The Catabolite Control Protein E (CcpE) Affects Virulence Determinant Production and Pathogenesis of Staphylococcus aureus*

Received for publication, June 2, 2014, and in revised form, August 13, 2014. Published, JBC Papers in Press, September 5, 2014, DOI 10.1074/jbc.M114.584979

Torsten Hartmann1, Grégory Baronian51, Nadine Nippe5, Meike Voss1, Bettina Schulthess**, Christiane Wöltz+‡,Janina Eisenbeis5, Kerstin Schmidt-Hohagen5†, Rosmarie Gaupp1, Cord Sunderkötter**, Christoph Beisswenger1, Robert Bals1, Greg A. SomervilleIII, Mathias Herrmann5, Virginie Molle51, and Markus Bischoff‡4

From the 1Institute of Medical Microbiology and Hygiene, University of Saarland, 66421 Homburg/Saar, Germany, the 5Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, 34090 Montpellier, France, the 51Institute of Immunology, University of Münster, 48149 Münster, Germany, the 1Department of Internal Medicine V–Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Centre, 66421 Homburg/Saar, Germany, the 5**Institute of Medical Microbiology, University of Zürich, 8006 Zürich, Switzerland, the 14Institute of Medical Microbiology and Hygiene, University Hospital of Tübingen, 72076 Tübingen, Germany, the 53Institute for Biochemistry, University of Nebraska, Lincoln, Nebraska 68583-0903

Background: Carbon metabolism and virulence are often linked in pathogenic bacteria.

Results: Deletion of the catabolite control protein E (CcpE) affects the expression of virulence factors and pathogenicity of S. aureus.

Conclusion: Our data suggest that CcpE acts as an attenuator of virulence in S. aureus.

Significance: CcpE may serve to link S. aureus nutritional status to virulence determinant biosynthesis.

Carbon metabolism and virulence determinant production are often linked in pathogenic bacteria, and several regulatory elements have been reported to mediate this linkage in S. aureus. Previously, we described a novel protein, catabolite control protein E (CcpE) that functions as a regulator of the tricarboxylic acid cycle. Here we demonstrate that CcpE also regulates virulence determinant biosynthesis and pathogenesis. Specifically, deletion of ccpE in S. aureus strain Newman revealed that CcpE affects transcription of virulence factors such as capA, the first gene in the capsule biosynthetic operon; hla, encoding α-toxin; and psma, encoding the phenol-soluble modulin cluster α. Electrophoretic mobility shift assays demonstrated that CcpE binds to the hla promoter. Mice challenged with S. aureus strain Newman or its isogenic ΔccpE derivative revealed increased disease severity in the ΔccpE mutant using two animal models; an acute lung infection model and a skin infection model. Complementation of the mutant with the ccpE wild-type allele restored all phenotypes, demonstrating that CcpE is negative regulator of virulence in S. aureus.

to the availability of carbon sources (reviewed in Ref. 1). Similarly, many pathogenic bacteria use this same mechanism to link the nutritional status with the transcription of virulence factors (reviewed in Ref. 2). In S. aureus, carbon catabolite repression is mediated by several regulators such as the catabolite control protein A (CcpA),5 a glucose-responsive member of the LacI/GalR family of transcriptional regulators (3), CodY, a pleiotropic repressor that responds to GTP and branched-chain amino acids (4), and RpiRc, a putative ribose-responsive regulator that belongs to the RpiR family of transcriptional regulators (5). Recently, we identified CcpE as another potential carbon catabolite responsive element of S. aureus that controls transcription of tricarboxylic acid (TCA) cycle genes (6). In addition to regulating metabolism, CcpA, CodY, and RpiRc also regulate virulence factor expression (3–5).

CcpA regulates the expression of exotoxins, such as α-toxin (encoded by hla) and toxic shock syndrome toxin-1 (encoded by tst), and capsule formation in a glucose-responsive manner (3, 7, 8). In addition, CcpA promotes biofilm formation under in vitro conditions (9) and alters antibiotic susceptibility in methicillin-resistant S. aureus (MRSA) and glycopeptide intermediate-resistant S. aureus (3). More recently, CcpA was reported to mediate proline and arginine auxotrophies during in vitro growth (10, 11), and to contribute to infectivity of S. aureus in a murine model of staphylococcal abscess formation (10).

* This work was supported, in whole or in part, by National Institutes of Health Grant AI087668 (to G. A. S.) and Grants BI 1350/1-1 and BI 1350/1-2 from the Deutsche Forschungsgemeinschaft (DFG).

1 Supported by Swiss National Science Foundation Grant 31-117707.

2 Supported by Deutsche Forschungsgemeinschaft Grant SFB766 project A7.

3 To whom correspondence should be addressed. Tel.: 49-6841-162-39-63; Fax: 49-6841-162-39-85; E-mail: markus.bischoff@uks.eu.

5 The abbreviations used are: CcpE, catabolite control protein E; TCA, tricarboxylic acid; MRSA, methicillin-resistant S. aureus; qRT-PCR, real-time reverse transcription PCR; CP-5, Capsular Polysaccharide 5; BALF, bronchoalveolar lavage fluid; G-CSF, granulocyte-colony stimulating factor.
Attenuation of Pathogenesis by CcpE of S. aureus

TABLE 1

Strain or plasmid	Relevant genotype or characteristic(s)	Ref. or source
S. aureus 923	CA-MRSA, clinical isolate of pulsortype USA300, Oxa'	26
HOM 354	923 ΔccpE::lox66-aphAIII-lox71, Oxa', Kan'	This study
HOM 355	SA564 ΔccpE::lox66-aphAIII-lox71, Kan'	25
Newman strain	Laboratory strain (ATCC 25904); CP-5 producer	27
SA564	Low passage human isolate	27
THa	RN4220 ΔccpE::lox66-aphAIII-lox71, Kan'	6
TH01	Newman ΔccpE::lox72	6
TH01c	TH01 harboring plasmid pTH2c cis-integrated at the NWMN_0640 locus, leading to a duplication of the NWMN_0640 gene, cepE', Tc'	6

Plasmids

| pSB2035 | Escherichia coli-S. aureus shuttle plasmid, harboring the cat gene conferring chloramphenicol resistance, and a gfp-lux dual reporter system under the control of the agr P3 promoter; Cm' | 32 |

* a The following abbreviations were used: CA-MRSA, community associated MRSA; Cmr, chloramphenicol resistant; Kanr, kanamycin resistant; MLST, multi-locus sequence type; Oxa', methicillin/oxacillin resistant; Tc', tetracycline resistant.

CodY in *S. aureus* regulates the expression of virulence factors such as the *cap* operon (encoding proteins required for capsule biosynthesis), *coa* (encoding coagulase), *fshA* (encoding fibronectin-binding protein A), *hla, icaADBC* (encoding factors required for synthesis of polysaccharide intercellular adhesin), and *spa* (encoding protein A) (4, 12, 13). Although inactivation of *codY* did not markedly affect infectivity of *S. aureus* strain Newman in a murine abscess model, it restored the virulence of a mutant lacking the major (p)ppGpp synthase/hydrolase enzyme RSH to wild-type levels, suggesting that RSH-dependent derepression of CodY-regulated genes is important for virulence of *S. aureus* (14). More recently, it was found that inactivation of *codY* decreased the infectivity of the community-associated MRSA (CA-MRSA) USA300 isolate 923 in two murine infection models (15).

The pentose phosphate pathway regulator RpiRc alters the synthesis of several virulence factors such as protein A, capsular polysaccharide, and hemolysins, to decrease the transcription of RNAIII, the regulatory RNA of the *agr* locus, and a major regulator of virulence factor production in *S. aureus*, and to promote biofilm formation under *in vitro* conditions (5). These observations on RpiRc suggest that this regulator might also affect virulence in *vivo*; however, this has not been tested.

CcpE directly affects expression of the aconitate-encoding gene *citB*, increases TCA cycle activity during *in vitro* growth (6), and decreases pigment production in *S. aureus* (16). Because both TCA cycle activity (17–22) and pigment production (16, 23, 24) affect virulence determinant synthesis and/or infectivity of *S. aureus*, it is likely that CcpE modulates the expression of virulence factors and pathogenicity in this medically important pathogen. To test this hypothesis, we assessed the effect of *ccpE* deletion in *S. aureus* strain Newman (25) on the transcription of select virulence factors and on its role in infectivity using two unrelated murine infection models. Our data demonstrate that CcpE affects the transcription of virulence determinants, and infectivity of *S. aureus* in both *in vivo* infection models.

EXPERIMENTAL PROCEDURES

Bacterial Strains and Culture Conditions—The bacterial strains and plasmids used in this study are listed in Table 1. Strains were grown in Luria-Bertani Lennox (LB-L) medium (BD Biosciences) at 37 °C and aerated at 230 rpm with a flask-volume medium ratio of 10:1. The ΔccpE mutants HOM 354 and HOM 355 were obtained by phage transducing the *lox66-aphAIII-lox71*—tagged *ccpE* deletion of THa (6) into strains 923 (26) and SA564 (27), respectively.

Transcriptional Analyses—For Northern blot experiments, overnight cultures of *S. aureus* were diluted to an *A*₆₀₀ of 0.05 into fresh pre-warmed LB-L and grown at 37 °C with 230 rpm of aeration. Samples were removed from the cultures at the indicated times and centrifuged at 9,000 × g and 4 °C for 2 min, the culture supernatants were discarded, and the cell pellets were snap frozen in liquid nitrogen. Total RNAs were isolated according to Ref. 28, and blotting, hybridization, and labeling were performed as described (29). Primer pairs hla-F/hla-R and RNAII-F/RNAII-R (Table 2) were used to generate digoxigenin-labeled hla- and RNAII-specific probes by PCR labeling, respectively.

For the quantification of transcripts by real-time reverse transcription PCR (qRT-PCR), RNA isolations and qRT-PCRs were carried out essentially as described (30). The cDNA (20 ng/reaction) was used for real-time amplification using the

TABLE 2

Primer	Sequence (5′–3′)
Northern probe primer	
hla-F	Forward AGAAAAATTCATATATACGTCATCA
hla-R	Reverse TGTAGCGAAGTCTGGTGAAAA
RNAII-F	Forward GTATGGAAATTATTGATAGCG
RNAII-R	Reverse GTGATTTTTCATCCTTCCTT
Real-time RT PCR primer	
capA	Forward GAAACCATACAAAGTATTTACATTAC
capA	Reverse TTTTTCTGGAATTGCTTTTGTAGGC
capM	Forward ACCGGTTTTATTTGTTCTATCA
capM	Reverse AAACCGGTATTACGCTTATCA
Hla	Forward GGAAGTTCTCTGTGCTTTTC
Hla	Reverse CGAAATCTTCCTTGTGCTTTTAG
RNAII	Forward AGGACCTTTTAACGCTTACGACAA
RNAII	Reverse TGTGATTTTTCATCCTTCCTTCCTT
Poma	Forward ATCAAATGCTACTACAAATTTAATCAAC
Poma	Reverse GGGACATCTTTTTCCTTCCTTCCTT
gryB	Forward GATCCTGATGACGTGTTGA
gryB	Reverse AACCTGTCACATTGCAATA
EMSA primer	
agr P2/3	Forward CCTCCCTCCAACTCTAGTTA
agr P2/3	Reverse AGATCGGATATTTTACTA
capA p	Forward GTAAGCTCTCCAACTCTAGTTA
capA p	Reverse CTCCCTCCAACTCTAGTTA
hla p	Forward TTAATAACGCTTTCCTTCCTTCCTT
hla p	Reverse GAGCACTGCTTTCCTTCCTTCCTT
pona p	Forward GAAATTTCTTAACACTCT
pona p	Reverse GAAATTTCTTAACACTCT

For the quantification of transcripts by real-time reverse transcription PCR (qRT-PCR), RNA isolations and qRT-PCRs were carried out essentially as described (30). The cDNA (20 ng/reaction) was used for real-time amplification using the
primes listed in Table 2. mRNA levels were normalized against the mRNA level of gyrB, which is constitutively expressed under the conditions analyzed (31). The amounts of transcripts were expressed as the n-fold difference relative to the control gene (2^ΔΔCt, where ∆ΔCt represents the difference in threshold cycle between the target and control genes).

Electrophoretic Mobility Shift Assays—DNA probes for electrophoretic mobility shift assays (EMSAs) were generated by PCR using S. aureus strain Newman chromosomal DNA as a template, and primer pairs (Table 2) that amplified the DNA regions preceding the capA, icaA, icaD, purA, and psma ORFs. The 5′-ends of the double-stranded PCR products were labeled using [γ-32P]ATP and T4 polynucleotide kinase. A typical assay mixture contained (in 20 μl) 10 mM Tris-HCl, pH 7.5, 50 mM KCl, 1 mM dithiothreitol, 5 mM MgCl2, 0.1 μg of nonspecific competitor (poly(dI-dC)), 2.5% (v/v) glycerol, 0.05% (v/v) Igepal, radioactive DNA probe (2000 cpm ml⁻¹) and various amounts (0, 15, 65, 130, and 200 nM) of purified CcpE. After 20 min of incubation at room temperature, 20 μl of this mixture was loaded into a native 5% (w/v) polyacrylamide Tris borate-EDTA Ready Gel (Bio-Rad) and electrophoresed in 1% Tris borate-EDTA (v/v) buffer for 1 h at 100 V cm⁻¹. Radioactive species were detected by autoradiography using direct exposure to films. Radioactivity labeled promoter probes shifting with CcpE were additionally coincubated with increasing amounts of a nonspecific promoter probe and cold competitor, respectively, to demonstrate specificity of the shifting reaction.

Luciferase Assay—For assaying luciferase activities of S. aureus cells harboring plasmid pSB20235 (32), bacteria were cultured in LB supplemented with 10 μg ml⁻¹ chloramphenicol. Luciferase measurements were carried out essentially as described (33). 200-μl samples of the cell suspensions were removed at the time points indicated, and transferred to the wells of a 96-well clear-bottomed black plate (Greiner). The plate was placed in a Wallac Victor2 1420 Multilabel Counter (PerkinElmer Life Sciences), and luminescence readings were taken for 5 s at 37 °C.

Capsular Polysaccharide 5 (CP-5) Production—CP-5 production was determined by indirect immunofluorescence as described (3), using mouse immunoglobulin M monoclonal antibodies to CP-5 (34). Quantification of CP-5-positive cells was done by determining the numbers of 4′,6-diamidino-2-phenylindol (DAPI) and CY-3-positive cells using the software program CellC (35) (Institute of Signal Processing, Tampere University of Technology, Finland). Immune fluorescence intensities were analyzed using the MetaVue™ Research Imaging System (Molecular Devices). Briefly, from each image 80 bacteria detected by DAPI were randomly selected and the regions were transferred to the corresponding CY-3-stained image. Intensities of the single bacteria were measured and the distribution of intensities analyzed by the software program GraphPad Prism (GraphPad Software, Inc.).

Pigment Measurements—Bacteria were harvested after 24 h of growth on tryptic soy agar and carotenoids were extracted as described (36). The optical densities at 465 nm of the methanol extracts were measured and normalized in reference to the values obtained with the wild-type extracts, which were set at 100.

Animal Models—Eight-week-old female C57BL/6N mice were purchased from Charles River Laboratories (Sulzfeld, Germany) and kept under specific pathogen-free conditions according to the regulations of German veterinary law. All animal studies were performed with the approval of the local State Review Boards.

The murine lung infection model was done essentially as described (37). Eight-week-old C57BL/6N mice were slightly anesthetized by intraperitoneal injection of 2.6 mg of ketamin hydrochloride (Pfizer, Berlin, Germany) and 0.18 mg of xylazin hydrochloride (Bayer, Leverkusen, Germany) per mouse and infected intranasally with 5 × 10⁶ colony forming units (cfu) of S. aureus. Twenty-four hours post-infection, the animals were euthanized, the tracheae were cannulated, and a bronchoalveolar lavage was performed (three times with 1 ml of phosphate-buffered saline). The bronchoalveolar lavage fluid (BALF) was centrifuged at 300 × g for 10 min at 4 °C to obtain alveolar cells, which were suspended in 1 ml of PBS. Total cell numbers in BALF were determined using a Neubauer hemocytometer. To identify the bacterial load of the lungs 24 h post-infection, whole lungs were homogenized in 1 ml of PBS, and serial dilutions were plated onto sheep blood agar. CFU were counted after incubation overnight at 37 °C.

The footpad swelling model was carried out as described (38). Age-matched mice were inoculated subcutaneously with 1 × 10⁷ cfu of S. aureus into the left hind footpad, and footpad swelling was measured daily with a micrometric caliper in reference to the uninfected footpad.

Cytokine Determinations—Levels of murine interleukin-1β (IL-1β), keratinocyte-derived chemokine (KC), and granulocyte-colony stimulating factor (G-CSF) in cell-free BALFs and lung homogenates were determined by commercially available sandwich-type ELISAs, according to the manufacturer’s instructions (R&D Systems, Wiesbaden-Nordenstadt, Germany).

Statistical Analyses—Statistical significance was assessed using the Mann-Whitney U test. p values <0.05 were considered significant.

RESULTS

Influence of a ccpE Deletion on RNAIII Transcription—Given the importance of the agr locus for virulence determinant production in S. aureus (reviewed in Refs. 39 and 40), we tested whether CcpE affects transcription of this regulatory system. Northern blot analysis revealed that all three strains, Newman, TH01, and TH01c, produced RNAIII transcripts in a growth phase-dependent manner, with a peak transcription rate at the transition from the exponential growth phase to post-exponential growth phase (i.e. 6 h) (Fig. 1). However, deletion of ccpE increased the post-exponential growth phase accumulation of RNAIII transcripts in TH01, suggesting that CcpE negatively affects RNAIII transcription. To test this suggestion, we transformed an RNAIII transcriptional reporter plasmid, pSB2035, (32) into strains Newman, TH01, and TH01c. This plasmid harbors a gfp-luxABCDE dual reporter system under control of the RNAIII transcription-driving agr P3 promoter. Similar to the Northern blot data (Fig. 1B), luciferase activity assays revealed a growth phase-dependent transcription of RNAIII (Fig. 1C). In addition, we observed that deletion of ccpE increased transcrip-
Attenuation of Pathogenesis by CcpE of *S. aureus*

FIGURE 1. Attenuation of Pathogenesis by CcpE of *S. aureus* and not due to decreased RNAIII transcription.

A

- Growth characteristics of *S. aureus* strains Newman (black symbols), TH01 (white symbols), and TH01c (gray symbols) cultured in LB-L at 37 °C and 230 rpm. Time points of sampling for downstream applications (reporter assays, qRT-PCRs) are indicated by arrows. B, Northern blot of RNAIII transcription in strains Newman, TH01 (ΔccpE), and the complemented TH01c during growth in LB-L. Approximate transcript sizes are indicated on the left. Ethidium bromide-stained 16 S rRNA are presented to indicate equivalent growth in LB-L. Approximate transcript sizes are indicated on the left.

B

- Northern blot of RNAIII transcription in *S. aureus* strains Newman, TH01 (ΔccpE), and TH01c throughout a complete growth cycle (Fig. 2B). Consistent with our Northern blot data, we observed a growth phase-dependent transcription of *hla*, with a peak in the post-exponential growth phase (9 h). Deletion of *ccpE* resulted in a massive up-regulation (30 to 60-fold) of *hla* transcription in strain TH01. Complementation of TH01 with a *ccpE* wild-type allele restored *hla* mRNA levels to those seen in the wild-type strain.

C

- Northern blot of hla transcription in strains Newman, TH01 (ΔccpE), and TH01c during growth in LB-L. Luciferase activities determined at the time points indicated. Data shown are the mean ± S.D. of six independent experiments. Mann-Whitney U test: *p* < 0.05; **p** < 0.01.

D

- Luciferase activity (RLU/Amp) in *S. aureus* strains Newman, TH01, and TH01c throughout a complete growth cycle (Fig. 2B). Consistent with our Northern blot data, we observed a growth phase-dependent transcription of *hla*, with a peak in the post-exponential growth phase (9 h). Deletion of *ccpE* resulted in a massive up-regulation (30 to 60-fold) of *hla* transcription in strain TH01. Complementation of TH01 with a *ccpE* wild-type allele restored *hla* mRNA levels to those seen in the wild-type strain.

To conclude that this effect of CcpE was specific for *S. aureus* strain Newman, we deleted *ccpE* in two genetically unrelated *S. aureus* strains, CA-MRSA USA300 isolate 923 (26) and the low passage human isolate SA564 (27), and assessed *hla* transcription of these strain pairs (Fig. 2C). Deletion of *ccpE* again strongly increased the transcription of *hla* in both strains, suggesting that the repressive effect of CcpE on *hla* transcription is independent of the genetic background. To assess whether CcpE directly regulates transcription of *hla*, we performed EMSAs with the *hla* promoter as probe (Fig. 2D). A clear and dose-dependent shift of CcpE with the radioactively labeled *hla* promoter probe was observed, which was not affected by the addition of a nonspecific promoter probe (data not shown) but was invariable by adding excessive amounts of cold competitor, suggesting that CcpE directly controls transcription of *hla*.

CcpE Promotes Capsule Formation—Capsular polysaccharide is another important virulence factor of *S. aureus*, whose synthesis is intimately linked to the nutritional status of the bacterium (3, 5, 12). Our results (Fig. 3) demonstrate that in addition to CcpA, CodY, and RpiRc, CcpE also modulates transcription of the *cap* operon and the elaboration of a capsule. As expected, when *S. aureus* was cultivated in LB-L, the first gene of the *cap* operon (*capA*) was predominantly transcribed during the later stages of growth (Fig. 3A). Deletion of *ccpE* in TH01 strongly decreased accumulation of *capA* mRNA throughout the growth cycle. *cis*-Complementation of TH01 with the wild-type *ccpE* allele restored *capA* mRNA levels to those found in the isogenic wild-type strain Newman. Consistent with the transcriptional data, a reduced number of capsular polysaccharide positive cells was observed with the Δ*ccpE* mutant (Fig. 3B).

CcpE might exert this effect via direct binding to the *agr* P3 promoter, EMSAs were performed with purified CcpE and a radioactively labeled PCR probe covering the *agr* P2/3 promoter (Fig. 1D). No mobility shifts were observed over a range of protein concentrations, suggesting that CcpE does not directly interact with the *agr* P3 promoter to modulate RNAIII transcription.

CcpE Directly Influences *hla* Transcription—α-Toxin is a major virulence factor of *S. aureus*, and its synthesis is regulated at multiple levels, including transcriptional and post-transcriptional mechanisms (3, 41–44). Regulation of *hla* transcription is also influenced by the carbon catabolite responsive elements CcpA and CodY (3, 4, 15, 45); hence, we hypothesized that *hla* transcription might be regulated by CcpE as well. Support for this hypothesis can be seen in the Northern blot analysis of *hla* transcription (Fig. 2A), where *hla* mRNA levels are much greater in the Δ*ccpE* mutant strain TH01 in all growth phases relative to the wild-type and *cis*-complemented derivative strain TH01c. To quantify the effect of *ccpE* deletion on *hla* transcription, we performed qRT-PCRs on strains Newman, TH01, and TH01c throughout a complete growth cycle (Fig. 2B). Consistent with our Northern blot data, we observed a growth phase-dependent transcription of *hla*, with a peak in the post-exponential growth phase (9 h). Deletion of *ccpE* resulted in a massive up-regulation (30 to 60-fold) of *hla* transcription in strain TH01. Complementation of TH01 with a *ccpE* wild-type allele restored *hla* mRNA levels to those seen in the wild-type strain. To exclude that this effect of CcpE was specific for *S. aureus* strain Newman, we deleted *ccpE* in two genetically unrelated *S. aureus* strains, CA-MRSA USA300 isolate 923 (26) and the low passage human isolate SA564 (27), and assessed *hla* transcription of these strain pairs (Fig. 2C). Deletion of *ccpE* again strongly increased the transcription of *hla* in both strains, suggesting that the repressive effect of CcpE on *hla* transcription is independent of the genetic background. To assess whether CcpE directly regulates transcription of *hla*, we performed EMSAs with the *hla* promoter as probe (Fig. 2D). A clear and dose-dependent shift of CcpE with the radioactively labeled *hla* promoter probe was observed, which was not affected by the addition of a nonspecific promoter probe (data not shown) but was invariable by adding excessive amounts of cold competitor, suggesting that CcpE directly controls transcription of *hla*.

CcpE Directly Influences *hla* Transcription—CcpE Promotes Capsule Formation—Capsular polysaccharide is another important virulence factor of *S. aureus*, whose synthesis is intimately linked to the nutritional status of the bacterium (3, 5, 12). Our results (Fig. 3) demonstrate that in addition to CcpA, CodY, and RpiRc, CcpE also modulates transcription of the *cap* operon and the elaboration of a capsule. As expected, when *S. aureus* was cultivated in LB-L, the first gene of the *cap* operon (*capA*) was predominantly transcribed during the later stages of growth (Fig. 3A). Deletion of *ccpE* in TH01 strongly decreased accumulation of *capA* mRNA throughout the growth cycle. *cis*-Complementation of TH01 with the wild-type *ccpE* allele restored *capA* mRNA levels to those found in the isogenic wild-type strain Newman. Consistent with the transcriptional data, a reduced number of capsular polysaccharide positive cells was observed with the Δ*ccpE* mutant (Fig. 3B).

CcpE might exert this effect via direct binding to the *agr* P3 promoter, EMSAs were performed with purified CcpE and a radioactively labeled PCR probe covering the *agr* P2/3 promoter (Fig. 1D). No mobility shifts were observed over a range of protein concentrations, suggesting that CcpE does not directly interact with the *agr* P3 promoter to modulate RNAIII transcription.

CcpE Directly Influences *hla* Transcription—α-Toxin is a major virulence factor of *S. aureus*, and its synthesis is regulated at multiple levels, including transcriptional and post-transcriptional mechanisms (3, 41–44). Regulation of *hla* transcription is also influenced by the carbon catabolite responsive elements CcpA and CodY (3, 4, 15, 45); hence, we hypothesized that *hla* transcription might be regulated by CcpE as well. Support for this hypothesis can be seen in the Northern blot analysis of *hla* transcription (Fig. 2A), where *hla* mRNA levels are much greater in the Δ*ccpE* mutant strain TH01 in all growth phases relative to the wild-type and *cis*-complemented derivative strain TH01c. To quantify the effect of *ccpE* deletion on *hla* transcription, we performed qRT-PCRs on strains Newman, TH01, and TH01c throughout a complete growth cycle (Fig. 2B). Consistent with our Northern blot data, we observed a growth phase-dependent transcription of *hla*, with a peak in the post-exponential growth phase (9 h). Deletion of *ccpE* resulted in a massive up-regulation (30 to 60-fold) of *hla* transcription in strain TH01. Complementation of TH01 with a *ccpE* wild-type allele restored *hla* mRNA levels to those seen in the wild-type strain. To exclude that this effect of CcpE was specific for *S. aureus* strain Newman, we deleted *ccpE* in two genetically unrelated *S. aureus* strains, CA-MRSA USA300 isolate 923 (26) and the low passage human isolate SA564 (27), and assessed *hla* transcription of these strain pairs (Fig. 2C). Deletion of *ccpE* again strongly increased the transcription of *hla* in both strains, suggesting that the repressive effect of CcpE on *hla* transcription is independent of the genetic background. To assess whether CcpE directly regulates transcription of *hla*, we performed EMSAs with the *hla* promoter as probe (Fig. 2D). A clear and dose-dependent shift of CcpE with the radioactively labeled *hla* promoter probe was observed, which was not affected by the addition of a nonspecific promoter probe (data not shown) but was invariable by adding excessive amounts of cold competitor, suggesting that CcpE directly controls transcription of *hla*.
Although about 69% of the Newman cells and 75% of the TH01c cells incubated with the CP-5 antibodies produced clear fluorescence signals after 24 h of growth in LB-L, in the TH01 cell pool only 35% of the cells emitted detectable amounts of fluorescence. Similarly, a 10-fold decrease in the mean fluorescence intensity per cell was observed with the ccpE mutant (Fig. 3B) when compared with cells of the wild-type and complemented derivative TH01c. To determine whether the CcpE-dependent regulation of capA was due to an interaction with the capA promoter, EMSAs were performed with CcpE and a radioactively labeled probe of the capA promoter. In contrast to the hla promoter, CcpE did not shift the capA promoter probe at any of the CcpE concentrations tested (Fig. 3C), indicating that CcpE indirectly influences cap operon transcription and capsule formation.

CcpE Alters Transcription of the Phenol-soluble Modulin α (psmA) Cluster—Phenol-soluble modulins are a small group of cytolytic and immunomodulating peptides that are important virulence determinants of S. aureus, especially in CA-MRSA USA300 isolates (reviewed in Ref. 46). The S. aureus Newman genome harbors two psm operons, psmα and psmβ, which are transcriptionally affected by regulators such as SarA and AgrA (40, 47). To determine whether CcpE influences psm transcription,
tion, we assessed \(\text{psmA} \) and \(\text{psmb} \) transcription using qRT-PCR. Deletion of \(\text{ccpE} \) had a negligible effect on \(\text{psmb} \) transcription (data not shown); however, we observed a significant reduction of \(\text{psmA} \) transcripts in strain TH01 compared with the wild-type strain (Fig. 4A). Complementation of TH01 with a \(\text{ccpE} \) wild-type allele restored \(\text{psmA} \) mRNA levels to that seen in the wild-type strain. EMSAs performed using CcpE and the \(\text{psma} \) promoter as a probe failed to shift the radiolabeled probe with any of the protein concentrations tested (Fig. 4B), suggesting an indirect effect of CcpE on \(\text{psma} \) transcription.

CcpE Decreases Pigment Production—Most \(\text{S. aureus} \) strains produce the carotenoid pigment staphyloxanthin, which is responsible for the yellowish-orange appearance of this bacterium (48). In line with a previous publication (16), we noticed an increase in pigment production after 24 h of growth on tryptic soy agar, and this phenotype was reverted by introducing a functional \(\text{ccpE} \) into this mutant (Fig. 5). The synthesis of staphyloxanthin is encoded within the \(\text{crtOPQMN} \) operon (48); hence, to determine whether CcpE affects transcription of \(\text{crtOPQMN} \), we assessed \(\text{crtM} \) mRNA levels in strains Newman, TH01, and TH01c using qRT-PCR. Contrary to the findings reported by Lan and colleagues (16), our results suggest that transcription of \(\text{crtOPQMN} \) appears to be independent of CcpE (Fig. 5C). Similarly, inactivation of \(\text{ccpE} \) in strains 923 and SA564 significantly increased the pigment contents of mutant cells compared with wild-type, without affecting \(\text{crtM} \) transcription, suggesting that this phenomenon is not strain-dependent (Fig. 5).

CcpE Attenuates Virulence in Two Murine Infection Models—Deletion of \(\text{ccpE} \) in \(\text{S. aureus} \) strain Newman augmented transcription of the global virulence regulator \(\text{RNAIII} \) (Fig. 1) and increased \(\alpha \)-toxin (\(\text{hla} \)) mRNA (Fig. 2). Given the effect of CcpE on virulence factor transcription in vitro, we hypothesized that CcpE might alter infectivity of \(\text{S. aureus} \) in vivo. To address this hypothesis, we assessed the ability of Newman, TH01, and TH01c strains to cause disease in two different murine infection models. In a murine pneumonia model, C57BL/6N mice were infected intranasally with strains Newman, TH01, or TH01c, and the bacterial load in the lungs and the total amount of eukaryotic cells in BALFs at 24 h post-infection were determined (Fig. 6). Strain TH01 significantly increased the bacterial load in the lungs of mice relative to the wild-type and complemented strains (Fig. 6A). Similarly, we observed a significant increase in total cells in BALFs of the TH01 challenged mice (Fig. 6B), indicating a more severe infection. This increase in total cell numbers correlated with an increased number of neutrophils in BALFs of TH01 challenged mice (Fig. 6C), and this also correlated with increased concentrations of the neutrophil mobilization stimulating factor G-CSF (49) (Fig. 6D). Complementation of the \(\Delta \text{ccpE} \) mutant restored all virulence traits back to wild-type levels, confirming that all observed alterations were caused by CcpE. To exclude that this CcpE effect is specific for strain Newman, we additionally infected mice intranasally with strain SA564 and its \(\Delta \text{ccpE} \) derivative HOM 355, respectively. In line with our observations made with the strain triplet Newman/TH01/TH01c, we observed significantly increased cfu numbers in the lung tissues of mice that have been...
infected with the SA564 ccpE mutant (Fig. 7), demonstrating that this virulence diminishing effect of CcpE is not specific for strain Newman.

To substantiate these findings in another in vivo model, we utilized a murine footpad infection model (38). In this model, bacteria are inoculated into the left hind footpad of mice and footpad swelling ratios are determined on a daily basis for up to 12 days (Fig. 8). Consistent with our observations using a lung infection model, we observed enhanced footpad swelling in mice challenged with the Newman/H9004 ccpE mutant relative to the isogenic wild-type and complemented strains (Fig. 8). Swelling was most significantly increased early in the infection process (days 1 to 4) and in the later stages of the infection (days 8 to 12) when compared with the values obtained with the wild-type and TH01c challenged mice groups.

DISCUSSION

The nosocomial pathogen S. aureus is known to link its virulence factor production with central metabolic pathways (3–5, 8, 9, 13, 22). This linkage is mediated via at least three metabolite responsive regulators; namely, CcpA (3, 8), CodY (13), and RpiRc (5). Data presented here demonstrate that CcpE represents a fourth regulatory protein that connects virulence factor synthesis with the central metabolism, specifically the TCA cycle (Fig. 9) (6).

Although most effects of CcpE on virulence factor synthesis were indirect, possibly via regulation of TCA cycle activity (22, 27, 50), a direct link between CcpE and hla transcription was established. In a murine pneumonia model, α-toxin is a key virulence determinant involved in the pathogenesis of S. aureus (51, 52); specifically, the level of α-toxin correlated with disease severity in this animal model (53). Mechanistically, α-toxin increases cytokine synthesis, enhances neutrophil recruitment, and stimulates the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome in lungs, leading to massive inflammatory response and tissue destruction (54, 55). Consistent with these observations, deletion of ccpE increased
In addition to directly interacting with hla, ccpE deletion increased RNAIII levels, which likely contributed to the altered pathogenesis of the ΔccpE mutant in both animal models. RNAIII is the RNA regulator of the agr locus encoded quorum sensing system (reviewed in Refs. 39 and 40) and it codes for a small lytic peptide called δ-toxin, which is a chemoattractant for neutrophils (50). RNAIII is predominantly transcribed when a threshold level of bacteria is achieved (56, 57). In its regulatory function, RNAIII promotes the expression of many exoproteins including α-toxin, either directly or via control of a repressor protein known as Rot (43, 58). Mutations in agr have been shown to attenuate virulence in several animal models (59–63) including murine models of pneumonia (52, 64) and skin infections (65–67). When the peptide δ-toxin is translated from RNAIII, it is produced in two forms; one without an N-terminal formyl group on the methionine, and one containing a formylated methionine (50). Formylated δ-toxin is a potent neutrophil chemoattractant, suggesting that increased neutrophils in the lungs on TH01-infected mice may be due to an increase in δ-toxin synthesis.

Alterations in the synthesis of virulence factors and RNAIII will likely alter the immune response to the infection. The BALF cytokine profiles of mice infected with strains Newman, TH01, and TH01c were similar with respect to keratinocyte...
derived chemokine and IL-1β, however, G-CSF was higher in BALFs and lung homogenates from TH01 challenged mice relative to mice infected with the wild-type strain. G-CSF was originally characterized in hematopoietic cells to stimulate the proliferation and differentiation of neutrophil granulocyte precursors. In addition, G-CSF functions to recruit polymorphonuclear leukocytes to the lung (68), and its expression in lung tissue is stimulated by microbial infections (69–72). Recently, Hua et al. (73) observed in a mouse pneumonia model that preimmunization with an anti-α-toxin antibody significantly decreased the G-CSF contents in BALFs of mice infected with S. aureus. Based on this observation, it is reasonable to speculate that an increase in α-toxin synthesis (Fig. 2) would increase G-CSF production (Fig. 6D), resulting in an increase in neutrophil recruitment (Fig. 6C).

Transcription of RNAIII is primarily promoted by AgrA, the response regulator of the two-component system encoded by the agr locus (74). In addition, AgrA also promotes transcription of the psm operons (40). Because we observed divergent effects of CcpE on RNAIII and psma transcription (Figs. 1 and 4), we can largely exclude that CcpE modulates RNAIII production via activation of AgrA. Similarly, the agr system promotes capsule synthesis (75–77); however, capA mRNA levels were decreased in the ΔccpE mutant despite an increase in RNAIII transcript levels (Figs. 1 and 3). Interestingly, Somerville and colleagues (20, 27) observed increased RNAIII levels and an impaired capsule biosynthesis in TCA cycle mutants in which inactivation on capsule synthesis is tied to a lack of oxaloacetate for gluconeogenesis (20), and it is still unclear how TCA cycle mutants despite an increase in RNAIII levels and an impaired capsule biosynthesis in TCA cycle mutants in which the aconitase-encoding gene citB (syn. acnA) was inactivated, demonstrating a link between TCA cycle activity, capsule formation, and RNAIII production. It is possible that CcpE modulates RNAIII transcription and capsule biosynthesis via regulation of TCA cycle activity. However, the effect of TCA cycle inactivation on capsule synthesis is tied to a lack of oxaloacetate for gluconeogenesis (20), and it is still unclear how TCA cycle activity affects transcription of RNAIII. A potential factor might be aconitase itself. This key enzyme of the TCA cycle is reported in Bacillus subtilis to act as a bifunctional protein that possesses enzymatic activity and functions as a RNA-binding regulatory protein (78–80). Similar to B. subtilis, apo-aconitase binds to ion-responsive elements in mRNA, raising the possibility of a direct interaction between aconitase and the highly structured RNAIII. Additionally, CcpE might affect RNAIII synthesis and capsule formation via pH alterations. We have recently shown that in vitro cultivation of the ccpE deletion mutant in LB-L led to a significantly reduced alkalinization of the culture medium during later stages of growth (6–12 h) compared with the wild-type culture (6). Alkaline growth conditions were previously reported to repress RNAIII production (81), and to augment capsule formation (82, 83), consistent with our findings of increased RNAIII transcription and decreased capA transcription in TH01 during the later growth stages in LB-L (Figs. 1 and 3).

In conclusion, CcpE modulates the expression of several major virulence factors of S. aureus, which affects its pathogenesis. Given its mostly repressive effect on virulence determinant production, it can be assumed that CcpE serves as an attenuator of virulence in this clinically important pathogen.

Acknowledgment—We thank A. Honecker for excellent technical assistance.

REFERENCES
1. Görke, B., and Stülke, J. (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624
2. Poncet, S., Milohanic, E., Mazé, A., Nait Abdallah, J., Aké, F., Larrieu, M., Dehmiane, A. E., Taha, M. K., Dzot, M., De Boulle, X., Letesson, J. J., and Deutscher, J. (2009) Correlations between carbon metabolism and virulence in bacteria. Contrib. Microbiol. 16, 88–102
3. Seidl, K., Stucki, M., Ruegg, M., Goerke, C., Wolz, C., Harris, L., Berger-Bächi, B., and Bischoff, M. (2006) Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance. Antimicrob. Agents Chemother. 50, 1183–1194
4. Majerczyk, C. D., Sadykov, M. R., Luong, T. T., Lee, C., Somerville, G. A., and Sonenshein, A. L. (2008) Staphylococcus aureus CodY negatively regulates virulence gene expression. J. Bacteriol. 190, 2257–2265
5. Zhu, Y., Nandakumar, R., Sadykov, M. R., Madayiputhiya, N., Luong, T. T., Gaupp, R., Lee, C. Y., and Somerville, G. A. (2011) RpiR homologues may link Staphylococcus aureus RNAIII synthesis and pentose phosphate pathway regulation. J. Bacteriol. 193, 6187–6196
6. Hartmann, T., Zhang, B., Baronian, G., Schulthess, B., Homerova, D., Grumbmüller, S., Kutzner, E., Gaupp, R., Bertram, R., Powers, R., Eisenreich, W., Kornanec, J., Herrmann, M., Molle, V., Somerville, G. A., and Bischoff, M. (2013) Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus. J. Biol. Chem. 288, 36116–36128
7. Seidl, K., Bischoff, M., and Berger-Bächi, B. (2008) CcpA mediates the catabolite repression of tst in Staphylococcus aureus. Infect. Immun. 76, 5093–5099
8. Seidl, K., Müller, S., François, P., Kriebitzsch, C., Schrenzel, J., Engelmann, S., Bischoff, M., and Berger-Bächi, B. (2009) Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. BMC Microbiol. 9, 95
9. Seidl, K., Goerke, C., Wolz, C., Mack, D., Berger-Bächi, B., and Bischoff, M. (2008) Staphylococcus aureus CcpA affects biofilm formation. Infect. Immun. 76, 2044–2050
10. Li, C., Sun, F., Cho, H., Yelavarthi, V., Sohn, C., He, C., Schneewind, O., and Bae, T. (2010) CcpA mediates proline auxotrophy and is required for Staphylococcus aureus pathogenesis. J. Bacteriol. 192, 3883–3892
11. Nuxoll, A. S., Halouska, S. M., Sadykov, M. R., Hanke, M. L., Bayles, K. W., Kielian, T., Powers, R., and Fey, P. D. (2012) CcpA regulates arginine biosynthesis in Staphylococcus aureus through repression of proline catabolism. PLoS Pathog. 8, e1003033
12. Majerczyk, C. D., Dunman, P. M., Luong, T. T., Lee, C. Y., Sadykov, M. R., Somerville, G. A., Bodi, K., and Sonenshein, A. L. (2010) Direct targets of CodY in Staphylococcus aureus. J. Bacteriol. 192, 2861–2877
13. Pohl, K., Francois, P., Stenz, L., Schlink, F., Geier, T., Herbert, S., Goerke, C., Schrenzel, J., and Wolz, C. (2009) CodY in Staphylococcus aureus: a regulatory link between metabolism and virulence gene expression. J. Bacteriol. 191, 2953–2963
14. Geier, T., Goerke, C., Fritz, M., Schäfer, T., Olsens, K., Liebeke, M., Lalk, M., and Wolz, C. (2010) Role of the pppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of Staphylococcus aureus. Infect. Immun. 78, 1873–1883
15. Montgomery, C. P., Boyle-Vavra, S., Roux, A., Ebine, K., Sonenshein, A. L., and Daum, R. S. (2012) CodY deletion enhances in vivo virulence of community-associated methicillin-resistant Staphylococcus aureus clone USA300. Infect. Immun. 80, 2382–2389
16. Lan, L., Cheng, A., Dunman, P. M., Missiakas, D., and He, C. (2010) Golden pigment production and virulence gene expression are affected by metabolisms in Staphylococcus aureus. J. Bacteriol. 192, 3068–3077
17. Chatterjee, I., Herrmann, M., Proctor, R. A., Peters, G., and Kahl, B. C.
(2007) Enhanced post-stationary-phase survival of a clinical thymidine-dependent small-colony variant of *Staphylococcus aureus* results from lack of a functional tricarboxylic acid cycle. *J. Bacteriol.* 189, 2936–2940

18. Gaupp, R., Schlag, S., Liebeke, M., Lalk, M., and Götz, F. (2010) Advantage of upregulation of succinate dehydrogenase in *Staphylococcus aureus* biofilms. *J. Bacteriol.* 192, 2385–2394

19. Massilamany, C., Gangaputra, A., Gardner, D. J., Musser, J. M., Steffen, D., Somerville, G. A., and Reddy, J. (2011) TCA cycle inactivation in *Staphylococcus aureus* alters nitric oxide production in RAW 264.7 cells. *Mol. Cell. Biochem.* 355, 75–82

20. Sadykov, M. R., Mattes, T. A., Luong, T. T., Zhu, Y., Day, S. R., Sifri, C. D., Lee, C. Y., and Somerville, G. A. (2010) Tricarboxylic acid cycle-dependent synthesis of *Staphylococcus aureus* Type 5 and 8 capsular polysaccharides. *J. Bacteriol.* 192, 1459–1462

21. Sheldon, R. J., Marolda, C. L., and Heinrichs, D. E. (2014) TCA cycle activity in *Staphylococcus aureus* is essential for iron-regulated synthesis of staphyloforin A, but not staphyloforin B: the benefit of a second citrate synthase. *Mol. Microbiol.* 92, 824–839

22. Zhu, Y., Xiong, Y. Q., Sadykov, M. R., Fey, P. D., Lei, M. G., Lee, C. Y., Bayer, A. S., and Somerville, G. A. (2009) Tricarboxylic acid cycle-dependent attenuation of *Staphylococcus aureus* in vivo virulence by selective inhibition of amino acid transport. * Infect. Immun.* 77, 4256–4264

23. Liu, C. I., Liu, G. Y., Song, Y., Yin, F., Hensler, M. E., Jeng, W. Y., Nitot, V., Wang, A. H., and Oldfield, E. (2008) A cholesterol biosynthesis inhibitor blocks *Staphylococcus aureus* virulence. *Science* 319, 1391–1394

24. Liu, G. Y., Essex, A., Buchanan, I. T., Datta, V., Hoffman, H. M., Bastian, J. F., Fierer, J., and Nitot, V. (2005) *Staphylococcus aureus* golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. *J. Exp. Med.* 202, 209–215

25. Duthie, E. S. (1952) Variation in the antigenic composition of staphylococcal coagulase. *J. Gen. Microbiol.* 7, 320–326

26. Boyle-Vavra, S., Yin, S., and Daum, R. S. (2006) The VraS/VraR two-component regulatory system required for oxacinilin resistance in community-acquired methicillin-resistant *Staphylococcus aureus*. *FEBS Microbiol. Lett.* 262, 163–171

27. Somerville, G. A., Chaussee, M. S., Morgan, C. I., Fitzgerald, J. R., Dorward, D. W., Reitzer, L. J., and Musser, J. M. (2002) *Staphylococcus aureus* aconitate inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival. *Infect. Immun.* 70, 6373–6382

28. Cheung, A. L., Eberhardt, K. J., and Fischetti, V. A. (1994) A method to thicken the cell wall and to resist β-lactams. *Biochem. Biophys. Res. Commun.* 288, 385–389

29. McCallum, N., Karauzum, H., Getzmann, R., Bischoff, M., Langer, F., Schäfers, H. J., Lammert, F., Menger, M. D., Bals, R., and Beiswenger, C. (2013) FOXO transcription factors regulate innate immune mechanisms in respiratory epithelial cells. *J. Immunol.* 190, 1603–1613

30. Lipson, N., Varga, G., Holzinger, D., Löfler, B., Medina, E., Becker, K., Roth, J., Ehrchen, I. M., and Sunderkötter, C. (2011) Subcutaneous infection with *S. aureus* in mice reveals association of resistance with influx of neutrophils and Th2 response. *J. Investig. Dermatol.* 131, 125–132

31. Pragman, A. A., and Schlievert, P. M. (2004) Virulence regulation in *Staphylococcus aureus*: the need for *in vivo* analysis of virulence factor regulation. *FEMS Immunol. Med. Microbiol.* 42, 147–154

32. Queck, S. Y., Jameson-Lee, M., Villaruz, A. E., Bach, T. H., Khan, B. A., Sturdevant, D. E., Rickels, S. M., Li, M., and Otto, M. (2008) RNAII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in *Staphylococcus aureus*. *Mol. Cell 32*, 150–158

33. Cheung, A. L., and Ying, P. (1994) Regulation of α- and β-hemolysins by the sar locus of *Staphylococcus aureus*. *J. Bacteriol.* 176, 580–585

34. Ingavale, S., van Wamel, W. L., Luong, T. T., Lee, C. Y., and Cheung, A. L. (2005) Rat/MgrA, a regulator of autolysis, is a regulator of virulence genes in *Staphylococcus aureus*. *Infect. Immun.* 73, 1423–1431

35. Morfeldt, E., Taylor, D., von Gabain, A., and Arvidson, S. (1995) Activation of α-toxin translation in *Staphylococcus aureus* by the trans-encoded antisense RNA, RNAIII. *EMBO J.* 14, 4569–4577

36. Oscarsson, J., Kanth, A., Tegmark-Wisell, K., and Arvidson, S. (2006) SarA is a repressor of hla (α-hemolysin) transcription in *Staphylococcus aureus*: its apparent role as an activator of hla in the prototype strain NCTC 8325 depends on reduced expression of sarS. *J. Bacteriol.* 188, 8526–8533

37. Leiba, J., Hartmann, T., Cluzel, M. E., Cohen-Gonsaud, M., Delolme, F., Bischoff, M., and Molle, V. (2012) A novel mode of regulation of the *Staphylococcus aureus* catabolite control protein A (CcpA) mediated by Skl1 protein phosphorylation. *J. Biol. Chem.* 287, 43607–43619

38. Peschel, A., and Otto, M. (2013) Phenol-soluble modulins and staphylococcal infection. *Nat. Rev. Microbiol.* 11, 667–673

39. Zielinska, A. K., Beenken, K. E., Joo, H. S., Mrak, L. N., Griffin, L. M., Luong, T. T., Lee, C. Y., Otto, M., Shaw, L. N., and Smelzer, M. S. (2011) Defining the strain-dependent impact of the Staphylococcal accessory regulator (sarA) on the α-toxin phenotype of *Staphylococcus aureus*. *J. Bacteriol.* 193, 2948–2958

40. Pelz, A., Wieland, K. P., Putzbach, K., Hentschel, P., Albert, K., and Götz, F. (2005) Structure and biosynthesis of staphyloxanthin from *Staphylococcus aureus*. *J. Biol. Chem.* 280, 32493–32498

41. Suzuki, S., Kobayashi, M., Chiba, K., Horiiuchi, I., Wang, J., Kondoh, T., Hashino, S., Tanaka, J., Hosokawa, M., and Asaka, M. (2002) Autocrine production of epithelial cell-derived neutrophil attractant-78 induced by granulocyte colony-stimulating factor in neutrophils. *Blood* 99, 1863–1865

42. Somerville, G. A., Cockayne, A., Dürr, M., Peschel, A., Otto, M., and Musser, J. M. (2003) Synthesis and deformylation of α-toxin are linked to tricarboxylic acid cycle activity. *J. Bacteriol.* 185, 6686–6694

43. Huber Wardenburg, I., Bae, T., Otto, M., DeLeo, F. R., and Schneewind, O. (2007) Poring over pores: α-hemolysin and Panton-Valentine leukocidin in *Staphylococcus aureus* pneumonia. *Nat. Med.* 13, 1405–1406

44. Huber Wardenburg, I., Patel, R. J., and Schneewind, O. (2007) Surface proteins and exotoxins are required for the pathogenesis of *Staphylococcus aureus* pneumonia. *Infect. Immun.* 75, 1040–1044

45. Huber Wardenburg, I., and Schneewind, O. (2008) Vaccine protection against *Staphylococcus aureus* pneumonia. *J. Exp. Med.* 205, 287–294

46. Bartlett, A. H., Foster, T. J., Hayashida, A., and Park, P. W. (2008) α-Toxin facilitates the generation of CXC chemokine gradients and stimulates neutrophil homing in *Staphylococcus aureus* pneumonia. *J. Infect. Dis.* 198, 1529–1535

47. Kebaier, C., Chamberland, R. R., Allen, I. C., Gao, X., Broglie, P. M., Hall,
Attenuation of Pathogenesis by CcpE of S. aureus

J. D., Jania, C., Doerschuk, C. M., Tilley, S. L., and Duncan, J. A. (2012) Staphylococcus aureus alpha-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J. Infect. Dis. 205, 807–817

56. Geisinger, E., Chen, J., and Novick, R. P. (2012) Allele-dependent differences in quorum-sensing dynamics result in variant expression of virulence genes in Staphylococcus aureus. J. Bacteriol. 194, 2854–2864

57. Novick, R. P. (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48, 1429–1449

58. Boisset, S., Geissmann, T., Huntezing, E., Fechter, P., Bendridi, N., Possedko, M., Chevalier, C., Helfer, A. C., Benito, Y., Jacquier, A., Gaspin, C., Vandenesch, F., and Romby, P. (2007) Staphylococcus aureus RNAII co-ordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev. 21, 1353–1366

59. Kobayashi, S. D., Malachowa, N., Whitney, A. R., Braughton, K. R., Gardner, D. J., Long, D., Bubeck Wardenburg, J., Schneewind, O., Otto, M., and Deleo, F. R. (2011) Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J. Infect. Dis. 204, 937–941

60. Abdelnour, A., Arvidson, S., Breml, T., Rydén, C., and Tarkowski, A. (1993) The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect. Immun. 61, 3879–3885

61. Gillaspy, A. F., Hickmon, S. G., Skinner, R. A., Thomas, J. R., Nelson, C. L., and Smeltzer, M. S. (1995) Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect. Immun. 63, 3373–3380

62. Cheung, G. Y., Wang, R., Khan, B. A., Sturdevant, D. E., and Otto, M. (2011) Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect. Immun. 79, 1927–1935

63. Cheung, A. L., Eberhardt, K. J., Chung, E., Yeaman, M. R., Sullam, P. M., Ramos, M., and Bayer, A. S. (1994) Diminished virulence of a sar−/agr− mutant of Staphylococcus aureus in the rabbit model of endocarditis. J. Clin. Investig. 94, 1815–1822

64. Montgomery, C. P., Boyle-Vavra, S., and Daum, R. S. (2010) Importance of the global regulators Agr and SasRS in the pathogenesis of CA-MRSA USA300 infection. PLoS One 5, e11577

65. Chua, K. Y., Monk, I. R., Lin, Y. H., Seemann, T., Tuck, K. L., Porter, J. L., Stepnell, J., Coombs, G. W., Davies, J. K., Stinear, T. P., and Howden, B. P. (2014) Hyperexpression of α-hemolysin explains enhanced virulence of sequence type 93 community-associated methicillin-resistant Staphylococcus aureus. BMC Microbiol. 14, 31

66. Mayville, P., Ji, G., Beavis, R., Yang, H., Gogger, M., Novick, R. P., and Muir, T. W. (1999) Structure-activity analysis of synthetic autoinducing thiocarbonate peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. U.S.A. 96, 1218–1223

67. Wright, J. S., 3rd, Jin, R., and Novick, R. P. (2005) Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc. Natl. Acad. Sci. U.S.A. 102, 1691–1696

68. Zhang, P., Bagby, G. J., Kolls, J. K., Welsh, D. A., Sumner, W. R., Andresen, J., and Nelson, S. (2001) The effects of granulocyte colony-stimulating factor and neutrophil recruitment on the pulmonary chemokine response to intratracheal endotoxin. J. Immunol. 166, 458–465

69. Koyama, S., Sató, E., Masubuchi, T., Takamizawa, A., Kubo, K., Nagai, S., and Izumi, T. (1998) Alveolar type II-like cells release G-CSF as neutrophil chemotactic activity. Am. J. Physiol. Lung Cell. Mol. Physiol. 275, L687–L693

70. Koyama, S., Sató, E., Nomura, H., Kubo, K., Miura, M., Yamashita, T., Nagai, S., and Izumi, T. (2000) The potential of various lipopolysaccharides to release IL-8 and G-CSF. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L658–L666

71. Saha, S., Soong, G., Greenberg, S., and Prince, A. (2002) Bacterial stimulation of epithelial G-CSF and GM-CSF expression promotes PMN survival in CF airways. Am. J. Respir. Cell Mol. Biol. 27, 561–567

72. Balamoar, G., Batra, S., Theivanthiran, B., Sai, S., Pacher, P., and Jeyaseelan, S. (2012) Intrapulmonary G-CSF rescues neutrophil recruitment to the lung and neutrophil release to blood in Gram-negative bacterial infection in MCP-1−/− mice. J. Immunol. 189, 5849–5859

73. Hua, L., Hilliard, J. J., Shi, Y., Tkaczysz, C., Cheng, L. I., Yu, X., Datta, V., Ren, S., Feng, H., Zinsou, R., Keller, A., O’Day, T., Du, Q., Cheng, L., Damschroder, M., Robbie, G., Suzich, J., Stover, C. K., and Sellman, B. R. (2014) Assessment of an α-a-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. Antimicrob. Agents Chemother. 58, 1108–1117

74. Reyes, D., Andrey, D. O., Monod, A., Kelley, W. L., Zhang, G., and Cheung, A. L. (2011) Coordinated regulation by AgrA, SarA, and SarK to control agr expression in Staphylococcus aureus. J. Bacteriol. 193, 6020–6031

75. Gupta, R. K., Alba, J., Xiong, Y. Q., Bayer, A. S., and Lee, C. Y. (2013) MgrA activates expression of capsule genes, but not the α-toxin gene in experimental Staphylococcus aureus endocarditis. J. Infect. Dis. 208, 1841–1848

76. van Wamel, W., Xiong, Y. Q., Bayer, A. S., Yeaman, M. R., Yeaman, M. R., Nast, C. C., and Cheung, A. L. (2002) Regulation of Staphylococcus aureus type 5 capsular polysaccharides by agr and sarA in vitro and in an experimental endocarditis model. Microb. Pathogen. 33, 73–79

77. Luong, T., Sau, S., Gomez, M., Lee, J. C., and Lee, C. Y. (2002) Regulation of Staphylococcus aureus capsular polysaccharide expression by agr and sarA. Infect. Immun. 70, 444–450

78. Alén, C., and Sonenshein, A. L. (1999) Bacillus subtilis aconitase is an RNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 96, 10412–10417

79. Serio, A. W., Pechter, K. B., and Sonenshein, A. L. (2006) Bacillus subtilis aconitase is required for efficient late-sporulation gene expression. J. Bacteriol. 188, 6396–6405

80. Pechter, K. B., Meyer, F. M., Stülke, J., and Sonenshein, A. L. (2013) Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis. J. Bacteriol. 195, 1525–1537

81. Regassa, L. B., and Betley, M. J. (1992) Alkaline pH decreases expression of sarA. J. Bacteriol. 174, 5095–5100

82. Anderson, K. L., Roux, C. M., Olson, M. W., Luong, T. T., Lee, C. Y., Olson, R., and Dunman, P. M. (2010) Characterizing the effects of inorganic acid and alkaline shock on the Staphylococcus aureus transcriptome and messenger RNA turnover. FEMS Immunol. Med. Microbiol. 60, 208–250

83. Pané-Farré, J., Jonas, B., Förster, K., Engelmann, S., and Hecker, M. (2006) The σB regulon in Staphylococcus aureus and its regulation. Int. J. Med. Microbiol. 296, 237–258