ABSTRACT

Context. Sub-millimeter and Far-IR observations have shown the presence of a significant amount of warm (few hundred K) and dense (n(H$_2$) \geq 104 cm$^{-3}$) gas in sources ranging from active star-forming regions to the vicinity of the Galactic center. Since the main cooling lines of the gas phase are important tracers of the interstellar medium in Galactic and extragalactic sources, proper and detailed understanding of their emission and the ambient conditions of the emitting gas, is necessary for a robust interpretation of the observations.

Aims. With high resolution (7"$''$–9"$''$) maps (\sim3 × 3 pc2) of mid-J molecular lines we aim to probe the physical conditions and spatial distribution of the warm (50 to several hundred K) and dense gas (n(H$_2$) $>$ 104 cm$^{-3}$) across the interface region of the nearly edge-on M 17 SW nebula.

Methods. We have used the dual color multiple pixel receiver CHAMP$^+$ on the APEX telescope to obtain a 5.3$'$ × 4.7$'$ map of the J = 6 \rightarrow 5 and J = 7 \rightarrow 6 transitions of 12CO, the 13CO J = 6 \rightarrow 5 line, and the 3P_2 \rightarrow 3P_1 370 μm fine-structure transition of [CI] in M 17 SW. LTE and non-LTE radiative transfer models are used to constrain the ambient conditions.

Results. The warm gas extends up to a distance of ~2.2 pc from the M 17 SW ridge. The 3CO J = 6 \rightarrow 5 and [CI] 370 μm lines have a narrower spatial extent of about 1.3 pc along a strip line at PA = 63°. The structure and distribution of the [CI] 3P_2 \rightarrow 3P_1 370 μm map indicate that its emission arises from the interclump medium with densities on the order of 103 cm$^{-3}$.

Conclusions. The warmest gas is located along the ridge of the cloud, close to the ionization front. An LTE approximation indicates that the excitation temperature of the embedded clumps reaches ~120 K. The non-LTE model suggests that the kinetic temperature at four selected positions cannot exceed 230 K in clumps of a density of n(H$_2$) \sim 5 × 103 cm$^{-3}$ and that the warm (T$_K$ $>$ 100 K) and dense (n(H$_2$) \geq 104 cm$^{-3}$) gas traced by the mid-J 12CO lines represents just about 2% of the bulk of the molecular gas. The clump volume-filling factor ranges between 0.04 and 0.11 at these positions.

Key words. ISM: general – ISM: atoms – ISM: molecules
into the molecular cloud along cuts through the interface region (Keene et al. 1985; Genzel et al. 1988; Stutzki et al. 1988). These results, as well as those found in other star-forming regions like S106, the Orion Molecular Cloud, and the NGC 7023 Nebula (e.g. Gerin & Phillips 1998; Yamamoto et al. 2001; Schneider et al. 2002, 2003; Mookerjea et al. 2003) do not agree with the atomic and molecular stratification predicted by standard steady-state PDR models. However, the extended [CI] 3P1 → 3P0 and 13CO J = 2 → 1 emissions in S140 have been successfully explained by a stationary but clumpy PDR model (Spaans 1996; Spaans & van Dishoeck 1997). Hence, the lack of stratification in [CI], [CII] and CO is a result that can be expected for inhomogeneous clouds, where each clump acts as an individual PDR. On the other hand, a partial face-on illumination of the molecular clouds would also suppress stratification.

Based on analysis of low-J lines of 12CO, 13CO and CH3CCH data, the temperature towards the M 17 SW cloud core has been estimated as 50–60 K, whereas the mean cloud temperature has been found to be about 30–35 K (e.g. Güsten & Fiebig 1988; Bergin et al. 1994; Wilson et al. 1999; Howe et al. 2000; Snell et al. 2000). Temperatures of ~275 K have been estimated from NH3 observations (Güsten & Fiebig 1988) towards the VLA continuum arc, which agrees with estimates from highly excited 12CO transitions (Harris et al. 1987). Multitransition CS and HCN observations indicate that the density at the core region of M 17 SW is about 6×105 cm−3 (e.g., Snell et al. 1984; Wang et al. 1993; Bergin et al. 1996). On the other hand, densities up to 3×106 cm−3 have been estimated towards the north rim with multitransition observations of NH3, which indicates that ammonia is coexistent with high density material traced in CS and HCN (Güsten & Fiebig 1988). The UV radiation field G0 has been estimated to be on the order of 104 in units of the ambient interstellar radiation field (1.2×10−4 erg s cm−2 sr−1, Habing 1968; Meixner et al. 1992).

However, most of the millimeter-wave molecular observations in M 17 SW are sensitive only to low temperatures (<100 K), and the few available data of mid-J CO and [CII] lines (consisting mostly of cuts across the ionization front and observations at a few selected positions) are limited in spatial resolution and extent (e.g. Harris et al. 1987; Stutzki et al. 1988; Genzel et al. 1988; Stutzki & Güsten 1990; Meixner et al. 1992; Graf et al. 1993; Howe et al. 2000). Therefore, in this work we present mid-J maps (~3×105 cm−3) of mid-J molecular (12CO and 13CO) and atomic ([CII]) gas with an excellent high resolution (9.4″–7.7″), which advances existing work in M 17 SW.

The observations were done with CHAMP (Carbon Heterodyne Array of the MPIfR) on the Atacama Pathfinder EXperiment (APEX) (Güsten et al. 2006). The multiple pixels at two submm frequencies of CHAMP allow the efficient mapping of ~arcmin regions, and provide the ability to observe simultaneously the emission from the J = 6 → 5 and J = 7 → 6 rotational transitions of 12CO at 691.473 GHz and 806.652 GHz, respectively. We also observed the J = 6 → 5 transition of 13CO at 661.067 GHz and the 3P2 → 3P1, 370 μm (hereafter: 2 → 1) fine-structure transition of [CII] at 120.342 GHz.

Since the gas phase cools mainly via the atomic fine structure lines of [O I], [C II], [C I] and the rotational CO lines (e.g. Kaufman et al. 1999; Meijerink & Spaans 2005), these carbon bearing species presented here are very important coolants in the interstellar medium (ISM) of a variety of sources in the Universe, from Galactic star forming regions, the Milky Way as a galaxy, and external galaxies up to high redshifts (e.g. Fixsen et al. 1999; Weiss et al. 2003; Kramer et al. 2005; Bayet et al. 2006; Jakob et al. 2007).

The case of M 17 SW can be considered as a proxy for extra galactic star forming regions. M 17 SW is not special, nor does it need to be, compared to other massive star-forming regions like Orion, W49, Cepheus A, or W51. Still, it does allow feedback effects, expected to be important for starburst and active galaxies, to be studied in great spatial detail. A comparison of the local line ratios to the extra-galactic regions can then shed light on the properties of massive star-forming regions that drive the energetics of active galaxies. Our results will be of great use for future high resolution observations, since molecular clouds of the size of the maps we present will be resolved by ALMA at the distance (~14 Mpc) of galaxies like NGC 1068.

The main purpose of this work is to explore the actual spatial distribution of the mid-J 12CO and [CII] lines in M 17 SW and to test the ambient conditions of the warm gas. A simple LTE model based on the ratio between the 12CO and 13CO J = 6 → 5 lines is used to probe the temperature of the warm (T_K ~ 100 K) and dense (n_H > 10^5 cm−3) molecular gas. Then a non-LTE model is used to test the ambient conditions at four selected positions. In a follow-up work we will present an elaborate model of these high resolution data.

The most frequent references to Stutzki et al. (1988), Stutzki & Güsten (1990) and Meixner et al. (1992) will be cited as S88, S90 and M92, respectively. The organization of this article is as follows. In Sect. 2 we describe the observations. The maps of the four lines observed are presented in Sect. 3. The modeling and analysis of the ambient conditions are presented in Sect. 4, and the conclusions and final remarks are presented in Sect. 5.

2. Observations

We have used the dual color heterodyne array receiver CHAMP+ (Kasemann et al. 2006; Güsten et al. 2008), providing 2 × 7 pixels, on the APEX telescope during July 2008 to map the J = 6 → 5 and J = 7 → 6 lines of 12CO simultaneously, and – in a second coverage – the 13CO J = 6 → 5 and [CII] J = 2 → 1. We observed a region of about 5.3×4.7′ (3.4 pc × 3.0 pc) in the on-the-fly (OTF) slew in RA (~320 arcsec long), subsequent scans spaced by 4′ in declination. The observations were done in total power mode, nodding the antenna prior to each OTF slew to a reference position 180″ east of the SAO star 161357. The latter is used as a reference throughout the paper, with RA(J2000) = 18:20:27.64 and Dec(J2000) = −16:12:00.90. We used Sgr B2(N) as a reference for continuum poiting. Calibration measurements were performed regularly every ~10 min with a cold liquid nitrogen (LN2) load and an ambient temperature load. The data were processed with the APEX real-time calibration software (Muders et al. 2006), assuming an image sideband suppression of 10 dB.

We used the Fast Fourier Transform Spectrometer (FFTS) as backend with a fixed bandwidth of 1.5 GHz and 1024 channels. We used the two IF groups of the FFTS with an offset of ±460 MHz between them. The spectral resolution was smoothed to about 1 km s−1, while the line widths are between 4 km s−1 and 9 km s−1, so they are well resolved. The on-source integration time per dump and pixel was 1 s only. However, oversampling with 4″ spacing, all the seven pixels of CHAMP+ covered a given grid position at least once. So, after adding all the subsamples from both IF channels, and after convolving the maps

1 This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radiowissenschaften, the European Southern Observatory, and the Onsala Space Observatory.
with the corresponding beam size, the total integration time in
the central 5' × 4' region of the maps varied between about 50
and 80 s per grid cell.

The SSB system temperatures are typically about 2000 K
and 6000 K respectively for the low and high frequency bands.
The spatial resolution varies between 9.4" for the 12CO J = 6 →
5 transition in the low frequency band (at 661 GHz – the nominal
beam at 691 GHz is 8.4") and 7.7" for the high frequency
band (809 GHz). All data in the paper were converted to the
line brightness temperature $T_b = n \times T_A^\text{mb}/\epsilon$, using a forward ef-
ficiency (ϵ) of 0.95 and beam coupling efficiencies (η) of 0.45
and 0.43 (at 661 GHz and 809 GHz, respectively) as determined
towards Jupiter2 (Güsten et al. 2008). We assumed brightness
temperatures of 150 K (at 660 GHz) and 145 (at 815 GHz) for
Jupiter (Griffin et al. 1986). This coupling efficiency was chos-
en because in velocity-space (velocity channels) the size of the
M 17 clumps is Jupiter-like, which had a size ~38.7" at the time
of the observations. The calibrated data were reduced with the
GILDAS3 package CLASS90.

3. Results

3.1. Integrated line temperature maps

Figure 1 shows the maps of the temperatures, integrated between
5 km s$^{-1}$ and 35 km s$^{-1}$, of 12CO J = 6 → 5 (top) with the con-
tour lines of 12CO J = 7 → 6, and the velocity integrated tem-
perature of 13CO J = 6 → 5 (bottom) with the contour lines
contouring to [CI] J = 2 → 1. All the maps were convolved to
the largest beam size (9.4") of the 13CO J = 6 → 5 line, ob-
taining a grid size of about 4.7" × 4.7". The peak integrated
temperatures of the 12CO J = 6 → 5 and J = 7 → 6 lines are
852 K km s$^{-1}$ and 925 K km s$^{-1}$ respectively. These lines
follow a similar spatial distribution. The peak integrated tem-
peratures of 13CO J = 6 → 5 and [CI] J = 2 → 1 are 420 K
and 282 K, respectively, and the peak of [CI] is shifted towards
the inner side of the interface region at about 0.55 pc (~50°).
The ionization front traced by the high resolution (10" × 7")
map of the 21 cm continuum emission (Brogan & Troland 2001)
as well as the ionizing stars identified by Beetz et al. (1976) and
Hanson et al. (1997) are shown in Fig. 2, with 12CO J = 6 → 5
white contour lines and [CI] J = 2 → 1 (green contour lines)
overlaid. The transition between the hot ($T_k > 300$ K) atomic
gas and the warm ($T_k > 100$ K) molecular gas can be seen due
to the almost edge-on geometry of M 17 SW.

The top panel of Fig. 3 shows the variation of the integrated
temperature of all the lines across the ionization front (strip line
at PA = 90° in Fig. 1). Due to the limited S/N the 12CO J = 7 →
6 and [CI] J = 2 → 1 strip lines have been smoothed spatially
with respect to the strip direction. The [CI] J = 2 → 1 line starts
peaking up at about 0.1 pc (~10") after the molecular lines and
presents a smooth transition towards the inner part of the cloud,
forming a plateau at about $\Delta x = -100''$, from where it increases
its emission until the peak is reached at about $\Delta x = -120''$. The
peak of [CI] correlates with a secondary peak seen in 13CO.
However, the main peak emission of the latter correlates with
the peak of the 12CO lines along this strip line.

The strip line at PA = 63° (bottom panel of Fig. 3) can be
compared with Fig. 5 in M92, and Fig. 2 in S88. At this position
angle, there is no marked plateau in the [CI] emission, and the

\footnotesize
\begin{itemize}
 \item[2] http://www.mpifr.de/div/submmtech/heterodyne/
 \texttt{champlus/champpml.html}
 \item[3] http://www.iram.fr/IRAMFR/GILDAS
\end{itemize}

Fig. 1. Top – Color map of the integrated temperature of 12CO J = 6 → 5 in M17 SW. The contour lines correspond to the 12CO J = 7 → 6, which has a peak emission of 925 K km s$^{-1}$.

3.2. The complex internal structure of M 17 SW

Figure 4 shows the spectra at selected positions along the
NE-SW strip line at PA 63°. The main-beam temperature of the
spectra is shifted by 70 K at each offset position. This set of
spectra can be compared with the 12CO and C18O J = 2 → 1
spectra along the same strip line of Fig. 8 in S88. The warm gas ($T_k > 50$ K), traced by the mid-J 12CO lines, is as extended as the cold gas ($T_k < 50$ K) traced by the 12CO J = 2 → 1 line.
deeper into the cloud. On the other hand, the 13CO $J = 6 \rightarrow 5$ and $[\text{C I}] J = 2 \rightarrow 1$ lines are strongly detected in a narrower spatial extent of about 1.3 pc, similar to the extent of the C18O $J = 2 \rightarrow 1$ emission.

Multilevel molecular line observations in CS, 12CO, 13CO and C18O and in several fine structure lines ([C I], [C II], [Si III], [O I]) indicate that M 17 SW consists of numerous high density clumps (n(H$_2$) > 10^4 cm$^{-3}$) from which the [O I], [Si II] and mid-J CO lines emanate. This dense gas is found within a relatively warm (~50 K) and less dense (n(H$_2$) ~ 3 x 103 cm$^{-3}$) molecular gas (interclump medium), which in turn is surrounded by a diffuse halo (n(H$_2$) ~ 300 cm$^{-3}$) which is the source of the very extended [C I] and [C II] emission (Snell et al. 1984, 1986; Evans et al. 1987; S88; SG90; M92).

From the C18O observations in M 17 SW a beam-averaged (13$''$) column density of ~8 x 1021 cm$^{-2}$ has been estimated for the cloud core and masses in the range ~10–2000 M_\odot for the CO clumps (SG90). A comparable mass range (~10–120 M_\odot) was lately estimated from submillimeter continuum observations in the northern part of M 17 (Reid & Wilson 2006), although the region mapped by Reid & Wilson (2006) adjoins, but does not overlap with M 17 SW.

Figure 5 shows representative velocity channel maps of the 12CO $J = 6 \rightarrow 5$ (top left) and $J = 7 \rightarrow 6$ (top right) lines in M 17 SW. These are the main-beam brightness temperatures averaged over two and three velocity channels between 18.2 km s$^{-1}$ and 19.9 km s$^{-1}$. These are similar to the velocity channels shown in Fig. 3 by SG90. The fact that the C18O $J = 2 \rightarrow 1$ line traces colder ($T_K < 50$ K) and less dense (n(H$_2$) ~ 3 x 103 cm$^{-3}$) gas than the 12CO lines is reflected in the different velocity integrated maps (Fig. 1) and in the channel maps of these lines. In theory the critical densities (at $T_K = 100$ K) of the 12CO $J = 6 \rightarrow 5$ and $J = 7 \rightarrow 6$ lines are $n_{\text{crit}} = 2.7 \times 10^3$ cm$^{-3}$ and $n_{\text{crit}} = 4.4 \times 10^3$ cm$^{-3}$, respectively, which corresponds to a difference of a factor ~1.6. However, this difference is not directly translated into a different clumpyness.

This is reflected in the similar clumpy structure seen in the channel maps of these mid-J 12CO lines.

Even though the critical density of the 13CO $J = 6 \rightarrow 5$ line is similar to that of the 12CO ($n_{\text{crit}} = 2.4 \times 10^3$ cm$^{-3}$) the southeast region of its channel map (bottom left) differs from that seen with the 12CO lines. This could be due to a change in the temperature of the gas, or to a variation in the 13CO column density in that region. Since 13CO is much more optically thin than 12CO (abundance ratio of about 50–70), this difference in the map can be expected. In Sects. 4.2 and 4.3 we discuss the optical depths.

On the other hand, the [C I] $J = 2 \rightarrow 1$ channel map (bottom right) shows a completely different structure and distribution than the 12CO and the isotope lines. Since the critical density of this line is about 2.8 \times 103 cm$^{-3}$, its emission is likely emerging partly from the interclump medium mentioned above.
Fig. 4. Selected spectra of 12CO $J=6\rightarrow5$, 12CO $J=7\rightarrow6$, 13CO $J=6\rightarrow5$ and [CI] $J=2\rightarrow1$ along the NE-SW strip line (see Fig. 1). The positions in arcsecs are the offsets with respect to the reference position at RA(J2000) = 18:20:27.6483 and Dec(J2000) = −16:12:00.9077. The spectra are the average spectra within ±2″ of the indicated offset positions and smoothed to 1 km s$^{-1}$ velocity resolution.

4. Discussion

4.1. Self-absorption in the mid-J 12CO lines?

The complex structure of the 12CO $J = 1 \rightarrow 0$, $J = 2 \rightarrow 1$, and $J = 3 \rightarrow 2$ line profiles has been attributed to strong self-absorption effects (e.g. Rainey et al. 1987; Stutzki et al. 1988). Martin et al. (1984) also reported a flat topped spectrum of 12CO $J = 3 \rightarrow 2$, attributed to self-absorption or saturation at velocities near the line center and gave details about the effects of macroturbulent clumpy medium in the line profiles.

A double peaked structure in the 13CO $J = 1 \rightarrow 0$ line was also reported by Lada (1976). Rainey et al. considered that this double peaked structure in 13CO suggests that either this line is optically thick or that the double peaked structure is due to more than one cloud component. The latter is the interpretation favored by Rainey et al. in view of the available data at that time.

Phillips et al. (1981) presented a self-absorption LTE model that considers a 12CO cloud of uniform temperature T_k in front of a hot background source of a temperature T_{bg} at the same central velocity. The velocity dispersion of the background cloud is considered to be larger than that of the foreground cloud, so the self-absorption effect is seen mostly at the line center. This model indicates that, depending on the total column density of 12CO, the self-absorption effect will be stronger in the $J = 3 \rightarrow 1$ line than in the $J = 3 \rightarrow 0$ line, with decreasing intensity as the transition number J increases. This is indeed observed in Fig. 12 of S88 for the 12CO $J = 4 \rightarrow 3$, $J = 3 \rightarrow 2$, $J = 2 \rightarrow 1$, and $J = 1 \rightarrow 0$ lines.

We reproduced the model by Phillips et al. including the higher-J lines of 12CO. The top panel of Fig. 6 shows the model with the same background and foreground temperatures used by Phillips et al. This model implies that, for a background temperature $T_{bg} = 64$ K and a foreground kinetic temperature $T_k = 15$ K, the lower-J lines ($J = 1, 2, 3, 4$) of the background cloud start showing self-absorption at the line center for lower column densities ($N/\Delta V = 10^{14} - 10^{15}$ cm$^{-2}$ km s$^{-1}$). Instead, the higher-J lines ($J = 5, 6, 7$) need larger columns ($N/\Delta V = 10^{15} - 10^{17}$ cm$^{-2}$ km s$^{-1}$) in order to be affected by self-absorption. For a velocity dispersion of $\Delta V = 5$ km s$^{-1}$, the upper limits of these 12CO columns would correspond to extinctions A_v of ~0.1 mag and ~10 mag, respectively.

The bottom panel of of Fig. 6 shows the model for a background temperature $T_b = 150$ K and a foreground temperature $T_k = 30$ K (from S88). In this case the lower-J lines show...
self-absorption at the same range of columns as before, while the higher-\(J\) lines start showing self-absorption at a narrower range of columns (\(N/ΔV = 10^{13} - 10^{16} \text{ cm}^{-2} \text{ km s}^{-1}\)). A remarkable characteristic of these models (top and bottom panels of Fig. 6) is that all the \(J\) lines are expected to be strongly self-absorbed at columns larger than \(10^{15} \text{ cm}^{-2} \text{ km s}^{-1}\), which is similar to the column density estimated by S88. Another characteristic is that the \(^{12}\text{CO}\) emission of the higher-\(J\) lines are also expected to decrease with the transition number \(J\), and be weaker than the low-\(J\) lines. However, the \(^{12}\text{CO} J = 7 \rightarrow 6\) line seems to break this rule, as can be seen in Fig. 12 of S88. The high peak temperature observed in the \(^{12}\text{CO} J = 7 \rightarrow 6\) line is missing in the lower-\(J\) lines. Even considering a calibration uncertainty of 20\%, the \(^{12}\text{CO} J = 7 \rightarrow 6\) line (observed at offset position \((−100′′,0′′)\), bottom panel of Fig. 12 in S88) will be as strong as the \(J = 4 \rightarrow 3\) line (at least at the peak intensity) but still stronger than the \(J = 2 \rightarrow 1\) line.

On the other hand, the \(^{13}\text{CO} J = 7 \rightarrow 6\) line seems to be asymmetric, with a left shoulder weaker than the right shoulder, which may be due to self-absorption produced by a colder foreground cloud with slightly lower center velocity than the warmer clump traced by the \(J = 7 \rightarrow 6\) line. However, that weaker left shoulder of the mid-\(J\) line is still brighter than the corresponding shoulder of the lower-\(J\) lines, in most of the velocity range and in both positions \((−100′′,0′′)\) and \((−60′′,−30′′)\) – assuming a low (<10%) uncertainty in the calibration of the data. This is not what would be expected in the self-absorption scenario proposed by Phillips et al. (1981).

Figure 4 shows that the \(^{13}\text{CO} J = 6 \rightarrow 5\) line has a similar asymmetry as the \(^{12}\text{CO}\) lines, at positions \((-45'',-23'')\) and \((-60'',-30'')\). But it shows only one component at the other positions. This difference may be related to a gradient in the temperature (or total column density) of the foreground cloud that produces self-absorption in the first two positions, but not in the others. Instead, \([\text{CI}]\ J = 2 \rightarrow 1\) shows similar asymmetry as \(^{12}\text{CO}\) at positions \((-45'',-23'')\), \((-150'',-75'')\) and \((-180'',-90'')\), and an opposite asymmetry at position \((-75'',-38'')\). Given that there is no strong evidence for self-absorption in neither the \(^{13}\text{CO}\) lines nor in the \([\text{CI}]\) lines and that the \(^{13}\text{CO}\) lines are mostly optically thin, it is unlikely that the observed asymmetries of the \(^{12}\text{CO}\) and \([\text{CI}]\) lines are produced by self-absorption. Hence, we agree with Rainey et al. (1987) in that this complex structure is more likely due to more than one kinematical component along the line of sight. And this could also be the case for the mid-\(J\) \(^{12}\text{CO}\) lines.

Therefore, the observational facts and the models suggest that the self-absorption effect, if present, should have little impact on the mid-\(J\) lines, and a few cloud components at different central velocities could also explain the complex structure of the line profiles. The asymmetry of the profiles suggests that self-absorption affects mostly one wing of the line profile, while the peak temperatures seems to be the least affected velocity channel in the mid-\(J\) lines. Hence, in the following sections we test the ambient conditions of the warm gas based on the ratios between the peak main-beam temperatures of the \(^{12}\text{CO}\) and \(^{13}\text{CO} J = 6 \rightarrow 5\) and \(J = 7 \rightarrow 6\) lines.

4.2. Optical depth and excitation temperature (LTE)

Since we have the maps of the \(^{12}\text{CO}\) and the \(^{13}\text{CO} J = 6 \rightarrow 5\) lines, we can estimate the optical depth and the excitation temperature of these lines, assuming local thermal equilibrium (LTE), from the ratio between their peak main-beam temperature \(T_{\text{mb}}\) observed between the 5 km s\(^{-1}\) and 35 km s\(^{-1}\) velocity.
channels. This will provide at least a lower limit for the kinetic temperature in M 17 SW. Then we will estimate the ambient conditions at two selected positions based on a non-LTE model of the ratio between the peak T_{mb}, temperatures of the $^{12}\text{CO} \ J = 6 \rightarrow 5$ and $J = 7 \rightarrow 6$ lines (hereafter referred as $^{12}\text{CO} \ \nu/\delta_5$ line ratio). The temperature and densities obtained in this way will be compared to those values estimated in previous work.

In LTE the radiation temperature can be approximated (e.g. Kutner 1984; Bergin et al. 1994) by the expression:

$$T_R = [J_s(T_{\text{ex}}) - J_{bg}] [1 - e^{-\tau}] \cdot (1)$$

where the term $J_s(T)$ is the Planck’s function evaluated at a frequency ν and temperature T, and multiplied by the factor $\frac{1}{\nu}$ to obtain the intensity in K. So it is defined as:

$$J_s(T) = \frac{h \nu}{e^{h \nu/k} - 1} \cdot (2)$$

We use the full $J_s(T)$ function since the Rayleigh-Jeans (R-J) approximation (commonly applied when $h \nu \ll kT$) does not hold for the high frequency lines studied in this work. For the R-J approximation to be true, we require $T \gg 300$ K, which is a much higher temperature than what we expect to trace with our observations.

The background radiation J_{bg} is a composite between the cosmic microwave background radiation (CMB), as a blackbody function at 2.73 K, and the diluted infrared radiation remitted by dust. That is:

$$J_{bg} = J_s(2.73) + \tau_d J_s(T_d) \cdot (3)$$

where τ_d is the effective optical depth of the warm surface layer, adopted from Hollenbach et al. (1991), and it is defined as $\tau_d = \tau(100 \mu m) (100 \mu m/\lambda)$. For M 17 SW we adopted an emission optical depth at 100 μm of $\tau(100 \mu m) = 0.106$ and the average dust temperature $T_d = 50$ K from M92. We tried both, with and without the dust contribution to the background radiation, and we found that the contribution of the radiation by dust continuum emission is negligible at frequencies on the order of 690 GHz and 810 GHz. Nevertheless, all the following analysis includes the dust contribution for completeness.

For extended (resolved) sources like the clumps in M 17 SW, the radiation temperature is well estimated by the observed main-beam brightness temperature T_{mb}. Hence, we use that quantity in the following analysis. From the LTE approximation we can assume that the excitation temperatures T_{ex} of ^{12}CO and $^{13}\text{CO} \ J = 6 \rightarrow 5$ are the same, although the terms $J_s(T_{\text{ex}})$ are not exactly the same because of the slightly (~4%) different frequencies of the ^{12}CO and ^{13}CO lines. So, from Eq. (1) the ratio between ^{12}CO and ^{13}CO can be approximated as:

$$\frac{T_{\text{mb}}(^{12}\text{CO} \ J = 6\rightarrow 5)}{T_{\text{mb}}(^{13}\text{CO} \ J = 6\rightarrow 5)} = \frac{1 - e^{-\tau^{(12}\text{CO} \ J=6\rightarrow 5)}}{1 - e^{-\tau^{(13}\text{CO} \ J=6\rightarrow 5)}}, \cdot (4)$$

Following the work by Wilson et al. (1999), we adopt a constant $^{12}\text{CO} / ^{13}\text{CO}$ abundance ratio of 50 for M 17 SW, which is approximately the value measured at a similar Galactic radius towards the W51 region (Langer & Penzias 1990). Assuming that the optical depth is proportional to the total column density of the molecules and, hence, to the abundance ratio between them, we can estimate that $\tau^{(12}\text{CO)} \approx 50\tau^{(13}\text{CO)}$. The ^{13}CO line is usually optically thin, so $\tau^{(13}\text{CO)}$ could be taken out of the exponential in Eq. (3) and estimated directly. However, we do not really know if this holds true for the entire M 17 SW region, so we do not apply further approximations and we solve Eq. (3) for $\tau^{(13}\text{CO)}$ with a numerical method (Newton-Raphson).

The top panel in Fig. 7 shows the $\tau^{(13}\text{CO)}$ map. The ^{13}CO line is optically thin in most of the region, with some optically thick spots (e.g., $\Delta \alpha = -30, \Delta \delta = -110$). Knowing $\tau^{(13}\text{CO)}$ we can estimate T_{ex} from Eq. (2) using either tracer, considering that the T_{ex} estimated using ^{12}CO is just ~0.6% higher than that estimated using ^{13}CO. The T_{ex} map is shown in the bottom panel of Fig. 7. This map indicates that the warmest gas is located along the ridge of the cloud, close to the ionization front. The temperature in this region ranges between 40 and 120 K, and the peak temperature is located at around ($\Delta \alpha = -60, \Delta \delta = 10$). If we consider only the gas with temperatures ≥ 80 K, the warm gas would be confined to a zone of about 40° (~0.44 pc) next to, and along, the HII region, which agrees with previous results found by Graf et al. (1993). If the gas were thermalized, this could be the actual map of the kinetic temperature of the gas. Otherwise, the T_{ex} map can be considered as a lower limit of T_K. Since in velocity space the clumps cover the whole beam, this would imply that the ^{12}CO and ^{13}CO molecules are subthermal in the $J = 6 \rightarrow 5$
temperature corresponds to about 50% of the peak emission. Here only the 12CO $J = 7 \rightarrow 6$ line seems to have a dip at the line center. However, because of the low S/N in the high frequency band, this dip may be likely due to noise. The middle bottom panel shows the spectra at position C ($\Delta \alpha = -60''$, $\Delta \delta = -30''$), which corresponds to the peak of the NE–SW strip scan reported in S88 and Graf et al. (1993), with beams of 40'' and 8'', respectively. The bottom panel shows the spectra at position D ($\Delta \alpha = -100''$, $\Delta \delta = 0''$), which is close to the continuum far-IR peak, also reported in S88. Since we do not have dedicated observations at these positions, we extracted the spectra from the nearest pixels in our maps, convolved to the largest beam (9''), which is close to the continuum far-IR peak.

4.3 Ambient condition at selected positions (non-LTE)

Figure 8 shows the spectra of all the observed lines extracted at four different positions in the map. The top panel shows the spectra observed at position A ($\Delta \alpha = -70''$, $\Delta \delta = +32''$), close to the peak emission of the 12CO and 13CO maps. Middle top – spectra observed at position B ($\Delta \alpha = -70''$, $\Delta \delta = -82''$), where the integrated line temperatures are about 50% of the peak emission. Middle bottom – spectra observed at position C ($\Delta \alpha = -60''$, $\Delta \delta = -30''$), the peak of the NE–SW strip scan. Bottom – spectra observed at position D ($\Delta \alpha = -100''$, $\Delta \delta = 0''$), close to the continuum far-IR peak.

transition. That is, the density of the gas and the column density of 12CO and 13CO may be insufficient to thermalize these transitions. A more detailed analysis is presented in the next section.

Table 1 shows the Gaussian fits of the spectra obtained at the four selected positions. Two Gaussian components were needed to fit the lines, except at position B, where only one component was used. The main components of the 12CO lines have a line width that is about 8–9 km s$^{-1}$ at position A, while the 13CO has a line width of about 3 km s$^{-1}$ narrower. The [C I] line is the narrowest line, with a line width of \sim4 km s$^{-1}$. At position B, the 12CO lines are the widest of the four lines with about 8 km s$^{-1}$ and the 13CO and [C I] lines have about half the line width of the 12CO lines. At position C and D the Gaussian parameters of the 12CO $J = 7 \rightarrow 6$ presented uncertainties of \sim50% when let free in the fitting. However, because the line shape of the 12CO $J = 7 \rightarrow 6$ and $J = 6 \rightarrow 5$ transitions are very similar, we set the line width of the $J = 7 \rightarrow 6$ transition to the value found for the $J = 6 \rightarrow 5$ line. The line width of the main components of the 12CO lines at position C and D are \sim6 km s$^{-1}$, that is about 2 km s$^{-1}$ narrower than the lines observed at positions A and B. This difference can be due to a higher optical depth towards the latter positions or to the contribution of a few fast-moving cloudlets (Martin et al. 1984; Graf et al. 1993).

The 12CO $J = 6 \rightarrow 5$ line ratio between the peak main-beam temperatures T_{mb} obtained from the Gaussian fit of the main components is 1.02 ± 0.05 at position A, 0.95 ± 0.05 at position B, 1.00 ± 0.05 at position C, and 0.99 ± 0.07 at position D. From these line ratios we can estimate the ambient conditions for these particular positions. We have used the non-LTE radiative transfer code RADEX4 (Van der Tak et al. 2007) to estimate the average ambient conditions (kinetic temperature, density and column density) of the molecular gas. We assumed collisional excitation by molecular hydrogen. We also assumed an homogeneous spherical symmetry in the clumps for the escape-probability formalism. The collision rates between 12CO and ortho- and para-H$_2$ are taken from Wernli et al. (2006), and can be found in the LAMDA database (Schöier et al. 2005). As in the LTE case, we used the cosmic microwave background radiation at 2.73 K, and we also tested the non-LTE model with and without the infrared radiation remitted by dust (Eq. (3)) as the background source. It was found also for this case that the dust continuum emission produces a negligible effect in the non-LTE model at the frequencies of the 12CO $J = 6 \rightarrow 5$ and $J = 7 \rightarrow 6$ lines. We explored molecular hydrogen densities between 10^{10} cm$^{-3}$ and 10^{14} cm$^{-3}$, temperatures between 5 K and 500 K, and 12CO column densities between 10^{19} cm$^{-2}$ and 10^{23} cm$^{-2}$.

Figure 9 shows the possible ambient conditions required to reproduce the 12CO $J = 6 \rightarrow 5$ line ratios, and the peak T_{mb} of the 12CO $J = 6 \rightarrow 5$ line observed at position A (top panel) and B

\footnote{http://www.sron.rug.nl/~vdtak/radex/radex_manual.pdf}
Table 1. M 17 SW line parameters derived from Gaussian fits, at four selected positions.

Molecule-J	\(I_{\text{mb}} \) (K km s\(^{-1}\))	\(V \) (km s\(^{-1}\))	\(T_{\text{mb}} \) (K)	\(\Delta V \) (K km s\(^{-1}\))
\(^{12}\text{CO} \ J = 6\rightarrow 5 \)				
Position A (–70°, +32°)				
\(^{12}\text{CO} \ J = 6\rightarrow 5 \)	723.1 ± 7.5	204 ± 0.04	829 ± 1.5	8.2 ± 0.11
	44.6 ± 3.3	251 ± 0.03	31.5 ± 2.9	1.3 ± 0.07
\(^{12}\text{CO} \ J = 7\rightarrow 6 \)	825.4 ± 24.1	203 ± 0.13	846 ± 3.6	9.2 ± 0.28
	56.9 ± 12.8	24.2 ± 0.15	26.5 ± 7.3	2.0 ± 0.32
\(^{13}\text{CO} \ J = 6\rightarrow 5 \)	301.2 ± 4.2	202.2 ± 0.04	547.4 ± 11.1	5.2 ± 0.08
	51.3 ± 3.6	23.9 ± 0.04	21.2 ± 1.7	2.3 ± 0.09
[C I] \(J = 2\rightarrow 1 \)	138.5 ± 11.5	20.2 ± 0.16	30.0 ± 3.8	4.3 ± 0.42
	29.9 ± 10.1	23.6 ± 0.18	27.5 ± 17.5	2.2 ± 0.51
Position B (–70°, –82°)				
\(^{12}\text{CO} \ J = 6\rightarrow 5 \)	537.4 ± 6.9	19.7 ± 0.05	657.5 ± 1.3	7.7 ± 0.11
\(^{12}\text{CO} \ J = 7\rightarrow 6 \)	528.5 ± 16.1	19.5 ± 0.12	622 ± 2.8	7.9 ± 0.26
\(^{13}\text{CO} \ J = 6\rightarrow 5 \)	166.7 ± 1.6	19.3 ± 0.02	33.5 ± 0.5	4.7 ± 0.05
[C I] \(J = 2\rightarrow 1 \)	169.7 ± 4.2	19.2 ± 0.06	34.4 ± 1.4	4.6 ± 0.14
Position C (–60°, –30°)				
\(^{12}\text{CO} \ J = 6\rightarrow 5 \)	220.4 ± 3.1	17.9 ± 0.04	33.7 ± 0.6	6.1 ± 0.06
	365.8 ± 4.9	21.9 ± 0.03	38.2 ± 1.6	3.9 ± 0.05
\(^{12}\text{CO} \ J = 7\rightarrow 6 \)	220.2 ± 16.8	17.9 ± 0.31	33.6 ± 2.6	6.1\(^{a} \)
	367.1 ± 16.4	21.9 ± 0.08	38.5 ± 4.0	3.9\(^{a} \)
\(^{13}\text{CO} \ J = 6\rightarrow 5 \)	145.7 ± 11.5	18.9 ± 0.17	29.8 ± 2.7	4.6 ± 0.21
	120.3 ± 11.3	21.8 ± 0.05	36.9 ± 3.6	3.1 ± 0.09
[C I] \(J = 2\rightarrow 1 \)	41.6 ± 27.6	17.5 ± 0.55	12.1 ± 8.6	3.2 ± 0.77
	124.5 ± 28.6	20.7 ± 0.48	24.9 ± 7.3	4.5 ± 0.72
Position D (–100°, 0°)				
\(^{12}\text{CO} \ J = 6\rightarrow 5 \)	136.1 ± 10.9	16.8 ± 0.09	34.6 ± 3.2	3.7 ± 0.17
	374.4 ± 11.6	21.8 ± 0.09	57.9 ± 2.5	6.1 ± 0.18
\(^{12}\text{CO} \ J = 7\rightarrow 6 \)	114.1 ± 11.5	16.9 ± 0.19	29.1 ± 3.2	3.7\(^{a} \)
	369.7 ± 18.9	21.6 ± 0.15	57.2 ± 3.4	6.1\(^{a} \)
\(^{13}\text{CO} \ J = 6\rightarrow 5 \)	82.7 ± 4.2	18.4 ± 0.09	20.0 ± 1.3	3.9 ± 0.15
	131.3 ± 4.1	21.6 ± 0.05	28.7 ± 0.9	4.2 ± 0.04
[C I] \(J = 2\rightarrow 1 \)	95.9 ± 5.2	18.7 ± 0.17	17.9 ± 1.5	5.0 ± 0.30
	120.9 ± 1.5	21.4 ± 0.06	24.5 ± 1.3	4.6 ± 0.24

\(^{a} \) The uncertainty of this parameter was larger than 50% when let free in the Gaussian fitting. We set its value accordingly to the one found for the corresponding Gaussian component of the \(^{12}\text{CO} \ J = 6\rightarrow 5 \) line.

Fig. 9. Top – the gray scale and contours represent the average (log\(_{10}\) scale) column density per line width (cm\(^{-2}\) km s\(^{-1}\)) required to reproduce the observed \(^{12}\text{CO} \) line ratio between the peak main-beam temperatures \(T_{\text{mb}} \) and the peak \(T_{\text{mb}} \) of the \(^{12}\text{CO} \ J = 6\rightarrow 5 \) line observed at position A (\(\Delta T = –70°, \Delta \delta = +32° \)), for different kinetic temperatures \(T_{K} \) and densities \(n(H_{2}) \). Bottom – same as top, but at position B (\(\Delta T = –70°, \Delta \delta = –82° \)).

The column densities differ due to the different line strengths observed at the four positions (Table 1).

In order to constrain the range of solutions we can adopt the average \(5 \times 10^{5} \) cm\(^{-2}\) density estimated by M92, which is also similar to the mean density of the clumps estimated by SG90. This is a sensitive assumption for a collision dominated scenario since this density is larger than the critical density of both \(^{12}\text{CO} \) lines for \(T_{K} \geq 20 \) K. However, at this density \((5 \times 10^{5} \text{cm}^{-2}) \) the temperature cannot be higher than 230 K in order to reproduce the line ratio and the peak \(T_{\text{mb}} \) of the \(^{12}\text{CO} \ J = 6\rightarrow 5 \) line observed at position A. And it cannot be higher than 150 K at position B. At position C the limit is about 220 K, and at position D it is about 200 K. These are lower kinetic temperatures than the 1000 K estimated for the dense clumps in the three-component model proposed by M92. Our upper limits for the kinetic temperature agree with the results reported in previous work (e.g. Harris et al. 1987; S88; SG90). From the map of the excitation temperature \(T_{\text{ex}} \) estimated from the LTE model (Fig. 7), the lower limits for \(T_{K} \) would be \(\sim 110 \) K and \(\sim 80 \) K at position A & C and B & D, respectively. These are similar (within 30%) to the lowest temperatures obtained with the non-LTE models (Figs. 9 and 10).

(bottom panel). A wide range of temperatures (100–450 K) and densities (\(>3 \times 10^{4} \text{cm}^{-3} \)) are possible solutions for a \(^{12}\text{CO} \) column density per line width \(N(^{12}\text{CO})/\Delta V \sim 5 \times 10^{16} \text{cm}^{-2} \text{km}^{-1} \text{s} \).

Figure 10 shows the possible ambient conditions estimated for position C (top panel) and D (bottom panel). The combinations of temperatures and densities required to reproduce the line ratios and peak temperatures are similar to those found for position A and B, although the range of possible temperatures (for a given density) at position D is larger than at the other positions.
temperatures. On the other hand, clumps with densities of clump volume-filling factor \(\Phi = 0.13 \) was estimated by SG90. While Howe et al. (2000) estimated a 13CO abundance ratio of 500. Hence, the column densities found for the four selected positions in M 17 SW suggest that the warm \((T_\text{k} > 100 \text{ K}) \) and dense \((n(H_2) \approx 10^2 \text{ cm}^{-3}) \) gas traced by the mid-IR lines represent \(\leq 2 \% \) of the bulk of the cold \((T_\text{k} < 50 \text{ K}) \) and less dense \((n(H_2) \sim 10^3 \text{ cm}^{-3}) \) gas traced by the low-J \(^{12}\text{CO} \) lines.

4.3.2. Volume-filling factors
The clump volume-filling factor \(\Phi_v \) can be estimated from the ratio between the average volume density \(n_{\text{av}} \) per beam and the average clump density \(n_{\text{clump}} \sim 5 \times 10^{15} \text{ cm}^{-3} \) derived from the non-LTE model (e.g. Kramer et al. 2004). The average volume density per beam can be estimated from the total column density of the gas and the line of sight extent of the cloud \((D_\text{cloud}) \). That is \(n_{\text{av}} \sim N(H_2)/D_\text{cloud} \). Following the work by Howe et al. (2000) we can assume a \(^{13}\text{CO} \) abundance ratio of 1.5 \(\times 10^{-6} \) relative to \(\text{H}_2 \), and estimate the hydrogen column densities of \(N_\text{H}_2 \sim 2.3 \times 10^{21} \text{ cm}^{-2} \) and \(N_{\text{H}_2} \sim 1.1 \times 10^{23} \text{ cm}^{-2} \), for the four selected positions.

The line of sight extent of the cloud is a difficult parameter to estimate. From a 13" \((-0.14 \text{ pc})\) beam-averaged column density of \(N(H_2) \sim 8 \times 10^{23} \text{ cm}^{-2} \), a volume-filling factor of 0.13 was estimated by SG90. Howe et al. (2000) reported a \(\Phi_v \sim 0.002 \) from the total column density of \(N(H_2) \sim 4 \times 10^{22} \text{ cm}^{-2} \) estimated at the peak column density of \(^{13}\text{CO} \) \(J = 1 \to 0 \) map, and assuming a cloud extent of 3 pc, which was deconvolved from the 4' beam of the SWAS space telescope. The line of sight extent should be larger than the smallest possible clump size \((-0.1 \text{ pc})\) that we can deconvolve.
from our 9.4" beam. But we do not think it can be as large as 3 pc, which is about the size of the maps we present here. This holds true at least for the region of bright 12CO and 13CO emission close to the ionization front, where our four selected positions are taken from. If we take the average between the upper (3 pc) and lower (0.1 pc) limits of the cloud extent, we would obtain a cloud size of ~1.6 pc. This line of size extent of the cloud is uncertain, but perhaps more realistic given the geometry of M 17 SW and the high resolution of our maps. Besides, it is similar to the diameter of the [CI] emitting region (~1 pc) estimated by Genzel et al. (1988), and the narrow spatial extension (~1.3 pc) of the 13CO J = 6 → 5 and [CI] 370 μm lines along the strip line at PA = 63° (Figs. 3 and 4).

Using the total column densities estimated for the four selected positions and Dcloud = 1.6 pc, the average volume densities at position A and B would be ~5.3 × 10^4 cm^-3 and ~2.5 × 10^4 cm^-3, respectively, and ~1.9 × 10^3 cm^-3 at position C and D. This in turn yields volume-filling factors Φn = n/ncloud of ~0.106, ~0.050 and 0.038 at positions A, B and C/D respectively. These volume-filling factors, as well as the total hydrogen densities estimated here, are larger than those estimated by Howe et al. (2000), but smaller than the ones reported in SG90. This is an expected and reasonable result since the 13CO J = 6 → 5 line traces only the warm and dense clumps and not the interclump medium. Besides, the volume-filling factors estimated at the four selected positions agree closely with those estimated in other star-forming regions using clumpy PDR models (e.g. S140, W3 Main; Spaans & van Dishoeck 1997; Kramer et al. 2004).

4.3.3. Jeans stability of the clumps

With an average density of 5 × 10^5 cm^-3 and an average clump size of 0.2 pc in diameter, which gives a typical total clump mass of ~100 M⊙ in molecular hydrogen, M92 estimated that these clumps are not in pressure equilibrium with the interclump gas (with average density 3 × 10^4 cm^-3 and temperature of 200 K), but rather that they are self-gravitating. With these parameters and a temperature of about 1000 K, the Jeans mass and radius should be about 1500 M⊙ and 0.3 pc, respectively. Hence these clumps are not near the collapsing regime. Even with our upper limits for the temperatures of the clumps of 230 K and 150 K at position A and B, and 220 K and 200 K at position C and D, respectively, the Jeans mass and radius of these clumps would still be larger than those estimated with the average density of 5 × 10^5 cm^-3. Temperatures of <170 K would be required to break the Jeans stability at that density. This means that the clumps at position B should have a slightly lower density of ~3 × 10^4 cm^-3 (or lower) to be Jeans-stable at a temperature of about 150 K (or higher).

4.4. Follow-up work

A higher resolution map of the 609 μm (492 GHz) 3P1 → 3P0 fine-structure transition of [CI] will be obtained with FLASH on APEX, in order to constrain the ambient conditions of the interclump medium and the halo in M 17 SW. More complex radiative transfer codes like RATRAN (Hogerheijde & van der Tak 2000) and β3D (Poelman & Spaans 2005), will be used to model the internal dynamics, temperature and density structure of individual clouds. The models will also allow us to explore in detail the effect of absorbing foreground clouds, or multiple cloud components, in the line profiles. Our PDR code (Meijerink & Spaans 2005) will provide the abundances of the molecular and atomic species, according to the UV flux estimated from historical data and our mid-J lines data. All together, these models will aid to test and constrain the heating and cooling of the irradiated gas.

5. Conclusions

We have used the dual-color heterodyne receiver array of 7 pixels CHAMP* on the APEX telescope to map a region of about 3.4 pc × 3.0 pc in the J = 6 → 5 and J = 7 → 6 lines of 12CO, the 13CO J = 6 → 5 and the 3P2 → 3P1, 370 μm (J = 2 → 1) fine-structure transition of [CI] in M 17 SW nebula. The completely different structure and distribution of the 3P2 → 3P1, 370 μm emission and its critical density indicate that this emission arises from the interclump medium (~3 × 10^3 cm^-3). On the other hand, the mid-J lines of 12CO and the isotopic emissions arise from the high density (~5 × 10^5 cm^-3) and clumpy region.

The spatial extent of the warm gas (40–230 K) traced by the 13CO J = 6 → 5 line is about 2.2 pc from the ridge of the M 17 SW complex, which is smaller than the extent observed in the low-J 12CO and 13CO lines reported in previous work. The 13CO J = 6 → 5 and [CI] 370 μm lines, have a narrower spatial extent of about 1.3 pc along a strip line at PA = 63°. An LTE approximation of the excitation temperature provides lower limits for the kinetic temperature. The warmest gas is located along the ridge of the cloud, close to the ionization front. In this region the excitation temperatures range between 40 and 120 K. A non-LTE estimate of the ambient conditions at four selected positions of M 17 SW indicates that the high density clumps (~5 × 10^4 cm^-3) cannot have temperatures higher than 230 K. The warm (TJ > 100 K) and dense (n(H2) ≥ 10^4 cm^-3) gas traced at the four selected positions by the mid-J 12CO lines represents ~2% of the bulk of the molecular gas traced by the low-J 12CO lines. Volume-filling factors of the warm gas ranging from 0.04 to 0.11 were found at these positions.

Acknowledgements. We are grateful to the MPIfIR team and the APEX staff for their help and support during and after the observations. We are grateful to J. Stutzki for providing the low-J 12CO data and to C. Brogan for providing the 21 cm map. We thank the referee for the careful reading of the manuscript and constructive comments. Molecular Databases that have been helpful include the NASA/JPL, LAMDA and NIST. The construction of CHAMP® is a collaboration between the Max-Planck-Institut für Radioastronomie, Bonn, SRON Groningen, the Netherlands Research School for Astronomy (NOVA), and the Kavli Institute of Nanoscience at Delft University of Technology, with support from the Netherlands Organization for Scientific Research (NWO) grant 600.063.310.10.

References

Bayet, E., Gerin, M., Phillips, T. G., & Contursi, A. 2006, A&A, 460, 467
Beet, M., Elsasser, H., Weinberger, R., & Poulakos, C. 1976, A&A, 50, 41
Bergin, E. A., Goldsmith, P. F., Snell, R. L., & Ungerechts, H. 1994, ApJ, 431, 674
Bergin, E. A., Snell, R. L., & Goldsmith, P. F. 1996, ApJ, 460, 343
Brogan, C. L., & Troland, T. H. 2001, ApJ, 560, 821
Evans, N. J., II, Davis, J. H., Mundy, L. G., & Vanden Bout, P. 1987, ApJ, 312, 344
Felli, M., Churchwell, E., & Massi, M. 1984, A&A, 136, 53
Fixsen, D. J., Bennett, C. L., & Mather, J. C. 1999, ApJ, 526, 207
Genzel, R., Harris, A. I., Stutzki, J., & Jaffe, D. T. 1988, ApJ, 332, 1049
Gerin, M., & Phillips, T. G. 1998, ApJ, 509, L17
Graf, U. U., Eckart, A., Genzel, R., et al. 1993, ApJ, 405, 249
Griffin, M. J., Ade, P. A. R., Orton, G. S., et al. 1986, Icarus, 65, 244
Güsten, R., & Fiebig, D. 1988, A&A, 204, 253
