Studies on Marker Assisted Background Screening of Sorghum Downy Mildew Resistant Introgressed Lines (BC₃F₃) in Maize

K. Sumathi¹*, K. N. Ganesan² and N. Senthil³

¹Centre for Plant breeding and Genetics, TNAU Coimbatore, India
²Millet Breeding Station, TNAU Coimbatore, India
³Centre for Plant Molecular Biology, TNAU Coimbatore, India
*Corresponding author

A B S T R A C T

The present investigation was carried out at Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. The main objective of this research is to retain the recipient parent genome outside the target gene with help of SSR markers. For this purpose, background screening was done in the selected four introgressed lines (BC₃F₃) viz., UMI 79/936-C1-7-7-7-46-2, UMI 79/936-C1-7-7-7-80-17, UMI 79/936-C1-7-7-7-92-1 and UMI 79/936-C1-7-7-7-92-7 with major QTLs for resistance to sorghum downy mildew in order to estimate the recovery of the genome of the recurrent parent. A total of 51 SSR markers, which showed distinct alleles between the parents, were selected for the genome wide background analysis. The graphical genotyping of the BC₃F₃-SDM resistant introgressed lines revealed that the complete recovery of UMI 79 genome was present in chromosome 3 in UMI 79/936-C1-7-7-7-46-2 and UMI 79/936-C1-7-7-7-80-17. The complete recovery of UMI 79 genome was present in chromosome 7 in UMI 79/936-C1-7-7-7-92-1 and UMI 79/936-C1-7-7-7-92-7. The genotype UMI 79/936-C1-7-7-7-46-2 has revealed that the 92.45 per cent (maximum recovery) of the genome were derived from the recurrent parent UMI 79, genotype UMI 79/936-C1-7-7-7-80-17 and UMI 79/936-C1-7-7-7-92-7 showed that 89.68 per cent and 80.6 per cent of recovery respectively.

Keywords
Background screening, SSR Markers, Sorghum Downy Resistant lines, Maize

Article Info
Accepted: 25 May 2018
Available Online: 10 June 2018

Introduction

Maize (Zea mays L.) is an important human food, livestock feed, and an industrial raw material. It is an important cereal in many developed and developing countries of the world. In terms of breeding, it is one of the most studied species and has been used as a model in many situations. It is widely used for animal feed and industrial raw material in the developed countries where as the developing countries use it in general for feed. In Indian Agriculture, Maize occupies a prominent position and each part of the maize plant is put to one or the other use and nothing goes as waste. In India, about 28 per cent of maize produced is used for food purpose, about 11 per cent as livestock feed, 48 per cent as poultry feed, 12 per cent in wet milling industry and 1 per cent as seed (AICRP on...
Maize, 2007). However, demand for maize crop in the developing countries are expected to surpass the demand for both wheat and rice by the year 2020 (Prasanna and Hoisington, 2003).

In India, maize is grown in a wide range of environments, extending from extreme semi-arid to sub-humid and humid regions. The crop is also very popular in the low- and mid-hill areas of the western and northeastern regions. In the tropics, grain is primarily grown for human consumption. The demand for maize as an animal feed will continue to grow faster than the demand for its use as a human food, particularly in Asia, where a doubling of production is expected from the present level of 165 Mt to almost 400 Mt in 2030. (Paliwal et al., 2000).

Various biotic and abiotic stresses can constrain maize production with considerable yield loss. Marker-assisted background selection a term coined by Hospital and Charcosset (1997) was initially proposed by Young and Tanksley (1989). This strategy has been used extensively in commercial maize breeding programmes, particularly for selection of lines carrying transgenes conferring herbicide tolerance or insect resistance (Yu et al., 1996). Marker assisted background selection is the selection of individuals in advanced generations possessing the maximum genome of the recurrent parent. The main objective is to retain the recipient parent genome outside the target gene and the markers will help to identify the recurrent parent genome constitution of each back cross individual to select the best progeny for further advancement.

Materials and Methods

The experiments were conducted in Centre for Plant Molecular Biology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India during December 2014. Four BC$_3$F$_3$SDM introgressed lines viz., UMI 79/936-C1-7-7-7-46-2, UMI 79/936-C1-7-7-7-80-17, UMI 79/936-C1-7-7-7-92-1 and UMI 79/936-C1-7-7-7-92-7 were used in the present study. It is derived from crossing the inbred UMI 79 which is susceptible for sorghum downy mildew and UMI 936(w) which has resistance for sorghum downy mildew and backcrossing progenies with UMI79. Selfing was done for two generation to get BC$_3$F$_3$ Population. Background screening was done in the selected introgressed lines for SDM in order to estimate the recovery of the genome of recurrent parent. For this background survey, the polymorphic SSR marker survey was carried out using 51 polymorphic SSR marker sequences obtained from maize gdb database (www.maizegdb.org). These markers were located among the ten chromosomes of maize genome. The physical position of the polymorphic markers was obtained from the maize gdb database for each chromosome separately. Parental polymorphism for these two parents UMI79 and UMI 936(w) was already done. The markers details are given in Table.1.

Results and Discussion

Marker Assisted Backcrossing (MAB) combines ‘Foreground’ selection of donor alleles linked to markers and ‘Background’ selection of recurrent parent alleles in the later generation and become most efficient and feasible breeding approach for introgression of SDM resistant QTLs. Background markers are markers that are unlinked to the target gene/QTL on all other chromosomes, in other words, markers that can be used to select against the donor genome. This is extremely useful because the recurrent parent recovery can be greatly accelerated. With conventional backcrossing, it takes a minimum of six back cross generations to recover the recurrent parent and there may still be several donor chromosome fragments unlinked to the target gene.
Table 1: Skewness and Kurtosis observed in the SDM resistant progenies of BC2F1 generation

Marker	Chrom.	Forward Primer	Reverse primer
bnlg1178	1	ACTACAGTTGAACGCCCTG	GCTCATGTGCAAAATGCAAGT
umc2151	1	ATATGTGGTATTTTCTGCAGGCGT	AAAATCCTATACAGAAAAACGGGGCG
umc2234	1	CAAGATCGTTAGGTTCTAGGCGTC	GACGGACTATAGAGGGCGATGAG
umc2077	2	AAATCCTCGAAGATGATCTGTCGC	CTGGTTCGGATGCAAGTGATGTCAG
phi127	2	ATATGCATTGCCTGGAACCTGGGAGGA	AATTTCAACACGCCTCCCGAGTG
umc2214	2	ACCCCCCTGATTTCTCTCTTACGTTC	CTGGATGAGGAGGAAAGATACAG
umc1552	2	CTCGATAGCTCTGCTGCTTCTCTC	CAACACCAGCCCTACCCAGA
umc1256	2	CATCTCGACCTTTGACATTCTCTCT	AGAAGACGATGATGATGATGACAGA
bnlg197	3	GCGAGAAGAAAGCGAGCACGA	CGCCAAGAAGAAACACATCACA
umc1158	3	AATGCAACTGCTGCAGCTCTACT	CGACGAATCGAGAAAAGATATTGAG
umc2101	3	CCCGGCTAGAGCTATAAAAGCAAGT	CTAGCTAGTTTGGTGCTGTGAGT
phi243966	3	CGACCGAAGCAAAGTACAAAA	TACTAGGCTGACAGCAGCAG
phi073	3	GTGCGAGAGGCTTGACCAA	AAGGGTGGAGGCGAGGAA
umc1594	3	CACTGCAGGCCACACATACATA	GCCAGGGGAGAAATAAAAATAAGC
bnlg1035	3	TGCTTGCACTGTCAGGAATC	CAGCTCTGACACACACACA
umc2263	3	CGTGCTTATATGTTCTTCTGGT	GTTTGTTGCTGCGACACTCTT
umc1608	3	GTGTCGCTTTGGGAGAACATGAG	TAATCTACTACCACTCGGCAAA
umc1231	3	CTGTAGGGCTGAGAAAGAGAGGG	CGACAACTTAGGAGAACCATGGAG
umc1136	3	CTCTCGTCTCATCACCTTCTCCT	CTGCACTACAGACATCAAACCAAG
umc1030	3	TCCAGAGAATGAGTGAAGACG	CAGAATACACGGAGATGACGCA
Marker	Chrom	Forward Primer	Reverse primer
----------	-------	---------------------------------	---------------------------------
umc2104	3	CTGCTGGCAGTGGCAGTATTC	TACTGCTACACCTTTTGTCGTCACC
phi053	3	AACCCAACGTACTCCCGGCAG	CTGCTCTCTCAGATTGAGAGATGTGAC
bnlg420	3	CTTGGCTCTCCCTCTGGCTTTT	GGCCAGCTCACCAGCTCGCAGCACT
umc2360	4	TAGCAGCTAGCTGCTCAGTCCAGAGG	CAGATCGGACTACTGCTGAGGCTTATT
umc1757	4	ATAGGAGGTGAGTGAGGAGGAAGGAAGGAG	TTTTCTGAGGGATAAACCATTGTTG
BNLG1601	4	ATCGTGCCTGAGTCCAGAGGT	CAGACAGAGGACGACGACGACGACGACGAC
umc2365	4	GAAATCCATTCATTCCTCTCTGCTCC	GTGACCTCTGCTAGCTGCTGAGGCTTATT
umc2136	5	CCAGATGCGGAGTGGAGGAGGAGGAGGAGG	GATTCCGAGGATGATCGATCGACTGACCTGT
umc1056	5	CGGATCGCTTCTCCTACGTCTTATCAA	AGCAAGAGTGACTGCTTCCCATTCAA
umc2298	5	ATCCACTCCCAAGTCCCAACAC	CTTTCTCCTCCTCTCCTCCTCCTCCTCCTC
phi078	6	CAGCACCAGACTAATCATGACGTGTA	GGCCCGAGTGATGTGAGTGTGAGTGTGAGT
bnlg1702	6	TTATCATCAAATGGGAGGACACG	AAAGACACAGCAGCTAAATGGGGC
umc2165	6	AGAACACCAAATGTGAGTTATATGTA	CTAGCTCGTCTCTCCTGCGATTGCTTCTC
umc1105	6	ATTCCTGCTCATCATACATCCACTCAACTA	GCCAAGTGCTCTGCTGCTGCTGCTGCTGCT
bnlg1154	6	GGAGTGATCACATGGGTTAGG	AAATCAATGCTCACCACACG
nc013	6	AATGGTCTTGAGGATGCAGCTGAGT	CCCCGTGATTCCCTCACCCTTCACCCTTC
umc2332	7	GTCGGAGAAGGAGCTACTGAGCTA	CACAGGTACGTCTGAGATGCTGCTTCTC
umc2325	7	CCTAGGAACTCTGAGTGGCTATGGA	CTACGATACCTCACCCTACCCCTACCCTAC
umc2364	7	AACCTCAAGATCACACACACATCCTC	CACGCTGCTGAGATGAGATGACTTTC
umc1831	7	TTTGACTGCTAGTGTACTTGGGG	CTCTACATTTCCAGCTGCTTCCACAC
bnlg1904	8	AGGAGCATGCGACTTGGTCTT	ACTCAACTGAGTGCCGAGTCTT
Marker	Chrom	Forward Primer	Reverse primer
----------	-------	---------------------------------------	---------------------------------------
phi125	8	ACCGCCGGTGCGAGTTGAAG	CTTGGGATTCCTCAGCAGATTG
phi087	8	GAGAGGAGGTGTGTTGACACAC	ACAACCGGACAAGTCACAGGACATTG
umc2134	9	TAGTCTAGCGTCGACGAAAAATGC	CAGGACGAGATGAATTTGAA
umc1743	9	TGGACTTCGAAAAATTTCTTCAGC	GAGAGGAGGAGCTTCACGAGC
umc2133	9	TTCAGGTGTGCACCTGACTGACTCTGACT	ATGCTCAAGCTCAACAGCACTTC
umc2017	9	AGAGGTTACTACGGAGTGTCAG	GTCAGGGTACTGCTTCACGACTC
umc2021	10	AAACCTCAAGCTCGAATGTACTGC	CGATACGTAGTCTACTTCACGCTGG
umc2126	10	CAGTTCTGCACTTCTGGCTTC	AGGACTGTGAAGAGGCGCGAG
bnlg1185	10	CGTCCAGGAGTTAATTA	GACTCGAGGACACCGATTTTC
umc2053	10	ATCTCTCCCTGCTCTTCTTCTC	AGCAGCAGGTTGGTCGAATG
Fig. 1 Graphical representation of background screening in developed SDM introgressed line 79/936- C1-7-7-7-46-2
Fig. 2 Graphical representation of background screening in developed SDM introgressed line 79/936- C1-7-7-7-80-17
Fig. 3 Graphical representation of background screening in developed SDM introgressed line79/936 - C1-7-7-7-92-7
Fig. 4 Graphical representation of background screening in developed SDM introgressed line 79/936 - C1-7-7-7-92-1
Markers phi053 and bnlg420 selected for QTLs introgression

Fig.5 Genetic linkage map showing location of SDM QTL on chromosome 3
Markers bnlg1154 and nc013 selected for QTLs introgression

Fig.6 Genetic linkage map showing location of SDM QTL on chromosome 6
Plate 1 Background screening of SDM introgressed lines (BC$_3$F$_3$)
Whereas using markers, it can be achieved by BC₄, BC₃ or even BC₂ (Visscher et al. 1996, Hospital & Charcosset 1997), thus saving two to four back cross generations.

Background screenings/survey (i.e., profiling the banding pattern of alleles of background polymorphic codominant SSR markers) were done in the SDM resistant plants UMI 79/936-C1-7-7-S7-46-2, UMI 79/936-C1-7-7-7-80-17, UMI 79/936-C1-7-7-7-92-1 and UMI 79/936-C1-7-7-7-92-7 in order to assess the recovery of the genome of the recurrent parent. This survey was carried out using 51 polymorphic SSR marker sequences (Supplementary Table 1) obtained from maize gdb database (www.maizegdb.org). These markers were located among the ten chromosomes of the maize genome. The physical position of the polymorphic markers was obtained from the maize gdb database for each chromosome separately. Parental polymorphism for these two parents UMI79 and UMI 936(w) had already been completed (Plate 19).

Back ground screening of SDM resistant introgressed lines (BC₃F₃ generation)

The 51 SSR markers, which showed distinct alleles between the parents, were selected for the genome wide background analysis. The polymorphic SSR markers were distributed in chromosomes 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. These markers were used to survey the four SDM resistant BC₃F₃ progenies (i.e., UMI 79/936-C1-7-7-7-46-2, UMI 79/936-C1-7-7-7-80-17, UMI 79/936-C1-7-7-7-92-1 and UMI 79/936-C1-7-7-7-92-7) for estimating the recovery of the background UMI 79 genotype. The PCR products were screened at 3.5 agarose gel. The plant was scored as AA if it contains UMI 79 allele and scored as BB if it contains UMI 936(w) allele, and scored as H if it contains both UMI 79 and UMI 936(w) alleles. For example, the analysis of polymorphic markers UMC1231, UMC1158, UMC2101 in parents and two SDM resistant plants are shown in Fig 7.

The graphical genotyping of introgressed lines were performed using the software GGT 2.0 and the results of graphical genotyping were described. The graphical genotyping of the BC₃F₃SDM resistant introgressed lines revealed that the complete recovery of UMI 79 genome was present in chromosome 3 in UMI 79/936-C1-7-7-7-46-2 and UMI 79/936-C1-7-7-7-80-17. The complete recovery of UMI 79 genome was present in chromosome 7 in UMI 79/936-C1-7-7-7-92-1 and UMI 79/936-C1-7-7-7-92-7. The genotype UMI 79/936-C1-7-7-7-46-2 has revealed that the 92.45 per cent (maximum recovery) of the genome were derived from the recurrent parent UMI 79, genotype UMI 79/936-C1-7-7-7-80-17 and UMI 79/936-C1-7-7-7-92-7 showed that 89.68 per cent and 80.6 per cent of recovery respectively. A minimum 76.8 per cent of recovery was observed in the genotype UMI 79/936-C1-7-7-7-92-1 (Fig 24 to Fig 27). Jorboe et al. (1994) have used the maize genome as a model for simulation and reported that three backcross generations and 80 markers were needed to recover 99 per cent of the recurrent parent genotype. Naidoo et al. (2012) recovered the recurrent parent (92.15 per cent) in the BC₃F₁ generation in marker-assisted selection for low phytic acid (lpa₁-I) with single nucleotide polymorphism marker and amplified fragment length polymorphisms for background selection in a maize backcross breeding programme.

To conclude that the percentage of the marker alleles in the four SDM resistant BC₃F₃ progenies that shows similarity with that of recurrent parent is used for calculating the recovery of recurrent parent genome. The genome of UMI 79/936-C1-7-7-7-46-2, UMI 79/936-C1-7-7-7-80-17, UMI 79/936-C1-7-7-7-
7-92-1 and UMI 79/936-C1-7-7-7-92-7 were 92.45 per cent, 89.68 per cent, 76.8 and 80.06 per cent identical to the recurrent parent respectively.

References

Hospital, F and A. Charcosset. 1997. Marker assisted introgression of quantitative trait loci. Genet., 147: 1469-1485.
Jorboe, S.G., W.D. Beavis and Openshaw. 1994. Prediction of responses to selection in marker-assisted backcross programs by computer simulation. Abstracts of the Second Interna-tional Conference on Plant Genome, Scherago International Inc., pp 38.
Naidoo, R., G.M.F. Watson, J. Derera, P. Tongoona and M.D. Laing. 2012. Marker-assisted selection for low phytic acid (lpa1-1) with single nucleotide polymorphism marker and amplified fragment length polymorphisms for background selection in a maize backcross breeding programme. Molecular Breeding. 30:1207-1217.
Paliwal, R. L., G. Granados, H. R. Lafitte, A. D. Violc and J. P. Marathee. 2000. Tropical Maize: Improvement and Production. Food and Agriculture Organization of the United Nations, Rome, Italy.
Prasanna, B. M. and D. Hoisington. 2003. Molecular breeding for maize improvement: an overview. Indian J. Biotech., 2: 85–98.
Visscher, P. M., Chris, S. Haley, M and T. Robin 1996. Marker-Assisted Introgression in Backcross Breeding Programs. Genetics. 144: 1923-1932.
Young, N. D and S.D. Tanksley. 1989. RFLP analysis of the size of chromosomal segments retained around the tm-2 locus of tomato during backcross breeding. Theor. Appl. Genet. 77: 353–359.
Yu, Y.G., G.R. Buss and M.A. Saghai Maroof. 1996. Isolation of a super family of candidate disease resistance genes in soybean based on a conserved nucleotide-binding site. Proc. Natl Acad Sci USA; 93: 11751–6.

How to cite this article:

Sumathi, K., K. N. Ganesan and Senthil, N. 2018. Studies on Marker Assisted Background Screening of Sorghum Downy Mildew Resistant Introgressed Lines (BC3F3) in Maize. Int.J.Curr.Microbiol.App.Sci. 7(06): 3629-3642. doi: https://doi.org/10.20546/ijcmas.2018.706.427

3642