Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses

Orsolya Inczefi, Valérie Alquier-Bacquié, Maïwenn Olier, Marion Rincel, Bélinda Ringot-Destrez, Sandrine Ellero-Simatos, Hélène Eutamène, Colette Bétoulières, Julie Thomas, Justin Laine, et al.

To cite this version:
Orsolya Inczefi, Valérie Alquier-Bacquié, Maïwenn Olier, Marion Rincel, Bélinda Ringot-Destrez, et al.. Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10 (1), pp.1-6. 10.1016/j.jcmgh.2020.02.008 . hal-02624659
Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses

Orsolya Inczefi, Valérie Bacquié, Maïwenn Olier-Pierre, Marion Rincel, Belinda Ringot-Destrez, Sandrine Ellero-Simatos, Hélène Eutamène, Colette Bétoulières, Julie Thomas, Justin Laine, Louise Gros, Mathilde Lévêque, Renaud Leonard, Cherryl Harkat, Catherine Robbe-Masselot, Richard Roka, Muriel Mercier-Bonin, Vassilia Theodorou, Muriel Darnaudéry, Jerrold R. Turner, Laurent Ferrier

PII: S2352-345X(20)30035-7
DOI: https://doi.org/10.1016/j.jcmgh.2020.02.008
Reference: JCMGH 588

To appear in: Cellular and Molecular Gastroenterology and Hepatology
Accepted Date: 27 February 2020

Please cite this article as: Inczefi O, Bacquié V, Olier-Pierre M, Rincel M, Ringot-Destrez B, Ellero-Simatos S, Eutamène H, Bétoulières C, Thomas J, Laine J, Gros L, Lévêque M, Leonard R, Harkat C, Robbe-Masselot C, Roka R, Mercier-Bonin M, Theodorou V, Darnaudéry M, Turner JR, Ferrier L, Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses, Cellular and Molecular Gastroenterology and Hepatology (2020), doi: https://doi.org/10.1016/j.jcmgh.2020.02.008.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute.
Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses

Orsolya Inczefi1,2,*, Valérie Bacquié1,*, Maïwenn Olier-Pierre1, Marion Rincel3, Belinda Ringot-Destrez4, Sandrine Ellero-Simatos1, Hélène Eutamène1, Colette Bétoulières1, Julie Thomas3, Justin Laine3, Louise Gros3, Mathilde Lévêque1, Renaud Leonard4, Cherryl Harkat1, Catherine Robbe-Massilot4, Richard Roka2, Muriel Mercier-Bonin1, Vassilia Theodorou1, Muriel Darnaudéry3, Jerrold R Turner5§, and Laurent Ferrier1§

1 INRAE, UMR 1331 ToxAlim, Toulouse, France
2 First Department of Medicine, University of Szeged, Szeged, Hungary
3 University of Bordeaux, INRAE, Nutrition and Integrative Neurobiology, UMR 1286, 33076 Bordeaux, France
4 Université de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, Villeneuve d’Ascq, France
5 Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA

* These authors contributed equally
§Corresponding authors:

Laurent Ferrier, PhD
INRA, UMR 1331 ToxAlim, Group of Neuro-Gastroenterology & Nutrition, Toulouse, France
Present address: Nestlé Research, Institute of Health Sciences, Department of Gastro-Intestinal Health
Route du Jorat 57 – Vers-chez-les-Blanc
1000 Lausanne 26
Switzerland
Phone: +41 21 785 84 21
E-mail: laurent.ferrier@rd.nestle.com

Jerrold R. Turner, MD, PhD
77 Avenue Louis Pasteur
NRB 730
Boston, MA 02115
E-mail: jrturner@bwh.harvard.edu

LENGTH: 999 words

RUNNING HEADER: Diverse responses to intestinal hyperpermeability
CONFLICTS OF INTEREST: JRT is a cofounder of Thelium Therapeutics. LF is currently an employee of Nestlé Research (Société des Produits Nestlé S.A.).

CONTRIBUTIONS: Conceptualization: MOP, MMB, MD, VT, JRT, LF; Experimentation: OI, VB, MOP, BRD, MR, SES, CB, ML, JT, JL, LG, RL, CH; Data analysis: OI, VB, MOP, HE, CRM, MR, RR, MMB, MD, JRT, LF; Manuscript preparation and revision: MD, JRT, LF.

KEYWORDS: myosin light chain kinase, MLCK, tight junction, microbiome, stress

ACKNOWLEDGEMENTS: This work was supported by an institutional grant from INRA and by NIH grants R01DK61931 and R01DK68271 to JRT. MD was supported by Bordeaux University, by the FFAS (Fond Français Alimentation Santé), and the ANR (Agence Nationale de la Recherche). MR was supported by the French ministry of research and education and Labex Brain. JT was a recipient of a fellowship from the French Society of Paediatric Research. OI was a recipient of a fellowship from the Nutrition, Chemical Food Safety and Consumer Behaviour Division of INRA.
Markedly increased intestinal permeability occurs in inflammatory bowel disease (IBD), graft-versus-host disease (GVHD), celiac disease, and multiple organ dysfunction. In these diseases, effectors of increased permeability include immune signaling, microbiome, and corticosteroids that, in part, signal through epithelial myosin light chain kinase (MLCK). More modest permeability increases occur in other disorders, including irritable bowel syndrome (IBS), autism spectrum disorder (ASD), depression, and stress-related disorders. Data directly linking barrier loss to disease phenotypes, however, are lacking.

To define the impact of modestly-increased intestinal permeability, we studied transgenic mice with intestinal epithelial-specific constitutively-active myosin light chain kinase (CAMLCK) expression. This MLCK-dependent tight junction regulation increased intestinal permeability (Fig. S1A,B). Nevertheless, postnatal growth (Fig. S1C), reproduction, intestinal transit (Fig. S1D), and intestinal histology, epithelial proliferation (a sensitive indicator of epithelial damage), and epithelial turnover are unaffected in CAMLCK transgenic (CAMLCK^{Tg}) mice. In contrast, mucosal tumor necrosis factor-α, interferon-γ, IL-10, and IL-13 transcripts as well as numbers of lamina propria neutrophils, CD4⁺ T cells, and IgA⁺ plasma cells are modestly increased by CAMLCK expression. Subclinical inflammation is, therefore, present and, by microbiome-dependent, IL-17-mediated processes, affords partial protection from acute pathogen invasion. Immune activation is nevertheless unlikely to amplify CAMLCK-driven permeability increases, as barrier function and ZO-1 anchoring are both acutely normalized by enzymatic MLCK inhibition.

We initially analyzed the gut microbiome of 31 WT and CAMLCK^{Tg} pups born to 8 WT dams. The microbiomes segregated by pup genotype but not dam (Fig. S1E) and included increased Clostridium and decreased Bacteroidetes, Enterococcus spp, and Prevotella in CAMLCK^{Tg} mice (Fig. S1F). Increased intestinal permeability can therefore cause dysbiosis-like microbiome shifts. Interestingly, maternal separation, which increases intestinal permeability, causes similar alterations and can be partially corrected by MLCK inhibitor-induced barrier restoration.

Microbiome alterations overlapping with the above have been reported in IBS and ASD. We therefore asked if CAMLCK^{Tg} mice displayed anxiety-like behavior, as occurs in those disorders, using the open-field test (Fig. 1C). Both the percentage of distance traveled in the center and the fraction of time spent in the center of the open field were reduced in CAMLCK^{Tg} mice (Fig. 1C); this did not reflect reduced locomotor activity, as total distance traveled in the entire area was similar in CAMLCK^{Tg} and WT mice (Fig. 1C). These data are consistent with increased anxiety-like behavior in CAMLCK^{Tg} mice. Although the results cannot differentiate between
direct effects of increased permeability and those requiring intermediate mediators, these data demonstrate that intestinal permeability increases can influence behavior.

Stress and increased permeability have been associated with enhanced visceral sensitivity in humans and rodents. Surprisingly, CAMLCK^{Tg} mice displayed striking visceral analgesia to colorectal distension relative to WT littermates (Fig. 1D). Sensitivity was restored by enzymatic MLCK inhibition, water avoidance stress, or naloxone-mediated opioid receptor antagonism (Fig. 1D). Although this effect of increased permeability on visceral sensitivity was unexpected, it is remarkably similar to the naloxone-reversible visceral analgesia reported in chronically-stressed female rats⁶ and naloxone-sensitive inhibition of nociceptive neurons by supernatants of colitic human and murine tissues.⁷

Studies of female IBS patients have linked increased permeability to altered functional and structural brain connectivity.⁶ Thus, although responses to colorectal distension can be mediated by spinal reflexes and sensory, limbic, and paralimbic regions of the brain,⁹ we asked if neuronal activation was modified by CAMLCK-induced permeability increases. C-Fos immunolabeling, an indicator of neuronal activity, was significantly greater in the paraventricular nucleus of the thalamus, the paraventricular nucleus of the hypothalamus, and the hippocampus, but not the medial prefrontal cortex, nucleus accumbens, or amygdala, of CAMLCK^{Tg}, relative to WT, mice (Figs. 2, S2). Increased intestinal permeability may therefore increase basal neuronal activity in areas of the brain that regulate responses to visceral pain or stress⁹ but not those associated with conscious visceral sensation.

These results demonstrate that increased intestinal permeability can impact i) gut microbiome composition; ii) behavior; iii) visceral pain responses; and iv) neuronal activation within the brain. Critically, these changes are all results, rather than causes, of intestinal barrier loss, as the latter was induced by targeted CAMLCK expression.

The sites of neuronal activation in CAMLCK^{Tg} mice support the hypothesis that increased intestinal permeability can activate the hypothalamic-pituitary-adrenal axis.¹⁰ Conversely, hypothalamic-pituitary-adrenal axis activation by exogenous stress can induce intestinal permeability increases.³ Thus, as has been proposed in IBD and GVHD, a self-amplifying cycle may ultimately direct the diverse phenotypes induced by MLCK-dependent, intestinal permeability increases. Further study is needed to define the complex relationships between intestinal permeability, stress, behavioral alterations, visceromotor responses, microbiome composition, and other abnormalities.
These data are the first to assess behavior in a model where a targeted increase in intestinal tight junction permeability is the only direct perturbation. The results demonstrate, unequivocally, that modest tight junction permeability increases induced via a physiologically- and pathophysiologically-relevant mechanism are sufficient to trigger local and systemic microbial, behavioral, and neurosensory changes. This provides new perspective with which to understand previously hypothesized cause-effect relationships that have been proposed on the basis of correlative data.
Figure legends:

Figure 1: Increased intestinal permeability modifies behavior and visceral sensitivity. A. Videotracking paths of representative WT and CAMLCK^{Tg} mice in the open field test. Percent distance traveled in the center (dashed lines), percent time in the center, and overall distance traveled in the entire field are shown. CAMLCK^{Tg} (blue circles, n=8) and WT (red squares, n=9) littermates were tested. mean±SEM. *, p<0.05; **, p<0.01, Mann-Whitney U test. B. Stepwise colorectal distension-induced visceromotor responses in CAMLCK^{Tg} (blue circles, n=7) were reduced relative to WT (red squares, n=7) littermates. Genotype-specific differences were eliminated by MLCK inhibition, water avoidance stress, or naloxone treatment. n = 5-9 per condition; for each treatment (vehicle control CAMLCK^{Tg} and WT mice from the same experiment are shown with pale symbols in the last three graphs). mean±SEM; **, p<0.01, 2-way ANOVA.

Figure 2: Increased intestinal permeability induces increased C-Fos immunolabelling in selected brain regions. CAMLCK^{Tg} (blue circles, n=5-6) and WT (red squares, n=5-6) littermates. Representative images of C-Fos immunolabeled brains from CAMLCK^{Tg} and WT mice. Bars = 200 µm; mean±SEM; *, p<0.05, t-test.
References

1. Su L, et al. Gastroenterology 2009;136:551-63.
2. Edelblum KL, et al. Cell Mol Gastroenterol Hepatol 2017;4:285-297.
3. Meddings JB, et al. Gastroenterology 2000;119:1019-28.
4. Yu D, et al. Proc Natl Acad Sci U S A 2010;107:8237-41.
5. Rincel M, et al. Psychopharmacology (Berl) 2019;236:1583-1596.
6. Larauche M, et al. Neurogastroenterol Motil 2012;24:1031-e547.
7. Guerrero-Alba R, et al. Gut 2017;66:2121-2131.
8. Witt ST, et al. Neuroimage Clin 2019;21:101602.
9. Larauche M, et al. Neurogastroenterol Motil 2019;31:e13489.
10. Ait-Belgnaoui A, et al. Psychoneuroendocrinology 2012;37:1885-95.
Inczefi, O., Bacquié, V., Olier Pierre, M., Rincel, M., Ringot-Destrez, B., Ellero Simatos, S., Eutamene, H., Bétoulières, C., Thomas, J., Laine, J., Gross, L., Lévêque, M., Leonard, Harkat, C., Robbe-Masselot, Roka, R., Mercier-Bonin, M., Theodorou, V., Darnaudéry, M., Turner, J. R., Ferrier, L. (Auteur de correspondance) (2020). Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses. Cellular and Molecular Gastroenterology and Hepatology, in press. DOI: 10.1016/j.jcmgh.2020.02.008
Inczefi, O., Bacquié, V., Olier Pierre, M., Rincel, M., Ringot-Destrez, B., Ellero Simatos, S., Eutamene, H., Bétoulières, C., Thomas, J., Laine, J., Gross, L., Lévêque, M., Leonard, Harkat, C., Robbe-Masselot, Roka, R., Mercier-Bonin, M., Theodorou, V., Darnaudéry, M., Turner, J. R., Ferrier, L. (Auteur de correspondance) (2020). Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses. Cellular and Molecular Gastroenterology and Hepatology, in press. DOI: 10.1016/j.jcmgh.2020.02.008
Incze/f_i et al. Figure S1

Comment citer ce document :
Incze/f_i, O., Bacquié, V., Olier Pierre, M., Rincel, M., Ringot-Destrez, B., Ellero Simatos, S., Eutamene, H., Bétoulières, C., Thomas, J., Laine, J., Gross, L., Lévéque, M., Leonard, Harkat, C., Robbe-Massilot, R., Roka, R., Mercier-Bonin, M., Theodorou, V., Darnaudéry, M., Turner, J. R., Ferrier, L. (Auteur de correspondance) (2020). Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses. Cellular and Molecular Gastroenterology and Hepatology, in press. DOI: 10.1016/j.jcmgh.2020.02.008
Inczefi, O., Bacquié, V., Olier Pierre, M., Rincel, M., Ringot-Destrez, B., Ellero Simatos, S., Eutamene, H., Bétoulières, C., Thomas, J., Laine, J., Gross, L., Lévêque, M., Leonard, Harkat, C., Robbe-Masselot, Roka, R., Mercier-Bonin, M., Theodorou, V., Darnaudéry, M., Turner, J. R., Ferrier, L. (Auteur de correspondance) (2020). Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses. Cellular and Molecular Gastroenterology and Hepatology, in press. DOI: 10.1016/j.jcmgh.2020.02.008

Figure S2

- **medial prefrontal cortex**

- **nucleus accumbens**

- **amygdala**
Supplemental Figure 1:

A. Trans-jejunal fluorescein flux was increased in CAMLCKTg (blue circles) relative to WT (red squares) littermates. mean±SD; *, p<0.05, Mann-Whitney U test.

B. In vivo analysis using FITC-4kDa dextran demonstrated increased permeability of CAMLCKTg (blue circles, n=19) relative to WT (red squares, n=20) littermates. mean±SD; *, p<0.05, t-test.

C. Weight gain was similar in WT (red squares, n=6) and CAMLCKTg (blue circles, n=6) littermates. mean±SD.

D. Intestinal transit was similar in WT (red squares, n=10) and CAMLCKTg (blue circles, n=9) littermates. mean±SD.

E. Partial least squares discriminant analysis (PLS-DA) score plot based on the relative abundances of 18 microbial taxa in gut contents of CAMLCKTg (circles, n=16) and WT (squares, n=15) born to 8 different dams (each color represents one dam).

F. Relative abundances of microbial communities in CAMLCKTg (blue) and WT (red) mice. Diagrams indicate regions analyzed.
Supplemental Figure 2:

\(\text{CAMLCK}^{Tg} \) (blue circles, n=5-6) and WT (red squares, n=5-6) littermates. Representative images of C-Fos immunolabeled brains from \(\text{CAMLCK}^{Tg} \) and WT mice. Bars = 200\(\mu \)m; mean±SEM; *, \(p<0.05 \), t-test.
Supplemental Methods

Animals

CAMLCKTg mice1,4 (Tg(Vil-FLAG-CAMLCK)#Jrt) were maintained as male heterozygotes on C57BL/6J background. These were mated with WT C57BL/6J females to produce WT and CAMLCKTg littermates. At weaning, female mice were separated and housed at constant temperature (22±1°C) with a 12 hour light/dark cycle. Food (Teklad 2018, Envigo) and water were available ad libitum. All experiments were performed at 8 weeks of age. Procedures were approved by the Ethical Committee CEEA-86, under the number APAFiS#4145.

Gut microbiota composition analysis

Gut microbiota were analyzed in two cohorts (15 WT and 16 CAMLCKTg) from 8 different WT dams. At sacrifice, colonic contents were stored at -80°C. DNA was extracted using the ZR fecal DNA MiniPrep kit (Zymo Research) and adjusted to 1 ng/µL. Changes in relative abundance of 24 microbial 16S rRNA gene targets were obtained by qRT-PCR using an adapted Gut Low-Density Array platform.5,7 A universal bacterial primer set was included as the reference gene. qRT-PCR was performed in duplicate on a ViiA7 (Applied Biosystems).

Fluorescence data was imported into LinRegPCR to perform baseline corrections, calculate mean PCR efficiency per amplicon group, and calculate initial quantities. Among the 24 targeted amplicon groups, 6 were not detected in any fecal samples and were removed from the analysis (B. vulgatus, Alistipes spp., Parabacteroidetes distasonis, Roseburia spp., E. coli and A. muciniphila). Normalized N\textsubscript{0}-values were log\textsubscript{10}-transformed and processed by MixOmics (v6.1.1) with RStudio (v1.0.44) to build a partial least-squares discriminant analysis (PLS-DA). This multivariate supervised approach projects samples (X) onto a low-dimensional space of latent variables to maximize separation between groups according (Y=genotype). Leave-one-out cross-validation was used to select the optimal number of latent variables for PLS-DA models.

Open field test

Mice explored a 50x50cm arena (illumination 300lux) for 10min. Exploration was automatically assessed using a video tracking system (Bioseb). The percentage of distance traveled and time spent and in the center area (20x20cm) and total distance traveled in the entire arena were assessed.
Colorectal distension (CRD)

Two 0.08mm diameter electrodes were implanted in the abdominal external oblique muscle and a third in the abdominal skin. On postoperative days 3-6, CRD was performed using a balloon catheter (Fogarty 4F catheter, 1.1cm length, tip 3.5cm from the anus) in 10 sec periods with increasing volumes from 0.02 mL to 0.10 mL, with 5min rest between distensions. Abdominal electromyography activity was registered after the amplification (10000x) and analyzed (Powerlab Chart 5). Basal EMG activity was subtracted from EMG activity registered during distension. Some mice were treated with ML-7 (2 mg/kg i.p.) or naloxone sulfate (2 mg/kg i.p.) 1h before CRD. For others, water avoidance stress was induced on a floating platform (3cmx3cm) in the middle of a water-filled tank (40cmx40cm) for 1h daily over four days. Recovery (30min) preceded CRD.

Gastrointestinal transit

Animals received 70µL of 100mg/ml TRITC-70kDa dextran in tap water by gavage and were sacrificed 1 h later. Stomach, small and large intestine were cut in 11 equal parts. Luminal contents of each segment were centrifuged and fluorescence determined. Transit was calculated as the geometric center of the values for each mouse.

Ussing chamber analysis

Jejunal sections were mounted in Ussing chambers (Physiologic Instruments) filled with Krebs buffer and continuously oxygenated (95% O2, 5% CO2). After 1 hour of equilibration, Fluorescein (1mg/mL) was added in the apical chamber and fluorescence intensity of the basolateral chamber was measured after 1 hour.

In vivo permeability analysis

Mice were fasted for 4 hours before gavage with 150µL of 100mg/mL FITC-4kDa dextran in tap water. Blood (200µL) was collected after 4h and plasma fluorescence determined.
C-Fos analysis

Vibratome sections (40µm) were stained using polyclonal rabbit anti-C-Fos (Santa Cruz) and secondary HRP-conjugated goat anti-rabbit antisera (Jackson ImmunoResearch). NDPI images (x20) were obtained (Nanozoomer, Hamamatsu Photonics) and converted into TIFF format using ImageJ (NDPI tools plugin). Regions of interest (ROI) were manually circumscribed using ROI tools and C-Fos-immunoreactive cells quantified automatically using the particle analysis function (size: 5-20 µm²; circularity: 0.5-1). For each animal, 3-6 sections of each brain area were assessed by a blinded observer.

Statistical analysis

Statistical significance was determined by two-tailed t-test, two-tailed Mann-Whitney U test, or 2-way ANOVA and set at $p<0.05$. For microbial analyses, univariate analysis was realized in parallel to compare each amplicon separately using unpaired t-test followed by the Benjamini-Hochberg adjustment of p-values for multiple comparisons.

Supplemental references

1. Su L, et al. Gastroenterology 2009;136:551-63.
2. Weber CR, et al. J Biol Chem 2010;285:12037-46.
3. Edelblum KL, et al. Cell Mol Gastroenterol Hepatol 2017;4:285-297.
4. Yu D, et al. Proc Natl Acad Sci U S A 2010;107:8237-41.
5. Bergstrom A, et al. FEMS Microbiol Lett 2012;337:38-47.
6. Bergstrom A, et al. Appl Environ Microbiol 2014;80:2889-900.
7. Riba A, et al. Gastroenterology 2017;153:1594-1606 e2.