1 Introduction

Many new algebraic structures were discovered in the study of soluble models in statistical mechanics and quantum field theory. Amongst them the quantum groups and Yangians are particularly interesting. The former have the structures of quasi triangular Hopf algebras, admitting universal R matrices which play important roles in many fields in both mathematical physics and pure mathematics. The Yangians have structures closely related to but distinct from that of the quantum groups. Their representation theory forms the basis of the quantum inverse scattering method. Recent research has also revealed that the Yangian structure is the underlying symmetry of many types of integrable models.

For practical applications, e.g., using the algebraic Bethe Ansatz to diagonalize Hamiltonians of spin chains, one is primarily interested in the finite dimensional representations of Yangians. The systematic study of representations of the Yangians associated with ordinary Lie algebras was undertaken by Drinfeld, who, using techniques developed in Tarasov’s work on the $gl(2)$ Yangian, obtained the necessary and sufficient conditions for irreps to be finite dimensional. The structures of the finite dimensional irreps of the $gl(m)$ Yangian were extensively studied; representations of $so(n)$ and $sp(2n)$ Yangians and the twisted Yangians were studied in; and the fundamental irreps of all the Yangians were investigated by Chari and Pressley.

It is also possible to introduce Yangians and their quantum analogues associated with the simple Lie superalgebras, which we will call super Yangians in this paper. Their structures, and their connections with the Lie superalgebras and the
related quantum supergroups in particular, were studied by Nazarov\cite{12} and also in \cite{13}. However, no attempt has yet been made to develop their representation theory in a systematic fashion. As a first step towards developing the representation theory of super Yangians, we investigate the finite dimensional irreducible representations of the Yangian $Y(gl(1|1))$ associated with the Lie superalgebra $gl(1|1)$ in detail. In section 2, we construct a BPW type of basis for $Y(gl(1|1))$. In section 3, we prove that every finite dimensional irrep of $Y(gl(1|1))$ is of highest weight type, and is uniquely characterized by the highest weight. We give the necessary and sufficient condition for an irrep to be finite dimensional. In section 4, we construct an explicit basis for each finite dimensional irrep.

It is relatively well known that the representation theory of Lie superalgebras and the associated quantum supergroups differs markedly from that of the ordinary Lie algebras and the corresponding quantum groups. This is also the case for Yangians and super Yangians, as we will see in the remainder of this paper.

Probably $gl(1|1)$ is the most extensively studied Lie superalgebra, because of its connection with BRST and supersymmetry. Its representations are also rather easy to study, as only one and two dimensional irreps exist. However, we are not so lucky with the super Yangian $Y(gl(1|1))$. As we will see, the study of its representations is a rather complex problem. The complication arises primarily from the fact that $Y(gl(1|1))$ as an associative algebra is generated by an infinite number of generators. In fact, it is a deformation\cite{14} of the universal enveloping algebra of a subalgebra of the Kac - Moody superalgebra $\hat{gl}(1|1)$, which is spanned by the infinite number of nonnegative modes.

2 BPW theorem

In order to define the super Yangian $Y(gl(1|1))$, we first explain some properties of the Lie superalgebra $gl(1|1)$. Let $\{E^a_b | a, b = 1, 2\}$ be a homogeneous basis for a \mathbb{Z}_2 graded vector space over \mathbb{C} such that E^a_b is even if $a = b$, and odd otherwise. The Lie superalgebra $gl(1|1)$ is this \mathbb{Z}_2 graded vector space endowed with the following graded commutator

$$[E^a_b, E^c_d] = \delta^c_b E^a_d - (-1)^{(a+b)(c+d)} E^c_b. \quad (1)$$

The vector module of $gl(1|1)$ is a 2-dimensional \mathbb{Z}_2-graded vector space V, which has a homogeneous basis $\{v^1, v^2\}$ with v^1 being even while v^2 being odd. The action of $gl(1|1)$ on V is defined by $E^a_b v^c = \delta^c_b v^a$. We denote the associated vector representation of $gl(1|1)$ by π. Then in this basis $\pi(E^a_b) = e^a_b$, where $e^a_b \in \text{End}(V)$ are the standard matrix units.

Define the permutation operator $P : V \otimes V \to V \otimes V$ by $P(v^a \otimes v^b) = (-1)^{ab+a+b} v^b \otimes v^a$. Then explicitly, we have

$$P = \sum_{a,b=1,2} e^a_b \otimes e^b_a (-1)^{b+1}. \quad (2)$$

It is well known that the following R matrix

$$R(u) = 1 + \frac{P}{u}, \quad u \in \mathbb{C},$$

2
satisfies the graded Yang-Baxter equation.

The super Yangian \(Y(gl(1|1)) \) is a \(\mathbb{Z}_2 \) graded associative algebra generated \(t^a_b[n] \), \(0 < n \in \mathbb{Z}_+ \), with some quadratic relations defined in the following way: Let

\[
L(u) = \sum_{a,b} (-1)^{b+1} t^a_b(u) \otimes e^b_a,
\]

\[
t^a_b(u) = (-1)^{b+1} \delta^a_b + \sum_{n=1}^{\infty} t^a_b[n] u^{-n}.
\]

Then the defining relations of \(Y(gl(M|N)) \) are

\[
L_1(u)L_2(v)R_{12}(v-u) = R_{12}(v-u)L_2(v)L_1(u).
\]

Here the grading of the algebra requires some explanation. The element \(t^a_b[n] \) is even if \(a = b \), and odd otherwise. \(L(u) \) belongs to the \(\mathbb{Z}_2 \) graded vector space \(\text{End}(V) \otimes Y(gl(1|1)) \) and is even. Equation (3) lives in \(\text{End}(V) \otimes \text{End}(V) \otimes Y(gl(1|1)) \); and the multiplication of the factors on both sides are defined with respect to the grading of this triple tensor product. More explicitly, we have

\[
[t^a_{b_1}(u), t^a_{b_2}(v)] = \frac{(-1)^{\eta(a_1,b_1;a_2,b_2)}}{u-v} \left[t^a_{b_1}(u)t^a_{b_2}(v) - t^a_{b_2}(v)t^a_{b_1}(u) \right],
\]

\[
\eta(a_1,b_1;a_2,b_2) \equiv 1 + b_2 + (b_1 + b_2)(a_1 + b_2) + (a_1 + b_1)(a_2 + b_2)(\text{mod } 2);
\]

or in terms of the generators \(t^a_b[n] \),

\[
[t^a_{b_1}[m], t^a_{b_2}[n]] = \sum_{r=0}^{\text{Min}(m,n)-1} \left[t^a_{b_1}[r] t^a_{b_2}[m + n - 1 - r] - t^a_{b_1}[m + n - 1 - r] t^a_{b_2}[r] \right]
\times (-1)^{\eta(a_1,b_1;a_2,b_2)}.
\]

A feature of \(Y(gl(1|1)) \) which is not shared by the Yangians associated with ordinary Lie algebras is that \(t^a_b(u) \), \(a \neq b \), at different \(u \) values neither commute nor anticommute. Rather,

\[
(u - v - 1)t^1_1(u)t^1_2(v) = -(u - v + 1)t^1_2(v)t^1_1(u),
\]

\[
(u - v + 1)t^2_1(u)t^2_2(v) = -(u - v - 1)t^2_2(v)t^2_1(u).
\]

A curious observation is that when the spectral parameters are assumed to be purely imaginary, \(t^a_b(u) \) and \(t^a_b(v) \) only differ by a phase.

\(Y(gl(1|1)) \) also admits \(\mathbb{Z}_2 \)-graded associative algebraic structures compatible with the associative multiplication. We have the co-unit \(\epsilon : Y(gl(1|1)) \rightarrow \mathbb{C} \), \(t^a_b[k] \mapsto \delta^a_b \delta^a_b (-1)^{a+1} \), the co-multiplication \(\Delta : Y(gl(1|1)) \rightarrow Y(gl(1|1)) \otimes Y(gl(1|1)) \), \(L(u) \mapsto L(u) \otimes L(u) \otimes L(u) \), and also the antipode \(S : Y(gl(1|1)) \rightarrow Y(gl(1|1)) \), \(L(u) \mapsto L^{-1}(u) \). Thus \(Y(gl(1|1)) \) is a \(\mathbb{Z}_2 \) graded Hopf algebra.

For the purpose of constructing representations of \(Y(gl(1|1)) \), the following generalized tensor product structure is more useful:

\[
\Delta^{(k-1)}_a : Y(gl(1|1)) \rightarrow Y(gl(1|1)) \otimes^k,
\]

\[
L(u) \mapsto L(u + \alpha_1) \otimes L(u + \alpha_2) \otimes \ldots \otimes L(u + \alpha_k),
\]
where \(\alpha_1 = 0 \), and \(\alpha_i, \ i = 2, 3, \ldots, k \), are a set of arbitrary complex parameters. Explicitly, we have
\[
\Delta^{(k-1)}_{a}(t^a_b(u)) = \sum_{a_1, \ldots, a_{k-1}} (-1)^{1+k+\sum_{i=0}^{k-1} a_i + \sum_{i=1}^{k-1} (a_i + a_{i+1})} \times t^a_{a_1}(u) \otimes t^a_{a_2}(u + \alpha_2) \otimes \cdots \otimes t^a_{a_{k-1}}(u + \alpha_{k-1})
\]
where \(a_0 = b \). A further useful fact is the existence of an automorphism \(\phi_f : Y(gl(1|1)) \to Y(gl(1|1)) \) corresponding to each power series \(f(x) = 1 + f_1x^{-1} + f_2x^{-2} + \ldots \), which is defined by
\[
t^a_b(x) \mapsto \tilde{t}^a_b(x) = f(x)t^a_b(x).
\]
As can be easily seen, the \(\tilde{t}^a_b \) satisfy exactly the same relations as the \(t^a_b \) themselves. For later use, we define
\[
\tilde{t}^a_b(x) = \sum_{k \geq 0} \tilde{t}^a_b[k]x^{-k}.
\]

Let us introduce a filtration on \(Y(gl(1|1)) \). Define the degree of a generator \(t^a_b[n] \) by \(\text{deg}(t^a_b[n]) = n \), and require that the degree of a monomial \(t^a_1[n_1]t^a_2[n_2] \cdots t^a_k[n_k] \) is \(\sum_{r=1}^{k} n_r \). Let \(Y_p \) be the vector space over \(\mathbb{C} \) spanned by monomials of degree not greater than \(p \). Then
\[
... \supset Y_p \supset Y_{p-1} \supset \cdots \supset Y_1, \quad Y_p \supset Y_q \subset Y_{p+q}.
\]

Let \(z_1, z_2, \ldots, z_k \) be some \(t^a_b[n] \)'s. Assume that \(Z = z_1z_2\ldots z_k \) has \(\text{deg}(Z) = p \), then it directly follows from (4) that for any permutation \(\sigma \) of \((1, 2, \ldots, k) \),
\[
z_1z_2\ldots z_k = \epsilon(\sigma)z_{\sigma(1)}z_{\sigma(2)}\ldots z_{\sigma(k)}
\]
belongs to \(Y_{p-1} \), where \(\epsilon(\sigma) \) is \(-1\) if \(\sigma \) permutes the odd elements in \(z_1, z_2, \ldots, z_k \) an odd number of times, and \(+1\) otherwise. In particular, if \(t^a_b[n] \) is odd, then \((t^a_b[n])^2 \in Y_{2n-1} \). Therefore, given any ordering of the generators \(t^a_b[n] \), \(0 < n \in \mathbb{Z}_+ \), \(a,b = 1,2 \), their ordered products of degrees less or equal to \(p \) span \(Y_p \), where the products do not contain factors \((t^a_b[n])^2 \) if \(t^a_b[n] \) is odd.

Consider the following ordered products:
\[
(t^2_1[n_1])^{\theta_1}(t^2_1[n_2])^{\theta_2} \cdots (t^2_1[n_r])^{\theta_r} \times (t^1_1[i_1])^{k_1}(t^1_1[i_2])^{k_2} \cdots (t^1_1[i_s])^{k_s} \times (t^2_2[j_1])^{l_1}(t^2_2[j_2])^{l_2} \cdots (t^2_2[j_t])^{l_t} \times (t^1_2[m_1])^{\delta_1}(t^1_2[m_2])^{\delta_2} \cdots (t^1_2[m_q])^{\delta_q},
\]
where \(n_1 < n_2 < \ldots < n_r \), similarly for \(i_\alpha, j_\alpha, \) and \(m_\alpha \), and \(k_\alpha, l_\alpha, \delta_\alpha \in \mathbb{Z}_+ \), \(\theta_\alpha, \delta_\alpha \in \{0, 1\} \).
Theorem 1: The elements \([\mathbf{7}]\) form a basis of \(Y(gl(1|1))\).

Proof: Since the elements of \([\mathbf{7}]\) span \(Y(gl(1|1))\), we only need to show that they are also linearly independent. Define \(U_p = Y_p/Y_{p-1}\), then the multiplication of \(Y(gl(1|1))\) defines a bilinear map \(U_p \otimes U_q \rightarrow U_{p+q}\). This map extends to \(U \otimes U \rightarrow U\), \(U = \bigoplus_{p=0}^\infty U_p\), turning \(U\) to an associative algebra.

Introduce the ordinary indeterminates \(x_a[n]\), \(a = 1, 2, n = 1, 2, \ldots\), and the Grassmanian variables \(\zeta^\pm[n]\), \(n = 1, 2, \ldots\). Construct the polynomial algebra \(G[x, \zeta]\) in these variables, where for the \(\zeta\)'s, we have \((\zeta^\pm[n])^2 = 0\). Now \(U\) and \(G\) are isomorphic as associative algebras. This proves that the elements \([\mathbf{7}]\) are linearly independent.

We denote by \(N^+\) the vector space spanned by the elements of \([\mathbf{7}]\) of the form
\[
(t_2^1[m_1])^{\delta_1} \ldots (t_2^n[m_q])^{\delta_q}, \quad \delta_i = 0, 1.
\]
Similarly, we denote by \(N^-\) the vector space spanned by all the \((t_1^2[n_1])^{\eta_1} \ldots (t_1^n[n_r])^{\eta_r}\), and \(Y^0\) that spanned by all the \((t_1^1[k_1])^{k_1} \ldots (t_1^n[k_s])^{k_s} \times (t_2^1[j_1])^{l_1} \ldots (t_2^n[j_r])^{l_r}\). It should be pointed out that \(N^\pm\) and \(Y^0\) are not subalgebras of \(Y(gl(1|1))\).

3 Classification of irreps

3.1 Highest weight irreps

Consider a finite dimensional irreducible \(Y(gl(1|1))\) - module \(V\). A nonvanishing vector \(v_+^A \in V_0\) is called maximal if
\[
t_2^1[n]v_+^A = 0, \quad t_a^b[n]v_+^A = \lambda_a[n]v_+^A, \quad \forall n > 0, \quad a = 1, 2,
\]
where \(\lambda_a[n] \in \mathbb{C}\). An irreducible module is called a highest weight module if it admits a maximal vector. We define
\[
\Lambda(x) = (\lambda_1(x), \lambda_2(x)), \quad \lambda_a(x) = (-1)^{a+1} + \sum_{k>0} \lambda_a[k] x^{-k},
\]
and call \(\Lambda(x)\) a highest weight of \(V\). We wish to show that

Theorem 2: Every finite dimensional irreducible \(Y(gl(1|1))\) - module \(V\) contains a unique (up to scalar multiples) maximal vector \(v_+^A\).

Define a subspace \(V_0 = \{v \in V \mid t_2^1[m]v = 0, \forall n\}\). The bulk of the proof of the Theorem is contained in

Lemma 1 1). \(V_0 \neq 0\);
2). \(Y^0\) stabilizes \(V_0\);
3). For all \(v \in V_0\),
\[
[t_a^a[m], t_b^b[n]]v = 0, \quad a, b = 1, 2, \quad m, n > 0.
\]

Proof: The proof is rather straightforward, we nevertheless present it here as the results are of crucial importance for developing the representation theory.

1). Since \(t_1^1[1]\) and \(t_2^1[1]\) form an abelian Lie algebra, there exists at least one nonvanishing \(v \in V\) which is a common eigenvector of \(t_1^1[1]\) and \(t_2^1[1]\), that is,
\[
t_1^1[1]v = \mu_1 v, \quad t_2^1[1]v = \mu_2 v, \quad \mu_1, \mu_2 \in \mathbb{C}.
\]
Now any nonvanishing \(t^1_n [t^1_n]_2 [n_2] ... t^1_n [n_k] v, k \geq 0, \) is a common eigenvector of \(t^1_1 [1] \) and \(t^2_2 [1] \) with respective eigenvalues \(\mu_1 + k \) and \(\mu_2 - k \). Obviously such vectors are linearly independent. Since \(V \) is finite dimensional, \(k \) can not increase indefinitely. Thus by repeatedly applying \(t^1_2 [m] \)'s to \(v \) we will arrive at a \(0 \neq v_0 \in V \) such that

\[
\begin{align*}
\text{for } n \geq 1, & \quad t^1_1 [n] v_0 = 0, \\
\text{for } n \geq 1, & \quad t^1_1 [1] v_0 = \lambda_1 [1] v_0, \quad t^2_2 [1] v_0 = \lambda_2 [1] v_0.
\end{align*}
\]

This proves that \(V_0 \) contains at least one nonzero element.

2). Let \(v \) be a vector of \(V_0 \). We want to prove that all \(t^a_{a_k} [n_k] t^a_{a_{k-1}} [n_{k-1}] ... t^a_{a_1} [n_1] v, \) \(a_i = 1, 2, n_i > 0, k \geq 0 \) are annihilated by \(t^1_2 [m], m > 0 \). The \(k = 0 \) case requires no proof. Assume that all the vectors \(v_l = t^a_{a_l} [n_l] ... t^a_{a_1} [n_1] v, l < k, \) are in \(V_0 \), then

\[
\begin{align*}
 t^1_2 [m] t^1_1 [n_k] v_{k-1} - t^1_1 [1] v_{k-1} &= t^1_1 [m] t^1_1 [n_k] v_{k-1}, \\
 &= \sum_{r=0}^{\min(m,n_k)-1} \left(t^1_1 [r] t^1_1 [m+n_k - 1 - r] - t^1_1 [m+n_k - 1 - r] t^1_1 [r] \right) v_{k-1} = 0, \\
 t^1_2 [m] t^1_2 [n_k] v_{k-1} - t^1_2 [n_k] t^1_2 [m] v_{k-1} &= -t^1_1 [m] t^1_1 [n_k] v_{k-1}, \\
 &= \sum_{r=0}^{\min(m,n_k)-1} \left(t^1_2 [r] t^1_2 [m+n_k - 1 - r] - t^1_2 [m+n_k - 1 - r] t^1_2 [r] \right) v_{k-1} = 0.
\end{align*}
\]

3). The following defining relations of \(Y(gl(1|1)) \)

\[
\begin{align*}
[t^1_1 [m], t^1_1 [n]] &= t^2_2 [m], \quad t^1_2 [n] = 0, \\
[t^2_2 [m], t^1_1 [n]] &= \sum_{r=0}^{\min(m,n)-1} \left(t^1_1 [r] t^1_2 [m+n - 1 - r] - t^1_2 [m+n - 1 - r] t^1_1 [r] \right),
\end{align*}
\]

and part 2) of the Lemma directly lead to part 3).

Proof of the Theorem: By part 3) of the Lemma, the action of the \(t^a_a [n] \) on \(V_0 \) coincides with an abelian subalgebra of \(gl(V_0) \). Therefore, Lie’s Theorem can be applied, and we conclude that there exists at least one common eigenvector of all \(t^a_a [n] \) in \(V_0 \). This proves the existence of the highest weight vector. Assume \(v^+ \) and \(v'^+ \) are two highest weight vectors of \(V \), which are not proportional to each other. Applying \(Y(gl(1|1)) \) to them generates two nonzero submodules of \(V \), which are not equal. This contradicts the irreducibility of \(V \).

3.2 Construction of highest weight irreps

To construct irreducible \(Y(gl(1|1)) \) modules, we consider a one dimensional vector space \(C v^A_+ \). We define a linear action of \(Y^+ = Y^0 N^+ \) on it by

\[
\begin{align*}
 N^+ v^A_+ &= 0, \\
t^a_a [n] v^A_+ &= \lambda_a [n] v^A_+, \\
t^a_a [n] y_0 v^A_+ &= \lambda_a [n] y_0 v^A_+, \quad \forall y_0 \in Y^0.
\end{align*}
\]

As we pointed out before, \(Y^+ \) does not form an associate algebra, thus it does not make sense to ask whether \(C v^A_+ \) is a \(Y^+ \) module. However, from the proof of the
Lemma we can see that the definition (9) is consistent with the commutation relations of \(Y(gl(1|1)) \). Now we define the following vector space

\[
\bar{V}(\Lambda) = Y(gl(1|1)) \otimes_{Y^+} v^\Lambda_+.
\]

Then \(\bar{V}(\Lambda) \) is a \(Y(gl(1|1)) \) module, which is obviously isomorphic to \(N^- \otimes v^\Lambda_+ \).

To gain some concrete feel about this module, we explicitly spell out the action of \(Y(gl(1|1)) \). Every vector of \(\bar{V}(\Lambda) \) can be expressed as \(y \otimes v^\Lambda_+ \) for some \(y \in N^- \). For simplicity, we write it as \(yv^\Lambda_+ \). Given any \(u \in Y(gl(1|1)) \), \(uy \) can be expressed as a linear sum of the basis elements \((\bar{v}) \). We write

\[
uy = \sum a_{\alpha,\beta} y_0^\alpha y_0^\beta + \sum b_{\mu,\nu,\sigma} y_0^\mu y_0^\nu y_0^\sigma,
\]

\[
y_0^\alpha, y_0^\beta \in N^-; y_0^\mu, y_0^\nu, y_0^\sigma \in Y^0, y_+^\alpha, y_+^\beta \in N^+.
\]

Then

\[
u(yv^\Lambda_+) = \sum a_{\alpha,\beta} y_0^\alpha y_0^\beta v^\Lambda_+.
\]

The \(Y(gl(1|1)) \) module \(\bar{V}(\Lambda) \) is infinite dimensional. Standard arguments show that it is indecomposable, and contains a unique maximal proper submodule \(M(\Lambda) \). Construct

\[
V(\Lambda) = \bar{V}(\Lambda)/M(\Lambda).
\]

Then \(V(\Lambda) \) is an irreducible highest weight \(Y(gl(1|1)) \) module.

Let \(V_1(\Lambda) \) and \(V_2(\Lambda) \) be two irreducible \(Y(gl(1|1)) \) modules with the same highest weight \(\Lambda(x) \). Denote by \(v^\Lambda_1 \) and \(v^\Lambda_2 \) their maximal vectors respectively. Set \(W = V_1(\Lambda) \oplus V_2(\Lambda) \). Then \(v^\Lambda_+ = (v^\Lambda_1, v^\Lambda_2) \) is maximal, and repeated applications of \(Y(gl(1|1)) \) to \(v^\Lambda_+ \) generate an \(Y(gl(1|1)) \) submodule \(V(\Lambda) \) of \(W \). Define the module homomorphisms \(P_i : V(\Lambda) \to V_i(\Lambda) \) by

\[
P_1(v_1, v_2) = (v_1, 0),
\]

\[
P_2(v_1, v_2) = (0, v_2), \quad v_1 \in V_1(\Lambda), \quad v_2 \in V_2(\Lambda).
\]

Since

\[
P_1(v^\Lambda_1, v^\Lambda_2) = (v^\Lambda_1, 0),
\]

\[
P_2(v^\Lambda_1, v^\Lambda_2) = (0, v^\Lambda_2),
\]

it follows the irreducibility of \(V_1(\Lambda) \) and \(V_2(\Lambda) \) that \(\text{Im}P_i = V_i(\Lambda) \). Now \(\text{Ker}P_1 \) is a submodule of \(V_2(\Lambda) \). The irreducibility of \(V_2(\Lambda) \) forces either \(\text{Ker}P_1 = 0 \) or \(\text{Ker}P_1 = V_2(\Lambda) \). But the latter case is not possible, as \((0, v^\Lambda_2) \not\in W \). Similarly we can show that \(\text{Ker}P_2 = 0 \). Hence, \(P_i \) are \(Y(gl(1|1)) \) module isomorphisms.

To summarize the preceding discussions, we have

Theorem 3 Let \(\Lambda(x) \) be a pair of Laurent polynomials. Then there exists a unique irreducible highest weight \(Y(gl(1|1)) \) module \(V(\Lambda) \) with highest weight \(\Lambda(x) \).
3.3 Finite dimensionality conditions

Let \(V(\Lambda) \) be an irreducible highest weight \(Y(gl(1|1)) \) module with highest weight \(\Lambda(x) \). Denote its maximal vector by \(v_+^\Lambda \). The vectors \(t_1^2[n]v_+^\Lambda, n = 1, 2, ... \), span a vector space, which we denote by \(\Omega(\Lambda) \). As an intermediate step towards the classification of the finite dimensional irreducible representations of \(Y(gl(1|1)) \), we determine the necessary and sufficient conditions for \(\Omega(\Lambda) \) to be finite dimensional. The method used here is adopted from Tarasov’s work\[5\], but is more algebraic.

First note that if for some \(n \), \(t_1^2[n+1]v_+^\Lambda \) can be expressed as a linear combination of the elements of \(B_n = \{ t_1^2[i]v_+^\Lambda | i \leq n \} \), then for all \(k \geq 0 \), \(t_1^2[n+1+k]v_+^\Lambda \) can be expressed in terms of the elements of \(B_n \). This fact can be easily proven using induction on \(k \) with the help of the following obvious relation:

\[
t_1^2[n+1+k]v_+^\Lambda = \lambda_1[n+k]t_1^2[1]v_+^\Lambda - \lambda_1[1]t_1^2[n+k]v_+^\Lambda - t_1^1[2]t_1^2[n+k]v_+^\Lambda.
\]

Therefore, if \(\dim \Omega(\Lambda) = N \) is finite, then \(B_N \) forms a basis of \(\Omega(\Lambda) \), and we have

\[
t_1^2(x)v_+^\Lambda = \sum_{i=1}^{N} \beta_i(x)v_i, \quad v_i = t_1^2[i]v_+^\Lambda.
\]

(10)

In (10), the \(\beta_i \) are power series in \(x^{-1} \),

\[
\beta_i(x) = x^{-i} + x^{-n-1} \sum_{k \geq 0} \sigma_i[k]x^{-k},
\]

(11)

and the \(\sigma_i[k] \) are defined by

\[
t_1^2[n+1+k]v_+^\Lambda = \sum_{i=1}^{k} \sigma_i[k]t_1^2[i]v_+^\Lambda.
\]

In order to determine the functional form of the \(\beta_i \), we apply \(t_1^1[2] \) to both sides of this equation. By utilizing the defining relations of \(Y(gl(1|1)) \), we arrive at the following recursion relation for the \(\sigma_i[k] \)

\[
\sigma_i[k+1] - \sigma_i-1[k] - \sigma_N[k]\sigma_i[0] = \delta_{i1} \left\{ \lambda_1[n+k+1] - \sum_{j=1}^{n} \sigma_j[k]\lambda_1[j] \right\},
\]

(12)

where, by definition, \(\sigma_0[k] = 0 \). Set

\[
\sigma_i(x) = \sum_{k \geq 0} \sigma_i[k]x^{-k},
\]

\[
\delta_i(x) = 1 + x^{i-N-1} \sigma_i(x).
\]

Then equation (12) can be easily solved, yielding

\[
\delta_i(x) = \delta_N(x) \left(1 - \sum_{j=i+1}^{N} \sigma_j[0]x^{j-N-1} \right), \quad i = 1, 2, ..., N.
\]

(13)
Now the β_i can be expressed in terms of the δ_j:

$$\beta_i(x) = x^{-i}\delta_i(x), \quad i = 1, 2, \ldots, N.$$ (14)

This particular form of the $\beta_i(x)$ imposes stringent constraints on the highest weight $\Lambda(x)$. Observe that the $t_a^i[n]$ stabilize the vector space $\Omega(\Lambda)$. Thus

$$t_a^i(x)t_j^2(y)v_+^\Lambda = \sum_{1 \leq i,j \leq N} (X_a(x))_{ij}\beta_j(y)v_i,$$

where $X_a(x) = (-1)^{a+1} + o(x^{-1})$ is an $N \times N$ matrix in $\mathbb{C}[[x^{-1}]]$. Defining relations of $Y(gl(1|1))$ lead to

$$[t_1^1(x), t_2^2(y)]v_+^\Lambda = \frac{1}{x-y} \left[\lambda_1(y)t_1^2(x) - \lambda_1(x)t_2^2(y) \right] v_+^\Lambda,$$

which in turn yields

$$\sum_{1 \leq i,j \leq N} [(X_a(x))_{ij}\beta_j(y) - \lambda_1(x)\beta_i(y)] = \frac{1}{x-y} \left[\lambda_1(y)\beta_i(x) - \lambda_1(x)\beta_i(y) \right].$$ (15)

It is always possible to choose a set of constants x_0 and z_i, $i = 1, 2, \ldots, N$, such that $\sum_{i=1}^N z_i\beta_i(x_0)$ does not vanish. Set $x = x_0$ in (15). Multiply both sides of the resultnt equation by z_i then sum over i. Some further simple manipulations lead to the following functional form for λ_1

$$\lambda_1(x) = \sum_{i=1}^N [a_i + b_i x]\beta_i(x),$$

where a_i and b_i are complex numbers. Similar calculations yield

$$\lambda_2(x) = \sum_{i=1}^N [c_i + d_i x]\beta_i(x).$$

Using equations (14) and (13), we obtain

$$\lambda_a(x) = \delta_N(x)P_a(x),$$

$$P_a(x) = (-1)^{a+1} + \sum_{k=1}^N p_a[k]x^{-k}, \quad p_a[k] \in \mathbb{C}.$$ (16)

Therefore, a necessary condition for Ω to be finite dimensional is that $\lambda_1(x)/\lambda_2(x)$ equals the ratio of two polynomials in x^{-1}, which respectively have ± 1 as their constant terms.

Let $\Lambda(x) = (\lambda_1(x), \lambda_2(x))$ satisfy the relation (16), with one of the $P_a(x)$ of order N, and the other of order not greater than N. We further assume that the P_a do not have common factors. Construct an irreducible $Y(gl(1|1))$ module $V(\Lambda)$ with highest weight $\Lambda(x)$. Let $v_+^\Lambda \in V(\Lambda)$ be its maximal vector, and $\Omega(\Lambda)$ be the subspace of $V(\Lambda)$ as defined before. Using the automorphism \mathcal{H} with $f(x) = \delta_N^{-1}(x)$, we have
\[
\left[\tilde{t}_2(x), \tilde{t}_1(y) \right] v_+^\Lambda = \frac{1}{x - y} [P_2(x)P_1(y) - P_1(x)P_2(y)] v_+^\Lambda.
\]

It is obvious but rather crucial to observe that \(P_2(x)P_1(y) - P_1(x)P_2(y) \) is divisible by \(x^{-1} - y^{-1} \). We have

\[
\tilde{t}_2(x)\tilde{t}_1(y) v_+^\Lambda = y^{-1} \sum_{k=0}^{N-1} q_k(x) y^{-k} v_+^\Lambda,
\]

where \(q_k(x) \) are some polynomials in \(x \). This equation immediately leads to

\[
\tilde{t}_2(x)\tilde{t}_1^n(y) v_+^\Lambda = 0, \quad \forall k > N,
\]

which is equivalent to

\[
\tilde{t}_1^n(y) v_+^\Lambda = 0, \quad \forall k > N. \tag{17}
\]

It follows from equation (17) and the BPW theorem (for the generators \(\tilde{t}_b^n[k] \)) that the module \(V(\Lambda) \) is spanned by a subset of the following set of vectors

\[
\tilde{B}(\Lambda) = \{ v_+^\Lambda; \tilde{t}_1[n_1]\tilde{t}_1[n_2]...\tilde{t}_1[n_r] v_+^\Lambda | 1 \leq n_1 < n_2 < ... < n_r \leq N, \quad r = 1, 2, ..., N \}. \tag{18}
\]

Thus the dimension of \(V(\Lambda) \) is bounded by \(2^N \). To summarize, we have proved the first part of the following theorem

Theorem 4 (1). The irreducible \(Y(gl(1|1)) \) module \(V(\Lambda) \) is finite dimensional if and only if its highest weight \(\Lambda(x) = (\lambda_1(x), \lambda_2(x)) \) satisfies the following conditions:

\[
\frac{\lambda_1(x)}{\lambda_2(x)} = \frac{P_1(x)}{P_2(x)}, \tag{19}
\]

where the \(P_a(x) \) are polynomials in \(x^{-1} \), which have no common factors, and \(P_a(x) = (-1)^{a+1} + o(x^{-1}) \).

(2). Let \(N \), called the order of \(\Lambda(x) \), be the largest of the orders of the polynomials \(P_a(x) \), then (18) forms a basis of \(V(\Lambda) \).

The proof of the second part of this Theorem will be given in the next section.

4 Structure of irreps

We investigate the structure of the finite dimensional irreps of \(Y(gl(1|1)) \) in this section. In particular, we will examine the tensor products of finite dimensional irreps. We will also prove the second part of Theorem 4, thus to obtain an explicit basis for any finite dimensional irreducible \(Y(gl(1|1)) \) module.

Let \(V(\Lambda) \) be a finite dimensional irreducible \(Y(gl(1|1)) \) module with highest weight \(\Lambda(x) \). Because of the automorphisms \(\phi_f \), we can assume that \(\Lambda(x) \) is of the form

\[
\lambda_a(x) = P_a(x), \quad a = 1, 2,
\]

where the \(P_a(x) \) are polynomials in \(x^{-1} \), which do not have common factors. Also, \(P_a(x) = (-1)^{a+1} + o(x^{-1}) \). Let \(N \) be the order of \(\Lambda(x) \). We have the following
Lemma 2 The vanishing of any linear combination of the vectors
\[\{v^A_{+}; t^2_1[n_1]t^2_1[n_2]...t^2_1[n_r]v^A_{+} \mid 1 \leq n_1 < n_2 < ... < n_r \leq N, \ r = 1, 2, ..., N \} \]
would lead to
\[v_- = t^2_1[1]t^2_1[2]...t^2_1[N]v^A_{+} = 0. \]

Proof: This follows directly from the filtration of \(Y(gl(1|1)) \) introduced in section 2, and the BPW theorem. To be more explicit, we consider any vector \(v \in V(\Lambda) \) of the form
\[v = \sum_{1 \leq n_1 < ... < n_r \leq N} c_{(n_1,...,n_r)} t^2_1[n_1]t^2_1[n_2]...t^2_1[n_r]v^A_{+}. \]
It must contain a term \(t^2_1[m_1]t^2_1[m_2]...t^2_1[m_r]v^A_{+} \) such that \(\text{deg}(t^2_1[m_1]t^2_1[m_2]...t^2_1[m_r]) \) is the largest compared with all other terms of \(v \). We will call this term distinguished. For our purpose, we can assume that \(c_{(n_1,...,n_r)} = 1 \). Multiply \(v \) by \(t^1_1[k_1]t^1_1[k_2]...t^1_1[k_{N-r}] \), where \(1 \leq k_1 < k_2 < ... < k_{N-r} \leq N \), and \(k_i \neq m_s \) for all \(i = 1, ..., N - r \), \(s = 1, ..., r \). Denote the resultant vector by \(\bar{v} \). We now apply the BPW theorem to rewrite \(\bar{v} \) into
\[\bar{v} = (-1)^\theta v_- + \sum_{1 \leq p_1 < ... < p_N \leq N} \bar{c}_{(p_1,...,p_N)} t^2_1[p_1]t^2_1[p_2]...t^2_1[p_N]v^A_{+}, \]
where the \(v_- \) term arises from the distinguished term of \(v \), and \(\theta \) may be 0 or 1. It is crucial to observe that all the other terms in \(\bar{v} \) must have
\[\text{deg}(t^2_1[p_1]t^2_1[p_2]...t^2_1[p_N]) < \text{deg}(t^2_1[1]t^2_1[2]...t^2_1[N]). \]
But this is impossible, unless they all vanish identically. Hence \(\bar{v} = (-1)^\theta v_- \). Therefore, if \(v \) was vanishing, so was \(v_- \).

Let \(V_1(\Lambda) \) be an irreducible \(Y(gl(1|1)) \) module of dimension \(2^N \) with an order \(N \) highest weight \(\Lambda(x) = (\lambda_1(x), \lambda_2(x)) \), where \(\lambda_\alpha(x) \) are polynomials in \(x^{-1} \). Let \(W(\mu) \) be a two dimensional irreducible \(Y(gl(1|1)) \) module with highest weight \(\mu(x) = (1 + \mu_1/x, -1 + \mu_2/x) \). Introduce a parameter \(\alpha \) such that \(1 + (\mu_1 + \alpha)/x \) does not divide \(\lambda_2(x), \) and \(-1 + (\mu_2 - \alpha)/x \) does not divide \(\lambda_1(x) \). Then

Proposition 1 The tensor product \(Y(gl(1|1)) \) module \(V(\Lambda) \otimes W(\mu) \) is irreducible with respect to the co - multiplication \(\Delta_\alpha \) defined by (3).

Proof: Denote by \(v_+ \) the maximal vector of \(V_1(\Lambda) \) and set \(v_- = t^2_1[1]...t^2_1[N]v_+ \). Let \(w_+ \) be the maximal vector of \(W \) and define \(w_- = t^2_1[1]w_- \). It is clearly true that
\[V(\Lambda) \otimes w_- = N^{-1}(v_+ \otimes w_-). \]
Consider
\[\Delta_\alpha(t^2_1(x))(v_+ \otimes w_+) = t^2_1(x)v_+ \otimes \left(1 + \frac{\mu_1}{x + \alpha}\right)w_+ - \lambda_2(x)v_+ \otimes \frac{1}{x + \alpha}w_- \quad \text{...} (20) \]
If $\mu \neq 0$, we set x to $x_0 = -\mu_1 - \alpha$ in the above equation to arrive at

$$v_+ \otimes w_- = -\mu_1 (\lambda_2(x_0))^{-1} \Delta_\alpha(t_1^2(x))(v_+ \otimes w_+)$$

$$\in N^{-1}(v_+ \otimes w_+),$$

where $\lambda_2(x_0)$ is always nonvanishing. If $\mu_1 = 0$, terms of orders higher than N in x^{-1} of equation (20) again lead to

$$v_+ \otimes w_- \in N^-(v_+ \otimes w_+).$$

Hence $V_1(\Lambda) \otimes w_- \in N^-(v_+ \otimes w_+)$, and it follows that $V_1(\Lambda) \otimes w_+ \in N^-(v_+ \otimes w_+)$. Therefore

$$V_1(\Lambda) \otimes W(\mu) = N^-(v_+ \otimes w_+). \tag{21}$$

By considering the equation

$$\Delta_\alpha(t_2^1(x))(v_- \otimes w_-) = t_2^1(x)v_- \otimes \left(-1 + \frac{\mu_2 + 1}{x + \alpha}\right) w_-$$

$$+ \lambda_1(x - 1)v_- \otimes \frac{1}{x + \alpha} w_+$$

in a similar way we can see that

$$v_- \otimes w_+ \in N^+(v_- \otimes w_-).$$

Since $V_1(\Lambda) \otimes w_+ = N^+(v_- \otimes w_+)$, we conclude that

$$V_1(\Lambda) \otimes W(\mu) = N^+(v_- \otimes w_-). \tag{22}$$

Equations (21), (22) and Lemma 2 together imply that $V_1(\Lambda) \otimes W(\mu)$ is irreducible with respect to the tensor product Δ_α.

Let $W(\mu^{(i)})$, $i = 1, 2, ..., N$, be two dimensional irreducible $Y(gl(1|1))$ modules respectively having highest weights

$$\mu^{(i)}(x) = \left(1 + \frac{\mu_1^{(i)}}{x}, -1 + \frac{\mu_2^{(i)}}{x}\right),$$

$$\mu_1^{(i)} + \mu_2^{(i)} \neq 0.$$

Let α_i, $i = 1, 2, ..., N$, be a set of complex parameters such that $\alpha_0 = 0$, and the polynomials in x^{-1} defined by

$$Q_1(x) = \prod_{i=1}^N \left(1 + \frac{\mu_1^{(i)} + \alpha_i}{x}\right),$$

$$Q_2(x) = -\prod_{i=1}^N \left(1 - \frac{\mu_2^{(i)} - \alpha_i}{x}\right),$$

do not have common factors. Then we have
Theorem 5 The tensor product $Y(gl(1\vert 1))$ module $W(\mu(1)) \otimes W(\mu(2)) \otimes \ldots W(\mu(N))$ is irreducible with respect to the co-multiplication Δ, and its highest weight $\Lambda(x) = (\lambda_1(x), \lambda_2(x))$ satisfies

$$\frac{\lambda_1(x)}{\lambda_2(x)} = \frac{Q_1(x)}{Q_2(x)}.$$

Proof: Define

$$\mu(x) = \left(1 + \frac{\mu_1[1]}{x} + \frac{\mu_1[2]}{x^2}, -1 + \frac{\mu_2[1]}{x} + \frac{\mu_2[2]}{x^2}\right).$$

Obviously $\mu(x)$ is of order 2. Construct the irreducible $Y(gl(1\vert 1))$ module $U(\mu)$ with highest weight $\mu(x)$. Let $u_+ \in U(\mu)$ be the highest weight vector. We claim that $u_+, t_1^2[1]u_+, t_1^2[2]u_+, t_1^2[1]t_1^2[2]u_+$, form a basis of $U(\mu)$. To prove our statement, we only need to show that these vectors are linearly independent. The independence of $t_1^2[1]u_+$ and $t_1^2[2]u_+$ follows from the given condition that $\mu(x)$ is of order 2. If $t_1^2[1]t_1^2[2]u_+$ vanished, we would have

$$0 = t_2[1]t_1^2[1]t_1^2[2]u_+$$

$$= (\mu_1[1] + \mu_2[1])t_1^2[2]u_+ + (\mu_1[2] + \mu_2[2])t_1^2[1]u_+,$$

which implies

$$\mu_1[1] + \mu_2[1] = \mu_1[2] + \mu_2[2] = 0.$$

This would force the order of $\mu(x)$ to be 0, contradicting the given conditions. Therefore our claim is indeed correct.

Now we use induction to prove the theorem. Consider the case $N = 2$ first. By comparing the dimensions of $W(\mu^{(1)}) \otimes W(\mu^{(2)})$ with $U(\mu)$, we can see that these two modules coincide up to an appropriate ϕ_f automorphism of $Y(gl(1\vert 1))$. Assume that the Theorem is valid for $N = k - 1$, then it immediately follows the Proposition that the Theorem is correct for $N = k$ as well.

Proof of the second part of Theorem 4: It follows from Theorem 3 as a corollary.

Acknowledgements: This work was completed while I visited the Department of Physics, National Chung Hsing University, Taiwan, China. I wish to thank Professor H. C. Lee and the other colleagues in the Department for their hospitality. Financial support from both the ARC and NSC is gratefully acknowledged.
References

[1] V. G. Drinfeld, *Quantum Groups*, in *Proceedings of International Congress of Mathematicians, Berkeley, 1986*, AMS, Providence RI(1987), pp. 798.

[2] M. Jimbo, Lett. Math. Phys. 10 (1985) 63.

[3] V. G. Drinfeld, Functional Analy. Appl. 20 (1986) 56.

[4] V. G. Drinfeld, Soviet Math. Dokl. 36 (1988) 212.

[5] V. O. Tarasov, Theor. Math. Phys. 61 (1984) 163; 63 (1985) 175.

[6] A. N. Kirillov and N. Yu Reshetikhin, Lett. Math. Phys. 12 (1986) 199.

[7] I. V. Cherednik, Duke Math. J. 54 (1987) 563.

[8] A. Molev, Lett. Math. Phys. 30 (1994) 53.

[9] N. Yu Reshetikhin, Theor. Math. Phys. 63 (1985) 347.

[10] A. Molev, M. Nazarov and G. Olshanskii, *Yangians and classical Lie algebras*, Australian Natl. Univ. preprint.

[11] V. Chari and A. Pressley, J. Reine Angew. Math. 417 (1991) 87.

[12] M. L. Nazarov, Lett. Math. Phys. 21 (1991) 123.

[13] R. B. Zhang, *The quantum super Yangian and Casimir operators of $U_q(gl(M|N))$, Lett. Math. Phys.* , in press.

[14] M. Gerstenhaber, Ann. Math. 78 (1963) 267.