Left Ventricular Noncompaction Cardiomyopathy: New Clues in a Not So New Disease?

John L. Jefferies, MD, MPH

"I've learned that I still have a lot to learn"
—Maya Angelou

Left ventricular noncompaction cardiomyopathy (LVNC) remains a largely underinvestigated and poorly understood diagnosis. The number of peer-reviewed articles published on LVNC has grown dramatically over the past decade. Clinicians and scientists around the globe have advanced our understanding of the genetics, diagnostics, therapeutics, and outcomes for adult and pediatric patients with LVNC. Yet, there continues to be disagreement about diagnostic criteria, management, and classification of this complex phenotype.1–6

In this issue of the Journal of the American Heart Association (JAHA), Vaidya and colleagues present data on identifiable clinical and imaging criteria that may predict mortality in adults with LVNC.7 The current report consists of 339 patients (median age, 47.4 years) with confirmed LVNC, as diagnosed by either echocardiography or cardiac magnetic resonance imaging (CMR). The median follow-up was 6.3 years, during which time 69 patients died. On multivariable Cox regression analysis, the authors found that age, left ventricular ejection fraction (LVEF) <50%, and noncompaction extending from the apex to the mid or basal segments were associated with all-cause mortality. Not surprisingly, patients with a formal diagnosis of LVNC had reduced overall survival compared with the expected survival of an age- and sex-matched US population. In addition, those patients with noncompaction isolated to the apex of the left ventricle (LV) and those with an LVEF >50% had similar survival to the general population. Overall, this is an important addition to the existing literature and helps provide a partial framework for the management of these patients.

LVNC remains a heterogeneous disease with multiple possible concomitant phenotypes. We have described these previously and characterized the possible findings into 9 distinct subtypes.8 Briefly, these subtypes are as follows: (1) the isolated or benign form of LVNC, (2) the arrhythmogenic form of LVNC, (3) the dilated form of LVNC, (4) the hypertrophic form of LVNC, (5) the “mixed” form of LVNC, (6) the restrictive form of LVNC, (7) the biventricular form of LVNC, (8) the right ventricular hypertrabeculation with normal LV form, and (9) the congenital heart disease form of LVNC. The authors thoughtfully excluded patients with congenital heart disease from their analysis. However, the other subtypes were not completely identified, which may impact some of the findings being reported. The dilated form of LVNC (subtype 3) is characterized by depressed systolic function, which is often accompanied by LV dilation. The outcome of this group is similar to that in patients with isolated dilated cardiomyopathy. This provides support to the finding of the investigators that an LVEF <50% was an independent predictor of mortality.

See Article by Vaidya et al.

Key Words: Editorials | cardiomyopathy | left ventricular noncompaction | prognosis

Correspondence to: John L. Jefferies, MD, MPH, University of Tennessee Health Science Center, Heart Institute, 956 Court Ave, Memphis, TN 38163. E-mail: jjeffe15@uthsc.edu

The opinions expressed in this article are not necessarily those of the editors or of the American Heart Association.

For Disclosures, see page 3.

© 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

JAHA is available at: www.ahajournals.org/journal/jaha

J Am Heart Assoc. 2021;10:e018815. DOI: 10.1161/JAHA.120.018815
of all-cause mortality. Although not described in detail within the article, Table 5 reports the finding of "any right ventricular dysfunction" as a variable associated with overall mortality (hazard ratio [HR], 1.98; 95% CI, 1.10–3.54). This may represent patients with the biventricular form of LVNC. Historically, these patients are difficult to diagnose by echocardiography and are typically identified by use of CMR. As only 118 subjects (35%) in the cohort in this study underwent CMR, it is worth considering that the biventricular form of LVNC (subtype 7) may have been present but was not identified.

An important consideration in interpreting the data from this recent report is recognizing the reported experience in children. Brescia and colleagues reported on 242 children diagnosed with LVNC at Texas Children’s Hospital. In this retrospective evaluation, the presence of cardiac dysfunction (LVEF <55%) was strongly associated with mortality (HR, 11; P<0.001). The clinical presentation and symptoms in this pediatric cohort are similar to those in the current report. The presenting symptoms in the childhood cohort were as follows: (1) congestive heart failure (25%), (2) abnormal cardiac examination (19%), abnormal ECG or chest x-ray film (16%), arrhythmia (10%), chest pain (9%), and syncope (5%). These findings reported in children have some obvious commonalities with the Mayo Clinic data. ECG abnormalities were present in 87% of the patients. Repolarization abnormalities were associated with increased mortality (HR, 2.1; P=0.02). Eighty children had an arrhythmia that resulted in increased mortality (HR, 2.8; P=0.002). During the evaluation period, there were 15 cases of sudden cardiac death (6.2%). Nearly all patients who experienced sudden death had abnormal cardiac dimensions or evidence of cardiac dysfunction. Notably, no patient with normal cardiac dimensions and function without evidence of a preceding arrhythmia died. These findings mirror the report by Vaidya and colleagues in many ways. The presenting symptoms in both groups are similar. This is remarkable considering that many of the patients described from Texas Children’s Hospital were too young to reliably voice symptoms, such as chest pain. No patient with normal LV size or systolic dysfunction in the absence of arrhythmia died. This is the same finding reported in the Mayo adult cohort with the exception that arrhythmias were not identified as an independent predictor of mortality.

The lack of robust arrhythmia analysis in the current report is a limitation and should be recognized by those caring for children and adults with LVNC. The arrhythmogenic form of LVNC (subtype 2) is an important component of longitudinal surveillance in these patients. As noted above, the presence of an arrhythmia and/or a repolarization abnormality resulted in increased mortality. Although identifying patients with normal LV systolic function and isolated apical LV trabeculations may provide some comfort to providers, these are not the only important phenotypic characteristics. The impact of significant arrhythmias cannot be underestimated and mandates thoughtful surveillance. The opportunity to accrue meaningful arrhythmia data is underleveraged in the current management of cardiomyopathies, including LVNC. This is unfortunate as it would add valuable information in the development of risk stratification instruments and inform clinical decision-making.

Although the data set provides typical clinical information about the LVNC phenotype, the article fails to provide any genetic information. The authors appropriately recognize the need for genotyping in this population. The focus of their study was to identify clinical and imaging variables that are routinely available in practice. However, in 2020, genetic testing is routinely available in clinical practice and should be considered in the overall assessment of patients with LVNC. We have reported on the importance of potential genetic triggers and genotype-phenotype correlations in adult patients with LVNC. In our study, 190 adults from 174 families with concern of LVNC by echocardiography were prospectively analyzed by CMR and whole exome sequencing. This provided the foundation to attempt genotype-phenotype correlations. We included 425 controls to assess for genetic variants of interest (VOIs). In one of the largest reported CMR studies in LVNC, we found 138 VOIs in 102 unrelated patients in 54 genes that have been previously associated with LVNC or other cardiomyopathy phenotypes. VOIs were identified in 68 of 90 probands (76%) with LVNC and 34 of 84 probands (40%) with LV hypertrabeculation. We also identified 0, 1, and ≥2 VOIs in 72, 74, and 28 probands, respectively. More importantly, we found that the presence of an increasing number of VOIs in individual patients correlated with several phenotypic markers, including the ratio of noncompacted/compacted myocardium (P=0.001) and LVEF (P=0.01). Furthermore, the presence of sarcomere gene mutations was associated with increased occurrence of late gadolinium enhancement (P=0.004). A report from the Netherlands by van Waning and colleagues again documented the importance of using genetic information in the risk stratification of children and adults with LVNC. On review of 327 unrelated cases of LVNC, the highest risk for cardiac events in both age groups was related to LV systolic dysfunction in mutation carriers. Of note, mutations in MYH7 had a low risk for major cardiac events. Li and colleagues also reported on the importance of pathogenic mutations predicting adverse outcomes in an adult Chinese cohort with LVNC. These 3 reports underscore the important role that genotyping plays in risk stratification for patients with LVNC. This also strengthens the
hypothesis that LVNC is a distinct and genetically trig-
ggered cardiomyopathy.

As Maya Angelou humbly noted, we are learning that
we still have a lot to learn about many things, includ-
ing LVNC. Routine care for patients with LVNC contin-
ues to be greatly confounded by the lack of consensus
about the cause, diagnostic criteria, surveillance, and
management of this increasingly common diagnosis.
Furthermore, over the past 3 decades, the ability to
differentiate “benign” from “pathologic” has become
increasingly challenging given the morphologic spec-
trum and diverse populations described in the litera-
ture. In a recent report from the PESA (Progression of
Early Subclinical Atherosclerosis) study, de la Chica et al
found that vigorous physical activity was associated with
a higher prevalence of CMR-detected LVNC. This asso-
ciation was maintained using the Petersen, Jacquier,
and Grothoff CMR criteria for LVNC. This reflects our
limited understanding of the drivers of noncompaction
but does suggest that underpinning genetics may
help differentiate those with “real disease.” The authors
are to be congratulated on their report. However, one
must recognize that these identified predictors are only
a small piece in a large and complex puzzle.

ARTICLE INFORMATION

Affiliations
From the University of Tennessee Health Science Center, Memphis, TN.

Disclosures
None.

REFERENCES

1. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated non-
compaction of left ventricular myocardium: a study of eight cases.
Circulation. 1990;82:507–513. DOI: 10.1161/01.CIR.82.2.507.

2. Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA.
Echocardiographic and pathoanatomical characteristics of isolated left
ventricular non-compaction: a step towards classification as a distinct
cardiomyopathy. Heart. 2001;86:666–671. DOI: 10.1136/heart.86.6.666.

3. Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM,
Anderson RH, Watkins H, Neubauer S. Left ventricular non-compac-
tion: insights from cardiovascular magnetic resonance imaging. J Am Coll
Cardiol. 2005;46:101–105. DOI: 10.1016/j.jacc.2005.03.045.

4. Jacquier A, Thuny F, Jop B, Giorgi R, Cohen F, Gaubert JV, Vidal V,
Bartoli JM, Habib G, Moulin G. Measurement of trabeculated left ven-
tricular mass using cardiac magnetic resonance imaging in the diagno-
sis of left ventricular non-compaction. Eur Heart J. 2010;31:1098–1104.
DOI: 10.1093/eurheartj/ehp596.

5. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D,
Moss AJ, Seidman CE, Young JB. American Heart Association; Council
on Clinical Cardiology, Heart Failure and Transplantation Committee;
Quality of Care and Outcomes Research and Functional Genomics
and Translational Biology Interdisciplinary Working Groups; Council on
Epidemiology and Prevention. Contemporary definitions and clas-
sification of the cardiomyopathies: an American Heart Association
Scientific Statement from the Council on Clinical Cardiology, Heart
Failure and Transplantation Committee; Quality of Care and Outcomes
Research and Functional Genomics and Translational Biology
Interdisciplinary Working Groups; and Council on Epidemiology and
Prevention. Circulation. 2006;113:1807–1816. DOI: 10.1161/CIRCULATION
LATIONA.106.174287.

6. Elliott P, Andersson B, Arbustini E, Bilinska Z, Charron P,
Dubourg O, Kuhl U, Masch B, McKenna WJ, et al. Classification of
the cardiomyopathies: a position statement from the European Society of
Cardiology Working Group on Myocardial and Pericardial Diseases. Eur
Heart J. 2008;29:270–276. DOI: 10.1093/eurheartj/ehn342.

7. Vaidya VLM, Miranda WR, Farwati M, Isath A, Patiolla SH, Hodge DO,
Asirvatham SJ, Kapa S, Deshmukh AJ, Foley TA, et al. Long term sur-
vival of patients with left ventricular noncompaction, J Am Heart Assoc.
2020;9:e015563. DOI: 10.1161/JAHA.119.015563.

8. Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction
cardiomyopathy. Lancet. 2015;386:813–825. DOI: 10.1016/S0140
-6736(14)61282-4.

9. Brescia ST, Rossano JW, Pignatelli R, Jefferies JL, Price JF, Decker
JA, Denfield SW, Dreyer WJ, Smith O, Towbin JA, et al. Mortality and
sudden death in pediatric left ventricular noncompaction in a tertiary
referral center. Circulation. 2013;127:2202–2208. DOI: 10.1161/CIRCULATION
LATIONA.113.002511.

10. Misažalska-Jamka K, Jefferies JL, Mazur W, Glowacki J, Hu J, Lazar M,
Gibbs RA, Liczko J, Kły J, Venner E, et al. Novel genetic triggers and
genotype-phenotype correlations in patients with left ventricular non-
compaction. Circ Cardiovasc Genet. 2017;10:e001763. DOI: 10.1161/
CIRCGENETICS.117.001763.

11. van Waning JI, Caliskan K, Hoerdenaekers YM, van Spaendonck-
Zwarts KY, Baas AF, Boekholdt SM, van Melle JP, Asseilbergs
FW, Backx A, et al. Genetics, clinical features, and long-term outcome
of noncompaction cardiomyopathy, J Am Coll Cardiol. 2018;71:711–722.

12. Li S, Zhang C, Liu N, Bai H, Hou C, Wang J, Song L, Pu J. Genotype-
positive status is associated with poor prognoses in patients with left
ventricular noncompaction cardiomyopathy. J Am Heart Assoc.
2018;7:ea009810. DOI: 10.1161/JAHA.118.009810.

13. de la Chica JA, Gómez-Talavera S, García-Ruiz JM, Garcia-Lunar I,
Oliva B, Fernandez-Alvira JM, Lopez-Melgar B, Sánchez-González J,
and others. Association between left ventricular non-compaction and vigorous physical activity. J Am Coll Cardiol.
2020;76:1723–1733. DOI: 10.1016/j.jacc.2020.08.030.

14. Grothoff M, Pachowsky M, Hoffmann J, Posch M, Klaassen S,
Lemkhuli L, Gutterlet M. Value of cardiovascular MR in diagnosing left
ventricular non-compaction cardiomyopathy and in discriminating be-
tween other cardiomyopathies. Eur Radiol. 2012;22:2699–2709. DOI:
10.1007/s00330-012-2554-7.