1,2-N-Migration in a Gold-Catalysed Synthesis of Functionalised Indenes by the 1,1-Carboalkoxylation of Ynamides
Adcock, Holly V.; Langer, Thomas; Davies, Paul W.

DOI: 10.1002/chem.201403040
License: Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Adcock, HV, Langer, T & Davies, PW 2014, ‘1,2-N-Migration in a Gold-Catalysed Synthesis of Functionalised Indenes by the 1,1-Carboalkoxylation of Ynamides’, Chemistry: A European Journal, vol. 20, no. 24, pp. 7262-7266. https://doi.org/10.1002/chem.201403040

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Eligibility for repository: checked 15/08/2014

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
Skeletal Rearrangements

1,2-N-Migration in a Gold-Catalysed Synthesis of Functionalised Indenes by the 1,1-Carboalkoxylation of Ynamides

Holly V. Adcock,[a] Thomas Langer,[b] and Paul W. Davies*[a]

Abstract: Unique α-hemiaminal ether gold carbene intermediates were accessed by a gold-catalysed 1,1-carboalkoxylation strategy and evolved through a highly selective 1,2-N-migration. This skeletal rearrangement gave functionalised indenes, and isotopic labelling confirmed the rare C–N bond cleavage of the ynamide moiety. The effect of substituents on the migration has been explored, and a model is proposed to rationalise the observed selectivity.

π-Acid-mediated alkyne carboalkoxylations are potent transformations for the rapid assembly of substituted carbo- and heterocyclic frameworks from simple precursors under mild reaction conditions.[1–3] Attack of an oxygen nucleophile onto a metal-activated π system is followed by cationic or sigmatropic migration from oxygen to carbon. Carbon–carbon bond formation can potentially occur α- or β- to the metal, as 1,2- or 1,1-carboalkoxylation, respectively (Scheme 1). The little-explored 1,1-pathway provides a complexity increasing and synthetically enticing non-diazo route to form a metal carbene (Scheme 1, path b).[4–5] Nakamura et al.’s seminal platinum- or palladium-catalysed cycloisomerisation of o-alkynyl benzaldehyde acetals[6–8] was the only report of such processes, until very recent studies of Wang et al. on exploring catalyst control with terminal alkynes.[6]

Our interest in accessing carbenoid reactivity from ynamides led us to question whether the electronic bias of an ynamide might enforce a 1,1-carboalkoxylation pathway in systems in which the 1,2-pathway might be expected based on geometrical bias.[7] Although the use of ynamides in gold catalysis has rap-

![Scheme 1](image1)

Scheme 1. 1,2- and 1,1-carboalkoxylation pathways. Oxygen may be tethered to the alkyne through either R (resulting in external migration), or the migrating group Y (resulting in internal migration).

![Scheme 2](image2)

Scheme 2. Gold-catalysed carboalkoxylation: proposed ynamide-dictated carboalkoxylation mode.

For this study, we selected ynamides F to contrast with the 1,2-carboalkoxylation reported by Toste and co-workers using o-alkynylbenzyethers A (Scheme 2).[13] We envisaged that the electronic influence of F would divert the process down a 1,1-internal carboalkoxylation pathway by favouring a 6-endo cyclisation over the previously reported 5-exo pathway [Eq. (1) in

[a] H. V. Adcock, Dr. P. W. Davies
School of Chemistry, University of Birmingham (UK)
Fax: (+44) 121-4144403
E-mail: p.w.davies@bham.ac.uk

[b] Dr. T. Langer
AstraZeneca, Pharmaceutical Development
Silk Road Business Park, Macclesfield, SK10 2NA (UK)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201403040.

© 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
changing the silver salt (Table 1, entries 6–8). The study was continued with the preformed gold trilimidate complex, because it gave identical results to the complex formed in situ (entry 10 vs. 6). AgNTf₂ alone did not catalyse the reaction, and only degradation was observed in the presence of α-Lewis or Brønsted acids (Table 1, entries 11–14).

Indene 2a was thought to result from a 1,2-N-migration onto gold carbene I. Such processes are rare, and to the best of our knowledge, unreported in gold catalysis. Doyle and co-workers recently reported N-migration of an endocyclic hydrazide on dediazotisation of β-methylene-β-silyloxy-β-amido-α-diazoacetates with a variety of metal catalysts.[20] For compound 2a, a selective 1,2-migration of an exocyclic sulfonamide would occur from a β-methylene-β-alkoxy-β-sulfonamido quaternary centre generated in union with the gold carbene (Scheme 1, Eq. (2)). The relative migratory aptitude of different amide substituents was therefore probed further by using ynamides 1a–i (Table 2).

Sulfonylated aniline groups, including nosyl, generally worked well (Table 1, entries 1–3). N-Benzyl-substituted ynamide 1d also underwent efficient cycloisomerisation affording 2d in 72% yield (entry 4). In contrast, N-methyl-substituted ynamides were poorer substrates (entries 5 and 6); reactions of both methane- and 4-nitrobenzene sulfonamides 1e/f were slow; products 2e/f were only isolated in low yields, and similar quantities of the regioisomers 3e/f were observed. A small amount of the isomer was also seen in the reaction of N-allyl methane sulfonamide 1g, though a high yield of 2g was obtained (entry 7). The use of other gold catalysts had relatively little impact on the outcome of this reaction (entries 7–9), and no products of cyclopropanation were observed.[21] A cyclic carbamate 1h underwent the reaction cleanly with high selec-

![Scheme 2](image)

Scheme 2.[14] On fragmentation of G, vinyl gold H was predicted to form a unique gold carbene I, adjacent to a hemiaminal ether, through C–C bond formation β to the metal [Eq. (2) in Scheme 2]. From I, several outcomes could be envisaged to give functionalised indenes, of interest due to their function as core structures in many natural products[15] and pharmaceuticals,[16] as well as being useful ligands for transition metals.[17]

Our study commenced with ynamide 1a, which reacted in the presence of AuCl to give N-indenyl sulfonamide 2a as the sole product through a new skeletal rearrangement (Table 1, entry 1). No reaction was observed with PtCl₂; however, a Au⁺ complex gave a higher yield of 2a (entries 2 and 3). Cationic gold(I)–phosphine complexes proved to be more effective, with complete conversion of 1a and higher yields of 2a (entries 4–8). The use of an electron-poor phosphine ligand was beneficial to both the reaction rate and yield relative to an electron-rich phosphine (Table 1, entry 6 vs. 4 and 5). The phosphine gold chloride alone was ineffective (entry 9), and little variation was observed on

![Table 1](image)

Entry⁴	Catalyst	t [h]	Yield 1a [%]⁵	Yield 2a [%]⁵
1	AuCl	24	53	27
2	PtCl₂	>95	–	–
3	[AuCl₂][x]	24	17	63
4	PPh₃AuCl/AgNTf₂	6	–	79
5	o-biphényl(II)BuAuCl/AgNTf₂	20	>95	–
6	(p-CF₃C₆H₄)₃PAuCl/AgNTf₂	2	<89	–
7	(p-CF₃C₆H₄)₃PAuCl/AgBF₄	2	>88	–
8	(p-CF₃C₆H₄)₃PAuCl/AgOTf	6	>78	–
9	(p-CF₃C₆H₄)₃PAuCl	>95	>88	–
10	(p-CF₃C₆H₄)₃PAuNTf₂	2	>88	–
11	AgNTf₂	>95	–	–
12	HNTf₂	24	66	–
13	BF₃·OEt₂	24	31	–
14	SiO₂	24	80	–

[a] Reaction conditions: 1a (0.1 mmol, 1 equiv), catalyst (5 mol%), CH₂Cl₂, (0.1 m), time as indicated. [b] Isolated yields calculated by ¹H NMR spectroscopy against a known quantity of internal standard (1,2,4,5-tetramethylbenzene). [c] L = Picolinate. Ts = toluene-4-sulfonyl.
tivity for N-migration (entry 10). The use of a more hindered chiral benzyl substituted oxazolidinone derivative led to a complex reaction mixture alongside unreacted 1i (entry 11). The practicality of this method was demonstrated by the gram-scale synthesis of 2b, obtained after filtration to remove metal residues and then recrystallisation (entry 2).

The impact of modification at other positions on the skeletal rearrangement was then explored (Scheme 3). Electron-donating and electron-withdrawing aryl groups (2j and 2k) were well tolerated. Although complex mixtures were observed with furanyl or vinyl benzylic substituents, the ferrocene-substituted derivative 2l could be prepared as a single regioisomer in moderate yield. Methoxy substitution on the core benzene ring was well tolerated at both the 3- and the 4- positions giving single products (2m and 2n). The 4-fluoro-substituted variant required a longer reaction time (24 h) and an increased catalyst loading to achieve a good yield of 2o alongside expected small amounts of regioisomer 3o (Table 2, entry 7). Pleasingly, variation at the migrating alkoxy group was well tolerated with both O-benzyl and O-allyl substitution despite the possibility of direct external migration of an allylic or benzylic cation following initial nucleophilic attack (2p–r).\[22\]

Increasing the steric bulk around the benzylic position with naphtyl, o-tolyl and o-anisole substituents (2s–u) saw a significant reduction in regioselectivity with an N-phenyl-p-tosyl substituted ynamide. However, the analogous ynamide 1v, containing non-aromatic N-substituents gave a clean reaction, with 2v formed as a single regioisomer in high yield.

The resulting functionalised indenes were found to be sensitive to basic conditions: C-sulfonylated indene-1-amine (4) was isolated in good yield when chromatographic purification of 2c was attempted using triethylamine-treated silica gel to improve separation (Scheme 4), and could be deliberately prepared from 2c. The product of double-bond migration was instead observed when carbamate 2n was exposed to triethylamine (see the Supporting Information). Although 1a did not rearrange in the presence of triethylamine, α-alkoxy conjugated imine 5 was isolated on treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Single-crystal X-ray diffraction analysis of 2a showed the indene and nitrogen to be resonance decoupled with the N/C0 bond aligned to the enol π system accounting for the ready elimination of the sulfonyl group.\[23\]

An isotopic-labelling study was carried out to support the mechanistic hypothesis. Ynamide 1g was selected to allow isolation of both isomeric indenes, and a 13C-enriched sample was prepared from 13C-labelled benzoic acid (see the Supporting Information).
The formation of 13C-2g, in which nitrogen is connected to the 13C-enriched carbon. Additionally, the absence of cross-over products when ynamides 1c and 1q were reacted together confirmed the intramolecular nature of this reaction (Scheme 5).

The formation of indenes 2 and 3 and the generally high selectivity for N- versus O-migration can be rationalised from the gold carbene I (Scheme 6). Fast, neighbouring-group-aided 1,2-migration must proceed with planarisation of both the α-C and the non-migrating heteroatom (I→K or M). Therefore, N-migration is favoured as iminium M would result in greater steric congestion than oxonium K due to the enforced proximity of its larger substituents with the adjacent groups. Because gold carbene I is expected to show considerable carbocatonic character, nitrogen’s greater ability to stabilise positive charge would also favour 1,2-N-migration (I vs. L).$^{[1, 24]}$ As high selectivity for N-migration of N-sp2 carbamates and sulfonamides with electron-withdrawing groups was also observed, the late transition-state assessment (K vs. M) appears more accurate. This scenario can also explain why a loss in selectivity was observed with substrates such as 1e, where the smaller substituents on nitrogen allow a planar configuration to be accessed affording isomer 2$^{[23]}$. The relative spatial positioning of the amide and alkoxy groups to the adjacent metal carbene may also have an impact on the migration, though as the relative stereochemistry in I is unknown, little comment can be made at this stage.$^{[26]}$ The reduced selectivity observed with α-substituted benzene units (2s–u) might be explained by stabilising π and through-space interactions$^{[27]}$ with the N-phenyl-p-toluene sulfonamide, so raising the barrier to N-migration. The high selectivity for N-migration with N-allyl-methane sulfonamide 2v, incapable of such interactions, is in line with this hypothesis.

In conclusion, a cycloisomerisation of ynamides that features a rare C–N bond cleavage is reported. A 1,1-carboalkoxylation pathway is enforced by the electronic properties of ynamides to generate a unique α-hemiaminal ether carbene environment. Labelling studies confirmed a subsequent 1,2-N-migration with the high selectivity over 1,2-O-migration rationalised based on developing steric encumbrance. Further studies to harness the regiodetermining role of ynamides in cycloisomerisation reactions are ongoing.

Acknowledgements

The authors thank EPSRC and AstraZeneca plc for funding (studentship to H.V.A.). We thank Dr. Louise Male (University of Birmingham) for X-ray crystallography analysis. The facilities used in this research were partially supported through Birmingham Science City AM2 by Advantage West Midlands and the European Regional Development Fund.

Keywords: carbones · cycloisomerisation · gold · regioselectivity · ynamides

$^{[1]}$ Selected examples of carboalkoxylation: a) A. Fürstner, F. Stelzer, H. Szillat, J. Am. Chem. Soc. 2000, 122, 6785–6786; b) A. Fürstner, F. Stelzer, H. Szillat, J. Am. Chem. Soc. 2001, 123, 11863–11869; c) I. Nakamura, G. B. Bajracharya, Y. Mizushima, Y. Yamamoto, Angew. Chem. Int. Ed. 2002, 41, 4328–4331; d) I. Nakamura, G. B. Bajracharya, H. Wu, K. Oishi, Y. Mizushima, J. D. Gridnev, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 15433–15430; e) I. Nakamura, T. Sato, Y. Yamamoto, J. Am. Chem. Soc. 2005, 127, 15022–15023; f) A. Fürstner, P. W. Davies, J. Am. Chem. Soc. 2005, 127, 15024–15025; g) I. Nakamura, T. Sato, Y. Yamamoto, Angew. Chem. Int. Ed. 2006, 45, 4473–4475; h) A. Fürstner, E. K. Heilmann, P. W. Davies, Angew. Chem. 2007, 119, 4844–4847; Angew. Chem. Int. Ed.
[1] Selected examples of recent gold-catalysed ynamide reactions: a) S. Chem. Eur. J. 2014, 13, 12062 – 12063; b) W. Zl, J.D. Toste, J. Am. Chem. Soc. 2013, 135, 12600 – 12603.

[2] Reviews of carboalkoxylations and related processes: a) N. T. Patil, R. D. Kavathe, Adv. Heterocycl. Chem. 2010, 101, 75 – 95; b) H. V. Adcock, P. W. Davies, Synthesis 2012, 44, 3401 – 3420.

[3] Selected reviews of 1,2-carbalkoxylamination: a) S. K. Hashmi, Chem. Rev. 2007, 107, 3180 – 3211; b) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 119, 3478 – 3519; Angew. Chem. Int. Ed. 2007, 46, 3410 – 3449; c) A. Fürstner, Chem. Soc. Rev. 2009, 38, 3206 – 3221; d) H. Huang, Y. Zhou, Beilstein J. Org. Chem. 2011, 7, 897 – 936; e) A. Leyva-Pérez, A. Corma, Angew. Chem. 2012, 124, 636 – 658; Angew. Chem. Int. Ed. 2012, 51, 614 – 635.

[4] For a classification of carboalkoxylations and related reaction types, see Ref. [2b].

[5] [1,1]Carboamination reactions are harnessed in the synthesis of fused indole derivatives under tungsten or platinum catalysis: a) G. Li, X. Huang, L. Zhang, Angew. Chem. 2008, 120, 352 – 355; Angew. Chem. Int. Ed. 2008, 47, 346 – 349; j) T. Takaya, S. Udagawa, H. Kusama, N. Iwasawa, Angew. Chem. 2008, 120, 4984 – 4987; Angew. Chem. Int. Ed. 2008, 47, 4906 – 4909.

[6] C.-D. Wang, Y.-F. Hsieh, R.-S. Liu, Adv. Synth. Catal. 2014, 356, 144 – 152.

[7] a) P. W. Davies, A. Cremonesi, M. Martin, Chem. Commun. 2011, 47, 379 – 381; b) P. W. Davies, A. Cremonesi, L. Dumitrescu, Angew. Chem. 2011, 123, 9091 – 9097; Angew. Chem. Int. Ed. 2011, 50, 8931 – 8935; c) E. Chatzopoulou, P. W. Davies, Chem. Commun. 2013, 49, 8617 – 8619.

[8] Reviews of ynamide reactivity: a) G. Evanou, A. Coste, K. Jouvin, Angew. Chem. 2010, 122, 2902 – 2921; Angew. Chem. Int. Ed. 2010, 49, 2840 – 2859; b) K. A. Dekker, H. Li, A. G. Lohe, R. Hayashi, Z. Lu, Y. Zheng, R. P. Heng, Chem. Rev. 2010, 110, 5064 – 5106.

[9] Selected examples of ynamide preparation: a) Y. S. Zhang, R. P. Heng, M. R. Tracey, K. C. M. Kurzt, E. L. Vera, Org. Lett. 2004, 6, 1151 – 1154; b) T. Hamada, X. Ye, S. S. Stahl, J. Am. Chem. Soc. 2008, 130, 833 – 835; c) A. Coste, G. Karkthikyan, F. Couty, G. Evanou, Angew. Chem. 2009, 121, 4445 – 4449; Angew. Chem. Int. Ed. 2009, 48, 4381 – 4385; Review: d) G. Evanou, K. Jouvin, Adv. Synth. Catalysis 2012, 45, 17 – 26.

[10] Representative examples of heteroatom addition to ynamides activated by other metals: a) J. Oppenheimer, W. L. Johnson, M. R. Tracey, R. P. Heng, P.-Y. Yao, R. Liu, K. Zhao, Org. Lett. 2007, 9, 2361 – 2364; b) H. Li, R. P. Heng, Org. Lett. 2009, 11, 4462 – 4465; c) K. Dooleweerd, T. Ruhland, T. Skydstrup, Org. Lett. 2009, 11, 221 – 224.

[11] Selected examples of recent gold-catalysed ynamide reactions: a) S. Kramer, Y. Oldabhian, J. Overaing, M. Rottlander, F. Gagoz, T. Skydstrup, Angew. Chem. 2011, 122, 5196 – 5200; Angew. Chem. Int. Ed. 2011, 50, 5090 – 5094; b) R. B. Dateer, B. Shailuh, R.-S. Liu, Angew. Chem. 2012, 124, 117 – 121; Angew. Chem. Int. Ed. 2012, 51, 113 – 117; c) E. Rettenmeier, A. M. Schuster, M. Rudolph, F. Rominger, C. A. Gade, A. S. K. Hashmi, Angew. Chem. 2013, 125, 5993 – 5997; Angew. Chem. Int. Ed. 2013, 52, 5880 – 5884; d) N. Ghosh, S. Nayak, A. K. Sahoo, Chem. Eur. J. 2013, 19, 9428 – 9433; e) S. J. Hefferon, J. M. Beddoes, M. F. Mahon, A. J. Hennessey, D. R. Carbery, Chem. Commun. 2013, 49, 2314 – 2316.

[12] A. S. K. Hashmi, M. C. B. Jaime, V. Veigand, F. Rominger, Chem. Eur. J. 2013, 19, 12504 – 12511.