Effects of dietary supplementation of natural and fermented herbs on growth performance, nutrient digestibility, blood parameters, meat quality and fatty acid composition in growing-finishing pigs

Xin Jian Lei, Hyeok Min Yun and In Ho Kim

Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea

ABSTRACT
The present experiment was conducted to determine effects of herbs (Artemisia capillaris and Acanthopanax senticosus) in natural and fermented forms on growth performance, nutrient digestibility, blood parameters, meat quality and fatty acid composition in growing-finishing pigs. A total of 96 pigs [(Landrace × Yorkshire) × Duroc] with an average initial body weight (BW) of 25.46 ± 1.07 kg were randomly allotted into one of three dietary treatments. The dietary treatments included: (1) CON (basal diet), (2) NH (basal diet + 0.05% natural herbs) and (3) FH (basal diet + 0.05% fermented herbs). Pigs fed NH and FH diets had greater final BW than those fed CON diet (p < .05). During the whole period of the experiment, pigs fed NH and FH diets had a greater average daily gain than those fed CON diet, and the average daily feed intake in FH dietary treatment was greater than CON dietary treatment (p < .05). The FH dietary treatment had improved apparent total tract digestibility (ATTD) of dry matter compared with CON and NH dietary treatments (p < .05). The ATTD of nitrogen in NH and FH dietary treatments was greater than that in CON dietary treatment (p < .05). Moreover, fermented herbs decreased saturated fatty acids (SFA) but increased polyunsaturated fatty acids (PUFA) and PUFA to SFA ratio in Longissimus dorsi muscle. In conclusion, natural or fermented herbs improved growth performance and nutrient digestibility in growing-finishing pigs. Additionally, fermented herbs supplementation positively changed fatty acid profiles in Longissimus dorsi muscle.

ARTICLE HISTORY
Received 24 July 2017
Revised 10 December 2017
Accepted 16 January 2018

KEYWORDS
Fermentation; herb; growth performance; meat fatty acid composition; pigs

Introduction
Phytophagic feed additives have gained much attention as alternatives to antibiotic growth promoters because of the ban of antibiotic growth promoters in many countries including European Union and South Korea (Windisch et al. 2008; Salim et al. 2013; Levy 2014). Various herbs and their extracts have been used as feed additives due to their anti-oxidative effect, anti-microbial effect and growth-promoting effect (Ozer et al. 2007; Wei and Shibamoto 2007; Windisch et al. 2008; Yang et al. 2014; Hanczakowska et al. 2015). Previous studies have reported that herbs and their extracts may be included in swine diets to improve growth performance, nutrient digestibility, immune function and meat quality (Yan et al. 2011a, 2011b; Huang et al. 2012; Yan et al. 2012a; Cheng et al. 2017).

It is suggested that fermentation could enhance the bioactivity of herbs (Hussain et al. 2016). Ahmed et al. (2016) reported that microbial fermentation process improved nutritional composition of herbs (pomegranate, Ginkgo biloba and licorice) but reduced anti-nutritional factors. Jeong and Kim (2015) and Zhao et al. (2016) reported that supplementation of fermented herbs (Gynura procumbens, Rehmannia glutinosa and Scutellaria baicalensis) improved growth performance, nutrient digestibility in weaning and growing pigs. In finishing pigs, Ahmed et al. (2016) observed that back-fat thickness and thiobarbituric acid reactive substances (TBARS) of meat were decreased, whereas immune function and meat fatty acid composition were improved when fermented herbs was included in diet.

Artemisia capillaris is a traditional herb used mainly as a hepatoprotective, analgesic and antipyretic agent (Jang et al. 2014; Son et al. 2017). Additionally, A. capillaris may also has various functions against inflammation, cancer and hepatotoxicity (Hong et al. 2004; Lee et al. 2011; Feng et al. 2013). Acanthopanax senticosus is known as a powerful tonic and medicinal herb,
which has immunomodulatory, anti-oxidant and anti-inflammatory activities (Huang et al. 2011; Kim et al. 2015). Previously, several studies have shown that A. senticosus and its extract have beneficial effects on intestinal microbiota, gut morphology and growth performance in pigs (Yin et al. 2008; Fang et al. 2009; Han et al. 2014). However, there is still limited information on the influence of the fermented A. capillaries and A. senticosus in pigs. The aim of this study was to evaluate the effects of natural or fermented herbs (A. capillaries and A. senticosus) on growth performance, apparent total tract digestibility (ATTD), blood parameters, meat quality and fatty acid composition in Longissimus dorsi muscle (LM) in growing-finishing pigs.

Materials and methods

The Animal Welfare Committee of Dankook University (Cheonan, Choongnam, South Korea) approved the animal care protocol used in this experiment.

Preparation of natural and fermented herbs

The leaves of A. capillaries and the leaves and roots of A. senticosus were washed, air-dried and powdered. Then, the powdered A. capillaries and A. senticosus were mixed thoroughly (1:1, w/w) to obtain the combination of herbs (natural herbs). For solid fermentation, natural herbs were mixed with Enterococcus faecium SLB 120 at 1.0 × 10⁸ colony-forming units (cfu)/g. Thereafter, the mixture was soaked in distilled water to maintain a 40% moisture concentration. Hydrated herbs were then fermented at 37 °C. After fermentation for 72 h, the fermented samples were dried at 35 °C in a forced-air oven (model FC-610, Advantec, Toyo Seisakusho Co. Ltd., Tokyo, Japan) for 3 days and ground to pass through a 0.15 mm sieve. The natural herbs contained 876.5 g/kg DM, 212.8 g/kg crude protein, 52.0 g/kg ether extract, 2342.45 mg/kg tannic acid and 4918.36 mg/kg total phenols. Fermented herbs contained 893.6 g/kg DM, 170.5 g/kg crude protein, 57.3 g/kg ether extract, 1053.92 mg/kg tannic acid and 7562.36 mg/kg total phenols.

Experimental design, animals, housing and diets

A total of 96 pigs ([Landrace × Yorkshire] × Duroc) with an average initial body weight (BW) of 25.46 ± 1.07 kg were randomly allotted into one of the three dietary treatments with eight replicates of four pigs (two gilts and two barrows) each, according to initial BW and sex. The dietary treatments included: (1) CON (basal diet), (2) NH (basal diet +0.05% natural herbs) and (3) FH (basal diet +0.05% fermented herbs). The basal diet (Table 1) was formulated to meet or exceed the nutrient requirements recommended by NRC (2012) nutrient requirements. Experimental diets were fed in two phases including phase I (weeks 0–8) and phase II (weeks 8–16). Diets were offered in meal form throughout the experiment. All pigs were housed in an environmentally controlled room with forced ventilation and completely slatted plastic flooring. Each pen was equipped with a nipple drinker and a metal feeder. Pigs were provided with free access to drinking water and feed throughout experimental period.

Growth performance and nutrient digestibility

Individual BW and feed consumption on a pen basis were measured at the beginning of the experiment and end of week 4, 8, 12 and 16 to calculate average daily gain (ADG), average daily feed intake (ADFI) and gain/feed ratio (G/F).

To determine the ATTD of dry matter (DM), nitrogen (N), 2 g/kg of chromium oxide (Cr₂O₃) was added to the experimental diets as an indigestible marker during the last week of this experiment. At the end of the experiment, faecal samples were collected from each pen via rectal massage. Faecal samples from the same pen were pooled and mixed immediately, after

Table 1. Basal diet composition for growing-finishing pigs (as-fed basis).

Items	Phase I (weeks 0 to 8)	Phase II (weeks 8 to 16)
Ingredients, g/kg		
Corn	599.3	674.5
Soybean meal	237.5	181.4
Rice bran	50.0	50.0
Molasses	40.0	50.0
Animal fat	26.1	20.0
Rapeseed meal	20.0	–
Dicalcium phosphate	11.6	11.2
Calcium carbonate	4.4	6.8
L-lysine-HCl	3.4	2.0
α-methionine	1.0	–
Choline chloride	0.8	0.4
L-Threonine	0.9	0.2
Salt	1.5	1.5
Mineral premix	2.5	1.5
Vitamin premix	1.0	0.5
Calculated composition		
Digestible energy, MJ/kg	14.42	14.08
Analysed composition, g/kg		
Crude protein	177.2	148.0
Lysine	10.2	8.9
Calcium	7.0	7.4
Phosphorus	5.9	5.4

*Provided per kilogram of complete diet: 12.5 mg Mn (as MnO₂), 179 mg Zn (as ZnSO₄), 5 mg Cu (as CuSO₄·5H₂O), 0.5 mg I (as KI) and 0.4 mg Se (as Na₂SeO₃·5H₂O), 175 Fe (as FeSO₄·7H₂O).

*Provided per kilogram of complete diet: 4800 U vitamin A, 960 U vitamin D₃, 20 U vitamin E, 2.4 mg vitamin K₃, 4.6 mg riboflavin, 1.2 mg vitamin B₆, 13 mg pantothene acid, 23.5 mg niacin, 0.02 mg biotin.

(b)Provided per kilogram of complete diet: 4800 U vitamin A, 960 U vitamin D₃, 20 U vitamin E, 2.4 mg vitamin K₃, 4.6 mg riboflavin, 1.2 mg vitamin B₆, 13 mg pantothene acid, 23.5 mg niacin, 0.02 mg biotin.

(2) NH (basal diet +0.05% natural herbs) and (3) FH (basal diet +0.05% fermented herbs). The basal diet (Table 1) was formulated to meet or exceed the nutrient requirements recommended by NRC (2012) nutrient requirements. Experimental diets were fed in two phases including phase I (weeks 0–8) and phase II (weeks 8–16). Diets were offered in meal form throughout the experiment. All pigs were housed in an environmentally controlled room with forced ventilation and completely slatted plastic flooring. Each pen was equipped with a nipple drinker and a metal feeder. Pigs were provided with free access to drinking water and feed throughout experimental period.
which samples were stored at −20 ºC until subsequent analysis were conducted. Faecal samples were dried at 60 ºC for 72 h. After that, faecal and feed samples were finely ground so that they could pass through a 1-mm screen for analysis of DM (method 930.15) and N (method 984.13) using the AOAC (2007) procedures. Chromium was analysed via UV absorption spectrophotometry (UV-1201, Shimadzu Corp., Kyoto, Japan), according to the method described by Kauffman et al. (1986). The ATTD was then calculated using the following formula:

$$\text{ATTD(\%)} = \left[1 - \left(\frac{\text{Nd} \times \text{Cd}}{\text{Nf} \times \text{Cf}}\right)\right] \times 100,$$

where Nf = nutrient concentration in faeces (% DM), Nd = nutrient concentration in diet (% DM), Cd = chromium concentration in diet (% DM) and Cf = chromium concentration in faeces (% DM).

Blood parameters

At the beginning and end of the study, 16 healthy pigs (two pigs per pen) were randomly chosen from each treatment to collect blood samples via jugular venipuncture. Blood samples were collected into both non-heparinised tubes (5 mL) and vacuum tubes (5 mL) containing K3EDTA (Becton Dickinson Vacutainer Systems, Franklin Lakes, NJ) to obtain serum and whole blood, respectively. White blood cells (WBC), red blood cells (RBC) and lymphocyte concentrations in the whole blood were determined using an automatic blood analyser (ADVIA 120, Bayer, NY). One-half blood sample was centrifuged at 3000 × g for 15 min at 4 ºC to separate serum. The serum insulin-like growth factor I (IGF-I), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were assessed using commercially available ELISA kits (Quantikine, R&D Systems, Minneapolis, MN) according to the manufacturer’s instructions. Superoxide dismutase (SOD), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in serum were determined using commercial kits (Cell Biolabs, Inc. San Diego, CA) following the instructions.

Meat quality

At the end of the experiment, all pigs were slaughtered at a local commercial slaughterhouse. Following exsanguinations and evisceration, carcases were split down the midline. At 45 min post mortem, backfat thickness (between the third and fourth last ribs level) were measured using a real-time ultrasound instrument (Piglot 105; SFK Technology, Herlev, Denmark). Carcases were chilled at 2 ºC for 24 h and samples of LM were removed between the 10th and 11th ribs from the right side of the carcase. For meat quality, LM samples were thawed at room temperature before evaluation. Subjective meat colour, marbling and firmness scores were evaluated according to National Pork Producers Council (1991) standards. Immediately after the subjective tests were conducted, the lightness, redness and yellowness values were measured at three locations on the surface of each sample (Model CR-410 Chromameter, Konica Minolta Sensing Inc., Osaka, Japan). At the same time, duplicate pH values of each sample were directly measured using a pH metre (Fisher Scientific, Pittsburgh, PA). The water-holding capacity (WHC) was measured in accordance with the methods described by Kauffman et al. (1986). Briefly, a 0.3 g sample was pressed at 3000 × g for 3 min at 26 ºC on a 125-mm-diameter piece of filter paper. The areas of the pressed sample and the expressed moisture were delineated and then determined using a digitising area-line sensor (MT-10S, M.T. Precision Co. Ltd., Tokyo, Japan). The ratio of water:meat area was then calculated, giving a measure of WHC (a smaller ratio indicates increased WHC). Longissimus muscle area was measured by tracing the LM surface at the 10th rib, which was also conducted using the afore-mentioned digitising area-line sensor. Drip loss was measured using approximately 2 g of meat sample according to the plastic bag method described by Honikel (1998). Cook loss was determined as described previously by Sullivan et al. (2007).

The TBARS were determined using method described by Witte et al. (1970). The TBARS values were expressed as milligrams of malonaldehyde per kilogram of muscle. Trichloroacetic acid solution (20% w/v) was used for the extraction. Chromium was analysed via UV absorption spectrophotometry (UV-1201, Shimadzu Corp., Kyoto, Japan).

Fatty acid content

Lipid from LM was extracted with hexane/isopropanol (3:2 v/v). Fatty acids were converted into methyl esters. Briefly, 0.5 mL of toluene and 2 mL of 5% KOH-MeOH were added to the lipid. Samples were vortex-mixed and heated at 70 ºC for 8 min. After cooling down in cold water, 2 mL of 14% BF3-MeOH was added to the sample. After heating at 70 ºC for another 8 min, samples were cooled down with cold water. After that, 3 mL of 5% NaCl was added to the samples. After mixing well, 5 mL of distilled water and 0.5 mL of hexane were added to the samples to extract fatty acid methyl esters (FAMEs). The mixture
was vortexed and centrifuged at 3000 \times g for 5 min. The upper phase was collected and dried with sodium sulphate. Samples were analysed for total fatty acids using a HP5890 gas chromatograph with a flame ionisation detector (Hewlett Packard 5890 Series II, Hewlett Packard, Palo Alto, CA). The FAMEs were separated using a Supelcowax-10 fused silica capillary column (100 m 0.32 mm i.d., 0.25 μm film thickness; Supelco, Inc., Bellefonte, PA) at helium flow rate of 1.2 mL/min. Oven temperature was increased from 220 to 240 °C at the rate of 2 °C/min. Temperatures of the injector and detector were at 240 °C and 250 °C, respectively. One microlitre of sample was injected into the column in split mode (50:1). The peak of fatty acids was identified and quantified by comparing to the retention time and peak area of each fatty acid standard (Sigma, St. Louis, MO). Fatty acid content was expressed as percentage of total fatty acids. The recovery of methylated fatty acids compared to the internal standard was higher than 80%.

Statistical analysis

Data were statistically analysed using GLM procedure of SAS (SAS Institute 1996) with pen as experimental unit. Differences among treatments were determined using Tukey’s range test. Results are presented as means with their standard errors. Probability level less than .05 was considered as statistically significant.

Results

Growth performance

The growth performance of pigs fed diets supplemented with herbs in natural and fermented forms are presented in Table 2. At the end of week 8, pigs fed NH diet exhibited higher BW than those fed CON diet \((p < .05) \). Pigs fed NH and FH diets had increased final BW compared with those fed CON diet \((p < .05) \). The ADG and ADFI were higher for NH and FH dietary treatments compared with CON dietary treatment during weeks 4 to 8 \((p < .05) \). During weeks 12 to 16 and 0 to 16, Pigs fed FH diet had increased ADFI compared with those fed CON diet \((p < .05) \). Additionally, during weeks 0 to 16, the ADG of pigs in NH and FH dietary treatments was greater than that of pigs fed CON dietary treatment \((p < .05) \). There were no significant differences on growth performance among dietary treatments during weeks 0 to 4 and 8 to 12 of the experiment \((p > .05) \). The G/F showed no significant differences among dietary treatments throughout the experiment \((p > .05) \).

Dietary treatments	CON	NH	FH	SEM	\(p \) value	
Body weight, kg						
Initial	25.34	25.62	25.51	0.07	.985	
Week 4	44.79	45.87	44.52	0.77	.890	
Week 8	63.95\(^{b}\)	67.29\(^{a}\)	66.28\(^{ab}\)	1.16	.001	
Week 12	83.43	84.92	90.13	2.28	.075	
Final	102.87\(^{a}\)	109.38\(^{b}\)	113.27\(^{c}\)	2.15	.020	
Weeks 0 to 4	ADG, g	695	723	679	27	.910
ADFI, g	1473	1423	1402	59	.999	
G/F	0.472	0.508	0.484	0.013	.887	
Weeks 4 to 8	ADG, g	684\(^{a}\)	765\(^{a}\)	777\(^{a}\)	26	.001
ADFI, g	1584\(^{a}\)	1950\(^{a}\)	1867\(^{a}\)	53	.002	
G/F	0.432	0.392	0.416	0.018	.099	
Weeks 8 to 12	ADG, g	696	630	852	90	.068
ADFI, g	2453	2320	2712	123	.097	
G/F	0.284	0.272	0.314	0.035	.857	
Weeks 12 to 16	ADG, g	694	873	827	73	.098
ADFI, g	3169\(^{b}\)	3228\(^{ab}\)	3656\(^{c}\)	143	.001	
G/F	0.219	0.270	0.226	0.022	.112	
Weeks 0 to 16	ADG, g	692\(^{a}\)	748\(^{a}\)	784\(^{a}\)	19	.002
ADFI, g	2170\(^{a}\)	2230\(^{ab}\)	2409\(^{ab}\)	61	.010	
G/F	0.319	0.335	0.325	0.006	.099	

1The dietary treatments included: (1) CON (basal diets), (2) NH (basal diets +0.05% natural herbs) and (3) FH (basal diets +0.05% fermented herbs).

Table 2. Effects of natural and fermented herbs supplementation on growth performance in growing-finishing pigs.

Items, %	Dietary treatments	CON	NH	FH	SEM	\(p \) value
Dry matter		84.60\(^{b}\)	84.46\(^{b}\)	86.95\(^{a}\)	0.96	.002
Nitrogen		82.20\(^{b}\)	85.78\(^{a}\)	86.03\(^{a}\)	1.05	.001

1The dietary treatments included: (1) CON (basal diets), (2) NH (basal diets +0.05% natural herbs) and (3) FH (basal diets +0.05% fermented herbs)

Table 3. Effects of natural and fermented herbs supplementation on nutrient digestibility in growing-finishing pigs.

1The dietary treatments included: (1) CON (basal diets), (2) NH (basal diets +0.05% natural herbs) and (3) FH (basal diets +0.05% fermented herbs).

Apparent total tract digestibility

Effects of natural and fermented herbs on ATTD were summarised in Table 3. The ATTD of DM for pigs fed FH diet was greater than that of pigs fed CON and NH diets \((p < .05) \). Compared with CON diet pigs, pigs fed NH and FH diets showed greater ATTD of N \((p < .05) \).

Blood parameters

Effects of natural and fermented herbs on blood profiles are presented in Table 4. The determined blood parameters including RBC, WBC, lymphocyte, IGF-I, TNF-α, IL-1β, IL-6, GSH-Px and SOD were unaffected by dietary treatments \((p > .05) \). However, dietary
supplementation with fermented herbs increased serum T-AOC but decreased MDA content in serum (p < .05).

Meat quality and backfat thickness

No significant effects were observed on sensory evaluation (colour, firmness and marbling), meat colour (L*, a* and b*), pH, WHC, drip loss, cooking loss, LM area, backfat thickness or TBARS (Table 5; p > .05).

Fatty acid composition in LM

Effects of dietary herbs and fermented herbs on fatty acid composition in LM are presented in Table 6. The concentration of C14:0 was decreased in FH dietary treatment compared with that in CON and NH dietary treatments (p < .05). The C18:0 and total saturated fatty acid (SFA) concentrations were lower in FH dietary treatment than those in CON dietary treatment (p < .05). FH dietary treatment had increased C18:3n-3 concentration compared with CON treatment. In addition, the polyunsaturated fatty acid (PUFA) to SFA ratio (PUFA/SFA) in FH dietary treatment was higher than that in CON and NH dietary treatments (p < .05).

Discussion

The fermentation process can improve the treatment efficacy of active ingredients and reduce the anti-nutritional effects of herbs, thereby enhancing the growth- and health-promoting properties of medicinal plants (Ahmed et al. 2016). Tannins are known to have a bitter or astringent taste which reduces palatability and hence feed intake (Jansman 1993). In this study, fermentation process reduced tannic acids concentration, which may mitigate the adverse effect of tannins present in natural herbs on feed intake. In the present study, pigs fed NH diet had increased ADG compared with those fed CON diet but there were no significant differences on ADFI and G/F during weeks 0 to 16, although numerical increases were observed. However, ADG and ADFI were increased in FH dietary treatment compared with those in CON dietary treatment during weeks 0 to 16. In agreement with our results, Yan et al. (2011a, 2011b) reported that herb extract mixture from buckwheat, thyme, curcuma, black pepper and ginger in growing pigs and herb extract from *Houttuynia cordata* or *Taraxacum officinale* in finishing pigs, improved growth performance indicated as increased ADG and ADFI but not G/F. Herb additives may improve the flavour and palatability of feed, stimulate the appetite of the animals, and then increase the feed intake (Wenk 2003; Frankic et al. 2009). Consequently, the increased feed intake may contribute to the improved ADG. However, discrepant results regarding the effects of herb additives on growth performance were reported in previous studies (Yu et al. 2017). Ahmed et al. (2016) demonstrated results regarding the effects of herb additives on feed intake. In the present study, pigs fed FH diets had increased ADG compared with those fed CON diet but there were no significant differences on ADFI and G/F during weeks 0 to 16. In agreement with our results, Yan et al. (2011a, 2011b) reported that herb extract mixture from buckwheat, thyme, curcuma, black pepper and ginger in growing pigs and herb extract from *Houttuynia cordata* or *Taraxacum officinale* in finishing pigs, improved growth performance indicated as increased ADG and ADFI but not G/F. Herb additives may improve the flavour and palatability of feed, stimulate the appetite of the animals, and then increase the feed intake (Wenk 2003; Frankic et al. 2009). Consequently, the increased feed intake may contribute to the improved ADG. However, discrepant results regarding the effects of herb additives on growth performance were reported in previous studies (Yu et al. 2017). Ahmed et al. (2016) demonstrated that dietary supplementation with herbs (pomegranate, *Gingko biloba* and licorice) in natural or fermented forms had no effects on BW and ADG, but reduced ADFI and increased G/F compared with unsupplemented diet in growing-finishing pigs. Jeong and Kim (2015) reported that no significant effect of fermented herbs combination (*G. procumbens*, *R. glutinosa*, and *S. baicalensis*) on feed intake of growing pigs with improvements on ADG and G/F. Similarly, in weaning pigs, Zhou et al. (2015) observed that dietary supplementation with fermented *G. biloba* L residues increased BW, ADG, and G/F, whereas ADFI was unaffected.
Hanczakowska et al. (2015) suggested that dietary inclusion of herbal extract mixture from *S. officinalis*, *U. dioica*, *M. officinalis* and *E. purpurea* had no significant effect on growth performance in finishing pigs. These contradictory results regarding the growth performance responses to natural, fermented, or extracted herbs may be due to different species of herbs, concentrations of herbs and processing methods of herbs (Wenk 2003; Windisch et al. 2008; Hashemi and Davoodi 2011; Costa et al. 2013; Embuscado 2015). Additionally, different physiological phases of pigs may respond differently to herb additives.

In the current experiment, the inclusion of natural herbs led to a higher ATTD of N than CON treatment at the end of the experiment. Meanwhile, the ATTD of DM and N were improved when fermented herbs were included in diets. The increased ATTD of DM and N maybe another reason for the improved growth performance in pigs fed diets supplemented with natural or fermented herbs. Similarly, Yan et al. (2012a), Jeong and Kim (2015), Zhou et al. (2015) and Zhao et al. (2016) previously observed increased ATTD of DM and N in pigs fed diets supplemented with herbs in natural or fermented forms. It is suggested that herbs may increase the activity of digestive enzymes, which may improve ATTD of DM and N (Chrubasik et al. 2005; Srinivasan 2005; Hashemi and Davoodi 2011).

Additionally, some previous studies suggested that the herbs could enhance the health status of gastrointestinal environment, thereby improve nutrient digestibility. (Benkeblia 2004; Choi et al. 2008; Yin et al. 2008; Fang et al. 2009; Seo et al. 2010; Huang et al. 2012). However, the influence of herbs on intestinal microbial population was not measured in the present study. Therefore, further studies are required to determine the effects of natural and fermented herbs on intestinal health of pigs.

Table 5. Effects of natural and fermented herbs supplementation on meat quality and backfat thickness in growing-finishing pigs.

Items	CON	NH	FH	SEM	p value
Sensory evaluation					
Color	2.00	1.94	1.84	0.14	.990
Marbling	1.78	1.75	1.81	0.13	.887
Firmness	1.72	1.50	1.63	0.10	.099
Meat colour					
Lightness (L*)	46.44	48.68	49.77	2.56	.070
Redness (a*)	16.17	15.48	15.98	1.92	.698
Yellowness (b*)	5.66	5.44	5.88	0.40	.399
pH	5.30	5.28	5.36	0.04	.549
Water holding capacity, %	50.02	50.42	50.34	2.15	.287
Drip loss, %					
Day 1	7.49	6.05	6.59	1.55	.099
Day 3	9.84	8.12	8.30	1.52	.880
Day 5	13.03	11.95	10.13	1.16	.845
Day 7	13.58	12.52	11.04	1.10	.758
Cooking loss, %	38.44	40.50	39.00	1.02	.918
Longissimus dorsi area, cm²	58.54	59.50	59.64	2.47	.090
TBARS, mg of malonaldehyde/kg	0.025	0.023	0.021	0.002	.391
Backfat thickness, mm	27.80	25.08	27.00	2.50	.070

*The dietary treatments included: (1) CON (basal diets), (2) NH (basal diets +0.05% natural herbs) and (3) FH (basal diets +0.05% fermented herbs).

Table 6. Effects of natural and fermented herbs supplementation on fatty acid composition of *Longissimus dorsi* muscle.

Items, %	CON	NH	FH	SEM	p value
C14:0	1.42	1.33	0.98	0.09	.002
C16:0	28.64	28.01	25.95	1.39	.063
C18:0	13.02	11.83	11.46	0.62	.011
C20:0	0.22	0.24	0.19	0.03	.654
Total SFA	43.30	41.41	37.58	2.16	.001
C16:1n−7	3.28	3.05	2.44	0.56	.080
C18:1n−9	34.20	37.02	39.28	1.80	.099
C20:1n−9	0.48	0.64	0.54	0.11	.091
Total MUFA	38.02	40.71	42.26	1.85	.899
C18:2n−6	9.71	9.14	9.97	0.66	.067
C20:2n−6	0.26	0.29	0.24	0.08	.091
C20:4n−6	1.50	1.56	1.75	0.15	.081
C18:3n−3	0.11	0.27	0.37	0.07	.005
C22:6n−3	3.33	3.13	4.46	2.96	.066
Total PUFA	14.91	14.39	16.79	2.48	.088
Total UFA	52.93	55.10	59.05	2.59	.100
PUFA/SFA	0.34	0.35	0.43	0.03	.019

*The dietary treatments included: (1) CON (basal diets), (2) NH (basal diets +0.05% natural herbs) and (3) FH (basal diets +0.05% fermented herbs).

MUFA: monounsaturated fatty acid; **PUFA**: polyunsaturated fatty acid; **PUFA/SFA**: PUFA to SFA ratio; **SEM**: standard error of the mean; **SFA**: saturated fatty acid; **UFA**: unsaturated fatty acid.

a,bMeans within the same row without the same superscript letter are significantly different (<.05).
Dietary supplementation with herbs may have beneficial effect on immune function of pigs (Yuan et al. 2006; Liu et al. 2011; Yeh et al. 2011; Yan et al. 2012b; Han et al. 2014). Han et al. (2012) indicated that *A. senticosus* polysaccharide increased WBC and lymphocyte concentrations in weanling pigs. Jeong and Kim (2015) found that fermented medicinal plants (*G. procumbens, R. glutinosa* and *S. baicalensis*) supplementation increased WBC concentration in growing pigs. Yan and Kim (2013) reported that dietary fermented garlic increased lymphocyte and RBC concentrations in growing pigs. However, in the present experiment, no significant differences on RBC, WBC, Lymphocyte, TNF-α, IL-1β and IL-6 concentrations were detected. In agreement with our results, Cho et al. (2012) reported that dietary supplementation with herbs (yellow ginger or hoantchy root) did not affect WBC, RBC or lymphocyte concentrations in growing-finishing pigs. In the present study, the lack of effect on WBC RBC, lymphocyte, TNF-α, IL-1β and IL-6 concentrations could be due to the maturation of pigs’ immune system in finishing phase or the low concentrations of herbs used. It is known that IGF-I may influence growth and metabolism of pigs (Hossner et al. 1997). In the current study, the concentration of IGF-I was unaffected by dietary treatments, suggesting that improved growth performance for pigs fed diets supplemented with natural or fermented herbs was not related to the concentration of IGF-I.

The T-AOC is considered to be the integrated action of all the antioxidants present in plasma and body fluids, thus providing an insight into the oxidation resistance capacity of the whole body (Ghiselli et al. 2000). MDA is one of the major final products of lipid peroxidation and is considered as a marker of oxidative stress (Lu et al. 2010). In the present study, the increased serum T-AOC activities and reduced MDA content may indicate the improvement in the antioxidant status of pigs fed diet supplemented with fermented herbs. It is suggested that herbs have strong antioxidant activity because of the presence of phenolic compounds (Wang et al. 2016). The increased phenols content in fermented herbs may help to explain the increased serum T-AOC activities and reduced MDA in pigs fed diet supplemented with fermented herbs.

Lan et al. (2017) suggested that *Astragalus membranaceus*, *Codonopsis pilosula* and allicin mixture supplementation increased meat colour and redness values but decreased lightness value of LM, although pH, WHC, drip loss, LM area, and backfat thickness were not affected. Liu et al. (2016) found that *S. baicalensis* and *Lonicera japonica* extract mixture supplementation exerted no effects on meat colour, cooking loss, drip loss, LM area and sensory evaluation of LM, whereas pH was increased and TBARS was decreased when *S. baicalensis* and *L. japonica* extract mixture was included in the diet. Hanczakowska et al. (2015) observed that herbal extract mixture (*S. officinalis*, *U. dioica*, *M. officinalis* and *E. purpurea*) had no effect on WHC, pH, lightness, redness, yellowness and TBARS values after 24 h cooling, but reduced TBARS, redness and yellowness after 5 months. However, in the present study, backfat thickness, LM area, sensory evaluation of LM, meat colour (lightness, redness and yellowness values), pH, drip loss and cooking loss were not affected by natural or fermented herbs. These inconsistent findings about meat quality may be due to the kinds of herbs used and the time of measurement.

Meat is a major source of fat in human diets. It has been demonstrated that SFA may increase cholesterol level and the risk of cardiovascular diseases (Siri-Tarino et al. 2015; Ruiz-NúñezOpens et al. 2016). However, monounsaturated fatty acids or PUFA may decrease cholesterol concentrations and exert benefit effects on human health (Richard et al. 2009; González et al. 2013). There has been a growing interest to manipulate the fatty acid composition of meat by diets (Wood et al. 2004). Zhou et al. (2013) reported that dietary supplementation of *Coptis chinensis* herb extract decreased total SFA concentration but increased total unsaturated fatty acids (UFA) concentration in LM of finishing pigs. Hanczakowska et al. (2015) observed that herbal extracts (*S. officinalis*, *U. dioica*, *M. officinalis* and *E. purpurea*) had beneficial effect on pork health-promoting properties, indicated as increased PUFA concentration and PUFA/SFA in *Longissimus thoracis* muscle. Ahmed et al. (2016) also suggested that herbs (*pomegranate + G. biloba + licorice*) in natural or fermented forms could modify the fatty acid composition in *Longissimus thoracis* muscle. They found that natural herbs reduced SFA (C20:0) level, but increased PUFA (C20:5n-3) concentration. Additionally, they observed that supplementation with fermented herbs decreased SFA (C15:0) and PUFA (C20:4n-6) and increased MUFA (C18:1 and total MUFA) and PUFA (C18:3n-3 and C20:5n-3) concentrations. In the present study, in agreement with those findings, dietary supplementation with fermented herbs reduced SFA (C14:0, C18:0, and total SFA) concentration but increased PUFA (C18:3n-3) concentration, and PUFA/SFA, although natural herbs had no effects on LM fatty acid composition. It is suggested that dietary phenolic compounds can positively modify the fatty acid composition via preventing the oxidation of unsaturated fatty acids.
(Cao et al. 2012; Ahmed et al. 2016; Hussain et al. 2016). Therefore, the changes in fatty acids composition of LM from pigs fed diet supplemented with fermented herbs may be related to the phenols in the fermented herbs. The lack of response to natural herbs on fatty acid composition was probably due to the relative low content of phenols in natural herbs. Further study is still warranted to investigate the exact mechanism of the effects of fermented herbs supplementation on fatty acid composition.

Conclusions

In conclusion, it can be concluded that supplementation with natural herbs increased growth performance and nutrient digestibility in growing-finishing pigs. Supplementation with fermented herbs enhanced growth performance, nutrient digestibility and serum antioxidant status, and positively modified fatty acid profiles in LM.

Disclosure statement

All authors have no conflicts of interest to declare. The authors alone are responsible for the content and writing of this article.

Funding

This work was carried out with the support of the “Cooperative Research Program for Agriculture Science & Technology Development [Project No. PJ012067]” and the BioGreen 21 Program [No. PJ01115902], Rural Development Administration, Republic of Korea.

Reference

Ahmed ST, Mun HS, Islam MM, Ko SY, Yang CJ. 2016. Effects of dietary natural and fermented herb combination on growth performance, carcass traits and meat quality in grower-finisher pigs. Meat Sci. 122:7–15.

AOAC. 2007. Official methods of analysis. 18th ed. Gaithersburg (MD): AOAC International.

Benkeblia N. 2004. Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). LWT-Food Sci Technol. 37:263–268.

Cao FL, Zhang XH, Yu WW, Zhao LG, Wang T. 2012. Effect of feeding fermented Ginkgo biloba leaves on growth performance, meat quality, and lipid metabolism in broilers. Poult Sci. 91:1210–1221.

Cheng C, Liu Z, Zhou Y, Wei H, Zhang X, Xia M, Deng Z, Zou Y, Jiang S, Peng J. 2017. Effect of oregano essential oil supplementation to a reduced-protein, amino acid-supplemented diet on meat quality, fatty acid composition, and oxidative stability of Longissimus thoracis muscle in growing-finishing pigs. Meat Sci. 133:103–109.

Cho JH, Zhang S, Kim IH. 2012. Effects of anti-diarrhoeal herbs on growth performance, nutrient digestibility, and meat quality in pigs. Asian-Austral J Anim Sci. 25:1595–1604.

Choi SR, You DH, Kim JY, Park CB, Ryu J, Kim DH, Eun JS. 2008. Antioxidant and antimicrobial activities of Artemisia capillaris Thunberg. Korean J Med Crop Sci. 16:112–117.

Chrubasik S, Pittler MH, Roufogalis BD. 2005. Zingiberis rhizome: a comprehensive review on the ginger effect and efficacy profiles. Phytomedicine. 12:684–701.

Costa LB, Luciano FB, Miyada VS, Gois FD. 2013. Herbal extracts and organic acids as natural feed additives in pig diets. South Afr J Anim Sci. 43:181–193.

Embuscado ME. 2015. Spices and herbs: natural sources of antioxidants – a mini review. J Funct Foods. 18:811–819.

Fang J, Yan FY, Kong XF, Ruan Z, Liu ZQ, Huang RL, Li TJ, Geng MM, Yang F, Zhang YZ, et al. 2009. Dietary supplementation with Acanthopanax senticosus extract enhances gut health in weanling piglets. Livest Sci. 123:268–275.

Feng G, Wang X, You C, Cheng X, Han Z, Zong L, Zhou C, Zhang M. 2013. Antiproliferative potential of Artemisia capillaris polysaccharide against human nasopharyngeal carcinoma cells. Carbohydr Polym. 92:1040–1045.

Frankic T, Voljc M, Salobir J, Rezar V. 2009. Use of herbs and spices and their extracts in animal nutrition. Acta Agric Slov. 94:95–102.

Ghiselli A, Serafini M, Natella F, Scaccini C. 2000. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Bio Med. 29:1106–1114.

González S, López P, Margolles A, Suárez A, Patterson AM, Cuervo A, de los Reyes-Gavilán CG, Gueimonde M. 2013. Fatty acids intake and immune parameters in the elderly. Nutr Hosp. 28:474–478.

Han J, Bian LQ, Liu XJ, Zhang F, Yang KK. 2012. Effects of dietary Acanthopanax senticosus polysaccharide on immune parameters in blood of weaner piglets. Chin J Anim Nutr. 24:2444–2449.

Han J, Bian L, Liu X, Zhang F, Zhang Y, Yu N. 2014. Effects of Acanthopanax senticosus polysaccharide supplementation on growth performance, immunity, blood parameters and expression of pro-inflammatory cytokines genes in challenged weaned piglets. Asian-Aust J Anim Sci. 27:1035–1043.

Hanczakowska E, Swiatkiewicz M, Grela ER. 2015. Effect of dietary inclusion of a herbal extract mixture and different oils on pig performance and meat quality. Meat Sci. 108:61–66.

Hashemi SR, Davoodi H. 2011. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet Res Commun. 35:169–180.

Honikel KO. 1998. Reference methods for the assessment of physical characteristic of meat. Meat Sci. 49:447–457.

Hong SH, Seo SH, Lee JH, Choi BT. 2004. The aqueous extract from Artemisia capillaris Thunb. inhibits lipopolysaccharide-induced inflammatory response through preventing NF-kappaB activation in human hepatoma cell line and rat liver. Int J Mol Med. 13:717–720.

Hossner KL, McCusker RH, Dodson MV. 1997. Insulin-like growth factors and their binding proteins in domestic animals. Anim Sci. 64:1–15.

Huang CW, Lee TT, Shih YC, Yu B. 2012. Effects of dietary supplementation of Chinese medicinal herbs on polymorphonuclear neutrophil immune activity and small intestinal morphology in weanling pigs. J Anim Physiol Anim Nutr. 96:285–294.
Huang L, Zhao H, Huang B, Zheng C, Peng W, Qin L. 2011. *Acanthopanax senticosus*: review of botany, chemistry and pharmacology. Pharmazie. 66:83–97.

Hussain A, Bose S, Wang JH, Yadav MK, Mahajan GB, Kim H. 2016. Fermentation, a feasible strategy for enhancing bio-activity of herbal medicines. Food Res Int. 81:1–16.

Jansman AJM. 1993. Tannins in feedstuffs for simple-stomached animals. Nutr Res Rev. 6:209–236.

Jang E, Shin MH, Kim KS, Kim Y, Na YC, Woo HJ, Kim Y, Lee JH, Jang JH. 2014. Anti-lipoapoptotic effect of *Artemisia capillaris* extract on free fatty acids-induced HepG2 cells. BMC Complement Altern Med. 14:253.

Jeong JS, Kim IH. 2015. Effect of probiotic bacteria-fermented medicinal plants (*Gymura procumbens*, Rehmanna glutinosa, *Scutellaria baicalensis*) as performance enhancers in growing pigs. Anim Sci J. 86:603–609.

Kauffman RG, Elkeløenboom G, Van der Wal PG, Engel B, Zaat M. 1986. A comparison of methods to estimate water-holding capacity in post-rigor porcine muscle. Meat Sci. 18:307–322.

Kim YH, Cho ML, Kim DB, Shin GH, Lee JH, Lee JS, Park SJ, Lee SJ, Shin HM, Lee OH. 2015. The antioxidant activity and their major antioxidant compounds from *Acanthopanax senticosus* and *A. koreanum*. Molecules. 20:13281–13295.

Lan RX, Park JW, Lee DW, Kim IH. 2017. Effects of *Astragalus membranaceus*, *Codonopsis pilosula* and allicin mixture on growth performance, nutrient digestibility, faecal microbial shedding, immune response and meat quality in finishing pigs. J Anim Physiol Anim Nutr. 101:1122–1129.

Lee HI, Seo KO, Yun KW, Kim MJ, Lee MK. 2011. Comparative Study of the Hepatoprotective Efficacy of *Artemisia iwayomogi* and *Artemisia capillaris* on Ethanol-Administered Mice. J Food Sci. 76:T207–T211.

Levy S. 2014. Reduced antibiotic use in livestock: how Denmark tackled resistance. Environ Health Perspect. 122:A160–A165.

Liu HW, Tong JM, Zhou DW. 2011. Utilization of Chinese herbal feed additives in animal production. Agri Sci China. 10:1262–1272.

Liu WC, Pi SH, Kim IH. 2016. Effects of *Scutellaria baicalensis* and *Lonicera japonica* extract mixture supplementation on growth performance, nutrient digestibility, blood profiles and meat quality in finishing pigs. Ital J Anim Sci. 15:446–452.

Lu T, Piao XL, Zhang Q, Wang D, Piao XS, Kim SW. 2010. Protective effects of *Forsythia suspensa* extract against oxidative stress induced by diquat in rats. Food Chem Toxicol. 48:764–770.

National Pork Producers Council. 1991. Procedures to Evaluate Market Hogs. 3rd ed. Des Moines (IA): National Pork Producers Council.

NRC. 2012. Nutrient requirements of swine. 11th Rev ed. Washington (DC): National Academy Press.

Ozer H, Sokmen M, Guluce M, Adiguzel A, Sahin F, Sokmen A, Kilic H, Baris O. 2007. Chemical composition and antimicrobial and antioxidant activities of the essential oil and methanol extract of *Hippomarathrum microcarpum* (Bleb) from Turkey. J Agri Food Chem. 55:937–942.

Richard D, Bausero P, Schneider C, Visioli F. 2009. Polyunsaturated fatty acids and cardiovascular disease. Cell Mol Life Sci. 66:3277–3288.

Ruiz-Núñez Open B, Janneke Dijck-Brouwer DA, Muskiet FAJ. 2016. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. Meat Sci. 361:20.

Salim HM, Kang HK, Akter N, Kim DW, Kim JH, Kim MJ, Na JC, Jong HB, Choi HC, Suh OS, Kim WK. 2013. Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens. Poult Sci. 92:2084–2090.

Seo KS, Jeong HJ, Yun KW. 2010. Antimicrobial activity and chemical components of two plants, *Artemisia capillaris* and *Artemisia iwayomogi*, used as Korean herbal Injin. J Ecol Env. 33:141–147.

Siri-Tarino PW, Chiu S, Bergeron N, Krauss RM. 2015. Saturated fats versus polyunsaturated fats versus carbohydrates for cardiovascular disease prevention and treatment. Annu Rev Nutr. 35:517–543.

Son HU, Lee S, Heo JC, Lee SH. 2017. The solid-state fermentation of *Artemisia capillaris* leaves with *Ganoderma lucidum* enhances the anti-inflammatory effects in a model of atopic dermatitis. Int J Mol Med. 39:1233–1241.

Srinivasan K. 2005. Spices as influencers of body metabolism: an overview of three decades of research. Food Res Int. 38:77–86.

Sullivan ZM, Honeyman MS, Gibson LR, Prusa KJ. 2007. Effects of triticate-based diets on finishing pig performance and pork quality in deep-bedded hoop barns. Meat Sci. 76:428–437.

Wang GH, Chen CY, Lin CP, Huang CL, Lin CH, Cheng CY, Chung YC. 2016. Tyrosinase inhibitory and antioxidant activities of three *bifidobacterium bifidum*-fermented herb extracts. Ind Crop Prod. 89:376–382.

Wei A, Shibamoto T. 2007. Antioxidant activities and volatile constituents of various essential oils. J Agric Food Chem. 55:1737–1742.

Wenk C. 2003. Herbs and botanicals as feed additives in monogastric animals. Asian-Aust J Anim Sci. 16:282–289.

Williams CH, David DJ, Lismaa O. 1962. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J Agr Sci. 59:381–385.

Windisch W, Schedle K, Plitzner P, Kroismayr A. 2008. Use of phytogenic products as feed additives for swine and poultry. J Anim Sci. 86:E140–E148.

Witte VC, Krause GF, Bailey ME. 1970. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J Food Sci. 35:582–585.

Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, Sheard PR, Enser M. 2004. Effects of fatty acids on meat quality: a review. Meat Sci. 66:21–32.

Yan L, Kim IH. 2013. Effects of dietary supplementation of fermented garlic powder on growth performance, apparent total tract digestibility, blood characteristics and faecal microbial concentration in weanling pigs. J Anim Physiol Anim Nutr. 97:457–464.

Yan L, Meng QW, Kim IH. 2011a. The effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics and fecal noxious gas content in growing pigs. Livest Sci. 141:143–147.

Yan L, Meng QW, Kim IH. 2011b. The effects of dietary *Houttuynia cordata* and *Taraxacum officinale* extract powder on growth performance, nutrient digestibility, blood
characteristics and meat quality in finishing pigs. Livest Sci. 141:188–193.
Yan L, Meng QW, Kim IH. 2012a. Effects of fermented garlic powder supplementation on growth performance, nutrient digestibility, blood characteristics and meat quality in growing-finishing pigs. Anim Sci J. 83:411–417.
Yan L, Meng QW, Kim IH. 2012b. Effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in weanling pigs. Livest Sci. 145:189–195.
Yang Y, Zhang Z, Li S, Ye X, Li X, He K. 2014. Synergy effects of herb extracts: pharmacokinetics and pharmacodynamic basis. Fitoterapia. 92:133–147.
Yeh HS, Weng BC, Lien TF. 2011. Effects of Chinese traditional herbal medicine complex supplementation on the growth performance, immunity and serum traits of pigs. Anim Sci J. 82:747–752.
Yin F, Yin Y, Kong X, Liu Y, He Q, Li T, Huang R, Hou Y, Shu X, Tan L, et al. 2008. Dietary supplementation with Acanthopanax senticosus extract modulates gut microflora in weaned piglets. Asian-Aust J Anim Sci. 21:1330–1338.
Yu QP, Feng DY, Xia MH, He XJ, Liu YH, Tan HZ, Zou SG, Ou XH, Zheng T, Cao Y, et al. 2017. Effects of a traditional Chinese medicine formula supplementation on growth performance, carcass characteristics, meat quality and fatty acid profiles of finishing pigs. Livest Sci. 202:135–142.
Yuan SL, Piao XS, Li DF, Kim SW, Lee HS, Guo PF. 2006. Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs. Anim Sci. 82:501–507.
Zhao P, Li H, Lei Y, Li T, Kim S, Kim I. 2016. Effect of fermented medicinal plants on growth performance, nutrient digestibility, fecal noxious gas emissions, and diarrhea score in weanling pigs. J Sci Food Agr. 96:1269–1274.
Zhou H, Wang C, Ye J, Chen H, Tao R. 2015. Effects of dietary supplementation of fermented Ginkgo biloba L. residues on growth performance, nutrient digestibility, serum biochemical parameters and immune function in weaned piglets. Anim Sci J. 86:790–799.
Zhou TX, Zhang ZF, Kim IH. 2013. Effects of dietary Coptis chinensis herb extract on growth performance, nutrient digestibility, blood characteristics and meat quality in growing-finishing pigs. Asian-Aust J Anim Sci. 26:108–115.