Yield potential and adaptability of several introduced Burley tobacco genotypes across development areas

S Yulaikah, F Rochman, Djajadi, Djumali, A Herwati, R Hamida, A Ridhawati, and Supriyono
Indonesian Sweetener and Fiber Crops Research Institute (ISFCRI), Jalan Raya Karangploso PO Box 199, Malang, East Java.

Corresponding author email: sriyulaikha@gmail.com

Abstract. Burley tobacco is a light air-cured tobacco primarily used in the production of white and kretek cigarettes. Currently the major cultivated variety (TN90) has declined in its performance. To overcome the problem, several new high-quality and productivity genotypes have been introduced. However, these new genotypes have to be evaluated before they are cultivated commercially. This research aimed to determine the yield potential and adaptability of the newly introduced Burley tobacco genotypes for two growing seasons in six locations. Four introduced genotypes (AOB359, AOB656, DBH454, NC7LC) and one check variety (TN90) were arranged in a randomized block design with five replications. Parameters observed included flowering age, leaf number, leaf length and width, yield of dried tobacco leaves, grade index, and crop index. Data were analyzed using PKBT STAT 2.03. The results showed that yield potential varied from 1294.8 – 1527.3 kg ha⁻¹ for dried tobacco leaves, grade index ranged from 55.25 – 55.91, crop index ranged from 70.91 - 84.60 and wide adaptability. The AOB359, AOB656, and NC7LC genotypes produced a potentially higher yield than the check variety.

Keywords: Nicotiana tabacum, stability, yield, grade index, crop index

1. Introduction

Burley tobacco is light air cured that has specific and prominent characteristics. The high-quality Burley tobacco leaves have a yellowish-brown color. Because of its quality, Burley tobacco is used in the production of white and kretek cigarettes. Data showed that the majority of Burley tobacco comes from the main cultivation areas in Java island, particularly Lumajang, Jember and Banyuwangi, with a total area of around 997 ha per year [1]. Apart from those areas, Burley tobacco is also found cultivated in four districts of North Sumatra Province, namely Dairi, Humbang Hasundutan, and Tapanuli districts, with a total area of 225 ha. Burley tobacco in North Sumatra Province is grown to fulfill the need of STTC (The Sumatera Trading Tobacco Company) [2]. In 2015 the export volume of Burley tobacco (17,820 kg) was smaller than the import volume (317,086 kg) [1]. This implies that the domestic needs for Burley tobacco are still lacking. Therefore, there is a great opportunity for the development of Burley tobacco in Indonesia.

The main variety developed in Lumajang is TN 90. For years this variety shows a high and stable performance. However, its productivity and quality decreases nowadays due to genetic factors. Therefore, the introduction of a new high-yielding genotypes is needed to replace the old and degenerated TN90 cultivar. With this background several new variety had been introduced from Brazil and USA. These introduced varieties have good growth and yield performance in their area of origin. However, previous research revealed that a variety with high production potential in
the area of origin might not produce the same performance in the new development area. This is due to high genetic and environmental interaction [4]. Therefore, it is necessary to test the yield potential and adaptability of the newly introduced variety in new development areas with different ecological condition.

This study aimed to test the yield potential and adaptability of newly introduced varieties of Burley tobacco.

2. Materials and methods
2.1. Study site and time
The research was done for two years in the development area of Burley tobacco in Lumajang regency, East Java Indonesia. The descriptions of the study site and rainfall distribution during the study period are listed in Table 1 and Table 2.

Table 1. Description of the six study sites

Year	Location	Coordinate	Elevation (m asl)	Soil texture
2015	1 Jatisari/Tempeh	8°14'SL 113°01'EL	120 m asl	1. Sandy loam
	2 Tumpeng1/Candipuro	8°12'SL 112°54'EL	275 m asl	2. Sandy loam

2016	1 Tumpeng2/Candipuro	8°12'SL 112°54'E	275 m asl	1. Sandy loam
	2 Nguter Pasirian	8°19'SL 112°55'EL	202 m asl	2. Sandy loam
	3 Pulo/Tempeh	8°12'SL 113°04'EL	132 m asl	3. Sandy loam
	4 Sumbersuko/Sumbersuko	8°08'SL 113°06'EL	100 m asl	4. Loam

Note: asl=above sea level

Table 2. Rainfall distribution pattern of the six study sites in 2015 to 2016

Month	Jatisari	Tumpeng1	Tumpeng2	Nguter	Pulo	Sumbersuko
RF	RD	RF	RD	RF	RD	RF
January	222	14	226	15	86	12
February	170	13	202	12	395	18
March	146	13	202	12	158	12
April	272	13	239	17	281	19
May	91	4	79	6	198	17
June	3	3	15	5	313	13
July	0	0	0	0	96	9
August	0	0	0	0	85	11
September	0	0	0	0	236	14
October	0	0	0	0	321	21
November	44	3	45	3	700	25
December	171	11	223	20	281	16

Note: RF= rainfall; RD= number of rainy days

Jatisari and Tumpeng1 in 2015, the other locations in 2016

2.2. Materials and tools
The materials used in this study included four Burley tobacco genotypes (AOB359, AOB 656, DBH454, and NC7LC) and one check variety (TN90). The High yielding Variety of AOB 359, AOB656 and DBH454 were introduced from Brazil whereas NC7LC comes from the USA.

2.3. Research design
The treatments were arranged in a Randomized Block Design (RBD) with five repetitions. The plot
size was 6.6 m x 11.25 m. Each plot consisted of 150 plants. The 40 days old seedlings were planted in 110 x 45 cm spacing with one seedling per hole. Before planting, the nematicide (carbofuran) was applied to anticipate caterpillar attacks, and the first fertilizer of NPK was applied with a dose of 700 kg per hectare.

Replanting was carried out seven days after planting while weeding was done before applying fertilizers. Ridging was done after fertilization by pulling the soil around the plant at the stem’s base to form a mound. Inorganic fertilization was given twice: on 18-20 DAP with ZA of DAP with NO3 of 13 kg ha⁻¹ and K2O of 45 kg ha⁻¹. Irrigation was added when required. Pruning was carried out at the beginning of flowering for each genotype. Pruning was done when at least one flower was fully bloomed by cutting the top of the plant just below the two flag leaves. The axillary shoots were cut every seven (7) days, Helicoverpa spp and Spodoptera littura insects were controlled using thiodicarb with a concentration of 2 ml l⁻¹ water, while Aphis spp. was controlled using imidacloropid with a concentration of 0.4 ml l⁻¹.

Harvesting was done twice when the leaves were mature enough, indicated by a change in color of the leaves from green to 50% yellow. The mature leaves were picked and dried in hot air (air curing) in a drying warehouse. Then sorting of dry leaves following consumers’ preference (market).

2.4. Observations
Parameters observed included the flowering time, leaf number, leaf length, leaf width, the yield of dried tobacco leaves, grade index, and crop index.

\[
\text{Grade index} = \frac{\sum_{i=1}^{n} (A_i \times B_i)}{\sum_{i=1}^{n} B_i}
\]

Ai = price index of i-th treatment
Bi = weight of the i-th grade
n = number of grades available
Crop index = grade index x yield (ton ha⁻¹)

2.5. Data analysis
Combined variance analysis was done on all data obtained, then continued with Duncan’s Multiple Range Test (DMRT) at a 5% significance. A stability analysis was conducted to determine the yield stability and adaptability of each genotype [4].

3. Results and discussion
3.1. Growth and yield
The growth and yield components of five Burley tobacco were influenced by the interaction between genotype and growth environment (Table 3). At Tumpeng1, DBH454 produced more leaves, AOB359 produced fewer leaves, and the other two genotypes produced a leaf number that was not significantly different from the check variety (Table 4). At Jatisari, DBH454 and AOB359 produced more leaves, and the other two genotypes produced a leaf number that was not significantly different from the check variety. At Tumpeng2, AOB359 produced a leaf number that was not significantly different from the check variety, and the other three genotypes produced more leaves than the check variety. At Nguter, DBH454 produced a leaf number that was not significantly different from the check variety, and the other three genotypes produced more leaves than the check variety. At Sumbersuko, NC7LC produced fewer leaves, and the other three genotypes produced more leaves than the check variety. The leaf number of Burley tobacco was influenced by the genotypes used [5].
Table 3. The combined Analysis variance of the flowering stage, leaf number, leaf length, and leaf width, the yield of dried tobacco leaves, grade index, and crop index

Source of variation	db	F	P	**	**	**	**	**	**
Location	5	**	**	**	**	**	**	**	**
Replication *location	15	**	**	**	**	**	**	**	**
Genotype	4	ns	ns	**	**	**	**	**	**
Genotype *location	20	**	**	**	**	**	**	**	**
Error	75	11.580	0.405	4.984	1.237	3.814	5.035	0.226	

Note: * and ** mean significantly different based on the F-test at 5% and 1% significance level, respectively. ns: not significantly different

Table 4. Averaged number of leaves per plant of the five Burley tobacco genotypes across six study sites

Genotype	Tumpeng1	Jatisari	Tumpeng2	Nguter	Pulo	Sumberuko
AOB359	23.25 fg	28.50 b	22.00 h-j	25.50 cd	22.00 h-j	18.75 m
AOB656	24.00 ef	29.00 b	22.50 g-i	25.50 cd	21.75 i-k	18.00 mn
DBH454	24.75 de	29.25 ab	22.50 g-i	24.50 de	20.00 i	18.50 m
NC7LC	24.00 ef	30.00 a	22.75 gh	26.00 c	21.00 k	17.00 o
TN 90 (C)	24.25 e	28.75 b	22.00 h-j	24.50 de	21.50 jk	17.50 no

Note: Numbers accompanied by the same letters are not significantly different based on Duncan’s Multiple Range Test (DMRT) at 5% level.

Table 5. Averaged leaf length of the five Burley tobacco genotypes across six study sites

Genotype	Tumpeng1	Jatisari	Tumpeng2	Nguter	Pulo	Sumberuko
AOB359	66.50 a	66.50 a	64.00 ab	61.25 b-d	57.75 de	46.25 gh
AOB656	64.25 ab	65.75 a	60.75 cd	66.50 a	56.00 ef	49.75 f
DBH454	65.25 a	66.00 a	64.50 a	63.75 a-c	59.25 de	44.50 h
NC7LC	63.75 a-c	63.75 a-c	60.25 d	64.25 ab	59.25 de	48.75 fg
TN 90	65.00 a	64.25 ab	58.75 de	64.25 ab	56.50 ef	49.25 fg

Note: Numbers accompanied by the same letters are not significantly different based on Duncan’s Multiple Range Test (DMRT) at 5% level.

At Tumpeng1, AOB656 and NC7LC produced shorter leaves, while the other two genotypes showed no significant difference in leaf length compared to the check variety (Table 5). At Jatisari, NC7LC produced shorter leaves. At Tumpeng2, NC7LC showed no significant difference in leaf length compared to the check variety, while the other three genotypes produced longer leaves than the check variety. At Nguter, AOB656 produced longer leaves, NC7LC showed no significant difference in leaf length compared to the check variety, while the other two genotypes produced shorter leaves than the check variety. At Pulo, AOB656 showed no significant difference in leaf length compared to the check variety, while the other three genotypes produced longer leaves than the check variety. At Sumberuko, AOB359 and DBH454 produced shorter leaves than the check variety. Research showed that the leaf
length of Burley tobacco was influenced by the Burley tobacco genotypes used [6, 7].

The four Burley tobacco genotypes produced broader leaves than the check variety at Tumpeng1, Jatisari, and Nguter sites. On the contrary, the Burley genotype produced narrower leaves than the check variety at Pulo (Table 6). At Tumpeng2, the NC7LC genotype produced narrower leaves, while the other three genotypes produced broader leaves than the check variety. At Sumbersuko, DBH 454 and NC7LC genotypes produced narrower leaves than the check variety. Research of [8, 16] showed that the leaf width of tobacco was influenced by the tobacco genotypes used.

Table 6. Averaged leaf width of the five Burley tobacco genotypes across six study sites

Genotype	Tumpeng1	Jatisari	Tumpeng2	Nguter	Pulo	Sumbersuko
AOB359	39.00 bc	36.75 d-f	38.50 bc	37.75 cd	36.00 d-g	27.25 mn
AOB656	36.75 d-f	36.50 d-f	38.75 bc	40.75 a	35.75 e-g	27.25 mn
DBH454	34.75 g-i	33.50 i-k	39.75 ab	39.00 bc	37.50 c-e	26.00 n
NC7LC	34.00 h-j	32.00 kl	37.00 d-f	35.50 f-h	36.75 d-f	26.50 n
TN 90	32.75 j-l	31.75 l	37.75 cd	34.50 g-i	38.75 bc	28.25 m

Note: Numbers accompanied by the same letters are not significantly different based on DMRT at 5% level.

Table 7. Averaged flowering time of the five Burley tobacco genotypes across six study sites

Genotype	Tumpeng1	Jatisari	Tumpeng2	Nguter	Pulo	Sumbersuko
AOB359	77.75 d-h	76.00 f-i	79.00 b-g	67.75 kl	84.25 b	75.25 f-i
AOB656	77.50 d-i	79.50 b-f	78.00 d-h	68.50 j-l	83.25 b-d	82.00 b-e
DBH454	78.25 c-h	79.50 b-f	79.75 b-f	67.75 kl	83.75 bc	77.25 e-i
NC7LC	76.75 e-i	75.00 f-i	81.75 b-e	69.00 j-l	77.75 d-h	91.00 a
TN 90	73.25 h-j	73.75 g-j	72.00 i-k	66.50 l	79.00 b-g	79.75 b-f

Note: Numbers accompanied by the same letters are not significantly different based on DMRT at 5% level.

The flowering time of the four Burley tobacco genotypes was longer than the check variety at Tumpeng1, Jatisari, Tumpeng2, and Nguter sites (Table 7). At Pulo, the NC7LC genotype had a shorter flowering stage than the check variety. On the contrary, it had a more extended flowering stage than the check variety at Sumbersuko. The flowering time of tobacco was influenced by the genotypes used [9].

The yield of dried leaves of the AOB359 genotype was not significantly different from the check variety, while the other three genotypes produced a lower yield than the check variety at Tumpeng1. At Jatisari, the yield of DBH454 was not significantly different, while the other three genotypes produced a lower yield than the check variety (Table 8). On the other hand, at Nguter, Pulo, and Sumbersuko, the DBH454 yield of dry tobacco leaves was not significantly different from the check variety. In contrast, the other three genotypes produced a higher yield than the check variety. As for Tumpeng2, all tested genotypes produced a higher yield of dried tobacco leaves than the check variety. Previous research also showed that Burley tobacco yields were influenced by the genotypes used [10, 11].

The grade indices of all tested genotypes were higher than the check variety at Tumpeng1, Tumpeng2, Pulo, and Sumbersuko (Table 9). At Jatisari, genotype DBH454 had a higher grade index than the check variety. NC7LC had a grade index that was not significantly different from the check variety, while the other two genotypes had lower indices than the check variety. At Nguter, AOB359 and NC7LC genotypes had higher grade indices, while the other two genotypes had lower grade indices than the check variety.
The 2nd International Conference on Sustainable Plantation
IOP Conf. Series: Earth and Environmental Science 974 (2022) 012037
doi:10.1088/1755-1315/974/1/012037

Table 8. Averaged yield of dried tobacco leaves of the five Burley tobacco genotypes across six study sites

Genotype	Tumpeng1	Jatisari	Tumpeng2	Nguter	Pulo	Sumbersuko
AOB359	2182.1 c	3024.0 ab	1360.1 ef	1224.2 f	989.80 gh	383.8 lm
AOB656	1681.6 d	2959.2 ab	1380.3 e	961.0 g-i	794.53 i	377.1 lm
DBH454	1904.8 d	3245.3 a	1137.9 fg	612.1 j	592.53 jk	276.1 m
NC7LC	1772.3 d	2747.5 b	1737.2 d	1340.5 ef	989.80 gh	471.3 kl
TN 90	2274.9 c	3150.4 a	861.9 hi	618.2 j	572.33 jk	336.7 m

Note: Numbers accompanied by the same letters are not significantly different based on Duncan’s Multiple Range Test (DMRT) at 5% level.

Table 9. Averaged grade index of the five Burley tobacco genotypes across six study sites

Genotype	Tumpeng1	Jatisari	Tumpeng2	Nguter	Pulo	Sumbersuko
AOB359	53.67 g-j	50.00 kl	66.38 b	57.88 ef	59.65 c-f	47.88 lm
AOB656	50.33 j-l	45.67 m	68.88 ab	54.29 g-i	62.59 e	51.75 i-k
DBH454	53.33 h-k	54.00 g-j	66.20 b	49.93 kl	58.64 d-f	49.38 l
NC7LC	51.00 i-l	50.33 j-l	69.83 a	60.67 c-e	57.18 e-g	50.94 i-l
TN 90	49.67 kl	50.33 j-l	61.88 cd	56.40 f-h	53.96 g-j	45.45 m

Note: Numbers accompanied by the same letters mean not significantly different based on Duncan’s Multiple Range Test (DMRT) at 5% level.

The crop indices of all tested genotypes were lower than the check variety at Tumpeng1. On the contrary, those genotypes had higher indices at Tumpeng2, Nguter, and Pulo (Table 10). At Jatisari, the NC7LC genotype had a lower crop index, AOB359 had a crop index not significantly different from the check variety, while the other two genotypes had higher indices than the check variety. At Sumbersuko, the DBH454 genotype had a lower crop index, AOB656 had a higher crop index, while the other two genotypes had indices not significantly different from the check variety.

Table 10. Averaged crop index of the five Burley tobacco genotypes across six study sites

Genotype	Tumpeng1	Jatisari	Tumpeng2	Nguter	Pulo	Sumbersuko
AOB359	119.64 cd	166.68 ab	77.30 f	62.03 g-i	54.19 i-k	22.58 no
AOB656	99.40 e	179.47 a	80.48 f	59.37 h-j	50.63 jk	23.74 mn
DBH454	101.48 e	175.62 a	65.98 g-h	33.45 l	32.90 l	16.05 o
NC7LC	106.45 de	152.35 b	96.98 e	74.97 fg	55.00 h-k	21.86 no
TN 90	129.74 c	167.41 ab	45.65 k	29.96 lm	27.20 l-n	20.75 no

Note: Numbers accompanied by the same letters are not significantly different based on Duncan’s Multiple Range Test (DMRT) at 5% level.

3.2. Stability

The agroecological conditions of the burley tobacco development area are varied. Therefore, the introduction of a new variety must be planned for its yield potential and stability. A plant variety is said to be stable if the yield obtained remains high in various agro-ecological conditions. Table 3 showed that yield of dried tobacco leaves, grade index, and crop index were influenced by the interaction between the genotype and the growth environment. Based on this result analysis was then continued to a stability test. The result of the stability test for yield dried tobacco leaves, is shown in Table 11. It showed that all the introduced genotypes produced a regression coefficient value (bi) not different from 1 and a standard deviation value (S^2_{bi}) not different from 0. Thus, the introduced genotypes could
be considered stable or had wider adaptability. In contrast, the check variety (TN 90) was unstable or had narrow adaptability. Interesting to note that AOB359 and AOB656 genotypes produced a higher yield of dried tobacco leaves than the check variety and had wider adaptability. This is because TN90 has been planted in development area too long since 2003. TN90 has decreased in productivity and quality and is unstable. This is probably due to plant degeneration. Therefore, in terms of yield of dried leaves both genotypes are considered promising candidates for Burley development in Lumajang regency. Based on research the result of [12] that each tobacco genotype had different adaptability. Research result shows that genotypes generally remain constant from each environment, but sometimes it changes and produces wide range of phenotypes in a different environment. The change is referred to as genotype-environment interactions (GEI) [13, 14].

Table 11. Averaged yield of dried tobacco leaves (kg ha\(^{-1}\)) and stability parameters of the five Burley tobacco genotypes

Genotype	The yield of dried tobacco leaves (kg ha\(^{-1}\))	Bi	\(S^2_{di}\)	Stability
AOB359	1527.3 a	0.966	0.990 ns	Stable
AOB656	1359.0 b	0.899	3.661 ns	Stable
DBH454	1294.8 b	1.184	2.144 ns	Stable
NC7LC	1509.8 a	0.792	2.022 ns	Stable
TN 90	1302.4 b	1.160	7.242 *	Unstable
Mean	1398.6			

Note: \(b_i\) : regression coefficient; \(S^2_{di}\) : standard deviation; *, ** and ns: significantly different, very significantly different, and not significantly different based on the t-test for \(b_i\) and F-test for \(S^2_{di}\).

The result of stability analysis for the grade index is listed in Table 12. It showed that all tested Burley tobacco genotypes and the check variety produced a \(b_i\) value not different from 1 and \(S^2\) value not different from 0 (Table 12).

Table 12. Averaged grade index and stability parameters of the five Burley tobacco genotypes

Genotype	Grade Index	Bi	\(S^2_{di}\)	Stability
AOB359	55.91 ab	0.958	8.418 ns	Stable
AOB656	55.59 ab	1.208	2.484 ns	Stable
DBH454	55.25 b	0.788	1.458 ns	Stable
NC7LC	56.66 a	1.205	3.474 ns	Stable
TN 90	52.95 c	0.841	3.692 ns	Stable
Mean	55.27			

Note: \(b_i\) : regression coefficient; \(S^2_{di}\) : standard deviation; *, ** and ns: significantly different, very significantly different, and not significantly different base on the t-test for \(b_i\) and F-test for \(S^2\).

Thus, in terms of grade index all genotypes and the check variety were stable and hence had wider adaptability. It is noted that AOB359, AOB656, and NC7LC genotypes produced the highest grade indices and broader adaptability. Decision-making to choose a superior variety can be done based either on production, grade index or crop index. The selection based on the crop index, however is the right choice because the crop index shows the level of income earned by farmers.

The result of stability analysis for crop index is listed in Table 13. It appeared that all the introduced genotypes had a regression coefficient value (\(b_i\)) not different from 1 and a regression deviation value (\(S^2_{di}\)) not different from 0 (Table 13). Thus, all of these genotypes were stable or had wider adaptability. In contrast, the check variety was considered unstable or had narrow adaptability. When examined, genotypes AOB359, AOB656, and NC7LC not only had a wider stability but also they produced a higher crop index than the check variety. Therefore, it can be concluded that those three genotypes are adaptable in all areas of Burley tobacco development which indicated that the introduced genotypes have the genetic potential to adapt to changing environments rapidly [15].
Table 13. Averaged crop index and stability parameters of the five Burley tobacco genotypes

Genotype	Crop Index	b_i	S'_{bi}	Stability
AOB359	83.74 a	0.981	0.252	Stable
AOB656	82.18 a	0.907	0.287	Stable
DBH454	70.91 b	1.157	0.261	Stable
NC7LC	84.60 a	0.826	0.009	Stable
TN 90	70.12 b	1.129	0.504	Unstable

Mean 78.31

Note: b_i: regression coefficient; S'_{bi}: standard deviation; *, ** and ns: significantly different, very significantly different, and not significantly different base on the t-test for b_i and F-test for S^2.

4. Conclusion

The yield potential of the introduced genotypes varied from 1294.8 – 1527.3 kg ha$^{-1}$ of dried tobaccolaves, grade index ranged from 55.25 – 55.91, and crop index ranged from 70.91 – 84.60 with broader adaptability. AOB359, AOB656, and NC7LC are the promising genotypes found in this study that can be used directly to replace the old cultivar TN 90.

Acknowledgment

We want to thank the Director of the Indonesian Sweetener and Fiber Crops Research Institute, Ir. Mastur, MSI., Ph.D., for assigning us to do the research. We also thank the Director of PT. Alliance One Indonesia (Laerte Elias Costa) and staff (Agung Kiswara and Rohimat Effendi) for their collaboration and funds. Lastly, we would like to thank the coordinator of the Pasirian experimental garden and his staff who helped facilitate this research.

References

[1] Directorate General of Estate Crop 2016 Tree crop estate statistic of Indonesia. Tobacco. Ministry of Agriculture, Indonesia.
[2] Sinaga D 2017 Pengembangan agribisnis tembakau Sumatera. Intensifikasi tembakau Burley dalam rangka peningkatan produktifitas. Dinas Perkebunan Kabupaten Dairi.
[3] Powell A A, Corbineau F, Franca-Neto J, Lechappe J, Mesterhazy A, Noli E, Pritchard H W, and Tarp G 2005 Seed Science and Technology 33 (2): 265-281.
[4] Eberhart, S.A. and W.A. Russell. 1965. Stability parameters for comparing varieties. Crop Science. 6(1): 36-40. doi:10.2135/cropsci1966.001183X000600010011x
[5] Mitreski M, Korubin-Alekoska A, Aleksoski J, Trajkoski J, Trajkoski M, Taskoski P 2017 Variability of the most essential quantitative properties in some varieties of tobacco type Burley. 3rd International Symposium for Agriculture and Food. ISAF.
[6] Dyulgerski Y, Kirkova S, and Milanova T 2015 Bulgarian Journal of Agricultural Science 21 (4):811-814.
[7] Dyulgerski Y, and Docheva S 2018 C R. Acad. Bulg. Sci. 71 (11): 1571-1578.
[8] Boaretto L P, Coelho F S, Baptista J L C, and Mazzafera P 2020 Australian Journal of Crops Science. 14 (08):1310-1318
[9] Leonova K P, Morgun A V, Hospodarenko H M, Ketksalo V V, Kotsyuba S P, and Nevlad V I 2020 Ukrainian Journal of Ecology. 10 (2), 449-454, DOI: 10.15421/2020_122.
[10] Cozzolino E, Raimo F, Scognamiglio F, Sicignano M, Enotrio T, and del Piano L 2019 Performance of Italian Burley Tobacco varieties in different area of campania region. Proceedings of the XLVIII Conference of the Italian Society for Agronomy. p. 128-129
[11] Azadbakht M, Ghajarzade E, Kiapei A, Jafari H, Salehi E, and Pishgar R 2016 Agric. Eng. Int. CIGR Journal 18 (3): 220-224.
[12] Shava JG 2021 Agricultural science digest D-232 : 1-4. doi: 10.18805/ag.D-232.
[13] Baye T M, Abebe T, and Wilke R A 2011 Per Med 8 (1): 59-70. Doi : 10.2217/pme.10.75
[14] Nehe A, Akin B, Sanal T, Evlise A K, Unsal R, Dincer N, Demir L, Geren H, Sevim I, Orhan S, Yakutbay S, Ezici A, Guzman C, and Morgounov A 2019 PLoS ONE 14 (7) :e0219432. https://doi.org/10.1371/journal.pone.0219432
[15] Johnson M T J, Dinnage R, Zhou A Y, and Hunter M D 2008 J. of Ecology 96 : 947-955 https://doi.org/10.1111/j.1365-2745.2008.01410.x

[16] Dorvishzadel R, Mirzali L, Maleki H H, Laurectin H, Alavi S R, 2013. Reciencia Agronomica.44(2): 347-355.