Case Report: Genetic Analysis of PEG-Asparaginase Induced Severe Hypertriglyceridemia in an Adult With Acute Lymphoblastic Leukaemia

Arcangelo Iannuzzi1*, Mario Annunziata2, Giuliana Fortunato3, Carola Giacobbe3, Daniela Palma3, Alessandro Bresciani1, Emilio Aliberti4 and Gabriella Iannuzzo5

1Department of Medicine and Medical Specialties, A. Cardarelli Hospital, Naples, Italy, 2Division of Hematology, A. Cardarelli Hospital, Naples, Italy, 3Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy, 4Division of Gastroenterology, North Tees University Hospital, Stockton-on Tees, United Kingdom, 5Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy

PEG-Asparaginase (also known as Pegasparagase), along with glucocorticoids (predominantly prednisolone or dexamethasone) and other chemotherapeutic agents (such as cyclophosphamide, idarubicin, vincristine, cytarabine, methotrexate and 6-mercaptopurine) is the current standard treatment for acute lymphoblastic leukaemia in both children and adults. High doses of PEG-asparaginase are associated with side effects such as hepatotoxicity, pancreatitis, venous thrombosis, hypersensitivity reactions against the drug and severe hypertriglyceridemia. We report a case of a 28-year-old male who was normolipidemic at baseline and developed severe hypertriglyceridemia (triglycerides of 1793 mg/dl) following treatment with PEG-asparaginase for acute lymphoblastic leukaemia. Thorough genetic analysis was conducted to assess whether genetic variants could suggest a predisposition to this drug-induced metabolic condition. This genetic analysis showed the presence of a rare heterozygous missense variant c.11G>A-p.(Arg4Gln) in the APOC3 gene, classified as a variant of uncertain significance, as well as its association with four common single nucleotide polymorphisms (SNPs; c.*40C>G in APOC3 and c.*158T>C; c.162-43G>A; c.-3A>G in APOA5) related to increased plasma triglyceride levels. To our knowledge this is the first case that a rare genetic variant associated to SNPs has been related to the onset of severe drug-induced hypertriglyceridemia.

Keywords: PEG-asparaginase, acute lymphoblastic leukaemia, hypertriglyceridemia, APOC3, genetic testing

INTRODUCTION

L-asparaginase has been used for over 40 years for the treatment of Acute Lymphoblastic Leukaemia (ALL), especially in paediatric patients, where the incidence of this disease is highest. It has been demonstrated that using L-asparaginase in adult patients improves prognosis and, when used at higher doses, its therapeutic effect is the same as in paediatric patients (Quist-Paulsen et al., 2020). It is worth remembering that L-asparaginase treatment can cause several side effects, which may require a suspension of treatment. Among the most frequently observed side effects are hepatotoxicity, pancreatitis, venous thrombosis (sometimes complicated by pulmonary emboli),
and severe hypertriglyceridemia (Hoogerbrugge et al., 1997; Grace et al., 2011; Truelove et al., 2013; Oparaji et al., 2017; Finch et al., 2020a; Burke et al., 2020; Underwood et al., 2020; Chen et al., 2021; Kumar et al., 2021). Moreover, asparaginase therapy can cause hypersensitivity reactions and development of asparaginase-antibodies that limit the action of the drug and increase the risk of leukemia relapse. Clinical pharmacogenetics studies suggest that the family of nuclear factor of activated T-cells transcription factors could play a role in increasing the risk of hypersensitivity reactions due to L-asparaginase; genetic inhibition of these factors protects against asparaginase hypersensitivity, at least in mice (Woo et al., 1998; Fernandez et al., 2015; Rathod et al., 2019a; Rathod et al., 2019b; Rathod et al., 2020). There are three formulations of asparaginase: L-asparaginase, which is endogenously produced by Escherichia coli, Pegylated asparaginase (PEG-ASP) which is a pegylated form of L-asparaginase and results in a prolonged half-life and decreased immunogenicity and Erwinia asparaginase, which is derived from the bacterium Erwinia chrysanthemi, and is immunologically different from the Escherichia coli derived asparaginase forms and which could be used in patients allergic to other formulations. At present the pegylated long-acting form of L-asparaginase (PEG-ASP) is by far the most used therapeutic option in both adult and paediatric ALL patients due to a more prolonged effect, a reduced incidence of silent antibody and more rapid clearance of lymphoblasts than native asparaginase (Avramis et al., 2002). The aim of this work is to describe a clinical case of severe hypertriglyceridemia arising following treatment with PEG-asparaginase in a patient with ALL, and to verify whether or not a genetic profile leading to the onset of this serious complication can be identified.

Case Description and Diagnostic Assessment

A 28-year-old male, with Ph negative ALL underwent chemotherapy according to the GIMEMA LAL 1913 protocol (approved by the Cardarelli Hospital Etichal Committee) and achieved complete remission with minimal residual disease (MRD), while both immunophenotyping by flow cytometry and molecular testing yielded a negative result. This protocol involves the administration of PEG-ASP during induction/consolidation (cycles 1, 2, 5, and 6), in addition to other agents, including prednisone, dexamethasone and other chemotherapeutic agents (such as cyclophosphamide, idarubicin, vincristine, cytarabine, methotrexate and 6-mercaptopurine). On admission to hospital (31 August 2020) the blood pressure was 150/90 mmHg; heart rate 124 beats per minute and the cardiologist prescribed bisoprolol fumarate. On physical examination mildly enlarged lymph nodes were palpable in latero-cervical chains and in the left axilla. Palpation of the abdomen revealed mild hepatomegaly and splenomegaly. His family history was noteworthy for breast cancer in his mother. Laboratory Data: Glucose was 93 mg/dl; triglycerides 1793 mg/dl; cholesterol 390 mg/dl; HDL-cholesterol 15 mg/dl; amylase 32 IU/L; lipase 23 IU/L; lactate dehydrogenase 1169 IU/L; alanine transaminase 41 IU/L; aspartate transaminase 71 IU/L; gamma-glutamyl transpeptidase 126 IU/L; 57 mg/L; Hematocrit 40%; Hemoglobin 14.2 g/dl; Platelets 101,000/mm³; White-cell count 33.380/mm³ (Differential count: Neutrophils 13.7%; Lymphocytes 75.6%; Monocytes 7.5%; Eosinophils 0.6%; Basophils 2.6%). A CT-study showed bilateral cervical and left axillary lymphadenopathy (max 1 cm), mild hepatomegaly and splenomegaly. Following the second round of treatment with PEG-ASP he was found to have: glucose 83 mg/dl; triglycerides 1793 mg/dl; cholesterol 390 mg/dl; HDL-cholesterol 15 mg/dl; amylase 32 IU/L; lipase 23 IU/L; lactate dehydrogenase 270 IU/L; alanine transaminase 44 IU/L; aspartate transaminase 20 IU/L; gamma-glutamyl transpeptidase 126 IU/L. There were no signs, symptoms, or investigations suggestive of acute pancreatitis. PEG-ASP was no longer administered to the patient. The nutritionist prescribed a hypocaloric, higher-protein, lower carbohydrate diet, and the internist prescribed omega-3 fatty acids and a statin. At follow-up his lipid profile was normal. Figure 1 shows concentrations of triglycerides, total cholesterol, HDL-cholesterol at different interval times during chemotherapy.

In May 2021 the patient had a relapse of ALL and was treated for refractory acute lymphoblastic leukemia with high dose cytosine arabinoside and mitoxantrone (HAM).

In August 2021: the patient moved to another city in North Italy and was lost to follow-up.

Genetic Screening

Genomic DNA was extracted from peripheral blood and genetic screening was performed using a custom panel of 16 genes, associated to severe hypertriglyceridemia: APOA1, APOA4, APOA5, APOC1, APOC2, APOC3, APOE, ANGPTL3, LPL, GPIHBP1, LMF1, GPD1, CREB3L3, GCKR, LRP1. For each gene the coding regions, 25 bp in each of the intronic boundaries, the 5′UTR and the 3′UTR regions, were included. Genomic libraries were obtained using the SureSelect Target Enrichment protocol (Agilent Technologies) and the high throughput sequencing was performed using Illumina technology (PE 2 × 150 bp). Data analysis was carried out using Alissa Interpret Rev.5.2.6 software (Agilent Technologies). Variants were firstly filtered on their minor allele frequency (MAF) and pathogenicity of rare prioritized variants (with a MAF <1%) was assessed according to the American College of Medical Genetics and Genomics (ACMG) guidelines (Richards et al., 2015). All the prioritized variants were also validated by Sanger sequencing. The Multiplex Ligation-dependent Probe Amplification was also performed to verify the presence of rearrangements such as deletions and/or duplications in the coding region of the lipoprotein-lipase (LPL) gene (Giacobbe et al., 2020). Genetic analysis in this patient showed no evidence of variants causing severe familial hypertriglyceridemia. No common LPL gene variants (Apolg9Asn, Asn291Ser, Trp86Arg, Gly188Glu, Pro207Leu, Asp250Asn) associated with the increase of plasma triglyceride levels were highlighted (Gehrisch, 1999). However, a rare missense variant, c.11G > A-p.(Arg4Gln), in the APOC3 gene and four single nucleotide polymorphisms (SNPs) associated with increased plasma triglyceride levels at heterozygous state, were found. The APOC3 rare variant was classified as of uncertain clinical significance based on the ACMG guidelines. Genetic profile of patient is shown in Table 1.
DISCUSSION

Glucocorticoids and PEG-ASP are fundamental treatments for ALL in both adults and children. However, these therapies, especially when combined, can result in side effects which include alteration of the lipid profile, particularly severe hypertriglyceridemia. The mechanism by which these drugs lead to the onset of hypertriglyceridemia has not yet been...
elucidated. Glucocorticoids increase the synthesis of triglycerides and mobilise fatty acids, while activating lipoprotein lipase (LPL), an enzyme responsible for the hydrolysis of triglycerides (Peckett et al., 2011). PEG-ASP, on the other hand, seems to inhibit LPL activity (Hoogerbrugge et al., 1997). Therefore, when glucocorticoids are given simultaneously with PEG-ASP there is an increase in triglyceride synthesis without an increase in hydrolysis. In children the frequency of hypertriglyceridaemia following treatment with corticosteroids and PEG-ASP for ALL is between 4 and 19%, depending on the protocol followed (Steinherz, 1994; Parsons et al., 1997; Cohen et al., 2010; Bhojwani et al., 2014). In young adults, as in our case, the frequency of severe hypertriglyceridaemia is around 11% (Stock et al., 2019). Among the disorders of lipid metabolism, the genetic spectrum for familial hypercholesterolaemia and its associated clinical implications is well established (Romano et al., 2010; Di Taranto et al., 2021). The relationship between severe hypertriglyceridaemia and its clinical implications is less evident, whereas there is a well documented relationship with acute pancreatitis (Scherer et al., 2014). In patients with ALL the association between severe hypertriglyceridaemia and pancreatitis is rarely seen (Tong et al., 2014). Severe hypertriglyceridaemia, in the form of Familial Chylomicronaemia Syndrome (FCS), is a rare autosomal recessive disease caused by pathogenic variants especially in the LPL gene but also in APOC2, APOA5, LMF1 and GPHBP1. Recently, it has been hypothesised that severe hypertriglyceridaemia could be more frequently caused by the coexistence of rare variants in genes recognized in FCS, as well as by the presence of common or rare variants currently not recognized in the metabolism of triglycerides. This condition has been named multifactorial chylomicronaemia syndrome (MCS) (Dron and Hegele, 2020; Paquette et al., 2021). MCS represents a predisposing condition which could expose the patients to a 4 times greater risk of developing severe hypertriglyceridaemia (Dron et al., 2019). Patients with the same heterozygous changes in the same genes who have normal or only slightly elevated triglyceride values, were also described, suggesting that these variants are only partially penetrating. Most variants interfering with triglyceride metabolism and causing hypertriglyceridaemia are loss of function variants (LOF), and mainly found in the LPL, APOC2, APOA5, LMF1 and GPHBP1 genes. Recently a gain of function (GOF) variant, in the APOC3 gene has been identified in our patient (rs651821, rs2072560 and rs2266788) were described by Dror et al. as associated with another SNP (rs662799) in significant linkage disequilibrium as well as with a 27–38% increase in triglyceride concentration in three ethnic groups (Ken-Dror et al., 2010). A large meta-analysis highlighted the association of the APOC3 rs5128 polymorphism with highly increased triglyceride plasma levels (Song et al., 2015).

Furthermore, Olivier et al. demonstrated that the APOA5 locus is separated from the other apolipoprotein genes by a region of increased recombination, thereby supporting the idea that APOA5 represents an independent risk gene affecting plasma triglyceride concentrations in humans (Olivier et al., 2004). The presence of the APOC3 rare variant c.11G > A—p.(Arg4Gln) together with the common SNPs associated with high levels of triglycerides [c.*40C > G in APOC3 (NM_000040.3) and c.*158T > G; c.162-43G > A; c.3A > G in APOA5 (NM_052968.5)] could lead to classify our patient as suffering from MCS.

This latter condition could be considered as a predisposing factor of developing a hypertriglycerideremic phenotype after PEG-ASP treatment. Of course, a single case cannot demonstrate with any certainty whether there is a genetic cause at the root of severe hypertriglyceridaemia induced by drugs. However, this could...
encourage further research into genes less frequently associated with the phenotypic manifestation of severe hypertriglyceridemia that could play a significant role as co-factors responsible for some forms of hypertriglyceridemia.

Strengths and limitations: The principal strength of this paper is the original finding (to our knowledge for the first time in the literature) of a potentially triglyceride-raising genetic variant implicated in the origin of severe hypertriglyceridemia induced by PEG-ASP in a patient with normal lipids at baseline. Moreover, this study highlights that the use of a custom capture-based target enrichment NGS panel -containing 16 genes to date known as being associated with Familial Chylomicronemia Syndrome and severe hypertriglyceridemia-allowed us to find a clear genetic pattern characterized by a rare variant in the apo-C3 gene together with four common SNPs that could be related to the onset of severe drug-induced Hypertriglyceridemia. A limitation of the present study is that no mechanistic study supports our findings and we can conclude that genetic variants could be considered as a predisposing factor of developing a hypertriglyceridemia and may not be solely responsible for severe hypertriglyceridemia after treatment with PEG-ASP.

REFERENCES

Avramis, V. I., Sencer, S., Periclou, A. P., Sather, H., Bostrom, B. C., Cohen, L. J., et al. (2002). A Randomized Comparison of nativeEsherichia Coli Asparaginase and Polyethylene Glycol Conjugated Asparaginase for Treatment of Children with Newly Diagnosed Standard-Risk Acute Lymphoblastic Leukemia: a Children’s Cancer Group Study. Blood 99, 1986–1994. doi:10.1182/blood.v99.6.1986

Bhojwani, D., Darbandi, R., Pei, D., Ramsey, L. B., Chemaitilly, W., Sandlund, J. T., et al. (2014). Severe Hypertriglyceridaemia during Therapy for Childhood Acute Lymphoblastic Leukaemia. Eur. J. Cancer 50, 2685–2694. doi:10.1016/j.ejca.2014.06.023

Burke, P. W., Hoelzer, D., Park, J. H., Schmiegelow, K., and Douer, D. (2020). Managing Toxicities with Asparaginase-Based Therapies in Adult ALL: Summary of an ESMO Open-Caner Horizons Roundtable Discussion. ESMO Open 5, e000858. doi:10.1136/esmoopen-2020-000858

Chen, C.-B., Chang, H.-H., Chou, S.-W., Yang, Y.-L., Lu, M.-Y., Jou, S.-T., et al. (2020). Asparaginase Formulation Impacts Hypertriglyceridemia during Therapy for Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 67, e28040. doi:10.1002/pbc.28040

Gehrisch, S. (1999). Common Mutations of the Lipoprotein Lipase Gene and Their Clinical Significance. Curr. Atheroscler. Rep. 1, 70–78. doi:10.1007/s11883-999-0052-4

Grace, R. F., Dahlberg, S. E., Neuber, D., Sallan, S. E., Connors, J. M., Neufeld, E. J., et al. (2011). The Frequency and Management of Asparaginase-Related Thrombosis in Paediatric and Adult Patients with Acute Lymphoblastic Leukaemia Treated on Dana-Farber Cancer Institute Consortium Protocols. Br. J. Haematol. 152, 452–459. doi:10.1111/j.1365-2141.2010.08524.x

Hoogerbrugge, N., Jansen, H., and Hoogerbrugge, P. (1997). Transient Hyperlipidaemia during Treatment of ALL with L-Asparaginase Is Related to Decreased Lipoprotein Lipase Activity. Leukemia 11, 1377–1379. doi:10.1038/sj.leu.2400703

Kumar, G. V. N., Hoshitsuki, K., Rathod, S., Ramsey, M. J., Kokai, L., Kershaw, E. u., et al. (2019). Severe Hypertriglyceridaemia Is Primarily Polygenic. J. Lipid Res. 60, 3779–3790. doi:10.1194/jlr.M004379-jlr200

Hallman, D. M., Srinivasan, S. R., Chen, W., Boerwinkle, E., and Berenson, G. S. (2006). Longitudinal Analysis of Haplotypes and Polymorphisms of the APOA5 and APOC3 Genes Associated with Variation in Serum Triglyceride Levels: the Bogalusa Heart Study. Metabolism 55, 1574–1581. doi:10.1016/j.metabol.2006.07.018

DATA AVAILABILITY STATEMENT

The datasets for this article are not publicly available due to concerns regarding participant/patient anonymity. Requests to access the datasets should be directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by A. Cardarelli Hospital Ethical Committee. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

Conceptualization: AI, MA; Methodology: CG, DP; Validation: GF; Writing, original draft preparation: AI, EA, AB; Writing, review and editing: GF, GI.

Finch, E. R., Smith, C. A., Yang, W., Liu, Y., Kornegay, N. M., Panetta, J. C., et al. (2020). Asparaginase Formulation Impacts Hypertriglyceridemia during Therapy for Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 67, e28040. doi:10.1002/pbc.28040

Finn, E. R., Smith, C. A., Yang, W., Liu, Y., Kornegay, N. M., Panetta, J. C., et al. (2020). Asparaginase Formulation Impacts Hypertriglyceridemia during Therapy for Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 67, e28040. doi:10.1002/pbc.28040

Giacobbe, C., Di Taranto, M. D., Palmia, D., Maione, G., Cardiero, G., Iannuzzo, G., et al. (2020). A Wide Next-Generation-Sequencing Panel Improves the Molecular Diagnosis of Dyslipidemias. Biochim. Biophys. Acta 44, 255–262. doi:10.1016/j.bja.2020.03.083

Grace, R. F., Dahlberg, S. E., Neuber, D., Sallan, S. E., Connors, J. M., Neufeld, E. J., et al. (2011). The Frequency and Management of Asparaginase-Related Thrombosis in Paediatric and Adult Patients with Acute Lymphoblastic Leukaemia Treated on Dana-Farber Cancer Institute Consortium Protocols. Br. J. Haematol. 152, 452–459. doi:10.1111/j.1365-2141.2010.08524.x

Hoogerbrugge, N., Jansen, H., and Hoogerbrugge, P. (1997). Transient Hyperlipidaemia during Treatment of ALL with L-Asparaginase Is Related to Decreased Lipoprotein Lipase Activity. Leukemia 11, 1377–1379. doi:10.1038/sj.leu.2400703

Ken-Dror, G., Goldbourt, U., and Dankner, R. (2010). Different Effects of Apolipoprotein A5 SNPs and Haplotypes on Triglyceride Concentration in Three EthnicOrigins. J. Hum. Genet. 55, 303–307. doi:10.1038/jhg.2010.27

Kuo, K. L. E., Hamon, S., Clark, A. G., Boerwinkle, E., Liu, K., and Sing, C. F. (2005). APOA5 Polymorphisms Influence Plasma Triglycerides in Young, Healthy African Americans and Whites of the CARDIA Study. J. Lipid Res. 46, 564–570. doi:10.1194/jlr.M004377-jlr200

Kumar, G. V. N., Hoshitsuki, K., Rathod, S., Ramsey, M. J., Kokai, L., Kershaw, E. u., et al. (2019). Severe Hypertriglyceridaemia Is Primarily Polygenic. J. Clin. Lipidol. 13, 80–88. doi:10.1016/j.jacl.2018.10.006

Fernandez, C. A., Smith, C., Yang, W., Mullighan, C. G., Qu, C., Larsen, E., et al. (2015). Genome-wide Analysis Links NFATC2 with Asparaginase Hypersensitivity. Blood 126, 69–75. doi:10.1182/blood-2015-02-628800

Finch, E. R., Smith, C. A., Yang, W., Liu, Y., Kornegay, N. M., Panetta, J. C., et al. (2020). Asparaginase Formulation Impacts Hypertriglyceridemia during Therapy for Acute Lymphoblastic Leukemia. Pediatr. Blood Cancer 67, e28040. doi:10.1002/pbc.28040
Lai, C.-Q., Tai, E.-S., Tan, C. E., Cutter, J., Chew, S. K., Lauer, J. A., et al. (2004). Genetic Analysis of the Apolipoprotein Gene Cluster on Chromosome 11. Genomics 35, 91–93. doi:10.1016/j.ygeno.2003.11.016

Oparai, J.-A., Rose, F., Okafor, D., Howard, A., Turner, R. L., Orabi, A. I., et al. (2019). Hypolipidemic Treatment Strategies for Patients with Acute Lymphoblastic Leukemia: Results of CALGB 10403. Blood 133, 1548–1559. doi:10.1182/blood-2018-10-881961

Peckett, A. J., Wright, D. C., and Riddell, M. C. (2011). The Effects of Glucocorticoids on Adipose Tissue Lipid Metabolism. Metabolism 60, 1500–1510. doi:10.1016/j.metabol.2011.06.012

Quist-Paulsen, P., Toft, N., Heyman, M., Abrahamsson, J., glovevicous, L., Hallboek, H., et al. (2020). T-cell Acute Lymphoblastic Leukemia in Patients 1-45 Years Treated with the Pediatric NOPHO ALL2008 Protocol. Leukemia 34, 347–357. doi:10.1038/s41375-019-0598-2

Rathod, S., Ramsey, M., Finkelman, F. D., and Fernandez, C. A. (2020). Hypersensitivity inhibition of NFATC2 Attenuates Asparaginase Hypersensitivity in Mice. Blood Adv. 4 (4), 4406–4416. doi:10.1182/bloodadvances.2020002478

Rathod, S., Ramsey, M., DiGiorgio, D., Berrios, R., Finkelman, F. D., and Fernandez, C. A. (2019). Asparaginase Immune Complexes Induce FcγRIII-dependent Hypersensitivity in Naive Mice. FASEB J. 33, 10996–11003. doi:10.1096/fj.201900857

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. (2015). Standards and Guidelines for the Interpretation of Sequence Variants: a Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424. doi:10.1038/gim.2015.30

Romano, M., Di Taranto, M. D., D’Agostino, M. N., Marotta, G., Gentile, M., Abate, G., et al. (2010). Identification and Functional Characterization of LDLR Mutations in Familial Hypercholesterolemia Patients from Southern Italy. Atherosclerosis 210, 493–496. doi:10.1016/j.atherosclerosis.2009.11.051

Scherer, J., Singh, V. P., Pitchumoni, C. S., and Yazd, K. (2014). Issues in Hypertrophicentric Pancreatitis. J. Clin. Gastroenterol. 48, 195–203. doi:10.1097/MCG.000000000000015.5

Song, Y., Zhu, L., Richa, M., Li, P., Yang, Y., and Li, S. (2015). Associations of the APOC3 Rs1528 Polymorphism with Plasma APOC3 and Lipid Levels: a Meta-Analysis. Lipids Health Dis. 14, 32. doi:10.1186/s12944-015-0027-0

Steinherz, P. G. (1994). Transient, Severe Hyperlipidemia in Patients with Acute Lymphoblastic Leukemia Treated with Prednisone and Asparaginase. Cancer 74, 3234–3239. doi:10.1002/1097-0142(19941231)74:12<3234::aid-cncr280741224>3.0.co;2-1

Stock, W., Luger, S. M., Advani, A. S., Yin, J., Harvey, R. C., Mullighan, C. G., et al. (2019). A Pediatric Regimen for Older Adolescents and Young Adults with Acute Lymphoblastic Leukemia: Results of CALGB 10403. Blood 133, 1548–1559. doi:10.1182/blood-2018-10-881961

Sundaram, M., Curtis, K. R., Amir Alipour, M., LeBlond, N. D., Margison, K. D., Yaworski, R. A., et al. (2017). The Apolipoprotein C-III (ApolC3) rs5128 Variant Associated with Human Hypertriglyceridemia Is a Gain-Of-Function Mutation. J. Lipid Res. 58, 2188–2196. doi:10.1194/jlr.m077313

Tong, W. H., Pieters, R., de Groot-Krueman, H. A., Hop, W. C. J., Boos, J., Tissing, W. J. E., et al. (2014). The Toxicity of Very Prolonged Courses of PEGasparaginase or Erwinia Asparaginase in Relation to Asparaginase Activity, with a Special Focus on Dyslipidemia. Haematologica 99, 1716–1721. doi:10.3324/haematol.2014.109413

Truelove, E., Fielding, A. K., and Hunt, B. J. (2013). The Coagulopathy and Thrombotic Risk Associated with L-Asparaginase Treatment in Adults with Acute Lymphoblastic Leukaemia. Leukemia 27, 553–559. doi:10.1038/leu.2012.290

Underwood, B., Zhao, Q., Walker, A. R., Mims, A. S., Vasu, S., Long, M., et al. (2020). Incidence of Venous Thrombosis after PEG-Asparaginase in Adolescent and Young Adults with Acute Lymphoblastic Leukemia. Int. J. Hematol. Oncol. 9, IJH28. doi:10.2217/ijh-2020-0009

Wittum, J. L., Gaudet, D., Freedman, S. D., Alexander, V. J., Digieno, A., Williams, K. R., et al. (2019). Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N. Engl. J. Med. 381, 531–542. doi:10.1056/nejmoa1715944

Woo, M., Hak, L., Storm, M., Evans, W., Sandlund, J., Rivera, G., et al. (1998). Anti-asparaginase Antibodies Following E. coli Asparaginase Therapy in Pediatric Acute Lymphoblastic Leukemia. Leukemia 12, 1527–1533. doi:10.1038/sj.leu.2401162

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Iannuzzi, Aliberti and Iannuzza. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.