This article can be cited before page numbers have been issued, to do this please use: H. Arzaghi, B. Rahimi, B. Adel, G. Rahimi, Z. Taherian, A. L. Sanati and A. Shiralizadeh Dezfuli, Mater. Adv., 2021, DOI: 10.1039/D0MA00957A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Nanomaterials modulating stem cells behavior towards cardiovascular cell lineage

Hamidreza Arzaghi a,g#, Bahare Rahimi a#, Bashir Adel b#, Golbarg Rahimi c, Zahra Taherian b, Afsaneh L Sanati d*, Amin Shiralizadeh Dezfuli e,f,g*

a Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Tehran, Iran

b Department of Biology, Faculty of Sciences, The University of Guilan, Rasht, Iran

c Department of Cellular and Molecular biology, University of Esfahan, Esfahan, Iran.

d Institute of Systems and Robotics, University of Coimbra, 3030-194 Coimbra, Portugal

e Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran

f Young Researchers and Elite Club Shahr-e-Qods Branch, Islamic Azad University, Tehran 37515-374, Iran

g Ronash Technology Pars Company (AMINBIC), Tehran, Iran

H. Arzaghi, B. Rahimi and B. Adel contributed equally to this work.

* Corresponding authors: Afsaneh L Sanati and Amin Shiralizadeh Dezfuli
Abstract
The cardiovascular system, which is one of the complex and indispensable systems in the body, is responsible for the circulation of nutrition, oxygen, carbon dioxide, hormones to other parts of the body. Injuries and scar formation in various parts of the cardiovascular system could be overwhelming due to the limited regenerative ability of cardiomyocytes. Furthermore, surgeries for cardiovascular complications have major risks, and the shortage of organs is inevitable. However, cardiovascular tissue engineering is promising since it can promote cardiovascular regeneration. Although tissue engineering and regenerative medicine could offer solutions to overcoming these challenges, the interactions between nanomaterials and stem cells are not fully understood. Therefore, controlling the behavior of stem cells is challenging due to the limited knowledge in this area. In this review, we discussed various nanomaterials, which were utilized in cardiovascular tissue engineering recently. Moreover, we highlighted the effects of these nanomaterials on stem cells' behaviors, with specific emphasis on proliferation and differentiation. It is expected that a better understanding of stem cell and nanomaterials interactions would facilitate the design of nanomaterials for regenerative medicine and cardiovascular tissue engineering applications.
1. Introduction

Cardiovascular diseases (CVDs) are one of the major health problems in the world, especially in developing countries. According to the world health organization, CVDs are the number one cause of death worldwide, and it is estimated that 17.9 million people died in 2016 (Garcia and Burkle 2018). Myocardial infarction (MI) and coronary artery diseases are the primary causes of CVDs related death (Lopez et al. 2006; Beaglehole and Bonita 2008). Moreover, ischemia can cause necrosis and apoptosis, which can lead to scar formation and permanent damage to the heart structures, thereby reducing the contractile ability following heart failure in severe conditions. Furthermore, the regeneration ability of the cardiomyocytes is extremely limited, and the only options for the treatment of CVDs are surgical methods such as heart transplant and reperfusion therapy (Lamendola et al. 2009; Laflamme and Murry 2011; Mentzer 2011; Rentrop and Feit 2015; Vunjak-Novakovic et al. 2011).

Stem cell transplantation has been utilized as a novel therapeutic method for the treatment of several diseases such as liver (Ordovás, Park, and Verfaillie 2013), kidney (Yokote and Yokoo 2012), brain (Tsukamoto et al. 2013), spinal cord (Mothe and Tator 2013), heart diseases (Assmus et al. 2002), etc. After transplantation, it is expected that the stem cells differentiate to the target cells in response to their microenvironment. In the past decade, stem cell therapy has been used for myocardial repair and heart regeneration. For instance, Bartunek et al. utilized the bone marrow-derived mesenchymal stem cells in the C-CURE clinical trial for the patient with heart failure, and they reported the safety and possibility of stem cell therapy in chronic heart failure (Bartunek et al. 2013). However, stem cell therapy has some limitations since the transplantation or injection of stem cells may result in low retention and poor survival of the cells in the body (Al Kindi et al. 2008; Templin et al. 2012; Mayfield et al. 2014). Moreover, in this method, there is no control over directing the stem cells fate, which completely limits its therapeutic applications. Several stem cell behaviors such as proliferation, differentiation, migration, and cell adhesion can be controlled by manipulating intracellular signaling pathways utilizing different transcription and growth factors. This control over the fate of stem cells is an essential key component for regenerative medicine and tissue engineering methods (Hofmann 2014).

In the past decades, various nanomaterials were utilized to design practical tools for therapeutic and diagnostic purposes in medicine. With the emerging of nanotechnology, the first use of nanomaterials was gene and drug delivery for modulating stem cells behavior by encapsulation of
drug/gene in polymers and lipid-based nanomaterials. Furthermore, several biomaterials are synthesized with nanostructure featured to induce microenvironment cues, wherein stem cells can proliferate and differentiate to target cell lineage (Chandra and Lee 2015; Poustchi et al. 2020; Pacelli et al. 2020; Amani et al. 2021). Most researcher’s interests focused on designing new fabrication methods for therapeutic and imaging applications, the interactions between nanomaterials and stem cell behavior are not investigated thoroughly. It has been shown that not only utilizing nanomaterials as scaffolds can change the differentiation and proliferation of stem cells but also the aqueous suspension of nanoparticles has the ability to induce stem cell differentiation (Arzaghi et al. 2020). This viewpoint can be utilized in the design and fabrication of nanomaterials for cardiac tissue engineering since acquiring regenerative medicine methods to replace the damaged cardiac tissues is promising in CVDs complications, especially in myocardial repair (Fujita and Zimmermann 2017). For example, it has been shown the conductive properties of carbon-based and metal-based nanomaterials can enhance the electrical signals passing through cardiomyocytes and promote both proliferation and differentiation of stem cells (Yao et al. 2018). Therefore, we provide a comprehensive review of nanomaterials utilized in cardiovascular tissue engineering focusing on the effect of nanomaterials on cellular behaviors. It is expected that the increase in knowledge of nanomaterials and stem cell interactions will be beneficial in the design and synthesizing novel therapeutic methods in tissue engineering and regenerative medicine.

2. Cardiovascular system overview

The circulatory or cardiovascular system consists of the lymphatic system, heart, and blood vessels, which circulate blood, nutrition, oxygen, carbon dioxide in the body, thereby stabilizing its conditions such as temperature, pH, and homeostasis (Wirkner and Richter 2013; Whittemore 2014).

In the center of the cardiovascular system therein lies the heart that pumps blood within the blood vessels to provide continuous flow throughout the body, and it is located between the lungs in the middle mediastinum. The human heart consists of four chambers (two lower ventricles and two upper atria) and four one-way valves. This giant muscular organ consists of three layers in the wall (endocardium, myocardium, and epicardium) that are surrounded by the pericardium. The endocardium is the most inner layer of the heart wall, which consists of single squamous epithelium. This tissue is structurally similar to the endothelial cells, which cover the internal
structure of blood vessels. This layer not only controls the heart development in the embryo but also regulates the myocardium functions. Furthermore, it controls the contractility and electrophysiological environment of cardiomyocytes. Cardiomyocytes join together with the intercalated discs and coated mainly with collagen fibers as an extracellular matrix, which forms the cardiac muscles or myocardium. Cardiac muscle is an involuntary muscle similar to skeletal muscle with contraction ability due to the electrical stimulation of action potentials through the release of calcium from the sarcoplasmic reticulum. The action potentials are initiated by pacemakers cells in the sinoatrial node located in the right atria and depolarized neighboring contractile cells via gap junctions in the intercalated discs. These action potentials reach the other pacemaker cells in the Atrioventricular node by the electrical conduction system of the heart. If the initiation of action potentials in SA nodes is compromised, therefore the cells located in Purkinje fibers become responsible for the heart contractions. Cardiac fibroblasts are other cells located in the heart, and they play a crucial role in creating the extracellular matrix of cardiomyocytes, whereby they can repair an injury by secretion of collagen. Furthermore, cardiac fibroblasts can transform to the myofibroblast with a contracting ability during myocardial infarction (reduction in blood flow to the heart) (Sakmann, Noma, and Trautwein 1983; Yaniv et al. 2015; Burkhard et al. 2017; Piccoli et al. 2017; Maiullari et al. 2018; Liang et al. 2019).

Diseases that involved the myocardium are the most important clinical problems, which are the leading cause of death in developing countries. Coronary artery disease (CHD) or ischemic heart disease (IHD) is the most prevalent condition of the heart, which is the reduction of blood flow to the heart due to atherosclerosis. Consequently, the lack of oxygen leads to myocardial infarction and damage to the cardiomyocytes. Another condition that damages the cardiomyocytes is the inflammation of the myocardium (myocarditis or inflammatory cardiomyopathy) due to various circumstances such as viral or bacterial infections, autoimmune diseases, and alcohol and drug usage (Al Badarin et al. 2017; Ashtari, Nazari, Ko, Tebon, Akhshik, Akbari, Alhosseini, Mozafari, Mehravi, Soleimani, et al. 2019; Vunjak-Novakovic et al. 2011).

The pericardium is the outermost layer of the heart, and it is made up of two layers: Fibrous pericardium and Serous pericardium (epicardium). The pericardium is consists of dense and loose connective tissue, which protects the heart from any external damage or infections as well as lubricating the heart for better functioning during the heartbeat. The lubrication of the heart is
carried out by serous fluid secreted by the pericardium, and it fills the pericardial cavity (Hoit 2017; Chong and Angeli 2019).

Another component of cardiovascular systems is blood vessels that transport blood throughout the human body and are divided into five types: veins, arteries, venules, arterioles, and capillaries. In the blood circulatory system, arteries and arterioles transport oxygenated blood from the lungs to other parts of the body, but the veins and venules have reverse functions that transport deoxygenated blood from the body to the lungs. Trauma and mechanical damage to the blood vessels may lead to internal or external hemorrhagic, which can cause ischemia or myocardial infarction. In contrast, hypertension or an increase in blood pressure through the vessels may lead to stroke or heart failure (Plein et al. 2018; Sheng and Zhu 2018). Valvular heart disease is another cardiovascular disease, which involves the dysfunction of one or more valves in the heart. Irrespective of the disease process, stenosis, and insufficiency/regurgitation is the most common consequence of valvular heart disease. The former is the thickening of the valve, which can lead to narrowing the blood flow, and the latter is the capability of the heart valve to prevent the backflow of the blood. Valvular heart disease, similar to other cardiovascular diseases, can be life-threatening, and the treatments require the surgical repair or replacement of the valve. (Maganti et al. 2010; Iung and Vahanian 2011).

3. Stem cells in cardiovascular tissue engineering

Stem cells are unspecified cells, which capable of both self-renewal and differentiation into a variety of specialized cell types under certain conditions. Mostly, stem cells are classified into three types of Embryonic Stem Cells (ESCs), Induced Pluripotent Stem Cells (iPSCs), and Adult Stem Cells (ASCs). In this section, we review some of the important stem cells that have been utilized in cardiovascular tissue engineering.

3.1. Embryonic Stem cells (ESCs)

Embryonic stem cells (ESCs) are pluripotent stem cells derived from the inner cell mass of blastocysts. Not only ESCs have the self-renewal ability but also they capable of differentiating to all the cells in the body such as hepatocytes, chondrocytes, pancreatic cells, and cardiomyocytes (Mahla 2016). Several studies have been reported the utilizing of ESCs to improve the seizures
associated with infarcted myocardium, blood pressure, and ventricular function in various animal models. For instance, Liu et al. utilized human embryonic stem cell-derived cardiomyocytes (hESC-CMs) transplantation as grafts for restoring the heart’s function after myocardial infarction in macaque monkeys. They suggested that hESC-CMs grafts can re-muscularize substantial amounts of infarcted myocardium and reduce the scar size, thereby enhancing the overall cardiac function. Furthermore, they did not observe any teratoma formation despite the several reports on this possibility by employing pluripotent stem cells (Liu, Chen, Yang, et al. 2018). In a related study, Romagnuolo et al. successfully tested the capacity and stability of hESC-CMs transplantation in the pig model as a next step in the preclinical development of hESC-CMs (Romagnuolo et al. 2019). Moreover, in the first human clinical trial, Menasché et al. confirmed that hESCs have a good potential for transplantation in patients with severe ischemic left ventricular (LV) dysfunction, reliably giving rise to clinical-grade cardiovascular progenitors under defined conditions. To ensure the differentiation of hESCs into cardiovascular progenitors, they measured co-expression of the transcription factor ISL1 (a marker for cardiac and vascular lineages) and stage-specific embryonic antigen-1 (SSEA-1; a marker for the loss of pluripotency) (Moretti et al. 2006; Mummery et al. 2012). Then the cells-loaded fibrin patch, were transferred onto the epicardium of the infarcted area through the surgical procedure. As a result, with an increased systolic motion of the cell-treated segments, all patients were symptomatically improved and it showed hESC-derived cardiovascular progenitors have short- and medium-term safety for cell therapy (Menasché et al. 2018). However, the ethical concerns behind ESCs usage limit the application of these cells in tissue engineering and regenerative medicine, which can be solved by acquiring the iPSCs.

3.2. Induced Pluripotent Stem Cells (iPSCs)

Following the repudiation of utilizing the ESCs cells in regenerative medicine by the Japanese Ministry of Health, Labour and Welfare in 2006, simultaneously, Yamanaka and his colleagues Takahashi introduced the iPSCs from the somatic cells (Takahashi and Yamanaka 2006; Nagoshi and Okano 2018). The iPSCs characteristics are comparable to ESCs such as pluripotency, embryoid formation, and teratoma formation. The iPSCs technology has been used as autologous cells to decrease immune rejection after transplantation. Moreover, it can overcome the ethical concern behind the ESCs, which created a novel way towards cell therapy and regenerative
8

medicine. Similar to the ESCs culture methods, IPSCs can differentiate into the cardiomyocytes through a variety of stimuli. Therefore, IPSCs are suitable for cardiovascular cell therapy and tissue engineering applications. For example, Nelson and co-workers utilized IPSCs delivery for treating the myocardial infarction in the mice. They reported that the transplanted IPSCs differentiate into the cardiomyocytes, smooth muscle cells, and endothelial cells, and it improved the cardiac function significantly (Perez-Terzic, Ikeda, and Terzic 2009). In another work by Maiullari and coworkers, They utilized a 3D-bioprinting approach to fabricate vascular cardiac tissues with Human Umbilical Vein Endothelial Cells (HUVECs) and induced pluripotent cell-derived cardiomyocytes (iPSC-CMs). The results suggest that these approaches can be considered for reconstructed therapy by revascularization of ischemic and damaged organs (Maiullari et al. 2018).

3.3. Adult Stem Cells (ASCs)

3.3.1. Cardiac Progenitor Cells (CPCs)

Previously, it was considered that the adult cardiac tissue does not have self-renewal ability and incapable of regeneration. However, recent evidence indicated the presence of a heterogeneous group of cells, which are distributed throughout the heart. Endogenous cardiac stem cells or cardiac progenitor cells (CPCs), which are identified in 2003 by the expression of tyrosine kinase receptor and c-Kit in the adult mammalian heart. These cells have self-renewal ability and multi-potent characteristics, which can contribute to the restoration of adult cardiomyocytes and vascular cells after injury (Hsieh et al. 2007; Bergmann et al. 2009; Senyo et al. 2013). Several Studies isolated the CPCs from different species and demonstrated that these multipotent cells can differentiate into cardiomyocytes, vascular smooth muscle cells, and endothelial cells (Laugwitz et al. 2005; Bearzi et al. 2007; Chong et al. 2011). Therefore, CPCs can be utilized in stem cell therapy and tissue engineering. For example, Gaetani and coworkers construct a cariogenic scaffold by combining the human cardiac-derived cardiomyocyte progenitor cells, biomaterials, and 3D printing technology (Gaetani et al. 2012). Moreover, Streeter et al. design polycaprolactone (PCL) nanofiber-based patches with the electrospinning method for the delivery of CPCs (Streeter et al. 2019).

3.3.2. Mesenchymal stem cells (MSCs)
Mesenchymal Stem Cells (MSCs) are a group of adult stem cells, which are used widely in tissue engineering and cell therapies due to their extraordinary potential for retaining the post-natal capacity of self-renewal and multi-lineage differentiation. MSCs have excellent properties such as limited immune response, secretion of a variety of anti-inflammatory, and antifibrotic mediators as well as high potential for activation of resident precursors (Golpanian et al. 2016). Due to the spectacular differentiation potential, safety, and feasibility of mesenchymal stem cells, many investigations proposed the MSCs as one of the most promising types of stem cells that can be used in cell therapy and tissue engineering (Karantalis et al. 2014; Heldman et al. 2014; Caplan 2009). It is also reported that MSCs can transdifferentiate into mesodermally derived cell types including cardiomyocytes (Guo et al. 2018). Recently, several studies have been conducted utilizing MSCs as a source for cardiac regeneration (Swaminathan et al. 2018). For instance, knowing that mechanical and electrical forces are one of the important regulators of gene expression and cellular function in cardiac tissue, Llucià-Valldeperas and colleagues used cardiac adipose-derived hMSCs (cATMSCs) implantation within a fibrin patch for treating infarcted myocardium in a murine model. These findings indicate that electrical stimulation on cATMSCs improved synchronous contractions, tissue homogeneity, and immunomodulatory properties, which could be a promising therapeutic strategy for heart repair after myocardial infarction (Llucià-Valldeperas et al. 2017). In a related study, Chen et al. focused on improving the poor survivability and lower retention of implanted stem cells for cardiac infarction. By using the Chitosan/silk (CS/SF) fibroin modified nanofibrous cardiac patch loaded adipose tissue-derived mesenchymal stem cells (AD-MSCs), they show that CS/SF-modified multilayers patches improve left ventricular ejection fraction (LVEF), cell viability, cardiac function, and reduced adverse ventricular remodeling in rat myocardial infarction model (Chen et al. 2018).

4. Nanomaterials controlling cellular behaviors

Until now, the effect of nanomaterials on stem cell behavior has been studied extensively. Nanomaterials not only can be utilized as nanoparticles, which can easily cross through the cell membrane and affecting the intracellular signaling pathway but also they can be utilized as a three-dimensional substrate for culturing the stem cells. The interaction between nanomaterials and stem cells has not been entirely understood, but we know that the bulk properties or physicochemical parameters and surface properties of nanomaterials play a major role in controlling cellular
behavior. However, the underlying mechanisms of various nanomaterials in which they can promote or inhibit adhesion, migration, differentiation, or proliferation, need further investigations. Here, we briefly discuss the bulk (Figure 1) and surface properties (Figure 2) of nanomaterials and their effect on cellular behavior, which can be utilized in the treatment of cardiovascular diseases.
4.1. Bulk properties

4.1.1. Size and shape
Nanoparticles can activate certain signaling pathways since they can act as a mechanical stimulus for inducing or inhibiting a wide range of behaviors in stem cells. However, nanoparticles should have the proper size to internalized to the cells. It has been shown that the optimal size for the differentiation of stem cells is around 20 to 70 nm (Li, Zhang, et al. 2016). However, the toxicity of the nanoparticles is relative to their size. For example, it has been shown that the particles with a smaller size (less than 50 nm) have shown more toxicity compare to large particles (Li, Zhang, et al. 2016; Lv et al. 2015). For example, in a study by Abdelhalim, GNPs with the size of 10 and 20 nm showed hemorrhage and excess extravasation of red blood cell, which indicated heart muscle damage in rats. However, the rats treated with 50 nm GNPs showed normal heart muscle (Abdelhalim 2011). It has been suggested that the production of the higher ROS molecules is the main toxicity mechanism of smaller GNPS since the smaller particles have a relatively high surface to volume ratio compared to larger particles. Therefore, smaller particles tend to produce more ROS molecules and oxidative stress in heart muscles (Abdelhalim 2011). Moreover, the shape of nanomaterials can control cellular behavior since the cellular uptake of nanoparticles is size and shape-dependent. It has been shown that the uptake of spherical nanoparticles is higher compare to nanorods and other shapes when the size of particles lower than 100 nm (Rivera-Gil et al. 2013; Albanessa and Chanw 2012).

4.1.2. Nanomaterial source
The source of nanomaterials is another factor, which should be taken into account since different kinds of materials have various effects on cellular biological response. Numerous scaffolds have been fabricated with different synthetic or natural materials. The advantage of utilizing natural materials such as hyaluronic acid, fibrinogen, collagen, and chitosan is the similarity of their components with the native ECM (Zamboni et al. 2018; Sridhar, Lakshminarayanan, et al. 2015). The RGD sequence that can be found in scaffolds synthesized with natural materials facilitates the adhesion of cells to the surface of nanomaterials and providing a suitable environment for
controlling the cell fate. In contrast, the synthetic nanomaterials may require further modification (Schacht, Vogt, and Scheibel 2016). Moreover, the hydrophobicity and the low number of attachment sites in synthetic nanomaterials may result in weak cell adhesion and unfavorable cellular response. However, synthetic materials can be used to overcome weak mechanical properties and lack of ideal chemical functional groups (Hossain, Mohamed, and Shafri 2020).

4.1.3. Porosity
The Porosity and pore size of scaffolds affect cellular response and cellular behavior, which lead to determining the phenotype of the cells. It has been demonstrated that nanoporous scaffold with pores smaller than 1 μm can improve cell-surface interactions. However, cell-cell communication relies on the 1 to 3 μm pores sizes. Furthermore, the optimum pore sizes for cell migration is ranging from 3 to 12 μm (Bružauskaitė et al. 2016). However, suitable pore size in scaffold for different tissue regeneration is varied and depends on the source and the size of cells. For instance, it was shown that the higher ratio between cells and pore size increases cell migration and cell invasion (Bružauskaitė et al. 2016). Turning to the cardiovascular system, it has been shown that the large pore size increase angiogenesis in porous PEG hydrogels (Artel et al. 2011). Culturing the vascular smooth muscle cells on L-PLA with 38–150 μm pore size showed cell proliferation and matrix deposition (Zeltinger et al. 2001). Moreover, Wang et al. showed the differentiation of iPSCs into smooth muscle cells on PLLA scaffold with the 60–150 μm pore size. Implanting this scaffold subcutaneously in nude mice showed the formation of vascular tissue (Wang et al. 2014).
Figure 2. Schematic representation of nanomaterials surface properties, which may modulate cellular behaviors towards cardiovascular cell lineage

4.2. Surface properties

The nature of the nanomaterials surface and the bioactive agents and biomolecules, which are utilized for functionalization can change the performance of nanomaterials in living tissue (Amani, Arzaghi, et al. 2019). Surface modification technology with bioactive agents and biomolecules can be employed as a proper tool for mimicking the tissue microenvironment (Ahn et al. 2018).
Whether nanomaterials are used as nanoparticles or 3D substrates for cardiac tissue engineering, understanding their surface properties and modifications techniques for changing the surface properties should be taken into account. The surface properties of nanomaterials such as surface charge, surface chemistry, surface topography, and surface wettability play major roles in cell adhesion, cell shape, cell proliferation, and differentiation (Yu, Cui, et al. 2017). These properties can be manipulated in designing nanomaterials for cardiovascular tissue engineering.

4.2.1. Surface Chemistry

The surface chemistry of nanomaterials is the main factor, which affect the cell-matrix interactions. Subsequently, these interactions can change a certain cells behavior, which can be utilized in designing new nanomaterials. Simpson and colleagues in 1994 demonstrated that the interactions between cardiomyocytes and collagen type I as a substrate, determined the phenotype of the cells (rod-like cell shape) by controlling the signaling pathways, which affect the cardiac alpha or beta integrin chain (Simpson 1994). The surface chemistry of nanomaterials can be associated with other surface properties such as wettability and surface charge affecting the cell adhesion, cell proliferation, and differentiation (Yu, Cui, et al. 2017). One of the crucial key components, which determine the nanomaterials surface properties is the chemical functional groups. Given that, the surface chemistry of substrate can be modified by utilizing various surface modification techniques. These methods can be used to add new functional groups (acetylation, fluorination, silanization, etc.) or changing the existing functional group (oxidation, reduction). For example, modification of substrates with Diethylenetriamine (DETA), which add primary amines on the surface of a substrate, can enhance cell attachment, differentiation, and long-term survival of rat embryonic cardiomyocytes (Das et al. 2004). Moreover, nanomaterials can be functionalized with specific biological molecules if certain functional groups are present on the surface. For instance, Kang and coworkers immobilized the Fibronectin onto PCL nanofibers modifying by initiated chemical vapor deposition (iCVD) polymer films. This nanofibers increased Umbilical-cord-blood-derived MSCs attachment, improved cardiac function, and angiogenesis in the rat myocardial infarction model (Kang et al. 2014).

Modifying various substrates with nanomaterials is another strategy utilizing surface chemistry. For example, mechanical and electrical properties of collagen can be increased by surface coating of collagen hydrogels with CNTs. Yu et al. found that the incorporation of carboxyl-functionalized
MWCNTs (30 ± 15 nm in diameter and 5-20 μm in length) with collagen type I hydrogel can improve the cardiac cell functions (Yu, Zhao, et al. 2017).

4.2.2. Surface Charge

Solid surface can become negatively and positively charge by changing the surface chemistry of nanomaterials with various chemical methods. It has been shown that the cell attachment on positively charge substrates is higher compare to negatively and neutrally charged surfaces (Castro et al. 2017; Park, Lee, et al. 2015). Moreover, It should be noted that the surface charge of nanoparticles is another factor that determines the uptake of nanoparticles, thereby affecting the biological response in the target cells (Jing and Bhushan 2013). Asati and coworkers functionalized the cerium oxide nanoparticles to produce neutral, negatively, and a positively charged nanoparticles. They found that aminated cerium oxide nanoparticles, which have positively charged surface, showed increased internalization and localization to cardiac myocytes (Asati et al. 2010). Furthermore, the surface charge can be used to form a complex structure with biomolecules such as DNA. For instance, Chang and colleagues synthesized AuNP loaded GMT(Gata4, Mef2c, and Tbx5) coated with PEI for the reprogramming of induced cardiomyocytes. They make a complex utilizing the electrostatic interactions between positive and negative charge of PEI and DNA, respectively. Moreover, they found that the AuNPs/GMT/PEI complex like other cationic nanocarriers has a high delivery efficacy (Chang et al. 2019).

4.2.3. Surface Wettability (Hydrophilicity/Hydrophobicity)

The adhesive force between the solid surface and liquid, which causes the spreading of the liquid across the solid surface is surface wettability (Lai et al. 2013). It has been shown that the proteins attract to hydrophilic surfaces compared to hydrophobic surfaces. Consequently, cell attachment and proliferation is higher on the hydrophilic surface (Arima and Iwata 2007). It should be noted that the surface wettability of nanomaterials can be adjusted by the manipulation of surface chemistry and surface topography (Ueda and Levkin 2013). For example, Wei and colleagues utilized plasma polymerization and oxygen plasma treatment to create a wide range of surfaces from 106° to 0° (hydrophobicity to hydrophilicity) wettability degree. They demonstrated that the rat fibroblast tends to spread on hydrophilic surfaces. Moreover, they showed that the fibronectin protein is attached to the hydrophilic surfaces to a higher degree compared to albumin, which is
absorbed on hydrophobic surfaces (Wei et al. 2007). Overall, cell spreading and cell attachment have a direct relationship with a positive cell surface and hydrophilicity and a negative relationship with negative surface charge and hydrophobicity (Guo et al. 2016). However, moderately wettable surface with the contact angle of 70–80° is preferable for cell attachment (Guo et al. 2016; Wei et al. 2007; Vickers 2017). Mehdinavaz Aghdam et al. synthesize a PCL/PGA blend nanofibrous scaffold, and they cultured the CPCs cells on the scaffold for the investigation of cell adhesion and proliferation. They used the PGA reinforcement to increase the mechanical properties of the scaffold. Moreover, increasing the PGA concentration is enhanced the hydrophilicity of the scaffold. They demonstrated that the 65:35 PCL:PGA ratio showed the highest cell adhesion and proliferation. However, increasing PGA by more than 50% reduces the cell proliferation and growth substantially (Aghdam et al. 2014).

4.2.4. Surface Topography
Another aspect of surface properties, which is crucial for cardiac tissue engineering is controlling cellular behavior through topographical features. One of the main challenges is to simulate the in vivo like orientation and elongation of cardiomyocytes in tissue engineering strategies. We can see this three-dimensional syncytium formation of cells in adult cardiomyocytes, which enables producing the electrical signals (Au et al. 2007). It has been shown that the topographical cues are the major determinant of cardiomyocyte orientations (Au et al. 2007). One of the most crucial aspects of surface topography is the surface roughness, which is calculated by measuring the protrusions and depressions of the surface (Xu et al. 2004). It has been shown that rough and smooth surfaces can induce different cell responses. For example, an increase in surface roughness can increase the adsorption of key ECM proteins such as fibronectin and vitronectin. Fibronectin can enhance cell attachment and cell growth by chemoattractant of various cell types such as fibroblasts and endothelial cells, which are essentials in wound healing after myocardial infarction (Grinnell 1984). Stout et al. utilized the carbon nanofibers (CNF) for increasing the roughness of PLGA with different ratios (100:0, 75:25, 50:50, 25:75, and 0:100 wt% CNF:PLGA). They observed that the increase of CNF into PLGA structures promote cell attachment and growth of cardiac muscle cells. They reported that the 50:50 ratio of PLGA and CNF with the 0.025 g/mL PLGA density showed the highest cardiomyocyte growth (Stout et al. 2012).
Another aspect of surface topography is the surface pattern, which can be classified into isotropic and anisotropic patterns. A surface with no directional orientation is isotropic. However, surfaces with nanotopographical patterns such as protrusions, pillars, circular, etc (Yao, Peng, and Ding 2013). Several studies investigate the effect of nano topographical features on protein absorption and cell behaviors such as growth and stem cell differentiation (Biggs et al. 2007; Ji et al. 2012; Ngandu Mpoyi et al. 2016; Dalby and Gadegaard 2007). It has been shown that these effects are the result of biochemical and biomechanical processes of adhesion and cytoskeletal conformation. Ngandu Mpoyi and coworkers designed a nanostructures polycarbonate surface with 150 nm diameter arranged in a square pattern and ≈90 nm deep pits (NSQ50) to investigate the adsorption of proteins and cellular behaviors. They utilized the C2C12 myoblasts to investigate the focal adhesion assembly and myogenic differentiation compared to the flat control groups. They found that the fibronectin absorption increase in globular clutters both on the interpits space and inside the nanopits, which increases the cell attachment to the surface. Moreover, C2C12 interacted with the edge of pits through filopodia and even enters the nanopits. Altogether, they concluded that the nanotopographical features can impact cellular behavior such as differentiation by changing the cell adhesion and cytoskeleton organization (Figure 3) (Ngandu Mpoyi et al. 2016). Au and colleagues demonstrated that the effect of topographical features on cardiomyocyte orientations is significantly stronger than the electrical stimulation (Au et al. 2007). Furthermore, it has been shown that cellular behaviors such as morphology, the velocity of action potential conduction, and cell-cell coupling proteins interactions can be controlled by controlling the size of nanogrooves (Kim et al. 2010).
4.2.5. **Mechanical properties**

Controlling cellular behavior can be achieved by mimicking the tissue-specific niche properties such as mechanical properties modifying. These modifications adjusting the cell-material interactions, which affect intracellular pathways regulating cellular behavior (Han et al. 2020). Material stiffness is the resistance of materials to deformation when a force is applied, which means that the materials with high stiffness can resist deformation, but materials with low stiffness, deform easily. Every tissue display a special stiffness values, which is determined by the
composition of the ECM and cross-linking proteins (Handorf et al. 2015). The interaction of stem cells with the metric stiffens is crucial for the regulation of stem cell fate such as the early stage of differentiation. These cells mechanically interact with the ECM by cell adhesion molecules (CAMs) such as integrins, which help them recognize the substrate stiffness. Consequently, these interactions convert to biochemical signals, which determine the cell behaviors and stem cell fate (Tatsumi et al. 2007; Yeung et al.; Han et al. 2020). Several studies revealed that mimicking the biomechanical properties of cardiac muscles is crucial in cardiac tissue engineering. First, the biomechanical cues may induce cardiac differentiation. Moreover, mechanical cues enable the tissue construct to be synchronized with the contraction of the heart, which induces mechanical transfer from the myocardial environment to the stem cells (Guan et al. 2011).

In recent years, several biomaterials have been used to mimic the mechanical properties of the myocardium. The similarity between the mechanical properties of the heart and biomaterials is crucial. It has been demonstrated that the young modulus for the heart is 10 to 20 kPa in diastole and 200–300 kPa at the end of systole. Therefore, relatively low young modulus with high elasticity and tensile strength is optimal for cardiac tissue engineering. Consequently, the materials with high stiffness are not desirable (Davenport Huyer et al. 2016). For example, it has been shown that biodegradable polyesters, such as polylactide (PLA) and copolymers are not suitable for such applications since they lack suitable stiffness (Wang et al. 2010). The flexible and soft polymers with a good elasticity futures such as polyurethane is a good candidate for myocardial tissue engineering. For instance, Guan and coworkers used electrospinning poly(ester carbonate urethane)urea (PECUU) nanofibers and electrospraying MSCs methods to synthesize a myocardium-like tissue construct. They showed that the anisotropic mechanical properties with areal strains at 10 kPa, and strains at 10 kPa were the same as the native myocardium (Guan et al. 2011). Moreover, Li et al., synthesized thermosensitive hydrogels based on N-isopropylacrylamide, N-acryloxysuccinimide, acrylic acid, and poly(trimethylene carbonate)-hydroxyethyl methacrylate with various mechanical properties (16 kPa, 45 kPa, 65 kPa). They observed that 76% hMSCs encapsulated in the hydrogel with the higher modulus (65 kPa), and they expressed the proteins essentials for contraction ability of the heart such as MYH6 and cTnI, which showed the successful differentiation of the MSCs into cardiomyocytes (Li et al. 2012). This study proved that the modulation of mechanical properties of the scaffold can induce higher differentiation of stem cells compared to traditional techniques such as co-culturing the hMSCs with cardiomyocytes.
or using 5-azacytidine. Despite the compositions, several factors can contribute to the mechanical properties of biomaterials, which can be modulated to change the elasticity of the hydrogel. For example, Davenport Huyer, and colleagues synthesized poly(octamethylene maleate (anhydride) 1,2,4-butanetricarboxylate)(124 polymer) with one step polycondensation reaction, which showed an ideal biodegradability, relatively low Young’s modulus with excellent elasticity properties, high elongation, and tensile strength. The hydrogel properties were tunable by UV light exposure, monomer composition, and porosity content. They utilized an experimental design to find the best relationship between these properties. Afterward, rat cardiomyocytes cell attachment ability was investigated by live/dead staining, which showed an excellent cell-substrate and cell-cell attachment (Figure 4) (Davenport Huyer et al. 2016).
Figure 4. A) Mechanical properties of 124 polymer construct. a) Elastic properties of 124 polymer suitable for cardiac tissue engineering (scale in mm). b) Young’s modulus to monomer ratio, UV exposure energy, and porogen content relationships. c) Stress-strain curve, which demonstrated the elastic characterization of 124 polymer d) Comparison between elastomeric properties of polymer 124 and poly(octamethylene maleate (anhydride) citrate. B) Culturing rat cardiac cells on 124 polymer for 7 days. a) bright-field image with 250 and 100 μm magnification. b) live (green)/dead (red) staining of rat cardiomyocytes image. c) Confocal microscopy of rat cardiac cells after staining with cardiac troponin-T (green) and F-actin (red), which demonstrated the formation of rat cardiomyocytes. d) Representation of intercellular connections and organized cardiac tissue by Connexion 43 staining (green) at cellular junctions (Davenport Huyer et al. 2016). (Figure has been reproduced from (Davenport Huyer et al. 2016) with permission from American Chemical Society, Copyright 2016).

5. Nanomaterials effect on cellular behavior and their application in cardiac tissue engineering

5.1. Metal-based nanomaterials

5.1.1. Gold nanoparticles

Gold nanoparticles (AuNPs) are the colloidal suspension of gold particles in waters with unique chemical, physical, thermal, optical, and biological properties. Gold nanoparticles have potential applications in various fields such as chemistry, physics, material science, biology, and medicine. Moreover, AuNPs are widely used in drug delivery and regenerative medicine since they can be designed, produced, and modified utilizing different functional groups, which provide antibodies and ligands conjugation (Jazayeri et al. 2016; Amani, Mostafavi, et al. 2019; Fathi-Achachelouei et al. 2019). Recent studies have demonstrated the impact of AuNPs on cell fate and cell behavior, as it can promote the differentiation of ESCs and MSCs into osteoblast and cardiomyocyte cells. It has been shown that different sizes of spherical AuNps significantly enhanced the differentiation of AD-MSCs into osteoblast with no cytotoxic effect (Ko et al. 2015). Li and coworkers used different sizes and shapes of AuNps (nanorods and nanostars) to investigate the shape and size of these nanoparticles on osteogenic differentiation of hMSCs. They showed that the expression of
osteogenic markers increased by Au nanorod (70 nm) and Au nanosphere (40 and 70 nm) (Li, Zhang, et al. 2016). Such findings suggested that different shapes and sizes of AuNPs can significantly affect cellular behavior, which can be beneficial in tissue engineering applications. Ravichandran and coworkers, increased the cardiomyogenic differentiation of MSCs by the synergic effect of 5-Azacytidine (5-aza) and AuNPs loaded nanofibrous scaffold. In this study, AuNps nanofibers were fabricated by a mixture of gold chloride (AuCl3), Polyvinylalcohol (PVA) and bovine serum albumin. Moreover, it showed that the pretreatment of MSCs with AuNps loaded nanofibers increase the expression of cardiac-specific markers such as a-actinin, Cx43, and Troponin-T (Ravichandran et al. 2014). It should be noted that AuNPs heart distribution is size-dependent. In a study by Zhang and colleges, using smaller sizes of AuNPs with less than 40 nm is recommended since the larger size of AuNPs may show cardiac toxicity. Moreover, they suggest that the 5 nm AuNPs did not accumulate in hearts compared to larger sizes, and it showed cardiac protective potential (Zhang, Xue, et al. 2018).

Another important factor that plays a crucial role in cardiac tissue engineering and directing the stem cells fate is the conductivity of AuNPs. Several studies showed that the various nanofibers can be decorated with AuNPs. For instance, decellularized scaffolds can be integrated with AuNPs, which is a novel electroconductive platform with high compatibility. Shevach and coworkers design a hybrid scaffold with the fibrous decellularized omental matrices, and they deposited different sizes of AuNPs (4 and 10 nm) on this scaffold. This novel autologous scaffold, showed strong biocompatibility, electroconductivity, enhanced mechanical properties. However, in vivo conditions, the AuNPs may dissociate from the scaffold, but it showed excellent stability in vitro conditions. The cardiac cells showed aligned and elongated morphology with massive striation and organized connexin 43 electrical coupling proteins. The AuNPs in this hybrid scaffold reduce the proliferation, thereby maintaining the ratio of contracting to non-contracting cells (Figure 5) (Shevach et al. 2014). Nevertheless, Baei et al. improved the conductivity of chitosan by the incorporation of gold NPs into the chitosan structure. This improvement showed the differentiation of MSCs into cardiac cells. Moreover, the rate of cardiac differentiation was higher compared to the pristine scaffold (Baei et al. 2016).
Figure 5. A) Schematic overview of producing 3D decellularized Omental scaffold decorated with AuNPs as a personalized cardiac patch for cardiac tissue engineering. B) Decellularization process of Gold Nanoparticle-Decellularized Matrix Hybrids a) Native omentum tissue b) Omentum tissue during decellularization process c) After complete decellularization process. C-a) Decoration of the omentum decellularized scaffold with 4 nm and 10 nm AuNPs. b-d) SEM images of AuNPs-Decellularized scaffold C) Immunostaining of cardiac cell organization on day 5 (cardiac α sarcomeric actinin (pink), connexin 43 (green), and nuclei (blue))). a) pristine scaffold b)
deposition of 4 nm AuNPs c) deposition of 10 nm AuNPs (Shevach et al. 2014). (figure reproduced from (Shevach et al. 2014) Published by American Chemical Society, Copyright 2014).

Besides conductivity, it has been shown that the integration of gold nanorods (AuNRs) with hydrogels can increase the stiffness of the scaffold, which enhance the neonatal cardiomyocytes adhesion. Navaei and colleagues fabricated a gelatin methacrylate (GelMA)/AuNRs hybrid scaffold with various concentrations of AuNPs with an aspect ratio of 3.15 (16 ± 2 nm width and 53 ± 4 nm length). Moreover, they utilized different AuNRs concentrations (0.5, 1, 1.5 mg/mL) in the scaffold, which the 1.5 mg/mL group demonstrated the best results in cell retention and cytoskeleton organization. Moreover, it showed the cell-matrix interactions by enhancing the integrin 1 and cardiac-specific markers such as troponin I and sarcomeric -actinin. Moreover, the conductive properties of this hybrid scaffold resulted in high cell-cell interactions and electrical signal propagation by increasing the Cx43 gap junctions expression level and synchronized calcium signaling in cardiomyocytes (Navaei et al. 2016).

In addition to the features that we discussed above other properties of AuNPs can be used in designing new scaffolds for cardiac regeneration. Recently, a cardiac patch was developed by albumin electrospun fibers decorated with gold nanorods, which have the ability to absorb and convert the light (808 nm near IR laser) to thermal energy. This thermal energy can change the molecular structure of the scaffold, which can help the integration of the patch to the wall of the heart. Scanning electron microscopy (SEM) images of the sliced heart confirmed a close interaction between the heart and the cardiac patch (Figure 6). Cardiac cells showed an excellent contract ability, and a high expression of Cx43 between cardiomyocytes, which resulted in the synchronous function of these cells (Malki et al. 2018).

In another study by Sridhar and co-workers, a nanofibrous scaffold constructed by AuNPs (16 nm in size) embedded in polycaprolactone (PCL), Aloe Vera (AV), Vitamin B12, and Silk fibroin (SF) scaffold. They demonstrated that the chemical composition and the stiffness of the scaffold are responsible for the proliferation and differentiation of MSCs. Moreover, the AuNPs and vitamins improved the surface area of the scaffold as well as enhancing the cellular properties such as sarcomeric structures. Nevertheless, the scaffold with the AuNPs significantly enhanced the initial cell proliferation on day 5 (Sridhar, Venugopal, et al. 2015).
Figure 6. A-a) Schematic representation of gold nanorods-based engineered cardiac patch for suture-free engraftment by near IR. b) The cardiac patch after integration with rat heart. B-a) High-resolution TEM AuNPs. b, c) SEM image of albumin electrospun nanofibers d, e) Adsorption of AuNPs on the albumin nanofibers (Malki et al. 2018).

Table 1. A summary of Gold nanomaterials which impact the cellular behavior and their applications in cardiac tissue engineering.

Gold nanomaterials	Scaffold	Result	Cell type	Applications	References
1	AuNPs/5-aza/BSA/PVA	Induce cardiogenesis	MSCs	Cardiomyogenic differentiation	(Ravichandran et al. 2014)
2	AuNPs + Decellularized omental tissue	Promote cardiac cell growth and enhance cardiac patches functions	Fibroblast	Suitable for engineering more homogeneous cardiac patches with heart function improvement	(Shevach et al. 2014)
3	AuNPs + Chitosan thermosensitive hydrogels	Induce cardiac differentiation and maintain viability and growth rate of MSCs	MSCs	Enhances the properties of myocardial constructs	(Baei et al. 2016)
4	AuNPs/PCL/SF/AV/Vit B12	Enhance MSCs proliferation and differentiation into cardiogenesis	Cardiomyocytes + MSC	Potential suitable constructs for myocardial regeneration and repair	(Sridhar, Venugopal, et al. 2015)
	Material/Method	Effect	Cell Type	Description	Reference
---	---------------------------------------	--	------------------------------------	---	-------------------------
5	AuNWs/alginate scaffold	Improve electrical interaction between adjacent cardiac cells	neonatal rat CMs and CFs	Provide a promising scaffold for the therapeutic value of current cardiac patches.	(Dvir, Timko, Brigham, et al. 2011)
6	GelMA- Gold nanorod (GNR)	Induce high cell retention and enhance expression of cardiac specific markers	Cardiomyocytes	Functional cardiac patches with superior electrical and mechanical properties	(Navaei et al. 2016)
7	Au loaded laponite (Lap)/ECM hydrogel	Enhance cell survival rate, cell retention behaviors and cell expression of cardiac specific markers	Cardiomyocytes	Suitable cardiac regenerative material for the repair of infarcted myocardium	(Zhang, Fan, et al. 2019)
8	AuNPs/thiol-HEMA/HEMA scaffold	Improve cell-cell communication and enhance Cx43 protein expression	neonatal rat CMs	AuNPs/thiol-HEMA/HEMA Scaffold may facilitate cardiomyocyte function	(You et al. 2011)
9	AuNPs/PCL/gelatin fibers	Enhance cell growth and proliferation with promote Actn protein expression	NRVMs	AuNPs/PCL/gelatin fibers can be used to improve the function of the infarcted heart	(Shevach et al. 2013)
10	AuNRs/GelMA hydrogel	Promote expression of Actn and Cx43 proteins and improve cell-cell communication, cell adhesion, spreading and alignment	neonatal rat CMs	Suitable functional cardiac patches for infarcted myocardium	(Navaei et al. 2017)
11	AuNRs/GelMA via 3D bioprinting	Enhance cell adhesion, organization and expression of several cardiac specific genes with improve cell–cell coupling and synchronized contraction	neonatal rat CMs and CFs	Potential application for cardiac tissue engineering	(Zhu et al. 2017)
12	AuNPs/collagen substrate	Promote expression of several cardiac specific genes and improve cell adhesion, spreading, alignment, elongation, and striation	NRVMs	Potential applications of AuNPs/collagen substrate in regenerative medicine	(Li, Shi, et al. 2016)
5.1.2. Silver nanoparticles

Silver nanoparticles (AgNPs) have potential applications in medicine, electronics, textiles, and cosmetics due to their superior antimicrobial properties. Different techniques can be used in AgNPs synthesis including laser ablation, gamma irradiation, electron irradiation, photochemical approach, and some biological mechanisms (Iravani et al. 2014).

Antiviral and antiseptic properties of AgNPs have been utilized for the production and development of biological instruments such as artificial cardiac pacemakers. Antimicrobial properties of AgNPs have been reported in tissue engineering and regenerative medicine studies especially in wound healing (Fathi-Achachelouei et al. 2019). All the beneficial applications of AgNPs along with the manipulation of their size, shape, concentration, functionalization, and exposure time, generate significant developments for cardiovascular disease diagnosis and prognosis (Gonzalez et al. 2016). The first cardiovascular usage of silver in the clinic was a silver-coated prosthetic silicone heart valve designed to reduce bacterial infection and the host inflammation response (Ge et al. 2014). In a study by Fu and co-workers, chitosan/heparin multilayer films were constructed, and not only showed an antibacterial effect on E. coli but also the incorporation of AgNPs into these multilayer films substantially improves its bactericidal properties. This study suggested that the nanosilver multilayer film could be useful in the surface of medical devices, especially in cardiovascular implants (Fu et al. 2006). In another study by Angelina et al. a pyrolytic carbon (PyC) biomaterial was constructed as an artificial heart valve.

13	AuNWs/PU scaffold	Enhance cell alignment, spreading, and proliferation	H9C2 rat CMs	Suitable cardiac regenerative material for future applications in cardiac tissue engineering	(Ganji et al. 2016)
14	peptide-functionalized AuNPs/ polymethylglutarimide fibers	Enhance cardiogenic differentiation and cell-cell communication	hPSCs	Suitable material for cardiac tissue engineering	(Jung et al. 2012)
15	AuNPs/reverse thermal gel	Promote expression of Cx43 protein and long-term cardiomyocytes survival	NRVMs and CFs	Potential application for cardiac tissue engineering	(Peña et al. 2019)
and coated with a thin layer of AgNPs. The AgNPs give the PyC excellent antibacterial properties, and improve its haemocompatibility (Angelina et al. 2017). However, there are substantial concerns about their effects on human health since AgNPs can be released into the environment and interact with physiological fluids. Oxidization of the elemental Ag(0) to (Ag+) and the subsequent binding of Ag+ to protein ligands led to a toxic effect of AgNPs (Behra et al. 2013). It has been shown that extremely low concentrations of the ionic form of Ag such as silver chloride and silver nitrate can increase ventricular hypertrophy in cardiovascular systems which are associated with high blood pressure, the elevation of hemoglobin, and hematocrit concentrations (Espinosa-Cristobal et al. 2013). Nevertheless, there is insufficient information about the impact of AgNPs on the cardiovascular system. Some studies suggest that these NPs produce reactive oxygen species (ROS), which can induce cardiotoxicity (Bostan et al. 2016; Yu, Hong, and Zhang 2016). In a recent study by Ferdous and co-workers, the cardiovascular mechanism of pulmonary exposure to two different citrates (CT) and polyvinylpyrrolidone (PVP) coated with AgNPs was evaluated. They reported that AgNPs exposure induced oxidative stress which increases cardiac cell apoptosis and DNA damage. Besides, the time of thrombotic obstruction in cerebral microvessels and platelet aggregation increased after lung exposure to AgNPs (Ferdous et al. 2019). Moreover, Manuel and coworkers utilized a Langendorff heart (isolated perfused heart) preparation to demonstrated that the low concentrations of AgNPs (0.1 and 1 μg/mL) increased nitric oxide level, but the cardiac contractility or coronary vascular tone in normal Wistar rats were intact. However, high concentrations of AgNPs (10 and 100 μg/mL) increased reactive oxygen species, which led to the induction of cardiac contractility and vasoconstriction. Furthermore, this reactive oxygen species generated by AgNPs cause the degradation of muscle or rhabdomyolysis (Manuel et al. 2017).

Silver nanoparticles are often utilized in tissue engineering embedded in scaffolds that are subsequently cultured with MSCs. Moreover, AgNPs can induce a toxic effect in the mesenchymal stem cells. Furthermore, Wei and co-workers revealed that after uptake of AgNPs (30 nm) in hMSCs, apoptosis, necrosis, DNA damage, and reactive oxygen species increased and cell viability decreased (He et al. 2016).
Table 2. Silver nanomaterials applications in cardiac tissue engineering.

Silver nanomaterials	Scaffold	Result	Cell type	Applications	References
1	AgNPs/Pyrolytic carbon (PyC)	Direct effects of AgNPs on bacterial colonisation	-	Improved haemocompatibility properties and antibacterial effect by using pulsed laser deposition of silver nanoparticles	(Angelina et al. 2017)
2	AgNPs	Direct effects of AgNPs on ion channels at the nanoscale level leading to loss of excitability of in mice cardiomyocyte	Cardiomyocyte	Warning about the use of AgNPs in nanomedical application	(Lin et al. 2017)
3	AgNPs/collagen fibers	Improve electrical conductivity, cell proliferation and expression of connexin-43 gene	rat cardiomyoblasts	AgNPs/collagen fibers prevent biofilm formation but did not activate macrophages	(Allison et al. 2017)
4	AgNPs	Induce oxidative stress and cardiac inflammation	-	AgNPs can decrease cardiac contraction via downregulation of related genes	(Bostan et al. 2016)

5.1.3. Titanium dioxide

Titanium dioxide nanoparticles (TiO$_2$ NPs) are made in large quantities globally, which can be used in a variety of applications due to their anti-corrosive, high stability, and photocatalytic characteristics. Recently, a variety of techniques have been used to synthesized TiO$_2$ NPs such as the sol-gel methods, reverse micelles, chemical vapor deposition, etc (Nyamukamba et al. 2018). These nanoparticles are being studied in the field of nanomedicine as a beneficial tool in advanced imaging and nanotherapeutics (Shi et al. 2013). Several studies have revealed that TiO$_2$ NPs can be utilized in various biodegradable polymers as good filler materials since they can enhance cell attachment and proliferation. Moreover, unique physicochemical characteristics make TiO$_2$ NPs suitable for controlling cellular behavior such as migration and differentiation of stem cells (Park et al. 2007). In vivo studies showed the systemic distribution of TiO$_2$ NPs to all tissues and organs in the body after initial absorption (Hong et al. 2017). Due to the growing use of TiO$_2$ NPs in tissue...
engineering, the study of toxicity is crucial. For instance, Jawad and coworkers investigated the cellular toxicity of TiO$_2$ NPs on three different cardiac cell types including fibroblasts, adult rat ventricular cardiomyocytes, and human embryonic stem cell-derived cardiomyocytes (hESC-CM). The lowest test dose of TiO$_2$ NPs (10 mg/mL) showed a reduction in the beating rate of hESC-CM, but there was no significant impact on myocyte cell viability or acute contractility of the myocytes observed in 24 hours. The cultivation of fibroblasts in 5–150 mg/mL TiO$_2$ NPs stimulated cell death and decreased cell proliferation significantly in 4 days. However, there were no arrhythmias or discontinuation of the beating in three different cell types (Jawad et al. 2011). It should be noted that the toxicity effect of TiO$_2$ NPs highly depends on various factors such as concentration and exposure time which could affect cellular behavior by activation or suppression of related cell signaling pathways (Chen et al. 2015). The inflammatory reaction generated by TiO$_2$ NPs is known to be one of the major causes of cardiovascular system dysfunction. In a recent study, Zhang et al. investigated the mechanism of cardiovascular toxicity induced by dermal exposure to TiO$_2$ NPs. This study displayed that TiO$_2$ NPs treatment highly elevated the reactive oxygen species and 8-hydroxy-2'-deoxyguanosine. Besides, it increased the inflammatory biomarker rates, such as soluble intercellular adhesion molecule-1, immunoglobulin E, hypersensitive C-reactive protein, and interleukin-8. Furthermore, exposing human umbilical vein endothelial cells (HUVECs) to TiO$_2$ NPs reduces cell viability and a rise in caspase-3 levels, which induces cytotoxicity and cell apoptosis (Zhang, Liu, et al. 2019). In another study, Hong and coworkers revealed that the exposure of mice to TiO$_2$ NPs for six months, damage the heart muscle by disrupting the cytokine expression link to Th1 or Th2 (Hong et al. 2015). Chen and colleges investigated the effect of TiO$_2$ NPs on the cardiovascular system after oral intake. After regular gastrointestinal administration of TiO$_2$ NPs (0, 2, 10, 50 mg/kg) for 30 and 90 days, they investigated the rate of heart injury by measuring the heart rate, biochemical parameters in the blood, cardiac histopathology, and blood pressure. TiO$_2$ NPs exposure increased the inflammatory responses such as increased concentrations of interleukin 6, tumor necrosis factor α, white blood cells count, and granulocytes. Even low concentrations of TiO$_2$ NPs can cause harmful cardiovascular effects after 30 days or 90 days of oral exposure (Chen et al. 2015). However, TiO$_2$ nanofilm showed good blood cells, endothelial cells, and smooth muscle cells compatibility in a work by Xiang and coworkers (Xiang et al. 2015). Moreover, it has been shown that TiO$_2$ nanotube provides a favorable template for bone growth and differentiation but there is no evidence of
favorable cell proliferation and differentiation in cardiovascular tissue reconstruction (Popat et al. 2007).

Table 3. Titanium dioxide nanomaterials applied in cardiac tissue engineering applications

Titanium dioxide nanomaterials	Scaffold	Result	Cell type	Applications	References
1	TiO₂ NPs	Induce accumulation of ROS, leading to oxidative stress	HUVECs	Cardiovascular toxicity identification	(Zhang, Liu, et al. 2019)
2	TiO₂ NPs	Direct toxicological effect of TiO₂-NPs on myocardial tissue.	Cardiomyocytes	Cardiovascular toxicity identification	(Savi et al. 2014)
3	TiO₂ NPs	Induce oxidative stress and DNA damage, leading to abnormal cardiac differentiation	hESCs	TiO₂ NPs could affect pluripotency and differentiation properties of hESCs	(Pan et al. 2018)
4	TiO₂-PEG/CTS hydrogels	Enhance cell retention and cell adhesion of cardiomyocytes	cardiomyocytes	TiO₂-PEG/CTS hydrogel is potentially suitable cardiac patches for cardiac repair applications	(Liu, Chen, Zhuang, et al. 2018)
5	Micro/nano composite TiO₂ films	Enhance blood cells, endothelial cells, and smooth muscle cells compatibility	endothelial cells	Potential application for cardiovascular implanted devices	(Xiang et al. 2015)
6	TiO₂ NPs	Increase the inflammatory response	Cell type	TiO₂ NPs can cause harmful cardiovascular effects	(Chen et al. 2015)

5.1.4. Magnetic nanoparticles

Magnetic nanoparticles (MNPs) are one of the important classes of nanomaterials, which have potential applications in nanomedicine. MNPs are synthesized using several methods such as thermal decomposition, microwave-assisted, chemical vapor deposition, combustion, carbon arc, laser pyrolysis, etc (Majidi et al. 2016). MNPs can be detected and controlled by magnetic fields, which opens up a wide range of possibilities for their clinical usage. MNPs have been utilized for
a variety of clinical applications including delivery of drugs and genes, magnetic imaging, and hyperthermic treatment (Wu et al. 2019). Iron oxide magnetic nanoparticles (IONPs) have crucial diagnostic properties in clinical applications. Regulation of synthetic procedures such as surface functionalization, size, and magnetization is crucial for contributing to specific properties such as stability, physicochemical, and biological fate (Mohammed et al. 2017). Recently, several studies reported the tracking of stem cell fate by IONPs conjugated growth factors (Willmann and Dringen 2018; Giannaccini et al. 2017; Marcus et al. 2015). Moreover, Iron oxide NPs showed HRP and catalase-like activity, which can reduce ROS due to their antioxidant properties. Furthermore, IONPs have been utilized in regenerative medicine and tissue engineering applications (Jansman and Hosta-Rigau 2019; Panahi et al. 2020). Huang et al. showed the beneficial impression of Ferucarbotran nanoparticle labeling, on human mesenchymal stem cells (hMSCs) proliferation. Superparamagnetic iron oxide (SPIO) nanoparticle has an intrinsic peroxidase-like activity, which can decrease intracellular H$_2$O$_2$. After internalization into hMSCs, it increases the progression of the cell cycle regulation by the free iron released from lysosomal degradation (Huang et al. 2009). Moreover, IONPs are beneficial tools for cardiovascular protection. In a study by Xiong and co-workers, a rat coronary artery ligature model was used to evaluate the effect of 2,3-dimercaptosuccinic acid modified Fe$_2$O$_3$ NPs in cardiovascular disease. This study showed that IONPs, which can preserve the heart from ischemic injuries in vitro and in vivo conditions without toxic effect, is a clinically good candidate for the treatment of cardiovascular disease (Xiong et al. 2015). In a different study, Han and co-workers used IONPs to stimulate the cardiac mesenchymal stem cell differentiation. In this research, the H9c2 cardiomyocytes that were treated with IONPs, co-cultured with MSCs. The Internalization of IONPs in H9c2 has increased the Cx43 expression, which is an important factor to trigger gap junctional signaling pathways and improve communications with hMSCs. Furthermore, the expression of cardiac-specific genes increased in hMSCs, which induced the cardiac differentiation; thereafter, H9c2 cells were separated from differentiated hMSCs, and they were utilized to treat the myocardial infarction by reduction of ventricles diameter and the systole and diastole time in a rat model (Han et al. 2015). Recently, superparamagnetic IONPs were used for the labeling of MSCs for cardiac tissue regeneration. IONPs were PEGylated and then IONP-labeled MSCs were administered into a rat model with cardiac disease. The MRI was employed to track MSCs labeled with IONPs, and they utilized a magnetic field for the targeted delivery of IONPs to the heart. In the presence of the magnetic field,
myocardial hypertrophy and heart function improved by utilizing SPION-labeled MSCs, but fibrosis formation reduced (Naseroleslami, Aboutaleb, and Parivar 2018). Moreover, IONPs can be used in the embedded scaffold structures for cardiovascular tissue engineering. For instance, Mou and co-workers treated the cardiomyocytes with different concentrations of 2,3-dimercaptosuccinic acid (DMSA) modified IONPs. After the internalization of IONPs to the cells, IONPs showed peroxidase-like activity, which decreased ROS level in the cardiomyocytes. DMSA-IRONs peroxidase-similar activity imposes positive effects for enhancing the myocardial infarction remodeling (Figure 6) (Mou et al. 2015). Another study showed that the supplementation of DMSA-coated IONPs with cardiomyocytes led to overexpression of Cx43 in the cells, which promote gap junctions, desmosomes, and adherent junctions between the cardiomyocytes (Mou et al. 2018).
Figure 7. A-a) TEM image of Fe$_2$O$_3$@DMSA NPs (9.8 nm). b) TEM image of Fe$_2$O$_3$@DMSA NPs of (35.2 nm). B) The heart sections stained with triphenyl tetrazolium chloride solution a) Sham-operated control (Sham) b) Normal saline-treated (CAL) c) Fe$_2$O$_3$@DMSA NPs-treated (CAL 1 Fe$_2$O$_3$@DMSA NPs). d) Different sizes of the infarcted area in the heart sections in different groups. C-a) Different concentrations effect of iron oxide modified with 2, 3-dimercaptosuccinic (DMSA-IRONs) on cardiomyocytes with double immunofluorescence staining (α-actinin (green) and connexin 43 (red) nucleus (blue)). b) Effect of different concentrations of DMSA-IRONs on cardiomyocytes with double immunofluorescence staining (phalloidin (green) and N-cadherin (red) nucleus (blue)) (Mou et al. 2015; Xiong et al. 2015). (this figure has been reproduced from (Xiong et al. 2015) with permission from John Wiley and Sons, Copyright 2015).

Table 4. Magnetic nanomaterials used in cardiac tissue engineering applications

Magnetic nanomaterials	Scaffold	Result	Cell type	Applications	References
1	IONPs	Increase expression of cardiac-specific genes in hMSCs and lead to cardiac differentiation	MSCs + cardiac cells	IONPs are a clinically good candidate for the treatment of cardiovascular disease without toxic effect	(Yaniv et al. 2015)
2	PEG-SPIONs	SPION-labeled MSCs in the presence of magnetic field might be able to improve cell homing of MSCs in the site of injury	MSCs	SPION-labeled MSCs could contribute to improvement of cardiac functions	(Naseroleslami, Aboutaleb, and Parivar 2018)
3	IONPs	Enhance a gap junctional communication between MSC and the cardiomyoblast via activation of connexin-43	hBM-MSCs	potential therapeutic effect of IONP-cocultured MSCs	(Han et al. 2015)
4	IONPs	Labeling hBM-MSCs with IONP retain cell viability, proliferation rate and cardiogenic differentiation of hBM-MSCs	hBM-MSCs	IONP-labeled hBM-MSCs is safe and can be used in regenerative medicine	(Mohanty et al. 2018)
Enhance the expression of cardiac functional genes in ECCs and supports cardiac differentiation mouse embryonic cardiac cells (ECCs) promising candidate for functional cardiac tissue patches (Nazari, Heirani-Tabasi, Hajiabbas, Salimi Bani, et al. 2020)

5.2. Carbon-based nanomaterials

5.2.1 CNTS

Carbon nanotubes (CNTs) are carbon allotrope with the 2D graphene sheet that enrolled in cylindrical to form 1D nanoscale structures, which were discovered in 1991 (Santhosh et al. 2016). Generally, CNTs can be classified into two types: single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT). Depending on the synthesis condition, the diameter of SWCNTs is usually less than 1 nm, while the diameter of MWCNTs is 1.4 nm to 100 nm, due to the multiple one-atom-thick sheets of carbon (Jia and Wei 2019; De Volder et al. 2013). Carbon nanotubes have unique properties such as mechanical and thermal transfer features, tensile strength, and electrical conductivity (Prato 2010; Ahadian, Obregón, et al. 2016), which makes them an excellent candidate for drug delivery (Hughes 2017), cancer therapy (Gai et al. 2018), immunostimulatory activity (Wang and Mooney 2018), biosensor (Gupta, Murthy, and Prabha 2018), gene delivery (Taghavi et al. 2017) regenerative medicine, and tissue engineering applications (Shrestha et al. 2018). Several methods have been utilized for synthesizing CNTs such as the electric arc discharge method (Zhang, Zhao, et al. 2018), laser ablation method (Mocan et al. 2016), chemical vapor deposition (Xu et al. 2018). The heart tissue is made up of collagen and elastin fibers, which make a specific molecular network, and it provides unique electrical and mechanical properties for the heart (Dvir, Timko, Kohane, et al. 2011). It has been demonstrated in recent years that tissue engineering scaffolds containing electrically conductive nanomaterials can mimic the myocardial ECM (Ashammakhi, Ahadian, Xu, et al. 2019), and Among all conductive nanomaterials, CNTs have received special attention in recent years due to their unique electrical conductivity, topographical, and mechanical properties (Ashtari, Nazari, Ko, Tebon, Akhshik, Akbari, Alhosseini, Mozafari, Mehravi, and Soleimani 2019). Despite the above-mentioned spectacular properties of CNTs, the biocompatibility and direct utilization of these nanomaterials are controversial. Several studies suggest that the aggregation and agglomeration of CNTs could cause toxicity and poor dispersibility of CNTs in polar solvents (Li et al. 2007; Bagheri, Abdouss, and Shoushtari 2010; Urankar et al. 2012). To overcome these limitations and
further improve the electrical and mechanical properties of these nanostructured materials, many studies incorporated the CNTs into various polymeric scaffolds for cardiac tissue engineering (Zhou et al. 2014; Kankala et al. 2018). For instance, Dominguez et al. utilized a Vapor Phase Polymerization (VPP) technique, which is widely used to deposit thin film layers of conductive polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) or PPy onto non-conductive substrates to provide electrical conductivity. They utilized sugar grains as a porogen to manufacture 3D porous scaffolds composed of PEDOT and CNT. The results showed that the impedance of PEDOT/CNT ($|Z_{\text{PEDOT/CNT}}| = 6 \, \text{k\Omega}$) scaffolds at 0.1 Hz was significantly lower than PDMS/CNT ($|Z_{\text{PDMS/CNT}}| = 50 \, \text{k\Omega}$) and naked electrode filled with electrolyte PBS solution ($|Z_{\text{PBS}}| = 90 \, \text{k\Omega}$). The result showed that PEDOT/CNT scaffolds are highly conductive with tunable electrical and mechanical properties, which can play a major role in electroactive cell growth (Dominguez-Alfaro et al. 2019). Another study by Martinelli et al. showed that CNTs can be utilized as scaffolds to encourage the growth of cardiomyocytes, formation of the functional syncytium, and electrophysiological maturation. They developed an elastomeric scaffold made of integrated MWCNTs into polydimethylsiloxane (PDMS) containing micrometric cavities. They found that the 3D-PDMS+MWCNT can promote cell viability, proliferation, and functional maturation of cardiac myocytes (Martinelli et al. 2018). In another study Ahadian and colleagues described the incorporation of MWCNTs into polymer 124, which enhanced the electrical conductivity, swelling ability, and tissue maturity. This scaffold showed an improvement in the excitation threshold of materials with 0.5% CNT content ($3.6 \pm 0.8 \, \text{V/cm}$) compared to materials with 0% ($5.1 \pm 0.8 \, \text{V/cm}$) and 0.1% ($5.0 \pm 0.7 \, \text{V/cm}$), suggesting greater tissue maturity (Ahadian, Huyer, et al. 2017). Furthermore, CNTs can be integrated into hydrogels, which can increase their biocompatibility and electrical activity (Sun et al. 2017). Hydrogel matrices have been widely developed for tissue engineering purposes. Various properties of hydrogels such as chemical, physical, and mechanical properties can be modified, which provide unique opportunities to enhance cell adhesion and cell viability for myocardium repair (Camci-Unal et al. 2014; Wu et al. 2017). For the first time, a study in 2014 proved that Electroconvulsive therapies (ECTs) based on CNTs could improve heart function. An SWCNT (1.5 mg/mL)/gelatin hydrogel was constructed to provide a microenvironment, which promotes cardiac contractility, the formation of gap junction, the expression of electrochemical associated proteins in vitro, and enhanced cardiac function in vivo (Zhou et al. 2014). Furthermore, several studies reveal that CNT
incorporation in natural hydrogels like collagen with enhanced elastic modulus could support the
growth of cardiomyocytes to increase the mechanical strength and electrical performance for
cardiac tissue engineering (Yu, Zhao, et al. 2017). For example, Sun et al. demonstrated that
incorporation of SWCNTs embedded in small concentrations (1 wt%) within Collagen hydrogels
can promote cell adhesion, cell elongation, cell alignment, and assembly of neonatal rat ventricular
cardiomyocytes (NRVM). However, cell viability was significantly decreased with concentrations
of CNTs up to 2 wt%, suggesting higher concentrations of CNTs incorporated within hydrogels
showed cell toxicity. The CNT/Collagen-hydrogel platform led to improved mechanical
contraction potential and better functionality of cardiac constructs (Sun et al. 2017). Recent
advances in tissue engineering by various methods for the fabrication of polymeric scaffolds have
significantly improved our ability to mimic native cardiac tissue. Among them, electrospinning is
well known for its capability of mimicking the fibrillary structure of myocardial ECM to
promoting cardiomyogenesis and tunability of the 3D architecture of the biodegradable scaffolds
to make effective propagation of electric potential among the cardiomyocytes (Kitsara et al. 2017;
Martinelli et al. 2012). For example, GelMA-coated CNTs were incorporated in PGS/gelatin
electrospun nanofibers to produce a CNT polymeric hybrid composite as a graft for cardiac tissue
constructs. In another study, Shin and colleagues fabricated aligned CNT forest microelectrode
arrays, which were embedded into flexible and biocompatible hydrogels. This construct showed
an excellent anisotropic electrical conductivity with control over actuation behavior. After
culturing the cardiomyocyte for 5–8 days, the cells showed homogeneous cell organization
(homogenous Cx-43 distribution), with improved cell-cell interactions, and maturation (Figure 8)
(Shin et al. 2015). Furthermore, Kharaziha et al. reported that incorporation of 1.5% CNTs within
the PG nanofibrous scaffolds (aligned CNT-PG hybrid scaffold) significantly enhanced fiber
alignment and improved electrical conductivity and mechanical properties of the scaffolds, which
showed enhanced beating qualities (3.5-fold lower excitation threshold and 2.8-fold higher
maximum capture rate) for the cultured cardiac tissue (Kharaziha et al. 2014). In a related study,
Liu et al. used coaxial electrospinning technique to fabricate highly aligned and hybrid fibers (D
= 2–3 µm) through incubation of 3% MWCNTs (10–20 nm in diameter, 10–20 µm in length) in
poly(ethylene glycol)-poly(D, L-lactide) copolymers (PELA) (Mw = 42.3 kDa, Mw/Mn = 1.23)
to increase electrical conductivity and promote cell growth, cell viability, cell elongation and
synchronous beating rates for cardiomyocyte (reached 75 ± 8 times/min) (Liu et al. 2016). Despite
all CNTs applications in the biomedical field, different studies have confirmed their various levels of toxicity (Muller et al. 2005; Lanone et al. 2013; Chen et al. 2014). Besides the effect of concentration and shape dependency, SWCNTs can produce more cytotoxicity compared to MWCNTs (Zhang et al. 2010; Wang et al. 2011). Moreover, several investigations have been reported high concentrations of CNTs could be toxic to cardiomyocytes (Helfenstein et al. 2008; Correa-Duarte et al. 2004). However, the main cause of these toxicities is mostly related to the structural, physical, and surface properties of CNTs. Therefore, surface modifications can significantly improve the biocompatibility of these nanomaterials (Kim et al. 2012; Moorthi, Tyan, and Chung 2017). Furthermore, other techniques such as the use of certain enzymes, functionalization of surface, and improving biodegradability by incorporating with polymeric scaffolds or hydrogels can effectively eradicate or reduce the toxicity of CNTs (Amani, Arzaghi, et al. 2019).

Figure 8. A) A Schematic illustrating the fabrication steps to generate vertically aligned CNT forest micro-electrode arrays in multilayer hydrogels sheet to engineer cardiac tissue based 3D biohybrid actuators. B-a) SEM images of thin-film arrays with the uniform alignment of CNT micro-
electrode (460 μm width, 300 μm height, 50 μm thick, and 200 μm spaced between each micro-electrode), B-b) magnified the surface of CNT forest micro-electrode c) 3D interconnected network of CNT with tortuosity morphology. B-d,e) High-resolution transmission electron microscopy (HRTEM) was utilized to characterize the diameter distribution of CNTs inside the CNT forests. B-f) the distribution of inner diameter of the MWNTs in the CNT forests. C-a) freestanding 3D biohybrid actuator image with an average beating rate of 108 BPM on day 8. C-b) A side view schematic illustration of the multilayer hydrogel sheet saturated with aligned CNT microelectrodes and the Phase contrast image of the boundary between the CNT forest electrodes boundary and the hydrogel layer. D) Immune staining of cardiac cells on CNT-GelMA (sarcomeric α-actinin (green), nuclei (blue), and Cx-43 (red)). E) CNT forest electrode displacement in the multilayer hydrogel sheet under electrical stimulation (Shin et al. 2015). (this figure has been reproduced from (Shin et al. 2015) with permission from John Wiley and Sons, Copyright 2015).

Table 5. Summary of studies that researched CNTs usage in cardiac tissue engineering

CNTs nanomaterials	Scaffold	Result	Cell type	Applications	References
1	SWCNTs/Gelatin hydrogels	regulate the microenvironment of infarct myocardium to enhance the structural integration	Ventricular cardiac cells	therapeutic potential in engineering cardiac tissues to repair myocardial infarction	(Zhou et al. 2014)
2	EB-CNTs	lower proliferation and higher differentiation	embryoid bodies (EBs)	Enhance the cardiac differentiation and beating activity	(Ahadian, Yamada, et al. 2017)
3	PVA-CS-CNTs	enhance the adherence of MSCs to scaffold and non-toxic for cell growth	MSCs	Suitable platform for cardiomyogenic differentiation and cardiac applications	(Mombini et al. 2019)
4	CNT-Col substrates	improve cardiac differentiation	brown adipose-derived stem cells (BASCs)	More effective for cardiomyogenesis and potentially safer source for cardiac regeneration	(Sun et al. 2016)
5	SWCNT/collagen hydrogels	enhanced cell–cell alignment and functionality of cardiac constructs	cardiomyocyte	Candidate for pharmacologic treatments and serve as an injectable material for cardiac applications	(Sun et al. 2017)
---	--------------------------	---	----------------	---	------------------
6	CNTs/GelMA hydrogels	support the cardiac differentiation of EBs via expression of several cardiac genes	mouse EBs	controllable platform for cell therapy applications	(Ahadian, Yamada, et al. 2016)
7	SWCNTs/gelatin scaffold	Improve cell proliferation, electrical excitability and enhance differentiation into cardiac phenotype	rat cardiomyoblasts	potentially enhance electrical excitability to make mature cardiac phenotype	(Cabiati et al. 2018)
8	MWCNT/decellularized pericardial matrix hydrogel	Increase cellular alignment and enhance connexin 43 expression of the hiPSC-derived cardiomyocytes	hMSCs and hiPSC derived cardiomyocytes	provide a promising material for stem cell therapy applications	(Roshanbinfar, Mohammadi, et al. 2019)
9	thiophene-MWCNTs/PCL	Induce cell proliferation and cell differentiation	cardiovascular progenitor cells (CPCs)	promising candidate for postmyocardial infarction myocardium	(Wickham et al. 2014)
10	MWCNTs/glass coverslips	Improve cell viability and proliferation and promote spontaneous electrical activity in cardiac myocytes	neonatal rat ventricular myocytes	MWCNTs are able to promote cardiomyocyte maturation	(Martinelli et al. 2012)
11	MWCNTs/glass coverslips	Induce the expression of cardiac-specific genes	neonatal rat ventricular myocytes	MWCNTs are able to promote physiological growth and functional maturation	(Martinelli et al. 2013)
11	MWCNTs/PDMS	Improve cell viability, proliferation, elongation, alignment, and retention	neonatal rat ventricular myocytes	provide a promising material for innovative therapies for cardiac repair	(Martinelli et al. 2018)
	Material System	Effect	Cell Type	Application	Reference
---	--	--	------------------------------------	--	-----------
12	CNTs/GelMA hydrogels	Induce the expression of several cardiac-specific genes and promote cell adhesion, spreading, retention, and viability	neonatal rat CMs	Incorporation of CNTs into gelatin could be useful in cardiac cell therapy applications	(Shin et al. 2013)
13	alginate coated CNTs/methacrylate/d collagen 3D printed cardiac patch	Enhance cell attachment, elongation, proliferation and migration of human coronary artery endothelial cells	HCAECs	Potentially suitable as pre-vascularized hybrid cardiac patches for cell therapy applications	(Izadifar et al. 2018)
14	SWCNTs/PNIPAAm hydrogels	Induce cardiogenic differentiation and improve cell adhesion, spreading, and proliferation of BASCs	brown adipose-derived stem cells (BASCs)	Myocardial application of SWCNTs/PNIPA Am hydrogels for improvement of cardiac tissue engineering	(Li et al. 2014)
15	CNTs/GelMA hydrogels	Enhance mechanical properties and cell viability, spreading and proliferation	NIH-3T3 fibroblasts and hMSCs	CNT incorporated GelMA can be useful for in vitro cell studies	(Shin et al. 2012)
16	SWCNTs/GelMA hydrogels	Improve cell proliferation, differentiation and maturation into cardiac phenotype and enhance	H9C2 rat cardiomyoblasts	Gel-SWCNT scaffolds is promising candidate for cardiac tissue engineering	(Cabiati et al. 2018)
17	CNT/PLA scaffold	Enhance cell elongation and cardiogenic differentiation of hMSCs	hMSCs	CNT/PLA scaffold is promising candidate for electroactive tissue repair applications	(Mooney et al. 2012)
18	SWNTs/PU/gelatin scaffold	Improve electrical conductivity of the scaffold and enhance cell proliferation and adhesion	H9C2 cells and HUVECs	SWNTs/PU/gelatin scaffold can be effective for cardiovascular tissue engineering	(Tondnevis, Keshvari, and Mohandes 2020)
	MWCNTs /PU scaffold	Enhance cytocompatibility, cell adhesion, and cell proliferation	H9C2 cells and HUVECs	potential application in cardiac tissue engineering	
---	----------------------	---	-----------------------	--	
19				(Shokraei et al. 2019)	
20	amino benzyl-CNTs/lysine reverse thermal gel	improve cardiomyocytes survival, proliferation, alignment, and maturation with expression of Actn and Cx43 proteins	cardiomycocytes	potential application in cardiac tissue engineering	(Peña et al. 2017)

5.2.2. Graphene-based nanomaterials

Graphene-based nanomaterials (GBNs) is a two-dimensional carbon structure, which developed as a novel class of material with remarkable physicochemical properties and various applications (Amani et al. 2018; Xia et al. 2019). The GBNs including several graphene structures such as Graphene Oxide (GO), Reduced Graphene Oxide (RGO), Graphene Nanosheets, Few-Layered Graphene (FLG) and, Ultra-Thin Graphite have different varieties in surface properties, purity, size, and lateral dimensions. Various methods can be used for the preparation of GBNs depending on their applications such as micromechanical cleavage, chemical vapor deposition, epitaxial growth on silicon carbide, electrochemical synthesis, total organic synthesis, and other methods (Lü, Zhao, and Wang 2012). Graphene can be functionalized with various molecules since they have great surface chemical properties, which enhance their variety of applications (Jastrzębska, Kurtycz, and Olszyna 2012). GBNs are expected to exhibit specific interaction with biomolecules, cells, and tissues based on their number of layers, chemical functionality, dimensions, hydrophilicity, etc. The high surface area of graphene facilitates its cellular interactions (Goenka, Sant, and Sant 2014). The specific properties of GBNs, such as high conductivity, flexibility, and adaption to smooth/rough surfaces make them ideal for structural strengthening of tissue-based materials, and it has the ability to enhance the differentiation, proliferation, and adhesion of stem cells. For instance, functional groups of a scaffold, such as carboxyl, hydroxyl, and amine groups are crucial to regulating cell functions (Darvishi, Ahadian, and Savoji 2019). Graphene oxide is one of the most popular GBNs, which can be easily modified due to the functional groups in its structure such as hydroxyl, carboxyl, and epoxy. In addition,
GO can be easily converted by thermal and chemical reduction into RGO, which makes GO a successful precursor for the production of G-based composites. GO, RGO and other GBN composites can be chemically manipulated for interaction with different biological molecules such as proteins, peptides. Furthermore, GBNs have a high antimicrobial activity, which promotes their function in tissue engineering by reducing infections (Li et al. 2017; Shareena et al. 2018). Besides, hybridization of GO and RGO with other nanoparticles such as AgNPs (de Faria et al. 2014; Zhu et al. 2013), TiO₂ NPs (Akhavan and Ghaderi 2009) and, Fe₃O₄ NPs (Deng et al. 2014) can increase their antibacterial activity. All these specific features of GBNs, make them a popular tool in tissue engineering (Nayak et al. 2011; Shin, Li, et al. 2016). For example, Nayak and co-workers showed the effect of graphene synthesized with chemical vapor deposition (CVD) on the enhancement of GBNs ability for the differentiation of human mesenchymal stem cells. They reported that the large-scale surface characteristics induced by the ripples in the CVD graphene play a vital role in cell adhesion and differentiation. Furthermore, graphene's capacity to withstand lateral stress was thought to provide adequate local cytoskeletal resistance for differentiation of the bone stem cells (Nayak et al. 2011). Furthermore, GBNs have shown great potential to regulate the in vitro and in vivo cardiac differentiation by improving the electrical and mechanical conductivity of scaffolds and providing appropriate morphological indications. In a study by Lee et al. the vitronectin (VN) coated graphene effect on cardiomyogenesis of human embryonic stem cells (hESCs) was evaluated. They cultured hESCs on three different substrates including VN-coated graphene (graphene group), VN-coated glass (glass group), and glass coated with Matrigel (Matrigel group). The cultivation of hESCs on VN-graphene stimulated the expression of genes, which led to the gradual differentiation into the mesodermal and endodermal lineage. Ultimately, Graphene improved the cardiomyogenic differentiation of stem cells because of its roughness and upregulation of the ERK signaling pathway. As a result, graphene can provide a new approach for stem cell therapy for ischemic heart disease by improving the cardiomyogenic differentiation of hESCs (Lee et al. 2014). In another study by Ahadian and co-workers, graphene integrated into the structure of mouse embryoid bodies (EBs), which significantly improved cardiac differentiation of EBs (Ahadian, Zhou, et al. 2016a). Furthermore, Park et al. reported that MSCs coupled with GO showed an excellent cell survival in vivo for cardiac repair since the GO preserved the cells against reactive oxygen species. They developed the GO flakes to protect the implanted MSCs from ROS-mediated death thereby improving the therapeutic efficacy of the
MSCs (Park, Kim, Han, et al. 2015). In another study, RGO flakes with the thickness of 1–2 nm and the size range of 2–5 µm were inserted into hMSC spheroids, which led to an increase in cardiac specific-biomarkers. The high electrical conductivity of RGO and hybridization of RGO with hMSCs spheroids, enhanced heart repair and its function compared to RGO alone or hMSCs alone. One of the best advantages of this hybrid method is the efficient delivery of cells to damaged tissue, and multiple pharmaceutical molecules can be loaded onto the graphene for sustainable drug release (Figure 9) (Park, Kim, Ryu, et al. 2015). GBNs can combine with different scaffolds and enhance their electrical conductivity and mechanical properties. . In a recent study, Norahan et al. showed different biological and antibacterial effects of RGO coating on collagen scaffolds for cardiac patch applications. They showed that rGO significantly improved mechanical properties and the electroactivity of the collagen scaffolds (1100 ± 31 kPa, 4 × 10−4 ± 1.20 S/m). Electroactive RG-collagen scaffolds enhanced the expression of cardiac-specific genes such as Cx43, troponin-T and, actinin-4 compared to collagen scaffolds counterpart. Also, the coating of collagen scaffolds with RGO increased the antibacterial activity against E. coli, S. aureus, and S. pyogenes, which can reduce the chance of the infection (Norahan, Pourmokhtari, et al. 2019).
Figure 9. A) Schematic illustration of RGO flake and MSC spheroids for the treatment of myocardial infarction. B) The effect of implanting MSC–RGO hybrid spheroids on cardiac function and regeneration a) Capillary density in the peri-infarct border zone assessed by immunostaining b) Masson's trichrome staining for the indication of cardiac fibrosis (blue). c) Expression of Cx43 (red) in the infarct zone by immunohistochemical staining. C) Characterization of gap junctions in MSC–RGO hybrid spheroids with calcein AM (green) and
Dil (red) staining (the yellow colors show the transfer from green to red) (Park, Kim, Ryu, et al. 2015). (this figure has been reproduced from (Park, Kim, Ryu, et al. 2015) with permission from John Wiley and Sons, Copyright 2015).

Table 6. Graphene-based nanomaterials applied in cardiac tissue engineering applications

Graphene-based nanomaterials	Scaffold	Result	Cell type	Applications	References
1	GO/alginate	Increase cardiac maturation and cell viability under oxidative stress	MSCs + cardiomyocytes	Improve cardiac function and high cell protection capacity	(Choe et al. 2019)
2	Graphene substrate	Promote maturation hiPSC-derived cardiomyocytes	hiPSCs	Induce cardiomyocyte development and enhance electrophysiological function	(Wang et al. 2017)
3	Vitronectin (VN) - coated graphene	Promote cardiomyogenic differentiation	hESCs	Suitable platform for the development of stem cell therapies for ischemic heart diseases	(Lee et al. 2014)
4	GO/collagen	Induce angiogenesis and enhance expression of several cardiac genes	neonatal cardiomyocyte	Appropriate cardiac patch for cardiovascular applications	(Norahan, Amroon, et al. 2019)
5	graphene film	Enhance biocompatibility, cell attachment, cell proliferation and normal contractile activity of CMs	adult rat CMs	graphene materials are excellent supports for the biological cells applications	(Kim et al. 2013)
6	graphene embedded EBs	Enhance cell differentiation, mechanical and electrical properties but decrease cell proliferation of EBs	mouse embryoid bodies (EBs)	affect in directing the cardiac differentiation of EBs	(Ahadian, Zhou, et al. 2016b)
	Material	Effects	Cell Types	Potential Applications	References
---	-------------------------------	--	-----------------------------------	--	----------------------------------
7	graphene coated coverslips	Promote the cardiomyogenic differentiation of hMSCs and enhance expression of several cardiac genes and ECM-associated proteins	hMSCs	Suitable platform for stem cell therapies	(Park et al. 2014)
8	GO flakes	Enhance cell attachment, survival, and cell–ECM interaction	hMSCs	GO can be utilized to protect therapeutic cells implanted into various ROS abundant damaged tissue	(Park, Kim, Han, et al. 2015)
9	rGO flakes	Improve cell–ECM interaction and promote the expression of several cardiac genes and secretion of paracrine growth factors	hMSCs	GO can be utilized to improve cardiac repair and cardiac function of the infarcted myocardium	(Park, Kim, Ryu, et al. 2015)
10	PLL/GO nanofilm	Promote cell viability, proliferation, elongation, organization, and maturation	neonatal rat CMs, ECs, and hMSCs	Potential application in cardiac tissue engineering	(Shin et al. 2014)
11	rGO/GelMA hydrogel	Enhance cell viability, proliferation, and maturation of cardiomyocyte	neonatal rat CMs	rGO incorporated hybrid hydrogels can potentially used for drug studies and cardiac tissue engineering	(Shin, Zühlmann, et al. 2016)
12	rGO/silk fibers	Improve maturation of cytoskeleton structure and enhance the expression of several cardiac proteins such as Actn, cTnl, and Cx43	neonatal rat CMs	Great potential of rGO/silk fibers for the regeneration of functional excitable tissues	(Zhao et al. 2018)
13	rGO/silk fibers	Improve biocompatibility and enhance cell attachment with expression of several cardiac functional genes	TBX18-transduced hiPSCs	Suitable candidate for cardiac tissue engineering	(Nazari, Heirani-Tabasi, Hajiabbas, Khalili, et al. 2020)
5.3. Polymeric nanomaterials

One of the main aspects of tissue engineering is controlling the stem cells’ behavior, which can be achieved by traditional ways such as utilizing growth factors and cell signaling molecules. However, such methods are inadequate, due to the erratic distribution, short half-life, limited tissue penetration, and enzymatic degradation of growth factors. These limitations can be overcome by the incorporation of growth and signaling factors with polymeric nanomaterials (natural or synthetic) as a vehicle for the delivery of growth factors. These factors can either load into or absorb to the surface of various polymeric nanomaterials structures such as polymeric nanoparticles (sphere or capsules) and hydrogels (Sharma 2019; Yadav et al. 2019). Other polymeric structures are conductive polymers such as Polypyrrole and Polyaniline that can be synthesized as a scaffold for cardiac tissue engineering, thereby, improving the cardiac cells migration, proliferation, and differentiation (Ashtari, Nazari, Ko, Tebon, Akhshik, Akbari, Alhosseini, Mozafari, Mehravi, and Soleimani 2019). Gelmi and coworkers investigated the culture of human iPSCs in PLGA fibers with a layer of Polypyrrole (PPy). The PLGA fibers coated PPy increased the cell viability and expression of specific cardiac markers (Actinin, Myh6, Nkx2.5, GATA4, c-kit) without any cytotoxic effects. This study showed the first application of PPy as an appropriate supportive conductive material and a dynamic mechanical stimulating fiber scaffold for hiPSCs (Gelmi et al. 2016). Also, some studies incorporated Polyaniline into different polymers and hydrogels to produce electrically conductive scaffolds for cardiac tissue engineering. Polyaniline is one of the commonly observed conductive polymers, offering simple synthesis, controllable electrical properties, and environmental stability (Cui et al. 2013; Qazi et al. 2014; Dong et al. 2016). Combining Polyaniline with various biological materials can improve its biocompatibility. For example, Moura and co-workers functionalized Polyaniline with
polyglycerol dendrimers with high hydrophilicity and showed this combination increased the capacity of the scaffold to support the cardiac cells adhesion and proliferation (Moura and de Queiroz 2011). In a recent study by Roshanbinfar et al. the effect of electrospun fiber mats with different conductive materials such as polyaniline, collagen, and hyaluronic acid on cardiomyocyte attachment and contraction was investigated. They tested various concentrations of polyaniline in the nanofibrous composite and showed fiber mats contained polyaniline (1.34%) had the most desirable properties with a longer contraction time, lower beating rates, and greater contractile amplitude (Figure 10) (Roshanbinfar et al. 2020). The unique feature of piezoelectric scaffolds such as Polypyrrole and Polyaniline in generating electric charge with little mechanical forces make them attractive in cardiac tissue engineering applications. Hitscherich and co-workers utilized a piezoelectric scaffold made from electrospun polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) and evaluated its effect on mouse embryonic stem cell-derived cardiomyocytes (mES-CM). They cultured mES-CM on PVDF-TrFE and showed that the expression of cardiac genes increased in the mES-CM, and these cells contracted automatically with an exhibition of well-organized sarcomeres. This study Illustrated the efficacy of PVDF-TrFE scaffolds as a suitable material for the production of engineered cardiovascular tissues using stem cells (Hitscherich et al. 2015).
Figure 10. A) Morphology properties of various electrospun scaffolds. B) Microstructure of various fiber mats with confocal microscopy (the yellow arrow shows the presence of polyaniline in the scaffold). C) Expression of the cardiomyocyte-specific markers (troponin I, sarcomeric-α-actinin) for neonatal cardiomyocytes cultured at day 5. D) Confocal image of cardiomyocyte-specific markers (troponin I, sarcomeric-α-actinin) for hiPSC-derived cardiomyocytes cultured on electrospun fiber mats at day 5 (Roshanbinfar, Vogt, et al. 2019). (this figure has been reproduced from (Roshanbinfar, Vogt, et al. 2019) with permission from John Wiley and Sons, Copyright 2015).
Table 7. Examples of the use of polymeric nanomaterials in cardiac tissue engineering

Polymeric nanomaterials	Scaffold	Result	Cell type	Applications	References
1	Collagen–HA–PANI fibers	Improve electrical conductivity and mechanical properties as the native myocardium	cardiomyocytes	Suitable substrates for cardiac tissue engineering	(Roshanbinfar et al. 2020)
2	PLGA + Simvastatin conjugated nanoparticles (SimNPs)	Induce Proliferation and Migration Activities of hAdSCs	AdSCs	Induce endogenous cardiac regeneration and improve cardiac function in myocardial infarction	(Yokoyama et al. 2019)
3	PANI/PCL patch	promote the cardiomyogenic differentiation of hMSCs	hMSCs	PANI/PCL patch potentially enhance the regeneration of damaged myocardium	(Borriello et al. 2011)
4	PGS/aniline trimer scaffold	enhance cell proliferation, alignment, and elongation of H9C2 cells	H9C2 cells	Suitable polymeric films for cardiac tissue repair and regeneration	(Hu et al. 2019)
5	Silk/PPy composite scaffolds	Increase cell viability cellular organization and sarcomere development	hPSC-derived cardiac cells	appropriate substrate for cardiovascular applications	(Tsui et al. 2018)
6	PU-AP/PCL scaffold	Enhance cell proliferation and expression of several cardiac genes	rat cardiomyocyte	PU-AP/PCL scaffold is useful for tissue engineering and regenerative purposes	(Baheiraei et al. 2015)

6. Conclusion and future perspective

Cardiovascular diseases that involve the heart and blood vessels can be introduced as the number one cause of death worldwide in the past few years (Ashammakhi, Ahadian, Darabi, et al. 2019). The rapid development of nanotechnology provides various nanomaterials with diverse features. The combination of nanomaterials and stem cell research offers new approaches for the treatment of various cardiovascular diseases since the regeneration ability of cardiovascular tissues is quite limited compare to other organs. However, various bulk and surface properties of nanomaterials
can affect stem cell behaviors by modulating underlying intracellular pathways. Understanding these features and their effect on cellular behavior opens new effective ways to take control of stem cell fate, which is crucial in designing new nanomaterials suitable for cardiac tissue engineering. The surface properties of nanomaterials can control stem cell attachment. For example, hydrophilic surfaces enhance cell adherence and cell spreading on the surface of nanomaterials. Moreover, the surface topology is the determinant of cell arrangement and cell alignment on the surface of nanomaterials. After cell attachment, migration, proliferation, and differentiation are the next steps for directing stem cells towards cardiac cell lineage. For example, it has been shown that large pore sizes in biomaterials increase angiogenesis, cell migration, and proliferation (Zeltinger et al. 2001). Furthermore, various properties of nanomaterials can induce differentiation of stem cells into cardiac cells. Li et al. showed that controlling the mechanical properties is enough for inducing MSCs differentiation into cardiomyocytes by designing a hydrogel with a Young’s modulus of 65 kPa (Li et al. 2012). Nevertheless, before using nanomaterials in clinical applications, several factors should be considered thoroughly. For example, the toxicity of nanomaterials should be investigated in depth since some nanomaterials can be quite toxic. Generally, the metallic nanoparticles are more toxic compared to other nanoparticles. Moreover, soluble nanoparticles showed more toxicity compared to the particles, which bind to a substrate. Functionalization of a substrate with metallic nanoparticles could be an efficient way for cardiovascular tissue engineering. On one hand, the functionalization of a substrate can decrease the toxicity related to metallic nanoparticles and in another hand, the electrical conductivity of such particles can efficiently benefit the differentiation and alignment of stem cells. Furthermore, electroconductive nanomaterials not only can mimic the myocardial ECM but also can support the electromechanical integration of cardiomyocytes (Ashtari, Nazari, Ko, Tebon, Akhshik, Akbari, Alhosseini, Mozafari, Mehravi, and Soleimani 2019). In addition to metallic nanoparticles, graphene base nanomaterials and intrinsically conductive polymers (polypyrroles, polythiophenes, poly (3,4-ethylenedioxythiophene), polyanilines, etc) can be used in cardiovascular tissue engineering. Undoubtedly, the biocompatibility of carbon-based nanomaterials and the mechanical properties of conductive polymers should be investigated thoroughly. Consequently, numerous challenges should be overcome to utilized nanomaterials to address CVDs treatment’s obstacles in clinics.
Conflict of interest
The authors declare no conflict of interest.

Acknowledgements
H. Arzaghi, B. Rahimi and B. Adel contributed equally to this work.
References

Abdelhalim, Mohamed Anwar K. 2011. 'Exposure to gold nanoparticles produces cardiac tissue damage that depends on the size and duration of exposure', Lipids in health and disease, 10: 205.

Aghdam, Rouhollah Mehdinavaz, Saeed Shakhesi, Siyamak Najarian, Mona Malek Mohammadi, Seyed Hossein Ahmadi Tafti, and Hamid Mirzadeh. 2014. 'Fabrication of a nanofibrous scaffold for the in vitro culture of cardiac progenitor cells for myocardial regeneration', International Journal of Polymeric Materials and Polymeric Biomaterials, 63: 229-39.

Ahadian, S., Y. Zhou, S. Yamada, M. Estili, X. Liang, K. Nakajima, H. Shiku, and T. Matsue. 2016a. 'Graphene induces spontaneous cardiac differentiation in embryoid bodies', Nanoscale, 8: 7075-84.

Ahadian, Samad, Locke Davenport Huyer, Mehdi Estili, Bess Yee, Nathaniel Smith, Zhensong Xu, Yu Sun, and Milica Radisic. 2017. 'Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering', Acta biomaterialia, 52: 81-91.

Ahadian, Samad, Raquel Obregón, Javier Ramón-Azcón, Georgina Salazar, Hitoshi Shiku, Murugan Ramalingam, and Tomokazu Matsue. 2016. 'Carbon nanotubes and graphene-based nanomaterials for stem cell differentiation and tissue regeneration', Journal of nanoscience and nanotechnology, 16: 8862-80.

Ahadian, Samad, Shukuyo Yamada, Mehdi Estili, Xiaobin Liang, Ramin Banan Sadeghian, Ken Nakajima, Hitoshi Shiku, Tomokazu Matsue, and Ali Khademhosseini. 2017. 'Carbon nanotubes embedded in embryoid bodies direct cardiac differentiation', Biomedical microdevices, 19: 57.

Ahadian, Samad, Shukuyo Yamada, Javier Ramón-Azcón, Mehdi Estili, Xiaobin Liang, Ken Nakajima, Hitoshi Shiku, Ali Khademhosseini, and Tomokazu Matsue. 2016. 'Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies', Acta biomaterialia, 31: 134-43.

Ahadian, Samad, Yuanshu Zhou, Shukuyo Yamada, Mehdi Estili, Xiaobin Liang, Ken Nakajima, Hitoshi Shiku, and Tomokazu Matsue. 2016b. 'Graphene induces spontaneous cardiac differentiation in embryoid bodies', Nanoscale, 8: 7075-84.

Ahn, Seungkuk, Christophe O Chantre, Alanna R Gannon, Johan U Lind, Patrick H Campbell, Thomas Grevesse, Blakely B O'Connor, and Kevin Kit Parker. 2018. 'Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing', Advanced healthcare materials, 7: 1701175.

Akhavan, O, and E Ghaderi. 2009. 'Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation', The Journal of Physical Chemistry C, 113: 20214-20.

Al Badarin, Firas, Ahmed Aljizeeri, Fatimah Almasoudi, and Mouaz H. Al-Mallah. 2017. 'Assessment of myocardial blood flow and coronary flow reserve with positron emission tomography in ischemic heart disease: current state and future directions', Heart Failure Reviews, 22: 441-53.

Al Kindi, Adil, Yin Ge, Dominique Shum-Tim, and R. C. Chiu. 2008. 'Cellular cardiomyoplasty: routes of cell delivery and retention', Front Biosci, 13: 2421-34.
Albanesea, Tangps, and C Chanw. 2012. 'The effect of nanoparticle size, shape, and surface chemistry on biological systems', *Annual Review of Biomedical Engineering*, 14: 1.

Allison, Shelby, Manuel Ahumada, Cristina Andronic, Brian McNeill, Fabio Variola, May Griffith, Marc Ruel, Veronique Hamel, Wenbin Liang, and Erik J Suuronen. 2017. 'Electroconductive nanoengineered biomimetic hybrid fibers for cardiac tissue engineering', *Journal of Materials Chemistry B*, 5: 2402-06.

Amani, Hamed, Hamidreza Arzaghi, Mehrdad Bayandori, Amin Shiralizadeh Dezfuli, Hamidreza Pazoki-Toroudi, Abbas Shafiee, and Lida Moradi. 2019. 'Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques', *Advanced Materials Interfaces*, 1900572.

Amani, Hamed, Ebrahim Mostafavi, Mahmoud Reza Alebouyeh, Hamidreza Arzaghi, Abolfazl Akbarzadeh, Hamidreza Pazoki-Toroudi, and Thomas J. Webster. 2019. 'Would colloidal gold nanocarriers present an effective diagnosis or treatment for ischemic stroke?', *International Journal of Nanomedicine*, 14: 8013.

Amani, Hamed, Ebrahim Mostafavi, Hamidreza Arzaghi, Soodabeh Davaran, Abolfazl Akbarzadeh, Omid Akhavan, Hamidreza Pazoki-Toroudi, and Thomas J. Webster. 2018. 'Three-dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering', *ACS biomaterials science & engineering*, 5: 193-214.

Amani, Hamed, Mohammad-Ali Shahbazi, Carmine D'Amico, Flavia Fontana, Samin Abbaszadeh, and Hélder A Santos. 2021. 'Microneedles for painless transdermal immunotherapeutic applications', *Journal of Controlled Release*, 330: 185-217.

Angelina, J Tracy Tina, S Ganesan, TMR Panicker, R Narayani, M Paul Korath, and K Jagadeesan. 2017. 'Pulsed laser deposition of silver nanoparticles on prosthetic heart valve material to prevent bacterial infection', *Materials Technology*, 32: 148-55.

Arima, Yusuke, and Hiroo Iwata. 2007. 'Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers', *Biomaterials*, 28: 3074-82.

Artel, Arsun, Hamidreza Meh dizadeh, Yu-Chieh Chiu, Eric M Brey, and Ali Cinar. 2011. 'An agent-based model for the investigation of neovascularization within porous scaffolds', *Tissue Engineering Part A*, 17: 2133-41.

Arzaghi, Hamidreza, Bashir Adel, Hossein Jafari, Shaghayegh Askarian-Amiri, Amin Shiralizadeh Dezfuli, Abolfazl Akbarzadeh, and Hamidreza Pazoki-Toroudi. 2020. 'Nanomaterial integration into the scaffolding materials for nerve tissue engineering: a review', *Reviews in the Neurosciences*, 1.

Asati, Atul, Santimukul Santra, Charalambos Kaittanas, and J Manuel Perez. 2010. 'Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles', *ACS nano*, 4: 5321-31.

Ashammakhi, Nuredinn, Samad Ahadian, Mohammad Ali Darabi, Mario El Tahchi, Junmin Lee, Kasinan Suthiwanchi, Amir Sheikh, Mehmet R Dokmeci, Rahmi Oklu, and Ali Khademhosseini. 2019. 'Minimally invasive and regenerative therapeutics', *Advanced Materials*, 31: 1804041.

Ashammakhi, Nuredinn, Samad Ahadian, Chun Xu, Hossein Montazerian, Hyojin Ko, Rohollah Nasiri, Natan Barros, and Ali Khademhosseini. 2019. 'Bioinks and bioprinting
technologies to make heterogeneous and biomimetic tissue constructs', *Materials Today Bio*: 100008.

Ashtari, Khadijeh, Hojjatollah Nazari, Hyouin Ko, Peyton Tebon, Masoud Akhshik, Mohsen Akbari, Sanaz Naghavi Alhosseini, Masoud Mozafari, Bita Mehravi, and Masoud Soleimani. 2019. 'Electrically conductive nanomaterials for cardiac tissue engineering', *Advanced Drug Delivery Reviews*, 144: 162-79.

Ashtari, Khadijeh, Hojjatollah Nazari, Hyouin Ko, Peyton Tebon, Masoud Akhshik, Mohsen Akbari, Sanaz Naghavi Alhosseini, Masoud Mozafari, Bita Mehravi, Masoud Soleimani, Reza Ardehali, Majid Ebrahimi Warkiani, Samad Ahadian, and Ali Khademhosseini. 2019. 'Electrically conductive nanomaterials for cardiac tissue engineering', *Advanced Drug Delivery Reviews*, 144: 162-79.

Assmus, Birgit, Volker Schachinger, Claudius Teupe, Martina Britten, Ralf Lehmann, Natascha Döbert, Frank Grünwald, Alexandra Aicher, Carmen Urbich, and Hans Martin. 2002. 'Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI)', *Circulation*, 106: 3009-17.

Au, Hoi Ting H, Irene Cheng, Mohammad F Chowdhury, and Milica Radisic. 2007. 'Interactive effects of surface topography and pulsatile electrical field stimulation on orientation and elongation of fibroblasts and cardiomyocytes', *Biomaterials*, 28: 4277-93.

Baei, Payam, Sasan Jalili-Firoozipour, Sareh Rajabi-Zeleti, Mohammad Tafazzoli-Shadpour, Hossein Baharvand, and Nasser Aghdami. 2016. 'Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering', *Materials Science and Engineering: C*, 63: 131-41.

Bagheri, B, M Abdouss, and AM Shoushtari. 2010. 'New procedure for preparation of highly stable and well separated carbon nanotubes in an aqueous modified polyacrylonitrile', *Materialwissenschaft und Werkstofftechnik*, 41: 234-40.

Bai, Haifeng, Hamid Yeganeh, Jafar Ai, Reza Gharibi, Somayeh Ebrahimi-Barough, Mahmoud Azami, Sadafe Vahdat, and Hossein Baharvand. 2015. 'Preparation of a porous conductive scaffold from aniline pentamer-modified polyurethane/PCL blend for cardiac tissue engineering', *Journal of Biomedical Materials Research Part A*, 103: 3179-87.

Bartunek, Jozef, Atta Behfar, Dariouch Dolatabadi, Marc Vanderheyden, Miodrag Ostojic, Jo Dens, Badih El Nakadi, Marko Banovic, Branko Beleslin, and Mathias Vrolix. 2013. 'Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics', *Journal of the American College of Cardiology*, 61: 2329-38.

Beaglehole, Robert, and Ruth Bonita. 2008. 'Global public health: a scorecard', *The Lancet*, 372: 1988-96.

Bearzi, Claudia, Marcello Rota, Toru Hosoda, Jochen Tillmanns, Angelo Nascimbene, Antonella De Angelis, Saori Yasuzawa-Amano, Irina Trofimova, Robert W. Siggins, and Nicole LeCapitaine. 2007. 'Human cardiac stem cells', *Proceedings of the National Academy of Sciences*, 104: 14068-73.

Behra, Renata, Laura Sigg, Martin JD Clift, Fabian Herzog, Matteo Minghetti, Blair Johnston, Alke Petri-Fink, and Barbara Rothen-Rutishauser. 2013. 'Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective', *Journal of the Royal Society Interface*, 10: 20130396.
Bergmann, Olaf, Ratan D. Bhardwaj, Samuel Bernard, Sofia Zdunek, Fanie Barnabé-Heider, Stuart Walsh, Joel Zupicich, Kanar Alkass, Bruce A. Buchholz, and Henrik Druid. 2009. 'Evidence for cardiomyocyte renewal in humans', Science, 324: 98-102.

Biggs, MJP, RG Richards, N Ġadegaard, CDW Wilkinson, and MJ Dalby. 2007. 'The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading', Journal of Materials Science: Materials in Medicine, 18: 399-404.

Borriello, A, V Guarino, L Schiavo, MA Alvarez-Perez, and L Ambrosio. 2011. 'Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle', Journal of Materials Science: Materials in Medicine, 22: 1053-62.

Bostan, Hasan Badie, Ramin Rezaee, Mahmoud Gorji Valokala, Konstantinos Tsarouhas, Kirill Golokhvast, Aristidis M Tsatsakis, and Gholamreza Karimi. 2016. 'Cardiotoxicity of nano-particles', Life sciences, 165: 91-99.

Bružauskaitė, Ieva, Daiva Bironaitė, Edvardas Bagdonas, and Eiva Bernotienė. 2016. 'Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects', Cytotechnology, 68: 355-69.

Burkhard, Silja, Vincent Van Eif, Laurence Garric, Vincent M. Christoffels, and Jeroen Bakkers. 2017. 'On the evolution of the cardiac pacemaker', Journal of cardiovascular development and disease, 4: 4.

Cabiati, Manuela, Federico Vozzi, Federica Gemma, Francesca Montemurro, Carmelo De Maria, Giovanni Vozzi, Claudio Domenici, and Silvia Del Ry. 2018. 'Cardiac tissue regeneration: A preliminary study on carbon-based nanotubes gelatin scaffold', Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106: 2750-62.

Camci-Unal, Gulden, Nasim Annabi, Mehmet R Dokmeci, Ronglih Liao, and Ali Khademhosseini. 2014. 'Hydrogels for cardiac tissue engineering', NPG Asia Materials, 6: e99-e99.

Caplan, AI. 2009. 'Why are MSCs therapeutic? New data: new insight', The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 217: 318-24.

Castro, Pollyana S, Mauro Bertotti, Alliny F Naves, Luiz Henrique Catalani, Daniel R Cornejo, Georgia D Bloisi, and Denise FS Petri. 2017. 'Hybrid magnetic scaffolds: The role of scaffolds charge on the cell proliferation and Ca2+ ions permeation', Colloids and Surfaces B: Biointerfaces, 156: 388-96.

Chandra, Prafulla, and Sang Jin Lee. 2015. 'Synthetic Extracellular Microenvironment for Modulating Stem Cell Behaviors: Supplementary Issue: Stem Cell Biology', Biomarker insights, 10: BMI. S20057.

Chang, Yujung, Euiyeon Lee, Junyeop Kim, Yoo-Wook Kwon, Youngeun Kwon, and Jongpil Kim. 2019. 'Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier', Biomaterials, 192: 500-09.

Chen, Jiangwei, Yingfei Zhan, Yabin Wang, Dong Han, Bo Tao, Zhenli Luo, Sai Ma, Qun Wang, Xiang Li, and Li Fan. 2018. 'Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats', Acta biomaterialia, 80: 154-68.

Chen, Tian, Haiyu Nie, Xin Gao, Jinglin Yang, Ji Pu, Zhangjian Chen, Xiaoxing Cui, Yun Wang, Haifang Wang, and Guang Jia. 2014. 'Epithelial–mesenchymal transition involved in pulmonary fibrosis induced by multi-walled carbon nanotubes via TGF-beta/Smad signaling pathway', Toxicology letters, 226: 150-62.
Chen, Zhangjian, Yun Wang, Lin Zhuo, Shi Chen, Lin Zhao, Xianguo Luan, Haifang Wang, and Guang Jia. 2015. 'Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration', Toxicology letters, 239: 123-30.

Choe, Goeun, Seon-Wook Kim, Junggeon Park, Junha Park, Semin Kim, Yong Sook Kim, Youngkeun Ahn, Da-Woon Jung, Darren R. Williams, and Jae Young Lee. 2019. 'Antioxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts', Biomaterials, 225: 119513.

Chong, James J. H., Vashe Chandrakanthan, Munira Xaymardan, Naisana S. Asli, Joan Li, Ishtiaq Ahmed, Corey Heffernan, Mary K. Menon, Christopher J. Scarlett, and Amirsalar Rashidianfar. 2011. 'Adult cardiac-resident MSC-like stem cells with a proepicardial origin', Cell stem cell, 9: 527-40.

Chong, Shu Zhen, and Veronique Angeli. 2019. 'Cavity Macrophages Get to the Heart of the Issue', Immunity, 51: 7-9.

Correa-Duarte, Miguel A, Nicholas Wagner, José Rojas-Chapana, Christian Morsczeck, Michael Thie, and Michael Giersig. 2004. 'Fabrication and biocompatibility of carbon nanotube-based 3D networks as scaffolds for cell seeding and growth', Nano Letters, 4: 2233-36.

Cui, Haitao, Jun Shao, Yu Wang, Peibiao Zhang, Xuesi Chen, and Yen Wei. 2013. 'PLA-PEG-PLA and its electroactive tetraaniline copolymer as multi-interactive injectable hydrogels for tissue engineering', Biomacromolecules, 14: 1904-12.

Dalby, MJ, and N Tare Gadegaard. 2007. 'R. Andar, A. Riehle, MO Herzyk, P. Wilkinson, CDW and Oreffo, ROC', Nat. Mater, 6: 997.

Darvishi, Soroush, Samad Ahadian, and Houman Savoji. 2019. 'Graphene-Based Nanomaterials in Tissue Engineering and Regenerative Medicine', Handbook of Graphene Set, 1: 637-58.

Das, Mainak, Peter Molnar, Cassie Gregory, Lisa Riedel, Anahita Jamshidi, and James J Hickman. 2004. 'Long-term culture of embryonic rat cardiomyocytes on an organosilane surface in a serum-free medium', Biomaterials, 25: 5643-47.

Davenport Huyer, Locke, Boyang Zhang, Anastasia Korolj, Miles Montgomery, Stasja Drecun, Genevieve Conant, Yimu Zhao, Lewis Reis, and Milica Radisic. 2016. 'Highly elastic and moldable polyester biomaterial for cardiac tissue engineering applications', ACS biomaterials science & engineering, 2: 780-88.

de Faria, Andreia Fonseca, Diego Stéfani Teodoro Martinez, Stela Maris Meister Meira, Ana Carolina Mazarin de Moraes, Adriano Brandelli, Antonio Gomes Souza Filho, and Oswaldo Luiz Alves. 2014. 'Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets', Colloids and Surfaces B: Biointerfaces, 113: 115-24.

De Volder, Michael FL, Sameh H Tawfick, Ray H Baughman, and A John Hart. 2013. 'Carbon nanotubes: present and future commercial applications', Science, 339: 535-39.

Deng, Can-Hui, Ji-Lai Gong, Guang-Ming Zeng, Cheng-Gang Niu, Qiu-Ya Niu, Wei Zhang, and Hong-Yu Liu. 2014. 'Inactivation performance and mechanism of Escherichia coli in aqueous system exposed to iron oxide loaded graphene nanocomposites', Journal of hazardous materials, 276: 66-76.

Dominguez-Alfaro, Antonio, Nuria Alegrat, Blanca Arnaiz, Jose Miguel Gonzalez-Dominguez, Ana Martin Pacheco, Unai Cossio, Luca Porcarelli, Susanna Bosi, Ester Vázquez, and David Mecerreyes. 2019. 'Tailored Methodology based on Vapor Phase Polymerization to Manufacture PEDOT/CNT Scaffolds for Tissue Engineering', ACS biomaterials science & engineering.
Dong, Ruonan, Xin Zhao, Baolin Guo, and Peter X Ma. 2016. 'Self-healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy', ACS applied materials & interfaces, 8: 17138-50.

Dvir, Tal, Brian P Timko, Daniel S Kohane, and Robert Langer. 2011. 'Nanotechnological strategies for engineering complex tissues', Nature nanotechnology, 6: 13.

Dvir, Tal, Brian P. Timko, Mark D. Brigham, Shreesh R. Naik, Sandeep S. Karajanagi, Oren Levy, Hongwei Jin, Kevin K. Parker, Robert Langer, and Daniel S. Kohane. 2011. 'Nanowired three-dimensional cardiac patches', Nature nanotechnology, 6: 720-25.

Espinosa-Cristobal, LF, GA Martinez-Castanon, JP Loyola-Rodriguez, N Patino-Marin, JF Reyes-Macias, JM Vargas-Moraes, and Facundo Ruiz. 2013. 'Toxicity, distribution, and accumulation of silver nanoparticles in Wistar rats', Journal of nanoparticle research, 15: 1702.

Fathi-Achachelouei, Milad, Helena Knopf-Marques, Cristiane Evelise Riberio de Silva, Julien Georges Didier Barthès, Erhan Bat, Ayşen Tezcaner, and Nihal Engin Vrana. 2019. 'Use of nanoparticles in tissue engineering and regenerative medicine', Frontiers in bioengineering and biotechnology, 7: 113.

Ferdous, Zannatul, Suhail Al-Salam, Yaser E Greish, Badreldin H Ali, and Abderrahim Nemmar. 2019. 'Pulmonary exposure to silver nanoparticles impairs cardiovascular homeostasis: Effects of coating, dose and time', Toxicology and applied pharmacology, 367: 36-50.

Fu, Jinhong, Jian Ji, Dezeng Fan, and Jiacong Shen. 2006. 'Construction of antibacterial multilayer films containing nanosilver via layer-by-layer assembly of heparin and chitosan-silver ions complex', Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 79: 665-74.

Fujita, Buntaro, and Wolfram-Hubertus Zimmermann. 2017. 'Myocardial tissue engineering for regenerative applications', Current cardiology reports, 19: 78.

Gaetani, Roberto, Peter A. Doevendans, Corina H. G. Metz, Jacqueline Alblas, Elisa Messina, Alessandro Giacomello, and Joost P. G. Sluijter. 2012. 'Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells', Biomaterials, 33: 1782-90.

Gai, Shili, Guixin Yang, Piaoping Yang, Fei He, Jun Lin, Dayong Jin, and Bengang Xing. 2018. 'Recent advances in functional nanomaterials for light–triggered cancer therapy', Nano today, 19: 146-87.

Ganji, Yasaman, Qian Li, Elgar Susanne Quabius, Martina Böttner, Christine Selhuber-Unkel, and Mehran Kasra. 2016. 'Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation', Materials Science and Engineering: C, 59: 10-18.

Garcia, Roberto, and Jaime Burkle. 2018. 'New and Future Parenteral Therapies for the Management of Lipid Disorders', Archives of medical research, 49: 538-47.

Ge, Liangpeng, Qingtao Li, Meng Wang, Jun Ouyang, Xiaojian Li, and Malcolm MQ Xing. 2014. 'Nanosilver particles in medical applications: synthesis, performance, and toxicity', International journal of nanomedicine, 9: 2399.

Gelmi, Amy, Artur Cieslar-Pobuda, Ebo de Muinck, Marek Los, Mehrdad Rafat, and Edwin WH Jager. 2016. 'Direct mechanical stimulation of stem cells: a beating electromechanically
active scaffold for cardiac tissue engineering, *Advanced healthcare materials*, 5: 1471-80.

Ghasemi, Azin, Rana Imani, Maryam Yousefzadeh, Shahin Bonakdar, Atefeh Solouk, and Hossein Fakhrzadeh. 2019. 'Studying the Potential Application of Electrospun Polyethylene Terephthalate/Graphene Oxide Nanofibers as Electroconductive Cardiac Patch', *Macromolecular Materials and Engineering*, 304: 1900187.

Giannaccini, Martina, M Pilar Calatayud, Andrea Poggetti, Silvia Corbianco, Michela Novelli, Melania Paoli, Pietro Battistini, Maura Castagna, Luciana Dente, and Paolo Parchi. 2017. 'Magnetic nanoparticles for efficient delivery of growth factors: stimulation of peripheral nerve regeneration', *Advanced healthcare materials*, 6: 1601429.

Goenka, Sumit, Vinayak Sant, and Shilpa Sant. 2014. 'Graphene-based nanomaterials for drug delivery and tissue engineering', *Journal of Controlled Release*, 173: 75-88.

Golpanian, Samuel, Ariel Wolf, Konstantinos E Hatzistergos, and Joshua M Hare. 2016. 'Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue', *Physiological reviews*, 96: 1127-68.

Gonzalez, Carmen, Hector Rosas-Hernandez, Manuel Alejandro Ramirez-Lee, Samuel Salazar-Garcia, and Syed F Ali. 2016. 'Role of silver nanoparticles (AgNPs) on the cardiovascular system', *Archives of toxicology*, 90: 493-511.

Grinnell, Frederick. 1984. 'Fibronectin and wound healing', *Journal of cellular biochemistry*, 26: 107-16.

Guan, Jianjun, Feng Wang, Zhenqing Li, Joseph Chen, Xiaolei Guo, Jun Liao, and Nicanor I Moldovan. 2011. 'The stimulation of the cardiac differentiation of mesenchymal stem cells in tissue constructs that mimic myocardium structure and biomechanics', *Biomaterials*, 32: 5568-80.

Guo, Shanshan, Xiaoying Zhu, Min Li, Liya Shi, June Lay Ting Ong, Dominik Jańczewski, and Koon Gee Neo. 2016. 'Parallel Control over Surface Charge and Wettability Using Polyelectrolyte Architecture: Effect on Protein Adsorption and Cell Adhesion', *ACS applied materials & interfaces*, 8: 30552-63.

Guo, Xiaofei, Yan Bai, Li Zhang, Bo Zhang, Naufal Zagidullin, Katherine Carvalho, Zhimin Du, and Benzhi Cai. 2018. 'Cardiomyocyte differentiation of mesenchymal stem cells from bone marrow: new regulators and its implications', *Stem cell research & therapy*, 9: 44.

Gupta, S, CN Murthy, and C Ratna Prabha. 2018. 'Recent advances in carbon nanotube based electrochemical biosensors', *International journal of biological macromolecules*, 108: 687-703.

Han, Jin, Bokyoung Kim, Jung-Youn Shin, Seungmi Ryu, Myungkyung Noh, Jongsu Woo, Jin-Sil Park, Youjin Lee, Nohyun Lee, and Taeghwan Hyeon. 2015. 'Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction', *ACS nano*, 9: 2805-19.

Han, Seong-Beom, Jeong-Ki Kim, Geonhui Lee, and Dong-Hwee Kim. 2020. 'Mechanical Properties of Materials for Stem Cell Differentiation', *Advanced Biosystems*, 4: 2000247.

Handorf, Andrew M, Yaxian Zhou, Matthew A Halanski, and Wan-Ju Li. 2015. 'Tissue stiffness dictates development, homeostasis, and disease progression', *Organogenesis*, 11: 1-15.

He, Wei, Xujie Liu, Arne Kienzle, Werner EG Müller, and Qingling Feng. 2016. 'In vitro uptake of silver nanoparticles and their toxicity in human mesenchymal stem cells derived from bone marrow', *Journal of nanoscience and nanotechnology*, 16: 219-28.
Heldman, Alan W, Darcy L DiFede, Joel E Fishman, Juan P Zambrano, Barry H Trachtenberg, Vasileios Karantalis, Muzammil Mushtaq, Adam R Williams, Viky Y Suncion, and Ian K McNiece. 2014. 'Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial', *Jama*, 311: 62-73.

Helfenstein, Maria, Michele Miragoli, Stephan Rohr, Loretta Müller, Peter Wick, Martin Mohr, Peter Gehr, and Barbara Rothen-Rutishauser. 2008. 'Effects of combustion-derived ultrafine particles and manufactured nanoparticles on heart cells in vitro', *Toxicology*, 253: 70-78.

Hitscherich, Pamela, Siliang Wu, Richard Gordan, L. H. Xie, Treena Arinzeh, and Eun Lee. 2015. 'The effect of piezoelectric PVDF-TrFE scaffolds on stem cell derived cardiovascular cells', *Biotechnology and bioengineering*, 113: n/a-n/a.

Hofmann, Marie-Claude. 2014. 'Stem cells and nanomaterials', *Nanomaterial*: 255-75.

Hoit, Brian D. 2017. 'Pathophysiology of the Pericardium', *Progress in Cardiovascular Diseases*, 59: 341-48.

Hong, Fashui, Ling Wang, Xiaohong Yu, Yingjun Zhou, Jie Hong, and Lei Sheng. 2015. 'Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice', *Nanoscale research letters*, 10: 1-11.

Hong, Fashui, Xiaohong Yu, Nan Wu, and Yu-Qing Zhang. 2017. 'Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles', *Toxicology research*, 6: 115-33.

Hossain, Md Sanower, Farahidah Mohamed, and Mohd Affendi Mohd Shafri. 2020. 'Poly(trimethylene carbonate-co-caprolactone): An emerging drug delivery nanosystem in pharmaceutics', *Biomaterials and Biomechanics in Bioengineering*, 5: 65-86.

Hsieh, Patrick C. H., Vincent F. M. Segers, Michael E. Davis, Catherine MacGillivray, Joseph Gannon, Jeffery D. Molkentin, Jeffrey Robbins, and Richard T. Lee. 2007. 'Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury', *Nature medicine*, 13: 970-74.

Hu, Tianli, Yaobin Wu, Xin Zhao, Ling Wang, Leyu Bi, Peter X Ma, and Baolin Guo. 2019. 'Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering', *Chemical Engineering Journal*, 366: 208-22.

Huang, Dong-Ming, Jong-Kai Hsiao, Ying-Chun Chen, Li-Ying Chien, Ming Yao, Yin-Kai Chen, Bor-Sheng Ko, Szu-Chun Hsu, Lin-Ai Tai, and Hui-Ying Cheng. 2009. 'The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles', *Biomaterials*, 30: 3645-51.

Hughes, Gareth A. 2017. 'Nanostructure-mediated drug delivery.' in, *Nanomedicine in cancer* (Pan Stanford).

Iravani, Siavach, Hassan Korbekandi, Seyed Vahid Mirmohammadi, and Behzad Zolfaghari. 2014. 'Synthesis of silver nanoparticles: chemical, physical and biological methods', *Research in pharmaceutical sciences*, 9: 385.

Iung, Bernard, and Alec Vahanian. 2011. 'Epidemiology of valvular heart disease in the adult', *Nature Reviews Cardiology*, 8: 162-72.

Izadifar, Mohammad, Dean Chapman, Paul Babyn, Xiongbiao Chen, and Michael E Kelly. 2018. 'UV-assisted 3D bioprinting of nanoreinforced hybrid cardiac patch for myocardial tissue engineering', *Tissue Engineering Part C: Methods*, 24: 74-88.
Jansman, Michelle MT, and Leticia Hosta-Rigau. 2019. 'Cerium-and iron-oxide-based nanozymes in tissue engineering and regenerative medicine', *Catalysts*, 9: 691.

Jastrzębska, Agnieszka Maria, Patrycja Kurtycz, and Andrzej Roman Olszyna. 2012. 'Recent advances in graphene family materials toxicity investigations', *Journal of nanoparticle research*, 14: 1320.

Jawad, Hedeer, Aldo R Boccaccini, Nadire N Ali, and Sian E Harding. 2011. 'Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications', *Nanotoxicology*, 5: 372-80.

Jazayeri, Mir Hadi, Hamed Amani, Ali Akbar Pourfatollah, Hamidreza Pazoki-Toroudi, and Bijan Sedighimoghaddam. 2016. 'Various methods of gold nanoparticles (GNPs) conjugation to antibodies', *Sensing and bio-sensing research*, 9: 17-22.

Ji, Lijun, V Ls LaPointe, Nicholas D Evans, and Molly M Stevens. 2012. 'Changes in embryonic stem cell colony morphology and early differentiation markers driven by colloidal crystal topographical cues', *Eur Cell Mater*, 23: 135-46.

Jia, Xilai, and Fei Wei. 2019. 'Advances in production and applications of carbon nanotubes.' in, *Single-Walled Carbon Nanotubes* (Springer).

Jing, Dalei, and Bharat Bhushan. 2013. 'Quantification of surface charge density and its effect on boundary slip', *Langmuir*, 29: 6953-63.

Jung, Dongjiu, Itsunari Minami, Sahishnu Patel, Jonghwan Lee, Bin Jiang, Qinghua Yuan, Liu Li, Sachiko Kobayashi, Yong Chen, Ki-Bum Lee, and Norio Nakatsuji. 2012. 'Incorporation of functionalized gold nanoparticles into nanofibers for enhanced attachment and differentiation of mammalian cells', *Journal of Nanobiotechnology*, 10: 23.

Kang, Byung-Jae, Hwan Kim, Seul Ki Lee, Joohyun Kim, Yiming Shen, Sunyoung Jung, Kyung-Sun Kang, Sung Gap Im, So Yeong Lee, and Mincheol Choi. 2014. 'Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function', *Acta biomaterialia*, 10: 3007-17.

Kankala, Ranjith Kumar, Kai Zhu, Xiao-Ning Sun, Chen-Guang Liu, Shi-Bin Wang, and Ai-Zheng Chen. 2018. 'Cardiac tissue engineering on the nanoscale', *ACS biomaterials science & engineering*, 4: 800-18.

Karantalis, Vasileios, Darcy L DiFede, Gary Gerstenblith, Si Pham, James Symes, Juan Pablo Zambrano, Joel Fishman, Pradip Pattany, Ian McNiece, and John Conte. 2014. 'Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: the Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial', *Circulation Research*, 114: 1302-10.

Kharaziha, Mahshid, Su Ryon Shin, Mehdi Nikkhah, Seda Nur Topkaya, Nafiseh Masoumi, Nasim Annabi, Mehmet R Dokmeci, and Ali Khademhosseini. 2014. 'Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs', *Biomaterials*, 35: 7346-54.

Kim, Deok-Ho, Elizabeth A Lipke, Pilnam Kim, Raymond Cheong, Susan Thompson, Michael Delannoy, Kaeh-Yang Suh, Leslie Tung, and Andre Levchenko. 2010. 'Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs', *Proceedings of the National Academy of Sciences*, 107: 565-70.
Kim, Sang Won, Taehoon Kim, Yern Seung Kim, Hong Soo Choi, Hyeong Jun Lim, Seung Jae Yang, and Chong Rae Park. 2012. 'Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers', *Carbon*, 50: 3-33.

Kim, Taeyong, Yung Ho Kahng, Takhee Lee, and Kwanghee Lee. 2013. 'Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells', *Molecules and cells*, 36: 577-82.

Kitsara, Maria, Onnik Agbulut, Dimitrios Kontziampasis, Yong Chen, and Philippe Menasché. 2017. 'Fibers for hearts: a critical review on electrospinning for cardiac tissue engineering', *Acta biomaterialia*, 48: 20-40.

Ko, Wan-Kyu, Dong Nyoung Heo, Ho-Jin Moon, Sang Jin Lee, Min Soo Bae, Jung Bok Lee, In-Cheol Sun, Hoon Bong Jeon, Hun Kuk Park, and Il Keun Kwon. 2015. 'The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells', *Journal of colloid and interface science*, 438: 68-76.

Laflamme, Michael A., and Charles E. Murry. 2011. 'Heart regeneration', *Nature*, 473: 326-35.

Lai, Yuekun, Fei Pan, Cong Xu, Harald Fuchs, and Lifeng Chi. 2013. 'In situ surface-modification-induced superhydrophobic patterns with reversible wettability and adhesion', *Advanced Materials*, 25: 1682-86.

Lamendola, P., A. Monaco Di, L. Barone, C. Pisanello, G. A. Lanza, and F. Crea. 2009. 'Mechanisms of myocardial cell protection from ischemia/reperfusion injury and potential clinical implications', *Giornale italiano di cardiology (2006)*, 10: 28-36.

Lanone, Sophie, Pascal Andujar, Ali Kermanizadeh, and Jorge Boczkowski. 2013. 'Determinants of carbon nanotube toxicity', *Advanced Drug Delivery Reviews*, 65: 2063-69.

Laugwitz, Karl-Ludwig, Alessandra Moretti, Jason Lam, Peter Gruber, Yinhong Chen, Sarah Woodard, Li-Zhu Lin, Chen-Leng Cai, Min Min Lu, and Michael Reth. 2005. 'Prenatal Isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages', *Nature*, 433: 647-53.

Lee, Tae-Jin, Subeom Park, Suk Ho Bhang, Jeong-Kee Yoon, Insu Jo, Gun-Jae Jeong, Byung Hee Hong, and Byung-Soo Kim. 2014. 'Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells', *Biochemical and biophysical research communications*, 452: 174-80.

Li, Dapeng, Tianjiao Liu, Xiaoming Yu, Di Wu, and Zhiqiang Su. 2017. 'Fabrication of graphene–biomacromolecule hybrid materials for tissue engineering application', *Polymer Chemistry*, 8: 4309-21.

Li, Jingchao, Jing Zhang, Xinlong Wang, Naoki Kawazoe, and Guoping Chen. 2016. 'Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells', *Nanoscale*, 8: 7992-8007.

Li, Xia, Jin Zhou, Zhiqiang Liu, Jun Chen, Shuanghong Lü, Hongyu Sun, Junjie Li, Qiu Xia Lin, Boguang Yang, and Cuimi Duan. 2014. 'A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair', *Biomaterials*, 35: 5679-88.

Li, Yi, Xiaoli Shi, Lei Tian, Hongyu Sun, Yujing Wu, Xia Li, Jianjun Li, Yujie Wei, Xin Xiao Han, Jiao Zhang, Xiaowei Jia, Rui Bai, Limin Jing, Peng Ding, Huiliang Liu, and Dong Han. 2016. 'AuNP–Collagen Matrix with Localized Stiffness for Cardiac-Tissue Engineering: Enhancing the Assembly of Intercalated Discs by β1-Integrin-Mediated Signaling', *Advanced Materials*, 28: 10230-35.

Li, Zheng, Tracy Hulderman, Rebecca Salmen, Rebecca Chapman, Stephen S Leonard, Shih-Houng Young, Anna Shvedova, Michael I Luster, and Petia P Simeonova. 2007.
'Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes', *Environmental health perspectives*, 115: 377-82.

Li, Zhenqing, Xiaolei Guo, Andre F Palmer, Hiranmoy Das, and Jianjun Guan. 2012. 'High-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel', *Acta biomaterialia*, 8: 3586-95.

Liang, Wenbin, Pengcheng Han, Elizabeth H. Kim, Jordan Mak, Rui Zhang, Angelo G. Torrente, Joshua I. Goldhaber, Eduardo Marbán, and Hee Cheol Cho. 2019. 'Canonical Wnt signaling promotes pacemaker cell specification of cardiac mesodermal cells derived from mouse and human embryonic stem cells', *Stem Cells*.

Lin, Cai-Xia, Su-Yu Yang, Jing-Li Gu, Jie Meng, Hai-Yan Xu, and Ji-Min Cao. 2017. 'The acute toxic effects of silver nanoparticles on myocardial transmembrane potential, I Na and I K1 channels and heart rhythm in mice', *Nanotoxicology*, 11: 827-37.

Liu, Nanbo, Jimei Chen, Jian Zhuang, and Ping Zhu. 2018. 'Fabrication of engineered nanoparticles on biological macromolecular (PEGylated chitosan) composite for bioactive hydrogel system in cardiac repair applications', *International journal of biological macromolecules*, 117: 553-58.

Liu, Yaowen, Jinfu Lu, Guisen Xu, Jiaojun Wei, Zhibin Zhang, and Xiaohong Li. 2016. 'Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating', *Materials Science and Engineering: C*, 69: 865-74.

Liu, Yen-Wen, Billy Chen, Xiulan Yang, James A Fugate, Faith A Kalucki, Akiko Futakuchi-Tsuchida, Larry Couture, Keith W Vogel, Clifford A Astley, and Audrey Baldessari. 2018. 'Human embryonic stem cell–derived cardiomyocytes restore function in infarcted hearts of non-human primates', *Nature biotechnology*, 36: 597-605.

Lloga-Valldeperas, Aida, Carolina Soler-Botija, Carolina Gálvez-Montón, Santiago Roura, Cristina Prat-Vidal, Isaac Perea-Gil, Benjamin Sanchez, Ramon Bragos, Gordana Vunjak-Novakovic, and Antoni Bayes-Genis. 2017. 'Electromechanical conditioning of adult progenitor cells improves recovery of cardiac function after myocardial infarction', *Stem cells translational medicine*, 6: 970-81.

López, Alan D., Colin D. Mathers, Majid Ezzati, Dean T. Jamison, and Christopher J. L. Murray. 2006. 'Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data', *The lancet*, 367: 1747-57.

Lü, Kui, GuiXia Zhao, and XiangKe Wang. 2012. 'A brief review of graphene-based material synthesis and its application in environmental pollution management', *Chinese Science Bulletin*, 57: 1223-34.

Lv, Longwei, Yunsong Liu, Ping Zhang, Xiao Zhang, Jianzhang Liu, Tong Chen, Penglei Su, Hongyi Li, and Yongsheng Zhou. 2015. 'The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation', *Biomaterials*, 39: 193-205.

Maganti, Kameswari, Vera H. Rigolin, Maurice Enriquez Sarano, and Robert O. Bonow. 2010. 'Valvular Heart Disease: Diagnosis and Management', *Mayo Clinic Proceedings*, 85: 483-500.

Mahla, Ranjeet Singh. 2016. 'Stem cells applications in regenerative medicine and disease therapeutics', *International journal of cell biology*, 2016.

Maiullari, Fabio, Marco Costantini, Marika Milan, Valentina Pace, Maila Chirivi, Silvia Maiullari, Alberto Rainer, Denisa Bací, Hany El-Sayed Marei, Dror Seliktar, Cesare Gargioli, Claudia Bearzi, and Roberto Rizzi. 2018. 'A multi-cellular 3D bioprinting
approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes', *Scientific Reports*, 8: 13532.

Majidi, Sima, Fatemeh Zeinali Sehrig, Samad Mussa Farkhani, Mehdi Soleymani Goloujeh, and Abolfazl Akbarzadeh. 2016. 'Current methods for synthesis of magnetic nanoparticles', *Artificial cells, nanomedicine, and biotechnology*, 44: 722-34.

Malki, Maayan, Sharon Fleischer, Assaf Shapira, and Tal Dvir. 2018. 'Gold nanorod-based engineered cardiac patch for suture-free engraftment by near IR', *Nano Letters*, 18: 4069-73.

Manuel, Alejandro Ramirez-Lee, Pedro Pablo Martinez-Cuevas, Hector Rosas-Hernandez, Cuauhtémoc Oros-Ovalle, Mariela Bravo-Sanchez, Gabriel Alejandro Martinez-Castañon, and Carmen Gonzalez. 2017. 'Evaluation of vascular tone and cardiac contractility in response to silver nanoparticles, using Langendorff rat heart preparation', *Nanomedicine: Nanotechnology, Biology and Medicine*, 13: 1507-18.

Marcus, M, H Skaat, N Alon, S Margel, and O Shefi. 2015. 'NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells', *Nanoscale*, 7: 1058-66.

Martinelli, Valentina, Susanna Bosi, Brisa Peña, Gabriele Baj, Carlin S Long, Orfeo Sbaizer, Mauro Giacca, Maurizio Prato, and Luisa Mestroni. 2018. '3D carbon-nanotube-based composites for cardiac tissue engineering', *ACS Applied Bio Materials*, 1: 1530-37.

Martinelli, Valentina, Giada Cellot, Francesca Maria Toma, Carlin S Long, John H Caldwell, Lorena Zentilin, Mauro Giacca, Antonio Turco, Maurizio Prato, and Laura Ballerini. 2012. 'Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes', *Nano Letters*, 12: 1831-38.

Martinelli, Valentina, Giada Cellot, Francesca Maria Toma, Carlin S. Long, John H. Caldwell, Lorena Zentilin, Mauro Giacca, Antonio Turco, Maurizio Prato, Laura Ballerini, and Luisa Mestroni. 2013. 'Carbon Nanotubes Instruct Physiological Growth and Functionally Mature Syncytia: Nongenetic Engineering of Cardiac Myocytes', *ACS nano*, 7: 5746-56.

Mayfield, Audrey E., Everad L. Tilokee, Nicholas Latham, Brian McNeill, Bu-Khanh Lam, Marc Ruel, Erik J. Suuronen, David W. Courtman, Duncan J. Stewart, and Darryl R. Davis. 2014. 'The effect of encapsulation of cardiac stem cells within matrix-enriched hydrogel capsules on cell survival, post-ischemic cell retention and cardiac function', *Biomaterials*, 35: 133-42.

Menasché, Philippe, Valérie Vanneaux, Albert Hagège, Alain Bel, Bernard Cholley, Alexandre Parouchev, Isabelle Cacciapuoti, Reem Al-Daccak, Nadine Benhamouda, and Hélène Blons. 2018. 'Transplantation of human embryonic stem cell–derived cardiovascular progenitors for severe ischemic left ventricular dysfunction', *Journal of the American College of Cardiology*, 71: 429-38.

Mentzer, Robert M. 2011. 'Myocardial protection in heart surgery', *Journal of cardiovascular pharmacology and therapeutics*, 16: 290-97.

Mocan, Lucian, Ioana Ilie, Flaviu A Tabaran, Cornel Iancu, Ofelia Mosteanu, Teodora Pop, Claudiu Zdrehus, Dana Bartos, Teodora Mocan, and Cristian Matea. 2016. 'Selective laser ablation of methicillin-resistant staphylococcus aureus with IgG functionalized multi-walled carbon nanotubes', *Journal of biomedical nanotechnology*, 12: 781-88.
Mohammed, Leena, Hassan G Gomaa, Doaa Ragab, and Jesse Zhu. 2017. 'Magnetic nanoparticles for environmental and biomedical applications: A review', *Particuology*, 30: 1-14.

Mohanty, Sujata, Krishan Gopal Jain, Sushmita Bose Nandy, Anupama Kakkar, Manoj Kumar, Amit Kumar Dinda, Harpal Singh, and Alok Ray. 2018. 'Iron oxide labeling does not affect differentiation potential of human bone marrow mesenchymal stem cells exhibited by their differentiation into cardiac and neuronal cells', *Molecular and cellular biochemistry*, 448: 17-26.

Mombini, Shabnam, Javad Mohammadnejad, Behnaz Bakhshandehe, Asghar Narmani, Jhamak Nourmohammadi, Sadaf Vahdat, and Shahrzad Zirak. 2019. 'Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering', *International journal of biological macromolecules*, 140: 278-87.

Mooney, Emma, Joseph N Mackle, David J-P Blond, Eoin O'Cearbhaill, Georgina Shaw, Werner J Blau, Frank P Barry, Valerie Barron, and J Mary Murphy. 2012. 'The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs', *Biomaterials*, 33: 6132-39.

Moorthi, Ambigapathi, Yu-Chang Tyan, and Tze-Wen Chung. 2017. 'Surface-modified polymers for cardiac tissue engineering', *Biomaterials science*, 5: 1976-87.

Moretti, Alessandra, Leslie Caron, Atsushi Nakano, Jason T Lam, Alexandra Bernshausen, Yinhong Chen, Yibing Qyang, Lei Bu, Mika Sasaki, and Silvia Martin-Puig. 2006. 'Multipotent embryonic is11+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification', *Cell*, 127: 1151-65.

Mothe, Andrea J, and Charles H Tator. 2013. 'Review of transplantation of neural stem/progenitor cells for spinal cord injury', *International Journal of Developmental Neuroscience*, 31: 701-13.

Mou, Yongchao, Shuanghong Lv, Fei Xiong, Yao Han, Yuwei Zhao, Junjie Li, Ning Gu, and Jin Zhou. 2018. 'Effects of different doses of 2, 3-dimercaptosuccinic acid-modified Fe2O3 nanoparticles on intercalated discs in engineered cardiac tissues', *Journal of Biomedical Materials Research Part B: Applied Biomaterials*, 106: 121-30.

Mou, Yongchao, Jin Zhou, Fei Xiong, Hong Li, Hongyu Sun, Yao Han, Ning Gu, and Changyong Wang. 2015. 'Effects of 2, 3-dimercaptosuccinic acid modified Fe 2 O 3 nanoparticles on microstructure and biological activity of cardiomyocytes', *Rsc Advances*, 5: 19493-501.

Moura, Renata Mendes, and Alvaro Antonio Alencar de Queiroz. 2011. 'Dendronized polyaniline nanotubes for cardiac tissue engineering', *Artificial organs*, 35: 471-77.

Muller, Julie, François Haaux, Nicolas Moreau, Pierre Missou, Jean-François Heilier, Monique Delos, Mohammed Arras, Antonio Fonseca, Janos B Nagy, and Dominique Lison. 2005. 'Respiratory toxicity of multi-wall carbon nanotubes', *Toxicology and applied pharmacology*, 207: 221-31.

Mummery, Christine L, Jianhua Zhang, Elizabeth S Ng, David A Elliott, Andrew G Elefanty, and Timothy J Kamp. 2012. 'Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview', *Circulation Research*, 111: 344-58.

Nagoshi, Narihito, and Hideyuki Okano. 2018. 'iPSC-derived neural precursor cells: potential for cell transplantation therapy in spinal cord injury', *Cellular and molecular life sciences*, 75: 989-1000.
Naseroleslami, Maryam, Nahid Aboutaleb, and Kazem Parivar. 2018. 'The effects of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in the presence of a magnetic field on attenuation of injury after heart failure', Drug Delivery and Translational Research, 8: 1214-25.

Navaei, Ali, Nathan Moore, Ryan T. Sullivan, Danh Truong, Raymond Q. Migrino, and Mehdi Nikkhah. 2017. 'Electrically conductive hydrogel-based micro-topographies for the development of organized cardiac tissues', Rsc Advances, 7: 3302-12.

Navaei, Ali, Harpinder Saini, Wayne Christenson, Ryan Tanner Sullivan, Robert Ros, and Mehdi Nikkhah. 2016. 'Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs', Acta biomaterialia, 41: 133-46.

Nayak, Tapas R, Henrik Andersen, Venkata S Makam, Clement Khaw, Sukang Bae, Xiangfan Xu, Pui-Lai R Ee, Jong-Hyun Ahn, Byung Hee Hong, and Giorgia Pastorin. 2011. 'Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells', ACS nano, 5: 4670-78.

Nazari, Hojjatollah, Asieh Heirani-Tabasi, Maryam Hajiabas, Masoud Khalili, Mohammadhossein Shahsavari Alavijeh, Shadie Hatamie, Armita Mahdavi Gorabi, Elaheh Esmaeili, and Seyed Hossein Ahmadi Tafti. 2020. 'Incorporation of two-dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering', Polymers for Advanced Technologies, 31: 248-59.

Nazari, Hojjatollah, Asieh Heirani-Tabasi, Maryam Hajiabas, Milad Salimi Bani, Mahnaz Nazari, Vahid Pirhajati Mahabadi, Iman Rad, Mousa Kehatari, Seyed Hossein Ahmadi Tafti, and Masoud Soleimani. 2020. 'Incorporation of SPION-casein core-shells into silk-fibroin nanofibers for cardiac tissue engineering', Journal of cellular biochemistry, 121: 2981-93.

Ngandu Mpoyi, Elie, Marco Cantini, Paul M Reynolds, Nikolaj Gadegaard, Matthew J Dalby, and Manuel Salmerón-Sánchez. 2016. 'Protein adsorption as a key mediator in the nanotopographical control of cell behavior', ACS nano, 10: 6638-47.

Norahan, Mohammad Hadi, Masoud Amroon, Ramin Ghahremanzadeh, Mahboobeh Mahmoodi, and Nafiseh Baheiraie. 2019. 'Electroactive graphene oxide-incorporated collagen assisting vascularization for cardiac tissue engineering', Journal of Biomedical Materials Research Part A, 107: 204-19.

Norahan, Mohammad Hadi, Mohadeseh Pourmokhtari, Mohammad Reza Saeb, Bita Bakhshi, Mina Soufi Zomorrod, and Nafiseh Baheiraie. 2019. 'Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties', Materials Science and Engineering: C, 104: 109921.

Nyamukamba, Pardon, Omobola Okoh, Henry Mungondori, Raymond Taziwa, and Simcelile Zinya. 2018. 'Synthetic methods for titanium dioxide nanoparticles: a review', Titanium Dioxide—Material for a Sustainable Environment; Yang, D., Ed: 151-75.

Orordova, Laura, Yonsil Park, and Catherine M Verfaillie. 2013. 'Stem cells and liver engineering', Biotechnology advances, 31: 1094-107.

Pacelli, Settimio, Patrizia Paolicelli, Stefania Petralito, Siddharth Subham, Drake Gilmore, Gabriele Varani, Guang Yang, Dong Lin, Maria Antonietta Casadei, and Arghya Paul. 2020. 'Investigating the role of polydopamine to modulate stem cell adhesion and proliferation on gellan gum-based hydrogels', ACS Applied Bio Materials, 3: 945-51.

Pan, Lei, Yew Mun Lee, Teck Kwang Lim, Qingsong Lin, and Xiuqin Xu. 2018. 'Quantitative proteomics study reveals changes in the molecular landscape of human embryonic stem
cells with impaired stem cell differentiation upon exposure to titanium dioxide nanoparticles', *small*, 14: 1800190.

Panahi, Mohammad, Bahareh Rahimi, Golbarg Rahimi, Teck Yew Low, Neda Saraygord-Afshari, and Effat Alizadeh. 2020. 'Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy', *Journal of Cellular Physiology*, n/a.

Park, Jooyeon, Bokyoung Kim, Jin Han, Jaewon Oh, Subeom Park, Seungmi Ryu, Subin Jung, Jung-Youn Shin, Beom Seob Lee, and Byung Hee Hong. 2015. 'Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair', *ACS nano*, 9: 4987-99.

Park, Jooyeon, Yong Sook Kim, Seungmi Ryu, Wan Seok Kang, Subeom Park, Jin Han, Hae Chang Jeong, Byung Hee Hong, Youngkeun Ahn, and Byung-Soo Kim. 2015. 'Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction protein', *Advanced functional materials*, 25: 2590-600.

Park, Jooyeon, Subeom Park, Seungmi Ryu, Suk Ho Bhang, Jangho Kim, Jeong-Kee Yoon, Yoon Hwan Park, Sung-Pyo Cho, Sehyoung Lee, and Byung Hee Hong. 2014. 'Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules', *Advanced healthcare materials*, 3: 176-81.

Park, Jung, Sebastian Bauer, Klaus von der Mark, and Patrik Schmuki. 2007. 'Nanosize and vitality: TiO2 nanotube diameter directs cell fate', *Nano Letters*, 7: 1686-91.

Park, Minsung, Dajung Lee, Sungchul Shin, and Jinho Hyun. 2015. 'Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering', *Colloids and Surfaces B: Biointerfaces*, 130: 222-28.

Peña, Brisa, Susanna Bosi, Brian A Aguado, Daniele Borin, Nikki L Farnsworth, Evgenia Dobrinskikh, Teisha J Rowland, Valentina Martinelli, Mark Jeong, and Matthew RG Taylor. 2017. 'Injectable carbon nanotube-functionalized reverse thermal gel promotes cardiomyocytes survival and maturation', *ACS applied materials & interfaces*, 9: 31645-56.

Peña, Brisa, Marcos Maldonado, Andrew J. Bonham, Brian A. Aguado, Antonio Dominguez-Alfaro, Melissa Laughter, Teisha J. Rowland, James Bardill, Nikki L. Farnsworth, Nuria Alegret Ramon, Matthew R. G. Taylor, Kristi S. Anseth, Maurizio Prato, Robin Shandas, Timothy A. McKinsey, Daewon Park, and Luisa Mestroni. 2019. 'Gold Nanoparticle-Functionalized Reverse Thermal Gel for Tissue Engineering Applications', *ACS applied materials & interfaces*, 11: 11871-80.

Perez-Terzic, Carmen, Yasuhiro Ikeda, and Andre Terzic. 2009. 'Repair of Acute Myocardial Infarction by Human Stemness Factors Induced Pluripotent Stem Cells'.

Piccoli, Maria-Teresa, Kumar Gupta Shashi, Janika Viereck, Ariana Foinquinos, Sabine Samolovac, Luise Kramer Freya, Ankita Garg, Janet Remke, Karina Zimmer, Sandor Batkai, and Thomas Thum. 2017. 'Inhibition of the Cardiac Fibroblast–Enriched IncRNA Meg3 Prevents Cardiac Fibrosis and Diastolic Dysfunction', *Circulation Research*, 121: 575-83.

Plein, Alice, Alessandro Fantin, Laura Denti, Jeffrey W. Pollard, and Christiana Ruhrberg. 2018. 'Erythro-myeloid progenitors contribute endothelial cells to blood vessels', *Nature*, 562: 223-28.
Popat, Ketul C., Lara Leoni, Craig A. Grimes, and Tejal A. Desai. 2007. 'Influence of engineered titania nanotubular surfaces on bone cells', *Biomaterials*, 28: 3188-97.

Poustchi, Fatemeh, Hamed Amani, Zainab Ahmadian, Seyyed Vahid Niknezhad, Soraya Mehrabi, Hélder A Santos, and Mohammad-Ali Shahbazi. 2020. 'Combination Therapy of Killing Diseases by Injectable Hydrogels: From Concept to Medical Applications', *Advanced healthcare materials*: 2001571.

Prato, Maurizio. 2010. 'Controlled nanotube reactions', *Nature*, 465: 172-73.

Qazi, Taimoor H, Ranjana Rai, Dirk Dippold, Judith E Roether, Dirk W Schubert, Elisabetta Rosellini, Nicoletta Barbani, and Aldo R Boccaccini. 2014. 'Development and characterization of novel electrically conductive PANI–PGS composites for cardiac tissue engineering applications', *Acta biomaterialia*, 10: 2434-45.

Ravichandran, Rajeswari, Radhakrishnan Sridhar, Jayarama Reddy Venugopal, Subramanian Sundarrajani, Shayan Mukherjee, and Seeram Ramakrishna. 2014. 'Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration', *Macromolecular bioscience*, 14: 515-25.

Rentrop, Klaus Peter, and Frederick Feit. 2015. 'Reperfusion therapy for acute myocardial infarction: Concepts and controversies from inception to acceptance', *American heart journal*, 170: 971-80.

Rivera-Gil, Pilar, Dorleta Jimenez De Aberasturi, Verena Wulf, Beatriz Pelaz, Pablo Del Pino, Yuanyuan Zhao, Jesus M De La Fuente, Idoia Ruiz De Larramendi, Teófilo Rojo, and Xing-Jie Liang. 2013. 'The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity', *Accounts of chemical research*, 46: 743-49.

Romagnuolo, Rocco, Hassan Masoudpour, Andreu Porta-Sánchez, Beiping Qiang, Jennifer Barry, Andrew Laskary, Xiuling Qi, Stéphane Massé, Karl Magtibay, and Hiroyuki Kawajiri. 2019. 'Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias', *Stem cell reports*, 12: 967-81.

Roshanbinfar, Kaveh, Zahra Mohammadi, Abdorreza Sheikh-Mahdi Mesgar, Mohammad Mehdi Dehghan, Oommen P Oommen, Jöns Hilborn, and Felix B Engel. 2019. 'Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering', *Biomaterials science*, 7: 3906-17.

Roshanbinfar, Kaveh, Lena Vogt, Florian Ruther, Judith A Roether, Aldo R Boccaccini, and Felix B Engel. 2020. 'Nanofibrous composite with tailorable electrical and mechanical properties for cardiac tissue engineering', *Advanced functional materials*, 30: 1908612.

Roshanbinfar, Kaveh, Lena Vogt, Florian Ruther, Judith A. Roether, Aldo R. Boccaccini, and Felix B. Engel. 2019. 'Nanofibrous Composite with Tailorable Electrical and Mechanical Properties for Cardiac Tissue Engineering', *Advanced functional materials*: 1908612.

Sakmann, B., A. Noma, and W. Trautwein. 1983. 'Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart', *Nature*, 303: 250-53.

Santhosh, Chella, Venugopal Velmurugan, George Jacob, Soon Kwan Jeong, Andrews Nirmala Grace, and Amit Bhatnagar. 2016. 'Role of nanomaterials in water treatment applications: a review', *Chemical Engineering Journal*, 306: 1116-37.

Savi, Monia, Stefano Rossi, Leonardo Bocchi, Laura Gennaccaro, Francesca Cacciani, Alessio Perotti, Davide Amidani, Rossella Alinovi, Matteo Goldoni, Irene Aliatis, Pier Paolo Lottici, Danilo Bersani, Marco Campanini, Silvana Pinelli, Marta Petyx, Caterina Frati, Andrea Gervasi, Konrad Urbanek, Federico Quaini, Annamaria Buschini, Donatella
Stilli, Claudio Rivetti, Emilio Macchi, Antonio Mutti, Michele Miragoli, and Massimiliano Zaniboni. 2014. 'Titanium dioxide nanoparticles promote arrhythmias via a direct interaction with rat cardiac tissue', Particle and fibre toxicology, 11: 63.

Schacht, Kristin, Jessica Vogt, and Thomas Scheibel. 2016. 'Foams made of engineered recombinant spider silk proteins as 3D scaffolds for cell growth', ACS biomaterials science & engineering, 2: 517-25.

Senyo, Samuel E., Matthew L. Steinhauser, Christie L. Pizzimenti, Vicky K. Yang, Lei Cai, Mei Wang, Ting-Di Wu, Jean-Luc Guerquin-Kern, Claude P. Lechene, and Richard T. Lee. 2013. 'Mamalian heart renewal by pre-existing cardiomyocytes', Nature, 493: 433-36.

Shareena, Thabitha P Dasari, Danielle McShan, Asok K Dasmahapatra, and Paul B Tchounwou. 2018. 'A review on graphene-based nanomaterials in biomedical applications and risks in environment and health', Nano-micro letters, 10: 53.

Sharma, Monica. 2019. 'Transdermal and Intravenous Nano Drug Delivery Systems: Present and Future,' in, Applications of Targeted Nano Drugs and Delivery Systems (Elsevier).

Sheng, Yulan, and Li Zhu. 2018. 'The crosstalk between autonomic nervous system and blood vessels', International journal of physiology, pathophysiology and pharmacology, 10: 17-28.

Shevach, Michal, Sharon Fleischer, Assaf Shapira, and Tal Dvir. 2014. 'Gold Nanoparticle-Decellularized Matrix Hybrids for Cardiac Tissue Engineering', Nano Letters, 14: 5792-96.

Shin, Su Ryon, Behnaz Aghaei-Ghareh-Bolagh, Xiguang Gao, Mehdi Nikkhah, Sung Mi Jung, Alireza Dolatshahi-Pirouz, Sang Bok Kim, Sun Min Kim, Mehmet R Dokmeci, and Xiaowu Tang. 2014. 'Layer-by-layer assembly of 3D tissue constructs with functionalized graphene', Advanced functional materials, 24: 6136-44.

Shin, Su Ryon, Hyeongho Shin, Jae Min Cha, Ji Young Mun, Ying-Chieh Chen, Halil Tekin, Hojae Bae, and Shirley Tang. 2012. 'Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation', ACS nano, 6: 362-72.

Shin, Su Ryon, Sung Mi Jung, Momen Zalabany, Keekyoung Kim, Pinar Zorlutuna, Sang Bok Kim, Mehdi Nikkhah, Masoud Khabiry, Mohamed Azize, and Jing Kong. 2013. 'Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators', ACS nano, 7: 2369-80.

Shin, Su Ryon, Yi-Chen Li, Hae Lin Jang, Parastoo Khoshakhlagh, Mohsen Akbari, Amir Nasajpour, Yu Shrike Zhang, Ali Tamayol, and Ali Khademhosseini. 2016. 'Graphene-based materials for tissue engineering', Advanced Drug Delivery Reviews, 105: 255-74.

Shin, Su Ryon, Courtney Shin, Adnan Memic, Samaneh Shadmehr, Mario Miscuglio, Hyun Young Jung, Sung Mi Jung, Hojae Bae, Ali Khademhosseini, and Xiaowu Tang. 2015. 'Aligned carbon nanotube–based flexible gel substrates for engineering biohybrid tissue actuators', Advanced functional materials, 25: 4486-95.
Shin, Su Ryon, Claudio Zihlmann, Mohsen Akbari, Pribpandao Assawes, Louis Cheung, Kaizhen Zhang, Vijayan Manoharan, Yu Shrike Zhang, Mehmet Yüksekkaya, and Kai-tak Wan. 2016. 'Reduced graphene oxide-gelMA hybrid hydrogels as scaffolds for cardiac tissue engineering', small, 12: 3677-89.

Shokraei, Nasim, Shiva Asadpour, Shabnam Shokraei, Mehrdad Nasrollahzadeh Sabet, Reza Faridi-Majidi, and Hossein Ghanbari. 2019. 'Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering', Microscopy research and technique, 82: 1316-25.

Shrestha, Sita, Bishnu Kumar Shrestha, Jeong In Kim, Sung Won Ko, Chan Hee Park, and Cheol Sang Kim. 2018. 'Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering', Carbon, 136: 430-43.

Simpson, DG. 1994. 'Terracio L, Terracio M, Price RL, Turner DC, and Borg TK', Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol, 161: 89-105.

Sridhar, Radhakrishnan, Rajamani Lakshminarayanan, Kalaipriya Madhaiyan, Veluchamy Amutha Barathi, Keith Hsiu Chin Lim, and Seeram Ramakrishna. 2015. 'Electrosprayed nanoparticles and electrosprun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals', Chemical Society Reviews, 44: 790-814.

Sridhar, Sreepathy, Jayarama Reddy Venugopal, Radhakrishnan Sridhar, and Seeram Ramakrishna. 2015. 'Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers', Colloids and Surfaces B: Biointerfaces, 134: 346-54.

Stout, David A, Jennie Yoo, Adriana Noemi Santiago-Miranda, and Thomas J Webster. 2012. 'Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application', International journal of nanomedicine, 7: 5653.

Streeter, Benjamin W., Jiadia Xue, Younan Xia, and Michael E. Davis. 2019. 'Electrospun Nanofiber-Based Patches for the Delivery of Cardiac Progenitor Cells', ACS applied materials & interfaces, 11: 18242-53.

Sun, Hongyu, Yongchao Mou, Yi Li, Xia Li, Zi Chen, Kayla Duval, Zhu Huang, Ruiwu Dai, Lijun Tang, and Fuzhou Tian. 2016. 'Carbon nanotube-based substrates promote cardiogenesis in brown adipose-derived stem cells via β1-integrin-dependent TGF-β1 signaling pathway', International journal of nanomedicine, 11: 4381.

Sun, Hongyu, Jing Zhou, Zhu Huang, Linlin Qu, Ning Lin, Chengxiao Liang, Ruiwui Dai, Lijun Tang, and Fuzhou Tian. 2017. 'Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs', International journal of nanomedicine, 12: 3109.

Swaminathan, Madhav, Mark Stafford-Smith, Glenn M Chertow, David G Warnock, Viken Paragamian, Robert M Brenner, François Lellouche, Alison Fox-Robichaud, Mohamed G Atta, and Spencer Melby. 2018. 'Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery', Journal of the American Society of Nephrology, 29: 260-67.

Taghavi, S., A. H. Nia, K. Abnous, and M. Ramezani. 2017. 'Polyethyleneimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells', Int J Pharm, 516: 301-12.
Takahashi, Kazutoshi, and Shinya Yamanaka. 2006. 'Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors', *Cell*, 126: 663-76.

Tatsumi, Sawako, Kiyoaki Ishii, Norio Amizuka, Minqi Li, Toshihiro Kobayashi, Kenji Kohno, Masako Ito, Sunao Takeshita, and Kyoji Ikeda. 2007. 'Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction', *Cell metabolism*, 5: 464-75.

Templin, Christian, Robert Zweigerdt, Kristin Schwanke, Ruth Olmer, Jelena-Rima Ghadri, Maximilian Y. Emmert, Ennio Müller, Silke M. Küest, Susan Cohrs, and Roger Schibli. 2012. 'Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iodide symporter transgene expression', *Circulation*, 126: 430-39.

Tondnevis, Farbod, Hamid Keshvari, and Jamshid Aghazadeh Mohandes. 2020. 'Fabrication, characterization, and in vitro evaluation of electrospun polyurethane-gelatin-carbon nanotube scaffolds for cardiovascular tissue engineering applications', *Journal of Biomedical Materials Research Part B: Applied Biomaterials*, 108: 2276-93.

Tsui, Jonathan H, Nicholas A Ostrovsky-Snider, David MP Yama, Jordan D Donohue, Jong Seob Choi, Rakchanok Chavanachat, Jesse D Larson, Amanda R Murphy, and Deok-Ho Kim. 2018. 'Conductive silk–polypyrrole composite scaffolds with bioinspired nanotopographic cues for cardiac tissue engineering', *Journal of Materials Chemistry B*, 6: 7185-96.

Tsukamoto, Ann, Nobuko Uchida, Alexandra Capela, Thorsten Gorba, and Stephen Huhn. 2013. 'Clinical translation of human neural stem cells', *Stem cell research & therapy*, 4: 1-13.

Ueda, Erica, and Pavel A Levkin. 2013. 'Emerging applications of superhydrophilic-superhydrophobic micropatterns', *Advanced Materials*, 25: 1234-47.

Urankar, Rakhee N, Robert M Lust, Erin Mann, Pranita Katwa, Xiaojia Wang, Ramakrishna Podila, Susana C Hilderbrand, Benjamin S Harrison, Pengyu Chen, and Pu Chun Ke. 2012. 'Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes', *Particle and fibre toxicology*, 9: 38.

Vickers, Neil J. 2017. 'Animal communication: when i’m calling you, will you answer too?', *Current biology*, 27: R713-R15.

Vunjak-Novakovic, Gordana, Kathy O. Lui, Nina Tandon, and Kenneth R. Chien. 2011. 'Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine', *Annual review of biomedical engineering*, 13: 245-67.

Wang, Bo, Ali Borazjani, Mina Tahai, Amy L de Jongh Curry, Dan T Simionescu, Jianjun Guan, Filip To, Steve H Elder, and Jun Liao. 2010. 'Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells', *Journal of Biomedical Materials Research Part A*, 94: 1100-10.

Wang, Hua, and David J Mooney. 2018. 'Biomaterial-assisted targeted modulation of immune cells in cancer treatment', *Nature materials*, 17: 761-72.

Wang, Jiaxian, Chang Cui, Haiyan Nan, Yuanfang Yu, Yini Xiao, Ellen Poon, Gang Yang, Xijie Wang, Chencheng Wang, and Lingsong Li. 2017. 'Graphene sheet-induced global maturation of cardiomyocytes derived from human induced pluripotent stem cells', *ACS applied materials & interfaces*, 9: 25929-40.

Wang, Liying, Sudjit Luanpitpong, Vincent Castranova, William Tse, Yongju Lu, Varisa Pongrakhananon, and Yon Rojanasakul. 2011. 'Carbon nanotubes induce malignant
transformation and tumorigenesis of human lung epithelial cells', *Nano Letters*, 11: 2796-803.

Wang, Yongyu, Jiang Hu, Jiao Jiao, Zhongning Liu, Zhou Zhou, Chao Zhao, Lung-Ji Chang, Y Eugene Chen, Peter X Ma, and Bo Yang. 2014. 'Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds', *Biomaterials*, 35: 8960-69.

Wei, Jianhua, Masao Yoshinari, Shinji Takemoto, Masayuki Hattori, Eiji Kawada, Baolin Liu, and Yutaka Oda. 2007. 'Adhesion of mouse fibroblasts on hexamethylsiloxane surfaces with wide range of wettability', *Journal of Biomedical Materials Research Part B: Applied Biomaterials*: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 81: 66-75.

Whittemore, Susan. 2014. *The circulatory system* (Infobase Publishing).

Wickham, Abeni M, M Mirazul Islam, Debasish Mondal, Jaywant Phopase, Veera Sadhu, Éva Tamás, Naresh Polisetti, Agneta Richter-Dahlfors, Bo Liedberg, and May Griffith. 2014. 'Polycaprolactone–thiophene-conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells', *Journal of Biomedical Materials Research Part B: Applied Biomaterials*, 102: 1553-61.

Willmann, Wiebke, and Ralf Dringen. 2018. 'Monitoring of the cytoskeleton-dependent intracellular trafficking of fluorescent iron oxide nanoparticles by nanoparticle pulse-chase experiments in C6 glioma cells', *Neurochemical research*, 43: 2055-71.

Wirkner, Christian S., and Stefan Richter. 2013. 'Circulatory system and respiration', *Natural History of Crustacea*, 1: 376-412.

Xia, Meng-Ying, Yu Xie, Chen-Hao Yu, Ge-Yun Chen, Yuan-Hong Li, Ting Zhang, and Qiang Peng. 2019. 'Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications', *Journal of Controlled Release*, 307: 16-31.

Xiang, Li-jie, Jing-an Li, Zi-kun He, Jue-jue Wu, Ping Yang, and Nan Huang. 2015. 'Design and construction of TiO2 nanotubes in microarray using two-step anodic oxidation for application of cardiovascular implanted devices', *Micro & Nano Letters*, 10: 287-91.

Xiong, Fei, Hao Wang, Yidong Feng, Yunman Li, Xiaqing Hua, Xingyun Pang, Song Zhang, Lina Song, Yu Zhang, and Ning Gu. 2015. 'Cardioprotective activity of iron oxide nanoparticles', *Scientific Reports*, 5: 1-8.

Xu, Chengyu, Fang Yang, Shu Wang, and Seeram Ramakrishna. 2004. 'In vitro study of human vascular endothelial cell function on materials with various surface roughness', *Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials*, 71: 154-61.

Xu, Yiguo, Yang Ma, Yu Liu, Shan Feng, Delong He, Paul Haghi-Ashtiani, Anthony Dichiara, Laurent Zimmer, and Jinbo Bai. 2018. 'Evolution of nanoparticles in the gas phase during
the floating chemical vapor deposition synthesis of carbon nanotubes', *The Journal of Physical Chemistry C*, 122: 6437-46.

Yadav, Hemant KS, Aiah A Almokdad, IM Sumia, and Manar S Debe. 2019. 'Polymer-based nanomaterials for drug-delivery carriers.' in, *Nanocarriers for Drug Delivery* (Elsevier).

Yaniv, Yael, Ambhighainath Ganesan, Dongmei Yang, Bruce D. Ziman, Alexey E. Lyashkov, Andre Levchenko, Jin Zhang, and Edward G. Lakatta. 2015. 'Real-time relationship between PKA biochemical signal network dynamics and increased action potential firing rate in heart pacemaker cells: Kinetics of PKA activation in heart pacemaker cells', *Journal of Molecular and Cellular Cardiology*, 86: 168-78.

Yao, Xiang, Rong Peng, and Jiandong Ding. 2013. 'Cell–material interactions revealed via material techniques of surface patterning', *Advanced Materials*, 25: 5257-86.

Yao, Yang, Wen Liao, Ruichao Yu, Yu Du, Ting Zhang, and Qiang Peng. 2018. 'Potentials of combining nanomaterials and stem cell therapy in myocardial repair', *Nanomedicine*, 13: 1623-38.

Yeung, T, PC Georges, LA Flanagan, B Marg, M Ortiz, M Funaki, N Zahir, W Ming, and V Weaver. 'Janmey Pa (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion', *Cell Motil. Cytoskeleton*, 60: 24-34.

Yokote, Shinya, and Takashi Yokoo. 2012. 'Stem cells in kidney regeneration', *Current medicinal chemistry*, 19: 6009-17.

Yokoyama, Ryo, Masaaki Ii, Yasuhiko Tabata, Masaaki Hoshiga, Nobukazu Ishizaka, and Michio Asahi. 2019. 'Cardiac regeneration by statin-polymer nanoparticle-loaded adipose-derived stem cell therapy in myocardial infarction', *Stem cells translational medicine*, 8: 1055-67.

You, Jin-Oh, Marjan Rafat, George J. C. Ye, and Debra T. Auguste. 2011. 'Nanoengineering the Heart: Conductive Scaffolds Enhance Connexin 43 Expression', *Nano Letters*, 11: 3643-48.

Yu, Hongsheng, Hui Zhao, Chenyu Huang, and Yanan Du. 2017. 'Mechanically and electrically enhanced CNT–collagen hydrogels as potential scaffolds for engineered cardiac constructs', *ACS biomaterials science & engineering*, 3: 3017-21.

Yu, Ting-Ting, Fu-Zhai Cui, Qing-Yuan Meng, Juan Wang, De-Cheng Wu, Jin Zhang, Xiao-Xing Kou, Rui-Li Yang, Yan Liu, and Yu Shrike Zhang. 2017. 'Influence of surface chemistry on adhesion and osteo/odontogenic differentiation of dental pulp stem cells', *ACS biomaterials science & engineering*, 3: 1119-28.

Yu, Xiaohong, Fashui Hong, and Yu-Qing Zhang. 2016. 'Bio-effect of nanoparticles in the cardiovascular system', *Journal of Biomedical Materials Research Part A*, 104: 2881-97.

Zamboni, Fernanda, Silvia Vieira, Rui L Reis, J Miguel Oliveira, and Maurice N Collins. 2018. 'The potential of hyaluronic acid in immunoprotection and immunomodulation: chemistry, processing and function', *Progress in Materials Science*, 97: 97-122.

Zargar, Seyed Mohammad, Mehdi MehdiKhani, and Mohammad Rafienia. 2019. 'Reduced graphene oxide–reinforced gellan gum thermostressive hydrogels as a myocardial tissue engineering scaffold', *Journal of Bioactive and Compatible Polymers*, 34: 331-45.

Zeltinger, Joan, Jill K Sherwood, Dionne A Graham, Ralph Müller, and Linda G Griffith. 2001. 'Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition', *Tissue engineering*, 7: 557-72.
Zhang, Jingwen, Yanbo Xue, Yajuan Ni, Feifei Ning, Lijun Shang, and Aiqun Ma. 2018. 'Size dependent effects of Gold Nanoparticles in ISO-induced Hyperthyroid Rats', *Scientific Reports*, 8: 1-13.

Zhang, Qian, Zhimin Liu, Junting Du, Wei Qin, Manman Lu, Haiyan Cui, Xiaoxiao Li, Shumao Ding, Rui Li, and Junlin Yuan. 2019. 'Dermal exposure to nano-TiO2 induced cardiovascular toxicity through oxidative stress, inflammation and apoptosis', *The Journal of Toxicological Sciences*, 44: 35-45.

Zhang, Yifan, Junwei Zhao, Yanghao Fang, Yi Liu, and Xingluo Zhao. 2018. 'Preparation of long linear carbon chain inside multi-walled carbon nanotubes by cooling enhanced hydrogen arc discharge method', *Nanoscale*, 10: 17824-33.

Zhang, Yongbin, Syed F Ali, Enkeleda Dervishi, Yang Xu, Zhongrui Li, Daniel Casciano, and Alexandru S Biris. 2010. 'Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells', *ACS nano*, 4: 3181-86.

Zhang, Youjian, Weidong Fan, Kuihua Wang, Huina Wei, Ruicheng Zhang, and Yuguo Wu. 2019. 'Novel preparation of Au nanoparticles loaded Laponite nanoparticles/ECM injectable hydrogel on cardiac differentiation of resident cardiac stem cells to cardiomyocytes', *Journal of Photochemistry and Photobiology B: Biology*, 192: 49-54.

Zhao, Guoxu, Huaibin Qing, Guoyou Huang, Guy M Genin, Tian Jian Lu, Zhengtang Luo, Feng Xu, and Xiaohui Zhang. 2018. 'Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues', *NPG Asia Materials*, 10: 982-94.

Zhou, Jin, Jun Chen, Hongyu Sun, Xiaozhong Qiu, Yongchao Mou, Zhiqiang Liu, Yuwei Zhao, Xia Li, Yao Han, and Cuimi Duan. 2014. 'Engineering the heart: evaluation of conductive nanomaterials for improving implant integration and cardiac function', *Scientific Reports*, 4: 3733.

Zhu, Kai, Su Ryon Shin, Tim van Kempen, Yi-Chen Li, Vidhya Ponraj, Amir Nasajpour, Serena Mandla, Ning Hu, Xiao Liu, Jeroen Leijten, Yi-Dong Lin, Mohammad Asif Hussain, Yu Shrike Zhang, Ali Tamayol, and Ali Khademhosseini. 2017. 'Gold Nanocomposite Bioink for Printing 3D Cardiac Constructs', *Advanced functional materials*, 27: 1605352.

Zhu, Zhijun, Min Su, Lan Ma, Lina Ma, Dianjun Liu, and Zhenxin Wang. 2013. 'Preparation of graphene oxide–silver nanoparticle nanohybrids with highly antibacterial capability', *Talanta*, 117: 449-55.