ON THE REGULARITY OF CROSSED PRODUCTS

V. BOVDI, S. MIHOVSKI

Abstract. We study some generalizations of the notion of regular crossed products \(K \ast G \). For the case when \(K \) is an algebraically closed field, we give necessary and sufficient conditions for the twisted group ring \(K \ast G \) to be an \(n \)-weakly regular ring, a \(\xi^*N \)-ring or a ring without nilpotent elements.

1. Introduction

Let \(G \) be a group, \(U(K) \) the group of units of the associative ring \(K \) with identity and let \(\sigma : G \to \text{Aut}(K) \) be a map of \(G \) into the group \(\text{Aut}(K) \) of automorphisms of \(K \). Let \(K \ast G = K_\rho^*G = \{ \sum_{g \in G} u_g \alpha_g \mid \alpha_g \in K \} \) be the crossed product (in the sense of [1]), of the group \(G \) over the ring \(K \) with respect to the factor system

\[
\rho = \{ \rho(g,h) \in U(K) \mid g, h \in G \}
\]

and the map \(\sigma : G \to \text{Aut}(K) \). Moreover we assume that the factor system \(\rho \) is normalized, i.e. \(\rho(g,1) = \rho(1,g) = \rho(1,1) = 1 \) for any \(g \in G \).

In particular, if \(\sigma = 1 \), then the crossed product \(K \ast G \) is called a \textit{twisted group ring}, which we denote by \(K_\rho G \). If the factor system \(\rho \) is unitary, i.e. \(\rho(g, h) = 1 \) for all \(g, h \in G \), then \(K \ast G \) is called a \textit{skew group ring} and is denoted by \(K^\ast G \). In the case, when \(\rho = 1 \) and \(\sigma = 1 \), then \(K \ast G \) is the ordinary group ring \(KG \).

In the present paper we study properties of crossed products \(K \ast G \) which are generalizations of the notion of a regular ring. For the case when \(K \ast G \) is a twisted group ring over the algebraically closed field \(K \), we give necessary and sufficient conditions for \(K \ast G \) to be an \(n \)-weakly regular ring \((n \geq 2) \), a \(\xi^*N \)-ring or a ring without nilpotent elements. Our investigation can be considered as a generalization of certain results of [2 3 4 7 11 12] earlier obtained for group rings. Note that we exclude the case when \(K \ast G \) is a skew group ring, so we do not cite any reference from that topic.

2. Twisted group algebras without nilpotent elements

Denote the \(K \)-basis of \(K \ast G \) by \(U_G = \{ u_g \mid g \in G \} \). The multiplication of \(u_g, u_h \in U_G \) is defined by \(u_g u_h = \rho(g,h) u_{gh} \), where \(\rho(g,h) \in \rho \) and \(g, h \in G \). The factor system \(\rho \) of the crossed product \(K \ast G \) is called \textit{symmetric}, if for all elements \(g, h \in G \) the condition \(gh = hg \) yields \(\rho(g,h) = \rho(h,g) \). The finite subset \(\text{Supp}(a) = \{ g \in G \mid \alpha_g \neq 0 \} \) of \(G \) is called the \textit{support} of the element \(a \in K \ast G \).

We shall freely use the following.

\textbf{Lemma 1.} Let \(K \ast G \) be a crossed product and suppose that \(axb = c \) for some \(x, a, b, c \in K \ast G \). If \(H \) is the subgroup of \(G \) generated by \(\text{Supp}(a), \text{Supp}(b) \) and \(\text{Supp}(c) \), then there exists an element \(y \in K \ast H \), such that \(ayb = c \).

2010 Mathematics Subject Classification. Primary: 16S35; Secondary: 20C07, 16S34, 16E50.

Key words and phrases. cross product, twisted group ring, regular ring.
Proof. Indeed, if \(x = y + z \), then \(aby + azb = c \), where \(y = \sum_{h \in H} u_h \alpha_h \) and \(z = \sum_{g \in H} u_g \beta_g \). This shows that \(\text{Supp}(aby) \subseteq H \). Since \(fgh \not\in H \) for \(f \in \text{Supp}(a) \), \(g \in \text{Supp}(b) \) and \(h \in \text{Supp}(b) \), we conclude that \(aby = 0 \) and \(aby = c \), as it was requested. \(\square \)

Corollary 1. If \(g \in G \) has infinite order, then \(u_g - 1 \) is neither a one-sided zero divisor, nor a one-sided invertible element of the crossed product \(K \ast G \).

Proof. In fact, if \(u_g - 1 \) is either a one-sided zero divisor, or a one-sided invertible element of \(K \ast G \), then by Lemma \(\square \) we may assume that \(u_g = u_1 \) is also such an element of \(K \ast H \), where \(H = \langle g \rangle \) is an infinite cyclic group. But \(H \) is an ordered group, a contradiction. \(\square \)

For twisted group algebras we give a refinement of Corollary 2 and Lemma 2 of \(\square \) (see p.68) which were earlier proved for group rings.

Theorem 1. Let \(K \ast G \) be a twisted group algebra of a torsion group \(G \) over the algebraically closed field \(K \). The ring \(K \ast G \) does not contain nilpotent elements if and only if the following conditions hold:

(i) \(G \) is an abelian group;
(ii) the order of every elements in \(G \) is invertible in \(K \);
(iii) the factor system \(\rho \) is symmetric.

Proof. Assume that the conditions (i), (ii) and (iii) hold. Then the twisted group ring \(K \ast G \) is commutative. If \(x \in K \ast G \) is a nonzero nilpotent element and \(H = \langle \text{Supp}(x) \rangle \), we conclude that \(K \ast H \) is a commutative artinian ring with a nonzero nilpotent element \(x \). So, by Theorem 2.2 of (\(\square \), p.415), we get a contradiction.

Conversely, let \(K \ast G \) be a twisted group ring without nilpotent elements. If \(g \in G \) is of order \(n \) and \(u_g^n = u_1 \alpha_g \), where \(\alpha_g \in U(K) \), then there exists an element \(\mu_g \in U(K) \) such that \(\mu_g^n = \alpha_g^{-1} \), because \(K \) is algebraically closed. So for the element \(v_g = u_g \mu_g \) we have \(v_g^n = 1 \). Obviously,

\[
x = (v_g - 1)u_h (1 + v_g + v_g^2 + \cdots + v_g^{n-1})
\]

is a nilpotent element of \(K \ast G \) for all \(h \in G \) as far as \(x^2 = 0 \). Thus \(x = 0 \), so we conclude that

\[
(1) \quad u_h = v_g u_h v_g^i \quad (0 \leq i \leq n - 1).
\]

Examining the supports we can deduce that \(h^{-1}gh = g^{-i} \) (\(h \in G \)). Therefore all cyclic subgroups of \(G \) are normal. This implies that \(G \) is either abelian or hamiltonian. If \(g h = h g \), then \(i = n - 1 \) and by (1) it follows that \(u_h v_g = v_g u_h \), since \(v_g^n = 1 \) is the identity element of \(K \ast G \). So we conclude that \(\rho(g, h) = \rho(h, g) \), i.e. the factor system \(\rho \) is symmetric and condition (iii) holds.

If \(\text{char}(K) = p > 0 \) and \(G \) contains an element \(g \) of order \(p \), then

\[
(1 + v_g + v_g^2 + \cdots + v_g^{p-1})^p = 0
\]

and we get a contradiction. This implies that condition (ii) also follows.

Assume that \(G \) is hamiltonian and \(\langle g, h \mid g^4 = h^4 = 1, g^2 = h^2, g^b h = g^{-1} \rangle \cong Q_8 \) is the quaternion group of order 8. Then \(h^{-1}gh = g^{-1} \) and \(i = 1 \). Therefore in this case by (1) we have \(u_h = v_g u_h v_g \), i.e.

\[
(2) \quad v_h = v_g v_h v_g,
\]
where \(v_h = u_h \mu_h \) and \(v_g^4 = v_h^4 = 1 \). Since \(G \) contains 2-elements, it follows from (ii) that \(\text{char}(K) \neq 2 \).

\(K \) being an algebraically closed field, it is clear that there exist nonzero elements \(\alpha, \beta \in K \) for which \(\alpha^2 + \beta^2 = 0 \). Then by [2] it is easy to verify that

\[
w = \alpha(v_g^2 v_h - v_h) + \beta(v_g^3 v_h - v_g v_h)
\]

is a nonzero nilpotent element of \(K \).

Indeed, \(h \in \text{Supp}(\alpha(v_g^2 v_h - v_h)) \), but \(h \notin \text{Supp}(\beta(v_g^3 v_h - v_g v_h)) \). Thus we have \(w \neq 0 \). Moreover, by [2] we obtain that \(u_h^2 v_g = v_g u_h^2 \) and \(u_h v_g^2 = v_g u_h^2 \). Then \(w^2 = (v_g^2 - 1)^2(\alpha v_h + \beta v_g v_h)^2 \). Since \((v_g^2 - 1)^2 = 2(1 - v_g^2) \) and

\[
(\alpha v_h + \beta v_g v_h)^2 = (\alpha^2 + \beta^2) v_g^2 + \alpha \beta v_g^2 (v_g^2 + 1)v_g
\]

we obtain \(w^2 = 2(1 - v_g^2)\alpha \beta v_h^2 (1 + v_g^2)v_g = 0 \), which is impossible. Hence condition (i) follows, as requested. \(\square \)

3. Regular crossed products

An associative ring \(R \) with unity is called regular (strongly regular) if for every \(a \in R \) there is an element \(b \in R \), such that \(aba = a \) (\(ba^2 = a \), respectively). A ring \(R \) is called \(\xi \)-ring (\(\xi^* N \)-ring) if for every \(a \in R \) there exists \(b \in R \) such that \(aba - a \) is a central (central nilpotent, respectively) element of \(R \). It is clear that every regular ring is a \(\xi^* N \)-ring and every \(\xi^* N \)-ring is a \(\xi \)-ring (see [7,12]).

By the theorem of Auslander, Connell and Willamayor (see [3], Theorem 3, p.660), it is well known that a group ring is regular if and only if \(K \) is regular, \(G \) is a locally finite group and the order of every element \(g \in G \) is invertible in \(K \).

Our first result for this section is the following.

Theorem 2. Let \(K * G \) be a crossed product of the group \(G \) over the ring \(K \) such that one of the following conditions is satisfied:

1. \(K * G \) is a \(\xi \)-ring;
2. \(K * G \) is \(\xi^* N \)-ring.

Then \(G \) is a torsion group.

Proof. (i) Suppose that \(g \in G \) is an element of infinite order. Then there exists a \(b \in K * G \) and a natural number \(n \geq 1 \) such that

\[
x = (u_g - 1)b(u_g - 1) - (u_g - 1)
\]

is a central element of \(K * G \) and \(x^n = 0 \). If \(n = 1 \), then \(x = 0 \) and

\[
(u_g - 1)[b(u_g - 1) - 1] = 0.
\]

Since, by Corollary [1] the element \(u_g - 1 \) is not a left zero divisor in \(K * G \), we obtain that \(b(u_g - 1) = 1 \), i.e. \(u_g - 1 \) is a left invertible element in \(K * G \), which is also impossible. Therefore \(n > 1 \) and

\[
x^n = (u_g - 1)[b(u_g - 1) - 1]x^{n-1} = 0.
\]

In the same way we obtain that \(z_1 = [b(u_g - 1) - 1]x^{n-1} = 0 \). Suppose that for some \(k \geq 1 \) we have \(z_k = [b(u_g - 1) - 1]^k x^{n-k} = 0 \). If \(1 < k < n \), as far as \(x \) is
central,
\[
z_k = x[b(u_g - 1) - 1]^k x^{n-k-1} = (u_g - 1)[b(u_g - 1) - 1]^{k+1} x^{n-k-1} = 0.
\]
Now applying Corollary 1 we obtain that
\[
z_{k+1} = [b(u_g - 1) - 1]^{k+1} x^{n-k-1} = 0.
\]
Thus, by induction we conclude that \(z_n = [b(u_g - 1) - 1]^n = 0. \)

The last equality shows that there exists \(z \in K \ast G \) such that \(z(u_g - 1) = 1, \)
which, by Corollary 1, is impossible.

(ii) Suppose that \(g \in G \) is an element of infinite order. Then for some \(b, c \in K \ast G \)
we have \(u_g - 1 = (u_g - 1)b(u_g - 1)^n c. \) By Corollary 1 we have
\[
(u_g - 1)(1 - b(u_g - 1)^n c) = 0,
\]
we conclude that \(b(u_g - 1)^n c = 1. \) Hence it follows that \(b(u_g - 1)x = 1, \)
where \(x = (u_g - 1)^{n-1} c. \) If \(e = xb(u_g - 1), \) then
\[
e^2 = x[b(u_g - 1)x]b(u_g - 1) = xb(u_g - 1) = e,
\]
i.e. \(e \) is a central idempotent of \(K \ast G. \) Thus we have
\[
1 = b(u_g - 1)x = xb(u_g - 1),
\]
i.e. \(u_g - 1 \) has a left invertible element \(xb \in K \ast G. \) Now again by Corollary 1 we obtain a contradiction, so the proof is complete.

Corollary 2. If the crossed product \(K \ast G \) is a regular ring, then \(K \) is also a regular ring and \(G \) is a torsion group.

Proof. The claim follows from Theorem 2 and Lemma 1.

Observe that the theorem of Auslander, Connell and Willamayor (see [3], Theorem 3, p.660) does not apply for crossed products. Indeed, if \(K \) is a non-perfect field of characteristic \(p > 0 \) and \(G \) is the \(p^\infty \)-group, then there exists a twisted group ring \(K_p G, \) which must be a field (see [9], Proposition 4.2).

If \(G \) satisfies the maximum condition for finite normal subgroups and the group ring \(KG \) is a \(\xi N \)-ring, then \(G \) is locally finite (see [14], Theorem 3, p.16).

We shall prove the locally finiteness of \(G \) without the assumption of the maximum condition when \(K \) is a field. First we recall that (see [10], p.308)
\[
\Delta(G) = \{ g \in G \mid [G : C_G(g)] < \infty \}
\]
is a subgroup of \(G, \) where \(C_G(g) \) is the centralizer of \(g \) in \(G. \) Furthermore, we put
\[
\Delta^p(G) = \{ g \in \Delta(G) \mid g \text{ is a } p\text{-element } \},
\]
that is the subgroup of \(\Delta(G) \) which is generated by all \(p \)-elements of \(\Delta(G). \)

Now we are ready to prove the following.

Theorem 3. Let \(KG \) be the group algebra of a group \(G \) over a field \(K. \) If \(KG \) is a \(\xi N \)-ring, then \(G \) is a locally finite group. Moreover, if \(\text{char}(K) = p > 0 \) then \(\Delta^p(G) \) contains all \(p \)-elements of \(G. \)
Proof. Let $\mathfrak{N}(KG)$ be the union of all nilpotent ideals of KG. In particular, the central nilpotent elements of KG are in $\mathfrak{N}(KG)$ and, consequently, $KG/\mathfrak{N}(KG)$ is a regular ring.

Assume $\text{char}(K) = p > 0$. By Theorem 8.19 ([10], p.309),
$$\mathfrak{N}(KG) = \mathfrak{Rad}(K[\Delta^p(G)])KG,$$
where $\mathfrak{Rad}(K[\Delta^p(G)])$ is the Jacobson radical of the group ring $K[\Delta^p(G)]$. Obviously, the augmentation ideal $\omega(K[\Delta^p(G)])$ is a maximal ideal of $K[\Delta^p(G)]$, so
$$\mathfrak{N}(KG) = \mathfrak{Rad}(K[\Delta^p(G)])KG \subseteq \omega(K[\Delta^p(G)])KG.$$

It is well-known (see [3], Theorem 3, p.660) that
$$K[G/(\Delta^p(G))] \cong KG/\omega(K[\Delta^p(G)])KG$$
and therefore the group algebra $K[G/(\Delta^p(G))]$ is regular, as a homomorphic image of $KG/\mathfrak{N}(KG)$. This implies, by the theorem of Auslander, Connell and Villamayor (see [3], Theorem 3, p.660), that $G/\Delta^p(G)$ is locally finite and has no p-element. Thus we obtain that $\Delta^p(G)$ contains all the p-elements of G and the group G is locally finite (see [5], Theorem 23.1.1, p.215).

If $\text{char}(K) = 0$, then $\mathfrak{N}(KG) = 0$ and KG is regular. According to Auslander-Connell-Villamayor’s theorem the proof is complete. □

4. n-weakly regular twisted group algebras

Let $n \geq 2$ be a fixed natural number. A ring R is called n-weakly regular [1] if for every $a \in R$ there exist elements $b, c \in R$ such that $a = aba^n c$.

Obviously, an n-weakly regular ring R has no nonzero nilpotent element. Indeed, if R contains a nonzero nilpotent element, then there exists a nonzero nilpotent element $a \in R$ with $a^2 = 0$. Hence $a = aba^n c = 0$, which is impossible. From this fact we can conclude that all idempotents of an n-weakly regular ring are central.

In [2] (Theorem 2, p.119) it was proved that the group algebra KG over a field K is n-weakly regular ($n \geq 2$) if and only if K and G satisfy at least one of the following two conditions:

(i) $\text{char}(K) = p > 0$ and G is an abelian torsion group without p-elements;
(ii) $\text{char}(K) = 0$ and G is either an abelian torsion group or a hamiltonian group $G = Q \times E \times A$, where A is an abelian torsion group without 2-elements and the equation $x^2 + y^2 + z^2 = 0$ in KA has only the trivial solution.

In the case when K is an algebraically close field, this result can be extended to.

Theorem 4. A twisted group algebra $K\rho G$ of a group G over the algebraically closed field K is n-weakly regular ($n \geq 2$) if and only if the following conditions hold:

(i) G is an abelian torsion group;
(ii) the order of every element of G is invertible in K;
(iii) the factor system ρ is symmetric.

Proof. Suppose that $K\rho G$ is n-weakly regular. Then conditions (i), (ii) and (iii) hold by Theorems [1] and [2].

Conversely, if K and G satisfy the conditions (i), (ii) and (iii), then $K\rho G$ is a commutative ring. Let $a \in K\rho G$ be an arbitrary element. Then $a \in K\rho H$, where $H = \langle \text{Supp}(a) \rangle$ is a finite abelian group. Since $K\rho H$ is a commutative semisimple artinian ring ([8], Theorem 2.2), we conclude that $K\rho H$ is a direct product of
fields, so $K\rho H$ is n-weakly regular. This implies that $K\rho G$ is n-weakly regular, as requested.

Analyzing the result of [2] (see Theorem 2, p.119) on n-weakly regular group rings and [7] (see Corollary 2, p.70) about strongly regular group rings we deduce that when K is a field, then these two classes coincide.

In the case of twisted group algebras over an algebraically closed basic field we have the following.

Corollary 3. Let $K\rho G$ be a twisted group algebra of a group G over an algebraically closed field K. The following statements are equivalent:

(i) $K\rho G$ is strongly regular;

(ii) $K\rho G$ is n-weakly regular for every natural number $n \geq 2$;

(iii) $K\rho G$ is n-weakly regular for some natural number $n \geq 2$;

(iv) G is an abelian torsion group, the order of every element of G is invertible in K and the factor system ρ is symmetric.

Proof. Suppose that $K\rho G$ is a strongly regular ring. If $a \in K\rho G$ and $a = a^2b$, then $a = aba$, because $K\rho G$ does not contain nilpotent elements. Now by induction it follows that $a = ab^nc$ for some $c \in K\rho G$ and for every natural number $n \geq 1$. So (i) implies (ii) and, obviously, (ii) implies (iii). By the preceding theorem, (iii) implies (iv). Finally, by the Auslander-Connell-Villamayor theorem and by (iv) it follows that $K\rho G$ is a commutative von Neumann ring and so (iv) implies (i). □

5. **ξN-twisted group algebras**

A ring R is called a ξN-ring if for any $a \in R$ there exists $b \in R$ such that $a^2b - a$ is a central nilpotent element of R (see [11]).

Obviously, every ξN-ring is a ξ-ring and, therefore, (see [6], Theorem 1, p.714) we deduce that every ξN-ring is a $\xi^* N$-ring. Moreover, (see [6], Lemma 2, p.715) it follows that in ξN-rings all nilpotent elements are central.

ξN-group rings over commutative rings are described in [11] (Theorem 2, p.15). From this description, it follows that a group ring KG over a field K of characteristic $p > 0$ is a ξN-ring if and only if G is an abelian torsion group.

Finally we prove the following.

Theorem 5. A twisted group algebra $K\rho G$ of a group G over the algebraically closed field K is a ξN-ring if and only if the following conditions hold:

(i) G is an abelian torsion group;

(ii) the factor system ρ is symmetric.

Proof. Let $K\rho G$ be a ξN-ring. Then ([6], Theorem 1, p.714) the ring $K\rho G$ is a $\xi^* N$-ring and, in view of Theorem 2, we conclude that G is a torsion group. As far as K is an algebraically closed field, for every element $g \in G$ of order n there exists an $\mu_g \in U(K)$, such that $v_g = u_g \mu_g$ ($u_g \in U_G$) and $v^n_g = 1$. Then we put

$$z = (v_g - 1)v_h(1 + v_g + v^2_g + \cdots + v^{n-1}_g), \quad (h \in H).$$
Clearly, $z^2 = 0$ and therefore z is a central element of $K_ρG$. Thus $zv_h = v_h z$, and, so we obtain the equality

$$2v_h v_g v_h + \sum_{i=1}^{n-1} v_h^i v_g v_h v_h + \sum_{i=2}^{n-1} v_h^i v_h$$

$$= \sum_{i=1}^{n-1} v_h^i v_h^2 + \sum_{i=0}^{n-1} v_h^i v_g v_h v_g.$$

If char(K) = 2, then $2v_h v_g v_h = 0$. Consequently for the product $v_h v_g^2 v_h$ and for the corresponding supports we obtain the following three cases:

(A1) $v_h v_g^2 v_h = v_h^i v_h v_g v_h$, $h g h^2 = g^i h g h$ and $h g h^{-1} = g^i (1 \leq i \leq n - 1)$;

(A2) $v_h v_g^2 v_h = v_h v_g^2 v_h v_g$, $h g h^2 = g h^2 g$ and $h g h^{-1} = g^2 - i (1 \leq i \leq n - 1)$;

(A3) $v_h v_g v_h = v_g^2 v_h$, $h g h^2 = g^2 h^2$ and $h g h^{-1} = g^i (1 \leq i \leq n - 1)$.

This shows that $\langle g^2 \rangle$ is a normal cyclic subgroup of G.

If g is a 2-element of G, then $1 + v_g$ is nilpotent and by Lemma 2 of [6] we deduce that $1 + v_g$ is a central element of $K_ρG$. Therefore $v_g v_h = v_h v_g$ for every $h \in G$.

If g is an element of odd order, then $\langle g^2 \rangle = \langle g \rangle$ and from (A1), (A2) and (A3) we obtain that every cyclic subgroup of G is normal, i.e. G is either abelian, or hamiltonian. Since the 2-elements of G are central, we conclude that G is an abelian torsion group, i.e. condition (i) holds. Now by (A1) and (A2) it follows that $i = 1$ and $v_g v_h = v_h v_g$. In case (A3) we have $i = 2$ and $v_g v_h^2 = v_g v_h$. But $\langle v_g \rangle = \langle v_h \rangle$, so v_h commutes with v_g for all $i = 1, \ldots, n - 1$. Therefore condition (ii) also holds.

Now, suppose that char(K) $\neq 2$. Then by [3], we conclude that for the product $v_h v_g v_h$ we have the following four cases:

(B1) $v_h v_g v_h = v_h v_g^2 v_h$, $h g h = g^2 h^2$ and $h g h^{-1} = g^i (1 \leq i \leq n - 1)$;

(B2) $v_h v_g v_h = v_h v_g v_g v_h$, $h g h = g h^2 h g$ and $h g h^{-1} = g^{i-1} (0 \leq i \leq n - 1)$;

(B3) $v_h v_g v_h = -v_h v_g^2 v_h$, $h g h = g h^2 h$ and $g^{i-1} = 1$, which is impossible, because $2 \leq i \leq n - 1$ and g is of order n;

(B4) $v_h v_g v_h = -v_h v_g v_h v_h$, $h g h = g h^2 h g$ and $g^i = 1$, which is impossible, because $1 \leq i \leq n - 1$.

Therefore $\langle g \rangle$ is a normal cyclic subgroup of G for every $g \in G$. Hence G is either abelian or a hamiltonian group.

Assume that G is hamiltonian and $\langle g, h \mid g^4 = 1, h^2 = g^2, h g h^{-1} = g^{-1} \rangle \cong Q_8$. Then by (B1) and (B2), it follows that either $i = 3$ or $i = 2$, respectively. Hence we obtain that $v_h v_g = v_g v_h$, where $v_g^4 = v_h^4 = 1$.

Let (α, β) be a nontrivial solution of the equation $x^2 + y^2 = 0$ in K. Then as in the proof of Theorem [4] we establish that

$$w = \alpha(v_g^2 v_h - v_h) + \beta(v_g^3 v_h - v_g v_h)$$

is a nonzero nilpotent element of $K_ρG$ with $z^2 = 0$. Therefore w is a central element of $K_ρG$. But $w v_h \neq v_h w$, so we obtain a contradiction. Thus G is abelian and condition (i) holds. If $g h = h g$, then by (B1) and (B2) it follows that either $i = 1$ or $i = 2$, respectively. Hence we obtain that $v_h v_g = v_g v_h$ for all $g, h \in G$ and so condition (ii) also follows.

Conversely, if the conditions (i) and (ii) hold, then $K_ρG$ is a commutative ring. For every element $a \in K_ρG$ with $H = \langle \text{Supp}(a) \rangle$, the ring $K_ρH$ is artinian and
$R \cong K_\rho H/\text{nil}(K_\rho H)$ is a finite sum of fields. Therefore R is strongly regular and hence $K_\rho H$ is a ξN-ring. Since $a \in K_\rho H$, we deduce that $K_\rho G$ is a ξN-ring.

Note that if $K_\rho G$ is a ξN-ring, then the periodicity of G can be proved directly. Indeed, if $g \in G$ is an element of infinite order and $z = (u_g - 1)x - (u_g - 1)$ is a central nilpotent element of $K_\rho G$, then $z^n = 0$ for some $n \geq 1$. By Corollary 1 we deduce that $[(u_g - 1)x - 1]z^{n-1} = 0$.

Using the fact that z is central, we can prove by induction that $[(u_g - 1)x - 1]kz^{n-k} = 0$

for every $k \geq 1$. Therefore $[(u_g - 1)x - 1]^n = 0$. This equality shows that $u_g - 1$ is right invertible in $K_\rho G$, which again is impossible by Corollary 1. □

References

[1] A. A. Bovdi. Crossed products of a semigroup and a ring. Dokl. Akad. Nauk SSSR, 137:1267–1269, 1961.
[2] A. A. Bovdi and T. P. Lángi. On the regularity of group algebras. Arch. Math. (Brno), 32(2):117–121, 1996.
[3] I. G. Connell. On the group ring. Canad. J. Math., 15:650–685, 1963.
[4] V. Gupta. A generalization of strongly regular rings. Acta Math. Hungar., 43(1-2):57–61, 1984.
[5] M. Kargapolov and I. Merzliakov. Éléments de la théorie des groupes. Traduit du Russe: Mathématiques. [Translations of Russian Works: Mathematics]. “Mir”, Moscow, 1985. Translated from the Russian by V. Kotliar.
[6] W. S. Martindale, III. The structure of a special class of rings. Proc. Amer. Math. Soc., 9:714–721, 1958.
[7] S. V. Mihovski. On the stongly regular group rings. Bull. Inst. Math. Bulg. Acad. Sci., 14:67–71, 1970.
[8] D. S. Passman. Radicals of twisted group rings. Proc. London Math. Soc. (3), 20:409–437, 1970.
[9] D. S. Passman. Radicals of twisted group rings. II. Proc. London Math. Soc. (3), 22:633–651, 1971.
[10] D. S. Passman. The algebraic structure of group rings. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York, 1977.
[11] A. Rakheev. Some properties of group ξ-rings. Plovdiv. Univ. Nauchn. Trud., 21(1):13–24, 1983.
[12] Y. Utumi. On ξ-rings. Proc. Japan Acad., 33:63–66, 1957.