The prolactin receptor: Diverse and emerging roles in pathophysiology

Caroline M. Gorvin*

Academic Endocrine Unit, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, Oxford, OX3 7LJ, UK

A R T I C L E I N F O

Article history:
Received 5 May 2015
Accepted 10 May 2015

Keywords:
Hyperprolactinemia
Diabetes
Tumorigenesis
Reproduction
Immunity

A B S T R A C T

Investigations over two decades have revised understanding of the prolactin hormone. Long thought to be merely a lactogenic hormone, its list of functions has been extended to include: reproduction, islet differentiation, adipocyte control and immune modulation. Prolactin functions by binding cell-surface expressed prolactin receptor, initiating signaling cascades, primarily utilizing Janus kinase-signal transducer and activator of transcription (JAK-STAT). Pathway disruption has been implicated in tumorigenesis, reproductive abnormalities, and diabetes. Prolactin can also be secreted from extrapituitary sources adding complexity to understanding of its physiological functions. This review aims to describe how prolactin exerts its pathophysiological roles by endocrine and autocrine means.

© 2015 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The hormone prolactin has long been recognized for its role in lactation. However, evidence has emerged of its more promiscuous nature, with proposed functions as diverse as islet differentiation, immune modulation, adipocyte control and reproduction (Fig. 1). With such a variety of functions reputedly contributed to by prolactin it is perhaps unsurprising that its receptor, the prolactin receptor (PRLR), is expressed on diverse tissues [1–6]. The PRLR is a type-I cytokine receptor that signals predominantly via the JAK2-STAT5 signaling pathway, but is capable of initiating other signal cascades [7]. The structure and signaling pathways of prolactin and its receptor have been the focus of several excellent reviews [7,8] and therefore will not be the focus of this review. Instead, the pathophysiological roles of prolactin will be discussed, taking into consideration both its endocrine role, when produced by the pituitary, and its autocrine role, when produced locally by tissues.

Role of PRLR in lactation and reproduction

A role for prolactin in lactation has been established for decades, yet new insights continue to emerge. Prolactin plays a crucial role in two reproductive functions: mammary gland development during late gestation and the early post-partum period, and formation of the corpus luteum following blastocyst implantation [9,10].

During pregnancy the mammary gland undergoes extensive ductal side-branching and alveolar budding evolving to a milk-secreting gland [11]. Prolactin contributes to both proliferation and differentiation of mammary tissue [12]. Prlr^{−/−} mice do not develop mammary gland terminal-end buds and are unable to lactate, similarly to Jak2^{−/−}-conditional and Stat5_a-conventional knockout mice [13–17]. Impairment of mammary gland development is not as severe in Stat5_b-null mice, but milk protein production is affected, demonstrating both STAT5 components are necessary for lactation [18,19]. Furthermore, these studies suggest that other PRLR-mediated signaling pathways, and PRLR-independent pathways, are unable to fully compensate for the JAK-STAT pathway in mammary gland function.

Both long and short forms of PRLR are required for milk protein expression and lactation [20]. Initial studies of Prlr^{−/−} mice demonstrated impaired mammary gland alveolar differentiation and failure to lactate on first pregnancy, but recovery on subsequent pregnancies [15,16,21,22]. However, later investigations showed this recovery may be mouse strain dependent as breeding onto a pure C57BL/6 background could not rescue heterozygous lactation in most animals [23]. Mammary gland developmental defects observed in Prl^{−/−} and Prlr^{−/−} mice are largely mediated by loss of the progesterone surge in early pregnancy [16,24]. Treatment of mice with progesterone restores ductal side-branching defects [15]. The progesterone surge is produced by the corpus luteum, and is necessary for decidualization of endometrial tissue [10]. PRLR expression increases at decidualization [10,25] and prolactin stimulates progesterone secretion and progesterone receptor expression on uterine epithelium, providing favorable conditions for implantation.
Prolactin reduces the frequency and amplitude of luteinizing hormone pulses by direct actions on gonadotropin-releasing hormone neurons, and indirectly via \(g \)-aminobutyric acid and kisspeptin neurons [27].

\(\text{Prlr}\)/\(\text{C0} \)/\(\text{C0} \) female mice are hyperprolactinemic and infertile [16]. Egg development, ovulation and blastocyst implantation are reduced in \(\text{Prlr}\)-null mice [16,21,24,26]. In addition, corpus luteal formation is regressed in early pregnancy and progesterone production reduced [26]. As in the mammary gland, progesterone administration is able to rescue these phenotypes in \(\text{Prlr}\)/\(\text{C0} \)/\(\text{C0} \) mice [28]. Full corpus luteal formation requires both STAT5a and STAT5b as double knockout mice are infertile, with no corpus luteum, while single knockouts retain some fertility [18,19,29]. Autocrine prolactin produced by uterine cells may also have a function in maintenance of the corpus luteum following initial formation [10].

Hyperprolactinemic patients have variable reproductive abnormalities. 40% of hyperprolactinemic women have amenorrhea [27], \(\text{Prhr}^{-/-} \) female mice are hyperprolactinemic and infertile [16]. Egg development, ovulation and blastocyst implantation are reduced in \(\text{Prhr}\)-null mice [16,21,24,26]. In addition, corpus luteal formation is regressed in early pregnancy and progesterone production reduced [26]. As in the mammary gland, progesterone administration is able to rescue these phenotypes in \(\text{Prhr}^{-/-} \) mice [28]. Full corpus luteal formation requires both STAT5a and STAT5b as double knockout mice are infertile, with no corpus luteum, while single knockouts retain some fertility [18,19,29]. Autocrine prolactin produced by uterine cells may also have a function in maintenance of the corpus luteum following initial formation [10].

Hyperprolactinemic patients have variable reproductive abnormalities. 40% of hyperprolactinemic women have amenorrhea [27], other patients have galactorrhea, infertility or hypogonadism [30]. The variability in reproductive abnormalities in humans is reflected in the recently reported hyperprolactinemic family, which harbor a heterozygous \(\text{PRLR-H188R} \) loss-of-function mutation [31]. The three sisters reported in this study had a shared phenotype of oligomenorrhea, with galactorrhea and infertility also reported [31]. This infertility was not accompanied by abnormal ovulation, and luteal phase progesterone levels were normal [31]. Differences in reproductive abnormalities in patients could stem from different causes of hyperprolactinemia, utilization of different \(\text{PRLR} \) isoforms, or in the case of this family, from the heterozygous nature of the mutation. Discovery of further families with \(\text{PRLR} \) mutations could yield further insights into these differences.

Prolactin reduces the amplitude and duration of luteinizing hormone pulses by direct actions on gonadotropin-releasing hormone neurons, and indirectly via \(g \)-aminobutyric acid and kisspeptin neurons [27].

\(\text{Prlr}\)/\(\text{C0} \)/\(\text{C0} \) female mice are hyperprolactinemic and infertile [16]. Egg development, ovulation and blastocyst implantation are reduced in \(\text{Prlr}\)-null mice [16,21,24,26]. In addition, corpus luteal formation is regressed in early pregnancy and progesterone production reduced [26]. As in the mammary gland, progesterone administration is able to rescue these phenotypes in \(\text{Prlr}\)/\(\text{C0} \)/\(\text{C0} \) mice [28]. Full corpus luteal formation requires both STAT5a and STAT5b as double knockout mice are infertile, with no corpus luteum, while single knockouts retain some fertility [18,19,29]. Autocrine prolactin produced by uterine cells may also have a function in maintenance of the corpus luteum following initial formation [10].

Hyperprolactinemic patients have variable reproductive abnormalities. 40% of hyperprolactinemic women have amenorrhea [27], other patients have galactorrhea, infertility or hypogonadism [30]. The variability in reproductive abnormalities in humans is reflected in the recently reported hyperprolactinemic family, which harbor a heterozygous \(\text{PRLR-H188R} \) loss-of-function mutation [31]. The three sisters reported in this study had a shared phenotype of oligomenorrhea, with galactorrhea and infertility also reported [31]. This infertility was not accompanied by abnormal ovulation, and luteal phase progesterone levels were normal [31]. Differences in reproductive abnormalities in patients could stem from different causes of hyperprolactinemia, utilization of different \(\text{PRLR} \) isoforms, or in the case of this family, from the heterozygous nature of the mutation. Discovery of further families with \(\text{PRLR} \) mutations could yield further insights into these differences.

Prolactin is less abundant in males than females, consistent with the hormone’s primary role in lactation. However, male-specific roles may exist. Hyperprolactinemic patients experience erectile dysfunction (16%) and oligospermia (10%) [27]. \(\text{Prhr}\)-null mice have reduced ventral prostate weight compared to wild-type littermates, and mice overexpressing prolactin have prostate hyperplasia [32,33]. Similarly, rats with chronic hyperprolactinemia have prostate enlargement [34]. However, \(\text{Prlr}\)/\(\text{C0} \)/\(\text{C0} \) mice have normal plasma testosterone levels and testicular weights [35] and despite a reduced ability to produce a first pregnancy in \(\text{Prlr}\)/\(\text{C0} \)/\(\text{C0} \) male mice, subsequent matings were successful [36].

Role of PRLR in tumourigenesis

Elevated PRLR expression and high circulating levels of prolactin have been associated with increased risk of tumor progression and invasion [37–39]. Prospective studies demonstrate up to 95% of female mammary tumors, and 60% of male breast carcinomas express prolactin and/or PRLR [40–42]. This association is replicated in animal models including transgenic mice overexpressing prolactin that develop mammary carcinoma [43,44]. In humans, a direct correlation between single nucleotide polymorphisms (SNPs) in \(\text{PRL} \) and/or \(\text{PRLR} \) and tumor incidence has been sought. Many of these studies failed to identify associations [45–48], however two SNPs, \(\text{PRLR-170V} \) and \(\text{I146L} \), demonstrate constitutive receptor activity, with one correlating with the occurrence of benign breast disease in a patient cohort [49]. However, these patients did not have elevated serum prolactin, nor did they have differences in other clinical parameters investigated [49,50]. Furthermore, other studies in which...
these variants were identified failed to correlate their appearance with cancer prognosis, casting doubt on their importance in neoplasia, not least because of their high prevalence in the normal population [31,46,48]. Other non-coding SNPs in PRL or PRLR have been associated with breast cancer, however their functional effects are unknown [47,51]. Larger cohorts of cancer patients and a better understanding of PRLR variants across normal populations are required to better understand its role in pathogenesis.

The molecular mechanisms by which prolactin exerts mitogenic actions are being explored, and it is likely multiple complex pathways are involved. This is complicated further by emerging hypotheses that prolactin may alter its signal transduction pathways in breast carcinogenesis. Thus many breast tumors are characterized by reduced STAT5 despite high levels of PRLR expression [52,53]. Often these tumor subtypes exhibit high levels of mitogen-activated protein kinase (MAPK) signal components including activator protein-1 (AP-1) and pro-invasive matrix metalloproteinases (MMPs); are highly invasive; are associated with resistance to chemotherapy and anti-estrogen treatments; and have a poor prognosis [54]. The tumor microenvironment may be responsible for favoring one signal pathway over another [55]. Stiff collagen matrices are associated with invasive breast cancer [55] and shift prolactin signaling profiles from STAT5-mediated pathways to focal-adhesion kinase and MAPK pathways, favoring proliferation [55]. Furthermore, prolactin signals in high-density matrices, increased MMP expression and favored a disorganized structure allowing for cellular motility [55]. Blocking JAK2 had a similar effect, elevating extracellular signal-regulated kinase 1/2 (ERK1/2) and transforming growth factor-β favoring epithelial-mesenchymal-transition and tumor metastasis [56].

The tumor microenvironment potentially holds the key to deciphering the complex interplay between PRLR and estrogen receptor (ERs). Whilst expression of ERs or PRLR alone had no effect on tumor progression, co-expression of PRLR and ERs within a non-compliant, stiff matrix is associated with increased invasiveness in tumor cell models and reduced responsiveness to estrogen antagonists [57]. Furthermore, co-operativity between the two pathways exist with each hormone inducing expression of the reciprocal receptors in cellular studies [58–60].

Other molecular markers of breast cancer exist within the PRLR pathway. PRLR turnover mediated by phosphorylation of S349 is critical in preventing long-term stabilization of the receptor that favors tumor progression [41]. Receptors resistant to degradation had higher levels of MMP9 and exhibited invasive behaviors [41,61]. A novel protein partner of the PRLR, calcium-modulating cyclophilin ligand (CAML), is highly expressed in breast cancer [62]. CAML acts as a scaffold protein, prolonging PRLR interaction with signal transduction components, and increasing proliferation [62]. Studies have also revealed an intrinsic component of the PRLR pathway may contribute to understanding of prolactin’s role in tumorigenesis. The STAT5 proteins, STAT5a and STAT5b, though highly related, have distinct expression patterns in breast tumors where nuclear STAT5a is reduced, while STAT5b remains unchanged [63]. This low level of STAT5a was associated with poor prognosis [63], indicating it could act as a novel biomarker to predict tumor outcomes. This finding may explain some of the conflicting reports regarding STAT5 expression in breast cancer, as commonly used antibodies often cannot distinguish between STAT5a and STAT5b proteins [63].

Investigation of the neoplastic role of prolactin has been further hampered by the indiscriminate study of global prolactin, without consideration of prolactin produced by the mammary gland [64]. Autocrine prolactin production has been shown in human breast tissue [65,66], and in mouse models (following hypophysectomy [65], and in the transgenic NRL-PRL mouse model that enriches prolactin within the mammary environment, while retaining normal global prolactin levels) [59,67]. In NRL-PRL female mice estrogen treatment, although not necessary for tumor development, enhances prolactin-induced tumorigenesis [68]. However, one study examining breast cancer tumors and cell-lines was unable to detect elevated prolactin [44], concluding that autocrine prolactin may not be important in all patients.

The prolactin autocrine-paracrine loop may play a role in male breast carcinoma [40] and other reproductive cancers including cervical [69] and prostate cancer [34,40]. Evidence for this autocrine role is provided by transgenic mice overexpressing Prl under a prostate-specific promoter (Pb-PRL) that developed prostate hyperplasia in the absence of elevated serum androgen levels [70].

There is still much to be learned about the role of prolactin and its receptor in tumorigenesis. It is likely further investigation of the tumor microenvironment and the effects of autocrine–paracrine signaling will yield new avenues of investigation. Further, a greater understanding of the molecular signatures of breast tumors could highlight new therapeutic targets, yielding fresh hope for drugs targeting PRLR pathways that have thus far produced poor results [67].

Role of PRLR in islet proliferation

The PRLR is highly expressed at the pancreatic β-cell, and may play a fundamental role in the β-cell expansion that occurs to meet increased metabolic demands required during pregnancy [5,71]. Correlations between the rise in β-cell mass and the mid-pregnancy lactogenic surge led to the hypothesis that prolactin and placental lactogen drives this β-cell differentiation [5,71]. In support of this hypothesis cellular studies show the lacotogenic hormones increase PRLR expression on β-cells, induce β-cell replication and increase glucose-stimulated insulin secretion (GSIS) [5,72]. In *in vivo* studies provide further evidence. Prl−/− mice had reduced β-cell mass, reduced islet density, impaired glucose tolerance, reduced insulin secretion, and islets contain 20–35% less insulin [5]. Heterozygous mice similarly had impaired glucose tolerance, which was affected by maternal genotype, with more pronounced impairments in those with heterozygous mothers [5]. This is reminiscent of human gestational diabetes in which it has been observed that prenatal exposure to gestational diabetes increases its risk in the next generation [73].

In vitro and *in vivo* studies have provided a wealth of data on prolactin’s effect on pancreatic islets allowing rudimentary pathway insights. Prolactin largely regulates its functions on the pancreatic β-cell via the JAK2-STAT5 pathway [74]. Cells infected with Ad-shSTAT5b that silences STAT5b, displayed reduced insulin signaling [75]. Furthermore, mice injected with Ad-shSTAT5b had reduced glucose tolerance, glucose clearance and insulin signaling in the liver [75]. Mice in which pancreatic β-cell Stat5a/b has been deleted exhibited no discernible defects in β-cell development, but aged and pregnant mice are mildly glucose intolerant [76]. This phenotype was milder than that observed in Prl−/null mice indicating STAT5 alone is not responsible for all prolactin-mediated effects on β-cells.

The activated PRLR acts as a hub to nucleate proteins from diverse signaling pathways. The insulin-related substrate proteins (IRS1-3) are one such protein family that act as signal adapters allowing recruitment of Akt and phosphoinositide-3 kinase (PI3K), that activate further signal cascades (e.g. MAPK) and gene transcription. Prolactin induces phosphorylation of all three IRS proteins, most likely via JAK2 [77]. Anti-sense PRLR blocks this prolactin-induced increase in IRS1/2, Akt and ERK1/2 phosphorylation [78].

Downstream targets of these prolactin-induced pathways include glucokinase [79] and cell-cycle proteins (e.g. cyclin-D2 [71,80] and transcription factors (e.g. forkhead-box protein D3 (FOXD3)) [81]. Glucokinase regulates the rate-limiting step in glucose metabolism [79]. Its expression is increased in
prolactin-treated cells, even in the absence of glucose [79]. This mechanism is STAT5-dependent and leads to increased insulin secretion [79]. PRLR-siRNA treatment reduces cyclin-D2 expression in INS-1 cells [71,80] and cyclin-D2 knockout mice are glucose-intolerant [82]. However, Prlrtm1/−mice had normal CCND2 expression levels [83]. Pancreas-specific deletion of FoxD3 leads to gestational diabetes in mice characterized by impaired glucose tolerance, reduced β-cell mass and reduced β-cell proliferation [81]. The wild-type offspring of Prlrtm1/−mice have reduced FoxD3 and decreased Akt phosphorylation [73], indicating FoxD3 is a major driver of Akt-mediated β-cell proliferation [73].

PRLR may mediate its effect on islets in part by regulating the tumor suppressor protein menin. In the normal state, menin regulates expression of the cyclin-dependent kinase p27 and p18, whose function is to inhibit islet proliferation [84]. However, in the pregnant state, menin, p27 and p18 are reduced, which coincides with the increased proliferation observed in pancreatic β-cells [83]. Prlrtm1/−mice also have elevated p18 and fail to increase IRS2 and Akt expression [83]. These findings, when considered in light of previous findings that prolactin increases BCL6-mediated repression of MEN1 transcription via STAT5 activation [84], indicate that the reduced β-cell mass observed in Prlrtm1/−mice may be mediated by prolactin’s action on menin, via Akt and JAK-STAT pathways within pancreatic β-cells.

Other regulators of the prolactin-induced effects during pregnancy have emerged recently, though their precise roles remain controversial. These include the enzyme tryptophan hydroxylase (Tph1) that regulates the rate-limiting step in serotonin synthesis that was reported to be increased during pregnancy [85]. Mice fed a low-tryptophan diet had mild gestational glucose intolerance [85]. Furthermore, prolactin treatment was shown to increase Tph1 expression and serotonin synthesis during pregnancy [85], whilst PRLR knockdown in insulinoma cells reduced Tph1 expression [71]. This led to the proposed model in which lactogenic hormones drive the expression of Tph1 and its receptor on target cells leading to Ga2−mediated activation of β-cell proliferation during pregnancy, followed by Ga2−mediated inhibition of β-cell proliferation in the post-partum period [85]. Although, Schraenen et al. [86], were able to demonstrate a similar increase in Tph1 induction by PRLR-JAK2-STAT5 in a subset of islets, they observed no differences in β-cell proliferation in Tph1-null mice compared to control mice [86]. Such discrepancies may lie in the mouse strains used to study these effects as proposed recently by Goyvaerts et al. [87]. Alternatively, the serotonin-induced effects may be mediated via a different mechanism, such as the β-cell expressed serotonin-gated cation channel that has been shown to depolarize the β-cell membrane, thus lowering the threshold for glucose-stimulated insulin secretion required during pregnancy [88]. Such findings have highlighted the requirement for further investigation of the function of serotonin in human islets, and the role PRLR plays.

In spite of growing evidence that prolactin plays a critical role in regulating β-cell changes observed in pregnancy, a convincing role in man has yet to be identified. Studies of chronic hyperprolactinemia demonstrate patients have postprandial hyperinsulinaemia and an exaggerated insulin secretory response to glucose [89]. Furthermore, significant associations between two PRLR SNPs and gestational diabetes mellitus have been shown [90]. However, other studies could not demonstrate similar effects, possibly due to the complex cross-talk between PRLR and insulin receptor. Further research is required to determine the role, if any, that prolactin plays in human pancreatic adaptation to pregnancy.

Role of PRLR in adipose tissue

In a situation analogous to that of the pancreatic islet, the adipocytes must undergo extensive changes during pregnancy and lactation, comprising neuronal changes that permit increased food intake, and fat store redistribution to satisfy energy demands [91]. During these periods fat store distribution shifts from abdominal tissues to mammary glands [91]. Coincident with this fat redistribution is the lactogenic surge at mid-to-late pregnancy, implicating a role for prolactin in this process. Prlrtm1/−mice have reduced weight gain after 16 weeks which is more obvious in females [92]. Consequently abdominal fat stores are reduced and fasting plasma levels of the adipocyte hormone leptin are reduced in Prlrtm1/−female mice [92].

The role of prolactin in adipocyte differentiation in brown adipose tissue (BAT) has been investigated [93]. BAT mediates adaptive thermogenesis, a process required for thermoregulation in neonates. The protein UCp1 plays a critical role in this process by shifting proton gradients generated at the inner mitochondrial membrane from energy production to generate heat [94]. BAT mass in neonate PRLR-null mice was significantly reduced compared to wild-type littersmates, and brown adipocytes had decreased triglyceride content [93]. Furthermore, these mice were more sensitive to a cold challenge, and had reduced expression of uncoupling protein-1 (UCP1), known to be involved in the thermogenesis process, as well as genes involved in adipocyte differentiation (e.g. peroxisome proliferator-activated receptor-γ (PPARγ)) [93]. Prlrtm1/−neonates had smaller mitochondria in BAT. PRLR overexpression rescued BAT differentiation in immortalized preadipocytes and restored PRLR, UCp1 and PPARγ protein expression illustrating the critical role for PRLR in regulation of BAT differentiation. Furthermore, the authors demonstrated that IGF2 may mediate the growth of adipocytes downstream of PRLR-STAT5 [93].

Modulation of food intake is partially controlled by the hormone leptin whose receptor shares signaling pathways with PRLR. During lactation, plasma leptin levels reduce by 40% [92]. Furthermore, rats and mice have gestational leptin-resistance attributed to the lactogenic surge that occurs at this period [95]. The prolactin receptor and leptin receptor share expression sites within the hypothalamus and brainstem, thus crosstalk may exist between the receptors [96]. It has been suggested that PRLR activation induces increased expression of suppressor-of-cytokine signaling (SOCS) proteins which directly inhibit STAT3-mediated pathways downstream of the leptin receptor [96]. However, other studies suggest no interaction between PRLR and the leptin receptor, as demonstrated by normal responses exhibited by the Prlrtm1/−mice exposed to a leptin antagonist [91]. Such discrepancies may have arisen because prolactin-mediated effects require insulin coexpression [25,28].

In humans, sustained hyperprolactinaemia caused by antipsychotic drugs or prolactinoma is associated with weight gain and insulin resistance [97]. This can be corrected by administration of dopamine agonists such as bromocryptine [98]. Furthermore, two SNPs located close to the PRL gene have been associated with increased risk of obesity [99,100]. Examination of larger cohorts with detailed phenotyping may provide fresh insight into PRLR’s role in adipocytes.

Role of PRLR in immune responses

PRLR is expressed on all leukocytes of the immune system, and highly expressed in the spleen and thymus [101]. Although numerous in vitro studies have demonstrated prolactin can activate immune system cells, this remains controversial, with evidence indicating these findings may have no relevance in physiological settings, not least because mouse models fail to replicate these responses.

Studies demonstrate that prolactin enhances T-cell activation by several means including: 1) activation of the earliest known T-cell surface antigen, CD69, that is necessary for prolonged T-cell
activation and proliferation [102,103]; 2) activation of CD25, the α-chain of the interleukin (IL)-2 receptor, that regulates proliferation and expansion of T-cell subsets [103]; 3) phosphorylation and activation of the T-cell receptor component CD3, and second messenger kinases Fyn and Zap70 [64,104,105]; 4) enhanced expression of CD40, CD80 and CD86 co-stimulatory molecules on antigen presenting cells [106]; 5) induction of cytokines involved in enhancing T-cell responses including IL-1, IL-12, IL-16 and interferon-γ [106,107]; and 6) sensitivity of immune responses to dopamine agonists [106]. It is largely accepted that prolactin is unable to initiate these responses in isolation, and more likely acts as an adjuvant to existing immune responses, evidence of which is provided by enhanced activation of T-cell pathways in response to concanavalin-A, lipopolysaccharide and phytohaemagglutinin (PHA) stimuli [107–109].

Autoimmune states provide a model to investigate prolactin’s role in immunity. Multiple sclerosis (MS) is one such state, which is more prevalent in females, indicating a possible hormone-driven effect. Pregnant MS patients have increased relapse rates within the first three months post-partum, correlating with increased prolactin levels [110]. Similarly in systemic lupus erythematosus (SLE), elevated prolactin levels in patients correlate with disease severity [110] and treatment with bromocriptine relieved symptoms [106]. However, SLE mouse models were unable to demonstrate an enhancement of the condition in the presence of prolactin [110].

The controversies in this field not only lie in these autoimmune discrepancies. Much of the evidence for prolactin-mediated immune responses are derived from in vitro studies using peripheral blood mononuclear cells (PBMCs) or immortalized cells such as Jurkat T-cells, which may not reflect the physiological state. In vivo studies using Prl−/− and Prlr−/− mouse models have cast doubt on prolactin-mediated immune modulatory functions. Prl−/− mice have comparable levels of CD4+ and CD8+ cells to wild-type littermates [111]. Furthermore, PHA-stimulated T-cell and B-cell responses were only impaired in Prl−/− mice following thermal stress [108], indicating PRL may not have a role in physiological states. Prlr−/− mice have no differences in either pro- or pre-B-cells, mature circulating B-cells, early T-cell precursors, immunoglobulin subclasses or NK-cells compared to wild-type littermates [112]. In addition, combination treatments of PRL and concanavalin-A or Listeria monocytogenes were unable to enhance immune responses above that seen with pathogen alone [112].

Finally, studies of immune responses in affected members of the hyperprolactinemic family with the PRLR-H188R mutation indicated no changes in immune cell subsets [31]. Furthermore, prolactin did not enhance T-cell responses to PHA in PBMCs isolated from affected family members [31]. These studies indicate that the role of prolactin in immune responses may be more complicated than originally proposed, with the possibility that prolactin responses are mediated by another receptor.

Summary

Research within the last two decades has identified new and unexpected roles for prolactin and its receptor, governed by multiple signaling pathways. Potential pathogenic roles in infertility, cancer, diabetes and obesity raise the possibility that PRLR and/or its downstream pathways will likely lead to novel therapies in these vital and highly prevalent disease states.

References

[1] Foitik K, Krause K, Nixon AJ, Ford CA, Ohnemus U, Pearson AJ, et al. Prolactin and its receptor are expressed in murine haire follicle epithelium, show hair cycle-dependent expression, and induce catagen. Am J Pathol 2003;162:1611–21.

[2] Garcia-Caballero T, Morel G, Gallego R, Fraga M, Pinot E, Gago D, et al. Cellular distribution of prolactin receptors in human digestive tissues. J Clin Endocrinol Metab 1996;81:1861–6.

[3] Nagano M, Chastre E, Choquet A, Bara J, Gespach C, Kelly PA. Expression of prolactin and growth hormone receptor genes and their isoforms in the gastrointestinal tract. Am J Physiol 1995;268:C431–442.

[4] Rivera JC, Aranda J, Riesgo J, Lopez-Barrera F, et al. Expression and cellular localization of prolactin receptor and prolactin in the mammary retina. Exp Eye Res 2008;86:314–21.

[5] Huang C, Smider F, Cross FE. Prolactin receptor activation is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. Endocrinology 2009;150:1610–26.

[6] Ling C, Svensson L, Oden B, Weijldegard B, Eden B, Eden S, et al. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipid apose in human white adipose tissue. J Clin Endocrinol Metab 2003;88:1804–8.

[7] Brooks CL. Molecular mechanisms of prolactin and its receptor. Endocr Rev 2012;33:504–25.

[8] Bole-Foyser C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (and its receptor): actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 1998;19:225–68.

[9] Baran N, Kelly PA, Binart N. Characterization of a prolactin-regulated gene in responsive tissues: identification of the prolactin receptor knockout mouse model. Biol Reprod 2002;66:1210–8.

[10] Eyal O, Jomain JB, Kessler C, Goffin V, Handwerger S. Autocrine prolactin inhibits human uterine decidualization: a novel role for prolactin. Biol Reprod 2007;76:776–83.

[11] Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ. Prolactin regulation of mammalian gland development. J Mammary Gland Biol Neoplasia 2008;13:13–28.

[12] Morales FC, Hayashi Y, van Pelt CS, Georgescu MM. NHERF1/EPS5 controls lactation by stabilizing membrane protein complexes with prolactin receptor. Cell Death Dis 2013;4:e391.

[13] Garcia-Martinez JM, Calabarkin A, Gonzalez L, Martin-Foreero E, Agullo-Ortuno MT, Simon V, et al. A non-catalytic function of the Src family tyrosine kinases controls prolactin Jak2 signaling. Cell Signal 2010;22:415–26.

[14] Wagner KU, Kremppler A, Tripplett QA, Yi J, George NM, Zhu J, et al. Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol Cell Biol 2004;24:5510–20.

[15] Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, et al. Soc2 and eSlf mediate prolactin-induced mammary gland development. Mol Endocrinol 2006;20:1177–87.

[16] Ormandy CJ, Naylor MJ, Harris J, Robertson F, Horsemad ND, Lindeman GJ, et al. Interpretation of cytokine signaling through the transcription factors STAT5a and STAT5b. Genes Dev 2003;58:297–323.

[17] Hennighausen L, Robinson CW. Interpretation of cytokine signaling through the transcription factors STAT5a and STAT5b. Dev Genes Cell Dev 2008;22:711–21.

[18] Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A 1997;94:7239–44.

[19] Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine response. Cell 1998;93:817–27.

[20] Saunier D, Dif F, Kelly PA, Edery M. Targeted expression of the dominant-negative prolactin receptor in the mammary gland of transgenic mice results in impaired lactation. Endocrinology 2003;144:2669–75.

[21] Goffin V, Binart N, Touraine P, Kelly PA. Prolactin: the new biology of an old hormone. Annu Rev Physiol 2002;64:47–67.

[22] Harris J, Stanford PM, Oakes SR, Ormandy CJ, Prolactin and the prolactin receptor: new targets of an old hormone. Am J Physiol 2003;288:C431–442.

[23] Gallego MI, Binart N, Costigliola A, Robey PS, Paria BC, Das SK, et al. Implanted prolactin receptor-deficient mice after progesterone administration. Endocrinology 2000;141:2691–7.

[24] Bachelot A, Beaufaron J, Sereval N, Kodia Z, Monget P, Kelly PA, et al. Prolactin independent rescue of mouse corpus luteum life span: identification of prolactin and luteinizing hormone target genes. Am J Physiol Endocrinol 2009;297:E676–684.

[25] Groesdemouge I, Bachelot A, Lucas A, Baran N, Kelly PA, Binart N. Effects of deletion of the prolactin receptor on ovarian gene expression. Reprod Biol Endocrinol 2003;1:112.

[26] Kokay IC, Petersen SL, Grattan DR. Identification of prolactin-sensitive GABA and kisspeptin neurons in regions of the rat hypothalamus involved in the control of fertility. Endocrinology 2011;152:326–35.

[27] Reese J, Binart N, Brown N, Ma WG, Paria BC, Das SK, et al. Implantation and decidualization defects in prolactin receptor (PRLR)-deficient mice are mediated by ovarian but not uterine PRLR. Endocrinology 2000;141:1872–41.

[28] Miyoshi K, Shillingsford JM, Smith GH, Grimm SL, Wagner KU, Oka T, et al. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol 2001;155:531–42.
Ferreira M, Mesquita M, Quaresma M, Andre S. Prolactin receptor expression in human prostate gland. Endocrinology 1998;139:4410–5.

Steger RW, Chandrashekar V, Zhao W, Bartke A, Horseman ND. Neuroendocrine tumor markers: New targets for prostate cancer. Cancer Biother Radiopharm 2013;28:17–32.

Wennbo H, Kindblom J, Isaksson OG, Tornell J. Transgenic mice overexpressing the prolactin gene develop dramatic enlargement of the prostate gland. Endocrinology 1997;138:4410–5.

Goffin V, Hoang DT, Bogorad RL, Nevalainen MT. Prolactin regulation of the prostate gland: a female player in a male game. Nat Rev Urol 2011;8:597–607.

Vaclavicek A, Hemminki K, Bartram CR, Wagner K, Wappenschmidt B, Canbay E, Degerli N, Gulluoglu BM, Kaya H, Sen M, Bardakci F. Could prolactin contribute to prostate cancer risk: the multiethnic cohort. BMC Med Genet 2007;8:72.

Nyante SJ, Faupel-Badger JM, Sherman ME, Pfeiffer RM, Gaudet MM, Falk RT, Bogorad RL, Courtillot C, Mestayer C, Bernichtein S, Harutyunyan L, Jomain JB, et al. Identities of pathway related proteins prolactin receptor and STAT5a in normal and breast cancer cells. J Endocrinol 2010;203:27.9–12722.

Barcus CE, Holt EC, Keely PJ, Eliezer KW, Schulz LA. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J Biol Chem 2013;288:12722–32.

Nouhi Z, Chughtai N, Hartley S, Cocolakis E, Lebrun J, Ali S. Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells. Cancer Res 2006;66:1824–32.

Barcus CE, Holt EC, Keely PJ, Eliezer KW, Schulz LA. Dense collagen-I matrices enhance pro-tumorigenic estrogen-prolactin crosstalk in MCF-7 and T47D breast cancer cells. PLoS One 2015;10:e0116491.

Frasor J, Gibson C. Progesterone receptor function. Trends Endocrinol Metab 2003;14:118–23.

Gutman JH, Miller KK, Schulz LA. Endogenous human prolactin expression and breast cancer. J Biol Chem 2010;285:17591–7.

Dong J, Tsai-Morris CH, Dufau ML. A novel estradiol/estrogen receptor alpha-dependent transcriptional mechanism controls expression of the human prolactin receptor. J Biol Chem 2006;281:18825–36.

Li Y, Cleverger CV, Minkovsky N, Kumar HG, Raghunath PN, Tomaszewski JE, et al. Stabilization of prolactin receptor in breast cancer cells. Oncogene 2006;25:1896–902.

Lim JH, Kim TY, Kim WH, Park JW. CAML promotes prolactin-dependent proliferation of breast cancer cells. Oncogene 2009;28:2679–87.

Lim J, Yen YC, Li C, Chen HC, Zhang J, Zhu C, et al. Increased expression of prolactin receptor in lung cancer. J Cancer Res Clin Oncol 2011;137:1523–31.

Lamanna TJ, Stokke TE, Stokke GK, Mestayer C, Bernichtein S, Harutyunyan L, Jomain JB, et al. Identities of pathway related proteins prolactin receptor and STAT5a in normal and breast cancer cells. J Endocrinol 2010;203:99–110.

Nobrega LG, Verhagen MM, van der Heyden MG, van der Kooij ML, van der Zee J, et al. Association of prolactin receptor polymorphism with breast cancer risk and breast cancer related traits. Breast Cancer Res 2012;14:130.3.

Clevenger CV, Medaglia MV. The protein tyrosine kinase P59fyn is associated with prolactin (PRL) receptor and is activated by PRL stimulation of T-lymphocytes. Mol Endocrinol 1994;8:674–81.

Clevenger CV, Chang WP, Ngo W, Fasha TL, Montone KT, Tomaszewski JE. Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol 1995;146:695–705.

Ginsburg E, Vonderhaar BK. Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 1995;55:2591–2.

Barcus CE, Keely PJ, Eliceiri KW, Schuler LA. Stiff collagen matrices increase estrogen receptor expression and increases estrogen responsiveness in breast cancer cells. Endocrinology 2009;150:3604–10.

Liu Y, Cleverger CV, Minkovsky N, Kumar HG, Raghunath PN, Tomaszewski JE, et al. Stabilization of prolactin receptor in breast cancer cells. Oncogene 2006;25:1896–902.

Bogorad RL, Courtillot C, Mestayer C, Bernichtein S, Harutyunyan L, Jomain JB, et al. Identities of pathway related proteins prolactin receptor and STAT5a in normal and breast cancer cells. J Endocrinol 2010;203:99–110.

Clevenger CV, Chang WP, Ngo W, Fasha TL, Montone KT, Tomaszewski JE. Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol 1995;146:695–705.

Ginsburg E, Vonderhaar BK. Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 1995;55:2591–2.

Bogorad RL, Courtillot C, Mestayer C, Bernichtein S, Harutyunyan L, Jomain JB, et al. Identities of pathway related proteins prolactin receptor and STAT5a in normal and breast cancer cells. J Endocrinol 2010;203:99–110.

Clevenger CV, Chang WP, Ngo W, Fasha TL, Montone KT, Tomaszewski JE. Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol 1995;146:695–705.

Ginsburg E, Vonderhaar BK. Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 1995;55:2591–2.

Bogorad RL, Courtillot C, Mestayer C, Bernichtein S, Harutyunyan L, Jomain JB, et al. Identities of pathway related proteins prolactin receptor and STAT5a in normal and breast cancer cells. J Endocrinol 2010;203:99–110.

Clevenger CV, Chang WP, Ngo W, Fasha TL, Montone KT, Tomaszewski JE. Expression of prolactin and prolactin receptor in human breast carcinoma. Evidence for an autocrine/paracrine loop. Am J Pathol 1995;146:695–705.

Ginsburg E, Vonderhaar BK. Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 1995;55:2591–2.

Bogorad RL, Courtillot C, Mestayer C, Bernichtein S, Harutyunyan L, Jomain JB, et al. Identities of pathway related proteins prolactin receptor and STAT5a in normal and breast cancer cells. J Endocrinol 2010;203:99–110.
[86] Schraenen A, Lemaire K, de Faudeau G, Hendrickx N, Granvik M, Van Lommel L, et al. Placental lactogens induce serotonin biosynthesis in a subset of mouse beta cells during pregnancy. Diabetologia 2010;53:2589–99.

[87] Goyvaerts L, Lemaire K, Arijs I, Auffret J, Granvik M, Van Lommel L, et al. Prolactin receptors and placental lactogen drive male mouse pancreatic islets to pregnancy-related mRNA changes. PLoS One 2015;10:e0121868.

[88] Ohara-Imaizumi M, Kim H, Yoshida M, Fujiwara T, Aoyagi K, Toyofuku Y, et al. Serotonin regulates glucose-stimulated insulin secretion from pancreatic beta cells during pregnancy. Proc Natl Acad Sci U S A 2013;110:19420–5.

[89] Freemark M, Avril I, Fleenor D, Driscoll P, Petro A, Opara E, et al. Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 2002;143:1378–85.

[90] Le TN, Elsea SH, Romero R, Chaiworapongsa T, Francis GL. Prolactin receptor gene polymorphisms are associated with gestational diabetes. Genet Test Mol Biomarkers 2013;17:567–71.

[91] Carre N, Solomon G, Gertler A, Binart N. Effects of high affinity leptin antagonist on prolactin receptor deficient male mouse. PLoS One 2014;9:e91422.

[92] Freemark M, Fleenor D, Driscoll P, Binart N, Kelly P. Body weight and fat deposition in prolactin receptor-deficient mice. Endocrinology 2001;142:532–7.

[93] Viengchareun S, Servel N, Feve B, Freemark M, Lompes M, Binart N. Prolactin receptor signaling is essential for perinatal brown adipocyte function: a role for insulin-like growth factor-2. PLoS One 2008;3:e1535. http://dx.doi.org/10.1371/journal.pone.0001535.

[94] Viengchareun S, Bouzinba-Segard H, Laigneau JP, Zennaro MC, Kelly PA, Dardenne M. Expression of the prolactin receptor in Nb2 lymphoma cells. J Mol Endocrinol 2004;33:679–91. http://dx.doi.org/10.1530/0225-236X-33.6.679.

[95] Augustine RA, Grattan DR. Induction of central leptin resistance in hyperphagic pseudopregnant rats by chronic prolactin infusion. Endocrinology 2008;149:1049–55.

[96] Nagashii VS, Cardinali LI, Zampieri TT, Furigo IC, Metzger M, Donato Jr J. Possible crosstalk between leptin and prolactin during pregnancy. Neuroscience 2014;259:71–83. http://dx.doi.org/10.1016/j.neuroscience.2013.11.050.

[97] Baptista T, Lacruz A, de Mendoza S, Mendoza Guillet JM, Silvera R, Angeles F, et al. Body weight gain after administration of antipsychotic drugs: correlation with leptin, insulin and reproductive hormones. Psychopharmacology 2006;185:88–96.

[98] Dokic M, Pelic S, Zarkovic M, Medic-Stojanoska M, Dieguez C, Casanueva F, et al. Dopaminergic tone and obesity: an insight from prolactinomas treated with bromocriptine. Eur J Endocrinol 2002;147:77–84.

[99] Meyre D, Delplanque J, Chevre JC, Leceour C, Lobbens S, Gallina S, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 2009;41:157–9.

[100] Nilsson L, Olsson AH, Isomaa B, Group L, Billig H, Ling C. A common variant near the PRL gene is associated with increased adiposity in males. Mol Genet Metab 2011;102:78–81.

[101] Dogusan Z, Book ML, Verdood P, Yu-Lee LY, Hooghe-Peters EL. Prolactin activates interferon regulatory factor-1 expression in normal lympho-hepaticoendothelial cells. Eur Cytokine Netw 2000;11:435–42.

[102] Ziegler SF, Ramsdell F, Alderson MR. The activation antigen CD69. Stem Cells 1994;12:456–65.

[103] Takizawa K, Kitani S, Takeuchi F, Yamamoto K. Enhanced expression of CD69 and CD25 antigens on human peripheral blood mononuclear cells by prolactin. Endocr J 2005;52:635–41.

[104] Montgomery DW, Krumenacker JS, Buckley AR. Prolactin stimulates phosphorylation of the human T-cell antigen receptor complex and ZAP-70 tyrosine kinase: a potential mechanism for its immunomodulation. Endocrinology 1998;139:811–4. http://dx.doi.org/10.1210/endo.139.2.5913.

[105] Krumenacker JS, Montgomery DW, Buckley DJ, Gout PW, Buckley AR. Prolactin receptor signaling: shared components with the T-cell antigen receptor in Nb2 lymphoma cells. Endocrine 1998;9(3):313–20.

[106] Orbach H, Sheinfeld Y. Hyperprolactinemia and autoimmune diseases. Autoimmun Rev 2007;6:537–42.

[107] Matalka KZ. Prolactin enhances production of interferon-gamma, interleukin-12, and interleukin-10, but not of tumor necrosis factor-alpha, in a stimulus-specific manner. Cytokine 2003;21:187–94.

[108] Dugan AL, Thellin O, Buckley DJ, Buckley AR, Ogle CK, Horsemann ND. Effects of prolactin deficiency on myelopoiesis and splenic T lymphocyte proliferation in thermally injured mice. Endocrinology 2002;143:4147–51.

[109] Gagnerault MC, Touraine P, Savino W, Kelly PA, Dardenne M. Expression of prolactin receptors in murine lymphoid cells in normal and autoimmune situations. J Immunol 2003;169:15673–81.

[110] Costanza M, Musio S, Abou-Hamdan M, Binart N, Pedotti R. Prolactin is not required for the development of severe chronic experimental autoimmune encephalomyelitis. J Immunol 2013;191:2082–8.

[111] Horsemann ND, Zhao W, Montecino-Rodriguez E, Tanaka M, Nakashima K, Engle SJ, et al. Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 1997;16:6926–35.

[112] Bouchard B, Ormandy CJ, Di Santo JP, Kelly PA. Immune system development and function in prolactin receptor-deficient mice. J Immunol 1999;163:576–82.