The subset-matched Jaccard index for evaluation of Segmentation for Plant Images

Jonathan Bell, Hannah Dee*

November 22, 2016

Abstract

We describe a new measure for the evaluation of region level segmentation of objects, as applied to evaluating the accuracy of leaf-level segmentation of plant images. The proposed approach enforces the rule that a region (e.g. a leaf) in either the image being evaluated or the ground truth image evaluated against can be mapped to no more than one region in the other image. We call this measure the subset-matched Jaccard index.

1 Introduction

This report introduces an approach to the evaluation of plant segmentation images against ground truth images. The approach is intended to be suitable for segmentation methods which subdivide a plant into leaves. It was developed to evaluate region (leaf) based segmentations such as those used in the Leaf Segmentation Challenge [1, 2]. The aim of this document is to provide background, mathematical detail and motivation for the segmentation method we propose.

This document accompanies the release of an implementation together with a substantial dataset of top down visible light timelapse images of growing Arabidopsis thaliana (Arabidopsis) plants. Further details of this are in an appendix to this document. This software reports the region (leaf) counts of both images as well as measures of the degree to which corresponding regions in the test and ground truth images actually do coincide.

2 Evaluation of leaf level segmentation

Other plant image databases have suggested approaches to evaluation of segmentation. Here we introduce our preferred approach to this, concentrating on leaf-level segmentation.

*Corresponding author: hmd1@aber.ac.uk. Address: Computer Science, Llandinam Building, Aberystwyth University, Penglais, Aberystwyth SY23 3DB. The authors would like to thank Edel Sherratt for her helpful comments on an earlier draft.
2.1 Requirements

Leaf segmentation is a multi-part segmentation in which we want to evaluate the separation of plant pixels into individual leaves. The following are desirable features of an approach to evaluation measures for multi-part object classification:

1. Background pixels are excluded to avoid the results being swamped by the prevalence of background in many images, as is done in LSC approach.
2. Only perfect agreement between test and ground truth images should give a perfect score.
3. The measure should be commutative, that is, the result should be the same whichever of a pair of images is the ground truth. This will avoid either over- or under-segmentation being unfairly punished relative to the other.
4. The approach should be equivalent to an established measure where images are binary. (e.g. the approach amounts to either the Dice coefficient or Jaccard index).
5. The approach should normalise over the size of the object but not the size of regions. Some measures, e.g. the LSC approach, would be skewed by a small region having a poor Dice score, even though few pixels are wrongly classified.

As a supplementary concern, we suggest that having the approach amounting to Jaccard (rather than Dice) is preferable. This means that the measure amounts to the number of correctly classified object pixels divided by number of pixels classified as object in either image. This preference is partly as it seems to fit better with treating classifications as sets, and partly because expanding the approach to multiple correct classifications is more natural. We also have a preference for not allowing more than one class in one image to be classified with a class in the other. Current approaches (e.g. LSC) allow this, and thus could count scores where all leaves match just one ground truth leaf. Again, there are possible arguments against our suggestion approach as our technique implies that classifying an object class against a previously used object class is no better than classifying it as background.

Put simply, our approach amounts to an indication of the degree of similarity between two sets (like Dice or Jaccard) but extended to indicate the degree of similarity between the marked subsets of each set. This is where the sets are those pixels classified as object (plant) in each image and the subsets are the pixels classified as some region of the object (leaf).

One limitation we accept is that an evaluation comparison should consider only one plant (object). If there are several objects in an image, the region labels (e.g. colours) for one object might map to different region labels in its annotation than those of a different object. This could be avoided by having each object use its own set of labels. It is suggested that if images with several plants are to be used, these are better divided into single plant cropped images (This is problematic when plants overlap, of course).
2.2 Alternative approaches

The leaf segmentation challenge approach \[1, 2\] simply takes the mean of the best Dice coefficient found for each region (leaf). This means it is possible for more than one region in one image to be classified against some region in the other and it is also the case that the best Dice results are not symmetric. That is, the results differ depending on which of a pair of images is treated the ground truth image. They work around this by running their best dice function twice, swapping the images and keeping the worse result. This they call “symmetric best Dice”.

They also find the difference between numbers of leaves in each image and the plant-from-background Dice. These three give the same results as our proposed approach.

The MSU-PID dataset paper \[3\] has four evaluation metrics. One of these is the symmetric best Dice score and they suggest using Scharr’s implementation. The other three measurements are different from the LSC ones and are leaf tip based:-

- Unmatched leaf rate - percentage of unmatched leaves with reference to the total number of labelled leaves.
- Landmark error - average tip bases errors smaller than some threshold to indicate leaf tip alignment error.
- Tracking consistency - percentage of frame by frame correspondent leaves whose tip error is less than a threshold to indicate tracking consistency.

2.3 The proposed approach

If we consider the measurements as being the degree of similarity of the sets of pixels classified as a region in the segmentation and in the annotation, the Jaccard index \(J \) for object (plant) classification is the size of the intersect between \(S \), the set of pixel locations classified as object in the segmented image, and \(T \) the set of pixel locations classified as object in the ground truth image divided by the size of the union of \(S \) and \(T \).

\[
J = \frac{|S \cap T|}{|S \cup T|}
\]

For leaf level segmentation, we can treat \(S \) and \(T \) as being divided into subsets where each pixel in the set is in one such subset (it belongs to exactly one leaf). This involves defining a mapping between \(T \) our ground truth set and \(S \) our segmentation set.

\[
m : T \to S
\]

To avoid counting matches twice we define \(m \) as the best possible greedy assignment of leaf segmentations in our ground truth to those in the target image. The aim of this assignment is to ensure each detected leaf is matched to the closest ground truth leaf, but no leaf in either set is matched more than once.
∀t ∈ T, s ∈ S : m(t) = s ⇒
∀s′ ∈ S : J(t, s′) ≤ J(t, s) ∧
∀t, t′ ∈ T : m(rt) = m(t′) ⇔ t = t′

The intersections of these m assignments are then summed to give I, a per-plant measure.

\[I = \sum_{m} I_{m} \cap I_{m} \]

For a plant level segmentation which takes into account the agreement of leaf detections, therefore, we define our measure, the subset-matched Jaccard index as

\[J_{s} = \frac{I}{\| S \cup T \|} \]

Figure 1 illustrates this approach. The shaded areas are the regions where

\begin{itemize}
 \item S - the set of pixel locations classed as plant in the segmented image, subdivided into a subset for each leaf
 \item T - the set of pixel locations classed as plant in the ground truth image, subdivided into a subset for each leaf
 \item S and T superimposed. Shaded areas show the greedy best matches between leaf areas. I is the total size of the shaded areas.
\end{itemize}

Figure 1: The sets of pixel locations in the segmented and ground truth images with how individual subset regions are matched to find the subset-matched Jaccard index.
pixel locations are common to matched subsets in the two sets of locations, so \(I \) is the total area of these. The region (leaf) subset at the top in the segmented set \(S \) has no matches, as the only corresponding regions in the ground truth have been matched elsewhere.

This can also be visualised in terms of a confusion matrix. If we have a confusion matrix of leaf level classifications between the segmented and truth images, then \(I \) is found by finding the highest total from this matrix using at most one value from each row and one value from each column. This is how the implementation works.

It is trivial to alter this to give similar subset-level Dice coefficients. The object level Dice coefficient is

\[
D = \frac{2\|S \cap T\|}{\|S\| + \|T\|}
\]

and the subset-matched Dice coefficient is

\[
D_s = \frac{2I}{\|S\| + \|T\|}
\].

These values are obtained from a confusion matrix giving the size of each set of segmented region’s pixels classified as mapping to a given annotated region\(^1\). The implementation has six steps, as follows:-

1. Generate lists of \(m \) colours used in the truth image and \(n \) colours used in the evaluated image, with the integer that represents black (it might not be zero) as the first item in each list. (This step is not needed with consecutively numbered region classifications.)

2. Generate a zero valued \(m \times n \) matrix \(C \) to form a confusion matrix for pixel classifications. It has the columns ordered by the order of colour values in the test image list and the rows by the order in the truth image list. This means \((1,1)\) will be for those pixels classified as background in both images.

3. Iterate over both images, identifying the pixel values of each location in turn, finding the position of the respective values in both lists and incrementing the corresponding location in the matrix from step 2.

4. The number of object regions (leaf count) in the segmented image is \(n - 1 \) and from the truth image is \(m - 1 \). The absolute value of \(m - n \) is the difference in number of classifications (leaf counts) between the two images. If the result is negative, the test image is over-segmented.

5. To obtain the object level Jaccard index, the intersect and union of \(S \) and \(T \) can be obtained from the matrix \(C \) as

\[
\|S \cap T\| = \sum_{c=2}^{m} \sum_{r=2}^{n} C_{c,r}
\]

\(^1\)In our implementation, the pixels of each region in an image share an integer value, these need not be consecutive values.
and

\[\|S \cup T\| = \sum_{c=1}^{m} \sum_{r=1}^{n} C_{c,r} - C_{1,1} \]

Less formally, this is the sum of values from 2 to n in each row from 2 to m in C divided by the sum of all values in C except (1, 1).

6. To get the subset-matched Jaccard index, we find the maximum value for the total of the sizes of intersections between these sets of subsets. From C this is the highest possible sum of values 2 to n from each row from 2 to m but taking no more than one value from any row or column. This is then divided by \(\|S \cup T\|\) obtained as before.

This implementation gives all three measurements (leaf count, object Jaccard and subset-matched Jaccard) from 2 iterations over each image, so should be quicker than the LSC approach. The algorithm for extracting the best total in step 6 is both recursive and iterative. It is simpler than the Hungarian Method as there is no need to identify which values are used, only the total is needed. There is no ordering in this approach, but step 6 does ensure that no region in either image can be mapped to more than one region in the other.

To give similar object subset-correlated Dice coefficients if preferred,

- from \(C\), \(\|S \cap T\|\) is found as described and

\[\|S\| = \sum_{c=1}^{m} \sum_{r=2}^{n} C_{c,r} \]

and

\[\|T\| = \sum_{c=2}^{m} \sum_{r=1}^{n} C_{c,r} \]

- We can define a subset-matched Dice coefficient \(D_s\) analogously to the Jaccard one in step 6 above where \(I_s, \|S\| \) and \(\|T\|\) are obtained as described earlier.

2.4 Testing and results

The software has been tested upon pairs of alternative ground truth images hand made by different people. These were high throughput phenotype platform images with twenty plants were image, so each image was cropped into twenty subsidiary images - one for each plant. There is a tendency for pairs of images with a large difference in numbers of regions found to score badly. This is to be expected and is indeed a feature of our approach.

In addition some test images were made to test and demonstrate that the expected results were achieved. These were:-

- Evaluating two identical images (using the same image twice) gives perfect results (Jaccard indices of 1) and difference between numbers of subsidiary regions is 0.
• Evaluating image a against image b gives the same result as evaluating image b against image a. Except, of course, the opposite image will have more segments so an over-segmentation will become an under-segmentation.
• If a segmented image is all background, it scores zero against a non-blank truth image.
• If two all-background images are evaluated together, the scores should be one. (This follows from 1 and is consistent with the definition of the Jaccard index.)
• An image segmented as all object will not score zero against a truth image that is not all background.

3 Discussion

We believe our approach to be preferable to the LSC approach. As already mentioned: the LSC approach is not symmetrical and so runs the comparison both ways and keeps the worse result. Our measure does not need this.

We release software to implement these and other segmentation evaluations. Whilst there is no need to calculate both Jaccard and Dice scores (as the two measures are functionally related [4]) we report both for ease of use.

Thus the software supplied with our dataset returns the following results:

• Region (leaf) count in test image.
• Region (leaf) count in ground truth image.
• Difference between region counts in the two images.
• Object (plant) level Jaccard index.
• Subset (leaf) level Jaccard index as described herein.
• Object level Dice coefficient.
• Subset level Dice coefficient.
• LSC style “symmetric best Dice” score.

It is not feasible to use this approach to evaluate images with more than one object (plant). This is because no ordering is assumed so there is no reason to expect that a label will match the same label in a different plant. Since the approach relies on label, this means several objects will tend to have a poor score. The same broadly applies to the LSC approach. A suggested work-around is to subdivide such an image (or, strictly, pair of images) into single plant regions and take the mean of the index scores. The number of subsidiary region’s differences cannot really be treated this way, though. An alternative would be to make sure each object (plant) has its own distinct set of labels. Even here the possibility that some objects are over segmented while others are under-segmented will mislead unless the absolute values are summed.
A possible approach to managing images with several objects would be to extract regions of interest surrounding each connected region of non-background values from the annotated image and the corresponding regions from the image to be evaluated. This assumes that all of an object’s regions are connected in the annotated image and that objects do not overlap. The ground truth annotations for our dataset are not all connected as in some cases the petioles (leaf stems) were partially buried so this approach is not feasible for us.

The implementation includes a simple approach to dividing an image into a grid of regions according to the number of objects (plants) across and down the image. Obviously the objects need to be in an evenly spaced grid. It then returns two result files, a full set and a summary. The full results are similar to those listed above for when a segmentation of one object is evaluated with these additional columns:

- Indication of where the two images agree on number of regions in an image portion’s object, marked with a 1.
- The amount by which the segmented image over segments. Only given a value where the test image does over-segment.
- The amount by which the segmented image under segments. Only given a value where the test image under-segments.

The full results include mean values and the count of objects where the numbers of regions in the two images regions agree as a summary. Means of segmentation region count differences are taken from the objects with a result in the relevant column. So an image of 20 plants of which three are over segmented by, say 2, 1 and 3 leaves will have a summary (mean) result of 2. This means over and under segmentation of different objects do not cancel each other out. There is also a separate summary result file that includes the number of objects that are over and under segmented as well as the summary results similar to those in the full results file.

4 Conclusion

We believe that this proposed approach to region based segmentation evaluation is more rigorous than the LSC approach because each region in either image can be matched with at most one region in the other image. This also means results are symmetrical in the sense that the subset based Jaccard and Dice scores are identical if the image treated as the test image is swapped with the ground truth image. Our matrix based implementation can also be used to obtain the LSC “symmetric best Dice” score and does so with fewer iterations over the image data.

References

[1] Massimo Minervini, Andreas Fischbach, Hanno Scharr, and Sotirios A. Tsaftaris. Finely-grained annotated datasets for image-based plant phenotyping. *Pattern Recognition Letters*, 2015.
Appendix: Arabidopsis plant image datasets

This appendix provides overview information of image datasets which can be used to build leaf-level segmentation techniques.

Aberystwyth Leaf Evaluation Dataset

As part of the work of carried out under grant number EP/LO17253/1 we have generated a dataset of several thousand top down images of growing Arabidopsis thaliana (Arabidopsis) plants of accession Columbia (Col-0). These images were obtained using the Photon Systems Instruments (PSI) PlantScreen plant scanner [5] at the National Plant Phenomics Centre situated on Aberystwyth University’s Plas Gogerddan campus.

The plants were top view imaged using the visible spectrum every 15 minutes (nominally, in practice the interval was approximately 13 minutes) during a 12 hour period. There are some gaps in the image sequence attributable to machine malfunctions. The imaging resulted in the acquisition of 1676 images of each of 4 trays, each image having 20, 18, 16, 14, 12 or 10 plants as plants were harvested. Images were taken using the PSI platform’s built in camera, an IDS uEye 5480SE, resolution 2560*1920 (5Mpx) fitted with a Tamron 8mm f1.4 lens. This set up exhibits some barrel distortion. Images were saved as .png files (so using lossless compression) with filenames that incorporate tray number (031, 032, 033 and 034) and date and time of capture. Times are slightly different between trays as images were taken sequentially. Other than png compression, no post-processing was done. This means images have the camera’s barrel distortion. Code to correct this is supplied along with the dataset.

Our dataset has accompanying ground truth annotations of the last image of each day of one tray (number 31), together with the first image taken after 2pm every third day. The suggestion is that these are used as training data. We also have ground truth annotations of the first image taken after 2pm every second day of tray 32 so these are usable as a
test set, having no plants in common with the training data. This split means our dataset has 706 training data plant images available and 210 test data images. It has been pointed out that the difference in times the annotated images from the two trays were taken might result in a lack of correspondence caused by diurnal changes in leaf orientation (“hyponasty”). Examination of the images suggests this is not the case, but an alternative approach would be to divide the images into training and test portions. If this was done by halving the images, the test set size would be increased at the expense of the training data. Examples of early and late growth images of a plant cropped from the Aberystwyth Leaf Evaluation Dataset with annotations are shown in Figure 2.

Figure 2: Two views of the same plant taken 27 and 42 days after sowing together with ground truth annotations.

There is a fuller description of the dataset in its accompanying documentation.
Other Arabidopsis image datasets

Two other datasets of Arabidopsis have been made publicly available. In the datasets released for the leaf segmentation challenge (LSC) \cite{2, 1} were 161 top down visible light images of one set of Arabidopsis plants, 40 of another set with different backgrounds and 83 images of tobacco. These were split by the organisers into training and test sets and the annotation data was only released for the training sets. The splits were as follows: A1, training 128, testing 33; A2 training 31, testing 9 and tobacco training 27, testing 56. This means, of course, that all participants had exactly the same data. The leaf segmentation challenge did not involve leaf tracking, so time lapse sets of images were not used. Although the images were taken using timelapse, no timelapse sequences have been released. Not all the data has been released to retain unseen data for the challenge itself. Images were chosen to exhibit features that present challenges to segmentation, such as moss on the soil.

The MSU-PID dataset \cite{3} includes multi-modality images of Arabidopsis and bean plants. Beside visible light, they include chlorophyll fluorescence, infra red and depth camera images. Images were taken hourly throughout a 16 hour day. The data is divided into a 40/60 split for training and testing. Specifically, 6 of the 16 Arabidopsis plants were earmarked for training and 2 of the 5 bean plants. They use the same evaluation metrics as LSC.