Supplementary Information

Enhanced Crystallinity of CH$_3$NH$_3$PbI$_3$ by the Pre-Coordination of PbI$_2$-DMSO Powders for Highly Reproducible and Efficient Planar Heterojunction Perovskite Solar Cells

Jiyong Leea and Seunghyun Baikb*

a Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
b School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

* E-mail: sbaik@me.skku.ac.kr
Figure S1. Thermogravimetric analysis (TGA) of the pure PbI₂ and pre-coordinated PbI₂-DMSO powders. The heating rate was 2°C/min under ambient air environment.
Figure S2. TGA analyses of PbI₂-DMF and DPC-10 min powders before and after dissolving in DMF. The TGA data of DPC-10 min powders before dissolving were reproduced from Figure S1 for comparison.
Figure S3. Top-view SEM images of CH$_3$NH$_3$PbI$_3$ films prepared without DMSO (A), by the one-step blending method (B), and by the DPC method (C-E). The scale bar is 2 μm. (F) The number of pin-holes in the perovskite films prepared by the DPC method (counting area = 400 μm2).
Figure S4. Cross-sectional SEM images of the CH$_3$NH$_3$PbI$_3$ films prepared by the one-step blending method (A) and DPC method (B-D). The scale bar is 200 nm.
Table S1. Bi-exponential decay parameters and average life time of TRPL analysis. (A) Perovskie/Glass. (B) Perovskite/TiO$_2$/Glass. (C) Spiro-OMeTAD/Perovskite/Glass.

Structure	(A) CH$_3$NH$_3$PbI$_3$/Glass	(B) CH$_3$NH$_3$PbI$_3$/TiO$_2$/Glass	(C) Spiro-OMeTAD/CH$_3$NH$_3$PbI$_3$/Glass
Method	One-step blending	DPC	
τ (ns)	τ_1 τ_2 τ_1 τ_2	τ_1 τ_2 τ_1 τ_2	
	2.03 13.61 2.51 17.08	1.76 9.49 1.43 8.84	0.57 5.02 0.55 3.47
A (%)	A_1 A_2 A_1 A_2	A_1 A_2 A_1 A_2	A_1 A_2 A_1 A_2
	54 47 48 52	53 47 66 34	54 46 58 42
Average carrier lifetime (ns)	11.93	8.16	4.49
	15.34	7.07	2.95
Figure S5. The hysteresis analysis of J-V curves depending on the scan direction. The voltage scan rate was 0.3V/s. (A) One-step blend mixing method. The forward scan and average PCE values were 13 and 15 %. (B) DPC method. The forward scan and average PCE values were 15.2 and 16.7 %.
Figure S6. The performance comparison of perovskite solar cells prepared by the DPC method (mechanical mixing time = 3, 6, 10 and 15 min). (A) The best $J-V$ curves. (B) Power conversion efficiency. Five cells were analyzed for each type.
Figure S7. The performance comparison of perovskite solar cells prepared by the one-step method (stirring time = 12 h and 36 h) (A) The best $J-V$ curves. (B) Power conversion efficiency. Five cells were analyzed for each type.