We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (K_i within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII ($K_i > 10 \mu M$); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.

GRAPHICAL ABSTRACT

ABSTRACT

We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (K_i within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII ($K_i > 10 \mu M$); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.

GRAPHICAL ABSTRACT

ARTICLE HISTORY

Received 20 September 2021
Revised 20 October 2021
Accepted 22 October 2021

KEYWORDS
Carbonic anhydrases; coumarins; benzoxazoles; antiproliferative agents; docking

1. Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous (Metallo)enzymes distributed across all life kingdoms and encoded into eight genetic families: α-(primarily invertebrates, but also in protozoa, algae, the cytoplasm of green plants, and numerous Gram-negative bacteria), β- (bacteria, fungi, algae, some archea, and chloroplasts of mono-and di-cotyledons), γ-(most types of bacteria), δ- (marine diatoms), η-(protozoa), θ-(marine diatoms),
properties: cytosolic (CA I, II, III, VII, XIII), mitochondrial (CA VA, V), membrane-bound (CA IV, IX, XII, XIV, XV), secreted from saliva and colostrum (CA VI) and CA-related proteins (CARP), which are catalytically inactive (CA VIII, X, XI).

The biological role of these enzymes is to catalyse the reversible hydration of CO₂ to furnish bicarbonate and a proton; this simple process, which is too slow under physiological conditions to meet metabolic requirements, was found to be essential for many biological events, like respiration (by dissolving CO₂ in blood as HCO₃⁻), maintenance of pH homeostasis, ureagenesis or gluconeogenesis. From a pharmacological point of view, a plethora of therapeutic involvements of CAs have been reported, in connection with glaucoma, epilepsy, neuropathic pain, ischaemia, obesity, cancer, and more recently, neurodegenerative disorders, like Alzheimer's disease. Therefore, the development of CA inhibitors and activators is a research area with an increasing interest in the medicinal chemistry area.

The most common family of CA inhibitors is comprised of sulphonamides and their isosteres (sulfamates, sulfamides), which behave as strong inhibitors by chelating the Zn²⁺ ion in the active site; nevertheless, they are frequently endowed with moderate selectivity, which leads to a series of side-effects. Consequently, the search for alternative chemotypes of CA inhibitors is a hot topic nowadays. In this context, coumarins (2H-chromen-2-ones), which are abundant phytochemicals, are abundant in bacteria and fungi (more than 1300 natural structures have been identified so far) emerged as an interesting new family of CA inhibitors.

Coumarins are considered as a privileged structure in medicinal chemistry, exhibiting a plethora of bioactivities, such as antioxidant, anti-inflammatory, antimicrobial, anti-Alzheimer’s, anti-proliferative properties. Conjugation of coumarins with a second pharmacophore is currently gaining attention to access multitarget drugs. Many of such activities are the result of the inhibition of key enzymes by coumarin-containing derivatives, either natural or synthetic; this is due to their peculiar planar structure and to the possibility of establishing strong non-covalent interactions involving the lactone moiety (hydrogen bonding, dipole-dipole) and the aromatic scaffold (π-π and cation-π interactions). Regarding CAs, the slow inhibition mode observed for coumarins compared to sulfonamido-derivatives suggested that they might behave as suicide inhibitors. Kinetic, crystallographic and computational data revealed that coumarins act in fact as prodrugs: they undergo hydrolysis on their lactone functionality by the esterase activity of the CAs, and the corresponding 2-hydroxycinnamic acids occlude the entrance to the enzyme active site. In particular, coumarin derivatives usually behave as selective inhibitors of CAs IX and XII, which are upregulated in several hypoxic tumours and are responsible for the acidic microenvironment in tumour cells. hCA IX expression is limited in normal tissues and is considered to be a marker of aggressive and resistant tumours. Regarding hCA XII, its inhibition has been associated with the inactivation of the P-gp machinery, one of the mechanisms for eliminating xenobiotics, and therefore, correlated with the development of resistance towards chemotherapeutic drugs.

We envisioned the preparation of a small library of the hitherto unknown coumarin-benzoxazole hybrids depicted in Figure 1 to develop novel inhibitors of hCAs IX and XII. The numerous pharmacological properties associated with the benzoxazole skeleton, together with the reduced toxicities of its derivatives, stimulated us to incorporate such scaffold and analyse the possibility of interactions with CAs.

The structure of these novel hybrids is comprised of three key structural motifs: the coumarin skeleton, acting as a prodrug against CAs, and decorated with different substituents on C-3 and C-4 positions; the 2-aminobenzoxazole scaffold, that might establish non-covalent interactions with both, the hydrophobic and the hydrophilic regions of the enzyme (π-π interactions, hydrogen bonding); and the linker, a hydrocarbon chain with different lengths, providing conformational flexibility to the heterocyclic residues.

2. Materials and methods

2.1. General procedures

TLCs (Merck 60 F₂₅⁴, gel thickness 0.25 mm) were performed using aluminium-coated sheets, using the eluant indicated in the experimental section. Spots were visualised by UV light (λ = 254 nm), and by charring with 10% ethanolic vanillin containing 1% H₂SO₄ or with 5% ethanolic phosphomolybdic acid. Column chromatography purifications were performed using silica gel stationary phase (Merck 60, particle size 40–63 μm), eluting by gravity, or with mild pressure, using the eluant indicated in the experimental section.

NMR spectra were registered in the Centro de Investigación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS), using Bruker Avance III 300 and 500 spectrometers (300 and 500 MHz for ¹H, 75.5 and 125.7 MHz for ¹³C), and the deuterated solvents indicated in each case. Chemical shifts (δ) are expressed in ppm, and coupling constants (J), in Hz. Residual signals from the solvent are used as internal references. Mass spectra were registered using a Qexactive spectrometer, using Electrospray ionisation (ESI).

2.2. Chemistry

2.2.1. General procedure for the preparation of azides 5a–f

To a solution of the corresponding α-bromoderivative 4a–f (1.0 equiv.) in DMF (5 ml) was added NaN₃ (3.0 equiv.), and the corresponding mixture was heated at 70 °C for 3–4 h. After that, it was extracted with EtOAc (3 × 30 ml); the organic layer was washed with brine (3 × 20 ml), H₂O (3 × 20 ml), dried over Na₂SO₄ and filtered. The filtrate was concentrated to dryness under reduced
2.2.2. General procedure for the preparation of amines 6a–f
To a solution of 5a–f (106–240 mg) in MeOH (5 mL) was added Pd(OH)2/C (10–20 mg). The resulting suspension was subjected to standard hydrogenolysis at rt and 1 atm H2 for 4 h. The catalyst was removed by filtration through a Celite® pad, and the filtrate was concentrated to dryness to give 6a–f, which were obtained in quantitative yields and used directly for the next step without any further purification.

2.2.3. General procedure for the preparation of isothiocyanates 7b,c,e,f
To a vigorously stirred solution of the amines 6b,c,e,f (1.0 equiv.) in a 1:1 CH2Cl2/H2O mixture (20 mL) were added CaCO3 (3.0 equiv.) and thiophosgene (1.5 equiv.); the corresponding mixture was kept stirring for 30 min. Then, it was filtered through a Celite® pad and the filtrate was extracted with CH2Cl2 (3 × 30 mL) and washed with brine (3 × 20 mL) and H2O (3 × 20 mL). The organic layer was dried over Na2SO4, filtered and the filtrate was concentrated to dryness under reduced pressure, and the residue was purified by column chromatography (7:3 Cyclohexane–EtOAc) to give derivatives 8b,c,e–j (See Supplementary Material).

2.3. CA inhibition assays
A stopped-flow CO2 hydrase assay has been employed as reported earlier10–12. All enzymes were recombinant proteins obtained in-house as reported10–12 and their concentrations in the assay system were in the range of 5–12 nM.

2.4. Antiproliferative assays
The antiproliferative assays were conducted following the protocol of the US National Cancer Institute (NCI), with minor modifications47.

2.5. Docking simulations
Structures for all proteins (CA IX: PDBid 5FL4; CA XII: PDBid 4HT2) were retrieved from the Protein DataBank48. Crystal structures were optimised using the QuickPrep protocol from MOE (Chemical Computing Group). All ligands were drawn, hydrogens added, and geometry optimised with MOE. For the docking calculations, performed with MOE, in the placement stage, we used the Triangle Matcher algorithm with the London dG scoring scheme. In the refinement stage, we kept the receptor rigid and used the GBVI/WSA dG scoring scheme.

3. Results and discussion
3.1. Chemistry
The retrosynthetic analysis for accessing the coumarin-benzoxazole hybrids proposed herein is depicted in Scheme 1; the key starting materials for accessing such compounds are 4-substituted 2-amino phenols, resorcinol, β-ketoesters and x,2-dibromoalkanes.

The synthetic pathway started with the acid-catalysed Pechmann condensation49 involving resorcinol 1 and substituted β-ketoesters 2 to furnish umbelliferone derivatives 3a–d, bearing different substituents on C-3 and/or C-4 positions of the coumarin moiety (Scheme 2). It has been reported that alkyl substitution on those positions decreases the potential hepatotoxicity of such derivatives, by decreasing the rate of the formation of a transient 3,4-epoxide moiety upon metabolism50.

Scheme 1. Retrosynthetic analysis for the preparation of coumarin-benzoxazole hybrids
Next, the hydroxyl group on C-7 position was subjected to a Williamson synthesis, using an excess of an α,ω-dibromoalkane to favour the monosubstitution process, under mild basic conditions (Scheme 2). Subsequent nucleophilic substitution with NaN₃, followed by Pd-catalysed hydrogenolysis of the corresponding azido derivative 5a–f afforded amino-alkyl counterparts 6a–f (Scheme 3). Transformation of the amino moiety into the corresponding isothiocyanate (alternatively with TCDI or CSCl₂), coupling with an o-aminophenol to furnish a transient and not isolated thiourea, and final H₂O₂/TBAI-promoted cyclodesulfurization afforded target benzoxazoles 8a–j (Scheme 3).

TCDI was tentatively used as a green substitute for thiophosgene in the preparation of isothiocyanates. Attempts to isolate the corresponding isothiocyanate upon isothiocyanation reaction of 6a,d gave rather modest yields (roughly 17%, Scheme 3); increase of the reaction times led to decomposition of the isothiocyanate. It was then assumed that reaction of TCDI with coumarin-amino derivatives 6a,d was not complete, and presumably, a thioureido derivative involving the amino-coumarin and one of the imidazole units from TCDI was obtained as the major compound instead of the heterocumulenes 7. Interestingly, the addition of 2-aminophenol to the crude reaction mixture gave the corresponding transient thiourea, as evidenced by TLC. Final in situ iodide-catalyzed oxidative cyclodesulfurization reaction by treatment of thioureas with H₂O₂ and a catalytic amount of TBAI (Scheme 3) allowed the isolation of benzoxazoles 8a and 8d in a 45% and 34% yield for the one-pot three-step procedure.

Access to benzoxazoles turned out to be more practical, with fewer side-products, when CSCl₂ was used as the thionating agent, as amino derivatives 6b,c,e,f could be transformed quantitatively into the expected isothiocyanates 7b,c,e,f (Scheme 3), in a three-phase medium (H₂O-CH₂Cl₂-CaCO₃) and under mild conditions. Isothiocyanates were isolated from the crude reaction mixture just by liquid-liquid extraction, without the need for
Table 1. Inhibition data (K_i, nM) of compounds 8a–j against human CAs I, II, IV, VII, IX, and XIIa,b.

Compound	CA I	CA II	CA IV	CA VII	CA IX	CA XII	Selectivity ratio I/XII	Selectivity ratio I/XII
8a (R1 = CH3, R2=R3=H, n = 3)	>10,000	>10,000	839	>10,000	74.2	84.4	>134.8	>118.5
8b (R1 = CH3, R2=R3=H, n = 5)	>10,000	>10,000	950	>10,000	70.7	84.5	>141.5	>183.5
8c (R1 = CH2, R2=R3=H, n = 6)	>10,000	>10,000	804	>10,000	64.5	69.8	>150.0	>143.3
8d (R1 = CH3, R2=R3=H, n = 7)	>10,000	>10,000	762	>10,000	417	67.3	>240.0	>148.6
8e (R1 = CH3, R2=R3=Cl, R3=H, n = 6)	>10,000	>10,000	820	>10,000	74.3	75.7	>134.6	>132.1
8f (R1 = Ph, R2=R3=H, n = 6)	>10,000	>10,000	808	>10,000	271	316	>36.9	>31.6
8g (R1 = CH3, R2=R3=H, n = 7)	>10,000	>10,000	762	>10,000	417	67.3	>240.0	>148.6
8h (R1 = CH3, R2=R3=Br, n = 5)	>10,000	>10,000	792	>10,000	757	80.7	>132.0	>123.9
8i (R1 = CH3, R2=R3=H, R3=Ph, n = 5)	>10,000	>10,000	6265	>10,000	33.2	57.1	>301.2	>175.1
8j (R1 = CH3, R2=R3=H, R3=SONH2, n = 5)	806	516	3468	381	90.7	50.6	8.9 // 5.7	15.9 // 10.2
AAZ	250.0	12.0	74.0	2.5	25.0	5.7	10.0 // 0.48	43.9 // 2.1

*Mean from 3 different assays, by a stopped-flow technique (errors were in the range of ± 5–10% of the reported values); †incubation time 6 h.

3.2. Biological assessments

3.2.1. Carbonic anhydrase inhibition

The 10 new benzoazole-coumarin hybrids prepared herein have been evaluated in vitro as potential inhibitors of therapeutically relevant hCAs using the stopped-flow CO2 hydration assay (Table 1) using the drug acetazolamide (AAZ) as control. Two different groups of such metalloenzymes have been used: cystolic isoforms I (off-target), II (related to glaucoma) and VII (involved in epilepsy and neuropathic pain) and membrane-bound isoforms IV (involved in rheumatoid arthritis), IX, XII (both of them overexpressed in hypoxic tumours).

The following structure-activity relationships could be established:

i. Compounds turned out to be inactive (K_i > 10,000 nM) against the cystolic isoforms (I, II, VII), except for sulfonamido-containing 8j, which exhibited submicromolar activities (K_i = 806, 516 and 381 nM, respectively).

ii. Compounds 8a–h, bearing no substituents on the phenyl residue of the benzoazole moiety (R^2= H), or small ones (R^2= CH3, Br) exhibited moderate inhibition of hCA IV (K_i = 762–984 nM). On the contrary, bulky substituents and/or endowed with strong electron-withdrawing effects (R^2= Ph, SO2NH2) led to weak inhibitors of this enzyme (8i, 8j), with inhibition constants within the low micromolar range (6265 and 3468 nM, respectively).

iii. The linker length (n = 3, 5, 6) did not have a profound influence on the inhibition activities. Thus, a comparison of derivatives 8a–c revealed a mild impairment on CA IV and IX inhibition and a moderate improvement on CA XII inhibition for the longest linker.

iv. Coumarin-benzoxazole hybrids behaved as selective inhibitors of tumour-associated hCAs IX and XII, with strong inhibitions (mid-nanomolar range) in most of the cases. In general, CA IX was more sensitive to the substitution pattern of the coumarin and the benzoxazole moieties.

v. Substitution on the coumarin moiety (R^2 position) with either a Me (8d) or a chlorine atom (8e) did not have a very appreciable influence. Nevertheless, incorporation of a Ph motif on R^1 (monosubstituted derivative 8f) led to a 3- and 5-fold impairment for the inhibition of CA IX and XII, respectively, compared to its Me-counterpart 8c.

vi. Substitution of the benzoxazole moiety (R^3) with CH3 and Br (derivatives 8g and 8h, respectively) was found to be detrimental for the activity against CA IX (6- and 11-fold decreased activity, submicromolar activities) when compared to their non-substituted counterpart 8b.

vii. Substitution of the benzoxazole moiety (R^3) with a Ph (8i) furnished strong inhibition of the tumour-associated CAs (K_i = 32.2 and 57.1 nM). The use of a sulfonamido motif in R^3, despite providing the strongest CA XII inhibitor of the series, led to an outstanding loss of selectivity, due to the inhibition also of the off-target enzyme in the submicromolar range.

Comparison with native 4-methylumbelliferone 3a (hCAI, hCAII > 100 µM; hCA IX 560 nM; hCA XII 8100 nM) revealed the outstanding increase in activity achieved with the hybrids reported herein (up to 16.9-fold for CA IX and up to 160.1-fold for CA XII).

3.2.2. Antiproliferative activity

The coumarin-benzoxazole hybrids were also tested as antiproliferative agents against a panel of six human solid tumour cell lines (Table 2): A549 (non-small cell lung), HBL-100 (breast), HeLa...
Table 2. GI50 values (μM) for the antiproliferative activity of derivatives 8a–j.

Compound	AS49 (Lung)	HBL-100 (Breast)	HeLa (Cervix)	SW1573 (Lung)	T-47D (Breast)	WiDr (Colon)	BJ-hTert
8a (R1 = CH3, R2 = R3 = H, n = 3)	32 ± 1	41 ± 5	30 ± 2	29 ± 4	33 ± 3	37 ± 4	>50
8b (R1 = CH3, R2 = R3 = H, n = 5)	15 ± 6	49 ± 6	39 ± 1	33 ± 4	38 ± 10	33 ± 1	>100
8c (R1 = CH3, R2 = R3 = H, n = 6)	8.3 ± 1.6	>100	96 ± 7	>100	>100	>100	>100
8d (R1 = R2 = CH3, R3 = H, n = 6)	15 ± 3	53 ± 14	29 ± 8	20 ± 3	>100	>100	>100
8e (R1 = CH3, R2 = Cl, R3 = H, n = 6)	2.6 ± 0.5	5.1 ± 1.4	3.9 ± 0.7	3.1 ± 0.5	4.3 ± 0.1	4.2 ± 0.5	>100
8f (R1 = Ph, R2 = R3 = H, n = 6)	>100	>100	>100	>100	>100	>100	>100
8g (R1 = R2 = CH3, R3 = H, n = 5)	>100	>100	>100	>100	>100	>100	>100
8h (R1 = CH3, R2 = H, R3 = Br, n = 5)	6.5 ± 3.1	23 ± 5	16 ± 1	14 ± 1	32 ± 7	29 ± 1	>100
8i (R1 = CH3, R2 = H, R3 = Ph, n = 5)	41 ± 20	30 ± 9	28 ± 13	60 ± 4	>100	78 ± 38	25 ± 6
8j (R1 = CH3, R2 = H, R3 = SONH2, n = 5)	13 ± 3	27 ± 8	21 ± 7	29 ± 8	34 ± 8	29 ± 9	>100
5-Fluorouracil	2.2 ± 0.3	4.4 ± 0.7	16 ± 5	3.3 ± 12	43 ± 16	49 ± 7	5.5 ± 0.5
CDDP	4.9 ± 0.2	1.9 ± 0.2	1.8 ± 0.5	2.7 ± 0.4	17 ± 3	26 ± 4	14 ± 2

Bold values emphasize the most active compounds.

Scheme 4. The mechanism for the inhibition of CAs by coumarins.

(cervix), SW1573 (non-small cell lung) as examples of drug-sensitive lines, and T-47D (breast) and WiDr (colon) as multidrug-resistant lines. A non-tumour cell line (BJ-hTert, human fibroblasts) was also used for analysing the selectivity. Chemotherapeutic agents 5-fluorouracil (5-FU) and cisplatin (CDDP) were included in the study as drug references.

The following structure-activity relationships could be established:

i. Substitution patterns had a deeper impact than in the inhibition assay.

ii. The order in potency as antiproliferative agents, considering substitution on the benzoxazole moiety (R3) was: 8h > 8j > 8b > 8i > 8g (Br > SO2NH2 > H > Ph > CH3). Unexpectedly incorporation of a Me moiety (8g) completely abolished activity against all cell lines.

iii. Regarding substitution on the coumarin moiety, the use of a bulky substituent (R3 = Ph, 8f) completely abolished activity against all cell lines.

iv. Disubstitution with a second Me group (R1 = R2 = Me, 8d) led to a clear impairment of activity against the multidrug-resistant cell lines in comparison with the monosubstituted counterpart (8c).

v. Disubstitution with a chlorine atom (R1 = Me, R2 = Cl) led to the strongest compound in the series (8e), with activities in the low micromolar range for all cell lines (GI50 = 2.6–5.1 μM); a remarkably increased activity was found for the multidrug-resistant cell lines compared to the chemotherapeutic agents included in the assay (up to 11.7-fold compared to 5-FU and up to 6.2-fold compared to CDDP).

vi. An increase in the tether length (compounds 8a–c) provoked a strong impairment of activity; for line AS49 this situation was completely reversed, leading to a strong anti-proliferative activity for compound 8c (GI50 = 8.3 μM), the one with the longest linker.

vii. Regarding selectivity, most of the tested compounds lacked significant activity (GI50 > 100 μM, derivatives 8b,c,e–h,j) against BJ-hTert cell line. Derivatives 8a and 8d exhibited weak activity against the non-tumour cell line; moreover, benzoxazole 8i (R1 = Me, R2 = Cl) was a moderate antiproliferative agent against it, and thus the one with the poorest selectivity.

viii. Selectivity ranges of the lead compound of the series (8e, R1 = Me, R2 = Cl, > 19.6 – 38.5) clearly exceeded those found for the chemotherapeutic agents 5-FU (0.1–2.5) and CDDP (0.5–7.8).

3.3.3. Docking studies

In order to get a deeper insight into the inhibition mechanism exerted by coumarin-benzoxazoles hybrids, compounds reported herein were subjected to docking studies with CAs IX and XII.

As aforementioned, CAs can also exert an esterase activity; the water molecule coordinated to the Zn2+ ion is activated by the metal, thus allowing it to act as a strong nucleophile56. Upon hydrolysis of the lactone functionality39, the corresponding 2-hydroxycinnamic acid might be isomerised to the most stable E-configuration, depending on the sterical hindrance of the substituents on the coumarin core (Scheme 4).
Docking interaction energies of coumarin-benzoxazole hybrids 8i (kcal/mol)

	CA IX	CA XII	CA XI	CA XII
Closed	−6.6	−7.5	−8.3	−9.9
Open				

Figure 2. Predicted binding modes of the closed-form (a) and open form (b) of 8i and CA IX.

Figure 3. Predicted binding modes of the closed-form (a) and open form (b) of 8i and CA XII.

Table 3. Such data are in agreement with previous reports that suggest the strongest interaction (lower docking interaction energies) of the hydrolysed structure with CAs IX and XII.

Docking calculations of compound 8i (closed form) complexed with CA IX showed H-arene interactions between Thr200 and the phenyl ring of the benzoxazole scaffold. Furthermore, van der Waals interactions with residues Asn65, Gly67, Gln92, His94, His96, Val121, Val130, Leu134, Val142, Thr201, and Pro203 were also observed. Interestingly, the open form of 8i-CA IX complex revealed coordination of the carboxylate moiety with the Zn$^{2+}$ ion of the catalytic site. This was also recently observed in molecular modelling of the interaction of psoralen derivatives and CAs.

A similar situation was found for the predicted interaction between 8i and CA XII (Figure 3). In this case, π-π interactions between the closed-form of 8i and His91 were detected. Furthermore, 8i establishes van der Waals interactions with the residues Gln71, Gln92, His94, His96, Val121, Leu199, Thr5200, Thr201, and Trp210 were also found.

Figure 2 shows the poses of both forms binding to CA IX, indicating a completely different orientation in both cases; while in the closed-form the benzoxazole moiety is directed towards the enzyme cleft (Figure 2(a)), the situation is reversed in the open form (Figure 2(b)), presumably due to the establishment of the strong ionic interaction between the deprotonated form of the cinnamic acid residue at physiological pH, and the Zn$^{2+}$ cation.
residues Asn64, Gln89, His93, His117, Val119, Ala129, Ser133, Leu139, Leu197, and Thr198. Docking calculations for the complexation of the open form of 8i with CA XII also revealed coordination of the carboxylate moiety and the Zn$^{2+}$ ion. Additionally, it established van der Waals interactions with residues Gln89, His93, Gln104, His117, Val119, Ala129, Ser133, Leu139, Val141, Thr198, and Thr199. In this case, unlike CA IX in both structures, the coumarin scaffold is predicted to be directed to the enzyme cleft.

4. Conclusions

In conclusion, we herein report an unprecedented family of coumarin-2-aminobenzoxazole hybrids as selective inhibitors of tumour-associated hCas IX and XII. Substituents on the coumarin and benzoxazole scaffolds, as well as the length of the tether connecting both of them, have been modified to obtain valuable structure-activity relationships. These compounds were accessed starting from substituted umbelliferones in a 6-step synthetic approach: monoalkylation on C-7 position with z-dibromoalkanes, nucleophilic displacement with Na$_2$S$_2$O$_4$, hydrogenolysis, conversion of the terminal amino moiety into an isothiocyanate, coupling with o-aminophenols and intramolecular H$_2$O$_2$/tetrabutylammonium iodide (TBAI)-promoted cyclosulfurization of the transient thiourea. CA inhibition studies revealed that most of title compounds behaved as strong and selective inhibitors of Cas IX and XII, with inhibition constants within the mid-nanomolar range. Coumarin-benzoxazole hybrids exhibited variable in vitro antiproliferative properties against a panel of human tumour cell lines, strongly dependent on the structural pattern. The lead compound (8e) exhibited IC_{50} values within the low micromolar range, with remarkable selectivities that exceeded the ones found for the control drugs. Therefore, the family of compounds described herein constitutes a promising start point for the future development of CA inhibitors as antiproliferative agents.

Acknowledgements

We thank the Spanish MICINN (PID2020-116460RB-100, PGC2018-094503-B-C22), the Junta de Andalucía (FQM134), the Gobierno de Canarias (PProD2020010101, ACISI/FEDE, UE), the Mexican CONACYT (CB-2015/257465) and the Italian Ministry for Education and Science (MIUR), grant PRIN rot. 2017XYBP2R for financial support. M.X.F. thanks Cabildo de Tenerife for a “Agustín de Betancourt” contract and Program FDCAN from Gobierno de Canarias. A.F.-A. thanks the CONACYT (Mexico) for the award of a fellowship. A.P. thanks the EU Social Fund (FSE) and the Canary Islands ACISI for a predoctoral grant TESIS202001005. We would also like to thank the Servicio de Resonancia Magnética Nuclear, CITIUS (University of Seville) for the performance of NMR experiments.

Disclosure statement

CT Supuran is Editor-in-Chief of the Journal of Enzyme Inhibition and Medicinal Chemistry and he was not involved in the assessment, peer review or decision-making process of this paper. The authors have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

ORCID

Alessio Nocentini http://orcid.org/0000-0003-3342-702X
Claudiu T. Supuran http://orcid.org/0000-0003-4262-0323

References

1. Angeli A, Carta F, Supuran CT. Carbonic anhydrases: versatile and useful biocatalysts in chemistry and biochemistry. Catalyst 2020;10:1008.
2. a) Jensen EL, Clement R, Kosta A, et al. A new widespread subclass of carbonic anhydrate in marine phytoplankton. Isme J 2019;13:2094–106.b) Nocentini A, Supuran CT, Capasso C. An overview on the recently discovered iota-carbonic anhydrases. J Enzyme Inhib Med Chem 2021;36:1988–95.
3. Kurt BZ, Dag A, Doğan B, et al. Synthesis, biological activity and multiscale molecular modeling studies of bis-coumarins as selective carbonic anhydrase IX and XII inhibitors with effective cytotoxicity against hepatocellular carcinoma. Bioorg Chem 2019;87:838–50.
4. Aspatwar A, Tolvanen MEE, Parkkila S. An update on carbonic anhydrase-related proteins VII, X and XI. J Enzyme Inhib Med Chem 2013;28:1129–42.
5. Geers C, Gros G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev 2000;80:681–715.
6. Lee D, Hong JH. The fundamental role of bicarbonate transporters and associated carbonic anhydrase enzymes in maintaining ion and pH homeostasis in non-secretory organs. Int J Mol Sci 2020;21:3393.
7. a) Henry RP. Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Physiol 1996;58:523–38.b) Supuran Novel carbonic anhydrase inhibitors. Future Med Chem 2021;13:1935–7.
8. Fabrizi F, Mincione F, Somma T, et al. A new approach to antiglaucoma drugs: carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. J Enzyme Inhib Med Chem 2012;27:138–47.
9. Aggarwal M, Kondeti B, McKenna R. Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat 2013;23:717–24.
10. Nocentini A, Alterio V, Bua S, et al. Phenyl(thio)phosphon(amide)ate benzenesulphonamides as potent and selective inhibitors of human carbonic anhydrases II and VII counteract allodynia in a mouse model of oxaliplatin-induced neuropathy. J Med Chem 2020;63:5185–200.
11. Di Cesare Mannelli L, Micheli L, Carta F, et al. Carbonic anhydrase inhibition for the management of cerebral ischemia: in vivo evaluation of sulfonamide and coumarin inhibitors. J Enzyme Inhib Med Chem 2016;31:894–9.
12. Costa G, Carta F, Ambrosio FA, et al. A computer-assisted discovery of novel potent anti-obesity compounds as selective carbonic anhydrase VA inhibitors. Eur J Med Chem 2019;181:111565.
13. Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77.
31. Supuran CT. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin Ther Pat 2018;28:709–12. b) Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond) 2021;135:1233–49.

32. Liu H, Xia DG, Chu ZW, et al. Novel coumarin-thiazolyl ester derivatives as potential DNA gyrase inhibitors: design, synthesis, and antibacterial activity. Bioorg Chem 2020;100:103907.
50. Lake BG, Evans JG, Lewis DFV, Price RJ. Studies on the acute effects of coumarin and some coumarin derivatives in the rat. Food Chem Toxicol 1994;32:357–63.

51. Yadav VK, Srivastava VP, Yadav LDS. Iodide catalyzed synthesis of 2-aminobenzoxazoles via oxidative cyclodesulfurization of phenolic thioureas with hydrogen peroxide. Tetrahedron Lett 2018;59:252–5.

52. Swain B, Angeli A, Angapelly S, et al. Synthesis of a new series of 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides as carbonic anhydrase I, II, IV and IX inhibitors. J Enzyme Inhib Med Chem 2019;34:1199–209.

53. a) Briganti F, Pierattelli R, Scozzafava A, Supuran CT, Carbonic anhydrase inhibitors. Part 37. Novel classes of carbonic anhydrase inhibitors and their interaction with the native and cobalt-substituted enzyme: kinetic and spectroscopic investigations. Eur J Med Chem 1996; 31:3. 1001–10. b) Innocenti A, Gülçin I, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Antioxidant polyphenols effectively inhibit mammalian isoforms I-XV. Bioorg Med Chem Lett 2010; 20:5050–3.

54. Bua S, Lucarini L, Micheli L, et al. Bioisosteric development of multitarget nonsteroidal anti-inflammatory drug-carbonic anhydrases inhibitor hybrids for the management of rheumatoid arthritis. J Med Chem 2020;63:2325–42.

55. Touisni N, Maresca A, McDonald PC, et al. Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. J Med Chem 2011;54: 8271–7.

56. Mancuso F, De Luca L, Angeli A, et al. Synthesis, computational studies and assessment of in vitro inhibitory activity of umbelliferon-based compounds against tumour-associated carbonic anhydrase isoforms IX and XII. J Enzyme Inhib Med Chem 2020;35:1442–9.

57. Meleddu R, Deplano S, Maccioni E, et al. Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives. J Enzyme Inhib Med Chem 2021;36:685–92.