Engenharia de tecidos cardíacos:
atual estado da arte a respeito de
materiais, células e formação tecidual
Cardiac tissue engineering: current state-of-the-art materials,
cells and tissue formation

Isabella Caroline Pereira Rodrigues¹, Andreas Kaasi², Rubens Maciel Filho³,
André Luiz Jardini³, Lais Pellizzer Gabriel⁴

¹ Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP, Brasil.
² Eva Scientific Ltda, São Paulo, SP, Brasil.
³ Instituto Nacional de Ciência e Tecnologia em Biofabricação, Campinas, SP, Brasil.

DOI: 10.1590/S1679-45082018RB4538

RESUMO

Doenças cardiovasculares são responsáveis pelo maior número de mortes no mundo. O coração possui capacidade de regeneração limitada, e o transplante, por consequência, representa a única solução em alguns casos, apresentando várias desvantagens. A engenharia de tecidos tem sido considerada a estratégia ideal para a medicina cardíaca regenerativa. Trata-se de uma área interdisciplinar, que combina muitas técnicas as quais buscam manter, regenerar ou substituir um tecido ou órgão. A abordagem principal da engenharia de tecidos cardíacos é criar enxertos cardíacos, sejam substitutos do coração inteiro ou de tecidos que podem ser implantados de forma eficiente no organismo, regenerando o tecido e dando origem a um coração completamente funcional, sem desencadear efeitos colaterais, como imunogenicidade. Nesta revisão, apresenta-se e compara-se sistematicamente as técnicas que ganharam mais atenção nesta área e que geralmente focam em quatro assuntos importantes: seleção do material a ser utilizado como enxerto, produção do material, seleção das células e cultura de células in vitro. Muitos estudos, fazendo uso de várias das técnicas aqui apresentadas, incluindo biopolímeros, descelularização e biorreatores, têm apresentado avanços significativos, seja para obter um enxerto ou um coração bioartificial inteiro. No entanto, ainda resta um grande esforço para entender e melhorar as técnicas existentes, para desenvolver métodos robustos, eficientes e eficazes.

Descritores: Biopolímeros; Reatores biológicos; Transplante de coração; Cardiomioplastia; Doenças cardiovasculares; Engenharia tecidual

ABSTRACT

Cardiovascular diseases are the major cause of death worldwide. The heart has limited capacity of regeneration, therefore, transplantation is the only solution in some cases despite presenting many disadvantages. Tissue engineering has been considered the ideal strategy for regenerative medicine in cardiology. It is an interdisciplinary field combining many techniques that aim to maintain, regenerate or replace a tissue or organ. The main approach of cardiac tissue engineering is to create cardiac grafts, either whole heart substitutes or tissues that can be efficiently implanted in the organism, regenerating the tissue and giving rise to a fully functional heart, without causing side effects, such as immunogenicity. In this review, we systematically present and compare the techniques that have drawn the most attention in this field and that generally have focused on four important issues: the scaffold material selection, the scaffold material production, cellular selection and in vitro cell culture. Many studies used several techniques that are herein presented, including biopolymers, decellularization and bioreactors, and made significant advances, either seeking a
graft or an entire bioartificial heart. However, much work remains to better understand and improve existing techniques, to develop robust, efficient and efficacious methods.

Keywords: Biopolymers; Bioreactors; Heart transplantation; Cardiomyoplasty; Cardiovascular diseases; Tissue engineering

INTRODUÇÃO

As doenças cardiovasculares são a principal causa de morte no mundo. Em 2015, a Organização Mundial da Saúde (OMS) estimou que 17,7 milhões de pessoas morreram devido a doenças cardiovasculares, o que representou 31% das mortes no mundo. Uma doença relevante neste cenário é o infarto agudo do miocárdio, resultado do transporte insuficiente de sangue para o coração, causado principalmente por doença coronariana. O infarto do miocárdio leva a remodelamento ventricular, fibrose, necrose, insuficiência cardíaca, entre outros, o que pode causar disfunção cardíaca parcial ou total. Considerando as inúmeras desvantagens do transplante cardíaco, que ainda é a melhor opção para pacientes com insuficiência cardíaca em estágio terminal, bem como as habilidades regenerativas restritas dos cardiomiócitos para curar o coração após infarto agudo do miocárdio, muitos estudos têm sido realizados em Medicina Regenerativa, criando alternativas para a regeneração miocárdica por meio da engenharia de tecidos.

A engenharia de tecidos é um conjunto de técnicas biomédicas, biotecnológicas e de engenharia, que visa manter, regenerar ou substituir tecidos ou órgãos. Os avanços na engenharia de tecidos são evidentes, e a aplicação desta tecnologia à regeneração do miocárdio tem sido cada vez mais explorada, apresentando resultados encorajadores. A principal abordagem deste campo científico é a criação de *scaffolds*, que contêm células que podem ser aplicadas como enxertos cardíacos no organismo, para obter a recuperação desejada.

Esta revisão apresenta brevemente as técnicas mais amplamente utilizadas na engenharia de tecidos cardíaco, abrangendo duas décadas: final da década de 1990, quando esta aplicação de engenharia de tecidos viu seus primeiros estudos, até os dias atuais, quando se buscam obter enxertos com amplo potencial de regeneração cardíaca.

ENXERTOS CARDÍACOS

As técnicas utilizadas para obter enxertos cardíacos focam em quatro pontos importantes (Figura 1): (1) seleção do material para o *scaffold*; (2) produção do material para o *scaffold*; (3) seleção das células; e (4) cultura celular *in vitro*.

Seleção do material para o scaffold

Os biomateriais têm sido o foco para utilização em engenharia de tecidos, como biomateriais tradicionais ou desenvolvendo variantes específicas para a engenharia de tecidos. Eles são capazes de interagir positivamente com sistemas biológicos e, dessa forma, busca-se melhorar a regeneração do tecido danificado ou efetivamente substituí-lo.

Uma das classes mais importantes de biomateriais é a dos polímeros, disponíveis em diferentes composições

Fonte: Arquivo pessoal.

Figura 1. Técnicas de engenharia de enxerto cardíaco
e propriedades. Trata-se dos biomateriais mais utilizados para regeneração cardíaca. Esta classe de materiais pode ser dividida em sintética e natural, além de materiais combinados sintéticos/naturais.\(^5\)

Alguns biopolímeros sintéticos utilizados para a engenharia do tecido miocárdico incluem o ácido poliglicólico (PGA),\(^6\) ácido poli-L-lático (PLLA), ácido glicolico polilático (PLGA) e poliuretano. Esta revisão aborda a aplicação do poliuretano na engenharia de tecidos cardíacos, tendo em vista que é um dos biopolímeros mais utilizados.

Há uma diversidade de aplicações biomédicas para poliuretano, desde dispositivos duráveis até scaffolds biodegradáveis.\(^7,8\) Levando em conta a boa compatibilidade tecidual e sanguínea, a adesão celular e as propriedades de ductilidade,\(^9\) o poliuretano têm sido investigado como alternativa para enxertos vasculares\(^10\) e outros dispositivos médicos. No entanto, a bioestabilidade a longo prazo provou ser um obstáculo para este tipo de aplicação.\(^10\)

Por outro lado, as estratégias cardíacas de engenharia de tecidos se concentram em scaffolds de polímero temporários, com taxas de degradação ajustáveis, boa porosidade, biocompatibilidade e propriedades elastoméricas, que podem favorecer mecanicamente a contração do tecido inerente à função cardíaca. Estas propriedades são encontradas em scaffolds à base de poliuretano\(^11\) (Figura 2). Diferentes técnicas utilizando poliuretano foram investigadas, demonstrando as variadas possibilidades e a versatilidade do poliuretano como material para scaffolds porosos na regeneração miocárdica. Fujimoto et al., publicaram estudo bem-sucedido em animais usando um patch cardíaco biodegradável, poroso, de poliuretano, que levou a um fenótipo de formação de tecido muscular liso e contrátil, e melhorou o remodelamento cardíaco e a função contrátil na fase crônica.\(^12\) Baheiraei et al., demonstraram a síntese de um novo poliuretano condutor biodegradável contendo oligoanilina como polímero condutor eletroativo em experimentos de cultura celular.\(^13\)

Polímeros naturais para aplicação, como scaffolds, são inspirados na matriz extracelular (MEC) que mantém as células unidas em um tecido nativo. Assim, alguns materiais, como colágeno (principalmente os tipos I e III são encontrados no coração) e fibrina, foram extensamente investigados na engenharia de tecidos cardíacos, devido a suas propriedades de interação natural com células.\(^14,15\) No entanto, as propriedades mecânicas destes materiais, dependendo da conformação na forma de géis ou estruturas mais sólidas, podem não ser compatíveis com o tecido cardíaco.\(^5\) Estratégia recente para obter polímeros naturais com tamanho e forma (anatomia) adequados é a descelularização.

Considerando a baixa resistência mecânica dos polímeros naturais, a combinação de polímeros sintéticos e naturais é aplicada como estratégia para criar scaffolds com melhores propriedades. Alperin et al., relataram que cardiomiócitos derivados de células-tronco embrionárias podem ser semeados em filmes de poliuretano revestidos com colágeno IV e laminina, e demonstraram um número maior de filmes contráteis do que poliuretano sem revestimento.\(^16\) Hong et al., produziram um composto bio-híbrido combinando MEC com poliuretano, para melhorar a bioatividade in vivo, e empregaram um método de eletrofiação/eletropulverização.\(^17\) Assim, uma abordagem promissora para a regeneração cardíaca pode ser, por exemplo, a síntese de poliuretano à base de colágeno.

Produção de material de scaffold

Uma questão importante, que tem sido objeto de investigação por grupos envolvidos em engenharia de tecidos do miocárdio, é o método de implante das células no tecido danificado. Uma das primeiras tecnologias desenvolvidas para a regeneração cardíaca foi a cardiomioplastia celular. Esta tecnologia foi muito importante para o estudo dos tipos de células, suas aplicações e efeitos na regeneração cardíaca. Entretanto, os métodos de implante das células no tecido miocárdico utilizados nesta tecnologia, como as vias transvenosa, endomiocárdica e intracoronária, não se mostraram satisfatórios e apresentaram desvantagens que levam a ineficiências.\(^18\) Outras estratégias de engenharia de tecidos cardíacas foram planejadas para melhorar os resultados da regeneração cardíaca, incluindo biomateriais injetáveis contendo células\(^19\) e a criação de estruturas porosas bi- ou tridimensionais (patch ou scaffold).

Figura 2. Microscopia eletrônica de varredura de scaffold eletrofiado (electrospun) de poliuretano. Escala: 20µm
Muitas técnicas foram investigadas para criar enxertos a serem implantados no coração, tais como métodos de produção de fibras, como eletrofiação(7,8,20) e rototiação,(21) além de engenharia por camadas de células. (22) Ademais, as técnicas mais interessantes e recentes, como a descelularização, visam obter estruturas tridimensionais que não só podem regenerar o coração existente, mas também criar um órgão bioartificial inteiro.

A descelularização é um processo que consiste na remoção de todas as células dos tecidos ou órgãos, mantendo a MEC intacta (Figura 3), por meio de diferentes métodos físicos, químicos ou enzimáticos. Esta técnica é amplamente utilizada para obter scaffolds biológicos para aplicações clínicas. O processo de descelularização por perfusão se mostrou um método eficiente para preservar a geometria tridimensional dos órgãos e, com uma distribuição mais uniforme dos agentes de descelularização, é capaz de eliminar as células de maneira eficiente. (23,24) Esta técnica foi a mais utilizada para a bioengenharia do coração inteiro, em parte devido à complexidade anatômica da macro e da microanatomia do órgão cardíaco, difícil de reproduzir em detalhes por meios inteiramente sintéticos, mas razoavelmente possível pela técnica de descelularização. A escolha do conduto para perfusão também é importante, e diferentes condutos de natureza vascular ou parenquimatosa são alternativas viáveis para certos órgãos (por exemplo, rim-vascular: artéria renal, veia renal; parenquimatosa: ureter), mas, para a descelularização cardíaca, a via de perfusão vascular é preferível, apresentando resultados promissores. (24)

Seleção celular

A tecnologia da cardiomioplastia celular baseia-se no transplante celular e consiste no fornecimento de células para o tecido miocárdico lesado, visando à regeneração da função cardíaca que foi comprometida. (25) Muitos tipos de células foram utilizados para o transplante celular para o miocárdio lesado e são os mesmos utilizados como candidatos em outras técnicas de engenharia de tecidos miocárdico, incluindo cardiomiócitos adultos, fetais e neonatais; (26,27) mioblastos esqueléticos; (28) células-tronco derivadas da medula óssea (como células-tronco/progenitores mesenquimais, endoteliais e hematopoieticas); (29) células-tronco embrionárias; (30-33) células de músculos lisos; (34,35) células-tronco derivadas do tecido adiposo; (36,37) células-tronco cardíacas; (38) e a tecnologia relativamente nova de células-tronco pluripotentes induzidas (células iPSC). (39,40) Muitas considerações devem ser feitas para escolher o melhor tipo de célula a ser aplicada em cada situação, dependendo, por exemplo, de sua disponibilidade e sua adequação. (41) É válido analisar as vantagens e desvantagens de cada tipo celular (Tabela 1).

Figura 3. Esquema de descelularização. (A) Um coração inteiro (pode ser humano, por exemplo de cadáver ou de transplante rejeitado, ou, mais comumente, de animal doador com tamanho/anatomia compatíveis, em geral, suíno) é colocado em (B) uma câmara de órgão de um bioreator de descelularização conectada à tubulação e a cânulas adequadas para perfusão. Inicia-se o processo de descelularização. Por algum tempo, geralmente 1 ou mais dias de aplicação contínua de solução de descelularização, o coração, aos poucos branqueia, indicando que o constituinte celular do tecido está sendo lavado, deixando para trás o colágeno e outras substâncias de tecido conjuntivo, e preservando bastante a arquitetura anatômica original do órgão em relação à vascularização e ao parênquima (C).
Tabela 1. Vantagens e desvantagens de cada tipo de célula utilizada para cardiomioplastia celular

Tipo celular	Mecanismo de ação	Vantagens	Desvantagens	
Cardiomiócitos (adulto, fetal e neonatal)	Miogênese	Integração com o tecido hospedeiro, como visto em roedores^{20,21}	Dilema ético	
		Fenotipo de cardiomiócitos adultos²⁶	Incapacidade para reproduzir²⁶	
		Alta viabilidade celular e adesão do enxerto²⁷	Disponibilidade limitada	
		Fenotipo de musculatura esquelética adulta²⁸	Imunogenicidade²⁹	
		Fácil de isolar	Curta viabilidade celular³⁰	
Mioblastos esqueléticos	Miogênese	Autólogos	Alto risco de arritmias³¹	
		Alta viabilidade celular e adesão do enxerto³²	Pouca integração estrutural e fisiológica com o tecido hospedeiro³³	
		Fenotipo de cardiomiócitos adultos³⁴	Possível angiogênese em locais indesejados³⁵	
		Fácil de isolar	Disponibilidade limitada	
Células-tronco derivadas de medula óssea (mesenquimais, progenitoras endoteliais e hematopoéticas)	Miogênese	Múltipotentes	Possível angiogênese em locais indesejados³⁶	
		Autólogos	Disponibilidade limitada	
		Fócios de isolar	**Fenótipo de musculatura esquelética infantil**³⁷	
		Alto potencial de expansão	**Fenótipo de musculatura esquelética adulta**³⁸	
		Presença de efeitos adjacentes³⁹	**Fenótipo de musculatura esquelética adulta**⁴⁰	
Células-tronco mesenquimais	Diferenciados em fenótipo semelhante a cardiomiócitos⁴¹	Neovascularização⁴²	Imunogenicidade de células-tronco mesenquimais alógenas⁴³	
	Diferenciação em células endoteliais, conforme visto em caninos⁴⁴	**Integração em células endoteliais do hospedeiro via junções comunicantes**⁴⁵	**Integração inadequada com tecido hospedeiro em suínos**⁴⁶	
	Propriedades imunossupressoras⁴⁷	Alta integração estrutural e fisiológica com tecido hospedeiro^{48,49}	**Integração inadequada com tecido hospedeiro em suínos**⁴⁶	
Células progenitoras endoteliais	Angiogênese	Neovascularização⁴²	Limitação em número e migração celular em pacientes com doenças coronárias⁴⁹	
Células-tronco hematopoéticas	Angiogênese	Impacto benéfico no remodelamento do ventrículo esquerdno e angiogênese⁴²	Incapazes de se diferenciar em cardiomiócitos⁵⁰	
Células-tronco embrionárias	Miogênese	Alta proliferação⁴²	Dilema ético	
		Pluripotentes⁵¹	Risco de formação de teratoma⁵¹	
		Diferenciam-se em cardiomiócitos⁵²	Alta imunogenicidade⁵²	
		Integraram com cardiomiócitos do hospedeiro via junções comunicantes⁵³	Disponibilidade limitada	
		Podem ser pré-tratadas com fatores de crescimento⁵⁴	**Não melhoram função contratil**⁵⁴	
Células de músculos lisos	Miogênese	Propriedades elásticas melhoram função cardíaca⁴³	**Imunogenicidade**⁵⁵	
		Verde de melhorar função cardíaca⁴³	**Não melhoram função contratil**⁵⁴	
Células-tronco derivadas de tecido adiposo	Angiogênese	Múltipotentes⁵²	Adesão celular ruim a longo prazo⁵⁶	
		Miogênese	Sem diferenciação significativa⁵⁶	
		Alta disponibilidade⁵⁷		
		Fócios de isolar⁵⁷		
		Alta proliferação⁵⁸		
		Secretem fatores de crescimento⁵⁸		
		Induzem miogênese e angiogênese⁵⁹		
Células-tronco cardíacas	Miogênese	Autólogas	Disponibilidade limitada	
		Pluripotentes⁵³		
		Expansão in vitro⁵³		
Células-tronco pluripotentes induzidas	Miogênese	Pluripotentes⁵³	Risco de formação de teratoma⁵¹	
		Autólogas		
		Expansão in vitro⁵³		

Cultura celular in vitro

O próximo tópico crítico para a criação de um enxerto cardíaco, após a seleção celular, é a cultura celular. De placas a equipamentos especializados em cultura de células (biorreatores), foram feitas pesquisas para estudar como promover a proliferação, o alinhamento, a diferenciação e a maturação celulares *in vitro*, antes da implantação *in vivo*.

O potencial para o alinhamento de células no *scaffold* foi demonstrado em alguns estudos com poliuretano e em cultura de células *in vitro* em placas. McDevitt et al., demonstraram que os cardiomiócitos poderiam ser cultivados em filmes de poliuretano com padrões de lamina impressos, permitindo o alinhamento bidimensional das células e apresentando resposta contrátil.¹¹ Rockwood et al., prepararam substratos de cultura de...
poliuretano biodegradáveis alinhados e desalinados usando eletrofiação, demonstrando que scaffolds alinhados
dos podem gerar uma organização celular semelhante à do tecido cardíaco nativo.(20)

Para promover o aumento da proliferação, da differenciação e da maturação celulares, a cultura celular in vitro dos tipos celulares escolhidos é realizada em laboratórios especializados em cultura de células, tanto nas instituições acadêmicas quanto nas indústrias. A infraestrutura padrão inclui salas limpas, incubadoras de dióxido de carbono, armários de segurança biológica, consumíveis de cultura de células estéreis, contadores de células, e outros equipamentos padrão. Em alguns casos, pode ser justificado o uso de biorreatores celulares, baseados unicamente na finalidade de melhorar, refinar e otimizar a qualidade e o rendimento (expansão) da própria célula. O objetivo de empregar tais biorreatores celulares, que podem incluir equipamentos como biorreatores de ondas (GE Xuri, GE Healthcare, Nova Iorque, NY, EUA) e biorreatores de tanque agitado (Applikon, Delft, Holanda; Sartorius, Göttingen, Alemanha; e outros) com microtransportadores para cultura de células aderentes, ou robôs de cultura celular automatizados (SelecT & CompacT SelecT, Sartorius Stedim Biotech, Royston, Reino Unido; sistemas VANTAGE & STAR, Hamilton, Reno, NV, EUA; sistema Freedom EVO, Tecan, Männedorf, Suíça; sistema Cytomat 10, Thermo Fisher, Waltham, MA, EUA e outros), seria melhorar a qualidade e a formação viáveis alcançados pelas técnicas tradicionais de cultura celular. Olhando de forma mais ampla a categoria dos equipamentos como um todo, os biorreatores podem ser descritos como sistemas com condições e parâmetros controlados que permitem a estimulação do crescimento celular ou a transformação de substrato em produtos de interesse por células vivas ou seus componentes, como enzimas ou organelas.(56) Sistemas baseados na produção de bioproductos, como proteínas, lipídeos, entre outros, são chamados de biorreatores de produção.(57) Sistemas que, por outro lado, focam na expansão celular e na terapia celular, para obter as próprias células como produto, são chamados de biorreatores de células.(57) Finalmente, os sistemas utilizados para a engenharia de tecidos, procurando obter tecido maduro como resultado, são denominados biorreatores de tecidos.(57)

Muitos tipos de biorreatores foram utilizados para diferentes aplicações em bioprocessos. A diversidade de alternativas de projetos de biorreatores é baseada em parâmetros e condições específicas, como transferência de calor ou gás e homogeneidade, necessárias para cada aplicação. Alguns exemplos de projetos de biorreatores são o tanque-agitado e os reatores tipo airlift.(58)

A possibilidade de criar um ambiente dinâmico com controle mecânico, físico e bioquímico, faz dos biorreatores teciduais uma tecnologia amplamente utilizada na engenharia de tecidos, devido à necessidade de fornecer estímulos apropriados para diferenciação e proliferação celular, e estimular propriedades da MEC adequadas para tecidos em desenvolvimento.(59) Alguns estudos sobre biorreatores de tecido incluem osso,(60) cartilagem(61) e sistema cardiovascular.(62)

No âmbito dos estudos com foco em tecido cardiovascular, têm-se vasos sanguíneos,(63) válvulas cardíacas(57,64) e cultura de tecido cardíaco.(4,65-68) O tecido cardíaco é extremamente complexo e os biorreatores podem ajudar a entender melhor a influência de cada parâmetro durante a cultura in vitro (Figura 4). Carrier et al., estudaram e caracterizaram o efeito de diferentes parâmetros, como fonte das células, cultivo celular, fluxo e oxigênio, na estrutura e na função cardíacas, que passaram por processos de engenharia, semeados suspensões bem misturadas de cardiómiócitos em placas misturadas em órbitas e frascos giratórios.(65) Bursac et al., demonstraram que o músculo cardíaco tridimensional poderia ser manipulado usando células isoladas e scaffolds de polímero (PGA) biodegradável, em frascos giratórios, para obter propriedades estruturais e eletrofisiológicas específicas.(6) Papadaki et al., mostraram a correlação entre propriedades moleculares, estruturais e eletrofisiológicas, e como estas podem ser melhoradas com uma alta concentração de miócitos, scaffolds de PGA com superfície hidrolisada, revestida por laminina, usando biorreatores rotativos e um meio com baixo teor de soro.(4) Carrier et al., estudaram o efeito de perfusão na melhora das condições de transporte da cultura e na criação de construtos com distribuições espaciais relativamente uniformes de células cardíacas, usando frascos mistos.(66) Radisic et al., mostraram que a inoculação rápida de células, seguida por perfusão imediata, permitiu o cultivo rápido e uniforme de cardiómiócitos em alta densidade, mantendo a viabilidade celular.(67) Bursac et al., relataram que cardiómiócitos de ratos recém-nascidos cultivados utilizando biorreatores rotatórios em scaffolds tridimensionais tinham propriedades mais semelhantes ao tecido nativo do que células cultivadas em monocamadas.(68) Gonen-Wadmany et al., estudaram o efeito de um biorreator de estimulação de tensão para aplicar distensão cíclica em construtos cardíacos modificados por engenharia e melhorar a orientação celular in vitro.(69) Lichtenberg et al., relataram o desenvolvimento de um biorreator multifuncional com quatro câmaras e dois compartimentos separados para o cultivo concomitante tridimensional de diferentes tipos de células e condições de cultura.(70) Desta forma, muitos tipos de biorreatores foram projetados para engenharia de tecidos cardíacos, e as diferentes técnicas...
CONCLUSÕES E PERSPECTIVAS

O coração é um órgão extremamente complexo e as técnicas que influenciam em sua regeneração dependem de muitas variáveis de caráter não triviais. Estas técnicas geralmente se concentram na seleção de material de scaffold, produção de material de scaffold, seleção celular e cultivo celular in vitro. Muitos estudos neste campo já fizeram um enorme progresso, seja em um enxerto ou em um coração bioartificial inteiro. No entanto, muito trabalho ainda precisa ser feito para melhor entender e resolver os desafios experimentais e das tecnologias existentes, melhorando as técnicas atuais e desenvolvendo novas técnicas, protocolos e métodos.

Para a seleção e a estrutura do material, primeiramente, é importante definir o melhor material (sintético, natural ou híbrido) para aplicações cardíacas. Algumas propriedades desejadas para estes materiais são taxas de degradação ajustáveis, boa porosidade, biocompatibilidade, hemocompatibilidade, boa adesão celular, propriedades mecânicas e elásticas compatíveis com o coração, e que o material permita um bom acoplamento elétrico entre as células e entre o scaffold e o tecido nativo.(11,13) Em segundo lugar, é necessário escolher a técnica para produzir o scaffold, na qual as células vão ser semeadas antes da implantação. As perspectivas neste campo concentram-se na obtenção de um scaffold a partir da estrutura tridimensional de um coração inteiro. Além da descelularização, que é promissora para a aplicação em engenharia de tecidos cardíacos, outra tecnologia em destaque é a bioimpressão tridimensional de tecidos e órgãos.(71) A combinação de bioimpressão tridimensional, biorreatores e células-tronco poderia fornecer uma nova tecnologia que permitiria o desenvolvimento do órgão humano da próxima geração.

Para a seleção celular e a expansão in vitro, o primeiro passo essencial é determinar o melhor tipo de célula para a aplicação (células-tronco derivadas da medula óssea, cardiomiócitos, iPSC, entre outros), con-
siderando a disponibilidade e as peculiaridades sobre cada tipo de célula. Depois disso, o cultivo das células in vitro é necessário antes da semeadura e da posterior implantação do tecido. A tecnologia mais eficiente para fornecer a proliferação e a diferenciação destas células é o bioreator. Muitos tipos diferentes de bioreatores para aplicações cardíacas de engenharia de tecidos foram estudados, mas ainda resta determinar quais técnicas são as mais adequadas, com um equilíbrio ideal de vantagens e desvantagens, reconhecendo que nenhuma técnica isolada pode preencher todos os requisitos.

Outras oportunidades para engenharia do tecido miocárdico incluem encontrar a melhor combinação das diferentes técnicas aqui descritas, para conseguir o miocárdio artificial ideal para aplicações clínicas e estudar a influência de outros aspectos, como o melhor momento para implantação, com maior adesão celular no tecido do receptor após um infarto agudo do miocárdio.(18)

II AGRADECIMENTOS
Este trabalho recebeu apoio do Instituto Nacional de Ciência e Tecnologia em Biofabricação (INCT-BIOFABRIS), do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, processo 573661/2008-1) e da Fundação de Amparo à Pesquisa do Estado de São Paulo (processos 2008/57860-3 e 2014/22799-3).

II INFORMAÇÃO DOS AUTORES
Rodrigues IC: https://orcid.org/0000-0003-3874-2387
Kaasi A: https://orcid.org/0000-0002-2440-5593
Maciel Filho R: https://orcid.org/0000-0001-6511-7283
Jardini AL: https://orcid.org/0000-0002-9381-9335
Gabriel LP: https://orcid.org/0000-0003-4035-5626

II REFERÊNCIAS
1. World Health Organization (WHO). World Health Statistics 2017: monitoring health for the SDGs [Internet]. Geneva: WHO; 2017 [cited 2018 May 7]. Available from: http://www.who.int/gho/publications/world_health_statistics/2017/en/
2. See F, Kompa A, Martín J, Lewis DA, Krum H. Fibrosis as a therapeutic target post-myocardial infarction. Curr Pharm Des. 2005;11(4):477-87. Review.
3. Mangini S, Alves BR, Silvestre OM, Pires PV, Pires LJ, Curati MN, et al. Heart transplantation: review. einstein (São Paulo). 2015;13(2):310-8. Review.
4. Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am J Physiol Heart Circ Physiol. 2001;280(1):H168-76.
5. Chen OZ, Harding SE, Ali NN, Lyon AR, Boccaccini AR. Biomaterials in cardiac tissue engineering: ten years of research survey. Mater Sci Eng Rep. 2008;59(1-6):1-37.
6. Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, et al. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol. 1999;277(2 Pt 2):H433-44.
26. Barron V, Lyons E, Stenson-Cox C, McHugh PE, Pandit A. Bioreactors for tissue engineering of the heart. Nature. 1999;282(5729):500-3. Review.

27. Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G. Challenges for tissue engineering: where are we and where do we need to go? J Biomed Mater Res. 2001;58(2):196-205. Review.

28. Toma C, Pfitzinger MF, Cahiil KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(15):1513-23. Review.

29. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, et al. Cardiac stem cells derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25(9):1015-24.

30. Li RK, Jia ZO, Weisld RL, Merante F, Mickle DA, Li G, et al. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol. 1999;31(3):513-22.

31. Yoo KJ, Li RK, Weisld RL, Micle DA, Li G, et al. Smooth muscle cell transplantation improved heart function in dilated cardiomyopathy. Ann Thorac Surg. 2000;70(3):859-65.

32. Planeat-Backal V, Silvestre JS, Soudry C, Inoue H, Mibibin L, Tamarat R, et al. Plasticity of human adipose lineage cells towards endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656-63.

33. Rehm J, Traktuev D, Li J, Merfeld-Clauss S, Tempen-Grove CJ, Vandenkerkje, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stem cells. Circulation. 2004;109(10):1289-92.

34. Barle L, Chimenti IA, Garetani R, Forte E, Frati G, et al. Cardiogenic differentiation of human embryonic stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat Clin Pract Cardiovasc Med. 2007;4(5):Suppl 1:S9-14.

35. Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, et al. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation. 2009;2009(120)(5):408-16.

36. Ott HC, McCue J, Taylor DA. Cell-based cardiovascular repair-the hurdles and the opportunities. Basic Res Cardiol. 2005;100(6):504-17.

37. Reiner L, Field L. Cell transplantation as future therapy for cardiovascular disease?: a workshop of the National Heart, Lung, and Blood Institute. Circulation. 2000;101(18):E182-7.

38. Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98(11):1414-21.

39. Toma C, Pfitzinger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105(15):1513-23.

40. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005;111(2):150-6.

41. Mangi AA, Noisauex N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9(9):1195-201.

42. Huang XP, Sun Z, Miyagi Y, McDonald Kinkaid H, Zhang L, Weisld RL, et al. Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation. 2010;122(23):2419-29.

43. Losordo DW, Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation. 2004;109(22):2692-7.