ASPHER Statement: Facing the Fourth Winter of the COVID-19 Pandemic

Rok Hrzic1, Nadav Davidovitch2*, Henrique Barros3, Henrique Lopes4, Jose M. Martin Moreno5, Amanda J. Mason-Jones6, Alison McCallum7, John Reid8, Ralf Reintjes9, Mohamud Sheek-Hussein10, Judit Simon11, Brian Li Han Wong1,12, Lore Leighton13, Robert Otok13, John Middleton13 and ASPHER

1Department of International Health, Care and Public Health Research Institute – CAPHRI, Maastricht University, Maastricht, Netherlands, 2School of Public Health, Ben Guion University of the Negev, Beersheba, Israel, 3Institute of Public Health, University of Porto, Porto, Portugal, 4Unit of Public Health, Institute of Health Sciences, Catolica University, Lisbon, Portugal, 5Department of Preventive Medicine and Public Health, Medical School and INCLIVA, University of Valencia, Valencia, Spain, 6Department of Health Sciences, University of York, York, United Kingdom, 7Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, Scotland, 8Department of Public Health and Wellbeing, University of Chester, Chester, United Kingdom, 9Department of Public Health, Hamburg University of Applied Sciences, Hamburg, Germany, 10Institute of Public Health — College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates, 11Department of Health Economics, Center for Public Health, Medical University of Vienna, Vienna, Austria, 12The International Digital Health and AI Research Collaborative (I-DAIR), Geneva, Switzerland, 13Association of Schools of Public Health in the European Region (ASPHER), Brussels, Belgium

Keywords: COVID-19 pandemic, winter planning, equity, vaccination policy, evidence informed policy, trust, enhanced surveillance

THE FOURTH WINTER OF THE PANDEMIC—WHAT HAVE WE LEARNED?

The coming winter is the fourth since the COVID-19 pandemic started in late 2019. The rapidity with which novel variants of the virus are emerging and eroding the effectiveness of established tools for the detection, prevention, and treatment of the illness poses an ongoing challenge to healthcare systems, on top of emerging threats such as the MPVX and polio as well as preparations for seasonal influenza, all within the context of pandemic fatigue both for the general public and health workforce [1]. At the same time, policymakers worldwide now possess the experience necessary to stage effective and equitable responses to the pandemic. In this statement, we reflect on the key lessons for managing the ongoing COVID-19 pandemic in the context of multiple intersecting global threats [2].

THE PANDEMIC RESPONSE SHOULD PRIORITIZE EQUITY

The first lesson is that this is an inequitable pandemic. Most outcomes relevant to COVID-19 follow a social gradient, ranging from contracting the disease [3], experiencing a severe course of the disease [4] and death [5], vaccine hesitancy [6] and not having received a full course of vaccination [7], or experiencing economic hardship [8] and poorer mental health as a result of the pandemic [9]. Any response, therefore, necessitates a strong consideration of equity effects and entails a combination of tailored information dissemination, vaccination campaigns targeted at different levels of the social hierarchy, providing adequate ventilation, encouraging wearing masks in public places like on public transport [10], ensuring that frequent testing and quarantining are financially accessible for all, and welfare policies ameliorating social and economic deprivation.

VACCINES ARE NECESSARY BUT NOT SUFFICIENT

The availability of COVID-19 vaccines has been a turning point in the pandemic and has resulted in fewer new infections, hospital admissions, and severe courses of disease [11]. However, vaccination alone is not
sufficient to prepare for the months ahead. Large sections of the population—often those at the bottom of the social hierarchy—will likely remain unvaccinated in light of their vaccine hesitancy and distrust of the government [6, 7, 12]. Globally, the distribution of COVID-19 vaccines remains unequal as wealthy nations stockpile the vaccine at the expense of easy access in lower- and middle-income countries; this not only hinders the effective response in those countries but also perpetuates the worldwide risk of emergent variants [13–17]. In absence of other preventive strategies, the rapid emergence of novel variants in combination with waning immunity after vaccination [18], necessitates the constant development and rollout of booster doses in the absence of other preventive strategies, which is not sustainable over the long term.

TRANSPARENT EVIDENCE-INFORMED DECISION-MAKING ENGENDERS TRUST

An effective response to the pandemic fundamentally requires a relationship of trust and cooperation between governments and their citizens. This relationship is greatly enhanced if key stakeholders and the public are engaged in a fair process for decision-making involving publicity, relevance, revisability, and enforcement [10]. Given the evidence available on the likely effects of various non-pharmacological interventions on the course of the pandemic [19–21] and the availability of reflections on how best to incorporate scientific evidence in political decision-making during the pandemic [22–24], this moment presents an opportunity for governments to restore much-needed confidence in their ability to handle the pandemic and act decisively to protect the public’s health.

EFFECTIVE SURVEILLANCE IS THE KEY TO AN EFFECTIVE RESPONSE

Throughout the pandemic, COVID-19 surveillance systems played a key role in shaping effective responses to the pandemic [25]. Nevertheless, differences between countries, regions, and over time in how COVID-19 cases are defined, tested for, and reported have made the consistent and reliable tracking of the COVID-19 burden challenging [26–28]. To support an effective public health response going into the winter, countries will need to do more and more varied surveillance. Various techniques and tactics are available to provide insight into the prevalence of COVID-19 in a population [29], including wastewater surveillance [30]. There is also an ongoing need for genomic surveillance to detect emerging viral variants [31], as well as for monitoring for COVID-19 in healthcare and other occupational settings [32], inequalities in COVID-19 burden between ethnic groups [33], and the prevalence of long COVID [34]. The ECDC and WHO Europe suggest a good standard for surveillance of respiratory viruses—including COVID-19—consists of representative sentinel surveillance systems in primary and secondary care, the targeted surveillance of vulnerable groups, gathering data on illness severity such as hospitalisations, admissions to ICU, and mortality, and genomic monitoring; the data gathered should be sufficiently disaggregated to accurately follow virus- and variant-specific disease incidence by severity, age, and place [35]. Investing in sustainable surveillance systems will not only help us with COVID-19 but also enable effective public health responses to other emerging health threats.

THE COVID-19 PANDEMIC WILL NOT BE FOUGHT IN ISOLATION

An effective response to COVID-19 this winter will be critical to preserve the capacities of healthcare and public health institutions as they fend off other threats. Overlapping with the COVID-19 pandemic is the global circulation of MPVX [36], and experts warn of a resurgent seasonal influenza after 2 years suppression by public health measures and travel restrictions [37]. The context is also made more challenging by rising geopolitical uncertainty, high inflation driving up costs of living, extreme weather conditions including heatwaves and floods, and other threats [2]. COVID-19 pandemic is still here, yet we learned many lessons. We must take a balanced, sustainable, and holistic perspective to guide us in our interventions [2]. This requires collaboration and solidarity, both within and between countries.

AUTHOR’S NOTE

The Association of Schools of Public Health in the European Region (ASPHER) is the key independent European organization dedicated to improving and protecting public health by strengthening education and training of public health professionals for practice and research. www.aspher.org.

AUTHOR CONTRIBUTIONS

RH prepared the first draft. ND and JM contributed extensively to further drafts. All authors made substantial contributions to the conception of the work and to the acquisition, analysis, or interpretation of data for the work; and revising it critically for important intellectual content; and final approval of the version to be published; and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

CONFLICT OF INTEREST

JM is an elected, unpaid official of ASPHER, a membership organisation. ND and RH are unpaid in their work for ASPHER. LL and RO are paid officials of ASPHER.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

EDITORIAL NOTE

ASPHER is responsible and liable for all contents of ASPHER statements. ASPHER statements are approved by an Editor-in-Chief but not externally peer reviewed.
REFERENCES

1. Fernandes Q, Inchakalody VP, Merhi M, Mestiri S, Taib N, Moustafa Abe-El-Ella D, et al. Emerging COVID-19 Variants and Their Impact on SARS-CoV-2 Diagnosis, Therapeutics and Vaccines. Ann Med (2022) 54(1):524–40. doi:10.1080/07853890.2022.2031274

2. Middleton J, Davidovich N, Barros H, Lopes H, Martin-Moreno JM, Mason-Jones AJ, et al. ASPHER Statement: Planning for Winter 2022-23. Public health Rev. (2022) 43:1605394. doi:10.3389/phrs.2022.1605394

3. Baena-Díez JM, Barroso M, Cordeiro-Coelho SI, Díaz JL, Grau M, Impact of COVID-19 Outbreak by Income: Hitting Hardest the Most Deprieved. J Public Health (2020) 42(4):698–703. doi:10.1093/pubmed/fdaa136

4. Gustafsson PE, San Sebastian M, Fonseca-Rodriguez O, Fors Connolly AM. Socioeconomic Inequality in Exposure to COVID-19. PLoS ONE (2022) 17(1):e0262192. doi:10.1371/journal.pone.0262192

5. Saban M, Myers V, Ben-Shetrit S, Wilf-Miron R. Socioeconomic Gradient in COVID-19 Induced Economic Hardship in the United Kingdom. BMJ (2022) 377:o1186. doi:10.1136/bmj.o1186

6. Witteveen D, Velthorst E. Economic Hardship and Mental Health Complaints during COVID-19. Proc Natl Acad Sci U S A (2020) 117(44):27727–84. doi:10.1073/pnas.2009609117

7. Saban M, Myers V, Ben-Shetrit S, Wilf-Miron R. Socioeconomic Gradient in COVID-19 Induced Economic Hardship. J Epidemiol Community Health (2022) 76(3): 261–7. doi:10.1136/jech-2021-216778

8. Woodward M, Peters SAE, Harris K. Social Deprivation as a Risk Factor for COVID-19 Mortality Among Women and Men in the UK Biobank: Nature of Risk and Context Suggests that Social Interventions Are Essential to Mitigate the Effects of Future Pandemics. J Epidemiol Community Health (2021) 75(11): 1050–5. doi:10.1136/jech-2020-205180

9. Witteveen D, Velthorst E, Silberzan L. The Social Specificities of Hostility toward Vaccination against Covid-19 in France. PloS ONE (2022) 17(1):e0262192. doi:10.1371/journal.pone.0262192

10. Català M, Li X, Prats C, Prieto-Alhambra D. The Impact of Prioritisation and Risk of COVID-19 Outbreak by Income: Hitting Hardest the Most Deprieved. J Public Health (2020) 42(4):698–703. doi:10.1093/pubmed/fdaa136

11. Woodward M, Peters SAE, Harris K. Social Deprivation as a Risk Factor for COVID-19 Mortality. J Epidemiol Community Health (2021) 75(11): 1050–5. doi:10.1136/jech-2020-205180

12. Bajos N, Spire A, Silberzan L. ELPICOV study group. The Social Specificities of Hostility toward Vaccination against Covid-19 in France. PLoS ONE (2022) 17(1):e0262192. doi:10.1371/journal.pone.0262192

13. Català M, Li X, Prats C, Prieto-Alhambra D. The Impact of Prioritisation and Dosing Intervals on the Effects of COVID-19 Vaccination in Europe: an Agent-Based Cohort Model. J Health Polit Pol L (2022) 47(4):1085–104. doi:10.1215/03616878-2021-00007-0

14. Nafilyan V, Dolby T, Raziel C, Gaughan CH, Morgan J, Ayoubkhanii D, et al. Socio demographic Inequality in COVID-19 Vaccination Coverage Among Elderly Adults in England: A National Linked Data Study. BMJ Open (2021) 11(7):e053402. doi:10.1136/bmjopen-2021-053402

15. Sinha S, Gwee SW, Ng RQX, Lau N, Koh J, Pang J. Wastewater Surveillance to Combat COVID-19: Challenges and Opportunities. Lancet Microbe (2021) 2(9):e481–e484. doi:10.1016/s2666-5247(21)00121-X

16. Vickery J, Atkinson P, Lin R, Rubin O, Upshur R, Yeoh EK, et al. Challenges to Evidence-Informed Decision-Making in the Context of Pandemics: Qualitative Study of COVID-19 Policy Advisor Perspectives. BMJ Glob Health (2022) 7(4): e008268. doi:10.1136/bmjgh-2021-008268

17. Baker MG, Wilson N, Anglemyer A. Successful Elimination of Covid-19 Transmission in New Zealand. N Engl J Med (2020) 383(6):e6. doi:10.1056/ NEJMct2025203

18. World Federation of Public Health Associations. Statement on COVID-19 Immunization and Equitable Access to Vaccines (2021). Available at: https://www.wfpha.org/statements-on-covid-19/ (Accessed September 23, 2022).

19. Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Haas EJ, et al. Waning Immunity after the BNT162b2 Vaccine in Israel. N Engl J Med (2021) 385(24):e85. doi:10.1056/NEJMoai2114228

20. Fransman M, Mishra S, Gandy A, Unwin HIT, Melan T, Coupland H, et al. Estimating the Effects of Non-pharmaceutical Interventions on COVID-19 in Europe. Nature (2020) 584(7820):257–61. doi:10.1038/s41586-020-2405-7

21. Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larriere A, Loreto V, et al. Ranking the Effectiveness of Worldwide COVID-19 Government Interventions. Nat Hum Behav (2020) 4(12):1303–12. doi:10.1038/s41562-020-01090-9

22. de Campos-Rudinsky TC, Undurraga E. Public Health Decisions in the COVID-19 Pandemic Require More Than ‘follow the Science’. J Med Ethics (2020) 2021:107134. doi:10.1136/medethics-2020-107134

23. Hodges R, Caprerialone E, van Helden J, Reichard C, Sorrentino D. The Role of Scientific Expertise in COVID-19 Policy-Making: Evidence from Four European Countries. Public Organiz Rev (2022) 22(2):249–67. doi:10.1007/s11115-022-00614-z

24. Robishaw JD, Alter SM, Solano JJ, Shih RD, DeMets DL, Maki DG, et al. Genomic Surveillance to Combat COVID-19: Challenges and Opportunities. Lancet Microbe (2020) 2(9):e481–e484. doi:10.1016/s2666-5247(21)00121-X

25. Shaw S, Gwee SW, Ng RQX, Lau N, Koh J, Pang J. Wastewater Surveillance to Combat COVID-19: Challenges and Opportunities. Lancet Microbe (2021) 2(9):e481–e484. doi:10.1016/s2666-5247(21)00121-X

26. World Federation of Public Health Associations. Statement on COVID-19 Immunization and Equitable Access to Vaccines (2021). Available at: https://www.wfpha.org/statements-on-covid-19/ (Accessed September 23, 2022).
36. Martín-Delgado MC, Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, et al. Monkeypox in Humans: a New Outbreak. Rev-Esp Quimioter (2022) 2022:martin06jul2022. doi:10.37201/req/059.2022

37. Dhanasekaran V, Sullivan S, Edwards KM, Xie R, Khvorov A, Valkenburg SA, et al. Human Seasonal Influenza under COVID-19 and the Potential Consequences of Influenza Lineage Elimination. Nat Commun (2022) 13(1):1721. doi:10.1038/s41467-022-29402-5

Copyright © 2022 Hrzic, Davidovitch, Barros, Moreno, Mason-Jones, McCallum, Reid, Reintjes, Sheek-Hussein, Simon, Wong, Leighton, Otok, Middleton and ASPHER. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

PHR is edited by the Swiss School of Public Health (SSPH+) in a partnership with the Association of Schools of Public Health of the European Region (ASPHER).