Identifying Relations for open Information Extraction

Anthony Fader
Stephen Soderland
Oren Etzioni

Presented by:
Sindhura Tokala
Refresher

- Sentence: "Hampstead is a suburb of London"
- (arg1, relation, arg2) = (Hampstead, is a suburb of, London)
OPEN Information Extraction

- Does not require pre-specified vocabulary
Why do we need open IE?

- Traditional closed IE systems: learn an extractor for each target relation from labeled training examples.

- Drawbacks:
 - does not scale
 - cannot be used where target relations cannot be used in advance
How does Open IE address these drawbacks?

- automatically identifies "relation phrases"
- this enables the extraction of arbitrary relations
- no need pre-specify vocabulary!
Contributions

- Identified problems with existing Open IE systems.
- Established constraints on relation phrase extractions
- ReVerb Open IE system.
Existing Open IE systems:

- TextRunner
- WOE
Problems with existing Open IE systems:

- Incoherent extractions
- Uninformative extractions
Incoherent extractions:

- Relation phrase has no meaningful interpretation

Sentence	Incoherent Relation
The guide *contains* dead links and *omits* sites.	contains omits
The Mark 14 *was central* to the *torpedo* scandal of the fleet.	was central torpedo
They *recalled* that Nungesser *began* his career as a precinct leader.	recalled began
Uninformative Extractions

- Omit critical information.

is	is an album by, is the author of, is a city in
has	has a population of, has a Ph.D. in, has a cameo in
made	made a deal with, made a promise to
took	took place in, took control over, took advantage of
gave	gave birth to, gave a talk at, gave new meaning to
got	got tickets to, got a deal on, got funding from
Traditional Open IE systems:

- Three step method to extract binary relations of the form (arg1, relation phrase, arg2).
- Label: Automatically label using heuristics or distant supervision
- Learn: Extractor is learned using a graphical model
- Extract:
 1. extracts a pair of arguments
 2. labels each word between the arguments as part of the relation or not.
Problems with this approach:

- Needs large amount of training data.
- Hueristic labelling leads to noisy data.
- Extraction step is sequential.
- Extractor cannot backtrack.
Example

- Input sentence: "Faust made a deal with the devil"
- Possibility 1:
 - (Argument 1, Relation, Argument 2) = (Faust, made, a deal)
- Possibility 2: [More desirable]
 - (Argument 1, Relation, Argument 2) = (Faust, made a deal with, the devil)
Paper Contributions:

- Impose constraints on Relation Phrases to avoid Incoherent and Uniformative extractions.
- Syntactic Constraint
- Lexical constraint
Syntactic Constraint:

- Every multi-word relation phrase must:
 - Begin with a verb
 - End with a preposition
 - Be a contiguous sequence of words
 - Occur between its two arguments
Syntactic Constraint:

\[
V \mid VP \mid VW^*P
\]

\[
V = \text{verb particle? adv?}
\]

\[
W = (\text{noun} \mid \text{adj} \mid \text{adv} \mid \text{pron} \mid \text{det})
\]

\[
P = (\text{prep} \mid \text{particle} \mid \text{inf. marker})
\]
Lexical constraint

"The Obama administration is offering only modest greenhouse gas reduction targets at the conference"

Syntactic Constraint will match:
"is offering only modest greenhouse gas reduction targets at"
Lexical Constraint:

- Avoids overspecification.
- Imposes a minimal number of distinct argument pairs.
Limitations:

- How much recall is lost due to the constraints?

Binary Verbal Relation Phrases	
85% Satisfy Constraints	
8% Non-Contiguous Phrase Structure	Coordination: X is produced and maintained by Y
	Multiple Args: X was founded in 1995 by Y
	Phrasal Verbs: X turned Y off
4% Relation Phrase Not Between Arguments	Intro. Phrases: Discovered by Y, X ...
	Relative Clauses: ...the Y that X discovered
3% Do Not Match POS Pattern	
	Interrupting Modifiers: X has a lot of faith in Y
	Infinitives: X to attack Y
ReVerb

- phrases are identified holistically
- filtered based on statistics
- "Relation first", instead of "Argument First"
Extraction Algorithm:

- Step 1: Identifies Relation Phrases
- Step 2: Finds pair of NP arguments for each relation
- Step 3: Assign confidence score using logistic regression
Extraction Algorithm:

- Input: POS-tagged and NP-chunked sentence
- Output: set of (x, y, z) tuples
Relation Extraction

For each verb v in s, find the longest sequence of words r_v such that:

- r_v starts at v
- r_v satisfies the syntactic constraint
- r_v satisfies the lexical constraint
- If any pair of matches are adjacent or overlap in s, merge them into a single match.
Argument Extraction

- For each relation phrase \(r \) identified, find the nearest noun phrase \(x \) to the left of \(r \) in \(s \) such that \(x \) is
- not a relative pronoun, WHO-adverb, or existential “there”
- Find the nearest noun phrase \(y \) to the right of \(r \) in \(s \).
Example

- Input: "Hudson was born in Hampstead, which is a suburb of London"
- Step 1:
 - "was", "born in", "is a suburb of" are identified
 - "was" and "born in" are merged
- Step 2:
 - (Hudson, Hampstead) and (Hampstead, London) are selected respectively
- Output:
 - e1: (Hudson, was born in, Hampstead)
 - e2: (Hampstead, is a suburb of, London)
Confidence Function

- Extraction algorithm has high recall, low precision.
- Trade recall for precision
- Logistic regression classifier to assign confidence score to each extraction
Experiments:

ReVerb versus:

- ReVerb \ lex: ReVerb without the lexical constraint

TextRunner:
- Uses a second order linear-chain CRF
- Trained on the Penn Treebank
- Same POS tagger and NP-chunker as ReVerb
TextRunner – R:
 - Similar to TextRunner
 - Trained on ReVerb extractions

WOE-pos: TextRunner with relations learned from Wikipedia

WOE-parse:
 - uses a dictionary of dependency path patterns
 - extracted from Wikipedia
Experiments
Experiments

Comparison of REVERB-Based Systems

Precision

Recall

\- ReVERB
\- ReVERB-\text{lex}
\- TextRunner-R
Experiments
Experiments
ReVerb Error analysis

ReVerb - Incorrect Extractions

Percentage	Type
65%	Correct relation phrase, incorrect arguments
16%	N-ary relation
8%	Non-contiguous relation phrase
2%	Imperative verb
2%	Overspecified relation phrase
7%	Other, including POS/chunking errors

ReVerb - Missed Extractions

Percentage	Type
52%	Could not identify correct arguments
23%	Relation filtered out by lexical constraint
17%	Identified a more specific relation
8%	POS/chunking error
ReVerb Evaluation at Scale

- ReVerb's performs better at all frequency thresholds.
- ReVerb's frequency 1 extractions :: TextRunner frequency 10 extractions.
- ReVerb returns with greater precision even when redundancy is taken into consideration.
Future work

- Uses Syntactic and Lexical constraints to improve learned CRF models
- Improved methods for argument extraction