主論文要旨

近年、全世界で近視の有病率が増加し、2050年までに全人類の約半数が近視になると推測されている（Holden BA. et al. Ophthalmology. 2016）。また、眼軸長が極端に長い強度近視の一部は失明につながる病的近視になる可能性が高く、近視の発症年齢の低い子供は将来強度近視になりやすいことも報告されている（Chua SY. et al. Ophthalmic Physiol Opt. 2016）。失明につながる病的近視を防ぐためには、特に近視が進みやすい学童期における有用なアプローチが望まれる。従来近視には遺伝が関与とされてきたが、近年、遺伝だけでなく生活習慣などの環境因子も大きく関与することがわかってきた。中でも屋外活動時間が短いほど近視が進行することが複数報告されており、我々はこれまでに、屋外環境にしか存在しない波長域360-400nmの可視光照射により、実験近視動物モデルで屈折度数の近視抑制、眼軸伸長制御が見出され、そのメカニズムの一つとして近視を抑制する遺伝子の一つとして知られているearly growth response 1 (EGR-1)が有意に上昇していることを確認し、報告した（Torii H et al. EBioMedicine. 2017）。

そこで光照射に代替する近視抑制方法を確立するうえで、近視抑制遺伝子EGR-1遺伝子の発現を高める食品素材のスクリーニングを実施した。EGR1-lucを遺伝子導入したHEK293T細胞株を使ってルシフェラーゼアッセイを行ったところ、207種の素材の中で、クチナシ由来の色素成分であるクロセチンに極めて高いEGR-1活性促進効果があり、さらにその効果は濃度依存性であることを確認した。またreal-time PCRにおいてもクロセチン添加後18時間で有意にEgr1の発現増加を認めた。

クロセチンの近視抑制効果をin vivoで検証すべく、我々はマイナスレンズを装着することで、非常に効率よく眼軸長が過剰伸長し屈折度数が近視化するマウスモデルを確立した（Jiang X et al. Sci. Rep. 2018）。その近視誘導マウスにクロセチンを経口投与すると、近視化の指標である眼軸長の過剰伸長ならびに屈折度数の変化（近視化）が両方とも抑制されることが確認された。さらに、眼軸が伸びて近視が強くなると脈絡膜が薄くなる現象を伴うが、クロセチン投与時にはこのような脈絡膜の菲薄化が抑制されていた。

クロセチンが学童期における近視進行を抑える可能性が示唆されるものである。