Sustained activation of the Aryl hydrocarbon Receptor transcription factor promotes resistance to BRAF-inhibitors in melanoma

Sébastien Corre¹, Nina Tardif¹, Nicolas Mouchet¹, Héloïse M. Leclair¹, Lise Boussemart¹,², Arthur Gautron¹, Laura Bachelot¹, Anthony Perrot¹, Anatoly Soshilov³, Aljosja Rogiers⁴,⁵, Florian Rambow⁴,⁵, Erwan Dumontet⁶, Karin Tarte⁶, Alban Bessed⁷, Gilles J. Guillemin⁸, Jean-Christophe Marine⁴,⁵, Michael S. Denison³, David Gilot¹ & Marie-Dominique Galibert¹,⁹

BRAF inhibitors target the BRAF-V600E/K mutated kinase, the driver mutation found in 50% of cutaneous melanoma. They give unprecedented anti-tumor responses but acquisition of resistance ultimately limits their clinical benefit. The master regulators driving the expression of resistance-genes remain poorly understood. Here, we demonstrate that the Aryl hydrocarbon Receptor (AhR) transcription factor is constitutively activated in a subset of melanoma cells, promoting the dedifferentiation of melanoma cells and the expression of BRAFi-resistance genes. Typically, under BRAFi pressure, death of BRAFi-sensitive cells leads to an enrichment of a small subpopulation of AhR-activated and BRAFi-persister cells, responsible for relapse. Also, differentiated and BRAFi-sensitive cells can be redirected towards an AhR-dependent resistant program using AhR agonists. We thus identify Resveratrol, a clinically compatible AhR-antagonist that abrogates deleterious AhR sustained-activation. Combined with BRAFi, Resveratrol reduces the number of BRAFi-resistant cells and delays tumor growth. We thus propose AhR-impairment as a strategy to overcome melanoma resistance.
BRAF inhibitors (BRAFi) target selectively the BRAF V600E/K genetic alteration found in several cancers. Cutaneous melanoma, the most aggressive form of skin cancer, harbor the highest incidence of this mutation (50%)1,2. Development of BRAFi in melanoma has thus served as a model for their implementation, revolutionizing personalized medicine. They give an impressive but transient response since resistance ultimately limits their clinical benefit3–6. The efficacy of BRAFi is indeed limited by intrinsic/primary mechanisms and/or acquired/secondary resistances7. Besides these well describe genomic evidence indicates that besides its roles in detoxification, AhR is hypothized that ligands targeting the ligand binding positions will be hereafter referred as the β- and α-pockets, respectively.

Importantly, non-canonical binding to AhR was observed with other BRAFi, including Dabrafenib (Dab) (Supplementary Figure 1), indicating that this is not a specific property of Vem only but rather of this chemically related family of molecules24. To investigate the molecular consequences of BRAFi-recruitment on AhR, we established the transcriptomes of BRAF-V600E melanoma cells (501Mel) exposed to Vem and to TCDD. Interestingly, specific and mutually exclusive signatures were identified (Fig. 1h). Consistent with the ability of Vem to increase pigmentation in cultured melanoma cells (Fig. 1i) and, in some patients’ nevi (Supplementary Figure 2a), the Vem-induced signature was enriched in MITF-targets and in pigmentation genes (Fig. 1h)25,26. This signature, which significantly overlapped with the classical melanoma proliferative signature4,15, was only observed with β-pocket ligands (Vem, Dab) and not with α-pocket ligands such as TCDD and Benzo(a)pyrene.

The pigmentation gene Oculocutaneous Albinism Type II (OCA2)27,28 was particularly induced in Vem-exposed cells, and its level of expression was selected as a readout for AhR β-activation (Supplementary Figure 2a)24. Critically, genetic and chemical inhibition of AhR abrogated Vem-induced OCA2 expression and subsequent induction of pigmentation (Supplementary Figure 2c–e). As anticipated from data reported in Fig. 1, ARNT was not required for Vem-induced OCA2 expression, while ARNT depletion impaired TCDD-induced CYP1A1 expression (Supplementary Figure 2h). Since off-target effects of Vem have been so far attributed to the paradoxit activation of the MAP Kinase pathway24, we investigated the role of the MAPK pathway in the Vem-induced β-signature. We showed that the Vem-induced β-signature is independent of the phosphorylated status of ERK (Supplementary Figure 3) and is maintained in the presence of MEKI (Supplementary Figure 4a–c). Thus, the Vem-induced β-signature cannot be ascribed to BRAFi-induced paradoxit MAPK activation.

Due to the relative proximity between the α- and β-pockets, we hypothesized that ligands targeting the α-pocket could prevent the effect of molecules binding the β-pockets such as Vem. To illustrate this point, cells were exposed to an AhR-agonist or -antagonist (TCDD and CH-223191, respectively) that targeted the α-pocket, prior to Vem treatment. As envisaged, the occupancy of the α-pocket by either an AhR agonist or antagonist prevented Vem-associated effects (Supplementary Figure 4d–g). Reciprocally, Vem prevented the binding of TCDD in the α-pocket, demonstrating that Vem acts as an AhR antagonist (Supplementary Figure 4f). We further illustrated this latter capability by quantifying the AhR–ARNT/XRE complex formation that was reduced in the presence of Vem (Supplementary Figure 4g).

Results

BRAFi as new AhR ligands controlling its transcriptional activity. We observed that the BRAFi Vemurafenib (Vem) binds directly to AhR and stimulates its nuclear translocation (Fig. 1a, b). However, surprisingly, in contrast to TCDD (Fig. 1d), Vem failed to stimulate the canonical AhR/ARNT-XRE pathway after dimerization with ARNT (Fig. 1c). Consequently, Vem failed to induce endogenous CYP1A1 expression (Fig. 1e) and CYP1A enzymatic activity (EROD) as observed with TCDD (Fig. 1f). These results indicated that Vem binds to AhR differently than canonical AhR ligands. Consistently, docking experiments have demonstrated that Vem and the canonical AhR ligand/agonist TCDD interact with AhR at different positions (Fig. 1g). The Vem and canonical AhR ligands direct de differentiation and resistance to BRAFi. The sensitivity of melanoma cells to BRAFi is associated with cellular differentiation state (i.e., MITFhigh or pigmentation signature)11,25,26. Considering AhR-activation modulates the pigmentation program in melanoma cells, we investigated whether the AhR gene expression program is connected to BRAFi resistance3–6. We measured the transcriptional activity of both AhR canonical and non-canonical in melanoma cell lines from the “Cancer Cell Line Encyclopedia” (CCLE)29, using representative 14 and 19 genes of the β- and α-signatures, respectively, and 16 genes from the BRAFi-resistance signature12,16,25,30. Whereas the β-signature was highly represented in the proliferative and BRAFi-sensitive cell lines, the α-signature was most prominent in BRAFi-resistant lines (Fig. 2a) and co-occurred with the resistance signature.

AhR ligand binding positions will be hereafter referred as the β- and α-pockets, respectively.
In accordance with the recent classification of melanoma cells based on their differentiation states (melanocytic, M; transitory, T; neural crest-like, N; and undifferentiated cells, U), we confirmed that BRAFi-resistant cells are mostly dedifferentiated\(^1\). Moreover, the resistance-signature significantly overlapped with the invasive gene expression signature\(^1\) and dedifferentiated cell state (Fig. 2c)\(^1\),\(^1\),\(^5\),\(^3\),\(^1\).

To challenge these observations, we first re-analyzed the recently published Graeber’s melanoma data sets\(^1\) using their online webtool characterizing melanoma subtypes (M, T, N, or U).
AhR signatures classify patients’ tumors. Having established that AhR signatures discriminate cell differentiation states and sensitivity/resistance to BRAFi, we explored these AhR signatures in melanoma samples. We first examined melanoma samples from the TCGA cohort. Interestingly, we found that melanoma samples, naive of BRAFi treatment, segregated according to the α- and β-signatures (Fig. 3a). Almost 9% of these clinical biopsies showed a marked expression of the β-signature and 8% the α- and resistance-signatures in bulk analyses, thereby supporting the notion that the nature of the patient’s response to BRAFi and time before relapse may be in part predefined (Fig. 3b). Again, we found that in these melanoma samples, the β-signature decorated differentiated melanoma samples (M and T) and the α- and resistance-signature undifferentiated ones (N and U) (Fig. 3d–f).

Second, we investigated the β- to α-signature shift in patients exposed to single or double drug-blockade (BRAFi or BRAFi + MEKi) by classifying their melanoma biopsies during the medication course (before, during, and at relapse) according to differentiated states (U, N, T, M) (Fig. 3g) and AhR-associated signatures (β-, α-, and resistance) (Fig. 3h). As anticipated from former TCGA results and recent studies, melanoma samples naive of any treatment (CTR) are characterized by an elevated intra- and inter-tumoral heterogeneity in terms of differentiation states and AhR signatures (Fig. 3g, h). For example, tumor no. 17 illustrates a melanocytic subtype (about 26% in the TCGA cohort) whereas tumor no. 9 a transitory subtype (about 63% in the TCGA cohort). Now, when exposed to drugs (BRAFi alone or BRAFi/MEKi) and according to the initial differentiation state, we observe either a strong β-signature (Pt: -17 to -19) or an immediate α-switch (Pt: -15 to -9) (Fig. 3h). This immediate α-switch occurs for marked β-signature tumors (Fig. 3h). Again, the appearance of the α-signature co-occurred with the resistance signature and dedifferentiation process (Fig. 3i), as observed in melanoma cell lines (Fig. 2c–h), supporting these AhR-dependent activation programs.

AhR controls BRAFi resistance in melanoma persisters. It is noteworthy that the T, N, and U emerging subtypes arise within tumors in the presence of BRAFi (dotted line in Fig. 3i), suggesting that either the protective capacity of BRAFi in maintaining cells in a melanocytic state is overcome or that small and almost undetectable, but initially present, T, N, and U subpopulations emerge while melanocytic and BRAFi-sensitive populations diminish. To characterize these subpopulations further, we investigated publicly available single-cell analyses that were more informative than bulk analyses (Fig. 4a). As anticipated, only a small subpopulation of melanoma cells expressed a combination of BRAFi-resistance markers (EGFR, ZEB1...) and an α-signature. These cells (10%) are representative of N or U states (Fig. 4b, c). Now examining, cell-sorted EGFR-positive cells that are able to form colonies in the presence of a BRAFi (Fig. 4d), we found that this minor subpopulation corresponds to dedifferentiated states of melanoma (N or U) expressing α- and resistant signatures (Fig. 4c–e). In contrast, the EGFR-negative cells exhibited a β-signature (M or T).

Together, these data suggest that BRAFi-resistant cells represent an innate/intrinsic small subpopulation of α-cells, generally undetectable through bulk analyses. These resistant cells become predominant in drug-resistant lesions/cultures upon drug-exposure probably due to cell death of sensitive β-cells (Fig. 5a).

Our results also indicate that AhR signaling is maintained in a constitutively activated α-state in resistant cells. Since we did not find any recurrent mutation that may support constitutive activation of AhR in the TCGA melanoma cohort (cBioPortal: http://www.cbioportal.org/index.do), we hypothesized that endogenous α-ligands produced in drug-resistant cells may result in sustained activation of the AhR/ARNT pathway (Fig. 5b) and thereby promote the α-signature. Consistent with this possibility, we observed that the fate of β-cells could be redirected into α-cells upon exposure to α-ligands (TCDD), increasing the BRAFi-resistance gene signature (Fig. 5c), and that AhR drives the expression of BRAFi-resistance genes (AXL and NR1P1 among others) via the binding of promoter containing XRE motifs (Supplementary Figure 6). Finally, loss-of-function experiments confirmed that α- and resistance signatures were both AhR- and ARNT-dependent (Fig. 5e, f).

AhR as a therapeutic target to delay resistance to BRAFi. To exploit the potential therapeutic implications of these findings, we
screened for molecules that impair deleterious α-activation of AhR (Fig. 6a). To this end, we performed in silico modeling combined with in vitro biochemical assays using a wide range of well-characterized AhR ligands, including exogenous and endogenous agonists (i.e., TCDD & B(a)P and FICZ & L-kynurenine, respectively) and antagonists (i.e., CH-223191 or Resveratrol, RSV) (Fig. 6 and Supplementary Figure 7a). These analyses identified the well-tolerated molecule RSV, which selectively binds the α-pocket of AhR (Fig. 6b). Critically, RSV-TCDD co-treatment failed to induce CYP1A1 (Fig. 6c) and several other
genes (Fig. 6d, Supplementary Figure 7b) of the α-signature, illustrating the effectiveness of RSV to counteract α-ligands. RSV also inhibited BRAF-induced pigment production and induction of the β-signature, confirming the ability of α-ligands to compete with β-ligands for AhR binding (Fig. 6 and Supplementary Figures 3 and 8). Importantly, the sensitivity to BRAFi was fully maintained in RSV-exposed cells, indicating that this molecule does not alter BRAFi efficacy (Fig. 6e–h and Supplementary Figure 8). Together, these data indicate that an RSV-Vem combination treatment may result in a significant benefit over Vem alone. To test this possibility, we exposed pairs of BRAFi-sensitive (S) and resistant (R) melanoma cells (501Mel and SKMel28) to both Vem and RSV. RSV increased the sensitivity of resistant and resistant cells to Vem (IC50, Fig. 6i,j) and decreased the number of BRAFi-persister cells (Fig. 6i–k). We evaluated the potential of this BRAFi/RSV combination in a patient-derived xenograft (PDX) model of melanoma. Mice were exposed to BRAFi alone or in combination with RSV once tumors reached 200 mm³. In this model, BRAFi alone stabilized the tumor growth for about 10 days before relapse (Supplementary Figure 8d). BRAFi/RSV treatment reduced, moderately but significantly, tumor growth compared to BRAFi alone (14 days) (Fig. 6i). In agreement with these results, tumors exposed to BRAFi/RSV combination reached endpoints significantly later than BRAFi alone (24 and 16 days, respectively) (Fig. 6m). Together, these results support the use of AhR inhibitors to increase BRAFi efficacy over-time.

Discussion

In conclusion, we uncovered a central role for AhR in BRAFi resistance and relapse. Unexpectedly, we revealed that in drug-sensitive melanoma cells, BRAFi, in addition to inactivated oncocgenic BRAF activity, functions as a non-canonical ligand of AhR. Consequently, BRAFi promotes an AhR-transcriptional pathway that maintains cells into a “proliferative” and drug-sensitive state. In contrast, AhR activated by α-ligands (canonical ligands) promote a dedifferentiation state and a BRAFi resistance program. These latter cells are probably involved in the relapse. Our results are consistent with recent studies indicating that constitutive and chronic activation of AhR promotes aggressive tumor behavior and tumorigenesis in vivo. Indeed, AhR is now reported to have pro- or anti-tumor activity according to cell state. Activation of AhR has also been associated with the alteration of many cell differentiation processes and melanoma cell dormancy. Since the chronic exposure to α-ligands can switch BRAFi sensitive cells into persister/resistant cells, it is important to keep in mind that chronic activation of AhR occurs in response to many environmental factors, such as UV exposure and pollutants, all known to promote cancer. Our data also highlight the potential of AhR antagonists as sensitizers of melanoma-targeted therapy. Together, these data underscore the importance of further studying the role of AhR-signaling in the context of cancer biology as a putative therapeutically target.

Methods

Reagents. The AhR ligands were obtained from: 2,3,7,8-TCDD (TCDD) (Sigma Aldrich, Aldrich, 48599), FICZ (Sigma Aldrich, SML1499), Vemurafenib (Vem, PLX4032) (Selleckchem, RG7204), Dabrafenib (Dab) (Santa Cruz Biotechnology, SC64477), PLX7904 (MedChem Express, HY-18997), PLX8394 (MedChem Express, HY-18972), CH-223191 (Selleckchem, S7711), L-Kynurenine (Sigma Aldrich, K8625), Resveratrol (RSV) (Selleckchem, S1396), StemRegenin 1 (SR1) (Selleckchem, S2588), and Benzof[a]pyrene (B[a]P) (Sigma Aldrich, B1780).

Plasmids. The pGL3-XRE3-FL construct containing three XRE sequences from CYP1A1 gene has been described previously. Luciferase reporter plasmids (pOCa2-pGL4 luciferase) containing proximal promoter region ~500b (IDT, Leuven, Belgium) was cloned into the pGL4.10 (Promega, USA) using Gibson Assembly® Master Mix following manufacturer’s recommendations (NEB, UK). Plasmid encoding the MEK1 constitutive kinase form was described by ref. 54.

Cell lines and culture conditions. The mammary MCF7 epithelial cells were cultured in humidified air (37 °C, 5% CO₂) in Dulbecco’s modified Eagle’s medium with 4500 mg/l D-glucose, 110 mg/l sodium pyruvate, supplemented with 10% fetal bovine serum (PAA cell culture company) and 1% penicillin-streptomycin antibiotics (Gibco, Invitrogen). The melanoma cell lines (501Mel, MM001, SKMel28, MM074, Mel624) were grown in humidified air (37 °C, 5% CO₂) in RPMI-1640 medium (Gibco BRL, Invitrogen, Paisley, UK) supplemented with 10% fetal bovine serum (PAA cell culture company) and 1% penicillin-streptomycin antibiotics (Gibco, Invitrogen). Mel624 cells were obtained from G. Lizee’s lab at the University of Texas MD Anderson Cancer Center, Houston, TX. MM001 and MM074 (S−R) cells were obtained from G. Ghaneh’s lab at the Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium. SKMel28 (S−R) cell was obtained from J.C. Marine’s lab at VIB Center for Cancer Biology, VIB, Leuven, Belgium. 501Mel cells (S) were obtained from ATCC and 501Mel BRAFi resistant cells (R) have been obtained after 3 months treatment with Vem (1 μM every 2 days). All cell lines have been routinely tested for mycoplasma contamination.

Molecular modeling. Docking experiments were performed with AutoDock4.2; free open tool, http://autodock.scripps.edu. A multiple alignment between the sequences of PAS-B ahR (residues 278–384) and PAS-B HIF-2α was generated.
according to the sequence alignment suggested by Pandini et al.\(^5\). The homology model of PAS-B mAhR was constructed using the crystal structures of the heterodimer complex of PAS-B HIF-2α (pdb code: 3f1p, 3f1o, 3f1n) and Prime v.2.1. Docking experiments were carried out between AhR PAS-B model and different AhR ligands and BRAFi chemical structures recovered in ZINC database (zinc.docking.org).

Cell density evaluation. Cell density was assessed using a methylene blue colorimetric assay\(^5\). Briefly, cells were fixed for at least 30 min in 95% ethanol. Following ethanol removal, the fixed cells were dried and stained for 30 min with 1% methylene blue dye in borate buffer. After four washes with tap water, 100 μl of 0.1 N HCl were added to each well. Plates were next analyzed with a spectrophotometer at 620 nm.
Clinical data are available from supplemental table S1 from Hugo et al.13. A representation of the melanoma dedifferentiation subtypes. b Expression heatmap depicting mRNA expression of individual genes for pigment signature gene (blue, β signature) and AhR target genes (orange, a signature) in non-treated melanoma patient dataset from TCGA (SKCM, n = 459)29, b Expression heatmap depicting mRNA expression of individual genes for BRAFi resistance genes in non-treated melanoma patients dataset from TCGA (SKCM, n = 459) with high level (n = 40) or low level of expression (n = 34) for AhR. c PCA of TCGA datasets obtained by the cluster prediction assignment (melanoma dedifferentiation signature resource from the Graber lab: http://systems.crump.ucla.edu/dediff/)10 and pie-chart representation of the melanoma dedifferentiation subtypes. d-f MLANA, PMAIP1, and AXL expression PCA color maps illustrating, respectively, β (d), α (e), and resistance signatures (f) from the TCGA dataset (top). Boxplots of selected β, α, and resistance genes (as described above) in different untreated melanoma patients’ biopsies from TCGA (U, undifferentiated; N, neural crest-like; T, transitory; M, melanocytic) (bottom). Number in each group: U = 14, N = 35, T = 287, M = 118. Whiskers reflect median of expression with range. One-way ANOVA and Tukey’s test: **p < 0.001, ****p < 0.0001. g Expression heatmap for melanoma differentiated state signatures in BRAFi-treated melanoma. h Expression heatmap for average β, α, and resistance signatures in BRAFi-treated single-drug (i.e., BRAFi) or double-drug (i.e., BRAFi + MEKi) melanoma patients during resistance acquiring (RNASeq dataset GEO, GSE6518530). Clinical data are available from supplemental table S1 from Hugo et al.13. I Schematic representation of temporal transcriptional regulation of different signatures in a melanoma patient treated with BRAFi.

Picture from patients. Picture of Vem treated melanoma patient was obtained from Dr. Lise Boussemart at the Medical Department of Dermatology, CHU Rennes, France after informed consent.

AhR ligand binding assay. Ligand binding was measured as the presence/absence of ligand-dependent displacement of [3H]TCDD from the hepatic cytosolic guinea pig AhR by the hydroxypatite assay. The experiments were performed essentially as previously described38.

Gel retardation assay. Experiments have been done as previously described39.

AhR immunolocalization. Experiments have been done as previously described39.

Ethoxyresorufin O-deethylase activity assay. Ethoxyresorufin O-deethylase (EROD) activity, corresponding to the O-deethylation of ethoxyresoru.

RNA interference. Plasmids encoding shRNA targeting human AhR (T1L30259, 29mer shRNA constructs in lentiviral GFP vector) were purchased from Origene, Rockville, MD. Lentiviral productions have been performed as recommended (http://trilobol.epfl.ch), using 293T cells, psPAX2, pVSVG, and shRNA. Infections were performed overnight in the presence of 8 μg of polybrene per ml. After infection, cells were maintained under selection in the presence of puromycin (Invivogen, San Diego, CA) and seeded in 96-well plates at 0.5 cells/well for single infection, cells were maintained under selection in the presence of puromycin (Invivogen, San Diego, CA) and seeded in 96-well plates at 0.5 cells/well for single cell clonal expansion. Clones of interest were validated by Western blot analysis and RT-qPCR.

CRISPR/Cas9 experiment. AhR knock out has been performed using CRISPR/Cas9 methodology. Guide sequence targeting AhR (available in Supplementary Table 3) (Sigma-Genosys, St. Louis, MO, USA) has been cloned into the GeneArt CRISPR Nuclease vector according to the manufacturer’s instructions (Life Technologies, Saint-Aubin, France). Next, vectors were transfected in 501Mel cells, and 2 days later cells were seeded in 96-well plates at 0.5 cells/well for single cell clonal expansion. Clones of interest were validated by DNA-sequencing, Western blot analysis, and RT-qPCR.

Luciferase activity. 2×10^5 MCF7 or 501Mel cells were cultured in 12-well plates and transfected with respectively the pGL3-XRE3-FL29 and the pGL4-pOCA2-Luc constructs carrying the firefly luciferase. Transient transfection of cells was performed by the JetPRIME® transfection reagent according to the manufacturer’s instructions (Polyplus transfection®, NY, USA). In brief, 50 μl of JetPRIME® Buffer containing 100 ng of firefly luciferase reporter plasmid was added per well, and 1 μl of JetPRIME® transfection reagent. After a 24-h period, cells were exposed to TCDD, Vemurafenib for a 6-h period. Luciferase assays were then performed with a Promega kit according to the manufacturer’s instructions. Data were expressed in arbitrary units, relative to the level of luciferase activity levels found in DMSO-exposed cells, arbitrarily set at 1 arbitrary unit (a.u.). Firefly luciferase activity was normalized to protein content using Bicinchoninic Acid Kit from Sigma-Aldrich® and measured with using a luminometer (Centro X5® LB9806, Berthold Technologies).

RNA extraction and RT-qPCR expression. Experiments have been done as previously described60. Primers used for RT-qPCR experiments are available in Supplementary Table 3.

Chromatin immunoprecipitation assay. ChiP assays, using 2×10^5 MCF7 cells or 501 KD AhR (as negative control), were performed as previously described61, with specific adaptations. The cells were cross-linked (1% final concentration formaldehyde for 10 min), washed twice and collected in 1 ml cold PBS. Cells were lysed and the samples were then sonicated for DNA fragmentation (Sonifier Cell Disruptor, Branson) in 1 ml lysis buffer (10 mM EDTA, 50 mM Tris–HCl (pH 8.0), 1% SDS, 0.5% Empigen BB) and diluted 2.5-fold in IP buffer (2 mM EDTA, 150 mM NaCl, 20 mM Tris–HCl (pH 8.1), 0.1% Triton X-100). This fraction was submitted to immunoprecipitation overnight with 4 μg of the appropriate antibody (AhR, H211, Santa Cruz). These samples were then incubated for O/N at 4 °C with 20 μl of Protein G Dynabeads™ (Invitrogen). Precipitates were washed several times, cross-linking reversed and DNA purified using a Nucleospin Extract II kit (Macherey Nagel).

qPCR analyses. qPCR analyses were carried out with primers spanning target genes proximal promoters (sequences on Supplementary Table 3). For qPCR analysis, fold enrichment was determined using the ΔΔCT method: fold enrichment = 2−ΔΔCT, where ΔΔCT is the ChIP of interest and ΔCT2 the control ChIP.

Western blot. Harvested cells were solubilized as previously described62. Protein samples were denatured at 95 °C, resolved by SDS-PAGE and transferred onto Hybond®-C Extra nitrocellulose membranes (Amersham Biosciences, Bucks, UK). Membranes were probed with appropriate antibodies and signals were detected using the Fujifilm LAS-3000 Imager (Fuji Photo Film, Tokyo, Japan). Primary antibodies were: anti-Phospho-ERK-1/2 (9101S), MEK-1/2 (D1A5) (Cell Signalling Technology, Boston, USA), ERK-1/2 (K23), AhR (H211), Hsc70 (B6) (Santa Cruz Biotechnology, Santa Cruz, CA), Horseradish-peroxidase-conjugated secondary antibodies were purchased from (Jackson ImmunoResearch, Suffolk, UK) (1:1000).

Proximity ligation assay. The proximity ligation assay was applied in order to visualize AhR/ARNT complexes in MCF7 cells. The cells, grown on glass cover-slips, were fixed with 4% PFA in 0.1 M phosphate buffer (15735-605, Electron Microscopy Sciences) for 15 min at RT and PLA was performed using the kit (DUO92007 Duolink® in Situ Detection Reagent Orange, (DUO92001) Duolink® in Situ PLA® Probe Anti-Mouse PLUS, (DUO92005) Duolink® in Situ PLA® Probe Anti-Rabbit MINUS, SIGMA) according to the manufacturer’s protocol. After blocking, the reaction with primary antibodies, mouse anti-AhR (C20, 1:100) and rabbit anti-ARNT (1C12, 1:100). Following the ligation and amplification steps, the cover-slips were immobilized on the microscopic slides with the mounting medium containing DAPI. In control experiment, the ligation step was omitted. Imaging analysis was carried out using a delta vision system (Applied Precision). The ratio of foci was quantified at least 30 times.

RNA-Seq. Total RNAs was extracted from 501 Mel cells treated for 48 h respectively with DMSO, Vemurafenib (1 μM), Resveratrol (5 μM), Resveratrol (5 μM) + Vemurafenib (1 μM), TCDD (10 nM), Resveratrol (5 μM) + TCDD (10 nM) using the miRNA kit (Thermo Fisher Scientific). Libraries were generated from 500 ng of total RNAs using Truseq Stranded mRNA kit (Illumina). Libraries were then submitted to KAPA library quantification kit (Kapa Biosystems) and pooled. 0.5 nM of this pool were loaded on a high output flowcell and sequenced on a NextSeq500 platform (Illumina) with 2x 75 bp paired-end chemistry within two runs. Reads were aligned to the human genome release hg19 using STAR v2.4a with default parameters. Quantification of genes was then performed using featureCounts release subread-1.5.0-p3-Linux-x86_64 with “-p primary -g gene_name -p -s 1” options. Quality control of RNA-Seq count data was assessed in-house R scripts. Normalization and statistical analysis were performed using the Bioconductor package DESeq2. P-Values were adjusted for multiple testing using the Benjamini–Hochberg procedure, which controls the false discovery rate (FDR). Differentially expressed genes were selected based on an adjusted p-value below 0.05. The RNA-Seq data presented in this article have been submitted to the Gene
Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE104869.

Patient-derived xenografts (PDXs). After approval by the University Hospital KU Leuven Medical Ethical Committee (S54185) and written informed consent from the patient, PDX model MEL006 was established from an in-transit metastasis resected as part of standard-of-care melanoma treatment at the University Hospital KU Leuven. The procedures involving mice were performed in accordance with the guidelines of the IACUC and KU Leuven and carried out within the context of approved project applications P147/2012, P038/2015, and P098/2015. Fresh tumor tissue was collected in transport medium (RPMI1640 medium supplemented with penicillin/streptomycin and amphotericin B). Tumor fragments were subsequently rinsed in phosphate-buffered saline.

Fig. 4 Role of AhR in melanoma cell resistance: single cell analyses. a Schematic representation of analysis of data from single cell analysis of BRAFi-resistant melanoma (19 patients). Cells from tumors of the different patients have been dissociated and individually sequenced for RNA expression (4650 cells) (RNAseq dataset, GEO, GSE72056). One filter has been included to only focus on melanoma cells expressing the MITF gene. b Expression heatmap for genes corresponding to α- and β-signatures and depicting mRNA expression of individual genes for BRAFi resistance genes using data from single cell analysis of BRAFi-resistant melanoma (19 patients). c Expression heatmap for average β-, α-, and resistance signatures (top) and melanoma differentiated state signatures using data from single cell analysis of BRAFi-resistant melanoma. d Schematic representation of analysis of data using an RNA-Seq dataset obtained from BRAFi-treated melanoma cells (from 2 patients) (from supplemented information16). Cell sorting has been performed on dissociated tumors to isolate EGFR-negative or -positive cells that are able to resist BRAFis and to generate colonies after long-term treatment. e Expression heatmap for genes corresponding to individual genes (top) of α- and β-signatures and depicting mRNA expression for BRAFi resistance, average signatures (middle) and differentiated state signatures (bottom) using an RNA-Seq dataset obtained from BRAFi-treated melanoma cells16. The human silhouettes have been adapted (change of color background) from Servier Medical Art, licensed under a CC BY 3.0 FR (https://smart.servier.com/smart_image/shape-29/).
Fig. 5 Long-term canonical activation of AhR drives melanoma resistance to BRAFi. a Graphical representation of AhR function controlling melanoma cell sensitivity or resistance during BRAFi treatment. A high level of heterogeneity is observed among melanomas with a high proportion of highly differentiated and β-cells sensitive to BRAFi (induction of pigmentation by AhR: β signature) and a weak number of undifferentiated and α-cells resistant to BRAFi (induction of α signature and resistance genes). These persister cells constitute a cell reservoir leading to melanoma relapse. b Graphical model of AhR activation by BRAFi and α-ligands, with α-ligands dictating melanoma resistance. c Expression heatmap for resistant genes in 501Mel cells treated for 7–14 days with TCDD (10 nM). d 501 melanoma cells (501Mel) were pre-treated daily or not for 2 weeks with TCDD (10 nM) and treated 4 days with increasing concentrations of Vem in order to establish cell density measurements and calculate IC50 (sensitivity to Vem). Values, calculated with GraphPad (PRISM6.0®), represent the IC50 of Vem for control cells (without TCDD pre-treatment) or after 2 weeks of TCDD. e Expression heatmap for β-, α-, and resistance genes in 501Mel cells invalidated or not for AhR by CRISPR/Cas9 before or 48 h after treatment with Vem (1 μM). f Expression Heatmap for β-, α-, and resistance genes in 501Mel and SKMEL28 (R) cells knocked-down for AhR or ARNT using siRNA. The human silhouettes have been adapted (change of color background) from Servier Medical Art, licensed under a CC BY 3.0 FR (https://smart.servier.com/smart_image/shape-29/)
supplemented with penicillin/streptomycin and amphotericin B and cut into small pieces of approximately 3 × 3 × 3 mm³. Tumor pieces were implanted in the interscapular fat pad of female SCID-beige mice (Taconic). After reaching generation 4 (F4), tumor fragments were implanted in the interscapular fat pad of female NMRI nude mice (Taconic). Ketamine, medetomidine, and buprenorphine were used for anesthesia.

Pharmacologic treatment of mice. Mice with tumors reaching 200–300 mm³ were treated via daily oral gavage. Dabrafenib (Biorbyt) and/or Resveratrol (Selleckchem) were dissolved in DMSO at a concentration of 30 and 40 mg/ml respectively, aliquoted and stored at −80 °C. Each day a new aliquot was diluted 1:10 with phosphate-buffered saline and mice were treated with a dose of 30 and 40 mg/kg for Dabrafenib and Resveratrol, respectively. Tumor volume was
monitored with a caliper and calculated using the following formula:

\[V = (n/6) \times \text{length} \times \text{width} \times \text{height}. \]

Data mining. Analysis of TCGA/SKCM data was performed using OncoLnc portal http://www.oncolnc.org62. The raw data count matrix composed of 479 samples; from SKCM melanoma cohort was downloaded from the OncoLnc for the pigmentation genes \((n = 14)\). The AhR target genes \((n = 19)\) or the BRAFi resistant genes \((n = 19)\). Expression heatmap of differentially expressed genes between samples was obtained on log2 fold change using heatmap3 package in R. Cluster-specific genes rankings were obtained by contrasting the samples with the rest of the samples. Cell density curves for the available melanoma cell lines were established using GraphPad PRISM 6.0® in order to establish IC50 dependently to the different treatments.

The raw data count matrix from RNA seq data were obtained in GEO database for previous experiments on melanoma cell lines Cancer Cell Line Encyclopedia29, GSE36134 (sensitive or resistant to PLX470) (IC50 values for PLX4720 were obtained from the Supplementary Table 7 of ref. 29); on BRAFi or BRAFi + MEKi resistant cell lines GSE7529931 and GSE8082930; on BRAFi treated melanoma patients GSE815831; on primary melanoma cell lines (proliferative or invasive) GSE6066435; on single cell analysis of BRAFi resistant melanoma (4650 seq) GSE7205632, and on Vem-resistant melanoma GSE7529932 and GSE8082910, on BRAFi treated melanoma resistant cell lines GSE7529933; and on melanoma dedifferentiation signature resource from Graeber23. Gene expression profiles of 501Mel cells exposed to vehicle, TCDD (10 nM), RSV (5 μM), or RSV (5 μM) + TCDD (10 nM) \((n = 2)\) for 48 h. Heatmap focused on differentially expressed genes as a function of treatment.

Statistics. Data are presented as mean ± s.d. unless otherwise specified, and differences were considered significant at a p value of less than 0.05. Comparisons between groups normalized to a control were carried out by a two-tailed t-test with the Holm–Sidak’s multiple comparisons test when more than two groups are compared to the same control condition. OS was estimated using the Kaplan–Meier method. Univariate analysis using the Cox regression model was performed, and differential vulnerability to drug-induced iron-dependent oxidative stress.

Received: 24 January 2018 **Accepted:** 12 September 2018

Published online: 14 November 2018

References

1. Davies, H. Mutations of the BRAF gene in human cancer. *Nature* **417**, 949–954 (2002).
2. Chapman, P. B. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. *N. Engl. J. Med.* **364**, 2507–2516 (2011).
3. Wagle, N. et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. *J. Clin. Oncol.* **29**, 3085–3096 (2011).
4. Boussemart, L. et al. Secondary tumors arising in patients undergoing BRAFi inhibitor therapy exhibit increased BRAF-CRAF heterodimerization. *Cancer Res.* **76**, 1476–1485 (2016).

5. Corcoran, R. B., Settleman, J. & Engelman, J. A. Potential therapeutic strategies to overcome acquired resistance to MEK or BRAFi inhibitors in BRAF mutant cancers. *Oncotarget* **2**, 336–346 (2011).
6. Johannessan, C. M. et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. *Nature* **504**, 138–142 (2013).
7. Arozena, I. & Wellbrock, C. Overcoming resistance to BRAFi inhibitors. *Ann. Transl. Med.* **5**, 387 (2017).
8. Müller, J. et al. Low MITF/β-catenin ratio predicts early resistance to multiple targeted drugs in melanoma. *Nat. Commun.* **5**, 5712 (2014).
9. Kong, X. et al. Cancer drug addiction is relayed by an ERK2-dependent phenotype switch. *Nature* **550**, 270–274 (2017).
10. Tso, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. *Cancer Cell* **33**, 890–904 (2018).
11. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. *Cell* **174**, 843–855 (2018).
12. Rose, A. A. N. et al. MAPKi pathway inhibitors sensitize BRAFi mutant melanoma to an antibody-drug conjugate targeting GPNNM. *Clin. Cancer Res.* **24**, 919–929 (2018).
13. Hugo, W. et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. *Cell* **162**, 1271–1285 (2015).
14. Hoek, K. S. & Goding, C. R. Cancer stem cells versus phenotype-switching in melanoma. *Pigment Cell Melanoma Res.* **23**, 746–759 (2010).
15. Verfaillie, A. et al. Decoding the regulatory landscape of melanoma reveals TEAD5 as regulators of the invasive cell state. *Nat. Commun.* **6**, 6683 (2015).
16. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. *Nature* **546**, 431 (2017).
17. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. *Nature* **517**, 6142–6147 (2015).
18. Denison, M. S. & Nagy, S. R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. *Annu. Rev. Pharmacol. Toxicol.* **43**, 309–334 (2003).
19. Diani-Moore, S., Zhang, S., Ram, P. & Rifkind, A. B. Aryl hydrocarbon receptor binding and activation of the Ah receptor. *Annu. Rev. Pharmacol. Toxicol.* **23**, 179 (1993).
20. Fernandez-Salgueiro, P. M., Hilbert, D. M., Rudikoff, S., Ward, J. M. & Gonzalez, F. J. Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (TfPARP). *J. Biol. Chem.* **288**, 21514–21525 (2013).
21. Veldhoen, M. & Duarte, J. H. The aryl hydrocarbon receptor: fine-tuning the immune-response. *Curr. Opin. Immunol.* **22**, 747–752 (2010).
22. Denison, M. S., Pandini, A., Nagy, S. R., Baldwin, E. P. & Bonatti, L. Ligand binding and activation of the Ah receptor. *Chem. Biol. Interact.* **141**, 3–24 (2002).
23. Safe, S., Lee, S.-O. & Jin, U.-H. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. *Toxicol. Sci.* **135**, 1–16 (2013).
24. Zhang, C. et al. RAF inhibitors that evade paradoxical MAPK pathway activation. *Nature* **526**, 583–586 (2015).
25. Rose, A. A. N. et al. MAPK pathway inhibitors sensitize BRAFi-mutant melanoma to an antibody-drug conjugate targeting GPNNM. *Clin. Cancer Res.* **22**, 6088–6098 (2016).
26. Smith, M. P. P. et al. Inhibiting drivers of non-mutational drug tolerance is a strategic survival strategy for targeted melanoma therapy. *Cancer Cell* **29**, 270–284 (2016).
27. Toyofuku, K. et al. The etiology of oculocutaneous albinism (OCA) type II: the pink protein modulates the processing and transport of tyrosinase. *Pigment Cell Res.* **15**, 217–224 (2002).
28. Park, S. et al. Unrevealing the role of P-protein on melanosome biology and structure, using siRNA-mediated down regulation of OCA2. *Mol. Cell Biol.* **43**, 617–626 (2013).

29. Barretina, J., Caponigro, G. & Stransky, N. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity. *Nature* **483**, 603–607 (2012).

30. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. *Nature* **517**, 583–588 (2015).

31. Kemper, K. et al. BRAF(V600E) kinase domain duplication identified in therapy-refractory melanoma patient-derived xenografts. *Cell Rep.* **16**, 263–277 (2016).

32. Song, C. et al. Recurrent tumor cell-intrinsic and -extrinsic alterations during MAPK-driven melanoma regression and early adaptation. *Cancer Discov.* **7**, 1255–1268 (2017).

33. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. *Science* **352**, 189–196 (2016).

34. Casper, R. F. et al. Resveratrol has antagonist activity on the aryl hydrocarbon receptor. *Mol. Pharmacol.* **56**, 784–790 (1999).

35. Chen, Z. H. et al. Resveratrol inhibits TCDD-induced expression of CYP1A1. *Mol. Pharmacol.* **56**, 784–790 (1999).

36. Song, C. et al. Recurrent tumor cell-intrinsic and -extrinsic alterations during MAPK-driven melanoma regression and early adaptation. *Cancer Discov.* **7**, 1255–1268 (2017).

37. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. *Nature* **517**, 583–588 (2015).

38. Brooks, J. & Eltom, S. Malignant transformation of mammary epithelial cells. *Femtol. Cell Dev. Biol.* **12**, e293 (2016).

39. Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. *Drug Targets* **11**, 197–201 (2006).

40. Roman, Á. C., Carvajal-Gonzalez, J. M., Merino, J. M., Mulerovo-Narvaro, S. & Fernandez-Salgueiro, P. M. The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. *Pharmacol. Ther.* **185**, 50–63 (2018).

41. Barretina, J., Caponigro, G. & Stransky, N. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity. *Nature* **483**, 603–607 (2012).

42. Schneider, J. M., Elton, S. & Chu, P. M. The aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. *Toxicol. Appl. Pharmacol.* **185**, 708–717 (2002).

43. Donnell, E. F. et al. The aryl hydrocarbon receptor mediates leukocyte recruitment and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells. *Carcinogenesis* **25**, 2005–2013 (2004).

44. Park, S. et al. Unrevealing the role of P-protein on melanosome biology and structure, using siRNA-mediated down regulation of OCA2. *Mol. Cell Biol.* **43**, 617–626 (2013).

45. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. *Nature* **517**, 583–588 (2015).

46. Kemper, K. et al. BRAF(V600E) kinase domain duplication identified in therapy-refractory melanoma patient-derived xenografts. *Cell Rep.* **16**, 263–277 (2016).

47. Song, C. et al. Recurrent tumor cell-intrinsic and -extrinsic alterations during MAPK-driven melanoma regression and early adaptation. *Cancer Discov.* **7**, 1255–1268 (2017).

48. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. *Science* **352**, 189–196 (2016).

49. Casper, R. F. et al. Resveratrol has antagonist activity on the aryl hydrocarbon receptor. *Mol. Pharmacol.* **56**, 784–790 (1999).

50. Villano, C. M., Murphy, K. A., Akintobi, A. & White, L. A. 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells. *Mol. Cancer* **14**, 148 (2015).

51. Gutiérrez-Vázquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. *Immunology* **149**, 19–33 (2016).

52. Monteiro, P., Gilot, D. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. *Drug Targets* **11**, 197–201 (2006).

53. Roman, Á. C., Carvajal-Gonzalez, J. M., Merino, J. M., Mulerovo-Narvaro, S. & Fernandez-Salgueiro, P. M. The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. *Pharmacol. Ther.* **185**, 50–63 (2018).

54. Narasimhan, S. et al. Towards resolving the pro- and anti-tumor effects of the aryl hydrocarbon receptor. *Int. J. Mol. Sci.* **19**, E1388 (2018).

55. Donnell, E. F. et al. The aryl hydrocarbon receptor mediates lufenonium-induced growth inhibition of melanoma cells. *PLoS One* **7**, e40926 (2012).

56. Hansen, K. et al. The anti- rheumatic drug, lufenonium, synergizes with MEK inhibition to suppress melanoma growth. *Oncotarget* **9**, 3815–3829 (2018).

57. Contador-Troca, M. et al. Dioxin receptor regulates aldhyde dehydrogenase to block melanoma tumorigenesis and metastasis. *Mol. Cancer* **14**, 148 (2015).

58. Kolluri, S. K., Jin, U.-H. & Safe, S. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. *Arch. Toxicol.* **91**, 2497–2513 (2017).

59. Gutiérrez-Vázquez, C. & Quintana, F. J. Regulation of the immune response by the aryl hydrocarbon receptor. *Immunology* **149**, 19–33 (2016).

60. Monteiro, P., Gilot, D., Langouet, S. & Fardel, O. Activation of the aryl hydrocarbon receptor by the calcium/calmodulin-dependent protein kinase kinase inhibitor 7-oxo-7H-benzo|[2,1-a|benz|de|isoquinoline-3-carboxylic acid (STO-609). *Drug Metab. Dispos.* **36**, 2556–2563 (2008).

61. Greulich, H. & Erikson, R. L. An analysis of MeK1 signaling in cell proliferation and transformation. *J. Biol. Chem.* **273**, 13280–13288 (1998).

62. Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. *J. Comput. Chem.* **30**, 2785–2791 (2009).

63. Pandini, A., Denison, M. S., Song, Y., Soshilov, A. A. & Bonati, L. Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis. *Biochemistry* **46**, 696–708 (2007).

64. Gilot, D. et al. RNAi-based screening identifies kinases interfering with dioxin-mediated up-regulation of CYP1A1 activity. *PLoS One* **6**, e18261 (2011).

65. Tiong, C. T. et al. A novel prenylflavonoid restricts breast cancer cell growth through AhR-mediated destabilization of ERα protein. *Carcinogenesis* **33**, 1089–1097 (2012).

66. Soshilov, A. A., Denison, M. S. Lindig promiscuity of aryl hydrocarbon receptor agonists and antagonists revealed by site-directed mutagenesis. *Mol. Cell Biol.* **34**, 1707–1719 (2014).

67. Bouafia, A. et al. p53 requires the stress sensor USF1 to direct appropriate cell fate decision. *PLoS Genet.* **10**, e1004309 (2014).

68. Métrivié, R. et al. Cyclic DNA methylation of a transcriptionally active promoter. *Nature* **452**, 45 (2008).

69. Anaya, J. OncoLnc: linking TGCA survival data to mRNAs, miRNAs, and InClnRNAs. *PeerJ Comput. Sci.* **2**, e67 (2016).

70. Kovalova, N., Nault, R., Crawford, R., Zacharewski, T. R. & Kaminski, N. E. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells. *Toxicol. Appl. Pharmacol.* **316**, 95–106 (2017).