Coordinate increase of telomerase activity and c-Myc expression in Helicobacter pylori-associated gastric diseases

Guo-Xin Zhang, Yan-Hong Gu, Zhi-Quan Zhao, Shun-Fu Xu, Hong-Ji Zhang, Hong-Di Wang, Bo Hao

AIM: To detect the telomerase activity and c-Myc expression in gastric diseases and to examine the relation between these values and Helicobacter pylori (H pylori) as a risk factor for gastric cancer.

METHODS: One hundred and seventy-one gastric samples were studied to detect telomerase activity using a telomerase polymerase chain reaction enzyme linked immunosorbent assay (PCR-ELISA), and c-Myc expression using immunohistochemistry.

RESULTS: The telomerase activity and c-Myc expression were higher in cancers (87.69% and 61.54%) than in noncancerous tissues. They were higher in chronic atrophic gastritis with severe intestinal metaplasia (52.38% and 47.62%) than in chronic atrophic gastritis with mild intestinal metaplasia (13.33% and 16.67%). In chronic atrophic gastritis with severe intestinal metaplasia, the telomerase activity and c-Myc expression were higher in cases with H pylori infection (67.86% and 67.86%) than in those without infection (21.43% and 7.14%). c-Myc expression was higher in gastric cancer with H pylori infection (77.27%) than in that without infection (28.57%). The telomerase activity and c-Myc expression were coordinately up-regulated in H pylori infected gastric cancer and chronic atrophic gastritis with severe intestinal metaplasia.

CONCLUSION: H pylori infection may influence both telomerase activity and c-Myc expression in gastric diseases, especially in chronic atrophic gastritis.

Zhang GX, Gu YH, Zhao ZQ, Xu SF, Zhang HJ, Wang HD, Hao B. Coordinate increase of telomerase activity and c-Myc expression in Helicobacter pylori-associated gastric diseases. World J Gastroenterol 2004; 10(12): 1759-1762 http://www.wjgnet.com/1007-9327/10/1759.asp
30 of chronic atrophic gastritis (CAG) with mild intestinal metaplasia (IM), 42 of chronic atrophic gastritis with severe intestinal metaplasia, 14 of dysplasia (Dys) and 65 of gastric cancer (GC). Haematoxylin and eosin stains were used for the histopathological diagnosis. Degree of inflammatory reaction and glandular atrophy, intestinal metaplasia, and cellular dysplasia were evaluated according to the criteria of the updated Sydney system. The diagnosis of each sample was based on agreement between two pathologists.

H pylori infection

H pylori infection was detected by rapid urease test and bacteria culture. Infection was defined as positive when *H pylori* was detected and/or urease test was positive.

Immunohistochemistry

For each case, 4-µm thick serial sections were cut from paraffin wax blocks, mounted on acid-cleaned glass slides, and heated at 55 °C for 60 min. Slides were dewaxed and rehydrated, then endogenous peroxidase activity was inhibited by incubation with 30 mL/L H₂O₂ in methanol for 20 min at room temperature. To reduce non-specific background staining, slides were incubated with goat serum for 15 min at room temperature. To enhance immunostaining, sections were treated with an antigen retrieval solution (10 mmol/L citric acid monohydrate, pH 6.0, adjusted with 2 mol/L NaOH) and heated three times in a microwave oven at high power for five min. Finally, slides were incubated with appropriate primary antiserum in a moist chamber overnight at 4 °C. The monoclonal primary antibody, anti-c-Myc, was purchased from Maxim Biotech, Inc. (USA). S-P kit was purchased from Fujian Maixin Ltd. (China). Samples were detected according to manufacturer’s instructions. The degree of immunopositivity was evaluated semi-quantitatively. A total of 300 cells were counted in random fields from representative areas of the lesions, and the immunoreactive cells were roughly assessed and expressed as percentages. The scoring system for the antibody tested was: 0%-5%(negative), 5-25%(low positivity), 25-50%(moderate positivity), >50%(high positivity).

Telomerase assay

Telomerase activity was measured by a modified version of the standard TRAP method, using PCR-ELISA detection kit (Roche Molecular Biochemicals), according to its manufacturer’s instructions. Five 10-µm thick cryostat sections of were transferred into a sterile reaction tube containing 200 µL ice-cold lysis reagent. The lysates were homogenized and incubated on ice for 30 min. After centrifuged at 16,000 g for twenty minutes at 4 °C, 175 µL of the supernatant was collected and transferred to a fresh tube. Three micro-litter of tissue extract was incubated with 25 µL of reaction mixture including a biotin labeled P1-TS primer and P2 primer, telomerase substrate, and Taq polymerase for 20 min at 55 °C. After further incubation at 94 °C for 5 min for telomerase inactivation, the resulting mixture was subjected to PCR for 30 cycles at 94 °C for 30 s, at 50 °C for 30 s, and at 72 °C for 90 s, the reaction was held at 72 °C for 10 min.

PCR products were denatured and hybridized with a digoxigenin labeled, telomeric repeat specific detection probe. The resulting product was immobilized through the biotin labeled TS primer to a streptavidin coated microtitre plate and detected with antidigoxigenin antibody conjugated with peroxidase. Absorbance values were measured using a microtitre (ELISA) reader at 450 nm with a reference wavelength of approximately 690 nm within 30 min after addition of the stop reagent. Heat-treatment of the cell extract for 10 min at 65 °C prior to the TRAP reaction was used to inactivate telomerase protein for producing negative controls. Positive controls were the 293 cells that expressed the telomerase activity. Samples were regarded as telomerase-positive if the difference in absorbance (ΔA) was higher than 0.2 (A 450 nm–A 690 nm units).

Statistical analyses

The correlations between qualitative data were studied with the χ² and Fisher tests. A probability P value <0.05 was considered statistically significant.

RESULTS

H pylori infection

One hundred and twelve of 171 cases were *H pylori* positive. The *H pylori* infection rate was 65%(13/20) in CSG, 63.89%(46/72) in CAG, 64.29%(9/14) in Dys, and 67.69%(44/65) in GC. It had no significant difference among these groups.

Telomerase activity

Telomerase activity was measured by a telomerase polymerase chain reaction (PCR) enzyme linked immunosorbent assay, which does not require radioactive PCR amplification and yields a semiquantitative measurement. Telomerase activity was detected in 57(87.69%) of 65 gastric carcinomas examined, 46(63.89%) of 72 CAG and 9(64.29%) of 14 Dys. No telomerase activity was detected in all the 20 CSG. The mean telomerase activity was higher in gastric cancer than in CAG, CSG and Dys (P<0.01 or P<0.05). Based on intestinal metaplasia, CAG was classified into two groups, severe IM and mild IM. The telomerase activity was higher in CAG with severe IM than that in mild IM (P<0.01).

Twenty-nine gastric cancers with complete clinical data were classified by histologic parameters such as gender, tumor location, tumor size and microscopic morphology. The telomerase activity among these groups had no significant difference (data not shown).

H pylori infection and telomerase activity in patients with gastric cancer and CAG

are shown in Table 1. The mean telomerase activity was higher in CAG with severe intestinal metaplasia and *H pylori* infection than in that without infection (P<0.05), but there was no significant difference between those with and without *H pylori* infection in gastric cancer and CAG with mild intestinal metaplasia.

Table 1

Diagnosis	Samples number	*H pylori* infection	Telomerase activity (%)	P	c-Myc expression (%)	P
GC	65	(+44)	38 (86.36)	>0.05	34 (77.27)	<0.05^a
		(-21)	19 (90.48)	>0.05	6 (28.57)	<0.05
CAG with MM	30	(+18)	3 (16.67)	>0.05	4 (22.22)	>0.05
		(-12)	1 (8.33)	>0.05	1 (8.33)	>0.05
CAG with SM	42	(+28)	19 (67.86)	<0.01^b	19 (67.86)	<0.01^b
		(-14)	3 (21.43)	>0.05	1 (7.14)	>0.05

χ² test and Fisher’s exact test. ^aP<0.05 vs c-Myc expression from samples without *H pylori* infection. ^bP<0.01 vs telomerase activity from samples without *H pylori* infection. ^cP<0.01 vs c-Myc expression from samples without *H pylori* infection. MM, mild intestinal metaplasia SM, severe intestinal metaplasia.
c-Myc expression

C-Myc was expressed in 40 of 65 (61.5%) gastric cancers, 20 of 42 (47.62%) CAG with severe IM, 5 of 30 (16.67%) CAG with mild IM, 8 of 14 (57.14%) Dys and 1 of 20 (5%) CSG. The expression of C-Myc was highest in gastric cancer, and C-Myc expression in CAG with severe IM was significantly higher than that in CAG with mild IM. The C-Myc immunoreactivity was localized in both cytoplasm and nucleus (Figure 1).

H pylori infection and c-Myc expression in patients with gastric cancer and CAG are shown in Table 1. The expression of c-Myc was higher in H pylori infected gastric cancer and CAG with severe IM than in those without infection (P<0.01), but there was no significant difference between those with and without H pylori infection in CAG with mild IM.

Coordinate up-regulation of telomerase activity and c-Myc expression in H pylori infected gastric cancer and CAG with severe intestinal metaplasia

The telomerase activity and c-Myc expression were coordinately increased in H pylori infected gastric cancer and CAG with severe IM (Figure 2). The rate of co-expression was 89.47% (34/38) and 100% (19/19), respectively.

DISCUSSION

In the present study, we demonstrated that most gastric tumors displayed telomerase activity, regardless of histological types. Telomerase activity was highest in cancer tissue, followed by chronic atrophic gastritis with complete intestinal metaplasia, dysplasia, chronic atrophic gastritis with mild intestinal metaplasia and chronic superficial gastritis. Telomerase activity was higher in CAG with severe metaplasia and H pylori infection than in that without H pylori infection (P<0.01). Our results indicate that telomerase activity is one of the most common and fundamental events of gastric cancers. What is more important is that telomerase was activated in precursor lesions, such as chronic atrophic gastritis with intestinal metaplasia and dysplasia. It suggested that there were a similar number of immortal cells existing in these lesions. In addition, H pylori infection might induce telomerase activity in chronic atrophic gastritis with intestinal metaplasia.

Recently, it was reported that H pylori infection played a role in activation of telomerase. Chronic infection with H pylori induced the activation of telomerase in gastric mucosa exhibiting intestinal metaplasia[25]. In patients with intestinal-type gastric cancer, telomerase activity was higher in intestinal metaplasia with H pylori infection than in that without infection[26].

We found that telomerase was activated in H pylori infected precursor lesions, such as chronic atrophic gastritis and dysplasia, and telomerase activity rose higher during the progression of the lesions. These data indicate that H pylori infection may contribute to gastric tumorigenesis through induction of telomerase activity, and that telomerase activation in H pylori infected chronic atrophic gastritis with intestinal metaplasia and dysplasia may be correlated with oncogenesis. It remains to be defined how H pylori infection activates telomerase. H pylori infection might influence the negative regulator of telomerase activity during early stages of stomach carcinogenesis[28]. In addition, inflammatory gastric mucosa caused by H pylori infection could produce free radicals and cytokines that may induce telomerase activity[29].

Frequent genetic alterations, such as c-myc proto-oncogene, have been found in gastric pre-malignant lesions[31,32]. Amplified c-Myc, which controls cell growth and cellular differentiation[33,34], has been reported in small percent of gastric carcinomas[35,36]. Expression of c-Myc was proved to be more frequent in poorly differentiated gastric cancer cells, and more frequent in gastric adenoarcinoma than in adenoma and has also been proposed as an aid to differentiate between the two conditions[37,38]. In the present study, c-Myc was expressed in 61.54% (40/65) of gastric cancers, 47.62% (20/42) of chronic atrophic gastritis with severe IM, 16.67% (5/30) of CAG with mild IM, and 5% (1/20) of chronic superficial gastritis patients. The expression of c-Myc was highest in gastric cancers, and c-Myc expression in CAG with severe intestinal metaplasia was significantly higher than that in CAG with mild intestinal metaplasia. The expression of c-Myc was higher in H pylori infected gastric cancer and CAG with severe intestinal metaplasia than in that without infection (P<0.01). We found that c-Myc expression in both gastric cancer and chronic atrophic gastritis with severe intestinal metaplasia is correlated with H pylori status. Previously, a study by Nardone et al showed that H pylori infection affected the expression of c-Myc in chronic gastritis, but the positive rate was still very low (15%).

The expression of c-Myc was very high in H pylori infected CAG in our study because we classified chronic gastritis as CSG.
REFERENCES

1. Correa P. Helicobacter pylori and gastric carcinogenesis. Am J Surg Pathol 1995; 19(Suppl 1): S37-43
2. Correa P, Chen VW. Gastric cancer. Cancer Surv 1994; 19-20: 55-76
3. Rugge M, Cassaro M, Leandro G, Baffa R, Avellini C, Bufo P, Stracca V, Battaglia G, Fabiano A, Guerini A, Di Mario F. Helicobacter pylori in promotion of gastric carcinogenesis. Dig Dis Sci 1996; 41: 950-955
4. Wright PA, Williams GT. Molecular biology and gastric carcinogenesis. Gut 1993; 34: 145-147
5. Harley CB, Kim NW, Prowse K, Weinrich SL, Hirsch KS, West MD, Bachetti S, Hirte HW, Counter CM, Greider CW, Shay JW. Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol 1994; 59: 307-315
6. Avilion AA, Piatyszek MA, Gupta J, Shay JW, Bachetti S, Greider CW. Human telomerase RNA and telomerase activity in immortal cell lines and tumor tissues. Cancer Res 1996; 56: 645-650
7. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Shay JW. Specific association of human telomerase activity with immortalized cells and cancer. Science 1994; 262: 2011-2015
8. Hiyama E, Gollahon L, Kataoka T, Kuroki Y, Yokohama T, Gazdar AF, Hiyama E, Kiyama H, Piatyszek MA, Shay JW. Telomerase activity in human breast tumors. J Natl Cancer Inst 1996; 88: 116-122
9. Hiyama E, Yokoyama T, Tatsumoto N, Hiyama K, Jmamura Y, Murakami Y, Kodama T, Piatyszek MA, Shay JW, Matsuura Y. Telomerase activity in gastric cancer. Cancer Res 1995; 55: 3258-3262
10. Shay JW, Bachetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787-791
11. Lin Y, Miyamoto H, Fujimaki K, Usamura H, Hosaka M, Iwaski Y, Kubota Y. Telomerase activity in human bladder cancer. Clin Cancer Res 1996; 2: 929-932
12. Sommerfeld HJ, Meeker AK, Piatyszek MA, Bova GS, Shay JW, Coffey DS. Telomerase activity: a prevalent marker of human carcinogenesis. J Natl Cancer Inst 1996; 88: 1187-1200
13. Kojima H, Ooka M, Tanaka H, Blevins J, Handa T, Sugimachi K, Ono T, Hiroaka Y, Yamada T, Watanabe N, Ikeda Y. Telomerase activity and telomere length in hepatocellular carcinoma and chronic liver disease. Gastroneterology 1997; 112: 493-500
14. Tahara H, Kuniyasu H, Yokozaki H, Yasui W, Shay JW, Ide T, Tahara E. Telomerase activity in preeclampsia and nonplacent gastric and colorectal cancers. Clin Cancer Res 1995; 1: 1285-1291
15. Henriksson M, Luscher B. Proteins of the Myc network: essential regulators of cell growth and differentiation. Adv Cancer Res 1996; 68: 109-182
16. Hurlin PJ, Foley KP, Ayer DE, Eisenman RN, Hanahan D, Arbeit JM. Regulation of c-Myc and Mad during epidermal differentiation and HPV-associated tumorigenesis. Oncogene 1995; 11: 2487-2501
17. Xu D, Popov N, Hou M, Wang Q, Bjorkholm M, Gruber A, Menkel AR, Henriksson M. Switch from Myc to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Proc Natl Acad Sci USA 2001; 98: 3826-3831
18. Kuschak T1, Taylor C, McMillan Ward E, Israels S, Henderson DW, Mushinsky JF, Wright JA, Mai S. The ribonucleotide reductase R2 gene is a non-transcribed target of c-Myc-induced genomic instability. Gene 1995; 238: 155-165
19. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-Myc to immortalize pre-B cells. Nature 1988; 335: 440-442
20. Bissonnette RP, Echeverri F, Mahboubi A, Green DR. Apoptotic cell death induced by Myc is inhibited by bcl-2. Nature 1992; 359: 552-554
21. Fanidi A, Harrington EA, Evans GI. Cooperative interaction between c-Myc and bcl-2 proto-oncogenes. Nature 1992; 359: 554-556
22. Correa P, Miller MJ. Helicobacter pylori and gastric atrophy-cancer paradoxe. J Natl Cancer Inst 1995; 87: 1731-1732
23. Kuipers EJ, Uytterlinde AM, Pena AS, Roosendaal R, Pals G, Nelis GF, Festen HP, Meuwissen SG. Long-term sequelae of Helicobacter pylori gastritis. Lancet 1995; 345: 1525-1528
24. Craenen ME, Dekker W, Blok P, Ferwerda J, Tytgat GN. Intestinal metaplasia and Helicobacter pylori: an endoscopic biopitic study of the gastric antrum. Gut 1992; 33: 16-20
25. Kameshima H, Yagihashi A, Yajima T, Watanabe N, Ikeda Y. Helicobacter pylori infection induces telomerase activity in pre-malignant lesions. Am J Gastroenterol 1999; 94: 547-548
26. Kameshima H, Yagihashi A, Yajima T, Kobayashi D, Denno R, Hirata K, Watanabe N. Helicobacter pylori infection: augmentation of telomerase activity in cancer and noncancerous tissues. World J Surg 2000; 24: 1243-1249
27. Honkawara S, Ito Y, Kajbucki S. The human tumor promoter c-fos regulates the expression of the c-fos promoter. Mol Cell Biol 2000; 13: 2585-2597
28. Cong YS, Wen J, Bachetti S. The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet 1999; 8: 137-142
29. Gunes C, Lichtsteiner S, Vassorot AP, Engielt C. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repression by Mad1. Cancer Res 2000; 60: 2116-2121
30. Tahara E. Molecular mechanism of human stomach carcinogenesis implicated in Helicobacter pylori infection. Exp Toxicol Pathol 1998; 50: 375-378
31. Fest T, Mougey V, Dalstein V, Hagerly M, Milette D, Silva S, Mai S, C-Myc overexpression in Ba/F3 cells simultaneously elicits genomic instability and apoptosis. Oncogene 2002; 21: 2981-2990
32. Wang J, Chi D, Kalin G, Sosinski C, Miller LE, Burja I, Thomas E. Helicobacter pylori infection and oncogene expressions in hastric carcinoma and its precursor lesions. Dig Dis Sci 2002; 47: 107-113
33. Peng H, Doss T, Isaacson PG, Pan L. C-myc gene abnormalities in mucosa-associated lymphoid tissue (MALT) lymphomas. J Pathol 1997; 181: 381-386
34. O’Leary JJ, Landers RJ, Crowley M, Healy I, Kelly WF, Hogan J, Doyle CT. Alterations in exon 1 of c-myc and expression of p52 c-myc in cervical squamous cell carcinoma. J Pathol 1997; 182: 896-903
35. Haidjou K, Kazmae A, Lass I, Szentkereszty Z, Szakall S, Ember I. Is the present of distant metastasis associated with c-myc amplification in gastric cancer? Acta Chir Hung 1997; 36: 119-121
36. Amadori D, Maltoni M, Volpi A, Nannini O, Scarpi E, Renault B, Pelgata NS, Gaudio M, Magni E, Ranzani GN. Gene amplification and proliferative kinetics in relation to prognosis of patients with gastric carcinoma. Cancer 1997; 79: 226-232
37. Han S, Kim HY, Park K, Cho HJ, Lee MS, Kim HJ, Kim YD. c-myc expression is correlated with cell proliferation and associated with poor clinical outcome in human gastric cancer. J Korean Med Sci 1999; 14: 526-530
38. Lee PA, Dolce C, Barrett J, Wu CS, Dang CV. A link between c-myc-mediated transcriptional repression and neoplastic transformation. J Clin Invest 1996; 97: 1687-1695

Edited by Zhu LH and Wang XL. Proofread by Xu FM