NOTE ABOUT STIEFEL-WHITNEY CLASSES ON REAL BOTT MANIFOLDS

A. GASIOR

Abstract. Real Bott manifolds is a class of flat manifolds with holonomy group \(\mathbb{Z}_k^2 \) of diagonal type. In this paper we want to show how we can compute even Stiefel-Whitney classes on real Bott manifolds. This paper is an answer to the question of professor Masuda if is it possible to extend \([4]\) and compute any Stiefel-Whitney classes for real Bott manifolds. It also extends results of \([6]\).

1. Introduction

Let \(M_n \) be a flat manifold of dimension \(n \), i.e. a compact connected Riemannian manifold without boundary with zero sectional curvature. From the theorem of Bieberbach ([1], [9]) the fundamental group \(\pi_1(M_n) = \Gamma \) determines a short exact sequence:

\[
0 \to \mathbb{Z}^n \to \Gamma \xrightarrow{p} G \to 0,
\]

where \(\mathbb{Z}^n \) is a maximal torsion free abelian subgroup of rank \(n \) and \(G \) is a finite group which is isomorphic to the holonomy group of \(M_n \). The universal covering of \(M_n \) is the Euclidean space \(\mathbb{R}^n \) and hence \(\Gamma \) is isomorphic to a discrete cocompact subgroup of the isometry group \(\text{Isom}(\mathbb{R}^n) = O(n) \ltimes \mathbb{R}^n = E(n) \). In that case \(p : \Gamma \to G \) is a projection on the first component of the semidirect product \(O(n) \ltimes \mathbb{R}^n \) and \(\pi_1(M_n) = \Gamma \) is a subgroup of \(O(n) \ltimes \mathbb{R}^n \). Conversely, given a short exact sequence of the form \([1]\), it is known that the group \(\Gamma \) is (isomorphic to) the fundamental group of a flat manifold. In this case \(\Gamma \) is

\[2010 \ Mathematics \ Subject \ Classification. \ Primary \ 53C29; \ Secondary \ 57S25, 20H15.\]

Key words and phrases. Real Bott manifolds, Stiefel-Whitney class

Author is supported by the Polish National Science Center grant DEC-2017/01/X/ST1/00062.
called a Bieberbach group. We can define a holonomy representation \(\phi: G \to \text{GL}(n, \mathbb{Z}) \) by the formula:

\[
\phi(g)(e) = \tilde{g}e(\tilde{g})^{-1},
\]

for all \(e \in \mathbb{Z}^n, g \in G \) and where \(p(\tilde{g}) = g \). In this article we shall consider Bieberbach groups of rank \(n \) with holonomy group \(\mathbb{Z}_k^2 \), \(1 \leq k \leq n-1 \), and \(\phi(\mathbb{Z}_k^2) \subset D \subset \text{GL}(n, \mathbb{Z}) \). Here \(D \) is the group of matrices with \(\pm 1 \) on the diagonal.

The main result is the formula for even Stiefel-Whitney classes for real Bott manifolds. This formula is generalization of the one from our previous paper ([4], Lemma 2.1). It was suggested to us by M. Masuda. The author thanks Andrzej Szczepański for discussion.

2. STIEFEL-WHITNEY CLASSES FOR REAL BOTT MANIFOLDS

Let \(\gamma_i \) be the canonical line bundle over \(M_i \) and we set \(x_i = w_1(\gamma_i) \) (\(w_1 \) is the first Stiefel-Whitney class). Since \(H^1(M_{i-1}, \mathbb{Z}_2) \) is additively generated by \(x_1, x_2, \ldots, x_{i-1} \) and \(L_{i-1} \) is a line bundle over \(M_{i-1} \), we can uniquely write

\[
w_1(L_{i-1}) = \sum_{l=1}^{i-1} a_{il}x_l
\]

where \(a_{il} \in \mathbb{Z}_2 \) and \(i = 2, 3, \ldots, n \).

From the above we obtain the matrix \(A = [a_{il}] \) which is an \(n \times n \) strictly upper triangular matrix whose diagonal entries are 0 and remaining entries are either 0 or 1. One can observe (see [7]) that the tower (3) is completely determined by the matrix \(A \) and therefore we may denote the real Bott manifold \(M_n \) by \(M_n(A) \). From [7, Lemma 3.1]
we can consider $M_n(A)$ as the orbit space $M_n(A) = \mathbb{R}^n / \Gamma(A)$, where $\Gamma(A) \subset E(n)$ is generated by elements

$$s_i = \left(\text{diag}[1, \ldots, (-1)^{a_{i,i+1}}, \ldots, (-1)^{a_{i,n}}], \left(0, \ldots, 0, \frac{1}{2}, 0, \ldots, 0 \right)^T \right),$$

where $(-1)^{a_{i,i+1}}$ is in the $(i+1, i+1)$ position and $\frac{1}{2}$ is the ith coordinate of the last column, $i = 1, 2, \ldots, n - 1$. $s_n = (I, (0, 0, \ldots, 0, \frac{1}{2})) \in E(n)$. From [7, Lemma 3.2, 3.3] $s_1^2, s_2^2, \ldots, s_n^2$ commute with each other and generate a free abelian subgroup \mathbb{Z}^n. In other words $M_n(A)$ is a flat manifold with holonomy group \mathbb{Z}^k_2 of diagonal type. Here k is a number of non zero rows of a matrix A.

We have the following two lemmas.

Lemma 2.1 ([7], Lemma 2.1). The cohomology ring $H^*(M_n(A), \mathbb{Z}_2)$ is generated by degree one elements x_1, \ldots, x_n as a graded ring with n relations

$$x_j^2 = x_j \sum_{i=1}^n a_{ij} x_i,$$

for $j = 1, \ldots, n$.

Lemma 2.2 ([7], Lemma 2.2). The real Bott manifold $M_n(A)$ is orientable if and only if the sum of entries is $0(\text{mod} 2)$ for each row of the matrix A.

The kth Stiefel-Whitney class [8, page 3, (2.1)] is given by the formula

(5) \[w_k(M(A)) = (B(p))^* \sigma_k(y_1, y_2, \ldots, y_n) \in H^k(M(A); \mathbb{Z}_2), \]

where σ_k is the k–th elementary symmetric function, $B(p)$ is a map induced by p on the classification space and

(6) \[y_i := w_1(L_{i-1}) \]

for $i = 2, 3, \ldots, n$.

Follow [2], if we consider $H^*(M_j(A), \mathbb{Z})$ as a subring of $H^*(M_n(A), \mathbb{Z})$ through the projection in [3], we see that

(7) \[H^*(M_n(A), \mathbb{Z}) \]

$$= \mathbb{Z}[x_1, \ldots, x_n]/ \left(x_j^2 - x_j \sum_{i=1}^n a_{ij} x_i : j = 1, 2, \ldots, n \right).$$
From the above we get

Lemma 2.3. \[2\] Let k be positive integer less or equal to $\frac{n}{2}$. The the set
\[\{x_{i_1}x_{i_2}\ldots x_{i_{2k}} : 1 \leq i_1 < i_2 < \ldots < i_{2k} \leq n\}\]
is an additive basis of $H^{2k}(M_n(A), \mathbb{Z}_2)$.

Let $A_{i_1i_2\ldots i_{2k}}$ denotes the $(n \times n)$ matrix consisting of i_1, i_2, \ldots, i_{2k} rows of matrix A. Then non zero entries are only in i_1, i_2, \ldots, i_{2k} rows of the matrix $A_{i_1i_2\ldots i_{2k}}$ and we have the following main result.

Theorem 2.1. Let A be an $(n \times n)$ the Bott matrix. Then,
\[w_{2k}(M_n(A)) = \sum_{1 \leq i_1 < i_2 < \ldots < i_{2k} \leq n} w_{2k}(M_n(A_{i_1i_2\ldots i_{2k}})).\]

Proof.

From (\[2\] Lemma 2.1) we have that the $2k$ cohomology group of $H^{2k}(M_n(A), \mathbb{Z}_2)$ has a basis
\[\mathcal{B} = \{x_{i_1}x_{i_2}\ldots x_{i_{2k}} : 1 \leq i_1 < i_2 < \ldots < i_{2k} \leq n\}.
\]
Moreover, also from Lemma 2.1, x_j^2 can be expressed by a linear combination of x_kx_j for $k < j$. Note that this combination always contains an x_j-term. Hence, we get that $w_{2k}(M_n(A))$ is a sum of linear elements
\[w_{2k}(M_n(A)) = \sum_{1 \leq i_1 < i_2 < \ldots < i_{2k} \leq n} x_{i_1}x_{i_2}\ldots x_{i_{2k}},\]
Each term $x_{i_1}x_{i_2}\ldots x_{i_{2k}}$ of this sum is an element from basis \mathcal{B} and it is equal to the $2k$ Stiefel-Whitney class of the real Bott manifold $M_n(A_{i_1i_2\ldots i_{2k}})$, so we get
\[w_{2k}(M_n(A)) = \sum_{1 \leq i_1 < i_2 < \ldots < i_{2k} \leq n} w_{2k}(M_n(A_{i_1i_2\ldots i_{2k}})).\]
Thus, the $2k$th Stiefel-Whitney class of the real Bott manifold $M_n(A)$ is equal to the sum of $2k$th Stiefel-Whitney classes of elementary components $M_n(A_{i_1i_2\ldots i_{2k}})$, $1 \leq i_1 < i_2 < \ldots < i_{2k} \leq n$.

At the end of the paper we give an example.
Example 2.1. For

\[
A = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

we get \(w_4(M(A)) = x_2x_3x_4x_5 + x_1x_3x_4x_5 + x_1x_2x_3x_5 + x_1x_2x_3x_4. \) For the matrix \(A \) we have the following

\[
A_{1234} = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad w_4(M(A_{1234})) = x_1x_2x_3x_4,
\]

\[
A_{1235} = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad w_4(M(A_{1235})) = x_1x_2x_3x_5,
\]

\[
A_{1245} = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad w_4(M(A_{1245})) = 0,
\]
\[A_{1345} = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad w_4(M(A_{1345})) = x_1x_3x_4x_5, \]

\[A_{2345} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad w_4(M(A_{2345})) = x_2x_3x_4x_5. \]

So we have

\[w_4(M(A_{1234})) + w_4(M(A_{1235})) + w_4(M(A_{1245})) + w_4(M(A_{1345})) + w_4(M(A_{2345})) = x_1x_2x_3x_4 + x_1x_2x_3x_5 + x_1x_3x_4x_5 + x_2x_3x_4x_5 = w_4(M(A)). \]

References

[1] L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, 1986.

[2] S. Choi, M. Masuda, S. Murai, Invariance of Pontrjagin classes for Bott manifolds, Algebr. Geom. Topol. 15(2) (2015), 965 - 986.

[3] S. Choi, M. Masuda, S. Oum, Classification of real Bott manifolds and acyclic digraphs, Trans. Amer. Math. Soc. 369 (2017), no. 4, 2987 - 3011.

[4] A. Gaśior, Spin-structures on real Bott manifolds, J. Korean Math. Soc. 54, (2017), no. 2, 507 - 516.

[5] A. Gaśior, A. Szczepański, Tangent bundles of Hantzsche-Wendt manifolds, J. Geom. Phys. 70 (2013), 123 - 129.

[6] A. Gaśior, A. Szczepański, Flat manifolds with holonomy group \(\mathbb{Z}_k^2 \) of diagonal type, Osaka J. Math. 51 (2014), 1015 - 1025.

[7] Y. Kamishima, M. Masuda, Cohomological rigidity of real Bott manifolds, Algebr. & Geom. Topol. 9 (2009), 2479-2502.

[8] R. Lee, R. H. Szczarba, On the integral Pontrjagin classes of a Riemannian flat manifolds, Geom. Dedicata 3 (1974), 1-9.

[9] A. Szczepański, Geometry of Crystallographic Groups, World Scientific, Algebra and Discrete Mathematics, vol. 4, 2012.
NOTE ABOUT STIEFEL-WHITNEY CLASSES ON REAL BOTT MANIFOLDS

Maria Curie-Skłodowska University,
Institute of Mathematics
pl. Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
E-mail: anna.gasior@poczta.umcs.lublin.pl