De Novo Origin of VCY2 from Autosome to Y-Transposed Amplicon

Peng-Rong Cao¹, Lei Wang¹, Yu-Chao Jiang², Yin-Sha Yi¹, Fang Qu¹, Tao-Cheng Liu¹, Yuan Lv¹*
¹ Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China, ² The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology School of Life Sciences, Fudan University, Shanghai, China
* ly598598@126.com

Abstract

The formation of new genes is a primary driving force of evolution in all organisms. The de novo evolution of new genes from non-protein-coding genomic regions is emerging as an important additional mechanism for novel gene creation. Y chromosomes underlie sex determination in mammals and contain genes that are required for male-specific functions. In this study, a search was undertaken for Y chromosome de novo genes derived from non-protein-coding sequences. The Y chromosome orphan gene variable charge, Y-linked (VCY)₂, is an autosome-derived gene that has sequence similarity to large autosomal fragments but lacks an autosomal protein-coding homolog. VCY₂ locates in the amplicon containing long DNA fragments that were transposed from autosomes to the Y chromosome before the ape-monkey split. We confirmed that VCY₂ cannot be encoded by autosomes due to the presence of multiple disablers that disrupt the open reading frame, such as the absence of start or stop codons and the presence of premature stop codons. Similar observations have been made for homologs in the autosomes of the chimpanzee, gorilla, rhesus macaque, baboon and out-group marmoset, which suggests that there was a non-protein-coding ancestral VCY₂ that was common to apes and monkeys that predated the transposition event. Furthermore, while protein-coding orthologs are absent, a putative non-protein-coding VCY₂ with conserved disablers was identified in the rhesus macaque Y chromosome male-specific region. This finding implies that VCY₂ might have not acquired its protein-coding ability before the ape-monkey split. VCY₂ encodes a testis-specific expressed protein and is involved in the pathologic process of male infertility, and the acquisition of this gene might improve male fertility. This is the first evidence that de novo genes can be generated from transposed autosomal non-protein-coding segments, and this evidence provides novel insights into the evolutionary history of the Y chromosome.
Introduction

The emergence of new genes with novel functions is important for adaptive evolutionary innovation [1]. Using preexisting genes as raw materials, new genes can arise in various manners, such as exon shuffling, gene duplication, retroposition, lateral gene transfer, gene fusion, and fission [2]. It has recently become apparent that new genes can also arise de novo from non-protein-coding DNA; examples have been reported in fruit flies (*Drosophila*) [3–8], ants and other insects [9], budding yeast (*Saccharomyces cerevisiae*) [10–12], rice (*Oryza sativa*) [13], protozoal parasite *Plasmodium vivax* [14], mice (*Mus musculus*) [15], primates, and humans. For example, 15 de novo protein-coding genes have identified in the ancestral primate genome using comparative genomic analyses [16], while other studies have found three putative protein-coding genes in humans and 11 novel genes in the murine genome [17,18], and de novo protein-coding genes involved in brain function [19] and with tumor-specific expression have been identified [20]. A comparative analysis of primate genomes found 60 putative human-specific genes [21]. Hominoid-specific novel protein-coding genes originating from long non-protein-coding RNAs [22] have also been identified. The possible de novo protein-coding genes on chromosome Y (Chr-Y) aroused our interest because Chr-Y underlies sex determination in mammals and contains genes that are specialized for the male sex and reproduction [23]. However, there have been no such reports of de novo protein-coding genes on the Chr-Y, which harbors genes for male-specific functions.

The mammalian sex chromosomes evolved from an ancestral, identical homologous pair (proto-X/Y). After acquiring the male sex-determining gene sex-determining region of the Y-chromosome (SRY), meiotic recombination was suppressed through sequential inversions of segments of the mammalian chromosome X (Chr-X) and Chr-Y [24,25]. This process halted recombination between groups of contiguous X chromosomal genes and their Y chromosomal homologs. This event ensured that the male-specific gene on the Chr-Y were restricted to male. This event is referred as a stratum, and it has been estimated that there were four X chromosomal strata in the evolutionary history of primates and other mammals [26,27]. Only a small portion of human Chr-Y can still recombine with Chr-X. The pseudoautosomal (PAR) region in the short arm of Chr-Y is the only remaining locus for recombination and contains over 29 genes with identical copies on the Chr-X [28–30]. The non-recombinating male-specific region of Chr-Y (MSY) comprises approximately 95% of the total chromosome length and contains 78 protein-coding genes that encode 27 distinct proteins [31]. MSY euchromatic sequences can be classified as X-transposed, X-degenerate, and ampliconic regions. The X-transposed region in humans contains only two genes that are thought to have been generated by a recent transposition from Chr-X and exhibit 99% identity to Xq21 [32]. The X-degenerate region is considered to be a remnant of the degeneration of the ancestral mammalian proto-Y [33]. A total of 16 X-degenerate Chr-Y genes with X-linked homologs are found in humans and gorillas, and 12 are found in chimpanzees [34,35]. Some ampliconic genes in Chr-Y were generated through amplifications of X-degenerate genes, such as the RNA binding motif protein Y-linked 1 (RBMY1A1) [36,37]. Other male-benefit genes might have arisen through autosomal transposition and amplification, for example, deleted in the azoospermia protein (DAZ) gene cluster [38,39], or by retroposition like testis-specific chromodomain protein Y-linked 1 (CDY) [40,41]. Those genes could improve the male reproductive ability and lost of these genes might cause the reduction of the reproductive ability or male infertility. Because Chr-X and autosomes both shaped the gene content of Chr-Y (through the degeneration of the proto-X/Y gene pair and the retroposition and transposition of autosomal copies, respectively), we searched for evidence of de novo protein-coding genes in Chr-X and autosomes and confirmed the de novo origin of Chr-Y genes.
Previously described analysis strategies [15–19] were used in the present study to search for possible de novo protein-coding genes on human Chr-Y, but they were modified according to the unique evolutionary history of Chr-Y. The search encompassed not only human-specific genes with non-genic orthologous sequences in sister primate lineages (i.e., humans Chr-Y [42], chimpanzees [35] and rhesus macaques Chr-Y male-specific region [43]) but also considered the origins of Chr-Y genomic sequences (i.e., autosomes and Chr-X). In this study, we searched for Chr-Y de novo genes from non-protein-coding sequences acquired through retro-position or transposition from autosomes or from the X-degenerate region. We provide evidence that the autosomal-transposed orphan gene VCY2 might have arisen de novo from non-protein-coding regions.

Materials and Methods

Data collection

The primate genome sequences from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) [44] and Ensembl databases (www.Ensembl.org/) [45] were extracted and analyzed. The genomic assemblies version referred to in this article and the detailed the genomic sequence information we used in this article are listed in S1 Table. The bacterial artificial chromosome (BAC) clones of rhesus macaque Y chromosome male-specific region referred to in this article and the sequence information are listed in S2 Table. Rhesus macaque Chr-Y testis cDNA sequences with accession numbers FJ527009-FJ527028 and FJ648737-FJ648739 in GenBank (www.ncbi.nlm.nih.gov) [44] were used to verify the rhesus macaque VCY2 gene expression. The expressed sequence tag (EST) from human [46] and cDNA clones from chimpanzee (chimpanzee testis library Koos) [47] in the GenBank (www.ncbi.nlm.nih.gov/genbank) were used for the VCY2 and BEYLA expression evidence. The mar-moset testis EST clone set materials were provided by the RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan[48]. The mRNA transcription evidence for VCY2 was collected from the transcriptome shotgun assembly database [24]. The expression profile of the non-protein-coding BEYLA (NONCODE GENE ID:NONHSAG050144) was exacted from the non-coding RNA database NONCODE (http://www.bioinfo.org/noncode/) [49].

Sequence analysis

The sequences were assembled using MEGA5 (Gene Codes, Ann Arbor, MI, USA) and aligned with ClustalW [50]. Phylogenetic analyses were performed using the maximum likelihood (ML) method. Phylogenetic trees were constructed with the Kimura two-parameter model. The gamma-distributed with invariant sites (G+I) Tamura-Nei model [51–54] was used for the maximum likelihood analyses. Bootstrap test results with 500 replicates are shown next to the branches of the trees. The evolutionary analyses were performed with MEGA6. The dot-plot comparisons between pairs of sequences were drawn with DNAMAN program (Lynnon Biosoft, Quebec, Canada) with default parameters.

Primate Chr-Y orphan genes

Human, chimpanzee and rhesus macaque Chr-Y protein-coding genes were retrieved from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) and Ensembl databases (www.Ensembl.org/). The orthologs from the non-primate species were identified through a Basic Local Alignment Search Tool Protein-Protein (BLASTP) [55–58] search against a non-primate non-redundant (nr) protein sequences database using an E-value.
threshold of 10^{-4} and a sequence identity greater than 35%. The genes without any possible homologs in non-primate species were considered to be primate-specific Chr-Y orphan genes.

Candidate de novo-originated primate Chr-Y genes

The Chr-Y orphan genes that were restricted to the primate phylogenetic lineage were examined to evaluate whether they could have arisen de novo. A second round of BLAST was performed to search against the primate non-redundant (nr) protein sequences database using an E-value threshold of 10^{-4} and a sequence identity greater than 35%. The corresponding genomic location of each hit was analyzed. If the hit was located on an autosome or Chr-X, the gene was excluded from further analyses. The genomic sequences of the remaining genes were verified using BLAST and the BLAST-like alignment tool (BLAT) algorithm against the primate genomes from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) and the UCSC Genome Browser (http://genome.ucsc.edu/) databases [59] to identify the sequences with high similarities. The genomic fragments (lengths over 4 kb and identities over 80%) were used for subsequent analyses. The protein-coding abilities of these regions were further investigated.

Identification of the homologs and synteny analysis

Homologs are identified through both sequences similarity comparisons and syntenic analyses. A BLAST was performed to search against the primate non-redundant (nr) protein sequences database using an E-value threshold of 10^{-4} and a sequence identity greater than 35%. The corresponding genomic location of each hit was analyzed. The analysis of relative gene-order conservation between species was carried. Synteny analyses were performed on 9 representative primate species that included humans (*Homo sapiens*), chimpanzees (*Pan troglodytes*), bonobos (*Pan paniscus*), gorillas (*Gorilla gorilla*), Northern white-cheeked gibbons (*Nomascus leucogenys*), olive baboons (*Papio anubis*), rhesus macaques (*Macaca mulatta*), sabaeus monkeys (*Chlorocebus sabaicus*) and common marmosets (*Callithrix jacchus*). Synteny maps of the conserved genomic regions in the primates were performed using the Genomicus v67.01 web site [60].

Results

Hypotheses for the origin of Chr-Y de novo protein-coding genes

We hypothesized that if a protein-coding gene had arisen de novo from non-protein-coding sequences acquired through retroposition or transposition from autosomes, then non-protein-coding autosomal copies would persist (Fig. 1A). Similarly, if a protein-coding gene in the X-degenerate region had been generated de novo from a proto-X/Y sequence, then non-protein-coding copies would be found on Chr-X (Fig. 1B).

Candidate de novo protein-coding genes on Chr-Y

First, human, chimpanzee and rhesus macaque Chr-Y orphan genes were collected. Eight human orphan protein-coding genes were identified on Chr-Y through a BLAST search against the non-primate non-redundant protein sequences database as shown in Table 1. According to the deduced polypeptide sequence similarities, these genes were further classified into the following four distinct orphan gene families: *VCY* (variable charge, Y-linked), *VCY2* (approved gene symbol *BPY2*); protein tyrosine phosphatase, non-receptor type 3-like, Y-linked (*PRY*), and proline-rich and Y-linked (*PRORY*). The genes from each of the families, including pseudogenes, are listed in Table 1. According to our hypotheses, the potential de novo candidates among these orphan genes should only have sequences with high similarities with human or
other primate Chr-X or autosomes and have no protein-coding homologs (including possible direct paralogs or gametologs). We then used the genomic sequences of orphan genes from each of the families, i.e., VCY, VCY2, PRY and PRORY, to search for the non-protein-coding sequences with high similarities via BLAT against the primate genomic databases. Among these four gene families, only VCY2 exhibited high sequence similarities with autosomal fragments. The genomic locations for each fragment longer than 4 kilobase pair are listed in S3 Table. A schematic of the analysis pipeline for the candidate de novo protein-coding genes is shown in Fig. 2.

Y-chromosomal VCY2 arose via transposition of autosomal fragments

Among these four Chr-Y orphan gene families, only VCY2 exhibited sequences with high similarities to those of the autosomes and lacked of protein-coding homologs. Three VCY2 protein-coding paralogs (VCY2A, 2B, and 2C) and one inferred pseudogene (BPY2DP) were present in human Chr-Y. Two paralogs of VCY2 in the chimpanzee were also identified.

Table 1. Y-chromosomal orphan gene families that restrict to the primate lineage.

Gene family names and family members on human genome	X-linked gametologs	Autosomal gametologs or paralogs	Species with the possible Y orthologs (Cortez et al. *Nature*. 2014 and Bhowmick et al. *Genome Res.* 2007)
VCY2 (A/B/C/DΨ)	None	None	Humans, chimpanzees, gorillas, orangutans
PROY	None	None	Humans, chimpanzees
PRY (1/2,3/4Ψ)	None	None	Humans, Old World monkeys
VCY (1/2)	VCX,2,3A/B	None	Humans, chimpanzees

Y-chromosomal orphan gene families including PROY (proline rich, Y-linked), PRY (PTPN13-like, Y-linked) and VCY (variable charged Y-linked) 2 were restrict to the primate lineage.

ΨPseudogenes;

doi:10.1371/journal.pone.0119651.t001

Fig 1. Model of the origin of de novo protein-coding genes on Chr-Y. A putative de novo protein-coding gene (green) acquired the protein-coding ability through (A) the transposition or retroposition of non-protein-coding autosomal segments or (B) X-degenerate sequences from an ancestral proto-sex chromosome, while non-protein-coding homologs remained so on autosomes or Chr-X (red).

doi:10.1371/journal.pone.0119651.g001
The origin of VCY2 has been discussed in previous studies. According to the inventories of the Chr-Y genes, VCY2 belongs to the added gene group that entered the Chr-Y in a lineage-specific manner during evolution in contrast to the ancestral genes that are shared with...
other lineages. The VCY2 gene families contained three protein-coding copies (Table 2) and mapped to the long duplicated and inverted genomic fragments of Chr-Y that can be referred to as amplicons. Some of these amplicons exhibit high sequence similarities with the autosomes and are thought to have arisen from autosomal fragment transposition and duplication. Previous studies have revealed that the ancestral amplicons arrived in Chr-Y at different times during the primate evolution and that they can be further classified into blue, light-blue, red, green and yellow amplicons [38]. VCY2 was located in the green-amplicons. The ancestral green-amplicon was inverted and duplicated several times during the evolutionary history of Chr-Y to generate the green-1, green-2 and green-3 amplicons (g1, g2 and g3); thus, paralogs of VCY2 (VCY2A, 2B and 2C) were found in the Chr-Y and were each located in different amplicons. The origin of the pseudogene BPY2DP is unknown. The green-amplicon homologous sequences were found in the Chr-Ys of all of the great apes and Old World monkeys but were not found in the New World monkeys (out-group) (Fig. 3A). It is believed that the ancestral green-amplicon arrived in Chr-Y through autosomal duplication and transposition in the

Table 2. VCY2 gene families in human and chimpanzee genomes.

Gene names	Ensembl IDs	Chromosomal locations
Hosa-VCY2	ENSG00000183753	Y:25119666–25151612:1
Hosa-VCY2B	ENSG00000183795	Y:26753707–26785364:1
Hosa-VCY2C	ENSG00000185894	Y:27177048–27208695:-1
Hosa-BPY2DP	ENSG00000229746	Y:7926089–7948999:-1
Patr-VCY2	ENSPTRG00000028847	Y:3955716–3965432:1
Patr-VCY2B	ENSPTRG00000028812	Y:12587744–12593658:1

VCY2 from human (GRCh38) and chimpanzee (CHIMP2.1.4) genomes were extracted and their Ensembl IDs and chromosomal location were shown. ‘+’ or ‘-’ indicate the forward and reverse strand on the chromosome respectively. Human BPY2DP (basic charge, Y-linked, 2D) is a pseudogene of VCY2.

All protein-coding paralogs encode a 106-a.a. Protein.

Pseudogenes.

Hosa, Homo sapiens; Patr, Pan troglodytes.

doi:10.1371/journal.pone.0119651.t002

Fig 3. Y-chromosomal VCY2 arose via transposition of the autosomal fragments. (A) The presence (black dots), absence (white dots) of Chr-Y green-amplicon homologous sequences and VCY2 homologs in representative primate species. The assumed date for the amplicon transposition was indicated by the arrow at the species tree of the primates. Status unknown (gray dots). (B) The synteny analysis of the green-amplicon from human Chr-Y and autosomal fragments from 8q11 and 7q11. We marked those autosomal sequences that have high sequence similarities with Chr-Y TTTY17 and TTTY4 but not annotated as genes. NWM, New World monkey; OWM, Old World monkey; P, pseudogene; TRIM, tripartite motif containing; TTTY, testis-specific transcript, Y-linked; ZNF, zinc finger protein.

doi:10.1371/journal.pone.0119651.g003
common ancestor of apes and Old World monkeys after the divergence of the New World monkeys approximately 35 million years ago (mya) [38].

The green amplicon-homologous human autosomal fragments

To clarify the origin of VCY2, we sought to examine the genomic locus before transposition. Previously, Stuppia et al. reported that chromosome 8q11.2 exhibits homology to the green-amplicon that contains the VCY2, TTTY4, and TTTY17 genes. The BEYLA gene, also known as long intergenic non-protein-coding RNA 293 (LINC00293) was identified and contained autosomal fragments that exhibited high sequence similarities with VCY2 [61]. Moreover, a shorter fragment in Chr-7 also exhibited sequence similarities with VCY2 (S3 Table). However, unlike Chr-8 BEYLA, this sequences from Chr-7 had not been annotated as a gene; therefore, we named it Chr-7-BEYLA. To confirm their homologous relationship, we performed synteny comparison analysis centered on VCY2, BEYLA and Chr-7-BEYLA. The order and orientation of each gene, including these pseudogenes and the non-protein-coding RNA genes, in the whole green amplicon are shown in Fig. 3B. The VCY2, BEYLA and Chr-7-BEYLA sequences were positioned in genomic regions that contained common loci, including ZNF736 and TRIM60 (pseudogene), and thus exhibited a conserved synteny. Chr-Y genes TTTY4 and TTTY17 in the green-amplicon also exhibited high similarities with sequences in Chr-8 and BEYLA in Chr-7. We also compared 200 bp flanking sequence of VCY2 gene with outgroup flanking sequences from Chr-8 (BEYLA) and Chr-7 (S1 Fig.). These results support the homologous relationship between these two autosomal fragments and the green amplicon. Subsequently, we focused on the sequence differences between VCY2 and its homologous region in these autosomal fragments.

Expression evidence for VCY2 and BEYLA

Before we began the subsequent analysis, we examined the expression evidence for VCY2. The human VCY2 gene encodes a functional protein, and its expression has previously been detected in testicular biopsy specimens [62]. VCY2 protein binding partners, such as microtubule-associated protein 1S (MAP1S) [63] and ubiquitin protein ligase E3A (UBE3A) [64] have also been identified. Two EST clones from human testis tissue are thought to belong to VCY2 (Table 3) [46]. Regarding BEYLA, we found over 30 EST clone sequences that matched the human BEYLA, and the majority of these sequences were also from human testis tissues. Ten of these sequences are also listed in Table 3. We also found an EST clone from human testis tissues that matched Chr-7 BEYLA; we thus believe an unidentified testis-expressed non-protein-coding gene might exist (Table 3). The expression profile of BEYLA was also examined against the non-coding RNA database NONCODE, and its expression in testis tissue was much higher than its expression in other tissues (S4 Table).

The RNA expression of VCY2 was observed in chimpanzees, gorillas and orangutans but not in rhesus macaques or marmosets as shown in Table 4. The evidence of VCY2 expression at protein level was only found in human by now. We did not find any EST clone from non-human primates that matched BEYLA. To confirm this finding, we used the Hosa-VCY2 cDNA and genomic sequence in a BLAST search against the rhesus macaque testis cDNA and confirmed that the VCY2 protein-coding homolog was absent in the rhesus macaque. We did not find sequences from the marmoset testis EST clone library or the transcriptome shotgun assembly database that matched VCY2. Previous studies have also reported that VCY2 is absent as a protein-coding gene in the MSY genes of the rhesus macaque, an Old World monkey [43]. While the green-amplicon homologous sequences were found in the Chr-Y of the Old World monkeys, the VCY2 ortholog from the rhesus macaque was absent. This finding raised a
question about the protein-coding ability of VCY2 in the evolutionary history after transposition from autosomes.

Non-protein-coding autosomal VCY2 from humans and primates

To further investigate the origin of VCY2, the genomic sequences of Homo sapiens (Hosa)-VCY2 and the sequence from the autosomal Hosa-BEYLA were aligned to identify the critical differences that might affect protein coding. The coding sequence (CDS) and the autosomal sequences with high similarities were used for further analysis. The putative ORF for Hosa-VCY2 was reconstructed and joined in the order and orientation of the corresponding sequences with high similarity from the Hosa-BEYLA protein-coding exons. Two complete sets of putative ORFs, ORF(a) and (b), with four putative protein-coding exons were identified from Hosa-BEYLA (Fig. 4A).

The divergence between Hosa-VCY2 and the autosomal sequences provided intriguing evidence for the origin of VCY2. The autosomal sequences contained features that disrupted the ORFs and therefore did not encode functional proteins (Fig. 4B). For example, the ATG start codon in exon 1 of Hosa-VCY2 was replaced by ATA or ATT, while the TAA stop codon in exon 4 was substituted with AAA in both autosomal ORFs. In addition to the absence of start and stop codons, in-frame premature stop codons were also observed in the majority of the exons. The first of these was shared by both autosomal ORFs and was located in exon 1 42 nucleotides (nt) downstream of the start codon. In VCY2, a 4-nt insertion and a nucleotide

Table 3. Expression evidence for human VCY2 and BEYLA genes.

Gene names	Full names	EST evidence (origin tissues)	Other evidence for the expressions
Hosa-VCY2	Variable charge, Y-linked, 2	DB047517.1 and DB341225.1 (testis)	Western blot analysis and immunostaining of the testicular tissue (Tse et al. Biol Reprod. 2003)
Hosa-BEYLA	Long intergenic non-protein coding RNA 293	A105405.1, A1026871.1, A1214380.1, CD557729.1, AA905547.1 and AA412219.1 (all from testis)	Real time-PCR analysis on RNA from testis, leukocytes, prostate, kidney, placenta, ovary, brain, heart, and muscle (Stuppia et al. Genomics, 2005)
Hosa-Chr7-BEYLA	Not annotated as a gene	DB340221 (testis)	None

The EST (expressed sequence tag) and other evidence for human VCY2 and BEYLA expression was shown. The accession number for each EST clone was listed. Hosa (Homo sapiens).

doi:10.1371/journal.pone.0119651.t003

Table 4. Expression evidence for non-human primate VCY2 homologous genes.

Species	GI numbers	Expression levels	Sources of the data
chimpanzees	62287768	RNA (partial cds)	Reverse transcript and testis cDNA sequencing data
gorillas	5845999275	RNA	Transcriptome Shotgun Assembly database (T: 4854058)
bornean orangutans	5845999417	RNA	Transcriptome Shotgun Assembly database (T: 1503658)
rhesus macaques	absent	absent	Testis cDNA clones (T: 5021608)
common marmosets	absent	absent	Testis and other tissue EST clone library and transcriptome shotgun assembly database (T: 290426)

The EST (expressed sequence tag) and other evidence for non-human primate VCY2 and BEYLA expression was shown. The GI (genInfo identifier) number was listed. To show the depth for each dataset, total number of the raw contigs or EST clones from the dataset (T) was shown.

doi:10.1371/journal.pone.0119651.t004
substitution from TAA/TGA to TTA circumvented early termination. In exon 2 and exon 3 of the Hosa-BEYLA ORFs (a) and (b), more than six premature stop codons that were caused by nucleotide substitutions or frameshifts were detected. At least three of these were identical, for example, the downstream TAA at 133 nt and the TGA 145 nts downstream in exon 2, but none blocked the translation of VCY2. Four disablers (sequence differences that disrupted the ORF) were common to Hosa-BEYLA ORFs (a) and (b); these disablers included the absence of start and stop codons and two premature stop codons at 42 and 81 nt downstream in the ORF. The presence of these disablers suggests that the putative Hosa-VCY2 autosomal ORFs lacked protein-coding abilities.

To determine whether the non-protein-coding sequences from the Hosa-BEYLA ORFs (a) and (b) originated from non-protein-coding primate ancestral sequences or from a pseudogene that lost its protein-coding ability, the primate autosomal VCY2s were examined for features suggestive of protein encoding. Hosa-VCY2 genomic sequences were compared by BLAT against the genomic data for other primates. Fragments with similarities to VCY2 were found in the autosomes of humans, chimpanzees and rhesus macaques; they were located near the centromeric end of Chr-8 and shared a conserved synteny block (Fig. 5A). VCY2 autosomal sequences from four other representative primate lineages with close phylogenetic relationships with humans, including the common chimpanzee and rhesus macaque, were evaluated to clarify the evolutionary history of VCY2.
The autosomal sequences from Chr-8 in the chimpanzee and rhesus macaque were aligned, and the sequences with high similarities to Hosa-VCY2 exons were used to reconstruct a putative ancestral primate autosomal ORF according to the orientation and ordering of the Hosa-VCY2 and BEYLA ORFs(a) from the chimpanzee and rhesus macaque. The primate sequences were highly similar to Hosa-BEYLA. A comparison of the primate BEYLA ORF(a) and Hosa-VCY2 ORF revealed that nearly all of the disablers in Hosa-BEYLA ORF(a) were retained in the primate genome, including the premature stop codons at 42 (exon 1) and 81 (exon 2) nt downstream of the start codon (Fig. 5B). Furthermore, the ATG start and TAA stop codons (exon 1 and exon 4, respectively) were also absent from the corresponding positions in all of the primate BEYLA sequences, which was identical to the human sequence and therefore suggested a common origin.

In addition to Chr-8, we also found genomic fragments that exhibited high similarities with VCY2 in the chimpanzee (Chr-7) and rhesus macaque (Chr-3). This region spanned 5 kb and was located in a zinc finger (ZNF) gene cluster. The neighboring genes included ZNF680, ZNF736, ZNF735 and ZNF679. Gene synten analyses centered on Chr-7-BEYLA and Chr-3-
BEYLA from the human, chimpanzee and rhesus macaque revealed a conserved synteny block. The orders and orientations of the ZNF clusters were the same in these three species, which supports the homologous relationship of this region (Fig. 6A). Only two potential protein-coding exons were identified, and these were confirmed as being non-protein-coding in the alignment due to the presence of identical disablers that included the lack of a start codon and the presence of a premature stop codon (Fig. 6B).

A similar observation was made for the other primate BEYLA ORF, in which the disablers (i.e., no start or stop codons) were primarily in autosomal sequences. We showed the autosomal sequences from great apes like gorillas (S2 Fig.) and bonobos (S3 Fig.), gibbons (S4 Fig.), Old World monkeys such as baboons (S5 Fig.) and the Western African sabaeus monkeys (S6 Fig.). These results indicate that the primate sequences of the autosomal VCY2 were also non-protein-coding; the sequence conservation, including the presence of the disablers, suggests a common non-protein-coding ancestral gene that predates the autosome-to-Y transposition.

A non-protein-coding autosomal VCY2 homolog in the marmoset

To exclude the possibility that the autosomal locus BEYLA had deteriorated from a protein-coding into a non-protein-coding gene, the status of BEYLA in the out-group species was examined. The green amplicon was duplicated and transposed into Chr-Y in the common ancestor of Old World monkeys and apes after the separation of the New World monkeys. We used the genome of the common marmoset (Callithrix jacchus), which is a New World monkey that...
has been fully sequenced and annotated, to clarify the possible ancestral state of VCY2 before transposition. First, we confirmed that VCY2 was absent from the marmoset Chr-Y. According to the BLAT results, the marmoset Chr-Y genomic sequences also did not contain any regions that exhibited significant sequence similarities with the human VCY2. Neither the sequence from the marmoset testis EST clone library nor the testis transcriptome data exhibited significant sequence similarities with the VCY2 mRNA or genomic sequences (Table 3). Subsequently, in the autosomal genomic sequences, we found that a genomic region in Chr-2 of approximately 30 kb exhibited sequence similarities with both VCY2 and BEYLA. Only two potential protein-coding exons were identified, and these were confirmed to be non-protein-coding in the alignment (Fig. 7B). These results confirm that the marmoset autosomal VCY2 in Chr-2 might not be protein-coding because the ‘ATG’ start codon was replaced by ‘GTG’. The results of a synteny analysis of the region centered on VCY2 and the human Chr-7 BEYLA are shown in Fig. 7A. The ZNF736, ZNF680, heterogeneous nuclear ribonucleoprotein C pseudogene (HNRNPCP) and vomeronasal receptor pseudogene (VN1RP) were located in both human Chr-7 and marmoset Chr-2. The synteny analysis convinced us that this region is the homologous sequences of the human VCY2 autosomal genomic sequences. These data support the notion that VCY2 might have been derived from a non-protein-coding region.

Non-protein-coding VCY2 from rhesus macaque Chr-Y

A previous study showed the VCY2 gene located in the green amplicon was generated by duplication and transposition of autosomal segments before the ape-monkey split [38] and that no homolog is present in the Old World monkey Chr-Ys such as that of the rhesus macaque [42]. The absence of a VCY2 protein-coding translation in the rhesus macaque was confirmed using the Hosa-VCY2 cDNA sequence in a BLAST search against the rhesus macaque testis cDNA (SRA039857). We also searched the database using the genomic sequences of VCY2 and found a rhesus testis cDNA that exhibited sequence similarities with human VCY2 (identities over 75% and 460 bp lengths). To investigate the events that occurred after the autosome-to-Y transposition, rhesus MSY BAC clones were searched for regions with high sequence similarity to VCY2. Three overlapping BAC clones (CH250–99F15, CH250–59H13, and CH250–

Fig 7. Non-protein-coding autosomal sequences homologous to VCY2 on marmoset Chr-2. (A) The synteny block comparison around human Chr-7-BEYLA and its homologous sequences from marmoset Chr-2. The arrows indicates the orientation of each genes. Fragments homologous to VCY2 extracted from human were used to compare with the fragments from marmoset. Protein-coding exons were joined to obtain the putative autosomal VCY2 ORF. (B) The deduced protein sequence for VCY2 ORF was shown above the row. Positions of start codons are indicated. Disablers are indicated by red. Caja, *Callithrix jacchus*; Hosa, *Homo sapiens*.

doi:10.1371/journal.pone.0119651.g007
249M17) close to the centromere were identified and are referred to as a VCY2 homolog (Fig. 8A).

Rhesus macaque VCY2 was located in the DAZ cluster in the rhesus macaque, and a DAZ homolog was found in the 5’ neighboring region (Fig. 8B). According to the evolutionary history of the Chr-Y AZFc region, the green amplicon (presumably containing VCY2) likely emerged in Chr-Y via an ancestral autosomal transposition that occurred prior to the ape-monkey-split and also included the neighboring red amplicon with the autosomal transposed ancestral DAZ gene from Chr-3. These findings are consistent with the observations from the Chr-Y of the rhesus macaque. In humans, VCY2 is also located within the DAZ1/DAZ2 gene cluster, which reflects their orthologous relationship in evolutionary history. The DAZ gene duplication is also consistent with this evolutionary history. The alignments of the Hosa-VCY2 ORF and the sequences with similarities in the rhesus macaque revealed divergent sequences, and the majority of the disablers that were observed in the primate autosome appeared in the rhesus macaque Chr-Y VCY2. The artificial translation of rhesus macaque VCY2 revealed disrupted ORFs, and the same disablers that were present in the primate autosomal sequences, including the lack of start and stop codons (ATA and AAA, respectively) and several premature stop codons (Fig. 8C), were also observed, which reflects the status of the gene shortly after non-protein-coding autosomal segment transposition. The autosomal homologous sequence was maintained as a non-protein-coding region in all primate lineages, which supports the hypothesis that de novo protein-coding genes can originate from transposed, non-protein-coding autosomal segments on Chr-Y.

Non-protein-coding pseudogene BPY2DP

Pseudogenes are genomic DNA sequences that are similar to normal genes but are non-functional; they are regarded as defunct relatives of functional genes. The majority of pseudogenes are dysfunctional relatives of genes that have lost their protein-coding ability. However,
regarding possible de novo-originated protein-coding genes, such pseudogenes might be dysfunctional protein-coding genes but might also be ancestral copies prior to obtaining protein-coding abilities. Human BPY2DP is a pseudogene of VCY2 that is located in the Yp11.2 region, while all other protein-coding VCY2 paralogs are located in Yq11 (Table 1). The synteny block around the BPY2DP exhibited a situation very similar to that of the green amplicon. Green-ampliconic genes, such as TTTY17, TRIM60P, and ZNF736P, are located on both side of the synteny block (S7A Fig.). These findings might imply that BPY2DP was created through an amplicon duplication. The dot-plot matrix revealed the sequences similarities between the genomic sequences of human BPY2DP and VCY2 (S7B Fig.). Subsequently, we examined the sequence differences between BPY2DP and VCY2 to clarify why BPY2DP did not have a protein-coding ability. According to the sequence alignment, although BPY2DP had obtained the start and stop codons, it also had some conserved disablers, such as the premature stop-codon in exon 1 (S7C Fig.). We supposed that BPY2DP might be a non-protein-coding ancestral copy that existed prior to the VCY2 obtaining protein-coding ability, but we needed more information from other primate Chr-Y to support this hypothesis.

Duplicated segments in the 5′-untranslated region

The dot-plot matrix of the VCY2 genomic sequence revealed an 8.5-kb segment in the VCY2 5′-untranslated region (5′-UTR) region that exhibited significant sequence similarities with the protein-coding region of VCY2 (S8A Fig.). This region was located approximately 2 kb upstream of the VCY2 translation start. We also found a similar situation in all of the 5′-UTR regions of the human VCY2 paralogs, including the pseudogene BPY2DP. Similarly, a duplicated segment in the 5′-UTR of the chimpanzee VCY2 homolog was also identified. Subsequently, we aligned both the human and chimpanzee VCY2-5′-UTR and VCY2-ORF genomic region sequences and compared the sequence differences. Surprisingly, the sequence disablers that we found in the human and chimpanzee VCY2-5′-UTR regions were nearly identical to those in the autosomal BEYLA (S8B Fig.). For example, both the start and stop codons were absent, and pre-mature stop codons prevented further translation. These sequence disablers obstructed the ORF. None of the exons from the human VCY2 coding region matched the 5′-UTR exons; thus, if these two segments were generated through a duplication of one identical copy, we suppose that the exon and intron structures of VCY2 might have been rearranged and changed after that event. The 5′-UTR contained key elements for the regulation of gene translation, and it is possible that this 5′-UTR duplicated segment might also have a role in the regulation of the expression of VCY2.

Reconstructing the evolutionary history of VCY2 in primates

The relationships between VCY2 and its protein-coding and non-protein-coding homologs from the Chr-Y or autosomes of human, apes, Old World monkeys and New World monkeys were established based on the evolutionary history of primates (Fig. 9A). The disablers are common to the human BEYLA, primate autosomal BEYLA, rhesus macaque VCY2 and marmoset Chr-2. These non-protein-coding sequences with common disablers were indicative of an autosomal non-protein-coding ancestral sequence. The VCY2 homolog protein-coding gene was absent in the marmoset Chr-Y, and the autosomal homolog was non-protein-coding. VCY2 was found in the Chr-Y of the rhesus macaque, while VCY2 mRNA expression was confirmed in the orangutan, gorilla, chimpanzee and human, which implies that the protein-coding ability was acquired after the ape-monkey split. To illustrate the evolutionary history, a phylogenetic tree for VCY2 (exon 1) and its homologos was constructed using the maximum likelihood (ML) method. The VCY2 homologous sequences from marmoset Chr-2 formed the
out-group of the tree. The topological structure of the in-group exhibited two major clades; i.e., VCY2 and BEYLA (Fig. 9B). Interestingly, the rhesus macaque VCY2 was closely related to the autosomal BEYLA, which might suggest a recent transposition event. The human, chimpanzee, gorilla and orangutan VCY2s formed a unique clade, and their evolutionary relationship implies that the protein-coding ability might have been obtained after the divergence of Old World monkeys and apes.

Considering the above findings, these data suggest a model for the origin of VCY2 in which the autosomal, non-protein-coding homolog was duplicated and transposed to the Chr-Y
before the ape-monkey split at least 35 mya and was retained in the rhesus macaque as a non-protein-coding gene. VCY2 acquired its protein-coding ability before the monkey-ape split.

Discussion

Mammalian Chr-Y genes play vital roles in sex determination, spermatogenesis, and other male-specific processes [65,66]. The evolutionary histories and origins of the majority of Chr-Y genes have been extensively studied, but de novo Chr-Y protein-coding genes have never been reported. Chr-Y evolved from an ancestral autosome, and it has an unusual evolutionary history [67–69]. Chr-Y translocation and segmental duplication have been common in both humans and fruit flies, and the accumulation of transposable elements on the Chr-Y during its evolution has been observed on both the *Drosophila* and human Chr-Y [70,71]. Autosome-to-Y transposition of male-benefit genes is also common and conserved in mice [72], carnivores [73] and bovines [74]. Male-benefit genes such as DAZ have been accumulated on the Chr-Y through transposition and retroposition from autosomes and subsequent amplification [38, 39]. However, to our knowledge, this is the first report of a possible de novo autosome-to-Y transposed and amplified protein-coding gene. VCY2 is frequently deleted in patients with idiopathic infertility; thus, VCY2 is likely to function in male germ cell development and to be involved in the pathogenesis of male infertility [62]. The evidence we presented here regarding the origin of VCY2 suggests that de novo protein-coding genes can be generated through the transposition of ancestral autosomal non-protein-coding segments. This process might explain the birth of VCY2 as a gene since it might help to improve the male fertility.

Recent studies have revealed that the life cycle of a de novo gene is a multi-step process [8,11]. In yeast models, functional genes evolve de novo through putative transitory proto-genes. Our results also provided some clues about these processes. Our evidence also suggests that VCY2 was not transformed into a protein-coding gene immediately after transposition because the VCY2 protein-coding homolog is absent in the rhesus macaque, but the non-protein-coding genomic sequence is present. These findings might imply that the VCY2 stayed as a non-protein-coding gene shortly after autosome-to-Y transposition. The protein-coding ability of VCY2 might have been gained after the ape-monkey split because mRNA evidence was found in several species of apes. The non-protein-coding segments in the 5'-UTR are indicative of a duplication event inside the ancestral VCY2 genomic region before the protein-coding ability was obtained. The presence of a pseudogene (BPY2DP) might suggest that an amplicon duplication event occurred before VCY2 obtained its protein-coding ability. This evidence suggests that the de novo origination of VCY2 might be much more complicated than we expected.

Previous study revealed that long non-coding RNAs, especially those with active and regulated transcription, may serve as a birth pool for protein-coding genes and 24 hominoid-specific novel protein-coding genes originating from long non-protein-coding RNAs [22] have also been identified. Our results provide an other unique example for this model. The autosomal loci (*BEYLA*) is a long intergenic non-protein coding RNA in human and primate genomes. The homologous sequences from all of the other primates, including marmosets, consist of non-protein-coding genes, which indicates that the ancestral autosomal loci was non-protein-coding. Interestingly, EST clones from the testis tissues matched this gene, and the expression profile from the NONCODE database also exhibited a strong preference in testis tissue. These clues imply a possible role of *BEYLA* in male-specific functions.

De novo protein-coding genes might be generated from non-protein-coding genomic sequences, and such genetic material might be derived in different manners. The present study also provides the first example of a possible de novo protein-coding gene that was generated from duplicated and transposed segments. Segmental duplication has frequently occurred
during primate evolution, and it is estimated that approximately 5%–10% of human genomic sequences were generated through this process [75]. Whether these duplicated regions contain any de novo protein-coding genes is a question that warrants further investigation.

The emergence of novel genes is a driving force for evolutionary innovation in all organisms, and the acquisition of novel gene functions is important for species-specific adaptations. VCY2 is a testis-specific gene in the AZFc region that is frequently deleted in infertile patients with Yq microdeletions [76], which leads to defective spermatogenesis and an increased risk of infertility but not essential [77–79]. VCY2 binding partners include the ubiquitin-protein ligase E3A and the microtubule-associated protein-like protein MAPS1, which suggest that VCY2 interacts with evolutionarily ancient genes. These lines of evidence suggest that this novel gene has found binding partners and has new functions.

Conclusions

In conclusion, the evidence presented here supports the emergence of a protein-coding function in a Chr-Y gene that originated from a transposed autosomal segment. These findings provide novel insights into the mechanism of gene creation and the evolutionary history of the Chr-Y.

Supporting Information

S1 Fig. The alignments of the flanking sequences of human VCY2 with the autosomal sequences from Chr-8 (BEYLA) and Chr-7. The 200 bp flanking sequences from upstream (A) or downstream (B) of VCY2 gene are aligned with the autosomal sequences from BEYLA (Chr-8) and Chr-7. The regions for the coding sequence (CDS) of VCY2 are shown as gray. Positions of start and stop codons are indicated. Disablers are indicated by red. The translations of human VCY2 coding sequences are shown above each row of the alignment.

S2 Fig. Non-protein-coding autosomal sequences homologous to VCY2 from gorilla autosomes. The synteny block comparison around human Chr-8 BEYLA (A) and Chr-7 (B) and its homologous sequences from gorilla Chr-8 and Chr-7. (C) Gorilla autosomal sequences were extracted and aligned with human VCY2 and BEYLA. The deduced protein sequence of VCY2 exon 1 and exon 4 were shown above the row. Positions of start and stop codons are indicated. The asterisk (*) denotes the stop codon in the translated sequence. Disablers are indicated by red. Gogo, *Gorilla gorilla*; Hosa, *Homo sapiens*.

S3 Fig. Non-protein-coding autosomal sequences homologous to VCY2 from bonobo autosomes. The synteny block comparison around human Chr-8 BEYLA (A) and Chr-7 (B) and its homologous sequences from bonobo genomes (unplaced scaffolds: NW_003870542.1 and NW_003870421.1). (C) Bonobo sequences were extracted and aligned with human VCY2 and BEYLA. The deduced protein sequence of VCY2 exon 1 was shown above the row. Positions of start and stop codons are indicated. The asterisk (*) denotes the stop codon in the translated sequence. Disablers are indicated by red. Hosa, *Homo sapiens*; Papa, *Pan paniscus*.

S4 Fig. Non-protein-coding autosomal sequences homologous to VCY2 from gibbon autosomes. The synteny block comparison around human Chr-7 (B) and its homologous sequences from gibbon Chr-17. (C) Gibbon autosomal sequences were extracted and aligned with human VCY2 and BEYLA. The deduced protein sequence of VCY2 exon 1 was shown above the row. Positions of start and stop codons are indicated. The asterisk (*) denotes the stop codon in the
translated sequence. Disablers are indicated by red. Hosa, *Homo sapiens*; Nole, *Nomascus leucogenys*.

(S5 Fig) Non-protein-coding autosomal sequences homologous to VCY2 from baboon autosomes. The synteny block comparison around human Chr-8 *BEYLA* (A) and Chr-7 (B) and its homologous sequences from baboon Chr-8 and Chr-3. (C) Baboon autosomal sequences were extracted and aligned with human VCY2 protein-coding exons. The deduced protein sequence of VCY2 exon 1 and exon 4 were shown above the row. Positions of start and stop codons are indicated. The asterisk (‘*) denotes the stop codon in the translated sequence. Disablers are indicated by red. Hosa, *Homo sapiens*; Paan, *Papio anubis*.

(S6 Fig) Non-protein-coding autosomal sequences homologous to VCY2 from the West African sabaeus monkey autosomes. The synteny block comparison around human Chr-8 *BEYLA* (A) and Chr-7 (B) and its homologous sequences from the West African sabaeus monkey Chr-8 and Chr-3. (C) West African sabaeus monkey autosomal sequences were extracted and aligned with human VCY2 and *BEYLA*. The deduced protein sequence of VCY2 exon 1 and exon 4 were shown above the row. Positions of start and stop codons are indicated. The asterisk (*) denotes the stop codon in the translated sequence. Disablers are indicated by red. Chsa, *Chlorocebus sabaeus*; Hosa, *Homo sapiens*.

(S7 Fig) The protein-coding ability of pseudogene *BPY2DP*. The synteny block comparison around human pseudogene gene *BPY2DP* and VCY2 (*BPY2*). The order and orientation for each gene in the green-amplicon was shown. (B) The dot-plot analysis for *BPY2DP* and VCY2 genomic sequences. Each dot in the map represent a fragment of 14 bp length (mismatch is 0) in the alignment. (C) The alignment of the *BPY2DP* and partial protein-coding sequences of VCY2, the deduced protein sequence for VCY2 exon 1 and exon 4 above the row. Positions of start codons are indicated. Disablers are indicated by red. Red and green arrow indicate the enabler and disabler for *BPY2DP*. Hosa, *Homo sapiens*.

(S8 Fig) Non-protein-coding duplicated segments in human and chimpanzee VCY2 5’-untranslated region. The dot-plot analysis of the human VCY2 genomic sequence with itself. Each dot in the map represent a fragment of 11 bp length (mismatch is 0) in the alignment. The exon-intron structure of human VCY2 was shown. The position of protein-coding exons of VCY2 were indicated as 1–4. The protein-coding exons (black bars) and non-protein-coding exons in 5’-UTR and 3’UTR (white bars); 1 cm in the diagram = 2 kb in the genomic sequence. The arrow and the red dash lines indicated the positions of the duplicated segments (B) Artificial translations of VCY2 5’UTR ORF are shown below each row of the alignment and compared to the deduced protein sequence for VCY2 ORF above the row. Positions of start and stop codons are indicated. Disablers are indicated by red. Hosa, *Homo sapiens*; Patr, *Pan troglodytes*; UTR, untranslated region.

(S1 Table) The versions of genomic assemblies referred to and the sequence information used in this article.
S2 Table. The bacterial artificial chromosome (BAC) clones of rhesus macaque Y chromosome male-specific region referred to in this article and the sequence information.
(XLS)

S3 Table. The human autosomal fragments longer than 4 kilobase pairs that exhibits high sequence similarities with human VCY2.
(XLS)

S4 Table. The expression profiles of human BEYLA from non-coding RNA (NONCODE) database derived from RNA-seq expression analysis.
(XLS)

Acknowledgments
We appreciate the helpful suggestions of professor Bing Su from Kunming Institute of Zoology, Chinese Academy of Sciences on this project. We greatly thank the support of National Natural Science Foundation of China (Grant No: 31170092) and Hunan Provincial Natural Science Foundation of China (Grant No: 13JJ2021).

Author Contributions
Conceived and designed the experiments: P-RC Y-CJ. Performed the experiments: P-RC LW Y-SY. Analyzed the data: P-RC FQ. Contributed reagents/materials/analysis tools: P-RC T-CL YL. Wrote the paper: P-RC.

References
1. Kaessmann H (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res. 20 (10):1313–1326. doi: 10.1101/gr.101386.109 PMID: 20651121
2. Long M, Betrán E, Thornton K, Wang W (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet. 4(11):865–875. PMID: 14634634
3. Begun DJ, Lindfors HA, Kern AD, Jones CD (2007) Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics. 176(2):1131–1137. PMID: 17435230
4. Begun DJ, Lindfors HA, Thompson ME., (2006) Holloway AK. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics. 172 (3):1675–1681. PMID: 16361246
5. Levine MT, Jones AD, Kern AD, Lindfors HA, Begun DJ., (2006) Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc Natl Acad Sci U S A. 103(26):9935–9939. PMID: 16777968
6. Zhou Q, Zhang G, Zhang Y, Xu S, Zhao R, Zhan Z, et al. (2008) On the origin of new genes in Drosophilia. Genome Res. 18(9):1446–1455. doi: 10.1101/gr.076588.108 PMID: 18550802
7. Reinhardt JA, Wanjiru BM, Brant AT, Saelao P, Begun DJ, Jones CD (2013) De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences. PLoS Genet. 9(10):e1003860. doi: 10.1371/journal.pgen.1003860 PMID: 24146629
8. Zhao L, Saelao P, Jones CD, Begun DJ (2014) Origin and spread of de novo genes in Drosophila melanogaster populations. Science. 343(6172):769–772. doi: 10.1126/science.1248286 PMID: 24457212
9. Wissler L, Gadad J, Simola DF, Helmkampf M, Bomberg-Bauer E (2013) Mechanisms and dynamics of orphan gene emergence in insect genomes. Genome Biol Evol. 5(2):439–55. doi: 10.1093/gbe/evt009 PMID: 23348040
10. Li D, Dong Y, Jiang Y, Jiang H, Cai J, Wang W (2010) A de novo gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res. 20(4):408–420. doi: 10.1038/cr.2010.31 PMID: 20195295
11. Cai J, Zhao R, Jiang H, Wang W (2008) De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics. 179(1):487–496 doi: 10.1534/genetics.107.084491 PMID: 18493065
12. Carvunis AR, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N et al. (2012) Proto-genes and de novo gene birth. Nature. 487(7407):370–374. doi: 10.1038/nature11184 PMID: 22722833
13. Xiao W, Liu H, Li Y, Li X, Xu C, Long M, et al. (2009) A rice gene of de novo origin negatively regulates pathogen-induced defense response. PLoS One. 4(2):e4603. doi: 10.1371/journal.pone.0004603 PMID: 19240804
14. Yang Z, Huang J (2011) De novo origin of new genes with introns in Plasmodium vivax. FEBS Lett. 585(4):641–644. doi: 10.1016/j.febslet.2011.01.017 PMID: 21241695
15. Neme R, Tautz D (2013) Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics. 14:117. doi: 10.1186/1471-2164-14-117 PMID: 23433480
16. Toll-Riera M, Bosch N, Bellora N, Castelo R, Armengol L, Estivill X, et al. (2009) Origin of primate orphan genes: a comparative genomics approach. Mol Biol Evol. 26(3):603–612. doi: 10.1093/molbev/msn281 PMID: 19064677
17. Knowles DG, McLysaght A (2009) Recent de novo origin of human protein-coding genes. Genome Res. 19(10):1752–1759. doi: 10.1101/gr.095026.109 PMID: 19726446
18. Murphy DN, McLysaght A (2012) De novo origin of protein-coding genes in murine rodents. PLoS One. 7(11):e48650. doi: 10.1371/journal.pone.0048650 PMID: 23029352
19. Li CY, Zhang Y, Wang Z, Zhang Y, Cao C, Zhang PW, et al. (2010) A human-specific de novo protein-coding gene associated with human brain functions. PLoS Comput Biol. 6(3):e1000734. doi: 10.1371/journal.pcbi.1000734 PMID: 20376170
20. Wu DD, Irwin DM, Zhang YP (2011) De novo origin of human protein-coding genes. PLoS Genet. 7(11):e1002379. doi: 10.1371/journal.pgen.1002379 PMID: 22102831
21. Samusik N, Krukovskaya L, Meln I, Shilov E, Kozlov AP (2013) PBOV1 is a human de novo gene with tumor-specific expression that is associated with a positive clinical outcome of cancer. PLoS One. 8(2):e56162. doi: 10.1371/journal.pone.0056162 PMID: 23418531
22. Xie C, Zhang YE, Chen JY, Liu CJ, Zhou WZ, Li Y, et al. (2012) Hominoid-specific de novo protein-coding genes originating from long non-protein-coding RNAs. PLoS Genet. 8(9):e1002942. doi: 10.1371/journal.pgen.1002942 PMID: 23028352
23. Graves JA, Koina E, Sankovic N (2006) How the gene content of human sex chromosomes evolved. Curr Opin Genet Dev. 16(3):219–24. PMID: 16650758
24. Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, et al. (2014) Origins and functional evolution of Y chromosomes across mammals. Nature. 508(7497):488–93. doi: 10.1038/ nature13151 PMID: 24759410
25. Graves JA (1995) The origin and function of the mammalian Y Chromosome and Y-borne genes—an evolving understanding. Bioessays. 17(4):311–320. PMID: 7741724
26. Wilson Sayres MA, Makova KD (2013) Gene survival and death on the human Y chromosome. Mol Biol Evol. 30(4):781–787. doi: 10.1093/molbev/mss267 PMID: 23223713
27. Lahn BT, Page DC (1999) Four evolutionary strata on the human Chr-X. Science. 286(5441):964–967. PMID: 10542153
28. Iwase M, Satta Y, Hirai Y, Hirai H, Imai H, Takahata N (2003) The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species. Proc Natl Acad Sci U S A. 2003; 100(9):5258–63. PMID: 12672962
29. Blaschke RJ, Rappold G (2006) The pseudoautosomal regions, SHOX and disease. Curr Opin Genet Dev. 16(3):233–239. PMID: 16650979
30. Ginalska K, Rychlewski L, Baker D, Grishin NV (2004) Protein structure prediction for the male-specific region of the human Y chromosome. Proc Natl Acad Sci U S A. 101(8):2305–2310. PMID: 14983005
31. Bachtrog D (2013) Y Chromosome evolution: emerging insights into processes of Y Chromosome degeneration. Nat Rev Genet. 14(2):113–124. doi: 10.1038/nrg3366 PMID: 23239112
32. Steinemann M, Steinemann S (2000) Common mechanisms of Y Chromosome evolution. Genetica. 109(1–2):105–111. PMID: 11430487
33. Goto H, Peng L, Makova KD (2009) Evolution of X-degenerate Y Chromosome genes in greater apes: conservation of gene content in human and gorilla, but not chimpanzee. J Mol Evol. 68(2):134–144. doi: 10.1007/s00239-008-9189-y PMID: 19142680
34. Hughes JF, Skaletsky H, Pyntikova T, Graves TA, van Daalen SK, Minx PJ, et al. (2010) Chimpanzee and human Y Chromosomes are remarkably divergent in structure and gene content. Nature. 463(7280):536–539. doi: 10.1038/nature08700 PMID: 20072128
36. Bhowmick BK, Satta Y, Takahata N (2007) The origin and evolution of human ampiclicone gene families and ampicliconic structure. Genome Res. 17(4):441–450. PMID: 17185645
37. Mazeiyrat S, Saut N, Mattei MG, Mitchell MJ (1999) RBMY evolved on the Y Chromosome from a ubiquitously transcribed X-Y identical gene. Nat Genet. 22(3):224–226. PMID: 10391207
38. Saxena R, Brown LG, Hawkins T, Alagappan RK, Skakelty H, Reeve MP, et al. (1996) The DAZ gene cluster on the human Y Chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nat Genet. 14(3):292–299. PMID: 8896558
39. Yu YH, Lin YW, Yu JF, Scheppe W, Yen PH (2008) Evolution of the DAZ gene and the AZF-c region on primate Y Chromosomes. BMC Evol Biol. 8:96. doi: 10.1186/1471-2148-8-96 PMID: 18366765
40. Lahn BT, Page DC (1999) Retroposition of autosomal mRNA yielded testis-specific gene family on human Y Chromosome. Nat Genet. 21(4):429–433. PMID: 10192397
41. Dorus S, Gilbert SL, Forster ML, Barndt RJ, Lahn BT (2003) The CDY-related gene family: coordinated evolution in copy number, expression profile and protein sequence. Hum Mol Genet. 12(14):1643–1650. PMID: 12837688
42. Skakelty H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, et al. (2003) The male-specific region of the human Y Chromosome is a mosaic of discrete sequence classes. Nature. 423 (6942):825–837. PMID: 12815422
43. Hughes JF, Skakelty H, Brown LG, Pyntikova T, Graves T, Fulton RS, et al. (2012) Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature. 483 (7387):82–86. doi: 10.1038/nature10843 PMID: 22367542
44. Pruitt KD, Brown GR, Hiatt SM, Thibaud-Nissen F, Astashyn A, Ermolaeva O, et al. (2014) RefSeq: an update on mammalian reference sequences. Nucleic Acids Res: 42(1):D756–763. doi: 10.1093/nar/gkt1114 PMID: 24259432
45. Flicek P, Amode MR, Barrett D, Beal K, Billis K, Brent S, et al. (2014) Ensembl 2014. Nucleic Acids Research. 42 (Database issue):D749–D755. doi: 10.1093/nar/gkt1196 PMID: 24316576
46. Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, et al. (2006) Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res. 16(1):55–65. PMID: 16344560
47. Hellmann I, Zollner S, Enard W, Ebersberger I, Paabo S (2003) Selection on human genes as revealed by comparisons to chimpanzee cDNA. Genome Res. 13(5):831–7. PMID: 12727903
48. Tatsumoto S, Adati N, Tohtoki Y, Sakaki Y, Borovka T, Habu S, et al. (2013) Development and characterization of cDNA resources for the common marmoset: one of the experimental primate models. DNA Res. 20(3):255–62. doi: 10.1093/dnares/dst007 PMID: 23543116
49. Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, et al. (2014) NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res. 42 (Database issue):D98–103. PMID: 24196036
50. Larkin MA, Blackshields G, Brown NP, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics. 23(21):2947–2948. PMID: 17846036
51. Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 4(4):406–425. PMID: 3447015
52. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39:783–791.
53. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 16(2):111–120. PMID: 7463489
54. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 28(10):2731–2739. doi: 10.1093/molbev/msr121 PMID: 21546353
55. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol. 215(3):403–10. PMID: 2231712
56. States DJ, Gish W. (1994) Combined use of sequence similarity and codon bias for coding region identification. J Comput Biol. 1(1):39–50. PMID: 8790452
57. Zhang J, Madden TL (1997) PowerBLAST: A new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res. 7:649–656. PMID: 9199938
58. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res. 12(4):656–64. PMID: 11932250
59. Kent WJ, Sugnet CW, Kuryan KM, Roskin TH, Zahir AM, et al. (2002) The human genome browser at UCSC. Genome Res. 12(8):996–1006. PMID: 12045153
60. Muffato M, Louis A, Poisnel C-E, Crollius HR (2010) Genomicus: a database and a browser to study gene synteny in modern and ancestral genomes. Bioinformatics, 26(8), 1119–1121. doi: 10.1093/bioinformatics/btq079 PMID: 20185404
61. Stuppia L, Gatta V, Scarciali O, Antonucci I, Morizio E, Calabrese G, et al. (2005) Identification in chromosome 8q11 of a region of homology with the g1 amplicon of the Y Chromosome and functional analysis of the BEYLA gene. Genomics. 85(2):280–283. PMID: 15676287

62. Tse JY, Wong EY, Cheung AN, O WS, Tam PC, Yeung WS (2003) Specific expression of VCY2 in human male germ cells and its involvement in the pathogenesis of male infertility. Biol Reprod. 69(3):746–751. PMID: 12724276

63. Wong EY, Tse JY, Yao KM, Lui VC, Tam PC, Yeung WS (2004) Identification and characterization of human VCY2-interacting protein: VCY2IP-1, a microtubule-associated protein-like protein. Biol Reprod. 70(3):775–784. PMID: 14627543

64. Wong EY, Tse JY, Yao KM, Tam PC, Yeung WS (2002) VCY2 protein interacts with the HECT domain of ubiquitin-protein ligase E3A. Biochem Biophys Res Commun. 296(5):1104–1111. PMID: 12207887

65. Graves JA (1995) The evolution of mammalian sex chromosomes and the origin of sex determining genes. Philos Trans R Soc Lond B Biol Sci. 350(1333):305–11; discussion 311–312. PMID: 8570696

66. Delbridge ML, Graves JA (1999) Mammalian Y chromosome evolution and the male-specific functions of Y chromosome-borne genes. Rev Reprod. 4(2):101–109. PMID: 10357097

67. Lahn BT, Page DC (2007) Functional coherence of the human Y chromosome. Science. 278(5338):675–680.

68. Hurst LD (1994) Embryonic growth and the evolution of the mammalian Y chromosome. I. The Y as an attractor for selfish growth factors. Heredity. 73(Pt 3):223–232. PMID: 7928393

69. Marshall Graves JA (2000) Human Y chromosome, sex determination, and spermatogenesis—a feminist view. Biology of reproduction. 63(3):667–676. PMID: 10952906

70. Junakovic N, Terniioni A, Di Franco C, Vieira C, Loevenbruck C (1998) Accumulation of transposable elements in the heterochromatin and on the Y chromosome of Drosophila simulans and Drosophila melanogaster. J Mol Evol. Jun; 46(6):661–8. PMID: 9698048

71. Erlendsson R, Wilson JF, Pääbo S (2000) Sex chromosomal transposable element accumulation and male-driven substitutional evolution in humans. Mol Biol Evol. 17(5):804–12. PMID: 10779541

72. Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, et al. (2009) Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS biology. 7(5):e1000112. doi:10.1371/journal.pbio.1000112 PMID: 19468303

73. Murphy WJ, Pearks Wilkerson AJ, Raudsepp T, Agarwala R, Schaffer AA, Stanyon R, et al. (2006) Novel gene acquisition on carnivore Y chromosomes. PLoS genetics. 2(3):e43. PMID: 16596168

74. Yang Y, Chang TC, Yasue H, Bharti AK, Retzel EF, Liu WS (2011) ZNF280BY and ZNF280AY: autosome derived Y-chromosome gene families in Bovidae. BMC Genomics. 12:13. doi:10.1186/1471-2164-12-13 PMID: 21214936

75. Samonte RV, Eichler EE (2002) Segmental duplications and the evolution of the primate genome. Nat Rev Genet. 3(1):65–72. PMID: 11823792

76. Stuppia L, Gatta V, Fogh I, Gaspari AR, Morizio E, Mingarelli R, Di Santo M, et al. (2001) Genomic organization, physical mapping, and involvement in Yq microdeletions of the VCY2 (BPY2) gene. Genomics. 72(2):153–157. PMID: 11401428

77. Stuppia L, Gatta V, Fogh I, Gaspari AR, Grande R, Morizio E, et al. (2000) Characterization of novel genes in AZF regions. J Endocrinol Invest. 23(10):659–663. PMID: 11097430

78. Ferlin A, Tessari A, Ganz F, Marchina E, Barlati S, Garolla A, et al. (2005) Association of partial AZFc region deletions with spermatogenic impairment and male infertility. Med Genet. 42(3):209–213.

79. Saut N, Terriou P, Navarro A, Lévy N, Mitchell MJ (2000) The human Y chromosome genes BPY2, CDY1 and DAZ are not essential for sustained fertility. Mol Hum Reprod. 6(9):789–793. PMID: 10956550