Avaliação de Alterações Cardíacas Subclínicas e Atraso Eletromecânico Atrial por Ecocardiografia com Doppler Tecidual em Pacientes com Incidentaloma Adrenal Não Funcionante

Assessment of Subclinical Cardiac Alterations and Atrial Electromechanical Delay by Tissue Doppler Echocardiography in Patients with Nonfunctioning Adrenal Incidentaloma

Gulizar Sokmen,1 Murat Sahin,1 Dilek Tuzun,1 Abdullah Sokmen,1 Hanife Bolat,2 Ayten Oguz,3 Adem Doganer,4 Huseyin Nacar,1 Kamile Gul1
Kahramanmaraş Sutcu Imam University, Faculty of Medicine, Department of Cardiology,1 Kahramanmaraş – Turquia
Kahramanmaraş Sutcu Imam University, Faculty of Medicine, Department of Internal Medicine,2 Kahramanmaraş – Turquia
Kahramanmaraş Sutcu Imam University, Faculty of Medicine, Department of Endocrinology,3 Kahramanmaraş – Turquia
Kahramanmaraş Sutcu Imam University, Faculty of Medicine, Department of Biostatistics and Medical Informatics,4 Kahramanmaraş – Turquia

Resumo

Fundamento: A maioria das massas adrenais descobertas incidentalmente, denominadas incidentaloma adrenal (IA), são adenomas adrenais não funcionantes. O manejo adequado da IA ainda é um tema de debate, e por isso é necessário investigar suas morbilidades associadas. Entretanto, dados referentes a alterações cardíacas morfológicas e funcionais são limitados nesse grupo.

Objetivo: Neste estudo, objetivamos avaliar as características estruturais e funcionais cardíacas e as propriedades de condução atrial em pacientes com IA não funcionante.

Métodos: Trinta pacientes com IA não funcionante e 46 controles adequadamente pareados foram incluídos no estudo. Após análise hormonal e bioquímica, todos os participantes foram submetidos a ecocardiograma transtorácico com Doppler tecidual. Os dados foram analisados com o Statistical Package for the Social Sciences (SPSS, Chicago, IL, Estados Unidos), versão 17.0 para Windows. P < 0.05 foi considerado estatisticamente significativo.

Resultados: O índice de massa do ventrículo esquerdo (VE) e o índice de desempenho miocárdico do VE foram significativamente aumentados no grupo IA. Entre os tempos de condução atrial, os atrasos eletromecânicos intra- e interatriais foram significativamente prolongados em pacientes com IA não funcionante. Outros achados laboratoriais e ecocardiográficos foram semelhantes entre os grupos.

Conclusão: Nosso estudo revelou que os tempos de condução intra- e interatrial estavam prolongados e o índice de massa do VE estava aumentado em pacientes com IA não funcionante. Esses achados podem ser marcadores de envolvimento cardíaco subclínico e de tendência a complicações cardiovasculares. Um acompanhamento rigoroso é necessário para indivíduos com IA não funcionante, devido ao aumento do risco cardiovascular. (Arq Bras Cardiol. 2018; 111(5):656-663)

Palavras-chave: Achos Incidentalis; Diástole/função; Adenoma Adrenocortical; Diagnóstico por Imagem; Síndrome Metabólica; Distúrbios do Sistema de Condução Cardiaca.

Abstract

Background: Majority of the incidentally discovered adrenal masses, called adrenal incidentaloma (AI), are nonfunctioning adrenal adenomas. The appropriate management of AI is still a matter debate, so it is necessary to investigate their associated morbidity. However, data regarding morphological and functional cardiac alterations are limited in this group.

Objective: In this study, we aimed to assess cardiac structural and functional characteristics and atrial conduction properties in patients with nonfunctioning AI.

Methods: Thirty patients with nonfunctioning AI and 46 properly matched control subjects were included in the study. After hormonal and biochemical analysis, all participants underwent transthoracic echocardiography to obtain systolic and diastolic parameters of both ventricles, in addition to atrial conduction times by tissue Doppler echocardiography. Data were analyzed with Statistical Package for the Social Sciences (SPSS, Chicago, IL, United States) statistics, version 17.0 for Windows. P < 0.05 was considered statistically significant.

Results: Left ventricular (LV) mass index and LV myocardial performance index were significantly increased in AI group. Among atrial conduction times, both intra- and interatrial electromechanical delays were significantly prolonged in patients with nonfunctioning AI. Other laboratory and echocardiographic findings were similar between groups.

Conclusion: Our study revealed that intra- and inter-atrial conduction times were prolonged, and LV mass index was increased in patients with nonfunctioning AI. These findings may be markers of subclinical cardiac involvement and tendency to cardiovascular complications. Close follow-up is necessary for individuals with nonfunctioning AI for their increased cardiovascular risk. (Arq Bras Cardiol. 2018; 111(5):656-663)

Keywords: Incidental Findings; Diastole/function; Adrenocortical Adenoma; Diagnostic Imaging; Metabolic Syndrome; Cardiac Conduction System Disease

DOI: 10.5935/abc.20180188
Introdução
Os incidentalomas adrenais (IA) são massas adrenais, geralmente descobertos em intervenções cirúrgicas para outras indicações que não a doença adrenal. A definição clássica exclui pacientes com secreção hormonal adrenal clinicamente evidente e aqueles com malignidade concomitante, conhecida como metástase para as glândulas adrenais. A prevalência de massas adrenais na população geral foi de 6% na autópsia e de 2,5 a 4,2% na avaliação de abdômen e tórax por tomografia computadorizada (TC). ¹ A maioria das massas adrenais descobertas incidentalmente são adenomas adrenais não funcionantes.² O manejo adequado desses pacientes ainda é motivo de debate, sendo necessária a investigação de suas morbididades associadas. A presença de IA tem sido proposta como uma nova causa de síndrome metabólica e relatada como uma nova causa de síndrome metabólica e relatada.

Métodos
População do estudo
Foram registrados todos os indivíduos (n = 82) encaminhados ao Departamento de Endocrinologia e Metabolismo da Universidade Kahramanmaras Sutcu Imam University, em Kahramanmaras, Turquia, com tumores adrenais descobertos incidentalmente entre março de 2014 e novembro de 2015. O estudo foi aprovado pelo Comitê de Ética em Pesquisa da Universidade Kahramanmaras Sutcu Imam University, em Kahramanmaras, Turquia.

Os incidentalomas adrenais (IA) são massas adrenais, geralmente descobertos em intervenções cirúrgicas para outras indicações que não a doença adrenal. A definição clássica exclui pacientes com secreção hormonal adrenal clinicamente evidente e aqueles com malignidade concomitante, conhecida como metástase para as glândulas adrenais. A prevalência de massas adrenais na população geral foi de 6% na autópsia e de 2,5 a 4,2% na avaliação de abdômen e tórax por tomografia computadorizada (TC).¹ A maioria das massas adrenais descobertas incidentalmente são adenomas adrenais não funcionantes.² O manejo adequado desses pacientes ainda é motivo de debate, sendo necessária a investigação de suas morbididades associadas. A presença de IA tem sido proposta como uma nova causa de síndrome metabólica e relatada como uma nova causa de síndrome metabólica e relatada.

A fibrilação arterial (FA) é uma das arritmias mais comuns observadas na prática clínica. Diversos marcadores eletro- e ecocardiográficos que refletem anormalias eletrofisiológicas e eletromecânicas de átrios propensos a desenvolver FA têm sido estudados com o objetivo de identificar precocemente pacientes suscetíveis ao esse desenvolvimento. O atraso eletromecânico atrial (AEA) foi definido como o retardo temporal entre o início de atividade elétrica e a ativação mecânica do miocárdio atrial. A ecocardiografia com Doppler tecidual (EDT) é um método simples, não invasivo e confiável para mensurar o AEA.³ Vários estudos relatam que o AEA medido por é um parâmetro valioso para prever o início ou a recorrência de FA.⁴⁻⁵

Existem poucos estudos avaliando as funções cardíacas em pacientes com IA não funcionante, mas, até onde sabemos, faltam dados sobre propriedades eletromecânicas atriais.⁶⁻⁷ O objetivo deste estudo foi avaliar os tempos de condução intra- e interatrial, juntamente com características estruturais e funcionais cardíacas em pacientes com IA não funcionante.

Exame ecocardiográfico convencional
Todos os participantes realizaram ecocardiograma transtorácico (Vivid 7 Pro, GE, Horten, Noruega, transdutor...
phased array de 2 a 4 MHz), incluindo os exames Doppler bidimensional, modo M, pulsado e com fluxo colorido pelo mesmo cardiólogo experiente, cego para o estado clínico dos indivíduos. As gravações foram feitas em decúbito lateral esquerdo usando as vistas paraesternais, apicais e subcostais. A dimensão atrial esquerda, os diâmetros diastólico e sistólico finais do ventrículo esquerdo (VE), a espessura diastólica do septo ventricular e da parede posterior foram medidas no modo M na visão do eixo longo paraesternal, segundo os critérios da American Society of Echocardiography. As velocidades precoces (onda E) e diastólica tardia (onda A) do influxo mitral foram medidas a partir de quatro câmaras apicais com ecocardiografia Doppler pulsada, colocando-se o volume da amostra na ponta dos folhetos mitrais e calculando-se a relação E/A. A fração de ejeção foi estimada pela regra de Simpson. A massa do VE foi calculada pela fórmula de Devereux e indexada à área de superfície corporal.11-17

Os parâmetros morfológicos e funcionais do ventrículo direito (VD), incluindo a dimensão do átrio direito, o diâmetro do VE e a excursão sistólica do plano anular da tricúspide (TAPSE) foram medidos de acordo com as diretrizes da American Society of Echocardiography.15 A pressão arterial sistólica pulmonar (PAP) foi obtida a partir da velocidade máxima do jato tricúspide regurgitante e o tempo de aceleração pulmonar (TAP) foi medido como o tempo entre o início e o ápice da velocidade pulmonar obtido pelo registro de Doppler pulsátil.18

Ecocardiografia com doppler tecidual e atraso eletromecânico atrial

O TDE foi realizado com frequências de transdutor de 3,5 a 4,0 MHz, usando um volume de amostra com Doppler pulsado de 5 mm. Filtros de sinal de Doppler espectral foram ajustados para obter um limite de Nyquist de 15 a 20 cm/s com configurações mínimas de ganho ótimo. A velocidade de varredura foi definida em 50 a 100 mm/s. Um único eletrocardiograma de eletrodo (ECG) foi registrado simultaneamente durante as medições. No corte apical de quatro câmaras, o volume da amostra foi posicionado posteriormente ao nível do anel mitral lateral do VE, anel mitral septal e anel tricúspide do VE. A janela de amostragem foi posicionada o mais paralela possível ao segmento miocárdico de interesse para obter o ângulo ideal de imagem. Intervales de tempo desde o início da onda P no ECG superficial até o início da onda A (PA) representando AEA atrial foram obtidos a partir do anel mitral lateral, anel mitral septal e anel tricúspide e denominados PA lateral, septo PA e PA tricúspide, respectivamente. A diferença entre a PA lateral e a PA tricúspide foi definida como AEA interatrial (PA lateral-PA tricúspide), a diferença entre a PA lateral e o septo de PA foi definida como AEA intra-auricular (PA septo-PA lateral). Velocidades sistólica máxima (Sm), diastólica precoce (Em), diastólica tardia (Am) e tempo de contração isovolumétrica (ICTm; intervalo de tempo entre o final da manhã e início da Sm), tempo de relaxamento isovolumétrico (IRTm; intervalo de tempo entre o final da Sm e início da Em), e tempo de ejeção (ETm; intervalo de tempo entre o início e o final da Sm) foram obtidos do anel mitral e tricúspide. A razão Em/Am para ambos os ventrículos e E/Em para o VE foi calculada. O índice de desempenho miocárdico (IDM), uma medida não-invasiva do Doppler da função ventricular global incorporando a função sistólica e diastólica, foi calculado pela fórmula de (TCIm+TRIm)/ETm para ambos os ventrículos.

Reprodutibilidade

A variabilidade intraobservador foi avaliada em 20 indivíduos escolhidos aleatoriamente entre os participantes, e as medidas ecocardiográficas foram repetidas sob as mesmas condições basais. O método de amostragem aleatória simples foi utilizado na seleção de 20 sujeitos. A fórmula
\[1,96 \times (\text{Sw}/\sqrt{2n(m-1)}) = \text{confiança na estimativa}\]
foi usada para estimar o tamanho da amostra para reprodutibilidade. A reprodutibilidade foi avaliada pelo coeficiente de variação. Os coeficientes de variação intraobservador foram considerados não significativos (< 5%).

Análise estatística

Os dados foram analisados com o Statistical Package for the Social Sciences (SPSS, Chicago, IL, Estados Unidos), versão 17.0 para Windows. O teste de Shapiro-Wilk foi usado para testar a normalidade da distribuição para variáveis contínuas. Variáveis contínuas foram expressas como média ± desvio padrão. As variáveis distribuídas não-normais foram expressas como mediana e quartis (1.Quartil-3.Quartil). Dados categóricos foram apresentados em números e porcentagens. A diferença entre grupos foi detectada usando o teste do χ² para variáveis categóricas. Os valores médios das variáveis contínuas foram comparados entre os grupos utilizando o teste t para amostras independentes ou o teste U de Mann-Whitney, de acordo com a distribuição normal ou não. A correlação entre as variáveis contínuas foi avaliada pelos testes de correlação de Pearson. Uma análise de regressão linear e modelos lineares generalizados foram utilizados para identificar os preditores de AEA atrial. Considerou-se estatisticamente significativo p < 0,05.

Resultados

Os dados clínicos e laboratoriais dos grupos de estudo são apresentados na Tabela 1. Idade, sexo, IMC, pressões sistólica e diastólica, frequência cardíaca e proporção de diabéticos e hipertensos foram semelhantes entre os grupos (p > 0,05). Os níveis de ACTH e DHEAS foram significativamente menores no grupo de IA não funcionante (p = 0,009 e p < 0,001, respectivamente). Os níveis de cortisol foram semelhantes, mas a supressão com 1 mg de DST foi significativamente maior no grupo de IA não funcionante (p = 0,001) e hipertensos semelhantes entre os grupos (p > 0,05).

Outros dados laboratoriais, incluindo glicemia de jejum, colesterol de lipoproteína de baixa densidade (LDL), colesterol de lipoproteína de alta densidade (HDL), triglicéridos e níveis de insulina não diferiram entre os grupos.

Os parâmetros ecocardiográficos convencionais foram mostrados na Tabela 2. Não houve diferenças significativas entre os grupos, considerando os diâmetros diastólico final e sistólico final do VE, a fração de ejeção do VE, o diâmetro do átrio esquerdo e direito, o diâmetro do VE, TAPSE e PAP sistólica. A espessura diastólica do septo interventricular (SIV), da parede posterior (PP) e do índice de massa do VE foram
Tabela 1 – Características iniciais da população em estudo

Características	IA não funcionante (n = 30)	Controle (n = 46)	Valor de p	
Idade (anos)	51,77 ± 8,23	50,80 ± 6,62	0,46	
Sexo feminino, n (%)	25 (83,3)	41 (89,1)	0,84	
IMC (kg/m²)	34,30 ± 4,63	32,43 ± 3,93	0,07	
Diabetes mellitus, n (%)	3 (10)	6 (13)	0,76	
Hipertensão, n (%)	5 (16,7)	8 (17,4)	0,94	
DM e hipertensão, n (%)	5 (16,7)	7 (15,2)	0,89	
Pressão arterial sistólica (mmHg)	131,33 ± 16,49	125,85 ± 12,36	0,07	
IMC (kg/m²)	34,30 ± 4,63	32,43 ± 3,93	0,07	
Frequência cardíaca (bpm)	82,93 ± 13,00	77,72 ± 9,19	0,09	
Cortisol (µg/dl)	12,88 ± 2,94	11,71 ± 3,80	0,15	
DST pós-cortisol (µg/dl)	1,11 ± 0,38	0,70 ± 0,26	< 0,001*	
ACTH (pg/ml)	Mediana (Q1-Q3)	14,70(12,50–20,30)	98(87,00–111,00)	0,009*
DHEAS (µg/dl)	Mediana (Q1-Q3)	55,15(27,90–86,30)	113(73,80–157,00)	< 0,001*
Glicose plasmática em jejum (mg/dl)	Mediana (Q1-Q3)	98(87,00–111,00)	113(73,80–157,00)	< 0,001*
Cortisol (µg/dl)	12,88 ± 2,94	11,71 ± 3,80	0,15	
DST pós-cortisol (µg/dl)	1,11 ± 0,38	0,70 ± 0,26	< 0,001*	
ACTH (pg/ml)	Mediana (Q1-Q3)	14,70(12,50–20,30)	98(87,00–111,00)	0,009*
DHEAS (µg/dl)	Mediana (Q1-Q3)	55,15(27,90–86,30)	113(73,80–157,00)	< 0,001*
Glicose plasmática em jejum (mg/dl)	Mediana (Q1-Q3)	98(87,00–111,00)	113(73,80–157,00)	< 0,001*
Cor (1)	0,07			
Cor (2)	0,07			
Cor (3)	0,07			

- Teste t de amostras independentes; *Teste U de Mann-Whitney; Mediana (Q1-Q3): Mediana (1.Quartil-3.Quartil); *diferença é estatisticamente significativa; IA: incidentaloma adrenal; IMC: índice de massa corporal; DM: diabetes mellitus; DST: teste de supressão com dexametasona; ACTH: hormônio adrenocorticotrófico; DHEAS: sulfato dehydroepiandrosteronedione; LDL: lipoproteína de baixa densidade; HDL: lipoproteína de alta densidade.

Tabela 2 – Comparação dos parâmetros ecocardiográficos convencionais entre os grupos

Variável	IA não funcionante (n = 30)	Controle (n = 46)	Valor de p	
Diâmetro diastólico final do VE (mm)	48,83 ± 3,70	46,93 ± 3,64	0,07	
Diâmetro sistólico final do VE (mm)	27(26,00–28,00)	27(25,00–30,00)	0,96	
Fração de ejeção do VE (%)	71,93 ± 7,54	72,26 ± 5,84	0,68	
Espessura diastólica do SIV (mm)	10(9,00–11,00)	9(8,00–11,00)	0,03*	
Espessura diastólica da PP (mm)	11(9,00–12,00)	10(9,00–11,00)	0,03*	
Índice de massa do VE (gr/m²)	112,01 ± 26,93	95,33 ± 21,69	0,004*	
Diâmetro do átrio esquerdo (mm)	36,27 ± 2,79	35,59 ± 2,84	0,31	
Relação E/A mitral	0,87 ± 0,25	1,01 ± 0,30	0,07	
Diâmetro basal do VE (mm)	32,14 ± 3,54	32,74 ± 3,91	0,51	
Diâmetro do AD (mm)	32,20 ± 4,71	32,61 ± 3,98	0,69	
TAPSE (mm)	Mediana (Q1-Q3)	24(20,00–26,00)	22,50(21,00–27,00)	0,42
PAPs (mmHg)	25,67 ± 3,45	26,11 ± 3,92	0,65	
TAP (ms)	96,38 ± 22,08	113,48 ± 26,36	0,004*	

- *Teste t de amostras independentes; *Teste U de Mann-Whitney; Mediana (Q1-Q3): Mediana (1.Quartil-3.Quartil); *diferença é estatisticamente significativa; IA: incidentaloma adrenal; VE: ventrículo esquerdo; SIV: septo interventricular; PP: parede posterior; VD: ventrículo direito; AD: átrio direito; TAPSE: excursão sistólica do plano anular tricúspide; PAPs: pressão arterial pulmonar sistólica; TAP: tempo de aceleração pulmonar.

significativamente maiores (p = 0,03, p = 0,03 e p = 0,004, respectivamente), enquanto a TAP foi significativamente menor (p = 0,004) no grupo de IA não funcionante. Embora a relação E/A mitral tenha sido menor na IA não funcionante em comparação ao grupo controle, a diferença não foi estatisticamente significativa (p = 0,07).

A comparação dos parâmetros do Doppler tecidual e os tempos de condução atrial foi demonstrada na Tabela 3. O VE lateral, o VE septal, o Em/Am médio do VE e o Em/Am do VD diminuíram significativamente no grupo IA não funcionante (p = 0,02, p = 0,03, p = 0,01 e p = 0,004, respectivamente). O IDM septal de VE e o IDM de VE foram
Variável	IA não funcionante (n = 30)	Controle (n = 46)	Valor de p
Anel lateral do VE			
Sm (cm/s) Mediana (Q1-Q3)	9(8,00–11,00)	10(8,00–11,00)	0,39
Em/Am² Mediana (Q1-Q3)	0,72(0,62–1,00)	0,93(0,79–1,20)	0,02*
E/Em³ Mediana (Q1-Q3)	6,77(5,29–8,33)	6,82(5,50–7,46)	0,52
IDM² Mediana (Q1-Q3)	0,44(0,39–0,53)	0,46(0,42–0,52)	0,81
Anel septal do VE			
Sm (cm/s)	8,80 ± 2,11	8,37 ± 1,43	0,43
Em/Am³ Mediana (Q1-Q3)	0,64(0,55–0,93)	0,73(0,63–1,00)	0,03*
E/Em³	10,16 ± 3,36	10,18 ± 2,22	0,77
IDM³	0,52 ± 0,07	0,47 ± 0,11	0,004*
Anel tricúspide do VD			
Sm (cm/s)	15,57 ± 3,57	14,35 ± 2,77	0,11
Em/Am³ Mediana (Q1-Q3)	0,58(0,46–0,67)	0,67(0,60–0,81)	0,004*
IDM³	0,48 ± 0,06	0,43 ± 0,10	0,11
Sm do VE² (cm/s) Mediana (Q1-Q3)	9,00(7,50–10,00)	9,00(8,00–10,50)	0,96
Em/Am do VE²	0,78 ± 0,24	0,88 ± 0,22	0,01*
E/Em do VE²	7,85(6,25–10,00)	8,15(6,79–9,29)	0,90
IDM do VE²	0,50 ± 0,05	0,47 ± 0,12	0,03*
Tempos de condução atrial			
PA lateral² (ms)	45,97 ± 10,95	42,35 ± 8,16	0,09
PA septal² (ms)	30,87 ± 9,86	31,11 ± 7,21	0,78
PA tricúspide² (ms) Mediana (Q1-Q3)	21,00(18,00–26,00)	22,00(18,00–26,00)	0,34
AEA Intra-atrial² (ms)	15,10 ± 7,97	11,24 ± 4,08	0,016*
AEA Interatrial² (ms)	23,53 ± 7,99	18,85 ± 5,79	0,008*

*Teste t de amostras independentes; *Teste U de Mann-Whitney U; **Mediana (1.Quartil-3.Quartil); *diferença é estaticamente significativa; IA: incidentaloma adrenal; LV: left ventricular; IDM: índice de desempenho micárdico; VD: ventrículo direito; PA: intervalo de tempo desde o início da onda P no eletrocardiograma (ECG) até o início da onda A; AEA: atraso eletromecânico atrial.

O excesso de cortisol, como na síndrome de Cushing, pode levar a complicações sistêmicas e cardiovasculares. O aumento de cortisol pode levar a complicações sistêmicas responsáveis (p = 0,004 e p = 0,03, respectivamente), enquanto o VE lateral e o IDM do VE não mostraram diferenças significativas entre os grupos. Não houve diferença significativa entre os grupos em relação a Sm e E/Em. A PA lateral, de septo e tricúspide não mostraram diferenças entre os grupos. Os AEA interatrial e intra-atrial foram significativamente maiores no grupo IA não funcionante em comparação com os controles (p = 0,008 e p = 0,016, respectivamente).

A análise de correlação bivariada revelou que o AEA interatrial foi negativamente correlacionado ao nível de ACTH (r = -0,29, p = 0,027), à relação E/A mitral (r = -0,33, p = 0,004) e à razão Em/Am do VE (r = -0,29, p = 0,011), e correlacionado positivamente ao índice de massa do VE (r = 0,38, p = 0,001), ao diâmetro atrial esquerdo (r = 0,23, p = 0,04), à idade (r = 0,32, p = 0,004) e à pressão arterial sistólica (r = 0,23, p = 0,04). O AEA intra-atrial correlacionou-se positivamente com o nível de cortisol pós-DST (r = 0,23, p = 0,04), o índice de massa do VE (r = 0,33, p = 0,004), a idade (r = 0,34, p = 0,003) e a pressão arterial sistólica (r = 0,32, p = 0,004), e negativamente correlacionada com a relação E/A mitral (r = -0,36, p = 0,002). As relações multivariáveis de AEA inter- e intra-atrial com parâmetros clínicos revelaram que as alterações nos níveis de cortisol pós-DST afetaram significativamente a AEA intra-atrial (Wald χ² = 3,810, p = 0,049) (Tabela 4). Também descobrimos que o aumento do nível de cortisol pós-DST em 1 µg/dl aumentou o AEA intra-atrial em 4,752 mseg.

Discussão

Este é o primeiro estudo ecocardiográfico de Doppler tecidual avaliando anormalidades da condução atrial juntamente com estrutura e função cardíaca em incidentalomas adrenais não funcionantes. Obtinhamos duas descobertas importantes:

- A masa do VE aumentou significativamente;
- Os tempos de condução intra- e interatrial foram significativamente atrasados nesses pacientes.

Sabe-se que o excesso de cortisol, como na síndrome de Cushing, pode levar a complicações sistêmicas e cardiovasculares.
Pelo aumento do risco cardiovascular (hipertensão, obesidade, metabolismo da glicose diminuído, dislipidemia) e complicações cardiovasculares, como doença coronariana e insuficiência cardíaca congestiva. Também já foi demonstrado anteriormente que a síndrome de Cushing causa alterações estruturais cardíacas associadas à disfunção do VE. No entanto, ainda é uma questão de debate se o IA não funcionante aumenta o risco de doença cardiovascular e se esse tipo de humor adrenal tem algum grau de função adrenal autônoma. Neste estudo, obtivemos algumas evidências indiretas de autonomia sutil de cortisol e risco cardiovascular em pacientes com IA não funcionante. Existem poucos estudos analisando a morfologia e função cardíacas em IA não funcionante. Ermetic et al., relataram a presença de hiperтроfia do VE e disfunção diastólica do VE em pacientes com IA não funcionante. Iacobellis et al., mostraram aumento da espessura da gordura epicárdica e da massa do VE pelo ecocardiograma transtorácico nesses sujeitos. Da mesma forma, descobrimos que o índice de massa do VE aumentou significativamente em pacientes com IA não funcionante em comparação ao grupo controle. O impacto da hiperтроfia do VE na mortalidade e morbidade cardíaca tem sido compreendido cada vez mais. Foi sugerido que a produção de cortisol por IA pode ter um amplo espectro, variando de normal a vários graus de excesso de massa diária, e isso pode não ser detectável no trabalho endócrino padrão. Em nosso estudo, os níveis basais de cortisol dos grupos foram semelhantes, mas os níveis de cortisol após DST foram significativamente elevados (não excedendo o ponto de corte, 1,8 µg/dl), e os níveis de DHEAS foram significativamente reduzidos (não abaixo do ponto de corte, 40 µg/dl) no grupo IA não funcionante. Além disso, o nível de cortisol pós-DST foi correlacionado ao índice de massa do VE. De acordo com esses achados, especulamos que a autonomia sutil do cortisol do adenoma adrenal pode desempenhar um papel na hiperтроfia cardíaca.

O índice de desempenho miocárdico é um parâmetro calculado a partir das medidas ecocardiográficas do Doppler tecidual e prediz a função ventricular sistólica e diastólica. Em nosso estudo, o IDM do VE foi encontrado aumentado em pacientes com IA, indicando prejuízo na função global do VE. Esse comprometimento pode ser atribuído em grande parte ao comprometimento da função diastólica do VE, uma vez que os preditores da função sistólica do VE, como a FE do VE e o Sm do VE, foram semelhantes nos dois grupos.

Considerando parâmetros estruturais e funcionais do VD, a diminuição da razão Em/Am do VD pode indicar a tendência ao comprometimento da função diastólica do VD. O TAP também foi encurtado, indicando aumento da resistência vascular pulmonar em pacientes com IA.

A fibração atrial é a arritmia mais comumente encontrada na prática clínica e está associada à significativa mortalidade e morbidade por comprometimento hemodinâmico e eventos tromboembólicos. A condução atrial prejudicada é um passo importante na fisiopatologia da FA. Os tempos de condução atrial podem ser avaliados pelos métodos invasivos (estudo eletrofisiológico) e não invasivos (dispersão da onda P no ECG e AEA na ecocardiografia). Tem sido demonstrado que a condução atrial prejudicada é um preditor independente e forte para o desenvolvimento e a recorrência de FA, e a EDT é uma técnica útil e confiável para a avaliação das propriedades eletromecânicas atriais. Numerosos estudos demonstraram que o tempo de condução atrial foi prolongado em várias doenças, incluindo obesidade, doenças da tireoide, doenças pulmonares obstructivas crônicas, doença hepática gordurosa não alcoólica, acromegalia e diabetes mellitus (DM). A doença de Cushing está associada a muitos fatores de risco cardiovascular, incluindo intolerância à glicose, hiperтроfia, hiperтроfia do VE, obesidade central e síndrome metabólica, podendo levar a eventos cardiovasculares, como doença coronariana, insuficiência cardíaca e arritmias. Assim, hipotetizamos que o IA pode estar associado a alterações estruturais e funcionais cardíacas e ao aumento do risco de FA. Estudos anteriores mostraram aumento da gordura epicárdica, aumento da massa do VE e disfunção diastólica do VE na IA, semelhante aos nossos resultados. No entanto, eles não estudaram as propriedades de condução atrial neste grupo de pacientes.

Portanto, este estudo mostrou pela primeira vez que tanto o AEA intra- e interatriais foram prejudicados em pacientes com IA não funcionante. Além disso, o AEA atrial correlacionou-se significativamente com o nível de cortisol, o nível de ACTH, o índice de massa do VE, a disfunção diastólica do VE, a idade e a pressão arterial sistólica. O nível de cortisol pós-DST foi um importante preditor de AEA intra-atrial, de tal forma que o aumento de 1 µg/dl no nível de cortisol pós-DST causou o prolongamento do AEA intra-atrial em 4,752 ms. Podemos explicar esses achados através de alguns mecanismos. Em primeiro lugar, a excreção sutil de cortisol pode afetar a estrutura e função cardíacas como mencionado anteriormente, o que, por sua vez, supostamente...
tem efeitos prejudiciais na condução atrial. Em segundo lugar, o IA e a FA compartilham fatores de risco metabólicos comuns, como aumento da pressão arterial, resistência à insulina, disfunção endotelial e obesidade. Por fim, a excreção sutil de cortisol de baixo nível, mas de longa duração, pode ter efeito tóxico direto no miocárdio por receptores de glucocorticóides que levam à fibrose miocárdica. A detecção de AEA prolongado nesses pacientes pode ser um sinal precoce de disfunção atrial precedendo a FA.

Limitações do estudo

A principal limitação do estudo foi o número relativamente pequeno de sujeitos no grupo de adenoma, além da incapacidade de definir a extensão da doença devido à falta de características clínicas evidentes. Por fim, nosso estudo carece de dados de seguimento de longo prazo, por se tratar de um estudo transversal. Os pacientes não puderam ser acompanhados para futuros episódios arrítmicos para verificar se os indivíduos com AEA prolongado desenvolvem FA.

Conclusão

Nosso estudo revelou que os tempos de condução intra- e interatriais foram prolongados e o índice de massa do VE estava aumentado em pacientes com IA não funcionante. Esses achados podem ser marcadores de envolvimento cardíaco subclínico e tendência a complicações cardiovasculares. Assim, os indivíduos diagnosticados com IA não funcionante devem ser acompanhados para futuros episódios arrítmicos para verificar se os indivíduos com AEA prolongado desenvolvem FA.

Referências

1. Davenport C, Liew A, Doherty B, Win HH, Misran H, Hanna S, et al. The prevalence of adrenal incidentaloma in routine clinical practice. Endocrine. 2011;40(1):80-3.
2. Yener S, Comlekci A, Yüksel F, Sevinc A, Ertilav S, Yesil S. Traditional and novel cardiovascular risk factors in nonfunctioning adrenal adenomas. Eur J Intern Med. 2012;23(1):83-7.
3. Erbil Y, Ozbey N, Barbaros U, Unalp HR, Salmaslioglu A, Ozarmagan S. Cardiovascular risk in patients with nonfunctional adrenal incidentalomas: myth or reality? World J Surg. 2009;33(10):2099-105.
4. Yener S, Genc S, Akinci B, Secil M, Demir T, Comlekci A, et al. Carotid intima media thickness is increased and associated with morning cortisol in subjects with nonfunctioning adrenal incidentaloma. Endocrine. 2009;35(3):365-70.
5. Iacobellis G, Petramala L, Barbaro G, Kargi AY, Serra V, Zinnamosca L, et al. Epicardial fat thickness and left ventricular mass in subjects with adrenal incidentaloma. Endocrine. 2013;44(2):532-6.
6. Di Dalmazi G, Vicennati V, Rinaldi E, Morselli-Labate AM, Giampalma E, Mosconi C, et al. Progressively increased patterns of subclinical cortisol hypersecretion in adrenal incidentalomas differently predict major metabolic and cardiovascular outcomes: a large cross-sectional study. Eur J Endocrinol. 2012;166(4):669-77.
7. Deniz A, Sahiner L, Aytemir K, Kaya B, Kabakci G, Tokgozoglu L, et al. Tissue Doppler echocardiography can be a useful technique to evaluate atrial conduction time. Cardiol J. 2012;19(5):487-93.
8. Calik AN, Ozcan KS, Cagdas M, Gungor B, Karaca G, Gürkan U, et al. Electromechanical delay detected by tissue Doppler echocardiography is associated with the frequency of attacks in patients with lone atrial fibrillation. Cardiol J. 2014;21(2):138-43.
9. Den Uijl DW, Gaamsiyak M, Tops LE, Trines SA, Zeppenfeld K, Schalij MJ, et al. Prognostic value of total atrial conduction time estimated with tissue Doppler imaging to predict the recurrence of atrial fibrillation after radiofrequency catheter ablation. Europace. 2011;13(11):1533-40.
10. Evranos B, Aytemir K, Otto A, Okutucu S, Karakulak U, Sahiner L, et al. Predictors of atrial fibrillation recurrence after atrial fibrillation ablation with cryoballoon. Cardiol J. 2013;20(3):294-303.
11. De Vos CB, Weis B, Crijns HJ, Cheries EC, Palmans A, Habets J, et al. Atrial tissue Doppler imaging for prediction of new onset atrial fibrillation. Heart. 2009;95(10):835-40.
12. Ermetici F, Dall’Asta C, Malavazos AE, Coman C, Moricone L, Montericcio V, et al. Echocardiographic alterations in patients with nonfunctioning adrenal incidentaloma. J Endocrinol Invest 2008;31(6):573-7.
13. Comlekci A, Yener S, Ertilav S, Secil M, Akinci B, Demir T, et al. Adrenal incidentaloma, clinical, metabolic, follow-up aspects: single centre experience. Endocrine. 2010;37(1):40-6.
14. Young WF. Primary aldosteronism: renaissance of a syndrome. Clin Endocrinol. 2007;66(5):607-18.
15. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: A report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18(12):1440-63.

16. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29(4):227-314.

17. Devereux RB, Reiche N. Echocardiographic determination of left ventricular mass in man: Anatomic validation of the method. Circulation 1977;55(4):613-8.

18. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults. A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23(7):685-713.

19. De Leo M, Pivonello R, Auriemma RS, Cozzolino A, Vitale P, Simeoli C, et al. Cardiovascular disease in Cushing’s syndrome: heart vs vasculature. Neuroendocrinology. 2010;92(Suppl 1):50-4.

20. Mueisan ML, Lupia M, Salvetti M, Grigoletto C, Sonino N, Boscaro M, et al. Left ventricular structural and functional characteristics in Cushing’s syndrome. J Am Coll Cardiol. 2003;41(12):2275-9.

21. Kamenicky P, Redheuil A, Roux C, Salenave S, Kachenoura N, Raisouni Z, et al. Cardiac structure and function in Cushing’s syndrome: A cardiac magnetic resonance imaging study. J Clin Endocrinol Metab. 2014;99(11):E2144-E55.

22. Daubert JC, Pavin D, Janvier G, Mahe P. Intra- and inter-atrial conduction delay: Implications for cardiac pacing. Pacing Clin Electrophysiol. 2004;27(4):507-25.

23. Erdem FH, Ozturk S, Baltaci D, Donmez I, Akcelik A, Ayhan S, et al. Detection of atrial electromechanical dysfunction in obesity. Acta Cardiol. 2015;70(6):678-84.

24. Sokmen A, Acar G, Akcay A, Akkoyun M, Koroglu S, et al. Evaluation of atrial electromechanical delay and diastolic functions in patients with hyperthyroidism. Echocardiography 2013;30(10):1194-201.

25. Acar G, Kahraman H, Akkoyun M, Kilinc M, Zencir C, Yusufoglu E, et al. Evaluation of atrial electromechanical delay and its relationship to inflammation and oxidative stress in patients with chronic obstructive pulmonary disease. Echocardiography. 2014;31(5):379-85.

26. Ozveren O, Izi C, Eroglu S, Simsek MA, Turer A, Kucukdurmaz Z, et al. Doppler tissue evaluation of atrial conduction properties in patients with non-alcoholic fatty liver disease. Ultrasound Imaging. 2016;38(3):225-35.

27. Yayla C, Canpolat U, Sahinarslan A, Ozkan C, Eroglu Altinova A, Gayretli Yayla K, et al. The assessment of atrial electromechanical delay in patients with acromegaly. Can J Cardiol. 2015;31(8):1012-8.

28. Demir K, Avco A, Kaya Z, Marakoglu K, Ceylan E, Yilmaz A, et al. Assessment of atrial electromechanical delay and P-wave dispersion in patients with type 2 diabetes mellitus. J Cardiol. 2016;67:378-83.

29. Oakley RH, Ciclowski JA. Glucocorticoid signaling in the heart: A cardiomyocyte perspective. J Steroid Biochem Mol Biol. 2015 Sep;153:27-34.