Virulence gene profiles and molecular genetic characteristics of diarrheagenic Escherichia coli from a hospital in western China

Dan Li1,2, Min Shen3, Ying Xu4, Chao Liu3, Wen Wang5, Jinyan Wu3, Xianmei Luo3, Xu Jia3* and Yongxin Ma1*

Abstract

Background: Diarrheagenic Escherichia coli (DEC) is one of the most important etiological agents of diarrheal diseases. In this study we investigated the prevalence, virulence gene profiles, antimicrobial resistance, and molecular genetic characteristics of DEC at a hospital in western China.

Methods: A total of 110 Escherichia coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, antimicrobial susceptibility test, pulsed-field gel electrophoresis and multilocus sequence typing were used in this study.

Results: Molecular analysis of six DEC pathotype marker genes showed that 13 of the 110 E. coli isolates (11.82%) were DEC including nine (8.18%) diffusely adherent Escherichia coli (DAEC) and four (3.64%) enteroaggregative Escherichia coli (EAEC). The adherence genes fimC and fimH were present in all DAEC and EAEC isolates. All nine DAEC isolates harbored the virulence genes fyuA and irp2 and four (44.44%) also carried the hlyA and sat genes. The virulence genes fyuA, irp2, cnf1, hlyA, and sat were found in 100%, 100%, 75%, 50%, and 50% of EAEC isolates, respectively. In addition, all DEC isolates were multidrug resistant and had high frequencies of antimicrobial resistance. Molecular genetic characterization showed that the 13 DEC isolates were divided into 11 pulsed-field gel electrophoresis patterns and 10 sequence types.

Conclusions: To the best of our knowledge, this study provides the first report of DEC, including DAEC and EAEC, in western China. Our analyses identified the virulence genes present in E. coli from a hospital indicating their role in the isolated DEC strains’ pathogenesis. At the same time, the analyses revealed, the antimicrobial resistance pattern of the DEC isolates. Thus, DAEC and EAEC among the DEC strains should be considered a significant risk to humans in western China due to their evolved pathogenicity and antimicrobial resistance pattern.

Keywords: Diarrhea, Escherichia coli, Virulence genes, Antimicrobial resistance, Molecular genetics
formation of specific types of diarrheagenic *E. coli* (DEC) [5].

DEC consist of six major pathotypes: enterohaemorrhagic *E. coli* (EHEC; e.g., Shiga toxin-producing *E. coli*, STEC), enteropathogenic *E. coli* (EPEC), enteroinvasive *E. coli* (EIEC), enterotoxigenic *E. coli* (ETEC), and diffusely adherent *E. coli* (DAEC) [5]. EAE is characterized by the presence of the transcriptional activator gene aggR and/or the serine protease precursor gene (pic) and/or the enterohemorrhagic heat stable toxin 1 (HESt) gene. The presence of Shiga toxin genes (*stx1* and *stx2*) is attributed to HEC. EIEC is characterized by the presence of the intimin gene (*aee*) and/or the bundle forming pil gene (*bfp*). The product of the *aee* gene enables attachment and effacement on intestinal epithelial cells, while *bfp* is encoded on the EPEC adherence factor (EAF) plasmid. EIEC harbors an invasion plasmid encoding several invasion genes including *ipaaH*. ETEC is defined by two toxin genes, heat labile (*elt*) and/or heat-stable (*est*). Similar to most DEC characterized, DAEC carries two F1845 fimbrial adhesion genes (*daad* and/or *daae*), which are highly conserved and probably involved in the virulence mechanism [2, 7, 8].

In DEC pathogenesis, adherence is generally the initial, prerequisite step in successful colonization of a specific host mucosal tissue and fimbriae play an important role in adherence [9–13]. The adherence genes examined in this study are all structural genes of different fimbriae. Type 1 fimbriae (encoded by *fimC* and *fimH*) bind to mannose-containing receptors on epithelial cells [14–16]. The aggregative adherence fimbria (AAF/I-AAF/V) family includes five types; *aggA*, *aafA*, *agg3A*, and *agg4A* encode aggregative adherence fimbria (AAF/I-AAF/IV), respectively [17–21], which mediate localized adherence, the aggregative (AA) pattern, and biofilm formation [22–24]. The long polar fimbriae (LPF) are encoded by the conservative fimbrial gene (*lpfa*) in some DEC strains [25, 26]. Additional adherence genes have been used to screen DEC including *sfa* (S fimbriae) and *pap* (P fimbriae) [27].

Following adhesion, DEC produces cytotoxic effects on the intestinal mucosa by secreting virulence factors, in order to induce mucosal inflammation [28–30]. Pathogenicity islands (PIs) are large regions of microbial genomes; in some species, they are present in pathogenic, but not in non-pathogenic strains [31]. The high pathogenicity island (HPI) appears to be widespread in *Enterobacteriaceae* [32–34]. The *irp2* and *fyUA* genes are important structural genes of HPI [35–37]. Another PI, known as the locus of enterocyte effacement (LEE), can induce attaching and effacing (AE) lesions [38]. LEE is organized in five operons (LEE1 to LEE5) [39–41] including the *esf*, *esco*, *escv*, and *espP* structural genes [42]. In addition to LEE, various non-LEE (Nle) effectors (encoding *nleB*, *nleE*, and *ent/expL2*) [40, 43, 44] are located outside of the LEE region [45, 46]. Nle proteins contribute to increased bacterial virulence [44].

The remaining virulence factors examined in this study have been reported in previous studies. *E. coli* strains isolated in the 1980s from intestinal or extra-intestinal infections were designated as either cytotoxic necrotizing factor type 1 (CNF1) or cytotoxic necrotizing factor type 2 (CNF2) [47–49]. In 1987, an *E. coli* strain isolated from a diarrheal patient was found to possess cytolethal distending toxin (CDT) [50]. In 1990, Watanabe et al. [51] discovered the InvE protein, which is considered as an essential factor for virulence gene expression in *Shigella sonnei*. In the 1990s, α-hemolysin (HlyA) was shown to belong to a group of pore-forming leukotoxins containing RTX repeats. HlyA is a known virulence factor in *E. coli* [52–54]. In 1998, Navarro-Garcia et al. demonstrated that Pet (plasmid encoded toxin) is a cytotoxin that modifies the cytoskeleton of enterocytes, causing rounding and cell detachment in EAE [55]. In 2001, Henderson and Nataro reported that secreted autotransporter toxin (Sat) belongs to the serine protease autotransporter subfamily of *Enterobacteriaceae* (SPATE) toxins [56]. In 2004, Paton et al. [57] revealed that some *E. coli* strains isolated from patients produced an AB2 toxin subtilase (SubAB).

DEC strains have been reported more and more frequently in diarrheal patients in different regions of China including Beijing [58], Shanghai [59], Henan Province [60], Wuhan [61], Kunming [62], Zhejiang Province [63] and Hongkong [64]. However, no data is available regarding DEC strains in western China and their virulence genes. Thus, in this study, we investigated the prevalence and characteristics of DEC at a hospital in western China.

Results

Prevalence of DEC among 110 *E. coli* strains

In order to investigate the prevalence of DEC, we categorized the clinical *E. coli* (*n* = 110) isolates into different DEC pathotypes based on the PCR results for virulence marker genes. Thirteen (11.82%) of the 110 *E. coli* strains were identified as DEC; nine (8.18%) and four (3.64%) of these 13 DEC strains were shown to be DAEC and EAE, respectively. No EPEC, EHEC, ETEC, or EIEC strains were detected in this study. These results suggest the existence of a certain incidence of DEC at this hospital in western China.

Prevalence of DAEC and EAE among DEC

Nine of the 13 DEC isolates were DAEC, giving a positive rate of 69.23% among DEC and 8.18% among the 110 *E. coli* samples. All nine DAEC isolates were *daad*-positive and *daae*-negative.
The four EAEC isolates carried the pic gene; however, the other two EAEC virulence marker genes (aggR and astA) were not detected in any of the 110 E. coli strains. The positive rate of EAEC was 30.77% in DEC and 3.64% in the 110 E. coli samples. These results suggest that DAEC was the most common of the six major pathotypes in this study, followed by EAEC.

Presence of adherence and virulence genes

All DAEC and EAEC strains were tested by PCR to detect the nine adherent genes and 18 toxin-encoding genes. As shown in Table 1 and Fig. 1, all nine DAEC strains harbored the fimC, fimH, fyuA, and irp2 genes (100%) and four (44.44%) also contained the hlyA and sat genes. Concomitantly, all four EAEC strains were positive for fimC, fimH, fyuA and irp2 (100%). The cnfI gene was identified in three (75%) EAEC strains and the hly and sat genes were both found in two (50%) of the four EAEC strains (Table 1 and Fig. 1).

All DAEC and EAEC isolates were negative for the remaining adherence and toxin-encoding genes tested (aggA, aafA, agg3A, agg4A, lpfA, sfa, pap, escF, escN, escV, espP, nleB, nleE, ent/espL2, cnf2, cdt-I, cdt-II, invE, pet, and subAB). Therefore, our data indicate that fimC, fimH, fyuA, irp2, hlyA, and sat contribute to DAEC pathogenesis, while fimC, fimH, fyuA, irp2, cnfI, hlyA, and sat are involved in EAEC pathogenesis.

Antimicrobial resistance

The antimicrobial resistance of these DEC isolates against 23 antibiotics was examined; both the DAEC and EAEC isolates exhibited high frequencies of antimicrobial resistance. All nine DAEC isolates were resistant to sulfonamide, doxycycline, and tetracycline. The resistance rates to cefotaxime, ampicillin, ticarcillin, nalidixic acid, cefoperazone, piperacillin, gentamicin, ciprofloxacin, levofloxacin, ofloxacin, tobramycin, cefoxitin, cefotaxidime, minocycline, aztreonam, kanamycin, amikacin, meropenem, imipenem, and ertapenem were 88.89% (8/9), 88.89% (8/9), 88.89% (8/9), 77.78% (7/9), 66.67% (6/9), 66.67% (6/9), 55.56% (5/9), 55.56% (5/9), 44.44% (4/9), 44.44% (4/9), 33.33% (3/9), 22.22% (2/9), 22.22% (2/9), 11.11% (1/9), 0% (0/9), 0% (0/9), 0% (0/9), and 0% (0/9), respectively (Table 2).

The resistance rates of the EAEC strains for sulfonamide, nalidixic acid, doxycycline, tetracycline, ampicillin,
ticarcillin, gentamicin, minocycline, piperacillin, tobramycin, kanamycin, cefoperazone, and cefotaxime were 100% (4/4), 100% (4/4), 75% (3/4), 75% (3/4), 75% (3/4), 75% (3/4), 75% (3/4), 50% (2/4), 50% (2/4), 50% (2/4), 25% (1/4), 25% (1/4), 25% (1/4), and 25% (1/4), respectively (Table 2). All EAEC isolates were susceptible to the remaining 10 antibiotics. Importantly, we found that all DEC isolates, including the nine DAEC and four EAEC strains, were multidrug resistant (MDR). These results suggest that clinical abuse of antibiotics is already a very serious problem in China.

Frequency of virulence genes among antimicrobial resistant DEC isolates

Virulence gene frequencies among the antimicrobial resistant DAEC and EAEC isolates are shown in Tables 3 and 4. The frequency of the fimC, fimH, fyuA, and irp2 virulence genes among resistant DEC isolates reached 100%, while the frequency of the remaining genes (hlyA, sat, and cnf1) among resistant isolates was mostly ≥ 50%.

Pulsed-field gel electrophoresis

The 13 DEC isolates (nine DAEC and four EAEC) were analyzed by PFGE to determine their genetic relationships. All isolates, except for no. 74, produced clear bands. The DEC PFGE results were analyzed with a Dice similarity index of 80%, according to which the 13 DEC could be divided into 11 clusters (cluster 1 to cluster 11) [65]. Isolates no. 73 and 55 belonged to one cluster, while the remaining isolates revealed another 10 distinct clusters (Fig. 2). There were no identical pulsotypes, demonstrating notable genetic diversity among the 13 DEC isolates.

Multilocus sequence typing

The homology of the 13 DEC isolates was examined by MLST. Six of the 13 DEC isolates could be divided into five known sequence types (STs), as detailed in Fig. 2. ST1177 was the most frequent ST, represented by isolates no. 18 and 51. The remaining seven isolates could be divided into five novel STs based on their allelic profiles as detailed in Fig. 2, and are being prepared for submission. The same allelic profile (569-26-2-25-5-5-19) was detected in isolates no. 1, 55, and 73. Furthermore, the STs and PFGE patterns of the 13 DEC isolates were sporadic and heterogeneous, indicating diverse genetic backgrounds.

Discussion

In recent years, DEC isolates have been reported in diarrheal patients in a number of studies in China; however, limited information is available regarding their prevalence in western China and virulence genes. In our study, we investigated DEC at a hospital in western China, extending our knowledge of the prevalence and characteristics of DEC in China.

The proportion of DEC among E. coli in our study was 11.82%, which is comparable to previous reports in Shanghai (11.6%) [66] and the Henan Province (12.05%) [60]. DEC occurrence in our study was higher than in Beijing (4.6%) [58] and the southeast coast (7.6%) of China [67]. In contrast, the detected rate of DEC was 30.2% in India [68], 39% in Brazil [69], and 30% in Peru [70], much higher than the rate in this study. These results suggest that the occurrence of DEC is comparatively low in China.

Interestingly, nine DAEC isolates were identified among the 13 DEC strains, giving a positive rate of 69.23%, indicating that DAEC was the most common major pathotype in this study. The proportion of DAEC among E. coli strains was 8.18% (9/110), demonstrating a certain incidence rate of DAEC at this hospital in western China. The prevalence of DAEC among E. coli was higher than in the neighboring Japan and in South American
countries such as Peru and Colombia [70–72]. Limited information is available regarding DAEC, the sixth DEC pathotype, in China. This is the first report of the occurrence of DAEC at a hospital in western China, demonstrating that the prevalence of DAEC is comparatively high.

In the present study, 3.64% of *E. coli* isolates were EAEC, which is lower than reported in other regions in China [60, 62, 67] and much lower than reported in India, Brazil, and Peru [68–70]. However, these data show that we detected a certain level of EAEC in this study, second only to DAEC levels.
The type 1 fimbriae encoding genes fimC and fimH were identified in 100% of DAEC and EAEC isolates in our study. This adhesin is present in nearly all E. coli strains [34]. Lopes et al. detected daaE, aggA, agg3A, sfa, pap, and fimH in DAEC, with fimH the most frequently (48%) identified [73] and Lima et al. detected agg3A, aafA, aggA, and agg4A in EAEC [74]. However, we only detected the daaD, fimC, and fimH adherence genes, suggesting that the DAEC and EAEC strains in our study may have adhered via adhesins other than those previously described.

The HPI marker genes fyuA and irp2, first identified in Yersinia enterocolitica, were detected in 100% of DAEC and EAEC isolates in this study; fyuA and irp2 encode the bacterial siderophore yersiniabactin. The yersiniabactin-mediated iron-uptake system is clustered in HPI and its presence is correlated with the virulence of highly pathogenic Yersinia [32, 75]. HPI has been shown to be widespread in various Enterobacteriaceae [32–34]. Therefore, it is possible that HPI could spread horizontally between Yersinia and DAEC/EAEC and contribute to the pathogenesis of DAEC and EAEC.

The hlyA gene had a positive rate of 44.44% and 50% in DAEC and EAEC, respectively. HlyA is frequently detected in EAEC and DAEC strains [23, 76]; depending on its concentration and the type of cell affected, HlyA either displays cytolytic activity or hijacks innate immune signaling pathways [54, 77, 78]. The high percent of hlyA in this study suggests that HlyA is involved in the mechanisms of DAEC and EAEC pathogenicity.

The sat gene showed a positive rate of 44.44% and 50% in DAEC and EAEC, respectively. Guignot et al. [79] have demonstrated that Sat can induce lesions on tight junctions of epithelial cells, which in turn may cause an increase in their permeability; Spano et al. [69] reported that 26.2% of DAEC and 14.5% of EAEC were positive for sat; Mansan-Almeida et al. [80] found that 66.7% of DAEC isolated from adult patients carried sat; and Lima et al. [74] identified sat in 38.3% of EAEC. The rate of DAEC harboring sat in our study is between that reported by Spano et al. and Mansan-Almeida et al., while the prevalence of sat in EAEC was higher than reported by Spano et al. and Lima et al. Taken together, we conclude that Sat may play a role in the pathogenesis of DAEC and EAEC.

The cnf1 gene was found in three (75%) EAEC isolates, but not in any DAEC isolates, while cnf2 was not detected in any DAEC and EAEC isolates. Cytotoxic necrotizing factor type 1 (CNF1) and cytotoxic necrotizing factor type 2 (CNF2) are two monomeric proteins that lead to necrosis in rabbit skin cells and multinucleation of different eukaryotic cells in culture [47, 49, 81]. Lopes et al. [73] found cnf in 1.8% of DAEC strains and Bouzari et al. [82] detected the cnf1 and cnf2 genes in 29.4% and 23.1% of DEC strains, respectively. In this study, we found cnf1 in 23.1% (3/13) of DEC strains, but did not detect cnf2 in any DEC strains. These results indicate that in this study the occurrence of cnf1 and cnf2 was lower in DEC strains, especially in DAEC.

In the current study, pet was not detected in any DAEC and EAEC strains. The cytotoxic mechanism of Pet arises from the degradation of α-fodrin, which is an enterocyte membrane protein [55]. Spano et al. [69] reported that 54.8% of DAEC and 55.3% of EAEC strains were positive for pet and Lima et al. [74] found pet in 10.5% of EAEC strains. These observations support our findings that few DAEC and EAEC strains in this study carry pet.

The antimicrobial resistance of the DAEC and EAEC strains was also examined. First-line antibiotics, such as gentamicin, cefotaxime, tetracycline, ciprofloxacin, ampicillin, and sulfonamide, showed low activity against the DAEC and EAEC strains. In particular, DAEC resistance to sulfonamide, doxycycline, and tetracycline reached 100%, while the resistance of EAEC to sulfonamide and
nalidixic acid was also 100%. The resistance rates of these two pathotypes were higher than reported in developing countries including India, Brazil, and Peru [68–70]. Moreover, we found that all DAEC and EAEC isolates were MDR; only imipenem, meropenem, ertapenem, and amikacin remained effective against the nine DAEC and four EAEC isolates in this study. These results suggest that clinical abuse of antibiotics has become an increasingly serious issue in China. In addition, we found that the DEC strains not only exhibited high frequencies of antimicrobial resistance, but also showed a high frequency of carrying virulence genes (Tables 3 and 4). These properties enable DEC to successfully infect hosts and hinder effective antibiotic treatment.

Of the many genetic fingerprinting methods employed for epidemiological molecular typing, PFGE is considered to be the gold standard [83–85]. Here, using a high-resolution PFGE method, we identified a high degree of genetic diversity among the DEC isolates. Except for one isolate that we were unable to classify, we observed 11 clusters from 13 DEC isolates. None of the isolates had an identical pulsotype. These data demonstrate high genetic diversity among the DEC isolates.

MLST based on DNA sequence variations in slowly-evolving housekeeping genes has been used in epidemiological studies [86, 87]. In the present study, the 13 DEC strains could be divided into 10 STs including five novel STs. Chen et al. [86] reported that most clinical DEC isolates circulating in southeast China show a high degree of genetic diversity within a relatively small area, in agreement with our findings.

In summary, the 13 DEC isolates showed different PFGE patterns and STs, but harbored similar virulence genes (fimC, fimH, fyuA, irp2, sat, hlyA, and cnfI) and exhibited high antimicrobial resistance (Fig. 2). Strain phylogenetic origin changes according to ecological niche, lifestyle, and propensity to cause disease [88]. The exchange of virulence and other genes may favor such genetic relatedness. Genes associated with various pathotypes are acquired by many different DEC lineages and some lineages are more competitive than others because of the acquired virulence genes [85, 89]. In our study, the different DEC isolates exhibited diverse genotypes, but demonstrated a similar phenotype. This can be attributed to the fact that the strains harbored comparable virulence gene profiles, further indicating that virulence genes play an important role in DEC pathogenesis.

Conclusions
This study provides the first report of DEC, including DAEC and EAEC, in western China. Our findings expand our knowledge of DEC prevalence and characteristics in China and elucidate the role of virulence genes in DEC pathogenesis. In this study, we found that the DEC strains not only exhibited high frequencies of antimicrobial resistance, but also showed a high frequency of carrying virulence genes. These properties enable DEC to successfully infect hosts and hinder effective antibiotic treatment. Furthermore, they suggest that clinical abuse of antibiotics is already a very serious issue in China. However, further investigations are needed including additional hospitals in western China and a greater number of DEC isolates.

Methods

Bacterial isolates
A total of 110 non-duplicated E. coli clinical isolates were collected from 110 different patients in various departments (gastroenterology, endocrinology, neurosurgery, and other wards) at the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China from 2015 to 2016. Isolates were identified using standard laboratory methods and the ATB New system (bio-Mérieux, Lyons, France). Each isolate was further verified by PCR amplification of a 369-bp internal control region from the E. coli marker gene alc [90]. All strains were stored at −80 °C and bacteria were grown on MacConkey Agar (Oxoid, Hampshire, UK).

Identification of DEC by PCR
All E. coli isolates were examined by PCR to detect the following virulence markers: aggR, pic, and astA for EAEC; stx1 and stx2 for EHEC; eae and bfp for EPEC; ipaH (invasion plasmid antigen H) for EIEC; est and elt (enterotoxins) for ETEC; and daaD and daaE for DAEC. The primers used to amplify these genes are listed in Table 5.

Detection of adherence and virulence genes
All DEC isolates were subjected to PCR to detect nine adherence genes (fimC, fimH, aggA, aafA, agg3A, agg4A, lpfA, sfa, and pap) and 18 virulence genes (irp2, fyuA, esc, escN, escV, espP, nleB, nleE, ent/espL2, cnfI, cnf2, cdt-I, cdt-II, invE, hlyA, pet, sat, and subAB). The primers used to amplify these genes are listed in Table 5.

Antimicrobial susceptibility testing
The minimal inhibitory concentration (MIC) of 23 antimicrobial agents for DEC were determined by the agar dilution methods according to the 2017 Clinical and Laboratory Standards Institute guidelines [91]. We tested the following 23 antimicrobial agents: sulfonamide, doxycycline, tetracycline, cefotaxime, ampicillin, ticarcillin, nalidixic acid, cefoperazone, piperacillin, gentamicin, ciprofloxacin, levofloxacin, ofloxacin, tobramycin, cefotixin, ceftazidime, minocycline, aztreonam, kanamycin,
Table 5 Gene primers used in this study

Gene	Primer sequence (5′-3′)	PCR product (bp)	References
alr	F: CTGGAAGAGCTGCTGGCAAGGAGGAC	369 [90]	
	R: AAAATGCGCCCGGTCGAGGATC		
pic	F: GGGCTTGTCTGGCGATG	1176 [93]	
	R: ACAACGTTTGCTCCTCCG		
astA	F: CCATCAACACAGTATACCGCA	111 [73]	
	R: GGTGCGAGTGAGGTGTTTGTGT		
aggR	F: AGCGAGATGTCGCTGATACGC	400 [94]	
	R: AATAACAGTACCTGACATCACGC		
stx1	F: CGATGTACGTGTTATCTGTACGAC	244 [94]	
	R: AATGCCACGACCTGCAAGTGT		
stx2	F: GATTGACACCTTTCGCTGATTGAG	324 [94]	
	R: AGCCTGAAAGCTTGGTGAGTAC		
eae	F: TGAGCCTGCTGATACGTAC	241 [95]	
	R: TCGATCTCCTCGATCAGGAGG		
bfp	F: GACACACTTGGTGAGGAC	324 [94]	
	R: CGGACACACCTGCTGATAGGC		
ipaH	F: GTCCTGACGCTTCTCCGATACGCTG	619 [7]	
	R: AAAATGCCACGCGGCGGATGAC		
est	F: ATTTTTCTTCTGATTGCTCT	190 [96]	
	R: CACCCGGTACAGCGGAGAGTC		
elt	F: GGCGCAGATTATAACCCTGCGC	450 [96]	
	R: CAGGCTCTTACCTCCGATAGT		
daaD	F: TGACGGGAAAGTATAAAGGAAGTG	444 [97]	
	R: TCGGCCGCAACAACAAA		
daaE	F: GAAAGTGTGTTAATGTTGGGTAAC	542 [8]	
	R: TATCCAGATGCTGTTAGAGGT		
firmC	F: GGGTAGAAAAATGCGGATGGTG	477 [98]	
	R: GCTCATTGGTGGTGAAGGT		
firmH	F: CAGGTGTATTACCTCCTTGCTC	878 [73]	
	R: AGCCEAAATGACTGAGTAC		
aggA	F: GCTACGGCTCTTGATAAGAAGCC	421 [73]	
	R: GGAAGTACCTTATTGCCAC		
aafA	F: ATGTTAGTTTAGAGGTGTC	518 [20]	
	R: TATATATGTCACACAGCTC		
agg3A	F: GTATCATTGCCAGTGCTTCAAC	462 [73]	
	R: GGGTCTGTATAGAGTAATGCGCA		
agg4A	F: TGAATGTGGCCGCTGACCC	169 [74]	
	R: ATAAGCGCGCAAAAGAC		
lfaA	F: AGGCGGAGCTTCAATCCTGCGATG	446 [99]	
	R: CCGGGCTGATGATGCGGACAGA		
sfa	F: CTCGGAGAATCGGGTGCTTCTACTCAC	408 [73]	
	R: CGAGAGGTGAATTAAACCTGAGCA		
pap	F: GACGGCTCTAAGCAGGGTTGGCGC	328 [73]	
	R: ATATCCTTCTTGAGGATGCAATA		
irp2	F: AAGGGATGCTGGTATCGCGAC	264 [100]	
	R: TCGTGGCAGGCTTCTCTCT		
fyuA	F: TGATATACCCCGCGAGCGGAA	785 [34]	
	R: CGGAATGAGCCAGACAGTTGTA		
escI	F: CACTAAGTCTGATATATAAGGCCAC	824 [80]	
	R: GTCAAGTGGTGATGCTTACTAAG		
escN	F: CGCCTTTTACAGAATAGAAGAC	854 [101]	
	R: CATCAAGGAAATGAGCGCCAC		
escV	F: GATGACATGATGAAATACCTC	2128 [80]	
	R: GCCCTTGATATCTGTTGAGAC		

Table 5 (continued)

Gene	Primer sequence (5′-3′)	PCR product (bp)	References
espF	F: AAACAGGACGACCTTTGAC	1830 [93]	
	R: GGAATGCTGACGCTGATAG		
nleB	F: GGAATTGTTTGATCAGGAGC	297 [43]	
	R: AAAATCCGGCTCTATACC		
nleE	F: GTATAACCAGAGGAGGATGC	260 [43]	
	R: GATCCTTACAAAGAAGTCC		
espL2	R: TTACAGTCGCCGATTACG	233 [43]	
cnf1	F: GGCGCAAATGCGAGATTGCTG	552 [93]	
	R: GACCGTGTTGCCGTTATCTGG		
cnf2	F: GTGAGGCTCAACAGGATTGACTG	839 [93]	
	R: ECCGCTTTCTTCTGAGTTTCTC		
cdh-I	F: CAATAGTGCGCCGACAGA	412 [102]	
	R: AAAATCAAGAAGACACCCAC		
cdh-II	F: GAAAGTTAAGGAAATTAAGTCG	556 [102]	
	R: TTITGTTGCCGCGCGGCGCAGGATA		
invE	F: CGATCAAGAATCCTCTACAGAAGATAC	766 [94]	
	R: CGATAGATGCGGAGAAATAATATCCCG		
hlyA	F: GCATCATGACGTCGCTGCTT	533 [100]	
	R: AAGTGACCCGCTGTTTGAAGT		
pet	F: TTTCCAGACCTCTGGTTTCC	297 [103]	
	R: ATTCCAAGCTTCTGACAC		
sort	F: GCAGCAAAATATGATATATACA	2913 [80]	
	R: GATGTTGACCTACAGGAAAGAA		
subAB	F: TATGCGCTCTCCCTCACTGCG	556 [104]	
	R: TATAGGCTGCTCTCTGAGCG		

amikacin, meropenem, imipenem, and ertapenem. The results were used to classify isolates as resistant or susceptible to a particular antibiotic using standard reference values [91].

Pulsed-field gel electrophoresis (PFGE)

Genomic DNA from the DEC isolates were digested with XbaI and separated by PFGE according to the protocol of the Centers for Disease Control and Prevention (http://www.cdc.gov/pulsenet/pathogens/index.html). Gel images were captured with the Gel Doc XR system (Bio-Rad, Hercules, CA, USA). An unweighted pair-group method with arithmetic mean (UPGMA) dendrogram was constructed using BioNumerics software (Applied Maths, Sint-Martens-Latem, Belgium).

Multilocus sequence typing

All DEC isolates were analyzed by multilocus sequence typing (MLST) according to the MLST website (http://mlst.warwick.ac.uk). Briefly, the internal fragments of seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) were amplified by PCR [92] and their
sequences were compared with existing sequences in the MLST database for the assignment of allelic numbers. Sequence types (STs) were assigned according to the allelic profiles.

Abbreviations
DEC: diarrheagenic *E. coli*; EAEC: enteroaggregative *E. coli*; EHEC: enterohemorrhagic *E. coli*; EPEC: enter pathogenic *E. coli*; EIEC: enteroinvasive *E. coli*; ETEC: entero toxicogenic *E. coli*; DAEC: diffusely adherent *E. coli*; SSS: sulfonamide; DOX: doxycycline; TET: tetracycline; CTX: cefotaxime; AMP: ampicillin; TIC: ticarcillin; NA: nalidixic acid; CFP: cephaloridine; PIP: piperacillin; GEN: gentamicin; CIP: ciprofloxacin; LEV: levofloxacin; OFX: ofloxacin; TOB: tobramycin; FOX: cefoxitin; CAZ: ceftazidime; MIN: minocycline; ATM: aztreonam; KAN: kanamycin; AMK: amikacin; MERO: meropenem; IMP: imipenem; ETP: ertapenem; MDR: multidrug resistant; PFGE: pulsed-field gel electrophoresis; MLST: multilocus sequence typing.

Authors’ contributions
DL, XJ and YM designed the project, analyzed data, and wrote the manuscript; YX and CL collected samples; and DL, MS, WW, JW, and XL carried out the experiments. All authors read and approved the final manuscript.

Author details
1 Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. 2 School of Medical Laboratory Science, Chengdu Medical College, Chengdu 610500, Sichuan, China. 3 Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, Sichuan, China. 4 Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China. 5 West China School of Public Health, Sichuan University, Chengdu 610041, Sichuan, China.

Acknowledgements
None.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data of the study can be available upon request from the corresponding author (XJ).

Consent for publication
Not applicable.

Ethics approval and consent to participate
All procedures performed in this study involving human participants were in accordance with the ethical standards of the Chengdu Medical College Ethics Committee.

Funding
This work was supported by grants from the National Natural Science Foundation of China (Grants 31470246 and 31300659), Scientific Research and Innovation Team of Sichuan Province (Grant 15TD0025), Preeminent Youth Fund of Sichuan Province (Grant 2015JQ0019) and Huimin Project of Chengdu Science and Technology Bureau (Grant 2015-HW01-00543-FS), National Science Foundation of Sichuan Provincial Education Department (Grant 15ZB0239), National Science Foundation of Chengdu Medical College (Grant CYZ11-008).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 May 2018 Accepted: 9 August 2018 Published online: 17 August 2018

References
1. World Health Organization. World Health statistics. Geneva: WHO Press; 2012.
2. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic *Escherichia coli*. Clin Microbiol Rev. 2013;26(4):822–80.
3. Qi M, Deng Y, Zhang X, Liu G, Huang Y, Lin C, et al. Etiology of acute diarrhea due to enteropathogenic bacteria in Beijing, China. J Infect. 2012;65(3):214–22.
4. Zhang Y, Zhao Y, Ding K, Wang X, Chen X, Liu Y, et al. Analysis of bacterial pathogens causing acute diarrhea on the basis of sentinel surveillance in Shanghai, China, 2006–2011. Jpn J Infect Dis. 2014;67(4):264–8.
5. Nataro JP, Kaper JB. Diarrheagenic *Escherichia coli*. Clin Microbiol Rev. 1998;11(1):142–201.
6. Kaper JB, Nataro JP, Mobley HL. Pathogenic *Escherichia coli*. Nat Rev Microbiol. 2004;2(2):123–40.
7. Barletta F, Ochoa T, Cleary TG. Multiplex real-time PCR (MRT-PCR) for diarrheagenic, Methods Mol. Biol. 2013;943:907–14.
8. Chandra M, Deng Y, Zhang X, Liu G, Huang Y, Lin C, et al. Etiology of acute diarrhea due to enteropathogenic *E. coli* bacteria in Beijing, China. J Infect. 2012;65(3):214–22.
9. Yang Z, Zhao Y, Ding K, Wang X, Chen X, Liu Y, et al. Analysis of bacterial pathogens causing acute diarrhea on the basis of sentinel surveillance in Shanghai, China, 2006–2011. Jpn J Infect Dis. 2014;67(4):264–8.
10. Nataro JP, Kaper JB. Diarrheagenic *Escherichia coli*. Clin Microbiol Rev. 1998;11(1):142–201.
11. Kaper JB, Nataro JP, Mobley HL. Pathogenic *Escherichia coli*. Nat Rev Microbiol. 2004;2(2):123–40.
12. Barletta F, Ochoa T, Cleary TG. Multiplex real-time PCR (MRT-PCR) for diarrheagenic, Methods Mol. Biol. 2013;943:907–14.
13. Chandra M, Deng Y, Zhang X, Liu G, Huang Y, Lin C, et al. Etiology of acute diarrhea due to enteropathogenic *E. coli* bacteria in Beijing, China. J Infect. 2012;65(3):214–22.
14. Yang Z, Zhao Y, Ding K, Wang X, Chen X, Liu Y, et al. Analysis of bacterial pathogens causing acute diarrhea on the basis of sentinel surveillance in Shanghai, China, 2006–2011. Jpn J Infect Dis. 2014;67(4):264–8.
15. Nataro JP, Kaper JB. Diarrheagenic *Escherichia coli*. Clin Microbiol Rev. 1998;11(1):142–201.
16. Kaper JB, Nataro JP, Mobley HL. Pathogenic *Escherichia coli*. Nat Rev Microbiol. 2004;2(2):123–40.
17. Barletta F, Ochoa T, Cleary TG. Multiplex real-time PCR (MRT-PCR) for diarrheagenic, Methods Mol. Biol. 2013;943:907–14.
18. Chandra M, Deng Y, Zhang X, Liu G, Huang Y, Lin C, et al. Etiology of acute diarrhea due to enteropathogenic *E. coli* bacteria in Beijing, China. J Infect. 2012;65(3):214–22.
19. Yang Z, Zhao Y, Ding K, Wang X, Chen X, Liu Y, et al. Analysis of bacterial pathogens causing acute diarrhea on the basis of sentinel surveillance in Shanghai, China, 2006–2011. Jpn J Infect Dis. 2014;67(4):264–8.
20. Nataro JP, Kaper JB. Diarrheagenic *Escherichia coli*. Clin Microbiol Rev. 1998;11(1):142–201.
21. Kaper JB, Nataro JP, Mobley HL. Pathogenic *Escherichia coli*. Nat Rev Microbiol. 2004;2(2):123–40.
22. Barletta F, Ochoa T, Cleary TG. Multiplex real-time PCR (MRT-PCR) for diarrheagenic, Methods Mol. Biol. 2013;943:907–14.
23. Chandra M, Deng Y, Zhang X, Liu G, Huang Y, Lin C, et al. Etiology of acute diarrhea due to enteropathogenic *E. coli* bacteria in Beijing, China. J Infect. 2012;65(3):214–22.
24. Yang Z, Zhao Y, Ding K, Wang X, Chen X, Liu Y, et al. Analysis of bacterial pathogens causing acute diarrhea on the basis of sentinel surveillance in Shanghai, China, 2006–2011. Jpn J Infect Dis. 2014;67(4):264–8.
25. Torres AG, Kanack K, Tutt CB, Popov V, Kaper JB. Characterization of the second long polar (LP) fimbria of *Escherichia coli* O157:H7 and
distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol Lett. 2004;238(2):333–44.

26. Tatsuno I, Mundy R, Frankel G, Chong Y, Phillips AD, Torres AG, et al. The lpf gene cluster for long polar fimbriae is not involved in adherence of enteropathogenic Escherichia coli or virulence of Citrobacter rodentium. Infect Immun. 2006;74(11):365–72.

27. Le Bouguenec C, Archambaud M, Labigne A. Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. J Clin Microbiol. 1992;30(5):1189–93.

28. Hicks S, Candy DC, Phillips AD. Adhesion of enterogaegrotive Escherichia coli to pediatric intestinal mucosa in vitro. Infect Immun. 1996;64(11):4751–60.

29. Harrington SM, Dudley EG, Nataro JP. Pathogenesis of enterogaegrotive Escherichia coli infection. FEMS Microbiol Lett. 2006;254(1):12–8.

30. Navarro-Garcia F, Elias WP. Autoantibodies and virulence of enterogaegrotive E. coli. Gut Microbes. 2011;2(1):13–24.

31. Morschhäuser J, Kohler G, Ziebuhr W, Blum-Oehler G, Dobrindt U, Hacker J. Evolution of microbial pathogens. Philos Trans R Soc Lond B Biol Sci. 2000;355(1397):695–704.

32. Schubert S, Rakin A, Karch H, Carniel E, Heesemann J. Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun. 1998;66(2):480–5.

33. Schubert S, Carniel S, Fischer D, Heesemann J. High-pathogenicity island of Yersinia pestis in enterobacteraeae isolated from blood cultures and urine samples: prevalence and functional expression. J Infect Dis. 2000;182(4):1268–71.

34. Johnson JR, Stell AL. Extended virulence gene sets of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromising. J Infect Dis. 2000;181(2):61–72.

35. Rakin A, Schneider L, Podladchikova O. Hunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia species among enterobacteriaceae isolated from blood cultures and urine samples. J Infect Dis. 2000;182(4):1268–71.

36. Rasko DA, et al. Blocking yersiniabactin import attenuates extraintestinal pathogenic Yersinia pestis infection in a murine model of age-related macular degeneration. Microbiol Lett. 2004;238(2):333–44.

37. Huang Z, Xu H, Guo JY, Huang XL, Li Y, Hou Q, et al. Assessment and case-control study of diarrheal disease etiology in individuals over 5 years in south-west China. Gut Pathog. 2016;8:58.

38. Yu F, Wang RN, Chen X, Zheng SF, Wang YY, Chen Y. Studies on the serum types and identification efficiency on diarrheagenic Escherichia coli isolated from diarrhea patients, in Zhejiang province. Zhonghua Liu Xing Bing Xue Za Zhi. 2017;38(6):400–4.

39. Biwas R, Nelson EA, Lewindon PJ, Lyon DJ, Sullivan PR, Echeverria P. Molecular epidemiology of Escherichia coli diarrhea in children in Hong Kong. J Clin Microbiol. 1996;34(12):3233–4.

40. Carrico JA, Pinto FR, Simas C, Nunes S, Sousa NG, Frazao N, et al. Assessment of band-based similarity coefficients for automatic type and subtype classification of microbial isolates analyzed by pulsed-field gel electrophoresis. J Clin Microbiol. 2005;43(11):5483–90.

41. Huang Z, Yu H, Gao JY, Huang XL, Li Y, Hou Q, et al. Application and assessment of a molecular diagnostic method on the detection of four types of diarrheagenic Escherichia coli. Zhonghua Liu Xing Bing Xue Za Zhi. 2013;34(6):614–7.

42. Zheng S, Yu F, Chen X, Cui D, Cheng Y, Xie G, et al. Enteropathogens in children less than 5 years of age with acute diarrhea: a 5-year surveillance study in the Southeast Coast of China. BMC Infect Dis. 2016;16(1):434.
68. Mandal A, Sengupta A, Kumar A, Singh UK, Jaiswal AK, Das P, et al. Molecular epidemiology of extended-spectrum beta-Lactamase-producing Escherichia coli pathotypes in diarrheal children from low socioeconomic status communities in Bihar, India: emergence of the CTX-M type. Infect. Dis. 2017. https://doi.org/10.1177/179863617793018.

69. Spano LC, da Cunha KS, de Fonseca RD, Scaletsky IC. High prevalence of diarrheagenic Escherichia coli carrying toxin-encoding genes isolated from children and adults in southeastern Brazil. BMC Infect. Dis. 2017;17(1):773.

70. Ochoa TJ, Ruiz J, Molina M, Del Valle LJ, Vargas M, Gil AL, et al. High frequency of antimicrobial drug resistance of diarrheagenic Escherichia coli in infants in Peru. Am J Trop Med Hyg. 2009;81(2):296–301.

71. Meraz IM, Anikawa K, Nakamura H, Ogasawara J, Hase A, Nishikawa Y. Association of IL-8-inducing strains of diffusely adherent Escherichia coli with sporadic diarrheal patients with less than 5 years of age. Braz J Infect Dis. 2007;11(1):44–9.

72. Gomez-Duarte OG, Arzuza O, Urbina D, Bai J, Guerra J, Montes O, et al. Detection of Escherichia coli enteropathogens by multiplex polymerase chain reaction from children's diarrheal stools in two Caribbean–Colombian cities. Foodborne Pathog. 2010;7(2):199–206.

73. Lopes LM, Fabbricotti SH, Ferreira AJ, Kato MA, Michalski J, Scaletsky IC. Heterogeneity among strains of diffusely adherent Escherichia coli isolated in Brazil. J Clin Microbiol. 2005;43(4):1968–72.

74. Lima IF, Boisen N, Quetz Jda S, Havt A, de Carvalho EB, Soares AM, et al. Prevalence of enteroaggregative Escherichia coli and its virulence-related genes in a case–control study among children from northeastern Brazil. J Med Microbiol. 2013;62(Pt 5):683–93.

75. Carniel E. The Adhesins. In: Carniel E, editor. Bacterial pathogenicity islands. ASM Press; 1999. p. 1–25.

76. Jallat C, Livrelli V, Darfeuille-Michaud A, Rich C, Joly B. The role of invasion plasmid-associated gene (ipaH) in the pathogenesis of invasive Escherichia coli infection in yaks (Bos grunniens) from the Qinghai-Tibetan Plateau, China. PLoS ONE. 2013;8(6):e65537.

77. Muller D, Greune L, Heussig G, Karch H, Fruth A, Tschepe H, et al. Identification of conventional intestinal pathogenic Escherichia coli isolates expressing intermediate virulence factor profiles by using a novel single-step multiplex PCR. Appl Environ Microbiol. 2007;73(10):3380–90.

78. Pass MA, Odedra R, Birt RM. Multiplex PCRs for identification of Escherichia coli virulence genes. J Clin Microbiol. 2000;38(5):2001–4.

79. Chakraborty S, Deokule JS, Garg P, Bhattacharya SK, Nandy RK, Nair GB, et al. Concomitant infection of enterotoxigenic Escherichia coli in an outbreak of cholera caused by Vibrio cholerae O1 and O139 in Ahmadabad, India. J Clin Microbiol. 2001;39(9):3241–6.

80. Antikainen J, Tarikka E, Haukka K, Sittenon A, Vaara M, Kirveskari J. New 16-plex PCR method for rapid detection of diarrheagenic Escherichia coli directly from stool samples. Eur J Clin Microbiol Infect Dis. 2009;28(8):899–908.

81. Oh KY, Kang MS, Yoon H, Choi HW, An BK, Shin EG, et al. The embryo lethality of Enteroaggregative Escherichia coli isolates and its relationship to the presence of virulence-associated genes. Poult Sci. 2012;91(2):370–5.

82. Prorok-Hamon M, Friswell MK, Alswied A, Roberts CL, Song F, Flanagan PK, et al. Colonic mucosa-associated diffusely adherent Afa/C+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut. 2014;63(5):761–70.

83. Anikawa K, Meira IM, Nishikawa Y, Ogasawara J, Hase A. Interleukin-8 secretion by epithelial cells infected with diffusely adherent Afa/C+ Escherichia coli possessing Afa adhesin-coding genes. Microbiol. Immunol. 2005;49(6):493–503.

84. Kyaw CM, De Araujo CR, Lima MR, Gondim EG, Bragido GM, Giugliano LG. Evidence for the presence of a type III secretion system in diffusely adhering Escherichia coli (DAEC). Infect Genet Evol. 2003;3(2):111–7.

85. Patzi-Vargas S, Zaidi MB, Perez-Martinez I, Leon-Cen M, Michel-Ayala A, Chausabel D, et al. Diarrheagenic Escherichia coli carrying supplementary virulence genes are an important cause of moderate to severe diarrhoeal disease in Mexico. PLoS Negl Trop Dis. 2015;9(3):e0003510.

86. Anikawa K, Meira IM, Nishikawa Y, Ogasawara J, Hase A. Interleukin-8 induction due to diffusely adherent Escherichia coli possessing Afa/Dr genes depends on flagella and epithelial Toll-like receptor 5. Microbiol. Immunol. 2010;54(9):491–501.

87. Paton AW, Paton JC. Multiplex PCR for direct detection of Shiga toxicogenic Escherichia coli strains producing the novel subtilase cytotoxin. J Clin Microbiol. 2005;43(6):2944–7.