This is the accepted manuscript made available via CHORUS. The article has been published as:

Nearly maximally predictive features and their dimensions
Sarah E. Marzen and James P. Crutchfield
Phys. Rev. E 95, 051301 — Published 25 May 2017
DOI: 10.1103/PhysRevE.95.051301
Nearly Maximally Predictive Features and Their Dimensions

Sarah E. Marzen1,2,* and James P. Crutchfield3†

1Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Physics, University of California at Berkeley, Berkeley, CA 94720-5800
3Complexity Sciences Center, Department of Physics
University of California at Davis, One Shields Avenue, Davis, CA 95616

(Dated: May 5, 2017)

Scientific explanation often requires inferring maximally predictive features from a given data set. Unfortunately, the collection of minimal maximally predictive features for most stochastic processes is uncountably infinite. In such cases, one compromises and instead seeks nearly maximally predictive features. Here, we derive upper-bounds on the rates at which the number and the coding cost of nearly maximally predictive features scales with desired predictive power. The rates are determined by the fractal dimensions of a process’ mixed-state distribution. These results, in turn, show how widely-used finite-order Markov models can fail as predictors and that mixed-state predictive features offer a substantial improvement.

PACS numbers: 02.50.-r 89.70.+c 05.45.Tp 02.50.Ga
Keywords: hidden Markov models, entropy rate, dimension, resource-prediction trade-off, mixed-state simplex

Often, we wish to find a minimal maximally predictive model consistent with available data. Perhaps we are designing interactive agents that reap greater rewards by developing a predictive model of their environment [1–6] or, perhaps, we wish to build a predictive model of experimental data [9]. Ideally, we would compress information about the past without sacrificing any predictive power. For stochastic processes generated by finite unifilar hidden Markov models (HMMs), one need only store a finite number of predictive features. The minimal such features are described by finite unifilar HMMs or, equivalently, described by a finite or countably infinite number of causal states [12–14]. Few, though, studied this trade-off or provided bounds thereof more generally.

Here, we place new bounds on resource-prediction tradeoffs in the limit of nearly maximal predictive power for processes with either a countable or an uncountable infinity of causal states by coarse-graining the mixed-state simplex [15]. These bounds give a novel operational interpretation to the fractal dimension of the mixed-state simplex and suggest new routes towards quantifying the memory stored in a stochastic process when, as is typical, statistical complexity diverges.

Background We consider a discrete-time, discrete-state stochastic process P generated by an HMM G, which comes equipped with underlying states g and labeled transition matrices $T_{g,g'} = P(r_{t+1} = g',x_{t+1} = r|G_t = g)$ [16]. There is an infinite number of alternate HMMs that generate P [17–20], so we specify here that G is the minimal generative model—that is, the generative model with the minimal number of hidden states consistent with the observed process [21].

For reasons that become clear shortly, we are interested in the block entropy $H(L) = \text{H}[X_0:L]$, where $X_{a:b} = X_a,X_{a+1},\ldots,X_{b-1}$ is a contiguous block of random variables generated by G. In particular, its growth—the entropy rate $h_\mu = \lim_{L \to \infty} H(L)/L$—quantifies a process’ intrinsic “randomness”. Finite-length entropy-rate estimates $h_\mu(L) = H[X_0:L]_{L,\mu}$ provide increasingly better approximations to the true entropy rate h_μ as L grows large.

The excess entropy $E = \lim_{L \to \infty}(H(L) - h_\mu L)$ quantifies how much is predictable: how much future information can be predicted from the past [22]. Finite-length
excess-entropy estimates:

\[
E(L) = H(L) - h_\mu L \\
es = \sum_{\ell=0}^{L-1} (h_\mu(\ell) - h_\mu).
\]

tend to the true excess entropy \(E\) as \(L\) grows large \[23\]. As there, we consider only finitary processes, those with finite \(E\) \[24\].

Predictive features \(\mathcal{R}\) from some alphabet \(\mathcal{F}\) are formed by compressing the process’ past \(X_{-\infty:0}\) in ways that implicitly retain information about the future \(X_{0:\infty}\). (From hereon, our block notation suppresses infinite indices.) A predictive distortion quantifies the predictability lost after such a coarse-graining:

\[
d(\mathcal{R}) = I[X_0; X_0: |\mathcal{R}] = E - I[\mathcal{R}; X_0].
\]

We choose to use an informational distortion, though in principle, any other predictive distortion would do; for instance, bounds in the appendix have bearing on total variation. On the one hand, the informational distortion considered here achieves its maximum value \(E\) when \(\mathcal{R}\) captures no information from the past that could be used for prediction. On the other, it can be made to vanish trivially by taking the predictive features \(\mathcal{R}\) to be all of the possible histories \(X_0\).

Results Ideally, we would identify the minimal number \(|\mathcal{F}|\) of predictive features or the coding cost \(H[\mathcal{R}]\) \[9\] \[24\] required to achieve at least a given level \(d\) of predictive distortion. This is almost always a difficult optimization problem. However, we can place upper bounds on \(|\mathcal{F}|\) and \(H[\mathcal{R}]\) by constructing suboptimal predictive feature sets that achieve predictive distortion \(d\).

We start by reminding ourselves of the optimal solution in the limit that \(d = 0\)—the causal states \(\mathcal{S}\) \[10\] \[11\] \[14\]. Causal states can be defined by calling two pasts, \(x_0\) and \(x'_0\), equivalent when using them our predictions of the future are the same: \(\Pr(X_0:|X_0 = x_0) = \Pr(X_0:|X_0 = x'_0)\). (These conditional distributions are referred to as future morphs.) One can then form a model, the \(\epsilon\)-machine, from the set \(\mathcal{S}\) of causal-state equivalence classes and their transition operators. The Shannon entropy of the causal state distribution is the statistical complexity: \(C_\mu = H[\mathcal{S}]\). A process’ \(\epsilon\)-machine can also be viewed as the minimal unifilar HMM capable of generating the process \[26\] and \(C_\mu\) the amount of historical information the process stores in its causal states. Though the mechanics of working with causal states can become rather involved, the essential idea is that causal states are designed to capture everything about the past relevant to predicting the future and only that information.

In the lossless limit, when \(d = 0\), one cannot find predictive representations that achieve \(|\mathcal{F}|\) smaller than \(|\mathcal{S}|\) or that achieve \(H[\mathcal{R}]\) smaller than \(C_\mu\). Similarly, no optimal lossy predictive representation will ever find \(|\mathcal{F}| > |\mathcal{S}|\) or \(H[\mathcal{R}] > C_\mu\). When the number of causal states is infinite or statistical complexity diverges, as is typical, as we noted, these bounds are quite useless; but otherwise, they provide a useful calibration for the feature sets proposed below.

Markov Features Several familiar predictive models use pasts of length \(L\) as predictive features. This feature set can be thought of as constructing an order-\(L\) Markov model of a process \[27\]. The implied predictive distortion is \(d(L) = I[X_0; X_0:|X_0: L] = E - E(L)\) \[28\], while the number of features is the number of length-\(L\) words with nonzero probability and their entropy \(H[\mathcal{R}] = H(L)\). Generally, \(h_\mu(L)\) converges exponentially quickly to the true entropy rate \(h_\mu\) for stochastic processes generated by finite-state HMMs, unifilar or not; see Ref. \[29\] and references therein. Then, \(h_\mu(L) - h_\mu \sim Ke^{-\lambda L}\) in the large \(L\) limit. From Eq. (2), we see that the convergence rate \(\lambda\) also implies an exponential rate of decay for \(E - E(L) \sim K'e^{-\lambda L}\). Additionally, according to the asymptotic equipartition property \[24\], when \(L\) is large, \(|\mathcal{F}| \sim e^{h_0L}\) and \(H(L) \approx h_\mu L\), where \(h_0\) is the topological entropy rate and \(h_\mu\) the entropy rate, both in nats.

In sum, this first set of predictive features—effectively, the construction of order-\(L\) Markov models—yields an algebraic tradeoff between the size of the feature set \(\mathcal{F}\) and the predictive distortion \(d\):

\[
|\mathcal{F}| \sim \left(\frac{1}{d}\right)^{\frac{h_0}{\lambda}},
\]

and a logarithmic tradeoff between the entropy of the features and distortion:

\[
H[\mathcal{R}] \sim \frac{h_\mu}{\lambda} \log\left(\frac{1}{d}\right).
\]

In principle, \(\lambda\) can be arbitrarily small, and so \(\frac{h_0}{\lambda}\) and \(\frac{h_\mu}{\lambda}\) arbitrarily large, even for processes generated by finite-state HMMs. This can be true even for finite unifilar HMMs (\(\epsilon\)-machines). To see this, let \(W\) be the transition matrix of a process’ mixed-state presentation; defined shortly. From Ref. \[25\], when \(W\)‘s spectral gap \(\gamma\) is small, we have \(E - E(L) \sim (1 - \gamma)^L\), so that \(\lambda = \log \frac{1}{1 - \gamma}\) can be quite small.

In short, when the process in question has only a finite number of causal states, \(|\mathcal{F}|\) optimally saturates at \(|\mathcal{S}|\) and \(H[\mathcal{R}]\) optimally saturates at \(C_\mu\), but from Eqs. (3) and (4), the size of this Markov feature set can grow.
Mixed-State Features A different predictive feature set comes from coarse-graining the mixed-state simplex. As first described by Blackwell [13], mixed states Y are probability distributions $\Pr(G_0|X_{-L,0} = x_{-L,0})$ over the internal states G of a generative model given the generated sequences. Transient mixed states are those at finite L, while recurrent mixed states are those remaining with positive probability in the limit that $L \to \infty$. Recurrent mixed states exactly correspond to causal states S [30]. When C_μ diverges, recurrent mixed states often lay on a Cantor set in the simplex; see Fig. 1. In this circumstance, one examines the various dimensions that describe the scaling in such sets. Here, for reasons that will become clear, we use the box-counting dimension $\dim_0(Y)$ and information dimensions $\dim_1(Y)$ [31].

More concretely, we partition the simplex into cubes of side length ϵ, and each nonempty cube is taken to be a predictive feature in our representation. The number of nonempty cubes is denoted N_ϵ. When there are only a finite number of causal states, then this feature set consists of the causal states S for some nonzero ϵ. There is no such ϵ if, instead, the process has a countable infinity of causal states. Sometimes, as for the finite $|S|$ case, the information dimension and perhaps even the box-counting dimension of the mixed states will vanish. When there is an uncountable infinity of causal states and ϵ is sufficiently small, the corresponding number of features scales as:

$$|\mathcal{F}| \sim \left(\frac{1}{\epsilon}\right)^{\dim_0(Y)},$$

where $\dim_0(Y)$ denotes the box-counting dimension [32] and the coding cost scales as:

$$H[\mathcal{R}] \sim \dim_1(Y) \log \frac{1}{\epsilon},$$

where $\dim_1(Y)$ is the information dimension. These dimensions can be approximated numerically; see Fig. 1 and Supplementary Materials App. A.

For processes generated by infinite ϵ-machines, finding the better feature set requires analyzing the scaling of predictive distortion with ϵ. Supplementary Materials App. B shows that $d(\mathcal{R})$ at coarse-graining ϵ scales at most as ϵ in the limit of asymptotically small ϵ. Our upper bound relies on the fact that two nearby mixed states have similar future morphs, i.e., they have similar conditional probability distributions over future trajectories given one’s mixed state. From this, we conclude that:

$$|\mathcal{F}| \sim \left(\frac{1}{d}\right)^{\dim_0(Y)}$$

and

$$H[\mathcal{R}] \sim \dim_1(Y) \log \frac{1}{d}.$$
presentation similar to that of “nond” in Fig. 1(left). We choose to only search over the \(\epsilon \)-machine topologies that correspond to the class of eventually Poisson renewal processes.

We must first revisit the upper bound in Eq. (7), as the SNS has a countable (not uncountable) infinity of causal states. When a process’ \(\epsilon \)-machine is countable instead of uncountable, then we can improve upon Eq. (7). However, the magnitude of improvement is process dependent and not easily characterized in general for two main reasons. First, predictive distortion can decrease faster than \(\epsilon \) for processes generated by countably infinite \(\epsilon \)-machines since there might only be one mixed state in an \(\epsilon \) hypercube. (See the lefthand factor in Supplementary Materials Eq. (B5), \(1 - \sum_{r \in \mathcal{R}_\epsilon} P_r(X|Y)P_r(Y) = 0 \)). We are guaranteed that \(\lim_{\epsilon \to 0} \sum_{r \in \mathcal{R}_\epsilon} P_r(X|Y)P_r(Y) = 0 \) but the rate of convergence to zero is highly process dependent. Second, the scaling relation between \(N_\epsilon \) and \(1/\epsilon \) may be subpower law.

Given a specific process, though, with a countably infinite \(\epsilon \)-machine—here, the SNS—we can derive expected scaling relations. See Supplementary Materials App. C. We argue that, roughly speaking, we should expect predictive distortion to decay exponentially with \(N_\epsilon \), so that \(d(\mathcal{R}_\epsilon) \approx \lambda^{N_\epsilon} \) for some \(\lambda < 1 \). In Appendix C, we empirically argue that \(N_\epsilon \) scales as \((1/\epsilon)^2 \) when \(p = q = 0.5 \). As we expect, since our uncertainty in \(d \) scales as \(\sim 1/\sqrt{T} \), where \(T \) is the amount of data, we expect that the number of inferred states \(N_T \) should scale as \(\sim \log T \).

These scaling relationships are confirmed by BSI applied to data generated from the SNS, where the set

FIG. 1. Mixed state presentations \(Y \) for three different generative models given in Supplementary Materials App. A. To visualize the mixed-state simplex, the diagrams plot iterates \(y_t \) such that the left vertex corresponds to the pure state \(\Pr(A,B,C) = (1,0,0) \) or HMM state \(A \), the right to pure state \((0,1,0) \) or HMM state \(B \), and the top to pure state \((0,0,1) \) or HMM state \(C \). Left plot has 55 mixed states plotted in a \(1 \times 100 \) bin histogram; middle plots 2,391,484 mixed states in a \(1000 \times 1000 \) bin histogram; and right plots 21,523,360 mixed states in a \(4000 \times 4000 \) bin histogram. Bin cell coloring is negative logarithm of the normalized bin counts. The box-counting dimensions are respectively: \(\dim_0(Y) \approx 0.3 \) at left, \(\dim_0(Y) \approx 1.8 \) in the middle, and \(\dim_0(Y) \approx 1.9 \) at right. Box-counting dimension calculated by estimating the slope of \(\log(1/\epsilon) \) versus \(\log N_\epsilon \).}

FIG. 2. Model-size scaling for the parametrized Simple Nonunifilar Source (SNS). (Top) Generative HMM for the SNS. (Bottom) Scaling of \(\langle |M| \rangle = \sum_M |M|P(M|x_0:T) \) with \(T \), with the posterior \(P(M|x_0:T) \) calculated using formulae from BSI [34] with \(\alpha = 1 \) and the set of model topologies being the eventually Poisson \(\epsilon \)-machines described in Ref. [36]. Data generated from the SNS with \(p = q = 1/2 \). Linear regression reveals a slope of \(\approx 1 \) for \(\log T \) vs. \(\log(\langle |M| \rangle) \), confirming the expected \(N_T \approx \log T \), where the proportionality constants depend on \(\beta \). Curves from top to bottom: \(\beta = 1, 4, 8 \) and (online) blue, green, and red, respectively.
of ε-machine topologies selected from are the eventually Poisson ε-machine topologies characterized by Ref. [39].

Given a set of machines \(\mathcal{M} \) and data \(x_{0:T} \), BSI returns an easily-calculable posterior \(\text{Pr}(M|x_{0:T}) \) for \(M \in \mathcal{M} \) with (at least) two hyperparameters: (i) the concentration parameter for our Dirichlet prior on the transition probabilities \(\alpha \) and (ii) our prior on the likelihood of a model \(M \) with number of states \(|M| \), taken to be proportional to \(e^{-\beta|M|} \) for a user-specified \(\beta \). From this posterior, we calculate an average model size \(\langle |M| \rangle(T) = \sum_{M \in \mathcal{M}} |M| \text{Pr}(M|x_{0:T}) \) as a function of \(T \) for multiple data strings \(x_{0:T} \). The result is that we find the scaling of \(\langle |M| \rangle(T) \) with \(T \) is proportional to \(\log T \) in the large \(T \) limit, where the proportionality constant and the initial value depends on hyperparameters \(\alpha \) and \(\beta \).

In theory, this scaling might be affected by our restrictive prior over ε-machine topologies, but the scaling is hard to analyze if a naive search over ε-machine topologies is used. The number of ε-machine topologies grows super-exponentially with the number of states, practically limiting unbiased estimates of \(\langle |M| \rangle \) to 6 using a single standard computer’s memory. We therefore conjecture (without proof) that the scaling of \(\langle |M| \rangle \) with \(T \) is qualitatively similar if the prior of ε-machine topologies allows for consistency.

Conclusion We now better understand the tradeoff between memory and prediction in processes generated by a finite-state hidden Markov model with infinite statistical complexity. Importantly and perhaps still underappreciated, these processes are more “typical” than those with finite statistical complexity and Gaussian processes, which have received more attention in related literature [12, 13].

We proposed a new method for obtaining predictive features—coarse-graining mixed states—and used this feature set to bound the number of features and their coding cost in the limit of small predictive distortion. These bounds were compared to those obtained from the more familiar and widely used (Markov) predictive feature set—that of memorizing all pasts of a fixed length.

The general results here suggest that the new feature set can outperform the standard set—order-L Markov models—in many situations. Examples to the contrary exist, but are difficult to find, given that it is difficult to accurately calculate \(\lambda \) (the exponential rate of decay of \(h_\mu(L) \) to \(h_\mu \)) without at least an approximate mixed-state presentation [40]. As such, rigorously finding such an example in which order-L Markov features outperform a mixed-state presentation coarse-graining is an interesting open problem.

Practically speaking, the new bounds presented have at least three potential uses. First, they give weight to Ref. [7]’s suggestion to replace the statistical complexity with the information dimension of mixed-state space as a complexity measure when statistical complexity diverges. Second, they suggest a route to an improved, process-dependent tradeoff between complexity and precision for estimating the entropy rate of processes generated by nonunifilar HMMs [11]. Admittedly, space here precludes us from addressing how to estimate the probability distribution over ε-boxes, and accurate estimation of such is an important open problem. Third, and perhaps most importantly, our upper bounds provide a first attempt to calculate the expected scaling of inferred model size with available data. This scaling can be then used to estimate when more memory is needed to store information about the predictive model, even when an online inference algorithm is utilized, and thus how finite memory lower bounds the achievable predictive distortion.

Finally, from a statistics point of view, we characterized the asymptotics of the posterior distribution over model size. It is commonly accepted that inferring time-series models from finite data typically has two components—parameter estimation and model selection—though these two can be done simultaneously. Our focus above was on model selection, as we monitored how model size increased with the amount of available data. One can view the results as an effort to characterize the posterior distribution of ε-machine topologies given data or as the growth rate of the optimum model cost [12] in the asymptotic limit. Posterior distributions of estimated parameters (transition probabilities) are almost always asymptotically normal, with standard deviation decreasing as the square root of the amount of available data [13, 15]. However, asymptotic normality does not typically hold for this posterior distribution, since using finite ε-machine topologies almost always implies out-of-class modeling. Rather, we showed that the particular way in which the mode of this posterior distribution increases with data typically depends on a gross process statistic—the box-counting dimension of the mixed-state presentation.

Stepping back, we only tackled the lower parts of the infinitary process hierarchy identified in Ref. [16]. In particular, “complex” processes in the sense of Ref. [17] have different resource-prediction tradeoffs than analyzed here, since processes generated by finite-state HMMs (as assumed here) cannot produce processes with infinite excess entropy. To do so, at the very least, predictive distortion must be more carefully defined. We conjecture that success will be achieved by instead focusing on a one-step predictive distortion, equivalent to a self-information loss function, as is typically done [12, 35]. Luckily, the derivation in Supplementary Materials App. B easily extends to this case, simultaneously suggesting improvements to
related entropy-rate-approximating algorithms.

We hope these introductory results inspire future study of resource-prediction tradeoffs for infinitary processes.

See Supplemental Material at [URL will be inserted by publisher] for how to estimate fractal dimensions and the derivation of dredictive distortion scaling for coarse-grained mixed states.

The authors thank Santa Fe Institute for its hospitality during visits and A. Boyd, C. Hillar, and D. Upper for useful discussions. JPC is an SFI External Faculty member. This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U. S. Army Research Office under contracts W911NF-13-1-0390 and W911NF-12-1-0288. S.E.M. was funded by a National Science Foundation Graduate Student Research Fellowship, a U.C. Berkeley Chancellor’s Fellowship, and the MIT Physics of Living Systems Fellowship.

[1] S. Still. *EuroPhys. Lett.*, 85:28005, 2009.
[2] M. L. Littman, R. S. Sutton, and S. P. Singh. In *NIPS*, volume 14, pages 1555–1561, 2001.
[3] N. Tishby and D. Polani. In *Perception-action cycle*, pages 601–636. Springer, 2011.
[4] D. Little and F. Sommer. Learning and exploration in action-perception loops. *Frontiers in Neural Circuits*, 7:37, 2013.
[5] S. Still and D. Precup. *Theory in Biosciences*, 131(3):139–148, 2012.
[6] N. Brodu. *Adv. Complex Sys.*, 14(05):761–794, 2011.
[7] J. P. Crutchfield. *Physica D*, 75:11–54, 1994.
[8] S. Still and J. P. Crutchfield. arXiv:0708.0654.
[9] T. Berger. *Rate Distortion Theory*. Prentice-Hall, New York, 1971.
[10] J. P. Crutchfield and K. Young. *Phys. Rev. Let.*, 63:105–108, 1989.
[11] C. R. Shalizi and J. P. Crutchfield. *J. Stat. Phys.*, 104:817–879, 2001.
[12] F. Creutzig, A. Globerson, and N. Tishby. *Phys. Rev. E*, 79(4):041925, 2009.
[13] S. Still, J. P. Crutchfield, and C. J. Ellison. *CHAOS*, 20(3):037111, 2010.
[14] S. Marzen and J. P. Crutchfield. *J. Stat. Phys.*, 163(6):1312–1338, 2014.
[15] D. Blackwell. *Transactions of the first Prague conference on information theory, Statistical decision functions, Random processes*, 28:13–20, 1957. Held at Liblice near Prague from November 28 to 30, 1956.
[16] L. R. Rabiner and B. H. Juang. *IEEE ASSP Magazine*, January, 1986.
[17] E. J. Gilbert. *Ann. Math. Stat.*, pages 688–697, 1959.
[18] H. Ito, S.-I. Amari, and K. Kobayashi. *IEEE Info. Th.*, 38:324, 1992.
[19] V. Balasubramanian. *Neural Computation*, 9:349–368, 1997.
[20] D. R. Upper. *Theory and Algorithms for Hidden Markov Models and Generalized Hidden Markov Models*. PhD thesis, University of California, Berkeley, 1997. Published by University Microfilms Intl, Ann Arbor, Michigan.
[21] This is not necessarily the same as the generative model with minimal generative complexity [19], since a nonuniform generator with a large number of sparsely-used states might have smaller state entropy than a nonuniform generator with a small number of equally-used states. And, typically, per our main result, the minimal generative model is usually not the same as the minimal prescient (unifilar) model.
[22] Cf. Ref. [23]’s discussion of terminology and Ref. [47].
[23] J. P. Crutchfield and D. P. Feldman. *CHAOS*, 13(1):25–54, 2003.
[24] Finite HMMs generate finitary processes, as E is bounded from above by the logarithm of the number of HMM states [49].
[25] T. M. Cover and J. A. Thomas. *Elements of Information Theory*. Wiley-Interscience, New York, second edition, 2006.
[26] N. Travers and J. P. Crutchfield. Equivalence of history and generator e-machines. arxiv.org:1111.4500.
[27] One can construct a better feature set simply by applying the causal-state equivalence relation to these length-L pasts. We avoid this here since the size of this feature set is more difficult to analyze generically and since the causal-state equivalence relation applied to length-L pasts often induces no coarse-graining.
[28] P. M. Ara, R. G. James, and J. P. Crutchfield. *Phys. Rev. E*, 93(2):022143, 2016.
[29] N. F. Travers. *Stochastic Proc. Appln.*, 124(12):4149–4170, 2014.
[30] C. J. Ellison, J. R. Mahoney, and J. P. Crutchfield. *J. Stat. Phys.*, 136(6):1005–1034, 2009.
[31] Ya. B. Pesin. University of Chicago Press, 1997.
[32] We assume here that the lower box-counting dimension and upper box-counting dimension are equivalent.
[33] S. Still and W. Bialek. *Neural Comp.*, 16(12):2483–2506, 2004.
[34] C. C. Strelloff and J. P. Crutchfield. *Phys. Rev. E*, 89:042119, 2014.
[35] B. D. Johnson, J. P. Crutchfield, C. J. Ellison, and C. S. McTague. arxiv.org:1011.0036.
[36] S. Marzen and J. P. Crutchfield. *Entropy*, 17(7):4981–4917, 2015.
[37] S. Marzen and J. P. Crutchfield. *Phys. Lett. A*, 380(17):1517–1525, 2016.
[38] S. Marzen, M. R. DeWeese, and J. P. Crutchfield. *Front. Comput. Neurosci.*, 9:109, 2015.
[39] S. Marzen and J. P. Crutchfield. arXiv:1611.01099.
[40] J. P. Crutchfield, P. Riechers, and C. J. Ellison. Exact
complexity: Spectral decomposition of intrinsic computation. submitted. Santa Fe Institute Working Paper 13-09-028; arXiv:1309.3792 [cond-mat.stat-mech].

[41] E Ordentlich and T Weissman. Entropy of Hidden Markov Processes and Connections to Dynamical Systems, London Math. Soc. Lecture Notes, 385:117–171, 2011.

[42] J. Rissanen. IEEE Trans. Info. Th., IT-30:629, 1984.

[43] A. M. Walker. J. Roy. Stat. Soc. Series B, pages 80–88, 1969.

[44] C. C. Heyde and I. M. Johnstone. J. Roy. Stat. Soc. Series B, pages 184–189, 1979.

[45] T.J. Sweeting. Bayesian Statistics, 4:825–835, 1992.

[46] J. P. Crutchfield and S. Marzen. Phys. Rev. E, 91(5):050106, 2015.

[47] W. Bialek, I. Nemenman, and N. Tishby. Neural Comp., 13:2409–2463, 2001.

[48] N. Merhav and M. Feder. IEEE Trans. Info. Th., 44(6):2124–2147, 1998.

[49] W. L"ohr. Models of discrete-time stochastic processes and associated complexity measures. PhD thesis, University of Leipzig, May 2009.

[50] S.-W. Ho and R. W. Yeung. IEEE Trans. Info. Th., 56(12):5906–5929, 2010.

[51] T. Tao. An Introduction to Measure Theory, volume 126. American Mathematical Society, 2011.

[52] This upper bound on E was noted in Ref. [49].

[53] See Supplemental Material at [URL will be inserted by publisher] for how to estimate fractal dimensions and the derivation of predictive distortion scaling for coarse-grained mixed states.