TRANSFORMATIONS GENERALIZING THE LEVI-CIVITA, KUSTAANHEIMO-STIEFEL, AND FOCK TRANSFORMATIONS

Maurice KIBLER1 and Pierre LABASTIE2

1Institut de Physique Nucléaire (et IN2P3)
Université Claude Bernard Lyon-1
43, Boulevard du 11 Novembre 1918
69622 Villeurbanne Cedex, France

2LASIM (associé au CNRS No. 171)
Université Claude Bernard Lyon-1
43, Boulevard du 11 Novembre 1918
69622 Villeurbanne Cedex, France

Paper presented at the XVIIth International Colloquium on Group Theoretical Methods in Physics, Sainte-Adèle (Québec), Canada, June 27 to July 2, 1988. Published in \textit{Group Theoretical Methods in Physics}, eds. Y. Saint-Aubin and L. Vinet (World Scientific, Singapore, 1989). p. 660.
TRANSFORMATIONS GENERALIZING THE LEVI-CIVITA, KUSTAAANHEIMO-STIEFEL, AND FOCK TRANSFORMATIONS

Maurice KIBLER1 and Pierre LABASTIE2
1Institut de Physique Nucléaire (et IN2P3)
2LASIM (associé au CNRS No. 171)
Université Claude Bernard Lyon-1
69622 Villeurbanne Cedex, France

ABSTRACT

Preliminary results concerning non-quadratic (and non-bijective) transformations that exhibit a degree of parentage with the well known Levi-Civita, Kustaanheimo-Stiefel, and Fock transformations are reported in this article. Some of the new transformations are applied to non-relativistic quantum dynamical systems in two dimensions.

1. Introduction and Preliminaries

Non-bijective (canonical) transformations have received a great deal of attention in the recent years. In particular, quadratic transformations generalizing the so-called Levi-Civita1 and Kustaanheimo-Stiefel2 transformations have been studied from algebraic, geometrical and Lie-like viewpoints.3–12

It is the aim of the present paper to extend the study in Ref. 9 to non-quadratic transformations. We shall see that the Fock13 (stereographic) transformation belongs to the set of the transformations introduced in this work.

Following the work of Lambert and Kibler9 on quadratic transformations, we shall use Cayley-Dickson algebras as a general framework for defining non-quadratic transformations. Indeed, we shall restrict ourselves to \(2m\)-dimensional Cayley-Dickson algebras \(A(c) \equiv A(c_1, c_2, \ldots, c_p), c_i = \pm 1\) with \(i = 1, 2, \ldots, p\), for which \(2^p (= 2m) \leq 8\). The cases \(2m = 2, 4, 8\) correspond to \(A(c_1) = C\) or \(\Omega\), \(A(c_1, c_2) = H\) or \(N_1\), and \(A(c_1, c_2, c_3) = O\) or \(O'\), i.e., to the algebras of complex numbers or hyperbolic complex numbers, quaternions or hyperbolic quaternions, and octonions or hyperbolic octonions, respectively.
A basic ingredient for generating non-bijective transformations depends on the fact that the product $x = uv$ of two hypercomplex numbers u and v in $A(c)$ can be written in a matrix form as $x = A(u)v$, where $A(u)$ is a $2m \times 2m$ matrix generalizing the Hurwitz matrix.\(^9\) An important property of $A(u)$ for what follows is $\tilde{A}(u)^N A(u)^N = (\tilde{u} \eta u)^N$ for $N \in \mathbb{Z}$, where the metric η reads $\eta = \text{diag}(1, -c_1, c_1c_2, -c_3, c_1c_3, c_2c_3, -c_1c_2c_3)$ in the case $2m = 8$. (The cases $2m = 4$ and 2 may be deduced from the case $2m = 8$ by simple dimensional reduction.)

Another ingredient is provided by the anti-involutions described at length in Ref. 9. Let us recall that, in a $2m$-dimensional Cayley-Dickson algebra $A(c)$, it is possible to construct $2m - \delta(m,1)$ anti-involutions including the complex conjugation. We shall use j to denote such anti-involutions. In matrix form, the product $x = uj(v)$ of the two hypercomplex numbers u and $j(v)$ in $A(c)$ is given by $x = A(u)\epsilon v$, where ϵ is a $2m \times 2m$ diagonal matrix associated with the anti-involution j of $A(c)$.

We are now in a position to define transformations that we shall classify according to the nomenclature A_N, B_N, and C_N. These will be defined in sections 2, 3, and 4, respectively. Section 5 will deal with applications of some of the new transformations to various R^2 potentials. Work on transformations in higher dimensions and on applications to other potentials (e.g., the Hénon-Heiles potential) is in progress.

2. Transformations of Type A_N

The map $A(c) \rightarrow A(c) : u \mapsto x = u^{N+1}$ with $N \in \mathbb{Z}$ gives rise to a $R^{2m} \rightarrow R^{2m}$ transformation defined through

$$x = A(u)^N u$$

(1)

This is a transformation of magnitude $N + 1$ since $r^2 = \rho^{2(N+1)}$, where $r^2 = \tilde{x} \eta x$ and $\rho^2 = \tilde{u} \eta u$.

We shall refer to the transformations (1) as transformations of type A_N. The transformations of type A_1 (or quasiHurwitz transformations) have been investigated in Ref. 9. They correspond to fibrations on spheres ($S^{2m-1} \rightarrow S^{2m-1}/Z_2$) or to fibrations on hyperboloids ($H^{2m-1}(m, m) \rightarrow H^{2m-1}(m, m)/Z_2$). As a typical example of a transformation of type A_1, for $2m = 2$, $c_1 = -1$, and $N = 1$, we obtain the Levi-Civita ($R^2 \rightarrow R^2$) transformation associated with the fibration $S^1 \rightarrow S^1/Z_2 = RP^1$.

Still for $N = 1$, the line element $dS^2 = d\tilde{x} \eta d\tilde{x}$ has been given in Ref. 9 for an arbitrary transformation of type A_1. As a consequence, the Laplace-Beltrami
operator may be obtained in a straightforward way for such a transformation. By way of illustration, for the transformation introduced in Ref. 5 and corresponding to \(2m = 4\) and \(c_1 = c_2 = -1\), we get

\[
\Delta_x = (1/4\rho^2)\left\{ \Delta_u \right\} \\
+ (1/u_1^2)(u_2^2 + u_3^2)\partial_z u_4 + (u_3^2 + u_4^2)\partial_z u_2 + (u_2^2 + u_4^2)\partial_z u_3 \\
- (2/u_1^2)(u_2 u_3 \partial_z u_3 + u_3 u_4 \partial_z u_4 + u_4 u_2 \partial_z u_2) \\
+ (2/u_1^2)(u_1 \partial_z u_1 - u_2 \partial_z u_2 - u_3 \partial_z u_3 - u_4 \partial_z u_4) \\
\Delta_x = \sum_{\alpha=1}^4 \partial_x \omega_{\alpha}, \quad \Delta_u = \sum_{\alpha=1}^4 \partial_u \omega_{\alpha}, \quad \rho^2 = \sum_{\alpha=1}^4 u_\alpha^2
\]

General properties of the transformations of type \(A_N\) with \(N \in Z - \{-1\}\) may be easily derived in the case \(2m = 2\). We have the 5 following properties

\[
x_1^2 - c_1 x_2^2 = (u_1^2 - c_1 u_2^2)^{N+1} \\
dx = (N+1)A(u)^N du \\
\nabla \cdot dx = (N+1)^{-1}(u_1^2 - c_1 u_2^2)^{-N} \eta A(u)^N \eta \nabla u \\
dx_1^2 - c_1 dx_2^2 = (N+1)^2(u_1^2 - c_1 u_2^2)^N(du_1^2 - c_1 du_2^2) \\
\partial_{x_1 x_1} - c_1 \partial_{x_2 x_2} = (N+1)^{-2}(u_1^2 - c_1 u_2^2)^{-N}(\partial_{u_1 u_1} - c_1 \partial_{u_2 u_2})
\]

The situation where \(N = -1\) deserves a special treatment. Indeed, the transformations of type \(A_{-1}\) are not interesting since they correspond to \(A(c) \rightarrow A(c) : u \mapsto x = 1\). In the particular case \(2m = 2\), we define transformations of the type \(A'_{-1}\) in the following way. We start with the column vector \(\omega = A(u)^{-1} du\). The elements of \(\omega\) are one-forms which turn out to be complete differentials. A direct integration leads to the \(R^2 \rightarrow R^2\) transformations \((u_1, u_2) \mapsto (x_1, x_2)\) with

\[
x_1 = (1/2) \ln(u_1^2 - c_1 u_2^2) \quad \text{for} \quad u_1^2 - c_1 u_2^2 > 0 \\
tan x_2 = u_2/u_1 \quad \text{for} \quad c_1 = -1 \quad \text{or} \quad \tanh x_2 = u_2/u_1 \quad \text{for} \quad c_1 = +1
\]

The latter transformations, referred to as transformations of type \(A'_{-1}\), correspond to the map \(A(c_1) \rightarrow A(c_1) : u \mapsto x = \log u\). These transformations satisfy the properties

\[
\nabla \cdot dx = \tilde{A}(u) \nabla u
\]
\[
\begin{align*}
 &dx_1^2 - c_1 dx_2^2 = (u_1^2 - c_1 u_2^2)^{-1}(du_1^2 - c_1 du_2^2) \\
 &\partial x_{11} - c_1 \partial x_{22} = (u_1^2 - c_1 u_2^2)(\partial u_1 u_1 - c_1 \partial u_2 u_2)
\end{align*}
\]

(5)

3. Transformations of Type \(B_N\)

We now write Eq. (1) in a slightly modified form: the relation

\[
x = A(u)^N u, \quad N \in \mathbb{Z}
\]

(6)

defines a \(R^{2m} \to R^{2m-n}\) transformation \((n \geq 0)\) that we shall call a transformation of type \(B_N\). This transformation (of magnitude \(N+1\)) corresponds to the map \(A(c) \to A(c) : u \mapsto x = u^N j(u)\).

As a first typical example, we take \(2m = 4, c_1 = c_2 = -1, N = 1, \) and \(\epsilon = \text{diag}(1,1,1,-1)\). Then, we obtain a \(R^4 \to R^3\) surjection that is nothing but the Kustaanheimo-Stiefel transformation (associated with the Hopf fibration \(S^3 \to S^2\) of compact fiber \(S^1\)). More generally, the \(R^{2m} \to R^{2m-n}\) transformations of type \(B_1\) (or Hurwitz transformations) correspond to \(n = 2m-1\) or \(n = m-1 + \delta(m,1)\). They have been studied by Lambert and Kibler.\(^9\) For \(2m\) fixed and \(n = m-1 + \delta(m,1)\), there are 3 classes of transformations of type \(B_1\) associated with (i) Hopf fibrations on spheres \((S^{2m-1} \to S^{m-\delta(m,1)}\) with compact fiber \(S^{m-1+\delta(m,1)}\)), (ii) fibrations on hyperboloids with compact fibers, and (iii) fibrations on hyperboloids with non-compact fibers.

As a second typical example, let us set \(2m = 4, N = -1, \) and \(\epsilon = \text{diag}(1,1,1,-1)\). Thus, Eq. (6) yields the \(R^4 \to R^4\) transformation

\[
\begin{align*}
 x_1 &= \frac{1}{\rho^2}(u_1^2 - c_1 u_2^2 - c_2 u_3^2 - c_1 c_2 u_4^2) \\
 x_2 &= -\frac{2}{\rho^2} c_2 u_3 u_4, \quad x_3 = \frac{2}{\rho^2} c_1 u_2 u_4, \quad x_4 = -\frac{2}{\rho^2} u_1 u_4
\end{align*}
\]

(7)

where \(\rho^2 = u_1^2 - c_1 u_2^2 - c_2 u_3^2 + c_1 c_2 u_4^2\). For \(c_1 = c_2 = -1\), the latter transformation particularizes to the \(R^4 \to S^3\) stereographic projection known as the Fock\(^13\) projection. Similar results may be obtained in the cases \(2m = 2\) and \(8\). In particular, for \(2m = 8, c_1 = c_2 = c_3 = -1, N = -1, \) and \(\epsilon = \epsilon_k (k = 1, 2, \cdots, 7), \) see Ref. 9, we get a \(R^8 \to S^7\) projection.

4. Transformations of Type \(C_N\)

A last class of transformations is obtained when the matrix \(\epsilon\) in Eq. (6) is replaced by an (arbitrary) matrix which is neither the identity matrix (yielding
transformations of type A_N) nor a matrix associated with an anti-involution j of $A(c)$ (yielding transformations of type B_N). Some transformations of type C_1 (or pseudoHurwitz transformations) have been described elsewhere.9,10 In the case $2m = 8$, the transformations of type C_1 corresponding to diagonal matrices ϵ having ± 1 for matrix elements have been classified in Ref. 9.

5. Applications

First, let us consider the two-dimensional Schrödinger equation

$$(-\frac{1}{2}\Delta_x - \frac{Z}{r^\alpha})\psi = E\psi, \quad \alpha \in R$$

(8)

where $r = (x_1^2 + x_2^2)^{1/2}$. The application to Eq. (8) of a ($R^2 \to R^2$) transformation of type A_N with $2m = 2$, $c_1 = -1$, and $N \in Z - \{-1\}$ leads to the partial differential equation

$$[-\frac{1}{2}\Delta_u - (N + 1)^2 E\rho^{2N}]\hat{\psi} = (N + 1)^2 Z\rho^{2N - \alpha(N+1)}\hat{\psi}$$

(9)

where $\rho = (u_1^2 + u_2^2)^{1/2}$ and $\hat{\psi} \equiv \hat{\psi}(u)$ is the transform of $\psi \equiv \psi(x)$ under the considered transformation. Furthermore, let us impose that $2N - \alpha(N + 1) = 0$. Then, the transformation of type A_N allows to transform the R^2 Schrödinger equation for the potential $-Z(x_1^2 + x_2^2)^{-N/(N+1)}$ and the energy E into the R^2 Schrödinger equation for the potential $-(N + 1)^2 E(u_1^2 + u_2^2)^N$ and the energy $(N + 1)^2 Z$. (Note that in such a transformation the roles of the energy E and the coupling constant Z are interchanged.) The solutions for $\alpha (= 2N/(N + 1)) \in Z$ and $N \in Z - \{-1\}$ correspond to $(\alpha, N) = (1, 1), (3, -3), \text{ and } (4, -2)$. (The solution $(0, 0)$ is trivial!) In other words, the Schrödinger equations for the potentials $1/r$ (Coulomb), $1/r^3$, and $1/r^4$ are transformed into Schrödinger equations for the potentials ρ^2 (harmonic oscillator), $1/\rho^6$, and $1/\rho^4$, respectively.

Second, we consider the Schrödinger equation

$$[-\frac{1}{2}\Delta_u - \frac{Z}{(u_1^2 + u_2^2)^{1/2}}]\hat{\psi} = E\hat{\psi}$$

(10)

for a two-dimensional hydrogen atom. By using the transformation of type A'_{-1} with $c_1 = -1$, Eq. (10) may be converted into

$$(-\frac{1}{2}\Delta_x - Ze^{x_1} - Ee^{2x_1})\psi = 0$$

(11)
Since x_2 is a cyclical coordinate, we can set $-(1/2)\partial_{x_2 x_2} \psi = -K \psi$ so that we arrive at

$$(-\frac{1}{2} \partial_{x_1 x_1} - Z e^{x_1} - E e^{2x_1}) \psi = K \psi$$

(12)

which may be recognized as the Schrödinger equation for an one-dimensional Morse potential (provided $Z > 0$ and $E < 0$). (The usual Morse14 potential is reverted in the x_1 variable.)

Third, we close with the R^2 Schrödinger equation

$$[- \frac{1}{2} \Delta_u + V_0 \ln(u_1^2 + u_2^2)] \hat{\psi} = E \hat{\psi}$$

(13)

The transformation of type A'_{-1} with $c_1 = -1$ makes it possible to change Eq. (13) into

$$(-\frac{1}{2} \Delta_x - E e^{2x_1} + 2V_0 x_1 e^{2x_1}) \psi = 0$$

(14)

and the separation of variables $-(1/2)\partial_{x_2 x_2} \psi = -K \psi$ leads to

$$[-\frac{1}{2} \partial_{x_1 x_1} - (E - 2V_0 x_1) e^{2x_1}] \psi = K \psi$$

(15)

References

[1] Levi-Civita, T., cited in Ref. 2.
[2] Kustaanheimo, P. and Stiefel, E., J. reine angew. Math. 218, 204 (1965).
[3] Boiteux, M., Physica 75, 603 (1974); J. Math. Phys. 23, 1311 (1982).
[4] Polubarinov, I.V., “On Application of Hopf Fiber Bundles in Quantum Theory”, preprint E2-84-607, JINR: Dubna (1984).
[5] Kibler, M. and Néjadi, T., Croat. Chem. Acta, CCACAA, 57, 1509 (1984).
[6] Iwai, T., J. Math. Phys. 26, 885 (1985).
[7] Lambert, D., Kibler, M., and Ronveaux, A., in *Proc. 14th Int. Coll. Group Theoretical Methods in Physics*, ed. Y.M. Cho, World Scientific: Singapore (1986). (p 304)
[8] Lambert, D. and Kibler, M., in *Proc. 15th Int. Coll. Group Theoretical Methods in Physics*, ed. R. Gilmore, World Scientific: Singapore (1987). (p 475)
[9] Lambert, D. and Kibler, M., J. Phys. A: Math. Gen. 21, 307 (1988).
[10] Kibler, M., “Transformations canoniques non bijectives”, Report LYCEN 8713, IPN: Lyon (1987). (unpublished)
[11] Kibler, M. and Winternitz, P., J. Phys. A: Math. Gen. 21, 1787 (1988).
[12] Kibler, M., in *Proc. 16th Int. Coll. Group Theoretical Methods in Physics*, eds. H.D. Doebner and T.D. Palev, Springer: Berlin (1988).
[13] Fock, V.A., Z. Phys. 98, 145 (1935).
[14] Morse, P.M., Phys. Rev. 34, 57 (1929).