Naturally occurring modified ribonucleosides

Phillip J. McCown | Agnieszka Ruszkowska | Charlotte N. Kunkler | Kurtis Breger | Jacob P. Hulewicz | Matthew C. Wang | Noah A. Springer | Jessica A. Brown

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana

Correspondence
Phillip J. McCown, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556. Email: pmccown@nd.edu

Present address
Agnieszka Ruszkowska, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland

Funding information
Glynn Family Honors Program; Sean O'Keefe Cancer Fund; University of Notre Dame; Henry Luce Foundation; NIH, Grant/Award Number: R00GM111430, R35GM133696, T32GM075762

Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the “fifth” ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal–Hreidarsson syndrome, Bowen–Conradi syndrome, or Williams–Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications.

This article is categorized under:
RNA Processing > RNA Editing and Modification

Keywords
mRNA, ncRNA, RNA modification, rRNA, tRNA
Adenosine (A), guanosine (G), cytidine (C), and uridine (U) comprise the four ribonucleosides typically found in ribonucleic acid (RNA) molecules. These four ribonucleosides were divided into two categories based on the shape and chemical properties of the nucleobases: pyrimidines and purines. Pyrimidines, composed of C and U (represented as Y), feature a six-membered heterocyclic configuration, similar to pyridine. Purines, composed of A and G (represented as R), possess a heterocyclic configuration of a pyrimidine fused to an imidazole ring. The pyrimidines and purines can be added to ribose molecules, forming ribonucleosides (Figure 1). From these pyrimidines and purines, several derivatives such as thiamin pyrophosphate (TPP), flavin mononucleotide (FMN), and cyclic di-guanosine monophosphate (c-di-GMP) are thought to belong to the RNA world, a world in which genes, genomes, and enzymes were composed solely of RNA (Crick, 1968; Joyce & Szostak, 2018; Nelson & Breaker, 2017; Orgel, 1968; Robertson & Joyce, 2012; Woese, 1967). However, pyrimidines and purines have also been discovered to be the precursors for numerous modifications (Cohn & Volkin, 1951; Dunn, 1960; Hall, 1963; Holley, 1965; Iwanami & Brown, 1968; D. A. Smith & Visser, 1965; reviewed in Boccaletto et al., 2018; Cantara et al., 2011). The discovery and characterization of RNA modifications underscore their biological significance and embody exciting strides throughout RNA biology (Boccaletto et al., 2018; Jung & Goldman, 2018; Shi, Wei, & He, 2019; Thapar et al., 2019).

Ribonucleoside modifications encompass a myriad of chemical moieties, which are added to adenosine, guanosine, cytidine, or uridine. From simple methylations or hydrations of double bonds to ring closures of the nitrogenous base or the addition of large groups such as amino acids or monosaccharides, almost all modifications are catalyzed by an enzyme. Some enzymes form multimers with auxiliary proteins (e.g., helper methyltransferases), expanding the range of applicable substrates or allowing for the integration of cellular activities and enzymatic processes (Guy & Phizicky, 2014). However, a few modifications arise from nonenzymatic processes or oxidative damage (Figure 2, Table 1). A further distinction pertains to RNA editing, which was originally described as a process of adding polyuridine residues within the coding region of select RNAs (Grosjean & Benne, 1998). RNA editing has since been expanded to include RNA base excisions or additions (e.g., deletion of uridine residues in pre-mRNAs or addition of G to select tRNAs) (Benne, 1994; Jackman & Phizicky, 2006) as well as RNA base conversions (e.g., A-to-I or C-to-U editing), although further distinctions have remained somewhat incoherent (Grosjean & Benne, 1998). While there are 111 modifications that can be found within transfer RNAs (tRNAs), 33 modifications can be found in ribosomal RNAs (rRNAs), 17 in messenger RNAs (mRNAs), and 11 in long noncoding RNAs (lncRNAs) and other noncoding RNAs (ncRNAs) (Figures 3 and 4, Table 2) (Boccaletto et al., 2018; Cantara et al., 2011; Lorenz et al., 2017).

In this review article, we summarize all currently known ribonucleoside modifications. Each section highlights one or more modifications that are structurally or functionally related to each other or belong to established biosynthetic pathways. Each section begins with the full chemical name of the ribonucleoside modification(s) and the corresponding IUPAC abbreviation(s), domain-of-life assignments, and RNA classes. Domain assignments refer to the domain-of-life of the host organisms that harbor a modification, using the abbreviations “A” for archael organisms, “B” for bacterial organisms, and “E” for eukaryotic organisms. Within the text, usage of the term “prokaryote” encompasses both archael and bacterial species.
FIGURE 2 Chemical structures of all currently known RNA modifications. Adenosine-derived (yellow), guanosine-derived (pink), uridine-derived (purple), and cytidine-derived (cyan) modifications are classified based on the parent ribonucleoside. Red moieties indicate which portion of the modified ribonucleoside is different from the parent ribonucleoside, whose structures are shown in the central circle. A poster-size image is available as Figure S1.
Count	RNA modification	Symbol	New symbol	Original NT
1	N°-methyladenosine or 6-methyladenosine	m°A	m°A	A
2	N°-methyladenosine or 1-methyladenosine	m°A	01A	A
3	N°-methyladenosine or 2-methyladenosine	m°A	2A	A
4	2'-O-methyladenosine	Am	0A	A
5	2-Methylthio-N°-methyladenosine	ms° m°A	621A	A
6	N°-isopentenyladenosine	t°A	61A	A
7	N°-(cis-hydroxyisopentenyl)-adenosine	i°A	60A	A
8	2-Methylthio-N°-isopentenyladenosine	ms° i°A	2161A	A
9	2-Methylthio-N°-(cis-hydroxyisopentenyl)-adenosine	ms° i°A	2160A	A
10	N°-glycinylcarbamoyladenosine	g°A	65A	A
11	N°-threonylcarbamoyladenosine	t°A	62A	A
12	2-Methylthio-N°-threonylcarbamoyladenosine	ms° t°A	2162A	A
13	N°-methyl-N°-threonylcarbamoyladenosine	m°6A or m°6,6A	66A	A
14	N°-hydroxynorvalylcarbamoyladenosine	h°A	63A	A
15	2-Methylthio-N°-hydroxynorvalylcarbamoyladenosine	ms° h°A	2163A	A
16	2'-O-riboyladenosine (phosphate)	Ar(p)	00A	A
17	Inosine	I	9A	A
18	N°-inosine or 1-methylinosine	m°1	19A	A
19	1,2'-O-dimethylinosine	m°1m	019A	A
20	N°,N°-dimethylinosine	m°62A or m°6,6A	66A	A
21	2'-O-methylinosine	Im	09A	A
22	N°,2'-O-dimethylinosine	m°6Am	06A	A
23	N°,N°,2'-O-trimethylinosine	m°632A or m°6,6,6A	066A	A
24	N°,2'-O-dimethylinosine	m°6Am	01A	A
25	N°-acetyladenosine	ac°A	64A	A
26	8-Methyadenosine	m°8A	8A	A
27	N°-formyladenosine	f°A	67A	A
28	Cyclic N°-threonylcarbamoyladenosine	c°A	69A	A
29	N°-hydroxymethyladenosine	h°m°A	68A	A
30	2,8-Dimethyadenosine	m°2,8A	28A	A
31	Cyclic 2-methylthio-N°-threonylcarbamoyladenosine	ms° c°A	2164A	A
32	N°-hydroxythreonylcarbamoyladenosine	h°t°A	2165A	A
33	2-Methylthiomethylene-N°-isopentenyladenosine	msms° i°A	None	A

Cytidine

Count	RNA modification	Symbol	New symbol	Original NT
34	3-Methylcytidine	m°3C	3C	C
35	5-Methylcytidine	m°5C	5C	C
36	2'-O-methylcytidine	Cm	0C	C
37	2-Thiocytidine	s°2C	2C	C
38	N°-acetylcytidine	ac°C	42C	C
39	5-Formylycytidine	f°C	71C	C
Count	RNA modification	Symbol	New symbol	Original NT
-------	---	----------	--------------	-------------
40	5,2'-O-dimethylcytidine	m²Cm	05C	C
41	Lysidine	k²C	21C	C
42	N⁴-methylcytidine	m⁴C	4C	C
43	4,2'-O-dimethylcytidine	m²Cm	04C	C
44	5-Hydroxymethylcytidine	hm⁵C	51C	C
45	5-Formyl-2',O-methylcytidine	f³Cm	071C	C
46	N⁴,N⁴,2',O-trimethylcytidine	m⁴,Cm or m⁴,⁴Cm	044C	C
47	Agmatidine	C⁺	20C	C
48	5-Hydroxycytidine	ho⁵C	50C	C
49	N⁴-acetyl-2',O-methylcytidine	ac⁴Cm	042C	C
50	N⁴,N⁴-dimethylcytidine	m⁴,⁴C	44C	C
51	2-Methylthiocytidine	ms²C	None	C
52	2',O-methyl-5-hydroxymethylcytidine	hm³Cm	None	C

Guanosine

Count	RNA modification	Symbol	New symbol	Original NT
53	1-Methylguanosine	m¹G	1G	G
54	N²-methylguanosine	m²G	2G	G
55	7-Methylguanosine	m⁷G	7G	G
56	2'-O-methylguanosine	Gm	0G	G
57	N²,N²-dimethylguanosine	m²²G	22G	G
58	N²,2'-O-dimethylguanosine	m²⁰Gm	02G	G
59	N²,N²,2'-O-trimethylguanosine	m²²,²Gm	022G	G
60	2'-O-ribosylguanosine (phosphate)	Gr(p)	00G	G
61	Wybutosine	yW	3483G	G
62	Peroxywybutosine	o₂yW	34832G	G
63	Hydroxywybutosine	OHyW	34830G	G
64	Undermodified hydroxywybutosine	OHyWx or OHyW⁺	3470G	G
65	Wyosine	imG	34G	G
66	Methylwyosine	mimG	342G	G
67	Queuosine	Q	10G	G
68	Epoxyqueuosine	oQ	102G	G
69	Galactosyl-queuosine	galQ	104G	G
70	Mannosyl-queuosine	manQ	106G	G
71	Glutamyl-queuosine	gluQ	105G	G
72	Pre-queuosine₀	preQ₀	100G	G
73	Pre-queuosine₁	preQ₁	101G	G
74	Archaeosine	G⁺	103G	G
75	N⁴,7-dimethylguanosine	m²⁷G	27G	G
76	N²₂,2'-7-trimethylguanosine	m²²,⁷G	227G	G
77	1,2'-O-dimethylguanosine	m¹Gm	01G	G
78	4-Demethylwyosine	imG-14	4G	G
79	Isowyosine	imG2	42G	G
80	N²₂,2'-O-7-trimethylguanosine	m²²,⁷Gm	027G	G

(Continues)
Count	RNA modification	Symbol	New symbol	Original NT
81	7-Aminocarboxypropylwyosine methyl ester	yW-58	348G	G
82	7-Aminocarboxypropyl-demethylwyosine	yW-86	47G	G
83	7-Aminocarboxypropylwyosine	yW-72	347G	G
84	Methylated undermodified hydroxywybutosine	OHyWy	3480G	G
85	2-Hydroxymethylguanosine	hm^G	None	G
86	Uridine	ψ	9U	U
87	Dihydrouridine	D	8U	U
88	5-Methyluridine, ribosylthymine, or ribothymidine	m^5U or rT	5U	U
89	2'-O-methyluridine	Um	0U	U
90	5,2'-O-dimethyluridine	m^5Um or Tm	05U	U
91	1-Methylpseudouridine	m^1ψ	19U	U
92	2'-O-methylpseudouridine	ψm	09U	U
93	2-Thiouridine	s^2U	2U	U
94	4-Thiouridine	s^4U	74U	U
95	2'-Thio-2'-O-methyluridine	s^2Um	02U	U
96	3-(3-Amino-3-carboxypropyl)uridine	acp^3U	30U	U
97	5-Hydroxyuridine	ho^5U	50U	U
98	5-Methoxyuridine	mo^5U	501U	U
99	Uridine 5-oxyacetic acid	cmo^5U	502U	U
100	Uridine 5-oxyacetic acid methyl ester	mcmo^5U	503U	U
101	5-Carboxyhydroxymethyluridine	chm^5U	520U	U
102	5-Carboxyhydroxymethyluridine methyl ester	mchm^5U	522U	U
103	5-Methoxycarbonylmethyluridine	mc^5U	521U	U
104	5-Methoxycarbonylmethyl-2'-O-methyluridine	mc^5Um	0521U	U
105	5-Aminomethyl-2-thiouridine	nm^5s^2U	2,510U	U
106	5-Methylaminomethyluridine	mmn^5U	511U	U
107	5-Methylaminomethyl-2-thiouridine	mmn^5s^2U	2,511U	U
108	5-Methylaminomethyl-2-selenouridine	mmn^5se^5U	20,511U	U
109	5-Carbamoylmethyluridine	ncm^5U	53U	U
110	5-Carbamoylmethyl-2'-O-methyluridine	ncm^5Um	053U	U
111	5-Carbamoylmethylaminomethyluridine	cmnm^5U	51U	U
112	5-Carbamoylmethylaminomethyl-2'-O-methyluridine	cmnm^5Um	051U	U
113	5-Carbamoylmethylaminomethyl-2-thiouridine	cmnm^5s^2U	251U	U
114	3-Methyluridine	m^3U	3U	U
115	1-Methyl-3-(3-amino-3-carboxypropyl) pseudouridine	m^1acp^3ψ	1309U	U
116	5-Carboxymethyluridine	cm^5U	52U	U
117	3,2'-O-dimethyluridine	m^3Um	03U	U
118	5-Methylidihydrouridine	m^5D	58U	U
119	3-Methylpseudouridine	m^3ψ	39U	U
RNA modifications in different RNA classes are denoted as follows: a black cloverleaf (●) for modifications in tRNAs, a red square (□) for modifications in rRNAs, a green dot (●) for modifications in mRNAs, and a blue triangle (▲) for modifications in ncRNAs. Instances where two or more modifications are grouped in a section but are found in different domains of life are noted in parentheses. Next, we provide a description of which enzymes or pathways are involved in the synthesis of the modification. Also, we provide any additional data or discoveries associated with the modification, including impact on RNA structure, functional significance, disease relevance, or any other notable findings. We initially describe the pseudouridine (Ψ), inosine (I), and dihydrouridine (D) modifications for historical purposes, as these were among the first modifications to be found in RNA. We then characterize all adenosine-, guanosine-, cytidine-, and uridine-based modifications followed by ribose modifications. We conclude the review by summarizing the most recent technological advances in finding novel modifications, while also describing conflicting experimental evidence for the existence of select modifications.

TABLE 1 (Continued)

Count	RNA modification	Symbol	New symbol	Original NT
120	5-Taurinomethyluridine	τm5U	54U	U
121	5-Taurinomethyl-2-thiouridine	τm5’s2U	254U	U
122	5-(Isopentenylaminomethyl)uridine	inm5U	583U	U
123	5-(Isopentenylaminomethyl)-2-thiouridine	inm5’s2U	2583U	U
124	5-(Isopentenylaminomethyl)-2′-O-methyluridine	inm5Um	0583U	U
125	5-Cyanomethyluridine	cmn5U	55U	U
126	5-(Carboxyhydroxymethyl)-2′-O-methyluridine methyl ester	mchm5Um	0522U	U
127	5-Carboxymethylaminomethyl-2-selenouridine	cmnm5’s2U	2051U	U
128	5-Carboxymethylaminomethyl-2-geranythiouuridine	cmnm5ges2U	2151U	U
129	5-Methylaminomethyl-2-geranythiouuridine	mmn5ges3U	21511U	U
130	5-Aminomethyl-2-geranythiouuridine	nm5ges3U	21510U	U
131	5-Methoxy carbonylmethyl-2-thiouridine	mc5’s2U	2521U	U
132	5-Carboxamoylmethyl-2-thiouridine	ncm5’s2U	253U	U
133	3-(3-Amino-3-carboxypropyl)-5,6-dihydrouridine	acp5’D	308U	U
134	5-Aminomethyl-2-selenouridine	nm5’sec2U	20510U	U
135	5-Carboxamoylhydroxymethyluridine	nchm5U	531U	U
136	5-Carboxymethyl-2-thiouridine	cm5’s2U	2540U	U
137	5-Methyl-2-thiouridine	m5’s4U	25U	U
138	2-Geranythiouuridine	ges2U	21U	U
139	2-Selenouridine	se2U	20U	U
140	5-Aminomethyluridine	nm5U	510U	U
141	2′-O-methyluridine 5-oxyacetic acid methyl ester	mcmo5Um	0503U	U
142	3-(3-Amino-3-carboxypropyl)pseudouridine	acp5’ψ	309U	U
143	5-Cyanomethyl-2-thiouridine	cmn5’s2U	None	U

Note: The column labeled “RNA modification” lists the modification name. The column labeled “Symbol” lists the traditionally named abbreviations or symbols for the modification. Nonalphanumeric characters seen in abbreviations, such as plus signs, commas, parentheses, asterisks, and other such characters, significantly complicate regular expression scripting in Linux-based environments. To mitigate this problem, the column labeled “New symbol” lists a new set of symbols for these modifications that is easier for regular expressions to use (Boccaletto et al., 2018; Jonkhout et al., 2017). The column labeled “Original NT” indicates which nucleotide (A, C, G, or U) is the ultimate originating nucleotide for the modification.
FIGURE 3 Euler diagrams showing the currently known phylogenetic distribution of ribonucleoside modifications in tRNA, rRNA, mRNA, and ncRNA classes. Archaeal modifications are in pink, bacterial modifications are in blue, and eukaryotic modifications are in yellow.

FIGURE 4 tRNA-specific modifications are clustered around specific nucleotides in tRNAs. A schematic of the secondary structure of tRNA is depicted as a cloverleaf structure, having a D-loop (purple), an anticodon loop (orange), a TΨC-loop (blue), and the 3'-CCA sequence (green) that is aminoacylated when charged with an amino acid (AA). Numbers refer to specific nucleotide positions where modifications have been mapped (Lorenz, Lünse, & Mörl, 2017; Phillips & de Crécy-Lagard, 2011; Phizicky & Hopper, 2010; Powell, Nicholls, & Miniczuk, 2015). The modifications cataloged in Table 2 occur at numbered positions in Figure 4.
tRNA position	Modification(s)
1	ψ
4	Am, Cm
8	s^4U
9	m^1A, m^1G, s^4U
10	m^2G, m^2^2G, m^2Gm, m^2^2Gm
12	ac^4C
13	ψ
15	G^+, preQ_0
16	D
17	D, Gm
19	D
20	D, acp^3U
21	ψ
26	m^2G, m^2^2G, m^2Gm, m^2^2Gm
27	ψ
28	ψ
31	ψ
32	ψ, m^1C, Cm, s^2C, s^2U, ms^2C
34	ψ, cmn^5U, ho^5U, mo^5U, cmo^5U, mcmo^5Um, m^5U, I, f^C, m^5C, m^3C, preQ_0, preQ_1, Q, oQ, galQ, manQ, gluQ, Cm, s^2U, s^2Um, nm^2^2U, mmn^2^2U, cmnm^2^2U, C^*, k^C, ac^C, Gm, mcm^5Um, mcm^5U, ncm^5U, ncm^5Um, tm^5U, tm^5s^2U, cmnm^5U, cmnm^5s^2U, mmn^5se^2U, cmnm^5ges^2U, mnm^5ges^2U, cmnm^5se^2U, mmn^5se^2U, mmn^5se^2U, mmn^5se^2U, nm^5U, ncmh^5U, se^5U, ges^5U, chm^5U, mcmh^5U, mcm^5s^2U, ncm^5s^2U, cm^5s^2U
35	ψ
36	ψ
37	t^6A, io^6A, ms^3^6A, ms^3io^6A, t^6A, g^6A, ht^6A, m^6^6A, ct^6A, ms^2^6A, ms^2ct^6A, I, m^1A, m^1I, m^2A, m^1G, imG-14, imG, imG2, mimG, yW-86, yW-72, yW-58, yW, OHyW^*, OHyWy, o2yW, OHyW, m^6A, s^2C
38	ψ
39	ψ,Um
40	m^3C
46	m^3G
47	acp^3U
48	m^5C
49	m^5C
52	ψ
53	ψ
54	ψ, m^1ψ, m^5U, m^5s^2U
55	ψ
56	Cm
57	m^1A, m^1l, I
58	m^1A, m^1l
64	Ar(p), Gr(p)
65	ψ

(Continues)
TABLE 2 (Continued)

tRNA position	Modification(s)
66	ψ
Unknown location	msms^3i^6A, ac^6A, hn^6A, m^6s^6A, m^6^6A, acp^3D, m^5ψ, m^6^4Cm, m^6Am, m^6^6Am, m^1Am, Im, m^1Im, m^1Gm, m^1^7Cm, m^1Cm, m^4Cm, ac^5Cm, mchm^5Um, mcmo^5Um, imn^5Um

Note: Specific positions within tRNAs, labeled “tRNA position,” indicate which nucleotide is modified (related to Figure 4). The column labeled “Modification(s)” indicates which modification(s) can be found at a given nucleotide position. All modifications are abbreviated as indicated in “Symbol” column of Table 1.

2 | ABBREVIATIONS USED IN THIS WORK

Throughout this work, we use abbreviations that are commonplace or from publications that we reference. In addition to the ribonucleoside abbreviations that we catalog in Table 1, the following abbreviations appear in the text.

Abbreviation	Description
ABH1	alpha-ketoglutarate-dependent dioxygenase 1 or AlkB Homolog 1
ACP	3-amino-3-carboxypropyl
ADAR	adenosine deaminase acting on RNA
ADAT	adenosine deaminase acting on tRNA
AHK3	histidine kinase 3
AHK4	histidine kinase 4
AID	activation-induced cytidine deaminase
ALKB	alpha-ketoglutarate-dependent dioxygenase
ALKBH1	alkylated DNA repair protein (AlkB) homolog 1
ALKBH3	alkylated DNA repair protein (AlkB) homolog 3
ALKBH5	alkylated DNA repair protein (AlkB) homolog 5
ALKBH8	alkylated DNA repair protein (AlkB) homolog 8
AML	acute myeloid leukemia
ArcS/arcTGT	archaeosine synthase
AroD	3-dehydroquinate dehydratase
Atm1	mitochondrial iron–sulfur clusters transporter
BMT5/6	25S rRNA (uridine(2634)-N\(^5\))-methyltransferases 5 and 6
Bud23	rRNA methyltransferase and ribosome maturation factor
c-di-GMP	cyclic di-guanosine monophosphate
CDK5RAP1	cyclin-dependent kinase 5 regulatory subunit associated protein 1
CDKAL1	threonylcarbamoyladenine tRNA methylthiotransferase or cyclin-dependent kinase (CDK) 5-regulatory subunit associated protein 1 like 1
cDNA	complementary DNA
CDS	coding sequence
Cfr	chloramphenicol-florfenicol resistance
CMC	N-cyclohexyl-\(N'-(2-morpholinoethyl)\)-carbodiimide
CMCT	N-cyclohexyl-\(N'-(2-morpholinoethyl)\)-carbodiimide metho-p-toluenesulphonate
c-myc	cellular avian myelocytomatosis viral oncogene homolog
CmoABM	carboxy-S-adenosyl-L-methionine synthase A, B, or M
COG1738	conserved protein domain 1738
CRE1	cytokinin response element 1
Enzyme or Protein	Description
------------------	-------------
CsdAE	cysteine desulfurase A or E
Ctu1-2	cytoplasmic tRNA 2-thiolation proteins 1 or 2
DDX6	DEAD-box helicase 6
Dim1	dimethyladenosine transferase 1
DKC1	dyskerin pseudouridine synthase 1
DNMT3A	DNA methyltransferase 3 alpha or DNA (cytosine-5-)-methyltransferase 3 alpha
dpCoA	3′-dephospho-coenzyme A
DROSHA	double-stranded RNA-specific endoribonuclease
DTWD1-2	DTW (aspartate-threonine-tryptophan) domain-containing proteins 1 or 2
Dus	dihydrouridine synthase
Dus1-4p	dihydrouridine synthase proteins 1–4
DusABC	dihydrouridine synthase A, B, or C
eEF1A	eukaryotic elongation factor 1A
EF-Tu	elongation factor thermo unstable
EGFR	epidermal growth factor receptor
eIF3H	eukaryotic translation initiation factor 3 subunit H
eL41	eukaryotic ribosomal protein L41
Elp1-6	Elongator proteins 1–6
Emg1	N1-specific pseudouridine methyltransferase
FICC-seq	fluorouracil-induced-catalytic-crosslinking-sequencing
FMN	flavin mononucleotide
FTO	fat mass and obesity-associated related
Fur	ferric uptake regulator
GAT-QueC	glutamine amidotransferase class-II-7-cyano-7-deazaguanine synthase fusion protein
GCD	tRNA (adenine-N1)-methyltransferase
Gcd10p/Gcd14p	tRNA (adenine-N1)-methyltransferases 10 and 14 proteins or tRNA (adenine(58)-N(1))-methyltransferase noncatalytic subunit Trm6 and Trm61
GidA	uridine 5-carboxymethylaminomethyl modification enzyme
GluQRS	glutamyl-Q tRNA(Asp) synthetase
GRIA2	glutamate ionotropic receptor alpha-amino 3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) type subunit 2
GTPBP3	guanosine triphosphate binding protein 3
H/ACA	H- and ACA-box-containing small nucleolar RNA
HER2+	human epidermal growth factor receptor 2 positive
hDus2p	human dihydrouridine synthase protein 2
hnRNP	heterogeneous nuclear ribonucleoprotein
hTRMT10A or B	human tRNA methyltransferase 10 A or B
IGF2BP	insulin-like growth factor 2 mRNA-binding protein
IPP	isopentenyl pyrophosphate
IscS	iron–sulfur cluster S or cysteine desulfurase
IscU	iron–sulfur cluster assembly enzyme
Isu1/2	iron–sulfur cluster assembly proteins 1 and 2
KEOPS	kinase, putative endopeptidase and other proteins of small size
KsgA	tRNA adenine dimethyltransferase or ribosomal RNA small subunit methyltransferase A

(Continues)
Acronym	Name
L7Ac	50S ribosomal protein
LC–MS	liquid chromatography–mass spectrometry
MALAT1	metastasis-associated lung adenocarcinoma transcript 1
MAT2A	methionine adenosyltransferase 2A
MELAS	mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes
MERRF	myoclonus epilepsy associated with ragged-red fibers
METTL	methyltransferase-like protein
METTL2	methyltransferase-like protein 2
METTL3/14	methyltransferase-like proteins 3 and 14
METTL5	methyltransferase-like protein 5
METTL6	methyltransferase-like protein 6
METTL8	methyltransferase-like protein 8
METTL15	methyltransferase-like protein 15
METTL16	methyltransferase-like protein 16
MiaA	tRNA delta(2)-isopentenylpyrophosphate transferase A or tRNA dimethylallyltransferase A
MiaB	tRNA delta(2)-isopentenylpyrophosphate transferase B or tRNA dimethylallyltransferase B
MiaE	tRNA delta(2)-isopentenylpyrophosphate transferase E or tRNA dimethylallyltransferase E
miR/miRNA	microRNA
MK2	MAPK activated protein kinase 2 or mitogen-activated protein kinase-activated protein kinase 2 or MAPKAPK2
MLASA	mitochondrial myopathy and sideroblastic anemia
MnmACEGH	tRNA-specific 2-thiouridylase A, C, E, G, or H
MnmC(m)	tRNA-specific 2-thiouridylase C, methyltransferase domain
MnmC(o)	tRNA-specific 2-thiouridylase C, oxidoreductase domain
Moco	molybdenum cofactor
Mod5	tRNA isopentenyltransferase 1
MtbA	threonylcarbamoyladenosine tRNA methylthiotransferase or TcdA
mTOR	mammalian target of rapamycin
MTO1	mitochondrial tRNA translation optimization 1
MTU1	mitochondrial tRNA-specific 2-thiouridylase 1 or TRMU
NAD*	nicotinamide adenine dinucleotide (oxidized form)
NADH	nicotinamide adenine dinucleotide (reduced form)
NAP57	nucleolar and coiled-body phosphoprotein 57 or dyskerin
NAT10	N-acetyltransferase 10
Ncs6	cytoplasmic tRNA 2-thiolation protein 1
Nep1/Emg1	N1-specific pseudouridine methyltransferase
NFS1	mitochondrial cysteine desulfurase
NiFZ	nitrogen fixation protein
Nm	2'-O-methyl mark
NML	nucleomethylin
NOP56	nucleolar protein 56
NOP58	nucleolar protein 58
NRF2	nuclear factor erythroid 2 like 2
NSUN	nucleolar protein 22/Sun domain RNA methyltransferase
Term	Definition
--------------	---
Nt:	Nucleotide
Opa1:	optic atrophy 1
P body:	processing body
PAR:	poly(ADP-ribose)
PAR-CLIP:	photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation
PCIF1:	phosphorylated C-terminal domain-interacting factor 1
PKR:	interferon-inducible double-stranded RNA-activated protein kinase or eIF-2A protein kinase 2
pri-miRNA:	primary microRNA transcripts
PRC2:	polycomb responsive complex 2
PRPP:	phosphoribosylpyrophosphate
PrrC:	anticodon nuclease
PRRC2A:	proline-rich coiled-coil 2A
PTC:	peptidyl transferase center
Pus:	pseudouridine synthase
Pus1p:	pseudouridine synthase 1 protein
Pus10:	pseudouridine synthase 10
QueA:	S-adenosyl-l-methionine-dependent tRNA ribosyltransferase-isomerase
QueCDE:	7-cyano-7-deazaguanine synthase, 6-carboxy-5,6,7,8-tetrahydropterine synthase, and 7-carboxy-7-deazaguanine synthase
QueF:	NADPH-dependent 7-cyano-7-deazaguanine reductase
QueF-like:	similar to NADPH-dependent 7-cyano-7-deazaguanine reductase
QueG:	epoxycqueuosine reductase
QueH:	epoxycqueuosine reductase
QueT:	queuosine precursor transporter
RaSEA:	radical SAM enzyme for archaeosine formation
Rit1:	ribosylation of initiator tRNA 1
RlhA:	23S rRNA 5-hydroxycytidine C2501 synthase
RlmA:	ribosomal RNA large subunit methyltransferase A or 23S rRNA (guanine(745)-N(1))-methyltransferase
RlmC:	ribosomal RNA large subunit methyltransferase C or 23S rRNA (uracil(747)-C(5))-methyltransferase
RlmD:	ribosomal RNA large subunit methyltransferase D or 23S rRNA (uracil(1939)-C(5))-methyltransferase
RlmF:	ribosomal RNA large subunit methyltransferase F
RlmFO:	ribosomal RNA large subunit methyltransferase FO or methylenetetrahydrofolate-tRNA-(uracil-5)-methyltransferase
RlmG:	ribosomal RNA large subunit methyltransferase G
RlmH:	ribosomal RNA large subunit methyltransferase H
RlmI:	ribosomal RNA large subunit methyltransferase J
RlmL:	ribosomal RNA large subunit methyltransferase L
RlmN:	23S rRNA m^2A2503 methyltransferase/tRNA or dual-specificity RNA methyltransferase
RluA:	ribosomal large subunit pseudouridine synthase A or dual-specificity RNA pseudouridine synthase
RluD:	ribosomal large subunit pseudouridine synthase D
RNMT:	RNA guanine-7 methyltransferase
RRF:	ribosome release factor
RsmA:	ribosomal RNA small subunit methyltransferase A
RsmC:	ribosomal RNA small subunit methyltransferase C
RsmD:	ribosomal RNA small subunit methyltransferase D

(Continues)
Acronym	Description
RsmE	ribosomal RNA small subunit methyltransferase E
RsmH	ribosomal RNA small subunit methyltransferase H
RsmI	ribosomal RNA small subunit methyltransferase I
RsuA	ribosomal small subunit pseudouridine synthase A
SAH	S-adenosyl-L-homocysteine
SAM	S-adenosyl-L-methionine
SCARLET	site-specific cleavage and radioactive labeling followed by ligation-assisted extraction and thin-layer chromatography
SCM-SAH	S-carboxy-S-adenosyl-L-homocysteine
SELEX	systematic evolution of ligands by exponential enrichment
SelU	tRNA 2-selenouridine synthase
snoRNA	small nucleolar RNA
snoRNP	small nucleolar ribonucleoprotein
SNP	single nucleotide polymorphism
snR35	small nucleolar RNA 35
snRNA	small nuclear RNA
snRNP	small nuclear ribonucleoprotein
SNU13	small nuclear ribonucleoprotein 13 or 15.5K
SOS	inducible DNA repair system
SRA	steroid receptor RNA activator
T	thymidine
Tad1p	tRNA-specific adenosine deaminase 1 protein
Tad2p	tRNA-specific adenosine deaminase 2 protein
Tad3p	tRNA-specific adenosine deaminase 3 protein
TadA	tRNA-specific adenosine deaminase
Tan1	tRNA acetyltransferase 1
TapT	tRNA aminocarboxypropyltransferase
Taw1-3	SAM-dependent tRNA 4-demethylwyosine synthases 1–3
Taw22	SAM-dependent tRNA 4-demethylwyosine synthase 22
TAZ	tafazzin
TCD1/2	threonylcarbamoyladenosine dehydratase 1 or 2
TcdA	threonylcarbamoyladenosine dehydratase A
Tcs1/2	threonylcarbamoyladenylate synthase 1 or 2
TermY	tRNA m^1Ψ54-methyltransferase
TET	ten-eleven translocation methylcytosine dioxygenase
TET1	ten-eleven translocation methylcytosine dioxygenase 1
Tgs1	trimethylguanosine synthase
TGT	queuine tRNA-ribosyltransferase
Thril	tRNA sulfurtransferase
TiaS	tRNA^Le-agmatidine synthetase
TilS	tRNA^Le-lysidine synthetase
Tit1	tRNA isopentenyltransferase 1
tmRNA	transfer-messenger RNA
TOR	target of rapamycin
Abbreviation	Description
--------------	-------------
TP53	tumor protein P53
TPA	12-O-tetradecanoylphorbol-13-acetate
TPP	thiamin pyrophosphate
TrhOP	metallophos domain-containing protein O or P
TRIT1	tRNA isopentenyltransferase 1
Trm-G10	tRNA (guanine-10-N²)-dimethyltransferase
Trm1	tRNA methyltransferase 1
Trm1p	tRNA methyltransferase 1 protein
TRM4B	tRNA cytosine-C⁵-methyltransferase
Trm5	tRNA methyltransferase 5
Trm6-Trm61	tRNA methyltransferases 6 and 61
Trm8p/Trm82p	tRNA (guanine-N²⁶)-methyltransferase
Trm9/Trm112	tRNA (carboxymethyluridine(34)-5-O)-methyltransferase protein
Trm10	tRNA (guanine(9)-N⁷)-methyltransferase
Trm11p/112p	tRNA (guanine(10)-N⁸)-methyltransferase
Trm140	tRNA(Thr) (cytosine(32)-N⁴)-methyltransferase
TrmA	tRNA/tmRNA (uracil-C⁵)-methyltransferase
TrmD	tRNA (guanine-N⁴)-methyltransferase
TrmF0	methylenetetrahydrofolate-tRNA-(uracil-5)-methyltransferase
TrmI	tRNA m¹A58/m⁷G46 methyltransferase
TrmM	tRNA (adenosine(37)-N⁶)-methyltransferase or YfIC or TrmN6
TrmO	tRNA methyltransferase O or tRNA (adenine(37)-N⁶)-methyltransferase
TrmU	tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase
TRMT	tRNA methyltransferase
TRMT1	tRNA methyltransferase 1 or tRNA (guanine(26)-N(2))-dimethyltransferase
TRMT10	tRNA methyltransferase 10
TRMT2A	tRNA methyltransferase 2A or tRNA (uracil-5)-methyltransferase
TRMT6	tRNA methyltransferase 6 or tRNA (adenine(58)-N(1))-methyltransferase
TRMT12	tRNA methyltransferase 12 homolog or tRNA wybutosine-synthesizing protein 2 homolog
TRMT61A	tRNA methyltransferase 61A or tRNA (adenine(58)-N(1))-methyltransferase
TRMT61B	tRNA methyltransferase 61B or tRNA (adenine(58)-N(1))-methyltransferase
TRMT112	tRNA methyltransferase 112
TruA	tRNA pseudouridine synthase A or Pus1
TruB	tRNA pseudouridine synthase B or Pus4
TruD	tRNA pseudouridine synthase D or Pus7
TcaA	tRNA-cytidine-32 2-sulfurtransferase
TsaCDE	tRNA adenosine(37) threonylcarbamoyltransferase complex, dimerization subunit type 1; threonylcarbamoyladenylate synthase; tRNA adenosine(37) threonylcarbamoyltransferase complex, transferase subunit; tRNA adenosine (37) threonylcarbamoyltransferase complex, ATPase subunit type 1
TsaC2	threonylcarbamoyladenylate synthase
Tsr3	acp transferase ribosome maturation factor
TuaA	tRNA U47 acp transferase A or YfIP

(Continues)
DISCOVERY OF MODIFIED RIBONUCLEOSIDES: AN HISTORICAL RETROSPECTIVE ON PSEUDOURIDINE, INOSINE, AND DIHYDROURIDINE

Nucleoside modification (IUPAC abbreviation): pseudouridine (Ψ); inosine (I); dihydrouridine (D).

Domain assignments: A, B, E.

RNA classes: ●, ●, ● (Ψ and I), ▲ (Ψ and I).

tRNAs play a central role in translation. These adaptor molecules serve as links between the informational level of codons in mRNA and the functional level of amino acids incorporated into a growing polypeptide chain (Lorenz et al., 2017). From the initial total sequence determination of tRNAAla, the specific locations of seven different modified nucleosides, including Ψ, inosine, and D, were described by Holley (1965). Since then, tRNAs have been recognized as the RNA class containing the highest percentage of post-transcriptional modifications (Figure 4, Table 2), which are mostly found in the tRNA loops (D- and TΨC-loops) and the tRNA anticodon loop. Currently, 111 distinct modifications have been identified in tRNAs from all three domains of life (Figure 3, Table 2). One such modification, and the first RNA modification to be discovered, is Ψ.

In 1951, Ψ was discovered as the first post-transcriptional modification in RNA and today is recognized as the most abundant RNA modification (Cohn & Volkin, 1951; reviewed in Spenkuch, Motorin, & Helm, 2014). Ψ is an isomer of uridine, where the nitrogen–carbon glycosidic bond is replaced by a carbon–carbon bond and an imine group is projected into the major groove (Figure 2). Ψ and U have identical molecular weights, making discerning Ψ and U problematic using size-based methods (L. Johnson & Söll, 1970). However, the use of CMCT and reverse transcription or the use of SCARLET are two methods frequently used to find Ψ in RNAs (Adachi, DeZoysa, & Yu, 2019; X. Li et al., 2015; N. Liu et al., 2013; Penzo, Guerrieri, Zacchini, Treré, & Montanaro, 2017). Ψ-seq uses CMCT to modify Ψ into N3-CMC-Ψ, which can terminate reverse transcription when preparing RNAs for RNA-seq (Carlile et al., 2014; Schwartz et al., 2014; B. S. Zhao & He, 2015). Because N3-CMC-Ψ blocks reverse transcription, the Ψ nucleotide is identified as one nucleotide downstream of the 3' end of the fragment (Ofengand, Del Campo, & Kaya, 2001).

Pseudouridine synthases isomerize the U incorporated within RNA transcripts rather than individual ribonucleosides (L. Johnson & Söll, 1970). The synthases known to date are divided into five families (RluA, RsuA, TruA, TruB, and TruD) in bacteria. In archaeal and eukaryotic organisms, Pus family enzymes write pseudouridine marks (Hamma & Ferré-D’Amaré, 2006). The Pus enzymes have a conserved enzymatic core and use various protein domains to recognize different RNA targets (Hamma & Ferré-D’Amaré, 2006). However, the pseudouridine synthase NAP57, dyskerin, and other homologs of pseudouridine synthase, coupled with other core proteins, use H/ACA snoRNAs as guides to position a uridine at the active site of the machinery which introduces Ψ marks in rRNA and snRNAs (Ganot, Bortolin, & Kiss, 1997; reviewed in Y. T. Yu & Meier, 2014). Ψ is found nearly ubiquitously throughout various classes
of RNAs (IncRNAs, mRNAs, miRNAs, mitochondrial tRNAs, rRNAs, small Cajal-body specific RNAs, snRNA, snoRNAs, and tRNAs) and in all three domains of life (reviewed in Penzo et al., 2017). However, it is unknown if any enzymes exist that revert Ψ back to U or completely remove Ψ from RNAs (reviewed in Eyler et al., 2019).

Nearly all tRNAs are populated with some abundance of Ψ, although some exceptions exist, such as the initiator tRNA in Saccharomyces cerevisiae (Boyer et al., 1970). Ψ55 is found in nearly all tRNAs within the TPC stem-loop while other sites, such as the anticodon stem-loop and D-arm, also possess Ψ (Charette & Gray, 2000) (Figure 4, Table 2). U55 is modified to Ψ55 by tRNA Ψ55 synthase, an enzyme from the TruB family (Nurse, Wrzesinski, Bakin, Lane, & Ofengand, 1995). Ψ55 is proposed to stabilize the tertiary structure of tRNA, particularly under extreme thermal stress (Kinghorn, O’Byrne, Booth, & Stansfield, 2002). Within rRNA, Ψ can be found in both the small and large subunits of the ribosome in prokaryotes and eukaryotes as well as in chloroplasts and mitochondria (Charette & Gray, 2000). Ψ can be found in locations crucial for peptide bond formation, such as the PTC region (Ofengand, 2002). The inclusion of Ψ in various regions of tRNA and rRNA provides structural stabilization to enable the formation of highly ordered structures. snRNAs have Ψ within both the major (U1, U2, U4, U5, and U6) and minor (U12, U4atac, and U6atac) spliceosomal complexes (A. T. Yu, Ge, & Yu, 2011). Ψ in spliceosomal RNAs plays a crucial role in the assembly and function of snRNPs or the spliceosome via intermolecular RNA–RNA and RNA–protein interactions (A. T. Yu et al., 2011).

Ψ can be found in mRNA (5′ UTRs, coding sequences, and 3′ UTRs) (Carlile et al., 2014). Additionally, pseudouridylation of mRNA was found to have a role in translation. Ψ-containing mRNA impede Escherichia coli translation elongation by preventing the canonical interactions between the CCA-end of a tRNA and the A site of the PTC in ribosome (Eyler et al., 2019). Further, Ψ promoted aberrant amino acid substitutions, yielding multiple peptide products from one luciferase transcript in E. coli and human cells (Eyler et al., 2019). While many of these substitutions were anticipated not to have deleterious effects on luciferase, the authors also hypothesized that these substitutions could be harmful to host organisms under stress conditions (Eyler et al., 2019). As pseudouridylation helps stabilize RNA structures, Ψ is crucial in forming the active structure of the SRA IncRNA, which promotes transcription of several genes (X. Zhao et al., 2007; Y. Zhao, Dunker, Yu, & Karijolich, 2018). Moreover, mutating the pseudouridylation site to adenosine in mice causes SRA to become hyperpseudouridylated and act as a dominant negative suppressor of gene transcription, notably c-myc (X. Zhao et al., 2007; Y. Zhao, Dunker, et al., 2018).

Ψ has relevance in human disease, but its roles are not clearly defined in most diseases. Urine samples contain Ψ and could be used as a potential biomarker for cancer due to elevated levels in some cancer patients (Penzo et al., 2017; Seidel, Brunner, Seidel, Fritz, & Herbarth, 2006). Correlations between defects in Ψ formation and X-DC and Hoyeraal–Hreidarsson syndrome have been characterized (Penzo et al., 2017). Both diseases involve a mutation in the dkcl gene, leading to a decrease of Ψ in mRNA and many epidermal complications such as unusual skin pigmentation and white patches lining the oral cavity (leukoplakia) (Penzo et al., 2017). However, some individuals with either disease have been found to have normal levels of Ψ in mRNA, while telomerase impairment and shortened telomeres result in the diseases (Penzo et al., 2017). Separately, abrogation of Pus1p-mediated pseudouridylation of SRA has also been linked to MLASA in humans (Bykhovskaya, Casas, Mengesha, Inbal, & Fischel-Ghodsian, 2004; X. Zhao et al., 2007). Further studies are required to determine if pseudouridylation has a direct role in these diseases.

As early as 1957, inosine was discovered as a biosynthetic precursor to purine synthesis in every domain of life (Brown, Hoopes, White, & Sarisky, 2011; Graupner, Xu, & White, 2002; Hartman & Buchanan, 1958; Levin & Magasanik, 1961; Marolewski, Smith, & Benkovic, 1994; E. Meyer, Leonard, Bhat, Stubbe, & Smith, 1992; Nygaard & Saxild, 2000; Ownby, Xu, & White, 2005; L Warren, Flaks, & Buchanan, 1957). Inosine, which occurs in RNA and DNA, is the product of hydrolytic deamination at the C6 position of adenosine (Alseth, Dalhus, & Bjørås, 2014). In DNA, inosine formation can be caused by nonenzymatic processes, such as spontaneous hydrolysis, endogenous or environmental factors, or exposure to nitrosative compounds (Alseth et al., 2014). While these nonenzymatic processes can also occur in RNA, deaminase enzymes can also introduce inosine into RNAs (Alseth et al., 2014). In DNA, inosine preferentially base pairs with cytidine, where A-to-I deamination results in mis-coding and is considered a premutagenic event (Alseth et al., 2014; Nordmann, Makris, & Reznikoff, 1988). In RNA, inosine can base pair to A, C, or U, allowing inosine to function as a Wobble base in the anticodon loop of tRNA or within other RNAs, such as mRNAs (reviewed in Wright, Force, & Znosko, 2018). Inosine was found in the Wobble position (I34) of tRNA0 Ala (Holley, 1965) and in several tRNAs (Figure 4) (reviewed in Rubio et al., 2017; Torres et al., 2014). I34 was later determined to be essential in bacteria and eukaryotes, but not in archaea (reviewed in Rubio et al., 2017; Torres et al., 2014).
In contrast to DNA, enzymatically derived inosine modifications found in double-stranded RNA (dsRNA) occur via ADARs (Bass et al., 1997; Bass & Weintraub, 1988; Rebagliati & Melton, 1987) or ADATs (Bass et al., 1997; Danan-Gotthold & Levanon, 2017). Deamination of A-to-I has been reported in tRNAs (reviewed in Torres et al., 2014), recently for the first time in the small subunit of mitochondrial tRNA from the eukaryote Diplonema papillatum (Moreira, Valach, Aoulad-Aissa, Otto, & Burger, 2016), mRNAs (Paul & Bass, 1998), ncRNAs (Kawahara et al., 2007; Luciano, Mirsky, Vendetti, & Maas, 2004; Y. Yang, Zhou, & Jin, 2013), and viral RNAs (Samuel, 2011). Translational and splicing machinery recognize inosine as G, resulting in the altered informational content of the RNA. When A-to-I editing occurs in the coding region of an mRNA, the corresponding codon is altered, which can change the sequence of an encoded protein. Though recoding is rare, A-to-I editing events predominantly occur in the noncoding intronic or untranslated terminal regions of mRNAs and in ncRNAs (Athanasiadis, Rich, & Maas, 2004; D. D. Y. Kim et al., 2004; E. Y. Levanon et al., 2005; Y. Yang et al., 2013). For example, A-to-I editing events have been observed at repeated Alu-rich regions in RNAs from multiple classes (Levanon et al., 2004). Additionally, with several A-to-I editing events in the primary transcript of mouse miRNA-142 (pri-miR-142), both pri-miR-142 and the mature miR-142 levels are repressed (W. Yang et al., 2006). Consequently, in adar1 or adar2 null mice, both pri-miR-142 and mature miR-142 are increased (W. Yang et al., 2006). Interestingly, ADAR-catalyzed A-to-I conversion of DNA bases in DNA/RNA hybrids has been recently described, which may expand the spectrum of biological functions of ADARs (Y. Zheng, Lorenzo, & Beal, 2017).

While A-to-I editing is widespread across Metazoa, the number of edits can vary considerably across species (Porath, Knisbacher, Eisenberg, & Levanon, 2017). Three classes of ADAR proteins are involved in the regulation of pre-mRNA A-to-I editing in vertebrates. ADAR1 and ADAR2 are expressed in most tissues, while ADAR3 is expressed only in the central nervous system (C. X. Chen et al., 2000; Oakes, Anderson, Cohen-Gadol, & Hundley, 2017). Importantly, while ADAR1 and ADAR2 catalyze A-to-I editing (Zinshteyn & Nishikura, 2009), ADAR3 competitively interferes with the activity of RNA-bound ADAR1 and ADAR2, suggesting ADAR3 has a regulatory role (C. X. Chen et al., 2000). ADAT, a class of deaminases that are specific to tRNAs, are related to ADAR but are inactive on known pre-mRNA substrates and extended dsRNAs (Maas, Gerber, & Rich, 1999; Torres et al., 2014). ADAT1, or its homolog Tad1p, catalyzes the A-to-I conversion at position 37 in the anticodon loop of eukaryotic tRNAAla (Figure 4, Table 2) (A. Gerber, Grosjean, Melcher, & Keller, 1998), while the ADAT2/ADAT3 heterodimer or its homolog heterodimer Tad2p/Tad3p catalyzes the Wobble position A-to-I conversion of eukaryotic tRNAs (A. P. Gerber & Keller, 1999). The formation of I34 in bacterial tRNAArg is catalyzed by the TadA enzyme (A. A. H. Su & Randau, 2011; Wolf, Gerber, & Keller, 2002). Inosine at position 57 in the ΨΨΨC loop of tRNA has been reported for only archaea, where it occurs as N1-methylinosine (m1I57) (Figure 4) (Yamaizumi et al., 1982). Here, the first step of A-to-I conversion involves methylation of A57 by the SAM-dependent methyltransferase TrmI; this methylated adenosine is then deaminated to m1I57 by an unknown enzyme (Grosjean, Constantinesco, Foiret, & Benachenhou, 1995; Roovers et al., 2004; reviewed in Torres et al., 2014).

The effects of A-to-I editing have been observed primarily in brain tissue or neurons and can exhibit different phenotypes in these organs or cellular environments. A-to-I editing can affect brain tissue or neurons through dampening signaling through G-protein receptors, enhancing the activity of voltage-gated ion channels, promoting proper brain and neuron function, or proper splicing of glutamate-gated cation selective channels, among other observed functions (Burns et al., 1997; Hoopengardner, Bhalla, Staber, & Reenan, 2003; Levanon et al., 2005; Seeburg, Higuchi, & Sprengel, 1998; Sommer, Köhler, Sprengel, & Seeburg, 1991). ADAR activity plays an essential role in nervous system function by restoring or establishing neuronal growth (Benowitz, Goldberg, & Irwin, 2002). Further, mutations in ADARs have been shown to cause neural and behavioral defects in Drosophila melanogaster and Caenorhabditis elegans (Goldstein et al., 2017). Disrupted ADAR activity is associated with brain cancers, prostate cancer, hepatocellular carcinoma, and chronic myeloid leukemia (Fritzell, Xu, Lagergren, & Öhman, 2018; L.-D. Xu & Öhman, 2018). ADAR2 is essential for editing some mature miRNAs in glioblastoma cells and ADAR2 can also reduce the expression of numerous oncogenic miRNAs (Tomaselli et al., 2015). Astrocytoma and glioblastoma in humans have been correlated with an overexpression of ADAR3, in which ADAR3 likely competes with ADAR2 for a binding site in the gria2 mRNA (Oakes et al., 2017). This competition prevents RNA editing and promotes cell migration as well as tumor invasion in glioblastoma (Oakes et al., 2017). A-to-I editing involvement in cancer, as well as neuronal behavior studies, remains an area of active research and could potentially lead to drug targets for cancer or behavioral treatments.

Another modification that was among the first found in total RNA was D in 1952 from beef spleen, though D had been synthesized previously (Funk, Merritt, & Ehrlich, 1952; Weidel & Roithner, 1896). D is a product of the post-transcriptional enzymatic reduction of the C5–C6 double bond in uridine to a single bond (Figures 1 and 2). Present in
all three domains of life, D is a common modification in tRNA, where the D-loop was aptly named because it has several D modifications (Figure 4) (Sprinzl, Horn, Brown, Ioudovitch, & Steinberg, 1998). However, D also resides in the variable loop (V-loop) of tRNAs and in the Escherichia coli 23S rRNA (Bishop, Xu, Johnson, Schimmel, & de Crécy-Lagard, 2002; Kowalak, Bruenger, & McCloskey, 1995; Xing, Hiley, Hughes, & Phizicky, 2004). D typically destabilizes stacking interactions with other nucleosides and D destabilizes the C3-endo sugar conformation of its ribose, which is a hallmark for the formation of the A-RNA double helix (J. Dalluge, Hashizume, Sopchik, McCloskey, & Davis, 1996). Instead, D prefers a C2-endo conformation, resulting in increased flexibility and dynamic motion where RNA tertiary interactions need to be accommodated (J. J. Dalluge et al., 1997). Finally, D is an important factor in ensuring the recognition of tRNA by specific aminoacyl-tRNA synthetases and the fidelity of translation (Hendrickson, 2001).

Though D is an abundant modification in all three domains of life, Dus enzymes that catalyze the formation of D belong to a broad family of FMN-dependent enzymes (Bishop et al., 2002). Three classes of Dus enzymes are found in E. coli (DusA, DusB, and DusC), four classes are found in S. cerevisiae (Dus1p, Dus2p, Dus3p, and Dus4p), and one class is archaeal (Dus) (Bishop et al., 2002; Kasprzak, Czerwoniec, & Bujnicki, 2012). Thus far, one homolog has been discovered in humans (hDus2p), though homologs for Dus1, Dus3, and Dus4 may also exist in humans (Kasprzak et al., 2012; Whelan et al., 2015). By conducting a structural analysis of bacterial DusABC, it was determined that DusB is the ancestral Dus enzyme (Bou-Nader et al., 2018). Additional structural analyses of DusABC proteins revealed that each Dus enzyme has distinct substrate specificity on tRNAs (Bou-Nader et al., 2018). Further analysis of the otherwise evolutionarily conserved double-stranded RNA-binding domain of hDus2p revealed a novel N-terminal extension in the hDus2p enzyme, which confers the ability to recognize specifically tRNAs, instead of nonspecifically recognizing double-stranded RNAs (Bou-Nader et al., 2019).

Because elevated levels of dihydrouridine were correlated with Novikoff hepatoma and in Ehrlich ascites previously (Kuchino & Borek, 1978), subsequent research sought to determine involvement of hDus2p in cancer (T. Kato et al., 2005). In lung cancer, there is an increased amount of hDus2p, leading to greater amounts of D, which in turn increases conformational flexibility of tRNAs and enhances translational efficiencies (T. Kato et al., 2005). Concordantly, overexpression of hDus2p was correlated with a poor prognosis in lung cancer patients (T. Kato et al., 2005). Separately, hDus2p interacts with PKR, inhibiting its kinase activity and interferon-induced antiviral innate immunity (Mittelstadt et al., 2007). Overexpression of hDus2p also inhibits stress-induced apoptosis in sarcoma cells (Mittelstadt et al., 2007). The discovery of additional Dus homologs in humans may provide further clues in its involvement in human health. Moreover, the natural occurrence of D in psychrophilic organisms may provide useful applications or insights into synthetic biological applications at colder temperatures. The discovery and characterization of the modifications Ψ, I, and D served as a basis for the subsequent discovery and characterization of modifications in RNA from all three domains of life.

4 | ADENOSINE-DERIVED MODIFICATIONS

4.1 | The roles of m\(^6\)A in biology and its metabolic breakdown products of hm\(^6\)A and f\(^6\)A

Nucleoside modification (IUPAC abbreviation): N\(^6\)-methyladenosine (m\(^6\)A); N\(^6\)-hydroxymethyladenosine (hm\(^6\)A); N\(^6\)-formyladenosine (f\(^6\)A).

Domain assignments: A (m\(^6\)A), B (m\(^6\)A), E.

RNA classes: ● (m\(^6\)A), □ ▼ (m\(^6\)A).

The biological function of N\(^6\)-methyladenosine (m\(^6\)A) represents one of the most prolific areas of recent research in modified ribonucleosides. Although m\(^6\)A was originally discovered in 1974 in mRNA (Perry & Kelley, 1974), it was 25 years later when the first enzyme that could synthesize m\(^6\)A (known as an m\(^6\)A writer) was discovered. For eukaryotic mRNAs, this writer was identified as METTL3, which exists in a complex with the catalytically inactive METTL14 and WTAP (Bokar, Schambaugh, Polayes, Matera, & Rottman, 1997; Ping et al., 2014; Shi et al., 2019). METTL3/14 methylate RNAs at a consensus nucleotide sequence: 5′-RRACH-3′ (R = purine, H = A, C, or U nucleotides) (Dominissini et al., 2012; K. D. Meyer et al., 2012). Subsequent m\(^6\)A methyltransferases were discovered in humans and Escherichia coli acting on different RNA classes. One of these methyltransferases is human METTL16, which modifies the U6
snRNA, the MAT2A mRNA, and likely other RNAs (Koh, Goh, & Goh, 2019; Pendleton et al., 2017; Warda et al., 2017). Recently, the heterodimer complex METTL5 and Trmt12 was characterized as an m\(^6\)A methyltransferase that modifies A1832 in the human 18S rRNA (van Tran et al., 2019) and ZCCHC4 was recently characterized as an m\(^6\)A methyltransferase that modifies A4220 in the human 28S rRNA (Pinto et al., 2020; van Tran et al., 2019). RlmF and RlmJ place two distinct m\(^6\)A marks (A1618 and A2030, respectively) on the E. coli 23S rRNA (Golovina et al., 2012; Sergiev, Serebryakova, Bogdanov, & Dontsova, 2008). Although m\(^6\)A is present in bacterial mRNAs, the methyltransferase(s) that confer m\(^6\)A marks remains elusive. The consensus sites for E. coli and Pseudomonas aeruginosa, respectively, are 5'-UGCCAG-3' or 5'-GGYCAG-3', which are distinct from the 5'-RRACH-3' sequence recognized by METTL3/14 in humans (Deng et al., 2015). Moreover, m\(^6\)A modifications have been detected in one tRNA\(^{Val}\) species in E. coli (Saneyoshi, Harada, & Nishimura, 1969) and its writer was determined to be TrmM (Golovina et al., 2009). Further, an m\(^6\)A modification at A1500 has been detected in the small ribosomal subunit of the crenarchaeote Sulfolobus solfataricus and Haloferax volcanii (Kowalak, Bruneger, Crain, & McCloskey, 2000; Noon, Bruneger, & McCloskey, 1998), although it is currently unknown which enzymes confer these modifications.

For some RNAs from bacterial and eukaryotic organisms, there are validated demethylases that can remove m\(^6\)A marks from RNAs (known as m\(^6\)A erasers) (Fedeles, Singh, Delaney, Li, & Essigmann, 2015). Some such demethylase is the ALKBH5 protein, which specifically removes m\(^6\)A marks from mRNAs (G. Zheng et al., 2013). Another demethylase is the FTO protein, which demethylates m\(^6\)A, m\(^6\)Am, and m\(^1\)A marks in mRNA, snRNA, and tRNA, respectively (Shi et al., 2019; Wei et al., 2018; X. Zhang, Wei, et al., 2019). Instead of a direct demethylation reaction, human and mouse FTO can demethylate m\(^6\)A marks by oxidizing them to yield hm\(^6\)A, which is further oxidized to yield f\(^6\)A (Fu et al., 2013). The half-lives of these modifications, whose biological roles remain unexplored, is \(\sim 3\) hr in vitro, and then both modifications nonenzymatically decompose back to adenosine (Fu et al., 2013). The reversibility of m\(^6\)A marks in mRNAs remains controversial, for a small percent of m\(^6\)A marks vary during the life of an mRNA (Darnell et al., 2018; B. S. Zhao, Nachtergaele, et al., 2018). Regardless, the removal of m\(^6\)A is a controlled process, though it is unclear what significance hm\(^6\)A and f\(^6\)A have in biology.

In addition to m\(^6\)A writers and erasers, several proteins have been characterized whose binding activity depends on the presence or absence of an m\(^6\)A mark (known as m\(^6\)A readers). For example, m\(^6\)A marks may weaken secondary structure to create new protein-binding sites, such as hnRNPC binding to a U-rich loop in an m\(^6\)A-disrupted hairpin (Alarcón, Goodarzi, et al., 2015; N. Liu et al., 2015, 2017; Shi et al., 2019; B. Wu et al., 2018). These findings led to the model of an m\(^6\)A switch, whereby the absence of an m\(^6\)A mark may result in a stable hairpin that obscures protein binding sequences (N. Liu et al., 2015, 2017; X. Wang et al., 2014). Another possible m\(^6\)A switch regulates mRNA-binding site accessibility in MALAT1. Here, the absence of an m\(^6\)A mark in MALAT1 may prevent the formation of a long-range pseudoknot and, concordantly, expose two mRNA-binding sites that could sequester miRNAs away from their oncogenic mRNA targets (McCown, Wang, Jaeger, & Brown, 2019). Proteins containing the YTH domain, such as YTHDF2, can recognize and bind to m\(^6\)A marks on mRNAs and ncRNAs in humans. These binding events destabilize the structure of their RNA targets and then lead these YTHDF2-bound RNAs to P bodies for degradation (H. Du et al., 2016; Shi et al., 2017, 2019; X. Wang et al., 2014, 2015). IGF2BP1–3 proteins increase the mRNA half-life of mRNAs with m\(^6\)A marks, while PRRC2A also increases mRNA half-life of an m\(^6\)A-containing transcript that is necessary for myelination (H. Huang et al., 2018; Shi et al., 2019; R. Wu et al., 2019). The binding of the splicing-factor hnRNPA2B1 enables m\(^6\)A-dependent nuclear processing, especially for pri-miRNAs (Alarcón, Goodarzi, et al., 2015). METTL3 and its corresponding m\(^6\)A marks are sufficient to permit proper pri-miRNA processing by DROSHA in a non-cell-type specific fashion in human cells (Alarcón, Lee, Goodarzi, Halberg, Tavazoie, 2015). hm\(^6\)A and f\(^6\)A are not recognized by the YTHDF2 protein, suggesting that they could either bind to different RNA-binding proteins or serve as markers for newly synthesized RNAs, among other possibilities (Fu et al., 2013). Recently, it was discovered that YTHDF1–3 facilitates phase separation of m\(^6\)A-marked mRNAs and influences the transport of these mRNAs into different phase-separated compartments: P bodies for nonstress conditions, or stress granules for heat shock or arsenite stress (Ries et al., 2019).

The involvement of m\(^6\)A in human health is a highly active area of research that cannot be adequately addressed in this review. Several recent reviews capture the trends on m\(^6\)A in disease (X.-Y. Chen, Zhang, & Zhu, 2019; K. Du, Zhang, Lee, & Sun, 2019; Lan et al., 2019; Tong, Flavell, & Li, 2018). Nonetheless, we highlight some of the more
striking discoveries involving m6A in human disease. In select cancer cells, an abundance of METTL3 was found to promote A549 lung adenocarcinoma cancer cell growth, survival, and invasion phenotypes, while the methylation activity of METTL3 was found to regulate the protein expression of several oncogenes, including EGFR, TAZ, MK2, and DNMT3A (S. Lin, Choe, Du, Triboulet, & Gregory, 2016). METTL3 enhances the translation of these oncogenes and others by physically interacting with eIF3H, which increases the formation of polysomes on the EGFR, TAZ, MK2, and DNMT3A mRNAs (Choe et al., 2018). Small molecule ligands that bind to the METTL3–METTL14–WTAP complex activate this complex and may aid in cell survival after UV exposure (Selberg et al., 2019; Xiang et al., 2017). YTHDF2 is often overexpressed in AML and is required for AML initiation and propagation (J. Paris et al., 2019). YTHDF2 was found to be dispensable in noncancerous hematopoietic stem cell function, yet essential for leukemic stem cell function. Concordantly, YTHDF2 represents an attractive therapeutic target for AML, which also permits hematopoietic stem cell expansion after treatment (J. Paris et al., 2019). Small molecule inhibitors targeting FTO have eradicated AML cells in vitro and in mouse xenograft models of AML (Y. Huang et al., 2019). In neurology, m6A marks were shown to shorten the radial glial cell cycle, while also extending cortical neurogenesis beyond birth in mouse brains (Yoon et al., 2017). Moreover, m6A marks are significant in memory formation in mice, as a knockout of the ythdf1 gene in mice showed learning and memory deficits (Shi et al., 2018). In cardiology, m6A marks have been shown to be crucial in proper heart development and in heart function; for an siRNA knockdown of METTL3 and a cardiomyocyte-specific knockout mouse line of mettl3 resulted in the depletion of m6A, which also resulted in increased rates of heart failure in mice and possibly in humans (Dorn et al., 2019). Much research has been conducted on the significance of the presence or absence of m6A marks to human health. However, further research is needed to determine precisely how m6A, hm6A, and f6A affect human health instead of correlative observations based on their global alterations in knocking or overexpressing enzymes that write or erase these modifications. Also, research into the significance of hm6A and f6A remains almost nonexistent and may further elucidate the temporal presence of m6A in RNAs.

4.2 The methyl groups of m1A and its derivative m1I disrupt hydrogen bonding along the Watson–Crick face of their host ribonucleotides

Nucleoside modification (IUPAC abbreviation): N1-methyladenosine (m1A); N1-ino sine (m1I).

Domain assignments: A, B, E.

RNA classes: ●, ■ (m1A), ● (m1A), ● (m1A).

m1A is a prevalent, dynamic base modification found in tRNAs, rRNAs, mRNAs, and ncRNAs (Bar-Yaakov et al., 2016, 2017; Dominissini et al., 2016; Khoddami et al., 2019; Kirpekar, Hansen, Rasmussen, Poelsgaard, & Vester, 2005; Koscinski, Feder, & Bujnicki, 2007; X. Li et al., 2016; Maden, 1990; McCown et al., 2019; Oerum, Dégut, Barraud, & Tisné, 2016; Roovers et al., 2004; Safra et al., 2017; Schwartz, 2018; Sharma, Watzinger, Köttler, & Entian, 2013; Wachino et al., 2007). m1A disrupts U-A Watson–Crick base pairing and introduces a positive charge at physiological pH (Dominissini et al., 2016; Parsyan et al., 2011; Roundtree, Evans, Pan, & He, 2017; Zur & Tuller, 2013). m1A marks have been found at several positions in tRNAs in all three domains of life (Figure 4, Table 2) (Oerum et al., 2017; Roovers et al., 2008; Sprinzl et al., 1998). The two most well-studied m1A modifications in tRNA are m1A9 and m1A58, which have been related to proper tRNA folding and structural stability (reviewed in Oerum et al., 2017). The m1A9 modification has been found in archaeal and mitochondrial mammalian tRNAs (reviewed in Oerum et al., 2017). In human mitochondrial tRNA^{Lys}, tRNA^{Leu(UUR)}, and tRNA^{Asp}, the m1A modifications disrupt Watson–Crick interactions that would otherwise render these tRNAs as hairpins. Instead, these tRNAs possess the functional L-shape structure seen in other tRNAs (Figure 4, Table 2) (Helm et al., 1998; Helm, Giegé, & Florentz, 1999; Helm & Attardi, 2004; Oerum et al., 2017; Voigts-Hoffmann et al., 2007). Recently, the enzyme hTRMT10B was indicated as the tRNA^{Amp}-specific m1A9 methyltransferase in humans (Howell, Jora, Jepson, Limbach, & Jackman, 2019). The m1A58 modification in tRNAs can be found in all three domains of life, though it is found in both cytosolic and mitochondrial tRNAs of eukaryotes (reviewed in Oerum et al., 2017). For the tRNA-specific m1A58 modification, prokaryotes use the enzyme TrmI to methylate A58, while the enzyme complex Trm6–Trm61 (previously known as Gcd10p/Gcd14p) methylates this adenosine in *S. cerevisiae* (Droogmans et al., 2003; Oerum et al., 2017; Roovers et al., 2004). Among prokaryotic organisms such as *Thermus thermophilus*, m1A58, Gm18, and m5s2U54 have been linked to the structural thermostability of tRNA as these modifications increase the melting temperature of tRNA by 10°C when compared with unmodified tRNAs (Droogmans et al., 2003; Oerum et al., 2017; Yokoyama, Watanabe, & Miyazawa, 1987). In *S. cerevisiae*, m1A58 has been shown to be important for the maturation of the initiator tRNA^{Met}
In humans, m\(^1\)A\(^{58}\) situated in tRNALys\(^3\) appears to be essential for the fidelity and efficiency of plus-strand DNA transfer during HIV-1 reverse transcription (Auxilien, Keith, Le Grice, & Darlix, 1999). m\(^1\)A marks have also been discovered in rRNA in archaean and aminoglycoside-resistant bacteria. The m\(^1\)A\(^{1408}\) modification in 16S rRNA disrupts the binding of aminoglycosides to rRNA in E. coli (Kirpekar et al., 2005; Koscinski et al., 2007; Wachino et al., 2007). Like prokaryotes, m\(^1\)A modifications can be found in eukaryotic RNA, such as A\(^{645}\) in S. cerevisiae 25S rRNA and A\(^{1322}\) in human 28S rRNA. This modification functions in the biogenesis of the human 60S ribosome through methylation of A\(^{1322}\), as catalyzed by NML (Peifer et al., 2013; Sharma et al., 2018; Waku et al., 2016). In the mitochondrial 16S rRNA, the enzyme TRMT61B confers this methyl mark (Bar-Yaacov et al., 2016, 2017).

For m\(^1\)A modifications in human mRNAs, TRMT6/ TRMT61A has been shown to confer this mark (Schwartz, 2018). For m\(^1\)A erasers, FTO and ALKBH3 have been shown to demethylate m\(^1\)A marks in human tRNAs and mRNAs (Wei et al., 2018; Woo & Chambers, 2019). The presence of m\(^1\)A in mRNAs increases the efficiency of translation initiation, early elongation, and enhances translation rates (Dominissini et al., 2016; Roundtree et al., 2017). m\(^1\)A has been determined to be involved in cancer, as either drastic upregulation or downregulation of m\(^1\)A levels and m\(^1\)A writer proteins are found in patients with poor prognoses in several cancer types, including gastrointestinal cancers, hepatocellular carcinoma, pancreatic adenocarcinoma, and colorectal adenocarcinoma (Y. Zhao et al., 2019).

In archaean tRNAs, m\(^1\)A marks are present at positions 57 and 58, where m\(^1\)A\(^{57}\) is an obligatory precursor in the formation of m\(^1\)I (Droogmans et al., 2003; Grosjean et al., 1995; Roovers et al., 2004; Yamaizumi et al., 1982). Adenosine methylation occurs first via the TrmI enzyme to form the m\(^1\)A marks; m\(^1\)A\(^{57}\) is further deaminated by an unknown enzyme to form m\(^1\)I (Grosjean et al., 1995, 1996; Roovers et al., 2004). m\(^1\)I has also been found in eukaryotic cytosolic tRNA\(^{\text{A}}\) at position m\(^1\)I\(^{37}\) (Grosjean et al., 1995, 1996; Holley, 1965). The synthesis of m\(^1\)I in eukaryotes differs from archaea, however. In S. cerevisiae and animal cells, the homodimeric Tad1p and ADAT1 enzymes, respectively, catalyze the conversion of A\(^{37}\) to I\(^{37}\) (A. Gerber et al., 1998; Maas et al., 1999). I\(^{37}\) is then methylated to m\(^1\)I by Trm5 in a SAM-dependent reaction (Björk et al., 2001). In the autoimmune disease polymyositis, antibodies were detected and could target m\(^1\)I-containing tRNAs and stem-loops (Grosjean et al., 1996). Though m\(^1\)A-related health research is being conducted, further m\(^1\)I-related research may also yield interesting discoveries in human health that are currently unknown.

4.3 | \(i^6\)A and the related ribonucleosides \(i^6\)A, ms\(^2\)i\(^6\)A, ms\(^2\)io\(^6\)A, and msms\(^2\)i\(^6\)A have roles in tRNA formation, translation, cytokinin formation, and prion formation and prion development

Nucleoside modification (IUPAC abbreviation): N\(^6\)-isopentenyladenosine (\(i^6\)A); N\(^6\)-(cis-hydroxyisopentenyl)-adenosine (io\(^6\)A); 2-methylthio-N\(^6\)-isopentenyladenosine (ms\(^2\)i\(^6\)A); 2-methylthio-N\(^6\)-(cis-hydroxyisopentenyl)-adenosine (ms\(^2\)io\(^6\)A); 2-methylthiomethylenethio-N\(^6\)-isopentenyl-adenosine (msms\(^2\)i\(^6\)A).

Domain assignments: B, E (not msms\(^2\)i\(^6\)A).

RNA classes: .

\(i^6\)A appears at position 37 in many tRNA molecules, corresponding to the anticodon loop (nt 37 in Figure 4) (U. Schweizer, Bohleber, & Fradejas-Villar, 2017). In bacteria and eukaryotes, the synthesis of \(i^6\)A within a tRNA is accomplished by conjugating an isopentenyl pyrophosphate (IPP) molecule to A\(^{37}\) via the bacterial miaA enzyme, the S. cerevisiae mod5 enzyme, the human TRIT1 enzyme, or organism-relevant homologs (Figure 5a) (U. Schweizer et al., 2017). In select plants, \(i^6\)A can also exist as an unincorporated ribonucleoside excised from a recycled tRNA molecule or synthesized as a ribonucleotide for use as a hormone (Hwang & Sakakibara, 2006; Riefler, Novak, Strnad, & Schmülling, 2006). \(i^6\)A can be hydroxylated by the bacterial MiaE enzyme and its eukaryotic homologs to yield io\(^6\)A (U. Schweizer et al., 2017).

Further modifications of \(i^6\)A are established by bacterial MiaB and mammalian CDK5RAP1 enzymes, which perform a thiomethylation of \(i^6\)A to form ms\(^2\)i\(^6\)A (U. Schweizer et al., 2017). ms\(^2\)i\(^6\)A can be further modified by the miaE enzyme, which hydroxylates the ms\(^2\)i\(^6\)A modification to form ms\(^2\)io\(^6\)A. While ms\(^2\)io\(^6\)A is chemically distinct from ms\(^2\)i\(^6\)A, the two appear to be functionally interchangeable in stabilizing weak base pairing between the mRNA codon and the tRNA anticodon (Persson, Esberg, Öljafsson, & Björk, 1994). The sulfur in ms\(^2\)i\(^6\)A and ms\(^2\)io\(^6\)A comes from cysteine and is delivered by the cysteine desulfurase IscS, itself a hub of seven different pathways in which sulfur can be utilized in the biogenesis of ms\(^2\)i\(^6\)A/ms\(^2\)io\(^6\)A, s\(^3\)U, s\(^3\)U, s\(^2\)C, thiamin, Moco, and additional Fe-S proteins (Shigi, 2014). msms\(^2\)i\(^6\)A, predominantly found in E. coli tRNA\(^{\text{Ser}}\) and tRNA\(^{\text{Try}}\), was determined to be synthesized from the MiaB
enzyme in a sequential thioacetylation reaction using ms²i⁶A as a precursor in vitro (Dal Magro et al., 2018). However, it is unknown whether msms²i⁶A is found in other organisms and its function remains unknown.

At position 37 in the anticodon loop, the modified ribonucleosides i⁶A, ms²i⁶A, m¹G, inosine, m¹A, m¹I, m²A, and yW and its derivatives disrupt potential base pairing with a neighboring uridine residue (U33) that is close to A37 in the tertiary structure of several tRNA species (U. Schweizer et al., 2017). These modifications also strengthen anticodon–codon pairings of adjacent tRNA nucleotides to their cognate mRNA targets (U. Schweizer et al., 2017). i⁶A

FIGURE 5 Schemes showing the production of i⁶A and t⁶A derivatives of adenosine. (a) Modifications that occur in the production of i⁶A, io⁶A, ms²i⁶A, ms²io⁶A, and msms²i⁶A. (b) Modifications that occur in the production of g⁶A, t⁶A, ht⁶A, ms²t⁶A, m⁶t⁶A, ct⁶A, and ms²ct⁶A. In both panels, arrows denote enzymatic reactions and enzyme(s) that participate in each reaction are abbreviated if known (see abbreviations list) or denoted by a question mark (?) if unknown. Red moieties represent the modification(s) added to the adenosine molecule. Arrow tails containing red, blue, or yellow ellipses denote reactions that occur in archaea, bacteria, or eukaryotes, respectively.
and ms2t6A have significant roles in proper codon recognition in tRNA molecules, particularly in the stationary phase sigma factor in E. coli (U. Schweizer et al., 2017). Moreover, i6A formation on tRNA^Trp was shown to optimize trp operon attenuation in bacteria (Eisenberg, Yarus, & Soll, 1979). In bacteria, ms2t6A limits P-site slippage in the ribosome, while also increasing the synthesis of an iron chelator (Buck & Griffiths, 1982; reviewed in Pollo-Oliveira & De Crécy-Lagard, 2019; Urbonavičius, Qian, Durand, Haggerval, & Björk, 2001). On elucidating its role in iron chelation, it was discovered that MiaB is dependent upon an iron–sulfur cluster (Pierrel, Björk, Fontecave, & Atta, 2002). Further, the translation of the major iron homeostasis regulator in E. coli, Fur, is coupled to translation of a leader peptide that is properly decoded by a tRNA^Ser-UGA which is modified at A37 to contain an ms2i6A mark (Pollo-Oliveira & De Crécy-Lagard, 2019; Večerek, Moll, & Bläsi, 2007). In S. cerevisiae, a reduction in the efficiency of the tRNA^Tyr(UAA) suppressor was attributed to lack of i6A (Laten, Gorman, & Bock, 1978; U. Schweizer et al., 2017). Further, S. cerevisiae strains that were homozygous for a deletion of mod5 fall to sporulate (Laten et al., 1978). The mod5 protein in S. cerevisiae can also form prions, which were shown to regulate the sterol biosynthesis pathway and ultimately led to an acquired resistance against severalazole-derived antifungal agents (G. Suzuki, Shimazu, & Tanaka, 2012). Prion formation of mod5 also resulted in a decrease of i6A production (G. Suzuki et al., 2012). In Schizosaccharomyces pombe, the mod5 homolog tit1 renders resistance to rapamycin, an inhibitor of mTOR (U. Schweizer et al., 2017).

Within other eukaryotes, mod5 or its homologs can modify cytosolic and mitochondrial tRNAs. Both S. cerevisiae and S. pombe retain a preference for using i6A in mitochondrial tRNAs. However, the preferential modification in mammals shifts to using the ms2t6A modification in mitochondrial tRNAs; ms2t6A may also be absent in cytosolic tRNAs. Finally, in mammals, selenoprotein expression is dependent upon proper formation of i6A and mcm5U in tRNA[^Ser]Sec (U. Schweizer et al., 2017; Sierant et al., 2018).

Within plants, i6A functions as a cytokinin, a plant hormone with regulatory roles in plant growth and proper plant development (Riefler et al., 2006). The i6A receptors CRE1/AHK4 and AHK3 are expressed significantly in root tissue and aerial portions of Arabidopsis, respectively (Riefler et al., 2006). CRE1/AHK4 has roles in phosphate starvation responses and sulfate acquisition, in addition to the formation of significant defects in the formation and development of plant vascular tissues (Riefler et al., 2006). Further, these receptors have roles in regulating germination rates, light needed for germination, and sensitivity to far-red light (Riefler et al., 2006). Within humans, the role of i6A as a cytokinin has been investigated as a potential antitumor treatment for the last 50 years (Dassano et al., 2014). Though the initial investigation into i6A in clinical trials failed, the development of i6A analogs has yielded compounds that inhibit growth of the MCF7 breast cancer cell line and activate the NRF2-mediated oxidative stress response, which is triggered typically by hydrogen peroxide or TPA (Dassano et al., 2014). What roles i6A or its derivatives may have as an anticancer drug remain unknown but are quite exciting. Further, while IPP is used to generate i6A, it remains unknown if any additional IPP derivatives are used in organisms to modify adenosine molecules. Specifically, as a geranyl moiety can be used in modifying uridine molecules (Sierant et al., 2016), it would be fascinating to see if geranyl pyrophosphate or another lipid molecule can similarly be incorporated into an adenosine molecule.

4.4 The biological roles of t6A and its derivatives or relatives: ct6A, m6t6A, ms2t6A, msct6A, ht6A, ac6A, g6A, hn6A, and ms2hn6A

Nucleoside modification (IUPAC abbreviation): N6-threo(mylo)carbamoyladenosine (t6A); cyclic N6-threo(mylo)carbamoyladenosine (ct6A); N6-methyl-N6-threo(mylo)carbamoyladenosine (m6t6A); 2-methylthio-N6-threo(mylo)carbamoyladenosine (ms2t6A); cyclic 2-methylthio-N6-threo(mylo)carbamoyladenosine (msct6A); N6-hydroxylthreo(mylo)carbamoyladenosine (ht6A); N6-acetyl adenosine (ac6A); N6-glycinylcarbamoyladenosine (g6A); N6-hydroxynorvalylcarbamoyladenosine (hn6A); 2-methyl-N6-hydroxynorvalylcarbamoyladenosine (ms2hn6A).

Domain assignments: A (t6A, ac6A, hn6A, ms2t6A, and ms2hn6A), B (not g6A, ht6A), E (not ac6A, hn6A, and ms2hn6A).

RNA classes: ·

t6A and subsets of its derivatives (Figure 5b) are essential modified bases found in all three domains of life at position 37 of tRNAs (Figure 4, Table 2), comparable with i6A and its derivatives above (Kang et al., 2017). Several tRNAs that read codons starting with a U residue are universally modified to contain t6A or its derivatives, while various tRNAs that read codons that start with an A residue are modified to contain i6A or its derivatives (U. Schweizer et al., 2017). To create t6A, all three domains of life undergo a two-step process to covalently attach threonine to the N6 position of A37 in tRNA molecules. In bacteria, the Tsac or the Tsac2 protein adds a threonylcarbamoyl group onto an ATP molecule, whereas archaea and eukaryotes use Tcs1 or Tcs2 (reviewed in Thiaville, Iwata-Reuyl, & de Crécy-
Lagard, 2014). Once the resulting threonylcarbamoyl-AMP molecule is formed, bacteria use the TsABDE proteins to transfer the threonylcarbamoyl moiety into A37 to form t6A37, while archaea and eukaryotes use the KEOPS macromolecular complex to form t6A37 (reviewed in Thiaville et al., 2014; Wan et al., 2013). Instead of incorporation with threonine into A37 in tRNAs, a glycine residue can occasionally be placed on the tRNA instead, generating g6A through an unknown enzymatic process (M. P. Schweizer, McGrath, & Baczynskyj, 1970; Wan et al., 2013). t6A can be cyclized into ct6A by the E. coli enzymes TcdA, CsdA, and CsdE or the S. cerevisiae homologs TCD1-TCD2 (Miyauchi, Kimura, & Suzuki, 2013). t6A can also be further methylated or hydroxylated, forming m6t6A or h6t6A via the enzyme TrmO and by an unknown enzyme, respectively (Figure 5b) (Kang et al., 2017; Nagao et al., 2017). In all three domains of life, a thiomethyl group from SAM can also be added onto t6A by the bacterial MtaB enzyme or the eukaryotic enzyme CDKAL1, forming ms2t6A (Arragain et al., 2010). ms2t6A can be further cyclized into ms2ct6A by the enzyme TcdA (Kang et al., 2017). However, ms2ct6A can be generated directly from ct6A by CDKAL1, as the necessary 2-methylthiolation and cyclization events are independent of each other (Kang et al., 2017). Further, while the cyclic modifications ct6A and ms2ct6A can be artificially synthesized in an oxazolone isoform, the hydantoin isoforms are the biologically relevant forms (Figure 5b) (Kang et al., 2017). ct6A, m6t6A, ms2t6A, ms2ct6A, ht6A, and g6A do not appear to be found in archaeal species (Boccaletto et al., 2018; Kang et al., 2017).

While archaeal tRNAs contain t6A and some related derivatives, ac6A has been hypothesized to be a structural analog of t6A and related molecules within archaeal tRNA (Sauerwald, Sitaramaiah, McCloskey, Söll, & Crain, 2005). ac6A is the most abundant modified t6A-like derivative in tRNA molecules from Methanopyrus kandleri (Sauerwald et al., 2005). Further, the t6A derivative hn6A and its relative ms3hn6A were also present in the characterization studies of ac6A (Reddy et al., 1992; Sauerwald et al., 2005). As was seen with ac6A, both hn6A and ms3hn6A were found in thermophilic archaeal species (Sauerwald et al., 2005). However, their roles and precise nucleotide positions within archaea tRNA remain unknown.

As with t6A, t6A and its derivatives are essential in decoding and recognizing codons. However, each t6A derivative has unique specificity. t6A and ct6A decode ANN (N represents any nucleotide) codons, m6t6A decodes ACY codons, ms2t6A and ms2ct6A decode AAR codons, and ht6A decodes the AAA codon in sea urchins and reads as asparagine instead of lysine (Kang et al., 2017; Miyauchi et al., 2013; Nagao et al., 2017). t6A is necessary for proper and efficient aminoacylation of tRNAs, efficient translocation, proper scanning of initiation codons, and proper read-through of stop codons (Kang et al., 2017). While t6A is essential in E. coli and many bacteria, it is not essential to Deinococcus radiodurans, Thermus thermophilus, Synechocystis PCC6803, and Streptococcus mutans (Thiaville et al., 2015). While dispensable in D. radiodurans, t6A-deficient strains of D. radiodurans were more sensitive to the DNA crosslink inducing drug mitomycin C and had a marked increase in protein expression of stress response genes related to protein homeostasis (Onodera, Satoh, Ohta, & Narumi, 2013; Thiaville et al., 2015). In E. coli and S. mutans, it was determined that t6A was a positive determinant for the PrrC toxins in both organisms (Bacusmo et al., 2017). In S. cerevisiae, t6A37 is not essential, though lack of t6A results in substantial growth defects. These defects include an increase in sensitivity to TOR pathway inhibitors, and an increase in rates of translation at non-AUG start codons upstream of the actual translation start site (Thiaville et al., 2016). In D. melanogaster, a homozygous mutation of one component of the KEOPS complex results in larvae that are significantly smaller than wild type and which do not pupate, ultimately dying in larval stages (Rojas-Benitez, Thiaville, Valérie De Crécy-Lagarde, & Glavic, 2015). In humans, mutations in CDKAL1 revealed a risk association with type 2 diabetes (Kang et al., 2017). Further, mutations in several KEOPS genes result in Galloway–Mowat syndrome, a disease characterized by microcephaly and nephrotic syndrome (Arrondel et al., 2019; Braun et al., 2017; Edvardson et al., 2017). Further, t6A deficiency in human mitochondria due to TsAC knockout results in a MERRF-like phenotype (H. Lin et al., 2018). What additional roles or modifications may be generated from t6A remain an unclear, though some comparisons of t6A and its derivatives may be made with k2C and C+, as k2C and C+ are composed of cytidine residues that have been attached to a lysine or an arginine, respectively (Phillips & de Crécy-Lagarde, 2011; Soma et al., 2003). This strategy of attaching an amino acid to the nitrogenous base of a ribonucleotide may be a relic from the RNA world (Ikeuchi et al., 2010; Soma et al., 2003) and may be used as a strategy for finding additional unknown modifications throughout biology.

4.5 m6,6A plays an important structural role in rRNA and can be found in tRNAs

Nucleoside modification (IUPAC abbreviation): N6,N6-dimethyladenosine (m6,6A or m6,2A).

Domain assignments: A, B, E.

RNA classes: •, ◦.
In its capacity as a structurally important modification, m6,6A can be found in the final helix (helix 45) at A1518 and A1519 of the small ribosome subunit of *E. coli* and *T. thermophilus*. m6,6A1518 and m6,6A1519 are formed by RsmA (previously KsgA) in prokaryotes. In eukaryotes, the corresponding enzyme is Dim1 (Chan et al., 2011; Demirci et al., 2010; Seistrup et al., 2017). RsmA/Dim1 catalyze both dimethylation events at m6,6A1518 and m6,6A1519, which are necessary for assembling the minimal, functional ribosome (Grosjean et al., 2014; Seistrup et al., 2017). Owing to the steric interference of the dimethyl groups and the removal of hydrogen bond donors at m6,6A1518 and m6,6A1519, the normally structured tetraloop of helix 45 is weakened and results in decreased errors in translation and decreased non-AUG translation initiation (Demirci et al., 2010). However, inactivation of RsmA can occur in some organisms, resulting in impaired organismal growth and the removal of a late-stage checkpoint in 30S ribosome biosynthesis. In mammalian cells, a buildup of unprocessed small ribosomal subunits that occurs with Dim1 inactivation is lethal to the cells (Seistrup et al., 2017). While m6,6A modifications were initially found in the ribosome, m6,6A has also been found in tRNA from the bacteria *Mycobacterium bovis*, though its location within tRNA and its function remain presently unsolved (Chan et al., 2011). Moreover, while the loss of a hydrogen bond donor in m6,6A is exploited in the ribosome for proper function, it remains to be seen if the loss of the hydrogen bond donor has similar effects in other RNAs, such as mRNAs and other ncRNAs.

4.6 The roles of m2A, m8A, and m2,8A in translational fidelity and antibiotic resistance in bacteria

Nucleoside modification (IUPAC abbreviation): 2-methyladenosine (m2A); 8-methyladenosine (m8A); 2,8-dimethyladenosine (m2,8A).

Domain assignments: B.

RNA classes: • (m2A), ■.

The adenosine modifications m2A and m8A are conferred by RlmN and Cfr, respectively. In some RNAs, m2A and m8A can be further methylated at either position 8 or position 2 by Cfr or RlmN, respectively. Regardless of which singly methylated adenosine precursor is methylated, this additional methylation results in the formation of m2,8A. The methylation order of m2,8A is currently not known to be of biological significance (Yan & Fujimori, 2011). RlmN confers an m2A mark on tRNA species in *E. coli* at position 37 (Benítez-Páez, Villarroya, & Armengod, 2012). m2A37 is reported to occur in at least six *E. coli* tRNAs (tRNA$^{Arg}_{ICG}$, tRNA$^{Asp}_{QUC}$, tRNA$^{Gln}_{cmnn5sUUG}$, tRNA$^{Gln}_{CUG}$, tRNA$^{Glu}_{mnm5s2UUC}$, and tRNA$^{His}_{QUG}$) (Schwalm, Grove, Booker, & Boal, 2016). Also, m2A, m8A, and m2,8A can be found, separately, at A2503 in the PTC of the 23S rRNA (Yan & Fujimori, 2011). RlmN and Cfr can utilize protein-free 23S rRNA as a substrate, but the enzymes cannot utilize the fully assembled large ribosomal subunit. This observation suggests that methylation events occur during formation of the ribosome instead of after its full assembly (Yan et al., 2010). The presence of a methyl group on C2 of A2503 improves translational fidelity (Schwalm et al., 2016). The presence of a methyl group on C2 of A2503 confers resistance to more than five classes of ribosomal-targeting antibiotics (Long, Poehlsgaard, Kehrenberg, Schwarz, & Vester, 2006). As A2503 is located at the PTC of the ribosome, m2A may influence contacts between the exit tunnel and the nascent peptide chain and further strengthens the structure of the PTC (Polikanov, Melnikov, Söll, & Steitz, 2015; Toh, Xiong, Bae, & Mankin, 2008). Also, it is not specifically indicated if the dimethylation seen in m2,8A exerts both translational fidelity and antibiotic resistance effects. It is known that antibiotic resistance from C8 methylation is independent of methylation of C2 (Giessing et al., 2009). While there has not been further experimentation that has been published about these methylation marks, the methylases that confer these marks are potentially interesting antibiotic targets of interest that may be of use in future drug discovery.

5 GUANOSINE-DERIVED MODIFICATIONS

5.1 Alterations of the base-pairing capabilities of RNAs by m2G and m2,2G may be crucial in proper translation, while m2G can undergo hydroxymethylation to form hm2G

Nucleoside modification (IUPAC abbreviation): N2-methylguanosine (m2G); N2, N2-dimethylguanosine (m2,2G or m2G); N2-hydroxymethylguanosine (hm2G).

Domain assignments: A (not hm2G), B (not hm2G), E.
RNA classes: • (not hm2G), ■.

m2G and m2,2G are two common modifications. m2G marks can be frequently found in archaeal and eukaryotic tRNAs but more rarely found in bacterial tRNAs at positions 10 or 26 (Table 2). However, the role of m2G within tRNA remains elusive (Purushothaman, Bujnicki, Grosjean, & Lapeyre, 2005; Roovers et al., 2012). While the methyl mark on m2G is found on the Watson–Crick face of guanosine, m2G base pairing to C in an RNA duplex occurs with the same energetics as G base pairing to C (Rife, Cheng, Moore, & Strobel, 1998). However, m2G-U Wobble base pairs are slightly more energetically stabilizing than G-U Wobble base pairs and do not affect the energetics of GNRA tetraloops (Rife et al., 1998). One methyltransferase complex that is known to form m2G10 marks in eukaryotes is the Trm11p/Trm112p complex (Purushothaman et al., 2005). The methyltransferase Trm-G10 was characterized in Pyrococcus furiosus to confer m2G marks, while homologs of the trm-G10 gene were determined to be nearly ubiquitous in archaea and eukaryotes (Armengaud et al., 2004). Homologs of the Trm-G10 methyltransferase could also confer m2,2G marks, as seen in Pyrococcus abyssi (Gabant et al., 2006). A separate methyltransferase, Trm1, was found to confer m2G marks in Aquifex aeolicus, though Trm1 also conducts a second methylation event to confer m2,2G marks (Awai et al., 2009). In S. cerevisiae and other eukaryotes, the enzyme Trm1p or its homologs writes an m2,2G mark at G26 on numerous tRNAs (Dewe, Fuller, Lentini, Kellner, & Fu, 2017; Hopper, Furukawa, Pham, & Martin, 1982; K. Zhang et al., 2020). m2,2G prevents a potential G26-A44 base pair in tRNAs that could form with unmodified guanosine (Figure 4, Table 2) (Pallan, Kreutz, Bosio, Micura, & Egli, 2008). The dimethyl modification at G26 permits base pairing with any nucleotide except cytidine, thereby allowing base pairing between the m2,2G-D pair (D representing every nucleotide other than cytidine, not the modification dihydrouridine). m2,2G also prohibits the misfolding of eukaryotic tRNAs containing this modification (Figure 4) (Pallan et al., 2008).

The E. coli methyltransferases RlmG, RlmL, RsmC, and RsmD and their bacterial homologs are responsible for forming m2G in rRNA, where m2G occurs at five different positions in E. coli rRNA (Pallan et al., 2008; Sergiev, Bogdanov, & Dontafova, 2007). m2G marks in rRNA are hypothesized to be involved in codon–anticodon recognition, formation of the binding pocket for A-site-bound tRNA, translocation, overall ribosome structure formation, and formation of the PTC within the large ribosomal subunit (Polikanov et al., 2015; Sergiev et al., 2007). In E. coli, Clostridium acetobutylicum, and T. thermophilus 16S rRNA, the m2,2G966 mark contacts the Wobble base pair and enhances translation initiation (Burakovsky et al., 2012; Emmerechts, Barbé, Herdewijn, Anné, & Rozenski, 2007; Polikanov et al., 2015; Woese, Gutell, Gupta, & Noller, 1983).

Recently, a total RNA extraction from HEK293T cells resulted in the discovery of hm2G (You et al., 2019). While it is unclear which RNAs contain hm2G, which enzymes synthesize hm2G, and what additional organisms may have hm2G, it was discovered that hm2G levels are statistically higher in thyroid carcinoma samples compared to tumor-adjacent non-cancerous thyroid tissue (You et al., 2019). This finding suggests that hm2G may be useful as a cancer biomarker, but also that cancer-related processes may drive hm2G expression. In humans, RNA Pol III mutations associated with hypomyelinating leukodystrophy result in an increase in the presence of m2,2G in tRNAs, yet also a decrease in overall tRNA transcription that can be mimicked by addition of rapamycin (Arimbasseri et al., 2015). Further, a missense variant of TRMT1, the human homolog of Trm1p, resulted in a deficiency of m2,2G marks in tRNAs and may be linked to intellectual disability, developmental delay, and epilepsy in some patients (K. Zhang et al., 2020). Additional studies in this area of human health and in discovering the functionalities of m2G, m2,2G, and hm2G in other organisms may yield additional functionalities of these modifications and their cognate enzymes.

5.2 The many roles of m7G: from capping mRNAs and presence in mRNAs, to their presence in rRNAs and tRNAs, to forming the precursor molecule for m2,7G and m2,2,7G within spliceosomal snRNAs

Nucleoside modification (IUPAC abbreviation): 7-methylguanosine (m7G); N2,7-dimethylguanosine (m2,7G); N2,2,7-trimethylguanosine (m2,2,7G).

Domain assignments: A, B (m7G), E.

RNA classes: • (m7G), ■ (m2G), ● (m2,2G), ▲.

5′-capping of mRNAs is usually accomplished by the addition of an m7G to the 5′-most nucleotide of a nascent mRNA transcript. The eukaryotic m7G-containing cap is used in the recruitment of pre-mRNA splicing and initiation factors to further mature mRNA transcripts. The eukaryotic m7G-containing cap is added co-transcriptionally to the 5′
end of newly transcribed mRNA in an unusual inverted 5′-3′ triphosphate linkage with a GTP molecule that is subsequently methylated by RNMT or its homologs (reviewed in Galloway & Cowling, 2019; Topisirovic, Svitkin, Sonenberg, & Shatkin, 2011). Once the m^7G cap is added, the next first nucleotide in the nascent transcript is methylated to contain an Nm mark (Akichika et al., 2019; Boulias et al., 2019; Sendinc et al., 2019). The cap also allows for further maturation of mRNAs by polyadenylation and eventually nuclear export. Once successfully spliced and formed as an mRNA, cap-dependent initiation of protein synthesis of mRNAs occurs. Further, this cap is used to protect mRNAs from 5′-to-3′ exoribonuclease activity and degradation of mRNAs, while also looping mRNAs throughout translation (Ramanathan, Robb, & Chan, 2016). While m^7G is found in the majority of 5′ caps in eukaryotic mRNAs, caps exist that are formed from chemical groups other than m^7G. These include NAD^+, NAD^−, and dpCoA (Bird et al., 2016; Cahová, Winz, Höfer, Nübel, & Jäschke, 2015; Y. G. Chen, Kowtoniuk, Agarwal, Shen, & Liu, 2009; Julius & Yuzenkova, 2017; Kowtoniuk, Shen, Heemstra, Agarwal, & Liu, 2009).

Until 2019, m^7G in mRNAs was thought to be found exclusively within the 5′ cap of mRNAs. However, m^7G marks have since been identified in the CDS, 3′ UTR, and more rarely in the 5′ UTR of human mRNAs (L.-S. Zhang, Liu, et al., 2019). Additionally, m^7G marks have been found in human ncRNAs (McCown et al., 2019; L.-S. Zhang, Liu, et al., 2019). At least 90 internal m^7G methylation sites have been identified in human mRNA, with high degrees of conservation of the m^7G marks found across murine and human cell lines (L.-S. Zhang, Liu, et al., 2019). While m^7G marks occur at several motifs within mRNA (AGmA, GGmA, AUGCmA, and UUm^7GUA), the enzyme or enzymes that confer these marks remain uncharacterized (L.-S. Zhang, Liu, et al., 2019).

In bacteria and S. cerevisiae, m^7G marks in tRNAs are conferred by Trm8p/Trm82p. The m^7G mark at m^7G46 extends tRNA half-life (Alexandrov et al., 2006). In archaeal tRNAs, m^7G is present but the precise nucleotide location and tRNA identity are unknown (Edmonds et al., 1991; Tomikawa, 2018). Within pre-rRNA transcripts in eukaryotes, m^7G marks are catalyzed by Bud23 (S. cerevisiae) (Létoquart et al., 2014) or WBSCR22 (human) (Zorbas et al., 2015). In humans, m^7G marks are required for proper nuclear export of premature 18S ribosome complexes (Sloan et al., 2017), while rRNA is modified in the cytosol in S. cerevisiae (Létoquart et al., 2014).

Further hypermethylation of the guanosine in the 5′ m^7G cap can occur, as is the case in eukaryotic spliceosomal snRNAs, some snorRNAs, and telomerase RNA (Monecke, Dickmanns, & Ficner, 2009). Sequential methylation of the m^7G cap via Tgs1 gives rise to m^2,7G, then m^2,2,7G (Monecke et al., 2009). The trimethylated guanosine residue marks the maturation of spliceosomal RNAs, which has further roles in enhancing the nuclear receptor signal transduction cascade, in enhancing transcriptional regulation, and in mitigating spinal muscular atrophy (reviewed in Monecke et al., 2009). While it remains unknown whether these modifications affect the structural stability of mRNAs, m^7G and its derivatives have a few roles in human health. Overexpression of RNMT, which stimulates mRNA cap formation, is sufficient to induce tumor formation in human mammary epithelial cells (reviewed in Galloway & Cowling, 2019). Additional discoveries in characterizing writers of m^7G may yield further insights into the significance of the m^7G marks in mRNAs and in human health.

5.3 | Biosynthetic pathways of Q and G^+ and their function in tRNAs

Nucleoside modification (IUPAC abbreviation): pre-queuosine_0 (preQ_0); pre-queuosine_1 (preQ_1); epoxyqueuosine (oQ); queuosine (Q); galactosyl-queuosine (GalQ); mannosyl-queuosine (ManQ); glutamyl-queuosine (GluQ); archaeosine (G^+).

Domain assignments: A (preQ_0 and G^+), B (not G^+, ManQ, and GalQ), E (not preQ_0, preQ_1, oQ, G^+, and GluQ).

RNA classes: .

Q and G^+ represent two modified ribonucleosides that are derived from a split in a central biosynthetic pathway in archaea and bacteria, following the processing of guanosine into preQ_0 via the QueCDE enzyme complex (Figure 6) (Iwata-Reuyl, 2008; Reader, Metzgar, Schimmel, & de Crécy-Lagard, 2004). In bacterial species, the nitrile group on the preQ_0 molecule is reduced into an amine to form preQ_1 by the QueF enzyme (Van Lanen et al., 2005). The resulting preQ_1 molecule is incorporated into a tRNA molecule at position 34 by TGT synthase (Iwata-Reuyl, 2008; Reader et al., 2004). Once incorporated, the preQ_1 moiety on tRNA is further modified to contain a cyclopentane ring with two hydroxyl groups and an epoxy ring into oQ34 by the enzyme QueA. The epoxide is removed from oQ34 by the enzyme QueG to form Q34 (Miles, McCarty, Molnar, & Bandarian, 2011; Zallot, Ross, et al., 2017). Separately, Q34 was also determined to be the product of a reaction catalyzed by a nonhomologous enzyme, QueH (Miles et al., 2011; Zallot, Ross, et al., 2017). Once Q34 is formed, Q34 can be conjugated to a mannose (ManQ) or galactose (GalQ) via a Man/Gal-Q-transferase in
eukaryotes, respectively (Okada & Nishimura, 1977). Q34 can also be further modified to contain a glutamine (GluQ) moiety via the bacterial GluQRS enzyme (Campanacci et al., 2004; Ehrenhofer-Murray, 2017; Salazar, Ambrogelly, Crain, McCloskey, & Soll, 2004). In some archaeal species, preQ0 is incorporated into a tRNA molecule at G15 and subsequently modified to become G+15 by the enzymatic complex consisting of the ArcS/arcTGT enzyme and the RaSEA enzyme (Mohammad et al., 2017; Phillips et al., 2010; Yokogawa et al., 2019). However, numerous Crenarchaeota species lack ArcS and could instead form G+ with either the GAT-QueC or QueF-like protein families (Phillips et al., 2012).

While most bacteria and eukaryotes contain Q or its derivatives, Q biosynthesis genes are not found in many bacterial species and are absent in eukaryotes. In bacteria that cannot synthesize Q and in eukaryotes, Q or its corresponding nucleobase queuine are imported or salvaged. One class of bacterial transport proteins, known as COG1738, QueT, or YhhQ, is involved in transporting preQ0 or preQ1 (reviewed in McCown, Liang, Weinberg, & Breaker, 2014; Zallot, Yuan, & De Crécy-Lagard, 2017). Three additional transport proteins in Clostridioides difficile were also characterized in transporting preQ1, queuine, and Q (Yuan et al., 2019). Owing to the incredible metabolic demand to synthesize Q, at least two salvage pathways exist to salvage or scavenge Q from the gut microbiota. The first bacterial pathway involves homologs of the YhhQ and TGT enzymes that transport or utilize queuine as a substrate (Yuan et al., 2019). The second bacterial pathway utilizes a queuosine hydrolase to generate queuine from queuosine; the cyano group in queuine is then converted into an aminomethyl group, forming preQ1 via a queuine lyase (Yuan et al., 2019). However, it is presently unknown how queuine or other Q-related molecules are transported into eukaryotes. Regardless of how Q or related molecules enter into or are synthesized by organisms, the presence of Q34 in tRNAs improves their ability to read degenerate codons (Meier, Suter, Grosjean, Keith, & Kubli, 1985). The absence of enzymes that incorporate Q into tRNA or enzymes that synthesize preQ1 have different deleterious phenotypes in a wide array of bacterial and eukaryotic organisms (Durand, Dagberg, Uhlin, & Bjork, 2000; Rakovich et al., 2011). Further, in S. pombe and in other eukaryotes, Q-containing tRNAAsp further enhances rates of m5C38 formation, while enhancing the translation speed for C-ending codons and reducing the translation speed for U-ending codons (Müller et al., 2019; Tuorto et al., 2018). Separately, G+ is used in the D-loops of archaeal tRNAs to stabilize the overall tRNA structure (Iwata-Reuyl, 2008; Lorenz et al., 2017).

FIGURE 6 Scheme for queuosine derivatives. Pathway depicts the modifications that occur during the production of queuosine derivatives preQ0, preQ1, oQ, Q, GalQ, ManQ, GluQ, and G+. Red color indicates the modification added to the guanosine molecule. Enzymes that catalyze each reaction are adjacent to arrow. The plus sign by GluQ indicates that glutamate is incorporated onto one of the hydroxyl groups from Q, though it is unknown at present which of the two hydroxyl groups receives the glutamate. Arrow tails containing red, blue, or yellow ellipses denote reactions that occur in archaea, bacteria, or eukaryotes, respectively.
Several of the Q-derived modifications have effects on the health or functionality of organisms that use Q. preQ1 and Q biosynthesis genes are required for effective nitrogen-fixing symbiosis between *Sinorhizobium meliloti* and the barrel clover plant (Marchetti et al., 2013). Q deficiency halts tyrosine production in germ-free mice (Rakovich et al., 2011). In several human and murine cancer cell lines, lack of Q modifications in tRNAs has been associated with cell proliferation, anaerobic metabolism, and malignancy (Elliott, Katze, & Trewyn, 1984; Pathak, Jaiswal, & Vinayak, 2008). The presence of Q was shown to directly affect m^5^C levels in *S. pombe* tRNA^Asp^ (Ehrenhofer-Murray, 2017). Further, a queuosine-deficient diet results in endoplasmic reticulum stress and an unfolded protein response in HeLa cells and in germ-free mice (Tuorto et al., 2018). Additionally, Q-containing tRNAs in HeLa cells were recently demonstrated to protect tRNA fragmentation from oxidative stress and angiogenin (Xiaoyun Wang et al., 2018). As tRNA fragments generate functional small RNA molecules similar to miRNAs, this protective mechanism may be helpful to cellular survival or a viable drug target in oncology studies (Xiaoyun Wang et al., 2018). GluQ has been linked to effective stress response in *Shigella flexneri* (Caballero et al., 2012). While previous experimental work has determined the biosynthetic enzymes involved in Q and G^+^ biosynthesis, the roles of ManQ and GalQ remain unknown. However, further appreciation of Q as a micronutrient (Fergus, Barnes, Alqasem, & Kelly, 2015) may further elucidate the roles of these modified Qs and other molecules in this pathway.

5.4 m^1^G has effects in neurodegenerative diseases and glucose metabolism

Nucleoside modification (IUPAC abbreviation): 1-methylguanosine (m^1^G).

Domain assignments: A, B, E.

RNA classes: •, □.

m^1^G occurs in several paradigms. m^1^G acts as a precursor to yW and imG, as discussed below. At G9 in tRNAs from all domains of life, the enzyme Trm10 or homologous enzymes confer the m^1^G mark (Howell et al., 2019; Jackman, Montange, Malik, & Phizicky, 2003). Separately, m^1^G can also be found at G37 in tRNAs. While m^1^G37 occurs in archaeal and eukaryotic tRNAs as a precursor for yW and imG, TrmD can also confer an m^1^G37 mark in bacteria, though this mark is not further modified (Goto-Ito, Ito, & Yokoyama, 2017). Despite this research on m^1^G marks in tRNAs, it is unclear what effects m^1^G has on tRNA structure. In the *E. coli* 23S ribosome, an m^1^G mark was found at G745, which supports proper polysome formation on mRNAs and sensitizes the *E. coli* ribosome to the ribosome-binding drug viomycin (Gustafsson & Persson, 1998; Hsuchen & Dubin, 1980; Ishiguro, Arai, & Suzuki, 2019). The enzyme that confers the m^1^G745 mark was determined to be RlmA (Gustafsson & Persson, 1998). There are biologically relevant phenotypes that are associated with m^1^G. In *S. cerevisiae*, deletion strains of Trm10 are hypersensitive to 5-fluorouracil (Krishnamohan & Jackman, 2017). In humans, two mutations in hTRMT10A were determined to be causative in neurodegenerative defects and in glucose metabolism disorders (Krishnamohan & Jackman, 2017). Further effects of m^1^G in a biological context may further elucidate previously unknown mechanisms of neuron formation and may be of significance in central metabolism.

5.5 The yW and imG biosynthesis pathways start with m^1^G biosynthesis

Nucleoside modification (IUPAC abbreviation): 4-demethylguanosine (imG-14); wyosine (imG); isowynosine (imG2); methylwyosine (mimG); 7-aminocarboxypropyl-demethylwyosine (yW-86); 7-aminocarboxypropylwyosine (yW-72); 7-aminocarboxypropylwyosine methyl ester (yW-58); wybutosine (yW); undermodified hydroxywybutosine (OHyWy); methylated undermodified hydroxywybutosine (OHyWy); hydroxywybutosine (OHyWy).

Domain assignments: A (not yW-58, yW, OHyWy*, OHyWy, O_yW, and OHyWy), E (not imG2 and mimG).

RNA classes: •.

yW and related analogs are essential in the stabilization of codon-anticodon pairing in tRNA^Phe^ within eukaryotic and archaeal species (Noma, Kirino, Ikeuchi, & Suzuki, 2006). Synthesis of yW and imG represents a complicated biosynthesis pathway within many archaeal and eukaryotic organisms (Figure 7). The biosynthesis pathway begins with the formation of m^1^G at G37 in tRNA^Phe^, as catalyzed by the TRM5 protein (Urbonavičius, Meškys, & Grosjean, 2014).
The subsequent reactions are catalyzed by TYW1-4 proteins in eukaryotes and Taw1-3 proteins in Euryarchaeota (Noma et al., 2006; Urbonavičius et al., 2014). Further, the modifications imG-14, yW-86, yW-72, and yW-58 are abbreviated based on how many fewer Daltons of mass are observed with these modifications than imG or yW (Noma et al., 2006). For example, imG-14 has 14 Da less mass than imG.

Using TYW1/Taw1 enzymes, a ring closure occurs on the nucleobase of m1G, forming imG-14 (Figure 7). From here, there are no fewer than three outcomes of imG-14, due to the genetic differences in archaeal and eukaryotic species. For eukaryotes (e.g., such as S. cerevisiae) and archaea of the phylum Euryarchaeota, imG-14 is methylated by TYW3/Taw3 at N3 into imG or attached to an α-amino-α-carboxypropyl group from SAM by TYW2/Taw2 to form yW-86. yW-86 can then be methylated at N3 into yW-72. Euryarchaeota do not appear to conduct any further reactions on yW-72. All eukaryotes can carboxymethylate yW-72 to form yW-58 with the TYW3 enzyme. yW-58 can then be carboxymethylated again by the enzyme TYW4 to form yW. However, in higher order eukaryotes, yW-72 can also be hydroxylated into OHyW* by the TYW4 and TYW5 enzymes. OHyW* is then further carboxymethylated into OHyW by TYW4 (M. Kato et al., 2011; Noma et al., 2010). While the synthesis reactions involving OHyWy and o2yW have not been determined, these molecules may be precursors of OHyW. Separately, Crenarchaeota conduct a completely different set of enzymatic reactions on imG-14. Instead, imG-14 is methylated at a carbon placed next to position N1 by the enzymes aTrm5a/Taw22 to form imG2. Taw3 can subsequently methylate imG2 at position N3 to form mimG (Urbonavičius et al., 2014). Some of these enzymes or the overall yW biosynthetic process may be of significance to biology, as overexpression of the TYW2 gene was found in breast cancer cell lines. However, yW-containing modifications were not significantly increased in tRNA modifications (Rodriguez et al., 2012). This possibly means that TYW2 has additional functions in breast cancer that are presently unknown (Rodriguez et al., 2012). Lack of yW modifications in tRNAPhe may cause an activation of the replication of HIV RNA and human T-cell lymphotrophic virus 1 due to enhancing codon frameshifting in cells (Landgraf, McCarthy, & Booker, 2016; Y. Suzuki, Noma, Suzuki, Ishitani, & Nureki, 2009). There have been instances where a lack of yW modifications has been correlated with rat and mouse tumors and Ehrlich ascites in mice, and represent a point of interest in future oncology research (reviewed in Landgraf et al., 2016). At present, none of the yW-related modifications themselves are found to be directly culpable in any human diseases, though they may have additional functions that are presently unknown. Moreover, given the complexity of the yW synthesis pathway, it is also possible that additional yW-derived modifications exist which may reveal yW derivatives in bacteria or may add to further complexity of yW biosynthesis.

FIGURE 7 Scheme for wybutosine derivatives. Chemical modifications (red) that occur in the production of wybutosine derived from guanosine (G) include: m1G, imG-14, imG, imG2, mimG, yW-86, yW-72, yW-58, yW, OHyW*, OHyWy, o2yW, and OHyW. Enzymes that catalyze each reaction are adjacent to arrow, otherwise a question mark (?) indicates enzyme is unknown. Arrow tails containing red, blue, or yellow ellipses denote reactions that occur in archaea, bacteria, or eukaryotes, respectively. The bolded numbers 1 and 3 are added to indicate position N1 and N3, respectively, in guanosine.
6 | CYTIDINE-DERIVED MODIFICATIONS

6.1 The dual lives of m^5C, hm^5C, and f^5C as DNA- and RNA-based modifications

Nucleoside modification (IUPAC abbreviation): 5-methylcytidine (m^5C); 5-hydroxymethylcytidine (hm^5C); 5-formylcytidine (f^5C).

Domain assignments: A (m^5C), B (m^5C), E.

RNA classes: ● (m^5C and f^5C), ■ (m^5C), ○ (m^5C and hm^5C), ▲ (m^5C).

While the DNA forms of m^5C, hm^5C, and f^5C have significant roles in epigenetics (Hashimoto, Zhang, Vertino, & Cheng, 2015), the RNA forms of these nucleosides have distinct roles (Cui et al., 2017; Delatte et al., 2016; Nakano et al., 2016; Trixl & Lusser, 2019; R. Wang et al., 2016). m^5C can be found in archaeal and eukaryotic tRNAs (Dunn, 1960; Helm, 2006; Motorin & Helm, 2010), rRNAs from all three domains of life (Edelheit, Schwartz, Mumbach, Wurtzel, & Sorek, 2013; Squires & Preiss, 2010), archaeal and eukaryotic mRNAs (D. T. Dubin & Taylor, 1975; Edelheit et al., 2013), human IncRNAs (Amort et al., 2013; McCown et al., 2019), human vault RNAs (Hussain et al., 2013; Squires et al., 2012), and in the HIV-1 viral genome (Courtney et al., 2019). The TRM4B protein was determined to have m^5C RNA methyltransferase activity in S. pombe and Arabidopsis (Cui et al., 2017). NSUN1-6 and other close homologs have also been attributed to the genesis of m^5C in numerous eukaryotes, including humans (Heissenberger et al., 2019; Van Haute, Powell, & Minczuk, 2017).

In tRNAs, it has been proposed that the formation of m^5C48 contributes to the L-shape of tRNAs in vivo (Väre, Eruysal, Narendran, Sarachan, & Agris, 2017). m^5C2278 in the 25S rRNA of S. cerevisiae is one modification that serves as an anchor for the ribosomal protein eL41. Once secured by m^5C2278, eL41 forms a bridge between the large and small ribosomal subunits (Sharma & Lafontaine, 2015). Loss of m^5C2278 in S. cerevisiae results in oxidative stress-induced refolding of rRNA (Schosserer et al., 2015). Recently, it was discovered that NSUN5 confers an m^5C mark on C3782 in human 28S rRNA, while the mouse homolog of NSUN5 confers a related m^5C mark on C3438 in mouse 28S rRNA (Heissenberger et al., 2019). It appears that the m^5C3782 and m^5C3438 marks in human and mice 28S rRNA are analogous to m^5C2278 in S. cerevisiae ribosomes. Likewise, m^5C3782 in human 28S rRNA is necessary for anchoring the eL41 protein, which then forms a bridge between the large and small ribosomal subunits (Heissenberger et al., 2019). While the precise number of m^5C sites in mRNAs is currently under debate, its structural roles are less well-understood (reviewed in Trixl & Lusser, 2019). In Arabidopsis, m^5C is present in mRNAs that are associated with low translational activity during the early stages of plant development, while mutated TRM4B proteins result in defects in root development and a decreased abundance of m^5C (Cui et al., 2017). In IncRNAs, m^5C in the A-region of Xist interferes with binding to PRC2 via an unknown mechanism (Amort et al., 2013). m^5C in vault RNAs is necessary for the maturation of smaller miRNA-like RNAs, but it is unclear if m^5C confers additional functionalities to vault RNAs (Hussain et al., 2013).

hm^5C and f^5C are oxidized from m^5C in mammals by TET or ABH1 enzymes (Van Haute et al., 2017; R. Wang et al., 2016). Though it is unknown which enzymes generate hm^5C, this modification is found in archaea and bacteria (Huber et al., 2015). hm^5C-containing mRNAs have increased rates of translation in vitro, while also promoting brain development in D. melanogaster (Delatte et al., 2016). However, the recent discovery of hm^5C has suggested that the antibodies used in identifying hm^5C may not be able to distinguish between hm^5C and m^5C, as the anti-hm^5C antibody was not validated for being incapable of binding to hm^5C (Huber, van Delft, Tanpure, Miska, & Balasubramanian, 2017). f^5C is necessary for deciphering the tRNA^Met that aids in translating the AUA and AUG codons in mitochondrial peptide synthesis (Van Haute et al., 2017).

Lack of appropriate methylation of C at target sites and/or oxidation of m^5C marks results in mitochondrial-associated diseases, Leber's hereditary optic neuropathy, myopathy, and hypotonia (reviewed in Van Haute et al., 2017). These diseases occur concordantly with knockdown of either nsun3 or abh1 genes (Haag et al., 2016; Van Haute et al., 2017). A knockout of nsun5 results in a decrease in mouse weight, lean mass, and overall protein synthesis, while a depletion of NSUN5 in cancer cells results in a reduction of cell proliferation and size due to aberrant ribosome formation (Heissenberger et al., 2019). Further, a heterozygous microdeletion within chromosome 7 that includes nsun5 results in Williams–Beuren syndrome, characterized by cardiac defects, lack of weight gain, and mental deficits (Heissenberger et al., 2019). Deletion or mutation of nsun2 in T cells results in a loss of m^5C marks on HIV-1 genomic RNA that consequently inhibits HIV-1 mRNA translation, alternative splicing of viral RNAs, and viral replication (Courtney et al., 2019). Further research into the roles of m^5C in mRNAs, the roles of hm^5C and f^5C, and the impact of the enzymes that generate these marks may glean further insights into areas of significant impact on human and organismal biology.
6.2 m^3^C marks are formed by four methyltransferases

Nucleoside modification (IUPAC abbreviation): 3-methylcytidine (m^3^C).

Domain assignments: E.

RNA classes: *.

m^3^C was first discovered in *S. cerevisiae* tRNA (Hall, 1963; Iwanami & Brown, 1968; Maden & Salim, 1974). Subsequently, m^3^C was found to be synthesized by at least four enzymes, with each enzyme having specificity for a particular RNA class (Noma et al., 2011; L. Xu et al., 2017). METTL2 and METTL6 methylate C32 on tRNA^Thr(UGU)_tRNA^Arg(CCU)_and several tRNA^Ser_ eukaryotic isoacceptors (Noma et al., 2011; L. Xu et al., 2017). METTL6 interacts with seryl-tRNA synthetase in an RNA-dependent fashion, which may mean that METTL6 is involved in the methylation of serine tRNA isoacceptors (L. Xu et al., 2017). However, only METTL8 can form m^3^C marks on mRNA in murine and human cell lines (L. Xu et al., 2017). ALKBH1 was subsequently identified as a demethylase for m^3^C marks on mRNAs (Ma, Ding, Ye, Yuan, & Feng, 2019). Further, knockouts of *mettl2, 6,* and 8 did not demonstrate any observable developmental defects in mice (L. Xu et al., 2017). However, it is possible that deficiencies in METTL8 increase ribosome stalling in colon cancer cells (L. Xu et al., 2017). METTL2 and METTL6 account for only 20–40% of m^3^C in tRNAs from HeLa and HCT116 cells and mouse liver extracts, indicating that there are likely more than two enzymes that methylate cytidine residues in tRNA (L. Xu et al., 2017). As METTL8 accounts for ~100% of m^3^C marks in mRNAs from HeLa and HCT116 cells, it is very likely that METTL8 may be the major or the only methyltransferase that confers m^3^C marks in mRNAs (L. Xu et al., 2017). Additionally, m^3^C levels in mRNAs were lower in hepatocellular carcinoma biopsied tissues compared to noncancerous tissues, indicating m^3^C is a potential liver cancer diagnostic marker (Ma et al., 2019). Moreover, the same study noted that m^3^C levels in cancerous and noncancerous tissues were significantly higher than m^3^C levels in cultured cancerous and noncancerous human cell lines that they had examined (Ma et al., 2019), which may indicate biological roles involving m^3^C may be missed in only examining human cell lines.

Above, A-to-I editing was discussed as one type of RNA editing. Another type of RNA editing is C-to-U editing, which can use m^3^C as an intermediate modification. In *Trypanosoma brucei*, the enzyme TRM140 methylates C32 into m^3^C in tRNA^Thr(AGU)_ as part of a pathway to convert C32 to U32 (Rubio et al., 2017). Co-expression of TRM140 and ADAT2/3 prevents wholesale deamination of the trypanosomal genome, while also providing a key insight into the functionality of AID in antibody class diversification (Rubio et al., 2017). While C-to-U editing has been observed in several eukaryotes and archaea, it is unclear whether the trypanosomal process involving m^3^C is present in these organisms (Rubio et al., 2017). While the structural roles of m^3^C in RNA remain unstudied, additional studies in how m^3^C levels can be used as a cancer diagnostic and whether m^3^C is involved in C-to-U editing in other organisms remains two areas of research that may elucidate more functions and unknown biology involved with m^3^C.

6.3 s^2^C allows for anticodon flexibility and enhanced codon binding in bacterial and archaeal tRNAs and can be methylated to form ms^2^C

Nucleoside modification (IUPAC abbreviation): 2-thiocytidine (s^2^C); 2-methylthiocytidine (ms^2^C).

Domain assignments: A (not ms^2^C), B.

RNA classes: *.

s^2^C is present in archaeal and bacterial tRNAs, specifically tRNA^Ser(GCU)_ and three tRNA^Arg_ molecules (Jager, Leipuviene, Pollard, Qian, & Bjork, 2004; Shigi, 2014). The sulfur for s^2^C is derived from cysteine via the IscS enzyme, which serves as a central sulfur hub. IscS then moves the cysteine-derived sulfur to the IscU enzyme and then the TtcA enzyme. The thiolated TtcA incorporates sulfur into position C32 on tRNA, generating s^2^C32 (Shigi, 2014). While there were no observed growth deficits found in mutagenized strains of *E. coli* or *Salmonella enterica* that lacked TtcA, s^2^C modifications were determined to have a role in increasing the selection rate by ~30% of the ternary complex of aminoacylated-tRNA/EF-Tu/GTP within the A-site of the ribosome (Jager et al., 2004). Further, s^2^C in tRNA interferes with codon recognition in the A-site of the ribosome and decreases the translation rate of some mRNAs (Jager et al., 2004). Lack of s^2^C corresponds to an increase in frameshifting rates during translation (Jager et al., 2004). Additional studies have determined that s^2^C modifications allow for flexibility in the anticodon stem and loop structures, which is necessary for select tRNAs to properly decode mRNAs (Cantara et al., 2012).

ms^2^C was recently discovered in *E. coli* and *P. aeruginosa* tRNAs that had been previously determined to have s^2^C marks (Reichle, Petrov, Weber, Jung, & Kellner, 2019). While it does not appear that there are any known methyltransferases that
confer the ms2C mark, it appears that the modification is the result of methylating agents or damage that occurs on tRNAs (Reichle et al., 2019). At present, it does not appear that all s2C marks have the capability of being methylated. Moreover, AlkB seems to be at least one enzyme that can revert the ms2C mark back to s2C (Reichle et al., 2019). However, there is a separate AlkB-independent process that removes the 2-methylthio group and rethiolates C to form s2C, though it is unclear how this process occurs (Reichle et al., 2019). ms2C marks may reduce the structural flexibility in tRNAs that would otherwise have the s2C mark and the presence of ms2C marks in tRNA reduces translational efficiency (Reichle et al., 2019). With the presence of ms2C and the extensive modifications featuring s2U below, it is curious to see if a similar myriad of modifications can also be found with thiolated cytidine nucleotides.

6.4 m4C, m4Cm, ac4C, and ho5C are within rRNA and m4,4C is present in viral-infected human cells

Nucleoside modification (IUPAC abbreviation): N4-methylcytidine (m4C); 4,2′-O-dimethylcytidine (m4,4Cm); N4,N4′,2′-O-trimethylcytidine (m4,4,4Cm); N4-acetylcytidine (ac4C); 5-hydroxycytidine (ho5C); N4,N4′-dimethylcytidine (m4,4C).

Domain assignments: A (m4,4Cm), B (m4C, m4Cm, and ho5C), E (ac4C, m4,4C, m4,4,4Cm).

RNA classes: • (ac4C, m4,4Cm), □ (not m4,4Cm), ● (ac4C).

Extensive research on the DNA form of N4-methylcytidine (m4C) has shown its involvement in the epigenetic regulation of genes (W. Chen, Yang, Deng, & Lin, 2017). However, current knowledge of the RNA form of m4C appears to be limited to its presence within bacterial RNA and its writer, the RsmH enzyme (Kimura & Suzuki, 2010). The initial discovery of m4C was considered a possible side effect of treating RNA samples with acid, with m4Cm possibly being the native modified ribonucleoside (Limbach, Crain, & McCloskey, 1994). However, subsequent analysis indicated that the RsmH protein is a methyltransferase that methylates the N4 position of C1402 in the E. coli 16S rRNA. The enzyme RsmI encodes for a methyltransferase that confers the 2′-O-methyl mark to make m4Cm at C1402 (Kimura & Suzuki, 2010). Subsequently, both the m4C1402 and m4Cm1402 modifications were determined to prevent non-AUG initiation in E. coli by decreasing read-through effects of the UGA stop codon (Jiang, Seo, & Chow, 2016; Kimura & Suzuki, 2010). m4Cm1402 in the 30S small ribosomal subunit stabilizes helix 44 and may assist in interactions between the ribosome, P-site tRNA docking, and mRNA interactions (Jiang et al., 2016). Determining how widespread m4C and m4Cm marks are in bacteria may be helpful in determining if the RsmH or RsmI proteins can be a viable option for antibiotic targeting. Separately, m4,4Cm has been identified in the tRNAs of several archaeal species (Noon et al., 2003).

Previously, ac4C exists within several tRNAs and the 18S rRNA of eukaryotes and both marks are formed by the enzyme Tan1 (Johansson & Bystrom, 2004; Parthasarathy, Ginell, De, & Chheda, 1978). Deletion of tan1 in S. cerevisiae results in a decrease in A-site occupancy of the ribosome (Chou, Donnard, Gustafsson, Garber, & Rando, 2017). However, P-site occupancy rates increase (Chou et al., 2017). It was hypothesized that ac4C could have roles in positioning peptidyl-tRNA molecules within the ribosome, enhancing the translocation of codons of mRNA from the P-site to the E-site of the ribosome, or in delaying the progression of mRNA when translocating from the A-site to the P-site (Chou et al., 2017). This hypothesis was confirmed in an RNA-seq-based analysis of the transcriptome-wide presence of ac4C marks in HeLa cells (Arango et al., 2018). The enzyme NAT10 was determined to catalyze the formation of ac4C in a variety of mRNAs, where the presence of these marks in mRNAs was shown to promote translation and mRNA stability (Arango et al., 2018). It remains to be seen if the ac4C mRNA modifications exist in other eukaryotes or if this modification is seen in bacteria or archaea. Also, it is possible that NAT10 may present a viable anticancer therapeutic target and could be pursued in further research.

Like m4C, ho5C has a DNA counterpart and is studied in the context of C-to-T transition mutations in DNA (Zahn, Averill, Wallace, & Doublé, 2011). The enzyme that synthesizes the RNA form of ho5C is RhaA and AroD, which generates ho5C from chorismate and iron–sulfur clusters (Kimura, Sakai, Ishiguro, & Suzuki, 2017; Popova & Williamson, 2014). The role of ho5C in biology was obscured until recently. ho5C was identified at position 2501 in the 23S rRNA of the E. coli ribosome and at an equivalent position within the 23S ribosome within Deinococcus radiodurans (Havelund et al., 2011). As ho5C2501 localizes to the PTC and forms a base triple that interacts with P-site tRNA, it is quite likely that the structural function of ho5C2501 plays significant roles in translation (Kimura et al., 2017). As methods to extract ho5C from nascent RNA would often obscure the modification, the presence of this modification in other RNA classes should be re-examined (Havelund et al., 2011). The function of ho5C in the ribosome appears to have some connection with environmental iron, as the ho5C levels were found to be directly proportional to the amount of
environmental iron (Kimura et al., 2017). Given the sensitivity of ho5C to purification methods, careful re-examination of RNAs in other species could be conducted to determine if this modification is seen in other domains of life.

Though presently unknown how the m4,4C modification is generated, it is detected in the human liver cell line Huh7 after exposure to one of the following RNA viruses: Zika virus, Dengue virus, Hepatitis C virus, or poliovirus (McIntyre et al., 2018). It is unclear whether this modification is due to host methyltransferase(s) or if the viral genomes themselves have a factor that could methylate m4C or demethylate the 2'-O-methyl group in cellular m4,4Cm. Of note, arsenite exposure to Huh7 cells caused the appearance of m4,4C in total RNA samples, suggesting m4,4C formation could occur via a general stress response mechanism in humans (McIntyre et al., 2018). The enzymes RsmH, METTL15, and the DEAD-box RNA helicase DDx6 may also have roles in the formation of m4,4C, based on homology searches and siRNA depletion of the DDx6 mRNA having a deleterious effect on m4,4C levels (McIntyre et al., 2018). Further analysis may reveal additional properties of m4,4C that have gone previously undetected in human cells.

6.5 \textbf{k2C and C+ are modified cytidines that use amino acid residues to switch codon recognition in tRNAIle}

\textit{Nucleoside modification (IUPAC abbreviation):} lysidine (k2C); agmatidine (C+).

\textit{Domain assignments:} A (C+), B (k2C).

\textit{RNA classes:} \textbullet.

Codons in mRNA for isoleucine represent a challenge for proper decoding due to the Wobble effect. For codons whose sequence is AUN, three of the possible codons (AUU, AUC, and AUA) encode for isoleucine incorporation into nascent peptide chains while the remaining codon (AUG) encodes for methionine incorporation into nascent peptides (Agris, Vendeix, & Graham, 2007; Crick, 1966; Köhrer et al., 2014). If a tRNA has a guanosine residue in the first position of the anticodon, this guanosine residue can read codons that end in uridine or cytidine (AUU and AUG for isoleucine). However, if the first anticodon residue is uridine, this residue can read codons ending in adenosine or guanosine (AUA for isoleucine and AUG for methionine). Eukaryotes solve this problem of amino acid misincorporation by using either IAU (inosine-adenosine-uridine) or ΨAΨ (pseudouridine-adenosine-pseudouridine) anticodon sequences in tRNAs (Crick, 1966; Senger, Auxilien, Englisch, Cramer, & Fasiolo, 1997).

However, prokaryotes employ a different approach to overcoming amino acid misincorporation. Almost all bacteria utilize k2C in place of inosine for the first anticodon sequence (k2CAU instead of IAU) (Harada & Nishimura, 1974; Nakanishi et al., 2005; Senger et al., 1997; Soma et al., 2003). However, archaea make use of C+ in this location (C+AU instead of IAU) (Ikeuchi et al., 2010; Mandal et al., 2010). In the case of k2C, a lysine residue is added onto the C34 residues of tRNAIle at what would be the C2-oxo position by the TilS enzyme. In the case of C+, a decarboxylated arginine residue is placed at the same position on a cytidine residue by the TiaS enzyme (Ikeuchi et al., 2010; Köhrer et al., 2014; Mandal et al., 2010). While TilS and TiaS are essential for their host organisms, there are exceptions. These organisms do not have tRNA molecules with a CAU sequence in their anticodon loops; instead, they have UAU sequences (Köhrer et al., 2014). However, a strain of \textit{Bacillus subtilis} was mutated to remove its copy of the \textit{tilS} gene. The resulting viable strain of \textit{B. subtilis} had a low level of misreading AUG codons and possessed a strong binding preference in tRNAIle for AUG codons (Köhrer et al., 2014). Additional roles that k2C and C+ may have in biology remain unclear. However, it has been speculated that k2C, C+, and other RNA–amino acid conjugates may be remnants from the RNA world (Soma et al., 2003) and may have additional aspects of their biology and chemistry that remains unknown. Further, different amino acids may also be conjugated to nucleotides in ways similar to k2C and C+ that are currently unknown.

7 \textbf{URIDINE-DERIVED MODIFICATIONS}

7.1 \textbf{cnm5U modifications in tRNAIle avoid mistranslation at the Wobble position}

\textit{Nucleoside modification (IUPAC abbreviation):} 5-cyanomethyluridine (cnm5U).

\textit{Domain assignments:} A.

\textit{RNA classes:} \textbullet.

As discussed in the previous section, many prokaryotes can use a modified cytidine residue in the anticodon loop of tRNAIle to appropriately translate AUU, AUG, and AUC codons as isoleucine, while AUG codons are translated as
methionine (Mandal et al., 2014). However, mistranslation occurred when the first nucleotide in the anticodon loop of tRNA\textsuperscript{\textsc{ile}} was mutated to a uridine residue (i.e., CAU to UAU) (Mandal et al., 2014). Surprisingly, this mutation allowed for retention of wild-type binding of tRNA\textsuperscript{\textsc{ile}} to AUA codons to be preserved. However, the mutant tRNA\textsuperscript{\textsc{ile}} binds to AUU (isoleucine) and AUG (methionine) codons, which poses a problem in translation. Eventually, this mutagenized uridine in UAU was determined to be modified into cnm5U through unknown mechanisms (Mandal et al., 2014).

While this modification appears to be in haloarchaea, in the euryarchaeote \textit{Methanococcus maripaludis}, and in the euryarchaeote \textit{Methanocaldococcus jannaschii}, it is absent in other archaea, \textit{E. coli}, and \textit{S. cerevisiae} (Mandal et al., 2014; N. Yu, Jora, et al., 2019). How widely distributed this modification is in archaea, which enzyme or enzymes are involved in its synthesis, and its broader roles in biology remain currently unknown.

7.2 \textbf{m}5\textbf{U}/r\textbf{T} marks are essential for proper tRNA formation

Nucleoside modification: 5-methyluridine (m5U) or ribothymidine (rT).

Domain assignments: A, B, E.

m5U, also referred to as rT, is a common modification in the tRNAs of bacteria and eukaryotes, but limited to the order Thermococcales within Euryarchaeota and the phylum Nanoarchaeota in archaea (Auxilien et al., 2011). In \textit{E. coli} tRNAs, TrmA catalyzes the formation of m5U. A mammalian homolog of TrmA is TRMT2A (Chang et al., 2019). m5U is normally found in the T\textsc{Ψ}C-loop of tRNAs at position 54 as part of the G-m5U-\textsc{Ψ}-C motif, where m5U54 aids in the stabilization of tRNA tertiary structure (Figure 4, Table 2) (Auxilien et al., 2011; Björk & Neidhardt, 1975; Hur, Stroud, & Finer-Moore, 2006; Urbonavicius, Skouloubris, Myllykallio, & Grosjean, 2005). One enzyme that catalyzes the formation of m5U54 in tRNA is TrmFO, while another is TrmA (Lartigue et al., 2014; Urbonavicius et al., 2005). Further, a TrmFO homolog in \textit{Mycoplasma capricolum} subsp. \textit{capricolum}, renamed to be RlmFO, was also discovered to confer m5U1939 marks in the large ribosomal subunit (Lartigue et al., 2014). However, there are other enzymes that form m5U marks in rRNA. In the large ribosomal subunit in \textit{E. coli}, RlmC catalyzes m5U747 while RlmD catalyzes m5U1939 (Auxilien et al., 2011; Madsen, Mengel-Jørgensen, Kirpekar, & Douthwaite, 2003). These m5U methyltransferases are fairly universal in bacteria and eukaryotes, but are unique to Thermococcales and Nanoarchaeota. It is possible that the common ancestor of the two archaeal groups may have received an \textit{rlmD}-like gene of bacterial origin via horizontal gene transfer (Auxilien et al., 2011). m5U can also be found on the mitochondrial small rRNA in hamster and human at m5U429 and the 23S rRNA large subunit in \textit{E. coli} at m5U747 and m5U1939 (Baer & Dubin, 1981; D. Dubin, 1974; Madsen et al., 2003; Rebelo-Guiomar, Powell, Van Haute, & Minczuk, 2019). TrmA catalyzes the formation of m5U marks on \textit{E. coli} ribosomes (Ranaei-Siadat et al., 2013). However, the roles of m5U in structural features of rRNA remain unclear. Also, two recent high-throughput sequencing projects examined m5U in RNAs from human cells (Carter et al., 2019; Cheng et al., 2020). While the vast majority of m5U marks were detected in tRNAs, several mRNAs and IncRNAs also contained m5U marks (Carter et al., 2019; Cheng et al., 2020). Importantly, several RNAs were bound to TRMT2A, but did not contain methylated uridines, suggesting that TRMT2A has additional biological roles that remain currently unknown (Carter et al., 2019). Moreover, in human cells, the methyl group donor for m5U in mRNAs is SAM (Cheng et al., 2020). In tmRNA, an m5U mark is positioned within the tRNA-like domain at the location that would correspond to the T\textsc{Ψ}C-loop in tRNA (Ranaei-Siadat et al., 2013). The protein TRMT2A has also been studied for its effects in cancer. Ectopic expression of TRMT2A has been shown to have an inhibitory effect on cell growth and TRMT2A was subsequently determined to be a cell cycle regulator (Chang et al., 2019). While TRMT2A is found in nuclei of HeLa cells (Chang et al., 2019), the cytosolic localization of TRMT2A in HER2+ breast cancer patients represents a high degree of likelihood that a recurrence of breast cancer would occur (Hicks et al., 2010). Further research into the functionality of m5U and whether its overabundance can be useful in cancer diagnostics remains an intriguing avenue of research.

7.3 \textbf{m}1\textbf{Ψ} marks are essential for proper tRNA formation in archaea and can be found in rRNA

Nucleoside modification (IUPAC abbreviation): N1-methylpseudouridine (m1Ψ).

Domain assignments: A, E.
RNA classes: •, ●. m\(^1\)Ψ and m\(^3\)U modifications have been found in multiple archaeal tRNAs in the TΨC-loop at position 54 (Gupta, 1984; Pang et al., 1982). m\(^1\)Ψ54 is formed in two steps. First, Ψ54 is generated by Pus10 (Gurha & Gupta, 2008). Subsequently, Ψ54 is methylated by TermY (Chatterjee et al., 2012). Notably, the residue identity at position 55 affects the methylation of Ψ54. The formation of Ψ55 by Pus10 enables the generation of m\(^1\)Ψ54, while a cytidine at nucleotide 55 decreases methylation efficiency (Chatterjee et al., 2012; Gurha & Gupta, 2008). However, a purine at nucleotide 55 abrogates the formation of m\(^1\)Ψ54 from Ψ54 (Chatterjee et al., 2012). m\(^1\)Ψ54/m\(^5\)U54 and the adjacent Ψ55 in tRNAs likely have roles in the formation of a stable tertiary structure of host tRNAs. Ψ55 strengthens a tertiary interaction with the conserved G18 and facilitates intra-loop stacking with a conserved purine at position 57 and with m\(^1\)Ψ54/m\(^5\)U54, which pairs via a reverse-Hoogsteen interaction with the conserved A58 (Chatterjee et al., 2012; Romby et al., 1987).

m\(^1\)Ψ forms via a two-step mechanism in archaeal (16S) and eukaryotic (18S) rRNAs (Brand, Klootwijk, Planta, & Maden, 1978; B. Meyer et al., 2016; Wurm et al., 2010). In the first step, an snR35 H/ACA snoRNP guides the conversion of U54 into Ψ54. Next, the eukaryotic enzyme Nep1/Emg1 and archaeal homologs of Nep1 methylate Ψ54 to form m\(^1\)Ψ54 (B. Meyer et al., 2016; Wurm et al., 2010). In eukaryotes, m\(^1\)Ψ is also a precursor of m\(^3\)acp\(^3\)Ψ (Brand et al., 1978). For example, methylation of Ψ1191 takes place shortly after transcription, whereas the installation of the N\(^3\)-acp group via the enzyme Tsr3 possibly occurs before the final cleavage of pre-rRNA into mature 18S rRNA in the cytoplasm (Brand et al., 1978; B. Meyer et al., 2016). Of note, a mutation in the nep1 gene causes the developmental disorder called Bowen–Conradi syndrome (Armistead et al., 2009; Bowen & Conradi, 1976; B. Meyer et al., 2011). With a homozygous mutation of nep1 in mice, reduced cell proliferation in brain and other tissues was seen in addition to severe defects in overall growth and in neural tube formation (Armistead et al., 2015). While Bowen–Conradi syndrome is characterized as a ribosomopathy (Armistead et al., 2015), it is unclear how m\(^1\)Ψ marks play roles in the structure of ribosomes or in this syndrome and in other ribosomopathies. Bowen–Conradi syndrome or m\(^1\)Ψ could provide further insights into ribosomopathies in general or perhaps also in additional cellular processes with further research.

7.4 | acp\(^3\)U and related marks acp\(^3\)D, acp\(^3\)Ψ, and m\(^1\)acp\(^3\)Ψ are found in either tRNA or rRNA

Nucleoside modification (IUPAC abbreviation): 3(3-amino-3-carboxypropyl) uridine (acp\(^3\)U); 3(3-amino-3-carboxypropyl)-5,6-dihydrouridine (acp\(^3\)D); 3(3-amino-3-carboxypropyl) pseudouridine (acp\(^3\)Ψ); 1-methyl-3(3-amino-3-carboxypropyl) pseudouridine (m\(^1\)acp\(^3\)Ψ).

Domain assignments: A (acp\(^3\)U), B (acp\(^3\)U), E.

RNA classes: • (acp\(^3\)U, acp\(^3\)D), ● (acp\(^3\)U, acp\(^3\)Ψ, m\(^1\)acp\(^3\)Ψ).

acp\(^3\)U was first detected in *E. coli* tRNA\(^{Phe}\) and was found to be in a signature sequence (D[dihydrouridine]-acp\(^3\)U-A) in the D-loop of prokaryotic and eukaryotic tRNAs (Nishimura, Taya, Kuchino, & Oashi, 1974; Stuart et al., 1996). The enzyme in *E. coli* that synthesizes acp\(^3\)U on tRNA was recently determined to be YfIP, which was renamed as TuaA or TapT (B. Meyer et al., 2020; Takakura, Ishiguro, Akichika, Miyauchi, & Suzuki, 2019). The human homologs of TapT, DTWD1 and DTWD2, confer acp\(^3\)U marks at U20 in human tRNA (Takakura et al., 2019). Moreover, the effects of acp\(^3\)U were determined to promote regional conformational shifting in the D-loop (acp\(^3\)U20) and the variable loop (acp\(^3\)U47) of tRNAs containing acp\(^3\)U (Stuart et al., 1996). The presence of this modification in the tRNAs of several additional eukaryotic species, including *D. melanogaster*, wheat germ, lupine seed, rat, cow (B. Meyer et al., 2020; Takakura et al., 2019), and human, suggests that this modification is conserved in eukaryotes (Chheda et al., 1988). Outside of eukaryotes, there has been an acp\(^3\)U modification observed in the rRNA at U966 of the 16S rRNA of *Haloflexax volcanii* and it is conferred by the archaeal homolog of the SAM-dependent enzyme Ts3 (Kowalak et al., 2000; B. Meyer et al., 2020). The archaeal homologs of Ts3 were found in the archaeal species *Vulcanisaeta distributa* and *Sulfolobus solfataricus*, suggesting that the acp\(^3\)U mark may be widely distributed in archaea (B. Meyer et al., 2020). Of interest to human health, a decreased abundance of acp\(^3\)U was noted in cancer patient urine, similar to the decreased abundance of Q derivatives in cancer cell lines (Chheda et al., 1988; Elliott et al., 1984; Pathak et al., 2008). This decrease of acp\(^3\)U in urine may be used as a biomarker for cancer diagnostics. Further, a double knockout of *DTWD1/2* in HeLa cells exhibited a severe growth phenotype that did not reveal a loss of tRNA stability, suggesting that DTWD1 and DTWD2 have redundant roles in normal cellular growth in human cells (Takakura et al., 2019).
acp^3D has been found only in *T. brucei* tRNA^Lys(UUU)*3, although the synthesis, function, and distribution of acp^3D remain to be elucidated (Krog et al., 2011). Separately, a chemically related molecule, m^3^acp^Ψ^, was discovered. At U1191 on helix 31 of eukaryotic 18S rRNA, the parent uridine molecule is converted into Ψ by the snRNA35 H/ACA snoRNP (Samarsky, Balakin, & Fournier, 1995; Sloan et al., 2017). Next, Nep1/Emg1 methylates this pseudouridine into m^Ψ^ (B. Meyer et al., 2011, 2016). Finally, Tsr3 confers the acp group from SAM onto m^Ψ^, giving rise to m^3Ψ^ (B. Meyer et al., 2016). If Nep1 is missing or deficient, the Ψ can still have an acp group attached, yielding acp^Ψ^ (B. Meyer et al., 2011). Neither acp^Ψ^ nor m^3Ψ^ has been detected in tRNA. Given the conservation of Tsr3 in archaea and throughout eukaryotes, it is quite likely that archaea also have some form of acp^Ψ^ or m^1acp^Ψ^, though this proposed distribution of acp^Ψ^ or m^1acp^Ψ^ remains speculative. Several phenotypes emerged with knockouts of *tsr3* in *S. cerevisiae* and knockdowns of *tsr3* in HCT116 human cells. In *S. cerevisiae*, the Δ*tsr3* mutant resulted in hypersensitivity to the protein synthesis inhibitor paromomycin (B. Meyer et al., 2016). The depletion of Tsr3 in human cells caused a buildup of 20S pre-rRNA, suggesting that Tsr3 is crucial in 18S rRNA processing (B. Meyer et al., 2016). Further, as mentioned above, specific *tsr3* mutations result in the formation of Bowen–Conradi syndrome (Wurm et al., 2010). However, what additional functions acp-derived nucleotides may have in overall biology remain unclear.

7.5 m^3^U and m^3^Ψ marks may affect rRNA and tRNA functionality

Nucleoside modification (IUPAC abbreviation): 3-methyluridine (m^3^U); 3-methylpseudouridine (m^3^Ψ).

Domain assignments: A (m^3^U), B, E (m^3^Ψ).

RNA classes: \(\bullet \) (m^3^U), \(\bullet \).

While m^3^U and m^3^Ψ are isomers of each other, their functionalities in RNAs are strikingly different. In *T. brucei* tRNA^Thr^, m^3^C is deaminated into m^3^U by Trm140 and ADAT2/3 during C-to-U editing (Rubio et al., 2017). The association of Trm140 to ADAT2/3 prevents massive genome- and transcriptome-wide deamination by the ADAT2/3 enzyme (Rubio et al., 2017). Both m^3^U and m^3^Ψ have been identified in the rRNA of bacteria. However, only m^3^U has been found in archaeal and eukaryotic rRNAs. First discovered in *S. cerevisiae* cells (Hall, 1963), m^3^U modifications have since been found in 25S rRNA of *S. cerevisiae*, 23S rRNA of *S. solfataricus*, and 16S rRNA of *E. coli*, among others (J. D. Johnson & Horowitz, 1971; Noon et al., 1998). Though originally found in 18S rRNA of HeLa cells, later studies did not find evidence for the existence of m^3^U there (Iwanami & Brown, 1968; Klagsbrun, 1973). Several enzymes that catalyze this m^3^U modification in rRNAs have been identified. In *S. cerevisiae*, U2634 and U2843 of 28S rRNA are methylated by the SAM-dependent methyltransferases BMT5 and BMT6, respectively (Sharma et al., 2014). In *E. coli*, the only known m^3^U site (U1498 in 16S rRNA) is methylated by the site-specific SAM-dependent methyltransferase RsmE (Basturea, Rudd, & Deutscher, 2006). Interestingly, the human obesity-linked FTO protein is capable of demethylating m^3^U sites in vitro (Jia et al., 2008).

The sole m^3^Ψ mark discovered in *E. coli* occurs at the highly conserved Ψ^1915^ position in hairpin 69 of the 23S rRNA (Kowalak et al., 1996; Ofengand, Del Campo, et al., 2001; Ofengand, Malhotra, et al., 2001). To make the m^3^Ψ mark, the uridine is first pseudouridyalted by the RluD enzyme before being methylated by the SAM-dependent methyltransferase RlmH, also known as YbeA (Ero, Peil, Liiv, & Remme, 2008; Purta, Kaminska, Kasprzak, Bujnicki, & Douthwaite, 2008; Raychaudhuri, Conrad, Hall, & Ofengand, 1998). This methylation of Ψ^1915^ stabilizes hairpin 69 relative to the pseudouridine alone (Chui, Desaulniers, Scaringe, & Chow, 2002). The m^3^Ψ^1915^ mark in 23S rRNA is conserved in other bacteria, including the 23S analogs in *D. radiodurans*, *B. subtilis*, and the chloroplast of *Zea mays* (Del Campo et al., 2005). Pseudouridylation, and possibly methylation, of this site may be essential for proper *E. coli* growth and development since knockouts of *rlmH* showed growth rates reduced by ~50% when compared with wild-type *E. coli*. However, knockouts of *rlmH* also showed slightly slower growth rates when compared with wild-type *E. coli* (Purta et al., 2008; Raychaudhuri et al., 1998). m^3^Ψ^1915^ may have a further important role in large ribosomal subunit structure and function. The loop of hairpin 69, which contains m^3^Ψ^1915^ in *E. coli*, interacts with antigenic arm of A-site tRNA (Yusupov et al., 2001). Additionally, m^3^Ψ^1915^ has been shown to directly contact residues of the RRF protein, which disassembles the post-translational termination complex of mRNA, tRNA, and rRNA (Agrawal et al., 2004). Additional biological roles of m^3^U and m^3^Ψ remain unclear, though further discovery of these marks in previously unknown RNAs may elucidate novel functions. Further, the role of m^3^U in C-to-U editing may also be more prevalent in eukaryotic organisms or in bacteria and archaea, which may elicit unexpected functions of m^3^U.
7.6 | ho^5U and its derivatives mo^5U, cmo^5U, and mcmo^5U affect base-pairing specificity in tRNAs that contain these modifications

Nucleoside modification (IUPAC abbreviation): 5-hydroxyuridine (ho^5U); 5-methoxyuridine (mo^5U); uridine 5-oxyacetic acid (cmo^5U); uridine 5-oxyacetic acid methyl ester (mcmo^5U).

Domain assignments: B, E (ho^5U).

RNA classes: *

Under nonenzymatic processes, ho^5U is commonly found to spontaneously occur due to oxidative damage to cytosines in DNA or RNA. However, ho^5U can be enzymatically synthesized at U34 of tRNAs via the TrhOP enzyme complex (Sakai, Kimura, & Suzuki, 2019). Homologs of TrhO were found in bacterial and eukaryotic organisms, while TrhP was exclusive to bacterial species (Sakai et al., 2019). Regardless of origin, ho^5U remains capable of base pairing with guanosine by adopting a normal Watson–Crick base pair arrangement instead of a Wobble base pair arrangement (Sakai et al., 2019). Knocking out the TrhOP enzymes introduces a temperature-sensitive phenotype in *E. coli* and decreases the efficiency of decoding codons ending in G, specifically the GCG and UCG codons (Sakai et al., 2019). ho^5U is often utilized as an intermediate for mo^5U, cmo^5U, and mcmo^5U in bacteria (Sakai et al., 2019). The enzyme CmoB carboxymethylates ho^5U34 in tRNA into cmo^5U34 using a highly unusual SCM-SAH molecule, which is generated when the enzyme CmoA uses a carboxyl group from prephenate to carboxylate SAH (J. Kim et al., 2013). The cmo^5U34 modification can be further methylated by the SAM-dependent enzyme CmoM into mcmo^5U (Sakai, Miyauchi, Kimura, & Suzuki, 2016). The mcmo^5U mark in one tRNA, tRNAPro3, is dynamic, as its abundance is positively correlated with the number of *E. coli* and perhaps in other organisms (Sakai et al., 2016). The presence of cmo^5U and mcmo^5U appears to be exclusive to bacteria, possibly due to the requirement of prephenate, one of the intermediates in the chorismate–shikimate pathway (Sakai et al., 2016, 2019). In a prior observation, ho^5U can also slow the rate of RNA and protein synthesis in bacteria, viruses, and tumor cells if introduced in media as a mononucleotide (D. A. Smith & Visser, 1965). Additional research is underway for finding previously unknown ways in which ho^5U participates in cellular processes, especially with its role in oxidative damage and whether ho^5U and its derivatives have any roles in RNA structure (Sakai et al., 2019). Perhaps these ho^5U-related processes could become a new drug target or be useful diagnostics for diseases related to oxidative damage.

7.7 | cmnm^5U, cm^5U, and their derivatives decorate tRNA molecules

Nucleoside modification (IUPAC abbreviation): 5-carboxymethylaminomethyluridine (cmnm^5U); 5-methylaminomethyluridine (mnm^5U); 5-aminomethyluridine (nm^5U); 5-carboxymethyluridine (cm^5U); 5-methoxycarbanylmethyluridine (mcm^5U); 5-carboxyhydroxymethyluridine (chm^5U); 5-carbamoylmethyluridine (ncm^5U); 5-carboxyhydroxymethyluridine methyl ester (mchm^5U); 5-carbamoylhydroxymethyluridine (nchm^5U).

Domain assignments: A (not cmnm^5U, mnm^5U and nm^5U), B (cmnm^5U, mnm^5U, and nm^5U), E (not nm^5U, nm^5U, and nchm^5U).

RNA classes: *

Uridines in the anticodon loop (positions 34–37) of select tRNA molecules can be modified with methyl (m) or carboxymethyl (cm) derivatives (Figure 8) (C. Chen, Huang, Anderson, & Byström, 2011). U5 in bacterial tRNA is modified by the bacterial enzymatic complex MnmE and MnmG/GidA to contain either a carboxymethylaminomethyl (cmnm) or a aminomethyl (nm) group resulting in the formation of either cmnm^5U or nm^5U, respectively (Ayadi, Galvanin, Pichot, Marchand, & Motorin, 2019; Mihara et al., 2002; Moukadiri et al., 2009; Moukadiri, Villarroya, Benítez-Páez, & Armengod, 2018; Sierant et al., 2018). The formation of cmnm^5U makes use of a 5-formyluridine intermediate (J. Kim & Almo, 2013). An additional interconversion can occur from cmnm^5U into nm^5U. Here, the carboxymethyl group is cleaved off cmnm^5U via the oxidoreductase domain of the MnmC(o) enzyme, yielding nm^5U (J. Kim & Almo, 2013; Moukadiri et al., 2018). nm^5U, either newly formed or originating from cmnm^5U, can then be methylated by the methyltransferase domain of the MnmC(m) enzyme to yield mnm^5U (J. Kim & Almo, 2013; Moukadiri et al., 2018). In an unrelated reaction mechanism in *S. cerevisiae*, MTO1 adds a glycine residue to U34, resulting in the formation of cmnm^5U (Fakruddin et al., 2018; Umeda et al., 2005). However, it is unknown if cmnm^5U can also interconvert into mm^5U or nm^5U in eukaryotes using enzymatic processes similar to bacteria.

The Elongator complex (Elp1-6), which is highly conserved in eukaryotes and supports mRNA transcription elongation by RNA Pol II, carboxymethylates uridine residues and forms cm^5U (Figure 8) (Karlsborn et al., 2014). Archaeal
homologs of the third subunit of the Elongator complex, Elp3, have also been shown to carboxymethylate uridine residues in tRNAs (Selvadurai, Wang, Seimetz, & Huang, 2014). Once cm5U forms, it can undergo one of several synthetic pathways. cm5U can be methylated with a methyl group from SAM by the enzyme ALKBH8 to form mcm5U (Sonne-Møller et al., 2010). In archaea and in eukaryotes, methylation of cm5U to mcm5U is catalyzed by the Trm9–Trm112 complex (van Tran et al., 2018). cm5U can also be hydroxylated by the ALKBH8 enzyme to form chm5U (van den Born et al., 2011). Both chm5U and mcm5U can be independently methylated or carboxyhydroxylated, respectively, by ALKBH8 to form mchm5U (Karlsborn et al., 2014; van den Born et al., 2011). Finally, cm5U can be modified by an unknown enzyme to contain a carbamoylmethyl group to form ncm5U and hydroxylated to form nchm5U with the eukaryotic ALKBH8 enzyme (C. Chen et al., 2011; van den Born et al., 2011). Altogether, these modifications have roles in proper decoding of codons and specificity of tRNA-binding events to mRNA (C. Chen et al., 2011). However, many of the implications of these modifications in biology remain unknown.

7.8 | τm5U is important to mitochondrial tRNAs

Nucleoside modification (IUPAC abbreviation): 5-taurinomethyluridine (τm5U).

Domain assignments: E.

RNA classes: –

τm5U was discovered in mammalian tRNALys (Fakruddin et al., 2018). The enzyme MTO1 adds the taurine modification in mitochondrial tRNAs and can be found in position 34 of the anticodon loop within tRNALys (Figures 4 and 8) (Fakruddin et al., 2018). An siRNA knockdown of a mitochondrial homolog of MTO1 resulted in the absence of τm5U and reduced translational activity of UUG codon (Umeda et al., 2005). The lack of τm5U results in a deficiency of mitochondrial complex I that is seen in patients with MELAS and MERRF (Umeda et al., 2005). MELAS and MERRF result from mitochondrial distress, as indicated by the severely impaired translation and respiration events within the mitochondria (Fakruddin et al., 2018). Additionally, trafficking of mitochondrial proteins encoded by nuclear DNA was negatively affected by the resulting abnormal mitochondrial shape (Fakruddin et al., 2018). Inner membrane proteins of the mitochondria, such as Opa1, are unable to localize to the inner membrane; therefore, they aggregate in the cytosol, inducing a cytotoxic unfolded protein response (Fakruddin et al., 2018). This response has been studied as a drug target, where a taurine-conjugated bile acid molecule was discovered to possibly supply the missing taurine in mouse livers and could alleviate this unfolded protein response (Fakruddin et al., 2018). However, as mitochondrial proteins are still mistranslated, further research is necessary to elucidate a cure for these diseases (Fakruddin et al., 2018).

7.9 | Sulfur-containing modifications, such as s2U and its derivatives and s4U, are essential for tRNA structural stability as well as translational fidelity and efficiency

Nucleoside modification (IUPAC abbreviation): 2-thiouridine (s2U); 5-methyl-2-thiouridine (m5S2U); 5-carboxymethylaminomethyl-2-thiouridine (cmnm5S2U); 5-methylaminomethyl-2-thiouridine (mmnm5S2U); 5-carboxymethyl-2-thiouridine (cm5S2U); 5-carbamoylmethyl-2-thiouridine (ncm5S2U); 5-methoxycarbonylmethyl-2-thiouridine (mcm5S2U); 5-carboxymethyl-2-thiouridine (cm5S2U); 5-carboxymethyl-2-thiouridine (cm5S2U); 4-thiouridine (s4U).

Domain assignments: A (s2U, m5S2U, cm5S2U, mm5S2U, s4U), B (not cm5S2U, mcm5S2U, cm5S2U, t5S2U, cm5S2U), E (not m5S2U, mm5S2U, nm5S2U, cm5S2U, ncm5S2U, s4U).

RNA classes: –

The formation of s2U involves an array of enzymatic processes, ultimately resulting in a modification that is found in nine other uridine modifications (Figure 8, Table 1). The modified nucleoside derivatives featuring an x2U (where x denotes one of several possible modifications listed above) are covered more in-depth in sections below. However, the common feature for all these modifications is the substitution of a sulfur at O2 of uracil. To add this sulfur, a cysteine is dethiolated by either IscS or YrvO in E. coli or B. subtilis, respectively (Black & Dos Santos, 2015; Lauhon, 2002; Mihara et al., 2002; Shigi, 2014), or by homologs of NFS1/Ncs6/Ctu1 in archaea and eukaryotes (Y. Liu, Long, Wang, Söll, & Whitman, 2014). E. coli continues shuttling the sulfur molecule through TusABCDE proteins before transferring the sulfur to the MnmA protein, which thiolates the uridine at nt 34 in tRNA (Black & Dos Santos, 2015). B. subtilis does not have the TusABCDE operon; therefore, YrvO directly passes the sulfur molecule to MnmA, which then thiolates
tRNAs (Black & Dos Santos, 2015). In archaea and possibly eukaryotes, NFS1/Ncs6/Ctu1 first adenylates U34 in select tRNAs prior to thiolation from NFS1/Ncs6/Ctu1 (Y. Liu et al., 2014). While it is not known precisely which type of sulfur modification is directly replaced on uridine residues in eukaryotic tRNAs, mitochondrial NFS1, Isu1/2, and Atm1 in S. cerevisiae and Tum1, a persulfide mediator and activator of NFS1, have roles in forming and transporting s2U marks (Nakai et al., 2004; Noma, Sakaguchi, & Suzuki, 2009; Pandey et al., 2018). Moreover, the MTU1 enzyme is a mitochondrial-specific 2-thiouridylase that is a homolog of the MnmA enzyme (Black & Dos Santos, 2015; Noma et al., 2009). Humans use a homolog of MTU1, also known as TrmU, to thiolate uridine residues in mitochondrial tRNAs (Black & Dos Santos, 2015; Umeda et al., 2005).

The functions of the 2-thio group in numerous uridine nucleotides depend on where the modified ribonucleotide occurs within the tertiary structure of tRNA. For example, s2U in the acceptor stems (TΨC-loop and D-loop) is
important for ensuring tRNA structural stability and recognition by specific enzymes (reviewed in C. Zheng, Black, & Dos Santos, 2017). Sulfur-containing modifications within the anticodon stem-loop (nts 32, 33, 34, 37) are usually important for translation. s^3U34 can have roles in negatively regulating C34-to-U34 editing and in subsequent translation (reviewed in Čavužić & Liu, 2017; Z. Paris, Fleming, & Alfonzo, 2012). The s^3U33 mark has been found in T. brucei and Leishmania spp. mitochondrial tRNA^Ac^CCA (Crain et al., 2002; Z. Paris et al., 2012). s^3U and its derivatives that are present at nt 34 within tRNA^Glu, tRNA^Gln, and tRNA^Lys^ ensure specificity or flexibility in the discrimination of multiple codons (reviewed in Čavužić & Liu, 2017; Lim & Curran, 2001; C. Zheng, Black, et al., 2017). Early studies indicated that the presence of s^3U34 maintains a Watson–Crick base pair with A and restricts Wobble pairing with guanosine, though s^3U34 can still pair with both A and G. However, additional modifications to position C5 of s^3U34 can affect the preference for U–A pairing and favored U–G interactions (Agris et al., 1992; Egert, Lindner, Hillen, & Boehm, 1980; Krüger & Sørensen, 1998). The 2-thio group of m^5s^3U34 and its derivatives enhances translation specificity, contributing to the recognition of tRNAs by aminoacyl-tRNA synthetases (Madore et al., 1999; Rodriguez-Hernandez et al., 2013; Sylvers, Rogers, Shimizu, Ohtsuka, & Söll, 1993; Tamura, Himeno, Asahara, Hasegawa, & Shimizu, 1992). These modifications ensure preferential base pairing with purines in the codons of mRNAs and prevent misreading caused by interactions with pyrimidines (reviewed in Shigi, 2014; C. Zheng, Black, et al., 2017). s^3U and its derivatives are involved in codon recognition within the ribosome and prevent frameshifting during translation (Rodriguez-Hernandez et al., 2013; Shigi, 2014; C. Zheng, Black, et al., 2017). For example, m^5s^3U (also known as s^3T) at nt 54 plays an important role in protein expression in thermophilic organisms such as the bacteria T. thermophilus or the archaea P. furiosus (Kowalak, Dalluge, McCloskey, & Stetter, 1994; Shigi, 2014; Shigi et al., 2006; Shigi, Sakaguchi, Asai, Suzuki, & Watanabe, 2008; Yokoyama et al., 1987). The rigid structure of this modification increases tRNA thermostability through stabilization of the D- and TΨC-loops (reviewed in Shigi, 2014).

Thiolation events can be found in other modified uridine residues on tRNAs. cmnm^5U and mmn^5U can be thiolated at C2 via the bacterial enzymes IscS and MmNA to form cmnm^5s^2U or mmn^5s^2U (Mihara et al., 2002; Sierant et al., 2018). cmnm^5s^2U can also be converted into mmn^5s^2U via the bacterial MmNC enzyme (Buñjicki et al., 2004). Though it is unclear which thiolase forms cm^5s^2U from cm^5U, mm^5s^2U can be thiolated to form mm^5s^2U using the eukaryotic Ctu1–Ctu2 enzymatic complex (Dewez et al., 2008; Lentini, Ramos, & Fu, 2018). Also, once ncm^5U is formed, it can be thiolated through an unknown thiolase to form ncm^5s^2U (C. Chen et al., 2011). Through an unknown mechanism, τm^5U can be thiolated in human mitochondrial tRNA to form τm^5s^2U (Fakruddin et al., 2018). τm^5s^2U-deficient human mitochondrial tRNAs were also found in patients who had MERRF and cannot translate the codons AAA or AAG (Umeda et al., 2005). Through an unknown mechanism, cm^5U can be thiolated in tRNA^Leu^ from euryarchaeote M. jannaschii to form cmnm^5s^2U (N. Yu, Jora, et al., 2019). While cmnm^5s^2U has been found only in M. jannaschii to date, M. jannaschii and Haloferax volcanii represent the only two archaeal species to have had their tRNAs analyzed for the presence of modified ribonucleosides. This dearth of knowledge of archaeal tRNA modifications through stabilization of the D- and TΨC-loops (reviewed in Shigi, 2014). Moreover, given the large number of s^2U derivatives, it would be interesting to see if there are additional thiolated cytidine derivatives beyond s^3C and ms^3C.

Like s^3U modifying enzymes, there are enzymes specific to the Gram-negative and Gram-positive bacteria synthetic reactions of s^3U. In the Gram-negatives E. coli and S. enterica, IscS removes a sulfur atom from cysteine while Thil thiolates U8 in tRNA (Rajakovich, Tomlinson, & Dos Santos, 2012). However, in Gram-positive B. subtilis and the other Gram-positives in Firmicutes, NifZ instead removes the sulfur from cysteine and directly thiolates the uridine residue in tRNA with a ThiI homolog (Rajakovich et al., 2012). The archaeal homologs of ThiI also incorporate s^4U in tRNA.

Eukaryotes do not appear to have s^4U, though homologs of Thil have been found in some eukaryotic genomes (reviewed in Čavužić & Liu, 2017; Kotera et al., 2010). s^4U can be located at nt 8 in tRNA, which is at the intersection of the tRNA acceptor- and D-arms (Figure 4, Table 2). Upon exposure to near-UV light, s^4U crosslinks to C13 in tRNA (reviewed in Palenchar, Buck, Cheng, Larson, & Mueller, 2000). The s^4U-C13 crosslink prevents proper tRNA aminoacylation, leading to uncharged tRNA accumulation and translational pausing (Čavužić & Liu, 2017; Favre, Yaniv, & Michels, 1969). These effects then activate the SOS response, which mitigates damage to DNA due to UV-light exposure (Björk & Hagervall, 2014; Čavužić & Liu, 2017; Thomas & Favre, 1980). The thiolation of s^4U8 of tRNAs has also been shown to positively maintain tRNA homeostasis in Vibrio cholerae (Kimura & Waldor, 2019). In thil deletion strains of V. cholerae, several tRNAs were decreased, as it was determined that the lack of s^4U8 designates these hyp-modified tRNAs for degradation by the RNA degradosome (Kimura & Waldor, 2019). While s^4U is used in PAR-CLIP at high concentrations that are in excess of 100 μM, this high concentration has been shown to interfere with proper 47S rRNA processing in U2OS and 2fTGH human cell cultures; therefore, caution is warranted when using s^4U in
PAR-CLIP or other related experiments (Burger et al., 2013). Further roles of sulfur-containing ribonucleotides and the enzymes involved may have further unknown roles in structural formation and biological relevance to thermophilic organisms.

7.10 | Selenium-modified uridines and their precursors are thought to aid in translational accuracy and efficiency

Nucleoside modification (IUPAC abbreviation): 2-selenouridine (se$_{2}$U); 2-geranylthiouridine (ges$_{2}$U); 5-carboxymethylaminomethyl-2-geranylthiouridine (cmnm$_{5}$ges$_{2}$U); 5-methylaminomethyl-2-geranylthiouridine (mnm$_{5}$ges$_{2}$U); 5-carboxymethylaminomethyl-2-selenouridine (cmnm$_{5}$se$_{2}$U); 5-methylaminomethyl-2-selenouridine (mnm$_{5}$se$_{2}$U).

Domain assignments: A (se$_{2}$U and mnm$_{5}$se$_{2}$U), B, E (mnm$_{5}$se$_{2}$U).

RNA classes: *

While there are several sulfur-modified uridine residues currently known, selenium-containing ribonucleosides can also be found in tRNAs, specifically in the anticodon loop at position 34 (Figures 4 and 8, Table 1). In bacteria, converting s$_{2}$U to se$_{2}$U is a two-step process catalyzed by SelU (Sierant et al., 2018). In the first step, the sulfur of s$_{2}$U is geranylated to yield ges$_{2}$U. By itself, ges$_{2}$U is a stable modification that is thought to shift codon bias and frameshifting rates during translation, which is possibly due to a preference of ges$_{2}$U to base pair with guanosine and not adenosine (Sierant et al., 2016). Once ges$_{2}$U is formed on tRNA, the second step results in a selenation by replacing the geranyl-sulfate with a selenide group, thus forming se$_{2}$U (Sierant et al., 2016). In archaea, a YbbB-like enzyme forms se$_{2}$U, though it is unknown if this requires a geranylated intermediate (D. Su, Ojo, Söll, & Hohn, 2012). Separately, once cmnm$_{5}$s$_{2}$U and mnm$_{5}$s$_{2}$U are thiolated in bacteria, these modified uridines can be geranylated by SelU or by MnmH, yielding cmnm$_{5}$ges$_{2}$U or mnm$_{5}$ges$_{2}$U (Jäger, Chen, & Björk, 2016; Sierant et al., 2016, 2018). These modifications can be subsequently selenated by the SelU enzyme to yield cmnm$_{5}$se$_{2}$U or mnm$_{5}$se$_{2}$U (Dumelin, Chen, Leconte, Chen, & Liu, 2012; Sierant et al., 2018). mnm$_{5}$se$_{2}$U is the most abundant selenonucleoside, found in all three domains of life, and commonly occurs in the Wobble position of the anticodon of three tRNA acceptors (tRNA$^{\text{Glu}}$, tRNA$^{\text{Gln}}$, and tRNA$^{\text{Lys}}$) (D. Su et al., 2012). Se2 of mnm$_{5}$se$_{2}$U residues discriminates against the formation of G–U Wobble pairs. Instead, the selenium promotes the formation of A–U base pairs in RNA in vitro, suggesting selenium modifications may be important in translational fidelity (Huiyan Sun et al., 2012). While it is presently unknown if the bacterial selenization process is present in archaea or eukaryotes, the presence of mnm$_{5}$se$_{2}$U in archaea and eukaryotes suggests that a similar process may be possibly occurring.

Further, GTPBP3 and the taurine-adding enzyme MTO1 have also been linked to selenation reactions in mitochondrial tRNAs (Bykhovskaya, Mengesha, et al., 2004; Kopajtich et al., 2014; Xinjian Wang, Yan, & Guan, 2010; Yim, Moukadiri, Björk, & Armengod, 2006). Deficiencies in mitochondrial GTPBP3 have been linked to hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and deafness through deficiencies in cmnm-containing uridines (Bykhovskaya, Mengesha, et al., 2004; Kopajtich et al., 2014). While MTO1 deficiency can also be linked to these diseases, MTO1 deficiency is typically linked to deficiencies in taursine-containing uridine modifications (Fakruddin et al., 2018; Jonkhout et al., 2017; X. Wang et al., 2010). Additional discoveries of geranyl derivatives and selenium-containing RNAs will undoubtedly continue to provide new insights into biology and in further elucidating the differences between sulfur- and selenium-containing RNAs.

8 | MODIFICATIONS TO THE RIBOSE MOIETY

8.1 | Ribosyl-RNA modifications are found in select RNAs

Nucleoside modification (IUPAC abbreviation): 2′-O-ribosyladenosine (Ar(p)); 2′-O-ribosylguanosine (Gr(p)).

Domain assignments: E.

RNA classes: *

Ar(p) and Gr(p) represent disaccharide-modified ribonucleosides, whereby the 2′-hydroxyl of either adenosine or guanosine forms an α-(1,2)-glycosidic linkage with an additional 5′-phosphorylated ribose molecule. Though first discovered at position 64 in eukaryotic tRNA$^{\text{Met}}$ that initiates translation, these disaccharide-modified ribonucleosides have been found in poly(ADP-ribose) (PAR), in select enzymes as prosthetic groups, and in assorted naturally derived
compounds or secondary metabolites (Desgrès, Keith, Kuo, & Gehrke, 1989; Efimtseva, Kulikova, & Mikhail'ev, 2009; Glasser, Desgres, Heitzler, Gehrke, & Keith, 1991; Juarez-Salinas, Mendoza-Alvarez, Levi, Jacobson, & Jacobson, 1983; Keith, Glasser, Desgrès, Kuo, & Gehrke, 1990; Q. Liu, van der Marel, & Filippov, 2019; Simsek & RajBhandary, 1972). Ar(p) and Gr(p) are synthesized by the enzyme Rit1 through addition of a PRPP group directly onto A64 or G64 in tRNA^{Met}, which potentially distorts the RNA phosphodiester backbone of the initiator tRNA^{Met} and prevents the initiator tRNA^{Met} from binding to eEF1A (Åström & Byström, 1994; Kiesewetter, Ott, & Sprinzl, 1990; Kolitz & Lorsch, 2010). PAR is synthesized from NAD\(^+\) via eukaryotic PAR polymerases (Berger, Ramírez-Hernández, & Ziegler, 2004; Pleschke, Kleczkowska, Strohm, & Althaus, 2000; Rongvaux, Andris, Van Gool, & Leo, 2003; Schreiber, Dantzer, Ame, & de Murcia, 2006). One of the primary functions of PAR is aiding in the DNA-strand repair process, as it is added to DNA-strand breaks and serves as a signaling molecule to initiate DNA repair processes (Schreiber et al., 2006). Moreover, PAR can have roles in acute and chronic inflammation, while also contributing to the progression of degenerative diseases (Schreiber et al., 2006). Further discoveries pertaining to PAR, Ar(p), and Gr(p) will perhaps expand the roles of these modified nucleosides throughout eukaryotic biology.

8.2 2′-O-Methyl RNA modifications exist in otherwise unmodified and additionally modified ribonucleosides

Nucleoside modification (IUPAC abbreviation): 2′-O-methyladenosine (Am); N\(^6\),2′-O-dimethyladenosine (m\(^5\)Am); N\(^6\),N\(^\beta\),2′-O-trimethyladenosine (m\(^6\)Am); N\(^\beta\),2′-O-dimethyladenosine (m\(^4\)Am); 2′-O-methylinosine (Im); 1′,2′-dimethylinosine (m\(^1\)Im); 2′-O-methylguanosine (Gm); 1′,2′-O-dimethylguanosine (m\(^1\)Gm); N\(^\beta\),2′-O-dimethylguanosine (m\(^2\)Gm); N\(^\beta\),N\(^\alpha\),2′-O-trimethylguanosine (m\(^3,2\)Gm); N\(^\beta\),2′-O-7-trimethylguanosine (m\(^2,7\)Gm); 2′-O-methylcytidine (Cm); 4′,2′-O-dimethylcytidine (m\(^4\)Cm); 5′,2′-O-dimethylcytidine (m\(^5\)Cm); 5-formyl-2′-O-methylcytidine (f\(^\circ\)Cm); N\(^\beta\),N\(^4\),2′-O-trimethylcytidine (m\(^4,4\)Cm); N\(^4\)-acetyl-2′-O-methylcytidine (ac\(^\circ\)Cm); 2′-O-methyl-5-hydroxymethylcytidine (hm\(^\circ\)Cm); 2′-O-methyluridine (Um); 3′,2′-O-dimethyluridine (m\(^3\)Um); 5′,2′-O-dimethyluridine (m\(^5\)Um); 2′-O-methylpsuedouridine (\(\Psi\)Um); 2-thio-2′-O-methyluridine (s\(^\circ\)Um); 5-methoxy carbonylmethyl-2′-O-methyluridine (mcm\(^5\)Um); 5-carboxymethylinomonomethyl-2′-O-methyluridine (cm\(^m\)Um); 5-carbamoylmethyl-2′-O-methyluridine (cm\(^c\)Um); 5-(isopentenylamino)methyl-2′-O-methyluridine (imm\(^m\)Um); 5-(carboxhydroxymethyl)-2′-O-methyluridine methyl ester (mcm\(^3\)Um); 2′-O-methyluridine 5-oxyacetic acid methyl ester (mcm\(^5\)Um).

Domain assignments: A, B, E; see the following reviews for prokaryotic assignments (Ayadi et al., 2019; Boccaletto et al., 2018) and RMBase for eukaryotic assignments (Xuan et al., 2018).

RNA classes: A, B, E; see for RNA classes (Ayadi et al., 2019; Boccaletto et al., 2018; Xuan et al., 2018).

While there are at least 28 2′-O-methyl modifications (Nm) to ribonucleosides, their origins are thought to be quite similar (Table 1). Assorted archaeal and eukaryotic snoRNAs, many of which are Box C/D snoRNAs, aid in assembling the snoRNPs NOP56, NOP58, fibrillarin, and 15.5K/Snu13/L7Ae. This protein complex then coordinates 2′-O-methylation events on pre-rRNA transcripts and other RNAs (reviewed in Sloan et al., 2017; Yip, Shigematsu, Taylor, & Baserga, 2016; Zhu, Pirnie, & Carmichael, 2017). Moreover, snoRNAs are also used by archaeal species to conduct 2′-O-methylation events on tRNA. Separately, bacteria also conduct 2′-O-methylations on ribosomes, although these methylations are made by site-specific enzymes (Marchand, Blanloeil-Oillo, Helm, & Motorin, 2016). There are also methyltransferases that are involved in the formation of 2′-O-methylation marks, as in the case of m\(^5\)Am by PCIF1 (Akichika et al., 2019; Boulias et al., 2019; Sendinc et al., 2019). While the existence of 2′-O-methyl modifications has been documented since 1960s, much of the function of several 2′-O-methyl modifications still remains unknown, though studies of 2′-O-methylation have garnered useful insights that may be helpful in elucidating future discoveries involving 2′-O-methylated nucleotides (reviewed in Ayadi et al., 2019; Ibrahim et al., 2017). In eukaryotes, 2′-O-methyl modifications are essential for splicing reactions by the major spliceosome (Y.-T. Yu, Shu, & Steitz, 1998). ac\(^4\)Cm and m\(^2,2\)-Gm have been shown to have additive effects in stabilizing tRNA structure and conformation at elevated temperatures in archaeal hyperthermophiles, a trend seen withNm marks overall in 16S rRNA in *T. thermophilus* and possibly other thermophiles (Guymon, Pomerantz, Crain, & McCloskey, 2006; Kawai et al., 1991). In humans, self- and non-self-identification of mRNAs is dependent upon the presence or absence, respectively, of 2′-O-methyl marks and elicit an interferon-induced response during a human coronavirus infection and potentially for other viral infections.
Moreover, knockdown of fibrillarin resulted in a corresponding decrease in ribosome 2′-O-methylation and a corresponding increase in translational infidelity (Erales et al., 2017). Colorectal cancer, AML, and cancers that originate due to mutation or deletion of tp53 may form due to a knockdown or a knockout of fibrillarin (Ayadi et al., 2019; Erales et al., 2017; Sharma, Marchand, Motorin, & Lafontaine, 2017; Zhou et al., 2017). While these modifications have been known for over 50 years, further advances in research on 2′-O-methyl marks may elucidate previously unknown biological functions.

9 | CONSIDERATIONS OF MODIFIED RIBONUCLEOSIDES AND EVIDENCE FOR THE EXISTENCE OF ADDITIONAL MODIFIED RIBONUCLEOSIDES

9.1 | Caution must be exercised for identification of modified ribonucleosides

Historically, several modifications or studies on modifications have demonstrated that caution must be used when interpreting data on RNA modifications, as noted by these nine examples: (a) Initial efforts to map A-to-I modifications across the human transcriptome (M. Li et al., 2011) were found to be filled with false-positive results (Kleinman & Majewski, 2012; W. Lin, Piskol, Tan, & Li, 2012; Pickrell, Gilad, & Pritchard, 2012; Piskol, Peng, Wang, & Li, 2013; Schröder, Gout, & Hahn, 2011). Subsequent research endeavors have been conducted to report more accurately instances of A-to-I modified RNAs (Bahn et al., 2012; Kleinman, Adoue, & Majewski, 2012; Peng et al., 2012; Ramaswami et al., 2012; Ramaswami & Li, 2014). (b) Likewise, failures in correcting for duplications, misannotations, mismapping, SNPs, sequencing errors, and incorporation of nontemplate nucleotides from reverse transcriptase in postsequencing analysis proved detrimental to studies on m^1A modifications and led to some confusion over which dataset(s) or conditions were accurate (Schwartz, 2018). (c) Prior work indicated that when ms^{2}t^{6}A was exposed to Tris, an in vivo artifact formed that was a higher ms^{2}t^{6}A-related compound in mass spectrometry analyses. This artifact was later determined to be ms^{2}ct^{6}A (Kang et al., 2017; Krog et al., 2011). (d) Early studies on m^{6}A involved use of an anti-m^{6}A antibody that could also detect m^{6}Am in RNA (Linder et al., 2015). m^{6}Am marks were localized to being immediately adjacent to the m^{7}G cap, although m^{6}Am marks found in mRNAs and ncRNAs were misannotated to be m^{6}A marks. These misannotated m^{6}Am marks were localized to alternative transcription start sites in mRNA isoforms (Akichika et al., 2019; Boulias et al., 2019; Linder et al., 2015; Sendinc et al., 2019; Hanxiao Sun, Zhang, Li, Bai, & Yi, 2019). (e) Peroxywybutosine, o^{2}yW, has only been isolated once in tRNA^{Phe} from rat liver extracts despite a separate lab attempting to replicate the o^{2}yW isolation, leaving its biological relevance in question (Kasai, Yamaizumi, Kuchino, & Nishimura, 1979). (f) While 5-methyldihydrouridine (m^{5}D) was initially identified in the chromosomal RNA of rat ascites tumor cells, a later paper found no evidence of the modification in mouse ascites (Jacobson & Bonner, 1968; Tolstoshev & Wells, 1973). (g) ms^{2}m^{3}A is another modification with conflicting evidence of existence. There is no manuscript that describes the existence of the modification and it is only referred to as a preliminary modification in The RNA Modification Database. However, it is listed as being present in the majority of tRNAs, in addition to m^{6}A (Cantara et al., 2011; Kierzek & Kierzek, 2003). (h) Separately, in the production of mmn^{5}se^{2}U and cmmn^{5}se^{2}U, it has been speculated that formation of 5-aminomethyl-2-geranylthiouridine (nm^{5}ges^{2}U) and 5-aminomethyl-2-selenouridine (nm^{5}se^{2}U) can occur due to the possibility of decarboxylation of cmmn^{5}ges^{2}U and cmmn^{5}se^{2}U. The conversion from cmmn^{5}ges^{2}U and cmmn^{5}se^{2}U into nm^{5}ges^{2}U and nm^{5}se^{2}U is consistent with prior decarboxylation events with other precursors in this synthesis cascade (Zheng, Black, et al., 2017). (i) Historically, in vitro analysis of the effects of modifications on RNAs has been conducted through direct incorporation of the desired modification via synthetic means (reviewed in Dellafiore, Montserrat, & Iribarren, 2016; A. J. Meyer et al., 2015). However, through adjustments of SELEX protocols (reviewed in Dellafiore et al., 2016) or by guided gain-of-function mutations to T7 RNA polymerase (A. J. Meyer et al., 2015), some modified ribonucleotides (e.g., Nm and other 2′-containing modifications) can be incorporated. Though all ribonucleoside modifications contain the potential for newly discovered and exciting biology, they must be carefully vetted.

9.2 | Modified ribonucleosides have therapeutic applications

Several strategies involving the use of modified ribonucleosides or their chemical analogs have been exploited in the treatment of human disease. Examples include ribavirin, acyclovir, valacyclovir, and other ribonucleoside analogs in the treatment of viral infections or the use of cytarabine in the treatment of cancer (Seley-Radtke & Yates, 2018). Another example is the use of modified ribonucleobases when transfecting RNAs to increase their stability, to increase
their lifetime in complex biological systems that include RNases, or to increase rates of translation (Andries et al., 2015; Karikó, Buckstein, Ni, & Weissman, 2005; Orellana et al., 2017). One type of modification strategy incorporates m1Ψ into transfected mRNAs to increase RNA stability and translation rates, consequently enhancing protein expression (Andries et al., 2015). While a combination of Ψ and m5U modifications in transfected RNAs has been successfully used for therapeutic applications in preclinical research, further studies show that m1Ψ introduced into mRNA alone or combined with m5U have increased rates of mRNA stabilization than mRNAs carrying only Ψ (Andries et al., 2015; Kormann et al., 2011; Miki et al., 2015; Luigi Warren et al., 2010; Wroblewska et al., 2015; Zangi et al., 2013). Incorporation of m1Ψ or m1Ψ/m5C into mRNA results in enhanced translation, lower cytotoxicity, and diminished activation of the intracellular innate immune response in comparison with Ψ or Ψ/m5C (Andries et al., 2015). Recent strategies of chemically modifying RNAs have been applied to antisense oligonucleotides or to miRNA derivatives to enhance their therapeutic potential and have even resulted in a cure for diseases such as spinal muscular atrophy or transthyretin-mediated amyloidosis (Adams et al., 2018; Bennett, Krainer, & Cleveland, 2019; Orellana et al., 2017). However, as with all therapeutics, caution must be exercised in the design of RNA-based therapeutics, as immune responses to RNA and normal RNases present in humans can hamper or negate these synthetic RNAs (A.-M. Yu, Jian, Yu, & Tu, 2019).

9.3 | Previously undiscovered ribonucleosides may exist

2′-O-ribosyluridine may exist, as a part of this previously unknown ribonucleoside was detected in the small molecule Hellecaucaside A, which is found in the hellebore plant Helleborus caucasicus or Lenten Rose (Kulikova, Muradova, Drenichev, & Mikhailov, 2015; Sylla et al., 2014). 5-Carboxycytidine (ca5C) may exist, as the DNA form of this nucleoside exists and the ribonucleoside form of ca5C can be made under in vitro conditions using the TET1 protein to catalyze the conversion of f5C to ca5C (Basanta-Sanchez et al., 2017). However, despite searches for ca5C, it cannot be found in vivo at present (Nakano et al., 2016). While 5-isopentenylaminomethyluridine (inm5U) and 5-isopentenylaminomethyl-2-thiouridine (inm5s2U) have been thought to exist in the tRNA of Thermodesulfobacterium commune, these two modifications may be of interest, due to the modifications using the 2-thiouridine precursor (Cantara et al., 2011; Limbach et al., 1994). Separately, N6-hydroperoxymethyladenosine (oxm6A) was discovered in an in vitro chemical reaction when m6A was exposed to bicarbonate-activated peroxide (J. Wu et al., 2015). Some or all of the new technologies mentioned above could possibly be applied in finding these modifications and others, thereby elucidating previously unknown aspects of biology that may also have medical significance.

10 | METHODS OF DETECTING MODIFIED RIBONUCLEOSIDES

10.1 | Mass spectrometry-based methods of detecting modified ribonucleosides

Ongoing improvements of well-established technologies and the development of new technology, research tools, and protocols may yield newfound modifications. For example, using mass spectrometry to analyze RNAs has been prevalent for over 20 years, as this method is able to directly distinguish all known modifications with the exception of Ψ-containing modifications (Wetzel & Limbach, 2016). However, new technological breakthroughs to mass spectrometry may further elucidate novel modifications in a high-throughput fashion or at the attomolar level that is consistent with small amounts of cellular RNA from individual cells (Basanta-Sanchez, Temple, Ansari, D’Amico, & Agris, 2016; Jora et al., 2019). For example, conducting LC–MS on E. coli tRNAs resulted in the discovery of m5ms2i6A and potentially 36 other modifications that could have previously gone undetected (Dal Magro et al., 2018). Additional LC–MS analysis could also yield any of the 143 known modifications in other organisms that were not known to contain them.

In addition to finding RNA modifications in total RNA, sequence-specific detection of RNA modifications can be performed with LC–MS (Addepalli, Venus, Thakur, & Limbach, 2017; Björkbom et al., 2015; Jora et al., 2019). Historically and in current research, finding sequence-specific locations of RNA modifications relies upon the purification of a specific RNA and subsequent partial enzymatic or chemical degradation of RNA into sequencing ladders (Addepalli et al., 2017; Björkbom et al., 2015; N. Zhang, Shi, et al., 2019). Recently, multiple RNases were used to generate unique, overlapping digestion products, which has bypassed the need for the RNA to be highly purified (Thakur, Estevez, Lobue, Limbach, & Addepalli, 2020). Because LC–MS can be limited by the RNase cleavage site, novel RNases that have
different substrate specificities can be helpful in sequence-specific detection of modifications (Addepalli et al., 2017). Novel techniques that adapt mass-retention time ladders or hydrophobic end-labeling for LC–MS have been used to address some of the problems in identifying sequence-specific RNA modifications (Björkbom et al., 2015; N. Zhang, Shi, et al., 2019). Reacting CMCT with mRNAs pooled from human cells increases sensitivity of mass spectrometry experiments to m5U, as the introduction of a positively charged quaternary amine group found in CMCT onto uridine allowed for improved ionization efficiency in mass spectrometry experiments (Cheng et al., 2020). This use of CMCT was recently successful in determining m5U content in mRNAs from HEK293T, HeLa, HL-7702, and HepG2 human cell lines (Cheng et al., 2020).

Mass spectrometry-based approaches of detecting RNA modifications may also have clinical relevance or may be helpful in elucidating previously unknown aspects of biology. Quantitative measurements of RNA modifications have shown reproducible and predictable changes in tRNA modification states under different cellular stresses (Chan et al., 2010). For example, exposure of S. cerevisiae to hydrogen peroxide resulted in an increase of m5C in tRNALeu(UUG), which enhances translation of oxidative stress response genes (reviewed in Huber, Leonardi, Dedon, & Begley, 2019). Analysis of Plasmodium falciparum m6A levels in mRNA by mass spectrometry showed that overall m6A levels increase slightly and proportionally to the amount of time postinfection of human red blood cells (Baumgarten et al., 2019). However, individual m6A peaks within mRNA can vary drastically in the entire amount of time that P. falciparum are inside red blood cells (Baumgarten et al., 2019). Collectively, with further improvements to both mass spectrometers and reagents, more RNA modifications, their locations in the transcriptome, and their roles in biology and in disease will doubtlessly be discovered.

10.2 RNA sequencing-based methods can detect modified ribonucleosides

Direct sequencing of RNAs poses an exciting opportunity for being able to detect known and unknown modifications in RNA transcripts. Both Oxford Nanopore Technologies and Pacific Biosciences possess sequencing methods that allow for quantification of RNA modifications, such as m6A marks, and can likely be expanded to find previously unknown modifications (H. Liu, Begik, et al., 2019; Parker et al., 2020). These sequencing methods directly sequence the RNA transcript, rather than cDNA, which allows for modified nucleotides to be detected. Sequencing methodologies to directly sequence tRNAs have begun to elucidate the content and extent of tRNA modifications, especially in disease contexts (Goodarzi et al., 2016). Presently, the noise in high-throughput sequencing unfortunately leads to false-positive RNA modifications. All proposed modifications should be validated using at least one biochemical assay, such as mass spectrometry or SCARLET (Grozhik & Jaffrey, 2018; N. Liu et al., 2013).

The use of antibodies and high-throughput sequencing has represented a recent boon in finding RNA modifications, as several have already been highlighted in this review (Arango et al., 2018; Dai et al., 2017; Dominissini et al., 2012, 2016; K. D. Meyer et al., 2012). Using antibodies greatly aids in reducing the noise of data derived from either mass spectrometry or through downstream high-throughput sequencing methods, as the RNA pool is enriched with the modified RNA (Grozhik & Jaffrey, 2018). Recent progress to use activated nucleotides of modified ribonucleotides or engineering mutants of RNA-modifying enzymes, especially enzymes that form an enzyme–substrate covalent intermediate, offer an intriguing way to pull out RNA targets (Khoddami & Cairns, 2013; T. S. Smith, Zoltek, & Simon, 2019; Tomkuvienė, Mickutė, Vilkaitis, & Klimašauskas, 2019). Further, use of AlkB to demethylate total RNA from human cells, coupled with comparative methylation analysis, was used to identify methylated small RNAs that were derived from tRNAs (Cozen et al., 2015). High-throughput sequencing will continue to be used in determining the location of the modified RNA and may aid in determining the substrates of specific RNA-modifying proteins. The use of new technology, or improvements on classic techniques, continues to unveil previously unknown modifications.

11 CONCLUSIONS

Since the discovery and characterization of pseudouridine, numerous modifications from all domains of life and all four parent nucleotides have been discovered. Much research has been conducted on modifications in eukaryotes, specifically in humans. For example, the m6A modification is intimately involved in oncology, cardiology, and several other fields in human biology. However, there are several instances where the presence of modifications in prokaryotes or in nonhuman organisms remains unexplored. There are RNA classes that are not currently known to contain any
modifications (e.g., archaeal mRNAs and ncRNAs in Figure 3). Moreover, there are domain-specific modifications that
could be found in other domains of life (e.g., cmg2U in archaea only). While tRNAs and rRNAs remain a well-spring of
RNA modifications, the use of antibodies in probing for modifications and additional technological advances may find
modifications not previously known to exist in RNA classes. Moreover, while modifications such as methylations or
hydroxylations occur, more novel and complicated modifications may exist that have not been considered. With the
advances of LC–MS and other technologies, perhaps additional glyco- and lipid-ribonucleotide conjugates may be
found. While threonine, glycine, lysine, arginine, and taurine can be found attached to ribonucleotides, it is possible
that other amino acids could be coupled to pyrimidines or purines. The additional possibilities of thiolation or
selenation events elsewhere in modifications may also yield new discoveries. As with all of the modifications, their
impact on health is only beginning to be understood.

With the increasing progress of finding modifications and identifying their chemical composition, many outstanding
questions remain. What is the limit to the number of chemical modifications that exist? Can the abundance of each
modification be fit to a power-law plot that may aid in finding previously unknown modifications, similar to how a
power-law plot was used to predict riboswitch classes and abundances (McCown, Corbino, Stav, Sherlock, &
Breaker, 2017)? In which RNAs will these modifications appear? Will there be any additional discoveries of previously
known ribonucleosides in domains in which they are not currently known to exist (Figure 3)? What is the chemical
identity and three-dimensional structure of these modifications? Will they establish direct links to the primordial RNA
world (Heuberger, Pal, Del Frate, Topkar, & Szostak, 2015; Larsen, Fahrenbach, Sheng, Pian, & Szostak, 2015; Nelson &
Breaker, 2017)? Will they be variations of known modifications, or will these modifications sample chemical space in
novel ways? Will these modifications have a direct role in catalysis? Will these modifications underlie disease states or
elucidate truly unknown biology? All these exciting questions face this ever-growing field of RNA biology and leave
much to be anticipated.

ACKNOWLEDGEMENTS

This work was supported by the NIH under Grants R00GM111430 and R35GM133696 to J.A.B., the Clare Boothe Luce
Program of the Henry Luce Foundation, and startup funds from the University of Notre Dame. C.N.K. is a fellow of the
Chemistry-Biochemistry-Biology Interface (CBBI) Training Program at the University of Notre Dame, supported by
NIH Grant T32GM075762. M.C.W. is a College of Science Summer Undergraduate Research Fellow at the University of
Notre Dame with funds provided from the Sean O’Keefe Cancer Fund. N.A.S. is a College of Science Summer Under-
grade Research Fellow at the University of Notre Dame with funds provided from the Glynn Family Honors
Program.

CONFLICT OF INTEREST

The authors have declared no conflicts of interest for this article.

AUTHOR CONTRIBUTIONS

Phillip J. McCown: Conceptualization; data curation; formal analysis; writing-original draft; writing-review and
editing. Agnieszka Ruszkowska: Data curation; formal analysis; investigation; writing-review and editing. Charlotte
N. Kunkler: Data curation; formal analysis; investigation; writing-review and editing. Kurtis Breger: Data curation;
formal analysis; investigation; writing-review and editing. Jacob P. Hulewicz: Data curation; formal analysis;
investigation; writing-review and editing. Matthew C. Wang: Data curation; formal analysis; investigation; writing-review
and editing. Noah A. Springer: Data curation; formal analysis; investigation; writing-review and editing. Jessica
A. Brown: Conceptualization; funding acquisition; investigation; supervision; writing-review and editing.

ORCID

Phillip J. McCown https://orcid.org/0000-0002-8012-1931
Agnieszka Ruszkowska https://orcid.org/0000-0002-9862-4406
Charlotte N. Kunkler https://orcid.org/0000-0001-9319-6652
Kurtis Breger https://orcid.org/0000-0003-0066-4483
Jacob P. Hulewicz https://orcid.org/0000-0003-1726-5294
Matthew C. Wang https://orcid.org/0000-0001-7683-2530
RELATED WIREs ARTICLE
Transfer RNA modifications: Nature’s combinatorial chemistry playground

REFERENCES

Abbas, Y. M., Laudenbach, B. T., Martínez-Montero, S., Cencic, R., Habjan, M., Pichlmair, A., … Nagar, B. (2017). Structure of human IFIT1 with capped RNA reveals adaptable mRNA binding and mechanisms for sensing N1 and N2 ribose 2'-O-methylations. Proceedings of the National Academy of Sciences of the United States of America, 114(11), E2106–E2115. https://doi.org/10.1073/pnas.1612444114

Adachi, H., DeZoyza, M. D., & Yu, Y.-T. (2019). Detection and quantification of pseudouridine in RNA. Methods in molecular biology (Clifton, N.J.), 1870, 219–235. https://doi.org/10.1007/978-1-4939-8808-2_17

Adams, D., Gonzalez-Duarte, A., O’Riordan, W. D., Yang, C.-C., Ueda, M., Kristen, A. V., … Suhr, O. B. (2018). Patisiran, an RNAI therapeutic, for hereditary transthyretin amyloidosis. New England Journal of Medicine, 379(1), 11–21. https://doi.org/10.1056/NEJMoa1716153

Addepalli, B., Venus, S., Thakur, P., & Limbach, P. A. (2017). Novel ribonuclease activity of cusatin from Cucumis sativus for mapping nucleoside modifications in RNA. Analytical and Bioanalytical Chemistry, 409(24), 5645–5654. https://doi.org/10.1007/s00216-017-0500-x

Agrawal, R. K., Sharma, M. R., Kiel, M. C., Hirokawa, G., Booth, T. M., Spahn, C. M. T., … Agris, P. F. (2007). tRNA’s wobble decoding of the genome: 40 years of modification. Current Opinion in Genetics & Development, 17(6), 608–615. https://doi.org/10.1016/j.gde.2007.07.008

Agris, P. F., Sierzputowska-Gracz, H., Smith, W., Malkiewicz, A., Sochacka, E., & Nawrot, B. (1992). Thiolation of uridine carbon-2 restricts output is functionally linked to tRNA dimethyl-G26 modification. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 8900–8905. https://doi.org/10.1073/pnas.901904101

Agris, P. F., Lee, H., Goodarzi, H., Halberg, N., & Tavaezoie, S. F. (2015). N6-methyladenosine marks primary microRNAs for processing. Nature, 519(7544), 482–485. https://doi.org/10.1038/nature14281

Alexandrov, A., Chernyakov, I., Gu, W., Hiley, S. L., Hughes, T. R., Grayhack, E. J., & Phizicky, E. M. (2006). Rapid tRNA decay can result from lack of nonessential modifications. Molecular Cell, 21(1), 87–96. https://doi.org/10.1016/j.molcel.2005.10.036

Alseth, I., Dalhus, B., & Bjørås, M. (2014). Inosine in DNA and RNA. Current Opinion in Genetics & Development, 26, 116–123. https://doi.org/10.1016/j.gde.2014.07.008

Amort, T., Soulière, M. F., Wille, A., Jia, X.-Y., Fiegl, H., Wörle, H., … Frank, J. (2004). Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: Functional implications. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 1299–1308. https://doi.org/10.1073/pnas.0401904101

Andries, O., McCafferty, S., De Smedt, S. C., Weiss, R., Sanders, N. N., & Kitada, T. (2015). 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Cell, 162(6), 1235–1245. https://doi.org/10.1016/j.cell.2015.08.051

Andries, O., de Cafferty, S., De Smedt, S. C., Weiss, R., Sanders, N. N., & Kitada, T. (2015). N3-methylpseudouridine incorporation inhibits ribosome recycling and reduces immunogenicity in mammalian cell lines and mice. Journal of Controlled Release: Official Journal of the Controlled Release Society, 217, 337–344. https://doi.org/10.1016/j.jconrel.2015.08.051

Armistead, J., Khatkar, S., Meyer, B., Mark, B. L., Patel, N., Coghlan, G., … Triggs-Raine, B. (2009). Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome. American Journal of Human Genetics, 84(6), 728–739. https://doi.org/10.1016/j.ajhg.2009.04.017

Armistead, J., Patel, N., Wu, X., Hemming, R., Choudhury, B., Basra, G. S., … Triggs-Raine, B. (2015). Growth arrest in the ribosomopathy, Bowen-Conradi syndrome, is due to dramatically reduced cell proliferation and a defect in mitotic progression. Biochimica et Biophysica Acta (BBA): Molecular Basis of Disease, 1852(5), 1029–1037. https://doi.org/10.1016/j.bbadis.2015.02.007
Arragain, S., Handelman, S. K., Forouhar, F., Wei, F.-Y., Tomizawa, K., Hunt, J. F., ... Atta, M. (2010). Identification of eukaryotic and prokaryotic methylthiotransferase for biosynthesis of 2-methylthio-N4-threonylcarnamoyladenosine in tRNA. *Journal of Biological Chemistry*, 285(37), 38425–38433. https://doi.org/10.1074/jbc.M110.106831

Arrondel, C., Missoury, S., Snoek, R., Patat, J., Menara, G., Collinet, B., ... Mollet, G. (2019). Defects in t^6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. *Nature Communications*, 10(1), 3967. https://doi.org/10.1038/s41467-019-11951-x

Åström, S. U., & Byström, A. S. (1994). Rti1, a tRNA backbone-modifying enzyme that mediates initiator and elongator tRNA discrimination. *Cell*, 79(3), 535–546. https://doi.org/10.1016/0092-8674(94)90262-3

Athanasiadis, A., Rich, A., & Maas, S. (2004). Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. *PLoS Biology*, 2(12), e391. https://doi.org/10.1371/journal.pbio.0020391

Auxilien, S., Keith, G., Le Grice, S. F., & Darlix, J. L. (1999). Role of post-transcriptional modifications of primer tRNALys,3 in the fidelity and efficacy of plus strand DNA transfer during HIV-1 reverse transcription. *The Journal of Biological Chemistry*, 274(7), 4412–4420. https://doi.org/10.1074/jbc.274.7.4412

Auxilien, S., Rasmussen, A., Rose, S., Brochier-Armanet, C., Mansfield, A., Parra-Centurion, N., ... Darlix, J. L. (2012). The N6-methyladenosine (m^6A) mRNA methylation during sive m^6A mRNA methylation during epitranscriptome of human neural stem cells. *Nucleic Acids Research*, 40(21), 9498–9510. https://doi.org/10.1093/nar/gks871

Band, M. (1994). RNA editing in trypanosomes. *Nucleic Acids Research*, 22(22), 5447–5449. http://www.ncbi.nlm.nih.gov/pubmed/7483573

Bass, B. L., & Weintraub, H. (1988). An unwinding activity that covalently modifies its double-stranded RNA substrate. *Cell*, 57(2), 285–294. https://doi.org/10.1016/0092-8674(88)90253-X

Basturea, G. N., Rudd, K. E., & Deutscher, M. P. (2006). Identification and characterization of RsmE, the founding member of a new RNA methyltransferase family. *RNA*, 12(3), 426–434. https://doi.org/10.1261/rna.2283106

Baer, R. J., & Dubin, D. T. (1981). Methylated regions of hamster mitochondrial ribosomal RNA: Structural and functional correlates. *Nucleic Acids Research*, 9(2), 323–337. https://doi.org/10.1093/nar/9.2.323

Bahn, J. H., Lee, J.-H., Li, G., Greer, C., Peng, G., & Xiao, X. (2012). Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. *Genome Research*, 22(1), 142–150. https://doi.org/10.1101/gr.124107.111

Bar-Yaacov, D., Frumkin, I., Yashiro, Y., Chujo, T., Ishigami, Y., Chemla, Y., ... Mishmar, D. (2016). Mitochondrial 16S rRNA is methylated by tRNA methyltransferase TRMT61B in all vertebrates. *PLoS Biology*, 14(9), e1002557. https://doi.org/10.1371/journal.pbio.1002557

Bar-Yaacov, D., Frumkin, I., Yashiro, Y., Chujo, T., Ishigami, Y., Chemla, Y., ... Mishmar, D. (2017). Correction: Mitochondrial 16S rRNA is methylated by tRNA methyltransferase TRMT61B in all vertebrates. *PLoS Biology*, 15(1), e1002594. https://doi.org/10.1371/journal.pbio.1002594

Basanta-Sanchez, M., Temple, S., Ansari, S. A., D’Amico, A., & Agris, P. F. (2016). Attomole quantification and global profile of RNA modifications: Epitranscriptome of human neural stem cells. *Nucleic Acids Research*, 44(3), e26. https://doi.org/10.1093/nar/gkv971

Basanta-Sanchez, M., Wang, R., Liu, Z., Ye, X., Li, M., Shi, X., ... Cheng, J. (2017). TET1-mediated oxidation of 5-formylcytosine (5fC) to 5-carboxycytosine (5caC) in RNA. *ChemBioChem: A European Journal of Chemical Biology*, 18(1), 72–76. https://doi.org/10.1002/201600328

Baskin, F., & Dekker, C. A. (1967). A rapid and specific assay for sugar methylation in ribonucleic acid. *The Journal of Biological Chemistry*, 242(22), 5447–5449. http://www.ncbi.nlm.nih.gov/pubmed/4863573

Bass, B. L., Nishikura, K., Keller, W., Seeburg, P. H., Emerson, R. B., O’Connell, M. A., ... Herbert, A. (1997). A standardized nomenclature for adenosine deaminases that act on RNA. *RNA*, 3(9), 947–949. http://www.ncbi.nlm.nih.gov/pubmed/9292492

Bass, B. L., & Weintraub, H. (1988). An unwinding activity that covalently modifies its double-stranded RNA substrate. *Cell*, 55(6), 1089–1098. https://doi.org/10.1016/0092-8674(88)90253-X

Basturea, G. N., Rudd, K. E., & Deutscher, M. P. (2006). Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family. *RNA*, 12(3), 426–434. https://doi.org/10.1261/rna.2283106

Baumgartner, S., Bryant, J. M., Sinha, A., Reyer, T., Presier, P. R., Dedon, P. C., & Scherf, A. (2019). Transcriptome-wide dynamics of extensive m^6A mRNA methylation during *Plasmodium falciparum* blood-stage development. *Nature Microbiology*, 4(12), 2246–2259. https://doi.org/10.1038/s41564-019-0521-7

Benitez-Páz, A., Villarrova, M., & Armengod, M.-E. (2012). The *Escherichia coli* RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. *RNA*, 18(10), 1783–1795. https://doi.org/10.1261/rna.033266.112

Benne, R. (1994). RNA editing in trypanosomes. *European Journal of Biochemistry*, 221(1), 9–23. https://doi.org/10.1111/j.1432-1033.1994.tb18710.x

Bennett, C. F., Kainer, A. R., & Cleveland, D. W. (2019). Antisense oligonucleotide therapies for neurodegenerative diseases. *Annual Review of Neuroscience*, 42(1), 385–406. https://doi.org/10.1146/annurev-neuro-070918-050501

Benowitz, L. I., Goldberg, D. E., & Irwin, N. (2002). Inosine stimulates axon growth in vitro and in the adult CNS. *Progress in Brain Research*, 137, 389–399. https://doi.org/10.1016/S0079-6123(02)7030-4

Berger, F., Ramírez-Hernández, M. H., & Ziegler, M. (2004). The new life of a centenarian: Signalling functions of NAD(P). *Trends in Biochemical Sciences*, 29(3), 111–118. https://doi.org/10.1016/j.tibs.2004.01.007
Further references are not provided in the image.
Linder, B., Grozhik, A. V., Olarerin-George, A. O., Meydan, C., Mason, C. E., & Jaffrey, S. R. (2015). Single-nucleotide-resolution mapping of m^6A and m^6Am throughout the transcriptome. Nature Methods, 12(8), 767–772. https://doi.org/10.1038/nmeth.3453

Liu, H., Begik, O., Lucas, M. C., Mason, C. E., Schwartz, S., Mattick, J. S., ... Novoa, E. M. (2019). Accurate detection of m^6A RNA modifications in native RNA sequences. Nature Communications, 10, 4079. https://doi.org/10.1038/s41467-019-10904-4

Liu, N., Parisien, M., Dai, Q., Zheng, G., He, C., & Pan, T. (2013). Probing m^6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA, 19(12), 1848–1856. https://doi.org/10.1261/rna.041178.113

Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., & Pan, T. (2015). N^6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature, 518(7540), 560–564. https://doi.org/10.1038/nature14234

Liu, N., Zhou, K. I., Parisien, M., Dai, Q., Diatchenko, L., & Pan, T. (2017). N^6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Research, 45(10), 6051–6063. https://doi.org/10.1093/nar/gkx141

Liu, Q., van der Marel, G. A., & Filippov, D. V. (2019). Chemical ADP-ribosylation: Mono-ADPr-peptides and oligo-ADP-ribose. Organic & Biomolecular Chemistry, 17(22), 5460–5470. https://doi.org/10.1039/C9OB00514C

Liu, Y., Long, F., Wang, L., Söll, D., & Whitman, W. B. (2014). The putative tRNA 2-thiouridine synthetase Ncs6 is an essential sulfur carrier in Methanococcus maripaludis. FEBS Letters, 588(6), 873–877. https://doi.org/10.1016/j.febslet.2014.01.065

Long, K. S., Poelsgaard, J., Keenenberg, C., Schwarz, S., & Vester, B. (2006). The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrobial Agents and Chemotherapy, 50(7), 2500–2505. https://doi.org/10.1128/AAC.00131-06

Lorenz, C., Lünse, C. E., & Mörl, M. (2017). tRNA modifications: Impact on structure and thermal adaptation. Biomolecules, 7(2), 35. https://doi.org/10.3390/biom7020035

Luciano, D. J., Mirskey, H., Vendetti, N. J., & Maas, S. (2004). RNA editing of a miRNA precursor. RNA, 10(8), 1174–1177. https://doi.org/10.1261/rna.7350304

Ma, C.-J., Ding, J.-H., Ye, T.-T., Yuan, B.-F., & Feng, Y.-Q. (2019). AlkB homologue 1 demethylates N^3-methylcytidine in mRNA of mammals. ACS Chemical Biology, 14(7), 1418–1425. https://doi.org/10.1021/acscbr.8b00101

Maas, S., Gerber, A. P., & Rich, A. (1999). Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 8895–8900. https://doi.org/10.1073/pnas.96.16.8895

Maden, B. E. (1990). The numerous modified nucleotides in eukaryotic ribosomal RNA. Progress in Nucleic Acid Research and Molecular Biology, 39, 241–303. http://www.ncbi.nlm.nih.gov/pubmed/2247610

Maden, B. E., & Salim, M. (1974). The methylated nucleotide sequences in HeLa cell ribosomal RNA and its precursors. Journal of Molecular Biology, 88(1), 133–152. https://doi.org/10.1016/0022-2836(74)90299-x

Madore, E., Florentz, C., Giegé, R., Sekine, S., Yokoyama, S., & Lapointe, J. (1999). Effect of modified nucleotides on Escherichia coli tRNA^Glu^ structure and on its aminoacylation by glutamyl-tRNA synthetase. Predominant and distinct roles of the mnm^5 and s^2 modifications of U34. European Journal of Biochemistry, 266(3), 1128–1135. https://doi.org/10.1046/j.1432-1327.1999.00965.x

Madsen, C. T., Mengel-Jørgensen, J., Kirpekar, F., & Douthwaite, S. (2003). Identifying the methyltransferases for m^5U747 and m^5U1939 in 23S rRNA using MALDI mass spectrometry. Nucleic Acids Research, 31(16), 4738–4746. https://doi.org/10.1093/nar/gkg657

Mandal, D., Köhrer, C., Su, D., Babu, I. R., Chan, C. T. Y., Liu, Y., & Rajbhandary, U. L. (2014). Identification and codon reading properties of 5-cyanomethyl uridine, a new modified nucleoside found in the anticodon wobble position of mutant haloarchaeal isoleucine tRNAs. RNA, 20(2), 177–188. https://doi.org/10.1261/rna.042358.113

Mandal, D., Köhrer, C., Su, D., Russell, S. P., Krivos, K., Castleberry, C. M., & Rajbhandary, U. L. (2010). Agmatidine, a modified cytidine in the anticodon of archaeal tRNA^Pro^, pairs with adenosine but not with guanosine. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 2872–2877. https://doi.org/10.1073/pnas.0914869107

Marchand, V., Blanloeil-Oillo, F., Helm, M., & Motornin, Y. (2016). Illumina-based RibothemSeq approach for mapping of 2'-O-Me residues in RNA. Nucleic Acids Research, 44(16), e135. https://doi.org/10.1093/nar/gkw547

Marchetti, M., Capela, D., Poincloux, R., Benmeraditi, N., Auriac, M.-C., Le Ru, A., ... Masson-Boivin, C. (2013). Queuosine biosynthesis is required for Sinorhizobium meliloti-induced cytoskeletal modifications on HeLa cells and symbiosis with Medicago truncatula. PLoS One, 8(2), e56043. https://doi.org/10.1371/journal.pone.0056043

Marolewski, A., Smith, J. M., & Benkovic, S. J. (1994). Cloning and characterization of a new purine biosynthetic enzyme: A non-folate glycinamide ribonucleotide transformylase from E. coli. Biochemistry, 33(9), 2531–2537. https://doi.org/10.1021/bi00175a023

McCown, P. J., Corbino, K. A., Stav, S., Sherlock, M. E., & Breaker, R. R. (2017). Riboswitch diversity and distribution. RNA, 23(7), 995–1011. https://doi.org/10.1261/rna.061234.117

McCown, P. J., Liang, J. J., Weinberg, Z., & Breaker, R. R. (2014). Structural, functional, and taxonomic diversity of three preQ1 riboswitch classes. Chemistry and Biology, 21(7), 880–889. https://doi.org/10.1016/j.chembiol.2014.05.015

McCown, P. J., Wang, M. C., Jaeger, L., & Brown, J. A. (2019). Secondary structural model of human MALAT1 reveals multiple structure-function relationships. International Journal of Molecular Sciences, 20(22), 5610. https://doi.org/10.3390/ijms20225610

McIntyre, W., Netzband, R., Bovenfant, G., Biegel, J. M., Miller, C., Fuchs, G., ... Pager, C. T. (2018). Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Research, 46(11), 5776–5791. https://doi.org/10.1093/nar/gky029

Meier, F., Suter, B., Grosjean, H., Keith, G., & Kubli, E. (1985). Queuosine modification of the wobble base in tRNA^His^ influences “in vivo” decoding properties. The EMBO Journal, 4(3), 823–827 http://www.ncbi.nlm.nih.gov/pubmed/2988936
Meyer, A. J., Garry, D. J., Hall, B., Byrom, M. M., McDonald, H. G., Yang, X., & Ellington, A. D. (2015). Transcription yield of fully 7-modified RNA can be increased by the addition of thermostabilizing mutations to T7 RNA polymerase mutants. *Nucleic Acids Research*, 43(15), 7480–7488. https://doi.org/10.1093/nar/gkv734

Meyer, B., Immer, C., Kaiser, S., Sharma, S., Yang, J., Watzinger, P., & Wöhnert, J. (2020). Identification of the 3-amino-3-carboxypropyl (acp) transferase enzyme responsible for acp3U formation at position 47 in *Escherichia coli* tRNAs. *Nucleic Acids Research*, 48(3), 1435–1450. https://doi.org/10.1093/nar/gkz1191

Meyer, B., Wurm, J. P., Kötter, P., Leisegang, M. S., Schilling, V., Buchhaupt, M., & Entian, K.-D. (2011). The Bowen–Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of 1Ψ191 in yeast 18S rRNA. *Nucleic Acids Research*, 39(4), 1526–1537. https://doi.org/10.1093/nar/gkq931

Meyer, B., Wurm, J. P., Sharma, S., Immer, C., Pogoryelov, D., Kötter, P., & Entian, K.-D. (2016). Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. *Nucleic Acids Research*, 44(9), 4304–4316. https://doi.org/10.1093/nar/gkw244

Meyer, E., Leonard, N. J., Bhat, B., Stubbe, J., & Smith, J. M. (1992). Purification and characterization of the purE, purK, and purC gene products: Identification of a previously unrecognized energy requirement in the purine biosynthetic pathway. *Biochemistry*, 31(21), 5022–5032. https://doi.org/10.1021/bi00136a016

Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E., & Jaffrey, S. R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. *Cell*, 149(7), 1635–1646. https://doi.org/10.1016/J.CELL.2012.05.003

Mihara, H., Kato, S., Lacourciere, G. M., Stadtmann, T. C., Kennedy, R. A. J. D., Kurihara, T., … Esaki, N. (2002). The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydrogenase. *Proceedings of the National Academy of Sciences of the United States of America*, 99(10), 6679–6683. https://doi.org/10.1073/pnas.102176099

Miki, K., Endo, K., Takahashi, S., Funakoshi, S., Takei, I., Katayama, S., … Yoshida, Y. (2015). Efficient detection and purification of cell populations using synthetic microRNA switches. *Cell Stem Cell*, 16(6), 699–711. https://doi.org/10.1016/j.stem.2015.04.005

Miles, Z. D., McCarty, R. M., Molnar, G., & Bandarian, V. (2011). Discovery of epoxyqueuosine (oQ) reductase reveals parallels between halorespiration and tRNA modification. *Proceedings of the National Academy of Sciences of the United States of America*, 108(18), 7368–7373. https://doi.org/10.1073/PNAS.101863108

Mittelstadt, M., Frump, A., Khoo, T., Fowlkes, V., Hardy, I., Patel, C. V., & Patel, R. C. (2007). Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. *Nucleic Acids Research*, 36(3), 998–1008. https://doi.org/10.1093/nar/gkm1129

Miyauchi, K., Kimura, S., & Suzuki, T. (2016). NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNAMet. *Nature Chemical Biology*, 12(7), 546–551. https://doi.org/10.1038/nchembio.2099

Miller, M., Legrand, C., Tuorto, F., Kelly, V. P., Atlas, Y., Lyko, F., & Ehrenhofer-Murray, A. E. (2019). Queuine links translational control in eukaryotes to a micronutrient from bacteria. *Nucleic Acids Research*, 47(7), 3711–3727. https://doi.org/10.1093/nar/gkz063

Naga, A., Ohara, M., Miyauchi, K., Yokobori, S.-I., Yamagishi, A., Watanabe, K., & Suzuki, T. (2017). Hydroxylation of a conserved tRNA modification establishes non-universal genetic code in echinoderm mitochondria. *Nature Structural & Molecular Biology*, 24(9), 778–782. https://doi.org/10.1038/nsmb.3449

Nakai, Y., Umeda, N., Suzuki, T., Nakai, M., Hayashi, W., Watanabe, K., & Kagamiyama, H. (2004). Yeast Nfs1p is involved in thiomodification of both mitochondrial and cytoplasmic tRNAs. *Journal of Biological Chemistry*, 279(13), 12363–12368. https://doi.org/10.1074/jbc.M312448200

Nakanishi, K., Fukai, S., Ikeuchi, Y., Soma, A., Sekine, Y., Suzuki, T., & Nureki, O. (2005). Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain. *Proceedings of the National Academy of Sciences of the United States of America*, 102(21), 7478–7487. https://doi.org/10.1073/pnas.0501003102

Nakano, S., Suzuki, T., Kawarada, L., Iwata, H., Asano, K., & Suzuki, T. (2016). NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA Met. *Nature Chemical Biology*, 12(7), 546–551. https://doi.org/10.1038/nchembio.2099

Nelson, J. W., & Breaker, R. R. (2017). The lost language of the RNA world. *Science Signaling*, 10(483), eaam8812. https://doi.org/10.1126/scisignal.aam8812
Nishimura, S., Taya, Y., Kuchino, Y., & Oashi, Z. (1974). Enzymatic synthesis of 3-(3-amino-3-carboxypropyl)uridine in Escherichia coli pyrrolidylalanine transfer RNA: Transfer of the 3-amino-3-carboxypropyl group from S-adenosylmethionine. *Biochemical and Biophysical Research Communications*, 57(3), 702–708. https://doi.org/10.1016/0006-291x(74)90603-2

Noma, A., Ishitani, R., Kato, M., Nagao, A., Nureki, O., & Suzuki, T. (2010). Expanding role of the jumonji C domain as an RNA hydroxylase. *Journal of Biological Chemistry*, 285(45), 34503–34507. https://doi.org/10.1074/jbc.M110.156398

Noma, A., Kirino, Y., Ikeuchi, Y., & Suzuki, T. (2006). Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. *The EMBO Journal*, 25(10), 2142–2154. https://doi.org/10.1038/sj.embj.7601105

Noma, A., Sakaguchi, Y., & Suzuki, T. (2009). Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. *Nucleic Acids Research*, 37(4), 1335–1352. https://doi.org/10.1093/nar/gkn1023

Noma, A., Yi, S., Katoh, T., Takai, Y., Suzuki, T., & Suzuki, T. (2011). Actin-binding protein ABP140 is a methyltransferase for 3-methylecytidine at position 32 of Sarccharomyces cerevisiae. *RNA*, 17(6), 1111–1119. https://doi.org/10.1261/RNA.265341

Noon, K. R., Bruenger, E., & McCloskey, J. A. (1998). Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile *Sulfolobus solfataricus*. *Journal of Bacteriology*, 180(11), 2883–2888. http://www.ncbi.nlm.nih.gov/pubmed/9603876

Noon, K. R., Guymon, R., Crain, P. F., McCloskey, J. A., Thomm, M., Lim, J., & Cavicchioli, R. (2003). Influence of temperature on tRNA modification in archaea: *Methanococcales bus tonii* (optimum growth temperature [Ttop], 23°C) and *Stetteria hydrogenophila* (Ttop, 95°C). *Journal of Bacteriology*, 185(18), 5483–5490. https://doi.org/10.1128/JB.185.18.5483-5490.2003

Nordmann, P. L., Makris, J. C., & Reznikoff, W. S. (1988). Inosine induced mutations. *MGG Molecular & General Genetics*, 214(1), 62–67. https://doi.org/10.1007/BF00340180

Nurse, K., Wrzesinski, J., Bakin, A., Lane, B. G., & Ofengand, J. (1995). Purification, cloning, and properties of the tRNA Ψ55 synthase from *Escherichia coli*. *RNA*, 1(1), 102–112. https://doi.org/10.1186/0889-4441-1-102

Nygard, P., & Saxild, H. H. (2000). The yexA gene product is required for phosphoribosylformylglycinamidet synthase activity in *Bacillus subtilis*. *Microbiology*, 146(4), 807–814. https://doi.org/10.1099/00222836-146-4-807

Oakes, E., Anderson, A., Cohen-Gadol, A., & Hundley, H. A. (2017). Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. *The Journal of Biological Chemistry*, 292(10), 4326–4335. https://doi.org/10.1074/jbc.m117.779968

Oerum, S., Dégu, C., Barraud, P., & Tisné, C. (2017). m1A post-transcriptional modification in tRNAs. *Biomolecules*, 7(4), 20. https://doi.org/10.3390/biom7010020

Ofengand, J., Del Campo, M., & Kaya, Y. (2001). Mapping pseudouridines in RNA molecules. *Methods*, 25(3), 365–373. https://doi.org/10.1006/meth.2001.1249

Ofengand, J., Malhotra, A., Remme, J., Gutgsell, N. S., Del Campo, M., Jean-Charles, S., ... Kaya, Y. (2001). Pseudouridines and pseudouridine synthases of the ribosome. *Cold Spring Harbor Symposia on Quantitative Biology*, 66, 147–159. http://www.ncbi.nlm.nih.gov/pubmed/12762017

Ofengand, J. (2002). Ribosomal RNA pseudouridines and pseudouridine synthases. *FEBS Letters*, 514(1), 17–25. https://doi.org/10.1016/s0014-5793(02)02305-0

Okada, N., & Nishimura, S. (1977). Enzymatic synthesis of Q* nucleoside containing mannose in the anticodon of tRNA: Isolation of a novel mannosyltransferase from a cell-free extract of rat liver. *Nucleic Acids Research*, 4(8), 2931–2937. https://doi.org/10.1093/nar/4.8.2931

Onodera, T., Satoh, K., Ohta, T., & Narumi, I. (2013). *Deinococcus radiodurans* YgiD and YeaZ are involved in the repair of DNA cross-links. *Extremophiles*, 17(1), 171–179. https://doi.org/10.1007/s00792-012-0506-4

Orellana, E. A., Tenneti, S., Rangasamy, L., Lyle, L. T., Low, P. S., & Kasinski, A. L. (2017). FolamiRs: Ligand-targeted, vehicle-free delivery of microRNAs for the treatment of cancer. *Science Translational Medicine*, 9(401), eaam9327. https://doi.org/10.1126/scitranslmed.aam9327

Orgel, L. E. (1968). Evolution of the genetic apparatus. *Journal of Molecular Biology*, 38(3), 381–393. https://doi.org/10.1016/0022-2836(68)90393-8

Owney, K., Xu, H., & White, R. H. (2005). A *Methanocaldococcus jannaschii* archaeal signature gene encodes for a 5-formaminoimidazole-4-carboxamide-1-β-D-ribofuransyl 5′-monophosphate synthetase: A new enzyme in purine biosynthesis. *Journal of Biological Chemistry*, 280(12), 10881–10887. https://doi.org/10.1074/jbc.M41393200

Palenchar, P. M., Buck, C. J., Cheng, H., Larson, T. J., & Mueller, E. G. (2000). Evidence that Thl, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. *Journal of Biological Chemistry*, 275(12), 8283–8286. http://www.jbc.org/

Pallan, P. S., Kreutz, C., Bosio, S., Micura, R., & Egli, M. (2008). Effects of N2,N2-dimethylguanosine on RNA structure and stability: Crystal structure of an RNA duplex with tandem m2,2G:A pairs. *RNA*, 14(10), 2125–2135. https://doi.org/10.1261/rna.1078508

Pandey, A., Pain, J., Dzuba, N., Pandey, A. K., Dancis, A., Lindahl, P. A., & Pain, D. (2018). Mitochondria export sulfur species required for cytosolic tRNA thiolation. *Cell Chemical Biology*, 25(6), 738–748.e3. https://doi.org/10.1016/j.chembiol.2018.04.002

Pang, H., Ihara, M., Kuchino, Y., Nishimura, S., Gupta, R., Woese, C. R., & McCloskey, J. A. (1982). Structure of a modified nucleoside in archaeabacterial tRNA which replaces ribosylthymine. 1-Methylpsseudouridine. *The Journal of Biological Chemistry*, 257(7), 3589–3592 http://www.ncbi.nlm.nih.gov/pubmed/7061499

Paris, J., Morgan, M., Campos, J., Spencer, G. J., Shmakova, A., Ivanova, I., ... Kranc, K. R. (2019). Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. *Cell Stem Cell*, 25(1), 137–148.e6. https://doi.org/10.1016/j.stem.2019.03.021
Yang, Y., Zhou, X., & Jin, Y. (2013). ADAR-mediated RNA editing in non-coding RNA sequences. *Science China Life Sciences*, 56(10), 944–952. https://doi.org/10.1007/s11427-013-4546-5

Yim, L., Moukadir, I., Björk, G. R., & Armengod, M.-E. (2006). Further insights into the tRNA modification process controlled by proteins MnmE and GidA of *Escherichia coli*. *Nucleic Acids Research*, 34(20), 5892–5905. https://doi.org/10.1093/nar/gkl752

Yip, W. S. V., Shigematsu, H., Taylor, D. W., & Baserga, S. J. (2016). Box C/D sRNA stem ends act as stabilizing anchors for box C/D d-sRNPs. *Nucleic Acids Research*, 44(18), 8976–8989. https://doi.org/10.1093/nar/gkw576

Yokogawa, T., Nomura, Y., Yasuda, A., Ogino, H., Hiura, K., Nakada, S., ... Ohno, S. (2019). Identification of a radical SAM enzyme involved in the synthesis of archaeosine. *Nature Chemical Biology*, 15(12), 1148–1155. https://doi.org/10.1038/s41589-019-0390-7

Yokoyama, S., Watanabe, K., & Miyazawa, T. (1987). Dynamic structures and functions of transfer ribonucleic acids from extreme thermophiles. *Advances in Biophysics*, 23, 115–147 http://www.ncbi.nlm.nih.gov/pubmed/2449804

Yoon, K.-J., Ringeling, F. R., Vissers, C., Jacob, F., Pokrass, M., Jimenez-Cyrus, D., ... Song, H. (2017). Temporal control of mammalian cortical neurogenesis by m^6^A methylation. *Cell*, 171(4), 877–889.e17. https://doi.org/10.1016/j.cell.2017.09.003

You, X.-J., Liu, T., Ma, C.-J., Qi, C.-B., Tong, Y., Zhao, X., ... Feng, Y.-Q. (2019). Determination of RNA hydroxymethylation in mammals by mass spectrometry analysis. *Analytical Chemistry*, 91(16), 10477–10483. https://doi.org/10.1021/acs.analchem.9b01318

Yu, A.-M., Jian, C., Yu, A. H., & Tu, M.-J. (2019). RNA therapy: Are we using the right molecules? *Pharmacology & Therapeutics*, 196, 91–104. https://doi.org/10.1016/J.PHARMThERA.2018.11.011

Yu, T. A., Ge, J., & Yu, Y.-T. (2011). Pseudouridines in spliceosomal sRNAs. *Protein & Cell*, 2(9), 712–725. https://doi.org/10.1007/s13238-011-1087-1

Yu, N., Jora, M., Solivio, B., Thakur, A., Acevedo-Rocha, C. G., Randau, L., ... Martin-Verstraete, I., ... Grove, T. L., Payan, D. J., Martin-Verstraete, I., ... de Crécy-Lagard, V. (2019). Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens. *Proceedings of the National Academy of Sciences of the United States of America*, 116(38), 19126–19135. https://doi.org/10.1073/pnas.1909604116

Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H., & Noller, H. F. (2001). Crystal structure of the ribosome at 5.5 Å resolution. *Science*, 292(5518), 883–896. https://doi.org/10.1126/science.1060089

Zaccara, S., Sies, R. J., & Jaffrey, S. R. (2019). Reading, writing and erasing mRNA methylation. *Nature Reviews Molecular Cell Biology*, 20 (10), 608–624. https://doi.org/10.1038/s41580-019-0168-5

Zahn, K. E., Averill, A., Wallace, S. S., & Doublé, S. (2011). The miscoding potential of 5-hydroxycytosine arises due to template instability in the replicative polymerase active site. *Biochemistry*, 50(47), 10350–10358. https://doi.org/10.1021/bi201219s

Zallot, R., Ross, R., Chen, W. H., Bruner, S. D., Limbach, P. A., & De Crécy-Lagard, V. (2017). Identification of a novel epoxyqueuosine reductase family by comparative genomics. *ACS Chemical Biology*, 12(3), 844–851. https://doi.org/10.1021/acschembio.6b01102

Zallot, R., Yuan, Y., & De Crécy-Lagard, V. (2017). The *Escherichia coli* COG1738 member YhhQ is involved in 7-cyanodeazaguanine (preQ0) transport. *Biomolecules*, 7(1). https://doi.org/10.3390/biom7010012

Zang, L., Lui, K. O., von Gise, A., Ma, Q., Ebina, W., Ptaszek, L. M., ... Chien, K. R. (2013). Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. *Nature Biotechnology*, 31(10), 898–907. https://doi.org/10.1038/nbt.2682

Zhang, K., Lentini, J. M., Prevost, C. T., Hashem, M. O., Alkuraya, F. S., & Du, F. (2020). An intellectual disability-associated missense variant in TRMT1 impairs RNA modification and reconstitution of enzymatic activity. *Human Mutation*, 41(3), 600–607. https://doi.org/10.1002/humu.23976

Zhang, L.-S., Liu, C., Ma, H., Dai, Q., Sun, H.-L., Luo, G., ... He, C. (2019). Transcriptome-wide mapping of internal N^2^-methylguanosine methylome in mammalian mRNA. *Molecular Cell*, 74, 1304–1316.e8. https://doi.org/10.1016/j.molcel.2019.03.036

Zhang, N., Shi, S., Jia, T. Z., Ziegler, A., Yoo, B., Yuan, X., ... Zhang, S. (2019). A general LC-MS-based RNA sequencing method for direct analysis of multiple-base modifications in RNA mixtures. *Nucleic Acids Research*, 47(20), e125–e125. https://doi.org/10.1093/nar/gkz731

Zhang, X., Wei, L.-H., Wang, Y., Xiao, Y., Liu, J., Zhang, W., ... Jia, G. (2019). Structural insights into FTO’s catalytic mechanism for the demethylation of multiple RNA substrates. *Proceedings of the National Academy of Sciences of the United States of America*, 116(8), 2919–2924. https://doi.org/10.1073/pnas.1820574116

Zhao, B. S., & He, C. (2015). Pseudouridine in a new era of RNA modifications. *Cell Research*, 25(2), 153–154. https://doi.org/10.1038/cr.2014.143

Zhao, B. S., Nachtergaele, S., Roundtree, I. A., & He, C. (2018). Our views of dynamic N^6^-methyladenosine RNA methylation. *RNA*, 24(3), 268–272. https://doi.org/10.1261/rna.064295.117

Zhao, X., Patton, J. R., Ghosh, S. K., Fischel-Ghodsian, N., Shen, L., & Spanjaard, R. A. (2007). Pus3p- and Pus1p-dependent pseudouridylation of steroid receptor RNA activator controls a functional switch that regulates nuclear receptor signaling. *Molecular Endocrinology*, 21(3), 686–699. https://doi.org/10.1210/me.2006-0414
Zhao, Y., Dunker, W., Yu, Y.-T., & Karijolich, J. (2018). The role of noncoding RNA pseudouridylation in nuclear gene expression events. *Frontiers in Bioengineering and Biotechnology*, 6, 8. https://doi.org/10.3389/fbioe.2018.00008

Zhao, Y., Zhao, Q., Kaboli, P. J., Shen, J., Li, M., Wu, X., ... Xiao, Z. (2019). m⁵A regulated genes modulate PI3K/AKT/mTOR and ErbB pathways in gastrointestinal cancer. *Translational Oncology*, 12(10), 1323–1333. https://doi.org/10.1016/j.tranon.2019.06.007

Zheng, C., Black, K. A., & Dos Santos, P. C. (2017). Diverse mechanisms of sulfur decoration in bacterial tRNA and their cellular functions. *Biomolecules*, 7(4), 33. https://doi.org/10.3390/biom7010033

Zheng, G., Dahl, J. A., Niu, Y., Fedorcsak, P., Huang, C.-M., Li, C. J., ... He, C. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. *Molecular Cell*, 49(1), 18–29. https://doi.org/10.1016/J.MOLCEL.2012.10.015

Zheng, Y., Lorenzo, C., & Beal, P. A. (2017). DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. *Nucleic Acids Research*, 45(6), 3369–3377. https://doi.org/10.1093/nar/gkx050

Zhou, F., Liu, Y., Rohde, C., Pauli, C., Gerloff, D., Köhn, M., ... Müller-Tidow, C. (2017). AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. *Nature Cell Biology*, 19(7), 844–855. https://doi.org/10.1038/ncb3563

Zhu, Y., Pirnie, S. P., & Carmichael, G. G. (2017). High-throughput and site-specific identification of 2’-O-methylation sites using ribose oxidation sequencing (RibOxi-seq). *RNA*, 23(8), 1303–1314. https://doi.org/10.1261/rna.061549.117

Zinshteyn, B., & Nishikura, K. (2009). Adenosine-to-inosine RNA editing. *Wiley Interdisciplinary Reviews: Systems Biology and Medicine*, 1(2), 202–209. https://doi.org/10.1002/wsbm.10

Zorbas, C., Nicolas, E., Wacheul, L., Huvelle, E., Heurgué-Hamard, V., & Lafontaine, D. L. J. (2015). The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. *Molecular Biology of the Cell*, 26(11), 2080–2095. https://doi.org/10.1091/mbc.E15-02-0073

Zur, H., & Tuller, T. (2013). New universal rules of eukaryotic translation initiation fidelity. *PLoS Computational Biology*, 9(7), e1003136. https://doi.org/10.1371/journal.pcbi.1003136

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: McCown PJ, Ruszkowska A, Kunkler CN, et al. Naturally occurring modified ribonucleosides. *WIREs RNA*. 2020;11:e1595. https://doi.org/10.1002/wrna.1595