Benefits of probiotics in preterm neonates in low-income and medium-income countries: a systematic review of randomised controlled trials

Girish Deshpande,1,2 Gayatri Jape,3,4 Shripada Rao,3,4 Sanjay Patole3

ABSTRACT

Objective Although there is an overall reduction in underfive mortality rate, the progress in reducing neonatal mortality rate has been very slow. Over the last 20 years, preterm births have steadily increased in low-income and medium-income countries (LMICs) particularly in sub-Saharan Africa and South Asia. Preterm birth is associated with increased mortality and morbidity, particularly in LMICs. Based on systematic reviews of randomised controlled trials (RCTs), many neonatal units in high-income countries have adopted probiotics as standard of care for preterm neonates. We aimed to systematically review the safety and efficacy of probiotics in reducing mortality and morbidity in preterm neonates in LMICs.

Design Systematic review and meta-analysis of RCTs.

Data sources Medline, Embase, Cochrane Central Register of Controlled Trials, Cumulative Index of Nursing and Allied Health Literature and E-abstracts from Pediatric Academic Society meetings and other paediatric and neonatal conference proceedings were searched in January 2017.

Eligibility criteria RCTs comparing probiotics versus placebo/no probiotic in preterm neonates (gestation <37 weeks) conducted in LMICs.

Results Total 23 (n=4783) RCTs from 4 continents and 10 LMICs were eligible for inclusion in the meta-analysis using fixed effect model. The risk of necrotising enterocolitis (NEC greater than or equal to stage II) (risk ratio (RR) 0.46 (95% CI 0.34 to 0.61), P<0.00001, numbers needed to treat (NNT) 25 (95% CI 20 to 50)), late-onset sepsis (LOS) (RR 0.80 (95% CI 0.71 to 0.91), P=0.0009, NNT 25 (95% CI 17 to 100)) and all-cause mortality (RR 0.73 (95% CI 0.59 to 0.90), P=0.003, NNT 50 (95% CI 25 to 100)) were significantly lower in probiotic supplemented neonates. The results were significant on random effects model analysis and after excluding studies with high risk of bias. No significant adverse effects were reported.

Conclusion Probiotics have significant potential to reduce mortality and morbidity (eg, NEC, LOS) in preterm neonates in LMICs.

INTRODUCTION

The Unicef 2010 report showed that the global burden of underfive mortality was reduced by one-third compared with 1990s; however progress in reducing neonatal mortality has been slow.1-3 Almost 40% of underfive deaths occur during the neonatal period and majority of these deaths occur in sub-Saharan Africa, South Asia and Oceania. An estimated 98% of all neonatal deaths occur in low-income and medium-income countries (LMICs).4-6 Out of 135 million births each year, 3.1 million have died within the neonatal period and nearly 35% of these deaths occur in preterm neonates.2 5 It may be perceived that prematurity is not a problem of LMICs. However, it is important to note that only 8.6% of preterm births occur in developed countries.5 Over the last 20 years, the number of preterm births has steadily increased to 9.1 million as of 2010 in the regions of sub-Saharan Africa and South Asia. Preterm birth is associated with increased risk of mortality and morbidity including late-onset sepsis (LOS), necrotising enterocolitis (NEC), feeding difficulties and long-term neuro-developmental impairment.6-8 Although survival of preterm neonates has improved in some LMICs, morbidities such as NEC and LOS are still a major issue.3 9-12 Considering the United Nation’s (UN’s) millennium developmental goal and the UN Secretary-General’s Global Strategy for...
Women’s and Children’s Health (2010) and its accompanying ‘Every Woman, Every Child initiative, Every Newborn Action plan’ (ENAP), it is important to develop cost-effective simple strategies to reduce the mortality and morbidity associated with prematurity in LMICs.13

WHO defines probiotics as ‘live micro-organisms which when administered in adequate amounts confer a health benefit on the host’.14 Probiotics have been shown to significantly reduce the risk of NEC, all-cause mortality, LOS and facilitate feed tolerance in preterm very low birth weight (VLBW) neonates.15–17 The mechanisms of benefits of probiotics include gut barrier enhancement, immune response modulation (eg, TLR4 receptor, nuclear factor-B, inflammatory cytokines) and direct inhibition of gut colonisation by pathogens.18–22 Many developed countries are already using probiotics routinely in preterm neonates for prevention of NEC.23–32 It has been suggested that probiotics may have a role in LMICs for prevention, treatment of acute gastrointestinal diseases, particularly in children with HIV infection.33–36 Given their simplicity and affordability, we aimed to systematically review the safety and efficacy of probiotics in reducing the risk of mortality and morbidity in preterm neonates in LMICs.

METHODS

Guidelines from the Cochrane Neonatal Review Group (http://neonatal.cochrane.org/resources-review-authors),37 Centre for Reviews and Dissemination (http://www.york.ac.uk/crd/guidance/)38 and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement39 were followed for undertaking and reporting this systematic review and meta-analysis. Ethics approval was not required.

Eligibility criteria

Types of studies

Only randomised controlled trials (RCTs) were included in the review. Observational studies, narrative/systematic reviews, case reports, letters, editorials and commentaries were excluded but read to identify potential additional studies.

Types of participants

Preterm neonates born at a gestational age (GA) <37 weeks or LBW (<2500 g) or both (same criteria as the Cochrane review, 2014).15

Setting

Only RCTs from LMICs were included. LMICs were defined as per the World Bank guidelines which include countries with gross national income per capita of under US$12 736/year.40

Intervention and comparison

Enteral administration of probiotic supplement versus control (placebo/no probiotic).

Outcomes

All-cause mortality, LOS (positive blood/cerebrospinal fluid (CSF) culture on a sample collected 48–72 hours after birth), definite NEC (stage ≥II modified Bell staging)41 and time to full enteral feeds (TFEF: 120mL/kg/day).

Search strategy

The databases Medline searched via PubMed (https://www.ncbi.nlm.nih.gov 1966–2017), Embase (Excerpta Medica dataBASE) via Ovid (http://ovidsp.tx.ovid.com, 1980–2017), Cochrane Central Register of Controlled Trials (http://www.thecochranelibrary.com, through January 2017), Cumulative Index of Nursing and Allied Health Literature via OVID (http://ovidsp.tx.ovid.com, 1980–January 2017) and E-abstracts from the Pediatric Academic Society meetings (https://www.pas-meeting.org/about/#past, 2000–January 2017) were searched in January 2017. Abstracts of other conference proceedings such as European Academy of Paediatric Societies and the British Maternal and Fetal Medicine Society were searched in Embase. ‘Google Scholar’ was searched for articles that might not have been cited in the standard medical databases. Grey literature was searched using the national technical information services (http://www.ntis.gov/), Open Grey (http://www.opengrey.eu/), and Trove (http://trove.nla.gov.au/). We have also searched Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) and Caribmed via the BIREME/PAHO—Latin American and Caribbean Center on Health Sciences Information; PAHO, Pan American Health Organization (http://lilacs.bvsalud.org/en/) using broad terminologies Probiotics OR Probiotic OR Bifidobacterium OR Bifidobacteria OR Lactobacillus OR Lactobacilli OR Saccharomyces. We also searched ClinicalTrials.gov (https://clinicaltrials.gov), International Clinical Trials Registry Platform (http://www.who.int/icrtp/en/) and BioPortfolio (https://www.bioportfolio.com) for ongoing RCTs. The reference lists of eligible studies and review articles were searched to identify additional studies. Reviewers SR, GJ and GD conducted the literature search independently. No language restriction was applied. The non-English studies were identified by reading the recent systematic reviews of probiotic supplementation for reducing the risk of NEC42 43 and from cross references of individual studies. Full texts of all non-English studies were obtained via University of Sydney and Department of New South Wales (NSW) health library. A research officer from the NSW Health, University of Sydney translated the articles. Attempts were made to contact the authors for additional data and clarification of methods. Only published data were used for those studies where available.

PubMed was searched using the following terminology: (((‘Infant, Newborn’ [Mesh]) OR (‘Infant, Extremely Premature’ [Mesh] OR ‘Infant, Prematurity’ [Mesh])) OR (‘Infant, Low Birth Weight’ [Mesh] OR ‘Infant, Extremely Low Birth Weight’ [Mesh] OR ‘Infant, Very
Low Birth Weight' [Mesh]) AND ‘Probiotics’ [Majr]. It was also searched using ('Infant, Extremely Premature' [Mesh] OR 'Infant, Extremely Low Birth Weight' [Mesh] OR 'Infant, Very Low Birth Weight' [Mesh] OR 'Infant, Small for Gestational Age' [Mesh] OR 'Infant, Premature, Diseases' [Mesh] OR 'Infant, Premature' [Mesh] OR 'Infant, Newborn, Diseases' [Mesh] OR 'Infant, Newborn' [Mesh] OR 'Infant, Low Birth Weight' [Mesh]) AND ((('Bifidobacterium' [Mesh]) OR 'Lactobacillus' [Mesh]) OR ‘Saccharomyces’ [Mesh]). The other databases were searched using similar terminologies. The detailed search terminology is given in online supplementary appendix 1.

Study selection
The abstracts of citations obtained from the initial broad search were read independently by reviewers SR, GJ and GD to identify potentially eligible studies. Full-text articles of these studies were obtained and assessed for eligibility by reviewers SR, GJ and GD independently, using the predefined eligibility criteria. Differences in opinion were resolved by group discussion to reach consensus. Care was taken to ensure that multiple publications of the same study were excluded to avoid data duplication.

Data extraction
Reviewers GD, SR and GJ extracted the data independently using a data collection form designed for this review. Information about the study design and outcomes was verified by all reviewers. Discrepancies during the data extraction process were resolved by group discussion. We contacted authors for additional information/clarifications.

Assessment of risk of bias
Risk of bias (ROB) was assessed using the Cochrane ‘Risk of Bias Assessment Tool’.44 Authors GD, SR and GJ independently assessed the ROB in all domains including random number generation, allocation concealment, blinding of intervention and outcome assessors, completeness of follow-up, selectivity of reporting and other potential sources of bias. For each domain, the ROB was assessed as low, high or unclear risk based on the Cochrane Collaboration guidelines.

Data synthesis
Meta-analysis was conducted using Review Manager 5.3 (Cochrane Collaboration, Nordic Cochrane Centre). Fixed effects model (FEM) (Mantel-Haenszel method) was used. Random effects model (REM) analysis was conducted to recheck the results if there was significant heterogeneity on FEM. Effect size was expressed as risk ratio (RR) and 95% CI.

Statistical heterogeneity was assessed by the χ^2 test, I^2 statistic and visual inspection of the forest plot (overlap of CIs). A P value <0.1 on χ^2 statistic was considered to indicate heterogeneity. I^2 statistic values were interpreted as per the Cochrane handbook guidelines as follows: 0% to 40%—might not be important; 30% to 60%—may represent moderate heterogeneity; 50% to 90%—may represent substantial heterogeneity; 75% to 100%—considerable heterogeneity.37 The risk of publication bias was assessed by visual inspection of the funnel plot.45

Subgroup analysis
(1) Low ROB: random sequence generation and allocation concealment; (2) preterm neonates less than 34 weeks gestation or birth weight less than 1500 g; (3) where Bifidobacterium was part of the supplementation; (4) where Lactobacillus was part of the supplementation; (5) single strain probiotic were used and (6) multiple strain probiotics were used.

Summary of findings table
The key information concerning the quality of evidence, the magnitude of effect of the intervention and the sum of available data on the main outcome was presented in the ‘summary of findings table’ as per the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) guidelines.44

RESULTS
The literature search retrieved 1926 potential relevant citations. After carefully reviewing the abstracts, 1814 studies were excluded: reviews: 378; observational studies: 187; commentaries: 49; case reports: 147; RCTs in adult and paediatric population: 53 and non-relevant studies: 982. Finally, 23 RCTs (n=4783) conducted in 10 different LMICs in 4 continents were included in the meta-analysis.12 46–67 The search strategy results are given in online supplementary appendix 1. The flow diagram of study selection process is given in figure 1. The characteristics of the included studies are given in table 1. Out of the 23 included studies, single-strain probiotics were used in 11 studies, whereas 12 used multiple strains. Lactobacillus was part of the supplementation in 13 studies; Bifidobacterium was part of the supplementation in 11 studies and saccharomyces in 3 studies (table 1).

ROB of included studies
A total of 14/23 (60%) included studies were judged to have low ROB for the domain of ‘random sequence generation’, and (56%) were considered to have low ROB for ‘allocation concealment’ (table 2).

Effect of probiotics on ≥Stage II (definite) NEC
Data on definite NEC was reported by 20 trials (n=4022).12 46–53 55 56 58–65 67 A higher proportion of neonates in the control group developed definite NEC compared with the probiotic group (65/2065 (3.1%) vs 135/1957 (6.9%)). Meta-analysis using a FEM estimated a lower risk (RR 0.46 (95% CI 0.34 to 0.61), $P<0.00001$) of NEC in the probiotic group. There was no significant heterogeneity ($I^2=19\%$, $P=0.22$) among the trials. The numbers needed to treat (NNT) with probiotics to prevent one case of NEC was 25 (95% CI 20 to 50; figure 2).
Effect of probiotics on LOS
Data from 18 trials (n=4062) showed that a higher proportion of neonates in the control group developed LOS compared with those in the probiotic group (308/2076 (14.5%) vs 358/1986 (18%)). Meta-analysis using a FEM estimated a lower risk (RR 0.80 (95% CI 0.71 to 0.91), P=0.0009) of LOS in the probiotic group. There was no significant heterogeneity (I²=25%; P=0.16) among the trials. The NNT with probiotics to prevent one case of LOS was 25 (95% CI 25 to 100; figure 3).

Effect of probiotics on all-cause mortality
Data from 19 trials (n=4196), showed reduced risk of death due to all causes in the probiotic versus control group (137/2148 (6.37%) vs 176/2048 (8.59%)). Meta-analysis using a FEM estimated a lower risk (RR 0.73 (95% CI 0.59 to 0.90), P=0.003) of death in the probiotic group. No significant heterogeneity was noted between the trials (I²=0%; P=0.67). The NNT to prevent one death by probiotic supplement was 50 (95% CI 25 to 100; figure 4).

Effect of probiotics on TEF
Meta-analysis of data (n=2154) from 13 trials showed significant reduction in TEF in the probiotics versus control group (MD=−3.09 days (95% CI: −3.49 to −2.69), P<0.00001). However, there was significant heterogeneity (I²=90%, P<0.00001) among the trials. These results were hence checked by using REM and remained significant (MD=−1.95 days (95% CI: −3.44 to −0.45), P=0.01; figure 5). MD, mean difference.

Subgroup analysis
The beneficial effects continued to be observed in studies: (1) low ROB: random sequence generation and allocation concealment (table 3); (2) that only included infants with gestational age <34 weeks or birth weight...
Study ID	Location	Participants:	Intervention and dose:	Type of milk:	Type of delivery:	Duration of supplementation:	Study characteristics
Awad et al	Egypt	all neonates admitted to nursery, 28–41 weeks and weight 1.1–4.3 kg	KP (L. acidophilus, 6×10^9 CFU) versus LP (L. acidophilus, 6×10^9 CFU) versus placebo	EBM/Formula; Type of delivery:	PK (57%) versus LP (56%) versus placebo (75%)	commenced on D1, duration NA	mortality: 4/36 (11.1%) versus 12/37 (32.4%) versus 5/16 (31.3%), P=0.076
Braga et al	Brazil	preterm infants 750–1499 g	(L. casei + B. breve): 3.5×10^7 to 3.5×10^9 CFU) versus no probiotic	EBM/Formula; Type of delivery:	≥Stage II NEC (0/119, 0% vs 4/112, 3.6%)	once daily from the second day of life until day 30	
Dashti et al	Iran	preterm infants 700–1800 g	(L. acidophilus, L. rhamnosus, B. longum, L. bulgaricus, L. casei, S. thermophilus, B. breve and Bifidobacterium: total 1×10^9 CFU/ sachet) versus placebo powder	EBM/Formula; Type of delivery:	≥Stage II NEC (2/69, 2.9% vs 1/67, 1.5%)	once daily from first feed of life until discharge	
Demirel et al	Turkey	preterm infants ≤32 weeks and ≤1500 g	S. boulardii, 5×10^9 CFU versus no probiotic	EBM/Formula; Type of delivery:	≥Stage II NEC (0/119, 0% vs 4/112, 3.6%)		
Deng and Chen	China	125 preterm infants, <37 weeks and <2500 g at birth	B. longum, L. acidophilus, Enterococcus faecalis, triple viable powder oral or nasal Bifico plus powder/capsules. For birth weight <1500 g: 0.33×10^7 CFU of each probiotic two times per day and >1500 g: 0.5×10^7 of each probiotic two times per day; control: sterile warm water	EBM/Preterm formula; Type of delivery:	Bell Stage I (1/63, 1.6%), Bell Stage II (1/63, 1.6%) versus Treatment Bell Stage I (1/63,1.6%), Bell Stage II (1/63, 1.6%)	commenced from first feed until 14 days of life	
Dilli et al	Turkey	VLBW infants with a gestation of <32 weeks and birth weight <1500 g	B.lactis (5×10^9 CFU) versus placebo (maltodextrin)	EBM/Formula; Type of delivery:	NEC ≥stage 2: 2/100 (2%) versus 18/100 (18%), P<0.001	from day 8 of life, once daily until discharge or a maximum of 8 weeks	

Continued
Table 1 Continued

Study ID	Location	Study characteristics
Dutta et al²²	India	Patients: preterm infants 27–33 weeks gestation
Intervention: high dose (10 billion CFU: L. acidophilus, L. rhamnosus, B. longum, S. boulardii) versus low dose (1 billion CFU: L. acidophilus, L. rhamnosus, B. longum, S. boulardii) versus placebo (potato starch, maltodextrin)		
Duration of supplementation: probiotic groups: (A): high dose for 21 days, (B): low dose for 21 days, (B): high dose short course (D1–D14 and D15-D21)		
N: probiotic (14) versus placebo (35)		
Type of milk: EBM/formula; Type of delivery: probiotic group versus placebo: SVD (69% vs 60%), CS: data NA		
Duration of supplementation: probiotic groups: (A): 8.109±2.127 g versus control group 6.489±2.327 g (P<0.01)		
2/95 (2.1%), both Bell's stage 1 versus 9/88 (10.23%): Bell's stage 1:6, stage 2:2, stage 3:1 (P<0.01), body mass changes/weight gain†: probiotic group: 8.109±2.127 g versus control group 6.489±2.327 g (P<0.01)		
Other outcomes: NEC (≥ stage 2): 20/200 (10%) versus 27/200 (13.5%); P=0.63		
Other outcomes: late-onset sepsis: 56/200 (28%) versus 79/200 (39.5%); P=0.015		
Fernández- Carrocera et al²³	Mexico	Patients: preterm infants <1500 g
Intervention and dosage: multispecies probiotic product (L. acidophilus+L. rhamnosus+L. casei+L. plantarum+B. infantis+S. thermophilus) versus no probiotic		
Duration of supplementation: from the day of commencement of enteral feeds, once daily. Actual duration: NA		
n=150 (probiotics:75; controls: 75)		
Type of milk: EBM/formula; Type of delivery: data not available		
Primary outcome: ≥ Stage 2 NEC: 6/75 (8%) versus 12/75 (16%), P=NA; 44/75 (58.7%) versus 44/75 (58.7%), P=N.A		
Other outcomes: LOS: data not available		
Other outcomes: mortality: 2/75 (2.6%) versus 2/75 (2.6%)		
Other outcomes: NEC (stage NS): 2/75 (2.6%) versus 8/75 (10.6%); P=0.063		
Hua et al²⁴	China	Patients: preterm infants <37 weeks
Intervention and dosage: probiotic Jin Shuang Qi (L. rhamnosus, S. thermophilus, Bifidobacterium) 5x10⁷ CFU/day versus no probiotic		
Duration of supplementation: from the day of commencement of enteral feeds, once daily. Duration of supplementation: not available		
n=257 (probiotics:119, controls: 138)		
Type of milk: EBM/formula; type of delivery: CS 55.5% versus 64.5%		
Primary outcome: stool colonisation by drug-resistant bacteria (no difference in both groups, P>0.05)		
Other outcome: LOS: 2/119 (1.7%) versus 8/138 (5.8%); P=0.501; NEC: NS		
Other outcomes: mortality: 2/119 versus 2/138; P=0.501; NEC (stage NS): 2/119 (1.7%) versus 8/138 (5.8%); P=0.168, Other outcomes: LOS: not stated; type of delivery: not stated		
Other outcomes: NEC: not stated; type of delivery: not stated		
Other outcomes: mortality: 2/119 versus 2/138; P=0.501; NEC (stage NS): 2/119 (1.7%) versus 8/138 (5.8%); P=0.168, Other outcomes: LOS: not stated; type of delivery: not stated		
Other outcomes: NEC: not stated; type of delivery: not stated		
Other outcomes: mortality: 2/119 versus 2/138; P=0.501; NEC (stage NS): 2/119 (1.7%) versus 8/138 (5.8%); P=0.168, Other outcomes: LOS: not stated; type of delivery: not stated		
Other outcomes: NEC: not stated; type of delivery: not stated		
Other outcomes: mortality: 2/119 versus 2/138; P=0.501; NEC (stage NS): 2/119 (1.7%) versus 8/138 (5.8%); P=0.168		
Oncel et al²⁵	Turkey	Patients: preterm infants ≤32 weeks and <1500 g
Intervention and dosage: L. reuteri DSM 17938 in oil-based suspension, 1x10⁸ CFU/day versus placebo (oil-based suspension without probiotics)		
Duration of supplementation: from the time of first enteral feeds until discharge		
n=400 (probiotic: 200; control: 200)		
Type of milk: EBM/preterm formula; type of delivery: CS 75% versus 76%		
Primary outcome: probiotics versus controls: ≥ Stage 2 NEC or death: 20/200 (10%) versus 27/200 (13.5%); P=0.07, NEC (≥ stage 2):8/200 (4%) versus 10/200 (5%); P=0.63		
Other outcomes: late-onset sepsis: 13/200 (6.5%) versus 25/200 (12.5%); P=0.041; time to full feeds: 9.1±3.2 versus 10.1±4.3 days; P=0.006; hospital stay*: 38 (10–131) versus 46 (10–180) days; P=0.022; feed intolerance: 56/200 (28%) versus 79/200 (39.5%); P=0.015		
Qiao et al²⁶	China	Patients: preterm 28–34 weeks GA >1000 g, <72 hours life
Intervention: Bifidobacterium, Lactobacillus, Streptococcus thermophilus, 0.5 g per bag
Duration of supplementation: 0.5 bag three times daily after admission to hospital
n=287 (probiotic: 149 versus control 138)
Type of milk: not stated; type of delivery: no stats on CS/type of delivery
Primary outcomes: time to full oral feeds (7.3 days vs 16.9 days); P<0.05, time to full enteral nutrition (8.8 days vs 16.9 days); P<0.05, LOS (6.7% vs 15.2%); P<0.05, NEC (3.4% vs 10.9%); P<0.05, hospitalisation time (25.0 days vs 30.8 days); P: NA; mortality†: (6.0±4.0)% and (9.0±6.5)%; P>0.05 |

Continued
Study ID	Location	Study characteristics
Raj et al	India	Participants: preterm infants <37 weeks and birth weight <2000 g. Intervention and dosage: 1×10^8 CFU, once daily versus placebo (oil-based suspension without probiotics). Duration of supplementation: commenced within 48 hours of life. Duration: NA. n=750 (probiotics: 376; placebo: 374). Type of milk: EBM/formula; type of delivery: VD non-instrumental: 16% (study) versus 17% (placebo); VD instrumental: 0% (study) versus 0.5% (placebo); elective CS: 18% (study) versus 17% (placebo); non-elective CS: 65% (study) versus 65% (placebo). Other outcomes: LOS: 24/372 (6.5%) versus 17/378 (4.5%); P=0.24; duration of hospitalisation*: 20 (11–33) versus 20 (11–38) days; P=0.53.
Samanta et al	India	Participants: preterm (<32 weeks) and VLBW (<1500 g) infants. Intervention and dosage: probiotic mixture (L. acidophilus+B. bifidum each 1×10^9 CFU/250 mg), administered two times per day versus addition of milk. Duration of supplementation: NA. n=186 (probiotics: 91; controls: 95). Type of milk: EBM; type of delivery: CS 46.15% versus 49.47%. Primary outcomes: Incidence of NEC (≥ stage 2): 5/91 (1.1%) versus 15/95 (15.8%); P=0.042; other outcomes: LOS: 19.8±3.54 days versus 24.5±6.2 days; P=0.65.
Sar et al	Turkey	Participants: preterm infants <32 weeks and <1500 g. Intervention and dosage: L. reuteri DSM 17938, 1×10^8 CFU, once daily versus placebo (oil-based suspension without probiotics). Duration of supplementation: commenced within 48 hours of life. Duration: NA. n=750 (probiotics: 372; placebo: 378). Type of milk: EBM/formula; type of delivery: VD non-instrumental: 16% (study) versus 17% (placebo); VD instrumental: 0% (study) versus 0.5% (placebo); elective CS: 18% (study) versus 17% (placebo); non-elective CS: 65% (study) versus 65% (placebo). Other outcomes: LOS: 24/372 (6.5%) versus 17/378 (4.5%); P=0.24; duration of hospitalisation*: 20 (11–33) versus 20 (11–38) days; P=0.53.
Shadkam et al	Iran	Participants: preterm infants 28 to 32 weeks and 1000–1800 g. Intervention and dose: L. reuteri DSM 17938, 2×10^7 CFU (Stage NS) NEC (2/30, 6.7% vs 11/30, 36.7%); P=0.005. Other outcomes: LOS: 4/30 (13.3%) versus 10/30 (33.3%); P=0.109.

Table 1 Continued

Study ID	Location	Study characteristics
Saengtawesin et al	Thailand	Participants: preterm (<34 weeks) and VLBW (<1500 g) infants. Intervention and dosage: probiotic mixture (L. acidophilus+B. bifidum each 1×10^9 CFU/250 mg), administered two times per day versus no probiotic. Duration of supplementation: NA. n=112 (probiotics: 56; placebo: 56). Type of milk: EBM; type of delivery: CS 83.9% versus 76.8%. Other outcomes: LOS: 12.83±4.26 versus 16.78±6.66 days; P=0.53.
Sherkati et al	Iran	Participants: preterm infants 28 to 32 weeks and 1000–1800 g. Intervention and dose: L. reuteri DSM 17938, 2×10^7 CFU versus sterile water. Duration of supplementation: commenced within 72 hours of birth for 6 weeks or until discharge. n=22 (probiotics: 11; controls: 11). Type of milk: EBM; type of delivery: CS 67.7% versus 62%. Other outcomes: LOS: 12.03±5.49 days versus 13.76±8.25 days (P=0.64).
Study ID	Location	Study characteristics
----------	---------------	---
Tewari et al⁶⁴	India	**Participants:** preterm infants <34 weeks (two groups: EPT: 27–30+6 weeks and VPT: 31–33+6 weeks)
Intervention: Bacillus clausii (2.4×10⁹ spores per day) versus placebo		
Duration of supplementation: commenced D5 in asymptomatic and D10 in symptomatic neonates and continued for 6 weeks/discharge/death/occurrence of LOS whichever was earlier		
n: 244 (study: EPT: 61 and VPT: 62) versus (placebo: 121)		
Type of milk: EBM/PMHM; type of delivery: CS: EPT: 66% versus 59% and VPT: 58% versus 60%		
Primary outcome: incidence of definite and probable LOS: definite LOS:		
EPT: 6/61 (10%) versus 8/59 (14%); P=0.26; VPT: 4/62 (6%) versus 5/62 (7%);		
probable LOS:		
EPT: 8/61 (12%) versus 9/59 (15%); VPT: 4/62 (6%) versus 5/62 (7%)		
Other outcomes: death:		
EPT: 8/61 (13%) versus 9/59 (15%); P=0.84; VPT: 4/62 (7%) versus 5/62 (8%); P=0.79; NEC (≥ stage 2): EPT: 0/61 versus 0/59; VPT: 0/62 versus 0/62		
Van Niekerk et al⁶⁵	South Africa	**Participants:** preterm infants <34 weeks and birth weight 500 to 1250g
Intervention and dosage: Pro-52 (L. rhamnosus GG and B. infantis), 0.35×10⁹ CFU of each daily versus placebo (MCT oil)		
Duration of supplementation: from the first enteral feed until day 28 of life		
n: 184 (probiotic: 91; placebo: 93)		
Type of milk: EBM/formula; type of delivery: CS 80.8% versus 88.5%		
Primary outcome: impact of probiotic supplementation on the incidence and severity of NEC in premature VLBW infants that are exposed to HIV. NEC: 3/91 (3.3%) versus 6/93 (6.45%)		
Other outcomes: LOS: 15/91 (16.5%) versus 10/93 (10.8%); death: 5/91 (5.5%) versus 6/93 (6.45%); TFEF †: HIV exposed: 10.19±4.055 versus 9.68±3.46 days, P=0.56 and		
HIV non-exposed: 9.63±2.42 versus 11.14±4.15 days, P=0.022		
Yang et al⁶⁶	China	**Participants:** 62 preterm infants <37 weeks
Intervention: B. longum, L. acidophilus, Enterococcus faecalis triple viable powder oral or nasal Bifico plus powder/capsules (probiotics powder/capsules), Shanghai Xinyi Pharmaceutical, 0.5×10⁷ CFU two times per day of each		
Duration of supplementation: from commencement of feeds until 14 days of life		
n: 62 (controls: 31; probiotics: 31)		
Type of milk: EBM/preterm formula; type of delivery: NA		
Primary outcomes: NEC incidence: 2/31 (6.45%) versus 3/31 (9.68%) versus (no mention of criteria for NEC used)		
Other outcomes: sepsis, mortality, TFEF: NA		
Xu et al⁶⁷	China	**Participants:** 125 neonates with a GA of 30–37 weeks and birth weight 1500–2500g.
Intervention: S. boulardii CNCM I-745 at a dose of 50 mg/kg (10⁹ CFU) two times per day
Duration of supplementation: 9–28 days (mean 25.3 days)
n: 125 (probiotic: 63; control: 62); analysis (probiotic: 51; control: 49)
Type of milk: EBM/formula; type of delivery: NA
Primary outcome: weight gain was 16.14±1.96 g/day versus 10.73±1.77 g/kg/day; P=0.05 and linear growth was 0.89±0.04 cm/week versus 0.87±0.04 cm/week; P=0.17
Other outcome: TFEF: 0.37±0.13 versus 1.70±0.45; P=0.01, maximal enteral feeding volume tolerated: 128.44±6.67 versus 112.29±7.24 mL/kg/day; P=0.03 and duration of hospitalisation: 23.3±1.6 versus 28.0±1.8; P=0.035 |

For all outcomes, results in the study/probiotic group are given first.

^{*Median and IQR (25%–75%).}

^{†Mean and SD.}

CFU, colony forming unit; CS, caesarean section; EBM, expressed breast milk; EPT, extremely preterm; GA, gestational age; KP, killed probiotic; LGG, Lactobacillus rhamnosus GG (ATCC 53103) Gorbach and Goldin; LOS, late-onset sepsis; LP, living probiotic; MCT, medium chain triglycerides; NA, not available; NEC, necrotising enterocolitis; NS, not specified; PDHM, pasteurised donor human milk; SPL, spontaneous preterm labour; SVD, spontaneous vaginal delivery; TFEF, time to full enteral feed; VD, vaginal delivery; VLBW, very low birth weight; VPT, very preterm.
Author/reference	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Awad et al⁵⁶	Unclear risk	Low risk	Low risk	Unclear risk	Low risk	Low risk	Low risk
Braga et al⁵⁷	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Dashisá et al⁵⁸	Unclear risk	Low risk	Low risk	Unclear risk	Low risk	Low risk	Low risk
Demirel et al⁵⁹	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Deng and Chen⁶⁰	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk
Dilli et al⁶¹	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Dutta et al⁶²	Low risk	Unclear risk	Low risk	Low risk	Low risk	Low risk	Low risk
Fernández-Carrocera et al⁶³	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Hua et al⁶⁴	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Low risk	Low risk	Unclear risk
Huang et al⁶⁵	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Low risk	Unclear risk	Unclear risk
Oncel et al⁶⁶	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Qiao et al⁶⁷	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Low risk	Unclear risk	Unclear risk
Rojas et al⁶⁸	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Roy et al⁶⁹	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Saengtawesin et al⁷⁰	Low risk	Unclear risk	High risk	High risk	Low risk	Low risk	Unclear risk
Samanta et al⁷¹	Low risk	Unclear risk	Unclear risk	Unclear risk	Low risk	Unclear risk	Unclear risk
Sari et al⁷²	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Shadkam et al⁷³	Unclear risk	Low risk	Low risk	Low risk	Unclear risk	Unclear risk	Unclear risk
Serc et al⁷⁴	Low risk	Low risk	Unclear risk	Unclear risk	Low risk	Low risk	Low risk
Tewari et al⁷⁵	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Van Niekerk et al⁷⁶	Low risk	Unclear risk	Low risk	Unclear risk	Low risk	Unclear risk	Low risk
Yang et al⁷⁷	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk	Unclear risk
Xu et al⁷⁸	Low risk	Unclear risk	Low risk	Low risk	Low risk	Low risk	Low risk
<1500 g; (3) where *Bifidobacterium* was part of the supplementation; (4) where *Lactobacillus* was part of the supplementation; (5) single strain probiotics were used and (6) multiple strain supplements were used; however, on REM meta-analysis, statistical significance was lost for some of these analyses (table 4). The overall evidence according to GRADE guidelines is provided as a summary of findings table (table 5). The evidence was deemed high in view of the large sample size, low risk of bias in majority (14/20) of the included studies, narrow CIs around the effect size estimate, very low P value for effect size estimate and mild statistical heterogeneity. Visual inspection of the funnel plot suggested that there was no publication bias (figure 6).

Safety

None of the studies reported any significant adverse effects including probiotic sepsis.

DISCUSSION

The results of our systematic review of 23 RCTs (n=4783) conducted in 10 LMICs across 4 continents show that probiotic supplementation in preterm neonates (born <37 weeks) significantly reduces the risk of all-cause mortality, LOS and NEC in such a set-up. The limitations of this review include variations in types of probiotics used in different studies and limitations of study qualities in few studies. The strengths of our systematic review include its robust methodology, comprehensive nature and exclusive focus on RCTs of probiotics in preterm neonates in LMICs. The limitations of our review include the variations in the probiotic protocols in the included RCTs, and the fact that nearly 40% of the included trials carried a high risk of bias in many domains of assessment.

To our knowledge, this is the first systematic review focusing on RCTs of probiotics in preterm neonates in LMICs. The summary findings as per GRADE guidelines

Figure 2 Forest plot: effect of probiotics on definite (≥Stage II) necrotising enterocolitis.

Figure 3 Forest plot: effect of probiotics on late-onset sepsis.
confirm the high-quality evidence it provides (table 5). Our results are significant considering the UN’s MDG4 and UN Secretary-General’s Global Strategy for Women’s and Children’s Health (2010) and its accompanying Every Woman, Every Child initiative, ENAP and the burden of prematurity in LMICs.4 5 13

The incidence of prematurity is significantly increasing in LMICs compared with Europe or North America. There are issues related to reporting of preterm births and outcomes in LMICs.6 7 However, the studies funded by the WHO estimate 13 million preterm births/year in LMICs with 11 million (85%) of these being concentrated in Africa and Asia, ~0.5 million each in Europe and North America (excluding Mexico) and 0.9 million in Latin America and the Caribbean.69 The highest rates (11.9%) and number (seven million) of preterm births were in Africa and Asia, respectively. Mortality and morbidities such as LOS, NEC and feeding difficulties are major issues in preterm neonates. Although specific data from LMICs is not available, approximately one million preterm neonates die every year, predominantly due to sepsis, and long-term impairment in survivors is becoming an important issue.70

Consistent with our recent systematic review,71 our results show that probiotics reduced the risk of NEC and all-cause mortality and of LOS in preterm neonates. (RR 0.81 (95% CI 0.71 to 0.92), P=0.001). The reduction of LOS by probiotics is important considering that neonatal sepsis is responsible for nearly a third all neonatal deaths in LMICs.19 20 22–77

It is important to note that the burden of NEC is as significant in LMICs as in high-income countries. The incidence and severity of NEC is higher in LMICs and includes up to 15% cases of NEC totalis with ~100% mortality.9 12 It occurs in VLBW and ELBW neonates and in preterm neonates with higher birth weight. Lack of antenatal steroids and being small for gestational age (SGA) due to intrauterine growth restriction (IUGR) are known risk factors for NEC.78 The reason for higher incidence of NEC in LMICs could include the higher numbers of preterm ‘SGA-IUGR’ births and limited coverage of antenatal steroids.79 80 The NEC-related mortality and morbidity is almost entirely due to progression of the illness from stage II to stage III. Management of surgical NEC is difficult in LMICs considering the limited resources. Primary prevention of NEC is therefore an important strategy for reducing the health burden of the condition in LMICs. Considering the effect size with regards to reduced risk of NEC, the benefits of probiotics in LMICs could not be overemphasised.

Table 5

Study or Subgroup	Probiotic	Mean Difference/Random, 95% CI	Probiotic	Mean Difference/Random, 95% CI
Brad 2010	16.2	2.21	9.99	2.21
Dastr 2013	13.86	2.21	7.21	2.21
Darro 2013	11.72	2.21	7.21	2.21
Fernandes-Camposcia 2011	3.21	2.21	7.21	2.21
Oncell 2014	8.30	2.21	7.21	2.21
rice 2015	12.59	2.21	7.21	2.21
Saengwatanawis 2014	12.59	2.21	7.21	2.21
Samanta 2008	13.76	2.21	7.21	2.21
Serr 2003	11.45	2.21	7.21	2.21
Serr 2013	11.9	2.21	7.21	2.21
Shackham 2015	12.83	2.21	7.21	2.21
Wall 2015	13.02	2.21	7.21	2.21
Yang 2011	14.7	2.21	7.21	2.21

Figure 4 Forest plot: effect of probiotics on all-cause mortality.

Figure 5 Forest plot: effect of probiotics on time to full enteral feeds.
Table 3 Results of the subgroup analysis (ROB)

Item	Number of studies	Sample size	RR (95% CI) (FEM)	RR (95% CI) (REM)	I² statistic (%)
Definite NEC: studies with low ROB on random sequence generation	14	3464	0.55 (0.40 to 0.74)	0.58 (0.42 to 0.81)	1
Definite NEC: studies with low ROB on allocation concealment	13	3035	0.48 (0.34 to 0.66)	0.52 (0.33 to 0.80)	29
LOS: studies with low ROB on random sequence generation	15	3466	0.85 (0.74 to 0.97)	0.84 (0.72 to 0.98)	18
LOS: studies with low ROB on allocation concealment	11	2839	0.86 (0.75 to 0.99)	0.85 (0.74 to 0.98)	6
All-cause mortality: studies with low ROB on random sequence generation	14	3366	0.72 (0.57 to 0.91)	0.75 (0.60 to 0.95)	0
All-cause mortality: studies with low ROB on allocation concealment	13	3073	0.76 (0.60 to 0.96)	0.78 (0.62 to 0.99)	0

FEM, fixed effect model; LOS, late-onset sepsis; NEC, necrotising enterocolitis; REM, random effects model; ROB, risk of bias; RR, relative risk.

Table 4 Results of the subgroup analysis

Item	Number of studies (sample size)	RR (95% CI) (FEM)	RR (95% CI) (REM)
RCTs with gestational age <32 weeks or birth weight <1500g	14 (2886)	0.51 (0.37 to 0.70)	0.56 (0.40 to 0.78)
RCTs: Lactobacillus was part of the supplementation	13 (2595)	0.45 (0.32 to 0.64)	0.48 (0.32 to 0.71)
RCTs: Bifidobacterium was part of the supplementation	11 (1716)	0.35 (0.22 to 0.55)	0.38 (0.23 to 0.63)
Single-strain probiotic supplementation	11 (2727)	0.46 (0.32 to 0.66)	0.46 (0.32 to 0.66)
Multistrain probiotic supplementation	9 (1333)	0.45 (0.28 to 0.73)	0.47 (0.28 to 0.78)

FEM, fixed effect model; NEC, necrotising enterocolitis; REM, random effects model; RR, relative risk.
The issue of implementing probiotics for preterm neonates in LMICs is complex. The options include either reconfirming their safety and efficacy in large definitive RCTs in LMICs or adopting their routine use based on current evidence. Conducting large multicentre trials and accessing proven safe and effective probiotics is difficult, especially in resource-limited set-ups. Apart from the significant budget, the difficulties include regulatory hurdles, logistics of importing a probiotic product, maintaining cold chain and providing ongoing independent safety and quality control. However, there are recent examples of large RCTs conducted successfully in community settings in LMICs. Neonatal demographic characteristics, such as gestation and IUGR, are an important issue in conducting RCTs in LMICs as they determine the risk of NEC, duration of probiotic supplementation and the cost-benefit ratio. It is also important to note that many RCTs have used different probiotic/s and probiotic activity could be strain specific.

Knowledge of the pattern of gut colonisation in preterm neonates in a given set-up is important before using probiotics for research or routine use. Dutta et al have reported abnormal intestinal colonisation patterns in the first week of life in VLBW neonates in their level III neonatal intensive care unit in India. On day 1, 45% neonates had sterile guts, and by day 3, all were colonised predominantly by *Escherichia coli*, *Klebsiella pneumoniae* and *Enterococcus faecalis*. Only one isolate had lactobacilli and bifidobacteria were not detected during the study period. Formula feeding was associated with *E. coli* colonisation. Results of completed and ongoing trials such as NCT02552706 will be important.

Probiotic sepsis, antibiotic resistance and altered immune responses in the long run are the potential adverse effects of probiotics in preterm neonates. Availability of killed or inactivated probiotic strains with clinically proven benefits may help in avoiding such adverse effects and in avoiding the need to maintain the cold chain. Awad et al have compared the effect of oral killed (KP) versus living *Lactobacillus acidophilus* (LP) in reducing the incidence of LOS and NEC in neonates. Both LP and KP reduced the risk of NEC (absolute risk reduction (ARR): 16%, 15%, respectively) and LOS (ARR: 18%) significantly compared with placebo. LOS and NEC was reduced significantly in neonates colonised versus not colonised by *Lactobacillus* at day 7 (27.9 vs 85.9%, 0 vs 7.8%) and day 14 (48.7 vs 91.7% for LOS and 0 vs 20.8% for NEC). KP retained the benefits similar to LP on comparison between all groups. Given the global implications of these results, the benefits of inactivated/killed probiotics need to be assessed in further large definitive trials.

In summary, our results indicate that probiotics are effective in significantly reducing the risk of all-cause mortality, LOS and NEC in preterm VLBW neonates in LMICs. Considering the burden of death, disease (NEC, LOS) and suboptimal nutrition in preterm neonates in LMICs, cooperation between various stakeholders (eg, industry, scientists, regulatory agencies) is warranted to either develop or to improve access to high-quality safe and effective probiotics in such set-ups. Support from organisations such as the WHO is important in providing access to probiotics for the countries (eg, sub-Saharan Africa) where most prematurity related deaths occur.
Whether probiotics could be used for research and/or routine use in preterm neonates in LMICs will depend on the national health priorities, resources and ethics.

Contributors GD conceptualised and designed the study, performed an independent literature search, selected studies for inclusion, extracted and interpreted data, assessed risk of bias of included studies, handled the meta-analysis software, oversaw translation of manuscripts in the Chinese language and wrote the first and final drafts of the manuscript. GJ performed an independent literature search, selected studies for inclusion, contacted authors for additional information where necessary, extracted and interpreted the data, checked the data entered by GD on the meta-analysis software, assessed the risk of bias of included studies and helped with the first and the final draft of the manuscript. SR performed an independent literature search, selected studies for inclusion, verified the extracted data, assessed risk of bias, interpreted data and helped with the first and the final draft of the manuscript. SF supervised the project, acted as referee author in case of differences of opinion between the first three authors, interpreted the data and supervised the first and approved the final versions of the manuscript. All authors approved the final manuscript as submitted.

Funding Nepean Neonatal Intensive Care Parent Support Group (NNICUPS)

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is expressly granted.

REFERENCES
1. Liu L, Johnson HL, Cousens S, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012;379:2151–61.
2. Oestergaard MZ, Inoue M, Yoshida S, et al. Neonatal mortality levels for 193 countries in 2009 with trends since 1990: a systematic analysis of progress, projections, and priorities. PLoS Med 2011;8:e1001080.
3. UNICEF. Committing to child survival: a promise renewed, progress and license their derivative works on different terms, provided the original work is not licensed commercially. See: http://creativecommons.org/licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

who.int/iris/bitstream/10665/127938/1/9789241507448_eng.pdf (accessed 21 Jan 2017).

Guidelines for the Evaluation of Probiotics in Food: Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, 2002. http://www.fao.org/temp/docrep/fao/009/a05127e/a05127e00.pdf (accessed 15 Jan 2017).

AlFaleh K, Anabrees J. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst Rev 2014;4:CD005496.

Deshpande G, Rao S, Pathole S, et al. Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 2010;125:921–30.

Lau CS, Chamberlain RS. Probiotic administration can prevent necrotizing enterocolitis in preterm infants: A meta-analysis. J Pediatr Surg 2015;50:140–5.

Di Mauro A, Neu J, Riezzo G, et al. Gastrointestinal function development and microbiota. Ital J Pediatr 2013;39:15.

Ewaschuk JB, Diaz H, Meddings L, et al. Secreted bioactive factors from Bifidobacterium infants enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008;295:G1205–34.

Garrido D, Barile D, Mills DA. A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr 2012;3:415S–21.

Rao RK, Samak G. Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci 2013;9:99–107.

Walker A. Intestinal colonization and programming of the intestinal immune response. J Clin Gastroenterol 2014;48:58–11.

Deshpande G, Rao S, Pathole S. Probiotics in neonatal intensive care – back to the future. J Obstet Gynaecol 2015;35:210–7.

Härtel C, Pagel J, Rupp J, et al. Prophylactic use of Lactobacillus acidophilus/Bifidobacterium infants probiotics and outcome in very low birth weight infants. J Pediatr 2014;165:285–9.

Janvier A, Malo J, Barrington KJ. Cohort study of probiotics in a North American neonatal intensive care unit. J Pediatr 2014;164:980–5.

Li D, Rostoi G, Slagle T. Probiotics for the prevention of necrotizing enterocolitis in neonates: an 8-year retrospective cohort study. J Clin Pharmac Ther 2013;38:445–9.

Pathole SK, Rao SC, Keil AD, et al. Benefits of Bifidobacterium breve M-16V supplementation in preterm neonates: a retrospective cohort study. PLoS One 2016;11:e0150775.

Rep a A, Thanhaueusser, Endres D, et al. Probiotics (Lactobacillus acidophilus and Bifidobacterium infantis) prevent NEC in VLBW infants fed breast milk but not formula [corrected]. Pediatr Res 2015;77:381–8.

Samuels N, van de Graaf R, Been JV, et al. Necrotising enterocolitis and mortality in preterm infants after introduction of probiotics: a quasi-experimental study. Sci Rep 2016;6:31643.

Viswanathan S, Lau A, Ababi H, et al. Survey and evidence based review of probiotics used in very low birth weight preterm infants within the United States. J Perinatol 2016;36:1106–11.

Luoto R, Isohann L, Lehtonen L. Safety of Lactobacillus GG probiotic in infants with very low birth weight: twelve years of experience. Clin Infect Dis 2010;50:257–5.

Sathoh Y, Shinohara K, Umezaki H, et al. Bifidobacteria prevents necrotising enterocolitis and infection. Int J Probiot Prebiot 2007;2:149–54.

Applegath JA, Fischer Walker CL, Ambakapathi R, et al. Systematic review of probiotics for the treatment of community-acquired acute diarrhoea in children. BMC Public Health 2013;13:S16.

Enos MK, Burton JP, Dols J, et al. Probiotics and nutrients for the first 1000 days of life in the developing world. Benef Microbes 2013;4:3–16.

Noratto G. Probiotics as a strategy to improve overall human health in developing countries. J Probiotics Health 2014;02.

Sleator RD, Hill C. Probiotics as therapeutics for the developing world. J Infect Dev Ctries 2007;1:7–12.

Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 Updated March 2011: The Cochrane Collaboration, 2011.

Dissemination CFRA. Systematic reviews: CRD’s guidance for undertaking reviews in health care, 2009. http://www.york.ac.uk/crd/guidance/ (accessed 21 Jan 2017).

Moher D, Altman DG, Liberati A, et al. PRISMA statement. Epidemiology (Cambridge, Mass). 2011;22:128.

The World Bank. Country and lending groups, 2015. http://data.worldbank.org/about/country-and-lending-groups#Lower_middle_income (accessed 16 Mar 2017).

Walsh MC, Kliegman RM. Necrotizing enterocolitis: treatment based on staging criteria. Pediatr Clin North Am 1986;33:179–201.
42. Wang Q, Dong J, Zhu Y. Probiotic supplement reduces risk of necrotizing enterocolitis and mortality in preterm very low-birthweight infants: an updated meta-analysis of 20 randomized, controlled trials. J Pediatr Surg 2012;47:241–8.
43. Yang Y, Guo Y, Kan Q, et al. A meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Braz J Med Biol Res 2014;47:804–10.
44. Guyatt GH, Oxman AD, Santesso N, et al. GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes. J Clin Epidemiol 2013;66:158–72.
45. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 2001;54:1046–55.
46. Awad H, Mokhtar H, Imam SS, et al. Comparison of stool colonization in preterm infants: a randomized, controlled trial. Am J Clin Nutr 2011;93:81–6.
47. Dashti S, Seyyed A, Basiry A, et al. Prophylactic probiotics for prevention of necrotizing enterocolitis in preterm neonates (neg) in low birth weight neonates. Arch Pediatr Infect Dis 2014;2:175–9.
48. Demirel G, Erdeve O, Celik IH, et al. Efficacy of Lactobacillus casei and Lactobacillus reuteri in the prevention of neonatal infections in very low birth weight preterm infants: a randomized, controlled study. Acta Paediatr 2013;102:e560–5.
49. Deng J, Chen K, Li J, et al. Probiotic supplement reduces risk of necrotizing enterocolitis. Eur J Clin Nutr 2011;65:434–9.
50. Dutta S, Ray S, Dashti S, et al. The effects of probiotics and prebiotics alone or combined on necrotizing enterocolitis in very low birth weight infants. J Pediatr Surg 2015;168:545–51.
51. Fernandez-Carrocera LA, Solis-Herrera A, Cabanillas-Ayón M, et al. Efficacy of Lactobacillus reuteri in the prevention of necrotising enterocolitis. Arch Dis Child Fetal Neonatal Ed 2013;98:F5–9.
52. Hua XT, Tang J, Mu DZ. [Effect of oral administration of probiotics on intestinal colonization with drug-resistant bacteria in preterm infants]. Zhongguo Dang Dai Er Ke Za Zhi 2014;16:606–9.
53. Huang B, Yang H, Huang X. Probiotics supplementation for prevention of necrotizing enterocolitis in very low-birthweight preterm neonates: a randomized, controlled trial. J Guangdong Med Coll 2009;27:37–40.
54. Oncel MY, Sari FN, Ayarci Y, et al. Lactobacillus reuteri for the prevention of necrotising enterocolitis in very low birth weight infants: a randomized controlled trial. Arch Dis Child Fetal Neonatal Ed 2014;99:F110–5.
55. Qin L, Tang Y, Wang W, et al. The effects of probiotics supplementation on premature infants in NICU. Chin J Microbiol 2012;11:1011–3.
56. Rojas MA, Lozano JM, Rojas MX, et al. Prophylactic probiotics to prevent death and nosocomial infection in preterm infants. Pediatrics 2012;130:e1113–20.
57. Roy A, Chaudhuri J, Sarkar D, et al. Role of enteric supplementation of probiotics on late-onset sepsis by candida species in preterm low birth weight neonates: a randomized, double blind, placebo-controlled trial. N Am J Med Sci 2014;6:50–7.
58. Saengtawesin T, Tangpolkaivalsak P, Kanjanapattankul W. Effect of oral probiotics supplementation in the prevention of necrotizing enterocolitis among very low birth weight preterm infants. J Med Assoc Thai 2014;97:S20–5.
59. Sari FN, Dizdar EA, Oguz S, et al. Oral probiotics: Lactobacillus sporogenes for prevention of necrotizing enterocolitis in very low birth weight infants: a randomized, controlled trial. Eur J Clin Nutr 2011;65:434–9.
60. Serce O, Benzer D, Gursoy T, et al. Efficacy of Saccharomyces boulardii on the Incidence of Necrotizing Enterocolitis. J Pediatr Surg 2015;51:377–85.
61. Shadack M, Lalizadeh F, Nasirani K. Effects of probiotic lactobacillus reuteri (DSM 17938) on the Incidence of Necrotizing Enterocolitis in Very Low Birth Weight Premature Infants. Iran J Neonatol 2015;6:15–20.
62. Tewari VU, Dubey SK, Gupta G. Bacillus clausii for prevention of late-onset sepsis in preterm infants: a randomized controlled trial. J Trop Pediatr 2015;61:377–85.
63. Van Niekerk E, Nel DG, Blaauw R, et al. Probiotics Reduce Necrotizing Enterocolitis Severity in HIV-exposed Premature Infants. J Trop Pediatr 2015;61:15–64.
64. Wang Q, Dong J, Zhu Y. Probiotic supplement reduces risk of necrotizing enterocolitis and mortality in preterm very low-birthweight infants: an updated meta-analysis of 20 randomized, controlled trials. Early Hum Dev 2013;89:1033–6.
65. Yadav S, Yi H, Gan B, et al. The clinical application value of endangered preterm infants given earlier amounts of micro feedings and adding probiotics. J Pediatr Pharmacol 2011;17:21–4.
66. Xu L, Wang Y, Wang Y, et al. A double-blinded randomized trial on growth and feeding tolerance with Saccharomyces boulardii CNCM I-745 in formula-fed preterm infants. J Pediatr 2014;93:298–301.
67. Yang S, Yi H, Gan B, et al. Prophylactic probiotics to prevent death and nosocomial infection in preterm infants. Arch Pediatr Infect Dis 2014;16:606–9.
68. Yang S, Yi H, Gan B, et al. Prophylactic probiotics to prevent death and nosocomial infection in preterm infants. J Pediatr 2014;102:e560–5.
69. Yang S, Yi H, Gan B, et al. Prophylactic probiotics to prevent death and nosocomial infection in preterm infants. Acta Paediatr 2013;102:e560–5.
70. Yu X, Wang Q, Dong J, et al. Probiotic supplement reduces risk of necrotizing enterocolitis. Eur J Clin Nutr 2011;65:434–9.