Abstract

Background: Cardiorespiratory fitness (VO2max) is an excellent predictor of chronic disease morbidity and mortality risk. Guidelines recommend individuals undertake exercise training to improve VO2max for chronic disease reduction. However, there are large inter-individual differences between exercise training responses. This systematic review is aimed at identifying genetic variants that are associated with VO2max trainability.

Methods: Peer-reviewed research papers published up until October 2016 from four databases were examined. Articles were included if they examined genetic variants, incorporated a supervised aerobic exercise intervention; and measured VO2max/VO2peak pre and post-intervention.

Results: Thirty-five articles describing 15 cohorts met the criteria for inclusion. The majority of studies used a cross-sectional retrospective design. Thirty-two studies researched candidate genes, two used Genome-Wide Association Studies (GWAS), and one examined mRNA gene expression data, in addition to a GWAS. Across these studies, 97 genes to predict VO2max trainability were identified. Studies found phenotype to be dependent on several of these genotypes/variants, with higher responders to exercise training having more positive response alleles than lower responders (greater gene predictor score). Only 13 genetic variants were reproduced by more than two authors. Several other limitations were noted throughout these studies, including the robustness of significance for identified variants, small sample sizes, limited cohorts focused primarily on Caucasian populations, and minimal baseline data. These factors, along with differences in exercise training programs, diet and other environmental gene expression mediators, likely influence the ideal traits for VO2max trainability.

Conclusion: Ninety-seven genes have been identified as possible predictors of VO2max trainability. To verify the strength of these findings and to identify if there are more genetic variants and/or mediators, further tightly-controlled studies that measure a range of biomarkers across ethnicities are required.

Keywords: Cardiorespiratory fitness, VO2max, Predictor genes, Training

Background

The worldwide prevalence of chronic diseases, such as cardiovascular disease, cancers, stroke and diabetes is rising [1]. Low cardiorespiratory fitness is strongly associated with chronic diseases and premature mortality [2–7]. To alleviate the health and economic burden associated with low cardiorespiratory fitness, health guidelines across the world recommend individuals undertake regular exercise [1].

Exercise training can increase cardiorespiratory fitness and decrease chronic disease via a number of mechanisms [7]. Adaptations include improvements to cardiac size, stroke volume (increase in volume of blood pumped from the left ventricle), cardiac output (volume of blood pumped from the heart per minute), pulmonary blood flow and respiratory function, supply of oxygen-rich blood to working muscles (increased number of
capillaries and blood volume), muscle mitochondrial function and content, oxidative enzyme capacity, vascular wall health and function, and biomechanical efficiency [2, 7]. It has been suggested that improvements in cardiorespiratory fitness in response to exercise training varies greatly between individuals, with some people responding well or very well (‘responders’ or ‘high-responders’) to exercise training, whereas others only have mild increases in their cardiorespiratory fitness following similar exercise training (‘low-responders’) [4, 5, 8–11]. Importantly, these responses need to be compared to within-subject random variation to ascertain true inter-individual differences [12]. The ability to change cardiorespiratory fitness is a multifactorial trait influenced by environmental factors (such as exercise training) and genetic factors [4, 5, 11]. Considering cardiorespiratory fitness is one of the best integrative predictors of morbidity and mortality risk, it may be important to understand how genetics predict the variability in response to exercise training. This knowledge could lead to targeted personalised exercise therapy to decrease the burden of chronic disease.

The gold standard measure for cardiorespiratory fitness is maximal oxygen uptake (VO_{2max}), which is quantified as the maximal amount of oxygen the body can use in 1 min, during dynamic work with large muscle mass [13]. Research into human variation of VO_{2max} was first undertaken over forty years ago, with several authors identifying a strong genetic influence on VO_{2max} in twins [14, 15]. Subsequent studies have identified significant familial aggregation for VO_{2max} trainability. For example, authors have found greater variance between pairs of monozygotic (MZ; identical) twins than within pairs of twins for VO_{2max} training response after standardized aerobic training interventions [16, 17]. The strongest evidence to date on this topic was found in the HEalth, Risk factors, exercise training And GEnetics (HERITAGE) family study [18]. Four hundred seventy-three Caucasian adults from 99 nuclear families completed 20 weeks of Moderate Intensity Continuous Training (MICT). The average increase in VO_{2max} was 400 mL O_{2}/min, with a range from −114 to +1097 mL/min. This difference was two and half times greater between families than within families, with a 47% heritability estimate for VO_{2max} training response [18]. A major limitation from these findings, however, is there was no comparator control group.

Since this familial longitudinal research, the Human Genome Project completed sequencing of the human genome resulting in significant advancements in genetic analysis capabilities. This led to a better understanding of genetic variations of large populations. Analyzing genetic variants on a population level using techniques such as candidate gene analysis, GWAS, whole genome and exome sequencing and RNA expression analysis (RNA-seq, or microarrays) has resulted in the possibility of developing ‘personalized genomics’. This aims for biological profiling to provide more effective health management and treatment [5]. However, research in the field of exercise genomics it still in its infancy and much work is needed before genomic tools could be utilized to personalize exercise training programs [19].

The aim of this study was to systematically review the literature and identify genetic variants that have been associated with VO_{2max} trainability following an aerobic exercise training intervention. Given the infancy of this research field, results should only be used to provide the basis for future research. This research should aim to confirm previous findings and investigate mediators that can influence gene expression. Importantly, future genetic studies in this area should attempt to investigate the physiological functions that contribute to improving VO_{2max} training response and overall health outcomes. Findings from ongoing research may assist clinical professionals to provide personalized evidenced-based medicine centered on phenotype, contributing to the fight against chronic disease.

Methods

A comprehensive search of four databases (PubMed, Embase, Cinahl, Cochrane) was completed from their inception until October 2016. Studies focusing on genes and their VO_{2max}/VO_{2peak} response to supervised aerobic training were sought with the following search terms: genetic profiling, polymorphism, single nucleotide polymorphisms, SNPs, genetic variants, predictor genes, trainability, endurance training, cardiovascular fitness, cardiorespiratory fitness, VO_{2max}, VO_{2peak}, aerobic power, aerobic fitness, aerobic capacity. A full list of search terms can be found at the end of this review.

Two authors (CW and JC) agreed on the criteria for inclusion. Articles were incorporated if they were: original, peer-reviewed research; included an aerobic intervention, with minimum 75% supervision; included genetic variant testing; included a maximal VO_{2max}/VO_{2peak} using direct gas analysis from an incremental test (pre and post intervention); conducted on humans; and written in English.

Using an extraction grid, one author (CW) conducted the initial screening analysis. After removing duplicates and scanning the titles and abstract of articles, those meeting the inclusion criteria were reviewed. Data recorded from the review consisted of the author’s name and place of study, study design, study sample, tissue source, genotyping method used, gene and variant examined, genotype, gene expression (if examined), intervention used, possible mediators (such as medications and health concerns), and the influence of the genetic variant.
investigated on VO2max change. Further articles were retrieved from snowballing included articles from their reference lists. Articles included in the review are in Table 1.

A summary of key findings from the included articles is provided in Tables 2 and 3. Limitations were assessed by two authors (CW and JC) based on the intervention, genotyping method used, study design and sample used. Table 4 was developed to highlight which predictor genes for VO2max trainability merited further exploration. A third author (MW) examined Tables 1, 2, 3 and 4 to ensure all genetic variants, genomic coordinates and genotypes, were described with a consistent annotation.

Results

Of the 1635 articles identified, 35 met the inclusion criteria (see Fig. 1). A summary of these articles is provided in Tables 1, 2 and 3. From the 35 articles, 97 genetic variants were identified as being significantly associated with VO2max trainability (Table 4).

Study characteristics

Across the studies DNA samples from 4212 individuals were used. Tissue sources were predominantly blood leucocytes, lymphoblastoid cell lines and buccal cells. Genotype was primarily identified through PCR-RFLP (polymerase chain reaction restriction fragment length polymorphism based analysis) for candidate genes and Illumina Human CV370-Quad Bead Chips for GWAS analysis (which can capture over 370,000 SNPs per participant).

Overall, 68% of participants in the reviewed studies were men, and ages ranged from 17 to 75 years. The average BMI of participants was 25.3 kg/m2 (SD 2.36). Where detailed, DNA samples were taken from a variety of ethnicities, including Caucasian (74.5%), Asian (13.5%), African-American (7.5%), Hispanic (4.3%) and Native American (0.2%).

The 35 included articles described 15 cohorts, with three cohorts providing subject data for 19 articles (see Table 1 for details). Nine articles [20–28] used data from the HERITAGE study and five [29–33] reviewed Caucasian participant data from the Cardiac Rehabilitation and Genetics of Exercise Performance and Training Effect (CARAGENE) study. Five studies examined clinical data from 102 young male and apparently healthy police recruits in China [34–38]. The remaining samples came from independent clinical studies focusing on apparently healthy but sedentary adults from a variety of ethnicities including Caucasians, Asians, African-Americans, Native American and Hispanics [13, 39–53].

Most reviewed studies ($n = 32$) used a single-group longitudinal design. However, one study compared three groups using a longitudinal design [28]. One study used retrospective data from two Randomized Controlled Trials (RCT) [20]; and one was a double-blind study [39].

Twenty-eight studies examined a MICT intervention. Two studies examined protocols using High Intensity Interval Training (HIIT) [28, 40]. The 5 remaining studies trained participants by running at Ventilatory Threshold (VT) [34–38]. Training intensity was measured using a percentage of VO2max Heart Rate Reserve (HRR), VT, Maximal Power (P_{max}) or Maximum Heart Rate (HR_{max}). Intensities varied between 50 and 85% VO2max, 95% -105% VT, 50–85% P_{max}, 80–85% HRR and 50–80% HR_{max}. Training volume varied between 20 to 90 min per session (2-4×/week). The period of interventions ranged from 4 weeks to 9 months. Training modalities consisted primarily of cycle ergometers and treadmills.

Only six studies incorporated a standardized diet prior to and during the intervention period [23, 41–45]. Three articles included strength training [20, 39, 47] and two studies included military training [39, 47] as the intervention.

Genotyping findings

1. Candidate gene studies

The candidate gene association approach requires a prior hypothesis that the genetic polymorphisms of interest are causal variants or in strong linkage disequilibrium (LD) with a causal variant, and would be associated with a particular exercise-related phenotype at a significantly different rate than predicted by chance alone (may be higher or lower). This approach is effective in detecting genetic variants that are either directly causative, or belong to a shared haplotype that is causative [54]. Thirty-two candidate gene studies were based on the gene’s molecular function and possible association with VO2max trainability (Table 2).

Genes associated with muscular subsystems

VO2peak can be influenced by muscle efficiency and it has been hypothesized that genes encoding muscular subsystems may contribute to the genetic variability in VO2peak training response [33]. Twelve genes and 21 genetic variants related to muscular phenotypes were investigated in 935 (76 female) cardiac patients from the CARAGENE study [33]. Three out of the 21 genetic variants were significantly associated ($p < 0.05$) with an increase in VO2peak following 3 months of MICT ($2–3 \times 90\text{-min sessions per week at 80% } HR_{\text{max}}; p < 0.05$). These variants included $GR\text{c.}68 > A$ (G/A genotype, number of people with genotype; $n = 55$) in the glucocorticoid receptor gene (GR; rs6190), $CNTF\text{c.}115-6G > A$ (AA
Author, Year, Country	Gene/s tested for VO2max trainability	Study Design	Study Sample	Tissue source	Method for Genotyping	Intervention
Xu, 2015, China	ALAS2	Single group, longitudinal. VO2max and venous blood samples taken pre & post intervention.	N = 244 healthy Chinese males; 18-22 years (20 ± 1.76); wt 65.06 ± 9.59 kg; ht 174.37 ± 6.16 cm. N = 72 randomly selected for HiLo training (69.8 ± 7.8 kg and 177.93 ± 5.26 cm).	Peripheral blood leucocytes	PCR protocol + separation on polyacrylamide gel	4 weeks supervised HiLo training in hypoxia-training centre. Hi = bicycle ergometer for 30 mins at 75% VO2max in 15.4% O2 concentrated environment, 3x/week for 4 weeks. Lo = same training but at lower elevation.
Yu, 2014, China	APOE	Single group, longitudinal. VO2max, anthropometric and serum levels tested pre & post intervention.	N = 360; 180 Chinese males and females; age 32.8 ± 11.9 yrs.; BMI 25.4 ± 5.6 kg/m² M; BMI 26 ± 6.2 kg/m² F; no health concerns; inactive.	Peripheral blood leucocytes	PCR-(polymerase chain reaction)-RFLP (restriction fragment length polymorphism) assay	6 mths; progressive; supervised aerobic training; 60–85% VO2max
Zarebska, 2014, Poland	GSTP1	Single group, longitudinal. VO2max, HRmax, VEmax, AT and body composition tested pre & post intervention; balanced diet prior to intervention (2000 kcal)	N = 66 Polish females; 19–24 yrs.; BMI 21.8 ± 2 kg/m²; no health concerns; inactive; no supplements or medications; non-smokers.	Buccal cells	TaqMan allelic discrimination assay using qPCR	3 mths; supervised; progressive MICT; 3x/wk; 50–75% HRmax 30–60 min.
Ghosh, 2013, Singapore	GWAS	Retrospective, single-group longitudinal. VO2max tested pre & post intervention.	HERITAGE WHITES: n = 473 Caucasians; 230 male & 243 females; no major health concerns; inactive.	Lymphoblastoid cell lines	Illumina Human CNV370-Qaud Bead Chips	HERITAGE: 20 wks; supervised; progressive MICT; 3x/wk; 55–75% VO2max 30–50 min.
Bouchard, 2011, USA	GWAS	Retrospective HERITAGE Single group, longitudinal. VO2max, tested pre & post intervention. DREW: RCT; VO2max tested pre & post intervention. STRRIDE 1 & 2: RCT; VO2max tested pre & post intervention.	HERITAGE WHITES: n = 473 Caucasians (252 women); 17-65 yrs; inactive; no major health concerns. HERITAGE BLACKS: n = 259 (177 women); 17-65 years; inactive; no major health concerns. HERITAGE average age = 35.7 ± 14.5 yrs. BMI 25.8 ± 4.9 kg/m². DREW study: n = 464 overweight or obese postmenopausal women; inactive; no major health concerns. STRRIDE 1 study: M&F, 40-65 yrs; inactive; overweight, dyslipidemic and postmenopausal (F). STRRIDE 2 study: 18–70 yrs; inactive; overweight, dyslipidemic. N = 183 for STRRIDE & 3rd studies.	Lymphoblastoid cell lines	Illumina Human CNV370-Qaud Bead Chips	HERITAGE 20 wks; supervised; progressive, MICT; 3x/wk; 55–75% VO2max 30–50 min. DREW: 6 mths; supervised; exercise groups: 4, 8 or 12 kcal/kg/week (MICT); 3–4x/week; progressive training intensity started at 50% VO2max. Each group expended 4 kcal/kg/week for first week. Group 1: maintained 4 kcal/kg/week for 6 months. Group 2: increased by 1 kcal/kg/week until 8kcal/week reached – maintain for remaining time. Group 3: increased by 1 kcal/kg/week until 8kcal/week reached – maintain for remaining time. STRRIDE 1: 8–9 mths; supervised exercise sessions. Three groups: 1. High amount/vigorous intensity exercise (170 min/week/2000 kcal/week) or the calorie equivalent of jogging for ~20 miles per week at 55–85% VO2max. 2. Low amount/Vigorous-intensity exercise/1200 kcal/week (~120 min/week) or the equivalent of 12 miles/week for jogging at 65–80%.
Author, Year, Country	Gene/s tested for	Study Design	Study Sample	Tissue source	Method for Genotyping	Intervention
-----------------------	------------------	--------------	--------------	---------------	-----------------------	--------------
McKenzie, 2011, USA	AKT	Single group, longitudinal. VO₂max tested pre & post intervention; dietary stabilisation.	N = 51 M and 58 F Caucasians; 50–75 yrs; no major health concerns; non-smoking; BMI <37; haematocrit >35; BP between 120/80 but less than 160/100 mmHg; at least one lipid abnormality; not on any medication for blood pressure, cholesterol or glucose; if post-menopausal for at least 2 years (stable HRT or non HRT); inactive.	Peripheral blood leucocytes	TaqMan allelic discrimination assay using qPCR	24 wks; supervised; progressive MICT; 3x/wk; 50–70% HRR; 20–40 min.
Thomaes, 2011, Belgium	AMPD1; GR; CNTF	Retrospective, single group, longitudinal. VO₂peak tested pre & post intervention.	N = 935 coronary artery disease patients (CAD); 76 females; Caucasian; age 56 ± 0.3 yrs; BMI 25.8 ± 0.1 kg/m²; 5% smokers; 85% cardiac medications; 5% diabetes; 27% hypertension.	Peripheral blood leucocytes	Invader TM assay (third wave technologies)	3 mths; supervised; 2:3x/wk; 80% HRmax 90 mins/session.
Onkelinx, 2011, Belgium	NOS3; Catalase; VEGF; Eco-SCD; GPX; P22Phox; PPARGC1; PPARα	Retrospective, single group, longitudinal. VO₂peak tested pre & post intervention.	N = 935 coronary artery disease patients (CAD); 76 females; Caucasian; age 56 ± 0.3 yrs; BMI 25.8 ± 0.1 kg/m²; 5% smokers; 85% cardiac medications; 5% diabetes; 27% hypertension.	Peripheral blood leucocytes	Invader TM assay (third wave technologies)	CARAGENE: 3 mths; supervised; 3x/week; 90 mins; ~ intensity = 80% (HR/peakHRx100)
Silva, 2011, Brazil	NOS3	Single group, longitudinal. VO₂peak tested pre & post intervention.	N = 80 Portuguese police recruits; 20–35 years; BMI 23.3 ± 3.6 kg/m²; no health concerns; inactive.	Peripheral blood leucocytes	PCR-RFLP	18 weeks; supervised; 3x/week/ 80 mins; intensity graded to VT HR.

3. Low amount, moderate intensity exercise (1200 kcal/week (170 min/week) or the equivalent of 12 miles/week at 40–55% VO₂max). STRIDE 2: 8–9 mths; supervised; four groups: 1: Aerobic training – 1300 cal – 65–80%; 2: Resistance training only with 3 sets of 12–15 reps 3 x /week. 3: Combination of the first 2 protocols; 4: High anaerobic training – ~ 2200 cal – 3 x week – 65–80%. First 2–3 months ‘ramp up period’. Following 6 mths using appropriate protocol.
| Author, Year, Country | Gene/s tested for VO$_2_{\text{max}}$ trainability | Study Design | Study Sample | Tissue source | Method for Genotyping | Intervention |
|------------------------|---|-------------|--------------|---------------|-----------------------|--------------|
| Timmons, 2010, UK | GWAS | 1: Single group, longitudinal; VO$_2_{\text{max}}$ & muscle biopsies tested pre & post intervention; 2: Blind test. VO$_2_{\text{max}}$ & muscle biopsies tested pre & post intervention; 3: Retrospective: HERITAGE WHITES data | N = 24 sedentary healthy Caucasian men (23 ± 1 yrs., 1.82 ± 0.02 m, 78.6 ± 2.7 kg); 2: 17 active & healthy Caucasian men (29 ± 6 yrs., 81.8 ± 9 kg, 1.8 ± 0.5 m); 3: HERITAGE Caucasians (as described in Bouchard 2011). | Lymphoblastoid cell lines from venous blood | Illumina HumanCNV370-Quad Bead Chips | 1: 6 weeks; supervised MICT; 4 × 45 min cycling sessions/week @ 70% VO$_2_{\text{max}}$; 2: 12 weeks; cycle ergometer 5x/week. Peak power test performed every Mon to determine intensity for week: Tues: 3 min intervals at 85% P$_{\text{max}}$ separated by 3 min intervals at 40% P$_{\text{max}}$; Thurs: 8 min intervals at 85% P$_{\text{max}}$ separated by 3 min intervals at 40% P$_{\text{max}}$; Fri: 120 min at 55% P$_{\text{max}}$ continuously; duration increased by 5%/wk. last 6 wks duration maintained but intensity increased by 1%/week; 3: HERITAGE WHITES Study (as described in Bouchard 2011). |
| Jenkins, 2010, USA | PLIN haplotypes | Retrospective, single group, longitudinal; VO$_2_{\text{max}}$ tested; body composition; pre & post intervention; dietary stabilisation (American Heart Association). | N = 46 M & 55 F Caucasians (50–75 years); inactive; no major health concerns; BP < 160/99; non-smokers; BMI < 37 kg/m2; no meds for BP, cholesterol or glucose control; at least one lipid abnormality. | Unknown | TagMan allelic discrimination assay using qPCR | 24 weeks; supervised; multi-modal MICT; progressive; 3x/wk; 20–40 min; up to 70% VO$_2_{\text{max}}$ reached; 60 min walk home included post 12 wks. |
| Alves, 2009, Brazil | ACE & Angiotensin | Single group, longitudinal; VO$_2_{\text{max}}$ and echocardiography of left ventricle pre and post intervention. | N = 83 Brazilian policemen; age 26 years ±5; BMI 24 kg/m2 ± 1; healthy; normotensive. | Unknown | Polymerase chain reaction protocol. | 17 weeks; supervised MICT; 50–80%VO$_2_{\text{peak}}$ 60 min × 3/week. |
| He, 2008a, China | NRF-1 | Single group, longitudinal; VO$_2_{\text{max}}$ VT and RE tested pre & post intervention. | N = 102 Chinese male soldiers; no health concerns; age 18.8 ± 0.9 yrs.; wt 60.3 ± 6.5 kg; ht. 1.71 ± 5.8 m; no medications; non-smokers. | Peripheral blood leucocytes | PCR-RFLP assay | 18 wks; supervised; 3×5000m running sessions Awk; 95%–105% VT. |
| He, 2008b, China | PPARGC1 | Single group, longitudinal; VO$_2_{\text{max}}$ VT and RE tested pre & post intervention. | N = 102 Chinese male soldiers; no health concerns; age 18.8 ± 0.9 yrs.; wt 60.3 ± 6.5 kg; ht. 1.71 ± 5.8 m; no medications; non-smokers. | Peripheral blood leucocytes | PCR-RFLP assay | 18 wks; supervised; 3×5000m running sessions Awk; 95%–105% VT. |
| He, 2007a, China | TFAM | Single group, longitudinal; VO$_2_{\text{max}}$ VT and RE tested pre & post intervention. | N = 102 Chinese male soldiers; no health concerns; age 18.8 ± 0.9 yrs.; wt 60.3 ± 6.5 kg; ht. 1.71 ± 5.8 m; no medications; non-smokers. | Peripheral blood leucocytes | PCR-RFLP assay | 18 wks; supervised; 3×5000m running sessions Awk; 95%–105% VT. |
| He, 2007b, China | NRF-2/NFE2L2 | Single group, longitudinal; VO$_2_{\text{max}}$ VT and RE tested pre & post intervention. | N = 102 Chinese male soldiers; no health concerns; age 18.8 ± 0.9 yrs.; wt 60.3 ± 6.5 kg; ht. 1.71 ± 5.8 m; no medications; non-smokers. | Peripheral blood leucocytes | PCR-RFLP assay | 18 wks; supervised; 3×5000m running sessions Awk; 95%–105% VT. |
| Author, Year, Country | Gene/s tested for VO$_{2\text{max}}$ trainability | Study Design | Study Sample | Tissue source | Method for Genotyping | Intervention |
|-----------------------|---|--------------|--------------|---------------|------------------------|--------------|
| Hautala, 2007, USA | PPARD | Retrospective, single group, longitudinal VO$_{2\text{max}}$, body composition and lipids tested pre & post intervention. | N = 477 from HERITAGE Caucasian study (183 female); N = 264 from HERITAGE African-American study (247 female) | Unknown | SNP scorer genotyping software | 20 wks; supervised; progressive; MICT; 3x/wk.; 55–75% VO$_{2\text{max}}$ 30–50 min. |
| Defoor, 2006a, Belgium| ADRB1 | Retrospective, single group, longitudinal VO$_{2\text{peak}}$ tested pre & post intervention. | N = 935 coronary artery disease patients (CAD); 76 females; Caucasian; age 56 ± 0.3 yrs; BMI 25.8 ± 0.1 kg/m2; 5% smokers; 85% cardiac medications; 5% diabetes; 27% hypertension. | Peripheral blood leucocytes | Invader assay CARAGENE | 3 mths; supervised; 2-3x/wk; 80% HR$_{\text{max}}$; 90 mins/session. |
| Defoor, 2006b, Belgium| ACE | Retrospective, single group, longitudinal VO$_{2\text{peak}}$ tested pre & post intervention. | N = 935 coronary artery disease patients (CAD); 76 females; Caucasian; age 56 ± 0.3 yrs; BMI 25.8 ± 0.1 kg/m2; 5% smokers; 85% cardiac medications; 5% diabetes; 27% hypertension. | Peripheral blood leucocytes | Invader assay CARAGENE | 3 mths; supervised; 2-3x/wk; 80% HR$_{\text{max}}$; 90 mins/session. |
| He, 2006, China | HBB | Retrospective, single group, longitudinal VO$_{2\text{max}}$, VT and RE tested pre & post intervention. | N = 102 Chinese male soldiers; no health concerns; age 18.8 ± 0.9 yrs; wt 603 ± 65 kg; ht 1.71 ± 5.8 m; no medications; non-smokers | Peripheral blood leucocytes | PCR-RFLP assay | 18 wks; supervised; 3x5000m running sessions/wk; 95%–105% VT |
| Defoor, 2005, Belgium | CKMM | Retrospective, single group, longitudinal VO$_{2\text{max}}$, VT and RE tested pre & post intervention. | N = 935 coronary artery disease patients (CAD); 76 females; Caucasian; age 56 yrs ± 0.3; BMI 25.8 ± 0.1 kg/m2; 5% smokers; 85% cardiac medications; 5% diabetes; 27% hypertension. | Peripheral blood leucocytes | Invader assay CARAGENE | 3 mths; supervised; 2-3x/wk; 80% HR$_{\text{max}}$; 90 mins/session. |
| Leon, 2004, USA | APOE | Retrospective, single group, longitudinal VO$_{2\text{max}}$, blood lipids tested pre & post intervention; counselled not to alter health habits. | N = 241 male and 89 female HERITAGE Caucasians; 17–65 years; inactive; no major health concerns | Lymphoblastoid cell lines from venous blood | PCR-RFLP assay | HERITAGE: 20 wks; supervised; progressive MICT; 3x/wk; 55–75% VO$_{2\text{max}}$ 30–50 min. |
| Thompson, 2004, USA | APOE | Single group, longitudinal VO$_{2\text{max}}$, anthropometric data and lipid levels collected pre & post intervention; dietary control. | N = 170 Caucasians (120 completed program – 60 M and F); 18–70 years (39 ± 11 years); consumed less than 2 drinks/day; physically inactive; BMI <31; no major health concerns | Peripheral blood leucocytes | PCR-RFLP assay | 6 months supervised progressive training 60–80% of VO$_{2\text{max}}$ increasing from 15 to 40 mins during first 4 wks. Once at 40 mins, maintained this for 4 sessions each week for 5–6 months. Multimodal but treadmill primary aerobic activity. |
| Rico-Sanz, 2003, Canada| AMPD1 | Retrospective, single group, longitudinal VO$_{2\text{max}}$, submax and submax to maximal tested pre & post intervention. | N = 329 HERITAGE Caucasians and 90 HERITAGE African-Americans measured for training response; 17–65 years; inactive; no major health concerns. | Unknown | PCR protocol + separation on agarose gels | HERITAGE: 20 wks; supervised; progressive MICT; 3x/wk; 55–75% VO$_{2\text{max}}$ 30–50 min. |
Table 1: Summary of included articles (Continued)

Author, Year, Country	Gene/s tested for VO$_{2\text{max}}$ trainable	Study Design	Study Sample	Tissue source	Method for Genotyping	Intervention
Prior, 2003, USA	HIF1A	Single group, longitudinal. VO$_{2\text{max}}$ tested pre & post intervention.	$N = 101$ Caucasian and 22 African-Americans in good health; age 57.7 ± 0.91 yrs; BMI 29.2 ± 0.64 kg/m2	Peripheral blood lymphocytes	PCR-RFLP assay	24 weeks; supervised; progressive MICT; 3x/wk; 20–40 min; 50–70% VO$_{2\text{max}}$
Woods, 2002, UK	ACE	Single group, longitudinal. VO$_{2\text{max}}$ and HR/VO$_2$ relationship tested pre & post intervention.	$N = 59$ Caucasians with ACE II allele and 29 without ACE DD allele; ~age 18.9 yrs; ~ht. 1.78 m; ~wt 73.4 kg; military camp.	Peripheral blood leucocytes	PCR protocol + polyacrylamide gel separation	11 weeks; supervised aerobic training; 75% squads; 35% adventurous training; 25% running and circuit training.
Murakami, 2001, Japan	MtDNA	Single group, longitudinal. VO$_{2\text{max}}$ tested pre & post intervention.	$N = 41$ Japanese M (age 20.6 ± 2.2 yrs), inactive; no major health concerns; wt 62.8 ± 7.5 kg; ht. 171.8 ± 6.7 cm.	Peripheral blood leucocytes	PCR-RFLP assay	8 weeks; supervised 1x/week out of 3; 60 min /session; 70% VO$_{2\text{max}}$.
Sonna, 2001, USA	ACE	Double-blind study. VO$_{2\text{peak}}$, anthropometrics physical fitness assessment for active duty personnel tested pre and post intervention.	$N = 85$ F and 62 M; age 21.7 ± 3.6 yrs; 84 Caucasian, 20 Hispanic, 1 Native American, 5 Asian and 37 African-American; no major health concerns; BMI 23.1 ± 3.1 kg/m2; 8% 279 ± 6.1 F and 16.4 ± 5.7 M.	Peripheral blood leucocytes	PCR-RFLP assay	8 weeks supervised; 6 days/week; 2 x aerobic (sprints & 3–5 miles) & 2 x strength. Participants place in 1 of 4 ability groups so all running for same duration. Participants also completed road marches and other drills.
Rankinen, 2000a, USA	Na + −K + ATPase	Retrospective, single group, longitudinal. VO$_{2\text{max}}$ and max power output tested pre & post intervention.	HERITAGE WHITES: 472 Caucasians; 17–65 years; inactive; no major health concerns.	Lymphoblastoid cell lines	PCR protocol + agarose gel separation	HERITAGE: 20 wks; supervised; progressive MICT; 3x/wk; 55–75% VO$_{2\text{max}}$ 30–50 min
Rankinen, 2000b, USA	ACE	Retrospective, single group, longitudinal. VO$_{2\text{max}}$, VE, VT, blood lactate, oxygen, stroke volume, carbon dioxide, HR tested pre & post intervention (submax VO$_2$ test for older patients).	HERITAGE WHITES AND BLACKS: 476 Caucasian & 248 Blacks; 17–65 years; inactive; no major health concerns.	Lymphoblastoid cell lines	PCR protocol + agarose gel separation	HERITAGE: 20 wks; supervised; progressive MICT; 3x/wk; 55–75% VO$_{2\text{max}}$.
Hagberg, USA, 1999	APOE	Retrospective, single group, longitudinal. VO$_{2\text{max}}$ and lipid levels tested pre and post; stabilised on American Heart Association diet 8 weeks prior to intervention.	$N = 51$; 40–80-year-old sedentary men (61 ± 3 yrs); overweight with ~BF% 30 ± 3; BP < 160/95 mmHg; no major health concerns or medications for blood lipids or glucose.	Peripheral blood leucocytes	PCR-RFLP assay	9 months’ endurance training; multimodal; 5–7 months supervised and last 2–4 months used heart rate monitor to ensure 70–80% VO$_{2\text{max}}$ intensity and 3 days/week for 45 min was complied with.
Rivera, 1999, Canada	CKMM	Retrospective, single group, longitudinal. VO$_{2\text{max}}$ tested pre & post intervention.	HERITAGE WHITES: 495 Caucasians from 98 families; 17–65 years; inactive; no major health concerns.	Lymphoblastoid cell lines	PCR-RFLP assay	HERITAGE: 20 wks; supervised; progressive MICT; 3x/wk; 55–75% VO$_{2\text{max}}$.
Author, Year, Country	Gene/s tested for VO\textsubscript{max} trainability	Study Design	Study Sample	Tissue source	Method for Genotyping	Intervention
-----------------------	---------------------------------	--------------	--------------	---------------	----------------------	--------------
Rivera, 1997, Canada	CKMM	Retrospective, single group, longitudinal VO\textsubscript{max} tested pre & post intervention.	HERITAGE WHITES: 160 Caucasian parents and 80 offspring; 17–65 years; inactive; no major health concerns.	Lymphohablaid cell lines	PCR-RFLP assay	HERITAGE: 20 wks; supervised; progressive MICT; 3x/wk; 55–75% VO\textsubscript{max} 30–50 min
Dionne, 1991, Canada	mtDNA	Single group, longitudinal VO\textsubscript{max} tested pre & post intervention.	N = 46 M from Quebec (17–27 yrs) & 27 M from Tempe (24–29 yrs); inactive	Peripheral blood leukocytes	PCR-RFLP assay	Quebec: 20 weeks; supervised; progressive training; Max 85% HRR; max 45 min/session; 3x/wk. Tempe: 12 weeks; supervised; progressive training; max 70–77% VO\textsubscript{max}; max 40 min/session; 3x/wk
Bouchard, 1989, Canada	AK1M	RCT. VO2max, total power output tested pre & post intervention.	N = 295 M 7 F (18–30 years); healthy Caucasians	Muscle biopsy and peripheral blood leucocytes	Formazan technique?	Group 1: 15 weeks; supervised; progressive MICT; 30–45 min/session; 3-5x/wk; 60–85% HRR Group 2: 15 weeks; supervised; progressive interval training; 1-2x/week; 80–85% HRR separated by 5 min recovery

\(M\) male, \(F\) female, \(wks\) weeks, \(mths\) months, \(wt\) weight, \(ht.\) height, \(yrs.\) years, \(BMI\) body mass index, \(BF\ %\) body fat percentage, \(VO_{\text{max}}\) maximal oxygen uptake/cardiorespiratory fitness, \(PCR\) polymerase chain reaction protocol, \(RFLP\) restriction fragment length polymorphism, \(qPCR\) Quantitative Polymerase Chain Reaction, \(RCT\) randomised controlled trial, \(GWAS\) genome wide association study, \(HRT\) hormone replacement therapy, \(SNP\) single nucleotide polymorphism, \(AT\) anaerobic threshold, \(MICT\) moderate intensity interval training, \(HR\) heart rate, \(HRR\) heart rate reserve, \(HR_{\text{max}}\) heart rate maximum, \(P_{\text{max}}\) maximal aerobic power, \(Submax\) submaximal, \(Cal/kcal\) calories, \(mtDNA\) mitochondrial DNA, \(BP\) blood pressure.
Table 2 Summary of findings from candidate gene studies

Gene	Variant	Chromosome	Author & Date	Race	Age	Sex	Health concerns	(+/−/* Genotype & VO2max training response)	P-value (x)	Highest training intensity	Sessions/week	Duration per session (min)	Training period	Training modality			
PPARGC1	Intron 7G/C	22	Onkelinx, 2011	935 Caucasian	~56	M&F	Y (CAD)	GG, GC, CC (0)	0.51	80%	2–3	90	3 months	Ambulatory			
			He, 2008b	102 Chinese	~19	M	N	All variants (0)	> 0.05	95–105% VO2max	3	Time to finish	18 weeks	5000 m running			
APOE	E2: rs7412 (c.526C >T; p.Arg176Cys) E3: WT	19	Yu, 2014	360 Chinese	18–40	M	F	M & F	Y	N	All variants (0)	> 0.05	75% VO2max	3	30–50	20 weeks	Cycle ergo
	E4: rs429358 (c.388 T >C; p.Cys130Arg) E3/E3: WT/WT E2/E3: p.Arg176Cys/WT E2/E4, p.Arg176Cys/p.Arg176Cys E2/E4, p.Arg176Cys/p.Cys130Arg E4/E4: p.Cys130Arg/p.Cys130Arg		Thompson, 2004	170 Unknown	~39	M&F	N	E3/E3 (−) n = 43 E2/E3 (0) n = 40 E3/E4 (0) n = 41	< 0.01	60–85% VO2max	4	Up to 50 min	6 months	Treadmill			
OXM	1170 & 985 + 185	19	Defoor, 2005	935 Caucasian	~56	M&F	Y (CAD)	AA, GG, AG (0)	> 0.05	80%	2–3	90	3 months	Ambulatory			
			Rivera, 1999	240 Caucasian	17–65	M&F	N	OXM locus (n = 227)	< 0.01	75%	VO2max	3	30–50	20 weeks	Cycle ergo		
			Rivera, 1997	495 Caucasian	17–65	M&F	N	Homozygotes 1170bp allele (−) n = 12	< 0.05	75%	VO2max	3	30–50	20 weeks	Cycle ergo		
			Bouchard, 1989	295 Caucasian	18–30	M&F	N	All variants (0)	> 0.05	1: 60–85% HRR 2: 80–85% HRR	1: 1–2; 2: 3–5	1: Intervals 2: 30–45	1: 15	2: 15	1: Cycling 2: Cycling		
ACE	Insertion (+) or Deletion (−)	17	Alves, 2009	83 Brazilian	~26	M	N	All variants (0)	> 0.05	50–80% VO2peak	2–3	60 min	17 weeks	Running			
			Rankinen, 2000b	476 Caucasian	17–65	M&F	N	DD Caucasian offspring (n = 61)	0.042	75%	VO2max	3	30–50	20 weeks	Ergo cycle		
			Defoor, 2006	935 Caucasian	~56	M&F	Y (CAD)	II (+) (frequency of 0.3 M and 0.36 F) Entire group: 0.042 No ACE inhibitors: 0.013	80%	VO2max	2–3	90	3 months	Ambulatory			
			Woods, 2002	59 Caucasian	~19	M	N	II, I/D, DD (0)	>0.22	NA	NA	NA	NA	11 weeks	Squads, adventure training, running circuits		
			Sonna, 2001	147 Caucasian, 37 AA, 26 other	19–24	M&F	N	II, DD (0)	>0.05	NA	NA	4–6	90 min	8 weeks	Military training		
Gene	Variant	Chromosome	Author & Date	Race	Age	Sex	Health concerns	(+/−/0)* Genotype & VO$_{2}$max training response	P-value (x)	Highest training intensity	Sessions/week	Duration per session (min)	Training period	Training modality			
------	---------	------------	---------------	------	-----	-----	-----------------	---------------------------------	-------------	----------------------------	----------------	-------------------------	---------------	------------------			
CYBA; P22Phox	A24G; 640A > G	15	Onkelinx, 2011	935 Caucasian	~56	M&F	Y (CAD)	AA, AG, GG (0) CC, CT, TT (0)	0.78 0.94	80% HRmax	2−3	90	3 months	Ambulatory			
PLIN	rs2289487	15	Jenkins, 2011	101 Caucasian	50−75	M	Elevated BP, cholesterol, menopause	All genotypes sig. Increased, but GT/TT men (+) n = 22	0.037	60%−70%HRR	3	20−40 min	24 weeks	Multi-modal			
HIF1A	T + 140C (rs11549465)	Ch	Prior, 2011	101 Caucasian	~56	M & F	Elevated VO$_{2}$max	All other ages, race and genotypes (0)	0.002	50−70%VO$_{2}$max	3	20−40 min	24 weeks	'Aerobic training'			
Na + /−K+ /−ATPase	Alpha2 exon 1	15	Rankinen, 2000a	472 Caucasian	~75	M	Elevated BP, cholesterol, menopause	105/105 offspring (+) n = 14	0.018 0.017	55−75%VO$_{2}$max	3	30−50	20 weeks	Cycle ergo			
HBB	-551C>T (c.16, intron 2)		He, 2006	102 Chinese	~19	M	Elevated VO$_{2}$max	CC, CT, TT (0)	>0.05	95−105%VT	3	Time to finish.	18 weeks	5000 m running			
CNTF	rs1800169 (11g.5891501G > A)	11	Thomas, 2011	995 Caucasian	~56	M&F	Elevated BP, cholesterol, menopause	105/105 offspring (+) n = 14	0.0018	55−75%VO$_{2}$max	3	30−50	20 weeks	Cycle ergo			
GAT	-262C>T	11	Onkelinx, 2011	935 Caucasian	~56	M&F	Y (CAD)	TT (−) n = 342	0.02	80% HRmax	2−3	90	3 months	Ambulatory			
GSTP1	rs1695 (11g.57353689A > G)	11	Zabreska, 2014	66 Polish	19−24	F	Elevated VO$_{2}$max	GG & AG (+) n = 20	0.009	50−75%HRmax	3	60	3 months	'Aerobic routine'			
ADRB1	ADPase 1	10	Defor, 2006	935 Caucasian	~56	M&F	Y (CARD)	Ser49Gly49, Ser49Ser49, Gly49Gly49 (0) Gly989Gly989, Gly989Arg989	0.18	80% HRmax	2−3	90	3 months	Ambulatory			
TFAM	rs1937 (10g.60145342G > C)	10	He, 2007b	102 Chinese	~19	M	Elevated VO$_{2}$max	GG, CG, CC (0) AA, AG, GG (0)	>0.05	95−105%VT	3	Time to finish.	18 weeks	5000 m running			
Table 2 Summary of findings from candidate gene studies (Continued)

Gene	Variant	Chromosome	Author & Date	Race	Age	Sex	Health concerns	(+/−/0)* Genotype & VO2\textsubscript{max} training response	P-value (x)	Highest training intensity	Sessions/week	Duration per session (min)	Training period	Training modality
NOS3	T-1495A - No rs ID	7:g.150689397A > T	7:g.150689943G > A	Onkelinx, 2011	Caucasian	-56	M&F Y (CAD)	TT, TA, AA (0)	0.54	80% HR\textsubscript{max}	2–3	90	3 months	Ambulatory
		7:g.150690100C > T	7:g.150696111 T > C	Silva, 2011	Portuguese	20–35	M N	TT, CC, TC (0)	0.001	Graded to VT HR	3	80 min	18 weeks	Running
NOS3	C677T - rs2402970	7:g.150690100C > T	7:g.150696111 T > C	He, 2008a	Chinese	~19	M N	CC, CT, TT (0)	0.38	95–105% VT	3	Time to finish.	18 weeks	5000 m running
AKT1	common and rare variants	7		Bouchard, 1989	Caucasian	18–30	M&F N	(0)	> 0.05	1.85% HRR	1: 1	1: 1	Cycle	2: Cycling
PPARD	Exon 4 + 15 Exon 7 + 65	Ch 6		Hautala, 2007	Caucasian AA	17–65	M&F N	CC genotype in AA of Exon 4 + 15	< 0.05	95–105% VO\textsubscript{2}max	3	30–50	20 weeks	Cycle ergo
TGFβ1	405	6		Onkelinx, 2011	Caucasian	~56	M&F Y (CAD)	GG, GC, CC (0)	0.52	80% HR max	2–3	90	3 months	Ambulatory
GRN	rs190147298337C > T	5		Thomas, 2011	Caucasian	~56	M&F Y (CAD)	GA (n) = 55	< 0.01	80% HR max	2–3	90	3 months	Ambulatory
PPARα	Gly482Ser	4		Onkelinx, 2011	Caucasian	~56	M&F Y (CAD)	GG, G, SS (0)	0.59	80% HR max	2–3	90	3 months	Ambulatory
SOD3	C760G	4		Onkelinx, 2011	Caucasian	~56	M&F Y (CAD)	CC (0)	0.12	80% HR max	2–3	90	3 months	Ambulatory
GPX	197P > L	3		Onkelinx, 2011	Caucasian	~56	M&F Y (CAD)	Pro197Pro (0)	0.18	95–105% VT	3	Time to finish.	18 weeks	5000 m running
NRF1	C677T - rs2402970	7		He, 2008a	Chinese	~19	M N	AA, AG, GG (0)	0.11	80% HR max	2–3	90	3 months	Ambulatory
PPARD	Exon 4 + 15 Exon 7 + 65	Ch 6		Hautala, 2007	Caucasian AA	17–65	M&F N	CC genotype in AA of Exon 4 + 15	< 0.05	95–105% VO\textsubscript{2}max	3	30–50	20 weeks	Cycle ergo
TGFβ1	405	6		Onkelinx, 2011	Caucasian	~56	M&F Y (CAD)	GG, GC, CC (0)	0.52	80% HR max	2–3	90	3 months	Ambulatory
GRN	rs190147298337C > T	5		Thomas, 2011	Caucasian	~56	M&F Y (CAD)	GA (n) = 55	< 0.01	80% HR max	2–3	90	3 months	Ambulatory
PPARα	Gly482Ser	4		Onkelinx, 2011	Caucasian	~56	M&F Y (CAD)	GG, G, SS (0)	0.59	80% HR max	2–3	90	3 months	Ambulatory
SOD3	C760G	4		Onkelinx, 2011	Caucasian	~56	M&F Y (CAD)	CC (0)	0.12	80% HR max	2–3	90	3 months	Ambulatory
GPX	197P > L	3		Onkelinx, 2011	Caucasian	~56	M&F Y (CAD)	Pro197Pro (0)	0.18	95–105% VT	3	Time to finish.	18 weeks	5000 m running
NRF1	C677T - rs2402970	7		He, 2008a	Chinese	~19	M N	AA, AG, GG (0)	0.11	80% HR max	2–3	90	3 months	Ambulatory
PPARD	Exon 4 + 15 Exon 7 + 65	Ch 6		Hautala, 2007	Caucasian AA	17–65	M&F N	CC genotype in AA of Exon 4 + 15	< 0.05	95–105% VO\textsubscript{2}max	3	30–50	20 weeks	Cycle ergo
Table 2 Summary of findings from candidate gene studies (Continued)

Gene	Variant	Chromosome	Author & Date	Race	Sex	Age	Health concerns	(+/-/0)* Genotype & VO2max training response	P-value (x)	Highest training intensity	Sessions/week	Duration per session (min)	Training period	Training modality
mtDNA	MTND5	m.13470A > C or A > G	Murakami, 2001	21 Japanese	M	20.6	All variants (0)	> 0.05	70% VO2 max	3–4	60 min	8 weeks	Ergo Cycle	
mtDNA	m.12406G > A	mtDNA SNP via restriction enzyme	Dionne, 1991	53 Quebec, Tempe	M	17–27	mtDNA subunit S NS (-) n = 3	0.05	Quebec: 85% HRR Tempe: 77% VO2 max	Quebec: 3 Tempe: 3–5	Quebec: 45 min Tempe: 40 min	Quebec: 20 wks Tempe: 12 wks	Ergo Cycle	
ALAS2	≤ 166 bp	Mitochondria	Xu, 2015	72 Chinese	M	18–22	≤ 166 bp (+) n = 25	< 0.05	High/Low training	3	30 min	4 weeks	Ergo Cycle	

Where possible, gene variants were annotated using the reference sequence (GRCh37/hg19).

CAD coronary artery disease, wks weeks, mths months, VO2max maximal oxygen uptake/cardiorespiratory fitness, AT anaerobic threshold, HRR heart rate reserve, HRmax heart rate maximum, Pmax maximal aerobic power, Caucasian, AA African-American, M male, F female

(+) = high training response, **(-)** = low training response, **(0)** = neutral training response

(x) = p-value has been adjusted for covariates except for article by Xu et al. (2015) where it wasn’t clear if p-value had been adjusted (ALAS2).
Table 3 Summary of hypothesis-free studies

Gene	Variant	Chromosome	MapPosition	Minor allele frequency (MAF) frequency	Race	Gender	Age	Training period	Sessions/ wk	Session duration	Sessions intensity	(+/-)/(+)** genotype/VO2max response to training	P-value	Author, Date		
GAMTA1	rs884736	1	6,937,692	0.41	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	AA (--)	1.49 x 10^3	Bouchard, 2011		
												2.003	3,154 x 10^-4	Ghosh, 2013		
+D3	rs11574	1	23,758,085	NA	473	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	2.1 x 10^-3	Timmons, 2010		
*RGD38	rs1087107	1	190,325,645	0.15	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	GG (--) n = 867	1.71 x 10^-3	Bouchard, 2011		
												2.003				
RYR2	rs7531957	1	235,856,279	0.08	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-79% VO2max	NA	1.62 x 10^-4	Bouchard, 2011		
												2.18 x 10^-4		Ghosh, 2013		
												1.21 x 10^-4				
SCLC4SA1	NA	1	NA	NA	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	#85.8	Ghosh, 2013	
MAST2	rs2236560	1	46,268,021	NA	41	Caucasian	M	1.6 wks	1.45 min	Progressive	55-75% VO2max	1.70% VO2max	NA	NA	Timmons, 2010	
SRYL2	rs12049330	1	109,032,711	NA	41	Caucasian	M	1.6 wks	1.45 min	Progressive	55-75% VO2max	1.70% VO2max	NA	NA	Timmons, 2010	
												1.45 min	Progressive	1.70% VO2max	NA	Timmons, 2010
ACVR1C	NA	2	NA	NA	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	NA	Ghosh, 2013	
SLC4A5	rs828902	2	74,32,642	NA	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	NA	Timmons, 2010	
KCNF1/NLGN1	rs2003298	2	11,003,601	0.42	473	Caucasian	M	1.6 wks	1.45 min	Progressive	55-75% VO2max	1.70% VO2max	NA	1.21 x 10^-4	Bouchard, 2011	
												1.45 min	Progressive	1.70% VO2max	NA	Bouchard, 2011
												2.5 x 10^-4		Timmons, 2010		
NRIP2	rs3707991	2	206,363,894	NA	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.4 x 10^-2	Timmons, 2010	
												1.4 x 10^-2				
CRBB1	rs2709356	2	208,120,337	NA	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	NA	Timmons, 2010	
SCN3A	rs754918	2	165,647,425	NA	473	Caucasian	M	1.6 wks	1.45 min	Progressive	55-75% VO2max	1.70% VO2max	NA	NA	Timmons, 2010	
												1.45 min	Progressive	1.70% VO2max	NA	Timmons, 2010
HCG22	rs2517512	6	NA	0.18	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	A (+)	5.31 x 10^-3	Bouchard, 2010	
												5.31 x 10^-3				
KCNH4	rs1497706	3	18,896,776	0.24	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.49 x 10^3	Bouchard, 2011	
												2.003	3,154 x 10^-4	Ghosh, 2013		

Note:
VO2max: VO2 max, M: Male, F: Female, +ID3: +1D3, 10-C: 10-C, −ID3: −1D3, G: Gene, N: Number, NA: Not Available, VO2max: VO2 max.
Gene	Variant	Chromosome	MapPosition	Minor allele frequency (MAF) frequency	Race	Gender	Age	Training period	Sessions/ wk	Session duration	Sessions/ intensity	(+/-0)** genotype/ expression and VO2max response to training	P-value	Author, Date						
^ZIC4 (146 kb) intronic	rs11715829	3	148,439,856	0.08	Caucasian 2 M&F M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max +10% VO2max	AA (-) n = 4	8.68 x 10^-9	Bouchard, 2011							
^NLG1 (110 kb) intronic	rs2030908 (3g.173005973G > A)	3	174,486,667	0.20	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	A (+)	1.32 x 10^-4	Bouchard, 2011						
^ADCY	NA	3	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	#86.1	Ghosh, 2013						
AMOTL2	rs13322269	3	135,569,834	NA	Caucasian	M	Young adults	1.6 wks 2.12 wks	1.4x/wk 2.3x/wk	1.45 min 2. Progressive	1.70% VO2max 2. Progressive	NA	NA	Timmons, 2010						
CSN1528	rs2272040 (4g.71007047A > G)	4	71,04,1636	0.13	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	5.05 x 10^-5	Bouchard, 2011						
^LOCI00289626 (134 kb)	rs2053996 (3g.137154796G > A)	4	137,374,246	0.10	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	A (+)	6.62 x 10^-5	Bouchard, 2011						
^ACSL1	rs6552828 (4g.185725416A > G)	4	185,962,410	0.37	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	AA (-)	1.13 x 10^-9	Timmons, 2011						
^SLED1	rs6552828	4	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	3.8 x 10^-6	Ghosh, 2013						
^Cdx640	rs775758 (4g.71008910C > T)	4	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.09 x 10^-4	Ghosh, 2013						
^TEC	rs13117386 (4g.48252763G > C)	4	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	7.53 x 10^-5	Ghosh, 2013						
^LNN1	rs7734683	5	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.44 x 10^-4	Ghosh, 2013						
FABP6	rs7734683	5	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.42 x 10^-4	Ghosh, 2013						
TTC1	rs2176830	5	159,380,714	0.13	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.42 x 10^-4	Ghosh, 2013						
BTNL9	rs888949	5	180,425,011	NA	Caucasian	M	Young adults	1.6 wks 2.12 wks	1.4x/wk 2.3x/wk	1.45 min 2. Progressive	1.70% VO2max 2. Progressive	NA	NA	Timmons, 2010						
RTN4P1/QRS1	rs889896	6	107,169,855	NA	Caucasian	M	Young adults	1.6 wks 2.12 wks	1.4x/wk 2.3x/wk	1.45 min 2. Progressive	1.70% VO2max 2. Progressive	NA	NA	Timmons, 2010						
HCG22	rs2523849	6	31,133,030	0.17	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	7.53 x 10^-5	Bouchard, 2011						
HCG22	rs2523848	6	31,133,083	0.17	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	7.53 x 10^-5	Bouchard, 2011						
HCG22	rs2428514	6	31,133,495	0.15	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	8.22 x 10^-5	Bouchard, 2011						
HCG22	rs2517518	6	31,133,624	0.17	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	7.53 x 10^-5	Bouchard, 2011						
Gene	Variant	Chromosome	MapPosition	Minor allele frequency (MAF) frequency	Race	Gender	Age	Training period	Sessions/ wk	Session duration	Sessions intensity	(+/-)	P-value	Author, Date						
----------	---------	------------	-------------	--	--------	--------	----	----------------	--------------	------------------	------------------	--------	---------	---------------						
HCG22	rs2523840	6	31,138,404	0.17	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	7.53 x 10⁻³	Bouchard, 2011							
HCG22	rs2517506	6	31,139,659	0.17	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	7.53 x 10⁻³	Bouchard, 2011							
*PRDM1 (287 kb)	rs10499043	6	106,533,830	0.13	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	A (+)	3.93 x 10⁻⁶	Bouchard, 2011							
*ENPP3 (17 kb)	rs10452621	6	132,127,094	0.12	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	A (+)	1.23 x 10⁻⁴	Bouchard, 2011							
+SLC22A3	rs2457571	6	160,754,818	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	Downregulated in high responders	3.0 x 10⁻³	Timmons, 2010							
^TMEM181	NA	6	NA	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	#84.5	Ghosh, 2013							
^PARK2	NA	6	NA	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	#84.8	Ghosh, 2013							
^SNX14	NA	6	NA	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	#86.7	Ghosh, 2013							
^BTBD9	NA	6	NA	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	#86	Ghosh, 2013							
^KCNQ5	NA	6	NA	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	1.85 x 10⁻⁸	Ghosh, 2013							
PPARD	rs2076167	6	35,499,765	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	NA	Timmons, 2010							
HDAC9	rs3814991	7	18,601,428	0.11	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	1.46 x 10⁻⁴	Bouchard, 2011							
WSCR17 (35 kb)	rs12538806	7	70,200,777	0.30	Caucasian M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	1.47 x 10⁻⁴	Bouchard, 2011							
WSCR17 (33 kb)	rs13235325	7	70,200,294	0.30	Caucasian M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	Upregulated in high responders	3.1 x 10⁻³	Timmons, 2010							
+CPVL	rs4257918	7	29,020,374	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	7.04 x 10⁻⁶	Timmons, 2010							
^TCEB8	rs10265149	7	NA	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	84.34	Ghosh, 2013							
LHPIL3	NA	7	NA	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	NA	Timmons, 2010							
PLRB	rs13228694	7	99,778,243	NA	Caucasian Young adults	17-65	1.6 wks	2. 12 wks	1. 45 min vs progressive	1. 70% VO₂max	NA	NA	Timmons, 2010							
+DEPC6	rs7386139	8	121,096,600	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	1.85 x 10⁻²	Timmons, 2010							
#PINX1	NA	8	NA	NA	Caucasian M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO₂max	NA	88.2	Ghosh, 2013							
Gene	Variant	Chromosome	MapPosition	Minor allele frequency (MAF)	Race	Gender	Age	Training period	Sessions/ wk	Session duration	Sessions intensity	(+/−) genotype/ expression and VO2max response to training	P-value	Author, Date						
------------	---------	------------	-------------	-------------------------------	------	--------	-----	-----------------	--------------	------------------	-------------------	--	---------	-------------						
*GRIN3A (516 kb)	rs1535628	9	104,056,570	0.09	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	6.81 × 10^{-6}	Bouchard, 2011					
GRIN3A (540 kbp)	rs959066	9	104,081,084	0.27	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.35 × 10^{-6}	Bouchard, 2011					
*C9orf27 (3.3 kb)	rs12115454	9	117,759,871	0.11	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	G (+)	7.74 × 10^{-5}	Bouchard, 2011					
^TTLL11	rs7022103	9	NA	NA	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.08 × 10^{-4}	Ghosh, 2013					
KLF4	rs4631527	9	109,309,857	0.11	41	Young adults	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	G (+)	7.74 × 10^{-5}	Bouchard, 2011					
TET1	rs12413410	10	NA	NA	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.08 × 10^{-4}	Ghosh, 2013					
PWG1	rs6481619	10	30,022,960	0.27	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.35 × 10^{-4}	Ghosh, 2013					
^+SVIL1	rs2790222	10	93,730,409	0.27	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.08 × 10^{-4}	Timmons, 2010					
^CASC21	rs1413184	10	NA	NA	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.65 × 10^{-4}	Ghosh, 2013					
KIF5B	rs1186989	10	32,403,990	0.27	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	9.29 × 10^{-5}	Bouchard, 2011					
+H19	rs22551375	11	1,976,072	0.27	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.35 × 10^{-6}	Ghosh, 2013					
ACTN3	rs1815739	10	66,084,671	0.27	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.35 × 10^{-6}	Timmons, 2010					
BTAF1	rs7920222	10	93,730,409	0.27	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.35 × 10^{-6}	Timmons, 2010					
^LOC100130460	rs2198009	11	10,360,153	0.50	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	A (+)	2.28 × 10^{-5}	Bouchard, 2011					
^DBX1 (64 kbp)	rs1000872	11	NA	NA	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	A (+)	6.49 × 10^{-5}	Bouchard, 2011					
+CD44	rs153625	11	35,125,122	0.32	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.12 × 10^{-5}	Ghosh, 2013					
CXCR5 (36 kbp)	rs4938561	11	118,236,695	0.23	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	9.29 × 10^{-5}	Bouchard, 2011					
*CXCR5 (24 kbp)	BLR1	rs793007	11	NA	NA	473	Caucasian	M & F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	7.35 × 10^{-5}	Bouchard, 2011				
Gene	Variant	Chromosome	MapPosition	Minor allele frequency	Major allele frequency	Race	Gender	Age	Training period	Sessions/ wk	Session duration	Sessions intensity	(+/−)** genotype/expression and VO,max response to training	P-value	Author, Date					
--------------	----------	------------	-------------	------------------------	------------------------	---------	--------	----	----------------	--------------	------------------	-------------------	---	--------------	--------------					
^CD6	rs175098	11	NA	NA	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	NA	NA	1.11 × 10^{-3}	Ghosh, 2013				
^SHANK2	rs10751308	11	NA	NA	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	8.11 × 10^{-3}	Ghosh, 2013				
^GRIK4	N/A	11	NA	NA	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	88.32	Ghosh, 2013				
H19	rs2251375	11	1,976,076	NA	41	Caucasian	M	Young Adults	1.6 wks	2. 12 wks	1. 4x/wk	2. 3x/wk	1. 45 min	2. Progressive	1. 70% VO,max	2. Progressive	2.3.59 × 10^{-5}	Bouchard, 2011 (1)	Ghosh, 2013 (2)	
FAM19A2	rs2169452	12	NA	NA	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	1.34 × 10^{-4}	Ghosh, 2013				
^C12orf56	(14 kb)	12	13,433,330	0.14	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	108 × 10^{-4}	Ghosh, 2013				
^NALCN	N/A	13	NA	NA	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	#85	Ghosh, 2013				
^MIPFEP	rs7324557	13	23,194,882	NA	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	5.1 × 10^{-3}	Timmons, 2010				
^EEF1DP3	rs2779068	13	NA	NA	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	3.67 × 10^{-6}	Ghosh, 2013				
^Q1L16L	N/A	13	NA	NA	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	#85.4	Ghosh, 2013				
^TTG6	rs1286790	14	37,34,367	0.09	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	3.59 × 10^{-5}	Ghosh, 2013				
METTL3	rs1263809	14	21,058,740	NA	41	Caucasian	M	Young Adults	1.6 wks	2. 12 wks	1. 4x/wk	2. 3x/wk	1. 45 min	2. Progressive	1. 70% VO,max	2. Progressive	5.25 × 10^{-2}	Bouchard, 2011	Timmons, 2010	
TFC6	rs8018889	14	37,35,3342	0.09	473	Caucasian	M & F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	1.43 × 10^{-5}	Bouchard, 2011				
*DAAM1	rs1969197	(14q34)	58,547,167	0.16	1. 473	2. 646	Caucasian	M	17−65	20 wks	6 mths	3x/wk	120−170 min/wk	30−50 min	120−170 min/wk	55−75% VO,max	55−75% VO,max	AA (−) n = 84	3.45 × 10^{-5}	Bouchard, 2011
*NDN (75 kb)	Downstream	15	21,559,164	0.15	1. 473	2. 464	Caucasian	M	17−65	20 wks	9 mths	3x/wk	120−170 m/ wk	30−50 min	120−170 m/ wk	55−75% VO,max	40−80% VO,max	GG (−) n = 521	0.05	Bouchard, 2011
+DUS3L	rs15466570	15	64,382,289	NA	473	Caucasian	M&F	17−65	20 wks	3x/wk	30−50 min	55−75%	VO,max	NA	2.3 × 10^{-2}	Timmons, 2010				
UNIL	rs3751894	16	1,426,876	NA	473	Caucasian	M	Young Adults	1.6 wks	2. 12 wks	1. 4x/wk	2. 3x/wk	1. 45 min	2. Progressive	1. 70% VO,max	2. Progressive	2.3 × 10^{-2}	Timmons, 2010	Timmons, 2010	
IL32	rs13335	16	3,052,198	NA	473	Caucasian	M	Young Adults	1.6 wks	2. 12 wks	1. 4x/wk	2. 3x/wk	1. 45 min	2. Progressive	1. 70% VO,max	2. Progressive	NA	Timmons, 2010	Timmons, 2010	

Table 3 Summary of hypothesis-free studies (Continued)

*For these SNPs, the total number of alleles examined is 75 or more.
Table 3 Summary of hypothesis-free studies (Continued)

Gene	Variant	Chromosome	MapPosition	Minor allele frequency (MAF)	Race	Gender	Age	Training period	Sessions/ wk	Session duration	Sessions intensity	(+/−/0)** genotype/ expression and VO2max response to training	P-value	Author, Date		
#RPTOR	N/A	17	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	#89	Ghosh, 2013		
#P533	N/A	17	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	#84	Ghosh, 2013		
ACE	D1	17	58,919,622	NA	NA	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	NA	Timmons, 2010		
SMNL2	rs7217556	17	4,425,585	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	NA	Timmons, 2010		
ZSWM7	R21	17	15,825,286	NA	Caucasian	M&F	Young adults	1.6 wks	2. 12 wks	1. 45 min Progressive 1. 70% VO2max	NA	NA	Timmons, 2010			
BNOSF1	rs5780355	18	671,962	NA	Caucasian	M&F	Young adults	1.6 wks	2. 12 wks	1. 45 min Progressive 1. 70% VO2max	NA	NA	Timmons, 2010			
BMR4	rs7256163	19	6,909,134	0.31	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	1.13 x 10^-4	Bouchard, 2011		
IER2	rs892020	19	13,8185	NA	Caucasian	M&F	Young adults	1.6 wks	2. 12 wks	1. 45 min Progressive 1. 70% VO2max	NA	NA	Timmons, 2010			
DNAJB1	rs4926222	19	14,488,050	NA	Caucasian	M&F	Young adults	1.6 wks	2. 12 wks	1. 45 min Progressive 1. 70% VO2max	NA	NA	Timmons, 2010			
g.63262000G > A	rs6090314	20	61,327,997	0.16	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	A (+)	1.648 x 10^-5	26.24 x 10^-5	Bouchard, 2011	Ghosh, 2013
^YTHDF1	rs6122403	20	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	6.24 x 10^-5	Ghosh, 2013		
^MACROD2	N/A	20	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	#86.6	Ghosh, 2013		
^HLS21	N/A	21	NA	NA	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	NA	#84.7	Ghosh, 2013		
^MN1 (14 kb)	rs738353	22	26,460,072	0.35	Caucasian	M&F	17-65	20 wks	3x/wk	30-50 min	55-75% VO2max	A (+)	1.23 x 10^-4	Bouchard, 2011		
LOC731789	rs11015207	NA	15,825,286	NA	Caucasian	M&F	Young adults	1.6 wks	2. 12 wks	1. 45 min Progressive 1. 70% VO2max	NA	1.61 x 10^-4	Ghosh, 2013			

There were no other possible mediators (such as medications, health concerns) or other significant findings noted in the above three studies. Where possible, gene variants were annotated using the reference sequence (GRCh37/hg19). Out of the 39 SNPs identified via GWAS, 21 (*) explained 49% of the VO2 max trainability variance (after regression analysis). The 15 most significant were then examined using data from the following studies: HERITAGE African-Americans, DREW study, STRRIDE study. The variants replicated are in italics. 11 SNPs from a regression analysis explained ~23% of the estimated VO2 max variance. 90% RNA expression remained unchanged by exercise training. (+) were found in study by Bouchard (2011) but weren't included in the regression analysis because they weren't considered significant at the 0.00015 level. ^Top 20 GWAS associated genes based on second-best SNP-P-values. Candidate genes identified through CANDID software based on literature search; GWAS association data; sequence conversion & gene expression. This equates to a ‘final score’ rather than p-value. Bolded text indicates moderate-strong related biological mechanisms that influence VO2 max trainability. **(+): significantly higher training response. (−): no significant difference in training response between genotypes.
Table 4 Predictor genes that may influence VO₂max training response

Number	Chromosome	Gene	Variant	Race	Genotype/expressoin and VO₂max training response (+/-/0)**	Author, Date (x = candidate gene study)
1	1	AMPD1	rs17602729	Caucasian	TT and CT (−)	Thomaes, 2011 (x); Rico-Sanz, 2003 (x)
2	1	CAMTA1	rs884736	Caucasian	AA (−)	Bouchard, 2011; Ghosh, 2013
3	1	ID3	rs11574	African-American	TBC	Timmons, 2010
4	1	RGS18	rs10921078	Caucasian	GG (−)	Bouchard, 2011
5	1	RYR2	rs7531957	Caucasian	TBC	Bouchard, 2011; Ghosh, 2013
6	1	SLC45A1		TBC	Caucasian TBC	Ghosh, 2013
7	2	ACVR1C		TBC	Caucasian TBC	Ghosh, 2013
8	2	KCNFI	rs2003298	Caucasian	TBC	Bouchard, 2011
9	2	FHL4450	rs4952535	Caucasian	G (+)	Bouchard, 2011
10	2	TTN	rs10497520	Caucasian	TBC	Timmons, 2010
11	2	NRP2	rs3770991	Caucasian	TBC	Timmons, 2010
12	3	KCHN8	rs4973706	Caucasian	A (+)	Bouchard, 2011
13	3	ZIC4	rs11715829	Caucasian	AA (−)	Bouchard, 2011
14	3	NLGN1	rs2030398	Caucasian	A (+)	Bouchard, 2011
15	3	ADCYS5		TBC	Caucasian TBC	Ghosh, 2013
16	4	CSN152B	rs2272040	Caucasian	TBC	Bouchard, 2011
17	4	LOC100289626		Caucasian	A (+)	Bouchard, 2011
18	4	ACSL1	rs6552828	Caucasian	AA (−)	Bouchard, 2011; Ghosh, 2013
19	4	SLED1	rs6552828	Caucasian	TBC	Ghosh, 2013
20	4	PRR27; C4orf40		Caucasian	TBC	Ghosh, 2013
21	4	TEC	rs13117386	Caucasian	TBC	Ghosh, 2013
22	5	NR3C1	rs6190	Caucasian	GG (−)	Thomaes, 2011
23	5	NLN		TBC	Caucasian TBC	Ghosh, 2013
24	5	FABP6	rs7734683	Caucasian	TBC	Ghosh, 2013
25	5	TTC1	rs2176830	Caucasian	TBC	Bouchard, 2011
26	6	PPARD	Exon 4 + 15	African-American	CC (−)	Hautala, 2007 (x)
27	6	HCG22	rs2517512	Caucasian	TBC	Ghosh, 2013
28	6	HCG22	rs2523849	Caucasian	TBC	Bouchard, 2011
29	6	HCG22	rs2523848	Caucasian	TBC	Bouchard, 2011
30	6	HCG22	rs2428514	Caucasian	TBC	Bouchard, 2011
31	6	HCG22	rs2517518	Caucasian	TBC	Bouchard, 2011
32	6	HCG22	rs2523840	Caucasian	TBC	Bouchard, 2011
33	6	HCG22	rs2517506	Caucasian	TBC	Bouchard, 2011
34	6	PRDM1	rs10499043	Caucasian	A (+)	Bouchard, 2011
35	6	ENPP3	rs10452621	Caucasian	A (+)	Bouchard, 2011
36	6	SLC22A3	rs2457571	Caucasian	Downregulated in high responders	Timmons, 2010
37	6	TMEM181		TBC	Caucasian TBC	Ghosh, 2013
38	6	PARK2		TBC	Caucasian TBC	Ghosh, 2013
Number	Chromosome	Gene	Variant	Race	Genotype/expression and VO2max training response (+/−/0)**	Author, Date (x = candidate gene study)
--------	------------	---------------	---------	------	--	--
39	6	SNX14	TBC	Caucasian	TBC	Ghosh, 2013
40	6	BTBD9	TBC	Caucasian	TBC	Ghosh, 2013
41	6	KCNQ5	TBC	Caucasian	TBC	Ghosh, 2013
42	7	HDAC9	rs3814991	Caucasian	TBC	Bouchard, 2011
43	7	WBCR17	rs12538806	Caucasian	TBC	Bouchard, 2011
44	7	WBCR17	rs13235325	Caucasian	TBC	Bouchard, 2011
45	7	CPVL	rs4257918	Caucasian	TBC	Timmons, 2010
46	7	ITGB8	rs10265149	Caucasian	TBC	Ghosh, 2013
47	7	LHFPL3	TBC	Caucasian	TBC	Ghosh, 2013
48	8	DEPDC6	rs7386139	Caucasian	TBC	Timmons, 2010
49	8	PINK1	TBC	Caucasian	TBC	Ghosh, 2013
50	9	GRIN3A	rs1535628	Caucasian	TBC	Bouchard, 2011
51	9	GRIN3A	rs959066	Caucasian	TBC	Bouchard, 2011
52	9	C0arF27	rs12115454	Caucasian	G (+)	Bouchard, 2011
53	9	TL11	rs7022103	Caucasian	TBC	Ghosh, 2013
54	9	KCNT1	TBC	Caucasian	TBC	Ghosh, 2013
55	10	FAM238B; LOC731789	rs11015207	Caucasian	TBC	Ghosh, 2013
56	10	PRKGI	TBC	Caucasian	TBC	Ghosh, 2013
57	10	SVIL	rs6481619	Caucasian	TBC	Timmons, 2010
58	10	BTAF1	rs2792022	Caucasian	TBC	Timmons, 2010
59	10	CASC2	rs1413184	Caucasian	TBC	Ghosh, 2013
60	11	H19	rs22551375	Caucasian	Upregulated in high responders	Timmons, 2010
61	11	LOC100130460	rs2198009	Caucasian	A (+)	Bouchard, 2011
62	11	DBX1	rs10500872	Caucasian	A (+)	Bouchard, 2011
63	11	CD44	rs353625	Caucasian	TBC	Bouchard, 2011; Ghosh, 2013
64	11	CXCR5 (36 kb)	rs4938561	Caucasian	TBC	Bouchard, 2011
65	11	CXCR5 (24 kb)/BLR1	rs7933007	Caucasian	TBC	Bouchard, 2011
66	11	CD6	rs175098	Caucasian	TBC	Ghosh, 2013
67	11	SHANK2	rs10751308	Caucasian	TBC	Ghosh, 2013
68	11	GRIK4	TBC	Caucasian	TBC	Ghosh, 2013
69	11	CNTF	rs1800169	Caucasian	AA (+)	Thomaes, 2011 (x)
70	11	CAT	-262C > T	Caucasian	TT (−)	Onkelinx, 2011 (x)
71	11	GSTP1	c.313A > G (rs1695)	Caucasian	GG & AG (+)	Zarebska, 2014 (x)
72	12	FAM19A2	rs2168452	Caucasian	TBC	Ghosh, 2013
73	12	C12orf36	rs12580476	Caucasian	TBC	Bouchard, 2011; Ghosh, 2013
74	13	NALCN	TBC	Caucasian	TBC	Ghosh, 2013
75	13	MIPEP	rs7324557	Caucasian	TBC	Timmons, 2010
76	13	EEG1D3	rs2773968	Caucasian	TBC	Ghosh, 2013
77	13	CLYBL	NA	Caucasian	TBC	Ghosh, 2013
78	13	Na + −K + −ATPase α2	Alpha2 exon 1	Caucasian	3.3/3.3 (−) 10.5/10.5 (+)	Rankinen, 2000a (x)
genotype, \(n = 21 \) in the ciliary neurotrophic factor gene (CNTF; rs1800169) and the AMPD1:c.133C wild type (CC genotype, \(n = 652 \)) of the adenosine monophosphate deaminase gene (AMPD1; rs17602729). Furthermore, a larger change in relative VO2peak was reported in patients with a greater number of these variants described (Area Under the Curve (AUC): 0.63; 95% Confidence Interval (CI): 0.56–0.7; \(p < 0.01 \)). More specifically, those with a gene predictor score (GPS) of one or less positive response alleles had an average increase in VO2peak of 16.7%. Those with four or more positive response alleles had an average increase of 25%, with each positive response allele contributing approximately 1% (13.5 mL/min) to the increase in VO2peak.

Caucasians aged between 17 and 65 years from the HERITAGE study who were homozygous (TT genotype) for the AMPD1:c.133C > T (p.Gln45*) (rs17602729) variant (\(n = 6 \)), had a lower VO2max training response (<121 mL/min; \(p = 0.006 \)), compared to the CT and CC genotypes (\(n = 497 \)) following 20 weeks of MICT (3 × 50 min per week at 55–75% HRmax) [46].

The serine/threonine protein kinase 1 (AKT1) gene has been linked to growth and skeletal muscle differentiation [44]. In a study of 109 Caucasians (50–75 years old), men (\(n = 22 \)) with the AKT1:c.-350G > T (rs1130214) variant (TT/GT genotype) significantly increased their VO2max compared to men (\(n = 29 \)) with the GG genotype (fold increase of 1.2 ± 0.02 vs 1.1 ± 0.02, \(p = 0.037 \)) following 24 weeks of MICT (3 × 20–40 min per week at 50–75% HRR) [44].

The glutathione S-transferase P1 (GSTP1)c .313A > G variant has been associated with an impaired ability to remove excess reactive oxygen species. This is hypothesised to increase the exercise training response by better activation of cell signalling pathways resulting in positive muscle adaptations [45]. While investigating 62 Polish females’ (19–24 years-old) response to 12 weeks of MICT (3 × 60 min per week at 50–75% HRmax), participants (\(n = 30 \)

Number	Chromosome	Gene	Variant	Race	Genotype/expression and VO2max training response (+/−/0)**	Author, Date	(x = candidate gene study)
79	14	HIF1A	T + 140C	Caucasian (60+ years)	C/T (−)	Prior, 2003 (x)	
80	14	AKT1	G205 T (rs1130214)	Caucasian men	GT & TT (+)	McKenzie, 2011 (x)	
81	14	TTC6	rs12896790	Caucasian	C (+)	Bouchard, 2011	
82	14	DAAM1	rs1956197	Caucasian	AA (−)	Bouchard, 2011	
83	15	NDN	rs824205	Caucasian	GG (−)	Bouchard, 2011	
84	15	DIS3L	Rs1546570	Caucasian	TBC	Timmons, 2010	
85	17	ACE	Intron 16	Caucasian	DD (+)	Rankinen, 2000b (x); Defoor, 2006 (x)	
86	17	RPTOR	NA	Caucasian	TBC	Ghosh, 2013	
87	17	VPS3	NA	Caucasian	TBC	Ghosh, 2013	
88	19	ADGRE3P; EMR4	rs7256163	Caucasian	TBC	Bouchard, 2011	
89	19	APOE	TBC	Chinese & unknown	E2/E3 (+)	Yu, 2014 (x); Thompson, 2004 (x)	
90	19	CKM	Ncol	Caucasian	Homozygous 1170 bp (−); CKM locus (+/−)	Rivera, 1999(x); Rivera 1997 (x)	
91	20	BIRC7 and YTHDF1	rs6090314	Caucasian	A (+)	Bouchard, 2011; Ghosh, 2013	
92	20	YTHDF1	rs6122403	Caucasian	TBC	Ghosh, 2013	
93	20	MACROD2	NA	Caucasian	TBC	Ghosh, 2013	
94	21	HLCS	NA	Caucasian	TBC	Ghosh, 2013	
95	22	MN1	rs738353	Caucasian	A (+)	Bouchard, 2011	
96	Mitochondria	ALAS2	<=166 bp	Chinese	<=166 bp (+)	Xu, 2015 (x)	
97	Mitochondria	mtDNA	NA	Quebec, Tempe	mtDNA subunit 5 NS (−)	Dionne, 1991 (x)	

Where possible, gene variants were annotated using the references sequence (GRCh37/hg19)

Bolded = genes that have been replicated between or within studies

**(+)= high training response, (−)= low training response, (0)= neutral training response, TBC to be confirmed whether variant contributes to a high or low training response
with the \textit{GSTP1}:c.313A $>$ G (GG + GA genotype) demonstrated a 2 mL/kg/min greater improvement in VO\textsubscript{2max} compared to AA genotypes ($n = 5$) following training (absolute $p = 0.029$, relative $p = 0.026$, effect size = 0.06) [45].

\textbf{Genes associated with electrolyte balance}

The electrogenic transmembrane ATPase (\textit{Na}^+/K$^-$ATPase) gene may contribute to VO\textsubscript{2max} trainability by affecting the electrolyte balance and membrane excitability in working muscles [24]. Examining Caucasian data from the HERITAGE study, it was found that those homozygous for a recurrent 3.3-kb deletion in the exon 1 of the \textit{ATP1A2} gene ($n = 5$) had a 41% (45 mL/min) lower training response compared to heterozygotes ($n = 87$) [24]. This exon encodes on part (alpha-2-subunit) of the \textit{Na}^+/K$^-$ATPase protein. This genotype also had a 48% (197 mL/min) lower VO\textsubscript{2max} training response than homozygotes ($n = 380$) for a repeated 8.8-kb in the exon 1 of the \textit{ATP1A2} gene following 20 weeks of MICT ($p = 0.018$) [24]. VO\textsubscript{2max} gains were 29% (130 mL/min) and 39% (160 mL/min) greater in offspring homozygous for a 10.5-kb deletion in exon 21–22 ($n = 14$) compared to heterozygotes ($n = 93$) and homozygotes ($n = 187$) respectively ($p = 0.017$) [24].

The angiotensin-converting enzyme (ACE) gene contributes to blood pressure, fluid and salt balance [55]. Elite endurance athletes are more likely to have the Insertion (I) allele [56] which relates to lower ACE activity and reduced blood pressure response during exercise, whereas sprint/power athletes are more likely to have the Deletion (D) allele and the DD genotype [57] and subsequently higher ACE activity. Caucasians from the CARAGENE study with the homozygous II genotype (frequency of 0.23 and 0.18 for men and women respectively) had a 2.1% greater VO\textsubscript{2max} training response ($p = 0.047$) compared to the DD genotype (frequency of 0.3 and 0.36 for men and women respectively) [31]. When eliminating those on ACE inhibitors, the improvement increased by 3% ($p = 0.013$) [31]. On the other hand, VO\textsubscript{2max} trainability was 14–38% greater ($p = 0.042$) in HERITAGE Caucasian offspring with the DD genotype ($n = 81$) [25]. Three studies found no association with ACE or angiotensinogen genetic variants and VO\textsubscript{2max} training response in 53 Caucasians (average age 19 years) following 12 weeks of military training [47]; 147 multi-ethnic 19–24 year-old adults following 8 weeks of military training [39]; and 83 Brazilian policemen (average age 26 years) following 17 weeks of MICT (3 \times 60 min per week at 50–85% VO\textsubscript{2peak}) [48].

\textbf{Genes associated with lipid metabolism}

Genotypes of the perilipin (\textit{PLIN1}) gene may influence training response via intracellular lipolysis and energy production [43]. In 101 Caucasians (50–75 years old), there were no significant differences between carriers and non-carriers of the \textit{PLIN1}:c.504 T $>$ A variant (rs1052700) after 24 weeks of MICT (20–40 min, 3 \times per week) [43].
The peroxisome proliferator activated receptor delta (PPARD) gene affects fatty acid oxidation and energy production [22]. African-Americans ($n = 19$) from the HERITAGE study with the PPARD exon 4 + 15 (CC genotype) had a significantly lower VO$_{2\text{max}}$ training response ($> 50 \text{ mL/min lower}; p = 0.028$) and power output ($> 15 \text{ W lower}; p = 0.005$) compared to the C/T and TT genotypes ($n = 230$) [22].

Apolipoprotein E (APOE) variants affect the level of lipids in the blood, cell lipid uptake and endothelial vascular dilation [23]. APOE has 3 common alleles: E2 (TT/TT), E3 (TT/CC), E4 (CC/CC) at two SNPs (rs429358, rs7412), which can create six possible genotypes (E2/E2, E3/E3, E4/E4, E2/E3, E2/E4, E3/E4) [58]. The APOE E4 allele has been associated with Alzheimer’s disease [59], higher levels of low density cholesterol (LDL-C) and a greater risk of coronary heart disease compared to E3 (wild-type) and E2 carriers [23]. Chinese men (18–40 years) with the APOE E2/E3 ($n = 20$) and E3/E4 ($n = 31$) genotypes had a significantly higher VO$_{2\text{max}}$ training response (Odds Ratio (OR) = 0.68 (95% CI 0.04, 1.32); $p = 0.04$ and OR = 0.60 (95% CI 0.09, 1.11); $p = 0.02$ respectively) compared to other APOE genotypes following 6 months of progressive MICT (3 × per week at 60–85% VO$_{2\text{max}}$) [13]. Similarly, Chinese women (18–40 years) with the APOE E2/E3 ($n = 25$) and E3/E4 ($n = 29$) genotypes had significantly higher VO$_{2\text{max}}$ training responses compared to other APOE genotypes (OR = 0.62 (95% CI = 0.05, 1.18); $p = 0.03$ and OR = 0.62 (95% CI = 0.09, 1.15); $p = 0.02$ respectively) [13]. Men and women (ethnicity unknown) with the E3/E3 APOE genotype ($n = 43$) had an 8% lower training response compared to the E2/E3 ($n = 40$) and E3/E4 genotypes ($n = 37$) ($p < 0.01$, Bonferroni-corrected) following 6 months of MICT (4 × 50 min per week at 60–85% VO$_{2\text{max}}$) [42]. However, there was no significant difference in the VO$_{2\text{max}}$ training response between APOE genotypes in men and women from the HERITAGE study ($n = 766$) [23]. Similarly, in 51 males (40–80 years old, ethnicity not confirmed) there was no difference in VO$_{2\text{max}}$ training response between genotypes [41].

Genes associated with oxidative phosphorylation and energy production

Mitochondrial DNA (mtDNA) encodes several enzyme subunits involved in oxidative phosphorylation, and may be a key factor in endurance and cardiorespiratory fitness [56]. Research of mtDNA variants in 41 inactive Japanese men (mean age 20.6) failed to find a significant difference in trainability after 8 weeks of MICT (3–4 × 60 min per week at 70% VO$_{2\text{max}}$) [49]. On the contrary, 3 men (17–25 years) with the mtDNA variant in subunit 5 of ND5 had a lower VO$_{2\text{max}}$ training response compared to other mtDNA variants (gain 0.22 L/min less, $p < 0.05$) following 12-weeks of MICT (3–5 × 45 min per week at 85%HR$_{\text{max}}$) [50].

The creatine kinase muscle (CKM) gene has been associated with reduced fatigue from increased adenosine triphosphate (ADP) production [26, 27]. Using data from the HERITAGE study, parents and offspring homozygote for the 1170 bp allele ($n = 12$) had a lower VO$_{2\text{max}}$ training response (3 times and 1.5 times lower respectively; $p < 0.05$) compared to other CKM genotypes ($n = 148$). This explained 9 and 10% of the inter-individual variation in VO$_{2\text{max}}$ change respectively [26]. A nominal genetic linkage was identified in siblings ($n = 277$) who shared two alleles (1170 base pairs or 985 + 185 base pairs) at the CKM locus identical by descent (IBD), with these siblings having similar changes in VO$_{2\text{max}}$ compared to siblings with fewer alleles IBD ($p = 0.04$) [27].

In an earlier study focusing on muscle specific inherited variations, no association was found in 295 Caucasians (18–30 years old) between CKM or adenylate kinase (AKI) variants after a randomized control trial that included 15 weeks of endurance training versus maximal power contraction interval training [40]. Similarly, no association was found with the CKM gene and VO$_{2\text{max}}$ trainability in 937 Caucasian patients with coronary artery disease following 3 months of MICT (2–3 × 90 min aerobic sessions per week at 80% HR$_{\text{max}}$) [29].

Nuclear respiratory factor 1 (NRF1) and nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) [36, 37], contribute to mitochondrial biogenesis and oxidative phosphorylation [60]. In a study involving 102 physically active Chinese male soldiers (average age 19 years), there was no association between NRF1 and NFE2L2 genotypes or haplotypes and VO$_{2\text{max}}$ trainability after 18 weeks of 3 × 5000 m runs per week at 95–105% VT [36, 37].

Genes associated with oxygen delivery

Nitric oxide causes coronary and arterial vasodilation, contributing to oxygen delivery regulation [32]. Data from the CARAGENE study was used to investigate genes associated with nitric oxide bioavailability [32]. These included nitric oxide synthase 3 (NOS3), cytochrome b-245 alpha chain (CYBA, also known as p22 PHOX), glutathione peroxidase (GPX1), catalase (CAT), superoxide dismutase 3 (SOD3), vascular endothelial growth factor A (VEGFA), peroxisome proliferator-activated receptor alpha (PPARa) and peroxisome proliferator-activated receptor gamma coactivator-related 1 (PPARc1) [32]. Participants carrying the C allele of the CATc.262 T > C variant ($n = 342$) had up to 3.1% greater improvements in VO$_{2\text{max}}$ training response compared to participants with the TT genotype ($n = 521$) following MICT ($f = 3.6; p = 0.02$). Participants with the NOS3 1.4 haplotype combinations ($n = 36$) had a 6.4% lower training response compared to the 3.3. haplotype
combinations (n = 133) (p < 0.05). However, these associations were not significant after Bonferroni correction. No other associations were found with other genes or haplotypes related to nitric oxide availability and endothelial function [32]. Similarly, in a cohort of 80 Portuguese (20–35 years old) police recruits, there was no association between NOS3 genotypes (−786 TT/TC/CC, 894 GT/TT/GG) and VO2peak response following 18 weeks of 3 × 80-min per week of graded running training [59]. Additionally, no association was found with PPARGC1 and VO2max trainability in 102 Chinese male police recruits following MICT [36].

The beta-2-adrenergic receptor (ADBR2) gene helps to support oxygen delivery to working muscles via the adrenergic receptors [30]. In participants from the CARAGENE study, there was no association found between ADBR2 genotypes or haplotypes, and VO2max trainability [30].

The hypoxia-inducible factor 1 alpha (HIF1A) gene is a transcriptional regulator that controls angiogenesis (blood vessel development) and metabolism by increasing the expression of hypoxia-induced genes, such as VEGF [52]. Caucasians 60 years and over with the HIF1A:c.1744C > T (rs11549465; C/T genotype; n = 37) had a significantly lower training response (0.3 mL/kg/min; p = 0.03) compared to those with the CC genotype (n = 64) following 24 weeks of MICT (3 × 20–40 min per week at 50–70% VO2max) [52].

The 5′-aminolevulinate synthase 2 (ALAS2) gene is highly expressed in erythroid cells and is imperative for hemoglobin and myoglobin synthesis [53]. Seventy-two Chinese participants (18–22 years old) allocated to one of 13 ALAS2 genotypes with compound dinucleotide repeats lengths (157 bp – 184 bp), were placed in a 4-week ‘HiHiLo’ training program (varying between low and high altitude training at 75% VO2max) [53]. Baseline hemoglobin levels and change in VO2max with training was significantly higher in subjects (n = 25) with the dinucleotide repeats ≤ 166 bp (p < 0.05). No significant associations were found between VO2max trainability and other genes related to oxygen transport and utilization genotypes in 102 young Chinese soldiers following 18 weeks of 3 × 5000 m runs per week [35, 37, 38]. These genes include mitochondrial transcription factor A (TFAM) [35] and hemoglobin-beta locus (HBB) [38].

Three studies have used GWAS to identify genes associated with the VO2max response to exercise training [20, 21, 28]. These are outlined in Table 3.

The first investigated two clinical trials and data from the HERITAGE study [28]. RNA expression profiling and VO2max testing was performed on 24 healthy and inactive Caucasian men (average age 24 years) before and after a 6-week training intervention (4 × 45-min cycling sessions per week at 70% VO2max). Muscle biopsies from the vastus lateralis were collected and the RNA expression of genes was correlated with changes in VO2max by analysing oligonucleotide arrays. Pearson correlations were used to identify the relationships between the median logit normalised probe sets and the number of times they were selected. In the 24 subjects, using a median correlation cut-off greater than 0.3, 29 genes were selected greater than 22 out of 24 times. The sum of expression of these 29 genes were found to have a significant linear relationship with VO2max change following endurance training (r² = 0.58, p < 0.00001). Across the group, VO2max Changes improved on average by 14% and ranged from −2.8% to 27.5% (p = 0.0001). More than 20% of the group had a response less than 5%. A gene set enrichment analysis found that the oxidative phosphorylation gene was upregulated (False Discovery Rate (FDR) = 1.1%), which was associated with an increased reliance on lipids during training (RER decreased on average by 10% post training, p < 0.0001). To identify if these predictor genes would be similar in a different sample, a 12-week blind study on 17 young and active Caucasian men was conducted. Training consisted of 1-day of testing, 2 sessions of interval training (3 × 3-min intervals at 40–85% Pmax) and 2 × 60–120-min cycle sessions (55–60% Pmax) each week. The 29 predictor genes were also significantly associated with VO2max trainability in this group (p = 0.02). The haplotypes of these predictor genes were then genotyped using candidate genes identified from the HERITAGE study. Six genetic variants were associated with VO2max trainability: SMTNL2, DEPD6C6, SLC22A3, METTL3, ID3 and BTLN9 (p < 0.01 each). A stepwise regression model using 25 variants from the predictor set and 10 variants from the HERITAGE study (Table 3) found that eleven SNPs (included in Table 4) contributed to 23% of the differences seen in residual VO2max gains, which correlated to approximately 50% of the genetic variability in VO2max trainability (seven variants from the RNA predictor set and four from the HERITAGE project). Reciprocal RNA expression validation found that three of four HERITAGE candidate genes enhanced the original RNA transcript predictor model. Overall, more than 90% of gene expression did not change. However, OCT3 was downregulated in high responders and H19 was upregulated in low responders (FDR <5%). BTLN9, KLF4 and SMTNL2 also
had small but inconsistent changes in expression (i.e. dissimilar in high vs low responders) (FDR < 5%).

A GWAS examining 324,611 variants from the HERITAGE study was completed to identify possible predictor genes associated with VO2peak [20]. Based on single-variant analysis, 39 variants (Table 3) were associated with gains in VO2peak although none of these achieved genome-wide or suggestive significance ($p = 1.5 \times 10^{-6}$). After a stepwise multiple regression analysis of the thirty-nine variants, 21 were suggested to account for (or at least contribute to) 49% of the variance in VO2max trainability (included in Table 4; $p < 0.05$). The strongest predictors were found in SNPs associated with: PR domain-containing protein 1 (PRDM1); glutamate receptor, ionotropic, N-methyl-D-aspartate 3A (GRIN3A); N-methyl-D-aspartate receptor (NMDA); potassium voltage-gated channel subfamily H member 8 (KCNH8); zinc finger protein of cerebellum 4 (ZIC4); and, ACSL1. An unweighted ‘predictor score’ based on contribution to VO2max of these 21 variants was created. A score of ‘0’ represented homozygote for the low-response variant; ‘1’ represented heterozygous and ‘2’ represented homozygous for the high-response allele. Individuals with a score equal to or less than 9 ($n = 36$) had an average VO2max score improvement of 221 mL O2/min. Alternatively, those ($n = 52$) with a score equal to or greater than 19 had an average VO2max increase of 604 mL/min.

The 15 most significant variants were tested for replication in a sample of African-Americans from the HERITAGE study, women in the Dose Response to Exercise (DREW) study ($n = 112$), and the men and women in the Study of a Targeted Risk Reduction Intervention through Defined Exercises (STRRIDE) ($n = 183$) [20]. Variants in the NDN (15g:24008071 T > C; rs824205) and DAAM1 (14g:59477741C > T; rs1956197) were replicated in the DREW study, the ZIC4 (3g:146957166 T > C T; rs11715829) variant was replicated in the STRRIDE study and CAMTA1 (7g:7015105 T > C; rs884736) and RGS18 (1g:192059022G > A; rs10921078) variants were replicated in African-Americans from the HERITAGE study. Four variants in the genes supervillin (SVIL), neuropillin 2 (NRP2), titin (TTN) and carbozypeptidase (CPVL) identified by Timmons et al. [28] were also found by Bouchard et al. [20], however, at a significance of 0.008, these variants were not included in the multivariate regression analysis.

Using the HERITAGE cohort, an extended analysis was performed, with 2.5 million variants analysed [21]. To reduce bias associated with outlier variants, the second most significant variant p-value was used to determine genotype and changes in VO2max. Even with an extended analysis, the ACSL1 gene was shown to have the most significant variant (4g:185725416A > G; rs6552828), which confirmed findings by Bouchard et al. [20], whom identified the most significant variant at each gene (Table 3). The following genes and their variants were also replicated in both studies: CAMTA1 (rs884736), RYR2 (rs7531957), g.63226200G > A (rs6090314), CI2orf36 (rs12580476) and CD44 (rs353625) [20, 21].

The gene prioritisation tool ‘CANDID’ was then used to rank candidate genes for changes in VO2max [21]. This was done via: 1) a weighted analysis based on variant gene expression in targeted tissues; 2) GWAS p-value change in VO2max; 3) literature related to candidate genes; and 4) ‘cross species sequence conservation’ [21]. The top-ranking candidate genes from the GWAS and CANDID tool (Table 1) were then investigated for possible biological mechanisms and changes in VO2max. As a result, variants were allocated into four groups: 1) broad effects on exercise-related processes (such as the electron transport chain, physical fitness, skeletal development and other cardiorespiratory markers); 2) moderately strong scores against selective exercise-related processes; 3) high and low scores across several exercise-related processes; 4) low scores across all exercise-related processes.

Variants and their involvement in pathways related to changes in VO2max response were then examined [21]. Out of the sixteen pathways found, variants related to pantothenate and co-enzyme A (CoA) biosynthesis, PPAR gene signalling and immune function signalling had the highest level of ‘burden’ (variants contributing to trainability). The variants related to long-chain fatty acid transport (including ACSL1) and fatty acid oxidation strongly influence VO2max training response via lipid metabolism process and the tricarboxylic acid cycle, both of which affect the availability of adenosine triphosphate and subsequently training response.

Predictor genes

Out of the 35 articles analysed (candidate genes and GWAS studies), 97 predictor genes were identified as possible contributors to VO2max trainability (Table 4). These genes were based on what authors deemed significant, or the most significant, for their particular study. Thirteen of these predictor genes were replicated between at least two studies (bolded in Table 4). The traits for VO2max trainability (e.g. which genotype was related to the training effect and whether it was a low or high responding genotype) was not outlined for each variant and hence this will require confirmation in future studies.
Discussion

This systematic review aimed to summarize genetic variants that have been identified as influencing VO\textsubscript{2max} trainability. We have reviewed 35 studies that have reported 97 genes associated with an exercise training-induced improvement in VO\textsubscript{2max}. It has been estimated that VO\textsubscript{2max} trainability has a significant heritable component of around 50% [39].

There were several studies that identified the same variant, including: the lipid-related \textit{ACSL1}:c.-32716 T > C [rs6552828] [20, 21] and skeletal muscle-related \textit{AMPD1}:c.133C > T [33, 46]; intra-cellular calcium regulator \textit{RYR2}:c.6166 + 552 T > G; cellular function-related \textit{CD44} (rs3653625), transcriptional activator \textit{CAMTA1} (rs884736), non-coding \textit{C12orf36} (rs12580476) and apoptotic regulator 20g.63226200G > A (rs6090314) [20, 21]. Additionally, Bouchard et al. [20] were able to replicate the variants in genes from the HERITAGE study, including: growth suppressor \textit{NDN}, cell cortex function-related \textit{DAAM1}, development-related \textit{ZIC4} and signal transduction inhibitor \textit{RGSI8}. Numerous identified variants were found in pathways that contribute to training response (e.g. calcium signaling, immune function, angiogenesis, mitochondrial biogenesis) with pathways and associated SNPs possibly influencing each other and overall trainability [21]. Several articles found conflicting results with electrolyte balance, lipid production and energy production genes \textit{ACE} [25, 31, 47, 48], \textit{APOE} [13, 23, 41, 42], \textit{mtDNA} [49, 50] and \textit{CKMM} variants respectively [26, 27, 29, 40]. All other ‘predictor genes’ identified are yet to be replicated.

While most of the articles examined in this review have focused on one or a few candidate genes/markers (\(n = 32\)), it is noted that exercise-related phenotypes are complex traits and are polygenic (i.e. influenced by many genes working together) with each genetic variant likely to be contributing a small percentage (typically less than 1%) to the overall change in VO\textsubscript{2max} [33, 39, 61]. Thus relying on one variant as a predictor is misguided; rather it has been suggested that a gene predictor score (GPS) based on numerous variants has a greater probability to determine higher and lower responders for VO\textsubscript{2max} trainability. For example, a score of ‘0’ represents a homozygote for a low-response variant; ‘1’ represents heterozygous and ‘2’ represents homozygous for a high-response variant [20]. A higher score indicates a greater possible VO\textsubscript{2max} training response (and vice versa). A similar model has been suggested in elite athletes aiming to determine the probability of an individual with a theoretically ‘optimal’ polygenic profile for endurance sports. The ‘optimal’ profile using a so-called ‘total genotype score’ (TGS, ranging from 0 to 100, with ‘0’ and ‘100’ being the worst and best genotype combinations, respectively) was quantified from a simple algorithm resulting from the combination of candidate polymorphisms [62, 63].

These predictor genes, along with muscle RNA and protein expression data provide a sound platform to further explore the cellular mechanisms underlying VO\textsubscript{2max} trainability. Further research will need to consider several limitations identified from the literature to-date. For example, the lack of replication found between articles and conflicting results with certain variants, may be a result of several main limitations (typically in study design). Firstly, most of the articles used a hypotheses-driven candidate gene approach (\(n = 32\)), several articles used retrospective data from similar cohorts (\(n = 19\)), and many lacked a control group and randomization (\(n = 31\)). While it is understandable that in the past, high-throughput SNP microarray or gene sequencing technology was not available to use, by looking at one or only a few gene variants (whereas it is estimated that the human genome consists of about 40 million common gene variants) it is almost impossible to generate meaningful information. Similarly, a lack of control group makes it challenging to distinguish between individual response to an intervention and within-subject random variation [64]. Secondly, most of the exercise training studies involve a relatively small number of participants (typically \(n = 20\) to 30; with the exception of the HERITAGE and CARAGENE studies), which results in lack of statistical power when associating genotype with a phenotype. Many of the studies also failed to include a robust significance criterion (\(p < 0.05\) occurs approximately \(10^6\) times in the genome by chance). Thirdly, a lack of racial diversity (74.5% Caucasian) further reduces the power of variants detected. Finally, many of the training studies were not tightly controlled in terms of nutrition, participant baseline data (study entry), physical activity status and other lifestyle factors.

Future research needs to consider epigenetic variation of gene activity that can occur in reaction to external factors, such as additional physical activity, drugs, diet and environmental toxins [61, 65]. Such epigenetic modifications can affect all adaptions to exercise training [10]. For example, in addition to nutrition and baseline physical activity status, there were many other differences in subjects between articles not taken into consideration including: age, training duration and volume (MICT vs. HIIT), body weight, body fat percentage, medications, clinical versus healthy populations; sleep, psychological status and the gut microbiome. Together, these are potential epigenetic modifiers (e.g. DNA methylation and histone acetylation) that can influence gene expression, molecular function and thereby influence VO\textsubscript{2max} training response [61, 66]. Whether genes or epigenetic modifiers play a larger percentage role in adaptive variability in a specific situation requires further exploration.
To address these limitations, larger-scale studies are required to ascertain if the 97 predictor genes identified from this review are similar in various cohorts (e.g. several ethnicities, ages, gender). The Athlome Project Consortium, which includes the Gene SMART study, is an example of a current larger-scale investigation examining ‘omic markers’ of training response, elite performance and injury rates/predisposition in variety of populations [67]. Ideally, future studies will complement and expand on this research, and consider alternative forms of exercise training intensity and volume, lifestyle factors, general health, diet, medications and health history when implementing interventions and analyzing data.

Furthermore, the role of the gut microbiome, and its influence on metabolism and physiology, needs to be explored. For example, gut microbiota (which has its own genome) can interact with the tissue cellular environment to regulate gene expression [61]. Poor diet, stress, illness, the use of antibiotics, environmental toxins and poor lifestyle choices can increase inflammation within the gut, causing dysbiosis; this appears to contribute to chronic diseases and other illnesses, irrespective of genotype, age and gender [68, 69]. Interestingly, VO2max was recently shown to be related to gut microbial diversity in a human cross-sectional study [70], suggesting a link between VO2max and gut microbes. Pre- and probiotics, resistant starch and a Mediterranean diet (dietary diversification) can alter the gut microbiome [68]. Investigating how the gut and human genome interact to positively influence VO2max is warranted.

With these points in mind, the analysis of stool samples, in addition to incorporating epigenetic, transcription and proteomic analysis, may help to identify the best aerobic training or lifestyle intervention to upregulate or downregulate certain genes, signaling pathways and molecular responses required for a greater VO2max training response. Implementing tightly-controlled studies examining various mediators (training intervention, diet, lifestyle) and molecular biomarkers across various populations will help to capture accurate information related to ideal traits for VO2max trainability.

Conclusion

In total, 97 genes that predicted VO2max trainability were identified. Phenotype is dependent on several of these genotypes/variants, which may contribute to approximately 50% of an individual’s VO2max trainability. Higher responders to exercise training have more positive response alleles (greater gene predictor score) than lower responders. Whilst these findings are exciting, further randomized-controlled research with larger and diverse cohorts are needed. Additional exploration is required to identify genetic variants and the mediators (training intensity and volume, diet, drugs, other lifestyle factors) that can potentially affect gene expression, molecular function and training response. Findings from this review and future research may assist clinicians to provide precision evidence-based medicine centered on phenotype, contributing to the fight against chronic disease.

Pubmed, embase, cinahl and cochrane search terms

Pubmed search

gene* [ti] OR allele [tiab] OR SNP [tiab] OR genetic profiling [tiab] OR genetic variant* [tiab] OR Genomic predictor* [tiab] OR polymorphism [tiab] OR heritability [tiab] AND (exercise training [tiab] OR VO2peak [tiab] OR ‘cardiorespiratory fitness’ [tiab] OR ‘maximal/maximum VO2peak’ [tiab] OR maximal/maximum VO2max [tiab] OR maximal oxygen consumption’ [tiab] OR peak oxygen uptake’ [tiab] OR interval exercise’ [tiab] OR ‘high/low intensity exercise’ [tiab] OR peak fitness’ [tiab] OR endurance’ [tiab] OR physical fitness’ [tiab] OR cardiorespiratory fitness’ [tiab] OR endurance training [tiab] OR cardiovascular fitness’ [tiab] OR VO2max [tiab] OR aerobic power [tiab] OR aerobic fitness’ [tiab] OR exercise capacity’ [tiab] OR exercise training response’ [tiab] OR response to exercise training’ [tiab] NOT animal*.

Embase

gene:ab,ti OR allele:ab,ti OR SNP:ab,ti OR ‘genetic profiling’:ab,ti OR ‘genetic variant’:ab,ti OR ‘genomic predictor’:ab,ti OR heritability:ab,ti AND (vo2peak:ab,ti OR vo2max:ab,ti OR ‘cardiovascular fitness’:ab,ti OR ‘cardiorespiratory fitness’:ab,ti OR ‘aerobic power’:ab,ti OR ‘aerobic fitness’:ab,ti OR ‘exercise training response’:ab,ti OR ‘physical fitness’:ab,ti).

Cinahl

(genes OR ‘genetic variant’ OR ‘Genomic predictor’ OR polymorphism OR ‘genetic profiling’ OR ‘single nucleotide polymorphisms’ OR ‘SNPs’ heritability) AND (‘trainability’ OR ‘cardiovascular fitness’ OR ‘interval exercise’ OR ‘maximum O2’ OR maximal oxygen consumption’ OR ‘peak oxygen consumption’ OR maximal aerobic capacity’ OR ‘high/low intensity exercise’ OR ‘cardiorespiratory fitness’ OR ‘aerobic power’ OR ‘response to exercise training’ OR ‘exercise capacity’ OR ‘VO2max’ OR ‘VO2peak’ OR ‘endurance’).

Cochrane database for systematic reviews

(genes OR ‘genetic variant’ OR ‘Genomic predictor’ OR polymorphism OR ‘genetic profiling’ OR ‘single nucleotide polymorphisms’ OR ‘SNPs’ heritability) AND (‘trainability’ OR ‘cardiovascular fitness’ OR ‘interval exercise’ OR ‘maximum O2’ OR maximal oxygen consumption’ OR ‘peak oxygen consumption’ OR maximal aerobic capacity’ OR ‘high/low intensity exercise’ OR ‘cardiorespiratory fitness’ OR ‘aerobic power’ OR...
response to exercise training’ OR ‘exercise capacity’ OR ‘VO2max’ OR ‘VO2peak’ OR ‘endurance’.

Cochrane central register of controlled trials
(genotypes OR ‘genetic variant’ OR ‘Genomic predictor’ OR polymorphism OR ‘genetic profiling’ OR ‘single nucleotide polymorphisms’ OR ‘SNPs’ heritability) AND (trainability’ OR ‘cardiovascular fitness’ OR ‘cardiorespiratory fitness’ OR ‘interval exercise’ OR ‘maximum O2’ OR maximal oxygen consumption’ OR ‘peak oxygen consumption’ OR maximal aerobic capacity’ OR ‘high/low intensity exercise’ OR ‘aerobic power’ OR ‘response to exercise training’ OR ‘exercise capacity’ OR ‘VO2max’ OR ‘VO2peak’ OR ‘endurance’).

Funding
Publication of this manuscript was supported by the Collaborative Research Network for Advancing Exercise and Sport Science (CRN-AESS).

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article.

About this supplement
This article has been published as part of BMC Genomics Volume 18 Supplement 8, 2017: Proceedings of the 34th FIMS World Sports Medicine Congress. The full contents of the supplement are available online at https://bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-8.

Authors’ contributions
CW was the primary author. MW checked the nomenclature of all variants and terminology used. JC, NE, UW, JL and KA provided expert advice and edits to the manuscript. All authors have read and approved the final manuscript.

Ethics approval and consent to participate
Ethics approval from Bellberry.

Consent for publication
Written informed consent was obtained from the individuals involved in this study.

Competing interests
The authors declare they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Centre for Research on Exercise, Physical Activity and Health (CRExPAH), School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia. 2Molecular Genetics Department, Mater Pathology, South Brisbane, Queensland, Australia. 3Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne 8001, Australia. 4Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia. 5School of Health and Exercise Sciences, University of British Columbia, Okanagan, Canada. 6Cardiac K.G. Jebsen Center for Exercise in Medicine at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.

Published: 14 November 2017

References
1. World Health Organization. Chronic diseases and health promotion. 2016. http://www.who.int/chp/en/. Accessed 21 Oct 2016.
2. Bacon AP, Carter RE, Ogle EA, Joyner ML. VO2max trainability and high intensity interval training in humans: a meta-analysis. PLoS One. 2013;8:e73182.
3. Denham J, Marques F, O’Brien B, Charchar F. Exercise: putting action into our epigenome. Sports Med. 2014;44:189–209. 121p.
4. Mann TN, Lamberts RP, Lambert MI. High responders and low responders: factors associated with individual variation in response to standardized training. Sports Med. 2014;44:1113–24.
5. Bouchard C, Antunes-Correia LM, Ashley EA, Franklin N, Hwang PM, Mattsson GM, et al. Personalized preventive medicine: genetics and the response to regular exercise in preventive interventions. Prog Cardiovasc Dis. 2015;57:324–9.
6. DeFina LHW, Willis B, Barlow C, Finley C, Levine B, et al. Physical activity versus cardiorespiratory fitness: two (partly) distinct components of cardiovascular health? Prog in Cardiovasc Dis. 2015;57:324–9.
7. Wilson GM, Elliston G, Cable TN. Basic science behind the cardiovascular benefits of exercise. Br J Sports Med. 2016;50:93–9.
8. Bouchard C. Human adaptability may have a genetic basis. In: Health risk estimation, risk reduction and health promotion. Proceedings for the 18th annual meeting of the society of prospective medicine. Ottawa: Canadian Public Health Institution; 1983. p. 443–76.
9. Lortie G, Simoneau JA, Hamel P, Boulay MR, Landry F, Bouchard C. Response of maximal aerobic power and capacity to aerobic training. Int J Sports Med. 1984;5:232–6.
10. Mori M, Higuchi K, Sakurai A, Tabara Y, Miki T, Nose H. Genetic basis of inter-individual variability in the effects of exercise on the alleviation of lifestyle-related diseases. J Physiol. 2009;587:5577–84.
11. Rankinen TBC. Genetic predictors of exercise training response. Curr Cardiovasc Risk Rep. 2011;5:368–72.
12. Atkinson G, Batterham AM. True and false interindividual differences in the physiological response to an intervention. Exp Physiol. 2015;100:577–88.
13. Yu B, Chen W, Wang R, Qi Q, Li K, Zhang W, et al. Association of apolipoprotein E polymorphism with maximal oxygen uptake after exercise training: a study of chinese young adult. Lipids Health Dis. 2014;13:40.
14. Klassous V. Adaption to maximal effort: genetics and age. J Appl Physiol. 1973;35:288–93.
15. Monotype HJGR. Familial relationships in maximal oxygen uptake. Hum Biol. 1978;50:241–9.
16. Hamel P, Simoneau J, Gilles L, Boulay M, Bouchard C. Heredity and muscle adaptation to endurance training. Med Sci Sports Exerc. 1986;18:690–6.
17. Prud’homme D, Bouchard C, Leblanc C, Landry F, Fontaine E. Sensitivity of maximal aerobic power to training is genotype-dependent. Med Sci Sports Exerc. 1984;16:489–93.
18. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. Familial aggregation of VO2max response to exercise training: results from the HERITAGE family study. J Appl Physiol. 1999;87:1003–8.
19. Webborn N, Williams A, McNamee M, Bouchard C, Pitsiladis Y, Ahmetov I, et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: consensus statement. Br J Sports Med. 2015;49:1486–91.
20. Bouchard C, Sarzynski MA, Rice TK, Kraus WE, Church TS, Sung YJ, et al. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J Appl Physiol. 2011;110:1160–70.
21. Ghosh S, Vilar JC, Sarzynski MA, Sung YJ, Timmons JA, Bouchard C, et al. Integrative pathway analysis of a genome-wide association study of VO2max response to exercise training. J Appl Physiol. 2013;115:1343–59.
22. Hautala AL, Skinner JS, Rao DC, Bouchard C, Rankinen T. Peroxisome proliferator-activated receptor-beta polymorphisms are associated with physical performance and plasma lipids: the HERITAGE family study. Am J Physiol Heart Circ Physiol. 2007; doi:10.1152/ajpheart.01092.2006.
23. León AS, Togashi K, Rankinen T, Despres JP, Rao DC, Skinner JS, et al. Association of apolipoprotein E polymorphism with blood lipids and maximal oxygen uptake in the sedentary state and after exercise training in the HERITAGE family study. Metabolism. 2004;53:108–16.
24. Rankinen T, Perusse L, Borecki I, Chagnon YC, Gagnon J, León AS, et al. The NA(+)–K(+)–ATPase alpha2 gene and trainability of cardiorespiratory endurance: the HERITAGE family study. J Appl Physiol. 2000;88:346–51.
