EDITORIAL

Should we use the transradial approach in cardiogenic shock?

Sanjit Jolly1,2, Elie Akl3
1 Division of Cardiology, McMaster University, Hamilton, Ontario, Canada
2 Population Health Research Institute, Hamilton, Ontario, Canada
3 Division of Cardiology, McGill University, Montreal, Quebec, Canada

A large body of evidence supports embracing the transradial approach (TRA) in patients with acute coronary syndrome mainly to decrease major bleeding and complications related to vascular access.1-3 This is well reflected in current guidelines from the American Heart Association4 and the European Society of Cardiology / European Association for Cardio-Thoracic Surgery.4 More specifically, several large randomized trials have been published over the last decade demonstrating advantages of the TRA over the transfemoral approach (TFA) in patients with ST-segment elevation myocardial infarction (STEMI).5-7 In an updated meta-analysis of randomized trials,8 the TRA was associated with lower all-cause mortality (risk ratio [RR], 0.71; 95% CI, 0.57–0.88), major bleeding (RR, 0.59; 95% CI, 0.45–0.77), and vascular complications (RR, 0.42; 95% CI, 0.32–0.56) compared with the TFA for primary percutaneous coronary intervention (PCI). However, patients in cardiogenic shock (CS) were largely excluded from these randomized trials, including in the STEMI-RADIAL (ST-Elevation Myocardial Infarction Treated by Radial or Femoral Approach) trial.8

Due to lack of data on TRA in CS, Tokarek et al9 performed an observational analysis of TRA as compared with TFA in patients with CS and STEMI. A total of 945 propensity-score matched pairs of patients with STEMI and CS treated with primary PCI were evaluated using data from the Polish National PCI Registry (ORPKI). Transradial approach was associated with a lower periprocedural mortality (89 [9.4%] vs 176 [18.6%]; P = 0.001) and a lower incidence of cardiac arrest (92 [9.7%] vs 152 [16.1%]; P = 0.001). Transfemoral approach was the strongest independent predictor of periprocedural mortality in a multivariable analysis (odds ratio [OR], 2.087; 95% CI, 1.629–2.674; P = 0.001). Surprisingly, there was no difference in bleeding complications between TRA and TFA.

In conclusion, these data support safety and feasibility of TRA in patients in CS, who often do not have a palpable radial artery. Given the wealth of data, a radial-first approach should be considered in CS.

ARTICLE INFORMATION

DISCLAIMER The opinions expressed by the author(s) are not necessarily those of the journal editors, Polish Society of Internal Medicine, or publisher.

CONFLICT OF INTEREST None declared.

OPEN ACCESS This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0), allowing third parties to copy and redistribute the material in any medium and format to remix, transform, and build upon the material, provided the original work is properly cited, distributed under the same license, and used for noncommercial purposes only. For commercial use, please contact the journal office at pamw@mp.pl.
HOW TO CITE Jolly S, Akl E. Should we use the transradial approach in cardiogenic shock? Pol Arch Intern Med. 2021; 131: 409-410. doi:10.20452/pamw.16008

REFERENCES

1. Jolly SS, Yusuf S, Cairns J, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011; 377: 1409-1420.

2. Valgimigli M, Gagnon A, Calabrò P, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet. 2015; 385: 2465-2476.

3. Mason PJ, Shah B, Tamis-Holland JE, et al. An update on radial artery access and best practices for transradial coronary angiography and intervention in acute coronary syndrome: a scientific statement from the American Heart Association. Circ Cardiovasc Interv. 2018; 11: e000335.

4. Neumann FJ, Sousa-Uva M, Attilsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019; 40: 87-165.

5. Romagnoli E, Biondi-Zoccai G, Scialabba A, et al. Radial versus femoral randomized investigation in ST-segment elevation acute coronary syndrome: the RIFLE-STEACS (Radial Versus Femoral Randomized Investigation in ST-Elevation Acute Coronary Syndrome) study. J Am Coll Cardiol. 2012; 60: 2481-2489.

6. Bernet I, Horak D, Stasek J, et al. ST-segment elevation myocardial infarction treated by radial or femoral approach in a multicenter randomized clinical trial: the STEMI-RADIAL trial. J Am Coll Cardiol. 2014; 63: 964-972.

7. Mehta SR, Jolly SS, Cairns J, et al. Effects of radial versus femoral artery access in patients with acute coronary syndromes with or without ST-segment elevation. J Am Coll Cardiol. 2012; 60: 2490-2499.

8. Jhand A, Atti V, Gwon Y, et al. Meta-analysis of transradial vs transfemoral access for percutaneous coronary intervention in patients with ST-elevation myocardial infarction. Am J Cardiol. 2021; 141: 23-30.

9. Tokarek T, Dziewierz A, Plens K, et al. Radial approach reduces mortality in patients with ST-segment elevation myocardial infarction and cardiogenic shock. Pol Arch Intern Med. 2021; 131: 421-428.

10. Ratib K, Mamas MA, Anderson SG, et al. Access site practice and procedural outcomes in relation to clinical presentation in 439,947 patients undergoing percutaneous coronary intervention in the United Kingdom. JACC Cardiovasc Interv. 2015; 8: 20-29.

11. Rao SV, Cohen MG, Kandzari DE, et al. The transradial approach to percutaneous coronary intervention: historical perspective, current concepts, and future directions. J Am Coll Cardiol. 2010; 55: 2187-2195.