Integral Homology of PGL_2 over Elliptic Curves

Kevin P. Knudson

The Friedlander–Milnor Conjecture [1] asserts that if G is a reductive algebraic group over an algebraically closed field k, then the comparison map

$$H^*_\text{et}(BG_k, \mathbb{Z}/p) \longrightarrow H^*(BG, \mathbb{Z}/p)$$

is an isomorphism for all primes p not equal to the characteristic of k. Gabber’s rigidity theorem [2] implies that this map is indeed an isomorphism for the stable general linear group GL (this is due to Suslin [6] for $k = \mathbb{C}$ and to Jardine [3] for arbitrary k). Similarly, a proof of an unstable version of rigidity would lead to a proof of the unstable Friedlander–Milnor Conjecture.

In this note we consider unstable rigidity for the group PGL_2 over an elliptic curve E. We assume that E is defined by the equation $F(x, y) = 0$, where

$$F(x, y) = y^2 + a_1 xy + a_3 y - x^3 - a_2 x^2 - a_4 x - a_6,$$

and the a_i lie in an infinite field k. Denote by \overline{E} the projective curve $E \cup \{\infty\}$. Denote by A the coordinate ring of the affine curve E. If $l \in k$ and $F(l, y) = 0$ has no rational solutions, denote by $k(\omega)$ the quadratic extension of k inside the algebraic closure \overline{k} for which $F(l, \omega) = 0$. Our main result is the following.

THEOREM. For all $i \geq 1$,

$$H_i(PGL_2(A), \mathbb{Z}) = \bigoplus_{p \in \overline{E}} H_i(PGL_2(k), \mathbb{Z}) \bigoplus_{p^2 \neq 0} H_i(k^\times, \mathbb{Z})$$

$$\bigoplus_{l \in k, F(l, y) = 0} H_i(k(\omega)^\times / k^\times, \mathbb{Z}).$$

Here, $p \sim -p$ means that we identify the factors corresponding to the points p and $-p$.

1991 Mathematics Subject Classification. 20G10.
Supported by an NSF Postdoctoral Fellowship, grant no. DMS–9627503.
This is proved by examining the action of $PGL_2(A)$ on the Bruhat–Tits tree X associated to a two-dimensional vector space over the function field of E (see, e.g., Serre’s book [5]). The quotient graph $PGL_2(A)\backslash X$ is a tree (this is due to S. Takahashi [8]) and the various simplex stabilizers are easily described.

As a corollary, we have the following rigidity result.

Corollary. Suppose the field k is algebraically closed and let x, y be distinct points on E. Then the specialization homomorphisms $s_x, s_y : H_\bullet(PGL_2(A), \mathbb{Z}) \rightarrow H_\bullet(PGL_2(k), \mathbb{Z})$ coincide.

1. The Quotient and the Stabilizers

In [8], Takahashi described a fundamental domain for the $PGL_2(A)$-action on X; denote this subtree by D. There is a distinguished vertex $o \in D$. For each l in $k \cup \{\infty\}$ there is a vertex $v(l)$ adjacent to o. The rest of D may be described as follows. Let $D(l)$ denote the subtree of $D - \{o\}$ which contains $v(l)$. The tree D is the union of o and the various $D(l)$ (which are disjoint). The trees $D(l)$ are as follows.

1. Suppose $F(x, y) = 0$ has no rational solution with $x = l$. Then $D(l)$ consists only of $v(l)$ (see Figure 1).

2. Suppose $l = \infty$ or $F(x, y) = 0$ has a unique rational solution with $x = l$. Let p be the point at infinity of E or the rational point corresponding to the solution. Note that p is a point of order 2. Then $D(l)$ consists of an infinite path $c(p, 1), c(p, 2), \ldots$ and an extra vertex $e(p)$ (see Figure 2).

3. Suppose $F(x, y) = 0$ has two different solutions such that $x = l$. Let p, q be the corresponding points on E. Then $D(l)$ consists of two infinite paths $c(p, 1), c(p, 2), \ldots$ and $c(q, 1), c(q, 2), \ldots$ (see Figure 3).

The infinite path $c(p, 1), c(p, 2), \ldots$ is called a *cusp*. Note that there is a one-to-one correspondence between cusps and the rational points of E.

Since X is contractible, we have a spectral sequence with E^1-term

$$E^1_{p,q} = \bigoplus_{\sigma^{(p)} \subset D} H_q(\Gamma_\sigma, \mathbb{Z}) \implies H_{p+q}(PGL_2(A), \mathbb{Z})$$
Figure 3. $F(l, y) = 0$ has two distinct solutions

where Γ_σ is the stabilizer of the p–simplex σ in $\text{PGL}_2(A)$.

The various stabilizers of the $\text{GL}_2(A)$ action were described in [8]. Denote these by $\tilde{\Gamma}_\sigma$.

Proposition 1.1 (cf. [8], Theorem 5). *The stabilizers $\tilde{\Gamma}_\sigma$ are (up to isomorphism)*

\[
\begin{align*}
\tilde{\Gamma}_o & \cong k^x \\
\tilde{\Gamma}_{v(l)} & \cong \begin{cases}
(k(\omega)^x & \text{in case (1)} \\
k^x \times k & \text{in case (2)} \\
k^x \times k^x & \text{in case (3)}
\end{cases} \\
\tilde{\Gamma}_{e(p)} & \cong \text{GL}_2(k) \\
\tilde{\Gamma}_{c(p, n)} & \cong (k^n \times_\theta k^x) \times k^x
\end{align*}
\]

where $k^n \times_\theta k^x$ is the semidirect product of k^n and k^x and θ is the automorphism of k^n given by coordinate-wise multiplication by elements of k^x. Furthermore, the stabilizer of an edge is the intersection of the stabilizers of its vertices.

The groups $\tilde{\Gamma}_{c(p, n)}$ are of the form

\[
\left\{ \begin{pmatrix} p & q \\
0 & s \end{pmatrix} : p, s \in k^x, q \in k^n \right\}.
\]
Denote the diagonal subgroups of these $\tilde{\Gamma}$ by \tilde{L}. By Theorem 1.11 of [4], these stabilizers satisfy

$$H_\bullet(\tilde{\Gamma}, \mathbb{Z}) \cong H_\bullet(\tilde{L}, \mathbb{Z}),$$

the isomorphism being induced by the inclusion $\tilde{L} \to \tilde{\Gamma}$.

Corollary 1.2. The stabilizers Γ_σ satisfy

$$H_\bullet(\Gamma_\sigma, \mathbb{Z}) \cong H_\bullet(\{1\}, \mathbb{Z})$$

$$H_\bullet(\Gamma_{v(l)}, \mathbb{Z}) \cong \begin{cases} H_\bullet(k(\omega)^\times / k^\times, \mathbb{Z}) & \text{in case (1)} \\ H_\bullet(k, \mathbb{Z}) & \text{in case (2)} \\ H_\bullet(k^\times, \mathbb{Z}) & \text{in case (3)} \end{cases}$$

$$H_\bullet(\Gamma_{e(p,n)}, \mathbb{Z}) \cong H_\bullet(k^\times, \mathbb{Z})$$

$$H_\bullet(\Gamma_{e(p)}, \mathbb{Z}) \cong H_\bullet(\text{PGL}_2(k), \mathbb{Z}).$$

2. The Main Theorem

Note that our spectral sequence consists of two columns and that each row $E^1_{i,0}$ is the chain complex $C_\bullet(\mathcal{D}, \mathcal{H}_q)$, where \mathcal{H}_q is the coefficient system $\sigma \mapsto H_q(\Gamma_\sigma)$. Fix a positive integer $q \geq 1$. Note that $H_q(\Gamma_o, \mathbb{Z}) = 0$ and that $H_q(\Gamma_{e}, \mathbb{Z}) = 0$ for any edge incident with o. It follows that the chain complex $C_\bullet(\mathcal{D}, \mathcal{H}_q)$ is a direct sum of chain complexes

$$C_\bullet(\mathcal{D}, \mathcal{H}_q) = \bigoplus_{l \in k \cup \{\infty\}} C_\bullet(\mathcal{D}(l), \mathcal{H}_q).$$

Proposition 2.1. Suppose $F(x, y) = 0$ has no rational solutions with $x = l$. Then

$$H_i(\mathcal{D}(l), \mathcal{H}_q) = \begin{cases} H_q(k(\omega)^\times / k^\times, \mathbb{Z}) & i = 0 \\ 0 & i > 0 \end{cases}$$

Proof. This is clear since $C_\bullet(\mathcal{D}(l), \mathcal{H}_q)$ consists only of the single group $H_q(k(\omega)^\times / k^\times, \mathbb{Z})$ sitting in degree zero. \square

Proposition 2.2. Suppose $l = \infty$ or $F(x, y) = 0$ has a unique rational solution with $x = l$. Then

$$H_i(\mathcal{D}(l), \mathcal{H}_q) = \begin{cases} H_q(\text{PGL}_2(k), \mathbb{Z}) & i = 0 \\ 0 & i > 0 \end{cases}$$

Proof. The stabilizer of $v(l)$ and of the edge joining $v(l)$ to $c(p,1)$ is isomorphic to k. The map $\Gamma_{v(l),c(p,1)} \to \Gamma_{v(l)}$ is an isomorphism on homology and the map $\Gamma_{v(l),c(p,1)} \to \Gamma_{e(p,1)}$ induces the zero map on homology. It follows that $H_\bullet(\mathcal{D}(l), \mathcal{H}_q) \cong H_\bullet(\mathcal{D}(l)', \mathcal{H}_q)$ where $\mathcal{D}(l)'$ is the tree obtained by deleting $v(l)$ and the edge joining it to $c(p,1)$. One checks easily that the map

$$C_1(\mathcal{D}(l), \mathcal{H}_q) \longrightarrow C_0(\mathcal{D}(l), \mathcal{H}_q)$$

is injective with cokernel $H_q(\text{PGL}_2(k), \mathbb{Z})$ (or equivalently, check that the relative homology groups $H_\bullet(\mathcal{D}(l), c(p); \mathcal{H}_q)$ vanish). \square
Proposition 2.3. Suppose $F(x, y) = 0$ has two distinct solutions with $x = l$. Then
$$H_i(D(l), \mathcal{H}_q) = \begin{cases} H_q(k^\times, \mathbb{Z}) & i = 0 \\ 0 & i > 0. \end{cases}$$

Proof. In this case, $D(l)$ is a tree and the stabilizer of each vertex and each edge is k^\times. The maps $\Gamma_e \to \Gamma_v$ induce isomorphisms on homology for each edge and vertex. It follows that $C_\bullet(D(l), \mathcal{H}_q)$ is a chain complex with constant coefficients. Since $D(l)$ is contractible, the result follows.

Theorem 2.4. For all $i \geq 1$,
$$H_i(PGL_2(A), \mathbb{Z}) \cong \bigoplus_{p \in \mathbb{E}} H_i(PGL_2(k), \mathbb{Z}) \oplus \bigoplus_{p \in \mathbb{E}, 2p \neq 0} H_i(k^\times, \mathbb{Z}) \oplus \bigoplus_{l \in k, F(l, y) = 0 \text{ has no solutions}} H_i(k(\omega)^\times / k^\times, \mathbb{Z}).$$

Proof. Note that since D is contractible, $E_{0,0}^2 = \mathbb{Z}$ and $E_{1,0}^2 = 0$. The preceding propositions show that
$$H_0(D, \mathcal{H}_q) = \bigoplus_{l \in k \cup \{\infty\}} H_0(D(l), \mathcal{H}_q)$$
and $H_1(D, \mathcal{H}_q) = 0$. It remains to identify the various direct summands with points of \mathbb{E}.

Those l for which $F(l, y) = 0$ has a unique solution (or $l = \infty$) correspond to points of order 2 in \mathbb{E}. Those l for which $F(l, y) = 0$ has two distinct solutions correspond to pairs of points on \overline{E}. For such a pair p, q, the groups $H_i(k^\times, \mathbb{Z})$ arising from the cusps associated to p, q are identified together since they are both adjacent to $v(l)$. The claimed direct sum decomposition follows.

3. Rigidity

Suppose now that the field k is algebraically closed. Note that the projective curve \overline{E} is isomorphic to the group $\text{Pic}^0 \overline{E}$ of degree zero line bundles on \overline{E}. Moreover, after a suitable linear change of coordinates, the points p, q corresponding to the two solutions of $F(l, y) = 0$ may be assumed to satisfy $q = -p$.

Corollary 3.1. If k is algebraically closed, then for all $i \geq 1$,
$$H_i(PGL_2(A), \mathbb{Z}) \cong \bigoplus_{L \in \text{Pic}^0 \overline{E}} H_i(PGL_2(k), \mathbb{Z}) \oplus \bigoplus_{L \in \text{Pic}^0 \overline{E}, 2L \neq 0} H_i(k^\times, \mathbb{Z}).$$

Proof. This is obvious once one notes that the factors $H_i(k(\omega)^\times / k^\times, \mathbb{Z})$ do not enter the picture when k is algebraically closed.

As a consequence, we have the following rigidity result.
Corollary 3.2. Suppose \(k \) is algebraically closed and let \(x, y \) be distinct points on \(E \). Then the corresponding specialization homomorphisms

\[
s_x, s_y : H_i(PGL_2(A), \mathbb{Z}) \longrightarrow H_i(PGL_2(k), \mathbb{Z})
\]

coincide for all \(i \geq 0 \).

Proof. This follows from the direct sum decomposition of Corollary 3.1. Since the groups which appear as summands do not involve rational functions on \(\mathbb{E} \), the homomorphisms \(s_x \) and \(s_y \) must agree on each summand.

Acknowledgments
I thank Andrei Suslin for pointing out that rigidity follows from the main theorem. I also thank Rick Jardine for many interesting discussions about the Friedlander–Milnor Conjecture.

References
[1] E. Friedlander, G. Mislin, Cohomology of classifying spaces of complex Lie groups and related discrete groups, Comment. Math. Helv. 49 (1984), 347–361.
[2] O. Gabber, K-theory of Henselian local rings and Henselian pairs, Contemp. Math. 126 (1992), 59–70.
[3] J. Jardine, Simplicial objects in a Grothendieck topos, Contemp. Math. 55 (1986), 193–239.
[4] Yu. Nesterenko, A. Suslin, Homology of the full linear group over a local ring, and Milnor’s K-theory, Math. USSR Izvestiya 34 (1990), 121–145.
[5] J.-P. Serre, Trees, Springer–Verlag, Berlin/ Heidelberg, New York, 1980.
[6] A. Suslin, On the K-theory of local fields, J. Pure Appl. Algebra 34 (1984), 301–318.
[7] A. Suslin, Algebraic K-theory of fields, Proc. ICM, Berkeley, 1986.
[8] S. Takahashi, The fundamental domain of the tree of \(GL(2) \) over the function field of an elliptic curve, Duke Math. J. 73 (1993), 85–97.

Department of Mathematics, Northwestern University, Evanston, IL 60208
E-mail address: knudson@math.nwu.edu