Assaying Carcinoembryonic Antigens by Normalized Saturation Magnetization

Kai-Wen Huang2,3, Jen-Jie Chieh1*, Jin-Cheng Shi1 and Ming-Hsien Chiang4

Abstract
Biofunctionalized magnetic nanoparticles (BMNs) that provide unique advantages have been extensively used to develop immunoassay methods. However, these developed magnetic methods have been used only for specific immunoassays and not in studies of magnetic characteristics of materials. In this study, a common vibration sample magnetometer (VSM) was used for the measurement of the hysteresis loop for different carcinoembryonic antigens (CEA) concentrations (ΦCEA) based on the synthesized BMNs with anti-CEA coating. Additionally, magnetic parameters such as magnetization (M), remanent magnetization (MR), saturation magnetization (MS), and normalized parameters (ΔMR/MS and ΔMS/MS) were studied. Here, ΔMR and ΔMS were defined as the difference between any ΦCEA and zero ΦCEA. The parameters M, ΔMR, and ΔMS increased with ΦCEA, and ΔMS showed the largest increase. Magnetic clusters produced by the conjugation of the BMNs to CEAs showed a ΔMS greater than that of BMNs. Furthermore, the relationship between ΔMS/MS and ΦCEA could be described by a characteristic logistic function, which was appropriate for assaying the amount of CEAs. This analytic ΔMS/MS and the BMNs used in general magnetic immunoassays can be used for upgrading the functions of the VSM and for studying the magnetic characteristics of materials.

Keywords: Magnetic immunoassays; Saturation magnetization; Magnetic clusters; Carcinoembryonic antigen; Biofunctionalized magnetic nanoparticles

Background
Magnetic nanoparticles interest researchers because of their potential applications in biomedicine, such as protein purification [1], magnetofection [2], tomographic imaging [3], magnetic resonance imaging [4–6], magnetic immunoassays [7, 8], tumor diagnosis [9], and hyperthermia therapy [10]. In magnetic immunoassays, magnetic nanoparticles are first biofunctionalized with antibodies to obtain biofunctionalized magnetic nanoparticles (BMNs), which are then dissolved in solutions to form magnetic reagents. To assay a biotarget, a magnetic reagent is mixed with a sample solution containing the biotarget. The conjugation of BMNs with the biotarget produces magnetic clusters because of molecular interaction (Fig. 1), and the magnetic properties of the reagent changes. Biological samples, unconjugated BMNs, and magnetic clusters of conjugated biotargets show a negligible magnetic background individually and differ in their magnetic characteristics. Hence, it is possible to develop magnetic immunoassays on the basis of several parameters and phenomena such as magnetic relaxation [11, 12], remanent magnetization (MR) [13, 14], saturation magnetization (MS) [15], magnetic resonance [16, 17], and alternating current (ac) susceptibility (χac) [8, 18–21].

In addition, because signal changes associated with the magnetic characteristics of BMNs are always small, a high-sensitivity high-critical-temperature superconducting quantum interference device (SQUID) sensor is usually used to enhance the signal-to-noise ratio and mu-metal shielding is provided to reduce environmental noise. A cryogenic biodetection system involving SQUIDs is difficult to construct.

Washing processes are sometimes required to separate magnetic clusters from reagents for measuring magnetic characteristics; however, they are time-consuming. Therefore, developing a biodetection system featuring an alternative detection mechanism and high detection sensitivity is crucial. A wash-free immunomagnetic reduction (IMR) method based on ac magnetic susceptibility reduction has been proposed [19], and various studies have
demonstrated the sensitive detection of biomolecules, such as nucleic acids [20], biomarkers (for diagnosing Alzheimer’s disease) [6], alpha-fetoprotein (for detecting liver tumors) [7], and human C-reactive protein (for diagnosing inflammation) [15].

In this study, we proposed a magnetic immunoassay method based on the BMNs used in magnetic immunoassay methods, like IMR; the proposed method does not require a SQUID sensor or washing process. The method involves the use of a vibration sample magnetometer (VSM) for measuring the hysteresis loop, from which the major magnetic characteristics can be inferred, and does not require a specific magnetic instrument for magnetic immunoassays. The magnetic parameters of the hysteresis loop were studied to determine the analytic method of magnetic immunoassay. When the method is applied to magnetic immunoassays, the magnetic parameters of the analytics are determined from the hysteresis loop.

Methods

Figure 1 shows a schematic of the clustering process involving BMNs and dextran-coated Fe$_3$O$_4$ nanoparticles. The procedures used for synthesizing BMNs consisting of anticarcinoembryonic antigens (anti-CEAs) coated on dextran-coated Fe$_3$O$_4$ nanoparticles (MF-DEX-0060, MagQu Corp., Taiwan) were similar to those used in a previous study for synthesizing dextran-coated Fe$_3$O$_4$ nanoparticles coated with anti-goat C-reactive protein [22]. Dextran-coated Fe$_3$O$_4$ nanoparticles was oxidized using NaI$_2$O to create aldehyde groups (−CHO), and dextran reacted with the antibodies of anti-CEAs (10C-CR2014M5, Fitzgerald, MA, USA) through −CH = N- to covalently conjugate the antibodies of anti-CEAs. After magnetic separation, the unbound antibodies were separated from conjugated BMNs consisting of dextran-coated Fe$_3$O$_4$ nanoparticles coated with anticarcinoembryonic antigens (Fe$_3$O$_4$-anti-CEAs). Subsequently, a reagent was synthesized by dissolving the BMNs in phosphate-buffered saline. The biotargets were carcinoembryonic antigens (CEAs; 30-AC30, Fitzgerald, MA, USA). These antigens are typically used as a tumor marker for colorectal cancers, which are caused by uncontrolled cell growth in the colon or rectum [23] and are the second leading cause of cancer death in adults worldwide [24].

The mean value of the hydrodynamic diameter of the BMNs was 40.8 nm, as detected through dynamic laser scattering (Nanotrac 150, Microtrac, PA, USA). The conjugation capability of BMNs was verified by tissue staining. The colon tumors induced on the backs of mice were sampled to form paraffin-embedded sections. Figure 2a shows the process of staining the colon tumor tissue with BMNs. First, the sections of the colon tumors were immersed in the Fe$_3$O$_4$-anti-CEA reagent. Consequently, a secondary antibody conjugated to a fluorescent indicator (goat anti-rabbit IgG antibody, Millipore, USA) was added. Here, the binding occurred because the fluorescent indicator with an isothiocyanate reactive group was reactive toward nucleophiles containing amine and sulfhydryl groups on the protein [25]. Because of conjugation between the secondary antibodies and anti-CEA antibodies, the fluorescent indicators were bound to the BMNs on the tissue. Both the tissue and fluorescent indicators of the BMNs were obtained through fluorescence microscopy (IX70, Olympus, Japan).

In assaysing the CEAs, 40 μL of the Fe$_3$O$_4$-anti-CEA reagent with a saturation magnetization of 0.07 emu/g was mixed with 60 μL of a CEA solution with a CEA
concentration (Φ_{CEA}) in the range from 0 to 10 ppm. To verify the formation of magnetic clusters during the assay, the effective relaxation time $\tau_{\text{eff}}(t)$ was monitored. This was because the presence of magnetic clusters would increase τ_{eff}. Furthermore, $\chi_{ac}(t)$ can be expressed as follows [26, 27]:

$$
\chi_{ac}(t) = \chi_{ac,0} \left\{ \frac{1}{1 + \left(\omega \tau_{\text{eff}}(t) \right)^2} \right\}^{1/2}
$$

(1)

Here, $\chi_{ac,0}$ is χ_{ac} of the Fe$_3$O$_4$-anti-CEA reagent initially mixing with the CEA solution, and ω is the angular frequency. Therefore, τ_{eff} can be obtained by substituting $\Delta\chi_{ac}$ defined as $\chi_{ac,0} - \chi_{ac}$ in Eq. (1). The test materials were the Fe$_3$O$_4$-anti-CEA reagent and a CEA solution with a Φ_{CEA} of 10 ppm. The complete experiment process first involved the measurement of the hysteresis loop for only the Fe$_3$O$_4$-anti-CEA reagent by using the VSM (Model Hystermag, MagQu Corp., Taiwan). Subsequently, χ_{ac} for the mixture of the reagent and the CEA solution was measured continuously during the entire assay period by using an analyzer (\chi_{ac}Pro-E101, MagQu Corp., Taiwan). After the assay, the mixture was again measured using the VSM.

For a Φ_{CEA} of 10 ppm, the formation of magnetic clusters in the assay of the CEA solutions was verified by measuring χ_{ac} along with the hysteresis loop during the assay period. For all the other CEA concentrations (0, 0.01, 0.5, 1, 2.5, and 5 ppm), only the hysteresis loop was measured. Figure 3 shows a schematic of the measurement of the hysteresis loop, which expresses the magnetization M as a function of the applied field H. An electromagnet that provided a maximum H of 1.0 T was used to determine M, M_R, and M_S. The sample was vibrated with a frequency of approximately 30 Hz by using an oscillating device. The magnetic signal was then detected using a second-order gradient pickup coil. In addition to characterizing the variation of ΔM_R or ΔM_S with Φ_{CEA}, the relationship between $\Delta M_R/M_R$ or $\Delta M_S/M_S$ and Φ_{CEA}, which represented the merit function of the CEA amount, was determined.

Results and Discussion

Figure 2b shows BMPs conjugated to the CEA reagents on the tumor tissue. The blue and green colors represent the nucleus of a colon tumor cell and the fluorescent indicator, respectively. Here, the excitation/emission wavelengths of the observed green and blue colors were 495 nm/519 nm and 358 nm/461 nm, respectively. Superposing these two images shows that the blue and green spots are located in close proximity, indicating that the BMPs were bound to colon tumor cells. The proximity of the blue and green spots also confirms the bioconjugation capability of the BMNs.

Figure 4a shows that χ_{ac} was initially constant and that it subsequently decreased with time and reached a steady value. These stages corresponded to the preconjugation, conjugation, and postconjugation period, in which the reference is to the conjugation between BMNs and CEA reagents. In the immunoconjugation reduction (IMR) assay [8, 18–21], the normalized parameter $\Delta\chi_{ac}/\chi_{ac}$ (the
was enhanced to 0.23 emu/g after the conjugation.

In addition to the χ_{ac} measurement, typical hysteresis loops of the Fe$_3$O$_4$-anti-CEA reagent before the assays and the mixture of the same reagent and the CEA solutions after assaying 10 ppm of CEA were separately shown in Fig. 4b. The parameter M_s for the reagent was equal to 0.07 emu/g at 0.15 T and near the saturation field, and M_s was enhanced to 0.23 emu/g after the conjugation.

One part of the hysteresis loops for various Φ_{CEA} values is shown in Fig. 5a. For all Φ_{CEA} values, M rapidly increased with an increase in H from 0 to 1000 Oe, and then gradually reached M_s. Furthermore, for each H, M (including M_s) increased with Φ_{CEA}. From the hysteresis loops, both ΔM_R at zero H and ΔM_S at the maximum H, defined as the difference between ΔM_R and ΔM_S between any Φ_{CEA} and zero Φ_{CEA}, also increased with Φ_{CEA}, as depicted in Fig. 5b, c. Each of the parameters ΔM_R and ΔM_S increased to 0.009 and 0.17 emu/g for a Φ_{CEA} of 10 ppm.

To quantify the detected Φ_{CEA} amount and to improve the capability of distinguishing the small measured values of M, the parameters $\Delta M_R/M_R$ and $\Delta M_S/M_S$ were used. In addition to the increase in the variation of ΔM_R or ΔM_S with Φ_{CEA}, both $\Delta M_R/M_R$ and $\Delta M_S/M_S$, represented as $\Delta M/M$, can be expressed by a characteristic logistic function Φ_{CEA}, as shown in Fig. 6a, b [28, 29, 19]:

$$\Delta M/M = (A - B)/(1 + [(\Phi_{CEA})/\Phi_0]^y) + B \quad (2)$$

where A, B, and y are dimensionless quantities, and Φ_0 is the dimensional concentration. The parameters A, B, y, and Φ_0 for the fitting curve were -0.2, 30.1, 0.5, and 3222.7 ppm for $x = R$ and 0.018, 83.3, 0.63, and 2874 ppm, respectively, for $x = S$.

A comparison of Fig. 4a, b, and c shows that χ_{ac} decreased, and M, which was related to the dc magnetic susceptibility, increased after the assaying of the CEA solutions. The opposite variations of the ac and dc magnetic susceptibilities are attributed to the presence of magnetic clusters. The verification performed in this study was for the increase in τ_{eff} during conjugation, consistent with similar assays of C-reactive proteins [30]. Yang et al. [31] conducted a study on temperature-dependent immunoreaction kinetics of the BMN assay for biomarkers of colorectal cancer. They observed a gradual increase in the mean diameter of the magnetic nanoparticles from 41.53 to 45.13 nm after the reagent and CEA solution were mixed. Their results suggested the presence of magnetic clusters in the reagents. Here, the diameter of the magnetic cluster might be considerably greater than 45.13 nm, as indicated in Fig. 1. However, the magnetic clusters were confined to a limited part of the entire Fe$_3$O$_4$-anti-CEA reagent. Therefore, the observed increase in the mean diameter of the mixture, consisting of the Fe$_3$O$_4$-anti-CEA reagent and CEA solution, was small, even though individual magnetic clusters showed a considerably larger increase.

Consequently, in Fig. 5, the higher the Φ_{CEA} value, the larger the ΔM_R and ΔM_S values. However, for small values of ΔM_R or ΔM_S, it is difficult to determine the Φ_{CEA} amount because of the small difference between ΔM_R and ΔM_S. The parameter ΔM_R was scattered and negative when Φ_{CEA} was smaller than 0.1 ppm. The reason is that the system noise intensity was greater than the intensity of the signal for the low Φ_{CEA}. Consequently, $\Delta M_R/M_R$ or $\Delta M_S/M_S$ with larger values than ΔM_R or ΔM_S was used to obtain a characteristic logistic function of Φ_{CEA}. These relationships were identified for assaying the amount of

![Image of hysteresis loop measurement scheme using a VSM](image-url)
Fig. 4 The magnetic measurements of χ_{ac} and the hysteresis loop for mixing 40 μL of the Fe$_3$O$_4$-anti-CEA reagent with 60 μL and 10 ppm of a CEA solution. a The dynamic measurement of χ_{ac} with time. b Before and c after the measurement of χ_{ac}, the measurement of the hysteresis loop for only the Fe$_3$O$_4$-anti-CEA reagent as well as the mixture of the same reagent and the CEAs.

Fig. 5 The dependence of magnetic characteristics of on Φ_{CEA} from 0.01 to 10 ppm. a One part of the hysteresis loop, the M variation with H, under different Φ_{CEA}. b ΔM_S and c ΔM_R as a function of Φ_{CEA}.
CEAs. In particular, because of having higher values than $\Delta M_R/M_R$, it is suggested that $\Delta M_S/M_S$ can be used to enhance the discrimination capability of Φ_{CEA} in magnetic immunoassays. In Fig. 5b, c, the detection limits of $\Delta M_R/M_R$ and $\Delta M_S/M_S$ are 0.1 and 0.01 ppm, respectively. For the mixture of the Fe$_3$O$_4$-anti-CEA reagent and CEAs, if the mixing conditions such as the concentration or volume of each material can be optimized instead of the IMR condition, the detection limit can be improved for a Φ value of 0.005 ppm. This study performed a more detailed investigation compared with a previous study [32]; the investigation included validating and comparing the analysis of $\Delta M_R/M_R$ and $\Delta M_S/M_S$, determining the immunoassay capability of the Fe$_3$O$_4$-anti-CEA reagent by tissue staining, and verifying the presence of magnetic clusters through an analysis of the effective relaxation time. Moreover, the biomarker studied here was also different from that studied previously [32].

The major clinical objectives of assaying CEAs are to screen a colorectal cancer, evaluate the effect of colorectal carcinoma treatment, identify recurrences after surgical resection, and control the spread of cancer. Although a variety of developed immunoassay methodologies exist, such as enzyme-linked immunoassays [33, 34], Western blot immunoassay [35, 36], fluorescence in situ hybridization [37], and polymerase chain reactions [38], washing processes are always required to avoid inaccuracies in the optical examination of sample interference colors. This results in the immunoassays being time-consuming and requiring large manpower. In this study, the magnetic detection platform using BMNs neither depends on the color of biological samples nor requires washing. The established relationship between $\Delta M_S/M_S$ and Φ_{CEA} followed a characteristic logistic function and was used for the determination of the CEA amount. The proposed method can be applied to the analysis of other biotargets once the relationship between $\Delta M_S/M_S$ and $\Phi_{biotargets}$ is established.

Conclusions

A detection mechanism was proposed to show that M_S for BMNs consisting of Fe$_3$O$_4$-anti-CEAs increased after conjugation with CEAs. Hysteresis loops were measured and analyzed to determine $\Delta M_R/M_R$ and $\Delta M_S/M_S$. $\Delta M_S/M_S$ showed higher sensitivity and greater discrimination capability than $\Delta M_R/M_R$ for assaying CEAs. Consequently, the CEA amount could be determined using the relationship between $\Delta M_S/M_S$ and Φ_{CEA}, expressed by a universal characteristic logistic function. This methodology has the potential to be used for other targets; for this purpose, magnetic reagents used in other magnetic immunoassays can be used with the VSM, and no specific instrument is required for applying the methodology to magnetic immunoassays.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

KWH designed the molecular study. JJC designed the measurement study and wrote the paper. JCS and MHC conducted the experiment. All authors read and approved the final manuscript.

Acknowledgments

This study was supported by the National Science Council of Taiwan (NSC100-2221-E-003-013, NSC 103-2923-M-003-002, NSC 103-2111-M-003-002), the Ministry of Health and Welfare (MOHW103-TDU-N-211-133002), the Aim for the Top University Plan of National Taiwan Normal University, and the Ministry of Education, Taiwan, R.O.C. (103J1A27).

Author details

1Institute of Electro-Optical Science and Technology, National Taiwan Normal University, 116 Taipei, Taiwan.
2Department of Surgery and Hepatitis Research Center, National Taiwan University Hospital, 100 Taipei, Taiwan.
3Graduate Institute of Clinical Medicine, National Taiwan University, 100 Taipei, Taiwan.
4Department of Anatomy and Cell Biology, National Taiwan University, 100 Taipei, Taiwan.
Received: 3 April 2015 Accepted: 30 May 2015
Published online: 03 July 2015

References
1. Lewin A, Carlesso M, Tung N, Tang CH, Cory JW, Scadden DT, et al. Tat peptide-derivated magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnol. 2000;18:410–4.
2. Gleich B, Weizenecker J. Tomographic imaging using the nonlinear response of magnetic particles. Nature. 2005;435:1214–7.
3. Yang SY, Sun JS, Liu CH, Tsuang YH, Chen LT, Hong CY, et al. Ex vivo magnetofection with magnetic nanoparticles: a normal platform for nonviral tissue engineering. Artificial Organ. 2007;32:195–204.
4. Wu CC, Lin LY, Lin LC, Huang HC, Liu YB, Tsai MC, et al. Bio-functionalized magnetic nanoparticles for in-vitro labeling and in-vivo locating specific bio-molecules. Appl Phys Lett. 2008;92:142504.
5. Oghabian MA, Gharahgoghi N, Aminmohseni S, Khoei S, Guti M. Detection sensitivity of lymph nodes of various sizes using USPIO nanoparticles in magnetic resonance imaging. Nanomed-Nanotechnol. 2010;6:496–9.
6. Yang HC, Liao SH, Huang KW, Chieh JJ, Chen HH, Chen MJ, et al. Enhancing the tumor discrimination using antibody-activated magnetic nanoparticles in low magnetic fields. Appl Phys Lett. 2013;102:013119.
7. Chiu MJ, Yang SY, Horng HE, Yang CC, Chen TF, Chieh JJ, et al. Combined plasma biomarkers for diagnosing mild cognition impairment and Alzheimer’s disease. ACS Chem Neurosci. 2013;4:1530–6.
8. Huang KW, Chieh JJ, Hong HE, Hong CY, Yang HC. Characteristics of magnetic labeling on liver tumors with anti-alpha-fetoprotein-mediated Fe3O4 magnetic nanoparticles. Intern J Nanomed. 2012;7:2987–96.
9. Chieh JJ, Huang KW, Lee YD, Horng HE, Hong CY, Hong HC. In vivo screening of hepatocellular carcinoma using alpha-acetylated anti-alpha-fetoprotein activated magnetic nanoparticles. PLoS ONE. 2012;7:e46756.
10. Müller S. Magnetic fluid hyperthermia therapy for malignant brain tumors—an ethical discussion. Nanomed-Nanotechnol. 2009;5:387–93.
11. Lee SK, Myers WR, Grossman HL, Cho HM, Chemla YR, Clarke J. Magnetic gradiometer based on a high-transition temperature superconducting quantum interference device for improved sensitivity of a biosensor. Appl Phys Lett. 2002;81:3094–6.
12. Weitschies W, Kotitz R, Bunte T, Trahms L. Determination of relaxing or superconducting-quantum-interference-device-based immunomagnetic detection of human C-reactive protein. Appl Phys Lett. 2006;88(25):252505.
13. Enpuku K, Minotani T, Gima T, Kuroki Y, Itoh Y, Yamashita M, et al. Detection of magnetic nanoparticles with superconducting quantum interference device (SQUID) magnetometer and application to immunoassays. Jpn J Appl Phys. 1999;38:1102–5.
14. Enpuku K, Inoue K, Soe JK, Yoshinaga K, Kuma H, Hamasaki N. Magnetic immunoassays utilizing magnetic markers and a high-Tc SQUID. IEEE Trans Appl Supercond. 2005;15:5660–3.
15. Hong HE, Yang SY, Hong CY, Liu CM, Tsai PS, Yang HC, et al. Biofunctionalized magnetic nanoparticles for high-sensitivity immunomagnetic detection of human C-reactive protein. Appl Phys Lett. 2006;88(25):252505.
16. Lee H, Sun E, Ham D, Weissleder R, Chip–NMR biosensor for detection and molecular analysis of cells. Nat Med. 2008;14:869–74.
17. Shao H, Min C, Issadore D, Loring M, Yoon TJ, Weissleder R, et al. Magnetic nanoparticles and microNMR for diagnostic applications. Theranostics. 2012;2:65–85.
18. Yang CC, Yang SY, Chieh JJ, Horng HE, Hong CY, Yang HC. Universal behavior of bio-molecule-concentration dependent reduction in ac magnetic susceptibility of bio-reactents. IEEE Trans Magn. 2012;48:1500104.
19. Hong CY, Wu CC, Chiu YC, Yang SY, Horng HE, Yang HC. Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl Phys Lett. 2006;88(21):212512.
20. Yang SY, Chieh JJ, Wang WC, Yu CY, Hing NS, Horng HE, et al. Magnetic nanoparticles for high-sensitivity detection on nucleic acids via superconducting-quantum-interference-device-based immunomagnetic reduction assay. J Magn Mater. 2011;323:681–5.
21. Yang CC, Yang SY, Chen HH, Weng WL, Horng HE, Chieh JJ, et al. Effect of molecule-particle binding on the reduction in the mixed-frequency ac magnetic susceptibility of bio-reactents. J Appl Phys. 2012;112:024704.
22. Yang SY, Yang CC, Horng HE, Shin BY, Chieh JJ, Hong CY, et al. Experimental study on low-detection limit for immunomagnetic reduction assays by manipulating the reagents entities. IEEE Trans Nanobioscience. 2013;12:65–8.
23. Gehlenborg N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.
24. B K, Lin Q, Foo TW, Joshi S, You T, Shem HM, et al. Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics. 2006;5:1119–30.
25. Wikipedia, the free encyclopedia. Creative Commons Attribution-ShareAlike License, 2014; http://en.wikipedia.org/wiki/Fluorescein_isothiocyanate. Modified 30 November 2014.
26. Rosenweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–4.
27. Weaver JB, Kuehler E. Measurement of magnetic nanoparticle relaxation time. Med Phys. 2012;39:2765–70.
28. Healy MIR. Statistical analysis of radioimmunoassay data. Biochem J. 1972;130:207–10.
29. Frantzen F, Faaen AL, Althoff I, Nordhei AK. Enzyme conversion immunoassay for determining total homocysteine in plasma or serum. Clin Chem. 1998;44:311.
30. Liao SH, Yang HC, Horng HE, Chieh JJ, Chen KL, Chen HL, et al. Time-dependent phase lag of biofunctionalized magnetic nanoparticles conjugated with biotargets studied with alternating current magnetic susceptometer for liquid phase immunoassays. Appl Phys Lett. 2013;103:243704.
31. Yang SY, Chang JF, Chen TC, Yang CC, Ho CS. Study of the temperature dependent immuno-reaction kinetics for the bio-functionalized magnetic nanoparticle assay of bio-markers of colorectal cancer. Appl Phys Lett. 2014;104:013702.
32. Chieh JJ, Huang KW, Shi JC. Sub-tissue-field magnetization of vibrated magnetic nanoparticles for screening tumor markers. Appl Phys Lett. 2015;106:073703.
33. Yang YL, Yang SH, Kuo YJ, Lin JK, Lin TC, et al. Carcinoembryonic antigen (CEA) level, CEA ratio, and treatment outcome of rectal cancer patients receiving pre-operative chemoradiation and surgery. Radiat Oncol. 2013;8:43.
34. Engvall E, Perlman P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunology. 1971;8:71–4.
35. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76:4350–4.
36. Renart J, Reiser J, Stark GB. Transfer of proteins from gels to diazobenzoyloxyethyl-paper and detection with antiseria: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci U S A. 1979;76:3116–20.
37. Langer-Safer PR, Levine M, Ward DC. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A. 1982;79:4381–5.
38. Amarni R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol. 2008;6:339–48.