Complexity of Searching for 2 by 2 Submatrices in Boolean Matrices

Daniel Průša1 and Michael Wehar2

1Czech Technical University, Prague, Czech Republic
2Swarthmore College, Swarthmore, PA, USA

25th International Conference on Developments in Language Theory

August 16-20, 2021, Porto, Portugal
1. **Introduction**
 - Definitions
 - Motivation

2. **Results**
 - Algorithms
 - Hardness

3. **Conclusion**
 - Summary
 - Future Work
Given a Boolean matrix M

- **ANY $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$**: search M for a submatrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$,
- **MIN $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$**: search M for a submatrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ that encloses the minimum area of M,
- **MAX $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$**: search M for a submatrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ that encloses the maximum area of M

for $a, b, c, d \in \{0, 1\}$.
Examples

• ANY $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$:

\[
M = \begin{pmatrix}
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0
\end{pmatrix}
\]

• MIN $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, MAX $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$:

\[
M = \begin{pmatrix}
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0
\end{pmatrix}
\]
Motivation (Example)

Given a 2D table of employees and their skills,

- find two employees who know the same two programming languages.

	Java	C++	Ruby	Pearl
Miller	✗	✗	✗	✗
Smith		✗	✗	
Taylor	✗		✗	✗
Local picture languages (LOC)

\[\Sigma \ldots \text{a finite alphabet} \]
\[\# \notin \Sigma \ldots \text{the background symbol} \]
\[\Theta \ldots \text{a set of } 2 \times 2 \text{ pictures (tiles) over } \Sigma \cup \{\#\} \]
\[L(\Theta) \ldots \text{local picture language determined by } \Theta \]
Motivation (2D pattern matching)

2D pattern matching

- input is a picture (matrix) over a finite alphabet Σ,
- patterns to find are specified by a picture language over Σ,
- applicable to domains like spreadsheets, timetables, board games, puzzles, etc.

Theorem (Mráz, Průša, Wehar 2019)

Let L be a local picture language. There is an algorithm searching for any/minimum/maximum matching subpicture from L in time $O(mn \min\{m, n\})$ for pictures of size $m \times n$.

Is there a faster algorithm, working in time $O(mn)$?
Motivation (2D pattern matching)

Theorem (Mráz, Průša, Wehar 2019)

Searching for any matching 2D subpicture is Triangle Finding-hard for local picture languages over ternary alphabets.

- The proof is based on searching for submatrix \((\begin{array}{cc} 1 & 2 \\ 1 & 1 \end{array})\).
- What about binary alphabets?

⇒ It is worth it to study Four corners problems.
Triangle finding problem

Given a graph $G = (V, E)$, do there exist vertices $v_1, v_2, v_3 \in V$ such that $\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_1\} \in E$?

- Solvable in time $O(n^\omega)$ where $n = |V|$ and $\omega < 2.373$ denotes the matrix multiplication exponent.
- Unknown if there is an algorithm solving it in time $O(n^2)$.
Conditional lower bounds based on Triangle Finding are known for several problems from the theory of formal languages:

- context-free grammar parsing,
- regular languages intersection emptiness,
- deciding if an NFA accepts a word of a given length.
1 Introduction
 • Definitions
 • Motivation

2 Results
 • Algorithms
 • Hardness

3 Conclusion
 • Summary
 • Future Work
Algorithms

Theorem

For any \(a, b, c, d \in \{0, 1\} \), there is an algorithm solving \(\text{ANY} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) in time \(\tilde{O}(mn) \) for \(m \) by \(n \) Boolean matrices.

- It is sufficient to look at only four cases: \(\text{ANY} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \), \(\text{ANY} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \), \(\text{ANY} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), and \(\text{ANY} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \).
- We apply a different strategy to solve each case.
Algorithm for ANY $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Input: $M \in \{0, 1\}^{m,n}$ (assume $m \geq n$)

1: $S := \emptyset$
2: for each row r of M do
3: $R := \emptyset$
4: for each i s.t. $M(r, i) = 1$ do
5: add i to R
6: end for
7: for each $i, j \in R$ s.t. $i < j$ do
8: if S contains (i, j) then
9: return matching submatrix
10: else
11: add (i, j) to S
12: end if
13: end for
14: end for

$O(n^2 + mn) = O(mn)$
Hardness

Theorem

\[
\text{MAX } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ is Triangle Finding-hard for any } a, b, c, d \in \{0, 1\}.
\]

Although MAX \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is hard, we do introduce a new approach.

Theorem

For any \(a, b, c, d \in \{0, 1\} \), there is an algorithm solving MAX \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \) in time \(O\left(mn \cdot \left(\min\{m, n\}\right)^{0.5302}\right) \) for \(m \) by \(n \) Boolean matrices.
Theorem

\[\text{MAX}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ cannot be solved in time } O(mn) \text{ unless Triangle Finding can be solved in time } O(n^2). \]

\[
G = (V, E) \text{ contains a triangle iff } M \text{ contains submatrix } \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ that encloses area of at least } 3|V|^2 \text{ entries.}
\]
Algorithm for $\text{MAX} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Given a Boolean matrix \mathbf{M}.
For each two distinct rows i and j, we need to know
- minimum c_1 such that $\mathbf{M}(i, c_1) = \mathbf{M}(j, c_1) = 1$,
- maximum c_2 such that $\mathbf{M}(i, c_2) = \mathbf{M}(j, c_2) = 1$.

If c_1, c_2 exist and $c_1 \neq c_2$, then the maximum area enclosed by a submatrix $(\begin{array}{c} 1 \\ 1 \end{array})$ with entries in rows i and j is $(|i - j| + 1) \cdot (c_2 - c_1 + 1)$.

The indices c_1, c_2 can be obtained for all pairs i, j from the minimum and maximum witness matrix for the product \mathbf{MM}^T.
Minimum/maximum witness matrix

Let \(A \) and \(B \) be two Boolean matrices of dimensions \(m \times n \) and \(n \times m \), respectively.

A minimum/maximum witness matrix for the Boolean product \(C = AB \) is the \(m \times m \) matrix \(W \) fulfilling:

- If \(C(i,j) = 0 \), then \(W(i,j) = 0 \).
- Otherwise, \(W(i,j) \) is equal to the minimum/maximum index \(k \) such that \(A(i,k) = B(k,j) = 1 \).

Theorem (Cohen, Yuster 2014)

There is an algorithm computing the minimum/maximum witness matrices in time \(O(mn \cdot (\min\{m, n\})^{0.5302}) \).
Problem Complexities

- any/min/max subpicture matching for local picture languages is in time $O(mn \min\{m, n\})$
- $\text{ANY} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ over Boolean matrices is in time $\tilde{O}(mn)$
- $\text{MAX} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ over Boolean matrices is Triangle Finding-hard, but still is in time $O\left(mn \cdot (\min\{m, n\})^{0.5302}\right)$

Also, $\text{MIN} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ over Boolean matrices is in time $\tilde{O}(mn)$.
Questions

- We introduce four different algorithms for solving the \(\text{ANY } \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \), \(\text{ANY } \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \), \(\text{ANY } \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), and \(\text{ANY } \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \) problems. Is there a unified strategy for solving all \(\text{ANY } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) cases over Boolean matrices in time \(\tilde{O}(mn) \)?

- \(\text{ANY } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) over Boolean matrices can be viewed as a subpicture matching problem for a specific subclass of local picture languages. What are the complexities of the subpicture matching problems for other local picture languages?
Thank you!