ANALYSIS OF SURFACE QUALITY MEASUREMENT WITH CLASSIFICATION APPROACH

Laith R.Flaih1,*, Shaimaa Awadh Baha al_Deen2 and Mohamed Uvaze Ahamed Ayoobkhan3

1Department of Computer Science, Cihan University-Erbil, Kurdistan Region, Iraq.
2Department of Computer Science, Salahaddin University, Kurdistan Region, Erbil, Iraq.
3Department of Information Technology, Qala University College, Kurdistan Region, Iraq.

*Laith.flaih@cihanuniversity.edu.iq

Abstract. This investigation provides a methodology for surface quality measurement. In machine based vision, an optical inspection is validated to identify defects over materials. As well, normalization approach is used to process homogeneous thickness. With compensation procedures flaws are identified and analyzed. However, after defect identification, decision rules are defected for appropriate classification which offers optimal performance and diminishes tuning complexity. The anticipated approach is effectual and fulfills inspection requirements. Experimental outcomes may validate performance of anticipated approach to recognition rate and inspection speed.

Index terms. Quality measurements, defect identification, classification, decision making, flaws

1. Introduction

Based on the features of higher energy density and storage, batteries may store pre-dominant role in communication devices and may spread powerful tools [1]. Moreover, if there is defect encountered and performance of life cycle is lesser, however there are certain safety measures [2]. Therefore, it is essential to eliminate flaws to identify battery quality and eliminate sequence process; diminishing production efficiency and it may affect battery yield [3]. As well, appropriate classification is a most effectual factor in battery management and to enhance quality by offering feedback to generate execution system for parameter adjustments and process optimization [4]. With various types, un-even visualization and distributions of flaws and huge inspections, inspection system for slow detection and non-robust classification outcomes [5]. However, with consistency and concentration that system may substitute interpretation and perception to manipulate decisions over product quality and diminishes rising consumer product [6].

In automation system, it is essential to perform quality measurements [7]. Moreover, it may not be determined with defect types and position for resolving various problems. With the assistance of verification, it may attain defect impact over output performance. Machine based vision may overcome these complexities [8]. It utilizes camera and source to attain object detection and use image processing to object position and fulfills quality requirements.
While detecting defect, it is essential to utilize threshold functionality. This algorithm uses two factors that may influence detection performance: upper tune and block size. It does not need intervention after commission and installation [9]. However, this algorithm utilizes general parameter with procedure. Default process are not suitable, and may cause poor imaging that may outcome size defect, product depth is time changing and non-linear illumination. Histogram analysis may work effectively for defect with gray level differences from various situations [10]. As well, matrices are utilized for detection, however they are noise sensitive and computational cost is more effectual. Numerous investigations have been analyzed with defect identification. Various methods are merged with filters like Gabor and Gaussian may eliminate background and defect identification, however computational load is higher [11]. To fulfill these requirements, numerous detection processes are anticipated with faster recognition effect in illumination condition.

In classification, numerous machine learning approaches have been utilized for classification like neural network, decision tree, k-nearest neighbour, bayes methods [12]. Moreover, these algorithms need huge amount of learning samples like high performance and training time. They may adjust parameters for longer time period. As well, classification is not fulfilled. Some algorithm may work effectively under certain dataset and shows preference. The essential contribution of the proposed model is as follows:

1) Normalization is modelled to extract flaws over illumination.
2) Fast concentration for precise flaw detection.
3) Decision making rules for flaw classification.

The remainder of the work is given as: Section 2 is related works, section 3 is proposed model, Section 4 is numerical results and discussions, Section 5 is conclusion with future works.

2. Related works
A novel clustering approach depicts edge detection, attribute clustering, region growing and hybrid models that shows definition for graph and model dependent on dividing attribute clustering approaches. HA offers ability to automatic optimal partitioning with a evaluation basis of features with lesser uncertainties, as maximal amount of essential points are related to elements. It is shown that this is an automated partitioning is sensitive based on initial approximation values and reliable. This is based on reduction of orthogonal distances which is specified as geometric fitting, distance regression and fit approximation [13]. This is considered to be more successful which is tested for micromeasurements based evaluation and it facilitates outlier’s detection by merging statistical approaches. Uncertainty approximations of features are estimated with cylinder, plane and torus and validation shows that micrometer deviation for factors approximated with geometric boundary factors [14].
Moreover, the development is based on geometric combination of cylinder, tori, and planes with distances to measured points that are calculated analytically.

The quality of element is determined by technical drawing. Therefore, nominal geometry is measured and utilized for model evaluation. However, geometrical compositions are extremely complex elements like parabolas, ellipses with point iterations that are presented here [15]. The lifetime, capacity, performance of battery is provided by weakest unit in association with circuits in battery. Therefore, weakest unit performance is provided by enhancement to validate battery quality. Manufacturing process is so complex and battery deterioration is influenced by numerous production factors.

3. Proposed methodology

The surface defect is measured as pattern detection. It is partitioned into normalization, rough computation and precision process. The input elements are uneven. The primary cause of this factor is 1) flat field of elements are extremely complex to identify 2) surface elements are non-uniform and distance among them and camera unit is divergent. Henceforth, it is essential to pre-process input element. Devoid of influencing defect characteristics, background is normalized. ROI is extracted from input by threshold function. Elements are extracted from arrays and absolute error which is given as in Eq. (1).

\[AE = |a_{i,k} - a_{j,k}| \]

When AE is lesser than threshold, then elements are chosen and computed as in Eq. (2):

\[A_k^* = \begin{cases}
A_k^* U \{a_{i,k}, a_{j,k}\} & AE < T; \\
A_k^* U \emptyset & AE \geq T
\end{cases} \]

Average chosen elements are provided as in Eq. (3):

\[m_k = \frac{1}{n} \sum a_k^* \]

All the input elements are normalized. SNR is extremely higher. Therefore, foreground information is identified as electrode surface which is extremely clear. Morphological transformation operation is external transformation and candidate may identify auto-concentration of compensation algorithm. It is used to carry out precise detection and to extract information.

```
Start

Examine flaw characteristics

Classify defects

Automatic parameter adjustments

Decision making

End
```
Fig 2. Flow diagram of proposed model

Classification of surface flaws determines effectual computation. When modelling an algorithm, the objective is to identify optimal performance in integration of absolute error with false negative and position. The procedure for computation is to identify classification algorithm. Surface leakage has to be identified and color brightness has to be measured. Flaw extracted by compensation has to be classified. In pattern recognition, diverse features are extracted with higher detection rate. Features for learning network have to find features based on training dataset which is integrated with characteristics analysis. Defects are based on flaw angles, orientations from centre of flaw neighbourhood. These are projected with edge rectangles. Parameter adjustments are employed based on operators. When there is a lack in domain knowledge, parameter adjustment is a complex process. Classification rate and adjustment factors are not fulfilled. Automatic adjustments are anticipated in this work. It is appropriate for imbalanced data. In prior functionality, operators have to provide appropriate classification labels to identify images. Based on actual defect process, operators have to adjust threshold to enhance recall rate. When threshold of every feature is evaluated, preliminary process considers classification module with higher time. It is used for accelerating computation. After feature expression of diverse flaws are packed along with features. It is noted that when input is true positive of defect features, then it may shows true negative samples of flaw features. Subsequently, sample space computation is reduced. When input samples are attained with certain value, optimal threshold of diverse features of various flaw will constantly attempts to stable values. Therefore, it is used by feature computation for classification applications.

4. Numerical results and discussions
This section provides the parameter analysis and estimation of proposed model. This work is executed in Intel core i7 processor with 3 GHz frequency. The below given metrics are considered for performance analysis, relative missing rate, accuracy, relative error rate, Area under curve, precision, F-measure and recall which is utilized to compute experimental outcomes as in Eq. (4) – Eq. (9):

\[
RMR = \frac{FN}{TP+FN}
\]
\[
Accuracy = \frac{TP}{TP+FP}
\]
\[
RER = \frac{FP}{TP+FP}
\]
\[
AOU = \frac{TP}{TP+FP+FN}
\]
\[
Precision = \frac{TP+FP}{TP}
\]
\[
Recall = \frac{TP}{TP+FN}
\]

Here, RER and RMR are utilized to choose optimal threshold for precision detection. AUC is utilized to compute accuracy of anticipated methods in comparison. Other equations are used to measure classifier performance.

Table I. Confusion Matrix
Actual data
positive
negative
Fig 3. Sample size Vs feature threshold

Fig 4. RER and RMR computation

Fig 5. RMR and RER computation for classification process
The data in test pools are utilized to compute thresholds of chosen features for partial decision making. Based on diverse flaw categories it will be loaded and packed in feature machines. The, map is attained randomly as input of feature machine. Defects are considered as positive instances and measured as negative samples for defect kinds at similar time. Henceforth, features are considered for classification and simultaneously work for crucial feature values. Feature thresholds are computed. With sample size lesser than feature threshold varies. When sample size is higher than, threshold is more stable. Features give more crucial values that may diminish computational time. For better performance, critical values are provided for human intervention.

The average computational time of classification is 0.12s. There are some failure cases that are identified with classification process. Defects are classified with the presence of similar representation. The learning samples based specifications are not so stronger. The differences in learning samples are classes. Boundary definition based flaw types are considered to be vague. Henceforth, to eliminate flaws in missed detection, adjustments of parameters are provided in upward compatibility with diverse kinds of defects. All the performance indices are 100% which significantly advantages from turning parameters based on production requirements.

5. Conclusion
This investigation anticipates the surface analysis approaches to identify and categorize diverse flaws over large scale surface on production in real time. Element inspection and categorization are done with automatic inspection. This method is extremely simpler and shows lesser computational need and offers optimal performance. Surface quality has been resourcefully utilized in element inspection and speed and accuracy are competent to fulfil needs of real time production. In future, deep learning is used to identify flaws over elements.

REFERENCES
[1] Borwankar and R. Ludwig, “An optical surface inspection and automatic classification technique using the rotated wavelet transform,” IEEE Trans. Instrum. Meas., vol. 67, no. 3, pp. 690-697, Mar. 2018.
[2] Schuss, K. Remes, K. Leppanen, and J. Saarela, “Detecting defects in photovoltaic panels with the help of synchronized thermography,” IEEE Trans. Instrum. Meas., vol. 67, no. 5, pp. 1178-1186, May 2018.
[3] Shirmohammadi and A. Ferrero, “Camera as the instrument: the rising trend of vision based measurement,” IEEE Trans. Instrum. Meas., vol.17, no. 3, pp. 41-47, Jun. 2014.
[4] Schuss, K. Leppanen, K. Remes, J. Saarela, T. Fabritius, B. Eichberger, and T. Rahkonen, “Detecting defects in photovoltaic cells and panels and evaluating the impact on output performances,” IEEE Trans. Instrum. Meas., vol. 65, no. 5, pp. 1108-1119, May 2016.
[5] Shearing, N. P. Brandon, J. Gelbe, and R. Bradley, “Multi length scale microstructural investigations of a commercially available li-ion battery electrode,” Electrochem. Soc., vol. 159, no. 1, pp. A1023-A1027, Jan. 2012
[6] Sharp, P. ORegan, and D. Adams, “Lithium-ion battery electrode inspection using flash thermography,” Ndt & E International, vol. 64, no. 1, pp. 41-51, Feb. 2014.
[7] Jakob, M. Westermeier, C. Tammer, and G. Reinhart, “Production of large-area lithium-ion cells preconditioning, cell stacking and quality assurance,” CIRP Ann-Manuf. Technol., vol. 61, no. 1, pp. 1-4, Mar. 2012.
[8] Hu, X. Gao, and F. Li, “Detection of suspicious lesions by adaptive thresholding based on multiresolution analysis in mammograms,” IEEE Trans. Instrum. Meas., vol. 60, no. 2, pp., 462-472, Feb. 2011.
[9] Liu, F. Zhou, and Y. He, “Automated visual inspection system for bogie block key under complex freight train environment,” IEEE Trans. Instrum. Meas., vol. 65, no. 1, pp. 2-14, Jan. 2016.
[10] Wang, N. D. Georganas, and E. M. Petriu, “Fabric texture analysis using computer vision
techniques,” IEEE Trans. Instrum. Meas., vol. 60, no. 1, pp. 44-56, Jan. 2011.
[11] Li, and X. Chen, “Surface defect detection algorithm based on local neighborhood analysis,” in Proc. AISC, 2017, pp. 307–315.
[12] Siontorou and F. A. Batzias, “Determining the sources of measurement uncertainty in environmental cell-based biosensing,” IEEE Trans. Instrum. Meas., vol. 63, no. 4, pp. 794-804, Apr. 2014.
[13] Sun, R. Zhao, R. Yan, S. Shao, and X. Chen, “Convolutional discriminative feature learning for induction motor fault diagnosis,” IEEE Trans. Instrum. Meas., vol. 13, no. 3, pp. 1350-1359, Jun. 2017.
[14] Ghorai, A. Mukherjee, M. Gangadar, and P. K. Dutta, “Automatic defect detection on hot-rolled flat steel products,” IEEE Trans. Instrum. Meas., vol. 62, no. 3, pp. 612-621, Mar. 2013
[15] Xie and X. Zhang, “Adaptive online solder joint inspection algorithm based on incremental clustering,” Electron. Lett., vol. 47, no. 15, pp. 850-851, Jul. 2011.