タンパク質は、アミノ酸がアミド結合を介して連結し1本の鎖となって折り畳まれた構造を取り、その折り畳まれた構造が、酵素活性などの生体内の生命活動にとって重要な機能に深く関わっている。特に、折り畳まれたタンパク質が、ある特定の動き（構造変化）をすることで、栄養素を分解したり、筋肉を動かしたりといった様々な機能を果たしている。しかし、実際のタンパク質が、高速に動きながら機能している姿を動画的に、しかも水中で室温といいたい生体内の環境と極めて近い状態で観測することは困難であった。本稿では、ポンプ-プローブX線溶液散乱法から得られたデータを用いて、溶液中のタンパク質が光の刺激によって協同的に構造を変えていく様子を直接観測した、著者らによる最近の研究例を紹介する。

2. ガス分子の解離をトリガーとしたヘモグロビンの構造変化

本研究の対象となったタンパク質は、二枚貝がもつヘモグロビンで、血液中で酸素運搬の機能を担っている。二枚貝のヘモグロビンは、血液中にある四量体のヘモグロビンとは少し異なり、二つのサブユニットが水素結合を介して弱く結合した二量体構造をとっている。二つのユニットにはそれぞれ、鉄-ポルフィリン錯体（ヘム）が収まており、その鉄に酸素や一酸化炭素などのガス分子が可逆的に結合し運搬される［1-3］。二量体ヘモグロビンの二つのユニットに結合したガス分子がタンパク質から解離すると、その協同的効果によって、これらのユニットが相対的にねじれる運動により形が変化する様子が、100億分の1秒程度のX線動画として直接観測された。この手法は、生体環境に極めて近い室温の水溶液中で、様々なタンパク質が実際に働く自然な姿を動画として捉えることを可能とする画期的な手法であり、生命活動にとって重要なタンパク質の分子機能を解析するための新技術として大いに期待される。

Abstract

血液中で酸素分子を運搬するタンパク質であるヘモグロビン分子に短時間のレーザー光を照射し、照射後に進行するタンパク質の分子構造変化を、ポンプ-プローブX線溶液散乱法によって追跡した。レーザー照射による一酸化炭素分子の光解離をトリガーとして、ヘモグロビン分子が100億分の1秒（100ピコ秒）から100分の1秒（10ミリ秒）程度の時間内に徐々に構造変化し、二つのユニット間の距離が短くなるとともに、これらのユニットが相対的にねじれる運動により形が変化する様子が、100億分の1秒程度のX線動画として直接観測された。この手法は、生体環境に極めて近い室温の水溶液中で、様々なタンパク質が実際に働く自然な姿を動画として捉えることを可能とする画期的な手法であり、生命活動にとって重要なタンパク質の分子機能を解析するための新技術として大いに期待される。
3. PF-AR NW14Aにおけるピコ秒 Pump-Probe X線溶液散乱実験

この実験では、一酸化炭素分子が結合した二量体ヘモグロビンを含む溶液にレーザー光とX線を僅かな時間差をつけて繰り返し照したX線散乱データを測定することにより、最終的にタンパク質の構造変化の情報を取ることが可能である（Fig. 1）。NW14Aは周期長が異なる2つのアンジュレータ-が設置されているが、測定に十分なX線強度を保つために2つのアンジュレータ-のギャップを閉じることで15.7 keV（0.9 Å）の高強度X線を作り出し、なおかつ、溶液散乱曲線の高分解能な測定が可能となるように、X線多層膜ミラーを用いることでエネルギースペクトルが5%エネルギー幅の対称構造を持つようにした。この際、1パルスあたりのX線フォトン数は3 × 10^8 photons/pulseである。PF-ARリングから発せられる100ピコ秒パルスX線の周波数は794 kHzであるが、ヘモグロビンにおける光励起状態が基底状態へ緩和する時間を考慮し、かつレーザーの周波数に合わせたポンプ-プローブ測定を行うため、X線はチョッパーと高速シャッターによって10 Hzに間引かれてサンプルに入射する。ヘモグロビンの励起には、光パラレル増幅器で532 nmに波長変換した光を用いるが、ピコ秒〜ナノ秒、およびナノ秒〜ミリ秒の時間スケールの変化を追跡する際は、それぞれNW14Aに設置されているTi:Sapphireフェムト秒レーザー、およびNd:YAGナノ秒レーザーを用いて時間分解測定を行っている。フェムト秒レーザーを用いる時はその高い応答速度によりサンプルへのダメージを考慮し、光励起後のX線散乱強度を測定するため、レーザー光とX線は、ほぼ同軸からサンプルに入射し、サンプル表面においてマイクロマトレットの位置精度で両者が重なるように調節される。X線散乱イメージは165 mm径を持つ二次元CCD検出器（MarCCD 165, MarUSA）を用いて測定され、Heパスを用いることでバックグラウンドとなる空気散乱を抑え、カメラ長を300 mmにするとq値が0.15〜2 Å^-1の散乱イメージを取り得るため、ヘモグロビンの光反応における構造変化をd = 0.1 Å程度の分解能で捉えることが可能となる[8]。

4. ねじれ運動によるガス分子の放出

本研究では、常温で試料にレーザー光を照射し、二量体ヘモグロビン分子内のヘムと一酸化炭素の結合を切断して、瞬間的に一酸化炭素がタンパク質から解離した状態を作り出した。そして、この過渡的な状態から始まるタンパク質の構造変化を、時間分解X線溶液散乱法を用いて、レーザー光とX線の時間を系統的にずらしながら逐次観測した。Fig. 2における、エラーバー付きのプロットで示した各時間における差分スペクトルは、光励起前のリファレンス溶液散乱曲線との差分を取ったものであり、赤線は解析によって得られたフィット結果である。各時間点における“ヘモグロビンの構造”と“ヘモグロビンと溶媒との相互作用”を分子動力学シミュレーション、および量子化学計算によって見積もり、そこで得られた値を元にグローバル・フィッティングによる構造解析を行う。反応進行度の時間変化を特異値分解法により詳しく解析すると、光励起後100ピコ秒〜10ミリ秒の時間スケールにおける励起状態において3つの独立な中間状態(I1, I2, I3)が存在し、それぞれの比率が刻々と変化している様子が、さらには一つのユニットから一酸化炭素が光解離した状態と、両方のユニットから解離した状態が存在し、それらの状態は同じ構造変化を引き起こすことが明らかになった。Fig. 3は中間状態の構造における2つのユニットの距離（それぞれのヘム間の距離）、相対的な角度、および、構造変化によってユニット間界面において出し入れされる水分子（残込）の数を示したものである。波長322 nmのパルスレーザー照射による一酸化炭素の光解離をトリガーとして、R型に類似した解離状態であるI1中間状態が光励起後100ピコ秒以内に生成され、その後R型に類似した別の解離状態I2中間状態へと3.2 ± 0.2ナノ秒の時定数を持って変形する。続いて、I1中間状態からI2中間状態へと532 ± 120ナノ秒の時間変化が観測される。以上の結果から、ヘムと結合した一酸化炭素の解離に伴い、ヘモグロビンの開口が起こる。
最近の研究から

後者では 5.6 ± 0.8 マイクロ秒となることが明らかとなっ
た。その後、一酸化炭素が再結合し系は基底状態へと戻る。
このようにして、一酸化炭素の光解離をトリガーとしてヘ
モグロビン分子が 100 億分の 1 秒 (100 ピコ秒) から 100
分の 1 秒 (10 ミリ秒) 程度の時間内に徐々に構造変化し、
二つのユニット間の距離が短くなるとともに、二つのユニ
ットがねじれ運動で形を変化する様子が、100 億分の 1 秒
精度の X 線動画として直接観測されたわけである [9]。

5. おわりに

本研究で用いた時間分解X線構造解析法により、タンパ
ク質の静止した構造だけでなく、その機能に深く関連して
時々刻々と構造が変化する様子を、二枚貝のヘモグロビン
を一例として直接的に動画化できることを証明された。

本記事では割愛させて頂いたが、本研究の原著論文 [9]
においては、アロステリック転移に重要なアミノ酸残基1
か所を変異させたタンパク質における構造変化の伝播の遅
いや、各ユニットにおける光解離比率のレーザーエネルギー
密度依存性による中間状態構造の評価等、ヘモグロビン
の動的構造変化について更に詳細な解析が行われており、
構造変化と機能発現機構について理解が大きく深まるもの
となっている。

この技術は、他の多くの機能性タンパク質分子にも原理的に適用可能なものであり、機能解析のための分子動作作
成技術の可能性が見出される。「タンパク質構造全体が協調的に変化して、その機能を発揮する」という生体物
質の本質に対して、そのベールを解き放つ鍵としての新技
術がまさに我々の手元に届きつつある。この技術がさら
に発展すれば、新薬を設計する上で重要な指針・情報を与え
ることが期待される。

本成果は、JST さきがけ研究領域「光エネルギーと物質
変換」研究課題名：「時間分解X線構造解析法による光エ
ネルギー変換機構の分子動作観測」研究者：足立伸一（高
エネルギー加速器研究機構物質構造科学研究所教授）、JST
戦略的創造研究推進事業（CREST）研究領域「先端光源
を駆使した光科学・光技術の融合展開」研究課題名：「光

Figure 2 Picosecond pump–probe X-ray solution scattering for wild-type HbI(CO)2. Time-resolved difference X-ray
solution scattering curves, ΔS(q,t), measured for solution samples of wild-type HbI are shown. The time delay after
photoexcitation is indicated above each curve. For clarity, only data at selected time delays are shown. Experimental
curves (black) are compared with theoretical curves (red) that were generated from linear combinations of three time-
independent species-associated scattering curves extracted from the kinetic analysis.

Figure 3 Structural dynamics of HbI extracted from the species-associated scattering curves using structure refinement. The green and blue arrows
are used to indicate the relative magnitudes and directions of the changes in the heme–heme distance and subunit rotation angle relative
to HbI(CO)2. The structural transitions induce a change in the number of interfacial water molecules (shown in red), well-organized at the
interface of the two subunits.
技術が先導する臨界的非平衡物質科学」研究代表者：腰原伸也（東京工業大学大学院理工学研究科教授）によって得られたものである。

（原稿受付日：2012年7月4日）

引用文献
[1] M. F. Perutz, Nature, 228, 726 (1970).
[2] W. A. Eaton et al., Nat. Struct. Biol., 6, 351 (1999).
[3] S. Adachi et al., Proc. Natl. Acad. Sci., 100, 7039 (2003).
[4] E. Chiancone et al., J. Mol. Biol., 152, 577 (1981).
[5] E. Antonini et al., J. Biol. Chem., 259, 6730 (1984).
[6] A. Mozzarelli et al., J. Biol. Chem., 271, 3627 (1996).
[7] S. Nozawa et al., J. Synchrotron. Rad., 14, 313 (2007).
[8] K. Ichiyanagi et al., J. Synchrotron. Rad., 16, 391 (2009).
[9] K. H. Kim et al., J. Am. Chem. Soc., 134, 7001 (2012).

著者紹介
Kyung Hwan Kim
Center for Time-Resolved Diffraction, Department of Chemistry,
Graduate School of Nanoscience & Technology (WCU), KAIST,
Ph. D student
Daejeon, 305-701, Republic of Korea