Engineered Biosynthesis of Regioselectively Modified Aromatic Polyketides Using Bimodular Polyketide Synthases

Yi Tang1, Taek Soon Lee2, Chaitan Khosla1,2,3*

1 Department of Chemical Engineering, Stanford University, Stanford, California, United States of America, 2 Department of Chemistry, Stanford University, Stanford, California, United States of America, 3 Department of Biochemistry, Stanford University, Stanford, California, United States of America

Bacterial aromatic polyketides such as tetracycline and doxorubicin are a medicinally important class of natural products produced as secondary metabolites by actinomycetes bacteria. Their backbones are derived from malonyl-CoA units by polyketide synthases (PKSs). The nascent polyketide chain is synthesized by the minimal PKS, a module consisting of four dissociated enzymes. Although the biosynthesis of most aromatic polyketide backbones is initiated through decarboxylation of a malonyl building block (which results in an acetate group), some polyketides, such as the estrogen receptor antagonist R1128, are derived from nonacetate primers. Understanding the mechanism of nonacetate priming can lead to biosynthesis of novel polyketides that have improved pharmacological properties. Recent biochemical analysis has shown that nonacetate priming is the result of stepwise activity of two dissociated PKS modules with orthogonal molecular recognition features. In these PKSs, an initiation module that synthesizes a starter unit is present in addition to the minimal PKS module. Here we describe a general method for the engineered biosynthesis of regioselectively modified aromatic polyketides. When coexpressed with the R1128 initiation module, the actinorhodin minimal PKS produced novel hexaketides with propionyl and isobutyryl primer units. Analogous octaketides could be synthesized by combining the tetracenomycin minimal PKS with the R1128 initiation module. Tailoring enzymes such as ketoreductases and cyclases were able to process the unnatural polyketides efficiently. Based upon these findings, hybrid PKSs were engineered to synthesize new anthraquinone antibiotics with predictable functional group modifications. Our results demonstrate that (i) bimodular aromatic PKSs present a general mechanism for priming aromatic polyketide backbones with nonacetate precursors; (ii) the minimal PKS controls polyketide chain length by counting the number of atoms incorporated into the backbone rather than the number of elongation cycles; and (iii) in contrast, auxiliary PKS enzymes such as ketoreductases, aromatases, and cyclases recognize specific functional groups in the backbone rather than overall chain length. Among the anthraquinones engineered in this study were compounds with (i) more superior activity than R1128 against the breast cancer cell line MCF-7 and (ii) inhibitory activity against glucose-6-phosphate translocase, an attractive target for the treatment of Type II diabetes.

Introduction

Polyketides are a large class of structurally and pharmacologically diverse molecules, including many antibiotics and antitumor drugs (O’Hagan 1991). They are produced as secondary metabolites primarily by bacteria and fungi (Hopwood 1997). Analogous to fatty acid synthases (FASs), polyketide synthases (PKSs) catalyze the biosynthesis of polyketides through repetitive C–C bond-forming reactions between selected acyl-CoA-derived building blocks (Cane et al. 1998). However, in contrast to fatty acid biosynthesis, the carbon chain backbones of polyketides exhibit greater variety with respect to the choice of acyl-CoA building blocks and the degree of reduction of β-ketone functional groups that result after each round of chain elongation.

In complex polyketides, such as the macrolide erythromycin, biosynthetic variability arises from independent control of each round of chain elongation by one module of enzymes within a multimodular PKS (Cane et al. 1998). (The term module used in this report refers to a collection of dissociated enzymes. The elongation module consists of enzymes involved in chain extension steps of polyketide biosynthesis, while the initiation module consists of enzymes involved in the nonacetate priming of certain aromatic PKSs.) However, the polyketide backbones of most bacterial aromatic polyketides (Figure 1) are synthesized by a single dissociated enzymatic module comprised of a heterodimeric ketosynthase–chain length factor (KS-CLF) complex that catalyzes chain initiation and iterative elongation, an acyl-carrier protein (ACP) that shuttles malonyl extender units to the active site of KS-CLF as malonyl-S-ACP intermediates, and a malonyl-CoA:ACP acyl

Received September 30, 2003; Accepted November 25, 2003; Published February 17, 2004

Copyright: © 2004 Tang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abbreviations: AcDH, acyl-CoA dehydrogenase; ACN, acetonitrile; ACP, acyl carrier protein; act, actinorhodin; ARO, aromatase; AT, acyl transferase; CLF, chain length factor; CYC, cyclase; DMAC, 3,8-dihydroxy-methylanthraquinone carboxylic acid; EA, ethyl acetate; FAS, fatty acid synthase; G6Pase, glucose-6-phosphatase; KR, ketoreductase; KS, ketosynthase; LC, liquid chromatography; MAT, malonyl-CoA:ACP acyl transferase; MS, mass spectrometry; NMR, nuclear magnetic resonance; PKS, polyketide synthase; tcm, tetracenomycin; TMAC, 3,6,8-trihydroxy-1-methylanthraquinone-2-carboxylic acid

*To whom correspondence should be addressed. E-mail: ck@chemeng.stanford.edu

PLoS Biology | http://biology.plosjournals.org February 2004 | Volume 2 | Issue 2 | Page 0227
transferase (MAT), which catalyzes acyl transfer between malonyl-CoA and the ACP and is shared between the PKS and the housekeeping FAS(s) (Revill et al. 1995; Khosla et al. 1999).

For example, the minimal PKS from the actinorhodin (act) biosynthetic pathway synthesizes an octaketide \((\text{C}_8)\) backbone from eight malonyl-CoA equivalents, whereas the tetracenomycin \((\text{tcm})\) minimal PKS synthesizes a decaketide \((\text{C}_{10})\) backbone from ten equivalents of malonyl-CoA. Actinorhodin and tetracenomycin are primed by nonacetate units as shown. Notably, R1128 family of compounds \((a-d)\) are primed with different alkyl units. Oxytetracycline, frenolicin, R1128, and daunorubicin are synthesized by the \(\text{ote}, \text{fro}\), R1128, and \(\text{dvr}\) PKSs, respectively. Actinorhodin and tetracenomycin represent much-studied models of aromatic polyketide biosynthesis. Oxytetracycline is a commonly prescribed antibiotic. Frenolicin is a potent antiparasitic agent. R1128 is an estrogen receptor antagonist that shows minimal agonist activity. Doxorubicin is a widely used anticancer drug in treating late-stage tumors.

DOI: 10.1371/journal.pbio.0020031.g001

Results

Using the host/vector system first described by McDaniel et al. (1993a), several combinations of initiation modules, minimal PKSs, and auxiliary PKS subunits were coexpressed and analyzed. *Streptomyces coelicolor* CH999, which contains a chromosomal deletion of the entire act gene cluster, was used as the host strain, whereas the shuttle vector pRM5 was used as an expression plasmid. The polyketide product profiles of the recombinant strains are summarized in Table 1.

Recombination of an Initiation Module and a Heterologous Minimal PKS

Guided by our recent observation that the KS–ACP pairs of initiation and elongation PKS modules have orthogonal molecular recognition features, we first attempted to coexpress the R1128 initiation module with the act minimal PKS. The \(\text{zhuC}\) (AT), \(\text{zhuH}\) (KS), and \(\text{zhuG}\) (ACP) genes from the R1128 gene cluster were coexpressed with the genes encoding the act KS-CLF, ZhuN (ACP), and the act KR (on plasmid pYT46). Control plasmids pYT45, lacking the R1128 initiation module, and pYT45, lacking \(\text{zhuN}\), were also constructed and characterized. All three plasmids were introduced into *S. coelicolor* CH999 by transformation, and polyketides products were analyzed by liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance (NMR) spectroscopy.

S. coelicolor CH999/pYT44 produced mutacin (and its dehydrated derivative, dehydromutacin), the expected product of the act minimal PKS in the presence of act KR (McDaniel et al. 1994a), whereas CH999/pYT45 did not produce any polyketide, consistent with the requirement for separate ACPs to support turnover of the initiation and

Figure 1. Examples of Aromatic Polyketides

Actinorhodin \((S. coelicolor)\) and tetracenomycin \((S. glaucescens)\) are primed by acetate groups through decarboxylation of malonyl-CoA. Actinorhodin and tetracenomycin are synthesized by the act and tcm PKSs, respectively. Oxytetracycline \((S. roseofulvus)\), R1128 \((S. rimosus)\), and doxorubicin \((S. peucetius)\) are primed by nonacetate units as shown. Notably, R1128 family of compounds \((a-d)\) are primed with different alkyl units. Oxytetracycline, frenolicin, R1128, and daunorubicin are synthesized by the \(\text{ote}, \text{fro}\), R1128, and \(\text{dvr}\) PKSs, respectively. Actinorhodin and tetracenomycin represent much-studied models of aromatic polyketide biosynthesis. Oxytetracycline is a commonly prescribed antibiotic. Frenolicin is a potent antiparasitic agent. R1128 is an estrogen receptor antagonist that shows minimal agonist activity. Doxorubicin is a widely used anticancer drug in treating late-stage tumors.

DOI: 10.1371/journal.pbio.0020031.g001

Engineered Biosynthesis of Polyketides

PLoS Biology | http://biology.plosjournals.org February 2004 | Volume 2 | Issue 2 | Page 0228
Elongation modules in a bimodular aromatic PKS (Figure 4A) (Tang et al. 2003). Remarkably, CH999/pYT46 produced two new polyketide products in addition to mutactin; these new polyketides were isolated with a combined yield of 40 mg/l, representing 70% of total polyketides produced by this host. The two compounds had molecular masses of 278 and 292. (The 14 mass unit difference is suggestive of one methylene unit difference between the two compounds.) Isotopic labeling studies indicated that the compounds were derived from six acetate equivalents. NMR analyses (Table 2) revealed that the two compounds, YT46 (1) and YT46b (2), had structures shown in Figure 4. YT46 and YT46b are identical, with the exception of a branched methyl group in YT46b. Each compound contains an α-pyrone moiety, which is commonly observed in aberrantly cyclized aromatic polyketides (Yu et al. 1998). The C-9 carbonyl groups were selectively reduced by the act KR. Supplementing the growth medium with 13C-labeled sodium propionate revealed that the alkyl moiety of 1 was derived from propionyl-CoA. Similarly, supplementing the growth medium with 1 g/l of L-valine resulted in a 2-fold increase in the level of 2, suggesting the branched alkyl group observed in 2 was derived from isobutyryl-CoA, a primary catabolite of L-valine (Zhang et al. 1999). These findings are consistent with in vitro characterization of the substrate specificity of ZhuH (Meadows and Khosla 2001). Among substrates tested, ZhuH had an 11-fold higher specificity for both propionyl-CoA and isobutyryl-CoA over the next best substrate, acetyl-CoA (Meadows and Khosla 2001). YT46 analogs generated by incorporation of isovaleryl and butyryl primer units were also detectable by LC/MS, although these compounds were present at lower levels. Dehydrated analogs of 1 and 2 were also observed in CH999/pYT46. (Purified 1 and 2 slowly dehydrate at room temperature.)

The biosynthesis of 1 and 2 by a recombinant bimodular PKS consisting of the act minimal PKS and the R1128 initiation module supported our hypothesis that nonace-
tate-primed polyketides could be biosynthesized by combinatorial expression of heterologous initiation and elongation PKS modules from bacterial aromatic PKSs. Indeed, the act KS-CLF, which is normally primed exclusively by acetate (generated via decarboxylation of a malonyl unit), has a remarkably strong preference for the diketide product of the R1128 initiation module. However, unexpectedly, the incorporation of a longer chain substrate into the catalytic cycle of the act minimal PKS results in a reduced number of malonyl units utilized during iterative chain extension (Figure 4B). Compound 1 is a hexaketide whose backbone consists of 15 C atoms. Thus, upon introduction of an initiation PKS module into the overall catalytic cycle, the octaketide synthase retains its carbon chain length specificity, rather than executing the normal number of extension cycles. In contrast, the act KR retains its selectivity for the C-9 carbonyl in the nascent polyketide backbone, notwithstanding structural differences between a hexaketide and an octaketide.

In Vivo Reconstitution of R1128 Biosynthesis Using a Heterologous Bimodular PKS

To validate the generality of the above observations, we sought to reconstitute the biosynthesis of R1128 family of compounds in *S. coelicolor* using a heterologous combination of initiation and elongation PKS modules (Figure 5). It follows from the above analysis that to synthesize an alkyll primed anthraquinone such as 3 and 4, the following catalytic components are needed: (i) an initiation module; (ii) a decaketide minimal PKS that can extend the five to six carbon products of the initiation module by seven more extender units to yield a 19–20 carbon polyketide; and (iii) appropriate ARO and CYC subunits.

The R1128 family of antibiotics represents a unique set of anthraquinones that contain an unreduced C-9 carbonyl (present as an enolic C-9 hydroxyl in R1128). Since members of the act ARO/CYC family are unable to cyclize an unreduced octaketide (McDaniel et al. 1994b) and since enzymes from the *tcm* ARO/CYC family have alternative regiospecificity of cyclization (McDaniel et al. 1995), AROs and CYCs were sought from the R1128 biosynthetic pathway. ZhuI and ZhuJ are two putative enzymes present in the R1128 PKS (Marti et al. 2000). ZhuI, which is homologous to the act ARO/CYC, was predicted to be a first ring CYC, while ZhuJ was predicted to be a second ring CYC. To test these hypotheses, plasmids pYT105 and pYT92 (see Table 1) were constructed, coexpressing ZhuI and ZhuJ with the act minimal PKS and the *tcm* minimal PKS, respectively. Analysis of compounds produced by CH999/pYT92 revealed the decaketides SEK15 and SEK15b as the major products, suggesting ZhuI and ZhuJ did not recognize an unreduced decaketide. However, the anthraquinone compound (Bartel et al. 1990), 3,6,8-trihydroxy-1-methanthraquinone-2-carboxylic acid (TMAC) (7; also known as laccatic acid D, a well known plant-derived pigment) (Figure 5A; Table 2; atoms are numbered according

Table 1. Plasmids Constructions and Resulting Polyketide Products

Plasmid	R1128 LM^a	Minimal PKS^b	KR (act^{III})	ARO, CYC	Polyketide Products
pYT44	−	*act*	+	−	Mutactin
pYT45	+	*act*	+	−	NP^a
pYT46	+	*act*	+	−	1, 2 (70%)* Mutactin
pYT92	−	*tcm*	−	ZhuI, ZhuJ	SEK15, SEK15b
pYT105	−	*act*	−	ZhuI, ZhuJ	7 (30%) SEK4, SEK4b
pYT128	+	*tcm*	−	ZhuI, ZhuJ	3–6 (50%) SEK15, SEK15b
pYT90	+	*tcm*	+	act^{VII}, act^{IV}	RM20, RM20b, RM20c
pYT127	+	*tcm*	+	act^{VII}, act^{IV}	8–11 (70%) RM20, RM20b, RM20c

^aLMM: Loading module, consists of ZhuC, ZhuH, and ZhuG.

^bThe minimal PKS consists of the indicated KS-CLF, ZhuN, and the endogenous MAT.

^cThis construct contains the act KS-CLF, but lacks the minimal ACP ZhuN.

^dNP: no major polyketide product observed.

<sup*e</sup>Number in parenthesis indicates yield of the product as percentage of total polyketide recovered.

DOI: 10.1371/journal.pbio.0020031.001
Figure 4. Engineered Biosynthesis of YT46 (1) and YT46b (2)

(A) HPLC trace of extracts from CH999/pYT44-pYT46. A linear gradient of 20%–60% CH3CN in water was used. (Left) CH999/pYT44, which only has the minimal PKS module from \textit{act} PKS and KR, produced the expected mutactin (and the dehydrated dehydromutactin). CH999/pYT45, which contains the R1128 loading module and an incomplete minimal PKS, produced no major polyketides. (Right) Upon coexpressing the R1128 loading module with a functional \textit{act} minimal PKS (in the presence of KR), two new major polyketides were produced with the indicated masses. When 1 g/l of valine was added to the growth medium, the yield of the compound with mass of 292 doubled (traces not drawn to the same scale). The two compounds are identified as YT46 and YT46b.

(B) Engineered biosynthesis of YT46 and YT46b. YT46 (1) is derived from propionate, while YT46b (2) is derived from isobutyrate. Alkylacyl-ZhuG supplied by the loading module is able to prime the \textit{act} minimal PKS efficiently. Incorporation of the alkylacyl moiety by the KS-CLF led to a decrease in the number of extender units incorporated in the final chain. The octaketide synthase is now only able to synthesize an alkyl hexaketide. The KR is able to regioselectively reduce the alkyl-hexaketide at the expected C-9 position. The reduced hexaketide spontaneously form the novel bicyclic structure observed in 1 and 2. Dehydrated versions of 1 and 2 are also observed (outside of limits shown in [A]).

DOI: 10.1371/journal.pbio.0020031.g004

Table 2. Proton and Carbon NMR Data for YT46 (1) and YT46b (2)

Number	YT46 (1)	YT46b (2)		
	\(^{13}\text{C} \delta \text{ (ppm)}\)	\(^{1}\text{H} \delta \text{ (ppm), m,} \text{ }^{1}J_{\text{HH}}\text{ [Hz], area)}\)	\(^{13}\text{C} \delta \text{ (ppm), }^{1}J_{\text{CC}}\text{ [Hz]}\)	\(^{1}\text{H} \delta \text{ (ppm), m,} \text{ }^{1}J_{\text{HH}}\text{ [Hz], area)}\)
1	164.0	164.5 (78.8)		
2	89.8	90.4 (78.9) 5.24 (d, 2.1, 1H)		
3	169.9	170.5 (57)		
4	104.2	104.8 (58.2) 5.86 (d, 2.1, 1H)		
5	158.6	159.2 (68.0)		
6	130.8	131.4 (68.0)		
7	194.3	194.9 (40.1)		
8	46.3	47.0 (40.1) 2.76 (dd, 18, 4.1, 1H)		
9	65.2	65.8 (36.4) 4.18–4.24 (m, 1H)		
10	38.6	39.5 (36.5) 2.61 (dd, 16.5, 3.7, 1H)		
11	163.3	164.2 (40.1)		
12	35.5	34.5 (40.1) 2.22 (t, 8.1, 1H)		
13	29.6	28.8 1.33–1.40 (m, 2H)		
14	22.4	37.3 1.44–1.52 (m, 1H)		
15, 15'	13.2	22.4 0.78 (d, 6.4, 6H)		

Spectra were obtained at 400 MHz for proton and 100 MHz for carbon and were recorded in acetone-d$_{6}$.

\(^{a}\)Carbons are labeled as shown in Figure 4B.

\(^{b}\)1, 2-\(^{13}\text{C}\)-acetate labeling experiments were performed with 2 and the observed carbon–carbon coupling constants are shown in parenthesis.

DOI: 10.1371/journal.pbio.0020031.t002
Figure 5. Engineered Biosynthesis of TMAC (7), YT128 (3), and YT128b (4)

(A) ZhuI and ZhuJ are CYCs specific for unreduced octaketides. CH999/pYT105, which coexpressed ZhuI and ZhuJ from the R1128 PKS with the act minimal PKS, produced the anthraquinone compound TMAC (7). ZhuI and ZhuJ are thus able to cyclize unreduced octaketides. Previously characterized octaketide CYCs act
PKS with the
pYT127. The identities of
and MS analyses confirmed the identities of 3 and 4 as alkyl-
primed TMAC analogs (Table 3). The natural products, R1128b (5) and R1128c (6) (i.e., decarboxylated derivatives of 3 and 4), were present at an approximately 20% level to that of 3 and 4.

The engineered biosynthesis of compounds 3–6 further validated our hypothesis that the initiation module of the R1128 PKS could productively interact with elongation modules from any bacterial aromatic PKS. Moreover, by incorporating a primer unit with at least five carbon atoms, the act
PKS effectively became an octaketide synthase with respect to the rest of the polyketide molecule. This was analogous to the conversion of the act
PKS into a hexaketide synthase in the presence of the R1128 initiation module. It also suggested that the R1128 KS-CLF was intrinsically a decaketide synthase. Finally, analogous to the
KR, ZhuI and ZhuJ were programmed to recognize full-
length polyketide chains based upon the number of β-carbonyl groups, rather than the carbon chain length of the backbone. Our findings below suggest this is a general property for all CYCs. It should be noted that the CYCs ZhuI and ZhuJ were apparently more efficient in processing the unreduced alkyl-primed octaketide than an acetate-primed octaketide, since no alkyl-primed analogs of SEK4 and SEK4b were observed in extracts of CH999/pYT128. (In the absence of ZhuI and ZhuJ, alkyl-primed versions of both SEK4 and SEK4b are the major polyketides produced [data not shown]).

Engineered Biosynthesis of Novel Anthraquinones Using Bimodular PKSs

To demonstrate the utility of hybrid bimodular PKSs for the rational design of new analogs of known polyketides, we targeted the engineered biosynthesis of alkyl-primed 3,8-
dihydroxy-methylanthraquinone carboxylic acid (DMAC) analogs 8 and 9 (Figure 6). Specifically, we inserted the act
KR gene into pYT128, along with replacing ZhuI and ZhuJ with genes encoding act
ARO and act
CYC, to arrive at the plasmid pYT127. We rationalized that the act
CYCs should be able to recognize the reduced, alkyl-primed octaketide. A control plasmid (pYT90) lacking the R1128 initiation module was also constructed, transformed, and analyzed.

In the absence of the initiation module, the act
PKS outfitted with the act
KR produced the expected polyketides RM20, RM20b, and RM20c (McDaniel et al. 1993a). The targeted anthraquinone carboxylic acids 8 and 9 were isolated at high titers (15 mg/l each, 70% of total polyketide products) in CH999/pYT127. The identities of 8 and 9 were verified by NMR and MS (Table 4). Decarboxylated analogs of both compounds were also observed; these compounds are alkyl-primed analogs of the natural product aloeasaponarin II. These findings confirmed that, analogous to ZhuI and ZhuJ, the act
KR, act
ARO, and act
CYC were able to process the octaketide intermediate possessing unnatural functional groups at C-16. Thus, it appears that the substrate recognition features of all auxiliary PKS subunits have evolved to monitor the number of β-ketone functional groups present in the polyketide chain.

Cytotoxic Properties of Novel Anthraquinones

As described above, the biosynthetic engineering methods reported here have yielded practical routes for the production of several new as well as known anthraquinone

to order in polyketide backbone), was isolated from CH999/
compounds. Given the track record of this family of natural products as pharmacologically active molecules, compounds 3, 4, 9, and DMAC were assayed for cytotoxic activities against human mammary adenocarcinoma MCF-7 cells. Apoptosis was observed after 24 h of drug treatment, and IC50 values were recorded after 5 d of drug addition. The IC50 values for reduced compounds DMAC and 9 are 26.9 and 21.7 μg/ml, respectively, while the IC50 values for unreduced anthraquinones 3 and 4 are 3.4 and 1.7 μg/ml, respectively. Thus inserting the hydroxyl group at C-9 results in a 10-fold increase in cytotoxic activity. The new compounds also show modest improvement in cytotoxic activity relative to the natural products 5 (R1128b, IC50 = 9.5 μg/ml) and 6 (R1128c, IC50 = 6.2 μg/ml) (Hori et al. 1993), suggesting an additive effect of both the C-9 OH and C-2 COOH groups.

Inhibition of glucose-6-phosphatase. Recently, the natural product mumbaistatin (Figure 7A) was identified as an extremely potent inhibitor (IC50 = 5 nM) of the glucose-6-phosphate translocase enzyme complex, an attractive target for the treatment of Type II diabetes (Vertesy et al. 2001). The core of mumbaistatin consists of an anthraquinone moiety that is related to several engineered compounds discussed in this report. For example, the carboxylic acid at position C-1 and the reduced C-9 are identical to those present in compounds DMAC, 8, and 9. We tested the inhibitory activities of some of these polyketides against glucose-6-phosphate translocase using intact male rat liver microsomes. The integrity of the microsomes was first verified by comparing the glucose-6-phosphatase (G6Pase) activity in the presence of glucose-6-phosphate or mannose-6-phosphate. The activity of G6Pase was then measured in the presence of chlorogenic acid (IC50 = 0.26 mM), DMAC, 3, 4, 7, 8, or 9 using a colorimetric assay described earlier (Arion 1989) (Figure 7B). Dose-dependent inhibition was observed in the 10–50 μM range with the alkylacyl-primed compounds 3, 4, 9.

Number	TMAC (7)	YT128 (3)	YT128b (4)	
	13C δ (ppm)	1H δ (ppm)	13C δ (ppm)	1H δ (ppm)
1	174.6	7.44 (s, 1H)	174.5	
2	134.9	7.47 (s, 1H)	135.0	
3	161.7	7.49 (s, 1H)	160.9	
4	113.7	7.40 (d, 2.4, 1H)	113.8	7.49 (s, 1H)
5	137.0	7.40 (d, 2.4, 1H)	137.3	
6	136.3	7.40 (d, 2.4, 1H)	135.9	
7	109.4	7.00 (d, 2.4, 1H)	109.4	7.00 (d, 2.4, 1H)
8	166.3	7.00 (d, 2.4, 1H)	166.4	
9	107.9	6.45 (d, 2.4, 1H)	107.9	6.45 (d, 2.4, 1H)
10	165.3	6.45 (d, 2.4, 1H)	165.3	
11	112.2	6.45 (d, 2.4, 1H)	112.2	
12	190.2	6.45 (d, 2.4, 1H)	189.9	
13	124.6	6.45 (d, 2.4, 1H)	123.9	
14	144.2	6.45 (d, 2.4, 1H)	144.5	
15	21.1	1.21 (s, 3H)	41.1	3.34–3.40 (m, 2H)
16	–	1.50–1.60 (d, 2.1, 2H)	30.4	1.42–1.52 (d, 2.1, 2H)
17	1.40–1.48 (m, 2H)	1.40–1.48 (m, 2H)	31.6	1.63–1.72 (m, 1H)
18	0.89 (t, 7.2, 3H)	0.89 (t, 7.2, 3H)	22.9	0.91 (d, 6.4, 6H)

Spectra were obtained at 400 MHz for proton and 100 MHz for carbon and were recorded in methanol-4.

*Carbons are labeled as shown in Figure 5.

DOI: 10.1371/journal.pbio.0020031.t003

Figure 6. Engineered Biosynthesis of DMAC Analogs YT127 (8) and YT127b (9)

When the bimodular PKS containing *tcm* minimal PKS and R1128 loading module are coexpressed with tailoring enzymes KR, act ARO/CYC, and act CYC, the desired compounds 8 and 9 were produced. The decarboxylated versions of 8 and 9 are 10 and 11, respectively. All three tailoring enzymes are able to process the unnatural alkyl-octaketide.

DOI: 10.1371/journal.pbio.0020031.g006
Table 4. Proton and Carbon NMR Data for YT127 (8) and YT127b (9)

Number	YT127 (8)	YT127b (9)	
	1H δ (ppm) (m, $^J_{HH}$ [Hz], area)	13C δ (ppm)	1H δ (ppm) (m, $^J_{HH}$ [Hz], area)
1	174.4		7.45 (s, 1H)
2	134.3		
3	160.1		
4	7.46 (s, 1H)	114.0	7.60 (dd, 8.0, 1.2, 1H)
5	137.5		7.53 (t, 8.0, 1H)
6	184.4		7.17 (dd, 8.0, 1.2, 1H)
7	132.3		
8	7.59 (dd, 8.0, 1.2, 1H)	119.2	
9	7.52 (t, 8.0, 1H)	136.4	
10	7.16 (dd, 8.0, 1.2, 1H)	125.3	
11	163.5		
12	124.4		
13	191.2		
14	118.2		
15	140.3		
16	3.31–3.39 (m, 2H)	40.9	3.34–3.42 (m, 2H)
17	1.50–1.6 (m, 2H)	30.4	1.42–1.52 (m, 2H)
18	1.40–1.48 (m, 2H)	31.7	1.64–1.73 (m, 1H)
19, 19'	0.90 (t, 7.2, 3H)	23.0	0.93 (d, 6.4, 6H)

Spectra were obtained at 400 MHz for proton and 100 MHz for carbon and were recorded in methanol-d$_4$.

*Carbons are labeled as shown in Figure 6.

DOI: 10.1371/journal.pbio.0020031.t004

Figure 7. Inhibition of Glucose-6-Phosphate Translocase Activity by Anthraquinones

(A) The chemical structure of mumbaistatin. Mumbaistatin is an extremely potent inhibitor of glucose-6-phosphate translocase (IC$_{50}$ = 5 nM). The core of the molecule is a reduced carboxylic acid containing anthraquinone, which is also observed in compounds such as DMAC, YT127, and YT127b.

(B) Inhibition of glucose-6-phosphate translocase activity by novel anthraquinones. The inhibition assay is performed as described in the experimental section. The control contains the rat liver microsome and glucose-6-phosphate only. Chlorogenic acid (IC$_{50}$ = 0.26 mM) was used as a reference. The G6Pase activity of the microsome in the presence of six anthraquinones (DMAC, 3, 4, 7, 8, and 9) was measured. For each compound, three different concentrations (50, 25, and 12.5 mM) were used to detect dose-dependent inhibition. No inhibition was observed for DMAC or 7. Dose-dependent inhibition was observed for compounds 3, 4, 8, and 9.

DOI: 10.1371/journal.pbio.0020031.g007
4, 8, and 9, but not DMAC or 7. Our results demonstrate the following: (i) a long substituent at C-16 in an anthraquinone is important for targeting the membrane-bound G6Pase, and (ii) the C-9 position of the anthraquinone can be chemically modified without significantly affecting the enzyme-inhibitor interactions.

Discussion

The engineering of the primer units of macrolide antibiotics is a well-established strategy for generating new natural product analogs with modified chemical and biological properties (Jacobsen et al. 1997; Marsden et al. 1998; Moore and Hertweck 2002). In contrast, manipulation of the ordinarily invariant acetate primer unit of bacterial aromatic polyketides has not been recognized as a general methodology in biosynthetic engineering, presumably owing to the apparently high efficiency with which these PKSs decarboxylate malonyl extender units to generate acetate primers. An exception to this principle has been recently demonstrated in the case of the enterocin PKS, which ordinarily incorporates a benzoic acid primer unit, but can also accept a range of aryl acids to generate substituted enterocins (Kalaizis et al. 2003). In this report, we have described a general method for modifying the primer unit of any aromatic polyketide by engineering hybrid bimodular PKSs. This method can be used to construct hitherto undiscovered polyfunctional aromatic scaffolds, as illustrated by compounds 1 and 2; alternatively, regioselective modifications of known polyketides, such as 8 and 9, can be achieved. Notably, structural analysis of these novel compounds also revealed fundamentally new properties of bacterial aromatic PKSs, as summarized below.

The KS-CLF Prefers Nonacetate Priming over Decarboxylative Priming

Most bacterial aromatic PKSs catalyze chain initiation by decarboxylating an ACP-bound malonyl extender unit to yield an acetyl primer unit, a reaction that is catalyzed by the KS-CLF. In order to install nonacetate primer units in an aromatic polyketide backbone, one must bypass this decarboxylative priming mechanism. Genetic and enzymological analysis of the R1128 PKS, which utilizes a range of reactive backbones whose subsequent fates can be controlled by previously analyzed auxiliary PKS subunits and tailoring enzymes.

Molecular Recognition Features of the KS-CLF and Auxiliary PKS Subunits

By generating a variety of nascent and highly reactive alkylacyl polyketide intermediates in situ, we have been able to probe the properties of the key aromatic PKS components, including the KS-CLF, the KR, and different subclasses of AROs and CYCs. Such studies have provided insight as to whether carbon chain length of the backbone or the repetitive poly-β-ketone functionality are the primary factors influencing the substrate specificity of these proteins.

Our results demonstrate that, since chain length specificity of KS-CLF heterodimers is primarily dictated by the backbone size, incorporation of bulky, nonacetate primer units is compensated for by a reduced number of condensation cycles. Thus, hexaketides and octaketides are synthesized by the act and tcm KS-CLF, respectively, when these KSs are primed with pentanoyl (or 4-methylpentanoyl) primer units.

In contrast to KS-CLF subunits, the regioselectivity of auxiliary PKS enzymes such as KR, ARO, and CYC is unaffected by the incorporation of nonacetate starter units. For example, the act KR selectively reduced the C-9 keto group in an acetate-primed octaketide (DMAC), an alkyl-hexaketide (see Figure 4B), and an alkyl-octaketide (see Figure 5B). This observation confirms an earlier proposal (McDaniel et al. 1993b) that such KRs recognize fully synthesized polyketide chains, rather than the β-ketone of a partially elongated intermediate. Similarly, the act ARO and CYC process a reduced (but not unreduced) octaketide, regardless of the primer unit, although they are unable to recognize hexaketides or decaketides. In contrast, the R1128
CYCs act upon an unreduced, but not reduced, backbone, regardless of the primer unit.

The Initiation Module of a Bimodular Aromatic PKS

Our studies have revealed that each initiation module component, ZhuG (see Figure 4A), ZhuH (data not shown), and ZhuC (data not shown) are essential for priming with a nonacetate building block. Deletion of any of these three genes from the constructs shown in Table 1 completely abolishes nonacetate priming by the KS-CLF, but leaves the decarboxylating priming mechanism intact. Although the roles of ZhuG and ZhuH in the initiation pathway have been reported (Meadows and Khosla 2001; Tang et al. 2003), the role of ZhuC is unclear. ZhuC is homologous to the MAT and was therefore putatively assigned as a second malonyl transferase that malonlates ZhuG. However, subsequently it was shown that MAT can malonylate ZhuG with high efficiency (kcat approximately 150 s–1) (Tang et al. 2003), whereas ZhuC is sluggish in malonylating ACPs (at a rate approximately ten times slower than MAT [data not shown]). In light of these observations, we propose that ZhuC catalyzes transacylation between the diketide-ZhuG and ZhuN, leading to an alkylacyl-ZhuN intermediate that can then be transferred onto the KS-CLF. Future biochemical analysis may be able to verify this property of ZhuC.

Engineered Biosynthesis of Diverse Aromatic Polyketides via Bimodular PKSs

To further expand the repertoire of primer units that can be introduced into aromatic polyketides using bimodular PKSs, one could (i) alter the substrate specificity of the R1128 initiation module and/or (ii) engineer in vivo metabolic pathways for new types of primer units. KSIII homologs found in initiation modules serve as gatekeepers in primer unit selection and are therefore attractive targets for protein engineering. The X-ray crystal structure of ZhuH has recently been solved and has led to the identification of a binding pocket for the acyl-CoA moiety (Pan et al. 2002). ZhuH adopts a dimeric thiolase fold and selected residues at the interface between the two subunits control size and flexibility of the binding pocket, preventing acyl groups larger than isovaleryl groups from entering the pocket. The corresponding amino acids in FnrI, the homolog to ZhuH in the fmr PKS, are occupied by bulkier residues, thus excluding acyl groups larger than acetyl-CoA. Therefore, altering the size and polarity of these gatekeeping residues using rational mutagenesis and directed evolution may enlarge the repertoire of acyl-CoA moieties recognized by KSIII enzymes.

Amino acid catabolism in S. coelicolor is the primary source of primer units such as isobutyryl-CoA (valine) and isovaleryl-CoA (leucine). These pathways involve transamination (catalyzed by branched-chain amino acid transaminases) to convert the amino acid into the corresponding z-ketoacid, followed by decarboxylation (catalyzed by acyl-CoA dehydrogenase [AcdH]) to yield the corresponding acyl-CoA (Zhang et al. 1999). These catabolic pathways in actinomyces are presumably tolerant of unnatural amino/z-keto acids, as illustrated by the incorporation of a large variety of primer units into the macrolide avermectin through precursor feeding (Dutton et al. 1991). It may therefore be possible to expand the repertoire of primer units in S. coelicolor by feeding the recombinant strains, constructed as above, with unnatural amino acids such as allylglycine, norvaline, norleucine, and fluorinated derivatives thereof. In addition, heterologous expression of enzymes involved in the biosynthesis of novel acyl-CoA moieties, such as cyclohexenoyl-CoA (Cropp et al. 2000) and benzoyl-CoA (Xiang and Moore 2003), can be efficient sources of loading module substrates. Successful elaboration of the corresponding acyl-CoA primers into full-length polyketides, through both KSIII-based protein engineering and Streptomyces metabolic engineering, can yield additional polyketide variants. Our observation that anthracycline derivatives generated via such engineering approaches can have improved properties over their natural product counterparts provides further motivation to expand the biosynthetic potential of bimodular PKSs.

Materials and Methods

Bacterial strains and general methods for DNA manipulation. S. coelicolor strain CH999 was used as the host for transformation by shuttle vectors. Protoplast preparation and PEG-assisted transformation (PEG was described by Harper et al. 1993a). All cloning steps were performed in Escherichia coli strain XL-1 Blue. PCR was performed using the flhTurbo polymerase (Strategene, La Jolla, California, United States). PCR products were first cloned into pCRBlunt vector (Invitrogen, Carlsbad, California, United States), followed by DNA sequencing (Stanford PAN Facility, Stanford, California, United States). Unmethylated DNA was obtained by using the methylessilce-deficient strain GM2163 (New England Biolabs, Beverly, Massachusetts, United States).

Construction of plasmids. The following primers were used to amplify the individual genes: shuN: 5′-CGGGAATTCCTCGTACTCGGTT-CGAGGAGACCTCCG-3′; 5′-GGAATTCGACCTCCGAGATGGTCGTTCC-3′; ZhuN: 5′-CATGCGCCACCCGCTTCAGAGAGA-GAGATTCGCGCC-3′; 5′-GGGAGTCTCTAGCTGCTGGAAGCCGGCCGC-GCGGC-3′; ZhuG: 5′-CGCTCGTAGAGGAGAGACAAGCC-3′; 5′-CTCGAGCATCGAAGCGA-AAGCTG-3′; ZhuF: 5′-ATGATACGAAATCCTACGGGCTTGGG-3′; ZhuH: 5′-GGCGGACTGTACACCCTGGCCAC-3′; actIV: 5′-GCCGTTTAAGACGCTGGCCGACCTGTCCTG-3′; 5′-GCCGAGAGCGGCTACCGCCGAAACG-3′; ZhuI: 5′-GCCGGAGTCGAGATGGTGGCG-3′; actIVD: 5′-GCCGCCTTTAATGCTGGCCGACCTGTCCTG-3′; 5′-GGACTAGTCCTCCTCCTCCTTGCG-3′. The introduced restriction sites are shown in italics. Genes encoding zhuN, zhuH, zhuF, zhuG, and zhuI were amplified from pHU235 (Martt et al. 2000), and genes encoding actI/IV were amplified from pRM5 (McDaniel et al. 1993a). ZhuN, zhuI, and zhuG were cloned as a single 2.1 kb Xbal– NotI fragment into a 1.3 kb PstI–NsiI fragment of pET28a+ (2.5 kb) and zhuI was each cloned as a Pmel–EcoRI cassette. Different combinations of cassettes, as shown in Table 1, were introduced into either pRM5 (KR-actK/SCLF), pSEK24 (actK/S CLF), pSEK33 (tcmK/SCLF), or pRM20 (KR-tcmK/SCLF) to yield pY146, pY1053, pYT128, and pYT127, respectively.

Culture conditions, extraction, and small-scale analysis. The strains were grown on R5 plates containing 50 mg/ml thiostrepton at 30°C for 7–10 d. Acyl-CoA precursors such as sodium propionate and valine were added at 1 g/l when needed. For LC/MS and analytic HPLC analysis, one plate was sufficient. The plate was chopped into fine pieces and extracted with 30 ml of ethyl acetate/methanol/acetic acid (89:10:1). The solvent was removed in vacuo and the residue was redissolved in 1 ml of methanol. The polyketide products were separated and detected by analytical reversed-phase HPLC using a diode array detector at 280 and 410 nm using an Alltech (Vienna, Virginia, United States) Econosphere C18 column (50 mm×4.6 mm); linear gradient: 20% acetonitrile (ACN) in water (0.1% TFA) to 60% ACN in water (0.1% TFA) over 30 min; 1 ml/min. HPLC retention times (μg minutes) were as follows: 1: 1.38; 2: 15.4; 3: 20.4; 4: 21.8; 5: 24.9; 6: 25.6; 7: 17.1; 8: 22.8; 9: 24.1; 10: 27.7; 11: 29.4. LC/MS was performed at the Vincent Coates Foundation Mass Spectrometry Laboratory at Stanford University using a ThermoFinnigan (San Jose, California, United States) quadrupole ion trap LC/MS system and electrospray ionization (both positive and negative ionization).

Large-scale production and isolation. S. coelicolor strains were grown at 30°C for 1 wk. The plates were chopped into fine pieces and extracted with a minimum of 11 of EA/methanol/acetic acid (89:10:1). The organic solvents were
removed and the residuals were dissolved in 5 ml of methanol. The solution was filtered and injected into a preparative reversed-phase HPLC column (250 × 22.5 mm C-18 column; Alltech Econosil). A 20%–60% ACN in water (0.1% TFA) gradient (50 min, 5 ml/min) was used to separate the polyketide products. Fractions containing the desired polyketides were combined and concentrated in vacuo. The residues were redissolved in acetone and applied to a preparative TLC plate (20 cm × 20 cm, 0.25 mm) E. Merck [Reldington Township, New Jersey, United States] silica gel plates [60F-254]). TLC plates spotted with Rf = 0.29, 4 (Rf = 0.37), 7 (Rf = 0.21), 8 (Rf = 0.34), and 9 (Rf = 0.43) were developed with EA:hexane:acetic acid (90:10:1). The desired bands were excised from the TLC plates and stirred in EA:methanol (10 ml, 9:1) for 2 h. The compounds were eluted from silica using the same solvent and dried in vacuo.

NMR and MS characterization of novel compounds. NMR spectra were recorded on Varian (Salt Lake City, Utah, United States) Inova 500 or Mercury 400 instruments and calibrated using residual H2O as an internal reference. 1H and 13C NMR values were measured after 5 d.

G6Pase activity assay. Male rat liver microsome (Sprague Dawley) was purchased from BD Gentest™ (Becton Dickinson, Franklin Lakes, New Jersey, United States). Aliquots (100 μl, 2 mg/ml) in 0.25 M sucrose were stored at −80°C. Compound stock solutions were prepared in 95% ethanol and diluted with DMSO. Glucose-6-phosphate and mannose-6-phosphate were purchased from Sigma & PloS Biology | February 2004 | Volume 2 | Issue 2 | Page 0237 | http://biology.plosjournals.org

References

Arion WJ (1989) Measurement of intactness of rat liver endoplasmic reticulum. Methods Enzymol 174: 58–67.

Bartel PL, Zhu CB, Lampel JS, Dosch DC, Connors NC, et al. (1990) Biosynthesis of anthraquinones by interspecies cloning of actinomycin biosynthesis genes in streptomyces: Clarification of actinomycin gene functions. J Bacteriol 172: 4816–4826.

Bibb MJ, Sherman DH, Osmura S, Hopwood DA (1994) Cloning, sequencing and deduced functions of a cluster of Streptomyces genes probably encoding the biosynthesis of the antibiotic actinomycin. Gene 142: 31–39.

Bisang C, Long PF, Cortes J, Westcott J, Crosby J, et al. (1999) A chain initiation factor common to both modular and aromatic polyketide synthases. Nature 401: 502–505.

Cane DE, Wald CJ, Khosla C (1998) Harnessing the biosynthetic code: Combinations, permutations, and mutations. Science 282: 65–68.

Cropper TA, Wilson DJ, Reynolds KA (2000) Identification of a cyclohexylcarbonyl CoA biosynthetic gene cluster and application in the production of doramectin. Nat Biotechnol 18: 980–985.

Dreier J, Khosla C (2000) Mechanistic analysis of a type II polyketide synthase: Role of conserved residues in the beta-ketoacyl synthase-chain length factor heterodimer. Biochemistry 39: 2088–2095.

Dutton CJ, Gibson SP, Goodie AC, Holdom KS, Pacey MS, et al. (1991) Novel avermectins produced by mutational biosynthesis. J Antibiot (Tokyo) 44: 357–365.

Fu H, Ebert-Khosla S, Hopwood D, Khosla C (1994) Relaxation specificity of the oxytetracycline polyketide synthase for an acetate primer in the absence of a malonamyl primer. J Am Chem Soc 116: 6443–6444.

Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97: 2465–2498.

Hopwood D, Bibb MJ, Chater KF, Kieser T, Bruton CJ, et al. (1985) Genetic manipulation in actinomycetes and associated actinomycetes: A preparative manual. Norwich, United Kingdom: The John Innes Foundation. 556 p.

Hori Y, Abe Y, Ezaki M, Goto T, Okuhara M, et al. (1995) R1128 substances: Novel nonsteroidal estrogen-receptor antagonists produced by Streptomyces. I. Taxonomy, fermentation, isolation, and biological evaluation. J Antibiot (Tokyo) 48: 1055–1062.

Jacobsen JR, Hutchinson CR, Cane DE, Khosla C (1997) Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. Science 276: 367–369.

Kalanitiz JN, Inuzumaka M, Xiang L, Hertweck C, Moore BS (2003) Mutagenesis of enterocin and walupilane analogs. J Am Chem Soc 125: 9290–9291.

The integrity of microsomes and G6Pase activity was measured based on the colorimetric reaction of inorganic phosphate as previously reported (Arion 1989). The enzyme reaction was initiated by adding 3 μl of microsome to the reaction mixture, which contained 51 μl of assay buffer (50 mM HEPS, 100 mM KC1, 2.5 mM EDTA, 2.5 mM MgCl2, and 1 mM DTT at pH 7.2), 3 μl of glucose-6-phosphate (final concentration, 1 mM), and 3 μl of inhibitor sample (1 mM). The reaction mixture was incubated at room temperature, and 15 μl of reaction mixture was taken every 10 min and quenched with 117 μl of working solution (6:2:1 mixture of 0.42% ammonium molybdate tetrahydrate in 1N H2SO4, 10% SDS in water, and 10% ascorbic acid in water). The blue reduced phosphomolybdate complex is formed after incubation at 50°C for 20 min. The absorbance was measured at 820 nm.

Supporting Information

Accession Numbers

The SwissProt (www.ebi.ac.uk/swissprot/) accession numbers for the proteins and genes discussed in this paper are act AROCYS (Q02555), act KS-CLF (Q02559 and Q02602), ZhuA (Q09F69), ZhuB (Q09F60), ZhuC (Q09F63), ZhuG (Q09F63), ZhuH (Q09F64), ZhuI (Q09F62), and ZhuN (Q09F68).

Acknowledgments

This work was supported by a grant from the National Institutes of Health (NIH) (CA 77248 to CK). YT is supported by an NIH postdoctoral fellowship.

Conflicts of interest. A patent application has been filed by Stanford University for aspects of the work described in this paper.

Contributions. YT, TSL, and CK conceived and designed the experiments. YT and TSL performed the experiments. YT and TSL analyzed the data. YT wrote the paper.
structure of the priming beta-ketosynthase from the R1128 polyketide biosynthetic pathway. Structure 10: 1559–1568.
Rajgarhia VB, Priestley ND, Strohl WR (2001) The product of \textit{dpsC} confers starter unit fidelity upon the daunorubicin polyketide synthase of \textit{Streptomyces} sp. strain C5. Metab Eng 3: 49–63.
Rawlings BJ (1999) Biosynthesis of polyketides (other than actinomycete macrolides). Nat Prod Rep 16: 425–484.
Revill WP, Bibb MJ, Hopwood DA (1995) Purification of a malonyltransferase from \textit{Streptomyces coelicolor} A3(2) and analysis of its genetic determinant. J Bacteriol 177: 3946–3952.
Shen Y, Yoon P, Yu TW, Floss HG, Hopwood D, et al. (1999) Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes. Proc Natl Acad Sci U S A 96: 3622–3627.
Tang Y, Lee TS, Kobayashi S, Khoela C (2003) Ketosynthases in the initiation and elongation modules of aromatic polyketide synthases have orthogonal acyl carrier protein specificities. Biochemistry 42: 6588–6595.
Tsuzuki K, Iwai Y, Omura S, Shimizu H, Kitajima N (1986) Nanaomycins production by a frenolicin B producing strain. J Antibiot (Tokyo) 39: 1343–1345.
Vertesy L, Kurz M, Paulus EF, Schumann D, Hammann P (2001) The chemical structure of mumbastatin, a novel glucose-6-phosphate translocase inhibitor produced by \textit{Streptomyces} sp. DSM 11641. J Antibiot (Tokyo) 54: 354–363.
Xiang L, Moore BS (2005) Characterization of benzoyl coenzyme A biosynthesis genes in the enterocin-producing bacterium \textit{Streptomyces maritimus}. J Bacteriol 185: 399–404.
Yu TW, Hopwood DA (1995) Ectopic expression of the \textit{Streptomyces coelicolor} whiE genes for polyketide spore pigment synthesis and their interaction with the act genes for actinorhodin biosynthesis. Microbiology 141 (Pt 11): 2779–2791.
Yu TW, Shen Y, McDaniel R, Floss HG, Khosla C, et al. (1998) Engineered biosynthesis of novel polyketides from \textit{Streptomyces} spore pigment polyketide synthases. J Am Chem Soc 120: 7749–7759.
Zhang YX, Denoya CD, Skinner DD, Fedechko RW, McArthur HA, et al. (1999) Genes encoding acyl-CoA dehydrogenase (AcdH) homologues from \textit{Streptomyces coelicolor} and \textit{Streptomyces avermitilis} provide insights into the metabolism of small branched-chain fatty acids and macrolide antibiotic production. Microbiology 145 (Pt 9): 2323–2334.