EXCEPTIONAL CASE

The mysterious death of the beer-drinking champ: potential role for hyperacute water loading and acute hyponatremia

Maria Vanessa Perez-Gomez, Didier Sanchez-Ospina, Alberto Tejedor and Alberto Ortiz

1Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain, 2RICORS2040; Madrid, Spain, 3Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain, 4FRIAT/IRSIN, Madrid, Spain and 5Hospital Universitario Gregorio Marañón and Universidad Complutense de Madrid, Madrid, Spain

Correspondence to: Alberto Ortiz; E-mail: aortiz@fjd.es

ABSTRACT

Hyponatremia is acute when present for <48 h. Most cases of acute hyponatremia involve both excess free water intake and an at least partial urinary free water excretion defect. By contrast, hyperacute water intoxication may result from a large excess electrolyte-free water intake in such a short time that properly working urinary free water excretion mechanisms cannot cope. A hyperacute decrease in serum sodium may lead to death before medical intervention takes place. Well-documented cases have been published in the military medicine literature. In addition, news reports suggest the existence of cases of voluntary ingestion of excess free water by non-psychiatric individuals usually during ‘dare’ activities. Education of the public is required to prevent harm from these high-risk activities. Adequate training of emergency medical units may prevent lethal outcomes. Spanish media reported the case of a male who died following his triumph in a 20-min beer drinking contest. ‘From a heart attack. Man dies after drinking six litres of beer in a contest’ ran the news. We now review the physiology underlying hyperacute water intoxication and discuss the potential contribution of hyperacute water loading and acute hyponatremia to the demise of this patient.

Keywords: beer, drinking contest, HAWLAH, hyperacute, hyponatremia, mortality, potomania, water intoxication

TEACHING POINTS

• Most hyponatremia episodes occur in the setting of urinary dilution defects since physiological urinary dilution mechanisms allow the excretion of 16–20 L of water in 24 h.
• However, deaths from excess water ingestion can occur in apparently healthy individuals in the setting of dare activities or forced electrolyte-free water drinking.
• The general population and many healthcare workers are not sufficiently aware of this danger.
• We propose the term hyperacute water loading and hyponatremia (HAWLAH) to describe potentially lethal hyponatremia occurring in the setting of excess electrolyte-free water drinking that because of its magnitude and timing exceeds the physiological water excretion capacity, even in the absence of urinary dilution defects. Dissemination of this
Hydracut water loading and acute hyponatremia (HAWLAH) | 1197

concept may create awareness about the dangers of drinking huge amounts of electrolyte-free fluids.

BACKGROUND

Hyponatremia is defined as serum sodium (Na) <135 mmol/L. Since normal kidneys may excrete up to 15–20 L of water/day, the development of hyponatremia usually requires the association of excess water intake with an impaired kidney ability to excrete free water. Inappropriate secretion of antidiuretic hormone, kidney disease, drugs and a low osmolar load may impair free water excretion [1–4].

Hyponatremia usually reflects hypoosmolality and leads to water entry to cells, including brain cells, causing symptoms related to the magnitude or duration of hyponatremia [1, 5]. Acute hyponatremia (developing in <48 h) may cause nausea and malaise that usually appear as plasma sodium concentration decreases to <125 mmol/L, followed by headache, lethargy and obtundation (115–120 mmol/L) and eventually seizures, coma and death (<115 mmol/L) [1].

We now explore the death of a beer-drinking champ who died within 80 min of drinking 6 L of beer. After reviewing the literature, we propose the term hydracut water loading and hyponatremia (HAWLAH) to be used when the magnitude and timing of a free water load results in severe, potentially lethal hyponatremia, despite normal functioning water excretion mechanism that become overloaded.

CASE REPORT

According to media reports, a 45-year-old man died from cardiac arrest after winning a beer-drinking contest that started at 22:00 h at local festivities in Murcia, Spain [6]. Witnesses said he drank 6–7 L of beer in just 20 min. After raising the trophy, he felt sick and vomited and appeared to lose consciousness. ‘For ten minutes I was sitting with him, and he was sleeping, he was snoring’ recalled a witness. A call to the ‘112’ emergency number at 22:20 h was placed at the emergency room. There was no information on whether necropsy was performed.

Considering the free water load and timing and assuming a baseline plasma sodium of 140 mmol/L, we estimated a decrease in serum sodium of ~17–18 mmol/L in 80 min after drinking 6 L of beer, for a final plasma sodium of ~122 mmol/L. (Supplementary data, Tables S1 and S2 and online Appendix) [1, 5, 7–18]. This is a conservative estimate since 6 L were used for calculations. Even more conservative estimates provide a range of 11–18 mmol/L decrease in plasma sodium.

METHODS

A Google search for ‘death AND water AND drink’ performed on 6 August 2013 disclosed several relevant hits (Table 1). The same search in PubMed yielded only the case of a schizophrenic patient [19]. A PubMed search for ‘water intoxication AND death’ disclosed psychogenic cases, ecstasy and several cases in which the subject was counselled or forced to drink large amounts of water because of ingestion of toxic compounds or the need to fill the bladder or pee, such as workplace illicit drug testing and bladder echography. Table 2 contains some representative cases where the time course and volume of water ingestion was known and there were no other confounding factors such as sweating or vigorous exercise [20, 21].

DISCUSSION

Water homeostasis depends mainly on the regulation of water ingestion by thirst and of renal water excretion by anti-diuretic hormone (ADH). When thirst is overruled by voluntary drinking of free water or by therapeutic administration of free water, only the kidney remains as the last defense against water intoxication. However, the kidney water excretion capacity has limitations, even in healthy individuals. Maximal urine diluting capacity has a lag period of 90 min, since water loading occurs and maximally dilute urine is 50 mOsm/L [1]. Thus, the maximal water excretion rate has an hourly limit that depends on solute excretion (itself dependent on diet), but that may range from 500 to 850 mL for most individuals (Supplementary data, Table S3).

A hydracut water load that exceeds these limits may result in a positive water balance if the water balance was neutral at baseline and in the absence of other water losses. In this regard, it is unusual to drink such large amounts of free water that exceed the maximal water excretion rate of healthy individuals. However, water intoxication may occur within time frames that suggest that maximal urine capacity was not achieved or was not enough to prevent a dangerous decrease in serum sodium, even in individuals without apparent water excretion defects. The two basic scenarios are dare activities, sometimes in public places, such as with the patient under discussion, and compliance with instructions from peers or superiors. Forced intake of excess water is a form of torture [18]. In this regard, the military has enforced rules to prevent hydracut water intoxication in the setting of public collection of urine and hazing is now forbidden in US universities. However, public and media unawareness of the dangers of hydracut water intoxication has resulted in a stream of lethal cases that make headlines but are soon forgotten. In all cases, the ingested fluid was water. However, beverages are generally composed mainly of water and may theoretically lead to similar risks. In this regard, the present patient drank a huge volume of beer, an electrolyte-poor beverage.

A PubMed search for ‘hydracut hyponatremia’ performed on 6 August 2013 had no hits. However, a repeat search on 22 January 2022 yielded a report from January 2002 in which a decrease in serum sodium from 138 to 119 mmol/L within 7 h was noted after the patient was told to increase water intake and develop stroke-like symptoms [22]. We propose that hydracut water loading and acute hyponatremia (HAWLAH) is a distinct clinical entity that has been overlooked by the medical community but not by the media. We propose that HAWLAH define symptomatic hyponatremia driven exclusively or mainly by an electrolyte-free water intake overload developing within a time frame that precludes the recruitment of renal adaptation mechanisms, or that vastly exceeds maximally activated urine diluting capacity. Naming a problem is the first step towards solving it and we hope that providing a catchy name may help increase public awareness and limit the number of yearly deaths from hydracut hyponatremia.

A working definition for HAWLAH might be the occurrence of symptomatic hyponatremia within 3 h of the initiation of free water loading. Any time cutoff will be arbitrary for the moment, but after reviewing the literature and considering a lag period from the start of water loading to the absorption of enough water to result in symptoms and the lag period between the initial decrease of sodium concentration and attainment of maximal urinary dilution, a 3-h time frame may provide a working definition that allows further characterization of the syndrome epidemiology and clinical features. HAWLAH would not need inappropriate anti-diuresis to result in symptomatic hyponatremia.
Table 1. Representative results from Google searches. A search for ‘death AND water AND drink’ was combined with additional reports from news sites. Cases 1–5 are most compatible with the concept of HAWLAH.

Case	Age (years)/sex	Year	Circumstances	Fluid	Volume drunk (L/time (h))	Estimated volume drunk in 20 min (L)	Natremia (mmol/L)	Symptoms/outcome
1 (present case)	45/M	2013	Beer drinking competition	Beer	6/0.33	6	Unknown	Vomiting, coma, death within 90 min
2	5/F	2014	Punishment	Grape soda and water	2.4/1–2	0.4–0.8	Unknown	Vomiting, convulsion, death
3	12/F	2012	‘Water poker’ game	Water	6/ND	ND	Unknown	Vomiting, death
4	28/F	2007	Water-drinking radio station contest	Water	7.6/ > 3	0.85	Unknown	Severe headache/found dead a few hours later
5	40/F	2008	Dieting\(^a\)	Water	4/2	0.67	Unknown	Headache, death in hospital within 24 h
6	44/M	2008	Relieve of gum trouble\(^b\)	Water	10/8	0.42	115	Vomiting, unsteady gait, death within 24 h
7	21/M	2005	University hazing\(^c\)	Water	19/6	1.05	Unknown	Vomiting, seizure, death within 24 h

M: male; F: female; ND: no data.
\(^a\)500 calories a day dieting for 1 week may have decreased urinary solute excretion.
\(^b\)Had been drinking similar daily amounts for the past 48 h, may have decreased urinary solute excretion.
\(^c\)Additional hazing incidents at http://www.scouting.org/scoutsources/HealthandSafety/Alerts/chugging.aspx.
Table 2. Published reports consistent with HAWLAH. In all cases, patients drank water. No relevant medical history reported except obstructive sleep apnoea for the 2011 case [31]

Year	Age (years)/sex	Circumstances	Total volume (L)/time (h)	Estimated volume drunk in 20 min (L)	Initial natremia (mmol/L)	Clinical symptoms/outcome
1983	40/F	Drank a small amount of diluted household bleach. Poison unit advised to drink large amounts of fluid	15/2	2.5	Initial: 111 (2 h after onset of symptoms), 24 h later: 129	Early: vomiting, confusion, incoherent speech, confusion. Late: no response to painful stimuli, pulmonary oedema, cerebral and cerebellar oedema. Outcome: death
1985	21/F	Ultrasound preparation: 42 glasses	10/min	ND	Initial: 127, later (after treatment): 135	Early: headaches, nausea, vomiting, restlessness, tingling in limbs, fell asleep, mother found her not breathing and unresponsive. Late: confused, bizarre behaviour, non-responding, screaming incoherently. Outcome: recovery
1988	80/F	Fasting for ultrasound preparation	4/h	ND	Initial: 119, 24 h later: 128	Early: confused and uncooperative. Outcome: recovery
1991	40/F	Urine drug test according to Federal Aviation Administration rules	3/3	0.33	Initial: 121, 24 h later: 140	Early: vomiting, confusion, slurred speech, unsteady gait. Outcome: recovery
2002	20/F	Urine drug test while under observation	10–12/2–3	1.1–2	Initial: 123, 5 h later: 126	Early: dizziness, headache, incontinence, jerky movements, lost consciousness. CT: cerebral, cerebellar oedema. Late: no response to deep pain, absent gag/corneal reflexes, fixed, dilated pupils. Chest X-ray: diffuse interstitial oedema, increased cardiac enzymes, echocardiogram showed severe dilated cardiomyopathy, diffuse global hypokinesis. Outcome: death
2011	37/M	Urine drug test while under observation	14/3	1.5	Initial: 112, 90 min later: 132	Early: abdominal pain, acting confused. Lat: restless, inarticulate, ‘dry heaves’, ‘seizure-like activity’. Outcome: recovery
1999	18/M	Army basic training. Hot day, symptoms confused with dehydration. First drank 8 L in 5 h, then 5 L in 2 h and early symptoms began. Then 2 L in 2 h and 10 L in 90 min*	20–25/8–11	0.53	Initial: 121 (4 h after onset of symptoms), ICU: 115, 12 h later: 145	Early: vomiting, dizziness, throbbing headache. Late: gait unsteady, confused, lethargic, loss of consciousness, acute respiratory distress, coma, cardiac arrest, brainstem oedema. Outcome: death

M: male; F: female; ND: no data; ICU: intensive care unit.

*This is a complex case and it may be disputed whether it corresponds to HAWLAH. However, the misdiagnosis, administration of 10 L of water in 90 min and natrema values suggest that the final episode was HAWLAH.
The rapid onset may make hyperacute hyponatremia even more dangerous than acute hyponatremia, as indicated by animal experiments and media reports. In this regard, the pathophysiology of acute hyponatremia was frequently explored in animal models of hyperacute hyponatremia. In rabbits, a decrease in serum sodium concentration to ∼120 mmol/L in 120 min was lethal and caused severe cerebral oedema [16]. This mirrors the time frame and severity of hyponatremia of the beer-drinking champ. He was not reported to suffer from seizures, a common symptom in severe hyponatremia. However, the ethanol content of the water load may have increased the seizure threshold [1, 5, 17].

Several conditions limit maximal urine dilution capacity, including inappropriately high ADH levels [2, 3]. In the HAWLAH scenario, water overload is massive and within a time frame that prevents significant water excretion even at maximal urine dilution capacity. Thus we propose that HAWLAH would not encompass conditions associated with decreased water excretion capacity, such as beer-drinker potomania, where chronic ingestion of large amounts of beer without food results in decreased urinary excretion of osmoles and thus in reduced ability to excrete water [38], chronic psychogenic polydipsia, which is associated with urinary dilution defects, or excessive fluid intake during prolonged exertion under heat stress, where multiple physiological abnormalities may impair the ability to dilute urine [37]. While individuals with these conditions would be more prone to harm from excess free water drinking, we would prefer that the term HAWLAH emphasizes the risk of activities involving supraphysiological water intake within short time frames by healthy, non-stressed individuals. Discussion of the concept with hospital-based non-nephrological physicians, residents or medical students usually evidenced unawareness of the potential dangers of excess free water drinking.

Some limitations should be acknowledged. The patient arrived in cardiac arrest at the emergency room and it is unclear whether any serum labs were obtained. It was also not made public whether any autopsy was performed. However, we believe that this does not detract from the estimations made and the need to acknowledge and name the syndrome that may lead to increased awareness and potentially, save lives.

In conclusion, we propose the acronym HAWLAH to define acute symptomatic hyponatremia developing because of massive free water loading within a time frame that precludes the recruitment of a renal adaptation mechanism or overrules normal urine dilution mechanisms. News coverage of similar incidents in recent years suggests that harm from HAWLAH in previously healthy individuals may be more frequent than presented in the medical literature. A formal definition of the syndrome that allows recognition by physicians and the public may help address this problem and promote further research and refinement of the concept.

SUPPLEMENTARY DATA

Supplementary data are available at ckj online.

FUNDING

FIS/Fondos FEDER (PI18/01366, P19/00588, P19/00815, DT518/00032, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071, ISCIII-RETIC REDinREN RD16/0009), Sociedad Española de Nefrología, FRIAT, Comunidad de Madrid en Biomedicina B2017/BMD-3686 CIFRA2-CM. Instituto de Salud Carlos III (ISCIII) RICORS program to RICORS2040 (RD21/0005/0001), FEDER funds.

CONFLICT OF INTEREST STATEMENT

A.O. has received grants from Sanofi and consultancy or speaker fees or travel support from Advicience, Astellas, AstraZeneca, Amicus, Amgen, Fresenius Medical Care, GlaxoSmithKline, Bayer, Sanofi-Genzyme, Menarini, Kyowa Kirin, Alexion, Idorsia, Chiesi, Otsuka, Novo Nordisk and Vifor Fresenius Medical Care Renal Pharma and is Director of the Catedra Mundipharma-UMA of diabetic kidney disease and the Catedra AstraZeneca-UAM of chronic kidney disease and electrolytes. A.O. is the Editor-in-Chief of CKJ.

REFERENCES

1. Rose BD, Post TW, eds. Clinical physiology of acid-base and electrolyte disorders, 5th ed. New York: McGraw-Hill, 2001
2. Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. *N Engl J Med* 2007; 356: 2064–2072
3. Adrogue Hj, Madrias NE. Hyponatremia. *N Engl J Med* 2000; 342: 1581–1589
4. Sterns RH. Disorders of plasma sodium—causes, consequences, and correction. *N Engl J Med* 2015; 372: 55–65
5. Spasovski G, Vanholder R, Alilolo B et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. *Nephrol Dial Transplant* 2014; 29(Suppl 2): i1–i39
6. Muere tras ingerir 6 litros de cerveza en un concurso en las fiestas de gea y truyols. http://www.elmundo.es/elmundo/2013/07/19/espana/1374420919.html?19/07/2013 (2 September 2013, date last accessed)
7. Composicion y propiedades nutritivas de la cerveza. Spanish Society of Dietetics and Food Sciences citing Souci 1989, favier 1995. http://www.nutricion.org/publicaciones/revista_marzo_02/zcerveza/valornutritivo.htm (2 September 2013, date last accessed)
8. Pfeiffer A, Hoch B, Kaess H. Effect of ethanol and commonly ingested alcoholic beverages on gastric emptying and gastrointestinal transit. *Clin Investig* 1992; 70: 487–491
9. Maughan RJ, Leiper JB. Limitations to fluid replacement during exercise. *Can J Appl Physiol* 1999; 24: 173–187
10. Love AH, Mitchell TG, Phillips RA. Water and sodium absorption in the human intestine. *J Physiol* 1968; 195: 133–140
11. Hunt JB, Thillainayagam AV, Salim AF et al. Water and solute absorption from a new hypotonic oral rehydration solution: evaluation in human and animal perfusion models. *Gut* 1992; 33: 1652–1659
12. Mettler S, Rusch C, Colombani PC. Osmolality and pH of sport and other drinks available in Switzerland. *Schweiz Z Sportmed* 2006; 54: 92–95
13. Denton D, Shade R, Zamarippa F et al. Neuroimaging of gene and satiation of thirst and an interconnector-driven theory of origins of primary consciousness. *Proc Natl Acad Sci USA* 1999; 96: 5304–5309
14. Baumann G, Dingman JF. Distribution, blood transport, and degradation of antiuretic hormone in man. *J Clin Invest* 1976; 57: 1109–1116
15. Bendtsen P, Jones AW. Impact of water-induced diuresis on excretion profiles of ethanol, urinary creatinine, and urinary osmolality. *J Anal Toxicol* 1999; 23: 565–569
16. Arieff AI, Llach F, Massry SG. Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. *Medicine (Baltimore)* 1976; 55: 121–129
17. Mladenović D, Hrnčić D, Radosavljević T et al. Dose-dependent anticonvulsive effect of ethanol on lindane-induced seizures in rats. Can J Physiol Pharmacol 2008; 86: 148–152
18. Water cure (torture). Wikipedia. http://en.wikipedia.org/wiki/Water_cure_%28torture%29 (10 September 2013, date last accessed)
19. Hayashi T, Ishida Y, Miyashita T et al. Fatal water intoxication in a schizophrenic patient—an autopsy case. J Clin Forensic Med 2005; 12: 157–159
20. Frizzell RT, Lang GH, Lowance DC et al. Hyponatremia and ultramarathon running. JAMA 1986; 255: 772–774
21. Almond CS, Shin AY, Fortescue EB et al. Hyponatremia among runners in the Boston Marathon. N Engl J Med 2005; 352: 1550–1556
22. Balbi A, Sadowski JA, Torrens D et al. Hyperacute hyponatremia mimicking acute ischemic stroke. Am J Emerg Med 2022; 51: 428.e5–428.e7
23. Girl 5 dies from being forced to drink soda. http://news.msn.com/crime-justice/girl-5-dies-from-being-forced-to-drink-soda (1 March 2014, date last accessed)
24. Girl drinks herself to death in ‘water poker’. http://www.thelocal.se/41878/20120706/ (12 July 2012, date last accessed)
25. Woman dies after drinking 10 liters of water in eight hours. http://www.telegraph.co.uk/news/uknews/2262683/Man-dies-after-drinking-10-litres-of-water-in-eight-hours.htm (10 July 2008, date last accessed)
26. Jury rules against radio station after water-drinking contest kills Calif. mom. http://abcnews.go.com/GMA/jury-rules-radio-station-jennifer-strange-water-drinking/story?id=8970712 (20 November 2009, date last accessed)
27. Woman died from ‘too much water’. http://news.bbc.co.uk/2/hi/uk_news/england/bradford/7779079.stm (15 December 2008, date last accessed)
28. Man dies from water intoxication during military urine drug screening. Mil Med 2011; 176: 451–453
29. Police: Student died from ‘water intoxication’. http://www.cnnp.com/2005/US/02/04/fraternity.death.ap/ (4 February 2005, date last accessed)
30. A fraternity hazing gone wrong http://www.npr.org/templates/story/story.php?storyid=5012154 (18 November 2005, date last accessed)
31. Tilley MA, Cotant CL. Acute water intoxication during military urine drug screening. Mil Med 2011; 176: 451–453
32. Anastassiades E, Wilson R, Stewart JS et al. Fatal brain oedema due to accidental water intoxication. Br Med J (Clin Res Ed) 1983; 287: 1181–1182
33. Kott E, Marcus Y. Acute brain edema due to water loading in a young woman. Eur Neurol 1985; 24: 221–224
34. Shapira I, Isakov A, Almog C. Hyponatremia as the result of preparation for abdominal ultrasound examination. J Clin Ultrasound 1988; 16: 61–62
35. Klonoff DC, Jurow AH. Acute water intoxication as a complication of urine drug testing in the workplace. JAMA 1991; 265: 84–85
36. Gutmann FD, Gardner JW. Fatal water intoxication of an army trainee during urine drug testing. Mil Med 2002; 167: 435–437
37. Garigan TP, Ristedt DE. Death from hyponatremia as a result of acute water intoxication in an army basic trainee. Mil Med 1999; 164: 234–238
38. Joyce SM, Potter R. Beer potomania: an unusual cause of symptomatic hyponatremia. Ann Emerg Med 1986; 15: 745–747