Optimal weak type estimates for
dyadic-like maximal operators

Eleftherios N. Nikolidakis

Abstract

We provide sharp weak estimates for the distribution function of $M\phi$ when on ϕ we impose L^1, L^q and $L^{p,\infty}$ restrictions. Here M is the dyadic maximal operator associated to a tree T on a non-atomic probability measure space.

Keywords: Dyadic, Maximal

1. Introduction

The dyadic maximal operator on \mathbb{R}^n is defined by

$$M_d \phi(x) = \sup \left\{ \frac{1}{|Q|} \int_Q |\phi(u)| \, du : \ x \in Q, \ Q \subseteq \mathbb{R}^n \text{ is a dyadic cube} \right\} \quad (1.1)$$

for every $\phi \in L^1_{\text{loc}}(\mathbb{R}^n)$ where the dyadic cubes are those formed by the grids $2^{-N}\mathbb{Z}^n$ for $N = 1, 2, \ldots$.

It is well known that it satisfies the following weak type (1.1) inequality

$$|\{x \in \mathbb{R}^n : M_d \phi(x) > \lambda\}| \leq \frac{1}{\lambda} \int_{\{M_d \phi > \lambda\}} |\phi(u)| \, du \quad (1.2)$$

for every $\phi \in L^1(\mathbb{R}^n)$ and every $\lambda > 0$.

Using (1.1) we easily get the following L^p inequality
\[
\| M_d \phi \|_p \leq \frac{p}{p-1} \| \phi \|_p
\] (1.3)
for every $p > 1$ and every $\phi \in L^p(\mathbb{R}^n)$, which is proved to be best possible (see [2], [3] for the general martingales and [10] for the dyadic ones).

A way of studying the dyadic maximal operator is the introduction of the so called Bellman functions (see [8]).

Actually, we define for every $p > 1$
\[
B_p(f, F) = \sup \left\{ \frac{1}{|Q|} \int_Q (M_d \phi)^p : \text{Av}_Q(\phi^p) = F, \text{Av}_Q(\phi) = f \right\}
\] (1.4)
where Q is a fixed dyadic cube, ϕ is nonnegative in $L^p(Q)$ and f, F are such that $0 < f^p \leq F$.

$B_p(f, F)$ has been computed in [5]. In fact it has been shown that $B_p(f, F) = F \omega_p(f^p/F)^p$ where $\omega_p : [0, 1] \rightarrow \left[1, \frac{p}{p-1}\right]$ is the inverse function of $H_p(z) = -(p-1)z^p + pz^{p-1}$.

Actually this has been proved in a much more general setting of tree like maximal operators on non-atomic probability spaces. The result turns out to be independent of the choice of the measure space.

The study of these operators has been continued in [7] where the Bellman functions of them in the case $p < 1$ have been computed.

Actually, as in [5] and [7] we will take the more general approach. So for a tree T on a non atomic probability measure space X, we define the associated dyadic maximal operator, namely
\[
M_T \phi(x) = \sup \left\{ \frac{1}{\mu(I)} \int_I |\phi| d\mu : x \in I \in T \right\}
\]
for every $\phi \in L^1(X, \mu)$.2
It is now known that $\mathcal{M}_T : L^{p,\infty} \to L^{p,\infty}$ is a bounded operator satisfying
\[
\|\mathcal{M}_T \phi\|_{p,\infty} \leq |||\phi|||_{p,\infty}. \tag{1.5}
\]

It is now interesting to see what happens if we replace the L^p-norm of ϕ in (1.4) by its $L^{p,\infty}$-norm, $|||\cdot|||_{p,\infty}$, given by
\[
|||\phi|||_{p,\infty} = \sup \left\{ \mu(E)^{-1 + \frac{1}{p}} \int_E |\phi| d\mu : E \text{ measurable subset of } X \text{ such that } \mu(E) > 0 \right\}.
\]

It is well known that $|||\cdot|||_{p,\infty}$ is a norm on $L^{p,\infty}$ equivalent to the quasi norm $\|\cdot\|_{p,\infty}$ defined by
\[
\|\phi\|_{p,\infty} = \sup \left\{ \lambda \mu(\{\phi \geq \lambda\})^{1/p} : \lambda > 0 \right\}.
\]

In fact
\[
\|\phi\|_{p,\infty} \leq |||\phi|||_{p,\infty} \leq \frac{p}{p-1}\|\phi\|_{p,\infty}, \quad \forall \phi \in L^{p,\infty}
\]
as can been seen in [4].

In fact in [9] it is proved that (1.5) is sharp allowing every value for the L^1-norm of ϕ.

In the present paper we compute the following function
\[
S(f,A,F,\lambda) = \sup \left\{ \mu(\{\mathcal{M}_T \phi \geq \lambda\}) : \phi \geq 0, \int_X \phi d\mu = f, \int_X \phi^q d\mu = A, \quad |||\phi|||_{p,\infty} = F \right\} \tag{1.6}
\]
for every $\lambda > 0$, (f,A,F) on the domain of the extremal problem and q fixed such that $1 < q < p$. That is we provide improvements of (1.3) given additionally L^q and $L^{p,\infty}$ restrictions on ϕ.

From this we obtain as a corollary that
\[
\sup \left\{ \|\mathcal{M}_T \phi\|_{p,\infty} : \phi \geq 0, \int_X \phi d\mu = f, \int_X \phi^q d\mu = A, \quad |||\phi|||_{p,\infty} = F \right\} = F \tag{1.7}
\]
that is (1.5) is sharp allowing every value of the integral and the L^q-norm of ϕ, for a fixed q such that $1 < q < p$. As a matter of fact we prove that the supremum in both cases (1.6) and (1.7) is attained. These estimates are provided in Section 4, while in Section 3 the domain of the extremal problem is found. On Section 2 we give some preliminaries needed during this paper.

Finally we mention that all the above estimates are independent of the measure space and the tree T.

2. Preliminaries

Let (X, μ) be a non-atomic probability measure space. We state the following lemma which can be found in [1].

Lemma 2.1 Let $\phi : (X, \mu) \rightarrow \mathbb{R}^+$ and ϕ^* the decreasing rearrangement of ϕ, defined on $[0, 1]$. Then

$$\int_0^t \phi^*(u)du = \sup \left\{ \int_E \phi d\mu : E \text{ measurable subset of } X \text{ with } \mu(E) = t \right\}$$

for every $t \in [0, 1]$, with the supremum in fact attained. \[\square\]

We prove now the following:

Lemma 2.2 Let $\phi : X \rightarrow \mathbb{R}^+$ be measurable and $I \subseteq X$ be measurable with $\mu(I) > 0$. Suppose that $\frac{1}{\mu(I)} \int_I \phi d\mu = s$. Then for every t such that $0 < t \leq \mu(I)$ then exists a measurable set $E_t \subseteq I$ with $\mu(E_t) = t$ and $\frac{1}{\mu(E_t)} \int_{E_t} \phi d\mu = s$.

Proof. Consider the measure space $(I, \mu/I)$ and let $\psi : I \rightarrow \mathbb{R}^+$ be the restriction of ϕ on I that is $\psi = \phi/I$. Then if $\psi^* : [0, \mu(I)] \rightarrow \mathbb{R}^+$ is the decreasing rearrangement of ψ, we have that

$$\frac{1}{t} \int_0^t \psi^*(u)du \geq \frac{1}{\mu(I)} \int_0^{\mu(I)} \psi^*(u)du = s \geq \frac{1}{t} \int_{\mu(I)-t}^{\mu(I)} \psi^*(u)du. \quad (2.1)$$
Since ψ^* is decreasing we get the inequalities in (2.1), while the equality is obvious since
\[\int_0^{\mu(I)} \psi^*(u)du = \int_I \phi d\mu. \]
From (2.1) it is easily seen that there exists $r \geq 0$ such that $t + r \leq \mu(I)$ with
\[\frac{1}{t} \int_r^{t+r} \psi^*(u)du = s. \] (2.2)
It is also easily seen that there exists E_t measurable subset of I such that
\[\mu(E_t) = t \quad \text{and} \quad \int_{E_t} \phi d\mu = \int_r^{t+r} \psi^*(u)du \] (2.3)
since (X, μ) is non-atomic.

From (2.2) and (2.3) we get the conclusion of the lemma. □

We now call two measurable subsets of X almost disjoint if $\mu(A \cap B) = 0$.

We give now the following

Definition 2.1 A set \mathcal{T} of measurable subsets of X will be called a tree if the following conditions are satisfied.

(i) $X \in \mathcal{T}$ and for every $I \in \mathcal{T}$ we have that $\mu(I) > 0$.

(ii) For every $I \in \mathcal{T}$ there corresponds a finite or countable subset $C(I) \subseteq \mathcal{T}$ containing at least two elements such that:

(a) the elements of $C(I)$ are pairwise almost disjoint subsets of I.

(b) $I = \bigcup C(I)$.

(iii) $\mathcal{T} = \bigcup_{m \geq 0} \mathcal{T}(m)$ where $\mathcal{T}_0 = \{X\}$ and

\[\mathcal{T}_{(m+1)} = \bigcup_{I \in \mathcal{T}_m} C(I). \]
(iv) \(\lim_{m \to +\infty} \sup_{I \in \mathcal{T}(m)} \mu(I) = 0. \) \(\square \)

From [5] we get the following

Lemma 2.3 For every \(I \in \mathcal{T} \) and every \(\alpha \) such that \(0 < \alpha < 1 \) there exists subfamily \(\mathcal{F}(I) \subseteq Y \) consisting of pairwise almost disjoint subsets of \(I \) such that
\[
\mu \left(\bigcup_{J \in \mathcal{F}(I)} J \right) = \sum_{J \in \mathcal{F}(I)} \mu(J) = (1 - \alpha) \mu(I). \quad \square
\]

Let now \((X, \mu)\) be a non-atomic probability measure space and \(\mathcal{T} \) a tree as in Definition 1.1. We define the associated maximal operator to the tree \(\mathcal{T} \) as follows: For every \(\phi \in L^1(X, \mu) \) and \(x \in X \), then
\[
\mathcal{M}_T \phi(x) = \sup \left\{ \frac{1}{\mu(I)} \int_I |\phi| d\mu : x \in I \in \mathcal{T} \right\}.
\]

3. The domain of the extremal problem

Our aim is to find the exact allowable values of \((f, A, F)\) for which there exists \(\phi : (X, \mu) \to \mathbb{R}^+ \) measurable such that
\[
\int_X \phi d\mu = f, \quad \int_X \phi^q d\mu = A \quad \text{and} \quad |||\phi|||_{p, \infty} = F. \quad (3.1)
\]
We find it in the case where \(F = 1 \).

For the beginning assume that \((f, A)\) are such that there exist \(\phi \) as in (3.1). We set \(g = \phi^* : [0, 1] \to \mathbb{R}^+ \). Then
\[
\int_0^1 g = f, \quad \int_0^1 g^q = A \quad \text{and} \quad |||g|||_{p, \infty}^{[0,1]} = 1
\]
where
\[
|||g|||_{p, \infty}^{[0,1]} = \sup \left\{ |E|^{-1 + \frac{1}{p}} \int_E g : E \subset [0, 1], \text{ Lebesgue measurable such that } |E| > 0 \right\}.
\]
This is true because of the definition of the decreasing rearrangement of ϕ and Lemma 2.1. In fact since g is decreasing $|||g|||_{p,\infty}$ is equal to

$$\sup \left\{ t^{-1+\frac{1}{p}} \int_0^t g : 0 < t \leq 1 \right\}.$$

Of course, we should have that $0 < f \leq 1$ and $f'^q \leq A$. We give now the following

Definition 3.1 If $n \in \mathbb{N}$, and $h : [0, 1) \to \mathbb{R}^+$, h will be called $\frac{1}{2^n}$-step if it is constant on each interval

$$\left[\frac{i-1}{2^n}, \frac{i}{2^n} \right), \ i = 1, 2, \ldots, 2^n . \quad \square$$

Now for $n \in \mathbb{N}$ and $0 < f \leq 1$ fixed we set

$$\Delta_n(f) = \left\{ h : [0, 1) \to \mathbb{R}^+ : g \text{ is a } \frac{1}{2^n}\text{-step function,} \right\}$$

$$\int_0^1 g = f, \ |||g|||_{p,\infty} \leq 1 \}.$$

Then

$$\Delta_n = \Delta_n(f) \subset L^{p,\infty}([0, 1])$$

where we use the $||| \cdot |||_{p,\infty}^{[0,1]}$ norm for functions defined on $[0, 1]$. Δ_n is also convex, that is

$$h_1, h_2 \in \Delta_n \Rightarrow \frac{h_1 + h_2}{2} \in \Delta_n .$$

Additionally we have the following

Lemma 3.1 Δ_n is compact subset of $L^{p,\infty}([0, 1]) = Y$ where the topology on Y is that endowed by $||| \cdot |||_{p,\infty}^{[0,1]}$.

Proof. $(Y, ||| \cdot |||_{p,\infty})$ is a Banach space. So, especially a metric space. So, we just need to prove that Δ_n is sequentially compact.
Let now \((h_i)_i \subset \Delta_n\). It is now easy to see by a finite diagonal argument that there exists \((h_{i_j})_j\) subsequence and \(h : [0, 1] \to \mathbb{R}^+\) such that \(h_{i_j} \to h\) uniformly on \([0, 1]\). Then obviously \(\int_0^1 h = f\), \(||h||_{p, \infty}^{[0,1]} \leq 1\), so \(h \in \Delta_n\). Additionally

\[
|||h_{i_j} - h|||_{p, \infty}^{[0,1]} = \sup \left\{ |E|^{1+\frac{1}{p}} \int_E |h_{i_j} - h| : |E| > 0 \right\}
\leq \sup |(h_{i_j} - h)(t)| \ t \in [0, 1]
\]

as \(j \to \infty\). That is \(h_{i_j} \overset{Y}{\rightharpoonup} h \in \Delta_n\). Consequently, \(\Delta_n\) is a compact subset of \(L^{p, \infty}([0, 1])\). □

We give now the following known

Definition 3.2 For a closed convex subset \(K\) of a topological vector space \(Y\), and for a \(y \in K\) we say that \(y\) is an extreme point of \(K\), if whenever \(y = \frac{x+z}{2}\), with \(x, z \in K\) it is implied that \(y = x = z\). We write \(y \in \text{ext}(K)\).

□

Definition 3.3 For a subset \(A\) of a topological vector space \(Y\) we set

\[
\text{conv}(A) = \left\{ \sum_{i=1}^{n} \lambda_i x_i : \lambda_i \geq 0, x_i \in A, \ n \in \mathbb{N}^*, \ \sum_{i=1}^{n} \lambda_i = 1 \right\}.
\]

We call \(\text{conv}(A)\) the convex hull of \(A\). □

We state now the following well known

Theorem 3.1 (Krein–Milman) Let \(K\) be a convex, compact subset of a locally convex topological vector space \(Y\) then \(K = \text{conv}(\text{ext}(K))^Y\) that is \(K\) is the closed convex hull of it’s extreme points. □

According now to Lemma 3.1 we have that

\[
\Delta_n = \text{conv}[\text{ext}(\Delta_n)]^{L^{p,\infty}([0,1])}.
\]

We find now the set \(\text{ext}(\Delta_n)\).
Lemma 3.2. Let \(g \in \text{ext}(\Delta_n) \). Then for every \(i \in \{1, 2, \ldots, 2^n\} \) such that \(\left(\frac{i}{2^n} \right)^{1 - \frac{1}{p}} \leq f \) we have that

\[
\sup \left\{ |E|^{-\frac{1}{p}} \int_E g : |E| = \frac{i}{2^n} \right\} = 1.
\]

Proof. We prove it first when \(i = 1 \) and \(\left(\frac{1}{2^n} \right)^{1 - \frac{1}{p}} \leq f \). It is now easy to see that \(g \in \text{ext}(\Delta_n) \Leftrightarrow g^* \in \text{ext}(\Delta_n) \). So we just need to prove that

\[
\int_0^{2^n} g^* = \left(\frac{1}{2^n} \right)^{1 - \frac{1}{p}}.
\]

We write

\[
g^* = \sum_{i=1}^{2^n} \alpha_i \xi_{I_i} \quad \text{with} \quad I_i \left[\frac{i - 1}{2^n}, \frac{i}{2^n} \right)
\]

and \(\alpha_1 \geq \alpha_{i+1} \) for every \(i \in \{1, 2, \ldots, 2^n - 1\} \).

Suppose now that \(\alpha_1 < 2^{n/p} \), and that \(\alpha_1 > \alpha_2 \) (the case \(\alpha_1 = \alpha_2 \) is handled in an analogous way).

For a suitable \(\varepsilon > 0 \) we set

\[
g_1 = \sum_{i=1}^{2^n} \alpha_i^{(1)} \xi_{I_i}, \quad g_2 = \sum_{i=1}^{2^n} \alpha_i^{(2)} \xi_{I_i} \quad \text{where} \quad \begin{cases}
\alpha_1^{(1)} = \alpha_1 + \varepsilon, & \alpha_2^{(1)} = \alpha_2 - \varepsilon \\
\alpha_1^{(2)} = \alpha_1 - \varepsilon, & \alpha_2^{(2)} = \alpha_2 + \varepsilon
\end{cases}
\]

and \(\alpha_k^{(1)} = \alpha_k^{(2)} = \alpha_k \) for every \(k > 2 \).

Since \(\alpha_1 < 2^{n/p} \) we can find small enough \(\varepsilon > 0 \) such that \(g_i \) satisfy \(\|g_i\|_{L^{0, \infty}} \leq 1 \), for \(i = 1, 2 \). Indeed, for \(i = 1 \), we need to prove that for small enough \(\varepsilon > 0 \)

\[
\int_0^t g_1 \leq t^{1 - \frac{1}{p}} \quad \text{(3.2)}
\]

for every \(t \in [0, 1) \), since \(g_1 \) is decreasing.

(3.2) is now obviously true for \(t \geq \frac{2^n}{2^n} \) since

\[
\int_0^t g_1 = \int_0^t g^* \quad \text{for every such} \quad t \quad \text{(3.3)}
\]
(3.2) is also true for \(t = 0, \frac{1}{2^n} \). But then it remains true for every \(t \in \left(0, \frac{1}{2^n} \right) \) since the function \(t \mapsto \int_0^t g_1 \) represents a straight line on \([0, \frac{1}{2^n}]\) and \(t^{1 - \frac{1}{p}} \) is concave there. Analogously for the interval \([\frac{1}{2^n}, \frac{2}{2^n}]\). That is we proved \(\|g_1\|_{[0,1]} \leq 1 \).

Obviously, \(\int_0^1 g_i = f \), so that \(g_i \in \Delta_n \), for \(i = 1, 2 \). But \(g^* = \frac{g_1 + g_2}{2} \), with \(g_i \neq g \) and \(g_i \in \Delta_n \), \(i = 1, 2 \), a contradiction since \(g^* \in \text{ext}(\Delta_n) \). So,
\[
\alpha_1 = 2^{n/p} \quad \text{and} \quad \int_0^{1/2} g^* = \left(\frac{1}{2^n} \right)^{1 - \frac{1}{p}},
\]
what we wanted to prove. In the same way we prove that for \(i \in \{1, 2, \ldots, 2^n\} \) such that
\[
\left(\frac{i + 1}{2^n} \right)^{1 - \frac{1}{p}} \leq f, \quad \text{if} \quad \int_0^{i/2^n} g^* = \left(\frac{i}{2^n} \right)^{1 - \frac{1}{p}} \quad \text{then} \quad \int_{i/2^n}^{i+1/2^n} g^* = \left(\frac{i + 1}{2^n} \right)^{1 - \frac{1}{p}}.
\]
The lemma is now proved. \(\square \)

Let now \(g \in \text{ext}(\Delta_n) \) and \(k = \max \left\{ i \leq 2^n : \left(\frac{i}{2^n} \right)^{1 - \frac{1}{p}} \leq f \right\} \), so if we suppose that \(f < 1 \) we have that
\[
\left(\frac{k}{2^n} \right)^{1 - \frac{1}{p}} \leq f < \left(\frac{k + 1}{2^n} \right)^{1 - \frac{1}{p}}.
\]
By Lemma 3.2
\[
\int_0^{k/2^n} g^* = \left(\frac{k}{2^n} \right)^{1 - \frac{1}{p}}.
\]
But by using the reasoning of the previous lemma it is easy to see that
\[
\int_0^{k+1/2^n} g^* = f,
\]
which gives
\[
\int_{k/2^n}^{k+1/2^n} g^* = f - \left(\frac{k}{2^n} \right)^{1 - \frac{1}{p}} \Rightarrow \alpha_{k+1} = 2^n \cdot f - 2^{n/p} \cdot k^{1 - \frac{1}{p}}.
\]
Additionally \(\alpha_i = 0 \) for \(i > k + 1 \).

From the above we obtain the following
Corollary 3.1 Let \(g \in \text{ext}(\Delta_n) \). Then \(g^* = \sum_{i=1}^{2^n} \alpha_i \xi_i \), where
\[
\alpha_i = 2^{n/p} \left(i^{1-\frac{1}{p}} - (i-1)^{1-\frac{1}{p}} \right) \quad \text{for} \quad i = 1, 2, \ldots, k
\]
and
\[
\alpha_{k+1} = 2^n f - 2^{n/p} \cdot k^{1-\frac{1}{p}}, \quad \alpha_i = 0, \quad i > k + 1,
\]
where
\[
k = \max \left\{ i \leq 2^n : \left(\frac{i}{2^n} \right)^{1-\frac{1}{p}} \leq f \right\}.
\]

Remark 3.1 Actually it is easy to see that the above functions described in Corollary 3.1 are exactly the extreme points of \(\Delta_n \).

We estimate now the \(L^q \)-norm of every \(g \in \text{ext}(\Delta_n) \).

We state it as

Lemma 3.3 Let \(g \in \text{ext}(\Delta_n) \) and \(A = \frac{1}{0} \int g^q \), then \(A \leq \Gamma f^{p-q/p-1} + E_n(f) \)
where
\[
\Gamma = \left(\frac{p-1}{p} \right)^q \frac{p}{p-q} \quad \text{and} \quad E_n(f) = \frac{\alpha_{k+1}^q}{2^n} = \frac{(2^n f - 2^{n/p} k^{1-\frac{1}{p}})^q}{2^n}.
\]

Proof. For \(g \) we write \(g^* = \sum_{i=1}^{2^n} \alpha_i \xi_i \), where \(\alpha_i \) are given in Corollary 3.1.

Then
\[
A = \int_0^1 (g^*)^q = \left[\left(\sum_{i=1}^k \alpha_i^q \right) + \alpha_{k+1}^q \right] \cdot \frac{1}{2^n}.
\]

Now for \(i \in \{1, 2, \ldots, k\} \)
\[
\alpha_i^q = \left[2^{n/p} \left(i^{1/\frac{1}{p}} - (i-1)^{1/\frac{1}{p}} \right) \right]^q = \left\{ 2^n \left[\left(\frac{i}{2^n} \right)^{1-\frac{1}{p}} - \left(\frac{i-1}{2^n} \right)^{1-\frac{1}{p}} \right] \right\}^q
\]
\[
= \left[2^n \int_{i-1/2^n}^{i/2^n} \psi \right]^q
\]

11
where $\psi : (0, 1] \to \mathbb{R}^+$ is defined by $\psi(t) = \frac{n-1}{p} t^{-1/p}$. By (3.5) and in view of Holder’s inequality we have that for $i \in \{1, 2, \ldots, k\}$

$$
\alpha_i^q \leq 2^n \int_{i-1/2^n}^{i/2^n} \psi^q.
$$

(3.6)

Summing up relations (3.6) we have that

$$
\sum_{i=1}^{k} \alpha_i^q \leq 2^n \int_0^{k/2^n} \psi^q = 2^n \cdot \Gamma \cdot \left(\frac{k}{2^n} \right)^{1-\frac{q}{p}}.
$$

(3.7)

Additionally from the definition of k we have that

$$
\left(\frac{k}{2^n} \right)^{1-\frac{1}{p}} \leq f \Rightarrow k^{1-\frac{q}{p}} \leq (2^n)^{1-\frac{q}{p}} \cdot f^{p-q/p-1}.
$$

(3.8)

From (3.4), (3.7) and (3.8) we obtain

$$
A \leq \left[2^n \cdot \Gamma \cdot f^{p-q/p-1} + \alpha_{k+1}^q \right] \frac{1}{2^n} = \Gamma f^{p-q/p-1} + \mathcal{E}_n(f)
$$

and Lemma 3.3 is proved.

Corollary 3.2 For every $g \in \Delta_n$

$$
A \leq \Gamma f^{p-q/p-1} + \mathcal{E}_n(f), \text{ where } A = \int_0^1 g^q.
$$

Proof. This is true, of course, for $g \in ext(\Delta_n)$, and so also for $g \in \text{conv} (ext(\Delta_n))$, since $t \mapsto t^q$ is convex for $q > 1$ on \mathbb{R}^+. It remains true for $g \in \text{conv} (ext(\Delta_n))^{L_{p,\infty}([0,1])}$ using a simple continuity argument. In fact we just need the continuity of the identity operator if it is viewed as:

$I : L_{p,\infty}([0,1]) \to L^q([0,1])$. See [4].

Using now Krein - Milman Theorem the Corollary is proved.

We have now the following
Corollary 3.3 Let \(\phi : (X, \mu) \to \mathbb{R}^+ \) such that
\[
\int_X \phi \, d\mu = f, \quad \int_X \phi^q \, d\mu = A, \quad ||\phi||_{p, \infty} \leq 1.
\]
Then
\[
f^q \leq A \leq \Gamma f^{p-q/p-1}.
\]

Proof. Let \(g = \phi^* : [0, 1] \to \mathbb{R}^+ \). There exist \(\phi_n^{1/2n} \)-simple functions, for every \(n \) such that \(g_n \leq g_{n+1} \leq g \) and \(g_n \) converges almost everywhere to \(g \). But then by defining
\[
f_n = \int_0^1 \phi_n, \quad A_n = \int_0^1 \phi_n^q
\]
we have that
\[
g_n \in \Delta_n(f_n) \text{ so that } A_n \leq \Gamma f_n^{p-q/p-1} + \mathcal{E}_n(f_n).
\]
(3.9)

By the monotone convergence theorem \(f_n \to f, \ A_n \to A \). Moreover
\[
\mathcal{E}_n(f_n) = \frac{(2^n f_n - k_n^{1-p} 2^n/p)^q}{2^n}
\]
where \(k_n \) satisfy
\[
\left(\frac{k_n}{2^n} \right)^{1-\frac{q}{p}} \leq f_n < \left(\frac{k_n + 1}{2^n} \right)^{1-\frac{1}{p}}.
\]
As a consequence
\[
\mathcal{E}_n(f_n) = (2^n)^{q-1} \left[f_n - \left(\frac{k_n}{2^n} \right)^{1-\frac{1}{p}} \right]^q < (2^n)^{q-1} \left[\left(\frac{k_n + 1}{2^n} \right)^{1-\frac{1}{p}} - \left(\frac{k_n}{2^n} \right)^{1-\frac{1}{p}} \right]^q
\]
\[
\leq (2^n)^{q-1} \left[\left(\frac{1}{2^n} \right)^{1-\frac{q}{p}} \right]^q = \left(\frac{1}{2^{1-\frac{q}{p}}} \right)^n \to 0, \quad \text{as } n \to \infty
\]
where in the second inequality we used the known
\[
(t + s)^\alpha \leq t^\alpha + s^\alpha \text{ for } t, s \geq 0, \ 0 < \alpha < 1.
\]
Now (3.9) gives the corollary. \(\square \)

In fact the converse of Corollary 3.3 is also true.
Theorem 3.2 For $0 < f \leq 1$, $A > 0$ the following are equivalent

i) $f^q \leq A \leq \Gamma f^{p-q/p-1}$

ii) $\exists \phi : (X, \mu) \to \mathbb{R}^+$ such that

$$\int_X \phi d\mu = f, \quad \int_X \phi^q d\mu = A, \quad |||\phi|||_{p,\infty} \leq 1.$$ □

We prove first the following

Lemma 3.4 Let $\alpha \in (0, 1)$ and (f, A) such that

$$f \leq \alpha^{\frac{1}{p}}$$ \hspace{1cm} (3.10)

$$f^q \leq \alpha^{q-1} A$$ \hspace{1cm} (3.11)

$$A \leq \Gamma f^{p-q/p-1} A.$$ \hspace{1cm} (3.12)

Then there exists $g : [0, \alpha] \to \mathbb{R}^+$ such that

$$\int_0^\alpha g = f, \quad \int_0^\alpha g^q = A, \quad \text{and} \quad |||g|||_{[0,\alpha]} = 1$$

where

$$|||g|||_{[0,\alpha]} = \sup \left\{ E^-1 + \frac{1}{p} \int_E g : \text{such that } |E| > 0 \right\}$$

Proof. We search for a g of the form

$$g := \begin{cases} \frac{t^{-1/p}}{\mu_2}, & 0 < t \leq c_1 \\ \mu_2, & c_1 < t \leq \alpha \end{cases}$$

for suitable constant $c_1 \mu_2$.

We must have that

$$\int_0^\alpha g = f \iff c_1^{\frac{1}{p}} + \mu_2(\alpha - c_1) = f.$$ \hspace{1cm} (3.13)
Additionally g must satisfy
\begin{equation}
\int_0^\alpha g^q = A \iff \Gamma c_1^{1 - \frac{q}{p}} + \mu_2^q(\alpha - c_1) = A. \tag{3.14}
\end{equation}

(3.13) gives
\begin{equation}
\mu_2 = \frac{f - c_1^{1 - \frac{1}{p}}}{a - c_1} \tag{3.15}
\end{equation}
so (3.14) becomes
\begin{equation}
\Gamma c_1^{1 - \frac{q}{p}} + \frac{(f - c_1^{1 - \frac{1}{p}})^q}{(a - c_1)^{q-1}} = A. \tag{3.16}
\end{equation}

We search for a $c_1 \in (0, \alpha)$ such that
\[T(c_1) = A \text{ where } T : [0, \alpha) \to \mathbb{R}^+ \]
defined by
\[T(t) = \Gamma t^{1 - \frac{q}{p}} + \frac{(f - t^{1 - \frac{1}{p}})^q}{(a - t)^{q-1}}. \]

Observe that $T(0) = \frac{f^q}{a^{q-1}} \leq A$ because of (3.11) and that $T(f^{p/p-1}) = \Gamma f^{p-q/p-1} \geq A$. Now because of the continuity of T, we have that there exists $c_1 \in (0, f^{p/p-1}]$ such that $T(c_1) = A$. Then $c_1 \in (0, \alpha)$ because of (3.10), and if we define μ_2 by (??), we guarantee (3.13) and (3.14).

We need to prove now that $|||g|||_{[0,\alpha]} = 1$.

Obviously, because of the form of g, $|||g|||_{[0,\alpha]} \geq 1$. So we have to prove that
\begin{equation}
\int_0^t g \leq t^{1-\frac{1}{p}}, \quad \forall t \in (0, \alpha]. \tag{3.17}
\end{equation}

This is of course true for $t \in [0, c_1]$. For $t \in (c_1, \alpha]$
\[\int_0^t g = c_1^{1 - \frac{1}{p}} + \mu_2(t - c_1) =: G(t). \]
Since \(G(c_1) = c_1^{1 - \frac{1}{p}} \), \(G(\alpha) = f < \alpha^{1 - \frac{1}{p}} \) and \(t \mapsto t^{1 - \frac{1}{p}} \) is concave on \((c_1, \alpha] \)
(3.17) is true. Thus Lemma 3.4 is proved. □

We have now the

Proof of Theorem 3.2: We have to prove the direction i) \(\Rightarrow \) ii).

Indeed if \(f^q \leq A \leq \Gamma f^{p/q - 1} \) and \(f < 1 \) we apply Lemma 3.4.

If \(f^q = A \), with \(0 < f \leq 1 \) we set \(g \) by \(g(t) = f \), for every \(t \in [0, 1] \) while
if \(f = 1 \leq A \leq \Gamma \) a simple modification of Lemma 3.4 gives the result. □

We conclude Section 3 with the following theorem which can be proved easily using all the above.

Theorem 3.3 For \(f, A \) such that \(f < 1, A > 0 \) the following are equivalent:

i) \(f^q \leq A \leq \Gamma f^{p/q - 1} \)

ii) \(\exists \phi : (X, \mu) \rightarrow \mathbb{R}^+ \) such that

\[
\int_X \phi d\mu = f, \quad \int_X \phi^q d\mu = A, \quad \|\phi\|_{p, \infty} = 1.
\]

□

Remark 3.2 Theorem 3.3 is completed if we mention that for \(f = 1 \) the following are equivalent:

i) \(f = 1 \leq A \leq \Gamma \)

ii) \(\exists \phi : (X, \mu) \rightarrow \mathbb{R}^+ \) such that \(\int_X \phi d\mu = 1, \int_X \phi^q d\mu = A, \quad \|\phi\|_{p, \infty} = 1 \). □

4. The Extremal Problem

Let \(\mathcal{M}_T = \mathcal{M} \) the dyadic maximal operator associated to the tree \(T \), on
the probability non-atomic measure space \((X, \mu)\).
Our aim is to find

\[T_{f,A,F}(\lambda) = \sup \left\{ \mu(\{M\phi \geq \lambda\}) : \phi \geq 0, \int_X \phi d\mu = f, \int_Z \phi^q d\mu = A, \right\} \]

for all the allowable values of \(f, A, F \).

We find it in the case where \(F = 1 \).

We write \(T_{f,A}(\lambda) \) for \(T_{f,A,1}(\lambda) \).

In order to find \(T_{f,A}(\lambda) \) we find first the following

\[T^{(1)}_{f,A}(\lambda) = \sup \left\{ \mu(\{M\phi \geq \lambda\}) : \phi \geq 0, \int_X \phi d\mu = f, \int_X \phi^q d\mu = A, \right\} \]

(4.1)

The domain of this extremal problem is the following:

\[D = \left\{ (f, A) : 0 < f \leq 1, \ f^q \leq A \leq \Gamma f^{p-q/p-1} \right\}. \]

Obviously, \(T^{(1)}_{f,A}(\lambda) = 1 \), for \(\lambda \leq f \).

Now for \(\lambda > f \) and \((f, A) \in D\).

Let \(\phi \) as in (4.1). Consider the decreasing rearrangement of \(\phi \), \(g = \phi^* : [0, 1] \to \mathbb{R}^+ \). Then

\[\int_0^1 g = f, \ \int_0^1 g^q = A, \ \|\phi\|_{p,\infty} \leq 1. \]

Consider also \(E = \{M\phi \geq \lambda\} \subseteq X \).

Then \(E \) is the almost disjoint union of elements of \(T \), let \((I_j)_j\). In fact we just need to consider the elements \(I \) of \(T \), maximal under the condition

\[\frac{1}{\mu(I)} \int_I \phi d\mu \geq \lambda. \quad (4.2) \]
We, then, have $E = \bigcup_j I_j$ and $\int_E \phi d\mu \geq \lambda \mu(E)$ because of (4.2). Then according to Lemma 2.1 we have that $\int_0^\alpha g \geq \alpha \lambda$ where $\alpha = \mu(E)$. That is we proved that
\[
T^{(1)}_{f,A}(\lambda) \leq \Delta_{f,A}(\lambda)
\] (4.3)

where
\[
\Delta_{f,A}(\lambda) = \sup \left\{ \alpha \in (0,1] : \exists g : [0,1] \to \mathbb{R}^+ \text{ with } \int_0^1 g = f, \int_0^1 g^q = A, \right. \\
\left. \quad |||g|||_{p,\infty} \leq 1 \quad \text{and} \quad \int_0^\alpha g \geq \alpha \lambda \right\}.
\] (4.4)

We prove now the converse inequality in (4.3) by proving the following

Lemma 4.1 Let g be as in (4.4) for a fixed $\alpha \in (0,1]$. Then there exists $\phi : (X,\mu) \to \mathbb{R}^+$ such that
\[
\Phi d\mu = f, \quad \int_X \phi d\mu = A, \quad |||\phi|||_{p,\infty} \leq 1 \quad \text{and} \quad \mu(\{M\phi \geq \lambda\}) \geq \alpha.
\]

Proof. Lemma 2.3 guarantees the existence of a sequence $(I_j)_j$ of pairwise almost disjoint elements of \mathcal{T} such that
\[
\mu(\cup I_j) = \sum \mu(I_j) = \alpha.
\] (4.5)

Consider now the finite measure space $([0,\alpha],|\cdot|)$ where $|\cdot|$ is the Lebesgue measure. Then since $\int_0^\alpha g \geq \alpha \lambda$ and (4.5) holds, applying Lemma 2.2 repeatedly, we obtain the existence of a sequence (A_j) of Lebesgue measurable subsets of $[0,\alpha]$ such that the following hold:

$(A_j)_j$ is a pairwise disjoint family, $\cup A_j = [0,\alpha]$, $|A_j| = \mu(I_j)$, $\frac{1}{|A_j|} \int_{A_j} g \geq \lambda$. Then we define $g_j : [0,|A_j|] \to \mathbb{R}^+$ by $g_j = (g/A_j)^\ast$. Define also for every j a measurable function $\phi_j : I_j \to \mathbb{R}^+$ so that $\phi^\ast_j = g_j$. The existence of such
a function is guaranteed by the fact that \((I_j, \mu/I_j)\) is non-atomic. Here we mean

\[
\mu/I_j(A) = \mu(A \cap I_j) \quad \text{for every} \quad A \subseteq I_j.
\]

Since \((I_j)\) is almost pairwise disjoint family we produce a \(\phi^{(1)} : \cup I_j \to \mathbb{R}^+\) measurable such that \(\phi^{(1)}/I_j = \phi_j\). We set now \(Y = X \setminus \cup I_j\) and \(h : [0, 1 - \alpha] \to \mathbb{R}^+\) by \(h = (g/[\alpha, 1])^*\). Then since \(\mu(Y) = 1 - \alpha\) there exists \(\phi^{(2)} : Y \to \mathbb{R}^+\) such that \((\phi^{(2)})^* = h\).

Set now \(\phi = \begin{cases}
\phi^{(1)}, & \text{on } \cup I_j \\
\phi^{(2)}, & \text{on } Y.
\end{cases}\)

It is easy to see from the above construction that \(\int_X \phi d\mu = f, \int_X \phi^q d\mu = A\) and \(|||\phi|||_{p, \infty} \leq 1\).

Additionally

\[
\frac{1}{\mu(|I_j|)} \int_{I_j} \phi d\mu = \frac{1}{|A_j|} \int_{A_j} g \geq \lambda \quad \text{for every} \quad j
\]

that is

\(\{M\phi \geq \lambda\} \supseteq \cup I_j, \quad \text{so} \quad \mu(\{M\phi \geq \lambda\}) \geq \alpha\)

and the lemma is proved. \(\Box\)

It is now not difficult to see that we can replace the inequality \(\int_0^\alpha g \geq \alpha \lambda\) in the definition of \(\Delta_{f,A}(\lambda)\) by equality, thus giving \(S_{f,A}(\lambda)\), in such a way that (4.3) remains true, that is

\[
T^{(1)}_{f,A}(\lambda) = \Delta_{f,A}(\lambda) = S_{f,A}(\lambda).
\] (4.6)

This is true since if \(g\) is as in (4.4) there exists \(\beta \geq \alpha\) such that \(\int_0^\beta g = \beta \lambda\).

For \((f, A) \in D\) we set

\[
G_{f,A}(\lambda) = \sup \left\{ \mu(\{M\phi \geq \lambda\}) : \phi \geq 0, \int_X \phi d\mu = f, \int_X \phi^q d\mu = A \right\}.
\]

It is obvious that \(T^{(1)}_{f,A}(\lambda) \leq G_{f,A}(\lambda)\).
As a matter of fact $G_{f,A}(\lambda)$ has been computed in [3] and was found to be

$$G_{f,A}(\lambda) = \begin{cases} 1, & \lambda \leq f \\ \frac{f}{k}, & f < \lambda < \left(\frac{A}{f}\right)^{1/q} \\ k, & \left(\frac{A}{f}\right)^{1/q-1} \leq \lambda \end{cases}$$

(4.7)

where k is the unique root of the equation

$$\frac{(f - \alpha \lambda)^q}{(1 - \alpha)^q - 1} + \alpha \lambda^q = A \text{ on } [0, \frac{f}{\lambda}], \text{ when } \lambda > \left(\frac{A}{f}\right)^{1/q-1}.$$

We have now the following

Proposition 4.1 For $(f, A) \in D$, then

$$T_{f,A}^{(1)}(\lambda) \leq \min \left\{1, G_{f,A}(\lambda), \frac{1}{\lambda^p}\right\}.$$

Proof. We just need to see that $\mu(\{M\phi \geq \lambda\}) \leq \frac{1}{\lambda^p}$ for every ϕ such that $$|||\phi|||_{p,\infty} \leq 1.$$ But if $E = \{M\phi \geq \lambda\}$ we have by the definition of the norm $||| \cdot |||_{p,\infty}$ that $\int_E M\phi \leq \mu(E)^{1-\frac{1}{p}}$. But by (4.3) $\int_E M\phi \geq \lambda \mu(E)$, so that

$$\lambda \mu(E) \leq \mu(E)^{1-\frac{1}{p}} \Rightarrow \mu(E) \leq \frac{1}{\lambda^p}.$$

So Proposition 4.1 is true. □

We prove now the converse of Proposition 4.1 in three steps.

Proposition 4.2 Let $(f, A) \in D$ and λ such that

$$\frac{f}{\lambda} = \min \left\{1, G_{f,A}(\lambda), \frac{1}{\lambda^p}\right\}.$$

(4.8)

Then $T_{f,A}^{(1)}(\lambda) = \frac{f}{k}$.
Proof. We use Lemma 3.4 and equations (4.6). Because of (4.6) we need to find \(g : [0, 1] \to \mathbb{R}^+ \) such that

\[
\int_0^1 g = f, \quad \int_0^1 g^q = A, \quad \|g\|_{p,\infty} \leq 1 \quad \text{and} \quad \int_0^{f/\lambda} g = \frac{f}{\lambda} \cdot \lambda = f
\]

that is \(g \) should be defined on \([0, f/\lambda]\).

We apply Lemma 3.4 with \(\alpha = \frac{f}{\lambda} \).

In fact, since (4.8), is true we have that \(G_{f,A}(\lambda) = \frac{f}{\lambda} \), so, \(\lambda < \left(\frac{f}{A}\right)^{1/q-1} \) which gives (3.11), while \(\frac{f}{\lambda} \leq \frac{1}{\lambda^p} \) gives (3.10). In fact Lemma 3.4 works even with equality on (3.10) as it is easily can be seen. So, in view of (4.6) we have \(T_{f,A}(\lambda) \geq f/\lambda \) and the proposition is proved. \(\square \)

At the next step we have

Proposition 4.3 Let \((f, A) \in D \) and \(\lambda \) such that

\[
k = \min \left\{ 1, G_{f,A}(\lambda) \frac{1}{\lambda^p} \right\}.
\]

Let (4.9)

Then \(T_{f,A}(\lambda) = k. \)

Proof. Obviously (4.9) gives \(\lambda \geq \left(\frac{f}{A}\right)^{1/q-1} \).

We prove that there exists \(g : [0, 1] \to \mathbb{R}^+ \) such that

\[
\int_0^k g = k\lambda, \quad \int_0^1 g = f, \quad \int_0^1 g^q = A \quad \text{and} \quad \|g\|_{p,\infty} \leq 1.
\]

(4.10)

For this purpose we define:

\[
g := \begin{cases}
\lambda, & \text{on } [0, k] \\
\frac{f-k\lambda}{1-k}, & \text{on } (k, 1].
\end{cases}
\]

Then, obviously, the first two conditions in (4.10) are satisfied, while

\[
\int_0^1 g^q = \frac{(f-k\lambda)^q}{(1-k)^{q-1}} + k\lambda^q = A,
\]

21
by the definition of k.

Moreover $|||g|||_{p,\infty} \leq 1$. This is true since $k\lambda \leq k^{1-\frac{q}{p}}$, $f \leq 1$ and the fact that g is constant on each of the intervals $[0,k]$ and $(k,1]$. So we proved that $T^{(1)}_{f,A}(\lambda) \geq k$, that is what we wanted to prove. \square

At last we prove

Proposition 4.4 Let $(f,A) \in D$ and λ such that

$$\frac{1}{\lambda^p} = \min \left\{ 1, G_{f,A}(\lambda), \frac{1}{\lambda^p} \right\}. \quad (4.11)$$

Then $T^{(1)}_{f,A}(\lambda) = \frac{1}{\lambda^p}$.

Proof. As before we search for a function g such that

$$\int_0^1 g = f, \quad \int_0^1 g^q = A, \quad |||g|||_{p,\infty} \leq 1 \text{ and } \int_0^{1/\lambda^p} g = \frac{1}{\lambda^p} \cdot \lambda = \frac{1}{\lambda^{p-1}}. \quad (4.12)$$

We define

$$\vartheta_\lambda = \frac{\Gamma}{\lambda^{p-q}} + \frac{(f - \frac{1}{\lambda^{p-1}})^q}{\left(1 - \frac{1}{\lambda^p}\right)^{q-1}},$$

and we consider two cases:

i) $\vartheta_\lambda > A$

We search for a function of the form

$$g := \begin{cases}
(1 - \frac{1}{p})t^{-1/p}, & 0 < t \leq c_1 \\
\mu_2, & c_1 < t \leq \frac{1}{\lambda^p} \\
\mu_3, & \frac{1}{\lambda^p} < t < 1
\end{cases} \quad (4.13)$$

for suitable constants $c_1 \leq \frac{1}{\lambda^p}$, μ_2, μ_3. Then in view of (4.12) the following must hold:

$$c_1^{1-\frac{1}{p}} + \mu_2 \left(\frac{1}{\lambda^p} - c_1\right) = \frac{1}{\lambda^{p-1}}. \quad (4.14)$$
\[c_1^{1-\frac{1}{p}} + \mu_2 \left(\frac{1}{\lambda^p} - c_1 \right) + \mu_3 \left(1 - \frac{1}{\lambda^p} \right) = f \]
(4.15)

\[\Gamma c_1^{1-\frac{2}{q}} + \mu_2 \left(\frac{1}{\lambda^p} - c_1 \right) + \mu_3 \left(1 - \frac{1}{\lambda^p} \right) = A. \]
(4.16)

Notice that the condition \(\|\|g\|\|_{p,\infty} \leq 1 \) is automatically satisfied because of the form of \(g \) and the previous stated relations.

Now (4.14) and (4.15) give

\[\mu_3 = \frac{f - \frac{1}{\lambda^{p-1}}}{1 - \frac{1}{\lambda^p}}, \]
(4.17)

and

\[\mu_2 = \frac{1}{\lambda^{p-1}} - c_1^{1-\frac{1}{p}}, \]
(4.18)

while (4.16) gives \(T(c_1) = A \) where \(T \) is defined on \(\left[0, \frac{1}{\lambda^p} \right] \) by

\[T(c) = \Gamma c_1^{1-\frac{2}{q}} + \left(\frac{1}{\lambda^{p-1}} - c_1^{1-\frac{1}{p}} \right)^q \frac{(1 - \frac{1}{\lambda^p})}{(c - \frac{1}{\lambda^p})^{q-1}}. \]

Then

\[T(0) = \frac{1}{\lambda^{p-q}} + \frac{(f - \frac{1}{\lambda^{p-1}})^q}{(1 - \frac{1}{\lambda^p})^{q-1}}. \]

It is now easy to see that \(T(0) \leq A \) by using that \(F : [0, f/\lambda] \to \mathbb{R}^+ \) defined by

\[F(t) = \frac{(f - t\lambda)^q}{(1 - t)^{q-1}} + t\lambda^q \]

is increasing, and the definition of \(G_{f,A}(\lambda) \).

Moreover \(\lim_{c \to \frac{1}{\lambda^p}} T(c) = \vartheta_{\lambda} > A \), so by continuity of the function \(t \), we end case i). Now for
ii) \(\vartheta \lambda \leq A \) we search for a function of the form

\[
g := \begin{cases}
(1 - \frac{1}{p})^{t^{-1/p}}, & 0 < t \leq c_1 \\
\mu_2, & c_1 < t \leq 1
\end{cases}
\]

where \(\frac{1}{\lambda^p} < c_1 \). Similar arguments as in case i) give the result. \(\square \)

From Propositions 4.1 - 4.4 we have now of course

Theorem 4.1 For

\[
(f,A) \in D, \quad T_{f,A}^{(1)}(\lambda) = \min \left\{ 1, G_{f,A}(\lambda), \frac{1}{\lambda^p} \right\}.
\]

Remark 4.1 Notice that \(T_{f,A}(\lambda) = T_{f,A}^{(1)}(\lambda) \) for every \(f,A \) such that \(f^q < A \leq \Gamma f^{p-a/p-1} \) and \(0 < f \leq 1 \). Indeed suppose that \(\alpha = T_{f,A}^{(1)}(\lambda) \). Then there exists \(g : [0,1] \to \mathbb{R}^+ \) such that

\[
\int_0^1 g = f, \quad \int_0^1 g^q = A, \quad \int_0^\alpha g = \alpha \lambda \quad \text{and} \quad |||g|||_{p,\infty} \leq 1.
\] (4.19)

It is easy to see that for every \(\varepsilon > 0 \), small enough we can produce from \(g \) a function \(g_\varepsilon \) satisfying

\[
\int_0^{\alpha-\varepsilon} g_\varepsilon \geq (\alpha - \varepsilon) \lambda, \quad \int_0^1 g_\varepsilon = f, \quad \int_0^1 g_\varepsilon = A + \delta \varepsilon \quad \text{and} \quad |||g_\varepsilon|||_{p,\infty} = 1
\]

and \(\lim_{\varepsilon \to 0^+} \delta \varepsilon = 0 \). This and continuity reasons shows \(T_{f,A}(\lambda) = \alpha \).

iii) The case \(A = f^q \) can be worked out separately because there is essentially unique function \(g \) satisfying \(\int_0^1 g = f, \quad \int_0^1 g^q = f^q \), namely the constant function with value \(f \). \(\square \)

Scaling all the above we have that
Theorem 4.2 For f, A such that $f^q < A \leq F^{p-q/p-1} F^{p(q-1)/p}$ and $0 < f \leq F$ the following hold

$$\sup \left\{ \mu(\{M\phi \geq \lambda \}) : \phi \geq 0, \int_X \phi d\mu = f, \int_X \phi^q d\mu = A, \|\|\phi\|\|_{p,\infty} = F \right\}$$

$$= \min \left\{ 1, G_{f,A}(\lambda), \frac{F^p}{\lambda^p} \right\} (4.20)$$

and

$$\sup \left\{ \|M\phi\|_{p,\infty} : \phi \geq 0, \int_X \phi d\mu = f, \int_X \phi^q d\mu = A, \|\|\phi\|\|_{p,\infty} = F \right\} = F. \quad \square$$

References

[1] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press.
[2] D. L. Burkholder, Martingales and Fourier Analysis in Banach spaces, C.I.M.E. Lectures (Varenna (Como), Italy, 1985), Lecture Notes in Mathematics 1206(1986), 61-108.
[3] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. of Prob. 12(1984), 647-702.
[4] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, N.J., 2004.
[5] A. D. Melas, The Bellman functions of dyadic-like maximal operators and related inequalities, Adv. Math. 192(2005) 310-340.
[6] A. D. Melas, E. Nikolidakis, On weak type inequalities for dyadic maximal functions, J. Math. Anal. Appl. (2008) 404-410.
[7] A. D. Melas, E. Nikolidakis, Dyadic-like maximal operators on integrable functions and Bellman functions related to Kolcmgorov’s inequality, Transactions of the American Mathematical Society, vol. 362, No 3, March 2010, pages: 1571-1596.
[8] F. Nazarov, S. Treil, The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic Analysis, Algebra i Analyz 8 no. 5 (1996), 32-162.
[9] E. N. Nikolidakis, Extremal problems related to maximal dyadic-like operators, J. Math. Anal. Appl. 369(2010) 377-385.
[10] G. Wang, Sharp maximal inequalities for conditionally symmetric martingales and Brownian motion, Proc. Amer. Math. Soc. 112(1991) 579-586.