TRENDS AND PERSPECTIVE

5-HT$_{2A}$ Agonists: A Novel Therapy for Functional Neurological Disorders?

Alexander Bryson, MBBS; Olivia Carter, PhD; Trevor Norman, PhD; Richard Kanaan, PhD

Howard Florey Institute of Neuroscience & Mental Health, University of Melbourne, Australia (Dr Bryson); Department of Neurology, Austin Hospital, Melbourne, Australia (Dr Bryson); Melbourne School of Psychological Sciences, University of Melbourne, Australia (Dr Carter); Department of Psychiatry, Austin Hospital, Melbourne, Australia (Drs Norman and Kanaan); Department of Psychiatry, University of Melbourne, Australia (Drs Norman and Kanaan).

Correspondence: Alexander Bryson, MBBS, Melbourne Brain Centre, Kenneth Myer Building 144/30 Royal Parade, Parkville, 3052 Victoria, Australia (alexandersamuel.bryson@austin.org.au).

Abstract

Functional neurological disorders are frequently encountered in clinical practice. They have a poor prognosis and treatment options are limited. Their etiology is unknown, but leading theories propose a disturbance of somatic self-representation: the mind perceives dysfunction of a body region despite intact motor and sensory pathways. Central to this model is the concept of an abnormal top-down cognitive influence upon sensorimotor function. There is growing interest in the use of 5-HT$_{2A}$ agonists in the management of neuropsychiatric conditions. Recent studies have shown that these agents induce changes in neural activity that disrupt hierarchical brain dynamics and modulate networks subserving self-related processing. Converging evidence suggests they may hold unique therapeutic potential in functional neurological disorders. This is of importance given the considerable personal and societal burden of this condition and we argue a clinical trial to test this hypothesis is warranted.

Keywords: functional neurological disorders, 5HT2a agonists, fMRI, neural dynamics.

Introduction

Functional neurological disorders (FNDs) are a common condition that exist on the borderland of neurology and psychiatry. They tend to be poorly managed and there are few proven therapeutic options (Carson et al., 2004; Kanaan et al., 2011; Cottencin, 2014; Lehn et al., 2016). Most leading theoretic models implicate an impairment of somatic self-representation in their psychopathology (Brown, 2004; Edwards et al., 2012; Vuilleumier, 2014; Ejareh Dar and Kanaan, 2016; Voon et al., 2016a).

5-HT$_{2A}$ agonists have recently emerged as a plausible adjunct therapy for major depression, anxiety, and drug addiction (Grob et al., 2011; Bogenschutz and Johnson, 2016; Carhart-Harris, 2016; Johnson et al., 2016). Use of these agents was first predicated on observed clinical benefit, and imaging studies have begun to unravel the neural basis of their psychoactive effects (Nichols, 2004; Carhart-Harris et al., 2012, 2016a; Majic et al., 2015; Tagliazucchi et al., 2016). Based on current understanding of FND pathophysiology and the effects of 5-HT$_{2A}$ agonists on brain function, we argue there is a convergence of evidence to support their use in the management of this condition.

FNDs: Clinical Background

FNDs are defined by the appearance of neurological symptoms without underlying structural pathology (American Psychiatric
Significance Statement

Functional neurological disorders are a common neuropsychiatric condition. We argue there is converging evidence to suggest a role for 5HT_{2A} agonists in their management. This hypothesis is supported by neuroimaging and behavioural findings, and is of significance given the current lack of treatment options.

FNDs: Pathophysiology

Some insight into the neuropathology of FNDs has been gained through functional magnetic resonance imaging (fMRI) and behavioral studies (Boeckle et al., 2016; Ejareh Dar and Kanaan, 2016; Voon et al., 2016). Findings related to motor agency, self-monitoring, and self-representation are of particular relevance to theoretic models.

Patients with functional motor symptoms experience a loss of volitional control, or agency, over a body part (Voon et al., 2010; Edwards et al., 2011b). The perception of motor agency is thought to emerge from an internal matching of task prediction to task outcome and involves recruitment of the right temporo-parietal junction (Spence et al., 2000; Hallett, 2016; Voon et al., 2016). Reduced activation of this region in patients with FNDs, and normal activation in subjects who feign weakness, suggests a discrepancy between movement intention and realization (Voon et al., 2010; van Beilen et al., 2011; Aybek et al., 2014; Burke et al., 2014; Hallett, 2016). An impairment of motor conceptualization or initiation appears present, perhaps due to other disruptive cognitive processes (de Lange et al., 2007; Voon et al., 2011).

Both patients and individuals at high risk for developing FNDs show a tendency to divert attentional resources onto the self (Roelofs et al., 2003; Brown et al., 2010a, 2010b). Behavioural studies in these groups demonstrate heightened body vigilance, an inclination to experience perceptually ambiguous sensory stimuli, and a preoccupation with somatic symptoms (Kumru et al., 2007; van Poppelen et al., 2011). Neuroimaging findings support this observation, with increased fMRI activity observed within the ventromedial prefrontal cortex, precuneus and insula (de Lange et al., 2007, 2008, 2010; Cojan et al., 2009). These regions comprise nodes of the brain’s default mode network (DMN) and subserve introspective cognitive functions including somatic self-representation and the retrieval of self-imagery (Raichle et al., 2001; Brown, 2004; Vuilleumier, 2014).

FNDs: Theoretic Models

These findings lay experimental grounding for a leading neurobiological model of FNDs. This model contends that aberrant somatic self-representation, perhaps induced through heightened self-monitoring, exerts excessive influence over normal motor function (Brown, 2004; Edwards et al., 2013; Vuilleumier, 2014; Voon et al., 2016). Abnormal DMN and supplementary motor cortex activity may reflect neural correlates of these psychological changes (Cojan et al., 2009). A mismatch between intended and realized motor function accounts for a perceived loss of self-agency and the observed changes in temporo-parietal junction activation. Traditionally the mechanism of dissociation, defined as a disruption of normally integrated psychological functions including body representation and motor control, has been thought to underlie FNDs (American Psychiatric Association, 2013). This model argues for a discrete loss of integrated somatoform function and is consistent with the notion of dissociation (Voon et al., 2016; Carson et al., 2012). The precipitating reasons for developing an FND remain unclear, although personality factors and maladaptive processing of traumatic life events may play a role (Aybek et al., 2014; Nicholson et al., 2016).

The neurobiological model is also compatible with a Bayesian formulation of FNDs (Edwards et al., 2012). This computational theory asserts that the brain generates our experience of reality through predictive representations of the self and environment (priors), which are compared and updated against somatic and exteroceptive sensory input, forming posteriors (Friston, 2005). Emergence of an excessively precise prior may generate a fixed representation that manifests as a functional symptom (Edwards et al., 2012). This theory accounts for the worsening of symptoms when patients attend to their affected body part: the abnormal prior is strengthened through attentional focus (Edwards et al., 2013). It also provides explanatory basis for a “jumping to conclusions” bias found during probabilistic reasoning and a susceptibility to the placebo effect (Kenney et al., 2007; Edwards et al., 2011a; Pares et al., 2012). Both phenomena reflect a tendency to favor internal priors over conflicting external evidence.

Central to both the neurobiological and Bayesian models is a disturbance of the normal cognitive hierarchy: lower-order sensori-motor function is disrupted by higher-order cognitive processes (Brown, 2004; Carson et al., 2012; Edwards et al., 2012, 2013; Voon et al., 2016). One may speculate, therefore, that...
an intervention capable of disrupting both hierarchical brain dynamics and self-representation could confer a therapeutic benefit. 5-HT\textsubscript{1A} agonists appear to impact both processes and emerge as a plausible candidate. We shall first consider the effect of these agents on neural activity at a cellular and network level and, based on these findings, argue for their potential use in FNDs.

The 5-HT\textsubscript{1A} Receptor: Single Neurons and Neural Circuits

Serotonin (5-hydroxytryptamine or 5-HT) modulates cortical function via widely projecting axons acting on a diversity of receptor subtypes (Puig et al., 2005; Celada et al., 2013). The 5-HT\textsubscript{1A} and 5-HT\textsubscript{1B} receptors exert the greatest influence over cortical function. The 5-HT\textsubscript{1A} receptor is largely responsible for the psychoactive effect of psychedelic compounds such as psilocybin (Glennon et al., 1984; Nichols, 2004).

Activation of the 5-HT\textsubscript{1A} receptor promotes neuron excitability through membrane depolarization and increased action potential probability (Andrade and Andrade, 1991; Andrade, 1998; Celada et al., 2013). There is strong expression of this receptor on excitatory pyramidal cells across most cortical layers, and it has a subcortical distribution favoring proximal apical dendrites, perhaps conferring a role to enhance synaptic input (Andrade, 1998; Zhang and Arsenault, 2005; Celada et al., 2013; Santana et al., 2004; Halberstadt, 2015). Expression is weaker in GABA-ergic interneurons, with the notable exception of parvalbumin-positive subtypes (Willins et al., 1997; Santana et al., 2004; Puig and Gulledge, 2015). The 5-HT\textsubscript{1A} receptor is found across most macroscopic cortical regions; however, greatest densities have been observed within the prefrontal cortex and association areas (Santana et al., 2004; Saulin et al., 2012).

The impact of 5-HT\textsubscript{1A} agonists on network function within cortical circuits is incompletely understood (Puig and Gulledge, 2011a). Increased firing rates and spontaneous excitatory postsynaptic potentials have been observed in slice recordings of pyramidal cells (Puig et al., 2003; Zhang and Arsenault, 2005; Halberstadt, 2015). These neurons form long range cortico-cortical and cortico-thalamo-cortical projections mediating neural information flow between brain regions (Theyel et al., 2010; Ueta et al., 2014; Ramaswamy and Markram, 2015). 5-HT\textsubscript{1A} agonists may also enhance the power of gamma-frequency local field potential recordings, possibly due to enhanced synchrony within populations of parvalbumin-positive interneurons (Puig et al., 2010; Buzsaki and Wang, 2012). This frequency band is thought to promote the dynamic binding of neural activity between brain regions (Buzsaki, 2011). Neuroimaging and electroencephalogram (EEG) studies provide support for a role in enhancing long-range information flow and provide a glimpse into the macroscopic dynamics induced by these agents.

5-HT\textsubscript{1A} Agonists: Neuroimaging and EEG Studies

Subjects receiving 5-HT\textsubscript{1A} agonists report a range of experiential phenomena. Most common are hallucinations, synesthesia, and ego dissolution: the experience of a diminished sense of self (Nour et al., 2016; Tagliazucchi et al., 2016). The neural correlates of these psychoactive effects have been explored with fMRI and EEG.

Under resting conditions, macroscopic functional brain networks display a modular and hierarchical topography. Connectivity within a distinct network tends to be dense, forming a module, whereas connectivity between modules is sparse (Bullmore and Sporns, 2009). 5-HT\textsubscript{1A} agonists induce a reduction in fMRI activity and functional connectivity within higher-order modules including the DMN. The magnitude of these changes correlates with the intensity of ego dissolution, consistent with the role of these regions in sustaining self-related cognition (Carhart-Harris et al., 2012; Tagliazucchi et al., 2016).

Concurrently, 5-HT\textsubscript{1A} agonists increase global brain connectivity by increasing functional connectivity between lower and higher-order modules (Carhart-Harris et al., 2016a; Tagliazucchi et al., 2016). This produces a flattening of the brain’s hierarchical topography (Petri et al., 2014). Lower-order sensori-motor and association cortex, in particular, develop robust functional connectivity with higher-order modules (Kometer et al., 2013; Muthukumaraswamy et al., 2013; Carhart-Harris et al., 2016a; Tagliazucchi et al., 2016).

Information theoretic analyses performed on EEG recordings have revealed specific changes in neural dynamics that extend these fMRI findings. Neural activity recorded from higher-order frontal brain regions appears to exert less constraint over activity within lower-order centro-posterior regions (Alonso et al., 2015). Conversely, activity within lower-order regions has greater influence over higher-order areas. This represents a reversal of normal hierarchical brain dynamics. It may also provide a mechanistic explanation for intrusive sensory experiences and feelings of loss of separation from the environment: sensory information is allowed to seep across functional boundaries (Alonso et al., 2015; Tagliazucchi et al., 2016).

5-HT\textsubscript{1A} Agonists: A Novel Therapy for Functional Neurological Disorders?

These findings have a compelling application to FNDs. 5-HT\textsubscript{1A} agonists appear to modulate the two processes of central importance to theoretic models: self-representation and the influence of higher-order cognitive processes upon lower-order sensori-motor function (Brown, 2004; Edwards et al., 2012; Vuilleumier, 2014; Voon et al., 2016).

Firstly, these agents diminish fMRI activity and functional connectivity within networks subserving self-related cognitive processing. The experience of ego dissolution, a measure of integrated self-representation, substantiates this neuroimaging finding (Nour et al., 2016). This would be anticipated to weaken an abnormal somatic representation underlying functional symptoms.

5-HT\textsubscript{1A} agonists also enhance functional connectivity between hierarchical brain networks, and the influence of neural activity from lower-order upon higher-order regions. In effect, higher-order constraints are removed, and unregulated neural activity within sensori-motor and association cortex is observed (Muthukumaraswamy et al., 2013; Alonso et al., 2015; Carhart-Harris et al., 2016). Synesthetic and intrusive sensory experiences support this empirical finding. More importantly, it may resolve a pathological influence of the mind over the body, leading to an improvement of symptoms.

A benefit is also apparent when considering FNDs from a Bayesian perspective. In this framework, the brain generates experiences of reality through a balance of top-down and bottom-up input. 5-HT\textsubscript{1A} agonists suppress the former by diminishing the influence of higher-order brain regions, and enhance the latter by promoting connectivity and neural information flow originating from lower-order regions. According to the Bayesian...
model, this would be expected to weaken abnormally precise higher-order representations and increase the salience of sensory input. A functional symptom may therefore be alleviated.

Summary and Future Directions

There is strong interest in the therapeutic potential of 5-HT₂A agonists in mood disorders and drug addiction (Johnson et al., 2014; Carhart-Harris et al., 2016b; Rucker et al., 2016). The use of these agents was first predicated on promising case reports; however, clinical and experimental evidence to support their use is now accumulating (Nichols, 2004; Ripoll et al., 2005, 2006; Majic et al., 2015; Carhart-Harris et al., 2016b; Rucker et al., 2016). Based on the known impact of these agents on brain activity and our current understanding of FND neuropathology, these agents appear particularly suited for the management of this condition. This may be of considerable importance given the current lack of treatment options available.

Studies utilizing 5-HT₂A agonists raise legitimate ethical and safety concerns due to risks associated with their hallucinogenic properties. These may be mitigated in a controlled environment (Carbonaro et al., 2016; Rucker et al., 2016). We see a need for a study examining a carefully selected and homogeneous patient cohort, such as refractory functional hemiparesis in the absence of psychiatric comorbidity, in conjunction with best-practice treatment including psychotherapy and psychotherapy. Intermittent dosing schedules similar to existing trials in depression could be employed (Carhart-Harris et al., 2016b). The study hypothesis would be that use of 5-HT₂A agonists to transiently perturb brain network activity would enhance symptom recovery relative to a non-drug patient control group.

Statement of Interest

T.N. serves as an advisor for Lundbeck Australia.

References

American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th Edition. Arlington, VA: American Psychiatric Association.

Anderson KE, Gruber-Baldini AL, Vaughan CG, Reich SG, Fishman PS, Weiner WJ, Shulman LM (2007) Impact of psychogenic movement disorders versus Parkinson’s on disability, quality of life, and psychopathology. Mov Disord 22:2204–2209.

Andrade R (1998) Regulation of membrane excitability in the central nervous system by serotonin receptor subtypes. Ann N Y Acad Sci 861:190–203.

Araneda R, Andrade R (1991) 5-Hydroxytryptamine2 and 5-hydroxytryptamine1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40:399–412.

Aybek S, Nicholson TR, Zelaya F, O’Daly OG, Craig TJ, David AS, Kanaan RA (2014) Neural correlates of recall of life events in conversion disorder. JAMA Psychiatry 71:52–60.

Boeckle M, Schirmpf M, Liegl G, Fieß C (2016) Neural correlates of somatoform disorders from a meta-analytic perspective on neuroimaging studies. NeuroImage Clin 11:606–613.

Bogenschutz MP, Johnson MW (2016) Classic hallucinogens in the treatment of addictions. Prog Neuropsychopharmacol Biol Psychiatry 64:250–258.

Brown RJ (2004) Psychological mechanisms of medically unexplained symptoms: an integrative conceptual model. Psychol Bull 130:793–812.

Brown RJ, Brunt N, Poliakoff E, Lloyd DM (2010a) Illusory touch and tactile perception in somatoform dissociators. J Psychosom Res 69:241–248.

Brown RJ, Danguah AN, Miles E, Holmes E, Poliakoff E (2010b) Attention to the body in nonclinical somatoform dissociation depends on emotional state. J Psychosom Res 69:249–257.

Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198.

Burke MJ, Ghaffar O, Staines WR, Downar J, Feinstein A (2014) Functional neuroimaging of conversion disorder: the role of ancillary activation. Neuroimage Clin 6:333–339.

Buzsáki G (2011) Rhythms of the brain. Oxford; New York: Oxford University Press.

Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225.

Carbonaro TM, Bradstreet MF, Barrett FS, MacLean KA, Jesse R, Johnson MW, Griffiths RR (2016) Survey study of challenging experiences after ingesting psilocybin mushrooms: acute and enduring positive and negative consequences. J Psychopharmacol.

Carhart-Harris RL, Erritzoe D, Williams T, Stone JM, Reed LJ, Colasanti A, Tyacke RJ, Leech R, Malizia AL, Murphy K, Hobden F, Evans J, Feilding A, Wise RG, Nutt DJ (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci U S A 109:2138–2143.

Carhart-Harris RL et al. (2016a) Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci U S A 113:4853–4858.

Carhart-Harris RL, Bolstridge M, Rucker J, Day CM, Erritzoe D, Kaelen M, Bloomfield M, Rickard JA, Forbes B, Feilding A, Taylor D, Pilling S, Curran VH, Nutt DJ (2016b) Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry 3:619–627.

Carson A, Stone J, Hibberd C, Murray G, Duncan R, Coleman R, Warlow C, Roberts R, Pelosi A, Cavanagh J, Matthews K, Goldbeck R, Hansen C, Sharpe M (2011) Disability, distress and unemployment in neurology outpatients with symptoms “unexplained by organic disease.” J Neurol Neurosurg Psychiatry 82:810–813.

Carson AJ, Stone J, Warlow C, Sharpe M (2004) Patients whom neurologists find difficult to help. J Neurol Neurosurg Psychiatry 75:1776–1778.

Carson AJ, Brown R, David AS, Duncan R, Edwards MJ, Goldstein LH, Grunewald R, Howlett S, Kanaan R, Mellers J, Nicholson TR, Reuber M, Schrag AE, Stone J, Voon V, U.K FNS (2012) Functional (conversion) neurological symptoms: research since the millennium. J Neurol Neurosurg Psychiatry 83:842–850.

Celada P, Puig M V, Artigas F (2013) Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 7:25.

Cogan Y, Weber L, Carruzzo A, Vuilleumier P (2009) Motor inhibition in hysterical conversion paralysis. Neuroimage 47:1026–1037.

Cottencin O (2014) Conversion disorders: psychiatric and psychotherapeutic aspects. Neurophysiolog Clin 44:405–410.

Crommelinck M (2014) Neurophysiology of conversion disorders: a historical perspective. Neurophysiolog Clin 44:315–321.

Daum C, Hubschmid M, Aybek S (2014) The value of “positive” clinical signs for weakness, sensory and gait disorders in conversion disorder: a systematic and narrative review. J Neurol Neurosurg Psychiatry 85:180–190.

de Lange FP, Roelofs K, Toni I (2007) Increased self-monitoring during imagined movements in conversion paralysis. Neuropsychologia 45:2051–2058.
de Lange FP, Roelofs K, Toni I (2008) Motor imagery: a window into the mechanisms and alterations of the motor system. Cortex 44:494–506.

de Lange FP, Toni I, Roelofs K (2010) Altered connectivity between prefrontal and sensorimotor cortex in conversion paralysis. Neuropsychologia 48:1782–1788.

Edwards MJ, Bhatia KP, Cordivari C (2011a) Immediate response to botulinum toxin injections in patients with fixed dystonia. Mov Disord 26:917–918.

Edwards MJ, Moretto G, Schwingenschuh P, Katschnig P, Bhatia KP, Haggard P (2011b) Abnormal sense of intention preceding voluntary movement in patients with psychogenic tremor. Neuropsychologia 49:2791–2793.

Edwards MJ, Adams RA, Brown H, Parees I, Friston KJ (2012) A Bayesian account of “hysteria.” Brain 135:3495–3512.

Edwards MJ, Fotopoulou A, Parees I (2013) Neurobiology of functional (psychogenic) movement disorders. Curr Opin Neurol 26:442–447.

Ejareh Dar M, Kanaan RA (2016) Uncovering the etiology of conversion disorder: insights from functional neuroimaging. Neuropsychiatr Dis Treat 12:143–153.

Francesc Alonso J, Romero S, Angel Mañanas M, Riba J (2015) Psychogenic tremor: an examination of the involvement of parvalbumin neurons. Cortex 44:194–204.

Francesc Alonso J, Romero S, Angel Mañanas M, Riba J (2015) Serotonergic psychedelics temporarily modify information transfer in humans. Int J Neuropsychopharmacol 18:1–9.

Friston K (2005) A theory of cortical responses. Philos Trans R Soc B Biol Sci 360:815–836.

Gelauff J, Stone J, Edwards M, Carson A (2014) The prognosis of functional (psychogenic) motor symptoms: a systematic review. J Neurol Neurosurg Psychiatry 85:220–226.

Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5-HT2 receptors in the human cortex: functional transfer in humans. Int J Neuropsychopharmacol 18:1–9.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.

Hallett M (2016) Physiology of free will. Ann Neurol 80:110–124.
synchronous activity in the rat prefrontal cortex through 5-HT1A and 5-HT2A receptors. J Neurosci 30:2211–2222.

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682.

Ramawamy S, Markram H (2015) Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron. Front Cell Neurosci 9:233.

Ripoll N, Hascoet M, Bourin M (2006) Implication of 5-HT2A subtype receptors in DOI activity in the four-plates test-retest paradigm in mice. Behav Brain Res 166:131–139.

Ripoll N, Nic Dhonnchadha BA, Sebille V, Bourin M, Hascoet M (2005) The four-plates test-retest paradigm to discriminate anxiolytic effects. Psychopharmacol 180:73–83.

Roelofs K, van Galen GP, Eling P, Keijsers GF, Hoogduin CA (2003) Endogenous and exogenous attention in patients with conversion paresis. Cogn Neuropsychol 20:733–745.

Rucker JJ, Jelen LA, Flynn S, Frowde KD, Young AH (2016) Psychedelics in the treatment of unipolar mood disorders: a systematic review. J Psychopharmacol 30:1220–1229.

Ruddy R, House A (2005) Psychosocial interventions for conversion disorder. Cochrane Database Syst Rev:CD005331.

Saulin A, Savli M, Lanzanberger R (2012) Serotonin 1A and serotonin 2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14(10):1100–1109.

Spence SA, Crimlisk HL, Cope H, Ron MA, Grasby PM (2000) Discrete neurophysiological correlates in prefrontal cortex during hysterical and feigned disorder of movement. Lancet 355:1243–1244.

Stone J, Carson A, Sharpe M (2005) Functional symptoms and signs in neurology: assessment and diagnosis. J Neurol Neurosurg Psychiatry 76:2–12.

Stone J, Warlow C (2010a) The symptom of functional weakness: a controlled study of 107 patients. Brain 133:1537–1551.

Stone J, Carson A, Duncan R, Roberts R, Warlow C, Hibberd C, Coleman R, Cull R, Murray G, Pelosi A, Cavanagh J, Matthews K, Goldbeck R, Smyth R, Walker J, Sharpe M (2010b) Who is referred to neurology clinics?--the diagnoses made in 3781 new patients. Clin Neurol Neurosurg 112:747–751.

Tagliazucchi E, Roseman L, Kaelen M, Orban C, Muthukumaraswamy SD, Murphy K, Laufs H, Leech R, McGonigle J, Crossley N, Bullmore E, Williams T, Bolstridge M, Feilding A, Nutt DJ, Carhart-Harris R (2016) Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution. Curr Biol 26:1043–1050.

Theyl BB, Llano DA, Sherman SM (2010) The corticothalamic-cortical circuit drives higher-order cortex in the mouse. Nat Neurosci 13:84–88.

Ueta Y, Otsuka T, Morishima M, Ushimaru M, Kawaguchi Y (2014) Multiple layer 5 pyramidal cell subtypes relay cortical feedback from secondary to primary motor areas in rats. Cereb Cortex 24:2362–2376.

van Beilen M, de Jong BM, Gieteling EW, Renken R, Leenders KL (2011) Abnormal parietal function in conversion paresis. PLoS One 6:e25918.

van Poppel D, Saifee TA, Schwingenschuh P, Katschnig P, Bhatia KP, Tijssen MA, Edwards MJ (2011) Attention to self in psychogenic tremor. Mov Disord 26:2575–2576.

Voon V, Brezing C, Gallea C, Hallett M (2011) Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder. Mov Disord 26:2396–2403.

Voon V, Cavanna AE, Coburn K, Sampson S, Reeve A, LaFrance WC (2016) Functional Neuroanatomy and Neurophysiology of Functional Neurological Disorders (Conversion Disorder). J Neuropsychiatry Clin Neurosci:appineuropsych14090217.

Vuilleumier P (2014) Brain circuits implicated in psychogenic paralysis in conversion disorders and hypnosis. Neuropsychiol Clin 44:323–337.

Willins DL, Deutch AY, Roth BL (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27:79–82.

Zhang ZW, Arsenault D (2005) Gain modulation by serotonin in pyramidal neurons of the rat prefrontal cortex. J Physiol 566:379–394.