Role of Prokaryotic P-Type ATPases

Santosh K Upadhyay1 and Shruti Mathur2*

1Department of Botany, Punjab University, India
2Amity Institute of Biotechnology, Amity University Rajasthan, India

Submission: July 03, 2017; Published: September 18, 2017

*Corresponding author: Shruti Mathur, Amity Institute of Biotechnology, Amity University Rajasthan, Kant Kalwar, NH-11C, Jaipur 303-002, India, Email: smathur1@pr.amity.edu, shrutimathur6@gmail.com

Abstract

P-type ATPases is a large and varied family of transmembrane proteins that are responsible for actively pumping ions and small organic molecules, against their concentration gradient, across the cell membrane. They are ubiquitous and reported to be found in bacteria, archaea and eukaryotes. They are responsible for controlling vital functions of the cell like muscle contraction, membrane potential, signaling etc. in eukaryotes. In prokaryotes, relatively few studies have been performed on the biochemical function and in vivo importance of these pumps although a plethora of gene sequences have been obtained from bacterial genome sequences. This review puts together the various roles of P-type ATPases in prokaryotes in which their function has been elucidated. The various roles of P-type ATPases in prokaryotes is to confer on them the ability to withstand high concentrations of heavy metals, to overcome high phagosomal metal levels and to aid in the assembly of periplasmic and secreted metalloproteins. These properties are critically required for their survival in extreme conditions (extremophiles), to withstand heavy metal stress and also for bacterial virulence.

Keywords: Prokaryotic P-type ATPases; Biosensors; Virulence; Heavy metal stress; Vaccine targets

Introduction

Active transport across membranes is an essential feature of life. P-type ATPases establish and maintain steep electrochemical gradients of key cations at the expense of ATP as originally proposed by Jardetzky [1]. P-ATPases (also known as E1-E2 ATPases) (EC:3.6.3) are found in bacteria and in a number of eukaryotic plasma membranes and organelles. P-ATPases function to transport a variety of different compounds, including ions and phospholipids, across a membrane using ATP hydrolysis for energy. There are many different classes of P-ATPases, which transport specific types of ions: H+, Na+, K+, Ca2+, Mg2+, Cd2+ and Cu2+ in species as diverse as bacteria and man [6] and also Zn2+ , Co2+, Au+ and Ag+ which are grouped into the PIB type. Several studies have been made on bacteria such as bacilli [7], pseudomonads [8], Ralstonia spp[9] and cyanobacteria [10]. These studies reveal that the PIB-ATPases regulate concentration of metal ions by export of those which are toxic and import of those which are essential. Phylogenetic analysis between 16S rRNA and PIB-type ATPase gene trees have revealed congruencies pointing to instances of lateral gene transfer (LGT) among diverse microbes. This indicates specific functions for the different clades within the PIB-type ATPase phylogeny [11].

Evolution of Metal Homeostasis in P-Type ATPases as Stress Management Strategy

The cat ionic substrates transported include H+, Na+, K+, Ca2+, Mg2+, Cd2+ and Cu2+ in species as diverse as bacteria and man [6] and also Zn2+ , Co2+, Au+ and Ag+ which are grouped into the PIB type. Several studies have been made on bacteria such as bacilli [7], pseudomonads [8], Ralstonia spp[9] and cyanobacteria [10]. These studies reveal that the PIB-ATPases regulate concentration of metal ions by export of those which are toxic and import of those which are essential. Phylogenetic analysis between 16S rRNA and PIB-type ATPase gene trees have revealed congruencies pointing to instances of lateral gene transfer (LGT) among diverse microbes. This indicates specific functions for the different clades within the PIB-type ATPase phylogeny [11].
simple bacteria have a number of membrane transporters that maintain the homeostasis of the various transition metals. These include, among others, the P-type ATPases [15-17]. P-type ATPases show existence as a single primitive ATPase, prior to the divergence of eukaryotes from prokaryotes [18]. Thereafter, divergence is seen into heavy metal pumping ATPases and the non-heavy metal ATPases as formation of a distinct evolutionary branch [19]. Genes encoding PIB-type ATPases with conserved motifs are found in the majority of sequenced bacterial and archaeal genomes, suggesting several loss and gain events. This corroborates the fact that these are primitive proteins indispensable for their role in life processes of bacteria [11,19] and archaea [19,20]. Such studies on evolution of metal homeostasis genes have significant contribution for comprehending microbial adaptations in environments stressed and continuously changing. The primary function of P-type ATPases in bacteria has therefore been understood as combat against extreme environmental stress conditions as reviewed and suggested by Chan et al.[21].

Heavy metal stress

Several studies on the function of PIB type ATPases in efflux of toxic metals like Fe$^{2+}$ in *B. subtilis* [22] and Pb$^{2+}$ in *Staphylococcus aureus* [23] have been made. An extensive exploration into the mechanisms of buffering optimum metal concentrations for cell viability in metal stressed bacteria has revealed the indispensable role of P-type ATPases in efflux mechanisms with a range of substrates (Cu$^{+}$, Zn$^{2+}$, Co$^{2+}$). They can also transport non-physiological substrates (Cu$^{2+}$, Cd$^{2+}$, Pb$^{2+}$, Au$^{+}$, Ag$^{+}$) due to the structural similarities among transition metals [24]. PIB-ATPases not only maintain cytoplasmic metal levels but also provide metals for the periplasmic assembly of metalloproteins [25]. Since PIB-ATPases appear key players in overcoming high phagosomal metal levels and are also required for the assembly of periplasmic and secreted metalloproteins that enable survival in extreme oxidant environments. Copper transporting P-IB type ATPases are the most studied. Genome database analyses have demonstrated that copper translocating PIB-type ATPases are highly conserved in *Staphylococcus aureus* [26].

Pathogenicity stress

Stress is also experienced by pathogenic bacteria during establishment of infection in the host cells where they come across change of temperature, pH, cation concentration. Infection not only triggers adaptive responses within bacteria to these specific stress conditions but also directs them to express virulence-associated genes in a spatiotemporally appropriate manner. It has been shown that P-type ATPase in in *Streptococcus pneumoniae* for Ca$^{2+}$- transporting PIB ATPase [27], *Listeria monocytogenes* [28] and enteric pathogen *Salmonella* [29], is vital for survival of the pathogen in the infected host, where Ca$^{2+}$ concentration is very high and must be actively removed from bacterial cell. Transition metal PIB type ATPases have been reviewed and found to play similar role [30]. The role of metal intoxication in host-pathogen interactions was first noted owing to the virulence defects of bacteria that are defective in Zn(II) and Cu(I) efflux [31-34]. Similar studies have been performed for Fe$^{2+}$ and Mn$^{2+}$ intoxication [35-38]. Efflux systems have thus been established to function as virulence factors as also reported in several bacterial pathogens [27-40]. The role of bacterial P-type ATPases has been summarized in Table 1. This shows the great versatility of tasks performed by them.

Table 1: Biochemically characterized functions of various P-type ATPases in Prokaryotes.

S.N.	P-Type ATPase	Function	Organism	Reference
1	P-type Ca$^{2+}$ ATPase	Virulence	Streptococcus pneumonia	26
2	P-type H$^{+}$-ATPase,	generation of the primary electrochemical	Methanooccus jannaschii	19
		potential across thermophilic archael membrane.		
3	soft-metal-transporting P-	Resistance to cadmium and Zinc	Ralstonia metalidurans	41
	type ATPases, CaDA and ZnTA			
4	PIB-ATPase	cobalt, zinc, and cadmium resistance	Cupriavidus metalidurans	6,42
5	P-type Cd(2+) ATPase	Cd(2+) extrusion for cadmium resistance	*Staphylococcus aureus* 17810R	43
6	P-type Na(+)-ATPase	electrogenic transport of Na(+) in anaerobic	Exiguobacterium aurantiacium	44
		alkaliphile		
7	PIB-4-ATPase	Co$^{2+}$ transport	Sulfitobacter sp. NAS-14.1	45
8	P(1)R-type ATPases	Cu$^{2+}$ transport	Archaeoglobus fulgidus	30
9	CtpA, a copper-translocating P-type ATPase	assembly of membrane and periplasmic copper enzymes	Rubrivivax gelatinnosus	25
10	Ca$^{2+}$-P-type ATPase	Ca$^{2+}$ extrusion	Streptococcus lactis	46
11	Na$^{+}$-P-type ATPase	Na$^{+}$ extrusion	halotolerant cyanobacterium, Aphanothce halophytica	46
12	copper-transporting P-type-ATPase	Cu$^{2+}$ transport in Anaerobic sulphur-metabolizing hyperthermophilic archa.	Archaeoglobus fulgidus	47,48,49
13	copper-transporting P-type-ATPase	Cu$^{2+}$ transport	*Aquifex aeolicus.*	50
Potential Applications of P-Type Atpases

Heavy metal efflux systems enable growth of such heavy metal resistant bacteria in high concentrations of these metals. This property can be potentially harnessed in bioremediation of poorly cultivable soil high in heavy metal content, by precipitation of these heavy metals. Since the regulation of metal resistant gene expression is specific for each heavy metal and is dependent upon metal species concentration, the promoters and regulatory genes from the bacterial operons responsible for resistance can be used to create metal-specific biosensors (promoter-reporter gene fusions) [53]. The recent insights into the role of P-type ATPases in virulence new vaccine strategies that target metal transport systems have been developed. Components of the Zn²⁺ (ZnuD in Neisseria meningitidis) [54] and M⁺⁺ (MntC in S. aureus and PsaA in S. pneumoniae) uptake systems have been identified as potential vaccine targets [55]. Potential drug targets for intervention for the prevention or treatment of infectious diseases in the light of a deeper understanding of host drug targets for intervention for the prevention or treatment of infectious diseases in the light of a deeper understanding of host defense mechanisms have been identified as potential vaccine targets [55]. Potential applications of P-type ATPases in novel drug development.

References
1. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211: 969-970.
2. Axelsson KR, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46(1): 84-101.
3. Kühnbrandt W (2004) Biology, structure and mechanism of p-type ATPases. Nat Rev Mol Cell Biol 5: 282-295.
4. Bublitz H, Morth JP, Nissen P (2009) In and out of the cation pumps: P-Type ATPase structure revisited. Curr Opin Struct Biol 20(4): 431-439.
5. Okamura H, Denawa M, Ohnishi R, Takeyasu K (2003) P-type ATPase superfamily: evidence for critical roles for kingdom evolution. Ann NY Acad Sci 986: 219-223.
6. Scherer J, Nies DH (2009) ZntP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH3A. Mol Microbiol 73(4): 601-621.
7. Solovieva IM, Entian KD (2002) Investigation of the ygvW Bacillus subtilis chromosomal gene involved in Cd²⁺ ion resistance FEMS Lett 208: 105-109.
8. Lee S, Glickmann WE, Cooksey DA (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67(4): 1437-1444.
9. Brocklehurst KR, Hobman JL, Lacey B, Blank L, Marshall SJ, et al. (1999) ZnrR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol 31(3): 893-902.
10. Thelwell C, Robinson NJ, Turner CJ (1998) An SmtB-like repressor from Synchocystis PCC 6803 regulates a zinc exporter. Proc Natl Acad Sci USA 95(18): 10728-10733.
11. Coombs JMB, Borkay T (2005) New Findings on Evolution of Metal Homeostasis Genes: Evidence from Comparative Genome Analysis of Bacteria and Archaea. Applied and Environmental Microbiology 71(11): 7083-7091.
12. Fraústro da Silva JR, Williams RJP (2001) The biological chemistry of the elements. 2 Oxford University Press, New York, USA.
13. Goldstein S, Meyerstein D, Capski G (1993) The Fenton reagents. Free Radical Biol Med 15(4): 435-445.
14. Macomber L, Inlay JA (2009) The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci USA 106(20): 8344-8349.
15. Saier MH, Beatty J, Goffeau A, Harley KT, Heijne WH, et al. (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1(2): 257-279.
16. Forbes JR, Gros P (2001) Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 9(8): 397-403.
17. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2-3): 313-339.
18. Matthew JF, Milton H, Saier (1994) P-Type ATPases of eukaryotes and bacteria: Sequence analyses and construction of phylogenetic trees. Journal of Molecular Evolution 38(1): 57-99.
19. Solizio M, Vuille C (1996) CPx-type ATPases class of P-Type ATPases that pump heavy metals. Trends in Biochemical Sciences 21(7): 237-241.
20. Morsonne P, Cham M, Joseph N, Karen N, André K, et al. (2002) Characterization of a Hyperthermophilic P-Type ATPase from Methanococcus jannaschii Expressed in Yeast. J Biol Chem 277(33): 29608-29616.
21. Chan H, Babayan V, Blyumin E, Gandhi C, Hak K, et al. (2010) The p-type ATPase super family. J Mol Microbiol Biotechnol 19(1-2): 5-104.
22. Guan G (2015) PfeT, a P1B4-type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication. Mol Microbiol 98(4): 787-803.
23. Rensing C, Sun Y, Mitra B, Rosen BP (1998) Pb(II) translocating P-Type ATPases, J Biol Chem 273(49): 32614-32617.
24. Chandrangsu P, Rensing C, Helmann JD (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15(6): 338-350.
25. Hassan BK, Astier C, Nitschke W, Ouchane SC (2003) A copper-translocating P-type ATPase involved in the biogenesis of multiple copper-requiring enzymes. J Biol Chem 280(25): 19330-19337.
26. Sitthiasak S, Knutsson L, Webb JW, Jayaswal RK (2007) Molecular characterization of the copper transport system in Staphylococcus aureus. Microbiology 153(12): 4274-4283.
27. Rosch JW, Sublett J, Gao G, Wang YD, Tuomanen E (2008) Calcium efflux is essential for bacterial survival in the eukaryotic host. Mol Microbiol 70(2): 435-444.
28. Axén K, Andersen JL, Gourdon P, Fedosova N, Morth JP, et al. (2011) Characterization of a Listeria monocytogenes Ca2+ Pump a Serca-type ATPase with only one ca2+-binding site J Biol Chem 286(2): 1609-1617.

29. Fang C, Frawley ER, Tapscott T, Vázquez TA (2016) Bacterial Stress Responses during Host Infection. Cell Host & Microbe Review 20(2): 133-143.

30. Argüello JM, Eren E, González GM (2007) The structure and function of heavy metal transport P1B-ATPases. Biochimica et Biophysica Acta 1760(3-4): 233-248.

31. Francis MS, Thomas OJ (1997) Mutants in the CtpA copper transporting P type ATPase reduce virulence of Listeria monocytogenes. Microb Pathog 22(2): 67-78.

32. Achtard ME, Tree JJ, Holden JA, Simpfordörfer KR, Wijburg OL, et al. (2010) The multi-copper-ion oxidase CueO of Salmonella enterica sennov Typhimurium is required for systemic virulence. Infect Immun 78(5): 2312-2319.

33. Botella H, Peyron P, Levillain F, Poindoux R, Poquet Y, et al. (2011) Mycobacterial P1-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10(3): 248-259.

34. Ong CL, Walker MJ, McEwan AG (2015) Zinc disrupts central carbon metabolism and capsule biosynthesis in Strepptococcus pyogenes. Sci Rep 5: 10799.

35. Rosch JW, Gao G, Ridout G, Wang YD, Tuomanen EI (2009) Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae. Mol Microbiol 72(1): 12-25.

36. McLaughlin HP, Xiao Q, Rea RB, Pi H, Casey PG, et al. (2012) A Putative P-type ATPase Required for Virulence and Resistance to Haem Toxicity in Listeria monocytogenes. PLoS ONE 7(2): e30928.

37. Turner AG, Ong CY, Dijkko KY, West NP, Davies MR, et al. (2017) The PerR-regulated P1B4-type ATPase (PmtA) acts as a ferrous iron efflux pump in Streptococcus pyogenes. Infect Immun 85: e00140-17.

38. Ph H, Patel SJ, Argüello JM, Helmann JD (2016) The Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J Bacteriol 185(15): 4354-4361.

39. Traverso ME, Subramanian P, Davydov R, Hoffman BM, Steemler TL, et al. (2010) Identification of a hemerythrin-like domain in a P1BPIB-Type transport ATPase along the Ion Transport Cycle Biochemistry 54: 5095-5102.

40. Dijkstra K, Jahanpour N, Pourghorbanali F, Raeisi G, Faekhondeh AC (2012) Characterization of a cobalt-specific P(1B)-ATPase. Biochimica et Biophysica Acta 1819(7): 1079-1087.

41. Chintalapati S, Al Kurdi S, van Scheltinga AC, Kühlbbrandt W (2008) Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. J Mo Biol 381(3): 581-595.

42. Gutierrez H, Arias J, Biol H, Moch O, Gómez A, et al. (2016) The multi-copper-ion oxidase CueO of Salmonella enterica sennov Typhimurium is required for systemic virulence. Infect Immun 78(5): 2312-2319.

43. Wu CC, Gardarin A, Martel A, Mintz E, Guilain F, et al. (2006) The cadmium transport sites of CadA, the Cd2+-ATPase from Listeria monocytogenes. Mol Biol Chem 281(40): 2953-2954.

44. Issazadeh K, Jahanpour N, Pourghorbanali F, Raeisi G, Faekhondeh AC (2012) Characterization of a cobalt-specific P(1B)-ATPase. Biochimica et Biophysica Acta 1819(7): 1079-1087.

45. Hubert K, Hubert K, Deves N, Morshorst I, Tans C, et al. (2013) Znu D, a potential candidate for a simple and universal Neisseria meningitidis vaccine. Infect Immun 81: 1915-1927.

46. Anderson AS, Scully IL, Timofeyeva Y, Murphy E, McNeil EK, et al. (2012) Staphylococcus aureus manganese transport protein C is a highly conserved cell surface protein that elicits protective immunity against S. aureus and Staphylococcus epidermidis. Infect Dis 205(11): 1688-1696.