Supplementary Information

Computational Study on the Binding of Mango-II RNA Aptamer and Fluorogen Using the Polarizable Force Field AMOEBA

Xudong Yang¹, Chengwen Liu¹, Yu-An Kuo¹², Hsin-Chih Yeh¹², Pengyu Ren¹,*

1. Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA

2. Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA

* Corresponding author. Email: pren@utexas.edu.

Contents

I. Tables ...2

II. Figures ...10

III. Deduction of equation ...18

IV. QM and MM geometries of ligands ...18

V. Parameters of ligands in Tinker format ..24

(TO1-Biotin parameters: 24; TO3-Biotin parameters: 45)
I. Tables

Table S1. The details of the system used for simulation.

Complex	Number of K⁺ a)	Number of Cl⁻ b)	Range of restraint c)
Mango-II-WT TO1-Biotin	58	27	5.00 ~ 6.00
Mango-II-WT TO3-Biotin	58	27	5.00 ~ 6.00
Mango-II-A22U TO1-Biotin	57	27	5.00 ~ 6.00 (Config. A)
			5.00 ~ 6.20 (Config. B)
Mango-II-A22U TO3-Biotin	57	27	5.50 ~ 6.80 (Config. A)
			5.00 ~ 6.80 (Config. B)

a). K⁺ in solvation (The number of K⁺ inside the G-quadruplex is 2 and they are not counted here). b). Cl⁻ in solvation. c). The harmonic restraint will be removed only if the distance between COM of ligands and K2 (the K⁺ between T3 and T2 layers) is inside the range mentioned here.

Table S2. Statistics of the position of K⁺ in three-layer G-quadruplex during the equilibration.

Complex	T3-K2 b)	T2-K2 b)	T2-K1 b)	T1-K1 b)
Mango-II-WT	1.45±0.19	1.99±0.18	1.84±0.19	1.53±0.20
Mango-II-WT TO1-Biotin	1.29±0.17	2.12±0.17	1.68±0.19	1.69±0.20
Mango-II-WT TO3-Biotin	1.36±0.17	2.07±0.17	1.76±0.19	1.57±0.20
Mango-II-A22U TO1-Biotin (A)	1.44±0.21	2.01±0.20	1.85±0.21	1.50±0.21
Mango-II-A22U TO1-Biotin (B)	1.25±0.22	2.18±0.21	1.70±0.21	1.60±0.22
Mango-II-A22U TO3-Biotin (A)	1.39±0.19	2.07±0.19	1.82±0.24	1.56±0.23
Mango-II-A22U TO3-Biotin (B)	1.22±0.19	2.15±0.18	1.71±0.18	1.63±0.19

a). (A)/(B) mean the configuration A or B. b). The specific definition of the abbreviations can be found in Figure 1. The data has been shown in the format as: Average ± standard deviation (Unit: Å).
Table S3. Statistics of the position of K+ in three-layer G-quadruplex during the FEP alchemical calculation (126ns).

Complex\(^{a)}\)	T3-K\(^{b)}\) (Å)	T2-K\(^{b)}\) (Å)	T2-K1\(^{b)}\) (Å)	T1-K1\(^{b)}\) (Å)
Mango-II-WT TO1-Biotin	1.16±0.37	2.32±0.23	1.55±0.22	1.85±0.22
Mango-II-WT TO3-Biotin	1.23±0.20	2.20±0.20	1.68±0.08	1.66±0.21
Mango-II-A22U TO1-Biotin (A)	1.35±0.23	2.08±0.22	1.80±0.21	1.55±0.22
Mango-II-A22U TO1-Biotin (B)	1.13±0.21	2.31±0.21	1.59±0.21	1.71±0.22
Mango-II-A22U TO3-Biotin (A)	1.31±0.20	2.14±0.20	1.75±0.22	1.62±0.22
Mango-II-A22U TO3-Biotin (B)	1.14±0.27	2.41±0.71	1.66±0.23	1.71±0.24

\(^{a)}\) (A)/(B) mean the configuration A or B. \(^{b)}\) The specific definition of the abbreviations can be found in Figure 1. The data has been shown in the format as: Average ± standard deviation (Unit: Å).

Table S4. The alchemical states used for the calculation of free energy

Index of state	\(\lambda_{vdw}\)	\(\lambda_{ele}\)	Force constant of harmonic restraint \(k_R\) (kcal/(mol·Å\(^2\)))
1	0.00	0.00	15
2	0.50	0.00	15
3	0.55	0.00	15
4	0.60	0.00	15
5	0.62	0.00	15
6	0.65	0.00	15
7	0.70	0.00	15
8	0.75	0.00	15
9	0.80	0.00	15
10	0.90	0.00	15
11	1.00	0.00	15
12	1.00	0.10	15
13	1.00	0.20	15
14	1.00	0.30	15
15	1.00	0.40	15
16	1.00	0.50	15
17	1.00	0.60	10
18	1.00	0.70	5
Table S5. Statistics of the interstage free energy change in the annihilation of TO1-Biotin from wild-type Mango-II_TO1-Biotin complex. (The states here are represented by corresponding indices mentioned in Table S4. Unit: kcal/mol)

State change	Δ\(\mathcal{G} \)	RMSD
1 to 2	5.106	0.055
2 to 3	7.9549	0.0478
3 to 4	13.9947	0.1602
4 to 5	4.2996	0.1079
5 to 6	3.1671	0.078
6 to 7	2.1343	0.1204
7 to 8	-0.2994	0.0681
8 to 9	-2.4445	0.0627
9 to 10	-11.9338	0.0948
10 to 11	-24.5045	0.1109
11 to 12	-0.7262	0.0375
12 to 13	-1.9454	0.0405
13 to 14	-3.2742	0.0384
14 to 15	-4.7055	0.0438
15 to 16	-6.0603	0.037
16 to 17	-7.5918	0.0477
17 to 18	-9.6083	0.0483
18 to 19	-11.9364	0.0597
19 to 20	-14.6174	0.0572
20 to 21	-17.5225	0.0693
Restrained Correction		0.6913

Table S6. Statistics of the interstage free energy change in the annihilation of TO1-Biotin from the configuration A of Mango-II-A22U_TO1-Biotin complex. (The states here are represented by corresponding indices mentioned in Table S4. Unit: kcal/mol)

State change	Δ\(\mathcal{G} \)	RMSD
1 to 2	1.9359	0.0091
2 to 3	3.7139	0.0131
3 to 4	7.9712	0.0313
4 to 5	4.7967	0.0217
5 to 6	8.5257	0.0548
6 to 7	12.2082	0.2782
Table S7. Statistics of the interstage free energy change in the annihilation of TO1-Biotin from the configuration B of Mango-II-A22U_TO1-Biotin complex. (The states here are represented by corresponding indices mentioned in Table S4. Unit: kcal/mol)

State change	ΔG kcal/mol	RMSD kcal/mol
1 to 2	5.1753	0.0526
2 to 3	7.8988	0.0557
3 to 4	13.4672	0.165
4 to 5	3.8369	0.1007
5 to 6	2.287	0.0834
6 to 7	1.1154	0.0769
7 to 8	-0.643	0.0682
8 to 9	-2.7028	0.0547
9 to 10	-13.7957	0.0625
10 to 11	-23.7263	0.0776
11 to 12	-0.0529	0.0427
12 to 13	-1.3402	0.052
13 to 14	-2.4986	0.0449
14 to 15	-3.9358	0.0442
15 to 16	-5.4716	0.0461
16 to 17	-7.2293	0.0479
17 to 18	-9.0417	0.0478
18 to 19	-11.3286	0.0641
19 to 20	-13.7957	0.0625
20 to 21	-16.6278	0.064
Restrain Correction	0.6913	
Table S8. Statistics of the interstage free energy change in the solvation of TO1-Biotin. (The states here are represented by corresponding indices mentioned in Table S4. Unit: kcal/mol)

State change	Δ\(G\)	RMSD
1 to 2	3.2544	0.0182
2 to 3	5.994	0.0317
3 to 4	10.5201	0.1414
4 to 5	3.1783	0.0744
5 to 6	2.4685	0.0716
6 to 7	1.744	0.0795
7 to 8	0.1795	0.0591
8 to 9	-1.1372	0.0442
9 to 10	-6.4516	0.0795
10 to 11	-14.4784	0.0888
11 to 12	-0.0249	0.0445
12 to 13	-1.3465	0.0472
13 to 14	-2.7753	0.0443
14 to 15	-4.1272	0.0458
15 to 16	-5.6486	0.0483
16 to 17	-7.3282	0.0492
17 to 18	-9.2552	0.055
18 to 19	-11.434	0.0576
19 to 20	-13.9842	0.0657
20 to 21	-17.2574	0.0798

Table S9. Statistics of the interstage free energy change in the annihilation of TO3-Biotin from wild-type Mango-II_TO3-Biotin complex. (The states here are represented by corresponding indices mentioned in Table S4. Unit: kcal/mol)

State change	Δ\(G\)	RMSD
1 to 2	5.6047	0.0425
2 to 3	8.6706	0.0687
3 to 4	14.3202	0.156
4 to 5	4.8909	0.124
5 to 6	3.4468	0.0857
6 to 7	2.5624	0.1083
7 to 8	-0.021	0.0903
8 to 9	-2.674	0.0628
9 to 10	-13.6573	0.1419
10 to 11	-27.1263	0.0757
11 to 12	-0.2698	0.0366
12 to 13	-0.9386	0.0338
State change	ΔG	RMSD
--------------	------------	------
13 to 14	-1.8874	0.041
14 to 15	-2.9836	0.0353
15 to 16	-4.3279	0.0499
16 to 17	-5.7511	0.0381
17 to 18	-6.8371	0.0413
18 to 19	-8.1012	0.0421
19 to 20	-9.7248	0.0488
20 to 21	-11.7511	0.0546
Restrain Correction	0.6913	

Table S10. Statistics of the interstage free energy change in the annihilation of TO3-Biotin from the configuration A of Mango-II-A22U_TO3-Biotin complex. (The states here are represented by corresponding indices mentioned in Table S4. Unit: kcal/mol)

State change	ΔG	RMSD
1 to 2	4.8775	0.0534
2 to 3	7.6464	0.0484
3 to 4	13.6055	0.1509
4 to 5	4.2185	0.0982
5 to 6	3.0746	0.0899
6 to 7	1.7182	0.1039
7 to 8	-0.7575	0.0739
8 to 9	-2.839	0.0488
9 to 10	-12.3229	0.1074
10 to 11	-26.3573	0.1284
11 to 12	-0.5565	0.0413
12 to 13	-1.6898	0.0366
13 to 14	-2.6647	0.0356
14 to 15	-3.6047	0.0372
15 to 16	-4.642	0.0379
16 to 17	-5.7927	0.0421
17 to 18	-6.9909	0.04
18 to 19	-8.1808	0.0436
19 to 20	-9.6719	0.0561
20 to 21	-11.9472	0.0578
Restrain Correction	0.4398	

Table S11. Statistics of the interstage free energy change in the annihilation of TO3-Biotin from the configuration B of Mango-II-A22U_TO3-Biotin complex. (The states here are represented by corresponding indices mentioned in Table S4. Unit: kcal/mol)
State change	ΔG	RMSD
1 to 2	5.2736	0.0366
2 to 3	8.2494	0.0449
3 to 4	14.2153	0.1186
4 to 5	5.3124	0.0712
5 to 6	4.1662	0.0793
6 to 7	2.6974	0.1183
7 to 8	-0.3375	0.0542
8 to 9	-2.4511	0.0446
9 to 10	-11.8772	0.0805
10 to 11	-25.1459	0.1092
11 to 12	-0.4573	0.0275
12 to 13	-1.3929	0.0346
13 to 14	-2.3161	0.0262
14 to 15	-3.3461	0.0367
15 to 16	-4.7802	0.0321
16 to 17	-5.9471	0.0313
17 to 18	-7.1036	0.0313
18 to 19	-8.2823	0.0335
19 to 20	-9.8166	0.0378
20 to 21	-11.6017	0.0396
Restrain	0.3294	

Table S12. Statistics of the interstage free energy change in the solvation of TO3-Biotin. (The states here are represented by corresponding indices mentioned in Table S4. Unit: kcal/mol)
	Value	SD
16 to 17	-5.1851	0.0435
17 to 18	-6.5626	0.0448
18 to 19	-8.1086	0.0492
19 to 20	-9.9617	0.0537
20 to 21	-12.1937	0.058
II. Figures

Figure S1. RMSD trajectory of core G-quadruplex (the heavy atoms from bases of 10~29) from the MD simulation of single wild type Mango-II.

Figure S2. RMSD trajectory of core G-quadruplex (the heavy atoms from bases of 10~29) from the MD simulation of single wild type Mango-II without polarization.
Figure S3. RMSD trajectories of core G-quadruplex (the heavy atoms from bases of 10–29) from the MD simulations on 4 aptamer-fluorogen complexes (Mango-II-A22U complexes choose the configuration A).

Figure S4. The trajectories of important structural parameters in MD simulation (N-H denotes the distance of N of A12 and the H on G24, see the 4ns snapshot of the Figure
Figure S5. RMSD trajectories of core G-quadruplex (the heavy atoms from bases of 10~29) from the MD simulation on the configuration B of Mango-II-A22U_TO1-Biotin.

Figure S6. Trajectories of important structural parameters from the MD simulation on the configuration B of Mango-II-A22U_TO1-Biotin.
Figure S7. RMSD trajectories of core G-quadruplex (the heavy atoms from bases of 10~29) from the MD simulation on the configuration B of Mango-II-A22U_TO3-Biotin.

Figure S8. Trajectories of important structural parameters from the MD simulation on the configuration B of Mango-II-A22U_TO3-Biotin.
Figure S9. Statistics of the position of K⁺ in three-layer G-quadruplex of wild-type Mango-II during the 10ns equilibration.

Figure S10. Statistics of the position of K⁺ in three-layer G-quadruplex of wild-type Mango-II during the 10ns equilibration with no polarization.
Figure S11. Statistics of the position of K\(^+\) in three-layer G-quadruplex of wild-type Mango-II_TO1-Biotin complex during the 10ns equilibration.

Figure S12. Statistics of the position of K\(^+\) in three-layer G-quadruplex of wild-type Mango-II_TO3-Biotin complex during the 10ns equilibration.
Figure S13. Statistics of the position of K⁺ in three-layer G-quadruplex from configuration A of Mango-II-A22U_TO1-Biotin complex during the 10ns equilibration.

Figure S14. Statistics of the position of K⁺ in three-layer G-quadruplex from configuration B of Mango-II-A22U_TO1-Biotin complex during the 35ns equilibration.
Figure S15. Statistics of the position of K\(^+\) in three-layer G-quadruplex from configuration A of Mango-II-A22U_TO3-Biotin complex during the 10ns equilibration.

Figure S16. Statistics of the position of K\(^+\) in three-layer G-quadruplex from configuration B of Mango-II-A22U_TO3-Biotin complex during the 10ns equilibration.
III. Deduction of Equation
The deduction of the Equation 3

\[K_D = \frac{[R][L]}{[RL]} \Rightarrow [RL] = \frac{[R][L]}{K_D} \]

\[K_D^* = \frac{[R^*][L]}{[R^*L]} \Rightarrow [R^*L] = \frac{[R^*][L]}{K_D^*} \]

\[K_{eq}^R = \frac{[R^*]}{[R]} \]

\[K_D^{app} = \frac{([R] + [R^*][L])}{[RL] + [R^*L]} = \frac{[R] + [R^*]}{K_D} + \frac{[R^*]}{K_D^*} = K_D K_D^* \frac{1 + K_{eq}^R}{K_D + K_D K_{eq}^R} \]

IV. QM and AMOEBA geometries of ligands
QM optimized geometry of TO1-Biotin (charge: 2)

C	X	Y	Z
1	-0.998818978622	-0.185918954587	0.530002383579
2	-1.963549127011	1.384379580966	
3	-3.391955323401	-0.058349374291	
4	6.030877920694	-1.324460246607	
5	5.93902707390	0.573956937976	
6	4.523832945947	1.003439761675	
7	2.129059490923	1.412620725232	
8	0.795574556665	1.243582069525	
9	-4.068154225733	1.896224011781	
10	-5.423936666970	1.680140424820	
11	-7.546279688641	0.557129231319	
12	-5.503019399443	-0.077953092555	
13	-6.243362003610	-1.06018566615	
14	-5.613222638703	-1.836638341604	
15	-4.247653293261	-1.645700795884	
16	-3.507597256710	-0.49851385303	
17	-4.112910774053	0.66776418988	
18	0.465168125424	0.759241395365	
19	1.039212024108	-1.433203879320	
20	2.296974138269	1.018527547735	
21	2.951893463816	0.071447383863	
22	2.392327622506	0.742830908361	
23	1.175954817529	0.261038186022	
AMOEBa optimized geometry of TO1-Biotin (charge: 2) (.txyz file)

24	N	3.271657474525	1.293987324841	1.055033824462	
25	N	0.415223497784	0.58874797601	0.787028901250	
26	N	-6.106676153516	-0.568901230270	0.731443672867	
27	O	5.165984735015	0.617204736258	-0.702126483613	
28	O	0.415223497784	0.58874797601	0.787028901250	
29	S	-5.165984735015	0.617204736258	-0.702126483613	
30	H	5.165984735015	0.617204736258	-0.702126483613	
31	H	0.415223497784	0.58874797601	0.787028901250	
32	H	-6.106676153516	-0.568901230270	0.731443672867	
33	H	5.165984735015	0.617204736258	-0.702126483613	
34	H	0.415223497784	0.58874797601	0.787028901250	
35	H	-6.106676153516	-0.568901230270	0.731443672867	
36	H	5.165984735015	0.617204736258	-0.702126483613	
37	H	0.415223497784	0.58874797601	0.787028901250	
38	H	-6.106676153516	-0.568901230270	0.731443672867	
39	H	6.085322836019	-1.254905325636	-0.714192529726	

Page 19 of 66
33	34	C	4.63802924	1.89320884	1.32178825	403	5	24
35	36	C	2.17668831	1.63831895	1.39318463	408	8	24
28	8	C	0.84871034	0.90921279	1.20236044	411	7	25
56	9	C	-4.22660615	-0.53695857	2.15439343	414	3	10
37	10	C	-5.60515509	-0.71734158	2.03294725	410	9	26
38	11	C	-7.75844640	-0.52885153	0.88115041	405	26	39
40	12	C	-5.65209674	0.43950944	-0.07039131	409	13	17
26	13	C	-6.38345650	1.00309565	-1.17998759	413	12	14
42	14	C	-5.70956634	1.72544669	-2.15956417	417	13	15
43	15	C	-4.31282011	1.92811808	-2.07746233	424	14	16
44	16	C	-3.58411662	1.40240407	-1.01741900	416	15	17
16	17	C	-4.22892762	0.62839686	0.01335856	412	3	12
29	18	C	0.16411873	-2.16513183	-0.66796708	425	19	23
19	19	C	0.62700694	-3.31285663	-1.32941925	420	18	20
46	20	C	1.97120375	-3.70020732	-1.16514002	427	19	21
47	21	C	2.82771339	-2.96161269	-0.32858160	421	20	22
48	22	C	2.37254632	-1.81958230	0.34871095	426	21	23
49	23	C	1.03241534	-1.39280097	0.13062391	418	18	22
25	24	N	0.37332260	-0.24708158	0.71578948	422	1	8
26	25	N	-6.29195445	-0.27365785	0.93781050	407	10	11
12	27	O	5.51836441	-0.65818233	0.96914657	429	4	5
QM optimized geometry of TO3-Biotin (charge: 2)

1 C -8.311832562926 -0.920443135638 0.411793438441
2 C -6.413746683550 0.586126895554 0.497733249872
3 C -5.054484302805 0.879403422247 0.504547763197
4 C -4.102756140989 -0.133684115521 0.470238175842
5 C -2.709908274110 0.270465310889 0.29379781382
6 C -1.789896029170 -0.416396186818 -0.441960287481
7 C -0.403296225598 -0.093846898446 -0.65394472454
8 C 0.320394038028 0.965820508342 -0.178433093204
9 C 1.582854891239 2.372581817101 1.404630379396
10 C 2.070642274651 3.20765641845 2.407507322838
11 C 3.43139071480 3.495708800184 2.424083050256
12 C 4.28162856292 2.993937060812 1.42653403026
13 C 3.802254741639 2.17324550669 0.414647590027
The table contains the AMOEBA optimized geometry of TO3-Biotin (charge: 2) in the .txyz file format.
	C	-8.42642347	-1.04459087	0.91645676	403	22	25	
2	C	-6.47728422	0.43046644	1.06645699	409	3	22	
3	C	-5.11772846	0.73148477	0.97982117	413	2	4	
4	C	-4.16832933	-0.24000306	0.63040848	415	3	5	
5	C	-2.77888909	0.25736188	0.44364760	420	4	6	
6	C	-1.87984147	-0.16548930	-0.50776888	422	5	7	31
7	C	-0.50016236	0.21955994	-0.79265872	425	6	8	
8	C	0.37724943	1.14236561	-0.20309076	419	7	23	
9	C	1.73656669	2.66459444	1.23179265	427	10	14	
10	C	2.28842082	3.51329116	2.20549488	423	9	11	
11	C	3.62908992	3.90505289	2.08279253	428	10	12	
12	C	4.40482965	3.46436626	0.99295286	424	11	13	
13	C	3.85902578	2.61646911	0.01171032	426	12	14	
14	C	2.50686026	2.19550337	0.14967015	418	9	13	
15	C	2.17875007	0.63085836	-1.77369766	410	23	37	
16	C	-4.66218162	-1.60378299	0.42693096	411	4	17	
17	C	-3.79379730	-2.73380774	0.18248825	416	16	18	
18	C	-4.30381491	-4.00815041	-0.03875333	421	17	19	
19	C	-5.70156777	-4.22432279	-0.00125248	417	18	20	
20	C	-6.57870599	-3.17880377	0.27607855	412	19	21	
21	C	-6.08829948	-1.86812627	0.50845269	408	16	20	
22	N	-6.95510406	-0.82444785	0.81931731	406	1	2	
23								
	N	1.75096284	1.33967121	-0.71107306	414	8	14	
---	-------	------------	------------	-------------	-----	---	----	
24	S	0.08080504	2.12251306	1.20703580	430	8	9	
25	H	-8.77100509	-1.43074511	-0.04591061	433	1		
26	H	-8.60157850	-1.4308325	1.7340673	433	1		
27	H	-7.20396095	1.19447733	1.32341921	437	2		
28	H	-4.82934726	1.76796398	1.17360661	440	3		
29	H	-2.48323248	0.99439127	-1.22864535	448	6		
30	H	-2.24413557	-0.90365192	-1.64832798	446	7		
31	H	-1.69238901	3.87501845	3.04604018	450	10		
32	H	4.07506083	4.56269890	2.83137108	447	11		
33	H	5.44773054	3.76875764	0.88800997	449	12		
34	H	4.47409611	2.32032910	-0.8269214	445	13		
35	H	1.51932668	0.65574813	-2.64407258	438	15		
36	H	-2.72266487	-2.59508143	0.19004461	441	17		
37	H	-3.62849747	4.84290774	-0.23501954	444	18		
38	H	-6.09749844	-5.22597032	-0.18222114	442	19		
39	H	-7.63688930	-3.40327392	0.31224433	439	20		
40	C	3.43625864	-0.09400965	-2.18129032	407	15		
41	O	3.47915148	-0.3583195	-3.38961430	436	42		
42	N	4.44232224	-0.35911255	-1.29236206	405	42		
43	C	5.67454024	-1.0250887	-1.79055632	401	44		
44	H	4.32647752	-0.13388180	-0.30764448	435	44		
45	C	6.68588937	-1.2336442	-0.6446465	402	46		
46	H	5.41272773	-1.97948870	-2.24885942	432	46		
47	H	6.11997460	-0.41582037	-2.58274832	432	46		
48	C	6.68588937	-1.2336442	-0.6446465	402	46		
49	H	8.52122751	-2.79347206	0.50011936	434	53		
50	H	9.68122938	-2.66633707	-0.83754968	434	53		
51	H	9.27001434	-1.22440286	0.11241682	434	53		

V. Parameters in Tinker format

TO1-Biotin parameters

| atom | 419 | 419 | C | "TO1-E" | 6 |

Page 24 of 66
12.011 3
atom 12.011 3
atom 12.011 3
atom 12.011 4
atom 12.011 4
atom 12.011 4
atom 12.011 4
atom 12.011 3
atom 12.011 3
atom 12.011 3
atom 12.011 3
atom 12.011 4
atom 12.011 3
atom
Atom	Z	Atom	Z	Atom	Z	Atom	Z
12.011	3	14.007	3	14.007	3	14.007	3
15.999	2	15.999	1	32.066	2	1.008	1
1.008	1	1.008	1	1.008	1	1.008	1
1.008	1	1.008	1	1.008	1	1.008	1
1.008	1	1.008	1	1.008	1	1.008	1
1.008	1	1.008	1	1.008	1	1.008	1
1.008	1	1.008	1	1.008	1	1.008	1
1.008	1	1.008	1	1.008	1	1.008	1
1.008	1	1.008	1	1.008	1	1.008	1
1.008	1	1.008	1	1.008	1	1.008	1
1.008	1	1.008	1	1.008	1	1.008	1
1.008	1	1.008	1	1.008	1	1.008	1

atom	Z	atom	Z	atom	Z	atom	Z
406	N	"TO1-E"	"	7			
422	N	"TO1-E"	"	7			
407	N	"TO1-E"	"	7			
429	O	"TO1-E"	"	8			
437	O	"TO1-E"	"	8			
430	S	"TO1-E"	"	16			
442	H	"TO1-E"	"	1			
432	H	"TO1-E"	"	1			
433	H	"TO1-E"	"	1			
434	H	"TO1-E"	"	1			
440	H	"TO1-E"	"	1			
438	H	"TO1-E"	"	1			
435	H	"TO1-E"	"	1			
439	H	"TO1-E"	"	1			
445	H	"TO1-E"	"	1			
446	H	"TO1-E"	"	1			
444	H	"TO1-E"	"	1			
448	H	"TO1-E"	"	1			
447	H	"TO1-E"	"	1			
449	H	"TO1-E"	"	1			
441	H	"TO1-E"	"	1			
436	H	"TO1-E"	"	1			
Atom	Z	Charge	Element	Bond	VDW Distance	VDW Energy	
------	---	--------	---------	------	--------------	------------	
1	C	1	402	TO1-E	6		
4	H	1	431	TO1-E	1		
1	O	1	428	TO1-E	8		
2	H	1	450	TO1-E	1		
1	H	1	443	TO1-E	1		
vdw 418	3.8200	0.1010					
vdw 429	3.4050	0.1100					
vdw 428	3.4050	0.1100					
vdw 450	2.6550	0.0135					
vdw 432	2.8700	0.0240					
vdw 433	2.8700	0.0240					
vdw 431	2.8700	0.0240					
vdw 401	3.8200	0.1010					
vdw 404	3.8200	0.1010					
vdw 403	3.8200	0.1010					
vdw 405	3.8200	0.1010					
vdw 402	3.8200	0.1010					
vdw 435	2.9800	0.0240					
vdw 434	2.9600	0.0220					
vdw 423	3.8200	0.1060					
vdw 408	3.8200	0.1060					
vdw 411	3.8200	0.1060					
vdw 437	3.3000	0.1120					
vdw 406	3.7100	0.1100					
vdw 436	2.5900	0.0220					
vdw 442	2.9200	0.0300					
vdw 443	2.9200	0.0300					
vdw 430	4.0050	0.3550					
vdw 419	3.8000	0.0890					
vdw 420	3.8000	0.0890					
vdw 438	2.9800	0.0260					
vdw 439	2.9800	0.0260					
vdw 444	2.9800	0.0260					
vdw 448	2.9800	0.0260					
vdw 441	2.9800	0.0260					
vdw 414	3.8000	0.0910					
vdw 426	3.8000	0.0910					
vdw 440	2.9800	0.0260					
vdw 445 2.9800 0.0260 0.920							
vdw 446 2.9800 0.0260 0.920							
vdw 447 2.9800 0.0260 0.920							
vdw 449 2.9800 0.0260 0.920							
vdw 407 3.7100 0.1050							
vdw 415 3.8000 0.1010							
vdw 410 3.8000 0.1010							
vdw 409 3.8000 0.1010							
vdw 413 3.8000 0.1010							
vdw 417 3.8000 0.1010							
vdw 424 3.8000 0.1010							
vdw 416 3.8000 0.1010							
vdw 412 3.8000 0.1010							
vdw 425 3.8000 0.1010							
vdw 427 3.8000 0.1010							
vdw 421 3.8000 0.1010							
vdw 422 3.7100 0.1050							
bond 419 430 216.0 1.76							
bond 411 422 400.0 1.31							
bond 407 410 381.30 1.34							
bond 408 411 385.0 1.51							
bond 430 425 250.0 1.77							
bond 437 408 601.80 1.24							
bond 442 423 400.0 1.09							
bond 443 411 400.0 1.09							
bond 415 423 385.0 1.48							
bond 423 419 385.0 1.34							
bond 422 419 600.0 1.46							
bond 422 418 600.0 1.43							
bond 409 407 400.0 1.3471999999999997							
bond 414 415 379.094345 1.38							
bond 412 415 337.112301 1.42							
bond 429 401 274.968492 1.43							
bond 432 401 340.532535 1.1							
bond 402 401 205.758598 1.52							
bond 403 404 205.758598 1.51							
bond 429 404 274.968492 1.42							
bond 433 404 340.532535 1.1							
bond 406 403 232.730342 1.47							
bond 434 403 340.532535 1.09							
bond 406 408 363.15688 1.35							
bond 410 414 375.678112 1.39							
bond 440 414 368.093365 1.09							
bond 438 410 375.586577 1.08							
bond 407 405 295.419463 1.4494							
bond 435 405 345.97894 1.09							
bond 413 409 375.678112 1.41							
bond 412 409 375.678112 1.3990999999999998							
bond 417 413 379.094345 1.38							
bond 439 413 368.093365 1.08							
bond 424 417 379.094345 1.41							
bond 445 417 368.093365 1.09							
bond 416 424 379.094345 1.38							
bond 446 424 368.093365 1.09							
bond 412 416 337.112301 1.42							
bond 444 416 368.093365 1.09							
bond 420 425 378.323984 1.39							
bond 418 425 375.678112 1.4							
bond 427 420 379.094345 1.4							
bond 448 420 368.093365 1.09							
bond 421 427 379.094345 1.4							
bond 447 427 368.093365 1.09							
bond 426 421 379.094345 1.39							
bond 449 421 368.093365 1.09							
bond 418 426 375.678112 1.4							
bond 441 426 368.093365 1.08							
bond 436 406 475.798234 1.02							
bond 431 402 340.532535 1.1							
bond 428 402 216.835083 1.42							
bond 450 428 497.050438 0.97							
angle 419 423 442 50.0 119.9							
angle 419 422 411 65.0 119.52							
angle 419 430 425 80.0 85.2493							
angle 423 419 422 80.0 120.96719999999999							
angle 423 419 430 53.2 132.0401							
angle 408 411 422 80.0 134.33							
angle 411 422 418 65.0 134.19639999999998							
angle 418 425 430 53.2 113.39							
angle 422 419 430 60.0 107.0648							
angle 422 411 443 60.0 115.08							
angle 403 404 429 88.0 104.62							
angle 402 401 429 88.0 112.949							
angle 430 425 420 60.0 126.68							
angle 438 410 407 58.99 116.8							
angle 443 411 408 38.0 110.4							
angle 405 407 410 51.80 118.48							
angle 437 408 411 65.0 114.075500000000002							
angle 406 408 411 60.0 119.83359999999999							
angle	406	408	437	76.98	126.23		
angle	415	423	442	50.0	119.396		
angle	409	407	405	65.0	118.536		
angle	415	423	419	60.0	120.366		
angle	407	410	414	60.0	121.38		
angle	422	418	425	60.0	108.795		
angle	422	418	426	60.0	127.04		
angle	409	407	410	65.0	121.66		
angle	412	415	423	60.0	122.08		
angle	413	409	407	80.0	118.975		
angle	412	409	407	80.0	118.67		
angle	414	415	423	60.0	118.81		
angle	418	422	419	65.0	105.639		
angle	410	414	415	89.183	120.2		
angle	440	414	415	36.771	121.32		
angle	409	412	415	89.183	119.02		
angle	416	412	415	78.148	122.67		
angle	404	429	401	88.187	112.085		
angle	431	402	401	48.261	110.71		
angle	428	402	401	94.530	103.89		
angle	406	403	404	99.687	104.746		
angle	434	403	404	48.260	111.22		
angle	433	404	403	48.260	110.26		
angle	408	406	403	87.947	116.052		
angle	436	406	403	29.797	111.62		
angle	436	406	408	40.855	114.678		
angle	412	415	414	59.085	119.0		
angle	438	410	414	59.926	123.491		
angle	440	414	410	47.266	118.47		
angle	417	413	409	89.183	119.36		
angle	439	413	409	47.266	119.642		
angle	416	412	409	89.183	118.3		
angle	412	409	413	59.085	121.746		
angle	424	417	413	74.630	120.9		
angle	445	417	413	36.770	119.35		
angle	439	413	417	36.770	121.798		
angle	416	424	417	74.630	120.59		
angle	446	424	417	36.770	119.52		
angle	445	417	424	36.770	119.73		
angle	412	416	424	59.085	120.44		
angle	444	416	424	36.770	122.930		
angle	446	424	416	36.770	119.89		
angle	444	416	412	26.510	116.906		
angle	427	420	425	68.376	118.24		
angle 448 420 425 29.804975 121.03							
angle 426 418 425 76.194709 122.2							
angle 418 425 420 89.183524 119.9							
angle 421 427 420 74.630713 121.21							
angle 447 427 420 36.770174 119.18							
angle 448 420 427 36.770174 120.69							
angle 426 421 427 74.630713 120.94							
angle 449 421 427 36.770174 119.78							
angle 447 427 421 36.770174 119.57							
angle 418 426 421 89.183524 117.09							
angle 441 426 421 36.770174 122.97119999999998							
angle 449 421 426 36.770174 119.25							
angle 441 426 418 47.265893 121.66							
angle 434 403 406 57.622801 109.71							
angle 435 405 407 53.335255 106.86390000000002							
angle 432 401 429 54.887155 107.82							
angle 433 404 429 54.887155 111.69							
angle 432 401 432 30.490529 110.2527							
angle 402 401 432 48.260518 108.71							
angle 433 404 433 30.490529 108.3							
angle 434 403 434 30.490529 110.709							
angle 435 405 435 36.406852 112.96910000000001							
angle 450 428 402 48.760726 106.30720000000001							
angle 431 402 431 30.490529 108.27							
angle 428 402 431 60.032562 111.64							
strbnd 419 423 442 0 0							
strbnd 419 422 411 0 0							
strbnd 419 430 425 0 0							
strbnd 423 419 422 0 0							
strbnd 423 419 430 0 0							
strbnd 408 411 422 0 0							
strbnd 411 422 418 0 0							
strbnd 418 425 430 0 0							
strbnd 422 419 430 0 0							
strbnd 422 411 443 0 0							
strbnd 403 404 429 0 0							
strbnd 402 401 429 0 0							
strbnd 430 425 420 0 0							
strbnd 438 410 407 11.50 11.50							
strbnd 443 411 408 0 0							
strbnd 405 407 410 7.20 7.20							
strbnd 437 408 411 0 0							
strbnd 406 408 411 0 0							
strbnd 406 408 437 18.70 18.70							
strbnd	415	423	442	0	0		
--------	-----	-----	-----	----	----		
strbnd	409	407	405	0	0		
strbnd	415	423	419	0	0		
strbnd	407	410	414	0	0		
strbnd	422	418	425	0	0		
strbnd	422	418	426	0	0		
strbnd	409	407	410	0	0		
strbnd	412	415	423	0	0		
strbnd	413	409	407	0	0		
strbnd	412	409	407	0	0		
strbnd	414	415	423	0	0		
strbnd 410 414 415 20.4528 20.4528							
strbnd 440 414 415 20.4528 20.4528							
strbnd 409 412 415 20.4528 20.4528							
strbnd 416 412 415 20.4528 20.4528							
strbnd 404 429 401 6.8713 6.8713							
strbnd 431 402 401 5.7126 5.7126							
strbnd 428 402 401 5.7126 5.7126							
strbnd 406 403 404 5.7126 5.7126							
strbnd 434 403 404 5.7126 5.7126							
strbnd 433 404 403 5.7126 5.7126							
strbnd 408 406 403 25.9516 25.9516							
strbnd 436 406 403 25.9516 25.9516							
strbnd 436 406 408 25.9516 25.9516							
strbnd 412 415 414 20.4528 20.4528							
strbnd 438 410 414 36.8955 36.8955							
strbnd 440 414 410 20.4528 20.4528							
strbnd 417 413 409 20.4528 20.4528							
strbnd 439 413 409 20.4528 20.4528							
strbnd 416 412 409 20.4528 20.4528							
strbnd 412 409 413 20.4528 20.4528							
strbnd 424 417 413 20.4528 20.4528							
strbnd 445 417 413 20.4528 20.4528							
strbnd 439 413 417 20.4528 20.4528							
strbnd 416 424 417 20.4528 20.4528							
strbnd 446 424 417 20.4528 20.4528							
strbnd 445 417 424 20.4528 20.4528							
strbnd 412 416 424 20.4528 20.4528							
strbnd 444 416 424 20.4528 20.4528							
strbnd 446 424 416 20.4528 20.4528							
strbnd 444 416 412 20.4528 20.4528							
strbnd 427 420 425 20.4528 20.4528							
strbnd 448 420 425 20.4528 20.4528							
strbnd 426 418 425 20.4528 20.4528							
Start	End	Width	Height	Angle			
--------	-------	-------	--------	--------			
418	420	20.4528	20.4528	0			
421	420	20.4528	20.4528	0			
447	420	20.4528	20.4528	0			
448	420	20.4528	20.4528	0			
426	420	20.4528	20.4528	0			
449	420	20.4528	20.4528	0			
418	420	20.4528	20.4528	0			
449	420	20.4528	20.4528	0			
441	420	20.4528	20.4528	0			
441	420	20.4528	20.4528	0			
434	406	5.7126	5.7126	0			
435	407	5.7126	5.7126	0			
432	407	5.7126	5.7126	0			
433	407	5.7126	5.7126	0			
443	407	5.7126	5.7126	0			
405	407	5.7126	5.7126	0			
435	407	5.7126	5.7126	0			
402	407	5.7126	5.7126	0			
443	407	5.7126	5.7126	0			
449	420	5.7126	5.7126	0			
422	419	5.7126	5.7126	0			
422	418	5.7126	5.7126	0			
423	415	5.7126	5.7126	0			
407	409	5.7126	5.7126	0			
419	422	5.7126	5.7126	0			
418	422	5.7126	5.7126	0			
414	415	5.7126	5.7126	0			
415	414	5.7126	5.7126	0			
412	415	5.7126	5.7126	0			
415	412	5.7126	5.7126	0			
403	406	5.7126	5.7126	0			
406	408	5.7126	5.7126	0			
408	406	5.7126	5.7126	0			
437	408	5.7126	5.7126	0			
410	414	5.7126	5.7126	0			
opbend 414 410 0 0 34.0822
opbend 440 414 0 0 72.8135
opbend 438 410 0 0 72.8135
opbend 413 409 0 0 47.0937
opbend 409 413 0 0 47.0937
opbend 412 409 0 0 47.0937
opbend 409 412 0 0 47.0937
opbend 417 413 0 0 84.8861
opbend 413 417 0 0 84.8861
opbend 413 413 0 0 72.8135
opbend 424 417 0 0 84.8861
opbend 417 424 0 0 84.8861
opbend 445 417 0 0 72.8135
opbend 416 424 0 0 84.8861
opbend 424 416 0 0 84.8861
opbend 446 424 0 0 72.8135
opbend 412 416 0 0 100.1116
opbend 416 412 0 0 100.1116
opbend 444 416 0 0 72.8135
opbend 420 425 0 0 14.9839
opbend 425 420 0 0 14.9839
opbend 418 425 0 0 47.0937
opbend 425 418 0 0 47.0937
opbend 427 420 0 0 84.8861
opbend 420 427 0 0 84.8861
opbend 448 420 0 0 72.8135
opbend 421 427 0 0 84.8861
opbend 427 421 0 0 84.8861
opbend 447 427 0 0 72.8135
opbend 426 421 0 0 84.8861
opbend 421 426 0 0 84.8861
opbend 449 421 0 0 72.8135
opbend 418 426 0 0 39.6142
opbend 426 418 0 0 39.6142
opbend 441 426 0 0 72.8135
opbend 436 406 0 0 26.8945
opbend 423 419 0 0 14.39
opbend 430 419 0 0 14.39
opbend 422 411 0 0 14.39
opbend 411 422 0 0 3.6
opbend 408 411 0 0 14.39
opbend 407 410 0 0 14.39
opbend 410 407 0 0 3.6
opbend 409 407 0 0 3.6
opbend 430 425 0 0 14.39
torsion 414 415 423 419 -0.480 0.0 1 14.422 180.0 2 4.720 0.0 3
torsion 412 415 423 419 -2.723 0.0 1 -16.439 180.0 2 3.870 0.0 3
torsion 408 411 422 419 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 443 411 422 419 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 420 425 430 419 0.854 0.0 1 -0.374 180.0 2 0.108 0.0 3
torsion 418 425 430 419 0.854 0.0 1 -0.374 180.0 2 0.108 0.0 3
torsion 411 422 419 423 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 418 422 419 423 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 425 430 419 423 0.854 0.0 1 -0.374 180.0 2 0.108 0.0 3
torsion 422 419 423 415 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 418 422 411 408 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 411 422 419 415 -0.374 180.0 2 0.108 0.0 3
torsion 425 418 422 411 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 426 418 422 411 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 418 422 411 408 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 442 419 423 415 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 425 430 425 418 0.854 0.0 1 -0.374 180.0 2 0.108 0.0 3
torsion 422 419 423 415 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 435 405 407 410 0.121 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 438 410 407 405 1.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 437 408 411 422 0.063 0.0 1 -0.102 180.0 2 -0.807 0.0 3
torsion 430 425 418 426 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 430 419 422 418 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 443 411 422 418 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 406 403 404 429 -0.628 0.0 1 -0.391 180.0 2 0.534 0.0 3
torsion 406 408 411 422 0.924 0.0 1 -0.102 180.0 2 0.514 0.0 3
torsion 442 423 419 422 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 437 408 411 422 0.063 0.0 1 -0.102 180.0 2 -0.807 0.0 3
torsion 430 425 418 422 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 442 423 419 430 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3
torsion 430 425 420 427 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 430 425 420 448 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3
torsion 405 407 410 414 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 435 405 407 410 0.072 0.0 1 -0.012 180.0 2 0.563 0.0 3
torsion 438 410 407 405 1.000 0.0 1 -0.648 180.0 2 0.199 0.0 3
torsion 437 408 411 443 0 0.0 1 0 180.0 2 0.108 0.0 3
torsion 406 408 411 443 0 0.0 1 0 180.0 2 0.108 0.0 3
torsion 435 405 407 409 0 0.0 1 0 180.0 2 0.108 0.0 3
torsion 403 406 408 411 -1.000 0.0 1 4.283333333333333 180.0 2 2.050 0.0 3
torsion 405 407 409 413 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 436 406 408 411 0.000 0.0 1 3.483333333333333 180.0 2 0.800 0.0 3
torsion 437 408 406 403 1.000 0.0 1 9.1 180.0 2 -2.250 0.0 3
torsion 436 406 408 437 0.000 0.0 1 1.619333333333333 180.0 2 -0.357 0.0 3
torsion 412 415 423 442 0 0.0 1 0 180.0 2 0.108 0.0 3
torsion 407 410 414 415 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 422 418 425 420 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 422 418 426 421 -0.67 0.0 1 6.287 180.0 2 0.0 0.0 3
torsion 438 410 414 440 0.000 0.0 1 6.355333333333333 180.0 2 0.000 0.0 3
torsion 422 418 426 441 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3
torsion 407 410 414 440 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3
torsion 419 422 418 426 -0.67 0.0 1 6.287 180.0 2 -0.67 0.0 3
torsion 421 426 418 426 -0.67 0.0 1 6.287 180.0 2 -0.67 0.0 3
torsion 418 425 420 427 -0.67 0.0 1 6.287 180.0 2 -0.67 0.0 3
torsion 418 426 421 427 -0.67 0.0 1 6.287 180.0 2 -0.67 0.0 3
torsion 447 427 420 425 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3
torsion 449 421 426 418 -0.67 0.0 1 6.287 180.0 2 -0.67 0.0 3

Page 36 of 66
Torsion	Atom 1	Atom 2	Atom 3	Atom 4	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	Value 7
torsion 424 416 412 409	-0.670	0.0	1	4.304	180.0	2	0.000	0.0	3		
torsion 416 412 409 413	-0.670	0.0	1	4.304	180.0	2	0.000	0.0	3		
torsion 416 424 417 413	-0.670	0.0	1	4.304	180.0	2	0.000	0.0	3		
torsion 412 409 413 417	-0.670	0.0	1	4.304	180.0	2	0.000	0.0	3		
torsion 412 416 424 417	-0.670	0.0	1	4.304	180.0	2	0.000	0.0	3		
torsion 421 427 420 425	-0.67	0.0	1	6.287	180.0	2	0.000	0.0	3		
torsion 426 421 427 420	-0.670	0.0	1	4.304	180.0	2	0.000	0.0	3		
torsion 414 415 412 409	-0.610	0.0	1	4.212	180.0	2	0.000	0.0	3		
torsion 414 415 412 416	-0.610	0.0	1	4.212	180.0	2	0.000	0.0	3		
torsion 423 415 414 440	0.55	0.0	1	6.187	180.0	2	-0.55	0.0	3		
torsion 412 415 414 440	0.000	0.0	1	0.000	180.0	2	0.341	0.0	3		
torsion 410 414 415 423	-0.67	0.0	1	6.287	180.0	2	0.000	0.0	3		
torsion 410 414 415 412	0.260	0.0	1	-0.255	180.0	2	0.260	0.0	3		
torsion 415 414 410 438	0.000	0.0	1	0.000	180.0	2	0.341	0.0	3		
torsion 436 406 403 434	1.397	0	1	0.709	180.0	2	-0.436	0	3		
torsion 450 428 402 431	-0.448	0	1	0.493	180.0	2	-0.096	0	3		
torsion 434 403 404 429	0.0	0	1	0.0	180.0	2	0.108	0	3		
torsion 434 403 404 433	0.0	0	1	0.0	180.0	2	0.299	0	3		
torsion 434 403 404 408	0.0	0	1	0.0	180.0	2	0.108	0	3		
torsion 431 402 401 429	0.0	0	1	0.0	180.0	2	0.108	0	3		
torsion 431 402 401 432	0.0	0	1	0.0	180.0	2	0.299	0	3		
torsion 406 403 404 433	0.195	0.0	1	-0.098	180.0	2	0.176	0.0	3		
torsion 436 406 403 404	0.0	0	1	0.0	180.0	2	0.108	0	3		
torsion 408 406 403 404	-0.879	0	1	-0.305	180.0	2	-1.398	0	3		
torsion 414 415 423 442	0.0	0	1	0.0	180.0	2	0.108	0	3		
torsion 433 404 429 401	0.0	0	1	0.0	180.0	2	0.108	0	3		
torsion 403 404 429 401	-0.508	0	1	0.088	180.0	2	1.122	0	3		
torsion 402 401 429 404	1.298	0	1	-0.514	180.0	2	1.129	0	3		
torsion 432 401 429 404	0.0	0	1	0.0	180.0	2	0.108	0	3		
torsion 428 402 401 429	0.912	0	1	-1.127	180.0	2	2.601	0	3		
torsion 428 402 401 432	0.0	0	1	0.0	180.0	2	0.108	0	3		
torsion 450 428 402 401	-0.416	0	1	0.144	180.0	2	1.086	0	3		

SOLUTE 450 2.6533 3.392 2.9044
SOLUTE 442 2.574 2.758 2.9054
SOLUTE 440 2.574 2.758 2.9054
SOLUTE 438 2.9059 2.602 2.5726
SOLUTE 439 2.574 2.758 2.9054
SOLUTE 445 2.574 2.758 2.9054
SOLUTE 446 2.574 2.758 2.9054
SOLUTE 444 2.574 2.758 2.9054
SOLUTE 448 2.574 2.758 2.9054
SOLUTE 447 2.574 2.758 2.9054
SOLUTE 449 2.574 2.758 2.9054
SOLUTE	441	2.574	2.758	2.9054
SOLUTE	443	2.574	2.758	2.9054
SOLUTE	434	3.0556	2.996	4.032
SOLUTE	436	3.6491	3.404	2.9894
SOLUTE	431	3.6491	3.404	2.9894
SOLUTE	432	3.0205	3.885	4.0505
SOLUTE	433	3.9912	4.144	3.8925
SOLUTE	435	3.143	3.374	4.144
SOLUTE	410	3.8286	3.893	4.5084
SOLUTE	419	3.8286	3.893	4.5084
SOLUTE	409	3.8286	3.893	4.5084
SOLUTE	418	3.8585	3.766	3.8448
SOLUTE	415	3.8286	3.893	4.5084
SOLUTE	414	3.8286	3.893	4.5084
SOLUTE	413	3.8286	3.893	4.5084
SOLUTE	416	3.8286	3.893	4.5084
SOLUTE	425	3.8585	3.766	3.8448
SOLUTE	420	3.8286	3.893	4.5084
SOLUTE	426	3.8286	3.893	4.5084
SOLUTE	408	2.9301	4.506	4.2118
SOLUTE	417	3.8286	3.893	4.5084
SOLUTE	424	3.8286	3.893	4.5084
SOLUTE	412	3.8286	3.893	4.5084
SOLUTE	427	3.8286	3.893	4.5084
SOLUTE	421	3.8286	3.893	4.5084
SOLUTE	423	2.9301	4.506	4.2118
SOLUTE	411	2.9301	4.506	4.2118
SOLUTE	405	3.5062	3.309	4.536
SOLUTE	401	3.3025	2.854	4.9016
SOLUTE	404	3.3025	2.854	4.9016
SOLUTE	403	3.3025	2.854	4.9016
SOLUTE	402	3.3025	2.854	4.9016
SOLUTE	422	3.4243	3.491	4.2676
SOLUTE	407	3.4243	3.491	4.2676
SOLUTE	406	2.8836	2.99	3.218
SOLUTE	437	2.9835	3.356	2.9616
SOLUTE	429	3.1684	3.134	3.0999
SOLUTE	428	3.1684	3.134	3.0999
SOLUTE	430	4.4346	4.194	4.5431

polarize	419	2.0645	0.3900	422 430
polarize	423	1.4150	0.3900	442
polarize	415	2.0645	0.3900	414 412
polarize	401	1.6196	0.3900	429 432
polarize	404	1.6196	0.3900	429 433
Polarize	Value 1	Value 2	Value 3	Value 4					
403	1.6196	0.3900	434						
408	2.0645	0.3900	437						
411	1.4150	0.3900	443						
414	2.0645	0.3900	440						
410	2.0645	0.3900	438						
405	1.6196	0.3900	435						
409	2.0645	0.3900	447						
413	2.0645	0.3900	439						
417	2.0645	0.3900	445						
424	2.0645	0.3900	446						
416	2.0645	0.3900	444						
412	2.0645	0.3900	444						
425	2.0645	0.3900	430						
420	2.0645	0.3900	448						
427	2.0645	0.3900	447						
421	2.0645	0.3900	449						
426	2.0645	0.3900	441						
418	2.0645	0.3900	422						
406	1.2433	0.3900	436						
422	1.7018	0.3900	418						
407	1.7018	0.3900	409						
429	0.8122	0.3900	404						
437	0.9138	0.3900	408						
430	3.2059	0.3900	425						
442	0.4803	0.3900	423						
432	0.4803	0.3900	401						
433	0.4803	0.3900	404						
434	0.4803	0.3900	403						
440	0.4318	0.3900	414						
438	0.4318	0.3900	410						
435	0.4803	0.3900	405						
439	0.4318	0.3900	413						
445	0.4318	0.3900	417						
446	0.4318	0.3900	424						
444	0.4318	0.3900	416						
448	0.4318	0.3900	420						
447	0.4318	0.3900	427						
449	0.4318	0.3900	421						
441	0.4318	0.3900	426						
436	0.4573	0.3900	406						
402	1.6196	0.3900	428						
431	0.4803	0.3900	402						
428	0.8122	0.3900	450						
450	0.4573	0.3900	428						
Polarization	Multipole	Coefficients							
-------------	-----------	--------------							
Polarize	419 430 422	-0.22823							
		0.18994							
		0.00000							
		-0.38505							
Multipole	423 442 415	-0.14327							
		-0.03283							
		-0.21202							
		0.00000							
		0.23935							
Multipole	415 412 414	-0.07777							
		-0.28161							
		-0.08134							
		0.00000							
		0.00000							
Multipole	401 402 429	0.07114							
		0.42578							
		0.39558							
		0.00000							
		-0.36574							
Multipole	404 429 403	0.06569							
		0.25578							
		0.00125							
		0.00000							
		-0.05230							
Multipole	403 406 404	-0.04002							
		0.20620							
		0.12238							
		0.00000							
		-0.20156							
Multipole	408 437 406	0.71246							
		-0.07646							
		-0.00000							
		0.07472							
		0.00000							
		-0.09823							
Multipole	411 443 422	0.04500							
		0.14958							
		0.16370							
		0.00000							
		-0.32747							
Multipole	414 440 410	-0.10584							
		-0.11618							
		0.04056							
Multipole	Coefficients								
-----------	-----------------------								
410 438 407	0.00000 0.15954 -0.05380 0.00000 -0.20010								
	0.26395								
	0.25601 0.00000 -0.19513								
	-0.11635								
	0.00000 -0.52155								
	-0.20792 0.00000 0.63790								
405 407 409	-0.07500								
	-0.06928 0.00000 0.49814								
	-0.46189								
	0.00000 -0.50082								
	-0.07817 0.00000 0.96271								
409 407 412	0.08054								
	-0.09848 0.00000 0.06035								
	-0.85295								
	0.00000 -0.08638								
	-0.00035 0.00000 0.93933								
413 439 417	-0.10830								
	-0.16453 0.00000 0.23837								
	0.13298								
	0.00000 -0.01324								
	0.14099 0.00000 -0.11974								
417 445 424	0.30169								
	0.01313 0.00000 -0.40834								
	-0.80929								
	0.00000 -0.76050								
	-0.06625 0.00000 1.56979								
424 446 416	-0.00401								
	0.00630 0.00000 0.17381								
	0.21423								
	0.00000 0.00438								
	-0.07560 0.00000 -0.21861								
416 444 412	-0.19528								
	-0.17316 0.00000 0.26512								
	-0.11654								
	0.00000 0.11648								
	0.19812 0.00000 0.00006								
412 416 409	0.01011								
	-0.07833 0.00000 0.07784								
	-0.15988								
	0.00000 0.70605								
	-0.25498 0.00000 -0.54617								
425 430 418	-0.25554								
	-0.01764 0.00000 0.04851								
Multipole	420 448 427	427 447 421	421 449 426	426 441 418	418 422 426	406 436 408	422 418 411	407 409 405	429 404 401
------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------
	0.20411	-0.07002	0.04608	-0.02429	-0.11301	-0.18300	0.22996	-0.20500	-0.33032
	0.00000	0.05627	0.03159	-0.03498	0.12946	-0.03987	0.08389	-0.13587	0.00000
	0.10046	0.00000	0.00000	0.00000	0.11695	0.00000	0.00000	0.00000	0.10046
	-0.19759	0.04495	0.00000	0.00000	0.11344	0.00000	0.00000	0.00000	-0.10046
	-0.30457	-0.19759	-0.20524	-0.03520	-0.18300	-1.16989	-0.13837	0.82593	-0.33032
	-0.07002	0.05627	0.03159	0.04608	0.12946	0.47895	0.08389	0.18492	0.00000
	0.00000	0.00000	0.00000	0.00000	-0.03725	0.00000	0.00000	-0.23041	-0.33032
	0.10046	0.20446	-0.00587	0.07370	0.17794	2.26847	0.10942	0.05299	-0.64906
	-0.30457	-0.10245	0.00000	0.00000	0.00000	-1.24307	0.00000	0.00000	-0.33032
	-0.07002	0.20446	-0.00587	0.00000	0.00000	0.00000	0.00000	0.00000	-0.64906
	0.00000	-0.03498	0.10175	0.00000	0.17794	2.26847	0.10942	0.05299	-0.64906
	0.10046	-0.03498	0.10175	0.00000	0.17794	2.26847	0.10942	0.05299	-0.64906
	-0.19759	0.16116	0.00000	0.00000	0.17794	2.26847	0.10942	0.05299	-0.64906
	-0.30457	-0.03520	0.07370	0.00000	0.17794	2.26847	0.10942	0.05299	-0.64906
	-0.07002	0.16116	0.00000	0.00000	0.17794	2.26847	0.10942	0.05299	-0.64906
	0.00000	-0.03520	0.07370	0.00000	0.17794	2.26847	0.10942	0.05299	-0.64906
	0.00000	0.10175	0.00000	0.00000	0.17794	2.26847	0.10942	0.05299	-0.64906
	0.00000	0.00000	0.00000	0.00000	0.17794	2.26847	0.10942	0.05299	-0.64906
	0.00000	0.00000	0.00000	0.00000	0.17794	2.26847	0.10942	0.05299	-0.64906
	0.00000	0.00000	0.00000	0.00000	0.17794	2.26847	0.10942	0.05299	-0.64906
Multipole	Coefficients								
----------	--------------								
	0.34821	0.00000	0.17891						
	0.16531	0.00000	-1.00658						
	-0.55006	0.00000	0.84127						
437 408 406	-0.60533	0.00000	-0.07788						
	0.03837	0.00000	0.20499						
	0.04325	0.00000	0.24944						
	0.53116	0.00000	0.51435						
430 425 419	0.59624	0.00000	1.12713						
	0.00000	-2.15635	1.02922						
	0.01138	0.00000	1.02922						
	0.12022	0.00000	-0.19068						
442 423 415	0.05061	0.00000	0.13375						
	0.00000	0.06535	-0.19910						
	0.09409	0.00000	0.01541						
432 401 402	0.04779	0.00000	-0.08574						
	0.04084	0.00000	0.03838						
	0.00000	0.01541	-0.05379						
433 404 433	0.04192	0.00000	-0.10510						
	0.00505	0.00000	0.05296						
	0.00000	0.00101	-0.05397						
	0.02418	0.00000	-0.02440						
434 403 434	0.09207	0.00000	-0.04721						
	-0.04721	0.00000	0.09422						
	0.00000	0.03951	-0.02511						
	-0.02511	0.00000	-0.13373						
	0.09150	0.00000	-0.11411						
440 414 410	-0.01030	0.00000	0.07275						
	0.00000	-0.04835	0.01069						
	0.01069	0.00000	-0.02440						
	-0.01544	0.00000	-0.04568						
438 410 407	0.08191	0.00000	0.01857						
	-0.01544	0.00000	0.01857						
	0.00000	-0.06506	-0.02963						
	-0.02963	0.00000	0.04649						
Multipole	435 405 407	0.10504	0.03232	0.00000	-0.00173				
-----------	-------------	---------	---------	---------	-----------				
Multipole	439 413 417	-0.05159	0.00000	-0.17562					
Multipole	445 417 424	0.05556	0.00732	0.00000	0.04164				
Multipole	446 424 416	0.05501	-0.00503	0.00000	-0.11867				
Multipole	444 416 412	0.10631	0.15131	0.00000	-0.15273				
Multipole	448 420 427	0.04689	0.01769	0.00000	-0.14689				
Multipole	447 427 421	0.05597	-0.01212	0.00000	-0.11751				
Multipole	449 421 426	0.05801	0.02672	0.00000	-0.14513				
Multipole	441 426 418	0.05912	-0.03292	0.00000	-0.19646				
multipoles: 436 406 408
-0.00751 0.00000 -0.20638
0.15183
-0.12467 0.00000 -0.12334
-0.03581

0.00000 0.10862
-0.07126 0.00000 -0.07281

multipoles: 402 428 401
0.11936
0.19945 0.00000 0.16810
-0.01740

0.00000 -0.34885
-0.29032 0.00000 0.36625

multipoles: 431 402 428
0.03463
0.01460 0.00000 -0.04069
0.02305

0.00000 -0.02844
-0.00863 0.00000 0.00539

multipoles: 428 450 402
-0.39391
0.39572 0.00000 -0.08327
0.56124

0.00000 -0.66438
-0.43514 0.00000 0.10314

multipoles: 450 428 402
0.23855
-0.07521 0.00000 -0.14168
-0.00949

0.00000 0.00186
-0.06292 0.00000 0.00763

multipoles: 443 411 422
0.08813
0.07024 0.00000 -0.11076
0.11547

0.00000 0.00615
0.05162 0.00000 -0.12162

TO3-Biotin parameters

atom	403 403	C	"TO3-E"	6
12.011	4			
atom	409 409	C	"TO3-E"	6
12.011	3			
atom	413 413	C	"TO3-E"	6
12.011	3			
atom	415 415	C	"TO3-E"	6
12.011	3			
atom	420 420	C	"TO3-E"	6
12.011	3			
atom	422 422	C	"TO3-E"	6
12.011	3			
atom 425 425 C "TO3-E " 6				
atom 419 419 C "TO3-E " 6				
atom 427 427 C "TO3-E " 6				
atom 423 423 C "TO3-E " 6				
atom 428 428 C "TO3-E " 6				
atom 424 424 C "TO3-E " 6				
atom 426 426 C "TO3-E " 6				
atom 418 418 C "TO3-E " 6				
atom 410 410 C "TO3-E " 6				
atom 411 411 C "TO3-E " 6				
atom 416 416 C "TO3-E " 6				
atom 421 421 C "TO3-E " 6				
atom 417 417 C "TO3-E " 6				
atom 412 412 C "TO3-E " 6				
atom 408 408 C "TO3-E " 6				
atom 406 406 N "TO3-E " 7				
atom 414 414 N "TO3-E " 7				
atom 430 430 S "TO3-E " 16				
atom 433 433 H "TO3-E " 1				
atom 437 437 H "TO3-E " 1				
atom 440 440 H "TO3-E " 1				
atom 443 443 H "TO3-E " 1				
vdw	3.4050	0.1100		
---	---	---	---	
vdw	2.8700	0.0240	0.910	
vdw	3.8200	0.1010		
vdw	2.9800	0.0240	0.920	
vdw	2.8900	0.0240	0.910	
vdw	2.9600	0.0220	0.920	
vdw	3.8200	0.1060		
vdw	3.3000	0.1120		
vdw	3.7100	0.1100		
vdw	2.5900	0.0220	0.900	
vdw	2.9200	0.0300	0.920	
vdw	2.9200	0.0300	0.920	
vdw	2.9200	0.0300	0.920	
vdw	2.9200	0.0300	0.920	
vdw	4.0050	0.3550		
vdw	3.8200	0.1060		
vdw	3.8000	0.0890		
vdw	3.8000	0.0890		
vdw	2.9800	0.0260	0.920	
vdw	2.9800	0.0260	0.920	
vdw	2.9800	0.0260	0.920	
vdw	2.9800	0.0260	0.920	
vdw	2.9800	0.0260	0.920	
vdw	3.8000	0.0910		
vdw	3.8000	0.0910		
vdw	2.9800	0.0260	0.920	
vdw	2.9800	0.0260	0.920	
vdw	2.9800	0.0260	0.920	
vdw	2.9800	0.0260	0.920	
vdw	2.9800	0.0260	0.920	
vdw	3.7100	0.1050		
vdw	3.8000	0.1010		
vdw 416 3.8000 0.1010
vdw 421 3.8000 0.1010
vdw 417 3.8000 0.1010
vdw 412 3.8000 0.1010
vdw 408 3.8000 0.1010
vdw 414 3.7100 0.1050

bond 419 430 216.0 1.74
bond 410 414 400.0 1.33
bond 406 409 381.30 1.34
bond 407 410 385.0 1.5
bond 425 422 385.0 1.44
bond 430 427 250.0 1.75
bond 436 407 601.80 1.24
bond 446 425 400.0 1.09
bond 438 410 400.0 1.09
bond 415 420 385.0 1.46
bond 425 419 385.0 1.37
bond 414 419 600.0 1.45
bond 414 418 600.0 1.42
bond 408 406 400.0 1.3469999999999998
bond 406 403 295.419463 1.4472
bond 433 403 345.97894 1.09
bond 413 409 375.678112 1.39
bond 437 409 375.586577 1.08
bond 415 413 379.094345 1.39
bond 440 413 368.093365 1.09
bond 411 415 337.112301 1.43
bond 422 420 485.389179 1.36
bond 443 420 365.16166 1.09
bond 448 422 365.16166 1.09
bond 418 427 375.678112 1.4
bond 423 427 378.323984 1.39
bond 428 423 379.094345 1.39
bond 450 423 368.093365 1.09
bond 424 428 379.094345 1.4
bond 447 428 368.093365 1.09
bond 426 424 379.094345 1.39
bond 449 424 368.093365 1.09
bond 418 426 375.678112 1.4
bond 445 426 368.093365 1.08
bond 416 411 337.112301 1.42
bond 408 411 337.112301 1.4021
bond 421 416 379.094345 1.38
bond 441 416 368.093365 1.08
Bond 1	Bond 2	Bond Length	Bond Angle
417 421	379.094345	1.41	
444 421	368.093365	1.09	
412 417	379.094345	1.38	
442 417	368.093365	1.09	
408 412	375.678112	1.3817	
439 412	368.093365	1.08	
405 407	363.15688	1.36	
435 405	475.798234	1.02	
401 405	232.730342	1.47	
432 401	340.532535	1.09	
402 401	205.758598	1.52	
431 402	340.532535	1.1	
429 402	274.968492	1.4	
404 429	291.912992	1.43	
434 404	345.97894	1.09	

Angle 1	Angle 2	Angle 3	Angle Value	Angle Value
425	419	414	80.0	116.24440000000001
425	419	430	53.2	130.2004
419	425	446	50.0	116.2
419	414	410	65.0	116.2248
419	430	427	80.0	89.85
418	427	430	53.2	114.01
418	414	410	65.0	131.4245
414	419	430	60.0	111.7
414	410	438	60.0	114.77
414	410	407	60.0	133.53
404	429	402	88.5	107.8052
401	402	429	88.0	105.22
430	427	423	60.0	124.8
437	409	406	58.99	116.8
438	410	407	38.0	111.21
446	425	422	38.0	114.61
409	406	403	51.80	118.57
436	407	410	65.0	116.47529999999999
405	407	410	60.0	119.6379
405	407	436	76.98	124.7
415	420	443	50.0	114.39
408	406	403	65.0	118.3764
448	422	425	38.0	113.99
422	420	415	60.0	123.08210000000001
425	422	420	60.0	126.68280000000001
419	425	422	60.0	129.18
406	409	413	60.0	121.29
414	418	427	60.0	111.02
414	418	426	60.0	127.39
angle 433 403 433 36.406852 113.00880000000001				
angle 435 405 407 40.855201 115.76610000000001				
angle 401 405 407 87.947117 114.61710000000001				
angle 432 401 405 57.622801 108.3487				
angle 402 401 405 9.687701 108.4788				
angle 401 405 435 29.797294 116.85				
angle 431 402 401 48.260518 110.6				
angle 432 401 432 30.490529 108.8989				
angle 402 401 432 48.260518 110.06				
angle 431 402 431 30.490529 107.64				
angle 429 402 431 54.887155 111.41				
angle 434 404 429 57.322419 109.45				
angle 434 404 434 72.813704 109.48				
strbnd 425 419 414 0 0				
strbnd 425 419 430 0 0				
strbnd 419 425 446 0 0				
strbnd 419 414 410 0 0				
strbnd 419 430 427 0 0				
strbnd 418 427 430 0 0				
strbnd 418 414 410 0 0				
strbnd 414 419 430 0 0				
strbnd 414 410 438 0 0				
strbnd 414 410 407 0 0				
strbnd 404 429 402 0 0				
strbnd 401 402 429 0 0				
strbnd 430 427 423 0 0				
strbnd 437 409 406 11.50 11.50				
strbnd 438 410 407 0 0				
strbnd 446 425 422 0 0				
strbnd 409 406 403 7.20 7.20				
strbnd 436 407 410 0 0				
strbnd 405 407 410 0 0				
strbnd 405 407 436 18.70 18.70				
strbnd 415 420 443 0 0				
strbnd 408 406 403 0 0				
strbnd 448 422 425 0 0				
strbnd 422 420 415 0 0				
strbnd 425 422 420 0 0				
strbnd 419 425 422 0 0				
strbnd 406 409 413 0 0				
strbnd 414 418 427 0 0				
strbnd 414 418 426 0 0				
strbnd 408 406 409 0 0				
strbnd 411 415 420 0 0				
strbnd	411	408	406	0
--------	-----	-----	-----	---
strbnd	412	408	406	0
strbnd	413	415	420	0
strbnd	415	409	406	20.4528
strbnd	415	409	406	20.4528
strbnd	415	413	409	20.4528
strbnd	416	411	415	20.4528
strbnd	408	411	415	20.4528
strbnd	448	422	420	34.2002
strbnd	449	424	428	20.4528
strbnd	449	424	428	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd	449	424	426	20.4528
strbnd 432 401 405 5.7126 5.7126				
strbnd 402 401 405 5.7126 5.7126				
strbnd 401 405 435 25.9516 25.9516				
strbnd 431 402 401 5.7126 5.7126				
strbnd 432 401 432 5.7126 5.7126				
strbnd 402 401 432 5.7126 5.7126				
strbnd 431 402 431 5.7126 5.7126				
strbnd 429 402 431 5.7126 5.7126				
strbnd 434 404 429 5.7126 5.7126				
strbnd 434 404 434 5.7126 5.7126				
opbend 410 407 0 0 42.40				
opbend 443 420 0 0 140.30				
opbend 448 422 0 0 140.30				
opbend 446 425 0 0 140.30				
opbend 438 410 0 0 140.30				
opbend 415 420 0 0 42.40				
opbend 403 406 0 0 12.90				
opbend 422 425 0 0 42.40				
opbend 422 420 0 0 14.40				
opbend 419 425 0 0 14.40				
opbend 414 419 0 0 18.00				
opbend 414 418 0 0 18.00				
opbend 420 415 0 0 14.40				
opbend 406 408 0 0 14.40				
opbend 419 414 0 0 10.80				
opbend 418 414 0 0 10.80				
opbend 413 409 0 0 34.0822				
opbend 409 413 0 0 34.0822				
opbend 437 409 0 0 72.8135				
opbend 415 413 0 0 84.8861				
opbend 413 415 0 0 84.8861				
opbend 440 413 0 0 72.8135				
opbend 411 415 0 0 100.1116				
opbend 415 411 0 0 100.1116				
opbend 418 427 0 0 47.0937				
opbend 427 418 0 0 47.0937				
opbend 423 427 0 0 14.9839				
opbend 427 423 0 0 14.9839				
opbend 428 423 0 0 84.8861				
opbend 423 428 0 0 84.8861				
opbend 450 423 0 0 72.8135				
opbend 424 428 0 0 84.8861				
opbend 428 424 0 0 84.8861				
opbend 447 428 0 0 72.8135				
opbend 426 424 0 0 84.8861				
opbend 424 426 0 0 84.8861				
opbend 449 424 0 0 72.8135				
opbend 418 426 0 0 39.6142				
opbend 426 418 0 0 39.6142				
opbend 445 426 0 0 72.8135				
opbend 416 411 0 0 95.117				
opbend 411 416 0 0 95.117				
opbend 408 411 0 0 47.0937				
opbend 411 408 0 0 47.0937				
opbend 421 416 0 0 84.8861				
opbend 416 421 0 0 84.8861				
opbend 441 416 0 0 72.8135				
opbend 417 421 0 0 84.8861				
opbend 421 417 0 0 84.8861				
opbend 444 421 0 0 72.8135				
opbend 412 417 0 0 84.8861				
opbend 417 412 0 0 84.8861				
opbend 442 417 0 0 72.8135				
opbend 408 412 0 0 47.0937				
opbend 412 408 0 0 47.0937				
opbend 439 412 0 0 72.8135				
opbend 436 407 0 0 16.5045				
opbend 405 407 0 0 92.7841				
opbend 407 405 0 0 92.7841				
opbend 435 405 0 0 26.8945				
opbend 401 405 0 0 16.5457				
opbend 406 409 0 0 14.39				
opbend 409 406 0 0 3.6				
opbend 420 422 0 0 14.39				
opbend 425 419 0 0 14.39				
opbend 425 422 0 0 14.39				
opbend 430 419 0 0 14.39				
opbend 414 410 0 0 14.39				
opbend 410 414 0 0 3.6				
opbend 430 427 0 0 14.39				
opbend 407 410 0 0 14.39				
opbend 408 406 0 0 3.6				
torsion 425 422 420 415 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 448 422 420 415 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 420 422 425 419 12.504 0.0 1 -9.345 180.0 2 2.432 0.0 3				
torsion 414 419 425 422 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 430 419 425 422 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 443 420 422 425 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 418 414 419 425 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 410 414 419 425 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 427 430 419 425 0.854 0.0 1 -0.374 180.0 2 0.108 0.0 3				
torsion 448 422 419 0.0 1 0 180.0 2 0.108 0.0 3				
torsion 438 410 414 419 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 407 410 414 419 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 418 427 430 419 0.854 0.0 1 -0.374 180.0 2 0.108 0.0 3				
torsion 423 427 430 419 0.854 0.0 1 -0.374 180.0 2 0.108 0.0 3				
torsion 410 414 418 427 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 414 419 430 427 0.854 0.0 1 -0.374 180.0 2 0.108 0.0 3				
torsion 430 427 418 426 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 410 414 418 426 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 438 410 414 418 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 407 410 414 418 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 430 419 414 410 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 446 425 419 414 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 430 427 418 414 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 436 407 410 414 0.747 0.0 1 -0.991 180.0 2 -1.637 0.0 3				
torsion 405 407 410 414 1.838 0.0 1 -0.988 180.0 2 0.608 0.0 3				
torsion 446 425 419 430 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 448 422 420 443 0.000 0.0 1 0.000 180.0 2 0.299 0.0 3				
torsion 405 401 402 429 -2.572 0.0 1 2.571 180.0 2 -2.571 0.0 3				
torsion 401 402 429 404 -1.165 0.0 1 -0.066 180.0 2 0.911 0.0 3				
torsion 434 404 429 402 0 0.0 1 0 180.0 2 0.108 0.0 3				
torsion 430 427 423 428 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 430 427 423 450 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3				
torsion 403 406 409 413 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 433 403 406 409 0.072 0.0 1 -0.012 180.0 2 0.563 0.0 3				
torsion 437 409 406 403 0.121 0.0 1 -0.648 180.0 2 0.199 0.0 3				
torsion 436 407 410 438 0 0.0 1 0 180.0 2 0.108 0.0 3				
torsion 405 407 410 438 0 0.0 1 0 180.0 2 0.108 0.0 3				
torsion 433 403 406 408 0 0.0 1 0 180.0 2 0.108 0.0 3				
torsion 403 406 408 412 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 401 405 407 410 -1.000 0.0 1 4.2833333333333333 180.0 2 2.050 0.0 3				
torsion 435 405 407 410 0.000 0.0 1 3.4833333333333334 180.0 2 0.800 0.0 3				
torsion 436 407 405 401 1.000 0.0 1 9.1 180.0 2 -2.250 0.0 3				
torsion 435 405 407 436 0.000 0.0 1 1.6193333333333333 180.0 2 -0.357 0.0 3				
torsion 406 409 413 415 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 414 418 427 423 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 414 418 426 424 -0.67 0.0 1 6.287 180.0 2 0.0 0.3				
torsion 440 413 409 437 0.000 0.0 1 10.922 180.0 2 0.000 0.0 3				
torsion 406 409 413 440 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3				
torsion 414 418 426 445 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3				
torsion 419 414 418 427 -0.67 0.0 1 6.287 180.0 2 0 0.0 3				
torsion 419 414 418 426 -0.67 0.0 1 6.287 180.0 2 0 0.0 3				
torsion 424 426 418 427 -0.67 0.0 1 6.287 180.0 2 0 0.0 3				
torsion 418 427 423 428 -0.67 0.0 1 6.287 180.0 2 0 0.0 3				
torsion 418 426 424 428 -0.67 0.0 1 6.287 180.0 2 0 0.0 3				
torsion 447 428 423 427 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3				
torsion 449 424 426 418 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3				
torsion 449 424 428 447 0.000 0.0 1 7.072 180.0 2 0.000 0.0 3				
torsion 445 426 424 449 0.000 0.0 1 7.072 180.0 2 0.000 0.0 3				
torsion 444 421 416 441 0.000 0.0 1 7.072 180.0 2 0.000 0.0 3				
torsion 442 417 421 444 0.000 0.0 1 7.072 180.0 2 0.000 0.0 3				
torsion 439 412 417 442 0.000 0.0 1 7.072 180.0 2 0.000 0.0 3				
torsion 406 408 412 439 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3				
torsion 415 411 416 441 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 427 418 426 445 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3				
torsion 423 428 424 449 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 428 424 426 445 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 424 428 423 450 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 426 424 428 447 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 418 427 423 450 0.55 0.0 1 6.187 180.0 2 -0.55 0.0 3				
torsion 411 416 421 444 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 411 408 412 439 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 416 421 417 442 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 421 417 412 439 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 417 421 416 441 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 412 417 421 444 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 408 411 416 441 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 408 412 417 442 0.250 0.0 1 5.534 180.0 2 -0.550 0.0 3				
torsion 415 411 408 406 -0.67 0.0 1 6.287 180.0 2 0 0.0 3				
torsion 416 411 408 406 -0.67 0.0 1 6.287 180.0 2 0 0.0 3				
torsion 417 412 408 406 -0.67 0.0 1 6.287 180.0 2 0 0.0 3				
torsion 421 416 411 415 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 412 408 411 415 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 424 428 423 427 -0.67 0.0 1 6.287 180.0 2 0 0.0 3				
torsion 426 418 427 423 -0.67 0.0 1 6.287 180.0 2 0 0.0 3				
torsion 426 424 428 423 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 417 421 416 411 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 417 412 408 411 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 412 417 421 416 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 417 412 408 411 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 408 411 416 417 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 411 408 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 408 411 416 417 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 412 417 421 416 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 412 417 421 416 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 411 408 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 411 408 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 409 413 415 420 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 409 413 415 420 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 409 437 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 409 437 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 409 415 413 408 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 409 415 413 408 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 409 437 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 409 437 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 409 437 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 409 437 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 409 437 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 409 437 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 409 437 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 413 415 409 437 -0.670 0.0 1 4.304 180.0 2 0.000 0.0 3				
torsion 408 411 416 420 0.000 0.0 1 0.000 180.0 2 0.341 0.0 3				
torsion 409 413 415 420 0.000 0.0 1 0.000 180.0 2 0.341 0.0 3				
SOLUTE 437 2.9059 2.602 2.5726				
SOLUTE 440 2.574 2.758 2.9054				
SOLUTE 443 2.574 2.758 2.9054				
SOLUTE 448 2.574 2.758 2.9054				
SOLUTE 446 2.574 2.758 2.9054				
SOLUTE 450 2.574 2.758 2.9054				
SOLUTE 447 2.574 2.758 2.9054				
SOLUTE 449 2.574 2.758 2.9054				
SOLUTE 445 2.574 2.758 2.9054				
SOLUTE 438 2.574 2.758 2.9054				
SOLUTE 441 2.574 2.758 2.9054				
SOLUTE 444 2.574 2.758 2.9054				
SOLUTE 442 2.574 2.758 2.9054				
SOLUTE 439 2.574 2.758 2.9054				
SOLUTE 432 3.0556 2.996 4.032				
SOLUTE 434 2.6533 3.392 2.9044				
SOLUTE 435 3.6491 3.404 2.9894				
SOLUTE	Value 1	Value 2	Value 3	
---	---	---	---	---
431	3.9912	4.144	3.8925	
433	3.143	3.374	4.144	
409	3.8286	3.893	4.5084	
419	3.8286	3.893	4.5084	
418	3.8585	3.766	3.8448	
408	3.8286	3.893	4.5084	
413	3.8286	3.893	4.5084	
415	3.8286	3.893	4.5084	
427	3.8585	3.766	3.8448	
423	3.8286	3.893	4.5084	
426	3.8286	3.893	4.5084	
411	3.8286	3.893	4.5084	
416	3.8286	3.893	4.5084	
412	3.8286	3.893	4.5084	
407	2.9301	4.506	4.2118	
428	3.8286	3.893	4.5084	
424	3.8286	3.893	4.5084	
421	3.8286	3.893	4.5084	
417	3.8286	3.893	4.5084	
420	2.9301	4.506	4.2118	
422	2.9301	4.506	4.2118	
425	2.9301	4.506	4.2118	
410	2.9301	4.506	4.2118	
403	3.5062	3.309	4.536	
404	3.5062	3.309	4.536	
401	3.3025	2.854	4.9016	
402	3.3025	2.854	4.9016	
406	3.4243	3.491	4.2676	
414	3.4243	3.491	4.2676	
405	2.8836	2.99	3.218	
436	2.9835	3.356	2.9616	
429	3.1684	3.134	3.0999	
430	4.4346	4.194	4.5431	
polarize	403	1.6196	0.3900 433	
polarize	409	2.0645	0.3900 413 406 437	
polarize	413	2.0645	0.3900 409 415 440	
polarize	415	2.0645	0.3900 413 411	
polarize	420	1.4150	0.3900 443	
polarize	422	2.0645	0.3900 448	
polarize	425	1.4150	0.3900 446	
polarize	419	2.0645	0.3900 414 430	
polarize	427	2.0645	0.3900 423 418 430	
polarize	423	2.0645	0.3900 427 428 450	
polarize	428	2.0645	0.3900 423 424 447	
Orders	Polarization	Multipole	Electric Fields	Magnetic Fields
--------	--------------	------------	----------------	----------------
403	406	408	-0.07427	
			-0.04534	0.00000
			-0.47165	
			0.00000	-0.43942
			-0.07611	0.00000
Multipole	409	437	406	0.24552
-----------	-----	-----	-----	---------
				0.21240
				0.01602
				0.00000
				-0.14121
Multipole	413	440	415	-0.09886
				0.00874
				0.26031
				0.00000
				-0.18674
				0.01602
				0.00000
Multipole	415	411	420	0.12227
				0.31099
				0.28419
				0.00000
				0.31541
Multipole	420	443	422	-0.10008
				-0.11973
				-0.22853
				0.00000
				0.18618
				-0.11052
Multipole	422	448	425	-0.12184
				0.14300
				-0.04906
				0.00000
				0.15625
Multipole	425	446	419	0.07128
				-0.00760
				0.01113
				0.00000
				-0.13075
Multipole	419	430	414	-0.33573
				0.05734
				0.41520
				0.00000
				-0.11749
Multipole	427	430	418	-0.19537
				-0.00958
				0.01733
				0.00000
				-0.2430
Multipole	423	450	428	-0.08001
				-0.22464
				0.01803
				0.00000

Page 61 of 66
Multipole	428	447	424	-0.05903	0.00000	-0.09007			
	0.00857			0.01491	0.00000	0.22064			
	0.26540			0.00000	-0.03842				
	-0.00073	0.00000	-0.22698						
Multipole	424	449	426	0.28987					
	-0.05892	0.00000	-0.49393						
	-0.93825			0.00000	-0.83585				
	0.14921	0.00000	1.77410						
Multipole	426	445	418	-0.09442					
	0.09308	0.00000	0.14249						
	0.04240			0.00000	0.10295				
	-0.01357	0.00000	-0.14535						
Multipole	418	414	426	-0.03625					
	-0.05872	0.00000	0.24976						
	-0.31397			0.00000	0.0966				
	0.09209	0.00000	0.30431						
Multipole	410	407	438	-0.03108					
	-0.21460	0.00000	-0.03980						
	-0.18766			0.00000	0.14409				
	0.57826	0.00000	0.04357						
Multipole	411	408	416	-0.04598					
	0.16201	0.00000	0.03346						
	-0.52308			0.00000	0.61501				
	-0.07957	0.00000	-0.09193						
Multipole	416	441	421	-0.16937					
	0.03187	0.00000	0.21548						
	-0.02480			0.00000	0.11593				
	-0.22898	0.00000	-0.09113						
Multipole	421	444	417	0.21376					
	0.04445	0.00000	-0.21321						
	-0.51415			0.00000	-0.48991				
	-0.06162	0.00000	1.00406						
Multipole	417	442	412	0.00021					
	-0.08919	0.00000	0.18633						
	0.24288								
Multipole	412 439 408	408 406 412	406 408 409	414 410 418	430 427 419	433 403 406	437 409 406	440 413 415	443 420 422
-----------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------
	0.00000	-0.02997	0.00945	0.00000	-0.21291	0.22323	0.00000	-0.10153	0.00000
	-0.10153	0.05821	0.00000	0.08079	0.25705	0.02471	0.00000	0.37522	0.00000
	-0.16896	0.22323	0.02258	0.00000	-0.08079	0.02471	0.00000	0.10499	0.00000
	0.00000	-0.16896	-0.055282	0.00000	0.25705	0.02471	-0.05282	0.92804	0.00000
	0.00945	0.00000	-0.85046	0.00000	0.03353	0.00242	-0.85046	0.92804	0.00000
	0.00000	1.15091	0.00000	0.01137	0.00000	0.00000	0.01137	0.00000	0.00000
	0.00000	0.11832	0.00000	0.00000	0.06821	0.00000	0.00000	0.00000	0.00000
	0.00000	-0.59208	-0.055282	0.92804	0.25705	0.02471	-0.59208	0.92804	0.25705
	1.15091	0.00000	0.52446	0.00000	0.03353	0.00242	-0.59208	0.92804	0.03353
	0.00000	0.00000	0.52446	0.00000	0.03353	0.00242	0.00000	0.00000	0.00000
	0.00000	-0.59208	-0.85046	0.00000	0.03353	0.00242	-0.59208	0.92804	0.03353
	0.00000	-0.85046	0.52446	0.00000	0.03353	0.00242	0.52446	0.92804	0.52446
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	0.00000	-2.03975	2.03975	0.00000	0.00000	0.00000	-2.03975	0.00000	0.00000
	-0.03780	0.00000	-0.03780	0.00000	0.00000	0.00000	-0.03780	0.00000	0.00000
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	0.04693	0.00000	0.04693	0.00000	0.00000	0.00000	0.04693	0.00000	0.04693
	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	-0.02665	0.00000	-0.02665	0.00000	0.00000	0.00000	-0.02665	0.00000	-0.02665
	0.08796	0.00000	-0.17056	0.00000	0.00000	0.00000	-0.17056	0.00000	-0.17056
multipole	448 422 425	446 425 419	450 423 428	447 428 424	449 424 426	445 426 418	438 410 407	441 416 421	444 421 417
-----------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------
	0.26868	0.10890	0.04281	0.05488	0.05260	0.08142	0.09344	0.03410	0.05126
	0.00000	0.01340	0.02419	-0.02454	-0.00230	-0.03458	-0.02141	0.07648	0.00000
	-0.10024	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	-0.16844	-0.07678	-0.14897	-0.10892	0.03004	-0.15042	-0.13402	-0.17264	-0.04110
Multipole	442 417 412	439 412 408	407 405 436	436 407 405	405 401 435	435 405 401	401 402 405	432 401 402	
-----------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	
	-0.04429	0.00000	-0.03261	0.01535	0.00000	-0.08229	-0.04372	0.00000	0.06694
	0.01592	0.00000	-0.12772	0.03687	0.00000	-0.01513	0.00734	0.00000	-0.02174
	0.00000	-0.1592	0.00798	0.18894	0.00000	-0.05680	-0.06533	0.00000	-0.13214
	-0.04429	0.00000	-0.12772	0.03687	0.00000	-0.01513	0.00734	0.00000	-0.02174
	0.01592	0.00000	-0.12772	0.03687	0.00000	-0.01513	0.00734	0.00000	-0.02174
	0.00000	-0.1592	0.00798	0.18894	0.00000	-0.05680	-0.06533	0.00000	-0.13214
	-0.04429	0.00000	-0.12772	0.03687	0.00000	-0.01513	0.00734	0.00000	-0.02174
	0.01592	0.00000	-0.12772	0.03687	0.00000	-0.01513	0.00734	0.00000	-0.02174
	0.00000	-0.1592	0.00798	0.18894	0.00000	-0.05680	-0.06533	0.00000	-0.13214
	-0.04429	0.00000	-0.12772	0.03687	0.00000	-0.01513	0.00734	0.00000	-0.02174
Multipole	Numbers	Coefficients							
------------	---------	--------------							
402 429 401		0.18260							
		0.35324							
		0.06113							
		0.00000							
		0.00000							
		0.00000							
		-0.31230							
		0.16991							
431 402 429		0.00261							
		-0.01926							
		0.06983							
		0.00000							
		0.00216							
429 404 402		-0.31988							
		0.29821							
		0.14167							
		0.00000							
		-0.93403							
404 -434 -434		0.07601							
		0.00270							
		-0.44750							
		0.00000							
		-0.44027							
434 404 429		0.04188							
		0.05369							
		-0.01856							
		0.00000							
		-0.01890							
		0.03864							