Leveraging knowledge of Asian herbal medicine and its active compounds as COVID-19 treatment and prevention

Desy Liana1 · Anuchit Phanumartwiwath1

Received: 23 August 2021 / Accepted: 29 September 2021 / Published online: 8 October 2021
© The Japanese Society of Pharmacognosy 2021

Abstract
The outbreak of COVID-19 disease has led to a search for effective vaccines or drugs. However, insufficient vaccine supplies to meet global demand and no effective approved prescribed drugs for COVID-19 have led some people to consider the use of alternative or complementary medicines, such as traditional herbal medicine. Medicinal plants have various therapeutic properties that depend on the active compounds they contain. Obviously, herbal medicine has had an essential role in treatment and prevention during COVID-19 outbreak, especially in Asian cultures. Hence, we reviewed the uses of herbal medicine in Asian cultures and described the prominent families and species that are sources of antiviral agents against COVID-19 on the basis of case reports, community surveys, and guidelines available in the literature databases. Antiviral efficacy as determined in laboratory testing was assessed, and several promising active compounds with their molecular targets in cell models against SARS-CoV-2 viral infection will be discussed. Our review findings revealed the highly frequent use of Lamiaceae family members, *Zingiber officinale*, and *Glycyrrhiza* spp. as medicinal sources for treatment of COVID-19. In addition, several plant bioactive compounds derived from traditional herbal medicine, including andrographolide, panduratin A, baicalein, digoxin, and digitoxin, have shown potent SARS-CoV-2 antiviral activity as compared with some repurposed FDA-approved drugs. These commonly used plants and promising compounds are recommended for further exploration of their safety and efficacy against COVID-19.

*Anuchit Phanumartwiwath
anuchit.p@chula.ac.th

1 College of Public Health Sciences, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand

Springer
Keywords COVID-19 · Asian · Herbal medicine · Plant bioactive compounds · Treatment · Prevention

Background

An outbreak of coronavirus 19 (COVID-19) disease caused by the beta-coronavirus, severe acute respiratory syndrome 2 (SARS-CoV-2), was first reported in late December 2019 in Wuhan, China and continued to rapidly spread worldwide. The angiotensin-converting enzyme 2 (ACE2) receptor, which is known to be an entry point of SARS-CoV-2, is widely presented on lung alveolar cells but also can be found in other organs’ cells, such as the upper esophagus, small intestine, colon, bile, heart, kidney, and bladder; hence, this virus can attack various organs and cause damage [1, 2]. Penetration by SARS-CoV-2 stimulates the immune response leading to production of various cytokines, which generates a cytokines storm that triggers disease symptoms. Depending on the cytokines produced, COVID-19 symptoms can be mild, moderate, or severe [2]. Severe disease is characterized by progressive lung damage, over-inflammation, pulmonary tissue edema, vascular leakage, coagulation, and endotheliitis (vascular inflammation). The cytokine storms in the most severely affected COVID-19 patients are very destructive and cause endothelial dysfunction, inflammation, and vasodilatation of pulmonary capillaries. Furthermore, this process triggers alveolar disfunction, acute respiratory distress syndrome with hypoxic respiratory, and multiple-organ failure, resulting in death [3, 4].

A global effort to develop effective vaccines or therapeutic drugs for COVID-19 disease is urgently needed for combating the pandemic. Hence, several approaches have been adopted, including drug repurposing and vaccine development. In drug repurposing, various existing drugs, such as chloroquine, hydroxychloroquine, ivermectin, camostat mesylate, lopinavir, ritonavir, remdesivir, and favipiravir, have been tested in clinical trials [5]. In vaccine development, numerous pharmaceutical/academic developers have developed COVID-19 vaccine candidates using various platforms, such as live-attenuated virus (e.g., Codagenix [6]), inactivated virus (e.g., Sinovac [7], Sinopharm [8]); mRNA (e.g., Pfizer [9] Moderna [10], ChulaCov19 [11], and Curevac [12]); DNA (e.g., COVIGEN [13], Inovio
non-replicating viral vectors (e.g., AstraZeneca [15], Johnson & Johnson [16]); and protein sub-units (e.g., Novavax[17]), and conducted clinical trials [18]. The World Health Organization (WHO) has approved several vaccines for emergency use, including AZD1222/AstraZeneca, Jansen/Johnson & Johnson mRNA 1273/Moderna, Sinopharm, and Sinovac-CoronaVac, since 2020 [19]. The rapid transmission of COVID-19 disease along with insufficient vaccine supplies for health care workers and the absence of specific and effective prescribed drug treatments for COVID-19 patients [20] have led to some people taking herbal medicines for prevention or treatment of this disease.

Herbal medicine has been used in complementary medicine in various cultures for at least 1000 years and still has an important role in health care systems currently. The extensive use of plant sources of medicines with proven therapeutic ability for treating various diseases has led to more plant-based drug discoveries of numerous effective drugs such as vincristine, vinblastine, paclitaxel, and camptothecin (Fig. 1) [21]. Promising compounds, such as psoralens, guggulsterones, piperidines, phyllanthins, picrosides, curcuminooids, withanolides, steroidal lactones, and glycosides, have been discovered from traditional Ayurvedic medicine [22]. In addition, the discovery of the potent antimalarial drug, artemisinin (Fig. 1), has been attributed to the historical use of the plant Artemisia annua in Traditional Chinese Medicine (TCM) [23].

The perception that many herbal medicines have shown promising efficacy, safety, accessibility, environmental friendliness, and affordability has led to increased attention on traditional medicines in recent years. The efficacy of traditional herbal medicines for treating various diseases is due to the pharmacological activity of the active compounds in the plants [24]. Obviously, herbal medicine also plays essentially for prevention and treatment of COVID-19 disease in various cultures. Herbal medicines may act directly or indirectly by attacking the virus, viral–host interaction, signaling pathways, host receptors, molecular targets, immune system, and microenvironments. In TCM, herbal medicines alone or in combination with modern synthetic drugs are prescribed for COVID-19 patients [4]. The Qingfei Paidu decoction, which contains several herbs, has been used for treatment of COVID-19 patients in China [24]. Lianhua-Qingwen, Shufeng Jiedu, Huoxiang Zhengqi, and Jinhua Qinggan herbal formulas also have been used in COVID-19 treatment in TCM [25]. Herbal medicines are widely used, mostly in China and other Asian countries, such as Japan, Korea, Thailand, Vietnam, India, Bangladesh, and Indonesia. Accordingly, the aim of this review article was to describe various medicinal plants used in COVID-19 prevention and treatment from various countries in Asia as obtained from a literature search and discuss the efficacy results from laboratory testing. Additionally, the antiviral activities of

Fig. 1 Several effective modern drugs derived from traditional herbal medicine

© Springer
natural products isolated from medicinal plants against SARS-CoV-2 are discussed.

Use of traditional herbal medicine during the COVID-19 pandemic and its antiviral activity against SARS-CoV-2

The plants identified as having been used for treatment and prevention of COVID-19 diseases were extracted from literature searches of the ScienceDirect, PubMed, Scopus, and Google Scholar databases from 28th May 2021 until 20th August 2021. Plant data were retrieved from published articles about community surveys, case reports, and relevant articles that described the use of herbal medicines in Asian communities during the COVID-19 pandemic for both prevention and treatment (Tables 1, 2). The species and families of plant taxa were confirmed and verified using World Flora Online database (http://www.worldfloraonline.org/), a specified plant species database maintained by the Royal Botanic Gardens and Kew and Missouri Botanical Gardens. A number of 91 plant taxa were obtained after extracting the data and then further analyzed to determine the most frequently used families and species for treatment and prevention of COVID-19.

Based on the analysis of medicinal plants used in the communities across several countries in Asia, our findings showed that the Lamiaceae family of medicinal plants was the most frequently used for prevention and treatment of COVID-19 during pandemic (Fig. 2). In addition, our findings revealed that Zingiber officinale was the most frequently used species followed by Glycyrrhiza spp. and Ocimum sanctum (Fig. 3).

Z. officinale (ginger) has been shown to be the most frequently used species in herbal medicine in communities across the countries studied. The crude extract of this herb reportedly exhibited antiviral activity against SARS-CoV-2 in a Vero E6 cell model, with IC₅₀ of 29.19 µM. The main phenolic compound in ginger, 6-gingerol, only showed an IC₅₀ of ≤ 100 µM [26], which suggests that the efficacy of Z. officinale may depend on mechanisms that do not involve 6-gingerol for suppressing COVID-19 symptoms, do not directly attack the virus, or that is synergistic with other herbs to achieve a better therapeutic effect. Z. officinale is a spice in which gingerols and shogaols are the active compounds thought to provide health benefits. This herb possesses a range of medicinal benefits, including antiviral activity against feline calicivirus, human respiratory syncytial virus, influenza A, and H9N2, and its activity for stimulating tumor necrosis factor alpha (TNF-α) is postulated as a first-line defense for virus infection [27].

Along with ginger, Glycyrrhiza spp. is a frequently used medicinal plant for COVID-19 treatment. This herb is mostly included in various formulas in TCM for COVID-19 treatment, such as Ma Xing Shi Gan, Da Yuan Yin, and Lianhua-Qingwen. The Lianhua-Qingwen formula contains various herbs, including Glycyrrhiza uralensis, and reportedly exhibits inhibitory activity against SARS-CoV-2 (Table 2). On the other hand, the aqueous extract of Glycyrrhiza glabra root reportedly exhibits inhibitory activity against SARS-CoV-2 infected Vero E6 cells. The extract has shown antiviral effects at 2 mg/ml, which is lower than its toxic concentration. Glycyrrhizin, as a triterpenoid glycoside, has also shown viral blocking ability at 0.5 mg/ml and 1 mg/ml in the pre-entry and post-entry conditions, respectively. In addition, no cytotoxic effect has been found at ≤ 4 mg/ml. The half-maximal effective concentration (EC₅₀) of this compound reportedly is 0.44 mg/ml. Glycyrrhizin has also been shown to significantly reduce the SARS-CoV-2 RNA level [28]. An in silico study showed that this compound binds to the ACE2 receptor, which possibly blocks viral entry [29].

Molecular drug targets for COVID-19

SARS-CoV-2 is a novel coronavirus that belongs to the Coronavirinae family. Coronavirus are RNA viruses that have a spherically shaped envelope 100–160 nm in diameter. The genome size is 27–32 kb. The 3′ end of the genome encodes structural proteins, such as envelope (E), spike glycoprotein (S), nucleocapsid (N), and membrane glycoprotein (M), and the 5′ end encodes polyproteins involved in replication and transcription [20]. SARS-CoV-2 can enter the host cell via various receptors, such as ACE2, aminopeptidase N (APN), and dipeptidyl peptidase 4 (DPP4). Hence, these three receptors are promising targets for treatment of COVID-19 infection. ACE2 is known to be prevalent in alveolar cells. In addition, males are known to express higher levels of ACE2 than females. The expression of ACE2 can be increased by binding of the S protein of SARS-CoV-2 to ACE2. On the other hand, DPP4 mediates entry of the virus into the host cell via directed cell–cell fusion, whereas APN promotes cross-species transmission of SARS-CoV-2, which is involved in receptor binding [30].

The ACE2 receptor, S protein, RNA-dependent RNA polymerase (RdRp), papain-like protease (PLₚₚ), and 3-chymotrypsin-like protease (3CLₚₚ or main protease (Mₚₚ)) are known to be potential targets for COVID-19 drugs because these biomaterials are essential for viral invasion of the host cell [4]. SARS-CoV-2 invades the host cell by binding of its S protein to the ACE2 receptor of the host cell followed by S protein cleavage by transmembrane serine protease 2 (TMPRSS2). Next, genomic RNA is released into the host cell cytoplasm and undergoes translation of polyprotein (ppa1/ab), which is cleaved further by viral Mₚₚ and PLₚₚ into non-structural protein (nsp). The nsp protein then interacts with RdRp for building the replication–transcription...
complex. After entering the cell, with RdRp, the virus takes over genetic reproduction to produce new viral RNA. Cleaved glycoproteins by virus proteases (PLpro and Mpro) are then produced, and the viral material is assembled so that it can synthesize new viral particles to further infect other host cells [4, 31, 32].

ACE2 is also the proposed drug target for preventing SARS-CoV-2 infection. This enzyme is a transmembrane protein, localized in alveolar epithelial cells, vascular endothelial cells, small intestine epithelial cells, and renal tubular epithelial cells. ACE2 functions by cleaving the C-terminal amino acid residue of angiotensin II (Ang II), which maintains the balance of generated Ang II. Furthermore, ACE2 is known to be the receptor for S proteins of SARS-CoV-2; hence, inhibition of this enzyme may be a drug target for preventing SARS-CoV-2 infection [2, 33]. The expressed S protein of SARS-CoV-2 functions by binding to the ACE2 receptor. Infection by this virus can be through two pathways: endocytic and direct fusion. In the endocytic pathway, cleavage of S proteins is mediated by

Family	Species	Country origin	References			
Amaryllidaceae	Allium sativum	Vietnam	[51]			
Apiaceae	Centella asiatica	Vietnam	[51]			
Apiaceae	Saposhnikovia divaricata	China	[52]			
Apiaceae	Glehnia spp.	China	[52]			
Araliaceae	Panax ginseng	Vietnam	[51]			
Asparagaceae	Ophiopogon spp.	China	[52]			
Brassicaceae	Isatis indigotica	China	[52]			
Campanulaceae	Platycodon grandiflorus	China	[52]			
Caprifoliaceae	Lonicera japonicae	China	[52]			
Compositae	Artemisia vulgaris	Vietnam	[51]			
Compositae	Cynara cardunculus	Vietnam	[51]			
Compositae	Atractylodes macrocephalae	China	[52]			
Compositae	Atractylodes spp.	China	[52]			
Compositae	Eupatorium spp.	China	[52]			
Cucurbitaceae	Citrullus lanatus	Bangladesh	[53]			
Dryopteridaceae	Cyrtomium fortune	China	[52]			
Lamiaceae	Perilla frutescens	Vietnam	[51]			
Lamiaceae	Plecanthus amboinicus	Vietnam	[51]			
Lamiaceae	Elsholtzia ciliata	Vietnam	[51]			
Lamiaceae	Ocimum tenuiflorum	India	[54]			
Lamiaceae	Vitex negundo	Bangladesh	[53]			
Lamiaceae	Pogostemon cablin	China	[52]			
Lamiaceae	Perilla spp.	China	[52]			
Leguminosae	Glycyrrhiza spp.	Vietnam	[51]			
Leguminosae	Astragalus spp.	China	[52]			
Leguminosae	Glycyrrhiza spp.	China	[52]			
Menispermaceae	Tinospora cordifolia	India	[54]			
Moraceae	Morus alba	China	[52]			
Oleaceae	Forsythia suspensa	China	[52]			
Phyllanthaceae	Emblica officinalis	India	[54]			
Piperaceae	Piper lolot	Vietnam	[51]			
Poaceae	Phragmites communis	China	[52]			
Poaceae	Coix lacryma-jobi	China	[52]			
Ranunculaceae	Nigella sativa	Bangladesh	[53]			
Rutaceae	Citrus reticulata	China	[52]			
Saururaceae	Houttuynia cordata	Vietnam	[51]			
Xanthorrhoeaceae	Aloe vera	Vietnam	[51]			
Zingiberaceae	Zingiber officinale	Vietnam	[51]			
Zingiberaceae	Curcuma longa	India	[54]			
Formula	Country origin	Family	Species	Usage report in community	Antiviral activity against SARS-CoV-2	References
-------------------------	----------------	-------------------------	--	----------------------------	---------------------------------------	------------
Lianhua-Qingwen	China	Oleaceae	Forsythia suspensa	Yes	In an in vitro model using infected Vero E6 cell lines with SARS-CoV-2, an herbal formula inactivated virus replication, altered virus morphology, and reduced pro-inflammatory cytokines	[1, 55, 56]
		Caprifoliaceae	Lonicera japonica			
		Ephedraceae	Ephedra sinica			
		Dryopteridaceae	Dryopteris crassirhizoma			
		Rosaceae	Prunus armeniaca			
		Crassulaceae	Rhodiola rosea			
		Polygonaceae	Rheum palmatum			
		Saururaceae	Houttuynia cordata			
		Brassicaceae	Isatis indigotica			
		Lamiaceae	Mentha haplocalyx			
		Leguminosae	Glycyrrhiza uralensis			
		Compositae	Taraxacum mongolicum	N/D	Inhibit SARS-CoV-2 replication in Vero E6 cells with EC\textsubscript{50} 1.078 mg/ml and in vivo study with hACE2 mice model infected SARS-CoV-2 revealed that this formula is able to relieve symptoms of pneumonia, chronic obstructive pulmonary disease, and asthma	[1, 57]
		Lamiaceae	Scutellaria baicalensis			
		Papaveraceae	Corydalis bungeana			
Pudilan Xiaoyan Oral Liquid (PDL)	China	Brassicaceae	Isatis indigotica	N/D	Inhibit SARS-CoV-2 in Vero E6 cells, with an EC\textsubscript{50} 0.93 µl/ml	[45]
		Compositae	Taraxacum mongolicum			
		Lamiaceae	Scutellaria baicalensis			
		Papaveraceae	Corydalis bungeana			
Shuanghuanglian	China	Caprifoliaceae	Lonicera japonica	N/D	Inhibit SARS-CoV-2 in Vero E6 cells, with an EC\textsubscript{50} 0.93 µl/ml	[45]
		Lamiaceae	Scutellaria baicalensis			
		Oleaceae	Forsythia suspense			
		Rosaceae	Prunus armeniaca	Yes	N/D	[58]
		Leguminosae	Glycyrrhiza spp.			
		Ephedraceae	Ephedra sp.			
Ma Xing Shi Gan	China	Rosaceae	Prunus armeniaca	Yes	N/D	[58]
		Leguminosae	Glycyrrhiza spp.			
Da Yuan Yin	China	Magnoliaceae	Magnolia officinalis	Yes	N/D	[58]
		Areaceae	Areca catechu			
		Zingiberaceae	Anomum tsao-ko			
		Lamiaceae	Scutellaria baicalensis			
		Leguminosae	Glycyrrhiza uralensis			
		Asparagaceae	Anemarrhena asphodeloides			
Qing Fei Pai Du	China	Dioscoreaceae	Dioscorea polystachya	Yes	N/D	[1, 58]
		Ephedraceae	Ephedra sp.			
		Araceae	Pinellia ternata			
		Zingiberaceae	Zingiber officinalis			
		Rutaceae	Citrus aurantium			
Yu Ping Feng San	China	Leguminosae	Astragalus membranaceus	Yes	N/D	[1, 58]
		Apiaceae	Atractylodes macrocephala			
		Compositae	Atractylodes macrocephala			
cathepsin B/L in lysosomes. On the other hand, virus entry via direct fusion is mediated by TMPRSS2 for cleavage of S proteins. The cleavage of S viral protein by these two mediators is a critical factor that enables RNA viruses to enter the cytosol of host cells. Hence, these two proteases and the ACE2 receptor determine the susceptibility to SARS-CoV-2 infection [31, 34]. On the other hand, 3CLpro have essential roles in the viral polyprotein maturation process [1]. 3CLpro is known to be the main drug target of coronaviruses, mainly inhibits replication of SARS-CoV-2, and is required for viral replication through cleavage of viral polyproteins to undergo the life cycle. Hence, 3CLpro is a target of antiviral drugs [35].

Identified medicinal plants and their active compounds against SARS-CoV-2

Various medicinal plants and isolated compounds have been tested against SARS-CoV-2 and revealed some promising activities based on in vitro and in cell studies (Tables 3, 4). Several crude drugs derived from mostly Asian herbs have been tested for anti-SARS-CoV-2 activity in some infected cells and protein targets.

Antiviral drugs or therapy for SARS-CoV-2 can be achieved by targeting the virus itself or enhancing immunity, which may help to suppress viral replication. Inhibition of viral replication may be through a mechanism that blocks the virus from entering human cells (preventing binding of the virus’ S protein to the ACE2 receptor) or by attacking the viral enzymes that are essential for its replication. In addition, the drug can act as an inhibitor of various structural proteins, such as Mpro, PLpro, helicase, serine protease, and RdRp [2]. Severe COVID-19 patients also may be treated by blocking the cytokine storm through suppression of pro-inflammatory cytokines. In severe COVID-19 patients, the cytokine storm occurs in response to significantly elevated levels of the inflammatory cytokines, such as interleukin (IL)-6, IL-7, IL8, IL-9, IL-10, IL-1B, IL-1Ra, granulocyte macrophage colony-stimulating factor, fibroblast growth factor, IFN-γ, TNF-α, platelet-derived growth factor, monocyte chemoattractant protein, macrophage inflammatory protein 1-α, and vascular endothelial growth factor [4].

Formula	Country origin	Family	Species	Usage report in community	References against SARS-CoV-2	References
Ayush Kwath	India	Lamiaceae	*Ocimum sanctum*	Yes	[59]	N/D
		Lauraceae	*Cinnamomum zeylanicum*			
		Zingiberaceae	*Zingiber officinalis*			
		Piperaceae	*Piper nigrum*			
N/D Bangladesh	Bangladesh	Zingiberaceae	*Zingiber officinalis*	Yes	[60]	N/D
		Myrtaceae	*Syzygium aromaticum*			
		Lauraceae	*Cinnamomum verum*			
N/D Bangladesh	Bangladesh	Zingiberaceae	*Zingiber officinalis*	Yes	[60]	N/D
		Myrtaceae	*Syzygium aromaticum*			
		Lauraceae	*Cinnamomum verum*			
N/D Bangladesh	Bangladesh	Theaceae	*Ocimum sanctum*	Yes	[53]	N/D
		Myrtaceae	*Camellia sinensis*			
		Lauraceae	*Camellia sinensis*			
N/D Bangladesh	Bangladesh	Zingiberaceae	*Ocimum sanctum*	Yes	[53]	N/D
		Piperaceae	*Piper nigrum*			
N/D Bangladesh	Bangladesh	Zingiberaceae	*Zingiber officinalis*	Yes	[53]	N/D
		Rutaceae	*Citrus limon*			
N/D Bangladesh	Bangladesh	Lamiaceae	*Ocimum sanctum*	Yes	[53]	N/D
		Lamiaceae	*Vitex negundo*			
		Rutaceae	*Citrus limon*			
		Zingiberaceae	*Zingiber officinalis*			
		Ranunculaceae	*Nigella sativa*			
Numerous existing drugs have been repurposed for treating COVID-19 disease, such as chloroquine, remdesivir, favipiravir, and umifenovir [30]. However, currently there is no effective treatment that has been approved by regulators [36]. Chloroquine, an antimalarial drug, possesses antiviral activity, including against coronaviruses, and has been...
considered as a possible antiviral drug for SARS-CoV-2 and been tested against COVID-19 in China. Chloroquine can block cathepsin by increasing lysosomal pH and modulating pro-inflammatory cytokines, including TNF-α and IL-6. However, the failure of this drug in a clinical trial was attributed to its inability to block TMPRSS2-mediated viral entry [30, 34]. Remdesivir, an antiviral drug for Ebola and Marburg virus also has been tested in a clinical trial due to its ability to attack coronaviruses by inhibiting RdRp. The influenza drug, faviopiravir, can terminate incorporation of viral RNA into the host cell. Umifemovir/Arbidol, which are influenza A and B drugs, also have been reported to block viral fusion into host cell membranes [30]. Additionally, lopinavir reportedly blocks 3CLpro of the virus, whereas both camostat mesylate and nafamostat reportedly inhibit viral entry and act as TMPRSS2 inhibitors. Chloroquine and hydroxychloroquine have also shown inhibition of viral entry [32].

The present review focuses on compounds isolated from medicinal plants against SARS-CoV-2 shown to be active in vitro and in cell studies (Table 4), and several compounds show promising antiviral activity as compared with several FDA-approved drugs as mentioned above (Figs. 4, 5). Among the other tested compounds, andrographolide has shown promising potency (IC$_{50}$ of 0.034 µM, against SARS-CoV-2-infected Calu-3 cells). Andrographolide is a major active compound isolated from Andrographis paniculata that has been used for a long time in Thai traditional medicine for diarrhea, common cold, fever, and viral infections. This bicyclic diterpene lactone exhibits various pharmacological properties, such as antioxidant, anticancer, anti-inflammatory, antimicrobial, cardiovascular protection, hepatoprotection, and immunomodulatory. Andrographolide has shown broad-spectrum antiviral activity against various viral infections, such as influenza, hepatitis, HIV, chikungunya, herpes, and HPV. Based on an in vitro assay, the extract and its active compound exhibited anti-SARS-CoV-2 activity. In an enzyme-based assay, andrographolide inhibited Mpro/3CLpro (the SARS-CoV-2 main protease), with an IC$_{50}$ of 15 µM, possibly through formation of a covalent bond with the active site at the Cys145 amino acid residue. It is postulated that this compound would attack the virus through multiple pathways, including viral entry, replication, protein synthesis, and protein expression. Andrographolide has also shown binding affinity with the S protein and the ACE2 receptor, hence, it may inhibit viral entry. This compound is thought to be more potent in the late phase of the SARS-CoV-2 life cycle than in genome replication and protein expression [37–40]. The 50% cytotoxic concentration (CC$_{50}$) of this compound to various normal cell lines from various organs, including liver, kidney, intestine, lung, and brain (HepG-2/imHC, HK-2, Caco-2, Calu-3, and SH-SY5Y, respectively), ranges from 13.2 to 81.5 µM [37].

A prenylated cyclohexenyl chalcone, panduratin A, exhibited potent antiviral activity against SARS-CoV-2 in both pre-entry and post-infection. This compound has been isolated from a fingerroot of Boesenbergia rotunda that is commonly used in Southeast Asia and China as a culinarly spice. The rhizome has various pharmacological properties, such as antibacterial, antitumor, anti-allergic, and antioxidant. Panduratin A, as a major active compound, has shown antiviral activity against HIV [41] and

Table 3 Anti-SARS-CoV-2 activity of medicinal plants (crude drugs)

Origin	Species	Family	IC$_{50}$ (µg/ml)	EC$_{50}$ (µg/ml)	Experimental result	References	
Thailand	Andrographis paniculata	Acanthaceae	0.036	–	SARS-CoV-2 infected Calu-3 cells	[37]	
Thailand	Andrographis paniculata	Acanthaceae	68.06	–	SARS-CoV-2 infected Vero E6 cells	[52]	
China	Scutellaria baicalensis	Lamiaceae	–	0.74	SARS-CoV-2 infected Vero cells	[43]	
Korea	Platycodon grandiflorum	Campanulaceae	5.010	–	In vitro study using ACE2$^+$ cells using H1299 cell	[34]	
Thailand	Boesenbergia rotunda	Zingiberaceae	3.62	–	SARS-CoV-2 infected Vero E6 cells	[26]	
India	Camellia sinensis	Theaceae	8.9 ± 0.5	–	SARS-CoV-2 Mpro/3CLpro	[61]	
India	Terminalia chebula	Combretaceae	8.8 ± 0.5	–	SARS-CoV-2 Mpro/3CLpro	[61]	
Thailand	Zingiber officinale	Zingiberaceae	29.19	–	SARS-CoV-2 infected Vero E6 cells	[26]	
Germany	Glycyrrhiza glabra	Fabaceae	–	–	Blocking SARS-CoV-2 replication at pre-entry stage in infected Vero E6 cells at 0.5 mg/ml	[28]	
China	Reynoutria sachalinensis	Polygonaceae	4.013	–	SARS-CoV-2 Mpro/3CLpro	[62]	
China	Reynoutria japonica	Polygonaceae	7.877	–	SARS-CoV-2 Mpro/3CLpro	[62]	
China	Lycoris radiata	Amaryllidaceae	–	2.4 ± 0.2	SARS-CoV infected Vero E6 cells	[63]	
China	Artemisia annua	Compositae	–	34.5 ± 2.6	SARS-CoV infected Vero E6 cells	[63]	
China	Pyroisya lingua	Polypodiaceae	–	43.2 ± 14.1	SARS-CoV infected Vero E6 cells	[63]	
China	Lindera aggregata	Lauraceae	–	88.2 ± 7.7	SARS-CoV infected Vero E6 cells	[63]	
Plant origin	Compound	Plant	Family	IC_{50} (μM)	EC_{50} (μM)	Model	References
--------------	-------------------	------------------------	-----------------	-------------	-------------	--	------------
Thailand	6-Gingerol	*Zingiber officinale*	Zingiberaceae	1.38	–	SARS-CoV-2 NP mAb Plaque reduction assay in Vero cells	[26]
Thailand	6-Gingerol	*Zingiber officinale*	Zingiberaceae	> 100	–	SARS-CoV-2 infected Vero E6 cells	[26]
Thailand	Andrographolide	*Andrographis paniculata*	Acanthaceae	0.034	–	SARS-CoV-2 in Calu-3 cells	[37]
Thailand	Andrographolide	*Andrographis paniculata*	Acanthaceae	6.58	–	SARS-CoV-2 infected Vero E6 cells	[52]
Thailand	Andrographolide	*Andrographis paniculata*	Acanthaceae	0.28	–	NP mAb SARS-CoV-2	[26]
Asia	Artemisinin	*Artemisia annua*	Compositae	–	64.45 ± 2.58	SARS-CoV-2 infected Vero E6 cells	[64]
China	Baicalein	*Scutellaria baicalensis*	Lamiaceae	0.39	–	SARS-CoV-2 infected Vero cells	[43]
China	Baicalein	*Scutellaria baicalensis*	Lamiaceae	0.94 ± 0.20 (in vitro 3CLpro)	2.94 ± 1.19 (in Vero E6 cells)	SARS-CoV-2 infected Vero E6 and in vitro assay against SARS-CoV-2 Mpro/3CLpro	[45]
Korea	Cannabidiol	*Cannabis sativa*	Cannabaceae	7.91	–	SARS-CoV-2 infected Vero cells	[65]
Asia	Cepharanthine	*Stephania cephalantha*	Menispermaceae	4.47	–	SARS-CoV-2 infected Vero cells	[47]
China	Chlorogenic acid	*Lonicera japonica*	Caprifoliaceae	39.48 ± 5.51	–	SARS-CoV-2 Mpro/3CLpro	[45]
N/D	Digitoxin	*Digitalis purpurea*	Plantaginaceae	0.23	–	SARS-CoV-2 infected Vero cells based on cytopathic effect	[47]
N/D	Digoxin	*Digitalis purpurea*	Plantaginaceae	0.19	–	SARS-CoV-2 infected Vero cells based on cytopathic effect	[47]
Asia	Epigallocatechin gallate (EGCG)	*Camellia sinensis*	Theaceae	16.53	–	In vitro assay against SARS-CoV-2 Mpro/3CLpro	[35]
Germany	Glycyrrhizin	*Glycyrrhiza glabra*	Fabaceae	–	53.46	SARS-CoV-2 infected Vero E6 cells	[28]
Table 4 (continued)

Plant origin	Compound	Plant	Family	IC50 (μM)	EC50 (μM)	Model	References	
Asia	Myricetin	*Myrica rubra*	Myricaceae	0.22	–	In vitro assay against SARS-CoV-2 M^pro/3CL^pro	[33]	
N/D	Osajin	*Maclura pomifera*	Moraceae	3.87	–	SARS-CoV-2 infected Vero cells	[47]	
N/D	Ouabain	*Acokanthera ouabai*	Apocynaceae	0.024	–	SARS-CoV-2 infected Vero E6 cells	[48]	
Thailand	Panduratin A	*Boesenbergia rotunda*	Zingiberaceae	0.81	–	SARS-CoV-2 infected Vero E6 cells by IFA assay	[26]	
						2.04 – SARS-CoV-2 infected Calu-3 cells by IFA assay		
						0.53 – SARS-CoV-2 NP mAb plaque reduction assay in Calu-3 cells		
						0.078 – SARS-CoV-2 NP mAb plaque reduction assay in Vero cells		
China	Phillyrin	*Forsythia suspensa*	Oleaceae	1.13	–	SARS-CoV-2 infected Vero E6 cells	[66]	
Korea	Platycodin D	*Platycodon grandiflorum*	Campanulaceae	0.69	–	In vitro study using ACE2+ cells using H1299 cells	[34]	
N/D	Quercetin	N/D		4.48	–	Inhibition of rhACE2 (recombinant human) in vitro	[33]	
China	Scutellarein	*Erigeron karvinskianus*	Compositae	5.80	–	SARS-CoV-2 in vitro	[1]	
Asia	Tetrandrine	*Stephania tetrandra*	Menispermaceae	3	–	SARS-CoV-2 infected Vero cells	[47]	
Korea	Tetrahydrocannabino		*Cannabis sativa*	Cannabaceae	10.25	–	SARS-CoV-2 infected Vero cells	[65]
Asia	Theaflavin	*Camellia sinensis*	Theaceae	14.95	–	In vitro assay against SARS-CoV-2 M^pro/3CL^pro	[35]	
Asia	Allicin	*Allium sativum*	Amaryllidaceae	–	–	Sub-lethal effect at 50–75 μM with SARS-CoV-2 infected Vero E6 cell	[67]	
N/D	Betulinic acid	*Olea europaea*	Oleaceae	10	–	In vitro assay against SARS-CoV-2 M^pro/3CL^pro	[68]	
Plant origin	Compound	Plant	Family	IC50 (μM)	EC50 (μM)	Model	References	
--------------	-------------------	----------------------	---------	-----------	-----------	--	------------	
N/D	Betulin	*Olea europaea*	Oleaceae	89.67	–	In vitro assay against SARS-CoV-2 M\^{Pro}/3CL\^{pro}	[68]	
N/D	Ursolic acid	*Olea europaea*	Oleaceae	12.57	–	In vitro assay against SARS-CoV-2 M\^{Pro}/3CL\^{pro}	[68]	
N/D	Maslinic acid	*Olea europaea*	Oleaceae	3.22	–	In vitro assay against SARS-CoV-2 M\^{Pro}/3CL\^{pro}	[68]	
Egypt	Cnicin	*Cnicus benedictus*	Compositae	3.12	–	SARS-CoV-2 infected Vero E6 cells	[69]	
Egypt	Arctiin	*Cnicus benedictus*	Compositae	> 150	–	SARS-CoV-2 infected Vero E6 cells	[69]	
Egypt	Sitogluside	*Cnicus benedictus*	Compositae	> 150	–	SARS-CoV-2 infected Vero E6 cells	[69]	
Egypt	Nortracheloside	*Cnicus benedictus*	Compositae	> 150	–	SARS-CoV-2 infected Vero E6 cells	[69]	
Egypt	Apigenin 7-O-glu-	*Cnicus benedictus*	Compositae	> 200	–	SARS-CoV-2 infected Vero E6 cells	[69]	
Egypt	Luteolin	*Cnicus benedictus*	Compositae	> 300	–	SARS-CoV-2 infected Vero E6 cells	[69]	
Egypt	Astragalin	*Cnicus benedictus*	Compositae	> 200	–	SARS-CoV-2 infected Vero E6 cells	[69]	
China	Vanicoside A	*Reynoutria sachalinensis*	Polygonaceae	1.364	–	In vitro assay against SARS-CoV-2 M\^{Pro}/3CL\^{pro}	[62]	
China	Vanicoside B	*Reynoutria sachalinensis*	Polygonaceae	1.639	–	In vitro assay against SARS-CoV-2 M\^{Pro}/3CL\^{pro}	[62]	
China	Kobophenol A	*Caragana sinica*	Leguminosae	–	71.6	SARS-CoV-2 infected Vero E6 cells	[70]	
China	Dihydrromyricetin	*Amelopsis grossedentata*	Vitaceae	4.91	–	In vitro assay against SARS-CoV-2 M\^{Pro}/3CL\^{pro}	[71]	
China	Isodihydrmyricetin	*Amelopsis grossedentata*	Vitaceae	3.73	–	In vitro assay against SARS-CoV-2 M\^{Pro}/3CL\^{pro}	[71]	
China	Taxifolin	*Amelopsis grossedentata*	Vitaceae	72.27	–	In vitro assay against SARS-CoV-2 M\^{Pro}/3CL\^{pro}	[71]	
Dengue virus [42]. The study showed that the antiviral activity against SARS-CoV-2 was superior to the FDA-approved drug, hydroxychloroquine. The value of cytotoxicity against the normal Vero E6 cell line was 14.71 µM [26]. However, molecular targets for this compound have not been well explored.

Baicalin and baicalein, active compounds isolated from Scutellaria baicalensis, are used in TCM for treatment of respiratory disorders, heat clearing, detoxification, fire purging, and viral diseases, including hepatitis. The herb has shown antitumor, antimicrobial, anti-inflammatory, and broad-spectrum antiviral activity against various viruses, such as Zika, HIV, DENV, and H1N1. Baicalin and baicalein have shown inhibitory activity against the 3CLpro main protease of SARS-CoV-2, with IC50 values of 6.41 µM and 0.94 µM, respectively. The anti-SARS-CoV-2 activity of baicalein has been shown to be superior to that of baicalin [43, 44]. In a cell assay model using SARS-CoV-2-infected Vero E6 cells, baicalein exhibited IC50 and EC50 values of 0.39 and 2.94 µM, respectively. The CC50 of baicalein against Vero E6 cells was > 200 µM, which is categorized as low cytotoxicity. Baicalein reportedly has closed activity with chloroquine, with an EC50 of 2.71 µM [43, 45]. This compound reportedly inhibited viral replication by blocking 3CLpro via an in vitro study, and a molecular docking study showed that the 6-OH and 7-OH of its structure interacted with a carbonyl group of Leu141 and an amide group of Gly143 of 3CLpro, respectively [43]. In addition, baicalein also has been reported to inhibit the RdRp SARS-CoV-2 in an in vitro assay. In the subsequent molecular docking study, inhibition was not predicted on the active site of the enzyme since it is not an analog of a nucleoside. An in silico study showed that the compound had binding affinities with the Asn705 and His133 residues of RdRp on the palm subdomain and nucleotidyltransferase, respectively [46].

Furthermore, cardiac glycosides, including digoxin, digitoxin, and ouabain, also have shown good properties for treating COVID-19 disease. Cardiac glycosides, molecules that contain a steroid moiety, a 5–6C lactone ring, and a sugar moiety, have been suggested as promising treatments for COVID-19 by targeting NA+/K+-ATPase (NKA). Some cardiac glycosides have shown antiviral activity through inhibition of NKA and activation of tyrosine kinase (Src). Src regulates nuclear factor kappa B (NFkB), which is the important transcription factor for SARS-CoV-2 [36].

Digoxin and digitoxin, FDA-approved drugs for cardiovascular diseases, are isolated from Digitalis purpurea and reported to have activity against SARS-CoV-2-infected Vero cells based on their cytopathic effect, with IC50 values of 0.19 µM and 0.23 µM, respectively. The evaluation of cytotoxicity is measured at a CC50 > 50 µM for both compounds [47]. Another report with a different assay showed inhibitory activity of digoxin against SARS-CoV-2-infected Vero cells (human isolate BetaCoV/Korea), with an IC50 of 0.043 µM and a CC50 > 10 µM. The IC50 of digoxin has been shown to be tenfold higher than those of chloroquine and remdesivir, which have IC50 values of 0.526 µM and 1.57 µM, respectively. Digoxin also inhibited viral mRNA expression, protein expression, and viral copy number. Furthermore, the inhibition of mRNA expression of digoxin was superior to those of remdesivir and chloroquine. However, digoxin reportedly is not effective in the viral entry stage. Digoxin appears to act as a viral RNA synthesis inhibitor [48]. On the other hand, digitoxin can suppress the levels of cytokines, including TNFα, IFNy, MCP1, and GRO/KC in an influenza-infected rat lung model. This finding implied that digitoxin may be able to block the cytokine storm caused by the elevated levels of pro-inflammatory cytokines during coronavirus infection. Digitoxin was reported as one of the top-ten pro-inflammatory cytokine inhibitors among 2800

Table 4 (continued)

Plant origin	Compound	Plant Family	IC50 (µM)	EC50 (µM)	Model	References
China	Ebselen	Ampelopsis grossedentata Vitaceae	2.62	–	In vitro assay against SARS-CoV-2 Mpro/3CLpro	[71]
	Resveratrol	N/D	N/D	4.48	SARS-CoV-2 infected Vero cells	[72]
N/D	Hopeaphenol	N/D	N/D	47.6	In vitro assay against SARS-CoV-2 Mpro/3CLpro	[73]
N/D	Vaticanol B	N/D	N/D	–	In vitro assay against SARS-CoV-2 Mpro/3CLpro	[73]
FDA-approved drugs by suppressing TNFα-activated NFκB. Furthermore, compared with digoxin, digitoxin has an affinity to the SARS-CoV-2 spike pseudo-typed VSV in human lung cells and hence is able to block ACE2-S binding for viral entry. Digoxin is postulated to act as an inhibitor at the intracellular level of the host cell rather than at the entry stage [49, 50].

On the other hand, ouabain reportedly showed the antiviral activity against SARS-CoV-2-infected Vero cells, with an IC₅₀ of 0.024 µM and a CC₅₀ > 416.66 µM. The IC₅₀ of ouabain is reported to be superior to those of chloroquine and remdesivir. This compound also exhibited inhibition of viral copy number, mRNA, and protein expression. It has been postulated that ouabain inhibits at the viral entry stage by blocking Src-mediated endocytosis [48]. Furthermore, another study reported that the blocking ability of ouabain occurred via binding to the S protein of SARS-CoV-2, so it also may block viral penetration into human lung cells [50].

Conclusion

Herbal medicine has been applied in the treatment of COVID-19 disease in various Asian cultures. Several medicinal plants from both single- and multiple-component herbal medicines have been found to have antiviral...
properties against SARS-CoV-2 in cell-based assays and in vitro studies against various molecular targets, which implies some degree of efficacy for these traditional medicines. Our review showed that the Lamiaceae family was the most frequently used plant family in the treatment and prevention of COVID-19, which suggests that it is a promising source of antiviral agents. In addition, a direct approach using testing of isolated compounds from medicinal plants against SARS-CoV-2 also revealed some promising antiviral activity when compared with repurposed FDA-approved drugs (e.g., digoxin, digitoxin, panduratin A, and andrographolide). These Lamiaceae family members and the isolated compounds discussed in the review warrant further investigations for their activities against coronaviruses, including SAR-CoV-2.

Acknowledgements We would like to thank the College of Public Health Science, Chulalongkorn University.

Author contributions AP and DL designed the study. AP initiated the concept and idea, supervised it, provided input, and revised the manuscript. DL collected, curated, analyzed the data, and wrote the draft of the manuscript. All authors made equal contributions, have read the manuscript, and agreed on the final form for submission.

Funding No funding was received to assist with the preparation of this manuscript.

Availability of data and materials All data are obtained from published literatures which are presented in the references.

Declarations

Conflict of interest Authors declared there is no competing of interest.

Ethic approval and consent to participate Not applicable.

References

1. Wang Z, Yang L (2021) Chinese herbal medicine: fighting SARS-CoV-2 infection on all fronts. J Ethnopharmacol 270:113869. https://doi.org/10.1016/j.jep.2021.113869

2. Illian DN, Siregar ES, Sumaiyah S, Utomo AR, Nuryawan A, Basyuni M (2021) Potential compounds from several Indonesian
plants to prevent SARS-CoV-2 infection: a mini-review of SARS-CoV-2 therapeutic targets. Heliyon 7(1):e06001. https://doi.org/10.1016/j.heliyon.2021.e06001

3. Teuwen L-A, Geldhof V, Pasut A, Carmeliet P (2020) COVID-19: the vasculature unleashed. Nat Rev Immunol 20(7):389–391. https://doi.org/10.1038/s41577-020-0343-0

4. Leung EL-H, Pan H-D, Huang Y-F, Fan X-X, Wang W-Y, He F, Cai J, Zhou H, Liu L (2020) The scientific foundation of Chinese herbal medicine against COVID-19. Engineering 6(10):1099–1107. https://doi.org/10.1016/j.eng.2020.08.009

5. Akindele AJ, Agbuniaide FO, Sodiya MO, Awodele O, Sowemimo A, Ade-Ademilua O, Akinleye MO, Ishola IO, Orabueze I (2020) COVID-19 Pandemic: a case for phytomedicines. Nat Prod Commun 15(8):1–9. https://doi.org/10.1177/1934578X20945086

6. Codagenix I (2019) Codagenix and Serum Institute of India Initiate Co-Development of a Scalable, Live-Attenuated Vaccine Against the 2019 Novel Coronavirus, COVID-19. https://www.prnewswire.com/news-releases/codagenix-and-serum-institute-of-india-initiate-co-development-of-a-scalable-live-attenuated-vaccine-against-the-2019-novel-coronavirus-covid-19-301004654.html. Accessed 25 July 2021

7. Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z, Li M, Jin H, Cui G, Chen (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(6):803–812. https://doi.org/10.1016/S1473-3099(20)30987-7

8. Baranik C (2021) What do we know about China’s covid-19 vaccines? BMJ 373:n1412. https://doi.org/10.1136/bmj.n1412

9. Britton A, Slika KMI, Edens C, Randari SA, Bart SM, Zhang N, Harizaj A, Armstrong J, Xu K, Ehrlich HY (2021) Effectiveness of the Pfizer-BioNTech COVID-19 vaccine among residents of two skilled nursing facilities experiencing COVID-19 outbreaks—Connecticut, December 2020–February 2021. MMWR Morb Mortal Wkly Rep 70(11):396–401

10. Oliver SE (2020) The advisory committee on immunization practices’ interim recommendation for use of moderna COVID-19 vaccine—United States, December 2020. MMWR Morb Mortal Wkly Rep 69:1653–1656

11. ClinicalTrials.gov. ChulaCov19 mRNA vaccine in healthy adults. https://clinicaltrials.gov/ct2/show/NCT04566276. Accessed 25 July 2021

12. Cohen J. What went wrong with CureVac’s mRNA vaccine? Accessed 20 July 2021

13. ClinicalTrials.gov. The safety and immunogenicity of a DNA-based Vaccine (COVIGEN) in Healthy Volunteers (COVALIA). https://clinicaltrials.gov/ct2/show/NCT04742842. Accessed 25 July 2021

14. ClinicalTrials.gov. Safety, tolerability and immunogenicity of INO-4800 followed by electroporation in healthy volunteers for COVID-19. https://clinicaltrials.gov/ct2/show/NCT04447781. Accessed 25 July 2021

15. Knoll MD, Wonodi C (2021) Oxford–AstraZeneca COVID-19 vaccine efficacy. Lancet Inf Dis 397(10269):72–74. https://doi.org/10.1016/S1473-3099(20)30987-7

16. Livingstone EH, Malani PN, Creech CB (2021) The Johnson & Johnson Vaccine for COVID-19. JAMA 325(15):1575–1575. https://doi.org/10.1001/jama.2021.2927

17. Mahase E (2021) Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ 372:n296. https://doi.org/10.1136/bmj.n296

18. Li Y, Tenchov R, Smoot J, Liu C, Watkins S, Zhou Q (2021) A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent Sci 7(4):512–533. https://doi.org/10.1021/acscentsci.1c00120

19. WHO. Coronavirus disease (COVID-19): vaccines. https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-vaccines?adgroupsurvey. Accessed 11 July 2021

20. Zhao J, Zhao S, Ou J, Zhang J, Lan W, Guan W, Xu Y, Yan Y, Zhao W, Wu J (2020) COVID-19: vaccine development updates. Front Immunol 11:3435. https://doi.org/10.3389/fimmu.2020.602256

21. Cragg GM, Newman DJ (2001) Natural product drug discovery in the next millennium. Pharm Biol 39(sup1):8–17. https://doi.org/10.1076/phbi.39.s1.8.0009

22. Patwardhan B, Meshalkar RA (2009) Traditional medicine-inspired approaches to drug discovery: can Ayurveda show the way forward? Drug Discov Today 14(15):804–811. https://doi.org/10.1016/j.drudis.2009.05.009

23. Sucher NJ (2013) The application of Chinese medicine to novel drug discovery. Expert Opin Drug Disc 8(1):21–34. https://doi.org/10.1517/17460441.2013.739602

24. Shahrajabian MH, Sun W, Cheng Q (2020) Traditional herbal medicine for the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat Prod Commun 15(8):1–10. https://doi.org/10.1177/1934578X200951431

25. Shahrajabian MH, Sun W, Shen H, Cheng Q (2020) Chinese herbal medicine for SARS-CoV-2 and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric Scand Plant Sci 70(5):437–443. https://doi.org/10.1080/09006471.2020.1763448

26. Kanjanasirirat P, Sukatsu A, Manopwisedjaeroen S, Munyoo B, Tuchinda P, Jearawuttanakul K, Srereakphan S, Charoenstit-varakul S, Wongtrakongate P, Rangkasenee N (2020) High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci Rep 10(1):1–12. https://doi.org/10.1038/s41598-020-77003-3

27. Shahzad F, Anderson D, Najafzadeh M (2020) The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-CoV-2 infection. Nutrients 12(9):2573. https://doi.org/10.3390/nu12092573

28. van de Sand L, Bormann M, Alt M, Schipper L, Heilinholo CS, Steinmann E, Todt D, Dittmer U, Eilsner C, Witzke O (2021) Glycyrhrizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease. Viruses 13(4):609. https://doi.org/10.3390/v13040609

29. Chen H, Du Q (2020) Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints. https://doi.org/10.20944/preprints202001.0358.v3

30. Asai A, Konno M, Ozaki M, Otsuka C, Vecchione A, Ariai T, Kitagawa T, Ofusa K, Yabumoto M, Hirotsu T (2020) COVID-19 drug discovery using intensive approaches. Int J Mol Sci 21(8):2839. https://doi.org/10.3390/ijms21082839

31. Jeong GU, Song H, Yoon GY, Kim D, Kwon Y-C (2020) Therapeutic strategies against COVID-19 and structural characterization of SARS-CoV-2: a review. Front Microbiol 11:1723. https://doi.org/10.3389/fmicb.2020.01723

32. Fernandez-Fernandez B, D’marco L, Górriz JL, Jacobs-Cachá C, Fernandez-Fernandez B (2021) Exploring sodium glucose co-transporter-2 (SGLT2) inhibitors for organ protection in COVID-19. J Clin Med 9(7):2030. https://doi.org/10.3390/jcm9072030

33. Liu X, Raghuvanshi R, Ceylan FD, Bolling BW (2020) Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity. J Agric Food Chem 68(47):13982–13989. https://doi.org/10.1021/acs.jafc.0c05064

34. Kim TY, Jeon S, Jang Y, Gotina L, Won J, Ju YH, Kim S, Jang MW, Won W, Park MG, Pae AN, Han S, Kim S, Lee CJ (2021) Platycodon D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2

35. Journal of Natural Medicines (2022) 76:20–37
infection by hindering membrane fusion. Exp Mol Med 53(5):956–972. https://doi.org/10.1038/s12276-021-00624-9
35. Jang M, Park YJ, Cha YE, Park R, Namkoong S, Lee JI, Park J (2020) Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid Based Complement Altern Med. https://doi.org/10.1155/2020/5630838
36. Souza KFC, Souza BPTM, de Palmer Paixão ICN, Burth P, Silva AR, Gonçalves-de-Albuquerque CF (2021) Na+-K+-ATPase as a target of cardiac glycosides for the treatment of SARS-CoV-2 infection. Front Pharmacol 12:624704. https://doi.org/10.3389/fphar.2021.624704
37. Sa-Ngiamsuntorn K, Suksatat A, Pewkliang Y, Thongsri P, Kanjanasirirat P, Manopwisedjaroen S, Charoensuthivarakul S, Wongtrakoonpate P, Pitiporn S, Chaopreecha J (2021) Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component Andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J Nat Prod 84(4):1261–1270. https://doi.org/10.1021/acs.jnatprod.0c01324
38. Gupta S, Mishra KP, Ganju L (2017) Broad-spectrum antiviral properties of andrographolide. Arch Virol 162(3):611–623. https://doi.org/10.1007/s00705-016-3166-3
39. Jang M, Park YI, Cha YE, Park R, Bae W-Y, Fu S-L, Lin C-H (2020) Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV-2 through covalent linkage. Biochem Biophys Res Commun 533(3):467–473. https://doi.org/10.1016/j.bbrc.2020.08.086
40. Shi T-H, Huang Y-L, Chen C-C, Pi W-C, Hsu Y-L, Lo L-C, Chen W-Y, Fu S-L, Lin C-H (2020) Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV-2 through covalent linkage. Biochem Biophys Res Commun 533(3):467–473. https://doi.org/10.1016/j.bbrc.2020.08.086
41. Cheenpracha S, Karalai C, Ponglimanont C, Subhadhirasakul S, Chung H, Jang M, Park YI, Cha YE, Park R, Namkoong S, Lee JI, Park J (2020) Discovery of baicalin and baicalein as novel, specific, and potent inhibitors of SARS-CoV-2 RNA-dependent-RNA polymerase. Microorganisms 9:893. https://doi.org/10.3390/microorganisms9050893
42. Liu H, Ye Y, Xu Y-c (2020) Anti-SARS-CoV-2 activities in vitro in major component Andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J Nat Prod 84(4):1261–1270. https://doi.org/10.1021/acs.jnatprod.0c01324
43. Liu H, Ye Y, Xu Y-c (2020) Anti-SARS-CoV-2 activities in vitro in major component Andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. J Nat Prod 84(4):1261–1270. https://doi.org/10.1021/acs.jnatprod.0c01324
44. Cho J, Lee YJ, Kim JH, Kim Si, Kim SS, Choi B-S, Choi JH (2020) Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci Reports 10(1):16200. https://doi.org/10.1038/s41598-020-72879-7
45. Pollard BS, Blanco JC, Pollard JR (2020) Classical drug digitoxin inhibits influenza cytokine storm, with implications for COVID-19 therapy. In Vivo 34(6):3723–3730. https://doi.org/10.21873/invivo.12221
46. Caohuy H, Eidelman O, Chen T, Yang Q, Bera A, Walton N, Pollard HB (2021) Common cardiac medications potently inhibit ACE2 binding to the SARS-CoV-2 Spike, and block virus penetration into human lungs. BioRxiv. https://doi.org/10.1101/2021.06.02.446343
47. Nguyen PH, Tran VD, Pham DT, Dao TNP, Dewey RS (2021) Use of and attitudes towards herbal medicine during the COVID-19 pandemic: a cross-sectional study in Vietnam. Euro J Integr Med 44:101328. https://doi.org/10.1016/eujim.2021.101328
48. Luo H, Tang Q-L, Shang Y-X, Liang S-B, Yang M, Robinson N, Liu J-P (2020) Can Chinese medicine be used for prevention of coronavirus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 26(4):243–250. https://doi.org/10.1007/s11655-020-3192-6
49. Azam MNK, Al Mahamud R, Hasana A, Jahan R, Rahmatullah M (2020) Some home remedies used for treatment of COVID-19 in Bangladesh. J Med Plant Stud 8(4):27–32.
50. MOA. Guidelines for Ayurveda Practitioners for COVID19. https://www.cayush.gov.in/docs/ayurved-guidelines.pdf. Accessed 28 May 2021.
51. Paneyod S, Ho C-T, Sheen L-Y (2020) Dietary therapy and herbal medicine for COVID-19 prevention: a review and perspective. J Tradit Complement Med 10(4):420–427. https://doi.org/10.1016/j.jtcme.2020.05.004
52. Runfeng L, Yunlong H, Jicheng W, Weiqi P, Qinhai M, Yongxia S, Chufang L, Jin Z, Zhenhua J, Haiming J (2020) Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmaco Res 156:104761. https://doi.org/10.1007/s11655-020-3192-6
53. Deng W, Xu Y, Kong Q, Xue J, Yu P, Liu J, Lv Q, Li F, Wei Q, Bao L (2020) Therapeutic efficacy of pudilan xiaoyan oral liquid (PDL) for COVID-19 in vitro and in vivo. Signal Transduct Target Ther 5(1):66. https://doi.org/10.1038/s41392-020-0176-0
54. Mirzaie A, Halajii M, Dekhordi FS, Ranjarb R, Noorazabargh H (2020) A narrative literature review on traditional medicinal options for treatment of coronavirus disease 2019 (COVID-19). Complement Ther Clin Pract 40:101214. https://doi.org/10.1016/j.ctcp.2020.101214
55. Sen B (2020) Potentiality and possibility of medicinal plants on ayurvedic principle in prevention and treatment of COVID-19. J Ayurvedic Herb Med 6(2):100–107
56. Anam E, Swaobch RB, Janatt K, Rahmatullah M (2021) Home remedies for COVID-19 treatment in Gazipur district, Bangladesh. J Med Plant 9(1):25–28
57. Upadhyay S, Tripathi PK, Singh M, Raghavendhar S, Bhardwaj M, Patel AK (2020) Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease. Phytother Res 34(12):3411–3419. https://doi.org/10.1002/ptr.6802
58. Nawrot-Hadzik I, Zmudzinski M, Matkowski A, Preissner R, Hadzik J, Abel R (2021) Reynoutria japonica as a natural source of SARS-CoV-2 Mpro inhibitors—molecular docking and in vitro study. Pharmaceuticals 14(8):742. https://doi.org/10.3390/ph14080742
59. Li S-y, Chen C, Zhang H-q, Guo H-y, Wang H, Wang L, Zhang X, Hua S-n, Yu J, Xiao P-g, Li R-s, Tan X (2005) Identification of natural compounds with antiviral activities against...
SARS-associated coronavirus. Antivir Res 67(1):18–23. https://doi.org/10.1016/j.antiviral.2005.02.007

64. Cao R, Hu H, Li Y, Wang X, Xu M, Liu J, Zhang H, Yan Y, Zhao L, Li W, Zhang T, Xiao D, Guo X, Li Y, Yang J, Hu Z, Wang M, Zhong W (2020) Anti-SARS-CoV-2 potential of artemisinins in vitro. ACS Infect Dis 6(9):2524–2531. https://doi.org/10.1021/acsinfecdis.0c00522

65. Raj V, Park JG, Cho K-H, Choi P, Kim T, Ham J, Lee J (2021) Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. Int J Biol Macromol 168:474–485. https://doi.org/10.1016/j.ijbiomac.2020.12.020

66. Ma Q, Li R, Pan W, Huang W, Liu B, Xie Y, Wang Z, Li C, Jiang H, Huang J, Shi Y, Dai J, Zheng K, Li X, Hui M, Fu L, Yang Z (2020) Phillyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-κB) signaling pathway. Phytomedicine 78:153296. https://doi.org/10.1016/j.phymed.2020.153296

67. Mösbauer K, Fritsch VN, Adrian L, Bernhardt J, Gruhlke MCH, Slusarenko AJ, Niemeyer D, Antelmann H (2021) Allicin inhibits SARS-CoV-2 replication and abrogates the antiviral host response in the Calu-3 proteome. bioRxiv. https://doi.org/10.1101/2021.05.15.444275

68. Alhadrami HA, Sayed AM, Sharif AM, Azhar EI, Rateb ME (2021) Olive-derived triterpenes suppress SARS-COV-2 main protease: a promising scaffold for future therapeutics. Molecules 26(9):2654. https://doi.org/10.3390/molecules26092654

69. Alhadrami HA, Sayed AM, Hassan HM, Youssif KA, Gaber Y, Moatasim Y, Kutkat O, Mostafa A, Ali MA, Rateb ME, Abdelmohsen UR, Gamaledin NM (2021) Cnicin as an anti-SARS-CoV-2: an integrated in silico and in vitro approach for the rapid identification of potential COVID-19 therapeutics. Antibiotics 10(5):542. https://doi.org/10.3390/antibiotics10050542

70. Gangadevi S, Badavath VN, Thakur A, Yin N, De Jonghe S, Acevedo O, Jochmans D, Leyssen P, Wang K, Neyts J, Yujie T, Blum G (2021) Kobophenol A inhibits binding of host ACE2 receptor with spike RBD domain of SARS-CoV-2, a lead compound for blocking COVID-19. J Phys Chem Lett 12(7):1793–1802. https://doi.org/10.1021/acs.jpclett.0c03119

71. Xiong Y, Zhu G-H, Zhang Y-N, Hu Q, Wang H-N, Yu H-N, Qin X-Y, Guan X-Q, Xiang Y-W, Tang H, Ge G-B (2021) Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: inhibition potentials, covalent binding sites and inhibitory mechanisms. Int J Biol Macromol 187:976–987. https://doi.org/10.1016/j.ijbiomac.2021.07.167

72. Yang M, Wei J, Huang T, Lei L, Shen C, Lai J, Yang M, Liu L, Yang Y, Liu G (2020) Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells. Phytother Res 2020:1–3. https://doi.org/10.1002/ptr.6916

73. Tietjen I, Cassel J, Register ET, Zhou XY, Messick TE, Keeney F, Lu LD, Beattie KD, Rali T, Ertl HJC, Salvino JM, Davis RA, Montaner LJ (2021) The natural stilbenoid (−)-hopeaphenol inhibits cellular entry of SARS-CoV-2 USA-WA1/2020, B.1.1.7 and B.1.351 variants. bioRxiv. https://doi.org/10.1101/2021.04.29.442010

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.