Magnetic correlations in polycrystalline \(\text{Tb}_{0.15}\text{Co}_{0.85} \)

Mathias Bersweiler\(^1\), Philipp Bender\(^1\), Inma Peral\(^1\), Lucas Eichenberger\(^2\), Michel Hehn\(^2\), Vincent Polewczyk\(^3\), Sebastian Mühlbauer\(^4\) and Andreas Michels\(^1\)

\(^1\) Department of Physics and Materials Science, University of Luxembourg, 162A Avenue de la Faïencerie, L-1511, Luxembourg
\(^2\) Institut Jean Lamour (UMR CNRS 7198), Université de Lorraine, Nancy 54000, France
\(^3\) Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Trieste 34149, Italy
\(^4\) Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Garching D-85748, Germany

E-mail: mathias.bersweiler@uni.lu and andreas.michels@uni.lu

Received 5 February 2020, revised 16 April 2020
Accepted for publication 21 April 2020
Published 4 June 2020

Abstract

We investigated a polycrystalline sample of the ferrimagnetic compound \(\text{Tb}_{0.15}\text{Co}_{0.85} \) by magnetometry and small-angle neutron scattering (SANS). The magnetization curve at 300 K is characteristic for soft ferrimagnets but at 5 K the hysteresis indicates the existence of magnetic domains. The magnetic SANS signal suggests that at 300 K the Tb and Co moments are correlated over large volumes within the micrometer-sized grains with correlation lengths >100 nm. At 5 K, however, the magnetic SANS analysis reveals a reduced correlation length of around 4.5 nm, which indicates the formation of narrow magnetic domains within the ferrimagnet with one dimension being in the nm range. We attribute the observed changes of the domain structure to the temperature-dependence of the magnetic properties of the Tb sublattice.

Keywords: ferrimagnetism, magnetic domains, small-angle neutron scattering

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the last decades ferrimagnetic rare-earth transition-metal alloys (RE-TM) raised a lot of attention, since they are interesting materials for fundamental research [1–4] and promising candidates for technological applications, such as magneto-optical recording media [5], permanent magnets [6], or spintronic devices [7–10]. Previously, all-optical switching has been observed in some selected RE-TM alloys [11–13], rendering them suitable candidates for optically-controlled magnetic data storage devices. More recently, Mangin et al [14] have demonstrated that all-optical helicity-dependent switching can be extended to more complex, multilayered RE-TM systems containing for example HoFeCo, DyCo, or TbCo. Most of the studies are focused on amorphous RE-TM alloys, since their fabrication is relatively easy and their magnetic properties can be straightforwardly controlled by changing the concentrations, the nature of RE and TM, or the temperature [15, 16]. It is well established that amorphous RE-TM alloys exhibit a noncollinear spin structure, the so-called sperimagnetic structure [17, 18], where the magnetic moments are frozen into random orientations. In contrast to the amorphous alloys, in crystalline binary intermetallic ferrimagnetic RE-TM alloys, it is assumed that the magnetic moment of RE and TM are antiparallel coupled and form a ferrimagnetic collinear arrangement [19–22].

The goal of the present work is to investigate the structural and magnetic properties of a binary intermetallic Tb-Co ferrimagnetic alloy, one of the most promising candidate system for the next generation of magnetic memories based on all-optical switching [14]. In particular, we study the temperature dependence of the magnetic properties using conventional magnetometry combined with magnetic field-dependent unpolarized small-angle neutron scattering (SANS). Magnetic SANS is a very powerful technique which provides volume-averaged information about variations of the magnetization vector field on a mesoscopic length scale of ~1–300 nm [23, 24]. This method has previously been applied to study the structures of magnetic nanoparticles [25–32], soft magnetic nanocomposites [33, 34], proton domains [35–37], magnetic
steels [38–42], or Heusler-type alloys [43–46]. Here, we aim to estimate the temperature dependence of the magnetic correlation length in a polycrystalline bulk Tb-Co ferrimagnetic alloy.

2. Methods

The polycrystalline Tb$_{0.15}$Co$_{0.85}$ sample has been prepared by arc melting under a high-purity argon atmosphere starting from stoichiometric quantities of the two high-purity elements (>99.9% wt.% from Alfa Caesar). The mixture was melted in a water-cooled copper crucible and was not annealed after melting. The sample was then ground manually, compacted to a pellet, and enclosed in a silica tube under purified argon to prevent oxidation. The structural properties were determined by x-ray wide-angle diffraction of the powder using a Bruker D8 DISCOVER diffractometer with a Co-Kα radiation source. The magnetic analysis was performed on a pellet using a physical property measurement system (PPMS) from Quantum Design (from 350 K to 5 K in applied magnetic fields up to 4 T). Thermomagnetization $M(T)$ curves and hysteresis loops $M(H)$ were recorded after cooling down the sample under a constant magnetic field of 4 T. The SANS experiments were also performed on a circular pellet, in this case with a diameter of 8 mm and a thickness of 1.2 ± 0.1 mm. The neutron experiments were performed at the instrument SANS-1 at the Heinz–Maier–Leibnitz Zentrum (MLZ), Garching, Germany [47]. The measurements were done using an unpolarized incident neutron beam with a mean wavelength of $\lambda = 4.51$ Å and a wavelength broadening of $\Delta \lambda / \lambda = 10\%$ (FWHM). The measurements were conducted at room (300 K) and low temperature (5 K) and within a q-range of 0.06 nm$^{-1}$ ≤ q ≤ 3.0 nm$^{-1}$. A magnetic field H_0 was applied perpendicular to the incident neutron beam ($H_0 \perp k_0$). Neutron data were recorded at the maximum field available (4 T) and then in the remanent state (0 T). The neutron-data reduction (correction for background scattering, sample transmission, and detector efficiency) was performed using the GRASP software package [48].

In the neutron data analysis (see below), the nuclear SANS cross section is discussed when the total (nuclear + magnetic) SANS cross section at the highest field (near to saturation) is subtracted from the total cross section at a lower field. This procedure assumes that the nuclear SANS cross section is independent of the applied magnetic field. Therefore, it is useful to explicitly display the total and the purely magnetic (difference) SANS cross sections.

When the applied magnetic field is perpendicular to the incident neutron beam ($H_0 \perp k_0$), the elastic total (nuclear + magnetic) unpolarized SANS cross section $d\Sigma_{\text{tot}}/d\Omega$ and the purely magnetic SANS cross section $d\Sigma_{\text{m}}/d\Omega$ are given as:

$$\frac{d\Sigma_{\text{m}}}{d\Omega}(q) = \frac{8\pi^3}{V} \frac{b_H^2}{\Phi} \left(\frac{\Delta|\tilde{M}_1|^2 + |\tilde{M}_2|^2 \cos^2(\theta) + |\tilde{M}_2|^2 \sin^2(\theta)}{-(\tilde{M}_1 M'_2 + \tilde{M}_2 M'_1) \sin(\theta) \cos(\theta)} \right)$$

where V is the scattering volume, $b_H = 2.91 \times 10^8$ Å$^{-1}$ m$^{-1}$ relates the atomic magnetic moment to the atomic magnetic scattering length, $N(q)$ and $M(q) = [M_1(q), M_2(q), M_3(q)]$ represent the Fourier transforms of the nuclear scattering length density $N(r)$ and of the magnetization vector field $M(r)$, respectively, θ specifies the angle between H_0 and $q \equiv q[0, \sin(\theta), \cos(\theta)]$ in the small-angle approximation, and the asterisks ‘∗’ denote the complex conjugated quantities. For small-angle scattering the component of the scattering vector along the incident neutron beam, here q_z, is smaller than the other two components, so that only correlations in the plane perpendicular to the incoming neutron beam are probed. The Δ’s in equation (2) represent the difference between the Fourier components at a certain applied field and the highest field of 4 T, which is subtracted in the data analysis. More details about the magnetic SANS technique can be found in [23, 49].

3. Results

3.1. XRD and SEM

Figure 1 shows the x-ray diffraction results and displays scanning electron microscopy (SEM) images of the powder. The SEM images show that the primary particles (i.e. grains) are several µm in size. The XRD analysis confirms that Tb$_{0.15}$Co$_{0.85}$ crystallizes in the hexagonal CaCu$_5$ structure-type with the space group P6/mmm, indicating a pure single phase TbCo$_5$. This is expected from the hypothetical phase diagram of Tb$_x$Co$_{1−x}$, and for a composition of $x = 0.15$ [50]. Moreover, the XRD pattern exhibits no impurity peaks, which confirms the high-quality synthesis of the Tb-Co alloy by arc melting. The lattice-parameter values a and c were determined by the Le Bail fit method (LBF) implemented in the Fullprof software [51]. The values obtained from the XRD refinement ($a \approx 0.493$ nm and $c \approx 0.401$ nm) are consistent with the values typically obtained in TbCo$_5$ alloy [50, 52]. Furthermore, no additional broadening of the diffraction peaks (apart from instrumental broadening) are observed which verifies that the crystallites are at least 100 nm in size.

3.2. Magnetometry

Figure 2(a) shows the magnetization curves at 300 K and 5 K. At 300 K, the measured hysteresis loop is similar to that expected for a soft polycrystalline ferrimagnet with randomly distributed anisotropy axis. By cooling down to 5 K, the magnetization curve significantly changes, namely, the magnetization is strongly reduced over the whole field range as compared to 300 K, and the shape of the hysteresis is distinctly different.
The characteristic shape of the hysteresis measured at 5 K (zoom in figure 2(b)) indicates that the reversal becomes dominated by the nucleation (i.e. the jump of \(M \) at small reversal fields) and propagation of magnetic domains (i.e. the shearing of the hysteresis at intermediate fields). In fact, the magnetization curve is qualitatively similar to that obtained in synthetic antiferromagnetic magnetic systems whose field reversal behavior has been correlated to the collective propagation of magnetic stripe domains (see figure 3(a) in [53]).

The temperature dependence of the total magnetization, measured under a cooling-field of 4 T, is displayed in figure 2(c). By decreasing the temperature the total magnetization decreases, as expected by considering the negative exchange coupling between the Co and Tb sublattices (ferromagnetic) and the temperature dependences of the Co and Tb magnetic moments within the TbCo\(_5\) crystal structure. As shown in [54], in case of Tb-Co alloys having a TbCo\(_5\) structure, the magnetization of the Co sublattice remains roughly constant over the temperature range 2–400 K, whereas the magnetization of the Tb sublattice increases significantly with decreasing temperature, which consequently results in a reduction of the total magnetization.

3.3. Magnetic small-angle neutron scattering

Figures 3(a) and (b) display the two dimensional (2D) total (i.e. nuclear + magnetic) SANS cross sections at 300 K and at 5 K, respectively, while figure 4 features the corresponding (over 2\(\pi \)) azimuthally-averaged 1D SANS cross sections. As can be seen, the total 2D SANS cross sections \(d\Sigma/d\Omega \) are only weakly field-dependent and isotropic, which suggests the dominance of the isotropic nuclear scattering contribution. According to magnetometry (see figure 2(a)), the sample is nearly magnetically saturated at a field of 4 T for both temperatures. Therefore, assuming a field-independent and isotropic nuclear SANS cross section \(d\Sigma_{\text{nuc}}/d\Omega \), the 1D sector average of the total SANS cross section parallel to the applied field (\(q//H_\text{a} \)) at 4 T is a good approximation for the nuclear SANS cross section \(d\Sigma_{\text{nuc}}/d\Omega \) (compare equation (1)). The in this way estimated 1D \(d\Sigma_{\text{nuc}}/d\Omega \) (red filled circles in figure 5) exhibit an asymptotic \(q^{-3} \) Porod behavior at the smallest momentum transfers. This indicates scattering due to large-scale structures (e.g. grains or pores), which lie outside of the experimentally accessible \(q \)-range (>2\(\pi /q_{\text{min}} \)) \(\approx 100 \) nm. This is expected for the studied sample that consists of \(\mu \)m sized grains (compare the results of the XRD analysis in figure 1).

The 2D magnetic SANS cross section \(d\Sigma_{M}/d\Omega \) in the remanent state at both temperatures (compare equation (2)) is determined by subtracting the 4 T data from the measurements at zero field. This data reduction procedure has already been used to extract the purely magnetic SANS cross section of nanoparticle systems [55, 56]. The obtained 2D \(d\Sigma_{M}/d\Omega \) are displayed in figures 3(c) and (d) for 300 K and 5 K, respectively. With reference to equation (2) it is reemphasized that the 2D magnetic cross sections \(d\Sigma_{M}/d\Omega \) contain in the sector perpendicular to the field (vertical sector) the difference of \(M_r(q) \) at zero field and at 4 T. On the other hand, the sector average parallel to the field contains the corresponding differences between the transverse magnetization Fourier coefficients \(M_t(q) \) and \(M_t(q) \) at zero field and at 4 T. Thus, analysis of this sector allows to access the transversal magnetic correlation lengths in the remanent state. The 1D magnetic cross sections at 300 K and 5 K, which are obtained by integration along the field direction over an angular range of \(\pm 20^\circ \), are displayed in figure 5. At 300 K, the \(q \)-dependence of \(d\Sigma_{M}/d\Omega \) is similar to that obtained for \(d\Sigma_{\text{nuc}}/d\Omega \) \(\propto q^{-3} \) (at the smallest momentum transfers). This suggests the presence of large magnetic spin-correlation lengths (\(l_C > 100 \) nm), lying outside of the measured \(q \)-range. By contrast, at 5 K, a deviation from the \(q^{-4} \) dependence can be discerned below 0.2 nm\(^{-1}\). This \(q \)-dependence can be
Figure 3. (a), (b) Experimental two-dimensional (2D) total (nuclear + magnetic) unpolarized SANS cross sections \(d\Sigma/d\Omega\) measured at 300 K and 5 K, respectively. (c), (d) Purely magnetic 2D SANS cross sections \(d\Sigma_M/d\Omega\) measured at 300 K and 5 K, respectively. The purely magnetic 2D SANS cross sections in the remanent state were obtained by subtracting the total scattering at the (near) saturation field of 4 T from the data at \(H = 0\) T. The applied magnetic field \(H_0\) is horizontal in the plane of the detector (\(H_0 \perp k_0\)). Note that the \(d\Sigma/d\Omega\) and \(d\Sigma_M/d\Omega\) scales are plotted in polar coordinates (\(q\) in nm\(^{-1}\), \(\theta\) in degree, and the intensity in cts/exposure time).

Figure 4. (a), (b) Azimuthally-averaged 1D total SANS cross sections \(d\Sigma/d\Omega\) as a function of the momentum transfer \(q\) and at selected applied-field values (see insets) (log-log scale) at 300 K and 5 K, respectively. The error bars of \(d\Sigma/d\Omega\) are smaller than the data point size.

Figure 5. Red filled circles: nuclear 1D SANS cross section \(d\Sigma_{\text{nuc}}/d\Omega\) as a function of momentum transfer \(q\) at 300 K and 5 K, respectively. The radially-averaged 1D magnetic SANS cross section \(d\Sigma_M/d\Omega\) along the field direction at 300 K (white filled squares) and at 5 K (blue filled squares). Red dashed line power law \(d\Sigma_{\text{nuc}}/d\Omega \propto q^{-4}\). Blue solid line: Lorentzian-squared fit of the transverse scattering contribution at 5 K to determine the magnetic transverse correlation length \(l_C\). The \(d\Sigma_{\text{nuc}}/d\Omega\) was determined by \(\pm 10^\circ\) horizontal sector averages (\(q \parallel H_0\)) of the total \(d\Sigma/d\Omega\) at \(\mu_0H_0 = 4\) T and \(T = 300\) K. The radially-averaged 1D magnetic SANS cross section was determined by \(\pm 20^\circ\) horizontal sector averages (\(q \parallel H_0\)) of the 2D magnetic SANS cross section at the remanent state taken from figure 3. Note: the magnetic SANS cross section intensities at 300 K and 5 K have been rescaled to the nuclear 1D SANS cross section intensity for better comparison. (log-log scale).

Described using a Lorentzian-squared function (blue solid line in figure 5) from which an estimate for the transversal magnetic correlation length of \(l_C = 4.5 \pm 0.3\) nm is obtained. As discussed by Hellman et al [57], a Lorentzian-squared term in magnetic SANS data may be attributed to meandering domain walls with \(l_C\) being a measure for the domain size. The magnetization data at 5 K (figure 2(a)) together with the estimated nanoscale transversal correlation length are compatible with this result.
4. Discussion

We surmise that the formation of narrow magnetic domains observed at 5 K is connected to the temperature dependence of the magnetic anisotropy in TbCo$_5$. The magnetic anisotropy of RE-TM systems is determined by the magnetic anisotropy of both sublattices (here the Tb and Co sublattices). In [54], it could be shown that the magnetic properties of the Co sublattice barely change within the temperature range 300–5 K. Therefore, it can be assumed that the temperature-dependency of the magnetic properties of TbCo$_5$ is dominated by the one of the Tb sublattice. The magnetic anisotropy of the Tb sublattice depends on the inter-sublattice exchange energy and on the easy-magnetization direction [58], which are both very sensitive regarding temperature. The magnetization of the Tb sublattice significantly increases with decreasing temperature [54], so that it can be assumed that also the magnetic anisotropy constant K increases accordingly [59]. An increase of K favors the formation of narrow domain walls, since the domain-wall width δ_w is proportional to $1/\sqrt{K}$ [60]. As reported for Tb$_2$Co$_{17}$ [61], narrow domain walls are difficult to move and thus may qualitatively explain the observation of narrow domains at low temperature in TbCo$_5$. At room temperature, on the other hand, the magnetic anisotropy of Tb is expected to be weak due to the increased thermal fluctuation of the magnetic moments of the Tb sublattice and, thus, δ_w is expected to become larger than at 5 K (the temperature dependence of the magnetic anisotropy in TbCo$_{5.1}$ suggests that K can vanish around 300 K [62]). Therefore, at 300 K, the system may rather favor a correlated single-domain structure within the grains. This feature qualitatively explains the soft ferrimagnetic behavior of the magnetization and the observation of a large spin-correlation length by magnetic SANS, lying outside of the measured q-range at room temperature. Further neutron studies, for instance, magnetic-field-dependent polarized SANS and very small-angle neutron scattering (providing access to lower momentum transfers) are required to shed light on the precise nature of the observed correlation lengths: In agreement with previous neutron work [57], we interpreted the origin of the correlation lengths with the domain size, although it has to be considered that the correlation length could also be attributed to the domain walls.

5. Conclusion

To summarize, we employed magnetometry and unpolarized SANS to investigate the structural and magnetic properties of polycrystalline samples of the ferrimagnetic alloy Tb$_{0.15}$Co$_{0.85}$. The XRD analysis confirms the high quality of the synthesis with a single phase TbCo$_5$ as expected for this composition. The magnetometry experiments suggest a reversal of the magnetization by rotation at 300 K, whereas at 5 K the characteristic shape of the hysteresis indicates the nucleation and propagation of magnetic domains. From the unpolarized SANS measurements, the purely magnetic SANS cross sections in the remanent state were determined by subtracting the scattering patterns measured at a large magnetic field of 4 T. The 1D magnetic SANS cross section parallel to the applied field suggests that at 300 K both the Co and Tb moments are correlated over large distances with correlation lengths of at least 100 nm. At 5 K, on the other hand, analysis of the magnetic SANS signal in terms of a Lorentzian-squared scattering function reveals a reduced correlation length of around 4.5 nm. This result in combination with the magnetization curve indicates the formation of domains within the ferrimagnet with one dimension being in the nm range. Finally, we relate our results to the temperature dependence of the magnetic anisotropy of TbCo$_5$, which is dominated by the Tb sublattice for temperatures below 300 K.

Acknowledgments

The authors acknowledge the Heinz Maier-Leibnitz Zentrum for provision of neutron beamtime. We also thank the CC Magnetism and CC X-Gamma of the Institut Jean Lamour (Université de Lorraine) for technical support regarding the magnetometry and XRD experiments. P B and A M acknowledge financial support from the National Research Fund of Luxembourg (CORE SANS4NCC grant).

ORCID iDs

Mathias Bersweiler https://orcid.org/0000-0002-8641-3337
Philipp Bender https://orcid.org/0000-0002-2492-3956
Inma Peral https://orcid.org/0000-0002-6994-1277
Lucas Eichenberger https://orcid.org/0000-0001-7310-2153
Michel Huhn https://orcid.org/0000-0002-4240-5925
Vincent Polewczyk https://orcid.org/0000-0003-0932-6376
Andreas Michels https://orcid.org/0000-0002-2786-295X

References

[1] Kim D H et al 2019 Phys. Rev. Lett. 122 127203
[2] Agui A, Harako A, Shibayama A, Haishi K, Tsuji N, Liu X, Ma C and Sakurai H 2019 J. Magn. Magn. Mater. 484 207
[3] Haltz E, Sampaio J, Wei R, Dumont Y and Mougin A 2019 Phys. Rev. B 99 104413
[4] Kim K J et al 2017 Nat. Mater. 16 1187
[5] Luborsky F E 1986 Mater. Res. Soc. Symp. Proc. 80 375
[6] Strnat K, Hoffer G, Olson J, Ostertag W and Becker J J 1967 J. Appl. Phys. 38 1001
[7] Jiang X, Gao L, Sun J Z and Parkin S S P 2006 Phys. Rev. Lett. 97 217202
[8] Woo S et al 2018 Nat. Commun. 9 959
[9] Woo S et al 2018 Nat. Electron. 1 288
[10] Bersweiler M, Lacour D, Dumesnil K, Montaigne F and Hahn M 2015 Phys. Rev. B 92 224431
[11] Stanciu C D, Kimel A V, Hansteen F, Tsukamoto A, Itoh A, Kirilyuk A and Rasing T 2006 Phys. Rev. B 73 220402(R)
[12] Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A and Rasing T 2007 Phys. Rev. Lett. 99 047601
[13] Allebrant S, Gottwald M, Hehn M, Steil D, Cinchetti M, Lacour D, Fullerton E E, Aeschlimann M and Mangin S 2012 Appl. Phys. Lett. 101 162408
[14] Mangin S et al 2014 Nat. Mater. 13 286
[15] Mimura Y, Inamura N, Kobayashi T, Okada A and Kushiro Y 1978 J. Appl. Phys. 49 1208
[16] Hansen P, Clausen C, Much G, Rosenkranz M and WüIter K 1989 J. Appl. Phys. 66 756
[17] Coey J M D, Chappert J, Rebourllet J P and Wang T S 1976 Phys. Rev. Lett. 36 1061
[18] Coey J M D 1978 J. Appl. Phys. 49 1646
[19] Nesbit E A, Wernick J H and Corenzwit E 1959 J. Appl. Phys. 30 365
[20] Nesbit E A, Williams H J, Wernick J H and Sherwood R C 1961 J. Appl. Phys. 32 S342
[21] Cherry L V and Wallace W E 1962 J. Appl. Phys. 33 1515
[22] Ross J W and Crangle J 1964 Phys. Rev. 133 A509
[23] Michels A and Phys J 2014 Condens. Phys.: Condens. Matter 26 383201
[24] Mühlbauer S et al 2019 Rev. Mod. Phys. 91 010004
[25] Disch S, Weterskog E, Hermann K P, Wiedemann A, Vaino U, Salazar-Alvarez G, Bergström L and Brückelt T 2012 New J. Phys. 14 013025
[26] Günther A, Bick J-P, Sazzy P, Honecker D, Dewhurst C D, Keiderling U, Feoktistov A V, Tschöpe A, Birringer R and Michels A 2014 J. Appl. Crystallogr. 47 992
[27] Bender P, Günther A, Honecker D, Wiedemann A, Disch S, Tschöpe A, Michels A and Birringer R 2015 Nanoscale 7 17122
[28] Bender P et al 2018 Phys. Rev. B 98 224420
[29] Oberdick S D et al 2018 Sci. Rep. 8 3425
[30] Iijin Y, Krycka K L, Hunt-Isaak E, Han P, Hsieh J, Borchers J A, Rhyne J J, Oberdick S D, Abdelgawad A and Majetich S A 2019 Phys. Rev. B 99 094421
[31] Oba Y, Shinohara T, Oku T, Suzuki J I, Ohnuma M and Sato T 2009 J. Phys. Soc. Japan 78 044711
[32] Oka T et al 2009 Phys. B 404 2575
[33] Ito N, Michels A, Kohlbrecher J, Garitaonandia J S, Suzuki K and Cashion J D 2007 J. Magn. Magn. Mater. 316 458
[34] Saranu S, Grob A, Weissmüller J and Herr U 2008 Phys. Status Solidi Appl. Mater. Sci. 205 1774
[35] Van Den Brandt B et al 2006 Eur. Phys. J. B 49 157
[36] Aswal V K, van den Brandt B, Haute P, Kohlbrecher J, Konter J A, Michels A, Piegsa F M, Stahn J, Van Petegem S and Zimmer O 2008 Nucl. Instrum. Methods Phys. Res. Sect. A 586 86
[37] Noda Y, Kiouzmiti S, Masui T, Mashita R, Kishimoto H, Yamaguchi D, Kumada T, Takata S, Ohishi K and Suzuki J 2016 J. Appl. Crystallogr. 49 2036
[38] Bischof M, Staron P, Michels A, Granitzer P, Rumpf K, Leitner H, Scheu C and Clemens H 2007 Acta Mater. 55 2637
[39] Bergner F, Pareige C, Kuksenko V, Malerba L, Pareige P, Ulbricht A and Wagner A 2013 J. Nucl. Mater. 442 463
[40] Pareja R, Parente P, Muñoz A, Radulescu A and De Castro V 2015 Philos. Mag. 95 2450
[41] Shu S, Wirth B D, Wells P B, Morgan D D and Odette G R 2018 Acta Mater. 146 237
[42] Oba Y, Morooko S, Ohishi K, Sato N, Inoue R, Adachi C, Suzuki J I, Tschühiyama T, Gilbert E P and Sugiyama M 2016 J. Appl. Crystallogr. 49 1659
[43] Bhatti K P, El-Khatib S, Srivastava V, James R D and Leighton C 2012 Phys. Rev. B 85 134450
[44] Runov V V, Chernenkov Y P, Runova M K, Gavrilyuk V G, Glavatska N I, Goukasov A G, Kolledov V V, Shavrov V G and Khoválo V V 2006 J. Exp. Theor. Phys. 102 102
[45] Benacchio G et al 2019 Phys. Rev. B 99 184422
[46] Titov I, Barbieri M, Bender P, Perai L, Kohlbrecher J, Saito K, Pipich V, Yano M and Michels A 2019 Phys. Rev. Mater. 3 84410
[47] Mühlbauer S, Heinemann A, Wilhelm A, Löstern A, Defendi I, Schreyer A, Petry W and Gilles R 2016 Nucl. Inst. Methods Phys. Res. A 832 297
[48] Dewhurst C D 2018 Graphical reduction and analysis SANS program for Matlab (www.ill.eu/users/support-labs-infrastructure/software-scientific-tools/grasp/)
[49] Honecker D and Michels A 2013 Phys. Rev. B 87 224426
[50] Predel B 1993 Ca-Cd—Co-Zr Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys ed O Madelung (Berlin: Springer) pp 1–3
[51] Rodríguez-Carvajal J 1993 Phys. B 192 55
[52] Andreev A V and Zadvorkin S M 1991 Phys. B 172 517
[53] Hellwig O, Berger A, Kortright J B and Fullerton E E 2007 J. Magn. Magn. Mater. 319 13
[54] Lemaire R and Schweizer J 1967 J. Phys. 28 216
[55] Bersweiler M, Bender P, Vivas L G, Albino M, Petrecca M, Mühlbauer S, Erokhin S, Berkov D, Sangregorio C and Michels A 2019 Phys. Rev. B 100 144434
[56] Bick J P et al 2013 Appl. Phys. Lett. 102 022415
[57] Hellman F, Shapiro A L, Abarra E N, Robinson R A, Hjelm R P, Seeger P A, Rhyne J J and Suzuki J I 1999 Phys. Rev. B 59 11408
[58] Kaelee V V, Chuev V V, Pibogov A N and Sidoeov S K 1983 Phys. Status Solidi 79 57
[59] Du Trémolet de Lacheiserie É, Gignoux D and Schlenker M 2002 Magnetism: Materials and Applications vols 1 and 2 (Berlin: Springer)
[60] Chikazumi S 1964 Physics of Magnetism (New York: Wiley)
[61] Kou X C, Zhao T S, Grössinger R and De Boer F R 1992 Phys. Rev. B 46 6225
[62] Ermolenko A S 1976 IEEE Trans. Magn. 12 992