A Pentasymmetric Open Channel Blocker for Cys-Loop Receptor Channels

Valentina Carta¹,², Michael Pangerl², Roland Baur¹, Roshan Puthenkalam³, Margot Ernst³, Dirk Trauner², Erwin Sigel¹*

¹Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland, ²Department of Chemistry, Ludwig-Maximilians-Universität München and Center of Integrated Protein Science, Munich, Germany, ³Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria

Abstract

γ-Aminobutyric acid type A receptors (GABAA receptors) are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. These receptors show near five-fold symmetry that is most pronounced in the second trans-membrane domain M2 lining the Cl⁻ ion channel. To take advantage of this inherent symmetry, we screened a variety of aromatic anions with matched symmetry and found an inhibitor, pentacyanocyclopentadienyl anion (PCCP²⁻) that exhibited all characteristics of an open channel blocker. Inhibition was strongly dependent on the membrane potential. Through mutagenesis and covalent modification, we identified the region T261-V256-T261 in the rat recombinant GABAA receptor to be important for PCCP²⁻ action. Introduction of positive charges into M2 increased the affinity for PCCP²⁻ while PCCP²⁺ prevented the access of a positively charged molecule into M2. Interestingly, other anion-selective cys-loop receptors were also inhibited by PCCP²⁻, among them the Drosophila RDL GABAA receptor carrying an insecticide resistance mutation, suggesting that PCCP²⁻ could serve as an insecticide.

Introduction

Symmetry pervades nature at all levels from nuclear physics to astronomy [1]. In biology, it enables complex functions to arise from a limited set of building blocks and associated genes. A case in point is protein assemblies, such as viral capsids or trans-membrane ion channels. The former often show icosahedral symmetry, allowing for the encapsulation of maximum space with a minimum number of protein components [2]. The latter are often multimeric, for instance tetrameric (voltage-gated potassium channels), pentameric (cys-loop receptors) or hexameric (Orai channels), with a central pore formed by membrane-spanning subunits. Following the establishment of a basic multimeric assembly early in evolution, a higher level of functional sophistication is sometimes achieved through subsequent desymmetrization, for instance through concatenation or heteromultimerization of closely related, yet distinct, subunits.

GABAA receptors are a particularly interesting class of pentameric ligand-gated ion channels. They are composed of five subunits surrounding a central chloride ion channel and represent the major inhibitory receptors in the mammalian central nervous system [3–6]. The most abundant receptor isoform in mammalian brain consists of α₁, β₂, and γ₂ subunits [7]. Various approaches have been used to derive the subunit stoichiometry for this receptor, which has been determined as 2α₂:2β₁:γ₁, with a subunit arrangement gβ₂β₂α₂ anti-clockwise as seen from the synaptic cleft [8–12]. The pharmacological properties depend on subunit composition [13] and arrangement [14]. The subunits of GABAA receptors share a high degree of homology with other subunits of the same receptors, as well as subunits of other Cys-loop receptors. All these receptors have a near five-fold symmetry. The degree of symmetry is especially high in the second trans-membrane domain M2 that lines the ion channel (Fig 1A).

GABAA receptors have a rich pharmacology and are targeted by numerous agents such as muscimol, picrotoxin, benzodiazepines and insecticides [15]. None of these ligands, however, takes advantage of the five-fold (or near five-fold) symmetry of the receptors and the availability of multiple, i.e. up to five, related contact sites. Encouraged by recent work on polyvalent ligands [16], we hypothesized that small pentasymmetric or nearly pentasymmetric anions would serve as symmetry-adapted blockers of the anion-selective GABAA receptors. Such molecules would have multiple similar interactions with the protein, which would result in a sharp increase of overall binding affinity (avidity) due to the polyvalency effect [17]. To test this hypothesis, we synthesized a range of perfectly or nearly five-fold symmetric anions (Figure 2A) and investigated them in electrophysiological experiments. Among these, we identified the pentacyanocyclopentadienyl...
anion (PCCP2−) as an inhibitor of GABA\textsubscript{A} receptors. Here we describe that PCCP2− has all the hallmarks of an open channel blocker, discuss its binding site, and evaluate its interactions with other pentameric ligand-gated channels.

Materials and Methods

Compounds 1 (Na+PCCP2−) and 2 were synthesized using established literature protocols. Compounds 3 and 4 were synthesized from 2 by treatment with ammonia and hydrazine, respectively. Details of these syntheses will be published elsewhere.

Crystallographic data (excluding structure factors) for Na+PCCP2− (acetone solvate) have been deposited with the Cambridge Crystallographic Data Centre as publication no. CCDC-946841. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge.

MTSET+ was obtained from Toronto Research Chemicals Inc. All the other chemicals were purchased from Sigma-Aldrich.

The recombinant rat mutant subunits α\textsubscript{1}A253C, α\textsubscript{1}V256C, α\textsubscript{1}T260C, α\textsubscript{1}T261C, α\textsubscript{1}L263C, α\textsubscript{1}T264C, α\textsubscript{1}T267C putatively facing the channel lumen (Fig. 1A,B) were prepared using the QuikChange mutagenesis kit (Stratagene).

Capped cRNAs were synthesized from the linearized plasmids. A poly-A tail of about 400 residues was added to each transcript using yeast poly-A polymerase. The concentration of the cRNA was quantified on a formaldehyde gel using Radiant Red stain for visualization of the RNA. Known concentrations of RNA ladder were loaded as standard on the same gel. cRNAs were precipitated in ethanol/isoamylalcohol 19:1, the dried pellet dissolved in water and stored at −80°C. Xenopus oocytes were prepared, injected and defolliculated as described previously [18] (Research approved by the Kantonstierarzt, Kantonaler Veterinärdienst Bern (Animal research permit BE98/12)). Briefly, Xenopus laevis oocytes were injected with 50 nL of the cRNA solution containing wild type or mutated α\textsubscript{1}, β\textsubscript{2} and γ\textsubscript{2} subunits at a concentration of 10 nM: 10 nM: 50 nM and then incubated in modified Barth’s solution at 18°C for at least 24 h before the measurements. Homomeric glycine receptors (β-subunit), heteromeric glycine receptors (α\textsubscript{1} and β-subunit) (cDNAs are a kind gift by B. Laube and H. Betz), the prokaryotic ELIC (cDNA is a kind gift by R. Dutzler), the wild-type and the dieldrin resistant (RDL) mutant Drosophila GABA\textsubscript{A} receptor (wild type, bd splice variant and mutant A301S) (cDNAs are a kind gift by D. Sattelle) were also expressed. Currents were measured using a home-built two-electrode voltage clamp amplifier in combination with a XY-recorder or digitized using a PowerLab 2/20 (AD Instruments) using the computer program Chart. Tests with a model oocyte were performed to ensure linearity in the larger current range. The response was linear up to 15 mA. Electrophysiological experiments were performed by using the two-electrode voltage clamp method at a holding potential of −80 mV. The perfusion medium contained 90 mM NaCl, 1 mM KCl, 1 mM MgCl\textsubscript{2}, 1 mM CaCl\textsubscript{2}, and 5 mM Na-HEPES (pH 7.4) and was applied by a gravity flow of 6 ml/min. Wild type and mutant receptors were characterized for their apparent affinity for \textgamma-aminobutyric acid (GABA) for channel gating and for inhibition by PCCP2− and picrotoxin. The GABA concentration response curve was determined by sequential application of increasing concentrations of GABA. Concentration-inhibition curves were performed at GABA (EC\textsubscript{10}) by

Figure 1. Aligned sequences of the amino acid residues in the subunits αβγ of the rat GABA\textsubscript{A} receptor. A, Alignment of 2α, 2β and 1γ subunit contributing to the formation of a GABA\textsubscript{A} pentamer. The residues in the α\textsubscript{1} subunit of the GABA\textsubscript{A} mutated to Cys are shown in boldface letters. B, α-Helical wheel representation of the rat α\textsubscript{1} M2 membrane-spanning domain showing the mutated residues in boldface letters.

Figure 2. Symmetry-adapted anions, the chemical structure of PCCP2− and the X-ray structure of Na+PCCP2−. A, Symmetry-adapted anions. B, X-ray structure of Na+PCCP2− (as the acetone solvate). The network of coordinative interactions between the partially negatively charged nitrogen atoms of PCCP2− and the Na+ cations is highlighted. The insert indicates the geometry of the molecule.
sequential co-application of GABA and increasing concentrations of PCCP or picrotoxin. Inhibition was determined at the end of 1 min co-application of GABA and PCCP or picrotoxin. Concentration response curves were fitted with $I(c) = I_{\text{max}}/(1+(c/EC_{50})^n)$, where I is the current potentiation, c is the concentration of GABA, I_{max} is the maximal current amplitude, EC_{50} is the concentration of GABA at which a half-maximal current amplitude was observed and n is the Hill coefficient. Concentration inhibition curves were fitted with $I(c) = I_{\text{max}}/(1+(c/IC_{50})^n)$, where I is the control current amplitude, c is the concentration of PCCP or picrotoxin, I_{\max} is the control current amplitude elicited by GABA and IC_{50} is the concentration of PCCP or picrotoxin at which half-maximal inhibition was observed. Drugs were applied as follows: 1 min GABA (EC_{10}),

Figure 3. Effect of PCCP on recombinant $\alpha_1\beta_2\gamma_2$ GABA$_A$ receptors. A, GABA$_A$ receptors were expressed in Xenopus oocytes. The electrical currents recorded by two-electrode voltage clamp were activated with a concentration of GABA eliciting 1% of the maximal current amplitude (EC_{10}) and inhibited with increasing concentrations of PCCP. The lower bar indicates the time of GABA application, the upper bar the time of PCCP application. The numbers indicate the concentration of PCCP in μM. At concentrations >1 μM, induces an open-channel block, characterized by an apparent desensitization of the current and an off-current. B, Averaged concentration inhibition curve by PCCP. Individual curves were fitted and standardized to the current elicted by GABA. Data are shown as mean ± SEM (n = 4). Open circle: peak currents at the beginning of the drug application. Filled squares: current amplitudes at the end of the drug application. Filled circles: current amplitudes at the end of the drug application corrected for the direct effect of PCCP on membranes. C) and D) same experiment carried out at a concentration of GABA eliciting 10% of the maximal current amplitude (EC_{10}).

doi:10.1371/journal.pone.0106688.g003

Figure 4. Concentration inhibition curves for rat and Drosophila GABA$_A$ receptors. A, Concentration inhibition curve for $\alpha_1\beta_2\gamma_2$ and $\alpha_1\beta_2\delta$ GABA$_A$ receptors. Increasing concentrations of PCCP were applied together with GABA EC_{10}. Individual inhibition curves were standardized and subsequently averaged (Mean ± SD, n = 4). Data are compared with those obtained from $\alpha_1\beta_2\gamma_2$ receptors. Inhibition of the wild type and mutant RDL Drosophila GABA$_A$ receptor by PCCP and Picrotoxin. Concentration inhibition curves of (B) PCCP and, (C) picrotoxin were determined in wild type (circles) and mutant (squares) receptors. Currents were activated with a concentration of GABA eliciting 10% of the maximal current amplitude (EC_{10}) and inhibited with increasing concentration of PCCP or picrotoxin. Individual curves were standardized to initial current amplitudes and subsequently averaged. Data are shown as mean ± SD (n = 3).

doi:10.1371/journal.pone.0106688.g004
1 min GABA (EC_{10}), 1 min GABA (EC_{10}) + PCCP^2 (IC_{50}), 1 min MTSET (5 mM) either in the presence or absence of 100 mM GABA, 1 min GABA (EC_{10}), 1 min GABA (EC_{10}) + PCCP^2 (concentration as before). Similar experiments were performed with picrotoxin. Due to the difficulty of washing out picrotoxin out from the oocytes two different oocytes were used to test the inhibition before and after the treatment with the cysteine reactive compound. Inhibition after treatment was divided by % inhibition before treatment. To test the ability of PCCP^2 to protect the engineered cysteines from covalent modification by MTSET^+, we used the same sequence of

Figure 5. Effect of the membrane potential on inhibition by PCCP^2. A, GABA$_A$ receptors were activated with a concentration of GABA eliciting 10% of the maximal current amplitude (EC$_{10}$) and inhibited with increasing concentrations of PCCP^2. Averaged concentration inhibition curves by PCCP^2 are shown for different membrane potentials. Individual curves were fitted and standardized to the current elicited by GABA. Data are shown as mean ± SD (n = 3). doi:10.1371/journal.pone.0106688.g005

Figure 6. High concentration of PCCP^2 induce a current in non-injected Xenopus oocytes. A, Voltage jump of 25 ms duration from −80 mV to −30 mV. A μA sized transient current flows with each voltage step. B, A small transient outward current is induced after applications of 10, 30 and 100 μM PCCP^2 of 30 s duration to an oocyte held at a membrane potential of −80 mV. doi:10.1371/journal.pone.0106688.g006

Figure 7. Pharmacological properties of wild type and cysteine mutant GABAA receptors. A, GABA concentration response curves from wild type and mutant rat GABA$_A$ receptor. B, PCCP^2 and C, picrotoxin concentration inhibition curves. Individual curves were fitted and standardized. Data are shown as mean ± SD (n = 3 to 4). doi:10.1371/journal.pone.0106688.g007
GABA receptors were expressed in Xenopus oocytes. At experiments PCCP fitted with an IC₅₀ of 2.6 by low concentrations of GABA (EC₁). This stimulation was highly variable between individual oocytes and was not mediated by the presence of 100 μM PCCP. Low concentrations of PCCP were similarly inhibited, while ELIC [25] required about 100 μM PCCP for half-maximal inhibition. Inhibition by PCCP was strongly dependent on the membrane potential (Figure 5). IC₅₀ was 16.2±1.3 μM (n = 3) at −120 mV, 6.3±1.3 μM (n = 3) at −80 mV and 1.8±0.8 μM (n = 3) at −40 mV. It should be noted that the IC₅₀ at −80 mV was for unknown reasons somewhat higher than determined in the experiments before. From these values one can estimate the fraction of the voltage field experienced by the blocking particle at its blocking site from the equation derived by Woodhull [26] where δ is the fraction of the voltage field sensed by the blocker from the outside of the membrane, δ was estimated to be ~0.7 the distance of the voltage field from the extracellular side.

In additional experiments it was tested of inhibition by PCCP was of competitive or non-competitive nature. GABA concentration response curves were carried out in the absence of PCCP or the presence of 2 μM or 10 μM PCCP. Analysis was complicated by the fact that currents were determined after 1 min application of GABA, when a substantial proportion of the channels had been desensitized. Nevertheless data showed rather a leftward shift of the GABA concentration response curve with increasing concentrations of PCCP, a phenomenon excluding competitive inhibition.

High concentrations of PCCP interact with the lipid bilayer

At concentrations ≥10 μM, PCCP induced a current in non-injected oocytes. Perfusion of 10, 30 or 100 μM PCCP at a holding potential of −80 mV resulted in small outward currents (Figure 6B). Upon a voltage jump from −80 to −30 mV, μA sized currents of more than 30 ms duration were observed in the presence of 100 μM PCCP (Fig. 6A). Thus it appears that PCCP is able to insert into the bilayer and diffuse through the bilayer, reflecting its lack of dipole moment and relative lipophilicity (clogP = −0.48). It should be noted that the concentrations of PCCP required to induce currents in non-injected oocytes are much larger than the concentrations required to inhibit GABA_A receptor channels.

Results

Synthesis and preliminary biological evaluation

Figure 2A shows the investigated symmetry-adapted anions. PCCP as its sodium salt [1] and compound 2 were synthesized following established literature procedures [21–23]. Compounds 3 and 4 were prepared from 2 by treatment with ammonia and hydrazine, respectively. Details of these syntheses will be published elsewhere. Compounds 1–4 were tested for inhibition of recombinant α₁β₂γ₂ GABA_A receptors. Among these, only 1 was found to be highly active and was further characterized and the x-ray structure determined (Figure 2B).

Low concentrations of PCCP inhibit currents mediated by α₁β₂γ₂ GABA receptors

To evaluate PCCP as an ion channel blocker, α₁β₂γ₂ rat GABA_A receptors were expressed in Xenopus oocytes. At concentrations of 0.3–10 μM PCCP stimulated currents elicited by low concentrations of GABA (EC₂). This stimulation was highly variable between individual oocytes and was not mediated by the site for benzodiazepines as 1 μM Ro15-1788 fails to affect the stimulation. As stimulation was only observed at low concentration of GABA, we are tempted to assume a different site of action of PCCP for stimulation and inhibition. At higher concentrations (>1 μM), PCCP induced an open-channel block, characterized by an apparent desensitization of the current and an off-current. As expected, this block became more prominent with increasing agonist concentrations. Stimulation became less evident. Original current traces and averaged data are shown in Figure 3A,B.

Figure 3C,D shows a similar experiment carried out at a higher GABA concentration (EC₁₀). At this GABA concentration, PCCP only exhibited a channel block. Current amplitudes measured after 1 min application of GABA and PCCP were fitted with an IC₅₀ of 2.6±0.8 μM (n = 4). In additional experiments PCCP was pre-applied for 30 s before the combined application of PCCP with GABA. Current traces looked the same as without pre-application, indicating that PCCP did not interact with closed channels.

PCCP also inhibited α₁β₂γ₂ and α₁β₂δ rat GABA_A receptors, respectively, with an IC₅₀ of 12.5±4.8 μM (n = 4) and 0.71±0.28 μM (n = 4) (Figure 4A). It should be noted that the primary sequences of β₁ and β₂ differ substantially in the inner leaflet of M3. Glycine homomeric and heteromeric receptors [24] were similarly inhibited, while ELIC [25] required about 100 μM PCCP for half-maximal inhibition.

Table 1. Pharmacological evaluation of the expressed recombinant receptors.

Receptor	GABA EC₅₀ (μM) mean ± SD	n	PCCP IC₅₀ (μM) mean ± SD	n	Picrotoxin IC₅₀ (μM) mean ± SD	n
α₁β₂γ₂	31.3±6.5	3	2.58±0.75	3	2.02±0.89	6
α₁A253Cβ₂γ₂	30.6±6.4	3	2.63±0.31	3	1.79±0.15	3
α₁V256Cβ₂γ₂	2.91±7.4	4	62.2±22.4	4	0.74±0.36	4
α₁T260Cβ₂γ₂	44.1±6.4	4	0.85±0.46	4	1.31±0.41	3
α₁T261Cβ₂γ₂	111±1	3	46.4±7.25	3	1.31±0.71	3
α₁L263Cβ₂γ₂	open ch.	3	4.47±1.36	3	1.10±0.21	3
α₁T264Cβ₂γ₂	126±24	4	3.15±0.48	3	1.03±0.35	3
α₁T267Cβ₂γ₂	32.2±11.9	3	0.77±0.11	3	0.83±0.48	3

EC₅₀ for GABA, EC₅₀ for PCCP, and IC₅₀ for picrotoxin are given for wild type and mutant receptors.

doi:10.1371/journal.pone.0106688.t001

An Open Channel Blocker for Cys-Loop Receptors

perfusion except that MTSET was co-applied with 1 mM PCCP. Results were obtained on 3–4 single oocytes for each receptor.

The homology model is based on PDB entry 3RIF and was constructed with Modeller [19]. Ligand docking was performed with the GOLD software [20]. The binding site was defined to contain the 2'and 6' residues, side chains α₁T260, β₂T256 and γ₂T271 were kept flexible during docking.
Pharmacological properties of mutant receptors

To identify important residues for the interaction with PCCP−, we mutated, one at a time, seven residues in M2 of α\textsubscript{2} to cysteine residues. (Figure 1A,B). Mutated α\textsubscript{2} subunits were co-expressed with wild type β\textsubscript{2} and γ\textsubscript{2} subunits in Xenopus oocytes. The sensitivity to GABA was tested for the different mutants. Expression of α\textsubscript{1}L263Cβ\textsubscript{2}γ\textsubscript{2} resulted in a spontaneously open channel. While α\textsubscript{1}A253Cβ\textsubscript{2}γ\textsubscript{2}, α\textsubscript{1}T260Cβ\textsubscript{2}γ\textsubscript{2}, α\textsubscript{1}T267Cβ\textsubscript{2}γ\textsubscript{2} showed an EC\textsubscript{50} similar to wild type receptors, the mutant α\textsubscript{1}V256Cβ\textsubscript{2}γ\textsubscript{2} showed an about 10-fold increase and the mutants α\textsubscript{1}T261Cβ\textsubscript{2}γ\textsubscript{2} and α\textsubscript{1}T264Cβ\textsubscript{2}γ\textsubscript{2} showed an about 4 fold decrease in the EC\textsubscript{50} for GABA (Figure 3A; Table 1). The sensitivity to inhibition by PCCP− of GABA-activated currents was also determined for wild type and mutant receptors. A GABA concentration eliciting 10% of the maximal current in the corresponding receptor was used in these experiments. The mutant receptors α\textsubscript{1}V256Cβ\textsubscript{2}γ\textsubscript{2} and α\textsubscript{1}T261Cβ\textsubscript{2}γ\textsubscript{2} displayed each an about 20–30 fold reduced sensitivity to PCCP− compared with wild type receptors (Figure 7B; Table 1). The sensitivity of GABA-activated currents to picrotoxin was also determined using the same conditions as for PCCP− (Fig. 7C; Table 1). Little effect of the studied mutations was observed on the IC\textsubscript{50} for picrotoxin.

The effect of MTSET+ on the cysteine-substitution mutants and the binding site of PCCP−

A cysteine scan was chosen as it allows covalent reaction with a cysteine reactive compound to potentially increase the effect seen with the mutation alone, to test accessibility of the residue and to investigate protection from the covalent reaction by a compound. In preliminary experiments pCMBS−, MTSEA+ and MTSET+ were tested. Only treatment with MTSET+ left wild type GABA\textsubscript{A} receptors unaffected (Figure 8A). Therefore MTSET+ was chosen for further experimentation. Current traces for wild type receptor and α\textsubscript{1}V256Cβ\textsubscript{2}γ\textsubscript{2} and α\textsubscript{1}T261Cβ\textsubscript{2}γ\textsubscript{2} mutant receptors are shown in Figure 8B,C and Figure 9A,B, illustrating typical experiments where we chose an inhibitor concentration such as to inhibit about 50% of the late current response elicited by GABA (EC\textsubscript{50}) in the corresponding receptor. MTSET+ + GABA treatment applied for 1 min to the wild type receptor had no effect on the affinity for PCCP− (Figure 8A). MTSET+ + GABA treatment in α\textsubscript{1}V256Cβ\textsubscript{2}γ\textsubscript{2} led to an increase in PCCP− inhibition (Figure 8B). This effect could be prevented when 1 mM of PCCP− was present during the treatment (Figure 8C). The Figure 9A shows that MTSET+ + GABA treatment leads to a spontaneously open channel in the α\textsubscript{1}T260Cβ\textsubscript{2}γ\textsubscript{2} mutant, characterized by a shift on the base line of the current. We applied increasing concentrations of PCCP− to investigate if PCCP− was able to block the channel again. The IC\textsubscript{50} value after the treatment was 0.90±0.3 mM (mean ± SD, n = 3) as compared to the IC\textsubscript{50} of 0.85±0.46 μM (n = 3) before the treatment. This indicates a strongly enhanced affinity for PCCP−. Moreover, as the maximally inhibited current level almost reached the original base line we conclude that PCCP− was able to close the channel again. Figure 9B documents that presence of 1 mM PCCP− during MTSET+ + GABA treatment prevents the open channel formation and the affinity for PCCP− was the same before and after the treatment. Figure 10 summarizes our observations in wild type and mutant receptors. The bars indicate the ratio of the percentage of inhibition by PCCP− (or picrotoxin) observed after application divided by that before the application of MTSET+ (black bars). The diagrams on the left show this ratio for PCCP− (Figure 10A) and picrotoxin difference in the IC\textsubscript{50} between wild type and mutant receptors (Figure 4B,C).

PCCP− inhibits currents mediated by wild type and mutant RDL Drosophila GABA\textsubscript{A} receptor to a similar extent

Mutation A302S in RDL Drosophila GABA\textsubscript{A} receptors has been reported to confer a certain degree of resistance to inhibition by picrotoxin [27,28]. In our hands, a 7-fold reduction in sensitivity to picrotoxin upon the mutation was observed. Interestingly, PCCP− showed a much smaller (about 2-fold)
Appl. to repetitively until a stable current response was observed followed by inhibition of the channel by PCCP in the presence of GABA. After MTSET treatment GABA was applied twice followed by a combined application of GABA and the same concentration of PCCP used before. The treatment leads to a spontaneously open channel and an enhanced inhibition in α_1T260C$\beta_2\gamma_2$. 5 mM MTSET was applied to α_1T260C mutant receptor in presence of GABA and 1 mM PCCP. PCCP prevents the open channel formation. These experiments were repeated independently three times using different oocytes.

doi:10.1371/journal.pone.0106688.g009

Figure 9. PCCP prevents the increase in PCCP sensitivity of α_1T260$\beta_2\gamma_2$ mediated by MTSET + GABA. GABA (EC_{10}) was applied repetitively until a stable current response was observed followed by inhibition of the channel by PCCP. Subsequently 5 mM MTSET was applied in the presence of GABA. After MTSET treatment GABA was applied twice followed by a combined application of GABA and the same concentration of PCCP used before. A, The treatment leads to a spontaneously open channel and an enhanced inhibition in α_1T260C$\beta_2\gamma_2$. B, 5 mM MTSET was applied to α_1T260C mutant receptor in presence of GABA and 1 mM PCCP. PCCP prevents the open channel formation. These experiments were repeated independently three times using different oocytes.

Discussion

Based on symmetry considerations, we have identified an aromatic monovalent anion with five-fold symmetry, PCCP, as inhibitor of rat GABA$_A$ receptors. The exposure to increasing concentrations of PCCP causes inhibition in the GABA-evoked current typical for an open channel blocker. All the pentameric receptors belonging to the Cys-loop family share a near five-fold symmetry which is most pronounced in the second transmembrane domain M2. PCCP also inhibit glycine homomeric and heteromeric receptors with similar affinity to the GABA$_A$ receptor and with smaller affinity ELIC. Interestingly, PCCP also inhibit Drosophila wild type and mutant RDL channels carrying the dieldrin resistance mutation [27,28] suggesting a possible use of PCCP as insecticide. High concentrations of PCCP induced currents by themselves. We ascribe this phenomenon to distribution of PCCP into the lipid bilayer and...
permeation through the bilayer. PCCP lacks a dipole moment and is therefore comparatively lipophilic with a clogP of 0.48. However, we cannot exclude an action of PCCP on channels endogenous to the oocyte.

We studied the molecular site of interaction of PCCP on α1β2γ2 GABA_A receptors. A series of cysteine mutations were introduced in M2 into amino acid residues of the α1 subunit. We selected residues that have been proposed to line the ion channel α1A253, α1V256, α1T260, α1T261, α1L263, α1T267 [29,30] (Fig. 1A,B). The mutant receptors α1L263C form an open channel that could not be activated by GABA. This leucine residue is conserved in all known subunits of acetylcholine, glycine and GABA_A receptors. It has been postulated that this residue plays a role in the gating mechanism of the channel, where the closure is achieved when the large hydrophobic leucine residues move into the channel inhibiting ion flux (for review see [31]).

Most of the mutations studied here had little effect on the apparent affinity to GABA. Mutations in residues α1V256 and α1T261 each caused an approximately 30-20 fold decrease in the apparent affinity of PCCP to inhibit currents induced by GABA. This may suggest that PCCP directly interacts with these residues, but it

![Figure 10. Effect of MTSET on the PCCP and picrotoxin inhibition of wild type and mutants GABA_A receptors.](https://www.plosone.org/)

Figure 10. Effect of MTSET on the PCCP and picrotoxin inhibition of wild type and mutants GABA_A receptors. Currents were elicited with GABA EC10. The concentration of PCCP or picrotoxin was chosen such as to inhibit about 50% of the late current response in the corresponding receptor. Subsequently oocytes were treated with the cysteine-reactive reagent MTSET and inhibition by the same concentration of PCCP or picrotoxin was determined. The ratio of the inhibition after treatment divided by inhibition before treatment is shown as a bar. A, C, MTSET was applied in the absence of GABA. B, D, MTSET was applied in the presence of 100 μM GABA. The circle symbol on top of the bar for the T260C and T264C mutations indicates formation of an open channel after MTSET treatment when applied in the presence of GABA. The white bars show results of experiments where the MTSET + GABA treatment was performed in the presence of 1 mM PCCP or 1 mM picrotoxin, in order to see if the covalent reaction could be prevented by the channel blockers. The asterisks sign (*) indicates that 1 mM picrotoxin was not able to suppress formation of open channels. Mean ± SD is shown. The number of oocytes for each experimental condition is either three or six.

doi:10.1371/journal.pone.0106688.g010

![Figure 11. Hypothetical model for the mechanism of action of PCCP.](https://www.plosone.org/)

Figure 11. Hypothetical model for the mechanism of action of PCCP. Mutation of residues α1V256 and α1T261 to cysteine alters strongly the apparent affinity for channel inhibition by PCCP. The fact that MTSET can only react with cysteines introduced in M2 in the presence of GABA indicates that GABA widens the pore. For the mutations α1V256C and α1T260C the affinity for PCCP is strongly increased after MTSET treatment. MTSET reaction is prevented by PCCP. This together implies these residues in PCCP binding. Introduction of two positive charges by reaction with MTSET further up in the channel leads to additional binding sites for PCCP.

doi:10.1371/journal.pone.0106688.g011
The ligand and the mutated residues of the α1 subunit, which have an impact on the affinity of the ligand, are shown in space filling representation. The 2′ valines of the α1 subunit are rendered grey; the 6′ threonines of the α1 subunit in green. The GABA_A receptor is displayed in ribbon representation with α1 subunits shown in yellow, β2 subunits in red, γ2 subunit in blue. The complete transmembrane domain (TMD) is shown only of the α1 and the β2 subunits in the back. Of the subunits in front, only a segment of the transmembrane domain 2 (TMD2) is depicted. The TMD2 of the γ2 subunit is only partly displayed to provide a "window" through which the ligand is seen. B, Top view of the pose showing the symmetric molecular interactions between ligand and receptor. PCCP[−] (space filling) forms H-bonds (blue dashed lines) to the –OH groups of the 6′ threonines (stick representation) of each of the five subunits. doi:10.1371/journal.pone.0106688.g012

It was of interest to test accessibility of the introduced cysteines to a cysteine reactive reagent. MTSET⁺ was chosen as it had a negligible effect on wild type receptors. It should be noted that a mutant-gated chloride channel (coinciding with the location of α1V256/γ2T260/α1T261, c) increase in the affinity for PCCP[−] after introduction of positive charges in the form of MTSEA[−] into M2 and d) prevention by PCCP[−] of the reaction of MTSEA[−] in different positions.

PCCP[−] is a rigid symmetric molecule with a diameter of approximately 10 Å that can engage in interactions with metals and form hydrogen bonds with its five peripheral nitrogen atoms. These bonds can extend along the CN-axis or at a slightly bent angle (Fig. 1B). We think that the most likely interpretation of our findings is that PCCP[−] blocks the receptor by plugging the pore at the level of α1V256C, γ2T260 and α1T261, adopting a position parallel to the lipid bilayer. Figure 12A,B depicts a molecular model of the binding site of PCCP[−]. The ligand is in a planar position between the highly conserved 6′ level threonines (α1T260) forming H-bonds with the hydroxy groups, and the variable 2′ level of α1V256 and the homologous β2A251 and γ2T267. These protein-ligand contacts are consistent with the observed affinity differences for different pentamers, as the shape complementarity and surface properties of the 2′ level will be unique for each homo- or hetero-pentameric receptor. The relatively slow rate of block could be due to the strong tendency of PCCP[−] to form H-bridges. It may be hypothesized that on the way down the channel lumen it interacts several times with the receptor.

It is interesting to compare the binding site for PCCP[−] to that of picrotoxin, a well-known open channel blocker. Considerably controversy exists if picrotoxin occludes the channel directly or whether it allosterically affects the channel (reviewed in [34] and references therein). Possibly the best evidence for channel occupancy comes from crystallization experiments. The crystal structure of the homo-pentameric Caenorhabditis elegans glutamate-gated chloride channel α (GluCl) shows that picrotoxin (9 Å diameter) directly occludes the pore near its cytosolic base at the 2′ Thr and -2′ Pro side chains [35]. In this position, the channel diameter in static condition of the crystal is 4.6 Å. These residues are homologous to P252 and V256 in the M2 of the α1 GABA_A receptor subunit. Thus, it appears that PCCP[−] and picrotoxin occupy sites in the lumen of the channel toward the intracellular side of the transmembrane domain that are shifted by one turn of the α-helix.

Pentameric protein assemblies are not confined to Cys-loop receptors but frequently occur elsewhere in Nature, for instance in mechanosensitive ion channels, such as MscL, or bacterial toxins, such as Shiga toxin B. Indeed, symmetry-adapted inhibitors for the latter have been developed that show extremely high avidity (picomolar) due to their polyvalency [36]. More recently, polyatomic blockers of voltage gated potassium channels based on a four-fold symmetric calixarenes [36] and a blocker of the heptameric Anthrax PA channel based on seven-fold symmetric β-cyclodextrin [37] have been introduced. This underscores that symmetry considerations hold considerable promise for the development of new pharmacophores. Given the prevalence of symmetric protein assemblies in Nature, it seems likely that many symmetry adapted agonists, antagonists and blockers will emerge in future years.

In conclusion, we have identified a new potent blocker of GABA_A receptors through rational design rather than a massive screening effort. Our work demonstrates that symmetry considerations can contribute to the pharmacology of Cys-loop receptors.
The application of other five-fold-symmetric molecular platforms including some shown in Fig. 1 to the development of high-affinity ligands for GABA\(_A\) receptors as well as other five-fold symmetric ion channels such as mechanosensitive channels is under active investigation and will be reported in due course.

Acknowledgments

We thank V. Niggli for careful reading of the manuscript and M.E. Steinmann and S.J. Middendorf for frog surgery. We are grateful for the generous gift of cDNA coding for subunits of the Drosophila GABA\(_A\) receptor that were obtained from Dr. D. Satelle, glycine receptor from Dr. B. Laube and Dr. H. Betz and ELIC from Dr. R. Dutzler.

Author Contributions

Conceived and designed the experiments: DT ES. Performed the experiments: VC MP RB. Analyzed the data: VC DT ES. Contributed reagents/materials/analysis tools: RP ME. Contributed to the writing of the manuscript: VC DT ES.

References

1. Hargiati I, Hargiati M (1994) Symmetry, a unifying concept. Random House.
2. Prasad BVV, Schmid MF (2012) Principles of virus structural organization, in Viral Molecular Machines, Advances in Experimental Medicine and Biology 726 Rossmann MG, Ravin RB (eds). Springer.
3. Macdonald RL, Olsen RW (1994) GABA\(_A\) receptor channels. Annu Rev Neurosci 17: 569–602.
4. Sieghart W (1995) Structure and pharmacology of gamma-aminobutyric acid A receptor subtypes. Pharmacol Rev 47: 181–234.
5. Sieghart W, Speck G (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2: 795–816.
6. Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABA\(_A\) receptors. J Biol Chem 287: 40224–31.
7. Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60: 243–60.
8. Chang Y, Wang R, Barot S, Weiss DS (1996) Stoichiometry of a recombinant GABA\(_A\) receptor. J Neurosci 16: 5413–5424.
9. Tretter V, Ehya N, Fuchs K, Sieghart W (1997) Stoichiometry and assembly of a recombinant GABA\(_A\) receptor subtype. J Neurosci 17: 2728–2737.
10. Baumann SW, Baur R, Sigel E (2006) Subunit arrangement of gamma-aminobutyric acid type A receptors. J Biol Chem 276: 36275–36280.
11. Baumann SW, Baur R, Sigel E (2002) Forced subunit assembly in GABA\(_A\) receptor subunits. Curr Top Med Chem 2: 795–816.
12. Baur R, Minier F, Sigel E (2006) A GABA\(_A\) receptor of defined subunit composition and positioning: concatenation of five subunits. FEBS Lett 580: 1614–1620.
13. Sigel E, Baur R, Trube G, Mohler H, Malherbe P (1990) The effect of subunit combination of rat brain GABA\(_A\) receptors on channel function. Neuron 5: 703–711.
14. Minier F, Sigel E (2004) Positioning of the \(\sigma\)-subunit isoforms confers a functional signature to \(\gamma\)-aminobutyric acid type A receptors. Proc Natl Acad Sci USA 101: 7769–7774.
15. Raymond-Delpech V, Matsuda K, Sattelle BM, Raul J, Sattelle DB (2005) Ion channels: molecular targets of neuroactive invertebrates. Invest Neurosci 5: 119–133.
16. Martos V, Bell SC, Santos E, Isacoff EY, Trauner D, et al. (2009) Calix[4]arene-based Conical-Shaped Ligands for Voltage Dependent Potassium Channels. Proc Natl Acad Sci USA 106: 10482–10486.
17. Mannen M, Choi S-K, Whitesides GM (1998) Polyvalent interactions in biological systems: Implications for design and use of ligands and inhibitors, Angew Chem Int Ed 37: 2754–2794.
18. Sigel E (1987) Properties of single sodium channels translated by Xenopus oocytes after injection with messenger ribonucleic acid. J Physiol 360: 73–90.
19. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–813.
20. Cole JC, Nissink JWM, Taylor R (2005) Protein-ligand docking and virtual screening with GOLD in Virtual Screening in Drug Discovery (Eds. Shoichet B, Alvarez J, Taylor & Francis CRC Press, Boca Raton, Florida, USA.)
21. Simmons HE, Vest RD, Vlahuchick SA, Webster OW (1980) Thiocyanocarbons. 5. Reactions of tetrayano-1,4-dithion and tetracyanophosphine with nucleophiles: Synthesis of tetracyanopyrrole and tetracyanocyclopentadiene salts. J Org Chem 45: 3113–3121.
22. Less RJ, McPartlin M, Rawson JM, Wood PT, Wright DS (2010) A simple approach to coordination compounds of the pentacyanocyclopentadiene anion. Chem Eur J 16: 13723–13728.
23. Golf EL, LaCount RB (1964) Condensation of dimethyl acetylenedicarboxylate with malononitrile, ethyl cyanoacetate and malonate esters. J Org Chem 29: 423–427.
24. Betz H, Laube B (2006) Glycine receptors: recent insights into their structural organization and functional diversity. J Neurochem 97: 1600–1610.
25. Hill RJ, Dutzler R (2000) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452: 375–379.
26. Woodhall AM (1973) Ionic blockage of sodium channels in nerve. J Gen Physiol 61: 687–708.
27. Riech-Chastan RT, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a drosophila GABA receptor confers insecticide resistance. Nature 363: 449–451.
28. Riech-Chastan RT, Steichen JC, Rocheleau TA, Aroenstein K, Roush RT (1993) A single-amino acid substitution in \(\gamma\)-aminobutyric acid subtype A receptor locus is associated with cyclodine insecticide resistance in Drosophila populations. Proc Natl Acad Sci USA 90: 1957–1961.
29. Xu M, Akabas MH (1996) Identification of channel-lining residues in the M2 membrane-spanning segment of the GABA\(_A\) receptor alpha1 subunit. J Gen Physiol 107: 195–203.
30. Perret P, Sarda X, Wolf M, Wu TT, Bushey D, et al. (1999) Interaction of non-competitive blockers within the gamma-aminobutyric acid type A chloride channel using chemically reactive probes as chemical sensor for cystine mutants. J Biol Chem 274: 23350–23354.
31. Unwin N (1989) The structure of ion channels in membranes of excitable cells. Neuron 3: 665–676.
32. Xu M, Covey DF, Akabas MH (1996) Interaction of picrotoxin with GABA\(_A\) receptor channel-lining residues probed in cysteine mutants. Biophys J. 69: 1858–1867.
33. Chisari M, Wu K, Zorumski CF, Mennerick S (2011) Hydrophobic anions potently and noncompetitively antagonize GABA(A) receptor function in the absence of a conventional binding site. Br J Pharmacol 164: 667–680.
34. Korshoej AR, Holm MM, Jensen K, Lambert JDC (2010) Kinetic analysis of kinetic analysis of oxonotoxin and picrotoxin on GABA(A) receptor function. Br J Pharmacol. 161: 1616–1620.
35. Less RJ, McPartlin M, Rawson JM, Wood PT, Wright DS (2010) A simple approach to coordination compounds of the pentacyanocyclopentadiene anion. Chem Eur J 16: 13723–13728.
36. Chisari M, Wu K, Zorumski CF, Mennerick S (2011) Hydrophobic anions potently and noncompetitively antagonize GABA(A) receptor function in the absence of a conventional binding site. Br J Pharmacol 164: 667–680.