Endoplasmic Reticulum Remodeling Tunes IP$_3$-Dependent Ca$^{2+}$ Release Sensitivity

Lu Sun1, Fang Yu1, Aman Ullah2, Satanay Hubrack1, Arwa Daalis1, Peter Jung2, Khaled Machaca1

1Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City – Qatar Foundation, Doha, Qatar, 2Department of Physics and Astronomy and Quantitative Biology Institute, Ohio University, Athens, Ohio, United States of America

Abstract

The activation of vertebrate development at fertilization relies on IP$_3$-dependent Ca$^{2+}$ release, a pathway that is sensitized during oocyte maturation. This sensitization has been shown to correlate with the remodeling of the endoplasmic reticulum into large ER patches, however the mechanisms involved are not clear. Here we show that IP$_3$ receptors within ER patches have a higher sensitivity to IP$_3$ than those in the neighboring reticular ER. The lateral diffusion rate of IP$_3$ receptors in both ER domains is similar, and ER patches dynamically fuse with reticular ER, arguing that IP$_3$ receptors exchange freely between the two ER compartments. These results suggest that increasing the density of IP$_3$ receptors through ER remodeling is sufficient to sensitize IP$_3$-dependent Ca$^{2+}$ release. Mathematical modeling supports this concept of ‘geometric sensitization’ of IP$_3$ receptors as a population, and argues that it depends on enhanced Ca$^{2+}$-dependent cooperativity at sub-threshold IP$_3$ concentrations. This represents a novel mechanism of tuning the sensitivity of IP$_3$ receptors through ER remodeling during meiosis.

Introduction

The egg-to-embryo transition marks the initiation of multicellular organismal development and is instigated by a series of cellular events following fertilization collectively referred to as egg activation [1]. These events are encoded in a sequential fashion by the fertilization-induced Ca$^{2+}$ transient, which possesses specialized spatial and temporal dynamics that are necessary and sufficient for egg activation [2]. The egg acquires the competency to produce the fertilization-specific Ca$^{2+}$ signal during oocyte maturation, a complex developmental pathway that prepares the egg for fertilization. Oocyte maturation is driven by multiple kinase cascades induced downstream of the hormonal signal that releases meiotic arrest [3]. The dynamic remodeling of Ca$^{2+}$ signaling is fundamental to the developmental competence of the egg [2]. It further elegantly illustrates the versatility of Ca$^{2+}$ signals given the broad bandwidth inherent in their temporal and spatial features. This results in an information rich signal that instructs multiple cellular events at egg activation, including the block to polyspermy and completion of meiosis [2].

At steady state IP$_3$ receptors in different cell types cluster in a hierarchical fashion leading to Ca$^{2+}$ release events of varying sizes, referred to as blips for the smallest events, presumably due to the opening of a single IP$_3$ receptor, or puffs for larger events [4–6]. Such elementary events coalesce to produce global Ca$^{2+}$ release waves [7–9]. In addition, studies have shown that sustained IP$_3$ or Ca$^{2+}$ levels lead to a slow aggregation of IP$_3$ receptors into large clusters independently of ER structure, presumably through protein-protein interactions [10–12]. Functionally IP$_3$ receptor clustering allows for a continuum of the IP$_3$-dependent Ca$^{2+}$ release events that serve specific cellular needs.

An important aspect of Ca$^{2+}$ signaling differentiation during oocyte meiosis that is conserved among different species, is the increased sensitivity of IP$_3$-dependent Ca$^{2+}$ release [13–15]. Ca$^{2+}$ release through IP$_3$ receptors is a major contributor to the fertilization-induced Ca$^{2+}$ signal in vertebrates [16]. The enhanced sensitivity of IP$_3$-dependent Ca$^{2+}$ release is often described as a larger Ca$^{2+}$ transient in eggs following store mobilization [14,17,18]. However this does not necessarily translate into sensitization of IP$_3$ receptors per se, since additional factors could contribute to the duration and amplitude of the Ca$^{2+}$ release signal, including Ca$^{2+}$ extrusion and influx, cytosolic buffering capacity, and Ca$^{2+}$ reuptake into stores. A more accurate description of IP$_3$ receptor sensitization is reflected as Ca$^{2+}$ release in the egg at lower threshold IP$_3$ concentrations that induce minimal or no release in the immature oocyte [13,15]. Also noteworthy is the fact that additional Ca$^{2+}$ signaling pathways are modulated during meiosis, including inhibition of Ca$^{2+}$ influx, internalization of the plasma membrane Ca$^{2+}$-ATPase, and Ca$^{2+}$ recycling between the cytoplasm and ER lumen due to prolonged opening of IP$_3$ receptors [19–23]. Collectively modulation of these different Ca$^{2+}$ signaling modules defines the dynamics of the fertilization-induced Ca$^{2+}$ transient.

Enhanced Ca$^{2+}$ release in the egg correlates with IP$_3$ receptor phosphorylation, and is clearly dependent on the activation of the oocyte maturation kinase cascades [15,24,25]. Although this
correlation postulates a direct role of IP$_3$ receptor phosphorylation in the sensitization of Ca$^{2+}$ release [24–26], this remains to be shown. A potential mechanism that could contribute to IP$_3$ receptor sensitization is increased affinity of the IP$_3$ receptor [27]. However, this has not been proven experimentally, highlighting the fact that the mechanistic regulation of IP$_3$-dependent Ca$^{2+}$ release sensitization during meiosis remains largely undefined. In addition, the number of functional IP$_3$ receptors increases during *Xenopus* oocyte maturation following the disruption of annulate lamellae, which are specialized membranous structures where the activity of a sub-population of IP$_3$ receptors is inhibited [28]. This inhibition is due to nuclear pore complexes, which are enriched in annulate lamellae as a molecular stockpile for embryonic divisions [29].

Furthermore, alterations to IP$_3$-dependent Ca$^{2+}$ release have been shown to correlate with ER remodeling in oocytes from several species [30]. In *Xenopus* ER patches nucleate Ca$^{2+}$ waves and patch appearance coincides with IP$_3$-dependent Ca$^{2+}$ release sensitization [17,28]. Similarly in mouse eggs the Ca$^{2+}$ waves are due to lateral diffusion of IP$_3$ receptors in the plane of the ER membrane to form overlapping Ca$^{2+}$ release sites [15]. IP$_3$ receptors in the patch ER ROI respond by releasing Ca$^{2+}$ at a greater rate in both the patch and reticular ER ROIs, arguing that IP$_3$ release activity is sensitized in ER patches. This is indeed the case as shown in Figure 2B. Cross sectional profiles of both ER distribution (black) and Ca$^{2+}$ release activity (red) demonstrate co-localization of individual SREs to ER patches (Fig. 2B). This co-localization was observed consistently in at least 15 cells tested and shows that elementary Ca$^{2+}$ release events in the egg localize to ER patches.

IP$_3$ receptors localize to both the reticular ER and ER patches in the egg (Fig. 1B), yet initial Ca$^{2+}$ release events are observed preferentially within ER patches (Fig. 2B) [29]. This argues for a differential sensitivity of IP$_3$ receptors based on the ER sub-domain they localize to. To test whether this is the case we undertook a series of functional experiments to directly assess Ca$^{2+}$ release sensitivity in the different ER spatial domains.

ER remodeling into large patches sensitizes IP$_3$-dependent Ca$^{2+}$ release

The fact that ER remodeling was observed on both the animal and vegetal hemispheres argues that Ca$^{2+}$ puffs clustering during meiosis is not due to lateral diffusion of IP$_3$ receptors, but rather to ER remodeling. This is supported by the similar width of ER patches and that of elementary Ca$^{2+}$ release events (SREs) in eggs (Fig. 1E). In addition, if ER remodeling underlies Ca$^{2+}$ puff redistribution, then Ca$^{2+}$ release activity should coincide spatially with ER patches. This is indeed the case as shown in Figure 2B. Gradual uncaging of IP$_3$ results, after a time lag, in Ca$^{2+}$ release SREs that coalesce into a Ca$^{2+}$ wave (Fig. 2B). The cross sectional profiles of both ER distribution (black) and Ca$^{2+}$ release activity (red) demonstrate co-localization of individual SREs to ER patches (Fig. 2B). This co-localization was observed consistently in at least 15 cells tested and shows that elementary Ca$^{2+}$ release events in the egg localize to ER patches.

Results

ER remodels during meiosis

We have previously shown that elementary IP$_3$-dependent Ca$^{2+}$ release events (Ca$^{2+}$ puffs) cluster dramatically during oocyte maturation, and that this clustering is important for the mode and speed of Ca$^{2+}$ wave propagation in the egg [15]. Whereas Ca$^{2+}$ puffs in the oocyte are separate, they coalesce in the egg following maturation (Fig. 1A). Ca$^{2+}$ transients were imaged in line scan mode on the animal hemisphere while continuously uncaging IP$_3$ using the near UV 405 nm laser at low intensity (Fig. 1A). This allows for gradual build-up of IP$_3$ concentration thus inducing Ca$^{2+}$ puffs (Fig. 1A). Note the spatially overlapping Ca$^{2+}$ puffs in the egg (Fig. 1A). Because ER remodeling was reported to be limited to the vegetal hemisphere of the egg [17], we initially interpreted the clustering of Ca$^{2+}$ puffs on the animal hemisphere as being due to lateral diffusion of IP$_3$ receptors in the plane of the ER membrane to form overlapping Ca$^{2+}$ release sites [15]. Attempts to visualize such IP$_3$ receptor clusters in eggs expressing GFP-tagged IP$_3$ receptor were unsuccessful. Rather we observed large three dimensional aggregations of IP$_3$ receptors that were reminiscent of ER patches observed during maturation (Fig. 1B) [17]. Indeed these IP$_3$ receptor aggregations co-localize with the ER marker, mCherry-KDEL (Fig. 1B). In the immature oocyte both the IP$_3$ receptor and ER have a reticular distribution, that remodels into a combination of reticular and large ER ‘patches’ during oocyte maturation (Fig. 1B, Egg). Contrary to what has been previously reported [17], ER reorganization is observed on both the animal and vegetal poles of the egg (Fig. 1B). We assessed
threshold increases the probability of opening of IP3 receptors, since IP3 receptor gating exhibits a bell-shaped dependence on Ca2+ [33,34]. These results suggest that IP3 receptors in ER patches are more sensitive when compared to those in the reticular ER. Note that the amount of Ca2+ released from the reticular ER ROI is comparable to that observed over the ER patch ROI (Figure 3A, trace), arguing that local luminal Ca2+ content is not limiting.

We next replicated the conditions in the line scan protocol (Fig. 2B) by imaging Ca2+ transients while continuously uncaging IP3 at low amplitude across the entire field (Fig. 3B). This results in a propagative wave that is invariably initiated over an ER patch (Fig. 3B, white box) in all 12 cells tested. Therefore, as IP3 levels build up, Ca2+ release is preferentially triggered from ER patches as compared to the reticular ER, favoring the argument that IP3 receptors in ER patches are sensitized to IP3 compared to receptors in the reticular ER. In these experiments IP3 receptors in the two ER domains are exposed to similar IP3 concentration for several seconds. This prolonged exposure to IP3 shows that IP3 receptors in ER patches respond to sub-threshold IP3 concentrations that are incapable of inducing Ca2+ release from the reticular ER.

In the previous experimental approaches IP3 was gradually increased over time through continuous uncaging of cIP3. Given that IP3 can result in Ca2+-independent IP3 receptor inactivation [35,36], the gradual slow increase in IP3 could potentially result in receptor inactivation, which may dampen Ca2+ release from the reticular ER. With this concern in mind, we designed experiments to define the sensitivity of IP3-dependent Ca2+ release in different ER domains following a single uncaging pulse within two ROIs.
immobile fraction it is possible that a sub-population of IP$_3$ receptors localize differentially to ER compartments. This is unlikely though, because ER patches are continuously remodeling and fusing with reticular ER domains (Fig. 2A), arguing that the same population of IP$_3$ receptors exists in ER patches and reticular ER domains.

We then considered the possibility that the density of IP$_3$ receptors in the different ER sub-domains modulates their sensitivity as a population. The probability of opening (P_o) of IP$_3$ receptors exhibits a bell-shaped dependence on Ca$^{2+}$ [33,34], which plays a role in the cooperativity of gating of IP$_3$ receptors within a cluster [4,37,38]. At the ultrastructural level ER patches in the egg are formed by a complex three dimensional ER rearrangement (Fig. S2) [17], which brings IP$_3$ receptors in close physical proximity. Therefore, increased density of IP$_3$ receptors within an ER patch could cooperatively increase their P_o leading to functional sensitization. To determine whether this is the case we modeled the time delay in Ca$^{2+}$ release as a function of IP$_3$ receptor cluster size, which shows an inverse relationship (Fig. 4B). Therefore, the higher the density of IP$_3$ receptors (large cluster) the shorter the time delay in responding to IP$_3$ to gate the receptor open (Fig. 4B). This is consistent with IP$_3$ receptor sensitization due to increased density. We then modeled the response of two IP$_3$ receptor clusters of different sizes (20 or 1000 receptors) (Fig. 4C). Simulating an IP$_3$ rise across the entire field leads to Ca$^{2+}$ release from the large IP$_3$ receptor cluster, which diffuses to the smaller cluster leading to Ca$^{2+}$ release (Fig. 4C), replicating the experimental observation in Figure 3A, and showing that IP$_3$ receptors within the large cluster are more sensitive to IP$_3$. Details of the mathematical model are discussed in Appendix S1.

We then tested whether Ca$^{2+}$-dependent cooperativity within a large cluster of IP$_3$ receptors modulates their sensitization. To alter Ca$^{2+}$-dependent cooperativity we varied Ca$^{2+}$ diffusion coefficient, reasoning that higher Ca$^{2+}$ diffusion coefficients increase IP$_3$ receptors cooperativity by enhancing cross-talk (Ca$^{2+}$-dependent gating) between channels within a cluster. Changing the Ca$^{2+}$ diffusion coefficient will not affect IP$_3$ receptor affinity to its ligand IP$_3$. A dose response relationship of IP$_3$-dependent Ca$^{2+}$ release as a function of IP$_3$ concentrations shows a shift to the right as Ca$^{2+}$ diffusion coefficient decreases (Fig. 4D). From this plot one can
estimate the sensitivity of IP3-dependent Ca2+ release as the threshold IP3 concentration required to produce Ca2+ release (F/F0), in this case set as double the resting Ca2+ concentration (Fig. 4D, left panel).

The threshold IP3 concentration decays exponentially as a function of the Ca2+ diffusion coefficient (Fig. 4D, right panel). This supports a model, where clustering of IP3 receptors within the ER structures plays a role in modulating Ca2+ release.

Figure 3. Sensitization of Ca2+ release in ER patches. Eggs expressing mCherry-KDEL were injected with cIP3, and Oregon-green and imaged ~1 hr after GVBD. A–B. IP3 receptors in ER patches respond to IP3 concentrations not detected by receptors in the reticular ER. ER distribution and Ca2+ release were imaged over time, while continuously uncaging cIP3 only within two ROIs as indicated by the boxes using the 405 nm laser. One ROI was placed over an ER patch (P) and the other over a reticular ER domain (Ret). Ca2+ release events over the entire time course within the two ROIs are shown on the right. B. Same experimental conditions as in A, except that uncaging with the 405 nm laser was performed over the entire field continuously. The white box shows the localization of the first release event to an ER patch. C–D. A single sub-threshold uncaging pulse results in preferential Ca2+ release from ER patches as compared to the reticular ER. In this case a single uncaging pulse was applied (405 nm laser 50% power) only within the circular ROIs (white circles) as indicated by ‘Uncage’ on the traces in the lower panel. One ROI is over an ER patch and the other over the reticular ER. D. Same imaging conditions over a small area (inset, 9.15 x 3 μm) where a single uncaging pulse was applied over the entire imaged area. Ca2+ release was then analyzed from two regions as indicated by the boxes representing an ER patch and the neighboring reticular ER. The lower traces show an expanded time scale of Ca2+ release.

doi:10.1371/journal.pone.0027928.g003
three dimensional space of an ER patch enhances channel cooperativity leading to their sensitization. The sensitization of IP₃ receptors in this case is a population property that is independent from the IP₃ affinity of each individual IP₃ receptor. These results show that ER remodeling tunes the sensitivity of IP₃ receptors by increasing their density and as such Ca²⁺-dependent cooperativity. When IP₃ receptors are concentrated in a three-dimensional volume as in the context of an ER patch, stochastic opening of individual receptors would lead to Ca²⁺-dependent sensitization of neighboring receptors resulting in Ca²⁺ release.

Figure 4. A. IP₃ receptors lateral mobility in ER patches and reticular ER. Fluorescence recovery after photobleaching (FRAP) in oocytes and eggs expressing GFP-IP₃ receptor (n = 7–8; mean ± SE). The bleaching ROIs in eggs were positioned over ER patches or reticular ER. Recovery kinetics were fitted with a monoexponential decay function. Recovery kinetics show that the lateral mobility of IP₃ receptors is comparable within ER patches and the reticular ER. B–D. Mathematical modeling. Modeling the time delay in Ca²⁺ release as a function of IP₃ receptor cluster size. As IP₃ receptor cluster size increases the delay in response to an IP₃ pulse decreases. C. Modeling Ca²⁺ release spatial and amplitude distribution from two IP₃ receptor clusters of varying size (20 and 1000) in response to a sub-threshold IP₃ pulse. D. Simulation of the dependence of Ca²⁺ release within an IP₃ receptor cluster as a function of IP₃ concentration for varying Ca²⁺ diffusion coefficients. Lowering the Ca²⁺ diffusion coefficient results in less Ca²⁺-dependent cooperativity between neighboring receptors. Decreasing Ca²⁺ diffusion coefficient leads to decreased sensitivity of IP₃ receptors as illustrated by the threshold IP₃ concentration required to initiate Ca²⁺ release.

doi:10.1371/journal.pone.0027928.g004
ER remodeling modulate Ca2+ wave propagation

To test the role of ER patches in Ca2+ wave propagation we measured the speed of propagation of the Ca2+ wave in eggs with or without ER patches on the animal hemisphere. As shown in Figure 1C a small percentage of eggs exhibit no ER patches. We tried to increase this percent by treating cells with nocodazole, however found that when cells were injected with Oregon-green, nocodazole was no longer effective at preventing patch formation. The reasons for this observation are unclear but could be due to a Ca2+-dependence of nocodazole action on microtubules. Nonetheless, the natural diversity of patch occurrence in individual oocytes allowed us to test whether the presence of ER patches has any effect on the speed of propagation of the Ca2+ wave. An uncaging pulse on the animal hemisphere leads to a global Ca2+ wave. An uncaging pulse on the animal hemisphere leads to a global Ca2+ wave in both cells with or without ER patches (Fig. 5). However, the speed of propagation was significantly slower is cells with no ER patches (p = 1.2 × 10-4) (Fig. 5), arguing that ER patches are important in modulating Ca2+ wave speed.

Role of the oocyte maturation kinase cascade in ER remodeling and IP\textsubscript{3} receptor sensitization

In both Xenopus and mouse oocytes the kinase cascade driving maturation plays an important role in the sensitization of IP\textsubscript{3}-dependent Ca2+ release [24–26]. In Xenopus, sensitization of Ca2+ release correlates with the activation of MPF and hyper-activation of either the MAPK cascade or MPF is sufficient to sensitize Ca2+ release [24]. The IP\textsubscript{3} receptor is phosphorylated at consensus MPF/MAPK sites during oocyte maturation [24]. Furthermore, modeling studies suggest that increased IP\textsubscript{3} receptor affinity is a determinant of the changes observed in both elementary and global Ca2+ signaling during oocyte maturation [27]. This raises questions regarding the relative contribution of the oocyte maturation kinase cascade, ER remodeling and IP\textsubscript{3} receptor sensitization. To address this issue, we correlated Ca2+ release sensitivity with the activation state of the kinase cascades and the formation of ER patches. To assess the sensitivity of IP\textsubscript{3}-dependent Ca2+ release a threshold uncaging pulse was empirically defined in oocytes and applied to eggs (Fig. 6). Normalization of the data to the Ca2+ release levels in oocytes provides a measure of the sensitization of Ca2+ release in response to IP\textsubscript{3} [24].

Modulation of the kinase cascade by different molecular or pharmacological regulators allows differential activation of kinases along the cascade as summarized in Figure 6A. In contrast to oocytes, in eggs MAPK and MPF are active, ER patches are apparent and IP\textsubscript{3}-dependent Ca2+ release is sensitized (Fig. 6B–D). Eggs expressing Mos or Cyclin B (CyR) activates both MAPK and MPF, and results in ER patch formation and sensitization of Ca2+ release (Fig. 6B–D). Activation of MPF independently of MAPK using the Cyclin B-U0126 approach (Fig. 6A), results in ER patch formation and sensitization of Ca2+ release (Fig. 6B & D), showing that MPF activation is sufficient to remodel the ER during meiosis. This is confirmed by activation of the MAPK cascade independently of MPF, using Wee1 followed by Mos expression, which does not result in ER reorganization into patches (Fig. 6B). However, in this case Ca2+ release is still sensitized (Fig. 6C), as previously shown [24]. These data argue that ER remodeling during meiosis requires MPF, the master kinase that drives the cell division phase. However, the sensitization of IP\textsubscript{3}-dependent Ca2+ release still occurs in the absence of ER remodeling when the MAPK cascade is hyper-activated, suggesting that both ER remodeling and phosphorylation of either the IP\textsubscript{3} receptor, or other effectors that modulate IP\textsubscript{3} receptor activity, contribute to sensitization of IP\textsubscript{3}-dependent Ca2+ release during meiosis. As such they may represent redundant mechanisms that ensure IP\textsubscript{3} receptor sensitization, and egg activation at fertilization.

Discussion

The IP\textsubscript{3} receptor transduces signals downstream of PLC-coupled receptors into Ca2+ transients, and acts as a central signal integrator through its large cytoplasmic domain, which interacts with multiple modulators [39]. Ca2+ released through IP\textsubscript{3} receptors plays critical cellular functions, including the regulation of gene expression, cell growth and secretion. IP\textsubscript{3} receptors coalesce into clusters of several IP\textsubscript{3} receptors, which undergo elementary Ca2+ release events. The size of these elementary events depends on the number of active receptors, which is regulated by cross talk between IP\textsubscript{3} receptors within a cluster.
ER Structure Tunes IP$_3$ Receptors

Figure 6. MPF is required for ER remodeling during meiosis. A. Simplified kinase cascade activated during oocyte maturation. Indicated in red is the action of different molecular and pharmacological modulators. The arrow indicates activation and the bar inhibition. B. Confocal fields from individual cells expressing mCherry-KDEL and treated as indicated showing ER structure. After imaging cells were lysed and subjected to Western blotting analysis for phosphor-MAPK (p-M), phosphor-Cdc2 (p-C) and tubulin (Tub) as the loading control (Scale bar, 2 µm). Mos indicates cells injected with Mos RNA, CyR: Cyclin B1 RNA; MOS+Wee: inject Wee1 RNA and incubate cells overnight before Mos RNA injection; CyR+U0126: pre-treat with U0126 (50 µM) for 1 h before Cyclin B1 RNA injection. The effectiveness of these treatments is illustrated in Western blots performed on individual oocytes after confocal imaging. The top band (Tub) represents the tubulin loading control, the middle band phosphorylated MAPK (p-M) and the lower band phosphorylated cdc2 at Tyr-15 (p-C). MAPK phosphorylation indicates its activation, whereas the phosphorylation of Cdc2, the kinase subunit of MPF, indicates its inhibition. C–D. Sensitivity of IP$_3$-dependent Ca$^{2+}$ release measured as indicated in the text.

doi:10.1371/journal.pone.0027928.g006

through Ca$^{2+}$-dependent potentiation or potentially direct protein-protein interaction [4–6]. Whether the size and function of these clusters is modulated by the ligand IP$_3$ is a matter of debate [40,41]. In addition to this steady-state physiological clustering of IP$_3$ receptors, significantly larger clusters detectable by fluorescence microscopy (0.6–1 µm), are induced following sustained stimulation of Ca$^{2+}$ signaling [10–12], however the physiological significance of this clustering is unclear. These large IP$_3$ receptor aggregations appear to be due to lateral diffusion of IP$_3$ receptors and protein-protein interactions, and do not involve changes in ER structure [10–12]. In contrast, the clustering of IP$_3$ receptors observed during oocyte meiosis is due to restructuring of the ER. We show that ER remodeling during *Xenopus* oocyte meiosis requires MPF activation, consistent with results in mouse [31] and nemertean eggs [42]. Furthermore, MPF activation has been shown in several species to be important for Ca$^{2+}$ signaling differentiation during oocyte maturation [2,22,24,43–45].

In the context of oocyte maturation in preparation for fertilization, IP$_3$-dependent Ca$^{2+}$ release is sensitized and contributes to the generation of the specialized Ca$^{2+}$ transient, which is essential for egg activation [2]. Remodeling of the ER during oocyte meiosis is well documented in different species, and ER patches are enriched in the egg’s cortex [17,32,46–49]. The formation of such ER patches correlates with the sensitization of IP$_3$-dependent Ca$^{2+}$ release [17,28,32], and as such they have been postulated as initiation sites for repetitive Ca$^{2+}$ waves in mouse, and as important for wave propagation in *Xenopus* [17,30]. Furthermore, the tight correlation between ER reorganization and Ca$^{2+}$ signaling remodeling during oocyte maturation suggests a has (reviewed in [30]). However, the mechanisms underlying a potential role for ER restructuring during meiosis in modulating Ca$^{2+}$ signaling are unknown. Here we show that the remodeling of the ER underlies the clustering of elementary Ca$^{2+}$ release events observed during meiosis [15], since the large elementary Ca$^{2+}$ release events in the egg (SREs) localize to ER patches (Fig. 2). Furthermore, ER remodeling also affects global Ca$^{2+}$ dynamics in the egg by modulating the propagation speed of the Ca$^{2+}$ wave in the egg (Fig. 5), which mediates egg activation events such as the block to polyspermy and completion of meiosis [2]. Hence ER remodeling modulates both elementary and global Ca$^{2+}$ dynamics and as such plays a central role in endowing the egg with the competency to activate at fertilization.

An important aspect of Ca$^{2+}$ signaling remodeling during oocyte maturation is the sensitization of IP$_3$-dependent Ca$^{2+}$ release, the main pathway underlying the Ca$^{2+}$ transient at fertilization [2]. We show that ER remodeling contributes to sensitization of IP$_3$-dependent Ca$^{2+}$ release through a simple and elegant mechanism that we refer to as ‘geometric sensitization’. In the context of ER patches formed during meiosis, IP$_3$ receptors are sensitized as a population (Fig. 3) apparently due to their increased density in the three-dimensional space of the ER patch (Fig. 4). The packing of membranes in ER patches brings IP$_3$ receptors into close proximity (40–50 nm) (Fig. S2). This is predicted to enhance Ca$^{2+}$-dependent cooperativity between neighboring receptors. Given the bell-shaped dependence of IP$_3$ receptor gating on Ca$^{2+}$ and the fact that Ca$^{2+}$ acts as a co-agonist for the IP$_3$ receptor, increased Ca$^{2+}$-dependent cooperativity between IP$_3$ receptors within an ER patch could sensitize them to respond to sub-threshold IP$_3$ concentration as observed in mature eggs. Mathematical modeling supports this conclusion. Simply increas-
ing Ca2+-dependent cooperativity between IP\textsubscript{3} receptors in a cluster sensitize them to gate open at lower IP\textsubscript{3} concentration (Fig. 4). We altered Ca2+-dependent cooperativity between IP\textsubscript{3} receptors by modulating the Ca2+ diffusion coefficient in a cluster of IP\textsubscript{3} receptors to represent the context of an ER patch (Fig. 4). This is consistent with what is observed experimentally, where IP\textsubscript{3} receptors within an ER patch can sense and gate open in response to IP\textsubscript{3} concentrations that are undetectable by IP\textsubscript{3} receptors in the reticular ER (Fig. 3).

Therefore, ‘geometric sensitization’ of IP\textsubscript{3} receptors due to ER remodeling represents a physiological modulator of IP\textsubscript{3} receptor function during meiosis. This mechanism could be applicable to other physiological situations as during mitosis where the ER restructures with the preponderance of the evidence arguing for a transition from a tubular to a cisternae-like structures in mitosis [50–52].

In summary we show that the physical structure of the ER has a profound effect on IP\textsubscript{3} receptor function. During oocyte meiosis ER remodeling regulates both elementary and global aspects of Ca2+ signaling and is involved in sensitizing IP\textsubscript{3} receptors. We argue that ER patch formation during meiosis increases the density of IP\textsubscript{3} receptors thus enhancing Ca2+-dependent cooperativity. This leads to sensitization of IP\textsubscript{3} receptors allowing them to gate open at sub-threshold IP\textsubscript{3} concentrations. IP\textsubscript{3} receptor sensitization is central to producing the fertilization specific Ca2+ transient, and as such for egg activation. Therefore, ER remodeling through geometric sensitization of IP\textsubscript{3} receptors plays a central role in oocyte maturation.

Materials and Methods

Ethics Statement

All studies were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and in accordance with Qatari regulations regarding the use of animal subjects in research as outlined by the Supreme Council of Health. Studies were approved by the Institutional Animal Care and Use Committee (IACUC) of Weill Cornell Medical College protocol #0806-759A.

Molecular Biology

pSp64s-GFP-KDEL was a gift from Mark Terasaki [17]. pGEM-HE-NOT-GFP-IP\textsubscript{3}R1 was generous gift from Patricia Camacho. pSGEM-mCherry-KDEL, and pSGEM-mCherry-STIM1 plasmids were previously described [23,53]. All constructs were verified by DNA sequencing and by analytical endonuclease linearization with NheI or NotI, capped RNAs were transcribed using T7 RNA polymerase with T7 mMESSAGE mMACHINE kit (Ambion). *Xenopus* oocytes were obtained as described previously [22]. Oocytes injected with the different RNAs were incubated either at room temperature or 18°C for 1–3 days. Oocytes injected with GFP-rIP3R1 RNA required significantly longer time to express the GFP-tagged IP\textsubscript{3} receptor and were kept at 18°C for 7–9 days depending on the batch of oocytes. For experiments aimed at modulating the kinase cascade differentially in the oocyte (Figure 6), cells were incubated for a few hours after Mos or cyclin B RNA injection until they resulted in GVBD as indicated by the appearance of a white spot on the animal pole. Wee1 RNA was injected 12–16 hours before Mos injection [22]. The plasmid used as templates to produce Mos, Wee and Cyclin B RNA were as previously described [22]. For the U0126-cylib B treatment cells were preincubated with U0126 (50 μM) for 1 hour before injecting Cyclin B RNA.

Imaging

Live cell imaging was performed on a Zeiss LSM710 confocal using a Plan Apo 63×/1.4 oil DIC II objective. The image size was typically set at 744×744 pixel (67.38×67.38 μm) with pinhole set at 1 airy unit (0.9 μm) unless otherwise specified. GFP and Oregon-Green signals were excited with 488 nm laser and emissions collected through a bandwidth of 492–558 nm, mCherry was excited at 561 nm and emission collected through a bandwidth of 572–699 nm. Cells were imaged in OR2 solution (in mM: 82.5 NaCl, 2.5 KCl, 1 CaCl\textsubscript{2}, 1 Na2HPO\textsubscript{4}, 5 HEPES, pH 7.5). Images were analyzed using ZEN 2008 and MetaMorph and figures compiled using Adobe Photoshop.

For FRAP analyses pre-bleach and recovery images were scanned (pixel dwell time: 0.84 μs) at 561 nm with 1% laser power. A 25×25 pixels area was bleached at 60% laser power at reduced scanning speed (pixel dwell time: 5.31 μs). FRAP recovery curves were derived by comparison with reference unbleached area, subtracting the background, and fitting with a monoeponential decay function.

Ca2+ waves were analyzed in eggs expressing mCherry-KDEL and injected with caged-IP\textsubscript{3} (NPE-caged inositol 1,4,5-trisphosphate (Invitrogen I23580) and 40 μM Oregon Green 488 BAPTA-1 hexapotassium salt (Invitrogen O6806). Cells were scanned in Ca2+-free OR2 solution using Plan-Neofluar 40×/1.3 oil DIC objective with 488 and 561 nm laser set at 2% intensity. The image size is 256×256 pixel (352×352 μm) with pinhole set at 4 μm. After 5 initial scans, an circular ROI (diameter 30 μm) was bleached 50 times with the 405 nm laser set at 20% power resulting in propagating Ca2+ wave that crossed the entire cell.

Immunoblot Analysis

Phospho-MAPK and phospho-Cdc2 Westerns were performed as described previously [54], and α-tubulin was used as the loading control.

Mathematical Modeling

The details of the model used are included in Appendix S1.

Supporting Information

Figure S1 ER patch spatial distribution. A. ER patches form in GFP-KDEL expressing eggs. Planes at which confocal images were taken along z-stack are indicated by the matching number in the orthogonal z-section. B. Images from eggs expressing mCherry-KDEL at GVBD which were either untreated (Egg Con) or treated with Nocodazole (25 μg/ml) for 1 hr. (TIF)

Figure S2 Low (A) and high (B) magnification transmission EM images of ER patches in a *Xenopus* egg. Patches in the low magnification image are highlight by the white contour. (TIF)

Appendix S1 Computational Modeling. (DOCX)

Author Contributions

Conceived and designed the experiments: KM PJ LS FY. Performed the experiments: LS FY AU SH AD. Analyzed the data: LS FY AU PJ KM. Wrote the paper: KM.
References

1. Horner VL, Wollmer MF (2008) Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn. 237: 527–544.
2. Machaca K (2005) Ca2+ signaling differentiation during oocyte maturation. Journal of Cellular Physiology 213: 331–340.
3. Nebreda AR, Ferby I (2000) Regulation of the meiotic cell cycle in oocytes. Curr Opin Cell Biol 12: 666–675.
4. Ito J, Cheng KH, Vai H, Mak DO, White C, et al. (2006) Graded recruitment and inactivation of single IP3R receptor Ca2+-release channels: implications for quantal [corrected] Ca2+ release. J Physiol 573: 645–662.
5. Yao Y, Choi J, Parker I (1995) Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol 482 (Pt 3): 533–553.
6. Bootman M, Nigg E, Berridge M, Lipp P (1997) Imaging the hierarchical Ca2+ signalling system in HeLa cells. J Physiol 499(Pt 2): 307–314.
7. Callamann N, Marchant JS, Sun XF, Parker I (1998) Activation and co-ordination of IP3R-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes. J Physiol 509(Pt 1): 81–91.
8. Cannell MB, Cheng H, Lederer WJ (1995) The control of calcium release in heart muscle. Science 268: 1045–1048.
9. Lipp P, Nigg E (1996) A hierarchical concept of cellular and subcellular Ca2+-signalling. Prog Biophys Mol Biol 65: 265–296.
10. Chalmers M, Schell MJ, Thorn P (2006) agonist-evoked inositol trisphosphate receptor (IP3R) clustering is not dependent on changes in the structure of the endoplasmic reticulum. Biochem J 394: 57–66.
11. Tateishi Y, Hattori M, Nakayama T, Iwai M, Bannai H, et al. (2005) Cluster formation of inositol 1,4,5-trisphosphate receptor requires its transition to open state. J Biol Chem 280: 6166–6172.
12. Wilson ES, Pfeiffer JR, Smith AJ, Oliver JM, Oberdorfer JA, et al. (1998) Calcium-dependent clustering of inositol 1,4,5-trisphosphate receptors. Mol Biol Cell 9: 1465–1478.
13. Chiba K, Kado RT, Jaffe LA (1990) Development of calcium release mechanisms during maturation of mouse oocytes. Dev Biol 140: 300–306.
14. Mehmlln L, Kline D (1994) Regulation of intracellular calcium in the mouse egg: calcium release in response to sperm or inositol trisphosphate is enhanced after meiotic maturation. Biol Reprod 51: 1088–1089.
15. Machaca K (2004) Increased sensitivity and clustering of elementary Ca2+ release events during oocyte maturation. Dev Biol 275: 170–182.
16. Stricker SA (1999) Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 211: 157–176.
17. Matuski LL,Hand AR (2001) Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation. Mol Biol Cell 12: 1103–1116.
18. Jones KT, Carroll J, Whittingham DG (1994) Ionomycin, thapsigargin, ryanodine, and sperm induced Ca2+ release increase during meiotic maturation of mouse oocytes. J Biol Chem 270: 6671–6677.
19. El Jouni W, Barg J, Haun S, Machaca K (2005) Calcium signaling differentiation during Xenopus oocyte maturation. Dev Biol 288: 314–325.
20. El Jouni W, Haun S, Machaca K (2008) Internalization of plasma membrane Ca2+-ATPase during Xenopus oocyte maturation. Dev Biol 324: 99–107.
21. Machaca K, Haun S (2000) Store-operated Calcium Entry Inactivates at the Germinal Vesicle Breakdown Stage of Xenopus Meiosis. J Biol Chem 275: 11524–11533.
22. Machaca K, Haun S, Hand AR (2001) Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation. Mol Biol Cell 12: 1103–1116.
23. Jones KT, Carroll J, Whittingham DG (1994) Ionomycin, thapsigargin, ryanodine, and sperm induced Ca2+ release increase during meiotic maturation of mouse oocytes. J Biol Chem 270: 6671–6677.
24. El Jouni W, Barg J, Haun S, Machaca K (2005) Calcium signaling differentiation during Xenopus oocyte maturation. Dev Biol 288: 314–325.
25. El Jouni W, Haun S, Machaca K (2008) Internalization of plasma membrane Ca2+-ATPase during Xenopus oocyte maturation. Dev Biol 324: 99–107.
26. Machaca K, Haun S (2000) Store-operated Calcium Entry Inactivates at the Germinal Vesicle Breakdown Stage of Xenopus Meiosis. J Biol Chem 275: 11524–11533.
27. Stricker SA, Smythe TL (2003) Endoplasmic reticulum reorganisations and Ca2+ signaling in maturing and fertilized oocytes of marine protoctists: the roles of MAPKs and MIP. Development 130: 2067–2079.
28. Levasseur M, McDougal A (2000) Sperm-induced calcium oscillations at fertilization in ascidians are controlled by cyclin B1-dependent kinase activity. Development 127: 631–641.
29. Deng MQ, Shen SS (2000) A specific inhibitor of p34(cdc2)/cyclin B suppresses fertilization-induced calcium oscillations in mouse eggs. Biol Reprod 62: 873–878.
30. Gordo AC, Karakava M, Wu H, Fissoire RA (2002) Modifications of the Ca2+ release mechanisms of mouse oocytes by fertilization and by sperm factor. Molecular Reproduction & Development 6: 619–629.
31. Capanna C, Andreuccetti P, Taddei C, Talevi R (1984) The modifications of cortical endoplasmic reticulum during in vitro maturation of Xenopus laevis oocytes and its involvement in cortical granule exocytosis. J Exp Zool 229: 283–293.
32. Mehmlln L, Mikushiba K, Kline D (1996) Redistribution and increase in cortical inositol 1,4,5-trisphosphate receptors after meiotic maturation of the mouse oocyte. Dev Biol 180: 499–498.
33. Jaffe LA, Machaca K (1994) Structural changes in the endoplasmic reticulum of starfish oocytes during meiotic maturation and fertilization. Dev Biol 164: 574–587.
34. Shirakawa K, Okada A, Shirakawa H, Nakanishi S, Mikoshita K, et al. (1995) Developmental changes in the distribution of the endoplasmic reticulum and inositol 1,4,5-trisphosphate receptors and the spatial pattern of Ca2+ release during maturation of hamster oocytes. Dev Biol 170: 594–606.
35. Lu L, Ladinsky MS, Kirchhausen T (2009) Cisnetal organization of the endoplasmic reticulum during mitosis. Mol Biol Cell 20: 3471–3480.
36. McCullough S, LaCour J (2005) Endoplasmic reticulum positioning and inactivation in mouse eggs. J Amat 206: 415–425.
37. Pulk B, Mikushin H, Jornons M, Jekialo E (2007) Endoplasmic reticulum remains continuous and undergoes sheet-to-tube transformation during cell division in mammalian cells. J Cell Biol 179: 895–909.
38. Yu F, Sun L, Machaca K (2010) Constitutive recycling of the store-operated Ca2+ channel Orai1 and its internalization during meiosis. J Cell Biol 191: 535–550.
39. Sun L, Machaca K (2004) Ca2+ store negatively regulates the initiation of oocyte maturation. J Cell Biol 165: 63–75.