A review on determination of 90Sr from alkaline waters using precipitation of Ca(OH)$_2$ and Ba(Ra)SO$_4$

D I P Putra1, W R Prihatiningsih1, M Makmur1, M N Yahya1, Y Priasetyono1, H Suseno1

1Center for Technology of Radiation Safety and Metrology - National Nuclear Energy Agency (BATAN). Jl. Lebak Bulus Raya No.49, Jakarta 12440.

Email: deddyipp@batan.go.id

Abstract. Since the Chernobyl accident (1989) and the Fukushima Daiichi Nuclear Power Plant accident in 2011, concern about the contamination of 90Sr in the environment has increased considerably. It is important for public safety to monitor 90Sr in aquatic environments due to the radiotoxic of its biochemical similarities with calcium in living organisms. Several techniques for the separation of strontium from matrices have been reported such as solvent extraction, liquid membrane extraction, ion-exchange, and extraction chromatography using Sr-Resin. This review provided a summary on literature works to develop efficiency radiochemical separation for removing 90Sr from waters. Radiometric method normally requires a long time and complete separation of Sr from the matrix and other radionuclides. One of simple method based on Ca(OH)$_2$ precipitation in alkaline solution and purification of Yttrium using Ba(Ra)SO$_4$ precipitate was applied to the separation of Sr from seawater and underground water sample. This review is a mini-report for determination of 90Sr removal from contaminated waters.

1. Introduction
Radioactive strontium is one of the most biological hazardous radionuclides produced in nuclear fission processes and it can release into the environment due to fallout from nuclear weapon test, operation nuclear facilities and the accident of nuclear power plant. A major source of 89Sr and 90Sr released into the environment from global fallout has been estimated about 6.22×10^{17} Bq during the period of nuclear weapon test [1]. The second major source is the accident of Chernobyl Nuclear Power Plant in 1986 and Fukushima Daiichi Nuclear Power Plant accident in 2011 due to high magnitude earthquake in Tohoku area. The approximate amount of 90Sr released during the Chernobyl NPP accident was 8×10^{15} Bq [1][2] and around 10^{14}–10^{15} Bq was released from Fukushima Daiichi NPP accident into the Pacific Ocean due to a leakages of reactor coolant water [3][4]. As a result of these events, the long-term monitoring of radionuclides is necessary to assess the ongoing emissions from the nuclear facilities, dose risk, and the impact on the environment.

90Sr is an important fission product because of its long physical and biological half-life and it can cause great external radiation doses to humans and other living things. On the other hand, 90Sr can be transferred into human body where it causes internal radiation doses through the inhalation or ingestion of contaminated food. Most of the 90Sr is accumulated in the bone skeleton resulting in...
chronic internal irradiation due to the similarity of its chemical characteristics to a calcium and it will incorporate in bones and teeth of humans. Furthermore, a long-term storage of ^{90}Sr deposited in the human body can lead to serious consequences, such as bone cancer or leukemia [5][6][7]. ^{89}Sr also share the same biological significance, but it has much shorter physical half-life and thus will not have a long-term environmental impact. However, the presence of both radioisotopes in environmental samples is of great interest. Since strontium can transported easily in waters is an important to determine the rapid and accurate analysis of radioactive strontium isotopes in waters in emergency or normal situations in order to protect the public from radiation hazards [8].

The analysis procedure for radioactive strontium is always complicated because ^{90}Sr and its daughter ^{90}Y are pure beta emitters, and prior to measurement they must be separated from the sample. A limited number of procedures have been described to determine ^{90}Sr in seawater and most of the analytical methods using ^{90}Y. Therefore, accurately determining and monitoring of ^{90}Sr in the environment is important for long-term dose assessment. Moreover, ^{90}Sr have also served as useful tracers for the studies about dust transport, soil erosion, sediment chronology, seawater movement and so on [9][10][11][12]. Various analytical procedures for separating ^{90}Sr in environmental samples have been developed. For instance, the Sr can be separated from Ca by fuming nitric acid [13][14] and Ca hydroxide precipitation [15][16]. This report describes a new approach for the rapid determination of ^{90}Sr in waters using preconcentration by Ca(OH)$_2$ and Ba(Ra)SO$_4$ for purification of Yttrium methods. The resulting recommended procedure is designed to be of general use to a wide range of laboratories. It is expected that this rapid method for determining ^{90}Sr in waters will be useful and safer for routine environmental radioactivity monitoring.

2. Sample pretreatment

The quantitation of radiostrontium is based on three major considerations: sample pre-treatment (to bring the sample into a suitable matrix), isolation of radiostrontium by chemical treatment, and radiometric measurement [17]. Pretreatment of sample to analysis ^{90}Sr is relatively complicated, including digestion or co-precipitation techniques to release and concentrate ^{90}Sr from sample matrix to a small amount of liquid solution. The liquid environmental samples such as seawater, river water, and groundwater need to pretreatment included filtration, pH adjustment, co-precipitation or evaporation so that it can be applied to the next step or detected directly [7][18][19][20][21][22][23]. The purpose of pH adjustment is to prepare for the ^{90}Sr co-precipitation and remove major interferences so that ^{90}Sr can be concentrated from large volume liquid samples to a small volume of acid solution. Popov et al. [16] adjusted the pH of 40 l water samples with HNO$_3$ to acidify the solution at pH 3-4 and added by CaCl$_2$ solution in 12M HCl before removing carbonate precipitation by adjusted pH ~10 with NaOH and dry Na$_2$CO$_3$. The flowchart of the analytical procedures was schematically shown in Fig. 1.
3. Separation and purification of 90Sr from environmental samples

The environmental samples contain various β-ray emitting radionuclides and it is necessary requires specific radiochemical separation of Sr due to β-radiation is not monoenergetic and determination of spectral resolution of individual nuclides is difficult. Naturally occurring radionuclides has potentially interference with the determination of 90Sr, such as 40K and 238U exist predominantly in seawater and the decay chain of uranium and thorium series also emit beta particles [24]. Another significant interference for the analysis of 90Sr in environmental and biological samples is the Ca due to their similar chemical properties in the same group in period table. Moreover, concentrations of Ca in samples are much higher than those of 90Sr. Previous research has proven that K$^+$ had a definitely adverse effect on the recovery of 90Sr in resin which resulted in 7% loss of 90Sr when 30 mg K$^+$ was presented in the solution [25]. In order to remove the influence of matrix interferences, it is necessary to separate Sr from the sample matrix. Generally, four methods have been widely used in the 90Sr separation and purification such as extraction chromatography, liquid-liquid extraction, ion exchange chromatography, and co-precipitation.

Extraction chromatography was widely applied in 90Sr analytical methods, due to its higher purification efficiency especially the applications of DGA and Sr resins. Tazoe et al. [7] has been successfully applied to the analysis of 90Sr in large volume seawater samples through 90Y separated from Sr and other interferences. Characterized DGA resin having high distribution coefficients for different elements and the capability for separation with samples containing multiple elements. 90Y was completely separated from other nuclides such as Na, K, Ca, Mg, etc, that have a negative effect on 90Y β measurements using the Fe(OH)$_3$ co-precipitation and DGA resin purification procedure with

![Figure 1. Summary of radiochemical procedure for analysis radiostrontium in water (Popov et al., 2006)](image-url)

Figure 1. Summary of radiochemical procedure for analysis radiostrontium in water (Popov et al., 2006)
decontamination factors of more than 10^6 [26]. Sr resin is characterized as having high selectivity and a special adsorption capacity for Sr. Grahek et al. [19] has been described detail of Sr resin application conditions such as acid solution, adsorption coefficient, eluant selection, etc. Tazoe et al. [7] developed a simplified analytical method to determined 90Sr in 3 L seawater samples from direct separation of 90Y two weeks after getting equilibrium, with MDL of 1.5 mBq L$^{-1}$ after 20h of counting. For large volume freshwater samples, Tomita et al. [27] separated 90Y from 90Sr in 170 L water samples using multi-step co-precipitations, resin purification, and two weeks waiting to achieve secular equilibrium and counted with a gas-flow type β counter to obtain a lower MDL of 0.1 mBq L$^{-1}$.

Another purification method that has been used is a liquid-liquid extraction using organic reagent to extract radionuclides from acid solution, which is a fast method for determination of 90Sr in environmental samples. Direct separation using Di-(2-ethylhexyl) phosphoric acid (HDEHP), tributyl phosphate (TBP), or t-octyl phosphine oxide (TOPO) have been commonly used for separation of 90Y from 90Sr. Applied HDEHP to selectively extract 90Sr from the acid solution was used by Clark, [28] in order to demonstrated effectiveness of the crown ether-based solid phase extraction from the calcium matrix containing Ca:Sr ratios exceeding 100. Aslan et al. [29] mixed HDEHP with toluene to selectively extract 90Sr into nitric acid solution. This method is easy and quick, and it offers high selectivity and recovery. However, organic solvents that must be used are usually toxic, volatile and expensive. Therefore, compared to other purification methods, liquid-liquid extraction for 90Sr analysis has not been widely applied [30].

Ion exchange chromatography was widely applied in determination 90Sr analytical methods due to its higher purification efficiency and convenient operation. Waples and Orlandini [31] developed a method combining the anion and cation exchange chromatography with coprecipitation using Fe hydroxide. This method included the measurement by beta counting of 90Y ($T_{1/2} = 64h$) as a daughter of 90Sr, which is in equilibrium state with 90Sr after letting samples equilibrate overnight. Isolation of Yttrium from other beta emitters such as Th was performed by passing the solution through an anion ion-exchange column Bio-Rad AG1-X8, 100-200 mesh. Ion exchange resins AG1-X8 and AG 50W-X8 have been the most commonly used to observation of the 90Sr-90Y in the aquatic environment [3][4][32]. The cation exchange chromatography method is more complicated than the coprecipitation and DGA resin extraction chromatography method since the former requires multiple coprecipitation and resin purification steps. Though the cation exchange method can handle a large volume of sample, it has disadvantages of taking a long time, having a small exchange capacity, and having relatively complicated method procedures.

Much of the emphasis for assay of radiostrontium has been focused on separation chemistry. The classical purification method of co-precipitation is simple and offers easy separation of 90Sr from interferences, in which no required a complicated and expensive facilities. Chemically, strontium mimics calcium which makes separation difficult in environmental samples where, inevitably, calcium is abundant. Strontium is usually separated from the isotopes of barium by BaCrO$_4$ precipitation, but it is time consuming and difficult due to critical control of pH of the solution and removal of the excess of chromium [8]. Recently a simple method based on Ca(OH)$_2$ precipitation in alkaline solution and Ba(Ra)SO$_4$ precipitate was applied to the separation of Sr from sample matrices and interfering radionuclides. Chen et al. [15] developed a simple, cheap and safe procedure for the determination of 90Sr in water samples by separation of radiostrontium from calcium using precipitation of Ca(OH)$_2$ in alkaline solution instead of fuming HNO$_3$. The separation of Sr from Ca by Ca(OH)$_2$ precipitation from alkaline solution can remove $>99\%$ of Ca with 0.2 moll$^{-1}$ NaOH in one precipitation with Sr remaining $>95\%$ in the solution. The concentration of Ca in the solution does not significantly affect the separation of Sr from Ca in a solution containing \leq 50 g of calcium.
Tomita et al. [27] developed analytical method to improved determining of low levels of radiostrontium in environmental freshwater samples. In this method, more than 60% of Ca was separated by Ca(OH)₂ precipitation, and the remaining Ca was removed by cation exchange. The strontium was separated by the cation exchange method for β counting after removal of most of the calcium (Ca) using Ca(OH)₂ precipitation. Through the procedure the Sr chemical yield was 88% on average with the detection limit of 90Sr activity approximately 0.1 mBq L⁻¹ in 170 L water samples. Popov et al. [16] developed another method based on the solubility difference of Sr(OH)₂ and Ca(OH)₂ to separated Sr from a large amount of Ca. In this analytical method proved that high radiochemical yield of strontium could be achieved at pH 4.5 with recovery value 83.6 % for strontium and 86.0 % for yttrium in water samples. The chemical yield of strontium is determined via gamma-spectrometric measurement of the activity of the radioactive tracer of 85Sr. The presented method is safer for the laboratory staff instead of using fuming nitric acid methods. Also, this procedure has advantages for good accuracy, high chemical yield and applicable for separated strontium from a large content of calcium if compared to previous analytical method.

4. Measurements of strontium
The isotopes of ⁸⁵Sr and ⁹⁰Sr/⁹⁰⁶Y emit only β-rays has been conventionally determined by radiometric methods usually measured by β counting, β spectrometry, or Cerenkov counting with proportional counters or liquid scintillation counters [9][16][33][34]. ⁹⁰Sr decays to ⁹⁰⁶Y before finally decaying to stable nuclide of ⁹⁰Zr. ⁹⁰⁶Y emits beta particles with energies Eₘ₅₆ = 2.28 MeV was higher than that ⁹⁰Sr with energy Eₘ₅₆ = 0.546 MeV, making it more suited for radiometric detection methods [35]. However, it takes up to three weeks to reach equilibrium, while the analysis itself can take as much as 1000 min [6][7]. Such time-consuming procedures cannot meet the need for quick response in nuclear emergency situations. However, ⁹⁰Sr is usually determined by measuring its short-lived daughter nuclide ⁹⁰⁶Y, and Y₂(SO₄)₃ is water soluble. Chen et al. [15] using the precipitation procedure of Ba(Ra)SO₄ to remove Ba and Ra from Y if only ⁹⁰⁶Y is to be determined. In this research shows the separation of Y from Ba, Ra and Sr by sulphate precipitation, more than 99% Sr and 99.5% of Ba and Ra can be removed by this method, while >98.5% Y still remained in the solution. Therefore, it is recommended that the procedure of Ba(Ra)SO₄ precipitation is used for the determination of ⁹⁰Sr. Measurement the radioactivity of ⁹⁰⁶Y using anti-coincident gas flow GM-counter with the low detection 5-10 mBg, or 0.02-0.05 Bq m⁻³ for 200 l samples and the analytical error at this level is >50%.

Sample	Purification	Recovery %	MDL	References
Water	Sr resin	85-95	0.1-7 Bq	Heckel and Vogl, 2009
Water	Sr resin	86.2	140 mBq sample⁻¹	Dai and Kramer-Tremblay, 2014
Seawater	Co-precipitation + cation exchange	86-93	0.1 mBq L⁻¹	Tomita et al., 2015
Seawater	AG 50W-X8 + Sr Resin	67 ± 22	1-3 mBq L⁻¹	Karube et al., 2016
Seawater	AG1-X8, AG 50W-X8	67-93	0.02-0.05 mBq L⁻¹	Castrillejo et al., 2016
Seawater	Co-precipitation + DGA	95.5 ± 2.3	1.5 mBq L⁻¹	Tazoe et al., 2016
Seawater	Sr resin + DGA resin	85.4 ± 3.3	1.7-3.5 Bq L⁻¹	Tayeb et al., 2016
Seawater	Co-precipitation + DGA	80	0.2 mBq L⁻¹	Tazoe et al., 2017
Water	Sr resin	97	14.5 Bq L⁻¹	Kolacinska et al., 2017
Seawater	Co-precipitation + Sr Disk	84.2 ± 0.4	35 mBq L⁻¹	Uesugi et al., 2018

Table 1. Analytical procedure for purification ⁹⁰Sr in environmental water
5. Conclusion
This mini-review summarized the literature works for developing selective Sr determination in high concentration of Ca using Ca(OH)$_2$ precipitation and purification of Y by Ba(Ra)SO$_4$ with focus in its use in alkaline waters. The result confirmed the capability of conventional procedure of co-precipitation method is effective for removing Sr and Y from waters. Co-precipitation method using Ca(OH)$_2$ and Ba(Ra)SO$_4$ can be separated is safer for the laboratory staff, environment and cheaper. For the determination of 90Sr, a more effective and specific separation of Ba and Ra can be achieved by Ba(Ra)SO$_4$ precipitation. This procedure can be used simultaneously for separation and further purification of 90Y from radiostrontium. The procedure of Ca(OH)$_2$ precipitation combined with Ba(Ra)SO$_4$ has been successfully applied for 90Sr analysis of 45l seawater and 200l drinking water samples.

Reference
[1] Hirose K, Igarashi Y, Aoyama M 2008 Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. *Appl. Radiat. Isot.* 66 1675-1678.
[2] Stamoulis K C, Assimakopoulos P A, Ioannides K G, Johnson E, Soucacos P N 1999 Strontium-90 concentration measurements in human bones and teeth in Greece. *Sci. Total Environ.* 229 165-182.
[3] Casacuberta N, Masqué P, Garcia-Orellana J, Garcia-Tenorio R, Bueseler K O 2013 90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident. *Biogeoosciences.* 10 3649-3659.
[4] Castrillejo M, Casacuberta N, Breier C F, Pike S M, Masque P, Bueseler K O 2016 Reassessment of 90Sr, 137Cs, and 134Cs in the coast off Japan derived from the Fukushima Dai-ichi nuclear accident. *Environ. Sci. Technol.* 50 173-180.
[5] Feuerstein J, Boulyga S F, Galler P, Stingeder G, Prohaska T 2008 Determination of 90Sr in soil samples using inductively coupled plasma mass spectrometry equipped with dynamic reaction cell (ICP-DRC-MS). *J. Environ Radioact.* 99 1764-1769.
[6] Froidevaux P, Bochud F, Haldimann M 2010 Retention half times in the skeleton of plutonium and 90Sr from above-ground nuclear tests: a retrospective study of the Swiss population. *Chemosphere.* 80 519-524.
[7] Tazoe H, Obata H, Yamagata T, Karube Z, Nagai H, Yamada M 2016 Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA resin for seawater monitoring. *Talanta* 152 219-227.
[8] IAEA 1970 Reference Method for Marine Radioactivity Studies, IAEA Technical Report Series No. 118, International Atomic Energy Agency, Vienna.
[9] Froidevaux J, Geering J J, Valley J F, 2002 Strontium-90 determination in biological and environmental samples by direct milking of its daughter product, yttrium-90. *J. Radioanal. Nucl. Chem.* 254 23-27.
[10] Igarashi Y, Aoyama M, Hirose K, Miyao T, Yabuki S 2001 Is it possible to use 90Sr and 137Cs as tracers for the aeolian dust transport? *Water, Air, Soil Pollut.* 130 349-354.
[11] Franic Z 2005 Estimation of the Adriatic Sea water turnover time using fallout 90Sr as a radioactive tracer. *J. Marine. Science.* 57 1-12.
[12] Everett S E, Tims S G, Hancock G J, Fifield L K, Bartley R 2008 Comparison of Pu and 137Cs as tracers of soil and sediment in terrestrial environment. *J Environ. Radioact.* 99 383-393.
[13] Manos C G, Kinney R M, Lisk D J 1993 Analysis of strontium-90 in the bones of brown trout (Salmo trutta) from Lake Ontario. *Chemosphere.* 26 2031-2037.
[14] Lee Y K, Bakhtiar S N, Akbarzadeh M, Lee J S 2000 Sequential isotope determination of strontium, thorium, plutonium, uranium and americium in bioassay samples. *J. Radioanal. Nucl. Chem.* 243 525-533.
[15] Chen Q, Hou X, Yu Y, Dahlgaard H, Nielsen S P 2002 Separation of Sr from Ca, Ba and Ra by means of Ca(OH)\textsubscript{2} and Ba(Ra)Cl\textsubscript{2} or Ba(Ra)SO\textsubscript{4} for the determination of radiostrontium.
Anal. Chim. Acta. 466 109-116.

[16] Popov L, Hou X, Nielsen S P, Yu Y, Djingova R, Kuleff I 2006 Determination of radiostrontium in environmental samples using sodium hydroxide for separation of strontium from calcium. *J. Radioanal. Nucl. Chem.* 269 161-173.

[17] Wilken R and Joshi S R 1991 Rapid methods for determining \(^{90}\)Sr, \(^{89}\)Sr, and \(^{90}\)Y in environmental samples: a survey. *Radioactivity and radiochemistry.* (2)(3) 14-27.

[18] Dai X and Kramer-Tremblay S 2014 Five-column chromatography separation for simultaneous determination of hard-to-detect radionuclides in water and swipe samples. *Anal. Chem.* 86 5441-5447.

[19] Grahek Z, Zecevic N, Lulic S 1999 Possibility of rapid determination of low-level \(^{90}\)Sr activity by combination of extraction chromatography separation and Cherenkov counting. *Anal. Chim. Acta.* 399 237-247.

[20] Holmgren S, Tovedal A, Jonsson S, Nygren U, Rameback H 2014 Handling interferences in \(^{90}\)Sr and \(^{90}\)Sr measurements of reactor coolant water: a method based on strontium separation chemistry. *Appl. Radiat. Isot.* 90 94-101.

[21] O’Hara M, Yucel U, Kahraman G, Kurt A, Yeltepe E, Ozvatan S, Kaya N, Gundogdu G, Mert H 2002 Separation of Sr from Ca, Ba and Ra by combination of extraction chromatography separation and Cherenkov counting. *Anal. Chim. Acta.* 466 109-116.

[22] Oikawa S, Takata H, Watabe T, Misonoo J, Kusakabe M 2013 Distribution of the fukushima-derived radionuclides in seawater in the pacific off the coast of miyagi, fukushima, and ibaraki prefectures, Japan. *Biogeosciences.* 10 5031-5047.

[23] Uesugi M, Watanabe R, Sakai H, Yokoyama A 2018 Rapid method for determination of \(^{90}\)Sr in seawater by liquid scintillation counting with an extractive scintillator. *Talanta.* 178 339-347.

[24] Kocadag M, Musilek A, Steinhauser G 2013 On the interference of \(^{210}\)Pb in the determination of \(^{90}\)Sr using a stronitium specific resin. *Nuclear Technology and Radiation Protection.* 28(2) 163-168.

[25] Vajda N, Ghods-Esphahani A, Cooper E, Danesi P R 1992 Determination of radio- strontium in soil samples using a crown ether. *J. Radioanal. Nucl. Chem.* 162 307-323.

[26] Pourmand A and Daiphas N 2010 Distribution coefficients of 60 elements on TODGA resin: application to Ca, Lu, Hf, U and Th isotope geochemistry. *Talanta.* 81 741-753.

[27] Tomita J, Yamamoto M, Nozaki T, Tanimura Y, Oishi T 2015 Determination of low-level radiostrontium, with emphasis on in situ pre-concentration of Sr from large volume of freshwater sample using Powder resin. *J. Environ. Radioact.* 146 88-93.

[28] Clark S B 1995 Separation and determination of radiostrontium in calcium carbonat matrices of biological origin. *Journal of Radioanalytical and Nuclear Chemistry.* 194(2) 297-302.

[29] Aslan N, Yucel U, Kahraman G, Kurt A, Yeltepe E, Ozvatan S, Kaya N, Gundogdu G, Mert H 2015 Determination of \(^{90}\)Sr via Cherenkov counting and modified Eichrom methods in bilberry matrix in the context of BIPM supplementary comparison. *J. Radioanal. Nucl. Chem.* 303 2019-2026.

[30] Shao Y, Yang G, Tazoe H, Ma L, Yamada M, Xu D 2018 A review of measurement methodologies and their applications to environmental \(^{90}\)Sr. *Journal of Environmental Radioactivity.* 192 321-333.

[31] Waples J T and Orlandini K A 2010 A method for the sequential measurement of yttrium-90 and thorium-234 and their application to the study of rapid particle dynamics in aquatic systems. *Limnol. Oceanogr. Methods.* 8 661-677.

[32] Tazoe H, Obata H, Tomita M, Namura S, Nishioka J, Yamagata T, Karube Z, Yamada M 2017 Novel method for low level Sr-90 activity detection in seawater by combining oxalate precipitation and chelating resin extraction. *Geochem. J.* 51 193-197.
[33] Kameo Y, Katayama A, Fujiwara A, Haraga T, Nakashima M 2007 Rapid determination of 89Sr and 90Sr in radioactive waste using Sr extraction disk and beta-ray spectrometer. J. Radioanal. Nucl. Chem. 274 71-78.

[34] Kubota T, Shibahara Y, Fukutani S, Fujii T, Ohta T, Kowatari M, Mizuno S, Takamiya K, Yamana H 2015 Cherenkov counting of 90Sr and 90Y in bark and leaf samples collected around Fukushima Daiichi Nuclear Power Plant. J. Radioanal. Nucl. Chem. 303 39-46.

[35] KAERI (Korea Atomic Energy Research Institute) 2000 Table of Nuclides. http://atom.kaeri.re.kr/.

[36] Heckel A and Vogl K 2009 Rapid method for determination of the activity concentrations of 89Sr and 90Sr. Appl. Radiat. Isot. 67 794-706.

[37] Karube Z, Inuzuka Y, Tanaka A, Kurishima K, Kihou N, Shibata Y 2016 Radiostrontium monitoring of bivalves from the Pacific coast of eastern Japan. Environ. Sci. Pollut. Res. 23 17095-17104.

[38] Kolacinska K, Chajduk E, Dudek J, Samczynski Z, Lokas E, Bojanowska-Czajka A, Trojanowicz M 2017 Automation of sample processing for ICP-MS determination of 90Sr radionuclide at ppq level for nuclear technology and environmental purposes. Talanta. 169 216-226.

[39] Tayeb M, Dai X, Sdraulig S 2016 Rapid and simultaneous determination of strontium-89 and strontium-90 in seawater. J. Environ. Radioact. 153 214-221.