The complete mitogenome of *Pareuchiloglanis sichuanensis* (Siluriformes: Sisoridae)

Taiming Yan, Qian Zhang, Jiayang He, Feiyang Yan, Zhijun Ma, Hongjun Chen, Lijuan Ye, Nan Zhang, Deying Yang and Zhi He

College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China

ABSTRACT

Pareuchiloglanis sichuanensis is an endemic fish species in the upper reaches of the Yangtze River. In the present study, the complete mitochondrial genome of *P. sichuanensis* was analyzed. The mitochondrial genome, consisting of 16,774 base pairs (bp), included 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a non-coding control region. The phylogenetic tree showed that *P. sichuanensis* was closely related to *P. anteanalis*. These results provide the useful information for further studies on taxonomic status, molecular systematics, and stock evaluation.

Keywords

Pareuchiloglanis sichuanensis; mitochondrial genome; phylogenetic analyses

Pareuchiloglanis sichuanensis Ding, Fu, Ye 1991 is categorized into family Sisoridae, order Siluriformes (Ding et al. 1991), distributed in the Dadu River, Qingyi River, and Min River, which all belong to the upper reaches of the Yangtze River drainage (Li et al. 2020). It usually lives in the bottom of streams and rivers, where the bottom material is sand and stone (Ding et al. 1991). The fish populations have declined dramatically in recent years as a result of overfishing, dam construction, water pollution, and other human interferences. However, the studies on this species were only limited in some reports about the taxonomic characters and distribution (Ding et al. 1991; Li et al. 2020). Therefore, some basic biology data including genetic information should be further studied, which may be beneficial to research on systematics, resource protection and development of *P. sichuanensis*. In this study, we sequenced, assembled, and annotated the complete mitochondrial genome of *P. sichuanensis*, which could provide the useful genomic resources for the future studies.

In the present study, the *P. sichuanensis* specimens were collected from the upstream of Tianquan River, a tributary of the Qingyi River (N: 29°57’17.02S; E: 102°26’53.81’’), and then annotated using the MITOS Webserver (Bernt et al. 2013). The complete mitogenome of *P. sichuanensis* was a circular molecule with a length of 16,774 bp, consisting of 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a non-coding control region. The nucleotide composition of *P. sichuanensis* genome was A 31.69%, T 25.47%, G 15.33%, and C 27.50%, with a high A+T content of 57.16%. The nad6 and eight tRNA genes (tRNA-Gln, tRNA-Aln, tRNA-Asn, tRNA-Lys, tRNA-Tyr, tRNA-SerUCN, tRNA-Glu, and tRNA-Pro) were encoded on the light-strand. On the contrary, all the other genes were encoded on the heavy-strand. This was a typical gene arrangement conforming to the other *Pareuchiloglanis* species and vertebrate consensus (Cui et al. 2019). The genome sequence data that support the findings of this study is openly available in GenBank of NCBI at (https://www.ncbi.nlm.nih.gov/) under the accession no. MW697900.

To better understand the phylogenetic relationships of mitochondrial sequences in *Pareuchiloglanis*, we selected seven *Pareuchiloglanis* species (Figure 1). Based on the concatenated amino acid sequences of 13 proteins, the phylogenetic tree was constructed using the Maximum Likelihood method (Jones et al. 1992; Kumar et al. 2016) (Figure 1). The results of phylogenetic analysis indicate that all *Pareuchiloglanis* species have the close relationship, and *P. sichuanensis* and *P. anteanalis* are monophyletic in the tree. Thus, the mitochondrial genome data and phylogenetic analysis of the *P. sichuanensis* enrich the evolution research of *Pareuchiloglanis*.

CONTACT Zhi He zhihe@sicau.edu.cn College of Animal Science and Technology, Sichuan Agricultural University, Huimin Road 211 of Wenjiang District, Chengdu City, Sichuan Province 611130, China

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was financially supported by the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment China [2019HJ2096001006].

ORCID

Taiming Yan http://orcid.org/0000-0002-4159-6029
Zhi He http://orcid.org/0000-0001-9164-2372

Data availability statement

The genome sequence data that support the findings of this study is openly available in GenBank database under the accession number MW697900 (https://www.ncbi.nlm.nih.gov/nuccore/MW697900). The associated BioProject and Bio-Sample numbers are PRJNA752914, SAMN20667725, and SAMN20667726, SRA for short reads and long reads are SRR15374433 and SRR15374432, respectively.

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.

Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, Putz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2):313–319.

Coil D, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 31(4):587–589.

Cui LL, Gao HT, Miao XJ, Li ML, Li GH, Xu GF, Wu JJ, Hu W, Lu SX. 2019. The complete mitochondrial genome of Pareuchiloglanis myzostoma (Teleostei, Siluriformes). Mitochondrial DNA B Resour. 4(2):3626–3627.

Ding RH, Fu TY, Ye MR. 1991. Two new species of the genus Pareuchiloglanis from China. Acta Zoot Sin. 16(3):369–374.

Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 8(3):275–282.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7):1870–1874.

Li X, Dao W, Zhou W. 2020. Type locality and species identity of Pareuchiloglanis sinensis (Hora & Silas) with a description of a new species of the genus from the upper Yangtze River basin in southern China. J Fish Biol. 97(3):827–844.

Figure 1. Molecular phylogenetic analysis by Maximum Likelihood method for eight Pareuchiloglanis species was inferred from concatenated amino acid sequences data of 13 mitochondrial proteins. Node labels indicate the bootstrap values.