Evaluation of Some Insecticides and Biopesticides for Management of Barley Aphid (*Rhopalosiphum maidis*)

Pawan Kumar Choudhary*, Suresh Jakhar and K.C. Kumawat

Department of Entomology, S.K.N Agriculture University, Jobner-303328, Rajasthan, India

*Corresponding author

Abstract

The bioefficacy of the treatments evaluated against aphid on barley crop showed that lowest population of 19.32, 20.81, 20.88, 20.95 and 21.13/ tiller was recorded in acetamiprid (0.004%), imidacloprid (0.005%), fipronil (0.01%), thiamethoxam (0.005%) and dimethoate (0.03), respectively and were found statistically at par in their efficacy. The *Beauveria bassiana* (1 g/l), NSKE (5.0%), imidacloprid (8 g/kg), thiamethoxam (8 g/kg) and acetamiprid (8 g/kg) registered 42.57, 42.97, 48.47, 49.26 and 51.60 aphids/ tiller, respectively. The highest aphid population was recorded in untreated control (81.23/ tiller). The data of seed yield revealed that maximum yield of 34.25 q ha⁻¹ was recorded in the plots treated with imidacloprid (0.005%) followed by acetamiprid (0.004%), thiamethoxam (0.005), fipronil (0.01%) and dimethoate (0.03%) which gave 33.85, 33.01, 32.90 and 32.58 q ha⁻¹ seed yield, respectively and all these found statistically at par each other and proved significantly superior over rest of the treatments. The maximum net profit (Rs. 11444 ha⁻¹) was recorded from plots treated with imidacloprid (0.005%) which gave benefit cost ratio of 7.43 followed by acetamiprid (0.004%), imidacloprid (0.005%), thiamethoxam (0.005) and dimethoate (0.03%) with benefit cost ratio of 8.66, 7.43, 5.42 and 8.04, respectively.

Keywords

Insecticides, Biopesticides, Barley aphid, *Rhopalosiphum maidis*.

Article Info

Accepted: 17 June 2017
Available Online: 10 August 2017

Introduction

Barley, *Hordeum vulgare* Linn. (family: Gramineae) is an important cereal crop of Rabi season grown in India. The *chapattis* made up of barley flour are very palatable and can be easily digested even by the persons suffering from stomach ailments. Besides an ideal feed and fodder for livestock, the crop has acquired the status of an industrial crop in malting and brewing. This crop could perform better under moisture stress and saline conditions than other cereal crops. The grains of barley contain 12.5 per cent moisture, 11.5 per cent albuminoids, 74.0 per cent carbohydrate, 1.3 per cent fat, 3.9 per cent crude fibre and 1.5 per cent ash. In Rajasthan, it is cultivated in about 307,936 ha area with an annual production to the tune of 957,896 tonnes (Anonymous, 2013).

The crop is infested by a number of insect pests, viz., armyworm, *Mythimna separata* (Haworth); ghujhia weevil, *Tanymecus indicus* (Faust); termite, *Odontotermes obesus* (Ramb.); cutworms, *Agrotis* spp.; shoot fly, *Atherigona naquii* (Styskal); pink borer, *Sesamia inferens* (Walker); jassids, *Amrasca basalis* (Baly); barley aphid, *Rhopalosiphum maidis* (Fitch) and *R. padi* (Linn.) (Singh,
Among these insect pests, the aphid, *R. maidis* is most serious and regular insect pest of this crop (Sharma, 1990; Kumawat and Jheeba, 1999). Both nymphs and adults cause damage by sucking the cell sap from the leaves, stems and earheads. Due to rapid multiplication of the aphid, usually the entire shoot is covered and with the result of continuous desapting by such a large population, yellowing, curling and subsequent drying of leaves takes place which ultimately lead to reduction in size of earheads (Bhatia and Singh, 1977). The aphid also acts as a vector of barley yellow dwarf virus. The use of various systemic insecticides for the management of insect pests of barley have been suggested but sometimes the survivor individuals soon build up their population because of rapid multiplication in the absence of natural enemies. Keeping this in view, most of the workers have emphasized the use of newer and safe insecticides with noval mode of action including biopesticides. These insecticides are required only in small dosages as compared to older class of compounds. The neoniconoids, namely, imidacloprid, thiamethoxam etc. were found effective against aphids and other sucking insect pests in many commercial crops (Wing *et al.*, 2000; Radha *et al.*, 2006 and Kaur *et al.*, 2012). The new molecules of insecticides need evaluation on scientific lines.

Materials and Methods

The experiment was laid out in simple randomized block design (RBD) with eleven treatments (insecticides and biopesticides) including untreated control, each replicated thrice. The plot size was 3.0 x 2 m² keeping row to row distance of 25 cm. The genotype RD-2052 recommended for this region was used for the experiment and sown on 15th November, 2014. Ten insecticides and biopesticides were used for testing their bioefficacy against aphid, *R. maidis* on barley crop. The details regarding insecticides and biopesticides and their dosages are given in table 1. All the insecticides and biopesticides were applied as a foliar spray by using pre-calibrated knapsack sprayer. Two sprays were applied when aphid population reached at ETL, 16 aphids per tiller (Ba-Angood and Stewart, 1980). An untreated control (plain water) was maintained for comparison. The first insecticidal spray was given on 14th January and second on 3rd February after rebuild up of pest population (20 days after first spray) in *Rabi*, 2014-15. The insecticidal solution was prepared according to the following formula:

\[
V = \frac{C \times A}{% \text{a.i.}}
\]

Where,

- \(V\) = Volume of insecticide
- \(C\) = Concentration required
- \(A\) = Amount of spray solution needed (600 l ha⁻¹)
- \(% \text{a.i.}\) = Percentage of active ingredient of the insecticide

The aphid population was recorded on five randomly selected and tagged plants (5 tillers/plant) in each plots one day before and 1, 3, 7 and 15 days after application of the insecticides and biopesticides.

Interpretation of data

The data obtained were taken into consideration for calculating the analysis of variance after subjecting to √X+0.5 transformation. The grain yield was recorded in individual treatment replication-wise and converted into per hectare. The data on grain per hectare were subjected to analysis of variance. The increase in yield of grain over control was calculated for each treatment by the following formula:
Increase in yield (%) =

\[
\frac{\text{Yield in treatment} - \text{Yield in control}}{\text{Yield in control}} \times 100
\]

The economics of various treatments was worked out by computing the cost of insecticides as well as their cost of application. The gross income was worked out by multiplying the yield with the wholesale rate of barley grains prevailing at the time of threshing. The benefit cost ratio was calculated by taking the net return and total expenditure of the treatment into account.

Results and Discussion

The bioefficacy of the treatments evaluated against aphid on barley crop showed that lowest population of 19.32, 20.81, 20.88, 20.95 and 21.13/ tiller was recorded in acetamiprid (0.004%), imidacloprid (0.005%), fipronil (0.01%), thiamethoxam (0.005%) and dimethoate (0.03), respectively and were found statistically at par in their efficacy. The present findings are in conformity with that of Babu and Sharma (2003) and Bhargava (2009) who reported that imidacloprid was most effective against aphid on wheat and barley crop, respectively. Similarly, Radha et al., (2006) and Bhat and Baba (2007) reported that imidacloprid was the most effective insecticide against corn leaf aphid, R. maidis on maize crop get support the present findings (Table 2).

Effect of insecticide or biopesticide on population of aphid, R. maidis

In the present investigation, the overall bioefficacy of the treatments against aphid on barley crop showed that lowest population of 19.32, 20.81, 20.88, 20.95 and 21.13/ tiller was recorded in acetamiprid (0.004%), imidacloprid (0.005%), fipronil (0.01%), thiamethoxam (0.005%) and dimethoate (0.03), respectively and were found statistically at par in their efficacy. The present findings are in conformity with that of Babu and Sharma (2003) and Bhargava (2009) who reported that imidacloprid was most effective against aphid on wheat and barley crop, respectively. Similarly, Radha et al., (2006) and Bhat and Baba (2007) reported that imidacloprid was the most effective insecticide against corn leaf aphid, R. maidis on maize crop get support the present findings (Table 2).

Khurana and Yadav (1995) and Yadav and Jain (1999) reported that dimethoate was most effective insecticide against aphid on barley crop which corroborates with the present findings. Study conducted by Srivastava and Bhatia (2005) revealed that thiamethoxam was most effective insecticide against barley aphid, supports the present findings. The results are also in agreement with that of Babu et al., (2006) who revealed that thiamethoxam proved to be highly effective in suppressing the aphids on barley crop. Bhargava (2009) too reported that imidacloprid was most effective followed by thiamethoxam when applied as seed treatment against barley aphid, partially support the present findings. The Beauveria bassiana (1
g/l), NSKE (5.0%), imidacloprid (8 g/kg), thiamethoxam (8 g/kg) and acetamiprid (8 g/kg) registered 42.57, 42.97, 48.47, 49.26 and 51.60 aphids/tiller, respectively and less effective. The highest aphid population was recorded in untreated control (81.23/tiller). The findings are in conformity with the findings of Radha et al., (2006) who reported that neem insecticide, nimbicidine was least effective against *R. maidis* on maize crop. Similarly, Sachan et al., (2006) reported that NSKE and neem oil were least effective insecticides against mustard aphid *L. erysimi*, partially support the present findings. The present findings are also in agreement with those of Nirmala et al., (2006) who reported that fungus isolates of *Beauveria bassiana*, *M. anisopliae* and *Verticilium lecanii* were pathogenic to *R. maidis*. The order of effectiveness of all treatments was acetamiprid (0.004%)= imidacloprid (0.005%)= fipronil (0.01%)= thiamethoxam (0.005%)= dimethoate (0.03%)* Beauveria bassiana* (1 g/l)= NSKE (5.00)= imidacloprid (8 g/kg)= thiamethoxam (8 g/kg)= acetamiprid (8 g/kg).

Effect of insecticide or biopesticide on the seed yield of barley

All the plots treated with insecticides and biopesticides gave significantly higher seed yield of barley over untreated control except seed treatment with thiamethoxam. The data of seed yield revealed that maximum yield of 34.25 q ha⁻¹ was recorded in the plots treated with imidacloprid (0.005%) followed by acetamiprid (0.004%), thiamethoxam (0.005%), fipronil (0.01%) and dimethoate (0.03%) which gave 33.85, 33.01, 32.90 and 32.58 q ha⁻¹ seed yield, respectively and all these were found statistically at par with each other and proved significantly superior over rest of the treatments. The next effective treatments were *B. bassiana* (1 g/l) and NKSE (5%) which gave seed yield of 28.34 and 27.85 q ha⁻¹, respectively and formed a non-significant group. The minimum seed yield (27.42, 26.90 and 26.60 q ha⁻¹) was obtained in the seed treatment with imidacloprid (8 g/kg), acetamiprid (8 g/kg) and thiamethoxam (8 g/kg) which were significantly inferior to rest of the treatments, respectively and were comparable each other (Table 3).

Table 1: Details of insecticides and biopesticides used

S.No.	Common name	Trade Name	Formulation	Conc. (%)/dosage
1.	Imidacloprid	Gaucho	70 WS	8 g kg⁻¹
2.	Acetamiprid	Pride	20 SP	8 g kg⁻¹
3.	Thiamethoxam	Cruiser	70 WS	8 g kg⁻¹
4.	Imidacloprid	Confidor	17.8 SL	0.005
5.	Acetamiprid	Pride	20 SP	0.004
6.	Thiamethoxam	Actara	25 WG	0.005
7.	Fipronil	Regent	5 SC	0.01
8.	Beauveria bassiana	Racer-BB	1.15 WP	1 g l⁻¹
9.	NSKE	-	Lab. prepared	5.0
10.	Dimethoate (Check)	Rogor	30 EC	0.03
11.	Control (untreated)	-	-	-

NSKE: Neem seed kernel extract
Table 2 Evaluation of some insecticides and biopesticides against aphid, *Rhopalosiphum maidis* (Fitch)

S.N o.	Insecticides	Conc. (%)	Pre-treatment count	First spray Mean	Pre-treatment count	Second spray Mean	
		dosage		(1) (3) (7) (15)		(1) (3) (7) (15)	
1.	Imidacloprid*	8 g/kg	37.80 (6.19)	37.87 (6.19)	39.37 (6.31)	40.62 (6.41)	
2.	Acetamiprid*	8 g/kg	34.34 (5.90)	35.34 (5.99)	36.78 (6.11)	42.37 (6.55)	
						44.51 (6.71)	38.67 (6.26)
3.	Thiamethoxam*	8 g/kg	36.29 (6.07)	38.77 (6.27)	40.68 (6.42)	41.17 (6.46)	
						43.26 (6.46)	40.03 (6.62)
4.	Imidacloprid	0.005	48.57 (7.00)	22.53 (4.80)	9.66 (3.19)	23.81 (4.93)	
						31.74 (5.68)	27.26 (5.27)
5.	Acetamiprid	0.004	56.34 (7.54)	29.34 (5.46)	15.74 (4.03)	26.53 (5.20)	
						29.38 (5.47)	31.47 (5.65)
6.	Thiamethoxam	0.005	48.25 (6.98)	21.37 (4.68)	13.34 (3.72)	23.51 (4.90)	
						31.12 (5.47)	27.52 (5.65)
7.	Fipronil	0.01	45.44 (6.78)	20.34 (4.57)	16.63 (4.14)	22.31 (4.78)	
						28.33 (5.37)	26.61 (5.21)
8.	*Beauveria bassiana*	1 g/l	48.34 (6.99)	48.57 (7.00)	40.35 (6.39)	34.36 (5.90)	
						37.28 (6.15)	41.78 (6.50)
9.	N.S.K.E.	5.00	46.57 (6.86)	45.53 (6.78)	38.15 (6.22)	36.54 (6.09)	
						42.22 (6.64)	41.80 (6.54)
10.	Dimethoate (Check)	0.03	52.34 (7.27)	24.38 (4.99)	18.17 (4.32)	28.53 (5.39)	
						31.81 (5.68)	31.05 (5.62)
11.	Control (Untreated)	-	51.35 (7.30)	53.57 (7.35)	54.32 (7.40)	54.25 (7.40)	
						56.10 (7.52)	53.92 (7.52)
SEm ±	CD (5%)		0.30	0.23 (7.20)	0.25 (7.35)	0.24 (7.40)	0.25 (7.40)
			0.89	0.68 (7.30)	0.75 (7.37)	0.71 (7.40)	0.74 (7.40)

*Mean of three replications

Figures in the parentheses are $\sqrt{X+0.5}$ values.

Seed treatment
Table 3 Effect of insecticides and biopesticides on seed yield of barley

S.No.	Insecticides/ biopesticides	Conc.(%)/ dosage	Mean seed yield (q ha⁻¹)
1.	Imidacloprid*	8 g/ kg	27.42
2.	Acetamiprid*	8 g/ kg	26.90
3.	Thiamethoxam*	8 g/ kg	26.60
4.	Imidacloprid	0.005	34.25
5.	Acetamiprid	0.004	33.85
6.	Thiamethoxam	0.005	33.01
7.	Fipronil	0.01	32.90
8.	*B. bassiana*	1 g/ l	28.34
9.	NSKE	5.0	27.85
10.	Dimethoate (Check)	0.03	32.58
	Control	-	22.96
	S.Em.±		1.33
	CD (p=0.05)		3.92

*Seed treatment
Table 4: Comparative economics of insecticides and biopesticides in managing aphid on barley in Rabi, 2014-15

S.No.	Insecticides/Biopesticides	Conc. (%) or dosage	Yield (q ha⁻¹)	Total increase in yield over control (q ha⁻¹)	Per cent increase in yield over control	Return of increased yield (Rs)*	Total cost/expenditure (Rs)**	Net profit (Rs ha⁻¹)	B:C ratio
1	Imidacloprid 8 g/ kg	27.42	4.46	19.42	5129	3130	1909	0.61	
2	Acetamiprid 8 g/ kg	26.90	3.94	17.16	4531	2010	2431	1.21	
3	Thiamethoxam 8 g/ kg	26.60	3.64	15.85	4186	3450	646	0.19	
	Seed treatment								
4	Imidacloprid 0.005	34.25	11.29	49.17	12984	1540	11444	7.43	
5	Acetamiprid 0.004	33.85	10.89	47.42	12524	1296	11228	8.66	
6	Thiamethoxam 0.005	33.01	10.05	43.77	11558	1800	9758	5.42	
7	Fipronil 0.01	32.90	9.94	43.29	11431	4080	7351	1.80	
8	B. bassiana 1 g/ l	28.34	5.38	23.43	6187	1242	4945	3.98	
9	NSKE 5.0	27.85	4.89	21.30	5624	3120	2504	0.80	
10	Dimethoate (check)	32.58	9.62	41.89	11063	1224	9839	8.04	
11	Control	22.96	0	0.00	0	0.0	0.0	0.0	

* Price of barley seed at current season was Rs. 1150/- q⁻¹
** It includes cost of insecticides and labour charges
The order of effectiveness of insecticides in descending order on the basis of seed yield of barely was found to be: imidacloprid (0.005%), acetamiprid (0.004%), thiamethoxam (0.005%), fipronil (0.01%), dimethoate (0.03%), B. bassiana (1g/l), NSKE (5%), imidacloprid (8 g/kg), acetamiprid (8 g/kg), thiamethoxam (8 g/kg). The present findings are in agreement with that of Sekhar and Singh (2001) who reported that per cent increase in yield over control in wheat crop was higher in the treatment of imidacloprid (125 g a.i. ha\(^{-1}\)) when applied against aphids infesting wheat crop. The findings are also in close agreement with those of Yadav and Jain (1999) who reported that the treatments of dimethoate (0.03%) gave highest seed yield in barley crop when applied as foliar spray. Srivastava and Bhatia (2005) reported that thiamethoxam (50 g a.i. ha\(^{-1}\)) was most effective in protecting the grain yield.

The findings are in partial agreement with Radha et al., (2006) who reported that neem product, nimbicidine was the least effective and gave lower seed yield as compared to synthetic insecticides.

Economics of treatments

The maximum total increase in yield (11.29 q ha\(^{-1}\)) and per cent increase in yield (49.17 %) over control was recorded in the plots treated with imidacloprid 0.005 per cent followed by acetamiprid 0.004 per cent (10.89 q ha\(^{-1}\) and 47.42%), thiamethoxam 0.005 per cent (10.05 q ha\(^{-1}\) and 43.77%), fipronil 0.01 per cent (9.94 q ha\(^{-1}\) and 43.29%) and dimethoate 0.03 per cent (9.62 q ha\(^{-1}\) and 41.89%) as evident in table 4. The total and per cent increase in yield over control in the treatment of B. bassiana was 5.38 q ha\(^{-1}\) and 23.43 per cent, respectively and in NSKE these were 4.89 q ha\(^{-1}\) and 21.30 per cent, respectively. The minimum total and per cent increase in yield over control was recorded in the seed treatment of imidacloprid (4.46 q ha\(^{-1}\), 19.42) followed by acetamiprid (3.94 q ha\(^{-1}\), 17.16) and thiamethoxam (3.64 q ha\(^{-1}\), 15.85). The maximum net profit (Rs. 11444 ha\(^{-1}\)) was recorded from plots treated with imidacloprid (0.005%) which gave benefit cost ratio of 7.43 followed by acetamiprid (0.004%), imidacloprid (0.005%), thiamethoxam (0.005) and dimethoate (0.03%) in which benefit cost ratio of 8.66, 7.43, 5.42 and 8.04, respectively was recorded. The benefit cost ratio in the treatment of B. bassiana, fipronil and seed treatment with imidacloprid and acetamiprid resulted in the middle order. The negative benefit cost ratio of 0.80 and 0.19 was recorded in the treatments of NSKE and seed treatment of thiamethoxam due to their higher cost and low yield exhibited by them. Khurana and Yadav (1995) recommended dimethoate (0.03%) against aphid on barley crop on the basis of efficacy and economics of insecticides, extend support for the present findings. Sachan et al., (2006) reported that dimethoate (0.03%), thiamethoxam (0.03%) and imidacloprid (0.04%) gave maximum benefit cost ratio, and neem products gave least benefit cost, corroborate the present findings. Bhat and Baba (2007) also reported that the maximum net profit was obtained from imidacloprid treatment against R. maidis on maize crop.

Acknowledgement

The authors are thankful to the Dean, College of Agriculture, Sri Karan Narendra Agriculture University, Jobner- Jaipur for providing necessary facilities and permission to conduct the study.

References

Anonymous. 2013. *Vital Agriculture Statistics*, Directorate of Agriculture, Rajasthan, Jaipur.

Ba-Angood, S.A. and Stewart, R.K. 1980, Sequential sampling for cereal aphids on barley in southwestern Quebec. *J. Econ. Entomol.*, 73: 679.

Babu, K.S. and Sharma, A.K. 2003. Compatibility of a newer insecticides, imidacloprid (Confidor) with propiconazole (Tilt 25 EC) against foliar aphids and their coccinellid predators of wheat ecosystem. *Indian J. Entomol.*, 71: 155-160.
Babu, K.S., Deol, G.S., Singh, V. and Sharma, A.K. 2006. Bioefficacy of newer insecticides against aphids of barley. *Indian J. Entomol.*, 68(2): 125-128.

Bhargava, K.K. 2009. Bio-efficacy of nicotinic acetylcholine insecticides against barley aphid, *Rhopalosiphum maidis* (Fitch). National conference on Applied Entomology, Impact of global warming on the incidence and management of insect pests in agriculture, Udaipur (Rajasthan), pp.122-123.

Bhat, Z.H. and Baba, Z.A. 2007. Efficacy of different insecticides against maize stem borer, *Chilo partellus* (Swinhoe) and maize aphid, *Rhopalosiphum maidis* (Fitch) infesting maize. *Pak. Entomologist*, 29(2): 73-76.

Bhatia, S.K. and Singh, V.S. 1977. Effect of corn leaf aphid infestation on the yield of barley varieties. *Entomon.*, 2(1): 63-66.

Kaur, A., Sharma, N., Kaur, G. and Dhawan, A.K. 2012. Relative efficacy of new insecticides against wheat aphid, *Rhopalosiphum maidis* (Fitch). *Indian J. Entomol.*, 74(2): 206-208.

Khurana, A.D. and Yadav, L.S. 1995. Efficacy of different insecticides against, *Rhopalosiphum maidis* (Fitch) on wheat. *Indian J. Entomol.*, 57: 62-64.

Kumawat, K.C. and Jheeba, S.S. 1999. Varietal screening of barley, *Hordeum vulgare* L. against aphid, *Rhopalosiphum maidis* (Fitch). *Int. J. Trop. Agri.*, 17 (¼): 203-207.

Nirmala, R., Ramanujam, B., Rabindra, R.J. and Rao, N.S. 2006. Effect of entomofungal pathogens on mortality of three aphid species. *J. Biol. Control*, 20(1): 89-94.

Radha, I.T.S., Madhumathi, T., Rao, P.A. and Rao, V.S. 2006. Studies on management of major insect pests on maize with different groups of insecticides. *Indian J. Plant Protection*, 34(2): 252-255.

Sachan, K.S., Chaudhary, A.S., Singh, D.V. and Singh, H. 2006. Efficacy and economics of some newer insecticides against mustard aphid, *Lipaphis erysimi* (Kalt). *Indian J. Crop Sci.*, 1(1-2): 168-170.

Sekhar, S.M.V. and Singh V.S. 2001. Bioefficacy and cost effectiveness of different insecticides against aphids infesting wheat. *Indian J. Entomol.*, 63(3): 249-254.

Sharma, H.C. 1990. Bio-ecological investigation and control strategy of barley aphid, *Rhopalosiphum maidis* (Fitch), with special reference to varietal resistance and estimation of losses to barley crop in Rajasthan. Ph.D. Thesis, submitted to Rajasthan Agricultural University, Bikaner.

Singh, V.S. 1983. Losses due to insect pest in barley. *Proceedings of National Seminar on Crop Losses due to Insect Pests*, pp. 198.

Srivastava, B. and Bhatia, K.N. 2005. Relative efficacy and economics of thiomethoxam 25 WG against the aphid, *Rhopalosiphum maidis* (Fitch.) in wheat. *National Conference on Applied Entomology: Current Status, Challenges and Opportunities*, Udaipur (Rajasthan), pp. 92-93.

Wing, K.D., Sacher, K.Y., Tsurubuchi, Y., Mulderig, L. and Connair, S.M. 2000. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. *Crop Protection*, 19(8-10): 537-545.

Yadav, R.C. and Jain, P.C. 1999. Evaluation of insecticides against barley aphid, *Rhopalosiphum maidis* (Fitch) on barley (Hordeum vulgare). *Annals of Biol.*, 15(2): 223-226.

How to cite this article:

Pawan Kumar Choudhary, Suresh Jakhar and Kumawat, K.C. 2017. Evaluation of Some Insecticides and Biopesticides for Management of Barley Aphid (*Rhopalosiphum maidis*). *Int.J.Curr.Microbiol.App.Sci.* 6(8): 1330-1338. doi: https://doi.org/10.20546/ijcmas.2017.608.162

1338