The Structural, Photocatalytic Property Characterization and Enhanced Photocatalytic Activities of Novel Photocatalysts Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ during Visible Light Irradiation

Jingfei Luan 1,*, Yue Shen 1, Yanyan Li 1 and Yaron Paz 2

1 State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China; yueshen_sally@outlook.com (Y.S.); yanyanli_2016@sina.com (Y.L.)

2 Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; paz@tx.technion.ac.il

* Correspondence: jfluan@nju.edu.cn; Tel.: +86-135-8520-6718; Fax: +86-25-8968-0397

Academic Editor: Dirk Poelman
Received: 29 July 2016; Accepted: 21 September 2016; Published: 27 September 2016

Abstract: In order to develop original and efficient visible light response photocatalysts for degrading organic pollutants in wastewater, new photocatalysts Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ were firstly synthesized by a solid-state reaction method and their chemical, physical and structural properties were characterized. Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ were crystallized with a pyrochlore-type structure and the lattice parameter of Bi$_2$GaSbO$_7$ or Bi$_2$InSbO$_7$ was 10.356497 Å or 10.666031 Å. The band gap of Bi$_2$GaSbO$_7$ or Bi$_2$InSbO$_7$ was estimated to be 2.59 eV or 2.54 eV. Compared with nitrogen doped TiO$_2$, Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$, both showed excellent photocatalytic activities for degrading methylene blue during visible light irradiation due to their narrower band gaps and higher crystallization perfection. Bi$_2$GaSbO$_7$ showed higher catalytic activity compared with Bi$_2$InSbO$_7$.

The photocatalytic degradation of methylene blue followed by the first-order reaction kinetics and the first-order rate constant was 0.01470 min$^{-1}$, 0.00967 min$^{-1}$ or 0.00259 min$^{-1}$ with Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or nitrogen doped TiO$_2$ as a catalyst. The evolution of CO$_2$ and the removal of total organic carbon were successfully measured and these results indicated continuous mineralization of methylene blue during the photocatalytic process. The possible degradation scheme and pathway of methylene blue was also analyzed. Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ photocatalysts both had great potential to purify textile industry wastewater.

Keywords: photocatalysts; Bi$_2$GaSbO$_7$; Bi$_2$InSbO$_7$; methylene blue; photocatalytic degradation; visible light irradiation

1. Introduction

Dye contaminants from textile wastewater were difficult to treat for their high chroma, high chemical oxygen demand content and complicated ingredients. Some conventional methods including biodegradation [1–3], electrochemistry [3–6], adsorption [7–9], and flocculation–precipitation [10,11] had been exploited to degrade those dye contaminates, but there still existed a serious of problems with them. Methylene blue (MB), usually adopted as dyestuff, was one of the most common dye contaminates.

Photocatalysis had gained great development since photocatalytic reaction was found in 1972 [12]. Photocatalytic degradation of the pollutants in wastewater entailed a chain of advantages including conserving energy and little secondary pollution; it had therefore gradually attracted more and...
more attention in textile wastewater treatment. Metal oxides [13–24] and metal sulfides [21–33] were the most common semiconductor photocatalysts. Among metal oxides, anatase TiO\textsubscript{2} was investigated most repeatedly owing to its non-toxic property, excellent stability and low cost. However, with a wider band gap (3.2 eV), anatase TiO\textsubscript{2} only efficiently absorbed ultraviolet light which occupied only 5% of the solar energy, and thus failed to make good use of optical energy. In order to make the best use of visible light which occupied 43% of sunlight, developing visible light responsive photocatalysts was an inevitable tendency in the field of photocatalysis research, which could be embodied from abundant endeavors of previous scholars in realizing the degradation of the pollutants during visible light irradiation by the method of iron doping [34–36], forming heterojunction [37–42] or photosensitization [43–48]. Several years ago, Zou and Arakawa [49,50] found that two types of metal oxides, ABO\textsubscript{3} and A\textsubscript{2}B\textsubscript{2}O\textsubscript{7}, had great potential for photocatalytic H\textsubscript{2} production during visible light irradiation. It was well known that minute changes in internal structure of the semiconductor photocatalysts would presumably promote the separation of photogenerated electrons and holes and thus improve photocatalytic activities. Zou et al. synthesized Bi\textsubscript{2}M\textsubscript{5}Nb\textsubscript{2}O\textsubscript{7} (M = Al, Ga, In, Y or Fe) [51–53] which was one remarkable representative of the family of A\textsubscript{2}B\textsubscript{2}O\textsubscript{7} compounds with the A3+:B4+:2O pyrochlore structure by substituting B4+ sites in A3+:2B4+:2O\textsubscript{7} for M5+ (M5+ = Al3+, Ga3+, In3+, Nb5+). Similarly, previous studies had reported Bi\textsubscript{2}GaVO\textsubscript{7} [54] and Bi\textsubscript{2}SbVO\textsubscript{7} [55] by element doping, which had realized visible-light photocatalytic degradation and H\textsubscript{2} production. Previous works indicated that the Ga3+ and In3+ ions could influence the band gap and the electronic structure of the compound photocatalysts, which was expected to cause the different photocatalytic activity [56,57].

As an important element with higher electron drift velocity and mobility, antimony (Sb) has been extensively studied as a good dopant candidate for enhancing the electron transfer rate of semiconductors [58]. Omidi et al. [59] evaluated the photocatalytic activity of Sb-doped ZnO nanostructures (0 \textleq; mol fraction of Sb3+ ions < 0.15) for the photodegradation of MB. In addition, the acquired results showed that doping the ZnO nanostructures with 0.03 mol fraction of Sb3+ ions increased the reaction rate by about three times, indicating that the decreasing recombination of charge carriers could enhance the photocatalytic activity. Al-Hamdi et al. [60] reported that Sb-doped dioxide (SnO\textsubscript{2}) nanoparticles with different Sb concentrations (at % = 0, 2, 4 and 6), which was prepared by a sol–gel method, could degrade 12%, 45%, 71% and 97% of phenol in the mineralization process under UV irradiation for 120 min, which showed higher photocatalytic activity than the undoped SnO\textsubscript{2} catalyst. These previous reports have shown that moderate Sb doped on the photocatalysts could greatly enhance the photocatalytic activity.

In this paper, new photocatalysts, Bi\textsubscript{2}GaSbO\textsubscript{7} and Bi\textsubscript{2}InSbO\textsubscript{7}, were synthetized by doping element Ga or In with a solid-state reaction method. Meanwhile, the structural properties of Bi\textsubscript{2}GaSbO\textsubscript{7} and Bi\textsubscript{2}InSbO\textsubscript{7} were also characterized and their photocatalytic activities were also examined in degrading MB solution compared with N-doped TiO\textsubscript{2}, which had achieved the visible light response.

2. Materials and Methods

2.1. Synthesis of Bi\textsubscript{2}GaSbO\textsubscript{7}, Bi\textsubscript{2}InSbO\textsubscript{7} and N-doped TiO\textsubscript{2} Photocatalysts

New Bi\textsubscript{2}GaSbO\textsubscript{7} and Bi\textsubscript{2}InSbO\textsubscript{7} samples were firstly synthesized by a solid-state reaction method. Firstly, for the sake of the synthesis of Bi\textsubscript{2}GaSbO\textsubscript{7}, Bi\textsubscript{2}O\textsubscript{3}, Ga\textsubscript{2}O\textsubscript{3} and Sb\textsubscript{2}O\textsubscript{5} with a purity of 99.99% (Sinopharm Group Chemical Reagent Co., Ltd., Shanghai, China) were obtained by an atomic ratio of 2:1:1 to serve as raw materials. All powders were dried at 200 °C for 4 h before synthesis. In order to synthesize Bi\textsubscript{2}GaSbO\textsubscript{7}, the precursors were fully mingled with each other, then pressed into small columns and put into an alumina crucible (Shenyang Crucible Co., Ltd., Shenyang, China). Eventually, calcination was performed at 1100 °C for 40 h in an electric furnace (KSL 1700X, Hefei Kejing Materials Technology Co., Ltd., Hefei, China). Accordingly, Bi\textsubscript{2}O\textsubscript{3}, In\textsubscript{2}O\textsubscript{3} and Sb\textsubscript{2}O\textsubscript{5} with a purity of 99.99% (Sinopharm Group Chemical Reagent Co., Ltd., Shanghai, China) were obtained by an atomic ratio of 2:1:1 for the preparation of Bi\textsubscript{2}InSbO\textsubscript{7}. The synthesisization procedure of Bi\textsubscript{2}InSbO\textsubscript{7} was similar to...
that of Bi$_2$GaSbO$_7$, just the calcination was performed at 1070 °C for 30 h during mixed powder in the alumina crucible. The preparation of N-doped TiO$_2$ was by the sol–gel method which was mentioned in our previous studies [61].

2.2. Characterization

In our paper, we adopted the X-ray diffraction method (XRD, D/Max-RB, Rigaku Corporation, Tokyo, Japan) with Cu Kα radiation (λ = 1.54056 Å) to confirm the crystal structures of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$. The patterns of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ were recorded at 2θ = 10°–100° (for Bi$_2$GaSbO$_7$) or 10°–95° (for Bi$_2$InSbO$_7$). The step interval was 0.02° and the time per step was 1 s. The transmission electron microscopy (TEM, Tecnal F20 S-Twin, FEI Corporation, Hillsboro, OR, USA) was used to observe the surface state and structure of the photocatalysts. The Malvern’s mastersize-2000 particle size analyzer (Malvern Instruments Ltd., Malvern, UK) was utilized to measure the particle size of the photocatalysts. We also utilized X-ray photoelectron spectroscopy (XPS, ESCALABMK-2, VG Scientific Ltd., London, UK) to determine the Bi$^{3+}$ content, Ga$^{3+}$ content, Sb$^{5+}$ content, In$^{3+}$ content and O$^{2−}$ content of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$. The chemical composition of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ was determined by scanning the electron microscope-X-ray energy dispersion spectrum (SEM–EDS, LEO 1530VP, LEO Corporation, Dresden, Germany). The surface areas of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ were measured by the Brunauer–Emmette–Teller (BET) method (MS-21, Quantachrome Instruments Corporation, Boynton Beach, FL, USA) with N$_2$ adsorption at liquid nitrogen temperature. Their diffuse reflectance spectrums were analyzed by a UV-visible spectrophotometer (Shimadzu UV-2550 UV-Visible spectrometer, Kyoto, Japan).

2.3. Photocatalytic Properties Test

MB (C$_{16}$H$_{18}$ClIN$_3$S) (Tianjin Bodi Chemical Co., Ltd., Tianjin, China) served as our objective pollutant. The whole photocatalytic activity process was as follows: firstly, we prepared 300 mL MB aqueous solution in quartz tubes whose initial concentration was 0.025 mmol·L$^{-1}$ and initial PH value was 7.0. Then, 0.8 g photocatalyst powder of N-doped TiO$_2$, Bi$_2$GaSbO$_7$ or Bi$_2$InSbO$_7$ was placed into every quartz tube, respectively. In order to ensure the establishment of an adsorption/desorption equilibrium among photocatalysts, the MB dye and atmospheric oxygen, above per solution was magnetically stirred in the dark for 45 min. In our paper, we employed a 500 W Xenon lamp (λ > 420 nm), which utilized a 420 nm cutoff filter as a visible-light source. The photoreaction was carried out in a photochemical reaction apparatus (Nanjing Xujiang Machine Plant, Nanjing, China). During visible light illumination, the MB dye pollution was stirred by a magnetic stirrer and the photocatalyst powder was kept suspended in the solution. The filtrate was subsequently measured by a Shimadzu UV-2450 UV-visible spectrometer (Kyoto, Japan) with the detecting wavelength at 665 nm. The identification of MB and the degradation intermediate products of MB were measured by a liquid chromatograph-mass spectrometer (LC–MS, Thermo Quest LCQ Duo, Silicon Valley, CA, USA, Beta Basic-C$_{18}$ HPLC column: 150 × 2.1 mm2, ID of 5 µm, Finnigan, Thermo, Silicon Valley, CA, USA). Here, post-photocatalysis solution (20 µL) was injected automatically into the LC–MS system. The eluent contained 60% methanol and 40% water, and the flow rate was 0.2 mL·min$^{-1}$. MS conditions included an electrospray ionization interface, a capillary temperature of 27 °C with a voltage of 19.00 V, a spray voltage of 5000 V and a constant sheath gas flow rate. The spectrum was acquired in the negative ion scan mode, sweeping the m/z range from 50 to 600. Evolution of CO$_2$ was analyzed with an intermsat™ IGC120-MB gas chromatograph (6890 N, Agilent Technologies, Palo Alto, CA, USA) equipped with a porapack Q column (3 m in length and with an inner diameter of 0.25 in.), which was connected to a catharometer detector. The total organic carbon (TOC) concentration was determined with a TOC analyzer (TOC-5000, Shimadzu Corporation, Kyoto, Japan). The photonic efficiency was calculated according to the following equation [62,63]:
\[\xi = \frac{R}{I_0} \]

where \(\xi \) was the photonic efficiency (%), and \(R \) was the rate of MB degradation (mol·L\(^{-1} \)·s\(^{-1} \)), and \(I_0 \) was the incident photon flux (Einstein·L\(^{-1} \)·s\(^{-1} \)). The incident photon flux \(I_0 \) which was measured by a radiometer (Model FZ-A, Photoelectric Instrument Factory Beijing Normal University, Beijing, China) was determined to be \(4.76 \times 10^6 \) Einstein·L\(^{-1} \)·s\(^{-1} \) under visible light irradiation (wavelength range of 400–700 nm).

3. Results and Discussion

3.1. Characterization

Figure 1a,b shows the TEM images of Bi\(_2\)GaSbO\(_7\) and Bi\(_2\)InSbO\(_7\) with high magnification. We could observe from the images of Bi\(_2\)GaSbO\(_7\) and Bi\(_2\)InSbO\(_7\) that their particles presented a similar oblate spheroid appearance and that their distribution was relatively uniform. The average particle size of Bi\(_2\)GaSbO\(_7\) approached 190 nm, which was smaller than that of Bi\(_2\)InSbO\(_7\), whose average particle size approached 390 nm. We could observe from the BET results that the specific surface area of Bi\(_2\)GaSbO\(_7\) approached 2.36 m\(^2\)/g, which was bigger than that of Bi\(_2\)InSbO\(_7\), whose specific surface area approached 1.82 m\(^2\)/g. It was clear that the BET results were consistent with the TEM results, indicating that the samples with small average particle size would have a higher specific surface area. Figure 2a,b shows the SEM–EDS spectra taken from Bi\(_2\)GaSbO\(_7\) and Bi\(_2\)InSbO\(_7\). It could be seen from Figure 2a,b that the superfluous peaks did not exist in the spectra of Bi\(_2\)GaSbO\(_7\) and Bi\(_2\)InSbO\(_7\), meaning that Bi\(_2\)GaSbO\(_7\) and Bi\(_2\)InSbO\(_7\) crystals were both pure phase without impure elements.

Figure 1. TEM images of (a) Bi\(_2\)GaSbO\(_7\) and (b) Bi\(_2\)InSbO\(_7\) with high magnification.

Figure 2. SEM–EDS spectra taken from (a) Bi\(_2\)GaSbO\(_7\) and (b) Bi\(_2\)InSbO\(_7\).

In this paper, X-ray photoelectron spectroscopy analysis techniques were utilized to reveal the surface chemical compositions and the valence states of various elements in Bi\(_2\)GaSbO\(_7\) and Bi\(_2\)InSbO\(_7\). The various elemental peaks which are corresponding to specific binding energies are given in Table 1. Analysis results of the full XPS spectra were as follows: the prepared Bi\(_2\)GaSbO\(_7\) sample contained Bi, Ga, Sb and O elements. Similarly, the prepared Bi\(_2\)InSbO\(_7\) sample contained Bi, In, Sb and O elements. These results also uncovered that Bi\(_2\)GaSbO\(_7\) crystal or Bi\(_2\)InSbO\(_7\) crystal were both at a high pure phase. Moreover, the analysis results of the XPS spectra also manifested that the valence of Bi, Ga, Sb and O elements are both at a high pure phase.
We could judge from Figure 3 that Bi$_2$GaSbO$_7$ was a single phase. Moreover, the analysis results of the XPS spectra also manifested that the valence of Bi, Ga, Sb, In or O from Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ was +3, +3, +5, +3 or −2, respectively. Eventually, according to our comprehensive XPS and SEM–EDS analyses, as for Bi$_2$GaSbO$_7$, the mean atomic ratio of Bi, Ga, Sb and O was 2.00:0.98:1.02:6.98. As for Bi$_2$InSbO$_7$, the mean atomic ratio of Bi, In, Sb and O was 2.00:0.99:1.01:6.99.

Table 1. Binding energies (BE) for key elements of Bi$_2$InSbO$_7$ and Bi$_2$GaSbO$_7$.

Compound	Bi$_{4f7/2}$ BE (eV)	Sb$_{3d5/2}$ BE (eV)	Ga$_{3d5/2}$ BE (eV)	In$_{3d5/2}$ BE (eV)	O$_{1s}$ BE (eV)
Bi$_2$GaSbO$_7$	159.70	531.20	–	444.60	530.85
Bi$_2$InSbO$_7$	159.60	531.40	20.60	–	531.10

Figure 3 presents the X-ray powder diffraction patterns of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$, respectively. We could judge from Figure 3 that Bi$_2$GaSbO$_7$ crystal or Bi$_2$InSbO$_7$ crystal was a single phase. Figure 4a,b shows the Pawley refinement results of XRD data for Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$. The refined outcomes from Figure 4a,b displayed that the actual intensities of Bi$_2$GaSbO$_7$ or Bi$_2$InSbO$_7$ were both highly in accordance with the intensities of the pyrochlore-type structure with a cubic crystal system and a space group $Fd3m$ (O atoms were included in the model), indicating that Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ indeed formed the same crystal structure. The atomic coordinates and structural parameters of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ are listed in Tables 2 and 3, respectively. Above results showed that the lattice parameter a of Bi$_2$GaSbO$_7$ was 10.666031 Å, which was slightly lower than that of Bi$_2$InSbO$_7$ whose lattice parameter a was 10.666031 Å. From the SEM–EDS spectra and XPS spectra which were taken from Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$, we had known that Bi$_2$GaSbO$_7$ crystal or Bi$_2$InSbO$_7$ crystal was both pure phase. Therefore, excluding the effects of impurities, we could deduce that the difference between the lattice parameter a for Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ was perhaps concerned with M ionic radii which belonged to Bi$_2$MSbO$_7$. The reason was that the ionic radii of Ga$^{3+}$ (0.62 Å) was minutely lower than that of In$^{3+}$ (0.92 Å). Lastly, all the diffraction peaks (222), (400), (440), (622), (444), (800), (662), (840), (844) for Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ were successfully indexed according to the lattice constant and above space group.

Figure 5 presents the diffuse reflection spectra of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$, respectively. Compared with N-doped TiO$_2$ whose absorption edge was about 445 nm, the absorption spectrum of newly prepared photocatalyst Bi$_2$GaSbO$_7$ or Bi$_2$InSbO$_7$ was estimated to be 480 nm or 490 nm, respectively, implicating that they had sizable potential to realize visible light response. The maximum absorption wavelength of MB was detected by an ultraviolet spectrophotometer, while the diffuse reflection spectra of Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ was detected by ultraviolet spectrophotometer with integrating sphere. In addition, the above two testing methods were totally different. Furthermore, the absorbance was obtained from the reflectance data and scattering should also be taken into consideration in data conversion from reflectance into absorbance, which was the reason why the ordinate of the diffuse reflection spectra in Figure 5 was absorbance.

![Figure 3. X-ray powder diffraction patterns of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$.](image-url)
was calculated using the Kubelka–Munk transformation method in our experiment. For a crystalline semiconductor compound.

The Pawley refinement results of XRD data for (a) Bi$_2$GaSbO$_7$ and (b) Bi$_2$InSbO$_7$.

Table 2. Structural parameters of Bi$_2$GaSbO$_7$ prepared by the solid state reaction method.

Atom	x	y	z	Occupation Factor
Bi	0.00000	0.00000	0.00000	1.0
Ga	0.50000	0.50000	0.50000	0.5
Sb	0.50000	0.50000	0.50000	0.5
O(1)	-0.18500	0.12500	0.12500	1.0
O(2)	0.12500	0.12500	0.12500	1.0

Table 3. Structural parameters of Bi$_2$InSbO$_7$ prepared by the solid state reaction method.

Atom	x	y	z	Occupation Factor
Bi	0.00000	0.00000	0.00000	1.0
In	0.50000	0.50000	0.50000	0.5
Sb	0.50000	0.50000	0.50000	0.5
O(1)	-0.16500	0.12500	0.12500	1.0
O(2)	0.12500	0.12500	0.12500	1.0

Diffuse reflection spectra of Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ and N-doped TiO$_2$.
We realized that absorbance could not be proportional to 1-transmission, thus the absorbance was calculated using the Kubelka–Munk transformation method in our experiment. For a crystalline semiconductor compound, the optical absorption near the band edge followed the equation [64,65]:

\[a h \nu = A \times (h \nu - E_g)^n \]

(2)

Here, \(A \), \(\alpha \), \(E_g \) and \(\nu \) denoted proportional constant, absorption coefficient, band gap and light frequency, respectively. In this equation, \(n \) determined the character of the transition in a semiconductor compound. \(E_g \) and \(n \) could be calculated by the following steps: (i) plotting \(\ln(a h \nu) \) versus \(\ln(h \nu - E_g) \) assuming an approximate value of \(E_g \); (ii) deducing the value of \(n \) according to the slope in this graph; (iii) refining the value of \(E_g \) by plotting \((a h \nu)^{1/n} \) versus \(h \nu \) and extrapolating the plot to \((a h \nu)^{1/n} = 0 \).

According to this method, we first estimated that the value of \(E_g \) for \(\text{Bi}_2\text{GaSbO}_7 \) or \(\text{Bi}_2\text{InSbO}_7 \) was 2, indicating that the optical transition for \(\text{Bi}_2\text{GaSbO}_7 \) or \(\text{Bi}_2\text{InSbO}_7 \) is indirectly allowed. Figure 6 presents the plot of \((a h \nu)^{1/n} \) versus \(h \nu \) for \(\text{Bi}_2\text{GaSbO}_7 \) and \(\text{Bi}_2\text{InSbO}_7 \). It could be found that the value of \(E_g \) for \(\text{Bi}_2\text{GaSbO}_7 \), \(\text{Bi}_2\text{InSbO}_7 \) or N-doped TiO\(_2\) was calculated to be 2.59 eV, 2.54 eV or 2.78 eV.

![Figure 6](image_url)

Figure 6. Plot of \((a h \nu)^{1/2}\) versus \(h \nu\) for (a) \(\text{Bi}_2\text{GaSbO}_7\); (b) \(\text{Bi}_2\text{InSbO}_7\) and (c) N-doped TiO\(_2\).

3.2. **Photocatalytic Properties of \(\text{Bi}_2\text{GaSbO}_7\) and \(\text{Bi}_2\text{InSbO}_7\) Photocatalysts**

From the UV-vis spectra of \(\text{Bi}_2\text{GaSbO}_7\) and \(\text{Bi}_2\text{InSbO}_7\), we had analyzed that both of the novel photocatalysts sent a strong absorption signal in the visible light region. Therefore, we expected that they could have the potential to degrade organic pollutants under visible light irradiation. In order to evaluate their visible light photocatalytic degradation capabilities, we listed N-doped TiO\(_2\) as a referential photocatalyst. Figure 7a presents the kinetics of MB degradation with \(\text{Bi}_2\text{GaSbO}_7\), \(\text{Bi}_2\text{InSbO}_7\), N-doped TiO\(_2\) as well as in the absence of a photocatalyst under visible light irradiation (>420 nm). Consistent with our expectations, as time went by, the color of the MB solution gradually shallowed and the concentration of MB gradually declined in our measurements in the absence of a photocatalyst. After visible light irradiation for 400 min, the removal rate of MB was estimated to be 99.75%, 98.95%, 59.92% or 40.6% with \(\text{Bi}_2\text{GaSbO}_7\), \(\text{Bi}_2\text{InSbO}_7\), N-doped TiO\(_2\) as catalyst, as well as in the absence of a photocatalyst, respectively. The sharp decrease in the concentration of MB under visible light irradiation from 0 to 120 min was mainly due to the adsorption of MB on the surface of
Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a photocatalyst [66]. In the meantime, the photocatalytic degradation of MB with Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a catalyst also played a significant role compared with the absence of a photocatalyst under visible light irradiation in this sharp decrease. In addition, the slower speed of MB degradation by using Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a photocatalyst during the later reaction process could be the result of as-prepared samples surface blocking by adsorbed MB degradation byproducts [67]. Moreover, the photocatalytic degradation rate of MB was 1.039 × 10$^{-9}$ mol·L$^{-1}$·s$^{-1}$, 1.031 × 10$^{-9}$ mol·L$^{-1}$·s$^{-1}$ or 0.624 × 10$^{-9}$ mol·L$^{-1}$·s$^{-1}$ with Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a catalyst during 400 min of visible light irradiation, respectively. The self-degradation rate of MB was 0.422 × 10$^{-9}$ mol·L$^{-1}$·s$^{-1}$ without a catalyst. Furthermore, the photonic efficiency was estimated to be 0.0218% (λ = 420 nm), 0.0217% (λ = 420 nm) or 0.0131% (λ = 420 nm) with Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a catalyst, indicating that the sufficient use of a large number of photons could lead to the production of a large number of electron/hole pairs which were responsible for the photocatalytic degradation reaction directly and/or indirectly [68]. According to above results, it was apparent that Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ harvested the highest photocatalytic degradation rate and photonic efficiency compared with N-doped TiO$_2$ for degrading MB. The decolored MB solution and the decrease of MB concentration reflected from Figure 7a might ascribe to the destruction of chromophore and the thorough degradation of the whole MB molecular [69]. We have verified our conjecture by detecting the mount variation of TOC and CO$_2$ during MB degradation.

Figure 7b presents the UV-vis spectral changes during the photodegradation of MB with Bi$_2$GaSbO$_7$ as a photocatalyst. Noticeably, we could observe a subtle blue shift in the maximum absorbance of MB in the spectral changes by using Bi$_2$GaSbO$_7$ as a photocatalyst under visible light irradiation, indicating the rather facile cleavage of the whole conjugated chromophore structure [70]. This blue shift in the maximum absorbance of MB also proved the existence of some photodegradation intermediate products of MB during the photocatalytic degradation of MB under visible light irradiation in the presence of Bi$_2$GaSbO$_7$.

Figure 8 shows the change of TOC for the photocatalytic degradation of MB during visible light irradiation with Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a photocatalyst, which is consistent with the tendency shown in Figure 7. The gradual decrease of TOC represented the gradual disappearance of organic carbon when the MB solution which contained Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ was exposed under visible light irradiation and the removal rate of TOC was 98.23%, 96.42% or 58.08% with Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a catalyst after visible light irradiation for 400 min. In addition, the reactions stopped when the light was turned off in this experiment, which showed the obvious light response, suggesting that MB had been converted to other kinds of byproducts and the organic carbon in the MB had not been decomposed to CO$_2$ [71].

![Figure 7](image-url) **Figure 7.** (a) Photocatalytic degradation of methylene blue under visible light irradiation in the presence of Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$, N-doped TiO$_2$ as well as in the absence of a photocatalyst; (b) Temporal UV-vis absorption spectral changes during the photocatalytic degradation of MB (0.025 mmol/L, pH = 7) in aqueous Bi$_2$GaSbO$_7$ suspensions.
Figure 8. Disappearance of the total organic carbon (TOC) during the photocatalytic degradation of methylene blue with Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a catalyst under visible light irradiation.

Figure 9 shows the amount of variation of CO$_2$ produced during the photocatalytic degradation of MB by using Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a photocatalyst under visible light irradiation. It could be distinctly seen from Figure 9 that the amount of CO$_2$ gradually augmented along the light irradiation time and increased less during the last 100 min when much TOC was eliminated according to the results of Figure 8. In addition, after visible light irradiation of 400 min, the CO$_2$ production of 0.11711 mmol or 0.11512 mmol with Bi$_2$GaSbO$_7$ or Bi$_2$InSbO$_7$ as a catalyst was higher than that of 0.06875 mmol with N-doped TiO$_2$ as a catalyst. In addition, the amount of CO$_2$ production was nearly equivalent to that of the removed TOC; at the same time, the amount of CO$_2$ production or the removed TOC was slightly lower than the amount of reduced MB by using different catalysts with respect to the C element equilibrium, which indicated that MB was mainly degraded into some inorganic products including CO$_2$ and eventually H$_2$O.

Figure 9. CO$_2$ production kinetics during the photocatalytic degradation of methylene blue with Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a catalyst under visible light irradiation.

Figure 10 presents the first order nature of the photocatalytic degradation kinetics with Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a catalyst, which exhibits a linear correlation between ln(C/C$_0$) or ln(TOC/TOC$_0$) and the irradiation time for the photocatalytic degradation of MB under visible light irradiation by using the aforementioned catalysts. The pseudo-first-order kinetic curves of MB photodegradation were plotted to quantitatively compare the degradation rate of MB [72]. In the above expression, C and TOC represented the MB concentration and the total organic carbon concentration at time t, respectively. Likewise, C$_0$ and TOC$_0$ represented the initial concentration of MB and the initial total organic carbon concentration, respectively. By a linear fit for the relationship between
ln(C/C_0) and the irradiation time, the first-order rate constant k_C was estimated to be 0.01470 min^{-1} with Bi_2GaSbO_7 as a catalyst, 0.00967 min^{-1} with Bi_2InSbO_7 as a catalyst or 0.00259 min^{-1} with N-doped TiO_2 as a catalyst, which distinctly showed that Bi_2GaSbO_7 and Bi_2InSbO_7, with the highest and the second highest value of k_C, respectively, exhibited more excellent visible light photocatalytic activities for degrading MB compared with N-doped TiO_2. Similarly, by a linear fit for the relationship between ln(TOC/TOC_0) and the irradiation time, the first-order rate constant k_TOC was estimated to be 0.00881 min^{-1} with Bi_2GaSbO_7 as a catalyst, 0.00745 min^{-1} with Bi_2InSbO_7 as a catalyst or 0.00239 min^{-1} with N-doped TiO_2 as a catalyst. The difference between k_C and k_TOC reflected that there might be some photodegradation intermediate products of MB which were produced during the photocatalytic degradation of MB under visible light irradiation.

![Figure 10. Observed first-order kinetic plots for the photocatalytic degradation of methylene blue with Bi_2GaSbO_7, Bi_2InSbO_7 or N-doped TiO_2 as a catalyst under visible light irradiation.](image)

Figure 10 presents the photocatalytic degradation rate of phenol under visible light irradiation in the presence of Bi_2GaSbO_7, Bi_2InSbO_7 or N-doped TiO_2 as a photocatalyst with respect to time. It could be seen from Figure 11 that improved activity was obtained when colorless phenol was selected as a contaminant model with Bi_2GaSbO_7 or Bi_2InSbO_7 as a photocatalyst in comparison with the N-doped TiO_2. The photocatalytic degradation efficiency of phenol by using Bi_2GaSbO_7, Bi_2InSbO_7 or N-doped TiO_2 as a photocatalyst under visible light irradiation after 400 min was estimated to be 75.00%, 69.76% or 47.08%, respectively, indicating that Bi_2GaSbO_7 or Bi_2InSbO_7 itself had photocatalytic activity and that the photodegradation process of MB by using Bi_2GaSbO_7 or Bi_2InSbO_7 as a photocatalyst was not mainly due to the photosensitive effect [73]. Moreover, we could observe that the photodegradation efficiency or apparent rate constant of phenol or MB in the presence of Bi_2GaSbO_7 or Bi_2InSbO_7 was much higher than that in the presence of N-doped TiO_2, meaning that the visible-light photocatalytic activity of Bi_2GaSbO_7 or Bi_2InSbO_7 was higher than that of N-doped TiO_2.

The specific surface area of Bi_2GaSbO_7 or Bi_2InSbO_7 was measured to be 2.36 m^2 g^{-1} or 1.82 m^2 g^{-1}, which was much smaller than that of N-doped TiO_2, whose specific surface area was 45.53 m^2 g^{-1}. Generally speaking, a larger specific surface area would facilitate higher photocatalytic activities at the same experimental condition [74,75]. However, according to preceding results and discussions, Bi_2GaSbO_7 and Bi_2InSbO_7 showed higher activities than N-doped TiO_2 for degrading MB.
during visible light irradiation, which sufficiently highlighted the excellent photocatalytic properties of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$, and the above results might ascribe to two explanations. Firstly, as already mentioned, the calculated band gap for Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ was 2.59 eV, 2.54 eV or 2.78 eV. Apparently, Bi$_2$GaSbO$_7$ or Bi$_2$InSbO$_7$ possessed a narrower band gap than N-doped TiO$_2$, meaning that Bi$_2$GaSbO$_7$ or Bi$_2$InSbO$_7$ could utilize more visible light energy than N-doped TiO$_2$ [76,77]. Secondly, according to the XRD results of Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$, we could find that Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ were both obtained with high crystallization perfection, which might more efficiently inhibit the recombination of photoinduced electrons and holes than N-doped TiO$_2$.

![Figure 11](image_url)

Figure 11. Photocatalytic degradation of phenol under visible light irradiation in the presence of Bi$_2$GaSbO$_7$, Bi$_2$InSbO$_7$ or N-doped TiO$_2$ as a photocatalyst.

Meanwhile, the photocatalytic degradation rate and photonic efficiency of Bi$_2$GaSbO$_7$ were slightly higher than that of Bi$_2$InSbO$_7$. There were perhaps two probable reasons to explain it. As we all know, the greater mobility of the photoinduced electrons and holes indicated the greater chance that the photoinduced electrons and holes would reach the reactive sites of the catalyst surface, which would bring higher photocatalytic activities. As we previously mentioned, the lattice parameter $a = 10.356497$ Å for Bi$_2$GaSbO$_7$ was lower than the lattice parameter $a = 10.666031$ Å for Bi$_2$InSbO$_7$. Generally speaking, the smaller the ionic radius was, the smaller the size of the particles could be; and the lower the lattice parameter was, the larger the specific surface area could be, which could increase more reactive sites on the photocatalyst surface and absorb more reactive species to improve the photocatalytic activities [78]. In addition, according to previous luminescent studies, the closer the M–O–M bond angle was to 180°, the more delocalized the excited state was [79]. As a result, the charge carriers could move easily in the matrix. In this experiment, for Bi$_2$GaSbO$_7$, the Ga–O–Ga bond angle was 131.302°; accordingly, for Bi$_2$InSbO$_7$, the In–O–In bond angle was 128.640°. Obviously, the bond angle of the Ga–O–Ga bond angle of Bi$_2$GaSbO$_7$ was larger than the bond angle of Bi$_2$InSbO$_7$, which induced that Bi$_2$GaSbO$_7$ exhibited higher photocatalytic activity than Bi$_2$InSbO$_7$.

3.3. **Photocatalytic Degradation Pathway of MB with Bi$_2$GaSbO$_7$ and Bi$_2$InSbO$_7$ as Photocatalysts**

The photodegradation intermediate products of MB in our experiment were identified as azure A, azure C, thionine, phenothiazine, leucomethylene blue, N,N-dimethyl-p-phenylenediamine, benzenesulfinic acid, phenol and aniline. There generated holes h^+, $-O_2^-$ and ·OH radicals, as oxidative agents in the photocatalytic reactions. According to previous studies [80,81], the photodegradation of MB might occur by demethylation. Besides, there were also reports [82] which pointed out that ·OH radicals would first attack $C – S^+ = C$ functional group bonds to open the central aromatic ring which contained both heteroatoms S and N. Therefore, according to previous studies and our test results, a possible photocatalytic degradation pathway for MB was proposed.

Figure 12 shows the suggested photocatalytic degradation pathway scheme for MB under visible light irradiation with Bi$_2$GaSbO$_7$ or Bi$_2$InSbO$_7$ as a catalyst. The MB molecule was converted to small organic species, which were subsequently mineralized into inorganic products such as SO_4^{2-} ions, NO_3^- ions, CO_2 and ultimately water.
3.4. Photocatalytic Degradation Mechanism

Figure 13 presents the action spectra of MB degradation with Bi\textsubscript{2}GaSbO\textsubscript{7} or Bi\textsubscript{2}InSbO\textsubscript{7} as a catalyst under visible light irradiation. A clear photonic efficiency (0.00964% for Bi\textsubscript{2}GaSbO\textsubscript{7} and 0.00942% for Bi\textsubscript{2}InSbO\textsubscript{7} at their respective maximal point) at wavelengths which corresponded to sub-\(E_g\) energies of the photocatalysts (\(\lambda\) from 480 to 700 nm for Bi\textsubscript{2}GaSbO\textsubscript{7} and \(\lambda\) from 490 to 700 nm for Bi\textsubscript{2}InSbO\textsubscript{7}) was observed. The existence of photonic efficiency at this region revealed that the photons were not absorbed by the photocatalysts. Enlightened by the correlation between the low-energy action spectrum and the absorption spectrum of MB, we speculated that any photodegradation which results at wavelengths above 480 nm, should be attributed to photosensitization effect by the dye MB itself (Scheme 1). According to the photosensitization scheme, MB which was adsorbed on Bi\textsubscript{2}GaSbO\textsubscript{7} or Bi\textsubscript{2}InSbO\textsubscript{7} was excited by visible light irradiation. Subsequently, an electron was injected from the excited MB to the conduction band of Bi\textsubscript{2}GaSbO\textsubscript{7} or Bi\textsubscript{2}InSbO\textsubscript{7} where the electron was scavenged by molecular oxygen. This explained the results which were gained with Bi\textsubscript{2}GaSbO\textsubscript{7} or Bi\textsubscript{2}InSbO\textsubscript{7} as a catalyst under visible light irradiation, where the catalyst could serve to reduce recombination of photoinduced electrons and photoinduced holes by scavenging of electrons.

\[
\text{MB}_{(ads)} \xrightarrow{\text{Visible light}} \text{MB}^*_{(ads)}
\]

\[
\text{MB}^*_{(ads)} + \text{Bi}_2\text{GaSbO}_7(\text{or Bi}_2\text{InSbO}_7) \rightarrow \text{Bi}_2\text{GaSbO}_7(\text{or Bi}_2\text{InSbO}_7)e^- + \text{MB}_{(ads)}^+
\]

\[
\text{Bi}_2\text{GaSbO}_7(\text{or Bi}_2\text{InSbO}_7)e^- + \text{O}_2 \rightarrow \text{Bi}_2\text{GaSbO}_7(\text{or Bi}_2\text{InSbO}_7)+ \cdot \text{O}_2^-
\]

Scheme 1. The photosensitization effect by the dye MB.

The situation was different below 480 nm, where the photonic efficiency correlated well with the absorption spectra of Bi\textsubscript{2}GaSbO\textsubscript{7} or Bi\textsubscript{2}InSbO\textsubscript{7}. This result evidently indicated that the mechanism
was the photodegradation of MB by the band gap excitation of Bi₂GaSbO₇ or Bi₂InSbO₇. As already mentioned, holes of \(h^+ \), \(\cdot O_2^- \) and \(\cdot OH^- \) radicals served as oxidative agents in the photocatalytic reactions. Although the detailed experiments about the effect of oxygen and water on the degradation mechanism of MB were not performed, it was sensible to assume that the mechanism in the first step was similar to the observed mechanism for Bi₂GaSbO₇ or Bi₂InSbO₇ under supra-bandgap irradiation, and the production scheme of oxidative radicals commonly was shown below (Scheme 2).

\[
\begin{align*}
\text{Bi}_2\text{GaSbO}_7 (\text{or Bi}_2\text{InSbO}_7) & \quad \xrightarrow{\text{Visible light}} \quad \text{h}^+ + \text{e}^- \\
\text{e}^- + \text{O}_2 & \rightarrow \cdot \text{O}_2^- \quad (7) \\
h^+ + \text{OH}^- & \rightarrow \cdot \text{OH} \quad (8) \\
\cdot \text{O}_2^- + \text{H}_2\text{O} & \rightarrow \text{HO}_2^- + \text{OH}^- \quad (9) \\
\text{HO}_2^- + \text{H}_2\text{O} & \rightarrow \text{H}_2\text{O}_2^- + \cdot \text{OH} \quad (10) \\
\text{H}_2\text{O}_2^- & \rightarrow 2 \cdot \text{OH} \quad (11)
\end{align*}
\]

Scheme 2. The production scheme of oxidative radicals with Bi₂GaSbO₇ or Bi₂InSbO₇ as catalyst.

Figure 14 shows the suggested band structures of Bi₂GaSbO₇ and Bi₂InSbO₇. The positions and width of the conduction band (CB) and the valence band (VB) were studied by calculating the electronic band structure of Bi₂GaSbO₇ or Bi₂InSbO₇ with the plane-wave-based density functional method. The band structure calculations of Bi₂GaSbO₇ and Bi₂InSbO₇ were carried out with the program of Cambridge serial total energy package (CASTEP) and first-principles simulation. It could be seen from Figure 14 that the conduction band of Bi₂GaSbO₇ was composed of Ga 4\(p \) and Sb 5\(p \) orbital component, meanwhile, the valence band of Bi₂GaSbO₇ was composed of a small dominant O 2\(p \) and Bi 6\(s \) orbital component. Similarly, the conduction band of Bi₂InSbO₇ was composed of In 5\(p \) and Sb 5\(p \) orbital component. In addition, the valence band of Bi₂InSbO₇ was composed of a small dominant O 2\(p \) and Bi 6\(s \) orbital component. Direct absorption of photons by Bi₂GaSbO₇ or Bi₂InSbO₇ could produce electron–hole pairs within the catalyst, indicating that the larger energy than the band gap of Bi₂GaSbO₇ or Bi₂InSbO₇ was necessary for decomposing MB by the photocatalysis method.

![Figure 13](image-url)
Figure 13. Action spectra of methylene blue degradation with Bi₂GaSbO₇ or Bi₂InSbO₇ as a catalyst under visible light irradiation.
3.2 O 2p + Bi 6s
2.59 eV
CB (Ga 4p + Sb 5p)
Bi2GaSbO7
VB
Potential (eV vs. SHE)
Bi2InSbO7
CB (In 5p + Sb 5p)
O 2p + Bi 6s
2.54 eV

Figure 14. Suggested band structures of Bi2GaSbO7 and Bi2InSbO7.

4. Conclusions

New photocatalysts Bi2GaSbO7 and Bi2InSbO7 were firstly prepared by the solid-state reaction method. The structural properties and optical absorption properties of Bi2GaSbO7 and Bi2InSbO7 were characterized by some material characterization methods, the photocatalytic properties of Bi2GaSbO7 and Bi2InSbO7 were also verified in comparison with N-doped TiO2. XRD results indicated that Bi2GaSbO7 and Bi2InSbO7 crystallized with the pyrochlore-type structure, cubic crystal system and space group Fd3m. The lattice parameter a for Bi2GaSbO7 or Bi2InSbO7 was a = 10.356497 Å or a = 10.666031 Å. According to the results from the UV-vis absorption spectra of Bi2GaSbO7 and Bi2InSbO7, the band gap of Bi2GaSbO7 or Bi2InSbO7 was estimated to be about 2.59 eV or 2.54 eV, indicating that Bi2GaSbO7 and Bi2InSbO7 showed a strong optical absorption in the visible light region (λ > 420 nm). Photocatalytic degradation of aqueous MB was realized under visible light irradiation in the presence of Bi2GaSbO7 or Bi2InSbO7 accompanied with the formation of final products such as CO2 and water. The complete removal of organic carbon from MB was obtained as indicated from TOC and CO2 yield measurements with Bi2GaSbO7 or Bi2InSbO7 as a catalyst under visible light irradiation. Compared with N-doped TiO2, Bi2GaSbO7 and Bi2InSbO7 exhibited higher photocatalytic activities for MB degradation under visible light irradiation. Consequently, according to the above analyses, Bi2GaSbO7 and Bi2InSbO7 both had great potential to degrade MB in textile industry wastewater. In addition, Bi2GaSbO7 exhibited slightly higher photocatalytic activities for the degradation of MB than Bi2InSbO7.

Acknowledgments: This work was supported by a grant from the Natural Science Foundation of Jiangsu Province (No. BK20141312), by a Project of Science and Technology Development Plan of Suzhou City of China from 2014 (No. ZXG201440), by a grant from China-Israel Joint Research Program in Water Technology and Renewable Energy (No. 5).

Author Contributions: Jingfei Luan were involved with all aspects of the study including conceiving, designing, data interpretation and writing the manuscript. Yue Shen, Yanyan Li and Yaron Paz performed the experiments and analyzed data. Jingfei Luan, Yue Shen and Yanyan Li wrote the paper. All authors read and approved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yao, J.T.; Jia, R.; Zheng, L.L.; Wang, B.X. Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnol. Bioprocess Eng. 2013, 18, 868–877. [CrossRef]
2. Apostol, L.C.; Pereira, L.; Pereira, R.; Gavrilescu, M.; Alves, M.M. Biological decolorization of xanthene dyes by anaerobic granular biomass. Biodegradation 2012, 23, 725–737. [CrossRef] [PubMed]
3. Aravind, P.; Subramanyan, V.; Ferro, S.; Gopalakrishnan, R. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater. *Water Res.* 2016, 93, 230–241. [CrossRef] [PubMed]

4. Korbahti, B.K.; Artut, K.; Gecgel, C.; Ozer, A. Electrochemical decolorization of textile dyes and removal of metal ions from textile dye and metal ion binary mixtures. *Chem. Eng. J.* 2011, 173, 677–688. [CrossRef]

5. Khedr, A.M.; Abu, G.N.; Salem, M.F.; Gaber, M. Determination of the efficiency of different modified electrodes in electrochemical degradation of reactive Red 24 dyes in wastewater dyestuff solutions. *Int. J. Electrochem. Sci.* 2012, 7, 8779–8793.

6. Haque, M.M.; Smith, W.T.; Wong, D.K.Y. Conducting polypyrrole films as a potential tool for electrochemical treatment of azo dyes in textile wastewaters. *J. Hazard. Mater.* 2015, 283, 164–170. [CrossRef] [PubMed]

7. Shirmardi, M.; Mahvi, A.H.; Mesdaghinia, A.; Nasseri, S.; Nabizadeh, R. Adsorption of acid red18 dye from aqueous solution using single-wall carbon nanotubes: Kinetic and equilibrium. *Desalin. Water Treat.* 2013, 51, 6507–6516. [CrossRef]

8. Hayati, B.; Mahmood, N.M. Modification of activated carbon by the alkaline treatment to remove the dyes from wastewater: Mechanism, isotherm and kinetic. *Desalin. Water Treat.* 2012, 47, 322–333. [CrossRef]

9. Nascimento, G.E.; Duarte, M.M.B.; Campos, N.F.; da Rocha, O.R.S.; da Silva, V.L. Adsorption of azo dyes using peanut hull and orange peel: A comparative study. *Environ. Technol.* 2014, 35, 1436–1453. [CrossRef] [PubMed]

10. Tang, H.; Zhang, D.; Tang, G.G.; Ji, X.R.; Li, C.S.; Yan, X.H.; Wu, Q. Low temperature synthesis and photocatalytic properties of mesoporous TiO$_2$ nanospheres. *J. Alloy. Compd.* 2014, 591, 52–57. [CrossRef]

11. Dragan, E.S.; Dinu, I.A. Removal of azo dyes from aqueous solution by coagulation/floculation with strong polycations. *Res. J. Chem. Environ.* 2008, 12, 5–11.

12. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. *Nature 1972*, 238, 37–38. [CrossRef] [PubMed]

13. Xu, J.; Wan, Y.P.; Huang, Y.L.; Wang, Y.R.; Qin, L.; Seo, H.J. Layered oxide semiconductor In$_2$Fe$_2$O$_7$: Optical properties and visible-light responsive photocatalytic abilities. *Mater. Lett.* 2016, 179, 175–178. [CrossRef]

14. Bu, Y.Y.; Chen, Z.Y.; Sun, C.J. Highly efficient Z-Scheme Ag$_3$PO$_4$/Ag/WO$_3$-x photocatalyst for its enhanced photocatalytic performance. *Appl. Catal. B* 2015, 179, 363–371. [CrossRef]

15. Zhao, B.; Wang, M.; Lin, L.; Zeng, Q.Q.; He, D.N. Synthesis of parallel squared nanosheet-assembled Bi$_2$WO$_6$ microstructures under alkalescent hydrothermal treatment. *Ceram. Int.* 2014, 40, 5831–5835. [CrossRef]

16. Alemi, A.A.; Kashfi, R.; Shabani, B. Preparation and characterization of novel Ln (Gd$^{3+}$, Ho$^{3+}$ and Yb$^{3+}$)-doped Bi$_2$MoO$_6$ with Aurivillius layered structures and photocatalytic activities under visible light irradiation. *J. Mol. Catal. A Chem.* 2014, 392, 290–298. [CrossRef]

17. Nazim, S.; Kousar, T.; Shahid, M.; Khan, M.A.; Nasar, G.; Sher, M.; Warsi, M.F. New graphene-CoxZn$_{1-x}$Fe$_2$O$_4$ nano-heterostructures: Magnetically separable visible light photocatalytic materials. *Ceram. Int.* 2016, 42, 7647–7654. [CrossRef]

18. Ghaffar, I.; Warsi, M.F.; Shahid, M.; Shakir, I. Unprecedented photocatalytic activity of carbon coated/MoO$_3$ core-shell nanoheterostructures under visible light irradiation. *Phys. E Low-Dimens. Syst. Nanostruct.* 2016, 79, 1–7. [CrossRef]

19. Kiransan, M.; Khataee, A.; Karaca, S.; Sheydaei, M. Artificial neural network modeling of photocatalytic removal of a disperse dye using synthesized of ZnO nanoparticles on montmorillonite. *Spectrochim. Acta A* 2015, 140, 465–473. [CrossRef] [PubMed]

20. Khataee, A.; Karimi, A.; Arefi-Oskou, S.; Soltani, R.D.C.; Hanifehpour, Y.; Soltani, B.; Joo, S.W. Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. *Ultrasom. Sonochem.* 2015, 22, 371–381. [CrossRef] [PubMed]

21. Yi, X.; Li, J.L. Synthesis and optical property of NaTaO$_3$ nanofibers prepared by electrospinning. *J. Sol-Gel Sci. Technol.* 2010, 53, 480–484. [CrossRef]

22. Yang, J.X.; Akbarzadeh, J.; Maurer, C.; Peterlik, H.; Schubert, U. Sol-gel synthesis of ZnTiO$_3$ using a single-source precursor based on p-carboxybenzaldehyde oxime as a linker. *J. Mater. Chem.* 2012, 22, 24034–24041. [CrossRef]
23. Suresh, R.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Kumar, S.P.; Muthamizh, S.; Stephen, A.; Narayanan, V. Doping of Co into V$_2$O$_5$ nanoparticles enhances of methylene blue. *J. Alloy. Compd.* **2014**, *598*, 151–160. [CrossRef]

24. Ge, L.; Zhang, X.H. Synthesis of novel visible light driven BiVO$_4$ photocatalysts via microemulsion process and its photocatalytic performance. *J. Inorg. Mater.* **2009**, *24*, 453–456. [CrossRef]

25. Yi, X.F.; Zheng, J.S.; Zhao, Y.B. Hydrothermal synthesis of CdS nanorods in NaOH solution. *Chem. J. Chin. Univ.* **2012**, *33*, 2597–2603.

26. Yang, S.X.; Yue, Q.; Wu, F.M.; Huo, N.J.; Chen, Z.H.; Yang, J.H.; Li, J.B. Synthesis of the nanostructured Cd$_4$Ge$_6$ photocatalysts and their visible-light driven photocatalytic degradation property. *J. Alloy. Compd.* **2014**, *597*, 91–94. [CrossRef]

27. Wu, W.M.; Lin, R.; Shen, L.J.; Liang, R.W.; Yuan, R.S.; Wu, L. Visible-light-induced photocatalytic hydrogenation of 4-nitroaniline over In$_2$S$_3$ photocatalyst in water. *Catal. Commun.* **2013**, *40*, 1–4. [CrossRef]

28. Wei, R.J.; Hu, J.C.; Zhou, T.F.; Zhou, X.L.; Liu, J.X.; Li, J.L. Ultrathin SnS$_2$ nanosheets with exposed [001] facets and enhanced photocatalytic properties. *Acta Mater.* **2014**, *66*, 163–171. [CrossRef]

29. Han, Q.F.; Chen, L.; Wang, M.J.; Yang, X.J.; Lu, L.D.; Wang, X. Low-temperature synthesis of uniform Sn$_2$S$_3$ nanorods and its visible-light-driven photocatalytic activities. *Mater. Sci. Eng. B* **2010**, *166*, 118–121. [CrossRef]

30. Ding, J.J.; Sun, S.; Yan, W.H.; Bao, J.; Gao, C. Photocatalytic H-2 evolution on a novel CaIn$_2$S$_4$ photocatalyst under visible light irradiation. *Int. J. Hydrogen Energy* **2013**, *38*, 13153–13158. [CrossRef]

31. Hanifehpour, Y.; Soltani, B.; Amani-Ghadim, A.R.; Hedayati, B.; Khomami, B.; Joo, S.W. Praseodymium-doped ZnS nanomaterials: Hydrothermal synthesis and characterization with enhanced visible light photocatalytic activity. *J. Ind. Eng. Chem.* **2016**, *34*, 41–50. [CrossRef]

32. Peng, W.C.; Chen, Y.; Li, X.Y. MoS$_2$/reduced graphene oxide hybrid with CdS nanoparticles as a visible light photocatalyst for the reduction of 4-nitrophenol. *J. Hazard. Mater.* **2016**, *309*, 173–179. [CrossRef] [PubMed]

33. Kato, T.; Hakari, Y.; Ikeda, S.; Jia, Q.X.; Iwase, A.; Kudo, A. Utilization of metal sulfide material of (CuGa)(1-x)Zn$_2$S$_3$ solid solution with visible light response in photocatalytic and photoelectrochemical solar water splitting systems. *J. Phys. Chem. Lett.* **2015**, *6*, 1042–1047. [CrossRef] [PubMed]

34. Eder, D.; Motta, M.; Windle, A.H. Iron-doped Pt-TiO$_2$ nanotubes for photo-catalytic water splitting. *Nanotechnology* **2009**, *20*, 055602. [CrossRef] [PubMed]

35. Biswas, S.K.; Baeg, J.O. Enhanced photoactivity of visible light responsive W incorporated FeVO$_4$ photoanode for solar water splitting. *Int. J. Hydrogen Energy* **2013**, *38*, 14451–14457. [CrossRef]

36. Anandan, S.; Rao, T.N.; Gopalan, R.; Ikuma, Y. Fabrication of visible-light-driven N-doped ordered mesoporous TiO$_2$ photocatalysts and their photocatalytic applications. *J. Nanosci. Nanotechnol.* **2014**, *14*, 3181–3186. [CrossRef] [PubMed]

37. Zong, X.; Yan, H.J.; Wu, G.P.; Ma, G.J.; Wen, F.Y.; Wang, L.; Li, C. Enhancement of photocatalytic H-2 evolution on CdS by loading MOS$_2$ as cocatalyst under visible light irradiation. *J. Am. Chem. Soc.* **2008**, *130*, 7176–7177. [CrossRef] [PubMed]

38. Zong, X.; Han, J.F.; Ma, G.J.; Yan, H.J.; Wu, G.P.; Li, C. Photocatalytic H-2 evolution on CdS loaded with WS$_2$ as cocatalyst under visible light irradiation. *J. Phys. Chem. C* **2011**, *115*, 12202–12208. [CrossRef]

39. Dai, K.; Lv, J.L.; Lu, L.H.; Liang, C.H.; Geng, L.; Zhu, G.P. A facile fabrication of plasmonic g-C$_3$N$_4$/Ag$_2$WO$_4$/Ag ternary heterojunction visible-light photocatalyst. *Mater. Chem. Phys.* **2016**, *177*, 529–537. [CrossRef]

40. Wang, X.F.; Hu, H.M.; Chen, S.H.; Zhang, K.H.; Zhang, J.; Zou, W.S.; Wang, R.X. One-step fabrication of BiOCl/CuS heterojunction photocatalysts with enhanced visible-light responsive activity. *Mater. Chem. Phys.* **2015**, *158*, 67–73. [CrossRef]

41. Xie, T.P.; Liu, C.L.; Xu, L.J.; Yang, J.; Zhou, W. Novel heterojunction Bi$_2$O$_3$/SrFe$_2$O$_{19}$ magnetic photocatalyst with highly enhanced photocatalytic activity. *J. Phys. Chem. C* **2013**, *117*, 24601–24610. [CrossRef]

42. Han, C.C.; Ge, L.; Chen, C.F.; Li, Y.J.; Xiao, X.L.; Zhang, Y.N.; Guo, L.L. Novel visible light induced Co$_3$O$_4$-g-C$_3$N$_4$ heterojunction photocatalysts for efficient degradation of methyl orange. *Appl. Catal. B Environ.* **2014**, *147*, 546–553. [CrossRef]

43. Liu, X.; Li, Y.X.; Peng, S.Q.; Lu, G.X.; Li, S.B. Photosensitization of SiW$_{11}$O$_{398}$—Modified TiO$_2$ by Eosin Y for stable visible-light H-2 generation. *Int. J. Hydrogen Energy* **2013**, *38*, 11709–11719. [CrossRef]
44. Biswas, S.; Sundstrom, V.; De, S. Facile synthesis of luminescent TiO$_2$ nanorods using an anionic surfactant: Their photosensitization and photocatalytic efficiency. *Mater. Chem. Phys.* 2014, 147, 761–771. [CrossRef]

45. Pirhashemi, M.; Habibi-Yangjeh, A. Photosensitization of ZnO by AgBr and Ag$_2$CO$_3$: Nanocomposites with tandem n-n heterojunctions and highly enhanced visible-light photocatalytic activity. *J. Colloid Interface Sci.* 2016, 474, 103–113. [CrossRef] [PubMed]

46. Lu, H.J.; Xu, L.L.; Wei, B.; Zhang, M.Y.; Gao, H.; Sun, W.J. Enhanced photosensitization process induced by the p-n junction of Bi$_2$O$_2$CO$_3$/BiOCl heterojunctions on the degradation of rhodamine B. *Appl. Surf. Sci.* 2014, 303, 360–366. [CrossRef]

47. Chen, X.F.; Zhang, J.; Huo, Y.N.; Li, H.X. Preparation and visible light catalytic activity of three-dimensional ordered macroporous CdS/TiO$_2$ films. *Chin. J. Catal.* 2013, 34, 949–955. [CrossRef]

48. Cao, J.; Xu, B.Y.; Lin, H.L.; Luo, B.D.; Chen, S.F. Novel Bi$_2$S$_3$-sensitized BiOCl with highly visible light photocatalytic activity for the removal of rhodamine B. *Catal. Commun.* 2012, 26, 204–208. [CrossRef]

49. Zou, Z.G.; Ye, J.H.; Arakawa, H. Photophysical and photocatalytic properties of InMO$_3$ (M = Nb$^{5+}$, Ta$^{5+}$) under visible light irradiation. *Mater. Res. Bull.* 2001, 36, 1185–1193. [CrossRef]

50. Zou, Z.G.; Arakawa, H. Direct water splitting into H$_2$ and O$_2$ under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. *J. Photochem. Photobiol. A Chem.* 2003, 158, 145–162. [CrossRef]

51. Zou, Z.G.; Ye, J.H.; Arakawa, H. Role of R in Bi$_2$RNbO$_7$ (R = Y, rare earth): Effect on band structure and photocatalytic properties. *J. Phys. Chem. B* 2002, 106, 517–520. [CrossRef]

52. Zou, Z.G.; Ye, J.H.; Arakawa, H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi$_2$MNbO$_7$ (M = Al$^{3+}$, Ga$^{3+}$ and In$^{3+}$). *Chem. Phys. Lett.* 2001, 333, 57–62. [CrossRef]

53. Zou, Z.G.; Ye, J.H.; Arakawa, H. Substitution effects of In$^{3+}$ by Fe$^{3+}$ on photocatalytic and structural properties of Bi$_2$InNbO$_7$ photocatalysts. *J. Mol. Catal. A Chem.* 2001, 168, 289–297. [CrossRef]

54. Luan, J.F.; Pan, B.C.; Paz, Y.; Li, Y.M.; Wu, X.S.; Zou, Z.G. Structural and photocatalytic properties of novel Bi$_2$GaVO$_7$. * Mater. Chem. Phys.* 2007, 104, 119–124. [CrossRef]

55. Luan, J.F.; Pan, B.C.; Paz, Y.; Li, Y.M.; Wu, X.S.; Zou, Z.G. Structural, photophysical and photocatalytic properties of new Bi$_2$SbVO$_7$ under visible light irradiation. *Phys. Chem. Chem. Phys.* 2009, 11, 6289–6298. [CrossRef] [PubMed]

56. Robertson, J.; Peacock, P.W.; Towler, M.D.; Needs, R. Electronic structure of p-type conducting transparent oxides. *Thin Solid Films* 2002, 411, 96–100. [CrossRef]

57. Yu, X.L.; An, X.Q.; Shavel, A.; Banez, M.; Cabot, A. The effect of the Ga content on the photocatalytic hydrogen evolution of Culn$_{1-x}$Ga$_x$S$_2$ nanocrystals. *J. Mater. Chem.* 2014, 2, 12317–12322. [CrossRef]

58. Zhao, H.P.; Tang, J.L.; Lai, Q.S.; Cheng, G.; Liu, Y.L.; Chen, R. Enhanced visible light photocatalytic performance of Sb-doped (BiO)$_2$CO$_3$ nanobelts. *Catal. Commun.* 2015, 58, 190–194. [CrossRef]

59. Omidi, A.; Habibi-Yangjeh, A.; Pirhashemi, M. Application of ultrasonic irradiation method for preparation of ZnO nanostructures doped with Sb$^{3+}$ ions as a highly efficient photocatalyst. *Appl. Surf. Sci.* 2013, 276, 468–475. [CrossRef]

60. Al-Handi, A.M.; Sillanpaa, M.; Bora, T.; Dutta, J. Efficient photocatalytic degradation of phenol in aqueous solution by SnO$_2$:Sb nanoparticles. *Appl. Surf. Sci.* 2016, 370, 229–236. [CrossRef]

61. Du, H.Y.; Luan, J.F. Synthesis, characterization and photocatalytic activity of new photocatalyst CdBiYO$_4$. *Solid State Sci.* 2012, 14, 1295–1305. [CrossRef]

62. Sakhthivel, S.; Shankar, M.V.; Palanichamy, M.; Arabindoo, B.; Bahnemann, D.W.; Murugesan, V. Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO$_2$ catalyst. *Water Res.* 2004, 38, 3001–3008. [CrossRef] [PubMed]

63. Marugan, J.; Hufschmidt, D.; Sagawe, G.; Selzer, V.; Bahnemann, D. Optical density and photonic efficiency of silica-supported TiO$_2$ photocatalysts. *Water Res.* 2006, 40, 833–839. [CrossRef] [PubMed]

64. Zou, Z.G.; Ye, J.H.; Arakawa, H. Preparation, structural and photophysical properties of Bi$_2$InNbO$_7$ compound. *J. Mater. Sci. Lett.* 2000, 19, 1909–1911. [CrossRef]

65. Tauc, J.; Grigorov, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. *Phys. Status Solidi (B)* 1966, 15, 627–637. [CrossRef]

66. Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Nanostructured N-doped TiO$_2$ coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. *Appl. Catal. B Environ.* 2015, 170, 153–161. [CrossRef]
67. Klein, M.; Nadolna, J.; Golabiewska, A.; Mazierski, P.; Klimczuk, T.; Remita, H.; Zaleska-Medynska, A. The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO$_2$ by radiolytic method. *Appl. Surf. Sci.* 2016, 378, 37–48. [CrossRef]

68. Guesh, K.; Marquez-Alvarez, C.; Chebude, Y.; Diaz, I. Enhanced photocatalytic activity of supported TiO$_2$ by selective surface modification of zeolite Y. *Appl. Surf. Sci.* 2016, 378, 473–478. [CrossRef]

69. Wang, Q.; Tian, S.L.; Cun, J.; Ning, P. Degradation of methylene blue using a heterogeneous Fenton process catalyzed by ferrocene. *Desalin. Water Treat.* 2013, 51, 5821–5830. [CrossRef]

70. Wang, Q.; Chen, C.C.; Zhao, D.; Ma, W.H.; Zhao, J.C. Change of adsorption modes of dyes on fluorinated TiO$_2$ and its effect on photocatalytic degradation of dyes under visible irradiation. *Langmuir* 2008, 24, 7338–7345. [CrossRef] [PubMed]

71. Sun, H.; Qiu, G.H.; Wang, Y.; Feng, X.H.; Yin, H.; Liu, F. Effects of Co and Ni co-doping on the physicochemical properties of cryptomelane and its enhanced performance on photocatalytic degradation of phenol. *Mater. Chem. Phys.* 2014, 148, 783–789. [CrossRef]

72. Tian, N.; Zhang, Y.H.; Huang, H.W.; He, Y.; Guo, Y.X. Influences of Gd substitution on the crystal structure and visible-light-driven photocatalytic performance of Bi$_2$WO$_6$. *J. Phys. Chem. C* 2014, 118, 15640–15648. [CrossRef]

73. Calza, P.; Rigo, L.; Sangermano, M. Investigations of photocatalytic activities of photosensitive semiconductors dispersed into epoxy matrix. *Appl. Catal. B Environ.* 2011, 106, 657–663. [CrossRef]

74. Zhang, H.; Lv, X.J.; Li, Y.M.; Wang, Y.; Li, J.H. P25-graphene composite as a high performance photocatalyst. *ACS Nano* 2010, 4, 380–386. [CrossRef] [PubMed]

75. Ahmad, M.; Ahmed, E.; Hong, Z.L.; Xu, J.F.; Khalid, N.R.; Elhissi, A.; Ahmed, W. A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. *Appl. Surf. Sci.* 2013, 274, 273–281. [CrossRef]

76. Zhai, H.F.; Li, A.D.; Kong, J.Z.; Li, X.F.; Zhao, J.; Guo, B.L.; Yin, J.; Li, Z.S.; Wu, D. Preparation and visible-light photocatalytic properties of BiNbO$_4$ and BiTaO$_4$ by a citrate method. *J. Solid State Chem.* 2013, 202, 6–14. [CrossRef]

77. Feng, H.Y.; Hou, D.F.; Huang, Y.H.; Hu, X.L. Facile synthesis of porous InNbO$_4$ nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. *J. Alloy. Compd.* 2014, 592, 301–305. [CrossRef]

78. Buvaneswari, K.; Karthiga, R.; Kavitha, B.; Rajarajan, M.; Suganthi, A. Effect of FeWO$_4$ doping on the photocatalytic activity of ZnO under visible light irradiation. *Appl. Surf. Sci.* 2015, 356, 333–340. [CrossRef]

79. Wiegel, M.; Middel, W.; Blasse, G. Influence of ns2 ions on the luminescence of niobates and tantalates. *J. Mater. Chem.* 1995, 5, 981–983. [CrossRef]

80. Yogi, C.; Kojima, K.; Wada, N.; Tokumoto, H.; Takai, T.; Mizoguchi, T.; Tamaki, H. Photocatalytic degradation of methylene blue by TiO$_2$ film and Au particles-TiO$_2$ composite film. *Thin Solid Films* 2008, 516, 5881–5884. [CrossRef]

81. Rauf, M.A.; Meetani, M.A.; Khaleel, A.; Ahmed, A. Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. *J. Chem. Eng.* 2010, 157, 373–378. [CrossRef]

82. Sharma, S.D.; Saini, K.K.; Kant, C.; Sharma, C.P.; Jain, S.C. Photodegradation of dye pollutant under UV light by nano-catalyst doped titania thin films. *Appl. Catal. B Environ.* 2008, 84, 233–240. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).