Higher genus Gromov–Witten invariants of the Grassmannian, and the Pfaffian Calabi-Yau threefolds

細野忍（東大数理）・小西由紀子（東大数理）

X をグラスマン多様体 $Gr(2,7) \subset \mathbb{P}^{20}$ の 7 個の hyperplane との完全交差とする. X' を 7×7 Pfaffian variety $Pf(7) \subset \mathbb{P}^{20}$ を $\mathbb{P}^{6} \subset \mathbb{P}^{20}$ に制限して得られる多様体とする. これらはどちらも Picard 数 $h^{11}(X) = h^{11}(X') = 1$ の 3 次元カラビヤウ多様体である. H, H' を $H^{2}(X, \mathbb{Z}), H^{2}(X', \mathbb{Z})$ の生成元とする. X の不変量は $H^{3} = 42, c_{2}(X) \cdot H = 84, \chi(X) = -98, X'$ の不変量は $H^{3} = 14, c_{2}(X') \cdot H' = 56, \chi(X') = -98$ であり, (0イラー数以外は)一致していない. しかし実は X, X' の接着層の導来圏は同値である [Borovskov–Caldararu, 2006].

X, X' はそれぞれミラーとなる 3 次元カラビヤウ多様体の 1 変数族 $\{Y_{x}\}_{x}$ と $\{Y_{x}'\}_{x}$ が知られていて, Picard–Fuchs (PF) 方程式は一致する. 具体的には PF 演算子 D_{x} は

\[
D_{x} = 9\theta_{1}^{4} - 3x(15 + 102\theta_{x} + 272\theta_{x}^{2} + 340\theta_{x}^{3} + 173\theta_{x}^{4})
- 2x^{2}(1083 + 4473\theta_{x} + 7597\theta_{x}^{2} + 5032\theta_{x}^{3} + 1129\theta_{x}^{4})
+ 2x^{2}(6 + 675\theta_{x} + 2353\theta_{x}^{2} + 2628\theta_{x}^{3} + 843\theta_{x}^{4})
- x^{4}(26 + 174\theta_{x} + 478\theta_{x}^{2} + 608\theta_{x}^{3} + 295\theta_{x}^{4}) + x^{5}(\theta_{x} + 1)^{4}
\]

(1)

である. 2 点 $x = 0, \infty$ に maximal unipotent monodromy の確定特異点を持つが, $x = 0$ まわりの解から X へのミラー写像が, $x = \infty$ まわりの解からは X' へのミラー写像が定義される. これは Kontsevich のホモロジカルミラー対称性予想の観点からみてとても興味深い. なぜなら上で述べた X, X' が導来同値であることは 2 つのミラーの深谷圏の導来圏が一致することを示唆するからである. なお D_{x} は他に $\text{dis}(x) := 1 - 57x - 289x^{2} + x^{3} = 0$ の根 $x = \alpha_{1}, \alpha_{2}, \alpha_{3}$ にスペクトル (0, 1, 1, 2) の (conifold 型の) 確定特異点, $x = 3$ にスペクトル (0, 1, 3, 4) の確定特異点を持ち, 後者はモノドロミーを持たない.

ミラー族 $\{Y_{x}\}_{x} \in \mathbb{P}^{1}$ によって \mathbb{P}^{1} に special Kähler geometry の構造が入る. $K(x, \bar{x})$ をケーラーポテンシャル, $G_{x\bar{x}} := \partial_{x} \partial_{\bar{x}} K(x, \bar{x})$ を Weil–Peterson 計量, $C_{x\bar{x}}$ を湯川結合とする「B 型位相的弦理論の振幅」$F^{(g)}(x, \bar{x})$ ($g = 0, 1, 2, \ldots$) を考えよう. これらは vacuum bundle と呼ばれる \mathbb{P}^{1} 上の線束 \mathcal{L} のテンソル $\mathcal{L}^{\otimes 2g-2}$ のある section である. これは $g \geq 2$ では Bershshady–Cecotti–Ooguri–Vafa の holomorphic anomaly 方程式

\[
\partial_{x} F^{(g)} = \frac{1}{2} C^{*}_{x\bar{x}} e^{2K(G_{x\bar{x}})^{-1}} \left(D_{x}D_{\bar{x}} F^{(g-1)} + \sum_{r=1}^{g-1} D_{x}F^{(g-r)}D_{\bar{x}}F^{(r)} \right) \quad (g \geq 2)
\]

(2)

を満たす. 共変微分 D_{x} は $(T^{*}\mathbb{P}^{1})^{n} \otimes \mathcal{L}^{\otimes m}$ の section ξ に対して $D_{x}\xi = (\partial_{x} - m\partial_{\bar{x}} G_{x\bar{x}}/G_{x\bar{x}} + m\partial_{\bar{x}} K)\xi$ である. $g = 1$ では

\[
F^{(1)}(x, \bar{x}) = \frac{1}{2} \log \left\{ e^{3 + h^{11}(X) - \frac{V(X)}{12}} K_{x\bar{x}}^{-1/2} \left| \text{dis}(x)^{-\frac{1}{2}} x^{-1/2} - c(x) / \sqrt{12} \right| \right\}
\]

(3)

となる. \mathbb{P}^{1} の 5 次超曲面の場合との類推から $F^{(g)}$ は次のような性質を持つと期待される. $F^{(g)}$ は $g = 1$ では 'Quillen’s norm function'. $g \geq 2$ については数論的に厳密な定式化は知られていない.
1. $x = 0$ では X の種数 g のグロモフ・ウィッテン (GW) 不変量 $N_{g,d}(X)$ ($d \geq 1$) を再現する:

\[F(g) \omega_0^{2g-2} \rightarrow \frac{\chi(X)}{2}(-1)^g \frac{|B_{2g}B_{2g-2}|}{2g(2g-2)(2g-2)!} + \sum_{d \geq 1} N_{g,d}(X) q^d \ (g = e^t). \]

B_i ($i \geq 1$) はペルヌーイ数，$t = t(x)$ はミラー写像，$\omega_0(x)$ は $x = 0$ まわりの (uniqueな) 級数解である．左辺から右辺へは \bar{z} がゼロになる極限をとる．

2. $x = \infty$ では X' の種数 g の GW 不変量 $N_{g,d}(X')$ ($d \geq 1$) を再現する:

\[F(g) \omega_0^{2g-2} \rightarrow \frac{\chi(X')}{2}(-1)^g \frac{|B_{2g}B_{2g-2}|}{2g(2g-2)(2g-2)!} + \sum_{d \geq 1} N_{g,d}(X') \tilde{q}^d \ (\tilde{q} = e^{\tilde{t}}). \]

$z := 1/x$ とする．$\tilde{t} = \tilde{t}(z)$ はミラー写像，$\tilde{\omega}_0(z)$ は $z = 0$ まわりの級数解である．左辺から右辺へは \tilde{z} がゼロになる極限をとる．

3. 各 $x = \alpha_i$ ($i = 1, 2, 3$) では conifold型特異点に共通の次の性質 (gap condition)を持つ [Huang–Klemm–Quackenbush 2006]．局所座標を $s_i = z - \alpha_i$ とし，$\omega^{c,i}_0(s_i)$，$\omega^{c,i}_1(s_i)$ をそれぞれ s_i のゼロ次，1 次から始まる級数解，$U_i = \frac{1}{k_i} = \frac{\omega_0^{c,i}}{\omega_0}$ とする．k_iは正規化定数であり，後で無矛盾になるよう決める．このとき $s_i \rightarrow 0$ の極限での振舞いは

\[F(g) (\omega^{c,i}_0)^{2g-2} \rightarrow \frac{|B_{2g}|}{2g(2g-2)} \frac{1}{U_i^{2g-2}} + O(U_i^{0}) \]

となる．

3 次元カラビヤウ多様体における一般的な定義に従って GW 不変量 $N_{g,d}(X)$ から次のように Gopakumar–Vafa 不変量 $n_{g,d}(X)$ を定義しよう ($n_{g,d}(X')$ の定義も同様)：

\[\sum_{g \geq 0} \sum_{d \geq 1} N_{g,d}(X) \lambda^{2g-2} q^d = \sum_{d \geq 1} \sum_{k \geq 1} \sum_{n \geq 0} \frac{n_{g,d}(X)}{k} \left(2 \sin \frac{k \lambda}{2} \right)^{2g-2} q^{kd}. \]

このとき他の 3 次元カラビヤウ多様体における経験則から，$n_{g-1,d}(X) = 0$ ならば $n_{g,d}(X) = 0$ であること (*) と $n_{g,d}(X)$ は整数であることが期待される．

我々は holomorphic anomaly 方程式を解いて種数 5 まで $F(g)$ を求めた [HK]．Holomorphic anomaly 方程式から決まらない有理関数の不定性 (holomorphic ambiguity) は上の 3 つの性質を使って決定した．ただし性質 1, 2 については，$N_{g,d}(X)$, $N_{g,d}(X')$ があらかじめ分かっているわけではないので代わりの条件として (*) を課した．また $F(g)$から $n_{g,d}(X), n_{g,d}(X')$ を計算し整数を得た ([HK] 表 1 参照)．

この結果とドナルドソン・トーマス不変量や正則曲線の数の数え上げ問題との関係は興味深い問題である．

参考文献
[HK] Shinobu Hosono, Yukiko Konishi, Higher genus Gromov-Witten invariants of the Grassmannian, and the Pfaffian Calabi-Yau threefolds, arXiv:0704.2928.