Resolution of giant ocular surface squamous neoplasia with topical 5-fluorouracil 1%

Karim Mohamed-Noriega, Alan Baltazar Treviño-Herrera, Abraham Olvera-Barrios, Fernando Morales-Wong and Jesus Mohamed-Hamsho

Abstract
An 82-year-old man presented with a left eye elevated single ocular surface squamous neoplasia. The tumor involved 360° of limbus, three quadrants of cornea and conjunctiva; this was compatible with the diagnosis of giant ocular surface squamous neoplasia. Topical 5-fluorouracil 1% was planned four times daily for 1 week followed by 3 weeks off-treatment. Patient inadvertently continued 5-fluorouracil, four times daily for 4 weeks, presenting with clinical resolution of the ocular surface squamous neoplasia and subtotal corneal epithelial defect associated with 5-fluorouracil toxicity. One month later, we observed a transparent cornea and no signs of toxicity. Total tumor resolution was observed for at least 6 months of follow-up.

Keywords
Ocular surface squamous neoplasia, OSSN, 5-fluorouracil

Date received: 6 December 2018; accepted: 18 March 2019

Introduction
The ocular surface squamous neoplasia (OSSN) is the most common type of ocular tumor. However, it is rare with an incidence of 8.4 per million people per year.1 We report a case of a giant OSSN treated with topical 5-fluorouracil (5-FU) 1%. The treatment is a matter of debate, with a tendency toward the use of topical chemotherapeutic agents in recent years. Very few data exist in relation of treatment and efficacy in giant OSSN.2–6 We share our experience in the treatment of giant OSSN with topical 5-FU as monotherapy.

Case history
An 82-year-old man presented with a 24-month history of a slowly growing corneal and conjunctival mass in his left eye. It was accompanied with red eye, pain, photosensitivity, and foreign body sensation. He was otherwise healthy with no other relevant medical record. Examination revealed best-corrected visual acuity of 20/60 and 20/125 in his right and left eye, respectively. On slit-lamp examination, we found bilateral cataracts and left eye showed diffuse moderate hyperemia, tortuous vessels, and an elevated flesh-like, keratinized mass of salmon color, involving 360° of limbus, three quarters of the cornea, and three quadrants of conjunctiva (Figure 1(a) and (b)). We made the clinical diagnosis of giant OSSN. On high-resolution optical coherence tomography (HR-OCT), we observed the typical characteristics of OSSN, with thickened hyper-reflective epithelial layer, abrupt transition from normal epithelium, and marked separation between the lesion and the underlying tissue (Figure 1(c) and (d)).

Topical chemotherapy with 5-FU 1% was started four times daily for 1 week followed by 3 weeks off-treatment. Instead, the patient inadvertently continued 5-fluorouracil, four times daily for 4 weeks, presenting with clinical resolution of the ocular surface squamous neoplasia and subtotal corneal epithelial defect associated with 5-fluorouracil toxicity. One month later, we observed a transparent cornea and no signs of toxicity. Total tumor resolution was observed for at least 6 months of follow-up.
5-FU 1% usage. The observed local signs of toxicity were subtotal corneal epithelial defect, generalized hyperemia, chemosis and central corneal thinning of about 50% measured subjectively with slit-lamp by the evaluator (Figure 2(a)). In addition, he also presented systemic signs of toxicity, with asthenia and headache. We decided to immediately stop 5-FU and start conservative treatment with lubricant, steroid drops, and eye patch. Moreover, we referred him to the oncology department to rule out disseminated disease, which was discarded.

After 4 weeks of treating the ocular surface toxicity for 5-FU, we observed total resolution of the corneal epithelial defect, a stable corneal thinning of 50%, further reduction of the OSSN, and improvement of systemic symptoms (Figure 2(b)). After 2 months of follow-up, we observed a transparent cornea with mild peripheral haze, symmetrical residual corneal thinning, total resolution of the OSSN, and no systemic symptoms. The remission of the OSSN continued at least to the last documented follow-up visit at 6 months after topical 5-FU. Confirmation of clinical resolution was observed on HR-OCT images that showed a normal thickness epithelium and a normal transition between corneal and conjunctival epithelium at 6 months after the beginning of 5-FU (Figure 3(a) and (b)).
Discussion

An OSSN may involve conjunctiva, limbus, and cornea and includes lesions ranging from simple dysplasia and carcinoma in situ to invasive squamous cell carcinoma. Giant OSSN is generally defined as single tumor that measures \(\geq 15 \) mm in its basal diameter and/or involves \(\geq 180^\circ \) of limbus. The exact incidence of giant OSSN is not known.

The clinical diagnosis of OSSN is the most important. Histopathology is the gold standard because enables direct study of the tissue and assesses invasion. However, it requires surgery and expertise taking biopsy, tissue processing, and histopathology analysis. As the treatment of OSSN trends toward topical chemotherapy, reliable noninvasive forms of diagnosis and follow-up are needed. With the advent of HR-OCT, high-resolution images of OSSN lesions correlated well with its histologic appearance. HR-OCT has become an excellent noninvasive real-time in-office diagnostic and follow-up tool and it could avoid biopsy.

Two treatment options are available, surgical and topical chemotherapy. The traditional treatment of choice was surgical excision with no-touch technique and base cryotherapy. Although its efficacy has been proved, one of the main disadvantages is the risk of developing iatrogenic limbal stem cell deficiency (LSCD). In our case, the limbus was affected \(360^\circ \) and therefore, the risk of LSCD was high. Another problem is a higher probability of recurrence. Giant OSSN is generally widespread in cornea and conjunctiva and therefore the risk of recurrence is higher. That is because surgical removal of the neoplasia is often difficult or impossible because the margins of the neoplasia are not clearly demarcated. Extensive surgical removal of tissue induces significant scarring with damage to the ocular surface and LSCD.

Topical chemotherapy is the second option and it is gaining popularity. One advantage is the reduced risk of recurrence because it is distributed all over the ocular surface killing neoplastic cells that are not visible. Another advantages are reduced risk of LSCD, lower costs, and less morbidity. Available topical chemotherapy options 5-FU, interferon alpha-2b (IFN-2b), or mitomycin C (MMC). These can be used as monotherapy or as adjuvant to surgery.

Conclusion

We showed a case of giant OSSN successfully treated with topical 5-FU \(1\% \). HR-OCT is an excellent noninvasive, real-time, and in-office diagnostic and follow-up tool. Advantages of topical 5-FU in giant OSSN are efficacy, low risk of recurrence and LSCD, low morbidity, lower costs, and not requiring special storage after preparation.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Ethical approval
Ethical approval to report this case was obtained from the ethics committee for research of our University Hospital “Dr. Jose Eleuterio Gonzalez” of the Autonomous University of Nuevo Leon (Project ID: OF13-001).

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors received financial support for the research, and publication of this article by the Ophthalmology Department of the University Hospital of the Autonomous University of Nuevo Leon.

Informed consent
Written informed consent was obtained from the patient(s) for their anonymized information to be published in this article.

ORCID iD
Fernando Morales-Wong https://orcid.org/0000-0002-4836-6330

References
1. Emmanuel B, Ruder E, Lin SW, et al. Incidence of squamous-cell carcinoma of the conjunctiva and other eye cancers in the NIH-AARP Diet and Health Study. Ecancermedicalscience 2012; 6: 254.
2. Kim HJ, Shields CL, Shah SU, et al. Giant ocular surface squamous neoplasia managed with interferon alpha-2b as immunotherapy or immunoreduction. Ophthalmology 2012; 119(5): 938–944.
3. Chaugule SS, Park J and Finger PT. Topical chemotherapy for giant ocular surface squamous neoplasia of the conjunctiva and cornea: is surgery necessary. Indian J Ophthalmol 2018; 66(1): 55–60.
4. Hernandez-Bogantes E, Serna-Ojeda JC, Lichtinger A, et al. Interferon alpha-2b in giant ocular surface squamous neoplasm. Indian J Ophthalmol 2016; 64(5): 393–394.
5. Gupta A and Muecke J. Treatment of ocular surface squamous neoplasia with Mitomycin C. The Brit J Ophthalmol 2010; 94(5): 555–558.
6. Kalamkar C, Radke N, Mukherjee A, et al. Topical Mitomycin-C chemotherapy in ocular surface squamous neoplasia. J Clin Diag Res 2016; 10(9): NJ01.
7. Lee GA and Hirst LW. Ocular surface squamous neoplasia. Survey Ophthalmol 1995; 39(6): 429–450.
8. Kumar DA and Agarwal A. Giant ocular surface squamous neoplasia wrapping whole cornea. Eye Contact Lens 2017; 44: S358–S360.
9. Shousha MA, Karp CL, Perez VL, et al. Diagnosis and management of conjunctival and corneal intraepithelial neoplasia using ultra high-resolution optical coherence tomography. Ophthalmology 2011; 118(8): 1531–1537.
10. Adler E, Turner JR and Stone DU. Ocular surface squamous neoplasia: a survey of changes in the standard of care from 2003 to 2012. Cornea 2013; 32(12): 1558–1561.
11. Atallah M, Joag M, Galor A, et al. Role of high resolution optical coherence tomography in diagnosing ocular surface squamous neoplasia with coexisting ocular surface diseases. Ocul Surf 2017; 15(4): 688–695.
12. Thomas BJ, Galor A, Nanji AA, et al. Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia. Ocul Surf 2014; 12(1): 46–58.
13. Sayed-Ahmed IO, Palioura S, Galor A, et al. Diagnosis and medical management of ocular surface squamous neoplasia. Expert Rev Ophthalmol 2017; 12(1): 11–19.
14. Erie JC, Campbell RJ and Liesegang TJ. Conjunctival and corneal intraepithelial and invasive neoplasia. Ophthalmology 1986; 93(2): 176–183.
15. Nanji AA, Sayyad FE and Karp CL. Topical chemotherapy for ocular surface squamous neoplasia. Curr Opin Ophthalmol 2013; 24(4): 336–342.
16. Parrozzani R, Frizziero L, Trainiti S, et al. Topical 1% 5-fluorouracil as a sole treatment of corneconjunctival ocular surface squamous neoplasia: long-term study. Br J Ophthalmol 2017; 101(8): 1094–1099.
17. Joag MG, Sise A, Murillo JC, et al. Topical 5-fluorouracil 1% as primary treatment for ocular surface squamous neoplasia. Ophthalmology 2016; 123(7): 1442–1448.
18. Al-Barrag A, Al-Shaer M, Al-Matary N, et al. 5-Fluorouracil for the treatment of intraepithelial neoplasia and squamous cell carcinoma of the conjunctiva, and cornea. Clin Ophthalmol 2010; 4: 801–808.
19. Bahrami B, Greenwell T and Muecke JS. Long-term outcomes after adjunctive topical 5-fluorouracil or mitomycin C for the treatment of surgically excised, localized ocular surface squamous neoplasia. Clin Exp Ophthalmol 2014; 42(4): 317–322.
20. Rudkin AK, Dempster L and Muecke JS. Management of diffuse ocular surface squamous neoplasia: efficacy and complications of topical chemotherapy. Clin Exp Ophthalmol 2015; 43(1): 20–25.
21. Kim SE and Salvi SM. Immunoreduction of ocular surface tumours with intralesional interferon alpha-2a. Eye 2018; 32: 460–462.
22. Zarei-Ghanavati S, Alizadeh R and Deng SX. Topical interferon alpha-2b for treatment of noninvasive ocular surface squamous neoplasia with 360 degrees limbal involvement. J Ophthalmic Vis Res 2014; 9(4): 423–426.
23. Nanji AA, Moon CS, Galor A, et al. Surgical versus medical treatment of ocular surface squamous neoplasia: a comparison of recurrences and complications. Ophthalmology 2014; 121(5): 994–1000.
24. Besley J, Pappalardo J, Lee GA, et al. Risk factors for ocular surface squamous neoplasia recurrence after treatment with topical mitomycin C and interferon alpha-2b. Am J Ophthalmol 2014; 157(2): 287–293. e2.
25. Hirst LW. Randomized controlled trial of topical mitomycin C for ocular surface squamous neoplasia: early resolution. Ophthalmology 2007; 114(5): 976–982.
26. Moon CS, Nanji AA, Galor A, et al. Surgical versus medical treatment of ocular surface Squamous Neoplasia: a cost comparison. Ophthalmology 2016; 123(3): 497–504.
27. Sivaraman KR and Karp CL. Ch: 37. Medical and Surgical Management of Ocular Surface Squamous Neoplasia. In: Mannis MJ and Holland EJ (eds) Cornea. 4th ed. Amsterdam, Netherlands: El Sevier, 2017, pp. 7–9.
28. Hossain P. The corneal melting point. Eye 2012; 26(8): 1029–1030.