Abstract

In this paper we use the Hall – Dilworth gluing construction to obtain multiple congruences of a lattice \(L \). For any finite lattice \(L \), \(G_m(L, B_n) \), the gluing of \(L \) and \(B_n \) over \(F \) and \(I \), both \(F \) and \(I \) are isomorphic to \(2 \). For any lattice \(L \), the congruences of \(G_m(L, B_n) \) is \(2^{(n-1)} \) times the congruences of \(L \) where \(F \) be the filter of \(L \) and \(I \) be an ideal of \(B_n \) and are isomorphic to \(2 \). We call \(G_m(L, B_n) \) the congruence multiple operator.

Key words : Gluing, filter, ideal, congruence and multiple congruence
Mathematics Subject classification: Primary: 06B10, Secondary: 06D05

1 Introduction

In\(^{1,2,3}\) Gratzer et al studied congruence lattices of lattices. The gluing construction in the lattice theory started with a paper of M. Hall and R.P. Dilworth\(^4\) to prove that there exists a modular lattices that cannot be embedded in any complemented modular lattice. This construction is as follows.

Let \(K \) and \(L \) be lattices. Let \(F \) be filter of \(K \) and let \(I \) be an ideal of \(L \). If \(F \) is isomorphic to \(I \) with \(\psi \) as the isomorphism, then we can form the gluing of \(K \) and \(L \) over \(F \) and \(I \) with respect to \(\psi \) defined as follows.

We form the disjoint union \(K \cup L \) and identify \(a \in F \), to obtain the set \(G \). We order \(G \) as follows:

\[
\begin{align*}
 a \leq_K b & \text{ if } a, b \in K \\
 a \leq_L b & \text{ if } a, b \in L \\
 a \leq_K x \text{ and } \psi(x) \leq_L b & \text{ if } a \in K \text{ and } b \in L \text{ for some } x \in F
\end{align*}
\]
Lemma 1 [5]:

G is a lattice. The join in G is described by

\[a \lor_G^b = \begin{cases}
 a \lor_K b & \text{if } a, b \in K \\
 a \lor_L b & \text{if } a, b \in L \\
 \psi(a \lor_K x) \lor_L b & \text{if } a \in K, b \in L \text{ for any } x \in F \text{ and } x \leq b
\end{cases} \]

and dually for the meet. If L has a zero, 0_L, then the last clause for the join may be rephrased:

\[a \lor_G^b = \psi(a \lor_K 0_L) \lor_L b \quad \text{if } a \in K \text{ and } b \in L. \]

G contains K and L as sublattices. Infact, K is an ideal and L is a filter of G.

Lemma 2:

Let K, L, F, I and G be given as above. Let A be a lattice containing K and L as sublattices so that

\[K \cap L = I = F. \]

Then \(K \cup L \) is a sublattice of A and it is isomorphic to G.

Definition 3:

If \(\theta_k \) is a binary relation on K and \(\theta_L \) is a binary relation on L, the reflexive product \(\theta_k \circ \theta_L \) is defined as \(\theta_k \cup \theta_L \cup (\theta_k \circ \theta_L) \).

Lemma 4:

A congruence \(\theta \) of G can be uniquely written in the form \(\theta = \theta_k \circ \theta_L \), where \(\theta_k \) is a congruence of K and \(\theta_L \) is a congruence of L satisfying the condition that \(\theta_k \) restricted to F equals \(\theta_L \) restricted to I (under the identification of elements by \(\psi \)). Conversely, if \(\theta_k \) is a congruence of K and \(\theta_L \) is a congruence of L satisfying the condition that \(\theta_k \) restricted to F equals \(\theta_L \) restricted to I, then \(\theta = \theta_k \circ \theta_L \) is a congruence of G.

Lemma 5:

Let G be the gluing of lattices K and L over F and I as above. If K and L are modular so is the gluing G of K and L. If K and L are distributive, so is the gluing G.

In this paper, we study about the multiple congruences of a lattice L. For any finite lattice L, \(G_m(L, B_n) \), the gluing of L and B_n over F and I, both F and I are isomorphic to \(C_2 \). For any lattice L, the congruences of \(G_m(L, B_n) \) is \(2^{m-1} \) times the congruences of L where F be the filter of L and I be an ideal of B_n and are isomorphic to \(C_2 \). We call \(G_m(L, B_n) \) the congruence multiple operator. In [6], we studied about proper modular congruence preserving extensions lattices.

3 Multiple Congruence of a lattice:

Definition 6: The lattice G is called the congruence multiple operator if \(ConG \cong C_2 \times ConL \) for all
L. Equivalently for any lattice L, the congruence of an extension of L is multiple.

Construction 7: Let L be a finite bounded lattice with filter F and let B_2 be a nontrivial finite non simple lattice with an ideal I of B_2 isomorphic to C_2. B_2 is not a congruence preserving extension of I. Now glue the lattices L and B_2 over F and I under the isomorphism ψ. Let us denote it by $G_m(L, B_2)$.

Example 8: Let L be a chain with three elements with a filter F isomorphic to C_2 and let B_2 be a Boolean algebra with two atoms having an ideal I isomorphic to F. Glue the lattices L and B_2 over the filter F of L and an ideal I of B_2. The lattices L, B_2 and $G_m(L, B_2)$ are shown in figure 1.

![Figure 1](image1)

Also their congruence with the congruence classes are given below. The congruence lattices of C_3, B_2, and $G(\text{Con}(C_3), \text{Con}(B_2))$ are given in figure 2.

![Figure 2](image2)

The congruence of C_3 is $\text{Con}(C_3) = \{ \omega, \theta_1, \theta_2, \tau \}$ where ω the null congruence, $\theta_1 = \{(0),(a,1)\}$, $\theta_2 = \{(0,a),(1)\}$ and τ all congruence. The congruence lattice of C_3 is isomorphic to B_2. Glue the lattices $\text{Con}(C_3)$ and $\text{Con}(B_2)$ over the filter F and an ideal I both isomorphic to C_2.
The congruence of B_2 is $\text{Con}(B_2) = \{ \omega, \theta_1, \theta_2, \tau \}$ where ω the null congruence, $\theta_1 = \{(a,b),(c,1)\}$, $\theta_2 = \{(a,c), (b,1)\}$ and τ all congruence. The congruence lattice of B_2 is isomorphic to B_2. The lattice $G_m(C_3, B_2)$ is obtained by gluing C_3 and B_2 over the filter F of C_3 and an ideal I of B_2. The congruence of $G_m(C_3, B_2)$ is obtained by the reflexive binary product of congruences of C_3 and congruences of B_2.

$\text{Con}(G_m(C_3, B_2)) = \{ \omega, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \tau \}$, where ω - the null congruence, $\theta_1 = \{(0,a),(b),(c,1)\}$, $\theta_2 = \{(0),(a,c),(b,1)\}$, $\theta_3 = \{(0),(a,b),(c,1)\}$, $\theta_4 = \{(0),(ab),(c1)\}$, $\theta_5 = \{(0),(ac),(b1)\}$, $\theta_6 = \{(0),(abc1)\}$ and τ all congruence. The congruence lattice of $G(C_3, B_2)$ is isomorphic to B_2. That is, every congruence of C_3 is restricted to two times of the congruences of B_2.

Example 9: Let L be an ortholattice. Let $G_m(C_3, B_2)$ be the gluing of L and B_2 over F and I under the isomorphism ψ. The lattice L, $G_m(L, B_2)$ are given in figure 3.

![Figure 3](image)

The congruence of $G_m(L, B_2)$ is given by $\text{Con}(G_m(L, B_2))$ isomorphic to $\text{Con}L \times C_2$. $\text{Con}(G_m(L, B_2)) = \{ \omega, \tau, \theta$'s $\}$. Where ω is the null congruence, τ is the all congruence and θ's the non trivial congruence of $G_m(L, B_2)$. They are $\{(0),(a),(b),(c),(d),(e),(f,1)\}, \{(0),(a),(c),(d),(e),(f,1)\}, \{(0),(a),(b),(d),(e),(f,1)\}, \{(0),(a),(b),(c),(e),(f,1)\}, \{(0),(a),(b),(c),(d),(f,1)\}, \{(0),(a),(b),(c),(d),(e),(f,1)\}$. As there are seven congruence of L, every nontrivial congruence of B_2 restricted to an ideal I equal twice the congruence of L restricted to a filter F.

The congruence lattice of L and $G_m(L, B_2)$ is given in figure 4.

Hence by gluing of a Boolean algebra with an ortholattice L, whose ideal and filter are simple lattice (C_2) has 14 congruences (2×7) isomorphic to $C_2 \times \text{Con}(L)$.

Hence it is isomorphic to two times the congruence of L.

Remark 10: From the construction given in I, the lattice $G_m(L, B_2)$ contains a sub lattice L, which is an ideal of $G_m(L, B_2)$.

Remark 11: The number of congruences of B_n, Boolean algebra with n atoms is 2^n. If all the congruences
Theorem 12: Let \(L \) be any lattice with a prime filter \(F \). Then the number of congruences of \(G_n(L) \) is \(2^{n-1} \) times the number of congruences of \(L \).

Proof. Let \(L \) be any finite lattice with a prime filter \(F \) and \(B_n \) be a Boolean algebra with \(n \) atoms. Let \(I=(a) \) be a prime ideal of \(B_n \) and \(F \) be a filter of \(L \) which is isomorphic to \(I \) under an isomorphism \(\varphi \). Let \(\theta_L \) be a congruence of \(L \). Then \(\theta_L \cap F \) is either equal to \((0)(a) \) or \((0a) \). If \(\theta_L \cap F \) is equal to \(2^{n-1} \) congruences of the gluing of \(B_n \) restricted to \(I \). By definition 3, \(\theta = \theta_L \circ^r \theta_{B_n} \) is a congruence of \(G_n(L) \). Therefore corresponding to each \(\theta_L \), there are \(2^{n-1} \theta_{B_n} \) such that \(\theta_L \cap F = \theta_{B_n} \cap I \) and \(\theta = \theta_L \circ^r \theta_{B_n} \) is a congruence of \(G_n(L) \). Hence \(|Con(G_n(L))| = 2^{n-1} \times |Con(L)| \).

Conclusion

From the gluing of lattices we obtain that for every finite lattice \(A \) and a Boolean algebra \(B \), the congruence of gluing of \(A \) and \(B \) over \(F \) and \(I \) is isomorphic to \(2^{n-1} \) times the congruence of \(A \). Congruence of gluing of \(A \) and \(B \) over \(F \) and \(I \) is isomorphic to the congruence of \(\text{con}(A) \) and \(\text{con}(B) \) over \(F \) and \(I \) under \(\varphi \), where \(F \) and \(I \) of \(A, B \) are same as \(F \) and \(I \) of \(\text{con}(A) \) and \(\text{con}(B) \). In \(\text{6} \) I have studied about Distributive congruence preserving extension of chains using relative separator. In \(\text{7} \) I have studied about proper modular congruence preserving extension of lattices by gluing of simple modular lattice. We further extend the gluing concept to get a proper congruence preserving extension of \(A \) if \(B \) is not a congruence preserving extension of \(I \).

References

1. G. Gratzer and H. Lakser, Congruence lattices of planar lattices, *Acta Math. Hungar. 60*, 251-268 (1992).
2. G. Gratzer, H. Lakser, and E.T. Schmidt, Congruence lattices of small planar lattices, *Proc. Amer. Math. Soc.* 123, 2619-2623 (1995).
3. G. Gratzer and E.T. Schmidt, Congruence Lattices of lattices, *Acta Math. Acad Sci. Hungar* 13, 179-185 (1962).
4. M. Hall and R. P. Dilworth, The embedding problem for modular lattices, *Annals Math.*, 45, 450-456 (1944).
5. G. Gratzer, "The Congruences of a finite lattice", A proof-by-picture approach, Birkhauser Boston (2006).
6. E.K.R. Nagarajan and R. Rathajeyalakshmi, "Modular Congruence preserving extension of lattices", *Ultra Scientist of Physical Sciences*, vol 21, No.1(M), 173-176 (2009).
7. R. Ratha Jeyalakshmi, "Distributive Congruence preserving extensions of Chains", International Journal of Science Technology and Engineering, vol 3 (issue 7), 174-180 (2017).