Abstract

Objective: We aimed to study current practices in growth monitoring by European primary care paediatricians and to explore their perceived needs in this field.

Methods: We developed a cross-sectional, anonymous on-line survey and contacted primary care paediatricians listed in national directories in the 18 European countries with a confederation of primary care paediatricians. Paediatricians participated in the survey between April and September 2011.

Results: Of the 1,198 paediatricians from 11 European countries (response rate 13%) who participated, 29% used the 2006 World Health Organization Multicentre Growth Reference Study growth charts, 69% used national growth charts; 61% used software to draw growth charts and 79% did not use a formal algorithm to detect abnormal growth on growth charts. Among the 21% of paediatricians who used algorithms, many used non-algorithmic simple thresholds for height and weight and none used the algorithms published in the international literature. In all, 69% of paediatricians declared that a validated algorithm to monitor growth would be useful in daily practice. We found important between-country variations.

Conclusion: The varied growth-monitoring practices declared by primary care paediatricians reveals the need for standardization and evidence-based algorithms to define abnormal growth and the development of software that would use such algorithms.

Introduction

Growth monitoring can be summarized in a five-point paradigm first described by Garner: 1) health professionals regularly measure the height and weight of children; 2) they plot the information on a growth chart; 3) when growth is abnormal, they start appropriate investigations; 4) as a result, a serious condition is diagnosed earlier; and 5) the prognosis is improved by the earlier diagnosis [1]. This simple paradigm is accepted worldwide but raises many questions: Which growth charts should be used? [international charts such as from the World Health Organization (WHO) Multicentre Growth Reference Study (WHO-MGRS) [2] or national ones such as from the US Centers for Disease Control and Prevention–National Center for Health Statistics (CDC-NCHS), Hesse, Fundacion Faustino Orbegozo etc.] [3–6]; Which diseases should be targeted? [7–9]; and How should abnormal growth be defined? (with simple criteria [8,10] or complex algorithms [11–13]). Moreover, a weakness of most growth charts is the absence of longitudinal information. Because of their cross-sectional nature, growth charts provide a snapshot of population growth at only one time, with no information about centiles crossing over time [14,15]. Furthermore, no reliable
Methods

referrals [19]. The prevalence of diagnosis delays [7,16–18] and inappropriate referrals among European primary care paediatricians and to explore their software and the relatively recent publication of evidence-based and studies performed in the 1990s [7]. The introduction of the WHO growth charts, the recent availability of growth-monitoring software and the relatively recent publication of evidence-based algorithms [12,13,17,19,21–23] may have modified these practices.

We aimed to study the current practices in growth monitoring among European primary care paediatricians and to explore their perceived needs in this field.

Results

Among the 16 ECPCP countries who participated, we a posteriori excluded 5 (Czech Republic, Latvia, Lithuania, Slovakia, and Sweden) because of fewer than 10 respondents from each country. Thus, the results are based on the answers for 1,198 participants from 11 ECPCP countries (response rate 13% - Table 1). Most of the respondents were from France (42%), Spain (20%), Germany (14%), and Italy (8%). In all, 27% of respondents declared a specialization (including 5% in gastroenterology and nutrition, 4% in endocrinology), with significant differences among countries (from 61% in Hungary to 13% in Belgium, p<0.001). A total of 69%, 29%, and 2% of respondents used national, WHO-MGRS and CDC-NCHS growth charts, respectively, with significant between-country variations (WHO-MGRS charts: from 51% in Italy to 17% in Luxemburg, p<0.001). Among respondents, 61% declared using software to monitor growth (from 85% in Italy to 0% in Portugal and Slovenia, p<0.001). In all, 21% of responding paediatricians declared using an algorithm to detect abnormal growth, with significant between-country variation (from 58% in Hungary to 0% in Switzerland, p<0.001). In all cases, this algorithm involved simple thresholds for height, weight, body mass index or height velocity, and no respondents declared using any of the algorithms published in the international literature [8,12,17]. Among paediatricians who did not declare using an algorithm, 69% indicated that it would be useful in their daily practice (from 100% in Belgium to 57% in Switzerland, p<0.001). Variations in growth-monitoring practices were poorly explained by the specialization declared by paediatricians, which accounted for 13.8%, 1.5% and 0.0% of the between-country variations in the use of WHO-MGRS curves, an algorithm to detect abnormal growth and software to monitor growth, respectively.

Discussion

Our results show important between-country differences in growth-monitoring practices among 1,198 primary care paediatricians from 11 European countries. Almost one-third declared using the 2006 WHO-MGRS charts to monitor the growth of children, almost two-thirds used software to analyze growth, and one-fifth used an algorithm to detect abnormal growth. Cited algorithms were all non-algorithmic simple thresholds for height, weight, body mass index or height velocity. None of the respondents declared using any of the 5 algorithms published in the international literature [8,10–13].

In developed countries, where the main purpose for monitoring the growth of healthy children is mass screening to enable early diagnosis of serious conditions, the availability of the 2006 WHO-MGRS may have an important impact on growth-monitoring practices. These new growth charts have been adopted by paediatricians in many countries and were used by about 30% of our paediatricians and were the second most-used growth charts [25]. The use of these new growth charts (versus national charts) may modify the interpretation of growth, a key step in growth-
Table 1. Primary care paediatricians and their growth-monitoring practices by country (N= 1198).

Country of origin	No. of PCPs in country	No. of PCPs in the ECPCP*	Theoretical no. of paediatricians receiving the survey	No. of respondents	No. of paediatricians with a specialization (n = 1,198)	Use of WHO-MGRS growth chart (n = 1,065)	Main growth chart(s) used (reference)	Hierarchy in use of WHO-MGRS growth charts	Use of an algorithm to detect abnormal growth (n = 673)	Use of software to monitor growth (n = 747)	Data are number (%)	
Belgium	NC	NC	150	15 (10.0)	2 (13.3)	3 (20.0)	p**<0.001		p**<0.001	p**<0.001	Flemish Growth Charts [35]	
France	2550	1600	1500	506 (33.7)	120 (23.7)	85 (19.4)	p**<0.001	2nd	1 (8.3)	5 (41.7)	“Sempe´” [36]	
Germany	6541	5661	2500	172 (6.9)	43 (25.0)	41 (25.2)	p**<0.001	2nd	19 (17.6)	91 (79.1)	“Hesse” [37]	
Hungary	1586	1260	830	67 (8.1)	41 (61.2)	27 (47.4)	p**<0.001	2nd	19 (57.6)	20 (50.0)	“Joubert” [38]	
Israel	900	700	NC	22 (NC)	8 (36.4)	10 (47.6)	p**<0.001		2 (14.3)	14 (82.4)	CDC-NCHS [39]	
Italy	7000	1000	1200	100 (8.3)	35 (35.0)	45 (50.6)	p**<0.001		3rd	13 (21.7)	56 (84.9)	Tanner [40] or CDC-NCHS [39]
Luxemburg	NC	NC	60	13 (21.7)	2 (15.4)	2 (16.7)	p**<0.001		3rd	1 (11.1)	(1 (11.1)	Luxemburgish Growth charts or “Pader” [41]
Portugal	NC	80	NC	11 (NC)	4 (36.4)	5 (50.0)	1st		1 (12.5)	0 (0.0)	WHO-MGRS [39]	
Slovenia	190	170	90	22 (24.4)	4 (18.2)	4 (20.0)	3rd		4 (30.8)	0 (0.0)	CDC-NCHS [39] or Miscellaneous	
Spain	6424	5224	2490	239 (9.6)	52 (21.8)	82 (39.1)	p**<0.001		2nd	23 (15.8)	92 (56.1)	“Hernández-Fundación Faustino Orbeagoz” [42]
Switzerland	1216	747	NC	31 (NC)	8 (25.8)	9 (30.0)	2nd	0 (0.0)	1 (4.0)	“Prader” [41]		
Total				1,198 (12.9)	319 (26.6)	313 (29.4)	2 (median)		139 (20.7)	459 (61.4)		
monitoring practices [4]. The adoption of the 2006 WHO-MGRS growth charts for growth monitoring at a national level is encouraged by the WHO, but epidemiologic and clinical consequences of such adoption are being evaluated at national levels. Differences have been found between national curves and WHO-MGRS curves in many countries [29–26–28]. For example, 3-year-old Hong Kong children are smaller than WHO children at that age [29] whereas Belgian and Norwegian children up to 2 years are taller than WHO children at that age [30]. Furthermore, for children older than 5 years, the 2006 WHO-MGRS growth charts were based on growth data previously used for creating the US CDC-NCHS reference in 1977. The use of this curve, considering the secular trend for height [31], could lead to erroneous conclusions about abnormal growth. Standardization of growth charts is needed for defining normal growth and correctly applying algorithms.

Important next steps toward an evidence-based screening programme are the identification of target conditions and the definition of abnormal growth. Target conditions should have the following attributes: 1) a natural history including a long period when the main symptoms are auxological; and 2) a high level of evidence demonstrating that an early diagnosis is associated with a better outcome. The standardization of the definition of abnormal growth requires external validation and comparison of existing clinical decision rules [32,33] and/or their refinement or the development of new ones. Currently, 5 algorithms have been published by Dutch and British teams, and the WHO. These algorithms involved a simple single threshold [8,10] or complex combinations of auxological criteria [11–13]; four were derived by consensus among experts [8,10,11,13] and one was a clinical decision rule derived with patients data. Their performance (sensitivity, specificity) [19,34] and/or their levels of validation are low [12]. The low rate of use of these algorithms we observed (0%) is probably explained by the lack of information about the existence of these rules, their low performance and/or validation levels, and/or the complexity of some of them.

The present survey has several limitations. Our sample is not representative of all paediatricians from the 18 ECPCP countries because it involved volunteer paediatricians from 11 ECPCP countries. We removed data for five countries with an insufficient number of responding paediatricians. The variable response rate between countries led to an over-representation of paediatricians from France, Spain and Germany. Declaration bias is possible in on-line surveys because of the subjective declaration of growth-monitoring practices by paediatricians. Indeed, we relied on the declaration by paediatricians because we could not follow the paediatricians’ real day-to-day practices. However, our survey results confirm previous results, especially those from 2005 Grote et al. study, involving members of the European Society of Pediatric Endocrinology [3,4]. Finally, neither the present survey nor previous ones targeted general practitioner practices despite the importance of these physicians in growth monitoring in many European countries.

In conclusion, this survey identified important opportunities to standardize practices to monitor growth of children, practices that are not currently evidence based and are not in accordance with screening standards [8]. This survey demonstrates the need for validated evidence-based algorithms to define abnormal growth (by validating existing algorithms or deriving new ones). The implementation of such algorithms through newly developed software seems possible, given that many of our respondents used software to monitor growth.

Supporting Information
Appendix S1 On-line survey.

Acknowledgments
We thank the paediatricians who willingly participated in this survey. We also thank Mrs Barbara Heude for intellectual input in the manuscript. Members of European Confederation of Primary Care Paediatricians (ECPCP) research group: Marie-Noëlle Robberecht-Riquet MD (France)1,2; Marilena Moretto MD (Belgium)3; Gilbert Danjou MD (France); Elke Jager Roman MD and Gottfried Huss MD (Germany)4; Gabriella Pál MD and Peter Altornaj MD (Hungary)5; Arieh Bahir MD (Israel); Laura Reali MD (Italy)6; Janina Lajaunaiskite MD and Arunas Valudis PhD (Lithuania); Emile-Tockert MD and Sigurlaug Agustsson MD (Luxembourg)7; Monica Olivari MD (Portugal); Ajda Cimperman MD, Andreja Borinc MD and Margareta Seher-Zapancić MD (Slovenia)8; Concha Sánchez Fina MD, Luis Martin Alvarez MD, Arantxa Garmenta MD and Angel Carrasco Sanz MD (Spain); Mario Schulmacher MD and Françoise Bovet Boone MD (Switzerland); Kvetošlava Pruchová MD (Slovakia); Björn Wettergren MD (Sweden), Charalampou Hadjigjorgiou MD (Cyprus).

1 Association Française de Pédiatrie Ambulatoire, Gradignan, France.
2 Pediatric office, Mons-en-Baroeul, France.
3 Associazione Culturale Pediatrica Cultural Association of Pediatrician, Roma, Italy.
4 National Institute of Child Health, Child Health Information and Research Department, Budapest, Hungary.
5 Berufsverband der Kinder-und Jugendärzte, Köln, Germany.
6 Paediatric Department, Hôpital Saint Pierre, Free University of Brussels, Brussels, Belgium.
7 Zdravstveni dom Velenje, Velenje, Slovenia.
8 Centre of Pediatrics duVal Sainte Croix, Luxembourg, Luxembourg.

Author Contributions
Conceived and designed the experiments: JFS MNR MC. Performed the experiments: PS JFS MNR LR GP EJR MP MM MSZ SA MC. Analyzed the data: PS JFS MNR MC. Contributed reagents/materials/analysis tools: PS JFS MNR LR GP EJR MP MM MSZ SA MC. Wrote the paper: PS JFS MNR MC. Approval of the final version of the manuscript: PS JFS MNR LR GP EJR MP MM MSZ SA MC.

References
1. Garner P, Paunainen R, Logan S (2000) Is routine growth monitoring effective? A systematic review of trials. Arch Dis Child 82: 197–201.
2. Group WMGGRS (2006) WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl 450: 76–85.
3. De Onis M, Wijnhoven TM, Onyango AW (2004) Worldwide practices in child growth monitoring. J Pediatr 144: 461–465.
4. Bois C, Servadin J, Guillaumot G (2010) Monitoring infant growth: comparative use of WHO standards and French national reference curves. Arch Pediatr 17: 1031–1041.
5. De Onis M, Garza C, Onyango AW, Rolland-Cachera MF (2009) WHO growth standards for children. Geneva: World Health Organization.
6. Grote FK, Oostdijk W, de Muïnc Keizer-Schrama SM, Dekker FW, Verkerk PH, et al. (2005) Growth monitoring and diagnostic work-up of short stature: an international inventoryization. J Pediatr Endocrinol Metab 18: 1031–1038.
7. Fayter D, Nixon J, Hartley S, Rithalia A, Butler G, et al. (2007) A systematic review of the routine monitoring of growth in children of primary school age to identify growth-related conditions. Health Technol Assess 11: iii, xi–xii, 1–163.
8. Hall DM (2006) Growth monitoring. Arch Dis Child 82: 10–15.
9. Oostdijk W, Grote FK, de Muïnc Keizer-Schrama SM, Wit JM (2009) Diagnostic approach in children with short stature. Horm Res 72: 206–217.
10. World Health Organization (1995) Physical status: the use and interpretation of anthropometry: report of a WHO Expert Committee. World Health Organization, Geneva.
11. de Muïnc KNSM (1998) Consensus’ diagnosis of short stature in children.1 National Organization for Quality Assurance in Hospitals. Ned Tijdschr Geneeskd 142: 2519–2525.
27. Ziegler EE, Nelson SE (2012) The WHO growth standards: strengths and limitations. Curr Opin Clin Nutr Metab Care 15: 298.

28. van Buuren S, Van Wouwe JP (2008) WHO child growth standards in action. Arch Dis Child 93: 549–551.

29. Hui L, Schooling C, Cowling B, Leung S, Lam T, et al. (2008) Are universal standards for optimal infant growth appropriate? Evidence from a Hong Kong Chinese birth cohort. Arch Dis Child 93: 561–565.

30. Jülusson PB, Roelants M, Hoppenbrouwers K, Hauspie R, Bjerknes R (2011) Growth of Belgian and Norwegian children compared to the WHO growth standards: prevalence below -2 and above+2 SD and the effect of breastfeeding. Arch Dis Child 96: 916–921.

31. Bomhuis M, van Straalen KJ, Verrina E, Edelfonti A, Molchanova EA, et al. (2012) Use of national and international growth charts for studying height in European children: development of up-to-date European height-for-age charts. PLoS One 7: e42506.

32. Laupacis A, Sekar N (1997) Clinical prediction rules. JAMA 277: 488–494.

33. Wasson JH, Sox HC, Neff RK, Goldman L (1985) Clinical prediction rules. Applications and methodological standards. N Engl J Med 313: 793–799.

34. Cole T (2000) A simple chart to identify non-familial short stature. Arch Dis Child 89: 351–352.

35. Roelants M, Hauspie R, Hoppenbrouwers K (2009) References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Ann Hum Biol 36: 680–694.

36. Sempé M, Péron G, Roy-Pernot M-P (1979) Auxologie, méthode et séquences. Paris: Theraplix. 1–205 p.

37. Hesse V, Jaeger U, Vogel H, Kromeyer K, Zellner K, et al. (1997) Wachstumsdaten deutscher Kinder von Geburt bis zu 18 Jahren. Sozialpädiatrie 19: 20–22.

38. Joubert K, Péron F (2007) Magyar fiúk növekedése és a maître-téko referencia percentilisei születéstől 18 éves korig, és a másodlagos nemi jellegek referenciaértékei. Novo Nordisk Hungária Kft: 1–6.

39. Prader A, Largo R, Molinari L, Issler C (1989) Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv Paediatr Acta Suppl 52: 1–125.

40. Fernandez M, Castelet J, Narvaza JL, Rincón JM, Ruiz E, et al. (1988) Curvas y tablas de crecimiento. Madrid: Instituto de Investigación sobre crecimiento y desarrollo. Fundación Faustino Orbegoso.