A novel ABCA12 pathologic variant identified in an Ecuadorian harlequin ichthyosis patient: A step forward in genotype-phenotype correlations

Martha Montalván-Suárez1* | Uxia Saraiva Esperón-Moldes2,3* | Laura Rodríguez-Pazos4 | Andrés Ordóñez-Ugalde2,5,6 | Fernanda Moscoso5 | Nora Ugalde-Noritz6 | Luis Santomé2 | Laura Fachal2 | Daniel Tettamanti-Miranda7 | Juan Carlos Ruiz7,8 | Manuel Ginarte9 | Ana Vega2

1Sistema de Investigación y Desarrollo SINDE, Universidad Católica de Santiago de Guayaquil and Universidad de Guayaquil, Guayaquil, Ecuador
2Fundación Pública Galega de Medicina Xenómica-SERGAS, Grupo de Medicina Xenómica-USC, CIBERER, IDIS, Santiago de Compostela, Spain
3Departamento de Ciencias Forenses, Anatomía Patológica, Xinecoloxía, Obstetricia e Pediatria, Universidade de Santiago de Composetela, Santiago de Compostela, Spain
4Servicio de Dermatología del Complejo Hospitalario Universitario de Vigo, Vigo, Spain
5Laboratorio Biomolecular, Cuenca, Ecuador
6Unidad de Genética y Molecular del Hospital de Especialidades José Carrasco Arteaga, Cuenca, Ecuador
7Universidad Espíritu Santo and Hospital Luis Vernaza, Guayaquil, Ecuador
8Instituto de Biomedicina Universidad Católica de Santiago de Guayaquil and Centro de Investigación, Universidad Espíritu Santo, Guayaquil, Ecuador
9Servicio de Dermatología del Complejo Hospitalario Universitario de Santiago, Facultad de Medicina, Santiago de Compostela, Spain

Abstract

Background: Autosomal recessive congenital ichthyoses (ARCI) have been associated with different phenotypes including: harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). While pathogenic variants in all ARCI genes are associated with LI and CIE phenotypes, the unique gene associated with HI is ABCA12. In HI, the most severe ARCI form, pathogenic variants in both ABCA12 gene alleles usually have a severe impact on protein function. The presence of at least one non-truncating variant frequently causes a less severe congenital ichthyosis phenotype (LI and CIE).

Methods: We report the case of a 4-year-old Ecuadorian boy with a severe skin disease. Genetic diagnosis was performed by NGS. In silico predictions were performed using Alamut software v2.11. A review of the literature was carried out to identify all patients carrying ABCA12 splice-site and missense variants, and to explore their genotype-phenotype correlations.

Results: Genetic testing revealed a nonsense substitution, p.(Arg2204*), and a new missense variant, p.(Val1927Leu), in the ABCA12 gene. After performing in silico
1 | INTRODUCTION

Autosomal recessive congenital ichthyoses (ARCI)s are a heterogeneous disease that can present with a wide range of phenotypes including harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). HI is the most severe form of congenital ichthyoses (Fischer, 2009; Oji et al., 2010). Neonates are born encased in a thick skin that not only restricts their movements, but also distorts their facial features, averting their lips and eyelids. Although newborns frequently die within the first few days of life, some of them survive, and their skin eventually resembles severe CIE or LI. ARCI is a genetically heterogeneous condition that can be caused by pathogenic variants in at least 12 genes including TGM1 (OMIM #190195), ABCA12 (OMIM #607800), NIPAL4 (OMIM #609383), CYP4F22 (OMIM #611495), ALOX12B (OMIM #603741), ALOXE3 (OMIM #607206), LIPN (OMIM #613924), PNPLA1 (OMIM #612121), CERS3 (OMIM #615276), SDR9C7 (OMIM #609769), SULT2B1 (OMIM #604125), and CASP14 (OMIM #605848) (Fischer, 2009; Grall et al., 2012; Heinz et al., 2017; Kirchmeier, Zimmer, Bouadjar, Rösler, & Fischer, 2017; Lefèvre et al., 2003, 2006; Radner et al., 2013; Shigehara et al., 2016).

ABCA12 encodes a keratinocyte-associated lipid transporter. Pathogenic variants in ABCA12 are known to cause the three major phenotypes of ARCI: HI, LI, and CIE. Genotype-phenotype correlations have been established in ABCA12 associated disorders: homozygotes or compound heterozygotes with truncating ABCA12 variants generally lead to an HI phenotype while homozygous missense variants usually cause a milder phenotype (Akiyama, 2010).

Here we report a boy suffering from HI with compound heterozygous disease-causing variants in ABCA12, one truncating mutation: nonsense variant c.6610C>T, p.(Arg2204*), and a novel missense variant, not previously reported: c.5779G>T, p.(Val1927Leu). The location of the new disease-causing variant (first nucleotide of exon 39) suggests it can potentially alter the splicing process. In order to understand the effect of ABCA12 splice-site and missense pathogenic variants, a literature search was performed.

2 | CASE REPORT

The patient is a 4-year-old boy who was the third child of apparently nonconsanguineous parents from Manta, Manabí, Ecuador. There was no family history of congenital ichthyosis. Gestational age was approximately 7 months. After delivery the baby was placed in an incubator, where he spent one month. His mother mentioned that at birth he had several characteristics related to a harlequin fetus: thick large fissures over the whole body, flattened nose and ears, respiratory distress and feeding difficulties that required supplemental tube feeding; although he suffered from these complications he was able to breastfeed when he left the hospital. He also had toe blisters soon after birth that converted to toes synechia, affecting his gait. During the neonatal period the patient only received topical treatments.

Physical examination revealed: ectropion, eclubium, nasal hypoplasia, rudimentary external ears, dental hypoplasia, erythema, inflammation of the gums, and almost complete alopecia (Figure 1a). He presented generalized scales on an erythrodermal background with abundant fissures over the whole body, flattened nose and ears, respiratory distress and feeding difficulties that required supplemental tube feeding; although he suffered from these complications he was able to breastfeed when he left the hospital. He also had toe blisters soon after birth that converted to toes synechia, affecting his gait. During the neonatal period the patient only received topical treatments.

Genomic DNA was isolated from peripheral blood cells using standard procedures in the Biomedical Laboratory located in Cuenca, Ecuador and sent to the Fundación Pública Galega de Medicina Xenómica in Spain, where genetic diagnosis and a comprehensive review of the literature, we conclude that p.(Val1927Leu) affects a well conserved residue which could either disturb the protein function or alter the splicing process, both alternatives could explain the severe phenotype of our patient.

Conclusion: This case expands the spectrum of ABCA12 reported disease-causing variants which is important to unravel genotype-phenotype correlations and highlights the importance of missense variants in the development of HI.

KEYWORDS
ABCA12 gene, Autosomal recessive congenital ichthyoses (ARCI), congenital ichthyosiform erythroderma (CIE), harlequin ichthyosis (HI), lamellar ichthyosis (LI), splice-site pathogenic variant
FIGURE 1 Clinical features of the patient: (a) Severe ectropion and almost complete alopecia, (b) Nail deformities and palmoplantar hyperkeratosis of the feet, (c) Patient’s back showing large scales on an erythrodermic background, (d) Upper extremities severely affected. Retraction at finger joints.

FIGURE 2 Pedigree of patient’s family, electropherograms of both mutations and their location in the ABCA12 protein. (a) The patient (III:1) was a compound heterozygote for two ABCA12 mutations, a novel splice site mutation p.(Val1927Leu) and the nonsense mutation p.(Arg2204*). His parents were heterozygous carriers, (b) Electropherograms of both heterozygous mutations identified in the proband, (c) Representation of the ABCA12 protein structure and the location of the two identified mutations.
Patient	Splice-site mutation	Location/predicted splicing defect	Splicing prediction scoresa	Status	Second mutation	Phenotype	Ethnicity	Sex	Observations	Reference		
1	c.1062–3_1074del; p.(Leu355Lysfs*12)	Acceptor splice site of exon 10 (skip exon 10:−100%)	MaxEnt NNSPLICE SSF	het	c.5005C>T; p.(Gln1669*)	HI Japanese Female	Systemic retinoids from postnatal day 6. Skin dramatically improved during infancy	Takeichi et al. (2013)				
2	c.1287 + 2 T>G	Donor splice site of intron 11 (skip of exon 11:−100%)	−100.0% −100.0% −100.0%	het	c.4139A>G; p.(Asn1380Ser)	Not specified Spanish	Not reported –	Esperón-Moldes et al. (2018)				
3	c.1287 + 2 T>G	Donor splice site of intron 11 (skip of exon 11:−100%)	−100.0% −100.0% −100.0%	het	c.4139A>G; p.(Asn1380Ser)	CIE Spanish Male	Patient presented with small and whitish scales, erythroderma, and palmoplantar keratoderma	Esperón-Moldes et al. (2018)				
4	c.1762G>A; p.(Glu594=)	Exonic substitution exon 14 (change at donor site: −95.2%)	−100.0% −90.3%	15.7%	het	c.596G>A, p.(Trp199*)	HI-like Scandinavian	No reported Patient presented with collodion membrane at birth, ectropion, anhidrosis, and palmoplantar keratoderma	Hellström-Pigg et al. (2016)			
5	c.2332 + 2 T>G	Donor splice site of intron 17 (skip exon 17:−100%)	−100.0% −100.0% −100.0%	het	Exon 8 deletion	HI British Female	Neonatal mild hypothermia. Treated with systemic retinoids. Alive at 4 years of age	Kelsell et al. (2005); Scott et al. (2013); Thomas et al. (2006)				
6	c.3295–1G>A	Acceptor splice site of intron 23 (skip exon 24:−100%)	−100.0% −100.0% −100.0%	het	unknown	HI Malaysian	No reported –	Numata et al. (2015)				
7	c.3295–2A>G	Acceptor splice site intron 23 (skip exon 24:−100%)	−100.0% −100.0% −100.0%	hom	–	HI Japanese Male	Survived infancy. Alive at publication (expresses some mutated ABCA12 protein)	Akiyama et al. (2005)				
8	c.3295–2A>G	Acceptor splice site intron 23 (skip exon 24:−100%)	−100.0% −100.0% −100.0%	het	c.5848C>T, p.(Arg1950*)	HI Japanese Male	Died 3 days after birth	Akiyama et al. (2005)				
9	c.3295–2A>G	Acceptor splice site intron 23 (skip exon 24:−100%)	−100.0% −100.0% −100.0%	het	c.4543C>T; p.(Glu1515=)	HI Japanese Female	Systemic retinoids. Improved clinical symptoms at the age of 1 year and 7 months	Umemoto et al. (2011)				
10	c.3456G>A; p.(Ser1152=)	Exonic substitution exon 24 (creates a novel acceptor splice site with similar scores as native site)	– – –	hom	–	CIE Arab Muslims Female	Closely related parents. Several additional members of the family with similar condition	Goldsmith et al. (2013)				
11	c.3829 + 1G>A	Donor splice site intron 26 (skip of exon 26:−100%)	−100.0% −100.0% −100.0%	hom	–	HI unknown ethnicity	Not reported –	Thomas et al. (2008)				
12	c.3829 + 1G>A	Donor splice site intron 26 (skip of exon 26:−100%)	−100.0% −100.0% −100.0%	hom	–	HI Scandinavian	Not reported Patient presented with collodion membrane at birth, ectropion, anhidrosis, and palmoplantar keratoderma	Hellström-Pigg et al. (2016)				
Patient	Splice-site mutation	Location/predicted splicing defect	Splicing prediction scores^a	Status	Second mutation	Phenotype	Ethnicity	Sex	Observations	Reference		
---------	----------------------	-------------------------------------	--------------------------------------	--------	----------------	-----------	-----------	-----	-------------	-----------		
			MaxEnt	NNSPLICE	SSF							
13	c.4579 + 5G>A	Substitution in intron 30 (Change at donor site: −58.5%)	−67.2%	−49.9%	−16.0%	het	c.459 T>G, p.(Tyr153*)	ARCI	Italian	Female	Alive (6 years-old) at examination	Diociati et al. (2016)
14	c.5125–5128del; p.(Asp1709Thrfs*4)	Exonic deletion exon 33 (skip of exon 33:−100%)	−100.0%	−100.0%	−100.0%	het	unknown	HI	Syrian	Not reported	–	Thomas et al. (2008)
15	c.5128 + 3A>G	Substitution in intron 33 (change at donor site: −80.5%)	−74.3%	−86.7%	−5.8%	het	c.4139A>G, p.(Asn1380 Ser)	CIE	Japanese	Male	Alive (4 months) at publication	Fukuda et al. (2012)
16	c.5128 + 3A>G	Substitution in intron 33 (change at donor site: −80.5%)	−74.3%	−86.7%	−13.4%	het	c.3265G>T, p.(Val1089Phe)	HI	Scandinavian	Not reported	Patient presented with collodion membrane at birth, ectropion, anhidrosis, and palmoplantar keratoderma	Hellström-Pigg et al. (2016)
17	c.5129–1G>T	Acceptor splice site of intron 33 (skip of exon 34:−100%)	−100.0%	−100.0%	−100.0%	het	c.7444C>T, p.(Arg2482*)	Harlequin fetus	French	Female	The fetus died at 31 weeks and 5 days gestation	Tourette et al. (2012)
18	c.5381 + 3,5381+4del	Deletion close to the donor splice site of exon 34 (skip of exon 34:−100.0%)	−100.0%	−100.0%	−36.6%	hom	–	HI	Irish/Polish mother Italian/German father	Not reported	–	Thomas et al. (2008)
19	c.5381 + 5G>A	Substitution in intron 34 near donor consensus (change at donor site: −95.5%)	−100.0%	−91.0%	−16.5%	het	c.4139A>G; p.(Asn1380Ser)	CIE	Spanish	Male	8 months old baby with small and whitish scales on an erythrodermic background	Esperón-Moldes et al. (2018)
20	c.5690G>C; p.(Arg1897Thr)	Exonic substitution exon 37 (change at donor site: −85.3%)	−100.0%	−70.6%	−16.2%	het	unknown	HI	Eritrean/Jamaican	No reported	–	Thomas et al. (2008)
21	c.5778 + 2T>C	Donor splice site of intron 38 (skip of exon 38:−100%)	−100.0%	−100.0%	−0.5%	het	c.2956C>T, p.(Arg986Trp)	Not specified	Palestinian Armenian and Palestinian Catholic	Male	The child presented congenital exfoliative erythroderma, hypotrichosis, severe nail dystrophy, and failure to thrive	Bochner et al. (2017)
22	c.5779G>T; p.(Val1927Leu)	Exonic substitution exon 39 (change at acceptor site: −59.0%)	−41.6%	−76.4%	−8.5%	het	c.6610C>T, p.(Arg2204*)	HI	Ecuadorian	Male	Alive (4 years old) at publication	This report
23	c.5884G>A; p.(Gly1962Ser)	Exonic substitution exon 39 (change at donor site: −99%)	−100.0%	−97.9%	−16.4%	het	c.6858del; p.(Phe2286 Leufs *6)	HI	Chinese	Female	Alive (5 months old) at publication	Loo et al. (2018)

(Continues)
Patient	Splice-site mutation	Location/predicted splicing defect	Splicing prediction scoresa	Status	Second mutation	Phenotype	Ethnicity	Sex	Observations	Reference		
24	c.5884 + 4_5884+5del	Deletion close to the donor splice site of exon 39 (skip of exon 39: −69.2%)	−55.5%	−83.0%	−7.2%	het	c.7239G>A; p.(Leu2413=)	HI	Japanese	Male	Alive (2 years old) at publication	Washio et al. (2017)
25	c.5939 + 4A>G	Substitution in intron 40, near donor consensus (change at donor site: −49.9%)	−41.5%	−58.3%	−12.5%	hom	–	HI	Gujarati, Indian	Female	Alive newborn at examination. She succumbed to septicemia 4 days after birth	Sheth et al. (2018)
26	c.5940–1G>C	Acceptor splice site of intron 40 (skip of exon 41: −100.0%)	−100.0%	−100.0%	−100.0%	het	c.2056C>T; p.(Arg968Trp)	CIE	Japanese	Female	Alive (9 years old) at publication. Younger sister suffered from severe skin symptoms, complications, and died	Fukuda et al. (2012)
27	c.6233 + 1G>T	Donor splice site intron 42 (skip of exon 42: −100.0%)	−100.0%	−100.0%	−100.0%	hom	–	HI	Iranian	Not reported	Septicemia. Died at age 4 months	Khedl et al. (2005)
28	c.6394–2A>G	Acceptor splice site of intron 43 (skip of exon 44: −100%)	−100.0%	−100.0%	−100.0%	het	c.7436G>A; p.(Arg2479Lys)	HI	Spanish	Female	Alive (9 years old) at examination. The patient shows a CIE phenotype.	Esperón-Moldes et al. (2018)
29	c.7105–22,7105–4del	Deletion in intron 47 close to the acceptor splice site of exon 48 (skip of exon 48: −100%).	−100.0%	−99.9%	−100.0%	het	c.6941 T>C; p.(Ile2314Thr)	Not specified	Spanish	Not reported	–	Esperón-Moldes et al. (2018)
24	c.7239G>A; p.(Leu2413=)	Exonic substitution exon 48 (change at donor site: −51.2%)	−44.9%	−57.4%	−14.1%	het	c.5884 + 4_5884+5del	HI	Japanese	Male	Alive (2 years old) at publication	Washio et al. (2017)
30	c.7436G>A; p.(Arg2479Lys)	Exonic substitution exon 50 (change at donor site: −99.5%)	−100.0%	−99.1%	−15.5%	het	c.3746C>A; p.(Ser1249*)	HI	French	Male	Died soon after birth	Akiyama et al. (2007)
28	c.7436G>A; p.(Arg2479Lys)	Exonic substitution exon 50 (change at donor site: −99.5%)	−100.0%	−99.1%	−15.5%	het	c.6394–2A>G	HI	Spanish	Female	Alive (9 years old) at examination. The patient shows a CIE phenotype.	Esperón-Moldes et al. (2018)

Note: GenBank reference sequence (NM_173076.2, NP_775099)
ARCI: autosomal recessive congenital ichthyosis; CIE: congenital ichthyosiform erythroderma; het: heterozygous; HI: harlequin ichthyosis; H1-like: CIE patients with ultrastructural findings resembling those detected in previous HI case; hom: homozygous; SSF: Splice Site Finder.

aPercentages of variation predicted by Alamut at consensus splice-sites. bNote that this patient shows an atypical ARCI phenotype (including severe hair and nail manifestations) and he also carries two additional heterozygous mutations in the CAPNI2 gene [c.1511C>A; p.(P504Q), c.1090_1129del; p.(Val364Lysfs*11)].
was carried out. Ethical approval was obtained and all research was performed in accordance with the principles of the Declaration of Helsinki. Three micrograms of patient’s genomic DNA were enriched using SureSelect (Agilent Technologies) following the manufacturer’s protocol. The target resequencing library was then sequenced on a SOLiD 5500xl (Life Technologies). Color space reads were mapped to the GRCh37/hg19 reference genome using LifeScope software version 2.5.1 (Life Technologies). Finally, variants were identified using GATK version 2.1 (Genome Analysis Toolkit, Broad Institute) and LifeScope version 2.5.1 and annotated with ANNOVAR version 2012Mar08. In silico prediction of potential variant effects on splicing were computed by using MaxEnt, NNSPLICE, and Splice Site Finder. Missense prediction analyses were performed by using Align GV-GD, SIFT, and Mutation Taster. All these algorithms are integrated in the Alamut® Visual 2.11 software (Interactive Biosoftware, Rouen, France). The review of the existing literature on splice-site and missense ABCA12 mutations was carried out by taking into consideration each of all carrier patients reported to date.

3 | RESULTS

A total of 18 variants were identified in the patient’s ABCA12 gene (NM 173076.2, NP_775099). Sixteen were filtered out while two putative ABCA12 variants in heterozygous state were prioritized by its location in the gene, the type of change they originated, and the frequency in 1000G project (http://www.1000genomes.org/): (a) a transition from C to T in exon 44: c.6610C>T; p.(Arg2204*) that leads to a nonsense substitution; it is located in the second transmembrane domain of the ABCA12 protein (Figure 2b,c). It has been previously identified in homozygous state in an African American patient that was born at 36 weeks of gestation, and died at 6 months of age from septicemia (Kelsell et al., 2005), (b) a transversion from G to T in exon 39: c.5779G>T; p.(Val1927Leu) that leads to a new missense substitution; it is located in the second transmembrane domain of the ABCA12 protein (Figure 2b,c). This novel variant, previously reported neither in HGMD nor Clinvar nor GnomAD, is located one nucleotide upstream of the canonical splicing acceptor site. The variant was predicted to have a deleterious effect (Align GV-GD: Class C25, SIFT: Deleterious, Mutation-Taster: Disease causing) and to also affect the splicing process (a total decrease in the score of the natural acceptor site of 59.0%, MaxEnt: −41.6%, NNSPLICE: −76.4%, and Splice Site Finder: −8.5%). Taking all the evidence together, we classified ABCA12: c.5779G>T; p. (Val1927Leu) as likely pathogenic according to ACMG guidelines (Richards et al., 2015).

Segregation analysis of the variants in the family shows that the father of the patient is carrier of the ABCA12 c.6610C>T mutation, and the mother of the c.5779G>T mutation. None of the sisters are the carriers of any of these variants (Figure 2a).

4 | DISCUSSION

Pathogenic variants in ABCA12 have been described in ARCI including HI, CIE, and LI. HI shows the most severe phenotype, associated exclusively with ABCA12 mutations. Homozygous or compound heterozygous missense ABCA12 variants are frequently linked to LI and to a lesser extent CIE, whereas the majority of pathogenic variants associated with HI are homozygous or compound heterozygous nonsense and frameshift substitutions. Missense variants in combination with truncating mutations, including splice-site variants, can be found in both CIE and HI (Akiyama, 2010). In this report we describe an Ecuadorian HI patient who harbors two different types of mutations in ABCA12. One is a nonsense variant which creates a premature codon. The second variant leads to a missense substitution in a conserved residue of the protein that is predicted to alter the splicing process by different algorithms. As both missense and splice-site variants could lead to HI, any of these mechanisms could be affecting the pathogenicity of the variant. To better understand the implication of these type of variants in the development of the different ARCI subtypes, we performed a literature review of all ABCA12 missense and splice-site mutation carrier patients and their associated phenotypes. Thirty patients carrying ABCA12 splice-site variants were found (Table 1). Seven are homozygous carriers, and from these, those with pathogenic variants affecting the consensus splice-sites and its surroundings, are classified as HI (patients 7, 11, 12, 18, 25, and 27) (Akiyama et al., 2005; Goldsmith et al., 2013; Hellström-Pigg et al., 2016; Kelsell et al., 2005; Sheth, Bhavsar, Patel, Joshi, & Sheth, 2018; Thomas et al., 2008). Only two HI patients were compound heterozygous carriers of two different splice-site variants (patients 24 and 28) (Esperón-Moldes et al., 2018; Washio et al., 2017). Interestingly, the homozygous carrier of the synonymous variant c.3456G>A, p.(Ser1152=) (patient 10), located in the middle of the exon 24, shows a CIE phenotype. This milder phenotype could be explained by the fact that this mutation does not alter a consensus site but deregulates the expression of common transcripts; in this case a decrease in the expression of the wild type transcript and an increase in one minor transcript is observed (Goldsmith et al., 2013). Ten out of the 30 patients were compound heterozygous carriers of one ABCA12 splice-site variant affecting the consensus splice-site and a second truncating variant including eight nonsense (patients 1, 4, 8, 9, 13, 17, 22, and 30) and two frameshift (patients 5 and 23); (Akiyama et al., 2005, 2015).
Patient	Missense mutation	Location in the protein	Predicted splicing defect	Missense prediction scores	Status	Second mutation	Phenotype	Ethnicity	Sex	Observations	Reference	
31	c.130C>G; p.(Arg44Gly)	– None			C0 D P	het	c.2033A>G; p.(Asn678Ser)	HI	unknown ethnicity	Not reported	Mild HI phenotype. This patient also carries the TGM1 c.401A>G mutation	Scott et al. (2013)
32	c.179G>C; p.(Arg59Pro)	– None			C0 D DC	het	c.1300C>T; p.(Arg434*)	HI	unknown ethnicity	Female	--	Scott et al. (2013)
33	c.1033A>C; p.(Thr344Pro)	– None			C0 T P	hom	–	CIE	Japanese	Female	A 37-year-old woman with CIE accompanied by malignant melanoma	Natsuga et al. (2007)
34	c.1160G>A; p.(Ser387Asn)	– None			C0 T P	het	c.4158_4160del; p.(Thr1387del)	HI	Japanese	Male	Moderate clinical severity	Akiyama et al. (2006)
35	c.1446A>C; p.(Gln482Asp)	– None			C0 T P		c.7444C>T; p.(Arg2482*)	HI	unknown ethnicity	Not reported	--	Scott et al., 2013
31	c.130C>G; p.(Arg44Gly)	– None			C0 T P	het	c.2033A>G; p.(Asn678Ser)	HI	unknown ethnicity	Not reported	Mild HI phenotype. This patient also carries the TGM1 c.401A>G mutation	Scott et al., 2013
36	c.2634C>G; p.(Phe878Leu)	– None			C0 T DC	het	c.4139A>G; p.(Asn1380Ser)	CIE	Czech	Not reported	Fine, whitish scales, and generalized erythema	Bačková et al., 2016
37	c.2638G>C; p.(Val880Leu)	– None			C0 D DC	het	c.3673C>T; p.(Arg1225*)	ARCI	Caucasian	Female	69 years old at the moment of study	Sitek et al. (2018)
38	c.2956C>T; p.(Arg986Trp)	– None			C65 D DC	het	c.5940-1G>C	CIE	Japanese	Female	9-year-old girl with generalized scales on an erythrodermic skin, mild ectropion, alopecia, and mild auricular malformation	Fukuda et al. (2012); Numata et al. (2015)
39	c.2956C>T; p.(Arg986Trp)	– None			C45 D DC	hom	–	CIE	Japanese	Not reported	--	Numata et al. (2015)
40	c.2956C>T; p.(Arg986Trp)	– None			C65 D DC	het	c.5778 +2 T>C	ARCI	Palestinian Armenian and Palestinian Catholic	Male	CEE, hypotrichosis, severe nail dystrophy, FTT	Bochner et al. (2017)
41	c.3085G>A; p.(Glu1029Lys)	– None			C55 D		c.859C>T; p.(Arg287*)	HI	Chinese	Not reported	--	Numata et al. (2015)
42	c.3265G>T; p.(Val1089Phe)	– None			C45 D DC	het	c.5128 +3A>G	HI	Scandinavian	Not reported	Patient presented with collodion membrane at birth, ectropion, anhidrosis, and PPK	Hellström-Pigg et al. (2016)
43	c.3299 T>G; p.(Met1100Arg)	– Predicted change at acceptor site 5 bps upstream: +0.5%			C0 D DC	het	c.716+1del; p.(Met239Tyrf6*27)	CIE/HI	unknown ethnicity	Female	Intermediate phenotype between HI and CIE	Peterson et al. (2013)

(Continues)
Patient	Missense mutation	Location in the protein	Predicted splicing defect	Missense prediction scores	Phenotype	Ethnicity	Sex	Observations	Reference				
44	c.3407G>A; p.(Gly1136Asp)	–	None	C0 D DC het	CIE	Japanese	Male	Fine, whitish scales on hyperkeratotic, erythrodermic skin, mild ectropion, and eclabium	Akiyama et al. (2008)				
45	c.3470C>T; p.(Ser1157Leu)	TNM	None	C15 D DC hom	–	LI	Saudi	Four affected members in the same family. They all showed PPK	Wakil et al. (2016)				
46	c.3470C>T; p.(Ser1157Leu)	TNM	None	C15 D DC het	unknown	CIE	Japanese	Not reported –	Numata et al. (2015)				
47	c.3535G>A; p.(Gly1179Arg)	TNM	None	C65 D DC hom	–	HI	Hmong/Laotian	Not reported	Sepsis, ITP, corneal perforation, respiratory failure, developmental delay	Thomas et al. (2006)			
48	c.3704G>C; p.(Trp1235Ser)	–	None	C65 D DC het	c.5848C>T; p.(Arg1950*)	CIE	Japanese	Male	6 years at the moment of the study	Sakai et al. (2009)			
49	c.3704G>C; p.(Trp1235Ser)	NBF1	None	C45 D DC het	c.5128 + 3A>G	CIE	Japanese	Male	Male born as a collodion baby, with whitish scales and generalized erythema	Fukada et al. (2012); Numata et al. (2015)			
50	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45 D DC het	c.4554G>A; p.(Trp1518*)	HI	Scandinavian	Not reported	Colloidion membrane, ectropion, anhidrosis, and PPK	Hellström-Pigg et al. (2016)			
51	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45 D DC hom	–	LI	Moroccan	Not reported	Colloidion membrane, large dark scales, ectropion, and PPK	Lefèvre et al. (2003)			
52	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45 D DC het	c.4951C>G; p.(Gly1651Ser)	LI	Algeria	Not reported	Colloidion membrane, large dark scales, ectropion, and PPK	Lefèvre et al. (2003)			
53	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45 D DC hom	–	LI	Algeria	Not reported	Colloidion membrane, large dark scales, ectropion, and PPK	Lefèvre et al. (2003)			
54	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45 D DC het	c.4070C>A; p.(Ser1357*)	CIE/LI	unknown ethnicity	Female	–	Scott et al. (2013)			
55	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45 D DC het	c.1287 + 2 T>G	CIE	Spanish	Male	Small, whitish scales with erythroderma, PPK, PH, and altered sweating	Espejón-Moldes et al. (2018)			
56	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45 D DC hom	–	CIE	Spanish	Female	Small, dark scales with alopecia and PPK	Espejón-Moldes et al. (2018)			
57	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45 D DC het	c.3837_3838del; p.(Tyr1279*)	LI	Spanish	Female	Small, whitish scales with ectropion, alopecia, and PPK	Espejón-Moldes et al. (2018)			
Patient	Missense mutation	Location in the protein	Predicted splicing defect	Align GV-GD	Mutation taster	Status	Second mutation	Phenotype	Ethnicity	Sex	Observations	Reference	
---------	-------------------	-------------------------	--------------------------	-------------	-----------------	--------	-----------------	-----------	-----------	-----	-------------	-----------	
58	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45	D	DC	hom	–	CIE	Spanish	Female	Small, whitish scales with erythroderma, collodion membrane, PPK, PH, and altered sweating	Esperón-Moldes et al. (2018)
59	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45	D	DC	het	c.1287 + 2 T>G	Not specified	Spanish	Not reported	–	Esperón-Moldes et al. (2018)
60	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45	D	DC	het	c.178C>T; p.(Arg60*)	CIE	Spanish	Female	Big, whitish scales with erythroderma, collodion membrane, alopecia, ectropion, PPK, PH, and altered sweating	Esperón-Moldes et al. (2018)
61	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45	D	DC	het	c.5381 + 5G>A	CIE	Spanish	Male	Small, whitish scales with erythroderma, collodion membrane, PPK, PH, and altered sweating	Esperón-Moldes et al. (2018)
62	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45	D	DC	het	c.5641C>T; p.(Arg1881*)	CIE	Spanish	Male	Small, whitish scales with alopecia, ectropion, erythroderma, PPK, PH, and altered sweating	Esperón-Moldes et al. (2018)
63	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45	D	DC	het	c.6031del; p.(Glu2011Asnfs*17)	CIE	Japanese	Female	At birth, entire body surface covered with thick, gray scales on a background of erythrodermic skin	Murase et al. (2018)
64	c.4139A>G; p.(Asn1380Ser)	NBF1	None	C45	D	DC	het	c.4491_4493del3ins22	LI	unknown ethnicity	Female	Large, brown plex-like hyperkeratotic scales, PPK, and hyperlinearity of the trunk	Chao et al. (2018)
65	c.4142G>A; p.(Gly1381Glu)	NBF1	None	C65	D	DC	hom	–	LI	Morocco	Not reported	Collodion membrane, large dark scales, ectropion, and PPK	Lefèvre et al. (2003)
66	c.4811T>C; p.(Ile1494Thr)	NBF1	None	C25	D	DC	het	Unknown	CIE	Japanese	Male	42-year-old man with CIE and cutaneous squamous cell carcinoma	Natsuga et al. (2007)
67	c.4544G>A; p.(Arg1515Gln)	NBF1	None	C0	D	DC	het	c.4553G>A; p.(Trp1518*)	CIE	Jewish	Not reported	–	Israeli et al. (2013)

(Continues)
Patient	Missense mutation	Location in the protein	Predicted splicing defect	Align GV-GD	Mutation taster	Status	Second mutation	Phenotype	Ethnicity	Sex	Observations	Reference	
71	c.4615G>A; p.Glu1539Lys	NBF1	None	C55	D	DC	hom	–	LI	Algeria	Not reported	Milder form of ichthyosis with smaller and whitish scales	Lefèvre et al. (2003)
72	c.4676G>T; p.Gly1559Val	–	None	C65	D	DC	hom	–	CIE	Pakistani	Not reported	Five affected members with small, fine scales, erythroderma, PPK, and mild ectropion. Legs showed brownish scales similar to LI	Nawaz et al. (2012)
73	c.4676G>T; p.Gly1559Val	–	None	C65	D	DC	hom	–	ARCI	Pakistani	Female	26 years old at the moment of study	Sitek et al. (2018)
74	c.4723A>G; p.Gly1575Pro	–	None	C0	D	DC	het	c.6031del; p.Glu2011Asnfs*17	CIE	Japanese	Female	3-year-old girl with generalised scales, erythroderma, ectropion, eclabium, severely deformed ears, and alopecia	Fukuda et al. (2012); Numata et al. (2015)
75	c.4723A>G; p.Gly1575Pro	–	None	C0	D	DC	het	c.4951G>A; p.Gly1651Ser	CIE	Japanese	Male	3-month-old boy born as a collodion baby, with generalised whitish scales on a erythrodermic skin	Fukuda et al. (2012); Numata et al. (2015)
76	c.4951G>A; p.Gly1651Ser	–	None	C55	D	DC	hom	–	LI	Algeria	Not reported	Collodion membrane, large dark scales, erythroderma, and PPK	Lefèvre et al. (2003)
52	c.4951G>A; p.Gly1651Ser	–	None	C55	D	DC	hom	–	LI	Algeria	Not reported	Collodion membrane, large dark scales, ectropion, and PPK	Lefèvre et al. (2003)
77	c.5393C>T; p.Pro1798Leu	–	None	C0	D	DC	het	unknown	CIE	Japanese	Female	Less than one year at the moment of the study	Sakai et al. (2009)
78	c.5690G>G; p.Arg1897Thr	–	Exonic substitution exon 37 (change at donor site: −85.3%)	C65	D	DC	het	unknown	HI	Eritrean/Jamaican	Not reported	–	Thomas et al. (2008)
79	c.5779G>T; p.Val1927Leu	–	Exonic substitution exon 39 (change at acceptor site: −59.0%)	C25	D	DC	het	c.6610C>T; p.Arg2204*	HI	Ecuadorian	Male	Alive (4-year-old) at publication	This report
80	c.5844G>A; p.Gly1962Ser	–	Exonic substitution exon 39 (change at donor site: −99%)	C55	D	DC	het	c.6858del; p.Phe2268Leufs*6	HI	Chinese	Female	5 months at publication. Severe HI phenotype.	Loo et al. (2018)
81	c.5936C>G; p.Ala1979Gly	–	None	C0	D	DC	het	c.6858del; p.Phe2268Leufs*6	HI atypical	unknown	Male	HI atypical, chrysalis	Scott et al. (2013)
Patient	Missense mutation	Location in the protein	Predicted splicing defect	Missense prediction scores	Mutation taster	Status	Second mutation	Phenotype	Ethnicity	Sex	Observations	Reference	
---------	------------------	-------------------------	---------------------------	---------------------------	-----------------	--------	----------------	-----------	-----------	-----	-------------	-----------	
82	c.5939C>A;			C0	D	DC	het	unknown	Japanese	Female	One year at the moment of the study	Sakai et al. (2009)	
83	c.5985G>A;	TNM	Novel acceptor splice site with similar scores as native site	C0	T	DC	het	HI	Japanese	Female	2.5 years old at publication, clinical features typical of HI	Tanahashi et al. (2016)	
84	c.6263 T>C; p.(Leu2083Pro)	TNM	None	C65	D	DC	het	CIE	Scandinavian	Not reported	–	Hellström-Pigg et al. (2016)	
85	c.6431 T>C; p.(Phe2144Ser)	–	None	C65	D	DC	het	CIE	Japanese	Female	A 5-year-old girl born as a collodion baby. Clinical features typical of CIE	Shimizu et al. (2013)	
86	c.6443C>A; p.(Pro2148Gln)	–	None	C65	D	DC	het	HI	Chinese	Female	Typical HI fetus terminated with two more cases in the family	Xie et al. (2016)	
87	c.6551A>T; p.(Asn2184Ile)	–	None	C55	D	P	het	CIE	Japanese	Female	Mild CIE with periodic exacerbation	Wada et al. (2017)	
88	c.6900C>A; p.(Phe2301Leu)	NBF2	None	C15	D	DC	hom	LI	Sardi	Not reported	Large scales with erythroderma and keratoderma	Waki et al. (2016)	
89	c.7089G>A; p.(Asp2365Asn)	NBF2	None	C0	D	P	het	HI	Italian	Not reported	6 years old at publication, nystagmus, PDA, neonatal sepsis	Kessel et al. (2005)	
90	c.7187G>C; p.(Arg2396Thr)	NBF2	None	C65	D	DC	het	ARCI	Caucasian	Male	Less than one year old at the moment of study. Osteopenia	Sitek et al. (2018)	
91	c.7412G>A; p.(Gly2474Glu)	–	None	C65	D	DC	het	HI-like	Scandinavian	Not reported	Collodion membrane, ectropion, anhidrosis, and PPK	Hellström-Pigg et al. (2016)	
92	c.7436G>A; p.(Arg2479Lys)	Exonic substitution exon 50 (change at donor site: −99.5%)	C25	D	DC	het	HI	French	Male	Died soon after birth	Akiyama et al. (2007)		
93	c.7436G>A; p.(Arg2479Lys)	Exonic substitution exon 50 (change at donor site: −99.5%)	C25	D	DC	het	HI	Spanish	Female	Alive (9 years old) at examination. The patient now shows a CIE phenotype.	Esperón-Moldes et al. (2018)		

Note. GenBank reference sequence (NM 173,076.2, NP_775099)

ARCI: autosomal recessive congenital ichthyosis; CEE: congenital exfoliative erythroderma; CIE: congenital ichthyosiform erythroderma; D: deleterious; DC: disease-causing; FTI: failure to thrive; het: heterozygous; HI: harlequin ichthyosis; HI-like: CIE patients with ultrastructural findings resembling those detected in previous HI cases; hom: homozygous; LI: lamellar ichthyosis; P: polymorphism; PDA: patent ductus arteriosus; PH: palmar hyperlinearity; PPK: palmoplantar keratoderma; T: tolerated.

*Align GV-GD prediction classes form a spectrum (C0, C15, C25, C35, C45, C55, C65) with C65 most likely to interfere with function and C0 least likely.
2007; Diociaiuti et al., 2016; Hellström-Pigg et al., 2016; Kellsell et al., 2005; Loo, Batilando, Tan, & Koh, 2018; Scott et al., 2013; Takeichi, Sugiu, Matsuda, Kono, & Akiyama, 2013; Thomas et al., 2006; Tourette et al., 2012; Umamoto et al., 2011) all these patients were diagnosed with HI at birth (with exception of patient 13 of whom there was not available phenotypic information). However, there are still few data of patients carrying a combination of splice-site and missense variants; from the eight patients reported to date, four showed CIE (patients 3, 15, 19, 26) (Bochner et al., 2017; Esperón-Moldes et al., 2018; Fukuda et al., 2012), and one presented HI (patient-16) (Hellström-Pigg et al., 2016).

We also identified a total of sixty-three ABCA12 missense carrier patients. As shown in Table 2, most of HI patients bear at least one truncating variant in one of the two alleles (Patients 32, 34, 35, 41, 42, 50, 67, 79, 80, 81, 83, 86, 89, 91–93) (Akiyama et al., 2006, 2007; Esperón-Moldes et al., 2018; Hellström-Pigg et al., 2016; Kellsell et al., 2005; Loo et al., 2018; Numata et al., 2015; Peterson, Lofgren, Bremmer, & Krol, 2013; Scott et al., 2013; Tanahashi, Sugiu, Sato, & Akiyama, 2016; Xie et al., 2016). Two HI patients were described as carriers of missense variants in both alleles (Patients 31 and 47), however, the variants identified in patient 31: ABCA12: c.130C>G; p.(Arg44Gly) and c.2033A>G p.(Asn678Ser) (Scott et al., 2013) could be not the causative variants assuming that almost all algorithms predict a non-deleterious effect and considering that a heterozygous known TGM1 mutation: c.401A>G; p.(Tyr134Cys) was also detected in this same patient; in the case of patient 47, described as carrier of a pathogenic variant c.3535G>A; p.(Gly1179Arg) in homozygous state, the zygosity needs to be confirmed. Interestingly, we did not find any difference between the type of mutations in patients with moderate and severe HI phenotypes. As previously reported, CIE patients carry at least one missense variant in combination with other missense, nonsense, splice-site and frameshift mutations, while almost all LI patients are carriers of missense mutations in both alleles. Exceptions are two LI cases (patients 57 and 64) who harbor nonsense and frameshift variants. Interestingly these two patients did not show a more severe phenotype compared to other LI patients who carried missense mutations in both alleles (Akiyama et al., 2008; Bučková et al., 2016; Chao, Aleshin, Goldstein, Worswick, & Hogeling, 2018; Esperón-Moldes et al., 2018; Fukuda et al., 2012; Hellström-Pigg et al., 2016; Israeli et al., 2013; Lefèvre et al., 2003; Loo et al., 2018; Murase et al., 2018; Natsuga et al., 2007; Nawaz et al., 2012; Numata et al., 2015; Sakai et al., 2009; Scott et al., 2013; Shimizu et al., 2013; Sitek et al., 2018; Thomas et al., 2008; Wada et al., 2017; Wakil et al., 2016). The majority of the genotype-phenotype associations found in these patients are in accordance with the correlations previously established by Akiyama, with some few exceptions as previously stated (Akiyama, 2010).

Given the current available data, further characterization of missense variants, including the confirmation of the zygosity in putative homozygous patients and the assessment of their impact in the splicing process, would be needed to better elucidate this genotype-phenotype correlation.

In brief, our case expands the spectrum of ABCA12 reported disease-causing variants. Additionally the literature review of splice-site and missense ABCA12 mutations performed in this study contributes to further understanding of the complex genotype-phenotype correlations in the different subtypes of ARCI.

ACKNOWLEDGMENTS

We would like to thank the patient and his family. U. Esperón Moldes was supported by a predoctoral fellowship from Xunta de Galicia.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ORCID

Ana Vega https://orcid.org/0000-0002-7416-5137

REFERENCES

Akiyama, M. (2010). ABCA12 mutations and autosomal recessive congenital ichthyosis: A review of genotype/phenotype correlations and of pathogenetic concepts. Human Mutation, 31(10), 1090–1096. https://doi.org/10.1002/humu.21326

Akiyama, M., Sakai, K., Hatamochi, A., Yamazaki, S., McMillan, J. R., & Shimizu, H. (2008). Novel compound heterozygous nonsense and missense ABCA12 mutations lead to nonbullous congenital ichthyosiform erythroderma. British Journal of Dermatology, 158(4), 864–867. https://doi.org/10.1111/j.1365-2133.2008.08439.x

Akiyama, M., Sakai, K., Sugiyama-Nakagiri, Y., Yamanaka, Y., McMillan, J. R., Sawamura, D., … Shimizu, H. (2006). Compound heterozygous mutations including a de novo missense mutation in ABCA12 led to a case of harlequin ichthyosis with moderate clinical severity. Journal of Investigative Dermatology, 126(7), 1518–1523. https://doi.org/10.1038/sj.jid.5700295

Akiyama, M., Sugiyama-Nakagiri, Y., Sakai, K., McMillan, J. R., Goto, M., Arita, K., … Shimizu, H. (2005). Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. The Journal of Clinical Investigation, 115(7), 1777–1784. https://doi.org/10.1172/JCI24834

Akiyama, M., Titeux, M., Sakai, K., McMillan, J. R., Tonasso, L., Calvas, P., … Shimizu, H. (2007). DNA-based prenatal diagnosis of harlequin ichthyosis and characterization of ABCA12 mutation consequences. Journal of Investigative Dermatology, 127(3), 568–573. https://doi.org/10.1038/sj.jid.5700617

Bochner, R., Samuelov, L., Sarig, O., Li, Q., Adase, C. A., Isakov, O., … Sprecher, E. (2017). Calpain 12 function revealed through the
study of an atypical case of autosomal recessive congenital ichthyosis.

Journal of Investigative Dermatology, 137(2), 385–393. https://doi.org/10.1016/j.jid.2016.07.043

Bučková, H., Nosková, H., Borská, R., Réblová, K., Pinková, B., Zapletalová, E., … Fujikusová, L. (2016). Autosomal recessive congenital ichthyoses in the Czech Republic. *British Journal of Dermatology*, 174(2), 405–407. https://doi.org/10.1111/bjd.13918

Chao, K., Aleshin, M., Goldstein, Z., Worswick, S., & Hogeling, M. (2018). Lamellar ichthyosis in a female neonate without a collodion membrane. *Dermatology Online Journal*, 24(2), 13030/qt24g7w9t8h.

Diociaiuti, A., El Hachem, M., Pisaneschi, E., Giancristoforo, S., Fachal, L., and Diociaiuti, A. (2016). Role of molecular testing in the multidisciplinary diagnostic approach of ichthyosis Rare skin diseases. *Orphanet Journal of Rare Diseases*, 11(1), 1–12. https://doi.org/10.1186/s13023-016-0384-4

Esperón-Moldes, U., Ginarte, M., Rodríguez-Pazos, L., Shiohmi, K., Ikebuchi, K., … Akiyama, M. (2018). Hearing impairment: A secondary symptom in a congenital ichthyosiform erythroderma patient with ABCA12 mutations. *Journal of Investigative Dermatology*, 145, e303–e304. https://doi.org/10.1111/jid.15638-1318.14350

Fischer, J. (2009). Autosomal recessive congenital ichthyosis. *Journal of Investigative Dermatology*, 129(6), 1319–1321. https://doi.org/10.1038/jid.2009.57

Fukuda, S., Hamada, T., Ishii, N., Sakaguchi, S., Sakai, K., Akiyama, M., … Hashimoto, T. (2012). Novel adenosine triphosphate (ATP)-binding cassette, subfamily A, member 12 (ABCA12) mutations associated with congenital ichthyosiform erythroderma. *British Journal of Dermatology*, 166(1), 218–221. https://doi.org/10.1111/j.1365-2133.2010.09384.x

Goldsmith, T., Fuchs-Telem, D., Israeli, S., Sarig, O., Padalou-Brauch, G., Bergman, R., … Nousbuck, J. (2013). The sound of silence: Autosomal recessive congenital ichthyosis caused by a synonymous mutation in ABCA12. *Experimental Dermatology*, 22(4), 251–254. https://doi.org/10.1111/exd.12110

Grall, A., Guaguère, E., Planchais, S., Grond, S., Bourrat, E., Hauser, I., … Fischer, J. (2012). PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. *Nature Genetics*, 44(2), 140–147. https://doi.org/10.1038/ng.1056

Heinz, L., Kim, G. J., Marrakchi, S., Christiansen, J., Turki, H., Rauschendorf, M. A., … Fischer, J. (2017). Mutations in SULT2B1 cause autosomal-recessive congenital ichthyosis in humans. *Nature Genetics*, 49(12), 1319–1321. https://doi.org/10.1038/jid.2009.57

Kirschmeier, P., Zimmer, A., Bouadjar, B., Rössler, B., & Fischer, J. (2017). Whole-exome-sequencing reveals small deletions in CASP14 in patients with autosomal recessive inherited ichthyosis. *Acta Dermato-Venereologica*, 97(1), 102–104. https://doi.org/10.2340/00015555-2510

Lefèvre, C., Audebert, S., Jobard, F., Bouadjar, B., Lakhdar, H., Boughdene-Stambouli, O., … Fischer, J. (2003). Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2. *Human Molecular Genetics*, 12(18), 2369–2378. https://doi.org/10.1093/hmg/ddg235

Lefèvre, C., Bouadjar, B., Ferrand, V., Tadini, G., Mégarbané, A., Lathrop, M., … Fischer, J. (2006). Mutations in a new cytochrome P450 gene in lamellar ichthyosis type 3. *Human Molecular Genetics*, 15(5), 767–776. https://doi.org/10.1093/hmg/ddi491

Loo, B. K. G., Batilando, M. J., Tan, E. C., & Koh, M. J. A. (2018). Compound heterozygous mutations with novel missense ABCA12 mutation in harlequin ichthyosis. *BMJ Case Reports*, bcr-2017-222025. 10.1136/bcr-2017-222025

Murase, C., Takeichi, T., Sugiu, K., Kobayashi, M., Shiohmi, K., Ikebuchi, K., … Akiyama, M. (2018). Hearing impairment: A secondary symptom in a congenital ichthyosiform erythroderma patient with ABCA12 mutations. *Journal of Investigative Dermatology*, 45, e303–e304. https://doi.org/10.1111/jid.1364-8138.14350

Natsuga, K., Akiyama, M., Kato, N., Sakai, K., Sugiyama-Nakagiri, Y., Nishimura, M., … Shimizu, H. (2007). Novel ABCA12 mutations identified in two cases of non-bullous congenital ichthyosiform erythroderma associated with multiple skin malignant neoplasia [3]. *Journal of Investigative Dermatology*, 127(11), 2669–2673. https://doi.org/10.1038/sj.jid.5700885

Nawaz, S., Tariq, M., Ahmad, I., Malik, N. A., Baig, S. M., Dahl, N., & Klar, J. (2012). Non-bullous congenital ichthyosiform erythroderma associated with homozygosity for a novel missense mutation in an ATP binding domain of ABCA12. *European Journal of Dermatology*, 22(2), 178–181. https://doi.org/10.1016/j.ejder.2011.1638

Numata, S., Teye, K., Krol, R. P., Karashima, T., Fukuda, S., Matsuda, M., … Hashimoto, T. (2015). Mutation study for 9 genes in 23 unrelated patients with autosomal recessive congenital ichthyosis in Japan and Malaysia. *Journal of Dermatological Science*, 78(1), 82–85. https://doi.org/10.1016/j.jdermsci.2015.02.006

Oji, V., Tadini, G., Akiyama, M., Blanchet Bardon, C., Bodemer, C., Bourrat, E., … Traupe, H. (2010). Revised nomenclature and classification of inherited ichthyoses: Results of the First Ichthyosis Consensus Conference in Sorze 2009. *Journal of the American Academy of Dermatology*, 63(4), 607–641. https://doi.org/10.1016/j.jaad.2009.11.020

Peterson, H., Lofgren, S., Bremmer, S., & Krol, A. (2013). Novel ABCA12 mutations leading to recessive congenital ichthyosis. *Pediatric Dermatology*, 30(6), 236–237. https://doi.org/10.1111/j.1525-1470.2011.01695.x

Radner, F. P. W., Marrakchi, S., Kirchmeier, P., Kim, G. J., Ribierre, F., Kamoun, B., … Fischer, J. (2013). Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans. *PLoS Genetics*, 9(6), e1003536–https://doi.org/10.1371/journal.pgen.1003536.

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., … ACMG Laboratory Quality Assurance Committee. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of
Medical Genetics and Genomics and the Association for Molecular Pathology. *Genetics in Medicine, 17*(5), 405–423. https://doi.org/10.1038/gim.2015.30

Sakai, K., Akiyama, M., Yanagi, T., McMillan, J. R., Suzuki, T., Tsukamoto, K., ... Shimizu, H. (2009). ABCA12 is a major causative gene for non-bullous congenital ichthyosiform erythroderma. *Journal of Investigative Dermatology, 129*(9), 2306–2309. https://doi.org/10.1038/jid.2009.23

Scott, C. A., Plagnol, V., Nitoiu, D., Bland, P. J., Blaydon, D. C., Sheth, J. J., Bhavsar, R., Patel, D., Joshi, A., & Sheth, F. J. (2018). *Shigehara, Y., Okuda, S., Nemer, G., Chedraoui, A., Hayashi, R., Bitar, Thomas, A. C., Cullup, T., Norgett, E. E., Hill, T., Barton, S., Dale, B. A., ... Kelsell, D. P.* (2013). Targeted sequence capture and high-throughput sequencing in the molecular diagnosis of ichthyosis and other skin diseases. *Journal of Investigative Dermatology, 133*(2), 573–576. https://doi.org/10.1038/jid.2012.332

Sheth, J. J., Bhavsar, P., Patel, D., Joshi, A., & Sheth, F. J. (2018). Harlequin ichthyosis due to novel splice site mutation in the ABCA12 gene: Postnatal to prenatal diagnosis. *International Journal of Dermatology, 57*(4), 428–433. https://doi.org/10.1111/ijd.13923

Shigebara, M., Okuda, S., Nemer, G., Chedraoui, A., Hayashi, R., Bitar, F., ... Shimomura, Y. (2016). Mutations in *SDR9C7* gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis. *Human Molecular Genetics, 25*(20), ddw277. https://doi.org/10.1093/hmg/ddw277

Shimizu, Y., Sugiiura, K., Aoyama, Y., Ogawa, Y., Hitomi, K., Isawatsuki, K., & Akiyama, M. (2013). Novel ABCA12 missense mutation p.Phe2144Ser underlies congenital ichthyosiform erythroderma. *The Journal of Dermatology, 40*(7), 581–582. https://doi.org/10.1111/1346-8138.12169

Sitek, J. C., Kulseth, M. A., Rydpal, K. B., Skodje, T., Sheng, Y., & Retterstol, L. (2018). Whole-exome sequencing for diagnosis of hereditary ichthyosis. *Journal of the European Academy of Dermatology and Venereology, 32*(6), 1022–1027. https://doi.org/10.1111/dje.14870

Takeichi, T., Sugiiura, K., Matsuda, K., Kono, M., & Akiyama, M. (2013). Novel ABCA12 splice site deletion mutation and ABCA12 mRNA analysis of pulled hair samples in harlequin ichthyosis. *Journal of Investigational Dermatology, 69*(3), 259–261. https://doi.org/10.1016/j.jid.2012.11.004

Tanahashi, K., Sugiiura, K., Sato, T., & Akiyama, M. (2016). Noteworthy clinical findings of harlequin ichthyosis: Digital autoamputation caused by cutaneous constriction bands in a case with novel *ABCA12* mutations. *British Journal of Dermatology, 174*(3), 689–691. https://doi.org/10.1111/bjd.14228

Thomas, A. C., Cullup, T., Norgett, E. E., Hill, T., Barton, S., Dale, B. A., ... Kelsell, D. P. (2006). ABCA12 is the major harlequin ichthyosis gene. *Journal of Investigative Dermatology, 126*(11), 2408–2413. https://doi.org/10.1038/sj.jid.5700455

Thomas, A. C., Sinclair, C., Mahmud, N., Cullup, T., Mellerio, J. E., Harper, J., ... Kelsell, D. P. (2008). Novel and recurring *ABCA12* mutations associated with harlequin ichthyosis: Implications for prenatal diagnosis. *British Journal of Dermatology, 158*(3), 611–613. https://doi.org/10.1111/j.1365-2133.2007.08277.x

Tourette, C., Tron, E., Mallet, S., Levy-Mozziconacci, A., Bonnefont, J. P., D’Ercole, C., ... Breteille, F. (2012). Three-dimensional ultrasound prenatal diagnosis of congenital ichthyosis: Contribution of molecular biology. *Prenatal Diagnosis, 32*(5), 498–500. https://doi.org/10.1002/pd.3839

Unemoto, H., Akiyama, M., Yanagi, T., Sakai, K., Aoyama, Y., Oizumi, A., & Suga, Y. (2011). New insight into genotype/phenotype correlations in *ABCA12* mutations in harlequin ichthyosis. *Journal of Investigational Dermatology, 136*(2), 136–138. https://doi.org/10.1016/j.jid.2010.11.010

Wada, Y., Kusakabe, M., Nagai, M., Yamamoto, M., Imai, Y., Ide, Y. H., ... Yamanishi, K. (2017). Mild case of congenital ichthyosiform erythroderma with periodic exacerbation: Novel mutations in *ABCA12* and upregulation of calprotectin in the epidermis. *Journal of Dermatology, 44*(11), e282–e283. https://doi.org/10.1111/jid.1346-8138.13976

Wakil, S. M., Binamer, Y., Al-Dossari, H., Al-Humaidy, R., Tharaya, R. A., Khalifa, O., ... Al Owain, M. (2016). Novel mutations in *TGM1* and *ABCA12* cause autosomal recessive congenital ichthyosis in five Saudi families. *International Journal of Dermatology, 55*(6), 673–679. https://doi.org/10.1111/ijd.13279

Washio, K., Sumi, M., Nakata, K., Fukunaga, A., Yamana, K., Koda, T., ... Yamanishi, K. (2017). Case of harlequin ichthyosis with a favorable outcome: Early treatment and novel, differentially expressed, alternatively spliced transcripts of the ATP-binding cassette subfamily A member 12 gene. *Journal of Dermatology, 44*(8), 950–953. https://doi.org/10.1111/jid.13823

Xie, H., Xie, Y., Peng, R., Li, L., Zhu, Y., & Guo, J. (2016). Harlequin ichthyosis: A novel compound mutation of *ABCA12* with prenatal diagnosis. *Clinical and Experimental Dermatology, 41*(6), 636–639. https://doi.org/10.1111/ced.12861

How to cite this article: Montalván-Suárez M, Esperón-Moldes US, Rodríguez-Pazos L, et al. A novel *ABCA12* pathologic variant identified in an Ecuadorian harlequin ichthyosis patient: A step forward in genotype-phenotype correlations. *Mol Genet Genomic Med*. 2019;7:e608. https://doi.org/10.1002/mgg3.608