A formulation of bit-string models of language evolution, based on differential equations for the population speaking each language, is introduced and preliminarily studied. Connections with replicator dynamics and diffusion processes are pointed out. The stability of the dominance state, where most of the population speaks a single language, is analyzed within a mean-field-like approximation, while the homogeneous state, where the population is evenly distributed among languages, can be exactly studied. This analysis discloses the existence of a bistability region, where dominance coexists with homogeneity as possible asymptotic states. Numerical resolution of the differential system validates these findings.

Keywords: Language evolution; replicator dynamics; diffusion.

PACS Nos.: 87.23.Ge, 87.23.Kg, 05.45.-a

1. Introduction

The dynamics of language has recently been identified as a rich field for interdisciplinary application of statistical techniques traditionally associated with mathematics and physics. A host of analytical and numerical models have been proposed, aimed at reproducing—more or less quantitatively—several aspects of language as a dynamical sociocultural entity. Among them, models of language evolution focus on the joint processes of mutation of linguistic features and of language acquisition, switching, and adoption by human populations.

Bit-string models of language evolution, prototyped by Schulze’s model, conceive that a language is completely characterized by a sequence of dichotomic properties. Each of them represents, for instance, whether the language in question possesses certain grammatical property or not. The sequence is naturally represented as a string of binary variables (bits), whose length is the number of yes/no questions which fully identify a language. Emphasis in the study of bit-string language models has been put on agent-based numerical simulations addressing possible explanations for the distribution of population among languages and the
abundance of language families. The language spoken by an individual can mutate at a certain rate, and each individual can also abandon his/her language and adopt a different one copied from a randomly chosen member of the population. Upon variation of the mutation rate, simulations show a sharp transition between a state of dominance, where most of the population speaks the same language, and a situation where the population is homogeneously distributed among languages.

In this paper, I introduce a formulation of bit-string language models based on differential equations for the population fraction speaking each language. The evolution turns out to be a combination of replicator dynamics, representing language switching, and diffusion in the bit-string (hypercubic) space, representing mutation. While the stability of the homogeneous state can be exactly analyzed, the study of the dominance state requires a mean-field-like approximation. The results, nevertheless, are in very good agreement with numerical resolution of the differential equations and with agent-based simulations. They predict a region of bistability, where dominance and homogeneity coexist as possible asymptotic states of the system, and the disappearance of the dominance state through a tangent bifurcation. The present formulation provides an alternative to simulations to trace language progress and regression in the framework of bit-string models.

2. Analytical formulation of bit-string language models

As advanced in the Introduction, in bit-string models an individual language is represented by a string of \(L \) binary variables (bits), each of them adopting one of two possible values, say, 0 and 1. The total number of possible languages is \(N = 2^L \).

Evolution is driven by two dynamical rules. First, the language of an individual can mutate with a certain probability per time unit. Each mutation event consists of a change in a single, randomly selected bit of the individual’s language, from 0 to 1 or vice versa. Second, an individual can give up his/her language and adopt a new one. To account for the preference for more widespread languages, the new one is chosen by selecting an individual at random from the whole population and adopting his/her language. In this way, the probability of switching to a given language (say, to language \(i \)) equals the fraction of the population speaking \(i \), denoted by \(x_i \). Moreover, the probability of abandoning the original language (say, language \(j \)) is weighted by a monotonically decreasing function \(u(x_j) \) of the fraction of the population speaking \(j \). A language is thus less likely to be given up if it is spoken by a large fraction of the total population. Previous numerical analyses of bit-string models have considered the cases \(u(x) = 1 - x^2 \) and \(u(x) = (1 - x)^2 \), both of which satisfy \(u(0) = 1 \) and \(u(1) = 0 \).

Bit-string models are added with population dynamics, for instance, asexual reproduction with births at a given rate, and deaths with a mortality rate proportional to the population size. This insures that –after a transient, and up to small fluctuations– the total population remains constant in time. A newborn inherits the language of the parent, except possibly for mutation or switching to a new lan-
Analytical approach to bit-string models of language evolution

Analytical approach to bit-string models of language evolution

The contribution of mutation to the time variation of \(x_i \) consists of a gain term proportional to \(L^{-1} \sum_j w_{ij} x_j \), where \(w_{ij} = 1 \) if languages \(i \) and \(j \) differ by just one bit, and \(w_{ij} = 0 \) otherwise. The sum runs over all the languages. The gain term represents the fraction of the population speaking any language \(j \) which mutates to language \(i \) in a time unit. The factor \(L^{-1} \) accounts for the fact that a mutation event can lead, with identical probability, from each language \(j \) to \(L \) different languages. Correspondingly, there is a loss term proportional to \(L^{-1} x_i \sum_j w_{ji} \), which represents mutations of language \(i \) to other languages. In turn, the gain term associated to the mechanism of language switching is proportional to \(x_i \sum_j x_j u(x_j) \), because the probability of abandoning \(j \) is \(u(x_j) \), and the probability of adopting \(i \) is \(x_i \). The corresponding loss term is proportional to \(x_i u(x_i) \sum_j x_j \).

If \(\mu \) and \(\rho \) are, respectively, the rates of mutation and switching events, the evolution of the fraction \(x_i \) \((i = 1, 2, \ldots, N)\) is given by

\[
\dot{x}_i = \rho x_i \sum_{j=1}^{N} x_j u(x_j) - u(x_i) + \frac{\mu}{L} \left(\sum_{j=1}^{N} w_{ij} x_j - x_i \sum_{j=1}^{N} w_{ji} \right).
\]

Summing these equations over the index \(i \) yields \(\sum_i \dot{x}_i = 0 \), which insures that Eq. \([1]\) holds if the initial fraction satisfy normalization. The functions \(u(x_i) \) make the equations nonlinear, so that little can be expected from trying to solve them exactly.

It is worthwhile mentioning that a joint dynamical description of mutation and population growth—here corresponding to switching to widespread languages—has been proposed for the process of language learning and the evolution of universal grammar.\(^{14,15}\) Several exact results are known for the relevant equations,\(^{16}\) though...
they depend crucially on the fact that the functions which play a role analogous to that of \(u(x) \) are linear on the population fractions.

Also, it is important to realize that the representation of languages as bit strings is essentially irrelevant to the form of the evolution equation (2). As long as each language is interpreted as a kind of state to which a certain fraction of the population is assigned at each time, the specific way in which such states are individualized does not play a role in the equation. At most, it is necessary that those states are suitably labeled, in such a way as to discern the languages between which population can be transferred due to mutations, i.e. as to fix de coefficients \(w_{ij} \). Otherwise, the mathematical form of the equations will be the same irrespectively of the individual characterization of languages. Though, for clarity, I discuss Eq. (2) with reference to bit-string models, it is important to bear in mind that most results will also hold for other models driven by the mechanisms of mutation and switching.

The contributions of mutation and switching to the evolution of \(x_i \) have opposite, competing effects. While mutation spreads individuals over different languages, switching tends to concentrate the population on languages with an already large number of speakers. It is useful to begin with a separate analysis of the two mechanisms, which are closely related to well-understood processes in other areas of science. Then, one can proceed to show that the combination of the two competing mechanisms gives rise to a critical transition between language diversity and dominance, as effectively observed to occur in numerical simulations of bit-string models \(^{8,12}\).

3. Connection with diffusion and with replicator dynamics

3.1. Without switching: \(\rho = 0 \)

In order to isolate from each other the effects of mutation and switching, let us first disregard the latter, setting \(\rho = 0 \) in Eq. (2). Taking into account that \(w_{ij} = w_{ji} \), the dynamics without switching is governed by the equations

\[
\dot{x}_i = \frac{\mu}{L} \sum_{j=1}^{N} w_{ij} (x_j - x_i),
\]

\(i = 1, 2, \ldots, N \). This expression emphasizes the fact that mutation is a form of linear diffusion, with population transfer between languages at a rate proportional to the population difference \(x_j - x_i \). The diffusion process takes place on the set of bit strings of length \(L \), which can be assimilated to the vertices of the \(L \)-dimensional hypercube of unitary side. Mutation events transfer population between languages which differ in a single bit, i.e. between hypercube vertices at Hamming distance \(d = 1 \). Each vertex has \(L \) neighbour vertices at \(d = 1 \).

Since \(w_{ij} = 1 \) if the Hamming distance between \(i \) and \(j \) equals one, and \(w_{ij} = 0 \) otherwise, one has \(\sum_j w_{ij} = L \). Therefore, introducing the hypercube adjacency
matrix $W \equiv \{w_{ij}\}$, Eq. (3) can be rewritten as
\[\dot{x} = -\mu x + \frac{\mu}{L} W x = \frac{\mu}{L} D x, \] (4)
with $x \equiv (x_1, x_2, \ldots, x_N)$ and $D = W - LI$, where I is the identity matrix. The solution to the linear equation (4) can be found by standard methods, in terms of the eigenvalues λ_k and eigenvectors $e_k \ (k = 1, \ldots, N)$ of the matrix D.

One of the eigenvalues of D, say λ_1, equals zero, and all the remaining eigenvalues are negative. Consequently, the eigenvector corresponding to λ_1, $e_1 = (1, 1, \ldots, 1)$, yields the equilibrium solution which, due to the normalization condition (1), is $x_i^* = N^{-1}$ for all i. In other words, starting from any initial condition, the system asymptotically reaches a homogeneous state. In the context of the original problem, in the absence of language switching, mutation leads for long times to a state where the population is homogeneously distributed among all possible languages.

3.2. Without mutation: $\mu = 0$

If, now, $\mu = 0$ so that mutation is absent, Eq. (2) becomes a member of a well-studied class of nonlinear equations, generally written as
\[\dot{x}_i = x_i f_i(x) - \sum_{j=1}^{N} x_j f_j(x), \] (5)
i = 1, 2, \ldots, N, with $x = (x_1, x_2, \ldots, x_N)$. Equations (5) define the so-called replicator dynamics. They describe the evolution of a system of interacting species in terms of the fractions $x_i = n_i/n$, where n_i is the number of individuals of species i and $n = \sum n_i$ is the total population in the system. The function $f_i(x)$ is the reproductive rate, or (Fisherian) fitness, of species i. It is assumed to depend on the population fractions of all other species. The replicator equations are at the basis of the mathematical description of evolutionary dynamics.

The first term in the right-hand side of Eq. (2) is obtained from (5) for $f_i(x) = -\rho u(x_i)$. In bit-string language models, therefore, the “fitness” to be assigned to each language is a given function of the corresponding population fraction, the same for all languages, and does not depend on the populations of other languages. The negative proportionality between u and f_i points out that the function $u(x)$ defines a kind of “unfitness.” In fact, it measures the probability with which a language is abandoned for adoption of another one.

Though the general solution to the replicator equations is not known, some generic mathematical properties make it possible to characterize aspects of the evolution and of its asymptotic state. These properties can be straightforwardly translated to Eq. (2) when $\mu = 0$. First, the ratio of the populations fractions of any two languages i and j satisfy the “quotient rule”
\[\frac{d}{dt} \left(\frac{x_i}{x_j} \right) = \rho \frac{x_i}{x_j} [u(x_j) - u(x_i)], \] (6)
which depends on \(x_i \) and \(x_j \) only. It can be formally integrated, yielding
\[
\frac{x_i(t)}{x_j(t)} = \frac{x_i(0)}{x_j(0)} \exp \left(\rho \int_0^t [u(x_j) - u(x_i)] \, dt' \right).
\] (7)

Suppose now that the initial population of language \(i \) is larger than that of \(j \), i.e. \(x_i(0) > x_j(0) \). Since \(u(x) \) is a decreasing function of \(x \), the initial value of \(u(x_j) - u(x_i) \) is positive. This implies that the ratio \(x_i/x_j \) will grow, making the difference between the two populations larger. This kind of feedback effect will be enhanced as time elapses. If, on the other hand, \(x_i(0) < x_j(0) \), the ratio \(x_i/x_j \) will monotonically decrease along the evolution. Since the normalization condition holds, this result suggests that, generically, the language which initially has the largest population fraction, say language \(i \), will asymptotically accumulate the whole population, \(x_i(t) \to 1 \) as \(t \to \infty \), while the fractions of all the other languages will asymptotically vanish. The only exception to this behaviour happens if two or more languages have exactly the same initial population. For two of these languages, in fact, \(u(x_j) - u(x_i) = 0 \), and \(x_i \) and \(x_j \) remain identical at all times. If their initial populations are larger than that of any other language in the system, they will asymptotically share the whole population in equal parts, and the remaining populations will vanish.

The same results arise from a global stability analysis of Eq. (2), based on the fact that, for \(\mu = 0 \), it admits a Lyapunov functional,
\[
U(x) = \sum_{i=1}^{N} \int_0^{x_i} u(x) \, dx.
\] (8)

Its time derivative is
\[
\dot{U} = \sum_{i=1}^{N} u(x_i) \dot{x}_i = \rho \left(\langle u \rangle^2 - \langle u^2 \rangle \right) \leq 0,
\] (9)

with \(\langle u \rangle = \sum_i x_i u(x_i) \) and \(\langle u^2 \rangle = \sum_i x_i u(x_i)^2 \). Due to the definiteness of the sign of \(\dot{U} \), Lyapunov’s theorem holds and, in particular, the asymptotic state of the differential system is in the manifold where \(\dot{U} = 0 \), i.e. where \(\langle u \rangle^2 = \langle u^2 \rangle \). This condition, along with Eq. (11), is met if \(N_0 \) among the \(N \) population fractions are equal to \(N_0^{-1} \) (\(1 \leq N_0 \leq N \)), while the remaining \(N - N_0 \) fractions are equal to zero. As advanced from the analysis of Eq. (7), the asymptotic state consists of a number of languages with identical non-vanishing populations, while all the other languages are absent.

Note that the homogeneous stationary state where \(x_i^\ast = N^{-1} \) for all \(i \), obtained in Section 3.1 for the case without switching, is also found among the equilibrium solutions of the system without mutation. Here, however, this equilibrium solution corresponds to an extremely special initial condition, where all the initial populations are identical. As a matter of fact, all the equilibria with \(N_0 > 1 \), where more than one language survives asymptotically, are rather special, since they require that two or more populations are initially identical. These equilibria would not be
robust under the effects of fluctuations in the initial condition, or of noise during
the evolution. In the most generic case, on the other hand, there is a single maximal
population. The above analysis shows that this population will grow to the expense
of the others. In the absence of mutation, thus, the system generically approaches
a state where only one language survives. This dominant language accumulates the
whole population.

4. Stationary states with mutation and switching

Under the combined effects of mutation and switching, it is expected that the system
approaches a state where the population is distributed among languages in a way
that interpolates between the stationary solutions discussed separately for each
mechanism in Sections 3.1 and 3.2. With the notation introduced there, Eq. (2) can
be rewritten as

\[\dot{x}_i = \rho x_i \left[\langle u \rangle - u(x_i) \right] + \frac{\mu}{L} \sum_{j=1}^{N} D_{ij} x_j. \]

Stationary solutions are given by equating the right-hand side to zero for every
\(i = 1, 2, \ldots, N \), and solving for \(x_i \). It should be clear by now that a particular
solution is the homogeneous distribution \(x_i^* = N^{-1} \) for all \(i \). Numerical simulations
of agent-based bit-string language models confirm the presence of this stationary
state of homogeneity for large mutation rates. For small \(\mu \), on the other hand,
they suggest that there is a stationary solution with a dominant language, which
accumulates most of the population, together with several less populated languages.
In terms of the results of Sections 3.1 and 3.2, this solution should be interpreted as
the consequence of the interplay between the replicator dynamics of switching, which
concentrates population in a single language, and mutation, which redistributes part
of the population among “dialects” around the dominant language.

Generally, a joint Lyapunov functional for replicator dynamics and diffusion does
do not exist, so that a global stability analysis of Eq. (10) is not possible along the
lines used in Section 3.2. To my knowledge, the only exception is the case of linear
unfitness, \(u(x) = 1 - x \), where the functional

\[V(x) = \frac{\rho}{4} \sum_{i,j=1}^{N} x_i^2 x_j^2 - \frac{\rho}{3} \sum_{i=1}^{N} x_i^3 + \frac{\mu}{2L} \sum_{i,j=1}^{N} D_{ij} x_i x_j, \]

satisfies \(\dot{x}_i = \partial V / \partial x_i \), so that \(\dot{V} \geq 0 \).

In any case, the local stability of the homogeneous state \(x_i^* = N^{-1} \) can be
analyzed by standard linearization of Eq. (10). From this analysis it turns out that
the homogeneous state is a stable equilibrium above the critical mutation rate

\[\mu_1 = \frac{\rho}{2N} |u'(N^{-1})|, \]

where \(u'(x) \) is the derivative of the unfitness function. Note that, unless \(u(x) \) has
a singularity at \(x = 0 \), the critical mutation rate is very small if the number of
languages N is large. This seems to strongly disagree with numerical results\cite{12} with $\rho = 1$, $L = 8$ ($N = 256$), and $u(x) = 1 - x^2$, agent-based simulations indicate that homogeneity is asymptotically approached for $\mu \gtrsim 0.14$, while the above equation predicts $\mu_1 \sim 10^{-4}$. As I show below, however, this discrepancy is fallacious.

Performing a linear stability analysis for the equilibrium state where the population is concentrated around a dominant language, requires first to explicitly find the corresponding stationary solution x_i^*, which turns out not to be trivial at all. The equilibrium equations derived from Eq. (10) couple nonlinearly, through the average $\langle u \rangle$, all the population fractions x_i^*. An approximate solution can however be found in the limit of small mutation rates, $\mu \ll 1$, when essentially all the population speaks the dominant language. Assuming that the equilibrium population fraction x_d^* of a language at Hamming distance d from the dominant one is of order μd, and keeping only the most significant terms in powers of μ, yields

$$x_d^* = d! \left(\frac{\mu}{\rho L} \right)^d x_0^*. \tag{13}$$

The population fraction of the dominant language, x_0^*, can be obtained from the normalization condition and, within the same approximation order, is $x_0^* = 1 - \mu/\rho$. Note that this solution for small μ is independent of the form of $u(x)$. This is in agreement with numerical simulations for very small mutation rates, which have found no sensible dependence on the unfitness function.\cite{12} Note also that the relevant small parameter in this approximation is the ratio μ/ρ. Linear stability analysis of the solution (13) shows that, as expected, it is stable for small μ. An instability is predicted for $\mu_2 = \rho$, but this critical value of the mutation rate is outside the validity range of the approximation. Comparing with Eq. (12), however, this result suggests that there may be an interval in μ, just above μ_1, where both the homogeneous state and the dominance state are stable. Such behaviour would be consistent with known features in models of language learning with mutations.\cite{16}

In the following section, I support this conjecture from a different approach, and validate the result by means of numerical resolution of Eq. (10).

5. Bistability of dominance and homogeneity

In order to progress beyond the limit of small mutation rates, the solution to Eq. (10) must be approached from a different perspective. I thus focus the attention on the evolution of the maximal population fraction all over the system, x_{max}, which I assume is reached at a single language. Furthermore, invoking a kind of mean-field approximation, I suppose that the population fractions of the remaining $N - 1$ languages are mutually identical. Due to normalization, their value is $(1 - x_{\text{max}})/(N - 1)$. Replacing in Eq. (10) yields an evolution equation for x_{max}:

$$\dot{x}_{\text{max}} = \rho x_{\text{max}} (1 - x_{\text{max}}) \left[u \left(\frac{1 - x_{\text{max}}}{N - 1} \right) - u(x_{\text{max}}) \right] - \mu \frac{N x_{\text{max}} - 1}{N - 1} \tag{14}.$$
Encouragingly, $x^*_{\text{max}} = N^{-1}$ is an equilibrium solution of Eq. (14), for any form of $u(x)$. For this solution, the population fractions of all the other languages are also N^{-1}, so that Eq. (14) correctly predicts the existence of a stationary homogeneous state. On the other hand, its stability threshold is predicted by linearization of Eq. (14) at $\tilde{\mu}_1 = \rho(N - 1)|u'(N^{-1})|/N^2$ which, for large N, differs from the critical mutation rate given in Eq. (12) by a factor of two. This is however understandable, taking into account that not any deviation from homogeneity is compatible with the present approximation, so that not all eigenvalues of the original problem are at work in Eq. (14) to bring the system to equilibrium. Nevertheless, the dependence of $\tilde{\mu}_1$ and μ_1 on N is the same and, in particular, $\tilde{\mu}_1$ tends to zero for large N.

Note also that, for $\mu = 0$, $x^*_{\text{max}} = 1$ is always an equilibrium solution. It turns out to be stable for any decreasing function $u(x)$. This solution corresponds to the dominance state in the absence of mutation, where all the population speaks the same language.

The existence and stability of other equilibrium solutions for Eq. (14) depend on the form of the unfitness $u(x)$. For the sake of concreteness, I discuss the problem in the limit of large N, where the equation for the equilibria of Eq. (14) takes the simpler form

$$0 = \rho x^*_{\text{max}}(1 - x^*_{\text{max}}) [1 - u(x^*_{\text{max}})] - \mu x^*_{\text{max}}.$$ \hspace{1cm} (15)

Here, I have assumed that $u(0) = 1$. The homogeneous state is now given by the trivial solution $x^*_{\text{max}} = 0$. It can be easily realized that, if $u(x)$ decreases with x and μ is positive but not too large, two additional solutions exist in the interval $(0, 1)$. The larger solution is a stable equilibrium of Eq. (14), and tends to $x^*_{\text{max}} = 1$ for $\mu \to 0$, thus corresponding to the dominance state. The lower solution is unstable, and approaches zero in the same limit. As the mutation rate grows, these two solutions approach each other, and eventually collide and disappear through a tangent bifurcation at a critical mutation rate μ_2.

The scenario is illustrated in Fig. 1 for three forms of the unfitness $u(x)$. The curves show x^*_{max} as a function of the (normalized) mutation rate μ/ρ, corresponding to the dominance state (full line) and the unstable solution (dotted line). For these low-degree polynomial forms of $u(x)$ the critical point of the tangent bifurcation can be exactly calculated. For $u(x) = (1 - x)^2$, $1 - x$, and $(1 - x)^2$, the respective critical mutation rates are $\mu_2 = 4\rho/27 \approx 0.148\rho$, $\rho/4$, and $2\rho/3\sqrt{3} \approx 0.385\rho$. The first value is in very good agreement with the critical point reported from agent-based numerical simulations ($\mu = 0.14$ for $\rho = 1$ and $N = 256$) and makes it possible to identify the transition detected numerically as the tangent bifurcation at μ_2.

As advanced at the end of Section 4, the present results predict that, for mutation rates satisfying $\mu_1 < \mu < \mu_2$, both dominance and homogeneity are stable states for the distribution of population among languages. In other words, two stable solutions coexist and can be asymptotically approached during the evolution. The asymptotic state is selected by the initial condition: in Eq. (14), the attraction basins of the two solutions are separated by the intermediate unstable state. This dependence on
the initial condition has also been noticed in agent-based simulations.\cite{10,11}

In spite of the agreement with simulations, Eq. (14) remains the outcome of a rather rough assumption on the population distribution over languages. It is therefore worthwhile to compare its predictions with results from the numerical resolution of Eq. (10). This is also an opportunity to consider relatively small values of N, which have been disregarded in Eq. (15). Curves in Fig. 2 show the equilibria of Eq. (14) as functions of the mutation rate μ, for $L = 5$ ($N = 32$), $\rho = 1$, and two forms of the unfitness function $u(x)$. Dots stand for the maximal population fraction obtained, at long times, from the numerical resolution of Eq. (10) with each function $u(x)$. Two kinds of initial conditions have been considered. In one of them, the initial population fractions are chosen at random, all of them close to the homogeneous state, and satisfying the normalization 1. In the other initial condition, one of the population fractions equals unity, and all the other are zero. As expected, the former are found to asymptotically approach the value $x^*_\text{max} = N^{-1} \approx 0.031$. When the initial population is concentrated in a single language, on the other hand, x^*_max is relatively large for mutation rates below the tangent bifurcation, and drops to N^{-1} above it. The agreement between the results from Eqs. (10) and (14) is excellent for small values of μ and, perhaps not unexpectedly, worsens as the critical point

Fig. 1. The two solutions of Eq. (15) in the interval $(0,1)$ as functions of the normalized mutation rate μ/ρ, for three forms of the unfitness function $u(x)$. Full lines stand for the stable equilibria of Eq. (14), in the limit $N \to \infty$, corresponding to the dominance state. Dotted lines indicate unstable equilibria.
Analytical approach to bit-string models of language evolution

Fig. 2. Full and dotted curves respectively stand for the stable and unstable equilibrium solutions to Eq. (14), as functions of the mutation rate, for $\rho = 1$ and $N = 32$ ($L = 5$) and two forms of the unfitness $u(x)$. Dots correspond to long-time measurements of x_{max} from numerical resolution of Eq. (10) for each form of $u(x)$.

μ_2 is approached. However, the overall pictures are qualitatively identical.

6. Conclusion

In this paper, I have presented a formulation of bit-string models of language evolution based on differential equations for the fraction of the population speaking each language. The formulation highlights the fact that these models conceive language evolution as combining a diffusion mechanism, given by mutation between similar languages, with replicator dynamics for language switching, when an individual adopts the language of a randomly selected member of the population. The combination of replicator dynamics and diffusion is not new in the literature of biological evolution models. In contrast with bit-string language models, however, these applications to biological evolution often assume that the fitness of individuals of each species is independent of the population, though it varies between species. In bit-string models, on the other hand, the dependence of the unfitness on the population faction is essential to represent preference for more widespread languages.

The decrease of the unfitness of a language when its population grows is the key ingredient which shapes the behaviour of bit-string models. In particular, the occurrence of a tangent bifurcation where the dominance state—with most of the
population speaking the same language—disappears, and the existence of a parameter region where dominance and homogeneity coexist and are stable, are direct consequences of such dependence. This bistability opens the possibility that, in a system of languages divided into weakly-interacting domains, where inter-domain switching is much less likely than intra-domain transitions, some domains converge to the dominance state while others approach homogeneity, even when the evolution parameters are identical all over the system.

It is worth remarking that a dominance-homogeneity transition is known to happen in genetic space within replication-mutation models of molecular evolution, specifically, in Eigen’s model. Though the involved critical phenomenon is mathematically different from the tangent bifurcation disclosed here, they are qualitatively much the same from the viewpoint of the competing balance between the basic mechanisms at work.

It would be interesting, by inspiration from mathematical studies of biological evolution, to add bit-string models with some non-uniformity in the individual properties of languages, for instance, assigning different parameters to the unfitness function of each language. In fact, it may well be that the preference for a very widespread language is inhibited by intrinsic difficulties to acquire it. Vice versa, a language whose acquisition is perceivably easier could be chosen as a common communication means by populations speaking more widespread but more intricate languages. Do you imagine the whole of mankind eventually deciding to speak Mandarin and its dialects? Think also of Mark Twain’s “The horrors of the German language.”

Let me finally point out that comparison of numerical results from bit-string models and empirical data of language statistics—specifically, the distribution of language sizes, and the abundance within language families—has been focused on transient stages of the evolutionary process. In agreement with this, though not analyzed in detail here, the present study shows that asymptotic states in bit-string models are not a good representation of empirical observations. Transient effects in the present formulation could be addressed by numerical resolution of Eqs. (2), but such analysis would deserve a separate presentation.

References
1. M. A. Nowak and D. C. Krakauer, Proc. Nat. Acad. Sci. U. S. A. 96, 8028 (1999).
2. R. Ferrer i Cancho and R. V. Solé, Proc. Nat. Acad. Sci. U. S. A. 100, 788 (2003).
3. D. M. Abrams and S. H. Strogatz, Nature 424, 900 (2003).
4. K. Kosmidis, J. M Halley, and P. Argyrakis, Physica A 353, 595 (2005).
5. C. Schulze and D. Stauffer, Int. J. Mod. Phys. C 16, 781 (2005).
6. V. Schwammle, Int. J. Mod. Phys. C 16, 1519 (2005).
7. V. M. de Oliveira, M.A.F. Gomes, and I. R. Tsang, Physica A 361, 257 (2006).
8. T. Tesileanu and H. Meyer-Ortmanns, Int. J. Mod. Phys. C 17, 259 (2006).
9. Ĉ. Tuncay, Int. J. Mod. Phys. C 18, 1203 (2007).
10. D. Stauffer and C. Schulze, Phys. Life Rev. 2, 89 (2005).
Analytical approach to bit-string models of language evolution

11. D. Stauffer, C. Schulze, F. W. S. Lima, S. Wichmann, and S. Solomon, *Physica A* **371**, 719 (2006).
12. S. Wichmann, D. Stauffer, F. W. S. Lima, and C. Schulze, *Trans. Philol. Soc.* **105**, 126 (2007).
13. P. M. Castro de Oliveira, D. Stauffer, F. W. S. Lima, A. O. Sousa, C. Schulze, and S. Moss de Oliveira, *Physica A* **376**, 609 (2007).
14. M. A. Nowak, N. L. Komarova, and P. Niyogi, *Science* **291**, 114 (2001).
15. M. A. Nowak, N. L. Komarova, and P. Niyogi, *Nature* **417**, 612 (2002).
16. N. L. Komarova, *J. Theor. Biol.* **230**, 227 (2004).
17. P. Schuster and K. Sigmund, *J. Theor. Biol.* **100**, 533 (1983).
18. J. Hofbauer and K. Sigmund, *Evolutionary Games and Population Dynamics* (Cambridge University Press, Cambridge, 1998).
19. R. E. Michod, *Darwinian Dynamics* (Princeton University Press, Princeton, 1999).
20. J. F. Crow and M. Kimura, *An Introduction to Population Genetics Theory* (Harper and Row, New York, 1970).
21. M. V. Volkenstein, *Physical Approaches to Biological Evolution* (Springer, Berlin, 1994).
22. M. Eigen, *Naturwissenschaften* **58**, 465 (1971).
23. S. Pinker, *World and Rules. The Ingredients of Language* (Harper Collins, New York, 2000).