CT and MR imaging patterns for pancreatic carcinoma invading the extrapancreatic neural plexus (Part II): Imaging of pancreatic carcinoma nerve invasion

Hou-Dong Zuo, Wei Tang, Xiao-Ming Zhang, Qiong-Hui Zhao, Bo Xiao

Hou-Dong Zuo, Wei Tang, Xiao-Ming Zhang, Qiong-Hui Zhao, Bo Xiao, Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China

Author contributions: Zhang XM was responsible for checking the manuscript and provided financial support for this work; Zhao QH and Xiao B provided the collection of all the material; Zuo HD and Tang W designed the study and wrote the manuscript.

Supported by National Nature Science Foundation of China, No. 30370436

Correspondence to: Xiao-Ming Zhang, MD, PhD, Professor, Head of Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China. cjz.xzhm@vip.163.com

Telephone: +86-817-2262218 Fax: +86-817-2222856

Received: July 30, 2011 Revised: November 17, 2011 Accepted: November 24, 2011 Published online: January 28, 2012

© 2012 Baishideng. All rights reserved.

Key words: Computed tomography; Magnetic resonance imaging; Pancreatic carcinoma; Extrapancreatic neural plexus

Peer reviewer: Kazushi Kishi, Dr, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8510, Japan

Zuo HD, Tang W, Zhang XM, Zhao QH, Xiao B. CT and MR imaging patterns for pancreatic carcinoma invading the extrapancreatic neural plexus. Part II: Imaging of pancreatic carcinoma nerve invasion. World J Radiol 2012; 4(1): 13-20 Available from: URL: http://www.wjgnet.com/1949-8470/full/v4/i1/13.htm DOI: http://dx.doi.org/10.4329/wjr.v4.i1.13

INTRODUCTION

Pancreatic carcinoma is a common malignant neoplasm with a high mortality rate. There are many factors influencing the prognosis and the selection of treatment methods for those patients suffering pancreatic carcinoma, such as lymphatic metastasis, adjacent organs or tissue invasion, etc. Among these factors, extrapancreatic neural plexus invasion is recognized as an important factor when considering the management of the patients.

We all know that neurotropic growth is one of the important biologic features of pancreatic carcinoma; cancer cells possibly spread and metastasize through the perineural space leading to recurrence after surgery[1-7]. Extrapancreatic neural plexus invasion can be found in the early stage and in small sizes of tumor, even in those less than 2 cm in size[8,9]. Neural invasion has been found at operation in 91% of patients with pancreatic carcinoma[10]. Nakao et al[10] found that 90% of intrapancreatic nerve and 69% of extrapancreatic neural plexus were involved in 204 patients with pancreatic carcinoma through...
The introduction of multidetector-row scanners has facilitated the acquisition of images during multiple phases of intravenous contrast administration. Utilization of the arterial dominant phase (first phase), using a scan delay of 40 s has resulted in superior pancreatic parenchymal enhancement. This has led to superior tumor-to-parenchymal enhancement differences, facilitating superior tumor detection and diagnosis, when compared to portal venous (second phase, 70 s delay) or delayed phases (third phase, 150 s delay) of imaging. All the images obtained are used to reconstruct and to observe pancreatic carcinoma and the extrapancreatic invasion.

MRI techniques

Current MR techniques using phased-array torso coils, thin slices, and dynamic gadolinium-enhanced breath-hold gradient-echo (GRE) sequences are optimal for imaging of pancreatic carcinoma, and each has its own advantages in the detection of smaller tumors and the extension of carcinoma. For a comprehensive assessment of pancreatic carcinoma and extrapancreatic invasion, it is necessary and important to use different series, including T1-weighted imaging (e.g., fast spin-echo imaging with multiple breath-hold acquisitions or single-breath-hold gradient echo imaging); T2-weighted imaging (e.g. FRFSE or SSFSE imaging) and fat saturation three-dimensional enhanced SPGR dynamic MR images. The most helpful sequences are the T1-weighted fat-suppressed and fat saturation three-dimensional gadolinium-enhanced GRE sequences. On the T1-weighted fat-suppressed images, the pancreatic parenchyma usually shows high signal intensity due to its abundant proteinaceous element while the tumor is of low signal intensity. On the gadolinium-enhanced GRE images, pancreatic carcinomas enhance less than the surrounding parenchyma due the lack of blood supply; when the signal of adipose tissue is very low, the enhanced pancreatic parenchyma and vessels render the ideal setting for observation. Furthermore, MRI has high sensitivity in the detection of small tumors, vascular metastasis and nerve invasion.

Dynamic imaging is performed with four breath-hold sequences- before the injection (corresponding to unenhanced imaging), immediately after the injection (arterial dominant phase of enhancement), 30 s afterward (early venous phase of enhancement), and 1 min afterward (late venous phase of enhancement). An additional delayed phase was acquired using a two-dimensional single-section SPGR technique in a study performed by our group. All the MRI pictures were taken from our hospital patients, and all the examinations were conducted on 1.5-T MR imagers (Signa, GE Healthcare).

CT PATTERNS OF PANCREATIC CARCINOMA INVADING EXTRAPANCREATIC NEURAL PLEXUS

CT has been used to study the extrapancreatic neural plexus invasion in common bile duct carcinoma and pancreatic carcinoma. Miura reported that a mass-like lesion located between the medial portion of the uncinate process and the SMA or celiac artery could diagnose extrapancreatic neural plexus invasion around
the SMA and celiac artery with an accuracy of 63% on CT using 5 mm slice table incremental CE-CT, when performed on eight patients with pancreatic head carcinoma.

The main patterns of extrapancreatic neural invasion by pancreatic carcinoma on CT have been seen to include: (1) peripancreatic retroperitoneal adipose tissue space disappeared and irregular soft tissue found in adipose tissue space; (2) adipose tissue space around SMA or superior mesenteric vein (SMV) disappeared; (3) adipose tissue space around celiac trunk disappeared; and (4) adipose tissue space behind spleen vein became narrow or disappeared[8,14] The second portion of the extrapancreatic neural plexus (PLX-II) is more susceptible to be invaded by carcinoma of pancreatic head[8,14] (Figure 1). The coeliac plexus is preferentially invaded by carcinoma of the head and body of the pancreas (Figure 2). The splenic neural plexus is often invaded by carcinoma of the pancreatic tail[8,13] (Figures 3 and 4).

Tian et al[8] studied 41 patients with carcinoma of pancreatic head, establishing two levels of criteria (A and B) for the assessment of neural plexus invasion on thin-section helical CT imaging. Criterion A was with respect

![Figure 1 Examples of patterns of extrapancreatic neural invasion by pancreatic carcinoma visualized by computed tomography.](image1)

A: Sixty-three-year-old male with pancreatic carcinoma in the pancreas body. Contrast-enhanced computed tomography (CT) images during the arterial dominant phase show strand-like structure (arrow) around the superior mesenteric artery; B: Sixty-seven-year-old female with pancreatic carcinoma in the pancreas head. Contrast-enhanced CT images during the arterial dominant phase show strand-like structure (arrow) around celiac trunk; C: Histopathology confirmed extrapancreatic neural (asterisk) invasion by pancreatic carcinoma (arrows) (HE, 200 ×); D: Histopathology confirmed extrapancreatic neural (asterisk) invasion by pancreatic carcinoma (arrows) (HE, 200 ×).

![Figure 2 Patterns of extrapancreatic neural invasion by pancreatic carcinoma: Computed tomography images in a 70-year-old male with pancreatic carcinoma in the pancreas body and tail.](image2)

A: Contrast-enhanced computed tomography image shows the coeliac plexus invasion (arrow) by the tumor; B: Histological image shows the extrapancreatic perineural (asterisk) invasion by the pancreatic carcinoma (arrows) (HE, 200 ×).
changes in the area around the SMA and inferior pancreaticoduodenal artery (IPDA), because the IPDA was mostly visualized on thin-section helical CT and was included in the PLX-Ⅱ: A0, no change in fat attenuation; A1, increase in fat attenuation, such as a streaky and strand-like structure (Figures 1, 3 and 4); A2, mass formation (Figures 2, 5 and 6) [16,28,29]. Criterion B was defined based on the status of the jejunal trunk (JT) because JTs are exclusively visualized on thin-section helical CT and run across the PLX-Ⅱ: V-, normal JT; V+, stenosis or obstruction of the JT [30].

Tian et al [8] reported that neural plexus was invaded in 85% of pancreatic carcinoma, and that there was no correlation between carcinoma size and the incidence of carcinoma invasion to the PLX-Ⅱ. The sensitivity, specificity and accuracy were, respectively, 100%, 91% and
Figure 6 Contrast-enhanced computed tomography images of features of extrapancreatic neural invasion by pancreatic carcinoma. A and B: Imaging shows tumor (arrows) forming the mass (arrowhead) in the space around abdominal aorta, superior mesenteric artery, superior mesenteric vein and inferior vena cava (A) and in the space between superior mesenteric artery and inferior vena cava (B); C and D: Histological pictures demonstrate the peripancreatic invasion (asterisk) by the carcinoma (arrows) (C, HE, 40 ×; D, HE, 200 ×).

Figure 7 Example of patterns of extrapancreatic neural invasion by pancreatic carcinoma and the characteristics as visualized by magnetic resonance imaging. Fifty-seven-year-old female with pancreatic body carcinoma: magnetic resonance images. The tumor (short arrows) was located at the body of the pancreas which showed hypointensity on T1-weighted imaging (A), arterial phase (C) and venous phase (D), while it showed hyperintensity on T2-weighted imaging (B); there was streak-like signal intensity structure (long arrows) between pancreatic body and abdominal aorta.
95% according to criterion A; and 18%, 100% and 62% according to criterion B, for evaluating the PLX-Ⅱ invasion. They concluded that criterion A had higher sensitivity and accuracy, while criterion B had higher specificity.

MR IMAGING PATTERNS OF PANCREATIC CARCINOMA INVADING EXTRAPANCREATIC NEURAL PLEXUS

The potential invasion to the extrapancreatic neural region near to pancreatic carcinoma on MR imaging was seen to include regions posterior and media to the pancreatic head, posterior to body of the pancreas, and also included the involvement of major vessels adjacent to the tumor, including the SMV and/or portal vein, SMA, celiac axis artery, common and/or proper hepatic artery, and splenic artery[22].

On MR imaging, the degree of the extrapancreatic neural invasion might be classified into three grades[8,17]: NV0, no change in fat signal intensity; NV1, streaky and strand-like signal intensity structure in fat tissue (Figure 7); NV2, irregular masses (diameter larger than 10 mm) adjacent to the lesions (Figure 8).

Pancreatic carcinoma local invasion or extension has been shown as irregular signal intensity in the peripancreatic fat layer, spicular formations with hypointensity on the pancreatic surface, streaky and strand-like signal intensity structures, and mass forming in the peripancreatic fat space on MR imaging[23,31-33].

Figure 8 Characteristics of tumor and the extrapancreatic neural invasion by pancreatic carcinoma on magnetic resonance images in an 80-year-old female. The tumor was located at the region between head and body of the pancreas and invaded medial to pancreas forming a mass (arrows). A: 3D gradient-echo (GRE) T1-weighted precontrast image; B: Fat-saturated fast recovery fast spin-echo T2-weighted image; C and D: 3D GRE T1-weighted Gd-enhanced arterial and venous phases. Histopathology confirmed extrapancreatic neural invasion by pancreatic carcinoma (arrows); E: HE, 40×; F: HE, 200×.
The signal intensity of the nerve invasion is similar to that of pancreatic carcinoma on MR imaging\(^{17,18}\), mostly showing hypointensity on T1-weighted, isointensity or a little hyperintensity on T2-weighted, hypointensity on arterial phase, and isointensity on delayed phase images after Gd-DTPA contrast enhancement\(^{31,34,35}\).

We have previously studied 20 patients with pancreatic carcinoma by MR imaging, and found the signs of extrapancreatic neural plexus invasion in 16 of the 20 patients (80%); 50% of patients showed streaky and strand-like signal intensity structures in fatty tissue, and 30% showed masses near the tumor. The signal intensity of the nerve invasion was hypointense on T1-weighted imaging and isointense on T2-weighted imaging in 88% of the patients, hypointense on arterial phase and isointense on delayed phase in 94% of the patients. Furthermore, vascular invasion was often demonstrated in the setting of nerve invasion (Figure 9), and the degree of vascular invasion was correlated with that of nerve invasion \((r = 0.58, P < 0.005)^{22}\).

CONCLUSION

Extrapancreatic neural plexus invasion by pancreatic carcinoma on CT and MR imaging appears as streaky and strand-like signal intensity structures in fat tissue and irregular masses adjacent to the tumor, with accompanying vascular invasion. CT and MRI are excellent modalities which are of great importance to detect, depict and stage the nerve invasion associated with pancreatic carcinoma. Imaging is beneficial to the management of patients with pancreatic carcinoma.
REFERENCES

1. Pour PM, Bell RH, Batra SK. Neural invasion in the staging of pancreatic cancer. Pancreas 2003; 26: 322-325
2. Makino I, Kitagawa H, Ohta T, Nakagawara H, Tajima H, Ohnishi I, Takamura H, Tani T, Kayahara M. Nerve plexus invasion in pancreatic cancer: spread patterns on histopathologic and embryological analyses. Pancreas 2008; 37: 358-365
3. Liu B, Lu KY. Neural invasion in pancreatic carcinoma. Hepatobiliary Pancreat Dis Int 2002; 1: 469-476
4. Hirai I, Kimura W, Ozawa K, Kudo S, Suto K, Kuzu H, Fuse A. Perineural invasion in pancreatic cancer. Pancreas 2002; 24: 15-25
5. Noto M, Miwa K, Kitagawa H, Kayahara M, Takamura H, Shimizu K, Ohta T. Pancreas head carcinoma: frequency of invasion of nerve plexus to the adherent to the superior mesenteric artery. Am J Surg Pathol 2005; 29: 1056-1061
6. Nano M, Lanfranco G, Ferronato M, Dal Corso H, Solej M. [Contribution to the study of innervation of the pancreas with a view to its relevance to neoplasms surgery]. Cirr Ital 2001; 53: 587-594
7. Mitsuhashi S, Hasebe T, Kinoshita T, Konishi M, Takahashi S, Gotohda N, Nakagohri T, Ochiai A. Detail histologic analysis of nerve plexus invasion in ductal invasive carcinoma of the pancreas and its prognostic impact. Am J Surg Pathol 2007; 31: 1636-1644
8. Tian H, Mori H, Matsumoto S, Yamada Y, Yikosue H, Ohta M, Kitano S. Extrapancreatic neural plexus invasion by carcinomas of the pancreatic head region: evaluation using thin-section helical CT. Radiat Med 2001; 19: 141-147
9. Takahashi T, Ishikura H, Kato H, Tanabe T, Yoshiki T. Intra-pancreatic, extra-tumoral perineural invasion (nex). An indicator for the presence of retroperitoneal neural plexus invasion by pancreatic carcinoma. Acta Pathol Jpn 1992; 42: 99-103
10. Kayahara M, Nagakawa T, Konishi I, Ueno K, Ohta T, Miyazaki I. Clinicopathological study of pancreatic carcinoma with particular reference to the invasion of the extrapancreatic neural plexus. Int J Pancreatol 1991; 10: 105-111
11. Nakao A, Harada A, Nonami T, Kaneko T, Takagi H. Clinical significance of carcinoma invasion of the extrapancreatic nerve plexus in pancreatic cancer. Pancreas 1996; 12: 357-361
12. Yi SQ, Miwa K, Ohta T, Kayahara M, Kitagawa H, Tanaka A, Shimokawa T, Akita K, Tanaka S. Innervation of the pancreas from the perspective of peripheral invasion of pancreatic cancer. Pancreas 2003; 27: 225-229
13. Ichikawa T, Erturk SM, Sou H, Nakajima H, Tsukamoto T, Motosugi U, Araki T. MDCT of pancreatic adenocarcinoma: optimal imaging phases and multiplanar reformatted imaging. AJR Am J Roentgenol 2006; 187: 1513-1520
14. Nino-Murcia M, Jeffrey RB, Beaulieu CF, Li KC, Rubin GD. Multidetector CT of the pancreas and bile duct: system value of curved planar reformations. AJR Am J Roentgenol 2001; 176: 689-693
15. Vargas R, Nino-Murcia M, Trueblood W, Jeffrey RB. MDCT in Pancreatic adenocarcinoma: prediction of vascular invasion and resectability using a multiphasic technique with curved planar reformations. AJR Am J Roentgenol 2004; 182: 419-425
16. Mochizuki K, Gabata T, Kozaka K, Hattori Y, Zen Y, Kitagawa H, Kayahara M, Ohta T, Matsui O. MDCT findings of extrapancreatic nerve plexus invasion by pancreas head carcinoma: correlation with en bloc pathological specimens and diagnostic accuracy. Eur Radiol 2010; 20: 1757-1767
17. Pamuklar E, Semelka RC. MR imaging of the pancreas. Magn Reson Imaging Clin N Am 2005; 13: 313-330
18. Fayad LM, Mitchell DG. Magnetic resonance imaging of pancreatic adenocarcinoma. Int J Gastrointest Cancer 2001; 30: 19-25
19. Grenacher L, Klaus M. [Computed tomography of pancreatic tumors]. Radiologe 2009; 49: 107-123
20. Wang DJ, Zeng MS, Jin DY, Lou WH, Ji Y, Yao SX, Chen CZ, Li RC. [Evaluation of 2D and 3D MRI imaging in the diagnosis of pancreatic carcinoma]. Zhonghua Zhongliu Za Zhi 2007; 29: 216-220
21. Chandarana H, Babb J, Macari M. Signal characteristic and enhancement patterns of pancreatic adenocarcinoma: evaluation with dynamic gadolinium enhanced MRI. Clin Radiol 2007; 62: 876-883
22. Zhang XM, Mitchell DG, Wikiewicz A, Verma S, Bergin D. Extrapancreatic neural plexus invasion by pancreatic carcinoma: characteristics on magnetic resonance imaging. Abdom Imaging 2009; 34: 634-641
23. Zhang XM, Mitchell DG, Byun JH, Verma SK, Bergin D, Wikiewicz A. MR imaging for predicting the recurrence of pancreatic carcinoma after surgical resection. Eur J Radiol 2010; 73: 572-578
24. Miura K. [The evaluation of thin slice incremental CE-CT for diagnosis of extension of pancreatic carcinoma--comparison of CT and pathological findings]. Nihon Igaku Hoshasen Gakki Za Zai 1991; 51: 245-259
25. Ochotorena IJ, Yikosue H, Hori Y, Yokoyama S, Yoshida T, Mori H. The local spread of lower bile duct cancer: evaluation by thin-section helical CT. Eur Radiol 2000; 10: 1106-1113
26. Fukuda T, Iwanaga S, Sakamoto I, Aso N, Nagao K, Hayashi K, Yamaguchi H, Okudaira S, Tomioka T, Okimoto T. CT of neural plexus invasion in common bile duct carcinoma. J Comput Assist Tomogr 1998; 22: 351-356
27. Kaneko T, Nakao A, Inoue S, Nomoto S, Nagasaka T, Nakashima N, Harada A, Nonami T, Takagi H. Extrapancreatic nerve plexus invasion by carcinoma of the head of the pancreas. Diagnosis with intraportal endovascular ultrasonography: Int J Pancreatol 1996; 19: 1-7
28. Tezel E, Kaneko T, Sugimoto H, Takeda S, Inoue S, Nagasaka T, Nakao A. Clinical significance of intrapancreatic endovascular ultrasonography for the diagnosis of extrapancreatic nerve plexus invasion by pancreatic carcinoma. Pancreatolog 2004; 4: 76-81
29. Shioyama Y, Kimura M, Horihata K, Masuda M, Hagiha A, Okumura T, Yoshimi F, Amemiya K, Kishi K, Terada M, Sato M. Peripancreatic arteries thin-section multislice helical CT. Ablom Imaging 2001; 26: 234-242
30. Yamada Y, Mori H, Yikosue H, Matsumoto S, Hori Y, Maeda T. CT assessment of the inferior periampullary veins: clinical significance. AJR Am J Roentgenol 2000; 174: 677-684
31. Irie H, Honda K, Kaneko K, Kuroiwa T, Yoshimitsu K, Masuda K. Comparison of helical CT and MR imaging in detecting and staging small pancreatic adenocarcinoma. Ablom Imaging 1997; 22: 429-433
32. Ichikawa T, Haradome H, Hachiya J, Niitatori T, Ohimoto K, Kinoshita T, Araki T. Pancreatic ductal adenocarcinoma: preoperative assessment with helical CT versus dynamic MR imaging. Radiology 1997; 202: 655-662
33. Nishihara T, Yamashita Y, Abe Y, Mitsuizaki K, Tsuchiike T, Nakayama Y, Takahashi M. Local extension of pancreatic carcinoma: assessment with thin-section helical CT versus breath-hold fast MR imaging—ROC analysis. Radiology 1999; 212: 445-452
34. Lu DS, Reber HA, Krasny RM, Kadel BM, Sayre J. Local staging of pancreatic cancer: criteria for unresectability of major vessels as revealed by pancreatic-phase, thin-section helical CT. AJR Am J Roentgenol 1997; 168: 1439-1443
35. Sironi S, De Cobelli F, Zerbi A, Balzano G, Di Carlo V, Del-Maschio A. Pancreatic carcinoma: MR assessment of tumor invasion of the peripancreatic vessels. J Comput Assist Tomogr 1995; 19: 739-744

S-Editor Cheng JX L-Editor Logan S E-Editor Zheng XM