Regulations for the editors of journal "Computer Optics"

D V Kudryashov1,2, D V Kirsh1,2

1Image Processing Systems Institute of RAS - Branch of the FSRC "Crystallography and Photonics" RAS, Molodogvardejskaya street 151, Samara, Russia, 443001
2Samara National Research University, Moskovskoe Shosse 34A, Samara, Russia, 443086

e-mail: red_ko@smr.ru

Abstract. The authors analyze the process of passing an article from the moment it is received by the editors to publication in the scientific journal Computer Optics, which has three main sections: 1) diffractive optics, optical information technologies; 2) image processing, pattern recognition; 3) numerical methods and data analysis. It is noted that due to the effective organization and precise regulation of the editorial and publishing process, the journal has gained credibility, being indexed in the international scientometric databases Scopus and Web of Science (ESCI).

1. Introduction
The Computer Optics Journal has been published since 1987. Starting from 2016 its publication frequency is 6 issues per year. Each issue contains at least 20 original articles and reviews on the following topics: diffractive optics; information optical technologies; nanophotonics and optics of nanostructures; image analysis and understanding; pattern recognition; geo-information technologies; digital processing of signals and images, Earth remote sensing technologies; hyperspectral data analysis; numerical methods in diffractive optics; video-stream data-mining.

The journal is indexed in Scopus and Web of Science Core Collection (Emerging Source Citation Index), and it is available in other Russian (in particular, Russian Science Citation Index) and international scientometric databases. Starting with the first issue, all journal articles are provided in open access mode on the journal website: www.computeroptics.ru [1-3]. The journal archive for the years from 2007 is available in Scopus (2006 is being prepared for the upload), the Web of Science contains the journal archive for the years from 2015.

2. The main scientometric indicators of the Computer Optics journal
Due to the efforts of the editorial team, the Computer Optics journal improves its scientometric indicators in leading databases year after year. This corresponds to the goal defined at the end of 2014 by the chief editor of the journal - Academician of the Russian Academy of Sciences V.A. Soifer [4].
As a result, only a year later the journal entered Scopus, and another six months later - the Web of Science.

According to Scopus data for the year 2017, the SJR index (SCImago Journal Rank estimating the weighted number of citations of a series of publications) was 0.457; CiteScore (average number of citations of each document published in a periodical) was 1.79; SNIP (Source Normalized Impact per Paper showing the number of actual citations of a series of publications in relation to the expected number for the particular subject area) was 1.681. The Hirsch Index is 23.

Figures 1-3 show the change of the main indicators of the Computer Optics in Scopus over the years.

The number of journal citations in other sources has increased significantly since 2015. According to the preliminary data, in the year 2018 this indicator exceeded 1000 citations for the first time (Figure 4).

![Figure 1. SJR of the Computer Optics journal in 2009-2017.](image1.png)

![Figure 2. CiteScore of the Computer Optics journal in 2014-2018.](image2.png)

![Figure 3. SNIP of the Computer Optics journal in 2009-2018.](image3.png)
In addition, in accordance with the updated indicators of Scimago Journal & Country Rank, the Computer Optics journal entered the second quartile (Q2) for all subject areas (Optics, Applied Informatics and Electronic Equipment).

Figure 5. Indicators of the Computer Optics journal according to Scimago Journal & Country Rank.

3. The editors and editorial board of the Computer Optics journal

The organizational structure of editors of the Computer Optics journal is shown in Fig. 6.

Figure 6. The organizational structure of editors of the Computer Optics journal.

In addition, some of the editorial staff members form a special working group for the ongoing discussion of operational issues.
The editorial board includes the leading Russian scientists as well as the scientists from the United States, Germany, Finland, China, Britain and India.

4. Processing procedure for the articles received by the editors

An article prepared in accordance with the rules of the journal is accepted for publication in Computer Optics free of charge in case of a positive decision of the editorial board and the absence of color illustrations. The editors’ decision-making procedure and the timeframe for the article processing before the publication are determined by the special regulations [5] developed and approved by the editorial board of the journal - the “Regulations on the work of the editorial board and the editorial-and-publishing department of the Computer Optics journal”.

The work procedure of the editorial board from the moment of receipt of a scientific article to its publication is as follows:

1. The article is received in the form of an attachment(s) to an e-mail sent to the e-mail address of the journal ko@smr.ru.
2. From the ko@smr.ru mailbox, the article is automatically forwarded to the personal emails of the following persons:
 - the assistant editor,
 - the editors of the sections,
 - the employees of the editorial-and-publishing department,
 - the deputy chief editor.
3. A confirmation of receipt of the article is sent to the author via e-mail.
4. The editors of the sections define the area that the article belongs to. If the article does not correspond to the subject matter of the journal, the article is rejected, and the author receives a corresponding letter (within 3 days).
5. The employees of the editorial-and-publishing department check the article for plagiarism and send the results to the assistant editor and to the editors of the sections. In case of a negative conclusion, the author receives a corresponding notification within 3 days.
6. The employees of the editorial-and-publishing department check the article for the compliance with the submission guidelines (for no more than 2 weeks).
7. Simultaneously with i.6, the editor of the section that the article belongs to defines 3-4 reviewers among the competent authorities on the subject matter of the article that have no conflict of interest with the authors. Then the article is sent in a pdf-format along with the review form to the said reviewers via e-mail (with the confirmation of delivery and reading). If the author of the article or the reviewer is a member of the editorial board, then one review is allowed. In other cases, at least two reviews are required.
8. After the reviewer's consent is received, the reviewer sends a ready review to the editors' address within two weeks, at the same time the comments on the article compliance with the submission guidelines are received. If the review is not received within the specified period, the assistant editor sends a reminder to the reviewer with the confirmation of delivery and reading.
 If no response comes from the reviewer within 17 days after the article submission, this expert is withdrawn from reviewing the article. In addition, the editor of the section has the right to appoint additional reviewers if the majority of experts refuse to review the article or if the verdicts are contradictory.
9. Based on the reviews received, the author receives a letter where (if necessary) the assistant editor attaches anonymous review files, a justified conclusion of the section editor and the comments on the article compliance with the submission guidelines.
10. After that, the author has one month to make all the necessary corrections and to send a new version of the article to the editor with the comments on the changes made and the detailed answers to the comments.
11. After that, the assistant editor re-sends the received article to the reviewers and to the editorial-and-publishing department, which have one week to either approve the publication or
send new comments to the editors if such comments have appeared or have not been eliminated.

If the third version of the article submitted does not satisfy the reviewers again, the article is rejected.

12. Having received the approval from the reviewers and the editorial-and-publishing department, the editor of the section presents the article at the meeting of the editorial board.

13. In case of the editorial board approval, the assistant editor sends the article (indicating the version date) to the issuing editor for further processing.

14. The proofreading translator checks the English part of the text, the proofreader of literature references checks the correct spelling of references according to data posted in scientometric databases. The literary editor checks the article for spelling, grammatical and stylistic errors and compliance with the rules of the Russian language. The layout designer analyzes the quality of drawings and formulas and brings them to the required format. Upon completion of the layout, the proofreader and the literary editor re-check the text for errors and inconsistencies with the submission guidelines.

15. The editors of the sections suggest the order of the articles in the current issue, and after the approval of this order at the editorial board meeting, the pages and DOI numbers are assigned.

16. When the final layout of the entire issue is ready, the issuing editor submits its printout for verification and approval to the editors of the sections, chief editor deputies and the chief editor. If necessary, the issuing editor makes the corrections, corrects the page numbers and DOI numbers.

17. After that, the assistant editor sends the slips of finished articles to the authors, and the authors should send their comments or approval of publication within 3-4 business days.

18. Control proofreading of the entire issue by the literary editor and making the appropriate corrections. After that, the issuing editor sends the layout of the entire issue (in pdf format) to the print shop.

5. Promotion of the Computer Optics journal

After receiving the print run from the print shop, the second stage of work begins: promotion and distribution of the journal.

For each issue, the promotion editor creates a mailing list, which is approved by the deputy chief editor - the head of the publishing house. Based on this list, the publishing house and the founders send the journal to the subscribers, authors, leading domestic specialists, libraries and research organizations working on the subject matter of the journal. At the same time, the editorial-and-publishing department posts the issue on the journal website and in the Russian Science Citation Index.

At the same time, the promotion editor of the journal places the new number to the repository of the Samara National Research University (the Samara University), Russian and foreign databases, and electronic libraries, registers the DOI at Crossref. After that, he posts the information about the new issue on the websites of the founders: the Samara University and the Institute of Image Processing Systems of the Russian Academy of Sciences — the Branch of the FSRC “Crystallography and Photonics” of the Russian Academy of Sciences.

Under development: the profile on Facebook and professional communities/social networks, the webpage in “Wikipedia”.

As a rule, by the time of publishing an issue, the portfolio of the journal already contains enough articles for the next issue. The entire portfolio (including the articles that need to be finalized by the authors after the review and comments of the editorial-and-publishing department) includes an average of 100 articles.

6. Journal review policy

After the publication of each issue, the assistant editor makes a list of reviewers and the number of reviews received to prepare the letters of gratitude and diplomas to the most active and responsible reviewers of the year.
The total number of reviewers exceeds 200 specialists in the major subject areas of the journal, their geography covers the entire Russia, as well as Germany, Switzerland, India and a number of other countries.

The reviewing is confidential. The reviewers are anonymous for the authors and the data on them is intended only for the journal editors. The name of the reviewer may be communicated to the author only upon the reviewer’s consent. The journal applies the principle of single-blind peer review.

If the author’s response to the comments of the reviewers is received in more than one month, the article is removed from review, and the submitted version is considered to be a newly submitted article.

The editorial board does not consider the manuscripts sent personally to the editorial board members. It is mandatory to send the articles written by the authors from the founder organizations of the journal to the reviewers from other organizations.

7. Conclusion

Thus, the entire technological process from the moment the article is received by the editors till it is published in the journal takes an average of 70 days. The work of the editorial board is organized in such a way that it allows for the timely publication of 6 issues and over 120 articles per year. The efficient organization and strict regulation of the editorial and publishing process allowed the journal to gain high prestige among the scientists working in the field of computer optics and image processing, to achieve good indicators in the international scientometric databases Scopus and Web of Science (ESCI) [6-7], and judging by the data of Scopus, the journal issues [8-40] generate considerable interest of scientists all over the world.

8. References

[1] Kudryashov D V 2018 Formation, development and features of english-language issues of the journal “Computer Optics” JoP: Conferences series 1096 012148 DOI: 10.1088/1742-6596/1096/1/012148

[2] Kudryashov D V 2017 Current problems of development of the journal of Computer Optics CEUR Workshop Proceedings 1900 122-125

[3] URL: http://www.computeroptics.ru/

[4] Soifer V A 2014 Quo vadis Computer Optics 38(4) 589

[5] Kim M N 2015 Media editing: basic principles of organization and management Management Consulting 4 123-129

[6] Kazanskiy N L 2017 Editorial: Advances of the journal of Computer Optics Computer Optics 41(1) 139-141 DOI: 10.18287/2412-6179-2017-41-1-139-141

[7] Stafeev S S 2017 Indexing of Computer Optics in the Emerging Sources Citation Index database Computer Optics 41(4) 592 DOI: 10.18287/2412-6179-2017-41-4-592

[8] Kotlyar V V, Nalimov A G 2017 A vector optical vortex generated and focused using a metalens Computer Optics 41(5) 645-654 DOI: 10.18287/2412-6179-2017-41-5-645-654

[9] Kazanskiy N L, Khartonov S I, Doskolovich L L and Pavlyev A V 2015 Modeling the performance of a spaceborne hyperspectrometer based on the Offner scheme Computer Optics 39(1) 70-76 DOI: 10.18287/0134-2452-2015-39-1-70-76

[10] Kazanskii N L, Khonina S N, Skidanov R V, Morozov A A, Khartonov S I and Volotovskiy S G 2014 Formation of images using multilevel diffractive lens Computer Optics 38(3) 425-434

[11] Soifer V A, Korotkova O, Khonina S N and Shchepakina E A 2016 Vortex beams in turbulent media: review Computer Optics 40(5) 605-624 DOI: 10.18287/2412-6179-2016-40-5-605-624

[12] Kazanskiy N L, Khartonov S I, Khonina S N, Volotovskiy S G and Strelkov Yu S 2014 Simulation of hyperspectrometer on spectral linear variable filters Computer Optics 38(2) 256-270

[13] Kazanskiy N L, Khartonov S I, Karsakov A V and Khonina S N 2014 Modeling action of a hyperspectrometer based on the Offner scheme within geometric optics Computer Optics 38(2) 271-280
[14] Kazanskiy N L, Popov S B 2012 The distributed vision system of the registration of the railway
train Computer Optics 36(3) 419-428
[15] Karpeev S V, Khonina S N and Kharitonov S I 2015 Study of the Diffraction Grating on a
Convex Surface as a Dispersive Element Computer Optics 39(2) 211-217 DOI: 10.18287/0134-
2452-2015-39-2-211-217
[16] Soifer VA, Kupriyanov A V 2011 Analysis and recognition of the nanoscale images:
Conventional approach and novel problem statement Computer Optics 35(2) 136-144
[17] Nalimov A G, O'Faolain L, Stafeev S S, Shanina M I and Kotlyar V V 2014 Reflected four-
zones subwavelength microoptics element for polarization conversion from linear to radial
Computer Optics 38(2) 229-236
[18] Kazanskiy N L, Stepanenko I S, Khaimovich A I, Kravchenko S V, Byzov E V and Moiseev M
A 2016 Inj ectional multilens molding parameters optimization Computer Optics 40(2) 203-214
DOI: 10.18287/0134-2452-2016-40-2-203-214
[19] Egorov A V, Kazanskiy N L and Serafimovich P G 2015 Using Coupled Photonic Crystal
Cavities for Increasing of Sensor Sensitivity Computer Optics 39(2) 158-162 DOI: 10.18287/
0134-2452-2015-39-2-158-162
[20] Zimichev E A, Kazanskiy N L and Serafimovich P G 2014 Spectral-spatial classification with k-
means++ particional clustering Computer Optics 38(2) 281-286
[21] Khonina S N, Volotovsky S G 2009 Fracxicon – diffractive optical element with conical focal
domain Computer Optics 33(4) 401-411
[22] Ilyasova N Y 2013 Methods for digital analysis of human vascular system. Literature review
Computer Optics 37(4) 511-535
[23] Lyubopytov V S, Tlyavlin A Z, Sultanov A K, Bagmanov V K, Khonina S N, Karpeev S V and
Kazanskiy N L 2013 Mathematical model of completely optical system for detection of mode
propagation parameters in an optical fiber with few-mode operation for adaptive compensation
of mode coupling Computer Optics 37(3) 352-359
[24] Kazanskiy N L, Murzin S P and Tregub V I 2010 Optical system for realization selective laser
sublimation of metal alloys components Computer Optics 34(2) 481-486
[25] Ilyasova N Y, Kupriyanov A V and Paringer R A 2014 Formation of features for improving the
quality of medical diagnosis based on discriminant analysis methods Computer Optics 38(4)
851-855
[26] Denisova A Yu, Myasnikov V V 2014 Anomaly detection for hyperspectral imaginary
Computer Optics 38(2) 287-296
[27] Kotlyar V V, Stafeev S S 2009 Modeling sharp focus radially-polarized laser mode with conical
and binary microaxicons Computer Optics 33(1) 52-60
[28] Soifer V A, Kotlyar V V and Doskоловich L L 2009 Diffraction optical elements in
nanophotonics devices Computer Optics 33(4) 352-368
[29] Kotlyar V V, Kovalev A A and Soifer V A 2014 Diffraction-free asymmetric elegant Bessel
beams with fractional orbital angular momentum Computer Optics 38(1) 4-10
[30] Fursov V A, Bibikov S A and Bajda O A 2014 Thematic classification of hyperspectral images
using conjugacy indicator Computer Optics 38(1) 154-158
[31] Gashnikov M V, Glumov N I 2014 Hierarchical grid interpolation for hyperspectral image
compression Computer Optics 38(1) 87-93
[32] Khonina S N, Volotovsky S G and Kharitonov S I 2013 Features of nonparaxial propagation of
gaussian and bessel beams along the axis of the crystal Computer Optics 37(3) 297-306
[33] Alferov S V, Karpeev S V, Khonina S N and Moiseev O Yu 2014 Experimental study of
focusing of inhomogeneously polarized beams generated using sector polarizing plates
Computer Optics 38(1) 57-64
[34] Murzin S P 2014 Method of composite nanomaterials synthesis under metal/oxide pulse-
periodic laser treatment Computer Optics 38(3) 469-475
[35] Kuznetsov A V, Myasnikov V V 2014 A comparison of algorithms for supervised classification
using hyperspectral data Computer Optics 38(3) 494-502
[36] Bartalev S A, Egorov V A, Loupian E A, Plotnikov D E and Uvarov I A 2011 Recognition of arable lands using multi-annual satellite data from spectroradiometer modis and locally adaptive supervised classification Computer Optics 35(1) 103-116

[37] Spitsyn V G, Bolotova Y A, Phan N H and Bui T T T 2016 Using a haar wavelet transform, principal component analysis and neural networks for OCR in the presence of impulse noise Computer Optics 40(2) 249-257 DOI: 10.18287/2412-6179-2016-40-2-249-257

[38] Stafeev S S, Kotlyar M V, O’Faolain L, Nalimov A G and Kotlyar V V 2016 A four-zone transmission azimuthal micropolarizer with phase shift Computer Optics 40(1) 12-18 DOI: 10.18287/2412-6179-2016-40-1-12-18

[39] Porfirev A P, Kovalev A A and Kotlyar V V 2016 Optical trapping and moving of microparticles using asymmetrical Bessel-Gaussian beams Computer Optics 40(2) 152-157 DOI: 10.18287/2412-6179-2016-40-2-152-157

[40] Myasnikov E V 2017 Hyperspectral image segmentation using dimensionality reduction and classical segmentation approaches Computer Optics 41(4) 564-572 DOI: 10.18287/2412-6179-2017-41-4-564-572