Detection of Life Threatening Ventricular Arrhythmia Using Digital Taylor Fourier Transform

Rajesh K. Tripathy 1, Alejandro Zamora-Mendez 2, José A. de la O Serna 3, Mario R. Arrieta Paternina 4, Juan G. Arrieta 5 and Ganesh R. Naik 6*

1 Faculty of Engineering and Technology (ITER), Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar, India,
2 Electrical Engineering Faculty, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico,
3 Department of Electrical Engineering, Autonomous University of Nuevo León, Monterrey, Mexico,
4 Department of Electrical Engineering, National Autonomous University of Mexico, Mexico City, Mexico,
5 Sanatorio Güemes, Buenos Aires, Argentina,
6 Biomedical Engineering and Neuromorphic Systems (BENS) Research Group, MARCS Institute, Western Sydney University, Penrith, NSW, Australia

Accurate detection and classification of life-threatening ventricular arrhythmia episodes such as ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) from electrocardiogram (ECG) is a challenging problem for patient monitoring and defibrillation therapy. This paper introduces a novel method for detection and classification of life-threatening ventricular arrhythmia episodes. The ECG signal is decomposed into various oscillatory modes using digital Taylor-Fourier transform (DTFT). The magnitude feature and a novel phase feature namely the phase difference (PD) are evaluated from the mode Taylor-Fourier coefficients of ECG signal. The least square support vector machine (LS-SVM) classifier with linear and radial basis function (RBF) kernels is employed for detection and classification of VT vs. VF, non-shock vs. shock and VF vs. non-VF arrhythmia episodes. The accuracy, sensitivity, and specificity values obtained using the proposed method are 89.81, 86.38, and 93.97%, respectively for the classification of Non-VF and VF episodes. Comparison with the performance of the state-of-the-art features demonstrate the advantages of the proposition.

Keywords: life threatening arrhythmia, Taylor-Fourier transform, magnitude and phase features, LSSVM, radial basis function kernel, classifier performance

1. INTRODUCTION

The life threatening ventricular arrhythmias which require immediate defibrillation therapy are rapid ventricular tachycardia (VT) and ventricular fibrillation (VF) (Hunt et al., 2005; Acharya et al., 2018). The electrical activity of heart is no longer originated from sino-atrial node during these arrhythmias, rather it is started in the ventricular muscles which is shown in Figure 1 (Goldberger and Goldberger, 1981). The pacemaker activity of heart is initiated from both left and right ventricles of the heart and due to this, the abnormal episodes other than the normal quasi-periodic PQRST components are observed in ECG signal (Goldberger and Goldberger, 1981). The lower chambers of the heart such as the left and right ventricles are also ineffective to pump the blood to lungs and arteries. The defibrillation shock therapy is given to the patient affected with life threatening ventricular arrhythmia for recovering the normal heart rhythm (Tripathy et al., 2016). The detection and classification of shockable ventricular arrhythmia (VA) and non-shockbale episodes are the important and challenging problems in defibrillation therapy.
In literature, various methods have been reported for the detection and classification of life-threatening VA episodes using ECG (Jekova, 2000; Li et al., 2012; Acharya et al., 2018). One of the important steps in the state of the art methods is the extraction of features from ECG signal for detection of VT/VF episodes. The most common features used for detection of VT and VF detection are based on complexity measure (CPLX) (Zhang et al., 1999), threshold crossing intervals (TCI) (Thakor et al., 1990), VF filter leakage measure (VFF) (Amann et al., 2007), autocorrelation function (ACF) (Chen et al., 1987), band-pass filter and count (Jekova and Krasteva, 2004), covariance, area and frequency bins of binary signal (Jekova, 2007), time-frequency analysis (Millet-Roig et al., 1999), and wavelet transforms (Addison et al., 2000; Balasundaram et al., 2013). The performance of five different VF detection algorithms has been compared in (Jekova, 2000). From their work, it has been found that the VF filter leakage measure has higher performance than other features. The combinations of aforementioned features of ECG have been used by Li et al. (2014) and Atienza et al. (Alonso-Atienza et al., 2014) for the detection of life-threatening VA episodes. In recent years, variational mode decomposition (VMD) and empirical mode decomposition (EMD) based analysis and extraction of features from ECG have been reported for detection of life threatening VA (Abdullah Arafat et al., 2009; Tripathy et al., 2016; Nguyen et al., 2017). Though the VMD and EMD based techniques have better performance for detection, the real-time implementation of these algorithms require very higher computations. Therefore, a method which is computationally feasible and gives better performance for detection of life threatening VA is required.

The DTFT is one of the effective signal processing technique to decompose the non-stationary signal into oscillatory modes and it has been used for analysis of blood pressure and power signals (de la O Serna, 2007, 2013). Since, the characteristics of ECG signal varies during VF case as compare to normal heart rhythm, therefore, the DTFT can be used to capture these pathological changes in different oscillatory modes. The features extracted from the oscillatory modes of DTFT will be helpful for detection and classification of life-threatening episodes. The major contributions of this paper are highlighted as (i) Decomposition of ECG signal into oscillatory modes using DTFT, (ii) Evaluation of magnitude and phase features from the DTFT coefficients of each mode. (iii) The use of LSSVM classifier for detection and classification of shock vs. non-shock, VT vs. VF, and VF vs. non-VF episodes. The remainder of this paper is arranged as follows. The proposed method for detection of life threatening arrhythmia episodes is presented in section 2. The results and the discussion of the results are written in the sections 3, 4, respectively. The conclusion of this paper is drawn in section 5.

2. METHOD

The proposed method consists of four major steps such as (i) ECG data collection, (ii) Preprocessing of ECG data, (iii) DTFT based feature extraction, and (iv) LSSVM based classification of life threatening arrhythmia episodes. The preprocessing and feature extraction step of the proposed method is shown in Figure 2.

2.1. ECG Data Collection From Database

The ECG data are collected from two public databases namely the creighton university ventricular tachy-arrhythmia database (CUDB)\(^1\) and MIT-BIH malignant ventricular arrhythmia database (VFDB)\(^2\) (Goldberger et al., 2000). The CUDB database has 35 number of 8 min duration ECG signals with annotations as NSR, VF, VT, ventricular flutter, and other rhythm. Similarly, the VFDB database has 22 number of 35 min duration two lead ECG signals with annotations as NSR, VF, VT, ventricular flutter, and other rhythm. The sampling frequency of each ECG signal for both the databases is 250 Hz. In this study, three classification methodologies are considered namely shock vs. non-shock, VF vs. VT and VF vs. Non-VF. Under shock class, the ventricular flutter, VT and VF episodes are considered. Similarly, rhythms other than VF, VT, and ventricular flutter are taken under non-shock class. For non-VF class, the rhythms other than VF are considered. The purpose of selecting VF, VT, and ventricular flutter under shockable catagory is given as follows. The defibrillation has demonstrated to improve the outcome of patients suffering from cardiorespiratory arrest (CRA) due to VF, VT, or ventricular flutter (Wathen et al., 2004; Epstein et al., 2008). There are different rhythms of arrest, classified as defibrillable rhythms (such as VF) and no defibrillable rhythms (such as pulseless ventricular tachycardia). The main objective

1. https://physionet.org/physiobank/database/cudb/
2. https://physionet.org/physiobank/database/vfdb/
of the defibrillation therapy is to restore the spontaneous circulation, since the ventricular emptying is very compromised, enabling generate a hemodynamic collapse (Epstein et al., 2008). A common initial rhythm in the sudden cardiac arrest is VF, whose treatment consists of defibrillation. In this way, VT, VF, and ventricular flutter are defibrillable rhythms because they degenerate or lead to circulatory collapse. Thus they must be reversed promptly through defibrillation. In turn, this hemodynamic collapse produces a reduction in the transport of oxygen to the cell. Consequently an anaerobic metabolism (without oxygen) occurs (Wathen et al., 2004). In literature, for classification of shock vs. non-shock, authors have used VT, VF, and ventricular flutter as shock category and other ECG episodes as non-shockable rhythm (Alonso-Atienza et al., 2014; Acharya et al., 2013).

2.2. Preprocessing

This step involves the filtering of various noises from the ECG signals from CUDB and VFDB databases. A Zero-phase Butterworth band-pass filter with cutoff frequencies as 0.5 and 45 Hz is used (Tripathy et al., 2016). The filtered ECG data is then divided into frames using three different rectangular windows (Li et al., 2014). The window sizes are 4, 5, and 8 s, respectively. As the sampling frequency of each ECG signal is 250 Hz, so the number of samples contained in the 4, 5, and 8 s windows are 1,000, 1,250, and 2,000, respectively. In this work, 5,186, 4,144, and 2,582 number of 4, 5, and 8 s ECG frames are evaluated for the classification shockable VA and non-shockable episodes.

Similarly, for the classification of VF and non-VF episodes, a total of 3,432, 2,744 and 1,712 number of 4, 5, and 8 s ECG frames are computed. Likewise, 2,593, 2,072, and 1,291 number of ECG frames are extracted for the classification of VT and VF episodes. This means that each ECG signal \(x(n)\) is partitioned into different frames of signals like \(s_1, s_2, \ldots, s_m\), which will be processed by DTFT in the following.

2.3. DTFT Based Feature Extraction

From the phasor statement for the Taylor-Fourier Transform made in (de la O Serna, 2007) and the multivariate approach for low-frequency oscillations introduced in (Zamora et al., 2017), the DTFT technique has exhibited its reliability for extracting dynamic features in power systems. Here, we propose a Taylor-Fourier approach for capturing frequency information from biomedical signals like ECG signals. Our proposal also conceives the capability of the Taylor-Fourier filters for processing multiple frames, that is, a multiframes approach, allowing it to simultaneously deal with multiple frames stemming from first ECG lead, and render the estimated coefficients (\(\hat{\xi}\)) at the same time. To analyze the ECG signals using the Taylor-Fourier transform’s multiframes approach, the synthesis and analysis equations, (1) and (2), respectively, are like in Zamora et al. (2017) for a set of \(M\) frames as follows:

\[
\begin{align*}
\begin{bmatrix}
\hat{s}_1 \\
\hat{s}_2 \\
\vdots \\
\hat{s}_m
\end{bmatrix} &= \mathbf{B}[\hat{\xi}_1 \\
\hat{\xi}_2 \\
\vdots \\
\hat{\xi}_m], \quad (1) \\
\begin{bmatrix}
\hat{\xi}_1 \\
\hat{\xi}_2 \\
\vdots \\
\hat{\xi}_m
\end{bmatrix} &= \mathbf{B}^\dagger[s_1 \\
s_2 \\
\vdots \\
s_m], \quad (2)
\end{align*}
\]

where it is assumed that the ECG frames \(s_m(n), m = 1, \ldots, M\) contain 10 frequency components, as depicted in Figure 3. Each filter has a central frequency spaced 5 Hz, from 0 to 45 Hz. \(\mathbf{B}\) stands for the Taylor-Fourier matrix in (de la O Serna, 2013) and \(\mathbf{B}^\dagger\) its pseudoinverse, i.e., the filter bank is assumed equal for all signals, covering all the spectral range for VF. These filters are employed for decomposing ECG frames signals into modes. \(\mathbf{B}\) is shaped using Taylor and Fourier contributions as,

\[
\mathbf{B} = \begin{bmatrix}
t_0^n & t_1^n & \cdots & t_K^n \\
t_0^n & t_1^n & \cdots & t_K^n \\
\vdots & \vdots & \ddots & \vdots \\
t_0^{nC} & t_1^{nC} & \cdots & t_K^{nC}
\end{bmatrix}
\begin{bmatrix}
W_N & 0 & \cdots & 0 \\
0 & W_N & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & W_N
\end{bmatrix}
\]

where \(C = K + 1\) is the number of cycles and \(W_N\) corresponds to the Fourier matrix as \(W_N = [e^{j2\pi nk/N}]\) with \(n, k = 0, \ldots, N - 1\). \(t_n = -(K + 1)T_s(n/2)\) to \((K + 1)T_s(n/2), n\) corresponding to each sample of the Taylor’s interpolating polynomial at each sampling time \(T_s\). Thus, the dimension for \(t_n^{K}\) in (3) is \(N \times N\), so that the dimension for the Taylor contribution is \(CN \times CN\); likewise the dimension for the Fourier contribution is \(CN \times CN\). That is, the vectors of the Fourier matrix are harmonic modulators of the Taylor terms included in a \(K - th\) Taylor polynomial, \(K > 0\).

The parameters such as the magnitude and phase for \(j\)-th frequency component or mode are evaluated using Equation (2)
and these are given by

\[\hat{a}_j = |\hat{\xi}_j| \]

(4)

\[\hat{\phi}_j = \angle \hat{\xi}_j \]

(5)

The 10-mode decompositions (Mode 0 to Mode 9) of ECG signals for normal sinus rhythm (NSR), VT and VF cases are depicted in Figures 4, 5, 6, respectively. These modes are reconstructed from the Taylor-Fourier coefficients using Equation (1). As it is evident from these three figures that the characteristics of each mode is different for NSR, VT, and VF cases. From Figure 4, it has been observed that, the information of QRS-complex can be grossly captured using Mode 1 to Mode 6; moreover, it can be distinguished a sinus rhythm and regular with PR impresses normal, a narrow QRS, and an iso-level ST. Whereas the abnormal patterns other than the grossly segregated QRS-patterns are observed in each mode of VT and VF ECG signal (Figures 5, 6), among them, it is observable that the electrocardiographic tracing presents a wide QRS tachycardia, with atrio-ventricular dissociation, compatible with sustained polymorphic VT of approximately 105 beats per minute (BPM), which implies that in 8 s there are 14 beats (Goldberger and Goldberger, 1981). Thus, the features extracted from these modes can be helpful for detection of life threatening ventricular arrhythmia. In this work, the magnitude feature such as the \(L^2 \)-Norm of the Taylor-Fourier coefficients and a novel phase feature such as phase difference (PD) are extracted from each mode of ECG signal. The magnitude feature of the \(j \)-th mode (\(j = 1, 2, ..., M \)) is given by

\[MF_j = \left\| \hat{a}_j \right\|_2 \]

(6)

where \(\hat{a}_j = [\hat{a}_{j}(1), \hat{a}_{j}(2), ..., \hat{a}_{j}(N)] \). The PD feature for of the \(j \)-th frequency component or mode is evaluated in two steps as (i) the evaluation of phase delay vectors as \(d1_j = [\hat{\phi}_{j}(1), \hat{\phi}_{j}(2), ..., \hat{\phi}_{j}(K-1)] \) and \(d2_j = [\hat{\phi}_{j}(2), \hat{\phi}_{j}(3), ..., \hat{\phi}_{j}(K)] \), respectively. The PD is defined by

\[PD_j = \frac{1}{K-1} \sum_{l=1}^{K-1} |d1_j(l) - d2_j(l)| \]

(7)

For all the 10 modes of ECG, the magnitude and the PD features are evaluated. Thus, a 20 dimensional Taylor-Fourier feature vector is constructed by appending the magnitude and PD features.

Once the ECG signals are processed, their reconstructions may carry out synthesizing all the modes by Equation (1), such that a suitable performance and matching are attained with respect to the actual signals for NSR, VT and VF signals, as illustrated in Figures 7, 8, 9. NSR case in Figure 7 presents a sinus rhythm, regular, normal PR, narrow QRS, and iso-level ST. In the VT case in Figure 8, a sustained monomorphic ventricular tachycardia with a wide QRS, and more than 100 BPM is illustrated. Whereas VF case exhibits a shockable behavior (see Figure 9), in which an electrocardiographic tracing is observed with a wide-QRS tachycardia with sustained polymorphic VT with a very high rate. This result demonstrates the ability of the Taylor-Fourier filters for extracting frequency components and reconstructing the oscillatory signals still under hemodynamic instability.

2.4. LSSVM Classifier

In this work, the effectiveness of the magnitude and phase features from the mode Taylor-Fourier coefficients of ECG is assessed using LSSVM classifier for detection and classification of life threatening arrhythmia episodes. The objective of LSSVM is to evaluate the optimal weights and the bias value by formulating a least square problem (Suykens and Vandewalle, 1999). It has been used for various bio-medical applications such as detection of epileptic seizure, detection of breast cancer and detection of various cardiac arrhythmia episodes.
The classification of life threatening VA is performed using the 20 dimensional Taylor-Fourier feature vector. The feature matrix and the respective class labels are denoted as $Z = [z_i]_{i=1}^m$ with each $z_i \in \mathbb{R}^p$ and $y = [y_i]_{i=1}^m$ with each $y_i = (0, 1)$. Here, m is the total number of instances and 0 and 1 are the notations for Non-VF and VF ECG feature instances in the classification of VF vs. Non-VF. Similarly, for the classification of VT vs. VF, 0 and 1 are the class labels for VT and VF classes. Likewise, the 0 and 1 are also termed as the class labels for non-shock and shock classes for the classification of shock vs. non-shock. The optimization problem in LSSVM is given by (Suykens and Vandewalle, 1999)

$$\text{Minimize } J(w, b, \epsilon) = \frac{1}{2} w^T w + \frac{\gamma}{2} \sum_{i=1}^p \epsilon_i^2$$

subjected to the equality constraint as $y_i (w^T f(z_i) + b) = 1 - \epsilon_i$, where w and b are the q-dimensional weight vector and
bias value, respectively. The function $f(z_i)$ maps the input p-dimensional feature vector into a q-dimensional space. The above equation can be solved using Lagrangian as

$$L(w, b, \epsilon; \beta) = J(w, b, \epsilon) - \sum_{i=1}^{m} \beta_i[y_i(w^Tf(z_i) + b) - 1 + \epsilon_i]$$ \hspace{1cm} (9)

The solution of Equation (9) will give rise to the corresponding Lagrange multipliers as $\beta = (\beta_1, \beta_2, ..., \beta_m)^T$. Thus, the output of LSSVM classifier for a given test ECG Taylor-Fourier feature vector z_i can be written as

$$f(z_i) = \text{sign} \left[\sum_{i=1}^{m} \beta_i y_i K(z, z_i) + b \right]$$ \hspace{1cm} (10)

where the term $K(z, z_i)$ is denoted as the kernel function. Here, the linear and RBF kernel functions are used and the classification performance of LSSVM with these two kernel functions are compared. The training and testing Taylor-Fourier feature vectors of ECG frames are chosen using both hold-out

FIGURE 6 | Decomposition of ventricular fibrillation (VF) ECG signal into modes using Taylor-Fourier filter bank and first 10 modes (Mode 0 to Mode 9) of VF ECG signal.

FIGURE 7 | Reconstruction of NSR ECG signal from the Taylor-Fourier coefficients.
and 5-fold cross-validation approaches (Martis et al., 2013). In hold-out approach, 65% of Taylor-Fourier feature vectors from the feature matrix Z is used for training and the rest of the Taylor-Fourier feature vectors are considered for testing of LSSVM. The performance of LSSVM is evaluated using the measures such as the accuracy, sensitivity and specificity (Tripathy et al., 2016).

3. RESULTS

This section presents the statistical analysis results of Taylor-Fourier magnitude and phase features of ECG signal and the performance of LSSVM classifier. The within-class variations of selected Taylor-Fourier magnitude features are shown in boxplots as in Figures 10A,C, respectively. From Figure 10A, it is evident that the mean value of magnitude feature of mode1 is higher for non-VF class as compared to VF class. From the modal decomposition of Non-VF and VF ECG signals in Figures 4, 6, it has been observed that there are the significant variations in the characteristics of mode1. Due to this reason, the mean values are different for both Non-VF and VF classes. It is also seen that, for shockable class the magnitude feature of mode1 has higher mean value than that of non-shockable class. Similar variations in the mean values has been observed for magnitude features of selected modes. The ECG signal for non-shockable class (NSR) contains the normal clinical patterns such as the P-wave, QRS-complex, and T-wave for each beat (Goldberger and Goldberger, 1981). The pathological patterns with a very high rate are observed in ECG during VF and rapid VT cases. Also, the amplitudes and shapes of these patterns are different as those of the normal clinical patterns in non-shockable cases (Clifford et al., 2006). From Figures 4, 6, it can also be observed that the information about the pathological patterns due to VF is captured in the modes which are captured...
In this work, the temporal information since this. Finally, VF does not necessarily respond to the same electrophysiological mechanisms that cause VT, although as a general rule, a VF is always preceded by a VT. Electrocardiographic characteristics of potential malignancy in a myocardium (Goldberger and Goldberger, 1981). However, the common denominator for them it that they create the metabolic and electrical conditions of the myocardium that are conducive to this type of arrhythmia takes place (Goldberger and Goldberger, 1981). Finally, VF does not necessarily respond to the same electrophysiological mechanisms that cause VT, although as a general rule, a VF is always preceded by a VT. Electrocardiographic characteristics of potential malignancy in a VT preceding a VF, are: Polymorphism, R/T phenomenon (R on T) and a very high heart rate. If the VT is sustained, then it may be converted to VF which results fast and irregular episodes in ECG (Goldberger and Goldberger, 1981; Hunt et al., 2005). In this way, CUDB database has the mixed rhythm annotations as both VT and VF in an ECG frame. Due to this reason, the specificity value is higher than sensitivity for the classification of VT and VF episodes.

Taylor-Fourier magnitude and phase features of all databases, only VFDB database and only CUDB database are shown in Tables 1, 2, 3, respectively. It is evident that the accuracy, sensitivity, and specificity values of LSSVM for the classification of non-VF andVF episodes are 89.91, 86.38, and 93.97% using Taylor-Fourier magnitude and phase features of 8 s frames of ECG signals from VFDB database. The accuracy value of LSSVM classifier is higher using 8 s frame based ECG features as compared to 5 and 4 s frame based magnitude and phase features. The Taylor-Fourier magnitude and phase features of 8 s ECG frames in VFDB database effectively captures the pathological changes of ECG during VF. For CUDB database, the accuracy of LSSVM with Taylor-Fourier magnitude and phase features of 4 s frames of ECG signals is higher than those of the 5 and 8 s ECG frames. The performance of RBF kernel based LSSVM is higher than linear kernel by using the features of 4, 5, and 8 s frames of ECG signals of the combination of VFDB and CUDB databases. For the classification of VF vs. VT, the performance of proposed method using the ECG signals of CUDB database is higher than the VFDB database. The proposed method has the advantage that it can detect and classify life threatening VA episodes. The sensitivity and specificity values for the classification of VT and VF episodes using LSSVM classifier and the features of 4 s ECG frames are 82.41 and 95.44%, respectively. The ECG signal is widely used to quantify the physiological similarities and differences between ventricular tachycardia and ventricular fibrillation (Goldberger and Goldberger, 1981). The electrocardiographic diagnosis of VT is carried out in the presence of three or more complex QRS, presenting an aberrant configuration and a ventricular origin (3 or more EV), whose cardiac frequency is 120 beats per minute or greater. Tachycardia may become regular or irregular, whereas the atrial activity can be independent of the ventricular-atrial dissociation, or it can be linked to VT by a reverse conduction 1:1 or a variable-degree heart block (Goldberger and Goldberger, 1981). According to their electrocardiographic configuration, VTs are divided into uniform, biform or multiform. With respect to the ventricular fibrillation, this is characterized by a chaotic activation of myocardium. According to the mechanism for VF there exist different clinical conditions with the potential to yield it, such as: ischemia, acute myocardial infarction, drugs, electrolyte imbalances, tachyarrhythmias (Hunt et al., 2005).

TABLE 1 | Performance of LSSVM classifier using DTFT features of ECG signals of all databases.

Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)
Linear	73.94	69.16	75.17	Linear	72.17	64.86	74.02	Linear	72.54	65.15	74.43
RBF	82.36	81.83	82.82	RBF	84.30	82.02	85.26	RBF	84.41	82.19	83.88

NON-VF vs. VF

Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)
Linear	74.58	74.59	74.58	Linear	74.06	74.89	73.32	Linear	75.44	75.40	75.54
RBF	83.75	85.20	82.46	RBF	82.66	83.74	81.73	RBF	82.84	83.82	82.05

NON-SHOCK vs. SHOCK

Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)
Linear	69.04	69.29	68.35	Linear	67.12	67.92	66.41	Linear	70.30	70.92	69.75
RBF	80.61	82.51	78.98	RBF	80.99	82.61	79.57	RBF	80.15	82.12	78.54

TABLE 2 | Performance of RBF kernel LSSVM classifier using DTFT features of ECG signals of VFDB database.

Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)
RBF	79.19	80.98	78.05	RBF	77.22	79.72	76.00	RBF	82.83	79.64	84.27

NON-VF vs. VF

Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)
RBF	89.05	85.81	92.97	RBF	89.44	86.58	92.81	RBF	89.81	86.38	93.97

NON-SHOCK vs. SHOCK

Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)
RBF	83.52	82.84	86.26	RBF	83.63	81.87	85.67	RBF	84.26	83.38	85.25

TABLE 3 | Performance of RBF kernel LSSVM classifier using DTFT features of ECG signals of CUDB database.

Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)	Kernels	Acc (%)	Sen (%)	Spe (%)
RBF	94.80	82.41	95.44	RBF	94.68	81.08	95.28	RBF	94.32	72.48	95.53

4. DISCUSSION

The present work is based on the use of DTFT for extraction of ECG features. The performance of Taylor-Fourier features is compared with some of the existing features for detection of life threatening VA and the comparison result is shown in Table 4. In this work, the comparison of the performance of proposed method with existing approaches using the 8 s ECG features from CUDB database is shown. Here, for comparison, the performance of TCI, VFF, SPEC, CPLX, PSR features are also evaluated using CUDB database. Thakor et al. (1990) have proposed TCI features and threshold-based sequential detection algorithm for the classification of VT and VF. They have used 85 VF and 85 polymorphic and monomorphic VT episodes. They have evaluated the performance TCI features from 1 to 7 s ECG segments using threshold-based sequential detection algorithm. From their study, they have reported higher sensitivity, and specificity values for TCI feature from 6 and 7 s ECG segments. Similarly, Zhang et al. (1999) have evaluated the complexity measure from the ECG segments of different length for the
The proposed work is evaluated using the ECG signals from only 57 subjects. More number of subjects can be used for assessing the performance of the proposed method. More features can be evaluated based on the non-linear analysis of both magnitude and phase parts of Taylor-Fourier coefficients of different modes of ECG signal for the detection of life-threatening ventricular arrhythmia episodes. The complexity and burden for Taylor-Fourier transform have been discussed and compared with Fast Fourier Transform (FFT) in Zamora et al. (2017). Further computation

Features used	Sen (%)	Spe (%)
Threshold Crossing Interval (TCI) (Thakor et al., 1990)	71.00	70.50
VF-Filter Algorithm (VFF)	30.00	99.50
Spectral Algorithm (SPEC) (Barro et al., 1989)	29.00	99.30
Complexity Measure Algorithm (CPLX) (Zhang et al., 1999)	56.40	86.60
Phase Space Representation (PSR) (Amann et al., 2007)	70.20	89.30
Taylor-Fourier Magnitude and phase (TFMP) (VFDB database)	88.38	93.97
Taylor-Fourier Magnitude and phase (TFMP) (CUDB database)	84.15	77.22
reduction is achieved due to the fact that the Taylor-Fourier matrix only contains the frequencies of concern (Zamora et al., 2017). That is, matrices B and its pseudo inverse (B^{-1}) are computed just once, only those columns corresponding to the Taylor-Fourier filters with central frequencies between 0 and 45 Hz (varying each 5 Hz), are taken into account. This allows reducing the size of B from $CNxCN$ to $CNxCN$, without affect the feasibility of the Taylor-Fourier transform method.

5. CONCLUSIONS

This paper has demonstrated the use of Taylor-Fourier filters for extracting the diagnostic features from ECG signal. The combination of Taylor-Fourier magnitude and phase features and LSSVM classifier has been used for detection of various life threatening arrhythmia. The Taylor-Fourier magnitude and phase feature have successfully quantify the pathological changes in ECG during life threatening VA and these features have different mean values for VF and non-VF class. The proposed method has higher sensitivity than those of the existing approach for detection of VF. More robust features from the magnitude and phase of Taylor-Fourier coefficients can also be evaluated for detection of life threatening VA and other heart ailments.

ETHICS STATEMENT

This study involved the human subjects. However, the data for the present study was taken from readily available public databases and hence, ethical statements associated with the study is not included.

AUTHOR CONTRIBUTIONS

RT performed all data analysis and wrote the manuscript. AZ-M, JdlOS, MA, and JA advised the analysis and edited the manuscript. MA and JA conceptualized the experiment. MA and GN supervised the study, advised the analysis, and edited the manuscript.

REFERENCES

Acharya, U. R., Fujita, H., Oh, S. L., Raghavendra, U., Tan, J. H., Adam, M., et al. (2018). Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. *Future Generat. Comput. Syst.* 79, 952–959. doi: 10.1016/j.future.2017.08.039

Addison, P. S., Waterson, J. N., Clegg, G. R., Holzer, M., Sterz, F., and Robertson, C. E. (2000). Evaluating arrhythmias in ECG signals using wavelet transforms. *IEEE Eng. Med. Biol. Mag.* 19, 104–109. doi: 10.1109/51.870237

Alonso-Atienza, F., Morgado, E., Fernández-Martínez, L., García-Alberola, A., and Rojo-Alvarez, J. L. (2014). Detection of life-threatening arrhythmias using feature selection and support vector machines. *IEEE Trans. Biomed. Eng.* 61, 832–840. doi: 10.1109/TBME.2013.2290800

Ammann, A., Tratnig, R., and Unterkofler, K. (2007). Detecting ventricular fibrillation by time-delay methods. *IEEE Trans. Biomed. Eng.* 54, 174–177. doi: 10.1109/TBME.2006.880909

Abdullah Arafat, M., Siedd, J., and Kamrul Hasan, M. (2009). Detection of ventricular fibrillation using empirical mode decomposition and bayes decision theory. *Comput. Biol. Med.* 39, 1051–1057. doi: 10.1016/j.compbiomed.2009.08.007

Bajaj, V. and Pachori, R. B. (2012). Classification of seizure and noneizure EEG signals using empirical mode decomposition. *IEEE Trans. Inform. Technol. Biomed.* 16, 1135–1142. doi: 10.1109/TITBI.2011.2181403

Balasundaram, K., Masse, S., Nair, K., and Umamathy, K. (2013). A classification scheme for ventricular arrhythmias using wavelets analysis. *Med. Biol. Eng. Comput.* 51, 153–164. doi: 10.1007/s11517-012-0980-y

Barro, S., Ruiz, R., Cabello, D., and Mira, J. (1989). Algorithmic sequential decision-making in the frequency domain for life threatening ventricular arrhythmias and imitative artefacts: a diagnostic system. *J. Biomed. Eng.* 11, 320–328. doi: 10.1016/0141-5425(89)90067-8

Chen, S., Thakor, N., and Mower, M. (1987). Ventricular fibrillation detection by a regression test on the autocorrelation function. *Med. Biol. Eng. Comput.* 25, 241–249. doi: 10.1007/BF02447420

Clifford, G. D., Azuaje, F., & McSharry, P. (2006). *Advanced Methods and Tools for ECG Data Analysis*. Norwood: Artech House.

de la O Serna, J. (2007). Dynamic phasor estimates for power system oscillations. *IEEE Trans. Instrum. Meas.* 56, 1648–1657. doi: 10.1109/TIM.2007.904546

de la O Serna, J. (2013). Taylor-fourier analysis of blood pressure oscillometric waveforms. *IEEE Trans. Instrum. Meas.* 62, 2511–2518. doi: 10.1109/TIM.2013.2258245

Epstein, A. E., DiMarco, J. P., Ellenbogen, K. A., Estes, N. M., Freedman, R. A., Gettes, L. S., et al. (2008). ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities. *Circulation* 117, e350–e408. doi: 10.1161/CIRCULATIONAHA.108.189742

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000). Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals. *Circulation* 101, e215–e220. doi: 10.1161/01.CIR.101.23.2125

Goldberger, A. L. and Goldberger, E. (1981). Clinical electrocardiography, a simplified approach. *Crit. Care Med.* 9, 891–892.

Hunt, S. A., American College of Cardiology, and American Heart Association Task Force on Practice Guidelines (2005). ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure). *J. Am. Coll. Cardiol.* 46, e1–e82. doi: 10.1016/j.jacc.2005.08.022

Jekova, I. (2000). Comparison of five algorithms for the detection of ventricular fibrillation from the surface ECG. *Physiol. Meas.* 21:429. doi: 10.1088/0967-3334/21/4/301

Jekova, I. (2007). Shock advisory tool: detection of life-threatening cardiac arrhythmias and shock success prediction by means of a common parameter set. *Biomed. Signal Process. Control* 2, 25–33. doi: 10.1016/j.bspc.2007.01.002

Jekova, I., and Krasteva, V. (2004). Real time detection of ventricular fibrillation and tachycardia. *Physiol. Meas.* 25:1167. doi: 10.1088/0967-3334/25/5/007

Kuo, S. and Dillman R. (1978). “Computer detection of ventricular fibrillation,” in *Proc. of Computers in Cardiology*, IEEE Computer Society (Stanford, CA), 347–349.

Li, Q., Rajagopalan, C., and Clifford, G. D. (2014). Ventricular fibrillation and tachycardia classification using a machine learning approach. *IEEE Trans. Biomed. Eng.* 61, 1607–1613. doi: 10.1109/TBME.2013.2275000

Li, Y., Bisera, J., Weil, M. H., and Tang, W. (2012). An algorithm used for ventricular fibrillation detection without interrupting chest compression. *IEEE Trans. Biomed. Eng.* 59, 78–86. doi: 10.1109/TBME.2011.2187755

Martis, R. J., Acharya, U. R., Lim, C. M., and Suri, J. S. (2013). Characterization of ECG beats from cardiac arrhythmia using discrete cosine transform in PCA framework. *Knowledge Based Syst.* 45, 76–82. doi: 10.1016/j.knosys.2013.02.007

Millet-Roig, J., Rieta-Ibáñez, J., Vilanova, E., Mocholi, A., and Chorro, F. (1999). “Time-frequency analysis of a single ECG: to discriminate between ventricular tachycardia and ventricular fibrillation,” in *Computers in Cardiology, 1999 (IEEE)* (Hannover), 711–714.
Namarvar, H. H., and Vahid Shahidi, A. (2004). “Cardiac arrhythmias predictive detection methods with wavelet-svd analysis and support vector machines,” in Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE (San Francisco, CA: IEEE), 365–368.

Nguyen, M. T., Van Nguyen, B., and Kim, K. (2017). Shockable rhythm diagnosis for automated external defibrillators using a modified variational mode decomposition technique. *IEEE Trans. Indus. Inform.* 13, 3037–3046. doi: 10.1109/TII.2017.2740435

Oh, S. L., Hagiwara, Y., Adam, M., Sudarshan, V. K., Koh, J. E., Tan, J. H., et al. (2017). Shockable versus nonshockable life-threatening ventricular arrhythmias using DWT and nonlinear features of ECG signals. *J. Mech. Med. Biol.* 17:1740004. doi: 10.1142/S0219519417400048

Polat, K., Akdemir, B., and Güneş, S. (2008). Computer aided diagnosis of ECG data on the least square support vector machine. *Digital Signal Process.* 18, 25–32. doi: 10.1016/j.dsp.2007.05.006

Suykens, J. A., and Vandewalle, J. (1999). Least squares support vector machine classifiers. *Neural Process. Lett.* 9, 293–300. doi: 10.1023/A:1018628609742

Thakor, N. V., Zhu, Y. S., and Pan, K. Y. (1990). Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm. *IEEE Trans. Biomed. Eng.* 37, 837–843.

Tripathy, R. K., Sharma, L., and Dandapat, S. (2016). Detection of shockable ventricular arrhythmia using variational mode decomposition. *J. Med. Syst.* 40:79. doi: 10.1007/s10916-016-0441-5

Tripathy, R. K., and Dandapat, S. (2017). Automated detection of heart ailments from 12-lead ecg using complex wavelet sub-band bi-spectrum features. *Healthcare Technol. Lett.* 4, 57–63. doi: 10.1049/htl.2016.0089

Tripathy, R. K., Mahanta, S., and Paul, S. (2014). Artificial intelligence-based classification of breast cancer using cellular images. *RSC Adv.* 4, 9349–9355. doi: 10.1039/C3RA47489E

Wathen, M. S., DeGroot, P. J., Sweeney, M. O., Stark, A. J., Otterness, M. F., Adkisson, W. O., et al. (2004). Prospective randomized multicenter trial of empirical antitachycardia pacing versus shocks for spontaneous rapid ventricular tachycardia in patients with implantable cardioverter-defibrillators: pacing fast ventricular tachycardia reduces shock therapies (painFREE Rx II) trial results. *Circulation* 110, 2591–2596. doi: 10.1161/01.CIR.0000145610.64014.E4

Zamora, A., Venkatasubramanian, V. M., de la O Serna, J. A., Ramirez, J. M., and Paternina, M. (2017). Multi-dimensional ringdown modal analysis by filtering. *Electric Power Syst. Res.* 143, 748–759. doi: 10.1016/j.epsr.2016.10.022

Zhang, X. S., Zhu, Y. S., Thakor, N. V., and Wang, Z. Z. (1999). Detecting ventricular tachycardia and fibrillation by complexity measure. *IEEE Trans. Biomed. Eng.* 46, 548–555.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Tripathy, Zamora-Mendez, de la O Serna, Paternina, Arrieta and Naik. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.