New Early Eocene Basal tapiromorph from Southern China and Its Phylogenetic Implications

Bin Bai1,2*, Yuanning Wang1*, Jin Meng2,1, Qian Li1, Xun Jin1

1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China, 2 Division of Paleontology, American Museum of Natural History, New York, New York, United States of America

Abstract

A new Early Eocene tapiromorph, *Meridiolophus expansus* gen. et sp. nov., from the Sanshui Basin, Guangdong Province, China, is described and discussed. It is the first reported Eocene mammal from the basin. The new taxon, represented by a left fragmentary mandible, is characterized by an expanded anterior symphyseal region, a long diastema between c1 and p1, a rather short diastema between p1 and p2, smaller premolars relative to molars, an incipient metaconid appressed to the protoconid on p3, a prominent entoconid on p4, molar metaconid not twinned, cristid obliqua extending mesially and slightly lingually from the hypoconid,inclined metalophid and hypolophid, and small hypolophid on the lower preultimate molars. *Meridiolophus* is morphologically intermediate between basal *Homogalax*-like taxa and derived tapiromorphs (such as *Heptodon*). Phylogenetic analysis indicates Equidae is more closely related to Tapiromorpha than to Palaeotheriidae, although the latter is only represented by a single species *Pachynolophus eulaliensis*. ‘Isectolophids’, with exception of *Meridiolophus* and *Karagalax*, has the closest affinity with Chalicotherioidea. Furthermore, the majority rule consensus tree shows that *Meridiolophus* is closer to *Karagalax* than to any other ‘isectolophid’, and both genera represent stem taxa to crown group Ceratomorpha.

Introduction

The earliest known perissodactyls appeared almost simultaneously in Eurasia and North America at the beginning of the Eocene (53.5 Ma), and achieved their greatest diversity and abundance in the middle Eocene [1]. Although the fossil record of early Eocene perissodactyls is relatively good compared to many other groups of mammals, such as primates and artiodactyls, the origin and phylogenetic relationships of perissodactyls are still unclear. For the intra-ordinal relationship of extant perissodactyls, both morphological and molecular studies unambiguously support a ceratomorph-hippomorph dichotomy [2]. The former includes tapirs and rhinoceroses, and the latter includes horses. In contrast, various phylogenetic analyses including extinct groups, such as bronotheres, chalicotheres, and early relatives of ceratomorphs and equoids, have generated discrepant results based on morphological data [1]. For instance, the Ancylodonta is closely related to either Tapiromorpha or Brontotherioida according to different authors [1]. However, the monophyletic Ceratomorpha is strongly supported by both molecular and morphological characters [2–4].

In any case, perissodactyls already exhibited a high diversity at the beginning of the Eocene, as exemplified by a considerable number of early perissodactyls reported from China, including ‘isectolophids’ (e.g. *Orientolophus, Chaotiania*) [5,6], palaechorines (*Propachynolophus hengyangensis, Propalaeotherium sinense*) [7–9], and chalicotheres (*Pappomoropus, Danjiangia*) [6,10]. Hooker et al. [11] considered both *Propalaeotherium sinense* and *Danjiangia* members of Lambdotheriidae. Here we report another new basal tapiromorph from the Early Eocene Huayong Formation, Sanshui Basin, Guangdong Province, China. The Paleogene deposits in the Sanshui Basin are rich in microfossils [12] and fish fossils [13], but other vertebrate fossils are rare except for a new “ciconiform” bird from the Huayong Formation [14] and a few Paleocene bemalambdids from the Buxin Formation [15] or Baoyuc Formation [12]. The Huayong Formation is Early Eocene (Bumianian) based on the occurrence of ostracods similar to those found in Lingcha Formation, Hengyang Basin [16], and not middle or late Eocene as otherwise interpreted [17,18]. Besides Paleocene bemalambids, the new specimen is the second report of fossil mammals from the Sanshui Basin, and supports the early Eocene age of the Huayong Formation. We assign the new taxon to the family ‘Isectolophidae’, which was traditionally regarded as the basal group of the Tapiromorpha [19], although it was probably not a monophyletic group [20]. In light of the new species reported here and other early perissodactyls recently known from various localities in Asia, we conduct a phylogenetic analysis to investigate the relationships of basal tapiromorphs and discuss the phylogenetic position of the Sanshui specimen.
Methods

The terminology of tooth structure follows that of [21]. Log ratio diagrams were plotted for comparisons of tooth dimensions using the method described by [22]. The original matrix for phylogenetic analysis was based on [23]. Six taxa were added to the matrix using Mesquite [24]. Heuristic search with random Addition Sequence and Tree-Bisection-Reconnection (TBR) branch-swapping was performed in TNT 1.1 with 1000 replications [25]. The specimen is housed in the collections of the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP), Chinese Academy of Sciences, Beijing, China.

Institutional Abbreviations

AMNH, Division of Paleontology, American Museum of Natural History, New York, NY, USA.
BMNH, British Museum of Natural History, London, UK.
GSP–UM, Geological Survey of Pakistan–University of Michigan, Quetta, Pakistan.
H–GSP, Howard University–Geological Survey of Pakistan, Quetta, Pakistan.
IRSNB, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.
IVPP, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China.
UM, University of Michigan, Ann Arbor, USA.

Nomenclatural Acts

The electronic edition of this article conforms to the requirements of the amended International Code of Zoological Nomenclature, and hence the new names contained herein are available under that Code from the electronic edition of this article. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix “urn:lsid:zoobank.org:act/”. The LSID for this publication is: urn:lsid:zoobank.org:act:27D53CD0-2A9A-427A-9191-BC873C7B5EB9

Type species. Meridiolophus expansus sp. nov.

Diagnosis. Symphyseal region flaring out anteriorly. Post-canine diastema long and post p1 diastema rather short. Premolars relatively small compared with molars. The p2 talonid very reduced. The p3 metaconid small and closely appressed to the protoconid. The p4 entoconid prominent and hypolophid weak. Lower molar trigonid long, paralophid short, metalophid and hypoconulid oblique, and hypoconulid small on the lower preulate molars. The m1-2 hypolophid notched relatively deeply. The m3 hypolophid notched shallowly and hypoconulid lobe present.

Differential diagnosis. Small basalmostriomorph with cristid obliqua extending mesially and slightly lingually on molars, in contrast to more lingually extended cristid obliqua in early eocouds; the degree of lophodonty similar to that of Cardiolophus and Karagalax, more lophodont than that of Orientolophus, and less lophodont than those of other basal tapiromorphs. Differs from other basal tapiromorphs by having a flared out anterior symphyseal region, a long post-canine diastema, a very short diastema between p1–2, smaller premolars relative to molars, the metaconid closely appressed to the protoconid on p3, a prominent entoconid on p4, and wider lower molars. Differs from Cardiolophus, Homogalax, Chowlia, and Gandheralophus by having a shorter paralophid and a relatively longer trigonid compared with the talonid. Further differs from Cardiolophus, Homogalax, and Chowlia by having smaller hypoconulids on lower preulate molars and metaconids not twinned. Further differs from Gandheralophus by having more oblique metalophids and hypolophids on lower molars. Differs from Karagalax by having lingually more open talonid basin on lower molars. Differs from Isctolophus by being much less lophodont, and having a shorter paralophid.

Etymology. Latin “meridies” meaning the south, with reference to the Sanshui Basin in South China, the locality from where this genus was first reported; and the Greek “lophus” meaning crest, a commonly used root in early perissodactyl names.

Horizon and locality. Huayong Formation (early Eocene), Shishan, Sanshui Basin, Guangdong Province, China.

Meridiolophus expansus gen. et sp. nov.

urn:lsid:zoobank.org:act:22FE130F-8EA2-4FD0-BF51-8990F25BB041

Type specimen. IVPP V 20125

Description

The material (IVPP V 20125) described in this paper is represented by a left lower jaw with p2–m2, and m3 with hypoconulid broken (Fig. 1A–F). The cheek teeth measurements from the mandible [length/maximum width in mm]: p1 (3.3/2.3), p2 (4.2/2.6), p3 (5.3/3.7), p4 (6.1/4.4), m1 (7.4/5.6), m2 (8.3/6.3), and m3 (7.6/7.0).

The horizontal ramus of the mandible is broken below the molars, and preserves a partial canine alveolus anteriorly (Fig. 1A–C). The alveolar border abruptly decreases before p2, and the diastema between the canine and p1 is slightly concave ventrally. The ventral border of the horizontal ramus extends anterodorsally for a short distance, resulting in an anteroposteriorly short and dorsoventrally narrow rostral region. The preserved anterior end of the symphyseal region flares out laterally, indicating a constricted symphyseal region in the middle and expanded incisor-canine region anteriorly. Two mental foramina are present below p1 and p3 respectively, with the posterior one slightly larger and lower. The mandibular symphysis ends at the level of the posterior border of p2.

The oval-shaped alveolus anterior to p2 indicates a single-rooted and small p1 (Fig. 1A B), which is separated from the canine by a long diastema (9.06 mm) and from p2 by an extremely short diastema (1.40 mm).

The p2 has two roots, with a single main cusp on the crown (Fig. 1D–F). A sharp crest extends from the main cusp mesioventrally, curving slightly lingually at its extremity. Thus, the mesiolingual wall of p2 is slightly concave. A distal crest extends from the main
cusp buccoventrally, with a relatively deep groove on the buccal side and an incipient basin lingually. No cingulids are present on either side of the tooth.

The p3 is nearly oval in outline. The trigonid is longer and narrower than the talonid. The protoconid is the main cusp in the middle of the crown, from which a short protolophid extends mesially, ending in a larger and higher paraconid compared with that of p2. The protolophid is relatively deeply notched. An indistinct paralophid extends lingually from the paraconid for a very short distance. A relatively deep groove is present lingually between the protoconid and paraconid. The smaller metacol toid is not clearly divided from the protoconid, and is appressed to the protoconid on the distolingual side. A shallow groove is discernable lingually between the protoconid and metaconid. A crest extends distally from the metaconid along the middle longitudinal axis of the tooth, representing a rudimentary cristid obliqua. A prominent ectoflexid is present and the talonid basin is shallow without an entoconid. The cingulid is only present at the buccal side of the talonid.

The p4 is rectangular in outline and submolariform in morphology. The trigonid is slightly longer and narrower than the talonid. Both are much wider and deeper than those of p3. The protoconid and the metaconid are conical and the latter is slightly more distally placed. The metaconid is not twinned. The metalophid is weak and notched. The protolophid extends mesially and slightly linguually from the protoconid, ending in a small paraconid, from which a short paralophid extends ventrolinguually. The hypoconid is large and extends a cristid obliqua mesially and slightly lingually to the buccal side of the midline in a relatively high position. The entoconid is prominent and slightly lower than the hypoconid. A rather weak and somewhat incomplete crest connects the entoconid with the hypoconid. Weak cingulids are present at the mesiobuccal corner and the buccal side of the ectoflexid.

The m1 is heavily worn and rectangular in outline. The trigonid is shorter and narrower than the talonid. The trigonid is similar to that of p4, except for the stronger lophids between cusps. The talonid is also similar to that of p4; however, the large and conical entoconid is slightly distally placed compared with hypoconid, and the metalophid and protolophid are parallel to the hypolophid and the cristid obliqua, respectively. Because the tooth is worn nearly to the posterior cingulid, the hypoconulid is not discernable, but it is probable that the hypoconulid is weak. The cingulid is complete at the buccal side except at the base of the hypoconid. The posterior cingulid is also present. The m2 is moderately worn, and the portion around the hypoconulid is broken. The general morphological characters are similar to those of m1, except being slightly longer and wider. Furthermore, the cingulids are continuous and complete along the buccal and posterior sides.

The m3 is slightly worn, and almost the whole hypoconid and hypoconulid are broken. The tooth is similar to m1 and m2, except for a large hypoconulid inferred from a small preserved part posterior to the entoconid. Based on this slightly worn molar, it is obvious that the metalophid is relatively deeply notched.

Comparisons

The cristids obliquae of the molars in Meridio lophus extend mesially and slightly lingually, a characteristic of tapiromorphs [26]. By contrast, those of early equoids (such as Hyracotherium) extend more lingually to the middle of the metalophids, or even close to the twinned metaconids [26, 27]. Furthermore, the metaconids are not twinned in Meridio lophus, while early equoids have twinned metaconids with variable degrees of separation [26]. Early tapiromorphs were historically included in the ‘Isectolophidae’ [19], although the latter was probably not a monophyletic group [3]. ‘Isectolophids’ include Homogalax, Isectolophus, and Cardiolophus from North America [19, 28], Cymbalophus from Europe [26, 29], Orientolophus, Chasellia, Homogalax, Karagulax and Gandheralophus from Asia [5, 6, 30, 31]. It is worth mentioning that an early lophialetid Mitchenoleotes and the rhinocerotoid Pataecops were recently reported from early Eocene Bumbanian Asian Land Mammal Age (ALMA), 55.8 to 54.8 Ma, which...
indicates a high diversity in the early evolution of tapiromorphs [32,33].

The size of the lower cheek teeth of *Meridiolophus* is considerably smaller than those of *Cardiolophus*, *Homogalax*, *Chowlia*, and *Isectolophus*, and slightly larger than those of *Orientolophus*, *Cymbalophus*, and *Gandheralophus robustus* (Fig. 2, Table S1). In terms of lower molar lengths, *Meridiolophus* is closer to *Karagalax* than to any other 'isectolophidae' (Fig. 2, Table S1). The premolars, represented by p2–p4, are relatively small compared with the molars in *Meridiolophus* than in *Cardiolophus*, *Homogalax*, *Chowlia*, *Isectolophus*, and *Karagalax*, as deduced by a steep rising line of the lower premolars and a gradual rising line of the lower molars in *Meridiolophus* on a log-ratio measurement diagram (Fig. 2). The small premolars of *Meridiolophus* resemble those of *Heptodon*, and both of them have p2–4 lengths approximately equal to m1-2 lengths. Furthermore, the lower cheek teeth of *Meridiolophus* are relatively wider compared with those of other early tapiromorphs, as deduced by a curved line roughly ascending continuously on the log-ratio diagram (Fig. 2, Table S1) and greater length-width proportions (Fig. 3, Table S2).

The long post-canine diastema and expanded anterior symphysis region of *Meridiolophus* are two features different from other 'isectolophids'. The reduction of the post-canine diastema was a synapomorphic character of 'isectolophidae' [34] or Tapiroomorpha [31,33]. This notion was supported by the short diastema between canine and p1 and relatively long diastema between p1 and p2 on *Cardiolophus* and *Chowlia* [6,28], and by short gaps occurring variably between c1, p1, and p2 on *Homogalax protapirinus* and *Isectolophus* [19], and by a moderate diastema between c1 and p1 on *Karagalax* [31]. Besides *Meridiolophus*, *Cymbalophus* and *Gandheralophus* also possess a relatively long post-canine diastema, but *Cymbalophus* has a relatively long p1–p2 diastema and *Gandheralophus* lacks a post-p1 diastema or even p1 [29,30]. In contrast, palaeotheriids and *Hyracotherium*-like early equoids have a long post-canine diastema and a short p1–p2 diastema [6], a condition similar to *Meridiolophus*. For instance, the earliest known Eocene equid *Sifrhippus sandrae* is similar to *Meridiolophus* in having a long diastema between canine and p1 (7.8 mm) and a short p1-2 diastema (2.5 mm) in UM 79889 [p1-2 diastema absent in UM 79888] [36]. On the other hand, a long post-canine diastema is present in a variety of derived tapiromorphs, such as *Heptodon* and *Helaletes*. The flared out anterior symphysis region of *Meridiolophus* is unusual, since other 'isectolophids' have slightly constricted (e.g. *Cardiolophus*, *Homogalax protapirinus* and *Chowlia*) or unconstricted (e.g. *Cymbalo-
Phylogenetic Analyses

The phylogenetic analysis was conducted based on the matrix of [23], because it contains a variety of early perissodactyl groups. We modified two characters: character 40 is adjusted to character 45 of [21], and character 53 to character 45 of [27]. Consequently, the state of character 40 in *Orientolophus*, *Karagalax*, *Lophiodontidae* and *Chalicotheriidae*, although their relationships are not resolved. However, the result shows that the new genus species *Karagalax* has transverse metalophids and hypolophids on lower molars like those of *Gandheralophus*, according to the figures (Fig. 4F), the metalophids and hypolophids of *Karagalax* are more or less oblique. *Karagalax* is further similar to *Meridiolophus* in having small hypoconulids, relatively long trigonids, and metaconids not twinned on lower molars, as well as similar degrees of lophodonty. However, *Karagalax* is distinguishable from *Meridiolophus* in having relatively larger premolars compared with molars, lingually closed talonid basin on lower molars, and transversely narrower lower dentitions (Fig. 3). It is necessary to mention that the development of the twinned metaconid in *Orientolophus* is very weak (Fig. 4B), described as “no distinctly separated metastylid, only a slightly projecting area at the posterior lingual side of the metaconid” by [5]. Gingerich [27] described a new species of *Homogalax aureus* based on its smaller size and relatively narrower lower molars compared with *H. protapirinus*. The two species of *Homogalax* are very similar in morphology, which are in turn different from *Meridiolophus*.

To sum up, *Meridiolophus* is intermediate in morphological characteristics between basal *Homogalax*-like taxa and derived tapiromorphs (such as *Heptodon*) (Fig. 4F). *Meridiolophus* has a long post-canine diastema, smaller premolars compared with molars, short paralophids, long trigonids, untwinned metaconids, and small hypoconulids on lower preultimate molars, which are significantly different from corresponding primitive states in *Homogalax*-like taxa, but suggest synapomorphies of derived tapiromorphs. However, the smaller size and less lophodont condition in *Meridiolophus* are different from the more derived tapiromorphs. It is no doubt that the new Samsun specimen cannot be assigned to any other known early tapiromorphs, so we erect a new genus and species for this specimen and tentatively include it in the family ‘Isectolophidae’.

Results

TNT found 55 MPTs of tree length (TL) 204. The consistency index (CI) is 0.426 and the retention index (RI) is 0.619. The strict consensus tree (Fig. 5A) shows some similarities with the result of [23] in that *Lambdotherium* diverged first from perissodactyls and *Protomoropus* is the basal taxon of Chalicotherioidea (including Lophiodontidae and Chalicotheriidae, although their relationships are not resolved). However, the result shows *Pachynolophus eulaliensis*, representative of Palaeotheriidae, doesn’t show a close
affinity to Equidae, and the latter is closely related to tapiromorphs. In contrast, previous analyses support a close relationship between Palaeotheriidae and Equidae [1, 3, 38–40]. However, in our analysis the Palaeotheriidae is only represented by one species, so the phylogenetic relationship of Palaeotheriidae within perissodactyls needs further investigation. In addition, ‘Pachynolophus’ hookeri is neither an equid [37, 41] nor a ceratomorph [23], and this [37] suggests that ‘Pachynolophus’ hookeri should be reattributed to genus Cymbalophus. However, our analysis indicates ‘Pachynolophus’ hookeri is probably related to basal Ancylopoda [sensu [23]].

The phylogenetic relationships among basal tapiromorphs are not well resolved, thus a majority rule (50%) consensus tree was constructed (Fig. 5B). The topology shows that ‘isectolophids’ is not a monophyletic group, since Karagalax and Meridiolophus more closely related to Ceratomorpha, and other ‘sectolophids’ are closer to Chalicotherioidea [sensu [23]], a result similar to that of [23], who extended Ancylopoda to include ‘Isectolophidae’. Asian Chowlia and Orientolophus form sister taxa with North American Homogalax protapinus and Cardiolophus, respectively. In contrast, the majority rule consensus tree of [23] suggests Orientolophus should be excluded from ‘Isectolophidae’ and forms the most basal taxa of Lophodontomorpha [sensu [23]]. Pappomoropus is the most basal ancylopod instead of a primitive chalicotherio [6]. The phylogenetic relationships among Chalicotherioidea are very similar to those that [23] with exception of Paleomoropus is unresolved. The results show Meridiolophus, Karagalax, and Heptodon in an unresolved monophyletic group, representing ceratomorphs. This node is supported by three unambiguous synapomorphies: character 3: 2 → 4 (‘upper molar paracoleule reduced, situated at nearly the same buccolingual plane as the protocone; facet 2A absent, with facets 2 and 3 nearly aligned; unnotched preprotocrista directed buccally towards the paracone; lower molar metaconid single, the tip lacking facets’), character 40: 0 → 2 (lower molar “metastylid” absent), and character 50: 0 → 2 (P3 postprotocrista strong). This implies Meridiolophus is closer to Karagalax than to any other ‘isectolophids’. More importantly, the result suggests Meridiolophus and Karagalax are the stem taxa to crown group Ceratomorpha, which is consistent with the morphological analyses in that Meridiolophus shows some synapomorphies with derived tapiromorphs.

In order to identify the phylogenetic relationships among Meridiolophus, Karagalax, Heptodon and Pappomoropus in detail, we investigated four hypotheses present in 55 MPTs. Hypothesis one indicates Karagalax is sister group to Meridiolophus + Heptodon. Pappomoropus is the most basal tapiromorph (Fig. 6A). Hypothesis two indicates Heptodon is sister group to Meridiolophus + Karagalax. Pappomoropus is the most basal Ancylopoda (Fig. 6B). Hypothesis three shows that Pappomoropus, Heptodon, Meridiolophus, and Karagalax form successive sister taxa lineages to Ancylopoda (Fig. 6C). Hypothesis four indicates Meridiolophus is the most basal tapiromorph, and Heptodon, Karagalax, and Pappomoropus form successive sister taxa lineages to Ancylopoda (Fig. 6D). Most of these hypotheses were only supported by one or two unambiguous synapomorphic characters, and thus it is difficult to infer which hypothesis has a priority over others. Nevertheless, hypothesis one better matches the stratigraphy and has relatively shorter ghost lineages (Fig. 6A). Resolving the specific phylogenetic position of Meridiolophus among early tapiromorphs will depend on future discovery of upper dentitions of the species from the Sanshui Basin and nearby localities.

Geologic age of Meridiolophus

According to the phylogenetic and morphologic analyses, Meridiolophus shares similar characters with Karagalax from Pakistan, potentially indicating their similar ages. However, the ages of early Paleogene deposits from Indo-Pakistan are controversial and characterized by interbedded terrestrial and freshwater or marine deposits [42]. The Mami Khel Formation containing Karagalax from the Barbora Banda I locality was considered to be early Eocene
based on archaic mammals such as *Diacodexis* and *Karagalax*, and equivalent to the early Bumbanian of Asia and the early-to-middle Wasatchian of North America [31,43]. Furthermore, the Mami Khel Formation, which occurs west of the Indus River, was different from the later Kuldana Formation exposed largely east of the Indus River [31]. However, the Mami Khel Formation is considered to be a synonym of the Kuldana Formation, and the latter is constrained by planktonic and shallow benthic forams as early middle Eocene [42], much later than the Bumbanian and Wasatchian. Recently, the upper part of the upper Ghzaij Formation, overlain by the Drug and Kuldana Formations, bearing *Gandheralophus* was correlated with the middle or late part of the Bumbanian ALMA, while the Kuldana Formation (i.e. the Mami Khel Formation) was correlated with the Arshantan ALMA [30]. The Bumbanian is correlative to early Wasatchian and the Arshantan is correlative to middle-late Wasatchian and most of the Bridgerian according to recent paleomagnetic and biostratigraphic results [33,44]. The results imply that the upper part of upper Ghzaij Formation should be early early Eocene, and the Kuldana Formation is most likely to be late early Eocene if it is correlated with the early and middle Arshantan ALMA. The contradiction of ages from direct mammalian fossils and indirect planktonic and shallow benthic forams is probably attributed to the complexity of early Paleogene deposits in North Indo-Pakistan, which was influenced by the collision between Indian and Asia. The resolution of the contradiction is beyond the scope of the present paper. Generally, the Bumbanian ALMA is divided into *Orientolophus*, *Homagalax* and *Heptodon* interval zones [45]. In terms of morphology, *Meridiolophus* is somewhere between basal *Homagalax*-like taxa and derived tapiromorphs (such as *Heptodon*). *Meridiolophus* resembles derived tapiromorphs in having a long post-canine diastema, relatively short premolars compared with molars, short paralophids, long trigonids.

Conclusions

The new specimen is the first report of Eocene mammals from the Sanshui Basin, and its age is most likely between middle and late Bumbanian. *Meridiolophus* is morphologically intermediate between basal *Homagalax*-like taxa and derived tapiromorphs (such as *Heptodon*). *Meridiolophus* resembles derived tapiromorphs in having a long post-canine diastema, relatively short premolars compared with molars, short paralophids, long trigonids.
Figure 6. Four different hypotheses of phylogenetic relationships among Meridiolophus, Karagalan, Heptodon and Pappomoropus based on 55 MPTs.

Table S1 Comparison among lower cheek teeth measurements of ‘Isectolophidae’. Italic indicates approximate values. Bold indicates values measured from figures. Data for Cardiolophus from Table 2 in [29]; for Homogalax, from Table 1 in [19]; for Isectolophus, from Table 2 in [19]; for Orientolophus, from [5]; for Chowliia, from Table 28 in [6]; for Karagalan, from Table 1 in [31]; for Gandheralophus, from Table 1 in [30]; for Cymbalophus, from [29] and measured from figure 7. Data for Systemodon from the cast of AMNH FM 117400. (XLSX)

Table S2 Comparison of m1 and m2 length-width proportions among ‘isectolophids’ and some other early perissodactyls. Data for Cymbalophus and Sifrhippus from Table 19 in [27]. For the measurements of other species refer to table S1. (XLSX)

Text S1 Morphological data matrix for phylogenetic analysis. (DOCX)

Acknowledgments

We thank Prof. Xianqiu Zhang from China New Star (Guangzhou) Petroleum Corporation, Sanshui, Guangdong, China for the introduction to the geological setting of the Sanshui Basin and assistance in field work; Wei Zhou and Shijie Li (IVPP) for the assistance in field work and preparation of the specimen; Canhui Zhao for the collection of the specimen; L. Holbrook (Rowan University) for discussion; R. O’Leary and J. Galkin (AMNH) for access to the specimens in their care. We are grateful to Z. Tseng (AMNH) for the improvement of the English in the manuscript. T. Smith and P. Missiaen (Royal Belgian Institute of Natural Sciences) kindly provided the images of Gandheralophus, Karagalan, and Cardiolophus in figure 4. Yongsheng Tong, Chuankui Li, and Yingqi Zhang (IVPP) kindly provided the image of Chowliia in figure 4. The review comments of L. Holbrook, an anonymous reviewer, and academic editor B. Beatty (NYIT) greatly improved the final manuscript.

Author Contributions

Conceived and designed the experiments: BB YW. Performed the experiments: BB YW JM. Analyzed the data: BB YW JM QL XJ. Contributed reagents/materials/analysis tools: BB YW JM QL XJ. Wrote the paper: BB YW JM.

References

1. Hooker J (2005) Perissodactyla. In: Rose KD, Archibald JD, editors. The rise of placental mammals: origins and relationships of the major extant clades. Baltimore: Johns Hopkins University Press. pp.199-214.
2. Steiner CC, Ryder OA (2011) Molecular phylogeny and evolution of the Perissodactyla. Zoological Journal of the Linnean Society 165: 1209–1303.
3. Froelich DJ (1999) Phylogenetic systematics of basal perissodactyls. Journal of Vertebrate Paleontology 19: 146–159.
4. Holbrook LT (2001) Comparative osteology of early Tertiary tapiromorphs (Mammalia, Perissodactyla). Zoological Journal of the Linnean Society 132: 1–54.
5. Ting SY (1993) A preliminary report on an Early Eocene mammalian fauna from Hengdong, Hunan Province, China. Kaupia 3: 201–207.
6. Tong YS, Wang JW (2006) Fossil mammals from the Early Eocene Wutung Formation of Shandong Province. Palaeontologica Sinica, New Series C 28: 1–195.
7. Li CK, Qiu ZX, Yan DF, Xie SH (1979) Notes on some early Eocene mammalian fossils of Hengtung, Hunan. Vertebrata PalAsiatica 17: 71–80.
8. Young CC (1944) Note on the first Eocene mammal from South China. American Museum Novitates 1-3.
9. Zdansky O (1930) Die alttertia¨ren Sa¨ugetiere Chinas nebst stratigraphischen Bemerkungen. Palaeontologica Sinica (C) 6: 5–87.
10. Wang Y (1995) A new primitive chalicotheria (Perissodactyla, Mammalia) from the Early Eocene of Hebei, China. Vertebrata PalAsiatica 33: 138–159.
