Cosmic topology affects dynamics

BODEWIJN F. ROUKEMA

Toruń Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toruń, Poland

The role of global topology in the dynamics of the Universe is poorly understood. Along with observational programmes for determining the topology of the Universe, some small theoretical steps have recently been made. Heuristic Newtonian-like arguments suggest a topological acceleration effect that differs for differing spatial sections. A relativistic spacetime solution shows that the effect is not just a Newtonian artefact.

PACS numbers: 98.80.Es, 98.80.Jk, 04.20.Gz

1. Rem quoque præcipuam, hoc est mundi formam

The shape of the Universe has long been considered to be an important subject of study: “Rem quoque præcipuam, hoc est mundi formam, ac partium eius certam symmetriam non potuerunt invenire, vel ex illis colligere” [third page in preface, ref. 5]. One of the aspects of “shape”, the global geometrical property geometria situs [8] is now known as “topology”. Non-trivial topology of spatial sections of the Universe has been discussed prior to [27], and since the beginnings of relativistic cosmology [e.g., 6, 9, 10, 14], along with the curvature of the spatial sections. However, topology has generally been considered to be unrelated to dynamics. For example, Robertson [21] “tacitly assumed” multiple connectedness for positively curved space while commenting that “we are still free to restore” simple connectedness and that the topology should be determined empirically. More recent work has focussed on observational estimates of global topology where observations are interpreted within the family of exactly homogeneous Friedmann-Lemaître-Robertson-Walker (FLRW) models [e.g. 14, 16, 28, 17, 2, 20, and references therein]. One of the models that has gained particular interest in order to match the cosmic microwave
Fig. 1. T^1 spatial section, embedded and projected for convenience, showing how a negligible mass test particle ("X") at distance x from a massive particle ("O") is subject to Newtonian accelerations from the two nearest topological images of the "immediately" nearby copy of the massive object (Sect. 3). See Fig. 1 of ref. [19] for the compact Schwarzschild-like, relativistic T^1 model (Sect. 3).

background temperature fluctuations observed in the Wilkinson Microwave Anisotropy Probe (WMAP) data is the Poincaré dodecahedral space model [18, 1, 2, 11, 1, 24, 23, 25].

2. Topological acceleration: Newtonian-like derivations

Nevertheless, a Newtonian-like argument, motivated as a weak-field approximation of would-be relativistic spacetime models, shows that the addition of a massive particle to a homogeneous background implies an acceleration effect dependent on the global topology of the spatial section [22]. A
negligible mass test particle displaced from the massive particle is subject
to accelerations from images of the massive particle seen in approximately
opposite directions in the covering space, with approximately equal amplitudes (Fig. 1). These nearly cancel, but not quite. For a $T^1 := \mathbb{R}^2 \times S^1$
spatial section, the resulting topological acceleration is linear to first order
in x/L, where x is the test particle’s displacement and L is the length of a
closed spatial geodesic in the S^1 direction.

For a test particle displaced in a random direction from the massive
particle in an exact T^3 spatial section, the linear effects from the topological
images of the massive particle in many different directions cancel [22], leaving
a topological acceleration effect that is cubical in x/L [26]. The effect
is again linear when a T^3 spatial section has varying side lengths [22].

Similar Newtonian-like calculations in positively curved spaces are less
trivial. For the linear effect to cancel, the fundamental domain presumably
needs to have several closed spatial geodesics of the same length and
in different directions, in such a way that they can cancel the main
components of each other’s topological accelerations. There are three well-
proportioned, multiply connected, positively curved spaces: the octahedral
space S^3/T^*, the truncated cube space S^3/O^*, and the Poincaré dodeca-
hedral space favoured observationally, S^3/I^*. The linear component of the
topological acceleration effect again cancels in the octahedral space and the
truncated cube space [26]. In the Poincaré space, not only does the linear
component cancel, but the cubical component cancels too, leaving a topo-
logical acceleration effect that is fifth order in x/R_C (R_C is the radius of
curvature) [26].

Thus, the topological acceleration effect appears to mark the Poincaré
space—previously selected observationally as one giving one of the best
matches to the WMAP data—as being unique from a theoretical point of
view.

3. Topological acceleration: relativistic

Are the heuristic, Newtonian-like derivations of the topological acceleration
effect valid relativistically? A first step in investigating this question is to study the compact Schwarzschild-like solution of the Einstein equations found by Korotkin & Nicolai [12]. Outside of the event horizon, this
spacetime has T^1 spatial sections. Consider a low-velocity test particle that
is far $x \gg GM$ from the black hole’s event horizon GM (in Weyl coordinates, not Schwarzschild coordinates; G is the gravitational constant), in
a model where the spatial geodesic length L is also much greater than the
test particle’s distance from the black hole centre, i.e. $0 < GM \ll x \ll L$.
If the heuristic, Newtonian-like derivation is correct, then the test particle
in this case should be subject to a four-acceleration whose spatial component gives the result found earlier. This is indeed the case \[19\]. Numerically, for low-velocity test particles, the linear expression \(4\zeta(3)GMl^{-3}x\), where \(\zeta(3)\) is Apéry’s constant, is a good approximation, to within \(\pm 10\%\), over \(3h^{-1}\text{Mpc} \lesssim x \lesssim 2h^{-1}\text{Gpc}\), if the massive particle is at a cluster scale, \(M \sim 10^{14}M_{\odot}\), and the closed spatial geodesic length is \(L \sim 10 \text{ to } 20h^{-1}\text{Gpc}\) [19].

4. Prospects

It would be good to perform relativistic calculations of topological acceleration in expanding, FLRW-like models of \(T^3\), \(S^3/T^*\), \(S^3/O^*\), and \(S^3/I^*\) spatial sections. This is not just needed to compare with astronomical observations, but also for theoretical work in early universe studies. This is needed independent of spacetime theories that extend beyond four dimensions. Exact solutions of the Einstein equations for \(S^3/T^*, S^3/O^*,\) and \(S^3/I^*\) models containing a massive particle above a homogeneous background seem unlikely to exist, so this would probably require numerical work. Numerical experience with \(N\)-body simulations calculated using Newtonian gravity on an FLRW background expanding universe model [e.g. 7] shows that these are not easy. Equivalent numerical calculations that are relativistic and background-free are unlikely to be easier, but may be unavoidable.

REFERENCES

[1] Aurich R, Lustig S and Steiner F 2005a CQG 22, 3443, [arXiv:astro-ph/0504656]

[2] Aurich R, Lustig S and Steiner F 2005b CQG 22, 2061, [arXiv:astro-ph/0412569]

[3] Blanlœil V and Roukema B F, eds 2000 Paris: Blanlœil & Roukema, [arXiv:astro-ph/0010170]

[4] Caillé S, Lachièze-Rey M, Luminet J P, Lehoucq R, Riazuelo A and Weeks J 2007 A&A 476, 691, [arXiv:0705.0217v2]

[5] Copernicus N 1543 De revolutionibus orbium coelestium. http://cdsads.u-strasbg.fr/abs/1543droc.book.....C

[6] de Sitter W 1917 MNRAS 78, 3-28.

[7] Dehnen W and Read J I 2011 European Physical Journal Plus 126, 55, [arXiv:1105.1082]
REFERENCES

[8] Euler L 1736 Commentarii Academiae Scientiarum Imperialis Petropolitanae 8, 128.
http://www.math.dartmouth.edu/~euler/docs/originals/E053.pdf

[9] Friedmann A 1923 Mir kak prostranstvo i vremya (The Universe as Space and Time) Leningrad: Academia.

[10] Friedmann A 1924 Zeitschr. für Phys. 21, 326.

[11] Gundermann J 2005 Arxiv e-prints, [arXiv:astro-ph/0503014]

[12] Korotkin D and Nicolai H 1994 ArXiv General Relativity and Quantum Cosmology e-prints, [arXiv:gr-qc/9403029]

[13] Lachièze-Rey M and Luminet J 1995 PhysRep 254, 135, [arXiv:gr-qc/9605010]

[14] Lemaître G 1927 Annales de la Société Scientifique de Bruxelles 47, 49–59.

[15] Lemaître G 1931 MNRAS 91, 483–490.

[16] Luminet J P 1998 Acta Cosmologica XXIV-1, 105, [arXiv:gr-qc/9804006]

[17] Luminet J and Roukema B F 1999 in M Lachièze-Rey, ed., ‘NATO ASIC Proc. 541: Theoretical and Observational Cosmology. Publisher: Dordrecht: Kluwer,’ p. 117, [arXiv:astro-ph/9901364]

[18] Luminet J, Weeks J R, Riazuelo A, Lehoucq R and Uzan J 2003 Nat. 425, 593, [arXiv:astro-ph/0310253]

[19] Ostrowski J J, Roukema B F and Buliński Z P 2011 ArXiv e-prints, [arXiv:1109.1596]

[20] Rebeuças M J and Gomero G I 2004 Braz. J Phys. 34, 1358, [arXiv:astro-ph/0402324]

[21] Robertson H P 1935 ApJ 82, 284.

[22] Roukema B F, Bajtlik S, Biesiada M, Szaniewska A and Jurkiewicz H 2007 A&A 463, 861–871, [arXiv:astro-ph/0602159]

[23] Roukema B F, Buliński Z and Gaudin N E 2008 A&A 492, 673, [arXiv:0807.4260]

[24] Roukema B F, Buliński Z, Szaniewska A and Gaudin N E 2008 A&A 486, 55, [arXiv:0801.0006]
REFERENCES

[25] Roukema B F and Kazimierczak T A 2011 *A&A* 533, A11, [arXiv:1106.0727]

[26] Roukema B F and Różański P T 2009 *A&A* 502, 27, [arXiv:0902.3402]

[27] Schwarzschild K 1900 *Vier.d.Astr.Gess* 35, 337.

[28] Starkman G D 1998 *CQG* 15, 2529–2538.

[29] Stewart J M, Stewart M E and Schwarzschild K 1998 *CQG* 15, 2539.