Information Stickiness in General Equilibrium and Endogenous Cycles

Orlando Gomes

Business Research Unit

ISCTE 18-02-2011
'Chaos represents a radical change of perspective on business cycles. Business cycles receive an endogenous explanation and are traced back to the strong nonlinear deterministic structure that can pervade the economic system. This is different from the (currently dominant) exogenous approach to economic fluctuations, based on the assumption that economic equilibria are determinate and intrinsically stable, so that in the absence of continuing exogenous shocks the economy tends towards a steady state, but because of stochastic shocks a stationary pattern of fluctuations is observed.'

Barnett, W.A.; A. Medio and A. Serletis (1997). *Nonlinear and Complex Dynamics in Economics*, EconWPA working paper number 9709001 (pages 36-37).
Nonlinear dynamics

- Linear models: *stability* (convergence towards a fixed-point) or *instability* (divergence away from the fixed-point) - all sources of fluctuations, in the long-run, are exogenous.

- Nonlinear models: other long-term outcomes are possible - cycles of any periodicity or complete a-periodicity / chaos (*bounded instability*).
Nonlinear dynamics

- Linear models: *stability* (convergence towards a fixed-point) or *instability* (divergence away from the fixed-point) - all sources of fluctuations, in the long-run, are exogenous.

- Nonlinear models: other long-term outcomes are possible - cycles of any periodicity or complete a-periodicity / chaos (*bounded instability*).
Nonlinear dynamics

- Linear models: stability (convergence towards a fixed-point) or instability (divergence away from the fixed-point) - all sources of fluctuations, in the long-run, are exogenous.

- Nonlinear models: other long-term outcomes are possible - cycles of any periodicity or complete a-periodicity / chaos (bounded instability).

- Macroeconomics: many attempts to justify endogenous fluctuations - see Gomes (2006) for a survey.
Endogenous fluctuations in the macro literature (some recent references: 2007-...)

Author (year)	Journal	Title	Type of model	Source of fluctuations
Fanti and Manfredi (2007)	JEBO	Neoclassical labour market dynamics, chaos and the real wage Phillips curve	Neoclassical labor market model	Consumption and leisure are modeled as weak substitutes
Jaimovich (2007)	JET	Firm dynamic and markup variations: equilibria and endogenous economic fluctuations	Dynamic general equilibrium model	Interaction between firms’ entry-and-exit decisions and variations in competition (net business formation is endogenously pro-cyclical)
Yoshida and Asada (2007)	JEBO	Dynamic analysis of policy lag in a Keynes-Goodwin model: stability, instability, cycles and chaos	Keynes-Goodwin model of the growth cycle	Lags in the implementation of stabilization policies
Endogenous fluctuations in the macro literature (some recent references: 2007-…)

Author (year)	Journal	Title	Type of model	Source of fluctuations
Chen, Li and Lin	JEBO	Chaotic dynamics in an overlapping generations model with myopic and adaptive expectations	Overlapping generations model with capital accumulation	Myopic and adaptive expectations
(2008)				
Fujio	JEBO	Undiscounted optimal growth in a Leontief two-sector model with circulating capital: the case of a capital intensive consumption good	Two-sector optimal growth model with a Leontief technology	The shape of the production function
(2008)				
Hallegatte, Ghil,	JEBO	Business cycles, bifurcations and chaos in a neo-classical model with investment dynamics into a Solow growth model	Non-equilibrium dynamic model that introduces instability	Investment-profit instability
Dumas and Hourcade				
(2008)				
Endogenous fluctuations in the macro literature (some recent references: 2007-...)

Author (year)	Journal	Title	Type of model	Source of fluctuations
Yokoo and Ishida	JEDC	Misperception-driven chaos: theory and policy implications	Economy with a continuum of firms that engage in innovation activities	Imperfect information
(2008)				
Dieci and Westerhoff	JEDC	Heterogeneous speculators, endogenous fluctuations and interacting markets: a model of stock prices and exchange rates	A model that integrates the stock markets of two countries via the foreign exchange market	Heterogeneous agents: technical traders and fundamentalists
(2009)				
Kikuchi and Stachurski	JET	Endogenous inequality and fluctuations in a two-country model	Two-country growth model	Interaction between unequal countries through credit markets
(2009)				
Stockmam	JEDC	Chaos and sector-specific externalities	Two-sector growth model	Sector-specific externalities
(2009)				
Endogenous fluctuations in the macro literature (some recent references: 2007-...)

Author (year)	Journal	Title	Type of model	Source of fluctuations
Gomes (2010)	SNDE	The sticky-information macro model: beyond perfect foresight	Sticky-information macroeconomic model	Formation of expectations under a learning rule
Lines and Westerhoff (2010)	JEDC	Inflation expectations and macroeconomic dynamics: the case of rational vs extrapolative expectations	Macro model composed by Okun's law, expectations-augmented Phillips curve and an aggregate demand relation	Heterogeneous expectations (trend-following and rational expectations)
Sushko, Gardini and Puu (2010)	JEBO	Regular and chaotic growth in a Hicksian floor/ceiling model	Hicksian trade-cycle model	Capital stock as a capacity limit (ceiling) for production
Not yet explored ...

- Endogenous fluctuations on the sticky-information general equilibrium macroeconomic model of Mankiw and Reis (2006, 2007) and Reis (2009).
Endogenous fluctuations on the sticky-information general equilibrium macroeconomic model of Mankiw and Reis (2006, 2007) and Reis (2009).

This model explains the gradual response (inertia) of aggregate variables to exogenous disturbances. It allows for a steady-state analysis, where policy shocks may temporarily deviate the economy from its fixed-point long-run locus.

How could endogenous cycles emerge within this setup? We just need to relax two benchmark assumptions and consider that:

1. Perfect foresight is not universal;
2. Information updating is counter-cyclical.
Endogenous fluctuations on the sticky-information general equilibrium macroeconomic model of Mankiw and Reis (2006, 2007) and Reis (2009).

This model explains the gradual response (inertia) of aggregate variables to exogenous disturbances. It allows for a steady-state analysis, where policy shocks may temporarily deviate the economy from its fixed-point long-run locus.

How could endogenous cycles emerge within this setup? - we just need to relax two benchmark assumptions and consider that:

1. Perfect foresight is not universal;
2. Information updating is counter-cyclical.
Endogenous fluctuations on the sticky-information general equilibrium macroeconomic model of Mankiw and Reis (2006, 2007) and Reis (2009).

This model explains the gradual response (inertia) of aggregate variables to exogenous disturbances. It allows for a steady-state analysis, where policy shocks may temporarily deviate the economy from its fixed-point long-run locus.

How could endogenous cycles emerge within this setup? - we just need to relax two benchmark assumptions and consider that:

1. Perfect foresight is not universal;
Not yet explored ...

- Endogenous fluctuations on the sticky-information general equilibrium macroeconomic model of Mankiw and Reis (2006, 2007) and Reis (2009).
- This model explains the gradual response (inertia) of aggregate variables to exogenous disturbances. It allows for a steady-state analysis, where policy shocks may temporarily deviate the economy from its fixed-point long-run locus.

How could endogenous cycles emerge within this setup? - we just need to relax two benchmark assumptions and consider that:

1. Perfect foresight is not universal;
2. Information updating is counter-cyclical.
The SIGE model

- The adopted version of the model is the one in Gomes (2011) - similar to Mankiw-Reis, but with the following simplifying assumptions:
The SIGE model

- The adopted version of the model is the one in Gomes (2011) - similar to Mankiw-Reis, but with the following simplifying assumptions:

 - the degree of information stickiness is the same across the different types of economic agents (price-setting firms, households who formulate consumption plans, wage-setting workers);
The SIGE model

The adopted version of the model is the one in Gomes (2011) - similar to Mankiw-Reis, but with the following simplifying assumptions:

- the degree of information stickiness is the same across the different types of economic agents (price-setting firms, households who formulate consumption plans, wage-setting workers);
- The monetary policy rule ignores real stabilization, and focuses on price stability;
The adopted version of the model is the one in Gomes (2011) - similar to Mankiw-Reis, but with the following simplifying assumptions:

- the degree of information stickiness is the same across the different types of economic agents (price-setting firms, households who formulate consumption plans, wage-setting workers);
- The monetary policy rule ignores real stabilization, and focuses on price stability;
- In order to emphasize the possible presence of endogenous fluctuations, stochastic disturbances (e.g., technological innovations) are overlooked;
The adopted version of the model is the one in Gomes (2011) - similar to Mankiw-Reis, but with the following simplifying assumptions:

- the degree of information stickiness is the same across the different types of economic agents (price-setting firms, households who formulate consumption plans, wage-setting workers);
- The monetary policy rule ignores real stabilization, and focuses on price stability;
- In order to emphasize the possible presence of endogenous fluctuations, stochastic disturbances (e.g., technological innovations) are overlooked;
- The rate at which the real interest rate converges to the steady-state is known at time t.
Behavior of firms: profit maximization under monopolistic competition;

Optimization leads to desired price:

\[p_t = p_t + mc_t; \]

Marginal costs:

\[mc_t = \beta + \upsilon \left(1 - \beta \right) w_t p_t + \frac{1}{\beta + \upsilon \left(1 - \beta \right)} y_t; \]

\[w_t: \text{nominal wage rate}; \]
\[y_t: \text{output gap}; \]
\[\upsilon > 0: \text{elasticity of substitution between different varieties of goods}; \]
\[\gamma > 0: \text{elasticity of substitution between different varieties of labor}; \]
\[\beta \in (0, 1): \text{output-labor elasticity}. \]
Behavior of firms: profit maximization under monopolistic competition;

Optimization leads to desired price: \(p_t^* = p_t + mc_t \);
Sticky-Information Phillips Curve

- Behavior of firms: profit maximization under monopolistic competition;
- Optimization leads to desired price: $p^*_t = p_t + mc_t$;
- Marginal costs: $mc_t = \frac{\beta}{\beta + \upsilon(1 - \beta)}(w_t - p_t) + \frac{1 - \beta}{\beta + \upsilon(1 - \beta)}y_t$;
Sticky-Information Phillips Curve

- Behavior of firms: profit maximization under monopolistic competition;
- Optimization leads to desired price: \(p_t^* = p_t + mc_t \);
- Marginal costs: \(mc_t = \frac{\beta}{\beta + \nu(1-\beta)} (w_t - p_t) + \frac{1-\beta}{\beta + \nu(1-\beta)} y_t \);
 - \(w_t \): nominal wage rate;
Sticky-Information Phillips Curve

- Behavior of firms: profit maximization under monopolistic competition;
- Optimization leads to desired price: $p^*_t = p_t + mc_t$;
- Marginal costs: $mc_t = \frac{\beta}{\beta + \upsilon(1-\beta)}(w_t - p_t) + \frac{1-\beta}{\beta + \upsilon(1-\beta)}y_t$;
 - w_t: nominal wage rate;
 - y_t: output gap;
Behavior of firms: profit maximization under monopolistic competition;

Optimization leads to desired price: \(p_t^* = p_t + mc_t \);

Marginal costs: \(mc_t = \frac{\beta}{\beta + \nu(1-\beta)} (w_t - p_t) + \frac{1-\beta}{\beta + \nu(1-\beta)} y_t \);

- \(w_t \): nominal wage rate;
- \(y_t \): output gap;
- \(\nu > 0 \): elasticity of substitution between different varieties of goods;
Sticky-Information Phillips Curve

- Behavior of firms: profit maximization under monopolistic competition;
- Optimization leads to desired price: \(p_t^* = p_t + mc_t \);
- Marginal costs: \(mc_t = \frac{\beta}{\beta + \nu(1-\beta)}(w_t - p_t) + \frac{1-\beta}{\beta + \nu(1-\beta)}y_t \);
 - \(w_t \): nominal wage rate;
 - \(y_t \): output gap;
 - \(\nu > 0 \): elasticity of substitution between different varieties of goods;
 - \(\gamma > 0 \): elasticity of substitution between different varieties of labor;
Sticky-Information Phillips Curve

- Behavior of firms: profit maximization under monopolistic competition;
- Optimization leads to desired price: $p^*_t = p_t + mc_t$;
- Marginal costs: $mc_t = \frac{\beta}{\beta + \nu(1-\beta)}(w_t - p_t) + \frac{1-\beta}{\beta + \nu(1-\beta)}y_t$;
 - w_t: nominal wage rate;
 - y_t: output gap;
 - $\nu > 0$: elasticity of substitution between different varieties of goods;
 - $\gamma > 0$: elasticity of substitution between different varieties of labor;
 - $\beta \in (0, 1)$: output-labor elasticity.
Sticky-Information Phillips Curve

- $\lambda \in (0, 1)$: share of firms that, at a given time moment, collect information and update their price strategy accordingly;
Sticky-Information Phillips Curve

- $\lambda \in (0, 1)$: share of firms that, at a given time moment, collect information and update their price strategy accordingly;

- Aggregate price level: $p_t = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j p_{t,j}$, with $p_{t,j} = E_{t-j} p_t^*$.
Sticky-Information Phillips Curve

- $\lambda \in (0, 1)$: share of firms that, at a given time moment, collect information and update their price strategy accordingly;

- Aggregate price level: $p_t = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j p_{t,j}$, with $p_{t,j} = E_{t-j} p^*_t$.

- Applying first differences and defining $\pi_t := p_t - p_{t-1}$ (inflation rate):
Sticky-Information Phillips Curve

- $\lambda \in (0, 1)$: share of firms that, at a given time moment, collect information and update their price strategy accordingly;

- Aggregate price level: $p_t = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j p_{t,j}$, with $p_{t,j} = E_{t-j} p_t^*$.

- Applying first differences and defining $\pi_t := p_t - p_{t-1}$ (inflation rate):

 - $\pi_t = \frac{\lambda}{1 - \lambda} mc_t + \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-1-j} (\pi_t + \Delta mc_t) \Rightarrow$

 Sticky-information Phillips Curve.
Behavior of households - utility maximization for an individual consumer leads to: $c_{t,j} = -\theta E_{t-j}(R_t)$, with $R_t = E_t \left(\sum_{i=0}^{\infty} r_{t+i} \right)$ the long real interest rate and θ the intertemporal elasticity of substitution for consumption.
Behavior of households - utility maximization for an individual consumer leads to:

\[c_{t,j} = -\theta E_{t-j}(R_t), \]

with \(R_t = E_t \left(\sum_{i=0}^{\infty} r_{t+i} \right) \) the long real interest rate and \(\theta \) the intertemporal elasticity of substitution for consumption.

Households are inattentive:

\[c_t = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j c_{t,j}. \]
Sticky-Information IS Curve

- Behavior of households - utility maximization for an individual consumer leads to: \(c_{t,j} = -\theta E_{t-j}(R_t) \), with \(R_t = E_t \left(\sum_{i=0}^{\infty} r_{t+i} \right) \) the long real interest rate and \(\theta \) the intertemporal elasticity of substitution for consumption.

- Households are inattentive: \(c_t = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j c_{t,j} \).

- Assuming market-clearing - IS curve: \(y_t = -\theta \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j}(R_t) \).
Sticky-Information IS Curve

- Behavior of households - utility maximization for an individual consumer leads to: \(c_{t,j} = -\theta E_{t-j}(R_t) \), with \(R_t = E_t \left(\sum_{i=0}^{\infty} r_{t+i} \right) \) the long real interest rate and \(\theta \) the intertemporal elasticity of substitution for consumption.

- Households are inattentive: \(c_t = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j c_{t,j} \).

- Assuming market-clearing - IS curve: \(y_t = -\theta \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j}(R_t) \).

- Applying first differences:
 \[
y_{t+1} = y_t - \theta \lambda R_{t+1} - \theta \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j}[(1 - \lambda) R_{t+1} - R_t].
\]
Sticky-Information IS Curve

- Behavior of households - utility maximization for an individual consumer leads to: \(c_{t,j} = -\theta E_{t-j}(R_t) \), with \(R_t = E_t \left(\sum_{i=0}^{\infty} r_{t+i} \right) \) the long real interest rate and \(\theta \) the intertemporal elasticity of substitution for consumption.

- Households are inattentive: \(c_t = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j c_{t,j} \).

- Assuming market-clearing - IS curve: \(y_t = -\theta \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j}(R_t) \).

- Applying first differences:
 \[
y_{t+1} = y_t - \theta \lambda R_{t+1} - \theta \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j}[(1 - \lambda)R_{t+1} - R_t].
\]

- Fisher equation: \(r_t = i_t - E_t(\pi_{t+1}) \); monetary policy rule: \(i_t = \phi[E_t(\pi_{t+1}) - \bar{\pi}], \phi > 1 \).
Sticky-Information Wage Curve

- Labor suppliers: are monopolistic suppliers of different varieties of labor; choose the amount of labor supply and the wage rate.
Labor suppliers: are monopolistic suppliers of different varieties of labor; choose the amount of labor supply and the wage rate.

The solution of the optimization problem for an individual worker is:

\[w_{t,j} = E_{t-j} \left[p_t + \frac{\gamma}{\gamma+\psi}(w_t - p_t) + \frac{1}{\beta(\gamma+\psi)} y_t - \frac{\psi}{\gamma+\psi} R_t \right], \text{ with } \psi > 0 \]

the labor supply elasticity.
Sticky-Information Wage Curve

- Labor suppliers: are monopolistic suppliers of different varieties of labor; choose the amount of labor supply and the wage rate.

- The solution of the optimization problem for an individual worker is:
 \[w_{t,j} = E_{t-j} \left[p_t + \frac{\gamma}{\gamma + \psi} (w_t - p_t) + \frac{1}{\beta(\gamma + \psi)} y_t - \frac{\psi}{\gamma + \psi} R_t \right], \text{ with } \psi > 0 \]
 the labor supply elasticity.

- Aggregate nominal wage index:
 \[w_t = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j w_{t,j}. \]
Labor suppliers: are monopolistic suppliers of different varieties of labor; choose the amount of labor supply and the wage rate.

The solution of the optimization problem for an individual worker is:

\[w_{t,j} = E_{t-j} \left[p_t + \frac{\gamma}{\gamma + \psi} (w_t - p_t) + \frac{1}{\beta(\gamma + \psi)} y_t - \frac{\psi}{\gamma + \psi} R_t \right], \text{ with } \psi > 0 \]

the labor supply elasticity.

Aggregate nominal wage index: \(w_t = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j w_{t,j} \).

SIGE model: SIPC-SIISC-SIWIC.
Steady-state

Steady-state: \((p^*, y^*, w^*)\) with \(p^* := p_t = E_{t-j}(p_t)\), \(y^* := y_t = E_{t-j}(y_t)\), \(w^* := w_t = E_{t-j}(w_t)\), \(\forall t, j = 0, 1, 2, \ldots\)
Steady-state

- Steady-state: \((p^*, y^*, w^*)\) with \(p^* := p_t = E_{t-j}(p_t), \ y^* := y_t = E_{t-j}(y_t), \ w^* := w_t = E_{t-j}(w_t), \ \forall t, j = 0, 1, 2, \ldots\)

- Applying the definition: \(y^* = 0; \ p^* = w^*; \ R^* = r^* = 0; \ \pi^* = i^* = \frac{\phi}{\phi - 1} \bar{\pi}.\)
Steady-state

- Steady-state: \((p^*, y^*, w^*)\) with \(p^* := p_t = E_{t-j}(p_t)\), \(y^* := y_t = E_{t-j}(y_t)\), \(w^* := w_t = E_{t-j}(w_t)\), \(\forall t, j = 0, 1, 2, ...\)

- Applying the definition: \(y^* = 0; p^* = w^*; R^* = r^* = 0; \pi^* = i^* = \frac{\phi}{\phi-1} \pi\).

- Define two new stationary variables:
Steady-state

- Steady-state: \((p^*, y^*, w^*)\) with \(p^* := p_t = E_{t-j}(p_t)\),
 \(y^* := y_t = E_{t-j}(y_t)\), \(w^* := w_t = E_{t-j}(w_t)\), \(\forall t, j = 0, 1, 2, \ldots\)

- Applying the definition: \(y^* = 0; p^* = w^*; R^* = r^* = 0;\)
 \(\pi^* = i^* = \frac{\phi}{\phi - 1} \pi\).

- Define two new stationary variables:

 - Growth rate of nominal wages: \(\mu_t := w_t - w_{t-1}\);
Steady-state

- Steady-state: \((p^*, y^*, w^*)\) with \(p^* := p_t = E_{t-j}(p_t)\),
 \(y^* := y_t = E_{t-j}(y_t)\), \(w^* := w_t = E_{t-j}(w_t)\), \(\forall t, j = 0, 1, 2, \ldots\)

- Applying the definition: \(y^* = 0\); \(p^* = w^*\); \(R^* = r^* = 0\);
 \(\pi^* = i^* = \frac{\phi}{\phi-1} \pi\).

- Define two new stationary variables:
 1. Growth rate of nominal wages: \(\mu_t := w_t - w_{t-1}\);
 2. Growth rate of real output: \(g_t := y_t - y_{t-1}\);
Steady-state

- Steady-state: \((p^*, y^*, w^*)\) with \(p^* := p_t = E_{t-j}(p_t),\) \(y^* := y_t = E_{t-j}(y_t),\) \(w^* := w_t = E_{t-j}(w_t),\) \(\forall t, j = 0, 1, 2, \ldots\)

- Applying the definition: \(y^* = 0; p^* = w^*; R^* = r^* = 0;\) \(\pi^* = i^* = \frac{\phi}{\phi - 1} \overline{\pi}.\)

- Define two new stationary variables:
 1. Growth rate of nominal wages: \(\mu_t := w_t - w_{t-1};\)
 2. Growth rate of real output: \(g_t := y_t - y_{t-1};\)

- Assumption - \(r_t\) converges to the steady-state at rate \(a \in (0, 1):\)
 \(R_t = E_t \left(\sum_{i=0}^{\infty} r_{t+i} \right) = \sum_{i=0}^{\infty} (1-a)^i r_t = \frac{1}{a} r_t.\)
For the newly considered variables, the SIGE dynamic system can be further rearranged:
For the newly considered variables, the SIGE dynamic system can be further rearranged:

\[\pi_{t+1} = \frac{1}{1-\lambda} \pi_t + \frac{\lambda}{1-\lambda} (\Delta mc_{t+1} + \Delta mc_t) \]

\[+ \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j} \left[\pi_{t+1} + \Delta mc_{t+1} - \frac{1}{1-\lambda} (\pi_t + \Delta mc_t) \right] \]

with

\[\Delta mc_t := \frac{\beta}{\beta + \nu(1-\beta)} (\mu_t - \pi_t) + \frac{1-\beta}{\beta + \nu(1-\beta)} g_t. \]
Dynamic model

- For the newly considered variables, the SIGE dynamic system can be further rearranged:

\[\pi_{t+1} = \frac{1}{1-\lambda} \pi_t + \frac{\lambda}{1-\lambda} (\Delta mc_{t+1} + \Delta mc_t) \]
\[+ \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j} \left[\pi_{t+1} + \Delta mc_{t+1} - \frac{1}{1-\lambda} (\pi_t + \Delta mc_t) \right], \text{ with} \]
\[\Delta mc_t := \frac{\beta}{\beta + v(1-\beta)} (\mu_t - \pi_t) + \frac{1-\beta}{\beta + v(1-\beta)} g_t. \]

- \[\mu_{t+1} = (1 - \lambda) \mu_t + \lambda (\Delta z_{t+1} + \Delta z_t) \]
\[+ \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j} \left[(1 - \lambda) \Delta z_{t+1} - \Delta z_t \right], \text{ with} \]
\[\Delta z_t := \pi_t + \frac{\gamma}{\gamma + \psi} (\mu_t - \pi_t) + \frac{1}{\beta(\gamma + \psi)} g_t - \frac{\psi}{\gamma + \psi} (R_t - R_{t-1}). \]
Dynamic model

For the newly considered variables, the SIGE dynamic system can be further rearranged:

- \(\pi_{t+1} = \frac{1}{1-\lambda} \pi_t + \frac{\lambda}{1-\lambda} (\Delta mc_{t+1} + \Delta mc_t) \)
 \[\lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j} \left[\pi_{t+1} + \Delta mc_{t+1} - \frac{1}{1-\lambda} (\pi_t + \Delta mc_t) \right], \]
 with \(\Delta mc_t := \frac{\beta}{\beta + v(1-\beta)} (\mu_t - \pi_t) + \frac{1-\beta}{\beta + v(1-\beta)} g_t. \)

- \(\mu_{t+1} = (1 - \lambda) \mu_t + \lambda (\Delta z_{t+1} + \Delta z_t) \)
 \[\lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j} \left[(1 - \lambda) \Delta z_{t+1} - \Delta z_t \right], \]
 with \(\Delta z_t := \pi_t + \frac{\gamma}{\gamma + \psi} (\mu_t - \pi_t) + \frac{1}{\beta (\gamma + \psi)} g_t - \frac{\psi}{\gamma + \psi} (R_t - R_{t-1}). \)

- \(g_{t+1} = -\theta \lambda \frac{\phi-1}{\alpha} E_t (\pi_{t+1}) \)
 \[-\theta \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j E_{t-j} \left[(1 - \lambda) \frac{\phi-1}{\alpha} \pi_{t+2} - \frac{\phi-1}{\alpha} \pi_{t+1} \right] \]
Two central assumptions - 1) Expectations

- Benchmark approach: perfect foresight
 \[E_{t-j}(\pi_t) = \pi_t, E_{t-j}(\mu_t) = \mu_t, E_{t-j}(g_t) = g_t, \forall j; \]

- More sensible approach: agents lose capacity to predict future values with accuracy, as we go further back in time.
 \[E_{t-j}(\pi_t) = \alpha_j \pi_t + (1-\alpha_j) \pi_t, E_{t-j}(\mu_t) = \alpha_j \mu_t + (1-\alpha_j) \mu_t, E_{t-j}(g_t) = \alpha_j g_t + (1-\alpha_j) g_t, \]

\[\text{with } 1-\alpha_j \in (0,1), \]
Two central assumptions - 1) Expectations

- Benchmark approach: perfect foresight
 \[E_{t-j}(\pi_t) = \pi_t, \ E_{t-j}(\mu_t) = \mu_t, \ E_{t-j}(g_t) = g_t, \ \forall j; \]

- More sensible approach: agents lose capacity to predict future values with accuracy, as we go further back in time.
 \[E_{t-j}(\pi_t) = \alpha^j \pi_t + (1 - \alpha^j)\pi^*, \ E_{t-j}(\mu_t) = \alpha^j \mu_t + (1 - \alpha^j)\mu^*, \ E_{t-j}(g_t) = \alpha^j g_t + (1 - \alpha^j)g^*; \] with \(1 - \alpha \in (0, 1) \) the probability of interpreting \(t \) as the steady-state, when formulating the expectation at \(t - 1 \).
'We (...) find evidence supporting that consumers update their expectations about the economy much more frequently during periods of high news coverage than in periods of low news coverage; high news coverage of the economy is concentrated during recessions and immediately after recessions, implying that 'stickiness' in expectations is countercyclical.'

Doms, M. and N. Morin (2004). Consumer Sentiment, the Economy, and the News Media, FRBSF 2004-09 (abstract).

- We extrapolate this logic to price-setting firms and wage-setting labor suppliers.
Two central assumptions - 2) Information updating

- Information stickiness is counter-cyclical! - how to model this?

\[\lambda(g_t) = 1 + \frac{\lambda_2}{\pi \arctan(g_t + \tan(\pi/2) + \lambda_0)} \]

Orlando Gomes (Business Research Unit)
Two central assumptions - 2) Information updating

- Information stickiness is counter-cyclical! - how to model this?
- Let $\lambda_0 \in (0, 1)$ be the attentiveness rate for $g_t = 0$, and $\Lambda \in (0, \lambda_0)$ a benchmark minimal level of attention that asymptotically holds for large growth rates. Attentiveness increases as the growth rate becomes smaller. Full attentiveness ($\lambda = 1$) is a virtual outcome for extremely negative growth rates.

Function that captures the mentioned properties:

$$\lambda(g_t) = 1 + \frac{\lambda_2}{\lambda_0} \arctan(g_t + \pi) + \frac{\lambda_2}{\lambda_0}$$
Two central assumptions - 2) Information updating

- Information stickiness is counter-cyclical! - how to model this?
- Let $\lambda_0 \in (0, 1)$ be the attentiveness rate for $g_t = 0$, and $\lambda \in (0, \lambda_0)$ a benchmark minimal level of attention that asymptotically holds for large growth rates. Attentiveness increases as the growth rate becomes smaller. Full attentiveness ($\lambda = 1$) is a virtual outcome for extremely negative growth rates.

- Function that captures the mentioned properties:

$$\lambda(g_t) = \frac{1 + \lambda}{2} - \frac{1 - \lambda}{\pi} \arctan \left[g_t + \tan \left(\frac{\pi}{2} \frac{1 + \lambda}{1 - \lambda} - 2\lambda_0 \right) \right]$$
\[\lambda_0 = 0.25; \lambda = 0.1: \]

- Note that in the vicinity of \(\lambda_0 \), \(\lambda(g_t) \) is an increasing and slightly convex function.
System under new assumptions

- Let \(\mu^R_t := \mu_t - \pi_t \) - growth rate of the real wage.
System under new assumptions

- Let $\mu^R_t := \mu_t - \pi_t$ - growth rate of the real wage.
- System:

$$
\begin{align*}
 g_{t+1} &= \left[\alpha (1 - \lambda) + \frac{\Omega_1}{(\phi - 1)\Omega_2\Omega_6} \right] g_t + \frac{(1 - \alpha)(1 - \lambda)}{(1 + \Omega_3)\Omega_6} \mu^R_t \\
 \mu^R_{t+1} &= -\frac{\Omega_1}{(\phi - 1)\Omega_2\Omega_6} \left[\Omega_6 + \frac{1 - \beta}{\beta} \right] g_t \\
 &\quad + \frac{1 - \lambda}{1 + \Omega_3} \left[1 + \alpha \Omega_3 - \frac{1 - \alpha}{\Omega_6} \left(\Omega_6 + \frac{1 - \beta}{\beta} \right) \right] \mu^R_t
\end{align*}
$$
Let $\mu^R_t := \mu_t - \pi_t$ - growth rate of the real wage.

System:

$$
\begin{align*}
\begin{aligned}
g_{t+1} &= \left[\alpha (1 - \lambda) + \frac{\Omega_1}{(\phi - 1)\Omega_2\Omega_6} \right] g_t + \frac{(1 - \alpha)(1 - \lambda)}{(1 + \Omega_3)\Omega_6} \mu^R_t \\
\mu^R_{t+1} &= -\frac{\Omega_1}{(\phi - 1)\Omega_2\Omega_6} \left[\Omega_6 + \frac{1 - \beta}{\beta} \right] g_t \\
&\quad + \frac{1 - \lambda}{1 + \Omega_3} \left[1 + \alpha \Omega_3 - \frac{1 - \alpha}{\Omega_6} \left(\Omega_6 + \frac{1 - \beta}{\beta} \right) \right] \mu^R_t
\end{aligned}
\end{align*}
$$

$\Omega_1 := \frac{1 - \alpha(1 - \lambda)}{\beta \alpha^2 \lambda (1 - \lambda)}$; $\Omega_2 := \frac{\lambda}{(1 - \alpha)(1 - \lambda)} \frac{\beta}{\beta + \nu (1 - \beta)}$;

$\Omega_3 := \frac{\lambda}{1 - \alpha (1 - \lambda)} \left[\frac{\beta}{\beta + \nu (1 - \beta)} - \frac{\gamma}{\gamma + \psi} \right]$;

$\Omega_4 := \frac{\lambda}{1 - \alpha (1 - \lambda)} \left[\frac{1 - \beta}{\beta + \nu (1 - \beta)} - \frac{1}{\beta (\gamma + \psi)} \right]$; $\Omega_5 := \frac{\lambda}{1 - \alpha (1 - \lambda)} \frac{\psi}{\gamma + \psi} \frac{\alpha}{a}$;

$\Omega_6 := \frac{\Omega_4 - \Omega_1 \Omega_5}{1 + \Omega_3} - \frac{1 - \beta}{\beta}$, with $\lambda = \lambda(g_t)$.
Perfect foresight

- Under perfect foresight, $\alpha = 1$; dynamics are reduced to

$$
\begin{align*}
 g_{t+1} &= [1 - \lambda(g_t)] g_t \\
 \mu_{t+1}^R &= [1 - \lambda(g_t)] \mu_t^R
\end{align*}
$$

This system implies convergence to h, μ^R independently of parameter values and initial state.
Perfect foresight

- Under perfect foresight, $\alpha = 1$; dynamics are reduced to

$$\begin{align*}
g_{t+1} &= [1 - \lambda(g_t)] g_t \\
\mu_{t+1}^R &= [1 - \lambda(g_t)] \mu_t^R
\end{align*}$$

- This system implies convergence to $[g^*, (\mu^R)^*] = (0, 0)$, independently of parameter values and initial state.
Perfect foresight

- Under perfect foresight, $\alpha = 1$; dynamics are reduced to
 \[
 \begin{align*}
 g_{t+1} &= [1 - \lambda(g_t)] g_t \\
 \mu_{t+1}^R &= [1 - \lambda(g_t)] \mu_t^R
 \end{align*}
 \]

- This system implies convergence to $[g^*, (\mu^R)^*] = (0, 0)$, independently of parameter values and initial state.

Fact (Proposition)

Under perfect foresight, there is stability in the SIGE model. This result holds for constant information updating and for counter-cyclical information updating.
Partial perfect foresight ($\alpha < 1$)

- Parameter values in Mankiw and Reis (2006): $\psi = 4$, $\beta = 2/3$, $\theta = 1$, $\gamma = 10$, $\nu = 20$.

Local dynamics:

$$
\begin{align*}
\Delta g_{t+1} &= f_{11}(\lambda(g_t)) g_t + f_{12}(\lambda(g_t)) \mu_R \mu_{R+1} \\
\Delta \mu_{R+1} &= f_{21}(\lambda(g_t)) g_t + f_{22}(\lambda(g_t)) \mu_R
\end{align*}
$$

Linearization in the vicinity of the steady-state $(g_t, \mu_R) = (0, 0)$:

$$
\begin{align*}
\Delta g_{t+1} &= f_{11}(\lambda_0) g_t + f_{12}(\lambda_0) \mu_R \\
\Delta \mu_{R+1} &= f_{21}(\lambda_0) g_t + f_{22}(\lambda_0) \mu_R
\end{align*}
$$
Partial perfect foresight ($\alpha < 1$)

- Parameter values in Mankiw and Reis (2006): $\psi = 4$, $\beta = 2/3$, $\theta = 1$, $\gamma = 10$, $\nu = 20$.
- Take, as well, $\alpha = 0.75$; $a = 0.01$. Let ϕ be the bifurcation parameter.
Partial perfect foresight ($\alpha < 1$)

- Parameter values in Mankiw and Reis (2006): $\psi = 4$, $\beta = 2/3$, $\theta = 1$, $\gamma = 10$, $\upsilon = 20$.
- Take, as well, $\alpha = 0.75$; $a = 0.01$. Let ϕ be the bifurcation parameter.
- Local dynamics:
Partial perfect foresight (\(\alpha < 1\))

- Parameter values in Mankiw and Reis (2006): \(\psi = 4\), \(\beta = 2/3\), \(\theta = 1\), \(\gamma = 10\), \(\upsilon = 20\).
- Take, as well, \(\alpha = 0.75\); \(a = 0.01\). Let \(\phi\) be the bifurcation parameter.
- **Local dynamics:**
 - Our system is
 \[
 \begin{align*}
 g_{t+1} &= f_{11}[\lambda(g_t)]g_t + f_{12}[\lambda(g_t)]\mu_t^R \\
 \mu_t^R &= f_{21}[\lambda(g_t)]g_t + f_{22}[\lambda(g_t)]\mu_t^R
 \end{align*}
 \]
Partial perfect foresight ($\alpha < 1$)

- Parameter values in Mankiw and Reis (2006): $\psi = 4$, $\beta = 2/3$, $\theta = 1$, $\gamma = 10$, $\nu = 20$.
- Take, as well, $\alpha = 0.75$; $a = 0.01$. Let ϕ be the bifurcation parameter.
- Local dynamics:
 - Our system is
 \[
 \begin{cases}
 g_{t+1} = f_{11}[\lambda(g_t)]g_t + f_{12}[\lambda(g_t)]\mu_t^R \\
 \mu_{t+1}^R = f_{21}[\lambda(g_t)]g_t + f_{22}[\lambda(g_t)]\mu_t^R
 \end{cases}
 \]
 - Linearization in the vicinity of the steady-state $(g^*, \mu_{R}^*) = (0, 0)$:
 \[
 \begin{bmatrix}
 g_{t+1} \\
 \mu_{t+1}^R
 \end{bmatrix} =
 \begin{bmatrix}
 f_{11}(\lambda_0) & f_{12}(\lambda_0) \\
 f_{21}(\lambda_0) & f_{22}(\lambda_0)
 \end{bmatrix}
 \cdot
 \begin{bmatrix}
 g_t \\
 \mu_t^R
 \end{bmatrix}
 \]
Partial perfect foresight ($\alpha < 1$)

- Local dynamics are identical for constant information updating and counter-cyclical information updating.
Partial perfect foresight (\(\alpha < 1\))

- Local dynamics are identical for constant information updating and counter-cyclical information updating.

- E.g., \(\lambda = 0.25\),

\[
\begin{bmatrix}
 g_{t+1} \\
 \mu^R_{t+1}
\end{bmatrix}
=
\begin{bmatrix}
-0.2547/(\phi - 1) + 0.5625 & -0.2167 \\
-0.2149/(\phi - 1) & 0.6709
\end{bmatrix}
\cdot
\begin{bmatrix}
g_t \\
\mu^R_t
\end{bmatrix}
\]

Stability conditions:

- \(\text{Det} > 0\);
- \(\text{Tr} + \text{Det} > 0\);
- \(\text{Tr} + \text{Det} > 0\)

Stability: \(\phi > 1.1808\).
Partial perfect foresight (alfa < 1)

- Local dynamics are identical for constant information updating and counter-cyclical information updating.
- E.g., $\lambda = 0.25$,

\[
\begin{bmatrix}
 g_{t+1} \\
 \mu^R_{t+1}
\end{bmatrix} =
\begin{bmatrix}
 -0.2547/(\phi - 1) + 0.5625 & -0.2167 \\
 -0.2149/(\phi - 1) & 0.6709
\end{bmatrix} \cdot
\begin{bmatrix}
 g_t \\
 \mu^R_t
\end{bmatrix}
\]

- Stability conditions:
Partial perfect foresight (\(\alpha < 1\))

- Local dynamics are identical for constant information updating and counter-cyclical information updating.
- E.g., \(\lambda = 0.25\),

\[
\begin{bmatrix}
 g_{t+1} \\
 \mu^R_{t+1}
\end{bmatrix}
= \begin{bmatrix}
 -0.2547/(\phi - 1) + 0.5625 & -0.2167 \\
 -0.2149/(\phi - 1) & 0.6709
\end{bmatrix}
\begin{bmatrix}
 g_t \\
 \mu^R_t
\end{bmatrix}
\]

- Stability conditions:
 - \(1 - Det = 0.6226 + 0.2174/(\phi - 1) > 0\);
Partial perfect foresight (alfa<1)

- Local dynamics are identical for constant information updating and counter-cyclical information updating.
- E.g., \(\lambda = 0.25 \),

\[
\begin{bmatrix}
g_{t+1} \\
n^R_{t+1}
\end{bmatrix} =
\begin{bmatrix}
-0.2547/ (\phi - 1) + 0.5625 & -0.2167 \\
-0.2149/ (\phi - 1) & 0.6709
\end{bmatrix} \cdot
\begin{bmatrix}
g_{t} \\
n^R_{t}
\end{bmatrix}
\]

- Stability conditions:
 - \(1 - \text{Det} = 0.6226 + 0.2174/ (\phi - 1) > 0 \);
 - \(1 - \text{Tr} + \text{Det} = 0.1436 + 0.0373/ (\phi - 1) > 0 \);
Partial perfect foresight ($\alpha < 1$)

- Local dynamics are identical for constant information updating and counter-cyclical information updating.
- E.g., $\lambda = 0.25$,

$$
\begin{bmatrix}
 g_{t+1} \\
 \mu_t^R \\
 \mu_t^{R+1}
\end{bmatrix} =
\begin{bmatrix}
 -0.2547/ (\phi - 1) + 0.5625 & 0.2167 \\
 -0.2149/ (\phi - 1) & 0.6709
\end{bmatrix} \cdot
\begin{bmatrix}
 g_t \\
 \mu_t^R
\end{bmatrix}
$$

- Stability conditions:
 - $1 - \text{Det} = 0.6226 + 0.2174/ (\phi - 1) > 0$;
 - $1 - \text{Tr} + \text{Det} = 0.1436 + 0.0373/ (\phi - 1) > 0$;
 - $1 + \text{Tr} + \text{Det} = 2.6107 - 0.4721/ (\phi - 1) > 0 \Rightarrow \text{Stability:} \
 \phi > 1.1808.$
Fig. 2 - Trace-determinant diagram in the partial perfect foresight case

- Flip bifurcation (line $1 + Tr + Det = 0$ is crossed).
Sensitivity analysis

For other values of λ_0,

λ	Stability Condition	λ	Stability Condition
0.1	$\phi > 1.9787$	0.6	$\phi > 1.0311$
0.2	$\phi > 1.2720$	0.7	$\phi > 1.0200$
0.3	$\phi > 1.1293$	0.8	$\phi > 1.0118$
0.4	$\phi > 1.0750$	0.9	$\phi > 1.0053$
0.5	$\phi > 1.0475$	1	$\phi > 1$
Fact (Proposition)

Under partial perfect foresight, the stronger the level of inattentiveness, the more aggressive monetary policy is required to be, in order for stability to hold.
Constant information updating \Rightarrow the model is linear: local and global dynamics coincide (there are no endogenous fluctuations).
Global dynamics

- Constant information updating \Rightarrow the model is linear: local and global dynamics coincide (there are no endogenous fluctuations).

- Counter-cyclical information updating: endogenous cycles are found for reasonable parameter values.
Global dynamics

- Constant information updating \Rightarrow the model is linear: local and global dynamics coincide (there are no endogenous fluctuations).

- Counter-cyclical information updating: endogenous cycles are found for reasonable parameter values.
 - E.g., $\lambda_0 = 0.25; \lambda = 0.1$ [stability: $\phi > 1.1808$].
Fig. 4 - Bifurcation diagram

\((g_t; \phi) \)
Fig. 5 - Attractor

\[(g_t, \mu^R_t); \phi = 1.1\]
Conclusion

- **Setup**: Macroeconomic general equilibrium model with information stickiness;

- Departures from perfect foresight, that depend on the timing of the expectations;
- Counter-cyclical information updating.

- Nonlinearities emerge on an otherwise linear model;
- Local dynamics are coincident between linear / nonlinear cases;
- Global dynamics: endogenous cycles - the initially mentioned new perspective on business cycles can be associated with a sticky-information environment;

Orlando Gomes (Business Research Unit)
Setup: Macroeconomic general equilibrium model with information stickiness;

Assumptions:
Conclusion

- **Setup**: Macroeconomic general equilibrium model with information stickiness;

- **Assumptions**:
 - Departures from perfect foresight, that depend on the timing of the expectations;
Conclusion

- **Setup**: Macroeconomic general equilibrium model with information stickiness;

- **Assumptions**:
 1. Departures from perfect foresight, that depend on the timing of the expectations;
 2. Counter-cyclical information updating.

Results:
1. Nonlinearities emerge on an otherwise linear model;
2. Local dynamics are coincident between linear / nonlinear cases;
3. Global dynamics: endogenous cycles - the initially mentioned new perspective on business cycles can be associated with a sticky-information environment;
Conclusion

- **Setup**: Macroeconomic general equilibrium model with information stickiness;
- **Assumptions**:
 1. Departures from perfect foresight, that depend on the timing of the expectations;
 2. Counter-cyclical information updating.
- **Results**:
Conclusion

- **Setup**: Macroeconomic general equilibrium model with information stickiness;

- **Assumptions**:
 1. Departures from perfect foresight, that depend on the timing of the expectations;
 2. Counter-cyclical information updating.

- **Results**:
 1. Nonlinearities emerge on an otherwise linear model;
Conclusion

- **Setup**: Macroeconomic general equilibrium model with information stickiness;
- **Assumptions**:
 1. Departures from perfect foresight, that depend on the timing of the expectations;
 2. Counter-cyclical information updating.
- **Results**:
 1. Nonlinearities emerge on an otherwise linear model;
 2. Local dynamics are coincident between linear / nonlinear cases;
Conclusion

Setup: Macroeconomic general equilibrium model with information stickiness;

Assumptions:
1. Departures from perfect foresight, that depend on the timing of the expectations;
2. Counter-cyclical information updating.

Results:
1. Nonlinearities emerge on an otherwise linear model;
2. Local dynamics are coincident between linear / nonlinear cases;
3. Global dynamics: endogenous cycles - the initially mentioned new perspective on business cycles can be associated with a sticky-information environment;
Barnett, W.A.; A. Medio and A. Serletis (1997). *Nonlinear and complex dynamics in economics*, EconWPA working paper number 9709001.

Chen, H-J.; M-C. Li and Y-J. Lin (2008). "Chaotic dynamics in an overlapping generations model with myopic and adaptive expectations." *Journal of Economic Behavior and Organization*, vol. 67, pp. 48-56.

Dieci, R. and F. Westerhoff (2009). "Heterogeneous speculators, endogenous fluctuations and interacting markets: a model of stock prices and exchange rates." *Journal of Economic Dynamics and Control*, vol. 34, pp. 743-764.

Doms, M. and N. Morin (2004). *Consumer Sentiment, the Economy, and the News Media*, FRBSF 2004-09.

Fanti, L. and P. Manfredi (2007). "Neoclassical labour market dynamics, chaos and the real wage Phillips curve." *Journal of Economic Behavior and Organization*, vol. 62, pp. 470-483.
Fujio, M. (2008). "Undiscounted optimal growth in a Leontief two-sector model with circulating capital: the case of a capital intensive consumption good." *Journal of Economic Behavior and Organization*, vol. 66, pp. 420-436.

Gomes, O. (2006). “Routes to chaos in macroeconomic theory.” *Journal of Economic Studies*, vol. 33, pp. 437-468.

Gomes, O. (2010). “The sticky-information macro model: beyond perfect foresight.” *Studies in Nonlinear Dynamics and Econometrics*, vol. 14, issue 1, article 1, pp. 1-35.

Gomes, O. (2011). "Transitional dynamics in sticky-information general equilibrium models." *Computational Economics*, Forthcoming.

Hallegatte, S.; M. Ghil; P. Dumas and J. C. Hourcade (2008). “Business cycles, bifurcations and chaos in a neo-classical model with investment dynamics.” *Journal of Economic Behavior and Organization*, vol. 67, pp. 57-77.
Jaimovich, N. (2007). "Firm dynamic and markup variations: implications for sunspot equilibria and endogenous economic fluctuations." *Journal of Economic Theory*, vol. 137, pp. 300-325.

Kikuchi, T. and J. Stachurski (2009). "Endogenous inequality and fluctuations in a two-country model." *Journal of Economic Theory*, vol. 144, pp. 1560-1571.

Lines, M. and F. Westerhoff (2010). "Inflation expectations and macroeconomic dynamics: the case of rational vs extrapolative expectations." *Journal of Economic Dynamics and Control*, vol. 34, pp. 246-257.

Mankiw, N. G. and Reis, R. (2006). "Pervasive stickiness." *American Economic Review*, vol. 96, pp. 164-169.

Mankiw, N. G. and Reis, R. (2007). "Sticky information in general equilibrium." *Journal of the European Economic Association*, vol. 5, pp. 603-613.
Reis, R. (2009). “A sticky-information general-equilibrium model for policy analysis.” *NBER working paper* no 14732.

Stockman, D. R. (2009). "Chaos and sector-specific externalities." *Journal of Economic Dynamics and Control*, vol. 33, pp. 2030-2046.

Sushko, I.; L. Gardini and T. Puu (2010). "Regular and chaotic growth in a Hicksian floor/ceiling model." *Journal of Economic Behavior and Organization*, vol. 75, pp. 77-94.

Yokoo, M. and J. Ishida (2008). "Misperception-driven chaos: theory and policy implications." *Journal of Economic Dynamics and Control*, vol. 32, pp. 1732-1753.

Yoshida, H. and T. Asada (2007). "Dynamic analysis of policy lag in a Keynes-Goodwin model: stability, instability, cycles and chaos." *Journal of Economic Behavior and Organization*, vol. 62, pp. 441-469.