Study on the Risk Early Warning Index System of Typical Chemical Production Process Based on Three Dimensional Factors

Che hui1, Ma xinyue1, Lu xiaoyu1

1 School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China
1Corresponding author’s e-mail: 1289266932@qq.com

Abstract. Prevention and control in advance embodies the essence of risk management, and risk early warning index system is the key link of implementing risk early warning. In order to construct risk early warning index system of typical chemical production process, the risk identification, analysis and early warning theory are closely combined in this paper, the accident risk factors are extended to three aspects, as possibility, severity and sensitivity. Based on the common accidents of typical chemical production process, the risk factors of the production process are comprehensively analysed and the risk early warning index system is put forward based on three dimensional factors. Through the index screening methods for interval estimation, the primary warning indicators are screened. Finally, the risk early warning index system of typical chemical production process is determined.

1. Introduction
The inherent risk of typical chemical processes determines its high risk characteristics. The production process is the highest accident rate and the most serious phase of accidents in chemical enterprises. According to incomplete statistics, the number of accidents and death toll in chemical production process is 81% and 83% respectively. Research on the construction of the existing risk early warning index system is mainly based on "human - machine - material - environment -management", or is set directly according to relevant standards and operating norms. The method is simple and subjective is strong. Based on this, the author takes the possibility, the severity and the sensitivity as the premise, and based on the risk factor identification and analysis, constructs the risk early warning index system based on the three dimensional factor.

2. Factors of three dimensional risk
Three dimensional risk factors refer to the possibility, severity and sensitivity of the accident, and use it as a risk evaluation index to establish a three-dimensional risk model, which is used to study the risk classification of major hazard sources and use $R = f(P, L, S)$ to represent the risk where P indicates possibility, L indicates severity, S means sensitivity). The research on the risk early warning of typical chemical production process is based on the related research of typical chemical production risk. The possibility, severity and sensitivity of accidents are taken as construct the basic elements of early warning indicators, and combines the characteristics of typical chemical process to divide the three dimensional risk factors.
3. typical chemical production process risk analysis
The Interpretative Structural Modelling Method (ISM) is to decompose the complex system into several subsystems or elements, use multi-element, multi-level hierarchical structure to express the relationship between the various factors of the complex system, and to solve the related problems of the complex social and economic system. The ISM risk analysis of the typical chemical production process is as follows:

3.1. Determine the set of key factors of the accident
On the basis of three-dimensional risk factors, possibility, severity, and sensitivity are used as the main risk modules, and $S=(S_1, S_2, \ldots, S_{21})$ 21 main factors affecting the safe operation of typical chemical production systems are summarized, and see Table 1.

Number	Risk factor description	Number	Risk factor description
S1	Inherent hazard of unit	S2	Dangerous substance accident susceptibility
S3	Accident susceptibility to process	S4	Site operator risk
S5	Safety technician risk	S6	Management decision makers risk
S7	Equipment status factors	S8	Natural environmental factors
S9	Process conditions and operating environment	S10	Hazard risk
S11	Human vulnerability	S12	Property vulnerability
S13	Environmental vulnerability	S14	Evolution of accident dynamics
S15	Security management offsetting Factor	S16	Hazardous substance isolation measures
S17	Fire security measures	S18	Time characteristic factor
S19	Spatial characteristic factor	S20	System sensitivity factors
S21	Personnel sensitivity factors		

3.2. Establish an adjacency matrix and calculate the reachable matrix
According to the overall structure of the accident risk and the correlation relationship among the factors, the adjacent matrix of the related risk factors is established, which is expressed by $A=[a_{ij}]_{n \times n}$ (where n is the number of major risk factors, a_{ij} denotes the relationship between element S_i and element S_j). The rule is: If S_i has an effect on S_j, then $a_{ij}=1$, if S_i has no effect on S_j, then a_{ij} is 0. Based on this, the influence relationship between various factors is judged.

We use Boolean algebra rules to carry out the power operation of the adjacency matrix A until we satisfy the formula (1). Then we call the matrix $M=[b_{ij}]_{n \times n}$ in the formula (2) the adjacency matrix A corresponding reachable matrix.

$$
(A+I)^k = (A+I)^{k+1}, k \leq n - 1
$$

$$
M = (A+I)^k
$$

Among them, for I unit matrix, K is the number of operations, and N is the number of main risk factors. According to the adjacency matrix A, we call the related program of matrix operation in Matlab, and calculate the $k=5$, that is, the reachable matrix $M=(A+I)^5$.
3.3. decomposition of reachable matrix and hierarchical partition
The hierarchical relationship among the elements is analyzed to represent the degree of association among the factors. According to the formula (3) and (4), the hierarchical extraction of the reachable matrix M is carried out.

$$A(S_i) = R(S_i) \cap Q(S_i)$$ \hspace{1cm} (3)

$$R(S_i) \cap A(S_i) = R(S_i)$$ \hspace{1cm} (4)

The reachable set $R(S_i)$ represents that the element corresponding to the element S_i in the reachable matrix corresponds to the set of column elements corresponding to 1, and antecedent set $Q(S_i)$ represents the set of row elements corresponding to the elements S_i containing 1 in the column corresponding to the elements of the reachable matrix. The common set $A(S_i)$ is the intersection of reachable set and antecedent set $i=1,2,... N$. When the common set and the reachable set are exactly the same, all the elements S_i that satisfy the condition are extracted, and the rows and columns of the extracted elements are deleted, and continue to extract the above elements and the feature set of all hierarchy are obtained successively. For the reachable matrix M, the basic element sets of five levels are obtained by multiple extraction, which are $L_1 = \{S_1, S_2, S_3, S_{10}, S_{14}\}$, $L_2 = \{S_{11}, S_{17}, S_{18}, S_{19}\}$, $L_3 = \{S_4\}$, $L_4 = \{S_5, S_6, S_7, S_{11}, S_{16}, S_{20}, S_{21}\}$, $L_5 = \{S_{15}, S_9, S_{12}\}$.

4. Construction of risk early warning index system based on three dimensional factors
The construction of risk early warning index system is guided by the principles of scientificity, systematization, hierarchy, feasibility and accuracy. It combines the risk identification, analysis and early warning theory to identify the hazard factors and the accident hidden dangers in the typical chemical production process, and select the possibility factor, the severity factor and the sensitive factor as the criteria layer of the index system. In order to realize the coverage of the hidden danger of the accident to chemical production process, the redundancy of the indicators are fully considered, the construction includes 13 first level early warning indicators, 63 level two early warning indicators, for details see Table 2.
Table 2 calculation result of the judgment matrix of the second level index

Judgement matrix	i_{max}	CI	CR	Whether meet the consistency requirements	The eigenvector corresponding to the maximum eigenvalue
P1	4.1471	0.0490	0.0551	Yes (0.4661, 0.3302, 0.0724, 0.1513)T	
P2	5.3175	0.0794	0.0710	Yes (0.0594, 0.0675, 0.2309, 0.5255, 0.1166)T	
P3	12.9692	0.4961	0.3422	No -	
P4	9.8164	0.2271	0.1611	No -	
P5	4.1502	0.0501	0.0563	Yes (0.0589, 0.5554, 0.2661, 0.1195)T	
L1	4.3034	0.1011	0.1136	No -	
L2	11.3680	0.296	0.2041	No -	
L3	4.1076	0.0359	0.0403	Yes (0.3132, 0.4633, 0.0714, 0.1522)T	
L4	7.6172	0.3234	0.2888	No -	
S1	2	0	0	Yes (0.1999, 0.8001)T	
S2	2	0	0	Yes (0.7501, 0.2499)T	
S3	3.0735	0.0367	0.0707	Yes (0.6144, 0.2684, 0.1172)T	
S4	3.0536	0.0268	0.0515	Yes (0.3446, 0.5469, 0.1085)T	

The calculation results of Table 2 show that the judgment matrices of P1, P2, P5, L3, S1, S2, S3 and S4 meet the consistency requirements, and the relative weights of each index ω_j are more than 0.05, and all of them have a certain contribution in the index system, and this part of the index is the optimum indicator. The second level judgement matrix of P3, P4, L1, L2 and L4 does not meet the requirement of consistency. The result is shown in Table 3.

Table 3 Interval estimation value of weight vector of second level indicator

The second level Indicator	the lower limit of the index weight ω^L_j	the upper limit of the index weight ω^U_j	Δ_j	The index weight of EM
P11	0.01229506	0.01229507	0.000000001	0.0122
P12	0.01084823	0.01084824	0.000000001	0.0108
P33	0.058894426	0.058894427	0.000000001	0.0589
P34	0.08350342	0.08350350	0.000000008	0.0835
P35	0.02352953	0.02352954	0.000000001	0.0235
P36	0.335611245	0.335611302	0.000000057	0.3356
P37	0.2371566897	0.2371566898	0.000000001	0.2372
P38	0.12930827	0.12930889	0.00000062	0.1293
P39	0.10885335	0.10885340	0.00000005	0.1089
P41	0.28733946	0.28736247	0.00002301	0.2874
P42	0.05773218	0.05773262	0.00000044	0.0578
P43	0.01961609	0.01962734	0.00001125	0.0196
P44	0.19946115	0.19949053	0.00002938	0.1995
5. Conclusion
The fluctuation and change of the risk early warning index value can depict the risk state of the production process, and it is a more complicated work to carry out the research on the risk early warning of the typical chemical production process. Risk early warning control is mainly from reducing the possibility of accident risk, controlling the seriousness of the accident consequences and improving the sensitivity of the system accident risk and so on.

References
[1] Wu Zongzhi er al. Statistical analysis of hazardous chemicals accidents occurring in China during 2006-2010[J]. Journal of Safety Science and Technology, 2011,7(07):5-9.
[2] Zhao Jingling et al. Research on three dimensional risk ranking model of tanks major hazards[J]. China Safety Science Journal, 2015,25(02):135-140.
[3] Wang Shengjiang. Study on the investigation and governance method of aviation fuel
[4] Dong Shu Jiao. Research on safety control model of typical chemical process[D]. Northeastern Univesity,2013.
[5] Wang Zhirong, Jiang Juncheng, Wang Sanming. Simulating analysis system about disastrous accidents of typical chemical process[J]. Natural Gas Industry, 2004,(05):123-126+142-158.
[6] Sun Huashan. Safe Production Risk Management[M].Beijing:Chemical Industry Press,2006,13-155.