On some generalizations of normality

Pratibha Bhata, A. K. Dasa,\textdagger

aSchool of Mathematics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India- 182320.

Abstract

Interrelation among various existing variants of normality is discussed. The situation in which the class of nearly normal spaces contains the class of (weak) θ-normality is shown. A factorization of normality in presence of Hausdorff space is provided. Further, subspaces and preservation under mappings are also studied.

Keywords: normal, almost regular, almost normal, θ-normal, $f\theta$-normal, $w\theta$-normal, $wf\theta$-normal, Δ-normal, $w\Delta$-normal, $wf\Delta$-normal, nearly normal, π-normal, β-normal, $w\theta$-regular.

2010 MSC: 54D15.

1. Introduction and preliminaries

Several generalized forms of normality exists in the literature by using different types of closed sets. Singal and Arya [14] introduced almost normal spaces by using regularly closed sets. Veličko [16] in 1968 introduced the notion of θ-closed and δ-closed sets which was subsequently utilized by others to study different topological properties. Four variants of normality namely (weakly)(functionally)θ-normal spaces [6] has been introduced by using θ-closed sets. Similarly three more generalizations of normality namely(weakly)(functionally)Δ-normal spaces [2] was introduced by using δ-closed sets. Nearly normal spaces was introduced in 1998 by using δ-closed and regularly closed sets. In this paper, interrelation among these variants of normality, their subspaces and preservation under mappings of some of these variants has been studied.

Let X be a topological space and $A \subset X$. Throughout the present paper closure of A is denoted by \overline{A} and interior is denoted by $intA$. A point x is said to be θ-limit point [16] of A if closure of every neighborhood containing x intersects A. A set A_θ is the θ-closure of A which contains all θ-limit points of A. A set A is θ-closed if $A = A_\theta$. Compliment of a θ-closed set is known as θ-open set. Similarly a point x is called δ-limit point [16] of A if every regularly open neighborhood of x intersects A. A set A_δ is said to be δ-closed if A_δ containing all δ-limit points of A is same as A. Compliment of a δ-closed set is known as δ-open set. A set A is said to be regularly closed [9] if $U = int\overline{U}$. Compliment of a regularly closed set is known as regularly closed.

\textdagger Corresponding author

Email addresses: pratibha87bhat@gmail.com (Pratibha Bhat), ak.das@smvdu.ac.in, akdasdu@yahoo.co.in (A. K. Das)

Received: 4 August 2015 Accepted: 8 September 2015

http://dx.doi.org/10.20454/jast.2015.988

2090-8288 ©2015 Modern Science Publishers. All rights reserved.
open. A finite union of regular open sets is called π-open set and a finite intersection of regular closed sets is called π-closed set.

The interrelation that exist among the above discussed types of closed sets is as follows:

\[
\text{regularly closed} \rightarrow \pi\text{-closed} \rightarrow \delta\text{-closed} \rightarrow \text{closed.}
\]

The above implications are not reversible which is evident from the following examples.

Example 1.1. Let X be the set of positive integers. Define a topology on X by taking every odd integer to be open and a set $U \subset X$ is open if for every even integer $p \in U$, the predecessor and successor of p also belongs to U. Here $A = \{2, 3, 4\}$ is regularly closed but not θ-closed. $B = \{6\}$ is intersection of two regularly closed sets $C = \{4, 5, 6\}$ and $D = \{6, 7, 8\}$, hence it is π-closed but not regularly closed. As every regularly closed set is δ-closed, $A = \{2, 3, 4\}$ is δ-closed but not θ-closed.

Example 1.2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{b, c\}, \{b\}\}$. Here $A = \{a, c\}$ is closed but not δ-closed.

Example 1.3. Let X denote the interior of the unit square S in the plane together with the points $(0, 0)$ and $(1, 0)$, i.e., $X = \text{int}S \cup \{(0, 0), (1, 0)\}$. Every point in $\text{int}S$ has the usual Euclidean neighbourhoods. The points $(0, 0)$ and $(1, 0)$ have neighbourhoods of the form U_n and V_n respectively, where

\[
U_n = \{(0, 0)\} \cup \{(x, y) : 0 < x < \frac{1}{2}, 0 < y < \frac{1}{n}\}
\]

and

\[
V_n = \{(1, 0)\} \cup \{(x, y) : \frac{1}{2} < x < 1, 0 < y < \frac{1}{n}\}.
\]

Here points $\{(0,0)\}$ and $\{(1, 0)\}$ are δ-closed but not π-closed.

2. Variants of normality

Definition 2.1. A topological space X is said to be:

(i) θ-normal [6] if every pair of disjoint closed sets one of which is θ-closed are contained in disjoint open sets.

(ii) weakly θ-normal (wθ-normal) [6] if every pair of disjoint θ-closed sets are contained in disjoint open sets.

(iii) functionally θ-normal (fθ-normal) [6] if for every pair of disjoint closed sets A and B one of which is θ-closed there exists a continuous function $f : X \to [0, 1]$ such that $f(A) = 0$ and $f(B) = 1$.

(iv) weakly functionally θ-normal (wθ-normal) [6] if for every pair of disjoint θ-closed sets A and B there exists a continuous function $f : X \to [0, 1]$ such that $f(A) = 0$ and $f(B) = 1$.

(v) Δ-normal [2] if every pair of disjoint closed sets one of which is δ-closed are contained in disjoint open sets.

(vi) weakly Δ-normal (wΔ-normal) [2] if every pair of disjoint δ-closed sets are contained in disjoint open sets.

(vii) weakly functionally Δ-normal (wΔ-normal) [2] if for every pair of disjoint δ-closed sets A and B there exists a continuous function $f : X \to [0, 1]$ such that $f(A) = 0$ and $f(B) = 1$.

(viii) almost normal [14] if every pair of disjoint closed sets one of which is regularly closed are contained in disjoint open sets.

(ix) nearly normal [10] if every pair of nonempty disjoint sets one of which is δ-closed and the other is regularly closed are contained in disjoint open sets.

(x) π-normal [5] if every two disjoint closed subsets one of which is π-closed are contained in disjoint open sets.

(xi) β-normal [1] if any two disjoint closed sets A and B of X there exist disjoint open subsets U and V of X such that $(A \cap U) = A$, $(B \cap V) = B$ and $U \cap V = \emptyset$.

The following implications are obvious from the above definitions.

```
normal $\downarrow$ $\downarrow$ $\pi$-normal $\rightarrow$ almost normal $\downarrow$ $\downarrow$
\Delta-normal $\rightarrow$ wf$\Delta$-normal $\downarrow$ $\downarrow$ nearly normal
\downarrow $\downarrow$
\downarrow $\downarrow
\downarrow $\downarrow
f_{\theta}$-normal $\rightarrow$ wf$\theta$-normal $\rightarrow$ w$\Delta$-normal
\downarrow $\downarrow$ $\downarrow$
\downarrow $\downarrow$
\downarrow $\downarrow$
\theta$-normal $\rightarrow$ w$\theta$-normal
```

None of these implication is reversible (see [2, 3, 7, 8] and Example 2.2 below).

Example 2.2. Example of a space which is nearly normal but not wΔ-normal. Let X be the union of any infinite set Y and two distinct one point sets p and q. In Modified Fort space [15] any subset of Y is open and any set containing p or q is open iff it contains all but a finite number of points in Y. Since every two disjoint regularly closed and δ-closed sets can be separated, so X is nearly normal but not wΔ-normal because disjoint δ-closed sets p and q can’t be separated by disjoint open sets.

The following example establishes that neither wθ-normality nor θ-normality imply near normality.

Example 2.3. Example of a space which is wθ-normal but not nearly normal. Let X be the set of positive integers. Define a topology on X by taking every odd integer to be open and a set $U \subset X$ is open if for every even integer $p \in U$, the predecessor and successor of p also belongs to U. The space X is vacuously θ-normal and so wθ-normal because the only non-empty θ-closed set in X is the whole space. But the space is not nearly normal because for disjoint regularly closed set $A = \{2, 3, 4\}$ and δ closed set $B = \{6, 7, 8\}$ there does not exist disjoint open sets separating them.

From the above examples it is natural to ask “Which θ-normal or wθ-normal spaces imply near normality?” The following results provide a partial answer to this question. Recall that a space X is almost regular [13] if every regularly closed set A and a point outside it can be separated by disjoint open sets.

Theorem 2.4. In an almost regular space, every θ-normal space is nearly normal.

Proof. Let X be an almost regular, θ-normal space and let A, B be two disjoint closed sets out of which A is regularly closed and B is δ-closed. Since every δ-closed set is closed, B is closed. As in an almost regular space every regularly closed set is θ-closed [8], A is θ-closed. By θ-normality of X, there exist two disjoint open sets separating A and B. Thus X is nearly normal.

The notion of wθ-regularity [4] which is a simultaneous generalization of regularity and normality is useful for answering the question raised above.

Definition 2.5. [4] A space is wθ-regular if for each θ-closed set F and each open set U containing F, there exists a θ-open set V such that $F \subset V \subset U$.

Theorem 2.6. In an almost regular wθ-regular space, every wθ-normal space is nearly normal.

Proof. Let X be an almost regular, wθ-regular and wθ-normal space. Let A and B be two disjoint closed sets out of which A is regularly closed and B is δ-closed. Since X is almost regular, by [8, Theorem 2.5], A is θ-closed. As $U = X - B$ is an open set containing the θ-closed set A, by wθ-regularity of X, there exists a θ-open set V such that $A \subset V \subset U$. Here $X - V$ is a θ-closed set containing B which is disjoint from the θ-closed set A. Thus by wθ-normality of X, A and B can be separated by two disjoint open sets. Hence the space is nearly normal.

Lemma 2.7. [10] A Hausdorff nearly normal space is almost regular.

Theorem 2.8. A Hausdorff space X is normal if it is nearly normal, β-normal and wθ-normal.

Proof. Normality implies β-normality, near normality and wθ-normality. Conversely, let X be a Hausdorff nearly normal, wθ-normal and β-normal space. Let A and B be two disjoint closed sets in X. By β-normality of X, there exist open sets U and V such that $A \cap U = A$ and $B \cap V = B$ and $U \cap V = \emptyset$. Thus U and V contains A and B respectively. Since X is a Hausdorff nearly normal space by Lemma 2.7, X is almost regular. By almost regularity, the regularly closed sets \overline{U} and \overline{V} are two disjoint θ-closed sets [8] containing A and B respectively. Hence by wθ-normality, there exist two disjoint open sets separating A and B respectively. Therefore, the space is normal.

Theorem 2.9. A Hausdorff wθ-normal space is wθ-normal if it is nearly normal.

Proof. Let X be a Hausdorff wθ-normal space which is nearly normal. Since every Hausdorff nearly normal space is almost regular [10], X is an almost regular wθ-normal space. Thus by Theorem 5.18 of [7], X is wθ-normal.

Corollary 2.10. A Hausdorff almost compact nearly normal space is wθ-normal.

Proof. Since every almost compact space is wθ-normal [6], the result is obvious.

Corollary 2.11. A Hausdorff Lindelöf nearly normal space is wθ-normal.

Proof. The prove directly follows from the result that every Lindelöf space is wθ-normal [6].

3. Subspaces and preservation under mappings

Definition 3.1. A subset A of a topological space X is said to be δ-embedded in X if every δ-closed set in the subspace topology of A is the intersection of A with a δ-closed set in X.

Theorem 3.2. A closed δ-embedded subspace of a Δ-normal space is Δ-normal.

Proof. Let X be a Δ-normal space and Y be a closed δ-embedded subspace of X. Let A and B be two disjoint closed subsets of Y out of which A is δ-closed. Since Y is δ-embedded in X there exists a δ-closed set C in X such that $A = C \cap Y$. Since intersection of two δ-closed sets is δ-closed, A is δ-closed in X which is disjoint from the closed set B of X. By Δ-normality of X, there exist disjoint open sets U and V in X containing A and B respectively. Since $U \cap Y$ and $V \cap Y$ are disjoint open sets in Y containing A and B respectively, Y is Δ-normal.

Corollary 3.3. Every clopen subspace of a Δ-normal space is Δ-normal.

Theorem 3.4. Every clopen subspace of a nearly normal space is nearly normal.
Proof. Let X be a nearly normal space and Y be a clopen subspace of X. Every δ-closed and regularly closed subsets of Y are δ-closed and regularly closed subsets in X respectively. Thus the proof is obvious.

Definition 3.5. [11] A function $f : X \rightarrow Y$ is said to be δ-continuous if for each $x \in X$ and each open neighborhood V of $f(x)$, there exists an open neighborhood U of x such that $f(intU) \subseteq int(V)$.

Definition 3.6. [11] A function $f : X \rightarrow Y$ is said to be strongly θ-continuous if for each $x \in X$ and each open neighborhood V of $f(x)$, there exists an open neighborhood U of x such that $f(U) \subseteq V$.

Definition 3.7. [12] A function $f : X \rightarrow Y$ is said to be almost-continuous if for each $x \in X$ and each open neighborhood V of $f(x)$, there exists an open neighborhood U of x such that $f(U) \subseteq int(V)$.

The following implications are obvious from definitions.

\[
\text{Strongly } \theta\text{-continuous } \implies \delta\text{-continuous } \implies \text{almost continuous.}
\]

Theorem 3.8. [11] For a function $f : X \rightarrow Y$, the following are equivalent

1. f is δ-continuous.
2. For every δ-closed set F of Y, $f^{-1}(F)$ is δ-closed in X.

Theorem 3.9. A closed strongly θ-continuous image of a Δ-normal space is Δ-normal.

Proof. Let $f : X \rightarrow Y$ be a strongly θ-continuous closed function from a Δ-normal space X onto Y. Let A and B be two disjoint closed subsets of Y out of which A is δ-closed. Then $f^{-1}(A)$ and $f^{-1}(B)$ are δ-closed and closed sets in X respectively. Since X is Δ-normal, there exist disjoint open sets U and V in X containing $f^{-1}(A)$ and $f^{-1}(B)$ respectively. Since $Y - f(X - U)$ and $Y - f(X - V)$ are disjoint open sets in Y containing A and B respectively, Y is Δ-normal.

Theorem 3.10. A closed δ-continuous image of a weakly Δ-normal space is weakly Δ-normal.

Proof. Let $f : X \rightarrow Y$ be a δ-continuous closed function from a weakly Δ-normal space X onto Y. Let A and B be two disjoint δ-closed subsets of Y. Then by Theorem 3.8, $f^{-1}(A)$ and $f^{-1}(B)$ are δ-closed sets in X respectively. Since X is weakly Δ-normal, there exist disjoint open sets U and V in X containing $f^{-1}(A)$ and $f^{-1}(B)$ respectively. Thus $Y - f(X - U)$ and $Y - f(X - V)$ are disjoint open sets in Y containing A and B. So Y is weakly Δ-normal.

Theorem 3.11. A closed strongly θ-continuous image of a nearly normal space is nearly normal.

Proof. Let $f : X \rightarrow Y$ be a strongly θ-continuous closed function from a nearly normal space X onto Y. Let A and B be two disjoint closed subsets of Y out of which A is δ-closed and B is regularly closed. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint δ-closed and regularly closed sets in X respectively. Since X is nearly normal, there exist disjoint open sets U and V in X containing $f^{-1}(A)$ and $f^{-1}(B)$ respectively. Since $Y - f(X - U)$ and $Y - f(X - V)$ are disjoint open sets in Y containing A and B. Hence Y is nearly normal.
References

[1] A. V. Arhangel’skii and L. Ludwig, On α-normal and β-normal spaces, Comment. Math. Univ. Carolin., 42(3) (2001), 507-519.
[2] A. K. Das, Δ-normal spaces and decompositions of normality, Applied Gen. Topol., 10 (2)(2009), 197-206.
[3] A. K. Das, A note on spaces between normal and κ-normal spaces, Filomat 27:1(2013), 85-88.
[4] A. K. Das, Simultaneous generalization of regularity and normality, Eur. J. Pure Appl. Math., (4)(1) (2011), 34-41.
[5] Lutfi N. Kalantan, π-normal topological spaces, Filomat 22:1 (2008), 173-181.
[6] J.K. Kohli and A.K. Das, New normality axioms and decompositions of normality, Glasnik Mat., 37 (57)(2002), 165-175.
[7] J.K. Kohli and A.K. Das, On functionally θ-normal spaces, Applied Gen. Topol., 6(1)(2005), 1-14.
[8] J.K.Kohli and A.K. Das, A class of spaces containing all generalized absolutely closed (almost compact) spaces, Applied Gen. Topol., 7 (2)(2006), 233-244.
[9] C. Kuratowski, Topologie I, Hafner, New York, 1958.
[10] M. N. Mukherjee and A. Debray, On nearly paracompact spaces and nearly full normality, Mat. Vesnik, 50 (1998), 99-104.
[11] T. Noiri, On δ-continuous functions, J. Korean Math. Soc., (16) (1980), 161-166.
[12] M. K. Singal and A. R. Singal, Almost-continuous mapping, Yokohama Math. J., 16(1968), 63-73.
[13] M.K Singal and S.P Arya, On almost regular spaces, Glasnik Mat., 4 (24)(1969), 88-99.
[14] M. K. Singal and S. P. Arya, On almost normal and almost completely regular spaces, Glasnik Mat., 5(25)(1970), 141-152.
[15] L.A. Steen and J.A.Seebach, jr., Counter Examples in Topology, Springer Verlag, New york, 1978.
[16] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 2 (78)(1968), 103-118.