Role of radiotherapy in oligometastatic breast cancer: Review of the literature

Caglayan Selenge Beduk Esen, Melis Gultekin, Ferah Yildiz

Abstract

Metastatic breast cancer has been historically considered as an incurable disease. Radiotherapy (RT) has been traditionally used for only palliation of the symptoms caused by metastatic lesions. However, in recent years the concept of oligometastatic disease has been introduced in Cancer Medicine as a clinical scenario with a limited number of metastases (≤ 5) and involved organs (≤ 2) with controlled primary tumor. The main hypothesis in oligometastatic disease is that locoregional treatment of primary tumor site and metastasis-directed therapies with surgery and/or RT may improve outcomes. Recent studies have shown that not all metastatic breast cancer patients have the same prognosis, and selected patients with good prognostic features as those younger than 55 years, hormone receptor-positive, limited bone or liver metastases, a low-grade tumor, good performance status, long disease-free interval (> 12 mo), and good response to systemic therapy may provide maximum benefit from definitive treatment procedures to all disease sites. While retrospective and prospective studies on locoregional treatment in oligometastatic breast cancer demonstrated conflicting results, there is an increasing trend in favor of locoregional treatment. Currently, available data also demonstrated the improvements in survival with metastasis-directed therapy in oligometastatic breast cancer. The current review will discuss the concept of oligometastases and provide up-to-date information about the role of RT in oligometastatic breast cancer.

Key Words: Breast cancer; Oligometastatic; Radiotherapy; Locoregional treatment; Ablative therapy; Metastasis-directed therapy

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Breast cancer is the most common cancer in females worldwide, with an estimated 276480 new cases, and the second most common cause of cancer death with an estimated 42170 deaths in 2020[1]. Metastasis at the time of diagnosis has been observed in 3%-10% of breast cancer patients and has been considered in the past unlikely to be cured[2]. However, the metastatic disease has a broad spectrum ranging from a single metastasis to widespread dissemination, and it has been observed that not all metastatic patients have the same prognosis.

The concept of oligometastases was first described by Hellman and Weichselbaum [3] in 1995, and they hypothesized that patients with oligometastases should be considered as candidates for curative therapeutic strategies. Oligometastases was described as a clinical scenario with a limited number of metastases (1 to 5) and involved organs (≤ 2) with controlled primary tumors[3]. The exact number of metastasis for the concept of oligometastases has not been clearly defined yet; however, most studies evaluating oligometastatic disease included patients with five or less metastasis[4,5].

While the standard treatment for metastatic disease includes systemic therapy with or without palliative radiotherapy (RT), recent studies are evaluating the role of ablative therapies to metastases and locoregional treatment to the primary tumor site in oligometastatic breast cancer[6-9]. In recent years, the prognosis of breast cancer has improved with the introduction of novel systemic therapies, even in patients with metastatic disease[10,11]. Some patients with good prognostic features may achieve complete response for more than 5 years after systemic therapy[12]. Several factors affect the prognosis in breast cancer patients with oligometastatic disease as the disease-free interval between primary cancer and metastasis formation, number of metastatic lesions, metastatic sites, hormone receptor status, human epidermal growth factor 2 (Her2) status, and pN stage[13-15]. Systemic therapy and local treatment to both primary and metastatic lesions may improve outcomes in such selected patients with metastatic breast cancer. Herein, we will review the impact of RT in oligometastatic breast cancer for both metastatic and primary tumor sites.

INTRODUCTION

Oligometastatic breast cancer can be defined as metastatic disease involving a limited number of metastases (≤ 5) and involved organs (≤ 2) with controlled primary tumor and a disease-free interval between primary cancer and metastasis formation[3]. In the past, the locoregional treatment in metastatic breast cancer was believed to have a role only for palliation of the symptoms caused by the local progression of the tumor. However, beginning from the early 2000s, with the advent of novel systemic therapies as new chemotherapeutic agents, anti-HER2 agents, hormonal therapies, immunotherapies, and cyclin-dependent kinase inhibitors, the destiny of patients with metastatic breast cancer have changed. A significant number of patients showed at least good partial response both in the primary and metastatic sites, which led to questioning the idea of treating these patients with some form of locoregional treatment based on the idea that the primary tumor could be a source of reseeding of cancer outside the breast. The National Cancer Database study revealed that surgery.

SHOULD WE PERFORM LOCOREGIONAL TREATMENT IN OLIGOMETASTATIC BREAST CANCER PATIENTS?

In the past, the locoregional treatment in metastatic breast cancer was believed to have a role only for palliation of the symptoms caused by the local progression of the tumor. However, beginning from the early 2000s, with the advent of novel systemic therapies as new chemotherapeutic agents, anti-HER2 agents, hormonal therapies, immunotherapies, and cyclin-dependent kinase inhibitors, the destiny of patients with metastatic breast cancer have changed. A significant number of patients showed at least good partial response both in the primary and metastatic sites, which led to questioning the idea of treating these patients with some form of locoregional treatment based on the idea that the primary tumor could be a source of reseeding of cancer outside the breast. The National Cancer Database study revealed that surgery.

Citation: Beduk Esen CS, Gultekin M, Yildiz F. Role of radiotherapy in oligometastatic breast cancer: Review of the literature. World J Clin Oncol 2022; 13(1): 39-48
URL: https://www.wjgnet.com/2218-4333/full/v13/i1/39.htm
DOI: https://dx.doi.org/10.5306/wjco.v13.i1.39
to the primary site when added to systemic therapy in patients with stage IV breast cancer significantly improved survival[16]. A similar retrospective study using the Surveillance, Epidemiology, and End Results database also showed that median survival was longer in metastatic breast cancer patients who had surgery to the primary site than patients who did not (36 mo vs 21 mo, \(P < 0.001 \))[17]. However, the prospective phase III ABCSG-28 POSITIVE trial that randomized metastatic breast cancer patients to surgery followed by systemic therapy or systemic therapy alone could not demonstrate an overall survival (OS) benefit for the surgery arm[18].

Another study from India randomized 350 patients with de novo metastatic breast cancer who had an objective tumor response after 6–8 courses of chemotherapy to locoregional treatment to primary or no locoregional treatment arms[19]. At a median follow-up of 23 mo, no statistically significant difference in OS was observed between treatment arms (19.2 mo vs 20.5 mo, \(P = 0.79 \)). However, locoregional treatment was associated with improved locoregional progression-free survival (PFS) but shorter distant PFS[19]. In another study by Soran et al[20], 274 treatment naïve metastatic breast cancer patients were randomized to receive locoregional treatment followed by systemic therapy vs systemic therapy alone. With a median follow-up of 55 mo, median survival was significantly longer in the locoregional treatment arm compared to patients with systemic therapy alone arm (46 mo vs 37 mo, \(P = 0.005 \)). Unplanned subgroup analysis of this study showed that improvement in survival was observed in patients with estrogen receptor/progesterone receptor positive, Her2 negative disease, younger than 55 years, and with solitary bone-only metastasis[20].

Several ongoing trials are evaluating the impact of locoregional treatment on survival in metastatic breast cancer. Early results of the ECOG E2108 trial that randomized 256 patients whose disease responded to initial systemic therapy, or stayed stable, to systemic therapy plus locoregional treatment or systemic therapy alone, showed that there was no significant difference in 3-year OS (68.4% vs 67.9%, \(P = 0.63 \)); however, the locoregional recurrence or progression was significantly higher in the systemic therapy alone arm (3-year rate 25.6% vs 10.2%, Gray test \(P = 0.003 \))[21]. Preliminary results of another multicentric prospective ongoing trial (TBCRC 013) evaluating the impact of surgery on OS in metastatic breast cancer patients who responded to first-line systemic therapy showed that the addition of surgery to systemic therapy had no impact on OS even in responders to first-line systemic therapy[22]. JCOG1017 PRIM-BC trial comparing surgery to primary plus systemic therapy with systemic therapy alone has completed accrual, and results of this trial are being expected[23]. Ongoing SUBMIT (NCT01392586) trial is also investigating whether upfront surgery in patients with metastatic breast cancer will result in an improvement of the 2-year survival compared to the survival achieved by systemic therapy and delayed local treatment or systemic therapy alone[24]. The details of prospective randomized trials investigating the role of locoregional treatment in metastatic breast cancer are given in Table 1. The final results of these prospective randomized studies will hopefully clarify the exact role of locoregional treatment in metastatic breast cancer patients.

There is no prospective randomized study comparing surgery with surgery plus RT or RT alone as a locoregional treatment in metastatic breast cancer. A retrospective study by Gultekin et al[7] evaluating the impact of locoregional treatment in 227 oligometastatic breast cancer patients showed that locoregional treatment per se did not affect OS and PFS, however, surgery and RT when used together improved OS and PFS. The authors also observed that patients with solitary metastasis had longer PFS than patients with multiple metastases. In another retrospective study, Le Scodan et al[8] compared 320 metastatic breast cancer patients who received exclusive locoregional RT with or without surgery with 261 metastatic breast cancer patients who did not receive locoregional treatment. In this study, 78% of patients had exclusive locoregional RT, and patients with locoregional treatment had longer 3-year OS rates (43.4% vs 26.7%, \(P < 0.001 \)). Although there was no statistically significant difference in locoregional treatment modalities regarding survival outcomes, multifactorial analysis in the Le Scodan et al[8] study showed that age at diagnosis, visceral metastases, involvement of multiple sites, endocrine treatment, and locoregional treatment were independent prognostic factors for OS[8]. Retrospective studies published within the last decade investigating the impact of locoregional treatment on primary tumor sites are detailed in Table 2.

There is still no consensus about the efficacy of locoregional treatment in metastatic breast cancer. There is again no consensus about the optimal treatment strategy as surgery alone or surgery plus RT or RT alone when locoregional treatment is indicated. Based on the available data, locoregional treatment may be offered to patients who have a long-life expectancy, such as those younger than 55 years, have
Table 1 Prospective randomized phase III trials investigating the role of locoregional treatment in de novo metastatic breast cancer

Ref.	n	Treatment	Patients	Median follow-up (mo)	Outcomes
Khan et al[21] (ECOG-ACRIN E2108)	256	Primary systemic therapy: LRT (n = 125); No LRT (n = 131)	NR	59	3-yr OS: 68.4% vs 67.9%, P = 0.63
		Arm A: Primary surgery + systemic therapy (n = 45)	Arm A: More cT3 and cN2 tumors	37.5	3-yr locoregional recurrence/progression: 10.2% vs 25.6%, P = 0.003
	90	Arm B: Primary systemic therapy (n = 45)			
Fitzal et al[18] (ABCSG-28 POSITIVE)		LRT + systemic therapy (n = 138)	LRT arm: More ER/PR (+), less triple negative tumors	54.5 vs 55	Median OS (mo): 46 vs 37, P = 0.005
Soran et al[20] (MF07-01)	274	Systemic therapy (n = 136)			Unplanned subgroup analysis: Improvement in survival: ER/PR (+), HER2 (-), ≤ 55 yr, solitary bone-only metastasis
Badwe et al[19] (NCT00193778)	350	Primary systemic therapy: LRT (n = 173); No LRT (n = 177)	Similar patient and tumor characteristics	23	Median OS (mo): 19.2 vs 20.5, P = 0.79
					Median LR-PFS (mo): not attained vs 18.2, P < 0.0001
					Median distant-PFS (mo): 11.3 vs 19.8, P = 0.012

NR: Not reported; LRT: Locoregional treatment; c: Clinic; T: Tumor; N: Node; ER: Estrogen receptor; PR: Progesterone receptor; OS: Overall survival; HER2: Human epidermal growth factor receptor 2; LRT: Locoregional; PFS: Progression-free survival.

 SHOULD WE TREAT METASTASES IN OLIGOMETASTATIC BREAST CANCER PATIENTS?

Traditionally, the standard treatment is systemic therapy for metastatic breast cancer patients; however, long-term complete response with systemic therapy alone is rare [12]. Given that progression in metastatic breast cancer patients frequently occurs at sites of known metastases rather than new metastatic lesions, local ablative therapies to metastatic sites may provide therapeutic benefit[9,26]. In addition to surgery and radiofrequency ablation, stereotactic body RT (SBRT) or stereotactic ablative RT (SABR), which allows highly conformal dose distribution using high dose per fraction with a low number of fractions, may be used as local ablative therapies to metastases to prevent progression[26,27].

Response to systemic therapy is a significant prognostic factor in metastatic breast cancer[4]. In a retrospective study by Weykamp et al[28], the 2-year local control and OS rates were reported as 89% and 62%, respectively, in patients with oligometastatic disease. The authors also observed that solitary metastases and young age were independent factors for PFS and OS, respectively[28]. In another study by Kobayashi et al[29], 75 oligometastatic breast cancer patients who had a complete or partial response after systemic therapy and treated with local therapy were retrospectively evaluated, and it was demonstrated that complete response or no evidence of disease rates were significantly better in patients with a single organ metastasis than with two organ metastases (P = 0.002)[29]. In this retrospective study, the multidisciplinary treatment improved OS compared to systemic therapy alone[29].

Few studies have investigated the role of SBRT as a local treatment of metastases in oligometastatic disease including metastatic breast cancer patients (Table 3)[4,6,9,26,28,30,31]. Studies in the literature showed that the maximum benefit from SBRT to all metastatic sites was provided in young patients whose primary breast cancer was controlled, with a limited number of metastases, low tumor volume, only bone metastases, good response to systemic therapy, long disease-free interval (> 12 mo), and hormone receptor-positivity[4,29,30].
The retrospective studies exploring the role of SBRT to metastatic sites in oligometastatic breast cancer are limited [Table 4]. Trovo et al. [6] performed hypofractionated stereotactic radiation (50 Gy in 10 fractions) to all sites of disease in 48 breast cancer patients with 1-5 extracranial metastases. The authors observed that some patients who have only bone metastases rather than visceral metastases and with low tumor burden (volume and number of lesions) survived longer than 10 years [9]. Five- and ten-year OS rates after hypofractionated stereotactic radiation was 83% and 75%, for patients with only bone metastases vs 31% and 17%, respectively, for patients with not only bone metastases [9]. Trovo et al. [6] in a prospective phase II trial

Table 2 Retrospective studies published within the last decade investigating the impact of locoregional treatment to the primary tumor site in de novo metastatic breast cancer

Ref.	n	Treatment	Patient	Median follow-up (mo)	Outcomes
Ma et al [35]	987	Surgery (n = 463) No surgery (n = 524)	Surgery arm: More T1-2, HR-positive, solitary metastasis, bone only metastasis	NR	Median survival (mo): 45 vs 28, P < 0.001 Better survival in surgery after systemic therapy than primary surgery
Lane et al [16] (NCDB)	24015	Systemic therapy alone (n = 1505) Surgery before systemic therapy (n = 4552) Systemic therapy before surgery (n = 5958)	Surgery after systemic therapy arm: Younger, more T3-4 and HR-negative	NR	Median OS (mo): 37.5 vs 49.4 vs 52.6, P < 0.001 RT: No impact on OS
Li et al [36] (SEER database)	20870	Surgery (n = 5779) No surgery (n = 15091)	Surgery arm: Younger, more T1-3, N+, Gr III, and less HR+ More chemo and RT received	NR	Surgery arm (± RT): Improved BCSS and OS (P < 0.001)
Pons-Tostivint et al [37]	4276	LRT (n = 1706): Surgery, RT or both	LRT arm: Younger, more solitary or bone-only metastases No LRT (n = 2570)	45.3	Median OS (mo): HR-positive, HER2- negative: 61.6 vs 45.9, P < 0.001 HR-positive, HER2-positive: 77.2 vs 52.6, P = 0.008
Choi et al [38]	245	LRT (n = 82): Surgery, RT or both No LRT (n = 163)	LRT arm: < T4, no liver or brain metastasis, and < 5 metastatic sites	40	5-yr LRFS: 62% vs 20%, P < 0.001 5-yr OS: 73% vs 45%, P = 0.02
Gultekin et al [7]	227	LRT (n = 188): Surgery, RT or both No LRT (n = 39)	LRT arm: Less T3-4 and more solitary metastases	35	5-yr OS: 56% vs 24%, P < 0.001 5-yr PFS: 27% vs 7%, P < 0.0001
Nguyen et al [39]	733	LRT (n = 378): Surgery, RT or both No LRT (n = 355)	LRT arm: Younger, more T1-2, N0-1, limited M1 disease	21	5-yr OS: 21% vs 14%, P < 0.001 5-yr PFS 72% vs 46%, P < 0.001
Neuman et al [25]	186	Surgery (n = 69): 13% RT No surgery (n = 117)	Surgery arm: More HER2-negative, smaller tumors, more solitary metastasis	52	No difference in OS (P = 0.10)

NCDB: National Cancer Database; SEER: Surveillance, Epidemiology, and End Results; RT: Radiotherapy; LRT: Locoregional treatment; T: Tumor; HR: Hormone receptor; HER2: Human epidermal growth factor receptor 2; N: Node; Gr: Grade; M: Metastasis; NR: Not reported; OS: Overall survival; PFS: Progression-free survival; BCSS: Breast cancer-specific survival; LRFS: Local recurrence-free survival.
Table 3 Retrospective studies investigating the role of radiotherapy as a local treatment of metastases in oligometastatic disease

Ref.	n	Treatment	Patients	Median follow-up (mo)	Outcomes
Weykamp et al	46	SBRT: Bone, lung, liver, adrenal gland	Inclusion criteria: breast cancer, oligometastatic (≤ 3) or oligoproggressive (1) disease; Median 3 frx (1-10)/28 Gy (24-60 Gy)	21	2-yr LC, DC, PFS and OS: 89%, 44%, 17%, and 62%, respectively; Solitary metastasis: Poor prognostic factor for DC and PFS
Kobayashi et al	75	Primary systemic chemotherapy: CR/PR	Inclusion criteria: breast cancer, ≤ 2 metastatic organs, < 5 metastases, < 5 cm lesions	103	10-yr and 20-yr OS: 59.2% and 34.1%, respectively; Higher age: Poor prognostic factor for OS
Hong et al[4]	361	SBRT	Extracranial oligometastases (≤ 5)	26.2	3-yr OS, PFS and TMC were 56%, 24%, and 72%, respectively; Primary tumor type, interval to metastasis, number of treated metastasis, and mediastinal/hilar LN, liver, or adrenal metastases: Associated with OS
Cha et al[40]	49	Endocrine therapy plus LRT (n = 33)	Inclusion criteria: HR-positive, HER2-negative	101.6 vs 105.6	Median OS (mo): 72.3 vs 91, P = 0.272
		Endocrine therapy alone (n = 16)	Similar patient and tumor characteristics		Median PFS (mo): 30 vs 18, P = 0.049

SBRT: Stereotactic body radiation therapy; frx: Fraction, Gy: Gray, CR: Complete response; PR: Partial response; RT: Radiotherapy; LN: Lymph node; LRT: Locoregional treatment; HR: Hormone receptor; HER2: Human epidermal growth factor receptor 2; LC: Local control; DC: Distant control; OS: Overall survival; PFS: Progression-free survival; DFI: Disease-free interval; TMC: Treated metastasis control; RPA: Recursive partitioning analysis.

administered SBRT (30-45 Gy in 3 fractions) or intensity-modulated RT (60 Gy in 25 fractions) to all metastatic sites in 54 oligometastatic breast cancer patients whose primary tumor was controlled. The authors reported that 2-year local control, OS, and PFS rates with a median follow-up of 30 mo were 97%, 95%, and 53%, respectively, and no ≥ grade 3 toxicity was documented[6]. The first randomized phase II study in metastatic cancer is the SABR-COMET study in which 99 patients with the oligometastatic disease were randomized to receive systemic therapy plus palliative RT (8 Gy in 1 fraction or 30 Gy in 10 fractions) or systemic therapy plus SABR to all metastatic sites. Only 18% of the patients were with breast cancer in this study. There was a significant improvement in terms of 5-year OS (17.7% vs 42.3%, P = 0.006), 4-year PFS (3.2% vs 21.6%, P = 0.001), and local control rates (46% vs 63%, P = 0.039) in patients treated with SABR without any significant adverse events[5]. Results of three ongoing prospective randomized studies (SABR-COMET 10, STEREO-SEIN, and NRG-BR002) are being expected to clarify the role of SBRT to all metastatic sites in oligometastatic breast cancer[32-34].

CONCLUSION

Metastatic breast cancer includes a wide spectrum of disease ranging from oligometastatic to disseminated disease. There has been growing interest during the last 20 years in the curative treatment of oligometastatic breast cancer with the advances in systemic therapy. Aggressive local treatment of primary tumor and metastases-directed therapies may improve survival in selected patients, and should especially be suggested to young patients with limited number of metastases. The results of ongoing trials specific to breast cancer will be more helpful in the future.
Table 4 Prospective studies exploring the role of radiotherapy to metastatic sites in oligometastatic disease including primary breast cancer

Ref.	n	Treatment	Patients	Median follow-up (mo)	Outcomes
Palma et al[3] (SABR-COMET)	99	Palliative RT ± systemic therapy (n = 33) 1 frx/8 Gy or 10 frx/30 Gy SABR ± systemic therapy (n = 66) Different regimens according to tumor size and location	Inclusion criteria: 1-5 metastases, life expectancy ≥ 6 mo, controlled primary tumor Primary breast cancer (n): 5 vs 13	51	5-yr OS: 17.7% vs 42.3%, P = 0.006 4-yr PFS 3.2% vs 21.6%, P = 0.001 LC 46% vs 63%, P = 0.039 ≥ Gr 2 toxicity: 9% vs 29%, P = 0.026 SABR: Gr 5 toxicity (n = 3)
Milano et al[9]	48	HSRT: ≥ 50 Gy in 10 frx	Inclusion criteria: breast cancer, 1-5 extracranial metastases, primary controlled	52	5- and 10-yr OS: Bone-only oligometastases: 83% and 75% Non-bone-only oligometastases: 31% and 17% (P = 0.002) GTV > 25 cc: Poor prognostic factor for LC
Trovo et al[6]	54	SBRT: 3 frx/30-45 Gy (n = 44) IMRT: 25 frx/60 Gy (n = 10) 92 lesions	Inclusion criteria: breast cancer, ≤ 5 extracranial metastases, primary controlled	30	2-y LC: 97% 2-y OS: 95% 1- and 2-y PFS: 75% and 53%, respectively No ≥ Gr 3 toxicity
Salama et al [26]	61	SBRT: Lung, LN, liver, bone, adrenal, soft tissue, pancreas 3 frx/24-48 Gy	Inclusion criteria: 1-5 metastatic sites, life expectancy > 3 mo	20.9	1-yr and 2-yr OS: 81.5% and 56.7%, respectively 1-yr and 2-yr PFS: 33.3% and 22.0%, respectively
Scorsetti et al [31]	33	SBRT: 3-4 frx/48-75 Gy	Inclusion criteria: breast cancer, < 5 lung or liver metastases, other metastatic sites stable or responding after chemotherapy	24	1- and 2-y LC: 98% and 90%, respectively 1- and 2-yr OS: 93% and 66%, respectively 1- and 2-yr PFS: 48% and 27%, respectively No grade 3-4 toxicities
Milano et al [30]	40	SBRT doses and fractionation was not mentioned	Inclusion criteria: breast cancer, ≤ 5 metastases	NR	4-yr OS: 59% 4-yr PFS: 38% 4-yr LC: 89% Favorable prognosis: Solitary metastasis, smaller tumor volume, bone-only disease, and stable or regressing lesions

RT: Radiotherapy; frx: Fraction; Gy: Gray; SBRT: Stereotactic body radiation therapy; HSRT: Hypofractionated stereotactic radiotherapy; IMRT: Intensity-modulated radiation therapy; NR: Not reported; OS: Overall survival; PFS: Progression-free survival; LC: Local control; LN: Lymph node; Gr: Grade; GTV: Gross tumor volume.

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70: 7-30 [PMID: 31912902 DOI: 10.3322/caac.21590]
2. Sant M, Allemani C, Berrino F, Coleman MP, Aareleid T, Chaplain G, Coebergh JW, Colonna M, Crosignani P, Danzon A, Federico M, Gafa L, Grosclaude P, Hédelin G, Maccé-Lesech J, Garcia CM, Möller H, Paci E, Ravender N, Tretarre B, Williams EM; European Concerted Action on Survival and Care of Cancer Patients (EUROCARE) Working Group. Breast carcinoma survival in Europe and the United States. Cancer 2004; 100: 715-722 [PMID: 14770426 DOI: 10.1002/cncr.20038]
3. Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol 1995; 13: 8-10 [PMID: 7799047 DOI: 10.1200/JCO.1995.13.1.8]
4. Hong JC, Ayala-Peacock DN, Lee J, Blackstock AW, Okunieff P, Sung MW, Weichselbaum RR, Kao J, Urbanic JJ, Milano MT, Chmura SJ, Salama JK. Classification for long-term survival in
oligometastatic patients treated with ablative radiotherapy: A multi-institutional pooled analysis. *PLOS One* 2018; 13: e0195149 [PMID: 29649281 DOI: 10.1371/journal.pone.0195149]

5. Palma DA, Olson R, Harrow S, Gaede S, Louie AV, Haasbeek C, Mulroy L, Lock M, Rodrigues GB, Yarenko BP, Schellenberg D, Ahmad B, Senthil S, Swaminath A, Kopek N, Liu M, Moore K, Currie S, Schlipper R, Bauman GS, Laba J, Xu XM, Warner A, Senan S. Stereotactic Ablative Radiotherapy for the Comprehensive Treatment of Oligometastatic Cancers: Long-Term Results of the SABR-COMET Phase II Randomized Trial. *J Clin Oncol* 2020; 38: 2830-2838 [PMID: 32484754 DOI: 10.1200/JCO.20.00818]

6. Trovo M, Furlan C, Polese J, Fiorica F, Arcangelì S, Giaj-Levra N, Aloni F, Del Conte A, Mililite L, Mararo E, Martorelli D, Spazzapan S, Berretta M. Radical radiation therapy for oligometastatic breast cancer: Results of a prospective phase II trial. *Radiother Oncol* 2018; 126: 177-180 [PMID: 28943046 DOI: 10.1016/j.radonc.2017.08.032]

7. Gultekin M, Yacizi O, Eren G, Yuce D, Aksoy S, Ozisik Y, Guler N, Yacizi G, Hurnuz P, Yildiz F, Altundag K, Gurykaynak M. Impact of locoregional treatment on survival in patients presented with metastatic breast carcinoma. *Breast* 2014; 23: 775-783 [PMID: 25201554 DOI: 10.1016/j.breast.2014.08.008]

8. Le Scodan R, Stevens D, Brain E, Foiras JL, Cohen-Solal C, De La Lande B, Tubiana-Hulin M, Yacoub S, Gutierrez M, Ali D, Gardner M, Moisson P, Villellet S, Lerebours F, Munec JN, Labib A. Breast cancer with synchronous metastases: survival impact of exclusive locoregional radiotherapy. *J Clin Oncol* 2009; 27: 1375-1381 [PMID: 19204198 DOI: 10.1200/JCO.2008.19.5396]

9. Milano MT, Katz AW, Zhang H, Huggins CF, Aujla KS, Okunieff P. Oligometastatic breast cancer treated with hypofractionated stereotactic radiotherapy: Some patients survive longer than a decade. *Radiother Oncol* 2019; 131: 45-51 [PMID: 30773186 DOI: 10.1016/j.radonc.2018.11.022]

10. Chia SK, Speers CH, D'Yachkova Y, Kang A, Malfair-Taylor S, Barnett J, Coldman A, Gelmon KA, O'reilly SE, Olivetto IA. The impact of new chemotherapeutic and hormone agents on survival in a population-based cohort of women with metastatic breast cancer. *Cancer* 2007; 110: 973-979 [PMID: 17647245 DOI: 10.1002/cncr.22867]

11. Elliott F, Barrett JH, Timothy Bishop D, Newton-Bishop JA. Response to P. Autier and M. Boniol regarding our article--Relationship between sunburned use and melanoma risk in a large case-control study in the United Kingdom. *Int J Cancer* 2013; 132: 1960-1961 [PMID: 22987533 DOI: 10.1002/ijc.27847]

12. Greenberg PA, Hortobagyi GN, Smith TL, Ziegler LD, Frye DK, Buzdar AU. Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. *J Clin Oncol* 1996; 14: 2197-2205 [PMID: 8708708 DOI: 10.1200/JCO.1996.14.8.2197]

13. Lobbezoo DJ, van Kampen RJ, Voogd AC, Dercksen MW, van den Berkmortel F, Smidte TJ, van de Wouw AJ, Peters FP, van Riel JM, Peters NA, de Boer M, Peer PG, Tjan-Heijnen VC. Prognosis of metastatic breast cancer: are there differences between patients with de novo and recurrent metastatic breast cancer? *Br J Cancer* 2015; 112: 1445-1451 [PMID: 25880008 DOI: 10.1038/bjc.2015.127]

14. Regierer AC, Wolters R, Ulen MP, Weigel A, Novopashenny I, Köhne CH, Samonigg H, Eucker J, Possinger K, Wischnewsky MB. An internally and externally validated prognostic score for metastatic breast cancer: analysis of 2269 patients. *Ann Oncol* 2014; 25: 633-638 [PMID: 24368402 DOI: 10.1093/annonc/mdt539]

15. van Ommen-Nijhof A, Steenbruggen TG, Schats W, Wiersma T, Horlings HM, Mann R, Koppert L, van Werkhoven E, Sonke GS, Jager A. Prognostic factors in patients with oligometastatic breast cancer - A systematic review. *Cancer Treat Rev* 2020; 91: 102114 [PMID: 33161237 DOI: 10.1016/j.ctrv.2020.102114]

16. Lane WO, Thomas SM, Blitzblau RC, Plichta JK, Rosenberger LH, Fayanjoo OM, Hyslop T, Hwang ES, Greenup RA. Surgical Resection of the Primary Tumor in Women With De Novo Stage IV Breast Cancer: Contemporary Practice Patterns and Survival Analysis. *Ann Surg* 2019; 269: 537-544 [PMID: 30773466 DOI: 10.1097/SLA.0000000000002621]

17. Gnerlich J, Jeffe DB, Deshpande AD, Beers C, Zander C, Margenthaler JA. Surgical removal of the primary tumor increases overall survival in patients with metastatic breast cancer: analysis of the 1988-2003 SEER data. *Ann Surg Oncol* 2007; 14: 2187-2194 [PMID: 17522944 DOI: 10.1245/s10434-007-9438-0]

18. Fitzal F, Bjelic-Radisic V, Knauer M, Steger G, Hubalek M, Balic M, Singh C, Bartsch R, Schenk P, Soelkner L, Greil R, Grant M; ABCSG. Impact of Breast Surgery in Primary Metastasized Breast Cancer: Outcomes of the Prospective Randomized Phase III ABCSG-28 POSYTIVE Trial. *Ann Surg* 2019; 269: 1163-1169 [PMID: 31082916 DOI: 10.1097/SLA.0000000000002771]

19. Badwe R, Hawaldar R, Nair N, Kaushik R, Parmar V, Siddique S, Budrukker A, Mittra I, Gupta S. Locoregional treatment versus no treatment of the primary tumour in metastatic breast cancer: an open-label randomised controlled trial. *Lancet Oncol* 2015; 16: 1380-1388 [PMID: 26363985 DOI: 10.1016/S1470-2045(15)00135-7]

20. Soran A, Ozmen V, Ozbas S, Karanlik H, Muslumanoglu M, Icici A, Canturk Z, Utkan Z, Ozaslan C, Evrensel T, Usar C, Aksaz E, Soyder A, Ugurlu U, Col C, Cabioglu N, Bozkurt B, Uzunkoy A, Koksal N, Guloglu BM, Unal B, Atalay C, Yıldırım E, Erdem E, Salimoglu S, Sezer A, Koyuncu A, Gürlekışik Y, Alagöl H, Ulufla N, Berberoglu U, Dalger M, Cengiz O, Sezgin E, Johnson R. Randomized Trial Comparing Resection of Primary Tumor with No Surgery in Stage IV Breast Cancer at Presentation: Protocol MF07-01. *Ann Surg Oncol* 2018; 25: 3141-3149 [PMID: 29777404 DOI: 10.1245/s10434-018-6494-6]
21 **Khan SA**, Solin LJ, Goldstein LJ, Celli D, Basik M, Golshan M, Julian TB, Pockaj BA, Lee CA, Razaz W, Sparano JA, Babiera GV, Dy IA, Jain S, Silverman P, Fisher C, Tevaarwerk AJ, Wagner LI, Sledge GW. A randomized phase III trial of systemic therapy plus early local therapy vs systemic therapy alone in women with de novo stage IV breast cancer: A trial of the ECOG-ACRIN Research Group (E2108). *J Clin Oncol* 2020; 38: no. 18_suppl [DOI: 10.1200/JCO.2020.38.18_suppl.LLB246]

22 **King TA**, Lyman J, Gonen M, Reyes S, Hwang ESS, Rugo HS, Liu MC, Boughy JC, Jacobs LK, McGuire KP, Sirmolo AM, Isaacs C, Meszoely IM, Van Poznak CH, Babiera G, Norton L, Morrow M, Wolff AC, Winer EP, Hudis CA. A prospective analysis of surgery and survival in stage IV breast cancer (TBCRC 013). *J Clin Oncol* 2016; 34: 1006-1006 [DOI: 10.1200/JCO.2016.34.15_suppl.1006]

23 **Shien T**, Nakamura K, Shibata T, Kinoshita T, Aogi K, Fujisawa T, Masuda N, Inoue K, Fukuda H, Iwata H. A randomized controlled trial comparing primary tumor resection plus systemic therapy with systemic therapy alone in metastatic breast cancer (PRIM-BC): Japan Clinical Oncology Group Study JCOG1017. *Jpn J Clin Oncol* 2012; 42: 970-973 [PMID: 22833684 DOI: 10.1093/jjco/hys120]

24 **Ruiterkamp J**, Voogd AC, Tjan-Heijnen VC, Bosscha K, van der Linden YM, Rutgers EJ, Boeven E, van der Sangen MJ, Ernst MF; Dutch Breast Cancer Trialists' Group (BOOG). SUBMIT: Systemic therapy with or without up front surgery of the primary tumor in breast cancer patients with distant metastases at initial presentation. *BMC Surg* 2012; 12: 5 [PMID: 22469291 DOI: 10.1186/1471-2482-12-5]

25 **Neuman HB**, Morrogh M, Gonen M, Van Zee KJ, Morrow M, King TA. Stage IV breast cancer in the era of targeted therapy: does surgery of the primary tumor matter? *Cancer* 2010; 116: 1226-1233 [PMID: 20101736 DOI: 10.1002/cncr.24873]

26 **Salama JK**, Hasselle MD, Chmura SJ, Malik R, Mehta N, Yanice KM, Villalor VM, Stadler WM, Hoffman PP, Cohen EE, Connell PP, Haraf DJ, Vokes EE, Helman S, Weichselbaum RR. Stereotactic body radiotherapy for multisite extracranial oligometastases: final report of a dose escalation trial in patients with 1 to 5 sites of metastatic disease. *Cancer* 2012; 118: 2962-2970 [PMID: 22020702 DOI: 10.1002/cncr.26611]

27 **Potters L**, Kavanagh B, Galvin JM, Hevezi JM, Janjan NA, Larson DA, Mehta MP, Ryu S, Steinberg M, Timmerman R, Welsh JS, Rosenthal SA; American Society for Therapeutic Radiology and Oncology; American College of Radiology. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of stereotactic body radiation therapy. *Int J Radiat Oncol Biol Phys* 2010; 76: 326-332 [PMID: 20117285 DOI: 10.1016/j.ijrobp.2009.09.042]

28 **Weykamp F**, König L, Seidensaal K, Forster T, Hoegen P, Akbaba S, Mende S, Welte SE, Deutsch TM, Schneeweiss A, Debus J, Hörner-Rieber J. Extracranial Stereotactic Body Radiotherapy in Oligometastatic or Oligoproggressive Breast Cancer. *Front Oncol* 2020; 10: 987 [PMID: 32676455 DOI: 10.3389/fonc.2020.00987]

29 **Kobayashi T**, Ichiba T, Sakuyama T, Arakawa Y, Nagasaki E, Aiba K, Nogi H, Kawase K, Takeyama H, Toriumi Y, Uchida K, Kobayashi M, Kanehira C, Suzuki M, Ando N, Natori K, Kurashii Y. Possible clinical cure of metastatic breast cancer: lessons from our 30-year experience with oligometastatic breast cancer patients and literature review. *Breast Cancer* 2012; 19: 218-237 [PMID: 22532161 DOI: 10.1016/j.breast.2011.10.004]

30 **Milano MT**, Zhang H, Mercafe SK, Mahs AG, Okanieff P. Oligometastatic breast cancer treated with curative-intent stereotactic body radiation therapy. *Breast Cancer Res Treat* 2009; 115: 601-608 [PMID: 18719992 DOI: 10.1007/s12282-010-0157-4]

31 **Scorsetti M**, Franceschini D, De Rose F, Comito T, Villa E, Iffode C, Navarreria R, D’Agostino GR, Masi G, Torrisi R, Testori A, Tinterri C, Santoro A. Stereotactic body radiation therapy: A promising chance for oligometastatic breast cancer. *Breast* 2016; 26: 11-17 [PMID: 27017237 DOI: 10.1016/j.breast.2015.12.002]

32 **Palma DA**, Olson HR, Harrow S, Correa RJM, Schnieders F, Haasbeek CJA, Rodrigues GB, Lock M, Yarenko BP, Bauman GS, Ahmed BA, Schellenberg D, Liu M, Gaede S, Laba J, Mulroy L, Senthí S, Louie AV, Swaminath A, Chalmers C, Warner A, Slotman BJ, de Gruijl TD, Allan A, Senan S. Stereotactic ablative radiotherapy for the comprehensive treatment of 4-10 oligometastatic tumours (SABR-COMET-10): study protocol for a randomized phase III trial. *BMJ Cancer* 2019; 19: 816 [PMID: 31426366 DOI: 10.1136/s11507093-01597-5]

33 **Chmura SJ**, Al-Hallaj HA, Borge VS, Jaskowiak NT, Matuszak M, Milano MT, Salama JK, Woodward WA, White JR. NRG-BR002: A phase III trial of standard of care therapy with or without stereotactic body radiotherapy (SBRT) and/or surgical ablation for newly oligometastatic breast cancer (NCT02364557). *J Clin Oncol* 2019; 37: no. 15_suppl [DOI: 10.1200/JCO.2019.37.15_suppl.TPS1117]

34 **Bourge C**. Trial of Superiority of Stereotactic Body Radiation Therapy in Patients With Breast Cancer (STEREO-SEIN). accessed 28 Feb 2021. In: ClinicalTrials.gov [Internet]. ClinicalTrials.gov Identifier: NCT02089100. Available from: https://clinicaltrials.gov/ct2/show/NCT02089100

35 **Li X**, Huang R, Ma L, Liu S, Zong X. Locoregional surgical treatment improves the prognosis in primary metastatic breast cancer patients with a single distant metastasis except for brain metastasis. *Breast* 2019; 45: 104-112 [PMID: 30928762 DOI: 10.1016/j.breast.2019.03.006]

36 **Pons-Tostivint E**, Kirova Y, Lusque A, Campone M, Geffrrot J, Mazouni C, Mailliez A, Pasquier D, Madranges N, Firmin N, Crouzet A, Gonçalves A, Jankowski C, De La Motte Rouge T, Pouget N, de La Lande B, Mouttet-Boizat D, Ferrero JM, Uwer L, Eymard JC, Mourtet-Reynier MA, Petit T, Robain M, Filleron T, Cailliot C, Dalenc F. Survival Impact of Locoregional Treatment of the
Primary Tumor in De Novo Metastatic Breast Cancers in a Large Multicentric Cohort Study: A Propensity Score-Matched Analysis. *Ann Surg Oncol* 2019; **26**: 356-365 [PMID: 30539492 DOI: 10.1245/s10434-018-6831-9]

37 **Choi SH**, Kim JW, Choi J, Sohn J, Kim SI, Park S, Park HS, Jeong J, Suh CO, Keum KC, Kim YB, Lee J. Locoregional Treatment of the Primary Tumor in Patients With De Novo Stage IV Breast Cancer: A Radiation Oncologist's Perspective. *Clin Breast Cancer* 2018; **18**: e167-e178 [PMID: 28689012 DOI: 10.1016/j.clbc.2017.06.002]

38 **Nguyen DH**, Truong PT, Alexander C, Walter CV, Hayashi E, Christie J, Lesperance M. Can locoregional treatment of the primary tumor improve outcomes for women with stage IV breast cancer at diagnosis? *Int J Radiat Oncol Biol Phys* 2012; **84**: 39-45 [PMID: 22330986 DOI: 10.1016/j.ijrobp.2011.11.046]

39 **Cha C**, Ahn SG, Yoo TK, Kim KM, Bae SJ, Yoon C, Park S, Sohn J, Jeong J. Local Treatment in Addition to Endocrine Therapy in Hormone Receptor-Positive and HER2-Negative Oligometastatic Breast Cancer Patients: A Retrospective Multicenter Analysis. *Breast Care (Basel)* 2020; **15**: 408-414 [PMID: 32982652 DOI: 10.1159/000503847]
