A decade of multi-modality PET and MR imaging in abdominal oncology

LISA A. MIN, FRANCESCA CASTAGNOLI, WOUTER V. VOGEL, JISK P. VELLENGA, JOOST J.M. VAN GRIETHUYSEN, MAX J. LAHAYE, MONIQUE MAAS, REGINA G.H. BEETS TAN and DOENJA M.J. LAMBREHTS

Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
Department of Radiology, University of Brescia, Brescia, Italy
Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
Faculty or Health Sciences, University of Southern Denmark, Odense, Denmark

Address correspondence to:
Dr Doenja M.J. Lambregts
E-mail: d.lambregts@nki.nl
Dr Regina G.H. Beets Tan
E-mail: r.beetsstan@nki.nl

Objectives: To investigate trends observed in a decade of published research on multimodality PET/(CT)+MR imaging in abdominal oncology, and to explore how these trends are reflected by the use of multimodality imaging performed at our institution.

Methods: First, we performed a literature search (2009–2018) including all papers published on the multimodality combination of PET/(CT) and MRI in abdominal oncology. Retrieved papers were categorized according to a structured labelling system, including study design and outcome, cancer and lesion type under investigation and PET-tracer type. Results were analysed using descriptive statistics and evolutions over time were plotted graphically. Second, we performed a descriptive analysis of the numbers of MRI, PET/CT and multimodality PET/CT+MRI combinations (performed within a ≤14 days interval) performed during a similar time span at our institution.

Results: Published research papers involving multimodality PET/(CT)+MRI combinations showed an impressive increase in numbers, both for retrospective combinations of PET/CT and MRI, as well as hybrid PET/MRI. Main areas of research included new PET-tracers, visual PET/(CT)+MRI assessment for staging, and (semi-)quantitative analysis of PET-parameters compared to or combined with MRI-parameters as predictive biomarkers. In line with literature, we also observed a vast increase in numbers of multimodality PET/CT+MRI imaging in our institutional data.

Conclusions: The tremendous increase in published literature on multimodality imaging, reflected by our institutional data, shows the continuously growing interest in comprehensive multivariable imaging evaluations to guide oncological practice.

Advances in knowledge: The role of multimodality imaging in oncology is rapidly evolving. This paper summarizes the main applications and recent developments in multimodality imaging, with a specific focus on the combination of PET+MRI in abdominal oncology.
Advantages of “hybrid” acquisition include – apart from patient convenience – improved image co-registration and better opportunities to study and correlate dynamic disease processes in vivo, such as perfusion and tracer distribution, and tumour response to pharmacological and interventional treatments. PET/CT has already proven to be a valuable tool in the staging of a wide range of malignancies, and its use is recommended in many oncological guidelines. Owing to the growing array of tumour-targeted tracers, including prostate cancer radiotracers and tracers for somatostatin receptor imaging in neuroendocrine tumours, its clinical role keeps evolving.

Already before the development of hybrid imaging systems, it was recognized that a multimodality combination of PET with anatomical imaging has many potential advantages. Combining PET with MRI offers the specific benefits of the superior soft-tissue contrast and image resolution of MRI, allowing detailed anatomical correlation and local staging. In addition, it allows multiparametric evaluations by combining the metabolic information from PET with functional MR sequences such as diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) MRI, to allow simultaneous assessment of biological tumour properties such as metabolism, cellularity and perfusion. From a safety perspective, the lack of radiation in MRI is an additional property that makes MRI an attractive modality for repeated longitudinal follow-up and for paediatric imaging. The arrival of the first hybrid PET/MRI systems has further boosted the field of multimodality PET+MRI imaging and research.

With this paper, we set out to investigate trends in published research on multimodality imaging during the time span of a decade, with a specific focus on the combination of PET/CT and MRI in abdominal oncology. Second, we explored how trends observed in literature are reflected by the use of multimodality imaging at our own comprehensive European Cancer Centre.

METHODS AND MATERIALS

Literature search
A search strategy was constructed in PubMed (NCBI) to retrieve all English-language original research publications (2008–2018) combining PET/CT and MRI in a multimodality study setting, either acquired as stand-alone modalities (with or without retrospective image registration and/or fusion), or using bed system combined or fully hybrid PET/MRI systems. The search was restricted to studies focusing on abdominal oncology. Main search terms included “PET” and “MRI” and “abdominal malignancy” as well as terms referring to various abdominal regions, individual organs and specific tumour types (or their respective synonyms/MeSH-terms) in the title and/or abstract. Animal studies were excluded. Further details of the search strategy are provided in Uncited Supplementary Table 1. All retrieved articles were reviewed by a single reviewer (LAM or FC), based on title and abstract, to assess eligibility for inclusion. In case of doubt, the other reader was consulted to reach consensus. Each included paper was labelled (using the Rayyan QCRI online application) according to the following descriptors:

(1) Study design: prospective/retrospective, single-centre/multicentre, combination/correlation/comparison of PET and MRI:
 (note: combination = assessing complementary value of PET combined with MRI to predict a clinical outcome; correlation = assessing correlation between PET and MRI parameters (e.g. SUV and ADC), comparison = comparing diagnostic performance of PET to that of MRI);
(2) Method of multimodality imaging: retrospective combination of stand-alone PET/CT and MRI with or without retrospective image fusion, bed system-combined PET/MRI, hybrid PET/MRI;
(3) Type of PET-tracer(s);
(4) Method of image evaluation: visual/qualitative, quantitative, other;
(5) Study aim: lesion detection, correlation of PET and MRI parameters, response assessment, technical (e.g. sequence development and testing), prognostic (e.g. survival prediction), or other;
(6) Cancer type;
(7) Lesion type: primary tumour, nodes, metastases, mixed;

Analysis of literature data
Based on the assigned labels, annual numbers of research papers in each category and subcategory were determined and relative proportions (%) and cumulative effects over time were calculated using descriptive analyses in Microsoft Excel (Microsoft Office 2019, version 16.16.22, Redmond, WA, USA). Trends over time were plotted using Microsoft Excel and GraphPad Prism (GraphPad Software, version 7.03, San Diego, CA, USA).

Institutional data
Our institute’s internal picture archiving and communication system (PACS; Carestream Vue, version 11.4.11.102, Carestream Health, Rochester, New York, USA) was searched for all MRI system (PACS; Carestream Vue, version 11.4.11.102, Carestream Health, Rochester, New York, USA) was searched for all MRI and PET/CT studies performed from 2008 to 2017 as part of routine clinical care. Patients who underwent a multimodality combination of both PET/CT and MRI within the same diagnostic workup (arbitrarily defined as studies performed within a time-interval of ≤14 days) were documented separately. For each individual study, the exam date, modality, PET-tracer used (if applicable), study description (i.e. body part and protocol) and pseudonymized patient identification number were stored. Studies were excluded if they were imported from another hospital or performed solely for protocol optimization (e.g. phantom studies, calibration series) or interventional guidance (e.g. MR-guided biopsy). Annual numbers of MRI, PET/CT and multimodality combinations of MRI+PET/CT were determined, and the relative increase over time compared to the baseline year was calculated and plotted in GraphPad.

RESULTS
Main study characteristics
The literature selection process is illustrated schematically in the PRISMA flowchart in Figure 1. A total of 443 original research papers combining PET/CT and MRI in a multimodality study setting for abdominal malignancies were retrieved, including a total number of 60,725 patients. The PET-tracer used was
18F-labeled glucose analogue fluorodeoxyglucose (\(^{18}\text{F} \) FDG, or “FDG”) in 294/443 studies, 149 studies used other non-FDG tracers (a combination of both FDG and non-FDG tracers was used in 14 studies). Trends over time are shown in Figure 2. Table 1 summarizes the detailed study characteristics for the main group of 294 FDG-PET/CT+MRI papers. The majority of these papers (211/294, 72%) retrospectively combined or compared FDG-PET/CT and MRI that were acquired separately, the remaining studies (28%) concerned combined PET/MRI acquisitions using either hybrid or bed system-combined PET/MRI scanners. Visual image assessment was the most commonly employed method of image evaluation (144/294, 49%), followed by papers focusing on quantitative imaging evaluation (96/294, 33%). The most frequently studied tumour types were gynaecological and colorectal cancer. The largest subgroups of papers focused on assessing the complementary value of PET/CT to that of MRI (127/294, 43%) or on comparing the diagnostic (or predictive) value of PET/CT to that of MRI (113/294, 38%).

Evolution of PET-tracers used in multimodality imaging studies

As shown in Figure 2, FDG was the most frequently reported PET tracer (66%). Other reported tracers included mainly those used for prostate cancer imaging, that is, choline tracers (11C- or 18F-labelled phospholipid precursor)\(^ {16,17} \) or prostate-specific membrane antigen (PSMA)-based tracers (68Ga- or 18F-labelled small-molecule ligands)\(^ {18-20} \), and octreotide-based tracers (68Ga-labelled octreotide analogs targeted at the somatostatin-receptor, overexpressed in many neuro-endocrine tumours)\(^ {21-25} \). After some incidental reports (<10/year) in the first half of the study period, reports on the use of these tumour-specific tracers showed a marked increase during the second half of the study period, with non-FDG tracers constituting a majority (55%) of the total number of multimodality imaging research reports in 2018, the final study year.

Evolutions in stand-alone versus hybrid PET/MRI studies

Figure 3 compares the evolution of research focusing on retrospective combinations of FDG-PET/CT and MRI, versus prospectively combined FDG-PET/MRI acquisition studies. Of the 211 studies that retrospectively combined FDG-PET/CT and MRI, only a small minority or early studies applied image fusion (22/211, 10%). After the introduction of the first commercially available hybrid PET/MRI scanners in 2011, studies with hybrid PET/MRI started appearing in 2013. There was a steady increase in the following years and a striking peak in 2015, when the number of hybrid FDG-PET/MRI studies even exceeded the number of retrospectively combined multimodality PET/MRI studies. Studies using bed system-combined PET/MRI scans (where the patient is moved between a separate PET/CT and MRI scanner on a single bed, for direct sequential scanning without the need of patient repositioning) were sparse (11/294, 4%), and for this review (focusing on abdominal oncology), the last retrieved report of this system dates from 2016.

Image evaluation approaches

As shown in Figure 4, approximately half of the papers combining FDG-PET/CT and MRI (144/294, 49%) focused on visual (qualitative) image assessment (mainly lesion detection for primary tumour staging), with more or less consistent numbers of reports over time. The main tumour types under investigation are detailed in Table 2 and included gynaecological and colorectal cancers. A considerable increase over time was
Table 1. Summary of papers on multimodality assessment of FDG-PET and MRI in abdominal oncology

Category	Number	%
Total	294	100
Study design		
Prospective	148	50
Retrospective	134	46
Unspecified	12	4
Single-centre	281	96
Multicentre	8	3
Unspecified	5	2
Combination of FDG-PET/(CT)+MRI (complementary value)	127	43
Comparison of FDG-PET/(CT) vs MRI	113	38
Correlation of FDG-PET/(CT) and MRI parameters	32	11
Other	22	7
Type of multimodality imaging acquisition		
Stand-alone (separate) acquisition of PET/CT and MRI	211	72
Without image fusion	189	64
With retrospective image fusion	22	7
Hybrid PET/MRI acquisition	72	24
Bed-system combined PET/MRI acquisition	11	4
Method of image evaluation		
Visual (qualitative) assessment	144	49
Quantitative assessment	96	33
Technical (e.g. development and testing)	38	13
Other	16	5
Study aim		
Lesion detection	138	47
Correlation between FDG-PET/(CT) and MRI parameters	46	16
Response assessment and prediction	43	15
Technical (e.g. sequence development and testing)	39	13
Prediction of prognostic outcomes (e.g. survival)	20	7
Other	8	3
Tumour type		
Gynaecological	94	32
Colorectal	63	21
Mixed types	60	20
Liver (primary + metastatic)	20	7
Pancreas	20	7
Upper GI (oesophagus, stomach)	12	4
Urological (prostate, bladder, kidney)	11	4
Anal	6	2

(Continued)
observed for studies applying quantitative methods of imaging assessment, including measurements such as the standardized uptake value (SUV, from PET), apparent diffusion coefficient (ADC, the main quantitative measure of DWI), parameters from dynamic contrast-enhanced MRI (e.g. Ktrans), and volumetric measurements. These quantitative studies constituted 33% of the total cohort, and mainly focused on correlation between FDG-PET and MRI parameters or on use of these parameters as “biomarkers” to predict clinical outcomes. Table 3 summarizes the main findings of this latter subgroup of papers focusing on FDG-PET/CT) and MRI parameters used as biomarkers to predict response and/or survival, the two most investigated clinical outcomes.

A minority (38/294, 13%) of reports concerned “technical” studies that describe the development, optimization and testing of new acquisition techniques. These studies showed a peak in the first years after the introduction of the first hybrid PET/MRI systems, and included mostly studies on MRI-based attenuation correction techniques 51–57 and quality of image co-registration. 58–65 There was a final small subgroup (16/294, 5%) of “other” studies, which for example included delineation studies (for radiotherapy planning). 66,67

Institutional data
During the ten-year study interval, 53,537 MRIs, 27,003 PET/CTs and 5,660 multimodality MRI+PET/CT combinations (performed within a ≤14 day interval) were performed at our institution, of which the developments are shown in Figure 5 (Hybrid PET/MRI is not available at our institution). The overall ten-year increase relative to the baseline year (2008) was 108% for MRI, 250% for PET/CT and 239% for the multimodality combination of MRI+PET/CT, with consistently larger proportional growth of multimodality PET/CT+MRI combinations compared to either PET/CT or MRI on their own (with the exception of the final study year). The multimodality PET/CT+MRI combinations included 698 cases where PET/CT was combined with abdominal MRI examinations, and in line with our literature findings gynaecological and colorectal cancer were amongst the main tumour types under investigation.

Table 1. (Continued)

Lesion type	Number	%
Other (GIST, NET, adrenal, screening/volunteers)	9	3
Mixed	123	42
Primary tumour	107	36
Distant metastases	43	15
Lymph nodes	21	7

Figure 3. Evolution in the annual numbers of original research publications on multimodality combinations of FDG-PET/CT+MRI or PET/MRI in abdominal oncology specified per acquisition approach, i.e. retrospective combination of separately acquired FDG-PET/CT and MRI (with or without retrospective image fusion) versus prospective combination of PET and MRI using either bed-system combined acquisition or fully hybrid acquisition.
A decade of multimodality imaging in oncology

DISCUSSION

Aim of this paper was to describe main evolutions observed in a decade of published research on multimodality MRI and PET/CT imaging in abdominal oncology, and to see how these trends are reflected in data from our own institution. Annual numbers of published PET/CT+MRI research (as well as PET/CT+MRI combination studies performed at our own institution) showed a gradual and vast increase over time, with gynaecological and colorectal cancer being amongst the main tumour types under investigation. A major boost in PET/(CT)+MRI research was observed after the introduction of the first hybrid PET/MRI systems, which fully replaced earlier data on retrospective image fusion and bed-system combined (sequential) PET/MRI. Although a main focus of research throughout the study period remained combined use of PET/CT and MRI for visual diagnostic evaluations (i.e. lesion detection and tumour staging), quantitative analysis of PET- and MRI-based parameters as biomarkers of disease took flight in the second half of the study period. Another major development was the increased use of more tumour-specific tracers (other than FDG) in multimodality imaging, in specific the combination of PSMA-based PET/(CT) and MRI in prostate cancer.

Table 2. Summary of papers focusing on multimodality combination of PET and MRI for visual lesion detection (for tumour staging)

Tumour type	Total no. of studies (%)	Median number of patients per study (range)
Tumour types/groups with ≥ 10 available studies		
Gynaecological cancers	43 (36)	43 (12–493)
Retrospective combination (separate acquisition)	34 (28)	51.5 (12–493)
Combined acquisition (hybrid or bed-system PET/MRI)	9 (8)	27 (18–71)
Colorectal cancer	32 (27)	34.5 (12–352)
Retrospective combination (separate acquisition)	27 (23)	35 (18–352)
Combined acquisition (hybrid or bed-system PET/MRI)	5 (4)	26 (12–55)
Mixed tumour types	15 (12)	37 (15–237)
Retrospective combination (separate acquisition)	10 (8)	45.5 (15–237)
Combined acquisition (hybrid or bed-system PET/MRI)	5 (4)	66 (32–173)
Pancreas	10 (8)	48 (27–644)
Urological (prostate, bladder, kidney)	6 (5)	55 (22–287)
Anal	5 (4)	43 (11–61)
Upper GI (oesophagus, stomach)	4 (3)	46 (19–49)
Liver	3 (3)	35 (12–111)
Other (GIST, adrenal)	2 (2)	12.5 (9–16)

Stand-alone versus hybrid combination of PET and MRI

The majority (72%) of studies retrieved by our literature search concerned FDG-PET/CT and MRI examinations acquired sequentially, that is, as stand-alone modalities. The largest subgroup of these reports (65%) were studies that compared the diagnostic value of FDG-PET/CT to that of MRI, but a significant proportion (33%) evaluated the complementary value of combining FDG-PET/CT with MRI, which are essentially the studies that fall within the scope of our current paper focusing on "multimodality imaging". In our institutional analysis, a remarkable increase was also observed during the study period in the number of multimodality PET/CT + MRI combinations.
Table 3. Overview of papers focusing on multimodality combination of PET and MRI for prediction of treatment response and/or survival, based on (semi-)quantitative image parameters from imaging.

Study	n=	Tumour type (+lesion type)	Imaging modalities	Clinical outcome (+outcome definition)	Predictors of response	Key findings	Added value of combining PET and MRI?	Combination with non-imaging (clinical) predictors?	Comments
Bowen et al. (2018)	21	cervix (primary tumour)	PET/CT, DWI, DCE-MRI	Response (tumor volume < vs. ≥10% of baseline measured 1 month post-treatment)	pre-therapy SUVmean (AUC 0.81) & SUVmax (AUC 0.81)	after 2 weeks of treatment: ADCmean (AUC 0.81), %ΔSUVmean (AUC 0.79), ΔADC skewness (AUC 0.79)	Not reported	No	Univariable ROC analysis.
Lucia et al. (2018)	102	cervix (primary tumour)	PET/CT, T2W, DWI, DCE-MRI	Survival & local control (DFS, locoregional control)	DFS predictors: ADC Entropy ≤ 12.64 (HR: 30.95), CE-MRI, RLV ARGLRLM-QL ≤ 0.17 (HR: 11.33); Locoregional control independent predictors: ADC Entropy ≤ 12.64 (HR: 16.35), PET GLNU QL ≤ 103.71 (HR: 20.01)	Yes (age, FIGO, N-stage, BMI, blood cell counts, RTx dose, treatment time)	Yes	Uni- & multivariable survival analysis, independent training and testing cohorts	
Sarabhai et al. (2018)	8	cervix (primary tumour)	PET/MRI with DWI and DCE-MRI	Response (RECIST + PERCIST CR/PR vs SD/PD measured 2-6 wk after treatment)	mean Δtumour size −60%, ΔSUVmax −64%, ΔSUVmean −62%, ΔADCmin + 38%, ΔADCmax + 39%, ΔKtrans −47%, ΔiAUC −57%	Not reported	No	Heterogeneous histology and treatments. Descriptive analysis only, only one non-responder.	
Rahman et al. (2018)	90	cervix (primary + nodes)	PET/CT T2W	Survival (DFS, OS)	DFS predictors: SUVmax ≤ 10.7 (HR: 2.87) and MTV ≤ 26.5 (HR: 7.58) or TLG ≤ 231 (HR: 4.54) in scc, SUVmax ≤ 13.4 (HR: 12.9) in nscc; OS predictors: MTV ≤ 30.4 (HR: 10.6) or TLG ≤ 23.1 (HR: 11.6) in scc, SUVmax ≤ 14.4 (HR: 6.95) in nscc	No (age, FIGO, N-stage, surgery)	Yes	Uni- and multivariable survival analysis. Results stratified for scc vs nscc histology.	
Ho et al. (2017)	69	cervix (primary tumour)	PET/CT DWI	Survival (DFS, OS; central/locoregional/distant recurrence free survival (RFS))	DFS predictors: ADCmean (HR: 0.36), FIGO-stage I/II (HR: 2.4), nSDC (HR: 0.23); OS, central RFS and locoregional RFS: no significant predictors; - Distant RFS predictor: nSDC (HR: 0.12)	No (age, FIGO, histology scc/nscc, differentiation grade, N0 vs N+ disease)	No	Uni- and multivariable survival analysis.	
Ueno et al. (2017)	21	cervix (primary tumour)	PET/CT DWI	Response & survival (KIC: PET/CT/CR/PR vs SDFD, event-free survival (EFS))	Prediction of response: T(Ecist) (AUC: 0.84), optimal cut-off ≥ 679.69 g, MTV (AUC: 0.78, optimal cut-off ≥ 71.47 ml); Prediction of impaired EFS: MTV ≥ 71.47 ml (HR: 4.73), KIC ≥ 679.69 g (HR: 4.73), ADCmean ≥ 0.86×10^-3 mm^2/s (HR: 5.21)	No (FIGO, N-stage, histology scc/nscc, grade, tumour size)	Yes	Response: univariable ROC analysis. EFS: uni- & multivariable survival analysis.	
Micco et al. (2018)	49	cervix (primary tumour)	PET/CT, DWI, DCE-MRI	Survival (DFS, OS)	DFS predictors: FIGO-stage IB/IIA (HR: 3.89), LN-neg (HR: 6.15), max. tumour diameter (HR: 1.47), ADCmean (HR: 1.56), MTV (HR: 1.31), T1G (HR: 1.03); OS predictors: FIGO-stage IB/IIA (HR: 6.43), LN-neg (HR: 7.8), ADCmean (HR: 0.40), MTV (HR: 1.42)	Not reported	Yes	Univariable survival analysis.	

(Continued)
Study	n=	Tumour type (+lesion type)	Imaging modalities	Clinical outcome (+outcome definition)	Key findings	Added value of combining PET and MRI?	Combination with non-imaging (clinical) predictors?	Comments
Nakamura et al. (2014)	80	cervix (lymph nodes)	PET/CT, DWI	Survival (DFS; OS)	DFS predictors LN SUVmax ≤ 2.10 (HR: 6.65); OS predictors LN SUVmax ≤ 2.225 (HR: 3.05);	No	No	Univariable ROC analysis, uni- & multivariable survival analysis
Nakamura et al. (2012)	66	cervix (primary tumour)	PET/CT, DWI	Survival (DFS; OS)	DFS predictors: FIGO stage IB/IIA (HR: 5.265), LN- neg (HR: 4.124), SUVmax ≤ 15.5 (HR: 6.51) (HR: 6.77); OS predictors: FIGO stage IB/IIA (HR: 1.922), LN- neg (HR: 8.69), SUVmax ≤ 15.5 (HR: 6.51) (HR: 8.48);	Yes	Yes	Uni- & multivariable survival analysis
Nakamura et al. (2013)	131	endometrium (primary tumour)	PET/CT, DWI	Survival (DFS; OS)	DFS predictors: FIGO stage I/II (HR: 11.49), SUVmax ≤ 17.70 (HR: 13.33); OS predictors: FIGO stage I/II (HR: 15.15), SUVmax ≤ 18.42 (HR: 15.63);	No	Yes	Univariable ROC analysis, Uni- & multivariable survival analysis
Joye et al. (2017)	85	rectum (primary tumour)	PET/CT, T2W, DWI	Response (yPT0-1N0 vs other yPTN)	Predictors in optimal model: SUVpeak post-CRT, ADC post-CRT, ADC/ADC ratio pre-CRT/post-CRT, diameter sphere post-CRT (0.46); Model AUC 0.80, sensitivity: 75%, specificity: 94%	Yes	Yes	Multivariable analysis, cross-validated.
Nishimura et al. (2016)	15	rectum (primary tumour)	PET/CT, T2W	Response (TRG1-2 vs TRG3)	Significant results: Responders on MRI: smaller tumour size post-CRT, larger decrease in size post-CRT; Responders on PET: lower SUVmax during and post-CRT, larger decrease in SUVmax during and after CRT	Not reported	No	Fishers exact test.
Heijmen et al. (2015)	39	rectum (primary tumour)	PET/CT, DWI, T2*	Survival and response (PFS, OS, size change)	PFS prediction: pre-chemo ADCmean (HR: 0.749/0.1×10⁻³ mm²/s); OS prediction: pre-chemo SUVmax (HR: 1.125), TLG (HR: 1.047/10g), and ADCmean (HR: 0.667/0.1×10⁻³ mm²/s); T2* (HR: 1.118/0.1×10⁻³ mm²/s); No significant predictors for response	Yes, but effect not specified	No	Univariable survival analysis. (No detailed results for multivariable and response analysis)
Ippolito et al. (2015)	31	rectum (primary tumour)	PET/CT, DWI	Response (TRG1-2 vs TRG3-5)	Predictors of response: SUVmax post-CRT (AUC: 0.89, optimal cut-off 4.4), ADCmean post-CRT (AUC: 0.85, optimal cut-off 1.09×10⁻³ mm²/s); No significant predictors for response	Not reported	No	Univariable analysis. (No detailed results for multivariable analysis)
Ippolito et al. (2012)	30	rectum (primary tumour)	PET/CT, DWI	Response (TRG1-2 vs TRG3-5)	Predictors of response: SUVmax post-CRT < 4.4, ADCmean post-CRT > 1.294×10⁻³ mm²/s; No significant predictors for response	Not reported	No	Univariable analysis. (No detailed results for multivariable analysis)
Herrmann et al. (2011)	28	rectum (primary tumour)	PET/CT, T2W	Response (<10% residual tumour cells w/o ≥ 10%)	Predictors of response, during CRT (AUC: 0.79, optimal cut-off 4.1), ADCmean post-CRT (AUC: 0.85, optimal cut-off 1.09×10⁻³ mm²/s); No significant predictors for response	Not reported	No	Univariable analysis. (No detailed results for multivariable analysis)

(Continued)
Table 3. (Continued)

Study	n	Tumour type (lesion type)	Imaging modalities	Clinical outcome (outcome definition)	Added value of combining PET and MRI?	Combination with non-imaging (clinical) predictors?	Comments
Lambrecht et al. (2019)	22	rectum (primary tumour)	PET/CT DWI	Response (pCR vs non-pCR)	Yes	No	Univariable ROC analysis.
Ye et al. (2018)	52	HCC (primary tumour)	PET/CT DWI	Survival (Disease Specific Survival (DSS))	No	No	Univariable ROC analysis.
Han et al. (2016)	298	HCC (primary tumour)	PET/CT, CE-MRI	Survival (clinical + radiological recurrence: OS)	No	Yes	Multivariable survival analysis. Cut-offs based on literature.
Chen et al. (2018)	63	pancreas (primary tumour)	PET/MRI with DWI, DCE-MRI and MR spectroscopy	Survival (OS, time to progression (TTP))	Yes	Yes	Multivariable survival analysis.

(Continued)
Table 3. (Continued)

Added value of combining clinical with non-clinical parameters?	Combination value of combining PET and MRI?	Key findings	Comments
Yes	Non-reported	Δ%MTV (≥−60%, AUC: 0.95), Δ%TLG (≥−65%, AUC: 0.95), Δ%ADCmean (≥+20%, AUC: 0.91), Δ%ADCmin (≥+20%, AUC: 0.86)	Univariable ROC and survival analysis. PET/MRI with DWI, Survival Predictors of impaired PFS: Δ%MTV ≥−60%, %TLG ≥−65%, Δ%ADCmean ≥+ 20% vs SD (PFS; OS; RECIST PR + PD)
Yes	Yes (sign-out: TMN stage)	MTV/ADCmin ratio (HR: 1.036)	Multivariable survival analysis. PET/MRI, MR spectroscopy, Predictors of response during chemo: Δ%MTV (≥−60%, AUC: 0.95), Δ%TLG (≥−65%, AUC: 0.95), Δ%ADCmean (≥+20%, AUC: 0.86)

Although hybrid PET/MRI is considered by many to be the next state-of-the-art image modality in oncological research, its implementation is still an ongoing process that is to date mostly limited to a number of expert clinics and specialized oncological and/or dedicated research centres. Initial reasons for scepticism included concerns about the image quality as a result of technical adaptations required for PET and MR integration, and the substantially higher costs for installation and operation of these devices. Defining the clinical and research areas where there is a specific benefit of hybrid PET/MRI acquisition also remains a topic of debate. Currently, there seems to be agreement that the value of hybrid PET/MRI lies mainly in comprehensive regional evaluation of the local tumour and its direct (micro-)environment, rather than competing with PET/CT for whole-body applications.3,68 In a recent scoping review, Morsing et al concluded that preliminary data suggest a superiority of PET/MRI for the detection of local recurrence in prostate cancer, local tumour invasion in cervical cancer, and liver metastases in colorectal cancer.69 From the studies included in our literature study, it seems that overall the respective benefits of PET (i.e. staging of lymph nodes and distant metastases) and MRI (detailed local tumour staging) are maintained with simultaneous PET/MRI acquisition70–72 and the added benefit of improved imaging efficiency and potentially increased staging confidence.5,14,73,74 There have, however, so far been no studies that directly compared hybrid PET/MRI to separately acquired PET/(CT) and MRI to validate these effects. Other emerging and more unique applications of hybrid PET/MRI acquisition include theranostic imaging75 and in vivo dynamic evaluation of tumour biology, early tumour response and tracer kinetics, but these applications are still in early stages of research with only limited (pilot) data available.76,77

PET-tracers

Another major development observed during the study period was the increased use of non-FDG, more tumour-specific PET-tracers, as illustrated in Figure 2, with studies using non-FDG tracers constituting even the majority of reports in the final study year. This disproportionate increase probably reflects some publication bias where results of novel tracer types – particularly positive results – are more likely to be published. Prostate-specific...
membrane antigen (PSMA)-targeted and choline tracers used in prostate cancer imaging, and octreotide analogues that target the somatostatin receptor often overexpressed by neuro-endocrine tumours, were the most frequently reported. Their value lies primarily in the detection of lymph nodes and distant metastases from these specific malignancies that typically exhibit a heterogeneous or low glucose metabolism and are, therefore, less susceptible to detection by FDG-PET. Recent guideline updates have embraced the use of these novel tracers. For example in prostate cancer, PSMA-PET (or alternatively choline-PET) is now recommended for patients with biochemical recurrence who are considered for salvage treatment, with growing evidence that PSMA-PET is superior to choline-PET for this purpose. For primary staging of prostate cancer, PET is currently not recommended by the guidelines, but evidence that PSMA-PET/MRI may also be beneficial for these indications is emerging.

Complementary value of FDG-PET and MRI for lesion detection and tumour staging

Despite abovementioned recent advances in tumour-specific tracers, 18F-FDG remains the main workhorse used for multimodality PET/(CT)+MRI imaging in oncology. The abdominal tumour types most often assessed with FDG-PET/(CT) and MRI within our literature study (as well as in our institutional data) were gynaecological and colorectal cancers, which accounted for 32 and 21% of all studies. As summarized in Table 2, studies focusing on lesion detection and staging varied considerably in terms of patient numbers and use of retrospective versus hybrid combinations of FDG-PET and MRI. For the gynaecological group, most evidence is based on studies involving cervical cancer patients, with the largest study including a cohort of 493 patients. In this study, Kim et al constructed and validated a nomogram to predict lymph-node metastasis in patients with early stages of cervical cancer, which included tumour size on MRI, suspicion of lymph node metastasis on whole-body FDG-PET/CT and patient age as independent predictors, resulting in a model performance of AUC 0.825 (95% CI 0.736–0.895) in the validation set. An earlier study already showed that fused FDG-PET and MRI images resulted in higher accuracy for detection of lymph node metastasis than FDG-PET/CT only (AUC 0.735 vs 0.690; p = 0.045) in a cohort of 79 patients with FIGO stage Ib-I Va cervical cancer, again suggesting added value for the combination of PET and MRI in this setting. Sarabhai et al compared hybrid PET/MRI with only the MRI component, and found an improvement in diagnostic accuracy for PET/MRI. Not surprisingly, this benefit involved lymph node metastasis (accuracy 87% vs 77%) and distant metastasis (accuracy 91% vs 83%), but not local staging (85% vs 87% correct T-stage). Also for recurrent gynaecological malignancies, hybrid PET/MRI was shown to outperform diagnostic accuracy of the whole-body MRI component alone. Combined use of MRI (for local staging) and PET/CT (for distant staging) has been adopted as a recommended strategy in the most recent joined guidelines on cervical cancer from the European Society of Gynaecological Oncology (ESGO), the European Society for Radiotherapy and Oncology (ESTRO), and the European Society of Pathology (ESP), in particular for patients considered for curative intent chemoradiotherapy. Use of hybrid PET/MRI as an alternative approach is not specifically mentioned or discussed.

In colorectal cancer, MRI is routinely used for detailed local staging in rectal cancer and has a known added benefit compared to CT for the detection of liver metastases, in particular for small lesions. For primary staging in case of localized disease, PET/CT is not routinely recommended in current guidelines. PET/CT is mainly advised as a problem solver in addition to routine staging, for the detection of extra hepatic disease (in candidates for local treatment of liver metastasis) and for the detection of recurrent disease after primary resection. Vigano et al studied the role of FDG-PET/CT in 107 colorectal cancer patients before resection of liver metastasis. FDG-PET/CT revealed extrahepatic disease (mainly lymph nodes and peritoneal disease) in 28.8% (17/56) of the cases, which prevented futile liver resection in 20.3% (15/74) of patients deemed resectable by CT and/or MRI. Use of PET is also increasingly being studied to assess response to chemotherapy or chemoradiotherapy in colorectal
cancer and several studies have suggested a possible complementary role for FDG-PET/CT next to MRI for detection of a complete local response, detection of remaining pelvic lymph nodes and distant metastasis after treatment.\(^9\)\(^0\)\(^9\)\(^2\)\(^9\)\(^3\) Catalano et al\(^9\)\(^3\) were among the first to compare the (re-)staging accuracy of FDG-PET/CT and hybrid PET/MRI in colorectal cancer. In a small series of 26 patients, assigned stage was discordant between the two hybrid modalities in 7/26 patients, and all but one patient were correctly staged using PET/MRI. Further evidence on whether there is a potential benefit to perform hybrid PET/MRI in colorectal cancer is sparse.

Finally, there have been some reports in mixed abdominal cancer types suggesting that PET and MRI may have a complementary value to improve overall diagnostic staging confidence and for the diagnostic management of patients with peritoneal carcinomatosis. Wang et al\(^9\)\(^4\) studied 128 patients (including ±48% colorectal cancer patients) that were considered for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) and had undergone FDG-PET/CT, of which 91 in adjunct to CT and/or MRI. In the latter group, PET/CT had a complimentary role which contributed to patient management in 33/91 cases by confirming or excluding peritoneal and/or extraperitoneal disease. In a study combining FDG-PET/CT and MRI for side-by-side-diagnostic assessment of 201 patients with different abdominal cancer types, a net increase in diagnostic confidence was seen compared to separate assessment of either PET/CT or MRI, with potential clinical impact in 1 out of 9 study patients.\(^1\)\(^4\)

Quantitative studies on PET and MRI biomarkers
As shown in Figure 5, we observed a significant increase over time in published reports focusing on quantitative PET/(CT)+MRI assessment, eventually constituting approximately one third of all reports in the final year of our literature review. These studies look beyond lesion detection and regard the images as a dataset, which can be used to render quantifiable variables that may serve as biomarkers to predict clinical outcomes such as tumour stage, treatment outcome and survival\(^9\)\(^5\)-\(^9\)\(^9\) or correlate with other prognostic tumour markers such as histological tumour grade, hypoxia or microvascular invasion.\(^9\)\(^5\)-\(^9\)\(^9\) ADC and SUV were amongst the most frequently reported imaging markers, and several studies reported a significant inverse correlation between higher tumour SUV values and lower ADCs.\(^9\)\(^6\),\(^9\)\(^8\),\(^1\)\(^0\)\(^7\) The common hypothesis is that tumours with a high cellular density (that show restricted diffusion and therefore low ADC values) will typically also exhibit an increased glucose metabolism, reflected by high SUV values. summarizes the main findings of studies focusing on use of PET and MRI biomarkers to predict response and/or survival, which constituted the two main investigated clinical outcomes. Methodology and results of these studies were highly variable. Despite this variation, a recurring finding was that higher tumour SUV, MTV or TLG and lower ACD values are generally associated with unfavourable outcomes (incomplete response, disease recurrence, reduced survival). It is worth mentioning that many of the studies in are preliminary reports that compare, rather than combine, the value of PET- and MRI-derived variables as predictors in univariable analysis.\(^9\)\(^6\),\(^9\)\(^8\),\(^3\)\(^7\),\(^4\)\(^1\)\(^4\)-\(^4\)\(^5\)\(^4\)\(^9\)\(^9\) Overall, there were fourteen studies (out of the 25 included in) that combined PET and MRI- parameters as potential outcome predictors in more comprehensive multivariable analyses,\(^2\)\(^7\),\(^2\)\(^9\),\(^3\)\(^1\)-\(^3\)\(^6\),\(^3\)\(^8\)-\(^4\)\(^4\) of which 6/14 found complementary value for the two techniques. In the remaining eight reports, either no complementary value was found (6/14 studies) or this was not explicitly analysed or reported (2/14 studies). Only two reports included (cross-) validation of data.\(^2\)\(^7\),\(^3\)\(^6\)

Amongst the papers with positive findings on the combined use of PET and MRI parameters, Joye et al developed a model incorporating PET and MRI, but also molecular variables, to predict response to chemoradiotherapy in rectal cancer. They found that combining the multimodality information from PET and MRI resulted in optimal predictive performance, outperforming prediction models based on either of the two imaging modalities on its own or those based on molecular markers.\(^3\)\(^6\) In a preliminary study including a total of 102 patients (training n= 69, testing n= 33), Lucia et al\(^1\)\(^2\) evaluated the value of 92 pretherapy PET/CT and MRI (T\(_2\)-weighted, DWI and DCE-MRI) texture parameters to predict locoregional control and disease-free survival in patients treated with chemoradiotherapy for locally-advanced cervical cancer. They found a Radiomics signature based on a combination of ADC (Entropy-GLCM) and PET (GLNU-GLRLM) parameters to be highly predictive for locoregional control (AUC 1.0). Additional large-scale research, preferably including independent validation cohorts, is required to help further establish the benefit of multimodality quantitative PET+MRI evaluation in building clinical models that predict outcome and prognosis.

Our study has some limitations. Firstly, the scope of this review, “multimodality PET/CT and MRI in abdominal oncology” is too wide (including a wide range of tumour types, study designs and studied outcomes) to provide an in-depth or systematic review of all available literature. Our primary aim was to provide (including a wide range of tumour types, study designs and studied outcomes) to provide an in-depth or systematic review of all available literature. Our primary aim was to provide a broad overview of observed trends and highlight some key developments. Secondly, our institutional data was retrieved as raw data from the PACS system, and the large numbers did not allow a detailed (per-patient) classification to be fully in line with the literature search. Our institutional data analysis was mainly intended to provide some insights into how trends observed in literature translate to evolutions in the use of multimodality imaging in an oncologic referral centre, using our institutional data as an anecdotal example.

CONCLUSIONS
This review has shown that the field of multimodality imaging has evolved in several ways. During the study period hybrid PET/MRI systems were introduced, which gave rise to a major novel field of research, while at the same time shifting the focus away from retrospective PET/(CT)+MRI image fusion and bed system-combined PET/MRI acquisition. New PET-tracers have found their way into clinical practice. Studies focusing on...
REFERENCES

1. National Center for Biotechnology InformationMeSH Database: MeSH Unique ID: D064847; Multimodal imaging. Available from: ncbi.nlm.nih.gov/mesh [May 26, 2021].

2. Hope TA, Fayad ZA, Fowler KJ, Holley D, Iagaru A, McMihan AB, et al. Summary of the first ISMRM-SNMRI workshop on PET/MRI: applications and limitations. J Nucl Med 2019; 60: 1340–6. doi: https://doi.org/10.2967/jnumed.119.227231

3. Bailey DL, Pichler BJ, Gückel B, Antoch G, Koh W-J, Abu-Rustum NR, Bean S, Bradley S, Harmon S, Bergvall E, et al. Combined PET/MRI: Global Warming-Summary report of the 6th International workshop on PET/MRI, March 27-29, 2017, Tübingen, Germany. Mol Imaging Biol 2018; 20: 4–20. doi: https://doi.org/10.1007/s11307-017-1123-5

4. Koh W-J, Abu-Rustum NR, Bean S, Bradley K, Campos SM, Cho KR, et al. Cervical cancer. version 3.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2019; 17: 64–84. doi: https://doi.org/10.6004/jnccn.2019.0001

5. Cibuła D, Poter R, Plancharf F, Avall-Lundqvist E, Fischerova H, Haie Meder C, Meder CH, et al. The European Society of gynaecological Oncology/European Society for radiotherapy and Oncology/European Society of pathology guidelines for the management of patients with cervical cancer. Radiother Oncol 2018; 127: 404–16. doi: https://doi.org/10.1016/j.radonc.2018.03.003

6. Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 2017; 71: 630–42. doi: https://doi.org/10.1016/j.eururo.2016.08.002

7. Lordick F, Mariette C, Haustermans K, Obermannová R, Arnold D. ESMO Guidelines Committee Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2016; 27(Suppl 5): v50–7. doi: https://doi.org/10.1093/annonc/mdw329

8. Glynne-Jones R, Nilsson PJ, Aschele C, Goh V, Peiffert D, Cervantes A, et al. Anal cancer: ESMO-ESSO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Radiother Oncol 2014; 111: 330–9. doi: https://doi.org/10.1016/j.radonc.2014.04.013

9. Öberg K, Knuige U, Kwekkeboom D, Perren A. ESMO Guidelines Working Group. Neuroendocrine gastro-entero-pancreatic tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012; 23(Supplement 7): vii124–30. doi: https://doi.org/10.1093/annonc/mds295

10. Mena E, Lindenberg ML, Shih JH, Adler S, Harmon S, Bergvall E, et al. Clinical impact of PSMA-based 18F-DCFPyL PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy. Eur J Nucl Med Mol Imaging 2018; 45: 4–11. doi: https://doi.org/10.1007/s00259-017-3818-x

11. Lopci E, Saiata A, Lazzeri M, Lughezzani G, Colombo P, Buñi NF, et al. 68Ga-PSMA Positron emission tomography/computerized tomography for primary diagnosis of prostate cancer in men with contraindications to or negative multiparametric magnetic resonance imaging: a prospective observational study. J Urol 2018; 200: 95–103. doi: https://doi.org/10.1016/j.juro.2018.01.079

12. Afshar-Oromieh A, Babič JW, Kratochwil C, Giesel FL, Eisenhut M, Kopka K, et al. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med 2016; 57(Suppl 3): 79S–89. doi: https://doi.org/10.2967/jnumed.115.170720

13. Wulfert S, Kratochwil C, Choyke PL, Afshar-Oromieh A, Mier W, Kauczor H-U, et al. Multimodal imaging for early detection of recurrent prostate cancer following radical prostatectomy. Eur J Nucl Med Mol Imaging 2014; 41: 887–97. doi: https://doi.org/10.1007/s00259-013-2660-z

14. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev 2016; 5: 1–10. doi: https://doi.org/10.1186/s13643-016-0384-4

15. Quero L, Vercellino L, de Kerviler E, Mongiat-Artus P, Culine S, Merlet P, et al. 18F-choline PET/CT and prostate MRI for staging patients with biochemical relapse after irradiation for prostate cancer. Clin Nucl Med 2015; 40: e92–5. doi: https://doi.org/10.1097/RLU.0000000000001932

16. Eiber M, Rauscher I, Souvatzoglou M, Maurer T, Schweiger M, Holzapfel K, et al. Prospective head-to-head comparison of 11C-choline-PET/MR and 11C-choline-PET/CT for restaging of biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2017; 44: 2179–88. doi: https://doi.org/10.1007/s00259-017-3797-y

17. Kranzbühler B, Nagel H, Becker AS, Müller J, Huellner M, Stolzmann P, et al. Clinical performance of 68Ga-PSMA-11 PET/MRI for the detection of recurrent prostate cancer following radical prostatectomy. Eur J Nucl Med Mol Imaging 2018; 45: 20–30. doi: https://doi.org/10.1007/s00259-017-3850-x

18. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging 2014; 41: 887–97. doi: https://doi.org/10.1007/s00259-013-2660-z

19. Bauman G, Martin P, Thiessen JD, Taylor R, Moussa M, Gaed M, et al. 68Ga-DCE-FPYP Positron Emission Tomography/Magnetic Resonance Imaging for Localization of Dominant Intraprostatic Foci: First Experience. Eur Urol Focus 2018; 4: 702–8. doi: https://doi.org/10.1016/j.euf.2016.10.002

20. Carideo L, Prosperi D, Panzuto F, Magi L, Pratesi MS, Rinzivillo M, et al. Role of
combined [68Ga]Ga-DOTA-TATE analogues and [18F]FDG PET/CT in the management of GEP-NENs: a systematic review. J Clin Med 2019; 8: 1032. doi: https://doi.org/10.3390/jcm8071032

22. Sadowski SM, Neychev V, Millo C, Shih J, Nibuol N, Herscovitch P, et al. Prospective study of 68Ga-DOTATOC positron emission tomography/computed tomography for detecting gastro-entero-pancreatic neuroendocrine tumors and unknown primary sites. J Clin Oncol 2016; 34: 588–96. doi: https://doi.org/10.1200/JCO.2015.64.0987

23. Beiderwelen KJ, Poeppel TD, Hartung-Knemeyer V, Buchbender C, Kuehl H, Bockisch A, et al. Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results. Invest Radiol 2013; 48: 273–9. doi: https://doi.org/10.1097/RLI.0b013e3182871a7f

24. Frilling A, Sotiropoulos GC, Radtke A, Malago M, Bockisch A, Kuehl H, et al. The impact of 68Ga-DOTATOC positron emission tomography/computed tomography on the multimodal management of patients with neuroendocrine tumors. Ann Surg 2010; 252: 850–6. doi: https://doi.org/10.1097/SLA.0b013e3181f37e8

25. Ambrosini V, Campana D, Bodei L, Nanni C, Castellucci P, Allegri V, et al. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med 2010; 51: 669–73. doi: https://doi.org/10.2967/jnumed.109.071712

26. Bowen SR, Yuh WTC, Hippe DS, Wu W, Partridge SC, Elias S, et al. Tumor radiomic heterogeneity: multiparametric functional imaging to characterize variability and predict response following cervical cancer radiation therapy. J Magn Reson Imaging 2018; 47: 1388–96. doi: https://doi.org/10.1002/mri.25874

27. Lucia F, Visvikis D, Deseroyer M-C, Miranda O, Malhare J-P, Robin P, et al. Prediction of outcome using pretreatment 18F-FDG PET/CT and MR radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 2018; 45: 768–86. doi: https://doi.org/10.1007/s00259-017-3898-7

28. Sarabhai T, Tschischka A, Stebner V, Nensa F, Wetter A, Kimmig R, et al. Simultaneous multiparametric PET/MRI for the assessment of therapeutic response to chemotherapy or concurrent chemoradiotherapy of cervical cancer patients: preliminary results. Clin Imaging 2018; 49: 163–8. doi: https://doi.org/10.1016/j.clinimag.2018.03.009

29. Rahman T, Tsujikawa T, Yamamoto M, Chino Y, Shinagawa A, Kurokawa T. Different prognostic implications of 18F-FDG PET between histological subtypes in patients with cervical cancer. Med 2016; 95: 1–7.

30. Ho JC, Allen PK, Rhosale PR, Rauch GM, Fuller CD, Mohamed ASR. Diffusion-Weighted MRI as a predictor of outcome in cervical cancer following chemoradiation. Int J Radiat Oncol Biol Phys 2017; 97: 546–53. doi: https://doi.org/10.1016/j.ijrobp.2016.11.015

31. Ueno Y, Lisaona R, Tamada T, Alaref A, Sugimura K, Reinhold C. Comparison of FDG PET metabolic tumour volume versus ADC histogram: prognostic value of tumour treatment response and survival in patients with locally advanced uterine cervical cancer. Br J Radiol 2017; 90: 20170035. doi: https://doi.org/10.1259/bjr/20170035

32. Micco M, Vargas HA, Burger IA, Kollmeier MA, Goldman DA, Park KI, et al. Combined pre-treatment MRI and 18F-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer. Eur J Radiol 2014; 83: 1169–76. doi: https://doi.org/10.1016/j.ejrad.2014.03.024

33. Nakamura K, Joja I, Nagasaka T, Haruma T, Hiramatsu Y. Maximum standardized lymph node uptake value could be an important predictor of recurrence and survival in patients with cervical cancer. Eur J Obstet Gynecol Reprod Biol 2014; 173: 77–82. doi: https://doi.org/10.1016/j.ejogrb.2013.10.030

34. Nakamura K, Joja I, Kodama J, Hongi A, Hiramatsu Y. Measurement of SUVmax plus ADCmin of the primary tumour is a predictor of prognosis in patients with cervical cancer. Eur J Nucl Med Mol Imaging 2012; 39: 283–90. doi: https://doi.org/10.1007/s00259-011-1978-7

35. Nakamura K, Joja I, Fukushima C, Haruma T, Hayashi C, Kusumoto T, et al. The preoperative SUVmax is superior to ADCmin of the primary tumour as a predictor of disease recurrence and survival in patients with endometrial cancer. Eur J Nucl Med Mol Imaging 2013; 40: 52–60. doi: https://doi.org/10.1007/s00259-012-2240-7

36. Joye I, Debucquoy A, Derouze CM, Vandecasteyve V, Cutssem EV, Wolhuis A, et al. Quantitative imaging outperforms molecular markers when predicting response to chemoradiotherapy for rectal cancer. Radiother Oncol 2017; 124: 104–9. doi: https://doi.org/10.1016/j.radonc.2017.06.013

37. Nishimura J, Hasegawa J, Ogawa Y, Miwa H, Uemura M, Haraguschi N, et al. 18F-Fluorodeoxyglucose positron emission tomography ([18F]-FDG PET) for the early detection of response to neoadjuvant chemotherapy for locally advanced rectal cancer. Surg Today 2016; 46: 1152–8. doi: https://doi.org/10.1007/s00595-015-1297-x

38. Heijmen L, ter Voert EEGW, Oyen WJG, Punet CJA, van Sprengers DJ, Heerschap A, et al. Multimodality imaging to predict response to systemic treatment in patients with advanced colorectal cancer. Plas One 2015; 10: e0120823–13. doi: https://doi.org/10.1371/journal.pone.0120823

39. Ippolito D, Fior D, Trattenero C, Ponti ED, Drago S, Guerra L, et al. Combined value of apparent diffusion coefficient-standardized uptake value max in evaluation of post-treated locally advanced rectal cancer. World J Radiol 2015; 7: 509. doi: https://doi.org/10.4329/wjr.v7.i12.509

40. Ippolito D, Monguzzi L, Guerra L, Deporti E, Gardani G, Messa C, et al. Response to neoadjuvant therapy in locally advanced rectal cancer: assessment with diffusion-weighted MR imaging and 18FDG PET/CT. Abdom Imaging 2012; 37: 1032–40. doi: https://doi.org/10.1007/s00261-011-9839-1

41. Herrmann K, Bundschuh RA, Rosenberg R, Schmidt S, Praus C, Souvatzoglou M, et al. Comparison of different SUV-based methods for response prediction to neoadjuvant radiochemotherapy in locally advanced rectal cancer by FDG-PET and MRI. Mol Imaging Biol 2011; 13: 1011–9. doi: https://doi.org/10.1007/s11307-010-0383-0

42. Lambrecht M, Derouze C, Roels S, Vandecastayve V, Penninckx F, Sagarre X, et al. The use of FDG-PET/CT and diffusion-weighted magnetic resonance imaging for response prediction before, during and after preoperative chemoradiotherapy for rectal cancer. Acta Oncol 2010; 49: 956–63. doi: https://doi.org/10.3109/0284186X.2010.498439

43. Fang P, Musall BC, Son JB, Moreno AC, Hobbs BP, Carter BW, et al. Multimodal imaging of pathologic response to chemoradiation in esophageal cancer. Int J Radiat Oncol Biol Phys 2008; 70: 996–1001. doi: https://doi.org/10.1016/j.ijrobp.2008.02.029

44. Lee DH, Kim SH, Im S-A, Oh D-Y, Kim T-Y, Han JK. Multiparametric fully-integrated 18-FDG PET/MRI of advanced gastric cancer for prediction of chemotherapy response: a preliminary study. Eur Radiol 2016; 26: 2771–8. doi: https://doi.org/10.1007/s00330-015-4105-5

45. Weber M-A, Bender K, von Gall CC, Stange A, Grünberg K, Ott K, et al. Assessment of diffusion-weighted MRI and 18F-fluoro-
deoxyglucose PET/CT in monitoring early response to neoadjuvant chemotherapy in adenocarcinoma of the esophagogastric junction. J Gastrointestin Liver Dis 2013; 22: 45–52.

Hong CM, Ahn B-C, Jang Y-J, Jeong SY, Lee S-W, Lee J. Prognostic value of metabolic parameters of 18F-FDG PET/CT and apparent diffusion coefficient of MRI in hepatocellular carcinoma. Clin Nucl Med 2017; 42: 95–9. doi: https://doi.org/10.1097/ RLU.0000000000001478

Han JH, Kim DG, Na GH, Kim EY, Lee SH, Hong TH, et al. Evaluation of prognostic factors on recurrence after curative resections for hepatocellular carcinoma. World J Gastroenterol 2014; 20: 17132–40. doi: https://doi.org/10.3748/wjg.v20.i45.17132

Chen B-B, Tien Y-W, Chang M-C, Cheng M-F, Chang Y-T, Yang S-H, et al. Multimodal PET/MR imaging biomarkers are associated with overall survival in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging 2018; 45: 1205–17. doi: https://doi.org/10.1007/ s00259-018-3960-0

Wang ZJ, Behr S, Consunji MV, Yeh EH, et al. PET/MRI attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging 2011; 38: 1691–701. doi: https://doi.org/10.1007/ s00259-011-1842-9

Bezrukov I, Schmidt H, Gatidis S, Manlik F, Schäfer JF, Schwenzer N, et al. Quantitative evaluation of segmentation- and atlas-based attenuation correction for PET/MR on pediatric patients. J Nucl Med 2015; 56: 1067–74. doi: https://doi.org/10.2997/ jnumed.114.149476

Jochimsen TH, Schulz J, Busse H, Werner P, Schaudinn A, Zeisig V, et al. Lean body mass correction of standardized uptake value in simultaneous whole-body positron emission tomography and magnetic resonance imaging. Phys Med Biol 2015; 60: 4651–64. doi: https://doi.org/10.1088/0031-9155/60/12/4651

Kong E, Cho I. Clinical issues regarding misclassification by Dixon based PET/MR attenuation correction. Hell J Nucl Med 2015; 18: 42–7.

Arabi H, Rager O, Alem A, Varquaoux A, Becker M, Zaidi H. Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR. Mol Imaging Biol 2015; 17: 264–76. doi: https://doi.org/10.1016/j.molimbi.2014.11.007-5

Catalano OA, Umultlu F, Luin N, Hibertz ML, Scipioni M, Pedemonte S, et al. Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo). Eur J Nucl Med Imaging 2018; 45: 2147–54. doi: https://doi.org/10.1007/ s00259-018-4084-2

Küstner T, Schwartz M, Martirosian P, Gatidis S, Seifth F, Gilliam C, et al. MR-based respiratory and cardiac motion correction for PET imaging. Med Image Anal 2017; 42: 129–44. doi: https://doi.org/10.1016/j. media.2017.08.002

Grimm R, Fürst S, Souvatzoglou M, Forman C, Hutter J, Dregely I, et al. Self-gated MRI motion modeling for respiratory motion compensation in integrated PET/MRI. Med Image Anal 2019; 45: 2138–51. doi: https://doi.org/10.1016/j.media.2019.03.031

Beiderwellen K, Geraldo L, Ruhlmann V, Beiderwellen K, et al. Accuracy of [18F]FDG PET/MRI for the Detection of Liver Metastases. PLoS One 2015; 10:
72. Kirchner J, Sawicki LM, Suntharalingam S, Grueneisen J, Ruhlmann V, Aktas B, et al. Whole-body staging of female patients with recurrent pelvic malignancies: ultra-fast 18F-FDG PET/MRI compared to 18F-FDG PET/CT and CT. *PloS One* 2017; 12: e0172553–11. doi: https://doi.org/10.1371/journal.pone.0172553

73. Grueneisen J, Beiderwellen K, Heusch P, Gratz M, Schulze-Hagen A, Heubner M, et al. Simultaneous positron emission tomography/magnetic resonance imaging for whole-body staging in patients with recurrent gynaecological malignancies of the pelvis: a comparison to whole-body magnetic resonance imaging alone. *Invest Radiol* 2014; 49: 808–15. doi: https://doi.org/10.1097/IRL.0000000000000086

74. Beiderwellen K, Gomez B, Buchbender C, Hartung V, Poeppel TD, Nensa F, et al. Depiction and characterization of liver lesions in whole body [18F]-FDG PET/MRI. *Eur J Radiol* 2013; 82: e669–75. doi: https://doi.org/10.1016/j.ejrad.2013.07.027

75. Konik A, O’Donoghue JA, Wahl RL, Graham MM, Van den Abbeele AD. Theranostics: the role of quantitative nuclear medicine imaging. *Semin Radiat Oncol* 2021; 31: 28–36. doi: https://doi.org/10.1016/j.sradonc.2020.07.003

76. Ward RD, Amorim B, Li W, King J, Umutlu L, Groshar D, et al. Abdominal and pelvic 18F-FDG PET/MRI: a review of current and emerging oncologic applications. *Abdom Radiol* 2021; 46: 1236–48. doi: https://doi.org/10.1007/s00261-020-02766-2

77. Yankeelov TE, Peterson TE, Abramson RG, Izquierdo-Garcia D, Garcia-Izquierdo D, Arlinghaus LR, et al. Simultaneous PET/MRI in oncology: a solution looking for a problem? *Magn Reson Imaging* 2012; 30: 1342–56. doi: https://doi.org/10.1016/j.mri.2012.06.001

78. Treglia G, Tereza Mestre R, Ferrari M, Bogetti DG, Pascale M, Oikonomou E, et al. Radiolabelled choline versus PSMA PET/CT in prostate cancer restaging: a meta-analysis. *Am J Nucl Med Mol Imaging* 2019; 9: 127–39.

79. Wang R, Shen G, Yang R, Ma X, Tian R. 68Ga-PSMA PET/MRI for the diagnosis of primary and biochemically recurrent prostate cancer: A meta-analysis. *Eur J Radiol* 2020; 130: 109311. doi: https://doi.org/10.1016/j.ejrad.2020.109311

80. Evangelista L, Zattoni F, Cassarino G, Artioli P, Cecchin D, Dal Moro F, et al. PET / MRI in prostate cancer: a systematic review and meta-analysis. *Eur J Nucl Med Mol Imaging* 2021; 48: 859–73. doi: https://doi.org/10.1007/s00259-020-05025-0

81. Kim D-Y, Shim S-H, Kim S-O, Lee S-W, Park J-Y, Sub D-S, et al. Preoperative nomogram for the identification of lymph node metastasis in early cervical cancer. *Br J Cancer* 2014; 110: 34–41. doi: https://doi.org/10.1038/bjc.2013.718

82. Kim S-K, Choi HJ, Park S-Y, Lee H-Y, Seo S-S, Yoo CW, et al. Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. *Eur J Cancer* 2009; 45: 2103–9. doi: https://doi.org/10.1016/j.ejca.2009.04.006

83. Sawicki LM, Kirchner J, Grueneisen J, Ruhlmann V, Aktas B, Schaarzchmidt BM, et al. Comparison of 18F-FDG PET/MRI and MRI alone for whole-body staging and potential impact on therapeutic management of women with suspected recurrent pelvic cancer: a follow-up study. *Eur J Nucl Med Mol Imaging* 2018; 45: 622–9. doi: https://doi.org/10.1007/s00259-017-3881-3

84. Cibula D, Pöpperl R, Planchamp F, Sotiriadis A, Fischmeister R, et al. Imaging of gynaecological Oncology/European Society for radiotherapy and Oncology /European Society of pathology guidelines for the management of patients with cervical cancer. *Int J Gynecol Cancer* 2018; 28: 641–55. doi: https://doi.org/10.1097/IGC.000000000001216

85. Zech CJ, Koppang P, Hupertz A, Denecke T, Kim MJ, Tanomskiy W, et al. Randomized multicentre trial of gadoxetic acid-enhanced MRI versus conventional MRI or CT in the staging of colorectal cancer liver metastases. *Br J Surg* 2014; 101: 613–21. doi: https://doi.org/10.1002/bjs.9465

86. Niekel MC, Bapat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. *Radiology* 2010; 257: 674–84. doi: https://doi.org/10.1148/radiol.10100729

87. Argilés G, Tabernerjo L, Labianca R, Hochhauser D, Salazar R, Iveson T, et al. Localised colon cancer: ESPPO clinical practice guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2020; 31: 1291–305. doi: https://doi.org/10.1093/annonc/mdaa166

88. Van Cutsem E, Cervantes A, Nordlinger B, Arnold D, ESMO Guidelines Working Group Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2014; 25 Suppl 3(Supplement 3): iii1–9. doi: https://doi.org/10.1093/annonc/mdu260

89. Viganò L, Lopci E, Costa G, Rodari M, Poretti D, Pedicini V, et al. Positron emission tomography-computed tomography for patients with recurrent colorectal liver metastases: impact on restaging and treatment planning. *Ann Surg Oncol* 2017; 24: 1029–36. doi: https://doi.org/10.1245/s10434-016-5644-y

90. Ishihara S, Kawai K, Tanaka T, Kiyomatsu T, Hata K, Nozawa H, et al. Diagnostic value of FDG-PET/CT for pelvic lymph node metastasis in rectal cancer treated with preoperative chemoradiotherapy. *Tech Coloproctol* 2018; 22: 347–54. doi: https://doi.org/10.1007/s10151-018-1779-0

91. Schneider DA, Akhurst TJ, Nyan SY, Warrier SK, Michael M, Lynch AC, et al. Relative value of restaging MRI, CT, and FDG-PET scan after preoperative chemoradiation for rectal cancer. *Dis Colon Rectum* 2016; 59: 179–86. doi: https://doi.org/10.1097/DCR.0000000000000557

92. Cho YB, Chun H-K, Kim MJ, Choi JY, Park C-M, Kim B-T, et al. Accuracy of MRI and 18F-FDG PET/CT for restaging after preoperative concurrent chemoradiotherapy for rectal cancer. *World J Surg* 2009; 33: 2688–94. doi: https://doi.org/10.1007/s00268-009-0248-3

93. Catalano OA, Coutinho AM, Sahani DV, Vangel MG, Gee MS, Hahn PF, et al. Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR. *Abdom Radiol* 2017; 42: 1141–51. doi: https://doi.org/10.1007/s00261-016-1779-3

94. Wang W, Tan GHC, Chia CS, Skanthakumar T, Soo KC, Teo MCC. Are positron emission tomography-computed tomography (PET-CT) scans useful in preoperative assessment of patients with peritoneal disease before cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC)? *Int J Hyperthermia* 2018; 34: 524–31. doi: https://doi.org/10.1080/01480070.2017.1366554

95. Berg A, Gullati A, Ytre-Hauge S, Fasmek KE, Mauland K, Hoivik EA, et al. Preoperative imaging markers and PDZ-binding kinase tissue expression predict low-risk disease in endometrial hyperplasias and low grade cancers. *Oncotarget* 2017; 8: 68350–41. doi: https://doi.org/10.18632/oncotarget.19708

96. Brown AM, Lindenberg ML, Sankineni S, Shih JH, Johnson LM, Pruthy S, et al. Does focal incidental 18F-FDG PET/CT uptake in the prostate have significance? *Abdom
97. Tsuboyama T, Tatsumi M, Onishi H, Nakamoto A, Kim T, Hori M, et al. Assessment of combination of contrast-enhanced magnetic resonance imaging and positron emission tomography/computed tomography for evaluation of ovarian masses. Invest Radiol 2014; 49: 524–31. doi: https://doi.org/10.1097/RLI.0000000000000050

98. Armbruster M, Sourbron S, Haug A, Zech CJ, Ingrisch M, Auernhammer CJ, et al. Evaluation of neuroendocrine liver metastases: a comparison of dynamic contrast-enhanced magnetic resonance imaging and positron emission tomography/computed tomography. Invest Radiol 2014; 49: 7–14. doi: https://doi.org/10.1097/RLI.0b013e3182a4eb4a

99. Ahn SY, Lee JM, Joo I, Lee ES, Lee SJ, Cheon GJ, et al. Prediction of microvascular invasion of hepatocellular carcinoma using gadoxetic acid-enhanced MR and 18F-FDG PET/CT. Abdom Imaging 2015; 40: 845–51. doi: https://doi.org/10.1007/s00261-014-0256-0

100. Flodberg JM, Fowler KJ, Fuser D, DeWees TA, Dehdashti F, Siegel BA, et al. Spatial relationship of 2-deoxy-2-[18F]-fluoro-D-glucose positron emission tomography and magnetic resonance diffusion imaging metrics in cervical cancer. EINMMI Res 2018; 8: 52. doi: https://doi.org/10.1186/s13550-018-0403-7

101. Goense L, Heethuis SE, van Rossum PSN, Voncken FEM, Lagendijk JJW, Lam MGEH, Lam M, et al. Correlation between functional imaging markers derived from diffusion-weighted MRI and 18F-FDG PET/CT in esophageal cancer. Nucl Med Commun 2018; 39: 60–7. doi: https://doi.org/10.1097/NMN.0000000000000771

102. Ahn SJ, Kim JH, Park SJ, Han JK, Joa Ahn S, Hoon Kim J, Joon Park S, Koo Han J. Prediction of the therapeutic response after FOLFOX and FOLFIRI treatment for patients with liver metastasis from colorectal cancer using computerized CT texture analysis. Eur J Radiol 2016; 85: 1867–74. doi: https://doi.org/10.1016/j.ejrad.2016.08.014

103. Sakane M, Tatsumi M, Kim T, Hori M, Onishi H, Nakamoto A, et al. Correlation between apparent diffusion coefficients on diffusion-weighted MRI and standardized uptake value on FDG-PET/CT in pancreatic adenocarcinoma. Acta radiol 2015; 56: 1034–41. doi: https://doi.org/10.1177/0284185114549825

104. Shih I-L, Yan R-F, Chen C-A, Chen B-B, Wei S-Y, Chang W-C, et al. Standardized uptake value and apparent diffusion coefficient of endometrial cancer evaluated with integrated whole-body PET/MR; correlation with pathological prognostic factors. J. Magn. Reson. Imaging 2015; 42: 1723–32. doi: https://doi.org/10.1002/jmri.24932

105. Grueneisen J, Beiderwellen K, Heusch P, Buderath P, Aktas B, Gratz M, et al. Correlation of standardized uptake value and apparent diffusion coefficient in integrated whole-body PET/MRI of primary and recurrent cervical cancer. PLoS One 2014; 9: e96751–7. doi: https://doi.org/10.1371/journal.pone.0096751

106. Yu X, Lee EYP, Lai V, Chan Q. Correlation between tissue metabolism and cellularity assessed by standardized uptake value and apparent diffusion coefficient in peritoneal metastasis. J Magn Reson Imaging 2014; 40: 99–105. doi: https://doi.org/10.1002/jmri.24361

107. Gu J, Khong P-L, Wang S, Chan Q, Law W, Zhang J. Quantitative assessment of diffusion-weighted MR imaging in patients with primary rectal cancer: correlation with FDG-PET/CT. Mol Imaging Biol 2011; 13: 1020–8. doi: https://doi.org/10.1007/s11307-010-0433-7

108. JC Ho, Allen PK, Bhosale PR, Rauch GM, Fuller CD, Mohamed ASR. A prospective study of DWI, DCE-MRI and FDG PET imaging for target delineation. Int J Radiat Oncol Biol Phys 2017; 97: 546–53.