Synthesis, Characterisation and Catalytic Activity of NiO supported Al₂O₃ for CO₂ Hydrogenation to Carboxylic Acids: Influence of Catalyst Structure

S Z Hasan¹, K N Ahmad¹, W N R W Isahak¹,²*, M Pudukudy¹, M S Masdar¹,², J M Jahim¹,²

¹Research Centre for Sustainable Development Technology, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor. ²Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor.
*Corresponding author: wannorroslam@ukm.edu.my

Abstract. Utilisation and conversion of carbon dioxide into valuable chemicals and fuels are the promising ways to reduce carbon dioxide concentration in the atmosphere. In addition, the conversion of carbon dioxide into fuels, such as methane, methanol and formic acid has been proven a good method for hydrogen storage. In this work, the catalyst structure plays an important role in the production of formic acid and acetic acid at low temperature. Nickel oxide supported alumina catalysts were synthesised by using the solid-state fusion method at 550 °C and 700 °C. Calcined catalysts were characterised by X-ray diffraction, Brunauer-Emmett-Teller surface area, high-resolution field emission scanning electron microscopy, Auger electron spectroscopy with X-ray photoelectron spectrometer and transmission electron microscopy. Carbon dioxide hydrogenation was performed in the batch reactor. The products obtained were analysed by using high-performance liquid chromatography and gas chromatography with a thermal conductivity detector. The highest levels of formic acid and acetic acid production were 4.08 and 1.58 mmol/L, respectively.

Keywords: CO₂ utilisation, heterogeneous catalyst, NiO/Al₂O₃, formic acid, acetic acid.

1. Introduction

Global warming is a critical issue affecting the world nowadays. The main cause of global warming is attributed to the increase in greenhouse gases mainly from CO₂ (65 %) [1]. At present, the concentration of CO₂ has increased up to 406 ppm in 2018 and from the last five years, the increment is about 3–4 ppm, as measured at Mauna Loa [2]. This phenomenon is something to worry about since global warming causes climate change, which in turn results in (1) tropical storms, (2) rise in sea level and coastal flooding, (3) El Nino and La Nina that may affect rainfall and water supplies (4) threat to inland plants and animals, and (5) worsened human health [3]. Therefore, something should be done to reduce atmospheric CO₂ concentration.

CO₂ conversion and utilisation are two different terms with the same meaning that are used to mitigate CO₂ in atmosphere space. The term CO₂ conversion refers to the transformation of CO₂ into chemically different forms that contain the carbon of CO₂ or that make use of its active ‘oxygen atom’[4]. On the other hand, CO₂ utilisation is the use of CO₂ in both physical and chemical processes [4]. Compared to other methods (CO₂ capture and CO₂ storage), CO₂ conversion and utilisation not only reduce atmospheric CO₂ concentration, but also convert CO₂ into other valuable chemicals and fuels. CO₂ is a simple molecule that consists of two oxygen atoms that are covalently bonded to one carbon atom. However, this molecule is thermodynamically very stable to be reduced to another valuable chemical. Therefore, the presence of a catalyst is very important since it can speed up the rate of reaction by reducing the activation barrier for the reaction to proceed.

Currently, formic acid production from CO₂ as the main feedstock has attracted scientists’ attention globally [5, 6]. Formic acid production from CO₂ not only reduces atmospheric CO₂ concentration, but
also stores H₂ in the form of liquid, which is safe and non-toxic. It is known that formic acid can be applied as a fuel in direct formic acid fuel cells (DFAFCS) and can also be used as a potential chemical hydrogen storage material [7, 8]. Therefore, the state-of-the-art of this study is to reduce CO₂ into formic acid under a low-temperature reaction with the presence of the good activity of a low-cost catalyst.

The use of noble metals as catalysts was applied many years ago. According to previous research, palladium (Pd), aurum (Au), and ruthenium (Ru) have been investigated in heterogeneous catalytic of CO₂ hydrogenation into formate and formic acid products [9–15]. However, these catalysts are expensive and have limited availability, thus making them impractical to be used in catalytic hydrogenation from the industrial point of view. The use of non-noble metals is a good alternative in replacing noble metals since they exhibit both high activity and stability.

In this work, NiO-based catalysts were used for hydrogenation of CO₂ at low temperature. The low-cost catalysts showed good catalytic activity in CO₂ hydrogenation at low temperature and under mild condition. The effect of calcination temperature on structure and catalytic activity of alumina supported NiO catalysts were investigated. The techniques of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, high-resolution field emission scanning electron microscopy (FESEM), Auger electron spectroscopy with X-ray photoelectron spectrometer (AES-XPS) and transmission electron microscopy (TEM) were performed to report the phenomenon and effect.

2. Experimental Methods

2.1. Catalyst synthesis and characterisation
NiO-C/Al₂O₃ catalysts were synthesised by fusion solid-state method as reported by Pudukudy et al. [16]. After being well-mixed by using mortar, the catalyst samples were fused at 100 °C in an oven and later calcined in air at 550 °C and 700 °C for 4 h. The catalysts were labelled as NiO-C/Al₂O₃-550 and NiO-C/Al₂O₃-700 according to their calcination temperature.

XRD was used to identify the phase structures of the catalysts (D8 Advanced, Bruker AXS Germany). High resolution FESEM (Merlin Compact) was used to investigate the morphologies of the catalysts and TEM analysis was performed on TEM Philips CM-12. A small quantity of the catalysts was dispersed in ethanol and dried on the copper grids for the next measurement. For the specific surface area of the catalysts, Micromeritic ASAP 2020 with BET method was used. The chemical state information of the element was investigated by using AES-XPS (Axis Ultra DLD, Kratos/Shimadzu).

2.2. Hydrogenation of CO₂
CO₂ hydrogenation was performed in a high-pressure stainless steel autoclave reactor (250 mL; internal diameter, 60 mm) with a mechanical stirrer. In each experiment, 0.2 g of the catalyst was inserted into a batch reactor with 35 mL of 1,4-dioxane as a solvent. The reactor was purged with H₂ for 1 min and pressurised with 10 bar of CO₂. H₂ was filled up to the initial pressure of 35 bar. The system was heated to 130 °C by a mantle fitted with a digital temperature controller. The reaction was conducted for a few hours. Next, the reactor was cooled down to room temperature naturally, and the pressure was released to ambient condition.

The liquid products obtained were filtered and analysed with Agilent LC1100/1200 series high-performance liquid chromatography (HPLC) system with RP80 column (250 mm) at 30 °C by using 0.1% H₃PO₄ as an eluent. The flow rate was maintained at 1 mL/min with a run time of 20 min and a UV detector of 210 nm. For gaseous products, the gas chromatography (GC) system from Agilent Technologies (6890N) with thermal conductivity detector (TCD) was used to identify the gas composition from the reaction. Propack Q and molecular sieve column were used for the GC system.

3. Results and Discussion
3.1 Characterisation of nano-NiO supported Al₂O₃

Figure 1(a) shows the XRD spectra for both NiO-C/Al₂O₃-550 and NiO-C/Al₂O₃-700 recorded in the range of 5–80°. The patterns were very different for both catalysts. However, they exhibited peak characteristics of NiO and γ-Al₂O₃. NiO-phase peaks were detected at 37.18° (111), 43.52° (200), 63.22° (220), 75.83° (311) and 79.54° (222). The presence of NiO in NiO-C/Al₂O₃-550 was confirmed to be nickel oxide with monoclinic system (PDF 03-065-6920). After calcined at 700 °C, the diffraction pattern changed to the bunsenite type of NiO and was confirmed with the database (PDF 01-071-1179). Besides that, the peaks for the amorphous carbon were detected together with NiAl₂O₅ at 19.74° and 31.75° [17, 18]. Carbon was generated from the addition of citric acid as a gelling agent in the catalyst preparation. However, from the XRD diffraction line for NiO-C/Al₂O₃-550, the peak for carbon was not detected due to the structure formation of the catalyst as illustrated in Figure 1(b). The illustration shows that the NiO nanoparticles had covered the Al₂O₃ surface and were connected with a carbon layer in between.

The crystallite size of both samples can be calculated by using the Scherrer’s formula [19]. As temperature increases, the crystallite size of the catalyst increased from 4.6–12.9 nm (NiO-C/Al₂O₃-550) to 5.6–78.6 nm (NiO-C/Al₂O₃-700). In addition, the percentage crystallinity values recorded in the range of 5–80° for NiO-C/Al₂O₃-550 and NiO-C/Al₂O₃-700 were found to be 53.4% and 43.1%, respectively. The increase in temperature would produce more crystalline structure of Al₂O₃ [20]. However, this study obtained a contradicted result and the decrease in crystallinity may be attributed to the exposed mesoporous carbon detected by the XRD analysis. The XPS analysis of the catalysts was performed at the oxidised state as shown in Figure 1(c). From the result obtained, the binding energy values for Ni2p3/2 and Ni2p1/2 were 854.41 eV and 871.6 eV, respectively, and there were satellite peaks at 861.08 eV and 877.28 eV. These results indicated that the nickel species was Ni²⁺.

![Figure 1](image-url)

Figure 1(a). XRD spectra, (b) structure illustration of NiO-C/Al₂O₃-550 and NiO-C/Al₂O₃-700, and (c) XPS spectrum of NiO-C/Al₂O₃-550.
Figure 2(a–b) show the FESEM images of both catalysts. The sample, which was calcined at 550 °C, exhibited a group of closely arranged spore-like morphology. In contrast to NiO-C/Al₂O₃-550, NiO-C/Al₂O₃-700 exhibited the characteristic of a non-uniform rod-like morphology. The results showed that the morphologies of the products were affected by the calcination temperature.

To study the structure and size of synthesised catalysts under nanometer scale, TEM analysis was performed as shown in Figure 2(c–d). For NiO-C/Al₂O₃-550, the NiO nanoparticles were well distributed on the support surface from smaller to bigger sizes as shown by the red circle. The sizes of NiO nanoparticles from NiO-C/Al₂O₃-550 and NiO-C/Al₂O₃-700 were in the range of 40–55 nm and 12–35 nm, respectively. These results showed that the size of NiO nanoparticles became smaller as temperature increased.

Table 1 shows the physisorption measurement results for NiO-C/Al₂O₃-550 and NiO-C/Al₂O₃-700. The NiO-C/Al₂O₃-550 exhibited a larger specific surface area of 160.2953 m²/g as compared to NiO-C/Al₂O₃-700 at 80.6227 m²/g. The results showed that the surface area of the catalyst decreased as temperature increased. From the results mentioned above, the increase in temperature from 550 °C to 700 °C had changed the morphology, size, crystallinity and surface area of the catalyst.

Sample	Surface area (m²/g)
NiO-C/Al₂O₃-550	160.2953
NiO-C/Al₂O₃-700	80.6227

Figure 2. SEM and TEM images of NiO-C/Al₂O₃-550 and NiO-C/Al₂O₃-700.

3.2 Catalytic performance for CO₂ hydrogenation to carboxylic acids

The hydrogenation reaction of CO₂ was carried out in a batch reactor at 130 °C for the evaluation of catalytic performance. The reactions were performed at different reaction time, from 2 h to 12 h for both
catalysts. At the end of the reaction, liquid and gaseous products were analysed by using HPLC and GC-TCD detector. Only liquid products were detected and no gaseous products were detected except for CO₂ and H₂. In this study, with the presence of NiO-C/Al₂O₃ in 1,4-dioxane, CO₂ was reduced to formic acid and acetic acid only, and the product yield was calculated with an internal standard. Figure 3 shows the product yield obtained from the CO₂ hydrogenation by using both catalysts. For the NiO-C/Al₂O₃-550 catalyst, the formic acid production increased from 2 h to 12 h and the highest concentration of product obtained was 0.61 mmol/L. However, this result was in contrast with that of acetic acid because as time increases, the concentration of acetic acid started to decrease from 0.04 to 0 mmol/L. Compared to NiO-C/Al₂O₃-550, the product obtained for NiO-C/Al₂O₃-700 was higher. The optimum yield of formic acid obtained at 6 h was 4.08 mmol/L. However, the yield of acetic acid was not comparable to formic acid because the significant concentrations obtained were 1.43 mmol/L and 1.58 mmol/L at 6 h and 10 h, respectively. The catalytic activity of NiO-C/Al₂O₃-700, which was better than that of NiO-C/Al₂O₃-550, was attributed to the structure of the catalyst and size of NiO. As illustrated in Figure 1, the rod-like structure provides a good catalytic activity due to the separation of NiO from carbon. Based on the result, when NiO completely linked together with carbon, the production of carboxylic acids was quite low. The interaction between NiO with carbon might be the main reason for the low production of carboxylic acids since carbon is known to deactivate the catalyst and slow down the reaction rate [21]. Besides, the small size of NiO nanoparticles provided a large active site for the adsorption of CO₂ and H₂ on the nickel surface to produce more carboxylic acids [22]. Although the surface area of NiO-C/Al₂O₃-700 was smaller than that of NiO-C/Al₂O₃-550, the production of carboxylic acids was high. This result proves that surface area is not the main factor that is affecting catalytic activity [23].

![Figure 3](image_url)

Figure 3. Formic acid and acetic acid yield as a function of NiO-C/Al₂O₃. Reaction conditions: 0.2 g of catalyst, 35 mL of 1,4-dioxane, pressure of 35 bar and temperature of 130 °C.

Currently, there are no established technologies that can transform CO₂ from air into formic acid and use it directly in a fuel cell system. Researchers reported that in future, it is possible to combine separate processes to produce an integrated system, which can utilise CO₂ as the raw material to generate electricity by using a fuel cell system [24–26]. Therefore, the findings of this study can be used as additional knowledge for the production of formic acid from CO₂ under low temperature and mild condition with the presence of a low-cost catalyst.

4. Conclusions

In conclusion, nano-nickel (II) oxide supported alumina catalysts were successfully synthesised at 550 °C and 700 °C by using the fusion solid-state method. The X-ray diffraction results showed the presence of nickel (II) oxide and alumina mixture in the samples and only nickel (II) species was detected for nickel. As temperature increased, the morphology, size, crystallinity and surface area changed. The temperature calcination played an important role in carbon dioxide hydrogenation. Nickel (II) oxide supported alumina that was calcined at 700 °C presented a better activity for carbon dioxide hydrogenation to carboxylic acids, at mild condition pressure and low temperature of 35 bar and 130 °C, respectively. Nickel (II) oxide supported alumina that was calcined at 700 °C exhibited a rod-like...
morphology and smaller sized nickel (II) oxide nanoparticles (12–35 nm) produced the highest formic acid and acetic acid with values of 4.08 mmol/L and 1.58 mmol/L, respectively.

5. Acknowledgments
The authors wish to thank Universiti Kebangsaan Malaysia (UKM) for the scholarship (Zamalah scheme) and for funding this project under the research grant number DIP-2016-010 and the fundamental research grant scheme (FRGS/1/2015/SG01/UKM/02/2) from the Ministry of Higher Education (MOHE) Malaysia. The authors would also like to acknowledge the Electron Microscope Unit and Centre of Research and Innovation Management (CRIM) UKM for the instruments.

References
[1] United States Environmental Protection Agency, Greenhouse gas emissions. https://www.epa.gov/ghgemissions/overview-greenhouse-gases, 2017 (accessed 01.05.17).
[2] Earth System Research Laboratory, Trends in atmospheric carbon dioxide. http://www.esrl.noaa.gov/gmd/ccgg/trends/ 2018 (accessed 26.11.18).
[3] Hansen J, Kharecha P, Sato M, Masson V D, Ackerman F, Beierling D J, Hearty P J, Hoegh, O G, Hsu S L and Parmesan C 2013 PloS One 8 81648
[4] Song C 2002 ACS Sym. Ser. Washington DC 1999.
[5] Gunasekar G H, Park K, Jung K D and Yoon S 2016 Inorg. Chem. Front. 3 882
[6] Pérez F M, Schöneberger J C, Boulamanti A, Harrison G and Tzimas E 2016 Int. J. Hydrog. Energy 41 16444
[7] Singh A K, Singh S and Kumar A 2016 Catal. Sci. Technol. 6 12
[8] Rice C, Ha S, Masel R I, Waschczuk P, Wieckowski A, Barnard T 2002 J. Power Sources 111 83
[9] Stalder C J, Chao S, Summers D P and Wrighton M S 1983 J. Am. Chem. Soc. 105 6318
[10] Preti D, Resta C, Squarcialupi S and Fanchetti G 2011 Angew. Chem. Int. Ed. 50 12551
[11] Su J, Lu M and Lin H 2015 Green Chem. 17 2769
[12] Nguyen L T M, Park H, Banu M, Kim J Y, Youn D H, Magesh G, Kim W Y, Lee J S 2015 RSC Adv 5 105560
[13] Hao C, Wang S, Li M, Kang L and Ma X 2011 Catal. Today 160 184
[14] Liu N, Du R J and Li W 2013 Adv. Mater. Res. 821 1330
[15] Filonenko G A, Vrijburg W L, Hensen E J M and Pidko E A 2016 J. Catal. 343 97
[16] Pudukudy M, Yaakob S and Takriff M S 2016 Energy Convers. Manag. 126 302
[17] Rajan A S, Sampath S and Shukla A K 2014 Energy Environ. Sci. 7 1110
[18] Inagaki M, Okada Y, Miura H and Konno H 1999 Carbon 37 329
[19] Varghese T and Balakrishna K 2011 Nanotechnology: An introduction to synthesis, properties and applications Atlantic Publishers New Delhi
[20] Sun Z X, Zheng T T, Bo Q B, Du M and Forsling W 2008 J. Colloid Interface Sci. 2319 247
[21] Huang C, Chen S, Fei X, Liu D and Zhang Y. 2015 Catalysts 5 1846
[22] Jung Y S, Yoon W L, Seo W S and Rhee Y W 2012 Catal. Commun. 26 103
[23] Kobayashi Y, Horiguchi J, Kobayashi S, Yamazaki Y, Omata K, Nagao D, Konno M and Yamada M 2011 Appl. Catal., A 395 129
[24] Jeong K J, Miesse S M, Choi J H, Lee J, Han J, Yoon S P, Nam S W, Lim T H, Lee T G 2007 J. Power Sources 168 119
[25] Cano U C 2013 Rev. Mex. Fís 59 85
[26] McKeown C and Rhen F M 2017 Procedia Eng. 215 211