A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function*

Gurjot Kaur†1, Alexandra Pinggera‡1, Nadine J. Ortner§, Andreas Lieb¶, Martina J. Sinneger-Brauns†, Vladimir Yarov-Yarovoy‡, Gerald J. Obermair*, Bernhard E. Flucher†, and Jörg Striessnig‡

From the †Institute of Pharmacy, Department of Toxicology, and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria, the ‡Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, California 95616, and the §Division of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria

Received for publication, February 18, 2015, and in revised form, June 17, 2015 Published, JBC Papers in Press, June 22, 2015, DOI 10.1074/jbc.M115.645671

* This work was supported by Austrian Science Fund Grants F44020, F44060, and W1101 and the University of Innsbruck. The authors declare that they have no conflicts of interest with the contents of this article.

† Author’s Choice—Final version free via Creative Commons CC-BY license.

1 Both authors contributed equally to this work.
2 To whom correspondence should be addressed: Institute of Pharmacy, Dept. of Pharmacology and Toxicology, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80–82/II, A-6020 Innsbruck, Austria. Tel.: 43-512-507-58000; Fax: 43-512-507-58899; E-mail: joerg.striessnig@uibk.ac.at.

Background: L-type Ca2+ channels (LTCCs) are fine-tuned by different molecular mechanisms. Pore-forming α1-subunits of LTCCs contain a polybasic amino acid sequence within their I-II linkers that binds to the plasma membrane. This polybasic motif is required for normal channel gating and modulation.

Results: Pore-forming α1-subunits of LTCCs contain a polybasic amino acid sequence within their I-II linkers that binds to the plasma membrane. This polybasic motif is required for normal channel gating and modulation.

Conclusion: The polybasic cluster stabilizes normal channel activity.

Significance: We discovered a new modulatory domain of LTCCs within their pore-forming α1-subunit.

L-type voltage-gated Ca2+ channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I–IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for CaV1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca2+ levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker.

Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of CaV1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca2+ channel function.

Ca2+ influx through voltage-gated L-type Ca2+ channels (LTCCs)3 is essential for many cellular events. It causes muscle contraction, initiates hormone secretion and neurotransmitter release, tunes neuronal excitability, and regulates gene expression (1, 2). LTCCs are large multiprotein complexes consisting of a pore-forming transmembrane α1-subunit and accessory intracellular β- and extracellular α,δ-subunits. To adapt Ca2+ entry to different cellular needs, functional diversity is achieved by multiple molecular mechanisms. Four different α1-subunits (CaV1.1–1.4) can confer different biophysical properties (1) that are further adjusted by alternative splicing (3–5). In addition, the channels’ accessory subunits tune their gating behavior and various protein interaction partners further provide LTCC currents with cell- and tissue-specific properties (1). However, rapid regulatory changes in current dynamics cannot be accomplished by changing channel composition. Instead, quick adaptive responses of channel activity require fast regulatory processes, including Ca2+ entry itself (inducing inactivation through channel-bound calmodulin (6)), phosphorylation by various kinases (7–9), extracellular pH (10), and direct G-protein modulation (11). Next to these mechanisms, membrane lipids are also important regulators of Ca2+ channel activity (12, 13). Depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) from the plasma membrane causes a rapid decrease of Ca2+ channel activity. In excised membrane patches, non-LTCC currents (CaV2.1 and CaV2.2) run down within minutes, which is attenuated by application of PIP2 or its water-soluble analogue diC8-PIP2 (14, 15). Rapid depletion of membrane PIP2 content in intact cells by muscarinic 1 (M1) receptor activation, voltage-dependent phosphatases, or rapa-

3 The abbreviations used are: LTCC, L-type voltage-gated Ca2+ channel; AID, α-interaction domain; diC8-PIP2, phosphatidylinositol 4,5-bisphosphate-diC8; ICα, Ca2+ current; IP3, inositol-3-phosphate; If, ionic tail current; Ksper, activation slope; LC, live cell imaging; M1 receptor, muscarinic 1 receptor; Oxo-M, oxotremorine M; PIP2, phosphatidylinositol 4-phosphate; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP2, phosphatidylinositol 3,4,5-trisphosphate; Pj, pseudojonin; PLC, phospholipase C; Qon, ON-gating charge movement; V1/2, half-maximal activation voltage; VGCC, voltage-gated Ca2+ channels; Vrev, reversal potential; VSD, voltage sensor domain; PH, pleckstrin homology; EGFP, enhanced GFP; mRFP, monomeric RFP.
mycin-induced translocation of inositol-lipid phosphatases confirmed the direct dependence of CaV1.1 (CaV1.2 and CaV1.3) and CaV2 (CaV2.1 and CaV2.2) channels on endogenous membrane PIP2 (16). Channel inhibition by PIP2 depletion occurs in a β-subunit-dependent manner because the β2a-subunit, an isoform anchored to the plasma membrane by palmitoylation, attenuates inhibition (13, 17). Together with observations that arachidonic acid inhibits channel activity, a model has been proposed in which PIP2, the fatty acid side chain of palmitoylated β2a-subunits of voltage-gated Ca2+ channels (VGCCs), and arachidonic acid have overlapping binding sites, resulting in complex channel regulation by lipid metabolism (12, 17–19). There is also experimental evidence for more than one PIP2 regulatory site in VGCCs: a higher affinity stimulatory “S” site supporting channel activity and a lower affinity inhibitory site (“I” site) stabilizing reluctant gating properties (12, 14, 20). Current working models suggest at least one facilitatory PIP2 site on LTCCs and at least two on CaV2.2 channels (16).

Anionic phospholipids, like phosphatidylserine and phosphoinositides, target proteins with clusters of positive charges to the plasma membrane (21, 22). Despite unique insights into the structural basis of PIP2 modulation within the crystal structure of K+ channels (23, 24) and the identification of potential polyphosphoinositide binding domains within several ion channel proteins (for a review, see Refs. 13 and 25), the structural basis for fast modulation of VGCC function by plasma membrane lipids is unknown. It occurs at a very fast time scale, indicating that channel-lipid interactions are rapidly reversible and do not require more complex biochemical pathways, such as channel internalization (26). Similar to K+ channels (23, 24), it appears likely that cytoplasmic domains located close to the plasma membrane participate in lipid interactions that stabilize channel function and allow modulation of channels by activation of phospholipase C (PLC). In addition to fast channel modulation, it is at present also unknown whether anionic lipids participate in the constitutive stabilization of VGCC function, which would be expected for very high affinity interactions not subject to regulation by changes in plasmalemmal phospholipid content (27).

Here we report the identification of a polybasic cluster within the cytoplasmic I-II linker of CaV1.2 α1-subunits, which specifically binds to the plasma membrane. Activation of PLCs and polyphosphoinositide breakdown together with elevated intracellular Ca2+ levels reverse membrane binding. Four positively charged arginines are required for binding, most likely by strongly favoring a straight helix conformation of that region, positioning it entirely at the interface between the hydrocarbon core and lipid headgroups. Their neutralization in the intact channel facilitates channel opening and thus suggests a role of this polybasic cluster in stabilizing normal channel activity.

Experimental Procedures

All chemicals, reagents and antibodies were purchased from Sigma-Aldrich (Vienne, Austria) except where otherwise indicated. diC8-PIP2 was purchased from Echelon Biosciences Inc. (Salt Lake City, UT).

Cloning of cDNA Constructs—The CaV1.2 α1-subunits used in this study were identical with GenBankTM sequence accession numbers X05921 (CaV1.1 α1), X15539 (CaV1.2 α1), EU363339 (CaV1.3 α1), and AJ224874 (CaV1.4 α1).

For immunofluorescence experiments, CaV1 α1 I-II linkers (amino acid numbering according to respective accession number: CaV1.1, 335–432; CaV1.2, 436–554; CaV1.3, 407–523; CaV1.4, 373–518) were cloned into vector pCIneo (Promega, E1841) in fusion with a FLAG tag at the C terminus. CaV1.2 I-II linker mutations were cloned into vector p3XFLAG-CMV-10 with a Myc tag at the C terminus and with a triple FLAG tag at the N terminus. The C terminus of CaV1.3 and the CaV1.3 W441A-I-II linker mutant were also cloned into vector p3XFLAG-CMV-10. CaV1.2 I-II linker mutations 4R4A and 4R4E were generated by splicing by overlap extension PCR (28) and cloned into vector mRFP-C1 with mRFP at the N terminus. Vector mRFP-C1 was generated by amplifying mRFP sequence from pCX-mRFP1 vector (29) to replace EYPF in pEYPF-C1 vector (Clontech, 6005-1). The C-terminally V5-tagged β2a-subunit β2a (M80545) and β3 (NM_012828) constructs were expressed as described previously (30, 31).

The generation of N-terminally GFP-tagged β3 (expression vector pCI-neo (Promega), generously provided by Manfred Grabner (32)) and C-terminally EGFP-tagged β2a-subunits (expression vector pbA (33)) was described recently. mRFP-tagged pleckstrin homology (PH) domain of PLCβ (PH-PLCβ) was kindly provided by the Netherlands Cancer Institute (34). Untagged M1 receptor was generated from cytofluorescent protein-labeled M1 receptor construct (generously provided by Stefan Böhm (Medical University of Vienna, Austria)) by restriction digestion and cloning into vector pCIneo. Peptide 526–554 with an N-terminal GFP tag ([GFP]526–554) was generated by PCR cloning into vector EGFP (35). Lyn11-FRB, mRFP-FKBP-pseudojanin, and GFP-PH-Osh2x2 constructs were kindly provided by Dominik Oliver and Gerald Hammond (36, 37). α1-Subunit mutants CaV1.2L4S and CaV1.2L4A were generated by splicing by overlap extension-PCR and cloned into vector pCIneo. For short CaV1.2 α1 mutations, CaV1.2S4A and CaV1.2S48, a stop codon was generated by PCR at position 1800 in the CaV1.2 α1-subunit in pCIneo. The integrity of all constructs was confirmed by DNA sequencing (Microsynth, Eurofins).

Cell Culture and Transfection—For immunofluorescence microscopy, live cell imaging (LCI), and electrophysiology, tsA-201 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), 10% fetal calf serum (Gibco, 10500.064), 2 mM glutamine (Sigma, G753) penicillin (10 units/ml), and streptomycin (10 µg/ml) and maintained at 37 °C in a humidified environment with 5% CO2. Cells were grown and split when they reached about 80% confluence using 0.05% trypsin for cell dissociation. Cells were transiently transfected using Ca2+-phosphate precipitation as described previously (38). For immunofluorescence and LCI, cells were replated 24 h after transfection onto 12 mm (for immunofluorescence) and 18 mm (for LCI) poly-L-lysine-coated coverslips and kept at 37 °C for 24–48 h until further experimentation. For whole-cell patch clamp recordings, tsA-201 cells were transiently transfected with equimolar ratios of cDNA encoding C-terminally long or short wild-type or mutant CaV1.2 α1α-subunits together with auxiliary β2a (rat, NM_012828) and α,6 (rabbit, NM_001082276) sub-
Novel Modulatory Role of the I-II Linker of LTCCs

units. To visualize transfected cells, GFP was co-transfected. Cells were then plated onto a 35-mm culture dish coated with poly-L-lysine. The cells were kept at 30°C and 5% CO2 and subjected to electrophysiological measurements about 48–72 h after transfection.

Immunofluorescence Microscopy—48 h after plating, tsA-201 cells were fixed in 4% (w/v) paraformaldehyde (Electron Microscopy Sciences, 15710) for 15 min at room temperature. Cells were washed thoroughly with phosphate-buffered saline and blocked for 30 min at room temperature with 5% (w/v) normal goat serum (GibcoBRL, 16210-064) in 0.2% (v/v) Triton/phosphate-buffered saline for cell permeabilization. Cells were incubated overnight at 4°C with primary antibodies diluted in washing buffer containing 0.2% (v/v) Triton X-100 and 0.2% (w/v) BSA (immunglobulin-free) in phosphate-buffered saline. After washing the cells in washing buffer, they were incubated with the secondary antibody for 1 h at room temperature in the dark. Washing was repeated, and the coverslips were mounted with Vectashield mounting medium (Vector Laboratories, H-1000) and sealed with nail polish on microscope slides. The following antibodies were employed: mouse monoclonal anti-V5, working dilution 1:500 (Invitrogen, R96025); rabbit polyclonal anti-FLAG (Sigma, F7425; 1:500); mouse monoclonal anti-FLAG (Sigma, F3165; 1:5000); Alexa Fluor-488-conjugated goat anti-rabbit and Alexa-594-conjugated goat anti-mouse antibodies (1:4000; Life Technologies, Chester, PA). Images were manually adjusted for brightness and contrast with Adobe Photoshop version 7.0.

Live Cell Imaging—After 24 h of replating, 18-mm coverslips containing live tsA-201 cells were washed once with Tyrode solution (130 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 10 mM HEPES, 30 mM glucose, pH 7.4, 319 mosmol/liter), subsequently mounted on a Lucn chamber (Life Imaging Services) and kept in Tyrode solution until further processing. The chamber was placed on an ASI stage of an inverted Zeiss Axiovert 200M epifluorescence microscope (Carl Zeiss Inc., ×63, 1.4 numerical aperture Zeiss plan apochromat oil immersion lens) using a cooled CCD camera and at room temperature and Meta View image processing software (Universal Imaging Corp., West Chester, PA). Images were manually adjusted for brightness and contrast with Adobe Photoshop version 7.0.

Electrophysiological Recordings—Whole-cell patch clamp experiments were performed in transiently transfected tsA-201 cells using an Axopatch 200B amplifier (Axon Instruments). Electropodes with a final resistance of 2–4 megohms were pulled from borosilicate glass capillaries using a P-97 micropipette puller (Sutter Instruments) and subsequently fire-polished (MF-830 microforge, Narishinge). Ca2+ currents were measured using the following solutions: pipette solution, 135 mM CsCl, 10 mM Cs-EGTA, 1 mM MgCl2, 10 mM HEPES, 4 mM Na2-ATP, adjusted to pH 7.3 with CsOH; bath solution, 15 mM CaCl2, 150 mM choline chloride, 1 mM MgCl2, 10 mM HEPES adjusted to pH 7.3 with CsOH. All voltages were corrected for a junction potential of −9.3 mV. Recordings were digitized (Digidata 1322A digitizer, Axon Instruments) at 50 kHz, low pass-filtered at 5 kHz, and analyzed using pClamp version 10.2 software (Axon instruments). Current-voltage (I-V) relationships were obtained by applying a 20-ms square pulse protocol to various test potentials starting from a holding potential of −90 mV. Resulting I-V curves were fitted to Equation 1,

\[I = G_{\text{max}}(V - V_{\text{rev}})/(1 + \exp(-(V - V_{0.5})/k_{\text{act}})) \]

(Eq. 1)

where I is the peak current amplitude, \(G_{\text{max}} \) is the maximum slope conductance, V is the test potential, \(V_{\text{rev}} \) is the extrapolated reversal potential, \(V_{0.5} \) is the half-maximal activation voltage, and \(k_{\text{act}} \) is the activation slope. Channel inactivation was measured using a 300-ms pulse from a holding potential of −90 mV to \(V_{\text{max}} \). For the estimation of the open probability (\(P_{\text{o}} \)), the area of the ON-gating current (\(Q_{\text{on}} \)) was integrated and compared with the amplitude of the tonic tail current (\(I_{\text{Tail}} \) at \(V_{\text{rev}} \). Data were analyzed using Clampfit version 10.2 (Axon Instruments) and Sigma Plot 12 (Systat Software Inc.).

...continued...
Rosetta Membrane Modeling of the Domain I-II Linker Region and Voltage-sensing Domain II of CaV1.2 Channel—Homology, de novo, and full-atom modeling of the voltage-sensing domain (VSD) of native and mutant CaV1.2 channels was performed using the Rosetta membrane method (39–41) and the x-ray structure of the bacterial voltage-gated Na⁺ channel (NaAb) VSD (42) as a template. Sequence alignment between native CaV1.2 and NaAb VSDs shown in Fig. 8A was generated using the HHpred server (43, 44). The backbone structure of the transmembrane regions of CaV1.2 was built based on NaAb VSD template. The 19-residue N-terminal region and S1–S2, S2–S3, and S3–S4 loops of CaV1.2 VSD were built de novo using the Rosetta cyclic coordinate descent loop modeling method (45) guided by membrane environment-specific energy function (39, 46). 10,000 models were generated for each CaV1.2 channel construct, and the top 10% of models ranked by total score were clustered (47) using root mean square deviation threshold that generates at least 150–200 models in the largest cluster. Models representing centers of the top five clusters and the best 10 models by total score were chosen for visual analysis. The top cluster and all 10 lowest energy models of native CaV1.2 showed very similar conformation of the domain I-II linker region (see Fig. 8). None of the top five clusters and 10 lowest energy models of alanine or glutamate mutants of CaV1.2 showed similar conformations of the domain I-II linker region (see Fig. 8). All structural figures were generated using the UCSF Chimera package (48).

Results

We (49) and others (50) have recently reported that the I-II linker of LTCC CaV1.3 and CaV1.2 α₁-subunits is targeted to the plasma membrane when expressed alone as a soluble protein in tsA-201 cells. Because the I-II linker harbors the high affinity interaction site for Ca²⁺ channel β-subunits (51), it is also capable of targeting co-expressed β-subunits to the plasma membrane, even in complex with β₁-subunit-bound Rab3-interacting molecule (49). Plasma membrane association of the linker is independent of β-subunits. Introduction of mutation W441A, which disrupts β-subunit binding to the linker (31, 52), prevented β-subunit targeting without affecting the plasma membrane localization of the linker (49). This suggested a specific, β-subunit-independent interaction of the I-II linker with the plasma membrane either through a membrane-associated protein or through direct interaction with membrane lipids.

I-II Linkers of All LTCC Isoforms Bind to the Plasma Membrane—To test whether plasma membrane binding is a property of all LTCC α₁-subunits, we transfected FLAG-labeled I-II linkers of CaV1.1, CaV1.2, CaV1.3, and CaV1.4 α₁-subunits (Fig. 1, A–D, left) into tsA-201 cells. Immunoblot analysis (not shown; n = 3) confirmed their expression as intact polyepitides. All LTCC I-II linkers were localized at the plasma membrane (Fig. 1, A–D). This localization pattern was independent of expression levels and indistinguishably observed in cells with weak and strong expression of the respective linkers (not shown). More than 85% of transfected cells (three independent experiments; 300 cells/experiment analyzed) showed this typical plasma membrane binding. In contrast, a FLAG-labeled control fragment derived from the CaV1.3 C terminus (FLAG-C158) clearly revealed a cytoplasmic distribution (Fig. 1E, first panel), as did the non-palmitoylated β₂a mutant (C3S/C4Sβ₂a) (Fig. 1E, middle). In contrast, normal palmitoylated β₂a revealed the expected plasma membrane targeting (Fig. 1E, last panel) and thus served as a positive control. Consistent with our previous findings (53, C3S/C4Sβ₂a (n = 3); Fig. 1, A–D, middle panel) and β₃ (not shown, n = 3) (49) also were localized at the plasma membrane after co-expression with one of the four LTCC I-II linkers. This shows that all LTCC I-II linkers support β-subunit plasma membrane targeting.

A Polybasic Cluster of Amino Acids Is Essential for I-II Linker Plasma Membrane Binding—To further identify the structural motif within the linker responsible for membrane targeting we expressed triple-FLAG-labeled linker peptides with deletions of equal size (29–30 amino acids) located in different parts of the CaV1.2 linker (Fig. 2A). The I-II linker of CaV1.2 was chosen for this analysis because it provided the best signal/noise ratio (not shown). Whereas membrane binding of mutants Δ436–465, Δ466–495, and Δ496–525 remained unaffected by the deletions (Fig. 2B), removal of amino acids 526–554 (Fig. 2, A and B; Δ526–554) abolished plasma membrane binding and resulted in cytoplasmic staining. Accordingly, mutants Δ436–465 and Δ496–525 translocated co-expressed C3S/C4Sβ₂a to the plasma membrane (Fig. 2B), whereas Δ526–554 did not (Fig. 2B). Mutant Δ466–495 failed to target C3S/C4Sβ₂a to the plasma membrane (Fig. 2B). This was expected, because the β-subunit α₁-subunit interaction domain (AID) is also removed by this deletion. By creating additional deletion mutants Δ536–554 (no membrane binding; Fig. 3A) and Δ544–554 (membrane-
Novel Modulatory Role of the I-II Linker of LTCCs

A

FIGURE 2. Plasma membrane localizing signal is present in Ca$_{\text{v}}$1.2 I-II linker distal terminus. A. Schematic representation of all deletion mutants of the Ca$_{\text{v}}$1.2 I-II linker shown in B. A tryptophan residue (W) important for α_1-β subunit interaction marks the position of the AID domain (gray). Red, deletions; yellow, amino acids 536–544. B. Immunofluorescence images of anti-FLAG-labeled deletion mutants of the Ca$_{\text{v}}$1.2 I-II linker (top), anti-V5-labeled c$_{\text{CaV}}$3-C$_{\beta_2\text{a}}$ (middle), and merged images (green, anti-FLAG-labeled I-II linkers; red, anti-V5-labeled c$_{\text{CaV}}$3-C$_{\beta_2\text{a}}$) co-expressed in tsA-201 cells. Representative images from three independent experiments are shown. Scale bar, 10 μm.

Secondary structure analysis of the Ca$_{\text{v}}$1.2 I-II linker using PSIPRED (53) (not shown) predicted the region between amino acids 536 and 550 to form a polybasic amphipathic α-helix with 8 of the 9 positive charges (Fig. 3B) located on one side of the helix as shown in a helical wheel plot (Fig. 3B). This included four arginines (Arg-537, Arg-538, Arg-541, and Arg-544) located within the region 536–544 required for membrane translocation (Fig. 3C, yellow), all of which are conserved among the I-II linkers of LTCCs (Fig. 3D). To test whether these positive charges are essential for plasma membrane binding, we neutralized them by mutations to alanines (mutant I-II-4R4A) or converted them to negatively charged glutamates (mutant I-II-4R4E; Fig. 3C). As expected, both mutations prevented the plasma membrane binding of the Ca$_{\text{v}}$1.2 I-II linker and of the co-expressed c$_{\text{CaV}}$3-C$_{\beta_2\text{a}}$ subunits (Fig. 3E).

To assess whether this polybasic motif is sufficient to induce plasma membrane binding when attached to an otherwise cytoplasmic protein, we fused residues 526–554 to the C terminus of GFP (GFP526–554; Fig. 3, A and C). This construct localized to the plasma membrane (Fig. 3A). It also accumulated in the nucleus of the vast majority of transfected cells. Notably, a distinct feature of lipid-interacting polybasic membrane targeting motifs is their similarity to nuclear localization sequences (22), a property that may also account for the nuclear targeting of GFP526–554. However, nuclear staining did not obscure plasma membrane binding (see also Figs. 4A and 5B), and this was also confirmed in dividing cells in which nuclear staining was completely absent (Fig. 3A, GFP526–554, right panel; see also Fig. 5A). Taken together, these findings clearly demonstrate that positive charges at the C-terminal end of the Ca$_{\text{v}}$1.2 I-II linker form a plasma membrane binding motif sufficient for translocating the cytoplasmic I-II linker and fused GFP to the plasma membrane.

Involvement of Membrane Phosphoinositides in Plasma Membrane Targeting—The polybasic motif at the distal end of the I-II linker closely resembles clusters of positive charges found in other proteins, such as Rit and K-Ras (22) (Fig. 3D), and polybasic domains in other ion channels mediating protein–lipid interactions at the plasma membrane (for a review, see Ref. 13). We therefore hypothesized that this cluster of positive charges could serve a similar function. This notion was further supported by current folding models of Ca$^{2+}$-subunits, which position these charges near the cytoplasmic end of the transmembrane helix IIS1 (42), which, in turn, places them in close proximity to the anionic lipids of the inner leaflet of the plasma membrane.

Many modulatory lipid interactions of ion channels involve polyphosphoinositides (13). Ca$_{\text{v}}$1 and Ca$_{\text{v}}$2 VGCCs are modulated by metabotropic receptors through activation of PLC, also independently of direct G-protein modulation (16). Activation of M1 receptors induces a partial inhibition of Ca$^{2+}$ inward currents mostly by membrane depletion of PIP$_2$ in tsA-201 cells (16). This effect is mediated via activation of PLCβ (54). If binding of LTCC-I-II linkers is dynamically regulated by interaction with PLC-metabolized polyphosphoinositides (primarily PIP$_2$), then it should be reversed in a PLC-sensitive manner.

We therefore co-transfected tsA-201 cells with M1 receptors and examined effects on membrane binding of our constructs in response to receptor activation with oxotremorine M (Oxo-M) using live cell imaging (Fig. 4, A and B). The PIP$_2$–specific mRFP-tagged pleckstrin homology domain of PLCδ (PH-PLCδ) served as positive control for monitoring PIP$_2$ breakdown (55). Oxo-M induced the relocation of PH-PLCδ but did not reverse the plasma membrane association of I-II linker-bound $\beta$$_2$-GFP ($n = 3$ independent experiments; Fig. 4A) or of GFP526–554 ($n = 3$; Fig. 4B). Translocation of membrane-bound $\beta$$_2$-subunits was also absent in cells responding to co-transfected PH-PLCδ ($n = 3$), excluding a potential lack of Oxo-M action as a possible explanation. Even during prolonged observation times (10 min; not shown), no translocation was observed. As reported previously (55), Oxo-M-induced PIP$_2$ depletion was transient, resulting in a relocation of the PIP and PIP$_2$ biosensor GFP-PH-Osh2x2 (37) (5 of 21 cells) and PH-PLCδ (3 of 21 cells; not shown) within 2 min despite the continuous presence of Oxo-M. This is compatible with incomplete PIP/PIP$_2$ depletion in mammalian cells by Oxo-M (55) under these experimental conditions.

Previous studies have shown that plasma membrane targeting of cytoplasmic proteins through cationic motifs resembling...
our polybasic sequence may also involve negatively charged lipids other than PIP$_2$, in particular PIP$_3$, PIP$_{3,2}$, or phosphatidylyserine (21). We therefore used a rapamycin-inducible system (37) causing PIP and PIP$_2$ depletion. Briefly, RFP-tagged pseudojanin (PJ), an enzymatic chimera that converts PIP$_2$ to PIP and dephosphorylates PIP, was translocated from the cytosol to the plasma membrane upon rapamycin-induced Lyn$_{11}$-FRB interaction. Translocation of PJ to the plasma membrane started 15.6±3.61 s after rapamycin application and was completed after 25.3±1.07 s (mean ± S.E., n = 16). Notably, in 13 of 24 cells, some residual membrane staining of GFP-PH-Osh2x2 still remained (Fig. 4C). When we co-transfected the rapamycin-inducible system and the I-II linker together with β$_{2a}$-GFP, PJ translocation started at 13.1±1.43 s and was completed within 25.3±0.7 s (mean ± S.E., n = 16) after rapamycin application. However, even after a prolonged recording time (20 min), we never observed a I-II linker-mediated translocation of β$_{2a}$-GFP to the cytoplasm (n = 16 cells; three independent experiments; Fig. 4E). We also combined the rapamycin-inducible system with wortmannin treatment. Pre-incubation with 20 μM wortmannin for 45–90 min before rapamycin application did not affect targeting of controls (PJ) translocation started only upon rapamycin application after 20 ± 3.33 s, completion after 37.0 ± 5.17 s, (n = 10) or linker-bound β$_{2a}$-GFP (n = 10, three independent experiments; Fig. 4F).

Early studies have shown very strong plasma membrane binding of similar polybasic targeting motifs of small GT-Pases, such as Rit or K-Ras (21, 22) (Fig. 3D) or the plasma membrane targeting domain of RasGRP1, a Ras-specific exchange factor (56). Their dissociation requires, in addition to phosphoinositide hydrolysis, either depletion of PI3K products (22, 56) or prolonged elevation of intracellular Ca$^{2+}$ (21). Because neither the rapamycin-inducible system nor the Oxo-M response appears to induce complete phosphoinositide depletion and induces no or, in the case of Oxo-M, only a transient intracellular Ca$^{2+}$ signal (55), we employed the PLC activator m-3M3FBS together with wortmannin to induce PIP, PIP$_2$, and PIP$_3$ depletion and inhibit PI3K. m-3M3FBS activates PLC$_{γ}$, -γ, and -δ isoforms and also induces a prolonged intracellular
Novel Modulatory Role of the I-II Linker of LTCCs

FIGURE 4. Plasma membrane interaction of CaV,1.2 I-II linker is not influenced by muscarinic receptor activation or rapamycin induced PIP or PIP₂ depletion. A and B, mRFP-labeled PH-PLCδ and GFP-labeled β₃ with untagged CaV,1.2 I-II linker or mRFP-labeled PH-PLCδ and GFP-labeled 526–554 were co-expressed with untagged muscarinic M₁ receptor in tsA-201 cells and subsequently treated with the M₁ receptor agonist Oxo-M (10 μM). Fluorescence was visualized using live cell imaging, and images before (t = 0 s) and after drug (t = 60 s) application are shown. C and D, RFP-labeled pseudojanin (left) with GFP-labeled PH-PLCδ (right), GFP-labeled β₃ in the same cells co-expressed with mRFP-labeled PH-PLCδ; right, GFP-labeled peptide 526–554 in the same cells co-expressed with mRFP-labeled PH-PLCδ. Representative cells from three independent experiments are shown. E and F, cells co-transfected with Lyn₁-FRB, RFP-pseudojanin, and GFP-PH-Osh2x2 or CaV,1.2 I-II linker together with β₃-GFP. Fluorescence was visualized before (t = 0 s) and after drug (t = 60 s) application. C and D, RFP-labeled pseudojanin (left) with GFP-labeled PH-PLCδ (right) as control before and after rapamycin treatment. Representative cells from eight independent experiments are shown. E, left, RFP-labeled pseudojanin; right, GFP-labeled β₃ before and after rapamycin application. Representative cells from three independent experiments are shown. F, left, RFP-labeled pseudojanin; right, GFP-labeled β₃ preincubated with wortmannin (before) and after the addition of rapamycin (after). Representative cells from three independent experiments are shown. Scale bar, 10 μm.

Ca²⁺ release (55, 57). Application of 50 μM m-3M3FBS alone was not sufficient to induce translocation within our observation period. However, co-application of m-3M3FBS together with wortmannin caused a delayed translocation of PH-PLCδ (n = 4; Fig. 5A, left) as well as of GFP₅₂₆–₅₅₄ (n = 11 independent experiments; Fig. 5A, right) from the plasma membrane to the cytosol starting within a time frame of 20–30 min and completion in the following 7–10 min. This suggested a combined effect of intracellular Ca²⁺ (which acts as a PLC co-activator (55)) and lipid hydrolysis for slow translocation. Accordingly, the addition of 5 μM ionomycin together with m-3M3FBS (58) induced an even faster relocation of PH-PLCδ to the cytoplasm (Fig. 5B, left). Translocation started 1.9 ± 0.2 min (mean ± S.D., n = 15) after m-3M3FBS/ionomycin stimulation and was complete within 45–55 s. When we treated cells co-transfected with the I-II linker together with β₃-subunits, PLC activation reversed the linker-mediated β₃-GFP association with the plasma membrane (Fig. 5B, middle). Although cell to cell differences for the translocation time course after adding m-3M3FBS/ionomycin were observed, the translocation of β₃-GFP and PH-PLCδ always occurred in parallel (n = 5 independent experiments; not shown). The GFP-tagged cationic peptide (GFP₅₂₆–₅₅₄) also redistributed to the cytoplasm under these experimental conditions (n = 3; Fig. 5B, right). In contrast, no translocation was observed in control experiments with β₂aGFP subunits, which are anchored to the membrane through palmitoylation, known to be insensitive to polyphosphoinositide breakdown (n = 6; Fig. 5C). Taken together, our data demonstrate that polyphosphoinositide breakdown as well as increased intracellular Ca²⁺ levels are required for unbinding of the distal portion of the CaV,1.2 I-II linker from the plasma membrane.

Role of the Polybasic Motif for CaV,1.2 Channel Function and Modulation—Due to the close proximity of the polybasic motif to the membrane and its lipid-dependent interaction with the plasma membrane, our data strongly suggest that this interaction also occurs in the pore-forming α₁-subunit of intact CaV,1.2 channel complexes. We therefore introduced the mutations found to prevent membrane binding into the I-II linker constructs I-II-4R/4A and I-II-4R/4E (Fig. 3D) into the corresponding positions of the intact CaV,1.2 α₁-subunits and expressed these mutants (together with β₃ and α₁δ) in tsA-201 cells. Mutation-induced changes of Ca²⁺ inward current (Iₒ) properties were then analyzed using whole-cell patch clamp experiments with Ca²⁺ as charge carrier. CaV,1.2 α₁-subunit channels undergo partial proteolytic processing, giving rise to a C-terminally long (CaV,1.2L) and short (CaV,1.2S) variants. Both variants exist in the heart and brain and exhibit different current properties (59, 60). In particular, CaV,1.2S exhibits a higher open probability (59, 60). We therefore tested the effects of the I-II linker mutations in both variants (long, mutants CaV,1.2L₄₄ and CaV,1.2L₄₄; short, mutants CaV,1.2S₄₄ and CaV,1.2S₄₄). All four mutant constructs conducted inward Ca²⁺ currents. Current-voltage relationships revealed a significant 6–10 mV shift of V₅₀ in the hyperpolarizing direction for both mutants (Table 1 and Fig. 6A). This was due to a significant increase in the slope without changes in activation threshold (Table 1), suggesting more efficient coupling of pore opening to membrane depolarization. The mutations had little effect on the kinetics of Iₒ inactivation during 300-ms depolarizing pulses to the voltage corresponding to the peak of the I-V relationship (Table 2). The apparent reversal potential was also unchanged (Table 1). Differences between the mutants and wild-type channels were observed when we studied the relationship between the size of ON-gating charges (as a measure of active channels on the cell surface; enlarged ON-gating currents are
Novel Modulatory Role of the I-II Linker of LTCCs

FIGURE 5. Reversal of I-II linker-induced plasma membrane targeting due to phosphoinositide depletion accompanied by increased intracellular Ca\(^{2+}\) levels. A, mRFPH-labeled PH-PLC\(\delta\) and GFP-labeled 526–554 were co-expressed with untagged muscarinic M1 receptor in tSA-201 cells treated with the PLC activator m-3M3FBS (50 \(\mu\)M) together with wortmannin (20 \(\mu\)M); left, mRFPH-labeled PH domain of PLC\(\delta\); right, GFP-labeled 526–554. Representative cells from three independent experiments are shown. B and C, different constructs were expressed in tSA-201 cells and subsequently treated with the PLC activator m-3M3FBS (50 \(\mu\)M) and additional ionomycin (5 \(\mu\)M). B, left, mRFPH-labeled PH-PLC\(\delta\); middle, GFP-labeled \(\beta_{3}\)-subunit co-expressed with CaV1.2L I-II linker; right, GFP-labeled peptide 526–554. The membrane-localized staining reversed by treatment is indicated by an arrow. Note that in the majority of cells, GFP-labeled 526–554 also showed strong nuclear targeting (for an explanation, see “Results”), which was absent in dividing cells without distinct nuclei (Figs. 3A and 5A). C, GFP-labeled \(\beta_{3}\)-subunit alone. To quantify the relocation from the membrane, pixel intensity from three representative areas of interest within the membrane of each cell were background-corrected, and the membrane/cytoplasm ratio was calculated from the means obtained before (blue) and after (red) PLC activation. Means \(\pm\) S.E. (error bars) are shown for the indicated number of cells. Paired Student’s t test was used. **, \(p = 0.0049\) (PH-PLC\(\delta\), m-3M3FBS + wortmannin, \(n = 3\)); ***, \(p = 0.0001\) (peptide 526–554, m-3M3FBS + wortmannin, \(n = 3\)); ***, \(p = 0.00024\) (PH-PLC\(\delta\), m-3M3FBS + ionomycin, \(n = 15\)); ***, \(p = 0.01087\) (\(\beta_{3}\)-subunit + CaV1.2L I-II linker, m-3M3FBS + ionomycin, \(n = 5\)); ***, \(p = 0.0010\) (peptide 526–554, m-3M3FBS + ionomycin, \(n = 3\)); \(p = 0.81799\) (\(\beta_{3}\)-subunit m-3M3FBS + ionomycin, \(n = 6\)). Scale bar, 10 \(\mu\)M.

TABLE 1
Biophysical properties of wild type and mutant CaV1.2L and CaV1.2S

Parameters are indicated as means \(\pm S.E.\) for a given number of experiments (\(n\)). Statistical significances are indicated for comparisons of CaV1.2L versus CaV1.2L\(\Delta\) and CaV1.2S\(\Delta\) (a–aa), CaV1.2S versus CaV1.2S\(\Delta\AA\) and CaV1.2S\(\Delta\) (b–bb) (one-way analysis of variance, CaV1.2L: \(V_{0.5}\), \(p < 0.0001\); \(k_{a}\), \(p < 0.0009\); \(I_{\text{rev}}/Q_{\text{ON}}\), \(p < 0.0001\); CaV1.2S: \(V_{0.5}\), \(p < 0.0016\); \(k_{a}\), \(p < 0.0216\); \(I_{\text{rev}}/Q_{\text{ON}}\), \(p < 0.0001\); with Bonferroni post-hoc test as indicated in the table), and CaV1.2L versus CaV1.2S (c–cc) (unpaired Student’s t test). Significance was defined as \(p < 0.05\) (a, b, and c), \(p < 0.01\) (aa, bb, and cc), and \(p < 0.001\) (aaa, bbb, and ccc). For reliable calculation of \(Q_{\text{ON}}\), we omitted data from recordings in which \(Q_{\text{ON}}\) was not larger than 4-fold the signal of noise (5 of a total of 79 recordings).

CaV1.2 construct	\(V_{0.5}\)	Activation threshold	\(k_{a}\)	\(V_{\text{rev}}\)	\(n\)	\(I_{\text{rev}}/Q_{\text{ON}}\)	\(Q_{\text{ON}}\) mean (min; max)	\(n\)
CaV1.2L	13.96 ± 1.64	−31.58 ± 1.28	11.24 ± 0.45	77.08 ± 1.19	28	6.54 ± 0.47	260.5 (59.8; 565.4)	19
CaV1.2L\(\Delta\)A	3.47 ± 1.53\(\text{a}\)	−33.40 ± 0.80	9.62 ± 0.24\(\text{a}\)	73.56 ± 1.28	12	10.73 ± 1.36\(\text{a}\)	127.5 (57.4; 224.7)\(\text{a}\)	9
CaV1.2L\(\Delta\)E	4.07 ± 1.90\(\text{a}\)	−30.81 ± 1.59	9.30 ± 0.34\(\text{a}\)	77.72 ± 2.16	11	14.00 ± 1.27\(\text{a}\)	100.4 (40.1; 317.8)\(\text{a}\)	9
CaV1.2S	7.03 ± 1.41\(\text{a}\)	−32.09 ± 0.81	10.06 ± 0.38	77.70 ± 1.28	22	13.35 ± 1.46\(\text{a}\)	266.2 (101.2; 674.7)\(\text{a}\)	12
CaV1.2S\(\Delta\)A	0.77 ± 1.22\(\text{ab}\)	−32.63 ± 0.72	8.95 ± 0.28\(\text{ab}\)	76.69 ± 1.18	22	22.90 ± 2.21\(\text{ab}\)	136.1 (46.4; 495.7)\(\text{ab}\)	14
CaV1.2S\(\Delta\)E	1.31 ± 1.28\(\text{ab}\)	−31.92 ± 0.73	8.85 ± 0.34\(\text{ab}\)	74.46 ± 1.17	17	31.42 ± 2.07\(\text{ab}\)	76.4 (40.0; 172.0)\(\text{ab}\)	11

shown in the insets of Fig. 6B) and the size of ionic tail currents (Fig. 6B). As shown by us and others previously, this ratio provides an estimate for the channel’s open probability (61–63). The two wild-type constructs served as an internal control because a higher open probability was reported earlier for CaV1.2S (59, 61). This is evident as a statistically significant difference of the \(I_{\text{rev}}/Q_{\text{ON}}\) ratio in our experiments (Fig. 6B; see Table 1 for statistics). This is also evident from the steeper slopes of the regression lines of plots of \(I_{\text{rev}}\) versus \(Q_{\text{ON}}\) (Fig. 6C). In CaV1.2L, the 4R/4A mutation caused a 64% increase in the \(I_{\text{rev}}/Q_{\text{ON}}\) ratio. A similar increase was also observed in the CaV1.2S mutants despite higher basal open probability. An even larger effect was seen for the CaV1.2L\(\Delta\)E and Cav1.2S\(\Delta\)E mutants, which more than doubled the open probability. We also found that all four arginine mutant constructs significantly reduced \(Q_{\text{ON}}\) in both CaV1.2L and CaV1.2S, with the reduction again more pronounced for the two 4R/4E mutations. Our data demonstrate that positive charges located in proximity to the transmembrane segment III1 within the I-II linker are important determinants of normal CaV1.2 Ca\(^{2+}\) channel function independent of the length of their C-terminal tails and basal open probabilities. The negative shift in \(V_{0.5}\) and higher open probability both indicate a tighter coupling between the voltage sensor and the pore. Based on our membrane targeting analysis, we propose that we have identified a site that is involved in the membrane lipid-dependent stabilization of channel function as well as the regulation of the expression of functional channels at the plasma membrane.

We also tested whether the arginine mutations in CaV1.2S\(\Delta\)E (versus CaV1.2S as wild-type control) affect the time-dependent decline of whole-cell \(I_{\text{Ca}}\) and the modulation by added PIP\(_{2}\) (by intracellular application of a 100 \(\mu\)M concentration of the water-soluble PIP\(_{2}\) analogue diC8-PIP\(_{2}\) (15, 64)) or phosphoinositide hydrolysis induced by wortmannin (20 \(\mu\)M) plus...
Novel Modulatory Role of the I-II Linker of LTCCs

FIGURE 6. Biophysical properties of wild-type and mutant Cav1.2L and Cav1.2S. Parameters and statistics are given in Table 1. A, normalized current-voltage (I-V) relationships of Cav1.2L (gray circles), Cav1.2L4A (blue triangles), and Cav1.2L4E (red squares) (left) and Cav1.2S (gray circles), Cav1.2S4A (blue triangles), and Cav1.2S4E (red squares) (right) measured by a 20-ms depolarization step to various test potentials using 15 mM Ca\(^{2+}\) as a charge carrier. Data points are represent means ± S.E. (error bars). Insets, representative traces for Cav1.2L (top left), Cav1.2L4A (bottom left), Cav1.2S (top right), and Cav1.2S4A (bottom right) for the indicated voltages. Note that at test potentials close to the V\(_{max}\), of wild-type channels, the mutant channels exhibit current amplitudes closer to V\(_{max}\) due to a shift of the I-V relationship toward more negative voltages. B, representative current traces of Cav1.2L (top left) versus Cav1.2L4A (top right) and Cav1.2S (bottom left) versus Cav1.2S4A (bottom right) obtained by depolarizing the cell from −90 mV to V\(_{test}\). Insets, enlarged Q\(_{max}\) (area) with maximum tail current amplitude (I\(_{tail}\)) measured at V\(_{max}\) for wild-type and mutant Cav1.2S. The color code is as in A. The following slopes were obtained by linear regression analysis: f = 12.2 ± 1.13 for Cav1.2S 5 (R\(^2\) = 0.64), −17.2 ± 1.14 for Cav1.2S4A 5 (R\(^2\) = 0.82), −27.7 ± 1.73 for Cav1.2S4E 5 (R\(^2\) = 0.70). Slopes were significantly different for each data set (p < 0.0001; F-test: F (DFn, DFd) = 15.6 (2, 34)) as well as for Cav1.2L and corresponding mutants (p < 0.0001; not shown).

TABLE 2

Inactivation properties of wild-type and mutant Cav1.2L and Cav1.2S

Cav1.2 construct	R50	R100	R250	n
Cav1.2L	65.01 ± 2.51	49.39 ± 2.61	32.54 ± 2.02	7
Cav1.2L4A	60.77 ± 2.05	46.83 ± 2.23	33.16 ± 2.34	7
Cav1.2L4E	56.96 ± 1.67\(a\)	42.60 ± 2.43	29.83 ± 1.64	7
Cav1.2S	52.86 ± 2.37\(ab\)	37.09 ± 2.02\(ab\)	24.72 ± 2.02\(b\)	13
Cav1.2S4A	50.63 ± 2.57	36.32 ± 2.31	26.48 ± 2.18	13
Cav1.2S4E	52.28 ± 2.46	38.55 ± 2.36	27.22 ± 2.14	13

m-3M3FBS (50 µM) as in live cell imaging experiments (Fig. 5A). Perfusion of cells with control solution induced a slow decrease in activity with time ("run-down"), as expected for Cav1.2 channels (65). I\(_{Ca}\) decline during perfusion with control solution was similar in wild-type and the mutant channel and was also not affected by intracellular application of diC8-PIP2 (Fig. 7). However, extracellular perfusion with Wortmannin/m-3M3FBS significantly inhibited I\(_{Ca}\) of wild-type and Cav1.2\(S\) channels, but this current inhibition was significantly attenuated in the mutant channel (Fig. 7). This indicates that membrane association of the distal I-II linker through its positive charges not only stabilizes a more reluctant channel state (Fig. 6) but also weakens inhibition of channel activity by phosphoinositide depletion.

Structural Modeling of the Domain I-II Linker Region of Cav1.2 Channel—To further explore the conformation of this distal domain I-II linker region of the Cav1.2 channel (corresponding to residues 536–554 containing the polybasic cluster), its interaction with the inner leaflet of the membrane bilayer, and potential changes introduced by charge neutralizations, we applied the Rosetta membrane method (39–41) and the x-ray structure of the voltage-sensing domain of a recently crystallized bacterial voltage-gated Na\(^+\) channel, Na\(_{K12}\), (Fig. 8A) as described under "Experimental Procedures." The best models of the native Cav1.2 channel revealed convergence between the top cluster model (the most frequently sampled conformation) and the 10 lowest energy models (Fig. 8B). In those models, the distal I-II linker forms a straight helix in...
which arginine residues are oriented away from the hydrophobic layer of the membrane (lines in Fig. 8) and are therefore in a favorable position for possible interactions with lipid phosphate groups (Fig. 8C). Large hydrophobic residues in the domain I-II linker region are oriented toward the hydrophobic core and lipid head groups.

Discussion

We describe the identification of a polybasic motif within the I-II linker of the pore-forming α1 subunit of voltage-gated Cav1.2 L-type Ca2+ channels with biochemical features that allow its attachment to the inner leaflet of the plasma membrane via interaction with negatively charged phospholipids. First, we demonstrate that the I-II linkers of all four LTCC isoforms bind to the plasma membrane in living cells (Fig. 1). This enables this polypeptide to translocate large complexes of cytoplasmic proteins to the plasma membrane (different β-subunits, Rab3-interacting molecule in complex with β2a-subunits, which are membrane-anchored through their palmitic acid side chain and thus insensitive to PLCs. Together, these findings provide...
strong experimental evidence that binding of the I-II linker through this polybasic motif to the plasma membrane also involves interaction with polyphosphoinositides. Third, the primary structure of our lipid-binding motif has the characteristics of previously reported polybasic motifs implicated in polyphosphoinositide-interactions of other ion channels or of small GTPases, such as Rit and K-Ras (Fig. 3). The polybasic motifs of these proteins are sufficient for their plasma membrane targeting. Similar to our motif, the removal of only a few residues in Rit was sufficient to completely prevent translocation (3 in Rit, 4 in the I-II linker) (22). Moreover, positively charged clusters required for interaction with membrane lipids have recently also been identified in the auxiliary β2s subunit of VGCC (67).

Using de novo molecular modeling, we predict this membrane binding motif to form a straight α-helix positioned entirely at the interface between the hydrocarbon core and lipid headgroups, with the positive charges facing the lipid phosphates. Moreover, according to the model, the four arginines not only support plasma membrane binding of the I-II linker but are also necessary to stabilize this secondary structure in the context of the membrane environment. This stabilization may also explain the functional changes we observed. We demonstrate that the four basic residues are by themselves determinants of CaV1.2 Ca2+ channel function. In two different CaV1.2 α1 subunit variants with distinct intrinsic open probabilities (61), neutralization of these charges enhanced CaV1.2-mediated inward currents resulting from increased tail Ca2+ currents relative to total ON-gating charge. In addition, these mutations also shifted half-maximal activation to more negative potentials by increasing the slope of the current-voltage relationship. Both observations indicate that charge neutralization (or conversion) enhances the coupling between voltage sensing and pore opening. This is in accordance with the previous finding that the I-II linker encodes self-reliant molecular motifs for channel activation independent of β-subunits (68, 69). Our data show that residues remote from the β-subunit interaction site in the I-II linker are required for stabilization of normal CaV1.2 channel function. Although only crystallization studies such as those recently described for Kir2.2 and GIRK2 K+ channels (23, 24) can ultimately confirm the direct interaction of channel domains with membrane lipids, our data pro-

FIGURE 8. Structural models of the domain I-II linker region of native CaV1.2 channel. A, sequence alignment between the native CaV1.2 I-II linker region and the domain II voltage-sensing domain (rCaV1.2-DII-VSD) and NaVAb voltage-sensing domain (NaVAb-VSD). Transmembrane segments S1–S4 are underlined by black bars and labeled. Amino acids were colored using the Zappo color scheme in Jalview. B–D, transmembrane view of the ribbon representation of the top cluster models of the VSD of CaV1.2 with the 10 lowest energy Rosetta models superimposed in B and space-filling representations of arginine side chains in the domain I-II linker helix in C and of large hydrophobic side chains in the I-II linker helix in D. E and F, transmembrane view of ribbon representation of the top five clusters and 10 lowest energy Rosetta models of the CaV1.2 VSD of alanine mutants superimposed in E and of glutamate mutants superimposed in F. Models are colored in a rainbow scheme from blue (N-terminal region before S1 segment) to red (S4 segment). Transmembrane segments S1–S4 are labeled accordingly. Black bars, approximate location of the extracellular and intracellular edges of the hydrophobic layer of the membrane.
vide strong evidence that the polybasic motif described here constitutively stabilizes channel function through membrane lipid binding. In addition, we also found that charge neutralization and conversion also reduced Q_{ON}, revealing a reduction of functional channels at the plasma membrane. This strongly indicates that the interaction of this basic motif with negatively charged membrane lipids is also important for regulating the expression of functional Ca$_{\text{v}}$1.2 channels at the membrane surface.

Previous studies have identified other potential PIP$_2$ interaction sites within VGCC α_1-subunits. Mutation of Ile-1520 in segment IIIα_6 of the Ca$_{\text{v}}$2.1 α_1-subunit reduced current rundown attributed to PIP$_2$ depletion (70), thus proposing a channel-stabilizing PIP$_2$ interaction with a region close to the pore. The C terminus of the Ca$_{\text{v}}$2.1 α_1-subunit has also been implicated in a PIP$_2$-dependent regulation of the direct (and voltage-dependent) inhibition of Ca$_{\text{v}}$2.1 channels by receptor-mediated G-protein activation. Evidence has been provided that this could be due to PIP$_2$-mediated interaction with the plasma membrane because the C-terminal channel fragment showed binding to polyphosphoinositide strips in vitro (71). However, the polybasic cluster implicated in this interaction is not present in the C termini of LTCCs.

So far, we could not obtain evidence that the polybasic binding motif identified here is also important for the dynamic regulation of channel function by physiological modulatory pathways inducing phospholipid breakdown. Although we can show breakdown of PIP$_2$ in our transfected cells by activation of M1 receptors robust enough to induce cytoplasmic relocation of the PIP$_2$-selective probe PH-PLCδ, this did not result in relocation of our I-II linker constructs. In electrophysiological studies, Oxo-M stimulation of tsA-201 cells transfected with M1 receptors and Ca$_{\text{v}}$1.2 induces a 33–60% inhibition of Ba$^{2+}$ currents through Ca$_{\text{v}}$1.2 (16), and more than half of this modulation is dependent on PIP$_2$. This is compatible with models predicting that under these experimental conditions, 1–7% of the total PIP$_2$ and 12–40% of PIP remain non-hydrolyzed in these cells (55). This may be sufficient for maintaining the binding of the I-II linker during stimulation with Oxo-M. Indeed, it is known from studies with proteins containing polybasic targeting motifs, similar to the one described here in the I-II linker, that efficient plasma membrane unbinding requires more than just PIP$_2$ hydrolysis. The GTPases Rst and K-Ras require complete depletion of both PIP$_2$ and PIP or PI3K products. Binding still persists when only one of them is depleted (22, 37). This is also in accordance with a previous study that observed that complete loss of the binding of the RasGRP1 plasma membrane targeting domain only occurred after combined treatment with the PLC activator m-3M3FBS and wortmannin and not with m-3M3FBS alone (56). In our experiments, dissociation of the Ca$_{\text{v}}$1.2 I-II linker from the plasma membrane was also achieved by combining m-3M3FBS with ionomycin-induced Ca$^{2+}$ increase. This suggests that Ca$^{2+}$ also plays a role in this mechanism. Thus, it requires a second mechanism that either further enhances polyphosphoinositide breakdown (wortmannin) or a strong intracellular Ca$^{2+}$ signal.

The requirement of Ca$^{2+}$ could also indicate that PLCδ or phosphatidylycerine plays a major role in reversing the plasma membrane targeting of the Ca$_{\text{v}}$1.2 I-II linker. PLCδ is mainly activated by an increase in intracellular Ca$^{2+}$ levels (10–100 nM), usually due to prior activation of other PLCs (72–74). Moreover, it has been shown that sustained Ca$^{2+}$ increase can cause phosphatidylserine externalization (75). The observed translocation of the I-II linker upon m-3M3FBS and ionomycin application could therefore also be due to dissociation from the negatively charged phosphatidylycerine. Hence, we propose that the I-II linker can interact with phosphoinositides as well as with phosphatidylycerine, which has also been reported for RasGRP1 plasma membrane targeting (56). Independent of the exact mechanism, our biochemical studies provide evidence for a strong and constitutive binding of the polybasic membrane binding motif identified here, which may involve different negatively charged phospholipids.

The observation of facilitated gating and enhanced Ca$^{2+}$ influx in our channel mutants is unexpected because recent work (76) has demonstrated inhibition of channel activity by M1 receptor-activated PIP$_2$ breakdown. We were unable to test the effects of our mutations on M1 receptor-induced channel inhibition because the co-transfection was toxic for the cells and precluded their use in patch clamp recordings. Instead, we show that inducing phosphoinositide breakdown by treatment of cells with wortmannin and the PLC activator m-3M3FBS causes the expected inhibition of current amplitude but that this response is significantly attenuated by disruptive mutations in the polybasic motif as shown for Ca$_{\text{v}}$1.2S4E (Fig. 7). This further supports our interpretation that this membrane binding motif not only stabilizes a more reluctant gating mode but also supports modulation of channel activity by lipid breakdown once targeted to the plasma membrane.

The lipid-binding motif described here is positioned on the C-terminal end of the I-II linker. In contrast to the N-terminal half of the linker, this region has not previously been implicated in the control of Ca$^{2+}$ channel function. The β-subunit tightly binds to a conserved motif within the N-terminal half of the I-II linker. X-ray crystallography and mutational studies (77–79) revealed that an α-helix between the AID (and its bound β-subunit) and IS6 provides a rigid connection to the channel pore and thereby crucially determines the voltage- and Ca$^{2+}$-dependent gating properties of the channel. In Ca$_{\text{v}}$2 channels, direct G-protein modulation is also mediated by $G\beta\gamma$ interaction in this region (77, 80). In contrast to this proximal region, no x-ray structure could be obtained C-terminal to the AID in a recent x-ray crystallographic study of the I-II linker in complex with β-subunit (77). Our data suggest that also this portion of the I-II linker forms an α-helix and that its interaction with membrane lipids plays a crucial role in stabilizing the channel conformation. This conformational stabilization may be transmitted either upstream through the I-II linker to the pore (IS6) or downstream through IS1 to the voltage sensor of the repeat II, or both, and thereby control channel gating.

Based on recent genetic findings that already small changes in LTCC functions underlie human diseases (81), this polybasic motif may also be a target for human disease-causing mutations. Further studies must therefore investigate the consequences of single charge neutralizations within this motif as...
Novel Modulatory Role of the I-II Linker of LTCCs

well as the role of adjacent positively charged residues for membrane binding and channel function.

Author Contributions—G. K. and J. S. conceived the study. G. K. designed, performed, and analyzed the experiments shown in Figs. 1, 2, 3, and 5. A. P. designed, performed, and analyzed the experiments shown in Figs. 4, A. P., N. O. J., and A. L. designed, performed, and analyzed the experiments shown in Figs. 6 and 7. V. Y.-Y. designed, performed, and analyzed the experiments shown in Fig. 8. M. S.-B. supervised some of the cloning experiments. G. J. O. and B. E. F. supervised live cell imaging. G. K., A. P., and J. S. wrote the paper with input from all authors. J. S. coordinated the study. All authors critically evaluated the results and approved the final version of the manuscript.

Acknowledgments—We thank Gabriella Bock for help with electrophysiological experiments; Jennifer Muller and Gospava Stojanovic for excellent technical assistance; Stefan Böhm and Michiel Lengelaeg for helpful discussion regarding PLC activation experiments; Benedikt Nimmervoll and Stephan Geley for help with live cell imaging experiments; Anja Schraringer for technical advice; Kees Jalink for providing PH-PLCγ; Dominik Oliver and Gerald Hammond for providing Lyn11, FRB, mRFP-FKBPsseudojamin, and GFP-PH-Osh2x2; and Edward Perez-Reyes for providing rat B2- and B2a-subunit cDNAs.

References

1. Catterall, W. A. (2011) Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3, a003947
2. Striessnig, J., Pingenner, A., Kaur, G., Bock, G., and Tuluc, P. (2014) L-type calcium channels in heart and brain. Wiley Interdiscip. Rev. Membr. Transp. Signal. 3, 15–38
3. Liao, P., Yong, T. F., Liang, M. C., Yue, D. T., and Soong, T. W. (2005) Functional diversity in neuronal voltage-gated calcium channels by alternative splicing of Cav1.1 subunits. Mol. Neurobiol. 26, 21–44
4. Lipcombe, D. (2005) Neuronal proteins custom designed by alternative splicing. Curr. Opin. Neurobiol. 15, 358–363
5. Peterson, B. Z., DeMaria, C. D., Adelman, J. P., and Yue, D. T. (1999) Calmodulin is the calcium sensor for calcium-dependent inactivation of L-type calcium channels. Neuron 22, 549–558
6. Grueter, C. E., Abiria, S. A., Dzhura, I., Wu, Y., Ham, A. J., Mohler, P. J., Anderson, M. E., and Colbran, R. J. (2006) L-type Ca2+ channel facilitation mediated by phosphorylation of the β subunit by CaMKII. Mol. Cell 23, 641–650
7. Hulme, J. T., Westenbroek, R. E., Scheuer, T., and Catterall, W. A. (2006) Phosphorylation of serine 228 in the distal C-terminal domain of cardiac Cav1.2 channels during β1-adrenergic regulation. Proc. Natl. Acad. Sci. U.S.A. 103, 16574–16579
8. Fu, Y., Westenbroek, R. E., Scheuer, T., and Catterall, W. A. (2014) Basal and β-adrenergic regulation of the cardiac calcium channel Cav1.2 requires phosphorylation of serine 1700. Proc. Natl. Acad. Sci. U.S.A. 111, 16598–16603
9. Doering, C. J., and McRory, J. E. (2007) Effects of extracellular pH on neuronal calcium channel activation. Neuroscience 146, 1032–1043
10. De Waard, M., Liu, H., Walker, D., Scott, V. E., Gurnett, C. A., and Campbell, K. P. (1997) Direct binding of G-protein βγ complex to voltage-dependent calcium channels. Nature 385, 446–450
11. Roberts-Crowley, M. L., Mitra-Ganguli, T., Liu, L., and Rittenhouse, A. R. (2009) Regulation of voltage-gated Ca2+ channels by lipids. Cell Calcium 45, 589–601
12. Suh, B. C., and Hille, B. (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu. Rev. Biophys. 37, 175–195
13. Wu, L., Bauer, C. S., Zhen, X. G., Xin, C., and Yang, J. (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419, 947–952
14. Camper, N., Reznikov, V., Yamada, Y., Yang, J., and Shapiro, M. S. (2004) Phosphorylation of 4,5-bisphosphate signals underlie receptor-specific Gαi11-mediated modulation of N-type Ca2+ channels. J. Neurosci. 24, 10980–10992
15. Suh, B. C., Leal, K., and Hille, B. (2010) Modulation of high-voltage activated Ca2+ channels by membrane phosphorylase 4,5-bisphosphate. Neuron 67, 224–238
16. Suh, B. C., Kim, D. I., Falkenburger, B. B., and Hille, B. (2012) Membrane localized β-subunits alter the PI2P regulation of high-voltage activated Ca2+ channels. Proc. Natl. Acad. Sci. U.S.A. 109, 3161–3166
17. Hermosilla, T., Moreno, C., Itifinca, M., Altier, C., Armisén, R., Stutzin, A., Zamponi, G. W., and Varela, D. (2011) L-type calcium channel β subunit modulates angiotensin II responses in cardiomyocytes. Channels 5, 280–286
18. Rhee, S. C., Mohler, P. J., and Rittenhouse, A. R. (2009) Arachidonic acid inhibition of L-type calcium (Cav1.3b) channels varies with accessory Cavβ subunits. J. Gen. Physiol. 133, 387–403
19. Michalides, I. E., Zhang, Y., and Yang, J. (2007) The lipid connection—regulation of voltage-gated Ca2+ channels by phosphoinositides. Pflugers Arch. 455, 147–155
20. Yeung, T., Gilbert, G. E., Shi, J., Silvius, J., Kapus, A., and Grinstein, S. (2008) Membrane phosphatidylinerine regulates surface charge and protein localization. Science 319, 210–213
21. Heo, W. D., Inoue, T., Park, W. S., Kim, M. L., Park, B. O., Wandless, T. J., and Meyer, T. (2006) PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461
22. Hansen, S. B., Tao, X., and MacKinnon, R. (2011) Structural basis of PI2P activation of the classical inward rectifier K+ channel Kir2.2. Nature 477, 495–498
23. Whorton, M. R., and MacKinnon, R. (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PI2P, and sodium. Cell 147, 199–208
24. Hille, B., Dickson, E. J., Kruse, M., Vivas, O., and Suh, B. C. (2015) Phosphoinositides regulate ion channels. Biochim. Biophys. Acta 1851, 844–856
25. Altier, C., Garcia-Caballero, A., Simms, B., You, H., Chen, L., Walcher, J., Tiefod, H. W., Hermosilla, T., and Zamponi, G. W. (2011) The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of light-<ref>channels. Nat. Neurosci.</ref> 14, 173–180
26. Hilgemann, D. W. (2012) Fitting K(V) potassium channels into the PI2P puzzle: Hille group connects dots between illustrious HH groups. J. Gen Physiol. 140, 245–248
27. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K., and Pease, L. R. (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. <ref>Gene</ref> 77, 61–68
28. Long, J. Z., Lackan, C. S., and Hadjantonakis, A. K. (2005) Genetic and spectrally distinct in vivo imaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol. 5, 20
29. Obermair, G. J., Kugler, G., and Flucher, B. E. (2004) The role of the calcium channel a2δ-1 subunit in skeletal muscle. J. Muscle Res. Cell Motil. 25, 239–240
30. Obermair, G. J., Schlick, B., Di Biase, V., Subramaniam, P., Gebhart, M., Baumgartner, S., and Flucher, B. E. (2010) Reciprocal interactions regulate targeting of calcium channel β subunits and membrane expression of α2, subunits in cultured hippocampal neurons. J. Biol. Chem. 285, 5776–5791
31. Dayal, A., Bhat, V., Franzini-Armstrong, C., and Grabner, M. (2013) Domain cooperation in the β1a subunit is essential for dihydropyridine receptor voltage sensing in skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 110, 7488–7493
32. Campiglio, M., Di Biase, V., Tuluc, P., and Flucher, B. E. (2013) Stable incorporation versus dynamic exchange of β subunits in a native Ca2+ channel complex. J. Cell Sci. 126, 2092–2101
33. van der Wal, J., Habets, R., Värrni, P., Balla, T., and Jalink, K. (2001) Monitoring agonist-induced phospholipase C activation in live cells by fluoros-
cence resonance energy transfer. *J. Biol. Chem.* **276**, 15337–15344
35. Grabner, M., Dirksen, R. T., and Beam, K. G. (1998) Tagging with green fluorescent protein reveals a distinct subcellular distribution of L-type and non-L-type calcium channels expressed in dyeyotic myotubes. *Proc. Natl. Acad. Sci. U.S.A.* **95**, 1903–1908
36. Lindner, M., Leitner, M. G., Halaszovich, C. R., Hammond, G. R., and Oliver, D. (2011) Probing the regulation of TASK potassium channels by PI4,5P2 with switchible phosphoinositide phosphatases. *J. Physiol.* **589**, 3149–3162
37. Hammond, G. R., Fischer, M. J., Anderson, K. E., Holdich, J., Kotteci, A., Balla, T., and Irvine, R. F. (2012) PI4 and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. *Science* **337**, 727–730
38. Ortner, N. J., Bock, G., Vandel, D. H., Mauersberger, R., Draheim, H. J., Gust, R., Carbone, E., Tulu, P., and Striessnig, J. (2014) Pyrimidine-2,4,6-triones are a new class of voltage-gated L-type Ca2+ channel activators. *Nat. Commun.* **5**, 3897
39. Barth, P., Schönbrun, J., and Baker, D. (2007) Toward high-resolution prediction and design of transmembrane helical protein structures. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 15682–15687
40. Yarov-Yarovoy, V., Schönbrun, J., and Baker, D. (2006) Multipass membrane protein structure prediction using Rosetta. *Proteins* **62**, 1010–1025
41. Yarov-Yarovoy, V., Baker, D., and Catterall, W. A. (2006) Voltage sensor conformations in the open and closed states in ROSETTA structural models of K+ channels. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 7292–7297
42. Payandeh, J., Scheuer, T., Zheng, N., and Catterall, W. A. (2011) The crystal structure of a voltage-gated sodium channel. *Nature* **475**, 353–358
43. Hildebrand, A., Remmert, M., Biegert, A., and Söding, J. (2009) Fast and accurate automatic structure prediction with HHpred. *Proteins* **77**, 128–132
44. Söding, J., Biegert, A., and Lupas, A. N. (2005) The HHpred interactive server for protein homology detection and structure prediction. *Nucleic Acids Res.* **33**, W244–W248
45. Wang, C., Bradley, P., and Baker, D. (2007) Protein-protein docking with backbone flexibility. *J. Mol. Biol.* **373**, 503–519
46. Yarov-Yarovoy, V., DeCaen, P. G., Westenbroek, R. E., Pan, C. Y., Scheuer, T., Baker, D., and Catterall, W. A. (2006) Voltage sensor conformations in the open and closed states in ROSETTA structural models of K+ channels. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 7292–7297
47. Lieb, A., Scharinger, A., Santorl, S., Innengger-Brauns, M. J., and Striessnig, J. (2012) Structural determinants of Cav1.3 L-type calcium channel gating. *Channels* **6**, 197–205
48. Singh, A., Gebhart, M., Fritsch, R., Innengger-Brauns, M. J., Poggiani, C., Hoda, J. C., Engel, J., Romanin, C., Striessnig, J., and Koschak, A. (2008) Modulation of voltage- and Ca2+-dependent gating of Cav3.1 L-type calcium channels by alternative splicing of a C-terminal regulatory domain. *J. Biol. Chem.* **283**, 20733–20744
49. Cao, Y., Bartolomé-Martín, D., Rotem, N., Rozas, C., Delall, S. S., Chacon, M. A., Kadiou, B., Gulilinco, M., Khodakhah, K., and Faber, D. S. (2015) Rescue of homeostatic regulation of striatal excitability and locomotor activity in a mouse model of Huntington’s disease. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 2239–2244
50. Hall, D. D., Dai, S., Tseng, P.-Y., Malik, Z., Nguyen, M., Matt, L., Schnizler, K., Shephard, A. Mopahatra, D. P., Tsuruta, F., Dolmetsch, R. E., Christel, C. J., Lee, A., Burette, A., Weinberg, R. I., and Hell, J. W. (2013) Competition between α-actinin and Ca2+-calmodulin controls surface retention of the L-type Ca2+ channel Cav1.2. *Neuron* **78**, 483–497
51. Rhee, S. G., and Choi, K. D. (1992) Multiple forms of phospholipase C isoforms and their activation mechanisms. *Adv. Second Messenger Phosphoinositide Res.* **26**, 35–61
52. Miranda-Laferte, E., Ewers, D., Guzman, R. E., Jordan, N., Schmidt, S., and Hidalgo, P. (2014) The N-terminal domain tethers the voltage-gated calcium channel β2-subunit to the plasma membrane via electrostatic and hydrophobic interactions. *J. Biol. Chem.* **289**, 10387–10398
53. Gonzalez-Gutierrez, G., Miranda-Laferte, E., Contreras, G., Neely, A., and Hidalgo, P. (2010) Switching the I-II intracellular linker between L-type Cav1.2 and R-type Cav2.3 high-voltage gated calcium channels exchanges activation attributes. *Channels* **4**, 42–50
54. Neely, A., and Hidalgo, P. (2014) Structure-function of proteins interacting with the α1i Forb-forming subunit of high-voltage-activated calcium channels. *Front. Physiol.* **5**, 209
55. Zhen, X. G., Xie, C., Yamada, Y., Zhang, Y., Doyle, C., and Yang, J. (2006) A single amino acid mutation attenuates rundown of voltage-gated calcium channels. *FEBS Lett.* **580**, 5733–5738
56. Roussent, M., Cens, T., Gouin-Charnet, A., Scamps, F., and Charnet, P. (2004) Calcium and phosphatidlyinositol 4.5-bisphosphate stabilize a Gβγ-sensitive state of Ca2+ channels. *J. Biol. Chem.* **279**, 14619–14630
57. Yang, Y. R., Follo, M. Y., Cocolo, L., and Suh, P. G. (2013) The physiological roles of primary phospholipase C. *Adv. Biol. Regul.* **53**, 232–241
58. Rhee, S. G., and Bae, Y. S. (1997) Regulation of phosphoinositide-specific phospholipase C isoforms. *J. Biol. Chem.* **272**, 15045–15048
Novel Modulatory Role of the I-II Linker of LTCCs

74. Suh, P. G., Park, J. I., Manzoli, L., Cocco, L., Peak, J. C., Katan, M., Fukami, K., Kataoka, T., Yun, S., and Ryu, S. H. (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep. 41, 415–434
75. Balasubramanian, K., Mirnikjoo, B., and Schroit, A. J. (2007) Regulated externalization of phosphatidylserine at the cell surface: implications for apoptosis. J. Biol. Chem. 282, 18357–18364
76. Suh, B. C., and Hille, B. (2002) Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron 35, 507–520
77. Almagor, L., Chomsky-Hecht, O., Ben-Mocha, A., Hendin-Barak, D., Dascal, N., and Hirsch, J. A. (2012) The role of a voltage-dependent Ca²⁺ channel intracellular linker: a structure-function analysis. J. Neurosci. 32, 7602–7613
78. Baumgart, J. P., Vitko, I., Bidaud, I., Kondratskyi, A., Lory, P., and Perez-Reyes, E. (2008) I-II loop structural determinants in the gating and surface expression of low voltage-activated calcium channels. PLoS One 3, e2976
79. Findeisen, F., and Minor, D. L., Jr. (2009) Disruption of the IS6-AID linker affects voltage-gated calcium channel inactivation and facilitation. J. Gen. Physiol. 133, 327–343
80. Tedford, H. W., Kisilevsky, A. E., Vieira, L. B., Varela, D., Chen, L., and Zamponi, G. W. (2010) Scanning mutagenesis of the I-II loop of the Cav2.2 calcium channel identifies residues arginine 376 and valine 416 as molecular determinants of voltage dependent G protein inhibition. Mol. Brain 3, 6
81. Pinggera, A., Lieb, A., Benedetti, B., Lampert, M., Monteleone, S., Liedl, K. R., Tuluc, P., and Striessnig, J. (2015) CACNA1D de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium channels. Biol. Psychiatry 77, 816–822