SHORT REPORT

Meta-analysis of 49,549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

Elisabeth M van Leeuwen,1 Aniko Sabo,2 Joshua C Bis,3 Jennifer E Huffman,4,5 Ani Manichaikul,6 Albert V Smith,7,8 Mary F Feitosa,9 Serkalem Demissie,10 Peter K Joshi,11 Qing Duan,12 Jonathan Marten,8 Jan B van Klinken,13 Ida Surakka,14 Ilja M Nolte,15 Weihua Zhang,16,17 Hamdi Mbarek,18 Ruifang Li-Gao,19 Stella Trompet,20,21 Niek Verweij,22 Evangelos Evangelou,16,23 Leo-Pekka Lyytikäinen,24,25 Bamidele O Tayo,26 Joris Deelen,27 Peter J van der Most,15 Sander W van der Laan,28 Dan E Arking,29 Alanna Morrison,30 Abbas Dehghan,1 Oscar H Franco,1 Albert Hofman,1 Fernando Rivadeneira,31 Eric J Sijbrands,31 Andre G Uitterlinden,1,31 Josyf C Mychaleckyj,6 Archie Campbell,28,54 P Eline Slagboom,27 Richard S Cooper,26 Mika Kähönen,55,56 Terho Lehtimäki,24,25 Paul Elliott,57 Pim van der Harst,22,58 J Wouter Jukema,20 Dennis O Mook-Kanamori,19,59,60 Dorret I Boomsma,18 John C Chambers,16,17,42 Morris Swertz,58,61 Samuli Ripatti,14,62,63 Ko Willems van Dijk,13,64 Veronique Vitart,4 Ozren Polasek,39 Caroline Hayward,4 James G Wilson,65 James F Wilson,4,11 Vilmundur Gudnason,7,8 Stephen S Rich,6 Bruce M Psaty,3,66,67,68 Ingrid B Borecki,9 Eric Boerwinkle,2,30 Jerome I Rotter,69,70,71 L Adrienne Cupples,5,9 Cornelia M van Duijn1

ABSTRACT

Background So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels.

Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from ~60,000 individuals in the discovery stage and ~90,000 samples in the replication stage.

Results Our study resulted in the identification of five new associations with circulating lipid levels at four loci.

Conclusions This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels.

INTRODUCTION

Genome-wide association studies (GWAS) for circulating lipid levels (high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) and triglycerides (TG)) have identified over 170 loci. These...
studies have been based on imputations to the HapMap reference panel or primary versions of the 1000 Genomes Project (1kG) or genotyping on the Illumina Exome Chip. None has used imputations with the Phase 1 integrated release v3 of the 1kG which allows the imputation of rare and low-frequency functional variants associated with circulating lipid levels comes from recent studies in which exome sequencing of the NPC1L1 gene identified rare variants associated with reduced LDL-C levels and reduced risk of coronary heart disease. Moreover, exome sequencing of LDLR and APOA5 identified rare variants associated with an increased LDL-C and increased TG levels and exome sequencing of APOC3 identified rare variants associated with reduced TG levels and reduced risk of coronary heart disease.

Our goal in this study was to identify rare and low-frequency functional variants associated with circulating lipid levels in a larger sample size compared with the exome sequencing of candidate gene approach. To this end, we imputed genotypes for study samples participating in the cohorts of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium using the Phase 1 integrated release V.3 of the 1kG and conducted a meta-analysis of about approximately 60,000 individuals, followed by a replication in an independent set of 90,000 individuals.

METHODS

Please see online supplementary methods for complete descriptions of the methods. In summary, for the discovery stage of this project, we used the data from 20 cohorts of the CHARGE consortium (see online supplementary methods). All cohorts were imputed with reference to the 1kG reference panel (version Phase 1 integrated release V3). The total number of individuals in the discovery stage was 59,409 for HDL-C, 48,780 for LDL-C, 60,024 for TC and 49,549 for TG. Online supplementary tables S1 and S2 contain the baseline characteristics per cohort and more details about SNP genotyping and genotype imputations. Within each cohort, each variant was tested for association with each of the lipid traits, assuming an additive genetic model. The association results of all cohorts for all variants were combined using inverse variance weighting. We used the following filters for the variants: 0.3<\(R^2\) (measurement for the imputation quality) ≤1.0 and expected minor allele count (expMAC=\(2\times MAF\) (minor allele frequency))\(\times R^2\times\)sample size) >10 prior to meta-analysis. After meta-analysis of all available variants, we excluded the variants that were not present in at least four cohorts, to prevent false positive findings. In order to select only variants that were independently associated with each of the lipid traits, we used the genome-wide complex trait analysis (GCTA) tool, V1.13. To identify novel loci we selected from the list of variants identified by GCTA, those variants which are within 0.5 Mb of a loci previously published by Teslovich et al or GLGC, which resulted in three variants for HDL-C, three for LDL-C, seven for TC and six for TG. These variants are located at 17 different loci and include one deletion (figure S1 and table 1).

These 19 variants were selected for replication. The total number of individuals in the replication stage was 84,598, 72,486, 83,739 and 73,519 for HDL-C, LDL-C, TC and TG, respectively (see online supplementary tables S1 and S2 for baseline characteristics and information about SNP genotyping and imputation details). The sample size in the replication stage was larger than the initial discovery sample for 17 out of the 19 variants. The frequencies of the variants were similar between the discovery and replication cohorts. The directions of effect were the same in the discovery and replication cohorts for 16 out of the 19 variants (see online supplementary figure S7). We used a Bonferroni corrected threshold for significance (p value<2.63\(\times 10^{-8}\)). Five out of the 19 variants were significantly replicated (table 1): rs6457374 (TC), rs186696265 (LDL-C and TC), rs77697917 (HDL-C) and rs116843064 (TG). The frequency of these variants ranged between 0.012 and 0.249 within the replication sample. Online supplementary table S5 shows the heterogeneity for the 19 variants after the meta-analysis of all discovery cohorts and of all replication cohorts. We also meta-analysed all variants in the individuals of the discovery cohorts and replication cohorts combined (table 1 and see online supplementary tables S5 and S6) and per ethnicity (see online supplementary table S6) using a fixed-effect meta-analysis approach. We found that the five significantly replicated variants we identified in this study are only significant within the European samples, thereby noticing that there are much more European samples in this study, compared with the African and Asian samples. When using a random-effect meta-analysis to account for the multiple ethnicities in our sample (see online supplementary table S7), we found that the five replicated variants, one attained genome-wide significance (p value<5\(\times 10^{-8}\)) and the other four nominal significance (p value<0.05).

DISCUSSION

We conducted a GWAS that included GWAS data imputed to the 1kG to identify rare and low-frequency, potentially functional, variants associated with circulating lipid levels. To this end, we imputed genotypes in approximately 60,000 individuals from 20 cohorts in the CHARGE consortium with the 1kG
binding cassette (ABC) transporters (p value of 4.29×10^{-5}) on chromosome 6 between the genes HLA-C and HLA-B (figure 2A). Both genes are associated with the KEGG term ATP binding cassette (ABC) transporters (p value of 4.29×10^{-5} and 3.84×10^{-5} for HLA-C and HLA-B, respectively, genenetwork.nl). ANGPTL4 has been associated with HDL-C before using the GWAS approach and with TG before using an exome sequencing approach and function of the protein by Polyphen2,8 MutationTaster9 and likelihood ratio test (LRT).10 This amino acid polymorphism has been associated in high linkage disequilibrium (D’=0.936) in the 1 kG with rs72836561, an exonic variant in the gene CD300LG (MAF=0.027, $p=2.437$, $\text{se}=0.381$, p value=1.51×10^{-10} in the discovery stage). This missense variant changes the amino acid arginine into cysteine (Arg82Cys) and is predicted to be damaging for the structure and function of the protein by Polyphen2,8 MutationTaster9 and LRT.10 This amino acid polymorphism has been associated with HDL-C in exome-wide association studies19 and TG in GWAS1 before.

The fourth variant we identified is rs186696265, which is located on chromosome 6 and associated with LDL-C and TC (figure 2D, E). This intergenic variant is between the LPA (Lipoprotein, Lp(A)) gene and the PLG (Plasminogen) gene. The LPA gene has been associated before with LDL-C and TC before.2 The reported lead SNP was rs1564348, which in the newer human genome versions is annotated to the SLC22A1 (Solute Carrier Family 22 (Organic Cation Transporter), Member 1) gene instead of the LPA gene, which has been identified by others as well.1

Fourteen out of the 19 variants were not replicated despite similar sample sizes and similar frequencies within the replication stage as compared with the discovery stage. Of those 14 variants, 11 exhibited effect sizes in the same direction in both stages. A possible explanation might be that the replication sample size is much larger compared with that of the discovery sample size. Two variants might have lacked significant replication due to small sample size, rs60839105 and rs151198427.
Table 1 The results for the 19 variants after the meta-analysis of all discovery cohorts, all replication cohorts and all cohorts combined

Trait	Chr:Position	rs identifier	nearest gene	A1/A2	Discovery cohorts		Replication cohorts		All cohorts combined										
					Freq	N	β	SE	p Value	Freq	N	β	SE	p Value	Freq	N	β	SE	p Value
HDL-C	3:72 067 255	rs75909755	PROL2-EIF4E3	T/C	0.03	62 607	1.593	0.275	7.27E-09	0.03	86 252	−0.019	0.031	5.45E-01	0.03	0.002	0.031	9.57E-01	
TC	6:31 272 261	rs6457374	HLA-B	T/C	0.75	46 839	2.339	0.339	5.32E-12	0.81	74 417	−0.057	0.016	4.23E-04	0.81	0.062	0.016	1.18E-04	
LDL-C	6:31 325 323	rs9266229	HLA-B	C/G	0.53	37 981	−2.201	0.344	6.16E-10	0.41	61 582	−0.025	0.014	7.37E-02	0.41	−0.029	0.014	4.04E-02	
TG	6:36 648 275	–	CDKN1A	CAG/C	0.45	53 425	−0.019	0.003	7.63E-09	0.49	73 512	−0.008	0.003	5.20E-01	0.46	−0.013	0.003	5.93E-07	
HDL-C	6:31 325 323	rs6457374	HLA-B	T/C	0.81	74 417	0.057	0.016	4.23E-04	0.81	0.062	0.016	1.18E-04						
TC	6:31 325 323	rs6457374	HLA-B	T/C	0.81	74 417	0.057	0.016	4.23E-04	0.81	0.062	0.016	1.18E-04						
LDL-C	6:31 325 323	rs6457374	HLA-B	T/C	0.81	74 417	0.057	0.016	4.23E-04	0.81	0.062	0.016	1.18E-04						
TG	6:36 648 275	–	CDKN1A	CAG/C	0.45	53 425	−0.019	0.003	7.63E-09	0.49	73 512	−0.008	0.003	5.20E-01	0.46	−0.013	0.003	5.93E-07	
HDL-C	7:80 492 357	rs60839105	SEMA3C	T/C	0.07	7882	3.355	0.571	4.26E-09	0.08	4971	1.067	1.228	3.85E-01	0.07	2.948	0.518	1.25E-08	
TC	8:68 351 787	rs151198427	CPAP	A/G	0.13	1419	−2.858	2.396	2.33E-01	0.11	4.797	1.035	3.56E-06						
LDL-C	9:78 728 065	rs146369471	PCSK5	T/C	0.99	51 367	0.068	0.103	5.11E-01	0.99	0.110	0.103	2.84E-01						
TG	9:78 728 065	rs146369471	PCSK5	T/C	0.99	70 241	0.015	0.003	8.84E-01	0.99	0.057	0.003	5.79E-01						
TC	12:51 207 704	rs829112	ATFI	A/G	0.73	67 843	0.222	0.036	4.27E-11	0.72	0.024	0.013	3.18E-01						
TG	13:11 454 402	rs7140110	GASG	T/C	0.71	42 211	−0.021	0.004	3.65E-08	0.70	437	−0.006	0.005	2.68E-01	0.72	−0.015	0.003	5.13E-07	
TG	13:11 454 402	rs7140110	GASG	T/C	0.71	42 211	−0.021	0.004	3.65E-08	0.70	437	−0.006	0.005	2.68E-01	0.72	−0.015	0.003	5.13E-07	
TG	15:43 365 025	rs10509625	MYO15A	T/C	0.97	45 052	−2.717	0.407	2.38E-11	0.93	67 843	−0.222	0.036	4.27E-10	0.93	−0.241	0.035	1.04E-11	
TC	17:18 046 290	rs8065026	MYO15A	T/C	0.79	76 502	1.310	1.468	4.63E-09	0.81	76 412	0.013	0.003	4.28E-01	0.81	0.029	0.003	2.66E-02	
HDL-C	17:41 840 849	rs77697917	SOST-DUSP3	T/C	0.02	48 221	−0.021	0.004	3.65E-08	0.01	46 221	−0.006	0.005	2.68E-01	0.02	−0.015	0.003	5.13E-07	
TG	19:8 429 323	rs116430364	ANGPTL4	A/G	0.03	34 643	−0.101	0.016	6.46E-11	0.03	44 194	−0.065	0.019	4.53E-04	0.03	−0.087	0.012	3.83E-13	
TC	20:22 048 848	rs2618566	BANF2-SNX5	T/G	0.65	63 300	−1.566	0.251	4.68E-10	0.60	88 946	−0.024	0.011	2.83E-02	0.60	−0.027	0.011	1.38E-02	

The variants in bold are the significantly replicated variants. A1 is allele 1 and A2 is allele 2, Freq is the frequency of A1, β is the effect of A1. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides.

van Leeuwen EM, et al. J Med Genet 2015; 0:1–9. doi:10.1136/jmedgenet-2015-103439
Both variants only pass quality control in the cohorts in the discovery stage that contain individuals of African ancestry (see online supplementary figure S7). Although there are several cohorts with individuals of African ancestry in the replication stage, both variants did not pass quality control in most cohorts which leads to the conclusion that these variants might be population-specific. This is also suggested by the 1 kG data (Phase 3) as the frequency of the C-allele is 92% in African samples and 100% in the European samples for rs60839105 and the frequency of the G-allele is 86% in the African samples and 100% in the European samples for rs151198427. Imputations of cohorts with individuals of African ancestry with the African Genome Variation Project20 might confirm the association of rs60839105 with HDL-C and rs151198427 with TC.

To our knowledge, this is the first GWAS of circulating lipid levels using the Phase 1 integrated release V3 of the 1 kG, therefore we cannot compare the positive replication rate with other studies. However, we did replicate 88.1% of the findings of Teslovich et al2 and 43.4% of the findings of GLGC3 despite our smaller sample. A high replication rate is expected based on the high overlap of our samples with the samples of Teslovich et al2 and with the samples of GLGC3 though it indicates that when using the 1000 Genomes instead of the HapMap reference panel, we can achieve a high replication rate using a smaller sample size. We also tried to replicate findings from

Figure 2 The regional association results of the initial meta-analysis of all discovery cohorts for (A) TC on chromosome 6, (B) HDL-C on chromosome 17, (C) TG on chromosome 19, (D) LDL-C on chromosome 6 and (E) TC on chromosome 6. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides.
exome sequencing of candidate genes. The p.Arg406X mutation in the NPC1LI1 gene (rs145297799), which was reported to be associated with reduced LDL-C levels and reduced risk of coronary heart disease, is not available in the 1kg reference panel and, therefore, we were not able to replicate this finding. Do et al described the exome sequencing of the genes LDLR and APOA5 and identified rare variants associated with an increased risk of myocardial infarction, increased LDL-C and TG levels. Of those rare variants, only two in the LDLR gene and seven in the APOA5 gene exist in our discovery meta-analysis. Both LDLR variants are associated with TG in our discovery meta-analysis (rs34282181, $\beta=-0.093$, SE=0.023, p value=4.827×10^{-3} and rs2075291, $\beta=0.219$, SE=0.046, p value=2.092×10^{-5}), but not significantly associated with LDL-C (rs34282181, $\beta=-3.939$, SE=1.861, p value=0.034 and rs2075291, $\beta=-2.316$, SE=3.001, p value=0.440). None of the seven APOA5 variants were significantly associated with TG or LDL-C in our discovery meta-analysis (lowest p value is for LDL-C with rs72658860, $\beta=-18.430$, SE=7.140, p value=9.848×10^{-6}). The third published finding we tried to replicate, was the association between APOC3 and TG levels. Of the seven variants reported, only one existed in our discovery meta-analysis (chromosome 11, position 116 701 354), which is associated with TG ($\beta=-0.343$, SE=0.011, p value=2.311×10^{-5}). Those authors also reported an association between a APOA5 variant (rs3135506) and TG as the most significant finding. This variant was also significantly associated with TG in our discovery meta-analysis ($\beta=0.129$, SE=0.007, p value=1.099×10^{-8}). These replication efforts demonstrate that many of the published results of exome sequencing can be replicated through the use of 1 kg imputations.

In conclusion, we identified and replicated five variants associated with circulating lipid levels. These variants are in genes that can be linked biologically to lipid metabolism. Although there were a large number of variants that did not replicate at the accepted genome-wide significance threshold, the low-cost, hypothesis-free approach that we applied uncovered five variants. This study, therefore, illustrates that GWAS may still help us unravel the biological mechanisms behind circulating lipid levels.

Author affiliations
1Department of Clinical Epidemiology, Umeå University, Umeå, Sweden
2Department of Clinical Epidemiology, Umeå University, Umeå, Sweden
3Department of Clinical Epidemiology, Umeå University, Umeå, Sweden
4Department of Clinical Epidemiology, Umeå University, Umeå, Sweden
5Department of Clinical Epidemiology, Umeå University, Umeå, Sweden
Acknowledgements The authors especially thank all volunteers who participated in the study.

The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research.

We are grateful to all study participants and their relatives, general practitioners and neurologists for their contributions to the ERF study and to P Ventar for her help in genealogy, J Vergeer for the supervision of the laboratory work and P Snijders for his help in data collection.

The authors thank Behroz Alizadeh, Annemieke Boeije, Marcel Bruijnenburg, Norrie Festein, Frank Fransne, Willemke Grootenhuis and Diderik Harkema for their help in creating the GWAS database, and Rob Bieringa, Joost Keers, René Oostergo, Rosalie Visser, Judith Vondr for their work related to data collection and validation. The authors are grateful to the study participants, the staff from the LifeLines Cohort Study and the contributing research centres delivering data to LifeLines and the participating general practitioners and pharmacists.

MESA and the MESA SHARE project are supported by contracts N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-001079 and UL1-TR-000040 from the National Heart, Lung, and Blood Institute (NHLBI). Funding for MESA SHARE genotyping was provided by NHLBI Contract NO2-HL-64728. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSA grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

CROATIA-Korcula, CROATIA-Split and CROATIA-Vis (CR-Korcula, CR-Split, CR-Vis) were funded by the Medical Research Council UK, The Croatian Ministry of Science, Education and Sports (grant 216-1080315-0302), the European Union framework program 6 EUROSPLAN project (contract no. LSHG-CT-2006-018947) and the Croatian Science Foundation (grant 8875).

The ERF study is a part of EUROSPLAN (European Special Populations Research Network) was supported by European Commission FP6 STRP grant number 018947 (LSHG-CT-2006-01947) and also received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) agreement grant HEALTH-F4-2007-201413 by the European Commission under the programme “Quality of Life and Management of the Living Resources” of 5th Framework Programme (no.QLG2-CT-2002-01254). The ERF study was further supported by ENGAGE consortium and CMBS. High-throughput analysis of the ERF data was supported by joint grant from Netherlands Organisation for Organisational Research and the Russian Foundation for Basic Research (NWO-RFBR 047.017.043). Exome sequencing in ERF was supported by the ZonMw grant (project 91111025).

The Family Heart Study was supported by the by grants R01-HL-087700, R01-HL-088215 and R01-HL-117078 from the National Heart, Lung, and Blood Institute.

Generation Scotland received core funding from the Chief Scientist Office of the Scottish Government Health Directorate C2D16/6 and the Scottish Funding Council HR3006. Genotyping of the SS:SHS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland and was funded by the UK’s Medical Research Council.

LifeLines cohort study, and generation and management of GWAS genotype data for the LifeLines Cohort Study is supported by the Netherlands Organization of Scientific Research NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces (SNN), the Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes Research Foundation.

The Leiden Longevity Study (LLS) has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2011) under grant agreement no 259679. This study was supported by a grant from the Innovation-Oriented Research Program on Genomics (Sentierinovem IGE0507), the Centre for Medical Systems Biology and the Netherlands Consortium for Healthy Ageing (grant O50-060-810), all in the framework of the LifeLines Biomedical Research Institute, Netherlands Organization for Scientific Research (NWO), UnileverColworth and by BMBRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007).

The LOLIPop study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the British Heart Foundation (SP300402), the Medical Research Council (G0001966,G000931), the Wellcome Trust (847322/B/08/Z) the NIHR

Collaborators The LifeLines Cohort Study: see online supplementary appendix 1. CHARGE Lipids Working Group: see online supplementary appendix 2.

Contributors EMLV. organised the study and designed the study with substantial input of AI, LAC and CMvD. EMVL drafted the manuscript with substantial input from CMvD. All authors had the opportunity to comment on the manuscript. Data collection, GWAS and statistical analysis was done by SWvdL, HMiDr, GP (AEGS); AS, VG, TBH (AGES); EE, MPS, PE (Airwave); AS, DEA, ECM, EB (ARIC); ICB, JAB, KMC, BMP (CHS); AI, EMVL, CMvD (ERF); MFF, IBF (famHLS); LPL, KN, M (FINCAINS); IS, VS, SR (FINNISKI); SD, CCW, LAC (HHS); JEH, AC, LH, SP (GS); OD, LAL, JGW (HJS); JEH, IK, PN, OP (CROATIA Korcula); IMN, MS (Lifelines); JD, AJM,NC, PE5 (LIS); WJ, JSK, BL, WRS, ST, JCC (LOLPOP); BOT, TF, CAM, RSC (Loyola); AM, ECM, SSR, MRI (MESA); RLG, RD, DOMK (NEO); HM, EdsM, YLM, BWHP, GW, DB (NTR-NESDA); PKJ, HC, JFW (ORCIDES); NV, RTG, PvdH (PREVEND); ST, IF, JW (PROSPER); EMVL, AD, O, AH, FR, EJS, AGU, CMvD (RS); JEH, TZ, VV (CROATIA Split); Fvdmvl, AO, HS (TRAILS); JEH, JM, CH, IR (CROATIA Vis); JSV, OTR, TL (YFS). EMVL performed the meta-analysis and all follow-up steps. Biological association of loci and bioinformatics were carried out by EMVL, JBvK, KWDr and CMvD.

Funding The AGES Study has been funded by NIH contracts R01 AG-1-1200 and HHSN271201200022C, the NIA Intramural Research Program, Hjartaværd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament).

The Airwave Study is funded by the Home Office (grant number 780-TETRA) with additional support from the National Institute for Health Research (NIHR) Imperial College Healthcare NHS Trust (ICHT) and Imperial College Biomedical Research Centre (BRC). PE is an NIHR Senior Investigator and is supported by the ICHT and Imperial College BRC, the MRC-PHE Centre for Environment and Health and the NIHR Protection Research Unit on Health Impact of Environmental Hazards.

The ARIC Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute (NHLBI) contracts (HHSN268201100004C, HHSN268201100006C, HHSN268201100002C, HHSN268201100008C, HHSN268201100009C, HHSN268201100001C, HHSN268201100012C, R01HL087641, R01HL093679 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN26820062522C.

Cardiovascular Health Study: This CHS research was supported by NHLBI contracts HHSN268201200026C, HHSN268201000007C, HHSN268201000007C, HHSN268201000007C, HHSN268201000007C, HHSN268201000007C, HHSN268201000007C, R01HL080295, R01HL087652, R01HL107576, R01HL103612, and R01HL102393 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutional sites can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSA grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Medical Ethics Committees.

Ethics approval of this project are available.

Patient consent for blood lipids.

REFERENCES

1 Surakka I, Hörkkö M, Magi R, Sarin AP, Mahajan A, Lagou V, Manullo L, Ferreira T, Miraglia B, Timonen S, Kettunen J, Pirinen M, Karjalainen J, Thorleifsson G, Hagå S, Hottenga JJ, Isaacs A, Ladenvall C, Beekeker M, Ek D, Sung SJ, Tyden H, Imer S, Westra HJ, Bader M, de Craen AJ, de Geus EJ, de Geus EJ, Deelen J, Grobbelaar A, Hamsten A, Havulinna AS, Hengstenberg C, Hottenga JJ, Illig T, Junge J, Kuula S, Kivimäki M, Kooner JS, Kurganov O, Kühn C, Kuzma RM, Laitinen L, Lakka HA, Launer LJ, Lakka HE, Laaksonen R, Lakshmanan T, Lakshmana R, Lange NA, Lamari N, Lamminpää A, Langdahl B, Langlois HR, La disponibilités de l'information. Consultez:\n\n\n© 2005 Elsevier Masson SAS. Tous droits réservés.

university_of glaring, when the identification of the contributio...\n\n\n© 2004 Elsevier Inc. All rights reserved.

university_of glaring, when the identification of the contributio...\n\n\n© 2004 Elsevier Inc. All rights reserved.
van Leeuwen EM, et al. J Med Genet 2015;52:1–9. doi:10.1136/jmedgenet-2015-103439

Genome-wide studies

9

11

Romeo S, Pennacchio LA, Fu Y, Boerwinkle E, Tybjaerg-Hansen A, Hobbs HH, Cohen JC. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat Genet 2007;39:513–16.

12

van Leeuwen EM, Karsen LC, Deelen J, Isaacs A, Medina-Gomez C, Mbarek H, Kanterakis A, Trumpet S, Postma S, Verweij N, van Enckevort DJ, Huffman JE, White CC, Feitoza MF, Bartz TM, Manichaikul A, Joshi PK, Peloso GM, Deelen P, van Dijk F, Willemsen G, de Geus EJ, Milaneschi Y, Penninx BW, Francioli LC, Menelaou A, Pult SL, Rivadeneira F, Hofman A, Oostra BA, Franco OH, Mateo Leach I, Beekman M., de Craen AJ, Uh HW, Trochet H, Hocking L, Porteous DJ, Sattar N, Parkard CJ, Buckley BM, Brody JA, Bis JC, Rotter J, Mychaleckyj JC, Campbell H, Duan Q, Lange LA, Wilson JW, Hayward C, Polakos O, Visart V, Rudan I, Wright AF, Rich SS, Psaty BM, Boeckx IB, Kearney PM, Stott DJ, Adrienne Cupples L; Genome of The Netherlands Consortium, Jukema JW, van der Harst P, Siibrands EJ, Hottendorff JJ, Lutteraden AG, Swertz MA, van Ommen GJ, de Bakker PI, Eline Slagboom P, Boomsma DI, Wijmenga C, van Duijn CM. Genome of the Netherlands population-specific imputations identify an ABCA6 variant associated with cholesterol levels. Nat Commun 2015;6:6605.

13

Jones FM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci. 2004;61:982–98.

14

Towle HC. Glucose as a regulator of eukaryotic gene transcription. Trends Endocrinol Metab 2005;16:489–94.

15

Dentín R, Pégrier JP, Benhaméd F, Fournier F, Ferré P, Fauveau V, Magnusson MA, Girard J, Postic C. Hepatic glucokine is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem 2004;279:20314–26.

16

Dentín R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 2005;87:81–6.

17

Ma L, Robinson LN, Towle HC. ChREBP**Mix is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem 2006;281:28721–30.

18

Uyeda K, Repa JJ. Carbohydrate responsive element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 2006;4:107–10.

19

Albrechtsen A, Grarup N, Li Y, Sarsø T, Tinglef G, Liigova J, Tybjaerg-Hansen A, Hobbs HH, Cohen JC, Chirnside JC, Kastenholz H, von Tscharner B, Skriver K, Johnson C, Uth S, Simonsen J, Jakobsen K, Vauras P, O’Donnell CJ, Wilson JG, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Samani NJ, Schunkert H, Danesh J, Marrugat J, Elosua R, Deidda V, de Vos N, Fall CH, Holme N, McPherson R, Willer CJ, Erdmann J, Hall AS, Saman...
Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in \textit{ANGPTL4} determining fasting TG levels

Elisabeth M van Leeuwen, Aniko Sabo, Joshua C Bis, Jennifer E Huffman, Ani Manichaikul, Albert V Smith, Mary F Feitosa, Serkalem Demissie, Peter K Joshi, Qing Duan, Jonathan Marten, Jan B van Klinken, Ida Surakka, Ilja M Nolte, Weihua Zhang, Hamdi Mbarek, Ruifang Li-Gao, Stella Trompet, Niek Verweij, Evangelos Evangelou, Lec-Pekka Lyytikäinen, Bamidele O Tayo, Joris Deelen, Peter J van der Most, Sander W van der Laan, Dan E Arking, Alanna Morrison, Abbas Dehghan, Oscar H Franco, Albert Hofman, Fernando Rivadeneira, Eric J Sijbrands, Andre G Uitterlinden, Josyf C Mychaleckyj, Archie Campbell, Lynne J Hocking, Sandosh Padmanabhan, Jennifer A Brody, Kenneth M Rice, Charles C White, Tamara Harris, Aaron Isaacs, Harry Campbell, Leslie A Lange, Igor Rudan, Ivana Kolcic, Pau Navarro, Tatijana Zemunik, Veikko Salomaa, The LifeLines Cohort Study, Angad S Koone, Jaspal S Koone, Benjamin Lehne, William R Scott, Sian-Tsung Tan, Eco J de Geus, Yuri Milaneschi, Brenda W J H Penninx, Gonneke Willemsen, Renée de Mutsert, Ian Ford, Ron T Gansevoort, Marcelo P Segura-Lepe, Olli T Raitakari, Jorma S Vilkari, Kjell Nikus, Terrence Forrester, Colin A McKenzie, Anton J M de Craen, Hester M de Ruijter, Gerard Pasterkamp, Harold Snieder, Albertine J Oldehinkel, P Eline Slagboom, Richard S Cooper, Mika Kähönen, Terho Lehtimäki, Paul Elliott, Pim van der Harst, J Wouter Jukema, Dennis O Mook-Kanamori, Dorret I Boomsma, John C Chambers, Morris Swertz, Samuli Ripatti, Ko Willems van Dijk, Veronique Vitart, Ozren Polasek, Caroline Hayward, James G Wilson, James F Chambers, Oscar H Franco, Albert Hofman, Fernando Rivadeneira, Eric J Sijbrands, Andre G Uitterlinden, Josyf C Mychaleckyj, Archie Campbell, Lynne J Hocking, Sandosh Padmanabhan, Jennifer A Brody, Kenneth M Rice, Charles C White, Tamara Harris, Aaron Isaacs, Harry Campbell, Leslie A Lange, Igor Rudan, Ivana Kolcic, Pau Navarro, Tatijana Zemunik, Veikko Salomaa, The LifeLines Cohort Study, Angad S Koone, Jaspal S Koone, Benjamin Lehne, William R Scott, Sian-Tsung Tan, Eco J de Geus, Yuri Milaneschi, Brenda W J H Penninx, Gonneke Willemsen, Renée de Mutsert, Ian Ford, Ron T Gansevoort, Marcelo P Segura-Lepe, Olli T Raitakari, Jorma S Vilkari, Kjell Nikus, Terrence Forrester, Colin A McKenzie, Anton J M de Craen, Hester M de Ruijter, Gerard Pasterkamp, Harold Snieder, Albertine J Oldehinkel, P Eline Slagboom, Richard S Cooper, Mika Kähönen, Terho Lehtimäki, Paul Elliott, Pim van der Harst, J Wouter Jukema, Dennis O Mook-Kanamori, Dorret I Boomsma, John C Chambers, Morris Swertz, Samuli Ripatti, Ko Willems van Dijk, Veronique Vitart, Ozren Polasek, Caroline Hayward, James G Wilson, James F Wilson, Vilmundur Gudnason, Stephen S Rich, Bruce M Psaty, Ingrid B Borecki, Eric Boerwinkle, Jerome I Rotter, L Adrienne Cupples and Cornelia M van Duijn

\textit{J Med Genet} published online April 1, 2016

Updated information and services can be found at:

http://jmg.bmj.com/content/early/2016/04/01/jmedgenet-2015-103439

These include:

References

This article cites 20 articles, 3 of which you can access for free at:

http://jmg.bmj.com/content/early/2016/04/01/jmedgenet-2015-103439

#BIBL

Open Access

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

To request permissions go to:

http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:

http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:

http://group.bmj.com/subscribe/
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (162)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/