Original Research Paper

Threats to Seagrass Ecology and Indicators of the Importance of Seagrass Ecological Services in the Coastal Waters of East Lombok, Indonesia

1Abdul Syukur, 2Yusli Wardiatno, 2Ismudi Muchsin and 2Mohammad Mukhlis Kamal

1Department of Sciences Education, Faculty of Teacher Training and Education, Mataram University, Indonesia
2Department of Aquatic Resources Management, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Indonesia

Article history
Received: 09-11-2016
Revised: 05-04-2017
Accepted: 17-05-2017

Corresponding Author: Abdul Syukur
Department of Sciences Education, Faculty of Teacher Training and Education, Mataram University, Indonesia
Email: syukur_unram@ymail.com

Abstract: Seagrass ecology contributes to the preservation of fish and other biota diversity and is also an important livelihood source for fishermen and local communities. The purpose of our research was (1) to determine the source of the threats to seagrass ecology and to the ecological services it provides for the sustainability of fish resources and (2) to determine the main indicators defining the conservation needs of seagrass in the study area. Data were collected through direct observation, questionnaires, interviews and discussions. Data for fish in the seagrass bed research sites were obtained using mini-trawlers belonging to local fishermen. All data were analyzed using descriptive statistical analyses. The results showed that seagrass beds play an important role in fish ecology and that local livelihoods were highly dependent on small-scale fishing. However, fishermen and local communities also constituted the two main threats to the preservation and sustainability of fish and other biota in the area. Our results found, too, that there is a scarcity of some types of biota: some fish species, mollusks, crabs, see-urchin and some types of sea cucumber were very difficult to find in the seagrass beds that were the focus of our study. Our conclusion is that, given the scarcity of fifteen species of fish, as well as of other biota and the lack of diversity in fish food in our study area, it is imperative that seagrass conservation becomes an important priority for conservation interventions.

Keywords: Resources Threats, Seagrass Ecology Systems, Conservation of Seagrass

Introduction

Seagrass beds are an important habitat in the tropical marine environment. The global species diversity of seagrasses is low (<60 species), but are a key component of ecological systems in the coastal environment and can form extensive meadows supporting high biodiversity (Short et al., 2007). Many of the smaller fish species and invertebrates and other animals (e.g., gastropods, bivalves and polychaetes) are found in seagrass beds (Shokri et al., 2009; Maheswari et al., 2011; Satumanatpan et al., 2011) and they support the productivity and fish biodiversity of coral reefs (Bosire et al., 2012; Unsworth and Cullen, 2010). Tripneustes gratilla, Leptoscarus vaigiensis, Chelonia midas and Dugong dugong have all been found to have a high dependence on seagrass (Mamboya et al., 2009) and thirteen fish of commercial importance were identified as being recruitment enhanced in seagrass habitat, twelve of which were associated with sufficient life history on seagrass beds in southern Australia (Blandon and zu Ermgassen, 2014) and the artificial seagrass could play a vital role as a nutrient rich habitat for marine fishes (Shahbudin et al., 2011). Seagrass beds provide feeding habitats for some life-stages of fish and contribute to stabilizing our climate and support food security (Verweij et al., 2006; Unsworth et al., 2015), but these impacts have brought about accelerated the decline in seagrass habitats globally (Waycott et al., 2009).

Storms and prolonged rain (which affect water clarity) have had a significant impact on seagrass beds in the...
coastal areas of Indonesia. Declines were associated with storm and cyclone activity and similar to other nearby seagrass areas and natural disturbances such as weather changes affect seagrass populations (Ahmad-Kamil et al., 2013; Mckenna et al., 2015) and productivity were expected to decrease with decreasing water clarity (van Tussenbroek et al., 2014). Our research found that a combination of these factors has resulted in significant damage to hundreds of meters of seagrass beds (Orth et al., 2006; Short et al., 2006; Brigitta et al., 2014). From the review of 45 case studies worldwide for a total loss of 21.023 ha of seagrass vegetation (Erfemeijer and Lewis, 2006) and the coastal nature of Philippine demography, development and facilities, have caused eutrophication of marine waters, which, along with habitat loss, is a major long-term threat to seagrass ecosystems (Fortes, 2011).

Eutrophication of the coastal estuaries is profoundly altering the primary producer, carbon and nitrogen storage capacity of coastal ecosystems at local and regional scales (Schmidt et al., 2012). Nevertheless, the increasing human impacts associated with eutrophication and it is possible that could exacerbate seagrass loss (Coll et al., 2011; Stoner et al., 2014). This indicates that, the anthropogenic factors that negatively influenced over the abundance and distribution of seagrass, through fluvial channels, urban and commercial development, the anchoring of motorized and non-motorized boats, diverse fishing techniques and the dumping of solid waste (Pitanga et al., 2012), as though, seagrass in the Western Pacific are showing signs of stress and decline due to human impacts, despite the vastness of the ocean area and relatively low development pressure (Short et al., 2014).

Indonesia, the most serious and direct threats to coastal and marine biodiversity are the conversion of the coastal habitats (e.g., mangroves, seagrass beds and estuaries) into man-made land use, such as tambak, industrial estates, settlement; and of coastal and marine resources (Hutomo and Moosa, 2005). Seagrass meadows in Indonesia have also lost their trophic balance due to overexploitation, placing their resilience to poor water quality at risk (Unsworth et al., 2015). Anthropogenic activities, particularly port development, livestock grazing, land conversion and over-exploitation by fishermen and local communities have had a major impact, too. Examples of areas where extensive damage has occurred include Gerupuk and Kuta South Lombok and the coastal waters of East Lombok (Syukur et al., 2012).

Conservation measures urgently need to be implemented in order to preserve and maintain the remaining seagrass beds and to protect them from these threats and the word’s seagrass species under the Categories and Criteria of the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species (Short et al., 2011). Seagrass conservation monitoring protocols are based on conceptual models that link: (1) light and nutrient availability on the seagrass condition (2) physicochemical stressors, (3) habitat quality resilience bioindicators and (4) environmental change (Dunton et al., 2011; Di Carlo and McKenzie, 2011). Furthermore, by classifying the attributes of the species present, meadow structure and their possible drivers into a framework to assist ongoing monitoring and management decision-making (McKenzie et al., 2016). Other factors indicative of the importance of seagrass bed conservation include its role in maintaining water quality, for example in interventions in Chesapeake Bay, USA and the numbers of coral reef fish that migrate to them. This has been important in the expansion of the Great Barrier Reef protection area in Australia (Larkum et al., 2006).

The conservation of seagrass in the coastal waters of Indonesia is particularly important because of the vital functions seagrass plays in the life of fish, especially as nursery grounds and for feeding. However, the concept of conservation as a method of achieving sustainability goals for fish resources is not yet understood by the majority of Indonesian people, including some government officials (Nadiarti et al., 2012). The roots of the problems of the seagrass conservation in Indonesia are the following factors (e.g., rapid population growth and poverty; lack of implementation policy and poor enforcement; lack of awareness, lack of political will; lack of recognition of “adat” (local tradition); lack of integrated approaches; lack of capable human resources; lack of information as a basis for rational and optimal marine resource management and poor system to access available information (Hutomo and Moosa, 2005) and the worst threat for seagrass conservation might be the lack of information that its importance for coastal ecosystem health, its distribution and poor conservation status (Cunha and Serrão, 2011).

The importance of seagrass resources are highly underestimated and its conservation has thus not been prioritized in conservation management policies at the national level. This is despite studies showing that seagrass and therefore its conservation is key to the sustainability of small-scale fishermen’s livelihoods (Syukur et al., 2016). The objective of this study is therefore to determine the sources of threat to seagrass and the impact this has had on fish and other biota associated with seagrass and its ecological services. Our intention is that this research will inform seagrass conservation strategies and thus contribute to the sustainability of fish resources in the study area.

Methods

This study was conducted from April to August 2011 in the coastal areas of East Lombok Regency.
West Nusa Tenggara Province, with geographic coordinates of 116°.37'-116°.45' east longitude and 8°17'-8°18' south latitude (Fig. 1). Seagrass beds in the study sites covered 154.21 ha and nine species of seagrass were found: *Halophila ovalis*, *Halophila minor*, *Halophila spinulosa*, *Cymodocea rotundata*, *Cymodocea serrulata*, *Halodule pinifolia*, *Thalassia hemprichii*, *Syringodium isotifolium* and *Enhalus acoroides* (Syukur et al., 2012).

Data regarding the biota targets of small-scale fishing enterprises (of fish, mollusks, crabs, sea-urchins and sea cucumbers) in seagrass beds was obtained through the use of questionnaires, interviews and focus group discussions. Our criteria for the selection of research participants were that they: (1) Had a minimum of 20 years' experience as fishermen; (2) fished more than 70% of their time around the seagrass beds; (3) had a knowledge of seagrass; (4) were aware of the changing conditions of the biota groups they targeted in the seagrass bed sites; and (5) had some knowledge regarding the dependence of the target group of organisms on seagrass bed habitats. From these criteria we selected 50 fishermen as respondents (Aswani, 2010).

The data generated from interviews were substantiated by focus group discussions (Galappaththi and Berkes, 2014). Collection of fish in the seagrass bed locations was carried out at night during full tides (the spring tides), using the fishermen’s mini-trawlers, with 70 m long nets with wing mesh sizes of 1.25 inches, 1 inch, 0.75 inches and 0.625 inches and mesh bags of 0.5 inches. The nets were dragged by the boats at an average speed of 5 m/minutes. The fish caught were placed in containers we provided and were sorted into family and species. The number of individuals of each species were counted and measured (cm). The trophic status of fish in the seagrass bed sites was determined using secondary data (Syukur et al., 2014). The data were analyzed using descriptive statistics and fish diversity was established using the Shannon-Weaver Index (Ludwig and Reynolds, 1988) and dominance index (Odum, 1983) with formula:

\[H' = -\sum (p_i \ln p_i) \]

where, \(p_i \) is the proportion of all individuals counted that were of species \(i \).
Simpson dominance index with formula:

\[C = \sum_{i=1}^{n} \left(\frac{n_i}{N} \right)^2 \]

Where:
- \(C \) = Dominance index
- \(n_i \) = The value of importance of each species
- \(N \) = The total value of important of all species

Results

Small-scale fishing communities live in small villages scattered along the shoreline of our study area. Livelihoods are based on the extraction of natural resources, such as plants, fish and other animals. Small-scale fishing constitutes some 84.33% of livelihoods in the local communities in the study area. We divided small-scale fishermen into categories based on the type of equipment they used and their catchment area, as shown in Table 1.

All categories of fishermen (Table 1) were dependent on seagrass beds as the main target area for catching fish and other biota that have economic and/or consumption value. The most common fish targeted were Carangidae, Leiognathidae, Haemulidae, Scaridae, Siganidae, Mugilidae and Lethrinidae. Crabs, *Portunus pelagicus* and *Portunus sanguinolentus*, were commonly targeted too.

Interview results showed that 64% of respondents stated that areas of seagrass habitat were very important for the sustainability of fish resources. Thirty percent stated they were quite important and only 6% said they were not very important. Respondents also stated that several species of fish and other biota had become considerably less abundant in recent years and that their catch often no longer met the needs of their families. Local residents themselves were a considerable threat to the sustainability of the ecological functions of seagrass in the study area. Activities such as gathering mollusks, crabs, sea cucumbers, see-urchins, fruit and other consumable biota were common. Our observations found that a large number of local people visited the seagrass sites, as is shown in Table 2.

The intensity of the utilization of seagrass areas by fishermen and local communities helps explain the level of exploitation of fish resources and other biota at the study sites. Such continuous exploitation can have a negative impact on the preservation of fish resources and other biota and can cause damage to the shoot density of seagrass. The implications of this over-exploitation can be gauged through our respondents’ resource assessment results (Fig. 2). Some groups of marine organisms such as mollusks, crabs, sea-urchins and sea cucumber populations have declined significantly. Moreover the flagship groups *Syngnathoides bicauleatus* and *Synodus dermatogenys* of the family Syngnathidae were very difficult to find during the study period.

118 fish species and 16049 individuals were found during the sampling period. The location with the highest number of species was Gili Kere, while the location with the highest number of individuals was Kampung Baru. The location with the lowest number of species and individuals was Gili Maringkik (Table 3). The results of the analysis of the abundance of species in each sampling site showed great differences in the numbers of individual species abundance and frequency. The fish community structure in Gili Kere had 72 species. *Archamia goni, Leiognathus equulus, Leiognathus bindus, Ambassis buruensis, Plectorhinchus flavomaculatus, Sphyraena barracuda, Upeneus vittatus, Sardinella lemuru, Sardinella gibbus and Gerres filamentosus* all had above average numbers of individuals. The total number of individuals counted at Gili Kere was 4080. The species with the highest abundance was *Archamia goni* (32.79%), followed by *Leiognathus equulus* (16.66%), *Leiognathus bindus* (3.62%) and *Gerres filamentosus* (1.9%). There were 62 species with a below average number of individuals and one species, *Syngnathoides bicauleatus* of the family Syngnathidae.

Table 1. Fishermen categorized by equipment and catchment area

No	Category of fishermen	Equipment	Catchment area
1	Mixed	Mini trawler	Open waters, seagrass beds and estuaries
2	Drag net	Beach seine	Seagrass beds and estuaries
3	Fishermen catching shrimp and crab	Nets	Seagrass beds, estuaries and coral reefs

Table 2. Numbers of local people visiting the seagrass beds

No	Location of the seagrass	Number of local people visiting the seagrass beds more than five days/month	The average number of local people visiting the seagrass sites per day			
		April	May	June		
1	Gili Kere	648	637	669	130	
2	Poton Bakau	1156	907	968	202	
3	Kampung Baru	187	155	136	31	
4	Lungkak	226	208	214	43	
Total		2217	1933	1987	406	
Table 3. Fish families, species and total number of fish in the study area

No	Location	Number of families	Number of species	Number of individuals	Width of seagrass beds (ha)	Number of Individuals/ha
1	Gili Kere	35	72	4080	46	89
2	Kampung Baru	29	60	4108	4	1027
3	Lungkak	28	48	2147	5.6	383
4	Poton Bakau	31	67	3975	55	72
5	Gili Maringkik	28	47	1739	32	54

Fig. 2. Status of fish and marine life at the seagrass sites in the study area, n = 50

Fig. 3. The fifteen species of fish with the highest abundance during the study period

In Kampung Baru there were sixteen species with an above average number of individuals and twelve species with high frequency values. The species with the highest number of individuals was Sardinella gibbosa and the species with the highest frequency value were Stolephorus indicus and Plectorhinchus flavomaculatus.
Leiognathus equulus and the species with the highest frequency value were Chelio inermis, Acreichthys tomentosus and Siganus guttatus. At this location the species with the most individuals was Upeneus vittatus and the species with the highest frequency value were Stolephorus indicus, Leiognathus oblongus, Moolgarda delicatus and Upeneus vittatus. In the seagrass beds in Poton Bakau there were thirteen species with above average numbers of individuals and twelve species with a high frequency value. Archamia goni had the most individuals and the species with the highest frequency value were followed by Stolephorus indicus, Plectonema falvomaculatus, Moolgarda delicata and Upeneus vittatus.

Seagrass ecology has a strong relationship with fish species abundance. Of the 118 species of fish found in the study area, 15 species had an abundance value of more than 50% (Fig. 3); 103 species (87.28%) had a frequency below 50% of the total sampling. The prevalence of these species indicates the importance of the ecological value of seagrass at the study site. Furthermore, fish species with a frequency value between 6-12 can be found in (Appendix 1). However, in their group, namely Leiognathus equulus (48%), Gerres filamentosus and Sardinella clupeoid (44%), Trichthys lepturus and Upeneus sulphureus (40%) is a fish species with high abundance. The group had a frequency value between 1-5 (Appendix 2) and comprised 80 species (70%) of the total number of species, 77.66% of the number of fish species with a frequency value below 50%. Thirty three species (11.01%) were found during the study period at each of the seagrass bed sites (Appendix 3) and 12 species (10.26%) were found at only four of the sites (Appendix 4).

Fish diversity in seagrass beds is an important way of assessing the ecological role of seagrass beds in the conservation of fish resources. Diversity index values and dominance index values are good indicators to illustrate the importance of seagrass beds for the diversity of fish species. The diversity index value offers a different perspective to that of the dominance index value (Table 4). For our study these two values provided information on fish community structure at each seagrass bed site in the study area. The diversity of fish associated with seagrass is indicative, too, of how seagrass beds provide ecological services which lead to fish seeking them out. We observed the stomach contents of seventeen species of fish and these showed that 85% were from a carnivorous fish group (Appendix 5). This indicates that carnivorous fish were the dominant group in the structure of the fish communities.

No	Location	Diversity index (H')	Dominance index (D)
1	Gili Kere	2.448	0.164
2	Kampung Baru	2.948	0.083
3	Lungkak	2.606	0.148
4	Poton Bakau	2.797	0.131
5	Gili Maringkik	2.942	0.077

Discussion

Threats to the Sustainability of the Ecological Functions of Seagrass

Seagrass meadows provide important ecosystem services; primary production, nursery habitat for juveniles and human food from seagrass associated species (Ambo-Rappe et al, 2013; Buapet et al., 2013; Cullen-Unsworth et al., 2014; Jackson et al., 2015; Giakoumi et al., 2015). Others ecological services of seagrass are an estimated $1.9 trillion per year in the form of nutrient cycling and the significant enhancement of coral reef fish productivity and they provide a habitat for thousands of fish, birds and invertebrate species and are a major food source for the endangered dugong, manatee and green turtle (Waycott et al., 2009). Furthermore, seagrass beds are the most significant daily income source for fishermen and also provide the main sources of animal protein. Local communities use them, too, for harvesting traditional medicines, fertilizers and for other aesthetic, instrumental, spiritual and religious purposes (Kenworthy et al., 2007) and key ecosystems supporting small-scale fisheries (de la Torre-Castro et al., 2014), but in many areas, they are also threatening a way of life for those people closely associated with the system either directly or indirectly (Cullen-Unsworth et al., 2014). Therefore, better understanding of which ecosystem services areas sociated with specific seagrass genera and bioregions is important for improved coastal management and conservation (Nordlund et al., 2016).

There are not many alternative sources of livelihoods for local communities in the study area. Many of our respondents were aware that their actions have caused a significant reduction in the fish populations that they target, as well as to another biota in and around the neighborhood of the seagrass beds. The dependency on fishing, however, makes it very difficult to implement effective strategies to prevent over-exploitation by fishermen and local communities and this has resulted in the decline of fish populations and other biota associated with seagrass. Other studies, too, have reported that small-scale fishing activities have had a negative impact on seagrass and other biota associated with seagrass in East Lombok (Satyawan et al., 2014), in reef flats and
seagrass bed areas has reduced the population of the biota in the coastal waters (McCloskey and Unsworth, 2015) and high rates of exploitation mean that stocks generally cannot sustain expected levels of economic return (Aheto et al., 2012) and a relationship between the significant decline in catches in Indonesian waters and damage to seagrass beds (Unsworth et al., 2010). Furthermore, many of seagrass habitats damage caused to from community activities, commercial fishing and aquaculture (Brigitta et al., 2014). Similarly, our study found that the two main sources of continual threat to the ecological functions of seagrass were small-scale fishing operations and the local community. We believe it is essential that local government understands this and initiates strategies for the management of seagrass at a local level, not least in order to protect and conserve fish stocks for the economic and social benefit of fishermen and local communities.

The Abundance and Diversity of Fish as Indicators of Seagrass Conservation

The richness in numbers of fish species associated with seagrass highlights: (1) The ecological importance of seagrass for the sustainability of fish resources; (2) the abundance of fish species that use seagrass habitats to survive; and (3) that the distribution of fish species is an indicator of ecological health, of the scale of seagrass damage and of the importance of its conservation for fish sustainability. Some fish species found in the study area had higher numbers than at other seagrass bed sites, such as at the Marine National Park at Wakatobi where there were 81 species (Unsworth et al., 2007).

Of those 118 species, 13 species were found at all the seagrass bed sites (Appendix 3) and 12 species were found at four sites (Appendix 4). Three species had a high abundance value: Plectorhinchus flavomaculatus (88%), Upeneus vittatus (84%) and Archamia goni (76%). Of these Archamia goni is a permanent seagrass resident. Nevertheless, families Apogonidae using seagrass as an alternative habitat and reef as the main habitat, including Archamia goni (Bosiire et al., 2012). Of fish that gather on seagrass, 87.5% come from other habitats, such as coral reefs, estuarine and other locations around seagrass beds and over 90% of these fish species used multiple habitats, such as mangrove, seagrass and coral reef (Honda et al., 2013). Furthermore, Stolephorus indicus and Sardinella gibbsosa are both in the pelagic fish group on seagrass in the study area. Another study states that, Sardinella gibbsosa is a pelagic fish that can be found in coastal waters dominated by mangrove and in turn contributes to regional offshore fisheries (Khatoon et al., 2014; Kumar et al., 2016; Swapna et al., 2016) and Stolephorus indicus is belonging pelagic-neritik and become the target of a small fishing catch (Asha et al., 2014). Consequently, the abundance of fish species diversity in seagrass beds highlights the importance of seagrass for these fish to survive and is an important factor to considered in conservation strategies for seagrass in the study area.

Several studies of fish associated with seagrass beds, especially in Southeast Asia, Atherinomorus duodecimalis, Sillago sihama and Pelates quadritelineatus dominant species in seagrass meadows at Sikao Bay, Trang Province, Thailand (Phinrub et al., 2015) and Sillago aequalis, Sillago sihama and Gerres erythraeus the highest of occurrence frequency in seagrass beds at Ban Pak Klong, Trang Province, Thailand (Phinrub et al., 2014). Furthermore, Siganus canaliculatus, Aetobatus striatus, Syngnathoides biaculeatus, Acreichthys tomentosus and Paracentropogon longispinis dominant species in Ambon Bay Indonesia (Ambo-Rappe et al., 2013) and the Engraulidae family and Leithinus harak, the most abundant being from in the Marine National Park at Wakatobi, Indonesia (Unsworth et al., 2007) and Chromis sp. and Pomacentrus sp. was dominant in the artificial seagrass area in Sepanggar Bay at Northern Kinabalu Malaysia (Shahbudin et al., 2011). In this respect, the abundance of different species with several other locations as we mentioned above, I believe this is a unique kinds of fish abundance at the study location, so it can be a major argumentation of seagrass conservation and sustainable fisheries in the study area.

The diversity of fish that assembled at our seagrass study sites, whether permanent seagrass residents or species that migrate to find food and shelter from predators, is an important indicator of the ecological services which seagrass beds provide for the sustainability of fish resources. The index value of diversity and dominance (Table 4) illustrates the distribution of the species and the number of individuals within a species or diversity index is a proportion of each species and dominance indices represent the relative number of individuals. The diversity index value of fish found in the study area is relatively equal to the index value diversity of fish with two locations of seagrass beds. The location of seagrass beds both are in Sikao Bay, Trang Province, Thailand with the value of the Shannon-Wiener index (H') = 2.7 (Phinrub et al., 2015) and, in Formoso River Estuary-Pernambuco, Brazil (H') = 2.66 (Pereira et al., 2010). Nevertheless, have considerable differences with the value of fish diversity on seagrass beds in the Jordanian coast of the Gulf of Aqaba (H') = 1.4 (Khalaf et al., 2012).

Other studies have shown, the vegetated habitats such as mangroves and seagrass beds showed higher species diversity (Sichum et al., 2013) and species number and abundance were significantly lower in sandy areas and seagrass habitats presenting intermediate values (Giakourni and Kokkoris, 2013). More of study showed,
the species diversity in seagrass beds were higher than those in the bare substrate (Horinouch, 2005) and fish assemblage structure and distribution pattern in Thalassia hemprichii and Enhalus acoroides were significantly different (Nadiarti et al., 2015) and species diversity was significantly higher in high cover seagrass than in low cover seagrass (McCloskey and Unsworth, 2015).

The diversity of value is an ecological indicator that can help evaluate the area for the conservation decisions. The extent that key attributes of biodiversity, including ecological (vegetation structure, species diversity and abundance and ecosystem functioning) and socioeconomic (Wortley et al., 2013). Moreover, diversity index as ecological indicators for monitoring environmental changes is reliable and cost-effective (Siddig et al., 2016). It is this a useful tool for monitoring and evaluating conservation areas (Nemeth and Jackson, 2007) and informing conservation policy and also provides information about the fish within the habitat. However, the loss of or reduction in the value of biodiversity associated with seagrass fish will ultimately have an impact on the livelihood support to small-scale fisherman and long-term impact on the ecological service of seagrass. Therefore, the value diversity of fish is a very essential as information in seagrass conservation measures for sustainable of fish resource in the study area.

Our analysis of fish food (Appendix 5) showed that seagrass provides a diversity of fish food (e.g., fish, fish larvae, shrimp, crabs, see-urchins, crustaceans and cephalopods) were found in the stomach contents of the other types of fish. Furthermore, a status of fish trophic in the study area was grouped into three categories; herbivores, carnivores and omnivores. carnivores (61.90%) were the most dominant, followed by herbivores and omnivores (19%). In this case, the group of fish is the most dominant carnivores on seagrass beds in the study areas. Similarly, the group of fish carnivores contributed about 70% of the total abundance in seagrass beds at Donghsa Island’s (Lee et al., 2014), but there was differences, the group of fish carnivores (20%) and herbivores (20%) in the Formoso River estuary-Pernambuco, Brazil (Pereira et al., 2010). Besides that, (Appendix 6) showed that seagrass provides a diversity of fish food on seagrass in the study area. It is the substantial fact of for preventing the threat of damage seagrass and may be considered in seagrass conservation actions for the sustainability of fish resources in the study area. However, which was related to the greater movement of fish between the seagrass and adjacent habitats to forage and a breakdown in the association with seagrass habitat as a refuge from predation (Jackson et al., 2006).

Understanding how fish use seagrass habitats beneficial to informing the design of conservation strategies at the level of species, communities and ecosystems. Effective conservation requires a minimum of three criteria: (1) A comprehensive description of an area’s biodiversity and its conservation goals; (2) an indication of the potential suitability of the conservation area for the sustainability of the target species and ecological communities and (3) an estimation of the ability of an area to support a requisite number of individuals and species in the long term (Jelbart et al., 2007). Another factor which is important to the conservation of fish resources is the extent of the area under protection. In order to protect fish stocks a minimum 20-30% of the total area is needed protected (Banks et al., 2005), for the protection of species between 30-50% and for the protection of fish larvae a minimum of 40% (Gladstone, 2007).

Conclusion

Seagrass ecology is central for the preservation of biodiversity in many coastal areas in Indonesia, but is becoming increasingly threatened by human activity. Although seagrass conservation efforts have been attempted by governments and non-governmental organizations, they are limited to the Marine National Park, the Natural Park of the Sea and the Regional Marine Conservation Area. Initiatives for protecting seagrass ecosystems more widely in the coastal waters of Indonesia, such as those in our study area, need urgently to be implemented. This research is intended to inform such initiatives and contribute to the development of models that are based on scientific data, such as that generated by this study. We would like to highlight, too, that involving fishermen and local communities is key to achieving conservation goals and the sustainability of seagrass biodiversity.

Acknowledgement

The authors are thankful to the Directorate General of Strengthening Research and Development, Directorate of Research and Community Service, Ministry of Research, Technology and Higher Education of Indonesia for providing the funding for carrying out this study. The authors would also like to thank Sarah A. Bologna Ph.D for constructive criticism and comments during the preparation of this article.

Author’s Contributions

Abdul Syukur: Conducted all experiments, data analysis and preparation of the draft manuscript.

Yusli Wardiatno, Ismudi Muchsin and Mohammad Mukhlis Kamal: Advised research design, organized the manuscript’s structures and edited the manuscript.
Ethics

All authors have provided assurance that this paper is original research and has not been published elsewhere and all the author has read and approved the manuscript.

References

Aheto, D.W., N.K. Asare, B. Quaynor, E.Y. Tenkorang and C. Asare et al., 2012. Profitability of small-scale fisheries in Elmina, Ghana. Sustainability, 4: 2785-2794. DOI: 10.3390/su4112785

Ahmad-Kamil, E.I., R. Ramli, S.A. Jaaman, J. Bali and J.R. Al-Obaidi, 2013. The effects of water parameters on monthly seagrass percentage cover in lawas, East Malaysia. Scientific World J., 2013: 892746-892753. DOI: 10.1155/2013/892746

Ambo-Rappe, R., M.N. Nessa, H. Latuconsina and D.L. Lajus, 2013. Relationship between the tropical seagrass bed characteristics and the structure of the associated fish community. Open J. Ecol., 3: 331-342. DOI: 10.4236/oje.2013.35038

Aswani, M.S., 2010. Indigenous knowledge and long-term ecological change: Detection, interpretation and responses to changing ecological conditions in Pacific Island communities. Environ. Manage., 45: 985-99. DOI: 10.1007/s00267-010-9471-9

Banks, S.A., G.A. Skilleter and H.P. Possingham, 2005. Intertidal habitat conservation: Identifying conservation targets in the absence of detailed biological information. Aquatic Conserv. Marine Freshwater Ecosyst., 15: 271-288. DOI: 10.1002/aqc.683

Blundon, A. and P.S.E. zu Ermgassen, 2014. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuarine, Coastal Shelf Sci., 141: 1-8. DOI: 10.1016/j.ecss.2014.01.009

Bosire, J.O., G. Okemwa and J. Ochiwio, 2012. Mangrove linkages to coral reef and seagrass ecosystem services in Mombasa and Takaungu, Kenya: Participatory Modelling Frameworks to Understand Wellbeing Trade-offs in Coastal Ecosystem Services: Mangrove sub-component. Espa Ecosystem Service for Poverty Alleviation.

Brigitta, I., V. Tussenbroek, J. Cortés, R. Collin and A.C. Fonseca et al., 2014. Caribbean-wide, long-term study of seagrass beds reveals local variations, shifts in community structure and occasional collapse. PLOS One, 9: 1-13. DOI: 10.1371/journal.pone.0090600

Buapet, P., L.M. Rasmusson, M. Gullstro and M. Bjork, 2013. Photorespiration and carbon limitation determine productivity in temperate seagrasses. Plos One, 8: 1-9. DOI: 10.1371/journal.pone.0083804

Coll, M., A. Schmidt, T. Romanuk and H.K. Lotze, 2011. Food-web structure of seagrass communities across different spatial scales and human impacts. PloS One, 6: 1-13. DOI: 10.1371/journal.pone.0022591

Cullen-Unsworth, L.C., L.M. Nordlund, J. Paddock, S. Baker and L.J. McKenzie et al., 2014. Seagrass meadows globally as a coupled social-ecological system: Implications for human wellbeing. Marine Pollut. Bull., 83: 387-397. DOI: 10.1016/j.marpolbul.2013.06.001

Cunha, R.W., C. Asare and F. Berkes, 2014. Profitability of small-scale fisheries in Elmina, Ghana. Sustainability, 4: 387-407. DOI: 10.3390/su4112785

Dunton, K., W. Pulich and T. Muchler, 2011. A seagrass monitoring program for Texas coastal waters: Multi scale integration of landscape features with plant and water quality indicators. Final Report Contract No. 0627 to Coastal Bend Bays and Estuaries Program 1305 N. Shoreline Blvd., Suite 205Corpus Christi, Texas 78401.

Erflemeijer, P.L.A. and R.R.R. Lewis, 2006. Environmental impacts of dredging on seagrasses: A review. Marine Pollut. Bull., 52: 1553-1572. DOI: 10.1016/j.marpolbul.2006.09.006

Fortes, M.D., 2011. A Review: Biodiversity, Distribution and Conservation of Philippine Seagrasses. Philippine J. Sci., 142: 95-111. DOI:

Galappaththi, K. and F. Berkes, 2014. Institutions for managing common-pool resources: the case of community-based shrimp aquaculture in northwestern Sri Lanka. Maritime Stud., 13: 1-13. DOI: 10.1186/s40152-014-0013-6

Giakoumi, S. and G.D. Kokkoris, 2013. Effects of habitat and substrate complexity on shallow sublittoral fish assemblages in the Cyclades Archipelago, Northeastern Mediterranean sea. Mediterranean Marine Sci., 14: 58-68. DOI: 10.12681/mms.318
Pereira, P.H.C., B.P. Ferreira and S.M. Rezende, 2010. Community structure of the ichthyofauna associated with seagrass beds (*Halodule wrightii*) in Formoso River estuary-Pernambuco, Brazil. Anais da Academia Brasileira de Ciências, 82: 617-628. DOI: 10.1590/S0001-37652010000600009

Phinrub, W., B. Montien-Art, J. Promya and A. Suvarnaraksha, 2015. Fish diversity and fish assemblage structure in seagrass meadows at sikao bay, trang province, Thailand. Open J. Ecol., 5: 563-573. DOI: 10.4236/oje.2015.512047

Phinrub, W., B. Montien-Art, J. Promya and A. Suvarnaraksha, 2014. Fish diversity and fish community in seagrass beds at Ban Pak Klong, Trang Province, Thailand. Int. J. Fisheries Aquatic Stud., 2: 197-201.

Pitanga, M.E., M.J.E. Montes, K.M. Magalhães and T.N.V. Reis, 2012. Quantification and classification of the main environmental impacts on a *Halodule wrightii* seagrass meadow on a tropical island in northeastern Brazil. Annals Brazil Acad. of Sci., 84: 35-42. DOI: 10.1590/S0001-37652012000100005

Satumanatpan, S., S. Thumnikkapong and K. Kanongdate, 2011. Biodiversity of benthic fauna in the seagrass ecosystem of Kung Krabaen Bay, Chantaburi Province, Thailand. Songklanakarin J. Sci. Technol., 33: 341-348.

Satayawan, N.M., Y. Wardiatno and R. Kurnia, 2014. Keanekegaman spesies dan zonasai habitat echinodermata di perairan pantai semerang, lombok timur (Diversity of Species and Habitat Zonation of Echinoderm in Semerang Coastal Waters, East Lombok). J. Biol. Tropis, 14: 162-170.

Schmidt, A.L., J.K.C. Wysmyn, S.E. Craig and H.K. Lotze, 2012. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnol. Oceanogr., 57: 1389-1402. DOI: 10.4319/lo.2012.57.5.1389

Shahbudin, S., K.J.A. Jalal, Y. Kamaruzzaman, N. Mohammad-Noor and T. Cit-Dah et al., 2011. Artificial seagrass: A habitat for marine fishes. J. Fisheries Aquatic Sci., 6: 85-92. DOI: 10.3923/jfas.2011.85.92

Shokri, M.R., W. Gladstone and J. Jelbart, 2009. The effectiveness of seahorses and pipefish (*Pisces: Syngnathidae*) as a flagship group to evaluate the conservation value of estuarine seagrass beds. Aquatic Conserv.: Marine Freshwater Ecosyst., 19: 588-595. DOI: 10.1002/aqc.1009

Short, F.T., R. Coles, M.D. Fortes, S. Victor and M. Salik et al., 2014. Monitoring in the Western Pacific region shows evidence of seagrass decline in line with global trends. Marine Pollut. Bull., 83: 408-418. DOI: 10.1016/j.marpolbul.2014.03.036

Short, F.T., B. Polidoro, S.R. Livingstone, K.E. Carpenter and S. Bandeira et al., 2011. Extinction risk assessment of the world’s seagrass species. Biol. Conserv., 144: 1961-1971. DOI: 10.1016/j.biocon.2011.04.010

Short, F.T., T. Carruthers, W. Dennison and W. Waycott, 2007. Global seagrass distribution and diversity: A bioregional model. J. Exp. Marine Biol. Ecol., 350: 3-20. DOI: 10.1016/j.jembe.2007.06.012

Short, F.T., E.W. Koch, J.C. Creed, K.M. Magalhaes and E. Fernandez et al., 2006. SeagrassNet monitoring across the Americas: case studies of seagrass decline. Marine Ecol., 27: 277-289. DOI: 10.1111/j.1439-0485.2006.00095.x

Siddig, A.A.H., A.M. Ellison, A. Ochsc, C. Villar-Leeman and M.L. Lau, 2016. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in *Ecological Indicators*. Ecol. Indicators, 60: 223-230. DOI: 10.1016/j.ecolind.2015.06.036

Sichum, S., P. Tantichodok and T. Jutagate, 2013. Diversity and assemblage patterns of juvenile and small sized fishes in the nearshore habitats of the gulf of thailand. Raffles Bull. Zool., 61: 795-809.

Stoner, E.W., L.A. Yeager, J.L. Sweatman, S.S. Sebiliand and C.A. Layman, 2014. Modification of a seagrass community by benthic jellyfish blooms and nutrient enrichment. J. Exp. Marine Biol. Ecol., 461: 185-192. DOI: 10.1016/j.jembe.2014.08.005

Swapna, A., R.R. Kumar and V. Sasidharan, 2014. Spatial and temporal assemblage structure of fishery resources in relation with environmental variables along the mangrove creeks of South Andaman. Int. J. Recent Scientific Res., 7: 8797-8805.

Syukur, A., Mahrus and A.R. Syachruddin, 2016. The potential assessment environment friendly aquaculture of small-scale fishermen as a conservation strategy seagrass beds in coastal areas of Tanjung Luar East Lombok, Indonesia. Int. J. Fisheries Aquatic Stud., 4: 22-27.

Syukur, A., Y. Wardiatno, I. Muchsin and M.M. Kamal, 2014. Status trofik ikan yang berasosiasi dengan lamun (*seagrass*) di tanjung luar lombok timur: Trophic status of fish associated with seagrass in east Lombok. J. Biol. Tropis, 14: 185-192.

Syukur, A., Y. Wardiatno, I. Muchsin and M.M. Kamal, 2012. Desain Konservasi lamun untuk Kebrlanjutan Sumberdaya Ikan di Wilayah Pesisir Tanjung Luar Lombok Timur. Seagrass conservation design for sustainability of fish resources in Tanjung Luar East Lombok. *Disertasi* Bogor Agriculture University Indonesia.
Unsworth, R.K.F., C.J. Collier, W. Waycott, L.J. Mckenzie and L.C. Cullen-Unsworth, 2015. A framework for the resilience of seagrass ecosystems. Marine Pollut. Bull., 100: 34-46. DOI: 10.1016/j.marpolbul.2015.08.016

Unsworth, R.K.F. and L.C. Cullen, 2010. Recognising the necessity for Indo-Pacific seagrass conservation. Conserv. Lett., 3: 63-73. DOI: 10.1111/j.1755-263X.2010.00101.x

Unsworth, R.K.F., L.C. Cullen, J.N. Pretty, D.J. Smith and J.J. Bel, 2010. Economic and subsistence values of the standing stocks of seagrass fisheries: potential benefits of no-fishing marine protected area management. Ocean Coastal Manage., 30: 1-7. DOI: 10.1016/j.ocecoaman.2010.04.002

Unsworth, R.K.F., E. Wyle, O.J. Smith and J.J. Bell, 2007. Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia. Estuarine Coastal Shelf Sci., 72: 81-88. DOI: 10.1016/j.ecss.2006.10.006

Appendices

Appendix 1. Fish species with a frequency of between 6-12 of the total sampling.
Appendix 2. Frequency of species 1-5 at the seagrass bed study sites during the study period

No	Species	April	May	June	July	August	Total of Frequency
1	Abudefduf septemfasciatus	1					1
2	Amphiprion frenatus						
3	Acerichthys sp	1	1				2
4	Aeoliscus strigatus	1					1
5	Alicus saliens	1	1				2
6	Ambassis urotemia	2					2
7	Amphiprion frenatus						
8	Andamia tetradactylus	1					1
9	Antherinomorus duodecimalis	1					1
10	Antherinomorus lacunosus						
11	Apogonichthys ocellatus	2	1				3
12	Archamia compressus						
13	Archamia zosterophora	1					1
14	Arothron immaculatus	1	1				2
15	Atherinomorus duodecimalis	1					1
16	Atherinomitus lacunosus						
17	Atule mate	1	1				3
18	Balistapus undulates						
19	Canthigaster compressa		2				
20	Chaetodon sp.	1					1
21	Chanos chanos						
22	Chinoctenus dorab	1	1				2
23	Cheilodipterus macrodon	1	2				3
24	Diodon holocanthus	1	1				2
25	Diodon litorosus	1					1
26	Drepane punctata	2					2
27	Foa brachygramma	1					1
28	Filimanus xanthomera	1	1				3
29	Gazza achatyos						
30	Gerres erythocharus						
31	Gerres oyena	1	1	2			5
32	Gerres macracanthus						
33	Gymnocephalus elongates	1	1			2	4
34	Hemiramphus far	1	1	1			3
35	Helichoeres papilionaceus		1				2
36	Hyporhamphus quoyi	1					1
37	Johnius amblycephalus	1	1		2		4
38	Johnius borneensis	1					2
39	Johnius macropterus	1	1	1	1		4
40	Lagocephalus ivheeleri	1					1
41	Lagocephalus gloverei	1					1
42	Lagocephalus lunaris						
43	Leioctenus daura	2	1				4
44	Leioctenus splendens	2					3
45	Leioctenus smithiuri	1	1		1		4
46	Leptoscarus vaigensis	2		1		1	4
47	Lethrinus harak	1	1				3
48	Lethrinus variagates	1	1		1		4
49	Latijanus argentinaculatus	3				1	4
50	Latijanus erythropterus						
51	Latijanus latijanus	1			1		2
52	Neopomacentrus azyron	1	1	1	1		5
53	Pteroscertes variabilis	1	1	1			4
54	Pisolophos cancirzor						
55	Platix boersi	3					3
56	Pleztorhinchus celebicus	2	1		1		4
57	Polynemus pelheus	1			1		2
58	Pomacentrus lepidogonys						
59	Pomadasys argenteus	1	1				2
Appendix 2. Continue

No	Family	Species	1	2	3	4	5	6	7	8	9	10	11	12	13
60	Pomadasys maculatum	1	1	1	3										
61	Saurida gracilis	2	1	1	1	4									
62	Scomberoides tala	1	3	1	5										
63	Sheilodipterus quinquelineatus	1			1										
64	Siganus argenteus			1	1	1	3								
65	Sillago chondropus	2		1											
66	Sillago macrolepis	1			1										
67	Sillago sihama					2									
68	Sphyraena flavicauda	1				2									
69	Sphragiidae				1	1	2								
70	Synodus dermatogenys		2			2									
71	Sphyraena flavicauda	1				1	2								
72	Synodus dermatogenys		2	2											
73	Takifugu radiates											1			
74	Thalassoma hardwickii		1									2			
75	Thysya mystax											1			
76	Thysya setirostrus											2			
77	Trachinotus blochii	1	2	1	5										
78	Trachinotus botola			1											
79	Upeneus indicus	1			1										
80	Upeneus tragula		1												

Appendix 3. Family and species of fish at the seagrass bed research sites

No	Family	Species	Kere	Maringkik	Baru	Lungkak	Poton bakau
1	Apogonidae	Archamia goni	1	1	1	1	
2	Bothidae	Bothus pantherinus	1	1	1		
3	Carangidae	Caranx melanopterus	1	2	1		
4	Callionymidae	Eleutherochir opercularis	1	1	1		
5	Carcharhinidae	Scomberoides tala	1	1	1	1	
6	Clupeidae	Sardinella gibbosa	1	1	1		
7	Chelotilidae	Fistularia commersonii	1	1	1		
8	Chneidae	Paraplagusia bilineata	1	1	1		
9	Haemulidae	Plectorhinus fulvomaculatus	1	1	1		
10	Lutjanidae	Lutjanus boutron	1	1	1		
11	Mullidae	Upeneus vittatus	1	1	1		
12	Monacanthidae	Acreichthys tomentosus	1	1	1		
13	Siganidae	Siganus canaliculatus	1	1	1		

Appendix 4. Family and species of fish distributed at four seagrass bed sites in the study area.

No	Family	Species	Location of seagrass beds
1	Callionymidae	Eleutherochir opercularis	Gili Kere
2	Carangidae	Scomberoides tala	Gili Maringkik
3	Chneidae	Paraplagusia bilineata	Kampung Baru
4	Chneidae	Plectorhinus fulvomaculatus	Kampung Lungkak
5	Lutjanidae	Lutjanus boutron	Poton bakau
6	Callionymidae	Eleutherochir opercularis	
7	Chneidae	Paraplagusia bilineata	
8	Lutjanidae	Lutjanus boutron	
9	Chneidae	Plectorhinus fulvomaculatus	
10	Lutjanidae	Lutjanus boutron	
11	Chneidae	Paraplagusia bilineata	
12	Lutjanidae	Lutjanus boutron	
Total			
Appendix 5. Families and species of fish observed to assess the diversity of types of fish food at the seagrass bed sites in the study area

No	Family	Species	Biota obtained from the stomach contents
1	Siganidae	Siganus canaliculatus	seagrass dan algae
		Siganus guttatus	seagrass and algae
2	Scaridae	Calotomus spinidens	seagrass and algae
3	Atherinidae	Atherinomimus lacunosus	seagrass and algae
4	Apogonidae	Archamia goni	shrimp, crab and squid
5	Tetraodontidae	Canthigaster compressa	fish and shrimp
		Arothron immaculatus	fish and shrimp
6	Gerridae	Gerres oyena	fish
7	Mugilidae	Moolgarda delicatiss	fish and shrimp
8	Pomacentridae	Abudefsho notatus	fish and shrimp
9	Haemulidae	Plectorinchus celebicus	fish and crabs
10	Lutjanidae	Lutjanus boutton	fish, larvae of fish and shrimp
		Lutjanus argentimaculatus	fish, larvae of fish and shrimp
11	Lethrinidae	Lethinus lentjan	crabs
		Lethinus variegates	crabs
12	Mullidae	Upeneus vittatus	shrimp
13	Balistidae	Balistapus undulatus	Larvae of see-urchin and shell
14	Monacantidae	Acreichthys tomentosus	crustaceans, fish, larvae of sea-urchin and seagrass
15	Carangidae,	Caranx sexleckiatus	Phytoplankton and zooplankton
16	Leiognathidae	Leiognathus bundleus	Phytoplankton and zooplankton
17	Clupeidae	Sardinella gibbosa	Phytoplankton and zooplankton

Appendix 6. Attraction of seagrass beds for fish

No	The location of seagrass beds	Family	Species	The main habitat for several species of fish	The type of fish food in seagrass beds	Ecological function of seagrass for fish
1	Gili Kere	Apogonida	Archamia goni1	Seagrass beds	Shrimp, crabs and cephalopods	Habitat
		Lutjanidae	Lutjanus boutton2	Coral reefs and areas near mangroves	Fish, larvae of fish and shrimp	Feeding ground
2	Kampung Baru	Clupeidae	Sardinella gibbosa	Marine waters	Plankton	Feeding ground
		Haemulidae	Plectorinchus falvomaculatus2	Coral reefs	Fish and crab	Feeding ground
3	Gili Maringkik	Leiognathidae	Leiognathus equulus1	Coastal waters	Phytoplankton and zooplankton	Feeding ground
		Monacanthida	Acreichthys tomentosus2	Seagrass beds and areas with sandy bottom	Crustaceans, fish, larvae of sea-urchin and seagrass	Habiat and feeding ground
		Siganidae	Siganus guttatus2	Coral reefs and seagrass beds	Seagrass and algae	Nursery and feeding ground
4	Lungkak	Mullidae	Upeneus vittatus3	Marine waters	Shrimp	Feeding ground
		Leiognathida	Leiognathus oblongus2	Coral reefs	Phytoplankton and zooplankton	Feeding ground
		Mugilidae	Moolgarda delicatess2	Mangroves and estuaries	Fish and shrimp	Feeding ground
		Mullidae	Upeneus vittatus2	Coral reefs	Shrimp	Feeding ground
5	Poton Bakau	Apogonida	Archamia goni1	Seagrass beds	Shrimp	Feeding ground
		Apogonida	Archamia goni2	Seagrass beds	Shrimp, crabs and cephalopods	Feeding ground
		Haemulidae	Plectorinchus falvomaculatus3	Coral reefs	Fish and crab	Feeding ground
		Mugilidae	Moolgarda delicatess2	Mangroves and estuaries	Fish and shrimp	Feeding ground

1 Fish species with the highest number of individuals
2 Fish species with the highest abundance