Local anaesthetic infiltration for peri-operative pain control in total hip and knee replacement: systematic review and meta-analyses of short- and long-term effectiveness

Elsa MR Marques1*, Hayley E Jones1, Karen T Elvers2, Mark Pyke3, Ashley W Blom2 and Andrew D Beswick2

Abstract

Background: Surgical pain is managed with multi-modal anaesthesia in total hip replacement (THR) and total knee replacement (TKR). It is unclear whether including local anaesthetic infiltration before wound closure provides additional pain control.

Methods: We performed a systematic review of randomised controlled trials of local anaesthetic infiltration in patients receiving THR or TKR. We searched MEDLINE, Embase and Cochrane CENTRAL to December 2012. Two reviewers screened abstracts, extracted data, and contacted authors for unpublished outcomes and data. Outcomes collected were post-operative pain at rest and during activity after 24 and 48 hours, opioid requirement, mobilisation, hospital stay and complications. When feasible, we estimated pooled treatment effects using random effects meta-analyses.

Results: In 13 studies including 909 patients undergoing THR, patients receiving local anaesthetic infiltration experienced a greater reduction in pain at 24 hours at rest by standardised mean difference (SMD) −0.61 (95% CI −1.05, −0.16; p = 0.008) and by SMD −0.43 (95% CI −0.78 −0.09; p = 0.014) at 48 hours during activity. In TKR, diverse multi-modal regimens were reported. In 23 studies including 1439 patients undergoing TKR, local anaesthetic infiltration reduced pain on average by SMD −0.40 (95% CI −0.58, −0.22; p < 0.001) at 24 hours at rest and by SMD −0.27 (95% CI −0.50, −0.05; p = 0.018) at 48 hours during activity, compared with patients receiving no infiltration or placebo. There was evidence of a larger reduction in studies delivering additional local anaesthetic after wound closure. There was no evidence of pain control additional to that provided by femoral nerve block.

Patients receiving local anaesthetic infiltration spent on average an estimated 0.83 (95% CI 1.54, 0.12; p = 0.022) and 0.87 (95% CI 1.62, 0.11; p = 0.025) fewer days in hospital after THR and TKR respectively, had reduced opioid consumption, earlier mobilisation, and lower incidence of vomiting.

Few studies reported long-term outcomes.

Conclusions: Local anaesthetic infiltration is effective in reducing short-term pain and hospital stay in patients receiving THR and TKR. Studies should assess whether local anaesthetic infiltration can prevent long-term pain. Enhanced pain control with additional analgesia through a catheter should be weighed against a possible infection risk.

Keywords: Hip replacement, Knee replacement, Anaesthesia, Systematic review, Meta-analysis

* Correspondence: e.marques@bristol.ac.uk
1School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
Full list of author information is available at the end of the article

© 2014 Marques et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Total hip replacement (THR) and total knee replacement (TKR) are widely used to treat diseased and damaged joints. In 2012 there were 75,366 primary THR and 76,497 primary TKR procedures recorded in the National Joint Registry for England, Wales and Northern Ireland [1]. In the USA in 2010, the estimated numbers of THR and TKR procedures performed were 332,000 and 719,000, respectively [2].

Pain is the primary indication for THR and TKR and many preparatory, surgical and rehabilitation strategies target reduction in pain. However, both short- and long-term pain after THR and TKR are common [3-5]. Peri-operative pain is managed with multi-modal analgesia with additive or synergistic effects [6]. Regimens aim to achieve good pain relief immediately after surgery while allowing for early mobilisation and hospital discharge. Other methods such as spinal and epidural anaesthetics and the use of opioids may preclude early mobilisation and rehabilitation [7,8].

Pain management by infusion of local anaesthetic into wounds has been evaluated in diverse surgical procedures. In their systematic review, Liu and colleagues noted improved pain, reduced opioid use and side effects, increased patient satisfaction, and shorter hospital stay in patients receiving local anaesthetic infiltration [9]. Only one study included patients with THR or TKR [10], but further evaluations have been reported [11]. More recent meta-analyses in abdominal surgery [12], and lumbar spine surgery [13], have questioned the clinical value of local anaesthetic wound infiltration.

Using systematic review methods and meta-analysis, our objective was to synthesise evidence from randomised controlled trials (RCTs) evaluating the effectiveness of peri-operative local anaesthetic infiltration for pain control in patients with THR and TKR. Pain outcomes were considered along with post-operative opioid requirement, mobilisation, hospital stay and complications.

Methods

We identified RCTs using methods described in the Cochrane handbook of systematic reviews of interventions [14]. The review was conducted in accordance with PRISMA guidelines [15] and a checklist is included as Additional file 1. This review builds on a previous literature review, without a further formal protocol published [11].

Search strategy and selection criteria

We searched MEDLINE and Embase on OvidSP and Cochrane CENTRAL to 11th December 2012. The search strategy covered RCTs, anaesthesia and analgesia, and THR and TKR terms (Table 1). We tracked citations of key articles in ISI Web of Science [10,16-19], and checked reference lists. Two reviewers scanned abstracts and titles, acquired potentially relevant articles, and decided on inclusion based on pre-specified criteria, with disputes resolved by other authors.

We included RCTs of patients with primary unilateral THR or TKR receiving local anaesthetic infiltration before wound closure compared with patients receiving no local anaesthetic infiltration or placebo. We also included studies comparing local anaesthetic infiltration with other forms of analgesia and studies with additional post-wound closure delivery of analgesics through catheters and injections. We excluded studies with interventions exclusively after wound closure and studies in patients receiving hip hemiarthroplasty or unicompartmental TKR. No language restrictions were applied and translations were made by colleagues as required.

Data collection and extraction

Articles and inclusion/exclusion decisions were catalogued in Endnote X5. Data were extracted on to piloted forms and an Excel spreadsheet in duplicate. Authors were contacted for unpublished outcomes and missing data.

Information was extracted on study characteristics; participant characteristics; anaesthesia procedures common to randomised groups; intervention (content of infiltration, timing and volume); additional intervention group treatments; and control group treatment including placebo and alternative analgesia regimens.

Outcomes

Outcomes studied were pain at rest or during activity at 24 and 48 hours after surgery, opioid consumption, mobilisation, length of hospital stay in days, and long-term pain and function. Serious complications recorded were altered state of consciousness, cardiovascular complications requiring treatment, central nervous system toxicity, dysarthria, dyspnoea, major surgical complications, pneumonia, pulmonary embolism, respiratory depression, seizures, and swollen knee; or complications relating to deep infection. Adverse events were vomiting and nausea.

Study quality

Potential sources of bias were recorded in a Cochrane risk of bias table [14]. We considered random sequence generation, allocation concealment, blinding of participants and personnel, blind outcome assessment, incomplete outcome data, selective reporting, and other sources of bias. We classified overall quality as low, unclear or high risk of bias.

Meta-analysis

We conducted meta-analyses for pain at rest and during activity at 24 and 48 hours, length of hospital stay, and...
complications. Data collected on mobilisation, long-term pain and function outcomes were not suitable for meta-analyses and results were summarised using a descriptive narrative.

Follow-up times were approximated to the closest timing. When not specified, we assumed measurements were taken at rest. Analyses were carried out in Stata 12 and Review Manager 5 and results are reported with 95% confidence intervals. Funnel plots were inspected to assess small study effects [20]. Given the number of potential effect modifiers, we used random effects models for all meta-analyses.

In meta-analysis, means and standard deviations of continuous variables such as pain intensity are required for intervention and control groups. Pain outcomes are sometimes reported as medians and inter-quartile ranges due to the recognised ceiling effects of pain measures after successful pain management. However this is less of an issue during early recovery. Kerr and Kohan presented distributions of pain intensity scores at rest and during walking on the first and second day after THR or TKR [19]. The proportion of people reporting no pain, and thus reflecting a ceiling effect, ranged from 2 to 35% on days one and two and pain intensities showed near normal distributions.
Assuming a normal distribution, we estimated means and standard deviations from medians and inter-quartile ranges [14]. If no measures of variability were available in articles, we contacted authors to obtain standard deviations. If unavailable we used the method described by Walter and Yao to estimate standard deviations from ranges [21], or imputed values from the average across studies with the same outcome.

As pain scores are reported on different scales we used the standardised mean difference (SMD) as our measure of treatment effect in meta-analyses [22]. To help in the interpretation of the pooled estimates, we multiplied SMD values by the mean standard deviation on the widely reported 100 point VAS scale for the outcome. As the use of this method is entirely dependent on the chosen “typical” value [23], we used a mean standard deviation calculated from all studies reporting the outcome [14].

For length of hospital stay, we compared means and medians in studies reporting both, and examined individual level data provided by some authors. Distributions were right-skewed and followed a lognormal distribution. Some studies reported means and standard deviations directly. For studies that reported medians and inter-quartile ranges, or ranges, we estimated means and standard deviations on the log scale and then back-transformed them to the natural (unlogged) scale [24]. We reported the mean difference (MD) in days as our measure of treatment effect in meta-analyses. Complications were compared between randomised groups using meta-analysis with summary statistics calculated as the Peto odds ratio (OR), the method of choice when event rates are low [14,25].

Analgesia regimen comparisons

Not all studies compared a local anaesthetic infiltration intervention with no intervention or placebo. Thus meta-analyses are reported separately for different regimen comparisons, which we label A-E. These are summarised in Figure 1.

THR studies were grouped into comparisons A and B; we and also report the combined comparison (A + B).

For TKR studies, we initially report results from a combined meta-analysis across the first two subgroups (A + B), comparing local anaesthetic infiltration with or without further post-closure intervention against control. Further analyses report the comparisons C, D and E.

Heterogeneity and subgroup analyses

We quantified the differences in treatment effects between groups using meta-regression. Heterogeneity within meta-analyses was quantified using the τ^2 and I^2 statistics [26]. Sensitivity and sub-group analyses explored risk of bias in the study, use of additional analgesia delivered through a catheter or injection, and inclusion of non-steroidal inflammatory agents or steroids in the infiltrate.

Results

Searches identified 839 articles of which 33 described 36 RCTs evaluating local anaesthetic infiltration in THR or TKR. The flow diagram in Figure 2 summarises review progress. Some consistency in outcome reporting was apparent for pain outcomes but for opioid consumption and ambulation the variety of outcomes precluded meta-analysis.

Small study effects

Inspection of funnel plots for each meta-analysis gave no strong indication of publication bias or small study effects, but numbers of studies in individual analysis groups were small such that it was difficult to assess asymmetry.

Total hip replacement

Details of 13 studies including 909 patients with THR [16,27-37], or a large majority with THR [10], are summarised in Table 2 which also includes our summary risk of bias assessment. A more detailed assessment of risk of bias is included in Additional file 2. The mean number of patients randomised was 70 (range 37–120). We assessed that 10 studies were at low risk of bias while three studies had unclear risk of bias due to uncertainty about blinding of outcome assessments.
Pain

Results of meta-analyses including up to 12 studies [10,16,27-29,31-37], are summarised in Table 3 and Figure 3. In patients receiving local anaesthetic infiltration (A and B), there was strong evidence that pain was lower: at rest at 24 hours by SMD -0.61 (95% CI -1.05, -0.16; $p = 0.008$), and during activity by SMD -0.85 (95% CI -1.45, -0.25; $p = 0.006$). This reflected reduced pain at 24 hours at rest by an average of 12 points (95% CI 3, 21; $p = 0.008$), and during activity by 24 points (95% CI 7, 42; $p = 0.006$) on a 100 point scale. Average effect sizes at 48 hours were smaller for pain at rest, SMD -0.29 (95% CI -0.52, -0.05; $p = 0.018$), and during activity, SMD -0.43 (95% CI -0.78, -0.09; $p = 0.014$), corresponding to 5 and 10 points on a 100 point scale, respectively.

In seven studies with no additional post-closure analgesia through a catheter or injection (A), patients receiving local anaesthetic infiltration reported lower pain at 24 hours at rest by SMD -0.63 (95% CI -1.21, -0.06; $p = 0.031$), equivalent to an average of 12 points lower pain. However, there was no strong evidence that the intervention had an effect during activity or at 48 hours.

In five studies where patients received further post-closure analgesia (B), pain was reduced on average at 24 hours during activity by SMD -1.38 (95% CI -2.5, -0.26; $p = 0.016$), equivalent to a 40 point decrease on a 100 point scale. Pain at 48 hours was reduced, on average, at rest by SMD -0.49 (95% CI, -0.96, -0.02; $p = 0.043$) and during activity by SMD -0.6 (95% CI -1.16, -0.04; $p = 0.036$) equivalent to 8 and 14 point decreases, respectively.

In one study, control patients received an epidural analgesia infusion [16]. Pain was lower for the duration of the epidural infusion, but at 48 hours pain was higher in the control group compared with the local anaesthetic infiltration reported lower pain at 24 hours at rest by SMD -0.63 (95% CI -1.21, -0.06; $p = 0.031$), equivalent to an average of 12 points lower pain. However, there was no strong evidence that the intervention had an effect during activity or at 48 hours.

In five studies where patients received further post-closure analgesia (B), pain was reduced on average at 24 hours during activity by SMD -1.38 (95% CI -2.5, -0.26; $p = 0.016$), equivalent to a 40 point decrease on a 100 point scale. Pain at 48 hours was reduced, on average, at rest by SMD -0.49 (95% CI, -0.96, -0.02; $p = 0.043$) and during activity by SMD -0.6 (95% CI -1.16, -0.04; $p = 0.036$) equivalent to 8 and 14 point decreases, respectively.

In one study, control patients received an epidural analgesia infusion [16]. Pain was lower for the duration of the epidural infusion, but at 48 hours pain was higher in the control group compared with the local anaesthetic infiltration reported lower pain at 24 hours at rest by SMD -0.63 (95% CI -1.21, -0.06; $p = 0.031$), equivalent to an average of 12 points lower pain. However, there was no strong evidence that the intervention had an effect during activity or at 48 hours.
Study country date	Inclusion patients	Common treatment	Latest post-surgical follow up	Outcomes
TOTAL HIP REPLACEMENT STUDIES				
Aguirre et al. 2012 [34] Switzerland Not specified	THR (minimally invasive) N = 76 (38:38) 58.58 years 53.50% female	Spinal anaesthesia, PCA morphine	48 hours and to 3 months Intra-venous morphine consumption, VAS pain at rest and with motion, electrocardiogram, skin inflammation or infection, satisfaction. 4 (2:2) lost to follow up, 3/4 caused by catheter dislocation Low risk of bias	
	20 ml solution containing 60 mg ropivacaine injected into wound before closure. Further continuous infusion through catheter	20 ml placebo injection of saline. Continuous infusion of saline through catheter		
Andersen KV et al. 2007 [16] Denmark 2005–2006	THR, OA, elective N = 80 (40:40) 62.61 years 90.85% female	Spinal, post-operative oral oxycodon hydrochloride as required	96 hours VAS pain, length of stay, time to mobilisation, side effects and complications, motor block (Bromage scale) 5 (2:3) patients lost to follow up Unclear (blinding of outcome assessment)	
	101.5 ml solution containing 200 mg ropivacaine, 30 mg ketorolac and 0.5 mg epinephrine infiltrated during surgery. Further infiltrate through catheter intra-articularly 8 hours after surgery.	Epidural infusion of ropivacaine and morphine		
Andersen Li et al. 2007 [27] Denmark Date not specified	THR, OA, uncemented, >80 years N = 37 (19:18) 62.64 years 84.56% female	Spinal anaesthesia, self-administered oral oxycodone as rescue medication	6 weeks VAS pain at rest and on leg raise up to 8 hours, WOMAC pain to day 4, WOMAC pain, stiffness and function after 1,2,3,6 weeks, EQSD at 6 weeks, patient controlled analgesic use to discharge, adverse events 3 patients out of 10 not fitting inclusion criteria were identified retrospectively. No losses to follow up Low risk of bias	
	151.5 ml saline solution containing 300 mg ropivacaine, 30 mg ketorolac, and 0.5 mg adrenaline infiltrated during surgery. Further infusion through catheter on day 1.	Saline placebo infiltration Saline placebo infused through catheter on day 1		
Bianconi et al. 2003 [10] Italy Date not specified	THR and TKR (78% THR), elective N = 37 (18:19) 66.64 years 79.83% female	Spinal anaesthesia. Loading dose of intravenous morphine at end of surgery	72 hours VAS pain at 2,4,8,12,24,48,72 hours, opioid consumption (rescue medication), adverse events, length of hospital stay, patient satisfaction No losses to follow up Low risk of bias	
	40 ml saline containing 200 mg ropivacaine infiltrated at end of surgery. Further ropivacaine infusion through catheter for 55 hours after closure. Intravenous saline infusion for 24 h after surgery.	No placebo infiltration during surgery. Saline infusion through catheter for 55 h after closure. Intravenous morphine plus ketorolac infusion for 24 h.		
Busch et al. 2010 [30] UK 2003–2005	THR, OA, age <80 years N = 64 (32:32) 61.65 years 50.54% female	General or spinal anaesthesia, PCA morphine	2 years VAS at rest and activity, morphine consumption (PCA), VAS satisfaction, complications, Harris Hip Score, WOMAC, length of hospital stay No losses to follow up Low risk of bias	
	100 ml saline solution containing 400 mg ropivacaine, 30 mg ketorolac, 5 mg epinephrine, and 0.6 ml epinephrine (1:1000) infiltrated during surgery.	No placebo infiltration		
Dobie et al. 2012 [35] UK 2006–2007	THR, OA or RA N = 96 (50:46) 67.67 years 38. 52% female	Spinal, general, intravenous morphine after surgery as required.	6 days VAS at 24 h, morphine consumption, walking and stair test, mobilisation velocity and day, sit to stand test, home readiness, hospital stay, Iowa Level of Assistance Scale 4 (4:0) patients did not receive intervention as planned. Intention to treat results. Some data missing for 1 control Low risk of bias	
	160 ml saline solution containing 200 mg levobupivacaine and adrenaline	No local infiltration		
Lee et al. 2009 [29] South Korea 2006–2007 Note: additional pre-emptive analgesia and epidural	THR, 13% OA, 72% Osteonecrosis N = 60 (30:30) 51.55 years 37.43% female	General anaesthesia	5 days VAS pain, ambulation, doses of parenteral analgesia, time to straight leg raise, complications No losses to follow up described Unclear (blinding of outcome assessment)	
	Pre-emptive analgesia with oral Oxycodone and Celecoxib. Epidural anaesthesia. 90 ml saline	No pre-emptive analgesia No epidural		

Study country date	Inclusion patients	Common treatment	Latest post-surgical follow up	Outcomes						
TOTAL HIP REPLACEMENT STUDIES										
Aguirre et al. 2012 [34] Switzerland Not specified	THR (minimally invasive) N = 76 (38:38) 58.58 years 53.50% female	Spinal anaesthesia, PCA morphine	48 hours and to 3 months Intra-venous morphine consumption, VAS pain at rest and with motion, electrocardiogram, skin inflammation or infection, satisfaction. 4 (2:2) lost to follow up, 3/4 caused by catheter dislocation Low risk of bias							
	20 ml solution containing 60 mg ropivacaine injected into wound before closure. Further continuous infusion through catheter	20 ml placebo injection of saline. Continuous infusion of saline through catheter								
Andersen KV et al. 2007 [16] Denmark 2005–2006	THR, OA, elective N = 80 (40:40) 62.61 years 90.85% female	Spinal, post-operative oral oxycodon hydrochloride as required	96 hours VAS pain, length of stay, time to mobilisation, side effects and complications, motor block (Bromage scale) 5 (2:3) patients lost to follow up Unclear (blinding of outcome assessment)							
	101.5 ml solution containing 200 mg ropivacaine, 30 mg ketorolac and 0.5 mg epinephrine infiltrated during surgery. Further infiltrate through catheter intra-articularly 8 hours after surgery.	Epidural infusion of ropivacaine and morphine								
Andersen Li et al. 2007 [27] Denmark Date not specified	THR, OA, uncemented, >80 years N = 37 (19:18) 62.64 years 84.56% female	Spinal anaesthesia, self-administered oral oxycodone as rescue medication	6 weeks VAS pain at rest and on leg raise up to 8 hours, WOMAC pain to day 4, WOMAC pain, stiffness and function after 1,2,3,6 weeks, EQSD at 6 weeks, patient controlled analgesic use to discharge, adverse events 3 patients out of 10 not fitting inclusion criteria were identified retrospectively. No losses to follow up Low risk of bias							
	151.5 ml saline solution containing 300 mg ropivacaine, 30 mg ketorolac, and 0.5 mg adrenaline infiltrated during surgery. Further infusion through catheter on day 1.	Saline placebo infiltration Saline placebo infused through catheter on day 1								
Bianconi et al. 2003 [10] Italy Date not specified	THR and TKR (78% THR), elective N = 37 (18:19) 66.64 years 79.83% female	Spinal anaesthesia. Loading dose of intravenous morphine at end of surgery	72 hours VAS pain at 2,4,8,12,24,48,72 hours, opioid consumption (rescue medication), adverse events, length of hospital stay, patient satisfaction No losses to follow up Low risk of bias							
	40 ml saline containing 200 mg ropivacaine infiltrated at end of surgery. Further ropivacaine infusion through catheter for 55 hours after closure. Intravenous saline infusion for 24 h after surgery.	No placebo infiltration during surgery. Saline infusion through catheter for 55 h after closure. Intravenous morphine plus ketorolac infusion for 24 h.								
Busch et al. 2010 [30] UK 2003–2005	THR, OA, age <80 years N = 64 (32:32) 61.65 years 50.54% female	General or spinal anaesthesia, PCA morphine	2 years VAS at rest and activity, morphine consumption (PCA), VAS satisfaction, complications, Harris Hip Score, WOMAC, length of hospital stay No losses to follow up Low risk of bias							
	100 ml saline solution containing 400 mg ropivacaine, 30 mg ketorolac, 5 mg epinephrine, and 0.6 ml epinephrine (1:1000) infiltrated during surgery.	No placebo infiltration								
Dobie et al. 2012 [35] UK 2006–2007	THR, OA or RA N = 96 (50:46) 67.67 years 38. 52% female	Spinal, general, intravenous morphine after surgery as required.	6 days VAS at 24 h, morphine consumption, walking and stair test, mobilisation velocity and day, sit to stand test, home readiness, hospital stay, Iowa Level of Assistance Scale 4 (4:0) patients did not receive intervention as planned. Intention to treat results. Some data missing for 1 control Low risk of bias							
	160 ml saline solution containing 200 mg levobupivacaine and adrenaline	No local infiltration								
Lee et al. 2009 [29] South Korea 2006–2007 Note: additional pre-emptive analgesia and epidural	THR, 13% OA, 72% Osteonecrosis N = 60 (30:30) 51.55 years 37.43% female	General anaesthesia	5 days VAS pain, ambulation, doses of parenteral analgesia, time to straight leg raise, complications No losses to follow up described Unclear (blinding of outcome assessment)							
Study	Country	Duration	Surgery Type	Sample Size	Age Range	Sex Distribution	Anaesthesia	Infiltration Details	Outcomes	Risk of Bias
-----------------------------	---------	-------------------	--------------	-------------	------------	------------------	-------------	--	---	--------------
Liu et al. 2011 [32]	China	2008–2009	THR, OA, ASA I–III <80 years	N = 82 (41:41) 74:74 years	75:77% female	Spinal anesthesia, PCA morphine	60 ml saline solution containing 5 mg morphine, 30 mg bupivacaine, 1 ml betamethasone and 0.5 ml epinephrine infiltrated during surgery.	Post-operative intravenous PCA and oral and injected analgesics as required	Low risk of bias	
Lu et al. 2010 [31]	China	Not specified	THR, primary N = 40 (20:20)	No information on age and sex of patients	No description of common anaesthesia except PCA	Spinal with or without general. Multimodal oral analgesia	150 ml saline solution containing 0.2% ropivacaine and 10 μg/ml epinephrine infiltrated during surgery.	8 hours and to discharge VAS pain at rest and during walking and passive hip flexion, Oxycodeone consumption, complications No losses to follow up except “pain during walking” with 18 (11:7) lost to follow up Low risk of bias		
Lunn et al. 2011 [33]	Denmark	2009–2010	THR, >18 years N = 120 (60:60) 67:67 years	55:65% female	Spinal with or without general. Multimodal oral analgesia	60 ml saline solution containing 5 mg morphine, 40 mg methylprednisolone and 6.8 mg ropivacaine infiltrated during surgery.	Post-operative intravenous PCA and oral and injected analgesics as required	Low risk of bias		
Murphy et al. 2012 [36]	Ireland	2009–2010	THR, OA N = 91 (45:46) 57:54 years	49:38% female	Spinal, PCA opioid analgesia	60 ml saline solution containing 150 mg levobupivacaine infiltrated during surgery.	Post surgical PCA	72 hours WOMAC Pain, McGill Pain Questionnaire, VAS pain, morphine consumption, complications 13 (6:7) lost to follow up but some analyses used multi-level modelling to handle missing data Low risk of bias		
Parvataneni et al. 2007 [28]	USA	2005–2006	THR, OA N = 71 (35:36) 64:61 years	40:59% female	Spinal anaesthesia with or without FNB	Intra-operative infiltration of 200–400 mg bupivacaine, 4–10 mg morphine sulphate 300 μg epinephrine, 40 mg methylprednisolone acetate, 75 mg cefuroxime and 22 ml saline. Total volume approximately 33 ml.	Intrathecal morphine No placebo infiltration Sham catheter attached to skin with 21 ml air administered on morning of first post-operative day	Low risk of bias		
Rikalainen-Salmi et al. 2012	Finland	2009–2010	THR, OA, ASA I–III N = 60 (30:30) 65:66 years (followed up)	66:61% female (followed up)	Spinal, propofol if required, oxycodone rescue medication	101 ml solution containing 125 mg levobupivacaine, 30 mg ketorolac infiltrated during surgery 21 ml solution containing 100 mg levobupivacaine and 30 mg ketorolac administered through catheter on morning of first post-operative day	Intrathecal morphine No placebo infiltration Sham catheter attached to skin with 21 ml air administered on morning of first post-operative day (not inserted into joint)	Low risk of bias		

TOTAL KNEE REPLACEMENT STUDIES

Study	Country	Duration	Surgery Type	Sample Size	Age Range	Sex Distribution	Anaesthesia	Infiltration Details	Outcomes	Risk of Bias
Affas et al. 2011 [50]	Sweden	2007–2008	TKR, 77.5% OA, 22.5% RA, >18 years, ASA I–III, primary	N = 40 (20:20) 67:69 years	45:60% female	Spinal anaesthesia, PCA morphine	110 ml containing approximately 200 mg ropivacaine, 20 mg ketorolac and 0.33 mg epinephrine infiltrated during surgery. Further intra-articular infiltration through catheter after surgery.	Femoral nerve block. Intravenous ketorolac after surgery. No placebo infiltration.	Unclear risk of bias (blinding of outcome assessment)	
Table 2 Randomised controlled trials of local anaesthetic infiltration in total knee and hip replacement (Continued)

Study	Design	Age	Follow-up	Local anaesthetic	Type of anaesthesia	Length of hospital stay	Outcome measures	Risk of bias
Andersen et al. 2010 [44]	Denmark 2007–2008	TKR, >18 years N = 49 (24:25) 67/69 years 43.26% female	Spinal anaesthesia, PCA morphine	151.5 ml saline solution containing 300 mg ropivacaine, 30 mg ketorolac and 0.5 mg epinephrine infiltrated during surgery. Further continuous infusion through catheter after closure.	Epidural infusion of ropivacaine. Post-operative intravenous ketorolac	72 hours and to discharge. Infection to 30 days VAS/NRS pain, morphine requirement, side effects and complications, time to achieve discharge criteria, length of stay, 9 (38) patients lost to follow up Unclear risk of bias (blinding of outcome assessment)		
Busch et al. 2006 [38]	Canada Date not specified	TKR, age <80 years N = 64 (32:32) 66/70 years 50.59% female	General or spinal anaesthesia, PCA morphine	100 ml saline solution containing 400 mg ropivacaine, 30 mg ketorolac, 5 mg epinephrine, and 0.6 ml epinephrine (1:1000) infiltrated during surgery.	No placebo infiltration	6 weeks VAS at rest and activity, morphine consumption (PCA), VAS satisfaction, complications, Knee Society Score, WOMAC, length of hospital stay No losses to follow up Low risk of bias		
Carlsson et al. 2010 [45]	Canada 2007–2008	TKR, OA, tricompartmental, cemented N = 40 (20:20) 71/71 years 75.70% female	Spinal anaesthesia, PCA morphine	Solution of ropivacaine (0.2%), 1 ml of ketorolac (30 mg/ml), and 0.5 ml of epinephrine (1 mg/ml) with a total volume of 100 ml infiltrated during surgery. Further infusion through catheter after closure	Continuous femoral nerve block saline injection Post-surgical infusion of saline	6 weeks Morphine consumption, NRS pain at rest and walking, functional capacity, ability to walk 30 m, physical activity, SF-12, WOMAC No losses to follow up Low risk of bias		
Chen et al. 2012 [52]	China 2008	TKR, OA, age <76 years N = 81 (40:41) 66/65 years 75.78% female	Spinal anaesthesia, PCA morphine	Intra-operative injection of a solution of magnesium sulphate (50 mg/kg) and 190 mg ropivacaine in normal saline to a volume of 100 ml	Intra-operative intra-articular injection of 100 ml normal saline	15 days and infection to 6 months Total morphine consumption, VAS pain at rest and motion, time to straight leg raise and 90 degree flexion, adverse events including delayed infection 1 (0.1) patient lost to follow up Low risk of bias		
Essving et al. 2010 [46]	Sweden 2007–2008	TKR, OA, ASA I–III, 20–85 years N = 48 (24:24) 72/70 years 54.54% female	General anaesthesia, PCA morphine	116 ml saline containing 300 mg ropivacaine, 30 mg ketorolac and 0.5 mg epinephrine infiltrated during surgery. 50 ml saline containing 100 mg ropivacaine infiltrated before closure. Further injection of mixture 21 h after closure	No placebo injections during surgery. Post-surgical injection of saline at 21 hours.	3 months PCA morphine consumption, VAS pain at rest and on knee flexion, time to home readiness, length of hospital stay, surgical outcome, functional outcome tests, Oxford Knee Score, EQ-5D, patient satisfaction, adverse events 1 (0.1) patient lost to follow up Low risk of bias		
Essving et al. 2011 [51]	Sweden 2009–2010	TKR, OA, ASA I–III, age 40–85 years N = 50 (25:25) 71/71 years 64.60% female	Spinal anaesthesia, PCA morphine	Spinal plus intrathecal saline. Injection during surgery of 400 mg ropivacaine (160 ml), 30 mg ketorolac (1 ml) and 0.5 mg epinephrine (5 ml) Further infiltrate through catheter on day 1 and 2	Spinal plus intrathecal morphine No injection during surgery Post-surgical infusion of saline through catheter	3 months VAS pain, PCA morphine, verbal rating scale of satisfaction, functional tests, time to home readiness, Oxford Knee Score, EQ-SD, adverse events 2 (0.2) patients lost to follow up Low risk of bias		
Fu et al. 2009 [42]	China 2006–2007	TKR, OA, age <80y N = 80 (40:40) 69/68 years 75.78% female	Spinal anaesthesia, PCA morphine	60 ml saline containing 5 mg morphine, 30 mg bupivacaine and 1 ml betamethasone infiltrated during surgery.	60 ml saline infiltrated during surgery	15 days except ROM 90 days, infection 12 months Morphine consumption, VAS pain at rest and activity, ROM, time to straight leg raise and 90 degree flexion, surgical outcomes, complications. No losses to follow up. Missing data imputation described Low risk of bias		
Fu et al. 2010 [47]	China 2008–2009	TKR, OA, age <80 years N = 100 (50:50) 68/67 years 76.80% female	Spinal anaesthesia, PCA morphine	Oral COX-2 inhibitor and tramadol 1 day before to 1 month after surgery 50 ml saline containing 5 mg morphine, 150 mg ropivacaine, 0.5 ml adrenaline and 1 ml betamethasone infiltrated during surgery.	Oral placebo 1 day before to 1 month after surgery 50 ml saline placebo infiltrated during surgery	15 days except ROM at 90 days and infection to mean 7.5 months (range 6–9 months) VAS pain, morphine consumption (PCA and intramuscular), time to straight leg raise and 90 degree flexion, surgical outcomes, adverse reactions No losses to follow up Low risk of bias		
Table 2 Randomised controlled trials of local anaesthetic infiltration in total knee and hip replacement (Continued)

Study	Design	Intervention	Outcome Measures				
[Han et al. 2007 and 2][40] Korea 2005–2006 Note: 2 intervention groups	TKR, primary N = (30:30:30) 69/86/67 years 90.80/90% female	Spinal and epidural anaesthesia, PCA morphine 1) 50 ml saline solution containing 300 mg ropivacaine, epinephrine (0.25 ml 1:200,000) and 5 mg morphine injected before wound closure. 2) 50 ml saline solution containing 300 mg ropivacaine and epinephrine (0.25 ml 1:200,000) injected before wound closure. 50 ml saline placebo	48 hours Incidence of booster PCA for 24 hours, amount of intra-venous tramadol, VAS pain at rest and exercising, side effects, range of flexion. No losses to follow up reported Low risk of bias				
[Koh et al. 2012][53] Korea 2008–2009	TKR, OA, unilateral N = 101 (49/52) 70/70 years 89.91% female	FNb, spinal anaesthesia, PCA morphine 50 ml saline containing ropivacaine 300 mg, morphine sulphate 10 mg, ketorolac 30 mg, 0.3 mg epinephrine, cefuroxime 750 mg injected/ infiltrated during surgery.	No placebo infiltration reported				
[Krenzel et al. 2009][43] USA 2007–2008	TKR, 96% OA elective. N = 67 (35:32), 1 patient with staged bilateral TKR included twice. 6/7 years 57.72% female	FNb, spinal anaesthesia, PCA fentanyl 20 ml infiltration of 100 mg ropivacaine during surgery.	24 hours PCA fentanyl consumption, NRS pain, functional tests, time to straight leg raise, ambulation distance, surgical outcomes, adverse events No losses to follow up Low risk of bias				
[Mahadevan et al. 2012][54] UK Not specified	TKR, OA or RA, unilateral N = 52 (26:26) 68/67 years 54.58% female	FNb, general anaesthesia, PCA morphine. 25 ml saline containing 0.375% levobupivacaine infiltrated during surgery. Sciatic nerve block No placebo infiltration reported					
[Meffah et al. 2012][55] USA 2010–2011	TKR, unilateral N = 90 (45:45) 65/67 years 64.64% female	Pre-emptive analgesia 45.1 ml saline solution containing marcaine (400–800 mg, morphine sulphate 8 mg, adrenaline 0.3 mg, antibiotic 750 mg, corticosteroids 40 mg injected during surgery. FNB, PCA epidural No placebo injection reported					
[Ng et al. 2012][56] China 2008–2010 Note: crossover design. Patients having both knees replaced	TKR, OA N = 32 (16:16) surgeries but 13 patients only having 2 TKRs 3 months apart. 70/70 years 88.88% female	General anaesthesia, remifentanil infusion, PCA morphine 101.5 ml saline solution containing 300 mg ropivacaine, adrenaline 1 mg and tramadol acetate 40 mg infiltrated during surgery. Femoral nerve block Wound infiltration with 101.5 ml saline.	48 hours and to discharge VAS pain, morphine consumption, active ROM, length of hospital stay. No losses to follow up reported Low risk of bias				
[Parvataneni et al. Knee 2007][28] USA 2005–2006	TKR, OA N = 60 (31:29) 69/71 years 45.52% female	Spinal anaesthesia with or without FNb Intra-operative infiltration of 200–400 mg bupivacaine, 4–10 mg morphine sulphate 300 μg epinephrine, 40 mg methylprednisolone acetate, 75 mg cefuroxime and 22 ml saline. Total volume approximately 33 ml.	3 days and to discharge. 6 months for infection, fracture and re-operation. Pain at rest and ambulation, readiness for discharge. 1 (1:0) lost to all follow up, 6 (4:2) lost to readiness for discharge fail up. Unclear (blinding of outcome assessment)				
[Spreng et al. no iv injection 2010][48] Norway 2007–2009	TKR, unilateral, non-cemented, no patella resurfacing, age >17 years, ASA I-II. N = 68 (35:34) 67/66 years 61.67% female	Spinal. Propofol if indicated. PCA morphine 150 ml saline solution containing 150 mg ropivacaine, 0.5 mg epinephrine, 30 mg ketorolac and 5 mg morphine infiltrated during surgery. Knee injected through catheter with ropivacaine and ketorolac solution after 22–24 hours Intravenous injection with saline at 22–24 hours	48 hours epidural analgesia as soon as spinal started to wear off No wound infiltration during surgery. No injections through sham catheter. No sham epidural				
[Spreng et al. no iv injection 2010][48] Norway 2007–2009	TKR, unilateral, non-cemented, no patella resurfacing, age >17 years, ASA I-II. N = 68 (34:34) 67/66 years 61.67% female	Spinal. Propofol if indicated. PCA morphine 150 ml saline solution containing 150 mg ropivacaine, 0.5 mg epinephrine, 30 mg ketorolac and 5 mg morphine infiltrated during surgery. Knee injected through catheter with ropivacaine and ketorolac solution after 22–24 hours Intravenous injection with saline at 22–24 hours	72 hours and to discharge VAS at rest and during knee flexion, morphine consumption, functional recovery, length of stay, satisfaction, mobilisation including walking distance, adverse events 2 (1:1) lost to follow up Low risk of bias				
Study	Country	Time Frame	Type of Surgery	Procedure Description	Outcome Measures	Adverse Events	Risk of Bias
-------	---------	------------	----------------	----------------------	-----------------	---------------	-------------
Spreng et al. with iv injection	Norway	2007–2009	TKR, unilateral, non-cemented, no patella resurfacing, age >17 years, ASA I–III. N = 68 (34:34) 67.66 years 61.67% female	Spinal anaesthesia, propofol if indicated, PCA morphine 150 ml saline solution containing 150 mg ropivacaine and 0.5 mg epinephrine infiltrated during surgery. Also intravenous injection of 1 ml ketorolac (30 mg/ml) and 5 ml morphine (1 mg/ml). Knee injected with saline at 22–24 h (catheter). Intravenous injection with ketorolac at 22–24 h.	48 hours of epidural analgesia as soon as spinal anaesthetic started to wear off. No wound infiltration during surgery. No injections through sham catheter.	2 (1:1) lost to follow up. Low risk of bias.	
Thorsell et al. 2010	Sweden	Not specified	TKR, OA or RA N = 85 (46:39) 69.72 years (followed up) 81.73% female (followed up)	Not specified, probable PCA Spinal anaesthesia 156 ml solution with 300 mg ropivacaine, 0.5 mg adrenaline and 30 mg ketorolac infiltrated during surgery. Further infiltrate through catheter intra-articularly on post-operative day 1.	Spinal or epidural analgesia. No placebo infiltration reported. Post-operative pain relief with ropivacaine infusion through epidural catheter.	21 (13:8) patients lost to follow up. Possible bias (large uneven losses to follow up, group allocation by date of birth).	
Toftdahl et al. 2007	Denmark	2005–2006	TKR, OA with planned spinal anaesthesia 77 (40:37) 70.72 years 63.60% female	Spinal and after surgery immediate release oxycodone and intravenous morphine if required 152 ml solution containing 300 mg ropivacaine, 30 mg ketorolac and 0.5 mg epinephrine infiltrated during surgery. Further infiltrate through catheter intra-articularly on day of surgery and post-operative day 1.	Femoral nerve block prior to spinal anaesthesia. No placebo infiltration. Post-surgical continuous femoral nerve block.	Unclear (blinding of outcome assessment).	
Vendittoli et al. 2006	Canada	2003–2004	TKR, 95.2% OA N = 42 (22:20) Ages not specified 73.70% female	Spinal anaesthesia, PCA morphine 160 ml solution containing in total 400 mg ropivacaine, 30 mg ketorolac and 0.5 ml adrenaline (1:1000) infiltrated during surgery. Infiltrate through catheter intra-articularly on day 1.	No placebo infiltration.	5 days and to discharge VAS pain at rest and during physiotherapy exercise. PCA morphine consumption, functional recovery, side effects. No losses to follow up. Low risk of bias.	
Zhang et al. 2007	China	2006–2007	TKR, unilateral N = 60 (30:30) Overall 68 years 83.80% female	PCA morphine 60 ml solution containing 0.25% bupivacaine, epinephrine (1:200,000) and 10 mg morphine infiltrated during surgery	No placebo injection.	72 hours VAS pain at rest and activity. Functional recovery. No losses to follow up described. Unclear (blinding of outcome assessment).	

Notes:
- TKR: total knee replacement, THR: total hip replacement, OA: osteoarthritis, RA: rheumatoid arthritis, PCA: patient controlled analgesia, FNB: Femoral Nerve Block, VAS: visual analogue scale, NRS: numerical response scale, ROM: range of motion, WOMAC: Western Ontario and McMaster Universities Arthritis Index.
Table 3 Meta-analyses of pain and length of hospital stay by anaesthetic regimen compared with controls using a random effects model

TOTAL HIP REPLACEMENT STUDIES	N	Measure	Pooled effect size	Confidence Interval	P-value	I² (%)	τ²
(A + B) Any wound infiltration analgesia + usual anaesthesia vs Usual anaesthesia							
Pain at rest at 24 h	12	SMD	−0.605	(−1.051, −0.160)	0.0078	89	0.541
Pain during activity at 24 h	9	SMD	−0.848	(−1.450, −0.246)	0.0058	92	0.765
Pain at rest at 48 h	11	SMD	−0.285	(−0.520, −0.050)	0.018	58	0.09
Pain during activity at 48 h	8	SMD	−0.432	(−0.776, −0.089)	0.014	71	0.171
Length of hospital stay	9	MD	−0.829	(−1.540, −0.118)	0.022	84	0.866
(A) Wound infiltration analgesia + usual analgesia vs Usual anaesthesia							
Pain at rest 24 h post-op	7	SMD	−0.633	(−1.208, −0.059)	0.031	90	0.529
Pain during activity 24 h post-op	4	SMD	−0.241	(−0.637, 0.155)	0.25	68	0.11
Pain at rest 48 h post-op	6	SMD	−0.134	(−0.348, 0.080)	0.22	19	0.14
Pain during activity 48 h post-op	3	SMD	−0.225	(−0.559, 0.109)	0.19	35	0.03
Length of Hospital Stay	5	MD	−0.257	(−0.622, 0.108)	0.17	14	0.029
(B) Wound infiltration analgesia + post closure analgesia + usual anaesthesia vs Usual anaesthesia							
Pain at rest 24 h post-op	5	SMD	−0.572	(−1.383, 0.240)	0.17	90	0.767
Pain during activity 24 h post-op	5	SMD	−1.378	(−2.499, −0.257)	0.016	94	1.525
Pain at rest 48 h post-op	5	SMD	−0.489	(−0.963, −0.015)	0.043	73	0.209
Pain during activity 48 h post-op	5	SMD	−0.599	(−1.158, −0.040)	0.036	80	0.319
Length of Hospital Stay	4	MD	−1.117	(−2.474, 0.239)	0.11	88	1.621
TOTAL KNEE REPLACEMENT STUDIES	N	Measure	Pooled effect size	Confidence Interval	P-value	I² (%)	τ²
(A + B) Any wound infiltration analgesia + usual anaesthesia vs Usual anaesthesia							
Pain at rest at 24 h	12	SMD	−0.398	(−0.576, −0.219)	p < 0.001	32	0.032
Pain during activity at 24 h	12	SMD	−0.453	(−0.671, −0.235)	p < 0.001	54	0.078
Pain at rest at 48 h	12	SMD	−0.325	(−0.546, −0.103)	0.0041	56	0.084
Pain during activity at 48 h	11	SMD	−0.273	(−0.500, −0.046)	0.018	56	0.081
Length of hospital stay	8	MD	−0.866	(−1.622, −0.109)	0.025	77	0.805
(A) Wound infiltration analgesia with no additional post closure analgesia + usual anaesthesia vs Usual anaesthesia							
Pain at rest 24 h post-op	6	SMD	−0.248	(−0.452, −0.044)	0.017	14	0.009
Pain during activity 24 h post-op	6	SMD	−0.283	(−0.470, −0.096)	0.0031	0	0
Pain at rest 48 h post-op	6	SMD	−0.155	(−0.458, 0.148)	0.32	61	0.086
Pain during activity 48 h post-op	6	SMD	−0.077	(−0.263, 0.110)	0.42	0	0
Length of Hospital Stay	1	MD	0.092	(−0.890, 1.073)	0.85	100	p < 0.001
(B) Wound infiltration analgesia + post wound closure analgesia + usual anaesthesia vs Usual anaesthesia							
Pain at rest 24 h post-op	6	SMD	−0.587	(−0.829, −0.346)	p < 0.001	9	0.008
Pain during activity 24 h post-op	6	SMD	−0.693	(−1.152, −0.234)	0.0031	74	0.24
Pain at rest 48 h post-op	6	SMD	−0.52	(−0.778, −0.262)	p < 0.001	21	0.022
Pain during activity 48 h post-op	5	SMD	−0.594	(−0.997, −0.191)	0.0039	61	0.128
Length of Hospital Stay	7	MD	−1.023	(−1.822, −0.224)	0.012	76	0.761
(C) Wound infiltration analgesia + post wound closure analgesia + usual anaesthesia vs Femoral nerve block + usual anaesthesia							
Pain at rest 24 h post-op	3	SMD	0.253	(−0.514, 1.021)	0.52	81	0.37
Pain during activity 24 h post-op	3	SMD	0	(−0.317, 0.317)	1	0	0
Pain at rest 48 h post-op	2	SMD	0.254	(−0.429, 0.937)	0.47	67	0.166
Pain during activity 48 h post-op	2	SMD	−0.073	(−0.446, 0.299)	0.7	0	0
Length of Hospital Stay	2	MD	0.07	(−0.838, 0.978)	0.88	0	0
infiltration group. In a study where control patients received additional intrathecal morphine, there was no difference in pain outcomes at any time point [37].

Heterogeneity measured by the I² and τ² statistics was high, and separating the analysis for A and B groups did not appear to reduce this heterogeneity. Restricting the analysis to studies with low risk of bias gave a marginally smaller estimate of reduction in pain at 24 hours at rest by an average of SMD −0.49 (95% CI −0.89, −0.09; p = 0.017), but during activity average pain reduction

N: Number of studies in meta-analysis. Two studies (Essving 2011, Parvataneni 2007 hip and knee) reported mean pain scores for the first 48 hours. These data were duplicated for the 24 and 48 hour outcomes. One study (Andersen LJ, 2007) reported WOMAC pain scores, a composite measure of pain taken at rest and during activity. These data were duplicated for rest and during activity outcomes.

Table 3 Meta-analyses of pain and length of hospital stay by anaesthetic regimen compared with controls using a random effects model (Continued)

(D) Wound infiltration analgesia + Femoral nerve block + usual analgesia vs Femoral nerve block + usual anaesthesia

Pain at rest 24 h post-op	Pain during activity 24 h post-op	Pain at rest 48 h post-op	Pain during activity 48 h post-op	Length of Hospital Stay	
SMD	(95% CI)	M	0.19	44	0.046
3	SMD	−0.241	(−0.604, 0.122)		
0	M	0.19			
1	SMD	−0.18	(−0.571, 0.211)		
0	M	0.37			
1	SMD	0.094	(−0.296, 0.485)		
0	M	0.64			
1	M	1.52	(0.054, 2.986)		
0	M	0.042			

(E) Wound infiltration analgesia + usual anaesthesia vs Femoral nerve block + usual anaesthesia

Pain at rest 24 h post-op	Pain during activity 24 h post-op	Pain at rest 48 h post-op	Pain during activity 48 h post-op	Length of Hospital Stay	
SMD	(95% CI)	M	0.069	100	0.00
3	SMD	−0.076	(−0.632, 0.480)		
0.19					
2	SMD	0.056	(−0.300, 0.412)		
0.76					
2	SMD	−0.202	(−1.034, 0.631)		
0.63					
2	M	−0.069	(−0.634, 0.497)		
0.81					

NOTE: Weights are from random effects analysis

48 hours post surgery

Figure 3 Total hip replacement: pain at rest and during activity by local anaesthetic infiltration grouping.
Opioid consumption
In all 11 studies reporting an outcome, opioid consumption was reduced in patients receiving local anaesthetic infiltration compared with controls [10,16,27,30-37]. This difference ranged from 12 to 92%. There was no suggestion of different effects in groups with or without additional analgesia through a catheter or injection.

In the studies where control patients received epidural or intrathecal analgesia, patients receiving local anaesthetic infiltration consumed 20% and 12% less morphine, respectively.

Mobilisation
Several different measures of mobilisation were reported. In three studies patients receiving local anaesthetic infiltration with no additional post-operative component achieved a straight leg raise earlier than control patients [28,29,32]. More patients were able to walk during the first post-operative day in two studies where additional post-operative analgesia was provided through a catheter [16,37]. In one study with no additional analgesia, with the exception of those with adverse events, all patients were mobilised on the first post-operative day [35]. However, in patients receiving local anaesthetic infiltration, walking speed over six metres at a two-day functional assessment was improved.

In one study, 35% of patients receiving local anaesthetic infiltration were able to walk after 8 hours compared with 87% of control patients receiving an epidural infusion. In the study where control patients received intrathecal morphine, 33% of these patients could walk further than 5 metres on the first post-operative day compared with 71% of patients receiving local anaesthetic infiltration.

Length of hospital stay
As shown in Table 3 and Figure 4, patients receiving local anaesthetic infiltration spent an average 0.83 fewer days (95% CI 0.12, 1.54 days; p = 0.022) in hospital compared with controls. Benefit was largely driven by interventions with additional analgesia through a catheter or injection (B comparisons). Heterogeneity across studies was high (I² = 84%), mainly in studies with additional post-operative analgesia.

When the comparison group received an epidural infusion [16], patients with local anaesthetic infiltration had on average a two day shorter hospital stay. In the
study where the comparison group received intrathecal morphine [37], there was no clear difference in discharge times.

Complications
The Peto OR for a major complication in patients with local anaesthetic infiltration compared with controls was 0.30 (95% CI 0.05, 1.77; p = 0.18), but this is weak evidence, based on five major complications in 896 patients. Five deep infections were reported, four in local anaesthetic infiltration patients and one in controls, Peto OR 3.47 (95% CI 0.58, 20.81; p = 0.17). Four infections occurred in the 218 patients who received post-closure delivery of infiltrate through a catheter.

The incidence of vomiting was reduced in patients receiving local anaesthetic infiltration in five studies with 309 patients with data, Peto OR 0.46 (95% CI 0.27, 0.80; p = 0.006).

Long-term outcomes
Five studies reported long-term outcomes. Andersen and colleagues reported a trend for improved Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain scores at six weeks in local anaesthetic infiltration patients compared with controls [27]. At eight week follow up, Rikalainen-Salmi and colleagues reported no differences in mobilisation, intensity or duration of pain [37]. Parvataneni and colleagues reported that VAS pain scores were “comparable between groups” at 3 months [28]. Similarly, Aguirre and colleagues reported no difference in analgesic consumption or pain during normal daily activities between groups at 3 months [34]. Busch and colleagues reported a trend for improved WOMAC score at two years in local anaesthetic infiltration patients compared with controls [30].

Total knee replacement
Overall there were 23 studies including 1,439 patients with TKR [18,28,38–56]. Study characteristics and our overall risk of bias assessment are summarised in Table 2. The mean number of patients randomised was 63 (range 32–101). We assessed that 17 studies were at low risk of bias and that five studies had unclear risk of bias based on uncertainty about blinding of outcome assessments. One study was assessed to be at high risk of bias due to a large uneven loss to follow up between randomised groups.

Pain
As shown in Table 3 and Figure 5, there was strong evidence that on average across 12 studies [39–42,44,46–48,51,52], patients receiving local anaesthetic infiltration (A + B studies) reported lower pain at rest compared with controls at 24 and 48 hours. For example, pain at rest at 24 hours and during activity at 48 hours was reduced by SMD −0.40 (95% CI −0.58, −0.22; p < 0.001) and SMD −0.27 (95% CI −0.50, −0.05; p = 0.018), respectively. This reflected reductions in pain at rest at 24 hours by an average of 10 points (95% CI 6, 15; p < 0.001) and during activity at 48 hours by 8 points (95% CI 1.5, 15; p = 0.018) on a 100 point scale.

Heterogeneity was moderate to low. When we restricted analyses to studies assessed as low risk of bias, pain outcome estimates were slightly attenuated towards zero.

We additionally performed separate analyses according to whether additional analgesia was delivered after wound closure through a catheter or injection. In the six studies with no further analgesia (A studies) [40–42,47,52], pain at 24 hours was lower at rest by SMD −0.25 (95% CI −0.45, −0.04; p = 0.017), and during activity by SMD −0.28 (95% CI −0.47, −0.10; p = 0.003). At 48 hours, pooled effect estimates favoured local anaesthetic infiltration but there was no strong evidence that the intervention was beneficial.

In six studies with additional analgesia delivered after wound closure (B studies) [39,44,46,48,51], pain was reduced on average at 24 hours at rest by SMD −0.59 (95% CI −0.83, −0.35; p < 0.001) and during activity by SMD −0.69 (95% CI −1.15, −0.23; p = 0.003). At 48 hours, pain was reduced at rest by SMD −0.52 (95% CI −0.78, −0.26; p < 0.001) and during activity by SMD −0.59 (95% CI −1.00, −0.19; p = 0.004).

In six studies comparing local anaesthetic infiltration with or without additional post-closure analgesia against femoral nerve block, there was no evidence for improvement in pain at any time point [18,28,45,50,55,56]. In three studies where both randomised groups received a femoral nerve block (D studies) [43,53,54], there was no evidence for added benefit of local anaesthetic infiltration for pain outcomes.

In eight comparisons between local anaesthetic infiltration with controls [38,39,44,46,48,49,51], additional ketorolac was included in the wound infiltrate. In seven comparisons with data [38,39,44,46,48,49,51], there was strong evidence that patients receiving additional analgesia in the infiltrate on average had lower pain compared with controls. For example, pain was reduced on average at rest at 24 hours by SMD −0.68 (95% CI −0.94, −0.42; p < 0.001) and during activity at 48 hours by SMD −0.59 (95% CI −1.01, −0.17; p = 0.006), equivalent to a reduction of 17 and 30 points respectively on a 100 point scale.

In four studies, control patients received either an epidural infusion [44,48,49] or intrathecal morphine [51]. Results of all studies supported a reduction in pain for patients receiving local anaesthetic infiltration compared with epidural or intrathecal morphine.
Opioid consumption
In all four studies reporting opioid consumption, this was reduced by 35–40% in patients receiving wound infiltration with no additional post-closure analgesia [38,42,47,52], and by 32–52% in three studies with additional post-closure analgesia, compared with controls [39,46,51].

Figure 5 Total knee replacement: pain at rest and during activity by local anaesthetic infiltration grouping.
In six studies where the control group or both groups received femoral nerve block, there was little difference in opioid consumption between randomised groups [18,28,43,45,50,53]. In four studies where patients receiving wound infiltration with further post-closure analgesia were compared with patients receiving epidural anaesthesia, there was no consistent difference between groups [44,48,49].

Mobilisation
Nineteen studies reported a mobilisation outcome. In four studies, patients receiving local anaesthetic infiltration had reduced time to achieve a straight leg raise by an estimated 44–50% [42,47,52] or were more likely to achieve a straight leg raise on the first post-operative day compared with control patients [28]. In two studies with femoral nerve block given to all patients, more patients receiving local anaesthetic infiltration were able to achieve a straight leg raise during the first post-operative day [43,53].

In four out of five studies, patients receiving local anaesthetic infiltration achieved better knee flexion [39,40,47,54]. In four studies [44,46,51,55], ambulation was part of discharge readiness criteria. These criteria were met earlier in local anaesthetic infiltration patients in three studies [44,46,51], but were similar in one study where control patients received a femoral nerve block [55].

Improvements to diverse walking goals were reported in patients receiving local anaesthetic infiltration in three studies where some or all of the comparison group patients received epidural analgesia [48,49]. When the comparison group or all patients received femoral nerve block, walking goals were achieved earlier after local anaesthetic infiltration in one study [18], with trends for benefit in two studies [43,45].

Length of hospital stay
Data on length of hospital stay were available for 8 studies comparing local anaesthetic infiltration with controls [38,39,44,46,48,49,51], of which seven had a post-closure analgesia component. As shown in Table 3 and Figure 4, length of hospital stay was reduced in patients receiving local anaesthetic infiltration and additional post-closure delivery (B studies) by 1.0 day on average (95% CI 0.2, 1.8 days; p = 0.012) compared with controls. In the one (A) study with no post-closure analgesia component there was no difference in length of hospital stay.

In three studies where the comparison group received femoral nerve block [18,45,55], there was no suggestion of a difference in length of stay. In one study in which all randomised patients received a femoral nerve block, the length of hospital stay was about 1.5 days shorter in the control patients who also received a sciatic nerve block [54].

In four studies where the control group received epidural analgesia [44,48,49], length of hospital stay was reduced in patients receiving local anaesthetic infiltration with the exception of one study in which the authors reported shorter time to fulfilment of discharge criteria [44].

Complications
Based on 11 events, the Peto OR for a major complication was 1.17 (95% CI 0.35, 3.86; p = 0.80) in patients receiving local anaesthetic infiltration compared with controls. There were two deep infections in intervention patients [18,44], and one in control groups [48], Peto OR 1.85 (95% CI 0.19, 17.83; p = 0.59). Two infections occurred in the 287 patients who received post-closure delivery of infiltrate through a catheter.

Excluding one intervention with additional morphine [40], there was evidence that the incidence of vomiting was lower in local anaesthetic infiltration patients compared with controls in eight studies with 548 patients [40,42,46-48,51,52], Peto OR 0.56 (95% CI 0.39, 0.80; p = 0.002).

Long-term outcomes
Five studies reported outcomes measured at six weeks [38,45], or three months [28,46,51]. Busch and colleagues showed a trend for improved pain at 6 weeks favouring the intervention group [38]. Parvataneni and colleagues reported comparable pain scores between groups at 3 months [28]. In the studies of Essving and colleagues, there were no differences between median Oxford Knee Scores at 3 months [46,51].

Carl and colleagues reported poorer WOMAC scores after 6 weeks in patients receiving local anaesthetic infiltration compared with the control group who received femoral nerve block [45].

Discussion
Our systematic review and meta-analyses represent a comprehensive overview of evaluations of the effectiveness of peri-operative local anaesthetic infiltration in THR and TKR. Systematic reviews allow for a more objective appraisal than traditional narrative reviews [57], which are often biased in their selection of studies and thus may be unreliable in their recommendations of interventions [58]. Extensive efforts to acquire information from authors on unpublished outcomes and variance data allowed us to apply methods for meta-analyses of continuous and skewed outcomes and to produce more robust results for some outcomes than could be achieved with a purely narrative synthesis.

In conducting this systematic review we recognised the problems that can arise when small studies are included in meta-analyses [59]. In this review it is noteworthy that 28 out of 35 studies (80%) reported a power...
calculation. Review of studies with data largely collected in highly controlled conditions in the peri-operative and early post-operative period benefitted from low losses to follow up and more complete data. With the exception of one study where the authors acknowledged uneven losses to follow up due to inadequate protocols, the main risk of bias arose from uncertainty about blind outcome assessment. As most studies reported VAS pain and other self-reported outcomes, we believe that the evidence base on short-term outcomes is of reasonably good quality.

Pain after THR was reduced for patients receiving local anaesthetic infiltration, with patients experiencing less pain at rest at 24 hours and during activity at 48 hours equivalent to about 10 and 12 points on a 100 point pain intensity scale. In musculoskeletal settings, VAS pain changes of 11 [60], and 14 [61], are considered clinically significant [62]. Patients receiving local anaesthetic infiltration had lower pain levels after their THR, used less opioid medication and had a reduced incidence of vomiting and nausea. This may explain the early mobilisation and earlier discharge of patients who received local anaesthetic infiltration, irrespective of alternative pain management strategies. Opioid medication is a key strategy in the management of post-surgical pain but its use can delay mobilisation and rehabilitation [63].

Pain after TKR was also reduced for patients receiving local anaesthetic infiltration compared with controls, with less pain at rest at 24 hours and after 48 hours during activity, equivalent to reductions of about 10 and 8 points on a 100 point pain intensity scale. Opioid consumption was reduced compared with untreated control patients and there was a general observation of early mobilisation, reduced vomiting and nausea, and early hospital discharge. Inclusion of the non-steroidal anti-inflammatory agent ketoralac in the infiltrate seemed to enhance post-operative pain relief.

When compared with alternative regimens, results were not so clear. Pain levels after TKR were broadly similar when femoral nerve block was included in the general analgesia regimen or as a comparator. Likewise, opioid consumption was similar. There was some suggestion of benefit for earlier mobilisation, but length of hospital stay was not reduced in patients receiving local anaesthetic infiltration. Femoral nerve block is a well established method of providing analgesia after TKR and is associated with reduced opioid requirement and thus fewer side effects such as nausea and vomiting. However, femoral nerve block is associated with decreased quadriceps function for a time and an increased risk of falls [64,65].

In studies in patients receiving TKR where control groups received epidural or intrathecal analgesia, benefit was observed for reduced pain in patients receiving local anaesthetic infiltration. Opioid consumption did not differ between groups but mobilisation and hospital discharge were achieved earlier in patients receiving local anaesthetic infiltration.

The improvement in pain control and shorter hospital stay was greatest for patients receiving additional analgesia through a catheter or by injection. However, we observed a small but potentially important increase in rates of serious infection, particularly in patients receiving further infiltrate through a catheter post-wound closure. Across THR and TKR studies, there were eight cases of deep infection requiring surgical debridement or revision. Six of these were in patients randomised to wound infiltration analgesia with additional analgesia through a post-surgical catheter. Indeed, all patients with deep infection had been randomised to receiving a catheter although researchers reported that catheters in control groups were not inserted into the joint capsule. The overall rate of infection in patients with THR or TKR randomised into wound infiltration analgesia studies was 0.34% and in patients receiving an active catheter the rate was 1.4%.

Few studies in patients with THR or TKR reported long-term follow up of patients and results were equivocal. Acute post-operative pain is an important risk factor for long-term pain [66,67], and deserves appropriate consideration in future studies of peri-operative pain control.

Our study has limitations. Although meta-analyses performed were enhanced by extensive contact with authors, imputation was required for some measures of variability. The skewed nature of hospital stay required transformation under assumptions of a lognormal distribution [26]. For opioid consumption and mobilization there was insufficient consistency in measures reported to conduct anything but a systematic narrative overview. We noted a range of analgesia regimens, with different studies making different comparisons, particularly for TKR. We considered it unnecessary to make indirect comparisons between regimens, since direct evidence was available for all the comparisons of interest.

A further limitation of meta-analyses in a highly active field of research such as wound infiltration analgesia is that they may become out of date quickly. Their value is emphasised, however, in a widely cited example when studies of streptokinase in acute coronary heart disease were conducted long after a critical mass of evidence had been obtained from meta-analysis showing benefit for patients [68]. Prior to submission, we updated searches in December 2013 and identified 12 new studies, three in patients with THR and nine in patients with TKR. Our results for local anaesthetic infiltration in patients receiving TKR were supported with reduced pain compared with untreated control [69-71], or similar pain
compared with epidural analgesia [71]. The results of our meta-analyses in patients receiving TKR were also supported with improved early pain control in patients receiving local anaesthetic infiltration [72]; further pain reduction with added ketorolac [73,74] but not steroid [75]; and uncertainty when compared with femoral nerve block [76-80].

Our results show that local anaesthetic infiltration is effective in reducing short-term pain after THR and TKR when compared with no anaesthetic infiltration. The effect of local anaesthetic infiltration is enhanced with the addition of post-closure analgesia, although this needs to be considered in light of the infection risks associated with catheters [81]. In TKR, there may be no added benefit to femoral nerve block. Further studies are in progress to assess long-term effectiveness of local anaesthetic infiltration [11].

Conclusions
Our systematic review and meta-analysis shows that inclusion of local anaesthetic infiltration in a multimodal anaesthesia regimen is effective in reducing short-term pain and hospital stay in patients receiving THR and TKR. Enhanced pain control was observed when additional analgesia was provided after wound closure through a catheter but benefit should be weighed against a possible infection risk. For patients with TKR, inclusion of the non-steroidal anti-inflammatory agent ketorolac in the infiltrate seemed to enhance pain relief. There was no evidence of pain control additional to that provided by femoral nerve block in patients receiving TKR. Few studies reported long-term outcomes and future research should assess whether local anaesthetic infiltration can affect the development of long-term post-surgical pain.

Additional files

Additional file 1: PRISMA checklist.
Additional file 2: Cochrane risk of bias table (✓ low risk, X risk; ~ no reason to assume bias).

Abbreviations
THR: Total hip replacement; TKR: Total knee replacement; RCT: Randomised controlled trial; SMD: Standardised mean difference; MD: Mean difference; VAS: Visual analogue scale; OR: Odds ratio; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index.

Competing interests
The authors declare that they have no competing of interests.

Authors’ contributions
ADB, EM and MP designed the study and produced the search strategy. EM and ADB performed the systematic review as second and first reviewers respectively, conducted the searches, screened abstracts and titles, assessed inclusion and exclusion criteria, produced data collection forms and extracted data, assessed study quality and contacted authors. AWS and MP advised on inclusion/ exclusion criteria and subgroup analyses. HEJ provided statistical guidance. EM and HEJ performed meta-analyses of continuous and skewed outcomes (pain and length of stay), KTE and ADB collected complications data and performed meta-analyses of complications. EM, ADB and HEJ drafted the article with critical revisions from AWB, MP and KTE. All authors read and approved the final manuscript.

Acknowledgements
We contacted study authors and are grateful for the additional information provided by: Constant Busch, Damien Bennett, Damien Byrne, Gary Minto, In Jun Koh, Karen Toftdahl Bjenholt, Martin Thorsell, Michael Whitehouse, Per Essing and Per Wretenberg. We further acknowledge Peiliang Fu and Yi Chen/Yun-Li Zhu for clarifying previously reported data. We would like to thank Joanna Thorn for helpful edits.

Funding
Role of the funding source
The sponsor of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication. This article outlines independent research commissioned by the National Institute for Health Research (NIHR) in England under its Programme Grants for Applied Research funding scheme (RP-PG-0407-10070). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

Author details
1School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK. 2Musculoskeletal Research Unit, School of Clinical Sciences, University of Bristol, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5SN, UK. 3North Bristol Healthcare Trust, Southmead Hospital, Westbury-on-Trym, Bristol BS10 5SN, UK.

Received: 21 March 2014 Accepted: 30 June 2014
Published: 5 July 2014

References
1. National Joint Registry for England and Wales: 10th Annual Report. Hemel Hempstead: NJR; 2013.
2. Centers for Disease Control and Prevention: Number of all-listed procedures for discharges from short-stay hospitals, by procedure category and age: United States. In CDC/NCHS National Hospital Discharge Survey, Atlanta, GA: Centers for Disease Control and Prevention; 2010.
3. Wylde V, Rooker J, Halliday L, Blom A: Acute postoperative pain at rest after hip and knee arthroplasty: severity, sensory qualities and impact on sleep. Orthop Traumatol Surg Res 2011, 97:139–144.
4. Beswick AD, Wylde V, Goldberg-Hiller R, Blom A, Dieppe P: What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open 2012, 2:e000435.
5. Chan EY, Blyth FM, Nairn L, Fransen M: Acute postoperative pain following hospital discharge after total knee arthroplasty. Osteoarthritis Cartilage 2013, 21:1257–1265.
6. Jin F, Chung F: Multimodal analgesia for postoperative pain control. J Clin Anesth 2001, 13:524–539.
7. Capdevila X, Barthelet Y, Biboulet P, Ryckwaert Y, Rubinovitch J, d’Athis F: Effects of perioperative analgesic technique on the surgical outcome and duration of rehabilitation after major knee surgery. Anesthesiology 1999, 91:8–15.
8. Choi P, Bhandan M, Scott J, Douketis James D: Epidural analgesia for pain relief following hip or knee replacement. Cochrane Database Syst Rev 2003, 3:CD003071.
9. Liu SS, Richman JM, Thrilby MC, Wu CL: Efficacy of continuous wound catheters delivering local anesthetic for postoperative analgesia: a quantitative and qualitative systematic review of randomized controlled trials. J Am Coll Surg 2006, 203:914–932.
10. Bianconi M, Ferraro L, Traina GC, Zanoli G, Antonelli T, Guberti A, Ricci R, Massari L: Pharmacokinetics and efficacy of ropivacaine continuous wound instillation after joint replacement surgery. Br J Anaesth 2003, 91:830–835.
11. Wykle V, Gooberman-Hill R, Horwood J, Beswick A, Noble S, Brookes S, Smith AJ, Pyke M, Dieppe P, Blom AW: The effect of local anesthetic wound infiltration on chronic pain after lower limb joint replacement: a protocol for a double-blind randomised controlled trial. BMC Musculoskeletal Disorders 2011, 12:53.

12. Ventham NT, Hughes M, O'Neill S, Johns N, Brady RW, Wigmore SJ: Systematic review and meta-analysis of continuous local anesthetic wound infiltration versus epidural analgesia for postoperative pain following abdominal surgery. Br J Surg 2013, 100:1280–1289.

13. Kjaergaard M, Moeniche S, Olsen KS: Wound infiltration with local anesthetics for post-operative pain relief in lumbar spine surgery: a systematic review. Acta Anaesth Scand 2012, 56:282–290.

14. Higgins JP, Green S: Cochrane Handbook for Systematic Reviews of Interventions, Version 5.0.2. The Cochrane Collaboration and John Wiley & Sons: Chichester, West Sussex; 2008.

15. Moher D, Liberati A, Tetzlaff J, Altman DG: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009, 62:1006–1012.

16. Andrensen KV, Pfefl-Jensen M, Haraldsted V, Soballe K: Reduced hospital stay and narcotic consumption, and improved mobilization with local and intraarticular infiltration after hip arthroplasty: a randomized clinical trial of an intraarticular technique versus epidural infusion in 80 patients. Acta Orthop 2007, 78:180–186.

17. Kehlet H, Liu SS: Continuous local anesthetic wound infusion to improve postoperative outcome - Back to the periphery? Anaesthesiology 2007, 107:369–374.

18. Toftdahl K, Nikolajsen L, Haraldsted V, Madsen F, Tonnesen EK, Soballe K: Comparison of peri- and intraarticular analgesia with femoral nerve block after total knee arthroplasty: a randomized clinical trial. Acta Orthop 2007, 78:172–179.

19. Kerr DR, Kohan L: Local infiltration analgesia: a technique for the control of acute postoperative pain following knee and hip surgery: a case study of 325 patients. Acta Orthop 2008, 79:174–183.

20. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, Carpenter J, Rücker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peters J, Macaskill P, Schwarzer G, Duval S, Altman DG, Moher D, Higgins JPT: Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343:d4002.

21. Walter SD, Yao X: Effect sizes can be calculated for studies reporting ranges for outcome variables in systematic reviews. J Clin Epidemiol 2007, 60:849–852.

22. Hedges LV, Olkin I: Statistical Methods for Meta-Analysis. San Diego: Academic Press; 1985.

23. Scholten RJPM, de Beurs E, Bouter LM: From effect size into number needed: a comparison of the performance of meta-analytical methods combining results reported on log-transformed or raw scales. J Clin Epidemiol 2007, 60:139–143.

24. Higgins JP, White IR, Anzures-Cabrera J, Schwartz G, Duval S, Altman DG, Moher D, Higgins JPT: Meta-analysis of skewed data: a comparison of the performance of meta-analytical methods. Stat Med 2007, 26:653–77.

25. Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med 2002, 21:1539–1558.

26. Andersen KV, Bak M, Christensen BV, Harazuk J, Pedersen NA, Soballe K: Efficacy of periarticular multimodal drug infiltration analgesia versus intrathecal morphine for postoperative pain relief after total knee arthroplasty: a prospective, randomized, double blinded, placebo-controlled study comparing continuous wound infusion with morphine patient-controlled analgesia. Anesth Analg 2012, 114:456–461.

27. Andersen LJ, Poulsen T, Krogh B, Nielsen T: Efficacy of periarticular multimodal drug infiltration analgesia versus continuous wound infusion in total knee arthroplasty. Acta Orthop 2011, 82:537–41.

28. Busch CA, Whitehouse MR, Shore BJ, MacDonald SJ, McCalden RW, Bourne RB: The efficacy of periarticular multimodal drug infiltration in total hip arthroplasty. Clin Orthop Relat Res 2010, 468:2152–2159.

29. Lu ZD, Li P: Analgesic effect of periarticular Ropivacaine infiltration and cyclooxygenase-2 Inhibitor following total hip arthroplasty. J Clin Rehab Tissue Eng Res 2010, 14:7991–7994.
management after total knee arthroplasty: a randomized controlled trial. Anesth Analg 2011, 113:926–933.

52. Chen Y, Zhang Y, Zhu YL, Fu P: Efficacy and safety of an intra-operative articular magnesium/ropivacaine injection for pain control following total knee arthroplasty. J Int Med Res 2012, 40:2032–2040.

53. Koh U, Kang YG, Chang CB, Do SH, Seong SC, Kim TK: Does periarticular injection have additional pain relieving effects during contemporary multimodal pain control protocols for TKA? A randomised, controlled study. Knee 2012, 19:253–259.

54. Mahadevan D, Walter RP, Minto G, Gale TC, McAllen CJ, Oldman M: Combined femoral and sciatic nerve block vs combined femoral and perineural infiltration in total knee arthroplasty. A randomised controlled trial. J Arthroplasty 2012, 27:1806–1811.

55. Meffah M, Wong AC, Nawabi DH, Yun RJ, Ranawat AS, Ranawat CS: Pain management after total knee arthroplasty using a multimodal approach. Orthopedics 2012, 35:e660–e664.

56. Ng FY, Ng JF, Chiu KY, Yan CH, Chan CW: Multimodal periarticular injection vs continuous femoral nerve block after total knee arthroplasty. A prospective, crossover, randomized clinical trial. J Arthroplasty 2012, 27:1234–1238.

57. Egger M, Smith GD, O’Koue K: Introduction: rationale, potentials, and promise of systematic reviews. In: Systematic Reviews in Health Care. London: BMJ Publishing Group; 2008:1–19.

58. Schmidt LM, Gotzsche PC: How important differences (MCID) and patient acceptable symptomatic state (PASS) are in orthopaedics. J Arthroplasty 2012, 27:1234–1238.

59. Tang R, Evans H, Chaput A, Kim C: Power of statistical tests and prevalence in the literature. J Clin Epidemiol 2000, 53:1119–1129.

60. Wolfe F, Michaud K: Assessment of pain in rheumatoid arthritis: minimal clinically significant difference, predictors, and the effect of anti-tumor necrosis factor therapy. J Rheumatol 2007, 34:1674–1683.

61. Taitjiri RD, Detaoich P, Pouznick CA, Powel RP: Minimal clinically important differences (MCID) and patient acceptable symptomatic state (PASS) for visual analog scales (VAS) measuring pain in patients treated for rotator cuff disease. J Shoulder Elbow Surg 2009, 18:927–932.

62. Hawker GA, Mian S, Kendzerska T, French M: Measures of adult pain: Visual Analog Scale for Pain (VAPain). Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Inter mittent and Constant Osteoarthrisis Pain (ICOAP). Arthritis Care Res 2011, 63:5240–5252.

63. Tang R, Evans H, Chaput A, Kim C: Multimodal analgesia for hip arthroplasty. Orthop Clin North Am 2009, 40:377–387.

64. Auroy Y, Benhamou C, Bargues L, Scoffey C, Falsaud B, Mercier FJ, Bouaziz H, Samir K: Major complications of regional anesthesia in France: the SOS regional anesthesia hotline service. Anesthesiology 2002, 97:1274–1280.

65. Sharma S, Iorio R, Specht L, Davies-Lepie S, Healy W: Complications of femoral nerve block for total knee arthroplasty. Clin Orthop Relat Res 2010, 468:135–140.

66. Perkins FM, Kehlet H: Chronic pain as an outcome of surgery. A review of predictive factors. Anesthesiology 2002, 96:1123–1133.

67. Macrae WA: Chronic post-surgical pain: 10 years on. Br J Anaesth 2008, 101:77–86.

68. Lau J, Antman EM, Jimenez-Silva J, Kupelnick B, Mosteller F, Chalmers TC: Cumulative meta-analysis of therapeutic trials for myocardial infarction. New Engl J Med 1992, 327:248–254.

69. Kuchta K, Granath B, Ljunggren A, Magnuson A, Lundin A, Gupta A: Efficacy of multimodal perioperative analgesia protocol with periarticular medication injection in total knee arthroplasty: a randomized, double-blinded study. J Arthroplasty 2013, 28:1274–1277.

70. Yue DR, Wang BL, Liu KP, Guo WS: Efficacy of multimodal cocktail periarticular injection with or without steroid in total knee arthroplasty. Chin Med J 2013, 126:3851–3855.

71. Chirachoti T, Lungnanteetap A, Rakokietisak M: Periarticular infiltration of 0.25% bupivacaine on top of femoral nerve block and intraarticular morphine improves quality of pain control after total knee arthroplasty: a randomized double-blind placebo controlled clinical trial. J Med Assoc Thai 2012, 95:1536–1542.

72. Ashraf A, Raut W, Canty SJ, McLauchlan GJ: Pain control after primary total knee replacement. A prospective randomised controlled trial of total infiltration versus single shot femoral nerve block. Knee 2013, 20:324–327.

73. Andersen KV, Nikolajsen L, Haraldsted L, Vodgaard T, Obgaard A, Soballe K: Local infiltration analgesia for total knee arthroplasty: should ketorolac be added? Br J Anaesth 2013, 111:242–248.

74. Kelley TC, Adams MJ, Mulliken BD, Dalury DF: Efficacy of multimodal perioperative analgesia protocol with periarticular medication injection in total knee arthroplasty: a randomized, double-blinded study. J Arthroplasty 2013, 28:1274–1277.

75. Matsota P, Babis GC, Kostopanagiotou G: Periarticular infiltration of 0.25% bupivacaine in total knee arthroplasty: a double-blind randomized controlled trial. Clin Orthop Relat Res 2013, 126:3851–3855.

76. Chaumeron A, Audy D, Drolet P, Lavigne M, Wendtstoll PA: Periarticular infiltration in knee arthroplasty improves quadriceps function. Clin Orthop Relat Res 2013, 471:2284–2295.

77. Moghaddam M, Farahini H, Reza F, Mokarami F, Nabi R: Local infiltration analgesia: an effective method for pain relief and patient’s satisfaction after total knee arthroplasty: a randomized clinical trial. Tehran Univ Med J 2013, 71:429–436.

78. YeDeau JT, Goytuzolo EA, Padgett DE, Liu SS, Mayman DJ, Ranawat AS, Rade MC, Westrich GH: Analgesia after total knee replacement: local infiltration versus epidural combined with a femoral nerve blockade: a prospective, randomised pragmatic trial. Bone Joint J 2013, 95-B:229–235.

79. Gupta A: Wound infiltration with local anaesthetics in ambulatory surgery. Can Opin Anesthesiol 2010, 23:708–713.