In this real-world study in patients with Staphylococcal osteomyelitis and joint infection, DAL resulted in high rates of clinical and microbiological success.

Disclosures. Jennifer McGregor, RPh, AbbVie (Employee) Anathakrishnan Ramani, MD, FACP, AAHIVS, CIC, Allergan (prior to its acquisition by AbbVie) (Speaker’s Bureau) John Lock, PharmD, BCPS, A-Q-ID, AbbVie (Employee) Pedro Gonzalez, MD, MT, AbbVie (Employee).

1248. Efficacy and Safety of Oral Ibrexafungerp in 41 Patients with Refractory Fungal Diseases, Interim Analysis of a Phase 3 Open-label Study (FURI) Barbara D. Alexander, MD, MHS; Oliver Cornely, Prof.; Peter Pappas, MD; Rachel Miller, MD; Jose A. Vazquez, MD, FIDSA; Luis Ostrosky-Zeichner, MD; Andrej Spec, MD; Riina Rauteamaa-Richardson, DDS, PhD, FRCPath; Robert Krause, MD; George R. Thompson III, MD; Carolyn Morse, MD; John W. Sanders, III, MD; David Andes, MD, PhD; George Lyon, MD; Francisco M. Marty, MD; Emily Silverman, BS; Marisa H. Miceli, MD, FIDSA, MD; Thomas F. Patterson, MD; Martin Hoeningl, MD, PhD; Necchi Azzi, MD, PhD; David A. Angulo, MD, PhD; Duke University, Durham, NC; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Nordrhein-Westfalen, Germany; University of Alabama at Birmingham, Birmingham, Alabama; Medical College of Georgia at Augusta University, Augusta, Georgia; University of Texas Health Science Center, Houston, Houston, Texas; Washington University, St. Louis, St. Louis, Missouri; University of Manchester, Manchester, England; United Kingdom; Medical University, Graz, Graz, Steiermark, Austria; UC-Davis, Sacramento, California; Wake Forest Baptist Hospital, Winston-Salem, North Carolina; Wake Forest School of Medicine, Winston-Salem, NC; University of Wisconsin, Madison, Wisconsin; Emory Health, Atlanta, Georgia; Bringham and Women’s Hospital Hospital, Boston, Massachusetts; Dana Farber Cancer Institute, Boston, Massachusetts; University of Michigan, Ann Arbor, Michigan; University of Texas Health San Antonio, San Antonio, TX; University of California, San Diego, San Diego, CA; SCYNEXIS, Inc., Jersey City, New Jersey.

Session: P-58. Novel Agents

Background. Candida infections resistant to currently available antifungals are an emerging global threat. Ibrexafungerp is an investigational broad-spectrum glucan synthase inhibitor antifungal with activity against Candida and Aspergillus species, including azole- and echinocandin-resistant strains. A Phase 3 open-label, single-arm study of oral ibrexafungerp (FURI) (Clinicaltrials.gov NCT03059992) is ongoing for the treatment of patients (≥18 years) with fungal diseases who are intolerant or of reluctance to standard antifungal therapies.

Methods. An independent Data Review Committee (DRC) provided an assessment of treatment response for 41 patients. Patients were enrolled in 22 centers from 6 countries. Patients were eligible for enrollment if they had proven or probable, invasive candidiasis or mucocutaneous candidiasis and documented evidence of failure of, intolerance to, or toxicity related to a currently approved standard-of-care antifungal treatment or could not receive approved oral antifungal options (e.g., susceptibility of the organism) and a continued IV antifungal therapy was undesirable or contraindicated. Ibrexafungerp was well-tolerated with the most common treatment-related adverse events being of gastrointestinal origin. No deaths due to progression of fungal disease were reported.

Conclusion. Preliminary analysis of these 41 cases indicates that oral ibrexafungerp provides a favorable therapeutic response in the majority of patients with difficult-to-treat Candida spp. infections, including those caused by non-albicans Candida species.

Disclosures. Barbara D. Alexander, MD, MHS, SCYNEXIS, Inc. (Employee, Scientific Research Study Investigator, Research Grant or Support) Oliver Cornely, Prof., Actelion (Consultant, Research Grant or Support); Allovir (Consultant, Scientific Research Study Investigator, Research Grant or Support); Merck (Consultant, Other Financial or Material Support, Personal fees) Pfizer (Consultant, Scientific Research Study Investigator); Alleece Therapeutics (Other Financial or Material Support, Personal fees) Gilead Sciences, Inc. (Grants/Research Support) Ninebotica (Grants/Research Support) Astellas (Grant/Research Support, Member of Advisory Panel) Roche Diagnostics (Grants/Research Support, Member of Advisory Panel)

Table 1: Ibrexafungerp Outcomes by Pathogen

Pathogen	Complete or Partial Response	Stable Disease	Progression of Disease
C. glabrata	9	5	3
C. albicans	5	2	2
C. krusei	2	3	3
C. parapsilosis	2	3	3
C. glabrata / C. albicans	2	2	2
C. krusei / C. albicans	1	1	1
C. tropicalis / C. albicans	1	1	1

One patient outcome indeterminate. One patient organism not identified.

Conclusion. Preliminary analysis of these 41 cases indicates that oral ibrexafungerp provides a favorable therapeutic response in the majority of patients with difficult-to-treat Candida spp. infections, including those caused by non-albicans Candida species.

Disclosures. Barbara D. Alexander, MD, MHS, SCYNEXIS, Inc. (Employee, Scientific Research Study Investigator, Research Grant or Support) Oliver Cornely, Prof., Actelion (Consultant, Research Grant or Support); Allovir (Consultant, Scientific Research Study Investigator, Research Grant or Support); Merck (Consultant, Other Financial or Material Support, Personal fees) Pfizer (Consultant, Scientific Research Study Investigator); Alleece Therapeutics (Other Financial or Material Support, Personal fees) Gilead Sciences, Inc. (Grants/Research Support) Ninebotica (Grants/Research Support) Astellas (Grant/Research Support, Member of Advisory Panel) Roche Diagnostics (Grants/Research Support, Member of Advisory Panel)
the microbiological activity of this novel compound against SBL- and MBL-producing E. coli (Table 1).

Table 1. IC₅₀ values and in vitro activity results for s08033 against selected SBLs and MBLs.

Antibiotic (AB)	S08033	CFDC	GEP	OFID
CFDC	1.00	0.005	0.005	0.005
GEP	0.50	0.005	0.005	0.005
OFID	0.50	0.005	0.005	0.005

Conclusion. Addition of a free-thiol group to the BATSIs scaffold increases the range of these compounds resulting in a broad-spectrum inhibitor toward clinically important carbapenemases and cephalosporinases.

Disclosures. Robert A. Benomo, MD, Entasis, Merck, Venatorx (Research Grant or Support)

1251. Prevention of Pneumocystis Pneumonia by Ibrexafungerp in a Murine Prophylaxis Model
Katyna Borroto-Esoda, PhD; Nkechi Azie, MD; Alan Ashbaugh, PhD; Melanie Cushion, PhD; David A. Angelo, MD, D1; SCYNEXIS, Inc., Jersey City, NJ; 2University of Cincinnati, Cincinnati, Ohio

Session: P-58. Novel Agents

Background. Pneumocystis pneumonia (PCP) is an opportunistic fungal infection that affects immunocompromised patients. Ibrexafungerp (IBX) is an oral and intravenous antifungal from a novel class of glucan synthase inhibitors, tripterpenoids, and has shown activity against Candida, Aspergillus, and PCP in a murine therapy model. We evaluated the ability of IBX to prevent PCP in a prophylaxis model of murine PCP.

Methods. Experiment 1: Balb/c mice (10 mice/group) were infected intranasally with Pneumocystis murina, immune-suppressed with dexamethasone in an acidic diet. Mice were treated with IBX (15 mg/kg daily) for 7 days, with or without 3 days of antibiotic prophylaxis with trimethoprim/sulfamethoxazole (TMP/SMX). After 6 weeks, mice were sacrificed, and the infection was determined by organism burdens (asci and total nuclei).

Experiment 2: Balb/c mice were immune-suppressed and infected as in Exp. 1. Treatment groups included: 1) 30 mg/kg BID x 6wk; 2) 30 mg/kg/BID x 6wk followed by cessation of treatment with IBX but with immune-suppression for 3 additional weeks; 3) 15 mg/kg BID 1 week prior and 6 wks after infection and immune suppression; 4) 15 mg/kg BID for 6 wks then IBX was discontinued but with immune-suppression; 5) 15 mg/kg BID for 6 wks then IBX was discontinued but with immune suppression; 6) untreated, vehicle control.

Results. Experiment 1: No P. murina nuclei or ascii were observed after 6 weeks of treatment at a dose of 30 mg/kg/BID in the prophylaxis mouse model of PCP, similar to positive control, TMP/SMX. Some nuclei and ascii were observed in the lower dose IBX groups.

Experiment 2: To investigate whether any P. murina remained after different regimens of prophylaxis, treatment of IBX was withdrawn at both doses for an additional 3 wks of immune suppression to provoke the growth of any remaining fungi. Group 1 showed reduction in total nuclei and asci to undetectable. Group 2 did not result in any recrudescence of infection. Group 3 and 4 showed similar reduction in organism burden. Group 5 was similar to untreated control.

Conclusion. These results demonstrate that 30 mg/kg BID IBX prevented PCP in a murine model. We suggest that IBX could be a viable option for preventing PCP in immunocompromised patients.

Disclosures. Katyna Borroto-Esoda, PhD, SCYNEXIS, Inc. (Employee, Shareholder) Nkechi Azie, MD, SCYNEXIS, Inc. (Employee, Shareholder) Alan Ashbaugh, PhD, SCYNEXIS, Inc. (Grant/Research Support) Melanie Cushion, PhD, SCYNEXIS, Inc. (Grant/Research Support) David A. Angelo, MD, SCYNEXIS, Inc. (Employee, Shareholder)

1252. In Vitro Activity of Cefiderocol Against Metallo-β-Lactamase-Producing Gram-Negative Bacteria Collected in North America and Europe Between 2014 and 2017: SIDERO-WT-2014-2016 Studies
Miki Takemura, MSc; Krystyna Kazmierczak, PhD; Meredith Hackel, MPH; Daniel F. Sahn, PhD; Roger Echols, MD; Yoshinori Yamano, PhD; Shionogi & Co., Ltd.; Osaka, Osaka, Japan; "IHMA, Schaumburg, Illinois; IHMA, Inc., Schaumburg, Illinois; Infectious Disease Drug Development Consulting LLC, Easton, Connecticut

Session: P-58. Novel Agents

Background. Metallo-β-lactamases (MBLs; eg, NDM, VIM, and IMP) can inactivate almost completely used β-lactam antibiotics, including carbapenems. Infections caused by MBL-producing bacteria are difficult to treat due to their resistance to many antibiotics. Cefiderocol (CFDC) is a siderophore cephalosporin antibiotic approved in the USA in 2019, with potent activity against carbapenem-resistant Gram-negative bacteria (GNB), including both serine- and metallo-carbapenemase positive strains. We evaluated the in vitro activity of CFDC and comparator agents against MBL-producing strains of GNB from North America and Europe in 3 years of consecutive surveillance studies (SIDERO-WT-2014-2016).

Methods. Susceptibility testing for CFDC, ceftazidime-avibactam (CZA), cefotaxime-tazobactam (C/T), meropenem (MEM), cefepime (FEP), ciprofloxacin (CIP), and aztreonam (AZT) was performed by the broth microdilution method according to CLSI guidelines. CFDC was tested in iron-depleted medium. A total of 275 MBL-producing strains, consisting of 120 Enterobacteriaceae (45 NDM; 75 VIM), 5 NDM-producing Acinetobacter baumannii, and 150 Pseudomonas aeruginosa (134 VIM; 16 IMP), identified among...