The Plant Invertase/Pectin Methylesterase Inhibitor Superfamily

Daniele Coculo and Vincenzo Lionetti*

Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, Rome, Italy

Invertases (INVs) and pectin methylesterases (PMEs) are essential enzymes coordinating carbohydrate metabolism, stress responses, and sugar signaling. INVs catalyzes the cleavage of sucrose into glucose and fructose, exerting a pivotal role in sucrose metabolism, cellulose biosynthesis, nitrogen uptake, reactive oxygen species scavenging as well as osmotic stress adaptation. PMEs exert a dynamic control of pectin methylesterification to manage cell adhesion, cell wall porosity, and elasticity, as well as perception and signaling of stresses. INV and PME activities can be regulated by specific proteinaceous inhibitors, named INV inhibitors (INVIs) and PME Inhibitors (PMEIs). Despite targeting different enzymes, INVIs and PMEIs belong to the same large protein family named “Plant Invertase/Pectin Methylesterase Inhibitor Superfamily.” INVIs and PMEIs, while showing a low aa sequence identity, they share several structural properties. The two inhibitors showed mainly alpha-helices in their secondary structure and both form a non-covalent 1:1 complex with their enzymatic counterpart. Some PMEI members are organized in a gene cluster with specific PMEs. Although the most important physiological information was obtained in Arabidopsis thaliana, there are now several characterized INVIs/PMEIs in different plant species. This review provides an integrated and updated overview of this fascinating superfamily, from the specific activity of characterized isoforms to their specific functions in plant physiology. We also highlight INVIs/PMEIs as biotechnological tools to control different aspects of plant growth and defense. Some isoforms are discussed in view of their potential applications to improve industrial processes. A review of the nomenclature of some isoforms is carried out to eliminate confusion about the identity and the names of some INVIs/PMEI member. Open questions, shortcoming, and opportunities for future research are also presented.

Keywords: pectin methylesterase inhibitors, invertase inhibitors, sucrose metabolism, CW integrity, degree of methylesterification, plant growth and defence, biotechnological applications

INTRODUCTION

Plant Invertase/Pectin Methyl Esterase Inhibitors (INV/PMEIs; PF04043)\(^1\) belong to a large protein superfamily acting in the tight post-transcriptional regulation of Invertases (INVs) and Pectin methylesterases (PMEs), two classes of enzymes with distinct enzymatic activities in carbohydrate metabolism (Figure 1; Gough et al., 2001). INVIs/PMEIs are highly represented

\(^1\)http://pfam.xfam.org/family/PF04043
in different plant species (Table 1). Plant INVs (also known as β-fructosidases), convert the sucrose into its building blocks, fructose and glucose, central molecules for carbohydrate translocation, metabolism, and sensing in higher plants (Figure 1B; Roitsch and González, 2004). INVs play different roles in organ development, carbohydrate partitioning, sugar signaling, and response to biotic and abiotic stresses (Ruan et al., 2010; Tazzin and Giardina, 2014; Liao et al., 2020). Acid INVs and neutral/alkaline INVs were identified, showing different pH optima and subcellular compartments. The Acid INVs, belonging to gH32 (glycoside hydrolase family 32), shows an optimum pH of 3.5–5.0 and can be divided in cell wall (CW) and vacuolar (V) INVs. Neutral/alkaline INVs show an optimum pH of 6.8–9.0, belong to gH100, and appear to be localized to the cytosol, mitochondrion, plastids, and nucleus. The INV activity can be post-transcriptionally controlled by INV Inhibitor (INVI; Figures 1A, 2A,B, 3). Based on the subcellular site where their activity is exerted, CW- and V-INVI (previously named also Inhibitor of β-Fructosidase; C/VIFs) can be distinguished (Rausch and Greiner, 2004; Figure 3).

The first INVI was described more than 40 years ago in potato plants (Solanum tuberosum; Pressey, 1966). Although INVs have been reported for various plant species, little is known about their roles in plant physiology (Bate et al., 2004; Raiola et al., 2010). Acid INVs and neutral/alkaline INVs were identified, showing different pH optima and subcellular compartments. The Acid INVs, belonging to gH32 (glycoside hydrolase family 32), shows an optimum pH of 3.5–5.0 and can be divided in cell wall (CW) and vacuolar (V) INVs. Neutral/alkaline INVs show an optimum pH of 6.8–9.0, belong to gH100, and appear to be localized to the cytosol, mitochondrion, plastids, and nucleus. The INV activity can be post-transcriptionally controlled by INV Inhibitor (INVI; Figures 1A, 2A,B, 3). Based on the subcellular site where their activity is exerted, CW- and V-INVI (previously named also Inhibitor of β-Fructosidase; C/VIFs) can be distinguished (Rausch and Greiner, 2004; Figure 3).

The first INVI was described more than 40 years ago in potato plants (Solanum tuberosum; Pressey, 1966). Although INVs have been reported for various plant species, little is known about their roles in plant physiology (Bate et al., 2004; Raiola et al., 2010; Tazzin and Giardina, 2014; Liao et al., 2020). Acid INVs and neutral/alkaline INVs were identified, showing different pH optima and subcellular compartments. The Acid INVs, belonging to gH32 (glycoside hydrolase family 32), shows an optimum pH of 3.5–5.0 and can be divided in cell wall (CW) and vacuolar (V) INVs. Neutral/alkaline INVs show an optimum pH of 6.8–9.0, belong to gH100, and appear to be localized to the cytosol, mitochondrion, plastids, and nucleus. The INV activity can be post-transcriptionally controlled by INV Inhibitor (INVI; Figures 1A, 2A,B, 3). Based on the subcellular site where their activity is exerted, CW- and V-INVI (previously named also Inhibitor of β-Fructosidase; C/VIFs) can be distinguished (Rausch and Greiner, 2004; Figure 3).
et al., 2004; Reca et al., 2008; Zhang et al., 2010; Lionetti et al., 2015b).

A member of INVI/PMEI family can be classified as PME Inhibitor (PMEI) if it is able to inhibit a PME activity (Figures 1A–C, 2C,D, 4). The first PMEI, named AcPMEI, was discovered in ripe fruit of kiwi (Actinidia chinensis; Balestrieri et al., 1990). PMEs (CE8, Carbohydrate Esterase) catalyze the de-methylesterification of pectin, releasing free carboxyl ester groups, protons, and methanol (Figure 1C). PMEs are encoded by large multigene families in many plant species (Pelloux et al., 2005; Harholt et al., 2007). Until now, these enzymes were linked to the modulation of the degree and pattern of methylesterification of homogalacturonan (HG), the major component of pectin secreted in a highly methylesterified form to the CW (Figure 4). The degree of methylesterification constitutes an important factor influencing stiffness and hydration status of the pectic matrix (Catoire et al., 1998; Willats et al., 2001). The current knowledge on the mode of de-methylesterification of the single plant PME isoforms remains scarce. The existence of different methylester distributions on HG in vivo suggests the involvement of multiple PME isoforms with different action patterns. A blockwise de-methylesterification results in the production of adjacent free galacturonic acid units that can form calcium crosslinks between HG chains, known as “egg-box” structures, resulting in pectin stiffening (Limberg et al., 2000; Wu et al., 2018). Instead, the random de-methylesterification results in the removal of one methylester group at a time from various non-contiguous residues on the HG chains exposing the polymer to the activity of pectinolytic enzymes (Limberg et al., 2000). While this latter mechanism has been demonstrated for PMEs of microbial origin, plant PMEs with a random de-methylesterification have not been identified so far. PME isoforms finely tune the degree and pattern of methylesterification during multiple developmental processes, such as stomata function (Amsbury et al., 2016; Huang et al., 2017), cell adhesion (Lionetti et al., 2014; Daher and Braybrook, 2015), organ development, and phyllotactic patterning (Peaucelle et al., 2011b; Senechal et al., 2014). Plant PMEs also play a critical role in multiple plant–microbe interactions and stress responses (Lionetti et al., 2012). An immunity triggered PME activity, driven by specific PME isoforms, is exploited against pathogens (Bethke et al., 2014; Del Corpo et al., 2020). This activity is triggered to modulate pectin methylesterification in Arabidopsis thaliana against fungi, such as Botrytis cinerea and Alternaria brassicicola, bacteria, such as Pseudomonas syringae, and viruses like turnip vein clearing virus (TVCV; Bethke et al., 2014; Lionetti et al., 2014b, 2015a, 2017). Moreover, PME activity and pectin methylesterification status play important roles during plant resistance to abiotic stresses (Wu et al., 2018).

A PMEI can be transcribed independently or in pairs with a Type I PME as one polycistronic messenger RNA which resembles an operon-like gene cluster (Figure 1A; Boycheva et al., 2014). In these PMEI-PMEs clusters, PMEI region (also referred to as PRO region, PRO domain, or PMEI-like region) resembles an operon-like gene cluster (Figure 1A; Boycheva et al., 2014). Different evidence indicates that in these clusters, PMEI domain acts as an intramolecular inhibitor of PME enzymatic activity (Bosch et al., 2005; Wolf et al., 2009; Del Corpo et al., 2020). Other works indicate that PMEI domain can be required for the targeting of PMEs toward the CW (Wolf et al., 2009) or that it could work as intramolecular chaperone in the regulation of PME activity.

TABLE 1 | INVI/PMEIs assignments in different plant species genomes.

Species	Common name	Number of proteins
Actinidia chinensis	Hongyang	109
Aeglops tauschii		94
Amborella trichopoda		40
Aquilegia coerulea		63
Arabidopsis lyrata	Lyrate rockcress	132
Arabidopsis thaliana	Thale cress	125
Brachypodium distachyon	Stiff brome	60
Brassica rapa	Field mustard	167
Capsella rubella		130
Carica papaya	Papaya	54
Citrus clementina		75
Citrus sinensis	Sweet orange	78
Cucumis sativus	Cucumber	62
Eucalyptus grandis	Rose gum	46
Fragaria vesca	Wild strawberry	82
Glycine max	Soybean	163
Gossypium raimondii		152
Hordeum vulgare	Domesticated barley	68
Linum usitatissimum	Flax	160
Lotus japonicus		69
Malus domestica	Apple	144
Manihot esculenta	Cassava	100
Medicago truncatula	Barrel medic	171
Mimus guttatus	Spotted monkey flower	115
Musa acuminata	Wild Malaysian banana	58
Musa balbisiana	Balbis banana	88
Nicotiana benthamiana		160
Oryza sativa	Rice	81
Panicum virgatum	Switchgrass	131
Phaseolus vulgaris	French bean	104
Phoenix dactylifera	Date palm	13
Physcomitrella patens		12
Picea abies	Norway spruce	53
Picea sitchensis	Sitka spruce	5
Pinus taeda	Lobolly pine	82
Populus trichocarpa	Black cottonwood	118
Prunus persica	Peach	70
Ricianus communis	Castor bean	71
Selaginella moellendorffii		13
Sestaria italica	Foxtail millet	67
Solanum lycopersicum	Tomato	86
Solanum pimpinellfolium	Currant tomato	86
Solanum tuberosum	Potato	113
Sorghum bicolor	Sorghum	73
Thellungiella halophila		105
Theobroma cacao	Cacao	72
Triticum aestivum	Bread wheat	95
Triticum urartu		85
Vitis vinifera	Wine grape	21
Zea mays	Maize	76
Zea mays		79

Source: https://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/index.html

Frontiers in Plant Science | www.frontiersin.org 3 March 2022 | Volume 13 | Article 863892
of PME folding (Micheli, 2001). Further investigation is needed to understand the subcellular action of both independent and PME-clustered PMEIs.

Gene structure and sequence analyses show that the origin of the independently expressed PMEIs may be derived from the neofunctionalization of the PMEI domain from the PMEI-PME genes (Wang et al., 2013). PMEI-PME clusters evolved during the divergence of moss from charophytes, while independent PMEIs appear later in land plants. The physiological reasons which prompted plants to initially evolve a coordinated expression of the enzyme with its inhibitor counterpart and, later, to involve also a PME inhibition using independent PMEIs, deserves further investigation. Most likely, both PMEI-PME clusters and independent PMEIs were fundamental factors finely tuning the pectin methyl-esterification in the CW remodeling that emerged as necessary in land plants. The existence of specific pairs between PMEIs and PMEs has been hypothesized based on data obtained in vitro (Table 2). A single PMEI can inhibit multiple plant PMEs and the PMEI characterized up to now are unable to inhibit microbial PMEs (Lionetti, 2015; Lionetti et al., 2015b). The bacterial enzymes show much longer turns that protrude out of the β-helix making its putative active site cleft deeper and narrower than that of plant PMEs, a feature that could prevent the approach of the inhibitor to the active site of the enzyme (D’Avino et al., 2003).

From a structural point of view, PMEIs and INVIs, despite having a low aa sequence identity (20–30%), they share several structural properties. The three-dimensional structures of AtPMEI1 from Arabidopsis and of a CW-INVI from tobacco (Nicotiana tabacum; NtCIF) were elucidated (Hothorn et al., 2004a,b; Figures 2A,C). Both fold in a four-helix bundle structure preceded by an N-terminal extension thought to play an important role during the enzymatic inhibition. Both inhibitors hold four conserved cysteine residues typically engaged in the formation of two disulfide bridges, important to stabilize both two α helices of the hairpin loop and two α helices of the four-helical bundle structure. The structure of AtPMEI1 (Figure 2C) is composed of a four-helix bundle that arranges the helical components in an up-down–up-down topology with disulfide bridges. The N-terminal region, composed of two
short and distorted helices, extends outside the central domain, forming a hairpin. The orientation of this hairpin allows the extensive contacts with the α-hairpin of a neighboring molecule forming an active dimer in solution. The N-terminal region of AtPMEI1 was proposed to be crucial for the interaction with a PME from Carrot (*Daucus carota*; Hothorn et al., 2004b). Although this model does not fit with the crystallographic data regarding the complex between AcPMEI and SlPME-1 of tomato (*Solanum lycopersicum*; Figure 2D; Di Matteo et al., 2005), where the N-terminal region of AcPMEI does not establish contact with PME, it cannot be excluded that the two inhibitors use different modes of interaction. AcPMEI interacts with PME at the level of the active site by forming a stoichiometric 1:1 complex in which the inhibitor covers the shallow cleft of the enzyme where the putative active site is located (Di Matteo et al., 2005; Ciardiello et al., 2008). The four-helix bundle of AcPMEI packs roughly perpendicular to the parallel β-helix of SlPME-1, and three of these helices (and not an helix of the N-terminal extension as proposed for AtPMEI1) interact with SlPME-1 in proximity of the putative active site (Di Matteo et al., 2005). The crystal structure of the complex between the AtCWINV-1 from Arabidopsis and the NtCIF was also elucidated (Figures 2A,B; Hothorn et al., 2010). The structure revealed that the four-helix bundle of NtCIF binds primarily in the substrate-binding cleft of the five-bladed β-propeller module of invertase. PME and INV activities and their complexes with their respective inhibitors are pH sensitive (Hothorn et al., 2010; Bonavita et al., 2016; Hocq et al., 2017b). There is no information available on the three-dimensional structure of PMEI-PME clusters.
Table 2: Arabidopsis INVI-PMEI independent protein isoforms.

Gene ID	AGI code	Symbol	Possible interactor	Function	Literature
1	837879	At1g02550	AICW-INVI1, AIC-VIF1	Plant stresses, Seed germination, Root length, Plant-pathogen interaction, Salt susceptibility	Coolen et al., 2019
2	837458	At1g09360			
3	837459	At1g09370			
4	837620	At1g10770			
5	6240451	At1g11362			
6	7922417	At1g11593			
7	838054	At1g14890			
8	838929	At1g23205			
9	838944	At1g23350			
10	641214	At1g47960	AIPME11		
11	841219	At1g48010	AIPMEII	Plant growth, Pavement cells morphogenesis, Plant-pathogen interaction	Wolf et al., 2003; Raiola et al., 2004; Lionetti et al., 2007; Lin et al., 2021
12	841220	At1g48020	AIPMEI1, AIPMEI-PME17, AIPMEI-PME3, AIPMEI-PME16		
13	6240492	At1g50025			
14	841456	At1g50340			
15	841904	At1g54620			
16	841939	At1g54780			
17	842026	At1g55770			
18	842062	At1g56100	AIPME14	Mucilage release	Shi et al., 2018; Ding et al., 2021
19	842117	At1g56620	AIPME16	Mucilage release	Shi et al., 2018; Ding et al., 2021
20	842370	At1g60760	AIPMEI10	Salt susceptibility, Plant-pathogen interaction	Jithesh et al., 2012; Lionetti et al., 2017
21	842574	At1g62760			
22	842576	At1g62770	AIPMEI9	Mucilage release	Sorek et al., 2015; Hocq et al., 2017b
23	843391	At1g70540	EDA24	Mucilage release	Sorek et al., 2015; Hocq et al., 2017b
24	843409	At1g70720			
25	814680	At2g16100			
26	815562	At2g10900			
27	816026	At2g15345			
28	3784345	At2g31425			
29	817701	At2g31430	AIPMEB1	Seed germination, Seedling emergence, Plant growth	Wolf et al., 2012; Müller et al., 2013; Jonsson et al., 2021
30	6241279	At2g31432			
31	819319	At2g47050			
32	819347	At2g47340			
33	819380	At2g47670	AIPME8	Mucilage release	Saez-Aguayo et al., 2013
34	3788886	At3g35741	AIPME15	Mucilage release	Shi et al., 2018; Ding et al., 2021
35	820471	At3g12880	AIPMEI11	CW integrity, Root growth	Sorek et al., 2015, p. 16
36	820670	At3g17130	AtPMEB1	CW integrity, Root growth	Sorek et al., 2015, p. 16
37	820971	At3g17140			
38	820972	At3g17150			
39	5008004	At3g17152			
40	820981	At3g17220	AIPME12	Plant growth, Plant-pathogen interaction	Wolf et al., 2003; Raiola et al., 2004; Tian et al., 2006; Lionetti et al., 2007
41	820982	At3g17228	AIPME12	Plant-pathogen interaction	Lionetti et al., 2017
42	28719277	At3g17227			
43	820983	At3g17230			
44	6240965	At3g27999			
45	819850	At3g36659			
46	823882	At3g47380	AIPME11	Plant-pathogen interaction	Lionetti et al., 2017
47	823921	At3g47670			
48	824095	At3g49330			
49	824734	At3g56680			
50	825391	At3g62180			
51	825457	At3g62820			
52	828192	At4g00080	UNE11	Embryo sac	Pagnussat et al., 2005
53	7922364	At4g00872			
54	827589	At4g02250			
A PMEI or an INVI can hold specific features in their amino acid sequence (Figure 2E). PMEI has a conserved Threonine residue, previously demonstrated to strengthen the interaction with PME at the acidic apoplastic pH, a typical Serine, Alanine, Alanine (SAA) amino acid motif in α6 helix, and a C-terminal hydrophobic region of six amino acids involved in the stabilization of the four-helical bundle structure of the protein (Di Matteo et al., 2005). Instead, the amino acid motif Proline, Lysine, Phenylalanine (PKF) in α6 helix, as well as the contiguous Alanine and glutamic Acid (AE) residues are the sequence fingerprints highly conserved in INVIs and critical for INVI-INVI interaction. Both INVIs residues, important for the formation of the complex with INVIs, and the distortion of INVI α2 helix could be responsible for the lack of interaction between INVI and PME (Di Matteo et al., 2005). Unfortunately, these features do not always help to understand the identity of an isoform. For example, PKF motif is absent in AtC/VIF2 (Link et al., 2004).

THE ARABIDOPSIS INVI/PMEI SUPERFAMILY

Most of the knowledge on the role of INVI/PMEIs in plant physiology has so far been gained by studying A. thaliana, the annual dicotyledonous plant, served as a model for physiological studies in many laboratories. For this reason, this review will deal specifically with all Arabidopsis isoforms, integrating them with data obtained in other species. We identified in silico 125 INVI/PMEIs in Arabidopsis, 80 independent INVI/PMEIs, and 45 PMEI-PME clusters (Tables 1–3). Given the need to verify the type of inhibitory activity, the INVI-PMEIs members cannot be pre-numbered as for other families. The name of various members was assigned by the scientific community based on the chronological order they were characterized. However, confusion about the identity and the names of some INVI/PMEI member begins to appear in literature. For example, both PMEI and INVI functions have been proposed for the same AgI code, At5g46960, although named InvINH1, its INVI activity has never been demonstrated (Zuma et al., 2018). Instead, At5g46960 is the AtPMEI12, which possess the SAA amino acid motif and influences PME activity, the degree of pectin methylesterification, and the HG integrity in Arabidopsis during B. cinerea infection (Lionetti et al., 2017). Also, two different isoforms were named with the same name. This is the case of At4g15750 and At5g62360 isoforms both called AtPMEI13 by different authors (Chen et al., 2018; Shi et al., 2018; Silva-Sanzana et al., 2019). To avoid confusion and respecting the chronology of publications, we rename At5g46960 as AtPMEI12 (Link et al., 2004; Siemens et al., 2011).
TABLE 3 | Arabidopsis INVI-PMEI protein isoforms clustered with a PME.

Gene ID	AGI code	PME Symbol	New symbol	Function	Paper	
1	838078	At1g02810	AtPME7	AtPMEI-PME7	Probable pseudogene	Dedeurwaerder et al., 2008
2	837701	At1g11580	AtPME18; AtPME-PCRA	AtPMEI-PME18	Root growth, Plant-pathogen interaction	Micheli et al., 1998, p. 3; De-la-Peña et al., 2008; Lionetti et al., 2017; Stefanowicz et al., 2021
3	837702	At1g11590	AtPME19	AtPMEI-PME19	Stomatal function, Embryo development, Mucilage release	Levesque-Tremblay et al., 2015; Amsbury et al., 2016
4	838928	At1g32200	AtPME6	AtPMEI-PME6		
5	841820	At1g53380	AtPME2	AtPMEI-PME2	Callus formation	Xu et al., 2018
6	841821	At1g53840	AtPME1	AtPMEI-PME1		
7	817184	At2g26440	AtPME12	AtPMEI-PME12		
8	817185	At2g36540	No number	AtPMEI-PME66		
9	818907	At2g43050	AtPME16; AtPMEPCRD	AtPMEI-PME16		
10	819130	At2g65220	AtPME17	AtPMEI-PME17	Root growth, Plant-pathogen interaction	Senechal et al., 2014; Del Corpo et al., 2020
11	819317	At2g47030	AtPME4; VgDH1	AtPMEI-PME4	Pollen tube growth	Jiang et al., 2005
12	819318	At2g47040	AtPME5; VgD1	AtPMEI-PME5	Pollen tube growth	Jiang et al., 2005
13	819727	At3g05610	AtPME21	AtPMEI-PME21		
14	819728	At3g06520	AtPME22	AtPMEI-PME22		
15	819867	At3g06830	AtPME23	AtPMEI-PME23		
16	820240	At3g10710	AtPME24; RSH12	AtPMEI-PME24	Root hair development	Won et al., 2009; Cheong et al., 2019
17	820241	At3g10720	AtPME25	AtPMEI-PME25		
18	820650	At5g14300	AtPME28; AtPMEPCRC	AtPMEI-PME28	Seed germination, Root development, Pavement cells morphogenesis, Plant-pathogen interactions, Metal tolerance	Micheli et al., 1998; Hewezi et al., 2008; Raiola et al., 2011; Weber et al., 2013; Guénin et al., 2017; Lin et al., 2021
19	820651	At5g14310	AtPME3	AtPMEI-PME3	Beneficial bacterial recruitment, Plant-pathogen interaction	Lakshmanan et al., 2013; Zehra et al., 2021
20	822422	At5g27980	AtPME30	AtPMEI-PME30		
21	823402	At5g33270	AtPME32	AtPMEI-PME32		
22	823894	At5g47400	AtPME33	AtPMEI-PME33		
23	824083	At5g49220	AtPME34	AtPMEI-PME34		
24	825070	At5g59010	AtPME35	AtPMEI-PME35		
25	825244	At5g00730	No number	AtPMEI-PME65		
26	825390	At5g62170	AtPME37; VgDH2	AtPMEI-PME37	Pollen tube growth	Jiang et al., 2005
27	828218	At4g00190	PME38	AtPMEI-PME38	Probable pseudogene	Dedeurwaerder et al., 2008
28	827708	At4g02300	AtPME39	AtPMEI-PME39		
29	828067	At4g02320	AtPME40	AtPMEI-PME40		
30	828064	At4g02330	AtPME41; AtPMEPCRB	AtPMEI-PME41	Chilling tolerance	Qu et al., 2011
31	828573	At4g09930	AtPME42	AtPMEI-PME42		
32	827828	At4g15980	AtPME43	AtPMEI-PME43		
33	829458	At4g33220	AtPME44	AtPMEI-PME44		
34	829459	At4g33230	AtPME45	AtPMEI-PME45		
35	830378	At5g09460	AtPME46	AtPMEI-PME46		
36	830379	At5g09470	AtPME47	AtPMEI-PME47	Metal tolerance	Geng et al., 2017
37	830836	At5g09760	AtPME51	AtPMEI-PME51		
38	832209	At5g20860	AtPME54	AtPMEI-PME54		
39	832650	At5g27870	AtPME28	AtPMEI-PME28	Mucilage release	Turbant et al., 2016
40	834977	At5g81800	AtPME58	AtPMEI-PME58		
41	835223	At5g14900	AtPME59	AtPMEI-PME59		
42	835224	At5g15000	AtPME60	AtPMEI-PME60		
43	835418	At5g33370	AtPME61; AtPMEPCRB	AtPMEI-PME61		
44	836585	At5g64640	AtPME64	AtPMEI-PME64		

AtPMEI-PME17 isoform was considered an independent PMEI in different papers (Leyva-González et al., 2012; Takahashi et al., 2019). We propose to rename Type I PMEs, by adding the PMEI-tag in front of PME (PMEI-PMEs; Table 3) to allow the scientific community to immediately recognize a PMEI co-expressed with a PME. We will begin to discuss the findings on PMEIs, given the greater amount of data available compared to INVIs.
PME INHIBITORS

To date, 17 INV1/PMEI isoforms were already identified as independent PMEI in Arabidopsis, although only AtPMEI1, AtPMEI2, and AtPMEI7 were purified and their activities verified. The inhibitory activity of the PMEI region in the PMEI-PME cluster was demonstrated for AtPMEI-PME17 (Del Corpo et al., 2020). The remaining isoforms were considered PMEIs because their transgenic overexpression or mutation leads to an alteration of PME activity and/or of the pectin methylesterification, with consequences in different plant physiology processes (Figures 5, 6). From here on, considerations on the role of PMEI-PMEs will be understood as actions of the enzyme controlled by the inhibitor in the specific cluster.

PMEIs Assist Pollen Tube Growth During Fertilization and Embryogenesis

Pollen tube tip growth in the transmitting tract is crucial for reproductive success of plants. Pollen tube elongation is driven by secretion of pectic material and a gradient of degree of pectin methylesterification along the pollen tube axis provides the plasticity and rigidity requested for pollen tube growth (Parre and Geitmann, 2005). PME and PMEI can play multiple roles in this process in different species (Bosch and Hepler, 2005; Zhang et al., 2010; Rocchi et al., 2011). AtPMEI1 and AtPMEI2 transcripts are particularly expressed in flower tissues suggesting a role of these inhibitors during flower formation or during the reproductive process. Both proteins interact with, and inhibit in vitro, different PMEs indicating a large spectrum of recognition for the PMEIs (Table 2; Raiola et al., 2004; Lionetti et al., 2007; Röckel et al., 2008). An interesting role in the regulation of the dynamics of pectin metabolism in polar pollen cell growth was demonstrated for AtPMEI2 (Röckel et al., 2008). AtPMEI2 showed a polarized accumulation at the pollen tube apex favored by a local PMEI endocytosis at the flanks of the tip. By reducing blockwise de-methylesterification and Ca^{2+}-mediated pectin crosslinks, the localized AtPMEI2 accumulation at pollen tube apex favors CW extensibility and polar growth. Also, AtPMEI-PME5, AtPMEI-PME4, and AtPMEI-PME37 clusters are highly expressed during pollen tube growth (Jiang et al., 2005). A controlled AtPMEI-PME5 activity by PMEI domain could modulate pectin

FIGURE 5 | Overview of INVIs and PMEIs functions in plant growth and development. INVIs control seed germination, sugar transport in roots; senescence and sugar fruit content. PMEIs play multiple roles in several physiological processes, such as pollen tube elongation, seed mucilage extrusion, and modification, flowering transition, silique development, mechanical strength of stem, phyllostaxis, rhyzotaxis, pavement cells morphogenesis, hypocotyl growth in the dark, and root growth, and they are also involved in fruit development and ripening.
FIGURE 6 | Schematic representation of the involvement of INVI/PMEI members in plant-environment interactions. Plants face different pathogens and pests, such as bacteria, nematodes, fungi, viruses, and insects as well as multiple abiotic stresses. Different INVI/PMEI members have a pivotal role plant-microbe associations beneficial to the host plant like also during multiple plant-pathogen interactions. PMEIs and INVIs are also involved in plant responsiveness to different abiotic stresses and in heavy metal tolerance.

methylesterification of the transmitting tract cells to assist pollen tube movement toward the ovules.

The remodeling of pectin methylesterification play important roles in embryogenesis (Cruz-Valderrama et al., 2018; Pérez-Pérez et al., 2019). AtPMEI12 is expressed in the micropylar endosperm that surrounds the embryo and its prolonged expression suppressed embryo growth in Arabidopsis, most likely, by disturbing pectin methylesterification homeostasis (Zuma et al., 2018). AgL62 and FIS2 are required to regulate the expression of AtPMEI12 in the syncytial endosperm (Hoffmann et al., 2022). AtPMEI-PME6 is required for cell wall loosening in the embryo to facilitate cell expansion (Levesque-Tremblay et al., 2015).

PMEIs Regulate Pectin Extensibility During Emergence, Formation, and Growth of Different Organs

Precise spatiotemporal modifications of CW composition and structure are critical for cell expansion and shape (Somerville et al., 2004). Pectin remodeling underlie changes in CW elasticity in organ initiation and differentiation (Hocq et al., 2017a; Shin et al., 2021). The phyllotaxis in the Arabidopsis shoot apical meristem is accompanied by a pectic de-methylesterification in subepidermal tissue layers which is strictly controlled by AtPMEI3 (Peaucelle et al., 2008, 2011a). The AtPMEI3 overexpression in

Arabidopsis produced, throughout the meristem dome, a significant reduction of “egg-box” structures, the development of shorter cells, and loss of growth asymmetry leading to an altered primordia outgrowth. Also in rhizotaxis, AtPMEI3 expression, acting on pectin methylesterification, influences the functionality of the root clock for lateral root formation (Wachsman et al., 2020).

The jigsaw puzzle-shaped pavement cells of the leaf epidermis serve as an attractive model to investigate the mechanisms for cell–cell coordination of cell shapes (Yang, 2008). Pectin nanofilament expansion drives morphogenesis in plant epidermal cells (Haas et al., 2020). Plant overexpressing AtPMEI1 or AtPMEI3 showed defects in interdigitation and lobe formation in the pavement cells of the leaf epidermis indicating that the pectin methylesterification can influence plant cell morphogenesis (Haas et al., 2020; Lin et al., 2021). Auxin-induced callus formation is considered as a cell reprogramming process for in vitro regeneration of plants. Transgenic plants overexpressing AtPMEI-PME2 developed callus-like structures in the roots when grown on medium without exogenous auxin indicating that this cluster participates in the cell reprogramming during callus formation (Xu et al., 2018).

The Arabidopsis dark-grown hypocotyls and root growth were extensively used as models to study pectin modifications during organ elongation (Hocq et al., 2017b). The growth of hypocotyls in the dark is biphasic, with an initial slow and
synchronous growth and a subsequent growth acceleration that propagates rapidly from the base to the top of the hypocotyls. AtPMEI4 controls the timing of the growth acceleration modulating the PME activity and pectin de-methylesterification (Pelletier et al., 2010). \textit{AtPMEI4} overexpression showed an increased concentrations of methylesterified pectins and a delay of growth acceleration. AtPMEI7 was also detected in apoplastic proteins extracted from dark-grown hypocotyl although its role in this process remain to be demonstrated (Sénéchal et al., 2015).

Modulation of PMEIs expression can have different effects on root and root hair growth. A decrease in PME activity correlated with an increased root length in \textit{atpmei-pme17} mutants and in plant overexpressing \textit{AtPMEI11}, \textit{AtPMEI2}, or \textit{AtPMEI9} compared to controls (Lionetti et al., 2007, 2010; Wolf et al., 2012; Senechal et al., 2014, p. 17; Hocq et al., 2017b). On the contrary, a \textit{pmei4} mutant and a \textit{AtPMEI-PME3} overexpressor, both expressing an elevated PAME activity in Arabidopsis root CWs, showed an increased root length (Hewezi et al., 2008; Senechal et al., 2015). Specific PMEI-PME interactions and their regulation could underlie the contrasting root phenotypes observed in the transgenic plants. AtPMEI1 can inhibit the \textit{AtPMEI-PME17} activity \textit{in vitro} (Del Corpo et al., 2020). AtPMEI7 expressed in \textit{Escherichia coli} can form \textit{in vitro} a pH-dependent reversible complex with AtPMEI-PME3 (Sénéchal et al., 2017). Indirect evidence indicates that AtPMEI4/AtPMEI-PME17, AtPMEI4/AtPMEI-PME3 and AtPMEI9/AtPMEI-PME3 interactions are likely to occur \textit{in vivo} (Senechal et al., 2015; Hocq et al., 2017b). The inhibition capacity of AtPMEI4 was predicted to be highly pH-dependent, for the presence of key protonatable amino acids interacting with AtPMEI-PME3. \textit{AtPMEI5} overexpression in Arabidopsis caused root waiving in seedlings and strong defects in adult plants like fusion of cauline leaf and shoot as well as strongly impaired silique development (Wolf et al., 2012; Müller et al., 2013). These effects were related to brassinosteroids as part of a compensatory response against the loss of CW integrity, triggered by an imbalance in pectin methylesterification. Moreover, the AtPMEI5 overexpressers germinate earlier and faster compared to control suggesting that pectin methylesterification is essential for the temporal regulation of radicle emergence in endospermic seeds by altering the mechanical properties of the CWs (Müller et al., 2013). Interestingly, \textit{AtPMEI5} overexpression also revealed a correlation between HG methylesterification and auxin distribution in cell elongation that induce hypocotyl bending required for seedling emergence (Jonsson et al., 2021). AtPMEI8 and AtPMEI9 were identified during a suppressor screen for genetic suppressors of \textit{cobra}, an Arabidopsis mutant with a reduced root length associated to defects in cellulose formation and an increased ratio of unesterified/esterified pectin (Sorek et al., 2015). \textit{AtPMEI8} and \textit{AtPMEI9} expression is exaggerated in mutants with CW defects. The overexpression of \textit{AtPMEI8} and \textit{AtPMEI9} increases the amount of pectin methylesterification in the \textit{cob-6} mutant at the wild-type levels and partially restore the cobra root growth suggesting that pectin methylesterification is a significant factor for CW integrity. \textit{AtPMEI-PME3} is ubiquitous in Arabidopsis tissues and it was involved in multiple physiological processes like adventitious rooting, root hair production, and seed germination (Guénin et al., 2011, 2017). \textit{AtPMEI-PME24} plays a role in root hair development and it can be inhibited by the non-proteinaceous PME inhibitor phenylephrine (Won et al., 2009; Cheong et al., 2019).

Lignin in secondary CW is considered the main component influencing the mechanical strength of the stem. Interestingly, the de-methylesterification of the primary CW can play a role in CW stiffening for mechanical support of the Arabidopsis inflorescence stem (Hongo et al., 2012). A loss-of-function mutant of \textit{AtPMEI-PME35} showed a pendant stem phenotype and an increased deformation rate of the stem.

PMEI in Fruit Development, Ripening, and Postharvest Fruit Processes

Fruit development and ripening require a combined, sequential, and synergistic action of a range of CW degrading enzymes (CWDEs; Wang et al., 2018). Advanced softening during ripening is a limiting factor in fruit shelf life and storage (Brummell and Harpster, 2001). The role of PME in fruit ripening was intensively examined in tomato. PME activity can affect pectin structure during ripening and fruit processing and it can also be a potential enhancers of ascorbic acid production (Tieman et al., 1992; Gaffe et al., 1994; Tieman and Handa, 1994; Thakur et al., 1996; Rigano et al., 2018). PMEIs can modulate PME activity and pectin methylesterification in different stages of fruit life. Several inhibitors were identified and characterized from the fruits of different species, like \textit{AcPMEI} in Kiwi (Balestrieri et al., 1990), \textit{SolyPMEI} in Tomato (Reca et al., 2012), \textit{MaPMEI} in Banana (\textit{Musa acuminata}; Srivastava et al., 2012) and \textit{VvPMEI} in grapevine (\textit{Vitis vinifera}; Lionetti et al., 2015b). The \textit{AcPMEI}, \textit{SolyPMEI}, and \textit{MaPMEI} expressions increase as the fruits ripen to finely control pectin de-methylesterification in softening during ripening. Differently, \textit{VvPMEI} control PME activity at early phases of grape berry development to assist a rapid cell growth and to maintain pulp firmness, by preventing precocious pectin degradation and grape berry softening.

Different evidence indicates PMEI activity as a valid tool in food processes (Sørensen et al., 2004). PME is physiologically released into the juice during processing, and it is considered a juice clarifying enzyme. PME activity, by triggering the formation of “egg-box” structures, causes the precipitation of pectins and cloud loss in juice, one of the major problems in fruit juice manufacturing industries (Bazaraa et al., 2020). The thermal inhibition of PME activity might be a solution but it can negatively affect the nutritional quality of the juice. The addition of PMEI during the process was demonstrated to reduce phase separation improving juice quality (Castaldo et al., 1991; Sørensen et al., 2004; Bellincampi et al., 2005). PME activity can represent also a postharvest problem in grape fermentation and distillation processes, inducing a high methanol content in spirits (Botelho et al., 2020). PMEI can reduce methanol formation in grape must and marc as well as in products derived by fermentation and distillation (Lante et al., 2008; Zocca et al., 2008).
PMEIs Modulate Seed Mucilage Extrusion and the Mucilage Degree of Methylesterification

The mucilage secretory cells present in the epidermal layer of the seed coat are responsible for mucilage production and release (Francoz et al., 2015). The release and function of mucilage are affected by PME activity (Rautengarten et al., 2008), and several evidence indicate that this activity requires a fine regulation by PMEIs. AtPMEI6 is specifically expressed in seed coat epidermal cells and pmei6 mutants showed a delayed mucilage release (Saez-Aguayo et al., 2013). The analysis of PME activity in soluble mucilage from pmei6 and 35S:AtPMEI6 transgenic plants indicates that AtPMEI6 inhibits endogenous PME activities. The level of AtPMEI6 expression in transfectants correlated with the level of methylesterified HG revealed using antibodies recognizing HG methylesterification status. This evidence leads to conclude that AtPMEI6 controls CW integrity of seed coat epidermal cells by preventing HG de-methylesterification for a correct seed mucilage release. Mechanistic insights indicate that the AtPMEI6-dependent partially methylesterified HG pattern represents an amphiphilic polysaccharidic platform necessary for PEROXIDASE63-specific anchoring, useful to loosen the outer periclinal wall domains of mucilage secretory cells, necessary for mucilage extrusion (Kunieda et al., 2013; Francoz et al., 2019).

AtPMEI13, AtPMEI14, AtPMEI15, and AtPMEI16 are other four independent mucilage-related PMEIs (Shi et al., 2018; Ding et al., 2021). pmei13 and pme14 mutants but not pmei15 mutant showed an increased PME activity and a reduced degree of methylesterification in the seed mucilage. AtPMEI15 might play only a minimal role in HG de-methylesterification or it could also be an INVI. AtPMEI14 protein seems dedicated to the modulation of pectin de-methylesterification in the mucilage after its release because any discernible mucilage extrusion defects were detected in the pmei14 mutant. The expression of AtPMEI6, AtPMEI14, and AtPMEI16, like also other pectin modifying enzymes can be activated by the transcriptional factors GLABRA2 (GL2), LEUNING_HOMOLOG/MUCILAGE MODIFIED1 (LUHMUMI), SEEDSTICK (STK), and MYELOBLASTOSIS 52 (MYB52; Saez-Aguayo et al., 2013; Ezquer et al., 2016; Ding et al., 2021). The Arabidopsis ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 4 (ERF4) and the MYB52 transcription factors interact and play antagonistic roles in the regulation of pectin de-methylesterification in seed mucilage. ERF4 directly suppresses the expression of AtPMEI13, AtPMEI14, AtPMEI15 and suppresses AtPMEI6 indirectly by antagonizing MYB52 function, giving rise to positive regulation of pectin de-methylesterification during seed development (Ding et al., 2021). Also the clusters AtPMEI-PME6 and AtPMEI-PME8 were associated to HG modification during mucilage release (Levesque-Tremblay et al., 2015; Turbant et al., 2016). AtPMEI-PME6 is required for mucilage extrusion while AtPMEI-PME8 activity participates in the regulation of interactions between HG and other polymers (probably rhamnogalacturonan 1) during the formation of the mucilage adherent layer.

PMEIs Are Involved in Multiple Biotic and Abiotic Stresses

A fine modulation of PME activity and pectin methylesterification is exerted to face biotic and abiotic stresses (Lionetti et al., 2012; Bellincampi et al., 2014). Plants involve a spatiotemporal modulation of PME activity against multiple pathogens to trigger defense response in several ways (Bethke et al., 2014; Lionetti, 2015; Del Corpo et al., 2020). PMEs can induce the formation of the “egg-box” structures, resulting in pectin stiffening (Limberg et al., 2000). Moreover, PME activity can favor the production of damage-associated molecular patterns. For instance, PMEs can promote the release or perception of de-methylesterified oligogalacturonides, able to trigger plant immunity (Osorio et al., 2008, 2011; Ferrari et al., 2013; Kohorn et al., 2014). De-methylesterification of pectin by PMEs can also generate the alarm signal methanol (Hann et al., 2014). Methanol and oligogalacturonides are able to trigger a defensive priming in plants (Dorokhov et al., 2012; Komarova et al., 2014; Gamir et al., 2021; Giovannoni et al., 2021). Moreover, the pathogen recognition receptors Wall Associated Kinase 1 (WAK1), WAK2, and FERONIA (FER) preferentially bind to de-methylesterified pectins (Decreux and Messiah, 2005; Kohorn et al., 2014; Feng et al., 2018; Guo et al., 2018; Lin et al., 2021). Independent and clustered PMEIs were involved in plant immunity, at different times during microbial infection. Intriguingly, INVI/PMEIs families show gene duplications, which are frequent in stress-related genes and are beneficial for survival in challenging environments (Oh et al., 2012; Kalunke et al., 2015). atpmei-pme17 mutations exhibited increased susceptibility to B. cinerea indicating that AtPMEI-PME17 cluster contributes to trigger PME activity against B. cinerea (Del Corpo et al., 2020). AtPMEI-PME17 expression is regulated by defense signaling pathways suggesting its involvement for early defense response. At later stages of infection, an extensive PME mediated de-methylesterification of pectin could favor pectin degradation by microbial CWDE. This effect can be restrained by the expression of independent PMEIs (Lionetti et al., 2017). atpmei10, atpmei11, and atpmei12 mutants showed increased PME activity, decreased pectin degree of methylesterification, and increased susceptibility to infection indicating that AtPMEI10, AtPMEI11, and AtPMEI12 can be exploited late during Botrytis infection to lock an extensive decrease of pectin methylesterification to defend pectin integrity. Intriguingly, the evidence that AtPMEI11 is induced by oligogalacturonides suggests a system of amplification of the pectin protection during immunity. Consistently, the overexpression of AtPMEI1 and AtPMEI2 in Arabidopsis induces a high degree of pectin methylesterification that correlated with a low susceptibility to B. cinerea (Lionetti et al., 2007). Similar results were obtained also in other pathogens and also in monocots where the pectin level is low (An et al., 2008; Volpi et al., 2011; Liu et al., 2018). It must be emphasized that PMEI overexpression is free of disease resistance/developmental growth trade-offs observed in plants with engineered CWs (Pontiggia et al., 2020; Ha et al., 2021). Rather, PMEI overexpressors had a higher biomass yield and can improve tissue saccharification in bioconversion (Lionetti et al., 2010, 2014a; Francocci et al., 2013). Early aphid infestation induces an increase in PME activity,
methanol emissions, and HG de-methylesterification (Silva-Sanzana et al., 2019). Atpmei17 mutants (named pmei13 mutants in the original article) are significantly more susceptible to the green peach aphid (*Myzus persicae*) compared to control in terms of settling preference, phloem access, and phloem sap drainage. AtPMEI17 seems particularly effective in plant–aphid interaction, since aphid feeding activities were not altered in AtPMEI6 overexpressors.

Induced Systemic Resistance (ISR) triggered by microbial bio-agents showed strong potential for biocontrol against phytopathogens (Zehra et al., 2021). Interestingly, the beneficial microbe *Bacillus subtilis* manipulate PME activity in root to improve own colonization while promoting plant resistance to leaf microbes (Lakshmanan et al., 2013). Roots of *atpmei-pme10* mutant inoculated with showed increased bacterial root colonization and foliar protection against the pathogen *P. syringae*.

Also, pathogens can exploit plant PMEI-PMEs to create an optimal cellular environment for their own survival. The ubiquitous AtPMEI-PME3 seems particularly targeted. AtPMEI-PME3 is exploited by *B. cinerea* and *Pectobacterium carotovorum* as susceptibility factor required for tissue degradation and colonization (Raiola et al., 2011). Cyst nematodes use own CWDEs, such as cellulases and pectinases to breach the CW for their root penetration and migration (Bohlmann and Sobczak, 2014). A cellulose binding domain-containing protein released by the sugar beet cyst nematode *Heterodera schachtii* into Arabidopsis tissues interacts with AtPMEI-PME3 to aid cyst nematode parasitism (Hewezli et al., 2008). PME activity, by reducing the level of pectin methylesterification can improve the accessibility of other CWDEs to CW polymers, assisting syncytium development. The cellulose binding domain-containing protein could interact with AtPMEI-PME3 in the cytoplasm followed by a potential joint export into the CW. The PME region of AtPMEI-PME3 could protect pectin in the golgi apparatus from premature de-methylesterification. CW remodeling of Arabidopsis root cells is also exploited by the obligate biotrophic *Plasmopara brassicae*, a protist pathogen that causes clubroot disease in brassica species (Stefanowicz et al., 2021). A pectin de-methylesterification mediated by AtPMEI-PME18 can favor the release of resting spores of the fungus. Intriguingly, AtPMEI-PME18 showed both PME and ribosome-inactivating proteins activity (De-la-Peña et al., 2008). Intriguingly, AtPMEI-PME18 activity could be manipulated by *P. brassicae* to kill host cells to its advantage since ribosome-inactivating proteins were previously considered as “suicidal agent,” exploited from plant to contain the spread of pathogens (Bonness et al., 1994; Park et al., 2004). Also, the viruses like Tobacco Mosaic Virus (TMV), *Turnip vein clearing virus* (TVCV), *Cauliflower mosaic virus*, and *Chinese wheat mosaic virus* can exploit the interaction between a own movement protein and a PME for cell-to-cell movement (Chen et al., 2000; Chen and Citovsky, 2003). PME-dependent formation of methanol and PME-dependent enhancement of RNA silencing also influences viral cell-to-cell movement (Dorokhov et al., 2006, 2012). A tobacco PMEI (FN432040) is a methanol-inducible gene involved in defense reactions. The overexpression of AtPMEI2 in Arabidopsis and AcPMEI in tobacco contrasts the cell-to-cell and systemic movement of tobamoviruses (Lionetti et al., 2014b, 2015a).

The ability of plants to sense and maintain pectin integrity is important for salt tolerance (Yan et al., 2018; Liu et al., 2021). A fine control of different PME isoforms could modulate the ion-binding capacities of CWs to cope with salt stress (Pilling et al., 2004). AtPMEI17 positively contributes to salt tolerance in Arabidopsis (Chen et al., 2018; Liu et al., 2021). AtPMEI17 overexpression showed decreased PME activity, increased pectin methylesterification, and an improved seeds germination, root growth and survival rate under salt stress compared to control. Instead, AtPMEI10 is a negative regulator of salinity tolerance (Jithesh et al., 2012). *Atpmei10* mutants upon NaCl treatment showed enhanced root growth and biomass yield and a reduced salt stress.

The ubiquitous AtPMEI-PME3 was also involved in basal metal tolerance to Zinc (Weber et al., 2013). A defective proteolytic cleavage of PMEI domain from catalytic part of AtPMEI-PME3 cluster in *ozs2* (overly zinc sensitive 2) mutant, causes a root hypersensitivity to zinc. The PME activity, by producing free carboxylic groups, could potentially favor the binding of metal cations to CW thereby lowering their uptake into the symplast. Similarly, AtPMEI-PME46 mediated de-methylesterification reduces aluminum binding to CWs and hence alleviating aluminum-induced root growth inhibition (Geng et al., 2017).

Pectin contents, PME activity, and pectin methylesterification are dynamically regulated during plant acclimation to temperature stresses (Solecka et al., 2008; Baldwin et al., 2014). Under chilling stress PME activity can increase the stiffness of CWs, increasing cold and freezing tolerance for the plant (Qu et al., 2011). AtPMEI-PME41 is proposed to modulate the chilling tolerance by modifying the mechanical properties of CW though the brassinosteroid signaling. AtPMEI17 (named AtPMEI13 in the original article) negatively contributes to Arabidopsis freezing tolerance (Chen et al., 2018). However, AtPMEI17 overexpressors showed slower roots under less severe cold conditions, suggesting a role of this inhibitor in balancing the trade-off between freezing tolerance and growth maintenance under low-temperature conditions. AtPMEI-PME34 can regulate the rate of transpiration during the heat response (Huang et al., 2017; Wu et al., 2017). This cluster is highly expressed in guard cell where it contributes to regulate CW flexibility and heat tolerance, promoting stomatal movement.

INV INHIBITORS

The first INV1 was identified and biochemically characterized in potato *(Schwimmer et al., 1961)*. Later, INV1 isoforms were also identified in tobacco, maize (*Zea mays*), tomato, potato, soybean (*glycine max*), and Arabidopsis (Greiner et al., 1998; Bate et al., 2004; Reca et al., 2008; Liu et al., 2010; Su et al., 2016; Tang et al., 2017). To date, only two INV1/PMEI genes were annotated to encode INVIs in *A. thaliana*. These genes, originally termed AcG/VIF1 and AcG/VIF2, were cloned in *E. coli*, their activity characterized *in vitro* and identified as INVIs (Link et al., 2004). AcG/VIF1 exhibited an apoplastic
localization and inhibited a large proportion of CW-INV activity in Arabidopsis (Su et al., 2016). The situation is less clear for AtC/VIF2, which inhibited both V-INV and CW-INV activity, but the affinity for V-INV activity was about 10-fold higher than that for CW-INV activity (Link et al., 2004). However, AtC/VIF2 clearly localized in the cell wall. To standardize the nomenclature of the INV1/PMEI superfamily and enjoying a broader view of information, we rename these two proteins as AtCW-INVI1 and AtCW/V-INVI2, respectively. Unlike PMEIs, the physiological information on INVIs in Arabidopsis is scarce. The contribution to understanding their roles comes mainly from experiments carried out in other plant species (Figures 5, 6).

INVIs Play Roles During Biotic and Abiotic Stresses

Invertase activity and its post-translational modulation by INVIs are part of immune responses against microbes, especially in the apoplast (Tausz and Giardina, 2014). The downregulation of AtCW/V-INVI2 expression and activity in Arabidopsis source leaves in response to infection by P. syringae, de-represses invertase activity as part of the plant defense response (Bonfig et al., 2010). However, invertase activity can also be exploited by pathogens in the root. Invertase gene expression is upregulated in root galls developed by P. brassicae in Arabidopsis (Siemens et al., 2011). The overproduction of AtCW-INVI1 and AtCW/V-INVI2 in Arabidopsis transgenic lines caused a reduced invertase activity in the root, a lower sucrose import into infected cells, leading to a reduced clubroot symptoms. The expressions of the two apoplastic PiC/VIF1 and PiC/VIF2 are strongly induced in the root of Populus trichocarpa against different stress cues including fusarium wilt (Fusarium solani), drought, abscisic acid, wound, and senescence (Su et al., 2020). A Nicotiana attenuata CW-INVI, named NaCWII, is strongly upregulated in a JA-dependent manner to increase secondary metabolite biosynthesis in Manduca sexta-attacked plants (Ferrieri et al., 2015).

Cold stress limits productivity and adversely affects plant growth and development. The content of sugars with an osmoprotective function increased during cold treatment (Janská et al., 2010). During chilling stress, tomato plants de-repress INV activity in the apoplast by controlling SiINV1H1 expression (Xu et al., 2017). Cold storage of potato tubers prevent sprouting and pathogenesis favoring the maintenance of supply throughout the year. However, cold induces a breakdown of starch to sucrose that is ultimately cleaved into glucose and fructose by acid invertases, leading to a tuber sweetening (Mckenzie et al., 2013). Cold-induced sweetening is a serious postharvest problem for potato compromising tuber quality. The ectopic expression of different V-INVs in potato tubers prevents cold-induced sweetening by capping the activities of V-INVs (Greiner et al., 1999; Brummell et al., 2011; Liu et al., 2013; Mckenzie et al., 2013).

Stomatal movement is critical in plant response to drought and V-INV activity is correlated with stomatal aperture under normal and drought conditions (Ni, 2012). The ectopic expression of the tobacco V-INV1, Nt-inhh, under the control of an ABA-sensitive and guard cell-specific promoter AtRab18 conferred enhanced drought tolerance in Arabidopsis and tomato (Chen et al., 2016). More recently, the drought-responsive apoplastic Zm-INVINH4 was identified and characterized in maize (Chen et al., 2019). Moreover, Arabidopsis salt tolerance can be influenced by AtCW-INVI1 (Yang et al., 2020). Transgenic plant overexpressing AtCW-INVI1 showed enhanced sensitivity to ABA and reduced tolerance to salt.

UNDEFINED INV1/PMEIs AND THEIR POSSIBLE ROLES

Some knowledge was collected for INV1/PMEI members from now on presented. However, new experiments are needed to
define their PMEI or INVI activity and to elucidate their roles in plant physiology. A INVI/PMEI isoforms, named AppB1 (At4g24640) was previously associated to pollen development (Holmes-Davis et al., 2005). A large-scale mutant screen in A. thaliana led to the identification of two INVI/PMEI mutants with defects in female gametophyte development and function (Pagnussat et al., 2005). The mutant embryo sac development arrest 24 (EDA 24) fails in polar nuclei fusion during the embryo sac development while the mutant unfertilized embryo sac 11 (UNE11) is affected in embryo sac fertilization. At5g46950 (named InvINH2) is an endosperm-specific INVI-PMEI, but its specific activity remain still to be characterized (Zuma et al., 2018). A genome wide association study supported by quantitative trait loci mapping identified the INVI/PMEI At1g23350 as a candidate gene for the response to drought/B. cinerea sequential double-stress combination (Coolen et al., 2019).

CONCLUSION AND PERSPECTIVE

Data obtained on the pattern of expression, specific activity, and related physiological effects deepen our knowledge of INVI/PMEI roles in plant growth and defense and allow to engineer precise biotechnological applications. A stage-specific manipulation of INVI/PMEIs in planta could be used as biotechnological strategy to control the fruit growth and postharvest fruit softening. INVI/PMEI represent also genetic sources to generate crop varieties, either by traditional breeding or by genetic engineering, with a durable resistance to stresses and/or with a high crop yield. The revision allowed to eliminate various inaccuracies in the nomenclature of INVI/PMEI members, providing a clear tool for future studies. We emphasize the importance of verifying the inhibitory activity of new members of the superfamily not yet characterized, before assigning them an identity. Some shortcomings on the family certainly emerge, especially on the physiological role of INVIIs, and several questions remain unanswered. Although a vacuolar, cytosolic or apoplastic function is needed to understand their subcellular action and processing. Future research could also try to reveal the dynamics of inhibition as well as the fate of the inhibitors after performing their function. Moreover, PMEIs were linked to the modulation of the degree and pattern of methylesterification of HG. However, an interesting and not yet tested hypothesis is that some PME and PMEI isoforms could be dedicated to xylogalacturonan or rhamnogalacturonans, which are other pectic polysaccharides showing some degree of methylesterification. PMEIs, like also other apoplastic factor as pH and calcium concentration could influence not only the degree but also the pattern of methylesterification. Studies aimed at identifying the three-dimensional structure of PMEI-PMEs could provide important information useful to clarify the role of PMEIs in these clusters. New knowledge on the interactions between specific PMEI and PME isoforms and on the inhibition features in PME-PME isoforms will be necessary to understand the dynamics of the control of PME activity in plant physiology.

AUTHOR CONTRIBUTIONS

DC and VL collected data from literature and prepared figures and revised the paper. VL designed and wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

The work was supported by Sapienza University of Rome, Grants RMI120172B78CFDF2 and RMI11916B7A14CFC1 to VL and AR12117A8A4A1ADC to DC and LV.

ACKNOWLEDGMENTS

Figures 5, 6 were created with biorender.com.

REFERENCES

Amsbury, S., Hunt, L., Elhadad, N., Baillie, A., Lundgren, M., Verhertbruggen, Y., et al. (2016). Stomatal function requires pectin de-methyl-esterification of the guard cell wall. Curr. Biol. 26, 2899–2906. doi: 10.1016/j.cub.2016.08.021

An, S. H., Sohn, K. H., Choi, H. W., Hwang, I. S., Lee, S. C., and Hwang, B. K. (2008). Pepper pectin methylsterase inhibitor protein CaPME1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228, 61–78. doi: 10.1007/s00425-008-0719-z

Baldwin, L., Domon, J.-M., Klimek, J. F., Fournet, F., Sellier, H., Gillet, F., et al. (2016). Structural alteration of cell wallpectins accompanies pea development in response to cold. Phytochemistry 104, 37–47. doi: 10.1016/j.phytochem.2014.04.011

Balestrieri, C., Castaldo, D., Giovane, A., Quagliuolo, L., and Servillo, L. (1990). A glycoprotein inhibitor of pectin methylsterase in kiwi fruit (Actinidia chinensis). Eur. J. Biochem. 193, 183–187. doi: 10.1111/j.1432-1033.1990.tb19321.x

Balibrea Lara, M. E., Gonzalez Garcia, M.-C., Fatima, T., Ehnness, R., Lee, T. K., Proels, R., et al. (2004). Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16, 1276–1287. doi: 10.1105/tpc.018929

Bate, N. J., Niu, X., Wang, Y., Reimann, K. S., and Helentjaris, T. G. (2004). An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol. 134, 246–254. doi: 10.1104/pp.103.027466

Bazaraa, W. A., Anmar, A. S., and Aslan, A. M. (2020). Effects of kiwi’s pectin methyl esterase inhibitor, nanomilling and pasteurization on orange juice quality. Food Sci. Nutr. 8, 6367–6379. doi: 10.1002/fsn3.1886

Bellincampi, D., Cervone, F., and Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front. Plant Sci. 5:228. doi: 10.3389/fpls.2014.00228

Bellincampi, D., Cervone, F., Riaoli, A., Camardella, L., Balestrieri, C., De Lorenzo, G., et al. (2005). Pectin methyltransferase inhibitors for the preparation of fruit juices and derivative. Patent No. WO2005005470A2. Available at: https://patents.google.com/patent/WO2005005470A2/en

Betulke, G., Grundman, R. E., Sreekanta, S., Truman, W., Katagiri, F., and Glazebrook, J. (2014). Arabidopsis PCTIN METHYLESTERASES contribute to immunity against Pseudomonas syringae. Plant Physiol. 164, 1093–1107. doi: 10.1104/pp.113.227637

Bohlmann, H., and Sobczak, M. (2014). The plant cell wall in the feeding sites of cyst nematodes. Front. Plant Sci. 5:89. doi: 10.3389/fpls.2014.00089

Giraldo, C. and Lionetti, V. (2012). Pectin esterase inactivation by pectin methylesterase inhibitors from kiwi (Actinidia chinensis) rachis, fruit and leaves. J. Agric. Food Chem. 60, 1166–1173. doi: 10.1021/jf2011669

Griffith, G. W. (2016). Pectin methylesterase inhibitors in kiwi. Inhibitory activity on cell wall hydrolysis of kiwi fruit tissue. PhD dissertation, University of Auckland, Auckland, New Zealand.

Kristensen, M. B., Nielsen, P., and Andersen, J. L. (2002). Effect of kiwi’s pectin methyl esterase inhibitor on postharvest respiration and wound healing of apple and peach. J. Sci. Food Agric. 82, 2019–2026. doi: 10.1002/jsfa.1317

Kraus, M., Xue, J., Li, X., Zhang, W., and Garab, G. (2007). Extracellular invertase from kiwi (Actinidia chinensis) fruit is an endosperm-specific enzyme involved in carbohydrate metabolism. Plant Physiol. 144, 1288–1298. doi: 10.1104/pp.107.106754

Kraus, M., Zhang, W., Xue, J., Khan, M. A., Li, X., and Garab, G. (2006). Extracellular invertase from kiwi (Actinidia chinensis) fruit is an endosperm-specific enzyme involved in carbohydrate metabolism. Plant J. 47, 845–855. doi: 10.1111/j.1365-313X.2006.02933.x

Lee, T. K., and Lee, S. K. (2000). A genome-wide in silico analysis of Arabidopsis thaliana potential methylesterase inhibitors. J. Biochem. 127, 471–475. doi: 10.1093/mbio/1.3.471

March 2022 | Volume 13 | Article 863892 Frontiers in Plant Science www.frontiersin.org 15
Francoz, E., Ranocha, P., Burlat, V., and Dunand, C. (2015). Arabidopsis seed mucilage secretory cells: regulation and dynamics. Trends Plant Sci. 20, 515–524. doi: 10.1016/j.tplants.2015.04.008

Francoz, E., Ranocha, P., Le Ru, A., Martinez, Y., Fourquaux, I., Jauneau, A., et al. (2019). Pectin demethylase demonstrates that platform that anchor peroxidases to remodel plant cell wall domains. Dev. Cell 48, 261.e8–276.e8. doi: 10.1016/j.devcel.2018.11.016

Gaffe, J., Tieman, D. M., and Handa, A. K. (2014). Pectin methylsterase isosymes in tomato (Lycopersicon esculentum) tissues (effects of expression of a pectin methyl transferase antisense gene). Plant Physiol. 105, 199–203. doi: 10.1104/pp.105.1.1.19

Gamin, J., Minchev, Z., Berrio, E., Garcia, J. M., De Lorenzo, G., and Pozo, M. J. (2021). Roots drive oligogalacturonide-induced systemic immunity in tomato. Plant Cell Environ. 44, 273–289. doi: 10.1111/pce.13917

Geng, X., Horst, W. J., Goh, J. F., Lee, J. E., Ding, Z., and Yang, Z.-B. (2017). LEUNIG HOMOLOG transcriptional co-repressor mediates aluminium sensitivity through PECTIN MESTYLESTERASE4-mediated root cell wall pectin methylsterification in Arabidopsis. Plant J. 90, 491–504. doi: 10.1111/tjp.13506

Giovannoni, M., Lironi, D., Marti, L., Paparella, C., Vecchi, V., Gust, A. A., et al. (2021). The Arabidopsis thaliana LysM-containing receptor-Like kinase 2 is required for elicitor-induced resistance to pathogens. Plant Cell Environ. 44, 3775–3792. doi: 10.1111/pce.14192

Gough, J., Karplus, K., Hughey, R., and Chothia, C. (2001). Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol. 313, 903–919. doi: 10.1006/jmbi.2001.5080

Greiner, S., Kraussgrill, S., and Rausch, T. (1998). Cloning of a tobacco apoplastic invertase inhibitor. Proof of function of the recombinant protein and expression analysis during plant development. Plant Physiol. 116, 733–742. doi: 10.1104/pp.116.2.733

Greiner, S., Rausch, T., Sonnewald, U., and Herbers, K. (1999). Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat. Biotechnol. 17, 708–711. doi: 10.1038/10924

Guénin, S., Hardouin, J., Paynel, F., Müller, K., Mongelard, G., Driouich, A., Frontions, E., Ranocha, P., Burlat, V., and Dunand, C. (2015). Structural insights into the pH-controlled targeting of plant cell wall pectin methyltransferase inhibitors. Plant Cell 16, 3437–3447. doi: 10.1105/tpc.104.25684

Huang, Y.-C., Wu, H.-C., Wang, Y.-D., Lin, C.-C., Liu, C.-H., Lin, C.-C., Luo, D.-L., et al. (2017). PECTIN MESTYLESTERASE4 contributes to heat tolerance through its role in promoting stomatical movement. Plant Physiol. 174, 748–763. doi: 10.1104/pp.17.00335

Hothorn, M., Van den Ende, W., Lammens, W., Rybin, V., and Scheffzek, K. (2010). Structural insights into the pH-controlled targeting of plant cell wall invertase by a specific inhibitor protein. Proc. Natl. Acad. Sci. U. S. A. 107, 17427–17432. doi: 10.1073/pnas.1004481107

Jiang, L., Yang, S.-L., Xie, L.-F., Puah, C. S., Zhang, X.-Q., Yang, W.-C., et al. (2005). VANGUARD encodes a pectin methyl esterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17, 584–596. doi: 10.1105/tpc.107.052671

Jin, Y., Ni, D.-A., and Ruan, Y.-L. (2009). Posttranslational elevation of Cell Wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hoxeless level. Plant Cell 21, 2072–2089. doi: 10.1105/tpc.108.063719

Jithesh, M. N., Wally, O. S. D., Manfield, L., Critchley, A. T., Hiltz, D., and Prithiviraj, B. (2012). Analysis of seaweed extract-induced transcriptome leads to identification of a negative regulator of salt tolerance in Arabidopsis. HortScience 47, 704–709. doi: 10.21273/HORTSCi.47.6.704

Kawaguchi, K., Takei-Hoshi, R., Yoshikawa, I., Nishida, K., Kobayashi, M., Kusano, M., Leunig, H., Márquez, J. A., Greiner, S., and Scheffzek, K. (2004). Structural insights into the target specificity of plant invertase and pectin methyltransferase inhibitors. Proceeding Nat. Acad. Sci. U. S. A. 107, 17427–17432. doi: 10.1073/pnas.1004481107

Kohorn, B. D., Kohorn, S. L., Saba, N. J., and Martinez, V. M. (2014). Analysis of seaweed extract-induced transcriptome leads to identification of a negative regulator of salt tolerance in Arabidopsis. HorticScience 47, 704–709. doi: 10.21273/HORTSCi.47.6.704

Kohorn, B. D., Kohorn, S. L., Saba, N. J., and Martinez, V. M. (2014). Requirement for pectin methyl esterase and preference for fragmented acid sugars. Science 346, 1003–1007. doi: 10.1126/science.aaz5103

Kovács, G., Blázsovics, M., De Macéa, J., Bozsik, G., Balázs, L., Bajai, A., et al. (2015). Establishment of a pectin methyltransferase–independent stress response in Arabidopsis. J. Biol. Chem. 289, 18978–18986. doi: 10.1074/jbc.M114.567545

Korhonen, T. V., Sheshukova, E. V., and Dorokhov, V. L. (2014). Cell wall methanol as a signal in plant immunity. Front. Plant Sci. 5:101. doi: 10.3389/fpls.2014.00101

Korobova, V., Shimada, T., Kondo, M., Nishimura, M., Nishitani, K., and Hara-Nishimura, I. (2013). Spatiotemporal secretion of PEROXIDASE36 is required for seed coat mucilage extrusion in Arabidopsis. Plant Cell 25, 1355–1367. doi: 10.1105/tpc.113.1100072
Lakshmanan, V., Castaneda, R., Rudrappa, T., and Bais, H. P. (2013). Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. *Plant Cell* 238, 657–668. doi: 10.1007/s00425-013-2020-2

Lante, A., Zocca, F., Spettoli, P., Lomolino, G., Raiola, A., Bellincampi, D., and et al. (2008). Use of a protein inhibitor of pectin methylsterase for reducing methanol formation in grape must and marc, and process thereof. Patent No. WO2008104555A1. Available at: https://patents.google.com/patent/WO2008104555A1/en

Levesque-Tremblay, G., Müller, K., Mansfield, S. D., and Haughn, G. W. (2015). HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development. *Plant Physiol.* 167, 725–737. doi: 10.1104/pp.114.255604

Lewy-González, M. A., Ibarna-Laclette, E., Cruz-Ramírez, A., and Herrera-Estrella, L. (2012). Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members. *PLoS One* 7:e48138. doi: 10.1371/journal.pone.0048138

Li, B., Liu, H., Zhang, Y., Kang, T., Zhang, L., Tong, J., et al. (2013). Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. *Plant Biotechnol.* 31, 1080–1091. doi: 10.1111/pbi.12102

Liao, S., Wang, L., Li, J., and Ruan, Y.-L. (2020). Cell wall invertase is essential for ovule development through sugar signaling rather than provision of carbon nutrients. *Plant Physiol.* 183, 1126–1144. doi: 10.1104/pp.20.00400

Lin, W., Tang, W., Pan, X., Huang, A., Gao, X., and Anderson, C. T., et al. (2021). Transcriptional activation of cell wall invertase inhibitors AtC/VIF1 and 2 exhibit distinct target enzyme specificities in Arabidopsis. *Frontiers in Plant Science* 12:e972863. doi: 10.3389/fpls.2019.01331

McKenzie, M. J., Chen, R. K. Y., Harris, J. C., Ashworth, M. J., and Brummell, D. A. (2013). Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers. *Plant Cell Environ.* 36, 176–185. doi: 10.1111/j.1365-3040.2012.02565.x

Micheli, F. (2001). Pectin methylsterases: cell wall enzymes with important roles in plant physiology. *Trends Plant Sci.* 6, 414–419. doi: 10.1016/S1360-1385(01)02045-3

Müller, K., Levesque-Tremblay, G., Fernandes, A., Worrmit, A., Bartels, S., Weitbrecht, K., Worum, A., Usadel, B., et al. (2013). Demethylesterification of cell wall pectins in Arabidopsis plays a role in seed germination. *Plant Physiol.* 161, 305–316. doi: 10.1104/pp.111.205724

Osorio, S., Bombarely, A., Giavalisco, P., Usadel, B., Stephens, C., Aragüez, I., et al. (2011). Demethylation of oligogalacturonides by FaPEI1 in the fruits of the wild strawberry Fragaria vesca triggers metabolic and transcriptional changes associated with defence and development of the fruit. *J. Exp. Bot.* 62, 2855–2873. doi: 10.1093/jxb/erq465

Ovadia, A. (2015). Pectin methylesterases and their inhibitors affect the spreading of tobamovirus. *Acta Physiol.* 238, 657–663. doi: 10.1111/aphy.12812

Park, S.-W., Vepachedu, R., Sharma, N., and Vivanco, J. M. (2004). Ribosome-inactivating proteins in plant biology. *Plant Biol.* 21, 1093–1096. doi: 10.1007/s00425-004-1365-5

Parré, E., and Geitmann, A. (2005). Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. *Plant Cell* 20, 582–592. doi: 10.1105/tpc.104.027980

Peaucelle, A., Bravrybrook, S. A., Le Guillou, L., Bron, E., Kuhlemeyer, C., and Höfte, H. (2011a). Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. *Curr. Biol.* 21, 1720–1726. doi: 10.1016/j.cub.2011.08.057

Peaucelle, A., Louvet, R., Johansen, J. N., Höfte, H., Laufer, P., Pelloux, J., et al. (2008). Arabidopsis phyllotaxy is controlled by the methyl-esterification status of cell-wall pectins. *Curr. Biol.* 18, 1943–1948. doi: 10.1016/j.cub.2008.10.063

Peaucelle, A., Louvet, R., Johansen, J. N., Salsac, F., Morin, H., Fournet, F., et al. (2011b). The transcription factor BELLRINGER modulates phylloxytaxis by regulating the expression of a pectin methylsterase in Arabidopsis. *Development* 138, 4733–4741. doi: 10.1242/dev.072496
Pelletier, S., Van Orden, J., Wolf, S., Vissenberg, K., Delacourt, J., Ndong, Y. A., et al. (2010). A role for pectin de-methylase in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol. 188, 726–739. doi: 10.1111/j.1469-8137.2010.03325.x

Pelloux, J., Rastučić, A., and Mellerowicz, E. J. (2007). New insights into pectin methyl esterase structure and function. Trends Plant Sci. 12, 267–277. doi: 10.1016/j.tplants.2007.04.001

Pérez-Pérez, Y., Carneros, E., Berenguer, E., Solís, M.-T., Bárány, I., Pintos, B., et al. (2019). Pectin de-methylase and AGP increase promote Cell Wall Remodeling and are required During somatic embryogenesis of Quercus suber. Front. Plant Sci. 9:1915. doi: 10.3389/fpls.2018.01915

Pilling, J., Willmitzer, L., Bücker, H., and Fisahn, J. (2004). Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta 219, 32–40. doi: 10.1007/s00425-004-1204-y

Pontiggia, D., Benedetti, M., Costantini, S., De Lorenzo, G., and Cervone, F. (2020). Dampening the DAMPs: how plants maintain the homeostasis of cell wall molecular patterns and avoid hyper-immunity. Front. Plant Sci. 11:2010. doi: 10.3389/fpls.2020.613259

Pressey, R. (1966). Separation and properties of potato invertase and invertase inhibitor. Arch. Biochem. Biophys. 113, 667–674. doi: 10.1016/0003-9866(66)90246-3

Qin, G., Zhu, Z., Wang, W., Cai, J., Chen, Y., Li, L., et al. (2016). A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiol. 172, 1596–1611. doi: 10.1094/pp.2015-01269

Qu, T., Liu, R. F., Wang, W., An, L. Z., Chen, T., Liu, G. X., et al. (2011). Brassinosteroids regulate pectin methyl esterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology 63, 111–117. doi: 10.1016/j.cryobiol.2011.07.003

Raiola, A., Camardella, L., Giovane, A., Mattei, B., De Lorenzo, G., Cervone, F., et al. (2004). Two Arabidopsis thaliana genes encode functional pectin methyl esterase inhibitors11 The industrial utilization of Arabidopsis and kiwi PMEs is patent pending it, no. RM2003A000346. FEBS Lett. 557, 205–210. doi: 10.1016/S0014-5793(03)01491-1

Raiola, A., Lionetti, V., Elmaghraby, I., Immerzeel, P., Mellerowicz, E. J., Salvi, G., et al. (2011). Pectin methyl esterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. Mol. Plant-Microbe Interact. 24, 432–440. doi: 10.1094/MPMI-07-10-0157

Rausch, T., and Greiner, S. (2008). Elaborate metabolism, and signaling mediated by invertase: roles in development, plant growth, leaf growth polarity, and ion partitioning. Planta 219, 32–40. doi: 10.1007/s00425-004-1204-y

Rigano, M. M., Lionetti, V., Raiola, A., Bellincampi, D., and Barone, A. (2018). Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana. Mol. Plant Pathol. 19, 247–262. doi: 10.1111/mpp.12673

Schebele, F., Habrylo, O., Hoço, L., Domon, J.-M., Marcelo, P., Lefebvre, V., et al. (2017). Structural and dynamical characterization of the pH-dependence of the pectin methyl-esterase–pectin methyl esterase inhibitor complex. J. Biol. Chem. 292, 21538–21547. doi: 10.1074/jbc.RA117.00197

Shin, Y., Chane, A., Jung, M., and Lee, Y. (2021). Recent advances in understanding the roles of pectin as an active participant in plant Signaling networks. Plants 10:1712. doi: 10.3390/plants10081712

Srivastava, S., Gupta, S. M., Sane, A. P., and Nath, P. (2012). Isolation and characterization of ripening related pectin methylesterase inhibitor gene from Solanum tuberosum. Plant Biol. 54, 313–316. doi: 10.1104/pp.36.3.313

Su, T., Han, M., Min, J., Zhou, H., Zhang, Q., Zhao, J., et al. (2020). Functional characterization of ripening related pectin methylesterase inhibitor gene from Solanum tuberosum. Physiol. Mol. Biol. Plants 18, 191–195. doi: 10.1007/s10013-019-01123-x

Sørensen, J. F., Kragh, K. M., Sibbesen, O., Delcour, J., Goesaert, H., Svensson, B., et al. (2011). Are pectins involved in invasions and in the regulation of pathogen defence against the aphid Myzus persicae. Physiol. Mol. Biol. Plants 18, 191–195. doi: 10.1007/s10013-019-01123-x

Solecka, D., Żebrowski, J., and Kacperska, A. (2008). Invertase & invertase inhibitor. FEBS Lett. 557, 199–203. doi: 10.1016/j.febslet.2008.04.019

Srivastava, S., Gupta, S. M., Sane, A. P., and Nath, P. (2012). Isolation and characterization of invertase inhibitors PtC/VIF1 and 2 revealed their involvement in the defense response to fungal pathogen in Populus trichocarpa. Front. Plant Sci. 10:1654. doi: 10.3389/fpls.2019.01654
Su, T., Wolf, S., Han, M., Zhao, H., Wei, H., Greiner, S., et al. (2016). Reassessment of an Arabidopsis cell wall invertase inhibitor AtCIF1 reveals its role in seed germination and early seedling growth. *Plant Mol. Biol.* 90, 137–155. doi: 10.1007/s11103-015-0402-2

Takahashi, D., Gorka, M., Erban, A., Graf, A., Kopka, J., Zuther, E., et al. (2019). Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in *Arabidopsis thaliana*. *Sci. Rep.* 9:2289. doi: 10.1038/s41598-019-38688-3

Tang, X., Su, T., Han, M., Wei, L., Wang, W., Yu, Z., et al. (2017). Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (*Glycine max*). *J. Exp. Bot.* 68, 469–482. doi: 10.1093/jxb/erw425

Tian, G.-W., Chen, M.-H., Zaltsman, A., and Citovsky, V. (2006). Pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth. *Dev. Biol.* 294, 83–91. doi: 10.1016/j.ydbio.2006.02.026

Tieman, D. M., and Handa, A. K. (1994). Reduction in pectin methylesterase activity modifies tissue integrity and cation levels in ripening tomato (*Lycopersicon esculentum Mill.*) fruits. *Plant Physiol.* 106, 429–436. doi: 10.1104/pp.106.6.429

Tieman, D. M., Harriman, R. W., Ramamohan, G., and Handa, A. K. (1992). An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. *Plant Cell* 4, 667–679. doi: 10.2307/3869525

Turbant, A., Fournet, F., Lequart, M., Zabijak, L., Pageau, K., Bouton, S., et al. (2016). PMES8 plays a role in pectin distribution during seed coat mucilage extrusion through homogalacturonan modification. *J. Exp. Bot.* 67, 2177–2190. doi: 10.1093/jxb/erw025

Volpi, C., Janni, M., Lionetti, V., Bellincampi, D., Favaron, F., and D'Ovidio, R. (2011). The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat. *Mol. Microbe Interact.* 24, 1012–1019. doi: 10.1094/PMI-01-11-0021

Wachsuman, G., Zhang, J., Moreno-Rısuño, M. A., Anderson, C. T., and Beney, P. N. (2020). Cell wall remodeling and vesicle trafficking mediate the root clock in *Arabidopsis*. *Science* 370, 819–823. doi: 10.1126/science.abb7250

Wang, L., and Ruan, Y.-L. (2012). New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhWCIN1 in cotton. *Plant Physiol.* 160, 777–787. doi: 10.1104/pp.111.203893

Wang, D., Yeats, T. H., Uluhisık, S., Rose, J. K. C., and Seymour, G. B. (2018). Fruit softening: revisiting the role of pectin. *Trends Plant Sci.* 23, 302–310. doi: 10.1016/j.tplants.2018.01.006

Wang, M., Yuan, D. J., Gao, W. H., Li, Y., Tan, J. F., and Zhang, X. L. (2013). New insights into roles of cell wall invertase inhibitor AtCIF1 reveals its role in cell wall homeostasis is mediated by Brassinosteroid feedback signaling. *Plant J.* 72, 1732–1737. doi: 10.1007/s00126-012-1936-8

Wolf, S., Rausch, T., and Greiner, S. (2009). The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus. *Plant J.* 58, 361–375. doi: 10.1111/j.1365-313X.2009.03784.x

Won, S.-K., Lee, Y.-J., Lee, H.-Y., Heo, Y.-K., Cho, H.-M., and Cho, H.-T. (2009). cis-Element- and transcriptome-based screening of root hair-specific genes and their functional characterization in *Arabidopsis*. *Plant Physiol.* 150, 1459–1473. doi: 10.1104/pp.109.140905

Wu, H.-C., Bulgakov, V. P., and Jinn, T.-L. (2018). Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress. *Front. Plant Sci.* 9:1612. doi: 10.3389/fpls.2018.01612

Wu, H.-C., Huang, Y.-C., Stracovsky, L., and Jinn, T.-L. (2017). Pectin methylesterase is required for guard cell function in response to heat. *Plant Signal. Behav.* 12:e133827. doi: 10.1080/15592324.2017.1338227

Xu, C., Gao, H., Xu, E., Zhang, S., and Hu, Y. (2018). Genome-wide identification of *Arabidopsis* LBD29 target genes reveals the molecular events behind auxin-induced cell reprogramming during callus formation. *Plant Cell Physiol.* 59, 749–760. doi: 10.1093/pcp/pxc168

Xu, X., Hu, Q., Yang, W., and Jin, Y. (2017). The roles of cell wall invertase inhibitor in regulating chilling tolerance in tomato. *BMC Plant Biol.* 17:195. doi: 10.1186/s12870-017-1145-9

Yan, J., He, H., Fang, L., and Zhang, A. (2018). Pectin methylesterase31 positively regulates salt stress tolerance in *Arabidopsis*. *Biochem. Biophys. Res. Commun.* 496, 497–501. doi: 10.1016/j.bbrc.2018.01.025

Yang, Z. (2008). Cell polarity Signaling in *Arabidopsis*. *Annu. Rev. Cell Dev. Biol.* 24, 551–575. doi: 10.1146/annurev.cellbio.23.090506.123233

Yang, W., Chen, S., Cheng, Y., Zhang, N., Ma, Y., Wang, W., et al. (2020). Cell wall/vacuolar inhibitor of fructosidase 1 regulates ABA response and salt tolerance in *Arabidopsis*. *Plant Signal. Behav.* 15:1744293. doi: 10.1080/15592324.2020.1744293

Zanor, M. I., Osorio, S., Nunes-Nesi, A., Carrari, F., Lohse, M., Usadel, B., et al. (2009). DNA interference of LN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for Normal fruit development and fertility. *Plant Physiol.* 150, 1204–1218. doi: 10.1104/pp.110.136598

Zehra, A., Raytekar, N. A., Meena, M., and Swapnil, P. (2021). Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: a review. *Curr. Res. Microbiol. Sci.* 2:100054. doi: 10.1016/j.redmics.2021.100054

Zhang, G. Y., Feng, J., Wu, J., and Wang, X. W. (2010). BoPME11, a pollen-specific pectin methylesterase inhibitor, has an essential role in pollen tube growth. *Planta* 231, 1323–1334. doi: 10.1007/s00425-010-1136-7

Zocca, F., Lolomolino, G., Spettoli, P., and Lante, A. (2008). A study on the relationship between the volatile composition of moscato and prosecco grappa and enzymatic activities involved in its production. *J. Federat. Inst. Brew.* 114, 262–269. doi: 10.1002/j.2050-0416.2008.tb00337.x

Zuma, B., Dana, M. B., and Wang, D. (2018). Prolonged expression of a putative invertase inhibitor in micropylar endosperm suppressed embryo growth in *Arabidopsis*. *Front. Plant Sci.* 9:1612. doi: 10.3389/fpls.2018.00061

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.