Cuminum cyminum and Carum carvi: An update

R. K. Johri
Pharmacokinetics Pharmacodynamics Toxicology Division, Indian Institute of Integrative Medicine, Jammu-Tawi, India
Submitted: 22-09-2010 Revised: 25-09-2010

ABSTRACT

Cuminum cyminum and Carum carvi are the sources of cumin and caraway seeds respectively, which have been used since antiquity for the treatment of various indications in traditional healing systems in wide geographical areas. Cumin and caraway seeds are rich sources of essential oils and have been actively researched for their chemical composition and biological activities. In recent times (especially during the last 3 years) considerable progress has been made regarding validation of their acclaimed medicinal attributes by extensive experimental studies. In this attempt many novel bioactivities have been revealed. This review highlights the significance of cumin and caraway as potential source of diverse natural products and their medicinal applications.

Key words: Caraway, Carum carvi, cumin, Cuminum cyminum chemistry, pharmacology

INTRODUCTION

Cuminum cyminum and Carum carvi, belonging to the family Apiaiceae, are one of the earliest cultivated herbs in Asia, Africa and Europe. Cumin and caraway seeds from Cu. cyminum and Ca. carvi, respectively, have remained popular as culinary spices and are also overwhelmingly used in folklore therapy since antiquity in diverse geographical areas [Figure 1a, b]. The aromatic substances present in these herbs have attracted enormous attention of researchers worldwide to experimentally validate the therapeutic uses of cumin and caraway seeds, which are documented in several indigenous healing systems. This review attempts to highlight the recent investigations in which diverse pharmacodynamic actions of cumin and caraway seeds overwhelmingly support their acclaimed medicinal attributes in traditional medicines.

ETHNOMEDICAL/FOLKLORE USAGE

Ayurveda is an ancient Indian therapeutic system, which is based on the curative properties of plants and plant derived products. A very large number of medicinal herbs of various taxonomic genera are included in many forms in this traditional therapy, which are also relied upon in other other indigenous systems of medicine practiced in Southeast Asia, such as Siddha and Unani systems. In these traditional therapies, cumin as well as caraway seeds are prominently considered carminative, eupetic, antispasmodic, astringent and used in the treatment of mild digestive disorders, diarrhea, dyspepsia, flatulence, morning sickness, colic, dyspeptic headache and bloating, and are said to promote the assimilation of other herbs and to improve liver function. They have also been used in bronchopulmonary disorders and as a cough remedy, as well as an analgesic. Vapors from caraway seeds are reported to give relief in patients suffering from lumbago and rheumatism. Caraway water finds use as a vehicle for pediatric medicines. As a mixture with alcohol and castor oil, it has been used for the treatment of scabies.[1-4]

In fact, medicinal usage of cumin and caraway seeds has also been immensely widespread in diverse ethnomedical systems from Northern Europe to the Mediterranean regions, Russia, Iran, Indonesia and North America, where these have remained as an integral part of their folk medicines. In Iranian traditional medicine, cumin is considered stimulant, carminative and astringent and its therapeutic effects have been described on gastrointestinal, gynecological and respiratory disorders, and also for the treatment of toothache, diarrhea and epilepsy.[5] In the Moroccan traditional medicine, caraway seeds are used as diuretics[6] and given to treat diabetes and hypertension.[7]
Johri: *Cuminum cyminum* and *Carum carvi*

In traditional medicine of Tunisia, cumin is considered abortive, galactagogue, antiseptic, antihypertensive herb, while in Italy, it is used as bitter tonic, carminative, and purgative. In indigenous Arabic medicines, the seeds are documented as stimulant, carminative, and attributed with cooling effect and therefore form an ingredient of most prescriptions for gonorrhea, chronic diarrhea and dyspepsia; externally, they are applied in the form of poultice to allay pain and irritation of worms in the abdomen. Seeds reduced to powder, mixed with honey, salt and butter are applied to scorpion bites. In Poland, caraway is recommended as a remedy to cure indigestion, flatulence, lack of appetite, and as a galactagogue. In Russia, it is also used to treat pneumonia. In Great Britain and USA, it is regarded a stomachic and carminative. In Malaya Peninsula, caraway is one important medicinal herb, and in Indonesia, it is used in the treatment of inflamed eczema.

CHEMICAL COMPOSITION

In the recent past, exploration of chemical composition of cumin and caraway seeds (which are also rich sources of essential oils) has remarkably captured enormous attention of researchers. In the quest to identify the constituents, a diverse array of compounds have been revealed in essential oils, oleoresins and seeds of carum and caraway that have grown in diverse agro-climate locations. Majority of such compounds are monoterpene hydrocarbons, oxygenated monoterpens, oxygenated sesquiterpenes, saturated and unsaturated fatty acids, aldehydes, ketones and esters. The other components which occur in caraway seed are fatty acids, triacylglycerols, polysaccharides, and lignin. From these studies, it has emerged that the major compounds occurring in caraway are carvacrol, carvone, α-pinene, limonene, γ-terpinene, linalool, carvenone, and p-cymene, whereas the major compounds occurring in cumin are cuminaldehyde, limonene, α- and β-pinene, 1,8-cineole, α- and β-cymene, α- and γ-terpinene, safanal and linalool.

In aqueous and solvent derived seed extracts, diverse flavonoids, isoflavonoids, flavonoid glycosides, monoterpenoid glucosides, lignins and alkaloids and other phenolic compounds have been found. Roots of caraway have also been found to contain flavonoids. The seed and root of caraway showed the presence of polyacetylenic compounds. In a recent study, a nonspecific lipid transfer protein has been isolated from the cumin seed. Several nutrients (vitamins, amino acids, proteins, and minerals), starch, sugars and other carbohydrates, tannins, phytic acid and dietary fiber components have also been found in cumin seeds.

The surge for investigating chemical constituents in cumin and caraway has remained equally matched with the attempts to evaluate their biological activities in many collateral studies. About 30 independent experimental investigations on the chemistry and biology of cumin and caraway seeds were documented in 2009–2010.

BIOLOGICAL AND PHARMACOLOGICAL ACTIVITY

Antioxidant

Cumin and caraway products (oils as well as their aqueous and solvent derived extracts) have shown significant antioxidant activity in several test methods. These effects are documented as their ability to prominently quench hydroxyl radicals, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and lipid peroxides. The other assays employed were ferric thiocyanate method in linoleic acid system, Fe²⁺ ascorbate-induced rat liver microsomal lipid peroxidation (LPO), soybean lipoygenase dependent lipid peroxidation and ferric reducing ability. A caraway root extract has also shown significant anti-DPPH radical activity. The cumin and caraway oils exhibited high antioxidant activity which has been attributed largely to the presence of monoterpane alcohols, linalool, carvacrol, anethole and estragol, flavonoids and other polyphenolic compounds. The antiradical profile of cumin and caraway has been proposed as the underlying mechanism for their multifaceted pharmacological properties such as antimicrobial, antidiabetic, anticarcinogenic/antimutagenic, antistress, antiulcerogenic, etc. as outlined in the succeeding sections.

Antimicrobial

Numerous investigations have revealed a potential antimicrobial activity of cumin and caraway products (oils as well as their
aqueous and solvent derived extracts). This antibacterial action was assessed against a range of useful and pathogenic gram-positive and gram-negative bacterial strains.\[^{[16,20,21,23,26,38,69,73-79]}\] Cumin seed oil and alcoholic extract inhibited the growth of *Klebsiella pneumoniae* and its clinical isolates and caused improvement in cell morphology, capsule expression and decreased urease activity. This property was attributed to cuminaldehyde [Figure 2a].\[^{[80,81]}\] Biofilm-formation preventive properties were found against *Streptococcus mutans* and *Streptococcus pyogenes*.\[^{[80,82]}\]

The ability of caraway oils to inhibit the growth of fungi and bacteria is attributed to carvone, limonene and linalool, whereas limonene, eugenol, -pinene and some other minor constituents have been suggested to contribute to the antimicrobial activity of cumin oil.\[^{[83-86]}\] The antibacterial activity of carvacrol (5-isopropyl-2-methylphenol) [Figure 2b] is amply documented in various experimental studies and is suggested to be in synergism with its precursor *p*-cymene.\[^{[87]}\]

Antifungal activity of cumin and caraway oil is recorded against soil, food, animal and human pathogens, including dermatophytes, *Vibrio* spp., yeasts, aflatoxins and mycotoxin producers.\[^{[16,21,31,88-94]}\] Carvacrol (from caraway oil) proved most active against *Penicillium citrinum*.\[^{[88]}\]

Anticarcinogenic/antimutagenic

In independent studies, dietary supplementation of both cumin and caraway was found to prevent the occurrence of rat colon cancer induced by a colon-specific carcinogen, 1,2-dimethylhydrazine (DMH). In cumin receiving animals, no colon tumors were observed. The excretion of fecal bile acids and neutral sterols was significantly increased, and cumin was shown to protect the colon and to decrease the activity of β-glucuronidase and mucinase enzymes. β-glucuronidase increases the hydrolysis of glucuronide conjugates and liberates the toxins, while the activity of superoxide dismutase (SOD), catalase, GSH-reductase, and the level of reduced glutathione (GSH) were decreased, while the activity of superoxide dismutase (SOD), catalase, GSH-reductase, and the level of reduced glutathione (GSH) were augmented. Monoterpenes like anethofuran, carvone, and limonene occurring in cumin and caraway oil have specifically been highlighted for anticarcinogenic action.\[^{[80,81,82-102]}\]

Many studies have related the anticarcinogenic actions of cumin and caraway to their potential apoptotic, antimutagenic and antiproliferative properties. The apoptotic activities of caraway ethanol extract are reported against several human cancer leukemia cell lines.\[^{[104]}\] Methanol extracts of caraway showed antiproliferative activity in tumor cell lines MK-1, HeLa and B16F10. These chemopreventive and antiproliferative actions have been suggested to be due to bioactive polycyclic aromatic hydrocarbons and other monoterpenes, anethofuran, carvone, and limonene.\[^{[40,54]}\] Aqueous and solvent derived caraway extracts have shown protective effect against several mutagens such as *N*-methyl-NN'-nitro-N-nitrosoguanidine (MNNG), dimethylnitrosamine, nitrosodimethylamine, methylazoxymethanol acetate, methylated/ethylated nitrosourea, and methyl and ethylmethane sulfonates, in *Salmonella typhimurium* and other test strains.\[^{[107,108]}\] This activity was attributed to carvone content which was found to inhibit the development of diethylnitrosamine-induced stomach cancers in mice.\[^{[80,104,105]}\] The cumin and caraway were devoid of any inherent mutagenic potential.\[^{[54]}\]

Antidiabetic

The antidiabetic effects of cumin and caraway products are
amply documented. In a glucose tolerance test conducted in rabbits, cumin significantly increased the area under the glucose tolerance curve and hyperglycemic peak. A methanolic extract of cumin seeds reduced the blood glucose and inhibited glycylated hemoglobin, creatinine, blood urea nitrogen and improved serum insulin and glycogen (liver and skeletal muscle) content in alloxan and streptozotocin (STZ) diabetic rats. The collateral benefits included decreased creatinine, urea nitrogen and improved insulin and glycogen in tissue and skeletal muscles, accompanied by a reduction in rat tail tendon collagen-linked fluorescence and pepisin digestion which are implicated in the pathogenesis of diabetic microvascular complications. In another study, an aqueous extract of cumin prevented in vitro glycation of total soluble protein, α-crystallin, and delayed the progression and maturation of STZ-induced cataract in rats. Cumin prevented loss of chaperone activity in diabetic rats and also attenuated the structural changes of α-crystallin in lens, which is a long-lived protein and is susceptible to several post-translational modifications in certain diabetic conditions. Eight-week sub-acute administration of cumin to STZ-diabetic rats reduced hyperglycemia and glucosuria accompanied by an improvement in body weight, blood urea and reduced excretion of urea and creatinine. Oral administration of cumin also showed hypoglycemic effect in normal rabbit, resulting in significant decrease in the area under the glucose tolerance curve. Caraway oil exhibited anti-hyperglycemic activity in alloxan-induced diabetic rats and increased the body weight. A similar effect was recorded in STZ diabetic rats, while no changes were observed in basal plasma insulin concentrations, indicating that the underlying mechanism of this pharmacological activity seems to be independent of insulin secretion. The biologically active constituent of cumin seed oil was characterized as cuminaldehyde which inhibited aldose reductase and alpha-glucosidase isolated from rat. In hyperglycemia associated with diabetes, the use of aldose reductase inhibitors has shown efficacy in attenuating diabetic complications.

Hyperlipidemia is an associated complication of diabetes mellitus. Oral administration of cumin to alloxan diabetic rats reduced body weight, plasma and tissue cholesterol, phospholipids, free fatty acids and triglycerides. Histological observations demonstrated significant decrease in fatty changes and inflammatory cell infiltrates in diabetic rat pancreas. Cumin suppressed alcohol and thermally oxidized oil induced hyperlipidemia. It decreased aspartate transaminase (AST), alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT) activities and decreased the tissue (liver and kidney) levels of cholesterol, triglycerides and phospholipids. Free fatty acids and triglycerides in plasma of rats administered with alcohol and/or thermally oxidized oil. The activity of phospholipase A and C decreased significantly. Hypcholesterolemic effect of methanolic extract of cumin is also documented in ovariectomized rat in relation to its anti-osteoporotic effect. Aqueous extract of caraway showed potent lipid lowering activity (hypotriglycerideremic and hypcholesterolemic) in both normal and STZ-diabetic rats after single and repeated oral administration. Cumin added to a hypercholesterolemic diet decreased serum and liver cholesterol in rats. The traditional use of caraway as a diuretic was confirmed in an experimental study in which peroral treatment of an aqueous extract of caraway (in acute and sub-chronic mode) was shown to increase the urine output during and after 24 hours in rat. The urinary levels of sodium and potassium were found to be increased, while in plasma these were not affected. Carum extract did not produce any renal toxicity or any other adverse effects during the study period.

Immunomodulatory

In a recent study, oral treatment with cumin showed immunomodulatory properties in normal and immune-suppressed animals via modulation of T lymphocytes’ expression in a dose-dependent manner. It stimulated the T cells’ (CD4 and CD8) and Th1 cytokines’ expression in normal and cyclosporine-A induced immune-suppressed mice. In restraint stress-induced immune-suppressed animals, the active compound of cumin countered the depleted T lymphocytes, decreased the elevated corticosterone levels and size of adrenal glands and increased the weight of thymus and spleen.

CNS

Administration of cumin oil suppressed the development and expression of morphine tolerance (as measured by tail-flick method). The morphine dependence was also reversed in a dose-dependent manner as evaluated by decreased conditioning scores (the acquisition and expression of morphine-induced conditioned place preference) in mice. Anti-epileptic activity of cumin oil is documented. It decreased the frequency of spontaneous activity induced by pentylenetetrazol (PTZ). This protection was measured in a time- and concentration-dependent manner as increased duration, decreased amplitude of hyperpolarization potential, the peak and firing rate of action potential and excitability of nerve cells. Cumin oil was found to attenuate seizures induced by maximal electroshock and PTZ in mice. Cumin oil has also been found to possess significant analgesic action in a chemical model (formalin test) of noiception in rat. Cuminaldehyde [Figure 2b] was found to be a tyrosinase inhibitor and prevented the oxidation of L-3,5-dihydroxyphenylalanine (L-DOPA). The adaptogenic and antistress activity of an aqueous extract of caraway is documented in normal and stress induced rats (forced swim stress test) which was related to its antioxidant property.

Estrogenic/anti-osteoporotic

Cumin and caraway seeds are reported to be estrogenic. Potential effects of caraway on hormone and reproductive parameters of female ovariecotomized rats are demonstrated due possibly to the presence of estrogenic isoflavonoids, luteolin and apigenin. An aqueous and an ethanolic extract of caraway
seeds produced significant antifertility effect via modulation of follicle stimulating hormone (FSH) and leutinizin hormone (LH) levels, while the estrogen levels were increased. This was accompanied by an increase in the weight of ovary, uterus and also body weight. \[139\] Caraway oil was effective in inhibiting tonic and phasic rhythmic contractions of isolated uterine preparations. \[139\] The presence of phytoestrogens in cumin has been shown and also related to its anti-osteoporotic effects. In the animals receiving a methanolic extract of cumin, a significant reduction in urinary calcium excretion and augmentation of calcium content and mechanical strength of bones was found. Animals showed greater bone and ash densities and improved microarchitecture, with no adverse effects like body weight gain and weight of atrophic uterus. \[131\]

Gastrointestinal

In human trial studies, some herbal preparations consisting predominantly caraway have shown efficacy in relieving dyspeptic symptoms. \[132\] The antispasmodic effect of an alcoholic extract of caraway has shown inhibitory effects on smooth muscle contractions induced by the spasmogens, acetylcholine and histamine. \[133,134\] This response has been evaluated to explain the beneficial effect of caraway in relieving gastrointestinal symptoms associated with dyspepsia. In a study done on 12 intestinal bacteria, caraway oil displayed high degree of selectivity, inhibiting the growth of potential pathogens at concentrations that had no effect on the beneficial bacteria examined. This effect was related to the efficacy and usefulness of caraway oil in traditional medicine for treating dysbiosis which is associated with a number of gastrointestinal and systemic disorders. \[133\]

Solvent derived extracts of caraway seed showed antibacterial activity against gram-negative bacterium *Helicobacter pylori* and its clinical isolates. *H. pylori* is recognized as the primary etiological factor associated with the development of gastritis and peptic ulcer diseases along with chronic gastritis, gastric carcinoma and primary gastric B-cell lymphoma. \[136-138\] Extracts from caraway produced dose-dependent antiulcerogenic effect against indomethacin-induced gastric ulcers, accompanied by reduction in acid and leukotrienes’ output, and increased mucin secretion and prostaglandin E2 release. The antiulcerogenic activity was also confirmed histologically and was attributed to its flavonoid content and free radical scavenging properties. \[139\] Perfusion of an aqueous extract of cumin via the stomach of pentobarbitalanesthetized rats under the aspirin-induced gastric mucosal injury showed an increased acid secretion by a cholinergic mechanism. \[140\] Aqueous and solvent derived extracts of cumin increased amylase, protease, lipase and phytase activities. \[138\]

Other biodynamic actions

Aqueous extract of cumin was found to be antitussive and produced relaxant effect on guinea pig isolated tracheal chain via its stimulatory effect on beta-adrenoreceptors and/or histamine H1 receptors. \[141,142\] An ethereal extract of cumin showed antiaggregatory activity and inhibited eicosanoid synthesis. It inhibited arachidonic acid (AA)-induced platelet aggregation and also thromboxane B2 production from exogenous AA; a simultaneous increase in the formation of lipoxygenase-derived products was also observed. Cumin extract also inhibited collagen and adrenaline-induced aggregation. \[143,144\] Acute and subchronic administration of cumin oil decreased WBC count and increased the hemoglobin concentration, hematocrit, and platelet counts. LDL/HDL ratio was reduced to half. \[61\] Caraway oil has been evaluated for its possible hepatoprotective effect. In mice treated with carbontetrachloride, a hepatotoxin, caraway oil maintained the activities of xenobiotics detoxifying enzymes, glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px) and the levels of reduced glutathione (GSH), in preventing lipid peroxidation which is the main consequence of the action of this hepatotoxin. \[82\] An aqueous extract of cumin seeds showed protective action against gentamycin-induced nephrotoxicity. It decreased the gentamycin-induced elevated levels of serum urea, creatinine, lipid peroxidation and enhanced the clearance of the drug. \[145\]

Drug bioavailability enhancing activity

In recent studies carried out in the author’s laboratory, \[146,147\] a significant pharmacokinetic interaction of some herbal products from cumin and caraway with anti-tubercular drugs has been revealed. An aqueous extract derived from cumin seeds produced a significant enhancement of rifampicin levels in rat plasma. This bioenhancer activity was found to be due to a novel flavonoid glycoside isolated from cumin. This was identified as 3’,5-di hydroxy flavone 7-O-β-D-galacturonide-4’-O-β-D-glucopyranoside [Figure 3], which enhanced the peak concentration (C_{max}) and area under the curve (AUC) of rifampicin by 35 and 53%, respectively, when co-dosed with this molecule. On the other hand, a chemically standardized butanolic fraction of caraway seed enhanced the plasma levels of three anti-TB drugs: rifampicin (RIF), pyrazinamide (PZA), and isoniazid (INH), when co-dosed in combination in rat. In the presence of the herbal fraction of caraway, C_{max} and AUC of RIF were enhanced by 63% and 53% respectively; for PZA, this increase was 57 and 35%, respectively; and for INH, this increase was 40 and 25%, respectively. The altered bioavailability profile of anti-TB drugs could be attributed to a permeation enhancing effect of cumin and caraway. \[36,147\]

CONCLUSION

Although advances in chemical and pharmacological evaluation...
of cumin and caraway have occurred in the recent past, they have always remained a hallmark of traditional drugs in diverse cultures. The chemical constituents of carum and caraway seem to be a bewildering array of compounds and to ascribe certain biological activity to a particular compound has remained a formidable task. Although individually some identified compounds have been associated with a bioactivity, it cannot be said about any particular mixture of compounds. It seems reasonable to assume that the “synergy” between and within a particular class of compound might be responsible for the remarkable bioactivity profile of this herb. Nonetheless, the pharmacological activities found in cumin and caraway overwhelmingly substantiate their preferred use in traditional medicines.

In recent times, considerable information has also become available with respect to herb–drug interactions. Numerous evidences exist for many documented medicinal herbs, which suggest that such interactions could produce potential effects in vivo. Prominent among the many effects of these herb–drug interactions is the drug bioavailability. In this context, natural products which could facilitate the bioavailability of poorly bioavailable drugs offer great promise. Besides understanding of the chemical constituents of carum and caraway seem to be a hallmark of traditional drugs in diverse cultures.

REFERENCES

1. Joshi SG. Medicinal plants: Family Apiaceae. 1st ed. Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.; 2000.
2. Mhaskar KS, Blatter E, Caius JF, editors. In Kirtikar and Basu’s Illustrated Indian Medicinal Plants vol 5. New Delhi: Saltguru Publications; 2000.
3. Perry LM. Medicinal Plants of East and Southeast Asia. Massachusetts and London: The MIT Press; 1980.
4. Sivarajan VV, Balachandran I. Ayurvedic Drugs and their Plant Sources. New Delhi: Oxford and IBH Publishing; 1994.
5. Zargary A. Medicinal Plants. 5th ed. Tehran: Tehran University Publications; 2001.
6. Lahou S, Tahraoui A, Israili Z, Lyoussi B. Diuretic activity of the aqueous extracts of Carum carvi and Tanacetum vulgare in normal rats. J Ethnopharmacol 2007;110:458-63.
7. Tahraoui A, El-Hilayj, Israilli ZH, Lyoussi B. Ethnopharmacological survey of plants used in the traditional treatment of hypertension and diabetes in south-eastern Morocco (Errachidia province). J Ethnopharmacol 2007;110:105-17.
8. Leporatti ML, Ghedira K. Comparative analysis of medicinal plants used in traditional medicine in Italy and Tunisia. J Ethnobiol Ethnomed 2009;5:31-9.
9. Al–Yahya M, Collpharm A. Phytochemical studies of plant used in traditional medicine in Saudi Arabia. Fitoterapia 1986;57: 179-82.
10. Sadowska A, Obidoska G. Caraway. The Genus Carum. In: Nemeth E, editor. USA: CRC Press; 2004.
11. Agarwal SG, Thappa RK, Dhar KL, Atal CK. Essential oils of the seeds of Bunium bulbocastanum, Carum gracile Lindle and Cuminum cyminum. Ind Perfum 1979;22:164-5.
12. Agrawal S. Volatile oil constituents and will resistance in cumin (Cuminum cyminum L.). Curr Sci Ind 1996;71:177-9.
13. Bettaieb I, Bourouj S, Wannes WA, Hamrouni I, Limam F, Marzouk B. Essential oils, phenolics and antioxidant activities of different parts of cumin (Cuminum cyminum L.). J Agric Food Chem 2010;58:10410-8.
14. BORGES P, Pino J. The isolation of volatile oil from cumin seeds by steam distillation. Nahrung 1993;37:123-6.
15. Bouwmeester HJ, Gesherzenzon J, Konings MC, Croteau R. Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway: I: Demonstration of enzyme activities and their changes with development. Plant Physiol 1998;117:901-12.
16. De Martino L, De Feo V. Fratiani F, Nazarro F. Chemistry, antioxidant, antibacterial and antifungal activities of volatile oils and their components. Nat Prod Commun 2009;4:1741-50.
17. Eikani MH, Goodarzian I, Mirza M. Supercritical carbon dioxide extraction of cumin seeds (Cuminum cyminum L.). Flav Frag J 1999:14:29-31.
18. El-Ghorah AB, Nauman M, Anjum FM, Hussain S, Nadeem M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J Agric Food Chem 2010;58:8231-3.
19. El-Sawi SA, Mohamed MA. Cumin herb as a new source of essential oils and its response to foliar spray with some micro-nutrients. Food Chem 2002;77:75-80.
20. Gachkar L, Yadegari D, Rezaei MB, Taghizadeh M, Astaneh SA, Rasooli I. Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem 2007;102:898-904.
21. Hajlaoui H, Mighri H, Nouri E, Snoussi M, Trabelsi N, Ksouri R, et al. Chemical composition and biological activities of Tunisian Cuminum cyminum L. essential oil: A high effectiveness against Vibrio spp. strains. Food Chem Toxicol 2010;48:2186-92.
22. Hashemi P, Shamizadeh M, Badiei A, Ghaisvand AR, Azizi K. Study of the essential oil composition of cumin seeds by an amino ethyl functionalized nanoporous SPME fibre. Chromatographia 2009;70:1147-51.
23. Iacobellis NS, Lo Cantore P, Capasso F, Senatore F. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem 2005;53:57-61.
24. Ishikawa T, Takayanagi T, Kitaizumi J. Water-soluble constituents of cumin: Monoterpenoid glucosides. Chem Pharm Bull 2002;50:1471-8.
25. Jalali-Heravi M, Zekavat B, Sereshti H. Use of gas chromatography-mass spectrometry combined with resolution methods to characterize the essential oil components of Iranian cumin and caraway. J Chromatogr A 2007;1143:215-26.
26. Jirovetz L, Buchbauer G, Stoyanova AS, Georgiev EV, Marzouk B, Konings MC, Croteau R. Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway. Plant Physiol 1998;117:901-12.
27. Kallio H, Kerrola K, Alhonmaki P. Carvone and limonene in caraway seeds from Bulgaria that had been stored up to 36 years. Int J Food Sci Technol 2005;40:305-10.
28. Kallio H, Kerrola K, Alhonmaki P. Carvone and limonene in caraway fruits (Carum carvi L.) analyzed by supercritical carbon dioxide extraction-gas chromatography. J Agric Food Chem 1994;42:2478-85.
29. Kamar P, Baslas RK. Chemical examination of essential oil of the seeds of Cuminum cyminum. Ind Perfum 1978;22:164-5.
30. Lee HS. Cuminaldehyde: Aldose Reductase and alpha-glucosidase inhibitor derived from Cuminum cyminum L. seeds. J Agric Food Chem 2005;53:2446-53.
31. Lee R, Jiang ZY. Chemical composition of the essential oil of Cuminum cyminum L. from China. Flav Frag J 2004;19:311-4.
A, Reza S, et al. Chemical composition and antiflatoxicogenic activity of Carum carvi L., Thymus vulgaris and Citrus aurantifolia essential oils. Food Cont 2009;20:1018-24.

32. Oroojalian F, Kasra-Kermanshahi R, Azizi M, Bessami MR. Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chem 2010;120:765-70.

33. Richter J, Schellenberg I. Comparison of different extraction methods for the determination of essential oils and related compounds from aromatic plants and optimization of solid-phase microextraction/ gas chromatography. Anal Bioanal Chem 2007;387:2207-17.

34. Salvesen A, Svendsen AB. Gas liquid chromatographic separation and identification of the constituents of caraway seed oil: I. The monoterpene hydrocarbons. Planta Med 1976;8:93-6.

35. Sadraei H, Ghannadi A, Takei-Bavani. Effects of Zataria multiflora and Carum carvi essential oils and hydroalcoholic extracts of Passiflora incarnate, Berberis integerrima and Crocus sativus on rat isolated uterus contractions. Int J Aromather 2003;13:1210-7.

36. Seliaková J, Kocourková B, Kuban V. Determination of essential oil content and composition in caraway (Carum carvi L.). Czech J Food Sci 2001;19:31-6.

37. Seliaková J, Kocourková B, Lojkova L, Kuban V. Determination of essential oil content in caraway (Carum carvi L.) species by means of supercritical fluid extraction. Plant Soil Environ 2001;49:277-82.

38. Simic A, Rancic A, Sokovic MD, Ristic M, Grujic-Javanovic S, Vukovec J, et al. Essential oil composition fo Cymbopogon winterianus and Carum carvi and their antimicrobial activities. Pharm Biol 2008;46:437-41.

39. Topal U, Sasaki M, Goto M, Otles S. Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. Int J Food Sci Nutr 2008;59:619-34.

40. Zheng GQ, Kenney PM, Lamm JK, Anethofuran, carvone, and limonene: Potential cancer chemopreventive agents from dill weed oil and caraway oil. Planta Med 1992;58:338-41.

41. Laribi B, Kouki K, Mouguou A, Marzouk B. Fatty acid and essential oil composition of three Tunisian caraway (Carum carvi L.) seed ecotypes. J Sci Food Agric 2010;90:391-6.

42. Ngo-Duy C, Destaillats F, Keskitalo M, Arul J, Angers P. Ecotypes. J Sci Food Agric 2010;90:391-6.

43. Laribi B, Kouki K, Mougou A, Marzouk B. Fatty acid and essential oil composition of different Umbelliferae seed ecotypes. Eur J Lipid Sci Technol 2009;111:164-9.

44. Ngo-Duy C, Destaillats F, Keskitalo M, Arul J, Angers P. Determination of fatty acids in anise (Pimpinella anisum L.), fennel (Foeniculum vulgare Mill.), anise (Pimpinella anisum), and caraway (Carum carvi L.) of Iran. J Food Sci Nutr 2009;60:240-7.

45. Lado C, Then M, Varga I, Szoke E, Azentminalyi K. Antioxidant property of volatile oils determined by ferric reducing ability. Z Lebensm Unters Forsch 2003;216:14-7.

46. Reddy A, Lokesha BR. Studies on spice principles as antioxidant and cytotoxicity of essential oil from cumin produced in Iran. J Agric Food Chem 2010;58:8848-53.

47. Polovka M, Suhaj M. Detection of caraway and bay leaves components by means of XRF and biological studies on ten oriental spices using XRF and Ames test. J Trace Elem Med Biol 2003;17:85-90.

48. Bukhari SB, Iqbal S, BHanger MI. Antioxidant potential of commercially available cumin (Cuminum cyminum Linn.). Int J Food Sci Nutr 2009;60:240-7.

49. Lado C, Then M, Varga I, Szoke E, Azentminalyi K. Antioxidant property of volatile oils determined by ferric reducing ability. Z Naturforsch 2004;59c:354-8.

50. Reiter B, Lechner M, Lorbeer E. The fatty acid profiles-including petroselinic and cis-vaccenic acid-of different Umbelliferae seed ecotypes. J Sci Food Agric 2010;90:391-6.

51. Reiter B, Lechner M, Lorbeer E. The fatty acid profiles-including petroselinic and cis-vaccenic acid-of different Umbelliferae seed ecotypes. J Sci Food Agric 2010;90:391-6.
Raju GV. Antioxidant activity of the aqueous extracts of spices and plant additives—evaluation and comparison with ascorbic acid in in-vitro systems. J Herb Pharmacother 2004;4:1-10.

69. Singh G, Marimuthu P, Murali HS, Bawa AS. Antioxiactive and antibacterial potentials of essential oils and extracts isolated from various spice materials. J Food Saf 2005;25:130-45.

70. Thippseswamy NB, Naidu A. Antioxidant potency of cumin varieties - cumin, black cumin and bitter cumin - on antioxidant systems. Eur Food Res Technol 2005;220:472-6.

71. Roberto G, Baratta MT. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 2000;69:167-74.

72. Rodov V, Vinokur Y, Goglia N, Chkhikhivishvili I. Hydrophilic and lipophilic antioxidant capacities of Georgian spices for meat and their possible health implications. Georgian Med News 2010;179:61-6.

73. Agnihotri S, Vaidya AD. A novel approach to study antibacterial properties of volatile components of selected Indian medicinal herbs. Indian J Exp Biol 1996;34:712-5.

74. Deb Roy S, Thakur S, Negi A, Kumari M, Sultan N, Jana GK. In vitro antibiolytic activity of volatile oils of Carum carvi and Coriandrum sativum. Int J Chem Analys Sci 2010;1:149-50.

75. Irkin R, Korukluoglu M. Growth inhibition of pathogenic bacteria and some yeasts by selected essential oils and survival of L. monocytogenes and C. albicans in apple-carrot juice. Foodborne Patho Dis 2009;6:387-94.

76. Shetty RS, Singhal RS, Kulkarni PR. Antimicrobial properties of cumin. World J Microbiol Biotechnol 1994;10:232-3.

77. Singh G, Kapoor IP, Pandey SK, Singh UK, Singh RK. Studies on essential oils: Part 10; Antibacterial activity of volatile oils of some spices. Phytother Res 2002;16:680-2.

78. Youssef BM, Hammad AA. Comparative antibacterial effect of garlic and cumin essential oils. Egypt J Microbiol 2010;29:131-7.

79. Vicuda-Martos M, Ruiz-Navajas Y, Fernandez-Lopez J, Perez-Alvarez JA. Antibacterial activity of different essential oils obtained from spices widely used in Mediterranean diet. Int J Food Sci Technol 2008;43:526-31.

80. Derakhshan S, Sattari M, Bigdeli M. Effect of sub-inhibitory concentrations of cumin (Cuminum cyminum L) seed essential oil and alcoholic extract on the morphology, capsule expression and urease activity of Klebsiella pneumoniae. Int J Antimicrobial Agents 2008;32:432-6.

81. Derakhshan S, Sattari M, Bigdeli M. Effect of cumin (Cuminum cyminum L) seed essential oil on biofilm formation and plasmid integrity by Klebsiella pneumoniae. Pharmacog Mag 2010;6:57-61.

82. Shayeegh S, Rasooli I, Taghizadeh M, Astanekh SD. Phytotherapeutic inhibition of supragingival dental plaque. Nat Prod Res 2008;22:428-39.

83. Dorman HJD, Deans SG. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J Appl Microbiol 2000;88:308-16.

84. Farag RS, Daw ZY, Hewedi FM, El Baroty GSA. Antimicrobial activity of some Egyptian spice essential oils. J Food Prot 1989b;52:665-7.

85. Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, et al. Characterization of the action of selected essential oil components on gram-negative bacteria. J Agric Food Chem 1998;46:3590-5.

86. Kim J, Marshall MR, Wei C. Antibacterial activity of some essential oils components against the foodborne pathogens. J Agric Food Chem 1995;43:2839-45.

87. Burt S. Essential oils: Their antibacterial properties and potential applications in foods: A review. Int J Food Microbiol 2004;94:223-53.

88. Boyraz N, Ozcan M. Antifungal effect of some spice hydrosols. Fitoterapia 2005;76:661-5.

89. Farag RS, Daw ZY, Abo-Rayha SY. Influence of some spice essential oils on Aspergillus parasiticus growth and production of aflatoxins in a synthetic medium. J Food Sci 1989a;54:74-6.

90. Farag RS, Daw ZY, Hzewidi FM, El Baroty GS. Antimicrobial activity of some Egyptian spice essential oils. J Food Prot 1989b;52:665-7.

91. Hammad AA, Youssuf BM. Growth inhibition of some pharmacological molds by garlic and cumin essential oils. Egypt J Microbiol 1995;29:115-9.

92. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Rezaee MB, Jimand K, Alinezhad S, Saberi R. Chemical composition and antifluoratoxic activity of Carum carvi L, Thymus vulgaris and Citrus aurantium essential oils. Food Contr 2009;20:1018-24.

93. Romagnoli C, Andreotti E, Maitetti S, Mahendra R, Mares D. Antifungal activity of essential oil from fruits of Indian Cuminum cyminum. Pharm Biol 2010;48:834-48.

94. Skrinjar MM, Mandi AI, Misic AC, Sakac MB, Saric LC, Zec MM. Effect of mint (Mentha piperita L.) and Caraway (Carum carvi L.) on the growth of some toxigenic Aspergillus species and aflatoxin B1 production. Proc Nat Sci Matica Srpska Novi Sad 2009;116:131-9.

95. Nalini N, Sabitha K, Vishwanathan P, Menon VP. Influence of spices on the bacterial (enzyme) activity in experimental colon cancer. J Ethnopharmocol 1998;62:15-24.

96. Nalini N, Manju V, Menon VP. Effect of spices on lipid metabolism in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. J Med Food 2006;9:237-45.

97. Kamaleeswari M, Deeptha K, Sengottuvelan M, Nalini N. Effect of dietary caraway on aberrant crypt foci development, fecal steroids, and intestinal alkaline phosphatase activities in 1,2-dimethylhydrazine-induced colon carcinogenesis. Toxicol Appl Pharmacol 2006a;214:290-6.

98. Deeptha K, Kamaleeswari M, Sengottuvelan M, Nalini N. Dose dependent inhibitory effect of dietary caraway on 1,2-dimethylhydrazine induced colonic aberrant crypt foci and bacterial enzyme activity in rats. Invest New Drugs 2006;24:479-88.

99. Aruna K, Sivaramakrishnan VM. Anticarcinogenic effects of some Indian plant products. Food Chem Toxicol 1992;30:953-6.

100. Gagandeep S, Dhanalakshmi S, Mendiz E, Rao AR, Kale RK. Chemopreventive effects of Cuminum cyminum in chemically induced forebrain and uterine cervix tumors in murine model systems. Nutr Cancer 2003;47:171-80.

101. acidi-Kalali B, Allameh A, Rasaei MJ, Bach HJ, Behechtli A, Doods K, et al. Suppressive effects of caraway (Carum carvi) extracts on 2, 3, 7, 8-tetrachloro- dibenzo-p-dioxin-dependent gene expression of cytochrome P450 A141 in the rat H4IIE cells. Toxicol In vitro 2005;19:373-7.

102. Aruna K, Rukumuni R, Varma PS, Menon VP. Therapeutic role of Cuminum cyminum on ethanol and thermally oxidized sunflower oil induced toxicity. Phytother Res 2005;19:416-21.

103. Kamaleeswari M, Nalini N. Dose-response efficacy of caraway on tissue lipid peroxidation and antioxidant profile in rat colon carcinogenesis. J Pharm Pharmacol 2006b;58:1121-30.

104. Wattenberg LW. Inhibition of carcinogenesis by naturally-occurring and synthetic compounds. Basic Life Sci 1990;52:155-66.

105. Wattenberg LW, Sparnis VL, Barany G. Inhibition of N-nitrosodiethylamine carcinogenesis in mice by naturally occurring organosulfur compounds and monoterpenes. Cancer Res 1990;50:2689-92.

106. Bogucka-Kocka A, Smolarz HD, Kocki J. Apoptotic activities of...
ethanol extracts from some Apiaceae on human leukaemia cell lines. Fitoterapia 2008;79:487-97.

107. Higashimoto M, Purintrapiban J, Kataoka K, Kinouchi T, Viniketkumnuen U, Akimoto S, et al. Mutagenicity and antimutagenicity of extracts of three spices and a medicinal plant in Thailand. Mut Res 1993;303:135-42.

108. Mazaki M, Kataoka K, Kinouchi T, Viniketkumnuen U, Yamada M, Nohmi T, et al. Inhibitory effects of caraway (Cuminum carvi L.) and its component on N-methyl-N-nitro-N-nitrosoguanidine-induced mutagenicity. J Med Invest 2006;53:123-33.

109. Srinivasan K. Plant foods in the management of diabetes mellitus: Spices as beneficial anti-diabetic food adjuncts. Int J Food Sci Nutr 2005;56:399-414.

110. Roman-Ramos R, Flores-Saenz JL, Alarcon-Aguilar FJ. Anti-hyperglycemic effect of some edible plants. J Ethnopharmacol 1995;48:25-32.

111. Dhandapani S, Subramanian VR, Rajagopal S, Namasivayam N. Hypolipidemic effect of Cuminum cyminum L. on alloxan-induced diabetic rats. Pharmacol Res 2002;46:251-5.

112. Jagtap AG, Patil PB. Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats. Food Chem Toxicol 2010;48:2030-6.

113. Kumar PA, Reddy PY, Srinivas PN, Reddy GB. Delay of diabetic cataract in rats by the anticyclating potential of cumin through modulation of α-crystallin chaperone activity. J Nut Biochem 2009;20:553-62.

114. Willatgmuva SA, Platei K, Sarawathi G, Srinivasan K. Antidiabetic influence of dietary cumin seeds (Cuminum cyminum) in streptozotocin induced diabetic rats. Nutr Res 1998;18:131-42.

115. Ene AC, Nwankwo EA, Samdi LM. Alloxan-induced diabetes in rats and the effects of black caraway (Carum carvi L.) oil on their body weight. Res J Med Sci 2007;2:48-52.

116. Eddouks M, LemhadrA, Michel JB. Caraway and caper: potential anti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol 2004;94:143-8.

117. Kode A, Rajagopalan R, Penumathsa SV, Menon VP. Effect of ethanol and thermally oxidized sunflower oil ingestion on phospholipid fatty acid composition of rat liver: Protective role of Cuminum cyminum. Ann Nutr Metab 2005;49:300-3.

118. Shirke SS, Jagtap AG. Effects of methanolic extract of Cuminum cyminum on total serum cholesterol in ovariectomized rats. Indian J Pharmacol 2009;41:92-3.

119. LemhadrA, Hajji L, Michel JB, Eddouks M. Cholesterol and triglycerides lowering activities of caraway fruits in normal and streptozotocin diabetic rats. J Ethnopharmacol 2006;106:321-6.

120. Sambaiah K, Srinivasan K. Effect of cumin, cinnamon, ginger, mustard and tamarind in induced hypercholesterolemic rats. Nahrung 1991;35:47-51.

121. Chauhan PS, Satti NK, Suri KA, Amina M, Bani S. Stimulatory effects of Cuminum cyminum and flavonoid glycoside on cyclosporine-A and restraint stress induced immune-suppression in swiss albino mice. Chem Biol Interact 2010;185:66-72.

122. Haghparast A, Shams J, Khatibi A, Alizaseh AM, Kamalinejad M. Effects of the fruit essential oil of Cuminum cyminum Linn. (Apiaceae) on acquisition and expression of morphine tolerance and dependence in mice. Neurosci Lett 2008;440:134-9.

123. Khatibi A, Haghparast A, Shams J, Dianati E, Komaki A, Kamalinejad M. Effects of the fruit essential oil of Cuminum cyminum L. on the acquisition and expression of morphine-induced conditioned place preference in mice. Neurosci Lett 2008;448:94-8.

124. Janahmadi M, Niazi F, Danyali S, Kamalinejad M. Effects of the fruit essential oil of Cuminum cyminum Linn. (Apiaceae) on pentylentetrazolo-induced epileptiform activity in F1 neurons of Helix aspersa. J Ethnopharmacol 2006;104:278-82.

125. Sayyah M, Mahboubi A, Kamalinejad M. Anti-convulsant effect of the fruit essential oil of Cuminum cyminum in mice. Pharmaceut Biol 2002a;40:478-80.

126. Sayyah M, Peirovi A, Kamalinejad M. Antinociceptive effect of fruit essential oil of Cuminum cyminum L. in rat. Iran Biomed J 2002b;6:141-5.

127. Kubo I, Kinst-Hori I. Tyrosinase inhibitors from cumin. J Agric Food Chem 1998;46:5338-41.

128. Koppula S, Kopalli SR, Sreemantula S. Adaptogenic and nootropic activities of aqueous extracts of Carum Carvi Linn (Caraway) fruit: an experimental study in wistar rats. Aust J Med Herb 2009;21:76-9.

129. Malini T, Vanithakumari G. Estrogenic activity of Cuminum cyminum in rats. Indian J Exp Biol 1987;25:442-4.

130. Thakur S, Bawara B, Dubey A, Nandini D, Chauhan N, Saraf DK. Effect of Carum carvi and Curcuma longa on hormonal and reproductive parameter of female rats. Int J PhytoMed 2009;1:31-8.

131. Shirke SS, Jadhav SR, Jagtap AG. Methanolic extract of Cuminum cyminum inhibits ovariotomy-induced bone loss in rats. Exp Biol Med 2008;233:1403-10.

132. Thomson Coon J, Ernst E. Systematic review: Herbal medicinal products for non-ulcer dyspepsia. Aliment Pharmacol Ther 2002;16:1689-99.

133. Forster HB, Niklas H, Lutz S. Antispasmodic effects of some medicinal plants. Planta Med 1980;40:309-19.

134. Al-Essa MK, Shafagoy JA, Mohammed Fi, Afif FU. Relaxant effect of ethanol extract of Carum carvi on dispersed intestinal smooth muscle cells of the guinea pig. Pharm Biol 2010;48:76-80.

135. Hawrelak JA, Cattley T, Myers SP. Essential oils in the treatment of intestinal dysbiosis: A preliminary in vitro study. Altern Med Rev 2009;14:380-4.

136. Nariman F, Effekhar F, Habibi Z, Massarrat, S, Malekzadeh R. Antibacterial activity of twenty iranian plant extracts against clinical isolates of Helicobacter pylori. Iran J Basic Med Sci 2009;12:105-11.

137. Mahady GB, Pendland SL, Stoia A, Hamill FA, Fabricant D, Dietz BM, et al. In vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phytother Res 2005;19:988-91.

138. Nostro A, Cellini L, Di Bartolomeo S, Di Campli E, Grande R, Cannatelli MA, et al. Antibacterial effect of plant extracts against Helicobacter pylori. Phytother Res 2005;19:198-202.

139. Khayyal MT, el-Ghazaly MA, Kenawy SA, Seif-el-Nasr M, Maharaj LG, Kafafi YA, et al. Antiulcerogenic effect of some gastrointestinally acting plant extracts and their combination. Arzneimittelforschung 2001;51:545-53.

140. Vasudevan K, Vembas, Veeraraghavan K, Haranath PS. Influence of intragastric perfusion of aqueous spice extracts on acid secretion in anesthetized albino rats. Indian J Gastroenterol 2000;19:53-6.

141. Boskabady MH, Kianai S, Azizi H. Relaxant effect of Cuminum cyminum on guinea pig tracheal chains and its possible mechanism(s). Indian J Pharmacol 2005;37:111-5.

142. Boskabady MH, Kianai S, Azizi H, Khatami T. Antitussive effect of Cuminum cyminum Linn. in guinea pigs. Nat Prod Rad 2006;5:266-9.

143. Srivastava KC. Extracts from two frequently consumed spices–cumin (Cuminum cyminum) and turmeric (Curcuma longa)–inhibit platelet aggregation and alter eicosanoid biosynthesis in...
human blood platelets. Prostaglandins Leukot Essen Fatty Acids 1989;37:57-64.
144. Srivastava KC, Mustafa, T. Pharmacological effect of spices: Eicosanoid modulating activities and their significance in human health. Biomed Rev 1994;2:15-29.
145. Mahesh CM, Gowda KPS, Gupta AK. Protective action of Cuminum cyminum against gentamicin-induced nephrotoxicity. J Pharmacy Res 2010;3:753-7.
146. Sachin BS, Monica P, Sharma SC, Satti NK, Tikoo MK, Tikoo AK, et al. Pharmacokinetic interaction of some antitubercular drugs with caraway: Implications in the enhancement of drug bioavailability. Hum Exp Toxicol 2009;28:175-84.
147. Sachin BS, Sharma SC, Sethi S, Tasduq SA, Tikoo MK, Tikoo AK, et al. Herbal modulation of drug bioavailability: Enhancement of rifampicin levels in plasma by herbal products and a flavonoid glycoside derived from Cuminum cyminum. Phytother Res 2007;21:157-63.
148. Venkataramanan RR, Komoroski B, Strom S. In vitro and in vivo assessment of herb-drug interactions. Life Sci 2006;27:2105-15.

New features on the journal’s website

Optimized content for mobile and hand-held devices
HTML pages have been optimized for mobile and other hand-held devices (such as iPad, Kindle, iPod) for faster browsing speed. Click on [Mobile Full text] from Table of Contents page.
This is simple HTML version for faster download on mobiles (if viewed on desktop, it will be automatically redirected to full HTML version)

E-Pub for hand-held devices
EPUB is an open e-book standard recommended by The International Digital Publishing Forum which is designed for reflowable content i.e. the text display can be optimized for a particular display device. Click on [EPub] from Table of Contents page.
There are various e-Pub readers such as for Windows: Digital Editions, OS X: Calibre/Bookworm, iPhone/iPod Touch/iPad: Stanza, and Linux: Calibre/Bookworm.

E-Book for desktop
One can also see the entire issue as printed here in a ‘flip book’ version on desktops. Links are available from Current Issue as well as Archives pages.
Click on View as eBook