Diacylglycerol kinase η colocalizes and interacts with apoptosis signal-regulating kinase 3 in response to osmotic shock

Yuji Suzuki, Maho Asami, Daisuke Takahashi, Fumio Sakane

A R T I C L E I N F O

Keywords:
Diacylglycerol kinase
Apoptosis signal-regulating kinase
Osmotic shock
Stress granule
C-Raf

A B S T R A C T

Diacylglycerol kinase (DGK) η translocates from the cytoplasm to punctate vehicles via osmotic shock. Apoptosis signal-regulating kinase (ASK) 3 (MAP kinase kinase kinase (MAPKKK) 15) is also reported to respond to osmotic shock. Therefore, in the present study, we examined the subcellular localization of DGKη and ASK3 expressed in COS-7 cells under osmotic stress. We found that DGKη was almost completely colocalized with ASK3 in punctate structures in response to osmotic shock. In contrast, DGKη, which is closely related to DGKδ structurally, was not colocalized with ASK3, and DGKδ failed to colocalize with another MAPKKK, C-Raf, even under osmotic stress. The structures in which DGKη and ASK3 localized were not stained with stress granule makers. Notably, DGKη strongly interacted with ASK3 in an osmotic shock-dependent manner. These results indicate that DGKη and ASK3 undergo osmotic shock-dependent colocalization and associate with each other in specialized structures.

1. Introduction

Diacylglycerol kinase (DGK) converts diacylglycerol to phosphatidic acid [1–5]. Both diacylglycerol [6–8] and phosphatidic acid [9–11] are known to serve as second messengers controlling many key enzymes. Therefore, DGK plays a critical role in the regulation of a wide variety of physiological and pathological phenomena.

DGK consists of ten isozymes (α, β, γ, δ, ε, ζ, η, ι, ι, κ) [1–5]. These DGK isozymes are divided into five groups (type I – V) according to their structural characteristics. DGKη belongs to the type II DGK group, which also contains DGKδ and κ [12,13]. Moreover, splice variants of DGKη exist, i.e., DGKη-1 – 4 [13–15]. DGKη1, which is a main alternative splicing product of the DGKη gene [13,16], has a pleckstrin homology domain at its N-terminal and a catalytic domain that is divided into two subdomains.

Several genome-wide association studies showed that the DGKη gene is associated with the etiology of bipolar disorder (BPD) [17–19]. Moreover, the DGKη gene is located within the BPD linkage region on 13q14 [20,21]. Notably, we recently generated DGKη-knockout (KO) mice and analyzed their phenotypes. Intriguingly, the DGKη-KO mice showed lithium-sensitive BPD (mania)-like behaviors [22,23]. Moreover we recently demonstrated that DGKη deficiency caused hyperactivity of the dopaminergic system [24]. Therefore, DGKη is attracting much attention as a crucial BPD-associated gene [25]. In addition, we reported that DGKη interacted with C-Raf and B-Raf (mitogen-activated kinase (MAPK) kinase kinase (MAPKK)) in response to epidermal growth factor (EGF) stimulation and regulated the Raf–MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)–ERK pathway [26]. On the other hand, stress stimulation (osmotic shock) induced translocation of DGKδ to nonionic detergent-resistant membranes [27] in punctate structures [13,28]. However, the exact nature of these punctate structures remains unclear.

Apoptosis signal-regulating kinase (ASK) 1 was identified as a MAPKKK that activates the MKK4/7-JNK and the MKK3/6-p38 pathways resulting in apoptosis [29]. ASK2 and ASK3 were subsequently found as members of the ASK family [30,31]. The ASK family was shown to be involved in a wide range of stress signaling pathways (oxidative, osmotic and endoplasmic reticulum stresses) and several diseases including cancer [32,33]. ASK3 (also known as MAPKKK15) is known to respond to osmotic stress and regulate p38 activity and is essential to regulate bidirectional cell volume under both hypoxic and hypooplastic stresses [34–36].

In the present study, we examined the subcellular localization of DGKη1 and ASK3, and their interaction in response to osmotic shock. Intriguingly, we found that DGKη1 and ASK3 strongly interacted with one another, and moreover, were almost completely colocalized in punctate structures specialized for these enzymes in an osmotic stress-
dependent manner.

2. Materials and methods

2.1. cDNA constructs

pAcGFP-C1-human DGK\(\eta_1\) [27] and p3\(\times\)FLAG-CMV-DGK\(\eta_1\) [13] were generated as described previously. cDNA encoding human DGK\(\eta_1\) was excised from pAcGFP-C1-human DGK\(\eta_1\) with Sall and BamHI and inserted into the Sall/BamHI site of the pDsRed-monomer-C1 vector (Takara-Clontech, Kusatsu, Japan). cDNA encoding human DGK\(\delta_2\) was excised from pAcGFP-C1-human DGK\(\delta_2\) [37] with EcoRI and Sall and inserted into the EcoRI/Sall site of the pDsRed-monomer-C1 vector. EGFP-tagged human ASK3 was generated as described previously [36].

2.2. Cell culture and transfection

COS-7 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Wako Pure Chemical Industries, Osaka, Japan) supplemented with 10% fetal bovine serum (Biological Industries (Beit-Haemek, Israel)), 100 units/ml penicillin, and 100 \(\mu\)g/ml streptomycin (Wako Pure Chemical Industries) at 37 \(^\circ\)C in an atmosphere containing 5% CO\(_2\). Cells were transiently transfected using PolyFect reagent (Qiagen, Hilden, Germany) as described by the manufacturer.

2.3. Confocal microscopy

After 24 h of transfection with DsRed-monomer-DGK\(\eta_1\) and/or EGFP-ASK3, COS-7 cells were incubated in DMEM with or without 500 mM sorbitol for 30 min. The cells were fixed in 3.7% paraformaldehyde. The coverslips were mounted using Vectashield (Vector Laboratories, CA, USA).

Fig. 1. Subcellular localization of DGK\(\eta_1\) and ASK3 in COS-7 cells in response to osmotic shock. (A) Either pDsRed-monomer alone or pDsRed-monomer-DGK\(\eta_1\) was cotransfected with either pEGFP alone or pEGFP-ASK3 in COS-7 cells as indicated. After 24 h of transfection, the cells were incubated in the presence or absence of 500 mM sorbitol for 30 min. After osmotic shock, the cells were fixed and imaged. Representative data from three independent experiments are shown. Scale bars, 20 \(\mu\)m. (B) The distribution of DsRed-monomer-DGK\(\eta_1\) and EGFP-ASK3 were quantified using ImageJ software. Obvious punctate structures in the presence of 500 mM sorbitol are indicated with arrows. Green, EGFP; Red, DsRed-monomer. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Burlingame, CA, USA). Fluorescence imaging was performed using an Olympus FV1000-D (IX81) confocal laser scanning microscope (Olympus, Tokyo, Japan). Images were acquired using FV-10 ASW software (Olympus).

To observe stress granule markers, Ras GTPase-activating protein SH3-domain-binding protein (G3BP1) and T-cell intracellular antigen 1 related protein (TIAR), cells were fixed and then permeabilized in phosphate-buffered saline containing 0.1% Triton X-100 and 1% bovine serum albumin. Coverslips were incubated with an anti-G3BP1 (Cat. #: 611126, BD Biosciences, Franklin Lakes, NJ, USA) or anti-TIAR (Cat. #: 610352, BD Biosciences) mouse monoclonal antibody for 1 h and then incubated with Alexa 594-conjugated anti-mouse IgG (Molecular Probe) for 1 h.

2.4. Immunoprecipitation

COS-7 cells (100 mm dish) were lysed in 500 μL of HEPES buffer (50 mM, pH 7.2) containing 100 mM NaCl, 5 mM MgCl₂, 1% Nonidet P-40 and cOmplete™ protease inhibitor cocktail (EDTA-free, Sigma-Aldrich). Cell lysates were subjected to immunoprecipitation with anti-FLAG monoclonal antibody (Cat. #: F1804, Sigma-Aldrich) and Protein A/G PLUS-agarose beads (Santa Cruz Biotechnology) as described previously [38,39]. The immunoprecipitates were boiled in SDS sample buffer.

2.5. Western blotting

COS-7 cell lysates (20 μg) and immunoprecipitates were separated by SDS-polyacrylamide gel electrophoresis. Western blotting was performed as previously described [40,41] using an anti-GFP (Cat. #: sc-9996, Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-FLAG or anti-C-Raf (Cat. #: 610152, BD Biosciences) antibody along with a peroxidase-conjugated anti-mouse IgG (Jackson ImmunoResearch Laboratories, West Grove, PA, USA) antibody.

3. Results

3.1. DGKη selectively colocalizes with ASK3 in response to osmotic shock

We previously reported that DGKη translocated from the cytoplasm to punctate structures in an osmotic shock-dependent manner [13,27]. ASK3 is also known to act in response to osmotic stress [35,36]. Therefore, we first examined whether DGKη colocalizes with ASK3 in an osmotic shock-dependent fashion. For this purpose, we utilized DGKη1, which is a primary alternative splicing product of the DGKη gene [13,16]. When DsRed-monomer-tagged DGKη1 was coexpressed with EGFP-tagged ASK3 in COS-7 cells, they each showed cytoplasmic distribution and were partially colocalized (Fig. 1A). When the cells were exposed to osmotic shock (500 mM sorbitol for 30 min), DsRed-monomer-DGKη1 and EGFP-ASK3 were markedly and exclusively colocalized at punctate structures (Fig. 1A). Densitometric

Fig. 2. Subcellular localization of ASK3, DGKδ2, DGKη1 and C-Raf in COS-7 cells in response to osmotic shock. (A) pDsRed-monomer-DGKδ2 was cotransfected with pEGFP-ASK3 in COS-7 cells. (C) DsRed-monomer-C-Raf was cotransfected with pEGFP-DGKη1 in COS-7 cells. After 24 h of transfection, the cells were incubated in the presence or absence of 500 mM sorbitol for 30 min. After the osmotic shock, the cells were fixed and imaged. Representative data from three independent experiments are shown. Scale bars, 20 μm. (B, D) The distribution of DsRed-monomer-DGKδ2 and EGFP-ASK3 (B) and DsRed-monomer-C-Raf and EGFP-DGKη1 (D) was quantified using ImageJ software. Obvious punctate structures in the presence of 500 mM sorbitol are indicated with arrows. Green, EGFP; Red, DsRed-monomer. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
analysis of confocal microscopy exhibits that DGK_1 and ASK3 were almost perfectly colocalized at punctate structures in osmotic-shocked COS-7 cells (Fig. 1B). However, DsRed-monomer-DGK_1 did not colocalize with EGFP alone, even in the presence of osmotic stress (Fig. 1). Moreover, EGFP-ASK3 failed to codistribute with DsRed-monomer alone under the same conditions (Fig. 1).

DGK_6 also belongs to the type II DGKs, and its structure is closely related to that of DGK_1 [42]. Thus, we determined next if DGK_6, which is a main alternative splicing product of the DGK_6 gene [43], is colocalized with ASK3. However, as shown in Fig. 2, DsRed-monomer-DGK_6 was not colocalized with EGFP-ASK3, even in the presence of osmotic stress (Fig. 2).

We previously reported that DGK_1 was colocalized and interacted with C-Raf in an EGF stimulation-dependent manner in HeLa cells [26]. However, AcGFP-DGK_1 did not exhibit marked colocalization with DsRed-monomer-C-Raf, even under osmotic stress (Fig. 2). Collectively, these results indicate that DGK_1 was selectively colocalized with ASK3 in response to osmotic shock.

3.2. Punctate structures where DGK_1 and ASK3 are located are distinct from stress granules

Stress granules, which are dense aggregations composed of proteins and RNAs in the cytosol, appear when the cell is under stress, including osmotic shock [44]. Therefore, we investigated whether DGK_1 and ASK3 colocalize in stress granules. As shown in Fig. 3, Ras GTPase-activating protein SH3-domain-binding protein (G3BP1), a stress granule marker [45], was not located at punctate structures where DGK_1 existed. In addition to DGK_1, ASK3 also failed to codistribute with G3BP1. Moreover, another stress granule marker, T-cell intracellular antigen 1 related protein (TIAR) [46], also failed to colocalize with DGK_1 (Suppl. Fig. 1). These results strongly suggest that DGK_1 and ASK3 translocated from the cytoplasm to their specialized structures but not to general stress granules.

3.3. DGK_1 interacts with ASK3 in response to osmotic shock

We next examined whether DGK_1 interacts with ASK3. To test this, we performed immunoprecipitation using COS-7 cells expressing 3 × FLAG-tagged DGK_1 and EGFP-tagged ASK3. EGFP-ASK3 was not detected in the immunoprecipitant of 3 × FLAG-DGK_1 using an anti-FLAG antibody in the absence of osmotic stress (Fig. 4). However, 3 × FLAG-DGK_1, but not 3 × FLAG alone, strongly coimmunoprecipitated with EGFP-ASK3 in the presence of osmotic stress (Fig. 4), indicating that DGK_1 interacts with ASK3 in an osmotic shock-dependent manner.

We previously reported that DGK_1 interacted with C-Raf in response to EGF [26]. Therefore, we determined next whether 3 × FLAG-tagged DGK_1 interacts with endogenous C-Raf in osmotic-shocked COS-7 cells. However, C-Raf was only slightly coimmunoprecipitated with 3 ×
Fig. 4. DGK1 interacts with ASK3 in response to osmotic shock. pEGFP-tagged ASK3 was cotransfected with either p3 × FLAG vector alone or p3 × FLAG-tagged DGK1 in COS-7 cells for 24 h and then treated with or without 500 mM sorbitol for 30 min. 3 × FLAG-DGK1 was immunoprecipitated by the anti-FLAG antibody. Immunoprecipitated 3 × FLAG-DGK1 and EGFP-ASK3 and endogenous C-Raf were analyzed by Western blotting with anti-FLAG, anti-GFP and anti-C-Raf antibodies, respectively. Representative data from three independent experiments are shown.

FLAG-DGK1 in response to osmotic shock (Fig. 4). These results indicated that DGK1 is associated with C-Raf in addition to ASK3 under osmotic stress conditions.

Altogether, the results obtained in the present study indicate that DGK1 and ASK3 selectively colocalize and associate with each other in specialized structures in response to osmotic stress.

4. Discussion

In the present study, we revealed for the first time the osmotic stress-dependent colocalization and interaction between DGK1 and ASK3. The lipid kinase DGK metabolizes signal lipids, diacylglycerol and phosphatidic acid, which each regulate diverse physiological and pathological events [1–5, 25, 47]. ASK3, which is a MAPKKK, controls bidirectional cell volume and blood pressure in response to hypo- and hyperosmotic shocks [35, 36]. Although DGK1 and ASK3 have been independently studied, it is interesting that these physiologically important enzymes colocalize and interact with each other under osmotic stress conditions (Figs. 1 and 4), implying a functional linkage between them.

We found colocalization of DGK1 with ASK3 at punctate structures in an osmotic shock-dependent manner (Fig. 1). Stress granules are dense aggregations in the cytosol and appear under stressful conditions, including osmotic shock [44]. However, the stress granule markers G3BP1 and TIAR failed to colocalize with DGK1 and ASK3. Therefore, it is likely that the punctate structures where DGK1 and ASK3 exist are not canonical stress granules, and consequently, are unique structures specialized for these enzymes that have not yet been identified. We previously showed that early endosome antigen 1 and clathrin partially colocalized with DGK1 under osmotic stress [27]. Thus, the unknown structures may partly be a kind of clathrin-coated endosome-like vesicle. Recently, Watanabe et al. reported that ASK3 forms condensates, which are membraneless unlike the classic organelles surrounded with lipid bilayers, under hyperosmotic stress [48]. Therefore, it is possible that DGK1 is also translocated to liquid-like condensates through the interaction with ASK3 in response to osmotic shock. Because DGK1 (DGKδ2) forms oligomers via its sterile α domain [13], DGK1 may contribute to the formation of ASK3 condensates.

DGK1 and ASK3 were distributed in the cytoplasm in unstimulated cells. However, they did not interact with each other in unstimulated cells (Fig. 4). Therefore, it is likely that DGK1 and ASK3 are not markedly colocalized in resting cells. DGK1 was located in punctate structures without ASK3 expression, and vice versa (Fig. 1). Therefore, it is likely that DGK1 and ASK3 do not recruit each other.

DGKδ [42], a closely related isozyme of DGK1, did not distribute to the punctate structures where ASK3 and DGK1 were localized, indicating that the subcellular localization of these isozymes is distinctly regulated. The subcellular localization of DGKδ was reported to be regulated by phosphorylation induced by porphobilin 12-myrustiste 13-ace-
tand conventional protein kinase C [38, 49].

DGK1 interacted with C-Raf in response to EGF stimulation and associated with ASK3 under osmotic stress [26]. Both C-Raf and ASK3 are MAPKKKS. Thus, DGK1 likely interacts with distinct MAPKKKS in differentially stimulated cells. ERK (MAPK) acts downstream of DGK1-C-Raf (MAPKKK) in EGF-stimulated cells [26]. In contrast, JNK and P38 [35] function downstream of ASK3. ASK3 also regulates WNK1–SPAK/OSR1 signaling [36]. However, it remains unclear whether DGK1 utilizes these pathways under osmotic stress.

The colocalization and interaction between DGK1 and ASK3 (Figs. 1 and 4) imply their functional linkage. Because ASK3 (NCBI, https://www.ncbi.nlm.nih.gov/gene/389840) and DGK1 (NCBI, https://www.ncbi.nlm.nih.gov/gene/160851) are broadly expressed in many tissues, they can also work together in a broad range of tissues. The ASK3 gene is reportedly related to neurodegenerative diseases (Alzheimer’s disease) [30]. Interestingly, genome wide association studies (GWAS Central, https://www.gwascentral.org) also suggested that DGK1, which is highly expressed in the brain [16], is associated with neurodegenerative diseases, such as Alzheimer’s disease. In addition, DGK1 is implicated in BPD [22, 23]. The etiology of BPD is correlated with chronic stress [50]. Thus, stress may influence the pathogenesis of neurodegenerative diseases and BPD through DGK1 and ASK3.

In the present study, for the first time, we identified the colocalization and interaction of DGK1 and ASK3 in punctate granules that are specialized for DGK1 and ASK3, in response to osmotic shock. The exclusive colocalization and interaction of DGK1 and ASK3 imply their functional linkage, although it needs to be explored further. It will be interesting to determine the identity of the structures and the functional linkage between DGK1 and ASK3.

Declaration of competing interest

The authors declare no conflicts of interest associated with the content of this article.

Acknowledgments

We thank Drs. Hidenori Ichijo and Isao Naguro (University of Tokyo) for providing pEGFP-human ASK3. This work was supported in part by grants from MEXT/JSPS (KAKENHI Grant Numbers: 26291017 (Grant-in-Aid for Scientific Research (B)), 15K14470 (Grant-in-Aid for Challengering Exploratory Research), and 17H03650 (Grant-in-Aid for Scientific Research (B))); the Futaba Electronic Memorial Foundation; the Ono Medical Research Foundation; the Japan Foundation for Applied Enzymology; the Food Science Institute Foundation; the Skylark Food Science Institute; the Asahi Group Foundation; the Japan Milk Academic Alliance; the Japan Food Chemical Research Foundation; and the SHIN Medical Research Foundation (FS).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bbrep.2021.101006.
Author contributions

Y.S. primarily designed and conducted the experiments, analyzed the data and wrote the manuscript. M.A. designed and conducted the experiments and analyzed the data. D.T. designed the study and revised it critically for important intellectual content. F.S. conceived the research and wrote the manuscript. All authors revised the manuscript and approved its final version.

References

[1] K. Goto, T. Nakano, Y. Horumi, Diacylglycerol kinase and animal models: the pathophysiological roles in the brain and heart, Adv. Enzym. Regul. 46 (2006) 192–202.
[2] I. Merida, A. Avila-Flores, E. Merino, Diacylglycerol kinases: at the hub of cell signalling, Biochem. J. 409 (2008) 1–18.
[3] F. Sakane, S. Imai, M. Kai, et al., Diacylglycerol kinases: why so many of them? Biochim. Biophys. Acta 1771 (2007) 793–806.
[4] F. Sakane, S. Mizuno, D. Takahashi, et al., Where do substrates of diacylglycerol kinases come from? Diacylglycerol kinases utilize diacylglycerol species supplied from phosphatidylinositol turnover-independent pathways, Adv Biol Regul 67 (2018) 101–108.
[5] M.K. Togham, R.M. Epand, Mammalian diacylglycerol kinases: molecular interactions and biological functions of selected isoforms, Biochim. Biophys. Acta 1790 (2009) 416–424.
[6] Y. Nishizuka, Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C, Science 258 (1992) 607–614.
[7] J.H. Hurley, A.C. Newton, P.J. Parker, et al., Taxonomy and function of C1 protein kinase C homology domains, Protein Sci. 6 (1997) 477–480.
[8] D. Ron, M.G. Kazanietz, New insights into the regulation of protein kinase C and phosphatidic acid binding protein, Int. J. Mol. Sci. 21 (2020) 6794.
[9] T.M. Klauck, X. Xu, B. Moussaoue, et al., Cloning and characterization of a glucocorticoid-induced diacylglycerol kinase, J. Biol. Chem. 271 (1996) 19781–19788.
[10] T. Murakami, F. Sakane, S. Imai, et al., Identification and characterization of two splice variants of human diacylglycerol kinase η, J. Biol. Chem. 278 (2003) 34364–34372.
[11] E. Murakami, T. Shionoya, S. Imai, et al., Cloning and characterization of novel testis-specific diacylglycerol kinase η splice variants 3 and 4, PloS One 11 (2016), e0169977.
[12] T. Shionoya, T. Usuki, S. Imai, et al., Distinct expression and localization of the type II diacylglycerol kinase isoforms δ, η and ζ in the mouse reproductive organs, BMC Dev. Biol. 15 (2015) 6.
[13] T. Usuki, H. Sakai, T. Shionoya, et al., Expression and localization of type II diacylglycerol kinase isoforms δ and η in the developing mouse brain, J. Histochem. Cytochem. 63 (2015) 57–68.
[14] A.E. Baum, N. Afuza, M. Cabanero, et al., A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder, Mol. Psychiat. 13 (2008) 197–207.
[15] H. Weber, S. Kettel-Schneider, A. Gessen, et al., Cross-disorder analysis of bipolar risk genes: further evidence of DGKH as a risk gene for bipolar disorder, but also unipolar depression and adult ADHD, Neuropsychopharmacology 36 (2011) 2076–2085.
[16] Z. Zeng, T. Wang, T. Li, et al., Common SNPs and haplotypes in DGKH are associated with bipolar disorder and schizophrenia in the Chinese Han population, Mol. Psychiat. 16 (2011) 473–475.
[17] J.A. Badner, E.S. Gershon, Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia, Mol. Psychiat. 7 (2002) 405–411.
[18] D.D. Detera-Wadleigh, E.J. McMahon, GT2/G30 in schizophrenia and bipolar disorder: review and meta-analysis, Biol. Psychiat. 60 (2006) 106–114.
[19] T. Inokai, S. Komenei, Q. Lu, et al., Deficiency of diacylglycerol kinase η induces lithium-sensitive mania-like behavior, J. Neurochem. 138 (2016) 448–456.
[20] S. Komenei, Y. Suzuki, M. Asami, et al., Microarray analysis of gene expression in the diacylglycerol kinase η knockout mouse brain, Biochim. Biophys. Rep. 19 (2019) 100660.