Small non-Leighton two-complexes†

BY NATALIA S. DERGACHEVA AND ANTON A. KLYACHKO

Faculty of Mechanics and Mathematics of Moscow State University,
Moscow 119991, Leninskie gory, MSU, Moscow, Russia.

AND

Moscow Center for Fundamental and Applied Mathematics
e-mails: nataliya.dergacheva@gmail.com, klyachko@mech.math.msu.su

(Received 20 September 2021; revised 27 July 2022; accepted 21 July 2022)

Abstract

How many 2-cells must two finite CW-complexes have to admit a common, but not finite common, covering? Leighton’s theorem says that both complexes must have 2-cells. We construct an almost (?) minimal example with two 2-cells in each complex.

2020 Mathematics Subject Classification: 57K20 (Primary); 20F05, 05C65, 05C25 (Secondary)

0. Introduction

Leighton Theorem [10] If two finite graphs have a common covering, then they have a common finite covering.

Alternative proofs and various generalisations of this result can be found, e.g., in [2], [4], [14], [15], [19], and references therein.

Does a similar result hold for any CW-complexes, i.e.

is it true that, if, for finite CW-complexes K_1 and K_2, there exist a CW-complex K and cellular coverings $K_1 \leftarrow K \rightarrow K_2$, then there exists a finite CW-complex K with this property?

This natural question was posed (in other terms) in [1] and [16]. Notice the cellularity requirement. Surely, we would obtain an equivalent question if we replace this condition with a formally stronger combinatorialness one: the image of each cell is a cell. However, without the cellularity condition, the answer would be negative: indeed, the torus and the genus-two surface have no finite common coverings (as the fundamental group the genus-two orientable surface $\langle x, y, z, t | [x, y][z, t] = 1 \rangle$ contains no abelian subgroups of finite index), while the universal coverings of these surfaces are homeomorphic, because they are the plane. The cellularity condition rules out such examples: if we take, e.g., the standard one-vertex cell structures on the torus and genus-two surface, then, on the covering plane, we obtain:

†This work was supported by the Russian Science Foundation, project no. 22-11-00075.
(i) the usual square lattice on the (Euclidean) plane (in the torus-case);
(ii) and an octagonal lattice on the (Lobachevskii) plane (in the genus-two case);

(i.e. though the universal coverings are homeomorphic, the cell structure on them are principally different). This example cannot be saved by a complication of the cell structures on the torus and genus-two surface (as was noted in [1] and [16]; the authors of [1] even conjectured that the answer to the (cellular version of) the question is positive).

Nevertheless, the answer turned out to be negative as was shown in [18] (and actually, much earlier in [17]); the complexes K_1, K_2 forming such a non-Leighton pair from [18] contain as few as six 2-cells each. In [8], this number was reduced to four:

there exist two two-complexes containing four 2-cells each that have a common covering but have not finite common coverings.

(Henceforth, we omit the prefix “CW-” and word “cellular”: a complex means a CW-complex, and all mapping between complexes are assumed to be cellular in this paper.) The non-Leighton complexes K_1 and K_2 from [8] are the standard complexes of the following group presentations Γ_i, i.e. one-vertex complexes with edges corresponding to the generators and 2-cells attached by the relators:

$$\Gamma_1 = F_2 \times F_2 = \langle a, b, x, y \mid [a, x], [a, y], [b, x], [b, y] \rangle$$
and

$$\Gamma_2 = \langle a, b, x, y \mid axay, ax^{-1}by^{-1}, ay^{-1}bx^{-1}, bx^{-1}y^{-1} \rangle.$$

Both of these complex are covered by the Cartesian product of two trees (Cayley graphs of the free group F_2); and no finite common cover exists, because the fundamental group of such hypothetical covering complex would embed in both groups Γ_i as finite-index subgroups, but, in Γ_1, any finite-index subgroup contains a finite-index subgroup which is the direct product of free groups, while Γ_2 has no such finite-index subgroups [8] (though, in this special case, it was recently obtained [6]). Henceforth,

$$x^k y \overset{\text{def}}{=} y^{-1} x^k y,$$
where x and y are elements of a group and $k \in \mathbb{Z}$.

Although the authors of [8] did not pursue this purpose; it was a byproduct of their results.
Small non-Leighton two-complexes

In conclusion, note that results on coverings of two-complexes can imply nontrivial facts about graphs, because one can “model” 2-cells in graphs by means of additional vertices and edges, see [4]. Higher dimensional complexes are of little sense here: if complexes \(K_1 \) and \(K_2 \) form a non-Leighton pair, then their two-skeleta also form such a pair, as is easy to verify. A detailed exposition of the general theory of coverings and CW-complexes can be found, e.g., in [7].

1. Algebraic lemmata

The following fact is well known [13], we give a short proof for the reader’s convenience.

Commutator Lemma. In the group \(H = BS(3, 5) = \langle c, d \mid c^{3d} = c^5 \rangle \), the commutator \(h = [c^d, c] \) belongs to any finite-index subgroup.

Proof. Each finite-index subgroup contains a normal finite-index subgroup (see, e.g., [9]). Therefore, it suffices to show that \(h \) lies in the kernel of any homomorphism \(\varphi : H \to K \) to any finite group \(K \).

The elements \(\varphi(c^3) \) and \(\varphi(c^5) \) have the same order (because they are conjugate); hence, the order of \(\varphi(c) \) is not divisible by three. Therefore, \(\varphi(c) \in \langle \varphi(c^3) \rangle \). Thus, \(\varphi(c)^{\varphi(d)} \in \langle \varphi(c) \rangle \) and \(h = [c^d, c] \) belongs to the kernel of \(\varphi \). This completes the proof.

Bottle Lemma. If a group \(G \) has a subgroup \(\langle a, b \rangle = \langle a, b \mid a^p = a^{-1} \rangle \simeq BS(1, -1) \), and the element \(b \) lies in all finite-index subgroups of \(G \), then any finite-index subgroup of \(G \) contains a subgroup isomorphic to the Klein-bottle group \(BS(1, -1) \).

Proof. Any finite-index subgroup contains all elements conjugate to \(b \), because the intersection \(R \) of all finite-index subgroups is normal. Therefore, \(a^2 = b^{-1}b^a \in R \) and \(\langle a^2, b \rangle \subseteq R \). It remains to note that \(a^{2b} = a^{-2} \), and the groups \(\langle a^2 \rangle \) and \(\langle b \rangle \) are infinite; hence, the subgroup \(\langle a^2, b \rangle \) is isomorphic to \(BS(1, -1) \), because,

\[
\text{in any group, infinite-order elements } x \text{ and } y \text{ such that } x^y = x^{-1} \text{ generate a subgroup isomorphic to the Klein-bottle group. (1)}
\]

Indeed, there is obvious epimorphism

\[
\varphi : BS(1, -1) = \langle a, b \rangle \longrightarrow \langle x, y \rangle.
\]

Any element \(g \in BS(1, -1) \) can be written in the form \(g = a^{k}b^{l} \). If \(g = a^{k}b^{l} \in \ker \varphi \), then \(\ker \varphi \ni [b, g] = b^{-1}b^{-1}a^{-k}ba^{k}b^{l} = a^{\pm 2k} \). Therefore, \(k = 0 \) (because \(|\langle x \rangle| = \infty \)). But then \(l = 0 \) too, because \(1 = \varphi(g) = \varphi(b^{l}) = y^{l} \), and \(|\langle y \rangle| = \infty \). Thus, \(\ker \varphi = \{ 1 \} \) and \(\varphi \) is an isomorphism. This completes the proof.

No-Bottle Lemma. The amalgamated free product

\[
G = \left\{ a, c, d \mid [a, [c^d, c]] = 1, \ c^{3d} = c^5 \right\} = \langle a, b \mid [a, b] = 1 \rangle \ast_{b=[c^d, c]} \left\{ c, d \mid c^{3d} = c^5 \right\}
\]

of the free abelian group and the Baumslag–Solitar group \(BS(3, 5) \) contains no subgroups isomorphic to the Klein-bottle group \(K = BS(1, -1) \).

Proof. The group \(BS(3, 5) \) does not contain subgroups isomorphic to \(K \) [11] and is torsion-free. Therefore, applying once again (1), we obtain that the quotient
has no nonidentity elements conjugate their inverse. Therefore, any element of G by the normal closure of (a, G) implies that x or $x\mapsto n$:

(i) either $\hat{x}_1^2 \in \langle b \rangle$ for some $\hat{x}_1 \in (\langle a \rangle_\infty \times \langle b \rangle_\infty) \setminus \{b\}$;

(ii) or $\hat{x}_1^2 \in([[c^d, c]] \setminus \langle [c^d, c] \rangle$ for some $\hat{x}_1 \in \{c, d \mid c^{3d} = c^5\} \setminus \langle [c^d, c] \rangle$.

The first is impossible of course. The impossibility of the second case can be verified, e.g., as follows:

(i) the quotient group $Q = \langle c, d \mid c^{3d} = c^5 \rangle / \langle [[c^d, c]] \rangle$ is torsion-free; indeed, Q is the HNN-extension $Q = \langle c, e, d \mid [e, c] = 1, e^3 = c^5, c^d = e \rangle$ of the abelian group $A = \langle c, e \mid [e, c] = 1, e^3 = c^5 \rangle$, which is torsion-free (moreover, it is easy to verify that $A \simeq \mathbb{Z}$ and $Q \simeq \text{BS}(3, 5)$);

(ii) therefore, \hat{x}_1 lies in the normal closure $F = \langle [[c^d, c]] \rangle$, which is a free group, because, by the Karrass–Solitar theorem (see, e.g., [12]), any subgroup of an HNN-extension is free if it intersects conjugates of the base trivially. It remains to show that $[c^d, c]$ is not a square in F (because in a free group an inclusion $a^2 \in \langle b \rangle$ implies that $\langle a, b \rangle$ is cyclic by the Nielsen–Schreier theorem and, hence, $\alpha \in \langle b \rangle$ if β is not a square). The commutator $[c^d, c]$ is not a square in F, because, assuming the contrary and noting that automorphic images of squares are squares too, we obtain $F = \langle [[c^d, c]] \rangle = \langle \hat{x}_1^2 \rangle \subseteq \langle \{f^2 \mid f \in F\} \rangle$, which cannot hold in a nontrivial free group F. This completes the proof.

2. Proof of the main theorem

Take the fundamental groups of the torus and the Klein bottle:

$$G_1 = \text{BS}(1, 1) = \langle a, b \mid [a, b] = 1 \rangle \quad \text{and} \quad G_{-1} = \text{BS}(1, -1) = \left\langle a, b \mid a^b = a^{-1} \right\rangle$$
and consider the amalgamated free products $H_\varepsilon = G_\varepsilon \ast_{b = h} H$ of G_ε and a group

$$H = \langle X \mid R \rangle \supseteq \langle h \rangle_\infty$$

(henceforth $\varepsilon = \pm 1$). Let K_ε be the standard complex of the (standard) presentation of H_ε:

$$H_\varepsilon = \left\langle \{a\} \sqcup X \mid \{\hat{h}a^{-\varepsilon}\} \sqcup R \right\rangle,$$

where \hat{h} is a word in the alphabet $X^{\pm 1}$ representing the element $h \in H$.

The Cayley graphs of G_ε are isomorphic surely (as abstract undirected graphs), the same is true for the universal coverings of the standard complexes of presentations of the groups G_ε (these covering complexes are planes partitioned on squares, Figure 1).

A slightly less trivial observation is that, for groups H_ε, the universal coverings are isomorphic too:

for any infinite-order element h of any group H, the universal coverings of complexes K_ε are isomorphic.

(\ast)

In what follows, we explain this simple fact in details; the readers who regard this fact as obvious, can skip to Observation ($\ast\ast$).

It suffices to show that some coverings $\hat{K}_\varepsilon \rightarrow K_\varepsilon$ have isomorphic \hat{K}_ε; we prefer to take the coverings corresponding to the normal closure $\langle\langle a \rangle\rangle$ of $a \in H_\varepsilon$. In explicit form, these complexes \hat{K}_ε are the following ones:

(i) the vertices are elements of H;
(ii) the edges with labels from X are drawn as in the Cayley graph of the group H: an edge with label $x \in X$ go from each vertex $h' \in H$ to the vertex $h'x \in H$;
(iii) in addition, to each vertex $h' \in H$, a directed loop (edge) $a_{h'}$, labelled by a is attached;
(iv) to each cycle whose label is a relator from R, an oriented 2-cell is attached;
to each cycle with label $a^\hat{h}a^{-\varepsilon}$, an oriented 2-cell (a special cell) is attached; thus, going along the boundary of a special cell in the positive direction, we meet two edges labelled by a, namely, $a_{h'}$ and $a_{h'}^{-\varepsilon}$, where, as usual, $a_{h'}^{-1}$ means that the edge $a_{h'}$ is traversed against its direction.

The isomorphism $\Phi_1: \hat{K}_1 \to \hat{K}_{-1}$ is the following:

(i) the vertices, edges with labels from X and nonspecial 2-cells (corresponding to relators from R) are mapped identically;

(ii) to define the mapping Φ_1 on edges labelled by a and special 2-cells, we choose a set T of left-coset representatives of $\langle h \rangle$ in H, and put $\Phi_1(a_{th}k) = a_{-1}(k)$ for all $t \in T$ and $k \in \mathbb{Z}$ (i.e., in each coset, each second loop labelled by a is inverted); then the mapping of singular cells are defined naturally: a cell of \hat{K}_1 with edges $a_{h'}$ and $a_{h'}^{-1}$ on its boundary is mapped to the cell of \hat{K}_{-1} containing $a_{h'}$ and $a_{h'}^{-1}$ on its boundary.

The next simple observation is that:

if $h \in H$ belongs to all finite-index subgroups of H, and the complexes K_ε have a finite common covering, then the group H_1 contains a subgroup isomorphic to the Klein-bottle group $BS(1, -1)$.

Indeed, in H_{-1}, the element $b = h$ is contained in all subgroups of finite index (because the intersection of each such subgroup with H is of finite index in H and, therefore, contains h). By the bottle lemma (applied to $G = H_{-1}$), we obtain that each finite-index subgroup contains a subgroup isomorphic to the Klein-bottle group. It remains to note that, if a finite complex \hat{K} covers K_1 and K_{-1}, then its fundamental group $\pi_1(\hat{K})$ embeds into $\pi_1(K_\varepsilon) = H_\varepsilon$ as a finite-index subgroup.

Now, we take a particular group H, namely, let H be the Baumslag–Solitar group: $H = BS(3, 5) = \langle c, d \mid c^3d = c^5 \rangle$, and let $h \in H$ be the commutator: $h = [c^d, c]$. This element h is contained in any finite-index subgroup of H by the commutator lemma. According to (**), this means that, if complexes K_ε would have a common finite covering, then $H_1 = \langle a, c, d \mid [a, [c^d, c]] = 1, c^3d = c^5 \rangle$ would contain the Klein-bottle group as a subgroup, which contradicts the no-bottle lemma. Therefore, there are no finite common coverings for complexes K_ε; while an infinite common covering exists according to (*). Thus, the following fact is proven.

Main Theorem. The standard complexes of presentations

$$H_\varepsilon = \left\{ a, c, d \mid a^{[c^d, c]} = d^\varepsilon, c^3d = c^5 \right\},$$

where $\varepsilon = \pm 1$, containing two 2-cells and one vertex, and three edges have a common covering, but have no finite common coverings.

REFERENCES

[1] J. Abel Ilo, M. R. Fellows and J. C. Stillwell. On the complexity and combinatorics of covering finite complexes. Australas. J. Combin. 4 (1991), 103–112.

[2] H. Bass and R. Kulkarni. Uniform tree lattices. J. Amer. Math. Soc. 3:4 (1990), 843–902.

[3] I. Bondarenko and B. Kivva. Automaton groups and complete square complexes. Groups, Geometry, and Dynamics, 16:1 (2022), 305–332. See also arXiv: 707.00215
Small non-Leighton two-complexes

[4] M. Bridson and S. Shepherd. Leighton’s theorem: extensions, limitations, and quasitrees. Algebraic and Geometric Topology (to appear). See also arXiv: 009.04305.

[5] P.-E. Caprace and P. Wesolek. Indicability, residual finiteness, and simple subquotients of groups acting on trees. Geometry and Topology 22:7 (2018), 4163–4204. See also arXiv: 708.04590

[6] M. Casals-Ruiz, I. Kazachkov and A. Zakharov. Commensurability of Baumslag–Solitar groups. Indiana Univ. Math. J. 70:6 (2021), 2527–2555. See also arXiv: 1910.02117

[7] A. Fomenko and D. Fuchs. Homotopical topology, 2nd ed., Graduate Texts in Math. vol. 273 (Springer, Cham, 2016).

[8] D. Janzen and D. T. Wise. A smallest irreducible lattice in the product of trees. Algebraic and Geometric Topology 9:4 (2009), 2191–2201.

[9] M. I. Kargapolov and Yu. I. Merzljakov. Fundamentals of the theory of groups. Graduate Texts in Math. 62 (Springer, 1979).

[10] F. T. Leighton. Finite common coverings of graphs. J. Combin. Theory, Series B 33:3 (1982), 231–238.

[11] G. Levitt. Quotients and subgroups of Baumslag–Solitar groups. J. Group Theory, 18:1 (2015), 1–43. See also arXiv: 308.5122

[12] R. Lyndon and P. Schupp. Combinatorial Group Theory (Springer, 2015).

[13] S. Meskin. Nonresidually finite one-relator groups. Trans. Amer. Math. Soc., 164 (1972), 105–114.

[14] W. D. Neumann. On Leighton’s graph covering theorem. Groups, Geometry, and Dynamics, 4:4 (2010), 863–872. See also arXiv: 906.5122

[15] S. Shepherd, G. Gardam and D. J. Woodhouse. Two generalisations of Leighton’s Theorem, arXiv:1908.00830.

[16] T. W. Tucker. Some topological graph theory for topologists: A sampler of covering space constructions. In: Latiolais P. (eds) Topology and Combinatorial Group Theory. Lecture Notes in Math., 1440 (Springer, Berlin, Heidelberg, 1990).

[17] D. T. Wise. Non-positively curved squared complexes: Aperiodic tilings and non-residually finite groups. PhD. thesis. Princeton Univeristy (1996).

[18] D. T. Wise. Complete square complexes. Comment. Math. Helv. 82:4 (2007), 683–724.

[19] D. Woodhouse. Revisiting Leighton’s theorem with the Haar measure. Math. Proc. Camb. Phil. Soc. 170:3 (2021), 615–623. See also arXiv: 806.08196