Mechanism of bacterial gene rearrangement: SprA-catalyzed precise DNA recombination and its directionality control by SprB ensure the gene rearrangement and stable expression of spsM during sporulation in Bacillus subtilis

Kimihiro Abe¹, Takuo Takamatsu² and Tsutomu Sato¹,²,*

¹Research Center of Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan and ²Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan

ABSTRACT

A sporulation-specific gene, spsM, is disrupted by an active prophage, SPβ, in the genome of Bacillus subtilis. SPβ excision is required for two critical steps: the onset of the phage lytic cycle and the reconstitution of the spsM-coding frame during sporulation. Our in vitro study demonstrated that SprA, a serine-type integrase, catalyzed integration and excision reactions between attP of SPβ and attB within spsM, while SprB, a recombination directionality factor, was necessary only for the excision between attL and attR in the SPβ lysogenic chromosome. DNA recombination occurred at the center of the short inverted repeat motif in the unique conserved 16 bp sequence among the att sites (5′-ACAGATAA/AGCTGTAT-3′; slash, breakpoint; underlines, inverted repeat), where SprA produced the 3′-overhanging AA and TT dinucleotides for rejoicing the DNA ends through base-pairing. Electrophoretic mobility shift assay showed that SprB promoted synapsis of SprA subunits bound to the two target sites during excision but impaired it during integration. In vivo data demonstrated that sprB expression that lasts until the late stage of sporulation is crucial for stable expression of reconstituted spsM without reintegration of the SPβ prophage. This results present a deeper understanding of the mechanism of the prophage-mediated bacterial gene regulatory system.

INTRODUCTION

Gene rearrangement is a phenomenon in which a programmed DNA recombination event occurs during cellular differentiation to reconstitute a functional gene from gene segments separated in the genome. The most studied cases of gene rearrangement are the antigen receptor (immunoglobulin and T-cell receptor) genes in vertebrate lymphocytes (1,2). The coding-sequences for the variable regions of the antigen receptor are split into V (variable), D (diversity), and J (joint) segments. In developing lymphocytes, the V(D)J segments are combined through DNA recombination reactions, depending on RAG1/RAG2 (recombination-activating genes) (3,4) and DNA repair proteins (2,5–10). This process generates antigen receptor diversity that allows adaptive immune defense against a large variety of pathogens. Gene rearrangement also plays crucial developmental roles in prokaryotes: nitrogen fixation in heterocysts of the cyanobacterium Anabaena spp. (11–13) and sporulation in spore-forming bacteria (14–22).

Sporulation-specific gene rearrangement was first reported in Bacillus subtilis sigK, which encodes a sporulation-specific sigma factor K (σK) (14). sigK is disrupted into two segments by the insertion of skin (sigK-intervening element), which is considered a remnant of the ancestral prophage (19). During sporulation, skin is excised from the chromosome to combine the ORFs in frame (14–16,18). Many other examples of sporulation-specific gene rearrangement, in addition to sigK, suggest that this phenomenon is wide-spread and common in spore-forming bacteria (20). In a previous study, we found that SPβ, an ‘active’ prophage, generates a gene rearrangement of spsM (spore polysaccharide synthesis M) in B. subtilis strain 168 (21). In addition to phage particle formation during the lytic cycle, the prophage is also excised from the genome.

¹To whom correspondence should be addressed. Tel: +81 423877008; Fax: +81 423877002; Email: t-sato@hosei.ac.jp

© The author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
to reconstitute \textit{spsM}, which is essential for production of the spore surface polysaccharides (Figure 1A). The SPB prophage divides \textit{spsM} [encoding a 341 amino-acids (aa) protein] into two segments: 5'-\textit{spsM} (formerly \textit{yodU}; 140 aa) and \textit{spsM-3} (formerly \textit{ypqP}; 207 aa). The overlapping 16 bp nucleotide sequences ‘ACAGATAAGCTGTAT’ (translated into ‘TDKAV’) are found in the 5'-\textit{spsM} and \textit{spsM-3} (Figure 1B). This implies that DNA recombination occurs within the sequences, although the precise position is unclear. The \textit{spsM} rearrangement requires \textit{sprA} and \textit{sprB} in the prophage region (21). \textit{sprA} is annotated to encode a putative phage integrase (Supplementary Figure S1A and B) (23), which is controlled by the housekeeping sigma factor (\(\sigma^\text{h}\))-dependent promoter and is constitutionally expressed, regardless of cell status (21,24). \textit{sprB}, encoding a protein of 58 aa in size (Supplementary Figure S1C), is under the control of the stress-responsible (\(\sigma^\text{y}^\text{S}\)) and sporulation-specific (\(\sigma^\text{h}\)) promoters, which are induced during the lytic cycle and sporulation, respectively.

\textit{SprA} is a 545 aa protein with a significant homology to the large serine recombinase (LSR) family proteins. LSRS are 450–700 aa proteins, containing a \(\sim 130\) aa catalytic domain (N-terminal domain, NTD) and a 300–500 aa DNA-binding domain (C-terminal domain, CTD) (25–29). The NTDs of the LSRS are very similar to that of a well-studied serine resolvase encoded by the transposable element \textit{motifs} (41).

The DNA substrates shown in Figures 2C, 2D, 3B, and Supplementary Figure S9 were generated by PCR using the primer sets, P1/P2 and P3/P4, respectively. PCR products were digested with \textit{NdeI} and \textit{XhoI}, and cloned into the \textit{NdeI}–\textit{XhoI} site of pET22b(+) vector (Merck Millipore, MW, USA) to obtain pET-spr\textit{A}_{W7} and pET-spr\textit{B}. To generate pET-spr\textit{A}_{S22A}, mutations in pET-spr\textit{A}_{W7} were introduced by inverse PCR using the primer set P5/P6, and by self-ligation of the PCR product using the seamless ligation cloning extract (SLICE) method (53). \textit{Escherichia coli} cells harboring the expression vectors were grown to the exponential phase [optical density at 600 nm (OD\textsubscript{600}) = 0.5] at 30°C in LB medium containing 100 \(\mu\)g/ml ampicillin. Recombinant proteins were induced by addition of 0.5 mM IPTG at 22°C for 20 h (for \textit{SprA} and \textit{SprA}_{S22A}) and at 30°C for 3 h (for \textit{SprB}). Harvested cells were lysed in a solution containing 50 mM sodium phosphate (pH 8.0), 0.3 M NaCl, 10 mM imidazole, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM dithiothreitol (DTT), 1 \times FastBreak reagent (Promega, WI, USA) and 0.1 mg/ml DNHase I. Cell lysate was clarified by a brief centrifugation and loaded into HiTrap HP columns (GE Healthcare, NJ, USA). The recombinant proteins were eluted with a buffer containing 50 mM sodium phosphate (pH 8.0) and 500 mM imidazole, and further purified using HiTrap Q and HiTrap SP columns (GE Healthcare). \textit{SprA} was loaded into the HiTrap SP column and eluted with 200 mM NaCl. \textit{SprB} was loaded into the HiTrap Q column and eluted with 100 mM NaCl. Concentrations of the protein samples were measured using a Bradford quantification kit (BioRad, CA, USA).

Preparation of DNA substrates for the \textit{in vitro} recombination assay

The DNA substrates shown in Figures 2C, 2D, 3B, and Supplementary Figure S9 were generated by PCR using the chromosomal DNA from the \textit{B. subtilis} 168 vegetative and sporulating cells and the primer sets P7/P3 for \textit{attP} (346 bp), P8/P9 for \textit{attB} (828 bp), P8/P3 for \textit{attL} (446 bp) and P7/P9 for \textit{attR} (728 bp) substrates.
Introduction of mutations into the \textit{attB} and \textit{attP} substrates

The 828 bp \textit{attB} and 346 bp \textit{attP} DNA fragments were cloned into the pMD20 vector (pMD-B and pMD-P). The point mutations at the core dinucleotides shown in Figure 3B and Supplementary Figure S3 were introduced into pMD-B and pMD-P by inverse PCR using the primer sets P10/P11–P26 and P27/P28–P42, respectively. The PCR products were self-ligated using the SLiCE method. The mutated \textit{attP} and \textit{attB} substrates were amplified from the resulting plasmids with the primer sets P7/P3 and P8/P9, respectively. The \textit{attP} and \textit{attB} substrates of differing lengths, shown in Figure 4 and Supplementary Figure S5, were amplified from the 346 bp \textit{attP}, 828 bp \textit{attB}, 446 bp \textit{attL}, and 728 bp \textit{attR} substrates with the appropriate primer sets: P43–P50/P58–P65 (for \textit{attP}), P74–P80/P88–P94 (for \textit{attB}), P73–P80/P59–P65 (for \textit{attL}), and P44–P50/P87–P94 (for \textit{attR}). DNA fragments containing the \textit{attP} (3,015 bp), \textit{attB} (3,190 bp), \textit{attL} (3,221 bp), and \textit{attR} (2,984 bp) sites were amplified from \textit{B. subtilis} vegetative and sporulating cells using the primer sets P100/P101 (for \textit{attP}), P102/P103 (for \textit{attB}), P101/P7102 (for \textit{attL}), and P100/P103 (for \textit{attR}). The \textit{attP}, \textit{attB}, \textit{attL} and \textit{attR} fragments containing deletions from either the right- or left-hand side were generated by PCR using the primers: P45–P49/P106 (for the \textit{attP} left-hand side deletion), P107/P60–P64 (for \textit{attP} right), P75–P79/P104 (for \textit{attB} left), P105/P89–P93 (for \textit{attB} right), P75–P86/P106 (for \textit{attL} left), P105/P61–P72 (for \textit{attL} right), P46–P57/P104 (for \textit{attR} left) and P107/P87–99 (for \textit{attR} right).

\textit{In vitro} recombination assays

Unless otherwise noted in the Figure legends, 20 nM of the DNA substrates, 0.5 \(\mu\)M SprA, and 1 \(\mu\)M SprB were re-
acted at 37°C for 60 min in 10 μl of the reaction solution containing 10 mM Tris–HCl (pH 8.0), 20 mM NaCl, and 0.1 mM DTT. The recombination reaction was stopped by the addition of 0.1% SDS and by heat treatment at 60°C for 3 min. Reaction products were separated by agarose gel electrophoresis. Signals were detected using EZ-Vision DNA Dye (AMRESCO, OH, USA).

Mapping of the attP cleavage site

PCR for a 2231 bp DNA fragment harboring the attP site was performed using the chromosomal DNA of the *B. subtilis* 168 sporulating cells and the P100/P108 primers. Two microgram of the PCR product were treated with 0.3 μM SprA in 100 μl of the reaction solution containing 10 mM Tris–HCl (pH 8.0), 20 mM NaCl and 0.1 mM DTT. The reaction mixture was incubated at 37°C for 12 h in the presence of 30% ethylene glycol and 5% glycerol to accumulate the cleavage products (54). The cleavage products were treated with proteinase K, extracted by phenol, and precipitated using 100% ethanol. DNA pellets were dissolved in TE buffer, gel purified, and directly sequenced using the P107 (for the left half-site of attP) or P109 (for the right half-site) primers, a BigDye® Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, WI, USA) and an ABI 3500 DNA analyzer (Thermo Fisher Scientific).

Electrophoresis mobility shift assays

DNA fragments containing the att sites were amplified with the primer sets P110/P61 (for attP; 89 bp), P111/P87 (for attB; 106 bp), P111/P58 (for attL; 111 bp), and P7/P87 (for attR; 132 bp). The second PCR was performed using a digoxigenin (DIG)-labeled primer P112 and a reverse primer: P61 (for attP), P87 (for attB and attR), or P58 (for attL). The second PCR products had additional five nucleotides (TCGTA) at 5’-ends derived from the P112 primer. Non-labeled 232 bp attP and 237 bp attL fragments were amplified with the primer sets P7/P106 and P8/P58, respectively. Binding reaction mixtures containing 10 mM Tris–HCl (pH 7.5), 20 mM NaCl, 0.1 mM DTT, 0.1 mg/ml poly dIdC-dIdC (GE Healthcare), 10 nM probes, 0 or 20 nM non-labeled DNA, 0–0.4 μM SprA, and 0–12.8 μM SprB were incubated at 37°C for 30 min and separated by native-PAGE (4% polyacrylamide, 0.5 × TBE, 4°C, 5 W, 2 h). The gel after the electrophoresis was capillary-blotted onto a nylon membrane for 6 h using 10 × SSC. Signals were detected using anti-DIG antibody conjugated to alkaline phosphatase (Roche, Mannheim, Germany) and nitro-blue tetrazolium/5-bromo-4-chloro-3-indolyl-phosphate (NBT/BCIP; Roche).

Atomic force microscopy (AFM)
The *attL* and *attR* fragments amplified with the primers P113/P114 and P107/P115 were combined using an overextension PCR method. The resulting 1098 bp DNA (4.8 nM), SprA (0.5 μM) and SprB (1.6 μM) were reacted at 37°C for 15 min in 10 μl of the reaction solution containing 10 mM Tris–HCl (pH8.0), 20 mM NaCl and 0.1 mM DTT. AFM was performed in air with the tapping mode of a Multimode AFM (Veeco, CA, USA) and an Olympus silicon cantilever (OMCL-AC160TS-W2; Olympus, Tokyo, Japan). Imaging was carried out according to the method described previously (55) with a slight modification: the glutaraldehyde cross-linking step was omitted. Images were analyzed using the NANOSCOPE software.

Artificial induction of SPβ excision

BsINDB (21) was cultured at 37°C in 100 ml of LB medium. When the cells reached the mid-log phase (OD600 = 0.5), *sprB* expression was induced by the addition of 0.25 mM IPTG. Three hours after the addition of IPTG, cells were harvested and washed twice with 100 ml of fresh LB medium. Cell pellets were resuspended with 100 ml of fresh LB medium and divided into two parts: one part was further cultured at 37°C in the presence of 0.25 mM IPTG and the other part was in the absence of IPTG. One milliliter of the culture was harvested hourly after the addition of IPTG. Chromosomal DNA was isolated from the cells, digested with *NdeI* (NEB), and subjected to Southern hybridization with the *spSM*-specific probe as described previously (21).

Detection of SPβ reintegration during sporulation

To construct a *B. subtilis* BSIID strain carrying the *PspoIID−sprB* construct, pMUT-sprBind plasmid vector (21) was linearized by inverted PCR using the primer set P116/P117. A DNA fragment containing the spoIID promoter region was amplified from *B. subtilis* chromosomal DNA with the primer set P118/P119. The linearized vector and the insert DNA were ligated using the SLiCE method. The resulting plasmid harboring the *PspoIID−sprB* construct, pMUT-IID, was introduced into *B. subtilis* 168 via natural competence and integrated at the *sprB* locus through a single crossing-over event. The transformants carrying the *PspoIID−sprB* construct were selected on LB-agar plates containing 0.3 μg/ml erythromycin. The 168-AEB and BSIID-AEB strains carrying an ectopic *attB* site at the *anyE* locus were generated by transformation of *B. subtilis* 168 and BSIID with an *anyE*-integration vector harboring an intact *spSM* gene,(128,417),(926,750)

RT-PCR

B. subtilis 168 and BSIID cells were cultured at 37°C in 300 ml of liquid DSM. Every hour, 20 ml of the culture was harvested by centrifugation from T0 until T8. Total RNA was extracted according to the previously described method (56). A reverse transcription reaction was performed using 1 μg of total RNA, RevertAID reverse transcriptase (Thermo Fisher Scientific), and the *sprB*-specific primer P121. The *sprB* cDNA was amplified by 20 cycles of PCR using Prime
Taq (Genet Bio, Chungnam, Korea) and the primer set P116/P121. PCR products were analyzed using 2% agarose gel electrophoresis.

RESULTS

Site-specific DNA recombination catalyzed by SprA and SprB

In a previous study, we identified sprA and sprB to be essential factors for spsM rearrangement. SprA contains three distinct domains of the LSRs: NTD, RD and ZD (Supplementary Figure S1A), and thus is expected to play the central role in spsM rearrangement. SprB is likely to be the genetic switch for spsM rearrangement because sprB expression correlates with phage excision (21). To elucidate the site-specific recombination activity, sprA and sprB were cloned into the pET22b(+) expression vector. Recombinant SprA and SprB with six histidines fused to their C-termini were expressed in E. coli. Purified SprA and SprB migrated at approximately 62 kDa in SDS-PAGE (10% gel) and at 8.5 kDa in Tricine-SDS-PAGE (16.5% gel), respectively (Figure 2A). The 828 bp attB and 346 bp attP substrates (Figure 2B; 20 nM each) were reacted with the various concentrations of SprA at 37°C for 60 min and analyzed by agarose gel electrophoresis. Signals indicating the recombination products [attL (446 bp) and attR (728 bp)] were detected when more than 0.4 μM of SprA was added to the reactions (Figure 2C, lanes 4–8) while SprB was not required for the integration reaction. The conversion rate of the substrates to the recombinant products did not reach 100%. A similar case to this observation was reported in φC31 Int-mediated recombination (57).

We next examined the excision reaction. The 446 bp attL and 728 bp attR substrates (20 nM) were reacted with 0.5 μM SprA in the presence of various concentrations of SprB. Figure 2D shows that excision products appeared when the molar ratio of SprB to SprA was 1:1 (Figure 2D, lane 4), and that the excision occurred efficiently when the ratio was more than 2:1 (lanes 6–9). Neither SprA nor SprB alone could catalyze the excision reaction (lanes 2 and 10). A sin-

Figure 2. In vitro recombination assays. (A) Preparation of recombinant SprA and SprB. Recombinant SprA and SprB tagged with the six histidines at their C-termini were purified by affinity chromatography. Purified SprA (2 μg) and SprB (1 μg) were separated by SDS-PAGE (10% gel) and Tricine-SDS-PAGE (16.5% gel), respectively. (B) Schematic representation of the SPβ integration/excision reaction. Triangles point to the DNA cleavage sites during the recombination. Thick lines indicate regions corresponding to the DNA substrates for in vitro recombination. (C) Integration reaction. For attB and attP, 20 nM of each substrate were reacted with SprA (0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8 or 1.0 μM) at 37°C for 60 min. Reaction products were separated by 2% agarose gel electrophoresis. (D) Excision reaction. For attL and attR, 20 nM of each substrate were reacted with SprA (0 or 0.5 μM) and SprB (0, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0 or 2.5 μM) at 37°C for 60 min. The reaction products were loaded on a 2% agarose gel. +/−, presence or absence of SprA (0.5 μM) or SprB (2.5 μM). (E) Alignment of amino-acid sequences of the NTDs of the LSRs. The nucleophilic serine residue (S) is indicated by the box. (F) Impact of a substitution of the 22nd serine with alanine. In vitro integration/excision recombination assays were performed using wild-type and mutated SprA (0.5 μM) and SprB (1.0 μM). (+), absence of SprA; WT, wild-type SprA; S22A, SprAS22A.
gle serine residue at the NTD of LSR is the nucleophile that cleaves the DNA strand (26). Alignments of the LSR amino-acids sequences disclosed that the 22nd residue of SprA was the nucleophile serine (Figure 2E, box). A serine-to-alanine substitution at the 22nd residue caused a loss of the integration/excision activities (Figure 2F, S22A). These results confirmed that SprA and SprB are an LSR and cognate RDF, respectively. The quantitative relationship between SprA and SprB for efficient excision (Figure 2D) implies that SprB may behave as a multimer, or at least a dimer, to promote the excision reaction. Consistent with this, Gp3, the RDF for *Streptomyces* øBT1 phage integrase, is reported to form a dimer in solution (46). The requirement for a higher concentration of SprB than SprA for excision likely generates a threshold response of the *spsM* rearrangement. This would avoid unexpected excision in case of the leakage of *sprB* expression beyond the program of gene regulation during sporulation and the lytic cycle.

Mechanism of the *spsM* rearrangement and structure of SPβ att sites

The most significant issues regarding *spsM* rearrangement are how the precise rejoining of the *spsM* segments occurs and why *spsM* is targeted by the SPβ phage. Information on the catalytic features of SprA and the structures of the *attP*, *attB*, *attL* and *attR* sites for SPβ are necessary to answer these questions. One of the prominent features of SPβ *att* sites is the conserved sequence of up to 16 bp in the middle of the site (Figure 1B) which encodes the amino acids at positions 136–140 of SpsM. Such a long conserved sequence has never been reported in the *att* sites for other LSRs. Recombination was expected to take place within the conserved sequence. Because target DNA recognition and strand exchange are the central steps of the *spsM* rearrangement, we further studied the molecular basis of the precise *spsM* rearrangement and the structures of the *att* sites.

To determine the cleavage site of *attP* during recombination, a DNA fragment containing the *attP* site was reacted with SprA at 37°C overnight in the presence of 30% ethylene glycol and 5% glycerol to allow accumulation of the cleavage products (54). The sequencing data of the cleavage products suggested that SprA produced the 3′-overhanging di-adenine nucleotides (AA) at the center of the *attP* site (Figure 3A and Supplementary Figure S2). From the conservation of the central 16 bp nucleotide sequence, the *attB*, *attL*, and *attR* sites will be cleaved by SprA at the same positions as *attP*. The overhanging dinucleotides originate from the first and second adenines of the lysine codon (AAA) within the 16 bp conserved sequence. To investigate the importance of three adenines for the DNA recombination, we carried out an *in vitro* recombination experiment using mutated *attB* substrates with single point mutations at each of the three adenines (Figure 3B). Integration reactions were performed using the mutated *attB* and the wild-type *attP* DNA. The mutated *attB* sites harboring either the TAA or ATA substitution (*attB* TAA and *attB* ATA) exhibited ~90% reductions in the recombination efficiencies. By contrast, the *attB* ATA site retained the recombination activity at a comparable level to the wild-type *attB* (*attB* AAA), indicating that SprA recognized the first and second adenines as

![Figure 3](image-url)
the cleavage site but not the entire lysine codon. Efficient DNA recombination was accomplished when the central AA-dinucleotides were changed into T in both the attP and the attB sites (Supplementary Figure S3, AA, AT, TA and TT). This result suggests that the inability of the wild-type attP and either of attB_7 or attB_4 to recombine resulted from non-complementary overlapping nucleotides, and not from a failure of the target DNA recognition by SprA due to the mutations. We conclude that the base-pairing of the 3′-overhanging dinucleotides between the substrates is critical for re-joining. Production of 3′-overhanging dinucleotides is a common catalytic feature of the LSR proteins, although the dinucleotides sequences vary from one recombinaise to another (26,31,33,38). One plausible reason why all of the sporulation gene-intervening elements possess the LSR-encoding gene (e.g. _allofthesporulationgene-interveningelementspossessthe_).

For LSRs are for other serine recombinases (28). In general, the attP sites were 52, 44, 48 and 48 bp long, respectively. The over-deletion series (36–60 bp) were reacted with SprA in the presence of ~3 kb substrates containing the intact partner att sites (Figure 4A). The minimal att sites were defined as the shortest att substrates that showed >90% recombination efficiencies compared with the longest substrates of the deletion series used in this experiment (attP, 60 bp; attB, 48 bp; attL, 54 bp; attR, 54 bp). The deletion analysis revealed that the minimal attP, attB, attL and attR sites were 52, 44, 48 and 48 bp long, respectively. The overall sequences of the att sites are described in Figure 4B. We also confirmed the minimal size requirements using a series of att substrates with progressive deletions from either the left or right half-sites (Supplementary Figure S5). The sizes of the minimal att sites for SPβ were comparable to those for other serine recombinases (28). In general, attP sites for LSRs are ~60 bp nucleotide sequences consisting of inverted repeat sequences that encompass the short conserved sequence, and their partner attB sites are ~48 bp sequences that possess the conserved sequence but have no obvious similarity to attP (26). The minimal attP site for SPβ consists of the 16 bp perfect inverted repeat sequence (Figure 4B, attP, arrows), encompassing the 16 bp conserved sequence (Figure 4B, boxed nucleotides). Moreover, the inverted repeat can be extended into the conserved sequence and the attP site, and therefore create 25 bp symmetric sequences with respect to the central dinucleotides, which include only three mismatches (Figure 4B, attP, asterisks). These mismatches may serve as landmarks to distinguish the direction of the attP site. A sequence as highly symmetric as the SPβ attP site has never been found in other LSRs. Single point mutations to any nucleotides of the 16 bp conserved sequence of the SPβ attB site, except the nucleotide at position +9, reduced recombination efficiency (Supplementary Figure S7, 61%–89% efficiencies relative to that of the wild-type attB). In particular, the mutations at positions -6 (C→A) and +2 (A→C), which are located within the inverted sequence, caused 35% and 39% losses of efficiency, respectively, indicating the importance of these nucleotides for recombination. Nevertheless, the effects of the point mutations on recombination were moderate, compared with the replacement of the AA dinucleotides (Supplementary Figure S3). This suggests that the dinucleotides are critical for recognition by SprA as well as production of the over-hanging ends for the precise rejoining reaction. In summary, the attP contains a perfect inverted repeat sequence surrounding the central 16 bp region that is identical to that of attB within _spmsM_ (406–421 nt). The central 16 bp region is also conserved in the two other recombination hybrids: _attL_ and _attR_. Intriguingly, the conserved region has sequences of inverted symmetry flanking the central AA dinucleotides. As such, the short stretch of symmetric sequences around the AA dinucleotides in _spmsM_ appears to be favorable for recognition by SprA and would have been selected as the crossover site for the gene rearrangement system.

Next, we addressed the question of why SPβ targeted the _spmsM_-coding region for lysogenization. To examine this, we analyzed the whole structure of the minimal SPβ att sites. To determine the minimal size requirements of the att sites, we created a series of att substrates with progressive deletions from both ends and evaluated their recombination efficiencies. The deletion series (36–60 bp) were reacted with SprA in the presence of ~3 kb substrates containing the intact partner att sites (Figure 4A). The minimal att sites were defined as the shortest att substrates that showed >90% recombination efficiencies compared with the longest substrates of the deletion series used in this experiment (attP, 60 bp; attB, 48 bp; attL, 54 bp; attR, 54 bp). The deletion analysis revealed that the minimal attP, attB, attL and attR sites were 52, 44, 48 and 48 bp long, respectively. The overall sequences of the att sites are described in Figure 4B. We also confirmed the minimal size requirements using a series of att substrates with progressive deletions from either the left or right half-sites (Supplementary Figure S5). The sizes of the minimal att sites for SPβ were comparable to those for other serine recombinases (28). In general, attP sites for LSRs are ~60 bp nucleotide sequences consisting of inverted repeat sequences that encompass the short conserved sequence, and their partner attB sites are ~48 bp sequences that possess the conserved sequence but have no obvious similarity to attP (26). The minimal attP site for SPβ consists of the 16 bp perfect inverted repeat sequence (Figure 4B, attP, arrows), encompassing the 16 bp conserved sequence (Figure 4B, boxed nucleotides). Moreover, the inverted repeat can be extended into the conserved sequence and the attP site, and therefore create 25 bp symmetric sequences with respect to the central dinucleotides, which include only three mismatches (Figure 4B, attP, asterisks). These mismatches may serve as landmarks to distinguish the direction of the attP site. A sequence as highly symmetric as the SPβ attP site has never been found in other LSRs. Single point mutations to any nucleotides of the 16 bp conserved sequence of the SPβ attB site, except the nucleotide at position +9, reduced recombination efficiency (Supplementary Figure S7, 61%–89% efficiencies relative to that of the wild-type attB). In particular, the mutations at positions -6 (C→A) and +2 (A→C), which are located within the inverted sequence, caused 35% and 39% losses of efficiency, respectively, indicating the importance of these nucleotides for recombination. Nevertheless, the effects of the point mutations on recombination were moderate, compared with the replacement of the AA dinucleotides (Supplementary Figure S3). This suggests that the dinucleotides are critical for recognition by SprA as well as production of the over-hanging ends for the precise rejoining reaction. In summary, the attP contains a perfect inverted repeat sequence surrounding the central 16 bp region that is identical to that of attB within _spmsM_ (406–421 nt). The central 16 bp region is also conserved in the two other recombination hybrids: _attL_ and _attR_. Intriguingly, the conserved region has sequences of inverted symmetry flanking the central AA dinucleotides. As such, the short stretch of symmetric sequences around the AA dinucleotides in _spmsM_ appears to be favorable for recognition by SprA and would have been selected as the crossover site for the gene rearrangement system.

Analysis of protein-DNA complex formation by EMSA

To investigate the complex formation of SprA, SprB, and the att sites, we carried out an electrophoretic mobility shift assay (EMSA). We examined the SprA-DNA complex formation using the 5′-DIG-labeled att probes. After incubation at 37°C for 30 min, the reaction mixtures were separated by a 4% native acrylamide gel. SprA showed binding activity to all of the att probes (Figure 5A, complex I (C1)]. EMSA showed that SprA was able to bind to the _attL_ and _attR_ probes without SprB. The estimated dissociation constants (Kd) for the binding of the SprA dimer to the probes were 132 nM (for _attB_), 119 nM (for _attP_), 75 nM (for _attL_) and 70 nM (for _attR_). When the _attP_ and _attB_ probes were used, fast-migrating faint bands were detected, probably due to complexes of monomeric SprA and DNA (Figure 5A, top panels, asterisk). We next studied the formation of the SprA–SprB–DNA complex during excision. The addition of SprB generated super-shifted bands indicating the SprA–SprB-DNA complexes (Figure 5B, lanes 7–10, CII), while SprB alone did not exhibit DNA-binding activity (lane 11). SprB directly interacted with SprA (Supplementary Figure S8) and formation of the SprA–SprB complex is likely to be the rate-limiting step in the excision reaction because the complex could rapidly generate the excision products (Supplementary Figure S9, iii). Bands that migrated faster than the SprA-DNA complex were also observed when SprB was added (Figure 5B, lanes 7–10, asterisk). The fast migrating species were also reported in the _φC31 Int_ and the RDF complex formation (45) but their nature is currently unknown. As was the case for the _attL_ and _attR_ sites, the SprA–SprB complex also exhibited binding activity to the _attP_ and _attB_ sites (Supplementary Figure S10).

Finally, we examined the synaptic complex formation during excision and integration using the _attR_ and _attB_ probes. In this experiment, SprA_722A_ was used instead of wild-type SprA to stabilize the synaptic complex. As shown in Figure 5C, the band retarded to a greater extent than the SprA–SprB-attR complex was indicative of the synaptic complex, and was detected in the presence of the non-labeled _attL_ DNA (Figure 5C, left panel, lane 4, Synaptic...
Figure 4. Determination of the minimal att sites. (A) Evaluation of the recombination activities of the various-sized att substrates. Each ∼50 ng of 40–60 bp DNA fragments containing the att sites with progressive deletion from both ends were reacted with 0.5 μM SprA in the presence of 50 ng of the ∼3 kb DNA fragments containing the intact partner att sequences (attP, 3,015 bp; attB, 3,190 bp; attL, 3,221 bp; attR, 2,984 bp). Nucleotide sequences of the short att substrates are shown in (B). Schematic of the recombination reaction is illustrated in Supplementary Figure S4. Numbers above the panels indicate the sizes of the short att fragments. SprA (–) indicates the absence of SprA. (B) Nucleotide sequences of the minimal att sites. Nucleotide sequences of the four att sites are shown with their positions. The positions of −1 and +1 are assigned to the central nucleotides of the attP site. The minimal att sites are indicated by shading. The 16 bp consensus sequences are indicated by boxes. Arrows and asterisks denote the inverted repeat sequences and the mismatched nucleotides within the attP site, respectively. The deletion series of the short att substrates were shown as below: attP60, from −30 to +30; attP54, −27 to +27; attP52, −26 to +26; attP50, −25 to +25; attP48, −24 to +24; attP46, −23 to +23; attP44, −22 to +22; attB42, −21 to +21; attB40, −20 to +20; attB38, −19 to +19; attB36, −18 to +18; attL54, −25 to +29; attL50, −23 to +27; attL48, −22 to +26; attL46, −21 to +25; attL44, −20 to +24; attL42, −19 to +23; attL40, −18 to +22; attL54, −29 to +25; attR50, −27 to +23; attR48, −26 to +22; attR46, −25 to +21; attR44, −24 to +20; attR42, −23 to +19; attR40, −22 to +18.
Figure 5. Electrophoretic mobility shift assays (A) SprA-DNA complex formation. For these assays, 10 nM of the DIG-labeled *attP* (94 bp), *attB* (111 bp), *attL* (116 bp), and *attR* (137 bp) probes were reacted with the various concentrations of SprA at 37°C for 30 min. SprA concentrations were as follows: 0, 25, 50, 100, 150, 200, 250, 300 and 350 nM. The reaction mixtures were separated by 4% native gels. FP, free probe; CI, SprA–DNA complex. Asterisks indicate SprA monomers bound to DNA. (B) SprA–SprB-DNA complex formation. The *attL* and *attR* probes (10 nM) were reacted with 0.4 μM SprA in the presence of 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4 or 12.8 μM SprB (lanes 3–10). FP, free probe; CI, SprA–DNA complex; CII, SprA–SprB–DNA complex; *, additional bands of unknown nature; +/−, presence or absence of 0.4 μM SprA and 12.8 μM SprB. (C) Synaptic complex formation. Here, 10 nM of each of the *attR* (left panel) and *attB* probes (right panel) were reacted with 0.4 μM SprAS22A in the presence or absence of 3.2 μM SprB and 20 nM non-labeled partner *att* DNA. FP, free probe; CI, SprA-DNA complexes; CII, SprA–SprB-DNA complexes; SC, synaptic complexes; +/−, presence or absence of 0.4 μM SprAS22A, 3.2 μM SprB, and 20 nM non-labeled *att* DNA.
Complex (SC). Depletion of SprB in the reaction resulted in the disappearance of the SC band (lane 5), indicating that during excision the synaptic complex depends on SprB. By contrast, synaptic complex formation during integration was accomplished under conditions without SprB (Figure 5C, right panel, lane 3, SC). Moreover, addition of SprB abolished the synaptic complex formation between the \textit{attB} and \textit{attP} sites (lane 4), although the SprA–SprB-\textit{attB} complex was still observed (lane 4, CII).

Visualization of the synaptic complex using atomic force microscopy (AFM)

We have demonstrated \textit{in vitro} recombination and synaptic complex formation using two separate \textit{att} substrates; however, in practice, the \textit{spsM} rearrangement takes place on a single molecule of the chromosomal DNA \textit{in vivo}. We verified the recombination reaction on a single DNA molecule by AFM imaging. We prepared a 1098 bp DNA substrate that contained the 5’- and 3’-portions of the disrupted \textit{spsM} gene (Figure 6A). The size of the naked DNA measured from the AFM image was 361 nm in length (Figure 6B, i), consistent with the calculation (Figure 6A, 372 nm). The DNA substrate was reacted with SprA and SprB at 37°C for 15 min and observed in air by AFM. Panel ii shows the primary complexes without a synopsis of the subunits at the \textit{attL} and \textit{attR} sites. Bright points on the DNA indicate SprA and SprB bound to the \textit{att} sites. The \textit{attL} and \textit{attR} sites were distinguishable by measuring the DNA length from the DNA ends to the SprA–SprB binding positions. Panel iii displays the synaptic complex. The internal region between the \textit{attL} and \textit{attR} sites (representing the SPβ prophage region) appeared to loop out from the complex. After the completion of the excision reaction, the circular DNA with or without SprA (Figure 6B, panel iv, top and bottom right) and the linear DNA were observed (Figure 6B, panel iv, left). The linear DNA was 233 nm in length, which was consistent with the calculated size of the reconstituted \textit{spsM} (231 nm). When SprA_{522A} was used for AFM imaging instead of wild-type SprA, the complex containing SprA_{522A} stopped at the synaptic complex formation and could not proceed due to the defects in the DNA cleavage activity (Figure 6B, v). These AFM imaging data show each of the steps during the excision \textit{in vitro}, establishing that the \textit{spsM} rearrangement is accomplished by SprA and SprB without any other factors, such as host-encoded nucleoid proteins and DNA repair proteins. This is the first example of visualization of the synaptic complex formation during LSR-mediated DNA recombination.

Inhibition of integration by SprB

EMSA data demonstrated that SprB inhibited synaptic complex formation of the \textit{attB} and \textit{attP} sites (Figure 5C, right panel). SprB, thus, was expected to block the integration reaction. To test this, various concentrations of SprB were added into the reactions containing the \textit{attB} and \textit{attP} substrates and SprA. We found that the integrative products disappeared in a SprB-dose-dependent manner (Figure 7, lanes 3–8). Signals of the integrative products began to decrease when the ratio of SprB to SprA in the reaction was 2:1 (lane 5), and completely disappeared at the ratio of 4.5:1 (lane 8), suggesting that SprB blocked the integration of SPβ DNA. Combined with the EMSA results (Figure 5C), we concluded that SprB inhibited the integration reaction by blocking the synaptic complex formation. Inconsistent with our result, only small amounts of the RDF (one-fourth of the Int concentration) were necessary to inhibit φBT1 Int integration activity (46). In another case, \textit{mvxXis}, the RDF for lactococcal phage \textit{mv4} tyrosine-type integrase, facilitated excision and integration at the same time (58). The control mechanism of the recombination directionality may vary from one Int/RDF system to another.

Repression of SPβ reintegration by SprB \textit{in vivo}

Our \textit{in vitro} study showed that SprB has a role in regulating the recombination directionality through promoting and repressing the synaptic complexes during the excision and integration, respectively (Figures 5C and 7). We therefore evaluated the regulatory effect of SprB on recombination \textit{in vivo}. First, we investigated the control of recombination by SprB in vegetative cells using the BslINDB strain whose \textit{sprB} is under the control of the IPTG-inducible promoter (21). BslINDB was cultivated in LB medium up to the mid-exponential growth phase, and SPβ excision was induced by the addition of IPTG into the medium. The disrupted or reconstituted \textit{spsM} DNA was detected by Southern blotting using the \textit{spsM}-specific probe (Figure 8A). A signal indicating the \textit{spsM} rearrangement appeared 1 h and later after the addition of IPTG (Figure 8B, IPTG (+) 1–6 h, Reconstituted). When IPTG was removed from the medium at 3 h, the SPβ DNA was steadily reintegrated into the chromosome [IPTG (−) 4–6 h]. This result confirmed that SprB acts as a genetic switch for \textit{spsM} rearrangement.

In \textit{B. subtilis} 168, \textit{sprB} is controlled by the stress-responsive and sporulation-specific promoters. Because the sporulation-specific \textit{sprB} promoter (\textit{sprB} ^{spoIID}) is recognized by \textit{ε} and \textit{K}-containing RNA polymerases, \textit{sprB} is transcribed during the middle-to-late stages of sporulation (21). We constructed a mutant strain in which the \textit{sprB} promoter was replaced with that of \textit{spoIID} (designated as BSIID). The \textit{spoIID} promoter (\textit{sprB} ^ε) is recognized by the \textit{ε}-containing RNA polymerase and is transcribed at the early stage of sporulation (59). RT-PCR detected the \textit{sprB} transcripts at 4–8 h (T₄–T₈) after the onset of sporulation in the wild-type strain (Figure 8C, \textit{sprB} ^ε and \textit{K}) and at T₅–T₆ in BSIID (\textit{sprB} ^ε). We found a morphological change between the wild-type and BSIID-B spores. All wild-type spores were surrounded by the polysaccharide layer, indicating that \textit{spsM} rearrangement occurred in all the sporulating cells (Figure 8D, \textit{sprB} ^ε–\textit{sprB}), while 7.5% of total spores from BSIID-B were lacking the polysaccharide layer (\textit{sprB} ^ε–\textit{sprB}, arrows).

SPβ excision is essential for \textit{spsM} activation and production of the spore polysaccharide layer in \textit{B. subtilis}. This result implied failure of the excision or reintegration of the excised SPβ DNA in BSIID-B. To verify these possibilities, we introduced an ectopic \textit{attB} site at the \textit{amyE} locus of the wild-type and BSIID strains (designated as AEB and BSIID-AEB, respectively) as shown in Figure 8E. Chromosomal DNA from the 168-AEB and BSIID-
Figure 6. AFM imaging of the spsM rearrangement. (A) Schematic of a 1098-bp DNA substrate for AFM imaging. Size (nm) of the DNA molecule was calculated from one DNA base pair of 0.34 nm in length (68). (B) Representative images at each of the stages during the excision reaction. The DNA substrate (4.8 nM) was incubated with or without SprA (0.5 μM) and SprB (1.6 μM) at 37°C for 15 min and then observed using AFM. The top panels show the AFM images: i, naked DNA; ii, primary complex; iii, synaptic complex; iv, excised SP/spsM and reconstituted spsM; v, the synaptic complex containing SprA(A32A). Scale bar indicates 125 nm. The bottom panels are illustrations of the AFM images. Actual sizes (nm) of the DNA molecules were measured from AFM images.

Figure 7. Inhibition of integration by SprB. The attP and normal attB substrates (20 nM each) were reacted with 0.5 μM SprA in the presence of the various concentrations of SprB (0, 0.25, 0.5, 1.0, 1.5, 2.0 or 2.5 μM) at 37°C for 60 min.

AEB sporulating cells at T₀ and T₈ were isolated to detect the reintegration by PCR with anyE- and sprB-specific primers. As the result, the anyE-sprB fragment was successfully amplified only at T₈ in BSIID-AEB (Figure 8F), indicating that BSIID-AEB retained the SPβ excision activity and that the reintegration event occurred at the late sporulation phase. A quantitative PCR assay showed that reintegration was detected in 2.2% of the BSIID-AEB cells at T₈ (Supplementary Figure S1). The reintegration rate was seemingly lower than the result from the microscopic observation (Figure 8D, right panel, 7.5%). This is because BSIID-AEB has two attB sites at the spsM and anyE loci, and BSIID was sampled at a later time point during the culture (T₂₄) to obtain mature spores for observation. Sporulation-independent reintegration was also detected in both 168-AEB and BSIID-AEB, but at very low frequencies (~0.06%), probably due to spontaneous excision during the overnight preculture and exponential growth in the DSM culture. Taken together, these results suggest that continuous expression of sprB throughout the sporulation phase is important for the maintenance of the reconstituted spsM gene and normal spore formation.

DISCUSSION

In the present study, we have demonstrated that SprA and SprB are an LSR that acts as the SPβ phage integrase and the cognate RDF, respectively (Figure 2). In the spsM rearrangement, the 5'-spsM and spsM-3' segments must be combined in frame. SprA precisely generates the 3'-overhanging dinucleotides at the center of the att site during recombination (Figure 3). EMSA and the in vitro recombination assay demonstrated that SprB promoted excision while inhibiting integration by controlling synaptic complex formation (Figures 5C and 7). While typical prophages excised in the lytic cycle are packaged into the new phage particles, the SPβ prophage excised during sporulation is neither packaged into the virion nor reintegrated into the chromosome (21). Therefore, the control and maintenance of the recombination directionality has profound importance in the spsM rearrangement. We showed that depletion of SprB in the late
sporulation phase led to failure of spore maturation due to the reintegration of SP DNA (Figure 8D and F). The in vivo data confirmed that SprB triggers phage excision and that the long-term expression of sprB is the key factor for maintaining the reconstituted spsM during sporulation.

On the basis of our in vitro and in vivo data, we propose a model for control of the spsM rearrangement (Figure 9): the SPβ phage integrase, SprA, is employed for the insertion of the phage DNA into the host chromosome upon infection. Even after phage integration, sprA is constitutively expressed in the lysogen; however, it is insufficient for the phage excision due to a deficit of SprB. When the host enters into the sporulation phase, the sprB promoter is induced in the mother cell compartment. Subsequently, the SprA–SprB complex is formed and catalyzes the excision to reconstitute spsM. Although the SprA–SprB complex has the ability to bind to the attP and attB sites, it cannot form the synaptic complex to generate reintegration. Thus, SprB exerts inhibitory effects on the reintegration to ensure the stable expression of functional spsM throughout the late stage of the sporulation phase. Transcription of spsM might also interfere with SprA binding to attB. The functional spsM gene is expressed at the late stage to produce the spore surface polysaccharides for the spore maturation. Our report is the first example to show the detailed mechanism of active lysogeny, mediated by RDF expression. The inhibitory effect of RDFs on integration is likely to be a general feature of phage-encoded RDFs for LSRs, as this phenomenon has been reported in the other RDFs such as φRv1 Xis (42) and φC31 Gp3 (45, 57). SPβ employs this principle to achieve irreversible active lysogeny for B. subtilis spsM by embedding the late-mother-cell-specific promoter upstream of sprB. The developmentally-regulated spsM gene rearrangement is a good example case to use to explain the irreversible regulation of active lysogeny.

Analysis of the structures of the SPβ att sites revealed that the 52 bp attP comprises an extremely symmetric nucleotide sequence (Figure 4B, attP). A single nucleotide deletion from the 5′- or 3′-end of the minimal attP site resulted in the almost complete loss of recombination activity (Figure 4A and Supplementary Figure S5), suggesting that conservation of the inverted repeat sequence is critical...
Figure 9. A model for control of the irreversible regulatory switch for \(spsM\). The schematic representation shows morphological changes during sporulation and the \(spsM\) rearrangement in \(B. subtilis\) 168. The housekeeping (\(\sigma^A\)) and sporulation-specific (mother cell, \(\sigma^E \rightarrow \sigma^K\); forespore, \(\sigma^F \rightarrow \sigma^G\)) sigma factors are indicated in the schematic. In the \(SP\beta\) lysogen, \(sprA\) is constitutively expressed in the vegetative phase; nevertheless, the excisional recombination does not occur due to the lack of \(SprB\). During sporulation, \(SprB\) is expressed from the mid until the late stages and participates in the excision of \(SP\beta\) prophage. The excised \(SP\)/H9252 is prevented from reintegrating because the \(SprA–SprB\) complex cannot catalyze the integrative recombination. The inhibitory effect of \(SprB\) on reintegratio allows the stable expression of functional \(spsM\) during sporulation. Stoichiometry of \(SprA\) and \(SprB\) in the complex is not considered in this cartoon.

for \(SprA\)-mediated recombination. The \(attB\) site is 44 bp in size, which consists of left and right half-sites of equal length. Unlike \(attP\), no obvious symmetry was found between each half-site of \(attB\), except for the 16 bp conserved sequence (Figure 4B, \(attB\)). The 16 bp conserved sequence likely plays a crucial role in the catalytic activity of \(SprA\). \(SprA\) can generate recombination products effectively only when the \(attP\) and \(attB\) sites carry the AA- or TT-central dinucleotides (Supplementary Figure S3). As indicated by the structure of \(attP\) (Figure 4B), the highly symmetric sequence is the key to the target recognition of \(SprA\). The 16 bp conserved sequence within \(spsM\) is the symmetric sequence that contains the central AA-dinucleotides and, therefore, would be selected as the target for the ancestor of \(SP\beta\) because of the unique sequence that met the requirements for \(SprA\)-catalyzed recombination. \(SprA\) might then have adapted to recognize the 44 bp stretch of DNA containing the conserved sequence within \(spsM\) in the history of evolution. The minimal \(attL\) and \(attR\) sites correspond to the hybrids of the minimal \(attP\) and \(attB\) sites (Figure 4B, \(attL\) and \(attR\)). Unexpectedly, when the substrates were 1 nt shorter than the minimal sites, excision occurred at \(\sim 50\%\) efficiency compared to that of the intact \(att\) sites (Supplementary Figure S5). A possible explanation for this is that the \(SprA\) bound to the longer \(att\) half-site serves to stabilize the DNA-binding of the other through protein-protein interactions. Alternatively, \(SprB\) may alter the nucleotide recognition properties of \(SprA\). The \(attL\) and \(attR\) sites exhibited no symmetry because of the hybrids between \(attP\) and \(attB\); nevertheless, the 16 bp conserved sequence provides them with a symmetric central region, which would support the binding of an \(SprA\) dimer. Such a long conserved sequence is also expected to be beneficial for the precise \(spsM\) rearrangement in the case of a change in the cleavage point, which may be caused by mutations in \(SprA\).

The mechanism of \(SprA\)-mediated gene rearrangement seems to be very similar to mechanisms of recombination reported in other LSRs; however, two significant differences are found: target recognition by \(SprA\) and control of phage excision. The minimal size requirements of \(attP\) and \(attB\) for \(SprA\) are 4–10 bp longer than those for Bxb1 Int (\(attP\), 48 bp; \(attB\), 38 bp) and \(\phi\)C31 Int (\(attP\), 39 bp; \(attB\), 34 bp) (60). The central dinucleotides of the \(att\) sites for \(\phi\)BT1 and \(\phi\)C31 integrases can be changed between A, T, G and C, although all 16 combinations of the dinucleotides were not examined (61, 62). Inconsistent with this, substitutions of the central dinucleotides of the \(SP\beta\) \(attB\) and \(attP\) sites, especially with G and C, led to a critical loss of efficiency (Supplementary Figure S3). The requirement for the long \(att\) sites and the preference for the AA dinucleotides would be necessary for \(SprA\) to recognize recombination sites and achieve secure reconstitution at the 138th lysine codon (AAA) of \(spsM\). Xu and colleagues reported that Bxb1 and \(\phi\)C31 integrases efficiently catalyzed site-specific DNA recombination in mouse and human cells, while \(SprA\) (referred to as \(SPBc\)) showed weaker activity and produced inaccurate recombination in the mammalian cells (63). \(SprA\) may be sensitive to the subcellular environment as well as to the target nucleotide sequence. Another significant difference is the control of phage excision. A requirement of RDF for phage excision...
is commonly found in phage-encoded LSRs (41), although they vary in size and amino acid sequence (e.g. Bxb1 RDF, 255 aa; dC31 RDF, 244 aa; SprB, 58 aa) (60). Interestingly, the Bxb1 prophage integrates into the groEL1 locus of the host genome (64), whose gene product is known to be necessary for biofilm formation in Mycobacterium; however, Bxb1 lysogens are defects in biofilm formation (65), suggesting that reconstitution of groEL1 does not occur. As described above, the developmentally-regulated excision of phage DNA and the maintenance by SprB in the host cell is a unique mechanism found in SPB.

LSR-mediated site-specific DNA recombinations are being applied to genetic engineering in vitro (61,62) and in vivo (66,67), with the aim of genome engineering for living organisms and gene therapy. However, the currently-devised approaches are mostly based on LSR-mediated ‘integration’ reactions. Although RDF-mediated excision is a more complicated reaction than integration, it can become available for engineering as well, and will make LSRs into more powerful tools. As an example, the spsM rearrangement system, in which the target gene is controlled by the integration/excision of the prophage, is expected to be applied to protein expression systems. Further studies on the mechanism of LSR-mediated excision will be required for a better understanding of the fundamentals of the phage life cycle and future applications.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (KAKENHI) [15K18675 to K.A. and 15K07371 to T.S.]; MEXT-Supported Program for the Promotion of Science (KAKENHI) [15K18675 to F.U.]; MEXT-Supported Program for the Strategic Research Foundation at Private Universities (K.A. and 15K07371 to T.S.); MEXT-Supported Program for the Promotion of Science (KAKENHI) [15K18675 to F.U.].

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (KAKENHI) [15K18675 to K.A. and 15K07371 to T.S.]; MEXT-Supported Program for the Strategic Research Foundation at Private Universities from the Ministry of Education, Science, Sports and Culture of Japan, and the Institute for Fermentation, Osaka (IFO). Funding for the open access charge: the Japan Society for the Promotion of Science.

Conflict of interest statement. None declared.

REFERENCES

1. Sakano,H., Rogers,J.H., Huppi,K., Brack,C., Traunecker,A., Maki,R., Wall,R. and Tonegawa,S. (1979) Domains and the hinge region of an immunoglobulin heavy chain are encoded in separate DNA segments. *Nature*, 277, 627–633.

2. Schatz,D.G. and Ji,Y. (2011) Recombination centres and the orchestration of V(D)J recombination. *Nat. Rev. Immunol.*, 11, 251–263.

3. Schatz,D.G., Oettinger,M.A. and Baltimore,D. (1989) The V(D)J recombination activating gene, RAG-1. *Cell*, 59, 1035–1048.

4. Oettinger,M.A., Schatz,D.G., Gorka,C. and Baltimore,D. (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. *Science*, 248, 1517–1523.

5. Alt,F.W., Zhang,Y., Meng,F.L., Guo,C. and Schwer,B. (2013) Mechanisms of programmed DNA lesions and genomic instability in the immune system. *Cell*, 152, 417–429.

6. Ma,Y., Pannicke,U., Schwarz,K. and Lieber,M.R. (2002) Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. *Cell*, 108, 781–794.

7. Komori,T., Okada,A., Stewart,V. and Alt,F.W. (1993) Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. *Science*, 261, 1171–1175.

8. Bertocci,B., De Smet,A., Weill,J.C. and Reynaud,C.A. (2006) Nonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(DJ) recombination in vivo. *Immunity*, 21, 31–41.

9. Li,Z., Oetvölgyi,T., Gao,Y., Cheng,H.L., Seed,B., Stamato,T.D., Taccioli,G.E. and Alt,F.W. (1995) The XRCC4 gene encodes a novel protein involved in DNA double-strand break repair and V(D)J recombination. *Cell*, 83, 1079–1089.

10. Grawunder,U., Zimmer,D., Fugmann,S., Schwarz,K. and Lieber,M.R. (1998) DNA ligase IV is essential for V(D)J recombination and DNA double-strand break repair in human precursor lymphocytes. *Mol. Cell.*, 2, 477–484.

11. Golden,J.W., Robinson,S.J. and Haselkorn,R. (1985) Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium *Anabaena*. *Nature*, 314, 419–423.

12. Golden,J.W., Mulligan,M.E. and Haselkorn,R. (1987) Different rearrangement site specificity of two developmentally regulated genome rearrangements. *Nature*, 327, 526–529.

13. Carrasco,C.D., Buettner,J.A. and Golden,J.W. (1995) Programmed DNA rearrangement of a cyanobacterial *hupL* gene in heterocysts. *Proc. Natl. Acad. Sci. U.S.A.*, 92, 791–795.

14. Stragier,P., Kunkel,B., Kroos,L. and Losick,R. (1989) Chromosomal rearrangement generating a composite gene for a developmental transcription factor. *Science*, 243, 507–512.

15. Sato,T., Samori,Y. and Kobayashi,Y. (1990) The *cisA* cistron of *Bacillus subtilis* sporulation gene *spoIVC* encodes a protein homologous to a site-specific recombinase. *J. Bacteriol.*, 172, 1092–1098.

16. Kunkel,B., Losick,R. and Stragier,P. (1990) The *Bacillus subtilis* gene for the development transcription factor *a^* is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. *Genes Dev.*, 4, 525–535.

17. Popham,D.L. and Stragier,P. (1992) Binding of the *Bacillus subtilis* spoIVC4 product to the recombination sites of the element interrupting the *a^* encoding gene. *Proc. Natl. Acad. Sci. U.S.A.*, 89, 5991–5995.

18. Sato,T., Harada,K., Ohta,Y. and Kobayashi,Y. (1994) Expression of the *Bacillus subtilis* spoIVC4 gene, which encodes a site-specific recombinase, depends on the spoIIB product. *J. Bacteriol.*, 176, 935–937.

19. Takekawa,K., Mizuno,M., Sato,T., Takeuchi,M. and Kobayashi,Y. (1994) Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in *Bacillus subtilis*. *Microbiology*, 141, 323–327.

20. Abe,K., Yoshinari,A., Aoyagi,T., Hirota,Y., Iwamoto,K. and Sato,T. (2013) Regulated DNA rearrangement during sporulation in *Bacillus weihenstephanensis* KBA4. *Mol. Microbiol.*, 90, 415–427.

21. Abe,K., Kawanoh,Y., Iwamoto,K., Arai,K., Maruyama,Y., Eichenberger,P. and Sato,T. (2014) Developmentally-regulated excision of the SPB prophage reconstitutes a gene required for spore envelope maturation in *Bacillus subtilis*. *PLoS Genet.*, 10, e1004636.

22. Serrano,M., Kint,N., Pereira,F.C., Saujet,L., Boudry,P., Dupuy,B., Henrques,A.O. and Martin-Verastraete,E. (2016) A recombination directionality factor controls the cell type-specific activation of *a^* and the fidelity of spore development in *Clostridium difficile*. *PLoS Genet.*, 12, e1006312.

23. Lazarevic,V., Dusterhoft,A., Soldo,B., Hilbert,H., Mauel,C. and Karamata,D. (1999) Nucleotide sequence of the *Bacillus subtilis* temperate bacteriophage SPβ2. *Microbiology*, 145, 1055–1067.

24. Nicolas,P., Mader,U., Deryvyn,E., Rochat,T., Loduc,A., Pigonneau,N., Bidenko,E., Marchadier,E., Hoebecke,M., Aymierich,S. et al. (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in *Bacillus subtilis*. *Science*, 335, 1103–1106.

25. Smith,M.C. and Thorpe,H.M. (2002) Diversity in the serine recombinases. *Mol. Microbiol.*, 44, 299–307.

26. Grindley,N.D., Whiteon,K.L. and Rice,P.A. (2006) Mechanisms of site-specific recombination. *Annu. Rev. Biochem.*, 75, 567–605.

27. Smith,M.C., Brown,W.R., McEwan,A.R. and Rowley,P.A. (2010) Site-specific recombination by qε31 integrase and other large serine recombinases. *Biochem. Soc. Trans.*, 38, 388–394.
28. Van Duyne, G.D. and Rutherford, K. (2013) Large serine recombinase domain structure and attachment site binding. *Crit. Rev. Biochem. Mol. Biol.*, **48**, 476–491.

29. Stark, W.M. (2014) The Serine Recombinases. *Microbiol. Spectr.*, **2**, doi:10.1128/microbiolspec.MDNA-0046-2014.

30. Yuan, P., Gupta, K. and Van Duyne, G.D. (2008) Tetrameric structure of a serine integrase catalytic domain. *Structure*, **16**, 1275–1286.

31. Rowley, P.A. and Smith, M.C. (2008) Role of the N-terminal domain of φC31 integrase in attB-attP synthesis. *J. Bacteriol.*, **190**, 6918–6921.

32. Smith, M.C., Till, R., Brady, K., Soultanas, P., Thorpe, H. and Smith, M.C. (2004) Synapsis and DNA cleavage in φC31 integrase-mediated site-specific recombination. *Nucleic Acids Res.*, **32**, 2607–2617.

33. Keenholtz, R.A., Rowland, S.J., Boocock, M.R., Stark, W.M. and Rice, P.A. (2011) Structural basis for catalytic activation of a serine recombinase. *Structure*, **19**, 799–809.

34. Ghosh, P., Pannunzio, N.R. and Hatfull, G.F. (2005) Synapsis in phage Bxb1 integration: selection mechanism for the correct pair of recombination sites. *J. Mol. Biol.*, **349**, 331–348.

35. McEwan, A.R., Rowley, P.A. and Smith, M.C. (2009) DNA binding and synopsis by the large C-terminal domain of φC31 integrase. *Nucleic Acids Res.*, **37**, 4764–4773.

36. Singh, S., Ghosh, P. and Hatfull, G.F. (2013) Attachment site selection and identity in Bxb1 serine integrase-mediated site-specific recombination. *PLoS Genet.*, **9**, e1003490.

37. Mandali, S., Dhar, G., Avliyakulov, N.K., Haykinson, M.J. and Johnson, R.C. (2013) The site-specific integration reaction of Listeria phage A118 integrase, a serine recombinase. *Mobile DNA*, **4**, 2.

38. Rutherford, K., Yuan, P., Perry, K., Sharp, R. and Van Duyne, G.D. (2013) Attachment site recognition and regulation of directionality by the serine integrases. *Nucleic Acids Res.*, **41**, 8341–8356.

39. Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglemeier, K., Gas, S., Barry, C.E. 3rd et al. (1998) Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. *Nature*, **393**, 537–544.

40. Breuner, A., Brandstédt, L. and Hammer, K. (1999) Novel organization of genes involved in prophage excision identified in the temperate lactococcal bacteriophage TP901-1. *J. Bacteriol.*, **181**, 7291–7297.

41. Lewis, J.A. and Hatfull, G.F. (2001) Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. *Mobile DNA*, **4**, 2.

42. Fogg, P.C., Colloms, S., Rosser, S., Stark, M. and Smith, M.C. (2014) New applications for phage integrases. *J. Mol. Biol.*, **426**, 2703–2716.

43. Zhang, L., Zhao, G. and Ding, X. (2011) Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination. *Sci. Rep.*, **1**, 141.

44. Colloms, S.D., Merrick, C.A., Olorunniyi, F.J., Stark, W.M., Smith, M.C., Osbourn, A., Keasling, J.D. and Rosser, S.J. (2014) Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination. *Mobile DNA*, **5**, 1564–1571.

45. Xu, Z. and Brown, W.R. (2016) Comparison and optimization of ten phage encoded serine integrases for genome engineering in *Saccharomyces cerevisiae*. *BMC Biotechnol.*, **16**, 13.

46. Scott, J., Nguyen, S.V., King, C.J., Hendrickson, C. and McShan, W.M. (2012) Phage-like *Streptococcus pyogenes* chromosomal islands (SpyCl) and mutator phenotypes: control by growth state and rescue by a SpyCl-encoded promoter. *Front. Microbiol.*, **3**, 317.

47. Wang, X., Kim, Y. and Wood, T.K. (2009) Control and benefits of CP4-57 prophage excision in *Escherichia coli* biofilms. *ISME J.*, **3**, 1164–1179.

48. Luneberg, E., Mayer, B., Daryab, N., Kooistra, O., Zahringer, U., Rohde, M., Swanson, J. and Frosch, M. (2001) Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in *Legionella pneumophila*. *Mol. Microbiol.*, **39**, 1259–1271.

49. Bae, T., Baba, T., Hiramatsu, K. and Schneewind, O. (2006) Prophages of *Staphylococcus aureus* Newman and their contribution to virulence. *Mol. Microbiol.*, **62**, 1035–1047.

50. Feiner, R., Argov, T., Rabinovich, L., Sigal, N., Borovok, I. and Herskovits, A.A. (2015) A new perspective on lysogeny: prophages as active regulatory switches of bacteria. *Nat. Rev. Microbiol.*, **13**, 641–650.

51. Zhang, Y., Werling, U. and Edelmann, W. (2012) SLICE: a novel bacterial cell extract-based DNA cloning method. *Nucleic Acids Res.*, **40**, e55.

52. Boocock, M.R., Zhu, X. and Grindley, N.D. (1995) Catalytic residues of y60 resolvase act in cis. *EMBO J.*, **14**, 5129–5140.

53. Nakano, M., Ogasawara, H., Shimada, T., Yamamoto, K. and Ishihama, A. (2014) Involvement of CAMP-CR-P in transcription activation and repression of the pck gene encoding PEP carboxykinase, the key enzyme of gluconeogenesis. *FEBS Microbiol. Lett.*, **355**, 93–99.

54. Abe, K., Ohana, N. and Nakamura, K. (2010) Effects of depletion of RNA-binding protein Tex on the expression of toxin genes in *Clostridium perfringens*. *Biosci. Biotechnol. Biochem.*, **74**, 1564–1571.

55. Pokhilko, A., Zhao, J., Ebenhöf, O., Smith, M.C., Stark, W.M. and Colloms, S.D. (2016) The mechanism of φC31 integrase directionality: experimental analysis and computational modelling. *Nucleic Acids Res.*, **44**, 7360–7372.

56. Coddeville, M. and Ritzenthaler, P. (2010) Control of directionality in bacteriophage m4 site-specific recombination: functional analysis of the Xis factor. *J. Bacteriol.*, **192**, 624–635.

57. Pokhilko, A., Fujiwara, M., Jensen, P.T., Conlon, E.M., Rudner, D.Z., Wang, S.T., Ferguson, C., Haga, K., Sato, T., Liu, J.S. et al. (2004) The program of gene transcription for a single differentiating cell type during sporulation in *Bacillus subtilis*. *PLoS Biol.*, **2**, e328.

58. Fogg, P.C., Colloms, S., Rosser, S., Stark, M. and Smith, M.C. (2014) New applications for phage integrases. *J. Mol. Biol.*, **426**, 2703–2716.

59. Zhang, L., Zhao, G. and Ding, X. (2011) Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination. *Sci. Rep.*, **1**, 141.

60. Colloms, S.D., Merrick, C.A., Olorunniyi, F.J., Stark, W.M., Smith, M.C., Osbourn, A., Keasling, J.D. and Rosser, S.J. (2014) Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination. *Mobile DNA*, **5**, 1564–1571.

61. Khaleel, T., Younger, E., McEwan, A.R., Varghese, A.S. and Smith, M.C. (2011) A phage protein that binds φC31 integrase to switch its directionality. *Mol. Microbiol.*, **80**, 1450–1463.

62. Zhang, L., Zhu, B., Dai, R., Zhao, G. and Ding, X. (2013) Control of directionality in Streptococcus phage φBT1 integrase-mediated site-specific recombination. *PLoS One*, **8**, e60434.

63. Rabinovich, L., Sigal, N., Borovok, I., Nir-Paz, R. and Herskovits, A.A. (2012) Prophage excision activates *Listeria* competence genes that promote phagosomal escape and virulence. *Cell*, **150**, 792–802.

64. Scott, J., Nguyen, S.V., King, C.J., Hendrickson, C. and McShan, W.M. (2012) Phage-like *Streptococcus pyogenes* chromosomal islands (SpyCl) and mutator phenotypes: control by growth state and rescue by a SpyCl-encoded promoter. *Front. Microbiol.*, **3**, 317.