Research Article
Correlation Analysis between Emotion Control and Professional Self-Efficacy of Singing Artists Based on Multidimensional Environment

Ziyu Liu

China University of Mining and Technology, School of Public Policy & Management School of Emergency Management, Xuzhou, Jiangsu 221116, China

Correspondence should be addressed to Ziyu Liu; 5463@cumt.edu.cn

Received 10 July 2022; Revised 25 July 2022; Accepted 28 July 2022; Published 9 September 2022

Copyright © 2022 Ziyu Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The tertiary industry occupies a large area in China’s economic system, and it plays an important function in the growth of China’s economic development. It is of positive significance to study the relationship between emotional labor and occupational self-efficacy of singing artists in the tertiary industry. This paper mainly studies the correlation between the emotional labor of singing artists and their professional self-efficacy and analyzes the strength of the correlation. This paper selects 150 singing art personnel in the singing art association in city A to conduct a questionnaire survey and conducts data processing on the questionnaire. This paper explores the influencing factors of emotional labor and four dimensions of occupational self-efficacy. This paper firstly analyzes the differences of the influencing factors of emotional labor and then tests the interaction of the different factors selected. It then conducts a significant test on the four dimensions of professional self-efficacy and finally studies the correlation between the two based on the previous analysis results. This paper concludes that there is a highly significant relationship between the emotional labor and professional self-efficacy of singing artists. And the correlation coefficient and determination coefficient are 0.293 and 0.087, respectively. It shows that 8.7% of the total variance in occupational self-efficacy variables can be explained by emotional labor. There was no significant correlation between surface acting and occupational self-efficacy. Deep acting has the greatest correlation with the physical and mental efficacy dimension of occupational self-efficacy, with a correlation coefficient of 0.391. There were significant correlations between natural performance and the four dimensions of occupational self-efficacy. The highest value is interpersonal efficacy, which is 0.337. The research conclusions of this paper have certain reference value for exploring the relationship between emotional labor and professional self-efficacy of singing artists.

1. Introduction

The share of the tertiary sector in the Chinese market is steadily increasing. And it plays an important role and significance in China’s modern economic construction. In the tertiary industry, there are service groups from various industries, which play an important role in the construction of different industries. With the passage of time, the identity of singing artists has changed and is gradually understood. Singing artists not only bring us wonderful music but also give us a new understanding of the charm of music. But in everyday art performances, any emotional labor by singing artists will have a certain impact on the profession. In this context, we study the relationship between emotional labor and occupational self-efficacy among singing artists. Through this relationship, the adverse effects caused by negative emotions can be eliminated, and the artistic behavior ability of singing artists can be improved.

To better investigate the relationship between the emotional labor and professional self-efficacy of singing arts personnel, this paper selects 150 singing art personnel in the singing art association of city A to conduct a questionnaire survey and analysis. In this paper, we examine data on various components that have an impact on emotional labor and four dimensions of occupational self-efficacy. It obtained the correlation strength of different influencing factors of emotional labor on the four dimensions of occupational self-efficacy. The final conclusion has positive
significance for the subsequent improvement of emotional labor behavior of singing artists. It also directly enhanced their professional self-efficacy.

In different industries, any changes in employees’ emotions can affect their work. If employees are in a positive mood, their productivity and performance will be higher than if they are in a negative mood. However, which influencing factors are related to emotional labor, and whether there is a correlation between emotional labor and occupational self-efficacy, different researchers have analyzed and studied it. Da-Yee et al. examined the role of personality in this relationship by analyzing the relationship between emotional labor and job burnout, and the results suggest that emotional labor is the source of job burnout. The positive self-efficacy of personality traits can improve the ability of employees [1]. Satyningrum and Djastuti conducted SEMPLS analysis with 90 employees of BTN Bank. He concluded that emotional labor has a positive effect on job stress and turnover intention but has no significant effect on creativity [2]. Etin and Beka performed SPSS and AMOS data analyses on 138 medical staff. The findings suggest that harmonious passions have direct and negative effects on surface behavior and positive effects on natural feelings. It reinforces deep behavior [3]. Guedes et al. studied the role of occupational identity on emotional labor and concluded that occupational identity has a positive impact on the emotional labor of deep behavior and shallow behavior [4]. It can be seen that there is a certain correlation between the influence factors of employees’ emotional labor and many behaviors. Darban et al. mainly studied 150 nurses. In the method of random sampling, he conducts questionnaire survey analysis with tools such as Neefe. His research assesses the relationship between organizational learning and professional self-efficacy among nurses. The results showed a significant positive correlation between self-efficacy scores and organizational learning dimensions such as systems thinking, team learning, and shared vision. And these three organizational learning dimensions predicted a 16.1% change in professional self-efficacy [5]. Jarwan et al.’s survey found that professional self-efficacy was related to three dimensions of counselors’ gender, school stage, and years of experience with their professional competence. He performed statistical analysis of the mean and standard deviation, 3-WAY-ANOVA analysis, and simple regression analysis of 88 counselors in public schools. He concluded that there is a statistically positive effect between educational counselors’ self-efficacy, and professional competence [6]. Safari et al. examined the impact of EFI teachers’ self-efficacy on their professional development, using data from 212 teachers in the school to establish a structural equation to verify the relationship. The results showed that there were significant internal associations between all latent variables and their subscales and that self-efficacy and job satisfaction had positive predictive effects on career development. Self-efficacy has greater predictive power than job satisfaction [7]. Biasutti et al. examined the professional self-efficacy of music teachers and conducted a questionnaire survey of 335 music teachers. The results show that occupational self-efficacy is positively predicted by factors such as professional satisfaction, and coping strategies that passively accept key situations have a negative impact on it [8]. It can be seen that each person has unique insights into the analysis of emotional labor and occupational self-efficacy. This also leads to new insights for the study in this paper.

On the basis of previous research and combined with the research topic of the article, this paper selects the main emotional labor influencing factors of singing artists. The influencing factors are age, singing years, education level, singing level, and professional level. This paper also analyzes the differences of influencing factors on emotional labor. In order to eliminate errors, it introduces population variables to analyze whether there is an interaction between the influencing factors. Then, this paper analyzes the four dimensions of occupational self-efficacy: occupational cognition and development efficacy, interpersonal efficacy, physical and mental efficacy, and occupational technical efficacy. Finally, it analyzes the relationship between emotional labor and occupational self-efficacy based on the previous research results. In this paper, it is concluded that there is a correlation between the two and the correlation is significant, which brings positive significance to its work.

2. Introduction to the Theory of Emotional Labor and Occupational Self-Efficacy

2.1. Definition of Emotional Labor. The concept of emotional labor was first proposed by American sociologist in 1983; it is mainly through emotional efforts to complete the work [9]. However, many scholars have different opinions on the definition of emotional labor. The definition of emotional labor can generally be divided into the following three types. The specific conditions are shown in Table 1.

To sum up, scholars have not yet unified the definition of emotional labor, although it brings certain difficulties to subsequent research. However, it also makes the research on emotional labor show diversified characteristics, which makes the research content have certain innovation and novel effects.

2.2. Definition of Self-Efficacy. Self-efficacy is an important cognitive means of individual motivation, which is helpful for understanding the complexity of individuals in career planning and career development. Simply put, occupational self-efficacy is the specific use of self-efficacy in occupations [10]. It mainly includes two aspects of research. One is the belief in an individual’s ability to succeed in a career field and meet the conditions required for that career. The second is the belief that individuals can complete the process of career decision-making in different occupational fields.

2.3. Correlation

2.3.1. Simple Correlation Analysis. In simple correlation analysis, Pearson product-distance correlation, Spearman rank correlation, and Kendall tau-b rank correlation are
Table 1: Emotional labor definition table.

Perspective	Proposer	Circumscription
Human interaction	Morris and Feldman	To meet the work requirements of the enterprise in the interactive process
Focus on individual emotional processing	Granedy	Individuals conduct inner adjustment to meet enterprise requirements
Emotional labor regardless of job type	Hochschild	Emotional regulation that meets the requirements of the public

The Pearson product-distance correlation mainly calculates the correlation between two continuous variables, and its calculation equation is as follows:

\[\theta_{AB} = \frac{\sum_{i=1}^{n} (a_i - \overline{a})(b_i - \overline{b})}{\sqrt{\sum_{i=1}^{n} (a_i - \overline{a})^2 \sum_{i=1}^{n} (b_i - \overline{b})^2}}. \]

(1)

\[A = (a_1, a_2, \ldots, a_n), B = (b_1, b_2, \ldots, b_n), \text{and } \overline{a}, \overline{b} \text{ are the means of variables } A \text{ and } B, \text{ respectively, and } a_i, b_i \text{ are the observed values of variables } A \text{ and } B, \text{ respectively, and } n \text{ is the sample size.} \]

After calculating the value of \(\theta_{AB} \), it needs to be tested by statistics. The test equation is as follows:

\[r = \frac{\theta_{AB}\sqrt{n-2}}{1-\theta_{AB}^2}. \]

(2)

When \(|r| > t_{(n/2)} \), it indicates that there is a significant correlation between the two variables; when \(|r| > t_{(n/2)} \), it indicates that there is no correlation between the two samples. Generally, the value of \(\alpha \) can also be used to measure the correlation between two variables. When \(\alpha = 0.05 \), there is a significant correlation between the two variables; when \(\alpha = 0.01 \), there is a highly significant correlation between the two variables.

Spearman’s rank correlation is mainly used to measure the correlation between non-normal distribution or ordinal variables. It can generally be carried out by the operation method of “−1 means very dissatisfied, 0 means dissatisfied, 1 means satisfied, and 2 means very satisfied.”

The Kendall tau-b rank correlation is mainly calculated by calculating the number of homologous pairs and heterologous pairs and then obtaining the correlation coefficient. It is testing the significance of the correlation coefficient.

2.3.2. Classical Correlation Analysis. The classic correlation analysis is to perform multivariate statistical analysis on the whole of two variables to analyze the correlation between them [12]. Suppose there are two clusters of parameters \(X_1, X_2, \ldots, X_m \), \(Y_1, Y_2, \ldots, Y_m \), \(m \) and \(n \) are both greater than 1. If the composite variable of these two variables is expressed by \(M \) and \(N \), the linear combination expression of \(X \) and \(Y \) is as follows:

\[M = a_1X_1 + a_2X_2 + \cdots + a_nX_n, \]

\[N = b_1Y_1 + b_2Y_2 + \cdots + b_nY_m. \]

(3)

\(M \) and \(N \) are the integrated variables generated by the linear combination of variables \(X \) and \(Y \), and \(a = a_1, a_2, \ldots, a_m \), \(b = b_1, b_2, \ldots, b_m \) are the unknown combination coefficient [13]. Next, the coefficients of \(a \) and \(b \) need to be determined, and the calculation equation is as follows:

\[\rho(M, N) = \rho(a'X, b'Y) = \frac{\text{Cov}(M, N)}{\sqrt{\text{var}(M)\text{var}(N)}} \]

\[= \frac{\text{Cov}(a'X, b'Y)}{\sqrt{\text{var}(a'X)\text{var}(b'Y)}}. \]

(4)

\(\text{Cov}(M, N) \) is the covariance of variables \(M \) and \(N \), \(\text{var}(M) \) is the variance of variable \(M \), and \(\text{var}(N) \) is the variance of variable \(N \).

3. Correlation Function Model Based on Neural Network Algorithm

When we analyze the relationship between emotional activity and occupational self-efficacy, we need to collect and clean the data of the above two variables in turn and finally build a correlation analysis model. On the basis of the above theory, in this manuscript, we introduced a BP neural network algorithm [13], which provides an in-depth analysis of the variable relationship between the two variables in light of the above theory [14]. The linear and nonlinear relationships between the two variables are fitted to the data. The better the fitting degree, the more accurate the correlation function model is [15]. Before this, it is necessary to clean the selected data and then build a functional model for it.

3.1. Realization Process of BP Neural Network Algorithm. The biggest advantage of the neural network [16, 17] is that it can automatically adjust the weights through changes in the environment, thereby achieving the purpose of its own adaptability. The input layer, hidden layer, and output layer make up the bulk of a BP neural network; the hidden layer may consist of one or more layers. There are typically two signal transmission paths when using the BP neural network algorithm. The input signal is one. The value is input by the input layer, transmitted from front to back, and then finally arrives at the output port. The difference between the neural network’s actual and theoretical output values, or error
signal, is the other. It propagates backwards sequentially starting at the output end, each training reducing the error until the output value is infinitesimally close to the theoretical expected value. The BP neural network uses the following calculation method.

3.1. Forward Propagation of Working Signal. The expression for the input value of the \(i \)th node of the hidden layer is as follows:

\[
a_i = \sum_{j=1}^{N} \omega_{ij} x_j + \theta_i. \tag{5}
\]

The expression for the output value of the \(i \)th node of the hidden layer is as follows:

\[
l_i = \phi(a_i) = \phi\left(\sum_{j=1}^{N} \omega_{ij} x_j + \theta_i\right). \tag{6}
\]

The expression for the input value of the \(k \)th node of the output layer is as follows:

\[
a_k = \sum_{i=1}^{n} \omega_{ki} y_i + b_k = \sum_{i=1}^{n} \omega_{ki} \phi\left(\sum_{j=1}^{N} \omega_{ij} x_j + \theta_i\right) + b_k. \tag{7}
\]

The expression for the output value of the \(k \)th node of the output layer is as follows:

\[
l_k = \mu(a_k) = \mu\left[\sum_{i=1}^{n} \omega_{ki} \phi\left(\sum_{j=1}^{N} \omega_{ij} x_j + \theta_i\right) + b_k\right]. \tag{8}
\]

3.1.2. Backward Propagation of the Error Signal. Assuming that there is a sample \(p \), the expression of its quadratic error function is as follows:

\[
E_p = \frac{1}{2} \sum_{k=1}^{L} (T_k - c_k)^2. \tag{9}
\]

For all \(P \) training samples, the total error function expression is as follows:

\[
E_p = \frac{1}{2} \sum_{p=1}^{P} \sum_{k=1}^{L} (T_k^p - c_k^p)^2. \tag{10}
\]

Each time the system is trained, its error gradient should decrease successively. Therefore, we need to calculate the adjustment coefficient value of \(\Delta \omega_{ki}, \Delta b_k, \Delta \omega_{ij}, \Delta \theta_i \). The calculation equation of the above adjustment coefficient value is as follows:

\[
\Delta \omega_{ki} = \sigma \sum_{p=1}^{P} \sum_{k=1}^{L} (T_k^p - c_k^p) \mu^t(c_k) y_i, \tag{11}
\]

\[
\Delta b_k = \sigma \sum_{p=1}^{P} \sum_{k=1}^{L} (T_k^p - c_k^p) \mu^t(c_k), \tag{11}
\]

\[
\Delta \omega_{ij} = \sigma \sum_{p=1}^{P} \sum_{k=1}^{L} (T_k^p - c_k^p) \mu^t(c_k) \omega_{ki} \phi^t(a_i) x_i, \tag{11}
\]

\[
\Delta \theta_i = \sigma \sum_{p=1}^{P} \sum_{k=1}^{L} (T_k^p - c_k^p) \mu^t(c_k) \omega_{ki} \phi^t(a_i). \tag{11}
\]

3.2. Data Cleaning. Sorting out the collected data and adding missing values to the sorted data is known as data cleaning. The data of various magnitudes are normalized, and its duplicate values are removed. It gives numbers in the range \([0, 1]\) data values. With this type of processing, the issue of the system’s processing time being consumed by the large magnitude difference is avoided. This paper primarily normalizes the aforementioned circumstance, and it processes using the maximum and minimum methods as well as the mean variance method.

The maximum-minimum method is to take the maximum value of 1 and the minimum value of 0 in the sequence values of different dimensions. It then scales linearly to normalize the values in the matrix \([18]\). Its calculation equation is as follows:

\[
A_i^* = \frac{A_i - A_{\text{min}}}{A_{\text{max}} - A_{\text{min}}}. \tag{12}
\]

Among them, \(A_i^* \) is the parameter after normalization, \(A_i \) is the parameter before normalization, and \(A_{\text{max}}, A_{\text{min}} \) are the maximum and minimum values of sequence values in different dimensions, respectively.

The mean variance method is to use the mean value as the standard and normalize the parameters according to the variance distribution \([19]\). Its calculation equation is as follows:

\[
A_i^* = \frac{A_i - A_{\text{mean}}}{A_{\text{var}}}. \tag{13}
\]

Among them, \(A_i^* \) is the parameter after normalization, \(A_i \) is the parameter before normalization, and \(A_{\text{mean}}, A_{\text{var}} \) are the mean and variance corresponding to the sequence of each dimension, respectively.

3.3. Correlation Function Model

3.3.1. Model Layer Selection. Although increasing the number of network layers can increase the model’s accuracy, it also makes the model more complex and, as a result, takes longer to compute. The input layer, the hidden layer, and the output layer are all one layer in this paper. The associated model of the final output layer and the reverse transmission of the error are the other two. There are a total of four layers in this model.
3.3.2. Selection of the Number of Hidden Layers. Compared with increasing the number of hidden layers, increasing the number of neurons in the hidden layer to improve the accuracy of the neural network model is not only simple to operate but also better than other methods. Therefore, in this model, the number of neurons in the hidden layer is selected, and the selection equation is as follows:

\[l < \sqrt{a + b + c}. \]

Among them, any natural number of \(c \in [0, 10] \), \(l \) is the number of neurons in the hidden layer, \(a \) is the number of nodes in the output layer, and \(b \) is the number of nodes in the input layer.

3.3.3. Model Training Method Selection. The core of the BP neural network training is actually to optimize the nonlinear objective function [20]. Its optimized equation is as follows:

\[f(A_{i+1}) = \min f(A_i + \phi B(A_{i+1})). \]

Among them, \(A_{i} \) is the vector set of ownership values and input values in the model, and \(B(A_{i}) \) is the fitting direction of each component in A in space, \(\phi \) is the step size in the \(B(A_{i}) \) direction that makes \(f(A_{i+1}) \) reach the optimal solution.

3.3.4. Analysis of Model Results. When we experiment with an association model, we need to test the model. When the value of \(R \) is close to 1, the correlation of the fitting degree of the model is better. The calculation equation is as follows:

\[R = \sqrt{1 - \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}. \]

4. Correlation Emotional Labor and Occupational Self-Efficacy

We mainly study the relationship between emotional labor and occupational self-efficacy of singing artists. Before the study, we make research hypotheses. The hypotheses are as follows:

Hypothesis 1: the emotional labor of singing artists is related to variables such as age, personality, and singing years
Hypothesis 2: the professional self-efficacy of singing artists is related to variables such as singing years and age
Hypothesis 3: there is a certain correlation between emotional labor and professional self-efficacy of singing artists

On the basis of this assumption, this paper conducts a questionnaire survey on 150 singing art personnel in the singing art association in city A through random sampling. A total of 150 questionnaires were distributed in this questionnaire survey, and 148 copies were returned. Statistical analysis was performed on the returned questionnaires. Finally, 145 valid questionnaires were obtained, and the validity rate of the questionnaire was 96.7%, which met the experimental requirements. The survey results are shown in Table 2.

In order to better analyze the relationship between emotional labor and occupational self-efficacy, we divided emotional labor and occupational self-efficacy into dimensions. Emotional labor is generally divided into three dimensions: surface acting, deep acting, and natural expression. Occupational self-efficacy is generally divided into occupational cognitive and developmental efficacy, occupational technical efficacy, occupational interpersonal efficacy, and occupational physical and mental efficacy.

4.1. Statistical Results of Emotional Labor of Singing Artists

4.1.1. General Characteristics of Emotional Labor of Singing Artists. In order to examine the overall characteristics of the emotional labor of singing artists, this paper conducts a descriptive statistical analysis on the emotional labor of 150 singing artists in city A and from three dimensions. We use Likert measure to score it, and the range of scores is \([1, 5]\). The results are shown in Table 3.

We represent the composition of the data in Table 3, and the results are shown in Figure 1.

Combining Table 3 and Figure 1, it can be seen that the average score of emotional labor of singing artists is 3.6 points, which is at an upper-middle level. The average scores of the three dimensions of surface acting, deep acting, and natural expression in the sample are 3.1 points, 4 points, and 3.78 points, respectively, which belong to the middle range. The scores of the above three dimensions are deep acting > natural expression > surface acting. We now conduct a pairwise test for the significance of differences in the average values of the three selected dimensions, and the results are shown in Table 4.

From Table 4, it can be seen that the \(T \) value of surface acting-deep acting is \(-13.061, df = 144, P < 0.01\), the \(T \) value of surface acting-natural expression is \(-8.661, df = 144, P < 0.01\). Deep-playing-natural representation has a \(T \) value of 5.331, \(df = 144, P < 0.01 \). It shows that there are significant differences among the above three dimensions. It also shows that the degree of emotional labor strategies commonly used by singing artists are deep acting, natural acting, and surface acting.

4.1.2. Differences in the Emotional Labor of Singing Artists on the Age Variable. We calculated the mean and standard deviation of surface acting, deep acting, natural expression, and emotional labor for each of the four age ranges. The calculation results are shown in Table 5.
From Table 5, it can be seen that the total score of emotional labor of singing artists under the age of 30 is the highest, and the natural performance scores of singing artists between the ages of 30 and 45 are the highest. Deep acting between the ages of 45 and 60 scored the highest, and surface acting was the highest for those over the age of 60. However, there is no significant difference in age structure between emotional labor, surface acting, natural expression, and deep acting, indicating that the difference has no practical significance. We are conducting a one-way ANOVA on the emotional labor of singing artists in different age groups. The results are shown in Table 6.

From the data analysis in Table 6, it can be seen that the significance level coefficient of singing artists in different age ranges in the surface layer is 0.04, which is less than 0.05. It shows that there is a significant difference in the age variable of surface acting. In our comparative analysis of singing artists of other age groups, we found that the surface acting scores between the ages of 45 and 60 were 0.08 and 0.04 points lower than those under 30 and over 60, respectively. Its significance probability is less than 0.05. The descriptions are significantly different.

4.1.3. Differences in Emotional Labor of Singing Artists on the Variable of Singing Years. We calculated the mean and standard deviation of the singing years of surface acting, deep acting, natural expression, and emotional labor. The calculation results are shown in Table 7.

It can be seen from Table 7 that the scores of emotional labor, natural performance, and deep performance of
singing artists in the interval of five years to eight years are higher than those of other singing years. Singing artists with less than three years of singing experience scored the highest in deep performance. However, there is no significant difference in emotional labor, surface acting, and natural performance in their singing years, but there are certain significant differences in deep acting. We are conducting a one-way analysis of variance on the emotional labor of singing artists under different singing years, and the results are shown in Table 9.

As can be seen from Table 9, in the three dimensions of surface acting, deep acting, and natural expression, only the p value of deep acting is less than 0.05, and its value is 0.047. In combination with the T value, it shows that the educated singing artist is higher on the 0.05 significance level than the uneducated.

4.1.5. Difference Comparison of Emotional Labor on Singing Rank Variables of Singing Artists

We calculated the mean and standard deviation of the singing ranks of the singing artists for surface acting, deep acting, natural expression, and emotional labor. The calculation results are shown in Table 10.

From Table 10, it can be seen that the scores of emotional labor, natural expression, and deep acting are higher for singing artists at the intermediate singing level than for junior and advanced singing artists. Singing artists at the junior singing level have the highest surface acting scores. We are conducting a one-way analysis of variance on the emotional labor of singing artists under different singing levels, and the results are shown in Table 11.
As can be seen from Table 11, the significance level of singing artists under different singing levels in the deep performance is 0.043, which is less than 0.05. It shows that deep acting has significant differences in singing rank variables. In combination with Tables 10 and 11, it is known that in deep acting, the score of intermediate singing artists is 0.03 points higher than that of senior singing artists, and its significance is less than 0.05. It shows that the intermediate singing artist is higher than the senior singing artist on the 0.05 meaning level. At the same time, the significance of the natural performance of singing artists under different singing levels is less than 0.05, and its value is 0.03. It shows that there is a significant difference in the singing level of natural performance.

4.1.6. Differences in Emotional Labor of Singing Artists on the Variable of Professional Degree. We conducted an independent sample t-test on the emotional labor of professional and amateur singing and art personnel, and the results are shown in Table 12.

As can be seen from Table 12, amateur singing artists scored higher than professionals in emotional labor, surface acting, and natural performance. However, the scores in deep acting are lower. After corresponding analysis, it is concluded that only natural performance has significant differences in professional level. It shows that the natural performance score of professional singing and artistic personnel is lower than that of amateur singing and artistic personnel on the level of 0.05.

4.2. Interaction of Emotional Labor of Singing Artists on Demographic Variables. In the previous analysis, I tested the effects of variables like age and years of singing on emotional labor using the T test and one-way analysis of variance. However, the potential correlation between various factors was not taken into account during the analysis described above. We must therefore examine this section of the content. Bivariate analysis is used to determine whether there is an interaction between the aforementioned variables.
differences using the dependent variables of emotional labor and surface acting and the independent variables of the singers’ age and years of singing.

4.2.1. The Influence of the Interaction of Demographic Variables on the Emotional Labor of Singing Artists. We use the variables of singing artist’s age, singing years, and other variables as independent variables and use the emotional labor of singing artist as the dependent variable to conduct bivariate analysis. It detects whether there is an interaction between the differences of the above variables in the emotional labor of singing artists, and the results are shown in Table 13.

It can be seen from Table 13 that the interaction effect of demographic variables on emotional labor is non-significant. Combined with the previous one-way analysis of variance, we can see that each variable has no significant impact on the emotional labor of singing artists.

4.2.2. The Influence of the Interaction of Demographic Variables on the Surface Performance of Singing Artists. We use demographic variables as independent variables and perform bivariate analysis with the surface performance of singing artists as dependent variables. The results are shown in Table 14.

It can be seen from Table 14 that the $p = 0.03$ of singing artists and education levels under different singing years is less than 0.05. It shows that there is an interaction between the two in surface play. The $p = 0.02$ of the singing level and professional degree, and its value is less than 0.05, indicating that there is also an interaction between the two in surface acting. Combined with the previous analysis results, we need to analyze the main effects; the results are shown in Figures 2 and 3.

As can be seen from Figure 2, when the education level of singing artists is used as the implementation standard, with the increase of singing years. It can be seen that the surface acting score of the number of uneducated singing artists shows a trend of first decreasing, then increasing and then decreasing. When the singing years are between 3 and 5 years, the score is the smallest at 1.32. When the singing years are between 5 and 8 years, the peak value is 4.51 points. Then, the score of the singing years of more than 8 years tends to be less than 3 years. The surface performance scores of educated singing artists tended to decrease with increasing years of singing. But overall, its scores did not change much. When the performance standard is based on the singing years of the singing artists, and the singing years are less than 3 years, the surface acting scores of the two are the same. When the singing years are between 3 and 5 years, the difference between the two surface acting scores is the largest, which is 1.86 points. For the remaining singing years, the scores of the educated singing artists were lower than those of the uneducated.

As can be seen from Figure 3, when the singing level is used as the implementation standard, in the elementary and intermediate singing levels, the surface acting scores of the professional singing artists are lower than those of the uneducated.
amateur system. In the advanced singing level, the surface acting score of professional singing artists is higher than that of amateur. Among them, in the intermediate singing level, the difference between the two scores is the largest, which is 0.7 points. In the primary singing level, the difference between the two scores is the smallest, which is 0.37 points. When the professional level is used as the implementation standard, the surface acting score of professional singing

Table 13: The effect of the interaction of two variables on the emotional labor of singing arts personnel data sheet.

	Square and	df	Mean square	F	p
Age * years of singing experience	1.52	5	0.23	0.96	0.42
Age * education level	1.13	3	0.38	1.64	0.18
Age * singing level	2.19	6	0.37	1.61	0.15
Age * professional level	0.39	2	0.21	0.86	0.43
Years of performance * education level	0.98	3	0.33	1.42	0.24
Years of performing * singing level	1.37	6	0.23	1.01	0.43
Years of performing * professional degree	0.67	3	0.23	1.01	0.39
Education level * singing level	0.99	2	0.49	2.18	0.12
Education level * professional level	0.03	1	0.03	0.01	0.91
Singing level * professional level	0.82	2	0.41	1.81	0.17

Table 14: The effect of the interaction of two variables on the surface role of singing art personnel.

	Square and	df	Mean square	F	p
Age * years of singing experience	2.38	5	0.48	0.71	0.62
Age * education level	2.62	3	0.87	1.31	0.27
Age * singing level	4.66	6	0.78	1.17	0.33
Age * professional level	2.06	2	1.03	1.54	0.22
Years of performance * education level	9.21	3	3.07	4.68	0.03
Years of performing * singing level	4.87	6	0.81	1.19	0.31
Years of performing * professional degree	3.64	3	1.21	1.79	0.15
Education level * singing level	0.43	2	0.22	0.31	0.73
Education level * professional level	0.84	1	0.84	1.22	0.13
Singing level * professional level	5.71	2	2.85	4.31	0.02

Figure 2: The interaction of performing years and educational level in the surface play.
4.2.3. The Influence of the Interaction of Demographic Variables on the Deep Performance of Singing Artists. We use demographic variables as independent variables and perform a bivariate analysis with the deep performance of singing artists as the dependent variable. The results are shown in Table 15.

It can be seen from Table 15 that there are significant differences in age, education level, singing level, and years of singing in the scores of deep performance of singing artists. However, there is an interaction between singing artists of different education levels and their singing level, age, and singing years, and the values are all less than 0.05. Next, a simple main effect test is carried out, and the results are shown in Figures 4–6.

Figure 4 shows that, when the education level is used as the implementation standard, the deep performance scores of uneducated singing artists gradually raise the deep acting score as the singing level rises. The educated singing arts population’s deep acting scores, on the other hand, revealed the opposite trend—a downward trend. When the singing level is the implementation standard, untrained singers perform worse than trained singers when the singing level is elementary or intermediate. The score value is higher than that of the educated at the advanced singing level, which shows the opposite trend.

It can be seen from Figure 5 that when the education level is used as the implementation standard, with the increase of age, the deep performance scores of uneducated singing artists fluctuate greatly. The score between the ages of 45 and 60 was the lowest at 3.73. The scores of those who have received education are relatively stable, and although there is a decline, the overall trend is showing an upward trend. When using age as the implementation standard, in the four age ranges, when the age is greater than 60 years old, the difference between the scores of the uneducated and the educated is the largest, which is 0.62 points. When the age is less than 30 years old, the difference between the two scores is the smallest, which is 0.2 points.

As can be seen from Figure 6, when the education level is used as the implementation standard, with the increase of singing years, the deep performance scores of uneducated singing artists appear twists and turns. The scores of those who have received education increase year by year. When the performance standard is based on singing years, in the interval of four singing years, when the singing years are more than three years and less than five years, the score of uneducated singing and artistic personnel is higher than that of those who have received education. Others are lower than the educated.

4.2.4. The Influence of the Interaction of Demographic Variables on the Surface Performance of Singing Artists. We use demographic variables as independent variables and perform bivariate analysis with the natural performance of singers as dependent variables. The results are shown in Table 16.

It can be seen from Table 16 that there is an interaction between the singing level and the singing years in terms of natural performance. We now conduct a simple main effect test on it, and the results are shown in Figure 7:

As can be seen from Figure 7, when the singing level is used as the implementation standard, in the primary singing level, the natural performance score with the singing years of more than three years and less than eight years is the highest. In the intermediate singing level, the highest score is 4.1 for more than three years and less than five years. In the advanced singing level, those who have been singing for more than eight years have the highest score of 3.88. When the singing years are used as the implementation standard, with the increase of the singing level, the scores of the singing years of more than three years but less than five years and the scores of more than five years and less than eight years show an opposite trend. It is an inverted V-shaped structure, and the scores of those singing years are less than three years will gradually decrease. The decline is not large and relatively stable.

4.3. Vocational Self-Efficacy of Singing Artists. We divide the professional self-efficacy of singing artists into four dimensions: professional cognition and development efficacy, professional technical efficacy, physical and mental efficacy, and interpersonal efficacy. At the same time, we conduct descriptive statistical analysis on the four dimensions, and the analysis results are shown in Table 17 and Figure 8.

Combining with the descriptive statistical results in Table 17 and Figure 8, it can be seen that the average score of professional self-efficacy of singing artists is 3.9 points, which is at the upper middle level. It shows that the level of professional self-efficacy of the singing artists in city A is high. The scoring order of the four dimensions of occupational self-efficacy is interpersonal efficacy > occupational
technical efficacy > physical and mental efficacy > occupational cognition and development efficacy. We are carrying out the significance test of the pairwise mean difference of the four dimensions, and the results are shown in Table 18.

It can be seen from Table 18 that the $P = 0.346 > 0.05$ of physical and mental efficacy-vocational technical efficacy indicates that there is no significant difference, while the P values of other combinations are all less than 0.05. It shows that there are significant differences between the above combinations. To sum up, it can be concluded that the interpersonal efficacy is the highest in the professional self-efficacy of singing artists. Occupational cognition and development efficacy were the lowest, and there were significant differences.

4.4. Correlation between Emotional Labor and Occupational Self-Efficacy of Singing Artists. We now conduct a correlation analysis on the emotional labor and occupational self-efficacy of singing artists, and the results are shown in Table 19.

It can be seen from Table 19 that there is a significant and positive correlation between emotional labor and professional self-efficacy of singing artists. The correlation coefficient between the two is 0.293, which is a weak correlation. Its coefficient of determination, $R^2 = 0.087$, indicates that 8.7% of the total variance in the occupational self-efficacy variable can be explained by emotional labor.

Table 15: The effect of the interaction of two variables on the deep play of singing art personnel.
Square and df
Age * years of singing experience
Age * education level
Age * singing level
Age * professional level
Years of performance * education level
Years of performing * singing level
Years of performing * professional degree
Education level * singing level
Education level * professional level
Singing level * professional level
The correlation coefficients between surface acting and occupational self-efficacy, occupational cognition and development efficacy, interpersonal efficacy, physical and mental efficacy, and occupational technical efficacy are as follows. It is -0.062, -0.063, -0.061, -0.059, and -0.057, all of which are negative correlations and their magnitudes are all less than 0.05. It shows that there is no significant level difference. The correlation coefficients between deep acting and occupational self-efficacy, occupational cognition and development efficacy, interpersonal efficacy, physical and mental efficacy, and occupational technical efficacy are as follows. The order is 0.344, 0.216, 0.378, 0.391, and 0.091, all of which are greater than 0.05, indicating a significant level of difference. Among them, the largest correlation coefficient is 0.391, and its determination coefficient is 0.154. It shows that the physical and mental efficacy variables can explain 15.4% of the total variance of the deep acting variable.

Table 16: The effect of the interaction of two variables on the natural performance of singing arts personnel.

Interaction	Square and	df	Mean square	F	p
Age * years of singing experience	2.31	5	0.46	0.83	0.53
Age * education level	0.83	3	0.28	0.5	0.67
Age * singing level	2.37	6	0.398	0.74	0.61
Age * professional level	0.39	2	0.47	0.16	0.73
Years of performance * education level	0.47	3	0.25	0.43	0.72
Years of performing * singing level	8.05	6	1.34	2.63	0.02
Years of performing * professional degree	0.74	3	0.116	0.27	0.81
Education level * singing level	1.91	2	0.21	0.38	0.71
Education level * professional level	0.08	1	0.08	0.02	0.89
Singing level * professional level	0.24	2	0.12	0.22	0.83

Table 17: Descriptive statistics table of the overall characteristics of professional self-efficacy of singing arts personnel.

Professional self-efficacy	Number of people	Maximum value	Minimal value	Average value	Standard deviation
Career perception and development effectiveness	145	5	2.5	3.9	0.47
Career technical performance	145	5	2	3.5	0.61
Physical and mental performance	145	5	2	4.2	0.76
Interpersonal effectiveness	145	5	3	4.3	0.53

Figure 7: Schematic representation of the interaction between singing rank and singing years on natural performance.
5. Conclusion

Different industries have started to thrive recently as a result of the expansion of the tertiary industry. On a fundamental level, both the nature of the work and the status of singing artists have changed significantly. This paper primarily examines and studies the relationship between singing artists’ professional self-efficacy and emotional labor in this context. The data from the four dimensions of emotional labor and occupational self-efficacy are analyzed in this paper, and a correlation analysis is then done between the two. The three sections below represent the main research for this paper.

![Figure 8: Score chart of the four types of occupational self-efficacy of singing arts personnel.](image)
5.1. Emotional Labor, Occupational Self-Efficacy, and Relevance Theory. This paper introduces the definitions of emotional labor and occupational self-efficacy. The explanation of emotional labor in this paper introduces the research of many scholars and then makes inferences and guesses between the two. It then makes a correlation theory introduction to the possible relationship between the two.

5.2. Theoretical Model of Correlation Analysis. This paper constructs a theoretical model of the relationship between emotional labor and occupational self-efficacy. Before establishing the model, the realization process of the model is introduced, and then the selected data are cleaned and the associated model is established.

5.3. Correlation Analysis between Emotional Labor and Occupational Self-Efficacy. This paper conducts a questionnaire survey and analysis of 150 singing art personnel in the singing art association in city A. It conducts data analysis on the influencing factors of emotional labor and four dimensions of occupational self-efficacy. This paper conducts an experimental analysis on the difference of influence factors on emotional labor and whether there is an interaction between different influence factors, and conducts a descriptive statistical analysis on the four dimensions of occupational self-efficacy. Finally, according to the analysis results, the correlation analysis between emotional labor and occupational self-efficacy is carried out. It draws the findings that there is a correlation between the two.

Due to the influence of the experimental environment, the experimental data selected in this paper are not extensive enough and the influencing factors and dimensions are not perfect, making the analysis results imprecise. It may affect the follow-up analysis work, and the focus of the follow-up work is to improve and improve the above shortcomings.

Data Availability
The data used to support the findings of this study are available from the author upon request.

Conflicts of Interest
The author declares no conflicts of interest.

Acknowledgments
This work was supported by the Jiangsu Higher Education Philosophy & Social Sciences Research Project in 2022: Studying the Effects of Classic “Red” Music on the Normalization and Long-Term Influence of Party History Education (Project no. 2022SJYB1122) (Project leader: Ziyu Liu, China University of Mining and Technology).

References
[1] D. Y. Jeung, C. Kim, and S. J. Chang, “Emotional labor and burnout: a review of the literature,” Yonsei Medical Journal, vol. 59, no. 2, pp. 187–193, 2018.
[2] D. I. Satyaningrum and I. Djastuti, “Relationship between emotional labor, work stress, employee creativity, and turnover intention: study on Indonesian bank frontliners,” Diponegoro International Journal of Business, vol. 3, no. 1, pp. 1-16, 2020.
[3] M. Etni and U. Bektas, “Investigation of the relationship between work passion, emotional labor and work family enrichment in healthcare professionals during the pandemic process,” Turkish Studies - Social Sciences, vol. 15, no. 6, pp. 189–204, 2020.
[4] H. D. Guedes, S. Gondim, and A. Hirschle, “Emotional labor and work engagement in military police: mediation of professional identity,” Estudos de Psicologia, vol. 25, no. 1, pp. 69–79, 2020.
[5] F. Darban, R. M. Rabori, J. Farokhzadian, E. Nouhi, S. Sabzevari, and E. Safarzai, “Organizational learning: the missing link to promote nurses’ professional self-efficacy,” Creative Nursing, vol. 26, no. 1, pp. e40–e47, 2020.
[6] A. S. Jarwan, B. M. Al-Frehat, and Al-Frehat, “Educational counselors’ self-efficacy and professional competence,” Universal Journal of Educational Research, vol. 8, no. 1, pp. 169–177, 2020.
[7] I. Safari, M. Davaribina, and I. Khoshnevis, “The influence of efl teachers’ self-efficacy, job satisfaction and reflective thinking on their professional development: a structural equation modeling,” Journal on Efficiency and Responsibility in Education and Science, vol. 13, no. 1, pp. 27–40, 2020.
[8] M. Biasutti, E. Concina, C. Deloughry et al., “The effective music teacher: a model for predicting music teacher’s self-efficacy,” Psychology of Music, vol. 49, no. 6, pp. 1498–1514, 2021.
[9] S. Badolamenti, A. Silia, R. Caruso, and R. FidaFida, “What do we know about emotional labour in nursing? A narrative review,” British Journal of Nursing, vol. 26, no. 1, pp. 48–55, 2017.
[10] D. K. Hsu, J. Wiklund, and R. D. Cotton, “Success, failure, and entrepreneurial reentry: an experimental assessment of the veracity of self-efficacy and prospect theory,” Entrepreneurship: Theory and Practice, vol. 41, no. 1, pp. 19–47, 2017.
[11] B. N. Bozzini, J. K. Pellegrino, A. J. Walker, B. McFadden, A. Poyssick, and S. Arent, “Running economy and its correlation to performance and fitness variables in recreationally-trained distance runners,” Comparative Exercise Physiology, vol. 16, no. 2, pp. 107–112, 2020.
[12] S. H. Na and K. Kim, “Verbosity normalized pseudo-relevance feedback in information retrieval,” Information Processing & Management, vol. 54, no. 2, pp. 219–239, 2018.
[13] L. Huang, G. Xie, W. Zhao, Y. Gu, and Y. Huang, “Regional Logistics Demand Forecasting: A BP Neural Network Approach,” Complex & Intelligent Systems, vol. 1, pp. 1–16, 2021.
[14] H. Wang, J. Wang, and Q. Zhou, “Comprehensive error compensation of machine tools based on BP-neural network algorithm,” Hsi-An Chiao Tung Ta Hsueh/Journal of Xi’an Jiaotong University, vol. 51, no. 6, pp. 138–146, 2017.
[15] P. D. Oluoryi and S. O. Eteje, “Improving the local geometric geoid model of fct abuja accuracy by fitting a higher order/degree polynomial surface,” FUDMA Journal of Sciences, vol. 4, no. 3, pp. 114–120, 2020.
[16] X. Ning, S. Xu, F. Nan et al., “Face editing based on facial recognition features,” IEEE Transactions on Cognitive and Developmental Systems, p. 1. In Press, 2022.
[17] E. Q. Wu, Z. Tang, Y. Yao et al., “Scalable gamma-driven multilayer network for brain workload detection through...
functional near-infrared spectroscopy,” *IEEE Transactions on Cybernetics*, Early Access, 2021, In press.

[18] D. Panagoulia and E. I. Vlahogianni, “Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece,” *Atmospheric Research*, vol. 205, no. JUN, pp. 33–47, 2018.

[19] H. Amoozad Mahdiraji, S. H. Razavi Hajiagha, S. S. Hashemi, and E. K. Zavadskas, “Bi-objective mean-variance method based on Chebyshev inequality bounds for multi-objective stochastic problems,” *RAIRO - Operations Research*, vol. 52, no. 4-5, pp. 1201–1217, 2018.

[20] H. Y. Eledum, “A Monte Carlo study of the effects of variability and outliers on the linear correlation coefficient,” *Journal of Modern Applied Statistical Methods*, vol. 16, no. 2, pp. 231–255, 2017.