Visual Saliency Based Multiple Objects Segmentation and its Parallel Implementation for Real-Time Vision Processing

Hirokazu Madokoro*, Yutaka Ishioka, Satoshi Takahashi, Kazuhito Sato, Nobuhiro Shimoi

Faculty of Systems Science and Technology, Akita Prefectural University
84-4, Tsuchiya Aza Ebinokuchi, Yurihonjo City, Akita, 015-0055, Japan

Copyright ©2015 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract This paper presents a segmentation method of multiple object regions based on visual saliency. Our method comprises three steps. First, attentional points are detected using saliency maps (SMs). Subsequently, regions of interest (RoIs) are extracted using scale-invariant feature transform (SIFT). Finally, foreground regions are extracted as object regions using GrabCut. Using RoIs as teaching signals, our method achieved automatic segmentation of multiple objects without learning in advance. As experimentally obtained results obtained using PASCAL2011 dataset, attentional points were extracted correctly from 18 images for two objects and from 25 images for single objects. We obtained segmentation accuracies: 64.1%, precision; 62.1%, recall, and 57.4%, F-measure. For real-time video image processing, we implemented our model on an IMAPCAR2 evaluation board. The processing cost was 47.5 ms for the video images of 640 × 240 pixel resolution. Moreover, we applied our method to time-series images obtained using a mobile robot. Attentional points were extracted correctly for seven images for two objects and three images for single objects from ten images. We obtained segmentation accuracies of 58.0%, precision; 63.1%, recall, and 58.1%, F-measure.

Keywords Multiple object detection, Regional division, Extraction of object regions, Saliency maps, GrabCut.

1 Introduction

Along with the rapid progress of machine technologies and performance improvement of computing devices, robots of various types have appeared in our society. Especially in factories or extreme environments, robots are used for tasks that are difficult or impossible for humans. Recently, human-symbiotic robots such as pet robots, nursing-care robots, and life-support robots have become popular in our living environment. For these robots, various capabilities are required not only for pursuing tasks instructed by a human, but also for their understanding of environments autonomously. The role of visual function is important for semantic understanding of environments. For human-symbiotic robots, classification of objects and scenes is an important research target. The environment in which robots work changes moment-by-moment according to our lifestyle. To adapt our life for robots, machine-learning-based methods are used extensively because objects of various types exist in our actual environment.

Generic object recognition is a challenging task in computer vision studies. False recognition is apparent if objects have similar shapes or colors to those of different categories. As a solution for this problem, learning is used for features obtained from numerous images. The decision criteria of objects and their categories are ambiguous. Therefore, it is impossible to use similar decision criteria for numerous images. Furthermore, false recognition is increased in cases where shapes and colors differ even for an object belonging to the same category, appearance differs depending on the obtained situations such as lighting and viewpoint in the same object, and objects frequently exist in front of complex background. Numerous methods have been studied, such as a feature description method with robustness of changes of object categories, a representation method of object categories, and discriminators based on statistical large-scale machine learning methods [1]. However, earlier studies have assumed that an image has a single object. Actually, that is a rare case in such situations as those that occur in our actual environment. To deal with a general image, the application range is limited.

This paper presents an extraction method for multiple objects based on visual saliency. The feature of our method is that it needs no learning in advance. We verify the validity of our method for images that contain two objects using an open benchmark dataset and our original dataset obtained using our mobile robot prototype.
2 Related Studies

In the early stage of multiple object recognition, region-based methods have been studied actively to extract various regions that contain an object. Qi et al. proposed a classification method using tensor representation and segmentation based on color features [2]. Rabinovich et al. proposed a segmentation method using Normalized Cuts to describe features of background and foreground regions in an image [3]. They modified categories of each region using co-occurrence and determination of category reliability. Both methods achieved classification of multiple objects for various images before providing learning data. Segmentation results directly affected the recognition accuracy for an image that has ambiguous boundaries between foreground and background regions.

Recently, regression-based methods have become attractive as approaches to recognize objects using probability of occurrence of feature points between objects and a target image. Okabe et al. proposed a method using co-occurrence of object categories [4]. They used Maximum A Posteriori (MAP), which maximizes the posterior probability, to estimate existing probabilities of objects. They extracted existing probabilities of categories obtained from the number of feature points on all objects. However, segmentation is necessary in advance because of the use of images divided into regions for MAP learning. Segmentation accuracy affects estimation accuracy directly.

Das et al. proposed multiple object recognition using multi-class Support Vector Machines (SVMs) [5]. They used feature-combined Scale-Invariant Feature Transform (SIFT) with Pyramid Histogram of Oriented Gradient (PHOG) for describing edge-based features. Nevertheless, they merely used edge features for learning data, although they produced probability models through SVM learning.

For multiple object recognition studies, it is a challenging task to detect Regions of Interest (RoIs) that contain an object in a complex background image. Saliency Maps (SMs) by Itti et al. are popularly used as a method to detect RoIs from various images [6]. SMs represent high-saliency regions in an image with focusing components of color, luminance, and orientation. Liu et al. proposed an object detection method using Conditional Random Fields (CRFs) as probability models [7]. They calculated the probability of occurrence using features of color distribution, multiple contrast, and center-surround histograms from all images. They actualized object detection with high accuracy using 2,000 videos and 60,000 images that were collected independently as original datasets for CRF learning. However, their method required a great load to build learning datasets because of using supervised learning. The detection target was merely limited to a single object. They addressed no specific results quantitatively, although they considered the extension to multiple object detection and recognition.

As a segmentation method with high accuracy, graph cuts are widely used for global optimization of energy functions in each region. Graph cuts actualize segmentation using characteristics of both regions and boundaries [8, 9, 10, 11]. Fujisaki et al. proposed an object extraction method that combines graph cuts and SMs [8]. However, they optimized no local features because graph cuts merely emphasized global features in an image. Segmentation accuracy dropped dramatically, especially for images with complex backgrounds, because of a lack of consideration of local features such as boundaries. Carsten et al. proposed GrabCut, which is an improved approach of graph cuts [12]. For a region including an object as teaching signals, GrabCut automatically segments it into background and foreground sub-regions. Therefore, optimization is actualized using likelihood of background and foreground regions that were not considered in graph cuts.

For parallel processing, Field programmable gate arrays (FPGAs) are widely used for full hardware implementation of SMs. Kapre et al.[13] developed a hardware model of SMs using FPGAs for real-time processing of video images for 720 × 512 pixel resolution with 30 fps. However, programming FPGA using hardware description language (HDL) requires much time and advanced skills. Single instruction multiple data (SIMD) processors calculate single instructions with multiple data simultaneously. Using this architecture, it is easy for programming as software. SIMD architectures are suitable for image processing with simple instructions. Ouerhani et al.[17] implemented SMs for ProtoEye using SIMD architecture on FPGA. The ProtoEye chips, which were optimized for image processing consisting of six 4-bit SRAMs and two-dimensional processing elements (PEs). High-speed processing was actualized because each PE directly connects A/D and D/A converters. Additionally, ProtoEye contains a 4 MHz RISC cores for rapid parallel processing. The processing speed was 14 fps for a 64 × 64 pixel image. However, we infer that it is difficult to apply their model for robot-vision tasks because the target image is too small to process.

For this paper, we follow up on our previous studies in [15, 16] where we presented our basic approaches for multiple objects segmentation parallel implementation based on visual saliency.

3 Proposed Method

Using SMs at the initial stage, the procedures of our method detect RoIs from an input image. SMs detect high-saliency positions obtained using three features: luminance, colors, and orientations. Our method extracts RoIs around the detected positions. We use them for learning data to GrabCut for segmentation of background and foreground regions. Finally, foreground regions are extracted as object regions.

We assume visual applications for a robot to recognize objects. We set the following two assumptions for applying multiple object recognition for images obtained using a mobile robot. The first assumption is to detect RoIs automatically. For recognizing objects, it is necessary to obtain features such as shapes or colors in objects. Therefore, we detect RoIs from an image independently. The second assumption is to segment object regions automatically. Our method extracts objects as foreground regions that are divided from background regions.
3.1 Visual Saliency

Fig. 1 portrays the procedure of SMs, comprising six steps. The first step is to apply Gaussian filters to create pyramid images from an original image. The second step is to create intensity, color, and orientation channel images. The third step is to create feature maps (FMs) that represent the visual features of respective components using Center–Surround images. The fourth step is to create conspicuity maps (CMs) from a linear summation of FMs. The fifth step is to create SMs from linear summation of CMs. The final step is to detect the highest saliency points using Winner-Take-All (WTA) competition. We describe the details related to each step as the following.

3.1.1 Gaussian Pyramids

For the creation of nine pyramid images, the scale is changed from 1/2 to 1/256 steps by 1/2. Subsequently, Gaussian filters are applied to these pyramid images that are obtained using Gaussian filters, which work as low-pass filters that cut a high-frequency band because of amplification of a low-frequency band. Low-frequency bands are emphasized with the width of the Fourier transform according to the expanding filter size. The effect of blurring is apparent by Gaussian filters. For superimposing all images, Gaussian pyramid images are created.

Intensity, color, and orientation channels are extracted from the Gaussian pyramid images. Let I be an intensity channel defined as

\[I = \frac{r + g + b}{3}, \]

where \(r, g, \) and \(b \) respectively represent red, green, and blue channels. The hue channel comprises RGB and the yellow channel \(Y \), which is calculated as

\[Y = \frac{r + g}{2} - \frac{|r - g|}{2} - b. \]

Orientation channels are created on the edge of four directions: \(\theta = 0, 45, 90, \) and 135 deg. Gabor filter \(G \) is defined as the product of the sine wave and the Gaussian function [26]. \(G(x, y) \) is defined as shown below.

\[G(x, y) = \exp\left\{-\frac{1}{2}\left(\frac{R_x^2}{\sigma_x^2} + \frac{R_y^2}{\sigma_y^2}\right)\right\} \exp\left(i\frac{2\pi R_x}{\lambda}\right) \]

\[R_x = x \cos \theta + y \sin \theta \]
\[R_y = -x \sin \theta + y \cos \theta \]

Therein, \(\lambda, \theta, \sigma_x, \) and \(\sigma_y \) respectively represent the wavelength of the cosine component, the direction component of the Gabor function, the filter size in the vertical axis direction, and the filter size in the horizontal axis direction. The integral value to the vertical side is the maximum if \(G \) is applied to lines with gradients in the image. We extract the gradient and frequency components using this property. We defined the filter size as \(M \times N \) pixels. The filter output \(Z(x, y) \) at the sample point \(P(x, y) \) is defined as

\[Z(x, y) = \sum_{j=-\frac{M}{2}}^{\frac{M}{2}} \sum_{i=-\frac{N}{2}}^{\frac{N}{2}} G(x + i, y + j) \cdot P(x + i, y + j). \]

The formula above includes the complex term. The final output \(Z \) is defined as

\[Z = \sqrt{Rm^2 + Im^2}. \]

3.1.2 Feature Maps

The attention positions are identified by superimposing the differences among different scale pairs obtained using Gaussian pyramid images. These are designated as center–surround operations, which are represented by the operator \(\odot \). For the difference operation, small images are extended to large images. When defining scales as \(c, \ (c < s) \), a larger scale is represented as \(c=2,3,4 \); a smaller one is represented as \(s = \{c+\delta|\delta \in 3,4\} \). For the intensity component, the difference \(I(c, s) \) is calculated as shown below.

\[I(c, s) = |I(c) \odot I(s)| \]
Let $RG(c, s)$ and $BY(c, s)$ respectively represent the differences between the red and green component and the blue and yellow component.

$$RG(c, s) = |(R(c) - G(c)) \oplus (G(s) - R(s))|$$

$$BY(c, s) = |(B(c) - Y(c)) \oplus (Y(s) - B(s))|$$

Orientation features are obtained from the difference in each direction.

$$O(c, s, \theta) = |O(c, \theta) \ominus O(s, \theta)|$$

Finally, 42 FMs are obtained from 6 intensity channels, 12 color channels, and 24 orientation channels.

3.1.3 Saliency Maps

We normalize each FM according to the following procedures.

1. The maximum value M on the map is searched.
2. Normalizing all pixels for the fixed range $[0, ..., M]$.
3. The mean value m is calculated using all local maximum values that are extracted without M.
4. All values are multiplied by $(M - m)^2$.

After normalizing, FMs are superimposed in each channel. Herein, small maps are zoomed for summation in each pixel.

Let N be a normalization function. Linear summations of intensity channel I, color channel C, and orientation channel G are defined as the following.

$$T = \bigoplus_{c=2}^{4} \bigoplus_{s=4}^{c+3} N(I(c, s))$$

$$C = \bigoplus_{c=2}^{4} \bigoplus_{s=4}^{c+3} N(RG(c, s)) + N(BY(c, s))$$

$$G = \sum_{s=4}^{c+3} N(I(c, s))$$

The obtained maps are referred for CMs. Normalizing respective channels of FMs and linear summation, SMs are obtained as

$$S = \frac{N(T) + N(C) + N(G)}{3}$$

Finally, high saliency regions are extracted using WTA.

3.2 Extraction of RoIs using SMs.

As a method to search for visual attentional points in an image, features on SMs are generated from local intensity gradients, color information, and orientation selectivity. Fig. 2 depicts an SM and its feature maps as components. Salient regions are detected in order of high saliency regions with iterative processes. To avoid previous detected neighbor regions as an iterative process, a new detecting region is provided under the inhibited conditions based on Euclidean distance among detected regions.

For the first step, an input image is converted repeatedly to half size for downsampling using Gaussian pyramids. Our method creates nine scale images to repeat eight iterations. Herein, the 0-th image is the original image. The eighth image is the $1/256$ downsampled image in the scale $c \in [0, 8]$. Subsequently, center-surround difference values among scales are calculated in each pixel. We used center $c \in 2, 3, 4$ and surround $s = c + \delta$ in $3, 4$ on respective corresponding pixels in each image.

The difference values show high if the brightness between the center pixel is high and its surrounding pixels are low and the opposite combination. For this method, we used the following features: brightness $I(c)$ in scale $c \in [0, 8]$, $R(c), B(c), G(c)$, and $Y(c)$ for color components, and orientation $O(c, \theta)$. These features are similar to the method presented by Fukuda et al. [18]. Therein, $O(x, y, \theta)$ of coordinate (x, y) is integrated with $I(x, y)$ and Gabor filter $\psi(x_0, y_0, \theta)$ to calculate the amplitude. Therein, h_x, h_y, θ respectively denote the filter window size of x and y axes, and its angle. We set these parameters as $h_x = 8, h_y = 8, \theta \in 0, 45, 90, \text{and } 135$ deg.

Feature maps of RG and BY components are valid of red in the receptive field and invalid of green as double opposite color units. Moreover, the maps of $I(c, s)$, $RG(c, s)$, and $BY(c, s)$ show c of three types and s of two types. Completely, 24 maps are created from c, s, and θ of four types in $O(c, s, \theta)$. The conspicuous maps of three channels are created from combinations of these feature maps. Before combining them, respective feature maps are normalized using the maximum brightness value M. All pixels on the map are normalized for the range of $[0, M]$. Finally, SMs are created after combining conspicuous maps linearly.

Attentional points are extracted using Winner Take All (WTA) on SMs. Around the coordinate with the largest saliency with WTA, RoIs are extracted for rectangular regions.
3.3 RoI Extraction

The Euclidean distance D between the attentional point (X_{sm}, Y_{sm}) obtained from SMs and SIFT feature point (X_{sift}, Y_{sift}) is calculated as

$$D = \sqrt{(X_{sift} - X_{sm})^2 + (Y_{sift} - Y_{sm})^2}. \quad (16)$$

From the order of the minimum of D, m feature points are selected. The maximum image coordinate (X_{max}, Y_{max}), the minimum image coordinate (X_{min}, Y_{min}), and the maximum SIFT scale S_{max} are obtained from these feature points. The rectangle in $(X_{min} - S_{max}, Y_{min} - S_{max})$ and $(X_{max} + S_{max}, Y_{max} + S_{max})$ is defined to RoI.

3.4 Segmentation with GrabCut

For the initial procedure of GrabCut, a rectangular region is selected for teaching signals. The outside of the rectangle is labeled as background. All pixels are segmented using the model created from the color distribution of foreground and background regions. The terminals are designated as the source and sink. GrabCut creates graphs based on energy function E, which is defined in advance. The optimal solution is calculated from the maximum flow – minimum cut theorem. The edge cost of graphs is calculated based on E. For learning datasets, background and foreground pixels are labeled respectively as O and B, which are called seeds. Finally, the input image is divided into graphs that correspond to foreground and background regions using the maximum flow – minimum cut theorem.

The source and sink are ascertained from labels that are assigned to the foreground and background regions detected using SMs. The graph is constructed from the nodes of respective pixels in an image. The cost that is defined from the terminal nodes is minimized using the theorem. Herein, the cost of nodes increases along with the RGB values of pixels near terminal nodes. The cost of each node that represents the likelihood between the object and the background is smaller if RGB values of neighbor pixels are closer.

4 Experimental Results using Open Dataset

4.1 Dataset

PASCAL2011 is a large-scale dataset built by Mark et al. for establishing a standard benchmark dataset used in general object recognition [19]. This free dataset comprises 11,530 images including 27,450 objects of 20 categories. Annotated and Ground Truth (GT) images are attached for all images. This dataset is used for various studies of multiple object recognition such as Ravinovich et al. [3] and Okazaki et al. [4] because of the inclusion of multiple objects in all images. For this experiment, we selected 100 images that satisfied the following conditions.

4.2 Evaluation Criteria

We evaluate the segmentation accuracy for Precision P_{rec}, Recall R_{eco}, and F-measure F_{mea} as

$$P_{rec} = \frac{N \cap C}{N}, \quad (17)$$

$$R_{eco} = \frac{N \cap C}{C}, \quad (18)$$

$$F_{mea} = \frac{2(N \cap C)}{N + C}. \quad (19)$$

where N and C respectively denote the number of pixels extracted as an object and the number of pixels of GT regions.

4.3 Detection Results of Attentional Points

Fig. 4(a) depicts a SM obtained from Fig. 3(a). Fig. 4(b) depicts an extraction result of two attentional points. The numbers beside the attentional points show the order of detection according to higher salience. We determined successful detection if an attentional point is located over the object regions in the GT image. For this example, two attentional points were detected.
Table 1. Detection results of attentional points (50 images).

Num. of objects	Num. of images	Accuracy
Two	18	36%
Single	27	54%
Summation	45	90%

Fig. 4(d) depicts a result of detection of single objects. In Fig. 4(c), high-saliency pixels are apparent for the human walking on the snowy road. However, high-saliency regions are extended horizontally over the train in the center of the image. Attentional points were detected for the top and rear parts of the train.

Table 1 portrays detection accuracy of attentional points for 50 images. Our method detected two objects from 18 images and single objects from 27 images. Five images presented failure to detect objects. For a global tendency as depicted in Fig. 4(b), valid results were obtained from the images that comprise objects to spreading horizontal and vertical directions evenly with simple background patterns. In contrast, as depicted in Fig. 4(d), attentional points were detected on a similar object for images that comprise long objects to vertical or horizontal directions with greater occupation.

4.4 Optimization of Parameters

We evaluated the following two parameters.

Fig. 5 depicts segmentation accuracy for $1/m$.

Fig. 6 depicts segmentation accuracy for n.

(1) m: Number of SIFT feature points

(2) n: Number of GrabCut iterations

Fig. 5 depicts segmentation accuracy for the rate $1/m$ from 1/2 to 1/10 step by 1/10. According to the decrease of m, P_{rec} were increasing and R_{rea} were decreasing. F_{mea} obtained 56.7% as the highest at $m=6$. Fig. 6 depicts accuracies of n from 1 to 10 step by 1 and from 10 to 30 step by 5. The effect of n was smaller than that of m. P_{rec}, R_{rea}, and F_{mea} showed a flat curve. The maximum accuracy of F_{mea} was 57.4% at $n=9$.

4.5 Segmentation Results

Table 2. Segmentation accuracy for 18 images.

Image No.	P_{rec} [%]	R_{rea} [%]	F_{mea} [%]
1	81.3	32.9	46.8
2	98.0	72.9	83.6
3	43.1	87.4	57.7
4	45.4	56.6	50.4
5	86.0	67.7	75.8
6	98.0	50.1	66.3
7	44.5	70.3	54.5
8	79.8	76.6	78.1
9	29.5	65.7	40.7
10	65.2	62.9	64.0
11	65.4	67.3	63.3
12	68.7	58.8	63.4
13	54.9	23.6	33.0
14	55.1	77.8	64.5
15	11.6	93.0	20.6
16	100.0	41.7	58.8
17	29.0	51.0	37.0
18	97.6	61.5	75.5
Average	64.1	62.1	57.4

Table 2 portrays segmentation accuracy for 18 images. The mean segmentation accuracy for 18 images for which
two attentional regions were detected including two objects as $P_{rec} = 64.1\%$, $R_{eco} = 62.1\%$, and $F_{mea} = 57.4\%$.

Fig. 7 depicts the top two results. Figs. 7(a) and 7(c), respectively obtained two seeps in the same category and a dog and a person in a different category. Our method extracted RoIs including respective objects. Segmentation accuracies in Figs. 7(b) and 7(d) were, respectively, $P_{rec} = 86.0\%$, $R_{eco} = 67.7\%$, and $F_{mea} = 75.8\%$ and $P_{rec} = 98.0\%$, $R_{eco} = 72.9\%$, and $F_{mea} = 83.6\%$. We obtained precision segmentation results according to object regions, although R_{eco} was lower than P_{rec} because they contain background pixels.

Fig. 8 depicts the bottom two results. Fig. 8(a) comprises a simple background of white color. The distribution of SIFT feature points was sparse in the background. The RoI size is smaller than the object size because feature points of the foreground were assigned to those of the background. The segmentation accuracy in Fig. 8(b) was $P_{rec} = 64.1\%$, $R_{eco} = 62.1\%$, and $F_{mea} = 57.4\%$. The target objects in Fig. 8(c) were a child and a dog at a beach. Both targets are much smaller than the image size. Numerous SIFT feature points were extracted from the background region, although it comprises simple pattern textures with sand and surf. Therefore, the RoI size is expanded to the size of the objects. The first and second RoIs include both objects. Fig. 8(d) depicts a segmentation result that occupied the background pixels widely in the RoI. The segmentation accuracy was $P_{rec} = 11.6\%$, $R_{eco} = 93.0\%$, and $F_{mea} = 20.6\%$.

4.6 Discussion

Table 3 portrays segmentation accuracies in each object for the PASCAL dataset. The segmentation accuracy of the flower category was the highest: $F_{mea} = 60.8\%$. Subsequently, the house category showed $F_{mea} = 60.0\%$. These objects are $1/6$–$1/8$ compared with those of the images. The RoIs included objects correctly. In contrast, F_{mea} of the car category and the cow category were, respectively, 26.6% and 31.5%. These objects occupied $1/4$–$1/2$ for the images. The RoIs were smaller than the objects.

5 Parallel Implementation

5.1 Simulation Results

We evaluated the performance of our model compared with a sequential model. Table 4 portrays the development and simulation tools of the sequential model and our model. We measured the processing time of the sequential model using Visual Studio 2008. The clock frequency was 2.34 GHz, which depends on a PC. We measured the processing time of our model using VP. The clock frequency was 130 MHz, which is the maximum frequency of IMAPCAR2.

We used Eclipse, an integrated software development environment, for measuring processing costs in detail because VP has no functions for it. We obtained profiles of the amount of processing time, step, and the rate for the total time.

Table 5 depicts the processing costs for the sequential model and our model. The details are costs for creating Gaussian Pyramid, intensity, color, and orientation FMs. For creating Gaussian Pyramid images, the processing costs of the sequential model and our model were, respectively, 5.2×10^4 ms and 1.6 ms. The processing costs in the sequential model for creating intensity, color, and orientation FMs were, respectively, 2.2×10^4 ms.

Category	$P_{rec} [%]$	$R_{eco} [%]$	$F_{mea} [%]$
Flower	99.0	43.9	60.8
House	69.4	57.3	60.0
Seep	73.7	48.7	57.2
Cat	71.0	57.5	56.9
Human	56.9	59.0	53.3
Bike	78.7	39.9	53.0
Dog	45.5	86.3	47.2
Bird	47.5	44.7	40.1
Cow	36.6	29.1	31.8
Car	50.0	18.2	26.6

5.2 Details of processing time [ms]

Feature	Sequential	Parallel
Gaussian Pyramid	5.2×10^4	1.6
Intensity FM	2.2×10^4	18.9
Color FM	5.8×10^4	52.7
Orientation FM	1.9×10^4	26.1
5.8 \times 10^3 \text{ ms}, and 1.9 \times 10^4 \text{ ms}. In contrast, the processing costs in our model for creating respective FMs were, respectively, 18.9 ms, 52.7 ms, and 26.1 ms. The total processing costs for the sequential model and our model were, respectively, 2.7 \times 10^4 \text{ ms} and 99.3 ms. Therefore, the processing speed of our model was 250 times higher than that of the sequential model.

For the sequential model, the processing cost for creating the orientation FM was 2/3 for the total cost. In contrast, the processing cost for our model remained 1/3. To extract orientation features, kernel processing of Gabor filters entailed high processing costs. Therefore, we calculated in advance the kernel that was used for a memory table.

Fig. 9 depicts SMs for outdoor and indoor scene images. For the outdoor scene image, high-saliency regions were apparent on object regions such as the number plates of the motorbikes. Similarly, for the indoor scene image, high-saliency regions were apparent on object regions such as the artificial flower’s leaf. We consider that SMs have effects from color features with a simple background.

Subsequently, we compare processing costs of our model with those of the method by Ouerhani et al. [14]. We converted the image resolution to 512 \times 512 pixel. The processing costs of our model and the model by Ouerhani et al. were, respectively, 562.0 ms and 100.2 ms. This result corresponds to the 5.6 times higher speed of our model.

5.2 Hardware Setup

IMAPCAR2 is a SIMD processor developed by Renesas Electronics Corporation. [25]. We can create a code effectively using Visual Plugin (VP) as an integrated software developing environment and one-dimensional C (1DC) as a parallel processing programming language.

Figs. 10 and 11 respectively show photographs of the IMAPCAR2 board and system configurations. IMAPCAR2 is a one-dimensional combination super parallel SIMD processor, which consists of peripherals with 64 five-way VLIW 16-bit PEs, a 16-bit RISC processor for a general control, a host interface, a synchronous dynamic RAM interface, and peripheral functions such as error detection. Two USB ports are used for the bus power supply and output of video images. The SV microcomputer controls operations of the whole system of the board.

Fig. 12 depicts the configuration of the IMPACAR2 board, a camera, and a scan convertor. We used a micro CCD camera (Toshiba Corp.) and a scan converter (ADVC-100; Canopus Co. Ltd.). We connected the analog output ports of the camera and digital input ports of the board. We connected to a PC using two USB cables to display processing images directly. For this experiment, we took a video clip for 15 min. We used a shared space at our laboratory for an experimental environment. The capture resolution was 640 \times 240 pixels with 30 fps.
5.3 Performance Evaluation

For this implementation, the mean processing time was 47.5 ms, which corresponds to 21.1 fps. Fig. 13 portrays two sample results. High-saliency regions were apparent around object regions such as the chairs and the bookshelves. Comparison with the results obtained using the PASCAL dataset, high-saliency regions were apparent on small objects of various types. We infer that this tendency results from the number of objects in these images.

6 Application to Robot Vision

6.1 Experimental Setup

For application in an actual environment and advanced performance evaluation, we conducted segmentation used for time-series images obtained using a mobile robot. We used PaPeRo developed by NEC Corp. The body is 385 mm high, 282 mm long, and 251 mm wide. This robot has sufficient capabilities to move on the floor at 23 cm/s maximum. Moreover, servomotors are used for the drive system to control movements with high precision. Two cameras are mounted for stereo vision. We used a single camera for monocular vision. The specifications of the cameras are: imaging device, 1/4 inch CCD; image format, motion JPEG; and resolution, 320×240 pixel.

Fig. 14 depicts the layout of the experimental environment. This is a vacant room used as a professor’s room at our university. It contains a desk, a table, a cabinet, and chairs. We used them for detection and segmentation targets. In the room are a window and a blind. We closed the blind to avoid effects of sunlight while taking images through the experiment. We set two objects as segmentation targets from each image that are similar to the former section. We used ten images taken at ten points. The circles in Fig. 14 correspond to the points. The numbers correspond to the image obtained position. Fig. 15(a) depicts an image obtained at position 2. We created GT mask images manually using a drawing tool.

6.2 Segmentation Results

Fig. 15(b) depicts that high-saliency regions were apparent on the chair back and the left part of the table. Fig. 16(a) depicts a RoI extraction result for the image of Fig. 15(a). For ten images, RoIs that included two objects were extracted from seven images. From the other three images, only single objects were extracted. Subsequently, we applied our method for the seven images above. Fig. 16 depicts typical segmentation results. Fig. 16(b) obtained the highest accuracy: $P_{rec}=68.9\%$, $R_{evo}=94.0\%$, and $F_{mea}=79.6\%$. The RoIs in Fig. 16(c) obtained merely a part of the chair and the desk. The second RoI extended to the left size that included the background region between the table and a part of the chair back. Therefore, our method extracted background pixels to foreground pixels. The segmentation accuracy dropped dramatically to $P_{rec}=21.3\%$, $R_{evo}=11.4\%$, and $F_{mea}=14.9\%$. Both RoIs in Fig. 16(e) correctly extracted the chair and the cabinet. Especially,
the first RoI extracted not only the chair back, but also the chair legs. P_{rec} in Fig. 16(f) was 78.6% because both chair and cabinet were extracted correctly. However, F_{mea} and R_{eco} were, respectively, 33.3% and 46.7% because background pixels near the chair legs were extracted. The mean segmentation accuracy for seven images was $P_{rec}=58.0\%$, $R_{eco}=63.1\%$, and $F_{mea}=58.1\%$.

6.3 Discussion

Table 6 portrays segmentation accuracies in each object of our original dataset. The segmentation accuracies of F_{mea} were 50.5%, 51.4%, and 35.8%, respectively, for the chairs, the table, and the cabinet. SIFT feature points were apparent for the video recorder that is located inside the cabinet. SIFT feature points were not extracted from the overall cabinet. This is our future work to improve our method for overlapped objects.

Numerous objects exist in our actual environment. For the application to robot vision, several images contain three objects. Fig. 17 depicts a result to increase the iterations of RoI extraction for three times. Fig. 17(a) depicts a SM that contains three high-saliency parts. Fig. 17(b) depicts RoI extraction results. The RoIs respectively included the cabinet, the desk, and the chair for this priority. The first and second RoI respectively extended the right side and left side, although both RoIs were not overlapped. Therefore, the third RoI was used for the overlapping region of the first and second RoIs. The number of SIFT feature points was decreased for an image consisting of simple background patterns. For detection of three objects, RoIs were overlapped to other images. In contrast, F_{mea} of three-object segmentation was higher than that of two-object segmentation because of the expansion of object regions. We infer that our method can be extended to multiple object segmentation of more than two objects.

7 Conclusion

This paper presented a segmentation method combined with SMs and GrabCut. Our method achieved extraction of multiple objects without learning in advance. We applied our method to the PASCAL2011 dataset for extraction of objects in 100 images. Attentional points were extracted correctly from 18 images for two objects and from 25 images for a single object. The mean segmentation accuracies were $P_{rec}=64.1\%$, $R_{eco}=62.1\%$, and $F_{mea}=57.4\%$. For the implemented experiment, the processing cost was 47.5 ms for an image with 640×240 pixel resolution. Moreover, we applied our method to time-series images obtained using a mobile robot. Attentional points were extracted correctly for seven images for two object and three images for single objects from ten images. The mean segmentation accuracies were $P_{rec}=58.0\%$, $R_{eco}=63.1\%$, and $F_{mea}=58.1\%$. These experimentally obtained results present the possibility of applying our method used in an actual environment of our life.

Our future work is to modify our method to learn time-series features and to evaluate the robustness of appearance changes of objects. Moreover, we would like to apply our method to multiple object recognition to increase the number of possible target objects.

REFERENCES

[1] K. Yanai, “The Current State and Future Directions on Generic Object Recognition,” IPSJ Computer Vision and Image Media, vol.48, pp.1–24, 2007.

[2] G. Qi, X. Hua, Y. Rui, T. Mei, J. Tang, and H. Zhang, “Concurrent Multiple Instance Learning for Image Categorization,” Proc. Computer Vision and Pattern Recognition, pp.1–8, 2007.
[3] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie, “Objects in Context,” Proc. IEEE International Conference Computer Vision, pp.1–8, 2007.

[4] T. Inamura, M. Inaba, and H. Inoue, “Incremental Acquisition of Behavior Decision Model based on Interaction between Human and Robots,” Journal of the Robotics Society of Japan, vol.19, no.8, pp.983–990, 2001.

[5] D. Das, Y. Kobayashi, and Y. Kuno, “Multiple Object Category Detection and Localization Using Generative and Discriminative Models”, IEICE Trans. Information and Systems, vol.E92-D, no.10, pp.2112–2121, 2009.

[6] L. Itti, C. Koch and E. Niebur, “A Model of Saliency-Based Visual Attention for Rapid Scene Analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.20, no.11, pp.1254–1259, 1998.

[7] T. Liu, “Learning to Detect a Salient Object,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.33, no.2, pp.353–367, Feb. 2011

[8] T. Fujisaki and S. Inoue, “Automatic Object Extraction Using graph cuts with Visual Attention Cues,” Technical Report of IEICE. PRMU, vol.108, no.432, pp.145–150, 2009.

[9] K. Fukuchi, K. Miyazato, A. Kinura, S. Takagi, and J. Yamato, “Saliency-based video segmentation with graph cuts and sequentially-updated priors,” Proc. International Conference on Multimedia and Expo, pp.638–641, 2009.

[10] V. Pham, K. Takahashi, and T. Naemura, “Bounding-box based Segmentation with Single Min-Cut using Distant Pixel Similarity,” Proc. 20th International Conference on Pattern Recognition, pp.4420–4423, 2010.

[11] V. Pham, K. Takahashi, and T. Naemura, “Image Segmentation from Bounding Shape without Using Appearance Model,” IEICE Trans. Information and Systems, vol.J94-D, no.8, pp.1183–1193, 2011.

[12] C. Rother, V. Kolmogorov, and A. Blake, “GrabCut – Interactive Foreground Extraction using Iterated Graph Cuts,” ACM Trans. Graphics, vol.23, no.3, pp.309–314, 2004.

[13] N. Kapre, D. Walther, C. Koch, and A. DeHon, “Saliency on a chip,” The Neuromorphic Engineer, 2004.

[14] N. Ouerhani, H. Hugli, P. Burgi, and P. Ruedi, “A Real Time Implementation of the Saliency-Based Model of Visual Attention on a SIMD Architecture,” Pattern Recognition, vol.24/9, pp.282–289, 2002.

[15] A. Yamanashi, H. Madokoro, Y. Ishioka, and K. Sato, “Visual Saliency Based Segmentation of Multiple Objects Using Variable Regions of Interest,” Proc. 14th International Conference on Control, Automation and Systems, pp.1046–1051, 2014.

[16] K. Shirai, H. Madokoro, S. Takahashi, and K. Sato, “Parallel Implementation of Saliency Maps for Real-Time Robot Vision,” Proc. 14th International Conference on Control, Automation and Systems, pp.88–93, 2014.

[17] P. Ruedi, P. Marchal, and X. Arreguit, “A Mixed Digital-Analog SIMD Chip Tailored for Image Perception,” Proc. International Conference on Image Processing, vol.3, pp.1011–1014, 1996.

[18] K. Fukuda, T. Takiguchi, and Y. Arikii, “Automatic Segmentation Using graph cuts Based on AdaBoost and Saliency Map,” Proc. Meeting on Image Recognition and Understanding, pp.796–801, 2008.

[19] M. Everingham, L. Gool, C. I. Williams, J. Winn, A. Zisserman, C. Williams, and J. Winn, “The PASCAL Visual Object Classes Challenge,” International Journal of Computer Vision, vol.82, no.2, pp.303–338, 2009.

[20] H. Madokoro, Y. Utsumi, and K. Sato, “Unsupervised Indoor Scene Classification Based on Context for a Mobile Robot,” Journal of Robotics Society of Japan, vol.31, no.9, pp.918–927, 2013.

[21] Y. Ishioka, H. Madokoro, and K. Sato, “Automatic Extraction Method of Object Regions Based on Visual Salience for Multiple Object Recognition,” Proc. Meeting on Image Recognition and Understanding, 2012.

[22] Y. Fujita, “Childcare Robot PaPeRo,” Journal of Robotics Society of Japan, vol.24, no.2, pp.162–163, 2006.

[23] T. Lee, “Image Representation Using 2D Gabor Wavelets,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.18, no.10, pp.959–971, 1996.

[24] M. Everingham, L. Gool, C. I. Williams, J. Winn, A. Zisserman, C. Williams, and J. Winn, “The PASCAL Visual Object Classes Challenge,” International Journal of Computer Vision, vol.82, no.2, pp.303–338, 2009.

[25] S. Kyo, “Image Recognition Using the SIMD/MIMD Dynamic Mode Switching Processor,” The Journal of the Institute of Electronics, Information, and Communication Engineers, vol.94, no.6, pp.464–469, 2011.

[26] T. Lee, “Image Representation Using 2D Gabor Wavelets,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.18, no.10, pp.959–971, 1996.