A K-THEORETIC FULTON CLASS

RICHARD P. THOMAS

1. Summary

Fix a quasi-projective scheme M over the complex numbers, and pick a global embedding in a smooth ambient variety A. Let $I \subset O_A$ denote the ideal sheaf of M. We get the cone on the embedding $M \hookrightarrow A$,

$$C_M A := \text{Spec } \bigoplus_{i \geq 0} I^i / I^{i+1}.$$

Then Fulton’s total Chern class of M [Fu, Example 4.2.6] is defined to be

$$c_F(M) := c(T_A|_M) \cap s(C_M A) \in A_* (M),$$

where c is the total Chern class and s denotes the Segre class. The result is independent of the choice of embedding. When M is smooth, $c_F(M)$ is just the total Chern class $c(T_M) \cap [M] = \sum_{i \geq 0} c_i(M) \cap [M]$ of M.

We define a K-theoretic analogue. For notation see Section 2; in particular t denotes the class of the weight one irreducible representation of \mathbb{C}^*.

Definition/Theorem. Let \mathbb{C}^* act trivially on M, with weight 1 on $\Omega_A|_M$, and with weight i on I^i / I^{i+1}. The K-theoretic Fulton class

$$\Lambda_M := \Lambda^* \Omega_A|_M \otimes \left(\bigoplus_{i \geq 0} I^i / I^{i+1} \right) \in K_0(M)[t],$$

is independent of the smooth ambient space $A \supset M$ and is polynomial in t,

$$\Lambda_M = \sum_{i=0}^d (-1)^i \Lambda^i_M t^i \in K_0(M)[t],$$

where d is the embedding dimension of M. When M is smooth, $\Lambda^i_M = \Omega^i_M$.

In Proposition 3.3 we describe Λ_M in de Rham terms for M lci, but for more general M we have not seen these classes in the literature.

Suppose M has a perfect obstruction theory $E^* \rightarrow L_M$ [BF] of virtual dimension $\text{vd} := \text{rank}(E^*)$. Then we get a virtual cycle [BF] for which Siebert [Sie] gave the following formula

$$[M]^{\text{vir}} = [s((E^*)^\vee) \cap c_F(M)]_{\text{vd}} \in A_{\text{vd}}(M).$$

The K-theoretic analogue is the following.

Theorem. Given a perfect obstruction theory $E^* \rightarrow L_M$ the virtual structure sheaf can be calculated in terms of the K-theoretic Fulton class Λ_M as

$$\mathcal{O}^{\text{vir}}_M = \left[\frac{\Lambda_M}{\Lambda^* (E^*)} \right]_{t=1} = \left[\frac{\Lambda_M}{\Lambda^* L^{\text{vir}}_M} \right]_{t=1}.$$
Siebert’s formula (1.2) showed that \([M]^\text{vir}\) depends only on the scheme structure of \(M\) and the K-theory class of the virtual cotangent bundle \(\mathbb{L}_M^\text{vir} := E^\bullet\) (and not the specific map in the perfect obstruction theory). Similarly the above Theorem implies that \(\mathcal{O}_M^\text{vir}\) also depends only on \(M\) and \(E^\bullet\). The analogy we refer to is that — with some work — (1.2) follows from (1.3) by the virtual Riemann-Roch theorem of [CFK, FG].

To understand why \(\Lambda_M\) might be polynomial in \(t\), consider what happens in the case that \(M\) is a zero dimensional Artinian scheme. (The general case is a family version of this.) By [AM, Section 11] the Hilbert series of the graded \(\mathcal{O}_M\)-module \(\bigoplus_{i \geq 0} I^i/I^{i+1}\) is \(p(t)/(1 - t)^d\), where \(d = \dim A\) and \(p\) is polynomial in \(t\). But \(\Omega_A|_M \cong \mathcal{O}_M^{\oplus d} \otimes t\) so tensoring by \(\Lambda^\bullet \Omega_A|_M = (1 - t)^d \mathcal{O}_M\) gives the result.

Acknowledgements. I would like to thank Ben Antieau for suggesting Proposition 3.3.

2. K-theoretic analogue of Fulton’s Chern class

Throughout this paper we fix a quasi-projective scheme \(M\) over \(\mathbb{C}\), endow it with the trivial \(\mathbb{C}^*\) action, and work with the \(\mathbb{C}^*\)-equivariant K-theory of coherent sheaves on \(M\). In fact we use only the subgroup generated by coherent sheaves with \(\mathbb{C}^*\) actions with nonnegative weights, and its completion \(K^\mathbb{C}^*(M)_{\geq 0} \otimes \mathbb{Z}[t] = K_0(M)[[t]]\).

Here \(t\) is the class of the weight one \(\mathbb{C}^*\) irreducible representation. For \(E\) locally free we use \(\Lambda^\bullet E\) to refer to the K-theory class \(\sum_{i=0}^{\text{rank } E} (-1)^i \Lambda^i E\). When \(E\) has only strictly positive weights then \(\Lambda^\bullet E = 1/\text{Sym}^\bullet E\) in completed K-theory.

Remark 2.1. The results here commute with operations such as localisation with respect to a nontrivial \(\mathbb{C}^*\) action on \(M\) (as used in [F]), for instance) since any such \(\mathbb{C}^*\) action commutes with the trivial \(\mathbb{C}^*\) action used here.

Let \(\mathbb{C}^*\) act on \(\Omega_A|_M\) with weight 1 and on \(I^i/I^{i+1}\) with weight \(i\). Consider

\[
\Lambda_M := \Lambda^\bullet \Omega_A|_M \otimes \left(\bigoplus_{i \geq 0} I^i/I^{i+1}\right) \in K_0(M)[[t]].
\]

Theorem 2.3. This \(\Lambda_M\) is independent of the smooth ambient space \(A \supseteq M\) and is polynomial in \(t\), defining the K-theoretic Fulton classes

\[
\Lambda_M = \sum_{i=0}^d (-1)^i \Lambda^i_M t^i \in K_0(M)[[t]].
\]

Here \(d\) is the embedding dimension of \(M\). When \(M\) is smooth, \(\Lambda^i_M = \Omega^i_M\).

Proof. Fix two embeddings \(M \subset A_i, \ i = 1, 2\) with ideal sheaves \(I_i\) and cones \(C_i := C_M A_i\). We get the induced diagonal inclusion

\[
M \subset A_1 \times A_2
\]
with ideal \(I_{i_{12}} \) and cone \(C_{12} := C_M(A_1 \times A_2) \). This gives the exact sequence of cones [Fu, Example 4.2.6],

\[
(2.4) \quad 0 \rightarrow T_{A_2}|_M \rightarrow C_{12} \rightarrow C_1 \rightarrow 0.
\]

That is, \(I_{i_{12}}/I_{i_{12}}^{i+1} \) has an increasing filtration beginning with \(I_{i_{12}}/I_{i_{12}}^{i+1} \) and with graded pieces \(\text{Sym}^j \Omega_{A_2}|_M \otimes I_{1}^{-j}/I_{1}^{i-j+1} \). Therefore, in completed equivariant K-theory,

\[
\Lambda^\bullet \Omega_{A_1 \times A_2}|_M \otimes \left(\bigoplus_{i_{12} \geq 0} I_{i_{12}'}/I_{i_{12}}^{i-1} \right) \\
= \Lambda^\bullet \Omega_{A_1 \times A_2}|_M \otimes \left(\bigoplus_{i,j \geq 0} \text{Sym}^j \Omega_{A_2}|_M \otimes I_{1}^{-j}/I_{1}^{i-j+1} \right) \\
= \Lambda^\bullet \Omega_{A_1}|_M \otimes \Lambda^\bullet \Omega_{A_2}|_M \otimes \bigoplus_{i \geq 0} I_{i}/I_{1}^{i+1} \\
= \Lambda^\bullet \Omega_{A_1}|_M \otimes \bigoplus_{i_{12} \geq 0} I_{i_{12}}/I_{i_{12}}^{i+1}.
\]

This gives the independence from \(A \). We now show (2.2) is polynomial in \(t \) of degree \(\leq d := \dim A \). Taking \(A \) to have minimal dimension (the embedding dimension of \(M \) — the maximum of the dimensions of the Zariski tangent spaces at closed points of \(M \)) will complete the proof of the Theorem.

Writing (2.2) as \(\pi_* \pi^* \Lambda^\bullet \Omega_A|_M \), where \(\pi : C_M A \rightarrow M \) denotes the projection, the power series in \(t \) comes from the fact that \(\pi \) is not proper. So we only need show that \(\pi^* \Lambda^\bullet \Omega_A|_M \) is equivalent in \(K_{C}^\bullet (C_A M) \) to a class pushed forward from \(M \) with \(\mathbb{C}^* \) weights in \([0, d]\).

The basic idea of the proof is the following. Suppose we could pick a \(\mathbb{C}^* \)-invariant section of \(\pi^* T_A|_M \) which — on the complement \(C_M A \setminus M \) of \(M \) — has vanishing locus of dimension 0. By \(\mathbb{C}^* \) invariance, the vanishing locus is then just \(M \) (one which the section must vanish since \(T_A|_M \) has weight \(-1\)). Therefore \(\pi^* \Lambda^\bullet \Omega_A|_M \) becomes the Koszul resolution of a class which is zero on \(C_M A \setminus M \). This is the best way to understand the proof below, using only the \(i = 0 \) parts with no \(O_D \) terms in (2.5). In general, however, there only exist such sections with poles so we have to twist by the divisor \(D \) below, leading to all the \(i > 0 \) terms in (2.5).

So pick a line bundle \(L \gg 0 \) on \(M \) and \(D \in |L| \). We work with

\[
E := T_A|_M \otimes L
\]

since it has sections which we can use to cut down to lower dimensions. We give \(L \) the trivial \(\mathbb{C}^* \) action of weight 0 so that \(E \) has weight \(-1\). We have

\[
\Lambda^k \Omega_A|_M = \Lambda^k E^* \otimes L^k = \Lambda^k E^* \otimes (O - O_D)^{-k}.
\]
Using \otimes for the derived tensor product, in K-theory we deduce

\[
\Lambda^* \Omega_A |_M = \sum_{k=0}^{d} (-1)^k \Lambda^k E^* \otimes \sum_{i=0}^{d} \left(\frac{k+i-1}{i} \right) \mathcal{O}_D^{\otimes i}
\]

(2.5)

\[
= \sum_{i=0}^{d} \mathcal{O}_D^{\otimes i} \otimes \sum_{k=0}^{d} (-1)^k \Lambda^k E^* \otimes \text{Sym}^{k-1} \mathcal{O}^{i+1}.
\]

Here we have used $[\mathcal{O}_D^{\otimes i}] = 0$ for $i > d \geq \dim M$. For $L \gg 0$ basepoint free this follows from taking divisors $D_1, \ldots, D_{d+1} \in |L|$ with empty intersection.

More generally, fix any $i \geq 0$. Since L is basepoint free, we may pick generic divisors

\[
D^1, \ldots, D^i \in |L| \quad \text{with intersection} \quad Z_i := D^1 \cap \cdots \cap D^i \subset M
\]

with the following transversality property. On M, the locus where I/I^2 has rank r is of dimension $d-r$. We choose the divisors such that the intersection of Z_i with this locus has dimension $d - r - i$ (for each r), and such that the derived pull back π^* of the ith term of (2.5) is

\[
\sum_{k=0}^{d} (-1)^k \Lambda^k (\pi^* E^*) |_{\pi^* Z_i} \otimes \text{Sym}^{k-1} \mathcal{O}^{i+1}_{\pi^* Z_i}.
\]

(2.6)

So we are left with showing that (2.6) is equal, in equivariant K-theory, to a class pushed forward from $Z_i \subset \pi^* Z_i$ with \mathbb{C}^* weights in $[0, d]$.

To do this we use a variant of the Koszul resolution. (It is precisely the Koszul resolution for a section of E when $i = 0$.) Let p denote any of the projections down \mathbb{P}^i such as

\[
p: \mathbb{P}^i \times C_M A \rightarrow C_M A,
\]

or the same with $C_M A$ replaced by M, Z_i or $\pi^* Z_i$. Since E has weight -1, the \mathbb{C}^*-invariant (i.e. weight 0) sections of $p^* \pi^* E(1)$ are

\[
\Gamma_{M \times \mathbb{P}^i}(p^* E(1) \otimes I/I^2) \subset \Gamma_{M \times \mathbb{P}^i}(p^* E(1) \otimes \pi_* \mathcal{O}_{C_M A})
\]

\[
= \Gamma_{C_M A \times \mathbb{P}^i}(p^* \pi^* E(1)),
\]

i.e. those which are linear on the fibres of $\pi: C_M A \rightarrow M$.

For $L \gg 0$ we claim that on restriction to $Z_i \times \mathbb{P}^i$, the generic such section $p^* E^*(-1)|_{Z_i \times \mathbb{P}^i} \rightarrow p^* I/I^2|_{Z_i \times \mathbb{P}^i}$ is onto. We already saw that on $Z_i \times \mathbb{P}^i$ the locus where $p^* I/I^2$ has rank r is of dimension $(d - r - i) + i = d - r$. Therefore, after tensoring by the very ample line bundle $L(1)$, the sheaf $p^* I/I^2$ is surjected onto by $r + (d - r) = d$ generic sections. Equivalently $p^* I/I^2$ is surjected onto by d copies of $L^{-1}(-1)$, or by a very negative rank d bundle like $p^* E^*(-1)$.

1When $k = 0 = i$ we have to work with the standard negative binomial convention that \(\binom{k+i-1}{i} = \binom{-1}{0} = 1 \). Therefore we also set $\text{Sym}^{-1} \mathcal{O}^{i+1}$ to be \mathcal{O} for $i = 0$ and 0 for $i > 0$.
This surjectivity means that the section cuts out (scheme-theoretically) the zero section $Z_i \times \mathbb{P}^i \subset \pi^*Z_i \times \mathbb{P}^i$. Therefore the corresponding Koszul resolution on $\pi^*Z_i \times \mathbb{P}^i$,

(2.7) $\Lambda^d(p^*\pi^*E^*)(-d) \to \cdots \to \Lambda^2(p^*\pi^*E^*)(-2) \to p^*\pi^*E^*(-1) \to \mathcal{O}$

has zeroth cohomology $h^0 = \mathcal{O}_{Z_i \times \mathbb{P}^i}$. It follows that all its other cohomology sheaves are also supported, scheme-theoretically, on $Z_i \times \mathbb{P}^i$ (thinking of (2.7) as a differential graded sheaf of algebras, its cohomology sheaves are then modules over its h^0 sheaf of algebras).

But $Z_i \times \mathbb{P}^i$ is \mathbb{C}^*-fixed, and \mathbb{C}^* acts on the Λ^kE^* term of (2.7) with weight k for $k = 0, 1, \ldots, d$. Therefore the cohomology sheaves of (2.7) have \mathbb{C}^* weights in $[0, d]$.

Finally then, the push down of (2.7) to Z_i by $R\rho_i(\cdot \otimes \mathcal{O}(-i))$ has weights in $[0, d]$. Since $R\rho_i\mathcal{O}(-j) \cong \text{Sym}^{j-i+1}\mathcal{O}^{i+1}[-i]$ this pushdown is

(2.8) $\Lambda^d(\pi^*E^*)|_{\pi^*Z_i} \otimes \text{Sym}^{d-1}\mathcal{O}_{\pi^*Z_i} \to \Lambda^{d-1}(\pi^*E^*)|_{\pi^*Z_i} \otimes \text{Sym}^{d-2}\mathcal{O}_{\pi^*Z_i} \to \cdots \to \Lambda^2(\pi^*E^*)|_{\pi^*Z_i} \otimes \mathcal{O}_{\pi^*Z_i} \to \pi^*E^*|_{\pi^*Z_i}$.

(For $i = 0$ we get an extra term \mathcal{O} at the right hand end. Cf. footnote [1]) But its K-theory class is precisely (2.6).

If we pick a locally free resolution $F^* \xrightarrow{s} I$ on A (i.e. a vector bundle $F \to A$ with a section s cutting out $s^{-1}(0) = M \subset A$) then we can express Λ_M differently as follows. Give F the \mathbb{C}^* action of weight -1, so the embedding

(2.8) $C_M A \hookrightarrow F|_M$

induced by s is equivariant. Let $\iota: M \hookrightarrow F|_M$ and $\pi: F|_M \to M$ denote the zero section and projection respectively.

Lemma 2.9. The K-theoretic Fulton class equals

$$\Lambda_M = \text{Lt}^*\mathcal{O}_{C_M A} \otimes \frac{\Lambda^*\Omega_A}{\Lambda^*F^*}|_M.$$

Proof. Applying $\pi_*\iota_* = \text{id}$ to the right hand side gives

$$\pi_*\left(\iota_*\mathcal{O}_M \otimes \mathcal{O}_{C_M A}\right) \otimes \frac{\Lambda^*\Omega_A}{\Lambda^*F^*}|_M.$$

Then $\iota_*\mathcal{O}_M = \pi^*\Lambda^*F^*|_M$ by the Koszul resolution of the zero section $M \hookrightarrow F|_M$, so by (1.1) we get

$$\Lambda_M = \left(\bigoplus_{i \geq 0} I^i/I^{i+1}\right) \otimes \frac{\Lambda^*\Omega_A}{\Lambda^*F^*}|_M.$$

3. de Rham cohomology

Consider the pushforward of Λ_M to the formal completion \hat{A} of A along M. Its K-theory class looks remarkably similar to that of Hartshorne’s algebraic de Rham complex $[\Pi]$.

(3.1) $\Lambda^*\Omega_{\hat{A}}$.
If we discard the de Rham differential in (3.1) and filter by order of vanishing along M (with nth filtered piece $I^n \otimes \Lambda^n \Omega_A$) then the associated graded is

$$(3.2) \quad \Lambda^n \Omega_A|_M \otimes \left(\bigoplus_{i \geq 0} I^i/I^{i+1} \right).$$

This is just (the push forward from M to \hat{A} of) Λ_M with its C^* action forgotten. However convergence issues stop us from equating (3.2) with (3.1) in K-theory. Putting the C^* action back into (3.2) we get convergence to Λ_M in completed equivariant K-theory, but in general there is no C^* action on (3.1).

The algebraic de Rham complex (3.1) — with the de Rham differential — has been shown by Illusie [Ill, Corollary VIII.2.2.8] (and more generally Bhatt [Bh]) to be quasi-isomorphic to the pushforward of the derived de Rham complex $\Lambda^* \mathbb{L}_M$ of M. (Here Λ^* denotes the alternating sum of derived exterior powers.) And, as kindly suggested to us by Ben Antieau, we can prove that the K-theory class of $\Lambda^* \mathbb{L}_M$ (again without its de Rham differential) can be identified with Λ_M when M is a local complete intersection.

Proposition 3.3. Let C^* act on \mathbb{L}_M with weight 1, and suppose M is lci. Then $\Lambda_M = \Lambda^* \mathbb{L}_M$ in $K_0(M)[[t]]$.

Proof. For M lci we have $\mathbb{L}_{M/A} = I/I^2[1]$ so the exact triangle $\mathbb{L}_A|_M \to \mathbb{L}_M \to \mathbb{L}_{M/A}$ gives, in K-theory,

$$\mathbb{L}_M = \Omega_A|_M - I/I^2.$$

Using the weight one C^* action on \mathbb{L}_M this gives

$$\Lambda^* \mathbb{L}_M = \Lambda^* \Omega_A|_M \otimes \text{Sym}^* I/I^2 \in K_0(M)[[t]].$$

Furthermore I/I^2 is locally free so

$$\text{Sym}^i I/I^2 \to I^i/I^{i+1}$$

is a surjection from a locally free sheaf to a sheaf of the same rank. It is therefore an isomorphism and we have

$$\Lambda^* \mathbb{L}_M = \Lambda^* \Omega_A|_M \otimes \left(\bigoplus_{i \geq 0} I^i/I^{i+1} \right).$$

By Theorem 2.3 this means $\Lambda^* \mathbb{L}_M$ is in fact polynomial in t, so we can set $t = 1$ to get a class in non-equivariant K-theory.

However it does not follow (and indeed is not in general true) that the push forward of Λ_M can be equated with the algebraic de Rham complex (3.1) when M is lci. Firstly, the de Rham differential does not preserve the C^* action we have used, so we cannot lift Illusie’s theorem to equivariant K-theory. Secondly, this therefore gives us convergence issues; Illusie and Bhatt use the “Hodge completion” of the derived de Rham complex to get their quasi-isomorphism, and this differs from our completion.
4. A FORMULA FOR THE VIRTUAL STRUCTURE SHEAF

The foundations of cohomological virtual cycles are laid down in [BF, LT]; we use the notation from [BF]. The foundations for K-theoretic virtual cycles (or “virtual structure sheaves”) are laid down in [CFK, FG]; we use the notation from [FG].

Again let M be a quasi-projective scheme over \mathbb{C}. A perfect obstruction theory $E^\bullet \to \mathbb{L}_M$ is a 2-term complex of vector bundles $E^\bullet = \{E^{-1} \to E^0\}$ with a map in $D(Coh M)$ to the cotangent complex \mathbb{L}_M which is an isomorphism on h^0 and a surjection on h^{-1}.

We sometimes call E^\bullet the virtual cotangent bundle \mathbb{L}_M^vir of M. Its rank is the virtual dimension $vd := \text{rank } E^0 - \text{rank } E^{-1}$.

By [BF] this data defines a cone $C \subset E_1 := (E^{-1})^*$ from which we may define M’s virtual cycle

$$[M]\text{vir} := \iota ! [C] \in A_{vd}(M),$$

where $\iota: M \to E_1$ is the zero section. Siebert [Sie] proved the alternative formula

$$[M]\text{vir} = \left[s((E^\bullet)^*) \cap c_F(M) \right]_{vd}.$$

The K-theoretic analogue of $[M]\text{vir}$ is the virtual structure sheaf [FG]

$$\mathcal{O}_M^\text{vir} := \left[L\iota^* \mathcal{O}_C \right] \in K_0(M),$$

where $L\iota^* \mathcal{O}_C$ is a bounded complex because ι is a regular embedding.

The construction of Section 2 allows us to give a K-theoretic analogue.

Theorem 4.2. The virtual structure sheaf (4.1) can be calculated in terms of the K-theoretic Fulton class Λ_M (2.2) as

$$\mathcal{O}_M^\text{vir} = \left[\Lambda_M \Lambda^\bullet (E^\bullet) \right]_{t=1} = \left[\Lambda_M \Lambda^\bullet \mathcal{L}_M^\text{vir} \right]_{t=1}.$$

In particular, when M is smooth $\Lambda_M = \Lambda^\bullet \Omega_M$ and $[E^\bullet] = \Omega_M - \text{ob}^*_M$, so (4.3) recovers $\mathcal{O}^\text{vir} = \Lambda^\bullet \text{ob}^*_M$.

Proof. By [BF], the perfect obstruction theory $E^\bullet \to \mathbb{L}_M$ induces a cone $C \subset E_1$ which Siebert [Sie] proof of Proposition 4.4] shows sits inside an exact sequence of cones

$$0 \to T_A|_M \to C_M A \oplus E_0 \to C \to 0.$$

Here A is any smooth ambient space containing M with ideal I, so that $C_M A = \text{Spec } \bigoplus_{i \geq 0} I^i/I^{i+1}$.

As before we give the E_i and $T_A|_M$ weight -1 (so E^i and $\Omega_A|_M$ have weight 1) and let $\iota: M \to E_1$ and $\pi: E_1 \to M$ denote the zero section and projection respectively. Then

2 Or its $\tau^{[-1,0]}$ truncation.

3 After possibly replacing E^\bullet by a quasi-isomorphic 2-term complex of vector bundles.
\[O_{\text{vir}} = L_L^*O_C = \pi_*\iota_\ast L_L^*O_C = \pi_*(O_C \otimes \iota_\ast O_M) = \pi_*(O_C \otimes \Lambda^\bullet E^{-1}) \]
evaluated at \(t = 1 \), by (4.1) and the Koszul resolution of \(\iota_\ast O_M \). By (4.4),
\[\pi_*O_C = \text{Sym}^\bullet E^0 \otimes \left(\bigoplus_{i \geq 0} \mathcal{I}^i/\mathcal{I}^{i+1} \right) \otimes \Lambda^\bullet \Omega^1_M, \]
so by (2.2),
\[O_{\text{vir}} = \left[\Lambda_M \otimes \text{Sym}^\bullet E^0 \otimes \Lambda^\bullet E^{-1} \right]_{t=1} = \left[\Lambda_M/\Lambda^\bullet(E^\bullet) \right]_{t=1}. \]

□

Corollary 4.5. \(O_{\text{vir}}^M \) depends only on \(M \) and the K-theory class of \(E^\bullet \).

Of more interest in enumerative K-theory is the twisted virtual structure sheaf
\[\hat{O}_{\text{vir}}^M = O_{\text{vir}}^M \otimes \text{det}(E^\bullet)^{1/2} \]
of Nekrasov-Okounkov [NO]. Here we twist by a choice of square root of the virtual canonical bundle \(\text{det}(E^\bullet) = \text{det}E^0 \otimes (\text{det}E^{-1})^* \). The above shows it depends only on \(M \), the K-theory class of \(E^\bullet \), and the choice of square root (“orientation data”).

References

[AM] M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*, Addison-Wesley, 1969.
[BF] K. Behrend and B. Fantechi, *The intrinsic normal cone*, Invent. Math. 128 (1997), 45–88. [alg-geom/9601010]
[Bh] B. Bhatt, *Completions and derived de Rham cohomology*, arXiv:1207.6193
[CFK] I. Ciocan-Fontanine and M. Kapranov, *Virtual fundamental classes via dg-manifolds*, Geom & Top 13 (2009), 1779–1804. [math.AG/0703214]
[FG] B. Fantechi and L. Göttsche, *Riemann-Roch theorems and elliptic genus for virtually smooth schemes*, Geom & Top 14 (2010), 83–115. [arXiv:0706.0988]
[Fu] W. Fulton, *Intersection theory*, Springer-Verlag (1998).
[Ha] R. Hartshorne, *On the de Rham cohomology of algebraic varieties*, Publ. Math. IHES 45 (1976), 5–99.
[Il] L. Illusie, *Complexe cotangent et déformations, II*, Lecture Notes Math. 283, Springer (1972).
[LT] J. Li and G. Tian, *Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties*, J. Amer. Math. Soc. 11, 119–174 (1998). [alg-geom/9602007]
[NO] N. Nekrasov and A. Okounkov, *Membranes and Sheaves*, Algebraic Geometry 3 (2016), 320–369. [arXiv:1404.2323]
[Sie] B. Siebert, *Virtual fundamental classes, global normal cones and Fulton’s canonical classes*, in: Frobenius manifolds, ed. K. Hertling and M. Marcolli, Aspects Math. 36, 341–358, Vieweg (2004). [math.AG/0509076]
[Th] R. P. Thomas, *Equivariant K-theory and refined Vafa-Witten invariants*, preprint.

richard.thomas@imperial.ac.uk
Department of Mathematics
Imperial College London
London SW7 2AZ
United Kingdom