A Critical Review of the Availability, Reliability, and Ecological Relevance of Arctic Species Toxicity Tests for Use in Environmental Risk Assessment

Supplemental Information

Rebecca J. Eldridge a,b, Benjamin P. de Jourdan a, Mark L. Hanson b *

a Huntsman Marine Science Centre, St. Andrews, New Brunswick, Canada
b Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
* Address correspondence to mark.hanson@umanitoba.ca
| Study Number | Authors | Year | Title | Journal | Included / Excluded | Notes |
|--------------|---------|------|-------|---------|---------------------|-------|
| 1 | Andersen, Ø., Frantzen, M., Rosland, M., Timmerhaus, G., Skugor, A., Krasnov, A. | 2015 | Effects of crude oil exposure and elevated temperature on the liver transcriptome of polar cod (*Boreogadus saida*) | Aquatic Toxicology 165, 9-18. | Included | a |
| 2 | Braune, B. M., Scheuhammer, A. M., Crump, D., Jones, S., Porter, E., and Bond, D. | 2012 | Toxicity of methylmercury injected into eggs of thick-billed murres and Arctic terns | Ecotoxicology 21, 2143-2152. | Included | |
| 3 | Busdosh, M. and Atlas, R. M. | 1977 | Toxicity of oil slicks to Arctic amphipods | Arctic 30, 85-92. | Included | a |
| 4 | Camus, L., Brooks, S., Geraudie, P., Hjorth, M., Nahrgang, J., Olsen, G. H., Smit, M. G. D. | 2015 | Comparison of produced water toxicity to Arctic and temperate species | Ecotoxicology and Environmental Safety 113, 248-258. | Included | |
| 5 | Carls, M.G. and Korn, S. | 1983 | Sensitivity of arctic amphipods and fish to petroleum hydrocarbons | Proceedings of the Tenth Annual Aquatic Toxicity Workshop, Halifax, NS, November 7-10, 1983. Ottawa, Ontario: Environment Canada. | Included | |
| 6 | Desforges, J.-P., Levin, M., Jasperse, L., De Guise, S., Eulaers, I., Letcher, R. J., Acquarone, M., Nordoy, E., Folkow, L. P., Jensen, T. H., Grondahl, C., Bertelsen, M. F., Leger, J. S., Almunia, J., Sonne, C., Dietz, R. | 2017 | Effects of polar bear and killer whale derived contaminant cocktails on marine mammal immunity | Environmental Science and Technology 51, 11431-11439. | Included | |
| 7 | Dussauze, M., Camus, L., Le Floch, S., Pichavant-Rafini, K., Geraudie P., Coquille, N., Amerand, A., Lemaire, P., Theron, M. | 2014 | Impact of dispersed fuel oil on cardiac mitochondrial function in polar cod *Boreogadus saida* | Environmental Science and Pollution Research 21(24), 13779-13788. | Included | |
| 8 | Engelhardt, R. | 1981 | Oil pollution in polar bears: exposure and clinical effects | Proceedings of the Arctic Marine Oil Spill Program Technical Seminar, Edmonton, AB, June 16-18, 1981. Ottawa, Ontario: Environment Canada. | Included | a |
| Study Number | Authors | Year | Title | Journal | Included / Excluded | Notes |
|--------------|---------|------|-------|---------|---------------------|-------|
| 9 | Engelhardt, R. | 1983 | Behavioural responses of benthic invertebrates exposed to dispersed crude oil | Proceedings of the Arctic Marine Oil Spill Program Technical Seminar, Edmonton, AB, June 14-16, 1983. Ottawa, Ontario: Environment Canada. | Included | a |
| 10 | Faksness, L.-G., Borseth, J. F., Baussant, T., Hansen, B. H., Altin, D., Tandberg, A. H. S., Ingvarsdottr, A., Aarab, N., Nordtug, T. | 2011 | The effects of different oil spill cleanup technologies on body burden and biomarkers in Arctic marine organisms – a laboratory study | Proceedings of the Arctic Marine Oil Spill Program Technical Seminar, Banff, AB, October 4-6, 2011. Ottawa, Ontario: Environment Canada. | Included | a |
| 11 | Foy, M. D., Sekarak, A. | 1978 | Acute lethal toxicity of oil/dispersant mixtures to selected Arctic species | Proceedings of the Arctic Marine Oil Spill Program Technical Seminar, Edmonton, AB, March 15-17, 1978. Ottawa, Ontario: Environment Canada. | Included | |
| 12 | Foy, M. G. | 1979 | Acute lethal toxicity of Prudhoe Bay Crude Oil and Corexit 9527 to Arctic marine invertebrates and fish from Frobisher Bay, N.W.T. | Proceedings of the Arctic Marine Oil Spill Program Technical Seminar, Edmonton, AB, March 7-9, 1979. Ottawa, Ontario: Environment Canada. | Included | |
| 13 | Frantzen, M., Falk-Petersen, I.-B., Nahrgang, J., Smith, T. J., Olsen, G. H., Hangstad, T. A., Camus, L. | 2012 | Toxicity of crude oil and pyrene to the embryos of beach spawning capelin (*Mallotus villosus*) | Aquatic Toxicology 108, 42-52. | Included | |
| 14 | Frouin, H., Loseto, L. L. et al. | 2012 | Mercury toxicity in beluga whale lymphocytes: limited effects of selenium protection | Aquatic Toxicology 109, 185-193. | Included | |
| 15 | Gardiner, W. W., Word, J. Q., Word, J. D., Perkins, R. A., McFarlin, K. M., Hester, B. W., Word, L. S., Ray, C. M. | 2013 | The acute toxicity of chemically and physically dispersed crude oil to key Arctic species under Arctic conditions during the open water season | Environmental Toxicology and Chemistry 32, 2284-2300. | Included | |
| 16 | Geraudie, P., Nahrgang, J., Forget-Leray, J., Minier, C., Camus, L. | 2014 | In vivo effects of environmental concentrations of produced water on the reproductive function of polar cod (*Boreogadus saida*) | Journal of Toxicology and Environmental Health Part A 77(9-11), 557-573. | Included | |
| Study Number | Authors | Year | Title | Journal | Included / Excluded | Notes |
|--------------|---------|------|-------|---------|---------------------|-------|
| 17 | Grenvald, J. C., Nielsen, T. G., Hjorth, M. | 2013 | Effects of pyrene exposure and temperature on early development of two co-existing Arctic copepods | *Ecotoxicology* 22, 184-198. | Included | |
| 18 | Hansen, B. H., Nordtug, N., Altin, D., Booth, A., Hessen, K. M., Olsen, A. J. | 2009 | Gene expression of GST and CYP330A1 in lipid-rich and lipid poor female *Calanus finmarchicus* (Copepoda: Crustacea) exposed to dispersed crude oil | *Journal of Toxicology and Environmental Health Part A* 72, 131-139. | Included | |
| 19 | Hansen, B. H., Altin, D., Rorvik, S. F., Overjordet, I. B., Olsen, A. J., Nordtug, T. | 2011 | Comparative study on acute effects of water accommodated fractions of an artificially weathered crude oil on *Calanus finmarchicus* and *Calanus glacialis* (Crustacea: Copepoda) | *Science of the Total Environment* 409, 704-709. | Included | |
| 20 | Hansen, B. H., Altin, D., Olsen, A. J., Nordtug, T. | 2012 | Acute toxicity of naturally and chemically dispersed oil on the filter-feeding copepod *Calanus finmarchicus* | *Ecotoxicology and Environmental Safety* 86, 38-46. | Included | |
| 21 | Hansen B.H., Altin D., Rørvik S. Øverjordet, I., Jager T., and Nordtug T. | 2013 | Acute exposure of water soluble fractions of marine diesel on Arctic *Calanus glacialis* and boreal *Calanus finmarchicus*: Effects on survival and biomarker response | *Science of the Total Environment* 449, 276-284. | Included | |
| 22 | Hansen, B. H., Altin, D., Bonaunet, K., Overjordet, I. B. | 2014 | Acute toxicity of eight oil spill response chemicals to temperate, boreal, and Arctic species | *Journal of Toxicology and Environmental Health Part A* 77, 495-505. | Included | |
| 23 | Hjorth, M. and Nielsen, T. G. | 2011 | Oil exposure in a warmer Arctic: Potential impacts on key zooplankton species | *Marine Biology* 158(6), 1339-1347. | Included | |
| 24 | Hsiao, S. I. C. | 1978 | Effects of crude oils on the growth of Arctic marine phytoplankton | *Environmental Pollution* 17, 93-107. | Included | |
| 25 | Jensen, M.H., Nielsen, T.G., Dahlöf, I., | 2008 | Effects of pyrene on grazing and reproduction of *Calanus finmarchicus* and *Calanus glacialis* from Disko Bay, West Greenland | *Aquatic Toxicology* 87, 99-107. | Included | |
| 26 | Jensen, L. K., Carroll, J. | 2010 | Experimental studies of reproduction and feeding for two Arctic-dwelling *Calanus* species exposed to crude oil | *Aquatic Biology* 10, 261-271. | Included | |

Note: Additional studies are listed with the authors' names and years but their titles and journal information are not provided.
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
27	Laurel, B. J., Copeman, L. A., Iseri, P., Spencer, M. L., Hutchinson, G., Nordtug, T., Donald, C. E., Meier, S., Allan, S. E., Boyd, D. T., Yiitalo, G. M., Cameron, J. R., French, B. L., Linbo, T. L., Scholz, N. L., Incardona, J. P.	2019	Embryonic crude oil exposure impairs growth and lipid allocation in a keystone Arctic forage fish	iScience 19, 1101-1113.	Included	
28	Lemcke, S., Holding, J., Moller, E. F., Thyrring, J., Gustavson, K. Juul-Pedersen, T., Sejr, M. K.	2018	Acute oil exposure reduces physiological process rates in Arctic phyto- and zooplankton	Ecotoxicology 28, 26-36.	Included	
29	Levin, M., E. Gebhard, L. Jasperse, J.-P. Desforges, R. Dietz, C. Sonne, I. Eulaers, A. Covaci, R. Bossi and S. De Guise	2016	Immunomodulatory effects of exposure to polychlorinated biphenyls and perfluoroalkyl acids in East Greenland ringed seals (*Pusa hispida*)	Environmental Research 151, 244-250.	Included	
30	Moore, Dana	2016	Toxicity of salts, metals, and nitrogenous contaminants to cold-water fish under northern conditions (Chapter 2)	Unpublished doctoral dissertation	Included	
31	Moore, Dana	2016	Toxicity of salts, metals, and nitrogenous contaminants to cold-water fish under northern conditions (Chapter 3)	Unpublished doctoral dissertation	Included	
32	Moore, Dana	2016	Toxicity of salts, metals, and nitrogenous contaminants to cold-water fish under northern conditions (Chapter 4)	Unpublished doctoral dissertation	Included	
33	Moore, Dana	2016	Toxicity of salts, metals, and nitrogenous contaminants to cold-water fish under northern conditions (Chapter 5)	Unpublished doctoral dissertation	Included	
34	Nahrgang, J., Dubourg, P., Frantzen, M.	2016	Early life stages of an Arctic keystone species (*Boreogadus saida*) show high sensitivity to a water-soluble fraction of crude oil	Environmental Pollution 218, 605-614.	Included	
35	Norregaard, R. D., Nielsen, T. G., Moller, E. F., Strand, J., Espersen, L., Mohl, M.	2014	Evaluating pyrene toxicity on Arctic key copepod species *Calanus hyperboreus*	Ecotoxicology 23, 163-174.	Included	
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
36	O'Brien, J. W.	1978	Toxicity of Prudhoe Bay crude oil to Alaskan Arctic zooplankton	Arctic 31(3), 219-228.	Included	
37	Olsen, G. H., Smit, M. G. D., Carroll, J., Jaeger, I., Smith, T., Camus, L.	2011	Arctic versus temperate comparison of risk assessment metrics for 2-methyl-naphthalene	Marine Environmental Research 72, 179-187.	Included	
38	Olsen, A. J., Nordtug, T., Altin, D., Lervik, M., Hansen, B. J.	2013	Effects of dispersed oil on reproduction in the cold water copepod Calanus finmarchicus (Gunnerus)	Environmental Toxicology and Chemistry 32(9), 2045-2055.	Included	
39	Overjordet, I. B., Altin, D., Berg, T., Jenssen, B. M., Gabrielsen, G. W., Hansen, B. H.	2013	Acute and sub-lethal response to mercury in Arctic and boreal calanoid copepods	Aquatic Toxicology 155, 160-165.	Included	
40	Palace, V. P., Allen-Gil, S. M., Brown, S. B., Evans, R. E., Metner, D. A., Landers, D. H., Lawrence, C. R., Klaiverkamp, J. F., Baron, C. L., Lockhart, W. L.	2001	Vitamin and thyroid status in arctic grayling (Thymallus arcticus) exposed to doses of 3,3',4,4'-tetrachlorobiphenyl that induce the phase I enzyme system	Chemosphere 45(2), 185-193.	Included	
41	Pančić, M., Köhler, E., Paulsen, M. L., Toxvaerd, K., Lacroix, C., Le Floch, S., Hjorth, M., Nielsen, T. G.	2019	Effects of oil spill response technologies on marine microorganisms in the high Arctic	Marine Environmental Research 151, 104785.	Included	
42	Percy, J. A. and Mullin, T. C.	1975	Effects of crude oils on Arctic marine invertebrates	Beaufort Sea Technical Report No. 11. Victoria, BC: Department of the Environment.	Included	
43	Percy, J. A. & Mullin, T. C.	1977	Effects of crude oil on the locomotory activity of Arctic marine invertebrates	Marine Pollution Bulletin 8(2), 35-40.	Included	
44	Petersen, D. G., Reichenberg, F., and Dahlloff, I.	2008	Phototoxicity of pyrene affects benthic algae and bacteria from the Arctic	Environmental Science and Technology 42, 1371-1376.	Included	
45	Riebell, P. N. and Percy, J. A.	1989	Acute toxicity of petroleum hydrocarbons to the Arctic littoral mysid, Mysis oculata (fabricus)	Proceedings of the Arctic Marine Oil Spill Program Technical Seminar, Calgary, AB, June 7-9, 1989. Ottawa, Ontario: Environment Canada.	Included	
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
-------------	---	------	--	--	---------------------	----------------------------
46	Rodríguez-Torres, R., Almeda, R., Kristiansen, M., Rist, S., Winding, M. S., Nielsen, T. G.	2020	Ingestion and impact of microplastics on Arctic Calanus copepods	Aquatic Toxicology 228, 105631.	Included	
47	Szczybelski, A. S., van den Heuvel-Grave, M. J., Koelmans, A. A., van den Brink, N. W.	2019	Biomarker responses and biotransformation capacity in Arctic and temperate benthic species exposed to polycyclic aromatic hydrocarbons	Science of the Total Environment 662, 631-638.	Included	
48	Thyrring, J., Juhl, B. K., Holmstrup, M.	2015	Does acute lead (Pb) contamination influence membrane fatty acid composition and freeze tolerance in intertidal blue mussels in Arctic Greenland?	Ecotoxicology 24, 2036-2042.	Included	
49	Toxvaerd, K., Dinh, K. V., Henriksen, O., Hjorth, M., Nielsen, T. G.	2018	Impact of pyrene exposure during overwintering of the Arctic copepod Calanus glacialis	Environmental Science and Technology 52, 10328-10336.	Included	a
50	Toxvaerd, K., Pancic, M., Eide, H. O., Soreide, J. E., Lacroix, C., Le Floch, S., Hjorth, M., Nielsen, T. G.	2018	Effects of oil spill response technologies on the physiological performance of the Arctic copepod Calanus glacialis	Aquatic Toxicology 199, 65-76.	Included	
51	Toxvaerd, K., Dinh, K. V., Henriksen, O., Hjorth, M., Nielsen, T. G.	2019	Delayed effects of pyrene exposure during overwintering on the Arctic copepod Calanus hyperboreus	Aquatic Toxicology 217, 105332.	Included	a
52	Bejarano, A. C., Gardiner, W. W., Barron, M. G., Word, J. Q.	2017	Relative sensitivity of Arctic species to physically and chemically dispersed oil determined from three hydrocarbon measures of aquatic toxicity	Marine Pollution Bulletin 122, 316-322.	Excluded	Not original tox data
53	Krumhansl, K. A., Krkosek, W. H., Greenwood, M. M., Ragush, C., Schmidt, J., Grant, J., Barrell, J., Lu, L., Lam, B., Gagnon, G. A., Jamieson, R. C.	2015	Assessment of Arctic community wastewater impacts on marine benthic invertebrates	Environmental Science and Technology 49, 760-766	Excluded	Monitoring data
54	Chapman, P. M., Riddle, M. J.	2003	Missing and needed: Polar marine ecotoxicology	Marine Pollution Bulletin 46, 927-928	Excluded	Editorial; no original lab data
55	Chapman, P. M., Riddle, M. J.	2005	Toxic effects of contaminants in polar marine environments	Environmental Science and Technology 39, 200A-206A	Excluded	Editorial; no original lab data
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
56	De Hoop, L., Schipper, A. M., Leuven, R. S. E. W., Huijbregts, M. A. J., Olsen, G. H., Smit, M. G. D., Hendriks, A. J.	2011	Sensitivity of polar and temperate marine organisms to oil components	Environmental Science and Technology 45, 9017-9023	Excluded	SSDs; no original data
57	Dietz, R., Letcher, J. R., Desforges, J.-P. et al.	2019	Current state of knowledge on biological effects from contaminants on arctic wildlife and fish	Science of the Total Environment 696, 133792	Excluded	Review; no original data
58	Blevin, P., Angelier, F., Tartu, S., Ruault, S., Bustamante, P., Moe, B., Bech, C., Gabrielsen, G. W., Bustnes, J. O., Chastel, O.	2016	Exposure to oxychlordane is associated with shorter telomeres in arctic breeding kittiwakes	Science of the Total Environment 563, 125-130	Excluded	Original Monitoring data
59	Blevin, P., Tartu, S., Ellis, H. I., Chastel, O., Bustamante, P., Parenteau, C., Herzke, D., Angelier, F., Gabrielsen, G. W.	2017	Contaminants and energy expenditure in an Arctic seabird: organochlorine pesticides and perfluoroalkyl substances are associated with metabolic rate in a contrasted manner	Environmental Research 157, 118-126	Excluded	Monitoring data
60	Dietz, R., Sonne C. et al.	2013	What are the toxicological effects of mercury in Arctic biota?	Science of the Total Environment 443, 775-790	Excluded	Review; no original data; data included is Monitoring data
61	Erikstad, K. E., Moum, T., Bustnes, J. O., Reierson, T. K.	2010	High levels of organochlorines may affect hatching sex ratio and hatching body mass in Arctic glaucous gulls	Functional Ecology 25, 289-296	Excluded	Monitoring data
62	Fisk, A. T., de Wit, C. A.	2005	An assessment of the toxicological significance of anthropogenic contaminants in Canadian Arctic wildlife	Science of the Total Environment 351, 57-93	Excluded	Monitoring data
63	Goutte, A., Barbraud, C. et al.	2015	Survival rate and breeding outputs in a high Arctic seabird exposed to legacy persistent organic pollutants and mercury	Environmental Pollution 200, 1-9	Excluded	Monitoring data
64	Hansen, B., Jager, T., Altin, D., Overjordet, I., Olsen, A., Salaberry, I. et al.	2016	Acute toxicity of dispersed crude oil on the cold-water copepod Calanus finmarchicus: Elusive implications of lipid content	Journal of Toxicology and Environmental Health Part A 79, 13-15, 549-557	Excluded	No original tox data (further investigations of toxic mechanisms from previous studies)
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
------------	---	------	--	--	---------------------	--------------------------------
65	Gustavson, L., Ciesielski, T. M., Bytinskvik, J., Styrishave, B., Hansen, M., Lie, E., Aars, J., Jenssen, B. M.	2015	Hydroxylated polychlorinated biphenyls decrease circulating steroids in female polar bears (Ursus maritimus)	Environmental Research 138, 191-201	Excluded	Monitoring data
66	Gutleb, A.C., P. Cenijn, M. van Velzen, E. Lie, E. Ropstad, J.U. Skaare, T. Malmer, A. Bergman, G.W. Gabrielsen and J. Legler	2010	In vitro assay shows that PCB metabolites completely saturate thyroid hormone transport capacity in blood of wild polar bears (Ursus maritimus).	Environmental Science and Technology 44, 3149-3154	Excluded	Monitoring data
67	Haarr,A., K. Hylland, N. Eckbo, G.W. Gabrielsen, J.O. Bustnes, D. Herzke, P. Blevin, O. Chastel, S.A. Hanssen, B. Moe, K. Sagerup and K. Borgå	2018	DNA damage in breeding Arctic seabirds: Baseline, sensitivity to oxidative stress and association to organohalogen contaminants	Environmental Toxicology and Chemistry 37, 1084-1091	Excluded	Monitoring data
68	Hallanger, I.G., E.H. Jorgensen, E. Fuglei, O. Ahlstrom, D.C.G. Muir and B.M. Jenssen	2012	Dietary contaminant exposure affects plasma testosterone, but not thyroid hormones, vitamin A, and vitamin E, in male juvenile foxes (Vulpes lagopus)	Journal of Toxicology and Environmental Health A 75, 1298-1313	Excluded	Not marine/aquatic
69	Hargreaves, A.L., D.P. Whiteside and G, Gilchrist	2010	Concentrations of 17 elements, including mercury, and their relationship to fitness measures in arctic shorebirds and vitamin their eggs	Science of the Total Environment 408, 3153-3161	Excluded	Monitoring data
70	Hegseth, Marit Nøst; Camus, Lionel; Helgason, Lisa Bjørnsdatter; Bocchetti, Raffaela; Gabrielsen, Geir Wing; Regoli, Francesco	2011a	Hepatic antioxidant responses related to levels of PCBs and metals in chicks of three Arctic seabird species	Comparative Biochemistry and Physiology - Part C 154, 28-35	Excluded	Monitoring data
71	Hegseth, Marit Nøst; Camus, Lionel; Gorbi, Stefania; Regoli, Francesco; Gabrielsen, Geir W	2011c	Effects of exposure to halogenated organic compounds combined with dietary restrictions on the antioxidant defense system in herring gull chicks	Science of the Total Environment 409, 2717-2724	Excluded	Natural exposure/not deliberate tox data/not quantifiable for tox endpoints
72	Hegseth, Marit Nøst; Gorbi, Stefania; Bocchetti, Raffaela; Camus, Lionel; Gabrielsen, Geir Wing; Regoli, Francesco.	2014	Effects of contaminant exposure and food restriction on hepatic autophagic lysosomal parameters in herring gull (Larus argentatus) chicks	Comparative Biochemistry and Physiology - Part C 164, 43-50	Excluded	Natural exposure/not deliberate tox data/not quantifiable for tox endpoints
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
73	Heinz, G., D.J. Hoffman, J. Klimstra, K. Stebbins, S. Konrad and C. Erwin	2009	Species differences in the sensitivity of avian embryos to methylmercury	Archives of Environmental Contamination and Toxicology 56, 129-138	Excluded	Not Arctic
74	Helgason, L.B., J. Verreault, B.M. Braune, K. Borgå, R. Primicerio, B.M. Jenssen and G.W. Gabrielsen	2010	Relationship between persistent halogenated organic contaminants and TCDD-toxic equivalents on EROD activity and retinoid and thyroid hormone status in northern fulmars	Science of the Total Environment 408, 6117-6123	Excluded	Monitoring data
75	Hylland, K., Aspholm, O. O., Knutsen, J. A., and Ruus, A.	2006	Biomarkers in fish from dioxin-contaminated fjords	Biomarkers 11, 97-117	Excluded	Monitoring data
76	Knott, K.K., P. Schenk, S. Beyerlein, D. Boyd, G.M. Ylitalo and T.M. O'Hara	2011	Blood-based biomarkers of selenium and thyroid status indicate possible adverse biological effects of mercury and polychlorinated biphenyls in Southern Beaufort Sea polar bears	Environmental Research 111, 1124-1136	Excluded	Monitoring data
77	Krey, A., M. Kwan and H.M. Chan, 2014	In vivo and in vitro changes in neurochemical parameters related to mercury concentrations from specific brain regions of polar bears (Ursus maritimus)	Environmental Toxicology and Chemistry 33, 2463-2471	Excluded	Monitoring data	
78	Krey, A., S.K. Ostertag and H.M. Chan	2015	Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic	Science of the Total Environment 15, 237-247	Excluded	Monitoring data
79	Kuzyk, Z.A., P.V. Hodson, S.M. Solomon and K.J. Reimer	2005	Biological responses to PCB exposure in shorthorn sculpin from Sagleek Bay, Labrador	Science of the Total Environment 351-352, 285-300	Excluded	Monitoring data
80	Letcher, R.J., J.O. Bustnes, R. Dietz, B.M. Jenssen, E.H. Jørgensen, C. Sonne, J. Verreault, M.M. Vijayan and G.W. Gabrielsen	2010	Exposure and effects assessment of persistent organohalogen contaminants in Arctic wildlife and fish	Science of the Total Environment 408, 2995-3043	Excluded	Review on Monitoring data
81	Nomiyama, K., S. Hirakawa, A. Eguchi, C. Kanbara, D. Imaeda, J. Yoo, T. Kunisue, E.-Y. Kim, H. Iwato and S. Tanabe	2014	Toxicological assessment of polychlorinated biphenyls and their metabolites in the liver of Baikal seal (Pusa sibirica)	Environmental Science and Technology 48, 13530-13539	Excluded	Monitoring data
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
82	Bäckman, O. Pelkonen, M. Tysklind, T. Hirvi and E. Helle	2003	Contaminant exposure and effects in Baltic ringed and grey seals as assessed by biomarkers	Marine Environmental Research 55, 73-99	Excluded	Monitoring data
83	Oskam, I., E. Ropstad, E. Lie, A. Derocher, Ø. Wiig, E. Dahl, S. Larsen and J.U. Skaare	2004	Organochlorines affect the steroid hormone cortisol in free-ranging polar bears (Ursus maritimus) at Svalbard, Norway	Journal of Toxicology and Environmental Health A 67, 959-977	Excluded	NO ACCESS
84	Provencher, J.F., M.R. Forbes, H.L. Hennin, O.P. Love, B.M. Braune, M.L. Mallory and H.G. Gilchrist	2016	Implications of mercury and lead concentrations on breeding physiology and phenology in an Arctic bird	Environmental Pollution 218, 1014-1022	Excluded	Monitoring data
85	Sonne, C., P.S. Leifsson, R.Dietz, E.W. Born, R.J. Letcher, L. Hyldstrup, F.F. Riget, M. Kirkegaard, D.C.G Muir	2006b	Xenoendocrine pollutants may reduce size of sexual organs in East Greenland polar bears (Ursus maritimus)	Environmental Science and Technology 40, 5668-5674	Excluded	Monitoring data
86	Sonne, C., M. Kirkegaard, J. Jacobsen, B.M. Jenssen, R.J. Letcher and R. Dietz	2014a	Altered 25-hydroxyvitamin D3 in liver tissue from Greenland sledge dogs (Canis familiaris) dietary exposed to organohalogen polluted minke whale (Balaenoptera acutirostrata) blubber	Ecotoxicology and Environmental Safety 104, 403-408	Excluded	Not Arctic test species
87	Sonne, C., R. Dietz, F.F. Rigét, R.J. Letcher, K. Munk Pedersen and B. Styrishave	2014b	Steroid hormones in blood plasma from Greenland sledge dogs (Canis familiaris) dietary exposed to organohalogen polluted minke whale (Balaenoptera acutirostrata) blubber	Toxicology and Environmental Chemistry 96, 273-286	Excluded	Not Arctic test species
88	Tartu, S., Lendvai, A., Blevin, P., Herzke, D., Bustamante, P., Moe, B., Gabrielsen, G.W., Bustnes, J.O. and O. Chastel	2015b	Increased adrenal responsiveness and delayed hatching date in relation to polychlorinated biphenyl (PCB exposure in Arctic breeding black-legged kittiwakes (Rissa tridactyla).	General and Comparative Endocrinology 219, 165-172	Excluded	Monitoring data
89	van den Berghe, M., L. Weijs, S. Habran, K. Das, C. Bugli and S. Pillet	2013	Effects of polychlorobiphenyls, polybromodiphenyl ethers, organochlorine pesticides and their metabolites on vitamin A status in lactating grey seals	Environmental Research 120, 18-26	Excluded	Monitoring data
90	Verboven, N., J. Verreault, R.J. Letcher, G.W. Gabrielsen and N. Evans	2009	Nest temperature and incubation behavior of arctic-breeding glaucous gulls exposed to persistent organic pollutants	Animal Behaviour 77, 411-418	Excluded	Monitoring data
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
91	Verreault, J., J.U. Skaare, B.M. Jenssen and G.W. Gabrielsen	2004	Effects of organochlorine contaminants on thyroid hormone levels in Arctic breeding glaucous gulls, *Larus hyperboreus*	*Environmental Health Perspectives* 112, 532-537	Excluded	Monitoring data
92	Villanger, G.D., K.M. Gabrielsen, K.M. Kovacs, C. Lydersen, E. Lie and M. Karimi,	2013	Effects of complex organohalogen contaminant mixtures on thyroid homeostasis in hooded seal (*Cystophora cristata*) mother-pup pairs.	*Chemosphere* 92, 828-842.	Excluded	Monitoring data
93	Wren, C.D., D.B. Hunter, J.F. Leatherland and P.M. Stokes	1987	The effects of polychlorinated biphenyls and methylmercury, singly and in combination, on mink. I: Uptake and toxic responses	*Archives of Environmental Contamination and Toxicology* 16, 441-447.	Excluded	Not in an Arctic context, not aquatic/marine
94	Braithwaite, L.F., Aley, M.G. and Slater, D.L.	1983	The effects of oil on the feeding mechanism of the bowhead whale.	Anchorage, AK; USDOI, MMS, Alaska OCS Region.	Excluded	Not publicly accessible
95	Carrasco-Navarro v. Jaeger I., Honlanen J., Kukkonen, J., Carroll J., and Camus L.	2015	Bioconcentration, biotransformation and elimination of pyrene in the arctic crustacean *Gammarus setosus* (Amphipoda) at two temperatures.	*Marine Environmental Research* 110, 101-109	Excluded	Monitoring data
96	Harvey H.R., Taylor K.A., Pie H.V., and Mitchelmore C.L.	2013	Polycyclic aromatic and aliphatic hydrocarbons in Chukchi Sea biota and sediments and their toxicological response in the Arctic cod, *Boreogadus saida*	*Deep Sea Research Part II* 102, 32-55	Excluded	Monitoring data
97	Heintz R.A., Short J.W., and Rice S.D.	1999	Sensitivity of fish embryos to weathered crude oil: Part II. Increased mortality of pink salmon (*Oncorhynchus gorbuscha*) embryos incubating downstream from weathered Exxon Valdez crude oil.	*Environmental Toxicology and Chemistry* 18(3), 494-503	Excluded	Not in an Arctic context
98	Hodson, P.V., Khan C.W., Saravanabhavan G., Clarke L., Brown R.S., Hollebone, B., Wang, Z., Short, J., Lee, K., King, T.	2007	Alkyl PAH in crude oil cause chronic toxicity to early life stages of fish	*Proceedings of the Arctic and Marine Oil Spill Program*, Edmonton, AB, June 5-7, Ottawa, Ontario: Environment Canada.	Excluded	Not Arctic species
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
99	Nordtug T., Olsen A., Altn D., Overrein I., Stoøy W., Hansen B., and De Laender F.	2011	Oil droplets do not affect assimilation and survival probability of first feeding larvae of northeast Arctic cod	Science of the Total Environment 412-413, 148-153	Excluded	Atlantic cod (Gadus morhua) not Arctic cod (Boreogadus saida); species and temperatures do not reflect exposures in an Arctic context
100	Rogstad, T. W., Sonne, C., Villanger, G. D., Ahistom, O., Fuglei, E., Muir, D., Jorgensen, E., Munro Jenssen, B.	2017	Concentrations of vitamin A, E, thyroid and testosterone hormones in blood plasma and tissues from emaciated adult male Arctic foxes (Vulpes lagopus) dietary exposed to persistent organic pollutants (POPs)	Environmental Research 154, 284-290	Excluded	Original data but not marine/aquatic
101	Ørland N., Englehardt F., Juck F., Hurst R., and 1 other author.	1981	Effect of crude oil on polar bears.	Environmental Studies No. 24, Northern Affairs Program, Ottawa Canada.	Excluded	Not publicly accessible
102	Smith, T. and Geraci J.	1975	The effect of contact and ingestion of crude oil on ringed seals of the Beaufort Sea	Beaufort Sea Technical Report 1975, Department of Environment: Victoria, B.C.	Excluded	Interim report without final results
103	Bechmann, R. K., Larsen, B. K., Taban, I. C., Hellgren, L. I., Moller, P., Sanni, S.	2010	Chronic exposure of adults and embryos of Pandalus borealis to oil causes PAH accumulation, initiation of biomarker responses and an increase in larval mortality	Marine Pollution Bulletin 60, 2087-2098	Excluded	Not in an Arctic context
104	Sundt, R. C., Pampanin, D. M., Grung, M., Barsiene, J., Ruus, A.	2011	PAH body burden and biomarker responses in mussels (Mytilus edulis) exposed to produced water from a North Sea oil field: Laboratory and field assessments	Marine Pollution Bulletin 62, 1498-1505	Excluded	Not in an Arctic context
105	Olsen, G. H., Carroll, M. L	2007	Benthic community response to petroleum associated components in Arctic versus temperate marine sediments	Marine Biology 151, 2167-2176	Excluded	Monitoring data
106	Paine, M. D., Leggett, W. C., McRuer, J. K., Frank, K. T.	1992	Effects of Hibernia crude oil on capelin (Mallotus villosus) embryos and larvae	Marine Environmental Research 33(3), 159-187	Excluded	Not in an Arctic context
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
107	Kirkegaard, M., Sonne, C., Dietz, R., Letcher, R. J., Jensen, A. L, Hansen, S. S., Jenssen, B. M., Grandjean, P.	2011	Alterations in thyroid hormone status in Greenland sledge dogs exposed to whale blubber contaminated with organohalogen compounds	Ecotoxicology and Environmental Safety 74, 157-163	Excluded	Not Arctic test species
108	Kirkegaard, M., Sonne, C., Jakobsen, J., Jenssen, B. M., Letcher, R. J., Dietz, R.	2010	Organohalogen in a whale-blubber-supplemented diet affects hepatic retinol and renal tocopherol concentrations in Greenland sled dogs (Canis familiaris)	Journal of Toxicology and Environmental Health Part A Current Issues 73, 773-786	Excluded	Not Arctic species
109	Sonne, C., Wolkers, H., Leifsson, P. S., Ibarg, T., Jenssen, B. M., Fuglei, E., Ahlstrom, O., Dietz, R., Kirkegaard, M., Muir, D. C. G., Jorgensen, E. H.	2009	Chronic dietary exposure to environmental organochlorine contaminants induces thyroid gland lesions in Arctic foxes (Vulpes lagopus)	Environmental Research 109(6), 702-711	Excluded	Histopathology; not tox data
110	Sonne, C., Wolkers, H., Leifsson, P. S., Ibarg, T., Jenssen, B. M., Fuglei, E., Ahlstrom, O., Dietz, R., Kirkegaard, M., Muir, D. C. G., Jorgensen, E. H.	2009	Mineral density and biomechanical properties of bone tissue from male Arctic foxes (Vulpes lagopus) exposed to organochlorine contaminants and emaciation	Comparative Biochemistry and Physiology Part C 149(1), 97-103	Excluded	Not tox data
111	Trudel, K.	1978	Effects of crude oil and crude oil/Corexit 9527 suspensions on carbon fixation by a marine phytoplankton community	Proceedings of the Arctic and Marine Oil Spill Program, Edmonton, AB, March 15-17, 1978. Ottawa, Ontario: Environment Canada.	Excluded	Not Arctic species or in an Arctic context
112	Duval, W.	1979	The sublethal effects of hydrocarbons on the bioenergetics and productivity of selected marine fauna	Proceedings of the Arctic and Marine Oil Spill Program, Edmonton, AB, March 15-17, 1979. Ottawa, Ontario: Environment Canada.	Excluded	Not Arctic species; no hard data in abstract
113	Wells, P. G. and Harris, G. W.	1980	The acute toxicity of dispersants and chemically dispersed oil	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not Arctic species
114	Fink, R. P. and Duval, W. S.	1980	Sublethal and lethal effects of the water-soluble fraction of Prudhoe Bay crude oil on juvenile Cotto salmon (Oncorhynchus kisutch)	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not Arctic species
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
115	Peakall, D., Gilman, A. P.	1980	The sublethal effects of oil dispersants on seabirds	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Summary of research; hard data published elsewhere
116	Andersen, J. W., Kiesser, S. L., Riley, R. G., Thomas, B. L., Bean, R. M.	1980	Toxicity of chemically dispersed oil to shrimp exposed to constant and decreasing concentrations in a flowing system	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not in an Arctic context
117	Fink, R. P., Harwood, L. A., Duval, W. S.	1981	The sublethal effects of dispersed crude oil on an estuarine isopod	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not Arctic species or in an Arctic context
118	Lambert, G. and Peakall, D. B.	1981	Thermoregulatory metabolism in mallard ducks exposed to crude oil and dispersant	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not Arctic species or in an Arctic context
119	Sheppard, E. P. and Georgiou, P.	1981	The mutagenicity of Prudhoe Bay crude oil and its burn residues	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not toxicity tests
120	Lehtinen, K.-J., Suomalainen, S., Lehtinen, C., Mattsson, J., Reiland, S., Linden, O.	1982	Physiological effects on fish chronically exposed to low levels of petroleum hydrocarbons	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not in an Arctic context
121	Nes, H. and Norland, S.	1983	Effectiveness and toxicity of oil dispersants	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not in an Arctic context or with Arctic species
122	Bardot, C., Bocard, C., Castaing, G., Gatellier, C.	1984	The importance of a dilution process to evaluate effectiveness and toxicity of chemical dispersants	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not in an Arctic context or with Arctic species
123	Bobra, A. M., Abernethy, S., Wells, P. G. and Mackay, D.	1984	Recent toxicity studies at the University of Toronto	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not in an Arctic context or with Arctic species
124	Lockhart, W. L., Billeck, B. N., Danell, R. W., deMarch, B. G. E., Duncan, D. A.	1984	Comparative toxicity of several oil/dispersant mixtures to representative freshwater organisms	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not in an Arctic context or with Arctic species
125	Sveum, P. and Sendstad, E.	1985	Oil polluted seaweeds in the Arctic: Short term effects on decomposers and fate of the oil	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not toxicity data
126	McAuliffe, C. D.	1986	Organism exposure to volatile hydrocarbons from untreated and chemically dispersed crude oils in field and laboratory	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Review of studies
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
127	Bakke, T.	1986	Experimental long term oil pollution in a Boreal rocky shore environment	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not in an Arctic context
128	Klokk, T.	1986	Effects of oil and clean-up methods on shoreline vegetation	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not in an Arctic context
129	Sveum, P.	1987	Fate and effects of dispersed and non dispersed oil on Arctic mud flats	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Monitoring data; not tox data
130	Crowell, M. J. and Lane, P. A.	1988	Recovery of a Nova Scotian saltmarsh during two growing seasons following experimental spills of crude oil and the dispersant Corexit 9527	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not Arctic
131	Carter, J. and Ernst, R.	1989	Tainting in sea scallops (*Placopecten magellanicus*) exposed to the water-soluble fraction of crude oil and natural gas condensate	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not in an Arctic context
132	Jenssen, B. M., Ekker, M., Vongraven, D., Silverstone, M.	1991	Body weight development and thermoregulation of oil-contaminated grey seal pups (*Halichoerus grypud*) at the Froan Archipelago, Norway	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 10-11, 1991. Ottawa, Ontario: Environment Canada.	Excluded	Field study
133	Lockhart, W. L. and Metner, D. A.	1991	Oil-sensitive biomarker studies of fish from Arctic Canada	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 10-11, 1991. Ottawa, Ontario: Environment Canada.	Excluded	Summary of studies
134	Lockhart, W. L. and Danell, R. W.	1992	Field and experimental tainting of Arctic freshwater fish by crude and refined petroleum products	Proceedings of the Arctic and Marine Oil Spill Program, Edmonton, AB, June 10-12, 1992. Ottawa, Ontario: Environment Canada.	Excluded	Not toxicology data
135	Ackman, R. G. and Heras, H.	1992	Tainting by short-term exposure of Atlantic salmon to water soluble petroleum hydrocarbons	Proceedings of the Arctic and Marine Oil Spill Program, Edmonton, AB, June 10-12, 1992. Ottawa, Ontario: Environment Canada.	Excluded	Not toxicology data
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
136	Daykin, M., Sergy, G., Aurand, D., Shigenaka, G., Wang, Z., Tang, A.	1994	Aquatic toxicity resulting from in situ burning of oil-on-water	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 8-10, 1994, Ottawa, Ontario: Environment Canada.	Excluded	Not Arctic species or in an Arctic context
137	Vandermeulen, J. H., Vignier, V., Mossman, D.	1994	Toxicology of Hibernia crude oil in parr and smolt of Atlantic salmon (Salmo salar)	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 8-10, 1994. Ottawa, Ontario: Environment Canada.	Excluded	Not in an Arctic context
138	Coelho, G. M., Bragin, G. E., Aurand, D. V., Clark, J. R., Wright, D. A.	1995	Field and laboratory investigation of the toxicity of physically and chemically dispersed oil	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 8-10, 1994. Ottawa, Ontario: Environment Canada.	Excluded	Not Arctic species or in an Arctic context
139	Singer, M. M., George, S., Jacobsopn, S., Weetman, L. L., Blondina, G., Tjeerdema, R. S., Aurand, D., Sowby, M. L.	1996	Evaluation of the aquatic effects of crude oil, dispersants, and their mixtures	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Overview of papers in the field
140	Lockhart, W. L., Billeck, B. N., Evans, R. E., Danell, R. A., Carneiro, J.	1996	Toxicology studies with a high-boiling lubricating oil (Esstic 46 CF) used in a hydroelectric generating station	Proceedings of the Arctic and Marine Oil Spill Program	Excluded	Not Arctic species or in an Arctic context
141	Lockart, W. L., Duncan, D. A., Billeck, B. N., Danell, R. A., Ryan, M. J.	1997	Chronic toxicity of the ‘water-soluble fraction’ of Norman Wells crude oil to juvenile fish	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 11-13, 1997. Ottawa, Ontario: Environment Canada.	Excluded	Not Arctic species or in an Arctic context
142	Blenkinsopp, S. and Sergy, G.	1997	Evaluation of the toxicity of the weathered crude oil used at the Newfoundland offshore burn experiment (NOBE) and the resultant burn residue	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 11-13, 1997. Ottawa, Ontario: Environment Canada.	Excluded	Not Arctic species or in an Arctic context
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
143	Fuller, C., Bonner, J., McDonald, T., Page, C., Bragin, G., Clark, J., Aurand, D., Hernandez, A., Ernest, A.	1999	Comparative toxicity of simulated beach sediments impacted with both whole and chemical dispersions of weathered Arabian medium crude oil	Proceedings of the Arctic and Marine Oil Spill Program, Calgary, AB, June 2-4, 1997. Ottawa, Ontario: Environment Canada.	Excluded	Not Arctic species or in an Arctic context
144	Brakstad, O. G., Faksness, L.-G., Stokland, O., Altin, D., and Singsaas, I.	2000	Disappearance and biological effects of crude oils after sedimentation on subtidal soft-bottom seabed sediments: Experiments in a laboratory seabed mesocosm	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 14-16, 2000. Ottawa, Ontario: Environment Canada.	Excluded	Not tox data
145	Armsworthy, S., Cranford, P. J., Tremblay, G. H., and Lee, K.	2000	Chronic toxicity of Orimulsion to the sea scallop Placopecten magellanicus: influences on survival, feeding, digestion and growth	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 14-16, 2000. Ottawa, Ontario: Environment Canada.	Excluded	Not in an Arctic context
146	McFarlin, K. M., Perkins, R. A., Leigh, M. B.	2012	The effects of crude oil and Corexit 9500 on the indigenous Arctic microbial community	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 5-7, 2012. Ottawa, Ontario: Environment Canada.	Excluded	No results (results pending)
147	McFarlin, K. M., Perkins, R. A., Leigh, M. B.	2014	Oil biodegradation by Arctic marine microorganisms	Proceedings of the Arctic and Marine Oil Spill Program, Canmore, AB, June 3-5, 2014. Ottawa, Ontario: Environment Canada.	Excluded	Not tox data
148	Dussauze et al.	2014	Effect of dispersed oil on fish cardiac tissue respiration: A comparison between a temperate (Dicentrarchus labrax) and an arctic (Boreogadus saida) species	Proceedings of the Arctic and Marine Oil Spill Program, Canmore, AB, June 3-5, 2014. Ottawa, Ontario: Environment Canada.	Excluded	Same study as paper assessed already (conference abstract)
149	Percy, J. A.	1977	Responses of Arctic marine benthic crustaceans to sediments contaminated with crude oil	Environmental Pollution 13, 1-10	Excluded	Same study as paper assessed already (conference abstract)
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
150	Rice, S. D., Short, J. W., Karinen, J. F.	1976	Toxicity of Cook Inlet crude oil and No. 2 fuel oil to several Alaskan marine fishes and invertebrates	In Sources, Effects, and Sinks of Hydrocarbons in the Aquatic Environment Proc. Symp., American University, Washington D. C., pp. 394-406	Excluded	Not publicly accessible
151	Rice, S. D., Short, J. W., Brodersen, C. C., Mecklenburg, T. A., Moles, D. A., Misch, C. J., Cheatham, D. L., and Karinen, J. F.	1976	Acute toxicity and uptake-depuration studies with Cook Inlet crude oil, Prudhoe Bay crude oil, No. 2 fuel oil and several subarctic marine organisms	NWFC Processed Report, National Marine Fisheries Service. Seattle. 90 p.	Excluded	Not publicly accessible
152	Schneider, D. E.	1980	Physiological responses of arctic epibenthic invertebrates to winter stresses and exposure to Prudhoe Bay crude oil dispersions	In Environmental Assessment of the Alaskan Continental Shelf, Annual Reports of Principal Investigators, Vol. 1, Receptors – Birds, Plankton, Littoral, Benthos. Boulder, CO: USDOC, NOAA, OCSEAP, pp. 413-474	Excluded	Not publicly accessible
153	Mageau, C., Engelhardt, F. R., Gilfillan, E. S. and Boehm, P. D.	1987	Effects of short-term exposure to dispersed oil in Arctic invertebrates	Arctic 40(1), 62-171	Excluded	Already assessed this study in the form of a conference paper
154	McFarlin, K. M. and Perkins, R. A.	2011	Toxicity of physically and chemically dispersed oil to selected Arctic species	2011 International Oil Spill Conference	Excluded	Already assessed this study in a paper published by a different author
155	Cross, W. E.	1982	In situ studies of the effects of oil and dispersed oil on primary productivity of ice algae and on under-ice amphipod communities	In Special Studies – 1981 study results, Baffin Island Oil Spill Working Report 81-10: 61 p.	Excluded	Monitoring data; not publicly accessible but data published in Cross & Martin 1987 (below) and NA
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
156	Cross, W. E. and Martin, C. M.	1983	In situ studies of the effects of oil and chemically treated oil on primary productivity of ice algae and on under-ice microfauna and macrofaunal communities	In: Special studies – 1982 study results, Baffin Island Oil Spill Working Report 82-7, 103 p.	Excluded	Monitoring data; not publicly accessible but data published in Cross & Martin 1987 (below) and NA
157	Cross, W. E. and Martin, C. M.	1987	Effects of oil and chemically treated oil on nearshore under-ice meiofauna studied in situ	Arctic 40, 258-265	Excluded	
158	Hsiao, S. I. C., Kittle, D. W., and Foy, M. G.	1978	Effects of crude oils and the oil dispersant Corexit on primary production of Arctic marine phytoplankton and seaweed	Environmental Pollution 15, 209-221	Excluded	Monitoring data
159	Federle, T. W., Vestal, J. R., Hater, G. R., Miller, M. C.	1979	Effects of Prudhoe bay crude oil on primary production and zooplankton in Arctic tundra thaw ponds	Marine Environmental Research 2(1), 3-18	Excluded	Field study
160	Miller, M. C., Hater, G. R., Vestal, J. R.	1977	Effect of Prudhoe crude oil on carbon assimilation by planktonic algae in an Arctic pond	In Environmental Chemistry and Cycling Processes, Pine Ridge, TN.	Excluded	Field study
161	Bergstein, P. E. and Vestal, J. R.	1978	Crude oil biodegradation in Arctic tundra ponds	Arctic 31(3), 153-411	Excluded	Field study
162	Jordan, M. J., Hobbie, J. E., Peterson, B. J.	1978	Effect of petroleum hydrocarbons on microbial populations in an Arctic lake	Arctic 31(3), 153-411	Excluded	Field study
163	Miller, M. C., Alexander, V., Barsdate, R. J.	1978	The effects of oil spills on phytoplankton in an Arctic lake and ponds	Arctic 31(3), 192-218	Excluded	Field study
164	Mozley, S. C. and Butler, M. G.	1978	Effects of crude oil on aquatic insects of tundra ponds	Arctic 31(3), 229-241	Excluded	Field study
165	Walker, D. A., Webber, P. J., Everett, K. R., Brown, J.	1978	Effects of crude and diesel spills on plant communities at Prudhoe Bay, Alaska, and the derivation of oil spill sensitivity maps	Arctic 31(3), 242-259	Excluded	Field study
166	McFarlin, K. M., Perkins, R. A.	2010	Evaluating the biodegradability and effects of dispersed oil using Arctic test species and conditions: Phase I activities	Proceedings of the Arctic and Marine Oil Spill Program, Halifax, NS, June 7-9, 2010. Ottawa, Ontario: Environment Canada.	Excluded	Not tox data
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
167	McFarlin, K. M., Perkins, R. A.	2011	Evaluating the biodegradability and effects of dispersed oil using Arctic test species and conditions: Phase II activities	Proceedings of the Arctic and Marine Oil Spill Program, Banff, AB, June 4-6, 2011. Ottawa, Ontario: Environment Canada.	Excluded	Not tox data
168	Perkins, R. A.	2000	Selection of potential cold water marine species for testing of oil, dispersants, and chemically dispersed oil	Proceedings of the Arctic and Marine Oil Spill Program, Vancouver, BC, June 14-16, 2000. Ottawa, Ontario: Environment Canada.	Excluded	Not tox data
169	Gerlich, H. S., Holmstrup, M., Bjerregaard, P., Slotsbo, S.	2020	Mercury (Hg2+) interferes with physiological adaptations to freezing in the arctic earthworm Enchytraeus albidus	Ecotoxicology and Environmental Safety 204, 111005.	Excluded	Terrestrial
170	Reinardy, H. C., Pedersen, K. B., Nahrgang, J., Frantzen, M.	2019	Effects of mine tailings exposure on early life stages of Atlantic cod.	Environmental Toxicology and Chemistry 38(7), 1446-1454	Excluded	Not an Arctic test species
171	Caputo, S., Papale, M., Rizzo, C., Giannarelli, S., Conte, A., Moscheo, F., Graziano, M., Aspholm, P. E., Onor, M., De Domenico, E., Misericocchi, S., Michaud, L., Azzaro, M., Lo Guidice, A.	2019	Metal resistance in bacteria from contaminated Arctic sediment is driven by metal local inputs.	Archives of Environmental Contamination and Toxicology 77(2), 291-307	Excluded	Monitoring data
172	Brown, J., Whiteley, N. M., Bailey, A. M., Graham, H., Hop, H., Rastrick, S. P. S.	2020	Contrasting responses to salinity and future ocean acidification in Arctic populations of the amphipod Gammarus setosus.	Marine Environmental Research 162, 105176	Excluded	Not tox data
173	Brix, K. V., Baker, J., Morris, W., Ferry, K., Pettem, C., Elphick, J., Tear, L. M., Napier, R., Adzic, M., DeForest, D. K.	2021	Effects of maternally transferred egg selenium on embryo-larval survival, growth, and development in Arctic grayling (Thymallus arcticus).	Environmental Toxicology and Chemistry 40(2), 380-389	Excluded	Monitoring data
174	Rowlands, E., Galloway, T., Manno, C.	2021	A Polar outlook: Potential interactions of micro- and nano-plastic with other anthropogenic stressors.	Science of the Total Environment 754, 142379	Excluded	Not tox data
Study Number	Authors	Year	Title	Journal	Included / Excluded	Notes
--------------	---------	------	-------	---------	---------------------	-------
175	Camus, L., Smit, M. G. D.	2019	Environmental effects of Arctic oil spills and spill response technologies, introduction to a 5 year joint industry effort.	Marine Environmental Research 144, 250-254	Excluded	Not tox data
176	Fahd, F., Veitch, B., Khan, F.	2020	Risk assessment of Arctic aquatic species using ecotoxicological biomarkers and Bayesian network.	Marine Pollution Bulletin 156, 111212	Excluded	Modelling data
177	Pacyna-Kuchta, A. D., Jakubas, D., Frankowski, M., Polkowska, Z., Wojczulanis-Jakubas, K.	2020	Exposure of a small Arctic seabird, the little auk (*Alle alle*) breeding in Svalbard, to selected elements throughout the course of a year.	Science of the Total Environment 732, 139103	Excluded	Monitoring data
178	Mirimin, L., Hickey, A., Barrett, D., DeFaolite, F., Boschetti, S., Venkatesh, S., Graham, G. T.	2020	Environmental DNA detection of Arctic char (*Salvelinus alpinus*) in Irish lakes: Development and application of a species-specific molecular assay.	Environmental DNA 2(2), 221-233	Excluded	Monitoring data
179	Hansen, B. H., Sorensen, L., Storseth, T. R., Nepstad, R., Altin, D., Krause, D., Meier, S., Nordtug, T.	2019	Embryonic exposure to produced water can cause cardiac toxicity and deformations in Atlantic cod (*Gadus morhua*) and haddock (*Melanogrammus aeglefinus*) larvae.	Marine Environmental Research 148, 81-86	Excluded	Not Arctic test species
180	Jain, A., Krishnan, K. P., Begum, N., Singh, A., Thomas, F. A., Gopinath, A.	2020	Response of bacterial communities from Kongsfjorden (Svalbard, Arctic Ocean) to macroalgal polysaccharide amendments.	Marine Environmental Research 155, 104874	Excluded	Not tox data

a Study includes post-exposure monitoring for recovery potential and/or latent effects observation.
Table S2: Justification of environmentally relevant concentrations of compounds tested on Arctic species from studies assessed in this review.

Substance	Environmentally Relevant Concentration Threshold	Justification	Study Number
OIL-RELATED CONTAMINANTS			
Chemical dispersant	< 1000 mg/L	Concentrations of dispersants in the water column after application in an oil spill are highly variable and difficult to measure. Estimates range from 5 mg/L (Negri et al., 2018) to 10 mg/L (Wells, 1984) based on measured concentrations in field experiments to 271 mg/L to 904 mg/L (Bejarano, 2018) based on worst-case exposure scenarios calculated from dispersant application rates over a depth of 0.01 m. Therefore, environmentally relevant concentrations for this review will capture the upper end of this range.	7b, 11a, 12b, 15b, 20b, 22b, 42b
Shoreline washing agent (SWA)	Based on exposure scenario	Data pertaining to concentrations of shoreline washing agents in the water column after application are not readily available as this substance is sprayed on the shoreline. If effort has been made to represent field conditions through exposure duration or scenario, study will be scored with a 1.	22a
Crude oil (mechanically dispersed or chemically dispersed)	Based on exposure scenario	Environmentally realistic concentrations of oil in an oil spill are highly variable depending on many factors. If effort has been made to represent field conditions through exposure concentration, duration, scenario (i.e., spiked decline over constant exposure), study will be scored with a 1.	1, 3b, 3c, 3d, 5a, 7a, 8, 9, 10, 11b, 12a, 13a, 15a, 18, 19, 20a, 20c, 24, 26, 27, 34, 36, 38, 41a, 41b, 41c, 42a, 43, 45a, 50
Heavy fuel oil	< 1000 µg/L TPH < 1000 µg/L THC	The vast majority (95%) of seawater samples taken after the Deepwater Horizon oil spill contained < 250 µg/L TPH (Wade et al., 2016); however, maximum values reached 11,400 mg/L (directly above wellhead; Sammarco et al., 2013). It has been reported that water column samples that were not directly above wellhead with concentrations above 1000 µg/L did not contain high concentrations of PAHs that correspond to these TPH measurements; thus, the TPHs measured were likely from non-petroleum, organic sources (Wade et al., 2016). For this reason, 1000 µg/L has been selected as the maximum environmentally relevant concentration threshold for these compounds.	28
Substance	Environmentally Relevant Concentration Threshold	Justification	Study Number
----------------------------	---	---	--------------
Pyrene	< 189 µg/L	Maximum reported concentration of PAHs measured in the water column after the Deepwater Horizon oil spill (Diercks, A.-R. et al., 2010).	13b, 17, 23, 25, 35, 44, 47, 49, 51
	< 1398 nM	This is the United States criteria for maximum allowable concentration of pyrene and seawater; therefore, concentrations up to this value (at least) are likely to occur (Grenvald et al., 2013).	
	Study-specific for sediment (see Szczbelski et al., 2019)	Concentrations are justified within the text based on concentrations of PAHs found in sediments near where the exposure was conducted.	
2-methylnaphthalene	< 189 µg/L	Maximum reported concentration of PAHs measured in the water column after the Deepwater Horizon oil spill (Diercks, A.-R. et al., 2010).	37
Naphthalene	< 189 µg/L	Maximum reported concentration of PAHs measured in the water column after the Deepwater Horizon oil spill (Diercks, A.-R. et al., 2010).	5b
Diesel (marine/Arctic)	< 1:10,000 dilution	Identified as an environmentally realistic worst-case scenario (Hansen et al., 2013).	3a, 21
Produced water	< 350 ng/L PAH	The composition of produced water is highly variable depending on many factors. Discharge is instantaneously diluted as it reaches the water column, where modelling predicts that concentrations of PAHs (a component of the discharge) can be 25 to 350 ng/L within one kilometre from the source, and 4 to 8 ng/L within five to ten kilometres from the source (Durell et al., 2006). Environmental relevance of concentrations from studies that report measured PAH values will use these values for scoring.	4, 16
	Any dilutions of concentrate	Any dilutions of concentrate as long as concentrate was made to mimic realistic discharge.	
INORGANIC CONTAMINANTS			
Methylmercury (MeHg)	1.41 µg/g dry weight in biota	Concentrations of methylmercury naturally occurring in the Arctic environment are not this high; however, this compound bioaccumulates in the tissues of organisms feeding at high trophic levels. This value was obtained as the maximum from concentrations of total mercury found in eggs of arctic seabirds (black-legged kittiwakes, northern fulmars, and thick-billed murres) between 1975 and 2003 (Braune, 2007).	2
	1 µg/g wet weight in biota	This value was obtained as the maximum from concentrations of total mercury found in arctic fish muscle between 1990 and 2009 (AMAP, 2011). Wet weight concentrations were not reported for birds.	
Total mercury (THg)	In solution: 2.9 ng/L	This is the highest value that was measured in surface seawater as a result of snowmelt deposition	39
Substance	Environmentally Relevant Concentration Threshold	Justification	Study Number
--------------------	--	--	--------------
Substances	In an Arctic region (Dommergue et al., 2010). The season in which this phenomenon occurs coincides with major biological events (i.e., phytoplankton blooms followed by zooplankton blooms); therefore, Arctic species will potentially encounter these concentrations of THg in seawater.		
Inorganic Mercury	Study-specific (see Frouin et al., 2012)	Bioaccumulation of Hg in marine mammals can reach high levels and be absorbed into every component of the body (organs, blood, tissues, and cells; Das et al. 2016). Chronic, low exposures over time can result in exceedingly high concentrations in biota. Due to the difficulty of defining a single threshold value for these complex interactions, thresholds for these compounds, and others where bioaccumulation is a significant factor to consider, will be based on study-specific scenarios.	14a
Organic Mercury	Study-specific (see Frouin et al., 2012)	Bioaccumulation of Hg in marine mammals can reach high levels and be absorbed into every component of the body (organs, blood, tissues, and cells; Das et al. 2016). Chronic, low exposures over time can result in exceedingly high concentrations in biota. Due to the difficulty of defining a single threshold value for these complex interactions, thresholds for these compounds, and others where bioaccumulation is a significant factor to consider, will be based on study-specific scenarios.	14b
Lead	< 3000 µg Pb/g dry weight	Range of possible uptake into soft tissue for the common mussel *Mytilus edulis* (Schulz-Baldes, 1974).	48
Microplastics	14,400 particles/L	The greatest concentration of microplastics found in Arctic snow (Bergmann et al., 2019).	46
Cl	640 mg/L	CCME Water Quality Guideline for the Protection of Aquatic Life (CCME, 2011).	30
Aluminum	21.2 µg/L	Maximum concentration measured in the field by Moore et al., 2016.	31, 32
Arsenic	5.0 µg/L	CCME Water Quality Guideline for the Protection of Aquatic Life (CCME, 2001).	31, 32
Cadmium	1.0 µg/L	CCME Water Quality Guideline for the Protection of Aquatic Life (CCME, 2014).	31, 32
Chromium	8.9 µg/L	CCME Water Quality Guideline for the Protection of Aquatic Life (CCME, 1999a).	31, 32
Copper	0.6 µg/L	Maximum concentration measured in the field by Moore et al., 2016.	31, 32
Nickel	18.5 µg/L	Maximum concentration measured in the field by Moore et al., 2016.	31, 32
Zinc	37 µg/L	CCME Water Quality Guideline for the Protection of Aquatic Life (CCME, 2018).	31, 32
NO2	5.83 mg/L	Maximum concentration measured in the field by Moore et al., 2016.	33
NO3	310 mg/L	Maximum concentration measured in the field by Moore et al., 2016.	33
Substance	Environmentally Relevant Concentration Threshold	Justification	Study Number
-----------	---	---------------	--------------
NH3 a	0.019 mg/L	CCME Water Quality Guideline for the Protection of Aquatic Life (CCME, 2010).	33
NH4 a	200 mg/L	Maximum concentration measured in the field by Moore et al., 2016.	33
Na2SO4	0.350 g/L	Maximum observed WQO measured in the field by Moore et al., 2016.	30
Na2MoO4	73 µg/L	CCME Water Quality Guideline for the Protection of Aquatic Life (CCME, 1999b).	30

PHENOLS AND FLAME RETARDANTS

Substance	Environmentally Relevant Concentration Threshold	Justification	Study Number
PCBs	In biota: 600 mg/kg lipid weight	PCBs measured in blubber have reached 574 mg/kg lipid weight (Buckman et al., 2011); therefore, the environmentally realistic concentration for this exposure scenario captures the upper end of this measurement.	6a, 6b, 40, 29a, 29b, 29c, 29d
Phenol	< 1000 µg/L	The maximum environmentally realistic concentration of total petroleum hydrocarbons, of which phenol is one when measured during an oil spill (see justification for crude oil)	45b

a Values are for acute exposure in freshwater environments to mirror the exposure scenario from this study.

b Value is for all compounds containing chloride; see Moore et al., 2016.
Table S3: Description of purity and/or grade of substances that have been tested on Arctic species from studies assessed in this review that do not have easily measured purities or grades.

Substance	Purity/Grade
Chemical dispersant	Artificially weathered (AWT), naturally weathered (NWT), or fresh (FR) will be reported as the purity. Weathering process and time included. Score will be given depending on reporting of dispersant type.
Oil or fuel	Weathered (WT) or fresh (FR) will be reported as the purity. Weathering process and time included. Score will be given depending on reporting of oil or fuel type.
Table S4: Relevant environmental parameters upon which scoring was based for organisms used as test species in studies assessed in this review.

Test Type	Organism Type	Minimum Parameters Identified
In vivo	Fish, crustaceans, other invertebrates, molluscs	Temperature and dissolved oxygen
	Primary producers	Temperature, light, photoperiod, pH
	Birds	Temperature
	Mammals	Temperature and dissolved oxygen
In vitro	All	Temperature, media type
Knowledge Gap	Recommendation	
--	--	
Lack of standard toxicity and recovery test methods for Arctic species.	Strive toward developing standard laboratory tests (whole organism and *in vitro*), and in the absence of standard tests provide a thorough description of what was modified from standard methods.	
Lack of toxicity data for Arctic-focused risk assessments in general, especially for some ecologically important groups.	Generate toxicity data using organisms that are likely the most sensitive first (i.e., algae). Emphasize the development and refinement of models and surrogates (e.g., temperate species) using these data and confirm protection with ongoing toxicity testing.	
Lack of diversity in compounds tested on Arctic organisms.	Design repeatable and reliable experiments using standard reference toxicants so that results can be compared across space and time.	
Inconsistencies in oil spill related research has led to a lack of comparability between studies, Arctic or otherwise.	Focus research on developing, validating, and refining laboratory methods and predictive effects models.	
Lack of highly relevant sublethal and chronic endpoints assessed in Arctic toxicity testing.	Prioritize the incorporation of these endpoints into future Arctic toxicity test protocols.	
Figure S1: Number of unique toxicity tests (n = 253) that met inclusion criteria outlined in the present review from 1975 to 2020. Blue line is cumulative output of toxicity tests over time. Spearman’s correlation coefficient (rho) = 0, p = 1.
Figure S2: Proportion of each compound group observed among all unique toxicity tests captured in this review (n = 253 as of June 2021) by decade.
Figure S3: Number of unique Arctic species toxicity tests captured in this review (n = 253 as of June 2021) by organism group, with organism type within bars (number below each bar is total number of unique tests).
Figure S4: Proportion of marine and freshwater unique toxicity tests captured in this review (n = 253 as of June 2021) by organism type (number below each bar is total number of unique tests).
Figure S5: Proportion of marine and freshwater unique toxicity tests captured in this review (n = 253 as of June 2021) by test compound group.
Figure S6: Scores (as percentage) over time ($n = 253$) for criterion group A (test substance) across all studies assessed in the present review. Spearman’s correlation coefficient (ρ) = 0.09, $p = 0.16$.
Figure S7: Scores (as a percentage) over time (n = 253) for criterion group B (test organism and test system) across all studies assessed in the present review. Spearman’s correlation coefficient (rho) = 0.65, p < 0.001.
Figure S8: Scores (as a percentage) over time (n = 253) for criterion group C (test design, statistics, and results) across all studies assessed in the present review. Spearman's correlation coefficient (rho) = 0.56, $p < 0.001$.
Figure S9: Overall scores (as a percentage) over time (n = 253) across all studies assessed in the present review. Spearman’s correlation coefficient (rho) = 0.5, $p < 0.001$.
Figure S10: Relationship between overall score and the journal impact factor at the time of publication across all studies assessed in the present review. Spearman’s correlation coefficient (rho) = 0.33, p < 0.00
Figure S11: Percentage of unique toxicity tests (n = 253 as of June 2021) that achieved a score of 1 for each criterion in Group A (test substance). Criterion 1: test substance purity and/or grade reported; Criterion 2: any measured concentrations analytically confirmed; Criterion 3: individual initial measured concentrations analytically confirmed; Criterion 4: individual final measured concentrations analytically confirmed; Criterion 5: greater than or equal to three concentrations tested, excluding control; Criterion 6: at least one ecologically relevant concentration tested.
Figure S12: Percentage of unique toxicity tests (n = 253 as of June 2021) that achieved a score of 1 for each criterion in Group B (test organism and test system). Criterion 7: strain or source identified; Criterion 8: initial test organism characteristics described; Criterion 9: standard protocol followed; Criterion 10: test conditions reported.
Figure S13: Percentage of unique toxicity tests (n = 253 as of June 2021) that achieved a score of 1 for each criterion in Group C (test design, statistics, and results). Criterion 11: greater than or equal to three replicates included; Criterion 12: statistical methods described; Criterion 13: concentration-response model and parameters provided; Criterion 14: raw data reported; Criterion 15: control values reported and criteria met.
Figure S14: Percentage of unique toxicity tests \((n = 253)\) that achieved a score of 1 in each critical study criterion outlined in the scoring rubric presented in this study. Number above each bar corresponds to percentage of tests with a score of 1 for that criterion.
Figure S15: Percentage of unique toxicity tests (n = 253) by organism type that achieved a score of 1 in each critical study criterion outlined in the scoring rubric presented in this study.
Figure S16: Relevance scores for all experimental combinations assessed in this study (i.e., test substance/test species/endpoint combinations, n = 596) by test substance type. Bars are standard error and letters above each column indicate statistical significance between groups ($p < 0.05$) based on Kruskal-Wallis rank sum tests.
Figure S17: Overall and relevance scores for all experimental combinations collected in this study by organism group (n = 596). Size of circle corresponds to number of studies. Numerical values in each quadrant refer to percentage of data points with a relevance score between 0 and 3 (inclusive) and an overall score of < 50% (bottom left quadrant) or > 50% (bottom right quadrant), and relevance score between 4 and 6 (inclusive) and an overall score of < 50% (top left quadrant) or > 50% (top right quadrant).
REFERENCES

Arctic Monitoring and Assessment Programme. (2011). Mercury in the Arctic. *Arctic Monitoring and Assessment Programme, Oslo, Norway.*

Bejarano, A. (2018). Critical review and analysis of aquatic toxicity data on oil spill dispersants. *Environmental Toxicology and Chemistry* 37(12), 2989-3001.

Bergmann, M., Mützel, S., Primpke, S., Tekman, M. B., Trachsel, J., Gerdts, G. (2019). White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. *Science Advances* 5, eaax1157.

Buckman, A. H.; Veldhoen, N.; Ellis, G.; Ford, J. K. B.; Helbing, C. C.; Ross, P. S. (2011). PCB-associated changes in mRNA expression in killer whales (*Orcinus orca*) from the NE Pacific Ocean. *Environmental Science and Technology* 45, 10194-10202.

Canadian Council of Ministers of the Environment. (1999a). Canadian Water Quality Guidelines for the Protection of Aquatic Life: Chromium. Winnipeg: Canadian Council of Ministers of the Environment.

Canadian Council of Ministers of the Environment. (1999b). Canadian Water Quality Guidelines for the Protection of Aquatic Life: Molybdenum. Winnipeg: Canadian Council of Ministers of the Environment.

Canadian Council of Ministers of the Environment. (2001). Canadian Water Quality Guidelines for the Protection of Aquatic Life: Arsenic. Winnipeg: Canadian Council of Ministers of the Environment.

Canadian Council of Ministers of the Environment. (2010). Canadian Water Quality Guidelines for the Protection of Aquatic Life: Ammonia. Winnipeg: Canadian Council of Ministers of the Environment.
Canadian Council of Ministers of the Environment. (2011). Canadian Water Quality Guidelines for the Protection of Aquatic Life: Chloride. Winnipeg: Canadian Council of Ministers of the Environment.

Canadian Council of Ministers of the Environment. (2014). Canadian Water Quality Guidelines for the Protection of Aquatic Life: Cadmium. Winnipeg: Canadian Council of Ministers of the Environment.

Canadian Council of Ministers of the Environment. (2018). Canadian Water Quality Guidelines for the Protection of Aquatic Life: Zinc. Winnipeg: Canadian Council of Ministers of the Environment.

Das, K., Dupont, A., De Pauw-Gillet, M.-C., Debier, C., Siebert, U. (2016). Absence of selenium protection against methylmercury toxicity in harbour seal leucocytes in vitro. Marine Pollution Bulletin, 108, 70-76.

Diercks, A.-R., Highsmith, R. C., Asper, V. L., Joung, D., Zhou, Z., Guo, L., Shiller, A. M., Joye, S. B., Teske, A. P., Guinasso, N., Wade, T. L., Lohrenz, S. E. (2010). Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophysical Research Letters 37(20).

Dommergue, C. Larose., C. Fain, O. Clarisse, D. Foucher, H., Hintelmann, D. Schneider, C. P. Ferrari. (2010). Deposition of mercury species in the Ny-Alesund area (79 degrees N) and their transfer during snowmelt. Environmental Science and Technology 44, 901-907.

Durell, G., Utvik, T. R., Johnsen, S., Frost, T., Neff, J. (2006). Oil well produced water discharges to the North Sea. Part I: Comparison of deployed mussels (Mytilus edulis), semi-permeable membrane devices, and the DREAM model predictions to estimate the dispersion of polycyclic aromatic hydrocarbons. Marine Environmental Research 62(3), 194-223.

Negri, A., Luter, H., Fisher, R., Brinkman, D., Irving, P. (2018). Comparative toxicity of five dispersants to coral larvae. Scientific Reports 8, 3043.
Sammarco, P. W., Kolian, S. R., Warby, R. A. F., Bouldin, J. L., Subra, W. A., Porter, S. A. (2013). Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon oil spill, Gulf of Mexico. *Marine Pollution Bulletin, 73*(1), 129-143.

Schulz-Baldes, M. (1974). Lead uptake from sea water and food, and lead loss in the common mussel *Mytilus edulis*. *Marine Biology, 25*, 177-193.

Wade, T. L., Sericano, J. L., Sweet, S. T., Knap, A. H., Guinasso, N. L. (2016). Spatial and temporal distribution of water column total polycyclic aromatic hydrocarbons (PAH) and total petroleum hydrocarbons (TPH) from the Deepwater Horizon (Macondo) incident. *Marine Pollution Bulletin, 103*(1-2), 286-293.

Wells, P. (1984). The toxicity of oil spill dispersants to marine organisms: a current perspective. Oil Spill Chemical Dispersants: Research, Experience, and Recommendations. *ASTM International, 177-202.*