A Parameter Sensitivity Study of Solid Oxide Fuel Cells Based on One-dimensional Model

H K Liu¹ and X H Xu¹,²

¹School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
E-mail: xuxinhai@hit.edu.cn

Abstract. Solid oxide fuel cells (SOFCs) are promising and efficient energy conversion devices. The modeling method was widely used to study characteristics of SOFCs due to limitation of experiments. Values of material properties such as porosity, tortuosity and pore radius are required information in modeling. Current modeling works usually employ material properties used in the literature, which are not exactly measured and the values vary in wide ranges. However, inappropriate selection of material properties can result in incorrect modeling results of SOFCs. In this study, a one-dimensional model of SOFCs was established to analyze the effects of different material parameters on the modeling results. A parameter sensitivity analysis was also conducted to determine the most influential parameters on the polarization curve. The results provide a reference for selection values of SOFC material parameters. This work can also be used as a guideline to fit the experimental polarization curve in numerical simulations by adjusting appropriate material parameters.

1. Introduction
Solid oxide fuel cells (SOFCs) directly convert chemical energy of fuels into electrical energy through electrochemical reactions [1]. Electrical performances of SOFCs are determined by activation polarization, concentration polarization and Ohmic polarization. All polarizations are largely affected by material parameters of SOFCs such as porosity, tortuosity, and pore radius of electrodes and so on [2]. However, it is extremely complicated to experimentally measure the values of all material parameters. Therefore, current modeling works of SOFCs usually employ values used in the literature which vary in wide ranges [3].

Celik et al. [4] coupled fluid flow, species concentration, and electric field to develop a model of SOFC. The effects of exchange current density, effective diffusion coefficient, limiting current and other physical parameters were studied. A new semi-empirical model was established to calculate the potential difference between the electrode and electrolyte interface. Vural et al. [5] proposed a mathematic model for SOFC concentration polarization. The dust gas model (DGM), Binary Friction model (BFM), and Stefan-Maxwell model (SMM) were used to calculate the multi-component diffusion in SOFCs. Besides pore size, current density, and reactant concentration, the results show that tortuosity also has important effect on concentration polarization calculation. Diego [6] established a sensitivity analysis model for high temperature proton-exchange membrane fuel cells. The effects of different parameters on fuel cell performance were quantitatively analyzed. Corigliano and Fragiacomo [7] developed a SOFC model for different types of fuels. The model can evaluate the voltage and power density of fuel cells operating at different conditions by varying initial parameters.
However, current work in the literature did not specifically study influences of SOFC material parameters on the polarization curve. Different parts of the curve are dominated by activation polarization, Ohmic polarization and concentration polarization, respectively, which are sensitive to different material parameters. The present study established a one-dimensional (1D) mathematic model of SOFCs for estimation influences of material properties on the electrical performance. The model was validated by experimental data. Sensitivity analyses were also conducted for different properties, which provided a reference for selection of SOFC material parameters in modeling work.

2. 1D SOFC model

Equations for the proposed 1D SOFC model are shown in Table 1. The output voltage of a single cell is calculated by Eq. (1), in which Open circuit voltage (OCV) is the output voltage when the cell is disconnected. The electrochemical reaction needs to be driven by the voltage difference in the equilibrium state, which is called activation polarization. The anode and the cathode have different activation polarization voltage $\eta_{\text{act, anode}}$ and $\eta_{\text{act, cathode}}$. Activation polarization is calculated by the B-V equation in Eq. (3) [8]. The exchange current density i_0 [9-11] has the greatest influence on the activation polarization voltage, which can be calculated by simplified Eq. (4).

Concentration polarization occurs when reactants are rapidly consumed on the electrodes to form a concentration gradient. The concentration of reactants on the catalyst surface depends on the current density. The higher the current density, the lower the surface concentration. When the consumption rate is equal to the diffusion rate, the surface concentration reaches zero. The current density at this time is called the limiting current density i_L. The concentration polarization is calculated by Eqs. (5-9).

Resistance loss is due to the resistance to transport of ions and electrons as shown in Eqs. (10) and (11). Eqs. (12-15) are empirical formulas for electrical conductivities of the electrodes and electrolyte. Figure 1 shows validation of the 1D model by experimental data reported in Ref. [12]. A good agreement is achieved between the calculated results and experimental data.

Table 1. Equations for the 1D SOFC model [8-12]

Equation	Description
$E_{\text{out}} = OCV - E_{\text{act}} - E_{\text{ohm}} - E_{\text{con}}$	Output voltage
$E_{\text{act}} = \eta_{\text{act, anode}} + \eta_{\text{act, cathode}}$	Activation polarization
$i = i_0 \exp\left(\frac{\beta n_i F \eta_{\text{act}}}{RT}\right) - \exp\left[-\frac{(1-\beta) n_i F \eta_{\text{act}}}{RT}\right]$	(3)
$i_0 = \frac{RT}{n_i F} A \exp\left(-\frac{E_a}{RT}\right)$	(4)
$E_{\text{con}} = E_{\text{con,a}} + E_{\text{con,c}}$	Concentration polarization
$E_{\text{con}} = \frac{RT}{n_i F} \ln\left(\frac{i_L}{i_L - i}\right)$	(6)
$c_n = 0 = \frac{i_L M_i}{n_i F} \left(\frac{1}{D_i} + \frac{\delta_j}{D_j}\right)$	(7)
$D_{i,k} = \frac{2}{3} \sqrt{\frac{8RT}{\pi M_i}}$	(9)
$E_{\text{ohm}} = I \times R$	Ohmic polarization
$R = \delta/\sigma$	(11)
$\sigma_{\text{eff}} = \frac{1 - \varepsilon}{\tau} \sigma \times V_{\text{eff}}$	(12)
$\sigma_{\text{ele,a}} = \frac{4.2 \times 10^7 \exp\left(-\frac{1200}{T}\right)}{T}$	(13)
$\sigma_{\text{ele,c}} = \frac{9.5 \times 10^7 \exp\left(-\frac{1150}{T}\right)}{T}$	(14)
$\sigma_{\text{ion}} = \frac{3.34 \times 10^7 \exp\left(-\frac{10300}{T}\right)}{T}$	(15)
3. Results and discussion
Table 2 summarized commonly used values for material parameters of SOFC in the literature. Generally, each parameter has a range because various values of one parameter can be found in different references.

Figure 2 shows polarization curves obtained by varying the anode and cathode exchange current density pre-coefficients A_{ia} and A_{ic}. Eq. (4) indicates that the exchange current density pre-coefficient A_i mainly affects the activation polarization. The calculated results based on the 1D model shown in Figure 2 also confirm that the activation polarization is mostly influenced by varying A_i. In contrast, the Ohmic polarization dominated part of the curve is almost parallel at different exchange current density pre-coefficients.

Figure 2(a) shows that the earlier the activation polarization appears as the smaller A_{ia} is used, because greater activation polarization voltage consumed is corresponding to smaller A_{ia}. When A_{ia} is 1.67×10^8 A/m², the activation polarization voltage loss is about 0.6 V. However, only 0.3 V voltage loss is obtained when A_{ia} is 1×10^{11} A/m². The influence of cathode exchange current density pre-coefficient A_{ic} is shown in Figure 2(b). Similar results of the polarization curves are observed by varying A_{ic}. It can be concluded that increasing both A_{ia} and A_{ic} can reduce the loss of activation polarization and improve cell performance. And A_{ia} and A_{ic} are related to the conductivity of the electrode and the pressure of fuels.

Table 2. Values of SOFC material parameters reported in the literature [5,13-17]

Parameter	Value
Anode diffusion layer pore radius, [m]	r_{ad} 5×10^{-7}~7.5×10^{-5}
Anode diffusion layer porosity	ε_{ad} 0.3~0.6
Anode diffusion layer tortuosity	τ_{ad} 2~10
Anode functional layer pore radius, [m]	r_{af} 5×10^{-7}~2×10^{-6}
Anode functional layer porosity	ε_{af} 0.2~0.5
Anode functional layer tortuosity	τ_{af} 3~13.3
Anode exchange current density pre-coefficient, [A/m²]	A_{ia} 1.67×10^8~6.54×10^{11}
Cathode diffusion layer pore radius, [m]	r_{cd} 5×10^{-7}~5×10^{-5}
Cathode diffusion layer porosity	ε_{cd} 0.3~0.5
Cathode diffusion layer tortuosity	τ_{cd} 2~10
Cathode functional layer pore radius, [m]	r_{cf} 2×10^{-7}~2×10^{-6}
Cathode functional layer porosity	ε_{cf} 0.27~0.5
Cathode functional layer tortuosity	τ_{cf} 2~10
Cathode exchange current density pre-coefficient, [A/m²]	A_{ic} 5.19×10^8~2.7×10^{13}
Figure 2. Polarization curves obtained when varying the different pre-exponential factor for reaction rate constant. (a) A_{ia}; (b) A_{ic}.

Figure 3 demonstrates variation of polarization curves corresponding to different porosities of anode and cathode functional layers. The porosity affects calculation of the limiting current i_l through the diffusion coefficient D, thereby influencing the concentration polarization. The porosity also affects calculation of the electrode material conductivity which is related to the Ohmic polarization.

Eq. (6) indicates that the minimum limiting current density determines the position of the voltage drop when concentration polarization becomes significant. Figure 3 shows that the limiting current density of the cathode is smaller than that of the anode, so the position of the voltage drop in concentration polarization is basically determined by the cathode limiting current density. The change of anode porosity has negligible effect on the output voltage. However, the variation of cathode porosity leads to significant difference of the polarization curves. The greater the cathode porosity, the greater the current density at which the polarization curve suddenly drops. Moreover, the porosities of electrodes have negligible influences on the polarization curves before reaching the limit currents. The results can be verified by Ref [6].

Figure 3. Polarization curves obtained when varying the porosity. (a) ε_{af}; (b) ε_{cf}.

The tortuosity τ of anode and cathode functional layers also affects the calculation of limiting current i_l through the diffusion coefficient D. Moreover, the tortuosity influences the conductivity of the electrodes. The polarization curves obtained when varying the tortuosity of electrodes are shown in Figure 4.
Similar to porosity, the position of the voltage drop in concentration polarization is basically determined by the cathode limiting current density. The change of anode tortuosity has negligible effect on the output voltage. The results show that the concentration polarization is mainly determined by the cathode limiting current density. Therefore, the sensitivity of the cathode tortuosity is greater than that of the anode, which is consistent with the analysis of porosity.

Figure 5 demonstrates variation of polarization curves corresponding to different pore radius of the anode and cathode functional layers. The pore radius of electrodes affects calculation of the limiting current i_L through the diffusion coefficient D, thereby influencing the concentration polarization. The pore radius affects the diffusion of fuels in the porous electrode. The larger the pore radius, the greater the limiting current density is. The change of anode pore radius has negligible effect on the output voltage. However, the variation of cathode pore radius leads to significant difference of the polarization curves. The results show that the concentration polarization is mainly determined by the cathode limiting current density.

Many factors affect the performance of SOFC, but the influence degree of different parameters are not the same. A sensitivity study was employed as shown in Eq. (16) to compare influences of different parameters.

$$S_{p,x} = \left. \frac{O_x - O_0}{x - x_0} \right|_{x=x_0}$$ \hspace{1cm} (16)

The sensitivity model is originally used in Ref [6]. Sensitivity analysis results of different material parameters are illustrated in Figure 6.
Figure 6. Sensitivity of different material parameters

The results show that the exchange current density pre-coefficient A_i has the greatest influence on the polarization curve. The most influential factors in the concentration polarization are the porosity, tortuosity and pore radius of the cathode. Concentration polarization mainly depends on the smaller limiting current density of the cathode and anode. Because the cathode limiting current density is less than that of the anode, the anode change has negligible influence on the fuel cell performance.

4. Conclusion

In this study, a one-dimensional model of SOFCs was developed to analyze the effects of different material parameters on polarization curves. The results show that the influence of exchange current density pre-coefficient is the greatest. The results further show that it mainly affects the activation polarization dominant part of the polarization curve. Parameters such as porosity, tortuosity, and pore radius mainly affect the concentration polarization dominant part. The cathode-related material parameters have greater impact on the overall polarization curve than that of anode. Different parts of the calculated polarization curve can be adjusted by varying different material parameters, which is of great significance to the verification of model simulation with experimental data.

Nomenclature

E_{out} Output voltage, [V]
OCV Open circuit voltage, [V]
E_{act} Activation polarization voltage, [V]
E_{con} Concentration polarization voltage, [V]
E_{ohm} Ohmic polarization voltage, [V]
i Current density, [A/m2]
i_0 Exchange current density, [A/m2]
β Transfer coefficient
n_e Number of electrons transferred per reaction
F Faraday constant [C/mol]
$\eta_{act,c}^{act}$ Anode/cathode activation polarization voltage, [V]
R Ideal gas constant, [J/(mol·K)]
T Temperature, [K]
A_i pre-exponential factor, [A/cm2]

i_c Limit current density, [A/m2]
c_0 Concentration of fuel gas in the channel, [mol/m3]
M_i Molar mass, [kg/mol]
h Convective heat transfer coefficient
δ_{fd} Function/diffusion layer thickness, [m]
D_{fd} Function/diffusion layer diffusivity coefficient
τ Tortuosity
ε Porosity
D_{k} Knudsen diffusion coefficient
D_{ij} Binary diffusion coefficient
r_e Pore radius of porous electrode, [m]
σ_{eff} Effective conductivity, [S/m]
V_{eff} Effective volume fraction
References

[1] Zhou J, Liu Q and Zhang L 2016 Influence of pore former on electrochemical performance of fuel-electrode supported SOFCs manufactured by aqueous-based tape-casting Energy 115 149-54.

[2] Fang Q, Blum L and Peters R 2015 SOFC stack performance under high fuel utilization Int. J. Hydrogen Energy 40 1128-36.

[3] Amiri A, Vijay P and Tad é M O 2016 Planar SOFC system modelling and simulation including a 3D stack module Int. J. Hydrogen Energy 41 2919-30.

[4] Celik I, Pakalapati S R and Salazar M D 2005 Theoretical calculation of the electrical potential at the electrode/electrolyte interfaces of solid oxide fuel cells J Fuel Cell Sci Tech 2 238–45.

[5] Vural Y, Ma L and Ingham D B 2010 Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes J. Power Sources 195 4893-904.

[6] Digeo U, Francisco J P, Pablo C, Manuel A R and Justo L 2012 An easy parameter estimation procedure for modeling a HT-PEMFC Int. J. Hydrogen Energy 37 11308-20.

[7] Corigliano O and Fragiacomo P 2020 Extensive analysis of SOFC fed by direct syngas at different anodic compositions by using two numerical approaches Energ Convers Manage 209 112664.

[8] Zhang Z, Chen J and Yue D 2014 Three-dimensional CFD modeling of transport phenomena in a cross-flow anode-supported planar SOFC Energies 7 80–98.

[9] Aguiar P, Adjiman C S and Brandon N P 2004 Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: Model-based steady-state performance J. Power Sources 138 120-36.

[10] Li P W and Chyu M K 2005 Electrochemical and transport phenomena in solid oxide fuel cells J. Heat Transfer 127 1344-62.

[11] Nagata S, Momma A and Kato T 2001 Numerical analysis of output characteristics of tubular SOFC with internal reformer J. Power Sources 101 60-71.

[12] Lee W Y, Wee D and Gho niem A F 2009 An improved one-dimensional membrane electrode assembly model to predict the performance of solid oxide fuel cell including the limiting current density J. Power Sources 186 417-27.

[13] Park J M, Kim D Y and Baek J D 2018 Effect of electrolyte thickness on electrochemical reactions and thermo-fluidic characteristics inside a SOFC unit cell Energies 11 2-13.

[14] Liu H, Akhtar Z and Li P 2014 Mathematical modeling analysis and optimization of key design parameters of proton-conductive solid oxide fuel cells Energies 7 173–90.

[15] Lang M, Bohn C and Henke M 2017 Understanding the current-voltage behavior of high temperature solid oxide fuel cell stacks J. Electrochemical Society 164 1460–70.

[16] Lee S, Kim H and Yoon N K J 2016 The effect of fuel utilization on heat and mass transfer within solid oxide fuel cells examined by three-dimensional numerical simulations Int. J. Heat Mass Transfer 97 77–93.

[17] Janardhanan V M and Deutschmann O 2006 CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes J. Power Sources 162 1192-202.