Malaria caused by *Plasmodium vivax* is being diagnosed with increasing frequency in Africa. Some southern countries where it has been detected are Angola, Botswana, Mozambique, Namibia, Zambia and Zimbabwe. Knowing the parasite origin of *P. vivax* infection recurrences (which can be reinfections, recrudescences or relapses) is important epidemiologically for malaria elimination in Africa. Although hypnozoites will no doubt be a source, we should try to determine how frequently the origin of non-reinfection recurrences of *P. vivax* malaria involving closely related parasites may be non-circulating merozoites rather than hypnozoites.

Keywords: epidemiology; genotyping; hypnozoite; identity by descent; meiotic sibling; *Plasmodium vivax*; primaquine; relapse; single-cell sequencing; whole-genome sequencing.

Globally, approximately 2.5 billion people are at risk of acquiring *Plasmodium vivax* infection. Malaria caused by *P. vivax* is being diagnosed with increasing frequency in Africa.¹ Some southern countries where it has been detected are Angola, Botswana, Mozambique, Namibia, Zambia and Zimbabwe.¹ Knowing the parasite origin (mosquito or human tissue) of *P. vivax* infection recurrences (which can be reinfections, recrudescences or relapses) is important epidemiologically for malaria elimination in Africa. A reason is that the efficacy of drugs against parasites might vary according to their location in the body. This necessitates elucidatory research. Although hypnozoites² will no doubt be a source of recurrences, we should try to determine how frequently the origin of non-reinfection recurrences of *P. vivax* malaria involving closely related parasites may be non-circulating merozoites rather than hypnozoites.

One reason why this possibility should be considered in *P. vivax* population genetics studies is the recent discovery that, in chronic infections, sequestered and multiplying extravascular asexual *P. vivax* parasites occur in vast numbers.³,⁴,⁵ Very few hepatic hypnozoites will be present and homologous recurrences can be highly suggestive of a clonal merozoite origin.⁶ That non-circulating merozoites are likely to be the source of many homologous *P. vivax* malarial recurrences is a theory I proposed in 2011 and 2012 and have advanced incrementally.⁷,⁸

As has been explained elsewhere,⁹ a few recent papers have avoided mentioning where the parasites occur in vast numbers.³,⁴,⁵ Some southern countries where it has been detected are Angola, Botswana, Mozambique, Namibia, Zambia and Zimbabwe.¹ Knowing the parasite origin (mosquito or human tissue) of *P. vivax* infection recurrences (which can be reinfections, recrudescences or relapses) is important epidemiologically for malaria elimination in Africa. Although hypnozoites² will no doubt be a source of recurrences, we should try to determine how frequently the origin of non-reinfection recurrences of *P. vivax* malaria involving closely related parasites may be non-circulating merozoites rather than hypnozoites.

As has been explained elsewhere,¹⁰ a few recent papers have avoided mentioning where the parasites are likely to be closely related to those from a pre-recurrence time point. The reliability of the temporal criterion that post-28-day recurrences are more likely to be relapses (these are hypnozoite-mediated) than recrudescences (which, by definition, have a merozoite origin) has been questioned.¹⁰ Another way to explain why some long-term homologous recurrences of *P. vivax* malaria may be recrudesces is by comparing them with long-term homologous recurrences of *Plasmodium malariae* and *Plasmodium falciparum* malaria. Those recurrences are thought to be recrudescences because a hypnozoite stage is not known to occur in the life cycle of either *P. malariae* or *P. falciparum*. There is no known reason why long-term homologous *P. vivax* malarial recurrences should not have an equivalent non-hypnozoite origin, at least sometimes.⁸,⁹

A drug-associated explanation for apparent relapses has also been put forward. This needs to be followed up. Recurrence patterns in groups of patients treated with the hypnozoitocide primaquine, as well as some results of mathematical modelling, have in the past been
interpreted as indicating that most recurrences of \textit{P. vivax} malaria are relapses. However, the recently elucidated mechanism of action of primaquine suggests that non-circulating merozoites in bone marrow and perhaps elsewhere too can be inactivated by the drug,10 in addition to hypnozoites being killed. If this is so, primaquine might not only reduce the number of subsequent relapses but also prevent an unknown percentage of recrudescences from taking place. This newly recognised possibility10 confuses the issue, making the parasite source of non-reinfection homologous recurrences of \textit{P. vivax} malaria in individual cases inexplicable.

One of the most recent studies to consider the parasite origin of \textit{P. vivax} malarial recurrences was a meta-analysis.11 By assuming that primaquine kills hypnozoites but not non-hypnozoite asexual stages, the authors were obliged to conclude that most of these recurrences are relapses. This may or may not be correct. At present, we simply do not know.

Understanding the parasite origin or origins of non-reinfection recurrences of \textit{P. vivax} malaria has thus become even more difficult than it already was. Nonetheless, genotyping remains fundamental for analysing the results of drug trials and planning the control of malaria.12 The issues discussed above must therefore be taken into account in future molecular epidemiological research and in mathematical modelling of recurrent malaria.

Acknowledgements

Competing interests

The author declares that he has no financial or personal relationships that may have inappropriately influenced him in writing this commentary.

Author’s contributions

M.B.M. is the sole author of the commentary.

Ethical considerations

No ethical clearance was required for this commentary.

Funding information

The author received no financial support for the research, authorship, and/or publication of this commentary.

Data availability

Data sharing is not applicable to this commentary as no new data were created or analysed.

Disclaimer

The views and opinions expressed in this commentary are those of the author and do not necessarily reflect the official policy or position of any affiliated agency of the author.

References

1. Quaye IK, Alekzenko L, Osuray C, et al. The Pan African Vivax and Ovale Network (PAVON): Refocusing on \textit{Plasmodium vivax}, oval and asymptomatic malaria in sub-Saharan Africa. Parasitol Int. 2021;84:102415. https://doi.org/10.1016/j.pariint.2021.102415
2. Markus MB. The malarial hypnozoite. Lancet. 1980;315(8174):936. https://doi.org/10.1016/s0140-6736(80)90871-5
3. Obaldia N 3rd, Meibalan E, Sa JM, et al. Bone marrow is a major parasite reservoir in \textit{Plasmodium vivax} infection. mBio. 2018;9(3):e00625-18. https://doi.org/10.1128/mBio.00625-18
4. Brito MAM, Baro B, Raaij TC, et al. Morphological and transcriptional changes in human bone marrow during natural \textit{Plasmodium vivax} malaria infections. J Infect Dis. In press 2020. https://doi.org/10.1093/infdis/jiaa177
5. Kho S, Qotrunnada L, Leonardo L, et al. Hidden biomass of intact malaria parasites in the human spleen. New Engl J Med. 2021;384(21):2067–2069. https://doi.org/10.1056/NEJMc2023884
6. Kho S, Qotrunnada L, Leonardo L, et al. Evaluation of splenic accumulation and colocalization of immature reticulocytes and \textit{Plasmodium vivax} in asymptomatic malaria: A prospective human splenectomy study. PLoS Med. 2021;18(5):e1003632. https://doi.org/10.1371/journal.pmed.1003632
7. Markus MB. Source of homologous parasites in recurrent \textit{Plasmodium vivax} malaria. J Infect Dis. 2012;206(4):622–623. https://doi.org/10.1093/infdis/jis393
8. Markus MB. Malaria eradication and the hidden parasite reservoir. Trends Parasitol. 2017;33(7):492–495. https://doi.org/10.1016/j.pt.2017.03.002
9. Markus MB. Biological concepts in recurrent \textit{Plasmodium vivax} malaria. Parasitology. 2018;145(13):1765–1771. https://doi.org/10.1017/S00311820180032X
10. Markus MB. Safety and efficacy of tafenoquine for \textit{Plasmodium vivax} malaria prophylaxis and radical cure: Overview and perspectives. Ther Clin Risk Manag. 2021;17:989–999. https://doi.org/10.2147/TCRM.S269336
11. Commons RJ, Simpson JA, Watson J, White NJ, Price RN. Estimating the proportion of \textit{Plasmodium vivax} vivax recurrences caused by relapse: A systematic review and meta-analysis. Am J Trop Med Hyg. 2020;103(3):1094–1099. https://doi.org/10.4269/ajtmh.20-0186
12. Barry AE. Complex infections in vivax malaria: The more you look, the more you find. Trends Parasitol. 2021;37(12):1022–1023. https://doi.org/10.1016/j.pt.2021.10.002