On algebraic values of function
\[\exp (2\pi i \, x + \log \log y) \]

Igor Nikolaev *

Abstract

It is proved that for all but a finite set of square-free integers \(d \) the value of transcendental function \(\exp (2\pi i \, x + \log \log y) \) is an algebraic number for the algebraic arguments \(x \) and \(y \) in the real quadratic field of discriminant \(d \). Such a value generates the Hilbert class field of imaginary quadratic field of discriminant \(-d \).

Key words and phrases: real multiplication; Sklyanin algebra

MSC: 11J81 (transcendence theory); 46L85 (noncommutative topology)

1 Introduction

It is an old problem to determine if given irrational value of a transcendental function is algebraic or transcendental for certain algebraic arguments; the algebraic values are particularly remarkable and worthy of thorough investigation, see [Hilbert 1902] [1], p. 456. Only few general results are known, see e.g. [Baker 1975] [1]. We shall mention the famous Gelfond-Schneider Theorem saying that \(e^{\beta \log \alpha} \) is a transcendental number, whenever \(\alpha \notin \{0, 1\} \) is an algebraic and \(\beta \) an irrational algebraic number. In contrast, Klein’s invariant \(j(\tau) \) is known to take algebraic values whenever \(\tau \in \mathbb{H} := \{x+iy \in \mathbb{C} \mid y > 0\} \) is an imaginary quadratic number.

*Partially supported by NSERC.
The aim of our note is a result on the algebraic values of transcendental function
\[J(x, y) := \{ e^{2\pi i x} + \log \log y \mid -\infty < x < \infty, \ 1 < y < \infty \} \]
(1)
for the arguments \(x \) and \(y \) in a real quadratic field; the function \(J(x, y) \) can be viewed as an analog of Klein’s invariant \(j(\tau) \), hence the notation. Namely, let \(\mathfrak{t} = \mathbb{Q}(\sqrt{d}) \) be a real quadratic field and \(\mathfrak{A}_i = \mathbb{Z} + j\mathfrak{t} \) be an order of conductor \(j \geq 1 \) in the field \(\mathfrak{t} \); let \(h = |\text{Cl} (\mathfrak{A}_i)| \) be the class number of \(\mathfrak{A}_i \) and denote by \(\{ \mathbb{Z} + j\mathfrak{t} \mid 1 \leq 1 \leq h \} \) the set of pairwise non-isomorphic pseudo-lattices in \(\mathfrak{t} \) having the same endomorphism ring \(\mathfrak{A}_i \), see [Manin 2004] [5], Lemma 1.1.1.

Finally, let \(\varepsilon \) be the fundamental unit of \(\mathfrak{A}_i \) and let \(f \geq 1 \) be the least integer satisfying equation \(|\text{Cl} (R_f)| = |\text{Cl} (\mathfrak{A}_i)| \), where \(R_f = \mathbb{Z} + f\mathfrak{O}_k \) is an order of conductor \(f \) in the imaginary quadratic field \(k = \mathbb{Q}(\sqrt{-d}) \). Our main result can be formulated as follows.

Theorem 1 For each square-free positive integer \(d \notin \{1, 2, 3, 7, 11, 19, 43, 67, 163\} \) the values \(\{ J(\theta_i, \varepsilon) \mid 1 \leq i \leq h \} \) of transcendental function \(J(x, y) \) are algebraically conjugate numbers generating the Hilbert class field \(H(k) \) of the imaginary quadratic field \(k = \mathbb{Q}(\sqrt{-d}) \) modulo conductor \(f \).

Remark 1 Since \(H(k) \cong \mathbb{Q}(j(\tau)) \cong \mathbb{Q}(f\sqrt{-d}, j(\tau)) \) with \(\tau \in R_f \), one gets an inclusion \(J(\theta_i, \varepsilon)) \in \mathbb{Q}(f\sqrt{-d}, j(\tau)) \).

Remark 2 Note that even though the absolute value \(|z| = \sqrt{z\bar{z}} \) of an algebraic \(z \) is an algebraic number, the absolute value of \(J(\theta_i, \varepsilon) \) is transcendental. It happens because \(|z| \) belongs to a quadratic extension of the real field \(\mathbb{Q}(z\bar{z}) \) which may have no real embeddings at all. (Compare with the CM-field, i.e. a totally imaginary quadratic extension of the totally real number field.)

The structure of article is as follows. Some preliminary facts can be found in Section 2. Theorem 1 is proved in Section 3 and Section 4 contains an example illustrating the theorem.

2 Preliminaries

The reader can find basics of the \(C^* \)-algebras in [Murphy 1990] [6] and their \(K \)-theory in [Blackadar 1986] [2]. The noncommutative tori are covered in
2.1 Noncommutative tori

By a noncommutative torus \mathcal{A}_θ one understands the universal C^*-algebra generated by the unitary operators u and v acting on a Hilbert space \mathcal{H} and satisfying the commutation relation $vu = e^{2\pi i \theta} uv$, where θ is a real number.

Remark 3 Note that \mathcal{A}_θ is isomorphic to a free \mathbb{C}-algebra on four generators u, u^*, v, v^* and six quadratic relations:

$$
\begin{align*}
vu &= e^{2\pi i \theta} uv, \\
v^*u^* &= e^{2\pi i \theta} u^*v^*, \\
v^*u &= e^{-2\pi i \theta} uv^*, \\
v^*v &= e^{-2\pi i \theta} u^*v, \\
u^*u &= uu^* = e, \\
v^*v &= vv^* = e.
\end{align*}
$$

Indeed, the first and the last two relations in system (2) are obvious from the definition of \mathcal{A}_θ. By way of example, let us demonstrate that relations $vu = e^{2\pi i \theta} uv$ and $u^*u = uu^* = v^*v = vv^* = e$ imply the relation $v^*u = e^{-2\pi i \theta} uv^*$ in system (2). Indeed, it follows from $uu^* = e$ and $vv^* = e$ that $uu^*vv^* = e$. Since $uu^* = u^*u$ we can bring the last equation to the form u^*uvu^* = e and multiply the both sides by the constant $e^{2\pi i \theta}$; thus one gets the equation $u^* (e^{2\pi i \theta} u) v = e^{2\pi i \theta}$. But $e^{2\pi i \theta} uv = vu$ and our main equation takes the form $u^*vvu^* = e^{2\pi i \theta}$. We can multiply on the left the both sides of the equation by the element u and thus get the equation $uu^*vvu^* = e^{2\pi i \theta} u$; since $uu^* = e$ one arrives at the equation $vu^*v = e^{2\pi i \theta} u$. Again one can multiply on the left the both sides by the element v^* and thus get the equation $v^*vu^*v = e^{2\pi i \theta} v^*u$; since $v^*v = e$ one gets $v^*v = e^{2\pi i \theta} v^*u$ and the required identity $v^*u = e^{-2\pi i \theta} uv^*$. The remaining two relations in (2) are proved likewise; we leave it to the reader as an exercise in non-commutative algebra.

Recall that the algebra \mathcal{A}_θ is said to be stably isomorphic (Morita equivalent) to $\mathcal{A}_{\theta'}$, whenever $\mathcal{A}_\theta \otimes \mathcal{K} \cong \mathcal{A}_{\theta'} \otimes \mathcal{K}$, where \mathcal{K} is the C^*-algebra of all compact operators on \mathcal{H}; the \mathcal{A}_θ is stably isomorphic to $\mathcal{A}_{\theta'}$ if and only if

$$
\theta' = \frac{a\theta + b}{c\theta + d} \quad \text{for some matrix} \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).
$$

(3)
The K-theory of A_{θ} is two-periodic and $K_0(A_{\theta}) \cong K_1(A_{\theta}) \cong \mathbb{Z}^2$ so that the Grothendieck semigroup $K^+_0(A_{\theta})$ corresponds to positive reals of the set $\mathbb{Z} + \mathbb{Z}\theta \subset \mathbb{R}$ called a pseudo-lattice. The torus A_{θ} is said to have real multiplication, if θ is a quadratic irrationality, i.e. irrational root of a quadratic polynomial with integer coefficients. The real multiplication says that the endomorphism ring of pseudo-lattice $\mathbb{Z} + \mathbb{Z}\theta$ exceeds the ring \mathbb{Z} corresponding to multiplication by m endomorphisms; similar to complex multiplication, it means that the endomorphism ring is isomorphic to an order $R_f = \mathbb{Z} + \mathfrak{O}_k$ of conductor $f \geq 1$ in the real quadratic field $k = \mathbb{Q}(\theta)$ – hence the name, see [Manin 2004] [5]. If $d > 0$ is the discriminant of k, then by $A^{(d,f)}_{RM}$ we denote a noncommutative torus with real multiplication by the order \mathfrak{R}_f.

2.2 Elliptic curves

For the sake of clarity, let us recall some well-known facts. An elliptic curve is the subset of the complex projective plane of the form $E(\mathbb{C}) = \{(x, y, z) \in \mathbb{C}P^2 \mid y^2z = 4x^3 + axz^2 + bz^3\}$, where a and b are some constant complex numbers. Recall that one can embed $E(\mathbb{C})$ into the complex projective space $\mathbb{C}P^3$ as the set of points of intersection of two quadric surfaces given by the system of homogeneous equations

$$\begin{cases} u^2 + v^2 + w^2 + z^2 &= 0, \\ Av^2 + Bw^2 + z^2 &= 0, \end{cases}$$

(4)

where A and B are some constant complex numbers and $(u, v, w, z) \in \mathbb{C}P^3$; the system (4) is called the Jacobi form of elliptic curve $E(\mathbb{C})$. Denote by $\mathbb{H} = \{x + iy \in \mathbb{C} \mid y > 0\}$ the Lobachevsky half-plane; whenever $\tau \in \mathbb{H}$, one gets a complex torus $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$. Each complex torus is isomorphic to a non-singular elliptic curve; the isomorphism is realized by the Weierstrass \wp function and we shall write E_{τ} to denote the corresponding elliptic curve. Two elliptic curves E_τ and $E_{\tau'}$ are isomorphic if and only if

$$\tau' = \frac{a\tau + b}{c\tau + d} \text{ for some matrix } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$$

(5)

If τ is an imaginary quadratic number, elliptic curve E_τ is said to have complex multiplication; in this case lattice $\mathbb{Z} + \mathbb{Z}\tau$ admits non-trivial endomorphisms realized as multiplication of points of the lattice by the imaginary quadratic numbers, hence the name. We shall write $E^{(-d,f)}_{CM}$ to denote elliptic curve with
complex multiplication by an order $R_f = \mathbb{Z} + fO_k$ of conductor $f \geq 1$ in the imaginary quadratic field $k = \mathbb{Q}(\sqrt{-d})$.

2.3 Sklyanin algebras

By the **Sklyanin algebra** $S_{\alpha,\beta,\gamma}(\mathbb{C})$ one understands a free \mathbb{C}-algebra on four generators and six relations:

$$
\begin{align*}
 x_1 x_2 - x_2 x_1 &= \alpha (x_3 x_4 + x_4 x_3), \\
 x_1 x_2 + x_2 x_1 &= x_3 x_4 - x_4 x_3, \\
 x_1 x_3 - x_3 x_1 &= \beta (x_4 x_2 + x_2 x_4), \\
 x_1 x_3 + x_3 x_1 &= x_4 x_2 - x_2 x_4, \\
 x_1 x_4 - x_4 x_1 &= \gamma (x_2 x_3 + x_3 x_2), \\
 x_1 x_4 + x_4 x_1 &= x_2 x_3 - x_3 x_2,
\end{align*}
$$

where $\alpha + \beta + \gamma + \alpha \beta \gamma = 0$. The algebra $S_{\alpha,\beta,\gamma}(\mathbb{C})$ represents a twisted homogeneous coordinate ring of an elliptic curve $E_{\alpha,\beta,\gamma}(\mathbb{C})$ given in its Jacobi form

$$
\begin{align*}
 u^2 + v^2 + w^2 + z^2 &= 0, \\
 \frac{1-\alpha}{1+\beta} v^2 + \frac{1+\alpha}{1-\gamma} w^2 + z^2 &= 0,
\end{align*}
$$

see [Smith & Stafford 1993] [10], p.267 and [Stafford & van den Bergh 2001] [11], Example 8.5. The latter means that algebra $S_{\alpha,\beta,\gamma}(\mathbb{C})$ satisfies an isomorphism $\text{Mod} (S_{\alpha,\beta,\gamma}(\mathbb{C}))/\text{Tors} \cong \text{Coh} (E_{\alpha,\beta,\gamma}(\mathbb{C}))$, where Coh is the category of quasi-coherent sheaves on $E_{\alpha,\beta,\gamma}(\mathbb{C})$, Mod the category of graded left modules over the graded ring $S_{\alpha,\beta,\gamma}(\mathbb{C})$ and Tors the full sub-category of Mod consisting of the torsion modules, see [Stafford & van den Bergh 2001] [11], p.173. The algebra $S_{\alpha,\beta,\gamma}(\mathbb{C})$ defines a natural automorphism σ of elliptic curve $E_{\alpha,\beta,\gamma}(\mathbb{C})$, *ibid.*

3 Proof of theorem 1

For the sake of clarity, let us outline main ideas. The proof is based on a categorical correspondence (a covariant functor) between elliptic curves E_{τ} and noncommutative tori A_{θ} taken with their “scaled units” $\frac{1}{\mu} e$. Namely, we prove that for $\sigma^4 = \text{Id}$ the norm-closure of a self-adjoint representation of the Sklyanin algebra $S_{\alpha,\beta,\gamma}(\mathbb{C})$ by the linear operators $u = x_1, u^* = x_2, v = x_3, v^* = x_4$ on a Hilbert space \mathcal{H} is isomorphic to the C^*-algebra A_{θ} so that
its unit e is scaled by a positive real μ, see lemma 2 because $S_{\alpha,\beta,\gamma}(\mathbb{C})$ is a coordinate ring of elliptic curve $E_{\alpha,\beta,\gamma}(\mathbb{C})$ so will be the algebra A_{θ} modulo the unit $\frac{1}{\mu}e$. Moreover, our construction entails that a coefficient q of elliptic curve $E_{\alpha,\beta,\gamma}(\mathbb{C})$ is linked to the constants θ and μ by the formula $q = \mu e^{2\pi i \theta}$, see lemma 1. Suppose that our elliptic curve has complex multiplication, i.e. $E_{\alpha,\beta,\gamma}(\mathbb{C})$ has CM, see lemma 1. Therefore one gets an inclusion

$$\mu e^{2\pi i \theta} \in H(k),$$

where $\theta \in \mathbb{Q}(\sqrt{d})$ and $\mu = \log \varepsilon$. (Of course, our argument is valid only when $q \not\in \mathbb{R}$, i.e. when $|Cl(R_f)| \geq 2$; but there are only a finite number of discriminants d with $|Cl(R_f)| = 1$.)

Let us pass to a detailed argument.

Lemma 1 If $\sigma^4 = Id$, then the Sklyanin algebra $S_{\alpha,\beta,\gamma}(\mathbb{C})$ endowed with the involution $x_1^3 = x_2$ and $x_3^4 = x_4$ is isomorphic to a free algebra $\mathbb{C}(x_1, x_2, x_3, x_4)$ modulo an ideal generated by six quadratic relations

$$\begin{align*}
 x_3 x_1 &= \mu e^{2\pi i \theta} x_1 x_3, \\
 x_4 x_2 &= \frac{1}{\mu} e^{2\pi i \theta} x_2 x_4, \\
 x_4 x_1 &= \mu e^{-2\pi i \theta} x_1 x_4, \\
 x_3 x_2 &= \frac{1}{\mu} e^{-2\pi i \theta} x_2 x_3, \\
 x_2 x_1 &= x_1 x_2, \\
 x_4 x_3 &= x_3 x_4,
\end{align*}$$

where $\theta = \text{Arg} (q)$ and $\mu = |q|$ for a complex number $q \in \mathbb{C} \setminus \{0\}$.

Proof. (i) Since $\sigma^4 = Id$, the Sklyanin algebra $S_{\alpha,\beta,\gamma}(\mathbb{C})$ is isomorphic to a free algebra $\mathbb{C}(x_1, x_2, x_3, x_4)$ modulo an ideal generated by the skew-symmetric relations

$$\begin{align*}
 x_3 x_1 &= q_{13} x_1 x_3, \\
 x_4 x_2 &= q_{24} x_2 x_4, \\
 x_4 x_1 &= q_{14} x_1 x_4, \\
 x_3 x_2 &= q_{23} x_2 x_3, \\
 x_2 x_1 &= q_{12} x_1 x_2, \\
 x_4 x_3 &= q_{34} x_3 x_4,
\end{align*}$$

where $q_{ij} = q_{ji}$ and $q_{ij} = 0$ for $i < j$.
where \(q_{ij} \in \mathbb{C} \setminus \{0\} \), see [Feigin & Odesskii 1989] \(^3\), Remark 1.

(ii) It is verified directly, that relations (10) are invariant of the involution \(x_1^* = x_2 \) and \(x_3^* = x_4 \), if and only if

\[
\begin{align*}
q_{13} &= (\bar{q}_{24})^{-1}, \\
q_{24} &= (\bar{q}_{13})^{-1}, \\
q_{14} &= (\bar{q}_{23})^{-1}, \\
q_{23} &= (\bar{q}_{14})^{-1}, \\
q_{12} &= \bar{q}_{12}, \\
q_{34} &= \bar{q}_{34},
\end{align*}
\]

(11)

where \(\bar{q}_{ij} \) means the complex conjugate of \(q_{ij} \in \mathbb{C} \setminus \{0\} \).

Remark 4 The invariant relations (11) define an involution on the Sklyanin algebra; we shall refer to such as a Sklyanin \(* \)-algebra.

(iii) Consider a one-parameter family \(S(q_{13}) \) of the Sklyanin \(* \)-algebras defined by the following additional constraints

\[
\begin{align*}
q_{13} &= \bar{q}_{14}, \\
q_{12} &= q_{34} = 1.
\end{align*}
\]

(12)

It is not hard to see, that the \(* \)-algebras \(S(q_{13}) \) are pairwise non-isomorphic for different values of complex parameter \(q_{13} \); therefore the family \(S(q_{13}) \) is a normal form of the Sklyanin \(* \)-algebra \(S_{\alpha,\beta,\gamma}(\mathbb{C}) \) with \(\sigma^4 = Id \). It remains to notice, that one can write complex parameter \(q := q_{13} \) in the polar form \(q = \mu e^{2\pi i \theta} \), where \(\theta = \text{Arg} (q) \) and \(\mu = |q| \). Lemma \(^4\) follows. \(\square \)

Lemma 2 (basic isomorphism) The system of relations (2) for noncommutative torus \(\mathcal{A}_\theta \) with \(u = x_1, u^* = x_2, v = x_3, v^* = x_4 \), i.e.

\[
\begin{align*}
x_3 x_1 &= e^{2\pi i \theta} x_1 x_3, \\
x_4 x_2 &= e^{2\pi i \theta} x_2 x_4, \\
x_4 x_1 &= e^{-2\pi i \theta} x_1 x_4, \\
x_3 x_2 &= e^{-2\pi i \theta} x_2 x_3, \\
x_2 x_1 &= x_1 x_2 = e, \\
x_4 x_3 &= x_3 x_4 = e,
\end{align*}
\]

(13)
is equivalent to the system of relations (9) for the Sklyanin *-algebra, i.e.

$$
\begin{align*}
\begin{cases}
x_3x_1 &= \mu e^{2\pi i \theta} x_1 x_3, \\
x_4x_2 &= \frac{1}{\mu} e^{2\pi i \theta} x_2 x_4, \\
x_4x_1 &= \mu e^{-2\pi i \theta} x_1 x_4, \\
x_3x_2 &= \frac{1}{\mu} e^{-2\pi i \theta} x_2 x_3, \\
x_2x_1 &= x_1 x_2, \\
x_4x_3 &= x_3 x_4,
\end{cases}
\end{align*}
$$

(modulo the following “scaled unit relation”

$$
x_1 x_2 = x_3 x_4 = \frac{1}{\mu} e. \tag{15}\n$$

Proof. (i) Using the last two relations, one can bring the noncommutative torus relations (13) to the form

$$
\begin{align*}
\begin{cases}
x_3 x_1 x_4 &= e^{2\pi i \theta} x_1, \\
x_4 &= e^{2\pi i \theta} x_2 x_4 x_1, \\
x_4 x_1 x_3 &= e^{-2\pi i \theta} x_1, \\
x_2 &= e^{-2\pi i \theta} x_4 x_2 x_3, \\
x_1 x_2 &= x_2 x_1 = e, \\
x_3 x_4 &= x_4 x_3 = e.
\end{cases}
\end{align*}
$$

(ii) The system of relations (14) for the Sklyanin *-algebra complemented by the scaled unit relation (15), i.e.

$$
\begin{align*}
\begin{cases}
x_3 x_1 &= \mu e^{2\pi i \theta} x_1 x_3, \\
x_4 x_2 &= \frac{1}{\mu} e^{2\pi i \theta} x_2 x_4, \\
x_4 x_1 &= \mu e^{-2\pi i \theta} x_1 x_4, \\
x_3 x_2 &= \frac{1}{\mu} e^{-2\pi i \theta} x_2 x_3, \\
x_2 x_1 &= x_1 x_2 = \frac{1}{\mu} e, \\
x_4 x_3 &= x_3 x_4 = \frac{1}{\mu} e,
\end{cases}
\end{align*}
$$

is equivalent to the system

$$
\begin{align*}
\begin{cases}
x_3 x_1 x_4 &= e^{2\pi i \theta} x_1, \\
x_4 &= e^{2\pi i \theta} x_2 x_4 x_1, \\
x_4 x_1 x_3 &= e^{-2\pi i \theta} x_1, \\
x_2 &= e^{-2\pi i \theta} x_4 x_2 x_3, \\
x_2 x_1 &= x_1 x_2 = \frac{1}{\mu} e, \\
x_4 x_3 &= x_3 x_4 = \frac{1}{\mu} e.
\end{cases}
\end{align*}
$$

(14)
by using multiplication and cancellation involving the last two equations.

(iii) For each \(\mu \in (0, \infty) \) consider a scaled unit \(e' := \frac{1}{\mu} e \) of the Sklyanin \(* \)-algebra \(S(q) \) and the two-sided ideal \(I_\mu \subset S(q) \) generated by the relations \(x_1 x_2 = x_3 x_4 = e' \). Comparing the defining relations \((13) \) for \(S(q) \) with relation \((13) \) for the noncommutative torus \(A_{\theta} \), one gets an isomorphism

\[
S(q) / I_\mu \cong A_{\theta}.
\]

The isomorphism maps generators \(x_1, \ldots, x_4 \) of the Sklyanin \(* \)-algebra \(S(q) \) to such of the \(C^* \)-algebra \(A_{\theta} \) and the scaled unit \(e' \in S(q) \) to the ordinary unit \(e \in A_{\theta} \). Lemma 2 follows. □

Remark 5 It follows from \((19) \) that noncommutative torus \(A_{\theta} \) with the unit \(\frac{1}{\mu} e \) is a coordinate ring of elliptic curve \(E_\tau \). Moreover, such a correspondence is a covariant functor which maps isomorphic elliptic curves to the stably isomorphic (Morita equivalent) noncommutative tori; the latter fact follows from an observation that isomorphisms in category \(\text{Mod} \) correspond to stable isomorphisms in the category of underlying algebras. Such a functor explains the same (modular) transformation law in formulas \((3) \) and \((5) \).

Lemma 3 The coordinate ring of elliptic curve \(E_{CM}^{(-d,f)} \) is isomorphic to the noncommutative torus \(A_{RM}^{(d,f)} \) with the unit \(\frac{1}{\log \varepsilon} e \), where \(f \) is the least integer satisfying equation \(|\text{Cl}(R_f)| = |\text{Cl}(R_f)| \) and \(\varepsilon \) is the fundamental unit of order \(R_f \).

Proof. The fact that \(A_{RM}^{(d,f)} \) is a coordinate ring of elliptic curve \(E_{CM}^{(-d,f)} \) was proved in [Nikolaev 2014] [7]. We shall focus on the second part of lemma 3 saying that the scaling constant \(\mu = \log \varepsilon \). To express \(\mu \) in terms of intrinsic invariants of pseudo-lattice \(K^+_0(A_{RM}^{(d,f)}) \cong \mathbb{Z} + \mathbb{Z}\theta \), recall that \(\mathfrak{R}_f \) is the ring of endomorphisms of \(\mathbb{Z} + \mathbb{Z}\theta \); we shall write \(\mathfrak{R}^+_f \) to denote the multiplicative group of units (i.e. invertible elements) of \(\mathfrak{R}_f \). Since \(\mu \) is an additive functional on the pseudo-lattice \(\Lambda = \mathbb{Z} + \mathbb{Z}\theta \), for each \(\varepsilon, \varepsilon' \in \mathfrak{R}^+_f \) it must hold \(\mu(\varepsilon\varepsilon'\Lambda) = \mu(\varepsilon\varepsilon')\Lambda = \mu(\varepsilon)\Lambda + \mu(\varepsilon')\Lambda \). Eliminating \(\Lambda \) in the last equation, one gets

\[
\mu(\varepsilon\varepsilon') = \mu(\varepsilon) + \mu(\varepsilon'), \quad \forall \varepsilon, \varepsilon' \in \mathfrak{R}^+_f.
\]

The only real-valued function on \(\mathfrak{R}^+_f \) with such a property is the logarithmic function (a regulator of \(\mathfrak{R}^+_f \)); thus \(\mu(\varepsilon) = \log \varepsilon \), where \(\varepsilon \) is the fundamental unit of \(\mathfrak{R}_f \). Lemma 3 is proved. □
Remark 6 (Second proof of lemma 3) The formula \(\mu = \log \varepsilon \) can be derived using a purely measure-theoretic argument. Indeed, if \(h_x : \mathbb{R} \to \mathbb{R} \) is a “stretch-out” automorphism of real line \(\mathbb{R} \) given by the formula \(t \mapsto tx, \forall t \in \mathbb{R} \), then the only \(h_x \)-invariant measure \(\mu \) on \(\mathbb{R} \) is the “scale-back” measure \(d\mu = \frac{1}{t} dt \). Taking the antiderivative and integrating between \(t_0 = 1 \) and \(t_1 = x \), one gets
\[
\mu = \log x. \tag{21}
\]
It remains to notice that for pseudo-lattice \(K_0^+ (\mathcal{A}_{RM}^{(d,f)}) \cong \mathbb{Z} + \mathbb{Z} \theta \), the automorphism \(h_x \) corresponds to \(x = \varepsilon \), where \(\varepsilon > 1 \) is the fundamental unit of order \(\mathfrak{R} \). Lemma 3 follows. □.

One can prove theorem 1 in the following steps.

(i) Let \(d \not\in \{1, 2, 3, 7, 11, 19, 43, 67, 163\} \) be a positive square-free integer. In this case \(h = |Cl (R_f)| \geq 2 \) and \(\mathcal{E}_{CM}^{(-d,f)} \not\sim \mathcal{E} (\mathbb{Q}) \).

(ii) Let \(\{\mathcal{E}_1, \ldots, \mathcal{E}_h\} \) be pairwise non-isomorphic elliptic curves having the same endomorphism ring \(R_f \). From \(|Cl (R_f)| = |Cl (\mathfrak{R})| \) and lemma 3 one gets \(\{\mathcal{A}_1, \ldots, \mathcal{A}_h\} \) pairwise stably non-isomorphic noncommutative tori; the corresponding pseudo-lattices \(K_0^+ (\mathcal{A}_i) = \mathbb{Z} + \mathbb{Z} \theta_i \) will have the same endomorphism ring \(\mathfrak{R} \). Thus for each \(1 \leq i \leq h \) one gets an inclusion
\[
(\log \varepsilon) e^{2\pi i \theta_i} \in H(k), \tag{22}
\]
where \(H(k) \) is the Hilbert class field of quadratic field \(k = \mathbb{Q}(\sqrt{-d}) \) modulo conductor \(f \). Since \((\log \varepsilon) \exp(2\pi i \theta_i) = \exp(2\pi i \theta_i + \log \log \varepsilon) := \mathcal{J}(\theta_i, \varepsilon) \), one concludes that \(\mathcal{J}(\theta_i, \varepsilon) \in H(k) \).

(iii) Finally, because \(Gal (H(k)|k) \cong Cl (R_f) \cong Cl (\mathfrak{R}) \), it is easy to see that the set \(\{\mathcal{J}(\theta_i, \varepsilon) \mid 1 \leq i \leq h\} \) is invariant of the action of group \(Gal (H(k)|k) \) on \(H(k) \); in other words, numbers \(\mathcal{J}(\theta_i, \varepsilon) \) are algebraically conjugate.

Theorem 1 is proved. □
4 Example

In this section we shall use remark 1 to estimate $J(\theta, \varepsilon)$ for special values of the discriminant d; the reader is encouraged to construct examples of his own.

Example 1 Let $d = 15$ and $f = 1$. It is well known that the class number of order $R_f \cong O_k$ of the field $k = \mathbb{Q}(\sqrt{-15})$ is equal to 2. Because the class number of the field $\mathfrak{r} = \mathbb{Q}(\sqrt{15})$ is also 2, one concludes from equation $|Cl (\mathfrak{r})| = |Cl (R_f)|$ that conductor $j = 1$. Let $\tau \in O_k$; it is well known that in this case $j(\tau) \in \mathbb{Q}(\sqrt{5})$, see e.g. [Silverman 1994] Example 6.2.2. In view of remark 1 one gets an inclusion $J(\theta_i, \varepsilon) \in \mathbb{Q}(\sqrt{-15}, \sqrt{5})$. Since one of θ_i is equal to $\sqrt{15}$ and the fundamental unit ε of the field $\mathfrak{r} = \mathbb{Q}(\sqrt{15})$ is equal to $4 + \sqrt{15}$, one gets the following inclusion

$$J(\sqrt{15},\ 4 + \sqrt{15}) := e^{2\pi i \sqrt{15} + \log\log(4 + \sqrt{15})} \in \mathbb{Q}\left(\sqrt{-15}, \sqrt{5}\right). \quad (23)$$

References

[1] A. Baker, Transcendental Number Theory, Cambridge Univ. Press, 1975.

[2] B. Blackadar, K-Theory for Operator Algebras, MSRI Publications, Springer, 1986.

[3] B. L. Feigin and A. V. Odesskii, Sklyanin’s elliptic algebras, Functional Anal. Appl. 23 (1989), 207-214.

[4] D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), 437-479.

[5] Yu. I. Manin, Real multiplication and noncommutative geometry, in “Legacy of Niels Hendrik Abel”, 685-727, Springer, 2004.

[6] G. J. Murphy, C^*-Algebras and Operator Theory, Academic Press, 1990.

[7] I. Nikolaev, On a symmetry of complex and real multiplication, Hokkaido Math. J. (2014), to appear
[8] M. A. Rieffel, Non-commutative tori – a case study of non-commutative differentiable manifolds, Contemp. Math. 105 (1990), 191-211. Available http://math.berkeley.edu/~rieffel/

[9] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, GTM 151, Springer 1994.

[10] S. P. Smith and J. T. Stafford, Regularity of the four dimensional Sklyanin algebra, Compositio Math. 83 (1992), 259-289.

[11] J. T. Stafford and M. van den Bergh, Noncommutative curves and noncommutative surfaces, Bull. Amer. Math. Soc. 38 (2001), 171-216.

THE FIELDS INSTITUTE FOR RESEARCH IN MATHEMATICAL SCIENCES, TORONTO, ON, CANADA, E-MAIL: igor.v.nikolaev@gmail.com

Current address: 1505-657 Worcester St., Southbridge, MA 01550, U.S.A.