Approach to the Composing the Practicum on Safety Systems

O V Plitsyna and T N Rogova
Safety Management in the Technosphere, Russian University of Transport, Obraztsova st., 9, build. 9, Moscow, 127994, Russia

E-mail: plitsa@yandex.ru

Abstract. The practicum creates conditions for the controlled formation of important competences. Generalized practical lessons for master's programs are promising. This paper proposes practicum concept in which the interest in abilities of certain safety means stimulates attention to the terms that cause difficulties. Questioning the master's degree students in «Technosphere safety» revealed sustained interest in effective means of acoustic safety as well as difficulties with the terminology of fire safety. Prepared generalized practical lesson on acoustic safety contains the following: fire danger indicators introduced into reference data; automated calculations of sound insulation; developed assessment procedure. Results of the generalized practical lesson in the control group have confirmed both overcoming difficulties with the terminology of fire safety and increasing the degree of readiness for the expertise of projects

1. Introduction
Practicums create conditions for the controlled formation of important students’ competences [1-4].

Assessment of competencies formed by means of discipline «Safety» for bachelor programs confirmed the wide opportunities of generalized practical lessons [5-7]. Obtained data indicated that generalized practical lessons are also justified for master programs. Questioning the master's degree students in «Technosphere safety» showed:
• Materials to ensure acoustic safety are stable interest.
• The terminology of fire safety is the difficulty.

The noted results allow assuming that difficulty could be overcome if during the practical lesson on the discipline «Calculation and design of safety systems» to take into consideration the fire hazard class of the considered materials, as well as fire hazard class and fire resistance limit of the projecting constructions. In addition, there would be conditions for forming the competence's component «readiness».

The purpose of the paper is improving the practicum on safety systems due to the generalized practical lesson.

The problems were solved:
• Complementing the acoustic safety reference data.
• Automating the calculations.
• Developing the assessment procedure.
• Realizing the generalized practical lesson in the control group.
2. Composing the generalized practical lesson

2.1. Complementing the acoustic safety reference data

Information about structures and materials [8-11] was introduced into acoustic safety reference data (tables 1, 2).

Table 1. Options of walls with plates in a distance
Wall
material
Ceramsite concrete
Foam concrete

Table 2. Options of frame-sheath partitions
Type of partition
C111
C112

Fire hazard classes and fire resistance limits correspond with normalized [12, 13] values.
2.2. Automating the calculations
Calculations were automated by Excel spreadsheets. They give the following acoustic characteristics in the most acceptable form:

- Sound insulation of plate on distance (table 3).
- Sound insulation of single-layer wall (table 4).
- Sound insulation of single-layer wall with the plate on distance (table 5).
- Sound insulation of the multi-layer wall.
- Sound insulation index (tables 4, 5).

Table 3. Option of calculating the sound insulation of plate on distance

Parameter	Value	Values at geometric mean frequencies
		100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150
t (m)	0.04	
E (Pa)	19000	
k (Pa/m)	4750000	
d (kg/m³)	1100	
h (m)	0.01	
m (kg/m²)	7.15	
f₀ (Hz)	129.72	
3f₀ (Hz)	389.17	
add₁ f>f₀	0 0.43 0.18 0.07 0.03 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0 0.43 0.18 0.07 0.03 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cₐ (m/s²)	340	
cₚ (m/s²)	2500	
f₀́̀ BOUN (Hz)	3952.14	
l (m)	6.00	
sₗ	0.01	
n	6	
add₂	0.06	0 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
add₃ f₀ 3f₀	0.06	0 0.49 0.24 0.13 0.09 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
add₂ f>3f₀	0.06	0 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Sound insulation R_ADD (dB)	0 0 3.0 6.5 9.0 10.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	
Table 4. Option of calculating the sound insulation of the wall

Parameter	Value	Values at geometric mean frequencies
t (mm)	100	100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150
f_B (Hz)	315	
d (kg/m³)	1300	
m (kg/m²)	130	
K	1.2	
m_EQ	156	
R_B (dB)	32	
R₁ (dB)	32	32 32 32 32 32 32 34 36 38 40 42 44 46 48 50 52
Sound insulation index (dB)	43	43

Table 5. Option of calculating the sound insulation of the wall with the plate on distance

Parameter	Value	Values at geometric mean frequencies
R₁ (dB)	32	32 32 32 32 32 32 32 34 36 38 40 42 44 46 48 50 52
R_ADD (dB)	0	0 0 3.0 6.5 9.0 10.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
R (dB)	32	32 32 35 38.5 41 42.5 46.5 48.5 50.5 52.5 54.5 56.5 58.5 60.5 6.5 64.5
Estimative curve	33 36 39 42 45 48 51 52 53 54 55 56 56 56 56 56 56	
Deviations down	34.5	1 4 4 3.5 4 5.5 4.5 3.5 2.5 1.5 0.5 0 0 0 0 0
Shifting the estimative curve	-1 32 35 38 41 44 47 50 51 52 53 54 55 55 55 55 55 55	
Deviations down	23	0 3 3 2.5 3 4.5 2.5 2.5 1.5 0.5 0 0 0 0 0 0
Sound insulation index (dB)	51	51
Sound insulation index is determined to compare with the normalized [14-17] value.

2.3. Developing the assessment procedure

Fuzzy Logic Toolbox was used for assessment procedures (figure 1).

The system has two inputs, one output, three rules «if ... then», three values for the centers of the membership functions of the inputs and output.

Assessment of the manifestation of the indicator:

- 0 points if the indicator is absent.
- 5 points, if the manifestation of the indicator is unstable.
- 10 points if the indicator is stable.

Degree of «readiness» competence’s component formation:

- Low if there is no manifestation of any indicator.
- Average if the manifestation of the indicator of acoustic safety is unstable.
- High if fire safety indicator is stably manifested.

![Figure 1. Option of assessment procedure](image)

Self-assessment on acoustic and fire safety indicators is sufficient to fulfil a fuzzy expert system.

2.4. Realizing the generalized practical lesson in the control group

At the practical lesson control group master students worked on ensuring the acoustic comfort in the reconstructed room:

- The required index of sound insulation of walls and partitions was determined.
- The effectiveness of various sound insulation means was considered taking into account the permissible fire risk.
- Optimal design of the walls or partitions was calculated.
- Readiness to coordinate decisions and interact with other security experts was assessed in dynamics.
The following results have been obtained:

- Calculations and self-assessment automation ensure the sufficiency of study time.
- Interest in the characterization of new acoustic safety means stimulates attention to fire safety indicators.
- Proposed design solutions show increasing the readiness to coordinate design and interact with other safety professionals.

Thus, the suppositions of the appropriateness to clarify the practical lesson content on acoustic safety systems have been confirmed.

3. Conclusion

It is recommended to introduce into practicum on safety systems tasks that combine consideration of the fire hazard of materials and structures with the following calculations:

- Sound insulation of single-layer wall.
- Sound insulation of plate on distance.
- Sound insulation of single-layer wall with the plate on distance.
- Sound insulation of the multi-layer wall.
- Sound insulation index.

References

[1] Plutenko A D, Leyfa A V, Kozyr A V and Haletskaya T V 2018 European Journal of Contemporary Education 7(2) 360–371
[2] Abramova I V, Shilova Z V, Varankina V I and Rubanova I V 2019 European Journal of Contemporary Education 8(1) 187–200
[3] Pastushkova M A, Savateeva O V, Trotsenko A A and Savateev D A 2019 European Journal of Contemporary Education 8(2) 328–337
[4] Gorbunova T N 2017 European Journal of Contemporary Education 6(2) 254–263
[5] Lapteva M D and Pavlova A O 2018 The Humanities and Education 9(1) 67–75
[6] Golovanova I I, Telegina N V and Donetskaya O I 2019 Education and Self Development 14(1) 57–67
[7] Glinchikov D Y and Plitsyna O V 2019 Proc. Int. Conf. on Preventin Rescue Aid vol 16 (Khimki: ACP EMERCOM of Russia) pp 33–6
[8] Hummel H U 2014 Proc. Int. Conf. on Acoustics in architecture vol 1 (Moscow: RIA ARD) pp 4–6
[9] Rutling E V and Gurova E V 2017 Bulletin of Volgograd university of architecture and civil engineering 47(66) 43–50
[10] Shchelokov Yu A 2015 Noise Theory and Practice 1(1) 70–6
[11] Shchelokov Yu A 2016 Noise Theory and Practice 2(1) 8–16
[12] SP 2.13130.2012 Systems of fire protection. Fire-resistance security of protecting units
[13] ISO 717-1:2013 Acoustics – Rating of sound insulation in buildings and of building elements
[14] SP 51.13330.2011 Sound protection
[15] ISO 834-13:2019 Fire-resistance tests – Elements of building construction
[16] SP 23.103.2003 Projection of sound insulation of separating constructions in domestic and public buildings
[17] SP 254.1325800.2016 Buildings and territories. Rules for designing of industrial sound protection