FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices

Lerner, Eitan; Barth, Anders; Hendrix, Jelle; et al; Nettels, Daniel; Schuler, Benjamin

Abstract: Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current 'state of the art' from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of 'soft recommendations' about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage 'open science' practices.

DOI: https://doi.org/10.7554/eLife.60416

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-210189
Journal Article
Published Version

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
Lerner, Eitan; Barth, Anders; Hendrix, Jelle; et al; Nettels, Daniel; Schuler, Benjamin (2021). FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. eLife, 10:e60416.
DOI: https://doi.org/10.7554/eLife.60416
FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices

Eitan Lerner1+, Anders Barth2+, Jelle Hendrix3+, Benjamin Ambrose4, Victoria Birkedal5, Scott C Blanchard6, Richard Börner7, Hoi Sung Chung8, Thorben Cordes9, Timothy D Craggs4, Ashok A Deniz10, Jiajie Diao11, Jingyi Fei12, Ruben L Gonzalez13, Irina V Gopich8, Taekjip Ha14, Christian A Hanke2, Gilad Haran15, Nikos S Hatzakis16,17, Sungchul Hohng18, Seok-Cheol Hong19, Thorsten Hugel20, Antonino Ingargiola21, Chirlimn Joo22, Achilles N Kapanidis23, Harold D Kim24, Ted Laurence25, Nam Ki Lee26, Tae-Hee Lee27, Edward A Lemke28,29, Emmanuel Margeat30, Jens Michaelis31, Xavier Michalet21, Sua Myong32, Daniel Nettels33, Thomas-Otavio Peulen34, Evelyn Ploetz35, Yair Razvg1, Nicole C Robb36, Benjamin Schuler33, Hamid Soleimaninejad37, Chun Tang38, Reza Vafabakhsh39, Don C Lamb36+, Claus AM Seidel2*, Shimon Weiss2*1,40*

1Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, and The Center for Nanoscience and Nanotechnology, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel; 2Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, Düsseldorf, Germany; 3Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; 4Department of Chemistry, University of Sheffield, Sheffield, United Kingdom; 5Department of Chemistry and iNANO center, Aarhus University, Aarhus, Denmark; 6Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, United States; 7 Laserinstitut HS Mittweida, University of Applied Science Mittweida, Mittweida, Germany; 8Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States; 9Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany; 10Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States; 11Department of Cancer Biology, University of Cincinnati School of Medicine, Cincinnati, United States; 12Department of Biochemistry and Molecular Biology and The Institute for Biophysical Dynamics, University of Chicago, Chicago, United States; 13Department of Chemistry, Columbia University, New York, United States; 14Department of Biophysics and Biophysical Chemistry, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, United States; 15Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel; 16Department of Chemistry & Nanoscience Centre, University of Copenhagen, Copenhagen, Denmark; 17Denmark Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; 18Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea; 19Center for Molecular Spectroscopy and
Dynamics, Institute for Basic Science and Department of Physics, Korea University, Seoul, Republic of Korea; 20Institute of Physical Chemistry and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; 21Department of Chemistry and Biochemistry, and Department of Physiology, University of California, Los Angeles, Los Angeles, United States; 22Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands; 23Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, United Kingdom; 24School of Physics, Georgia Institute of Technology, Atlanta, United States; 25Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, United States; 26School of Chemistry, Seoul National University, Seoul, Republic of Korea; 27Department of Chemistry, Pennsylvania State University, University Park, United States; 28Departments of Biology and Chemistry, Johannes Gutenberg University, Mainz, Germany; 29Institute of Molecular Biology (IMB), Mainz, Germany; 30Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, Montpellier, France; 31Institüt für Biophysik, Ulm University, Ulm, Germany; 32Department of Biophysics, Johns Hopkins University, Baltimore, United States; 33Department of Biochemistry and Department of Physics, University of Zurich, Zurich, Switzerland; 34Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States; 35Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig-Maximilians-Universität, München, Germany; 36Warwick Medical School, University of Warwick, Coventry, United Kingdom; 37Biological Optical Microscopy Platform (BOMP), University of Melbourne, Parkville, Australia; 38College of Chemistry and Molecular Engineering, PKU-Tsinghua Center for Life Sciences, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; 39Department of Molecular Biosciences, Northwestern University, Evanston, United States; 40Department of Physiology, CaliforniaNanoSystems Institute, University of California, Los Angeles, Los Angeles, United States

Abstract Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current ‘state of the art’ from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of ‘soft recommendations’ about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage ‘open science’ practices.
Introduction

Understanding how biomolecules couple structural dynamics with function is at the heart of several disciplines and remains an outstanding goal in biology. Linking conformational states and their transitions to biochemical function requires the ability to precisely resolve the structure and dynamics of a biological system, which is often altered upon ligand binding or influenced by the chemical and physical properties of its environment. The most well-established structural biology tools have provided high-resolution ‘snapshots’ of states in a crystallized or frozen form (e.g., X-ray crystallography and single-particle cryo-electron microscopy, cryoEM) or an ensemble average of all contributing conformations (e.g., nuclear magnetic resonance, NMR; small-angle X-ray scattering, SAXS; small-angle neutron scattering, SANS; double electron-electron resonance, DEER; cross-linking mass spectrometry, XL-MS; ensemble-FRET). In recent years, further developments have enabled these conventional structural tools to detect conformational dynamics and reaction intermediates. For example, NMR techniques (Anthis and Clore, 2015; Clore and Iwahara, 2009; Palmer, 2004; Ravera et al., 2014; Sekhar and Kay, 2019) and electron paramagnetic resonance techniques (Jeschke, 2018; Jeschke, 2012; Krstić et al., 2011) have been advanced to study conformational dynamics and capture transient intermediates. Time-resolved crystallographic investigations have been employed to resolve functionally relevant structural displacements associated with a biological function (Kupitz et al., 2014; Moffat, 2001; Schlichting et al., 1990; Schlichting and Chu, 2000; Schotte et al., 2003). Advances in microfluidic mixing and spraying devices have enabled time-resolved cryoEM (Feng et al., 2017; Kaledhonkar et al., 2018) and cross-linking mass spectrometry (XL-MS or CL-MS) (Braitbard et al., 2019; Brodie et al., 2019; Chen et al., 2020; Iacobucci et al., 2019; Murakami et al., 2013; Slavin and Kalisman, 2018). Progress in computational methods has also afforded novel tools for examining biomolecular structure and dynamics. Each of these advances highlights an increased awareness that one needs to directly and continuously track the dynamical properties of individual biomolecules in order to understand their function and regulation.

In this context, FRET (referred to as fluorescence resonance energy transfer or Förster resonance energy transfer [Braslavsky et al., 2008]) studies at the ensemble and single-molecule levels have emerged as important tools for measuring structural dynamics over at least 12 orders of magnitude in time and mapping the conformational and functional heterogeneities of biomolecules under ambient conditions. FRET studies probing fluorescence decays at the ensemble level (Grinvald et al., 1972; Haas et al., 1975; Haas and Steinberg, 1984; Hochstrasser et al., 1992) (time-resolved FRET) permitted already in the early 1970s the study of structural heterogeneities on timescales longer than the fluorescence lifetime (a few ns). This approach is still used nowadays (Becker, 2019; Orevi et al., 2014; Peulen et al., 2017) and has been transferred to single-molecule studies. The ability to measure FRET in single molecules (Deniz et al., 1999; Ha et al., 1996; Lerner et al., 2018a) has made the method even more appealing. The single-molecule FRET (smFRET) approach has been extensively used to study conformational dynamics and biomolecular interactions under steady-state conditions (Dupuis et al., 2014; Larsen et al., 2019; Lerner et al., 2018a; Lipman et al., 2003; Margittai et al., 2003; Mazal and Haran, 2019; Michalet et al., 2006; Orevi et al., 2014; Ray et al., 2019; Sasmal et al., 2016; Schuler et al., 2005; Schuler et al., 2002; Steiner et al., 2008; Zhuang et al., 2000). It is notable that, in many mechanistic studies, it suffices to use FRET for distinguishing different conformations and determining kinetic rates such that absolute FRET efficiencies and thereby distances do not need to be determined. However, the ability to measure accurate distances and kinetics with smFRET has led to its emergence as an important tool in this new era of ‘dynamic structural biology’ for mapping biomolecular heterogeneities and for measuring structural dynamics over a wide range of timescales (Lerner et al., 2018a; Mazal and Haran, 2019; Sanabria et al., 2020; Schuler and Hofmann, 2013; Weiss, 1999).

Single-molecule FRET (smFRET) approaches have many advantages as a structural biology method, including:

- sensitivity to macro-molecular distances (2.5–10 nm),
- the ability to resolve structural and dynamic heterogeneities,
- high-quality measurements with low sample consumption of the molecules of interest (low concentrations and low volumes), as the sample is analyzed one molecule at a time,
- determination of structural transitions in equilibrium, hence without the need for synchronization,
the ability to detect (very) rare events. Indeed, in biology, the most interesting molecules to study are often the sparse, functionally active ones amidst a sea of inactive molecules,

- high sensitivity and specificity for labeled molecules. As only the labeled molecule uniquely contributes to the detected signal, these tracers can also be applied as FRET-reporters in crowded environments (Dupuis et al., 2014; Soranno et al., 2014; Zosel et al., 2020b) (hence smFRET can be used to validate results determined in isolation or detect the modulation of conformational preferences and/or structural dynamics through so-called quinary interactions [Guin and Gruebele, 2019]), and

- high specificity for residues/domains via specific labeling. Biomolecules can be specifically labeled by a unique dye pair enabling smFRET measurements to be applicable on all sizes of molecules, including large complex assemblies (see Figure 1 [Kilic et al., 2018]), active biological machines (e.g., the ribosomes) (Dunkle et al., 2011) and even on whole native virions (Lu et al., 2019; Munro et al., 2014).

Several methods have been utilized to determine structural ensembles such as NMR, single-particle cryoEM or XL-MS, and, recently, also smFRET in an integrative/hybrid (I/H) approach with computational modeling to overcome the sparsity of experimental data with respect to an atomistic description (Berman et al., 2019; de Souza and Picotti, 2020; Dimura et al., 2020; Gauto et al., 2019; Koukos and Bonvin, 2020; Na and Paek, 2020; Tang and Gong, 2020; Webb et al., 2018).

I/H structural models derived from smFRET experiments using inter-dye distances as restraints were reported for flexible folded proteins (Brunger et al., 2011; Hellenkamp et al., 2017; Margittai et al., 2003; McCann et al., 2012), conformational ensembles of disordered/unstructured and unfolded proteins (Borgia et al., 2018; Holmstrom et al., 2018; Schuler et al., 2020), nucleic acids and protein-nucleic acid complexes (Craggs et al., 2019; Craggs and Kapanidis, 2012; Kalinin et al., 2012; Lerner et al., 2018b; Muschielok et al., 2008; Wozniak et al., 2008).

A further unique aspect of smFRET studies is that structural, kinetic, and spectroscopic information on large and complex systems can be recorded simultaneously in a single measurement. This facilitates linking dynamic and structural information in an integrative approach to (Figure 1A) (Hellenkamp et al., 2017; Kilic et al., 2018; Li et al., 2020b; Sanabria et al., 2020; Wasserman et al., 2016; Yanez Orozco et al., 2018):

- define the number of possible structures consistent with data,
- potentially reduce the ambiguity between different structural models compatible with the experimental data, and
- reveal the dynamic exchange pathways that are structurally allowed.

As an example, Figure 1B shows the outcome of a multimodal smFRET study on the conformational landscape of a 12-mer chromatin array (~2.5 MDa) (Kilic et al., 2018) with dynamics occurring on timescales from nanoseconds to hours. SmFRET experiments could detect the flexible chromatin conformations (Figure 1B, middle panel), revealing their dynamic structural heterogeneity (Figure 1B, bottom panel), in contrast to the well-ordered static structures of chromatin fibers (Figure 1B, top panel). These flexible, partially-open and open conformations that are quite abundant in solution (population of >70%; Figure 1B, bottom panel) were not resolved before, although they are essential for proper gene organization and function. They represent the central interconversion hub for the distinct stacking registers of chromatin and are difficult to detect with other structural techniques. This approach of visualizing biomolecules in action under ambient conditions emphasizes the importance of their dynamic nature by resolving transitions between various conformational states, which, in many cases, promotes function (Aviram et al., 2018; Henzler-Wildman et al., 2007; Ilijina et al., 2020; Lerner et al., 2018b; Sanabria et al., 2020; Tassis et al., 2020).

SmFRET measurements are typically performed using two approaches: with surface-immobilized molecules using total internal reflection fluorescence microscopy (TIRFM) and camera-based detection, or with freely diffusing molecules in solution using confocal microscopy and point detectors. Experimental systems are available commercially but are typically home-built. Samples are prepared and the data collected using lab-specific protocols, where data are stored in a variety of file formats and analyzed using an array of increasingly powerful software. For the field in general and for structural studies in particular, it is important to demonstrate that smFRET, as a method, is reproducible and reliable regardless of where and how the sample is measured. To this end, in an effort led by Thorsten Hugel, twenty laboratories joined in measuring smFRET on several dsDNA constructs.
Figure 1. Workflow of modeling dynamic structures from FRET measurements. (A) Integrative modeling requires structural and dynamic information. Prior information from conventional approaches (X-ray, NMR, cryoEM) together with computational tools defines the space of possible solutions for FRET-assisted structural modeling. The combination of structural (inter-dye distances) and dynamic information (kinetic connectivity and exchange rates) enables identification of a consistent model. (B) Study of structure and dynamics of chromatin fibers. A combined TIRF and confocal FRET study of structure and dynamics of chromatin fibers using three FRET labeling positions (DA1-3) for two pairs of dyes with distinct Förster distances. Förster distances (is defined in section Inter-dye distances, Equation 6). Prior structural information provided by cryo-electron microscopy (top, left) (Song et al., 2014) and X-ray crystallography (top, right PDB ID: 1ZBB Schalch et al., 2005) is combined with the structural and dynamic information obtained by FRET experiments on immobilized molecules measured by total internal reflection (TIRF) microscopy and on freely diffusing molecules by confocal microscopy (Kilic et al., 2018). From the combined information, a consistent model is derived for chromatin fiber conformations with shifted registers, which are connected by slow (>100 ms) and fast de-compaction processes (150 µs) that do not proceed directly, but rather through an open fiber conformation. Figure 1B was reproduced from Figures 1, 3, and 6 in Kilic et al., 2018, Nature Communications with permission, published under the Creative Commons Attribution 4.0 International Public License (CC BY 4.0; https://creativecommons.org/licenses/by/4.0/). © 2018, Kilic et al. Panel B was reproduced from Figures 1, 3 and 6 in Kilic et al., 2018 , with permission, published under the Creative Commons Attribution 4.0 International Public License.
(Hellenkamp et al., 2018a). Studying six distinct samples with different dyes and varying inter-dye distances, the mean FRET efficiencies obtained by the participating labs exhibited a surprisingly high degree of agreement (a ΔE between 0.02 and 0.05 depending on the details of the sample). The quantitative assessment and reproducibility of the intensity-based smFRET measurements and discussions about data analysis was an important milestone. These dsDNA FRET standards are now available for every day calibration and are especially useful for new groups joining the community.

Encouraged by the insights gained in the above-mentioned FRET endeavor (Hellenkamp et al., 2018a), new multi-lab blind studies have been initiated. The next comparative FRET study, led by Thorben Cordes, investigates the robustness and reliability of smFRET experiments on proteins undergoing ligand-induced conformational changes (Gebhardt et al., in preparation). This study uses two distinct model proteins to assess the reproducibility and accuracy of protein-based smFRET for inter-dye distance determination measurements. Protein systems bring new challenges, including statistical dye labeling, site-specific dye properties, protein stability, shipping, storage and conformational dynamics. Hence, the study also assesses the ability of smFRET to discover and quantify dynamics on different timescales from microseconds to seconds. Another FRET challenge, initiated by Sonja Schmid, is the kinSoftChallenge (http://www.kinsoftchallenge.com, Götz et al., in preparation), which evaluates existing tools for extracting kinetic information from single-molecule time trajectories. This challenge aims to: (1) demonstrate the ability of smFRET-based kinetic analyses to accurately infer dynamic information and (2) provide the community with the means of evaluating the different available software tools.

One important outcome of the various multi-lab FRET studies was that, although the agreement was good, it could be improved even further. In particular, the data analysis, and specifically corrections, can have an impact on the determined FRET efficiencies and resulting distances. Hence, an open discussion regarding which approaches work most reliably under what conditions is necessary. Access to the primary data and the ability to process them with various analysis approaches is, and will remain, the most transparent way to move the field forward. Currently, this is difficult given the many variations in methods employed, their documentation, file formats and experimental procedures implemented across laboratories establishing the optimal conditions, workflow and best practices even for existing, well-tested methods is challenging since a comparison of these methods is time-consuming and the necessary information is, in many cases, not available. With the increase in open scientific practices and submission of published data to repositories, a consensus is needed regarding what data and metadata should be stored and in which possible formats so that it can be readily utilized by the community.

Due to these considerations and the many opportunities for growth of the smFRET community, several laboratories with expertise in FRET, without pretension to be exhaustive or exclusive, have gathered to endorse these efforts and propose steps to organize the community around consistent and open-science practices. This action translates into general methodological recommendations or suggestions, which we introduce following the typical workflow of a smFRET experiment, including sample preparation and characterization, setup description, data acquisition and preservation, and data analysis. These recommendations on how to ‘practice’ smFRET are not an attempt to regiment the community but rather an initial suggestion that aims at encouraging an open dialog about existing practices in our field and leads to higher reproducibility in the results from smFRET experiments. We then discuss open science practices as well as the first steps that have been taken to form an international FRET community. We end with highlighting a few of the areas where we see smFRET making a big impact in various scientific fields in the near future.

State of the art of single-molecule FRET experiments

Within the FRET community, considerable know-how and expertise exists for the design, measurement and analysis of FRET experiments. In this section of the paper, we:

- review the workflow of smFRET experiments,
- discuss practical problems and potential pitfalls,
- provide recommendations for good practice, and
- list key scientific challenges that the field faces.
In the following, we consider each of these four aspects at every step of the smFRET workflow, from the choice of instrumentation all the way to the generation of structural and dynamic models.

Experimental approaches: free diffusion or surface immobilization?

The workflow of smFRET studies starts with choosing one of the two most popular smFRET implementations: confocal and TIRF microscopy. Confocal microscopy is especially well-suited for studying freely diffusing molecules (Figure 2A), while TIRF microscopy is typically used for surface-immobilized molecules (Figure 2B; e.g., reviewed in Juette et al., 2014; Roy et al., 2008; Sasmal et al., 2016).

Compared to most other single-molecule approaches, both smFRET modalities offer relatively high throughput.

- In the confocal modality, the free diffusion of molecules into the observation volume and the short residence times enable the acquisition of many single-molecule events for extended amounts of time at rates of a few events per second. It can offer sub-nanosecond time resolution, yet single molecules are only observed during diffusion through the confocal excitation volume (typically <10 milliseconds). This allows one to obtain snapshots of thousands of individual molecules over the course of hours.
- In the TIRF modality, hundreds to thousands of dye-labeled molecules can be imaged simultaneously in one field of view. This approach reveals ‘motion pictures’ of individual molecules from seconds to minutes until the fluorophores photobleach. It typically has a lower temporal resolution of about a few tens of milliseconds but this is improving with technological advances. TIRF can be performed by illuminating through a high-numerical-aperture objective (Figure 2B) or through a quartz prism (Roy et al., 2008).

When embarking on the investigation of conformational dynamics of a new biological system, the method of choice most often depends on the availability of the proper instrumentation. However, the dynamical aspects (reviewed in section Conformational dynamics) of the biological system under investigation, which are typically not known a priori, will eventually define which of the two methods is best suited. Because the dynamics of biological systems occur over a range of timescales from nanoseconds to seconds (Figure 3), ideally one would like to apply both modalities in parallel to obtain a complete understanding of the system (e.g., as shown in Figure 1).

Many variations exist with respect to the above-mentioned basic modalities to:

1) maximize the information content of the fluorescence signal.

- The confocal modality equipped with TCSPC and polarization-sensitive detections, so-called multiparameter fluorescence detection (MFD), allows monitoring of the fluorescence lifetime and anisotropy in addition to the fluorescence intensity (Kühnemuth and Seidel, 2001; Rothwell et al., 2003; Sasmal et al., 2010; Widengren et al., 2006). The simultaneous collection and analysis of multiple parameters provides valuable insights into conformational dynamics, impurities and other spurious fluorophore-related artifacts.
- Alternating laser excitation (ALEX) (Kapanidis et al., 2004) allows for optical sorting of molecules exhibiting fluorescence from a single dye or from the two dyes in the FRET experiment (Figure 2A-iv) and also extract information on dye photophysics. In the TIRF modality, millisecond ALEX (msALEX) (Margeat et al., 2006) is typically used; in the confocal modality microsecond ALEX (μsALEX) (Kapanidis et al., 2005; Kapanidis et al., 2004; Lee et al., 2005) or nanosecond ALEX (nsALEX), aka. pulsed interleaved excitation (PIE) (Kudryavtsev et al., 2012; Laurence et al., 2005; Müller et al., 2005) are used.
- Three or more spectral channels can be used for multi-color smFRET (Clamme and Deniz, 2005; Hohng et al., 2004; Lee et al., 2010c; Lee et al., 2007a; Ratzke et al., 2014; Stein et al., 2011).

2) optimize data collection.

- A confocal microscope equipped with a laser and a sample or laser scanning module is also suited to study immobilized molecules (Chung et al., 2012; Edman et al., 1999; Ha et al., 1999; Ha et al., 1997; Hanson et al., 2007; Rhoades et al., 2003; Sabanayagam et al., 2004; Sturzenegger et al., 2018; Uphoff et al., 2011; Wang and Lu, 2010). It is the ‘best of both worlds’ in terms of timing, that is high time resolution and long observation times. However, it requires localizing and measuring each molecule individually, leading to lower throughput.
Figure 2. Different smFRET modalities. (A) Confocal smFRET measurements on freely-diffusing molecules. (i) A schematic of a single-color excitation confocal microscope with point detectors used for two-color detection. The excitation light is guided to the microscope body and reflected by a dichroic mirror (DM) toward a high numerical aperture (NA) objective lens that focuses the light in solution. The fluorescence emission is collected through the same objective lens, passes through the DM and pinhole and is spectrally split into donor and acceptor detection channels by a second...
DM in the detection path. After passing through emission filters (EF), single photons are detected on point detectors with high quantum efficiency, typically avalanche photodiodes (APD). (ii) Illustration of a double-labeled molecule freely diffusing through the confocal excitation spot. (iii) Exemplary confocal smFRET measurement showing photon bursts arising from single-molecules diffusing through the confocal volume. Green: Donor emission. Red: Acceptor emission. Exemplary bursts belonging to a single- or a double-labeled molecule are indicated with arrows. (iv) In ALEX or PIE experiments, the two-dimensional histogram of the molecule-wise FRET efficiency E and stoichiometry S allows one to separate single- and double-labeled populations (2005 Elsevier Ltd. All rights reserved. The figure was originally published as Figure 2A in Lee et al., 2005. Biophysical Journal, 88 (4): 2939–2953. Further reproduction of this panel would need permission from the copyright holder). (B) TIRF-based smFRET experiments on surface-immobilized molecules. (i) Illustration of a surface-immobilized sample labeled with donor and acceptor fluorophores. (ii) Scheme of a single-color objective-type TIRF excitation two-color wide-field detection microscope. A: Aperture, TL: Tube lens, L: Lens, M: Mirror, DM: Dichroic mirror, EF: Emission filter. (iii) Illustration of an image of single molecules, in which the donor and acceptor (FRET) signals are split onto two halves of the camera. Mapping between the two channels is typically done using fluorescent beads (Joo and Ha, 2012; Roy et al., 2008; Zhuang et al., 2000) or zero-mode waveguides (Salem et al., 2019). (iv) Single-molecule fluorescence trajectory of the donor and acceptor (FRET) dyes, illustrating an anti-correlation indicative of FRET dynamics.

© 2005, Elsevier. All rights reserved. Panel Aiv was originally published as Figure 2A in Lee et al., 2005. Further reproduction of this panel would need permission from the copyright holder.

- Multi-spot detection, on arrays of single-photon avalanche diode detectors (SPAD arrays) and other state-of-the-art detectors, increases the throughput of confocal-based smFRET measurements and enables the study of non-equilibrium kinetics with higher time resolution (Ingargiola et al., 2016b; Ingargiola et al., 2018a; Segal et al., 2019).
- Objective-type TIRF can be combined with micro-mirrors in the excitation path to reduce background (Larson et al., 2014).
- Novel large-chip sCMOS cameras allow imaging at higher frame rates than their EMCCD counterparts. With the larger chip size, it can detect tens of thousands of molecules simultaneously (Juette et al., 2016) and the time resolution can be pushed into the sub-millisecond time scale (Fitzgerald et al., 2019; Girotat et al., 2020; Pati et al., 2020).

3) control the sample.

- In the confocal modality, the upper limit of the observation time can be pushed by recurrence analysis (Hoffmann et al., 2011) or by conjugating the molecules to large slowly-diffusing particles or liposomes (Diez et al., 2004; Kim et al., 2015a). Alternatively, the Moerner group confined molecules of interest to the observation volume without immobilization by using an anti-Brownian electrokinetic (ABEL) trap (Cohen and Moerner, 2005; Wilson and Wang, 2019).
- The space available for diffusion can be confined by using nanochannel devices (Fontana et al., 2019; Tyagi et al., 2014) or limiting the sectioning of the excited region through highly inclined and laminated optical (HILO) excitation (Gilboa et al., 2019) so that freely diffusing molecules can be tracked with camera detection.
- Microfluidics-based sample handling devices, including various mixers (Gambin et al., 2011; Hellenkamp et al., 2018b; Kim et al., 2011; Lemke et al., 2009; Lipman et al., 2003; Wunderlich et al., 2013; Zijlstra et al., 2017), allow automated sample handling and enable non-equilibrium measurements (Hamadani and Weiss, 2008; Juette et al., 2016).

The many possibilities available in the choice of hardware underscore the importance of precisely describing the components of the experimental setup. This includes optical elements (e.g., lenses, filters, mirrors, dichroics), light sources, optomechanical/optoelectronic devices and their characteristics, and detectors and their associated electronics. These details contribute in many ways to the finally recorded data and cannot, in general, be inferred retrospectively.

With the palette of FRET modalities increasing steadily, we recommend a rigorous comparative study of the different methods using well-characterized model samples. First and foremost, the study should determine the precision and limitations of each method and their complementarity. As one example, potential pitfalls in the determination of data correction factors (described in the section FRET efficiency) could be identified by a side-by-side comparison of fluorescence lifetime and intensity-based FRET methods.
Figure 3. Exemplary methods for following smFRET dynamics on different timescales. Top: Biomolecular dynamics cover a wide range of timescales. Biomolecular rotations occur in the pico- to nanosecond range, while conformational changes take place in nano- to microseconds (ns-μs), as in chain dynamics of disordered proteins, and protein folding in microseconds to minutes. Transitions along energetically unfavorable pathways can take up to hours or longer, as in protein misfolding (Borgia et al., 2011; Tosatto et al., 2015). (2013 Elsevier Ltd. All rights reserved. The figure was originally published as Figure 1 in Schuler and Hofmann, 2013. Current Opinion in Structural Biology, 23(1): 36–47. Further reproduction of this panel would need permission from the copyright holder.) Bottom: (A) Picosecond (ps) to millisecond (ms) processes are typically examined with confocal methods such as polarization-resolved fluorescence lifetime measurements and Fluorescence Correlation Spectroscopy (FCS). Example shown: chain dynamics of an IDP from nsFCS. (B) Conformational states are identified by individual populations with characteristic positions in the FRET efficiency - lifetime diagrams as discussed in the sections Detection and characterization of intra-state dynamics and Future of smFRET (adapted from Soranno et al., 2012). (C) Fast transitions measured using confocal microscopy can be analyzed using the photon trajectory and applying a photon-by-photon maximum likelihood approach (2018 Elsevier Ltd. All rights reserved. The figure was originally published as Figures 2 and 3 in Chung and Eaton, 2018. Current Opinion in Structural Biology, 48: 30–39. Further adaptation of this panel would need permission from the copyright holder.) The timescale over which kinetics can be measured can be extended for diffusing molecules at low concentrations by using a recurrence analysis of single particles (RASP, Hoffmann et al., 2011). (D) Non-equilibrium experiments over extended periods of time can be performed with microfluidic mixing devices. (Copyright 2011, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. Reproduced from Gambin et al., 2011, with permission. Nature Methods 8:239–241. Further reproduction of this panel would need permission from the copyright holder.) (E) Slow changes in conformations over a broad range of timescales can be followed in smFRET efficiency trajectories registered by single-photon counting (SPC) or cameras over minutes to many hours when the sample is immobilized (adapted from Figure 1 of Zosel et al., 2018). © 2013, Elsevier Ltd. All rights reserved. Figure 3 (top) and panel A was originally published as Figure 1 in Schuler and Hofmann, 2013. Further reproduction of this panel would need permission from the copyright holder. © 2018, Elsevier Ltd. All rights reserved. Panel C was originally published as Figures 2 and 3 in Chung and Eaton, 2018. Further adaptation of this panel would need permission from the copyright holder. © 2011, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. Panel D was originally published as Figure 1f in Gambin et al., 2011. Further reproduction of this panel would need permission from the copyright holder.
Sample preparation

Dyes

For studying biomolecular conformations and their dynamics with smFRET, the biomolecules of interest must be labeled with organic dyes that are suitable for single-molecule fluorescence detection (intrinsically fluorescent aromatic amino acids are not stable or bright enough). These dyes usually include three modules: (i) a chemically reactive group that forms a covalent bond preferentially with a specific nucleic acid base or amino acid residue of choice, (ii) a sufficiently long linker of a few connecting bonds to ensure isotropic rotation of the fluorophore, and (iii) an (often bulky) π-conjugated fluorphore that typically has hydrophobic regions and charged or polar substitutions.

To compete with background-noise, smFRET-compatible dyes should be very bright. They should hence possess a sufficiently large extinction coefficient (>50,000 M⁻¹ cm⁻¹ at the wavelength of excitation) and high fluorescence quantum yield (φ ≥ 0.3), be very photostable (≥ 10⁶ excitation cycles before photobleaching), exhibit low photoblinking, should not possess long-lived dark states to avoid optical saturation and have a large fundamental anisotropy, that is have approximately collinear absorption and emission transition dipole moments (typically, n ≥ 0.37). The fluorescence lifetime should be on the 1-5 ns scale. In the case of TCSPC experiments, a general rule of thumb is that the laser repetition period should be chosen at least four times as large as the fluorescence lifetime. For instance, for a dye with a fluorescence lifetime of 4 ns, a laser pulse repetition rate of ~64 MHz for one-color excitation or ~32 MHz for two-color nsALEX/PIE experiments should be used. In addition, using dyes with intrinsic mono-exponential fluorescence decays simplifies the analysis. Continuous efforts are ongoing to further improve smFRET dyes by:

- structural modifications of the core dye structure (Matikonda et al., 2020b); rhodamines and silicon rhodamines, carbopyronines, oxazines; cyanines (Matikonda et al., 2020a; Michie et al., 2017), carbocyanines; BODIPY dyes, perylenes or others, aiming to produce higher absorption cross-sections and fluorescence quantum yields (Grimm et al., 2017; Grimm et al., 2015), good chemical stabilities, water solubility (e.g., sulfonated carbocyanines) (Mujumdar et al., 1993) and a decoupling between the photophysical properties and the microenvironment (Hell et al., 2015; Levitus and Ranjit, 2011; Michie et al., 2017),
- ‘self-healing’ dyes, where the fluorophore is directly linked to a photostabilizing moiety to achieve high photon counting rates (Altman et al., 2012; Isselstein et al., 2020; Bodo et al., 1981; Pati et al., 2020; Schafer et al., 1982; van der Velde et al., 2013; Zheng et al., 2014),
- switchable, caged, and photoactivatable dyes for measuring multiple donor-acceptor distances (Jazi et al., 2017; Upphoff et al., 2010),
- using multiple acceptors, which can extend the overall duration of the fluorescence signal and/or the distance-range for FRET measurements (Krainer et al., 2015), and
- developing inorganic probes that are brighter or have long fluorescence lifetimes, such as nanoparticles and lanthanides, which have also been applied for FRET studies (Clegg, 1995; Guo et al., 2019; Léger et al., 2020).

Finally, a pair of FRET dyes should always be chosen such that its Förster distance, R₀, (defined in section Inter-dye distances, Equation 6) is around the expected inter-probe distance, RDA, where the dependence of the FRET efficiency, E, is most sensitive to RDA. When quantifying conformational dynamics, the FRET dye pair should be chosen such that the expected change in FRET efficiency is as large as possible.

Conjugation

To measure intra-molecular distances within biomolecules, smFRET experiments require the conjugation of two dye molecules to the same biomolecule or the same biomolecular complex. Site-specific conjugations in proteins utilize the introduction of point mutations, typically to cysteines, that will accommodate the specific conjugation chemistry, usually maleimide- or iodoacetamide-cysteine chemistry. In this case, two cysteines are often stochastically labeled, leading to a mixture of donor-acceptor and acceptor-donor labeled molecules. While interchanging the donor and acceptor positions has a negligible effect, from the geometric standpoint, on the FRET-averaged distance (Peulen et al., 2017), stochastic labeling might cause problems when the donor/acceptor dyes possess different spectroscopic properties at the different labeling positions.
Potential issues related to stochastic labeling can be excluded when, for example, a multi-dimensional analysis available from MFD-PIE shows no dye-induced sub-populations. Alternatively, stochastic labeling can also be avoided by:

- exploiting the differences in thiolate reactivities when carrying out double cysteine labeling (Hohlbein et al., 2013; Jacob et al., 2005; Orevi et al., 2014; Santoso et al., 2010a), or blocking the accessibility of specific cysteines (Jäger et al., 2005),
- combining cysteine labeling with bio-orthogonal labeling approaches such as unnatural amino acids (Chakraborty et al., 2012; Milles et al., 2012; Quast et al., 2019; Sadoine et al., 2017; Sanabria et al., 2020), native chemical ligation (Deniz et al., 2000), or using other bio-conjugation approaches that are specific and selective to other amino acids, for instance, methionine (Kim et al., 2020),
- purifying specific dye-labeled species via analytical chromatography (Lerner et al., 2013; Orevi et al., 2014; Zosel et al., 2020a),
- using different dyes that can be introduced to the same system using DNA hybridization (Auer et al., 2017; Deußner-Helfmann et al., 2018; Filius et al., 2020),
- the aid of self-labeling enzymes or peptide tags, such as SNAP-tag (Olofsson et al., 2014), HaloTag (Okamoto et al., 2020), ACP-tag (Meyer et al., 2006a; Meyer et al., 2006b; Munro et al., 2014; Wang et al., 2012), or the enzymes sortase (Kim and Chung, 2020) and transglutaminase (Jäger et al., 2006), and
- the use of fluorescent proteins (Düser et al., 2008; Okamoto et al., 2020), which have also been applied in smFRET studies.

Different approaches are applied for nucleic acids (e.g., reviewed in Hanspach et al., 2019; Steffen et al., 2019). For short nucleic acids, site-specific conjugation is generally achieved by post-synthetic labeling of reactive groups (e.g., through click chemistry) that are incorporated during solid-phase synthesis. Strategies have also been developed to site-specifically label longer RNAs (Anhäuser and Rentmeister, 2017; Baum and Silverman, 2007; Büttner et al., 2014; Zhao et al., 2018), and the use of hybridizing probes (Steiner et al., 2008) and fluorescent nucleobase analogues as intrinsic probes (Karimi et al., 2020; Steinmetzger et al., 2020) has been explored.

A general recommendation for labeling is to aim for high-purity sample preparations with optimized labeling protocols, as only this will result in substantially and specifically labeled samples with both donor and acceptor dyes. Single-molecule measurements have the ability to separate out the donor-acceptor-labeled molecules and thus purify the sample ex post facto, but a significant amount of double-labeled samples is advantageous. After labeling, we recommend using a rigorous screening procedure that compares the activities of labeled and unlabeled wild-type biomolecules to determine whether the mutations introduced to a biomolecule and/or the labeling with the dyes significantly influence the biomolecule’s functionality (e.g., catalytic activity, binding affinity) and stability (e.g., against denaturants or thermally-induced transition curves) (Best et al., 2018; Deniz et al., 2000; Lerner et al., 2018b; Orevi et al., 2014; Riback et al., 2019; Sottini et al., 2020). To check for structural integrity, methods such as mass spectrometry, circular dichroism (CD), dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) can be used (Best et al., 2018; Borgia et al., 2016; Riback et al., 2019). We also recommend reporting the labeling and purification procedures as well as the labeling efficiency. In cases where no labeling alternative exists that does not modify the structure and/or rate of function, mechanistic insights into biomolecules or complexes can often still be obtained. Nevertheless, the results and conclusions concerning wild-type and unlabeled protein, respectively, should be interpreted cautiously. Finally, when samples need to be frozen/thawed, we recommend testing the long-term stability and functionality versus fresh protein preparations.

Immobilization

For long observation times, labeled molecules are typically immobilized. This is most frequently achieved via a biotin-streptavidin linkage. Immobilization must be carefully performed in order to systematically eliminate spurious contributions from molecules that are non-specifically bound (Lamichhane et al., 2010; Traeger and Schwartz, 2017). To address this potential issue, efforts have been made to optimize surface passivation procedures (Hua et al., 2014; Kuzmenkina et al., 2005; Park et al., 2020; Selvin and Ha, 2008). Alternatives that avoid the direct linking of biomolecules to surfaces are:
• mimicking a native environment by reconstitution of membrane proteins in nanodiscs (Bavishi et al., 2018; Hartmann et al., 2015) or liposomes (Dzie et al., 2004),
• encapsulating biomolecules in spatially-restricted volumes such as liposomes (Boukobza et al., 2001; Cisse et al., 2007; Fitzgerald et al., 2019; Okumus et al., 2004; Rhoades et al., 2003; Zelger-Paulus et al., 2020). Care should be taken since the fraction of functioning proteins can be reduced due to the encapsulation process itself. Also, interactions between the protein and/or dyes and the lipids can pose a problem, and
• precise positioning of biomolecular assemblies on DNA-origami platforms (Bartnik et al., 2020; Gietl et al., 2012).

We recommend reporting the immobilization conditions, the control experiments that demonstrate the specific nature of the surface immobilization strategy, and the percentage of functional or dynamic molecules (Bavishi and Hatzakis, 2014; Lamichhane et al., 2010; Roy et al., 2008) in detail. Finally, when possible, we recommend cross-validating the results of surface-immobilization based smFRET experiments by comparing them either to those obtained in ensemble or single-molecule FRET experiments on non-immobilized, freely-diffusing molecules (Pirchi et al., 2011), or to results using different immobilization strategies (Gregorio et al., 2017; Whitford et al., 2010).

Spectroscopic characterization

Fluorescent dyes are characterized by particular spectroscopic properties, which may change when conjugated to a protein (Lerner et al., 2013; Peulen et al., 2017; Sindbert et al., 2011; Steffen et al., 2016) or even between different structural states of the labeled biomolecule (Kudryavtsev et al., 2012). The most important artifacts to look out for are:

• photoblinking, photobleaching, changes of fluorescence anisotropies or the molecular brightness, and spectral shifts can create artificial FRET-species when not properly identified and corrected for or removed (Chung et al., 2009; Kong et al., 2007; Sindbert et al., 2011; van der Velde et al., 2016). Protein-induced fluorescence enhancement (PIFE) (Hwang et al., 2011; Hwang and Myong, 2014) has to be taken into account for the donor properties and at the same time can serve as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers in addition to FRET (Lerner et al., 2016; Ploetz et al., 2016),
• optical saturation effects that reduce the overall observed dye brightness (Gregor et al., 2005; Nettels et al., 2015). Acceptors that have a strong tendency for triplet-state formation or photoisomerization are particularly susceptible to optical saturation,
• dye-dye interactions that may lead to artificial high-FRET states (Sánchez-Rico et al., 2017) or to quenchable FRET (Cordes et al., 2010), and
• interactions between the dye and the labeled molecule can lead to dye-stacking in a predefined orientation that modulates the orientational factor, k^2 (e.g., Cy3 base stacking to 5′-end of DNA [Liu and Lilley, 2017; Ouellet et al., 2011; Sanborn et al., 2007]), or they can lead to quenching and shifts in the apparent transfer efficiency, for example, via photoinduced electron transfer (PET) to aromatic groups (Doose et al., 2009; Haenni et al., 2013).

When the local and/or global environment influences the photophysical properties of either the donor or the acceptor dyes differently, different subpopulations might appear (Kalinin et al., 2010a; Vandenberk et al., 2018). Depending on the research question at hand, these subpopulations may provide additional information beyond FRET (e.g., PIFE [Ploetz et al., 2016], PET [Doose et al., 2009], or quenchable FRET [Cordes et al., 2010]). In cases where accurate distance measurements are needed, properly designed control experiments of fluorescence lifetimes and anisotropies of single-label versions for both labeling positions and dyes can be used to detect and eventually correct these spectroscopic alterations a posteriori. In addition, dye-artifacts can be identified from the information provided by ALEX or PIFExperiments (Kapanidis et al., 2004; Kudryavtsev et al., 2012), MFD-based detection (Hellenkamp et al., 2017; Rothwell et al., 2003) or analysis of the width of FRET efficiency distributions (Kalinin et al., 2010a; Nir et al., 2006). Note that the influence of dye photoblinking must be taken into account: (1) when determining the correction factors necessary for precise FRET efficiency measurements (see section Determining absolute FRET efficiencies from fluorescence intensities) or (2) in the donor fluorescence quantum yield, when accurate distance estimations are required, which, in turn, depends on a correct Förster distance, R_0 (defined in section Inter-dye distances, Equation 6).
When dye- and microenvironment-dependent influences exist, they can be characterized or taken into account by a careful choice of fluorophores and/or labeling locations or coarse-grained computer simulations (Peulen et al., 2017), or they can be ruled out completely by validating the observations with (an)other FRET pair(s) (Borgia et al., 2018; Borgia et al., 2016; de Boer et al., 2019b; Husada et al., 2018; Lerner et al., 2017; Vandenberk et al., 2018; Voelz et al., 2012) or switching fluorophore positions (Sanabria et al., 2020). How important a detailed spectroscopic analysis is, depends on the nature of the research question being addressed.

Photostabilization

Often, chemical photostabilizers are added to reduce oxidative photodamage by lowering the time spent in triplet or radical-ion dark states (Ha and Tinnefeld, 2012; Widengren et al., 2007). The choice of the photostabilizing agent is specific to the fluorophore used and finding the correct conditions for both the donor and acceptor fluorophores can be challenging. Commonly used photostabilizers for smFRET include 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) (Cordes et al., 2009; Dave et al., 2009; Rasnik et al., 2006; Vandenberk et al., 2018), n-propylgalate (Widengren et al., 2007), β-mercaptoethanol (Campos et al., 2011; Ha and Tinnefeld, 2012), ascorbic acid (Aitken et al., 2008; Gidi et al., 2020; Vogelsang et al., 2008; Widengren et al., 2007), linear polyenes (Pfiffi et al., 2010) and cyclopolymers (Dave et al., 2009; Targowski et al., 1987; Widengren et al., 2007), methylviologen (Vogelsang et al., 2008) and a range of other compounds (Glembockyte et al., 2015; Isselstein et al., 2020). For optimal performance, reducing and oxidizing agents can be combined (Dave et al., 2009; Vogelsang et al., 2008). Fluorophore performance and photon budgets can be enhanced by removing oxygen from the buffer through oxygen scavenging systems such as glucose oxidase (Kim et al., 2002) or the PCA/PCD system (Aitken et al., 2008), in which case an exogenous triplet quencher, such as those mentioned above, is required to prevent long-lived dark states. In any case, we recommend verifying that the use of these photostabilization reagents does not interfere with the biological system under study. In the case of lipid bilayers, an influence of several of the commonly used photostabilization agents on membrane properties was observed (Alejo et al., 2013).

Molecule identification and validation

After data collection in either confocal or TIRF modalities, the single-molecule fluorescent signal in the resulting time traces or videos must be identified and validated before further detailed analysis can be performed.

Identification

In the confocal modality, the raw ‘burst’ data includes a sequence of photon detection or arrival times from at least two detectors. The first step is to identify fluorescence bursts arising from single molecules from the background, commonly referred to as the ‘burst search’ (Figure 2A–iii). Various approaches have been described for the robust and accurate detection of single-molecule events (Enderlein et al., 1997; Fries et al., 1998; Nir et al., 2006; Schaffer et al., 1999; Sisamakis et al., 2010). After the burst search step, the identified single-molecule events are filtered based on the burst properties (e.g., burst size, duration or width, brightness, burst separation times, average fluorescence lifetime or quantities calculated from these burst parameters). The burst search and burst selection criteria have an impact on the resulting smFRET histograms. Hence, we recommend that the applied burst property thresholds and algorithms should be reported in detail when publishing the results, for example, in the methods section of papers but potentially also in analysis code repositories. Often, burst search parameters are chosen arbitrarily based on rules-of-thumb, standard lab practices or personal experience. However, the optimal burst search and parameters vary based on the experimental setup, dye choice and biomolecule of interest. For example, the detection threshold and applied sliding (smoothing) windows should be adapted based on the brightness of the fluorophores, the magnitude of the non-fluorescence background and diffusion time. We recommend establishing procedures to determine the optimal burst search and filtering/selection parameters.

In the TIRF modality, molecule identification and data extraction can be performed using various protocols (Börner et al., 2016; Holden et al., 2010; Juette et al., 2016; Preus et al., 2016). In brief, the molecules first need to be localized (often using spatial and temporal filtering to improve
molecule identification) and then the fluorescence intensities of the donor and acceptor molecules extracted from the movie. The local background needs to be determined and then subtracted from the fluorescence intensities. Mapping is performed to identify the same molecule in the donor and acceptor detection channels. This procedure uses a reference measurement of fluorescent beads or zero-mode waveguides (Salem et al., 2019) or is done directly on samples where single molecules are spatially well separated. The outcome is a time series of donor and acceptor fluorescence intensities stored in a file that can be further visualized and processed using custom scripts. In a next step, filtering is generally performed to select molecules that exhibit only a single-step photobleaching event, that have an acceptor signal when the acceptor fluorophores are directly excited by a second laser, or that meet certain signal-to-noise ratio values. However, potential bias induced by such selection should be considered.

User bias
Despite the ability to manually determine burst search and selection criteria, molecule sorting algorithms in the confocal modality, such as those based on ALEX/PIE (Kapanidis et al., 2005; Kudryavtsev et al., 2012; Tomov et al., 2012), do not suffer from a substantial user bias. In the early days, many TIRF modality users have relied on visual inspection of individual single-molecule traces. Such user bias was considerably reduced by the use of hard selection criteria, such as intensity-based thresholds and single-step photobleaching, intensity-based automatic sorting algorithms (e.g., as implemented in the programs MASH-FRET [Hadzic et al., 2019], iSMS [Preus et al., 2015] or SPARTAN [Juette et al., 2016]), and, most recently, artificial intelligence-based molecular sorting (deepFRET [Thomsen et al., 2020] and AutoSiM [Li et al., 2020a]).

Single-molecule experiments are often advertised as being able to detect rare events. Nonetheless, even for such sparsely populated states, it has to be confirmed that they are biologically relevant and neither a result of the selection procedure, coincidence or photophysical artifacts. To this end, users should specify how selections were performed and what percentage of the molecules was used for further analysis.

Ideally, a recommended protocol with implicit validation would be to start in the confocal modality to determine (i) the degree of labeling, (ii) the FRET properties of major biochemical species, and (iii) their populations and dynamic properties (see Figure 1). With this information at hand, experiments can be performed in the TIRF modality, where the percentage of FRET-active molecules and their FRET properties can be directly compared with the confocal data. Both datasets should be mutually consistent and, in this way, provide direct feedback with respect to potential artifacts (e.g., due to immobilization).

Conformational dynamics
Many users in the FRET community employ the detection and characterization of different subpopulations or measurements of conformational dynamics as a handle to study biomolecules or biomolecular systems. Conformational dynamics are typically defined as:

- conformational transitions between distinct states separated by an activation barrier, typically defined as larger than the thermal energy, $k_B T$, where k_B is Boltzmann’s constant and T is the absolute temperature, and
- or conformational fluctuations within states, defined by the shape of the potential wells between activation barriers.

Transitions can occur under equilibrium conditions, can be induced by the addition of substrates, ligands, or interaction partners (de Boer et al., 2019a; Mapa et al., 2010; Mazal et al., 2018; Schluesche et al., 2007); induced by mixing with denaturants (Kuzmenkina et al., 2006; Lindhoud et al., 2015; Maity and Reddy, 2016; Moosa et al., 2018; Nienhaus, 2006; Pirchi et al., 2011; Rieger et al., 2011; Schuler et al., 2002), or triggered by temperature (Ebbinghaus et al., 2010; Holmstrom et al., 2014; Nettels et al., 2009; Zhao et al., 2010a) and pressure modulations (Schneider et al., 2018; Sung and Nesbitt, 2020). Structural transitions can also occur spontaneously.

SmFRET is unique in that it allows the detection and analysis of equilibrium and non-equilibrium conformational dynamics across at least 12 orders of magnitude in time, that is from the nanoseconds to, in principle, thousands of seconds (Figure 3). Notably, it is important to optimize the
labeling positions to maximize the distinction between different conformational states based on their FRET efficiencies (Dimura et al., 2020).

Detecting dynamics
Biomolecules are dynamic systems that show conformational flexibility and dynamics on fast time scales (Henzler-Wildman and Kern, 2007). Oftentimes, conformational interconversions occur on a timescale faster than the sampling time of the detection system, for example < 10 ms for TIRF modality or < 0.1 ms for confocal modality, resulting in the observed single-molecule time series or FRET efficiency histogram exhibiting only time-averaged FRET values, weighted by the fractional population of each conformational state. Several groups have developed methods for detecting and analyzing such ‘dynamic averaging’ from confocal-modality data. In general, these methods allow retrieval of dynamics on the milliseconds and sub-millisecond timescales by analyzing the average fluorescence lifetimes and/or photon counting statistics of single-molecule bursts. The precise knowledge of the experimental shot noise separates smFRET from other techniques in structural biology and enables a quantitative analysis of fluctuations caused by biomolecular dynamics. A number of methods have been developed for detecting and quantifying smFRET dynamics, which we discuss in more detail below on slower (section Slow dynamics) and faster timescales (section Faster dynamics). The first step in analyzing smFRET dynamics is the verification that dynamics are present. Popular methods for the visual detection of dynamics include:

- 2D histograms of burst-integrated average donor fluorescence lifetimes versus burst-integrated FRET efficiencies (Gopich and Szabo, 2012; Kalinin et al., 2010b; Rothwell et al., 2003; Schuler et al., 2016),
- burst variance analysis (BVA) (Torella et al., 2011),
- two-channel kernel-based density distribution estimator (2CDE) (Tomov et al., 2012),
- FRET efficiency distribution-width analysis, for example by comparison to the shot noise limit (Antonik et al., 2006; Gopich and Szabo, 2005a; Ingargiola et al., 2018b; Laurence et al., 2005; Nir et al., 2006) or known standards (Geggier et al., 2010; Gregorio et al., 2017; Schuler et al., 2002), and time-window analysis (Chung et al., 2011; Kalinin et al., 2010a; Gopich and Szabo, 2007), and
- direct visualization of the FRET efficiency fluctuations in the trajectories (Campos et al., 2011; Diez et al., 2004; Margittai et al., 2003).

Slow dynamics
For dynamics on the order of 10 ms or slower, transitions between conformational states can be directly observed using TIRF-modality approaches, as have been demonstrated in numerous studies (Blanchard et al., 2004; Deniz, 2016; Juette et al., 2014; Robb et al., 2019; Sasmal et al., 2016; Zhuang et al., 2000). Nowadays, hidden Markov models (HMM) (Figure 4E) are routinely used for a quantitative analysis of smFRET time traces to determine the number of states, the connectivity between them and the individual transition rates (Andrec et al., 2003; Keller et al., 2014; McKinney et al., 2006; Munro et al., 2007; Steffen et al., 2020; Stella et al., 2018; Zarrabi et al., 2018). Below, we list extensions and other approaches for studying slow dynamics.

- Classical HMM analysis has been extended to Bayesian inference-based approaches such as variational Bayes (Bronson et al., 2009), empirical Bayes (van de Meent et al., 2014), combined with boot-strapping (Hadjic et al., 2018) or modified to infer transition rates that are much faster than the experimental acquisition rate (Kinz-Thompson and Gonzalez, 2018).
- Bayesian non-parametric approaches go beyond classical HMM analysis and also infer the number of states (Sgouralis et al., 2019; Sgouralis and Pressé, 2017).
- Hidden Markov modeling approaches have been extended to detect heterogeneous kinetics in smFRET data (Hon and Gonzalez, 2019; Schmidt et al., 2016).
- Concatenation of time traces in combination with HMM can measure kinetic rate constants of conformational transitions that occur on timescales comparable to or longer than the measurement time (Kim et al., 2015b).
- In the confocal modality, slower timescales are accessible by exploiting the reentry of single molecules into the observation volume (recurrence analysis of single particles, RASP) (Hoffmann et al., 2011).
There are still many challenges with respect to the accuracy of the approaches that need to be discussed and improvements made to provide a reliable determination of kinetics.
Faster dynamics

Several methods exist that assist in the quantification of the kinetic parameters governing fast conformational dynamics, as also exemplified in Figure 3A,B.

- Dynamic photon distribution analyses (PDA) that analyze the width of FRET efficiency distributions with respect to photon shot noise and broadening by dynamic exchange (Gopich and Szabo, 2007; Kalinin et al., 2010b; Santos et al., 2010b).
- Applying hidden Markov models on a photon-by-photon basis extends the achievable time resolution into the microsecond regime (Aviram et al., 2018; Keller et al., 2014; Mazal et al., 2019; Pirchi et al., 2016). More generally, photon-by-photon maximum likelihood analysis (Figure 4D) of diffusing or immobilized molecules has made it possible to extract sub-millisecond transition rates (Chung and Gopich, 2014; Chung et al., 2011; Gopich and Szabo, 2009), transition path times of protein folding (Chung et al., 2012; Chung and Eaton, 2018) and binding of disordered proteins (Kim et al., 2018a; Sturzenegger et al., 2018; Kim and Chung, 2020) on the microsecond timescale.
- Using confocal-modality approaches, numerous studies also directly mapped transitions between conformational states for dynamics on the order of 0.5 ms or slower (Diez et al., 2004; Hanson et al., 2007; Margittai et al., 2003).
- Plasmonic enhancement of the fluorescence signal, reaching count rates in the megahertz regime for single molecules, allows a direct visualization of dynamics on the sub-millisecond timescale without analysis of the photon statistics (Acuna et al., 2012; Bohlen et al., 2019).
- Higher time resolution for TIRF experiments below 10 ms can be achieved using stroboscopic illumination (Farooq and Hohlbein, 2015) or fast sCMOS cameras (Fitzgerald et al., 2019; Giordat et al., 2020; Juette et al., 2016; Pati et al., 2020), reaching into the sub-millisecond domain.

Fluorescence correlation spectroscopy (FCS) (Magde et al., 1972; Rigler et al., 1993) methods have also been widely applied and the observed kinetic rates are model-independent (i.e., unbiased).

- By combining smFRET with FCS (Felekyan et al., 2013; Gurunathan and Levitus, 2010; Margittai et al., 2003; Schuler, 2018; Torres and Levitus, 2007), it is possible to quantify FRET dynamics that are faster than the diffusion timescale (Figure 4C).
- FRET dynamics as fast as a few picoseconds can also be retrieved from a variant of FCS dubbed ‘nanosecond FCS’ (nsFCS) (Nettels et al., 2008; Nettels et al., 2007; Schuler and Hofmann, 2013; Figure 3A).
- Using statistical filters, it is possible to extract species-specific properties and to quantify the exchange rates between different sub-populations (filtered-FCS) (Böhmer et al., 2002; Enderlein et al., 2005; Felekyan et al., 2013; Kapusta et al., 2007).
- Species-specific hydrodynamic radii can be extracted using single-burst FCS (Bravo et al., 2018; Laurence et al., 2008; Laurence et al., 2007). In combination with FRET-FCS or filtered-FCS, this approach simplifies the analysis of kinetics by eliminating the contribution of single-labeled molecules (Barth et al., 2018; Felekyan et al., 2013).

In the analysis of fast dynamics and subpopulations, it is generally important to account for fast photophysical transitions, such as dye photoblinking, and for interactions of the dyes with the biomolecular surface, which may interfere with subpopulation dynamics and result in inaccurate transition rates (Chung and Gopich, 2014; Ingargiola et al., 2018b; Lerner et al., 2018b).

The detection and analysis of fast dynamics is one of the issues addressed in the protein FRET challenge (Gebhardt et al., in preparation). Finally, at the moment of this writing, different analysis algorithms are typically being applied to the data independently from each other (e.g., MFD, BVA, 2CDE, PDA, filtered-FCS in burst analysis) while, in fact, they could corroborate each other or even help in deciding on models. The field could focus on creating global multi-algorithm workflows or tools to test, how a model obtained with one algorithm would influence the results of other analyses.

Detection and characterization of intra-state dynamics

Rapid structural dynamics within a given conformational state, that is within a single energy minimum, can also be studied with smFRET by modeling them as a continuous distribution rather than a state-dependent distribution. In the given example, rigid and flexible conformational states can be
distinguished in the measurement. Information regarding the flexibility of a given conformation can be retrieved by:

- describing their kinetic signatures in FRET efficiency vs. lifetime (\(E - \tau\)) plots (Figure 4A–B) (Gopich and Szabo, 2012; Kalinin et al., 2010b),
- using the fluorescence lifetime information available with TCSPC, which can be used to analyze sub-ensemble fluorescence decays and retrieve the inter-dye distance distribution and the inter-dye distance diffusion coefficient (Gansen et al., 2018; Lerner et al., 2014; Neubauer et al., 2007; Rahamim et al., 2015; Sisamakis et al., 2010),
- analyzing brightness by sub-ensemble fluorescence intensity distribution analysis (FIDA) (Neubauer et al., 2007),
- analyzing the photon statistics of the time-stamped photon arrival trajectories (Ingargiola et al., 2018b; Ramanathan and Muñoz, 2015), and
- relating the time-averaged FRET efficiencies and subpopulation-specific nsFCS to polymer models or simulated ensembles (Borgia et al., 2018; Holmstrom et al., 2018).

It is, however, important to mention that the distinction between dynamics within a conformational state and dynamics of transitions between different conformational states is still under debate, which highly depends on the definition of an activation barrier for different modes of structural dynamics and on the different smFRET modalities used.

FRET efficiency

The efficiency of the energy transfer process, that is the FRET efficiency, \(E\), is defined as the fraction of donor excitations that result in energy transfer. Assuming a single distance between the centers of the donor and acceptor molecules, \(R_{DA}\), the FRET efficiency is given by:

\[
E = \frac{k_{FRET}}{k_{FRET} + k_D} = \frac{1}{1 + \left(\frac{R_{DA}}{R_0}\right)^6},
\]

where \(k_{FRET}\) is the rate of energy transfer, \(k_D\) is the rate of donor de-excitation in the absence of an acceptor molecule, and \(R_0\) is the Förster distance (discussed in section Dye models). Hence, FRET is indeed a tool that can measure distances on the molecular scale (Förster, 1948; Stryer and Haugland, 1967). For many smFRET studies, a qualitative indicator of the inter-probe distance is sufficient, for example, to merely be able to distinguish between conformational subpopulations or their transitions. Therefore, for all FRET experiments that do not require the exact inter-dye distance, the absolute value of \(E\) does not need to be known. However, special care should be taken to ensure that the observed changes of the donor and acceptor intensities report on a structural change of the molecule and are not a result of dye photophysics or dye-surface interactions. In the cases where accurate distance measurements are desired, smFRET can be used for that purpose.

Determining absolute FRET efficiencies from fluorescence intensities

Typically, in smFRET, the FRET efficiency is determined from the fluorescence intensities:

\[
E = \frac{F_{\text{Aem|Dex}}}{F_{\text{Dem|Dex}} + F_{\text{Aem|Dex}}},
\]

where \(F_{\text{Aem|Dex}}\) is the sensitized fluorescence signal from the acceptor after donor excitation and \(F_{\text{Dem|Dex}}\) is the signal emanating from the donor. Here, we use a notation specific to experiments using alternating laser excitation, but equivalent expressions can be derived for single-color excitation. In reality, the absolute value for \(E\) requires knowledge of some correction factors (Hellenkamp et al., 2018a; Lee et al., 2005):

\[
E = \frac{\left[I_{\text{Aem|Dex}} - \alpha I_{\text{Dem|Dex}} - \delta I_{\text{Aem|Aex}}\right]}{\gamma I_{\text{Dem|Dex}} + \left[I_{\text{Aem|Dex}} - \alpha I_{\text{Dem|Dex}} - \delta I_{\text{Aem|Aex}}\right]},
\]

where \(I_{\text{Aem|Dex}}\) is the background-corrected signal in the acceptor emission channel after donor excitation, \(I_{\text{Dem|Dex}}\) is the background-corrected signal in the donor emission channel after donor excitation and \(I_{\text{Aem|Aex}}\) is the background-corrected signal in the acceptor emission channel after acceptor
The last term can be estimated using the acceptor-only species and fluorescence signal after acceptor excitation when the ALEX/PIE method is used (Hellenkamp et al., 2018a; Kudryavtsev et al., 2012; Lee et al., 2005) or by comparing fluorescence intensities before and after donor photobleaching prior to acceptor photobleaching in trajectories from immobilized molecules (Yoo et al., 2018).

The required correction factors are:

- α, the fraction of the donor fluorescence signal detected in the acceptor channel due to spectral crosstalk,
- δ, the fraction of acceptor photons arising from excitation of the acceptor at the wavelength of the donor-exciting laser, directly, and not excitation via energy transfer,
- the γ factor (Ha et al., 1999), which compensates for the fact that the number of photons detected from the donor and acceptor fluorophores is not proportional to the number of their excitation/de-excitation cycles for two reasons: (i) fluorophores, in general, have different fluorescence quantum yields, ϕ_F values, and (ii) the efficiencies of detecting photons are different for the two channels due to different optical transmission efficiencies (owing to the characteristics of the filters and optics used) and different spectral sensitivities of the detectors.

The optimal procedures for determining the correction parameters is still a matter of active debate within the community. In the following, we focus on the γ factor, which we identify as the major contribution to uncertainty in smFRET experiments.

Determining the γ factor in confocal mode
Whenever a broad E distribution is reported in the confocal mode, the γ factor can be extracted using ALEX/PIE measurements. This method exploits the fact that the stoichiometry parameter, S (Kapanidis et al., 2004) (i.e., the ratio between the number of photons emitted after donor excitation and the number of photons emitted after donor and acceptor excitations), is independent of E when properly corrected for γ. It is thus essential that the sample contains two or more species with different distances and thus FRET efficiencies, E, yet identical values of γ for this method to work (Lee et al., 2005). Thus, accurate measurements of ϕ_F for both dyes have to be performed for each species. Alternatively, fluorescence lifetime measurements and the correlated analysis of intensity and lifetime data is often used to determine individual γ factors for each E sub-population, since lifetime-based FRET, in principle, provides the absolute E of a sub-population of single-molecule bursts independently from its intensity-based counterpart (Rothwell et al., 2003; Sisamakis et al., 2010; Vandenberk et al., 2018). However, when one or more species are dynamically averaged, a proper determination of the γ factor becomes more challenging and different assumptions need to be made.

Currently, the uncertainty in the determination of γ is one of the largest contributions to discrepancies of smFRET histograms measured from different laboratories (Gebhardt et al., in preparation). Hence, it would be beneficial to discuss optimal approaches to determine a robust confocal-mode γ value.

Determining the γ factor in TIRF mode
When ALEX data are collected on immobilized samples, the γ factor can also be estimated for individual molecules, provided that the acceptor photobleaches before the donor (Ha et al., 1999; Hildebrandt et al., 2015; McCann et al., 2010). Here, the decrease in the acceptor signal and the increase in donor signal upon acceptor photobleaching can be directly compared. This is also true for molecules undergoing slow dynamics between different conformations as the changes in intensity reflect the changes in detection efficiency. For this approach to be accurate, however, the acceptor must not enter a transient (e.g., redox or triplet) state that still absorbs energy from the donor (Hofkens et al., 2003; Nettels et al., 2015). The individual γ factors are usually broadly distributed, indicating a potential variability in its value. Nevertheless, an average γ factor is often applied to molecules where the donor photobleaches before the acceptor.

Determining absolute FRET efficiencies from fluorescence lifetimes
In addition to the traditional intensity-based FRET efficiency (E) can also be determined from the fluorescence lifetime ($\tau_{D/A}$) of the donor in the presence and absence of the acceptor, denoted by
\[E = 1 - \frac{\tau_{DA}}{\tau_D(0)} \quad (4) \]

The advantage of this approach is that correction factors are not needed, as most of the above-mentioned corrections influence the relative number of photons detected in the donor and acceptor channels, but not the donor fluorescence decay. The lifetime approach can also be used in ensemble/imaging measurements under conditions of incomplete labeling. Combined intensity- and lifetime-based FRET efficiencies can additionally be used for checking the self-consistency of the data and for detecting dynamics (e.g., via \(E - \tau \) plots) (Gopich and Szabo, 2012; Kalinin et al., 2010b; Rothwell et al., 2003; Schuler et al., 2016).

Other methods for determining FRET efficiencies
There are additional procedures for determining the FRET efficiency, most of which are compatible with single-molecule fluorescence techniques. The FRET efficiency can also be determined:

- from the steady-state donor anisotropy (Clegg, 1992),
- from the ratio of the acceptor’s intensity after donor excitation to the acceptor’s intensity after acceptor excitation (Clegg, 1992),
- from the acceptor’s intensity in the presence and absence of the donor (e.g., via donor photobleaching) (Clegg et al., 1992),
- from the donor’s intensity in the presence and absence of the acceptor (e.g., via acceptor photobleaching) (Bastiaens et al., 1996),
- from time-resolved anisotropy measurements, in particular in homo-FRET experiments, where two identical probes are used as a donor-acceptor pair (Bergström et al., 1999; Somssich et al., 2015),
- using fluorescence correlation spectroscopy methods (Müller et al., 2005; Widengren et al., 2001).

Inter-dye distances
When smFRET experiments are used for structural studies or accurate distance determination is desired, many steps need to be taken to convert the raw data (photons detected and registered by the detectors) into absolute inter-dye distances. In essence, it requires exact knowledge of the Förster distance, \(R_0 \) (also referred to as the Förster radius) and therefore of all parameters required for determining it, as well as knowledge with respect to the flexibility of the attached fluorophores (approximated using a dye-model). In this section, we review the various issues involved.

Förster distance \(R_0 \)
In FRET, the excitation energy of the donor fluorophore is transferred to an acceptor fluorophore via weak dipolar coupling. Considering a single donor-acceptor distance, \(R_{DA} \), the efficiency, \(E \), of this non-radiative transfer process scales with the sixth power of \(R_{DA} \) normalized by the Förster distance, \(R_0 \) (Equation 1). In smFRET studies, dyes are usually coupled to the biomolecules via long (ranging typically between 10 and 15 atoms) mostly flexible linkers, which result in an equilibrium distribution of \(R_{DA} \) values, \(p(R_{DA}) \), caused by the flexibility of the dye linkers. In this case, one may observe a mean FRET efficiency \(\langle E \rangle \) related to the FRET efficiency, averaged over all distances and their probabilities:

\[\langle E \rangle = \int_0^\infty \frac{p(R_{DA})}{1 + \left(\frac{R_{DA}}{R_0} \right)^6} dR_{DA}. \quad (5) \]

It is noteworthy to mention that Equation 5 holds under the assumption that the inter-dye distance remains unchanged during the excited-state lifetime of the donor fluorophore. From the mean FRET efficiency \(\langle E \rangle \), one obtains the FRET-averaged apparent donor-acceptor distance, \(\langle R_{DA} \rangle _E \), which differs from the distance between the mean dye positions (Kalinin et al., 2012) and is dependent on the flexibility and dynamics of the dye.
As mentioned before, R_0 (Equation 1) is the distance at which half of the donor de-excitation events occur via energy transfer to the acceptor fluorophore. R_0 (in Å) is given by:

$$R_0 = 0.2108 \left(\frac{\kappa^2 \Phi_{D,P(0)}}{n_{im}^4} \right)^{\frac{1}{4}} \int F_D(\lambda) \varepsilon_A(\lambda) \lambda^4 d\lambda,$$

meaning that it depends on the donor fluorescence quantum yield in the absence of an acceptor, $\Phi_{D,P(0)}$, the overlap between the area-normalized donor emission spectrum, $F_D(\lambda)$, and the acceptor excitation spectrum with extinction coefficient, $\varepsilon_A(\lambda)$ (in $M^{-1}cm^{-1}$), at the wavelength λ (in nm), the relative orientation of the dye dipoles captured by the orientation factor, κ^2, and the refractive index of the medium, n_{im}, between and around the dyes. It should be noted that, due to the λ^4 dependence of the overlap integral, small shifts in the spectra can have large effects on the R_0. The following sections describe the factors that influence R_0 and the FRET efficiency in more detail.

Extinction coefficient ε

The extinction coefficient of the acceptor dye affects R_0 and the expected excitation rate in ALEX/PIE experiments. In the absence of an easy or affordable way to measure this parameter (it requires large amounts of dye for gravimetric analysis or FCS with controlled dilution [Fries et al., 1998]), the experimenter typically relies on the value given by the manufacturer, a value that can at times be unreliable. Alternatively, the extinction coefficient of the dyes may be theoretically assessed via the Strickler and Berg, 1962 equation, when $\Phi_{D,P(0)}$ and the fluorescence lifetime are known. Fortunately, ε is not expected to vary much depending on the environment of the fluorophores, since both the $\Phi_{D,P(0)}$ and the fluorescence lifetime, in most cases, vary accordingly. Hence, one can conclude that the local environment does not heavily influence the excitation probability (according to the Strickler-Berg equation mentioned above).

Fluorescence quantum yield Φ_F

Φ_F oftentimes changes upon labeling and can be sensitive to the local environment at the labeling position, to the conformational state of the molecule and to the binding of ligands, substrates or complex partners. Even dyes that are considered relatively insensitive to their local environment have been shown to exhibit a large change in Φ_F upon conjugation to nucleic acids or proteins. As an extreme example, the quantum yield of Cy3B ranges from 0.19 to 0.97 at different labeling positions on dsDNA, leading to considerable variation in the value of R_0 for the pair Cy3B-ATTO 647N between 54.8 Å and 65.9 Å (Lerner et al., 2018b; Craggs et al., 2019). For dyes of the cyanine family, such as Cy3 and Cy5, or its variants Alexa Fluor 555 and Alexa Fluor 647 (Gehbardt et al., in preparation), Φ_F is dependent on the excited-state isomerization, which is influenced by viscosity, steric restriction and (stacking) interactions (Hwang and Myong, 2014; Lerner et al., 2016; Levitus and Ranjit, 2011; Sanborn et al., 2007; White et al., 2006; Widengren et al., 2001). In summary, independent determination of Φ_F for different labeling positions is strongly recommended. Notably, nsALEX/PIE and MFD experiments can probe the fluorescence lifetime, and thus directly identify changes in Φ_F. Development of standard procedures for measuring or estimating Φ_F, for example using an integrating sphere (Gaigalas and Wang, 2008; Pati et al., 2020) or a nanocavity (Chizhik et al., 2013; Chizhik et al., 2011), would benefit the field and should be discussed.

Refractive index n_{im}

The actual index of refraction to be used for calculation of R_0 lies somewhere between the index of refraction of an aqueous buffer (1.33) and that for proteins and DNA (~1.5) but the exact value is not known. Robert Clegg recommended using an intermediate value of 1.4, which reduces the maximal error in R_0 to ~ 4% (Clegg, 1992). However, different values may be more appropriate depending on the geometry and environment of the fluorophores. To date, the refractive index has received very little attention in the field (Knox and van Amerongen, 2002).
Dye transition dipole orientation factor κ^2

This parameter describes the relative orientation of the transition dipole moments of the dyes and strongly depends on dye mobility. Since the dyes’ orientations can change randomly on the timescale of typical FRET events, the mean value of $\langle \kappa^2 \rangle = 2/3$ is typically taken. This well-known dynamic averaging approximation assumes that the rotational diffusion timescale of a FRET pair is much shorter than the fluorescence lifetime of the donor. However, it may well be that one of the dyes is not freely rotating on this timescale (e.g., it may interact with the microenvironment). An extreme example is a FRET system in which non-canonical fluorescent nucleotides were incorporated into dsDNA. The rigid structure and natural helical twist of the DNA caused the relationship between E and R_{DA} to follow an interesting trend (Ranjit et al., 2009) with E being relatively low around $R_{DA} - R_{0}$ because of $\kappa^2 \approx 0$ (Wranne et al., 2017). In another smFRET experiment, a DNA molecule was end-labeled with Cy dyes without sulfonic acids groups (Cy3 and Cy5), which have a tendency to stack onto bases at the DNA termini (Iqbal et al., 2008; Ouellet et al., 2011), and the influence of orientational effects on the FRET efficiency was measured. Although an influence of the orientation could be detected, the data showed that orientational effects average-out quite well in most realistic cases (Iqbal et al., 2008). A method to estimate the lower and upper bounds for $\langle \kappa^2 \rangle$ from the donor and acceptor time-resolved anisotropies was proposed in the 1970s (Dale et al., 1979; van der Meer, 2002). In smFRET measurements using the polarization-resolved MFD modality,
information on the donor and acceptor fluorescence intensities, lifetimes, and anisotropies (Schaffer et al., 1999) are collected simultaneously and fluorescence anisotropy decays of different single-molecule sub-populations can be used to assess the $\langle \kappa^2 \rangle$ uncertainty per conformational state (Ivanov et al., 2009; Kudryavtsev et al., 2012; Sindbert et al., 2011). It is noteworthy to mention that the majority of fluorophores used as donor and acceptor dyes in smFRET have a mono-exponential fluorescence decay and, hence, have one major emission dipole. In this case, the estimation of $\langle \kappa^2 \rangle$ depends on the orientation of these single transition dipole moments. It has been proposed that the assumption of $\langle \kappa^2 \rangle = 2/3$ would carry much less uncertainty when the fluorescence signal is emanating from more than one emission dipole, yielding multi-exponential decays (Haas et al., 1978). This is an intriguing idea that could provide a realistic estimation for κ^2 and thus help simplify the transformation of FRET efficiencies into inter-dye distances. For a review on the dependence of FRET on κ^2, the reader is referred to (van der Meer, 2002). Finally, we note that there are several routines recommended by experienced members of the community to determine R_0 accurately. Which approach is the most optimal is still under discussion.

Dye models

The Förster equation (Equation 1) allows the extraction of a distance directly from a FRET efficiency measurement. This distance directly corresponds only to the separation of the FRET fluorophores when the positions of the donor and the acceptor molecules are constant, the dye’s orientations are rapidly averaged and their microenvironment is known. Strictly speaking, this is never the case, even for a stable conformation of the labeled macromolecule, since dye molecules are typically attached to the macromolecules via flexible linkers, and the labeled macromolecule usually restricts the volume accessible to the fluorophore (Best et al., 2007; Hellenkamp et al., 2018a; Ingargiola et al., 2018b). In addition, diffusion of the dyes while the donor is in the excited state can also influence the measured FRET efficiency (Ingargiola et al., 2018b). When the FRET rate is not too high (leading to a FRET efficiency of $E<0.8$) and the dyes do not interact with the protein surface, deviations due to dye dynamics are usually negligible (Hellenkamp et al., 2018a; Hellenkamp et al., 2017; Kalinin et al., 2012).

Various groups have developed detailed dye models that account for the translational and rotational flexibility of the dyes and thus allow a more accurate description of the actual distance FRET measures (Figure 5D) (Beckers et al., 2015; Craggs and Kapanidis, 2012; Dimura et al., 2016; Haas et al., 1978; Kalinin et al., 2012; Muschielok et al., 2008; Schuler et al., 2020; Sindbert et al., 2011) and to test them experimentally (Hellenkamp et al., 2018a; Nagy et al., 2018; Peulen et al., 2017; Wozniak et al., 2008). For any given FRET efficiency, different dye models will lead to slightly different extracted R_{DA} distributions (deviations $\leq 5\%$). Choosing an appropriate model is therefore important for the accurate determination of R_{DA}.

Changes in R_{DA} and the relative orientation of the dyes can occur on many different time scales, including the excited state lifetime, the interphoton time, and the photon burst duration. Averaging over these different distances and orientations is complicated due to the inherent non-linearity of the energy transfer process. However, there are exact analyses that describe the photon statistics in smFRET experiments (Antonik et al., 2006; Gopich and Szabo, 2005a; Nir et al., 2006).

Since the dye linker lengths of the typical dyes used in smFRET experiments are long (ranging typically between 10 and 15 atoms, Figure 5B), translational and rotational diffusion of the dyes within the accessible volumes constrained by their linkers and the macromolecules to which they are conjugated lead to considerable changes in R_{DA}. Such dynamics can occur on timescales comparable to the fluorescence lifetime, which leads to changes in R_{DA}, from the moment of donor excitation to the moment of donor de-excitation. This process leads to the well-documented phenomenon termed diffusion-enhanced FRET (Beechem and Haas, 1989; Haas and Steinberg, 1984; Orevi et al., 2014), where the measured FRET efficiencies are higher than expected from a static distribution of R_{DA} due to the increase in the probability for FRET to occur when R_{DA} shortens while the donor is in the excited state (Eilert et al., 2018; Ingargiola et al., 2018b).

This phenomenon has been treated by incorporating both rotational and translational diffusion of the fluorophores as fluctuations in R_{DA} inside a potential well of the reaction coordinate R_{DA} (Dingfelder et al., 2018; Haas and Steinberg, 1984; Ingargiola et al., 2018b). Similarly, rotational motions lead to changes in the relative orientation of the donor and the acceptor molecules and
Therefore to changes in R_0 via κ^2. To this end, a complete kinetic theory treating both rotational and translational diffusion has been developed (Eilert et al., 2018). In many cases, a dynamic rotation - static translation model can be used (i.e., $k_{\text{rotation}} >> k_{\text{FRET}} >> k_{\text{translation}}$) (Figure 5A). Interestingly, Monte-Carlo simulations show that this often-applied simplification can lead to errors in R_{DA} (Hellenkamp et al., 2018a). The magnitude of the uncertainty depends on the donor fluorescence lifetime, the FRET efficiency, and the dye molecules’ diffusion constants and rotational correlation times. So far, no major disagreement of the dynamic rotation – static translation model with experimental data has been reported, thus supporting the use of the isotropic average of $\langle \kappa^2 \rangle = 2/3$.

To obtain atomistic insights into the behavior of dyes on biomolecules, molecular dynamics simulations have been explored (Best et al., 2007; Deplazes et al., 2011; Spiegel et al., 2016; Girodat et al., 2020; Grotz et al., 2018; Hoefling et al., 2011; Reinartz et al., 2018; Shoura et al., 2014). By simulating the whole system, including the fluorophores, information is obtained about the accessible volume of the fluorophore, its potential interactions with the biomolecular surface and the dynamics of the system. The results of such simulations crucially depend on the parameterization (force field) of the dyes. Different parameter sets have been reported for commonly used dyes and validated against experimental data (Best et al., 2015; Graen et al., 2014; Schepers and Gohlke, 2020; Shaw et al., 2020), but a consensus on the optimal parameterization has not yet been reached.
Structural modeling

By accounting for various uncertainties described in the section Inter-dye distances, precise distances can be calculated from FRET efficiencies. This enables the application of FRET for FRET-based structural studies, which are particularly promising for studying the conformations of large, heterogeneous, flexible, and dynamic biomolecules and their complexes (Brunger et al., 2011; Craggs et al., 2019; Filius et al., 2020; Hellenkamp et al., 2017; Holmstrom et al., 2018; Kilic et al., 2018; Muschielok et al., 2008; Nagy et al., 2015; Sanabria et al., 2020; Treutlein et al., 2012; Yanez Orozco et al., 2018). Such systems are notoriously difficult to study with classical structural biology methods. For structure determination, there are further steps that need to be taken.

Pipeline

Different approaches have been used to derive structural models from FRET distance restraints. The general pipeline consists of the following steps:

- preparation and measurement of multiple donor-acceptor labeled variants with different labeling positions,
- control experiments to assess the activity after labeling or immobilization, the photophysics of the probes, and the rotational freedom of the dyes,
- the non-trivial transformation from proximity ratios (uncorrected E values) to absolute FRET efficiencies of the different conformational subpopulations, to inter-dye distance information (or equilibrium distance distributions),
- relating the inter-dye distances to the structure by an appropriate dye model, and
- assessing the quality of the structural model.

The FRET information alone is insufficient to generate an atomistic model de novo. FRET-restrained structural modeling thus relies on prior structural knowledge, from which novel structural models are generated. Different approaches have been used, each with specific advantages and limitations (Figure 6).

- Rigid body modeling/docking: The different parts or domains of the structure or complex are treated as rigid bodies and arranged in 3D space to satisfy the FRET restraints (Choi et al., 2010; Hellenkamp et al., 2017; Kalinin et al., 2012; Mekler et al., 2002; Peulen et al., 2020).
- Ensemble selection: An ensemble of structures is generated (e.g., based on MD simulations or normal mode analysis), from which the structures that are best explained by the FRET results are selected (Dimura et al., 2016; Kalinin et al., 2012; Sanabria et al., 2020).
- Credible volumes: The relative position of unresolved structural elements with respect to the known structure is estimated from the FRET-derived distances (Muschielok et al., 2008).
- FRET-guided molecular dynamics: To guide the simulation, FRET-restraints can be incorporated into coarse-grained structural modeling and in all-atom MD simulations (Dimura et al., 2020).

Different laboratories use different approaches to analyze their experimental results in context-dependent manners and the steps necessary for the conversion from FRET information to inter-dye distance information are still under debate. Importantly, the overall uncertainties in inter-dye distances need to be determined from the uncertainty in R_0, the dye model and experimental precision, and to be incorporated into the integrative structural modeling (Dimura et al., 2016; Hellenkamp et al., 2018a; Hellenkamp et al., 2017; Kalinin et al., 2012; Muschielok et al., 2008; Muschielok and Michaelis, 2011; Peulen et al., 2017). As a result, FRET restraints yielded structural models that showed excellent agreement with existing models in benchmark studies (Kalinin et al., 2012; Mekler et al., 2002), resolved the structure of flexible parts and short-lived excited conformational states that were inaccessible in crystallographic studies (Andrecka et al., 2009; Sanabria et al., 2020) and quantified the conformational flexibility of crystallographic states (Hellenkamp et al., 2017). To increase the success of FRET-derived structural models, a protocol has recently been proposed to determine the most informative labeling positions, the number of labeling positions needed to resolve a given conformation and the accuracy that can be expected for the FRET-derived structural models (Dimura et al., 2020).

We should also be aware of the expected uncertainty for the determined structural model, which can be computed from the number of measurements, their average quality and the properties of the
underlying computational method. Besides estimating the precision (Dimura et al., 2020), it is useful to introduce a quantitative quality estimate, χ^2_n, for judging the accuracy of FRET-derived structure models based on a cross-validation statistical method in the spirit of R_{free} used in X-ray crystallography (Brünger, 1992). Such accuracy estimates are essential for the quality control of I/H structure models, especially those deposited in the PDB-Dev. Dimura et al., 2020 pointed out that the complexity arising from different experiments could be mitigated by using Bayesian hierarchical data processing frameworks, which abstracts the experimental data and propagates the information and uncertainties to enable structural modeling at higher precision and accuracy. Combining the smFRET information with additional constraints provided by complementary methods has the potential to further improve the accuracy of the obtained I/H structural models (Berman et al., 2019).

Verification of steps in the workflow using simulations

At various points along the workflow, simulations can be extremely useful. They can be used to gain a better understanding of the analysis procedures (e.g., to test the impact of specific burst search and selection parameters) (Hagai and Lerner, 2019) or to determine to what extent a particular data analysis procedure is capable of extracting results reliably (e.g., distinguishing between one or two subpopulations) (Blanco and Walter, 2010; Chen et al., 2016). Having a ‘ground truth’ to compare to is also very helpful when developing new analysis methods before applying it to real data. This question is relevant, especially when other common analysis procedures yield different results. Of course, this practice should not replace control measurements and analyses with an established system for validation of a given method, although numerical simulations can give an economical and initial guidance. Using prior knowledge about the measured system and the experimental setup, one can perform simulations mimicking real measurements and then check the results of different analysis procedures. In this way, it is possible to determine which analysis procedure is most promising in a given context. Another insightful aspect that simulations can provide is a consistency check of the data. One can simulate smFRET data assuming the number of states and/or kinetic rates derived from the experiments to see how well the model describes the measured data.

Open science

One of the cornerstones of the scientific method is the ability to reproduce experimental results. As experiments become more sophisticated, a clear description of the experiments is crucial. Recent trends toward Open Science practices call for full transparency of the scientific process, as has been formulated in the FAIR principle that data should be ‘Findable, Accessible, Interoperable, and Reusable’ (Wilkinson et al., 2016). To this end, the procedures taken to acquire, analyze, and interpret experimental data should be provided. That includes describing each step, the reasons for taking the step and the information associated with the step. To ensure that the analysis remains transparent and tractable, code should generally be openly available and all parameters and settings used in the analysis should be stored.

Funding agencies embracing this philosophy (e.g., https://datascience.nih.gov/strategicplan) expect grantees to publish in open-access (OA) journals (and pay for the corresponding OA fees) or deposit manuscripts on preprint servers (e.g., Pubmed Central, arXiv, bioRxiv, ChemRxiv, medRxiv), and deposit data (sometimes also raw data) in repositories (e.g., Zenodo, the Dryad Digital Repository, FigShare) as well as analyses codes (e.g., GitHub). Open science disseminates knowledge by freely sharing results and the tools developed by independent scientists or teams working as part of a collaborative network. We would like to see the FRET community embrace and be committed to open science. Some tools are already in place, while others still need to be developed to make it easier to communicate the continuously growing knowledge and experience present in the FRET community.

Intellectual property and software licenses

There is obviously some tension between the precepts of open science and requirements imposed by some intellectual property (IP) policies. IP rights, including patent laws, were put in place to promote the development of science and technology for the benefit of society by allowing those developing intellectual property to retain the rights for the IP they developed. In fact, in some sense, patents were the first form of open access publication, only with a restrictive license for reuse. We
do not oppose intellectual property rights, but given the developmental stage the FRET field is currently in, we support the disclosure of methods, data, and software. For the advancement of the field, other groups must be able to reproduce the analyses of existing data, extend upon them and, if needed, be able to reproduce the experiments. The acquisition and analysis must be modifiable and extendable in agreement with the license chosen by the data or software creator. This license should be set as liberal as possible, taking into account the IP considerations mentioned above, but also encourage recognition of the considerable effort invested in producing successful protocols, designs, data, or software. Ultimately, if practiced fairly, open science should entice everyone, including commercial vendors, to adopt and contribute to community-defined file formats, provide free file-conversion codes, and open their analysis tools for scrutiny by the community.

Proper documentation of data analysis practices

By making analysis codes and protocols freely available, we hope to stimulate the acceptance, utilization, and exchange of new methods and tools. It is true that there already exist a large number of open-access programs that offer a large variety of analysis procedures for single-molecule photon trajectories (free-diffusion smFRET) and single-molecule videos (immobilized smFRET) data (see Table 1).

To further improve the inter-operation between methods and analysis and to establish convenient documentation protocols, it is essential to work in an open multivalent environment. For this goal, the use of browser-based software such as ‘Jupyter notebooks’ and/or other available workspaces may serve as a convenient platform. Such workspaces provide an interactive scripting environment by combining formatted ‘rich’ text with well-commented code commands as well as code outputs (e.g., figures, tables, comments, equations) and explanations in a single web-based document. Such web-based workspace environments support several programming languages, including Python, R, C++, and, to some extent, MATLAB and Mathematica. Practitioners using this environment can then easily read, distribute, re-run, check, and modify the code. Software engineering approaches in scientific software usually include version control, code review, unit testing, continuous integration, and auto-generation of HTML manuals. In the next step, Jupyter notebooks or similar workspaces can also help newcomers perform complex analyses already in the web-based environment with minimal adaptation efforts, which will accelerate the dissemination of new analyses. Indeed, well-documented, easy-to-use notebooks have been provided by various groups (Ambrose et al., 2020; Ingargiola et al., 2016b; Ingargiola et al., 2016a; Lerner, 2020; Lerner, 2019) (e.g., at https://github.com/tritemio/FRETBursts or https://craggslab.github.io/smfBox/).

Although the notebook approach offers advantages to experienced users and software developers, it might be difficult for many end-users to adapt to the script-based workflow. For those users, it may be more convenient to use the established and tested algorithms embedded in a graphical user interface (GUI). Indeed, there is a large variety of user-friendly software available (compiled in Table 1). To further increase the ease of use, the FRETboard software aims to make the underlying analysis algorithms of other packages available through a single web-based GUI (de Lannoy et al., 2020). As it can be used in a browser through a remote web server, this would allow any user to freely experiment with different analysis methods without the need for software installation or heavy computational resources.

As the first step toward FAIR-compliant analysis practices, we propose establishing a software library that contains tested and proven algorithms for the analysis of fluorescence experiments, which will assist in their efficient distribution and implementation in existing workflows. Such efforts have already been initiated in the FRETBursts software package (Ingargiola et al., 2016b), and a GitHub group has been established at https://github.com/Fluorescence-Tools to collect software packages and connect software developers. Establishing a community-wide working group of ‘Analysis software for FRET’ would be an important step in organizing and moderating this process.

Standard file format

To expedite the exchange of data between different groups and testing of different analysis methods, it would be beneficial to have a minimal number of file formats, and to avoid the multiplication of ad hoc formats developed independently. In fact, the absence of a standard file format and supporting documents has caused issues within individual labs with respect to long-term data storage
Table 1. List of available software for smFRET analysis.

Software	Type	Description	URL
ALiX	Confocal	ALiX is developed for basic research on diffusing two-color smFRET in single or multiple spot geometries (Ingargiola et al., 2017).	https://sites.google.com/a/g.ucla.edu/alix/
Fretica	Confocal	Fretica, a Mathematica package with a backend written in C++, is a user-extendable toolbox that supports MFD, PIE/ALEX, PCH (Huang et al., 2004; Müller et al., 2000), FIDA (Gopich and Szabo, 2005b; Kask et al., 1999), PDA (Antonik et al., 2006; Ernst et al., 2020), recurrence analysis (Hoffmann et al., 2011), fluorescence lifetime fitting, FLIM, FCS, PFCs (Arbour and Enderlein, 2010; Dertinger et al., 2007), dual-focus FCS, nsFCS (Nettels et al., 2007; Schuler and Hofmann, 2013), maximum likelihood estimation from photon-by-photon (Gopich and Szabo, 2009) and binned trajectories, simulation of confocal experiments and more (Nettels and Schuler, 2020; https://schuler.bioc.uzh.ch/programs/).	https://schuler.bioc.uzh.ch/programs/
FRET_3colorCW	Confocal	C++ and MATLAB GUI-based CPU-GPU co-parallelization software package for an enhanced maximum likelihood analysis of two- and three-color fluorescence photon trajectories generated by continuous-wave donor excitation (Yoo et al., 2020).	https://github.com/hoisinglab/FRET_3colorCW
gSMFRETda	Confocal	gSMFRETda is a GPU-capable program for Monte Carlo simulations of PDA. It can sample dwell time and other parameters in fine grids, thus allowing the analysis of rapid dynamic interconversions (Liu et al., 2019).	https://github.com/liu-kan/gSMFRETda
H²MM	Confocal	H²MM is a maximum likelihood estimation algorithm for a photon-by-photon analysis of smFRET experiments (Pirchi et al., 2016).	http://pubs.acs.org/doi/suppl/10.1021/acscb.9b00822/suppl_file/jpbb00822_si_002.zip
MFD Spectroscopy and Imaging	Confocal	A modular software package for confocal fluorescence spectroscopy and imaging experiments using multiparameter fluorescence detection (MFD) with all tools (FCS, IFCS, PDA, setCSPC, trace analysis, 2D simulation of MFD diagrams, Burbulator) and multiparameter fluorescence image spectroscopy (MIPS) (Antonik et al., 2006; Felekyan et al., 2005; Kühnemuth and Seidel, 2001; Widengren et al., 2006; Felekyan et al., 2020).	https://www.mpc.hhu.de/software/3 software-package-for-mfd-fcs-and-mfis
OpenSMFS	Confocal	A collection of tools (Ingargiola et al., 2016b) for solution-based single-molecule fluorescence spectroscopy, including smFRET, FCS, MC-DEPI (Ingargiola et al., 2018b).	https://github.com/OpenSMFS
smfBox	Confocal	A confocal smFRET platform, providing build instructions and open-source acquisition software (Ambrose et al., 2020).	https://craggslab.github.io/smfBox/
rFRET	Confocal	rFRET is a comprehensive, MATLAB-based program for analyzing ratiometric microscopic FRET experiments (Nagy et al., 2016).	https://peternagy.webs.com/fret#rFRET
ChiSurf	Confocal	ChiSurf is a fluorescence analysis platform for the analysis of time-resolved fluorescence decays (Peulen et al., 2017).	https://github.com/Fluorescence-Tools/ChiSurf/wiki
PAM - PIE Analysis with MATLAB	Confocal	PAM (PIE analysis with MATLAB) is a GUI-based software package for the analysis of fluorescence experiments and supports a large number of analysis methods ranging from single-molecule methods to imaging (Schrimpf et al., 2018; Barth et al., 2020).	RRID:SCR_020966, https://www.cup.uni-muenchen.de/pc/lamb/software/pam.html
AutoSiM	TIRF	AutoSiM is a deep-learning developed MATLAB program for automatically selecting and sorting smFRET traces (Li et al., 2020a).	https://doi.org/10.7302/cr2m-9f69
BIASD	TIRF	BIASD uses Bayesian inference to infer transition rates that are more than three orders of magnitude larger than the acquisition rate of the experimental smFRET data (Kinz-Thompson and Gonzalez, 2018).	http://github.com/ckinzthompson/biasd
DeepFRET	TIRF	smFRET software based on deep-learning for automatic trace selection and classification. It includes all common features: image analysis, background-corrected trace-extraction, hidden Markov analysis, correction factor application, and data visualization (Thomsen et al., 2020).	https://github.com/hatzakislab/DeepFRET-GUI
ebFRET	TIRF	ebFRET performs combined analysis on multiple smFRET time-series to learn a set of rates and states (van de Meent et al., 2014).	https://ebfret.github.io/
FRETboard	TIRF	smFRET data preprocessing and analysis using algorithms of choice and user supervision. Also offered as a web-based user interface (de Lannoy et al., 2020).	https://github.com/cvdelannoy/FRETboard
HaMMy	TIRF	smFRET analysis and hidden Markov modeling (McKinney et al., 2006).	http://ha.med.jhmi.edu/resources/
hFRET	TIRF	hFRET uses variational Bayesian inference to estimate the parameters of a hierarchical hidden Markov model, thereby enabling robust identification and characterization of kinetic heterogeneity (Hon and Gonzalez, 2019).	https://github.com/GonzalezBiophysicsLab/hFRET

Table 1 continued on next page
Software	Type	Description	URL
iSMS	TIRF	iSMS is a user-interfaced software package for smFRET data analysis. It includes extraction of time-traces from movies, traces grouping/selection tools according to defined criteria, application of corrections, data visualization and analysis with hidden Markov modeling, and import/export possibilities in different formats for data-sharing (Preus et al., 2015; Preuss et al., 2020).	http://isms.au.dk/
MASH-FRET	TIRF	MASH-FRET is a MATLAB-based software package for the simulation (Börner et al., 2018) and analysis of single-molecule FRET videos and trajectories (video processing [Hadzic et al., 2016], histogram analysis [König et al., 2013], and transitions analysis [Hadzic et al., 2018; König et al., 2013]).	https://rna-fretools.github.io/MASH-FRET/
miCUBE	TIRF	TIRF smFRET platform, providing detailed build instructions and open-source acquisition software (Martens et al., 2019).	https://hohlbeinlab.github.io/miCube/index.html
SMACKS	TIRF	SMACKS (single-molecule analysis of complex kinetic sequences) is a maximum-likelihood approach to extract kinetic rate models from noisy single-molecule data (Schmid et al., 2016).	https://www.singlemolecule.unifreiburg.de/software/smacks
smCamera	TIRF	smFRET data acquisition (Windows. exe) and analysis (IDL, MATLAB) with example data (Roy et al., 2008).	http://ha.med.jhmi.edu/resources/
SPARTAN	TIRF	Automated analysis of smFRET multiple single-molecule recordings. It includes extraction of traces from movies, trace selection according to defined criteria, application of corrections, hidden Markov modeling, simulations, and data visualization (Juette et al., 2016).	https://www.scottblanchardlab.com/software
STaSI	TIRF	STaSI uses the Student’s t-test and groups the segments into states by hierarchical clustering (Shuang et al., 2014).	https://github.com/LandesLab/STaSI
TwoTone	TIRF	A TIRF-FRET analysis package for the automatic analysis of single-molecule FRET movies (Holden et al., 2011).	https://groups.physics.ox.ac.uk/geniemachines/group/MainSoftware.html
vbFRET	TIRF	vbFRET uses variational Bayesian inference to learn hidden Markov models from individual, smFRET time trajectories (Bronson et al., 2009).	http://www.columbia.edu/cu/chemistry/groups/gonzalez/software.html
Fast NPS	Modeling	A nano-positioning system for macromolecular structural analysis (Eilert et al., 2017).	http://dx.doi.org/10.17632/7ztj63t68.1
Fluordynamics	Modeling	Fluordynamics is a PyMOL plugin to label biomolecules with organic fluorophores for all-atom molecular dynamics simulations. It builds on AMBERDYES (Schepers and Gohlke, 2020) and extends the force field to common nucleic acid linker chemistries (Steffen et al., 2016).	https://github.com/RNA-FRETTools/fluordynamics
FPS	Modeling	A toolkit for FRET restrained modeling of biomolecules and their complexes for quantitative applications in structural biology (Kalinin et al., 2012).	https://www.mpc.hhu.de/software/1-fret-positioning-and-screening.fps
FRETraj	Modeling	FRETraj is a Python API to the LabelLib package, which integrates into PyMOL to interactively calculate accessible-contact volumes and predict FRET efficiencies (Steffen et al., 2016).	https://github.com/RNA-FRETTools/fretraj
FRETrest in	Modeling	FRETrest is a set of helper scripts for generating FRET-restraints for Molecular Dynamics (MD) simulations performed with the AMBER Software Suite (Dimura et al., 2020).	http://ambermd.org/doc12/Amber20.pdf
Amber20	Modeling	LabelLib is a C++ library for the simulation of the accessible volume (AV) of small probes flexibly coupled to biomolecules (Dimura et al., 2016; Kalinin et al., 2012).	https://github.com/Fluorescence-Tools/LabelLib

and re-analysis. Online data deposition in well-documented file formats would therefore save a lot of headaches for many laboratories. Even if standard file formats are carefully designed or developed, it will be inevitable to modify the existing formats or introduce new formats in the future. The list of standard formats should be regularly updated, and the analysis codes should also be kept current and properly maintained to guarantee their compatibility with the new standard formats.

The raw experimental data should be supplied in a universal data file format that can be easily read and scrutinized (Figure 7 left). Ideally, the file should store both raw data and sufficient metadata to specify the measurement, setup, and sample. The metadata should be stored in a human-readable text-based format, while space-efficient storage of the raw photon data should be ensured by lossless compression. There are currently many different file formats for smFRET data, developed...
by different research groups and companies. In general, such files are hard to access for other laboratories and they are not guaranteed to be perennial, which poses an additional challenge to the community. To promote the adaptation of new file formats, conversion tools for older file formats should be provided so that future software codes can focus on handling one (or at least only a very few) common file formats, such as the phconvert suite of notebooks for transforming many file formats into Photon-HDF5 (see http://photon-hdf5.github.io/phconvert/). Reaching such a consensus is possible, as has been demonstrated by the acceptance of a single file format for the deposition of NMR data (Ulrich et al., 2019).

File formats for (time-correlated) photon counting with point-detector data (confocal modality)

Several formats have been used and reported for time-correlated single-photon counting data (Brand et al., 1997; Brooks Shera et al., 1990; Eggeling et al., 2001; Felekyan et al., 2005; Rigler et al., 1993; Schaffer et al., 1999; Tellinghuisen et al., 1994; Wahl et al., 2008; Widengren et al., 2006). One example is the time-tagged time-resolved (TTTR) file format given in the left panel of Figure 7. Because of its compactness, this file format has been widely adopted by

Figure 7. Concept for data storage following the FAIR principle. All essential information should be contained in two data files, one for raw data and a second with the essential information regarding the associated analysis. (Left) Structure of proposed data file formats containing confocal or TIRF raw data in a time-tagged, TT, or time-tagged time-resolved, TTTR, format together with sample- and experiment-specific metadata (for details, see Figure 8). The measurement specifications are needed by the reading routine to reconstruct the photon trace from the stored data, for example, for timing in the TT format (sampling frequencies expressed as time bins or frame rates) or in the TTTR format (laser repetition rates, time binning in time-correlated single-photon counting). Moreover, the detector that measured the signal is noted (detector #) along with the detection time with a given time resolution. For representing the detection time of single photons in time-resolved smFRET studies, the TTTR format is used where the time corresponds to the sum of the macro time and the nano time (upper left panel). The macro time comprises multiple cycles of excitation laser pulses (blue vertical lines) and the nano time is determined by time-correlated single-photon counting with picosecond resolution. The TTTR format is the most compact data format for single-molecule fluorescence data for detection times with picosecond time resolution and macro-times of hours (Felekyan et al., 2005). The representation of the photon detection of intensity-based and imaging-based smFRET studies is in the TT format, where the macro-time comprises multiples of the external clock pulse or readout cycles, where single or several photons were detected. The stack of TIFF images acquired in TIRF measurements (lower left panel) is transformed into the TT format for analyzing photon time traces for selected spots. (Middle) For the corresponding data file, a metadata system as implemented in the Photon-HDF5 file format (Ingargiola et al., 2016a) is suggested. (Right) The analysis file should contain the determined parameters obtained by a quantitative analysis together with analysis metadata that assure evaluation, reproducibility, and re-usability of the analysis. The processed data should be documented as outlined in Figure 8D.
commercial companies (e.g., Becker and Hickl and PicoQuant) providing TCSPC electronics and point detectors for solution/imaging studies.

The basic formats have been extended in the Photon-HDF5 ([Ingargiola et al., 2016a](#)) file format that connects rich metadata with the raw photon information in a single, space-efficient format suitable for sharing and long-term data archival. Moreover, several software programs exist that can easily transform raw data files to the Photon-HDF5 format. Once enough metadata is available in the community, the relative importance of particular metadata entries on the resulting FRET data can be assessed.

Figure 8. Disseminating the results of smFRET studies. Recommended categories for data and method-specific information (metadata), which are needed for documentation of smFRET studies where the authors want to archive their obtained kinetic/structural models. (A) General information. (B) Information on the sample and FRET-specific properties. (C) Information on the experiment and data acquisition. (D) Information on processing and analysis procedures. (E) Information on the interpretation of the data and the final kinetic network or structural model.

Who: Experimenter information: Name, ORCID

Where: Reference to citation/bibliography (if applicable): Author list, journal (volume, pages, year), preprint server, links to additional repositories (e.g. for data)

What: Sample name and biological source: Sample name, source type (natural, recombinant, synthetic), natural source organism, recombinant source organism, (e.g. *E. coli* BL21 (DE3)), polymer sequence (protein, RNA, DNA)
File format for camera-based acquisition (wide-field/TIRF modality)

Camera-based data is acquired as a stack of images (e.g., TIFF). To extract time trajectories, several steps are needed to yield the time-binned fluorescence intensity (e.g., spot identification; donor and acceptor spot registration; thresholding; background subtraction, etc.). A file format for TIRF-based smFRET (immobilized) measurements has been proposed (Greenfeld et al., 2015). Alternatively, human-readable plain text files with an agreed format and greatly downsized from the raw TIFF stacks can also work well for TIRF-based smFRET traces. Binary file formats for efficient data compression have also been implemented (Juette et al., 2016).

Exchange file format for processed data

In addition to standardized raw file formats, we recommend defining exchange file formats for different levels of processed data (Figure 7, middle panel). This will allow researchers to establish flexible and modular workflows spanning different software packages and facilitate the adoption of novel analysis approaches. The deposition of processed data in agreed-upon file formats also ensures that published data can be re-used at a later time point, for example, for more elaborate structural modeling approaches (Köfinger et al., 2019). For the storage of processed data, we believe that it is important to retain the connection to the raw data by including the relevant metadata. For example, corrected FRET efficiency histograms should be deposited together with the raw signal intensities in the donor and acceptor channels, the background intensities and the calibration factors.

Repositories and data bank for FRET data and models

Metadata for FRET experiments

To ensure that the reported results are reproducible, raw data must be sufficiently annotated. One important source of inspiration for developing recommendations and standards for the FRET community comes from the world-wide Protein Data Bank (wwPDB) (Berman et al., 2003; Young and Westbrook, 2019). Following the standards of the wwPDB, it is recommended to provide additional information to the models as outlined in Figure 8.

Archiving FRET experiments

In this respect, we strongly encourage the publication of datasets with detailed descriptions of the acquisition and analysis in scientific journals. Alternatively, or in addition, structural information and raw datasets should immediately be deposited in repositories provided by the publisher or generalist repositories (Table 2) with a Digital Object Identifier or link for access and citation. Online and public repositories also act as a form of data and knowledge backup, which is difficult to achieve and maintain at the scale of a single laboratory. Comparing a repository with a database, it is obvious that a database has significant advantages for the scientific community. While both archive forms provide open access to the data for all users, only a database can fulfill the quality criteria for safe usage of the deposited data by (1) creating standard definitions for the experimental data used for determining kinetic and/or structural models and their features; (2) developing methods to collect the minimum amount of required information for curation and validation of models and data; and (3)

Table 2. A list of repositories for citable data storage.
Repository name
Dryad Digital Repository
figshare
Harvard Dataverse
Open Science Framework
Zenodo
Mendeley Data
building the infrastructure for acquiring, archiving and disseminating the models and the data. To conclude, a database assures appropriate documentation with a defined format and quality control of the results.

Given the importance of integrative structures for advancing life sciences and the significant world-wide investment made to determine them, the wwPDB has proposed a governance structure for federating archives containing structural models (e.g., PDB, Electron Microscopy Data Bank, EMDB Tagari et al., 2002) or experimental data. Moreover, for integrative modeling integrative/hybrid modeling structures (Sali et al., 2015), PDB-Dev (Berman et al., 2019; Vallat et al., 2018) was established as an associated prototype system for archiving multi-state and ensemble structures on multiple spatial scales. In addition, associated kinetic models can be deposited.

To deposit structural models and kinetic networks obtained using FRET experiments in PDB-Dev, a dictionary for FRET data is under development (https://github.com/ihmwg/FLR-dictionary; Vallat et al., 2020), serving as a method-specific extension to the existing integrative/hybrid modeling (IHM) dictionary that contains the data categories described in Figure 8. Presently, three integrative FRET-assisted structural models can be found on PDB-Dev.

In addition to archiving the models themselves, all relevant experimental data and metadata should be archived in a technique-associated data bank similar to the Biological Magnetic Resonance Data Bank, BMRB (Ulrich et al., 2019; Ulrich et al., 2008). Reaching such a consensus is possible, as has been demonstrated by the acceptance of a single file format for the deposition of NMR data (Ulrich et al., 2019). In the future, federated resources for other biophysical techniques are expected to align with the structural model archives of the wwPDB for participating in data exchange. Thus, it would be desirable to establish a federated data bank for archiving FRET and, more generally, fluorescence data that could be referred to as the Fluorescence Data Bank (FLDB).

Community actions to bring FRET scientists together

To better achieve a consensus on the current and the future directions of the smFRET community, an open forum is needed where the current issues, needs, and desires could be discussed. We propose the following tools to organize the community around standardization efforts and open science practices. Some of these tools have already been put in place.

Community website as a central hub

A website for the FRET community has been established at https://www.fret.community. The community is open to everybody and registered members can populate their user profiles with additional information such as a description of their scientific interests or a list of key-publications. Besides providing regular updates on the activities within the community, the website also provides resources such as a curated list of software packages (see Table 1) and offers a discussion platform through an integrated forum. The website serves as a platform for ongoing discussions, announcements of accepted relevant papers, notifications about upcoming meetings, workshops, competitions and other activities that might be relevant to the community. An advisory board, elected by the community, moderates the website. One can also envision adding an educational section, much like the popular website for general microscopy education (https://micro.magnet.fsu.edu).

Listserv

To facilitate the dissemination of important information to the FRET community, an electronic mailing list (Listserv) has been established. In order to subscribe to it, smFRET practitioners are requested to register (free of charge) using the following link: https://www.fret.community/register. The members will be informed through the email list about ongoing activities and developments within the community, such as experimental or computational challenges, key publications in the fields, and workshops or meetings.

Server and repository

A repository will be established, which will be accessible through the community website, to host a collection of software packages and facilitate the community-driven joint development of analysis tools. The repository will contain dedicated sections for acquisition software, raw data, analysis...
codes, analyzed data files, and file conversion utilities. In order to deposit code in the repository, guidelines for the required documentation will be provided.

The concept of the repository is to support open science and transparency. Anyone registered on the website will be able to access raw data, and analyze and compare performances of the various analysis codes. Moreover, the codes can be updated and expanded (while keeping original versions) by anyone. In this way, improvements and enhancements can be implemented and tested. In that context, it is important to mention that such a repository can also serve the purpose of source data deposition, nowadays required by many scientific journals.

Participation in CASP(-like) competitions

Critical Assessment of protein Structure Prediction (CASP, http://predictioncenter.org/) is a grassroots effort for predicting a three-dimensional protein structure from its amino acid sequence. CASP has been run, since 1994, as a double-blind competition. It provides research groups with an opportunity to test their structure prediction methods objectively. CASP has been exploring modeling methods based in part on sparse experimental data, including data from SAXS, NMR, crosslinking, and FRET. This integrative CASP experiment was highlighted at the recent CASP13 meeting (http://www.predictioncenter.org/), where the carbohydrate-binding module (CBM56) of a β-1,3-glucanase from *Bacillus circulans* with 184 amino acids (18.9 kDa) was studied as the first FRET data-assisted target F0964. In CASP14, the single-model protein structure prediction by the artificial intelligence (AI) network AlphaFold2, which was developed by Google’s AI offshoot DeepMind (https://deepmind.com), has approached perfection ([Callaway, 2020](https://doi.org/10.7554/eLife.60416)). This deep-learning program combines the evolutionary information from multiple sequence alignments with structural information from the PDB for computing 3D structural models of a protein from its amino-acid sequence.

However, one has to be aware that many proteins do not only adopt their thermodynamically most stable conformation but frequently exist as ensembles of conformations that have high functional relevance. Thus, mapping dynamic ensembles represents the subsequent challenge of structural biology for the next decades. Due to their high time-resolution, smFRET-studies and integrative modeling can contribute a lot to solving this problem. We propose that members of the smFRET community who are interested in using smFRET for integrative structural biology participate in the CASP competition. Involvement could progress in several stages: (1) Predicting single- and multi-state structural models: the smFRET community will only submit distances that will be evaluated with respect to the known (but undisclosed) crystal structure(s). (2) Predicting ensembles as in the case of CBM56: for targets that are identified as difficult by the predictors and for which multiple possible folds are submitted without a clear winner, a FRET-assisted round could be insightful where the FRET distances distributions can be used as an experimental ‘ground truth’ for checking whether multiple conformations in an exchange are present.

These recommendations apply mostly to present and future practitioners of smFRET-driven integrative modeling. That being said, smFRET is one of many biophysical techniques that can provide experimental restraints in integrative modeling (XL-MS, single-particle cryoEM, NMR, SAXS). Therefore, we propose that, at a later stage, an all-biophysics integrative structural biology competition be established.

SmFRET meetings

Several gatherings of FRET practitioners at the Annual Biophysical Society Meetings, supported by the Biological Fluorescence subgroup, provided a platform for planning future activities and establishing the FRET community. As further joint actions, satellite meetings to the Conference on Methods and Applications in Fluorescence (MAF) have been organized to discuss practices, standards, competitions, and joint publications. We envision an occasional dedicated meeting for the smFRET community, such as the Bunsen meetings on FRET held in 2011 and the international discussion meeting in 2016 at the Max Planck Institute for Biophysical Chemistry in Gottingen, Germany (http://fret.uni-duesseldorf.de/cms/home.html). However, to open these meetings to smFRET practitioners outside of Europe, we propose to rotate the venue among continents. We also suggest using the satellite meetings and workshops to disseminate information (details of accurate FRET measurements, common practices, standards, and competitions) and to give newcomers the chance to interact with the experienced researchers in the field.
Inspired by the online seminars emerging in response to the COVID-19 pandemic, smFRET webinars and web conferences open to all should be pursued. They provide FRET researchers the unique opportunity to attend and socialize virtually and would be a forum for good scientific practice of open science for the FRET community.

Special issues in journals

To further stimulate newcomers to engage in advanced smFRET experiments, the FRET community could benefit by hosting special issues in journals dedicated to data analyses (e.g., *Data in Brief, Methods in Molecular Biology, or Nature Protocols*). Here, various laboratories can describe typical datasets or protocols for the methods they have developed. Also, journals disseminating methodologies and protocols from A-to-Z via video recordings could be useful. For example, there is a special issue focusing on FRET planned in the *Journal of Visualized Experiments* (https://www.jove.com/methods-collections/682).

Future of smFRET

With improved communication and dissemination within the FRET community and agreement on the standard information required for depositing FRET-based or integrative structural data, smFRET will be better positioned to impact the expanding field of dynamic structural biology. We expect integrated approaches such as combining smFRET with NMR (Aznaryan et al., 2016; Liu et al., 2018; Milles et al., 2015; Sottini et al., 2020; Tsytlonok et al., 2019; Voith von Voithenberg et al., 2016), EPR (Boura et al., 2011; Masliah et al., 2018; Peter et al., 2020; Peulen et al., 2020; Sanabria et al., 2020; Vöpel et al., 2014), cross-linking mass spectrometry (Calabrese et al., 2020; Liu et al., 2018; Tyagi and Lemke, 2015), hydrogen/deuterium exchange (Calabrese et al., 2020; Liu et al., 2018; Munro and Lee, 2018), and/or MD simulations (see section Structural modeling and below) will have a big impact in the future.

One example of a major area of interest that is profiting from these developments is the study of intrinsically disordered proteins using smFRET experiments (Gomes and Gradinaru, 2017; Gomes et al., 2020; LeBlanc et al., 2018; Lee et al., 2018; Metskas and Rhoades, 2020; Nasir et al., 2020; Schuler et al., 2016). The dynamic nature of these proteins and their interactions play major roles in numerous cellular processes, including the formation of membrane-less intracellular biomolecular condensates, a new paradigm that presents huge challenges for traditional tools of structural biology (Banani et al., 2017; Choi et al., 2020; van der Lee et al., 2014; Wright and Dyson, 2015). Many IDPs undergo large folding transitions in conjunction with binding to partners, while others remain disordered upon complex formation (Schuler et al., 2020; Wang and Wang, 2019; Wu et al., 2017). SmFRET studies of these systems began more than a decade ago and have tackled increasingly complex systems using more advanced methods, including three-color smFRET or complex labeling schemes (Borgia et al., 2018; Kim and Chung, 2020; Lee et al., 2018; Metskas and Rhoades, 2020; Milles et al., 2015; Nasir et al., 2019; Schuler et al., 2016; Yoo et al., 2020). A recent study that combined smFRET, NMR, and MD simulations to investigate the interaction of H1 with ProTα is highlighted in Figure 9 (Borgia et al., 2018).

Studies of IDPs are even more challenging in heterogeneous environments such as phase-separated mesoscale structures (e.g., membrane-less organelles) or cells (Nasir et al., 2019). Here, the strengths of smFRET would be especially valuable, while the field, at the same time, will benefit from the methodological developments. The ultimate goal is to combine both the structural and dynamic information in order to reduce the ambiguity in the underlying structures of conformational states and to gain detailed information on kinetic pathways between the associated states.

Although we have focused mostly on kinetic studies, smFRET-based structure determination and structural dynamics in this paper, there are a myriad of other new exciting directions where smFRET will have future impact. A detailed description of the various possibilities is beyond the scope of this report, but it is worth mentioning a few of them below.

- Combining FRET with other fluorescence methods: Several groups have combined smFRET with other fluorescence techniques, including protein-induced fluorescence enhancement (PIFE) (Hwang et al., 2011; Hwang and Myong, 2014; Lerner et al., 2016; Ploetz et al., 2016), photoinduced electron transfer (PET) (Haenni et al., 2013), quenchable FRET (Cordes et al., 2010) and stacking-induced fluorescence increase (SIFI) (Morten et al., 2016).
Figure 9. Using smFRET to investigate the structure and dynamics of ultrahigh-affinity IDP complexes. (A) SmFRET efficiency histograms for FRET between a donor label (Alexa488) attached at various positions to the linker histone H1 (shown in blue) with the IDP ProTα (shown in red) labeled at different positions with the acceptor fluorophore (Alexa594). (B) For structural calculations of the H1-ProTα complex, coarse-grained MD simulations were performed. From the MD simulations, an ensemble of structures was determined. Eleven examples of configurations are shown and projected onto the first three principle components (PC1, PC2, and PC3) of the inter-residue distance map. 2D projections of the full ensemble are shown in gray (axes are labeled in Å). (C) A comparison of the experimental FRET efficiencies (filled squares) and the FRET efficiencies estimated from simulated structures (open circles) shows good agreement between the measured and simulated values. Pictograms indicate the variations of dye positions studied. (Panels A, B, and C: Copyright 2018, Nature Publishing Group, a division of Macmillan Publishers Limited. All rights reserved. Reproduced from Borgia et al., 2018, with permission. Further reproduction of this panel would need permission from the copyright holder.)

© 2018, Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Panels A–C were originally published as Figure 3i, 4c and 4a in Borgia et al., 2018. Further reproduction of this panel would need permission from the copyright holder.
The advantages of combining smFRET with other fluorescence-based rulers with higher sensitivity at short distances are obvious – gaining more spatial information on biomolecular systems being measured as well as information on possible synchronized motions between different parts of the biomolecule or biomolecular complex and between different modes of motion. As an example, single-molecule PIFE was used for probing the local structural stabilization in the intrinsically disordered protein α-Synuclein (Chen et al., 2020), which typically appears globally disordered when measured over larger distances using smFRET experiments. Another possibility is combining FRET with information regarding the shape of biomolecules and their assemblies via their translational (Dertinger et al., 2008; Sherman and Haran, 2006) and rotational diffusion (Möckel et al., 2019; Pieper and Enderlein, 2011; Viegas et al., 2020), determined using various FCS modalities. Recently, fluorescence anisotropy- and polarization-resolved FCS were used in integrative studies with non-FRET methods to probe local flexibilities (Möckel et al., 2019) or identify hinge-regions of a protein (Tsytlonok et al., 2020; Tsytlonok et al., 2019).

- Combining FRET with force spectroscopy. Another popular combination is FRET with various manipulation methods including optical tweezers (Hohng et al., 2007), magnetic tweezers (Lee et al., 2010a; Long et al., 2016; Swoboda et al., 2014), tethered particle motion (May et al., 2014), and force spectroscopy by DNA origami (Nickels et al., 2016). The advantages of combining smFRET with force manipulation techniques are obvious – detecting local structural changes or molecular interactions (via smFRET) as well as the global extension of macromolecules (via bead tracking) synchronously under mechanical control.

- Combining FRET with MD simulations. MD simulations have been widely applied with smFRET experiments to provide atomistic insights into the dynamic behavior of biomolecules and their assemblies, as shown in Figure 9 (Barth et al., 2018; Borgia et al., 2018; Holmstrom et al., 2018; Lehmann et al., 2020; Matsunaga and Sugita, 2018; Tsytlonok et al., 2020; Yanez Orozco et al., 2018; Zhao et al., 2010b). The vast information provided by MD simulations often motivates new hypotheses about the functional mechanism that can be tested experimentally via targeted mutations. MD simulations can also be combined with the information provided by smFRET experiments to steer the simulation from one conformational state to the other using accelerated or enhanced sampling techniques (Dimura et al., 2020). To characterize highly dynamic systems, coarse-grained approaches have been applied to intrinsically disordered proteins (Borgia et al., 2018), nucleic acids (Craggs et al., 2019), large chromatin arrays (Kilic et al., 2018) or large DNA origami nanostructures (Bartnik et al., 2020; Khara et al., 2018), to sample the conformational space of the system more efficiently. Alternatively, discrete MD simulations coupled with replica exchange, where discretized potential energies are employed, also assist in accelerating atomistic MD simulations of the ensemble structure of intrinsically disordered proteins (Brodie et al., 2019; Brodie et al., 2017; Chen et al., 2020; Fay et al., 2016; Hadi-Alijanvand et al., 2016; Popov et al., 2019) and holds great promises for being incorporated with single-molecule fluorescence-based technique.

- Combining FRET with imaging. SmFRET can be combined with super-resolution imaging (STED-FRET, Kim et al., 2018b; Tardif et al., 2019; Szalai et al., 2021) or FRET-DNA-PAINT (Deußner-Helfmann et al., 2018; Filius et al., 2020). The combination of fluorescence imaging with spectroscopy makes it possible to detect more species within a pixel of an image, expanding the information that can be extracted from such an experiment. Correlative imaging with electron microscopy, fluorescence and FRET also has the potential to allow the recognition of different subpopulations in the sample, which can then be separated for single-particle reconstructions (Ando et al., 2018; de Boer et al., 2015; Schirra and Zhang, 2014; Verkade and Collinson, 2019).

- SmFRET in live cells. Genetically-encoded fluorescent proteins are the most widely used fluorophores in live-cell imaging. Their maximal brightness and photon yield are, however, limited by excitation-dependent blinking and photobleaching, respectively (Dickson et al., 1997; Seeffeldt et al., 2008). Combined with their large size, this makes them non-ideal for quantitative FRET studies. Nevertheless, considerable efforts have been made to extract quantitative FRET information to live-cell imaging data using the fluorescence intensity (Coullomb et al., 2020; Periasamy et al., 2008) or lifetime and anisotropy information (Hinde et al., 2012; Kravets et al., 2016; Kudryavtsev et al., 2007; Liput et al., 2020; Weidtampa-Peters et al., 2009), and to develop an appropriate dye model for fluorescent proteins (Greife et al., 2016). Recently, the green fluorescent protein has been used for in-cell smFRET measurements in combination with an organic dye attached via the self-labeling protein tag (HaloTag) (Okamoto et al., 2020). To avoid the drawbacks of fluorescent proteins, several groups have
shown that smFRET can be performed in live bacterial and eukaryotic cells by using in vitro labeled biomolecules that can be internalized in cells by several means. Electroporation has been shown to work well for the internalization of ssDNA, dsDNA, tRNA and proteins into bacteria and yeast cells (Craggs et al., 2019; Plochowitz et al., 2017; Plochowitz et al., 2016; Plochowitz et al., 2014; Sustarsic et al., 2014; Volkov et al., 2018). Microinjection of labeled molecules is an alternative approach, especially for smFRET in live eukaryotic cells, and has been demonstrated to yield structural information and dynamics from nanoseconds to milliseconds (König et al., 2015; Sakon and Weninger, 2010). With the further development of probes and labeling strategies, and the engineering of better fluorescent proteins (Shaner et al., 2007), there are many exciting possibilities for investigating cellular processes with unprecedented detail (Sustarsic and Kapanidis, 2015).

- SmFRET studies in crowded environments. SmFRET can be used to investigate the influence of the surrounding environment on biomolecules. Such studies can be performed over a drastic range of measurement conditions: from single molecules isolated in solvent cages to molecular environments equivalent to cellular conditions with millimolar concentrations of crowded biomolecules. An important thermodynamic effect of the limited space is minimization of the excluded volume. This (i) influences the hydrodynamic volume of biomolecules with potential consequences for their internal structure, dynamics and functionality and (ii) favors the association state in binding equilibria leading to phase transitions (Banani et al., 2017; Kuznetsova et al., 2014). The profound experimental impact of crowding was confirmed by computer simulations (Nawrocki et al., 2019; Sugita and Feig, 2020) and experimental studies (Gao et al., 2016; Gnutt et al., 2015; Guin and Gruebele, 2019; Möckel et al., 2019; Nasir et al., 2019; Neubauer et al., 2007; Reinkeemeier et al., 2019; Zosel et al., 2020b) using labeled molecules as tracers even down to the single-molecule level. In the context of living cells, biomolecular condensates formed by liquid-liquid phase separation have recently been recognized as an important mechanism to spatially organize complex biochemical reactions in membrane-less organelles within the cytoplasm or nucleus (Banani et al., 2017; Hyman et al., 2014); We envision that smFRET studies, especially in combination with integrative experimental approaches, will play a central role in uncovering the dynamic organization and interactions within phase-separated droplets in vitro and in living cells.

- In vitro smFRET of membrane proteins. One class of proteins that remains understudied by structural biology in general is membrane proteins, owing to the complexity of membrane protein production, stabilization and crystallization. As smFRET requires only low amounts of protein to be produced and is performed under experimental conditions that potentially limit solubility issues, it serves a vital role here. Indeed, in recent years, smFRET is increasingly being used to study a variety of membrane proteins, including G-protein-coupled receptors (Gregorio et al., 2017; Olofsson et al., 2014), transporters (Akyuz et al., 2013; Ciftci et al., 2020; Dyla et al., 2017; Fitzgerald et al., 2019; Husada et al., 2018; Terry et al., 2018), and ion channels (Bavi et al., 2016; Wang et al., 2016; Wang et al., 2014). For some recent reviews, see Husada et al., 2015; Martinac, 2017; Quast and Margeat, 2019. However, membrane proteins in a living cell are surrounded by specific lipids, proteins, ion gradients and an electric membrane potential. In addition to investing in intracellular smFRET assays, an important challenge for in vitro smFRET on membrane proteins is to further develop ‘cell-mimicking’ assays.

- SmFRET between multiple chromophores. By measuring the transfer of excitation energy between three or more spectrally different fluorophores, multiple distances are obtained simultaneously, and the correlation of the distances can be determined. Following early ensemble implementations (Haustein et al., 2003; Horsey et al., 2000; Ramirez-Carrozzi and Kerppola, 2001; Watrob et al., 2003; Yim et al., 2012), three- and four-color smFRET experiments have been applied to various static (Clamme and Deniz, 2005; Lee et al., 2007b; Stein et al., 2011) and dynamic systems (Ferguson et al., 2015; Götz et al., in preparation; Hohng et al., 2004; Lee et al., 2010c; Lee et al., 2010b; Morse et al., 2020; Munro et al., 2010; Ratzke et al., 2014; Vušurović et al., 2017; Wasserman et al., 2016). FRET to many acceptors has also been reported (Kramer et al., 2015; Uphoff et al., 2010). Multi-color FRET experiments, however, remain challenging, in particular for diffusion-based experiments, because of the increased shot-noise, and the more complex FRET efficiency calculations and corrections. Recent advances in this respect include the development of a photon distribution analysis for three-color FRET to extract three-dimensional distance distributions (Barth et al., 2019) and a maximum likelihood approach applied to the study of fast protein folding (Kim and Chung, 2020; Yoo et al., 2020; Yoo et al., 2018). Further progress in multiple-chromophore smFRET will require expanding the useable spectral range to the near infra-red.
SmFRET with nanomaterials. Emerging structurally synthesized and targeted specific nanomaterials such as quantum dots (QDs) (Jamieson et al., 2007), aggregation-induced emission (AIE) nanoparticles (Hong et al., 2011), and nitrogen-vacancy centers in diamond (Schirhagl et al., 2014; Tisler et al., 2011) have made it possible to implement chemically engineered fluorophores for a wide range of applications in structural biology investigations and, more specifically, in FRET-related studies (Börsch et al., 2009; Medintz et al., 2003; Oh et al., 2005; Shi et al., 2006; Soleimaninejad et al., 2017).

SmFRET with plasmonics. Placing fluorescent dyes close to metallic nanostructures in ‘plasmonic hotspots’ increases the detectable signal of a single molecule into the megahertz region (Acuna et al., 2012; Grabenhorst et al., 2020). Recent work has shown the possibility of plasmon-assisted FRET (Baibakov et al., 2020; Baibakov et al., 2019; Bohlen et al., 2019). Excitingly, it has recently been shown that tryptophan fluorescence of proteins can be detected with single-molecule resolution in zero-mode waveguides (Barulin et al., 2019), paving the way toward studies using intrinsic labels.

Epilogue
In this article, we have summarized current perspectives on the status of the smFRET field, limitations that still need to be overcome, and joint efforts towards the adoption of consistent methodologies and open-science practices. While this article encourages a discussion regarding optimal smFRET practices, it is important to remember that, as scientists, we should value independence of thought and creativity. Hence, our recommendations should be taken as constructive suggestions, and it is important to realize that many biological questions can be answered using multiple approaches. On the one hand, the reproducibility and reliability of smFRET measurements are currently limited by the variety of approaches taken to calculate the FRET efficiency and the resulting inter-dye distance. Combining years of experience from various experts in an open discussion can help us, as a community, to improve the methodology and overcome many of its challenges. On the other hand, it is important to be open to new ideas and approaches. Here is where open scientific practices can help the community to quickly exchange data and analysis approaches to test new ideas. Such a community effort is necessary to consolidate the role of smFRET as a useful tool in various fields and to jointly move the field forward. Our hope is that these efforts will benefit not only the smFRET community, but also the structural biology community and science in general.

Acknowledgements
We wish to thank Niko Hildebrandt and Sonja Schmid for fruitful discussions. We thank Niels Vandenberk, KU Leuven for use of a figure from his PhD thesis, and Bianca Herman, Universität Freiburg, for providing material for Figure 6. RB wishes to thank Fabio D Steffen for insightful discussions. This position paper was supported by the National Institutes of Health (NIH, grant R01 GM130942 to SW, and to EL as a subaward; grant R01 GM095904 to XM; grants R01 GM079238 and 7R01GM098859-09 to SCB; grants R01 GM084288 and R01 GM137608 to RLG; grant R01 GM112882 to HDK; grants R01 GM123164 and R01 GM130793 to THL; grant R01 GM140272 to RV; grant R35 GM130375 to AAD; New Innovator Award 1DP2GM128185-01 to JF), the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases, NIH (to HSC and IVG), the National Science Foundation (NSF, grants MCB-1818147 and MCB-1842951 to SW; grant CHE-2004016 to RLG), the Human Frontier Science Program (HFSP, grant RGP0061/2019 to SW), the European Research Council (ERC; grant numbers 638536 and 860954 to TC; grant SMPFv2.0 to EAL; grant No. 819299 to CIBSS – EXC-2189 – project ID 39039984 to TDC; grant SE 1195/21–1 (SPP 2191) to CAMS; Germany’s Excellence Strategy, CIBSS – EXC-2189 – project ID 39039984 to T Hugel), the Swiss National Science Foundation (to BS), the UK Biotechnology and Biological Sciences Research Council (grant BB/S008896/1 to AK; grant BB/ T008032/1 to TDC), the Royal Society (grant RGS\R2/180405 to TDC; grants DMR150620 and RGF/R1
Additional information

Funding

Funder	Grant reference number	Author
National Institutes of Health	GM130942	Eitan Lerner
National Institutes of Health	GM095904	Xavier Michalet
National Institutes of Health	GM079238	Scott C Blanchard
National Institutes of Health	GM098859	Scott C Blanchard
National Institutes of Health	GM084288	Ruben L Gonzalez
National Institutes of Health	GM137608	Ruben L Gonzalez
National Institutes of Health	GM112882	Harold D Kim
National Institutes of Health	GM123164	Tae-Hee Lee
National Institutes of Health	GM130793	Tae-Hee Lee
National Institutes of Health	GM140272	Reza Vafabakhsh
National Institutes of Health	GM130375	Ashok A Deniz
National Institutes of Health	128115	Jingyi Fei
National Institute of Diabetes and Digestive and Kidney Diseases		Hoi Sung Chung
National Science Foundation	1818147	Shimon Weiss
National Science Foundation	1842951	Shimon Weiss
National Science Foundation	2004016	Ruben L Gonzalez
Human Frontier Science Program	RGP0061/2019	Shimon Weiss
European Research Council	638536	Thorben Cordes
European Research Council	860954	Thorben Cordes
European Research Council	SMPFv2.0	Edward A Lemke
European Research Council	671208	Claus AM Seidel
Funding Body	Grant Number	Contact Person
--	-----------------------	-------------------------
European Research Council	819299	Chirmin Joo
Deutsche Forschungsgemeinschaft	GRK2062	Thorben Cordes
Deutsche Forschungsgemeinschaft	SFB8863	Thorben Cordes
Deutsche Forschungsgemeinschaft	PL696/4-1	Evelyn Ploetz
Deutsche Forschungsgemeinschaft	SPP2191 402723784	Edward A Lemke
Deutsche Forschungsgemeinschaft	SFB 1129 240245660	Edward A Lemke
Deutsche Forschungsgemeinschaft	SE 1195/21-1 (SPP 2191)	Claus AM Seidel
Deutsche Forschungsgemeinschaft	CIBSS - EXC-2189 - project ID 390939984	Thorsten Hugel
Wellcome Trust	110164/Z/15/Z	Achillefs N Kapanidis
Swiss National Science Foundation	BB/S008896/1	Benjamin Schuler
Biotechnology and Biological Sciences Research Council	BB/T008032/1	Timothy D Craggs
Royal Society	RGS/R2\180405	Timothy D Craggs
Royal Society	DKR00620	Nicole C Robb
Royal Society	RGFiR11\180054	Nicole C Robb
Agence Nationale de la Recherche	ANR-17-CE09-0002-02	Emmanuel Margeat
Agence Nationale de la Recherche	ANR-18-CE11-0004-02	Emmanuel Margeat
Agence Nationale de la Recherche	ANR-19-CE04-0009-02	Emmanuel Margeat
Israel Science Foundation	1250/19	Gilad Haran
Israel Science Foundation	3565/20	Eitan Lerner
National Research Foundation of Korea	2019R1A2C2090896	Nam Ki Lee
National Research Foundation of Korea	NRF-2019R1A2C2005209	Sungchul Hohng
National Research Foundation of Korea	NRF-2019R1A2C1089808	Seok-Cheol Hong
Independent Fund Denmark	6110-00623B	Viktoria Birkedal
National Key Research and Development Program of China	2018YFA0507700	Chun Tang
UHasselt BOF fund	R-10789	Jelle Hendrix
Deutsche Forschungsgemeinschaft	SFB1035	Don C Lamb
Milner Fund		Eitan Lerner
KU Leuven Special Research Fund	C14/16/053	Jelle Hendrix
Carlsbergfondet	CF16-0797	Nikos S Hatzakis
Villum Fonden	18333	Nikos S Hatzakis
Novo Nordisk	NNF14CC0001	Nikos S Hatzakis
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions
Eitan Lerner, Shimon Weiss, Wrote the initial draft of the manuscript, coordinated the input from all authors and discussed the revisions; Anders Barth, Jelle Hendrix, Claus AM Seidel, Expanded the initial draft, contributed extensively to the writing and revising of the manuscript, and prepared figures; Benjamin Ambrose, Victoria Birkedal, Scott C Blanchard, Richard Börner, Hoi Sung Chung, Thorben Cordes, Timothy D Craggs, Ashok A Deniz, Jiajie Diao, Jingyi Fei, Ruben L Gonzalez, Irina V Gopich, Taekjip Ha, Gilad Haran, Nikos S Hatzakis, Sungchul Hohng, Seok-Cheol Hong, Thorsten Hugel, Antonino Ingargiola, Chirlmin Joo, Achillefs N Kapanidis, Harold D Kim, Ted Laurence, Nam Ki Lee, Tae-Hee Lee, Edward A Lemke, Emmanuel Margeat, Jens Michaelis, Xavier Michalet, Sua Myong, Daniel Nettels, Thomas-Otavio Peulen, Evelyn Ploetz, Yair Razvag, Nicole C Robb, Benjamin Schuler, Hamid Soleimaninejad, Chun Tang, Reza Vafabakhsh, Contributed to writing the manuscript; Christian A Hanke, prepared figures and contributed to writing the manuscript; Don C Lamb, Expanded the initial draft, contributed extensively to the writing and revising of the manuscript.

Author ORCIDs
Eitan Lerner https://orcid.org/0000-0002-3791-5277
Anders Barth https://orcid.org/0000-0003-3671-3072
Jelle Hendrix https://orcid.org/0000-0001-5731-1297
Scott C Blanchard https://orcid.org/0000-0003-2717-9365
Richard Börner https://orcid.org/0000-0001-8407-6624
Thorben Cordes https://orcid.org/0000-0002-8598-5499
Timothy D Craggs https://orcid.org/0000-0002-7121-0609
Jingyi Fei https://orcid.org/0000-0002-9775-3820
Ruben L Gonzalez https://orcid.org/0000-0002-1344-5581
Taekjip Ha https://orcid.org/0000-0003-2195-6258
Gilad Haran https://orcid.org/0000-0003-1837-9779
Thorsten Hugel https://orcid.org/0000-0003-3292-4569
Antonino Ingargiola https://orcid.org/0000-0002-9348-1397
Nam Ki Lee https://orcid.org/0000-0002-6597-555X
Edward A Lemke https://orcid.org/0000-0002-0634-0503
Xavier Michalet https://orcid.org/0000-0001-6602-7693
Evelyn Ploetz https://orcid.org/0000-0003-0922-875X
Benjamin Schuler https://orcid.org/0000-0002-5970-4251
Don C Lamb https://orcid.org/0000-0002-0232-1903
Claus AM Seidel https://orcid.org/0000-0002-5171-149X
Shimon Weiss https://orcid.org/0000-0002-0720-5426

References
Acuna GP, Möller FM, Holzmeister P, Beater S, Laikens B, Tinnefeld P. 2012. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338:506–510. DOI: https://doi.org/10.1126/science.1228638, PMID: 23112329
Lerner, Barth, Hendrix, et al. eLife 2021;10:e60416. DOI: https://doi.org/10.7554/eLife.60416
Bastiaens PI, Majoul IV, Verveer PJ, Söling HD, Jovin TM. 1996. Imaging the intracellular trafficking and state of the ABS quaternary structure of cholera toxin. The EMBO Journal 15:4246–4253. DOI: https://doi.org/10.1002/j.1460-2075.1996.tb00799.x, PMID: 8661953

Baum DA, Silverman SK. 2007. Deoxyribozyme-Catalyzed labeling of RNA. Angewandte Chemie International Edition 46:3502–3504. DOI: https://doi.org/10.1002/anie.200703039

Bavi K, Cortes DM, Cox CD, Rohde PR, Liu W, Deitmer JW, Bavi O, Strop P, Hill AP, Rees D, Corry B, Perozo E, Martinac B. 2016. The role of MscL amphipathic N terminus indicates a blueprint for bilayer-mediated gating of mechanosensitive channels. Nature Communications 7:11984. DOI: https://doi.org/10.1038/ncomms11984, PMID: 27329693

Bavishi K, Li D, Eiersholt S, Hooley EN, Petersen TC, Møller BL, Hatzakis NS, Lautsen T. 2018. Direct observation of multiple conformational states in cytochrome P450 oxidoreductase and their modulation by membrane environment and ionic strength. Scientific Reports 8:6817. DOI: https://doi.org/10.1038/s41598-018-24922-x, PMID: 29711417

Bavishi K, Hatzakis NS. 2014. Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules 19:19407–19434. DOI: https://doi.org/10.3390/molecules191219407, PMID: 25429564

Becker W. 2019. The bh TCSPC Handbook, Eighth Edition. Becker & Hickl GmbH.

Becker M, Drechsler F, Elерт T, Nагy J, Michaelis J. 2015. Quantitative structural information from single-molecule FRET. Faraday Discussions 184:117–129. DOI: https://doi.org/10.1039/C5FD001108H, PMID: 26407323

Beemum JM, Haas E. 1989. Simultaneous determination of intramolecular distance distributions and conformational dynamics by global analysis of energy transfer measurements. Biophysical Journal 55:1225–1236. DOI: https://doi.org/10.1016/S0006-3495(89)82918-2, PMID: 2765658

Bergström F, Hägglöf P, Karolin J, Ny T, Johansson LB. 1999. The use of site-directed fluorophore labeling and donor-donor energy migration to investigate solution structure and dynamics in proteins. PNAS 96:12477–12481. DOI: https://doi.org/10.1073/pnas.96.22.12477, PMID: 10539547

Berman H, Henrick K, Nakamura H. 2003. Announcing the worldwide protein data bank. Nature Structural & Molecular Biology 10:980. DOI: https://doi.org/10.1038/nsb1203-980, PMID: 14634627

Berman HM, Adams PD, Bonvin AA, Burley SK, Carragher B, Chiu W, Dimaio F, Ferrin TE, Gabanyi MJ, Goddard TD, Griffin PR, Haas J, Hanke CA, Hoch JC, Hummer G, Kurisu G, Lawson CL, Leitner A, Markley JL, Meiler J, et al. 2019. Federating structural models and data: outcomes from a workshop on archiving integrative structures. Structure 27:1745–1759. DOI: https://doi.org/10.1016/j.str.2019.11.002, PMID: 31780431

Best RB, Merchant KA, Gopich IV, Schuler B, Bax A, Eaton WA. 2007. Effect of flexibility and Cis residues in single-molecule FRET studies of polyproline. PNAS 104:18964–18969. DOI: https://doi.org/10.1073/pnas.0709567104, PMID: 18029448

Best RB, Hofmann H, Nettels D, Schuler B. 2015. Quantitative interpretation of FRET experiments via molecular simulation: force field and validation. Biophysical Journal 108:2721–2731. DOI: https://doi.org/10.1016/j.bpj.2015.04.038, PMID: 26039173

Best RB, Zheng W, Borgia A, Buholzer K, Borgia MB, Hofmann H, Soaranо A, Nettels D, Gast K, Grishaev A, Schuler B. 2018. Comment on “Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water”. Science 361:eaar7101. DOI: https://doi.org/10.1126/science.aar7101, PMID: 30166459

Blanchard SC, Gonzalez RL, Kim HD, Chu S, Puglisi JD. 2004. tRNA selection and kinetic proofreading in translation. Nature Structural & Molecular Biology 11:1008–1014. DOI: https://doi.org/10.1038/nsmb831, PMID: 15448679

Blanco M, Walter NG. 2010. Analysis of complex single-molecule FRET time trajectories. In: Walter E (Ed). Methods in Enzymology, Academic Press. p. 153–178. DOI: https://doi.org/10.1016/S0076-6879(10)20111-5

Bodo L, Bernd L, Lütтke W. 1981. Laser dyes with intramolecular triplet quenching. Methods in Enzymology 78:424–439. DOI: https://doi.org/10.1016/0076-6879(81)80135-4

Bohle J, Cuartero-González A, Pibiri E, Ruhlandt D, Fernández-Domínguez AI, Tinnefeld P, Acuna GP. 2019. Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the moderate quenching regime. Nanoscale 11:7674–7681. DOI: https://doi.org/10.1039/C9NR01204D, PMID: 30946424

Böhmer M, Wahl M, Rahn H-J, Erdmann R, Enderlein J. 2002. Time-resolved fluorescence correlation spectroscopy. Chemical Physics Letters 353:439–445. DOI: https://doi.org/10.1016/S0009-2614(02)00004-1

Borgia MB, Borgia A, Best RB, Steward A, Nettels D, Wunderlich B, Schuler B, Clarke J. 2011. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins. Nature 474:662–665. DOI: https://doi.org/10.1038/nature10099, PMID: 21623368

Borgia A, Zheng W, Buholzer K, Borgia MB, Schuler A, Hofmann H, Soranno A, Nettels D, Gast K, Grishaev A, Best RB, Schuler B. 2016. Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. Journal of the American Chemical Society 138:11714–11726. DOI: https://doi.org/10.1021/jacs.6b05917, PMID: 27583570

Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Nettels D, Kragelund BB, Best RB, Schuler B. 2018. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555:61–66. DOI: https://doi.org/10.1038/nature25762, PMID: 29466338

Börner R, Kowenko D, Miseraсhs HG, Schäffer MF, Sigel RK. 2016. Metal ion induced heterogeneity in RNA folding studied by smFRET. Coordination Chemistry Reviews 327-328:123–142. DOI: https://doi.org/10.1016/j.ccr.2016.06.002
Börner R, Kowерko D, Hadzic M, König SLB, Ritter M, Sigel RKO. 2018. Simulations of camera-based single-molecule fluorescence experiments. PLOS ONE 13:e0195277. DOI: https://doi.org/10.1371/journal.pone.0195277, PMID: 29652886

Börsch M, Reuter R, Balasubramanian G, Erdmann R, Jelezko F, Wrachtrup J. 2009. Fluorescent nanodiamonds for FRET-based monitoring of a single biological nanomotor FoF1-ATP synthase. Multiphoton Microscopy in the Biomedical Sciences 7:183–182720. DOI: https://doi.org/10.1021/jp90121220

Bouzekra E, Sonnener A, Haran G. 2001. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. The Journal of Physical Chemistry B 105:12165–12170. DOI: https://doi.org/10.1021/jp012016x

Boure E, Rozycki B, Herrick DZ, Chung HS, Vecer J, Eaton WA, Cafiso DS, Hummer G, Hurley JH. 2011. Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy. PNAS 108:9437–9442. DOI: https://doi.org/10.1073/pnas.110177112

Braitbard M, Schneidman-Duhovny D, Kalisman N. 2019. Integrative structure modeling: overview and assessment. Annual Review of Biochemistry 88:113–135. DOI: https://doi.org/10.1146/annurev-biochem-013118-111429, PMID: 30830798

Brand L, Eggeling C, Zander C, Drexhage KH, Seidel CAM. 1997. Single-Molecule identification of Coumarin-120 by time-resolved fluorescence detection: Comparison of one- and two-photon excitation in solution. The Journal of Physical Chemistry A 101:4313–4321. DOI: https://doi.org/10.1021/jp973729w

Braslavsky SE, Fron E, Rodriguez HB, Román ES, Scholes GD, Schweitzer G, Valeur B, Würz J. 2008. Pitfalls and limitations in the practical use of Förster’s theory of resonance energy transfer. Photochemical & Photobiological Sciences 7:1444–1448. DOI: https://doi.org/10.1039/b810620g, PMID: 19037495

Bravo JPK, Borodavka A, Barth A, Calabrese AN, Mojzes P, Cockburn JLB, Lamb DC, Tuma R. 2018. Stability of local secondary structure determines selectivity of viral RNA chaperones. Nucleic Acids Research 46:7924–7937. DOI: https://doi.org/10.1093/nar/gky394

Brodie NI, Popov KI, Petrotschenko EV, Dokholyan NV, Borchers CH. 2017. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations. Science Advances 3:e1700479. DOI: https://doi.org/10.1126/sciadv.1700479, PMID: 28695211

Brodie NI, Popov KI, Petrotschenko EV, Dokholyan NV, Borchers CH. 2019. Conformational ensemble of α-synuclein in solution as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. PLOS Computational Biology 15:e1006859. DOI: https://doi.org/10.1371/journal.pcbi.1006859, PMID: 30917118

Bronson JE, Fei J, Hofman JM, Gonzalez RL, Wiggins CH. 2009. Learning rates and states from biophysical time series: a bayesian approach to model selection and single-molecule FRET data. Biophysical Journal 97:3196–3205. DOI: https://doi.org/10.1016/j.bpj.2009.09.031, PMID: 20006957

Brooks Sera E, Seitzinger NK, Davis LM, Keller RA, Soper SA. 1990. Detection of single fluorescent molecules. Chemical Physics Letters 174:553–557. DOI: https://doi.org/10.1016/0009-2614(90)85485-U

Brünger AT. 1992. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475. DOI: https://doi.org/10.1038/355472a0, PMID: 18481394

Brunger AT, Strop P, Vrijic M, Chu S, Weninger KR. 2011. Three-dimensional molecular modeling with single molecule FRET. Journal of Structural Biology 173:497–505. DOI: https://doi.org/10.1016/j.jsb.2010.09.004, PMID: 20837146

Büttner L, Javadi-Zarnaghi F, Höbartner C. 2014. Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work. Journal of the American Chemical Society 136:8131–8137. DOI: https://doi.org/10.1021/ja503864v, PMID: 24825547

Calabrese AN, Schiffrin B, Watson M, Karamanos TK, Walko M, Humes JR, Horne JE, White P, Wilson AJ, Kalli AC, Tuma R, Ashcroft AE, Brockwell DJ, Radford SE. 2020. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nature Communications 11:2155. DOI: https://doi.org/10.1038/s41467-020-15702-1, PMID: 32358557

Callaway E. 2020. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 588:203–204. DOI: https://doi.org/10.1038/d41586-020-03345-4, PMID: 33257889

Campos LA, Liu J, Wang X, Ramanathan R, English DS, Muñoz V. 2011. A photoprotection strategy for microsecond-resolution single-molecule fluorescence spectroscopy. Nature Methods 8:143–146. DOI: https://doi.org/10.1038/nmeth.1553, PMID: 21217750

Chakraborty A, Wang D, Ebright YW, Korlanny Y, Kortkhonjia E, Kim T, Chowdhury S, Wigensheraraj S, Irschik H, Jansen R, Nixon BT, Knight J, Weiss S, Ebright RH. 2012. Opening and closing of the bacterial RNA polymerase clamp. Science 337:591–595. DOI: https://doi.org/10.1126/science.1218716, PMID: 22859489

Chen J, Pyle JR, Sy Pieceko KW, Kolomeisky AB, Landes CF. 2016. A two-step method for smFRET data analysis. The Journal of Physical Chemistry B 120:7128–7132. DOI: https://doi.org/10.1021/acs.jpcb.6b05697, PMID: 27379815

Chen J, Zaaer S, Drori P, Zamel J, Joron K, Kalisman N, Lerner E, Dokholyan N. 2020. The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds. bioRxiv. DOI: https://doi.org/10.1101/2020.11.09.374991

Chizhik AI, Chizhik AM, Khoptyar D, Bár S, Meixner AJ, Enderlein J. 2011. Probing the radiative transition of single molecules with a tunable microresonator. Nano Letters 11:1700–1703. DOI: https://doi.org/10.1021/0l20215v, PMID: 21410240
Chizhik AI, Gregor I, Ernst B, Enderlein J. 2013. Nanocavity-based determination of absolute values of photoluminescence quantum yields. ChemPhysChem 14:505–513. DOI: https://doi.org/10.1002/cphc.201200931, PMID: 23335303

Choi UB, Strop P, Wrijc M, Chu S, Brunger AT, Weninger KR. 2010. Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nature Structural & Molecular Biology 17:318–324. DOI: https://doi.org/10.1038/nsmb.1763, PMID: 20173763

Choi JM, Holehouse AS, Pappu RV. 2020. Physical principles underlying the complex biology of intracellular phase transitions. Annual Review of Biophysics 49:107–133. DOI: https://doi.org/10.1146/annurev-biophys-121219-081629, PMID: 32004090

Chung HS, Louis JM, Eaton WA. 2009. Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. PNAS 106:11837–11844. DOI: https://doi.org/10.1073/pnas.0901178106, PMID: 19584244

Chung HS, Gopich IV, McHale K, Cellmer T, Louis JM, Eaton WA. 2011. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein. The Journal of Physical Chemistry A 115:3642–3656. DOI: https://doi.org/10.1021/jp1009669, PMID: 20509636

Chung HS, McHale K, Louis JM, Eaton WA. 2012. Single-molecule fluorescence experiments determine protein folding transition path times. Science 335:981–984. DOI: https://doi.org/10.1126/science.1215768, PMID: 22363011

Chung HS, Eaton WA. 2018. Protein folding transition path times from single molecule FRET. Current Opinion in Structural Biology 48:30–39. DOI: https://doi.org/10.1016/j.sbi.2017.10.007, PMID: 29080467

Chung HS, Gopich IV. 2014. Fast single-molecule FRET spectroscopy: theory and experiment. Physical Chemistry Chemical Physics 16:18644–18657. DOI: 10.1039/C4CP02489C, PMID: 25088495

Clifti D, Huysmans GHM, Wang X, He C, Terry D, Zhou Z, Fitzgerald G, Blanchard SC, Boudker O. 2020. Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder. Science Advances 6:eaa21949. DOI: https://doi.org/10.1126/sciadv.aaz1949

Cisse I, Okumus B, Joo C, Ha T. 2007. Fueling protein DNA interactions inside porous nanocontainers. PNAS 104:12646–12650. DOI: https://doi.org/10.1073/pnas.0610673104, PMID: 17563361

Clamme JP, Deniz AA. 2005. Three-color single-molecule fluorescence resonance energy transfer. ChemPhysChem 6:74–77. DOI: 10.1002/cphc.200400261, PMID: 15688649

Clegg RM. 1992. Fluorescence resonance energy transfer and nucleic acids. Methods in Enzymology 211:353–388. DOI: https://doi.org/10.1016/0076-6879(92)11020-J, PMID: 1406315

Clegg RM, Murchie AI, Zechel A, Carlberg C, Diekmann S, Lilley DM. 1992. Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction. Biochemistry 31:4846–4856. DOI: https://doi.org/10.1021/bi00135a016, PMID: 1591245

Clegg RM. 1995. Fluorescence resonance energy transfer. Current Opinion in Biotechnology 6:103–110. DOI: 10.1016/0958-1669(95)80016-4

Clore GM, Iwahara J. 2009. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chemical Reviews 109:4108–4139. DOI: https://doi.org/10.1021/cr90033p, PMID: 19522502

Cohen AE, Moerner WE. 2005. The anti-Brownian electrophoretic trap (ABEL trap): fabrication and software. Proceedings of SPIE 5699, Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III 296–305. DOI: https://doi.org/10.1117/12.598689

Cordes T, Vogelsang J, Tinnefeld P. 2009. On the mechanism of trolox as antiblinking and antibleaching reagent. Journal of the American Chemical Society 131:5018–5019. DOI: https://doi.org/10.1021/ja809117z, PMID: 19301868

Cordes T, Santoso Y, Tomescu AI, Gryte K, Hwang LC, Camarà B, Wigenshweraraj S, Kapanidis AN. 2010. Sensing DNA opening in transcription using quenchable Förster resonance energy transfer. Biochemistry 49:9171–9180. DOI: https://doi.org/10.1021/bi101184g, PMID: 20818825

Coullomb A, Bidan CM, Qian C, Wehnekamp F, Oddou C, álbigés-Rizo C, Lamb DC, Dupont A. 2020. QuantFRET: a framework for quantitative FRET measurements in living cells. Scientific Reports 10:6504. DOI: https://doi.org/10.1038/s41598-020-62924-w, PMID: 32300110

Craggs TD, Sustarsic M, Plochowitz A, Mosayebi M, Kaju H, Cuthbert A, Hohlbein J, Domicevica L, Biggin PC, Doye JPK, Kapanidis AN. 2012. Six steps closer to FRET-driven structural biology. Nature Methods 9:1157–1158. DOI: https://doi.org/10.1038/nmeth.2257, PMID: 23223168

Crale RE, Eisinger J, Blumberg WE. 1979. The orientational freedom of molecular probes. the orientation factor in intramolecular energy transfer. Biophysical Journal 26:161–193. DOI: https://doi.org/10.1016/S0006-3495(79)85243-1, PMID: 262414

Cale R, Terry DS, Munro JB, Blanchard SC. 2009. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophysical Journal 96:2371–2381. DOI: https://doi.org/10.1016/j.bpj.2008.11.061, PMID: 19289062

de Boer P, Hoogenboom JP, Giepmans BNG. 2015. Correlated light and electron microscopy: ultrastructure lights up! Nature Methods 12:503–513. DOI: https://doi.org/10.1038/nmeth.3400
de Boer M, Gouridis G, Muthahari YA, Cordes T. 2019a. Single-molecule observation of ligand binding and conformational changes in FeuA. Biophysical Journal 117:1642–1654. DOI: https://doi.org/10.1016/j.bpj.2019.08.005, PMID: 31537314

de Boer M, Gouridis G, Vietrov R, Begg SL, Schuurman-Wolters GK, Husada F, Eleftheriadis N, Poolman B, McDevitt CA, Cordes T. 2019b. Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers. eLife 8:e44652. DOI: https://doi.org/10.7554/eLife.44652, PMID: 30900991

de Lannoy C, Filius M, Kim SH, Joo C, de Ridder D. 2020. FRETboard: semi-supervised classification of fRET traces. bioRxiv. DOI: https://doi.org/10.1101/2020.08.28.272195

de Souza N, Picotti P. 2020. Mass spectrometry analysis of the structural proteome. Current Opinion in Structural Biology 60:57–65. DOI: https://doi.org/10.1016/j.sbi.2019.10.006, PMID: 31841731

Deniz AA, Dahan M, Gronwell JR, Ha T, Faulhaber AE, Chemla DS, Weiss S, Schultz PG. 1999. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. PNAS 96:3670–3675. DOI: https://doi.org/10.1073/pnas.96.7.3670, PMID: 10097095

Deniz AA, Laurence TA, Beligere GS, Dahan M, Martin AB, Chemla DS, Dawson PE, Schultz PG, Weiss S. 2000. Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. PNAS 97:5179–5184. DOI: https://doi.org/10.1073/pnas.090104997, PMID: 10792044

Deniz AA. 2016. Deciphering complexity in molecular biophysics with Single-Molecule resolution. Journal of Molecular Biology 428:301–307. DOI: https://doi.org/10.1016/j.jmb.2015.12.011, PMID: 26707199

Deplazes E, Jayatilaka D, Corry B. 2011. Testing the use of molecular dynamics to simulate fluorophore motions and FRET. Physical Chemistry Chemical Physics 13:11045–11054. DOI: https://doi.org/10.1039/c1cp20447e

Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J. 2007. Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. ChemPhysChem 8:433–443. DOI: https://doi.org/10.1002/cpoc.200600638, PMID: 17269116

Dertinger T, Loman A, Ewers B, Müller CB, Krämer B, Enderlein J. 2008. The optics and performance of dual-focus fluorescence correlation spectroscopy. Optics Express 16:14353–14368. DOI: https://doi.org/10.1364/OE.16.014353, PMID: 18794971

Deußner-Helfmann NS, Auer A, Strauss MT, Malkusch S, Dietz MS, Barth HD, Jungmann R, Heilemann M. 2018. Correlative Single-Molecule FRET and DNA-PAINT imaging. Nano Letters 18:4626–4630. DOI: https://doi.org/10.1021/acs.nanolett.8b02185, PMID: 29943993

Dickson RM, Cubitt AB, Tsien RY, Moerner WE. 1997. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388:355–358. DOI: https://doi.org/10.1038/41048, PMID: 9237752

Diz M, Zimmermann B, Börsch M, König M, Schweinberger E, Steigmiller S, Reuter R, Felekyan S, Kudryavtsev V, Seidel CA, Gräber P. 2004. Proton-powered subunit rotation in single membrane-bound F$_{1}$F$_{0}$-ATP synthase. Nature Structural & Molecular Biology 11:135–141. DOI: https://doi.org/10.1038/nsmb718, PMID: 14730350

Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA. 2016. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Current Opinion in Structural Biology 40:163–185. DOI: https://doi.org/10.1016/j.sbi.2016.11.012, PMID: 27939973

Dimura M, Peulen TO, Sanabria H, Hemmen K, Hanke CA, Seidel CAM, Gohlke H. 2020. Automated and optimally FRET-assisted structural modeling. Nature Communications 11:1–14. DOI: https://doi.org/10.1038/s41467-020-19023-1, PMID: 33106483

Dingfelder F, Benke S, Nettels D, Schuler B. 2018. Mapping an equilibrium folding intermediate of the cytolytic pore toxin ClyA with single-molecule FRET. The Journal of Physical Chemistry B 122:11251–11261. DOI: https://doi.org/10.1021/acs.jpcb.8b07026, PMID: 30156409

Doose S, Neuweller H, Sauer M. 2009. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10:1389–1398. DOI: https://doi.org/10.1002/cphc.200900238, PMID: 19475638

Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noske J, Richmond JS, Blanchard SC, Cate JH. 2011. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332:981–984. DOI: https://doi.org/10.1126/science.1202692, PMID: 21596992

Dupuis NF, Holmstrom ED, Nesbitt DJ. 2014. Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. PNAS 111:8464–8469. DOI: https://doi.org/10.1073/pnas.1316039111, PMID: 24850865

Düser MG, Bi Y, Zarrabi N, Dunn SD, Börsch M. 2008. The proton-translocating subunit of F$_{1}$F$_{0}$-ATP synthase is allocated asymetrically to the peripheral stalk. Journal of Biological Chemistry 283:33602–33610. DOI: https://doi.org/10.1074/jbc.M805170200, PMID: 18786919

Dyla M, Terry DS, Kjaergaard M, Sørensen TL, Lauwring Andersen J, Andersen JP, Rohde Knudsen C, Altman RB, Nissen P, Blanchard SC. 2017. Dynamics of P-type ATPase transport revealed by single-molecule FRET. Nature 551:346–351. DOI: https://doi.org/10.1038/nature24296, PMID: 29144454

Ebbinghaus S, Dhar A, McDonald JD, Gruebele M. 2010. Protein folding stability and dynamics imaged in a living cell. Nature Methods 7:319–323. DOI: https://doi.org/10.1038/nmeth.1435, PMID: 20190760

Edman L, Földes-Papp Z, Wemmelsm S, Rigler R. 1999. The fluctuating enzyme: a single molecule approach. Chemical Physics 247:11–22. DOI: https://doi.org/10.1016/S0301-0104(99)00099-1
Eggeling C, Berger S, Brand L, Fries JR, Schaffer J, Volkmer A, Seidel CA. 2001. Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. Journal of Biotechnology 86:163–180. DOI: https://doi.org/10.1016/S0168-1656(00)00412-0, PMID: 11257530

Ellert T, Beckers M, Drehsler F, Michaelis J. 2017. Fast-NPS—a Markov Chain Monte Carlo-based analysis tool to obtain structural information from single-molecule FRET measurements. Computer Physics Communications 219:377–389. DOI: https://doi.org/10.1016/j.cpc.2017.05.022

Ellert T, Kallis E, Nagy J, Röcker C, Michaelis J. 2018. Complete kinetic theory of FRET. The Journal of Physical Chemistry B 122:11677–11694. DOI: https://doi.org/10.1021/acs.jpcb.8b07719, PMID: 30351105

Enderlein J, Robbins DL, Ambrose WP, Goodwin PM, Keller RA. 1997. Statistics of single-molecule detection. The Journal of Physical Chemistry B 101:3626–3632. DOI: https://doi.org/10.1021/jp963261x

Enderlein J, Gregor I, Patra D, Dertinger T, Kaupp UB. 2005. Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. ChemPhysChem 6:2324–2336. DOI: https://doi.org/10.1002/cphc.200500414, PMID: 16273566

Ernst P, Zosel F, Reichen C, Nettels D, Schuler B, Plückthun A. 2020. Structure-guided design of a peptide lock for modular peptide binders. ACS Chemical Biology 15:457–468. DOI: https://doi.org/10.1021/acschembio.9b00928, PMID: 31985201

Farooq S, Hohlbein J. 2015. Camera-based single-molecule FRET detection with improved time resolution. Physical Chemistry Chemical Physics 17:27862–27872. DOI: https://doi.org/10.1039/C5CP04137F, PMID: 26439729

Fay JM, Zhu C, Proctor EA, Tao Y, Cui W, Ke H, Dokholyan NV. 2016. A phosphomimetic mutation stabilizes SOD1 and rescues cell viability in the context of an ALS-Associated mutation. Structure 24:1898–1906. DOI: https://doi.org/10.1016/j.str.2016.08.011, PMID: 27667694

Felekyan S, Kühnemuth R, Kudryavtsev V, Sandhagen C, Becker W, Seidel CAM. 2005. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Review of Scientific Instruments 76:083101–083114. DOI: https://doi.org/10.1063/1.1946088

Felekyan S, Kalinin S, Sanabria H, Valeri A, Seidel CA. 2012. Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. ChemPhysChem 13:1036–1053. DOI: https://doi.org/10.1002/cphc.201100897, PMID: 22407544

Felekyan S, Sanabria H, Kalinin S, Kühnemuth R, Seidel CAM. 2013. Analyzing Förster resonance energy transfer with fluctuation algorithms. In: Tetin E (Ed). Methods in Enzymology. Academic Press. p. 39–85. DOI: https://doi.org/10.1016/B978-0-12-405539-1.00002-6

Felekyan S, Eggeling C, Schaffer J, Antonik M, Haustein E, Kudryavtsev V, Kalinin S, Marawse S, Seidel CAM. 2020. MFD Spectroscopy and Imaging software package. HHU Düsseldorf. http://www.mpcl.hhu.de/software/software-package.html

Feng X, Fu Z, Kaledhonkar S, Jia Y, Shah B, Jin A, Liu Z, Sun M, Chen B, Grassucci RA, Ren Y, Jiang H, Frank J, Lin Q. 2017. A fast and effective microfluidic-splashing-plunging method for high-resolution single-particle Cryo-EM. Structure 25:663–670. DOI: https://doi.org/10.1016/j.str.2017.02.005, PMID: 28286002

Ferguson A, Wang L, Altman RB, Terry DS, Juette MF, Burnett BJ, Alejo JL, Rass DA, Parks MM, Vincent CT, Blanchard SC. 2015. Functional dynamics within the human ribosome regulate the rate of active protein synthesis. Molecular Cell 60:475–486. DOI: https://doi.org/10.1016/j.molcel.2015.09.013, PMID: 26593721

Filius M, Kim SH, Severins I, Joo C. 2020. High-Resolution Single-Molecule FRET via DNA eXchange (FRET X). bioRxiv. DOI: https://doi.org/10.1101/2020.10.15.340885

Fitzgerald GA, Terry DS, Warren AL, Quick M, Javitch JA, Blanchard SC. 2019. Quantifying secondary transport at single-molecule resolution. Nature 575:528–534. DOI: https://doi.org/10.1038/s41586-019-1747-5, PMID: 31723269

Fontana M, Fijen C, Lemay SG, Mathwig K, Hohlbein J. 2019. High-throughput, non-equilibrium studies of single biomolecules using glass-made nanofluidic devices. Lab on a Chip 19:79–86. DOI: https://doi.org/10.1039/C8LC01175C

Förster T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen Der Physik 437:55–75. DOI: https://doi.org/10.1002/andp.19484370105

Fries JR, Brand L, Eggeling C, Köllner M, Seidel CAM. 1998. Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy. The Journal of Physical Chemistry A 102:6601–6613. DOI: https://doi.org/10.1021/jp980965t

Gaigalas AK, Wang L. 2008. Measurement of the fluorescence quantum yield using a spectrometer with an integrating sphere detector. Journal of Research of the National Institute of Standards and Technology 113:17–28. DOI: https://doi.org/10.6028/jres.113.004, PMID: 27096110

Gambin Y, VanDelinder V, Ferreon AC, Lemke EA, Groisman A, Deniz AA. 2011. Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. Nature Methods 8:239–241. DOI: https://doi.org/10.1038/nmeth.1586, PMID: 21297620

Gansen A, Felekyan S, Kühnemuth R, Lehmann K, Tóth K, Seidel CAM, Langowski J. 2018. High precision FRET studies reveal reversible transitions in nucleosomes between microseconds and minutes. Nature Communications 9:4628. DOI: https://doi.org/10.1038/s41467-018-06758-1, PMID: 30401903

Gao M, Gnutt D, Orban A, Appel B, Righetti F, Winper R, Narberhaus F, Müller S, Ebbinghaus S. 2016. RNA hairpin folding in the crowded cell. Angewandte Chemie International Edition 55:3224–3228. DOI: https://doi.org/10.1002/anie.201510847

Gauto DF, Estrozi LF, Schwiters CD, Effantin G, Macek P, Souner R, Sivertsen AC, Schmidt E, Kerfah R, Mas G, Colletier JP, Güntert P, Favier A, Schoehn G, Schanda P, Boisbouvier J. 2019. Integrated NMR and cryo-EM...
atomic-resolution structure determination of a half-megadalton enzyme complex. Nature Communications 10:2697. DOI: https://doi.org/10.1038/s41467-019-10490-9, PMID: 31217444

Geggier P, Dave R, Feldman MB, Terry DS, Altman RB, Munro JB, Blanchard SC. 2010. Conformational sampling of aminocyl-tRNA during selection on the bacterial ribosome. Journal of Molecular Biology 399:576–595. DOI: https://doi.org/10.1016/j.jmb.2010.04.038, PMID: 20434456

Gidi Y, Payne L, Glembockyte V, Michie MS, Schneemann MJ, Cox G. 2020. Unifying mechanism for thiol-induced photoswitching and photostability of cyanine dyes. Journal of the American Chemical Society 142:12681–12689. DOI: https://doi.org/10.1021/jacs.0c03786, PMID: 32594743

Gietl A, Holzmeister P, Grohmann D, Tinnefeld P. 2012. DNA origami as biocompatible surface to match single-molecule and ensemble experiments. Nucleic Acids Research 40:e110. DOI: https://doi.org/10.1093/nar/gks326, PMID: 22523083

Gilloa B, Jing B, Cui TJ, Sow M, Plochowietz A, Mazumder A, Kapanidis AN. 2019. Confinement-free wide-field ratiometric tracking of single fluorescent molecules. Biophysical Journal 117:2141–2153. DOI: https://doi.org/10.1016/bj.2019.10.033, PMID: 31711608

Girodat D, Pati AK, Terry DS, Blanchard SC, Sanbonmatsu KY. 2020. Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein. PLOS Computational Biology 16:e1008293. DOI: https://doi.org/10.1371/journal.pcbi.1008293, PMID: 33151943

Glembockyte V, Lincoln R, Cosa G. 2015. Cy3 photoprotection mediated by Ni2+ for extended single-molecule imaging: old tricks for new techniques. Journal of the American Chemical Society 137:1116–1122. DOI: https://doi.org/10.1021/ja509923q, PMID: 25594101

Grutt D, Gao M, Brylski O, Heyden M, Ebbinghaus S. 2015. Excluded-volume effects in living cells. Angewandte Chemie International Edition 54:2524–2551. DOI: https://doi.org/10.1002/anie.201409847

Gomes GW, Krzeminski M, Namini A, Martin EW, Mittag T, Head-Gordon T, Forman-Kay JD, Gradinaru CC. 2020. Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS, and Single-Molecule FRET. Journal of the American Chemical Society 142:15697–15710. DOI: https://doi.org/10.1021/jacs.0c02088, PMID: 32840111

Gomes GN, Gradinaru CC. 2017. Insights into the conformations and dynamics of intrinsically disordered proteins using single-molecule fluorescence. Biochimica Et Biophysica Acta (BBA) - Proteins and Proteomics 1865:1696–1706. DOI: https://doi.org/10.1016/j.bbapap.2017.06.008, PMID: 28625737

Gopich IV. 2004. AMBER-DYES: characterization of charge fluctuations and force field parameterization of fluorescent dyes for molecular dynamics simulations. Journal of Chemical Theory and Computation 10:1768–17688. DOI: https://doi.org/10.1021/ct035234f, PMID: 15777264

Gopich IV. 2007. Decoding the pattern of photon colors in single-molecule FRET. The Journal of Physical Chemistry B 111:10965–10973. DOI: https://doi.org/10.1021/jp075255e, PMID: 17929964

Gopich IV. 2009. Ratiometric tracking of single fluorescent molecules. Journal of the American Chemical Society 131:14707–14708. DOI: https://doi.org/10.1021/ja906595s, PMID: 19588948

Gopich IV. 2012. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. PNAS 109:7747–7752. DOI: https://doi.org/10.1073/pnas.1205120109, PMID: 22550169

Grabhenorst L, Trofymchuk K, Steiner F, Glembockyte V, Tinnefeld P. 2020. Fluorescence photostability and saturation in the hotspot of DNA origami nanoantennas. Methods and Applications in Fluorescence 8:24003. DOI: https://doi.org/10.1088/2050-6120/abac8

Graen T, Hoefling M, Grubmüller H. 2014. AMBER-DYES: characterization of charge fluctuations and force field parameterization of fluorescent dyes for molecular dynamics simulations. Journal of Chemical Theory and Computation 10:5505–5512. DOI: https://doi.org/10.1021/ct500869p, PMID: 26583233

Greenfeld M, van de Meent JW, Pavlinich DS, Mabuchi H, Wiggins CH, Gonzalez RL, Herschlag D. 2015. Single-molecule dataset (SMD): a generalized storage format for raw and processed single-molecule data. BMC Bioinformatics 16:3. DOI: https://doi.org/10.1186/s12859-014-0429-4, PMID: 25991752

Gregor I, Patra D, Enderlein J. 2005. Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem 6:164–170. DOI: https://doi.org/10.1002/cphc.200400319, PMID: 15686860

Gregorio GG, Masureen M, Hilger D, Terry DS, Juette M, Zhao H, Zhou Z, Perez-Aguilar JM, Hauge M, Mathiesen S, Javitch JA, Weinstein H, Kobilka BK, Blanchard SC. 2017. Single-molecule analysis of ligand efficacy in β2AR-G-protein activation. Nature 547:68–73. DOI: https://doi.org/10.1038/nature22354, PMID: 28607487

Greife A, Felekyan S, Ma Q, Gertzgen CG, Spoerer L, Dimura M, Peulen TO, Wolcher C, Häussinger D, Gohlke H, Keitel V, Seidel CA. 2016. Structural assemblies of the di- and oligomeric G-protein coupled receptor TGR5 in live cells: an MFIS-FRET and integrative modelling study. Scientific Reports 6:36792. DOI: https://doi.org/10.1038/srep36792, PMID: 27833095

Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Reyvakin A, Patel R, Macklin JJ, Normanno D, Singer RH, Lionnet T, Lavis LD. 2015. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nature Methods 12:244–250. DOI: https://doi.org/10.1038/nmeth.3256, PMID: 25599551

Grimm JB, Muthusamy AK, Liang Y, Brown TA, Lemon WC, Patel R, Lu R, Macklin JJ, Keller PJ, Ji N, Lavis LD. 2017. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nature Methods 14:987–994. DOI: https://doi.org/10.1038/nmeth.4403, PMID: 28869757
Grinvald A, Haas E, Steinberg IZ. 1972. Evaluation of the distribution of distances between energy donors and acceptors by fluorescence decay. PNAS 69:2273–2277. DOI: https://doi.org/10.1073/pnas.69.8.2273, PMID: 16592008

Grotz KK, Nueesch MF, Holmstrom ED, Heinz M, Stelzl LS, Schuler B, Hummer G. 2018. Dispersion correction alleviates dye stacking of single-stranded DNA and RNA in simulations of single-molecule fluorescence experiments. The Journal of Physical Chemistry B 122:11626–11639. DOI: https://doi.org/10.1021/acs.jpcb.8b07537, PMID: 30285443

Guin D, Gruebele M. 2019. Weak chemical interactions that drive protein evolution: crowding, sticking, and quinary structure in folding and function. Chemical Reviews 119:10691–10717. DOI: https://doi.org/10.1021/acs.chemrev.8b00753, PMID: 31356058

Guo J, Qiu X, Minges C, Deschamps JR, Susumu K, Medintz IL, Hildebrandt N. 2019. Conformational details of quantum dot-DNA resolved by Förster resonance energy transfer lifetime nanoruler. ACS Nano 13:505–514. DOI: https://doi.org/10.1021/acs.nanolett.8b07137, PMID: 30508369

Gurunathan K, Levitus M. 2010. FRET fluctuation spectroscopy of diffusing biopolymers: contributions of conformational dynamics and translational diffusion. The Journal of Physical Chemistry B 114:980–986. DOI: https://doi.org/10.1021/jp102352s, PMID: 20030305

Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S. 1996. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. PNAS 93:6264–6268. DOI: https://doi.org/10.1073/pnas.93.13.6264, PMID: 8692803

Ha T, Chemla DS, Enderle T, Weiss S. 1997. Single molecule spectroscopy with automated positioning. Applied Physics Letters 70:782–784. DOI: https://doi.org/10.1063/1.118259

Ha T, Ting AY, Liang J, Caldwell WB, Deniz AA, Chemla DS, Schultz PG, Weiss S. 1999. Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. PNAS 96:893–898. DOI: https://doi.org/10.1073/pnas.96.3.893, PMID: 9927664

Ha T, Tinnefeld P. 2012. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annual Review of Physical Chemistry 63:595–617. DOI: https://doi.org/10.1146/annurev-physchem-032210-103340, PMID: 22404588

Haas E, Wilchek M, Katchalski-Katzir E, Steinberg IZ. 1975. Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer. PNAS 72:1807–1811. DOI: https://doi.org/10.1073/pnas.72.5.1807

Hagai D, Lerner E. 2019. Systematic assessment of burst impurity in confocal-based single-molecule fluorescence detection using brownian motion simulations. Molecules 24:2557. DOI: https://doi.org/10.3390/molecules24122557

Hamadani KM, Weiss S. 2008. Nonequilibrium single molecule protein folding in a coaxial mixer. Biophysical Journal 95:352–365. DOI: https://doi.org/10.1529/biophysj.107.127431, PMID: 18339751

Hanson JA, Duderstadt K, Watkins LP, Bhattacharya S, Brokaw J, Chu JW, Yang H. 2007. Illuminating the mechanistic roles of enzyme conformational dynamics. PNAS 104:18055–18060. DOI: https://doi.org/10.1073/pnas.0708600104, PMID: 17989222

Hanspach G, Trucks S, Hengesbach M. 2019. Strategic labelling approaches for RNA single-molecule spectroscopy. RNA Biology 16:1119–1132. DOI: https://doi.org/10.1080/15476286.2019.1593093, PMID: 30874475

Hartmann A, Krainer G, Keller S, Schlief M. 2015. Quantification of millisecond protein-folding dynamics in membrane-mimetic environments by single-molecule Förster resonance energy transfer spectroscopy. Analytical Chemistry 87:11224–11232. DOI: https://doi.org/10.1021/acs.analchem.5b03207, PMID: 26457727

Haustein E, Jahmz M, Schwille P. 2003. Triple FRET: a tool for studying long-range molecular interactions. ChemPhysChem 4:745–748. DOI: https://doi.org/10.1002/cphc.200200634, PMID: 12901306
Hellenkamp B, Thurn J, Stadlmieier M, Hugel T. 2018b. Kinetics of transient protein complexes determined via diffusion-independent microfluorometric and fluorescence stoichiometry. The Journal of Physical Chemistry B 122:11554–11560. DOI: https://doi.org/10.1021/acs.jpcb.8b07437

Henzler-Wildman KA, Thi, V, Lei M, Ott M, Wolf-Watz M, Fenn T, Pozharski E, Wilson MA, Petsko GA, Karplus M, Hülbner CG, Kern D. 2007. Intrinsic motions along an enzymatic reaction trajectory. Nature 450:838–844. DOI: https://doi.org/10.1038/nature06410, PMID: 18026086

Henzler-Wildman K, Kern D. 2007. Dynamic properties of proteins. Nature 450:964–972. DOI: https://doi.org/10.1038/nature06522, PMID: 18075575

Hildebrandt LL, Preus S, Birkedal V. 2015. Quantitative single molecule FRET efficiencies using TIRF microscopy. Faraday Discussions 184:131–142. DOI: https://doi.org/10.1039/C5CS15113D

Hinde E, Digman MA, Welch C, Hahn KM, Gratton E. 2012. Biosensor Förster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy. Microscopy Research and Technique 75:271–281. DOI: https://doi.org/10.1002/jemt.21054, PMID: 21858900

Hochstrasser RA, Chen SM, Millar DP. 1992. Distance distribution in a dye-linked oligonucleotide determined by time-resolved fluorescent energy transfer. Biophysical Chemistry 45:133–141. DOI: https://doi.org/10.1016/0301-4622(92)87005-4, PMID: 1286148

Hoeffling M, Lima N, Haenni D, Seidel CA, Schuler B, Grubmüller H. 2011. Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and monte carlo approach. PLOS ONE 6:e19791. DOI: https://doi.org/10.1371/journal.pone.0019791, PMID: 21629703

Hoffmann A, Nettels D, Clark J, Borgia A, Radford SE, Clarke J, Schuler B. 2011. Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles. Physical Chemistry Chemical Physics 13:1857–1871. DOI: https://doi.org/10.1039/c0cp01911a, PMID: 21218233

Hoffkens J, Cotlet M, Vosch T, Tinnefeld P, Weston KD, Ego C, Grimsdale A, Mullén K, Beljonne D, Brédas JL, Jordens S, Schweitzer G, Sauer M, De Schryver F. 2003. Revealing competitive Förster-type resonance energy-transfer pathways in single bichromophoric molecules. PNAS 100:13146–13151. DOI: https://doi.org/10.1073/pnas.2235805100, PMID: 14583594

Hohlbein J, Aigrain L, Craggs TD, Bermek O, Potapova O, Shooliizadeh P, Grindley ND, Joyce CM, Kapanidis AN. 2013. Conformational landscapes of DNA polymerase I and mutator derivatives establish fidelity checkpoints for nucleotide insertion. Nature Communications 4:2131. DOI: https://doi.org/10.1038/ncomms3313, PMID: 23831915

Hohng S, Joo C, Ha T. 2004. Single-molecule three-color FRET. Biophysical Journal 87:1328–1337. DOI: https://doi.org/10.1015biophys.10.043935, PMID: 15298935

Hohng S, Zhou R, Nahas MK, Yu J, Schulten K, Lilley DM, Ha T. 2007. Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holiday junction. Science 318:279–283. DOI: https://doi.org/10.1126/science.1146113, PMID: 17932299

Holden SJ, Uphoff S, Hohlbein J, Yadin D, Le Reste L, Britton OJ, Kapanidis AN. 2010. Defining the limits of single-molecule FRET resolution in TIRF microscopy. Biophysical Journal 99:3102–3111. DOI: https://doi.org/10.1016/j.bpj.2010.09.005, PMID: 21044609

Holden SJ, Uphoff S, Kapanidis AN. 2011. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nature Methods 8:279–280. DOI: https://doi.org/10.1038/nmeth0411-279, PMID: 21451515

Holmstrom ED, Dupuis NF, Nesbitt DJ. 2014. Pulsed IR heating studies of single-molecule DNA duplex dissociation kinetics and thermodynamics. Biophysical Journal 106:220–231. DOI: https://doi.org/10.1016/j.bpj.2013.11.008, PMID: 24411254

Holmstrom ED, Holla A, Zheng W, Nettels D, Best RB, Schuler B. 2018. Accurate transfer efficiencies, distance distributions, and ensembles of unfolded and intrinsically disordered proteins from single-molecule FRET. In: Rhoades E (Ed). Methods in Enzymology. Academic Press. p. 287–325. DOI: https://doi.org/10.1016/bs.mie.2018.09.030

Hon J, Gonzalez RL. 2019. Bayesian-estimated hierarchical HMMs enable robust analysis of single-molecule kinetic heterogeneity. Biophysical Journal 116:1790–1802. DOI: https://doi.org/10.1016/j.bpj.2019.02.031, PMID: 31016644

Hong Y, Lam JW, Tang BZ. 2011. Aggregation-induced emission. Chemical Society Reviews 40:5361–5388. DOI: https://doi.org/10.1039/c1cs15113d, PMID: 21799992
Horsey I, Furey WS, Harrison JG, Osborne MA, Balsubramanian S. 2000. Double fluorescence resonance energy transfer to explore multicomponent binding interactions: a case study of DNA mismatches. Chemical Communications 10:1043–1044. DOI: https://doi.org/10.1039/b002540m

Hua B, Han KY, Zhou R, Kim H, Shi X, Abeyesingunawardena SC, Jain A, Singh D, Aggarwal V, Woodson SA, Ha T. 2014. An improved surface passivation method for single-molecule studies. Nature Methods 11:1233–1236. DOI: https://doi.org/10.1038/nmeth.3143

Huang B, Perroud TD, Zare RN. 2004. Photon counting histogram: one-photon excitation. ChemPhysChem 5:1523–1531. DOI: https://doi.org/10.1002/cphc.200400176

Husada F, Gouridis G, Vietrov R, Schuurman-Wolters GK, Ploetz E, de Boer M, Poolman B, Cordes T. 2015. Watching conformational dynamics of ABC transporters with single-molecule biotools. Biochemical Society Transactions 43:1041–1047. DOI: https://doi.org/10.1042/BST20150140

Husada F, Bountra K, Tassis K, de Boer M, Romano M, Rebuffat S, Beis K, Cordes T. 2018. Conformational dynamics of the ABC transporter MqCD seen by single-molecule FRET. The EMBO Journal 37:e100056. DOI: https://doi.org/10.15222/embj.2018100056, PMID: 30237313

Hwang H, Kim H, Myong S. 2011. Protein induced fluorescence enhancement as a single molecule assay with short distance sensitivity. PNAS 108:7414–7418. DOI: https://doi.org/10.1073/pnas.1109579108

Hwang H, Myong S. 2014. Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions. Chem. Soc. Rev. 43:1221–1229. DOI: https://doi.org/10.1039/C3CS60215C

Hyman AA, Weber CA, Julicher F. 2014. Liquid-liquid phase separation in biology. Annual Review of Cell and Developmental Biology 30:39–58. DOI: https://doi.org/10.1146/annurev-cellbio-100913-013325

Iacobucci C, Piotrowski C, Aebersold R, Amaral BC, Andrews P, Bernfur K, Borchers C, Brodie NJ, Bruce JE, Cao Y, Chaignepain S, Chavez JD, Claverol S, Cox J, Davis T, Degliesposti G, Dong MQ, Edinger N, Emanuelsen C, Gay M, et al. 2019. First community-wide, comparative cross-linking mass spectrometry study. Analytical Chemistry 91:6953–6961. DOI: https://doi.org/10.1021/acs.analchem.9b00658, PMID: 31045356

Iljina M, Mazal H, Goloubinoff P, Riven I, Haran G. 2020. Single-molecule spectroscopy reveals dynamic allostery mediated by the substrate-binding domain of a AAA+ machine. bioRxiv. DOI: https://doi.org/10.1101/2020.09.13.295345

Ingargiola A, Laurence T, Boutelle R, Weiss S, Michalet X. 2016a. Photon-HDFS: an open file format for timestamp-based single-molecule fluorescence experiments. Biophysical Journal 110:26–33. DOI: https://doi.org/10.1016/j.bpj.2015.11.013, PMID: 26745406

Ingargiola A, Lerner E, Chung S, Weiss S, Michalet X. 2016b. FRETBursts: an open source toolkit for analysis of freely-diffusing single-molecule FRET. PLOS ONE 11:e0160716. DOI: https://doi.org/10.1371/journal.pone.0160716, PMID: 27532826

Ingargiola A, Lerner E, Chung S, Panzeri F, Gulinatti A, Rech I, Ghioni M, Weiss S, Michalet X. 2017. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules. PLOS ONE 12:e0175766. DOI: https://doi.org/10.1371/journal.pone.0175766

Ingargiola A, Segal M, Gulinatti A, Rech I, Labanca I, Maccagnani P, Ghioni M, Weiss S, Michalet X. 2018a. 48-spot single-molecule FRET setup with periodic acceptor excitation. The Journal of Chemical Physics 148:123304. DOI: https://doi.org/10.1063/1.5000742

Ingargiola A, Weiss S, Lerner E. 2018b. Monte carlo diffusion-enhanced photon inference: distance distributions and conformational dynamics in single-molecule FRET. The Journal of Physical Chemistry B 122:11598–11615. DOI: https://doi.org/10.1021/acs.jpcb.8b07608, PMID: 30252475

Iqbal A, Arslan S, Okumus B, Wilson TJ, Giraud G, Norman DG, Ha T, Lilley DMJ. 2008. Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids. PNAS 105:11176–11181. DOI: https://doi.org/10.1073/pnas.0807107015

Isselstein M, Zhang L, Glembekyte V, Brix O, Cosa G, Tinnefeld P, Cordes T. 2020. Self-healing dyes-keeping the promise! The Journal of Physical Chemistry Letters 11:4462–4480. DOI: https://doi.org/10.1021/acs.jpclett.0b03832, PMID: 32401520

Ivanov V, Li M, Mizuuchi K. 2009. Impact of emission anisotropy on fluorescence spectroscopy and FRET distance measurements. Biophysical Journal 97:922–929. DOI: https://doi.org/10.1016/j.bpj.2009.05.025, PMID: 19651051

Jacobi MH, Amir D, Ratner V, Gussakovskiy E, Haas E. 2005. Predicting reactivities of protein surface cysteines as part of a strategy for selective multiple labeling. Biochemistry 44:13664–13672. DOI: https://doi.org/10.1021/bi051205t, PMID: 16229456

Jäger M, Michalet X, Weiss S. 2005. Protein-protein interactions as a tool for site-specific labeling of proteins. Protein Science 14:2059–2068. DOI: https://doi.org/10.1110/ps.051384705, PMID: 15987886

Jäger M, Nir E, Weiss S. 2006. Site-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification. Protein Science 15:640–646. DOI: https://doi.org/10.1110/ps.051851506, PMID: 16452617

Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM. 2007. Biological applications of quantum dots. Biomaterials 28:4717–4732. DOI: https://doi.org/10.1016/j.biomaterials.2007.07.014

Jazii AA, Ploetz E, Arizki M, Dhandayuthapani B, Waclawska I, Krämer R, Ziegler C, Cordes T. 2017. Caging and photoactivation in single-molecule Förster resonance energy transfer experiments. Biochemistry 56:2031–2041. DOI: https://doi.org/10.1021/acs.biochem.6b00916, PMID: 28362086

Jeschke G. 2012. DEER distance measurements on proteins. Annual Review of Physical Chemistry 63:419–446. DOI: https://doi.org/10.1146/annurev-physchem-032511-143716, PMID: 22404592
Kaledhonkar S, Fu Z, White H, Frank J. 2018. Time-resolved cryo-electron microscopy using a microfluidic chip. In: Marsh J. A (Ed). Methods in Molecular Biology. Springer. p. 59–71. DOI: https://doi.org/10.1007/978-1-4939-7759-8_4

Kalinin S, Sisamakis E, Magennis SW, Felekyan S, Seidel CA. 2010a. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. The Journal of Physical Chemistry B 114:6197–6206. DOI: https://doi.org/10.1021/jp100025v, PMID: 20397670

Kalinin S, Valeri A, Antonik M, Felekyan S, Seidel CA. 2010b. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. The Journal of Physical Chemistry B 114:7983–7995. DOI: https://doi.org/10.1021/jp101516d, PMID: 20486698

Kalinin S, Peulen T, Sindbert S, Rothwell PJ, Berger S, Restle T, Goody RS, Gohlke H, Seidel CAM. 2012. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nature Methods 9:1218–1225. DOI: https://doi.org/10.1038/nmeth.2222

Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S. 2004. Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules. PNAS 101:8936–8941. DOI: https://doi.org/10.1073/pnas.040169101

Kapanidis AN, Laurence TA, Lee NK, Margeat E, Kong X, Weiss S. 2005. Alternating-laser excitation of single molecules. Accounts of Chemical Research 38:523–533. DOI: https://doi.org/10.1021/ar0401348, PMID: 16028886

Kapusta P, Wahl M, Benda A, Hof M, Enderlein J. 2007. Fluorescence lifetime correlation spectroscopy. Journal of Fluorescence 17:43–48. DOI: https://doi.org/10.1007/s10895-006-0145-1, PMID: 17171439

Karimi A, Börner R, Mata G, Luedtke NW. 2020. A highly fluorescent nucleobase molecular rotor. Journal of the American Chemical Society 142:14422–14426. DOI: https://doi.org/10.1021/jacs.0c05180, PMID: 32786749

Kask P, Polo K, Ullmann D, Gall K. 1999. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. PNAS 96:13756–13761. DOI: https://doi.org/10.1073/pnas.96.24.13756

Keller BG, Kobitski A, Jäschke A, Nienhaus GU, Noé F. 2014. Complex RNA folding kinetics revealed by single-molecule FRET and hidden markov models. Journal of the American Chemical Society 136:4533–4543. DOI: https://doi.org/10.1021/jacs.0409871, PMID: 24568646

Khara DC, Schreck JS, Tomov TE, Berger Y, Ouldridge TE, Dove JPK, Nir E. 2018. DNA bipedal motor walking dynamics: an experimental and theoretical study of the dependency on step size. Nucleic Acids Research 46:1553–1561. DOI: https://doi.org/10.1093/nar/gkx1282

Kılıç S, Felekyan S, Doroshenko O, Boichenko I, Dimura M, Vardanyan H, Bryan LC, Arya G, Seidel CAM, Fierz B. 2018. Single-molecule FRET reveals multiscale chromatin dynamics modulated by HP1α. Nature Communications 9:235. DOI: https://doi.org/10.1038/s41467-017-02619-5, PMID: 29339721

Kim HD, Nienhaus GU, Ha T, Orr JW, Williamson JR, Chu S. 2002. Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules. PNAS 99:4284–4289. DOI: https://doi.org/10.1073/pnas.03207799

Kim S, Streets AM, Lin RR, Quake SR, Weiss S, Majumdar DS. 2011. High-throughput single-molecule optofluidic molecules with liposome tethering. Nature Communications 2:119. DOI: https://doi.org/10.1038/ncomms1299

Kim J-Y, Kim C, Lee NK. 2015a. Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering. Nature Communications 6:6992. DOI: https://doi.org/10.1038/ncomms9992

Kim SE, Lee IB, Hyeon C, Hong SC. 2015b. Deciphering kinetic information from single-molecule FRET data that show slow transitions. The Journal of Physical Chemistry B 119:6974–6978. DOI: https://doi.org/10.1021/acs.jpcb.5b03991, PMID: 25989531

Kim J-Y, Meng F, Yoo J, Chung HS. 2018a. Diffusion-limited association of disordered protein by non-native electrostatic interactions. Nature Communications 9:4707. DOI: https://doi.org/10.1038/s41467-018-06866-y

Kim N, Kwon J, Lim Y, Kang J, Bae S, Kim SK. 2018b. Incorporation of STED technique into single-molecule spectroscopy to break the concentration limit of diffusing molecules in single-molecule detection. Chemical Communications 54:9667–9670. DOI: https://doi.org/10.1039/C8CC05726E

Kim J, Li BX, Huang RY, Qiao JX, Ewing WR, MacMillan DWC. 2020. Site-Selective functionalization of methionine residues via photoredox catalysis. Journal of the American Chemical Society 142:21260–21266. DOI: https://doi.org/10.1021/jacs.0c00992, PMID: 33290649

Kim J-Y, Chung HS. 2020. Disordered proteins follow diverse transition paths as they fold and bind to a partner. Science 368:1253–1257. DOI: https://doi.org/10.1126/science.aab3854

Kinz-Thompson CD, Gonzalez RL. 2018. Increasing the time resolution of single-molecule experiments with bayesian inference. Biophysical Journal 114:289–300. DOI: https://doi.org/10.1016/j.bpj.2017.11.3741, PMID: 29401427
Knox RS, van Amerongen H. 2002. Refractive index dependence of the Förster resonance excitation transfer rate. The Journal of Physical Chemistry B 106:5289–5293. DOI: https://doi.org/10.1021/jp013927+

Köfinger J, Stelzl LS, Reuter K, Alland C, Reichel K, Hummer G. 2019. Efficient ensemble refinement by reweighting. Journal of Chemical Theory and Computation 15:3390–3401. DOI: https://doi.org/10.1021/acs.jctc.8b00131, PMID: 30939006

Kong X, Nir E, Hamadani K, Weiss S. 2007. Photobleaching pathways in single-molecule FRET experiments. Journal of the American Chemical Society 129:4643–4654. DOI: https://doi.org/10.1021/ja068002s, PMID: 17375921

König S, Hadzic M, Fiorini E, Börner R, Kowerko D, Blankenhorn WU, Sigel RK. 2013. BOBA FRET: bootstrap-based analysis of single-molecule FRET data. PLOS ONE 8:e84157. DOI: https://doi.org/10.1371/journal.pone.0084157, PMID: 24386343

Köninger J, Zarrine-Afsar A, Aznar-Bejarano M, Soranno A, Wunderlich B, Dingfelder F, Stüber JC, Plückthun A, Nettels D, Schuler B. 2015. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nature Methods 12:773–779. DOI: https://doi.org/10.1038/nmeth.3475, PMID: 26147918

Koukos PI, Bonvin A. 2020. Integrative modelling of biomolecular complexes. Journal of Molecular Biology 432:2861–2881. DOI: https://doi.org/10.1016/j.jmb.2019.11.009, PMID: 31730369

Kraiger G, Hartmann A, Schlierf M. 2015. farFRET: extending the range in single-molecule FRET experiments beyond 10 nm. Nano Letters 15:5826–5829. DOI: https://doi.org/10.1021/acs.nanolett.5b01878, PMID: 26104104

Kravets E, Degrandi D, Ma Q, Peulen TO, Klammers V, Felekyan S, Kühnemuth R, Weidtkamp-Peters S, Seidel CA, Pfeffer K. 2016. Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes. eLife 5:e11479. DOI: https://doi.org/10.7554/elife.11479, PMID: 26814575

Krüstich J, Hänsel R, Romainczyk O, Engels JW, Dötsch V, Prisner TF. 2011. Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angewandte Chemie 50:5070–5074. DOI: https://doi.org/10.1002/anie.201100886, PMID: 21506223

Kudryavtsev V, Felekyan S, Woźniak AK, König M, Sandhagen C, Kühnemuth R, Seidel CA, Oesterhelt F. 2007. Monitoring dynamic systems with multiparameter fluorescence imaging. Analytical and Bioanalytical Chemistry 387:71–82. DOI: https://doi.org/10.1007/s00216-006-0917-0, PMID: 17160654

Kudryavtsev V, Sikor M, Kalinin S, Mokranjac D, Seidel CA, Lamb DC. 2012. Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. ChemPhysChem 13:1060–1078. DOI: https://doi.org/10.1002/cphc.201100822, PMID: 22383292

Kühnemuth R, Seidel CAM. 2001. Principles of single molecule multiparameter fluorescence spectroscopy. Single Molecules 2:251–254. DOI: https://doi.org/10.1021/acs.smmolsci.011202<24:251::AID-SIMO251>3.0.CO;2-T

Kupitz C, Basu S, Grojohann I, Fromme R, Zatsepin NA, Reeder B, Sierra RG, Liu H, Barty A, Aquila AL, Deponte D, Kirian RA, et al. 2014. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:261–265. DOI: https://doi.org/10.1038/nature13453

Kuzmenkina EV, Heyes CD, Nienhaus GU. 2005. Single-molecule Förster resonance energy transfer study of protein dynamics under denaturing conditions. PNAS 102:15471–15476. DOI: https://doi.org/10.1073/pnas.0507728102

Kuzmenkina EV, Heyes CD, Nienhaus GU. 2006. Single-molecule FRET study of denaturant induced unfolding of RNase H. Journal of Molecular Biology 357:313–324. DOI: https://doi.org/10.1016/j.jmb.2005.12.061, PMID: 16426636

Kuznetsova IM, Turoverov KK, Uversky VN. 2014. What macromolecular crowding can do to a protein. International Journal of Molecular Sciences 15:23090–23140. DOI: https://doi.org/10.3390/ijms151223090, PMID: 25514413

Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos AP, Weiss S. 2000. Ultra-high-resolution multicolor colocalization of single fluorescent probes. PNAS 97:9461–9466. DOI: https://doi.org/10.1073/pnas.170286097

Lamichhane R, Solem A, Black W, Rueda D. 2010. Single-molecule FRET of protein-nucleic acid and protein-protein complexes: surface passivation and immobilization. Methods 52:192–200. DOI: https://doi.org/10.1016/j.ymeth.2010.06.010, PMID: 20554047

Larsen KP, Choi J, Prabhapar A, Puglisi EV, Puglisi JD. 2019. Relating structure and dynamics in RNA biology. Cold Spring Harbor Perspectives in Biology 11:a032474. DOI: https://doi.org/10.1101/cshperspect.a032474, PMID: 31262948

Larson J, Kirk M, Drier EA, O'Brien W, MacKay JF, Friedman LJ, Hoskins AA. 2014. Design and construction of a multilength, micromirror total internal reflectance fluorescence microscope. Nature Protocols 9:2317–2328. DOI: https://doi.org/10.1038/nprot.2014.155

Laurence TA, Kong X, Jager M, Weiss S. 2005. Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. PNAS 102:17348–17353. DOI: https://doi.org/10.1073/pnas.0508584102

Laurence TA, Kwon Y, Yin E, Hollars CW, Camarero JA, Barsky D. 2007. Correlation spectroscopy of minor fluorescent species: signal purification and distribution analysis. Biophysical Journal 92:2184–2198. DOI: https://doi.org/10.1529/biophysj.106.093591, PMID: 17189306

Laurence TA, Kwon Y, Johnson A, O'Donnell M, Camarero JA, Barsky D. 2008. Motion of a DNA sliding clamp observed by single molecule fluorescence spectroscopy. Journal of Biological Chemistry 283:22895–22906. DOI: https://doi.org/10.1074/jbc.M800174200
LeBlanc S, Kulkarni P, Wenninger K. 2018. Single molecule FRET: a powerful tool to study intrinsically disordered proteins. Biomolecules 8:140. DOI: https://doi.org/10.3390/biom8040140

Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S. 2005. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophysical Journal 88:2939–2953. DOI: https://doi.org/10.1529/biophysj.104.054114, PMID: 15653725

Lee NK, Koh HR, Han KY, Kim SK. 2007a. Folding of B-17 deoxyribozyme studied by three-color alternating-laser excitation of single molecules. Journal of the American Chemical Society 129:15526–15534. DOI: https://doi.org/10.1021/ja0725145, PMID: 18027936

Lee NK, Kapanidis AN, Koh HR, Korlann Y, Ho SO, Kim Y, Gassman N, Kim SK, Weiss S. 2007b. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophysical Journal 92:303–312. DOI: https://doi.org/10.1529/biophysj.106.093211

Lee M, Kim SH, Hong S-C. 2010a. Minute negative superelicity is sufficient to induce the B-Z transition in the presence of low tension. PNAS 107:4985–4990. DOI: https://doi.org/10.1073/pnas.0911528107

Lee S, Lee J, Hohng S. 2010b. Single-molecule three-color FRET with both negligible spectral overlap and long observation time. PLOS ONE 5:e12270. DOI: https://doi.org/10.1371/journal.pone.0012270, PMID: 20808851

Lee J, Lee S, Ragunathan K, Joo C, Ha T, Hohng S. 2010c. Single-molecule four-color FRET. Angewandte Chemie International Edition 49:9922–9925. DOI: https://doi.org/10.1002/anie.201005402, PMID: 21104966

Lee TC, Moran CR, Cistrome PA, Dawson PE, Deniz AA. 2018. Site-specific three-color labeling of α-synuclein via conjugation to uniquely reactive cysteines during assembly by native chemical ligation. Cell Chemical Biology 25:797–801. DOI: https://doi.org/10.1016/j.chembiol.2018.03.009, PMID: 29681525

Léger C, Yahia-Ammar A, Susumu K, Medintz IL, Urvoas A, Valerio-Lepiniec M, Minard P, Hildebrandt N. 2020. Picomolar biosensing and conformational analysis using artificial bidomain proteins and terbium-to-quantum dot Förster resonance energy transfer. ACS Nano 14:5956–5967. DOI: https://doi.org/10.1021/acsnano.0c01410, PMID: 32216328

Lehmann K, Felekyan S, Kühnemuth R, Dimura M, Töth K, Seidel CAM, Langowski J. 2020. Dynamics of the nucleosomal histone H3 N-terminal tail revealed by high precision single-molecule FRET. Nucleic Acids Research 48:1551–1571. DOI: https://doi.org/10.1093/nar/gkz1186, PMID: 31956896

Lemke EA, Gambin Y, Vandelinder V, Brustad EM, Liu HW, Schultz PG, Groisman A, Deniz AA. 2009. Microfluidic device for single-molecule experiments with enhanced photostability. Journal of the American Chemical Society 131:13610–13612. DOI: https://doi.org/10.1021/ja9027023, PMID: 19772358

Lerner E, Hilzenrat G, Amir D, Tauber E, Garini Y, Haas E. 2013. Preparation of homogeneous samples of double-labelled protein suitable for single-molecule FRET measurements. Analytical and Bioanalytical Chemistry 405:5983–5991. DOI: https://doi.org/10.1007/s00216-013-7002-2

Lerner E, Orevi T, Ben Ishay E, Amir D, Haas E. 2014. Kinetics of fast changing intramolecular distance distributions obtained by combined analysis of FRET efficiency kinetics and time-resolved FRET equilibrium measurements. Biophysical Journal 106:667–676. DOI: https://doi.org/10.1016/j.bpj.2013.11.4500, PMID: 24507607

Lerner E, Ploetz E, Hohlbein J, Cordes T, Weiss S. 2016. A quantitative theoretical framework for protein-induced fluorescence enhancement-Förster-type resonance energy transfer (PIFE-FRET). The Journal of Physical Chemistry B 120:6401–6410. DOI: https://doi.org/10.1021/acs.jpcb.6b03692, PMID: 27184889

Lerner E, Ingargiola A, Lee JJ, Borukhov S, Michalet X, Weiss S. 2017. Different types of pausing modes during transcription initiation. Transcription 8:242–253. DOI: https://doi.org/10.1080/21541264.2017.1308853

Lerner E, Cordes T, Ingargiola A, Alhadi Y, Chung S, Michalet X, Weiss S. 2018a. Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transferer resonance energy transfer. Science 359:aea1133. DOI: https://doi.org/10.1126/science.aea1133

Lerner E, Ingargiola A, Weiss S. 2018b. Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example. The Journal of Chemical Physics 148:123315. DOI: https://doi.org/10.1063/1.5004660

Lerner E. 2019. PIE/raLEX-FRET analysis notebook using FRETbursts - corrections, MFD, FCS, 2CDE & BVA. Zenodo. DOI: https://doi.org/10.5281/zenodo.3630498

Lerner E. 2020. Microsecond ALEX FRET analysis notebook using FRETbursts - corrections, FRET burst analysis of recurring molecules, FCS, 2CDE & BVA [Data set]. Zenodo. DOI: https://doi.org/10.5281/zenodo.3630474

Levitus M, Ranjit S. 2011. Cyanine dyes in biophysical research: the photophysics of polymethylene fluorescent dyes in biomolecular environments. Quarterly Reviews of Biophysics 44:123–151. DOI: https://doi.org/10.1017/S0033583510000247

Li J, Zhang L, Johnson-Buck A, Walter NG. 2020a. Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning. Nature Communications 11:5833. DOI: https://doi.org/10.1038/s41467-020-19673-1

Li Z, Li W, Lu M, Bess J, Chao CW, Gorman J, Terry DS, Zhang B, Zhou T, Blanchard SC, Kwong PD, Lifson JD, Mothes W, Liu J. 2020b. Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. Nature Structural & Molecular Biology 27:726–734. DOI: https://doi.org/10.1038/s41594-020-0452-2

Lindhoud S, Pirchi M, Westphal AH, Haran G, van Mierlo CPM. 2015. Gradual folding of an off-pathway molten globule detected at the single-molecule level. Journal of Molecular Biology 427:3148–3157. DOI: https://doi.org/10.1016/j.jmb.2015.07.002

Lipman EA, Schuler B, Bakajin O, Eaton WA. 2003. Single-molecule measurement of protein folding kinetics. Science 301:1233–1235. DOI: https://doi.org/10.1126/science.1085399, PMID: 12947198
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. 2020. A guide to fluorescence lifetime microscopy and Förster’s Resonance Energy Transfer in Neuroscie. Current Protocols in Neuroscience 94:e108. DOI: https://doi.org/10.1002/cpns.108, PMID: 33232577

Liu Z, Gong Z, Cao Y, Ding YH, Dong MQ, Lu YB, Zhang WP, Tang C. 2018. Characterizing protein dynamics with integrative use of bulk and single-molecule techniques. Biochemistry 57:305–313. DOI: https://doi.org/10.1021/acs.biochem.7b00817, PMID: 28945353

Liu Z, Dong X, Yi HW, Yang J, Gong Z, Wang Y, Liu K, Zhang WP, Tang C. 2019. Structural basis for the recognition of K48-linked ub chain by proteasomal receptor Rpn13. Cell Discovery 5:19. DOI: https://doi.org/10.1038/s41421-019-0089-7, PMID: 30962947

Liu Y, Lilley DMJ. 2017. Crystal structures of cyanine fluorophores stacked onto the end of double-stranded RNA. Biophysical Journal 113:2336–2343. DOI: https://doi.org/10.1016/j.bpj.2017.10.002, PMID: 29211987

Long X, Parks JW, Stone MD. 2016. Integrated magnetic tweezers and single-molecule FRET for investigating the mechanical properties of nucleic acid. Methods 105:16–25. DOI: https://doi.org/10.1016/j.ymeth.2016.06.009, PMID: 27320203

Lu M, Ma X, Mothes W. 2019. Illuminating the virus life cycle with single-molecule FRET imaging. Advances in Virus Research 105:239–273. DOI: https://doi.org/10.1016/bs.avir.2017.09.004, PMID: 31522706

Magde D, Elson E, Webb WW. 1972. Thermodynamic fluctuations in a reacting system—measurement by Fluorescence Correlation Spectroscopy. Physical Review Letters 29:705–708. DOI: https://doi.org/10.1103/PhysRevLett.29.705

Maity H, Reddy G. 2016. Folding of protein L with implications for collapse in the denatured state ensemble. Journal of the American Chemical Society 138:2609–2616. DOI: https://doi.org/10.1021/jacs.5b11300

Mapa K, Sikor M, Kudryavtsev V, Waegemann K, Kalinin S, Seidel CA, Neupert W, Lamb DC, Mokranjac D. 2010. The conformational dynamics of the mitochondrial Hsp70 chaperone. Molecular Cell 38:89–100. DOI: https://doi.org/10.1016/j.molcel.2010.03.010, PMID: 20385092

Margaret E, Kapanidis AN, Tinnefeld P, Wang Y, Mukhopadhyay J, Ebright RH, Weiss S. 2006. Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophysical Journal 90:1419–1431. DOI: https://doi.org/10.1529/biophysj.105.069252, PMID: 16290085

Margittai M, Widengren J, Schweinerberger E, Schröder GF, Felekyan S, Haustein E, König M, Fasshauer D, Grubmüller H, Jahn R, Seidel CA. 2003. Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. PNAS 100:15516–15521. DOI: https://doi.org/10.1073/pnas.2331232100, PMID: 14668446

Martens KJA, van Beljouw SPB, van der Els S, Vink JNA, Baas S, Vogelaar GA, Brouns SJJ, van Baarlen P, Kleerebezem M, Hohibein J. 2019. Visualization of dCas9 target search in vivo using an open-microscopy framework. Nature Communications 10:3552. DOI: https://doi.org/10.1038/s41467-019-11514-0, PMID: 31391532

Martinac B. 2017. Single-molecule FRET studies of ion channels. Progress in Biophysics and Molecular Biology 130:192–197. DOI: https://doi.org/10.1016/j.pbiomolbio.2017.06.014, PMID: 28486429

Maslihallah G, Maris C, König SL, Yulikov M, Aeschimann F, Malinowska AL, Mabille J, Kapanidis AN, Tinnefeld P, Mukhopadhyay J, Elson E, Webb WW. 2016. Single-molecule experiments with molecular dynamics simulations by machine learning. eLife 7:e32668. DOI: https://doi.org/10.7554/eLife.32668, PMID: 29723137

Matsunaga Y, Sugita Y. 2018. Linking time-series of single-molecule experiments with molecular dynamics simulations by machine learning. eLife 7:e32668. DOI: https://doi.org/10.7554/eLife.32668, PMID: 29723137

May PFJ, Pinkney JNM, Wadzakzi P, Evans GW, Sherratt DJ, Kapanidis AN. 2014. Tethered fluorophore motion: studying large DNA conformational changes by single-fluorophore imaging. Biophysical Journal 107:1205–1216. DOI: https://doi.org/10.1016/j.bpj.2014.07.024, PMID: 25185558

Mazal H, Aviram H, Riven I, Haran G. 2018. Effect of ligand binding on a protein with a complex folding landscape. Physical Chemistry Chemical Physics 20:3054–3062. DOI: https://doi.org/10.1039/C7CP03327C, PMID: 28721412

Mazal H, Iljin M, Barak Y, Elad N, Rosenzweig R, Goloubinoff P, Riven I, Haran G. 2019. Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nature Communications 10:1438. DOI: https://doi.org/10.1038/s41467-019-09474-6, PMID: 30926805

Mazal H, Haran G. 2019. Single-molecule FRET methods to study the dynamics of proteins at work. Current Opinion in Biomedical Engineering 12:8–17. DOI: https://doi.org/10.1016/j.jcobme.2019.08.007, PMID: 31989063

McCann JJ, Choi UB, Zheng L, Weninger K, Bowen ME. 2010. Optimizing methods to recover absolute FRET efficiency from immobilized single molecules. Biophysical Journal 99:961–970. DOI: https://doi.org/10.1016/j.bpj.2010.04.063, PMID: 20682275

McCann JJ, Zheng L, Rohrbeck D, Felekyan S, Kühnemuth R, Sutton RB, Seidel CA, Bowen ME. 2012. Supertertiary structure of the synaptic MAGuk scaffold proteins is conserved. PNAS 109:15775–15780. DOI: https://doi.org/10.1073/pnas.1200254109, PMID: 23019361

The EMBO Journal 37:e97089. DOI: https://doi.org/10.15252/embj.20197089, PMID: 29449323

Matsunaga Y, Sugita Y. 2018. Linking time-series of single-molecule experiments with molecular dynamics simulations by machine learning. eLife 7:e32668. DOI: https://doi.org/10.7554/eLife.32668, PMID: 29723137

May PFJ, Pinkney JNM, Wadzakzi P, Evans GW, Sherratt DJ, Kapanidis AN. 2014. Tethered fluorophore motion: studying large DNA conformational changes by single-fluorophore imaging. Biophysical Journal 107:1205–1216. DOI: https://doi.org/10.1016/j.bpj.2014.07.024, PMID: 25185558

Mazal H, Aviram H, Riven I, Haran G. 2018. Effect of ligand binding on a protein with a complex folding landscape. Physical Chemistry Chemical Physics 20:3054–3062. DOI: https://doi.org/10.1039/C7CP03327C, PMID: 28721412

Mazal H, Iljin M, Barak Y, Elad N, Rosenzweig R, Goloubinoff P, Riven I, Haran G. 2019. Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nature Communications 10:1438. DOI: https://doi.org/10.1038/s41467-019-09474-6, PMID: 30926805

Mazal H, Haran G. 2019. Single-molecule FRET methods to study the dynamics of proteins at work. Current Opinion in Biomedical Engineering 12:8–17. DOI: https://doi.org/10.1016/j.jcobme.2019.08.007, PMID: 31989063

McCann JJ, Choi UB, Zheng L, Weninger K, Bowen ME. 2010. Optimizing methods to recover absolute FRET efficiency from immobilized single molecules. Biophysical Journal 99:961–970. DOI: https://doi.org/10.1016/j.bpj.2010.04.063, PMID: 20682275

McCann JJ, Zheng L, Rohrbeck D, Felekyan S, Kühnemuth R, Sutton RB, Seidel CA, Bowen ME. 2012. Supertertiary structure of the synaptic MAGuk scaffold proteins is conserved. PNAS 109:15775–15780. DOI: https://doi.org/10.1073/pnas.1200254109, PMID: 23019361
McKinney SA, Joo C, Ha T. 2006. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophysical Journal 91:1941–1951. DOI: https://doi.org/10.1529/biophysj.106.082487, PMID: 16766620
Medintz IL, Clapp AR, Mattoussi H, Goldman ER, Fisher B, Mauro JM. 2003. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials 2:630–638. DOI: https://doi.org/10.1038/nmat961, PMID: 12942071
Mekler V, Kortkhojia E, Mukhopadhyay J, Knight J, Reyvakin A, Kapanidis AN, Niu W, Ebright YW, Levy R, Ebright RH. 2002. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108:599–614. DOI: https://doi.org/10.1016/S0092-8674(02)00667-0, PMID: 11893332
Metskas LA, Rhoades E. 2020. Single-Molecule FRET of intrinsically disordered proteins. Annual Review of Physical Chemistry 71:391–414. DOI: https://doi.org/10.1146/annurev-physchem-012420-104917, PMID: 32097582
Meyer BH, Martinez KL, Segura JM, Pascoal P, Hovius R, George N, Johnsson K, Vogel H. 2006a. Covalent labeling of cell-surface proteins for in-vivo FRET studies. FEBS Letters 580:1654–1658. DOI: https://doi.org/10.1016/j.febslet.2006.02.007, PMID: 16497304
Meyer BH, Segura JM, Martinez KL, Hovius R, George N, Johnsson K, Vogel H. 2006b. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. PNAS 103:2138–2143. DOI: https://doi.org/10.1073/pnas.0507686103, PMID: 16641666
Michalet X, Weiss S, Jäger M. 2006. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chemical Reviews 106:1705–1813. DOI: https://doi.org/10.1021/cr0404343, PMID: 16682755
Michie MS, Götz R, Franke C, Bowler M, Kumari N, Magidson V, Levitus M, Loncarek J, Sauer M, Schnermann MJ. 2017. Cyanine conformational restraint in the far-red range. Journal of the American Chemical Society 139:12406–12409. DOI: https://doi.org/10.1021/jacs.7b07272, PMID: 28862842
Milles S, Tyagi S, Banterle N, Koehler C, VanDellinger V, Plass T, Neal AP, Lempke EA. 2012. Click strategies for single-molecule protein fluorescence. Journal of the American Chemical Society 134:5187–5195. DOI: https://doi.org/10.1021/ja210587q, PMID: 22356317
Milles S, Mercadante D, Aramburu IV, Jensen MR, Banterle N, Koehler C, Tyagi S, Clarke J, Shammas SL, Blackledge M, Gräter F, Lempke EA. 2015. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 163:734–745. DOI: https://doi.org/10.1016/j.cell.2015.09.047, PMID: 26456112
Möckel C, Kubiak J, Schilling O, Kühnemuth R, Della Corte D, Schröder GF, Willbold D, Strodel B, Seidel CAM, Neudecker P. 2019. Integrated NMR, fluorescence, and molecular dynamics benchmark study of protein mechanics and hydrodynamics. The Journal of Physical Chemistry B 123:1453–1480. DOI: https://doi.org/10.1021/acs.jpcb.8b08903, PMID: 30526515
Moffat K. 2001. Time-resolved biochemical crystallography: a mechanistic perspective. Chemical Reviews 101:1569–1582. DOI: https://doi.org/10.1021/cr0104343, PMID: 11709992
Moos M, Goodman AZ, Ferreon JC, Lee CW, Ferreon ACM, Deniz AA. 2018. Denaturant-specific effects on the structural energetics of a protein-denatured ensemble. European Biophysics Journal 47:89–94. DOI: https://doi.org/10.1007/s00249-017-1260-4, PMID: 29080139
Morse JC, Girodat D, Burnett BJ, Holm M, Altman RB, Sanbonmatsu KY, Wieden HJ, Blanchard SC. 2020. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. FEBS Letters 595:165–171. DOI: https://doi.org/10.1007/s00249-019-1428-9, PMID: 30262208
Müller JD, Lee KK. 2018. Probing structural variation and dynamics in the HIV-1 env fusion glycoprotein. Current HIV Research 16:5–12. DOI: https://doi.org/10.2174/1570162166666171222110205
Murakami K, Elmlund H, Kalsin M, Bushnell DA, Julicher F, Milla A, Elmlund D, Levi-Kalisman Y, Liu X, Gibbons BJ, Levitt M, Kornberg RD. 2013. Architecture of an RNA polymerase II transcription pre-initiation complex. Science 342:1238724. DOI: https://doi.org/10.1126/science.1238724, PMID: 24072820
Muschielok A, Andrекa J, Jawhari A, Brückner F, Cramer P, Michaelis J. 2008. A nano-positioning system for macromolecular structural analysis. *Nature Methods* 5:965–971. DOI: https://doi.org/10.1038/nmeth.1259, PMID: 18849988

Muschielok A, Michaelis J. 2011. Application of the nano-positioning system to the analysis of fluorescence resonance energy transfer networks. *The Journal of Physical Chemistry B* 115:11927–11937. DOI: https://doi.org/10.1021/jp2060377, PMID: 21888382

Na S, Paek E. 2020. Computational methods in mass spectrometry-based structural proteomics for studying protein structure, dynamics, and interactions. *Computational and Structural Biotechnology Journal* 18:1391–1402. DOI: https://doi.org/10.1016/j.csbj.2020.06.002, PMID: 32637038

Nagy J, Grohmann D, Cheung AC, Schulz S, Smollett K, Werner F, Michaelis J. 2015. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. *Nature Communications* 6:6161. DOI: https://doi.org/10.1038/ncomms7161, PMID: 25635909

Nagy P, Szabó Á, Váradi T, Kovács T, Batta G, Szőlősi J. 2016. rFRET: a comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments. *Cytometry Part A* 89:376–384. DOI: https://doi.org/10.1002/cyto.a.22828

Nagy J, Eilert T, Michaelis J. 2018. Precision and accuracy in smFRET based structural studies—A benchmark study of the Fast-Nano-Positioning system. *The Journal of Chemical Physics* 148:123308. DOI: https://doi.org/10.1063/1.5006477, PMID: 29604844

Nasir I, Onuchic PL, Labra SR, Deniz AA. 2019. Single-molecule fluorescence studies of intrinsically disordered proteins and liquid phase separation. *Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics* 1867:980–987. DOI: https://doi.org/10.1016/j.bbabap.2019.04.007, PMID: 31054969

Nasir I, Bentley EP, Deniz AA. 2020. Ratiometric Single-Molecule FRET measurements to probe conformational subpopulations of intrinsically disordered proteins. *Current Protocols in Chemical Biology* 12:e80. DOI: https://doi.org/10.1002/cpcp.80, PMID: 32159932

Nawrocki G, Karaboga A, Sugita Y, Feig M. 2019. Effect of protein-protein interactions and solvent viscosity on the rotational diffusion of proteins in crowded environments. *Physical Chemistry Chemical Physics* 21:876–883. DOI: https://doi.org/10.1039/C9CP06142D, PMID: 30560249

Nettels D, Gopich IV, Hoffmann A, Schuler B. 2007. Ultrafast dynamics of protein collapse from single-molecule photon statistics. *PNAS* 104:2655–2660. DOI: https://doi.org/10.1073/pnas.0611093104, PMID: 17301233

Nettels D, Hoffmann A, Schuler B. 2008. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds. *The Journal of Physical Chemistry B* 112:6137–6146. DOI: https://doi.org/10.1021/jp076971j, PMID: 18410159

Nettels D, Müller-Späh S, Küster F, Hofmann H, Haenni D, Ruegger S, Reymond L, Hoffmann A, Kubelka J, Heinz B, Gast K, Best RB, Schuler B. 2009. Single-molecule spectroscopy of the temperature-induced collapse of unfolded proteins. *PNAS* 106:20740–20745. DOI: https://doi.org/10.1073/pnas.0906621106, PMID: 19933333

Nettels D, Haenni D, Maillot S, Gueye M, Barth A, Hirschfeld V, Hübner CG, Léonard J, Schuler B. 2015. Excited-state annihilation reduces power dependence of single-molecule FRET experiments. *Physical Chemistry Chemical Physics* 17:32304–32315. DOI: https://doi.org/10.1039/C5CP05321H, PMID: 26584062

Nettels D, Schuler B. 2020. Fretica. *University of Zurich*. https://schuler.bioc.uzh.ch/programs/.

Neuhauser H, Gaiko N, Berger S, Schaffer J, Eggeling C, Tuma J, Verdier L, Seidel CA, Griesinger C, Volkmann A. 2007. Orientational and dynamical heterogeneity of rhodamine 6G terminaly attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy. *Journal of the American Chemical Society* 129:12746–12755. DOI: https://doi.org/10.1021/ja0722574, PMID: 17900110

Nickels PC, Wünsch B, Holzmeister P, Bae W, Kneer LM, Grohmann D, Tinnefeld P, Liedl T. 2016. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. *Science* 354:305–307. DOI: https://doi.org/10.1126/science.aah5974, PMID: 27846560

Nienhaus GU. 2006. Exploring protein structure and dynamics under denaturing conditions by single-molecule FRET analysis. *Macromolecular Bioscience* 6:907–922. DOI: https://doi.org/10.1002/mabi.200600158, PMID: 17099864

Nir E, Michalet X, Hamadani KM, Laurence TA, Neuhauser D, Kovchegov Y, Weiss S. 2006. Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. *The Journal of Physical Chemistry B* 110:22103–22124. DOI: https://doi.org/10.1021/jp063483n, PMID: 17078646

Oh E, Hong MY, Lee D, Nam SH, Yoon HC, Kim HS. 2005. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. *Journal of the American Chemical Society* 127:3270–3271. DOI: https://doi.org/10.1021/ja0433233, PMID: 15755131

Okamoto K, Hibino K, Sako Y. 2020. In-cell single-molecule FRET measurements reveal three conformational state changes in RAF protein. *Biochimica et Biophysica Acta (BBA) - General Subjects* 1864:129358. DOI: https://doi.org/10.1016/j.bbagen.2019.04.022, PMID: 31071411

Okumus B, Wilson TJ, Lilley DM, Ha T. 2004. Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. *Biophysical Journal* 87:2798–2806. DOI: https://doi.org/10.1529/biophysj.104.045971, PMID: 15454471

Olófsson L, Felekyan S, Doumazane E, Scholler P, Fabre L, Zwier JM, Rondard P, Seidel CA, Pin JP, Margeat E. 2014. Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. *Nature Communications* 5:5206. DOI: https://doi.org/10.1038/ncomms6206, PMID: 25323157
Orevi T, Lerner E, Rahamim G, Amir D, Haas E. 2014. Ensemble and single-molecule detected time-resolved FRET methods in studies of protein conformations and dynamics. Methods in Molecular Biology 1076:113–169. DOI: https://doi.org/10.1007/978-1-62703-649-8_7, PMID: 24108626

Ouellet J, Schorr S, Iqbal A, Wilson TJ, Lilley DM. 2011. Orientation of cyanine fluorophores terminally attached to DNA via long, flexible tethers. Biophysical Journal 101:1148–1154. DOI: https://doi.org/10.1016/j.bpj.2011.07.007, PMID: 21889452

Palmer AG. 2004. NMR characterization of the dynamics of biomacromolecules. Chemical Reviews 104:3623–3640. DOI: https://doi.org/10.1021/cr030413x, PMID: 15303831

Park SR, Hauer J, Zhang Y, Revyakin A, Coleman RA, Tjian R, Chu S, Pertsinidis A. 2020. A single-molecule surface-based platform to detect the assembly and function of the human RNA polymerase II transcription machinery. Structure 28:1337–1343. DOI: https://doi.org/10.1016/j.str.2020.07.009, PMID: 32763141

Pati AK, El Bakouri O, Jockusch S, Zhou Z, Altman RB, Fitzgerald GA, Asher WB, Terry DS, Borgia A, Holsey MD, Batchelder JE, Abeyswickrama C, Huddell B, Ruda F, Javitch JA, Ottosson H, Blanchard SC. 2020. Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. PNAS 117:24305–24315. DOI: https://doi.org/10.1073/pnas.2006517117, PMID: 32913060

Perisamy A, Wallrabe H, Chen Y, Barroso M. 2008. Chapter 22: quantitation of protein-protein interactions: confocal FRET microscopy. Methods in Cell Biology 89:569–598. DOI: https://doi.org/10.1016/S0091-679X(08)06022-5, PMID: 19118691

Peter MF, Gebhardt C, Mächtel R, Glaenzer J, Thomas GH, Cordes T, Hagelueken G. 2020. Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. bioRxiv. DOI: https://doi.org/10.1101/2020.11.23.394080

Peuilen TO, Opanasyuk O, Seidel CAM. 2017. Combining graphical and analytical methods with molecular simulations to analyze time-resolved FRET measurements of labeled macromolecules accurately. The Journal of Physical Chemistry B 121:8211–8241. DOI: https://doi.org/10.1021/acs.jpcb.7b02817, PMID: 28709377

Peuilen TO, Hengstenberg CS, Biel R, Dimura M, Lorenz C, Valeri A, Incè S, Vöpel T, Faragó B, Gohlke H, Klare JP, Stadler AM, Seidel CAM, Herrmann C. 2020. Integrative dynamic structural biology unveils conformers essential for the oligomerization of a large GTPase. arXiv. https://arxiv.org/abs/2004.04229.

Piffi D, Bier BA, Marian CM, Schaper K, Seidel CA. 2010. Diphenylhexatrienes as photoprotective agents for ultrasensitive fluorescence detection. The Journal of Physical Chemistry A 114:4099–4108. DOI: https://doi.org/10.1021/jp100903x, PMID: 20218613

Pieper CM, Enderlein J. 2011. Fluorescence correlation spectroscopy as a tool for measuring the rotational diffusion of macromolecules. Chemical Physics Letters 516:1–11. DOI: https://doi.org/10.1016/j.cplett.2011.06.091

Pirchi M, Ziv G, Riven I, Cohen SS, Zohar N, Barak Y, Haran G. 2011. Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein. Nature Communications 2:493. DOI: https://doi.org/10.1038/ncomms1504, PMID: 21998909

Pirchi M, Tsukanov R, Khamsi R, Tomov TE, Berger Y, Khara DC, Volkov H, Haran G, Nir E. 2016. Photon-by-photon hidden Markov model analysis for microsecond single-molecule FRET kinetics. The Journal of Physical Chemistry B 120:13065–13075. DOI: https://doi.org/10.1021/acs.jpcb.6b07515, PMID: 27977207

Ploczowietz A, Crawford R, Kapanidis AN. 2014. Characterization of organic fluorophores for in vivo FRET studies based on electrospotted molecules. Phys. Chem. Chem. Phys. 16:12688–12694. DOI: https://doi.org/10.1039/C4CP00995A, PMID: 24837080

Ploczowietz A, El-Sagheer AH, Brown T, Kapanidis AN. 2016. Stable end-sealed DNA as robust nano-rulers for in vivo single-molecule fluorescence. Chemical Science 7:4418–4422. DOI: https://doi.org/10.1039/C6SC00639F, PMID: 30155088

Ploczowietz A, Farrell I, Smilianszky C, Cooperman BS, Kapanidis AN. 2017. In vivo single-RNA tracking shows that most tRNA diffuses freely in live Bacteria. Nucleic Acids Research 45:926–937. DOI: https://doi.org/10.1093/nar/gkw787, PMID: 27625389

Ploetz E, Lerner E, Husada F, Roelfs M, Chung S, Hohlbein J, Weiss S, Cordes T. 2016. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers. Scientific Reports 6:33257. DOI: https://doi.org/10.1038/srep33257, PMID: 27641327

Popev KI, Makepeace KAT, Petrotchenko EV, Dokholyan NV, Borchers CH. 2019. Insight into the structure of the “Unstructured” Tau Protein. Structure 27:1710–1715. DOI: https://doi.org/10.1016/j.str.2019.09.003, PMID: 31628033

Preus S, Noer SL, Hildebrandt LL, Gudnason D, Birkedal V. 2015. ISMS: single-molecule FRET microscopy software. Nature Methods 12:593–594. DOI: https://doi.org/10.1038/nmeth.3435, PMID: 26125588

Preus S, Hildebrandt LL, Birkedal V. 2016. Optimal background estimators in single-molecule FRET microscopy. Biophysical Journal 111:1278–1286. DOI: https://doi.org/10.1016/j.bpj.2016.07.047, PMID: 27653486

Preuss S, Gudnason D, Birkedal V. 2020. ISMS: Single-molecule FRET microscopy software. Aarhus University. http://isms.au.dk

Quast RB, Fatemi F, Kranendonk M, Margeot E, Truan G. 2019. Accurate determination of human CPR conformational equilibrium by smFRET using dual orthogonal noncanonical amino acid labeling. ChemBioChem 20:659–666. DOI: https://doi.org/10.1002/cbic.201800607, PMID: 30427570

Quast RB, Margeot E. 2019. Studying GPCR conformational dynamics by single molecule fluorescence. Molecular and Cellular Endocrinology 493:110469. DOI: https://doi.org/10.1016/j.mce.2019.110469, PMID: 31163201
Rahamim G, Chemerovski-Glikman A, Rahimipour S, Amir D, Haas E. 2015. Resolution of two sub-populations of conformers and their individual dynamics by time resolved ensemble level FRET measurements. PLOS ONE 10: e0143732. DOI: https://doi.org/10.1371/journal.pone.0143732, PMID: 26699718

Ramanathan R, Muñoz V. 2015. A method for extracting the free energy surface and conformational dynamics of fast-folding proteins from single molecule photon trajectories. The Journal of Physical Chemistry B 119:7944–7956. DOI: https://doi.org/10.1021/acs.jpcb.5b03176, PMID: 25983351

Ramírez-Carrozo VR, Kerppola TK. 2001. Dynamics of Fos-Jun-NFAT1 complexes. PNAS 98:4893–4898. DOI: https://doi.org/10.1073/pnas.981095998, PMID: 11320240

Ranjit S, Gurunathan K, Levitus M. 2009. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET. The Journal of Physical Chemistry B 113:7861–7866. DOI: https://doi.org/10.1021/jp810842u, PMID: 19473039

Rasnl K, McKinney SA, Ha T. 2006. Nonblinking and long-lasting single-molecule fluorescence imaging. Nature Methods 3:891–893. DOI: https://doi.org/10.1038/nmeth934, PMID: 17013382

Ratzke C, Hellenkamp B, Hugel T. 2014. Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery. Nature Communications 5:4192. DOI: https://doi.org/10.1038/ncomms5192, PMID: 24947016

Ravera E, Salmon L, Fragai G, Parigi G, Al-Hashimi H, Luchinat C. 2014. Insights into domain-domain motions in proteins and RNA from solution NMR. Accounts of Chemical Research 47:3118–3126. DOI: https://doi.org/10.1021/ar5002316, PMID: 25148413

Ray S, Chauvier A, Walter NG. 2019. Kinetics coming into focus: single-molecule microscopy of riboswitch dynamics. RNA Biology 16:1077–1085. DOI: https://doi.org/10.1080/15476286.2018.1536594, PMID: 30328748

Remarz J, Sinner C, Nettels D, Stucki-Buchli B, Stockmar F, Panek PT, Jacob CR, Nienhaus GU, Schuler B, Schug A. 2018. Simulation of FRET dyes allows quantitative comparison against experimental data. The Journal of Chemical Physics 148:123321. DOI: https://doi.org/10.1063/1.5010434, PMID: 29604831

Reinkemeier CD, Girona GE, Lemke EA. 2019. Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes. Science 363:eaaw2644. DOI: https://doi.org/10.1126/science.aaw2644, PMID: 30923194

Rhoades E, Gussakovsky E, Hanar G. 2003. Watching proteins fold one molecule at a time. PNAS 100:3197–3202. DOI: https://doi.org/10.1073/pnas.2628068100, PMID: 12612345

Riback JA, Bowman MA, Zmyslowsky AM, Plaxco KW, Clark PL, Sonnich TR. 2019. Commonly used FRET fluorophores promote collapse of an otherwise disordered protein. PNAS 116:8889–8894. DOI: https://doi.org/10.1073/pnas.1813038116, PMID: 30992378

Rieger R, Kobitski A, Sielaff H, Nienhaus GU. 2011. Evidence of a folding intermediate in RNase H from single molecule FRET experiments. ChemPhysChem 12:627–633. DOI: https://doi.org/10.1002/cphc.201000693, PMID: 21344597

Rigler R., Widengren J, Kask P. 1993. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. European Biophysics Journal 22:169–175. DOI: https://doi.org/10.1007/BF00185777

Robb NC, Te Velthuis AJW, Fodor E, Kapanidis AN. 2019. Real-time analysis of single influenza virus replication complexes reveals large promoter-dependent differences in initiation dynamics. Nucleic Acids Research 47:6466–6477. DOI: https://doi.org/10.1093/nar/gkz313, PMID: 31032520

Rothwell PJ, Berger S, Kensch O, Felekyan S, Antonik M, Wöhr BM, Restle T, Goody RS, Seidel CA. 2003. Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes. PNAS 100:1655–1660. DOI: https://doi.org/10.1073/pnas.043003100, PMID: 12578980

Roy R, Hohng S, Ha T. 2008. A practical guide to single-molecule FRET. Nature Methods 5:507–516. DOI: https://doi.org/10.1038/nmeth.1208, PMID: 18511918

Sabanayagam CR, Eid JS, Meller A. 2004. High-throughput scanning confocal microscope for single molecule analysis. Applied Physics Letters 84:1216–1218. DOI: https://doi.org/10.1063/1.1646725

Sadouine M, Cerminara M, Kempf N, Gerrits N, Fitter J, Katranidis A. 2017. Selective double-labeling of cell-free synthesized proteins for more accurate smFRET studies. Analytical Chemistry 89:11278–11285. DOI: https://doi.org/10.1021/acs.analchem.7b01639, PMID: 29022338

Sakan JJ, Weninger KR. 2010. Detecting the conformation of individual proteins in live cells. Nature Methods 7:203–205. DOI: https://doi.org/10.1038/nmeth.1421

Salem C-B, Ploetz E, Lamb DC. 2019. Chapter 2 - Probing dynamics in single molecules. In: Johnson CK (Ed). Developments in Physical & Theoretical Chemistry, Spectroscopy and Dynamics of Single Molecules. Elsevier. p. 71–115. DOI: https://doi.org/10.1016/B978-0-12-816463-1.00002-X

Sali A, Berman HM, Schwede T, Trewhella J, Kleywegt G, Burley SK, Markley J, Nakamura H, Adams P, Bonvin AM, Chiu W, Peraro MD, Di Maio F, Ferrin TE, Grünwedel K, Gutmanas A, Henderson R, Hummer G, Iwasaki K, Hubbell W, Hellenkamp B, Hugel T. 2015. Outcome of the first wwPDB hybrid/Integrative methods task force workshop. Structure 23:1156–1167. DOI: https://doi.org/10.1016/j.str.2015.05.013, PMID: 26095030

Sanabria H, Rodnin D, Hemmen K, Peulen TO, Felekyan S, Fleissner MR, Dimura M, Koberling F, Kühnemuth R, Hubbell W, Gohlke H, Ha T. 2008. A practical guide to single-molecule FRET. Accounts of Chemical Research 41:148–156. DOI: https://doi.org/10.1021/ar7002316, PMID: 18534261

Sanborn ME, Connolly BK, Gurunathan K, Levitus M. 2007. Fluorescence properties and photophysics of the sulfoindocyanine Cy3 linked covalently to DNA. The Journal of Physical Chemistry B 111:11064–11074. DOI: https://doi.org/10.1021/jp072912u, PMID: 17718469
Sánchez-Rico C, Voith von Voithenberg L, Warner L, Lamb DC, Sattler M. 2017. Effects of fluorophore attachment on protein conformation and dynamics studied by spFRET and NMR spectroscopy. Chemistry - a European Journal 23:14267–14277. DOI: https://doi.org/10.1002/chem.201702423

Santoso Y, Joyce CM, Potapova O, Le Reste L, Hohlbein J, Torella JP, Grindley ND, Kapanidis AN. 2010a. Conformational transitions in DNA polymerase I revealed by single-molecule FRET. PNAS 107:715–720. DOI: https://doi.org/10.1073/pnas.0910990107, PMID: 20080740

Santoso Y, Torella JP, Kapanidis AN. 2010b. Characterizing single-molecule FRET dynamics with probability distribution analysis. ChemPhysChem 11:2209–2219. DOI: https://doi.org/10.1002/cphc.201000129, PMID: 20575136

Sasmal DK, Pulido LE, Kasal S, Huang J. 2016. Single-molecule fluorescence resonance energy transfer in molecular biology. Nanoscale 8:19928–19944. DOI: https://doi.org/10.1039/C6NR06794H, PMID: 27883140

Schafer FP, Zhang F-G, Jethwa J. 1982. Intramolecular TT-energy transfer in bifluorophoric laser dyes. Applied Physics B Photophysics and Laser Chemistry 28:37–41. DOI: https://doi.org/10.1007/BF00693890

Schafer J, Volkmer A, Eggelinc G, Subramaniam V, Striker G, Seidel CAM. 1999. Identification of single molecules in aqueous solution by time-resolved fluorescence anisotropy. The Journal of Physical Chemistry A 103:331–336. DOI: https://doi.org/10.1021/jp9833597

Schalch T, Duda S, Sargent DF, Richmond TJ. 2005. X-ray structure of a tetrancleosome and its implications for the chromatin fibre. Nature 436:138–141. DOI: https://doi.org/10.1038/nature03686, PMID: 16001076

Schepers B, Gohlke H. 2020. AMBER-DYES in AMBER: implementation of fluorophore and linker parameters into AmberTools. The Journal of Chemical Physics 152:221103. DOI: https://doi.org/10.1063/5.0007630, PMID: 32534525

Schirhagl R, Chang K, Loretz M, Degen CL. 2014. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annual Review of Physical Chemistry 65:83–105. DOI: https://doi.org/10.1146/annurev-physchem-040513-103659, PMID: 24274702

Schirra RT, Zhang P. 2014. Correlative fluorescence and electron microscopy. Current Protocols in Cytometry 10:1–10. DOI: https://doi.org/10.1002/0471142956.cy1236s70

Schlichting I, Almo SC, Rapp G, Wilson K, Petrats K, Lentfer A, Wittinghofer A, Kabsch W, Pai EF, Petsko GA. 1990. Time-resolved X-ray crystallographic study of the conformational change in H-ras p21 protein on GTP hydrolysis. Nature 345:309–315. DOI: https://doi.org/10.1038/345309a0, PMID: 2111463

Schlichting I, Chu K. 2000. Trapping intermediates in the crystal: ligand binding to myoglobin. Current Opinion in Structural Biology 10:744–752. DOI: https://doi.org/10.1016/S0959-440X(00)00158-5, PMID: 11114513

Schluesche P, Stelzer G, Peaia E, Lamb DC, Meierstrn M. 2007. NC2 mobilizes TBP on core promoter TATA boxes. Nature Structural & Molecular Biology 14:1196–1201. DOI: https://doi.org/10.1038/nsmb1328, PMID: 17794103

Schmidt S, Götze M, Hugel T. 2016. Single-molecule analysis beyond dwell times: demonstration and assessment in and out of equilibrium. Biophysical Journal 111:1375–1384. DOI: https://doi.org/10.1016/j.bpj.2016.08.023, PMID: 27705761

Schneider S, Paulsen H, Reiter KC, Hinze E, Schiene-Fischer C, Hübler CG. 2018. Single molecule FRET investigation of pressure-driven unfolding of cold shock protein A. The Journal of Chemical Physics 148:123336. DOI: https://doi.org/10.1063/1.5009662, PMID: 29604829

Schotte F, Lim M, Jackson TA, Smirnov AV, Soman J, Olson JS, Phillips GN, Wulff M, Anfinrud PA. 2003. Watching a protein as it functions with 150-ps time-resolved x-ray crystallography. Science 300:1944–1947. DOI: https://doi.org/10.1126/science.1087797, PMID: 12817148

Schröpfl W, Barth A, Hendrix J, Lamb DC. 2018. PAM: a framework for integrated analysis of imaging, single-molecule, and ensemble fluorescence data. Biophysical Journal 114:1518–1528. DOI: https://doi.org/10.1016/j.bpj.2018.02.035, PMID: 29642023

Schuler B, Lipman EA, Eaton WA. 2002. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:743–747. DOI: https://doi.org/10.1038/345309a0, PMID: 12384704

Schuler B, Lipman EA, Steinbach PJ, Kumke M, Eaton WA. 2005. Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence. PNAS 102:2754–2759. DOI: https://doi.org/10.1073/pnas.0408164102, PMID: 15699337

Schuler B, Soranno A, Hofmann H, Nettels D. 2016. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annual Review of Biophysics 45:207–231. DOI: https://doi.org/10.1146/annurev-biophys-062215-010915, PMID: 27145874

Schuler B. 2018. Perspective: chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET. The Journal of Chemical Physics 149:10991. DOI: https://doi.org/10.1063/1.5037683

Schuler B, Borgia A, Borgia MB, Heidarsson PO, Holmstrom ED, Nettels D, Sottini A. 2020. Binding without folding - the biomolecular function of disordered polyelectrolyte complexes. Current Opinion in Structural Biology 60:66–76. DOI: https://doi.org/10.1016/j.sbi.2019.12.006, PMID: 31874413

Schuler B, Hofmann H. 2013. Single-molecule spectroscopy of protein folding dynamics—expanding scope and timescales. Current Opinion in Structural Biology 23:36–47. DOI: https://doi.org/10.1016/j.sbi.2012.10.008, PMID: 23312353

Seefeldt B, Kasper R, Seidel T, Tinnefeld P, Dietz KJ, Heilemann M, Sauer M. 2008. Fluorescent proteins for single-molecule fluorescence applications. Journal of Biophotonics 1:74–82. DOI: https://doi.org/10.1002/jbio.200710024, PMID: 19343637
Segal M, Ingargiola A, Lerner E, Chung S, White JA, Streets A, Weiss S, Michalet X. 2019. High-throughput smFRET analysis of freely diffusing nucleic acid molecules and associated proteins. Methods 169:21–45. DOI: https://doi.org/10.1016/j.ymeth.2019.07.021, PMID: 31356875

Sekhar A, Kay LE. 2019. An NMR view of protein dynamics in health and disease. Annual Review of Biophysics 48:297–319. DOI: https://doi.org/10.1146/annurev-biophysics-051218-115647, PMID: 30901260

Selvin PR, Ha T. 2008. Single-Molecule Techniques. Cold Spring Harbor Laboratory Press.

Sgouralis I, Madaan S, Duttanta R, F, Kha R, Hariadi RF, Pressé S. 2019. A Bayesian nonparametric approach to single molecule Förster resonance energy transfer. The Journal of Physical Chemistry B 123:675–688. DOI: https://doi.org/10.1021/acs.jpcb.8b07952, PMID: 30571128

Sgouralis I, Pressé S. 2017. An introduction to infinite HMMs for single-molecule data analysis. Biophysical Journal 112:2021–2029. DOI: https://doi.org/10.1016/j.bpj.2017.04.027, PMID: 28538142

Shaner NC, Patterson GH, Davidson MW. 2007. Advances in fluorescent protein technology. Journal of Cell Science 120:4247–4260. DOI: https://doi.org/10.1242/jcs.055801, PMID: 18057027

Shaw RA, Johnston-Wood T, Ambrose B, Craggs TD, Hill JG. 2020. CHARMM-DYES: parameterization of fluorescent dyes for use with the CHARMM force field. Journal of Chemical Theory and Computation 16:7817–7824. DOI: https://doi.org/10.1021/acs.jctc.0c00721, PMID: 33226216

Sherman E, Haran G. 2006. Coil-globule transition in the denatured state of a small protein. PNAS 103:11539–11543. DOI: https://doi.org/10.1073/pnas.0601995103, PMID: 16857738

Shi L, De Paoli V, Rosenzweig N, Rosenzweig Z. 2006. Synthesis and application of quantum dots FRET-based protease sensors. Journal of the American Chemical Society 128:10378–10379. DOI: https://doi.org/10.1021/ja065396o, PMID: 16895398

Shoura MJ, Ranatunga R, Harris SA, Nielsen SO, Levene SD. 2014. Contribution of fluorophore dynamics and solvation to resonant energy transfer in protein-DNA complexes: a molecular-dynamics study. Biophysical Journal 107:700–710. DOI: https://doi.org/10.1016/j.bpj.2014.06.023, PMID: 25099809

Shuang B, Cooper D, Taylor JN, Kislely L, Chen J, Wang W, Li CB, Komatsuzaki T, Landes CF. 2014. Fast step function and state identification (StaSI) for discrete single-molecule data analysis. The Journal of Physical Chemistry Letters 5:3157–3161. DOI: https://doi.org/10.1021/jz501435p, PMID: 25247055

Sindbért S, Kalinín S, Nguyen H, Kienzl A, Clima L, Bannwarth W, Appel B, Müller S, Seidel CA. 2011. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. Journal of the American Chemical Society 133:2463–2480. DOI: https://doi.org/10.1021/ ja105725e, PMID: 21291253

Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CA. 2010. Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods in Enzymology 475:455–514. DOI: https://doi.org/10.1016/S0076-6879(10)05187-7, PMID: 20627168

Slavin M, Kalisman N. 2018. Structural analysis of protein complexes by cross-linking and mass spectrometry. In: Marsh J. A (Ed). Methods in Molecular Biology: Springer. p. 173–185. DOI: https://doi.org/10.1007/978-1-4939-7759-8_11

Soleimaninejad H, Chen MZ, Lou X, Smith TA, Hong Y. 2017. Measuring macromolecular crowding in cells through fluorescence anisotropy imaging with an AIE fluorogen. Chemical Communications 53:2874–2877. DOI: https://doi.org/10.1039/C6CC09916E

Somssich M, Ma Q, Weidtkamp-Peters S, Stahl Y, Felekyan S, Bleckmann A, Seidel CA, Simon R. 2015. Real-time dynamics of peptide ligand-dependent receptor complex formation in planta. Science Signalaling 8:ra76. DOI: https://doi.org/10.1126/scisignal.aab0598, PMID: 26243190

Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G. 2014. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376–380. DOI: https://doi.org/10.1126/science.1251413, PMID: 24763583

Soranno A, Buchi B, Nettels D, Cheng RR, Müller-Späth S, Pfeil SH, Hoffmann A, Lipman EA, Makarov DE, Schuler B. 2012. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy. PNAS 109:17800–17806. DOI: https://doi.org/10.1073/pnas.1117368109, PMID: 22492978

Soranno A, Koenig J, Borgia MB, Hofmann H, Zosel F, Nettels D, Schuler B. 2014. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. PNAS 111:4874–4879. DOI: https://doi.org/10.1073/pnas.1322611111, PMID: 24639500

Sottini A, Borgia A, Borgia MB, Bugge K, Nettels D, Chowdhury A, Heidarsson PO, Zosel F, Best RB, Kragelund BK, Schuler B. 2020. Polyelectrolyte interactions enable rapid association and dissociation in high-affinity disordered protein complexes. Nature Communications 11:5736. DOI: https://doi.org/10.1038/s41467-020-18859-x, PMID: 33184256

Spiegel JD, Fulle S, Kleinschmidt M, Gohike H, Marian CM. 2016. Failure of the IDA in FRET systems at close inter-dye distances is moderated by frequent low k² Values. The Journal of Physical Chemistry B 120:8845–8862. DOI: https://doi.org/10.1021/acs.jpcb.6b05754, PMID: 27490865

Squires AH, Moerner WE. 2017. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. PNAS 114:9779–9784. DOI: https://doi.org/10.1073/pnas.1705435114, PMID: 28847963

Steffen FD, Sigel RK, Börner R. 2016. An atomistic view on carbocyanine photophysics in the realm of RNA. Physical Chemistry Chemical Physics 18:29045–29055. DOI: https://doi.org/10.1039/C6CP04277E, PMID: 27783069
Steffen FD, Börner R, Freisinger E, Sigel RKO. 2019. Stick, flick, click: DNA-guided fluorescent labeling of long RNA for single-molecule FRET. CHIMIA International Journal for Chemistry 73:257–261. DOI: https://doi.org/10.2533/chima.2019.257, PMID: 30975253

Steffen FD, Kier M, Kowenko D, Cunha RA, Börner R, Sigel RKO. 2020. Metal ions and sugar puckering balance single-molecule kinetic heterogeneity in RNA and DNA tertiary contacts. Nature Communications 11:104. DOI: https://doi.org/10.1038/s41467-019-13683-4, PMID: 31913262

Stein IH, Steinhauser C, Tinnefeld P. 2011. Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. Journal of the American Chemical Society 133:4193–4195. DOI: https://doi.org/10.1021/ja105464, PMID: 21250689

Steiner M, Karunatilaka KS, Sigel RK, Rueda D. 2008. Single-molecule studies of group II intron ribozymes. PNAS 105:13853–13858. DOI: https://doi.org/10.1073/pnas.0804034105, PMID: 18772388

Steinmetz C, Bäuerlein C, Höbartner C. 2020. Supramolecular fluorescence resonance energy transfer in nucleobase-modified fluorogenic RNA aptamers. Angewandte Chemie International Edition 59:6760–6764. DOI: https://doi.org/10.1002/anie.201916707

Stella S, Mesa P, Thomsen J, Paul B, Alcón P, Jensen SB, Saligram B, Moses ME, Hatzakis NS, Montoya G. 2018. Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity. Cell 175:1856–1871. DOI: https://doi.org/10.1016/j.cell.2018.04.045, PMID: 30503205

Strickler SJ, Berg RA. 1962. Relationship between absorption intensity and fluorescence lifetime of molecules. The Journal of Chemical Physics 37:814–822. DOI: https://doi.org/10.1063/1.1733166

Stryer L, Haugland RP. 1967. Energy transfer: a spectroscopic ruler. PNAS 58:719–726. DOI: https://doi.org/10.1073/pnas.58.2.719, PMID: 5233469

Sturzenegger F, Zobel F, Holmstrom ED, Buholzer KJ, Makarov DE, Nettels D, Schuler B. 2018. Transition path times of coupled folding and binding reveal the formation of an encounter complex. Nature Communications 9:4708. DOI: https://doi.org/10.1038/s41467-018-07043-x, PMID: 30013694

Sugita Y, Feig M. 2020. All-atom molecular dynamics simulation of proteins in crowded environments. In-Cell NMR Spectroscopy 10:228–248. DOI: https://doi.org/10.1007/978-3-0348-0856-9_12

Sung Hl, Nesbitt DJ. 2020. Correction: high pressure single-molecule FRET studies of the lysine riboswitch: cationic and osmolytic effects on pressure induced denaturation. Physical Chemistry Chemical Physics 22:17008–17009. DOI: https://doi.org/10.1039/D0CP90155E, PMID: 32726381

Sustaršić M, Plochowitz A, Aigrain L, Yuzenkova Y, Zenkin N, Kapanidis A. 2014. Optimized delivery of fluorescently labeled proteins in live bacteria using electroporation. Histochemistry and Cell Biology 142:113–124. DOI: https://doi.org/10.1007/s00418-014-1213-2, PMID: 24696085

Sustaršić M, Kapanidis AN. 2015. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Current Opinion in Structural Biology 34:52–59. DOI: https://doi.org/10.1016/j.sbi.2015.07.001, PMID: 26295172

Swoboda M, Grieb MS, Hahn S, Schlierf M. 2014. Measuring two at the same time: combining magnetic tweezers with single-molecule FRET. In: Toseland C. P, Fili N (Eds). Exs. Basel. Springer. p. 253–276. DOI: https://doi.org/10.1007/978-3-0348-0856-9_12

Szalai AM, Siarry B, Lukin J, Giusti S, Unsain N, Cáceres A, Steiner F, Tinnefeld P, Refojo D, Jovin TM, Stefani FD. 2021. Super-resolution imaging of energy transfer by Intensity-Based STED-FRET. Nano Letters 21:2296–2303. DOI: https://doi.org/10.1021/acs.nanolett.1c00158, PMID: 33621102

Tagari M, Newman R, Chagoyen M, Carazo JM, Henrick K. 2002. New electron microscopy database and deposition system. Trends in Biochemical Sciences 27:589. DOI: https://doi.org/10.1016/S0968-0004(02)02176-X, PMID: 12417136

Tang C, Gong Z. 2020. Integrating non-NMR distance restraints to augment NMR depiction of protein structure and dynamics. Journal of Molecular Biology 432:2913–2929. DOI: https://doi.org/10.1016/j.jmb.2020.01.023, PMID: 32044345

Tardif C, Nadeau G, Labrecque S, Côté D, Lavoie-Cardinal F. 2019. Fluorescence lifetime imaging nanoscopy for measuring Förster resonance energy transfer in cellular nanodomains. Neurophotonics 6:1. DOI: https://doi.org/10.1117/1.NPh.6.1.015002

Targowski P, Ziętek B, Bączyński A. 1987. Luminescence quenching of rhodamines by cyclooctatetraene. Zeitschrift Für Naturforschung A 42:1009–1013. DOI: https://doi.org/10.1515/zna-1987-0914

Tassis K, Vietrov R, de Koning M, de Boer M, Gouridis G, Cordes T. 2020. Single-molecule studies of conformational states and dynamics in the ABC importer OpuA. FEBS Letters 12:14026. DOI: https://doi.org/10.1002/1873-3468.14026

Tellinghuisen J, Goodwin PM, Ambrose WP, Martin JC, Keller RA. 1994. Analysis of fluorescence lifetime data for single rhodamine molecules in flowing sample streams. Analytical Chemistry 66:64–72. DOI: https://doi.org/10.1021/ac00073a013

Terry DS, Kolster RA, Quick M, LeVine MV, Khelashvili G, Zhou Z, Weinstein H, Javitch JA, Blanchard SC. 2018. A partially-open inward-facing intermediate conformation of LeuT is associated with Na+ release and substrate transport. Nature Communications 9:230. DOI: https://doi.org/10.1038/s41467-017-02202-y, PMID: 29335402

Thomsen J, Stettjerding MB, Jensen SB, Stella S, Paul B, Male MG, Montoya G, Petersen TC, Hatzakis NS. 2020. DeepFRET, a software for rapid and automated single-molecule FRET data classification using deep learning. eLife 9:e60404. DOI: https://doi.org/10.7554/eLife.60404, PMID: 33138911

Tisler J, Reuter R, Lämmle A, Jelezko F, Balasubramanian G, Hemmer PR, Reinhard F, Wachtrup J. 2011. Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule. ACS Nano 5:7893–7898. DOI: https://doi.org/10.1021/nn201259, PMID: 21899301
Tomov TE, Tsukanov R, Masoud R, Liber M, Plavner N, Nir E. 2012. Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis. Biophysical Journal 102:1163–1173. DOI: https://doi.org/10.1016/j.bpj.2011.11.4025, PMID: 22404939

Torella JP, Holden SJ, Santosso Y, Hohibein J, Kapanidis AN. 2011. Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis. Biophysical Journal 100:1568–1577. DOI: https://doi.org/10.1016/j.bpj.2011.01.066, PMID: 21402040

Torres T, Levitus M. 2007. Measuring conformational dynamics: a new FCS-FRET approach. The Journal of Physical Chemistry B 111:7392–7400. DOI: https://doi.org/10.1021/jp070659s, PMID: 17547447

Tosatto I, Horrocks MH, Dear AJ, Knowles TP, Dalla Serra M, Cremades N, Dobson CM, Klenerman D. 2015. Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson's disease genetically related mutants. Scientific Reports 5:16696. DOI: https://doi.org/10.1038/srep16696, PMID: 26582456

Traeger JC, Schwartz DK. 2017. Surface-mediated DNA hybridization: effects of DNA conformation, surface chemistry, and electrostatics. Langmuir 33:12651–12659. DOI: https://doi.org/10.1021/acs.langmuir.7b02675, PMID: 29023127

Treutlein B, Muschielok A, Andrecka R, Jawhari A, Buchen C, Kostrewa D, Hög F, Cramer P, Michaelis J. 2012. Dynamic architecture of a minimal RNA polymerase II open promoter complex. Molecular Cell 46:136–146. DOI: https://doi.org/10.1016/j.molcel.2012.02.008, PMID: 22424775

Tsytlonok M, Sanabria H, Wang Y, Felekyan S, Hemmen K, Phillips AH, Yun MK, Waddell MB, Park CG, Varethyingam S, Iconaru L, White SW, Tompa P, Seidel CAM, Kriwacki R. 2019. Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation. Nature Communications 10:1676. DOI: https://doi.org/10.1038/s41467-019-09446-w, PMID: 30976009

Tsytlonok M, Hemmen K, Hamilton G, Kolimi N, Felekyan S, Seidel CAM, Tompa P, Sanabria H. 2020. Specific conformational dynamics and expansion underpin a multi-step mechanism for specific binding of p27 with Cdk2/Cyclin A. Journal of Molecular Biology 432:2998–3017. DOI: https://doi.org/10.1016/j.jmb.2020.02.010, PMID: 32088186

Tyagi S, VanDelinder V, Banterle N, Fuertes G, Milles S, Agez M, Lemke EA. 2014. Continuous throughput and long-term observation of single-molecule FRET without immobilization. Nature Methods 11:297–300. DOI: https://doi.org/10.1038/nmeth.2809, PMID: 24441935

Tyagi S, Lemke EA. 2015. Single-molecule FRET and crosslinking studies in structural biology enabled by noncanonical amino acids. Current Opinion in Structural Biology 32:66–73. DOI: https://doi.org/10.1016/j.sbi.2015.02.009, PMID: 25757192

Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL. 2008. BioMagResBank. Nucleic Acids Research 36:D402–D408. DOI: https://doi.org/10.1093/nar/gkn957, PMID: 17984079

Ulrich EL, Baskaran K, Dashi H, Ioannidis YE, Livny M, Romero PR, Maziuk D, Wedell JR, Yao H, Eghbalnia HR, Hoch JC, Markley JL. 2019. NMR-STAR: comprehensive ontology for representing, archiving and exchanging data from nuclear magnetic resonance spectroscopic experiments. Journal of Biomolecular NMR 73:5–9. DOI: https://doi.org/10.1007/s10858-018-0220-3, PMID: 30580387

Uphoff S, Holden SJ, Le Reste L, Periz J, van de Linde S, Heilermann M, Kapanidis AN. 2010. Monitoring multiple distances within a single molecule using switchable FRET. Nature Methods 7:831–836. DOI: https://doi.org/10.1038/nmeth.1502, PMID: 20818380

Uphoff S, Gryte K, Evans G, Kapanidis AN. 2011. Improved temporal resolution and linked hidden markov modeling for switchable single-molecule FRET. ChemPhysChem 12:571–579. DOI: https://doi.org/10.1002/cphc.201000834, PMID: 21280168

Vallat B, Webb B, Westbrook JD, Sali A, Berman HM. 2018. Development of a prototype system for archiving integrative/hybrid structure models of biological macromolecules. Structure 26:894–904. DOI: https://doi.org/10.1016/j.str.2018.03.011, PMID: 29657133

Vallat B, Hanke CA, Lawson CL, Westbrook JD, Berman HM, Seidel CAM. 2020. mmCIF-based extension dictionary for structural models derived from Fluorescence / FRET experiments. GitHub. https://github.com/ihwg/FLR-dictionary

dan de Meent JW, Bronson JE, Wiggins CH, Gonzalez RL. 2014. Empirical bayes methods enable advanced population-level analyses of single-molecule FRET experiments. Biophysical Journal 106:1327–1337. DOI: https://doi.org/10.1016/j.bpj.2013.12.055, PMID: 24655508

dav de Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Livny M, Romero PR, Maziuk D, Wedell JR, Yao H, Eghbalnia HR, Hoch JC, Markley JL. 2019. NMR-STAR: comprehensive ontology for representing, archiving and exchanging data from nuclear magnetic resonance spectroscopic experiments. Chemical Reviews 114:6589–6631. DOI: https://doi.org/10.1021/acs.chemrev.9b00428, PMID: 24773235

dav de Meer BW. 2002. Kappa-squared: from nuisance to new sense. Reviews in Molecular Biotechnology 82:181–196. DOI: https://doi.org/10.1016/S1389-0352(01)00037-X

dav de Velder JH, Ploetz E, Hiermaier M, Oelerich J, de Vries JW, Roelfs G, Cordes T. 2013. Mechanism of intramolecular photostabilization in self-healing cyanine fluorophores. ChemPhysChem 14:4084–4093. DOI: https://doi.org/10.1002/cphc.201300785, PMID: 24302532

dav de Velder JHM, Oelerich J, Huang J, Smit JH, Aminian Jaz A, Galiani S, Kolmakov K, Gouridis G, Eggeling C, Herrmann A, Roelfs G, Cordes T. 2016. A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization. Nature Communications 7:10144. DOI: https://doi.org/10.1038/ncomms10144
Vandenberk N, Barth A, Borrenberghs D, Hofkens J, Hendrix J. 2018. Evaluation of Blue and Far-Red Dye Pairs in Single-Molecule Förster Resonance Energy Transfer Experiments. *The Journal of Physical Chemistry B* **122**:4249–4266. DOI: https://doi.org/10.1021/acs.jpcb.8b00108

Verkade P, Collinson L. 2019. *Correlative imaging*. Wiley. DOI: https://doi.org/10.1002/9781119086420

Viegas A, Dollinger P, Verma N, Kubiak J, Viennet T, Seidel CAM, Goßl H, Etschkorn M, Kovic F, Jaeger K-E. 2020. Structural and dynamic insights revealing how lipase binding domain MD1 of *Pseudomonas aeruginosa* 2-acyl-transferase affects its ribose translocation. *Scientific Reports* **10**:3578. DOI: https://doi.org/10.1038/s41598-020-60093-4

Voelz VA, Jäger M, Yao S, Chen Y, Zhu L, Waldauer SA, Bowman GR, Friedrichs M, Bakajin O, Lipidus LJ, Weiss S, Pande VS. 2012. Slow unfolded-state structuring in Acyl-CoA binding protein folding revealed by simulation and experiment. *Journal of the American Chemical Society* **134**:12557–12577. DOI: https://doi.org/10.1021/ja302528z, PMID: 22747188

Vogelsang J, Kasper R, Steinhauser C, Person B, Heilemann M, Sauer M, Tinnefeld P. 2008. A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. *Angewandte Chemie International Edition* **47**:5465–5469. DOI: https://doi.org/10.1002/anie.200801518

Voith von Voithenberg L, Sánchez-Rico C, Kang HS, Madl T, Zanier K, Barth A, Warner LR, Sattler M, Lamb DC. 2016. Recognition of the 3' splice site RNA by the U2AF heterodimer involves a dynamic population shift. *PNAS* **113**:E7169–E7175. DOI: https://doi.org/10.1073/pnas.1605873113, PMID: 27799351

Volkov IL, Lindén M, Aguirre Rivera J, leong KW, Metelev M, Elf J, Johansson M. 2018. tRNA tracking for direct measurements of protein synthesis kinetics in live cells. *Nature Chemical Biology* **14**:618–626. DOI: https://doi.org/10.1038/s41589-018-0063-y

Völkel T, Hengstenberg CS, Peulun TO, Ajay Y, Seidel CA, Herrmann C, Klare JP. 2014. Triphosphatase induced dimerization of human guanylate binding protein 1 involves association of the C-terminal helices: a joint double electron-electron resonance and FRET study. *Biochemistry* **53**:4590–4600. DOI: https://doi.org/10.1021/bi500524u

Vušurović N, Altman RB, Terry DS, Micura R, Blanchard SC. 2017. Pseudoknot formation seeds the triwobble ribosome cleavage reaction coordinate. *Journal of the American Chemical Society* **139**:8186–8193. DOI: https://doi.org/10.1021/jacs.7b01549

Wahl M, Rahn H-J, Röhlcicke T, Kell G, Nettels D, Hillger F, Schiller B, Erdmann R. 2008. Scalable time-correlated photon counting system with multiple independent input channels. *Review of Scientific Instruments* **79**:123131. DOI: https://doi.org/10.1063/1.3055912

Wang L, Pulk A, Wasserman MR, Feldman MB, Altman RB, Cate JHD, Blanchard SC. 2012. Allosteric control of the ribosome by small-molecule antibiotics. *Nature Structural & Molecular Biology* **19**:957–963. DOI: https://doi.org/10.1038/nsmb.2360

Wang Y, Liu Y, DeBerg HA, Nomura T, Hoffman MT, Rohde PR, Schulten K, Martinac B, Selvin PR. 2014. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel. eLife **3**:e01834. DOI: https://doi.org/10.7554/eLife.01834

Wang S, Vafabakhsh R, Borschel WF, Ha T, Nichols CG. 2016. Structural dynamics of potassium-channel gating revealed by single-molecule FRET. *Nature Structural & Molecular Biology* **23**:31–36. DOI: https://doi.org/10.1038/s41589-016-00054-w

Wang Y, Lu HP. 2010. Bunching effect in single-molecule T4 lysozyme nonequilibrium conformational dynamics under enzymatic reactions. *The Journal of Physical Chemistry B* **114**:6669–6674. DOI: https://doi.org/10.1021/jp104506, PMID: 20369804

Wang W, Wang D. 2019. Extreme fuzziness: direct interactions between two IDPs. *Biomolecules* **9**:81. DOI: https://doi.org/10.3390/biom9030081

Wasserman MR, Alejo JL, Altman RB, Blanchard SC. 2016. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation. *Nature Structural & Molecular Biology* **23**:333–341. DOI: https://doi.org/10.1038/nsmb.3177

Watrob HM, Pan C-P, Bankley MD. 2003. Two-Step FRET as a Structural Tool. *Journal of the American Chemical Society* **125**:7336–7343. DOI: https://doi.org/10.1021/ja034564p

Webb B, Viswanath S, Bonomi M, Pellarin R, Greenberg CH, Saltzberg D, Sali A. 2018. Integrative structure modeling with the integrative modeling platform. *Protein Science* **27**:245–258. DOI: https://doi.org/10.1002/pro.3311, PMID: 28960548

Weidtkamp-Peters S, Felekyan S, Bleckmann A, Simon R, Becker W, Kühnemuth R, Seidel CA. 2009. Multiparameter fluorescence image spectroscopy to study molecular interactions. *Photochemical & Photobiological Sciences* **8**:470–480. DOI: https://doi.org/10.1039/b903245m, PMID: 19337660

Weiss S. 1999. Fluorescence spectroscopy of single biomolecules. *Science* **283**:1667–1683. DOI: https://doi.org/10.1126/science.283.5408.1676, PMID: 10073925

White SS, Li H, Marsh RJ, Piper JD, Leoničzek ND, Nicolaou N, Bain AJ, Ying L, Klenerman D. 2006. Characterization of a single molecule DNA switch in free solution. *Journal of the American Chemical Society* **128**:11432–11432. DOI: https://doi.org/10.1021/ja0614870, PMID: 16939265

Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic JN, Sanbonmatsu KY. 2010. Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways. *RNA* **16**:1196–1204. DOI: https://doi.org/10.1086/653410

Widengren J, Schweinberger E, Berger S, Seidel CAM. 2001. Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: Theory and Experimental Realizations. *The Journal of Physical Chemistry A* **105**:6851–6866. DOI: https://doi.org/10.1021/jp010301a
Widengren J, Kudryavtsev V, Antonik M, Berger S, Gerken M, Seidel CAM. 2006. Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. Analytical Chemistry 78:2039–2050. DOI: https://doi.org/10.1021/ac0522759, PMID: 16536444

Widengren J, Chmyrov A, Eggeling C, Löfdahl PA, Seidel CA. 2007. Strategies to improve photo-stabilities in ultrasensitive fluorescence spectroscopy. The Journal of Physical Chemistry A 111:429–440. DOI: https://doi.org/10.1021/jp0646325, PMID: 17228891

Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosses M, Dillo I, Dumon O, Edmunds M, Eulo CT, Finkers R, Gonzalez-Beltran A, et al. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3:160018. DOI: https://doi.org/10.1038/sdata.2016.18, PMID: 26978244

Wilson H, Wang Q. 2019. ABEL-FRET: tether-free single-molecule FRET with hydrodynamic profiling. bioRxiv. DOI: https://doi.org/10.1101/786897

Wozniak AK, Schröder GF, Grümhüller H, Seidel CAM, Oesterhelt F. 2008. Single-molecule FRET measures bends and kinks in DNA. PNAS 105:18337–18342. DOI: https://doi.org/10.1073/pnas.0800977105, PMID: 19020079

Wranne MS, Fuchtbauer AF, Dumat B, Boond M, El-Sagheer AH, Brown T, Gradén H, Gretli M, Wilhelmsen LM. 2017. Toward complete sequence flexibility of nucleic acid base analogue FRET. Journal of the American Chemical Society 139:9271–9280. DOI: https://doi.org/10.1021/jacs.7b04517, PMID: 28613885

Wright PE, Dyson HJ. 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews Molecular Cell Biology 16:18–29. DOI: https://doi.org/10.1038/nrm3920

Wu S, Wang D, Liu J, Feng Y, Weng J, Li Y, Gao X, Liu J, Wang W. 2017. The dynamic multisite interactions between two intrinsically disordered proteins. Angewandte Chemie International Edition 56:7515–7519. DOI: https://doi.org/10.1002/anie.201701883, PMID: 28493442

Wunderlich B, Nettels D, Benke S, Clark J, Weidner S, Hofmann H, Pfeil SH, Schuler B. 2013. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on time scales from milliseconds to minutes. Nature Protocols 8:1459–1474. DOI: https://doi.org/10.1038/nprot.2013.082

Yanez Orozco IS, Mindlin FA, Ma J, Wang B, Levesque B, Spencer M, Rezaei Adariani S, Hamilton G, Ding F, Bowen ME, Sanabria H. 2017. Identifying weak interdomain interactions that stabilize the supertertiary structure of the N-terminal tandem PDZ domains of PSD-95. Nature Communications 9:3724. DOI: https://doi.org/10.1038/s41467-018-05725-0, PMID: 29220500

Yim SW, Kim T, Laurence TA, Partono S, Kim D, Kim Y, Weiss S, Reitmair A. 2012. Four-Color Alternating-Laser excitation Single-Molecule fluorescence spectroscopy for Next-Generation biodetection assays. Clinical Chemistry 58:707–716. DOI: https://doi.org/10.1373/clinchem.2011.176958

Yoo J, Louis JM, Gopich IV, Chung HS. 2018. Three-color single-molecule FRET and fluorescence lifetime analysis of fast protein folding. The Journal of Physical Chemistry B 122:11702–11720. DOI: https://doi.org/10.1021/acs.jpcb.8b07768

Yoo J, Kim J-Y, Louis JM, Gopich IV, Chung HS. 2020. Fast three-color single-molecule FRET using statistical inference. Nature Communications 11:3336. DOI: https://doi.org/10.1038/s41467-020-17149-w

Young J, Westbrook J. 2019. Creating and maintaining a data archive for 3D structures of biological macromolecules. F1000Research 8:1111762. DOI: https://doi.org/10.7490/f1000research.1111762.1

Zarrabi N, Schluesche P, Meisterer M, Börsch M, Lamb DC. 2018. Analyzing the dynamics of single TBP-DNA-NC2 complexes using hidden Markov models. Biophysical Journal 115:2310–2326. DOI: https://doi.org/10.1016/bjp.2018.11.015, PMID: 30527334

Zelger-Paulus S, Hadzic M, Sigel RKO, Börner R. 2020. Encapsulation of fluorescently labeled RNAs into surfacetethered vesicles for single-molecule FRET studies in TIRF microscopy. In: Arluison V, Wien F (Eds). Methods in Molecular Biology. Springer. p. 1–16. DOI: https://doi.org/10.1007/978-1-0716-0278-2_1

Zhao R, Marshall M, Alemán EA, Lamichhane R, Feig A, Rueda D. 2010a. Laser-assisted single-molecule refolding (LASR). Biophysical Journal 99:1925–1931. DOI: https://doi.org/10.1016/j.bpj.2010.07.019, PMID: 20858438

Zhao Y, Terry D, Shi L, Weinstein H, Blanchard SC, Javitch JA. 2010b. Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465:188–193. DOI: https://doi.org/10.1038/nature09057

Zhao M, Steffen FD, Börner R, Schaffer MF, Sigel RKO, Freisinger E. 2018. Site-specific dual-color labeling of long RNAs for single-molecule spectroscopy. Nucleic Acids Research 46:e13. DOI: https://doi.org/10.1093/nar/gkx1100

Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC. 2014. Ultra-stable organic fluorophores for single-molecule research. Chem. Soc. Rev. 43:1044–1056. DOI: https://doi.org/10.1039/C3CS60237K

Zhuang X, Bartley LE, Babcock HP, Russell R, Ha T, Herschlag D, Chu S. 2000. A single-molecule study of RNA catalysis and folding. Science 288:2048–2051. DOI: https://doi.org/10.1126/science.288.5473.2048, PMID: 10856219
Zosel F, Soranno A, Buholzer KJ, Nettels D, Schuler B. 2020b. Depletion interactions modulate the binding between disordered proteins in crowded environments. PNAS 117:13480–13489. DOI: https://doi.org/10.1073/pnas.1921617117
Appendix 1

Simulation software

- **simFCS** (https://www.lfd.uci.edu/globals/) was developed for simulating various modalities in fluorescence, beginning with FCS. Using two channels, the simulation of burst analysis smFRET data can be performed. The concentration, diffusion coefficient and molecular brightness in different channels and dynamics between them can be adjusted.

- **PyBroMo** (https://github.com/tritemio/PyBroMo) is a Python-based software package for simulating free-diffusion single-molecule fluorescence detection, including differences in translational diffusion coefficients, in concentrations, or in dye brightnesses and exchange dynamics between conformational states (currently between two states). This approach has been employed in a few recent works (Ingargiola et al., 2017; Lerner et al., 2018b; Hagai and Lerner, 2019).

- **PAM software package** (https://www.cup.uni-muenchen.de/pc/lamb/software/pam.html). The PAM software package is a MATLAB-based software that can simulate smFRET experiments of freely diffusing or immobilized molecules, including fluorescence lifetime and anisotropy as well as exchange dynamics between multiple conformational states (up to 8) Szalai et al., 2021 Schrimpf et al., 2018.

- The Burbulator software within the MFD program package, programed in LabVIEW (Dimura et al., 2016; Felekyan et al., 2012; Kalinin et al., 2010b) (https://www.mpc.hhu.de/software/3-software-package-for-mfd-fcs-and-mfis), can simulate smFRET experiments (with and without diffusion) combined fluorescence lifetime and anisotropy as well as exchange dynamics between multiple conformational states (up to 8). These tools have been applied to benchmark novel quantitative analysis methods to obtain structural and kinetic information.

- **Fretica** (https://schuler.bioc.uzh.ch/programs/) enables the simulation of single-molecule multichannel-detection of immobilized molecules and mixtures of freely diffusing species, including a dynamic exchange between an arbitrary number of conformational states (König et al., 2015; Zosel et al., 2018).

- The MATLAB-based MASH-FRET software package (Börner et al., 2018) (https://rna-fretools.github.io/MASH-FRET/) has been applied to evaluate transition detection and state identification algorithms used in particular for time-binned smFRET trajectories (Hadzic et al., 2018) as well as for spot detection in single-molecule videos (SMV).

- The python-based software DeepFRET (Thomsen et al., 2020) comes with a trace simulator capable of simulating traces with 17 adjustable features that include the number of FRET states, their values, noise level, transition probability and more (https://github.com/hatzakislab/DeepFRET-GUI).