\beta^-\)]).59

[\(\beta^+\)] is stably heritable in both mitotic and meiotic generations, and can be effectively transmitted by cytoduction. So far, it is the unique hereditary factor reproducing through protein primary structure changes.

\textbf{The Bimodularity Principle of Hereditary Prion Alleles}

According to conventional criteria, hereditary prions are (i) non-Mendelian elements, (ii) reversibly curable by anti-prion agents, (iii) depending on the corresponding gene, and (iv) capable to appear \textit{de novo} when this gene is overexpressed.26 The third point is of special importance for us. It means that allelic hereditary prions obligatorily depend on the same gene, and here is the way to uncover their allelism. For example, no \textit{[URE3]} allele can be reproduced under the lack of the \textit{URE2} gene, and hereby any of them is quickly lost.26 So, all hereditary prions which are irreproducible in this DNA background should be considered as \textit{[URE3]} alleles.

Without taking the fourth criterion into account, dependence on the same gene does not guarantee prion allelism yet: non-allelic hereditary prions may require the same molecular function for their multiplication, as in case of \textit{[PSI+]}, \textit{[PIN+]}, and \textit{[URE3]}, which are lost under \textit{HSP104} deletion (for a review see ref. 13). Therefore, to prove that certain hereditary prions are allelic to each other, both the third and the fourth criteria should be met. This approach is successful even for those prion alleles which significantly differ in their manifestation, like strong \textit{[PSI+]} and \textit{[ETA+]}.59

It is obvious from the above criteria that to perpetuate a certain \textit{[PRION+]} allele, 2 kinds of molecular structures are required: (i) the protein structure (chemically modified, truncated or conformationally altered) as a seed, and (ii) the corresponding DNA sequence, otherwise the prion will not be reproduced due to the lack of the necessary protein. So, a \textit{[PRION+]} allele is a bimodular hereditary system that depends on the certain DNA sequence (DNA determinant) and the certain epigenetic mark (epigenetic determinant). The first encodes the prion protein sequence, while the second describes the state of this material, and both affect prion functions and evolution.64 Notably, the presence of a certain \textit{[PRION+]} allele in a cell does not mean that all molecules of the corresponding protein are transformed into the prion state: some portion of the native protein is also retained.65-67 So, the symbol \textit{[PRION+]} signifies the availability of specific epigenetic mark, which is absent in the \textit{[prion-]} cells.

One can distinguish 3 types of differences between prion alleles. In the simplest case, these differences are solely of epigenetic origin, like between strong and weak \textit{[PSI+]} variants independently produced in the same \textit{SUP35} background.14 Such prion alleles are encoded by the identical DNA determinant and vary just in epigenetic marks. On the contrary, some prion alleles are identical in their epigenetic mark, but differ in the DNA determinant. This is typical to cytoductants with various \textit{SUP35} backgrounds to which the same \textit{[PSI+]} template has been transmitted.20,68 And finally, in most complicated cases, the differences between prion alleles affect both DNA and epigenetic determinants. The 2 distinct \textit{[PSI+]} prion variants are remarkable example: the strong one produced by the normal \textit{SUP35}
molecules, and the weak one induced in the \(SUP35^{PNM2}\) background (hereafter referred as strong [\(PSI^+\)] and [\(VH-1\)], respectively).14,15 The fact that even such prion variants are allelic to each other can be proven by the following simple logic. [\(VH-1\)] is reproducible in the normal \(SUP35\) background.15 This leads to the appearance of a new prion variant with altered DNA determinant but the same epigenetic mark. The new prion variant (it will be designated here as [\(VH-1\)]\textsubscript{new}) is allelic to [\(VH-1\)] since they differ in the DNA determinant only. Meanwhile, [\(VH-1\)]\textsubscript{new} is allelic to strong [\(PSI^+\)]; both are encoded by the same DNA determinant and differ just in epigenetic marks. As a result, [\(VH-1\)] is allelic to [\(VH-1\)]\textsubscript{new}, and [\(VH-1\)]\textsubscript{new} is, in turn, allelic to strong [\(PSI^+\)]; this means that [\(VH-1\)] and strong [\(PSI^+\)] are allelic as well.

Thus, prion alleles are considerably more sophisticated hereditary factors compared with DNA alleles or epialleles. Prion alleles are bimodular: their diversity displays variation in both DNA and epigenetic determinants, and alteration in either of these determinants can result in the appearance of a new prion allele. So, we propose bimodular designation of each prion allele: “DNA determinant [epigenetic determinant].” It should be especially noted that the DNA determinant is not a part of prion allele; its presence in a certain bimodal designation just definitely describes the corresponding protein sequence.

Usually both determinants of a certain prion are represented by a set of multiple variants, and each combination corresponds to a potential prion allele. This diversity is restricted by cell lethality or prion loss in specific combinations (see below). Some prion alleles are distinct in their manifestation, while some are phenotypically indistinguishable from each other, like DNA sequences with synonymous polymorphism.

Implications of the Bimodularity Principle for the [\(PSI^+\)] Prion

As noted above, [\(PSI^+\)] exists in multiple alleles distinct in their mitotic and meiotic stability, nonsense-suppressor efficiency, the proportion of aggregated Sup35p, the number of propagons per cell, and some other properties. In addition, the absence of the prion particles is considered as a null-allele, [\(psi^-\)]. The aim of the following sections is to overview the principal variety of prion alleles and potential types of their interactions on the example of the [\(PSI^+\)] prion.

Prion Alleles Corresponding to the [\(psi^-\)] State

We propose to distinguish 3 classes of [\(psi^-\)] alleles. The first one corresponds to the reference \(SUP35\) sequence peculiar to laboratory strains (\(SUP35^{ref}\); including known natural polymorphism; for a review see ref. 20) and native Sup35p; in this case, a cell possesses the appropriate DNA determinant but lacks the conformational template (\(SUP35^{ref}[\psi^-]\)). If such null-allele is supplemented with aggregated Sup35p of a normal protein sequence (\(SUP35^{ref}[PSI^+]\)), it undergoes epigenetic conversion to the [\(PSI^+\)] state. Depending on which conformational template is transmitted (strong or weak, [\(PSI^+\)]\textsubscript{S} or [\(PSI^+\)]\textsubscript{W}, respectively), the initial null-allele can be converted to different \(SUP35^{ref}[PSI^+]\) alleles (for a review see ref. 69). Various [\(PSI^+\)] templates with altered protein sequence are also reproducible in the \(SUP35^{ref}\) background and provide epigenetic conversion of \(SUP35^{ref}[\psi^-]\) as well.15,20 At least one exception is currently known: \(SUP35^{ref}\) fails to reproduce [\(PSI^+\)] with the double substitution Q89K,Q90K.70 Thus, \(SUP35^{ref}[\psi^-]\) is convertible to the [\(PSI^+\)] state by many but not all conformational templates.

Another class of [\(psi^-\)] alleles lacks both the conformational template and the DNA determinant. To be clear, \(SUP35\) is essential and therefore cannot be deleted as a whole; however, the N-terminal region of Sup35p does not affect viability but is required for the Sup35p prionization.71,72 So, the N-truncated \(SUP35^{3N}\) (\(SUP35^{3N}\) is insufficient for [\(PSI^+\)] formation and will be further referred as the DNA N-determinant absence. When \(SUP35^{3N}[\psi^-]\) is
supplemented with any $[\text{PSI}^+]$ through cytoduction or protein transformation, the transmitted prion particles do not receive the material for growth and therefore are not reproduced. As a result, the $\text{SUP35}^\text{DN}[\text{psi}^-]$ alleles are per se epigenetically convertible.

The difference between the $\text{SUP35}^\text{ref}[\text{psi}^-]$ and the $\text{SUP35}^\text{DN}[\text{psi}^-]$ alleles is also evident by their ability to revert to the $[\text{PSI}^+]$ state. $\text{SUP35}^\text{ref}[\text{psi}^-]$ undergoes spontaneous reversions to $\text{SUP35}^\text{ref}[\text{PSI}^+]$, and these events are strongly enhanced under the DNA N-determinant overexpression. The reversion mechanism is still obscure; it admittedly relates to stochastic shifts from the native Sup35p conformation to the amyloid one, and another amyloid prion, $[\text{PIN}^+]$, is required as an initial template for Sup35p aggregation. Usually, various $\text{SUP35}^\text{ref}[\text{PSI}^+]$ alleles can arise on the same $\text{SUP35}^\text{ref}[\text{psi}^-]$ background; so, the shift to the amyloid conformation may occur in several alternative ways, with some distinctions in the eventual folding (for a review see ref. 13). On the contrary, $\text{SUP35}^\text{DN}[\text{psi}^-]$ is completely irreversible because of the lack of the DNA N-determinant.

In the third, intermediate, class of $[\text{psi}^-]$ alleles, the DNA N-determinant is present, but its sequence is altered compared with SUP35^ref due to point mutations or local deletions (SUP35^alt). To the best of our knowledge, all $\text{SUP35}^\text{alt}[\text{psi}^-]$ alleles published so far are reversible. Moreover, they are epigenetically convertible to the $[\text{PSI}^+]$ state, but specific conformational templates are usually required. One of the most famous examples is $\text{SUP35}^\text{PNM2}[\text{psi}^-]$: although it is able to form and perpetuate several specific conformational templates, it leads to loss of some $\text{SUP35}^\text{ref}[\text{PSI}^+]$. Similar features are characteristic to $[\text{psi}^-]$ alleles with sup35-M1 (Y46K/Q47K) or sup35-M2 (Q61K/Q62K) affecting the first and the second oligonucleotide repeats in the DNA N-determinant respectively.

Inability of a certain $\text{SUP35}^\text{alt}[\text{psi}^-]$ allele to undergo epigenetic conversion by particular $[\text{PSI}^+]$ templates may also be due to lethality of these combinations. For example, sup35-2 is lethal with atypical $[\text{PSI}^+]$ initially called $[\text{ETA}^+]$ but is compatible with $\text{SUP35}^\text{ref}[\text{PSI}^+]$. The point T341D mutation which affects the C-terminal region of Sup35p causes lethality with $\text{SUP35}^\text{ref}[\text{PSI}^+]$; however, the lethal effect is ceased when the DNA N-determinant is absent or unable to provide prionization. Thus, the features of the prion alleles are conditioned by both N- and C-terminal regions of Sup35p. In theory, some completely irreversible and convertible $\text{SUP35}^\text{alt}[\text{psi}^-]$ alleles may exist, but none has been discovered so far.

Prion Alleles Corresponding to the $[\text{PSI}^+]$ State

A certain $[\text{PSI}^+]$ allele is the bimodal system where native Sup35p molecules involved in $[\text{PSI}^+]$ reproduction are encoded by a certain DNA determinant. So, by indicating this determinant for a $[\text{PSI}^+]$ allele, we give definite description of the prion protein sequence. For example, $\text{SUP35}^\text{ref}[\text{PSI}^+]$ designates a $[\text{PSI}^+]$ allele in which prion particles are produced by the Sup35p molecules with reference protein sequence. Since different conformational templates can be derived from the same DNA determinant, additional specifying notes, like $\text{SUP35}^\text{ref}[\text{PSI}^+]^\text{D}$ or $\text{SUP35}^\text{alt}[\text{PSI}^+]^\text{W}$, are required. Also, in some SUP35 backgrounds encoding only the N-domain of Sup35p (for example, SUP35^J with additional SUP35^DN to provide viability), all $[\text{PSI}^+]$ templates become undifferentiated, $[\text{PSI}^+]^\text{U}$.69

In most well-studied $[\text{PSI}^+]$ alleles, the DNA determinant is SUP35^ref. Such alleles may significantly differ in their properties. All distinctions are conditioned here by conformational templates specificity. SUP35^alt alleles with the SUP35^alt DNA determinant are also known, and they are strongly variable depending on both determinants.

Interaction Between Different $[\text{psi}^-]$ Alleles

If a diploid cell has got 2 different $[\text{psi}^-]$ alleles from the parent strains (similar situation can be modeled in a $[\text{psi}^-]$ haploid carrying 2 distinct copies of SUP35), these null-alleles
should interact with each other with respect to their reversibility to the \([\text{PSI}^+]\) state. Depending on the combined null-alleles, the results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.

In the simplest cases, clear dominance is expected. For instance, when one null-allele is reversible and another is irreversible (\(\text{SUP35}^{\Delta N}[\psi^-]\)), the first should dominate over the second. However, this effect cannot be detected in common way through arising of colonies with \([\text{PSI}^+]\)-mediated nonsense suppression, since N-truncated Sup35p is never included in the prion particles and thus provides adequate termination at nonsense codons.69

Dominance may also take place when each null-allele is reversible alone, but one of them has PNM ("psi-no-more") manifestation. Indeed, if this effect of a certain \([\text{PSI}^+]\) has PNM ("psi-no-more") manifestation. null-allele is reversible alone, but one of them manifestations. tetrad analysis typically gives non-Mendelian results of interaction may be diverse. We will focus just on several examples.
If the combined $[\text{PSI}^+]$ alleles differ in their DNA determinants but possess the same conformational template (like $\text{SUP35}^{\text{PNM2}[\text{VH-1}]}$ and $\text{SUP35}^{\text{ref}[\text{VH-1}]}$), 3 types of the prion particles should be produced. Two of them correspond to the initial $[\text{PSI}^+]$ alleles, and the third is mosaic; its amount depends on the efficiency of cross-templating. In tetrad analysis, the ascospores produced by such hybrids should contain a mixture of different $[\text{PSI}^+]$ particles, but further, at the level of growing colonies, clear 2 : 2 ratio must be established, reflecting meiotic segregation of the DNA determinants. Here, the initial $[\text{PSI}^+]$ alleles behave like classical Mendelian hereditary factors.

In most complicated cases, when the combined $[\text{PSI}^+]$ alleles differ from each other in both DNA and epigenetic determinants, various types of interaction are theoretically possible (Fig. 3). They include (i) stable coexistence of the initial $[\text{PSI}^+]$ alleles (Fig. 3A), (ii) appearance of mosaic particles and “recombinant” $[\text{PSI}^+]$ alleles in addition to the initial ones (Fig. 3B), and (iii) competition between the initial and/or recombinant $[\text{PSI}^+]$ alleles leading to eventual loss of the weakest one(s) (Fig. 3C). Depending on the type of these interactions in certain diploid, the results of tetrad analysis may differ.

Combination-Specific Interplays Between the DNA and Epigenetic Determinants in the $[\text{PSI}^+]$ Cells

Three types of such interplays are currently described. First, some combinations are lethal; 49,77
the mechanism of this phenomenon is still under discussion (for a review see ref. 79).

Second, in some combinations, the [PSI+] particles are eventually lost, although the DNA determinant is quite appropriate for other [PSI+] templates. The most famous example is elimination of certain SUP35ref[PSI+] alleles in the SUP35P/NM2 background.15,70,74,75,80,81 Interestingly, the “reciprocal” combinations are quite stable: overproduction of SUP35P/NM2 alleles, templates of which are efficiently reproduced by SUP35ref.15

In theory, combination-specific [PSI+] loss may also occur due to positive selection of the [psi-] state: if the [PSI+] state is both unstable and lethal, only the [psi-] derivates should survive, and the resulting cell culture will be totally cured. So, the second type of the interplays may be provided by different mechanisms.

Third, the interplay can lead to [PSI+] template modification. For instance, the double substitution Q80K,Q81K significantly strengthens the template of SUP35ref[PSI+], and this effect is preserved even after prion transmission to the initial SUP35ref background. The double substitution Q89K,Q90K gives an opposite effect (sup35-M5 mutation). Notably, the conformational template of the resulting sup35-M5[PSI+] allele fails to reproduce on the initial SUP35ref background, thus manifesting the second type of the interplays.70,82 So, transmission of a certain [PSI+] allele from one DNA determinant to another and back is sometimes not a “true reversion.”

In the third type of the interplays, each combination of the DNA and the epigenetic determinants, when isolated in a single cell, may behave as a separate prion allele. However, in the first and the second types, the corresponding combinations per se are not prion alleles because of their inability to perpetuate in the progeny due to either lethal effect or [PSI+] to [psi-] conversion.

Non-Multiplied or Non-Reproduced States of [PSI+] Alleles

Under the lack of Hsp104 chaperone function (for example, during GuHCl treatment or in strains with HSP104 deletion), the [PSI+] particles are not multiplied, and fail to produce new prion seeds.39,40,83,84 As a result, the non-multiplied [PSI+] particles (we propose to designate them by subscript, [PSI+]\textsubscript{M-}) are progressively diluted in cell divisions, and after approximately 15 cell cycles the overwhelming majority of the mitotic progeny is cured.40,84,85 But the residual amyloid fibrils do not vanish: due to continuous Sup35p aggregation, they become extra long and usually remain in the mother cell because of asymmetric division in the *Saccharomyces* yeast.86 However, the initial [PSI+] allele appears to be intact, and may be multiplied and inherited after Hsp104 function is restored.40,84,85 Thus, the [PSI+]\textsubscript{M-} particles are hereditary factors, which retain their allelic specificity and can be potentially rescued for the progeny. We should also mention that [PSI+] multiplication depends on the balance between various cellular chaperones, and any disturbance of this machinery may have remarkable consequences on the prion properties.87-92

In theory, the [PSI+]\textsubscript{M-} state may exist even under normal chaperone function. This state could be characteristic to SUP35 mutants in which the produced prion particles are not amenable for chaperone-mediated cleavage as a result of some defects in the Sup35p N-terminal region. However, such mutants are still unknown. And even if they do exist, the corresponding particles should be quickly cleared from the culture due to infinite enlargement and poor heritability.

Another atypical state of [PSI+] alleles can be obtained when the prion particles are transmitted to a cell lacking both Hsp104 function and the DNA N-determinant. Under these conditions, when the [PSI+] particles are neither reproduced nor multiplied ([PSI+]\textsubscript{R-M-}), the overwhelming majority of the mitotic progeny should be SUP35ΔN[psi-], while some cells can retain a single or few prion particles. The [PSI+]\textsubscript{R-M-} amyloid fibrils do not enlarge and thus are potentially heritable. They can be rescued through cytoduction to a SUP35ref recipient with normal Hsp104 function.

The non-reproduced state of a [PSI+] allele resembles “canonical” DNA allele in a non-replicative plasmid: both will be
TABLE 2. Proposed abbreviations of prion alleles, their determinants, alterations and states on the example of prion $[\text{PSI}^+]$.

Described parameter	Designation (a)	Genetic notion
DNA determinants	SUP35^ef	Reference SUP35 sequence typical for laboratory strains, with natural polymorphism
	SUP35^N	SUP35 sequence differing from SUP35^ef due to point mutations or local deletions (for example, SUP35^PMME)
	SUP35^N	SUP35 sequence lacking the N-domain coding region
Epigenetic determinants	[psi^-]	Absence of Sup35p amyloid state (prion null-allele)
	[psi^+]	Presence of Sup35p amyloid state
	[psi^+]	Presence of conformational template corresponding to a strong prion variant
	[psi^-]	Presence of conformational template corresponding to a weak prion variant
Prion alleles	$\text{SUP35}^\text{ef} [\text{PSI}^+]$	[PSI^+] allele encoded by SUP35^ef
	$\text{SUP35}^\text{N} [\text{PSI}^+]$	[PSI^+] allele encoded by SUP35^N
	$\text{SUP35}^\text{ef} [\text{psi}^-]$	Prion null-allele encoded by SUP35^ef
	$\text{SUP35}^\text{N} [\text{psi}^-]$	Prion null-allele encoded by SUP35^N
Alterations of prion alleles	$\text{SUP35}^\text{ef} [\text{psi}^-] \rightarrow [\text{PSI}^+]$	Alteration of a $\text{SUP35}^\text{ef} [\text{psi}^-]$ allele due to $[\text{PSI}^+]$ induction or epigenetic conversion
	$\text{SUP35}^\text{ef} [\text{psi}^-] \rightarrow [\text{PSI}^+]$	Alteration of a $\text{SUP35}^\text{ef} [\text{psi}^-]$ allele due to $[\text{PSI}^+]$ induction or epigenetic conversion
	$\text{SUP35}^\text{ef} [\text{psi}^-] \rightarrow [\text{PSI}^+]$	Prion null-allele induction in a $\text{SUP35}^\text{ef}[\text{PSI}^+]$ cell via prion curing
	$\text{SUP35}^\text{ef} [\text{psi}^-] \rightarrow [\text{PSI}^+]$	Prion null-allele induction in a $\text{SUP35}^\text{ef}[\text{PSI}^+]$ cell via prion curing
	$\text{SUP35}^\text{ef} [\text{psi}^-] \rightarrow [\text{PSI}^+]$	Alteration of a $[\text{PSI}^+]$ allele via replacement of SUP35^ef with SUP35^ef by transformation or cytoduction (b)
	$\text{SUP35}^\text{ef} [\text{psi}^-] \rightarrow [\text{PSI}^+]$	Alteration of a $[\text{PSI}^+]$ allele via replacement of SUP35^ef with SUP35^ef by transformation or cytoduction (b)
	$\text{SUP35}^\text{ef} [\text{psi}^-] \rightarrow [\text{PSI}^+]$	Double alteration of the $\text{SUP35}^\text{ef}[\text{PSI}^+]$ or $\text{SUP35}^\text{ef}[\text{PSI}^+]$ allele after its transmission to the SUP35^ef background: replacement of the DNA determinant and differentiation of the $[\text{PSI}^+]$ template
	$\text{SUP35}^\text{ef} [\text{psi}^-] \rightarrow [\text{PSI}^+]$	Double alteration of the $\text{SUP35}^\text{ef}[\text{PSI}^+]$ allele after its transmission to the SUP35^ef background: replacement of the DNA determinant and spontaneous differentiation of the $[\text{PSI}^+]$ template
Prion allele states	$[\text{PSI}^+]$	Non-reproduced state of a $[\text{PSI}^+]$ allele
	$[\text{PSI}^+]$	Non-reproduced state of a $[\text{PSI}^+]$ allele
	$[\text{PSI}^+]$	Non-reproduced and non-multiplied state of a $[\text{PSI}^+]$ allele
Homozygotes	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Homozygote for prion null-allele encoded by SUP35^ef
	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Homozygote for prion null-allele encoded by SUP35^ef
	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Homozygote for prion null-allele encoded by SUP35^ef
	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Homozygote for prion null-allele encoded by SUP35^ef
	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Homozygote for a $[\text{PSI}^+]$ allele encoded by SUP35^ef
	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Homozygote for a $[\text{PSI}^+]$ allele encoded by SUP35^ef
	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Homozygote for a $[\text{PSI}^+]$ allele encoded by SUP35^ef
Heterozygotes (c)	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Heterozygote for different $[\text{psi}^-]$ alleles
	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Heterozygote for a $[\text{PSI}^+]$ allele and inconvertible $[\text{psi}^-]$ allele
	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Heterozygote for 2 $[\text{PSI}^+]$ alleles distinct in their epigenetic determinants (cloud heterozygote) (d)
	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Heterozygote for 2 $[\text{PSI}^+]$ alleles distinct in their DNA determinants (e)
	$\text{SUP35}^\text{ef} [\text{psi}^-]/\text{SUP35}^\text{ef} [\text{psi}^-]$	Heterozygote for 2 $[\text{PSI}^+]$ alleles distinct in both DNA and epigenetic determinants; no cross-seeding (Fig. 3A)
Alterations of initial prion allele combinations		
---	---	
\([\text{PSI}'][[\text{psi}']\rightarrow \text{PSI}']\)	Paramutation in initial \([\text{PSI}'][[\text{psi}']\) heterozygote \(^{(a)}\)	
\([\text{PSI}'][[\text{PSI}']\)	Homozygostisation of the \([\text{PSI}']\) conformational template in initial \([\text{PSI}']\) heterozygote via epigenetic conversion \(^{(b)}\)	
\([\text{SUP35}^{\text{ref}}\text{PSI}']\)	Cross-seeding between 2 \([\text{PSI}']\) alleles distinct in both DNA and epigenetic determinants leads to their recombination. As a result, initial prion alleles coexist with 2 recombinant ones (Fig. 3B)	
\([\text{SUP35}^{\text{ref}}\text{PSI}']\)	Only one of recombinant \([\text{PSI}']\) alleles is stable (Fig. 3C)	
\([\text{SUP35}^{\text{ref}}\text{PSI}']/\text{SUP35}^{\text{alt}}\text{PSI}']\)	Spontaneous \([\text{PSI}']\) loss in initial \([\text{psi}']/\text{PSI}']\) heterozygote	

\(^{(a)}\)The simplest situations are considered. To describe more complicated ones, the proposed designations should be combined appropriately.
\(^{(b)}\)Alteration of a \([\text{PSI}']\) allele due to substitution of the DNA determinant is not a single-stage process. If the new DNA determinant is compatible with the initial conformational template, the prion fibrils become mosaic; they contain 2 Sup35p variants ("old" and "new"), and the portion of the former gradually grows up. This eventually results in complete loss of the "old" Sup35p variant, and from that moment the new \([\text{PSI}']\) allele is established. Notably, the transitional stage between "old" and "new" prion alleles corresponds to classical pre-mutational DNA mismatch where the bases of both "old" and "new" alleles are simultaneously present. The main difference is that in case of prion alleles, the transitional stage is gradual and more prolonged.
\(^{(c)}\)For each type of heterozygotes, only one certain example is shown. If a heterozygote is produced by genetic cross, the first written prion allele is of \(\text{MAT}^a\) parent. If a heterozygote is produced by genetic transformation of a haploid strain, the first written prion allele is encoded by chromosomal DNA determinant.
\(^{(d)}\)Cloud heterozygocity may also occur in a single DNA determinant background \((\text{SUP35}^{\text{ref}}\text{PSI}']\)\(^{(e)}\).
\(^{(e)}\)When 2 \([\text{PSI}']\) alleles have the same epigenetic determinant, the corresponding Sup35p variants may co-aggregate producing a wide spectrum of mosaic fibrils. This situation resembles the transitional stage between 2 prion alleles (see note (b)), but here none of them is eventually lost. The mosaic fibrils display the same hereditary features as a mix of the pure ones and therefore are not to be considered as new prion alleles.
\(^{(f)}\)Such alterations may occur on either \(\text{SUP35}^{\text{ref}}\) or \(\text{SUP35}^{\text{alt}}\) backgrounds.
eventually lost in cell divisions, but might be rescued under specific conditions. This similarity gives additional support to applying the term “allele” for hereditary prions.

Implications of the Bimodularity Principle for Other Hereditary Prions

Allelic diversity of amyloid hereditary prions other than \(\text{PSI}^+ \) is less studied. However, the bimodularity principle is fully applicable to these prions also, as can be demonstrated by \(\text{URE3} \) and \(\text{PIN}^+ \).

First, they depend on certain DNA determinants (\(\text{URE2} \) and \(\text{RNQ1} \), respectively), and deletion of these genes lead to establishment of corresponding \(\text{prion}^- \) alleles (both deletions are not lethal).\(^{34,93} \) Second, Ure2p and Rnq1p with reference protein sequence can form multiple \(\text{URE3} \) or \(\text{PIN}^+ \) alleles differing in their phenotypic manifestation.\(^{50,94-96} \) Third, alterations in the DNA determinant (point mutations or local deletions) may affect formation, stability, or phenotypic manifestation of prion allele, at least in \(\text{PIN}^+ \).\(^{97-100} \) Thus, \(\text{URE3} \) and \(\text{PIN}^+ \) alleles depend on both DNA and epigenetic determinants.

Non-amyloid hereditary prions (\(C, \text{GAR}^+ \) and \(\beta^{+} \)) are also covered by the bimodularity principle. There are just 3 details to be mentioned. First, reproduction and multiplication of such prions are not separated from each other: it is the same molecular process. Second, as long as reproduction (multiplication) of non-amyloid hereditary prions is based on positive feedback loops without conformational templates (see above), their epigenetic determinants are of non-template nature. This does not impede the existence of different \(\text{PRION}^+ \) epigenetic marks. For example, \(C \) requires all 3 components of the PaMpk1 pathway and is admittedly represented by the self-activating state of the whole cascade;\(^{55} \) in that case, the DNA determinant seems to be triple, \(\text{PaASk1}—\text{PaMkk1}—\text{PaMpk1} \). Deletion or dysfunction of any gene involved in such DNA determinant should result in irreversible and inconvertible \(\text{prion}^- \) allele. \(\text{GAR}^+ \) is provided by physical interaction between 2 non-homologous proteins Pma1 and Std1;\(^{57} \) so, the corresponding DNA determinant is likely binary, \(\text{Pma1}—\text{Std1} \). However, since \(\text{GAR}^+ \)

Mechanism	Organism	Certain allele	DNA determinant	Epigenetic determinant	Refs.
DNA methylation	\(\text{Arabidopsis thaliana} \)	\(\text{BAL} \) epimutation	\(\text{BAL} \) region of the chromosome 4	Hypomethylation of the \(\text{BAL} \) region	\(105 \)
Histone modifications	\(\text{A. thaliana} \)	\(\text{FLC} \) silenced by vernalization	\(\text{FLC} \) region of the chromosome 5	H3K27me3 associated with the \(\text{FLC} \) region	\(106 \)
Positive feedback by means of transcription factors	\(\text{E. coli} \)	ON state of the bistable \(\text{lac} \) operon	The \(\text{lacY} \) and the \(\text{lacI} \) genes	Absence of the \(\text{lac} \) repressor	\(107 \)
Inhibition of translation in plastids by antibiotics	\(\text{Nicotiana tabacum} \)	Inherited \(\text{albino phenocopy} \)	Plastid genes for ribosomal proteins	Absence of plastid ribosomes	\(108 \)
Reproducible differences in cortex structure	\(\text{Paramecium sp.} \)	Inverted ciliary rows	The genes encoding cortical proteins	Inverted position of ciliary basal bodies	\(109 \)

O. N. Tikhodeyev et al.
reproduces under *STD1* deletion, the exact molecular basis of this prion is still questionable.

CONCLUSIONS

In this paper we have further developed the ideas of Chernoff and Tuite about prion alleles. Prion allele is considered as a bimodular hereditary system which depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). The first encodes the prion protein sequence, while the second reflects the presence or absence of specific prion seeds. Bimodular designation of each prion allele (DNA determinant[epigenetic determinant]) is accordingly proposed.

It has been widely accepted that prions are “protein-only” hereditary factors. This is true *in vitro*, where native molecules of a certain prion protein are placed, and the only factor required for their priomization is addition of the corresponding prion seeds. But *in vivo* the situation differs markedly: when the DNA determinant is absent and native molecules are also lacking, there is no material for priomization even if the prion seeds are transferred to the cell. Thus, the “protein-only” concept is not universal and should be replaced by the bimodularity principle.

This principle is an appropriate generalization in prion studies, and its foresights can be found at least in several prion-related papers. For instance, amyloid prions are sometimes considered as conformational (“second order”) templates in addition to DNA (“first order”) ones. This view is quite close to the bimodularity principle, but does not cover non-amyloid hereditary prions which reproduce via positive feedback loops without second order templates. The fact that prion function and evolution are affected at 2 levels (DNA and protein) has been recently pointed out by Wickner and Kelly. Notably, Bateman and Wickner denote the origin of different [PSI+] alleles (A, F and G) produced in the same *SUP35* background (E9) as [PSI+*E9A*], [PSI+*E9F*] and [PSI+*E9G*]. This approach is very similar to ours, but the DNA determinant is included within square brackets and thereof looks like an element of the prion protein. However, when a certain [PSI+] allele (for example, [PSI+*E9A*]) is transmitted to another *SUP35* background (Δ19 or ref), the resulting prion alleles are designated as [PSI+*E9A*]Δ19 and [PSI+*E9A*]ref, where the initial DNA determinant is written within square brackets and the new one is not. The bimodularity principle is devoid of the aforementioned disadvantages. It gives useful and consistent designations of the DNA and epigenetic determinants, prion alleles, their alterations, non-multiplied and non-reproduced states, etc. (Table 2).

In accordance with the bimodularity principle, we distinguish 3 types of prion allele differences. They may affect the DNA determinant only, the epigenetic determinant only, or both. As a result, multiple [PRION+] and [prion−] alleles can exist. Some of them are phenotypically distinct, while others are similar in their manifestation, like DNA sequences with synonymous polymorphism.

Although prion alleles are considerably more complex hereditary factors compared with DNA alleles and epialleles, there are a lot of remarkable similarities. Like “canonical” DNA alleles, prion alleles are multiple and highly polymorphic. They can transiently exist in the non-reproduced state similar to “canonical” DNA alleles expressed in a non-replicative plasmid. Alteration of a [PRION+] allele due to substitution of the DNA determinant is not a single-stage process resembling pre-mutational DNA mismatch. Some prion alleles (for example, isogenic [PSI+] and [PSI+]ΔN) are dominant and recessive, respectively, in the heterozygote. Moreover, in crosses like *SUP35*ΔN[PSI+] x *SUP35*ΔN[psi−], the combined prion alleles show clear Mendelian segregation.

Like epialleles, isogenic [PRION+] and [prion−] alleles differ from each other just epigenetically. Moreover, being combined in a heterozygote, they are involved in paramutation establishment. Thus, the term “prion allele” is appropriate for modern genetics.

It should be especially noted that the bimodularity principle is applicable not only for hereditary prion alleles, but for any epigenetic hereditary factor (Table 3). So, this is an
important step toward universal genetic concepts which should embrace all variety of hereditary factors irrespective of their molecular nature.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed.

ACKNOWLEDGMENTS

We are grateful to E.V. Sabaneeva and P.B. Drozdova for proof-reading the manuscript and anonymous reviewers for useful suggestions.

FUNDING

The authors acknowledge Saint-Petersburg State University for the research grants 15.61.2218.2013 and 1.37.291.2015 (SB). This work was also supported by RFBR (15–04–06650, 16–34–00582(SB)) and by the grant of the President of the Russian Federation (NS-9513.2016.4).

REFERENCES

[1] Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 1944; 79:137-58; PMID:19871359; http://dx.doi.org/10.1084/jem.79.2.137

[2] Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 1952; 36;39-56; PMID:12981234; http://dx.doi.org/10.1085/jgp.36.1.39.

[3] Falk R. What is a gene? - Revisited. Stud Hist Philos Biol Biomed Sci 2010; 41:396-406.

[4] Inge-Vechtomov SG. From chromosome theory to the template principle. Genetika 2015; 51:397-408; PMID:26087617

[5] Tikhodeyev ON. Crisis of the term “mutation” and its resolution in the context of the differential concept of variability. Biol Bull Rev 2015; 5:119-29; http://dx.doi.org/10.1134/S2079086415020103

[6] Tchuraev RN, Stupak I V, Tropynina TS, Stupak EE. Epigenes: design and construction of new hereditary units. FEBS Lett 2000; 486:200-2; PMID:11119703; http://dx.doi.org/10.1016/S0014-5793(00)02300-0

[7] Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature 2000; 403:339-42; PMID:10659857; http://dx.doi.org/10.1038/35002131

[8] Tropynina TS, Golubev O V, Stupak EE, Churaaev RN. Construction of an artificial digenic network with epigenetic properties. Mol Biol (Mosk) 2002; 36:605-9; PMID:12173462; http://dx.doi.org/10.1023/A:1019887907529

[9] Gordon AJ, Halliday JA, Blankschien MD, Burns PA, Yatagai F, Herman C. Transcriptional infidelity promotes heritable phenotypic change in a bistable gene network. PLoS Biol 2009; 7:e44; PMID:19243224; http://dx.doi.org/10.1371/journal.pbio.1000044

[10] Beissner J. Preformed cell structure and cell heredity. Prion 2008; 2:1-8; PMID:19164887; http://dx.doi.org/10.4161/pri.2.1.5063

[11] Wilson MA, Meaux S, van Hoof A. Diverse aberrancies target yeast mRNAs to cytoplasmic mRNA surveillance pathways. Biochim Biophys Acta 2008; 1779:550-7; PMID:18554525; http://dx.doi.org/10.1016/j.bbagrm.2008.05.006

[12] Crow ET, Li L. Newly identified prions in budding yeast, and their possible functions. Semin Cell Dev Biol 2011; 22:452-59; PMID:21397710; http://dx.doi.org/10.1016/j.semcdb.2011.03.003

[13] Liebman SW, Chernoff YO. Prions in yeast. Genetics 2012; 191:1041-72; PMID:22879407; http://dx.doi.org/10.1534/genetics.111.137760

[14] Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and Variability of [PSI⁺] prion factor in Saccharomyces cerevisiae. Genetics 1996; 144:1375-86; PMID:8978027

[15] King CY. Supporting the structural basis of prion strains: induction and identification of [PSI⁺] variants. J Mol Biol 2001; 307:1247-60; PMID:11292339; http://dx.doi.org/10.1006/jmbi.2001.4542

[16] Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coubary-Salin B, Saupé SJ. Amyloid aggregates of the HET-s prion protein are infectious. Proc Natl Acad Sci USA 2002; 99:7402-7; PMID:12032295; http://dx.doi.org/10.1073/pnas.072199199

[17] Tanaka M, Chien P, Naber N, Cooke R, Weissman JS. Conformational variations in an infectious protein determine prion strain differences. Nature 2004; 428:323-8; PMID:15029196; http://dx.doi.org/10.1038/nature02392

[18] Wickner RB, Edskes HK, Roberts BT, Baxa U, Pierce MM, Ross ED, Brachmann A. Prions: proteins as genes and infectious entities. Genes Dev
ALLELIC VARIANTS OF HEREDITARY PRIONS

2004; 18:470-85; PMID:15037545; http://dx.doi.org/10.1101/gad.1177104

[19] Wickner RB, Shewmaker F, Edskes H, Kryndushkin D, Nemecek J, McGlinchey R, Bateman D, Winchester CL. Prion amyloid structure explains templating: how proteins can be genes. FEMS Yeast Res 2010; 10:980-91; PMID:20726897; http://dx.doi.org/10.1111/j.1567-1364.2010.00666.x

[20] Bateman DA, Wickner RB. The [PSI+] prion exists as a dynamic cloud of variants. PLoS Genet 2013; 9:e1003257; PMID:23382698; http://dx.doi.org/10.1371/journal.pgen.1003257

[21] Chernoff YO. Mutation processes at the protein level? Semin Cell Dev Biol 2015; 44:51-61; PMID:26386407; http://dx.doi.org/10.1016/j.semcdb.2015.08.016

[22] Tuite MF. Yeast prions: Paramutation at the protein level? Semin Cell Dev Biol 2015; 44:101-9; PMID:26386407; http://dx.doi.org/10.1016/j.semcdb.2015.08.016

[23] Derkatch IL, Liebman SW. Prion-prion interactions. Prion 2007; 1:101-9; PMID:19164893; http://dx.doi.org/10.4161/pri.1.3.4837

[24] Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science 1982; 216:136-44; PMID:6801762; http://dx.doi.org/10.1126/science.6801762

[25] Prusiner SB. Prions and neurodegenerative disease. N Engl J Med 1987; 317:1571-81; PMID:3317055; http://dx.doi.org/10.1056/NEJM198712173172505

[26] Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 1994; 264:566-9; PMID:7909170; http://dx.doi.org/10.1126/science.264.5171.566

[27] Derkatch IL, Liebman SW. Prion-prion interactions. Prion 2007; 1:101-9; PMID:19164924; http://dx.doi.org/10.4161/pri.1.2.4665

[28] Shorter J. Emergence and natural selection of drug-resistant prions. Mol Biosyst 2010; 6:1115-30; PMID:20422111; http://dx.doi.org/10.1039/c004550k

[29] Baxa U. Structural basis of infectious and non-infectious amyloids. Curr Alzheimer Res 2008; 5:308-18; PMID:18537545; http://dx.doi.org/10.2174/15672050878453367

[30] Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 1997; 89:811-9; PMID:9182769; http://dx.doi.org/10.1016/S0092-8674(00)80264-0

[31] King CY, Tittmann P, Gross H, Gebert R, Aebl M, Witrich K. Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Biochemistry 1997; 94:6618-22.

[32] Taylor KL, Cheng N, Williams RW, Steven AC, Wickner RB. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 1999; 283:1339-43; PMID:10037606; http://dx.doi.org/10.1126/science.283.5406.1339

[33] Sondheimer N, Lindquist S. Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 2000; 5:163-72; PMID:10678178; http://dx.doi.org/10.1016/S0959-440X(00)00412-8

[34] Baxa U, Speransky V, Steven AC, Wickner RB. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Natl Acad Sci USA 2002; 99:5253-60; PMID:11959975; http://dx.doi.org/10.1073/pnas.082097899

[35] Baxa U, Taylor KL, Wall JS, Simon MN, Cheng N, Wickner RB, Steven AC. Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber. J Biol Chem 2003; 278:5703-6; PMID:11733532; http://dx.doi.org/10.1074/jbc.M110183200

[36] Suzuki G, Shimazu N, Tanaka M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 2012; 336:355-9; PMID:22517861; http://dx.doi.org/10.1126/science.1219491

[37] Kushnirov V V, Ter-Avanesyan MD. Structure and segregation of propagons: entities that propagate the [PSI+] prion in yeast. Genetics 2003; 165:23-33; PMID:15404215

[38] King C, Diaz-Avalos R. Protein-only transmission of three yeast prion strains. Nature 2004; 428:319-23; PMID:15029195; http://dx.doi.org/10.1038/nature02391

[39] King C-Y, Wang H-L, Chang HY. Transformation of yeast by infectious prion particles. Methods 2006; 39:68-71; PMID:16759879; http://dx.doi.org/10.1016/j.ymeth.2006.04.003

[40] Tanaka M, Weissman JS. An efficient protein transformation protocol for introducing prions into yeast. Methods Enzymol 2006; 415:185-200; PMID:17046659
[44] Kabani M, Melki R. Sup35p in its soluble and prion states is packaged inside extracellular vesicles. MBio 2015; 6:e01017-15; PMID:26286991; http://dx.doi.org/10.1128/mBio.01017-15

[45] Stansfield I, Jones KM, Kushnerov V V, Dagkesamanskayal AR, Poznyakovski A, Paushkin SV, Nierras CR, Cox BS, Ter-avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 interact to mediate translation termination ina Saccharomyces cerevisiae. EMBO J 1995; 14:4365-73; PMID:7556078

[46] Zhou P, Derkatch IL, Uptain SM, Patino MM, Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999; 11:211-8; PMID:10209154; http://dx.doi.org/10.1016/S0955-0674(99)80028-3

[47] Lancaster AK, Bardill JP, True HL, Masel J. The yeast non-Mendelian factor [PSI+] and [URE3] as yeast prions. Yeast 1995; 11:1671-85; PMID:8720070; http://dx.doi.org/10.1002/yea.320111609

[48] Wickner RB. Massion DC, Edskes HK. [PSI+] and [URE3] as yeast prions. Yeast 1995; 11:1671-85; PMID:8720070; http://dx.doi.org/10.1002/yea.320111609

[49] Zhuo P, Derkatch IL, Uptain SM, Patino MM, Lindquist S, Liebman SW. The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J 1999; 18:1182-91; PMID:10064585; http://dx.doi.org/10.1093/emboj/18.5.1182

[50] Bradley ME, Edkses HK, Hong JY, Wickner RB, Liebman SW. Interactions among prions and prion “strains” in yeast. Proc Natl Acad Sci USA 2002; 99 Suppl 4:16392-9; PMID:12149514; http://dx.doi.org/10.1073/pnas.152330699

[51] Prusiner SB. Prions. Proc Natl Acad Sci USA 1998; 95:13363-83; PMID:9811807; http://dx.doi.org/10.1073/pnas.95.23.13363

[52] Silar P, Haedens V, Rossignol M, Lalucque H. Propagation of a novel cytoplasmic, infectious and deleterious determinant is controlled by translational accuracy in Podospora anserina. Genetics 1999; 151:87-95; PMID:9872950

[53] Kicka S, Bonnet C, Sobering AK, Ganesan LP, Silar P. A mitotically inheritable unit containing a MAP kinase module. Proc Natl Acad Sci USA 2006; 103:13445-50; PMID:16938837; http://dx.doi.org/10.1073/pnas.0603693103

[54] Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999; 11:211-8; PMID:10209154; http://dx.doi.org/10.1016/S0955-0674(99)80028-3

[55] Lalucque H, Mulagnac F, Brun S, Kicka S, Silar P. A non-mendelian MAPK-generated hereditary unit controlled by a second MAPK pathway in Podospora anserina. Genetics 2012; 191:419-33; PMID:22426880; http://dx.doi.org/10.1034/320111609

[56] Kicka S, Silar P. PaASK1, a mitogen-activated protein kinase kinase kinase that controls cell degeneration and cell differentiation in Podospora anserina. Genetics 2004; 166:1241-52; PMID:15082544; http://dx.doi.org/10.1034/320111609

[57] Brown JCS, Lindquist S. A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev 2009; 23:2320-32; PMID:19797769; http://dx.doi.org/10.1101/gad.1839109

[58] Jarosz DF, Brown JC, Walker GA, Datta MS, Ung WL, Lancaster AK, Rotem A, Chang A, Newby GA, Weitz DA, et al. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 2014; 158:1083-93; PMID:25171409; http://dx.doi.org/10.1016/j.cell.2014.07.025

[59] Roberts BT, Wickner RB. Heritable activity: a prion that propagates by covalent autocatalysis. Genes Dev 2003; 17:2083-7; PMID:12923060; http://dx.doi.org/10.1101/gad.1115803

[60] Moehle CM, Tizard R, Lemmon SK, Smart J, Jones EW. Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol Cell Biol 1987; 7:4390-9; PMID:3325823; http://dx.doi.org/10.1016/j.cell.2014.07.025

[61] Nebes VL, Jones EW. Activation of the proteinase B precursor of the yeast Saccharomyces cerevisiae by autocatalysis and by an internal sequence. J Biol Chem 1991; 266:23851-7; PMID:1744078

[62] Jones EW, Zubenko GS, Parker RR. Activation of the proteinase B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol Cell Biol 1987; 7:4390-9; PMID:3325823; http://dx.doi.org/10.1016/j.cell.2014.07.025

[63] Zubenko GS, Park FJ, Jones EW. Genetic properties of mutations at the PEP4 locus in Saccharomyces cerevisiae. Genetics 1982; 102:665-77; PMID:6764901

[64] Zubenko GS, Park FJ, Jones EW. Genetic properties of mutations at the PEP4 locus in Saccharomyces cerevisiae. Genetics 1982; 102:665-77; PMID:6764901

[65] Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Propagation of the yeast prion-like [PSI+] determinant is mediated by...
oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 1996; 15:3127-34; PMID:8670813

[67] Kochneva-Perkhovkova NV, Chechenova MB, Valeouev IA, Kushnirov VM, Smirnov VN, Ter-Avanesyan MD. [PSI+] prion generation in yeast: characterization of the “strain” difference. Yeast 2001; 18:489-97; PMID:11284005; http://dx.doi.org/10.1002/yea.700

[68] Lin JY, Liao TY, Lee HC, King CY. Inter-Allelic Bondarev SA, Shchepachev VV, Kajava AV, Doel SM, Mccready SJ, Nierras CR, Cox BS. The story of PIN. Prions affect the appearance of other prions: the Saccharomyces cerevisiae analysis of the SUP35 gene of the yeast. Mol Microbiol 1993; 7:683-92; PMID:8469113; http://dx.doi.org/10.1111/j.1365-2958.1993.tb01159.x

[69] Bradley ME, Liebman SW. The Sup35 domains required for maintenance of weak, strong or undifferentiated yeast [PSI+] prions. Mol Microbiol 2004; 51:1649-59; PMID:15009892; http://dx.doi.org/10.1111/j.1365-2958.2003.03955.x

[70] Bondareva SA, Shchepachev VV, Kajava AV, Zhouravleva GA. Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+] stability and propagation. J Biol Chem 2013; 288:28503-13; PMID:23965990; http://dx.doi.org/10.1074/jbc.M113.471805

[71] Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 1993; 7:683-92; PMID:8469113; http://dx.doi.org/10.1111/j.1365-2958.1993.tb01159.x

[72] Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-mendelian determinant [PSI+] in yeast Saccharomyces cerevisiae. Genetics 1994; 137:671-6; PMID:8088512

[73] Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: the story of [PIN]. Cell 2001; 106:171-82; PMID:11511345; http://dx.doi.org/10.1016/S0092-8674(01)00427-5

[74] Doel SM, McCready SJ, Nierras CR, Cox BS. The dominant PNH2 mutation which eliminates the PSI factor of Saccharomyces cerevisiae is the result of missense mutation in the SUP35 gene. Genetics 1994; 137:659-70; PMID:8088511

[75] Derkatch IL, Bradley ME, Zhou P, Liebman SW. The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI+] prion in yeast. Curr Genet 1999; 35:59-67; PMID:10079323; http://dx.doi.org/10.1007/s002940050433

[76] Liebman SW, All-Robyn JA. A non-Mendelian factor, [eta], causes lethality of yeast omnipotent suppressor strains. Curr Genet 1984; 8:567-73; PMID:24177995; http://dx.doi.org/10.1007/BF00395701

[77] Kabani M, Cosnier B, Bousset L, Rouset J-P, Melki R, Fabret C. A mutation within the C-terminal domain of Sup35p that affects [PSI+] prion propagation. Mol Microbiol 2011; 81:640-58; PMID:21631606; http://dx.doi.org/10.1111/j.1365-2958.2011.07719.x

[78] Cox BS. Ψ, A cytoplasmic suppressor of super-suppressor in yeast. Heredity (Edinb) 1965; 20:505-21; http://dx.doi.org/10.1038/hdy.1965.65

[79] Holmes WM, Klips CL, Serio TR. Defining the limits: protein aggregation and toxicity in vivo. Crit Rev Biochem Mol Biol 2014; 49:1-10.

[80] DiSalvo S, Derdowski A, Pezza JA, Serio TR. Dominant prion mutants induce curing through pathways that promote chaperone-mediated disaggregation. Nat Struct Mol Biol 2011; 18:486-92; PMID:21423195; http://dx.doi.org/10.1038/nsmb.2031

[81] Verges KJ, Smith MH, Toyama BH, Weissman JS. Strain conformation, primary structure and the propagation of the yeast prion [PSI+]. Mol Microbiol 2011; 81:640-58; PMID:21423194; http://dx.doi.org/10.1038/nsmb.2030

[82] Bondareva SA, Shirokolobova ED, Trubitsina NP, Zhouravleva GA. Modification of [PSI+] prion properties by combining amino acid changes in N-terminal domain of Sup35 protein. Mol Biol 2014; 48:270-7; http://dx.doi.org/10.1134/S0092867414020034

[83] Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 1995; 268:880-4; PMID:7754373; http://dx.doi.org/10.1126/science.7754373

[84] Wegorzyn RD, Bapat K, Newnam GP, Zink AD, Chernoff YO. Mechanism of prion loss after Hsp104 inactivation in yeast. Mol Cell Biol 2001; 21:4656-69; PMID:11416143; http://dx.doi.org/10.1128/MCB.21.14.4656-4669.2001

[85] Byrne LJ, Cox BS, Cole DJ, Ridout MS, Morgan BJT, Tuite MF. Cell division is essential for elimination of the yeast [PSI+] prion by guanidine hydrochloride. Proc Natl Acad Sci USA 2007; 104:11688-93; PMID:17606924; http://dx.doi.org/10.1073/pnas.0701392104

[86] Byrne LJ, Cole DJ, Cox BS, Ridout MS, Morgan BJT, Tuite MF. The number and transmission of [PSI+] prion seeds (propagons) in the yeast Saccharomyces cerevisiae. PLoS One 2009; 4:e4670; PMID:19262693; http://dx.doi.org/10.1371/journal.pone.0004670

[87] Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in
formation, stability, and toxicity of the [PSI+] prion. Mol Cell Biol 1999; 19:8103-12; PMID:10567536; http://dx.doi.org/10.1128/MCB.19.12.8103

[88] Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 1999; 19:1325-33; PMID:9891066; http://dx.doi.org/10.1128/MCB.19.2.1325

[89] Allen KD, Wegrzyn RD, Chernova TA, Muller S, Newnam GP, Wegrzyn RD, Wilkinson KD, Chernoff YO. Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genetics 2005; 169:1227-42; PMID:15545639; http://dx.doi.org/10.1534/genetics.104.037168

[90] Newnam GP, Birchmore JL, Chernoff YO. Destabilization and recovery of a yeast prion after mild heat shock. J Mol Biol 2011; 408:432-48; PMID:21392958; http://dx.doi.org/10.1016/j.jmb.2011.02.034

[91] Kittev D, Patterson, J C, Muller S, Baria B, Pan T, Chernoff YO. Regulation of chaperone effects on a yeast prion by cochaperone Stg2. MCB 2012; 32:4960-70; PMID:23045389; http://dx.doi.org/10.1128/MCB.00875-12

[92] Kittev DA, Patterson, J C, Muller S, Baria B, Pan T, Chernoff YO. Regulation of chaperone effects on a yeast prion by cochaperone Stg2. MCB 2012; 32:4960-70; PMID:23045389; http://dx.doi.org/10.1128/MCB.00875-12

[93] Kittev DA, Patterson, J C, Muller S, Baria B, Pan T, Chernoff YO. Regulation of chaperone effects on a yeast prion by cochaperone Stg2. MCB 2012; 32:4960-70; PMID:23045389; http://dx.doi.org/10.1128/MCB.00875-12

[94] Kittev DA, Patterson, J C, Muller S, Baria B, Pan T, Chernoff YO. Regulation of chaperone effects on a yeast prion by cochaperone Stg2. MCB 2012; 32:4960-70; PMID:23045389; http://dx.doi.org/10.1128/MCB.00875-12

[95] Kittev DA, Patterson, J C, Muller S, Baria B, Pan T, Chernoff YO. Regulation of chaperone effects on a yeast prion by cochaperone Stg2. MCB 2012; 32:4960-70; PMID:23045389; http://dx.doi.org/10.1128/MCB.00875-12

[96] Kittev DA, Patterson, J C, Muller S, Baria B, Pan T, Chernoff YO. Regulation of chaperone effects on a yeast prion by cochaperone Stg2. MCB 2012; 32:4960-70; PMID:23045389; http://dx.doi.org/10.1128/MCB.00875-12

[97] Kittev DA, Patterson, J C, Muller S, Baria B, Pan T, Chernoff YO. Regulation of chaperone effects on a yeast prion by cochaperone Stg2. MCB 2012; 32:4960-70; PMID:23045389; http://dx.doi.org/10.1128/MCB.00875-12

[98] Bardill JP, True HL. Heterologous prion interactions are altered by mutations in the prion protein Rnq1p. J Mol Biol 2009; 388:583-96; PMID:19324054; http://dx.doi.org/10.1016/j.jmb.2009.03.036

[99] Shibata S, Kurahashi H, Nakamura Y. Localization of prion-destabilizing mutations in the N-terminal non-prion domain of Rnq1 in Saccharomyces cerevisiae. Prion 2009; 3:250-8; PMID:20095358; http://dx.doi.org/10.4161/pri.3.4.10388

[100] Kadnar ML, Articov G, Derkatch IL. Distinct type of transmission barrier revealed by study of multiple prion determinants of Rnq1. PLoS Genet 2010; 6:e1000824; PMID:20107602; http://dx.doi.org/10.1371/journal.pgen.1000824

[101] Inge-Vechtomov SG. The template principle: paradigm of modern genetics. Genetika 2013; 49:9-15; PMID:23662420.

[102] Daus ML. Disease transmission by misfolded prion-protein isoforms, prion-like amyloids, functional amyloids and the central dogma. Biology (Basel) 2016; 5:2.

[103] Coustou V, Deleu C, Saupe S, Begueret J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 1997; 94:9773-8; PMID:9275200; http://dx.doi.org/10.1073/pnas.94.18.9773

[104] Du Z, Park KW, Yu H, Fan Q, Li L. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet 2008; 40:460-5; PMID:18628848; http://dx.doi.org/10.1038/ng.112

[105] Kakutani T, Munakata K, Richards EJ, Hirochika H. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by Arabidopsis thaliana ddm1 mutation: a model for ribosome-free plastid inheritance in individual cells at the single molecule level. Nature 2006; 440:358-62; PMID:16541077; http://dx.doi.org/10.1038/nature04599

[106] Bastow R, Mylne JS, Lister C, Lippman Z, Martinsson RA, Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 2004; 427:164-7; PMID:14712277; http://dx.doi.org/10.1038/nature02269

[107] Choi L, Friedman N, Xie XS. Stochastic protein expression in individual cells at the single molecule level. Nature 2006; 440:358-62; PMID:16541077; http://dx.doi.org/10.1038/nature04599

[108] Zubko MK, Day A. Stable albinism induced without mutagenesis: a model for ribosome-free plastid inheritance. Plant J 1998; 15:265-71; PMID:9721684; http://dx.doi.org/10.1046/j.1365-313X.1998.00195.x

[109] Beisson J. Preformed cell structure and cell heredity. Prion 2008; 2:1-8; PMID:19164887; http://dx.doi.org/10.4161/pri.2.1.5063