On the nature of the X(3872) from QCD

S. Narison

Laboratoire de Physique Théorique et Astroparticules, CNRS-IN2P3 and Université de Montpellier II.
Case 070, Place Eugène Bataillon, 34095 - Montpellier Cedex 05, France.

F. S. Navarra and M. Nielsen

Instituto de Física, Universidade de São Paulo, C.P. 66318, 05389-970 São Paulo, SP, Brazil

We have studied some possible four-quark and molecule configurations of the X(3872) using double ratios of sum rules, which are more accurate than the usual simple ratios often used in the literature to obtain hadron masses. We found that the different structures (3 − 3 and 6 − 6 tetraquarks and D − D∗ molecule) lead to the same prediction for the mass (within the accuracy of the method), indicating that the alone prediction of the X mass may not be sufficient to reveal its nature. In doing these analyses, we also find that (within our approximation) the use of the MS running mm(m2), rather than the on-shell mass, is more appropriate to obtain the J/ψ and X meson masses. Using vertex sum rules to roughly estimate the X(3872) hadronic and radiative widths, we found that the ones of a λ − J/ψ-like molecule current can be compatible within the errors with the data.

PACS numbers: 11.55.Hx, 12.38.Lg, 12.39.-x

I. INTRODUCTION

The nature of the narrow (≤ 2.3 MeV width) X(3872) decaying to J/ψπ+π−[1] discovered by BELLE in B-decays [2] and confirmed by BABAR [3], CDF [4] and D0 [5] in hadronic productions remains puzzling. Different scenarios (four-quark state, molecule, large mixing between the two) have been considered in the literature [6, 7]. In this work we use QCD spectral sum rules (QSSR) (the Borel/Laplace Sum Rules [8, 10]) in order to test the previous four-quark and molecule scenarios.

In a previous calculation [11] some of us and our collaborators have considered the X(3872) as being a tetraquark state where the diquark-antidiquark pairs are in the 3−3 color configuration. A priori, the diquark-antidiquark pairs could also be in a 6−6 color configuration. This system is expected to be too weakly bound by a two-body potential but it could be bound by a four-body potential, such as the one of the Steiner model [12]. In this work we shall, for the first time, investigate this configuration using QSSR.

Using QSSR, we shall, also for the first time, analyze the mass and hadronic width of a λ − J/ψ-like molecule 1, which we shall compare with the ones of the four-quark states.

II. THE INTERPOLATING X-CURRENTS

In order to study the two-point functions of the X(3872) meson assumed to be an 1++ axial vector meson, The interpolating current which describes the X(3872) as a diquark-antidiquark system in the 3−3 color configuration with total JPC = 1++ is [11]:

\[j_{3}^{μ}(x) = \frac{iε_{abc}ε_{dec}}{\sqrt{2}} [(q^{c}_a Cγ_5 c_b)(\bar{q}dγ^μ c_δ c_e T) + (q^c_a Cγ^μ c_b)(\bar{q}dγ_5 c_δ c_e T)] , \]

while for a diquark-antidiquark in the color sextet (6−6) configuration, the interpolating current is:

\[j_{6}^{μ}(x) = \frac{i}{\sqrt{2}} [(q^{c}_a T Cγ_5 λ_{ab} c_b)(\bar{q}dγ^μ λ_{S} c_e T) + (q^{c}_a T Cγ^μ λ_{ab} c_b)(\bar{q}dγ_5 λ_{S} c_e T)] , \]

where a, b, c, ... are color indices, C is the charge conjugation matrix, q denotes a u or d quark and λS stands for the six symmetric Gell-Mann matrices: λS = (λ0, λ1, λ3, λ4, λ6, λ8).

These tetraquark currents can be compared with the ones describing the X state as a D∗−D molecule:

\[j_{mod}^{μ}(x) = \left(\frac{g}{λ} \right)^2 \text{eff} \frac{1}{\sqrt{2}} \left[(\bar{q}a(x)γ_5 c_a(x)\bar{c}_b(x)γ^μ q_b(x)) - (\bar{q}a(x)γ^μ c_a(x)\bar{c}_b(x)γ_5 q_b(x)) \right] , \]

and as a λ − J/ψ-like molecule current:

\[j_{λ}^{μ}(x) = \left(\frac{g}{λ} \right)^2 \text{eff} (\bar{c}λ^aγ^μ c)(\bar{q}λ^a γ_5 q) \]

where λa is the colour matrix.

In the molecule assignement it is assumed that there is

1 An analogous configuration has been studied within QSSR for light four-quark states in [13].
an effective local current and the meson pairs are weakly
bound by a van der Vaals force in a Fermi-like theory
with a strength \((g/\Lambda^2_{\text{eff}})\) which has nothing to do with
the quarks and gluons inside each meson.

III. THE TWO-POINT CORRELATOR AND
FORM OF THE RULE SUMS

The two-point correlation function associated to the
axial-vector current is defined as:

\[
\Pi_1^{\mu\nu}(q) = i \int d^4x \ e^{iqx} \langle 0|T[j_i^{\mu}(x)j_i^{\nu}(0)]|0 \rangle = -\Pi_{1i}(q^2)(q^{\mu}\eta^{\nu}-\eta^\mu q^\nu) + \Pi_{0i}(q^2)q^\mu q^\nu,
\]

where \(i = 3, 6, \text{mol, } \lambda \) according to the currents in
Eqs. (1), (2), (3) and (4). The two functions, \(\Pi_1\) and
\(\Pi_0\), appearing in Eq. (5) are independent and have re-
spectively the quantum numbers of the spin 1 and 0
mesons.

Due to its analyticity, the correlation function, \(\Pi_{1i}\),
obey a dispersion relation:

\[
\Pi_{1i}(q^2) = \int_{4m_i^2}^{\infty} ds \rho_i(s) s^{-q^2 / s} + \ldots, \quad (6)
\]

where \(\pi_i(s) \equiv \text{Im}[\Pi_{1i}(s)]\) is the spectral function. Af-
ter making an inverse-Laplace (or Borel) transform on
both sides, the sum rule and its ratio read:

\[
\mathcal{F}_i(\tau) = \int_{4m_i^2}^{\infty} ds \ e^{-s \tau} \rho_i(s) \quad \mathcal{R}_i(\tau) = -\frac{d}{d\tau} \log \mathcal{F}_i(\tau),
\]

where \(\tau = 1/M^2\) is the sum rule variable with \(M\) be-
ing the inverse-Laplace (or Borel) mass. In the follow-
ing, we shall work with the double ratio of sum rules
(DSR):

\[
r_{ij} = \sqrt{\frac{\mathcal{R}_i}{\mathcal{R}_j}} : i = 3, 6, \ldots, \quad (8)
\]

to obtain the \(X\)-meson mass. Defining the coupling of
the current with the state through:

\[
\langle 0|j_i^{\mu}|X\rangle = \sqrt{2} f_{\lambda X} M_i^2 e^{\mu}, \quad (9)
\]

and using the minimal duality ansatz: “one resonance”
⊕ “QCD continuum”, where the QCD continuum comes
from the discontinuity of the QCD diagrams from a
continuum threshold \(t_c\), the phenomenological side of
Eq. (6) can be written as:

\[
\Pi_{1i}^{\text{phen}}(q^2) = \frac{2 f_X^2 M_{\pi}^8}{M_i^2 - q^2} \left(-\eta^{\mu\nu} + \frac{q^\mu q^\nu}{M_i^2}\right) + \ldots, \quad (10)
\]

where the Lorentz structure projects out the \(1^{++}\) state.
The dots denote higher axial-vector resonance contribu-
tions that will be parametrized, as usual, by the QCD
continuum. Transferring the continuum contribution to
the QCD side, the sum rules can be written in a finite
energy form as:

\[
\mathcal{F}_i(\tau) = 2 f_X^2 M_{\pi}^8 e^{-M^2 \tau} = \int_{4m_i^2}^{\infty} ds \ e^{-s \tau} \rho_i(s) \quad \mathcal{R}_i(\tau) = -\frac{d}{d\tau} \log \mathcal{F}_i(\tau) \simeq M_i^2,
\]

\[
r_{ij} \equiv \sqrt{\frac{\mathcal{R}_i}{\mathcal{R}_j}} \simeq \frac{M_i}{M_j} : i = 3, 6, \ldots \quad (11)
\]

IV. THE QCD EXPRESSIONS OF THE
TWO-POINT CORRELATORS

The QCD expressions of the spectral densities of the
two-point correlator associated to the currents in Eqs.
(1) and (3) have been obtained respectively in (11) and
(14) and will not be reported here. The expression as-
associated to the current in Eqs. (2) and (4) are new. Up
to dimension-six condensates, we can write:

\[
\rho_i(s) = \rho_i^{\text{pert}}(s) + \rho_i^{m_{\pi}}(s) + \rho_i^{(q \bar{q})}(s) + \rho_i^{(G^2)}(s) + \rho_i^{m_{\pi}}(s) + \rho_i^{(q \bar{q})^2}(s) \quad (12)
\]

The renormalization improved perturbative expression
of the sum rule is given by:

\[
\mathcal{F}_i(\tau)|_{\text{pert}} = (\alpha_s(\tau))^{-\frac{3}{2}} \left(A_i \left[1 + K_i \frac{\alpha_s}{\pi} + \ldots \right]\right), \quad (13)
\]

where \(\gamma_i\) is the anomalous dimension of the corre-
responding correlator, \(-\beta_1 = (1/2)(11 - 2n/3)\) is the
first coefficient of the \(\beta\)-function for SU(n) flavours, \(A_i\)
is the known LO expression and \(K_i\) is the radiative
correction. By inspection we observe that in the ratio
of moments \(\mathcal{R}\) defined in Eq. (11), the \(\alpha_s\) corrections
disappear and only the radiative corrections induced by
the anomalous dimensions of the currents survive. In
the double ratios of sum rules (DSR) which we shall use
in this paper, this induced radiative correction will also
disappear to \(O(\alpha_s)\) as the different currents stud-
ied (which have all the same Lorentz structure) have
the same anomalous dimensions. Therefore, we expect
that, although we work in leading order of the QCD
expressions, our results for the ratios of masses are ac-
curate up to order \(\alpha_s\) for the perturbative contributions.
A. $6 - 6$ four-quark current

For the $6 - 6$ current in Eq. (2), we get to lowest order in α_s:

$$
\rho_{6}^{pert}(s) = \frac{1}{2\pi^6} \int d\alpha \int d\beta \int_{\alpha}^{\alpha_{max}} \int_{\beta}^{\beta_{min}} (1 - \alpha - \beta)
\times (1 + \alpha + \beta) \left[(\alpha + \beta) m_c^2 - \alpha \beta s\right]^4,
$$

$$
\rho_{6}^{mix}(s) = -\frac{m_q}{2\pi^6 \alpha^3} \int \frac{d\alpha}{\alpha^3} \int_{\alpha}^{\alpha_{max}} \int_{\beta}^{\beta_{min}} \frac{1 - \alpha}{\beta} \left[-m_c^2(\bar{q}q)\right]
+ \frac{m_c}{2\pi^6 \alpha^2} \int \frac{d\alpha}{\alpha^2} \left[(1 + \alpha + \beta) (1 - \alpha - \beta) \times \left[(\alpha + \beta) m_c^2 - \alpha \beta s\right]^2 \right],
$$

$$
\rho_{6}^{G^2}(s) = -\frac{g^2 G^2}{2\pi^6 \alpha^2} \int \frac{d\alpha}{\alpha^2} \int_{\alpha}^{\alpha_{max}} \int_{\beta}^{\beta_{min}} \frac{1 - \alpha}{\beta} \left[(1 + \alpha + \beta) m_c^2 - \alpha \beta s\right]
\times \left[(\alpha + \beta) m_c^2 - \alpha \beta s\right],
$$

$$
\rho_{6}^{\bar{q}q}(s) = -\frac{m_c(\bar{q}q\sigma G q)}{2\pi^6 \alpha^2} \int \frac{d\alpha}{\alpha^2} \left[-\frac{2}{\alpha} \left(m_c^2 - \alpha(1 - \alpha)s\right) \right]
+ \frac{1 - \alpha}{\beta_{min}} \left[(\alpha + \beta) m_c^2 - \alpha \beta s\right]
\times \left[\frac{1 - \alpha}{\beta_{min}} \frac{\alpha + \beta}{\beta^2}\right],
$$

where: m_c, $g^2 G^2$, $\langle \bar{q}q\rangle$, $\langle \bar{q}g\sigma Gq\rangle$ are respectively the charm quark mass, gluon condensate, light quark and mixed condensates; ρ indicates the violation of the four-quark vacuum saturation. The integration limits are given by:

$$
\alpha_{min} = \frac{1}{2}(1 - v), \quad \alpha_{max} = \frac{1}{2}(1 + v)
$$

$$
\beta_{min} = \frac{\alpha m_c^2}{(s\alpha - m_c^2)}
$$

where v is the c-quark velocity:

$$
v \equiv \sqrt{1 - 4m_c^2/s}.
$$

B. $\lambda - J/\psi$-like molecule current

For the current in Eq. (4), the corresponding spectral functions read:

$$
\rho_{\lambda}^{pert}(s) = \frac{1}{2\pi^6 \alpha^3} \int \frac{d\alpha}{\alpha^3} \int_{\alpha}^{\alpha_{max}} \int_{\beta}^{\beta_{min}} (1 - \alpha - \beta)
\times \left[(1 + \alpha + \beta) (1 + \alpha + \beta) m_c^2 - \alpha \beta s\right]
\times [4 + \alpha + \beta + \frac{3}{\beta}(1 - \alpha)]
\times \left[(\alpha + \beta) m_c^2 - \alpha \beta s\right],
$$

$$
\rho_{\lambda}^{mix}(s) = 0(m_q),
$$

$$
\rho_{\lambda}^{(\bar{q}q)^2}(s) = \frac{2}{27\pi^6 \alpha^2} \rho(\bar{q}q)^2(s + 2m_c^2) \sqrt{1 - \frac{4m_c^2}{s}},
$$

where the integration limits have been defined in Eq. (17).
V. CALIBRATION OF THE METHOD FROM M_ψ AND CHOICE OF m_c

Using the QSSR method, one usually estimates the J/ψ mass, from the ratio:

$$R_\psi = \frac{\int_{4m_c^2}^{t_c} ds \, \rho_\psi(s) \, e^{s t}}{\int_{4m_c^2}^{t_c} ds \, \rho_\psi(s) \, e^{-s t}} \simeq M_\psi^2,$$

(18)

where ρ_ψ is the spectral density associated to the vector current:

$$J_\psi^\mu = \bar{c}\gamma^\mu c.$$

(19)

The QCD expression of the vector correlator is known in the literature [8] including the $d = 8$ condensates [10]. The full expression of the exponential moments R_ψ is given in [13] and its expansion in $1/m_c$ can be found in [10]. For the numerical analysis we shall introduce the renormalization group invariant quantities $\hat{\mu}_q$ [17]:

$$\langle \bar{q}q \rangle(\tau) = -\tilde{\mu}_q^3 (\log \sqrt{\tau} \Lambda)^{2/\beta_1},$$

$$\langle \bar{q}q \bar{q}q \rangle(\tau) = -\tilde{\mu}_q^3 (\log \sqrt{\tau} \Lambda)^{1/3\beta_1} M_0^2,$$

(20)

where $\beta_1 = -(1/2)(11 - 2n/3)$ is the first coefficient of the β function for n flavours. We have used the quark mass and condensate anomalous dimensions reported in [10]. We shall use the QCD parameters in Table I. At the scale where we shall work, and using the parameters in Table I, we deduce:

$$\rho = 2.1 \pm 0.2,$$

(21)

which controls the deviation from the factorization of the four-quark condensates. We shall not include the $1/q^2$ term discussed in [8, 19], which is consistent with the LO approximation used here as it has been motivated by a phenomenological parametrization of the larger order terms of the QCD series.

TABLE I: QCD input parameters. For the heavy quark masses, we use the range spanned by the running MS mass $m_0(M_Q)$ and the on-shell mass from QSSR compiled in page 602, 603 of the book in [10]. The values of Λ and $\hat{\mu}_d$ have been obtained from $\alpha_s(M_c) = 0.32(6)$ [22] and from the running masses: $(\overline{m}_d - \overline{m}_u)(2) = 7.9(3)$ MeV [24]. The original errors have been multiplied by 2 for a conservative estimate of the errors.

Parameters	Values	Ref.
$\Lambda(n_f = 4)$	(324 ± 15) MeV	[1, 20]
$\hat{\mu}_d$	(263 ± 7) MeV	[10, 21]
M_0^2	(0.8 ± 0.2) GeV2	[22, 24]
$\langle \alpha_s G^2 \rangle$	$(6 \pm 2) \times 10^{-2}$ GeV4	[15, 20, 25, 31]
$\rho \alpha_s (d \bar{d})^2$	$(4.5 \pm 0.3) \times 10^{-4}$ GeV6	[20, 22, 25]
m_c	$(1.26 \sim 1.47)$ GeV	[1, 10, 21, 30, 32, 33]

Including the $d = 4$ gluon condensate, we show in Fig. 1b the τ-behaviour of $M_\psi = \sqrt{R_\psi}$, for a given

$\sqrt{t_c} = 4.6$ GeV, from which the pQCD expression of the spectral density starts to be seen experimentally. From Fig. 1b we see that the gluon contribution plays an important role in stabilizing the result. In Fig. 1b we show the t_c-behaviour of M_ψ for two values of τ. We see that the results are very stable against t_c. One can deduce from Fig. 1b that one can better reproduce the experimental value of $M_{J/\psi}$ using the running mass $m_c(m_c)$ rather than the on-shell mass m_c^{oo}. This feature had already been noticed in [30, 33], where a better convergence of the QCD perturbative series was found when working with the MS mass. Therefore, in the following we shall only consider the running mass. We have checked that the use of the on-shell mass does not affect our result from the double ratio of sum rules as it was intuitively expected.

VI. M_X FROM THE DOUBLE RATIOS OF SUM RULES (DRSR)
A. The $3 - 3$ tetraquark

Using QSSR, one can usually estimate the mass of the X-meson, from the ratio R_i, analogue to the one in Eq. (13), where $i = 3, 6$ is related to the spectral densities obtained from the currents (1) and (2) respectively. The $3 - 3$ component of the X mass has been studied with the help of the current (1). At the sum rule stability point and using a slightly different (though consistent) set of QCD parameters than in Table I one obtains with a good accuracy (11):

$$M_3 \simeq \sqrt{R_3} = (3925 \pm 127) \text{ MeV} ,$$ \hspace{0.5cm} (22)

and the correlated continuum threshold value fixed simultaneously by the Laplace and finite energy sum rules (FESR) sum rules:

$$\sqrt{t_{c|3}} \simeq (4.15 \pm 0.03) \text{ GeV} .$$ \hspace{0.5cm} (23)

M_3 is in good agreement (within the errors) with the experimental candidate [1]:

$$M_X|_{exp} \simeq \sqrt{R_3} = (3872.2 \pm 0.8) \text{ MeV} ,$$ \hspace{0.5cm} (24)

while the relative low value of t_c indicates that the next radial excitation of the X-meson can be in the range:

$$M_{X'} \approx M_X + (225 \pm 127) \text{ MeV} .$$ \hspace{0.5cm} (25)

This low value of t_c suggests that the $3 - 3$ resonance may be difficult to separate from the QCD continuum and suggests also that it can be a wide resonance. Although the agreement with the experimental data is remarkable, the result may not be sufficient to provide a definite statement on the quark substructure of the X-meson.

$6 - 6$ over $3 - 3$ tetraquark

A better understanding of the nature of the X, for discriminating different proposals, requires a more precise determination of M_X. This can be reached by considering the double ratio (DR) of the sum rules (DRSR) [16, 24, 34–37]:

$$r_{6/3} = \sqrt{\frac{R_6}{R_3}} \simeq \frac{M_6}{M_3} .$$ \hspace{0.5cm} (26)

These quantities are less sensitive to the choice of the heavy quark masses, to the perturbative radiative corrections and to the value of the continuum threshold than the simple ratios R_6 and R_3 in Eq. (13) and (22). Fixing $\sqrt{t_c} = 4.15$ GeV [11] we show in Fig. 2(a) its t_c-behaviour (continuous line) for two values of m_c. One can notice that the result is very stable against the τ-variation in a large range for $\tau \leq 0.8 \text{ GeV}^{-2}$. We show in Fig. 2(b) its t_c-behaviour (continuous line) for a given $\tau = 0.4 \text{ GeV}^{-2}$ and $m_c = 1.26 \text{ GeV}$. We deduce:

$$r_{6/3} \simeq 1.00 ,$$ \hspace{0.5cm} (27)

with a negligible error, which shows that, from a QCD spectral sum rules approach, the $X(3872)$ can be equally described by the currents in Eqs. (11) and (2).

![Figure 2](image)

FIG. 2: The double ratio $r_{6/3}$ (solid line) defined in Eq. (26) and $r_{mol/3}$ (dashed line) defined in Eq. (28): a) as a function of τ for $\sqrt{t_c} = 4.15$ GeV and for two values of m_c; b) as a function of t_c for $\tau = 0.4 \text{ GeV}^{-2}$ and $m_c = 1.26$ GeV.

B. $D^* - D$ molecule over $3 - 3$ tetraquark

We can also work with the double ratio:

$$r_{mol/3} = \sqrt{\frac{R_{mol}}{R_3}} .$$ \hspace{0.5cm} (28)

by using the spectral densities for the current (3). In Fig. 2(b) we also show the double ratio $r_{mol/3}$ (dashed line) for $\sqrt{t_c} = 4.15$ GeV and for two values of m_c, while we show in Fig. 2(b) its t_c-behaviour (dashed line) for a given $\tau = 0.4 \text{ GeV}^{-2}$ and $m_c = 1.26$ GeV. One can deduce from the previous analysis:

$$r_{mol/3} \simeq 1.00 ,$$ \hspace{0.5cm} (29)

also with a negligible error.
C. \(\lambda - J/\psi \)-like-molecule over the \(\bar{3} - 3 \) tetraquark

Using approaches similar to the previous ones, we study the ratio of the \(\lambda - J/\psi \)-like molecule over the tetraquark \(3 - 3 \) one. We show the analysis in Fig. 3 from which one can deduce at the \(\tau \) and \(t_c \) stability regions:

\[r_{\lambda/3} \equiv \frac{M_\lambda}{M_3} = 0.96 \pm 0.03 , \tag{30} \]

where the errors come from the stability regions and \(m_c^2 \).

D. Comments on the results

Our analysis has shown that the three substructure assignments for the \(X \)-meson (\(3 - 3 \) and \(6 - 6 \) tetraquarks and \(D - D^{(*)} \) molecule) lead to (almost) the same mass predictions within the accuracy of the approach. Therefore, a priori, the alone study of the \(X \)-mass cannot reveal its nature if it is mainly composed by these substructures.

From the previous analysis we observe that the distance between the continuum threshold (about 4 GeV) and the resonance masses (see e.g. the ratio \(r_{6/3} \) in Fig. 2) is relatively small. This indicates that the separation between the resonance and the continuum may be difficult to achieve. This feature is also signaled by the (almost) absence of the so-called sum rule window (a compromise region where the resonance dominates over the continuum contribution and where the QCD OPE is convergent) when one extracts the absolute mass of the \(6 - 6 \) mass. Then, as in the analysis of the wide \(\sigma \) and hybrid or some other large width states \cite{38,39}, we expect that the \(6 - 6 \) and, to a lesser extent, the \(3 - 3 \) four-quark or molecule \(D - D^{(*)} \) states can be wide or/and weakly bound.

The analysis of the \(\lambda - J/\psi \)-like molecule mass in Eq. (30) shows that it can be lower than the other configurations studied previously.

In order to get a deeper understanding of the properties of these states, we shall, in what follows, compute their hadronic widths.

VII. CAN THE \(X \)-MESON HADRONIC WIDTH REVEAL ITS NATURE?

One can study the decays \(X \rightarrow J/\psi + 3\pi \) and \(X \rightarrow J/\psi + 2\pi \) using vertex sum rules \cite{40}, where the 2\(\pi \) and 3\(\pi \) can be assumed to come from the \(\rho \) and \(\omega \) mesons

\[J/\psi + 2\pi \text{ using vertex sum rules} \]
using vector meson dominance (VDM)4. In so doing, one works with the three-point function:

\[
\Pi^{\mu\nu}(p, p', q) \equiv \int d^4x \, d^4y \, e^{i(p'x + qy)} \times
\langle 0 | T J_{\psi}^\mu(x) J_{\psi}^\nu(y) J_X^{3\dagger}(0) | 0 \rangle ,
\]

(31)
as associated to the J/ψ-meson J_{ψ}^μ, to the vector mesons J_{ψ}^ν and to the X-meson J_X.

\section{A. The tetraquarks and $D^* - D$ molecule}

In the case of the three X-currents ($\bar{3} - 3$, $\bar{6} - 6$ tetraquarks and molecule) discussed previously, the lowest order and lowest dimension correction (fall apart) QCD diagrams are shown in Fig. 4. An estimate of the $X - J/\psi - V$ coupling in14, 40 indicates that if the X is a pure $\bar{3} - 3$ tetraquark or a molecule state, one would obtain:

\[
g_{X\psi\omega}^{3, \text{mol}} \approx 14 \pm 2 ,
\]

(32)

which would correspond to a width:

\[
\Gamma_{X \rightarrow J/\psi + n\pi}^{3, \text{mol}} \approx 50 \text{ MeV}.
\]

(33)

Doing an analogous analysis if the X is a $\bar{6} - 6$ tetraquark state, one also obtains a similar value. These previous results are too big compared with the data upper bound2:

\[
\Gamma_X \rightarrow \text{all} \leq 2.3 \text{ MeV}.
\]

(34)

\section{B. The $\lambda - J/\psi$-like molecule}

Another possibility is to study the $\lambda - J/\psi$-like molecule current. In contrast to to the case of previous currents, the leading order contribution to the three-point function is due to one gluon exchange in Fig. 5. The exact evaluation of these diagrams are technically involved. However, a rough approximation by including loop factors5 leads to the coupling:

\[
g_{X\psi\omega}^{\lambda} \approx \left(\frac{\alpha_s}{\pi} \right) g_{X\psi\omega}^{\text{mol}} \approx 1 ,
\]

(35)

where we have used $\alpha_s(M_X) \approx 0.26$. This would corresponds to a width:

\[
\Gamma_{X \rightarrow J/\psi + n\pi}^{\lambda} \approx 0.3 \text{ MeV}.
\]

(36)

\[\text{FIG. 5: Lowest order and lowest dimension Vertex diagrams contributing to the } X\text{-width for the } \lambda\text{-molecule current in Eq. (4).}\]

4 This approach assumes implicitly that the decay occurs through a direct coupling of the X-meson to J/ψ and p, ω mesons where some eventual rescattering contributions (which could be important) have been neglected.

5 A similar estimate has been done in13 for explaining the too small $\gamma\gamma$ width of the $a_0(980)$ if it is a four-quark or molecule state.
We have studied the mass of the $X(3872)$ using double ratios of sum rules, which are more accurate than the usual simple ratios used in the literature. We found that the different proposed configurations ($3 - 3$ and $6 - 6$ tetraquarks and $D - D^{(*)}$ molecule) lead to (almost) the same mass predictions within the accuracy of the method [see Eqs. (27) and (29)], indicating that the predictions of the X-meson mass is not enough to reveal its nature. However, the (relatively) small distance between the resonance mass and the continuum threshold of tetraquarks and $D - D^{(*)}$ molecule states can be wide or weakly bound. These observations are also supported by their large hadronic decay widths from vertex sum rules analysis given in Eq. (38). Among these different proposals, the only eventual possibility which can lead to a $X(3872)$ with narrow hadronic and radiative widths consistent within the errors with the present data, is the choice of the $\lambda - J/\psi$-like molecule current given in Eq. (31).

Sharper tests of the previous results can be done from an explicit evaluation of the QCD vertex function and from a more precise experimental measurements of the ratio in Eq. (41). In this case, some eventual mixing among different currents (see e.g. [14, 41]) may help to improve the agreement between theory and experiment.

IX. ACKNOWLEDGEMENTS

M. Nielsen would like to thank R.D. Matheus and C.M. Zanetti for useful discussions and for some partial collaborations, and the LPTA-Montpellier for the hospitality where this work has been initiated. This work has been partly supported by the CNRS-FAPESP program, by CNPq-Brazil and by the CNRS-IN2P3 within the project Non-perturbative QCD and Hadron Physics.
[28] F.J. Yndurain, hep-ph/9903457.
[29] S. Narison, Phys. Lett. B 387 (1996) 162.
[30] S. Narison, arXiv:1004.5333 [hep-ph] and references therein.
[31] S. Narison, Phys. Lett. B361, 121 (1995); Phys.Lett. B624 (2005) 223.
[32] S. Narison, Phys. Lett. B 197 (1987) 405; Phys. Lett. B 341 (1994) 73; Phys. Lett. B 520 (2001) 115.
[33] B.L. Ioffe and K.N. Zyablyuk, Eur. Phys. J. C 27 (2003) 229; B.L. Ioffe, Prog. Part. Nucl. Phys. 56 (2006) 232.
[34] S. Narison, Phys. Lett. B 322 (1994) 327.
[35] S. Narison, Phys. Lett. B 337 (1994) 166; Phys. Lett. B 668 (2008) 308.
[36] S. Narison, Phys.Rev. D 74 (2006) 034013; Phys. Lett. B 358 (1995) 113; Phys. Lett. B 466 (1999) 34.
[37] R.M. Albuquerque, S. Narison, M. Nielsen, Phys. Lett. B 684 (2010) 236; R.M. Albuquerque, S. Narison, Phys. Lett. B 694 (2010) 217.
[38] S. Narison, G. Veneziano, Int. J. Mod. Phys. A 4 (1989) 2751; S. Narison, Nucl. Phys. B 509 (1998) 312; Phys. Rev. D 73 (2006) 114024.
[39] S. Narison, Phys. Lett. B 675 (2009) 319.
[40] F. Navarra and M. Nielsen, Phys. Lett. B 639 (2006) 272.
[41] M. Nielsen, C.M. Zanetti, arXiv:1006.0467 [hep-ph].
[42] K. Abe et al. [Belle Collaboration], hep-ex/0505037 [hep-ex/0505038].
